第3次习题课:复合函数求导、隐函数定理

- 2. 可微二元函数 f(x, y) 满足 $xf'_{x}(x, y) + yf'_{y}(x, y) = 0$, 证明: f(x, y) 恒为常数.
- 3. 已知函数 y = y(x)满足方程 $ax + by = f(x^2 + y^2)$, 其中 a,b 是常数, 求导函数 $\frac{dy}{dx}$ 。
- 4. 设函数 x = x(z), y = y(z)由方程组 $\begin{cases} x^2 + y^2 + z^2 1 = 0 \\ x^2 + 2y^2 z^2 1 = 0 \end{cases}$ 确定, 求 $\frac{dx}{dz}$, $\frac{dy}{dz}$.
- 5. 已知函数 z = z(x, y)由参数方程: $\begin{cases} x = u \cos v \\ y = u \sin v, \text{ 给定, 试求 } \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}. \\ z = uv \end{cases}$
- 6. 隐函数函数 u = u(x, y) 由方程 $\begin{cases} u = f(x, y, z, t) \\ g(y, z, t) = 0 & \text{确定, } x \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \\ h(z, t) = 0 \end{cases}$
- 7. z = z(x, y) 由 $x^2 + y^2 + z^2 = a^2$ 决定,求 $\frac{\partial^2 z}{\partial x \partial y}$.
- 8. $B^2 AC > 0$, 设 z = z(x, y) 二阶连续可微, 并且满足方程

$$A\frac{\partial^2 z}{\partial x^2} + 2B\frac{\partial^2 z}{\partial x \partial y} + C\frac{\partial^2 z}{\partial y^2} = 0.$$

若令 $\begin{cases} u = x + \alpha y \\ v = x + \beta y \end{cases}$, 试确定 α , β 为何值时能变原方程为 $\frac{\partial^2 z}{\partial u \partial v} = 0$.

9. 已知
$$\begin{cases} w = x + y + z, \\ u = x, \\ v = x + y, \end{cases}$$
 $z = z(x, y)$ 二阶连续可微,化简方程

$$\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 0,$$

以w为因变量,以u,v为自变量。

10.
$$\forall u(x,y) \in C^2$$
, $\forall \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$, $u(x,2x) = x$, $u'_x(x,2x) = x^2$, $\forall u''_{xx}(x,2x)$,

 $u''_{xy}(x,2x), u''_{yy}(x,2x).$

- 11. 己知 $f(x,y) \in C^2(\mathbb{R}^2)$, f > 0, $f''_{xy}f = f'_xf'_y$. 求证: f(x,y) 必为分离变量型,即 f(x,y) = u(x)v(y), 其中 $u(\cdot),v(\cdot)$ 为一元函数.
- 12. 己知 $f(x, y) = g(x^2 + y^2), g \in C^1, f(x, y) = \varphi(x)\varphi(y), f(0, 0) = 1, f(1, 0) = e. 求$ f(x, y).