EDA 2

```
In [416]: import pandas as pd
           import numpy as np
           import seaborn as sns
           from matplotlib import pyplot as plt
           from sklearn.preprocessing import StandardScaler
           %matplotlib inline
In [417]: # Random Seed
           SEED = 42
           np.random.seed = SEED
In [418]: dataurl = '../datasets/high_diamond_ranked_10min.csv'
In [419]: df = pd.read csv(dataurl)
           df.head()
Out[419]:
                  gameld blueWins blueWardsPlaced blueWardsDestroyed blueFirstBlood blueKills blueDea
            0 4519157822
                                0
                                              28
                                                                 2
                                                                               1
                                                                                       9
            1 4523371949
                                0
                                              12
                                                                 1
                                                                               0
                                                                                       5
            2 4521474530
                                0
                                              15
                                                                 0
                                                                               0
                                                                                       7
             4524384067
                                0
                                                                               0
                                                                                       4
                                              43
             4436033771
                                                                               0
                                                                                       6
                                0
                                              75
           5 rows × 40 columns
In [420]: print('Shape of Data, # of Rows {} and # of Columns {}'.format(df.shape[0], df.sh
```

Shape of Data, # of Rows 9879 and # of Columns 40

In [421]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9879 entries, 0 to 9878
Data columns (total 40 columns):

Data	columns (total 40 columns):		
#	Column	Non-Null Count	Dtype
0	gameId	9879 non-null	int64
1	blueWins	9879 non-null	int64
2	blueWardsPlaced	9879 non-null	int64
3	blueWardsDestroyed	9879 non-null	int64
4	blueFirstBlood	9879 non-null	int64
5	blueKills	9879 non-null	int64
6	blueDeaths	9879 non-null	int64
7	blueAssists	9879 non-null	int64
8	blueEliteMonsters	9879 non-null	int64
9	blueDragons	9879 non-null	int64
10	blueHeralds	9879 non-null	int64
11	blueTowersDestroyed	9879 non-null	int64
12	blueTotalGold	9879 non-null	int64
13	blueAvgLevel	9879 non-null	float64
14	blueTotalExperience	9879 non-null	int64
15	blueTotalMinionsKilled	9879 non-null	int64
16	blueTotalJungleMinionsKilled	9879 non-null	int64
17	blueGoldDiff	9879 non-null	int64
18	blueExperienceDiff	9879 non-null	int64
19	blueCSPerMin	9879 non-null	float64
20	blueGoldPerMin	9879 non-null	float64
21	redWardsPlaced	9879 non-null	int64
22	redWardsDestroyed	9879 non-null	int64
23	redFirstBlood	9879 non-null	int64
24	redKills	9879 non-null	int64
25	redDeaths	9879 non-null	int64
26	redAssists	9879 non-null	int64
27	redEliteMonsters	9879 non-null	int64
28	redDragons	9879 non-null	int64
29	redHeralds	9879 non-null	int64
30	redTowersDestroyed	9879 non-null	int64
31	redTotalGold	9879 non-null	int64
32	redAvgLevel	9879 non-null	float64
33	redTotalExperience	9879 non-null	int64
34	redTotalMinionsKilled	9879 non-null	int64
35	redTotalJungleMinionsKilled	9879 non-null	int64
36	redGoldDiff	9879 non-null	int64
37	redExperienceDiff	9879 non-null	int64
38	redCSPerMin	9879 non-null	float64
39	redGoldPerMin	9879 non-null	float64
	es: float64(6). int64(34)		

dtypes: float64(6), int64(34)

memory usage: 3.0 MB

```
In [422]: df.iloc[:, 2:20].columns
Out[422]: Index(['blueWardsPlaced', 'blueWardsDestroyed', 'blueFirstBlood', 'blueKills',
                  'blueDeaths', 'blueAssists', 'blueEliteMonsters', 'blueDragons',
                  'blueHeralds', 'blueTowersDestroyed', 'blueTotalGold', 'blueAvgLevel',
                  'blueTotalExperience', 'blueTotalMinionsKilled',
                  'blueTotalJungleMinionsKilled', 'blueGoldDiff', 'blueExperienceDiff',
                  'blueCSPerMin'],
                dtype='object')
In [423]: df.iloc[:, 21:].columns
Out[423]: Index(['redWardsPlaced', 'redWardsDestroyed', 'redFirstBlood', 'redKills',
                  'redDeaths', 'redAssists', 'redEliteMonsters', 'redDragons',
                  'redHeralds', 'redTowersDestroyed', 'redTotalGold', 'redAvgLevel',
                  'redTotalExperience', 'redTotalMinionsKilled',
                  'redTotalJungleMinionsKilled', 'redGoldDiff', 'redExperienceDiff',
                  'redCSPerMin', 'redGoldPerMin'],
                dtype='object')
```

The data is found on Kaggle. The data set contained 9879 observations with 40 features. there are 19 features per team except gameid and the target variable as indicated above.

Data Source: https://www.kaggle.com/bobbyscience/league-of-legends-diamond-ranked-games-10-min)

Checking gameid uniqueness to acertain all games are independent.

```
In [424]: len(df['gameId'].unique()) == df.shape[0]
Out[424]: True

Distribution of wins
```

```
In [425]: df['blueWins'].value_counts()
```

Out[425]: 0 4949 1 4930

Name: blueWins, dtype: int64

blueWins is our target variable, we want to make sure the data is balanced.

```
In [426]: ax = sns.countplot(df['blueWins'], hue=df['blueWins'], palette=['blue', 'red'])
    ax.set(xlabel='Wins', ylabel='Count')
    ax.legend(title='Winning Team', loc='upper center', labels=['Blue Wins', 'Red Wir ax.set_title('Count of winning games')
    plt.show()
```


Data Cleaning

Dropping gameId since it is a unique value for each observation.

```
In [427]: df = df.drop(columns='gameId')
In [428]: corr = df.corr()
```

Checking correlation between features

```
In [429]: columns = df.columns
           for i in columns:
               for j in columns:
                   if abs(df[i].corr(df[j])) >= 0.95:
                        if i != j:
                            print([i, j, df[i].corr(df[j])])
                            columns = columns.drop(i)
           ['blueFirstBlood', 'redFirstBlood', -1.0]
           ['blueKills', 'redDeaths', 1.0]
['blueDeaths', 'redKills', 1.0]
           ['blueTotalGold', 'blueGoldPerMin', 1.0]
           ['blueTotalMinionsKilled', 'blueCSPerMin', 1.0]
           ['blueGoldDiff', 'redGoldDiff', -1.0]
           ['blueExperienceDiff', 'redExperienceDiff', -1.0]
           ['redTotalGold', 'redGoldPerMin', 1.0]
           ['redTotalMinionsKilled', 'redCSPerMin', 0.999999999999999]
In [430]: |print((df['blueKills'] == df['redDeaths']).value_counts())
           print((df['blueDeaths'] == df['redKills']).value counts())
           True
                   9879
           dtype: int64
           True
                   9879
           dtype: int64
```

```
In [431]: print((df['redTotalGold'] / 10 == df['redGoldPerMin']).value_counts())
    print((df['blueTotalGold'] / 10 == df['blueGoldPerMin']).value_counts())
    print((df['redTotalMinionsKilled'] / 10 == df['redCSPerMin']).value_counts())
    print((df['blueTotalMinionsKilled'] / 10 == df['blueCSPerMin']).value_counts())
    print((df['redEliteMonsters'] == (df['redDragons'] + df['redHeralds'])).value_counts())
    print((df['blueEliteMonsters'] == (df['blueDragons'] + df['blueHeralds'])).value_print((df['blueGoldDiff'] == (df['blueTotalGold'] - df['redTotalGold'])).value_counts()
    print((df['redGoldDiff'] == (df['redTotalGold'] - df['blueTotalGold'])).value_counts()
    print((df['redExperienceDiff'] == (df['blueTotalExperience'] - df['blueTotalExperience'] - df['bl
```

True 9879 dtype: int64 True 9879 dtype: int64

we can see above that variables with correlation of 1 or -1 are repeated, so we can minimize them later

```
In [432]: fig, ax = plt.subplots(2, 2, figsize=(15, 10))
          ax[0,0].scatter('redTotalGold','redGoldPerMin', data=df)
          ax[0,0].set title('redTotalGold vs. redGoldPerMin')
          ax[0,0].set_ylabel('redGoldPerMin')
          ax[0,0].set xlabel('redTotalGold')
          ax[0,1].scatter('blueTotalGold','blueGoldPerMin', data=df)
          ax[0,1].set_title('blueTotalGold vs. blueGoldPerMin')
          ax[0,1].set ylabel('blueGoldPerMin')
          ax[0,1].set_xlabel('blueTotalGold')
          ax[1,0].scatter('redTotalMinionsKilled','redCSPerMin', data=df)
          ax[1,0].set title('redTotalMinionsKilled vs. redCSPerMin')
          ax[1,0].set_ylabel('redCSPerMin')
          ax[1,0].set xlabel('redTotalMinionsKilled')
          ax[1,1].scatter('blueTotalMinionsKilled','blueCSPerMin', data=df)
          ax[1,1].set title('blueTotalMinionsKilled vs. blueCSPerMin')
          ax[1,1].set ylabel('blueCSPerMin')
          ax[1,1].set_xlabel('blueTotalMinionsKilled')
          plt.show()
```


Dealing with features with high correlation

- blueFirstBlood and redFirstBlood are inversely correlated since only one team can score first blood in the game. Dropping one feature
- blueKills and redDeaths, and blueDeaths and redKills are perfectly correlated and have same data since the game is only between two teams.
- redCSPerMin, redGoldPerMin, redExperienceDiff, redGoldDiff, blueGoldDiff, blueCSPerMin, blueExperienceDiff, redEliteMonsters, blueEliteMonsters and blueGoldPerMin, are all derived values

```
In [433]: df = df.drop(columns=['redFirstBlood', 'redDeaths', 'redKills', 'redGoldPerMin',
```

In [434]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9879 entries, 0 to 9878
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	blueWins	9879 non-null	int64
1	blueWardsPlaced	9879 non-null	int64
2	blueWardsDestroyed	9879 non-null	int64
3	blueFirstBlood	9879 non-null	int64
4	blueKills	9879 non-null	int64
5	blueDeaths	9879 non-null	int64
6	blueAssists	9879 non-null	int64
7	blueDragons	9879 non-null	int64
8	blueHeralds	9879 non-null	int64
9	blueTowersDestroyed	9879 non-null	int64
10	blueTotalGold	9879 non-null	int64
11	blueAvgLevel	9879 non-null	float64
12	blueTotalExperience	9879 non-null	int64
13	blueTotalMinionsKilled	9879 non-null	int64
14	blueTotalJungleMinionsKilled	9879 non-null	int64
15	redWardsPlaced	9879 non-null	int64
16	redWardsDestroyed	9879 non-null	int64
17	redAssists	9879 non-null	int64
18	redDragons	9879 non-null	int64
19	redHeralds	9879 non-null	int64
20	redTowersDestroyed	9879 non-null	int64
21	redTotalGold	9879 non-null	int64
22	redAvgLevel	9879 non-null	float64
23	redTotalExperience	9879 non-null	int64
24	redTotalMinionsKilled	9879 non-null	int64
25	redTotalJungleMinionsKilled	9879 non-null	int64
dtvn	es: float64(2) int64(24)		

dtypes: float64(2), int64(24)

memory usage: 2.0 MB

35]:	blueWins	1.000000
	blueTotalGold	0.417213
	blueTotalExperience	0.396141
	blueAvgLevel	0.357820
	blueKills	0.337358
	blueAssists	0.276685
	blueTotalMinionsKilled	0.224909
	blueDragons	0.213768
	blueFirstBlood	0.201769
	blueTotalJungleMinionsKilled	0.131445
	blueTowersDestroyed	0.115566
	blueHeralds	0.092385
	blueWardsDestroyed	0.044247
	blueWardsPlaced	0.000087
	redWardsPlaced	-0.023671
	redWardsDestroyed	-0.055400
	redHeralds	-0.097172
	redTowersDestroyed	-0.103696
	redTotalJungleMinionsKilled	-0.110994
	redDragons	-0.209516
	redTotalMinionsKilled	-0.212171
	redAssists	-0.271047
	blueDeaths	-0.339297
	redAvgLevel	-0.352127
	redTotalExperience	-0.387588
	redTotalGold	-0.411396
	Name: blueWins, dtype: float64	

```
In [436]:
    f, ax = plt.subplots(figsize= (30, 20))
    lower = clean_corr.where(np.tril(np.ones(clean_corr.shape)).astype(np.bool))
    hmap=sns.heatmap(lower,cmap="coolwarm", annot=True)
    ax.set_title('Correlation heatmap')
    plt.savefig('clean-corr-half.png')
```


['blueTotalGold' , 'blueTotalExperience', blueAvgLevel, 'blueKills', 'blueAssists', 'blueTotalMinionsKilled', 'blueDragons', 'blueFirstBlood'], those feature have more higher corrlation than other features with blueWins

Identify Missing Data

In [437]:	df.des	cribe()						
Out[437]:		blueWins	blueWardsPlaced	blueWardsDestroy	yed blueFirs	tBlood	blueKills	blueDeath
	count	9879.000000	9879.000000	9879.0000	000 9879.0	000000 9	879.000000	9879.00000
	mean	0.499038	22.288288	2.8248	881 0.5	504808	6.183925	6.13766
	std	0.500024	18.019177	2.1749	998 0.5	500002	3.011028	2.93381
	min	0.000000	5.000000	0.0000	0.0	000000	0.000000	0.00000
	25%	0.000000	14.000000	1.0000	0.0	000000	4.000000	4.00000
	50%	0.000000	16.000000	3.0000	000 1.0	000000	6.000000	6.00000
	75%	1.000000	20.000000	4.0000	000 1.0	000000	8.000000	8.00000
	max	1.000000	250.000000	27.0000	000 1.0	000000	22.000000	22.00000
	8 rows	× 26 columns						
	4							>
In [438]:	df.isn	ull().sum()	.sum()					
Out[438]:			.,					
ouc[.50].								
In [439]:	df.hea	d()						
Out[439]:	blue	eWins blueW	ardsPlaced blueW	/ardsDestroyed blo	ueFirstBlood	blueKills	blueDeath	s blueAss
	0	0	28	2	1	9		6
	1	0	12	1	0	5		5
	2	0	15	0	0	7	1	1
	3	0	43	1	0	4		5
	4	0	75	4	0	6		6
	5 rows	× 26 columns						
	4							•
In [440]:	<pre>df.applymap(np.isreal).all().sum()</pre>							
Out[440]:	26							

```
In [441]: df.applymap(lambda x: isinstance(x, (int, float))).all().sum()
Out[441]: 26
```

For missing value, first see use df.describe() to see min/max in each columns. ensure each feature in right range. Then, we use df.isnull() to see pandas that can identify any missing value. Since our data contain all numeric features, we also use applymap function with np.isreal or isinstance, search for each row and each column to see if there any missing value can find. Base on the result, our data do not have any missing values.

Outliers

```
In [445]: fig, ax = plt.subplots(1,3,figsize=(20,10))
    data = df.loc[:, df.columns != 'blueWins']
    data = pd.DataFrame(data = data, columns = data.columns)
    data1 = pd.concat([df.blueWins, data.iloc[:, 0:8]], axis=1)
    plot_violinplot(data1,0)
    data2 = pd.concat([df.blueWins, data.iloc[:, 8:16]], axis=1)
    plot_violinplot(data2,1)
    data3 = pd.concat([df.blueWins, data.iloc[:, 16:]], axis=1)
    plot_violinplot(data3,2)
    plt.show()
```


let's plot with standardized value to see better visualization

```
In [446]: fig, ax = plt.subplots(1,3,figsize=(20,10))
    data = df.loc[:, df.columns != 'blueWins']
    data_std = StandardScaler().fit_transform(data)
    data_std = pd.DataFrame(data = data_std, columns = data.columns)
    data1 = pd.concat([df.blueWins, df_std.iloc[:, 0:8]], axis=1)
    plot_violinplot(data1,0)
    data2 = pd.concat([df.blueWins, df_std.iloc[:, 8:16]], axis=1)
    plot_violinplot(data2,1)
    data3 = pd.concat([df.blueWins, df_std.iloc[:, 16:]], axis=1)
    plot_violinplot(data3,2)
    plt.show()
```


Our data contain outliers. But since those are about game performance for each group, like red group performed well in one game, but performance bad in other games. we decide to keep those outliers since there is no unit. and these outliers could better give feedback on which team will win the game.

```
In [447]: from sklearn.model_selection import train_test_split

In [448]: y = df['blueWins']
   X = df.loc[:, df.columns != 'blueWins']

In [449]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify)

In [450]: test_df = pd.concat([X_test, y_test], axis=1)

In [451]: train_df = pd.concat([X_train, y_train], axis=1)
```

```
In [452]: train_df.to_csv('../datasets/train.csv', index=False)
    test_df.to_csv('../datasets/test.csv', index = False)

In [453]: print('Labels count in y: ', np.bincount(y))
    print('Labels count in y_train ', np.bincount(y_train))
    print('Labels count in y_test', np.bincount(y_test))

Labels count in y: [4949 4930]
    Labels count in y_train [3464 3451]
    Labels count in y_test [1485 1479]
```

The data has been split into training and testing set. The training data contain 6915 observations and the test data contain 2964 observations. we also use stratify=y to eunsures that both training and test datasets have the same class proportions as the original dataset.

```
In [ ]:
```