Corrigé TD6. Martingales.

Exercice 1. Soit $(M_n)_{n\geqslant 0}$ une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\geqslant 0}$, telle que $\mathbb{E}(M_n^2)<+\infty$ pour tout $n\geqslant 0$. Soit

$$A_n = \sum_{i=1}^n \mathbb{E}([M_i - M_{i-1}]^2 | \mathcal{F}_{i-1})$$
(1)

Montrer que $M_n^2 - A_n$ est une $(\mathcal{F}_n)_{n \geqslant 0}$ -martingale.

Solution. Il suffit de montrer que pour tout $n \ge 0$ on a, presque sûrement

$$\mathbb{E}[M_{n+1}^2 - A_{n+1} - M_n^2 + A_n | \mathcal{F}_n] = 0.$$

Alors

$$\begin{split} M_{n+1}^2 - A_{n+1} - M_n^2 + A_n &= M_{n+1}^2 - M_n^2 - \mathbb{E}[(M_{n+1} - M_n)^2 | \mathcal{F}_n] \\ &= M_{n+1}^2 - M_n^2 - \mathbb{E}[M_{n+1}^2 + M_n^2 | \mathcal{F}_n] + 2\mathbb{E}[M_{n+1}M_n | \mathcal{F}_n] \\ &= M_{n+1}^2 - \mathbb{E}[M_{n+1}^2 | \mathcal{F}_n] + 2\mathbb{E}[M_{n+1} | \mathcal{F}_n] M_n - 2M_n^2 \\ &= M_{n+1}^2 - \mathbb{E}[M_{n+1}^2 | \mathcal{F}_n] + 2M_n^2 - 2M_n^2 = M_{n+1}^2 - \mathbb{E}[M_{n+1}^2 | \mathcal{F}_n] \end{split}$$

et clairement

$$\mathbb{E}[M_{n+1}^2 - \mathbb{E}[M_{n+1}^2 | \mathcal{F}_n] | \mathcal{F}_n] = 0.$$

Exercice 2. Soit $(Y_n)_{n\geqslant 1}$ une suite de v.a. i.i.d. avec $\mathbb{P}(Y_i=1)=p=1-P(Y_i=-1)$. Soit $S_n=\sum_{i=1}^n Y_i$ (et $S_0=0$). Montrer que les processus $(W_n)_{n\geqslant 0}$ et $(M_n)_{n\geqslant 0}$ définit par

$$W_n = S_n - (2p-1)n, \qquad W_0 = 0$$

et

$$M_n = \left(\frac{1-p}{p}\right)^{S_n}, \qquad M_0 = 1$$

sont des martingales par rapport à la filtration naturelle des Y_n définie par $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$ pour $n \ge 1$ et $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

Solution. On doit montrer que $\mathbb{E}[\Delta W_n|\mathcal{F}_n] = 0$ pour tout $n \ge 0$ et une relation similaire pour ΔM_n . Commençons par ΔW_n :

$$\Delta W_n = S_{n+1} - S_n - (2p-1) = Y_{n+1} - (2p-1)$$

et par indépendance des $(Y_i)_{i \ge 1}$ on a

$$\mathbb{E}[\Delta W_n | \mathcal{F}_n] = \mathbb{E}[Y_{n+1} | \mathcal{F}_n] - (2p-1) = \mathbb{E}[Y_{n+1}] - (2p-1) = 0.$$

Pour M_n :

$$\Delta M_n = M_{n+1} - M_n = \left[\left(\frac{1-p}{p} \right)^{Y_{n+1}} - 1 \right] M_n$$

et donc

$$\mathbb{E}[\Delta M_n | \mathcal{F}_n] = \mathbb{E}\left\{ \left[\left(\frac{1-p}{p} \right)^{Y_{n+1}} - 1 \right] M_n \middle| \mathcal{F}_n \right\} = \mathbb{E}\left\{ \left[\left(\frac{1-p}{p} \right)^{Y_{n+1}} - 1 \right] \middle| \mathcal{F}_n \right\} M_n$$

$$= \mathbb{E}\left\{ \left(\frac{1-p}{p} \right)^{Y_{n+1}} - 1 \right\} M_n = \left[\left(\frac{1-p}{p} \right) p + (1-p) \left(\frac{1-p}{p} \right)^{-1} - 1 \right] M_n$$

$$= 0 \cdot M_n = 0$$

Exercice 3. Soit G une fonction convexe et croissante, de dérivée à droite g. On note $S_n = \sup_{0 \le k \le n} X_k$.

a) Montrer que si $(X_n)_{n\geq 0}$ est une sous-martingale positive,

$$H_n = G(S_n) - (S_n - X_n)g(S_n)$$

est une sous-martingale. Sugg: Pour établir cette propriété, on remarquera que

$$(S_{n+1}-X_{n+1})g(S_{n+1})=(S_{n+1}-X_{n+1})g(S_n).$$

et on en déduira que la différence $H_{n+1} - H_n$ est plus grande que $g(S_n)(X_{n+1} - X_n)$.

b) En déduire que si $(X_n)_{n\geqslant 0}$ est une sous-martingale positive nulle en 0, pour tout p>1

$$\mathbb{E}(S_N^p) \leqslant \frac{p}{n-1} \mathbb{E}[X_N S_N^{p-1}].$$

Puis en déduire (en utilisant l'inégalité de Hölder) qu'il existe une constante C_p qui ne dépends pas de X telle que pour tout p>1

$$\mathbb{E}(S_N^p) \leqslant C_n \mathbb{E}[X_N^p].$$

c) En utilisant la fonction $G(x) = (x - K)_+$, montrer que si $(X_n)_{n \ge 0}$ est une sous-martingale positive

$$\mathbb{P}(S_N \geqslant K) \leqslant \frac{\mathbb{E}[X_N]}{K}.$$

Solution. On doit montrer que $\mathbb{E}[\Delta H_n | \mathcal{F}_n] \geqslant 0$. Or, $S_{n+1} > X_{n+1} \Rightarrow S_{n+1} = S_n$ car $S_{n+1} = \max(S_n, X_{n+1})$ et donc on a que

$$(S_{n+1}-X_{n+1})g(S_{n+1}) = (S_{n+1}-X_{n+1})g(S_n)$$

car si $S_{n+1} = X_{n+1}$ alors les deux cotés sont nulles. De ce fait on en déduit que

$$\Delta H_n = G(S_{n+1}) - (S_{n+1} - X_{n+1})g(S_{n+1}) - G(S_n) + (S_n - X_n)g(S_n)$$

$$= G(S_{n+1}) - G(S_n) + (S_n - S_{n+1})g(S_n) + (X_{n+1} - X_n)g(S_n)$$

$$\geqslant (X_{n+1} - X_n)g(S_n)$$

car $G(x) \ge G(y) + (x-y)g(y)$ pour tout x > y et donc pour $x = S_{n+1}$ et $y = S_n$, par la convexité de G et le fait que g est la dérivée droite de G. A ce point

$$\mathbb{E}[\Delta H_n | \mathcal{F}_n] \geqslant \mathbb{E}[\Delta X_n | \mathcal{F}_n] g(S_n) \geqslant 0$$

car $g(x) \ge 0$ (étant G une fonction croissante) et étant $(X_n)_{n\ge 0}$ une sous-martingale. Donc $(H_n)_{n\ge 0}$ est bien une sous-martingale. Soit maintenant $G(x)=(x)_+^p$ pour $p\ge 1$. Elle est une fonction croissante et convexe de dérivée droite $g(x)=p(x)_+^{p-1}\ge 0$. Alors si $(X_n)_{n\ge 0}$ est une sous-martingale nulle en 0 on a que le processus

$$H_n = (S_n)_+^p - p(S_n)_+^{p-1}(S_n - X_n)$$

est sous-martingale et donc $\mathbb{E}[H_N] \geqslant \mathbb{E}[H_0] = 0$ ce qui donne que

$$\mathbb{E}[S_N^p] = \mathbb{E}[(S_N)_+^p] \geqslant p \, \mathbb{E}[(S_N)_+^{p-1}(S_N - X_N)] = p \, \mathbb{E}[S_N^p] - p \, \mathbb{E}[S_N^{p-1}X_N]$$

car $S_n \ge 0$ étant donné que $X_0 = 0$. Si on suppose que $S_N \in L^p(\Omega)$ et simplifiant cette inégalité on obtient que

$$(1-p)\mathbb{E}[S_N^p] \geqslant -p\mathbb{E}[S_N^{p-1}X_N] \qquad \Rightarrow \qquad \mathbb{E}[S_N^p] \leqslant \frac{p}{1-p}\mathbb{E}[S_N^{p-1}X_N].$$

En général on peut considérer $S_{N,K} = \min(S_N, K)$ avec K constante positive qui on fait tendre vers $+\infty$. Dans ce cas il reste vrai que $(S_{n,K})_{n\geqslant 0}$ est un processus croissante et tel que $S_{n+1,K} > X_{n+1} \Rightarrow S_{n+1,K} = S_{n,K}$ et donc on a aussi que le processus $(H_{n,K})_{n\geqslant 0}$ défini par

$$H_{n,K} = G(S_{n,K}) - (S_{n,K} - X_n)g(S_{n,K})$$

est une sous-martingale et que

$$\mathbb{E}[S_{N,K}^p] \leqslant \frac{p}{1-n} \mathbb{E}[S_{N,K}^{p-1} X_N].$$

Quand $K \nearrow + \infty$ on obtient, par convergence monotone que

$$\mathbb{E}[S_N^p] \stackrel{\text{mon}}{=} \lim_{K \to +\infty} \mathbb{E}[S_{N,K}^p] \leqslant \lim_{K \to +\infty} \frac{p}{1-p} \mathbb{E}[S_{N,K}^{p-1} X_N] \stackrel{\text{mon}}{=} \frac{p}{1-p} \mathbb{E}[\lim_{K \to +\infty} S_{N,K}^{p-1} X_N]$$

$$= \frac{p}{1-p} \mathbb{E}[S_N^{p-1} X_N].$$

Par Holder on a que

$$\mathbb{E}[S_N^p] \leqslant \frac{p}{1-p} \mathbb{E}[(S_N^{p-1})^{p'}]^{1/p'} \mathbb{E}[X_N^{q'}]^{1/q'}$$

pour tout p', $q' \ge 1$ tels que 1/p' + 1/q' = 1. En choisissant p' tel que p'(p-1) = p on a que 1/p' = (p-1)/p et 1/q' = 1 - 1/p' = 1 - (p-1)/p = 1/p et donc

$$\mathbb{E}[S_N^p] \leqslant \frac{p}{1-n} \mathbb{E}[S_N^p]^{(p-1)/p} \mathbb{E}[X_N^p]^{1/p}$$

ce qui donne si $S_N \in L^p$:

$$\mathbb{E}[S_N^p]^{1/p} \leqslant \frac{p}{1-p} \mathbb{E}[X_N^p]^{1/p}.$$

En général il suffit de passer par $S_{N,K}$ et de prendre la limite pour $K \to \infty$.

Maintenant on considère $G(x) = (x - K)_+$ pour une constante $K \ge 0$ fixé. On a que $g(x) = 1_{x \ge K}$ et donc que le processus $H_n = (S_n - K)_+ - (S_n - K)_+ 1_{S_n \ge K}$ est une sous-martingale et donc que

$$\mathbb{E}[(S_N - K)_+] \geqslant \mathbb{E}[(S_N - X_N) 1_{S_N \geqslant K}]$$

Mais $\mathbb{E}[(S_N - K)_+] = \mathbb{E}[(S_N - K)1_{S_N \geqslant K}]$ et donc

$$\mathbb{E}[(X_N - K)1_{S_N \geqslant K}] \geqslant 0 \qquad \Rightarrow \qquad \mathbb{E}[X_N 1_{S_N \geqslant K}] \geqslant K \mathbb{P}(S_N \geqslant K)$$

$$\Rightarrow \mathbb{P}(S_N \geqslant K) \leqslant \frac{\mathbb{E}[X_N 1_{S_N \geqslant K}]}{K} \leqslant \frac{\mathbb{E}[X_N]}{K}.$$

Exercice 4. Urne de Polya: On dispose (d'une infinité) de boules rouges et vertes. A l'instant 0, une urne contient une boule de chaque couleur et on effectue une succession de tirages définis par la règle suivante: on tire une boule de l'urne "au hasard" et on la remet dans l'urne en ajoutant une boule du même couleur. Soit S_n le nombre de boules rouges au temps n, et $X_n = S_n/(n+2)$ la proportion de boules rouges au temps n.

a) Montrer que la suite $(S_n)_{n\geqslant 0}$ est une chaîne de Markov et que

$$\mathbb{E}[f(S_{n+1})|S_n] = f(S_n+1)\frac{S_n}{n+2} + f(S_n)\frac{n+2-S_n}{n+2}.$$

- b) Montrer que X_n est une martingale par rapport à sa filtration naturelle et calculer $\mathbb{E}(X_n)$.
- c) Montrer que $X_n \to X_\infty$ presque sûrement et dans L^1 .
- d) Pour tout $k \ge 1$ soit

$$Z_n^{(k)} = \frac{S_n(S_n+1)\cdots(S_n+k-1)}{(n+2)\cdots(n+k+1)}.$$

Montrer que $(Z_n^{(k)})_{n\geqslant 0}$ est une martingale pour tout $k\geqslant 1$ et calculer $\mathbb{E}[Z_n^{(k)}]$.

e) Montrer que

$$\mathbb{E}[X_{\infty}^k] = \mathbb{E}[Z_0^k] = \frac{1}{k+1}$$

f) Par un calcul de fonction caractéristique en déduire que la v.a. X_{∞} suive une loi uniforme sur [0,1].

Solution. À chaque pas de temps n on tire une boule au hasard parmi les n+2 boules présent. Soit $(U_n)_{n\geqslant 0}$ une suite des v.a. indépendantes telles que U_n a la loi uniforme sur $\{0, ..., n+2\}$. La suite $(S_n)_{n\geqslant 1}$ satisfait alors la récurrence aléatoire suivante

$$S_{n+1} = S_n + 1_{U_n \leq S_n}, \qquad S_0 = 1$$

et donc elle est une chaîne de Markov avec probabilité de transition

$$\mathbb{P}(S_{n+1} = k+1 | S_n = k) = \mathbb{P}(U_n \leqslant k) = \frac{k}{n+2}, \qquad \mathbb{P}(S_{n+1} = k | S_n = k) = \mathbb{P}(U_n > k) = \frac{n+2-k}{n+2}$$

pour tout k=0,...,n+2 et zéro autrement. La définition d'espérance conditionnelle par rapport à un événement donne

$$\mathbb{E}[f(S_{n+1})|S_n = k] = f(k+1)\frac{k}{n+2} + f(k)\frac{k}{n+2}$$

ce qu'implique que

$$\mathbb{E}[f(S_{n+1})|S_n] = f(S_n+1)\frac{S_n}{n+2} + f(S_n)\frac{n+2-S_n}{n+2}$$

et en particulier

$$\mathbb{E}[S_{n+1}|S_n] = \frac{S_n(S_n+1)}{n+2} + \frac{S_n(n+2-S_n)}{n+2} = \frac{n+3}{n+2}S_n$$

Mais alors

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_{n+1}|X_1, ..., X_n] = \frac{1}{n+3} \mathbb{E}[S_{n+1}|X_1, ..., X_n]$$

$$= \frac{1}{n+3} \mathbb{E}[S_{n+1} | S_1, \dots, S_n] \stackrel{\text{Markov}}{=} \frac{1}{n+3} \mathbb{E}[S_{n+1} | S_n] = \frac{S_n}{n+2} = X_n$$

car $X_n = (n+2)S_n$ et donc $\sigma(X_1, ..., X_n) = \sigma(S_1, ..., S_n)$ et où on a utilisé la propriété de Markov. Cela montre que $(X_n)_{n\geq 0}$ est une martingale. On a donc que

$$\mathbb{E}[X_n] = \mathbb{E}[X_0] = \frac{1}{2}$$

car au début on a une boule rouge et une verte. Il est aussi clair que $0 \le X_n \le 1$ et donc que la martingale est positive et bornée. Par le théorème de Doob elle converge presque sûrement vers $X_{\infty} \in L^1$. Par la broutille de la martingale en effet la convergence est aussi L^2 car $\sup_n \mathbb{E}[X_n^2] \le 1 < +\infty$ et donc on a aussi la convergence dans L^1 .

Soit

$$Z_n^{(k)} = \frac{S_n(S_n+1)\cdots(S_n+k-1)}{(n+2)\cdots(n+k+1)}$$

alors

$$\mathbb{E}[Z_{n+1}^{(k)}|S_n] = \frac{(S_n+1)(S_n+2)\cdots(S_n+k)}{(n+3)\cdots(n+k+2)} \cdot \frac{S_n}{n+2} + \frac{S_n(S_n+1)\cdots(S_n+k-1)}{(n+3)\cdots(n+k+2)} \cdot \frac{n+2-S_n}{n+2}$$
$$= \frac{S_n(S_n+1)\cdots(S_n+k-1)}{(n+2)\cdots(n+k+1)} \cdot \frac{n+2+k}{n+k+2} = Z_n^{(k)}$$

ce qui montre que $(Z_n^{(k)})_{n\geqslant 0}$ est une martingale bornée pour tout $k\geqslant 1$. Par le théorème de convergence et par le fait que $0\leqslant Z_n^{(k)}\leqslant 1$ on a que $Z_n^{(k)}\to Z_\infty^{(k)}$ presque sûrement et dans L^2 et donc que $\mathbb{E}[Z_0^{(k)}]=\mathbb{E}[Z_n^{(k)}]\to \mathbb{E}[Z_\infty^{(k)}]$ ce qui donne

$$\mathbb{E}[Z_{\infty}^{(k)}] = \mathbb{E}[Z_{0}^{(k)}] = \frac{1 \cdot 2 \cdots k}{2 \cdots (k+1)} = \frac{1}{k+1}.$$

Au même temps la convergence presque sûre de $X_n \to X_\infty$ donne que

$$Z_n^{(k)} = \frac{(n+2)^k X_n (X_n + 1/(n+2)) \cdots (X_n + (k-1)/(n+2))}{(n+2) \cdots (n+k+1)} \to X_{\infty}^k$$

presque sûrement. On obtient que $Z_{\infty}^{(k)} \! = \! X_{\infty}^k$ et que

$$\mathbb{E}[X_{\infty}^k] = \frac{1}{k+1}$$

pour tout $k \ge 1$. Cela suffit pour caractériser la loi de X_{∞} : pour tout $t \in \mathbb{R}$

$$\mathbb{E}[e^{itX_{\infty}}] = \sum_{k \geq 0} \frac{(it)^k}{k!} \mathbb{E}[X_{\infty}^k] = \sum_{k \geq 0} \frac{(it)^k}{(k+1)!} = \frac{1}{it} \sum_{k \geq 0} \frac{(it)^{k+1}}{(k+1)!} = \frac{e^{it} - 1}{it}$$

et donc par unicité de la fonction caractéristique on peut conclure que la loi de X_{∞} est la loi uniforme sur [0,1]:

$$\int_0^1 e^{it} dt = \frac{e^{it} - 1}{it}$$

Exercice 5. Soient $(Y_n)_{n\geqslant 1}$ v.a. i.i.d. , $Y_n\geq 0$ et $\mathbb{E}(Y_n)=1$. Soit $X_n=\prod_{k=1}^n Y_k$ pour tout $n\geqslant 1$ et $X_0=1$.

- a) Montrer que $(X_n)_{n\geqslant 0}$ est une martingale par rapport à la filtration engendrée par les $(Y_n)_{n\geqslant 1}$ $(\mathcal{F}_n=\sigma(Y_1,\ldots,Y_n)$ pour $n\geqslant 1$ et $\mathcal{F}_0=\{\emptyset,\Omega\}$)
- b) Supposons que $Y_n \ge \delta$ pour quelque $\delta > 0$. Montrer que $\mathbb{E}[\log Y_1] < 0$ et utiliser la loi des grandes nombres pour $\log X_n/n$ pour montrer que si $\mathbb{P}(Y_1 = 1) < 1$ alors

$$\lim_{n \to \infty} X_n = 0 \qquad p.s.$$

c) Soit maintenant $Z_n = \max(\delta, Y_n)$. Montrer qu'il existe $\delta > 0$ tel que $\mathbb{E}[\log Z_n] < 0$ et conclure que si $\mathbb{P}(Y_1 = 1) < 1$ alors

$$\lim_{n\to\infty} X_n = 0 \qquad p.s.$$

sans l'hypothèses supplémentaires sur $(Y_n)_{n\geqslant 0}$.

d) En déduire qu'en général la convergence de $X_n \to X_\infty$ dans le théorème de Doob n'a pas lieu dans $L^1(\Omega)$ mais seulement presque sûrement.

Solution. On a que $\Delta X_n = (Y_{n+1} - 1)X_n$ et donc que $\mathbb{E}[\Delta X_n | \mathcal{F}_n] = \mathbb{E}[(Y_{n+1} - 1)|\mathcal{F}_n]X_n = 0$ par indépendance des $(Y_i)_{i\geqslant 1}$. Le processus $(X_n)_{n\geqslant 0}$ avec $X_0 = 1$ est donc une martingale positive. A fortiori X est aussi une sur-martingale positive et par le théorème de Doob elle converge presque sûrement vers $X_\infty \in L^1(\Omega)$. Le but de cet exercice c'est de montrer que la convergence n'a pas lieu nécessairement dans L^1 . Supposons pour le moment que $Y_n \geqslant \delta > 0$. Cette borne inférieure implique que $\log Y_n \in L^1$. En effet

$$\begin{split} \mathbb{E}[|\log Y_n|] \leqslant \mathbb{E}[\log(1/\delta) \, \mathbf{1}_{Y_n \leqslant 1}] + \mathbb{E}[\log Y_n \, \mathbf{1}_{Y_n \geqslant 1}] \\ \leqslant \log(1/\delta) \mathbb{P}(Y_n \leqslant 1) + \mathbb{E}[\log (1 + Y_n \mathbf{1}_{Y_n \geqslant 1})] \\ \leqslant \log(1/\delta) \mathbb{P}(Y_n \leqslant 1) + \log (1 + \mathbb{E}[Y_n \mathbf{1}_{Y_n \geqslant 1}]) \\ \leqslant \log(1/\delta) \mathbb{P}(Y_n \leqslant 1) + \log (1 + \mathbb{E}[Y_n]) \leqslant \log(1/\delta) + \log 2 < + \infty \end{split}$$

par l'inégalité de Jensen. L'inégalité de Jensen donne aussi que

$$\mathbb{E}[\log Y_n] < \log \mathbb{E}[Y_n] = 0$$

avec inégalité stricte car $\mathbb{P}(Y_n=1) < 1$. Or

$$\log X_n = \sum_{i=1}^n \log Y_i$$

et par la loi des grandes nombres (valable sous l'hypothèse $\log Y_i \in L^1$) on a que

$$\lim_{n\to\infty} \frac{1}{n} \log X_n = \mathbb{E}[\log Y_1] = c < 0$$

et donc que pour tout $\varepsilon > 0$ suffisamment petit (tel que $c + \varepsilon < 0$) il existe $N_{\varepsilon}(\omega)$ tel que pour tout $n > N_{\varepsilon}$ on a $\log X_n \leqslant n(c + \varepsilon) \to -\infty$ ce qui nous donne $X_n \leqslant e^{(c+\varepsilon)n} \to 0$ p.s.

Pour enlever l'hypothèse que $\mathbb{E}[|\log Y_1|] < +\infty$ on fixe $1 > \delta > 0$ et on définit $Z_n = \max(\delta, Y_n)$ et $W_n = Z_1 \cdots Z_n$. On a alors que $W_n \geqslant X_n$ et que $\mathbb{E}[|\log Z_1|] < +\infty$. Quand $\delta \searrow 0$ on a que $Y_1 = \inf_{\delta \to 0} Z_1$ et par convergence monotone que

$$\begin{split} \inf_{\delta \to 0} \mathbb{E}[\log Z_1] &= \inf_{\delta \to 0} \; (\mathbb{E}[\log Z_1 \, \mathbf{1}_{Z_1 \leqslant 1}] + \mathbb{E}[\log Z_1 \, \mathbf{1}_{Z_1 > 1}]) \\ &= \mathbb{E}[\inf_{\delta \to 0} \left(\log Z_1 \, \mathbf{1}_{Z_1 \leqslant 1}\right)] + \mathbb{E}[\log Y_1 \, \mathbf{1}_{Y_1 > 1}] \\ &= \mathbb{E}[\log Y_1 \, \mathbf{1}_{Y_1 \leqslant 1}] + \mathbb{E}[\log Y_1 \, \mathbf{1}_{Y_1 > 1}] = \mathbb{E}[\log Y_1] < \log \mathbb{E}[Z_1] = 0. \end{split}$$

Donc pour δ suffisamment petit $\mathbb{E}[\log Z_n] < 0$ ce qui nous permet de conclure que $W_n \to 0$ et donc que $X_n \to 0$ p.s.

Si la convergence de X_n vers X_∞ avais lieu dans L^1 on aurais que $\mathbb{E}[|X_n - X_\infty|] \to 0$ et donc que $\mathbb{E}[X_n] \to \mathbb{E}[X_\infty]$ mais ça c'est absurde car $\mathbb{E}[X_n] = 1$ pour tout $n \ge 0$ et $\mathbb{E}[X_\infty] = 0$.