Assignment 3: CS 754

Krushnakant Bhattad	Devansh Jain
190100036	190100044

March 23, 2021

Contents

Question 1	:
Question 2	1:
Question 3	1:
Question 4	14
Question 5	1:

(a) Restricted Eigenvalues Condition

We say that a matrix X satisfies the restricted eigenvalues condition with respect to a constraint set C if there exists a constant $\gamma > 0$ such that the following holds for all non-zero $\nu \in C$:

$$\frac{\frac{1}{N}\nu^T \boldsymbol{X}^T \boldsymbol{X} \nu}{\|\nu\|_{\ell_2}^2} \ge \gamma$$

Equivalently:

$$\frac{\frac{1}{N} \left\| \boldsymbol{X} \boldsymbol{\nu} \right\|_{\ell_2}^2}{\left\| \boldsymbol{\nu} \right\|_{\ell_2}^2} \ge \gamma$$

If we have the above condition, that the quantity on the LHS is bounded away from zero, then we know we have enough curvature so that a small loss difference implies a small error.

(b) Starting from equation 11.20 ...

We know that $\hat{\beta}$ is the minimizer of

$$K(\boldsymbol{\beta}) = \left(1/2N\right) \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_{\ell_2}^2 + \lambda_N \|\boldsymbol{\beta}\|_{\ell_1},$$

that is we know that:

$$(1/2N) \left\| \boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}} \right\|_{\ell_2}^2 + \lambda_N \left\| \hat{\boldsymbol{\beta}} \right\|_{\ell_1} \le (1/2N) \left\| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}^* \right\|_{\ell_2}^2 + \lambda_N \left\| \boldsymbol{\beta}^* \right\|_{\ell_1}$$

Due to this it follows from definition of G that $G(\hat{\nu}) \leq G(0)$

$$\frac{\mathbb{Q}^{\frac{1}{2}}}{\|\mathbf{y} - \mathbf{x}\|_{2}^{2}} = \|\mathbf{y} - \mathbf{x}(\hat{\mathbf{y}} + \hat{\mathbf{p}}^{*})\|_{2}^{2} - \|\mathbf{y} - \mathbf{x}\hat{\mathbf{p}}^{*}\|_{2}^{2}$$

$$= \|\mathbf{w} - \mathbf{x}\hat{\mathbf{y}}\|_{2}^{2} - \|\mathbf{w}\|_{2}^{2}$$

$$= \|\mathbf{w} - \mathbf{x}\hat{\mathbf{y}}\|_{2}^{2} - \|\mathbf{w}\|_{2}^{2}$$

$$= \|\mathbf{w} - \mathbf{x}\hat{\mathbf{y}}\|_{2}^{2} - \|\mathbf{w}\|_{2}^{2}$$

$$= (\mathbf{w} - \mathbf{x}\hat{\mathbf{y}})^{\mathsf{T}}(\mathbf{w} - \mathbf{x}\hat{\mathbf{y}}) - \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$

$$= -(\mathbf{x}\hat{\mathbf{y}})^{\mathsf{T}}\mathbf{w} - \mathbf{w}^{\mathsf{T}}\mathbf{x}\hat{\mathbf{y}} + (\mathbf{x}\hat{\mathbf{y}})^{\mathsf{T}}(\mathbf{x}\hat{\mathbf{y}})$$

$$= \|\mathbf{x}\hat{\mathbf{y}}\|_{2}^{2} - 2\mathbf{w}^{\mathsf{T}}\mathbf{x}\hat{\mathbf{y}} + (\mathbf{x}\hat{\mathbf{y}})^{\mathsf{T}}(\mathbf{x}\hat{\mathbf{y}})$$

$$= \|\mathbf{x}\hat{\mathbf{y}}\|_{2}^{2} - 2\mathbf{w}^{\mathsf{T}}\mathbf{x}\hat{\mathbf{y}} + (\mathbf{x}\hat{\mathbf{y}})^{\mathsf{T}}(\mathbf{x}\hat{\mathbf{y}})$$

$$= \|\mathbf{x}\hat{\mathbf{y}}\|_{2}^{2} + \lambda_{\mathbf{y}}\|\hat{\mathbf{p}}\| \leq \frac{1}{2N}\|\mathbf{y} - \mathbf{x}\hat{\mathbf{p}}\|_{2}^{2} + \lambda_{\mathbf{y}}\|\hat{\mathbf{p}}\|_{2}^{2}$$

$$= \frac{1}{2N}\left(\|\mathbf{y} - \mathbf{x}\hat{\mathbf{p}}\|_{2}^{2} - \|\mathbf{y} - \mathbf{x}\hat{\mathbf{p}}\|_{2}^{2}\right)$$

$$= \frac{1}{2N}\left(\|\mathbf{x}\hat{\mathbf{y}}\|_{2}^{2} - 2\mathbf{w}^{\mathsf{T}}\mathbf{x}\hat{\mathbf{y}}\right)$$

$$\stackrel{\text{Le.}}{\underline{\mathbf{y}}}$$

$$\frac{\|\mathbf{x}\hat{\mathbf{y}}\|_{2}^{2}}{2N} \leq \frac{\mathbf{w}^{\mathsf{T}}\mathbf{x}\hat{\mathbf{y}}}{2N} + \lambda_{\mathbf{y}}\left(\|\mathbf{p}^{*}\|_{1}^{2} - \|\mathbf{p}^{*} + \hat{\mathbf{y}}\|_{1}\right)$$

(M 306 ⁴)	Date.
(d) Molder's inequality States that is Let $9, 9 \in [1, \infty)$ with $\frac{1}{p} + \frac{1}{9} = \frac{1}{p}$	1
Then, fg \le	92 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$= (x^T \omega)^T _{\infty} _{L_1}$ $= x^T \omega _{\infty} _{L_1}$	Frota
Here, we use, $f = (X^T \omega)^T$, $g = \hat{y}$ $(\because \dot{a} + \dot{1} = 1)$ $p = 0$ & $q = 1$	n .
In this way we apply holder's inequality to obtain equation 11.22	11) A

91 (e) contd.	
The state of the same of the state of the st	
By Cauchy Schwartz inequality we have,	
€ u; v; < √ € u;² √ € v;²	
c.l*ch	
with $u_i = \hat{\mathbf{v}}_i \hat{\mathbf{z}} \hat{\mathbf{v}}_i = 1$	
for i E S, the support of the kes Ds	
with ISI=k	
we get 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
we get, 11 2/5 11/2 5 √K 11 2/5 11/2 1/4	
Thus, 32N 1125 11, - 2 1125111	
2 11/5 11 - 2 11/50 11	
< 13 No 1125 11	
2 1175 11	
5 3 NO TR H2111	
2	
So finally, $\frac{11\times 211^2}{2N} \leqslant \frac{3}{2} \times \sqrt{k} \tilde{x} _1$	
so grally,	
X MV ALL & ELL OF ALL	

 1 19160
Q1 (4)
I helongs to the cone set C(S;3),
(by lemma 11.1); it allows us to
apply the less teicted eigenvalue
condition with corresponding ?
to get:
to get: N 11 × 3 112 > 7 11 × 112
to attend with the page and the state of the
In (e) we proved:
In (e) we proved: $\frac{1}{2N} \times \hat{\nu} _{2}^{2} \leq \frac{3}{2} \sqrt{ \hat{\nu} _{2}^{2}}$
Which finally combined gives
$\frac{\gamma \hat{\eta} _2^2}{3} \leqslant \frac{3}{2} \sqrt{k} \hat{\eta} _2$
Substituting > 1 112112 < 3 VK / ANT
Finally we get,
Finally we get, $ \hat{\beta} - \beta^{*} _{2} \leq \frac{3}{\gamma} \sqrt{N} \sqrt{N} \lambda_{N}$

(9)
(g) The bound *N > 2 11 × Twlloo N
N
is used in two places:
(1) To derive the first part of inequality
(1) To derive the first part of inequality (11.23) from the inequality (11.22)
(2) Assuming inequality (11.22), this bound is
used to derive another Inequality
(2) Assuming inequality (11.22), this bound is used to derive another inequality $0 \le \frac{2\nu}{2} \widehat{\mathcal{V}} _1 + 2\nu \cdot \widehat{\mathcal{V}} _1 - \widehat{\mathcal{V}} _1^2$
in proof of Lemma 11.1,
which converts Enequality 11.23 to a the
bound 11.146.

(h) Why is the cone constraint required?

It is clear that the following least-squares objective function is always convex.

$$f_N(eta) = rac{1}{2N} \| oldsymbol{y} - oldsymbol{X} oldsymbol{eta} \|_2^2$$

What we desire is that whenever the difference in function values $\Delta f_N = |f_N(\beta_1) - f_N(\beta_2)|$ converges to zero, the ℓ_2 -norm of the parameter vector difference $\Delta \beta = ||\beta_1 - \beta_2||_2$ also converges to zero.

This notion is a strengthening of ordinary convexity, hence called strong convexity.

 $f_N(\beta)$ is also strongly convex whenever the eigenvalues of the $p \times p$ positive semi-definite matrix X^TX are uniformly bounded away from zero.

Simple linear algebra shows that if N < p, the matrix X^TX (which always has rank at most min $\{N, p\}$) is always rank-deficient and thus not strongly convex.

For this reason, we need to relax our notion of strong convexity. Well we're anyway concerned about about a particular set that only contains some specific sparse vectors; hence we will see the condition constrained to that set only.

In the current condition, we suppose that the parameter vector β^* is sparse - say supported on some subset $S = S(\beta^*)$.

The restricted eigenvalues condition considers the corresponding specific constraint set \mathcal{C} , in which we can achieve restricted strong convexity. These notions are related because for this objective function, the hessian matrix $\nabla^2 f(\beta)$ is proportional to $X^T X$

The LASSO error is defined as $\hat{\nu} = \hat{\beta} - \beta^*$.

Let $\hat{\nu}_S$ denote the subvector indexed by elements of S, and let $\hat{\nu}_{S^c}$ defined in an analogous manner.

As we proved in the lemma 11.1, it turns out (in those particular conditions, where it is called regularized form) that the lasso error satisfies a cone constraint of the form $\|\hat{\nu}_{S^c}\|_1 \leq 3 \|\hat{\nu}_S\|_1$

For the constrained lasso with ball radius $R = \|\beta^*\|_1$, it can be proved that $\|\hat{\nu}_{S^c}\|_1 \leq \|\hat{\nu}_S\|_1$

A general cone constraint is $\|\hat{\nu}_{S^c}\|_1 \le \alpha \|\hat{\nu}_S\|_1$ for some constant $\alpha \ge 1$.

Thus, in either its constrained or regularized form, the lasso error is restricted to a set of the form

$$\mathcal{C}(S;\alpha) := \{ \nu \in \mathbb{R}^p \text{ such that } \|\hat{\nu}_{S^c}\|_1 \leq \alpha \|\hat{\nu}_S\|_1 \} \text{ for some parameter } \alpha \geq 1.$$

Thus by the cone constraint we achieve strong convexity in the region of the lasso error.

(i) This theorem Vs Theorem 3 that we did in class.

- 1. There was a restriction on the value of δ_{2S} ($<\sqrt{2}-1$) in Theorem 3, here, there is no restriction on γ (except >0) in this Theorem.
- 2. As described on Pg. 296, "the rate (11.15)—including the logarithmic factor—is known to be minimax optimal, meaning that it cannot be substantially improved upon by any estimator.".
- 3. On Pg. 302, Theorem 11.3 stats the uniqueness of the optimal solution $\hat{\beta}$ and no false inclusions and exclusions of indices and hence is variable selection consistent.
- 4. On applying Theorem 3 on zero-mean Gaussian with standard deviation σ , we choose ϵ as $9m\sigma^2$ (whp), which gives the error bound proportional to σ^2 . In this example, we showed that taking λ_N proportional to σ is also a valid choice (whp). Which provides a tighter bound than Theorem 3.
- 5. In this theorem, we have restricted $\beta*$ to be a k-sparse vector, i.e. sparse in basis **X**. Theorem 3 has the advantage that it gives error bounds for compressible signals as well.

(j) What is the common thread between the bounds on the 'Dantzig selector' and the LASSO?

 $\sigma_k(x)$ is defined on Pg. 12 as the error incurred by approximating a signal x by some $\hat{x} \in \Sigma_k$:

$$\sigma_k(x)_p = \min_{\hat{x} \in \Sigma_k} ||x - \hat{x}||_p.$$

If $x \in \Sigma_k$, then clearly $\sigma_k(x)_p = 0$ for any p.

- 1. The theorem on LASSO error bound (Theorem 11.1) considering the signal $\beta*$ to be k-sparse. The error bound obtained is proportional to \sqrt{k} .

 If we apply the same condition on the signal x while using 'Dantzig selector' and using bounds mentioned (Theorem 1.10), the first term of the error bound would reduce to zero, thus making the error bound proportional to \sqrt{k} , same as above.
- 2. The bounds in LASSO estimation is proportional to the regularization parameter $\lambda_N \geq 2||\mathbf{X}^T\mathbf{w}||_{\infty}/N$. Upon applying similar condition, the bounds of 'Dantzig selector' are proportional to $\lambda \geq ||A^Te||_{\infty}$.

(k) What is the advantage of the square-root LASSO over the LASSO? The LASSO:

The LASSO solves the following, where $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{X} \in \mathbb{R}^{n \times p}$:

$$\hat{\beta} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_{\ell_2}^2}{n} + \frac{\lambda}{n} \|\boldsymbol{\beta}\|_{\ell_1} \qquad \dots (1)$$

with a suitable penalty level: $\lambda = c \cdot (2\sigma\sqrt{n}\Phi^{-1/2}(1-\alpha/2p))$ where: c > 1 is some constant, σ is the standard deviation of noise, n is the number of observation samples, and Φ is the Gaussian probability distribution function.

The square root LASSO:

The square root LASSO solves the following:

$$\hat{\beta} \in \operatorname*{arg\,min}_{eta \in \mathbb{R}^p} \sqrt{\frac{\|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|_{\ell_2}^2}{n}} + \frac{\lambda}{n} \|eta\|_{\ell_1} \qquad \dots (1)$$

where the suitable penalty level is: $\lambda = c \cdot (\sqrt{n}\Phi^{-1/2}(1 - \alpha/2p))$ All the terms have same meanings as above.

Advantages of the square root LASSO:

We observe that, in (2), the penalty level is independent of σ , the noise variance, which is contrasting with what we observed in (1). This observation is used in point 3 below.

Here are some advantages of the square root LASSO:

- 1. Despite taking the square-root of the least squares criterion function, the square root LASSO retains global convexity, making the estimator as computationally attractive as LASSO
- 2. The square-root LASSO can be formulated as a solution to a conic programming problem.
- 3. The original LASSO construction relies on knowing the standard deviation σ of the noise. Estimation of σ is nontrivial when p is large, particularly when $p \gg n$, and remains an outstanding practical and theoretical problem. The square root LASSO eliminates the need to know or to pre-estimate σ .
- 4. By using moderate deviation theory, we can do away with the assumption that noise follows the normal distribution under certain conditions.

(a) Shifting:

$$LHS = R(g(x - x_0, y - y_0))(\rho, \theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x - x_0, y - y_0) \delta(\rho - x \cos \theta - y \sin \theta) dx dy$$

Now we'll do a change of variables. Let $x' = x - x_0$ and $y' = y - y_0$.

Thus we get,

$$LHS = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x', y') \delta(\rho - x_0 \cos \theta - y_0 \sin \theta - x' \cos \theta - y' \sin \theta) dx dy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x', y') \delta((\rho - x_0 \cos \theta - y_0 \sin \theta) - x' \cos \theta - y' \sin \theta) dx' dy'$$

If we observe carefully, this is precisely the expression for the radon transform of g(x, y) at an angle θ , with offset $\rho' = \rho - x_0 \cos \theta - y_0 \sin \theta$

Thus,

$$LHS = R(g(x - x_0, y - y_0))(\rho, \theta) = R(g(x, y))(\rho - x_0 \cos \theta - y_0 \sin \theta, \theta) = RHS$$
 and we're done.

(b) Rotation:

Using change of variables to polar co-ordinates, the 2D radon transform can be written as:

$$R(f(r,\psi))(\rho,\theta) = \int_{-\pi}^{\pi} \int_{0}^{\infty} f(r,\psi)\delta(\rho - r\cos\psi\cos\theta - r\sin\psi\sin\theta)rdrd\psi$$

That is,
$$R(f(r,\psi))(\rho,\theta) = \int_{-\pi}^{\pi} \int_{0}^{\infty} f(r,\psi)\delta(\rho - r\cos(\psi - \theta))rdrd\psi$$

Now let's get to proving

$$R(g(r, \psi - \psi_0))(\rho, \theta) = \int_{-\pi}^{\pi} \int_{0}^{\infty} g(r, \psi - \psi_0) \delta(\rho - r\cos(\psi - \theta)) r dr d\psi$$

Substitute $\psi' = \psi - \psi_0$.

$$R(g(r,\psi-\psi_0))(\rho,\theta) = \int_{-\pi-\psi_0}^{\pi-\psi_0} \int_0^\infty g(r,\psi')\delta(\rho - r\cos(\psi'+\psi_0-\theta))rdrd\psi'$$

Noting that
$$\int_{-\pi-i/2}^{\pi-\psi_0} f(\theta)d\theta = \int_{-\pi}^{\pi} f(\theta)d\theta$$

$$R(g(r,\psi-\psi_0))(\rho,\theta) = \int_{-\pi}^{\pi} \int_{0}^{\infty} g(r,\psi') \delta(\rho - r\cos(\psi' - (\theta - \psi_0)) r dr d\psi'$$

which is precisely the required radon transform:

$$R(g(r, \psi - \psi_0))(\rho, \theta) = R(g(r, \psi))(\rho, \theta - \psi_0)$$

(c) Convolution:

$$(f * k)(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, y_1) k(x - x_1, y - y_1) dx_1 dy_1$$

The radon transform of this is:

$$R((f*k)(x,y))(\rho,\theta)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1,y_1)k(x-x_1,y-y_1)\delta(\rho-x\cos\theta-y\sin\theta)dx_1dy_1dxdy$$

Assuming the functions are "nice", and using properties of multiple integrals we can change the order of integration as follows:

$$R((f * k)(x, y))(\rho, \theta)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, y_1) \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} k(x - x_1, y - y_1) \delta(\rho - x \cos \theta - y \sin \theta) dx dy \right] dx_1 dy_1$$

By the shifting property proved in (a), we can write the integral in the square brackets as:

$$R((f * k)(x, y))(\rho, \theta)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, y_1) \left[R(k(x, y))(\rho - x_1 \cos \theta - y_1 \sin \theta, \theta) \right] dx_1 dy_1$$

Since
$$\int_{-\infty}^{\infty} f(x)\delta(x-x')dx = f(x'),$$

we have

$$R(k(x,y))(\rho - x_1 \cos \theta - y_1 \sin \theta, \theta) = \int_{-\infty}^{\infty} R(k(x,y))(\rho - \rho_1, \theta)\delta(\rho_1 - x_1 \cos \theta - y_1 \sin \theta)d\rho_1$$

Thus we can write,

$$R((f * k)(x,y))(\rho,\theta)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1,y_1)R(k(x,y))(\rho - \rho_1,\theta)\delta(\rho_1 - x_1\cos\theta - y_1\sin\theta)dx_1dy_1d\rho_1$$

Regrouping the terms, we have:

$$R((f * k)(x, y))(\rho, \theta)$$

$$= \int_{-\infty}^{\infty} R(k(x, y))(\rho - \rho_1, \theta) \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, y_1) \delta(\rho_1 - x_1 \cos \theta - y_1 \sin \theta) dx_1 dy_1 \right] d\rho_1$$

Again, the terms in the square bracket allow us to write:

$$R((f * k)(x, y))(\rho, \theta)$$

$$= \int_{-\infty}^{\infty} R(k(x, y))(\rho - \rho_1, \theta) R(f(x, y))(\rho_1, \theta) d\rho_1$$

which is in fact the desired convolution, allowing us to write,

$$R((f * k)(x, y))(\rho, \theta)$$

= $R(f(x, y))(\rho, \theta) * R(k(x, y))(\rho, \theta)$

Claim. Let A be the sensing matrix, such that every column of it is unit normalised. If A has s-order restricted isometry constant δ_s and mutual coherence μ , $\delta_s \leq (s-1)\mu$

Proof:

Let S be a subset of columns of **A** with |S| = s.

Then, $A_S^T A_S$ is a symmetric positive semi definite matrix.

Let λ_{max} and λ_{min} be the largest and smallest eigenvalues of $A_S^T A_S$.

We have, $\lambda_{max} \geq \lambda_{min} \geq 0$

Suppose x be a s-sparse vector with the non-zero values in subset corresponding to S. Then,

$$\|\mathbf{A}\mathbf{x}\|^{2} = \|\mathbf{A}_{S}\mathbf{x}_{S}\|^{2}$$

$$= (\mathbf{A}_{S}\mathbf{x}_{S})^{T}\mathbf{A}_{S}\mathbf{x}_{S}$$

$$= \mathbf{x}_{S}^{T}\mathbf{A}_{S}^{T}\mathbf{A}_{S}\mathbf{x}_{S}$$

$$= (\mathbf{A}_{S}^{T}\mathbf{A}_{S}\mathbf{x}_{S})^{T}\mathbf{x}_{S}$$

$$= (\lambda \mathbf{x}_{S})^{T}\mathbf{x}_{S} \qquad \dots \quad \lambda \text{ is some eigenvalue of } \mathbf{A}_{S}^{T}\mathbf{A}_{S}$$

$$= \lambda(\mathbf{x}_{S}^{T}\mathbf{x}_{S})$$

$$\leq \lambda_{max}\|\mathbf{x}_{S}\|^{2}$$

$$= \lambda_{max}\|\mathbf{x}\|^{2}$$

Similarly, $\|\boldsymbol{A}\boldsymbol{x}\|^2 = \|\boldsymbol{A}_{\boldsymbol{S}}\boldsymbol{x}_{\boldsymbol{S}}\|^2 \ge \lambda_{min}\|\boldsymbol{x}\|^2$

Thus, $\lambda_{min} \|\boldsymbol{x}\|^2 \le \|\boldsymbol{A}\boldsymbol{x}\|^2 \le \lambda_{max} \|\boldsymbol{x}\|^2$

Thus we get $\delta_s = \max\{1 - \lambda_{min}, \lambda_{max} - 1\}$.

Suppose λ be some eigenvalue of $\boldsymbol{A_S^T A_S}$.

Gershgorin's Disk Theorem says that:

For an eigenvalue λ of a square matrix \boldsymbol{B} of $n \times n$, there is an index $j \in \{1, 2, \dots, n\}$

such that
$$|\lambda - B_{jj}| \le \sum_{i=0, i \ne j}^{i=n} |B_{ji}|$$

In our case due to unit normalisation, $(A_S^T A_S)_{jj} = 1$ and

$$\sum_{i=0, i \neq j}^{i=s} |(\boldsymbol{A}_{S}^{T} \boldsymbol{A}_{S})_{ji}| = \sum_{i=0, i \neq j}^{i=s} |((\boldsymbol{A}_{S})_{j})^{T} (\boldsymbol{A}_{S})_{i}| \leq \sum_{i=0, i \neq j}^{i=s} \mu(\boldsymbol{A}) = (s-1)\mu(\boldsymbol{A})$$

Therefore we have

$$|\lambda - 1| \le (s - 1)\mu(\mathbf{A})$$

Which implies $\lambda_{max} - 1 \leq (s-1)\mu(\mathbf{A})$ and $1 - \lambda_{min} \leq (s-1)\mu(\mathbf{A})$

Thus finally, $\delta_s \leq (s-1)\mu$

Title: X-ray computed tomography for quality inspection of agricultural products: A review

Venue: Food Science & Nutrition - Wiley Online Library

First published: 23rd August 2019

Link: https://onlinelibrary.wiley.com/doi/full/10.1002/fsn3.1179

Mathematical Problem

X-ray CT technology is used to obtain two-dimensional slice images and three-dimensional tomographic images of samples. The review provides an overview of the working principle of X-ray CT technology, image processing, and analysis.

It models the tomographic projections based on the attenuation intensity as indicated by the **Beer–Lambert** law (Curry, Dowdey, & Murry, 1990; Wu, Yang, & Zhou, 2008; Ying & Han, 2005).

$$I = I_0 e^{-\mu_n l}$$

where I is the intensity of X-ray exiting through a sample in eV,

 I_0 is the intensity of X-ray in eV,

 μ_n is the linear attenuation coefficient of a sample on the wavelength in eV/mm, and l is the path length through a sample in mm.

The calculation formula of CT number is as follows:

CT Number =
$$\frac{\mu - \mu_w}{\mu} x 1000$$

where μ is the linear attenuation coefficient of a sample, and

 μ_w is the linear attenuation coefficient of water (approximately 0.195).

The measurement range of CT number is from -1,000 Hu to +4,000 Hu. Besides, CT number for air is -1,000 Hu and the number for water is 0 Hu (Ogawa, 1998).

Image Processing and Analysis

Procedure:

- 1. 2D slice images are generated to reconstruct the 3D model
- 2. Gaussian or median filter is used to reduce noise with 3D raw gray-level images
- 3. The **threshold segmentation** is used to segment the image based on the gray value histogram of different regions
- 4. The final step is the qualitative and quantitative analysis on CT data of region of interests (ROIs).

