*This registration is subject to approval(s) from faculty advisor/Course Instructor/Academic office.

Year/Semester: 2024-25/Autumn

Course Code	Course Name	Tag	Credits	Grade	Credit/Audit
AE 616	Gas Dynamics	Additional Learning	6.0	C	
GC 101	Gender in the workplace	Core course	0.0	N	
ME 601	Stress Analysis	Department elective	6.0	С	

Year/Semester: 2024-25/Project

Course Code	Course Name	Tag	Credits	Grade	Credit/Audit
AE 796	1 Stage Project	Core course	42.0	C	

Year/Semester: 2023-24/Spring

Course Code	Course Name	Tag	Credits	Grade	Credit/Audit
AE 673	Fiber Reinforced Composites	Core course	6.0	AB	C
AE 678	Aeroelasticity	Core course	6.0	BB	C
AE 694	Seminar	Core course	4.0	AB	C
AE 714	Aircraft Design	Department elective	6.0	BB	C
AE 899	Communication Skills	Core course	6.0	pp	N
GC 101	Gender in the workplace	Core course	0.0	NP	N
TD 626	Technology, Society and Development	Institute elective	6.0	BB	C

Year/Semester: 2023-24/Autumn

Course Code	Course Name	Tag	Credits	Grade	Credit/Audit
AE 649	Finite Element Method	Core course	6.0	BC	C
AE 705	Introduction to Flight	Core course	6.0	BB	C
AE 709	Aerospace Structures	Core course	6.0	BB	C
AE 715	Structural Dynamics	Core course	6.0	BC	C
AE 727	Aircraft Structural Mechanics Lab.	Core course	4.0	BB	C
GC 101	Gender in the workplace	Core course	0.0	NP	N
TA 101	Teaching Assistant Skill Enhancement & Training (TASET)	Core course	0.0	op	N

Personal Info

Krishna Teja Yarranagula Room : H12-C-012 Rollno : 23M0036

Mobile :7995875345

M.Tech., Aerospace Engineering

Finite Element Analysis

Project report (AE-649)

Master in Technology

in

Aerospace Engineering

By

Yarranagula Krishna Teja (23M0036)

Under the Guidance of

Prof. P J Guruprasad

Department of Aerospace Engineering

Indian Institute of Technology Bombay

Mumbai-400076, India

```
%% Rayliegh Ritz Method %%
clear all
                                                             %Clear all
syms x w1 w2
                                                                 % defining variable as symbols
                                                                % Variable for trail polynomial soln
syms C1 C2
L=1
x = [0:L]
u = C1*x*(1-x) + C2*x*x*(1-x)
                                                             %Trial soln
du dx = diff(u x)
du dx=diff(du dx)
%% rayleigh ritz
disp('rayleigh ritz METHOD');
R \quad x = -(du \quad dx) - u \quad x + x^2
                                                                          %Residue EQN **
w1=x*(1-x)
w2=x*x*(1-x)
G K 1 = (R x) * (w1)
G K 2 = (R x) * (w2)
expand(G K 1)
expand(G K 2)
G K 1 = int(G_K_1, x, 0, L)
                                                                            %integrating over domain
G_K_2 = int(G_K_2, x, 0, L)
[c1, c2] = solve(G_K_1, G_K_2)
```

```
% Tapered beam
%2 elements
B=[1 \ 0 \ 0 \ 0; \ 0 \ 1 \ 1 \ 0; \ 0 \ 0 \ 1]
A=B.'
k1=(2.5*10*200000/(100/2))
k2=(1.5*10*200000/(100/2))
Ke=[k1 -k1 \ 0 \ 0; -k1 \ k1 \ 0 \ 0; 0 \ 0 \ k2 \ -k2; 0 \ 0 \ -k2 \ k2]
K=B*Ke*A
error = (100*(-0.00267+0.00275))/0.00275
%3 elements
B = [1 \ 0 \ 0 \ 0 \ 0; \ 0 \ 1 \ 1 \ 0 \ 0; \ 0 \ 0 \ 1 \ 1 \ 0; \ 0 \ 0 \ 0 \ 1]
A =B .'
k 1=(2.67*10*200000/(100/3))
k = (2*10*200000/(100/3))
k = (1.33*10*200000/(100/3))
Ke=[k 1 -k 1 0 0 0 0;-k 1 k 1 0 0 0 0;0 0 k 2 -k 2 0 0;0 0 -k 2 k 2 0 0;0 0 0 0 k 3 -k 3;0 0 0 0 -k 3 ✓
k 3]
K = B * Ke * A
C = [280200 - 120000 0; -120000 199800 - 79800; 0 - 79800 79800]
D=[0; 0; 100]
Y=linsolve(C,D)
error=(100*(-0.0027+0.00275))/0.00275
```

```
## petroGlaerkin_sample.....##
clear all
                                                          %Clear all
                                                           % defining variable as symbols
syms x w1
                                                         % Variable for trail polynomial soln
syms C1
L=1
x = [0:L]
u = 1-x + C1*x*(1-x)
                                                 %Trial soln
du dx = diff(u x)
du dx=diff(du dx)
%% petrov Galerkin Method
disp('petrov GALERKIN METHOD');
R x = -2*u x*du dx+du dx*du dx-4
                                                                                  %Residue EQN **
w1 = 1
G K 1 = (R_{x}) * (w1)
expand(G_K_1)
G K 1 = int(G K 1, x, 0, L)
                                                                          %integrating over domain
G_K = solve(G_K_1)
C 1= double(G K)
```

```
## Least Sqaure Method .....###
clear all
                                                         %Clear all
                                                          % defining variable as symbols
syms x w1
syms C1
                                                         % Variable for trail polynomial soln
L=1
x = [0:L]
u = 1-x + C1*x*(1-x)
                                               %Trial soln
du dx = diff(u x)
du dx=diff(du dx)
%% least square method
disp('least square METHOD');
R x=-2*u x*du dx+du dx*du dx-4 %Residue EQN **
w1=2*C1+2
G K 1 = (R x) * (w1)
expand(G K 1)
G K 1 = int(G K 1, x, 0, L)
                                                                       %integrating over domain
G_K = solve(G_K_1)
C 1= double(G K)
```

```
clear all
                                                         %Clear all
                                                          % defining variable as symbols
syms x w1
                                                         % Variable for trail polynomial soln
syms C1
L=1
x = [0:L]
u = 1-x + C1*x*(1-x)
                                                %Trial soln
du dx = diff(u x)
du dx=diff(du dx)
%% Galerkin Method
disp('GALERKIN METHOD');
R = -2*u x*du dx+du dx*du dx-4
                                                                                 %Residue EQN **
w1=x*(1-x)
G K 1 = (R x) * (w1)
expand(G_K_1)
G K 1 = int(G K 1, x, 0, L)
                                                                       %integrating over domain
G_K = solve(G_K_1)
C 1= double(G K)
```

```
% MATLAB codes for Finite Element Analysis
% Discrete Systems.m
% clear memory
clear all
% elementNodes: connections at elements
elementNodes=[1 2;2 3;2 4];
% numberElements: number of Elements
numberElements=size(elementNodes,1);
% By using the MATLAB function size, that returns the number
% of lines and columns of a rectangular matrix, we can detect
%the number of elements by inspecting the number of lines of
%matrix elementNodes.
% numberNodes: number of nodes
numberNodes=4;
% for structure:
% displacements: displacement vector
% force : force vector
```

```
% stiffness: stiffness matrix
% initializing the matrices
displacements=zeros(numberNodes,1);
force=zeros(numberNodes,1);
stiffness=zeros(numberNodes);
% applied load at node 2
force(2)=10.0;
% computation of the system stiffness matrix
% We compute now the stiffness matrix for each element in turn and then assemble
% it in the global stiffness matrix.
for e=1:numberElements;
% elementDof: element degrees of freedom (Dof)
elementDof=elementNodes(e,:);
stiffness(elementDof, elementDof) = ...
stiffness(elementDof, elementDof) + [1 -1; -1 1];
end
% boundary conditions and solution
% prescribed dofs
prescribedDof=[1;3;4];
% free Dof : activeDof
```

```
activeDof=setdiff([1:numberNodes],[prescribedDof]);
% solution
displacements=stiffness(activeDof, activeDof) \ force(activeDof);
% positioning all displacements
displacements1=zeros(numberNodes,1);
displacements1 (activeDof) = displacements;
% output displacements/reactions
outputDisplacementsReactions(displacements1, stiffness, numberNodes, prescribedDof)
function outputDisplacementsReactions(displacements1, stiffness, GDof, prescribedDof)
% output of displacements and reactions in
% tabular form
% GDof: total number of degrees of freedom of
% the problem
% displacements
%displacements=displacements1;
GDof=4;
jj=[1:GDof];
disp('displacements')
 [ jj.' displacements1]
% reactions
F=stiffness*displacements1;
reactions=F(prescribedDof);
disp('reactions')
```

[prescribedDof	reactions]
end	
9	