

Data Collection and Preprocessing Phase

Date	7 June 2024
Team ID	739730
Project Title	Online payment Fraud Detection Using ML
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description
Data Overview	This section provides a comprehensive summary of the data being analyzed for fraud detection. It includes information about the dataset such as the number of transactions, number of fraudulent vs. non-fraudulent transactions, and basic statistics (mean, median, mode) for each feature.
Univariate Analysis	This analysis focuses on each feature individually to understand its distribution and detect any anomalies. It involves visualizations such as histograms and box plots, and statistical measures like mean, variance, and skewness.
Bivariate Analysis	This section examines the relationships between pairs of features to identify patterns that might indicate fraud. Techniques include scatter plots, correlation matrices, and cross-tabulation.
Multivariate Analysis	This analysis looks at multiple features simultaneously to detect complex patterns and interactions. Techniques include PCA (Principal Component Analysis), clustering, and multivariate plots.
Outliers and Anomalies	This section focuses on identifying and handling outliers and anomalies that may indicate fraud or data quality issues. Techniques include IQR (Interquartile Range), Z-score, and anomaly detection algorithms.

Data Preprocessing Code Screenshots		
Loading Data	### df=pd.read_csv('/content/drive/MyDrive/Colab Notebooks/datasets/onlinefraud.csv') ### df	
Handling Missing Data	<pre>[] df.isnull().sum() step</pre>	
Data Transformation	<pre>def transformationPlot(feature): plt.figure(figsize=(12,5)) plt.subplot(1,2,1) # Handle potential infinite values sns.distplot(feature[np.isfinite(feature)]) plt.subplot(1,2,2) stats.probplot(feature[np.isfinite(feature)], plot=plt)</pre>	
Feature Engineering	le=LabelEncoder() df['nameDest']=le.fit_transform(df['nameDest']) df.info() <pre> <class 'pandas.core.frame.dataframe'=""> RangeIndex: 6362620 entries, 0 to 6362619 Data columns (total 11 columns): # Column</class></pre>	
Save Processed Data	<pre>[] import pickle pickle.dump(dtc,open('model.pkl','wb')) [] from google.colab import files files.download('model.pkl')</pre>	

