

مدل کوتاهترین مسیر، مثال

میخواهیم برای یک افق چهار دورهای برنامه تولید تهیه نمائیم. موجودی اولیه صفر بوده و سطح موجودی نهائی نیز باید صفر باشد. کمبود موجودی مجاز نیست. هزینههای تولید و نگهداری موجودی دارای شکل زیر هستند:

$$C_t(X_t) = \begin{cases} 0 & , & if X_t = 0 \\ A_t + c_t X_t & if X_t > 0 \end{cases} \qquad H_t(I_t) = h_t I_t$$

تخمین پارامترهای هزینه و تقاضا در جدول زیر داده شده اند.

دوره	تقاضای پیش بینی شده	هزینه راه اندازی	هزينه متغير هرواحد محصول	هزینه نگهداری یک واحد محصول برای یک دوره
t	D_t	A_t	C_t	h_t
1	20	30	3	2
2	30	40	3	2
3	40	30	4	1
4	30	50	4	1

ابتدا مساله یک دورهای (k=1) را در نظر بگیرید:

$M_{01} = A_1$	$+ c_1 D_1$	= 30 +	-3×20	= 90
$F_1 = \alpha_{01}$	$= F_0 +$	$M_{01} = 0$	0 + 90 =	= 90

پريود				هزینه نگهداری یک واحد محصول برای یک پریود
t	D_t	A_t	C_t	h_t
1	20	30	3	2
2	30	40	3	2
3	40	30	4	1
4	30	50	4	1

جواب:

$$j^*(1) = 0$$
, $X_1^* = 20$

سپس مساله دو دورهای (k=2) را در نظر بگیرید:

$$M_{02} = A_1 + c_1(D_1 + D_2) + h_1D_2 = 30 + 3 \times (20 + 30) + 2 \times 30 = 240$$

$$M_{12} = A_2 + c_2 D_2 = 40 + 3 \times 30 = 130$$

$$F_2 = min \left\{ \begin{aligned} \alpha_{02} &= F_0 + M_{02} = 0 + 240 = 240 \\ \alpha_{12} &= F_1 + M_{12} = 90 + 130 = 220 \end{aligned} \right\}$$

جواب

$$F_2 = 220, j^*(2) = 1, X_1^* = 20, X_2^* = 30$$

برای مساله سه دورهای (k=3) داریم:

$$M_{03} = A_1 + c_1(D_1 + D_2 + D_3) + h_1(D_2 + D_3) + h_2D_3 = 520$$

 $M_{13} = A_2 + c_2(D_2 + D_3) + h_2D_3 = 330$
 $M_{23} = A_3 + c_3D_3 = 190$

	$ \begin{pmatrix} \alpha_{03} = F_0 + M_{03} = 0 + 520 = 520 \\ \alpha_{13} = F_1 + M_{13} = 90 + 330 = 420 \\ \alpha_{23} = F_2 + M_{23} = 220 + 190 = 410 \end{pmatrix} $
$F_3 = min < 1$	$\alpha_{13} = F_1 + M_{13} = 90 + 330 = 420$
	$\alpha_{23} = F_2 + M_{23} = 220 + 190 = 410$

پريود	تقاضای پیش بینی شده	هزینه راه اندازی	هزينه متغير هرواحد محصول	هزینه نگهداری یک واحد محصول برای یک پریود
t	D_t	A_t	C_t	h_{t}
1	20	30	3	2
2	30	40	3	2
3	40	30	4	1
4	30	50	4	1

جواب

$$F_3 = 410, j^*(3) = 2, X_1^* = 20, X_2^* = 30, X_3^* = 40$$

و نهایتاً برای مساله چهار دورهای (k=4) داریم:

$$M_{04} = A_1 + c_1(D_1 + D_2 + D_3 + D_4) + h_1(D_2 + D_3 + D_4) + h_2(D_3 + D_4) + h_3D_4 = 760$$

$$M_{14} = A_2 + c_2(D_2 + D_3 + D_4) + h_2(D_3 + D_4) + h_3D_4 = 510$$

$$M_{24} = A_3 + c_3(D_3 + D_4) + h_3D_4 = 340$$

$$M_{34} = A_4 + c_4 D_4 = 170$$

	$\alpha_{04} = F_0 + M_{04} = 0 + 760 = 760$
E = anim	$\alpha_{14} = F_1 + M_{14} = 90 + 510 = 600$
$r_4 = min <$	$\begin{pmatrix} \alpha_{04} = F_0 + M_{04} = 0 + 760 = 760 \\ \alpha_{14} = F_1 + M_{14} = 90 + 510 = 600 \\ \alpha_{24} = F_2 + M_{24} = 220 + 340 = 560 \\ \alpha_{34} = F_3 + M_{34} = 410 + 170 = 580 \end{pmatrix}$
	$\alpha_{34} = F_3 + M_{34} = 410 + 170 = 580$

ېريود	تقاضای پیش بینی شده	هزینه راه اندازی	هزينه متغير هرواحد محصول	هزینه نگهداری یک واحد محصول برای یک پریود
t	D_t	A_t	C_t	h _t
1	20	30	3	2
2	30	40	3	2
3	40	30	4	1
4	30	50	4	1

جواب

$$F_4 = 560, j^*(4) = 2, X_1^* = 20, X_2^* = 30, X_3^* = 70, X_4^* = 0$$

خلاصه جواب مثال

K	1	2	3	4
0	90 *	240	520	760
1		220 *	420	600
2			410 *	560 *
3				580
F_k	90	220	410	560
$j^*(k)$	0	1	2	2

الگوریتم حل مسائل برنامهریزی تولید با هزینههای مقعر: کمبود مجاز است

 $H_t^-(I_t^-) = \pi_t I_t^-$ تصور کنید که سفارشات عقب افتاده مجاز بوده و تابع جریمه سفارشهای عقب افتاده به این صورت تعریف گردد:

$$K_t(X_t, I_t) = C_t(X_t) + H_t^+(I_t^+) + H_t^-(I_t^-)$$

j < k مثال: فرض کنید $\pi_1 = 1$ ، $\pi_2 = 1$ و $\pi_3 = 2$ میباشد. اولین قدم محاسبه M_{jk} به ازاء $\pi_3 = 1$ و تمامی مقادیر

مىباشد. $t_{(j,k)}^{*}$: پريود توليد بهينه بين نقاط شروع مجدد و متوالى t

$$M_{01} = A_1 + c_1(D_1) = 90, t_{(0,1)}^* = 1$$

$$M_{02} = min \begin{cases} A_1 + c_1(D_1 + D_2) + H_1^+(D_2) = 240 \\ A_2 + c_2(D_1 + D_2) + H_1^-(D_1) = 210 \end{cases} = 210; t_{(0,2)}^* = 2$$

پريود	تقاضای پیش بینی شده	هزینه راه اندازی	هزينه متغير هرواحد محصول	زینه نگهداری یک واحد حصول برای یک پریود
t	D_t	A_t	C_t	h _t
1	20	30	3	2
2	30	40	3	2
3	40	30	4	1
4	30	50	4	1

$$M_{03} = min \begin{cases} A_1 + c_1(D_1 + D_2 + D_3) + H_1^+(D_2 + D_3) + H_2^+(D_3) = 520 \\ A_2 + c_2(D_1 + D_2 + D_3) + H_1^-(D_1) + H_2^+(D_3) = 410 \\ A_3 + c_3(D_1 + D_2 + D_3) + H_1^-(D_1) + H_2^-(D_1 + D_2) = 460 \end{cases} = 410; t_{(0,3)}^* = 2$$

$$M_{04} = min \begin{cases} A_1 + c_1 \left(\sum_{r=1}^{4} D_r \right) + H_1^+(D_2 + D_3 + D_4) + H_2^+(D_3 + D_4) + H_3^+(D_4) = 760 \\ A_2 + c_2 \left(\sum_{r=1}^{4} D_r \right) + H_1^-(D_1) + H_2^+(D_3 + D_4) + H_3^+(D_4) = 590 \\ A_3 + c_3 \left(\sum_{r=1}^{4} D_r \right) + H_1^-(D_1) + H_2^-(D_1 + D_2) + H_3^+(D_4) = 610 \\ A_4 + c_4 \left(\sum_{r=1}^{4} D_r \right) + H_1^-(D_1) + H_2^-(D_1 + D_2) + H_3^-(D_1 + D_2 + D_3) = 780 \end{cases} = 590; \ t_{(0,4)}^* = 2$$

$$M_{12} = A_2 + c_2(D_2) = 130, t_{(1,2)}^* = 2$$

$$M_{13} = min \begin{cases} A_2 + c_2(D_2 + D_3) + H_2^+(D_3) = 330 \\ A_3 + c_3(D_2 + D_3) + H_2^-(D_2) = 340 \end{cases} = 330; t_{(1,3)}^* = 2$$

مثال: ادامه
$$M_{14} = min \begin{cases} A_2 + C_2(D_2 + D_3 + D_4) + H_2^+(D_3 + D_4) + H_3^+(D_4) = 510 \\ A_3 + C_3(D_2 + D_3 + D_4) + H_2^-(D_2) + H_3^+(D_4) = 490 \\ A_4 + C_4(D_2 + D_3 + D_4) + H_2^-(D_2) + H_3^-(D_2 + D_3) = 620 \end{cases} = 490; t_{(1,4)}^* = 3$$

$$M_{23} = A_3 + C_3(D_3) = 190$$
; $t_{(2,3)}^* = 3$

$$M_{24} = min \begin{cases} A_3 + C_3(D_3 + D_4) + H_3^+(D_4) = 340 \\ A_4 + C_4(D_3 + D_4) + H_3^-(D_3) = 410 \end{cases} = 340; t_{(2,4)}^* = 3$$

$$M_{34} = A_4 + C_4(D_4) = 170$$
; $t^*_{(3,4)} = 4$

 M_{jk} تعیین

· · · · · · · · · · · · · · · · · · ·	نقطه شروع مجدد بعدی		وليد(أ)	دوره تر		$t^*_{(j,m{k})}$	M_{jk}
(<i>j</i>)	(<i>k</i>)	1	2	3	4		
	1	90 *				1	90
0	2	240	210 *			2	210
U	3	520	410 *	460		2	410
	4	760	590 *	610	780	2	590
	2		130 *			2	130
1	3		330 *	340		2	330
	4		510	490 *	620	3	490
2	3			190 *		3	190
Z	4			340 *	410	3	340
3	4				170 *	4	170

خلاصه جواب مثال

	(افق برنامه ریزی) رنقطه شروع مجدد قبلی)	1	2	3	4
	0	90 *	210 *	410	590
	1		130+90=220	420	580
	2			190+210=400 *	210+340=550 *
	3				570
	F_k	90	210	400	550
	$j^*(k)$	0	0	2	2
Moł	Z^st =nammad Ranibar	$=550$ $t^*(0,2)$	$= 2 \to X_2^* = 50 \to X_1^* = 10^{-10}$	$= 0 t^*(2_{9}4) = 3 -$	$Y_3^* = 70 \to X_4^* = 0$

Prof. Mohammad Ranjbar