



## SEQUENCE LISTING

COPY OF PAPERS  
ORIGINALLY FILED

<110> De Robertis, Edward M.  
Bouwmeester, Tewis

<120> Endoderm, Cardiac and Neural Inducing  
Factors

<130> 510015-257

<140> US 09/903,325

<141> 2001-07-11

<150> US 60/020,150

<151> 1996-06-20

<160> 10

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 270

<212> PRT

<213> Xenopus

<400> 1

Met Leu Leu Asn Val Leu Arg Ile Cys Ile Ile Val Cys Leu Val Asn  
 1 5 10 15  
 Asp Gly Ala Gly Lys His Ser Glu Gly Arg Glu Arg Thr Lys Thr Tyr  
 20 25 30  
 Ser Leu Asn Ser Arg Gly Tyr Phe Arg Lys Glu Arg Gly Ala Arg Arg  
 35 40 45  
 Ser Lys Ile Leu Leu Val Asn Thr Lys Gly Leu Asp Glu Pro His Ile  
 50 55 60  
 Gly His Gly Asp Phe Gly Leu Val Ala Glu Leu Phe Asp Ser Thr Arg  
 65 70 75 80  
 Thr His Thr Asn Arg Lys Glu Pro Asp Met Asn Lys Val Lys Leu Phe  
 85 90 95  
 Ser Thr Val Ala His Gly Asn Lys Ser Ala Arg Arg Lys Ala Tyr Asn  
 100 105 110  
 Gly Ser Arg Arg Asn Ile Phe Ser Arg Arg Ser Phe Asp Lys Arg Asn  
 115 120 125  
 Thr Glu Val Thr Glu Lys Pro Gly Ala Lys Met Phe Trp Asn Asn Phe  
 130 135 140  
 Leu Val Lys Met Asn Gly Ala Pro Gln Asn Thr Ser His Gly Ser Lys  
 145 150 155 160  
 Ala Gln Glu Ile Met Lys Glu Ala Cys Lys Thr Leu Pro Phe Thr Gln  
 165 170 175  
 Asn Ile Val His Glu Asn Cys Asp Arg Met Val Ile Gln Asn Asn Leu

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     | 180 | 185 | 190 |     |     |     |     |     |     |     |     |     |     |     |     |
| Cys | Phe | Gly | Lys | Cys | Ile | Ser | Leu | His | Val | Pro | Asn | Gln | Gln | Asp | Arg |
| 195 |     |     |     |     |     |     | 200 |     |     |     |     |     |     | 205 |     |
| Arg | Asn | Thr | Cys | Ser | His | Cys | Leu | Pro | Ser | Lys | Phe | Thr | Leu | Asn | His |
| 210 |     |     |     |     |     |     | 215 |     |     |     |     |     |     | 220 |     |
| Leu | Thr | Leu | Asn | Cys | Thr | Gly | Ser | Lys | Asn | Val | Val | Lys | Val | Val | Met |
| 225 |     |     |     |     |     | 230 |     |     |     | 235 |     |     |     |     | 240 |
| Met | Val | Glu | Glu | Cys | Thr | Cys | Glu | Ala | His | Lys | Ser | Asn | Phe | His | Gln |
|     |     |     |     |     |     | 245 |     |     | 250 |     |     |     |     |     | 255 |
| Thr | Ala | Gln | Phe | Asn | Met | Asp | Thr | Ser | Thr | Thr | Leu | His | His |     |     |
|     |     |     |     |     |     | 260 |     |     | 265 |     |     |     |     |     | 270 |

&lt;210&gt; 2

&lt;211&gt; 1338

&lt;212&gt; DNA

&lt;213&gt; Xenopus

&lt;400&gt; 2

|             |             |             |             |            |             |      |
|-------------|-------------|-------------|-------------|------------|-------------|------|
| gaattcccaag | caagtgcgtc  | agaaaacactg | cagggtctag  | atatcataca | atgttactaa  | 60   |
| atgtactcag  | gatctgtatt  | atcgctcgcc  | tttgtaatga  | tggagcagga | aaacactcag  | 120  |
| aaggacgaga  | aaggacaaaa  | acatattcac  | ttaacagcag  | aggttacttc | agaaaagaaa  | 180  |
| gaggagcacg  | taggagcaag  | attctgctgg  | tgaataactaa | aggtcttgat | gaaccccaca  | 240  |
| ttgggcatgg  | tgatttcgc   | tttagtagctg | aactatttg   | ttccaccaga | acacatacaa  | 300  |
| acagaaaaa   | gccagacatg  | aacaaagtca  | agctttctc   | aacagttgcc | catggaaaca  | 360  |
| aaagtgcag   | aagaaaagct  | tacaatggtt  | ctagaaggaa  | tattttccct | cggcgttctt  | 420  |
| ttgataaaaag | aaatacagag  | gttactgaaa  | agcctggtgc  | caagatgttc | tggaaacaatt | 480  |
| ttttggtaa   | aatgaatgga  | gccccacaga  | atacaagcca  | tggcagtaaa | gcacaggaaa  | 540  |
| taatgaaaaga | agcttgcaaa  | accttggttt  | tcactcagaa  | tattgtacat | gaaaactgtg  | 600  |
| acaggatgt   | gatacagaac  | aatctgtgct  | ttggtaaatg  | catctctctc | catgttccaa  | 660  |
| atcagcaaga  | tcgacgaaat  | acttggccc   | attgttgcc   | gtccaaattt | accctgaacc  | 720  |
| acctgacgct  | gaattgtact  | ggatctaaga  | atgtagtaaa  | ggttgtcatg | atggtagagg  | 780  |
| aatgcacgt   | tgaagctcat  | aagagcaact  | tccaccaaac  | tgcacagttt | aacatggata  | 840  |
| catctactac  | cctgcaccat  | taaaggactg  | ccatacagta  | tggaaatgcc | ctttgttgg   | 900  |
| aatatttgtt  | acatactatg  | catctaaagc  | attatgtgc   | cttctatttc | atataaccac  | 960  |
| atggaataag  | gattgtatga  | attataatta  | acaaatggca  | ttttgtgtaa | catgcaagat  | 1020 |
| ctctgttcca  | tcaaggcgt   | gataaaaagc  | aatatttgtt  | tgactttttt | tctacaaaat  | 1080 |
| gaataacccaa | atataatgata | agataaatgg  | gtcaaaaactg | ttaaggggta | atgtaataat  | 1140 |
| agggactaag  | tttgcccagg  | agcagtgacc  | cataacaacc  | aatcagcagg | tatgattttac | 1200 |
| tggtcacctg  | tttaaaagca  | aacatcttat  | tggttctat   | gggttactgc | ttctgggcaa  | 1260 |
| aatgtgtgcc  | tcataggggg  | gttagtgtgt  | tgtgtactga  | ataaattgt  | tttatttcat  | 1320 |
| tgttacaaaaa | aaaaaaaaa   |             |             |            |             | 1338 |

&lt;210&gt; 3

&lt;211&gt; 318

&lt;212&gt; PRT

&lt;213&gt; Xenopus frazzled

&lt;400&gt; 3

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Ser | Arg | Thr | Arg | Lys | Val | Asp | Ser | Leu | Leu | Leu | Leu | Ala | Ile | Pro |
| 1   |     |     |     |     |     | 5   |     |     | 10  |     |     |     |     | 15  |     |
| Gly | Leu | Ala | Leu | Leu | Leu | Leu | Pro | Asn | Ala | Tyr | Cys | Ala | Ser | Cys | Glu |

| 20                                                              | 25  | 30  |
|-----------------------------------------------------------------|-----|-----|
| Pro Val Arg Ile Pro Met Cys Lys Ser Met Pro Trp Asn Met Thr Lys |     |     |
| 35                                                              | 40  | 45  |
| Met Pro Asn His Leu His His Ser Thr Gln Ala Asn Ala Ile Leu Ala |     |     |
| 50                                                              | 55  | 60  |
| Ile Glu Gln Phe Glu Gly Leu Leu Thr Thr Glu Cys Ser Gln Asp Leu |     |     |
| 65                                                              | 70  | 75  |
| Leu Phe Phe Leu Cys Ala Met Tyr Ala Pro Ile Cys Thr Ile Asp Phe |     |     |
| 85                                                              | 90  | 95  |
| Gln His Glu Pro Ile Lys Pro Cys Lys Ser Val Cys Glu Arg Ala Arg |     |     |
| 100                                                             | 105 | 110 |
| Ala Gly Cys Glu Pro Ile Leu Ile Lys Tyr Arg His Thr Trp Pro Glu |     |     |
| 115                                                             | 120 | 125 |
| Ser Leu Ala Cys Glu Glu Leu Pro Val Tyr Asp Arg Gly Val Cys Ile |     |     |
| 130                                                             | 135 | 140 |
| Ser Pro Glu Ala Ile Val Thr Val Glu Gln Gly Thr Asp Ser Met Pro |     |     |
| 145                                                             | 150 | 155 |
| Asp Phe Ser Met Asp Ser Asn Asn Gly Asn Cys Gly Ser Gly Arg Glu |     |     |
| 165                                                             | 170 | 175 |
| His Cys Lys Cys Lys Pro Met Lys Ala Thr Gln Lys Thr Tyr Leu Lys |     |     |
| 180                                                             | 185 | 190 |
| Asn Asn Tyr Asn Tyr Val Ile Arg Ala Lys Val Lys Glu Val Lys Val |     |     |
| 195                                                             | 200 | 205 |
| Lys Cys His Asp Ala Thr Ala Ile Val Glu Val Lys Glu Ile Leu Lys |     |     |
| 210                                                             | 215 | 220 |
| Ser Ser Leu Val Asn Ile Pro Lys Asp Thr Val Thr Leu Tyr Thr Asn |     |     |
| 225                                                             | 230 | 235 |
| Ser Gly Cys Leu Cys Pro Gln Leu Val Ala Asn Glu Glu Tyr Ile Ile |     |     |
| 245                                                             | 250 | 255 |
| Met Gly Tyr Glu Asp Lys Glu Arg Thr Arg Leu Leu Leu Val Glu Gly |     |     |
| 260                                                             | 265 | 270 |
| Ser Leu Ala Glu Lys Trp Arg Asp Arg Leu Ala Lys Lys Val Lys Arg |     |     |
| 275                                                             | 280 | 285 |
| Trp Asp Gln Lys Leu Arg Arg Pro Arg Lys Ser Lys Asp Pro Val Ala |     |     |
| 290                                                             | 295 | 300 |
| Pro Ile Pro Asn Lys Asn Ser Asn Ser Arg Gln Ala Arg Ser         |     |     |
| 305                                                             | 310 | 315 |

B1

- <210> 4
- <211> 1875
- <212> DNA
- <213> Xenopus frazzled

<400> 4

|                                                                      |     |
|----------------------------------------------------------------------|-----|
| gaattccctt tcacacagga ctcctggcag aggtgaatgg tttagccctat ggattttgtt   | 60  |
| tgttgatttt gacacatgtat tgattgctt cagataggat tgaaggactt ggatttttat    | 120 |
| ctaattctgc acttttaat tatctgagta attgttcatt ttgttattggta tggactaaa    | 180 |
| gataaaactta actccttgct tttgacttgc ccataaaacta taaggtgggg tgagttgttag | 240 |
| ttgctttac atgtgcccag attttccctg tattccctgt attccctcta aagaaggcct     | 300 |
| acacatacag gttgggcaga ataacaatgt ctgcacaacaag gaaaagtggac tcattactgc | 360 |
| tactggccat acctggactg gcgcattctct tattacccaa tgcttactgt gcttcgtgtg   | 420 |

agcctgtgcg gatccccatg tgcaaattctt tgccatggaa catgaccaag atgcccacc 480  
 atctccacca cagcaactaa gccaatgccat tcctggcaat tgaacagttt gaagggttgc 540  
 tgaccactga atgttagccag gacctttgt tctttctgtg tgccatgtat gcccccat 600  
 gtaccatcgat ttccagcat gaaccaatta agccttgcaa gtccgtgtgc gaaaggggca 660  
 gggccggctg tgagccatt ctcataaaagt accggcacac ttggccagag agcctggcat 720  
 gtgaagagct gcccgtat gacagaggag tctgcatttc cccagaggct atcgtcacag 780  
 tggaaacaagg aacagattca atgcctgact tctccatggat ttcaaacaat ggaaattgcg 840  
 gaagcggcaag ggagcaactgt aaatgcacgc ccatgaaggc aacccaaaag acgtatctca 900  
 agaataatta caattatgtat atcagagcaa aagtggaaaga ggtgaaagtg aaatgccacg 960  
 acgcaacagc aattgtggaa gtaaaggaga ttctcaagtc ttcccttagt aacattccta 1020  
 aagacacagt gacactgtac accaactcag gctgcttgc ccccccagctt gttgccaatg 1080  
 aggaatacat aattatgggc tatgaagaca aagagcgtac caggcttcta ctatgtggaa 1140  
 gatccttggc cgaaaaatgg agagatcgtc ttgctaagaa agtcaagcgc tggatcaaa 1200  
 agcttcgacg tcccaggaaa agcaaagacc ccgtggctcc aattcccaac aaaaacagca 1260  
 atccagaca agcgcgttagt tagactaacg gaaagggtgtt tggaaactct atggacttt 1320  
 aaactaagat ttgcattgtt ggaagagcaa aaaagaaatt gcactacage acgttatatt 1380  
 ctattgtta ctacaagaag ctgggttagt tgattgttagt tctcccttcc ttctttttt 1440  
 ttataactat atttgcacgt gttcccaggc aatttttttta ttcaacttcc agtgcacagag 1500  
 cagtgcactga atgttcagc ctaaagaagc tcaattcatt tctgatcaac taatgggtgac 1560  
 aagtgtttga tacttggga aagtgaacta attgcaatgg taaatcagag aaaagttgac 1620  
 caatgttgc ttccctgttag atgaacaagt gagagatcac atttaaatga tgatcacttt 1680  
 ccatttaata ctttcagcag ttttagtttag atgacatgtt ggtgcacct aaatctaaat 1740  
 attttatcat aaatgaagag ctgggttaga ctgtatggc actgttggga aggtaaatgc 1800  
 ctactttgtc aattctgttt taaaaatttc ctaaataaat attaagtccct aaataaaaaaa 1860  
 aaaaaaaaaaaaaaaa 1875

<210> 5  
 <211> 896  
 <212> PRT  
 <213> Xenopus

**31**  
 <400> 5  
 Met Leu Leu Leu Phe Arg Ala Ile Pro Met Leu Leu Leu Gly Leu Met  
 1 5 10 15  
 Val Leu Gln Thr Asp Cys Glu Ile Ala Gln Tyr Tyr Ile Asp Glu Glu  
 20 25 30  
 Glu Pro Pro Gly Thr Val Ile Ala Val Leu Ser Gln His Ser Ile Phe  
 35 40 45  
 Asn Thr Thr Asp Ile Pro Ala Thr Asn Phe Arg Leu Met Lys Gln Phe  
 50 55 60  
 Asn Asn Ser Leu Ile Gly Val Arg Glu Ser Asp Gly Gln Leu Ser Ile  
 65 70 75 80  
 Met Glu Arg Ile Asp Arg Glu Gln Ile Cys Arg Gln Ser Leu His Cys  
 85 90 95  
 Asn Leu Ala Leu Asp Val Val Ser Phe Ser Lys Gly His Phe Lys Leu  
 100 105 110  
 Leu Asn Val Lys Val Glu Val Arg Asp Ile Asn Asp His Ser Pro His  
 115 120 125  
 Phe Pro Ser Glu Ile Met His Val Glu Val Ser Glu Ser Ser Ser Val  
 130 135 140  
 Gly Thr Arg Ile Pro Leu Glu Ile Ala Ile Asp Glu Asp Val Gly Ser

145                    150                    155                    160  
 Asn Ser Ile Gln Asn Phe Gln Ile Ser Asn Asn Ser His Phe Ser Ile  
       165                    170                    175  
 Asp Val Leu Thr Arg Ala Asp Gly Val Lys Tyr Ala Asp Leu Val Leu  
       180                    185                    190  
 Met Arg Glu Leu Asp Arg Glu Ile Gln Pro Thr Tyr Ile Met Glu Leu  
       195                    200                    205  
 Leu Ala Met Asp Gly Gly Val Pro Ser Leu Ser Gly Thr Ala Val Val  
       210                    215                    220  
 Asn Ile Arg Val Leu Asp Phe Asn Asp Asn Ser Pro Val Phe Glu Arg  
       225                    230                    235                    240  
 Ser Thr Ile Ala Val Asp Leu Val Glu Asp Ala Pro Leu Gly Tyr Leu  
       245                    250                    255  
 Leu Leu Glu Leu His Ala Thr Asp Asp Asp Glu Gly Val Asn Gly Glu  
       260                    265                    270  
 Ile Val Tyr Gly Phe Ser Thr Leu Ala Ser Gln Glu Val Arg Gln Leu  
       275                    280                    285  
 Phe Lys Ile Asn Ser Arg Thr Gly Ser Val Thr Leu Glu Gly Gln Val  
       290                    295                    300  
 Asp Phe Glu Thr Lys Gln Thr Tyr Glu Phe Glu Val Gln Ala Gln Asp  
       305                    310                    315                    320  
 Leu Gly Pro Asn Pro Leu Thr Ala Thr Cys Lys Val Thr Val His Ile  
       325                    330                    335  
 Leu Asp Val Asn Asp Asn Thr Pro Ala Ile Thr Ile Thr Pro Leu Thr  
       340                    345                    350  
 Thr Val Asn Ala Gly Val Ala Tyr Ile Pro Glu Thr Ala Thr Lys Glu  
       355                    360                    365  
 Asn Phe Ile Ala Leu Ile Ser Thr Thr Asp Arg Ala Ser Gly Ser Asn  
       370                    375                    380  
 Gly Gln Val Arg Cys Thr Leu Tyr Gly His Glu His Phe Lys Leu Gln  
       385                    390                    395                    400  
 Gln Ala Tyr Glu Asp Ser Tyr Met Ile Val Thr Thr Ser Thr Leu Asp  
       405                    410                    415  
 Arg Glu Asn Ile Ala Ala Tyr Ser Leu Thr Val Val Ala Glu Asp Leu  
       420                    425                    430  
 Gly Phe Pro Ser Leu Lys Thr Lys Lys Tyr Tyr Thr Val Lys Val Ser  
       435                    440                    445  
 Asp Glu Asn Asp Asn Ala Pro Val Phe Ser Lys Pro Gln Tyr Glu Ala  
       450                    455                    460  
 Ser Ile Leu Glu Asn Asn Ala Pro Gly Ser Tyr Ile Thr Thr Val Ile  
       465                    470                    475                    480  
 Ala Arg Asp Ser Asp Ser Asp Gln Asn Gly Lys Val Asn Tyr Arg Leu  
       485                    490                    495  
 Val Asp Ala Lys Val Met Gly Gln Ser Leu Thr Thr Phe Val Ser Leu  
       500                    505                    510  
 Asp Ala Asp Ser Gly Val Leu Arg Ala Val Arg Ser Leu Asp Tyr Glu  
       515                    520                    525  
 Lys Leu Lys Gln Leu Asp Phe Glu Ile Glu Ala Ala Asp Asn Gly Ile  
       530                    535                    540  
 Pro Gln Leu Ser Thr Arg Val Gln Leu Asn Leu Arg Ile Val Asp Gln  
       545                    550                    555                    560

B1

Asn Asp Asn Cys Pro Val Ile Thr Asn Pro Leu Leu Asn Asn Gly Ser  
 565 570 575  
 Gly Glu Val Leu Leu Pro Ile Ser Ala Pro Gln Asn Tyr Leu Val Phe  
 580 585 590  
 Gln Leu Lys Ala Glu Asp Ser Asp Glu Gly His Asn Ser Gln Leu Phe  
 595 600 605  
 Tyr Thr Ile Leu Arg Asp Pro Ser Arg Leu Phe Ala Ile Asn Lys Glu  
 610 615 620  
 Ser Gly Glu Val Phe Leu Lys Lys Gln Leu Asn Ser Asp His Ser Glu  
 625 630 635 640  
 Asp Leu Ser Ile Val Val Ala Val Tyr Asp Leu Gly Arg Pro Ser Leu  
 645 650 655  
 Ser Thr Asn Ala Thr Val Lys Phe Ile Leu Thr Asp Ser Phe Pro Ser  
 660 665 670  
 Asn Val Glu Val Val Ile Leu Gln Pro Ser Ala Glu Glu Gln His Gln  
 675 680 685  
 Ile Asp Met Ser Ile Ile Phe Ile Ala Val Leu Ala Gly Gly Cys Ala  
 690 695 700  
 Leu Leu Leu Leu Ala Ile Phe Phe Val Ala Cys Thr Cys Lys Lys Lys  
 705 710 715 720  
 Ala Gly Glu Phe Lys Gln Val Pro Glu Gln His Gly Thr Cys Asn Glu  
 725 730 735  
 Glu Arg Leu Leu Ser Thr Pro Ser Pro Gln Ser Val Ser Ser Ser Leu  
 740 745 750  
 Ser Gln Ser Glu Ser Cys Gln Leu Ser Ile Asn Thr Glu Ser Glu Asn  
 755 760 765  
 Cys Ser Val Ser Ser Asn Gln Glu Gln His Gln Gln Thr Gly Ile Lys  
 770 775 780  
 His Ser Ile Ser Val Pro Ser Tyr His Thr Ser Gly Trp His Leu Asp  
 785 790 795 800  
 Asn Cys Ala Met Ser Ile Ser Gly His Ser His Met Gly His Ile Ser  
 805 810 815  
 Thr Lys Val Gln Trp Ala Lys Glu Ile Val Thr Ser Met Thr Val Thr  
 820 825 830  
 Leu Ile Leu Val Glu Asn Gln Lys Arg Arg Ala Leu Ser Ser Gln Cys  
 835 840 845  
 Arg His Lys Pro Val Leu Asn Thr Gln Met Asn Gln Gln Gly Ser Asp  
 850 855 860  
 Met Pro Ile Thr Ile Ser Ala Thr Glu Ser Thr Arg Val Gln Lys Met  
 865 870 875 880  
 Gly Thr Ala His Cys Asn Met Lys Arg Ala Ile Asp Cys Leu Thr Leu  
 885 890 895

&lt;210&gt; 6

&lt;211&gt; 3657

&lt;212&gt; DNA

&lt;213&gt; Xenopus

&lt;400&gt; 6

 gaattccccag agatgaactc cttgagattt ttttaaatga ctgcaggctc ggaaggattc  
 acattgccac actgtttcta ggcatgaaaa aactgcaagt ttcaactttt ttttggtgc

60

120

|             |             |             |             |             |              |      |
|-------------|-------------|-------------|-------------|-------------|--------------|------|
| aaccttgatt  | cttcaagatg  | ctgcttctct  | tcagagccat  | tccaaatgctg | ctgttggac    | 180  |
| tgtatggttt  | acaaaacagac | tgtcaaattt  | cccagtacta  | catagatgaa  | gaagaacccc   | 240  |
| ctggcactgt  | aattgcagtg  | ttgtcacaac  | actccatatt  | taacactaca  | gatatacctg   | 300  |
| caaccaattt  | ccgtctaattt | aagcaattt   | ataattccct  | tatcggagtc  | cgtgagatg    | 360  |
| atgggcagct  | gagcatcatg  | gagaggattt  | accgggagca  | aatctgcagg  | cagtcccttc   | 420  |
| actgcaacct  | ggctttggat  | gtggtcagct  | tttccaaagg  | acacttcaag  | cttctgaacg   | 480  |
| tgaaaagtgg  | ggtgagagac  | attaatgacc  | atagccctca  | ctttcccagt  | gaaataatgc   | 540  |
| atgtggaggt  | gtctgaaaagt | tcctctgtgg  | gcaccaggat  | tccttagaa   | attgcaatag   | 600  |
| atgaagatgt  | tgggtccaac  | tccatccaga  | actttcagat  | ctcaaataat  | agccacttca   | 660  |
| gcattgtatgt | gctaaccaga  | gcagatgggg  | tgaaatatgc  | agatttagtc  | ttaatgagag   | 720  |
| aactggacag  | gaaaatccag  | ccaacataca  | taatggagct  | actagcaatg  | gatgggggtg   | 780  |
| taccatcact  | atctggtaact | gcagtggtt   | acatccgagt  | cctggacttt  | aatgataaca   | 840  |
| gcccgagtgtt | ttagagaagc  | accattgctg  | tggacctagt  | agaggatgct  | cctctggat    | 900  |
| acctttgtt   | ggagttacat  | gctactgacg  | atgatgaagg  | agtgaatgga  | gaaattgttt   | 960  |
| atggattcag  | cacttggca   | tctcaagagg  | tacgtcagct  | attnaaaatt  | aactccagaa   | 1020 |
| ctggcagtgt  | tactcttggaa | ggccaaagttt | attttgagac  | caagcagact  | tacgaatttg   | 1080 |
| aggtaaacgc  | ccaaaggattt | ggcccccaacc | cactgactgc  | tacttgtaaa  | gtaactgttc   | 1140 |
| atataacttga | tgtaaatgtat | aatacccccag | ccatcactat  | taccctctg   | actactgtaa   | 1200 |
| atgcaggagt  | tgccttatatt | ccagaaacag  | ccacaaagga  | gaactttata  | gctctgtatca  | 1260 |
| gcactactga  | cagagcctct  | ggatctaattt | gacaagttcg  | ctgtactctt  | tatggacatg   | 1320 |
| agcaactttaa | actacagcaaa | gcttatgagg  | acagttacat  | gatagttacc  | acctctactt   | 1380 |
| tagacagggaa | aaacatagca  | gcgtactctt  | tgacagtagt  | tgcaagagac  | cttggcttcc   | 1440 |
| cctcattgaa  | gaccaaaaag  | tactacacag  | tcaaggttag  | tgatgagaat  | gacaatgcac   | 1500 |
| ctgtattttc  | taaacccccag | tatgaagctt  | ctattctgaa  | aaataatgct  | ccaggcttcc   | 1560 |
| atataactac  | agtatagcc   | agagactctg  | atagtgatca  | aaatggcaaa  | gtaaattaca   | 1620 |
| gacttgtgga  | tgcääaaagt  | atggggcagt  | cactaacaac  | atttgtttct  | cttgatgcgg   | 1680 |
| actctggagt  | attgagagct  | gttagtctt   | tagactatga  | aaaacttaaa  | caactggatt   | 1740 |
| ttgaaattga  | agctgcagac  | aatggatcc   | ctcaactctc  | cactcgcgtt  | caactaaatc   | 1800 |
| tcagaatagt  | tgtcaaaat   | gataattgcc  | ctgtgataac  | taatcccttt  | cttaataatg   | 1860 |
| gctcggtgt   | atttctgctt  | cccatcagcg  | ctcctcaaaa  | ctatttagtt  | ttccagctca   | 1920 |
| aagccgagga  | ttagatgaa   | gggcacaact  | cccagctgtt  | ctataccata  | ctgagagatc   | 1980 |
| caagcagatt  | gtttgccatt  | aacaagaaa   | gtggtaagt   | gttctgaaa   | aaacaatcaa   | 2040 |
| actctgacca  | ttagaggac   | ttgagcatag  | tagttgcagt  | gtatgacttg  | ggaagacett   | 2100 |
| cattatccac  | caatgttaca  | gtttaattca  | tcctcaccga  | ctctttctt   | tctaacgttg   | 2160 |
| aagtgcgttat | tttgcacca   | tctgcagaag  | agcagcacca  | gatcgatatg  | tccattatat   | 2220 |
| tcattgcagt  | gctggcttgtt | ggttgcgtt   | tgctactttt  | ggccatctt   | tttgcgttgtt  | 2280 |
| gtacttgtaa  | aaagaaaagct | ggtgaattt   | agcaggtacc  | tgaacaacac  | ggaacatgca   | 2340 |
| atgaagaacgc | cctgttaagc  | accccatctc  | cccagtcgtt  | ctcttcttct  | ttgtctcaagt  | 2400 |
| ctgagtcatg  | ccaaactctcc | atcaatactg  | aatctgagaa  | ttgcagcgtt  | tcctctaacc   | 2460 |
| aagagcagca  | ttagaaacaca | ggcataaaagc | actccatctc  | tgtaccatct  | tatcacacat   | 2520 |
| ctgggtggca  | cctggacaat  | tgtgcaatga  | gcataagtgg  | acattctcac  | atggggcaca   | 2580 |
| ttagtacaaa  | ggtacagtgg  | gcaaaaggaga | tagtgcactc  | aatgacagt   | actctgtatc   | 2640 |
| tagtggagaa  | tcacaaaaga  | agagcattga  | gcagccaaatg | caggcacaag  | ccagtgcgtca  | 2700 |
| atacacagat  | gaatcagcag  | ggttccgaca  | tgccgataac  | tatttcagcc  | accgaatcaa   | 2760 |
| caagggtcca  | gaaaatggga  | actgcacatt  | gcaatatgaa  | aagggtata   | gactgtctta   | 2820 |
| ctctgttagct | cctgcttattt | acaataccctt | ccatgcaaga  | atgccttaacc | tgcacatacc   | 2880 |
| gaaccatacc  | cttagagacc  | cttattacca  | tatcaataat  | cctgttgctt  | atcggtatgc   | 2940 |
| ggcggaaatat | gaaagagatt  | tagtcaacag  | aagtgcacag  | ttatctccgc  | agagatcg     | 3000 |
| tagcagatac  | caagaattca  | attacagtcc  | gcagatataca | agacagctt   | atcccttgcaga | 3060 |
| aattgctaca  | accttttaat  | cattaggcat  | gcaagtgaga  | atgcacaaag  | gcaagtgcgtt  | 3120 |
| tagcatgaaa  | gctaaatata  | tggagtctcc  | ccttccctc   | tgtatggatgg | ggggagacac   | 3180 |

aggacagtgc ataaatatac agctgcttc tatttgatt tcactggga attttttgtt 3240  
 tttttacat atttatttt cctgaattga atgtgacatt gtcctgtcac ctaactagca 3300  
 ataaatcca cagacctaca gtcaaattt tgagggcccc taaaacagca catcagtcag 3360  
 gacctaagt ggcctttta cttagcag ctccctggtc tgcctctgt gttaatcagc 3420  
 ccctggtcaa gtcctgagta ggatcatggc gttttatat gcatctcacc tactttggac 3480  
 gtgatttaca cataatagga aacgcttggt ttcaagtgaag tctgtgtgt atatattctg 3540  
 ttatatacac gcattttgtg tttgtgtata tatttcaagt ccattcagat atgtgtatat 3600  
 agtcagacc ttgtaaaatt aatattctga tacttttcc tcaataaaata tttaaat 3657

<210> 7  
 <211> 323  
 <212> PRT  
 <213> Mouse FRZB-1

<400> 7

Met Val Cys Cys Gly Pro Gly Arg Met Leu Leu Gly Trp Ala Gly Leu  
 1 5 10 15  
 Leu Val Leu Ala Ala Leu Cys Leu Leu Gln Val Pro Gly Ala Gln Ala  
 20 25 30  
 Ala Ala Cys Glu Pro Val Arg Ile Pro Leu Cys Lys Ser Leu Pro Trp  
 35 40 45  
 Asn Met Thr Lys Met Pro Asn His Leu His His Ser Thr Gln Ala Asn  
 50 55 60  
 Ala Ile Leu Ala Met Glu Gln Phe Glu Gly Leu Leu Gly Thr His Cys  
 65 70 75 80  
 Ser Pro Asp Leu Leu Phe Phe Leu Cys Ala Met Tyr Ala Pro Ile Cys  
 85 90 95  
 Thr Ile Asp Phe Gln His Glu Pro Ile Lys Pro Cys Lys Ser Val Cys  
 100 105 110  
 Glu Arg Ala Arg Gln Gly Cys Glu Pro Ile Leu Ile Lys Tyr Arg His  
 115 120 125  
 Ser Trp Pro Glu Ser Leu Ala Cys Asp Glu Leu Pro Val Tyr Asp Arg  
 130 135 140  
 Gly Val Cys Ile Ser Pro Glu Ala Ile Val Thr Ala Asp Gly Ala Asp  
 145 150 155 160  
 Phe Pro Met Asp Ser Ser Thr Gly His Cys Arg Gly Ala Ser Ser Glu  
 165 170 175  
 Arg Cys Lys Cys Lys Pro Val Arg Ala Thr Gln Lys Thr Tyr Phe Arg  
 180 185 190  
 Asn Asn Tyr Asn Tyr Val Ile Arg Ala Lys Val Lys Glu Val Lys Met  
 195 200 205  
 Lys Cys His Asp Val Thr Ala Val Val Glu Val Lys Glu Ile Leu Lys  
 210 215 220  
 Ala Ser Leu Val Asn Ile Pro Arg Asp Thr Val Asn Leu Tyr Thr Thr  
 225 230 235 240  
 Ser Gly Cys Leu Cys Pro Pro Leu Thr Val Asn Glu Glu Tyr Val Ile  
 245 250 255  
 Met Gly Tyr Glu Asp Glu Glu Arg Ser Arg Leu Leu Leu Val Glu Gly  
 260 265 270  
 Ser Ile Ala Glu Lys Trp Lys Asp Arg Leu Gly Lys Lys Val Lys Arg  
 275 280 285

Trp Asp Met Lys Leu Arg His Leu Gly Leu Gly Lys Thr Asp Ala Ser  
 290 295 300  
 Asp Ser Thr Gln Asn Gln Lys Ser Gly Arg Asn Ser Asn Pro Arg Pro  
 305 310 315 320  
 Ala Arg Ser

<210> 8  
 <211> 2176  
 <212> DNA  
 <213> Mouse FRZB-1

<400> 8

|              |             |             |              |             |             |      |
|--------------|-------------|-------------|--------------|-------------|-------------|------|
| aaggcctggga  | ccatggtctg  | ctgcggcccg  | ggacggatgc   | tgctaggatg  | ggccgggttg  | 60   |
| ctagtcctgg   | ctgctctctg  | cctgctccag  | gtgcccgag    | ctcaggctgc  | agcctgtgag  | 120  |
| cctgtccgca   | tcccgtgtg   | caagtccctt  | cccttggaaaca | tgaccaagat  | gcccaaccac  | 180  |
| ctgcaccaca   | gcaccaggc   | taacgccatc  | ctggccatgg   | aacagttcga  | agggctgctg  | 240  |
| ggcacccact   | gcagccccga  | tcttctcttc  | ttccctctgtg  | aatgtacgc   | accatttgc   | 300  |
| accatcgact   | tccagcacga  | gccccatcaag | ccctgcaagt   | ctgtgtgtga  | gcgcgccccga | 360  |
| cagggctcgc   | agcccattct  | catcaagtac  | cgccactcgt   | ggccggaaag  | cttggcctgc  | 420  |
| gacgagctgc   | cggtgtacga  | ccgcggcgtg  | tgcatctctc   | ctgaggccat  | cgtcaccgcg  | 480  |
| gacggagcgg   | atttcctat   | ggattcaagt  | actggacact   | gcagaggggc  | aagcagcga   | 540  |
| cgttgcaaat   | gtaaggcctgt | cagagctaca  | cagaagacct   | atttccggaa  | caattacaac  | 600  |
| tatgtcatcc   | gggctaaagt  | taaagaggtt  | aagatgaaat   | gtcatgtatgt | gaccgcccgtt | 660  |
| gttggaaagtga | aggaaattct  | aaaggcatca  | ctggtaaaca   | ttccaaggga  | caccgtcaat  | 720  |
| ctttataccca  | cctctggctg  | cctctgtct   | ccacttactg   | tcaatggaga  | atatgtcatc  | 780  |
| atgggctatg   | aagacgagga  | acgttccagg  | ttactcttgg   | tagaaggctc  | tatagctgag  | 840  |
| aagtggaaagg  | atcggcttgg  | taagaaaagtc | aagcgctggg   | atatgaaact  | ccgacacac   | 900  |
| ggactgggta   | aaactgtatgc | tagcgattcc  | actcagaatc   | agaagtctgg  | cagaactct   | 960  |
| aatccccggc   | cagcacgcag  | ctaaatcctg  | aaatgtaaaa   | ggccacacccc | acggactccc  | 1020 |
| ttctaagact   | ggcgctggtg  | gactaacaaa  | ggaaaaccgc   | acagttgtgc  | tcgtgaccga  | 1080 |
| ttgtttaccc   | cagacaccgc  | gtggctaccg  | aagttacttc   | cggtccctt   | tctctgtctt  | 1140 |
| cttaatggcg   | tggggttaga  | tcctttaata  | tgttatatat   | tctgtttcat  | caatcacgtg  | 1200 |
| gggactgttc   | tttgcaacc   | agaatagtaa  | attaaatatg   | ttgatgctaa  | ggtttctgt   | 1260 |
| ctggactccc   | tgggttaat   | ttgggtttct  | gtaccctgtat  | tgagaatgca  | atgtttcatg  | 1320 |
| taaagagaga   | atcctggtca  | tatctcaaga  | actagatatt   | gctgtaaagac | agcctctgct  | 1380 |
| gtgcgcctta   | tagtcttgcg  | tttgtatgcc  | tttgcatt     | tccctcatgc  | tgtgaaagtt  | 1440 |
| atacatgttt   | ataaaaggtag | aacggcattt  | tgaatcaga    | cactgcacaa  | gcagagtagc  | 1500 |
| ccaaacaccag  | gaagcattta  | tgaggaaacg  | ccacacagca   | tgacttattt  | tcaagattgg  | 1560 |
| caggcagcaa   | aataaaatagt | gttgggagcc  | aagaaaagaa   | tatttgcct   | ggttaagggg  | 1620 |
| cacactggaa   | tcaatggccc  | ttgagccatt  | aacagcagt    | ttcttctggc  | aagttttga   | 1680 |
| tttgcata     | aatgtattca  | cgagcattag  | agatgaactt   | ataactagac  | atctgttgc   | 1740 |
| atctctata    | ctctgttcc   | ttctaaatca  | aaccattgt    | tggatgctcc  | ctctccattc  | 1800 |
| ataaaataaaat | ttggcttgc   | gtattggcca  | ggaaaagaaa   | gtattaaagt  | atgcatgc    | 1860 |
| gtgcaccagg   | gtgttattta  | acagaggtat  | gtaactctat   | aaaagactat  | aatttacagg  | 1920 |
| acacggaaat   | gtgcacattt  | gtttactttt  | tttcttccctt  | ttgctttggg  | cttgcatttt  | 1980 |
| tgtttttgg    | tgtgtttatg  | tctgtatttt  | gggggggtggg  | taggttaag   | ccattgcaca  | 2040 |
| tcaagttga    | actagattag  | agtagactag  | gctcattggc   | ctagacatta  | tgatttgaat  | 2100 |
| ttgtgttgc    | taatgtcca   | tcaagatgtc  | taataaaagg   | aatatggtt   | tcaacagaga  | 2160 |
| cgacaacaac   | aacaaa      |             |              |             |             | 2176 |

<210> 9  
<211> 325  
<212> PRT  
<213> Human FRZB-1

<400> 9

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Val | Cys | Gly | Ser | Pro | Gly | Gly | Met | Leu | Leu | Leu | Arg | Ala | Gly | Leu |
| 1   |     |     |     |     |     |     |     | 5   |     |     | 10  |     |     |     | 15  |
| Leu | Ala | Leu | Ala | Ala | Leu | Cys | Leu | Leu | Arg | Val | Pro | Gly | Ala | Arg | Ala |
|     |     |     |     |     |     |     |     | 20  |     | 25  |     |     |     | 30  |     |
| Ala | Ala | Cys | Glu | Pro | Val | Arg | Ile | Pro | Leu | Cys | Lys | Ser | Leu | Pro | Trp |
|     |     |     | 35  |     |     |     | 40  |     |     |     |     |     |     | 45  |     |
| Asn | Met | Thr | Lys | Met | Pro | Asn | His | Leu | His | His | Ser | Thr | Gln | Ala | Asn |
|     |     |     | 50  |     |     |     | 55  |     |     |     |     |     |     | 60  |     |
| Ala | Ile | Leu | Ala | Ile | Glu | Gln | Phe | Glu | Gly | Leu | Leu | Gly | Thr | His | Cys |
|     | 65  |     |     |     | 70  |     |     |     | 75  |     |     |     |     | 80  |     |
| Ser | Pro | Asp | Leu | Leu | Phe | Phe | Leu | Cys | Ala | Met | Tyr | Ala | Pro | Ile | Cys |
|     |     |     | 85  |     |     |     | 90  |     |     |     |     |     |     | 95  |     |
| Thr | Ile | Asp | Phe | Gln | His | Glu | Pro | Ile | Lys | Pro | Cys | Lys | Ser | Val | Cys |
|     |     |     | 100 |     |     |     | 105 |     |     |     |     |     |     | 110 |     |
| Glu | Arg | Ala | Arg | Gln | Gly | Cys | Glu | Pro | Ile | Leu | Ile | Lys | Tyr | Arg | His |
|     |     |     | 115 |     |     |     | 120 |     |     |     |     |     |     | 125 |     |
| Ser | Trp | Pro | Glu | Asn | Leu | Ala | Cys | Glu | Glu | Leu | Pro | Val | Tyr | Asp | Arg |
|     |     |     | 130 |     |     |     | 135 |     |     |     |     |     |     | 140 |     |
| Gly | Val | Cys | Ile | Ser | Pro | Glu | Ala | Ile | Val | Thr | Ala | Asp | Gly | Ala | Asp |
|     | 145 |     |     |     | 150 |     |     |     | 155 |     |     |     |     | 160 |     |
| Phe | Pro | Met | Asp | Ser | Ser | Asn | Gly | Asn | Cys | Arg | Gly | Ala | Ser | Ser | Glu |
|     |     |     | 165 |     |     |     | 170 |     |     |     |     |     |     | 175 |     |
| Arg | Cys | Lys | Cys | Lys | Pro | Ile | Arg | Ala | Thr | Gln | Lys | Thr | Tyr | Phe | Arg |
|     |     |     | 180 |     |     |     | 185 |     |     |     |     |     |     | 190 |     |
| Asn | Asn | Tyr | Asn | Tyr | Val | Ile | Arg | Ala | Lys | Val | Lys | Glu | Ile | Lys | Thr |
|     |     |     | 195 |     |     |     | 200 |     |     |     |     |     |     | 205 |     |
| Lys | Cys | His | Asp | Val | Thr | Ala | Val | Val | Glu | Val | Lys | Glu | Ile | Leu | Lys |
|     |     |     | 210 |     |     |     | 215 |     |     |     |     |     |     | 220 |     |
| Ser | Ser | Leu | Val | Asn | Ile | Pro | Arg | Asp | Thr | Val | Asn | Leu | Tyr | Thr | Ser |
|     | 225 |     |     |     | 230 |     |     |     | 235 |     |     |     |     | 240 |     |
| Ser | Gly | Cys | Leu | Cys | Pro | Pro | Leu | Asn | Val | Asn | Glu | Glu | Tyr | Ile | Ile |
|     |     |     | 245 |     |     |     | 250 |     |     |     |     |     |     | 255 |     |
| Met | Gly | Tyr | Glu | Asp | Glu | Glu | Arg | Ser | Arg | Leu | Leu | Leu | Val | Glu | Gly |
|     |     |     | 260 |     |     |     | 265 |     |     |     |     |     |     | 270 |     |
| Ser | Ile | Ala | Glu | Lys | Trp | Lys | Asp | Arg | Leu | Gly | Lys | Lys | Val | Lys | Arg |
|     |     |     | 275 |     |     |     | 280 |     |     |     |     |     |     | 285 |     |
| Trp | Asp | Met | Lys | Leu | Arg | His | Leu | Gly | Leu | Ser | Lys | Ser | Asp | Ser | Ser |
|     |     |     | 290 |     |     |     | 295 |     |     |     |     |     |     | 300 |     |
| Asn | Ser | Asp | Ser | Thr | Gln | Ser | Gln | Lys | Ser | Gly | Arg | Asn | Ser | Asn | Pro |
|     | 305 |     |     |     | 310 |     |     |     | 315 |     |     |     |     | 320 |     |
| Arg | Gln | Ala | Arg | Asn |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     | 325 |     |     |     |     |     |     |     |     |     |     |     |     |

<210> 10  
<211> 1893

&lt;212&gt; DNA

&lt;213&gt; Human FRZB-1

&lt;400&gt; 10

ggcggagcgg gcctttggc gtccactcg cggtgcacc ctgccccatc tgccgggatc 60  
 atggctcg cgagccggg agggatgctg ctgctgcggg ccgggctgct tgccctggct 120  
 gctctctgcc tgctccgggt gcccggggct cgggtgcag cctgtgagcc cgtccgcata 180  
 cccctgtgca agtccctgccc ctggAACATG actaaAGATGC ccaACCACCT gcACCAcAGC 240  
 actcaggCCA acGCCATCCt ggCCATCGAG cAGTTCGAAG gtCTGCTGGG cACCCACTGC 300  
 agccccgatc tgctttctt cctctgtGCC atgtacgCGC ccatctgcac cattgacttc 360  
 cagcacgAGC ccatcaAGCC ctgtAAgtct gtgtgcgAGC gggccggca gggctgtgag 420  
 cccatactca tcaagtaccg ccactcgTGG ccgagaACC tggcctgcga ggagctgcca 480  
 gtgtacgaca gggcgtgtg catctctccc gagccatcg ttactgcgga cggagctgat 540  
 tttcctatgg attctagtaa cgaaaactgt agagggcaa gcagtgaacg ctgtAAatgt 600  
 aagcctatta gagctacaca gaagacatat ttccggaaaca attacaacta tgtcattcg 660  
 gctaaagtta aagagataaa gactaagtgc catgatgtga ctgcagtagt ggaggtgaag 720  
 gagattctaa agtccctctt ggtAAacatt ccacgggaca ctgtcaaccc ctataccagc 780  
 tctggctGCC tctGCCtCC acttaatgtt aatgaggaat atatcatcat gggctatgaa 840  
 gatgaggaac gttccagatt actcttggtg gaaggctcta tagctgagaa gtggaaaggat 900  
 cgactcggta aaaaagttaa gcgctggat atgaagcttgc tcatcttgg actcagtaaa 960  
 agtgattcta gcaatagtga ttccactcag agtcagaagt ctggcaggaa ctgcAACCCC 1020  
 cggcaaggac gcaactaaat cccgaaatac aaaaagtaac acagtggact tcctattaag 1080  
 acttacttgc attgctggac tagcaaagga aaattgcact attgcacatc atattctatt 1140  
 gtttactata aaaatcatgt gataactgt tattacttct gtttctctt tggttctgc 1200  
 ttctctcttctc tctcaacccc tttgtaatgg tttggggca gactcttaag tatattgtga 1260  
 gttttctatt tcactaatca tgagaaaaac tgttcttttgc caataataat aaattaaaca 1320  
 tgctgttacc agagcctctt tgctgagtc ccagatgtta atttacttgc tgccACCCAA 1380  
 ttgggaatgc aatattggat gaaaagagag gtttctggta ttccacagaaa gctagatatg 1440  
 ctttaaaaca tactctGCCt atctaattac agccttattt ttgtatgcct tttggcatt 1500  
 ctccctcatgc ttagaaagtt ccaaAtgttt ataaaggtaa aatggcagtt tgaagtcaaa 1560  
 tgcacatag gcaaaAgcaat caagcaccag gaagtgttta tgaggaaaca acacccaaga 1620  
 tgaattattt ttgagactgt caggaagtaa aataaaatagg agcttaagaa agaacatttt 1680  
 gcctgattga gaagcacaac tgaaaaccagt agccgctggg gtgttaatgg tagcattctt 1740  
 cttttggcaa tacatttgc ttgttcatga atatattaat cagcattaga gaaatgaatt 1800  
 ataactagac atctgctgtt atcaccatag ttttgtttaa tttgcttctt tttaaataaa 1860  
 cccattgggtg aaagtcaaaa aaaaaaaaaaaa aaa 1893