## Calibration of IRS curves

Marco Avellaneda

**Derivative Securities 2019** 

### Calibration of IRS curves

- Like with futures and forwards, the goal of curve calibration or curve construction is to be able to price derivatives based on current market information
- Market information: <u>current</u> LIBOR and SWAP rates quoted on standard tenors
- Any book of swaps will have coupons and tenors which do not correspond necessarily to today's quotes (swap rates and standard tenors)
- Curve will allow us to price by fitting the market to a smooth curve to obtain discount factors for every date in the future.
- Usually, the dates are interpolated using a monthly grid.

### Interpolation of Zeros

Zero rates are interpolated linearly between "grid dates"



$$R(T) = \frac{T_2 - T}{T_2 - T_1} R(T_1) + \frac{T - T_1}{T_2 - T_1} R(T_1)$$

### Forward curve discretization

#### Grid dates

 $T_1 = 1 month$ 

 $T_2 = 3 months$ 

 $T_3 = 6 months$ 

 $T_j = (6 + 3 \times j)$  months

 $1 \le j \le 120$ 

#### **Cash Instruments**

1-month LIBOR

3 month LIBOR

6 month LIBOR

#### **Swaps**

s/a swaps rates for tenors

1Y , 2Y, 3Y, 4Y. 5Y, 7Y 10Y 30Y

Note: we could also use other information: ED futures, FRAs...

# Todays LIBOR rates (spot)

| USD                   | 10-01-2019 | 09-30-2019 | 09-27-2019 | 09-26-2019 | 09-25-2019 |
|-----------------------|------------|------------|------------|------------|------------|
| USD LIBOR - overnight | 1.82613 %  | 1.82150 %  | 1.82713 %  | 1.82988 %  | 1.84075 %  |
| USD LIBOR - 1 week    | 1.89275 %  | 1.91150 %  | 1.91325 %  | 1.92975 %  | 1.94688 %  |
| USD LIBOR - 2 weeks   | -          | -          | -          | -          | -          |
| USD LIBOR - 1 month   | 2.01088 %  | 2.01563 %  | 2.03150 %  | 2.04350 %  | 2.05363 %  |
| USD LIBOR - 2 months  | 2.05963 %  | 2.06538 %  | 2.07088 %  | 2.08650 %  | 2.08950 %  |
| USD LIBOR - 3 months  | 2.08863 %  | 2.08513 %  | 2.09863 %  | 2.10438 %  | 2.09963 %  |
| USD LIBOR - 4 months  | -          | -          | -          | -          | -          |
| USD LIBOR - 5 months  | -          | _          | -          | -          | -          |
| USD LIBOR - 6 months  | 2.05650 %  | 2.05563 %  | 2.06300 %  | 2.06438 %  | 2.04413 %  |
| USD LIBOR - 7 months  | -          | -          | -          | -          | -          |
| USD LIBOR - 8 months  | -          | -          | -          | -          | -          |
| USD LIBOR - 9 months  | -          | -          | -          | -          | -          |
| USD LIBOR - 10 months | -          | -          | -          | -          | -          |
| USD LIBOR - 11 months | -          | -          | -          | -          | -          |
| USD LIBOR - 12 months | 2.03550 %  | 2.03213 %  | 2.04325 %  | 2.02013 %  | 1.98500 %  |

### Today's swap rates

#### **USD Swaps Rates**

Current Interest Rate Swap Rates - USD. Libor Rates are available Here



# Unknowns: forward rates and zeros for grid points $(T_i)$

$$F_i = F(0, T_{i-1}, T_i)$$

$$Z_i = Z(0, T_i)$$

Swap rates can be derived from the standard formula

$$S_i = \frac{1 - Z_i}{A_i}$$

where Ai is the corresponding value of an annuity

### Penalty function for smoothing

$$J(F) = a \sum_{i=3}^{n-1} (F_{i+1} + F_{i-1} - 2F_i)^2 + b \sum_{i=3}^{n-1} (F_{i+1} - F_{i-1})^2 + b$$

Corresponds to

$$J(f) = p \int_{0}^{\infty} (f''(t))^{2} dt + q \int_{0}^{\infty} (f'(t))^{2} dt$$

Note: it is known that the functions that minimize the latter functional under "price constraints" are piecewise polynomials of degree 3 which are "glued" at gridpoints with continuous second derivatives.

### Solving for the curve points

- Hagan and West (Applied Math Finance (2006) recognized that there are many solutions which can match the data.
- Due to the nature of the optimization problem, a single solution may not be guaranteed. Optimizer gets stuck in a local minimum.
- Solution: smooth the F-rate curve which is the local solution and perform optimization
  in an iterative way until a smooth solution with zero error and minimal penalty is
  achieved.

$$sF_i = \frac{1}{2m+1} \sum_{j=-m}^{+m} F_{i+j}$$

### Iteration procedure



Iterate to get globally smooth forward curve that fits the data

Iteration stops when there is no improvement on penalty function

### Results using 10/02/2019 data

| COMUPUTED AFTER FITTING |       | CUBIC   | DATA               |             |           |          |         |      |
|-------------------------|-------|---------|--------------------|-------------|-----------|----------|---------|------|
| Fitted price            | ERROR | ERROR^2 |                    |             |           |          | LIBOR   | Rate |
| 2.01                    | 0.00  | 0.00    |                    | CURVATURE   | SLOPE     |          | 1-month | 2.01 |
| 2.08                    | 0.00  | 0.00    | Smoothness Penalty | 0.170632291 | 0.8675093 | 1.038142 | 3-month | 2.08 |
| 2.05                    | 0.00  | 0.00    | Error penalty      |             |           | 0.00     | 6-month | 2.05 |
|                         | 0.00  | 0.00    | Objective Function |             |           | 1.059995 | SWAPS   |      |
| 1.75                    | 0.00  | 0.00    |                    |             |           |          | 1-year  | 1.75 |
| 1.55                    | 0.00  | 0.00    |                    |             |           |          | 2-year  | 1.55 |
| 1.48                    | 0.00  | 0.00    |                    |             |           |          | 3-year  | 1.48 |
| 1.44                    | 0.00  | 0.00    |                    |             |           |          | 4-year  | 1.44 |
| 1.47                    | 0.00  | 0.00    |                    |             |           |          | 5-year  | 1.47 |
| 1.53                    | 0.00  | 0.00    |                    |             |           |          | 7-year  | 1.53 |
| 1.69                    | 0.00  | 0.00    |                    |             |           |          | 10-year | 1.69 |
| 2.67                    | 0.00  | 0.00    |                    |             |           |          | 30-year | 2.67 |

### Output for Forward Rates



## Output for Zeros



### Output for 3m LIBOR/3M interval swaps

