Lesson 8. Poisson Arrival Processes, cont.

1 Overview

- Last lesson: a **Poisson process** is a renewal arrival counting process
 - o arrivals one-at-a-time, interarrival times are independent and time-stationary
 - interarrival times $G \sim \text{Exponential}(\lambda)$ where λ is the **arrival rate**
 - Time of the *n*th arrival: $T_n \sim \text{Erlang}(\lambda, n)$
 - Number of arrivals by time t: $Y_t \sim Poisson(\lambda t)$
 - Properties: independent increments, stationary increments, memoryless
- This lesson:
 - When is the Poisson process a good model?
 - o Decomposing a Poisson process into two arrival counting subprocesses
 - Superposing (combining) two Poisson processes into one arrival counting process

2 When is the Poisson process a good model?

- Any arrival-counting process in which arrivals occur one-at-a-time and has independent and stationary increments must be a Poisson process
 - If you can justify your arrivals having independent and stationary increments, then you can assume that the interarrival times are exponentially distributed
 - o This is a very powerful result
- Independent increments \Leftrightarrow number of arrivals in nonoverlapping intervals of time are independent
 - Reasonable when the arrival-counting process is formed by a large number of customers making individual, independent decisions about when to arrive
- Stationary increments ⇔ expected number of arrivals = constant rate × length of time interval
 - Reasonable when arrival rate is approximately constant over time

Example 1. Discuss whether or not it is reasonable to a processes:	approximate the following arrival processes as Poisson
a. The arrival of cars at a toll booth during evening rub. The arrival of students at a college football game.	sh hour.

3 Decomposition of Poisson processes

- Let's think back to Beehunter case
- Accidents (arrivals) occur according to a Poisson process with arrival rate λ accident/week
- Suppose that a fraction (1γ) of these accidents are major, γ are minor
- We can model each accident type as a **Bernoulli random variable** with success probability γ

$$B = \begin{cases} 0 & \text{with probability } 1 - \gamma & \text{(major accident)} \\ 1 & \text{with probability } \gamma & \text{(minor accident)} \end{cases}$$

- Let's assume:
 - o accident types for all accidents are independent and time stationary
 - o accident types and interarrival times are independent
- The decomposition property:
 - Type 0 arrivals (e.g. major accidents) form a Poisson process with arrival rate $\lambda_0 = (1 \gamma)\lambda$
 - Type 1 arrivals (e.g. minor accidents) form a Poisson process with arrival rate $\lambda_1 = \gamma \lambda$
 - These two processes are independent
- This works because the Poisson process is decomposed by a independent Bernoulli variables
- Other methods of decomposition do not necessarily lead to Poisson subprocesses
- Proof on p. 111 of Nelson

pected number of majo	or accidents in any 8-w	veek period?	
gnal, at which time all v			
= = = = = = = = = = = = = = = = = = = =	_	-	_
i	is. Assume the following of of them are on the leading at which time all wastes. The pected number of pede	is. Assume the following behavior. Pedestrian of of them are on the left side, and two-third gnal, at which time all waiting pedestrians crotes. The pected number of pedestrians crossing left to	we been asked to conduct a study of the pedestrian crossing near Ch is. Assume the following behavior. Pedestrians approach the crossing at rd of them are on the left side, and two-thirds of them are on the right gnal, at which time all waiting pedestrians cross instantaneously. Suppotes. pected number of pedestrians crossing left to right on a given "WALK" obability that at least one pedestrian crosses right to left on any particul

4	Super	position	of Poisson	processes
---	-------	----------	------------	-----------

- We can also combine Poisson processes
- Suppose that:
 - $\circ~$ major accidents arrive at the intersection according to a Poisson process with arrival rate λ_0
 - \circ minor accidents arrive at the intersection according to a Poisson process with arrival rate λ_1
 - o these processes are independent of each other
- The **superposition property**: the arrivals from both processes (e.g. major and minor accidents) together form a Poisson process with arrival rate $\lambda = \lambda_0 + \lambda_1$
- This works because the two Poisson processes are independent
- Proof on pp. 111-112 of Nelson

m, given mat 30	customers have ar	iived by 10 a.iii.:			
_	arkov Company ha receives 12 per wee			-	
ek, while Louise a. What is the p		ek. Suppose the or total sales for two	ders arrive accord weeks will be mo	ling to a Poisson p	process.
ek, while Louise a. What is the p	receives 12 per wee robability that the	ek. Suppose the or total sales for two	ders arrive accord weeks will be mo	ling to a Poisson p	process.
ek, while Louise a. What is the p	receives 12 per wee robability that the	ek. Suppose the or total sales for two	ders arrive accord weeks will be mo	ling to a Poisson p	process.
ek, while Louise a. What is the p	receives 12 per wee robability that the	ek. Suppose the or total sales for two	ders arrive accord weeks will be mo	ling to a Poisson p	process.
ek, while Louise a. What is the p	receives 12 per wee robability that the	ek. Suppose the or total sales for two	ders arrive accord weeks will be mo	ling to a Poisson p	process.