

Outline of todays lecture

1	Backflip classification	of hydraulic controls
---	-------------------------	-----------------------

- 2 Additional classification of hydraulic controls
- 3 Concepts for energy recovery
- 4 Exemplary system
- 5 Practical exercise
- 6 Summary

Structure of hydraulic systems

Classification of common types of hydrauli controls

Resistance Control:

- Good dynamics
- Good controllability
- Low investment costs
- High energy losses

Displacement Control:

- Worse dynamics
- High investment costs
- Low energy losses

Hydrostatic transmission in a closed circuit

- 1 Adjustable pump
- 2 Adjustable motor
- 3 Feed pump
- 4 PRV feed circuit

- 5 PRV flushing circuit
- 6 PRVs main circuit
- 7 Flushing valve

Serial and parallel motor connection

Serial connection

Parallel connection

Outline of todays lecture

- 1 Backflip classification of hydraulic controls
- 2 Additional classification of hydraulic controls
- 3 Concepts for energy recovery
- 4 Exemplary system
- 5 Practical exercise
- 6 Summary

Concepts for supplying hydraulic systems

Example: Variable speed pump drives

 Control of operating variables by software not by hydraulic-mechanical control units

Source: Bosch Rexroth

Example: Artemis Digital Pump

- Internally supported radial piston pump with digitally switchable pistons
- Discrete switchable displacement volumes
- Better efficiency in partial load operation compared to conventional pumps
- Idle mode

Source: Artemis

Concepts for hydraulic system controls

Example: Displacement controlled differential cylinder

Control: Primary, analogue

Example: Pressure intensifier in forming processes

- Control of the pressure during hydroforming
- Use of simple control valves for pressure ranges up to 350 bar to adjust the high pressure up to 2000 bar

Example: Multi-chamber cylinder

- Mantsinen HybriLift
 - Multi-chamber cylinder for the boom drive
 - Two different areas on the piston side of the cylinder allow energy recovery by increasing the pressure during lowering
 - Fuel savings of 35 %

Outline of todays lecture

- 1 Backflip classification of hydraulic controls
- 2 Additional classification of hydraulic controls
- 3 Concepts for energy recovery
- 4 Exemplary system
- 5 Practical exercise
- 6 Summary

Concepts for energy recovery

Example: Displacement control in open circuit

- Displacement control shows poor efficiency in partial load range
- Independent metering enables regeneration circuits (connecting both cylinder chambers)
- Regeneration between the two pumps additionally possible

Source: Heybroek

Example: Displacement control in closed circuit

- Hydrostatic drive in a closed circuit
- Braking energy is temporarily stored in the hydraulic accumulator
- Energy is taken from accumulator to accelerate

Excursus: STEAM project at ifas

- Focus on relevant loss points in today's machines
- Decoupling of external load and diesel engine load
- Complete development from simulations to prototype

STEAM project: Prototype

- Parallel installation of standard system and the new hybrid system
- Validation on the basis of a 90° truck loading cycle

STEAM project: Field test

STEAM project: Results

 Same productivity as standard system with fuel savings of approx. 27%

Outline of todays lecture

- 1 Backflip classification of hydraulic controls
- 2 Additional classification of hydraulic controls
- 3 Concepts for energy recovery
- 4 Exemplary system
- 5 Practical exercise
- 6 Summary

Position control of a cylinder

Velocity control: differential cylinder with equal speeds

- Permanent connection of the rod side to the pump line
- Same speeds at an area ratio of 2:1
- Equal loads in both directions possible

Fast forward circuit – with differential cylinder

- Control of direction of movement or standstill with valve V2
- Fast forward during extension is effected by switching valve V1
- Velocity during extension

$$v = \frac{Q}{A_1}$$

Fast forward-velocity during extension

$$v = \frac{Q}{A_1 - A_2}$$

		V 1	
		0	1
	0	Stop	Stop
V2	1	Forward	Fast forward
	2	Backward	Float

Fast forward circuit – with low pressure pump

- Parallel connection of a low pressure pump with a high delivery flow, pump A, and a high pressure pump with a low delivery flow, pump B
- In fast forward, pumps A and B both deliver to the cylinder
- When the load increases, valve C is opened and flow of pump A returns into the reservoir

Velocity control – with one flow control valve

 Velocity control of the volume flow from the right cylinder chamber

Velocity control – flow control valve in Graetz bridge design

- Velocity control of the volume flow from and to the right cylinder chamber
- Same extension and retraction speeds
- Usability of this circuit depending on the actual loads (risk of cavitation)

Velocity control – with upstream flow control

- A flow control upstream can take place only when loads are effective in the pressing direction
- When employing a 3-ways pressure compensator, the pressure rises as highly as the load requires

Velocity control – with downstream flow control

- The speed is variable in two steps with the 2/2-directional valve
- Frequent use for drives with active loads, e.g. lifting cylinders for forklift trucks

Simple press control

 With the downstroke press, the back flow ensues with the piston's own weight

- With the downstroke press, however, the press is closed by its own weight.
- The cylinder is filled from a higher vessel by a suction valve. The return trip is performed by a separate pullback cylinder.

Synchronous run – with flow control valve in return line

Synchronous run control – with flow divider in feed line

Synchronous run control – with mechanically connected motors

Accumulator Charging Circuit

Outline of todays lecture

- 1 Backflip classification of hydraulic controls
- 2 Additional classification of hydraulic controls
- 3 Concepts for energy recovery
- 4 Exemplary system
- 5 Practical exercise
- 6 Summary

Practical excercise: designing a hydraulic system of a boatlift

Boundaries:

Installation space, weight of the boat, lifting speed

What to do:

- calculate the required force of the cylinder
- set max. system pressure, dimensioning cylinder
- calculate required cylinder speed
 - → pump volume flow
- select pump(utility frequency of electric motor)
- estimate losses in the system
 - → pump pressure level
- select electric motor(max. pressure, max. volume flow)
- select valves (directional valve, PRV, etc.)
- dimension the tank
- cooler ?, filter
- design circuit diagram & create parts list

Outline of todays lecture

- 1 Backflip classification of hydraulic controls
- 2 Additional classification of hydraulic controls
- 3 Concepts for energy recovery
- 4 Exemplary system
- 5 Practical exercise
- 6 Summary

Summary

- Lecture 1: Fundamentals
- Lecture 2: Hydraulics networks
- Lecture 3: Fluids
- Lecture 4/5: Pumps & motors
- Lecture 6/7: Valves
- Lecture 8: Seals, components
- Lecture 9/10: Hydraulic circuits

Thank you for your attention.

