Stylometric and Neural Features
Combined Deep Bayesian Classifier
for Authorship Verification

Yitao Sun, Svetlana Afanaseva and Kailash Patil

Outline

- 1. Idea
- 2. Model overview
- 3. Results
- 4. On-going work
- 5. Q&A

Ideas

- 1) Siamese Network Adhominem system (B. Boenninghoff, 2019) lacks stylometric feature
- 2) To improve the Adhominem system:
 - a) Add Stylometric features (J. Weerasinghe, 2020), e.g frequency of function words, vocab richness, to enrich input data
 - b) Use probabilistic linear discriminant analysis (PLDA) as metric layer

Model Overview

Siamese Network

Model Overview

LEV (linguistic embedding vectors) in detail

SFL (Stylometric Feature Layers)

Pindrop Confidential and Proprietary

Bayesian Factor Scoring(B. Boenninghoff 2020)

- \mathcal{H}_s : The two documents were written by the same person,
- \mathcal{H}_d : The two documents were written by two different persons.

Same-author pair probability

$$p\left(\mathbf{y}_{1},\mathbf{y}_{2}\mid\mathcal{X}_{s}\right) = \frac{p\left(\mathbf{y}_{1},\mathbf{y}_{2}\mid\mathbf{x}_{0},\mathcal{X}_{s}\right)p\left(\mathbf{x}_{0}\mid\mathcal{X}_{s}\right)}{p\left(\mathbf{x}_{0}\mid\mathbf{y}_{1},\mathbf{y}_{2},\mathcal{X}_{s}\right)} = \frac{p\left(\mathbf{y}_{1}\mid\mathbf{x}_{0}\right)p\left(\mathbf{y}_{2}\mid\mathbf{x}_{0}\right)p\left(\mathbf{x}_{0}\mid\mathbf{y}_{1},\mathbf{y}_{2}\right)}{p\left(\mathbf{x}_{0}\mid\mathbf{y}_{1},\mathbf{y}_{2}\right)}$$

Different-author pair probability

$$p(\mathbf{y}_1, \mathbf{y}_2 \mid \mathcal{H}_d) = p(\mathbf{y}_1 \mid \mathcal{H}_d) p(\mathbf{y}_2 \mid \mathcal{H}_d) = \frac{p(\mathbf{y}_1 \mid \mathbf{x}_1) p(\mathbf{x}_1)}{p(\mathbf{x}_1 \mid \mathbf{y}_1)}, \frac{p(\mathbf{y}_2 \mid \mathbf{x}_2) p(\mathbf{x}_2)}{p(\mathbf{x}_2 \mid \mathbf{y}_2)}$$

Bayesian Factor Scoring

Final bayesian score generation

score
$$(\mathbf{y}_{1}, \mathbf{y}_{2}) = \log p(\mathbf{y}_{1}, \mathbf{y}_{2} \mid \mathcal{H}_{s}) - \log p(\mathbf{y}_{1}, \mathbf{y}_{2} \mid \mathcal{H}_{d})$$

$$= \log p(\mathbf{x}_{0}) - \log p(\mathbf{x}_{1}) - \log p(\mathbf{x}_{2})$$

$$+ \log p(\mathbf{y}_{1} \mid \mathbf{x}_{0}) + \log p(\mathbf{y}_{2} \mid \mathbf{x}_{0}) - \log p(\mathbf{y}_{1} \mid \mathbf{x}_{1}) - \log p(\mathbf{y}_{2} \mid \mathbf{x}_{2})$$

$$- \log p(\mathbf{x}_{0} \mid \mathbf{y}_{1}, \mathbf{y}_{2}) + \log p(\mathbf{x}_{1} \mid \mathbf{y}_{1}) + \log p(\mathbf{x}_{2} \mid \mathbf{y}_{2})$$

Bayesian Factor Scoring

To learn the probability layer from the data

$$p(\mathcal{H}_s|\boldsymbol{y}_1,\boldsymbol{y}_2) = \frac{p(\boldsymbol{y}_1,\boldsymbol{y}_2|\mathcal{H}_s)}{p(\boldsymbol{y}_1,\boldsymbol{y}_2|\mathcal{H}_s) + p(\boldsymbol{y}_1,\boldsymbol{y}_2|\mathcal{H}_d)} = \text{Sigmoid}\big(\text{score}(\boldsymbol{y}_1,\boldsymbol{y}_2)\big)$$

The loss function

$$\mathcal{L}_{oldsymbol{\phi}} = l \cdot \log \left\{ p(\mathcal{H}_s | oldsymbol{y}_1, oldsymbol{y}_2)
ight\} + (1 - l) \cdot \log \left\{ 1 - p(\mathcal{H}_s | oldsymbol{y}_1, oldsymbol{y}_2)
ight\}$$

Results

Test Results of PAN 2023 Training Dataset

Model	AUC	C@1	f_05_u	<i>F</i> 1	brier	overall
Naive, Distance-based	0.493	0.497	0.553	0.664	0.741	0.589
Method-based text compression	0.504	0.033	0.048	0.621	0.75	0.391
DML without SFL	0.503	0.523	0.492	0.357	0.603	0.495
UAL without SFL	0.499	0.52	0.477	0.336	0.593	0.485
BFS without SFL	0.47	0.502	0.474	0.37	0.597	0.483
DML with SFL	0.523	0.499	0.605	0.522	0.73	0.576
UAL with SFL	0.568	0.492	0.584	0.467	0.747	0.571
BFS with SFL	0.65 8	0.662	0.73 9	0.735	0.762	0.711

On-going work and thoughts

- 1. Didn't finetune the threshold, can do better next year
- 2. Might consider EER(Equal Error Rate) as one of the metric
- 3. Does online text(word) distribute the same way as transcribed text
- Use other popular pretrained transformer with BFS(Bayesian Factor Scoring) to boost performance

