K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Differential Amplifier Circuits

Numerical 1:

For the differential shown in figure 1 Find, a) Name of the circuit b) Q-point c) Differential voltage gain d) Common mode gain e) CMRR

Figure 1: Circuit 1

Solution:

Above circuit 1 is a Dual Input Balanced Output(DIBO) differential amplifier DC Analysis:-

Figure 2: DC Equivalent Circuit

$$I_B = \frac{V_{EE} - V_{BE}}{R_S + 2(1+\beta)R_E} = \frac{12 - 0.7}{150 + (2 \times 101 \times 8.2k)} = 6.82\mu A$$

$$I_B=6.82\mu A$$

$$I_C = \beta I_B = 100 \times 6.82 \mu A = 0.68 mA$$

$$I_C=0.68mA$$

$$I_{C_1} = I_{C_2} = I_C = 0.68 mA$$

$$V_{CE} = V_{CC} + V_{EE} - I_C(R_C + 2R_E) = 12 + 12 - 0.68mA(3.3k + 2 \times 8.2k) = 10.6V$$

$$V_{CE} = 10.6V$$

$$V_{C_1} = V_{C_2} = V_{CC} - I_C R_C = 12 - (0.68 \times 3.3) = 9.756V$$

$$V_{C_1} = V_{C_2} = 9.756V$$

$$V_{CE} = V_C - V_E$$

$$V_E = V_C - V_{CE} = 9.756 - 10.6 = -0.844V$$

$$V_{E_1} = V_{E_2} = -0.844V$$

$$r_{\pi} = \frac{\beta V_T}{I_C} = \frac{100 \times 26mV}{0.68mA} = 3.82k\Omega$$

$$r_{\pi}=3.82k\Omega$$

$$|A_d| = \frac{\beta R_C}{R_S + r_\pi} = \frac{100 \times 3.3k}{150 + 3.82k} = 83.12$$

$$|A_d| = 83.12$$

$$A_{cm} = \left| \frac{R_C}{2R_E} \right| = \left| \frac{3.3k}{2 \times 8.2k} \right| = 0.201$$

$$A_{cm} = 0.201$$

$$CMRR = \left| \frac{A_d}{A_{cm}} \right| = \frac{83.12}{0.201} = 413.53$$

$$CMRR = 413.53$$

$$CMRR_{dB} = 20log_{10}(413.53) = 52.33dB$$

$$CMRR_{dB} = 52.33dB$$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 3: Circuit Schematic 1

Figure 4: Input and Output Waveforms

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ Values:}$

Parameters	Theoretical	Simulated
I_{C_1}, I_{C_2}	0.68mA, 0.68mA	0.68mA, 0.68mA
V_{C_1}, V_{C_2}	9.76V, 9.76V	9.76V, 9.76V
V_{CE_1}, V_{CE_2}	10.6V, 10.6V	10.6V, 10.6V
$ A_d $	83.12	79.71
A_{cm}	0.201	_
$CMRR_{dB}$	52.33	_

Table 1: Numerical 1

Numerical 2:

For the differential shown in figure 5 Find, a) Name of the circuit b) Current through R_{D_1} , R_{D_2} , R_{S_1} , R_{S_2} c) V_{D_1} , V_{D_2} , V_{GS_1} , V_{GS_2} d) Differential voltage gain e) Common mode gain f) CMRR in dB

Assume: $V_{TN_1} = V_{TN_2} = 1V$, $k_{n_1} = k_{n_2} = 50mA/V^2$

Figure 5: Circuit 2

Solution:

Above circuit 2 is a Dual Input Balanced Output(DIBO) differential amplifier DC Analysis:-

Figure 6: DC Equivalent Circuit

Apply KVL to the Gate-Source loop:-

$$V_{GS} = V_{SS} - I_D R_S$$

$$V_{GS} = 5 - I_D(40k)$$
(1)

$$I_D = k_n (V_{GS} - V_{TN})^2$$

$$I_D = 50 \times 10^{-6} (V_{GS} - 1)^2$$
......(2)

Putting 2 in 1, we get

$$V_{GS} = 5 - (40k \times 50 \times 10^{-6} (V_{GS} - 1)^2)$$

$$V_{GS} = 5 - 2(V_{GS}^2 + 1 - 2V_{GS})$$

$$V_{GS} = 5 - 2V_{GS}^2 - 2 + 4V_{GS}$$

$$2V_{GS}^2 - 3V_{GS} - 3 = 0$$

$$V_{GS} = 2.18V$$

or

 $V_{GS} = -0.686V$ [We reject this values as, $(V_{GS} > V_{TN})$]

$$\therefore V_{GS} = 2.18V$$

From 1.

$$I_D = \frac{5 - V_{GS}}{40k} = \frac{5 - 2.18}{40k} = 70.5\mu A$$

$$I_D=70.5\mu A$$

Applying KVL to the Drain-Source loop:-

$$V_{DD} - I_D R_{D_1} - V_{DS} - I_D R_{S_1} - V_{GS} = 0$$

$$V_{DS_1} = V_{DS_2} - V_{DD} - I_D(R_{D_1} + R_{S_1}) - V_{GS}$$

$$V_{DS_1} = 5 - (-5) - \frac{70.5}{10^6} (20k + 40k) = 5.77V$$

$$V_{DS_1}=5.77V$$

$$V_{D_1} = V_{DD} - I_D R_{D_1} = 5 - (70.5 \mu A \times 20k) = 3.59V$$

$$V_{D_1} = V_{D_2} = 3.59V$$

$$g_{m_1} = g_{m_2} = g_m = 2k_n(V_{GS} - V_{TN}) = 2 \times 50 \times 10^{-6}(2.18 - 1) = 1.18 \times 10^{-4} A/V_{TN}$$

$$g_{m_1}=g_{m_2}=g_m=1.18 imes 10^{-4} A/V$$

$$|A_d| = g_m R_D = 1.18 \times 10^{-4} \times 20 \times 10^3 = 2.36$$

 $|A_d| = 2.36$

$$A_{cm} = \left| \frac{g_m R_D}{1 + g_m R_S} \right| = \left| \frac{1.18 \times 10^{-4} \times 20k}{1 + (1.18 \times 10^{-4} \times 40k)} \right| = 0.413$$

$$oldsymbol{A_{cm}=0.413}$$

$$CMRR = \left| \frac{A_d}{A_{cm}} \right| = \frac{2.36}{0.413} = 5.714$$

$$CMRR = 5.714$$

$$CMRR_{dB} = 20log_{10}(5.714) = 15.14dB$$

$$CMRR_{dB} = 15.14dB$$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

.model nmos nmos(vto=1v kp=100e-6) .op .tran 3ms

Figure 7: Circuit Schematic 2

Figure 8: Input and Output Waveforms

Comparison of Theoretical and Simulated Values:

Parameters	Theoretical	Simulated
I_{D_1}, I_{D_2}	$70.5\mu A, 70.5\mu A$	$70.4\mu A, 70.4\mu A$
V_{D_1}, V_{D_2}	3.59V, 3.59V	3.59V, 3.59V
V_{DS_1}, V_{DS_2}	5.77V, 5.77V	5.77V, 5.77V
$ A_d $	2.36	2.41
A_{cm}	0.413	7 1
$CMRR_{dB}$	15.14	(A)

Table 2: Numerical 2

Numerical 3:

For the differential amplifier shown in figure 9, Find:- a) DC values of V_{out_1} , V_{out_2} b) Double ended output gain(A_d).

Given: $\beta_1 = \beta_2 = 100$

Figure 9: Circuit 3

Solution:

$$I_{E_1} = I_{E_2} = \frac{I}{2} = \frac{1.5mA}{2} = 0.75mA$$

Let,
$$I_{C_1} \approx I_{E_1} \& I_{C_2} \approx I_{E_2}$$

$$\therefore I_{C_1} = I_{C_2} = 0.75mA$$

DC value of
$$V_{out_1} = V_{CC} - I_{C_1}R_{C_1} = 15 - (0.75mA \times 7.5k) = 9.375V$$

$$\therefore V_{out_1} = V_{C_1} = 9.375V \qquad [\because V_{C_1} = V_{out_1}]$$

DC value of
$$V_{out_2} = V_{CC} - I_{C_2} R_{C_2} = 15 - (0.75mA \times 7.5k) = 9.375V$$

$$\therefore \mathbf{V}_{out_2} = \mathbf{V}_{C_2} = \mathbf{9.375V} \qquad [\because V_{C_2} = V_{out_2}]$$

$$r_\pi = \frac{\beta V_T}{I_C} = \frac{100\times 26mV}{0.75mA} = 3.467k\Omega$$

$$r_\pi=3.467k\Omega$$

$$A_d = \frac{V_{out_1} - V_{out_2}}{V_1 - V_2} = \frac{-\beta R_C}{r_{\pi} + R_{in}}$$

$$A_d = \frac{-100 \times 7.5k}{3.467k + 100} = -210.26$$

$$A_d = -120.26$$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 10: Circuit Schematic 3

Figure 11: Input and Output waveforms $\,$

Comparison of Theoretical and Simulated Values:

Parameters	Theoretical	Simulated
I_{C_1}, I_{C_2}	0.75mA, 0.75mA	0.74mA, 0.74mA
V_{C_1}, V_{C_2}	9.375V, 9.375V	9.43V, 9.43V
$ A_d $	210.26	206.49

Table 3: Numerical 3

