

Pesquisa Operacional Introdução - aula 2 -

Profa. Alessandra Martins Coelho

Operational Research

- Pesquisa Operacional
- Investigação Operacional
- Investigación Operativa

Investigação de Operações

Termo ligado à invenção do radar
 (Inglaterra – 1934), atribuído à Rowe (1938)

Em termos científicos, a PO é caracterizada por um campo de aplicações bastante amplo o que justifica a existência de várias definições, algumas tão gerais que podem se aplicar a qualquer ciência, e outras tão particulares que só são válidas em determinadas áreas de aplicação.

- "É o uso do método científico com o objetivo de prover departamentos executivos de elementos quantitativos para a tomada de decisões com relação a operações sob seu controle";
- "Propõe uma abordagem científica na solução de problemas: observação, formulação do problema, e construção de modelo científico (matemático ou de simulação)";
- "É a modelagem e tomada de decisão em sistemas reais, determinísticos ou probabilísticos, relativos à necessidade de alocação de recursos escassos".

 É uma ciência aplicada, voltada para a resolução de problemas reais. Tendo como foco a tomada de decisões, aplica conceitos e métodos de várias áreas científicas na concepção, planejamento ou operação de sistemas. (SOBRAPO, 2010).

• É um conjunto de **técnicas matemáticas** utilizadas na resolução de um problema comum ao cotidiano de nossas vidas: determinar o melhor aproveitamento de recursos escassos. (PERIN FILHO, 1995)

- É a **área** que avalia maneiras de adaptar os sistemas do mundo real, para identificar mais claramente as relações entre diferentes elementos.
- É um método científico de tomada de decisões. Em linhas gerais, consiste na descrição de um sistema organizado com o auxílio de um modelo, e através da experimentação com o modelo, na descoberta da melhor maneira de operar o sistema.

Origens

Análise científica do uso operacional de recursos militares – 2ª Guerra Mundial

- A PO surgiu durante a II Guerra Mundial, resultado de estudos realizados envolvendo equipes multidisciplinares de cientistas, contratados para resolver problemas militares de ordem **estratégica e tática**, utilizando de técnicas matemáticas (SILVA et al.,1998).
- Pesquisas em operações militares desenvolvendo métodos, processos e teorias.

Origens

• Como os resultados foram significativos, continuaram a trabalhar mesmo após o término da guerra, redirecionando os estudos também para outras áreas.

Origens

Revolução industrial:

Crescimento das organizações

Complexidade dos problemas

Dificuldade na alocação eficaz dos recursos disponíveis às atividades

Fatores chaves para o crescimento da PO

- Readaptação do parque industrial;
- Desenvolvimento e aperfeiçoamento de técnicas de PO;
- Desenvolvimento dos recursos computacionais
- Dantzig método simplex otimização linear

- Evolução rápida Inglaterra e Estados Unidos
- 1^a Conferência Internacional 1957 Oxford
 - Estudos de casos ou problemas específicos
 - Modelos e métodos matemáticos em diversos temas (teoria de estoques, substituição de equipamentos, teoria de filas, programação (scheduling) de tarefas em máquinas, teoria dos jogos, fluxo em redes e otimização linear.
- Final da década de 50 e início da década de 60
 - aplicação nos setores público e privado.
- Avanço da PO
 - aumento da velocidade de processamento;
 - quantidade de memória;
 - execução de problemas mais complexos

Pesquisa Operacional

PO propõe uma abordagem científica sobre a tomada de decisões

Observação, formulação do problema, e construção de modelo científico (matemático ou de simulação)

- Ideias e processos para articular e modelar problemas de decisão, determinando os objetivos do tomador de decisão e as restrições sob as quais se deve operar;
- Métodos matemáticos, estatísticos e algorítmicos

Conceito de Decisão

 Chiavenato (1997) - "o processo de análise entre várias alternativas disponíveis do curso de ação que a pessoa deverá seguir".

 O processo pelo qual são escolhidas algumas ou apenas uma entre muitas alternativas para as ações a serem realizadas.

Exemplos de decisão

- escolher uma localização dentre várias disponíveis;
- determinar a melhor composição de uma carteira de ações;
- escolher uma entre várias alternativas que balanceia os recursos de produção, como mão de obra disponível, contratação, demissão, estoque.

A natureza

 aplicada a problemas associados a condução e a coordenação de operações ou atividades numa organização.

- possui ampla utilização:
 - governo e suas agências, indústrias, comércio e serviços.
 - adota um enfoque sistêmico para os problemas.
 - busca a solução "ótima" para o problema.
- Ramo multidisciplinar
 - engenharia, computação, economia, estatística, administração, matemática, ciências comportamentais.

- (1) definição do problema;
- (2) construção do modelo;
- (3) solução do modelo;
- (4) validação do modelo;
- (5) implementação da solução;
- (6) avaliação final.

- (1) definição do problema;
- (2) construção do modelo;
- (3) solução do modelo;
- (4) validação do modelo;
- (5) implementação da solução;
- (6) avaliação final.

- objetivos a serem alcançados;
- possíveis caminhos para a solução do modelo;
- definição das limitações técnicas do sistema;
- relação do sistema com outros da empresa ou do ambiente externo.

- (1) definição do problema;
- (2) construção do modelo;
- (3) solução do modelo;
- (4) validação do modelo;
- (5) implementação da solução;
- (6) avaliação final.

conjunto de equações (funções objetivo e restrições de igualdade) e/ou inequações (restrições de desigualdade) que tem como objetivo otimizar a eficiência do sistema e oferecer subsídios para que o tomador de decisão identifique as limitações do mesmo.

- (1) definição do problema;
- (2) construção do modelo;
- (3) solução do modelo;
- (4) validação do modelo;
- (5) implementação da solução;
- (6) avaliação final.

- uso de várias técnicas de PO.
 Ex.:
- Simplex (programação linear e programação em redes)
- Branch-and-bound (programação inteira)

- (1) definição do problema;
- (2) construção do modelo;
- (3) solução do modelo;
- (4) validação do modelo;
- (5) implementação da solução;
- (6) avaliação final.

Um modelo é considerado válido se conseguir representar ou prever, com precisão aceitável, o comportamento do sistema estudado.

- (1) definição do problema;
- (2) construção do modelo;
- (3) solução do modelo;
- (4) validação do modelo;
- (5) implementação da solução;
- (6) avaliação final.

deve ser controlada e acompanhada de maneira a detectar e corrigir possíveis mudanças da nova solução, o que possa fazer com que algumas partes do modelo sejam reformuladas.

- (1) definição do problema;
- (2) construção do modelo;
- (3) solução do modelo;
- (4) validação do modelo;
- (5) implementação da solução;
- (6) avaliação final.

 verificar se o objetivo final foi alcançado

Exemplos

- Programação linear: mix de produção, mistura de matérias-primas, modelos de equilíbrio econômico, carteiras de investimentos, roteamento de veículos, jogos entre empresas;
- Modelos em redes: rotas econômicas de transporte, distribuição e transporte de bens, alocação de pessoal, monitoramento de projetos;
- Teoria de filas: congestionamento de tráfego, operações de hospitais, dimensionamento de equipes de serviço;

Modelos determinísticos são aqueles em que todas as variáveis envolvidas em sua formulação são constantes e conhecidas.

Modelos estocásticos utilizam uma ou mais variáveis aleatórias em que pelo menos uma de suas características operacionais é definida por meio de funções de probabilidade.

Metodologia Multicritério de apoio a Decisão tem a finalidade de estudar problemas com vários critérios simultaneamente, buscando selecionar a melhor escolha dentre um conjunto de alternativas.

- Análise Envoltória de Dados busca analisar o desempenho, em termos de eficiência relativa, de diferentes unidades tomadoras de decisão.
- Inteligência Artificial tipo de inteligência produzida pelo homem para dotar as máquinas de algum tipo de habilidade que simula a inteligência humana.
- Inteligência Computacional campo da inteligência artificial que estuda algoritmos inspirados na natureza ou bioinspirados, como redes neurais, lógica nebulosa e computação evolucionária.

Heurísticas e Meta-heurísticas - são um campo da Pesquisa Operacional, da Inteligência Artificial e Inteligência Computacional que surgiram como alternativas aos métodos exatos para problemas otimização de alta complexidade computacional que não podem ser resolvidos em tempo polinomial (NP-completos), como problema da mochila, caixeiro viajante, timetabling, entre outros.

Heurística pode ser definida como um procedimento de busca guiada pela intuição, por regras e ideias, visando encontrar uma boa solução.

Meta-heurística, ao contrário, busca escapar de ótimos locais com o intuito de encontrar soluções muito próximas de ótimo local, porém sem a garantia da otimalidade.

Principais Sociedades Profissionais ligadas à PO

INFORMS – Institute for Operations Research and the Management Sciences (1995)

EURO - European Operational Research Society

IFORS - International Federation of Operational Research Societies

SOBRAPO - Sociedade Brasileira de Pesquisa Operacional (1968)

ABEPRO – Associação Brasileira de Engenharia de Produção

Variáveis

- característica de interesse que é medida em cada elemento da amostra ou população.
- seus valores variam de elemento para elemento.
- podem ter valores numéricos ou não numéricos.

Variáveis

Classificação

- Variáveis Quantitativas: são as características que podem ser medidas em uma escala quantitativa, ou seja, apresentam valores numéricos que fazem sentido
- Podem ser contínuas ou discretas.
- Variáveis Qualitativas (ou categóricas): são as características que não possuem valores quantitativos, mas, ao contrário, são definidas por várias categorias, ou seja, representam uma classificação dos indivíduos
- Podem ser nominais ou ordinais

Variáveis Quantitativas

- Variáveis discretas: características mensuráveis que podem assumir apenas um número finito ou infinito contável de valores e, assim, somente fazem sentido valores inteiros
- Geralmente são o resultado de contagens.
- Variáveis contínuas: características mensuráveis que assumem valores em uma escala contínua (na reta real), para as quais valores fracionais fazem sentido.
- Usualmente devem ser medidas através de algum instrumento.

Variáveis Quantitativas

- Variável binária: variáveis explicativas que podem assumir apenas um de dois valores (geralmente 0 ou 1).
- Representam características qualitativas, em eventos que tenham apenas dois resultados possíveis.

Exercícios

Classificar as variáveis segundo uma das escalas de mensuração: discreta, contínua ou binária

- a) tempo de atendimento de cada cliente
- b) distância percorrida
- c) atuação em um ramo de atividade: indústria ou comércio
- d) número de lojas de um varejista
- e) número de computadores por departamento
- f) decisão se um veículo será designado a determinado cliente
- g) área total de vendas
- h) quantidade de agências a serem inauguradas

Classificar as variáveis segundo uma das escalas de mensuração: discreta, contínua ou binária

- i) decisão se determinado armazém será ou não escolhido dentre um conjunto de alternativas
- j) tempo de processamento de pintura
- k) número de funcionários
- I) faturamento bruto
- m) nível de serviço (alto ou baixo)
- n) escolha ou não de um projeto de investimento

Função Linear

- Uma função do tipo y = ax + b em que a razão entre o valor de y e o valor correspondente de x é constante.
- o gráfico é sempre uma reta.

Seção 1.3.1 (ex. 3). Classificar as funções a seguir como lineares ou não lineares.

a)
$$24x_1 + 12x_2 = 10$$

b)
$$\ln (x_1) - x_2 + x_3 = 5$$

c)
$$X_1 X_2 + 10 X_3 \le 40$$

d)
$$\frac{X_1X_2}{X_2}$$

e)
$$24x_1 + 12x_2 - 2x_3 \ge 24$$

f)
$$\frac{5}{x_1} + 10x_2 \le 10$$

g)
$$24x_1 + \frac{x_2}{2} = 8$$

h) sen
$$(x_1) + \cos(x_2) \ge 1$$

$$10x_1 - x_2 + 30$$

$$(x_1)^2 + x_2 + 5x_3 \le 22$$

$$k) \sum_{i=1}^{n} c_{i} x_{i}$$

In
$$(x_1) = \ln (10) + 5 \ln (x_3)$$

m)
$$e^2 x_2 + 10x_3 \le 140$$

m)
$$\frac{x_1}{x_2} + 6x_3 = 60$$

a)
$$4x_1 x_2 x_3 - \ln(x_4) \le 36$$

$$p) \quad \frac{2x_1 + 4x_2}{3x_3 - x_4} \ge 16$$

$$|y| 4x_1 + 3x_2 - 62 \ge x_3$$

$$x_2 = 10 - 4\left(\frac{1}{x_1}\right)$$

$$x_1 x_2 + 4 (x_3)^3 = 45$$

$$x_2 = \frac{1}{e^{-(1+2x_1)}}$$

Características dos Problemas de Programação Linear, Programação Não Linear, Programação Binária e Inteira e suas Extensões

Tipo de Modelo	Função Objetivo	Restrições	Tipo de Variável
Programação linear (PL)	Linear	Linear	Contínua
Programação linear inteira (PLI ou PI)	Linear	Linear	Discreta
Programação linear inteira mista (PLIM ou PIM)	Linear	Linear	Discreta e contínua
Programação linear binária (PLB ou PB)	Linear	Linear	Binária
Programação linear binária mista (PLBM ou PBM)	Linear	Linear	Binária e contínua
Programação linear inteira binária (PLIB ou PIB)	Linear	Linear	Discreta e binária
Programação não linear (PNL)	Pelo menos uma delas é não linear		Contínua
Programação não linear inteira (PNLI)	Pelo menos uma delas é não linear		Discreta
Programação não linear inteira mista (PNLIM)	Pelo menos uma delas é não linear		Discreta e contínua
Programação não linear binária mista (PNLBM)	Pelo menos uma delas é não linear		Binária e contínua
Programação não linear inteira binária (PNLIB)	Pelo menos uma delas é não linear		Discreta e binária

Imagine que você foi escolhido para ser o gestor de investimentos de uma família que quer maximizar o retorno de suas aplicações. Você tem apenas dois tipos de possibilidades de aplicação: ações ou renda fixa. Sabendo que a família vai disponibilizar a você um montante de \$1.000.000,00, que a taxa de retorno esperada para a aplicação em ações no período será de A%, que a taxa de retorno esperada para a aplicação em renda fixa no período analisado será de R% e que o montante a ser aplicado em ações não deve exceder a 25% do total, defina as variáveis de decisão, os parâmetros, a função objetivo e as restrições.

Imagine que você foi escolhido para ser o gestor de investimentos de uma família que quer maximizar o retorno de suas aplicações. Você tem apenas dois tipos de possibilidades de aplicação: ações ou renda fixa. Sabendo que a família vai disponibilizar a você um montante de \$1.000.000,00, que a taxa de retorno esperada para a aplicação em ações no período será de A%, que a taxa de retorno esperada para a aplicação em renda fixa no período analisado será de R% e que o montante a ser aplicado em ações não deve exceder a 25% do total, defina as variáveis de decisão, os parâmetros, a função objetivo e as restrições.

Variáveis de decisão:
montante a ser aplicado em ações (QA) e em renda fixa (QR)
Parâmetros:
Taxa de retorno esperada para a aplicação em ações (A%) e em renda fixa (R%)
Função Objetivo:
Maximizar (A%)QA + (R%)QR
Restrições:
QA + QR = 1.000.000,00
QA <= 250.000,00
QA>=0

QR >= 0

Considerando que x_j representa as variáveis de decisão, classificar os problemas abaixo como programação linear (PL) ou não linear (PNL). Justifique.

a) max
$$\sum_{j=1}^{10} 10x_j$$

sujeito a:

$$2x_1 - 5x_2 = 10 \tag{1}$$

$$x_1 x_2 \le 50$$
 (2)

$$x_1, x_2 \ge 0 \tag{3}$$

b) min $24x_1 + 12x_2$ sujeito a:

$$3x_1 + 2x_2 \ge 4$$
 (1)

$$2x_1 - 4x_2 \le 26 \tag{2}$$

$$x_2 \ge 3$$
 (3)

$$x_1, x_2 \ge 0 \tag{4}$$

 $\frac{10}{x_1} - x_2$

sujeito a:

$$6x_1 + x_2 \le 10 \tag{1}$$

$$x_2 \le 6 \tag{2}$$

$$X_1, X_2 \ge 0 \tag{3}$$

d) max $3x_1 + 3x_2 - 2x_3$ sujeito a:

$$6x_1 + \cos x_2 - x_3 \le 10 \tag{1}$$

$$\frac{x_2}{4} + x_3 \le 20 \tag{2}$$

$$x_1, x_2, x_3 \ge 0$$
 (3)

Considerando que x_j representa as variáveis de decisão, classificar os problemas a seguir em uma das categorias listadas:

 Funções lineares: a) programação linear (PL); b) programação inteira (PI); c) programação inteira mista (PIM); d) programação binária (PB); e) programação binária mista (PBM); e f) programação inteira binária (PIB).

a) max $3x_1 + 2x_2 + x_3$ sujeito a:

$$\sum_{j=1}^{3} c_j x_j \le 20 \tag{1}$$

$$x_j \ge 0, \quad j = 1,...,3$$
 (2)

b) max $x_1 + \cos(x_2) + x_3$ sujeito a: $10x_1 - 5x_2 + 2x_3 \le 16$

$$10x_1 - 5x_2 + 2x_3 \le 16$$
 (1)

$$0 \le x_j \le 10, \quad j = 1,...,3$$
 (2)

c) min $x_1x_2 + 6x_3$ sujeito a:

$$4x_1 + 3x_2 - 5x_3 \ge 32 \tag{1}$$

$$x_j = 0 \text{ ou } 1, \quad j = 1,...,3$$
 (2)

d) min $12x_1 + 10x_2 - 8x_3$ sujeito a:

$$\frac{x_1}{4} + 10x_2 - 2x_3 \ge 28 \tag{1}$$

$$x_1, x_2 = 0 \text{ ou } 1$$
 (2)

$$x_3$$
 inteiro (3)

e) max $2(x_1)^2 + 2x_2x_3$ sujeito a:

$$\frac{4}{x_2} + 2x_2 - \text{sen}(x_3) = 42 \qquad (1)$$

$$x_{j} \ge 0$$
, $j = 1,...,3$ (2)

$$x_2$$
 inteiro (3)

f) max $2x_1 - \frac{x_2}{10} + 4x_3$ sujeito a:

$$x_1 + 5x_2 + 2x_3 \ge 20 \tag{1}$$

$$x_j \ge 0$$
, $j = 1,...,3$ (2)

$$x_i$$
 inteiro (3)