DATA SCIENCE AND BUSINESS ANALYTICS INTERNSHIP

THE SPARKS FOUNDATION, GRADUATE ROTATIONAL INTERNSHIP PROGRAM (GRIPJULY21)

Task-1: Prediction using supervised machine learning

problem statement: What will be predicted score if a student studies for 9.25hrs/day?

Author: Rakesh kumar mandal

importing all important librarires required for this task

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn import metrics
```

Reading data from the given link

```
In [2]: url = "http://bit.ly/w-data"
    dataset = pd.read_csv("http://bit.ly/w-data")
    print("Data imported successfully")
    dataset
```

Data imported successfully

Out[2]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30

	Hours	Scores
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

Description of datasets

In [3]: dataset.describe()

Out[3]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

In [4]: dataset.shape

Out[4]: (25, 2)

```
In [5]: X = dataset.iloc[:, :-1].values
        #print(X)
Out[5]: array([[2.5],
               [5.1],
               [3.2],
               [8.5],
               [3.5],
               [1.5],
               [9.2],
               [5.5],
               [8.3],
               [2.7],
               [7.7],
               [5.9],
               [4.5],
               [3.3],
               [1.1],
               [8.9],
               [2.5],
               [1.9],
               [6.1],
               [7.4],
               [2.7],
               [4.8],
               [3.8],
               [6.9],
               [7.8]])
In [6]: Y = dataset.iloc[:,1].values
        #print(Y)
Out[6]: array([21, 47, 27, 75, 30, 20, 88, 60, 81, 25, 85, 62, 41, 42, 17, 95, 30,
               24, 67, 69, 30, 54, 35, 76, 86])
```

Plotting the distribution of scores

```
In [7]: dataset.plot(x='Hours', y='Scores', style='o')
    plt.title('Hours v/s Percentage')
    plt.xlabel('Hours Studied')
    plt.ylabel('Percentage of marks')
    plt.show()
```


From the above figure its clearly visible that the percentage of scores and hours of study are positively related to each other

Splitting the dataset into training and test sets

Training the algorithm

```
In [9]: regressor = LinearRegression()
regressor.fit(X_train, Y_train)
print("Training complete.")
```

Training complete.

Plotting the regression line

```
In [10]: line = regressor.coef_*X+regressor.intercept_
In [11]: plt.scatter(X, Y)
    plt.plot(X, line)
    plt.xlabel('Hours Studied')
    plt.ylabel('Percentage of marks')
    plt.title(' Hours v/s percentage')
    plt.show()
```


Making predictions about the datasets

```
In [12]: print(X_test) # Testing data - In Hours
         Y_pred = regressor.predict(X_test) # Predicting the scores
         [[1.5]
          [3.2]
          [7.4]
          [2.5]
          [5.9]]
In [13]: print(Y_test)
         [20 27 69 30 62]
In [14]: # Comparing Actual vs Predicted
         df = pd.DataFrame({'Actual': Y test, 'Predicted': Y pred})
         df
Out[14]:
            Actual Predicted
                20 16.884145
               27 33.732261
               69 75.357018
               30 26.794801
               62 60.491033
In [15]: X_testN=np.append (X_test, [9.25])
         print(X_testN)
         [1.5 3.2 7.4 2.5 5.9 9.25]
```

Calculating predicted score of student

```
In [16]: hours = [9.25]
answer = regressor.predict([hours])
print("No. of hours = {}".format(hours))
print("Predicted score = {}".format(round(answer[0],3)))
No. of hours = [9.25]
Predicted score = 93.692
```

Evaluating the performance of the algorithm

The value of R2 represents the goodness of fit of the model such that the percentage of varition in dependent variable explained by independent varible. In our case,

Dependent varible- percentage of marks,

Independent variable- hours of study,

r2 score= 0.9454906892105354

R2 vaue- 94.549% (approx),

This high value indicates that the data fits into the model very well.