CE 107:

BY KAMERON GILL Date April 11, 2017

I. Probablity Theory

- Probablitity of an event Number assigned to the event relfecting the likelihood with which it can occur or has been observed to occur
- A Probablity law for random experient is a rule that assigns the probablity of a certain event follows three conditions
 - i. An event A may or may not take place; and it has some likelihood, which is 0 if it never occurs
 - ii. Something must occur in our experiment
 - iii. If one event negates another, then the likelihood that either occurs is the likelihood that one occurs plus the likelihood that the other occurs
- Random Experiment
 - a) A random experiment is specified by stating an experimental procedure and a set of measurements and oversations
- Sample Space
 - a) Any set of elements can be a sample space
 - b) We only require that performing our experiment must result in one outcome
 - c) We denote sample space by S or Ω
- Events
 - a) An event associated with a random experiements corresponds to a proposition
 - b) the event occurs if ANY of the outcomes that makes the proposition "true" takes place
 - c) So, any event is associated with a subset of the sample space S and can be empty
 - d) An impossibly event corrsponds to the empty set 0
- Example
 - a) Life of a light bulb
 - b) sample space: $S = \{x \in R | x \ge 0|\}$
- Prob Theory
 - a) Constists of: Sample SPace, set of events F, probablity mesasure

• Probablity law:

$$AI: 0 \leqslant P(A)$$

$$A\mathbb{I}: P(\Omega) = 1$$

$$AIII$$
: if $A \cap N = \oplus$ then $P(A \cup B) = P(B) + P(A)$

- II. Algebra of Events
 - A) Natural Numbers: $[0, \infty)$
 - B) $Z:(-\infty,\infty)$
- III. SMT

Contradiction is F

True is T

IV.
$$\{\bigcup_{f=1}^k A_f\} \cap B = \bigcup_{f=1}^k (A_f \cap B)$$

Base case: let k = 1 then $A_1 \cap B = A_1 \cap B$, we assume that the result is true for $n \ge 1$

We need to show that it also true for n+1. using the recursive definition of uncion of sets we have

- V. Collorary
 - A) Corollary $P(A^c) = 1 P(A)$ Chance of something NOT happeneing
 - B) $P(A) \leq 1$
 - C) $P(\emptyset) = 0$
 - D) $P[A \cup B] = P[A] + P[B] P[A \cap B]$