Quantum recurrent neural network Johannes Bausch. June 2020

Quantum information

Francesca Del Lungo Prof. Paola Verrucchi & Prof. Filippo Caruso

23 July 2020

Contents overview

- 1 ML
- 2 NN
- 3 QML
- 4 Q neuron
- 5 QRNN
- 6 Experiments
- 7 Conclusions

Machine learning

ML overview

ML ○●○

Machine Learning timeline

Classical neural networks

Classical neural networks: perceptron¹

¹ The perceptron: a probabilistic model for information storage and organization in the brain. Frank F. Rosenblatt. 1958

Activation function

Activation Functions

$$\begin{array}{l} \textbf{Maxout} \\ \max(w_1^Tx+b_1,w_2^Tx+b_2) \end{array}$$

- Introduces non-linearity
- Continuously differentiable (desiderable but not necessary)

Multilayer perceptron (MLP)

- Feedforward neural network
- Input layer, hidden layer(s), output layer

Sequence modeling: some examples I

Given the image of a ball, can you predict where it will go next?

Sequence modeling: some examples II

Given the image of a ball, can you predict where it will go next?

Sequence modeling: some examples III

Given the image of a ball, can you predict where it will go next?

"Vanilla" recurrent neural network

Advantages²:

- input sequences
- network can adapt to quick changing input nodes

Disadvantages:

- cannot process very long sequences
- vanishing or exploding gradient problem in backpropagation

²Recent Advances in Recurrent Neural Networks. Salehinejad, Hojjat and Sankar, Sharan and Barfett, Joseph and Colak, Errol and Valaee, Shahrokh. 2017

GRU & LSTM

Gated Recurrent Unit (GRU) & Long Short Term Memory (LSTM) Advantages:

- long-term sequence dependencies
- more **robust** to the problem of vanishing gradients

Disadvantages:

- more parameters (increase the computing complexity compared to the RNN)
- higher memory required than the one of 'Vanilla' RNN
- typically limited to capturing about 200 tokens of context

Other approaches

Other (non recurrent) approaches like **attention**, transformers ... (open field of research)

Goal

Create a **quantum recurrent neural network** with a unitary cell that allows to remove the problem of gradient decay.

Goal

Create a **quantum recurrent neural network** with a unitary cell that allows to remove the problem of gradient decay.

Problem

Classical neural networks

affine transformations + nonlinear activation functions = **non linear** transformations

Quantum circuit

unitary gates = **linear** transformations

Quantum neuron

Quantum neuron ³

Idea: Parametrized Quantum Gates

$$R(\theta) := exp(iY\theta)$$

where Y is the Pauli matrice that acts like:

$$\mathbf{R}(\theta) = \exp\left(i\theta \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\right) = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

³ Quantum Neuron: an elementary building block for machine learning on quantum computers. Yudong Cao, Gian Giacomo Guerreschi. and Alán Aspuru-Guzik. 2017

Quantum neuron

Controlled rotation **cR**(i, θ_i) conditioned on the i-th qubit of state $|x\rangle$ for $x \in \{0, 1\}^n$

The following map is generated:

$$\begin{split} \mathbf{R}(\theta_0)\mathbf{c}\mathbf{R}(1,\theta_1)...\mathbf{c}\mathbf{R}(n,\theta_n)|x\rangle|0\rangle &= |x\rangle\left(\cos(\eta)|0\rangle + \sin(\eta)|1\rangle\right) \\ \text{where } \eta &= \theta_0 + \sum_{i=1}^n \theta_i x_i \\ \mathbf{x} &= (\mathbf{x}_1,...,\mathbf{x}_n) \in \{0,1\}^n \\ \theta &= (\theta_0,\theta_1,...,\theta_n) \end{split}$$

Quantum neuron - activation function

- Non-linearity ✓
- Sufficiently "flat" region ×

Quantum neuron

parameter **ord** ≥ 1 : "order" of the neuron

$$f(\eta) = \arctan\left(\tan(\eta)^{2^{\mathit{ord}}}\right)$$

Quantum neuron

parameter **ord** ≥ 1 : "order" of the neuron

$$f(\eta) = \arctan\left(an(\eta)^{2^{\mathit{ord}}}\right)$$

$$\cos f(\eta) = rac{1}{\sqrt{1+ an(\eta)^{2 imes 2^{ord}}}} \quad \sin f(\eta) = rac{ an(\eta)^{2^{ord}}}{\sqrt{1+ an(\eta)^{2 imes 2^{ord}}}}$$

The complete transformation is:

$$\mathsf{R}(\theta_0)\mathsf{c}\mathsf{R}(1,\theta_1)...\mathsf{c}\mathsf{R}(n,\theta_n)|x\rangle|0\rangle = |x\rangle\left(\cos(f(\eta))|0\rangle + \sin(f(\eta))|1\rangle\right)$$

Quantum neuron - RUS

Repeat-until-success (RUS) circuit

Algorithm 1 RUS circuit algorithm⁴

- 1: Prepare ancilla qubit in the state $|0\rangle$
- 2: result \leftarrow apply rotation to the ancilla conditioned on input $|x\rangle$
- 3: **if** result = $|0\rangle$ **then**
- 4: end {success}
- 5: **else if** result $=|1\rangle$ **then**
- 6: do recovery operation and repeat from 2 {failure}
- 7: end if

⁴ Repeat-Until-Success: Non-deterministic decomposition of single-qubit unitaries. Paetznick, Adam and Svore, Krysta M. 2014

Quantum neuron - superposition | I

Problem

For states in **superposition** there is an *amplitude distortion*: the amplitudes depend on the history of success

Solution

 $\textbf{Post-selection} \ \ \text{on measuring outcome} \ \ 0$

Fixed-point oblivious amplitude amplification

Quantum neuron - superposition II

Amplitude amplification (AA)

- Variant of Grover search
- Given a state

$$|\Psi'\rangle = \alpha|0\rangle|x\rangle + \sqrt{1-\alpha^2}|1\rangle|y\rangle$$

with likelihood $\propto |\alpha|^2$ to be measured in state $|0\rangle|x\rangle$.

Fixed-point oblivious amplitude amplification (FPOAA)

■ Unitary **U** s.t. $U|\Psi\rangle = |\Psi'\rangle$

After AA probability \rightsquigarrow 1.

 α unknown

Quantum neuron with multi-control gates

$$\eta' = \theta_0 + \sum_{i=1}^n \theta_i x_i + \sum_{i=1}^n \sum_{j=1}^n \theta_{ij} x_i x_j + \dots = \sum_{I \subseteq [n]|I| \le d} \theta_I \prod_{i \in I} x_i$$

- Degree d = 2 controlled rotation
- n = 4 input neurons
- $R_I := R(\theta_I)$

Quantum recurrent neural networks

QRNN cell

Quantum neuron \rightarrow quantum RNN cell \rightarrow QRNN

QRNN cell structure:

- input and output lanes (reset after each step)
- internal cell state (passed on to the next network iteration)

QRNN

Idea: iteratively apply QRNN cell to a sequence of input words $in_1, in_2, ..., in_L$.

- H: cell state workspace size
- I: input token width (in bits)
- ord: quantum neuron activation order

Experiments

Implementation & Training

Implementation details:

- PyTorch library
- Cross-entropy loss
- Different optimizers

Experiments

- 1 Sequence memorization
- 2 Finding structure in time
- MNIST classification
- 4 Tests on long sequences

1. Sequence memorization I

Task

Reproduce the two sequences 44444...4 and 12312...3.

- QRNN setup:
 - 2 stages
 - neuron degree 3
 - workspace size of 5 (1162 parameters)
- Good convergence (with small network)

Goal

Benchmark optimizer and learning rate hyperparameters

1. Sequence memorization II

- Validation loss achieved after 500 training steps
- Median values over **5 runs**
- Chosen optimizer: Adam, Ir: 0.05

2. Finding structure in time⁵

Task 1

Learning **XOR sequences**: binary strings $s = s_1 s_2 s_3 ... s_L$, so that

$$s_{3i} = s_{3i-1} \oplus s_{3i-2}$$

(each third digit is the XOR value of the preceding two)

QRNN setup:

- workspace size 4
- 1 work stage

Goal

Explore which **parameter initialization** converges to a validation loss threshold of 10^{-3} first.

⁵Finding structure in time. J Elman. June 1990

2. Finding structure in time I

Two groups of parameters:

- **neurons** N_j^i (bias R_0 and weights)
- single-qubit unitaries in the work stages R_iⁱ

- Parameters **initialization**: normal distribution with mean μ and width σ
- Most influential parameter: bias $\mu = \frac{\pi}{4}$

2. Finding structure in time II

Task 2

Learning the **structure of a sentence** made up of the three words "ba", "dii" and "guuu".

Goal

How the QRNN topology influence convergence speed.

2. Finding structure in time III

best performance: degree 2, stages 2 and workspace 6.

3. MNIST classification I

Task

Handwritten integer digit classification.

```
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
```

■ 70.000 images

Pre-processing images: crop, downscale and binarize.

3. MNIST classification II

Digit Set	Method	Data Augmentation	Accuracy [%]
{0, 1}	QRNN (12 qubits, Adam)	-	99.2 ± 0.2
	ensemble of 4	-	99.6 ± 0.16
{3, 6}	VQE (17 qubits)	ambiguous samples removed	98
	QRNN (12 qubits, Adam)	-	89.7 ± 0.8
	QRNN (10 qubits, L-BFGS)	-	97.1 ± 0.7
	ensemble of 6	-	99.0 ± 0.3
full	VQE (10 qubits)	{even, odd} partitioned	82
MNIST	LSTM	=	98.2
	QRNN (10 qubits, Adam)	PCA, t-SNE	94.6 ± 0.4
	QRNN (13 qubits, Adam)	UMAP	96.7 ± 0.2
	ensemble of 3	UMAP	$\textbf{99.23}\pm\textbf{0.05}$

4. Long sequence tests I

Task

A **DNA sequence** consisting of the bases "G", "A", "T" and "C" is considered where a "U" is inserted in a random position. The network must identify the base following the "U".

'AGAUATTCAGAAT' → 'A'

Goal

Test the **gradient quality** for long sequences.

4. Long sequence tests II

- **QRNN**: 5 workspace size, 1 work stage \rightarrow 837 parameters
- **RNN**: 1 layer, hidden layer size 22, 1 final linear layer \rightarrow 888
- **LSTM**: 1 layer, hidden layer size 10, 1 final linear layer \rightarrow 888

Conclusions

Conclusions & future works

Conclusions

- Recurrent model that deletes gradient decay for long sequences
- Data processing of far more than a few bits of size
- In real-word task RNN better than QRNN
 - **difficult to simulate** many qubit on a classical hardware
 - QRNN simple architecture compared to an RNN (or LSTM)

Future works

- More specialized circuit structure
- Variants in conjunction with other quantum ml algorithms

The end

"Nature isn't classical, damnit, so if you want to make a simulation of nature, you'd better make it quantum mechanical." Richard Feynman

Thanks for the attention!

Rotation Operator

$$R(\theta) := exp(iY\theta)$$

where **Y** is the Pauli matrix if operator A satisfies $A^2=I$, it can be shown that:

$$e^{i\theta A} = \cos\theta I + i\sin\theta A$$

SO:

$$R(\theta) = \exp(i\theta Y) = \cos\theta I + i\sin\theta Y =$$

$$\cos\theta\begin{pmatrix}1&0\\0&1\end{pmatrix}+i\sin\theta\begin{pmatrix}0&-i\\i&0\end{pmatrix}=\begin{pmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{pmatrix}$$

Limited-memory BFGS

L-BFGS uses an *estimate of the inverse Hessian matrix* to steer its search through variable space, but where BFGS stores a dense n \times n approximation to the inverse Hessian (n being the number of variables in the problem), L-BFGS stores only a few vectors that represent the approximation implicitly.

Stochastic gradient descent (SGD)

Parameters update

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x, y)$$

 $\eta = \text{learning rate}$

Adaptive Moment Estimation (Adam)

Techniques used to converge faster:

- Momentum
- Adaptive Learning Rates

otation Operator Optimizers Additional test RUS Loss

QRNNs as generative models

Task

Re-generate handwritten digits starting from a '0' or '1' as input to the QRNN.

- network learns the global structure of the two digits
- randomness due to quantum measurements

RUS multiple iterations

General k-iteration RUS circuit.

RUS threshold behaviour

$$\mathsf{R}(\mathsf{f}(\eta)) = \left\{egin{array}{ll} \mathsf{R}(\pi/2) \mid \! 0
angle = \mid \! 1
angle & \textit{if } \eta > rac{\pi}{4} \ R(0) \mid \! 0
angle = \mid \! 0
angle & \textit{if } \eta < rac{\pi}{4} \end{array}
ight.$$

Cosine function

Sine function

$$\mathsf{R}(\theta_0)\mathsf{c}\mathsf{R}(1,\theta_1)...\mathsf{c}\mathsf{R}(n,\theta_n)|x\rangle|0\rangle = |x\rangle\left(\cos(f(\eta))|0\rangle + \sin(f(\eta))|1\rangle\right)$$

RUS superposition of states

Control register in a general superposition $\sum_{i=1}^{T} \alpha_i |i\rangle$

Single iteration of the circuit.

State of the system before measure is:

$$\sum_{i=1}^{T} \alpha_{i} \ket{i} \otimes \left[\sqrt{p(\varphi_{i})} \ket{0} R(q(\varphi_{i})) \ket{0} + \sqrt{1 - p(\varphi_{i})} \ket{1} R\left(\frac{\pi}{4}\right) \ket{0} \right]$$

Probability of measuring $|0\rangle$:

$$P_{|0\rangle} = \sum_{i=1}^{T} |\alpha_i|^2 p(\varphi_i)$$

yielding a state 0:

$$\sum_{i=1}^{T} \alpha_{i} \sqrt{\frac{p(\varphi_{i})}{P_{|0\rangle}}} \ket{i} \ket{0} R(q(\varphi_{i})) \ket{0}$$

Probability of measuring $|1\rangle$:

$$P_{\ket{1}} = \sum_{i=1}^{T} |\alpha_i|^2 (1 - p(\varphi_i))$$

yielding a state 1:

$$\sum_{i=1}^{T} \alpha_{i} \sqrt{\frac{1 - p(\varphi_{i})}{P_{|1\rangle}}} \ket{i} \ket{1} R\left(\frac{\pi}{4}\right) \ket{0}$$

RUS superposition of states

Final state

In general if RUS fails r-1 times and succeeds (measuring $|0\rangle$) at the r-th trial, we have a state:

$$\sum_{i=1}^{T} \alpha_{i} \sqrt{\frac{(1-p(\varphi_{i}))^{r-1}p(\varphi_{i})}{P_{r}}} \ket{i} \ket{0} R(q(\varphi_{i})) \ket{0}$$

where:

$$P_r = \sum_{i=1}^{T} |\alpha_i|^2 (1 - p(\varphi_i))^{r-1} p(\varphi_i)$$

Loss

Cross-entropy loss

For discrete probability distributions p and q:

$$H(p,q) = -\sum_{x \in X} p(x) \log q(x)$$