

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék

# Digitális technika VIMIAA01

Fehér Béla BME MIT

# Digitális Rendszerek

- Számítógépek
  - Számítógép központok
  - Asztali számítógépek
  - Hordozható számítógépek
    - ~ Az adatfeldolgozó egység neve CPU
- Beágyazott rendszerek
  - Autó ECU
  - Kapu kódzár
  - Vérnyomásmérő
    - ~ Az adatfeldolgozó egység neve mikrovezérlő







### Digitális Rendszerek

- CPU↔ MIKROPROCESSZOR ↔ Mikrovezérlő
  - Széles teljesítményskála, szinte folytonos átmenet
    - Méret, műveletvégzési képesség, magok száma
  - A technológiai háttér közös: Félvezető technológia
    - Óriási fejlődési ütem, Moore törvény, tranzisztorok száma
      - 1965: 2x/év, 1975 2x/2év
    - 2014-es rekord tr. szám adatok:
      - Intel Xeon IvyBridge 4,3mrd
      - IBM SyNAPTIC 5,4mrd
      - Xilinx UltraSCale 20mrd
- Tervezhetetlen komplexitás!



### Digitális Rendszerek

- Összetett rendszerek tervezése
  - Hierarchia
    - Részekre osztás, majd újabb szintek bevezetés
  - Modularitás
    - · Jól definiált funkciók és interfészek, építkezhetőség
  - Egységesítés, szabványosítás
    - Közös funkciók uniformizálása
    - Erőteljes újrahasznosítás
  - A digitális technika tárgyban a tervezési feladatok során is ezeket az elveket fogjuk felhasználni, alkalmazni

#### Hierarchikus tervezési módszerek

- Felülről lefelé (top-down) Alulról felfelé (bottom-up) Level: System Top level Modules Gates and flip-flops Bottom level Transistors
  - Léteznek a kívánt típusú komponensek?

– Megfelel a rendszer a specifikációnak?

#### Tervezési szintek

- A hierarchikus tervezési szintek szétválaszthatók
  - A fizikai szinttel (félvezető tranzisztor) mi már nem foglalkozunk
- Gyakran egyedi tervezési megközelítést igényelnek

$$Z = \sum_{i=0}^{N-1} X(i)$$



### Specifikáció finomítás

• A tervezés, megvalósítás egy iteratív folyamat



Specifikáció (funkciók és más jellemzők)

MIT



Szintézis



#### **HOGYAN**

Megvalósítás (modulok/komponensek rendszere)



# Specifikáció finomítása

- Felhasználói specifikáció
  - Általában szöveges formában
  - Jellemzően nem műszaki paraméterek
- Előzetes rendszerterv
  - Követelmények lefordítása
  - Főbb paraméterek meghatározása
- Funkcionális rendszertery
  - Globális döntések a megvalósításról
  - Modul funkciók specifikálása
- Logikai/digitális tervezés, ellenőrzés

- Beágyazott rendszerek
  - A környezetből analóg és digitális jelek
  - Hagyományos feldolgozás analóg elemekkel



Korszerű feldolgozás digitális módon



- Analóg jelek feldolgozása konverzió után
- Közvetlen digitális jelek
  - Nyomógomb
  - Billentyűzetek
    - Kódolás
    - Leolvasás
  - Képérzékelők
  - Léptető motor
  - Kijelzők











#### Adatábrázolás

- Numerikus értékek
  - Külső jelek A/D konverzió után
  - Belső adatok reprezentációja
  - Memória cím
- Egyéb jelek, kódok
  - ON-OFF, egyéb diszkrét állapotok
  - Karakterek, kódtáblák
  - Speciális kódok (pozíció, tömörített, stb.)

Temp = 26.5 °C

 $\pi = 3,1415$ 

0x8000\_FA14

#### Számábrázolási módszerek

 Pozicionális számábrázolás, tetszőleges számrendszerben

$$\mathbf{D} = \sum_{i=0}^{n-1} d_i * r^i$$

- ahol r a számrendszer alapja (radix),
- d<sub>i</sub> a számrendszer egy számjegye (digit)
- Akár tekinthetjük egy polinomnak is

$$D = d_{n-1} * r^{n-1} + d_{n-2} * r^{n-2} + \dots + d_2 * r^2 + d_1 * r^1 + d_0 * r^0$$

- Például ismerjük az r = 10-es számrendszert
- Ebben a decimális digitek ismert szimbólumai:

$$0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (0...r-1)$$

- Számábrázolási módszerek
- · Példa:
  - A 2014<sub>10</sub> jelentése értelemszerűen:

$$-2014_{10} = 2*10^3 + 0*10^2 + 1*10^1 + 4*10^0 =$$

$$= 2000 + 0 + 10 + 4 = 2014_{10}$$

 Ugyanez 8-as számrendszerben is egy érvényes szám, de más numerikus értéket jelent (kb. a fele)

$$-2014_8 = 2*8^3 + 0*8^2 + 1*8^1 + 4*8^0 =$$

$$= 2*512 + 0 + 1*8 + 4*1 = 1036_8$$

- Digitális technikában fontos számrendszerek
- Dekadikus r = 10

$$-di = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,$$

• Bináris r = 2

-di = 0, 1, (a nevük bit, **bi**nary digit == **bit**)

• Oktális r = 8

$$-di = 0, 1, 2, 3, 4, 5, 6, 7,$$

• Hexadecimális r = 16

$$-di = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F$$

 A számjegyek fenti szimbólumait a gépek bináris bitsorozatokkal reprezentálják

Számjegyek bitkódjai → természtes kódkép

$$\mathbf{D} = \sum_{i=0}^{n-1} d_i * ri \text{ alapján}$$

• 
$$X_8 = b_2 * 2^2 + b_1 * 2^1 + b_0 * 2^0$$

• 
$$X_{16} = b_3 * 2^3 + b_2 * 2^2 + b_1 * 2^1 + b_0 * 2^0$$

• 
$$X_{10} = b_3 * 2^3 + b_2 * 2^2 + b_1 * 2^1 + b_0 * 2^0$$

| Érték | BIN | OKT | DEC  | HEX  | HEXDIG |
|-------|-----|-----|------|------|--------|
| 0     | 0   | 000 | 0000 | 0000 | 0      |
| 1     | 1   | 001 | 0001 | 0001 | 1      |
| 2     |     | 010 | 0010 | 0010 | 2      |
| 3     |     | 011 | 0011 | 0011 | 3      |
| 4     |     | 100 | 0100 | 0100 | 4      |
| 5     |     | 101 | 0101 | 0101 | 5      |
| 6     |     | 110 | 0110 | 0110 | 6      |
| 7     |     | 111 | 0111 | 0111 | 7      |
| 8     |     |     | 1000 | 1000 | 8      |
| 9     |     |     | 1001 | 1001 | 9      |
| 10    |     |     |      | 1010 | A, a   |
| 11    |     |     |      | 1011 | B, b   |
| 12    |     |     |      | 1100 | C, c   |
| 13    |     |     |      | 1101 | D, d   |
| 14    |     |     |      | 1110 | E, e   |
| 15    |     |     |      | 1111 | F, f   |

• X<sub>16</sub>, X<sub>10</sub> felírása formailag azonos, értelmezési

BME-MIT / tartományuk eltérő

- Konverzió számrendszerek között
- Bináris ↔ Hexadecimális egyszerű
  - $-16 = 2^4$ , 1 hexadecimális digit 4 bináris digit (bit)
  - $-2014_{16} = 10000000010100_2$ , csoportosítás jobbról kezdve, és bal oldalon 4 bitre kiegészítve

|   | 2 0 |   |   | 1 |   |   | 4 |   |   |   |   |   |   |   |   |
|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0   | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |

- -Szokásos írásmód 2014<sub>16</sub> = 0010\_0000\_0001\_0100<sub>2</sub>
- Bináris ↔ Oktális hasonlóan, 3 bites csoportokkal
  - $-8 = 2^3$ , 1 oktális digit 3 bináris digit (bit)
  - $-2014_8 = 010\_000\_001\_100_2$

- A Decimális → Bináris konverzió bonyolultabb, valódi számítási algoritmust kíván
  - -Egészosztás 2-vel, a maradék az új bit, a legkisebb helyiértéktől kezdve, amíg 0 a hányados
  - -Példa decimális jelöléssel
  - -Eredmény: (visszafelé kiolvasva) 2014<sub>10</sub> = 11111011110<sub>2</sub>

| Osztandó | Osztó | Hányados | Maradék |
|----------|-------|----------|---------|
| 2014     | :2    | 1007     | 0       |
| 1007     | :2    | 503      | 1       |
| 503      | :2    | 251      | 1       |
| 251      | :2    | 125      | 1       |
| 125      | :2    | 62       | 1       |
| 62       | :2    | 31       | 0       |
| 31       | :2    | 15       | 1       |
| 15       | :2    | 7        | 1       |
| 7        | :2    | 3        | 1       |
| 3        | :2    | 1        | 1       |
| 1        | :2    | 0        | 1       |
|          |       |          |         |

BME-MIT

- Decimális  $\rightarrow$  Bináris konverzió, másik algoritmus  $2^{N+1} >= Decimális \ szám > 2^N$
- Ha igen, akkor a
   bináris alakban
   d<sub>N</sub> = 1 és kivonás
   után újabb feltétel vizsgálat következik
   a következő (kisebb)
   hatvánnyal

| Dec. Szám | 2 <sup>N</sup> | Szám> 2 <sup>N</sup> ? | Különbség | Bin. Digit |
|-----------|----------------|------------------------|-----------|------------|
| 2014      | 2048           | nem                    | 2014      | 0          |
| 2014      | 1024           | igen                   | 990       | 1          |
| 990       | 512            | igen                   | 478       | 1          |
| 478       | 256            | igen                   | 222       | 1          |
| 222       | 128            | igen                   | 94        | 1          |
| 94        | 64             | igen                   | 30        | 1          |
| 30        | 32             | nem                    | 30        | 0          |
| 30        | 16             | igen                   | 14        | 1          |
| 14        | 8              | igen                   | 6         | 1          |
| 6         | 4              | igen                   | 2         | 1          |
| 2         | 2              | igen                   | 0         | 1          |
| 0         | 1              | nem                    | 0         | 0          |
|           |                |                        |           |            |

BME-MIT

- A Bináris → Decimális konverzió fontosabb
  - -Előző algoritmus inverze: Táblázat alapján, minden aktív d<sub>i</sub> bináris digit numerikus értékét összegezzük
- $111110111110_2 = 2014_{10}$ , mert

$$= 1024 + 512 + 256 + 128 + 64 + 16 + 8 + 4 + 2 = 2014$$

- Bináris → Decimális konverzió, másik algoritmus
  - Az osztó/hányados algoritmus inverze:
     Legnagyobb helyiértékű bittől kezdve duplázás és következő bit hozzáadása lépésről-lépésre
  - -Alapja a számpolinom felírása Horner formulával:

$$\mathbf{D} = \sum_{i=0}^{n-1} b_i * 2^i$$

$$= \mathbf{b_{n-1}} * 2^{n-1} + \mathbf{b_{n-2}} * 2^{n-2} + \dots + \mathbf{b_2} * 2^2 + \mathbf{b_1} * 2^1 + \mathbf{b_0} * 2^0$$

$$= ((((((\mathbf{b_{n-1}} * 2) + \mathbf{b_{n-2}}) * 2 + \dots + \mathbf{b_2} * 2 + \mathbf{b_1}) * 2 + \mathbf{b_0}$$

- Példa:  $2014_{10} = 1111110111110_2 =$ 

#### Számrendszerek és konverziók összefoglalása

- Fontos számrendszerek: bináris, hexadecimális és decimális
- A bináris az elsődleges, minden új ismeretünk majd erre épül, azonban nagyobb értéktartománynál mérete kezelhetetlen, áttekinthetetlen
- A hexadecimális formátum ennek egy tömörített formája, nincs szükség algoritmikus konverzióra, a többjegyes hexa számokat számjegyenként bináris sorozattá alakítva közvetlenül a teljes bináris formát kapjuk. Az {A,B,C,D,E,F} szimbólumokat használjuk a {10,11,12,13,14,15} számértékek jelölésére
- A többjegyes decimális számok kezelése bonyolult. Mindkét irányban (DEC→BIN, BIN→DEC) algoritmikus megoldások szükségesek, amelyek lépésenkénti végrehajtása adja meg a konverzió eredményét.

Néhány fontosabb bináris érték, fejben számoláshoz

| 27    | 2 <sup>8</sup> | 2 <sup>10</sup> | 2 <sup>16</sup> | 2 <sup>20</sup> | 2 <sup>30</sup> |
|-------|----------------|-----------------|-----------------|-----------------|-----------------|
| 128   | 256            | 1024            | 65536           | 1048576         | 1073741824      |
| ~száz |                | ~ezer           |                 | ~millió         | ~milliárd       |

- Apró kellemetlenség,  $1000 \neq 1024$
- A korábban elterjedt k, M, G, T jelölések nem teljesen precízek

|     | SI (de | ecimális         | s)                | IEC (bináris) |      |                 |                   |  |  |
|-----|--------|------------------|-------------------|---------------|------|-----------------|-------------------|--|--|
| jel | név    | érték            |                   | jel           | név  | érték           |                   |  |  |
| k   | kilo   | 10 <sup>3</sup>  | 1000 <sup>1</sup> | Ki            | kibi | 2 <sup>10</sup> | 1024 <sup>1</sup> |  |  |
| М   | mega   | 10 <sup>6</sup>  | 1000 <sup>2</sup> | Mi            | mebi | 2 <sup>20</sup> | 1024 <sup>2</sup> |  |  |
| G   | giga   | 10 <sup>9</sup>  | 1000 <sup>3</sup> | Gi            | gibi | 2 <sup>30</sup> | 1024 <sup>3</sup> |  |  |
| Т   | tera   | 10 <sup>12</sup> | 1000 <sup>4</sup> | Ti            | tebi | 2 <sup>40</sup> | 1024 <sup>4</sup> |  |  |

Az új szabványos jelölés lassan terjed, mi is nehezen tanuljuk...

# Bináris számábrázolás tulajdonságai

#### Eddig pozitív egészek

- N bit, 0-tól 2<sup>N-1</sup> értéktartomány
- Pozíció függő súlytényező: helyiérték

#### • Műveletek:

- Összeadás szabályai (általában 2 operandus között): 0+0=0, 1+0=1, 0+1=1, 1+1=10, ahol az 1 az átvitel a következő, eggyel magasabb helyiértékre
- Példa 6 + 3 = 9, 4 biten
- Átvitel a 2. pozíción
- Eredmény esetleg 4 + 1 jegy, pl. 9 + 8 = 17

|   |   | 1 |   |   |
|---|---|---|---|---|
|   | 0 | 1 | 1 | 0 |
| + | 0 | 0 | 1 | 1 |
|   | 1 | 0 | 0 | 1 |

BME-MI

# Bináris számábrázolás tulajdonságai

#### Szorzás

Bináris szorzás szabályai:

$$0 * 0 = 0$$
,  $1 * 0 = 0$ ,  $0 * 1 = 0$ ,  $1 * 1 = 1$ 

- Nincs átvitel, de vannak részszorzatok és részszorzat összegek (több bemenetű összeadás?)
- Példák:

• 
$$6*3 = 18$$

| 0 | 1 | 1 | 0 | * | 0 | 0 | 1 | 1 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 |   |   |   |   |   |
|   | 0 | 0 | 0 | 0 |   |   |   |   |
|   |   | 0 | 1 | 1 | 0 |   |   |   |
|   |   |   | 0 | 1 | 1 | 0 |   |   |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 |   |   |

$$14*11 = 154$$



Az eredmény alapvetően 2N bites (4+4=8)

# Bináris számábrázolás tulajdonságai

#### Osztás

- Bináris egész osztás szabályai:
   1 / 1 = 1, 0 / 1 = 0, az osztás 0-val nem értelmezett
- Pozitív számokra jól értelmezhető
- Példák:
- 11:3=3, maradék 2

| 1 | 0 | 1 | 1 | : | 1 | 1 | = | 0 | 1 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 |   |   |   |   |   |   |   |   |   |
| 1 | 0 | 1 |   |   |   |   |   |   |   |   |
| 0 | 1 | 0 | 1 |   |   |   |   |   |   |   |
|   | 0 | 1 | 0 |   |   |   |   |   |   |   |

### Előjeles számábrázolás

- Eddig: Összeadás, szorzás, maradékos osztás →
  Egyik sem vezet ki a pozitív számok halmazából,
  bár a számtartományt esetleg növelni kell!
- Kivonás? Negatív hozzáadása? Mi a negatív?
- Előjeles számok:
  - Normál jelölésben (elő)jel
  - De itt csak "0" és "1" van, nincs több szimbólum
  - Más szabály kell (az előjel is egy új bit):
    - Előjel + érték
    - Eltolt (offset) bináris
    - Egyes komplemens
    - Kettes komplemens Csak ezzel foglaljozunk

#### Előjeles számábrázolás

- Komplemens kódok: A kettes komplemens fontos!!
- Egyes komplemens (1's C):
  - Képzési szabálya: Negatív értékhez minden bináris számjegyet invertálunk  $(0 \rightarrow 1, 1 \rightarrow 0)$
- Kettes komplemens (2's C):
  - Képzési szabálya:
     Negatív értéknél minden bitet invertálunk és az így kapott számhoz hozzáadunk 1-et
  - Más módszer: A szám értékét 2<sup>N</sup>-ből binárisan kivonva megkapjuk a negatívjának 2's C kódját.
     Pl. 4 bitre − 5 képzése: 16−5 → 10000 − 0101= 1011, mert igaz, hogy 0101 + 1011 = 10000, ami viszont 4 biten 0.

| Bináris | 2's C |
|---------|-------|
| 0111    | +7    |
| 0110    | +6    |
| 0101    | +5    |
| 0100    | +4    |
| 0011    | +3    |
| 0010    | +2    |
| 0001    | +1    |
| 0000    | 0     |
| 1111    | -1    |
| 1110    | -2    |
| 1101    | -3    |
| 1100    | -4    |
| 1011    | -5    |
| 1010    | -6    |
| 1001    | -7    |
| 1000    | -8    |
|         |       |

#### Kettes komplemens számábrázolás

A pozícionális számábrázolás definíciója alapján

$$D = -b_{n-1} *2^{n-1} + \sum_{i=0}^{n-2} b_i * 2^i$$

- $-b_{n-1}$  a legnagyobb helyiértékű bit (MSb),  $b_i$  pedig a többi bit. Az MSb negatív értékű, ha nem nulla
- A 2'sC előjeles számokkal végzett műveletvégzési szabályok megegyeznek a normál pozitív számokra vonatkozókkal
- Egyetlen 0 kód, önmaga 2's C komplemens kódja
- Könnyű aritmetikai tesztek (=, ≠, >, <, ≤, ≥)</li>

# Előjeles számábrázolás

- Kettes komplemens (2's C) méretkonverzió
  - Előjel kiterjesztés: Számjegyek számának növelése
  - Pozitív számokra egyértelmű, bal oldalon kiegészítés
     0-kal, a szám értéke természetesen nem változik
  - A +5 érték 4 biten 0101 és 12 biten 0000\_0000\_0101
  - A –5 érték 4 biten 1011 és 12 biten 1111\_1111\_1011
  - Mert a 2's C szabályai szerint bitjeit invertálva + 1
    - $0000\_0000\_0100 + 1 = 0000\_0000\_0101$
  - Általánosan, ha kevesebb bitről előjel kiterjesztéssel méretet növelünk több bitre, az <u>érték</u> nem változik
    - Jelentősége: pl. konverzió különböző méretű adatformátumok között (8 bites bájt → 32 bites szó)

#### Valós számok

- Pozicionális számrendszer, negatív kitevők,
  - r<sup>-1</sup>, r<sup>-2</sup>, ..... r<sup>-n</sup>, tört helyiértékek, r<sup>0</sup> –tól jobbra
- Bináris számrendszer valós számokra

| 2 <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | 2 <sup>1</sup> | <b>2</b> <sup>0</sup> | 2 <sup>-1</sup> | <b>2</b> <sup>-2</sup> | <b>2</b> <sup>-3</sup> |
|----------------|-----------------------|-----------------------|----------------|-----------------------|-----------------|------------------------|------------------------|
| 16             | 8                     | 4                     | 2              | 1                     | 0,5             | 0,25                   | 0,125                  |

- Implicit "kettedes" pont a ↑ megfelelő helyen
- · Tehát ebben a számformátumban pl. előjelesen a
  - 00110101 = 6,625 illetve az 111111111 = -0,125
- · Tetszőleges pontosság, bitszám növelésével
- Probléma:  $0,1_{10} = 0,0001100110011001100..._2$

# Lebegőpontos számformátum

A számok normál alakját modellezi

$$\mathbf{D} = (-1)^{\mathbf{e}} \mathbf{m}^* \mathbf{r}^{\mathbf{k}}$$

- ahol e az előjel, r a radix (2 vagy 10), m a mantissza, k a kitevő. A szabvány több méretet definiál (32/64/128 bit).
- Pl. 32 biten: e=1 bit, m=24 (23+1) bit, k=8 bit

- Értéktartománya széles: 32 biten maximum ±3,4\*10<sup>38</sup>
- Tartalmazza a 0-t, és a legkisebb értékei ±1,4\*10-45
- Egyenletes relatív pontosság, a mantissza pontossága, 2-23

#### Decimális számábrázolás

- Digitális hardver → bináris számábrázolás
- "Könnyű" a műveletvégzők tervezése
  - ADD, SUB, MULT, DIV, SQRT
- Azonban szükség lehet a decimális értékre vagy akár decimális aritmetikára
  - Pl. numerikus kijelzés esetén
- Két megoldás lehetséges, feladattól függ a választás
  - Decimális adatok tárolása (nem hatékony), decimális műveletvégzés (bonyolultabb), közvetlen eredmény
  - Bináris adatok tárolása (hatékony), bináris műveletek
     (egyszerűbb), kijelzés előtt BIN2BCD konverzió

BME-MI

#### Decimális számábrázolás

- Decimális számjegyek kódolása, ábrázolása
- Csak az BCD kód lényeges, a 8421 bites súlyozással
- A 2421 és EXC3 kódokra igaz, hogy 9-es komplemensük negáltjai pl. 2 és 7
- Az 5-ből-2 kód képes bithibák jelzésére (ahol nem 2 bit aktív, az hibás BCD számjegy)

| Érték | BCD  | 2421 | EXC3 | 5-ből2 | Gray |
|-------|------|------|------|--------|------|
| 0     | 0000 | 0000 | 0011 | 00011  | 0110 |
| 1     | 0001 | 0001 | 0100 | 11000  | 0010 |
| 2     | 0010 | 0010 | 0101 | 10100  | 0011 |
| 3     | 0011 | 0011 | 0110 | 01100  | 0001 |
| 4     | 0100 | 0100 | 0111 | 10010  | 0000 |
| 5     | 0101 | 1011 | 1000 | 01010  | 1000 |
| 6     | 0110 | 1100 | 1001 | 00110  | 1001 |
| 7     | 0111 | 1101 | 1010 | 10001  | 1011 |
| 8     | 1000 | 1110 | 1011 | 01001  | 1010 |
| 9     | 1010 | 1111 | 1100 | 00101  | 1110 |
|       |      |      |      |        |      |

• A Gray kód speciális un. pozíciókód, minden egymást követő kódszava között 1 bit változik, még a 9-0 átmenetnél is. Ez kedvező lehet bizonyos esetekben.

- Láttuk az eddigiekben (pl. a decimális számjegyek kódolásánál), hogy különféle lehetőségek vannak
  - A numerikus értékeknél fixpontos, lebegőpontos
  - A decimális számjegyeknél BCD-EXC3-GRAY
  - Nemcsak számokkal dolgozunk: Szöveg, hang, kép, mérési adatok
  - Tetszőleges egyedi események, állapotok
- A továbbiakban megvizsgáljuk a kódolási technikák néhány egyszerűbb területét
- Feladat: Adott célra legkedvezőbb kódolás elérése

- A kódolási ABC 2 elemű {0,1}
- A legegyszerűbb esetekben
  - k bittel 2<sup>k</sup> kódszó képezhető, ill.
  - N darab kódszót minimum n≥ [log<sub>2</sub> N] bittel tudunk képezni
- A kódkészlet osztályozása
  - Fix vagy változó hosszúságú
  - Numerikus, alfanumerikus, grafikus
  - Pozíció kód vagy szomszédos kódolású
  - Redundáns biteket tartalmazó hibajelző és/vagy javító

- Fix hosszúságú kódok
  - Minimális bitszám igény, min. n≥ [log<sub>2</sub> N]
    - Bináris, vagy bármely, tetszőleges sorrendű (pl. Gray)
  - Nem minimális bitszám mellett
    - k-az-n-ből, pl. 1-az-N-ből, 2-az-5-ből (láttuk)
    - Könnyen kezelhető, értelmezhető, dekódolható, digitális hardverrel generálható

| 1-a-6-ból |
|-----------|
| 100000    |
| 010000    |
| 001000    |
| 000100    |
| 000010    |
| 000001    |

Eredeti ASCII karaktertáblázat 7 bites, 128 kódszó

|   | ASCII Code Chart |     |     |     |     |     |     |     |     |    |     |     |    |    |    |     |
|---|------------------|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|----|----|----|-----|
| _ | 0                | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9  | A   | В   | C  | D  | E  | F   |
| 0 | NUL              | SOH | STX | ETX | EOT | ENQ | ACK | BEL | BS  | HT | LF  | VT  | FF | CR | SO | SI  |
| 1 | DLE              | DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN | EH | SUB | ESC | FS | GS | RS | US  |
| 2 |                  | -   | =   | #   | \$  | %   | 8   | 6   | (   | )  | *   | +   | ,  | 7° | •  | /   |
| 3 | 0                | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9  | :   | ;   | <  | =  | ^  | ?   |
| 4 | @                | A   | В   | С   | D   | Ε   | F   | G   | Н   | Ι  | J   | K   | L  | H  | N  | 0   |
| 5 | Р                | Q   | R   | S   | T   | U   | ٧   | W   | Х   | Υ  | Z   | ]   | 1  | ]  | ^  | _   |
| 6 |                  | a   | b   | C   | d   | e   | f   | g   | h   | i  | j   | k   | l  | m  | n  | 0   |
| 7 | P                | q   | r   | s   | t   | u   | V   | W   | х   | У  | Z   | {   |    | }  | 2  | DEL |

BME-MI

#### Pozíció kódok

- A lineáris ill. forgó abszolút pozíció jeladóknál a kód megbízható adatátvitelt ad, a szomszédos kódszavak között mindig csak1 bit változás (forgóadónál a végértéken is)
- Gray, reflektíve kód (generálása könnyű)
  - n bitből N=2<sup>n</sup> méretű kódszókészlet generálható
  - Lehet kevesebb, de páros kódszó számot is használni

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |

 Ha már megismertük a XOR logikai függvényeket, látni fogjuk, hogy generálása viszonylag könnyű

Első előadás vége