NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ENERGI- og PROSESSTEKNIKK

Faglig kontakt under eksamen:

Iver Brevik, tlf. 735 93555

Antall sider: 4, pluss 4 sider formelliste

KONTINUASJONSEKSAMEN I FAG TEP4105 FLUIDMEKANIKK FOR FAK. NT (FYSIKK OG MATEMATIKK) OG FAK. IME (TEKNISK KYBERNETIKK)

Bokmål

15. august 2011

Tid: 0900 - 1300

Studiepoeng: 7,5

Sensuren faller innen 5. september 2011

Hjelpemidler C: Typegodkjent kalkulator, i henhold til NTNU's regler. Trykte hjelpemidler: Formelsamling i matematikk. Formelliste, vedheftet oppgavesettet.

Oppgave 1

a) Gi en kort utledning av uttrykket for trykket p = p(r, z) i et kar som roterer med konstant vinkelhastighet Ω omkring z-aksen:

$$p = C - \gamma z + \frac{1}{2} \rho \, r^2 \Omega^2.$$

Her er g tyngdens akselerasjon, $\gamma = \rho g$ hvor ρ er tettheten, og C er en konstant.

Et tynt sirkulært rør ABC bøyd i rett vinkel er lukket i nedre venstre ende A og åpent mot atmosfæren i øvre ende C; se figuren. Røret roterer i tyngdefeltet med konstant vinkelhastighet Ω omkring z-aksen. Avstanden AB er lik c. Røret inneholder to inkompressible væsker, den ene med tetthet ρ_1 , den andre med tetthet ρ_2 . Væskesøylenes lengder er henholdsvis (c-a) og (a+b), hvor c,a og b er gitte størrelser.

Hvor stort er trykket p_B i punkt B? Hvorfor må trykket være kontinuerlig over grenseflaten (punkt D) mellom væskene 1 og 2?

c) Finn trykket p_A i punkt A. [Hint: Finn trykket i punkt D uttrykt ved størrelser i væske 1, og trykket i samme punkt uttrykt ved tilsvarende størrelser i væske 2. Sett så trykkene lik hverandre.]

En plan plate med tykkelse T er laget av et materiale med tetthet ρ_m . Platen er plassert midt i en vertikal spalte med bredde T+2h, og i mellomrommet på hver side av platen er det et inkompressibelt smøremiddel med tetthet ρ og viskositet μ . Platen faller i tyngdefeltet, men på grunn av friksjonen mot væsken faller platen med en konstant hastighet V. Platens lengde L og bredde B i henholdsvis x- og z-retning er mye større enn åpningen av spalten slik at strømningen overalt vil være parallell med den viste x-aksen. Trykket er overalt lik atmosfæretrykket $p_{\rm atm}$.

- a) Vis ved hjelp av kontinuitetsligningen at smøremiddelets hastighet u i x-retningen er uavhengig av x.
- b) Fallhastigheten V betraktes som en kjent konstant. Vis at hastighetsprofilet i smøremiddelet blir

$$u(y) = \frac{\rho g h^2}{2\mu} \left[\frac{y}{h} - \left(\frac{y}{h} \right)^2 \right] + V \frac{y}{h}$$

- i koordinatsystemet vist på figuren.
- c) Finn skjærspenningen i smøremiddelet ved y=h, og finn fallhastigheten V uttrykt ved ρ, ρ_m, T, g, h og μ .

Oppgave 3

Gitt en stasjonær potensialstrømning i xy-planet, i det indre område av en rektangulær kile begrenset av flatene y = +x og y = -x. Hastighetsvektoren i kartesiske koordinater er $\mathbf{V} = (u, v)$. Dens komponenter er oppgitt til å være

$$u = \alpha y$$
, $v = \alpha x$, $(x \ge 0)$,

hvor $\alpha > 0$ er en gitt konstant.

- a) Har strømningen stagnasjonspunkt? Angi eventuelt posisjonen. Finn den enkleste form for strømfunksjonen $\psi(x,y)$ og hastighetspotensialet $\phi(x,y)$. Finn det komplekse potensial w(z) som funksjon av den komplekse variable z=x+iy.
- b) Skissér den strømlinje som går gjennom punktet P_1 med koordinater $x_1=1,y_1=0$. Vis at ligningen for strømlinjen blir $y=\pm\sqrt{x^2-1}$.
- c) Betrakt en fluidpartikkel som passerer P_1 ved tiden t=0 og beveger seg langs den nevnte strømlinje til punktet P_2 i løpet av tiden Δt . Finn Δt , når det oppgis at x-koordinaten for P_2 er lik $x_2=2$.

[Hint: Finn først hastighetskvadratet V^2 som en funksjon av x. Benytt så at linjeelementet for banen er $ds=\sqrt{dx^2+dy^2}=\sqrt{1+y'^2}\,dx$.]

Oppgitt:

$$\int \frac{dx}{\sqrt{x^2 - 1}} = \ln(x + \sqrt{x^2 - 1})$$

AUGUST 2011

Losning Oppyane 1

a) I det referende system er bevegelusligningen

Her en top= P(f), g=-gk=-gVZ, og da

$$\nabla n^2 = 2 \Lambda \nabla n = 2 \pi \vec{e_n}$$
 bli $\pi \Omega^2 \vec{e_n} = \nabla (\frac{1}{2} \vec{r_n} \Omega^2)$. Pelsa

$$O = \sqrt{-\frac{P}{9} - qz + \frac{1}{2}R^2\Omega^2}), \text{ som que}$$

C Trybek i B en det statiske trybek:

2 b PB = Pahm + 929 b

Pahn = 2 b PB = Pahn + 829 b

Trybut & D en kontinuerlig, ellers ville grenseflaten absolerere i det roterende System.

c) Sett pa væsket en tykket i grenneferhun PD = PA + 128 (c-a)202

Sell for vieshe 2:

 $P_D + \left[\frac{1}{2}g_2c^2 - \frac{1}{2}g_2(c-a)^2\right]\Omega^2 = p_B = p_{ahm} + g_2g_b$

Setter attrykhere for Po like:

PA + 128, (c-a)202 = Pah + Szgb - [252c - 282(c-a)] Q2 Ausa

PA = Patu + 92 gb - 1(91-92) (c-a) 12 - 1 P2c 12

4) Konfinuitehligning
$$\nabla \cdot \vec{V} = 0$$
,
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0 \implies \frac{\partial u}{\partial x} = 0$$

Alba u washenging and x.

$$8\left[\frac{9\pi}{9+} + \pi \frac{9\pi}{9\pi} + \pi \frac{9\pi}{9\pi} + \pi \frac{9\pi}{9\pi}\right] = -\frac{9\pi}{9\pi} + \pi \frac{3\pi}{9\pi} + \frac{3\pi}{9\pi}$$

$$\mu \nabla u = \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = -gg$$

7:
$$\frac{d^2u}{dy^2} = -\frac{89}{\mu}$$
. Integração gir

$$= \frac{u(y) = \frac{ggh^2}{2\mu} \left(\frac{4y}{\mu} - \left(\frac{4y}{\mu} \right)^2 \right) + \sqrt{\frac{4y}{\mu}}}{2\mu}$$

C) Skjanspenning
$$T = \mu \frac{du}{dy}$$
.

Friksjouskraften på platen (2 sider)

a) Stagnasjonopunkt u=v=0 ved x=y=0

Showfunksjon:

$$u = \frac{\partial \Psi}{\partial y} = \alpha y \Rightarrow \Psi = \frac{1}{2}\alpha y^2 + f(x)$$

$$v = -\frac{\partial \Psi}{\partial x} = \alpha x \Rightarrow \Psi = -\frac{1}{2}\alpha x^2 + g(y)$$

Enteleste losning $\psi = \frac{1}{2}d(y^2-x^2)$

Haslighelspotennial:

$$U = \frac{\partial \phi}{\partial x} = xy \Rightarrow \phi = xxy + f_1(y)$$

$$\nabla = \frac{\partial \Phi}{\partial y} = \alpha \times \Rightarrow \qquad \Phi = \alpha \times y + g_1(x)$$

Enhance losuring $\phi = d \times y$

Komplekst potensiel $w = \phi + i\psi = \chi_{xy} + \frac{i}{2}\alpha(y^2 - x^2)$ Deke shal vane en funksjon bane av z = x + iy. Dannen $z^2 = x^2 + y^2 + 2ixy$

 $\omega = -\frac{\dot{\zeta}}{2} \alpha \left(x^2 - y^2 + 2ixy \right) = -\frac{\dot{\zeta}}{2} \alpha z^2$

- b) Skisse at stromligen overfor. Da punktet $P_{A}(1,0)$ shall passe i shom funksjonen $\psi=\frac{1}{2}\alpha(y^2-\chi^2)$, no $\psi=-\frac{1}{2}\alpha$ for denne shamlingen. Alsa $-1=y^2-\chi^2$, $y^2=\chi^2-1$, slik at $y=\pm\sqrt{\chi^2-1}$ blir liquinger for shamlinger qjernom P_{A} .
- Fluidparlikeled $1 \Rightarrow 2$ i lapsel are hiden Δt :

 Tidselement $dt = \frac{d\Delta}{V}$, how $V^2 = u^2 + v^2 = \alpha^2 (y^2 + x^2)$, $\delta : V^2 = \alpha^2 (2x^2 1)$, $V = \alpha \sqrt{2x^2 1}$. $ds = \sqrt{1 + y^{12}} dx$. For $y^2 = x^2 1$ folgon y dy = x dx, ds, ds, $ds = \sqrt{1 + y^{12}} dx$. Del qui $ds = \sqrt{1 + \frac{x^2}{x^2 1}} dx = \sqrt{\frac{2x^2 1}{x^2 1}} dx$.

Seller inn:
$$\frac{\sqrt{2x^2-1}}{dt} = \frac{1}{\sqrt{x^2-1}} \frac{dx}{\sqrt{x^2-1}}$$

Integrerer:

$$\Delta t = \int_{1}^{2} dt = \frac{1}{\alpha} \int_{1}^{2} \frac{dx}{\sqrt{x^{2}-1}} = \frac{1}{\alpha} \int_{1}^{2} \ln(x+\sqrt{x^{2}-1})$$

$$\Delta t = \frac{1}{d} \ln(2 + \sqrt{3})$$