MAQUINAS DE ESTADO ALGORÍTMICO (ASM)

INFORMACIÓN BINARIA ALMACENADA EN UN SISTEMA DIGITAL:

- DATOS
- CONTROL DE LA INFORMACIÓN

DATOS: elementos discreto de información (se procesan)

CONTROL DE LA INFORMACIÓN: señales de mando (tarea de supervisión

de las operaciones dadas).

DISEÑO LÓGICO

CIRCUITOS DIGITALES (procesan datos) **CIRCUITOS DE CONTROL** (supervisa operaciones y sus secuencias)

¿Cómo se especifica las secuencias de pasos del proceso y las trayectorias de decisión ?

Con un diagrama de flujo.

Diagrama de máquina de estado algorítmico (ASM)

Describe la secuencia de eventos, lo mismo que las relaciones de temporizado entre los estados de control secuencial y las eventos que ocurren cuando pasa de un estado al siguiente.

Diagrama ASM

Es un tipo especial de diagrama de flujo adecuado para describir las operaciones secuenciales en un sistema digital. Compuesto de tres elementos básicos:

Casilla de casilla de decisión casilla condicional estado La condición de entrada En ella se escriben Uso exclusivo del que va a probarse está operaciones de diagrama ASM. La esta escrita dentro de la travectoria de entrada registro o casilla. Una travectoria nombres de señal debe llegar de una de salida se toma si la de salida que el travectoria de salida de condición es cierta y la control general una casilla de decisión, otra cuando la condición mientras se esta dentro hay operaciones es falsa. Cuando una en este estado de registro y de salida condición de entrada está v se generan durante asignada a un valor un estado dado, binario, las dos Т3 001 siempre que se trayectorias se indican satisfaga la condición por un 1 y un 0. R <-- 0 de entrada INICIO CONDICION REGISTRO DE OPERACION O SALIDA trayectoria de salida trayectoria de salida ¿Qué significa esto? T3: nombre simbólico del estado **001**: código binario asignado $R \leftarrow 0 : R se$ despeja a 0 **INICIO:** puede significar señal de salida que inicia cierta operación

EJEMPLO DE UN DIAGRAMA ASM

¿ QUÉ HACE?

- se genera una señal de salida de **START** cuando se encuentra en el estado **T1**.
- mientras se encuentra en el estado **T1**, el control verifica el estado de la entrada **E.**
- si **E=1**, entonces **R** se despeja a **O**
- en otra forma, ${f R}$ permanece sin embargo.
- en cualquier caso, el estado siguiente es **T2.**

NOTACIÓN SIMBÓLICA	Descripción
	Transferencia del contenido del
	registro:
A ← B	B al registro A

R ← 0	Despejar el registro R
F ← 1	Establecer el flip-flop en 1
A ← A + 1	Incrementar el registro A en 1
A ← A − 1	Disminuir el registro A en 1
A ← A + B	Agregar el contenido del registro B
	al registro A

Cada bloque en el diagrama ASM describe el estado del sistema durante el intervalo de un pulso de reloj. Las operaciones dentro de las casillas que pertenecen a un **T1** se ejecutan con un pulso común de reloj mientras se encuentra en ese estado. El mismo pulso de reloj también transfiere el sistema controlador a uno de los estados siguientes, **T2**, **T3**, **T4**, como dicten algunos valores condicionales.

OTRO EJEMPLO

¿ QUÉ HACE EN EL TIEMPO?

- 1. el registro A se incrementa
- 2. si E=1, el registro R se despeja.
- 3. dependiendo de los valores de E y F, control se transfiere al estado siguiente T2 o T3 o T4