Deep Generative Models

Lecture 3

Roman Isachenko

Moscow Institute of Physics and Technology Yandex School of Data Analysis

2025, Autumn

Jacobian Matrix

Given a differentiable function $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$,

$$\mathbf{z} = \mathbf{f}(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of Variables Theorem (CoV)

Let \mathbf{x} be a random variable with density $p(\mathbf{x})$, and $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ a differentiable invertible mapping. If $\mathbf{z} = \mathbf{f}(\mathbf{x})$ and

$$x = f^{-1}(z) = g(z)$$
, then

$$\begin{aligned} & p(\mathbf{x}) = p(\mathbf{z}) |\det(\mathbf{J_f})| = p(\mathbf{z}) \left| \det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) \right| = p(\mathbf{f}(\mathbf{x})) \left| \det\left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right) \right| \\ & p(\mathbf{z}) = p(\mathbf{x}) |\det(\mathbf{J_g})| = p(\mathbf{x}) \left| \det\left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}}\right) \right| = p(\mathbf{g}(\mathbf{z})) \left| \det\left(\frac{\partial \mathbf{g}(\mathbf{z})}{\partial \mathbf{z}}\right) \right|. \end{aligned}$$

Dinh L., Sohl-Dickstein J., Bengio S. Density Estimation Using Real NVP, 2016

Definition

A normalizing flow is a *differentiable*, *invertible* transformation that maps data \mathbf{x} to noise \mathbf{z} .

Log-Likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_K \circ \cdots \circ \mathbf{f}_1(\mathbf{x})) + \sum_{k=1}^K \log |\det(\mathbf{J}_{\mathbf{f}_k})|$$

Flow Log-Likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

One significant challenge is efficiently computing the Jacobian determinant.

Linear Flows

$$z = f_{\theta}(x) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

► LU Decomposition:

$$W = PLU$$
.

▶ QR Decomposition:

$$W = QR$$
.

Decomposition is performed only once during initialization. Then the decomposed matrices (P, L, U or Q, R) are optimized.

Consider an autoregressive model:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_i|\mathbf{x}_{1:j-1},\boldsymbol{\theta}), \quad p(x_i|\mathbf{x}_{1:j-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_{j,\boldsymbol{\theta}}(\mathbf{x}_{1:j-1}), \sigma_{j,\boldsymbol{\theta}}^2(\mathbf{x}_{1:j-1})\right).$$

Gaussian Autoregressive Normalizing Flow

$$\mathbf{x} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j,\theta}(\mathbf{x}_{1:j-1}) \cdot \mathbf{z}_{j} + \mu_{j,\theta}(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad \mathbf{z}_{j} = (x_{j} - \mu_{j,\theta}(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_{i,\theta}(\mathbf{x}_{1:j-1})}.$$

- ► This transformation is both **invertible** and **differentiable**, mapping p(z) to $p(x|\theta)$.
- ▶ The Jacobian matrix for this transformation is triangular.

The generative function $\mathbf{g}_{\theta}(\mathbf{z})$ is **sequential**, while the inference function $\mathbf{f}_{\theta}(\mathbf{x})$ is **not sequential**.

Let us partition **x** and **z** into two groups:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2] = [\mathbf{x}_{1:d}, \mathbf{x}_{d+1:m}]; \quad \mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2] = [\mathbf{z}_{1:d}, \mathbf{z}_{d+1:m}].$$

Coupling Layer

$$\begin{cases} \mathbf{x}_1 = \mathbf{z}_1; \\ \mathbf{x}_2 = \mathbf{z}_2 \odot \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{z}_1) + \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}_1). \end{cases} \begin{cases} \mathbf{z}_1 = \mathbf{x}_1; \\ \mathbf{z}_2 = (\mathbf{x}_2 - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_1)) \odot \frac{1}{\boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_1)}. \end{cases}$$

Both density estimation and sampling require just a single pass!

Jacobian

$$\det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) = \det\left(\frac{\mathbf{I}_d}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_1}} \quad \frac{0_{d \times (m-d)}}{\frac{\partial \mathbf{z}_2}{\partial \mathbf{x}_2}}\right) = \prod_{i=1}^{m-d} \frac{1}{\sigma_{j,\theta}(\mathbf{x}_1)}.$$

A coupling layer is a special instance of an gaussian autoregressive normalizing flow.

Outline

1. Forward and Reverse KL for NF

- 2. Latent Variable Models (LVM)
- 3. Variational Evidence Lower Bound (ELBO)
- 4. EM-Algorithm

Outline

1. Forward and Reverse KL for NF

2. Latent Variable Models (LVM)

Variational Evidence Lower Bound (ELBO)

4. EM-Algorithm

Forward KL vs. Reverse KL

Forward KL (≡ Maximum Likelihood Estimation)

$$\begin{aligned} \mathrm{KL}(\pi \| p) &= \int \pi(\mathbf{x}) \log \frac{\pi(\mathbf{x})}{p(\mathbf{x} | \boldsymbol{\theta})} d\mathbf{x} \\ &= -\mathbb{E}_{\pi(\mathbf{x})} \log p(\mathbf{x} | \boldsymbol{\theta}) + \mathrm{const} \to \min_{\boldsymbol{\theta}} \end{aligned}$$

Forward KL for Normalizing Flows

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})| \\ \mathrm{KL}(\pi \| p) &= -\mathbb{E}_{\pi(\mathbf{x})} \Big[\log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})| \Big] + \mathrm{const} \end{split}$$

- ▶ We need to compute $f_{\theta}(x)$ and its Jacobian.
- ▶ Access to the density p(z) is required.
- ► The inverse function $\mathbf{g}_{\theta}(\mathbf{z}) = \mathbf{f}_{\theta}^{-1}(\mathbf{z})$ is required only for sampling from the normalizing flow.

Forward KL vs. Reverse KL

Reverse KL

$$KL(p||\pi) = \int p(\mathbf{x}|\theta) \log \frac{p(\mathbf{x}|\theta)}{\pi(\mathbf{x})} d\mathbf{x}$$
$$= \mathbb{E}_{p(\mathbf{x}|\theta)} [\log p(\mathbf{x}|\theta) - \log \pi(\mathbf{x})] \to \min_{\theta}$$

Reverse KL for Normalizing Flows (LOTUS Trick)

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log p(\mathbf{z}) + \log |\det(\mathbf{J_f})| = \log p(\mathbf{z}) - \log |\det(\mathbf{J_g})| \\ & \mathrm{KL}(p\|\pi) = \mathbb{E}_{p(\mathbf{z})} \left[\log p(\mathbf{z}) - \log |\det(\mathbf{J_g})| - \log \pi(\mathbf{g_{\boldsymbol{\theta}}}(\mathbf{z})) \right] \end{split}$$

- We need to compute $\mathbf{g}_{\theta}(\mathbf{z})$ and its Jacobian.
- Sampling from $p(\mathbf{z})$ is required (though direct evaluation is not), along with evaluating $\pi(\mathbf{x})$.
- ightharpoonup Evaluating $\mathbf{f}_{\theta}(\mathbf{x})$ is not required.

Normalizing Flows KL Duality

Theorem

Fitting the NF model $p(\mathbf{x}|\boldsymbol{\theta})$ to a target distribution $\pi(\mathbf{x})$ via the forward KL (MLE) is equivalent to fitting the induced distribution $p(\mathbf{z}|\boldsymbol{\theta})$ to the base distribution $p(\mathbf{z})$ via the reverse KL:

$$\mathop{\arg\min}_{\boldsymbol{\theta}} \mathrm{KL}(\pi(\mathbf{x}) \| p(\mathbf{x}|\boldsymbol{\theta})) = \mathop{\arg\min}_{\boldsymbol{\theta}} \mathrm{KL}(p(\mathbf{z}|\boldsymbol{\theta}) \| p(\mathbf{z})).$$

Papamakarios G. et al. Normalizing Flows for Probabilistic Modeling and Inference, 2019

Normalizing Flows KL Duality

Theorem

$$\mathop{\arg\min}_{\boldsymbol{\theta}} \mathrm{KL}(\pi(\mathbf{x}) \| p(\mathbf{x} | \boldsymbol{\theta})) = \mathop{\arg\min}_{\boldsymbol{\theta}} \mathrm{KL}(p(\mathbf{z} | \boldsymbol{\theta}) \| p(\mathbf{z})).$$

Proof

$$ightharpoonup$$
 $\mathbf{z} \sim p(\mathbf{z}), \ \mathbf{x} = \mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z}), \ \text{so } \mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta});$

$$ightharpoonup$$
 $\mathbf{x} \sim \pi(\mathbf{x}), \ \mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}), \ \text{so } \mathbf{z} \sim p(\mathbf{z}|\boldsymbol{\theta});$

$$\log p(\mathbf{z}|\boldsymbol{\theta}) = \log \pi(\mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z})) + \log |\det(\mathbf{J}_{\mathbf{g}})|;$$

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|.$$

$$\begin{split} & \operatorname{KL}\left(p(\mathbf{z}|\boldsymbol{\theta})\|p(\mathbf{z})\right) = \mathbb{E}_{p(\mathbf{z}|\boldsymbol{\theta})}\left[\log p(\mathbf{z}|\boldsymbol{\theta}) - \log p(\mathbf{z})\right] = \\ & = \mathbb{E}_{p(\mathbf{z}|\boldsymbol{\theta})}\left[\log \pi(\mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z})) + \log |\det(\mathbf{J}_{\mathbf{g}})| - \log p(\mathbf{z})\right] = \\ & = \mathbb{E}_{\pi(\mathbf{x})}\left[\log \pi(\mathbf{x}) - \log |\det(\mathbf{J}_{\mathbf{f}})| - \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}))\right] = \\ & = \mathbb{E}_{\pi(\mathbf{x})}\left[\log \pi(\mathbf{x}) - \log p(\mathbf{x}|\boldsymbol{\theta})\right] = \operatorname{KL}(\pi(\mathbf{x})\|p(\mathbf{x}|\boldsymbol{\theta})). \end{split}$$

Outline

1. Forward and Reverse KL for NF

2. Latent Variable Models (LVM)

3. Variational Evidence Lower Bound (ELBO)

4. EM-Algorithm

Bayesian Framework

Bayes' Theorem

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}|\theta)p(\theta)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\theta)p(\theta)}{\int p(\mathbf{x}|\theta)p(\theta)d\theta}$$

- x: observed variables;
- \bullet : unknown latent variables/parameters;
- $\triangleright p(\mathbf{x}|\theta)$: likelihood;
- $p(\mathbf{x}) = \int p(\mathbf{x}|\theta)p(\theta)d\theta$: evidence;
- \triangleright $p(\theta)$: prior distribution;
- $\triangleright p(\theta|\mathbf{x})$: posterior distribution.

Interpretation

- ▶ We begin with unknown variables θ and a prior belief $p(\theta)$.
- Once data x is observed, the posterior $p(\theta|x)$ incorporates both prior beliefs and evidence from the data.

Bayesian Framework

Consider the case where the unobserved variables θ are model parameters (i.e., θ are random variables).

- ▶ $\mathbf{X} = {\{\mathbf{x}_i\}_{i=1}^n}$: observed samples;
- \triangleright $p(\theta)$: prior distribution.

Posterior Distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

If the evidence p(X) is intractable (due to high-dimensional integration), the posterior cannot be computed exactly.

Maximum a Posteriori (MAP) Estimation

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \argmax_{\boldsymbol{\theta}} (\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta}))$$

Latent Variable Models (LVM)

Maximum Likelihood Extimation (MLE) Problem

$$m{ heta}^* = rg \max_{m{ heta}} p(\mathbf{X}|m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i|m{ heta}) = rg \max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i|m{ heta}).$$

The distribution $p(\mathbf{x}|\theta)$ can be highly complex and often intractable (just like the true data distribution $\pi(\mathbf{x})$).

Extended Probabilistic Model

Introduce a latent variable z for each observed sample x:

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z}); \quad \log p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) + \log p(\mathbf{z}).$$
$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z})d\mathbf{z}.$$

Motivation

Both $p(\mathbf{x}|\mathbf{z}, \theta)$ and $p(\mathbf{z})$ are usually much simpler than $p(\mathbf{x}|\theta)$.

Latent Variable Models (LVM)

$$\log p(\mathbf{x}|m{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},m{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{m{ heta}}$$

Examples

Mixture of Gaussians

- $ightharpoonup p(z) = \operatorname{Categorical}(\pi)$

PCA Model

- $p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \mathcal{N}(\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$
- $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$

MLE for LVM

$$\sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \sum_{i=1}^n \log \int p(\mathbf{x}_i|\mathbf{z}_i,\boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i \to \max_{\boldsymbol{\theta}}.$$

$$p(\mathbf{z})$$

Naive Approach

$$p(\mathbf{x}|\boldsymbol{ heta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{ heta}) pprox rac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{ heta}),$$

where $\mathbf{z}_k \sim p(\mathbf{z})$.

Challenge: As the dimensionality of **z** increases, the number of samples needed to adequately cover the latent space grows exponentially.

image credit: https://jmtomczak.github.io/blog/4/4_VAE.html

Outline

1. Forward and Reverse KL for NF

2. Latent Variable Models (LVM)

3. Variational Evidence Lower Bound (ELBO)

4. EM-Algorithm

ELBO Derivation I

Inequality Derivation

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \log \int \frac{q(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} =$$

$$= \log \mathbb{E}_q \left[\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} \right] \ge \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} = \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x})$$

Here, q(z) is any distribution such that $\int q(z)dz = 1$.

Variational Evidence Lower Bound (ELBO)

$$\mathcal{L}_{q,oldsymbol{ heta}}(\mathbf{x}) = \mathbb{E}_q \log rac{
ho(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z})} \leq \log
ho(\mathbf{x}|oldsymbol{ heta})$$

This inequality holds for any choice of $q(\mathbf{z})$.

ELBO Derivation II

$$p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{p(\mathbf{x}|\boldsymbol{\theta})}$$

Equality Derivation

$$\mathcal{L}_{q,\theta}(\mathbf{x}) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)p(\mathbf{x}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log p(\mathbf{x}|\theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \log p(\mathbf{x}|\theta) - \text{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta))$$

Variational Decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x}) + \mathrm{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})) \geq \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x}).$$

Here, $\mathrm{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})) \geq 0$.

Variational Evidence Lower Bound (ELBO)

$$\begin{split} \mathcal{L}_{q,\theta}(\mathbf{x}) &= \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \\ &= \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z} \\ &= \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - \mathrm{KL}(q(\mathbf{z}) \| p(\mathbf{z})) \end{split}$$

Log-Likelihood Decomposition

$$\log p(\mathbf{x}|\theta) = \mathcal{L}_{q,\theta}(\mathbf{x}) + \mathrm{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\theta))$$

$$= \mathbb{E}_{q} \log p(\mathbf{x}|\mathbf{z},\theta) - \mathrm{KL}(q(\mathbf{z})||p(\mathbf{z})) + \mathrm{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\theta)).$$

Instead of maximizing the likelihood, maximize the ELBO:

$$\max_{\boldsymbol{\theta}} p(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \max_{\boldsymbol{q},\boldsymbol{\theta}} \mathcal{L}_{\boldsymbol{q},\boldsymbol{\theta}}(\mathbf{x})$$

► Maximizing the ELBO with respect to the **variational** distribution *q* is equivalent to minimizing the KL divergence:

$$rg \max_{\mathbf{z}} \mathcal{L}_{q, \theta}(\mathbf{z}) \equiv rg \min_{\mathbf{z}} \mathrm{KL}(q(\mathbf{z}) \| p(\mathbf{z} | \mathbf{x}, \theta)).$$

Outline

1. Forward and Reverse KL for NF

- 2. Latent Variable Models (LVM)
- 3. Variational Evidence Lower Bound (ELBO)
- 4. EM-Algorithm

EM-Algorithm

$$egin{aligned} \mathcal{L}_{q,oldsymbol{ heta}}(\mathbf{x}) &= \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) - \mathrm{KL}(q(\mathbf{z}) \| p(\mathbf{z})) = \ &= \mathbb{E}_q \Big[\log p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) - \log rac{q(\mathbf{z})}{p(\mathbf{z})} \Big] d\mathbf{z}
ightarrow \max_{q,oldsymbol{ heta}}. \end{aligned}$$

Block-Coordinate Optimization

- lnitialize θ^* ;
- **E-step** (optimize $\mathcal{L}_{q,\theta}(\mathbf{x})$ over q):

$$egin{aligned} q^*(\mathbf{z}) &= rg \max_q \mathcal{L}_{q, oldsymbol{ heta}^*}(\mathbf{x}) = \ &= rg \min_q \mathrm{KL}(q(\mathbf{z}) \| p(\mathbf{z} | \mathbf{x}, oldsymbol{ heta}^*)) = p(\mathbf{z} | \mathbf{x}, oldsymbol{ heta}^*); \end{aligned}$$

▶ **M-step** (optimize $\mathcal{L}_{q,\theta}(\mathbf{x})$ over θ):

$$\theta^* = \arg\max_{\boldsymbol{\theta}} \mathcal{L}_{q^*,\boldsymbol{\theta}}(\mathbf{x});$$

Repeat the E-step and M-step until convergence.

EM-Algorithm Illustration

Summary

- ► Flow duality establishes the relationship between the data and latent spaces using forward and reverse KL formulations.
- ► The Bayesian framework generalizes nearly all standard machine learning methods.
- ► LVMs introduce latent representations for observed data, enabling more interpretable models.
- LVMs maximize the variational evidence lower bound (ELBO) to obtain maximum likelihood estimates for the parameters.
- The general variational EM algorithm optimizes the ELBO within LVMs to recover the MLE for the parameters θ .