Panel Data Analysis in Julia

Christian Kascha

January 12, 2017

Panel Data Analysis in Julia

Purpose of this Talk

- Present basic data analysis steps in Julia.
- Lower the entry costs for you.

The Data Set

- Data on 48 U.S. states for 7 years from 1982 to 1988
- Stock and Watson: Introduction to Econometrics, 3rd International Edition, Companion Website

Purpose of the Analysis

Background

One fourth of fatal crashes in the US involve a driver who was drinking.

Interesting variables

fatality rate number of annual traffic deaths per 10,000 people beer tax the tax on a case of beer in 1988 dollars

Question

How does the beer tax affect traffic fatalities?

Get the data

Read in the Data

Let's check that we have done the right thing

```
summary(df)
```

"336×43 DataFrames.DataFrame"

Checking the data

Get the first six lines

head(df[:,1:4])

6×4 D	ataFram	es.Dat	aFrame		
Row state		year	spircons	unrate	
1	1	1982	1.37	14.4	
2	1	1983	1.36	13.7	
3	1	1984	1.32	11.1	
4	1	1985	1.28	8.9	
5	1	1986	1.23	9.8	
6	1	1987	1.18	7.8	

Checking the data

Get some descriptive stats

```
describe(df[:beertax])
```

Summary Stats:

Mean: 0.513256
Minimum: 0.043311
1st Quartile: 0.208849
Median: 0.352589
3rd Quartile: 0.651573
Maximum: 2.720764

Checking the data

Get some descriptive stats

```
describe(df[:mrall])
```

Summary Stats:

Mean: 2.040444
Minimum: 0.821210
1st Quartile: 1.623710
Median: 1.955955
3rd Quartile: 2.417887
Maximum: 4.217840

Histogram of Beertax

Code

```
using Gadfly
myTheme = Theme(default_color=colorant"grey")

p = plot(df, x="beertax", Geom.histogram(bincount=20),
Guide.title("Distribution Across States and Years"),
Guide.xlabel("Beertax (Dollar per Case)"), myTheme);

img = PDF("beertax_hist.pdf", 12cm, 12cm)
draw(img, p)
```

Histogram of Beertax

Scatter Plot - All States and Years

Code

```
p = plot(df, y="mrall", x="beertax", Geom.point,
  Guide.title("Distribution Across States and Years"),
  Guide.xlabel("Beertax (Dollars per Case)"),
  Guide.ylabel("Fatalities (per 10'000)"), myTheme)

img = PDF("scatterplot.pdf", 12cm, 12cm)

draw(img, p)
```

Scatter Plot - All States and Years

Using 1982 Data for an Ordinary Regression

First try

```
df_1982 = df[(df[:year] .== 1982),:];
a, b = linreg(df_1982[:beertax], df_1982[:mrall])
```

```
(2.0103812626061535, 0.14846034326952268)
```

Higher beer taxes lead to more fatalities???

By the way

Get the source code with edit(funktionname) like so: edit(linreg).

What if?

Some doubts

- Suppose that states that have a more problematic drinking culture are more likely to adopt a higher beer tax?
- Could we observe "drinking culture"?

```
Let's look at some single states here:
myTheme2 = Theme(default_color=colorant"red")
df state1 = df[(df[:state] .== 1),:]
p = plot(layer(df, y="mrall", x="beertax", Geom.point,
       order=1, myTheme),
 layer(df_state1, y="mrall", x="beertax", Geom.point,
       order=2, myTheme2),
 Guide.title("Distribution Across States and Years"),
 Guide.xlabel("Beertax (Dollars per Case)"),
 Guide.ylabel("Fatalities (per 10'000)"))
img = PDF("scatterplot_state1.pdf", 12cm, 12cm)
```


Panel Data Analysis with Fixed Effects

- Panel data analysis allows us to take unobserved state differences that are constant over the years into account by analysing all states and years jointly.
- In Julia, the package that provides the necessary routines is called FixedEffectsModels.

Panel Data Analysis Syntax

Model

The econometric model looks like this

$$fatalities_{st} = \alpha_s + \beta beertax_{st} + u_{st}$$

Syntax

```
using FixedEffectModels

df[:stateFixedEffect] = pool(df[:state]);
panel_reg_1 = reg(mrall ~ beertax |> stateFixedEffect, df)
```

Panel Data Analysis Results

Fixed Effect Model

Number of obs:		336		Degrees of freedom:				49		
R2:		0.905		R2 within:				0.041		
F-Statistic:		12.1904		p-value:				0.000		
Iterations:			1	<pre>1 Converged:</pre>			true			
======	=======		====	=====			====			
	Estimate	Std.Error	t v	alue	Pr(> t)	Lower	95%	Upper	95%	
beertax	-0.655874	0.18785	-3.4	9148	0.00	L -1.02	561	-0.286	3135	
=======	=======:	=======	====	====	=======	======	===:		===	

Taking state - specific differences into account, we obtain an estimate with a negative sign.

Thank You!

Questions?