PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation

Yu Xiang¹, Tanner Schmidt², Venkatraman Narayanan³ and Dieter Fox^{1,2}
¹NVIDIA Research, ²University of Washington, ³Carnegie Mellon University

6D Object Pose Estimation for Robotic Manipulation

Our Contribution: A Generic Convolutional Neural Network for 6D Object Pose Estimation

PoseCNN: Decouple 3D Translation and 3D Rotation

• 3D Translation $\mathbf{T} = (T_x, T_y, T_z)^T$

2D center

$$\mathbf{c} = (c_x, c_y)^T$$

Distance T_z

2D Center Localization

ullet 3D Rotation ${f R}$

3D Rotation Regression

PoseCNN: Semantic Labeling

Fully convolutional network

- Long et al., CVPR, 2015
- Xiang & Fox, RSS, 2017

PoseCNN: 2D Center Voting for Handling Occlusions

PoseCNN: 3D Translation Estimation

PoseCNN: 3D Rotation Regression

PoseCNN: 3D Rotation Regression Loss Functions

Pose Loss (non-symmetric)

$$PLoss(\tilde{\mathbf{q}}, \mathbf{q}) = \frac{1}{2m} \sum_{\mathbf{x} \in \mathcal{M}} ||R(\tilde{\mathbf{q}})\mathbf{x} - R(\mathbf{q})\mathbf{x}||^2$$

Shape-Match Loss for symmetric objects (symmetric)

$$\operatorname{SLoss}(\tilde{\mathbf{q}}, \mathbf{q}) = \frac{1}{2m} \sum_{\mathbf{x}_1 \in \mathcal{M}} \min_{\mathbf{x}_2 \in \mathcal{M}} ||R(\tilde{\mathbf{q}})\mathbf{x}_1 - R(\mathbf{q})\mathbf{x}_2||^2$$

Our YCB-Video Dataset

21 YCB Objects

92 Videos, 133,827 frames

Results on the YCB-Video Dataset

3D Translation Error Analysis

3D Rotation Error Analysis

RGB

PoseCNN (RGB only)

Depth

PoseCNN + ICP

Groundtruth Labels

Predicted Labels

Conclusion

- ☐ PoseCNN
 - An end-to-end neural network for 6D pose estimation
 - Handle texture-less objects, symmetric objects and occlusions
 - o Code and dataset are available online

Thank you!