Wykład 1 - Analiza matematyczna II

Skrypt wykładu Krzysztofa Michalika - przepisany przez M.P 24 marca 2023

1 Całki niewłaściwe I rodzaju

Ustalamy liczbę $a \in \mathbb{R}$. Niech f będzie funkcją całkowalną na każdym przedziale w postaci [a,T] gdzie T>a. Definiujemy całkę niewłaściwą pierwszego rodzaju z f na półprostej $[a,\infty]$ jako

$$\int_{a}^{\infty} f(x) dx = \lim_{T \to \infty} \int_{a}^{T} f(x) dx$$
, gdy granica po prawej stronie istnieje

Analogicznie, gdy f jest całkowalna na każdym przedziale postaci [T, b], gdzie T < b. Definiujemy całkę niewłaściwą pierwszego rodzaju z f na półprostej $[-\infty, b]$ jako

$$\int\limits_{-\infty}^b f(x)\,dx = \lim_{T\to -\infty} \int\limits_T^b f(x)\,dx$$
, gdy granica po prawej stronie istnieje

Terminologia dotycząca takich całek jest taka, jak dla ciągów. Są 3 przypadki:

- 1. Granica z prawej strony jest liczbą. Wtedy mówimy, że całka jest zbieżna.
- 2. Granica z prawej strony jest równa ∞ lub $-\infty$. Wtedy mówimy, że całka jest <u>rozbieżna</u> (odpowiednio do ∞ lub $-\infty$).
- 3. Granica z prawej strony nie istnieje. Wtedy mówimy, że całka jest rozbieżna.

Analogicznie dla
$$\int_{-\infty}^{b} f(x) dx$$

Przykłady:

$$\int_{0}^{\infty} \sin x \, dx = \lim_{T \to \infty} \int_{0}^{T} \sin x \, dx = \lim_{T \to \infty} [-\cos x]_{0}^{T} = \lim_{T \to \infty} (-\cos T - (-\cos 0)) = \lim_{T \to \infty} (1 - \cos T)$$

Granica ta nie istnieje więc całka jest rozbieżna.

$$\int_{-\infty}^{0} 2^x \, dx = \lim_{T \to -\infty} \int_{T}^{0} 2^x \, dx = \lim_{T \to -\infty} \left[\frac{2^x}{\ln 2} \right]_{T}^{0} = \lim_{T \to -\infty} \left(\frac{1}{\ln 2} - \frac{2^T}{\ln 2} \right) = \frac{1}{\ln 2}$$

Całka jest zbieżna do $\frac{1}{\ln 2}$.

Pozostaje przypadek p = 1. Wtedy

$$\int \frac{1}{x} dx = \ln|x| + C, \quad \int\limits_a^T \frac{1}{x} dx = [\ln|x|]_a^T = \ln|T| - \ln|a|, \quad \int\limits_a^\infty \frac{1}{x} dx = \lim_{T \to \infty} (\ln|T| - \ln|a|) = \infty$$

Udowodniliśmy zatem ważny wynik

Twierdzenie

Gdy a>0 to całka $\int\limits_a^\infty \frac{1}{x^p}\,dx$ jest skończona dla p>1 oraz nieskończona dla $p\leqslant 1.$

Podobnie można łatwo pokazać poniższy wynik

Twierdzenie

Gdy $a \in \mathbb{R}$ i A > 0 to całka $\int\limits_a^\infty A^x \, dx$ jest skończona dla 0 < A < 1 oraz nieskończona dla $A \geqslant 1$

Gdy
$$\int f(x) dx = F(x) + C$$
 to

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} F(T) - \lim_{S \to \infty} F(S)$$

przy czym przynajmniej jedna z granic z prawej strony nie istnieje lub zachodzi przypadek $\infty - \infty$ to $\int_{-\infty}^{\infty} f(x) dx$ jest rozbieżna, a w pozostałych przypadkach całka ma wartość wynikającą z arytmetyki granic.

W przypadku kiedy całki nie da się obliczyć w sposób dokładny można to zrobić w sposób przybliżony, pod warunkiem , że wiemy, że jest zbieżna.

Kryteria zbieżności to twierdzenia opisujące warunki dostateczne zbieżności lub rozbieżności danej klasy całek. Najczęściej mają postać implikacji ale NIE równoważności.

Oznacza to zwykle własności postaci warunek zachodzi ⇒ całka jest zbieżna/rozbieżna warunek nie zachodzi ⇒ nic nie wiemy o zbieżności/rozbieżności całki

Popularne kryteria zbieżności całek z ∞

0. Warunek konieczny zbieżności całki

Jeżeli całka $\int_{a}^{\infty} f(x) dx$ jest zbieżna to $\lim_{x \to \infty} f(x)$ jest równa 0 lub nie istnieje.

Transpozycja twierdzenia daje następujący wynik:

Jeżeli $\lim_{x\to\infty} f(x)$ istnieje i jest różna od 0 to całka $\int\limits_a^\infty f(x)\,dx$ nie jest zbieżna, przy czym

• gdy
$$\lim_{x \to \infty} f(x) > 0$$
 to $\int_{a}^{\infty} f(x) dx = \infty$,

• gdy
$$\lim_{x \to \infty} f(x) < 0$$
 to $\int_{a}^{\infty} f(x) dx = -\infty$,

Uwaga. Warunek konieczny to tylko implikacja!

Jeżeli $\lim_{x\to\infty} f(x)$ jest równa 0 lub nie istnieje to jeszcze **NIC NIE WIEMY** o całce,

Na przykład całki $\int\limits_a^\infty \frac{1}{x^p}\,dx,\ a>0,$ mają $\lim\limits_{x\to\infty}\frac{1}{x^p}=0$ dla wszystkich p>0 ale niektóre z tych całek są zbieżne, a niektóre rozbieżne

Ważna klasa całek - całki z funkcji nieujemnych

$$\int_{a}^{\infty} f(x) \, dx, \ f \geqslant 0$$

Wtedy $\int\limits_a^T f(x)\,dx=F(T)-F(a)$ jest funkcją niemalejącą zmiennej T zatem całka $\int\limits_a^\infty f(x)\,dx=\lim\limits_{T\to\infty}\int\limits_a^T f(x)\,dx$ zawsze istnieje. Może być to liczba lub ∞ . Zatem brak zbieżności takich całek oznacza rozbieżność do ∞ .

Dla całek z funkcji nieujemnych mamy dwa kolejne kryteria zbieżności.

- 1. Kryterium porównawcze
- 2. Kryterium ilorazowe

Twierdzenie(kryterium porównawcze)

Dane są dwie całki $\int\limits_a^\infty f(x)\,dx$ oraz $\int\limits_a^\infty g(x)\,dx$. Wtedy zachodzą następujące własności

1. (Przypadek zbieżności). Gdy
$$\forall x \geqslant x_0 \geqslant a \ 0 \leqslant f(x) \leqslant g(x)$$
 i $\int\limits_a^\infty g(x)\,dx$ jest zbieżna to
$$\int\limits_a^\infty f(x)\,dx$$
 też jest zbieżna. Ponadto $0 \leqslant \int\limits_a^\infty f(x)\,dx \leqslant \int\limits_a^\infty g(x)\,dx$

- 2. (Przypadek rozbieżności) Gdy $\forall x \geqslant x_0 \geqslant a \ 0 \leqslant g(x) \leqslant f(x)$ i $\int_a^\infty g(x) \, dx$ jest rozbieżna (więc równa ∞) to $\int_a^\infty f(x) \, dx$ też jest rozbieżna (do ∞).
- 3. (Przypadek wątpliwy) Gdy $\forall x \ge x_0 \ge a \ 0 \le f(x) \le g(x)$ ale $\int_a^\infty g(x) \, dx$ jest rozbieżna to NIC NIE WIEMY o zbieżności $\int_a^\infty f(x) \, dx$.
- 4. (Przypadek wątpliwy) Gdy $\forall x \geqslant x_0 \geqslant a \ 0 \leqslant g(x) \leqslant f(x)$ ale $\int_a^{\infty} g(x) dx$ jest zbieżna to NIC NIE WIEMY o zbieżności $\int_a^{\infty} f(x) dx$.

Uwagi:

- $\int_{a}^{\infty} f(x) dx$ jest całką z zadania, $\int_{a}^{\infty} g(x) dx$ tworzymy sami.
- Porównujemy najczęściej z całkami $\int_a^\infty A^x dx$ lub $\int_a^\infty \frac{1}{x^p} dx$. Wtedy f często ma postać ułamków i możemy spróbować wziąć g jako :
 - C iloraz najwyższych potęg z licznika i mianownika f
- ullet Trzeba uważać aby nierówność między f i g była prawdziwa i nie zapomnieć przypadku wątpliwego, bo wtedy **trzeba zaczynać od nowa**.
- \bullet Warto sprawdzić opisany wyżej iloraz najwyższych potęg i na tej podstawie przewidzieć czy chcemy udowodnić zbieżność czy rozbieżność. To pomaga skonstruować odpowiednią nierówność między f i g.

Popularny błąd - odpowiedź na podstawie przypadku wątpliwego

Na przykład dla całki $\int\limits_{1}^{\infty} \frac{1}{x+\sqrt{x}}\,dx$:

"Mamy $0 \leqslant \frac{1}{x+\sqrt{x}} \leqslant \frac{1}{x}$ i całka $\int\limits_{1}^{\infty} \frac{1}{x} \, dx$ jest rozbieżna zatem całka $\int\limits_{1}^{\infty} \frac{1}{x+\sqrt{x}} \, dx$ jest rozbieżna."

GAME OVER... To jest przypadek nr 3 (wątpliwy)

Przykład

$$\int_{4}^{\infty} \frac{2x-3}{x^3-1} \, dx$$

Przewidywanie zbieżności/rozbieżności Najwyższe potęgi sugerują, że mając

$$\frac{x}{x^3} = \frac{1}{x^2}$$
, a $\int_{4}^{\infty} \frac{1}{x^2} dx < \infty$, bo $2 > 1$

Dowodzimy zbieżność. Trzeba mieć

$$0 \leqslant \frac{2x-3}{x^3-1} \leqslant g(x) = C \cdot \frac{x}{x^3}$$

Jak w twierdzeniu o 3 ciągach

$$0 \leqslant \frac{2x}{x^3 - \frac{1}{2}x^3} = 4 \cdot \frac{x}{x^3} = 4 \cdot \frac{1}{x^2}$$
$$\int_{4}^{\infty} \frac{4}{x^2} dx = 4 \int_{4}^{\infty} \frac{1}{x^2} dx < \infty \quad \left(\frac{1}{2}x^3 > 1 \text{ dla } x \geqslant 4\right)$$

Twierdzenie(kryterium ilorazowe)

Dane są dwie całki $\int\limits_a^\infty f(x)\,dx$ oraz $\int\limits_a^\infty g(x)\,dx$. Ponadto $\forall x\geqslant x_0\geqslant a\quad f(x),g(x)>0$

Jeżeli istnieje granica $\lim_{x\to\infty}\frac{f(x)}{g(x)}$ i jest <u>liczbą dodatnią</u> to wtedy obie całki są zbieżne albo obie rozbieżne do ∞ .

Uwagi

- Funkcję g tworzymy podobnie jak dla kryterium porównawczego
- Nie ma problemu z nierównościami :) ale za to trzeba umieć liczyć granice
- Granica nie może być ani 0 ani ∞ : $\lim_{x\to\infty} \frac{f(x)}{g(x)} \in (0,\infty)$
- Rozwiązanie musi zawierać wniosek "granica ilorazu jest liczbą dodatnią więc obie całki są zbieżne lub obie rozbieżne" bez tego będzie niepełne.
- Kryterium zwykle jest wygodniejsze niż porównawcze ale są przykłady, które "idą" z porównawczego ale nie z ilorazowego, bo granica ilorazu nie istnieje

Np.
$$\int_{1}^{\infty} \frac{2 + \sin x}{x} \, dx$$

Przykłady

Poprzedni przykład raz jeszcze

$$\int_{4}^{\infty} \frac{2x - 3}{x^3 - 1} dx$$

$$f(x) = \frac{2x - 3}{x^3 - 1}, \quad x \geqslant 4$$

$$g(x) = \frac{x}{x^3} = \frac{1}{x^2} > 0$$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^2(2x - 3)}{x^3 - 1} = 2$$

Obie całki zbieżne lub obie rozbieżne do ∞

Przykłady o postaci funkcji złożonej $\int_{a}^{\infty} f(g(x)) dx$ gdzie $\lim_{x \to \infty} g(x) = 0^{+}$ oraz $\lim_{x \to 0^{+}} f(x) = 0^{+}$

Nową całką jest całka z funkcji wewnętrznej $\int\limits_a^{\infty}g(x)\,dx$

Liczymy granicę

$$\lim_{x \to \infty} \frac{f(g(x))}{g(x)} = \lim_{t = g(x) \to 0^+} \frac{f(t)}{t} \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

przy użyciu granic podstawowych lub reguły de l'Hospitala.

Na przykład
$$\int\limits_{1}^{\infty} \left(2^{\frac{1}{\sqrt{x}}} - 1\right) \, dx$$

$$\int_{1}^{\infty} \left(2^{\frac{1}{\sqrt{x}}} - 1\right) dx$$
$$g(x) = \frac{1}{\sqrt{x}} > 0$$

$$f(x) = 2^x - 1 > 0$$

$$\lim_{x \to \infty} \frac{2^{\frac{1}{\sqrt{x}}} - 1}{\frac{1}{\sqrt{x}}} = \lim_{t \to 0^+} \frac{2^t - 1}{t} \left[\frac{0}{0} \right] = \ln 2 \in (0, \infty)$$

Obie całki zbieżne lub obie rozbieżne

$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx = \int_{1}^{\infty} \frac{1}{x^{\frac{1}{2}}} dx = \infty \quad \text{bo} \quad \frac{1}{2} \leqslant 1$$

Wartość główna całki niewłaściwej I rodzaju

Całka $\int_{-\infty}^{\infty} x \, dx$ jest rozbiezna, gdyż jako suma całek prowadzi do symbolu $\infty - \infty$:

$$\int_{-\infty}^{\infty} x \, dx = \int_{-\infty}^{0} x \, dx + \int_{0}^{\infty} x \, dx = -\infty + \infty$$

Intuicyjnie oczekwialibyśmy jednak, że jest ona równa 0 - funkcja podcałkowa jest nieparzysta czyli mamy "tyle funkcji na + co na -", a więc wszystko powinno się wzajemnie zrównoważyć. Aby taka całka miała sens trzeba nieco zmodyfikować jej definicję i wprowadzić pojęcie wartości głównej całki niewłaściwej (obustronnej).

Definicja. Wartość główna całki $\int_{-\infty}^{\infty} f(x) dx$ to wielkość

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} \int_{-T}^{T} f(x) dx$$

o ile powyższa granica istnieje.

Oznacza to, że przybliżamy całkę po $\mathbb R$ całkami po przedziale symetrycznym względem 0. P.V. jest skrótem od angielskiego "Principal Value".

Na przykład

P.V.
$$\int_{-\infty}^{\infty} x \, dx = \lim_{T \to \infty} \int_{-T}^{T} x \, dx = \lim_{T \to \infty} 0 = 0$$

Zauważmy, że gdy $\int f(x) dx = F(x) + C$ to

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} \int_{-T}^{T} f(x) dx = \lim_{T \to \infty} T + \inf_{T \to \infty} f(T) = \lim_{T \to \infty} f(T) = \lim$$

Jeżeli teraz ma sens wyrażenie $\lim_{T\to\infty}F(T)-\lim_{T\to\infty}F(-T)$ to biorąc $S=-T\to-\infty$ dostajemy

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to \infty} (F(T) - F(-T)) = \lim_{T \to \infty} F(T) - \lim_{T \to \infty} F(-T) =$$
$$= \lim_{T \to \infty} F(T) - \lim_{S \to -\infty} F(S) = \int_{-\infty}^{\infty} f(x) dx$$

Udowodniliśmy zatem poniższe twierdzenie.

Jeżeli całka $\int_{-\infty}^{\infty} f(x) dx$ istnieje w zwykłym sensie (jako suma odpowiednich całek jednostronnych jest liczbą lub jedną z nieskończoności) to również jej wartość główna istnieje i jest równa tej całce.

Natomiast może się zdarzyć, że wartość główna całki istnieje ale sama całka jest rozbieżna (był przykład).

W szczególności gdy funkcja jest na \mathbb{R} ciągła i nieparzysta to wartość główna całki z tej funkcji jest zawsze 0 niezależnie od zbieżności samej całki.

2 Całki niewłaściwe II rodzaju

Ustalamy liczby $a, b \in \mathbb{R}$, a < b. Niech f będzie funkcją całkowalną na każdym przedziale postaci [a, T], gdzie a < T < b. Definiujemy całkę niewłaściwą drugiego rodzaju z f na przedziale [a, b) jako

$$\int_{a}^{b} f(x) dx = \lim_{T \to b^{+}} \int_{a}^{T} f(x) dx, \quad \text{gdy granica po prawej stronie istnieje.}$$

Analogicznie, gdy f jest całkowalna na każdym przedziale postaci [T, b], gdzie a < T < b. to definiujemy całkę niewłaściwa pierwszego rodzaju z f na przedziale (a, b] jako

$$\int_{a}^{b} f(x) dx = \lim_{T \to a^{+}} \int_{T}^{b} f(x) dx, \quad \text{gdy granica po prawej stronie istnieje.}$$

Terminologia dotycząca takich całek jest taka, jak dla całek niewłaściwych 1 rodzaju. Są 3 przypadki :

- 1. Granica z prawej strony jest liczbą. Wtedy całka jest zbieżna (do tej granicy).
- 2. Granica z prawej strony jest równa ∞ lub $-\infty$. Wtedy całka jest <u>rozbieżna</u> do ∞ lub $-\infty$.
- 3. Granica z prawej strony nie istnieje. Wtedy mówimy, że całka jest rozbieżna.

Interpretacja geometryczna.

Podobnie jak dla zwykłej całki oznaczonej, jeżeli $f \ge 0$ na (a,b] lub [a,b) to całka niewłaściwa 2 rodzaju $\int\limits_a^b f(x)\,dx$ daje pole obszaru ograniczonego osią X, wykresem f oraz prostymi x=a oraz x=b.

Najczęściej definiujemy tego typu całkę w przypadku gdy f ma asymptotę pionową x=a lub x=b. Wtedy ten obszar nie jest ograniczony z góry bądź z dołu.