Dr. Francesco Gallinaro Tutorat: Max Herwig

Modelltheorie

Blatt 3

Abgabe: 14.11.2023, 12 Uhr

Aufgabe 1 (4 Punkte).

Sei \mathcal{A} eine \mathcal{L} -Struktur. Wähle für jede \mathcal{L} -Formel $\varphi[x_1,\ldots,x_n]$ ein neues n-stelliges Relationszeichen R_{φ} . Bezeichne mit \mathcal{L}' die Erweiterung von \mathcal{L} um diese Relationszeichen. Die Struktur \mathcal{A} wird nun als \mathcal{L}' -Struktur \mathcal{A}' aufgefasst: Das Tupel (a_1,\ldots,a_n) liegt genau dann in $R_{\varphi}^{\mathcal{A}'}$, wenn gilt $\mathcal{A} \models \varphi[a_1,\ldots,a_n]$.

- a) Zeige induktiv über den Aufbau der Formeln, dass für jede \mathcal{L}' -Formel $\psi[x_1, \dots, x_n]$ eine \mathcal{L} -Formel $\theta[x_1, \dots, x_n]$ existiert mit $\mathcal{A}' \models \forall \bar{x}(\psi[\bar{x}] \leftrightarrow \theta[\bar{x}])$.
- b) Hat die Theorie Th(A') Quantorenelimination?

Aufgabe 2 (6 Punkte).

Betrachte die Sprache $\mathcal{L} = \{0, s\}$, wobei s ein einstelliges Funktionszeichen ist, sowie die \mathcal{L} -Struktur $\mathcal{Z} = (\mathbb{Z}, 0^{\mathcal{Z}}, s^{\mathcal{Z}})$ derart, dass $s^{\mathcal{Z}}(x) = x + 1$ als die Nachfolgerfunktion interpretiert wird. Beachte, dass für n > 0 aus \mathbb{N} die in \mathcal{L} ausdrückbare Eigenschaft χ_n gilt: Für kein Element x ist $s^n(x) = x$, wobei s^n für die n-fache Verkettung steht. Außerdem ist s bijektiv (χ_0) .

- a) Auf Modellen von Th(\mathcal{Z}) lässt sich folgende Äquivalenzrelation betrachten: Zwei Elemente x und y seien in Relation, wenn es ein n aus \mathbb{N} gibt mit $s^n(x) = y$ oder $s^n(y) = x$.
 - Zeige, dass es eine elementare Erweiterung \mathcal{Z}' von \mathcal{Z} gibt mit einem Element, welches nicht mit $0^{\mathcal{Z}}$ in Relation ist.
- b) Zeige, dass die Kollektion $\{\chi_n \mid n \in \mathbb{N}\}$ (als \mathcal{L} -Aussagen formuliert) vollständig mit Quantorenelimination ist.
 - Gib eine explizite Axiomatisierung der Theorie $Th(\mathcal{Z})$ an.

Aufgabe 3 (6 Punkte).

Ein Ultrafiter heißt generisch, wenn er kein Hauptfilter (siehe Blatt 0, Aufgabe 3) ist.

a) Zeige, dass eine Teilmenge X von \mathbb{N} genau dann unendlich ist, wenn sie in einem generischen Ultrafilter \mathcal{U} auf \mathbb{N} liegt.

Sei nun $(A_n, Y_n)_{n \in \mathbb{N}}$ eine Kollektion nicht-trivialer Mengen mit einer ausgezeichneten Teilmenge $Y_n \subset A_n$. Wir betrachten jedes Paar (A_n, Y_n) als eine Struktur \mathcal{A}_n in der Sprache $\mathcal{L} = \{P\}$, wobei P ein einstelliges Relationszeichen ist, durch Definiton von $P^{\mathcal{A}_n} = Y_n$.

- b) Sei N aus \mathbb{N} fest. Zeige, dass folgende Behauptungen äquivalent sind:
 - Es gibt ein n_0 aus \mathbb{N} derart, dass $|Y_n| \leq N$ für alle $n \geq n_0$.
 - Für jeden generischen Ultrafilter \mathcal{U} auf der Indexmenge \mathbb{N} ist $|P^{\mathcal{A}}| \leq N$, wobei $\mathcal{A} = \prod_{\mathcal{U}} \mathcal{A}_n$.

(Bitte wenden!)

Aufgabe 4 (4 Punkte).

In der Sprache $\mathcal{L} = \{<\}$ betrachte die \mathcal{L} -Struktur \mathcal{R} mit Universum \mathbb{R} und der kanonischen linearen Ordnung. Sei nun \mathcal{U} ein generischer Ultrafilter auf der Indexmenge \mathbb{N} . Wir identifizieren die Elemente aus \mathbb{R} mit Elementen aus der Ultrapotenz $\mathcal{R}^{\mathcal{U}}$, deren Universum $\prod_{\mathcal{U}} \mathbb{R}$ ist, denn $\mathcal{R}^{\mathcal{U}}$ ist eine elementare Erweiterung von \mathcal{R} .

ist eine elementare Erweiterung von \mathcal{R} . Zeige, dass es eine Folge $(\zeta_n)_{n\in\mathbb{N}}$ in $\mathcal{R}^{\mathcal{U}}$ derart gibt, dass $0<^{\mathcal{R}^{\mathcal{U}}}\zeta_{n+1}<^{\mathcal{R}^{\mathcal{U}}}\zeta_n<^{\mathcal{R}^{\mathcal{U}}}r$ für jedes r>0 aus \mathbb{R}

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.33 IM KELLER DES MATHEMATISCHEN INSTITUTS.