Scale

Vinay P. Namboodiri

January 10, 2014

- Scale Space
- 2 Burt Adelson pyramid
- Wavelets

Input for slides includes content by Kyros Kutulakos, Bob Fisher and Witkin

Witkin's one dimensional Gaussian smoothing

Laplacian Mask

0	-1	0
T	4	T
0	_1	0

_1	-1	-1
_1	8	_1
_1	-1	_1

LoG equation

$$LoG(x,y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

LoG Continuous waveform

LoG discrete values

0	1	1	2	2	2	7	1	0
1	2	4	5	5	5	4	2	7
1	4	Ð	Э	0	Э	5	4	7
2	5	Э	-12	-24	-12	Э	5	2
2	5	0	-24	-40	-24	0	5	2
2	5	Э	-12	-24	-12	Э	5	2
1	4	5	3	0	3	5	4	1
1	2	4	5	5	5	4	2	1

LoG Response

LoG Example Input

LoG Example Output

Decomposition of Laplacian pyramid

Reconstruction of Laplacian pyramid

Haar wavelet example 1D

Haar wavelet example 1D

2D Haar wavelet basis

The 2-D Haar Wavelet Basis

Definition of the first few (coarsest scale) wavelet coefficients of an image of dimensions of $2^N x \, 2^N$

2D Haar wavelet example

The Haar 2-D Wavelet Transform

The 2-D Haar Wavelet Transform corresponds to a modification of this minimal recursive transform

2D Haar inverse wavelet example

Invertibility of the 2D Haar Transform We can recursively reconstruct the intensities of every 2x2 window from its average and detail coefficients

Figure from Kyros Kutulakos

Wavelet decomposition example

Wavelet detail and approximate by filtering

Wavelets Filter bank

