Measuring Quality of Collaboratively Edited Documents:

the case of Wikipedia

The presentation is given by:

Amin El Iraki

Natixis

Data Scientist

Olivier Randavel M13H (Start-up) Data Marketing

Data Scientist

olivier.randavel@gmail.com

Hadrien Mariaccia

Dassault Systèmes

Data Scientist

hadrien.mariaccia@dauphine.eu

Hippolyte Mayard

Société Générale

Data Scientist

hippolyte.mayard@dauphine.eu

Valentin Vu Van

Thales

Data Scientist

walentin.vu-van@dauphine.eu

amine.el-iraki@dauphine.eu

Measuring Quality of Collaboratively Edited Documents:

the case of Wikipedia

Use case

Table of contents

1. Wikipedia ranking model

1. Research paper model

1. Pros and cons

Wikipedia presentation:

Wikipedia ranking:

Wikipedia's quality labels:

Criteria

Class

★ F	The article has attained featured article status by passing an in-depth examination by impartial reviewers from WP:Featured article candidates. More detailed criteria [show]	Professional, outstanding, and thorough; a definitive source for encyclopedic information.	No further content additions should be necessary unless new information becomes available; further improvements to the prose quality are often possible.		
mportance		Criteria	Camp adding he askingland abole assessed in		
Тор	Core articles which are a "must have" for Wikiproject Software. High-traffic articles which many people outside of computer software will already have a good knowledge of.				
High	Most people interested in software will be familiar with the topic, and the article gives context to a number of other information software articles. Is mentioned by many books and academic papers, and discussed in detail in more than one.				
Mid	Known to many people interested in software, even if not in detail.				
Low	More specific and specialized content known only to some people interested in software. Most individuals, standards and software projects will be low importance unless they are well known or have high adoption.				
NA	Subject importance is not applicable. Generally applies to non-article pages such as redirects, categories, templates, etc.				
??? Stu	Subject importance has not yet been assessed. articles will fall into trils category. More detailed criteria [show]	insufficiently developed features of the topic and may not see how the features of the topic are significant.	Stub-class Article to step up to a Start-class Article is to add in referenced reasons of why the topic is significant.		

Reader's experience

Editing suggestions

Example:

Why this article?

 Machine learning methods to improve the precision of the quality measures of Wikipedia articles

Innovative point of view: Using structure based information AND article based information

Data set presentation:

Article assessment method:

Data collection:

Max(project's assessment)

Max(project's assessment)

Number of FA articles	2,415
Number of GA articles	3,160
Number of B articles	3,209
Number of C articles	3,322
Number of Start articles	4,110
Number of Stub articles	4,273
Total	20.489

TABLE III: Distribution of the data set within different quality classes

Data set presentation:

Data cleaning:

- Remove two classes that were too small: categories A and B+
- Remove articles that have been deleted

Data preprocessing:

Get Content

Compute structure-based features

Compute content-based

Clean Data

Feature selection:

Hypothesis: the writing style matters for measuring the articles quality.

Structure-based features Wiki-class	Content-based features TextStat	
 Article length Number of references Number of outlinks to other Wikipedia pages Number of citation templates Number of non-citation templates Number of categories linked in the text Number of images / length of article Information noise score Article has an infobox or not Number of level 2 headings/ Number of level 3+ headings 	 Flesch reading score (En) Flesch-Kincaid grade level (US) Smog index (En) Coleman-Liau index (US) Automated readability index (US) Difficult words Dale-Chall score Linsear write formula (US military) Gunning-Fog index 	

Content-based features (Examples)

❖ A wikipedia infobox


```
flesch\_reading\_ease = 206.835 \\ - (1.015 \times avg\_sentence\_len) \\ - (84.6 \times avg\_syllables\_per\_word) 
(1)
```

$$flesch_kincaid_grade = 11.8 \times avg_syllables_per_word \\ + 0.39 \times avg_sentence_len - 15.59$$
 (2)

Feature selection:

Hypothesis: the writing style matters for measuring the articles quality.

Structure-based features Wiki-class	Content-based features TextStat
 Article length Number of references Number of outlinks to other Wikipedia pages Number of citation templates Number of non-citation templates Number of categories linked in the text Number of images / length of article Information noise score Article has an infobox or not Number of level 2 headings/ Number of level 3+ headings 	 Flesch reading score Flesch-Kincaid grade level Smog index Coleman-Liau index Automated readability index Difficult words Dale-Chall score Linsear write formula Gunning-Fog index

Question: Several readability scores related?

Solutions proposed in the article:

Algorithms	Hyper-parameters	Specificities	Accuracy
Linear regression	None	- dependent variable: quality class - independent variables: the features - converted the quality class to an integer: Stub to 0, Start to 1, C to 2, B to 3, GA to 4 and FA to 6	25%
Multinomial logistic regression	None	Standard	60% (5-fold Cross-Validation)
KNN	K = 3	Using the Euclidean distance	55% (5-fold Cross-Validation)
CART	None	Standard	48%
SVM	None	Standard	61% (5-fold Cross-Validation)
Random Forest	None	Applied uniquely on the structure-based features	58% (5-fold Cross-Validation)
Random Forest	None	Applied on the complete set	64% (5-fold Cross-Validation)

The most accurate model: Random Forest

Performances:

- 3 metrics:
 - Accuracy: 64%
 - AUC (Area Under Curve): 0,91
 - NDCG score: 0,987

Random Forest

Pros & cons of these solutions:

Pros

- Over-fitting problem taken avoided by the 5-fold cross validation
- The model improved the accuracy of Wikipedia quality prediction
- This paper provides advices for authors to improve the quality of Wikipedia articles

Cons

- Only for english Wikipedia articles
- The data used to evaluate the model could be reconsidered. Taking the maximum of each articles' marks is not the best practise.
- The data are manually labelled, so the marks are subjectives

Data set:

What can we say about learning on subjective evaluations:

A paper is discussing this problem: <u>The Success and Failure of Quality Improvement Projects in Peer Production Communities</u>. It aims to evaluate several rating groups that contributed to wikipedia assessments.

Mains conclusions are:

- Some articles were not correctly assessed, contributor failed to apply the assessment criteria.
- Assessments made by WEP have been given by students and it results in lower rating/writing experienced. Some groups are more efficient to produce high rated articles.

References:

 A <u>paper</u> named: Measuring Quality of Collaboratively Edited Documents: the case of Wikipedia done

 A <u>paper</u> named: The Success and Failure of Quality Improvement Projects in Peer Production Communities <u>Link</u> to English Wikipedia Quality
 Asssessment Dataset. Data used to perform classification

<u>Link</u> to wikipedia assessment method

A tool with rank suggestions: Wikirank.live

Annexe

Model Evaluation:

- Application of different classification methods with 5-fold cross-validation techniques
 - Dataset divided into five equal parts (5- fold).
 - Four parts used as a training set / remaining part as the testing set.
 - Process repeated five times, each part being used as a testing set alternately.
- A good practical technique for bias-variance trade-off in evaluating machine learning algorithms.

