Atividade 2

- 1. Se (M,d) é um espaço métrico, com d a métrica zero-um, determine explicitamente $B_r(a), B_r[a]$ e $S_r(a)$, onde $S_r(a) = B_r[a] \setminus B_r(a)$, para r < 1, r = 1 e r > 1.
- 2. Mostre que todo conjunto finito de pontos, num espaço métrico, é sempre limitado.
- 3. Sejam (X,d) e (Y,d') espaços métricos. Dizemos que uma função $f:X\to Y$ é **uniformemente contínua** se, para qualquer $\varepsilon>0$, existe $\delta>0$ tal que, dados $a,b\in X$, se $d(a,b)<\delta$, então $d'(f(a),f(b))<\varepsilon$. Mostre que:
 - (a) Toda função $f: \mathbb{R} \to \mathbb{R}$, dada por f(x) = ax + b, com $a \neq 0$, é uniformemente contínua (na métrica usual de \mathbb{R});
 - (b) Toda função uniformemente contínua é contínua;
 - (c) A função $f:(0,+\infty)\to\mathbb{R}$ (todos com a métrica usual de \mathbb{R}) dada por $f(x)=\frac{1}{x}$ é contínua em $(0,+\infty)$ mas não é uniformemente contínua em $(0,+\infty)$.