

UiO: University of Oslo

IN3050/IN4050 -Introduction to Artificial Intelligence and Machine Learning

Lecture 7 – 2023

Logistic Regression

Jan Tore Lønning

7.1 Linear Regression and Classification

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Today

- 1. Linear Regression and Classification
- 2. The Logistic Function and its Derivative
- 3. The Logistic Regression Classifier
- 4. Cross-Entropy Loss
- 5. Training the Logistic Regression Classifier
- 6. Variants of Gradient Descent
- 7. Multi-Class Classification

Supervised learning - Where are we?

	Classification	Regression
Decision tree	Lec.1 (simplified form)	
k Nearest Neighbors	Lec.5	
Perceptron	Lec.6	
Linear regression		Lec. 6
Logistic regression		
Neural networks		

Supervised learning - Where are we?

	Classification	Regression
Decision tree	Lec.1 (simplified form)	
k Nearest Neighbors	Lec.5	Possible
Perceptron	Lec.6	
Linear regression	today	Lec. 6
Logistic regression	today!	
Neural networks	Next week	

Logistic regression?

Interesting by itself

- A classifier
 - (not numerical regression)
- "Standard" ("best") purely linear classifier
- (Not in Marsland)

Useful tools for neural networks:

- The logistic function:
 - Its derivative
- Loss function
- Application of the chain rule for derivatives for gradient descent

	Linear Classifier	Linear regression
Number of input variable	Decision boundary	Prediction
One	Point	Line
Two	Line	Plane
Three	Plane	Hyper-plane
>3	Hyper-plane	
Update	Perceptron: $w_i = w_i - \eta(y - t)x_i$	$w_k = w_k - \eta \frac{2}{N} \sum_{j=1}^{N} ((t_j - y_j)(-x_{j,k}))$
Type of y, t	{0,1}	Real numbers

Example: predicting gender from height

- The decision boundary should be a number: c
- An observation, *n*, is classified
 - male if height_n > c
 - female otherwise
- How do we determine *c*?

- 1. Consider the prediction of classes as prediction of the two numbers 1, -1, resp.
- 2. Fit a linear regressor to these data (minimizing) MSE

- 1. Consider the prediction of classes as prediction of the two numbers 1, -1, resp.
- 2. Fit a linear regressor to these data (minimizing) MSE

- 1. Consider the prediction of classes as prediction of the two numbers 1, -1, resp.
- 2. Fit a linear regressor to these data (minimizing) MSE
- 3. Predict
 - Positive class if y > 0 and
 - Negative class, otherwise
- Hence, decision boundary is dotted yellow line

- 1. Consider the prediction of classes as prediction of the two numbers 1, -1, resp.
- 2. Fit a linear regressor to these data (minimizing) MSE
- 3. Predict
 - Positive class if y > 0 and
 - Negative class, otherwise
- Hence, decision boundary is dotted yellow line

Example

- Consider example from last week.
- Compare Lin.reg.-classifier to perceptron
- Assume stochastic gradient descent:
 We update for one datapoint at a time

Example

- We have so far, the following weights for the decisions:
- Positive class provided $h = -w_0 + w_1 x_1 = 1 x_1 > 0$ • i.e., $w_0 = -1$ and $w_1 = -1$
- Consider the point Q=(-1, -2):
 - Correctly classified
 - Perceptron: Do nothing

• Lin.reg.classifier:

•
$$h(Q) = 1 - 1(-2) = 3$$

•
$$w_0 = w_0 - \eta(y - t)x_0 = -1 - 0.1(3 - 1)(-1) = -0.8$$

•
$$w_1 = w_1 - \eta(y - t)x_1 = -1 - 0.1(3 - 1)(-2) = -0.6$$

Limitations

- For example
 - moving 7 (out of) 100 pos 100 steps to the right
 - the decision boundary is moved
 - from 168
 - to 171.5
 - the accuracy (on the 200 training set) goes
 - from 0.81
 - to 0.78
- Should these outliers have such an effect?

By the way:

We have here used 0 and 1 for the two classes.

This works equally fine.

Prediction: Positive class for y > 0.5

 The MSE seems to punish correctly classified items too severely.

The "correct" decision boundary

- The (Heaviside) step function
- But:
 - How do we find the best one?
 - Not a differentiable function

7.2 The Logistic Function and its Derivative

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

The "correct" decision boundary

- The (Heaviside) step function
- But:
 - How do we find the best one?
 - Not a differentiable function

The sigmoid curve

- An approximation to the ideal decision boundary
- Differentiable
 - Gradient descent
- Mistakes further from the decision boundary are punished harder

An observation, n, is classified

- male if f(height_n) > 0.5
- female otherwise

Exponential function - Logistic function

$$y = e^z$$

$$y = \frac{1}{1 + e^{-z}} = \frac{e^z}{e^z + 1}$$

The logistic function

•
$$y = \frac{1}{1+e^{-z}} = \frac{e^z}{e^z+1}$$

- A sigmoid curve
 - Other functions also make sigmoid curves e.g., $y = \tanh(z)$
- Maps $(-\infty, \infty)$ to (0,1)
- Monotone
- Can be used for transforming numeric values into probabilities

The derivative of the logistic function

$$\bullet y = f(x) = \frac{1}{1 + e^{-x}}$$

- This has the form y = g(h(x)) where $g(z) = \frac{1}{z}$ and $z = h(x) = 1 + e^{-x}$
- Hence $f'(x) = g'(z)h'(x) = \frac{-1}{(1+e^{-x})^2}(-e^{-x}) =$

•
$$\frac{e^{-x}+1-1}{(1+e^{-x})^2} = \frac{e^{-x}+1}{(1+e^{-x})^2} - \frac{1}{(1+e^{-x})^2} = y - y^2 = y(1-y)$$

We will use this also in the multi-layer neural networks

7.3 The Logistic Regression Classifier

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Logistic Regression:

- First sum of weighted inputs :
- $z = \sum_{i=0}^{m} w_i x_i = \boldsymbol{w} \cdot \boldsymbol{x}$
- Apply the logistic function σ to this sum

$$y = \sigma(z) = \frac{1}{1 + e^{-\overrightarrow{w} \cdot \overrightarrow{x}}}$$

- For $x = \vec{x}$ predict
 - as the positive class if y > 0.5,
 - otherwise, the negative class

Comparison: activation function

- Perceptron: step function
- Linear regression: identity
- Logistic regression: the logistic function

With two features

From IDRE, UCLA

- Two features: x_1, x_2
- Apply weights: W_0, W_1, W_2
- Let $y = -w_0 + w_1 x_1 + w_2 x_2$
- Apply the logistic function, σ , and check whether

•
$$\sigma(y) = \frac{1}{1 + e^{-y}} > 0.5$$

Geometrically: Folding a plane along a sigmoid The decision boundary is the intersection of this surface and the plane $p = \sigma(y) = 0.5$: This turns out to be a straight line

Example with two features

• Example:

- Heights and weights
- Acc.: = 0.95
- Blue line = decision boundary
 - Points above it gets a value > 0.5

Understanding logistic regression 1

The following 3 slides attempt to give you an understanding of logistic regression models.

- The model is probability-based
- There are two classes t=1, t=0
- For an observation $x = \vec{x}$, we wonder:
- How probable is it that this \vec{x} belongs to class 1, and how probable is it that it belongs to class 0?
- i.e., what are $P(t=1|\vec{x})$ and $P(t=0|\vec{x})$? Which is largest?

Understanding logistic regression 2

- What are $P(t = 1|\vec{x})$ and $P(t = 0|\vec{x})$? Which is largest?
- Consider the odds: $\frac{P(t=1|\vec{x})}{P(t=0|\vec{x})} = \frac{P(t=1|\vec{x})}{1-P(t=1|\vec{x})}$
 - If this is >1, \vec{x} most probably belongs to t=1, otherwise t=0
 - The odds varies between 0 and infinity
- Take the logarithm of this, $\log \frac{P(t=1|\vec{x})}{1-P(t=1|\vec{x})}$
 - If this is >0, \vec{x} most probably belongs to t=1
 - This varies between minus infinity and plus infinity

Understanding logistic regression 3

•
$$\log \frac{P(t=1|\vec{x})}{1-P(t=1|\vec{x})} > 0$$
?

- Try to find a linear expression for this, $\log\left(\frac{P(t=1|\vec{x})}{1-P(t=1|\vec{x})}\right) = \vec{w} \cdot \vec{x} > 0$
- Given such a linear expression, then

$$\bullet \frac{P(t=1|\vec{x})}{1-P(t=1|\vec{x})} = e^{\vec{W}\cdot\vec{X}}$$

• Solving this with respect to $P(t=1|\vec{x})$ yields

•
$$P(t=1|\vec{x}) = \frac{e^{\vec{w}\cdot\vec{x}}}{1+e^{\vec{w}\cdot\vec{x}}} = \frac{1}{1+e^{-\vec{w}\cdot\vec{x}}}$$

A probabilistic classifier

- The logistic regression will ascribe a probability to all instances for the class t=1 (and for t=0)
- We turn it into a classifier by ascribing class t=1 if and only if $P(t=1|\vec{x}) > 0.5$
- We could also choose other cutoffs, e.g., if the classes are not equally important.

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

How to find the best curve?

- What are the best choices of a and b in $\frac{1}{1+e^{-(ax+b)}}$?
- Geometrically a and b determine the
 - Midpoint (b)
 - Steepness (a)
- of the curve
- What are the best choices of \vec{w} $y = P(t = 1 | \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$

Learning in the logistic regression model

- A training instance consists of
 - a feature vector \vec{x}
 - a label (class), t, which is 1 or 0.
- With a set of weights, \overrightarrow{w} , the classifier will assign
 - $y = P(t = 1 | \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$ to this training instance \vec{x}
 - where $P(t = 0 | \vec{x}) = 1 y$
- Goal: find \vec{w} that maximize $P(t|\vec{x})$ of all training inst.s (\vec{x}, t)

Loss function

- In machine learning we decide on an objective for the training.
- We can do that in terms of a loss function.
- The goal of the training is to minimize the loss function.
- Example: linear regression
 - Loss: Mean Square Error

- We can choose between various loss functions.
- The choice is partly determined by the learner.
- For logistic regression we choose (simplified) cross-entropy loss

Footnote: Notation

- I observe that I haven't been consequent in notation
- I fluctuate between boldface x and non-bold with an arrow \vec{x} . There are no (intended) differences between the two, $x = \vec{x}$
- I have also fluctuated between x_j and $\vec{x}^{(j)}$ for vector number j in the input set. Again, the two ways of writing amount to the same.

The money game

- I will give you 10 multiple-choice questions. You must answer all.
- I give you a million NOK before the game.
- In each round, you must bet your remaining money on the alternatives. Say there are 3 answers in the first round. You could bet any of the following, e.g.

	Your bet			You keep		
	Answer A	Answer B	Answer C	If A correct	If B correct	If C correct
Strategy 1	1,000,000	0	0	1,000,000	0	0
Strategy 2	400,000	300,000	300,000	400,000	300,000	300,000
Strategy 3	800,000	150,000	50,000	800,000	150,000	50,000

- You proceed to the next round with the money you keep.
- What would be the best strategy?

Cross-entropy loss

- The underlying idea is that we want to maximize the joint probability of all the predictions we make
 - $\prod_{i=1}^{N} P(t^{(i)} \mid \vec{x}^{(i)})$, over all the training data i = 1, 2, ..., N
 - (since the training data are independent)
- This is the same as maximizing
 - $\log \prod_{i=1}^{N} P(t^{(i)} | \vec{x}^{(i)}) = \sum_{i=1}^{N} \log P(t^{(i)} | \vec{x}^{(i)})$
- This is the same as minimizing
 - $L_{CE}(\vec{w}) = -\log \prod_{i=1}^{N} P(t^{(i)}|\vec{x}^{(i)}) = \sum_{i=1}^{N} -\log P(t^{(i)}|\vec{x}^{(i)})$
 - Which is an instance of what is called the cross-entropy loss

More on cross-entropy loss

- When t = 1, $P(t \mid \vec{x}) = y = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$
- When t= 0, $P(t | \vec{x}) = 1 y$
- Since
 - $y^t = y$ when t = 1
 - $y^t = 1$ when t = 0
 - $(1-y)^{(1-t)} = 1$ when t = 1
 - $(1-y)^{(1-t)} = (1-y)$ when t = 0
- $P(t|\vec{x}) = y^t(1-y)^{(1-t)}$, whether t = 1 or t = 0

7.5 Training the Logistic Regression Classifier

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Gradient descent

- The loss function tells us which model is best.
- How do we find it?
- No closed-form solution, i.e., formula as there are for linear regression,
- Good news:
 - The log-loss function is convex: you are not stuck in local minima
 - We know which way to go

The gradient

We have

•
$$L_{CE}(\vec{w}) = -\log \prod_{i=1}^{N} P(t^{(i)}|\vec{x}^{(i)}) = \sum_{i=1}^{N} -\log P(t^{(i)}|\vec{x}^{(i)})$$

•
$$P(t|\vec{x}) = y^t (1-y)^{(1-t)}$$

•
$$y = \sigma(\vec{w} \cdot \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$$

We shall find

•
$$\frac{\partial}{\partial w_j} L_{CE}(\vec{w})$$
 for each w_j

• since
$$\frac{\partial}{\partial w_j} L_{CE}(\vec{w}) = \sum_{i=1}^N -\frac{\partial}{\partial w_j} \log P(t^{(i)} | \vec{x}^{(i)})$$

•
$$-\frac{\partial}{\partial w_i} \log P(t|\vec{x}) = -\frac{\partial}{\partial w_i} \left(\log \left(y^t (1-y)^{(1-t)} \right) \right) =$$

$$-\frac{\partial}{\partial w_i} \left(t \log(y) + (1-t) \log(1-y) \right)$$

Derivative: the chain rule

We shall find

•
$$-\frac{\partial}{\partial w_i} \log P(t|\vec{x}) = -\frac{\partial}{\partial w_i} (t \log(y) + (1-t)\log(1-y))$$

• =
$$-\frac{\partial}{\partial y} \left(t \log(y) + (1 - t) \log(1 - y) \right) \left(\frac{\partial}{\partial w_i} y \right)$$
 by the chain rule for derivatives

•
$$\frac{\partial}{\partial y} (t \log(y) + (1 - t) \log(1 - y)) = \frac{t}{y} - \frac{(1 - t)}{(1 - y)} = \frac{t(1 - y) - y(1 - t)}{y(1 - y)} = \frac{(t - y)}{y(1 - y)}$$

The derivative of the logistic function

•
$$y = \sigma(\vec{w} \cdot \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}} = \frac{1}{1 + e^{-z}}$$
, where $z = \vec{w} \cdot \vec{x}$

•
$$\frac{\partial}{\partial w_i} y = \left(\frac{\partial}{\partial z} y\right) \left(\frac{\partial}{\partial w_i} z\right)$$

- $\frac{\partial}{\partial z}y = y(1-y)$ (the logistic function)
- $\frac{\partial}{\partial w_i} z = x_i$
- $\bullet \frac{\partial}{\partial w_i} y = y(1-y)x_i$

Putting it together graphically

•
$$\frac{\partial}{\partial w_i} L_{CE}(\mathbf{x}, t, \mathbf{w}) =$$

•
$$\frac{\partial}{\partial w_i} L_{CE}(\mathbf{x}, t, \mathbf{w}) =$$
• $\frac{\partial}{\partial y} L_{CE}(\mathbf{x}, t, \mathbf{w}) \left(\frac{\partial}{\partial z} y\right) \left(\frac{\partial}{\partial w_i} z\right)$

Putting it all together

•
$$\frac{\partial}{\partial w_i} L_{CE}(\mathbf{x}, t, \mathbf{w}) = -\frac{\partial}{\partial w_i} \log P(t|\mathbf{x}) = -\frac{\partial}{\partial w_i} (t \log(y) + (1 - t)\log(1 - y))$$

• =
$$-\frac{\partial}{\partial y} \left(t \log(y) + (1 - t) \log(1 - y) \right) \left(\frac{\partial}{\partial w_i} y \right)$$

• =
$$-\frac{(t-y)}{y(1-y)}y(1-y)x_i = -(t-y)x_i$$

- A long journey but the result is simple
- Adding together (matrix multiplication) for all the training data yields the gradient

$$\bullet (\nabla f)_i = \frac{\partial}{\partial w_i} L_{CE}(X, T, \mathbf{w}) = \sum_{j=1}^N -(t_j - y_j) x_{j,i}$$

Afterthoughts: LogReg+MSE-Loss?

- Could we have used Mean Squared Error as the loss function for the Logistic Regression classifier instead?
 - YES
- Would it work equally well?
 - NO
- Why?
 - I will show you

What would be different?

•
$$\frac{\partial}{\partial w_i} L_{MSE}(\boldsymbol{x}, t, \boldsymbol{w}) =$$

•
$$\frac{\partial}{\partial y} L_{MSE}(\mathbf{x}, t, \mathbf{w}) \left(\frac{\partial}{\partial z} y \right) \left(\frac{\partial}{\partial w_i} z \right) =$$

•
$$2(y-t)y(1-y)x_i$$

Properties of the two loss functions

- We will consider the two loss functions on the same data set:
 - 2 features + bias
 - used weekly exercises 6

Comparison

- The CE-loss is convex
 - The only minimum is global
- The MSE-loss is not convex when applied to logistic regression

 $\lambda w_1 Loss_{CE}(x, t, (-2.51, w_1, 2.02))$

 $\lambda w_1 Loss_{MSE}(x, t, (-2.51, w_1, 2.02))$

 $\lambda w_2 Loss_{CE}(x, t, (-2.51, 1.04, w_2))$

 $\lambda w_2 Loss_{MSE}(x, t, (-2.51, 1.04, w_2))$

7.6 Variants of Gradient Descent

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Variants of gradient descent

Batch training:

- Calculate the loss for the whole training set, and the gradient for this
- Make one move in the correct direction
- Repeat (an epoch)
- Can be slow

Stochastic gradient descent:

- Pick one item
- Calculate the loss for this item
- Calculate the gradient for this item and move in the opposite direction
- Each move does not have to be in towards the direction of the gradient for the whole set.
- But the overall effect may be good
- Can be faster

Variants of gradient descent

Mini-batch training:

- Pick a subset of the training set of a certain size
- Calculate the loss for this subset
- Make one move in the direction opposite of this gradient
- Repeat (an epoch)
- A good compromise between the two extremes
- (The other two are subcases of this)

https://suniljangirblog.wordpress.com/2018/12/13/variants-of-gradient-descent/

7.7 Multi-Class Classification One vs. Rest

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Multi-class classification

Classification

 Assign a label (class) from a finite set of labels to an observation

- So far, many algorithms and examples have been binary: *yes-no, 1-0*
- But many classification tasks are multi-class:
 - To each observation x choose one label from a finite set \mathbf{C}
- What is different?

Multi-class classification

- A finite set, C, of n different labels (n > 2)
- To each observation x choose one label from the set C

We will consider two approaches:

- One vs. rest classifier
 - (also called one vs. all)
- Multinomial logistic regression, or softmax regression

Algorithms

Binary

- Perceptron
- Linear Regression
- Logistic Regression

Multi-class

- Decision tree
- *k*NN
- Naive Bayes

========

- Perceptron
- Multinomial Logistic Regression

1-of-N or "one hot encoding"

- The labels might be categorical:
 - 'apple', tomato', 'dog', 'horse'
- The algorithms demand numerical attributes.
- First attempt
 - 'apple' = 1
 - 'tomato' = 2
 - 'dog' = 3
 - etc.
- Why isn't this a good idea?

- Better:
 - 'apple' = (1, 0, 0, 0, 0, 0)
 - 'tomato' = (0, 1, 0, 0, 0, 0)
 - 'dog' = (0, 0, 1, 0, 0, 0)
 - etc.
- Both the target and the predicted value are vectors.

From multi-label to multi-class

Multi-label classifier

- Make n different classifiers, one for each class
- For classifier *j*:
 - consider class j the positive class
 - all other items in the negative class
 - train a classifier f_i
- Application
 - Assign a label c_j to an item if and only if it is classified as positive by f_i .

Multi-class classifier

- "To each observation x choose one label from the set C"
- How can a multi-label classifier be turned into a multi-class classifier?

One vs. rest (also called one vs. all)

- Start like the multilabel classifier: make one classifier for each class.
- It is easy to decide for items which fall into exactly one class
- But what if they fall into
 - More than one class?
 - No classes?

https://github.com/amueller/introduction to ml with python

One vs. rest

- If each classifier predicts a score, compare the scores for the classes
- Choose the class with the highest score.
- E.g., log. reg.:
 - Probability of being red: 0.8
 - Probability of being blue: 0.7
 - Choose red

https://github.com/amueller/introduction to ml with python

Footnote: Linear Regression Classifier

 We could in principle also make a multiclass linear regression classifier.

• Beware:

- Different numerical weights for the same classifier
- Makes it difficult to compare numbers across classifiers
- Solution:
 - Normalize the weights
- Not part of the syllabus
- Stick to LogReg for one vs. rest.

7.8 Multi-Class Classification Multinomial Logistic Regression

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Towards Multinomial Logistic Regression

- On the way, we will apply a bird's eye perspective
- Comparing perceptron, linear regression, logistic regression
- Compare to Marsland
- Shortly describe a multi-class perceptron

A general view

• Common

- $z_j = \sum_{i=0}^n w_{i,j} x_i$
- $w_{i,j}$ is the weight into node j from node i
 - Some index in opposite order

Binary classifiers

Classifier	g	Loss
Perceptron	Step	0-1 loss
Lin. Regr.	Identity	MSE
Log.Regr.	Logistic	Cross-entropy

Connections going into a node

Connections going out of a node

$$\begin{bmatrix} x_0 & x_1 & x_2 & \cdots & x_m \end{bmatrix}$$

Multi-label perceptron

- Marsland's description of perceptron:
 - Possible targets: (0,1,0,0,1)

•
$$y_j = g(z_j) = \begin{cases} 1 & \text{if } z_j > 0 \\ 0 & \text{if } z_j \le 0 \end{cases}$$

- Loss is 0-1 loss for each *j*
- Describes a multi-label classifier
 - Each y_j depends only on the $w_{h,k}$ where k=j
 - This could have been described as *n* independent binary perceptrons

Target

Multi-class perceptron

- The target contains one 1, the rest are 0s
- $\bullet g(z_1, z_2, \dots, z_n) =$
- $argmax(z_1, z_2, ..., z_n)$
 - The index with the max value
- The update rule (0-1 loss)
 - $w_{i,j} = w_{i,j} \eta(y_j t_j)x_i$
 - will correct for j = 2 and j = 5
 - leaves the other weights unaltered

Multi-output linear regression

- $y_j = g(z_j) = z_j$
- MSE-loss:

$$\sum_{k=1}^{N} (\sum_{j=1}^{n} (y_{k,j} - t_{k,j})^2)$$

- *n* output nodes
- *N* input items
- y_j independent of $w_{h,k}$ $h \neq k$,
 - hence corresponds to n independent models
 - (Gets more interesting for multilayer networks)

Multinomial Logistic Regression

•
$$z_j = \sum_{i=0}^n w_{i,j} x_i$$

• Apply the softmax-function, S, where

•
$$y_j = (S(z_1, ..., z_n))_j = \frac{e^{z_j}}{\sum_{k=1}^n e^{z_k}}$$

- Observe:
 - y_i depends on all the z_k
 - If $z_h > z_k$ then $y_h > y_k$
 - $0 < y_i < 1$
 - $\sum_{j=1}^{n} y_j = 1$
 - A probability distribution

•
$$P(C_j|\vec{x}) = \frac{e^{\overrightarrow{w_j} \cdot \vec{x}}}{\sum_{k=1}^n e^{\overrightarrow{w_k} \cdot \vec{x}}}$$

Training Multinomial Logistic Regression 1

- The target has the form (0,0, ..., 0,1,0, ..., 0), say
 - $t_s = 1$ and $t_j = 0$ for $j \neq s$
- We compare

•
$$\mathbf{y} = (y_1, y_2, ... y_n)$$

- to the target labels
 - $\mathbf{t} = (t_1, t_2, \dots t_n)$
- using cross-entropy loss
 - $L_{CE}(y, t) = -\sum_{j=1}^{n} t_j \log y_j = -\log y_s$

Training Multinomial Logistic Regression 2

$$\bullet \ y_j = \frac{e^{z_j}}{\sum_{k=1}^n e^{z_k}}$$

- $L_{CE}(\mathbf{y}, \mathbf{t}) = -\sum_{j=1}^{n} t_j \log y_j = -\log y_s$
- Goal: to find $\frac{\partial}{\partial w_{i,j}} L_{CE}(\boldsymbol{x},t,\boldsymbol{w})$ for all $w_{i,j}$
- Use the chain-rule for derivatives
- A little more complicated than for LogReg
- The result is simple, though
- $\frac{\partial}{\partial w_{i,j}} L_{CE}(\mathbf{x}, t, \mathbf{w}) = (y_j t_j) x_i$

Training Multinomial Logistic Regression 3

- $\bullet w_{i,j} = w_{i,j} + \eta (t_j y_j) x_i$
- if $t_S = 1$:
 - $w_{i,s} = w_{i,s} + \eta (1 y_s) x_i$
 - $w_{i,j} = w_{i,j} \eta(y_j)x_i$ • for $j \neq s$
- Here

•
$$z_j = \sum_{i=0}^m w_{i,j} x_i$$

•
$$y_j = \frac{e^{z_j}}{\sum_{k=1}^n e^{z_k}}$$

Observe: All weights are updated for each observation

Applying Multinomial Logistic Regression

 We can use this as a probabilistic classifier

•
$$P(C_j|\vec{x}) = \frac{e^{\overrightarrow{w_j} \cdot \vec{x}}}{\sum_{k=1}^n e^{\overrightarrow{w_k} \cdot \vec{x}}}$$

To make hard decisions use

$$argmax_{j=1,\dots,n} \frac{e^{\overrightarrow{w_j} \cdot \overrightarrow{x}}}{\sum_{k=1}^n e^{\overrightarrow{w_k} \cdot \overrightarrow{x}}}$$

