APPENDIX A

THE KKT TRANSFORMATION WITH LINEARIZATION PROCESS For $G_T \in \Omega_T$, the Lagrangian function for the lower-level problem (34)-(38) is:

$$L = \sum_{i \in V} \Delta P d_i^T - \sum_{l_y \in L_T} \mu_{ij}^T \left(p_{ij}^T - v_{ij}^T \cdot \frac{1}{x_{ij}} \cdot \sum_{i \in V} A_{nl} \cdot \delta_n \right)$$

$$- \sum_{i \in V} \lambda_i \left(\sum_{k \in V_G(i)} g_k^T - \sum_{l_y \in L_T} A_{ij}^T \cdot p_{ij}^T + \Delta P d_i^T - P d_i \right)$$

$$- \sum_{l_y \in L_T} \underline{\omega}_{ij}^T \left(p_{ij}^T + \overline{p_{ij}} \right) - \sum_{l_y \in L_T} \overline{\omega}_{ij}^T \left(\overline{p_{ij}} - p_{ij}^T \right)$$

$$- \sum_{k \in V_G} \underline{\theta}_k^T \left(g_k^T - \underline{g}_k \right) - \sum_{k \in V_G} \overline{\theta}_k^T \left(\overline{g}_k - g_k^T \right)$$

$$- \sum_{i \in V} \underline{\alpha}_i^T \left(\Delta P d_i^T \right) - \sum_{i \in V} \overline{\alpha}_i^T \left(P d_i - \Delta P d_i^T \right)$$
(A1)

where μ_{ij}^T , λ_i^T , $\overline{\omega}_{ij}^T$, $\underline{\omega}_{ij}^T$, $\overline{\theta}_k^T$, $\overline{\theta}_k^T$, $\overline{\alpha}_k^T$, $\underline{\alpha}_k^T$ are the Lagrangian multipliers associated with the DC power flow constraints (34)-(38), respectively. The optimality conditions for the original problem KKT of these constraints are:

$$\frac{\partial L}{\partial \delta_i} = \sum_{l_{ij} \in L_T} \frac{1}{\mathbf{x}_{ij}} \cdot A_{ij}^T \cdot \mu_{ij}^T \cdot \mathbf{v}_{ij}^T = 0, \qquad i \in V \quad (A2)$$

$$\frac{\partial L}{\partial g_k} = -\lambda_i^T \Big|_{k \in V_{G(i)}} - \underline{\theta}_k + \overline{\theta}_k = 0, \quad k \in V_G \quad (A3)$$

$$\frac{\partial L}{\partial p_{ij}^T} = \sum_{y \in V} A_{ij}^T \lambda_y^T - \mu_{ij}^T - \underline{\omega}_{ij}^T + \overline{\omega}_{ij}^T = 0, \ l_{ij} \in \boldsymbol{L_T} \ (A4)$$

$$\frac{\partial L}{\partial \Delta P d_i^T} = 1 - \lambda_i^T - \underline{\alpha}_i^T + \overline{\alpha}_i^T = 0, \qquad i \in V \quad (A5)$$

$$\underline{\omega}_{ij}^{T} > 0,$$
 $l_{ij} \in L_{T}$ (A6)

$$\underline{\theta}_k^T > 0, \qquad k \in V_G \quad (A8)$$

$$\overline{\theta}_k^T > 0,$$
 $k \in V_G$ (A9)

$$\underline{\alpha}_i^T \ge 0, \qquad i \in V \quad (A10)$$

$$\overline{\alpha}_i^T \ge 0, \qquad i \in V \quad (A11)$$

$$\underline{\omega}_{ij}^{T} \left(p_{ij}^{T} + \overline{p_{ij}} \right) = 0, \qquad l_{ij} \in \boldsymbol{L_{T}} \text{ (A12)}$$

$$\overline{\omega_{ij}}^{T} \left(\overline{p_{ij}} - p_{ij}^{T} \right) = 0, \qquad l_{ij} \in \boldsymbol{L}_{T}$$
 (A13)

$$\underline{\theta}_{k}^{T}\left(g_{k}^{T}-g_{k}\right)=0, \qquad k \in V_{G} \text{ (A14)}$$

$$\overline{\theta}_{k}^{T}(\overline{g}_{k}-g_{k}^{T})=0, \qquad k \in V_{G}$$
(A15)

$$\alpha_i^T \left(\Delta P d_i^T \right) = 0, \qquad i \in V \quad (A16)$$

$$\overline{\alpha}_{i}^{T} \left(P d_{i} - \Delta P d_{i}^{T} \right) = 0, \qquad i \in V \quad (A17)$$

where (A2) - (A11) denotes the original lower-level problem dual constraints and (A12) - (A17) denotes the complementary slackness constraints.

It can be seen that the original function (34) in lower-level problem, dual constraints (A2) and complementary slackness constraints (A12) - (A17) are all non-linear terms. The above constraints are linearized by the following method:

(1) For the linearization of formulation (34)

In function (34), there are two non-linear terms- v_{ij}^T multiplied by the phase angle δ_i^T at the beginning of the line and v_{ij}^T multiplied by the phase angle δ_j^T at the end of the line, so continuous variables s_i^T and s_j^T are introduced to represent $v_{ij}^T \delta_i^T$ and $v_{ij}^T \delta_j^T$ respectively. Further intermediate variables z_i^T and z_j^T are introduced to equate the non-linear term (34) with the following linear terms:

$$p_{ij}^{T} = \frac{1}{x_{I}} \cdot \left(z_{i}^{T} - z_{j}^{T} \right), \qquad l_{ij} \in \boldsymbol{L}_{T} \quad (A18)$$

$$z_i^T = \delta_i^T - \delta_i^T, \qquad l_{ii} \in \mathbf{L_T} \quad (A19)$$

$$z_j^T = \delta_j^T - \delta_j^T, \qquad l_{ij} \in \boldsymbol{L_T} \quad (A20)$$

$$\underline{\delta} \cdot v_{ij}^T \le z_i^T \le \overline{\delta} \cdot v_{ij}^T, \qquad l_{ij} \in \boldsymbol{L_T} \quad (A21)$$

$$\underline{\delta} \cdot v_{ii}^T \le z_i^T \le \overline{\delta} \cdot v_{ii}^T, \qquad l_{ii} \in \boldsymbol{L_T} \quad (A22)$$

$$\underline{\delta} \cdot \left(1 - v_{ij}^{T}\right) \le z_{i}^{T} \le \overline{\delta} \cdot \left(1 - v_{ij}^{T}\right), \quad l_{ij} \in \mathbf{L}_{T} \quad (A23)$$

$$\underline{\delta} \cdot \left(1 - v_{ij}^{T}\right) \le z_{j}^{T} \le \overline{\delta} \cdot \left(1 - v_{ij}^{T}\right), \quad l_{ij} \in \boldsymbol{L_{T}} \quad (A24)$$

The formulations (A18)-(A24) represents the linearized expression for the calculation of the line DC power flow, if line l_{ij} is destroyed (v_{ij} =0), then according to the formulations (A21), (A22) can be obtained: z_i^T =0, z_j^T =0, so the line power flow p_{ij}^T =0, s_i^T = δ_i^T , s_j^T = δ_j^T ; if l_{ij} is not destroyed (v_{ij}^T =1), then according to the functions (A23), (A24) can be obtained: s_i^T =0, s_j^T =0, so z_i^T = δ_i^T , z_j^T = δ_j^T , the line plow flow p_{ij}^T is determined by the phase angle difference between the two ends of the line.

(2) Linearization for the dual constraint (A2)

Similarly, by introducing the continuous variables t_l and h_l , the nonlinear dual constraint (A2) is equivalently represented by the following set of linearization constraints:

$$\sum_{l_i \in I_T} \frac{1}{x_{ij}} \cdot A_{ij}^T \cdot t_{ij}^T = 0 , \qquad l_{ij} \in \boldsymbol{L}_T \quad (A25)$$

$$t_{ij}^T = u_{ij}^T - h_{ij}^T, l_{ij} \in \boldsymbol{L_T} (A26)$$

$$u_{ij} \cdot v_{ij}^T \le t_{ij}^T \le \overline{u_{ij}} \cdot v_{ij}^T, \qquad l_{ij} \in \boldsymbol{L}_T \quad (A27)$$

$$u_{ij} \cdot \left(1 - v_{ij}^T\right) \le z_i^T \le \overline{u_{ij}} \cdot \left(1 - v_{ij}^T\right), \ l_{ij} \in \mathbf{L_T}$$
 (A28)

(3) Linearization for the complementary slackness constraints (A12) - (A17)

The nonlinear complementary slackness constraints (A12) - (A17) are equivalently represented by the following set of linearization constraints by introducing the 0-1 variables $\omega_{ij}^{\underline{a}T}$, $\omega_{ij}^{\overline{a}T}$, $\omega_{k}^{\underline{\theta}T}$, $\omega_{k}^{\underline{\theta}T}$, $\omega_{i}^{\underline{a}T}$, $\omega_{i}^{\overline{a}T}$:

$$\underline{\omega}_{ij}^T \leq M \cdot \omega_{ij}^{\underline{\omega}T}, \qquad l_{ij} \in \mathbf{L}_T \quad (A29)$$

$$p_{ij}^T + \overline{p}_{ij} \le M \cdot (1 - \omega_{ij}^{\omega T}), \quad l_{ij} \in L_T \quad (A30)$$

$$\overline{\omega}_{ij}^{T} \leq M \cdot \omega_{ij}^{\overline{\omega}T}, \qquad l_{ij} \in L_{T}$$
 (A31)

$$\underline{p}_{ij} - p_{ij}^T \le M \cdot \left(1 - \omega_{ij}^{\overline{\alpha}T}\right), \qquad l_{ij} \in \boldsymbol{L}_T \quad (A32)$$

$\underline{\theta}_k^T \leq M \cdot \omega_k^{\underline{\theta}T}$,	$k \in V_G$	(A33)	_
$g_k^T - \underline{g}_k \le M \cdot (1 - \omega_k^{\underline{\theta}T}),$	$k\in V_G$	(A34)	
$\overline{\theta}_k^T \leq M \cdot \omega_k^{\overline{\theta}T},$	$k \in V_G$	(A35)	
$\overline{g}_k - g_k^T \le M \cdot \left(1 - \omega_k^{\overline{\theta}T}\right),$	$k\in V_G$	(C36)	
$\underline{\alpha}_{i}^{T} \leq M \cdot \omega_{k}^{\underline{\alpha}T},$	$i \in V$	(A37)	
$Pd_i \leq M \cdot (1 - \omega_i^{\underline{\alpha}T}),$	$i \in V$	(A38)	
$\overline{\alpha}_i^T \leq M \cdot \omega_i^{\overline{\alpha}T},$	$i \in V$	(A39)	
$Pd_i - \Delta Pd_i^T \leq M \cdot \left(1 - \omega_i^{\overline{\alpha}T}\right),$	$i \in V$	(A40)	
$\omega_{ij}^{\underline{\omega}T} + \omega_{ij}^{\overline{\omega}T} < 1,$	$l_{ij} \in L_T$	(A41)	
$\omega_{\bar{k}}^{\theta T} + \omega_{k}^{\bar{\theta} T} < 1,$	$k \in V_G$	(A42)	
$\omega_i^{\underline{\alpha}T} + \omega_i^{\overline{\alpha}T} < 1,$	$i \in V$	(A43)	
(A30), (A31) - (A32), (A33) -			
- (A38) and (A39) - (A40)	are lin	earised	

7-11

8-10

1.3

1.32

4

3

0

0

0

0

0.95

0.97

where (A29) - (A30), (A31) - (A32), (A33) - (A34), (A35) - (A36), (A37) - (A38) and (A39) - (A40) are linearised equivalent representations of the constraints (A12), (A13), (A14), (A15), (A16) and (A17) respectively. The intermediate variables introduced satisfies formulations (A41) - (A43).

In summary, the original lower-level problem after transformation by KKT is expressed as formulations (A18)-(A24), formulations (34) - (38), (A25) - (A28), (A3) - (A11) and (A29) - (A43). Therefore, the transformed vulnerability identification problem is as follows:

$$\max_{a} \sum_{T \in \mathbf{\Omega}_{\mathbf{T}}} \pi_{T} \left(\sum_{i \in V} \Delta P d_{i}^{T} \right)$$
(A44)

s.t. (27) - (30), (A18) - (A43).

APPENDIX B

PARAMETERS OF UTN AND ROAD NETWORK

Table IV contains information of the road lengths and cable signs, Table V contains the node parameters of the case study, the number of cables on the roads, and E_{ij} for each road in the case study are shown in Figure B1.

TABLE IV

ROAD NETWORK CONNECTION RELATION AND PARAMETER

ROAD N	etwork Co	NNECTION	RELATIO	n and Pa	RAMETER	26-27
l_{ij}	$d_{ij}(\mathrm{km})$	mra_{ij}	mrb_{ij}	mrc_{ij}	E_{ij}	26-29
1-2	1.8	0	0	0	0	26-37
1-3	1.6	0	0	0	0	27-28
2-51	1.7	0	0	0	0	28-37
2-52	1.7	0	0	0	0	28-38
3-4	1.3	0	0	0	0	29-35
3-12	1.9	0	0	0	0	30-31
4-5	1.7	0	0	0	0	31-32
4-12	1.7	0	0	1	0.43	32-33
5-6	1.8	0	0	0	0	32-45
6-9	1.5	3	0	0	0.93	33-34
6-10	1.5	2	0	0	0.95	34-35
6-13	1.5	2	0	0	0.78	34-44
7-8	1.3	2	0	0	0.78	35-36
7-0	1.3	2	U	U	0.67	

8-30	1.2	3	0	0	0.92
9-13	1.5	3	0	0	0.83
9-16	1.5	2	0	0	0.84
9-49	1.6	2	0	0	0.86
10-16	1.6	3	0	0	0.97
11-17	1.3	0	0	0	0
11-30	1.1	3	0	0	0.96
12-13	1.3	0	1	0	0.6
12-52	1.8	0	0	0	0
13-15	1.5	2	0	0	0.75
14-32	1	0	0	0	0
14-50	1	0	0	0	0
15-49	1.3	3	0	0	0.97
15-54	1.27	3	0	0	0.98
16-31	1.2	2	0	0	0.9
16-50	1.12	1	0	0	0.97
17-18	0.9	4	0	0	0.36
18-19	1	0	2	0	0
18-21	1.28	3	0	0	0.55
18-30	1.22	2	0	0	0
19-20	1.12	3	0	0	0
19-22	1.15	1	0	0	0.57
20-23	1.3	4	0	0	0
20-24	1.35	3	0	0	0
21-22	1.4	0	0	1	0.63
21-31	1.39	0	0	0	0.92
21-33	1.29	0	2	0	0.92
22-29	1.23	0	0	0	0
23-25	2.1	0	0	0	0
24-25	1.4	0	0	2	0
24-26	1.6	0	0	0	0
25-27	1.5	0	0	0	0
26-27	1.57	0	0	2	0.76
26-29	1.05	4	0	0	0.75
26-37	4	3	0	0	0
27-28	1.9	0	0	0	0
28-37	3	0	0	0	0
28-38	3.5	0	0	0	0
29-35	2	0	0	0	0.93
30-31	2.3	3	0	0	0.95
31-32	1.8	3	0	0	0.93
32-33	2	5	0	0	0.93
32-45	2.2	0	0	0	0
33-34	1.7	3	0	0	0.89
34-35	1.82	4	0	0	0.89
34-44	2	2	0	0	0.68

1.5

2

0

0

0.89

36-37	1.4	3	0	0	0.9	66-67	1.02	0	0	0	0
36-41	2.7	0	0	0	0	66-69	1.02	0	1	0	0.7
36-44	1.7	2	0	0	0.87	67-68	1.9	0	0	0	0
37-40	3.7	0	0	0	0	68-76	1.79	0	0	0	0
38-39	1.9	0	0	0	0	69-70	1.76	0	0	2	0.67
39-40	1.7	1	0	0	0.56	69-71	1.69	0	0	0	0
39-85	2.1	0	0	0	0	69-75	1.95	4	0	0	0.89
40-41	1.82	1	0	0	0.6	70-72	1.05	0	1	0	0.78
40-65	1.95	0	0	0	0	71-73	2.3	0	0	0	0
41-42	1.67	3	0	0	0.96	72-73	1.21	0	2	0	0.74
41-43	1.32	2	0	0	0.87	73-74	1.25	0	0	1	0.32
42-61	1.65	4	0	0	0.95	74-75	2.52	0	0	0	0
42-65	0.89	0	0	0	0	74-77	2.1	0	0	2	0.56
43-44	1.32	3	0	0	0.93	74-80	2.9	0	0	3	0.67
44-46	1.35	2	0	0	0.89	75-77	1.92	4	0	0	0.97
45-46	1.4	0	0	0	0	76-77	1.68	0	0	0	0
45-47	1.6	3	0	0	0.79	77-78	2.6	4	0	0	0.96
46-61	1.62	4	0	0	0.95	78-81	2	2	0	0	0.92
47-48	1.45	3	0	0	0.9	79-80	1.97	0	2	0	0.59
47-50	1.7	0	0	0	0	80-81	2.01	4	0	0	0.95
47-60	1.89	0	0	0	0	81-82	2	4	0	0	0.94
48-49	1.43	4	0	0	0.97	81-83	2.32	4	0	0	0.96
48-58	1.05	3	0	0	0.89	82-83	1.87	3	0	0	0.89
49-50	0.89	2	0	0	0.88	83-87	1.62	0	0	0	0
51-55	1.97	0	0	0	0	84-85	1.82	0	0	0	0
52-53	1.9	2	0	0	0.89	84-86	1.3	0	0	0	0
52-54	1.9	2	0	0	0.93	86-87	2.05	0	0	0	0
53-55	1.82	0	0	0	0				BLE V		
53-56	1.89	4	0	0	0.94		N	ODE PA	RAMETERS		
54-56	2.2	2	0	0	0.9	Node Number	Node	Types	Load/MW	Activ	e Output/MV
54-57	0.93	4	0	0	0.92	1			0		0
55-66	1.1	0	0	1	0.5	2		oq oq	0		0
56-66	1.25	0	0	0	0			q			0
56-70	1.19	0	0	0	0	3		pq	342		
57-58	0.65	2	0	0	0.78	4		pq	385		0
			0	0	0	5		pq	0		0
		0		U	v				0		0
57-70	1.8	0		0	0.78	6		pq			
57-70 58-59	1.8 1.1	0	1	0	0.78	7		oq	233.8		0
57-70 58-59 58-72	1.8 1.1 1.4	0	1 2	0	0.57	7 8	ŗ		233.8 268.5		0
57-70 58-59 58-72 59-60	1.8 1.1 1.4 1.4	0 0 0	1 2 0	0	0.57 0	7 8 9	F	q	233.8		
57-70 58-59 58-72 59-60 59-79	1.8 1.1 1.4 1.4 1.62	0 0 0	1 2 0 0	0 0 3	0.57 0 0.78	7 8 9 10	F F	oq oq	233.8 268.5		0
57-70 58-59 58-72 59-60 59-79 60-61	1.8 1.1 1.4 1.4 1.62 1.63	0 0 0 0	1 2 0 0	0 0 3 0	0.57 0 0.78	7 8 9	F F F	oq oq	233.8 268.5 0		0
57-70 58-59 58-72 59-60 59-79 60-61 60-62	1.8 1.1 1.4 1.4 1.62 1.63 1.4	0 0 0 0 0	1 2 0 0 0	0 0 3 0	0.57 0 0.78 0	7 8 9 10	F F F F	oq oq oq	233.8 268.5 0		0 0 0
57-70 58-59 58-72 59-60 59-79 60-61 60-62 62-63	1.8 1.1 1.4 1.4 1.62 1.63 1.4	0 0 0 0 0 0	1 2 0 0 0 0	0 0 3 0 0	0.57 0 0.78 0 0	7 8 9 10 11	F F F F	oq oq oq oq	233.8 268.5 0 0		0 0 0 0
57-70 58-59 58-72 59-60 59-79 60-61 60-62 62-63 62-80	1.8 1.1 1.4 1.4 1.62 1.63 1.4	0 0 0 0 0	1 2 0 0 0	0 0 3 0	0.57 0 0.78 0	7 8 9 10 11 12	F F F F F	oq oq oq oq	233.8 268.5 0 0 0 287.5		0 0 0 0
57-70 58-59 58-72 59-60 59-79 60-61 60-62 62-63	1.8 1.1 1.4 1.4 1.62 1.63 1.4	0 0 0 0 0 0	1 2 0 0 0 0	0 0 3 0 0	0.57 0 0.78 0 0	7 8 9 10 11 12 13	F F F F F F	eq eq eq eq eq eq	233.8 268.5 0 0 0 287.5		0 0 0 0 0
57-70 58-59 58-72 59-60 59-79 60-61 60-62 62-63 62-80	1.8 1.1 1.4 1.4 1.62 1.63 1.4 1.3	0 0 0 0 0 0 0	1 2 0 0 0 0 0 0 2	0 0 3 0 0 0	0.57 0 0.78 0 0 0 0	7 8 9 10 11 12 13	F F F F F F	oq oq oq oq oq oq	233.8 268.5 0 0 0 287.5 0		0 0 0 0 0 0
57-70 58-59 58-72 59-60 59-79 60-61 60-62 62-63 62-80 63-64	1.8 1.1 1.4 1.62 1.63 1.4 1.3 1.6	0 0 0 0 0 0 0	1 2 0 0 0 0 0 0 2	0 0 3 0 0 0 0	0.57 0 0.78 0 0 0 0 0.76	7 8 9 10 11 12 13 14	F F F F F F	eq eq eq eq eq eq eq	233.8 268.5 0 0 0 287.5 0 0 220		0 0 0 0 0 0 0
57-70 58-59 58-72 59-60 59-79 60-61 60-62 62-63 62-80 63-64 64-65	1.8 1.1 1.4 1.4 1.62 1.63 1.4 1.3 1.6 1 0.9	0 0 0 0 0 0 0 0	1 2 0 0 0 0 0 0 2 0	0 0 3 0 0 0 0 0	0.57 0 0.78 0 0 0 0.76 0	7 8 9 10 11 12 13 14 15	F F F F F F F	oq oq oq oq oq oq	233.8 268.5 0 0 0 287.5 0 0 220 329		0 0 0 0 0 0 0 0

20	pq	228	0
21	pq	274	0
22	pq	385	0
23	pq	247.5	0
24	pq	368.6	0
25	pq	324	0
26	pq	339	0
27	pq	261.5	0
28	pq	306	0
29	pq	583.5	0
30	pq	0	600
31	$v\theta$	0	0
32	pv	9.5	750
33	pv	0	850
34	pv	0	508
35	pv	0	650
36	pv	0	250
37	pv	0	540
38	pv	0	830
39	pv	0	868
R13 R3 R3 R43 R43 R5 R8 R8 R10 R8 R8 R10 R8 R11 R8 R13 R8 R13 R8 R14 R8 R10 R8 R14 R8 R10 R8 R14 R10 R8 R14 R15 R15 R15 R15 R15 R21 R22 R20 R24	R16 R50	R37 R38 B3 R72 317 R38 B14 R59 R43 R60 R44 R61 R37 R41 R40 R37 R41 R40	R73 R74 B1 R75 R81 R81 R81 R82 R82 R82 R83 R82 R83 R842 R85 R87 R84 R84 R84 R85 R87 R86
Power State	_	R38 R39 ation Main road noc	R85
Overhead line	Road	Class A cable sig	n 🛕 Class B/C cable sign

Fig. B1 The coupling network between \overline{UPN} and the road network of the case.