1 Arnoldi and Lanczos Iteration

Let $A \in \operatorname{GL}_n(\mathbb{R})$ and $b \in \mathbb{R}^n \setminus \{0\}$. Then consider the Arnoldi iteration as sketched below (1) to produce an orthonormal basis q_1, \ldots, q_r of the r-th Krylov subspace $K_r(A, b)$ with $r \leq \max_{s \leq n} \dim(K_s(A, b))$. Further let $Q_r := [q_1, \ldots, q_r] \in \mathbb{R}^{n \times r}$ and $H_r := Q_r^T A Q_r \in \mathbb{R}^{r \times r}$.

- 1. In the j-th step: Assume q_1, \ldots, q_j have been computed according to the Arnoldi iteration 1 and assume that q_1, \ldots, q_{j-1} are mutually orthonormal. Show that q_j is orthogonal to all q_1, \ldots, q_{j-1} .
- 2. Derive an expression for the (ℓ, k) -th entries of H_r and find these numbers in the Arnoldi iteration. What structure does H_r have?
- 3. Now assume A is symmetric. How does H_r look in this case? How can you simplify the Arnoldi iteration?
- 4. What can you say about the eigenvalues of H_n and A? Explain your answer.

```
1 INPUT: A \in GL_n(\mathbb{R}), \ b \in \mathbb{R}^n, \ r \leq n
2 OUTPUT: orthonormal basis q_1, \ldots, q_r of the r-th Krylov subspace K_r(A,b)
3
4 q_1 := \frac{b}{\|b\|_2}
5 for j = 2, ..., r do
6 |\widehat{q}_j := Aq_{j-1} - \sum_{\ell=1}^{j-1} q_\ell^\top (Aq_{j-1}) \cdot q_\ell
7 if \|\widehat{q}_j\|_2 = 0 then
8 | break
9 end
10 |q_j := \frac{\widehat{q}_j}{\|\widehat{q}_j\|_2}
11 end
```

Algorithm 1: Arnoldi Iteration

Solution:

1. Let k < j. Since $q_k^\top q_j = \frac{1}{\|\widehat{q}_i\|_2} q_k^\top \widehat{q}_j$ it suffices to show that $q_k^\top \widehat{q}_j = 0$. Now let $v := Aq_{j-1}$, then

$$\begin{aligned} q_k^\top \widehat{q}_j &= q_k^\top \left(v - \sum_{\ell=1}^{j-1} q_\ell^\top v \cdot q_\ell \right) = q_k^\top v - \sum_{\ell=1}^{j-1} q_\ell^\top v \cdot \underbrace{q_k^\top q_\ell}_{=\delta_{k\ell}} \\ &= q_k^\top v - q_k^\top v \cdot 1 \\ &= 0. \end{aligned}$$

2. By definition of the matrix product we obtain, for $1 \le \ell, j \le r$,

$$H_r^{\ell k} = (Q_r^{\mathsf{T}} A Q_r)_{\ell k} = q_\ell^{\mathsf{T}} A q_k.$$

These are precisely the projection lengths that are computed during the Arnoldi iteration. Since by definition Aq_j can be uniquely generated by q_1, \ldots, q_{j+1} , we have that $h_{ij} = 0$ for all i > j+1. In particular, H_r is an upper Hessenberg matrix (having precisely one subdiagonal).

3. If A is symmetric, then $H_r = Q_r^\top A Q_r$ is symmetric, so that it simplifies to a tridiagonal matrix. In particular $h_{ij} = (Aq_j)^\top q_i = 0$ for all i,j with |i-j| > 2 and Arnoldi becomes Lanczos by accounting for the simplification

$$\widehat{q}_j = Aq_{j-1} - \sum_{\ell=1}^{j-1} q_\ell^\top (Aq_{j-1}) \cdot q_\ell = Aq_{j-1} - q_{j-2}^\top (Aq_{j-1}) \cdot q_{j-2} - q_{j-1}^\top (Aq_{j-1}) \cdot q_{j-1}.$$

4. Since $Q_n^TAQ_n \in \mathbb{R}^{n \times n}$ is orthogonally similar to A, it has the same eigenvalues as A.