Francisco Hartur Lopes de Alcântara - A.P.S - 2018.2 Universidade Federal do Ceará - Campus Crateús

QUESTÃO 01º

DER - DIAGRAMA DE ENTIDADE DE RELACIONAMENTO

QUESTÃO 02º

- a) Ele quer consultar os estudantes que estão matriculados em FBD e POO, e vai gerar uma nova tabela com esses estudantes.
- b)

Sandra

QUESTÃO 03º

QUESTÃO 04º

- A^{o}) π nome (σ Cliente.cidade = 'Sobral' (Cliente))
- **B**^o) π Cliente.nome (σ Cliente.id = Conta.id_cliente \wedge Conta.saldo \geq 400 \wedge Conta.saldo \leq 500 (Conta×Cliente))
- C^{o}) π nome (σ Funcionario.salario ≥ 1000 (Funcionario))
- D^2) π Cliente.nome (σ Cliente.id = Conta.id_cliente \wedge Conta.id_agencia = Agencia.id \wedge Agencia.cidade = Cliente.cidade (Agencia×Conta×Cliente))
- **E**^o) π Cliente.nome (σ Cliente.id = Conta.id_cliente \wedge Conta.id_agencia = Agencia.id \wedge Agencia.cidade \neq 'Crateus' (Agencia×Conta×Cliente))
- F^{o}) π Cliente.nome (σ Cliente.id = Conta.id_cliente \wedge Conta.id_agencia = Agencia.id \wedge (Agencia.cidade = 'Juazeiro' \vee Agencia.cidade = 'Sobral') (Cliente \times Conta \times Agencia))

- **Gº)** π Agencia.id, Transacao.data_realizacao, Transacao.valor (σ Conta.id = Transacao.id_conta \wedge Conta.id_agencia = Agencia.id \wedge Agencia.cidade = 'Fortaleza' (Agencia \times Conta \times Transacao))
- H^o) π Conta.id, Agencia.nome, Cliente.nome (σ Cliente.id = Conta.id_cliente Λ Conta.id_agencia = Agencia.id Λ Transacao.id_conta = Conta.id Λ Transacao.valor > 1000 (Conta×Cliente×Transacao×Agencia))
- **12)** $R2 = \rho R2 \pi Conta.id_agencia (\sigma Conta.id_cliente = Cliente.id <math>\wedge Cliente.nome = 'Claudio' (Conta \times Cliente))$
- π Cliente.nome (σ Cliente.id = Conta.id_cliente Λ Conta.id_agencia = $R2.id_agencia Λ$ Cliente.nome ≠ 'Claudio' (Conta × Cliente × R2))
- **J2)** $R1 = \rho R1$ (π Cliente.nome, Agencia.id (σ Cliente.id = Conta.id_cliente \wedge Conta.id_agencia = Agencia.id (Cliente \times Conta \times Agencia)))
- $R2 = \rho R2$ (π Funcionario.nome, Agencia.id (σ Agencia.id = Funcionario.id_agencia (Agencia × Funcionario)))
- π R2.nome (σ R2.id = R1.id \wedge R2.nome = R1.nome (R1 \times R2))
- K°) π Cliente.nome, Conta.id (σ Cliente.id = Conta.id_cliente \wedge Conta.id = Multa.id_conta (Cliente \times Conta \times Multa))
- **L**^o) $R1 = \rho R1$ (π Cliente.nome, Conta.id (σ Cliente.id = Conta.id_cliente (Conta x Cliente)))
- $R2 = \rho R2$ (π Cliente.nome, Conta.id (σ Cliente.id = Conta.id_cliente Λ Conta.id = Transacao.id_conta (Conta x Cliente x Transacao)))
- (R1 R2)
- M^{o}) π Cliente.nome, Conta.id (σ Cliente.id = Conta.id_cliente \wedge Conta.id = Multa.id_conta \wedge Conta.id = Transacao.id_conta (Conta \times Cliente \times Transacao \times Multa))
- N^2) R1 = ρ R1 (π Agencia.id (σ Cliente.id = Conta.id_cliente Λ Conta.id_agencia = Agencia.id Λ Conta.id = Multa.id_conta (Conta κ Cliente κ Multa κ Agencia)))
- π Funcionario.nome (σ Funcionario.id agencia = R1.id (Funcionario x R1))