1. Connection to analysis service database

Create a data connection to the UK_Accidents_Database database on stwssbsql01.ad.okstate.edu and create a Data Source View that has all the tables in the UK Accidents Database relational database.

2. OLAP Cube design and use

- Create the named calculations:
- 1. Driver's Gender description

- 2. Light condition description (as screenshot on section 3)
- 3. Accident severity description

4. Casualty class details:

5. Casualty stage of Age: <21 Child; >=21 Adult

Create 2 new measures

Maximum number of casualty

Maximum Age of Drivers

♣ Create a hierarchy for the Date Dimension

Create our custom hierarchy

Partition and Aggregation

Accidents Master 2005-2007

Accidents Master 2008-2012

Create 2 aggregations for 50% percent improving in performance

//1. Top 6 months among all years with the most number of casualties (TopCount)
Select [Measures].[Number Of Casualties] on 0,
TopCount(([Dim Date].[Year].children,[Dim Date].[Month].children), 6, [Measures].[Number of Casualties]) on 1
From [UK Accidents Database]


```
//2. Number of vehicles with casualty severity type 3 (IIF)
with member [Measures].[Multicar] AS
iif([Measures].[Number Of Vehicles] > 1, "Multicar Crash", "Single Car Crash")
```

select {[Measures].[Number Of Casualties], [Measures].[Multicar]} on 0,
[Dim Vehicles].[Sex Of Driver].[Sex Of Driver].members on 1
From [UK Accidents Database]

	Number Of Casualties	Multicar
-1	84	Multicar Crash
1	4964611	Multicar Crash
2	2082483	Multicar Crash
3	275906	Multicar Crash
Unknown	(null)	Single Car Crash

//3. Number of casualties per year
select [Measures].[Number Of Casualties] on 0,
[Dim Date].[Year].members on 1
From [UK Accidents Database]

	on nectaches bacas
	Number Of Casualties
All	7323084
2005	1060832
2006	1004696
2007	993009
2008	904923
2009	857946
2010	814998
2011	932853
2012	753827
2013	(null)
2014	(null)
2015	(null)

//4. Bottom six months for number of casualties (BottomCount, Filter, Not IsEmpty)
Select [Measures].[Number Of Casualties] on 0,
BottomCount(Filter([Dim Date].[Month].members, Not IsEmpty ([Measures].[Number of Casualties])

), 6, [Measures].[Number Of Casualties]) on 1

From [UK Accidents Database]

	Number Of Casualties
2	528925
1	559728
3	562577
4	581769
12	583622
5	602829

```
//5. Number of casualties in the first four years (Head)
select [Measures].[Number Of Casualties] on 0,
Head([Dim Date].[Year].members, 4) on 1
from [UK Accidents Database]
```

	Number Of Casualties
All	7323084
2005	1060832
2006	1004696
2007	993009

//6. Number of vehicles in accidents during the last four years (Tail)
select [Measures].[Number Of Vehicles] on 0,
Tail([Dim Date].[Year].members, 4) on 1
from [UK Accidents Database]

	Number Of Vehicles
2012	847437
2013	(null)
2014	(null)
2015	(null)

```
//7. Number of Casualties during the February (Extract)
select [Measures].[Number Of Casualties] on 0,
Extract({[Dim Date].[Month].&[2]}, [Dim Date].[Month]) on 1
From [UK Accidents Database]
```

```
Number Of Casualties
2 528925
```

```
//8. Number of casualties by month ordered by number of casualties descending (Order)
select [Measures].[Number Of Casualties] on 0,
Order ([Dim Date].[Year].children, [Measures].[Number Of Casualties], ASC) on 1
From [UK Accidents Database]
```

	Number Of Casualties
2013	(null)
2014	(null)
2015	(null)
2012	753827
2010	814998
2009	857946
2008	904923
2011	932853
2007	993009
2006	1004696
2005	1060832

```
//9. Number of casualties per year except 2015 (Except)
select [Measures].[Number Of Casualties] on 0,
Except([Dim Date].[Year].[Year],[Dim Date].[Year].&[2015]) on 1
From [UK Accidents Database]
```

	Number Of Casualties
2005	1060832
2006	1004696
2007	993009
2008	904923
2009	857946
2010	814998
2011	932853
2012	753827
2013	(null)
2014	(null)

//10. Maximum age of driver per year
select [Measures].[Maximum Age Of Drive] on 0,
[Dim Date].[Year].[Year] on 1
From [UK Accidents Database]

	Maximum Age Of Drive
2005	99
2006	98
2007	98
2008	98
2009	99
2010	99
2011	99
2012	99
2013	(null)
2014	(null)
2015	(null)

10 Functions Used

- 1. Head
- 2. Tail
- 3. Order
- 4. Not IsEmpty
- 5. Filter
- 6. Except
- 7. Extract
- 8. BottomCount
- 9. TopCount
- 10. IIF

3. Choosing models for casualty severity prediction

We will predict the severity of casualties in accidents using Casualty Severity as the target variable. Casualty Severity have 3 values: 1 – Fatal; 2- Serious; 3-Slight. The predictors will have discrete values, as tables below:

- Casualty Type

code	label	
0	Pedestrian	
1	Cyclist	
2	Motorcycle 50cc and under rider or passen	ger
3	Motorcycle 125cc and under rider or passe	nger
4	Motorcycle over 125cc and up to 500cc ride	r or passenger
5	Motorcycle over 500cc rider or passenger	
8	Taxi/Private hire car occupant	
9	Car occupant	
10	Minibus (8 - 16 passenger seats) occupant	
11	Bus or coach occupant (17 or more pass sea	its)
16	Horse rider	
17	Agricultural vehicle occupant	
18	Tram occupant	
19	Van / Goods vehicle (3.5 tonnes mgw or ur	ider) occupant
20	Goods vehicle (over 3.5t. and under 7.5t.)	occupant
21	Goods vehicle (7.5 tonnes mgw and over) of	occupant
22	Mobility scooter rider	
23	Electric motorcycle rider or passenger	
90	Other vehicle occupant	
97	Motorcycle - unknown cc rider or passenge	er .
98	Goods vehicle (unknown weight) occupant	t

- Ped location

code	label						
0	Not a Ped	lestrian					
1	Crossing	on pedestr	ian crossin	g facility			
2	Crossing i	n zig-zag a	pproach li	nes			
3	Crossing i	n zig-zag e	xit lines				
4	Crossing	elsewhere	within 50r	n. of pedes	strian cross	ing	
5	In carriage	eway, cros	sing elsew	here			
6	On footw	ay or verge	2				
7	On refuge	e, central is	sland or ce	ntral reser	vation		
8	In centre	of carriage	way - not	on refuge,	island or ce	entral rese	rvation
9	In carriage	eway, not	crossing				
10	Unknown	or other					
-1	Data miss	ing or out	of range				

- Sex of Casualty

code	label		
1	Male		
2	Female		
3	Not known		
-1	Data missing or out of range		of range

- Car Passenger: number of car passengers
- Bus or Coach Passenger: number of bus or Coach passenger
- Casualty Class Detail

We will use 4 data mining techniques: Decision Tree, Logistic Regression, Naïve Bayes and Neural Network to create 4 prediction models. First, we create the mining structure as below:

In these mining structures, we used a maximum of 1000 cases and 30 percent test data.

4. Models assessment and findings

Decision Tree model

As you can see, the probability of casualties which have fatal injuries after accident is 1.03%, serious condition is 11.30% and slight condition is 87.67% which has the most cases.

The most important predictor is Casualty Type.

Logistic Regression model

Concluding from the output, casualties which have highest probability of fatal injuries are Ped Location = -1. But this value means missing or unknown, so it makes no sense.

Assessing the model result, there are some conclusions as below:

- Casualty Type = 18 (Tramp Occupant) will have highest probability of fatal injuries with 99.98% probability, then Ped Location = 3 (crossing in zig-zag exit line) with 94.30% probability of fatal injuries.
- Casualty Type = 97 (motor cycle unknow cc or passenger) will have highest probability of serious injuries.
- Casualty Type = 23 (Electric motor cycle rider) and Ped location = 2 (crossing in zig-zag approach line) will have highest probability of slight injuries with 99.99% and 99.40% respectively.

Naïve Bayes model

Casualty Type is the most important predictor for Casualty Severity. The characters of casualties which have highest probabilities of fatal injuries are: No bus – coach passenger (99%), no car passenger (84%), not a pedestrian, sex = male, driver or rider, casual type = 9 (car occupant)

Neural Network model

Excluding the unknown values (-1) for predictors, the casualties with casual type = 18 (tramp occupant) will have the highest probability of fatal injuries (34.09%).

Casualties with casual type = 98 (Goods vehicle – unknown weight occupant) will have the highest probability of serious injuries (64.92%)

Casualties with casual type = 20 (Goods vehicle 3.5-7.5t occupant) and casual class detail = passenger have the highest probability of slight injuries \sim 94%

5. Models comparison and conclusion:

<u>Lift score</u>: using the mining structure test cases, we will assess the lift scores of all 4 models for predicting Fatal Injuries (Severity = 1). Neural Network has highest score here.

Classification Matrix:

	_			
Counts for Decision Tree on Casualty Severity => correct classification percentage = 881/1000 = 88.1%				
	Predicted	1 (Actual)	2 (Actual)	(Actual)
	1	0	0	0
	2	0	0	0
	3	7	112	881
Counts for Logistic Regression on Casualty Severity => correct classification percentage = 880/1000 = 88%				
	Predicted	1	2	3
	Fredicted	(Actual)	(Actual)	(Actual)
	1	0	1	0
	2	0	0	1
	3	7	111	880
Counts for Neural Network on Casualty Severity => correct classification percentage = 881/1000 = 88.1%				
		4		
	Predicted	(Actual)	(Actual)	(Actual)
	Predicted 1	(Actual)	(Actual)	-
			,	-
	1	0	0	(Actual)
Counts for Naive Bayes on Casualty Severity => correct classification percentage = 840/1000 = 84%	1 2	0	0	(Actual) 1 0
	1 2	0	0	(Actual) 1 0
	1 2 3	0 0 7	0 1 111 2	(Actual) 1 0 880
	1 2 3	0 0 7 1 (Actual)	0 1 111 2 (Actual)	(Actual) 1 0 880 3 (Actual)

Basically, all 4 models have the same correct classification percentage.

We try to run the cross validation with fold count = 10 but the dataset is too large and timeout occurred.

□ Conclusion: the best prediction model here is Neural Network with highest lift score, and the result shows that you target for 50% population of casualties, you will correctly identify 85.71% of fatal injuries, a very good score. This model also has 88.1% percent of correct classification, which is a decent result.