Algoritmos de optimización bioinspirados

Introducción a Particle Swarm Optimization (PSO)

Inteligencia Artificial INFO257

Profesor: Jorge Maturana jorge.maturana@inf.uach.cl

PSO: Particle Swarm Optimization

- Se inspira del comportamiento de enjambres
- Un comportamiento complejo emerge de la interacción de varios agentes simples

Videos:

- https://www.youtube.com/watch?v=V4f 1 r80RY
- https://www.youtube.com/watch?v=15B8qN9dre4

PSO: Particle Swarm Optimization

- Propuesto por Kennedy & Eberhart en 1995
- Un conjunto de partículas se mueven intentando llegar a zonas atractivas del espacio de búsqueda
- El desplazamiento de la partícula depende de:
 - Su inercia (rapidez, dirección)
 - · La mejor solución que ha encontrado
 - La mejor solución encontrada globalmente

Movimiento de partículas

Dos formas de actualizar posición

- La actualización de la velocidad puede plantearse de dos formas:
 - Parámetros regulan tradeoff individual/social

$$v_i(t) = v_i(t-1) + \rho_1 C_1 \times (p_i - x_i(t-1)) + \rho_2 C_2 \times (p_g - x_i(t-1))$$

Parámetro regula inercia vs. Influencia de mejores valores encontrados

$$v_i(t) = w \times v_i(t-1) + \rho_1 \times (p_i - x_i(t-1)) + \rho_2 \times (p_g - x_i(t-1))$$

Actualización de posición

$$x_i(t) = x_i(t-1) + v_i(t)$$

Algoritmo PSO

Algorithm 3.14 Template of the particle swarm optimization algorithm.

Random initialization of the whole swarm;

Repeat
Evaluate $f(x_i)$;
For all particles iUpdate velocities: $v_i(t) = v_i(t-1) + \rho_1 \times (p_i - x_i(t-1)) + \rho_2 \times (p_g - x_i(t-1))$;
Move to the new position: $x_i(t) = x_i(t-1) + v_i(t)$;

If $f(x_i) < f(pbest_i)$ Then $pbest_i = x_i$;

If $f(x_i) < f(gbest)$ Then $gbest = x_i$; Update (x_i, v_i) ;

EndFor

Until Stopping criteria