Metodi Matematici per l'Informatica

Esame (a.a. 22/23, I canale) - Docente: Lorenzo Carlucci - Data: 16 Gennaio 2023

Esercizio 1 Un testo d'esame comprende 5 domande di Combinatoria, 10 domande di Logica e 5 domande di Algebra.

- 1. In quanti modi posso scegliere 10 domande?
- 2. In quanti modi posso scegliere 10 domande di cui esattamente 4 di Logica?
- 3. In quanti modi posso scegliere 10 domande di cui almeno una di Combinatoria e almeno una di Logica?

Esercizio 2 Consideriamo un sistema di password formato da 3 lettere (scelte le 26 lettere dell'alfabeto latino) seguite da 2 caratteri speciali scelti tra \$, !, e % seguite da 3 lettere. Le lettere possono essere maiuscole o minuscole (per es. AbR!!cCD)

- 1. Quante password hanno! come ultimo simbolo?
- 2. Quante password hanno L come prima lettera o! come ultimo simbolo?
- 3. Quante password sono palindrome (ossia possono essere lette indifferentemente da sinistra a destra e da destra a sinistra, per es. AbZ\$\$ZbA)?

Esercizio 3 Siano $f: X \to Y$ e $g: X \to Z$ due funzioni, con $Z \subseteq Y$. Come al solito identifichiamo una funzione con il suo grafico (insieme di coppie ordinate argomenti/valore). Indicare se le seguenti affermazioni sono vere o false.

- 1. Se f e g sono iniettive allora $f \cap g: X \to Z$ è iniettiva.
- 2. Se f e g sono suriettive allora $f \cup g$ è una funzione di tipo $X \to Z$.
- 3. Se $g \ \dot{e} \ biiettiva \ allora \ (f \circ g^{-1}) \ \dot{e} \ una \ funzione \ di \ tipo \ Z \to Y$.

Esercizio 4 Sia R la relazione seguente $\{(1,2), (1,3), (2,4), (3,4), (4,5)\}$ sull'insieme $\{1,2,3,4,5\}$.

- 1. $R \ \dot{e} \ una \ relazione \ di \ ordine \ totale \ su \{1, 2, 3, 4, 5\}$?
- 2. Calcolare $R \circ R$.
- 3. Calcolare la chiusura transitiva di R.

Esercizio 5 Consideriamo la seguente relazione \prec definita su coppie di intervalli chiusi della retta reale: $[x,y] \prec [w,z]$ se e solo se [x,y] = [w,z] oppure $y \leq z$. Indicare se le seguenti affermazioni sono vere o false.

- 1. La relazione \prec è riflessiva.
- 2. La relazione \prec è simmetrica.
- 3. La relazione \prec non è transitiva.

Esercizio 6 Consideriamo la seguente dimostrazione per Induzione Forte.

Tesi: Per ogni $n \ge 0$, $12 \times n = 0$.

Caso Base: Per n = 0 abbiamo $12 \times 0 = 0$.

Passo Induttivo: Sia $n \ge 0$ e assumiamo che la tesi valga per ogni intero k tale che $0 \le k \le n$. Dimostriamo che vale per n+1. Scriviamo n+1 come a+b per qualche a,b tali che $0 \le a,b \le n$. Per ipotesi induttiva vale $12 \times a = 0$ e $12 \times b = 0$. Dunque

$$12 \times (n+1) = 12 \times (a+b) = (12 \times a) + (12 \times b) = 0 + 0 = 0.$$

Trovare l'errore o gli errori nell'argomento sopra esposto

(NB: non è sufficiente dire che la tesi dimostrata è falsa – questo è ovvio). Indicare esplicitamente se il Caso Base e il Passo Induttivo sono corretti.

Esercizio 7 Formalizzare le frasi seguenti in un linguaggio proposizionale e determinare se l'ultima proposizione (che inizia con Dunque) è conseguenza logica della precedenti. Potete usare un metodo a piacere (tavole di verità, risoluzione, ragionamento sulla conseguenza logica ad alto livello):

Ogni caramella è o morbida o alla menta o rossa. Nessuna caramella rossa è alla menta. Nessuna caramella morbida è rossa. Dunque nessuna caramella alla menta è morbida.

Esercizio 8 La seguente formula proposizionale in CNF è soddisfacibile?

$$\{\{p, \neg q, r, s\}, \{\neg p, q, \neg r\}, \{\neg r, s\}, \{\neg q, r\}, \{p, \neg s\}\}$$

Se si risponde SI definire un assegnamento che la soddisfa, se si risponde NO dimostrare l'insoddisfacibilità usando la regola di Risoluzione.