A uniform electric field is produced between two parallel metal plates. The electric field strength $1.4 \times 10^4 N C^{-1}$. The potential difference between the plates is $350 V$.	ı is
(a) Calculate the separation of the plates.	
separation = m	[2]
(b) A nucleus of mass $8.3 \times 10^{-27} \mathrm{kg}$ is now placed in the electric field. The electric force action the nucleus is $6.7 \times 10^{-15} \mathrm{N}$.	ing
(i) Calculate the charge on the nucleus in terms of e, where e is the elementary charge.	
charge = e (ii) Calculate the mass, in u, of the nucleus.	[3]
mass = u	[1]
(iii) your answers in (b)(i) and (b)(ii) to determine the number of neutrons in the nuclei	
number =[Total:	