

Graph Positional Autoencoders as Self-supervised Learners

Yang Liu*, Deyu Bo*, Wenxuan Cao, Yuan Fang, Yawen Li, Chuan Shi†

***** Motivation

Background

Masked Graph Autoencoders (GAEs) follow a corruption-reconstruction framework, which learns graph representations by recovering the missing information of the incomplete input graphs.

Pre-training of Masked Graph Autoencoders

Fine-tuning for downstream task

> Limitations of existing methods

Existing masked GAEs tend to focus on reconstructing low-frequency information of graphs while overlooking high-frequency information.

Comparison between different masked graph autoencoders.

Comparison of the frequency magnitudes between original and corrupted graphs.

> Our Goal

To equip GAEs with the ability to exploit the diverse frequency information.

Inspired by Spectral Theory

➤ A Spectral Perspective on the Corruption Strategy

Eigenvectors of the graph Laplacian represent different frequencies, acting as frequency bases in the spectral domain.

> Eigenvectors as Positional Encoding

Eigenvectors are utilized as enhanced features (positional encodings) to boost expressivity of MPNN.

The Incorporating eigenvector, i.e., position, corruption-reconstruction into masked GAEs.

* Proposed Framework: GraphPAE

- ➤ **GraphPAE** uses a dual-path architecture to separately reconstruct node features and positions, overcoming the expressivity and ambiguity challenges.
- Feature Path: Integrates positional encodings to enhance message-passing expressivity for improved feature reconstruction.
- **Position Path:** Leverages node representations to refine positional encodings, enabling the model to learn diverse frequency information.
- Reconstruction Strategy: Reconstructs relative node distances as a surrogate objective to avoid the ambiguity of eigenvectors.

$\begin{array}{ll} & \sum \mathbf{Encoder} \\ & \mathbf{X}_{i}^{(l+1)}, \mathbf{P}_{i}^{(l+1)} = f_{\mathrm{enc}}^{(l+1)} \left(\mathbf{X}_{i}^{(l)}, \left\{ \mathbf{X}_{j}^{(l)} \right\}_{j \in \mathcal{N}_{i}}, \mathbf{P}_{i}^{(l)} \right) \\ & \mathcal{L}_{\mathrm{feat}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left(1 - \frac{\mathbf{X}_{i}^{T} \mathbf{X}_{i}^{'}}{\|\mathbf{X}_{i}\| \cdot \|\mathbf{X}_{i}^{'}\|} \right)^{\gamma} \\ & \mathcal{L}_{\mathrm{feat}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left(1 - \frac{\mathbf{X}_{i}^{T} \mathbf{X}_{i}^{'}}{\|\mathbf{X}_{i}\| \cdot \|\mathbf{X}_{i}^{'}\|} \right)^{\gamma} \\ & \mathcal{L}_{\mathrm{feat}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left(1 - \frac{\mathbf{X}_{i}^{T} \mathbf{X}_{i}^{'}}{\|\mathbf{X}_{i}\| \cdot \|\mathbf{X}_{i}^{'}\|} \right)^{\gamma} \\ & \mathcal{L}_{\mathrm{pos}} = \begin{cases} \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left(1 - \frac{\mathbf{X}_{i}^{T} \mathbf{X}_{i}^{'}}{\|\mathbf{X}_{i}\| \cdot \|\mathbf{X}_{i}^{'}\|} \right)^{\gamma} \\ & \mathcal{L}_{\mathrm{pos}} = \begin{cases} \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{P}_{i,j} \right| - \frac{1}{2}, & \text{otherwise} \end{cases} \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{Y}_{i,j} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{Y}_{i,j} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{Y}_{i,j} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{Y}_{i,j} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{Y}_{i,j} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{Y}_{i,j} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{Y}_{i,j} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{Y}_{i,j} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{Y}_{i,j} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{Y}_{i,j} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{Y}_{i,j} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{X}_{i}^{T} - \mathbf{X}_{i}^{T} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i} \in \widetilde{\mathcal{V}}} \left| \mathbf{X}_{i}^{T} - \mathbf{X}_{i}^{T} - \mathbf{X}_{i}^{T} - \mathbf{X}_{i}^{T} - \mathbf{X}_{i}^{T} \right| \\ & \mathcal{L}_{\mathrm{pos}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_{i}$

Experiments

> Performance of Node Classification

		Small C	Large Graphs			
Dataset	BlogCatalog	Chameleon	Squirrel	Actor	arXiv-year	Penn94
Supervised	80.52±2.10	80.02±0.87	71.91±1.03	33.93±2.47	46.02±0.26	81.53±0.55
DGI	72.07±0.16	43.83±0.14	34.56±0.10	27.98±0.09	-	-
BGRL	79.74 ± 0.46	61.24±1.07	43.24±0.52	26.61±0.57	41.43 ± 0.04	63.31±0.49
MVGRL	63.24±0.94	73.19 ± 0.42	60.09 ± 0.44	34.64 ± 0.20	-	-
CCA-SSG	74.00 ± 0.28	75.00 ± 0.75	61.58±1.98	27.79 ± 0.58	40.78 ± 0.01	62.63±0.20
$\mathrm{Sp^2GCL}$	72.73 ± 0.46	78.88±1.04	62.61±0.87	34.70 ± 0.92	39.09±0.02	68.80±0.45
VGAE	60.47±1.84	62.32±1.90	42.50±1.35	31.57±0.75	36.39±0.21	55.31±0.28
GraphMAE	79.90±1.13	79.50 ± 0.57	61.13±0.60	32.15±1.33	40.30 ± 0.04	67.97±0.21
GraphMAE2	77.34 ± 0.12	79.13±0.19	70.27 ± 0.88	34.48 ± 0.26	38.97 ± 0.03	67.86 ± 0.42
MaskGAE	73.10 ± 0.08	74.50 ± 0.87	68.53±0.44	33.44 ± 0.34	40.59 ± 0.04	63.84 ± 0.03
S2GAE	75.76 ± 0.43	60.24±0.37	68.60±0.56	26.17 ± 0.38	40.32±0.12	70.24 ± 0.09
AUG-MAE	82.03 ± 0.69	70.10±1.88	62.57±0.67	33.42±0.38	37.10 ± 0.13	69.90±0.43
GraphPAE	85.76±1.22	80.51±1.25	72.05±1.40	38.55±1.35	41.85±0.04	71.79±0.37

> Performance of Graph Prediction

Task	Regro	ession (Metric: RM	∕ISE ↓)	Classificat	ion (Metric: RO	C-AUC% †)	
Dataset	molesol	molipo	molfreesolv	molbace	molbbbp	molclintox	moltocx21
Supervised	1.173±0.057	0.757±0.018	2.755±0.349	80.42±0.96	68.17±1.48	88.14±2.51	74.91±0.51
InfoGraph	1.344±0.178	1.005±0.023	10.005±8.147	73.64±3.64	66.33±2.79	64.50±5.32	69.74±0.57
GraphCL	1.272±0.089	0.910±0.016	7.679 ± 2.748	73.32±2.70	68.22±2.19	74.92±4.42	72.40 ± 1.07
MVGRL	1.433±0.145	0.962±0.036	9.024±1.982	74.88±1.43	67.24±3.19	73.84±2.75	70.48 ± 0.83
JOAO	1.285±0.121	0.865 ± 0.032	5.131±0.782	74.43±1.94	67.62±1.29	71.28±4.12	71.38 ± 0.92
$\mathrm{Sp}^2\mathrm{GCL}$	1.235±0.119	0.835 ± 0.026	4.144±0.573	78.76±1.43	68.72±1.53	80.88±3.86	73.06±0.75
GraphMAE	1.050±0.034	0.850±0.022	2.740±0.233	79.14±1.31	66.55±1.78	80.56±5.55	73.84±0.58
GraphMAE2	1.225±0.081	0.885±0.019	2.913±0.293	80.74 ± 1.53	67.67±1.44	75.75±3.65	72.93 ± 0.69
StructMAE	1.499±0.043	1.089±0.002	2.568 ± 0.262	77.75 ± 0.42	65.66±1.16	79.42±4.56	71.13±0.61
AUG-MAE	1.248±0.026	0.917±0.013	2.395 ± 0.158	78.54±2.49	67.05±0.63	82.66±1.98	74.33 ± 0.07
GraphPAE	1.015±0.045	0.810±0.018	2.058±0.188	81.11±1.24	68.56±0.71	82.69±3.39	74.46±0.54

> Performance of Transfer Learning on QM9

Target	μ	α	$\epsilon_{ m homo}$	$\epsilon_{ m lumo}$	Δ_{ϵ}	R^2	ZPVE	U_0	U	Н	G	C_v
Unit	D	a_0^3	10^{-2} meV	10^{-2} meV	10^{-2} meV	a_0^2	10^{-2} meV	meV	meV	meV	meV	cal/mol/K
GraphCL	1.035	2.321	2.030	3.667	4.523	40.725	2.063	2.461	1.745	1.734	1.751	1.747
GraphMAE	1.030	2.924	2.407	6.373	4.813	41.955	4.623	<u>1.411</u>	2.207	2.208	2.207	2.200
Mole-BERT	1.031	1.918	1.477	4.127	4.240	44.374	2.190	2.532	2.509	2.511	2.516	2.508
SimSGT	1.064	2.413	2.837	4.227	<u>4.107</u>	40.504	2.127	1.948	2.420	2.416	2.416	2.410
GraphPAE	0.703	0.879	1.199	2.141	2.289	36.480	0.502	0.510	0.639	0.639	0.641	0.643

> Ablation Studies

Exp	Corrupt Info.		Recon Info.		Dual-Path	Node-level		Graph-level		
No.	Feature	Position	Feature	Position		Blog (†)	Squirrel (†)	Bace (†)	Bbbp (†)	Freesolv (\lambda)
a	✓	✓	✓			82.8±1.7	66.4±1.6	78.4±1.2	66.4±1.7	2.79±0.40
b	\checkmark	\checkmark	\checkmark	\checkmark		83.5±1.0	68.5±0.9	78.9±2.1	66.8±0.6	2.44 ± 0.36
c	\checkmark		\checkmark			84.6±1.6	71.3±0.9	79.4±3.4	67.7±0.9	2.20 ± 0.14
d	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	85.8±1.2	72.1±1.4	81.1±1.2	68.6±0.7	2.06±0.19

