Lösungen Übung 9

Aufgabe 1 (2 Punkte). Sei V ein reeller Vektorraum und sei $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf V. Ferner sei $\|\cdot\|$ die von $\langle \cdot, \cdot \rangle$ induzierte Norm auf V. Beweisen Sie die Parallelogrammgleichung

$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2 \quad \forall v, w \in V.$$

Lösung: Es gilt

$$||v + w||^{2} + ||v - w||^{2} = \langle v + w, v + w \rangle + \langle v - w, v - w \rangle$$

$$= \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle + \langle v, v \rangle - \langle v, w \rangle - \langle w, v \rangle + \langle w, w \rangle$$

$$= ||v||^{2} + 2\langle v, w \rangle + ||w||^{2} + ||v||^{2} - 2\langle v, w \rangle + ||w||^{2}$$

$$= 2||v||^{2} + 2||w||^{2}.$$

Aufgabe 2 (3+1 Punkte). Für einen Vektor $x = (x_1 \dots x_n)^T \in \mathbb{R}^n$ setzen wir

$$||x||_1 = \sum_{i=1}^n |x_i|.$$

- 1) Zeigen Sie, dass $\|\cdot\|_1$ eine Norm auf dem \mathbb{R}^n definiert.
- 2) Zeigen Sie, dass für $n \geq 2$ die Norm $\|\cdot\|_1$ nicht von einem Skalarprodukt induziert wird.

Lösung:

1) Homogenität: Seien $x = (x_1 \dots x_n)^T \in \mathbb{R}^n$ und sei $\lambda \in \mathbb{R}$. Dann gilt:

$$\|\lambda x\|_1 = \sum_{i=1}^n |\lambda x_i| = |\lambda| \sum_{i=1}^n |x_i| = |\lambda| \|x\|_1$$

Definitheit: Aus der Bedingung

$$||x||_1 = \sum_{i=1}^n |x_i| = 0$$

folgt $|x_1| = \cdots = |x_n| = 0$ (denn alle Summanden sind ≥ 0), also x = 0. Dreiecksungleichung: Seien $x = (x_1 \dots x_n)^T$ und $y = (y_1 \dots y_n)^T$ zwei Vektoren im \mathbb{R}^n . Dann folgt:

$$||x+y||_1 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n (|x_i| + |y_i|) = \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i| = ||x||_1 + ||y||_1$$

2) Sei nun $n \ge 2$. Es gilt $||e_1||_1 = 1 = ||e_2||_1$ und $||e_1 + e_2||_1 = 2 = ||e_1 - e_2||_1$, also

$$||e_1 + e_2||_1^2 + ||e_1 - e_2||_1^2 = 8 \neq 4 = 2||e_1||_1^2 + 2||e_2||_1^2.$$

Wegen Aufgabe 1 kann $\|\cdot\|_1$ daher nicht von einem Skalarprodukt induziert werden.

Aufgabe 3 (4 Punkte). Wir betrachten die folgenden drei Vektoren im \mathbb{R}^4 :

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 2 \end{pmatrix} \quad v_3 = \begin{pmatrix} -2 \\ 1 \\ 4 \\ 0 \end{pmatrix}$$

Es sei $U = \text{span}\{v_1, v_2, v_3\}.$

Bestimmen Sie mit Hilfe des Gram-Schmidt-Verfahrens eine Orthonormalbasis von U (bzgl. des euklidischen Skalarprodukts).

Lösung: Man sieht leicht, dass die Vektoren v_1, v_2 und v_3 linear unabhängig sind. Anwendung des Gram-Schmidt-Verfahrens liefert:

$$w_{1} := \frac{v_{1}}{\|v_{1}\|_{2}} = v_{1}$$

$$v_{2} - \langle v_{2}, w_{1} \rangle w_{1} = v_{2} - 3v_{1} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 2 \end{pmatrix}$$

$$w_{2} := \frac{v_{2} - \langle v_{2}, w_{1} \rangle w_{1}}{\|v_{2} - \langle v_{2}, w_{1} \rangle w_{1}\|_{2}} = \frac{1}{3} \begin{pmatrix} 1 \\ 0 \\ 2 \\ 2 \end{pmatrix}$$

$$v_{3} - \langle v_{3}, w_{1} \rangle w_{1} - \langle v_{3}, w_{2} \rangle w_{2} = v_{3} - v_{1} - 2w_{2}$$

$$= \begin{pmatrix} -2 \\ 0 \\ 4 \\ 0 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 \\ 0 \\ 2 \\ 2 \end{pmatrix} = \frac{4}{3} \begin{pmatrix} -2 \\ 0 \\ 2 \\ -1 \end{pmatrix}$$

$$w_{3} := \frac{v_{3} - \langle v_{3}, w_{1} \rangle w_{1} - \langle v_{3}, w_{2} \rangle w_{2}}{\|v_{3} - \langle v_{3}, w_{1} \rangle w_{1} - \langle v_{3}, w_{2} \rangle w_{2}\|_{2}} = \frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 2 \\ -1 \end{pmatrix}$$

 (w_1, w_2, w_3) ist ein ONS mit span $\{w_1, w_2, w_3\} = \text{span}\{v_1, v_2, v_3\} = U$, also eine ONB für U.