Компьютерное Зрение Лекция №3, осень 2023

Обработка изображений

План лекции

- Гистограммы
- Выравнивание цвета
- Бинаризация изображений
- Морфологические операции
- Пирамиды

Гистограммы

Гистограмма фиксирует распределение уровней серого на изображении

Как часто на изображении встречается каждый уровень серого

Гистограммы

Гистограммы могут показывают локальную характеристику о распределении интенсивности изображения

Count: 10192 Min: 9 Mean: 133.711 StdDev: 55.391

Max: 255 Mode: 178 (180)

Count: 10192 Mean: 104.637 StdDev: 89.862

Min: 11 Max: 254 Mode: 23 (440)

Гистограммы

Выравнивание цвета

Линейная коррекция яркости

Хотим изменить распределение значений пикселей с помощью преобразования **T**:

Линейное преобразование:

$$T = f^{-1}(y) = (y - y_{\min}) * \frac{(255 - 0)}{(y_{\max} - y_{\min})}$$

Нелинейная коррекция яркости

Гамма коррекция

$$Y = c * X^{\gamma}$$

Адаптивная нормализация гистограмм

Алгоритм нормализации гистограмм изображений - contrast limited adaptive histogram equalization (CLAHE)

Бинаризация изображений

Алгоритм Оцу

Метод Оцу ищет порог, уменьшающий дисперсию внутри класса, которая определяется как взвешенная сумма дисперсий двух классов

$$\sigma_b^2(t) = \sigma^2 - \sigma_w^2(t) = \omega_1(t)\omega_2(t)[\mu_1(t) - \mu_2(t)]^2$$

Морфологические операции

Операция расширения (⊕)

Морфологические операции

Операция сужения (🔾)

Морфологические операции

1.Открытие (A o $B=(A \ominus B) \oplus B$)

2. Закрытие (A • $B=(A \bigoplus B) \bigoplus B$)

3. Градиент

Morphological Gradient

Пирамиды изображений

Для подвыборки мы берем каждый второй пиксель из исходного изображения и создаем новое изображение в два раза меньшего размера.

Субдискретированные изображения

Достигается эффект масштабирования изображений!

Пирамиды Гаусса

Может варьировать значение сигмы в распределении Гаусса и получать изображения по шкале размытий — **октаву пирамиды**. **^**

Совмещение изображений

Альфа блендинг

Альфа блендинг

Distance transform

Alpha = blurred

Lowpass Images

Bandpass Images

Left pyramid

blend

Right pyramid

Блендинг Пуассона

Пусть замкнутое множество $P \subset \mathbb{R}2$ — область, на которой определено изображение S, а замкнутое множество $\Omega \subset P$ с границей $\partial \Omega$ и внутренностью $int(\Omega)$ — область вставки изображения I.

Пусть fS — скалярная функция, определенная на $P\setminus int(\Omega)$, задает фоновое изображение S;

f — неизвестная скалярная функция (блендинг в области вставки).

vI — векторное поле, определенное на Ω .

$$\min_{f} \iint_{\Omega} |\nabla f - v_{I}|^{2},$$
где $f|_{\partial\Omega} = f_{S}|_{\partial\Omega}.$

 $abla^2 f =
abla^2 f_I$ на $\Omega, f|_{\partial\Omega} = f_S|_{\partial\Omega},$ где $abla^2$ — оператор Лапласа.

Рисунок 1.1: Пример перепада яркости \Box при простой вставке[1]

Рисунок 1.2: Результат применения блендинга Пуассона^[1]

Заключение

• Изучили гистограммы изображений и методы выравнивания контрастности и цветокоррекции изображений

• Познакомились с морфологическими операциями

• Рассмотрели пирамиды изображений