AE1MCS: Tutorial 2 Inference Rules and Proofs

Rule of inferences

Given that $\forall x (L(x) \rightarrow F(x))$ and $\exists x (F(x) \land \neg C(x))$, prove that $\exists x (F(x) \land \neg C(x))$

```
All lions are fierce. \forall x (L(x) \rightarrow F(x))
```

Some lions do not drink coffee.
$$\exists x (L(x) \land \neg C(x))$$

Some fierce creatures do not drink coffee. $\exists x (F(x) \land \neg C(x))$

Proof methods

Proving conditional statements

• 1. Show that if a and b are real numbers and $a \ne 0$, then there is a unique real number r such that ar+b=0.

Prove by contradiction

• 2.Prove that at least one of the real numbers a_1 , a_2 ,..., a_n is greater than or equal to the average of these numbers.

Prove of Equivalence

• 3. Prove that if n is an integer, these four statements are equivalent: (1) n is even, (2) n+1 is odd, (3) 3n+1 is odd, (4) 3n is even.

Proof by (counter) Example

• 4. For all integers a and b, prove or disprove if a is odd or b is odd, then a+b is odd.

Mathematical Induction

5. Use mathematical induction to prove that $7^{n+2} + 8^{2n+1}$ is divisible by 57 for every nonnegative integer n.

Strong Induction

6. Show that if n is an integer greater than 1, then n can be written as the product of primes.

More Exercises in the Textbook

- Section 1.6
 - 3, 5, 7, 13, 15, 17-20, 23-29, 33, 34-35*
- Section 1.7
 - 13, 14, 16, 19-25, 34, 35, 38-40
- Section 1.8
 - 3, 4, 7, 15, 29-32
- Section 5.1
 - 3-17, 18, 19
- Section 5.2
 - 1-4
- Supplementary questions: Q23-Q32