Set 10: Orthogonality and Approximation-Part 1

Kyle A. Gallivan Department of Mathematics

Florida State University

Foundations of Computational Math 2 Spring 2013

Additional References

- J. Dettman, *Mathematical Methods in Physics and Engineering*, McGraw Hill, 1969
- D. Luenberger, Optimization by Vector Space Methods, Wiley, 1969

Let $M=M^*$ be positive definite. \mathbb{R}^n and \mathbb{C}^n are finite dimensional Hilbert spaces with

$$< x, y >= y^* M x, \quad ||x||_M^2 = < x, x >$$
 $< x, y >= < y, x >^*$ $< \alpha x + \beta z, y >= \alpha < x, y > + \beta < z, y >$ $\forall x \neq 0, \quad < x, x >> 0, \quad \text{and} \quad < x, x >= 0 \leftrightarrow x = 0$

Vectors x and y are orthogonal when $\langle x, y \rangle = y^* M x = 0$.

* is transpose or Hermitian transpose.

A set of orthonormal vectors in \mathbb{R}^n and \mathbb{C}^n satisfy

$$\langle q_i, q_j \rangle = \delta_{ij}, \quad 1 \leq i, j \leq k \leq n$$

$$Q_k = \begin{pmatrix} q_1 & q_2 & \dots & q_k \end{pmatrix}$$

$$Q_k^* M Q_k = I_k$$

 $\mathcal{R}(Q_k)$ is a k-dimensional subspace with orthonormal basis $\{q_1, q_2, \dots, q_k\}$

$$v \in \mathcal{R}(Q_k) \leftrightarrow v = Q_k c, \quad c = Q_k^* M v$$
$$v = q_1 < v, q_1 > +q_2 < v, q_2 > + \dots + q_k < v, q_k >$$

with c unique.

ullet angle is preserved from the subspace to \mathbb{R}^n or \mathbb{C}^n

$$\langle v_1, v_2 \rangle = \langle Q_k c_1, Q_k c_2 \rangle = c_2^* Q_k^* M Q_k c_1 = \langle c_1, c_2 \rangle = c_1^* c_2$$

• length is preserved

$$||v||^2 = \langle Q_k c, Q_k c \rangle = c^* Q_k^* M Q_k c = \langle c, c \rangle = ||c||_2^2 = \sum_{i=1}^k |\gamma_i|^2$$

- $\forall f \in \mathcal{H}, \ f = Q_n c$, i.e., if k = n then $f \leftrightarrow c$ uniquely.
- $\hat{f} = q_1 < f, q_1 > +q_2 < f, q_2 > + \dots + q_k < f, q_k > \in \mathcal{R}(Q_k)$ $\forall v \in \mathcal{R}(Q_k), \quad ||f \hat{f}|| \le ||f v||$ $f \hat{f} \perp \mathcal{R}(Q_k)$

• $\forall f \in \mathcal{H}$, $||f||^2 \ge \sum_{i=1}^k |\gamma_i|^2$, where $\gamma_i = \langle f, q_i \rangle$, $k \le n$.

An Hilbert Space

Definition 10.1. A Hilbert space is a vector space that:

- has an inner product, denoted $\langle x, y \rangle$;
- that induces a norm $||x|| = \langle x, x \rangle$,
- and is complete under the norm.

Example:

 \mathbb{R}^n and \mathbb{C}^n are finite dimensional Hilbert spaces.

If the space in infinite dimensional we must deal with linear combinations that have an infinite number of terms. Convergence?

Definition 10.2. The set $\{b_1, \ldots, b_i, \ldots\}$ where $b_i \in \mathcal{H}$ is an orthogonal sequence if

$$\langle b_i, b_j \rangle$$

$$\begin{cases} = 0 & \text{if } i \neq j \\ \neq 0 & \text{if } i = j \end{cases}.$$

It is an orthonormal sequence if $\langle b_i, b_j \rangle = \delta_{ij}$.

Definition 10.3. Given a sequence $\{x_1, \ldots, x_i, \ldots\}$ with $x_i \in \mathcal{H}$, the infinite series $\sum_{i=1}^{\infty} x_i$ converges to $x \in \mathcal{H}$ if

$$\lim_{n \to \infty} ||s_n - x|| = 0$$

where $s_n = \sum_{i=1}^n x_i$ and we assume throughout that the norm is induced by the inner product.

Theorem 10.1. Given an orthonormal sequence $\{b_1, \ldots, b_i, \ldots\}$ with $b_i \in \mathcal{H}$, the infinite series $\sum_{i=1}^{\infty} \gamma_i b_i$ converges to $x \in \mathcal{H}$ if and only if $\sum_{i=1}^{\infty} |\gamma_i|^2 < \infty$ in which case $\gamma_i = \langle x, b_i \rangle$.

So, a square summable sequence maps to an element of \mathcal{H} .

Lemma 10.2. (Bessel's Inequality)

Given an orthonormal sequence $\{b_1, \ldots, b_i, \ldots\}$ with $b_i \in \mathcal{H}$, we have

$$\forall x \in \mathcal{H} \quad \sum_{i=1}^{\infty} |\langle x, b_i \rangle|^2 = \sum_{i=1}^{\infty} |\gamma_i|^2 \le ||x||^2$$

So, $x \in \mathcal{H}$ maps to a square summable sequence.

• Given an orthonormal sequence $\{b_1, \ldots, b_i, \ldots\}$ with $b_i \in \mathcal{H}$,

$$x = \sum_{i=1}^{\infty} \gamma_i b_i \Rightarrow \gamma_i = \langle x, b_i \rangle$$

$$\forall x \in \mathcal{H}, \ \sum_{i=1}^{\infty} \langle x, b_i \rangle b_i = \hat{x} \in \mathcal{H}$$

- When \mathcal{H} is finite dimensional k = n or $k \neq n$ is enough to force $x = \hat{x}$ for all $x \in \mathcal{H}$.
- \bullet \mathcal{H} can have subspaces with infinite dimension.
- $x = \hat{x}$ vs $x \neq \hat{x}$ depends on another property of the b_i 's

Lemma 10.3. Given a Hilbert space \mathcal{H} , let $S \subseteq \mathcal{H}$ (not necessarily a subspace). We have

- S^{\perp} is a closed subspace, i.e., the limit of every convergent sequence on S^{\perp} is in S^{\perp} .
- $S \subseteq S^{\perp \perp}$
- $S^{\perp \perp}$ is the smallest closed subspace containing S, denoted $\overline{[S]}$.

Theorem 10.4 (Luenberger, p. 51 and 60). Let \mathcal{H} be a Hilbert space consider an element $x \in \mathcal{H}$. Given an orthonormal sequence $\{b_1, \ldots, b_i, \ldots\}$ with $b_i \in \mathcal{H}$, the series

$$\sum_{i=1}^{\infty} \langle x, b_i \rangle b_i$$

converges to an element \hat{x} in the closed subspace, M, generated by the sequence. Further,

$$x - \hat{x} \perp M$$

$$\forall v \in M, \ \|x - \hat{x}\| \le \|x - v\|$$

- So, in general, $\hat{x} \neq x$ but it is an optimal approximation.
- This generalizes the finite dimensional classical projection theorm of least squares.
- We will look at specific cases of Theorem 10.4.
- We are interested in subspaces of an infinite dimensional Hilbert space that have finite dimension or fininte codimension.
- We need $\hat{x} = x$ conditions to yield a more desireable infinite expansion that will be truncated to a finite number of terms.

Example

The set of continuous functions on $[0, 2\pi]$ with the following inner product

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx$$

is a Hilbert space, \mathcal{H} , when equality is taken to mean equal almost everywhere.

Consider the sequence of elements in ${\cal H}$

$$b_n(x) = \frac{1}{\sqrt{\pi}}\sin nx, \quad n = 0, 1, \dots$$

Example

$$< b_s, b_r > = \int_0^{2\pi} (\sin sx)(\sin rx) dx = 0, \quad r \neq s$$

$$f = \cos x \in \mathcal{H}$$

$$\langle f, b_n \rangle = \int_0^{2\pi} (\sin nx)(\cos x) dx = 0$$

The orthonormal sequence b_0, b_1, \ldots , has countably infinite number of orthogonal directions but there is still a direction, given by f, that is orthogonal to **all of them**.

Definition 10.4. An orthonormal sequence, $\{b_i\}$, in a Hilbert space \mathcal{H} is said to be complete if the closed subspace generated by the b_i 's is \mathcal{H} .

Lemma 10.5. An orthonormal sequence $\{b_1, \ldots, b_i, \ldots\}$ with $b_i \in \mathcal{H}$ is complete (or closed) if

$$\exists f \in \mathcal{H} \mid ||f|| = 1 \text{ and } \forall b_i, \langle f, b_i \rangle = 0$$

Or equivalently,

$$\forall b_i, < f, b_i > = 0 \to f = 0$$

Theorem 10.6. Given a complete orthonormal sequence $\{b_1, \ldots, b_i, \ldots\}$ with $b_i \in \mathcal{H}$, we have

$$\forall f \in \mathcal{H}, \quad \lim_{n \to \infty} ||f - \sum_{i=1}^{n} \gamma_i b_i||^2 = 0$$

where $\gamma_i = \langle f, b_i \rangle$.

Additionally, we have the completeness relation or Parseval's equality

$$||f||^2 = \sum_{i=1}^{\infty} |\gamma_i|^2$$

Parseval's Equality

Theorem 10.7. Given a complete orthonormal sequence $\{b_1, \ldots, b_i, \ldots\}$ with $b_i \in \mathcal{H}$,

$$\forall f, g \in \mathcal{H} \quad let \quad \gamma_i = \langle f, b_i \rangle \quad and \quad \mu_i = \langle g, b_i \rangle$$

then
$$f = \sum_{i=1}^{\infty} \gamma_i b_i$$
, $g = \sum_{i=1}^{\infty} \mu_i b_i$, and $\langle f, g \rangle = \sum_{i=1}^{\infty} \mu_i^* \gamma_i$

Note. The form in Theorem 10.6 results by taking f = g.

Recall, the finite dimensional result

$$< v_1, v_2 > = < Q_k c_1, Q_k c_2 > = c_2^* Q_k^* M Q_k c_1 = < c_1, c_2 > = c_1^* c_2$$

Definition 10.5. Given $\omega(x):[a,b]\to\mathbb{R}$, a nonnegative integrable function, the space $\mathcal{L}^2_{\omega}[a,b]$ is the set

$$\{f \mid f : [a, b] \to \mathcal{S}, \quad \int_a^b |f(x)|^2 \omega(x) dx < \infty \}$$
 $\mathcal{S} = \mathbb{R} \quad \text{or} \quad \mathcal{S} = \mathbb{C}$

The inner product and induced norm on the space are

$$(f,g)_{\omega} = \int_{a}^{b} g(x)^* f(x)\omega(x)dx$$
 and $||f||_{\omega}^2 = \int_{a}^{b} |f(x)|^2 \omega(x)dx$

- The function $\omega(x)$ is analogous to the positive definite matrix M.
- The integration here is in general Lebesgue.
- Riemann integration can be used when f is taken to be piecewise continuous on [a, b] with, e.g., a finite number of discontinuities.
- Equality is "equal almost everywhere" so the 0 element is an equivalence class of functions that are 0 everywhere but, e.g., a finite number of points for Riemannian integration and more generally a set of measure 0 for Riemannian and Lebesgue integration.
- Convergence in $||f||_{\omega}^2$ is called convergence in the mean.
- Convergence in the mean \Longrightarrow pointwise convergence

• When $S = \mathbb{C}$ care must be taken to be consistent in the inner product and use of the complex conjugate,

$$\forall f, g \in \mathcal{L}^2_{\omega}[a, b], \quad (f, g)_{\omega} = (g, f)^*_{\omega}$$
$$\forall \alpha \in \mathbb{C}, \quad |\alpha|^2 = \alpha^* \alpha = \alpha \alpha^*$$

• The text considers $S = \mathbb{R}$, i.e., real-valued functions on the real interval [a, b], so we have

$$\forall f, g \in \mathcal{L}^{2}_{\omega}[a, b], \quad (f, g)_{\omega} = (g, f)_{\omega} = \int_{a}^{b} f(x)g(x)\omega(x)dx$$
$$\forall \alpha \in \mathbb{R}, \quad |\alpha|^{2} = \alpha^{2}$$

Representation on the Space

Functions in the space $\mathcal{L}^2_{\omega}[a,b]$ can be represented via bases with a countably infinite number of elements:

 $\forall f \in \mathcal{L}^2_{\omega}[a,b]$ we have

$$f(x) = \sum_{i=0}^{\infty} \alpha_i \phi_i(x)$$

where

$$\{\phi_0(x),\phi_1(x),\ldots\}$$

is a complete set of orthogonal functions, i.e., a basis for $\mathcal{L}^2_{\omega}[a,b]$.

Orthogonal Basis and the Representation

Definition 10.6. Let $\{\phi_0(x), \phi_1(x), \ldots\}$ be a complete set of orthogonal functions in $\mathcal{L}^2_{\omega}[a, b]$. $\forall f \in \mathcal{L}^2_{\omega}[a, b]$ the series

$$Sf = \sum_{i=0}^{\infty} \alpha_i \phi_i(x)$$
 where $\alpha_i = \frac{(f, \phi_i)_{\omega}}{(\phi_i, \phi_i)_{\omega}}$

is called the generalized Fourier series of f.

In terms of an orthonormal sequence $\{\tilde{\phi}_0(x),\ldots\}$,

$$Sf = \sum_{i=0}^{\infty} \tilde{\alpha}_i \tilde{\phi}_i(x), \quad \tilde{\phi}_i = \frac{\phi_i}{\|\phi_i\|}, \quad \tilde{\alpha} = (f, \tilde{\phi}_i)_{\omega} = \alpha \|\phi_i\|$$

Orthogonal Polynomials

- choose [a,b] and $\omega(x)$
- Gram-Schmidt process applied to $\{1, x, x^2, \dots\}$
- low-order recurrence relation from basic properties
- orthogonality and inner product values
- Rodrigues' form derivative of a polynomial
- some $\phi_i(x)$ are eigenfunctions of Sturm-Liouville differential equation for a specific set of coefficients \rightarrow they form an orthogonal basis, e.g. Jacobi polynomials.

Sturm-Liouville Theory

Definition 10.7. The regular Sturm-Liouville differential equation on $a \le x \le b$ is

$$-(p(x)u'(x))' + q(x)u(x) = \lambda \omega(x)u(x)$$

$$\alpha_0 u'(a) - \alpha_1 u(a) = 0$$

$$\beta_0 u'(b) - \beta_1 u(b) = 0$$

$$p(x) \in \mathcal{C}^1[a, b], \quad w(x), q(x) \in \mathcal{C}^0[a, b]$$

$$a < x < b, \quad p(x) > 0, \quad \omega(x) > 0, \quad q(x) \ge 0$$

where at least one of the α pair and at least one of the β pair are nonzero. $(\lambda, u(x))$ pairs are an eigenvalue and its associated eigenfunction.

Sturm-Liouville Theory

Definition 10.8. The singular Sturm-Liouville differential equation on $a \le x \le b$ is

$$-(p(x)u'(x))' + q(x)u(x) = \lambda \omega(x)u(x)$$
$$p(x) \in \mathcal{C}^{1}[a, b], \quad w(x), q(x) \in \mathcal{C}^{0}[a, b]$$
$$a < x < b, \quad p(x) > 0, \quad \omega(x) > 0, \quad q(x) \ge 0$$

with p(a) = p(b) = 0 and $p(x)u'(x) \to 0$ as $x \to a$ or as $x \to b$. In other words, u' cannot grow faster than p goes to 0 at the boundary.

Sturm-Liouville Theory

Theorem 10.8. Given the Sturm-Liouville differential equation on $a \le x \le b$, there exists a countably infinite set of eigenvalues and associated eigenfunctions $(\lambda_i, u_i(x))$, i = 1, 2, ... such that

- $0 \le \lambda_1 < \lambda_2 < \lambda_3 < \cdots$
- $\forall i \neq j, \ (u_i, u_j)_{\omega} = 0$
- $(u_i, u_i)_{\omega} \neq 0$
- $\{u_1(x), u_2(x), \ldots\}$ is a complete orthogonal set
- $u_i(x)$ has i-1 distinct 0's in a < x < b

Legendre Polynomials

- [a, b] = [-1, 1] and $\omega(x) = 1$
- $P_0(x) = 1, P_1(x) = x$ and

$$P_{n+1}(x) = \frac{2n+1}{n+1}xP_n(x) - \frac{n}{n+1}P_{n-1}(x)$$

- $P_n(1) = 1$ and $P_n(-x) = (-1)^n P_n(x)$
- Rodrigues' form

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$$

• orthogonality: $(P_n, P_m) = 0$ for $m \neq n$ and

$$(P_n, P_n) = \frac{2}{2n+1}$$

Legendre and the Singular Sturm-Liouville Equation

$$-1 \le x \le 1, \quad p(x) = 1 - x^2, \quad q(x) = 0, \quad \omega(x) = 1$$
$$p(1) = p(-1) = 0, \quad \lambda = n(n+1)$$
$$\left[(1 - x^2)y' \right]' + \lambda y = 0$$
$$(1 - x^2)y'' - 2xy' + n(n+1)y = 0$$

Easy to verify the S-L problem is satisfied for

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, ...

Chebyshev Polynomials

- [a, b] = [-1, 1] and $\omega(x) = 1/\sqrt{1 x^2}$
- $T_n(x) = \cos(n \arccos x)$
- $T_0(x) = 1, T_1(x) = x$ and

$$T_{n+1} = 2xT_n(x) - T_{n-1}(x)$$

- $T_n(1) = 1$ and $T_n(-x) = (-1)^n T_n(x)$
- Rodrigues' form $n \ge 1$

$$T_n(x) = \frac{\sqrt{1-x^2}}{(-1)^n(2n-1)(2n-3)\cdots 1} \frac{d^n}{dx^n} [(1-x^2)^{n-1/2}]$$

• orthogonality: $(T_n, T_m) = 0$ for $m \neq n$ and

$$(T_0, T_0) = \pi \text{ and } (T_n, T_n) = \frac{\pi}{2}, \ n \ge 1$$

Chebyshev and the Singular Sturm-Liouville Equation

$$-1 \le x \le 1, \quad p(x) = \sqrt{1 - x^2}, \quad q(x) = 0, \quad \omega(x) = 1/\sqrt{1 - x^2}$$
$$p(1) = p(-1) = 0, \quad \lambda = n^2$$
$$\left[\sqrt{1 - x^2} \ y'\right]' + \frac{n^2}{\sqrt{1 - x^2}}y = 0$$
$$(1 - x^2)y'' - xy' + n^2y = 0$$

Easy to verify the S-L problem is satisfied for

$$T_0 = 1$$
, $T_1 = x$, $T_2 = 2x^2 - 1$...

Jacobi Polynomials

The algebraic polynomials that are eigenfunctions of the singular Sturm-Liouville equation are the two-parameter Jacobi polynomials:

$$J^{\alpha\beta}(x), \quad \alpha > -1, \quad \beta > -1$$

$$p(x) = (1-x)^{\alpha+1}(1+x)^{\beta+1}, \quad q(x) = 0, \quad \omega(x) = (1-x)^{\alpha}(1+x)^{\beta}$$

$$p(1) = p(-1) = 0, \quad \lambda = n(n+\alpha+\beta+1)$$

$$(p(x)y'(x))' + \lambda\omega(x)y(x) = 0$$

$$\alpha = \beta = 0 \rightarrow$$
 Legendre polynomials

$$\alpha = \beta = -\frac{1}{2} \rightarrow$$
 Chebyshev polynomials

Laguerre Polynomials

- normalized form
- $[a,b] = [0,\infty)$ and $\omega(x) = e^{-x}$
- $L_0(x) = 1, L_1(x) = -x + 1$ and

$$(n+1)L_{n+1} = (2n+1-x)L_n(x) - nL_{n-1}(x)$$

• Rodrigues' form $n \ge 1$

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} [x^n e^{-x}]$$

• orthogonality: $(L_n, L_m) = 0$ for $m \neq n$ and

$$(L_n, L_n) = 1$$

Laguerre and the Singular Sturm-Liouville Equation

$$0 \le x \le \infty$$
, $p(x) = xe^{-x}$, $q(x) = 0$, $\omega(x) = e^{-x}$
 $p(0) = p(\infty) = 0$, $\lambda = n$
 $\left[xe^{-x} \ y'\right]' + ne^{-x}y = 0$
 $xy'' + (1-x)y' + ny = 0$

Easy to verify the S-L problem is satisfied for

$$L_0 = 1$$
, $L_1 = 1 - x$, $L_2 = \frac{1}{2}(x^2 - 4x + 2) \dots$

Hermite Polynomials

- $[a,b]=(-\infty,\infty)$ and $\omega(x)=e^{-\sigma x^2}$
- $\sigma = 1$ is physics form and $\sigma = 1/2$ is probability form
- $H_0(x) = 1, H_1(x) = 2\sigma x$ and

$$H_{n+1} = 2\sigma x H_n(x) - 2n\sigma H_{n-1}(x)$$

- $H_n(-x) = (-1)^n H(x)$
- Rodrigues' form $n \ge 0$, $\sigma = 1$

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} [e^{-x^2}]$$

• orthogonality: $\sigma = 1$, $(H_n, H_m) = 0$ for $m \neq n$ and $(H_n, H_n) = 2^n n! \sqrt{\pi}$.

Hermite and the Singular Sturm-Liouville Equation

$$\sigma = 1, -\infty \le x \le \infty, \quad p(x) = e^{-x^2}, \quad q(x) = 0, \quad \omega(x) = e^{-x^2}$$
$$p(-\infty) = p(\infty) = 0, \quad \lambda = 2n$$
$$\left[e^{-x^2} \ y'\right]' + 2ne^{-x^2}y = 0$$
$$y'' - 2xy' + 2ny = 0$$

Easy to verify the S-L problem is satisfied for

$$H_0 = 1$$
, $H_1 = 2x$, $H_2 = 4x^2 - 2$...

Fourier Polynomials

- $[a, b] = (0, 2\pi)$ and $\omega(x) = 1$
- complex-valued f(x) used to define space:

$$\mathcal{L}^{2}_{\omega}[a,b] = \left\{ f \mid f : [a,b] \to \mathbb{C}, \quad \int_{a}^{b} |f(x)|^{2} dx < \infty \right\}$$

• The inner product and induced norm on the space are

$$(f,g)_{\omega} = \int_{a}^{b} g(x)^* f(x) dx$$
 and $||f||_{\omega}^2 = \int_{a}^{b} |f(x)|^2 dx$

- $\phi_k(x) = e^{ikx}$ where $i = \sqrt{-1}$ for $k = 0, \pm 1, \pm 2, ...$
- orthogonality: $(\phi_n, \phi_m) = 0$ for $m \neq n$ and $(\phi_n, \phi_n) = 2\pi$
- trigonometric polynomials: $e^{ikx} = \cos kx + i\sin kx$
- related to regular Sturm-Liouville ODE

Suppose $\{\phi_0(x), \phi_1(x), \ldots\}$ is a complete set of orthogonal polynomials in $\mathcal{L}^2_{\omega}[a, b]$.

Theorem 10.9. The roots, x_1, \ldots, x_n of $\phi_n(x)$ are real, simple and lie in the interval a < x < b, i.e., the interior of [a, b].

This was mentioned with the Sturm-Liouville Theory characterization of complete orthogonal eigenfunctions.

It can be proven directly based on orthogonality.

Theorem 10.10. Suppose $\{\phi_0(x), \phi_1(x), \ldots\}$ is a complete set of orthogonal polynomials in $\mathcal{L}^2_{\omega}[a,b]$ with $(\phi_i, \phi_i) = 1$. If α_k and β_k are the coefficients of of x^k and x^{k-1} respectively in $\phi_k(x)$ then

$$\phi_{n+1}(x) = (a_n x + b_n)\phi_n(x) - c_n \phi_{n-1}(x)$$

$$a_n = \frac{\alpha_{n+1}}{\alpha_n}, \ b_n = \frac{\alpha_{n+1}}{\alpha_n} \left(\frac{\beta_{n+1}}{\alpha_{n+1}} - \frac{\beta_n}{\alpha_n} \right), \ c_n = \frac{\alpha_{n+1}\alpha_{n-1}}{\alpha_n^2}$$

The recurrence can be initialized with

- $\phi_{-1}(x) = 0$ and $\phi_0(x) = \alpha_0$
- or with $\phi_0(x)$ and $\phi_1(x)$ specific polynomials.

In the latter case take note of the normalization of the norm of $\phi_i(x)$, e.g., it is often made 1 but not necessarily.

The textbook has a form of the recurrence that assumes monic $\phi_i(x)$.

Truncated Generalized Fourier Series

Lemma. Let $f \in \mathcal{L}^2_{\omega}[a,b]$ and define the generalized Fourier series truncated after n+1 terms

$$f_n(x) = \sum_{i=0}^n \alpha_i \phi_i(x).$$

We have convergence in the mean, i.e., in the $\mathcal{L}^2_{\omega}[a,b]$ sense,

$$\lim_{n\to\infty} ||f - f_n||_{\omega} = 0.$$

Further,

$$||f||_{\omega}^{2} = \sum_{i=0}^{\infty} \alpha_{i}^{2} ||\phi_{i}(x)||_{\omega}^{2}, \quad ||\hat{f}||_{\omega}^{2} = \sum_{i=0}^{n} \alpha_{i}^{2} ||\phi_{i}(x)||_{\omega}^{2}$$

$$||f - f_n||_{\omega}^2 = \sum_{i=n+1}^{\infty} \alpha_i^2 ||\phi_i(x)||_{\omega}^2$$

Optimality

Theorem 10.11. Let $\{\phi_0(x), \phi_1(x), \ldots\}$ be a complete set of orthogonal functions in $\mathcal{L}^2_{\omega}[a,b]$, $f \in \mathcal{L}^2_{\omega}[a,b]$ and $f_n(x) = \sum_{i=0}^n \alpha_i \phi_i(x)$.

If
$$S_n = span[\phi_0(x), \phi_1(x), \dots, \phi_n(x)]$$
 then

$$||f - f_n||_{\omega} = \min_{q \in \mathcal{S}_n} ||f - q||_{\omega}$$

Optimality

Proof. We have

$$r_n = f - f_n = \sum_{i=n+1}^{\infty} \alpha_i \phi_i(x)$$

$$\therefore$$
 $r_n \perp \phi_j$, $0 \leq j \leq n$ and $\forall q \in \mathcal{S}_n$ $r_n \perp q$

We have $\forall q \in \mathcal{S}_n$,

$$||r_n||_2^2 = (r_n, f - f_n + q - q)_\omega = (r_n, f - q)_\omega + (r_n, q - f_n)_\omega$$

$$= (r_n, f - q)_\omega + (r_n, \tilde{q})_\omega = (r_n, f - q)_\omega \le ||r_n||_\omega ||f - q||_\omega$$

$$\therefore ||r_n||_\omega \le ||f - q||_\omega$$

Optimality

- f_n is a continuous weighted least-squares approximation to f.
- Need $\{\phi_0(x), \phi_1(x), \ldots\}$ a complete set of orthogonal functions in $\mathcal{L}^2_{\omega}[a, b]$,
- to approximate $f \in \mathcal{L}^2_{\omega}[a, b]$ over \mathcal{S}_n we must compute the $\alpha_i = (f, \phi_i)_{\omega}/(\phi_i, \phi_i)_{\omega}$ and define $f_n(x) = \sum_{i=0}^n \alpha_i \phi_i(x)$.
- α_i are typically approximated numerically.
- Note that f_n is easily incremented to f_{n+1} with a single additional coefficient. This is a crucial property in many efficient algorithms that exploit orthogonality, e.g., conjugate directions and conjugate gradient.

We have convergence in the mean, for $f \in \mathcal{L}^2_{\omega}[a,b]$

$$\lim_{n \to \infty} ||f - f_n||_{\omega} = 0$$

where $f_n(x) = \sum_{i=0}^n \alpha_i \phi_i(x)$.

This does not say anything about pointwise error or convergence, i.e.,

$$\lim_{n\to\infty} |f(x) - f_n(x)|$$

Theorem 10.12. (Christoffel-Darboux) Suppose $\{\phi_0(x), \phi_1(x), \ldots\}$ is a complete set of orthogonal polynomials in $\mathcal{L}^2_{\omega}[a, b]$ with $(\phi_i, \phi_i) = 1$.

$$(x - \xi)G_n(x, \xi) = (x - \xi) \sum_{i=0}^n \phi_i(x)\phi_i(\xi)$$
$$= \frac{\alpha_n}{\alpha_{n+1}} [\phi_{n+1}(x)\phi_n(\xi) - \phi_{n+1}(\xi)\phi_n(x)].$$

 $G_n(x,\xi)$ is called the kernel of the set of orthogonal polynomials.

Lemma. Since it can be shown that

$$\int_{a}^{b} \omega(\xi) G_n(x,\xi) d\xi = 1, \text{ where } G_n(x,\xi) = \sum_{i=0}^{n} \phi_i(x) \phi_i(\xi)$$

and $(\phi_i, \phi_i)_{\omega} = 1$, the pointwise error has the form

$$R_n(x) = f(x) - f_n(x) = f(x) - \sum_{i=0}^n \alpha_i \phi_i(x)$$

$$= f(x) - \sum_{i=0}^n \phi_i(x) \int_a^b \omega(\xi) f(\xi) \phi_i(\xi) d\xi$$

$$= f(x) - \int_a^b \omega(\xi) f(\xi) \sum_{i=0}^n \phi_i(x) \phi_i(\xi) d\xi$$

$$= f(x) - \int_a^b \omega(\xi) G_n(x, \xi) f(\xi) d\xi = \int_a^b \omega(\xi) G_n(x, \xi) (f(x) - f(\xi)) d\xi$$

Need extra smoothness to state uniform convergence results.

Theorem 10.13. Suppose $\{P_0(x), P_1(x), \ldots\}$ are the Legendre polynomials in $\mathcal{L}^2_{\omega}[-1,1]$. Let $f \in \mathcal{L}^2_{\omega}[-1,1]$ have continuous first and second derivatives. If $f_n(x)$ is the optimal polynomial of degree n approximating f(x) with $\omega(x) = 1$ then for any $\epsilon > 0$, $\exists n > 0$ such that $\forall -1 \leq x \leq 1$

$$|f(x) - f_n(x)| \le \frac{\epsilon}{\sqrt{n}}$$
$$|f(x) - f_n(x)| = O(n^{-1/2})$$

Theorem 10.14. Suppose $\{T_0(x), T_1(x), \ldots\}$ are the Chebyshev polynomials in $\mathcal{L}^2_{\omega}[-1,1]$. Let $f \in \mathcal{L}^2_{\omega}[-1,1]$ have continuous first and second derivatives. If $f_n(x)$ is the optimal polynomial of degree n approximating f(x) with $\omega(x) = 1/\sqrt{1-x^2}$ then for any $\epsilon > 0$, $\exists n > 0$ such that $\forall -1 \leq x \leq 1$

$$|f(x) - f_n(x)| = O(n^{-1})$$

Note. $|f(x) - f_n(x)| = O(n^{-1/2})$ can be shown for any of the families of orthogonal polynomials under mild assumptions and a continuous second derivative.