第一章 线性规划及单纯形法

1.4 单纯形法计算步骤

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

- ■单纯形表
 - □ 考虑约束条件

$$\begin{cases} x_1 + a_{1,m+1}x_{m+1} + \dots + a_{1,n}x_n = b_1 \\ x_2 + a_{2,m+1}x_{m+1} + \dots + a_{2,n}x_n = b_2 \\ \dots \\ x_m + a_{m,m+1}x_{m+1} + \dots + a_{m,n}x_n = b_m \end{cases}$$

■ 单纯形表

□ 考虑约束条件

$$\begin{cases} x_1 + a_{1,m+1}x_{m+1} + \dots + a_{1,n}x_n = b_1 \\ x_2 + a_{2,m+1}x_{m+1} + \dots + a_{2,n}x_n = b_2 \\ \dots \\ x_m + a_{m,m+1}x_{m+1} + \dots + a_{m,n}x_n = b_m \end{cases}$$

□ 为了便于理解计算关系,设计单纯形表

$$A = \begin{bmatrix} 1 & 0 & \dots & 0 & a_{1,m+1} & \dots & a_{1,n} \\ 0 & 1 & \dots & 0 & a_{2,m+1} & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & a_{m,m+1} & \dots & a_{m,n} \end{bmatrix}$$

■单纯形表

$$\bigcirc$$
 检验数 $\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij}$

	$c_j \rightarrow$		c_1	 $ c_m $		c_j	 c_n
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	 $ x_m $		x_j	 x_n
c_1	x_1	b_1	1	 0		a_{1j}	 a_{1n}
c_2	x_2	b_2	0	 0		a_{2j}	 a_{2n}
:	:	:	:	:		:	:
c_m	x_m	b_m	0	 1		$egin{aligned} a_{1j} & & \ a_{2j} & & \ dots & \ a_{mj} & & \end{aligned}$	 a_{mn}
						σ_j	

- ■基本步骤
 - □ 第1步: 求初始基可行解, 列出初始单纯形表

■基本步骤

- □ 第1步: 求初始基可行解,列出初始单纯形表
- \square 第 2 步: 最优性检验, 计算各非基变量 x_i 的检验数

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij}$$

- 如果所有检验数 $\sigma_j \leq 0$,且基变量中不含有人工变量时,则停止迭代,得到最优解
- 如果存在 $\sigma_i > 0$,且有 $P_i \leq 0$,则停止迭代,问题为无界解
- 否则转 3 步

■基本步骤

- 第3步:基可行解转化。从一个基可行解转换到相邻的目标函数值 更大的基可行解,列出新的单纯形表
 - 确定换入变量 x_k (最大增加原则)

$$\sigma_k = \max_j \ \{ \sigma_j \mid \sigma_j > 0 \}$$

• 确定换出变量 x_l (最小比值原则)

$$\theta = \min_{i} \left\{ \frac{b_i}{a_{ik}} \mid a_{ik} > 0 \right\} = \frac{b_l}{a_{lk}}$$

确定 x_l 为换出变量, a_{lk} 为主元

• 用换入变量 x_k 替换基变量中的换出变量 x_l , 得到一个新的基 $(P_1, \ldots, P_{l-1}, P_k, P_{l+1}, \ldots, P_m)$, 进行初等变换

■基本步骤

- 第3步:基可行解转化。从一个基可行解转换到相邻的目标函数值 更大的基可行解,列出新的单纯形表
 - 确定换入变量 x_k (最大增加原则)

$$\sigma_k = \max_j \ \{ \sigma_j \mid \sigma_j > 0 \}$$

• 确定换出变量 x_l (最小比值原则)

$$\theta = \min_{i} \left\{ \frac{b_i}{a_{ik}} \mid a_{ik} > 0 \right\} = \frac{b_l}{a_{lk}}$$

确定 x_l 为换出变量, a_{lk} 为主元

- 用换入变量 x_k 替换基变量中的换出变量 x_l , 得到一个新的基 $(P_1, \ldots, P_{l-1}, P_k, P_{l+1}, \ldots, P_m)$, 进行初等变换
- □ 第 4 步: 重复 2、3 两步,一直到计算结束为止

- 例 1
 - 🛘 用单纯形法求解线性规划问题

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

- 例 1
 - 🛘 用单纯形法求解线性规划问题

max
$$z = 2x_1 + x_2$$

s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

□ 标准化

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_1 + x_2 + x_5 = 5 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

- 例 1
 - □ 第1步: 求初始基可行解, 列出初始单纯形表

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	x_4	x_5
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	x_5	5	1	1	0	0	1
($c_j - z_j$		2	1	0	0	0

- 例 1
 - □ 第 1 步: 求初始基可行解, 列出初始单纯形表

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	x_4	x_5
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	x_5	5	1	1	0	0	1
($c_j - z_j$		2	1	0	0	0

第2步: 检验数大于零,因此初始基可行解不是最优解

- 例 1
 - □ 第 3 步: 基可行解的转换
 - 因 $\sigma_1 > \sigma_2$, 确定 x_1 为换入变量
 - $\theta = \min\left\{\infty, \frac{24}{6}, \frac{5}{1}\right\} = 4$, 因此确定 6 为主元素
 - x4 为换出变量

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$\underline{x_1}$	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
0	$\begin{array}{c c} x_3 \\ \underline{x_4} \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	[6]	2	0	1	0
0	$\overline{x_5}$	5	1	1	0	0	1
C	$z_j - z_j$		2	1	0	0	0

■ 例 1

		$c_j \rightarrow$		2	1	0	0	0
	\mathbf{C}_{B}	$\mid \mathbf{X}_B$	b	$ \underline{x_1} $	$ x_2 $	$ x_3 $	$\mid x_4 \mid$	x_5
	0	x_3	15	0	5	1	0	0
	0	x_4	24	[6]	2	0	1	0
	0	$\frac{1}{x_5}$	5	1	1	0	0	1
	($z_j - z_j$		2	1	0	0	0
_				\Downarrow				-
	c_{j}	\rightarrow		2	1	0	0	0
_($C_B \mid B$	\mathbf{X}_{B}	b a	$x_1 \mid$	$x_2 \mid$	$x_3 \mid$	x_4	x_5
	0	$x_3 \mid $	15	0	5	1	0	0
	2	x_1	4	1 1	2/6	0	1/6	0
	0	x_5	1		4/6	0	-1/6	1
	c_{j}	$-z_j$		0	1/3	0	-1/3	8 0

- 例 1
 - □ 第 3 步: 基可行解的转换
 - 因 $\sigma_2 > 0$, 确定 x_2 为换入变量
 - $\theta=\min\left\{\frac{15}{5},\frac{1}{2/3},\frac{5}{4/6}\right\}=\frac{30}{4}$, 因此确定 4/6 为主元素
 - x_5 为换出变量

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$\underline{x_2}$	x_3	x_4	$ x_5 $
0	$ x_3 $	15	0	5	1	$\begin{array}{c c} 0 \\ 1/6 \\ -1/6 \end{array}$	0
2	x_1	4	1	2/6	0	1/6	0
0	$\underline{x_5}$	1	0	[4/6]	0	-1/6	1
($c_j - z_j$		0	1/3	0	-1/3	0

- 例 1
 - \Box 第 4 步: 所有检验数 $\sigma_j \leq 0$, 得到最优解

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
0	x_3	15/2	0	0	1	5/4	$ \begin{vmatrix} -15/2 \\ -1/2 \\ 3/2 \end{vmatrix} $
2	x_1	7/2	1	0	0	1/4	-1/2
1	x_2	3/2	0	1	0	-1/4	3/2
	$c_j - z_j$	j	0	0	0	-1/4	-1.2

- 例 1
 - \Box 第 4 步: 所有检验数 $\sigma_j \leq 0$, 得到最优解

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	x_5
0	x_3	15/2	0	0	1	$\begin{vmatrix} 5/4 \\ 1/4 \\ -1/4 \end{vmatrix}$	-15/2
2	x_1	7/2	1	0	0	1/4	-1/2
1	x_2	3/2	0	1	0	-1/4	3/2
	$c_j - z_j$	j	0	0	0	-1/4	-1.2

代入目标函数得最优值 $z=2x_1+x_2=17/2$

- 例 2
 - 🛛 用单纯形法求解线性规划问题

max
$$z = 2x_1 + 3x_2$$

s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

- 例 2
 - 🛘 用单纯形法求解线性规划问题

max
$$z = 2x_1 + 3x_2$$

s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

□ 标准化

$$\max z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + 2x_2 + x_3 = 8 \\ 4x_1 + x_4 = 16 \\ 4x_2 + x_5 = 12 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 例 2

□ 第 1 步: 求初始基可行解, 列出初始单纯形表

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	$ x_2 $	x_3	x_4	x_5
0	x_3	8	1	2	1	0	0
0	x_4	16	4	0	0	1	0
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	12	0	4	0	0	1
($z_j - z_j$		2	3	0	0	0

□ 第2步: 检验数大于零,因此初始基可行解不是最优解

- 例 2
 - □ 第 3 步: 基可行解的转换
 - 因 $\sigma_2 > \sigma_1$, 确定 x_2 为换入变量
 - $\theta = \min\left\{\frac{8}{2}, \infty, \frac{12}{4}\right\} = 3$, 因此确定 4 为主元素
 - x_5 为换出变量

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ \underline{x_2} $	$ x_3 $	$ x_4 $	$ x_5 $
0	x_3	8	1	2	1	0	0
0	x_4	16	4	0	0	1	0
0	x_3 x_4 x_5	12	0	[4]	0	0	1
C	$z_j - z_j$		2	3	0	0	0

■ 例 2

		$c_j \rightarrow$		2	3	0	0	0
	\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
o	0	x ₃	8	1	2	1	0	0
_	0	x_4	16	4	0	0	1	0
	0	$\underline{x_5}$	12	0	[4]	0	0	1
		$c_j - z$	j	2	3	0	0	0
_					\Downarrow			
		$c_j \rightarrow$		2	3	0	0	0
	\mathbf{C}_B	$\mid \mathbf{X}_B \mid$	b	x_1	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
	0	x_3	2	1	0	1	0	-1/2
	0	x_4	16	4	0	0	1	0
	3	x_2	3	0	1	0	0	1/4
	C	$z_j - z_j$		2	0	0	0	-3/4

- 例 2
 - □ 第 3 步: 基可行解的转换
 - 因 $\sigma_1 > 0$, 确定 x_1 为换入变量
 - $\theta = \min\left\{\frac{2}{1}, \frac{16}{4}, \infty\right\} = 2$, 因此确定 1 为主元素
 - x3 为换出变量

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ \underline{x_1} $	x_2	x_3	x_4	x_5
0	x_3	2	[1]	0	1	0	-1/2
0	$\overline{x_4}$	16	4	0	0	1	0
3	x_2	3	0	1	0	0	$ \begin{vmatrix} -1/2 \\ 0 \\ 1/4 \end{vmatrix} $
($c_j - z_j$		2	0	0	0	-3/4

■ 例 2

		$c_j \rightarrow$		2	3	0	0	0
•	\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ \underline{x_1} $	x_2	x_3	x_4	x_5
	0	$\underline{x_3}$	2	[1]	0	1	0	-1/2
	0	x_4	16	4	0	0	1	0
	3	x_2	3	0	1	0	0	1/4
	c	$z_j - z_j$		2	0	0	0	-3/4
					\Downarrow			
	$c_j \rightarrow$			2	3	0	0	0
	\mathbf{C}_{B}	$\mid \mathbf{X}_B$	b	$ x_1 $	x_2	$ x_3 $	$ x_4 $	x_5
	2	$ x_1 $	2	1	0	1	0	-1/2
	0	x_4	8	0	0	-4	1	2
	3	x_2	3	0	1	0	0	1/4
	- 0	$z_j - z_j$		0	0	-2	0	1/4

- 例 2
 - □ 第 3 步: 基可行解的转换
 - 因 $\sigma_5 > 0$, 确定 x_5 为换入变量
 - $\theta = \min\left\{-, \frac{8}{2}, \frac{3}{1/4}\right\} = 4$, 因此确定 2 为主元素
 - x4 为换出变量

	$c_j \to$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$\underline{x_5}$
2	x_1	2	1	0	1	0	-1/2
0	x_4	8	0	0	-4	1	[2]
3	$\overline{x_2}$	3	0	1	0	0	$ \begin{vmatrix} -1/2 \\ [2] \\ 1/4 \end{vmatrix} $
c	$j-z_j$		0	0	-2	0	1/4

■ 例 2

		$c_j \rightarrow$		2	3	0	0	0			
	\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1$	$ x_2 $	$ x_3 $	x_4	$ x_5 $	<u>.</u>		
	2	$ x_1 $	2	1	0	1	0	-1	/2		
	$0 \\ 3$	$\frac{x_4}{x_2}$	$\begin{vmatrix} 8 \\ 3 \end{vmatrix}$	0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	-4 0	$\frac{1}{0}$	$\begin{bmatrix} 2 \\ 1/ \end{bmatrix}$			
		$z_j - z_j$	1	0	0	-2	0	1/-			
					. ↓						
•	C	$z_j o$		2	3	0	C)	0		
	\mathbf{C}_{B}	\mathbf{X}_{B}	b	$x_1 \mid$	$x_2 \mid$	x_3		4	$\underline{x_5}$		
	2	x_1	4	1	0	0	1/		0		
	$\begin{bmatrix} 0 \\ 3 \end{bmatrix}$	$x_5 \\ x_2$	$\begin{bmatrix} 4 \\ 2 \end{bmatrix}$	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	-2 1/2	$\begin{vmatrix} 1/\\ -1 \end{vmatrix}$		$\frac{1}{0}$		
-	c_j	$-z_j$		0	0	-3/2	-1	/8	0		

■ 例 2

 \Box 第 4 步: 所有检验数 $\sigma_j \leq 0$, 得到最优解

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
2	$ x_1 $	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	$ \begin{array}{c c} 1/4 \\ 1/2 \\ -1/8 \end{array} $	0
c_{\cdot}	$j-z_j$		0	0	-3/2	-1/8	0

- 例 2
 - \square 第 4 步: 所有检验数 $\sigma_i \leq 0$,得到最优解

	$c_j \rightarrow$		2	3	0	0	0	
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ \underline{x_5} $	
2	$ x_1 $	4	1	0	0	1/4	0	
0	x_5	4	0	0	-2	1/2	1	
3	x_2	2	0	1	1/2	$ \begin{array}{ c c c } 1/4 \\ 1/2 \\ -1/8 \end{array} $	0	
$c_j - z_j$ 0 0 -3/2 -1/8 0								

- □ 基可行解 $X = (4, 2, 0, 0, 4)^{\top}$ 是最优解
- \Box 代入目标函数得最优值 $z = 2x_1 + 3x_2 = 14$

- 课堂练习 1
 - □ 用单纯形法求解线性规划问题

max
$$z = 50x_1 + 100x_2$$

s.t.
$$\begin{cases} x_1 + x_2 \le 300 \\ 2x_1 + x_2 \le 400 \\ x_2 \le 250 \\ x_1, x_2 \ge 0 \end{cases}$$

■ 课堂练习 1

□ 经过分析得到

	$c_j \rightarrow$		50	100	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	$ x_3 $	x_4	$\underline{x_5}$
50	$\begin{array}{c c} x_1 \\ x_4 \\ x_2 \end{array}$	50	1	0	1	0	-1
0	x_4	50	0	0	-2	1	1
100	x_2	250	0	1	0	0	1
	$c_j - z_j$	i	0	0	-50	0	-50

- \square 所有检验数 $\sigma_i \leq 0$, 得到最优解
- \Box 代入目标函数得最优值 $z = 50x_1 + 100x_2 = 27500$

- 小结
 - □ 第 1 步: 求初始基可行解,列出初始单纯形表
 - $f \Box$ 第 2 步: 最优性检验,计算 $\sigma_j = c_j \sum_{i=1}^m c_i a_{ij}$
 - □ 第 3 步: 基可行解转化
 - □ 第 4 步: 重复 2、3 两步, 一直到计算结束为止
- 课后作业: P44, 习题 1.3

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈