Simulazione 5 - calcoli

Curva

Si consideri la curva in \mathbb{R}^3 parametrizzata da $\gamma(t)=(2\cos t,3\cos t-\cos(3t),3\sin t-\sin(3t))$ con $t\in[0,T]$ e T>0 costante fissata.

1. La lunghezza della curva vale $12\sqrt{10}$ quando Tvale: π / 3π / 6π ? La lunghezza della curva vale

$$\begin{split} L &= \int_0^T |\gamma'(t)| \, dt = \int_0^T \sqrt{4 \sin^2 t + 18 - 18 [\sin t \sin(3t) + \cos t \cos(3t)]} \, dt \\ &= \sqrt{40} \int_0^T |\sin t| \, dt = \begin{cases} 4\sqrt{10} & \text{se } T = \pi \\ 12\sqrt{10} & \text{se } T = 3\pi \\ 24\sqrt{10} & \text{se } T = 6\pi \end{cases} \end{split}$$

(si sono usate le formule $\cos t \cos(3t) + \sin t \sin(3t) = \cos(2t) = 1 - 2\sin^2 t$). Quindi la risposta corretta è $T = 3\pi$.

- 2. La curva γ è semplice quando T vale: π / 3π / 6π ? Siccome $\gamma(0) = \gamma(2\pi)$, se $T > 2\pi$ la curva non è semplice. Se $T = \pi$ la curva è semplice perché la prima componente di γ è una funzione iniettiva in $[0,\pi]$.
- 3. La curva γ è chiusa quando T vale: π / 3π / 6π ? La curva γ è chiusa quando $T=2k\pi$ e non lo è per $T=(2k+1)\pi$ ($k\in\mathbb{N}$) perché $\gamma(n\pi)=(-1)^n\gamma(0)$ ($n\in\mathbb{N}$). Quindi la risposta corretta è $T=6\pi$.
- 4. Considerato il campo $F(x,y,z) = \left(\frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3}\right)$ dove $r = \sqrt{x^2 + y^2 + z^2}$ e fissato $T = \pi$, calcolare il valore dell'integrale curvilineo $\int_{\gamma} F \cdot ds$.

Il campo F è radiale e quindi conservativo in $\mathbb{R}^3 \setminus \{0\}$. In particolare, ammette un potenziale radiale U e

$$\int_{\gamma} F \cdot ds = U(\gamma(\pi)) - U(\gamma(0)).$$

Siccome U è radiale e $|\gamma(\pi)|=|-\gamma(0)|=|\gamma(0)|,$ risulta che $\int_{\gamma}F\cdot ds=0.$

Campo

Per ogni $a \in \mathbb{R}$ sia $F_a(x, y) = ((y - 1)^{ax} \ln(y - 1), x^a (y - 1)^{x-1})$.

1. Per quali valori di a il campo F_a è irrotazionale sul proprio dominio. Detto D_a il dominio di F_a , il campo F_a è irrotazionale in D_a quando

$$\frac{\partial}{\partial x} \left[x^a (y-1)^{x-1} \right] = \frac{\partial}{\partial y} \left[(y-1)^{ax} \ln(y-1) \right] \text{ in } D_a$$

$$\Leftrightarrow ax^{a-1} (y-1)^{x-1} + x^a (y-1)^{x-1} \ln(y-1) = ax(y-1)^{ax-1} \ln(y-1) + (y-1)^{ax-1} \text{ in } D_a$$

$$\Leftrightarrow a = 1.$$

2. Per quali valori di a il campo F_a è conservativo sul proprio dominio. Per a=1 il campo F_a è conservativo sul proprio dominio perché il dominio $D_a=\{(x,y)\in$ \mathbb{R}^2 : y>1} è semplicemente connesso e il campo è irrotazionale in D_a e quindi si può applicare il lemma di Poincaré. Se $a\neq 1$ il campo non è conservativo in D_a perché non è irrotazionale in D_a .

3. Detta Γ la curva parametrizzata da $\gamma(t) = (\cos t, 3 + \sin t)$ con $t \in [\pi, 2\pi]$, per il valore di a determinato al punto precedente, calcolare il valore dell'integrale curvilineo $\int_{\Gamma} F_a \cdot ds$.

La curva Γ è la semicirconferenza inferiore di raggio 1 e centro in (0,3), percorsa in senso antiorario ed è contenuta in D_a per a=1, perché $3+\sin t>1$ per ogni $t\in[\pi,2\pi]$. Per a=1 il campo $F=F_1$ è conservativo in $D=D_1$. Allora l'integrale di F lungo Γ non dipende dalla curva ma solo dai suoi estremi che sono

$$\gamma(\pi) = (-1,3) = A$$
, $\gamma(2\pi) = (1,3) = B$.

Quindi

$$\int_{\Gamma} F \cdot ds = \int_{AB} F \cdot ds = \int_{-1}^{1} F(t,0) \cdot (1,0) dt = \int_{-1}^{1} 2^{t} \ln 2 dt = 2^{1} - 2^{-1} = \frac{3}{2},$$

avendo parametrizzato il segmento orientato \overrightarrow{AB} con $\varphi(t) = (t, 3), t \in [-1, 1].$

Flusso

Si considerino il campo vettoriale F(x,y,z)=(y,z,x), il dominio $C=\{(x,y,z)\in\mathbb{R}^3\colon \frac{1}{2}\leq z\leq 1-x^2-y^2\}$, la porzione di paraboloide $S_1=\{(x,y,z)\in\mathbb{R}^3\colon z=1-x^2-y^2\,,\ z\geq \frac{1}{2}\}$ e il cerchio $S_2=\{(x,y,z)\in\mathbb{R}^3\colon x^2+y^2\leq \frac{1}{2}\,,\ z=\frac{1}{2}\}$.

1. Il flusso di F uscente da C vale: 0 / Vol(C) / -Vol(C) / 2 Vol(C) / -2 Vol(C)? Il flusso di F uscente da C si può calcolare applicando il teorema della divergenza:

$$\int_{\partial C} F \cdot N \, d\sigma = \int_{C} \operatorname{div}(F) \, dx \, dy \, dz = 0$$

dato che div $(F) = \frac{\partial y}{\partial x} + \frac{\partial z}{\partial y} + \frac{\partial x}{\partial z} = 0.$

2. Calcolare il flusso del rotore di F attraverso la superficie S_1 uscente dal dominio C. La superficie S_1 si può parametrizzare in forma cartesiana scrivendo $S_1 = \varphi(D)$ dove $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le \frac{1}{2}\}$ e $\varphi(x,y) = (x,y,1-x^2-y^2)$. Tale parametrizzazione induce su S_1 l'orientazione con normale uscente da C. Possiamo calcolare il flusso del rotore di F attraverso S_1 applicando il teorema di Stokes. Parametrizziamo ∂D con $\gamma(t) = \frac{1}{\sqrt{2}}(\cos t, \sin t)$,

$$t \in [0,2\pi].$$
 Quindi $\widetilde{\gamma}(t) = \varphi(\gamma(t)) = \left(\frac{\cos t}{\sqrt{2}}, \frac{\sin t}{\sqrt{2}}, \frac{1}{2}\right)$

$$F(\widetilde{\gamma}(t)) \cdot \widetilde{\gamma}'(t) = \left(\frac{\sin t}{\sqrt{2}}, \frac{1}{2}, *\right) \cdot \left(-\frac{\sin t}{\sqrt{2}}, \frac{\cos t}{\sqrt{2}}, 0\right) = -\frac{\sin^2 t}{2} + \frac{\cos t}{2\sqrt{2}}$$

e infine

$$\int_{S_1} \operatorname{rot}(F) \cdot N \, d\sigma = \int_{\varphi(+\partial D)} F \cdot ds = \int_0^{2\pi} \left(-\frac{\sin^2 t}{2} + \frac{\cos t}{2\sqrt{2}} \right) \, dt = -\frac{\pi}{2} \, .$$

3. Calcolare il flusso del rotore di F attraverso la superficie S₂ entrante nel dominio C. Anche la superficie S_2 è una superficie cartesiana con lo stesso dominio di parametri di S_1 . Inoltre la parametrizzazione cartesiana induce su S_2 l'orientazione con normale entrante in C. Quindi, per il teorema di Stokes, il flusso del rotore di F attraverso S_2 coincide con quello attraverso S_1 . Pertanto, per quanto già calcolato al punto precedente, il flusso del rotore di F attraverso la superficie S_2 entrante nel dominio C vale $-\frac{\pi}{2}$.

Serie

Si consideri la serie di potenze in campo complesso $\sum_{n=0}^{\infty} \left(\frac{1+2ni}{n+2i}\right)^n z^n$.

1. Raggio di convergenza della serie.

Si tratta di una serie di potenze con centro in $z_0 = 0$ e coefficienti $a_n = \left(\frac{1+2ni}{n+2i}\right)^n$. Il raggio di convergenza R è dato da $R = \frac{1}{L}$ dove

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left| \frac{1 + 2ni}{n + 2i} \right| = \lim_{n \to \infty} \frac{2\left| \frac{1}{2n} + i \right|}{\left| 1 + \frac{2i}{n} \right|} = 2.$$

Dunque $R = \frac{1}{2}$.

2. La serie converge in $z=\frac{1}{2}e^{i\pi}$? Il punto $z=\frac{1}{2}e^{i\pi}$ appartiene al bordo del disco di convergenza. Il carattere della serie va determinato studiando nello specifico la serie in tale punto, cioè la serie numerica

$$\sum_{n=1}^{\infty} \left(\frac{e^{i\pi}(1+2ni)}{2(n+2i)} \right)^n.$$

Tale serie non converge perché il suo termine generale non è infinitesimo, in quanto

$$\left|\frac{e^{i\pi}(1+2ni)}{2(n+2i)}\right|^n = \frac{\left|i+\frac{1}{2n}\right|^n}{\left|1+\frac{2i}{n}\right|^n} = \frac{\left(1+\frac{1}{4n^2}\right)^{\frac{n}{2}}}{\left(1+\frac{4}{n^2}\right)^{\frac{n}{2}}} = \frac{\left[\left(1+\frac{1}{4n^2}\right)^{\frac{4}{n^2}}\right]^{\frac{1}{8n}}}{\left[\left(1+\frac{4}{n^2}\right)^{\frac{n^2}{4}}\right]^{\frac{2}{n}}} \xrightarrow{n\to\infty} \frac{e^0}{e^0} = 1.$$

3. La serie converge in z = 0? Sì e la somma vale 1 / Sì e la somma vale 0 / No. Il punto z=0 è il centro della serie di potenze. In tale punto la serie converge e il suo valore è il coefficiente a_0 cioè 1.

4. La serie converge uniformemente nel disco chiuso $\{z \in \mathbb{C} : |z| \leq r\}$ quando r vale: $\frac{1}{4} / \frac{1}{2} / 1 / 2$?

La serie converge uniformemente in tutti i dischi chiusi centrati in z_0 e con raggio r < R. Quindi la risposta $r = \frac{1}{4}$ è corretta. Non si ha convergenza uniforme per valori di r > R, quindi le risposte r=1 e r=2 sono errate. È errata anche la risposta $r=\frac{1}{2}$ perché altrimenti la serie di potenze convergerebbe puntualmente nel disco chiuso di raggio $\frac{1}{2}$ e, in particolare, convergerebbe in $z = \frac{1}{2}e^{i\pi}$, in contrasto con il punto 2.