Código comentado.

Passo 1: Importar bibliotecas necessárias

import pandas as pd

from mlxtend.preprocessing import TransactionEncoder

from mlxtend.frequent_patterns import apriori, association_rules

Passo 2: Carregar o dataset

Aqui, carregamos o dataset a partir de um arquivo CSV. O arquivo pode ter transações de itens de um mercado ou qualquer outro tipo de transação.

Caso o arquivo esteja em outro formato, você pode adaptá-lo conforme necessário.

Substitua 'path_to_your_dataset.csv' pelo caminho do seu arquivo dataset = pd.read_csv('path_to_your_dataset.csv', header=None)

Visualizar as primeiras linhas do dataset para verificar como os dados estão organizados print(dataset.head())

Passo 3: Pré-processamento dos dados

O Apriori espera os dados em um formato binário, onde cada transação é representada por uma lista de itens (1 significa que o item foi comprado, 0 que não foi).

Aqui, usamos o TransactionEncoder para transformar os dados para o formato correto.

Convertendo o dataset para uma lista de transações (listas de itens)

transactions = dataset.values.tolist()

```
# Inicializamos o TransactionEncoder e transformamos as transações em um formato binário
(matriz de 1s e 0s)
te = TransactionEncoder()
te ary = te.fit(transactions).transform(transactions)
# Criamos um DataFrame com os dados binários
df = pd.DataFrame(te_ary, columns=te.columns_)
# Visualizar os dados no formato binário
print(df.head())
# Passo 4: Aplicar o algoritmo Apriori
# O algoritmo Apriori é usado para encontrar os itemsets frequentes, ou seja, conjuntos de
itens que aparecem frequentemente juntos nas transações.
# O parâmetro min_support determina o suporte mínimo para que um itemset seja
considerado frequente. Ajuste esse valor conforme necessário.
# Aqui, definimos min_support=0.05, ou seja, um itemset deve aparecer em pelo menos 5% das
transações.
frequent_itemsets = apriori(df, min_support=0.05, use_colnames=True)
# Visualizar os itemsets frequentes
print(frequent_itemsets)
```

Passo 5: Gerar regras de associação

Após encontrar os itemsets frequentes, podemos gerar as regras de associação. As regras indicam como a presença de um conjunto de itens pode implicar na presença de outro conjunto de itens. # Usamos a métrica "lift", que mede a relevância das regras. O lift maior que 1 indica uma relação interessante entre os itens. # O min threshold=1 significa que queremos regras com lift maior ou igual a 1. rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1) # Visualizar as regras geradas print(rules) # Passo 6: Filtrar regras com alta confiança # Podemos filtrar as regras que possuem alta confiança. A confiança é uma medida de quão frequentemente os itens do consequente aparecem nas transações que contêm o antecedente. # Aqui, estamos filtrando regras com confiança maior que 0.7, o que significa que, se o antecedente ocorrer, o consequente ocorrerá em 70% das vezes ou mais. high_confidence_rules = rules[rules['confidence'] > 0.7] print(high_confidence_rules) # Passo 7: Explorar diferentes parâmetros e possibilidades # Agora que temos a base, podemos explorar diferentes parâmetros e possibilidades. # 1. Alterar o valor de min support:

Testar diferentes valores de min_support pode afetar o número de itemsets frequentes encontrados. Por exemplo, use 0.1 (10%) para ver um subconjunto maior de itemsets.

frequent_itemsets = apriori(df, min_support=0.1, use_colnames=True)
print(frequent_itemsets)

2. Usar diferentes métricas para as regras:

Ao invés de "lift", podemos usar outras métricas como "confidence", que é mais direta para medir a relação entre os itens.

rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.6)
print(rules)

3. Ajustar o min_threshold para as regras de associação:

O min_threshold ajusta o critério mínimo para gerar as regras. Se aumentar o valor, você verá menos regras, mas com maior qualidade.

rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.5)
print(rules)

Passo 8: Visualização das Regras

Você pode visualizar as regras de uma forma mais interativa, como gráficos de rede ou outros métodos, para melhor entender as relações.

Mas isso pode exigir bibliotecas adicionais como matplotlib ou networkx.

Explicação Detalhada dos Comentários:

1. Importação de Bibliotecas:

- pandas é usado para manipulação de dados.
- TransactionEncoder da mlxtend converte os dados em um formato binário necessário para o algoritmo Apriori.

 apriori e association_rules da mlxtend s\u00e3o usados para executar o algoritmo Apriori e gerar regras de associa\u00e7\u00e3o.

2. Carregar o Dataset:

- O arquivo CSV é carregado usando o pandas . read_csv(). Os dados podem precisar de ajuste dependendo do formato em que estão.
- dataset. head () é utilizado para visualizar as primeiras linhas do arquivo e garantir que ele está sendo carregado corretamente.

3. Pré-processamento dos Dados:

- Convertemos os dados para um formato binário onde cada linha (transação) é representada como uma lista de itens, e cada item tem valor 1 se foi comprado e 0 caso contrário.
- Isso é feito usando o TransactionEncoder, que prepara os dados para o algoritmo Apriori.

4. Aplicar o Algoritmo Apriori:

- O parâmetro min_support é ajustado para determinar o quão frequentes os itemsets devem ser para serem considerados relevantes. O valor de 0.05 significa que o itemset deve aparecer em pelo menos 5% das transações.
- O algoritmo retorna os itemsets frequentes, ou seja, os conjuntos de itens que aparecem frequentemente juntos nas transações.

5. Gerar Regras de Associação:

- As regras são geradas usando a função association_rules, que aplica uma métrica como lift ou confidence para avaliar a qualidade das regras.
- O parâmetro min_threshold define o limite mínimo para essa métrica.

6. Filtrar Regras de Alta Confiança:

• A confiança é filtrada para encontrar regras em que, quando o antecedente (item no lado esquerdo da regra) é verdadeiro, o consequente (item no lado direito) seja verdadeiro com uma probabilidade de pelo menos 70% (confiança > 0.7).

7. Explorar Parâmetros:

- min_support: Ajustando o valor do suporte, você pode controlar o número de itemsets frequentes. Um suporte maior (ex: 0.1) trará mais itemsets, mas com menor frequência.
- Métricas de Regras: O algoritmo pode usar lift, confidence, entre outras métricas para avaliar as regras. O lift indica se a associação entre os itens é mais forte do que a simples probabilidade de que eles ocorram juntos.
- min_threshold: Alterar esse valor pode filtrar regras mais relevantes ou gerar regras com menos itens.