《大学物理 AI》作业

No. 09 磁感应强度

|--|

- 1、了解运动电荷间的相互作用力,理解磁场是电场的相对论效应;
- 2、掌握磁感应强度的定义,熟练运用毕奥-萨伐尔定律和叠加原理求解各种电流的磁场分布;
- 3、掌握无线长直导线、圆线圈、长直螺旋管、无限大载流平面等**典型载流导线的磁场分布公式**,并能用 **典型电流的磁场叠加**求未知磁场分布:
- 4、理解磁场的高斯定理、磁场安培环路定理的物理意义,能熟练应用**安培环路定律求解**具有一定对称性 分布的磁场磁感应强度。

一、选择题:

1. 两个载有相等电流 I 的半径为 R 的圆线圈,一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心 O 处的磁感应强度大小为:

[] (A) 0

(B) $\mu_0 I / 2R$

(C) $\sqrt{2}\mu_0I/2R$

(D) $\mu_0 I / R$

选择题1图

2. 有一个圆形回路 1 及一个正方形回路 2,圆半径和正方形的边长相等,二者中通有大小相等的电流,则它们在各自中心产生的磁感应强度的大小之比 B_1/B_2 为

- ſ
- (A) 0.90
- (C) 0.56

- (B) 1.00
- (D) 1.20

3. 在磁感应强度为 \bar{B} 的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单

位矢量 \bar{n} 与 \bar{B} 的夹角为 α ,则通过半球面S的磁通量(**取弯面向外为正**)为

- (A) $\pi r^2 B$
- (C) $-\pi r^2 B \cos \alpha$

- (B) $-\pi r^2 B \sin \alpha$
- (D) 无法确定的量

选择题3图

4. 一个**电流元**i d \bar{l} 位于直角坐标系原点,电流沿y 轴方向,则空间点 P(x, y, z)的磁感应强度沿z 轴的分量是:

1 (A) 0

(B) $-\frac{\mu_0}{4\pi} \cdot \frac{iydl}{\sqrt{(x^2 + y^2 + z^2)^3}}$

(D)
$$-\frac{\mu_0}{4\pi} \cdot \frac{ixdl}{\sqrt{(x^2 + y^2 + z^2)^3}}$$

选择题4图

二、填空题:

1. 半径为 $0.5~{\rm cm}$ 的无限长直圆柱形导体上,沿轴线方向均匀地流着 $I=3~{\rm A}$ 的电流作一个半径 $r=5~{\rm cm}$ 、长 $l=5~{\rm cm}$ 且与电流同轴的圆柱形闭合曲面 S,则该曲面上的磁感应强度 \bar{B} 沿该圆柱形闭合曲面的积分 $\oiint \bar{B}\cdot {\rm d}\,\bar{S}=$ ______。

2. 如图所示,有两个半径相同的均匀带电绝缘体球面, O_1 为左侧球面的球心,它带的是正电; O_2 为右侧球面的球心,它带的是负电,两者的面电荷密度相等。当它们绕 $\overline{O_1O_2}$ 轴旋转时,两球面相切处 A 点的磁感强度大小 B_A = 。

填空题2图

3. 一磁场的磁感应强度为 $\vec{B} = a\vec{i} + b\vec{j} + c\vec{k}$ (T),则通过一半径为 R、开口向 z 正方向的半球壳表面的磁通量大小为 ______ Wb。

- 4. 一质点带有电荷 $q=8.0\times10^{-10}$ C,以速度 $v=3.0\times10^{-5}$ m·s⁻¹ 在半径为 $R=6.00\times10^{-3}$ m 的圆周上,作匀速率圆周运动。则该带电质点在圆周轨道中心所产生的磁感应强度大小 B=_______,该带电质点圆周轨道运动的磁矩大小 $P_{\rm m}=$ ______。(已知:真空磁导率 $\mu_0=4\pi\times10^{-7}$ H·m⁻¹)
- 5. 一平面试验线圈的磁矩大小 $P_{\rm m}$ 为 1×10^{-8} ${\bf A\cdot m^2}$,把它放入待测磁场中的 A 处(试验线圈是如此之小,以致可以认为它占据的空间内磁场是均匀的)。当此线圈的磁矩 $\vec{P}_{\rm m}$ 与 z 轴平行时,所受的磁力矩 \vec{M} 的大小是 M = 5×10^{-9} ${\bf N\cdot m}$,方向沿 x 轴方向;当此线圈的磁矩 $\vec{P}_{\rm m}$ 与 y 轴平行时,所受的磁力矩为零。则空间 A 点处的磁感应强度 \vec{B} 的大小为 __________,方向为 _________。

7.如图所示,在无限长载流直导线附近,闭合球面S向导线靠近,则穿过球面S的磁通量 $\pmb{\phi}_{m}$ 将_________。(选填:"增大"、"不变"、"减小")

填空题7图

三、简答题:

1. 高斯定理揭示出磁场是无源场,这里的源指的是什么?是无本之源的意思吗?

2. 能否用安培环路定理求解一有限长载流导线的的磁感应强度,为什么?

四、计算题:

1. 有一无限长通有电流 I、宽度为 a、厚度不计的扁平铜片,电流 I 在铜片上均匀分布,求在铜片外与铜片共面、离铜片右边缘 b 处的 P 点 (如图所示) 的磁感应强度 \vec{B} 的大小和方向。

(要求:图上画出坐标和所取微元)

2. 如图所示,半径为R,电荷线密度为 $\lambda(\lambda>0)$ 的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度 ω 转动,求圆线圈轴线上任一点的 \vec{B} 的大小及其方向。

(要求:图上画出坐标和所取微元)

计算题2图

3. 带电刚性细杆 AB,电荷线密度为 λ ,绕垂直于直线的轴 O 以 ω 角速度匀速转动(O 点在细杆 AB 延长线上),求 O 点的磁感应强度 \bar{B}_o 及运动带电杆 AB 产生的磁矩 \bar{P}_m :

(要求:图上画出坐标和所取微元)