Started on Saturday, 28 October 2023, 8:41 AM

State Finished

Completed on Saturday, 28 October 2023, 9:20 AM

Time taken 39 mins

Grade 10.00 out of 10.00 (**100**%)

Question 1

Correct

Mark 1.00 out of 1.00

Consider the fading channel estimation problem where the output symbol y(k) is y(k) = hx(k) + v(k), with h, x(k), v(k) denoting the *real* channel coefficient, pilot symbol and noise sample respectively. Let $\bar{\mathbf{x}} = [x(1) \quad x(2) \quad ... \quad x(N)]^T$ denote the vector of transmitted pilot symbols and $\bar{\mathbf{y}} = [y(1) \quad y(2) \quad ... \quad y(N)]^T$ denote the corresponding received symbol vector. Let v(k) be independent Gaussian noise with zero-mean and variance σ_k^2 . The likelihood function is

Select one:

$$\bigcirc \left(\frac{1}{\sqrt{2\pi\sum_{k=1}^{N}\sigma_{k}^{2}}}\right)e^{-\frac{1}{2}\left(\sum_{k=1}^{N}\left(y(k)-hx(k)\right)^{2}\right)\left(\sum_{k=1}^{N}\frac{1}{\sigma_{k}^{2}}\right)}$$

$$\qquad \left(\prod_{k=1}^N \frac{1}{\sqrt{2\pi\sigma_k^2}} \right) e^{-\frac{1}{2}\sum_{k=1}^N \frac{\left(y(k) - hx(k)\right)^2}{\sigma_k^2}} \checkmark$$

$$\bigcirc \left(\frac{1}{\sqrt{2\pi\sum_{k=1}^{N}\frac{1}{\sigma_{k}^{2}}}}\right)e^{-\frac{1\left(\sum_{k=1}^{N}\left(y(k)-hx(k)\right)^{2}}{2}\left(\sum_{k=1}^{N}\frac{1}{\sigma_{k}^{2}}\right)}$$

$$= \frac{1}{\sqrt{2\pi\sum_{k=1}^{N}\frac{1}{\sigma_{k}^{2}}}}e^{-\frac{1}{2}\left(\sum_{k=1}^{N}(y(k)-hx(k))^{2}\right)\left(\sum_{k=1}^{N}\frac{1}{\sigma_{k}^{2}}\right)}$$

Your answer is correct.

The correct answer is:
$$\left(\prod_{k=1}^{N}\frac{1}{\sqrt{2\pi\sigma_{k}^{2}}}\right)e^{-\frac{1}{2}\sum_{k=1}^{N}\frac{\left(y(k)-hx(k)\right)^{2}}{\sigma_{k}^{2}}}$$

Question **2**

Correct

Mark 1.00 out of 1.00

Consider the fading channel estimation problem where the output symbol y(k) is y(k) = hx(k) + v(k), with h, x(k), v(k) denoting the real channel coefficient, pilot symbol and noise sample respectively. Let $\bar{\mathbf{x}} = [x(1) \quad x(2) \quad ... \quad x(N)]^T$ denote the vector of transmitted pilot symbols and $\bar{\mathbf{y}} = [y(1) \quad y(2) \quad ... \quad y(N)]^T$ denote the corresponding received symbol vector. Let v(k) be independent Gaussian noise with zero-mean and variance σ_k^2 . The ML estimate of h is

Select one:

$$\bigcirc \quad \frac{\sum_{k=1}^N \frac{1}{\sigma_k} x(k) y(k)}{\sum_{k=1}^N \frac{1}{\sigma_k} x^2(k)}$$

$ \frac{\left(\sum_{k=1}^{N} x(k) y(k)\right) \left(\sum_{k=1}^{N} \frac{1}{\sigma_{k}^{2}}\right)}{\sum_{k=1}^{N} \frac{1}{\sigma_{k}^{2}} x^{2}(k)} $
$ \qquad \qquad \frac{\sum_{k=1}^N \sigma_k^2 \kappa(k) y(k)}{\sum_{k=1}^N \sigma_k^2 \kappa^2(k)} $
$\sum_{k=1}^N \sigma_k^2 \kappa^2(k)$
Your answer is correct.
The correct answer is: $\frac{\sum_{k=1}^{N} \frac{1}{\sigma_k^2} x(k) y(k)}{\sum_{k=1}^{N} \frac{1}{\sigma_k^2} x^2(k)}$
Question 3 Correct
Mark 1.00 out of 1.00
MIMO is a key technology in
Select one:
Only 4G
Only 5G
○ All of these ✓
Only WiFi
Your answer is correct.
The correct answer is: All of these
Question 4
Correct Mark 1.00 out of 1.00
In the MIMO channel model $\bar{\mathbf{y}}(k) = \mathbf{H}\bar{\mathbf{x}}(k) + \bar{\mathbf{n}}(k)$ described in class lectures, the coefficient $h_{i,j}$ of the channel matrix \mathbf{H} denotes
Select one:
Power gain between receive antenna i and transmit antenna j
 Fading channel coefficient between receive antenna i and transmit antenna j ✓
Amplitude gain between receive antenna j and transmit antenna i
Fading channel coefficient between receive antenna j and transmit antenna i
Your answer is correct.
The correct answer is: Fading channel coefficient between receive antenna i and transmit antenna j
Question 5
Correct Mark 1.00 out of 1.00
Flag question

Consider a MIMO system with r receive antennas and t transmit antennas. The channel matrix is of size

Select one:
\bigcirc $t \times r$
\bigcirc rt $ imes$ rt
© r×t ✔
$\bigcirc (r+t) \times (r+t)$
$(r+t)\times(r+t)$
Your answer is correct.
The correct answer is: $r \times t$
Question 6
Correct
Mark 1.00 out of 1.00
Flag question
Consider the MIMO channel estimation problem with pilot matrix
$\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \end{bmatrix}$
The output matrix is
$\begin{bmatrix} 1 & 2 & -3 & -1 \\ 1 & 2 & 3 & -1 \end{bmatrix}$
$\mathbf{Y} = \begin{bmatrix} 1 & 2 & -3 & -1 \\ 1 & -2 & 1 & -2 \\ 2 & -3 & 1 & -2 \end{bmatrix}$
The size of the MIMO system is,
Select one:
© 3×3
✓
○ 3×2
○ 2 × 2
2 <u>times</u> 3
Your answer is correct.
The correct answer is: 3 \times 3
The correct answer is: Smarttines
Question 7
Correct
Mark 1.00 out of 1.00
Consider the MIMO channel estimation problem with pilot matrix X and output matrix Y. The LS estimate of the MIMO channel matrix is given as,

Select one:

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$$

$$\bigcirc \quad (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}^T\mathbf{Y}$$

Your answer is correct.

The correct answer is: $\mathbf{Y}\mathbf{X}^T(\mathbf{X}\mathbf{X}^T)^{-1}$

Question **8**

Correct

Mark 1.00 out of 1.00

Consider the MIMO channel estimation problem with pilot matrix X and output matrix

Y. The pseudo-inverse of the pilot matrix is

Select one:

- $(XX^T)^{-1}X^T$
- $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$
- \bigcirc $\mathbf{X}^T(\mathbf{X}\mathbf{X}^T)^{-1}$

Your answer is correct.

The correct answer is: $\mathbf{X}^T(\mathbf{X}\mathbf{X}^T)^{-1}$

Question **9**

Correct

Mark 1.00 out of 1.00

Consider the MIMO channel estimation problem with pilot matrix

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \end{bmatrix}$$

The pseudo-inverse of the pilot matrix **X** is,

Select one:

$$\bigcirc \ \begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\bigcirc \quad {\scriptstyle \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \end{bmatrix}}$$

$$\bigcirc \ \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \end{bmatrix}$$

Your answer is correct.

The correct answer is: $\frac{1}{4}\begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$

Question 10

Correct

Mark 1.00 out of 1.00

Consider the MIMO channel estimation problem with pilot matrix

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \end{bmatrix}$$

The output matrix is

$$\mathbf{Y} = \begin{bmatrix} 1 & 2 & -3 & -1 \\ 1 & -2 & 1 & -2 \\ 2 & -3 & 1 & -2 \end{bmatrix}$$

The least squares or ML estimate of the MIMO channel matrix **H** is

Select one:

$$\bigcirc \quad \frac{1}{4} \begin{bmatrix} -1 & -7 & 3 \\ -2 & -1 & -6 \\ -3 & 0 & -8 \end{bmatrix}$$

$$\bigcirc \quad \frac{1}{4} \begin{bmatrix} -1 & -7 & -3 \\ -2 & 3 & -6 \\ -2 & -1 & -8 \end{bmatrix}$$

Your answer is correct.

The correct answer is:
$$\frac{1}{4}\begin{bmatrix} -1 & -7 & 3 \\ -2 & 0 & -6 \\ -2 & 0 & -8 \end{bmatrix}$$

Finish review