CR04: Numerical Linear Algebra Julien Langou

M2 - Wave #2

Tuesdays 8:00am – 10:00am (A1)

Thursdays 8:00am – 10:00am (B)

Julien Langou, Professor, University of Colorado Denver

About me

- PhD in 2003 from France, then moved to the US
- 2006-current: Professor at University of Colorado Denver
- 25 years of Research in Numerical Linear Algebra
- Actively contributes to numerical software libraries such as LAPACK.

Problems to be solved

Ecosystem

MathWorks®

users

hardware, optimized libraries

24-25 Winter School in Numerical Linear Algebra

• Week 1: Tu. Nov 19 – Th. Nov 21 solving dense linear systems of equations

• Week 2: Tu. Nov 26 – Th. Nov 28 solving dense linear least squares problems

• Week 3: Tu. Dec 3 – Th. Dec 5 introduction to BLAS and parallel implementations (code tuning, I/O, etc.)

• Week 4: Tu. Dec 10 – Th. Dec 12 methods for eigenvalue problems (part 1)

• Week 5: Tu. Dec 17 – Th. Dec 19 methods for eigenvalue problems (part 2)

• Week 6: Tu. Jan 7 – Th. Jan 9 iterative methods for sparse matrices

• Week 7: Tu. Jan 14 – Th. Jan 16 solving sparse linear systems of equations

• Week 8: Tu. Jan 21 – Th. Jan 23 project presentations

• Week 9: Tu. Jan 28 – Th. Jan 30 (slack)

• For each topic, we will review:

- the problem to be solved,
- · main algorithms to solve the problem
- · condition number, backward error, error analysis
- efficient implementations, parallel implementation
- some applications
- some current research topics will be mentioned

Prerequisites

- Some programing experience in Python, C, Julia, or etc.
- Good understanding of linear algebra

Evaluation

- 50% "contrôle continu" avec DM (Devoir Maison)
- 50% "contrôle terminal" une soutenance de projet

Typical projects

- Write a dense nonsymmetric eigenvalue solver
- Write a dense symmetric eigenvalue solver
- Write a dense singular value solver
- Write a sparse direct solver

Benefits of the class

- Numerical Linear Algebra is used in many applications. It is good to know what are the algorithms behind.
- Some ideas that you can use in many other contexts
 - Code tuning
 - Parallelism
 - Backward stability, error analysis, condition number, etc.