Hardware CWE™ Special Interest Group (SIG)

Gananand Kini, Bob Heinemann, Luke Malinowski, Gage Hackford, Chris Lathrop, Steve Christey Coley, Alec Summers

MITRE

September 8, 2023

Agenda

REMINDER: This meeting is being recorded.

- Housekeeping and Announcements
- Working Items for this meeting:

1	CWE Nit Bits	Bob H	5 min
2	Call For Help: HW CWE's Missing DEMOXs, OBEXs and Mitigations	Bob H	5 min
3	Resonant and Harmonic Based Weaknesses	Gage H	20 min
4	Weaknesses dealing with HW initialization (Nordic APPROTECT)	Bob H	20 min

Housekeeping

Schedule:

- Next Meeting:
 - October 13th
 - 12:30 1:30 PM EST (16:30 17:30 UTC)
 - Microsoft Teams
- Contact: cwe@mitre.org
- Mailing List: <u>hw-cwe-special-interest-group-sig-list@mitre.org</u>
- Minutes from previous meetings available on our GitHub site:
 - https://github.com/CWE-CAPEC/hw-cwe-sig

Announcements

- Tentative: CISA strategy around Secure By Design/Secure By Default for October SIG
- HW CWE Spotlight: SIG Member to present internal tool developed that utilizes HW CWE.

CWE Nit Bits

Bite-sized knowledge that will enhance your CWE proficiency!

Custom Filtering

- 4.11 added a new "Custom" filter
- Allows users to choose any subset of fields for an entry
- Show weakness details that are most relevant to you
- Filters persist as you navigate through CWE content
- Works with all CWE weakness entries

Filter Demo

Edit Custom Filter

Conceptual Operational Mapping Friendly Select All Related Weaknesses Potential Mitigations Weakness Ordinalities Demonstrative Examples ✓ Applicable Platforms Observed Examples ☑ Background Details ✓ Functional Areas ✓ Alternate Terms Affected Resources Relationships Memberships Modes Of Introduction ✓ Taxonomy Mappings Exploitation Factors Related Attack Patterns ✓ Likelihood Of Exploit References ✓ Common Consequences Notes Detection Methods Content History Clear Submit Reset Cancel

Call for Help

HW CWE's Missing DEMOXs, OBEXs and Mitigations

HW CWE's With Missing: DEMOX's, OBEX's and Mitigations

- 96% of HW CWE entries have mitigations
 - 4 CWEs are missing mitigations
- 84% of HW CWE entries have demonstrative examples
 - 17 CWEs do not have any demonstrative examples
 - Intel and Technische Universität Darmstadt are working this. Will be providing 10 this for this upcoming release.
- 36% of HW CWE entries have observed examples
 - 67 CWEs do not have any observed examples
- We will be posting the CWE's with missing elements on the public GitHub. If you have suggestions to fill out these missing elements, we welcome your contributions.

CWE Labs

Resonant and Harmonic Based Weaknesses

Discussion Item

- Use cases and studies around resonant frequencies and their effects on analog components
- Questions and opinions regarding resonant frequencies in CWE:
 - Are resonant frequencies a topic that should be covered by CWE?
 - What would we consider the weakness to be?
 - Is this research pointing to security, safety, or resiliency concerns?
 - Is there a particular parent CWE that fits?
 - CWE-1384: Improper Handling of Physical or Environmental Conditions?

Resonant Frequency Research Item

- It was discovered that playing Janet Jackson's Rhythm Nation music video on certain laptop model speakers could cause them to crash or cause laptops in the vicinity to crash [1][2] - CVE-2022-38392
- Rhythm Nation contained a resonant frequency for a 5400 rpm model laptop that was disrupting the laptop's HDD functionality long enough to cause the OS to crash [1][2]
- A resonant frequency is defined as "the natural frequency of an object where it tends to vibrate at a higher amplitude" [3]
- A 2014 study found that resonant frequencies could cause the HDD platter to vibrate significantly [4] and a 2018 study noted increase in seek errors due to platter dislocation after applying resonant frequencies [5]
- 1. https://devblogs.microsoft.com/oldnewthing/20220816-00/?p=106994
- 2. https://devblogs.microsoft.com/oldnewthing/20220920-00/?p=107201
- . <u>https://resources.pcb.cadence.com/blog/2021-what-is-resonant-frequency</u>
- 4. https://docslib.org/doc/9967064/vibration-of-main-components-of-hard-
 - <u>disk-drive-and-the-vibrational-energy-transmission-in-hard-disk-drive</u>
- 5. https://www.princeton.edu/~pmittal/publications/acoustic-ashes18.pdf

Resonant Frequency Research

- In 2022, a study showed how data could be transmitted to an infected smartphone from an air-gapped computer by using sound waves in the resonant frequencies of the smartphone's MEMS gyroscope [1]
- In 2009, a study was able to disrupt and lock the ring oscillator used for entropy in a TRNG by injecting resonant frequencies [2]
- In 2017, a study showed how playing resonant frequencies near a MEMS accelerometer could disrupt valid results or fabricate false results [3]
- https://arxiv.org/pdf/2208.09764.pdf
- https://www.cl.cam.ac.uk/~atm26/papers/markettos-ches2009-inject-trng.pdf
- https://ieeexplore.ieee.org/document/7961948

Discussion

- Are resonant frequencies a topic that should be covered by CWE?
- What would we consider the weakness to be?
- Is this research pointing to security, safety, or resiliency concerns?
- Is there a particular parent CWE that fits?
 - CWE-1384: Improper Handling of Physical or Environmental Conditions?
- NOTE: A Weakness is a condition in a software, firmware, hardware, or service component that, under certain circumstances, could contribute to the introduction of vulnerabilities.

Weaknesses dealing with HW initialization (Nordic APPROTECT)

Nordic RF Debug and Incorrect Initializations

- Would like to discuss if we have adequate coverage for <u>incorrect</u> <u>initializations</u> in the HW View.
- A motivating example is taken from CVE-2020-27211
 - "Nordic Semiconductor nRF52840 devices through 2020-10-19 have improper protection against physical side channels. The flash read-out protection (APPROTECT) can be bypassed by injecting a fault during the boot phase."
- This refers to physical side channels and is mapped to CWE-203, but that isn't the best mapping.

Nordic RF Debug Disable Details

- Security feature is called Access Port Protection (APPROTECT).
- When APPROTECT is enabled, the debugger is blocked from read and write access to all CPU registers and memory mapped addresses.
 - SWD is disabled.
- APPROTECT is enabled by setting some fields in a Non-volatile memory location.
- Once set, only a full erase of RAM and flash will disable APPROTECT.
- In Rev F of the silicon, APPROTECT is disabled by default.

Nordic RF Debug Disable Bypass Details

- Sometime during the boot process the non-volatile memory is read to configure APPROTECT
- There is a time window during the boot process where a power fault can be injected that will cause the APPROTECT enable setting to be ignored, thus allow SWD to continue to be enabled.
- The next revision (G) of the chip "by default the, access port protection is enabled".

Mapping to a CWE

- CVE-2020-27211 maps to CWE-203 Observable Discrepancy.
- The CVE description uses the phrase "improper protection against physical side channels" which would lead one to map to CWE-1300: Improper Protection of Physical Side Channels.
- In this case the side channel of power monitoring is an attacker perquisite to perform the attack.
- The root of the issue here is that APPROTECT is disabled by default.
- After looking through many different CWEs there are a couple that seem relevant.

Potential CWEs

- CWE-1188: Insecure Default Initialization of Resource
 - This is a software focused CWE.
- CWE-1221: Incorrect Register Defaults or Module Parameters
 - This may fit and it is in the HW View.
 - However, we do not have enough details about the design or how the mitigation was applied to know if this was a change to a register or module parameter.
- We most likely would have to map to CWE-665: Improper Initialization, which is very abstract and discouraged for mapping.

Discussion

This has highlighted a gap.

- (P) CWE-664: Improper Control of a Resource Through its Lifetime
 - (C) CWE-665: Improper Initialization
 - (C) CWE-TBD: Incorrect Initialization of Resource
 - (B) CWE-1188: Insecure Default Initialization of Resource
 - (B) CWE-1221: Incorrect Register Defaults or Module Parameters
- Would this be useful for you?
- Are there other scenarios in HW design where there are initialization mistakes that aren't registers or module parameters?
- Is this something we should add to the HW View?

Next Meeting (Oct 13th)

CWE@MITRE.ORG

- Mailing List: <u>hw-cwe-special-interest-group-sig-list@mitre.org</u>
 - NOTE: All mailing list items are archived publicly at:
 - https://www.mail-archive.com/hw-cwe-special-interest-group-sig-list@mitre.org/
- What would members of this body like to see for the next HW SIG agenda?
- Questions, Requests to present? Please let us know.

Backup

