

TRANSLATOR'S DECLARATION

I, John F. Moloney, Bsc., MIL., CChem., MRSC., translator to Taylor and Meyer of 20 Kingsmead Road, London, SW2 3JD, Great Britain, verify that I know well both the German and the English language, that I have prepared the attached English translation of 12 pages of a German Patent application in the German language with the title:

Verwendung der Acetylaminosäureracemase aus Amycolatopsis orientalis zur Racemisierung von Carbamoylaminosäuren

identified by the code number 000337 AM at the upper left of each page and corresponding to client/matter number _____ of the law firm of _____

and that the attached English translation of this document is a true and correct translation of the document attached thereto to the best of my knowledge and belief.

I further declare that all statements made of my own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements are made with the knowledge that wilful false statements and the like are punishable by fine or imprisonment, or both, under 18 USC 1001, and that such false statements may jeopardize the validity of this document.

By: J.F. Moloney

Date: 31st July 2003

Use of acetylamino acid racemase from Amycolatopsis orientalis for racemisation of carbamoylamino acids

The present invention relates to the use of an N-acetyl-amino acid racemase (AAR) in a process for the racemisation 5 of N-carbamoylamino acids.

Optically pure amino acids are important starting materials for chemical synthesis and for parenteral nutrition. Many possibilities of preparing optically pure amino acids are known to the skilled person. Enzymatic processes, i.a. are 10 suitable in this respect since, on the one hand, they operate catalytically and on the other hand permit the preparation of the amino acids with very high enantiomer enrichment.

A known enzymatic process starts from racemic hydantoins 15 which are transformed to N-carbamoyl-protected amino acids by means of hydantoinases. These are then converted by carbamoylases to the amino acids.

The separation of the racemates occurring in this reaction sequence takes place preferably on the basis of the N- 20 carbamoyl-protected amino acids because both L and D-selective carbamoylases are available (Park et al., Biotechnol. Prog. 2000, 16, 564-570; May et al., Nat Biotechnol. 2000, 18, 317-20; Pietzsch et al., J. Chromatogr. B Biomed. Sci. Appl. 2000, 737, 179-86; Chao et 25 al., Biotechnol. Prog. 1999, 15, 603-7; Wilms et al., J. Biotechnol. 1999, 63, 101-13; Batisse et al., Appl. Environ. Microbiol. 1997, 63, 763-6; Buson et al., FEMS Microbiol. Lett. 1996, 145, 55-62).

In order to guarantee complete conversion of the hydantoins 30 used to optically pure amino acids, the necessary racemisation has taken place hitherto on the basis of hydantoins by chemical or enzymatic means (EP 745678; EP 542098; scheme 1).

Scheme 1:

N-acetylamino acid racemases (AARs) from Streptomyces atratus Y-53 (Tokuyama et al., Appl. Microbiol. Biotechnol. 1994, 40, 835-840) and Amycolatopsis sp. TS-1-60 (Tokuyama et al., Appl. Microbiol. Bictechnol. 1995a, 42, 853-859) and Amycolatopsis orientalis sp. lurida (DE19935268) are known. TS-1-60, however, is found to have a very low activity in the case of N-carbamyl-protected amino acids. Moreover, this enzyme has the disadvantage of a very high metal ion dependence, which appears to be a drawback for the use of this enzyme in an industrial-scale process.

The object of the present invention was, therefore, to show the use of an N-acetylamino acid racemase for the improved racemisation of N-carbamylamino acids compared with the prior art. The intention was that this racemase might be used advantageously on an industrial scale in a process for the preparation of optically pure amino acid starting from 20 racemic hydantins.

The object is achieved by the use of the AAR according to claim 1. Claims 2 and 3 relate to preferred embodiments of the racemisation process according to the invention.

Due to the fact that an N-acetylamino acid racemase (AAR) from Amycolatopsis orientalis subspecies lurida (seq. 2) is used in a process for the racemisation of N-carbamoylamino acids, and in view of the surprisingly high activity of the AAR used according to the invention compared with TS-1-60 in terms of the racemisation of N-carbamoylamino acids, it is possible to achieve an equilibrium of enantiomers of N-carbamoyl-protected amino acids in an improved process.

This is particularly advantageous in that it is thus possible to establish a further enzymatic step in a process for the preparation of optically pure amino acids which is based on hydantoins (scheme 2).

Scheme 2:

In contrast to the enzymatic processes known from the literature and which proceed by way of enzymatic or optionally stressing chemical racemisation of hydantoins (scheme 1), a further advantageous possibility of generating optically pure amino acids from racemic hydantoins has thus been created.

The variant of AAR from Amycolatopsis o. sp. lurida prepared by recombinant technology according to DE19935268 is preferably used for the racemisation process. It is

known from DE19935268 that this exhibits relatively little heavy metal ion dependence (particularly with regard to cobalt ions) and has low amino acid inhibition. The generation thereof as a recombinant enzyme is also
5 explained therein.

The process according to the invention, as has been mentioned, is used advantageously in an overall process for the preparation of enantiomerically enriched amino acids or derivatives thereof starting from hydantoins or N-
10 carbamoyl amino acids. In the case of hydantoins, it is preferable to proceed in such a manner that racemic hydantoins are cleaved by hydantoinases into the corresponding racemic N-carbamoyl amino acids and these are then converted by L- or D-specific carbamoylases into the
15 optically active L- or D-amino acids. To ensure that no enrichment of the unconverted enantiomer of an N-carbamoyl amino acid takes place in the reaction mixture, the enantiomers of the N-carbamoyl amino acids are brought into equilibrium by the addition of the AAR according to
20 the invention and it is thus likewise possible to convert the racemic hydantoin wholly to optically pure amino acids.

This process takes place preferably in an enzyme-membrane reactor (DE 199 10 691.5).

The enzymes mentioned may be used together or successively
25 in the free form as homogeneously purified compounds or as enzymes prepared by recombinant technology. Moreover, the enzymes may also be used as a constituent of a guest organism (whole-cell catalyst as in US09/407062) or in conjunction with the digested cell mass of the host
30 organism. It is also possible to use the enzymes in the immobilised form (Bhavender P. Sharma, Lorraine F. Bailey and Ralph A. Messing, "Immobilisierte Biomaterialien - Techniken und Anwendungen", Angew. Chem. 1982, 94, 836-852). Immobilisation takes place advantageously by freeze-

drying (Dordick et al. J. Am. Chem. Soc. 194, 116, 5009-5010; Okahata et al. Tetrahedron Lett. 1997, 38, 1971-1974; Adlerscreutz et al. Biocatalysis 1992, 5, 291-305). Freeze-drying in the presence of surfactant substances such as

- 5 Aerosol OT or polyvinylpyrrolidone or polyethylene glycol (PEG) or Brij 52 (diethylene glycol monocetyl ether) (Goto et al. Biotechnol. Techniques 1997, 11, 375-378) is more particularly preferred.

The microorganism Amycolatopsis orientalis subsp. lurida is
10 deposited with the German Collection for Microorganisms under number DSM43134.

The term AAR within the context of the invention means both the native enzyme and the enzyme prepared by recombinant technology.

15 The term enantiomerically enriched denotes the presence of one enantiomer in the mixture with the other in a proportion of >50%.

The term amino acid within the context of the invention means a natural or non-naturally occurring α -amino acid,
20 i.e., the radical situated on the α -C-atom of the α -amino acid may be derived from a natural amino acid as described in Beyer-Walter, Lehrbuch der organischen Chemie, S. Hirzel Verlag Stuttgart, 22nd edition, 1991, p.822f. or also from corresponding α -radicals of non-naturally occurring amino acids which are listed, e.g. in DE19903268.8.
25

SEQUENCE PROTOCOL

<110> Degussa-Hüls AG

5 <120> Use of an acetylamino acid racemase for the
racemisation of carbamoyl amino acids

<130> 000337 AM

10 <140>
<141>

<160> 2

15 <170> PatentIn Ver. 2.1

<210> 1
<211> 1107
<212> DNA

20 <213> Amycolatopsis orientalis

<220>
<221> CDS
<222> (1)...(1107)25 <400> 1
gtg aaa ctc agc ggt gtg gaa ctg cgc cgg gtc cggt atg ccg ctc gtg 48
Val Lys Leu Ser Gly Val Glu Leu Arg Arg Val Arg Met Pro Leu Val
1 5 10 1530 gcc ccg ttc cgg acg tcg ttc ggg acg cag tcc gag cgg gaa ttg ctg 96
Ala Pro Phe Arg Thr Ser Phe Gly Thr Gln Ser Glu Arg Glu Leu Leu
20 25 3035 ctg gtc cgc gcg gtg acc ccg gcg ggc gag ggc tgg ggc gaa tgt gtc 144
Leu Val Arg Ala Val Thr Pro Ala Gly Glu Gly Trp Gly Glu Cys Val
35 40 4540 gcg atg gag gcg ccg ctc tac tcg tcg gag tac aac gac gac gcc gag 192
Ala Met Glu Ala Pro Leu Tyr Ser Ser Glu Tyr Asn Asp Ala Ala Glu
50 55 6045 cac gtg ctg cgg aac cat ctg atc ccc gca ctg ctg gcg gcc gag gac 240
His Val Leu Arg Asn His Leu Ile Pro Ala Leu Leu Ala Ala Glu Asp
65 70 75 8050 gtg acc gcg cac aag gtg acg ccg ttg ctg gcg aag ttc aag ggc cac 288
Val Thr Ala His Lys Val Thr Pro Leu Leu Ala Lys Phe Lys Gly His
85 90 9555 cgg atg gcg aag ggc gcg ctg gag atg gcg gtc ctc gac gcc gaa ctc 336
Arg Met Ala Lys Gly Ala Leu Glu Met Ala Val Leu Asp Ala Glu Leu
100 105 11055 cgc gcg cat gac cgg tcc ttc gcg gcc gag ctg ggg tcc act cgc gac 384
Arg Ala His Asp Arg Ser Phe Ala Ala Glu Leu Gly Ser Thr Arg Asp
115 120 125

tcc gtg gcc tgc ggg gtc tcg gtc ggg atc atg gac tcg atc ccg cac 432

	Ser Val Ala Cys Gly Val Ser Val Gly Ile Met Asp Ser Ile Pro His			
	130	135	140	
5	ctg ctc gac gtc gtc ggc tac ctc gac gag ggc tac gtc cgg atc Leu Leu Asp Val Val Gly Gly Tyr Leu Asp Glu Gly Tyr Val Arg Ile		480	
	145	150	155	160
10	aag ctg aag atc gag ccc ggc tgg gac gtc gag ccg gtc cgg cag gtg Lys Leu Lys Ile Glu Pro Gly Trp Asp Val Glu Pro Val Arg Gln Val		528	
	165	170	175	
15	cgt gag cgc ttc ggt gac gtc ctg ctg sag gtc gac gcg aas acc Arg Glu Arg Phe Gly Asp Asp Val Leu Leu Gln Val Asp Ala Asn Thr		576	
	180	185	190	
	gcg tac acg ctg ggc gac gcg ccc ctg ctg cgg ctc gac ccg ttc Ala Tyr Thr Leu Gly Asp Ala Pro Leu Leu Ser Arg Leu Asp Pro Phe		624	
	195	200	205	
20	gac ctg ctg atc gag cag ccg ctc gaa gaa gag gac gtc ctc ggc Asp Leu Leu Ile Glu Gln Pro Leu Glu Asp Val Leu Gly		672	
	210	215	220	
25	cac gcc gag ctg gcc aag cgg atc cgg acg ccg atc tgc ctc gac gag His Ala Glu Leu Ala Lys Arg Ile Arg Thr Pro Ile Cys Leu Asp Glu		720	
	225	230	235	240
30	tgc atc gtc tcg gcc aag gcc ggc gac gcg atc aag ctc ggc gcc Ser Ile Val Ser Ala Lys Ala Ala Asp Ala Ile Lys Leu Gly Ala		768	
	245	250	255	
35	tgc cag atc gtc aac atc aaa ccg ggc cgg gtc ggc gga tac ctc gaa Cys Gln Ile Val Asn Ile Lys Pro Gly Arg Val Gly Gly Tyr Leu Glu		816	
	260	265	270	
	gcc cgc cgg gtg cac gac gtc tgc gcg gca cac ggg atc gcg gtc tgg Ala Arg Arg Val His Asp Val Cys Ala Ala His Gly Ile Ala Val Trp		864	
	275	280	285	
40	tgc ggc ggg atg atc gag acc ggg ctc ggc cgg gcg gcc aac gtc gca Cys Gly Gly Met Ile Glu Thr Gly Leu Gly Arg Ala Ala Asn Val Ala		912	
	290	295	300	
45	ctg gcc tcg ctg ccc ggc ttc acg ctg ccg ggg gac acc tcg gcg tcc Leu Ala Ser Leu Pro Gly Phe Thr Leu Pro Gly Asp Thr Ser Ala Ser		960	
	305	310	315	320
50	ggc cgg ttc tat cgc acc gac atc acc gag ccg ttc gtc ctg gac gcc Gly Arg Phe Tyr Arg Thr Asp Ile Thr Glu Pro Phe Val Leu Asp Ala		1008	
	325	330	335	
55	ggg cat ctg ccg gtg ccg acc ggg ccg ggc ctc ggg gtc act ccg att Gly His Leu Pro Val Pro Thr Gly Pro Gly Leu Gly Val Thr Pro Ile		1056	
	340	345	350	
	ccg gat ctt ctg gac gag gtc acc acg gag aaa gcg tgg atc ggt tcg Pro Asp Leu Leu Asp Glu Val Thr Thr Glu Lys Ala Trp Ile Gly Ser		1104	
	355	360	365	

tag

1107

5 <210> 2
 <211> 368
 <212> PRT
 <213> Amycolatopsis orientalis

10 <400> 2
 Val Lys Leu Ser Gly Val Glu Leu Arg Arg Val Arg Met Pro Leu Val
 1 5 10 15
 Ala Pro Phe Arg Thr Ser Phe Gly Thr Gln Ser Glu Arg Glu Leu Leu
 20 25 30
 15 Leu Val Arg Ala Val Thr Pro Ala Gly Glu Gly Trp Gly Glu Cys Val
 35 40 45
 Ala Met Glu Ala Pro Leu Tyr Ser Ser Glu Tyr Asn Asp Ala Ala Glu
 50 55 60
 His Val Leu Arg Asn His Leu Ile Pro Ala Leu Leu Ala Ala Glu Asp
 20 65 70 75 80
 Val Thr Ala His Lys Val Thr Pro Leu Leu Ala Lys Phe Lys Gly His
 85 90 95
 Arg Met Ala Lys Gly Ala Leu Glu Met Ala Val Leu Asp Ala Glu Leu
 100 105 110
 25 Arg Ala His Asp Arg Ser Phe Ala Ala Glu Leu Gly Ser Thr Arg Asp
 115 120 125
 Ser Val Ala Cys Gly Val Ser Val Gly Ile Met Asp Ser Ile Pro His
 130 135 140
 Leu Leu Asp Val Val Gly Gly Tyr Leu Asp Glu Gly Tyr Val Arg Ile
 30 145 150 155 160
 Lys Leu Lys Ile Glu Pro Gly Trp Asp Val Glu Pro Val Arg Gln Val
 165 170 175
 Arg Glu Arg Phe Gly Asp Asp Val Leu Leu Gln Val Asp Ala Asn Thr
 180 185 190
 35 Ala Tyr Thr Leu Gly Asp Ala Pro Leu Leu Ser Arg Leu Asp Pro Phe
 195 200 205
 Asp Leu Leu Ile Glu Gln Pro Leu Glu Glu Asp Val Leu Gly
 210 215 220
 His Ala Glu Leu Ala Lys Arg Ile Arg Thr Pro Ile Cys Leu Asp Glu
 40 225 230 235 240
 Ser Ile Val Ser Ala Lys Ala Ala Asp Ala Ile Lys Leu Gly Ala
 245 250 255
 Cys Gln Ile Val Asn Ile Lys Pro Gly Arg Val Gly Gly Tyr Leu Glu
 260 265 270
 45 Ala Arg Arg Val His Asp Val Cys Ala Ala His Gly Ile Ala Val Trp
 275 280 285
 Cys Gly Gly Met Ile Glu Thr Gly Leu Gly Arg Ala Ala Asn Val Ala
 290 295 300
 Leu Ala Ser Leu Pro Gly Phe Thr Leu Pro Gly Asp Thr Ser Ala Ser
 50 305 310 315 320
 Gly Arg Phe Tyr Arg Thr Asp Ile Thr Glu Pro Phe Val Leu Asp Ala
 325 330 335
 Gly His Leu Pro Val Pro Thr Gly Prc Gly Leu Gly Val Thr Pro Ile
 340 345 350
 55 Pro Asp Leu Leu Asp Glu Val Thr Thr Glu Lys Ala Trp Ile Gly Ser
 355 360 365

Examples:

Detection of racemase activity of the recombinant AAR enzyme

The substrate spectrum of the N-acetylamino acid racemase
5 from Amycolatopsis orientalis subsp. lurida was tested
using the enzyme assay described below.

The assay was composed of the following:

	Tris/HCl buffer	50 mM (pH 8.0)
10	Substrate	25 mM
	Cobalt chloride	6 mM
	AAR	approx 150 µg purified protein
	Final volume	1 ml

Enantiomerically pure amino acid derivatives were used in
15 the test and the formation of the corresponding racemate
was monitored in the polarimeter (Perkin-Elmer 241).
Incubation took place at 30°C (heated cell) for 3 to 12
hours. The measurements were taken at a wavelength $\lambda =$
365 nm.

Table 1: List of the substrates tested and of the corresponding specific activity of the AAR.

Substrate	Specific activity
<i>N</i> -Carbamoyl-D-Met	155 mU/mg
<i>N</i> -Carbamoyl-D-Phe	20 mU/mg
<i>N</i> -Carbamoyl-L-Abs	15 mU/mg
<i>N</i> -Carbamoyl-L-Leu	20 mU/mg
<i>N</i> -Carbamoyl-L-Met	118 mU/mg
<i>N</i> -Carbamoyl-L-Tyr	62 mU/mg
<i>N</i> -Carbamoyl-L-Val	20 mU/mg

5

The N-acyl amino acid racemase from *A. TS-1-60* with *N*-carbamoyl-D-Met as substrate has an activity of 100 mU/mg. This specific activity is thus 35% lower than that of the racemase from *A. orientalis* subsp. *lurida*.

Patent claims:

1. Use of N-acetyl amino acid racemases (AAR) from Amycolatopsis orientalis subspecies lurida in a process for the racemisation of N-carbamoyl amino acids.
2. The use as claimed in claim 1 in a process for the preparation of enantiomerically enriched amino acids or derivatives thereof starting from hydantoins or N-carbamoyl amino acids.
- 10 3. The use as claimed in one of the preceding claims, wherein
the process is carried out in an enzyme-membrane reactor.

Abstract:

The invention relates to the use of the N-acetylamino acid racemase from Amycolatopsis orientalis subspecies lurida for the racemisation of N-carbamoylamino acids.

- 5 This use permits the 100% preparation of optically pure amino acids starting from racemic hydantoins in an enzymatic overall process.