Lecture 3

Problem from Lecture 2	Law of Total Probability >> P[Sn is divisible by 5]
4 Orn	= IP[Sn is divisible by 5 Xn=a] IP[X
13579	Sn-1+a is divisible 5
a) Drow a ball uniformly at random (u.a.v.) b) record the number on the ball c) return the ball to the urn d) repeat on times.	1 3 2 5 7 9
Let $S_n = Sum$ over the observed Numbers	= \frac{4}{5} \mathbb{P}[\Sn-1 = k mod 5]
Xi = # from the ith draw Sn = Xi + + Xn	Eo, E1,, E4 partition $\Omega \Rightarrow$ $= \frac{1}{5} \mathbb{P}[\Omega] = \frac{1}{5}$
Let R= {1,3,5,7,9}	1

Problem of the Day	Q Can Alice do better than
Alice and Bob play the following guessing game.	Q Can Alice do better than random guess?
1) Bob writes down two different numbers on two separate cards: X X X X X X X X X X X X X	
2) Alice picks one of the cords unitermly at random and looks at the number.	
3) Alice wins if she correctly guesses which of the two cards has a larger number.	

Fuccess Fail

P[X=1]=P, P[X=0]=1-P. F[X] = 1 p + o(1-p) = p Var(X) = E[x2] - E[x]2 Bernoulli process independent and identically distributed X1, X2, ..., Xn iid Bernoullicp)

X~ Bernoulli (p), 0<p<1

Sn ~ Binomial (n, p)

$$\mathbb{E}[S_n = k] = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mathbb{E}[S_n] = \mathbb{E}[X_i + \dots + X_n]$$
by Inverty = $\sum_{i=1}^{n} \mathbb{E}[X_i] = np$

 $W_1 = 3$ $W_2 = 4$ $W_3 = 1$ W: = waiting time between the (i-1)th & ith successes Wi, Wz, Wz, -- are IL Wi ~ Geometric (p) Yi P[W = k] = Cl-p)k-1 p, K=1,23,... E[W] = \(\frac{1}{2} \kc(1/p) \kd p = \frac{1}{p} Var[W] = E[W] - E[W] $= \left(\sum_{k=1}^{k+1} k_{5} \left(1-b\right)_{k-1} b\right) - \left(\frac{b}{T}\right)_{5}$ These moments can be computed more easily using generating functions

(Later lectures)

Var(Sn) = To Var(Xi) (by I of X,..., Xn)
= nip(xp)

00100011000 ... 10101

 $r \in \mathbb{N} = \{1, 2, 3, ...\}$ fixed positive int. Tr = Total waiting time to the rth success Tr = Wit Wat - " + Wr where Wi, ..., Wr i'd Geometric (p) 0010110001 -- 00 r-1 Successes $\mathbb{K}[T_r=n] = \binom{n-1}{r-1} p^{r-1} (1-p)^{n-r} \cdot p$ = (n-1) pr (1-p) n-r Fr = # failures before rth success $\mathbb{R}[F_r = K] = \binom{r+K-1}{r-1} P^r(1-p)^k$ = (k) b ((-b) K

Fr ~ Negative Binomial (r, p) We can compute ELFI & Var IFI without using the prob. mass function directly. E[Fi] = E[Ti] - r Var[Fr] = Var[Tr -r] = Vor [Tr] = r Var [W,] = r (1-p) NB distribution is widely used in single-cell genomics

P., P., P. & P. Convex hull q { P1, P2, P3} 13(24)+ (1-y)200) 9(1x1+(1-3) x2) B= (x3, g(x3)) 1 (x1,3(x1)) **1** 2 x, 1x,+(1-2)x, 7,17, + 12/2+ 13/3 A weighted sum OSASI P2+(x2)g(x2) [Det] (Convex function) A function g: (a, b) -> 12 is 72 × 72 Said to be convex if $\lambda_1 \times_1 + \lambda_2 \times_2 + \lambda_3 \times_3$ $g(y_{x'} + (-y_{x'}) \leq y_{g(x')} + (-y_{y})g(x_{x'})$ $3(y' x' + y^{2}x^{7} + y^{2}x^{3})$ = >1 g(x1) + y= g(x2) + y= g(x3) ∀ x1, x2 ∈ Ca, b) and ∀ 0≤ λ≤1. ∀x1,x2,x3 ∈ R and ∀\$\lambda \lambda \ g is called strictly convex if the equality holds only for $\lambda=0$, $\lambda=1$ g strictly convex \Leftrightarrow equality holds only for 1) $\lambda_i = 1$ and $\eta_j = 0$ for $j \neq i$ (The graph of a over ca,b) Contains) or 2) X1 = X2 = X3.

Thm (Jensen's Inequality)

A convex function $g:(a,b) \to \mathbb{R}$ Satisfies $g(\sum_{i=1}^{n} \lambda_i x_i) \leq \sum_{i=1}^{n} \lambda_i f(x_i)$, Y historying ∑ hi=1, hi≥0 Yi. Corollary Let X be a R-valued discrete RV and 9 a convex function. Then, $g(E[X]) \leq E[g(X)]$

If g is strictly CUX and X is not constant, then g(E[X]) < E[g(X)].

Induction on n. · Base case: n=2. True by CVX def.
· Induction Hyp: Assume true for
all N=2,..., k Show for n= k+1;

g(\frac{7}{2} \lambda_i \times_i) = g(\frac{7}{2} \lambda_i \times_i) + \lambda_k + = 9 (CI- >ICHI) = >i >i ×i + >ICHI XICHI) Def of Convexity of g => < (I-)KH) g(\(\frac{\frac{1}{2}}{2} \)\(\frac{1}{2}} \)\(\frac{1}{2} \)\(\frac{1}{2}} \)\

PF of Jensen's inequality

By induction hyp. $\leq (1-y_{k+1}) \left[\sum_{i=1}^{j-1} \frac{1-y_{k+1}}{1-y_{k+1}} 3(x_i) \right] + y_{k+1} 3(x_{k+1})$ $= \sum_{i=1}^{K+1} \lambda_i g(x_i)$

PF Let Di= II(X=xi) in Jensen's inequality. (Holds for cts RVs also.)

Suppose IP & Q are two probability measures on (S2, F), and let X be a discrete RV sit. P[X=x]=p(x), x ∈ Range(X) $Q[X = x] = g(x), x \in Range(X)$ H(P) = - I pox by pox) = - Ep[by p(X)] Def (Cross entropy)
Cross entropy of Q relative to P: H(R,Q) = - I pos log gco = - Ep [log g(X)]

Def (KL Divergence) The Kullback-Leibler divergence of It from Q is defined as KL(P(Q) = H(P,Q) - H(P) $= -\sum_{x} p(x) \log \left| \frac{g(x)}{p(x)} \right|$ $= - \mathbb{E}_{P} \left[\log \frac{8(X)}{P(X)} \right]$ For continuous RV, replace
p(x) with poly and i I with \ dx Has lots of applications in machine learning (e.g., loss function, EM algorithm, VAE)