Statistical Inference I

Prof. Chin-Tsang Chiang

Lecture Notes 19

December 3, 2015

Scribe: Wei-Chang Lee, Chi-Ning Chou

0.1 Condition and independence

Here, we formally define the concept of conditional distribution in random vector.

Definition 1 (conditional probability density function) Let X_1, X_2 be two random vectors with $f_{X_1}(x_1) > 0$. Then, the conditional pdf of X_2 given $X_1 = x_1$ is defined as

$$f_{\underbrace{X_{2}|X_{1}}}(x_{2}|x_{1}) = \frac{f_{\underbrace{X}}(x_{2})}{f_{\underbrace{X_{1}}}(x_{1})}$$

Intuitively, we can think of the whole sample space has a partition $\Omega_1 \times \Omega_2$ over random vector X_1 and X_2 . Then conditional sense it to restrict X_1 occurs in X_1 . Thus, the sample space becomes $X_1 \times X_2$.

With the concept of conditional pdf, we can know further characterize the idea of independence. In probability theory, we say two **events** are independent if the probability of an events is not affected by another. Now, what we are consider is **random variables**, whose probability is defined over the whole σ -algebra. As a results, the formation is much more complicated. However, the idea is quite the same. And actually, the condition is more simple. As σ -algebra have the good closeness property, here once we define the independence relation for some specific representative events, the independence has been characterized. Formally, we have

Definition 2 (independence) Let $X = (X_1^T, ..., X_p^T)^T$ be a random vector with joint $pdf F_{X}(x)$ and we denote the marginal distribution of X_i as $F_{X_i}(x_i)$. Now, we say $X_1, ..., X_p$ are mutually independent if

$$F_{\underline{X}}(\underline{x}) = \prod_{i=1}^{p} F_{\underline{X}_{i}}(\underline{x}_{i})$$

The concept of independence is very important in probability theory and statistics. With help of independence, we can derive lots of great properties for the models. Take a look at the following example.

Example: Consider the example of hazard time and missing data.

- Failure time: $T \sim f_T(t)$, where the cdf is $F_T(t)$ and the hazard function $S_T(t) = 1 F_T(t)$.
- Censure time: $C \sim f_C(t)$, where the cdf is $F_C(t)$ and the hazard function $S_C(t) 1 F_C(t)$.
- $X = \min\{T, C\}$
- $\delta = \mathbf{1}_{T \neq X}$

Assume that T and C are independent. Consider

$$f_{X,\delta}(x,1) = \lim_{\Delta \to 0} \frac{P[X \in [x, x + \Delta], \ \delta = 1]}{\Delta} = \lim_{\Delta \to 0} \frac{P[X \in [x, x + \Delta], \ T \neq C]}{\Delta}$$

$$= \lim_{\Delta \to 0} \frac{P[X \in [x, x + \Delta], \ C \geq x + \Delta]}{\Delta}$$

$$(\because T, C \text{ are independent}) = \lim_{\Delta \to 0} P[X \in [x, x + \Delta]] \cdot P[C \geq x + \Delta]$$

$$= f_T(x) \cdot S_C(x)$$

Theorem 1 (necessary and sufficient condition for mutually independence) Let $X_1, ..., X_p$ be random variables, they are mutually independent iff $\exists g \text{ such that } F_X(\underline{x}) = \prod_{i=1}^p g_i(x_i)$.

Proof:

- (\Rightarrow) Take g_i to be the marginal distribution of X_i is sufficient.
- (\Leftarrow) Consider the marginal distribution $F_{X_i}(x_i) = F_{X_i}(\infty,...,x_i,...,\infty) = g_i(x_i) \prod_{j \neq i} g_j(\infty)$. Let

 $c_i = g_i(\infty)$, then $\prod_{i=1}^p c_i = 1$. Thus, we can further write $F_{X_i}(x_i) = \frac{g_i(x_i)}{c_i}$. Finally, by the assumption, we have

$$F_{\tilde{X}}(\tilde{x}) = \prod_{i=1}^{p} g_i(x_i)$$

$$(:: \prod_{i=1}^{p} \frac{1}{c_i}) = \prod_{i=1}^{p} \frac{g_i(x_i)}{c_i} = \prod_{i=1}^{p} F_{X_i}(x_i)$$

Intuition (necessary and sufficient condition for mutually independence)

Mutually independence of random variables is equivalent to the partition of their marginal distribution.

Example: Latent analysis. Suppose there are three random variables X, Y, and Z. Suppose only Y and Z are mutually independence, how can we analyze the network? A possible solution is to assume there are some underlying latent effect W_1 among X and Y and another latent effect W_2 among X and Z. Now, as we consider X and Y conditioned on W_1 , they will be independent. That is, $X \perp\!\!\!\perp Y | W_1$ and $X \perp\!\!\!\perp Z | W_2$.

So far, we construct the concept of independence. Now, we may want to discover the good properties implied by mutually independence. In the following context, we assume random variables $X_1, ..., X_p$ are mutually independence.

Property 1 (measurable function) If $g_1, ..., g_p$ are measurable, then

$$\mathbb{E}[\prod_{i=1}^{p} g_i(X_i)] = \prod_{i=1}^{p} \mathbb{E}[g_i(X_i)]$$

Property 2 (σ -algebra) Suppose $dim(X_i) = r_i$, then $\forall A_i \in \mathcal{B}^{r_i}$, we have

$$Pr[X_1 \in A_1, ..., X_p \in A_p] = \prod_{i=1}^p Pr[X_i \in A_i]$$

Proof: Take $g_i = \mathbf{1}_{\{x_i \in A_i\}}$ and apply Property 1.

Property 3 (induced random variables) Suppose g_i are measurable and let $U_i = g_i(X_i)$, then $\{U_i\}$ are mutually independent.

Proof: We can see that the induced σ -algebra is a subset of the original one. By Property 2, we know that $\{U_i\}$ are mutually independent.

Intuition (independence and correlation)

Independence talks about the relation of random variables over the whole σ -algebra. Thus, it is actually very difficult to achieve independence. However, correlation deals with some basic relation such as linearity among random variables.

0.2 Characteristic function

For univariate random variable, we define the characteristic function as the expectation of e^itX . However, now we are in the world of multivariate random variables, how can we define the characteristic function in a similar fashion? The idea is actually quite simple, we also take t as a vector instead of a scaler, which turns the characteristic function into a multivariate function. Then us- $it^T X$

ing inner product to create the exponent term. Thus, result in a similar expectation form e . Formally, we define the characteristic function for multivariate random variables as follow:

Definition 3 (characteristic function) The characteristic function of multivariate random variable X is

$$\phi_{\overset{.}{X}}(\overset{.}{t}) = \mathbb{E}[\overset{i\overset{.}{t}^T\overset{.}{X}}{\overset{.}{Z}}]$$

Similarly, we can define the moment generating function as $M_{X}(\underline{t}) = \mathbb{E}[e^{\underbrace{t}^{T}X}]$.