Lengths and Areas (I)

Jongmin Lim

December camp 2024

1 Tangents and Pitot's theorem

1.1 Tangents

Tangents to a circle from a point have equal lengths.

- 1. Let the incircle of $\triangle ABC$ touch BC at D. Let the A-excircle touch BC at E. Show that BD = CE.
- 2. Let quadrilateral ABCD have an inscribed circle. Show that AB+CD=AD+BC.
- 3. Let the incircle of $\triangle ABC$ have radius r. Show that

Area
$$ABC = \frac{r}{2}(a+b+c)$$

- 4. Let $\triangle ABC$ have $\angle A=90^{\circ}$. Show that the inradius $r=\frac{AB+AC-BC}{2}$.
- 5. Hence or otherwise find all right angle triangles with integer side lengths whose area equals its perimeter.
- 6. Let ABCD be a parallelogram. Let the incircle of $\triangle ACD$ and $\triangle ABC$ touch AC at K, M. Let the incircle of $\triangle BCD$ and $\triangle ABD$ meet BD at L, N. Show that KLMN is a rectangle. (Hint: what defines a rectangle?)

1.2 Pitot's theorem

Given a quadrilateral $\Box PQRS$, an inscribed circle ω is a circle tangent to the sides PQ,QR,RS,SP at at X,Y,Z,W respectively and inside the quadrilateral. Similarly, an escribed circle Ω is a circle tangent all four sides, but outside the quadrilateral.

1. Let ω touches sides PQ,QR,RS,SP . Show that $XY,\,ZW,$ and PR are concurrent.

- 2. Let $\Box ABCD$ be an convex quadrilateral. Show that $\Box ABCD$ has an inscribed circle if and only if AB + CD = AD + BC. (Hint: What happens to AD when we draw a circle tangent to AB, BC, CD?)
- 3. Let $\Box ABCD$ be a concave quadrilateral. Show that $\Box ABCD$ has an inscribed circle if and only if AB + CD = AD + BC.
- 4. Let $\Box ABCD$ be a convex quadrilateral. Show that $\Box ABCD$ has an escribed circle if and only if AB + BC = AD + CD.
- 5. Let $\Box ABCD$ be a concave quadrilateral. Show that $\Box ABCD$ has an escribed circle if and only if AB + BC = AD + CD.
- 6. Let $\Box ABCD$ be a quadrilateral that crosses over itself; i.e. ACBD is a convex quadrilateral. Show that $\Box ABCD$ has an escribed circle if and only if AB + BC = AD + CD.
- 7. (Australian team selection exam 2016) Let $\Box ABCD$ be a convex quadrilateral such that AC + BC = AD + BD. Let $E = AC \cap BD$. Show that the angle bisector of $\angle CAD, \angle CBD, \angle CED$ meet at one point.
- 8. (2015 December camp prep problem G3) Let $\triangle ABC$ have three cevians AX, BY, CZ, meeting at point one D inside the triangle. Assume we have AZ + DY = AY + ZD and BZ + DX = BX + ZD. Show that CX + DY = CY + DX.

2 Length ratios

2.1 Generalised angle bisector theorem

Consider $\triangle ABC$. Let D be a point on line BC. Then $\frac{BD}{DC} = \frac{AB\sin BAD}{AC\sin CAD}$.

1. Let A, B, C, D be on a line such that AB/BC = AD/DC. Let ℓ be another line, and P be a point not on either lines. Let PA, PB, PC, PD intersect ℓ at A', B', C', D'. Show that A'B'/B'C' = A'D'/D'C'.

2.2 Ceva

Let Cevians AD, BE, CF meet at a point P in $\triangle ABC$. Then $AF/FB \times BD/DC \times CE/EA = 1$.

- 1. Let X, Y be on sides AB, AC of $\triangle ABC$ such that $XY \parallel BC$. Let $BY \cap XC = T$. Let $AT \cap BC = M$. Show that M is the midpoint of BC.
- 2. (angle ceva) Let Cevians AD, BE, CF meet at a point P in $\triangle ABC$. Then

$$\frac{\sin BAD}{\sin DAC} \times \frac{\sin ACF}{\sin FCB} \times \frac{\sin CBE}{\sin EBA} = 1$$

2.3 Menelaus

Let $\triangle ABC$ have sides BC, CA, AB meet a line ℓ at points D, E, F respectively. Then $AF/FB \times BD/DC \times CE/EA = 1$.

1. Let AD, BE, CF be Cevians. Let $EF \cap BC = X$. Show that BD/CD = BX/CX.

3 Other tricks

3.1 Parallel lines

Consider $\triangle ABC$. Let ℓ pass through A and be parallel to BC. Then for any $A' \in \ell$, the area of $\triangle A'BC$ equals the area of $\triangle ABC$.

1. Consider a convex quadrilateral ABCD. Construct a line (using straightedge and compass) that bisects the area of this quadrilateral.

3.2 Power of a point

Given a point P and a circle ω with centre O and radius r, we define the power of the point P with respect to ω as

$$p(P,\omega) = OP^2 - r^2$$

Notice that when P is outside of the circle, this is equal to the length of the tangent to ω from P. When P is inside of the circle, this value is negative.

- 1. Let A, B on circle ω and X be outside the circle such that XA, XB are tangents. Let C, D also be on the circle such that XCD is collinear in this order.
 - (a) Show that $\triangle XAC \sim \triangle XDA$.
 - (b) Hence or otherwise, show that $\frac{AC}{AD} = \frac{BC}{BD}$.

4 Problems

- 1. Show that $OI^2 = R(R-2r)$ for circumradius R and inradius r for a given triangle with circumcentre O and incentre I.
- 2. Let ABCD be a convex quadrilateral. Let K, L, M, N be the midpoints of AB, BC, CD, DA respectively. Let NL intersect KM at T. Show that

$$\frac{8}{3}Area(DNTM) < Area(ABCD) < 8Area(DNTM)$$

3. Let a, b, c be the side lengths of a triangle. Show that $abc \ge (a+b-c)(a-b+c)(-a+b+c)$

- 4. The incircle of a non-isosceles triangle ABC touches the sides AC, BC at P,Q respectively. The excircles to the sides AC and BC touch the line AB at points M and N respectively. It is known that M,N,P,Q are cyclic. Prove that $\angle ACB = 90^{\circ}$.
- 5. (USAMO 1998) Let ω_1 , ω_2 be concentric circles with ω_2 in the interior of ω_1 . Let A be a point on ω_1 and B a point on ω_2 such that AB is tangent to ω_2 . Let C be the second point of intersection of AB and ω_1 , and let D be the midpoint of AB. A line passing through A intersects ω_2 at E and E in such a way that the perpendicular bisectors of E and E intersect at a point E on E on E what is E and E intersect at a point E on E intersect at E and E intersect at E intersect at E intersect E in E in E intersect E
- 6. Let ω be the incircle of triangle ABC, where AB is the longest side. Let L, N, E be the points of tangency of ω with the sides AB, BC, CA respectively. Lines LE and BC intersect at the point H and lines LN and AC intersect at the point J. Let O, P be the midpoints of EJ and NH respectively. If $Area(ABOP) = u^2$ and $Area(COP) = v^2$, show that Area(HJNE) = 4uv.
- 7. Let $\triangle ABC$ have points D, E, F on sides BC, CA, AB such that AD, BE, CF are concurrent. Show that if BDPF has an incircle and CDPE has an incircle, then AEPF must have an incircle.
- 8. Let ABC be a triangle with incentre I. A straight line through I intersects AB and AC at points P, Q respectively. Let a = BC, b = AC, c = AB, $p = \frac{PB}{PA}$, $q = \frac{QC}{QA}$. Prove that if $a^2 = 4bcpq$, then AI, BQ, CP are concurrent.
- 9. Show that the isogonal conjugate exists. I.e. Let P be a point and let ABC be a triangle. Reflect AP by the angle bisector of $\angle A$, reflect BP by the angle bisector of $\angle B$, and reflect CP by the angle bisector of $\angle C$. Show that the three lines meet at a point P'.
- 10. For a convex quadrilateral ABCD, show that the locus of the point P such that Area(PAB) + Area(PCD) = Constant is a line.
- 11. Hence or otherwise prove that for a quadrilateral ABCD with an incircle centred at O, then the midpoint M of AC, and the midpoint N of BD are collinear with O.