Quiz 10: Solving Trigonometric Equations, Pythagorean Identity, and Verifying Trig Identities

There's a Ghost in My Calculator

Cthulhu Lemon

1. Solve the following for θ , in radians, where $0 < \theta < 2\pi$:

$$-5\sin^2(\theta) + 4\sin(\theta) + 5 = 0$$

Round to the nearest hundredth.

2. Determine the exact value of θ in the following equation if $0 < \theta < 2\pi$:

$$8\sin^2(\theta) + 8 = 16$$

Enter your answers in radians separated by commas.

3. If $-\pi < \theta < \pi$, find all values of θ that satisfy the equation:

$$4\tan^2(\theta) = 4\tan(\theta)$$

Separate multiple answers with a comma.

4. Given that $sec(\theta) = \frac{\sqrt{13}}{3}$ and θ is in Quadrant IV, what is $tan(\theta)$? Write your answer in exact form. Do not round.

- 5. Which of the following is equivalent to $\frac{(1+\cos\alpha)(1-\cos\alpha)}{\sin^3\alpha}$ for all values of α for which it is defined?
 - $\Box \sec \alpha \tan \alpha$
 - \Box 1
 - $\Box \csc \alpha$
 - $\Box \cos^2 \alpha$
 - $\Box \sin \alpha$

6. Solve the equation below for θ , where $0 < \theta < 2\pi$:

$$-8\sin^2(\theta) - 4 = -10$$

 $Enter\ your\ answer\ in\ radians\ and\ separate\ multiple\ answers\ with\ a\ comma.$

7. Solve the following for θ , in radians, where $0 < \theta < 2\pi$:

$$-7\sin^2(\theta) + 4\sin(\theta) + 7 = 0$$

Round your answers to two decimal places.

8. Solve the following for θ , in radians, where $0 < \theta < 2\pi$:

$$-5\cos^2(\theta) + 4\cos(\theta) + 6 = 0$$

Round your answers to the nearest hundredth of a radian.

9. Given that $\sec(\theta) = \frac{\sqrt{221}}{11}$ and θ is in Quadrant IV, what is $\tan(\theta)$? Give an exact answer in the form of a fraction.

10. Solve the equation below given that $-\pi \le \beta < \pi$:

$$4\tan^2\beta + 4\tan\beta = 0$$

Separate multiple answers with commas.