Lecture 18 protein evolution

Course: Practical Bioinformatics (BIOL 4220)

Instructor: Michael Landis

Email: <u>michael.landis@wustl.edu</u>

Lecture 18 outline

Last time: Biopython

This time: protein evolution

- dN/dS and hypotheses
- counting method
- phylogenetic method

Protein evolution

Selection may act upon DNA mutations in protein-coding genes

- DNA sequences mutate and are inherited
- DNA from protein-coding genes is *transcribed* into RNA then *translated* into AA through the *genetic code*
- AA sequences determine *protein structure*
- Protein structure (largely) determines protein function
- Protein function may influence *organismal fitness*

Can we detect if a protein evolves faster or slower than it would in the absence of selection?

DNA to RNA to AA

AA sequences influence function

AA sequence

AA sequence ultimately shapes higher-order structure and protein function

What mutations might induce changes in protein function?

A point mutation could change a codon into any of nine "adjacent" codons

Synonymous substitutions are silent and do not induce AA change;

Nonsynonymous substitutions are visible and do cause AA change

Common scenarios for protein evolution

The relative rate of nonsynonymous vs. synonymous substitution events (called **dN/dS**) can help us infer what type of selection pressures a protein encountered

If dN/dS < 1, then DNA mutations that change AA tend to be discarded (consistent with *purifying selection*)

If dN/dS > 1, then DNA mutations that change AA tend to be kept (consistent with **positive selection**)

If dN/dS = 1, then DNA mutations are kept regardless of effect on AA (consistent with **neutrality**)

Purifying selection

Genes that encode proteins reponsible for core molecular functions, called *housekeeping genes*, often have highly conserved protein sequences, structures, and functions

Table 2. Averaged ω in Branches of Phylogenetic Tree of Mammalian H1.1–H1.5 Gene Family.

Hypothesis	InL	Branches	Omega (ω)		
НО	-22708.4	All the branches	0.14116		
H1	-22692.1	H1.1	0.18982		
		Rest of the branches	0.12314		
H2	-22690.59	H1.5	0.08853		
		Rest of the branches	0.15575		
H3	-22694.48	H1.2	0.1097		
		H1.3	0.1741		
		H1.4	0.0952		
		Rest of the branches	0.1497		

Histone, H1.1

dN/dS < 1

Ponte et al. (Mol. Biol. Evol. 2017)

Positive selection

Protein-coding genes that are adapting to changing environmental conditions (e.g. genes that participate in *host-pathogen arms races*) may be enriched for amino acid changes due to positive selection

Figure 1: Structure of the dimer of dengue E soluble fragment (sE) in the mature virus particle.

a, The three domains of dengue sE. Domain I is red, domain II is yellow, domain III is blue. A 53-residue 'stem' segment links the stably folded sE fragment with the C-terminal transmembrane anchor. **b**, The sE dimer¹⁰. This is the conformation of E in the mature virus particle and in solution above the fusion pH. **c**, Packing of E on the surface of the virus. Electron cryomicroscopy image reconstructions show that 90 E dimers pack in an icosahedral lattice¹³.

Table 2
Maximum Ratio of Nonsynonymous to Synonymous
Substitutions for Each DEN-4 Gene Region Examined in
This Study

	d_N/d_S^{a}								
Gene	Max. d_N/d_S^b	Proportion of Codons ^c	P^{d}						
Capsid / membrane	0.822	0.167	0.997						
Envelope / NS1	2.110	0.017	0.157						
NS2A	4.574	0.009	0.725						
NS4B	1.851	0.014	0.937						

^a Values given for the M3 model of codon evolution that allows three classes of d_N/d_S per gene sequence alignment, all of which are estimated from the data.

dN/dS > 1

Bennett et al. (Mol. Biol. Evol. 2003)

^b Highest d_N/d_S for a set of codons estimated under the M3 model.

^c Proportion of codons with the maximum d_N/d_S value.

^d Significance value obtained from a likelihood ratio test involving M3 and the neutral codon model M1 (which allows two classes of d_N/d_S , 0 and 1).

Neutral theory

Neutrality is extremely useful as a *null hypothesis*: how would proteins evolve in the absence of selection?

The *neutral theory of molecular evolution* argues that most alleles evolve according to *neutral processes*

Neutral processes include mutation, migration, recombination, and genetic drift – but not selection!

Neutral processes adequately explain many patterns of molecular variation, both within and between species.

Are nonsynonymous substitutions relatively rare or common?

A simple count-based test for pairs of sequences:

- 1. Compute # of nonsyn. changes per nonsyn. site (dN)
- 2. Compute # of syn. changes per syn. site (dS)
- 3. Compute ratio (dN/dS)
- 4. Interpret *dN/dS* in terms of purifying, positive, or neutral selection

Compute the number of synonymous sites (S) and the number of nonsynonymous sites (N=L-S) in a sequence of length L

```
Sp_1 GTT ATT GAT GCT TCA GTC
Sp_2 GTT ACT GAC GCA CCA GTC
```

Second letter

	U	С	A	G		
U	UUU Phenylalanine (Phe) UUA Leucine UUG (Leu)	UCU UCC Serine (Ser)	UAU Tyrosine UAC (Tyr) UAA Stop UAG Stop	UGU Cysteine UGC (Cys) UGA Stop UGG Tryptophan (Trp)	U C A G	
С	CUU CUC UA UG Leucine (Leu)	CCU CCC Proline (Pro)	CAU Histidine (His) CAA Glutamine (Gln)	CGU CGC CGA CGG	U C A G	
A	AUU AUC AUA AUG Methionine (Met)	ACU ACC ACA ACA ACG	AAU Asparagine (Asn) AAA Lysine (Lys)	AGU Serine (Ser) AGA Arginine (Arg)	U C A G	
G	GUU GUC GUA GUG	GCU GCC Alanine GCA (Ala) GCG	GAU Aspartic acid (Asp) GAA GAG GIUtamic acid (Glu)	GGU GGC GGA GGG	U C A G	

What % of ATT mutations in the *first codon position* result in *synonymous* changes?

f[1] = ?

f[2] = ?

f[3] = ?

				Second	d letter		
			U	С	А	G	
	U	UUU UUC]	Phenylalanine (Phe) Leucine (Leu)	UCU UCC Serine (Ser)	UAU Tyrosine UAC (Tyr) UAA Stop UAG Stop	UGU Cysteine UGC (Cys) UGA Stop UGG Tryptophan (Trp)	UCAG
etter	С	CUU CUC UA UG	Leucine (Leu)	CCU CCC CCA CCG	CAU Histidine (His) CAA Glutamine (Gln)	CGU CGC CGA CGG	UCAG
First letter	A	AUU AUC UA UG	Isoleucine (Ile) Methionine (Met)	ACU ACC Threonine (Thr)	AAU Asparagine (Asn) AAA Lysine (Lys)	AGU Serine (Ser) AGA Arginine (Arg)	U C A G
	G	GUU GUC GUA GUG	Valine (Val)	GCU GCC GCA GCG (Ala)	GAU Aspartic acid (Asp) GAA GAG GIUtamic acid (Glu)	GGU GGC GGA GGG	U C A G

What % of ATT mutations in the *first codon position* result in *synonymous* changes?

$$f[1] = 0$$

$$f[2] = ?$$

$$f[3] = ?$$

Second letter

1	700	(a)					
	U	С	A	G			
U	UUU Phenylalanine UUC (Phe) UUA Leucine UUG (Leu)	UCU UCC Serine (Ser) UCG	UAU Tyrosine UAC (Tyr) UAA Stop UAG Stop	UGU Cysteine UGC (Cys) UGA Stop UGG Tryptophan (Trp)	U C A G		
С	CUU CUC CIA CUG	CCU CCC C(A C) G	CAU Histidine (His) CAA Glutamine (Gln)	CGU CGC CGA CGG	U C A G		
А	AUU AUC AUA AUG Methionine (Met)	ACU ACC ACA ACG Threonine (Thr)	AAU Asparagine (Asn) AAA Lysine AAG (Lys)	AGU Serine (Ser) AGA Arginine (Arg)	U C A G		
G	GUU GUC GUA GUG	GCU GCC GCA GCG (Ala)	GAU Aspartic acid (Asp) GAA GIUTAMIC acid (GIU)	GGU GGC GGA GGG	U C A G		

What % of ATT mutations in the **second codon position** result in **synonymous** changes?

$$f[1] = 0$$

 $f[2] = 0$
 $f[3] = ?$

Second letter

	U	С	A	G	
u	UUU Phenylalanine (Phe) UUA Leucine UUG (Leu)	UCU UCC UCA UCG Serine (Ser)	UAU Tyrosine UAC (Tyr) UAA Stop UAG Stop	UGU Cysteine UGC (Cys) UGA Stop UGG Tryptophan (Trp)	U C A G
etter	CUU CUC CU/ CU/ CU/ CU/ CU/ CU/ CU/ CU/	CCU CCC Proline (Pro)	CAU Histidine (His) CAA Glutamine (Gln)	CGU CGC CGA CGG	UCAG
First letter	AUU AUC AUA AUG Isoleucine (Ile) Methionine (Met)	ACU ACC ACA ACG Threonine (Thr)	AAU Asparagine (Asn) AAA Lysine (Lys)	AGU Serine (Ser) AGA Arginine (Arg)	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG Alanine (Ala)	GAU Aspartic acid (Asp) GAA GAG GIUtamic acid (Glu)	GGU GGC GGA GGG	U C A G

What % of ATT mutations in the *third codon position* result in *synonymous* changes?

$$f[1] = 0$$

 $f[2] = 0$
 $f[3] = 2$

Compute the number of synonymous sites (S) and the number of nonsynonymous sites (N=L-S) in a sequence of length L

```
0+0+2 0+0+1 0+0+3 0+0+3

Sp_1 GTT ATT GAT GCT TCA GTC

Sp_2 GTT ACT GAC GCA CCA GTC

0+0+3 0+0+1 0+0+3 0+0+3
```

(can ignore codons w/ no changes)

```
number
          divide by
                                           of analyzed
         three codon
                                           variable sites
        site positions
S = (1/2) * (1/3) * (2+1+3+3+3+1+3+3) = 19/6 = 3.16
                N = L - S = 12 - 3.16 = 8.83
 divide by
two sequences
                           0+0+2 0+0+1 0+0+3
                     GTT ATT
                                 GAT
                    GTT ACT GAC GCA CCA GTC
                           0+0+3
                                 0+0+1
                                       0+0+3
                                             0+0+3
```

(can ignore codons w/ no changes)

Compute the number of synonymous changes (Sd) and the number of nonsynonymous changes (Nd)

$$Sd = 2$$

 $Nd = 2$

```
Sp_1 Val Ile Asp Ala Ser Val
Sp_2 Val Thr Asp Ala Pro Val
```

(can ignore codons w/ no changes)

Finally, compute the number of of synonymous and nonsynonymous changes per site

```
dN = Nd / N
= 2 / 8.83
= 0.227
dS = Sd / S
= 2 / 3.16
= 0.633
dN/dS = 0.227 / 0.633
= 0.36 < 1
```

The estimate of dN/dS < 1 is consistent with purifying selection.

Counting method limitations

Not designed for multiple sequence tests

Assumes slow mutation rate, shallow timescales

Describes pattern instead of modelling the process

Define rates
(instantaneous probabilities)
of codon change for each
moment of time using
a *Markov model*

$$P_{ij}(dt) = egin{cases} \pi_j dt & ext{synonymous change} \ \pi_j \omega dt & ext{nonsynonymous change} \ 0 & 2+ ext{changes needed} \end{cases}$$

probability of changing from codon *i* into codon *j*

$$P_{ij}(\underline{dt}) = egin{cases} \pi_j \underline{dt} & ext{synonymous change} \ \pi_j \omega \underline{dt} & ext{nonsynonymous change} \ 0 & 2+ ext{changes needed} \end{cases}$$

instant of time

Codon rate matrix structure (61 x 61)

Estimate the dN/dS ratio of nonsynonymous versus synonymous substitutions with the parameter, ω , using a phylogenetic framework

Numbers give codon site position change

Empty cells indicate impossible transitions

Example transition series:

AAA -> AAG -> AGG

	AAA	AAC	AAG	AAT	ACA	ACC	ACG	ACT	AGA	AGC	AGG	AGT	ATA	ATC	ATG	ATT	CAA	CAC	:	TTG	TTT
AAA	1	3	3	3	2				2				2				1				
AAC	3	-	3	3		2				2				2				1	•		
AAG	3	3	-	3			2				2				2						
ААТ	3	3	3	ı				2				2				2			•		
ACA	2				ı	3	3	3	2				2						•		
ACC		2			3	ı	3	3		2				2					•		
ACG			2		3	3	ı	3			2				2				٠		
ACT				2	3	3	3	-				2				2			•		
AGA	2				2				-	3	3	3	2						•		
AGC		2				2			3	1	3	3		2					•		
AGG			2				2		3	3	-	3			2				•		
AGT				2				2	3	3	3	1				2			•		
ATA	2				2				2				-	3	3	3			•		
ATC		2				2				2			3	ı	3	3			•		
ATG			2				2				2		3	3	-	3			•	1	
ATT				2				2				2	3	3	3	ı			•		1
CAA	1																-	3			
CAC		1															3	-	•		
• • •	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•
TTG															1				•	-	3
ттт																1			•	3	-

structure of a codon rate matrix

Selection estimates per site (sperm lysin from 25 abalone *spp.*)

Shows probability of each site belonging to any of three selection regimes

purifying selection (dN/dS = 0.085)nearly neutral (dN/dS = 0.911)positive selection (dN/dS = 3.065)

Overview for Lab 18