

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

عنوان: تكليف اول درس يادگيري عميق

نام و نام خانوادگی: علیرضا ابره فروش شماره دانشجویی: ۹۸۱۶۶۰۳ نیم سال تحصیلی: پاییز ۱۴۰۲ مدرّس: دکتر سمانه حسینی سمنانی دستیاران آموزشی: مریم محمدی-علی بزرگ زادارباب

١

۲

٣

١.٣ الف

تابع تانژانت هایپربولیک (tanh) اغلب به عنوان نسخه مقیاس شده ای از تابع سیگموید توصیف می شود، به خصوص تابع سیگموید لجستیک. این رابطه به دلیل شباهتهای تابع تانژانت و تابع سیگموئید وجود دارد، اما در بازه و مقیاس شان تفاوت دارند. تابع سیگموید که اغلب با نماد $\sigma(x)$ نشان داده می شود، به شرح زیر تعریف می شود:

$$\sigma\left(x\right) = \frac{1}{1 + e^{-x}}$$

این تابع هر عدد حقیقی را به یک مقدار بین \cdot و ۱ نگاشت می کند. وقتی x یک عدد مثبت بزرگ است، $\sigma(x)$ به ۱ نزدیک می شود و وقتی x یک عدد منفی بزرگ است، $\sigma(x)$ به $\sigma(x)$ به $\sigma(x)$ به $\sigma(x)$ به این معناست که تابع سیگموید ورودی خود را در بازه ($\sigma(x)$) فشرده می کند که برای مسائل دسته بندی دودویی مفید است، چون می توان از آن تعبیر احتمالاتی کرد. تابع تانژانت هاییر بولیک، به شکل زیر تعریف می شود:

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

تابع تانژانت هایپربولیک هر عدد حقیقی را به یک مقدار بین ۱- و ۱ نگاشت می دهد. وقتی x یک عدد مثبت بزرگ است، tanh(x) به ۱- نزدیک می شود.

رابطه بین توابع تانژانت هایپربولیک و سیگموید به شرح زیر است:

۱. مقیاس دهی: تابع تانژانت هایپربولیک، تابع سیگموید انتقال داده شده و مقیاس شده ی تابع سیگموید است که از صفر شروع میشود به صورت تغییریافته ای منتقل و مقیاس دار به منظور داشتن محدوده (۱۰،۱) به جای (۱،۰) تغییر میکند. این مقیاس دهی با کم کردن 0.5 از تابع سیگموید و سپس ضرب در ۲ انجام میشود:

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

علیرضا ابره فروش

۲.۳

۴

Input	Hidden	Output
layer	layer	layer
x ₀ x ₁ x ₂ x ₃ x ₄	$h_0^{(1)}$ $h_1^{(1)}$ $h_2^{(1)}$ $h_3^{(1)}$ $h_4^{(1)}$	layer \hat{y}_1 \hat{y}_2 \hat{y}_3
	$h_6^{(1)}$ $h_7^{(1)}$	

با توجه به شبکهی بالا، نورونهای سبز، بنفش، و قرمز به ترتیب لایهی ورودی، لایهی مخفی، و لایهی خروجی را تشکیل می دهند و همچنین نورونهای زرد bias هستند که همگی مقدار ۱ دارند. پارامترهای قابل یادگیری شبکه وزنهای موجود بین نورونهاست که تعدادشان برابر است با: 3+3+7+7+7

۵

۶

منابع

[1] Stošić, Lazar, and Milena Bogdanović. "RC4 stream cipher and possible attacks on WEP." Editorial Preface 3.3 (2012).

عليرضا ابره فروش