Who wins, who loses? Tools for distributional policy evaluation

Maximilian Kasy

Department of Economics, Harvard University

Introduction Setup Identification Aggregation Estimation Application Conclusion

- Few policy changes result in Pareto improvements
- Most generate WINNERS and LOSERS

EXAMPLES:

1. Trade liberalization

net producers vs. net consumers of goods with rising / declining prices

- 2. Progressive income tax reform
 - high vs. low income earners
- Price change of publicly provided good (health, education,...)
 Inframarginal, marginal, and non-consumers of the good;
 tax-payers
- 4. Migration

Migrants themselves; suppliers of substitutes vs. complements to migrant labor

 Skill biased technical change suppliers of substitutes vs. complements to technology; consumers

Introduction Setup Identification Aggregation Estimation Application Conclusion

This implies...

If we evaluate social welfare based on individuals' welfare:

- 1. To evaluate a policy effect, we need to
 - 1.1 define how we measure individual gains and losses,
 - 1.2 estimate them, and
 - 1.3 take a stance on how to aggregate them.
- To understand political economy, we need to characterize the sets of winners and losers of a policy change.

My objective:

- 1. tools for distributional evaluation
- utility-based framework, arbitrary heterogeneity, endogenous prices

Introduction Setup Identification Aggregation Estimation Application Conclusio

Proposed procedure

- 1. impute money-metric welfare effect to each individual
- 2. then:
 - 2.1 report average effects given income / other covariates
 - 2.2 construct sets of winners and losers (in expectation)
 - 2.3 aggregate using welfare weights

contrast with program evaluation approach:

- 1. effect on average
- 2. of observed outcome

Introduction Setup Identification Aggregation Estimation Application Conclusio

Contributions

1. Assumptions

- 1.1 endogenous prices / wages (vs. public finance)
- 1.2 utility-based social welfare (vs. labor, distributional decompositions)
- 1.3 arbitrary heterogeneity (vs. labor)

2. Objects of interest

- 2.1 disaggregated welfare \Rightarrow
 - political economy
 - allow reader to have own welfare weights
- 2.2 aggregated ⇒ policy evaluation as in optimal taxation

3. Formal results

next slide

Setup Identification Aggregation Estimation Application Conclusio

Formal results

Introduction

1. Identification

- 1.1 Main challenge: $E[\dot{w} \cdot l | w \cdot l, \alpha]$
- 1.2 More generally: $E[\dot{x}|x,\alpha]$ causal effect of policy *conditional* on endogenous outcomes,
- 1.3 solution: tools from vector analysis, fluid dynamics

2. Aggregation

social welfare & distributional decompositions

- 2.1 welfare weights \approx derivative of influence function
- 2.2 welfare impact = impact on income behavioral correction

3. Inference

- 3.1 local linear quantile regressions
- 3.2 combined with control functions
- 3.3 suitable weighted averages

Abbring and Heckman (2007)	this paper
Distribution of treatment effects	Conditional expectation of marginal
for a discrete treatment	causal effect of continuous
$F(\Delta Y X)$	treatment given outcome
	$E[\partial_X Y Y,X]$
prediction of GE effects for	ex-post evaluation of realized
counterfactual policy	price/wage changes
effect on realized outcomes,	equivalent variation
ΔΥ	I∙ ẅ

Setup

- policy $\alpha \in \mathbb{R}$ individuals i
- \triangleright potential outcome w^{α} realized outcome w
- partial derivatives $\partial_w := \partial/\partial w$ with respect to policy $\dot{w} := \partial_{\alpha} w^{\alpha}$
- density f cdf F quantile Q
- wage w labor supply 1 consumption vector c taxes t covariates W

Setup

Assumption (Individual utility maximization)

individuals choose c and I to solve

$$\max_{c,l} u(c,l) \quad s.t. \quad c \cdot p \le l \cdot w - t(l \cdot w) + y_0. \tag{1}$$

$$v := \max_{c,l} u$$

- u, c, l, w vary arbitrarily across i
- ▶ p, w, y_0, t depend on α ⇒ so do c, l, and v
- u differentiable, increasing in c, decreasing in l, quasiconcave, does not depend on α

Objects of interest

Definition

Money metric utility impact of policy:

$$\dot{e} := \dot{v} / \partial_{y_0} v$$

2. Average conditional policy effect on welfare:

$$\gamma(y,W) := E[\dot{e}|y,W,\alpha]$$

Sets of winners and losers:

$$\mathscr{W} := \{ (y, W) : \gamma(y, W) \ge 0 \}$$
$$\mathscr{L} := \{ (y, W) : \gamma(y, W) \le 0 \}$$

4. Policy effect on social welfare: SWF: $v(.) \rightarrow \mathbb{R}$

$$S\dot{W}F = E[\omega \cdot \gamma]$$

Maximilian Kasy

Marginal policy effect on individuals

Lemma

$$\dot{y} = (\dot{l} \cdot w + l \cdot \dot{w}) \cdot (1 - \partial_z t) - \dot{t} + \dot{y_0},
\dot{e} = l \cdot \dot{w} \cdot (1 - \partial_z t) - \dot{t} + \dot{y_0} - c \cdot \dot{p}.$$
(2)

Proof: Envelope theorem.

- 1. wage effect $l \cdot \dot{w} \cdot (1 \partial_z t)$,
- 2. effect on unearned income \dot{y}_0 ,
- 3. mechanical effect of changing taxes -t.
- 4. behavioral effect $b := \dot{l} \cdot w \cdot (1 \partial_z t) = \dot{l} \cdot n$,
- 5. price effect $-c \cdot \dot{p}$.

Income vs utility:

$$\dot{\mathbf{v}} - \dot{\mathbf{e}} = \dot{\mathbf{I}} \cdot \mathbf{n} + \mathbf{c} \cdot \dot{\mathbf{p}}.$$

Maximilian Kasy

Setup Identification Aggregation Estimation Application Conclusion

Example: Introduction of EITC (cf. Rothstein, 2010)

- Transfer income to poor mothers made contingent on labor income
 - 1. mechanical effect > 0 if employed < 0 if unemployed
 - labor supply effect > 0
 - 3. wage effect < 0 for mothers *and* non-mothers
- Evaluation based on
 - income ("labor")
 - utility, assuming fixed wages ("public")
 - 3. utility, general model
- 1. mechanical + wage + labor supply
 - 2. mechanical
 - 3. mechanical + wage
- Case 3 looks worse than "labor" / "public" evaluations

Identification of disaggregated welfare effects

- Goal: identify $\gamma(y, W) = E[\dot{e}|y, W, \alpha]$
- Simplified case:
 no change in prices, taxes, unearned income
 no covariates
- Then

$$\gamma(y) = E[I \cdot (1 - \partial_z t) \cdot \dot{w} | I \cdot w, \alpha]$$

Denote x = (I, w).
Need to identify

$$g(x,\alpha) = E[\dot{x}|x,\alpha] \tag{3}$$

from

$$f(x|\alpha)$$
.

- Made necessary by combination of
 - 1. utility-based social welfare
 - 2. heterogeneous wage response.

Maximilian Kasy
Who wins, who loses?

Assume:

- 1. $x = x(\alpha, \varepsilon), x \in \mathbb{R}^k$
- 2. $\alpha \perp \varepsilon$
- 3. $x(.,\varepsilon)$ differentiable

Physics analogy:

- $\rightarrow x(\alpha, \varepsilon)$: position of particle ε at time α
- $f(x|\alpha)$: density of gas / fluid at time α , position x
- $ightharpoonup \dot{f}$ change of density
- $h(x,\alpha) = E[\dot{x}|x,\alpha] \cdot f(x|\alpha)$: "flow density"

- ▶ If we know densities $f(x|\alpha)$,
- what do we know about flow $g(x,\alpha) = E[\dot{x}|x,\alpha]$?

Problem: Stirring your coffee

- does not change its density,
- yet moves it around.
- ▶ ⇒ different flows $g(x,\alpha)$ consistent with a constant density $f(x|\alpha)$

Maximilian Kasy Harvard
Who wins, who loses? 15 of 46

Will show:

- \blacktriangleright Knowledge of $f(x|\alpha)$
 - identifies $\nabla \cdot h = \sum_{i=1}^k \partial_{x^i} h^i$
 - where $h = E[\dot{x}|x,\alpha] \cdot f(x|\alpha)$,
 - identifies nothing else.
- Add to h
 - \tilde{h} such that $\nabla \cdot \tilde{h} = 0$
 - $\rightarrow f(x|\alpha)$ does not change
 - "stirring your coffee"
- Additional conditions
 - e.g.: "wage response unrelated to initial labor supply"
 - \Rightarrow just-identification of $g(x,\alpha) = E[\dot{x}|x,\alpha]$

Density and flow

Recall

$$h(x,\alpha) := E[\dot{x}|x,\alpha] \cdot f(x|\alpha)$$

$$\nabla \cdot h := \sum_{j=1}^{k} \partial_{x^{j}} h^{j}$$

$$\dot{f} := \partial_{\alpha} f(x|\alpha)$$

Theorem

h²

Proof:

1. For some a(x), let

$$A(\alpha) := E[a(x(\alpha, \varepsilon))|\alpha] = \int a(x(\alpha, \varepsilon))dP(\varepsilon)$$
$$= \int a(x)f(x|\alpha)dx.$$

By partial integration:

$$\dot{A}(\alpha) = E[\partial_x a \cdot \dot{x} | \alpha] = \sum_{j=1}^k \int \partial_{x^j} a \cdot h^j dx$$
$$= -\int a \cdot \sum_{j=1}^k \partial_{x^j} h^j dx = -\int a \cdot (\nabla \cdot h) dx.$$

Alternatively:

$$\dot{A}(\alpha) = \int a(x)\dot{f}(x|\alpha)dx.$$

4. 2 and 3 hold for any $a \Rightarrow \dot{f} = -\nabla \cdot h$. \square

Maximilian Kasy Who wins, who loses?

The identified set

Theorem

The identified set for h is given by

$$h^0 + \mathscr{H} \tag{5}$$

where

$$\mathcal{H} = \{ \tilde{h} : \nabla \cdot \tilde{h} \equiv 0 \}$$

$$h^{0j}(x,\alpha) = f(x|\alpha) \cdot \partial_{\alpha} Q(v^{j}|v^{1}, \dots, v^{j-1}, \alpha)$$

$$v^{j} = F(x^{j}|x^{1}, \dots, x^{j-1}, \alpha)$$

Maximilian Kasy Harvard 19 of 46

Theorem

1. Suppose k = 1. Then

$$\mathscr{H} = \{\tilde{h} \equiv 0\}. \tag{6}$$

2. Suppose k = 2. Then

$$\mathcal{H} = \{\tilde{h} : \tilde{h} = A \cdot \nabla H \text{ for some } H : \mathcal{X} \to \mathbb{R}\}.$$
 (7)

where

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right).$$

3. Suppose k = 3. Then

$$\mathscr{H} = \{ \tilde{h} : \ \tilde{h} = \nabla \times G \}. \tag{8}$$

where $G: \mathscr{X} \to \mathbb{R}^3$.

Proof: Poincaré's Lemma.

Figure: Incompressible flow and rotated gradient of potential

Point identification

Theorem

Assume

$$\frac{\partial}{\partial x^{j}} E[\dot{x}^{i} | x, \alpha] = 0 \text{ for } j > i.$$
 (9)

Then h is point identified, and equal to h⁰ as defined before.

In particular

$$g^{j}(x,\alpha) = E[\dot{x}^{j}|x,\alpha]$$

= $\partial_{\alpha}Q(v^{j}|v^{1},...,v^{j-1},\alpha).$

Maximilian Kasy Harvard 22 of 46 Aggregation Estimation

Aggregation

- Relationship social welfare ⇔ distributional decompositions?
- public finance welfare weights \approx derivative of dist decomp influence functions
- Alternative representations of SWF
 - \Rightarrow alternative ways to estimate *SWF*:
 - 1. weighted average of individual welfare effects \dot{e} , γ
 - 2. distributional decomposition for counterfactual income \tilde{y} (holding labor supply constant)
 - distributional decomposition of realized income minus behavioral correction

Maximilian Kasy

Estimation

1. First estimate the disaggregated welfare impact

$$\gamma(y, W) = E[\dot{e}|y, W, \alpha]$$

$$= E[I \cdot \dot{w} \cdot (1 - \partial_z t) - \dot{t} + \dot{y_0} - c \cdot \dot{p}|y, W, \alpha] \qquad (10)$$

 \blacktriangleright Estimation of g and γ

2. Then estimate other objects by plugging in $\hat{\gamma}$:

$$\widehat{\mathscr{W}} = \{ (y, W) : \widehat{\gamma}(y, W) \ge 0 \}$$

$$\widehat{\mathscr{L}} = \{ (y, W) : \widehat{\gamma}(y, W) \le 0 \}$$

$$\widehat{SWF} = E_N[\omega_i \cdot \widehat{\gamma}(y_i, W_i)]. \tag{11}$$

3. ► Inference

Maximilian Kasy
Who wins, who loses?

Application: distributional impact of EITC

- Following Leigh (2010)
 (see also Meyer and Rosenbaum (2001), Rothstein (2010))
- CPS-MORG
- Variation in state top-ups of EITC across time and states
- α = maximum EITC benefit available (weighted average across family sizes)

Maximilian Kasy

ıction Setup Identification Aggregation Estimation **Application** Conclusion

State EITC supplements 1984-2002

State:	СО	DC	IA	IL	KS	MA	MD	ME	MN	MN	NJ	NY	OK	OR	RI	VT	WI	WI	WI
# chld.							1+		0	1+		1+					1	2	3+
1984																	30	30	30
1985																	30	30	30
1986															22.21				
1987															23.46				
1988															22.96	23			
1989															22.96	25	5	25	75
1990			5												22.96	28	5	25	75
1991			6.5						10	10					27.5	28	5	25	75
1992			6.5						10	10					27.5	28	5	25	75
1993			6.5						15	15					27.5	28	5	25	75
1994			6.5						15	15		7.5			27.5	25	4.4	20.8	62.5
1995			6.5						15	15		10			27.5	25	4	16	50
1996			6.5						15	15		20			27.5	25	4	14	43
1997			6.5			10			15	15		20		5	27.5	25	4	14	43
1998			6.5		10	10	10		15	25		20		5	27	25	4	14	43
1999	8.5		6.5		10	10	10		25	25		20		5	26.5	25	4	14	43
2000	10	10	6.5	5	10	10	15	5	25	25	10	22.5		5	26	32	4	14	43
2001	10	25	6.5	5	10	15	16	5	33	33	15	25		5	25.5	32	4	14	43
2002	0	25	6.5	5	15	15	16	5	33	33	17.5		5	5	25	32	4	14	43

Setup Identification Aggregation Estimation Application Conclusion

Leigh (2010)

	All adults	High school dropouts	High school diploma only	College graduates						
	dependent variable: Log real hourly wage									
Log maximum EITC	-0.121	-0.488	-0.221	0.008						
	[0.064]	[0.128]	[0.073]	[0.056]						
Fraction EITC- eligible	9%	25%	12%	3%						
	dependent variable: whether employed									
Log maximum EITC	0.033	0.09	0.042	0.008						
	[0.012]	[0.046]	[0.019]	[0.022]						
Fraction EITC- eligible	14%	34%	17%	4%						

Setup Identification Aggregation Estimation Application Conclusion

Welfare effects of wage changes induced by a 10% expansion of the EITC

estimated welfare effect $l \cdot \dot{w}$ for a subsample of 1000 households, plotted against their earnings.

Maximilian Kasy

Welfare effects of wage changes induced by a 10% expansion of the EITC, high school dropouts

Kernel regression of welfare effects on earnings

95% confidence band for welfare effects given earnings

Maximilian Kasy

Setup Identification Aggregation Estimation Application Conclusion

Conclusion and Outlook

- Most policies generate winners and losers
- Motivates interest in
 - disaggregated welfare effects
 - sets of winners and losers (political economy!)
 - 3. weighted average welfare effects (optimal policy!)
- Consider framework which allows for
 - 1. endogenous prices / wages (vs. public finance)
 - utility-based social welfare (vs. labor, distributional decompositions)
 - 3. arbitrary heterogeneity (vs. labor)

Setup Identification Aggregation Estimation Application Conclusion

Main results

1. Identification

- 1.1 Main challenge: $E[\dot{w} \cdot l | w \cdot l, \alpha]$
- 1.2 More generally: $E[\dot{x}|x,\alpha]$ causal effect of policy *conditional* on endogenous outcomes,
- 1.3 solution: tools from vector analysis, fluid dynamics

ightharpoonup Generalization to $\dim(lpha)>1$

2. Aggregation

social welfare & distributional decompositions

- 2.1 welfare weights \approx derivative of influence function
- 2.2 welfare impact = impact on income behavioral correction

3. Inference

- 3.1 local linear quantile regressions
- 3.2 combined with control functions
- 3.3 suitable weighted averages

Thanks for your time!

duction Setup Identification Aggregation Estimation Application Conclusion

Literature

1. public - optimal taxation

Samuelson (1947), Mirrlees (1971), Saez (2001), Chetty (2009), Hendren (2013), Saez and Stantcheva (2013)

2. labor - determinants of wage distribution

Autor et al. (2008), Card (2009)

3. distributional decompositions

Oaxaca (1973), DiNardo et al. (1996), Firpo et al. (2009), Rothe (2010), Chernozhukov et al. (2013)

4. sociology - class analysis Wright (2005)

mathematical physics - fluid dynamics, differential forms Rudin (1991)

6. econometrics - various

Koenker (2005), Hoderlein and Mammen (2007), Abbring and Heckman (2007), Matzkin (2003), Altonji and Matzkin (2005)

▶ Back

Proof of sharpness of identified set:

- 1. For any h s.t. $\dot{f} = -\nabla \cdot h$ construct DGP as follows
- 2. Let $\varepsilon = x(0, \varepsilon)$, $f(\varepsilon) = f(x|\alpha = 0)$
- 3. Let $x(.,\varepsilon)$ be the solution of the ODE

$$\dot{x} = g(x,\alpha), \ x(0,\varepsilon) = \varepsilon.$$

(existence: Peano's theorem)

- 4. \Rightarrow consistent with *h* and with *f*

→ Back

Controls; back to γ

Proposition

► Suppose $\alpha \perp \varepsilon | \mathbf{W}$, and $\frac{\partial}{\partial x^i} E[\dot{x}^i | x, W, \alpha] = 0$ for j > i. Then

$$E[\dot{x}^{j}|x,W,\alpha] = \partial_{\alpha}Q(v^{j}|v^{1},...,v^{j-1},W,\alpha),$$
where $v^{j} = F(x^{j}|x^{1},...,x^{j-1},W,\alpha).$

 $If x^j = n.$

$$\gamma(\mathbf{y}, \mathbf{W}) = E[I \cdot \dot{n} | y, W, \alpha] = \mathbf{E}[I \cdot \partial_{\alpha} \mathbf{Q}(v^{j} | v^{1}, \dots, v^{j-1}, W, \alpha) | \mathbf{y}, \mathbf{W}, \alpha]. \quad (12)$$

panel data, instrumental variables: similar (see paper)

Maximilian Kasy

Welfare weights and influence functions

Consider $\theta: P^y \to \mathbb{R}$

Theorem

1. Welfare weights:

$$S\dot{W}F = E[\omega^{SWF} \cdot \dot{e}]$$

$$\dot{\theta} = E[\omega^{\theta} \cdot \dot{y}].$$
(13)

2. Influence function:

$$\dot{\theta} = \partial_{\alpha} E[IF(y^{\alpha})] = \partial_{\alpha} \int IF(y) dF_{y^{\alpha}}(y).$$

3. Relating the two:

$$\omega^{\theta} = \partial_{y} IF(y).$$

Alternative representations

Theorem

- Assume $\omega^{SWF} = \omega^{\theta} = \omega$ and $\dot{p} = 0$.
- Let $\tilde{y}^{\alpha} = l^{0} \cdot w^{\alpha} t^{\alpha} (l^{0} \cdot w^{\alpha}) + y_{0}^{\alpha},$ $b = \dot{l} \cdot n$

Then $\dot{e} = \dot{\tilde{y}} = \dot{y} - b$ and

1. Counterfactual income distribution:

$$\mathbf{SWF} = E[\boldsymbol{\omega} \cdot \dot{\tilde{y}}] = \mathbf{E}[\boldsymbol{\omega} \cdot \boldsymbol{\gamma}]
= \partial_{\alpha} \theta \left(P^{\tilde{y}^{\alpha}} \right)
= \partial_{\alpha} E[IF(\tilde{y}^{\alpha})].$$
(14)

2. Behavioral correction of distributional decomposition:

$$\dot{\theta} - S\dot{W}F = E[\omega \cdot b]. \tag{15}$$

▶ Back

Maximilian Kasy
Who wins, who loses?

Estimation of q and γ

- 1) \hat{v}^j : estimate of $F(x^j|x^1,\ldots,x^{j-1},W,\alpha)$
 - 1. estimated **conditional quantile** of x^j given $(W, \alpha, \hat{v}^1, \dots, \hat{v}^{j-1})$
 - estimate by local average
 - 3. **local weights:** K_i^j for observation i around $(W, \alpha, \hat{v}^1, \dots, \hat{v}^{j-1})$

4.

$$\widehat{\mathbf{v}}^{j} = \frac{E_{N}[K_{i}^{j} \cdot \mathbf{1}(x_{i}^{j} \leq x^{j})]}{E_{N}[K_{i}^{j}]}$$
(16)

Maximilian Kasy Harvard 41 of 46 **2)** \widehat{g}^{j} : estimate of $E[\dot{x}^{j}|x,W\alpha]$

- 1. identified by slope of quantile regression
- estimate by local linear Qreg
- 3. regression residual: $U_i^j = x_i^j x^j g \cdot \alpha_i$
- 4. loss function: $L_i^j = U_i^j \cdot (\widehat{v}^j \mathbf{1}(U_i^j \leq 0))$
- 5.

$$\widehat{g}^{j} = \underset{g}{\operatorname{argmin}} E_{N} \left[K_{i}^{j} \cdot L_{i}^{j} \right],$$

- **3)** $\widehat{\gamma}(y, W)$: estimate of $E[I \cdot \dot{n}|y, W, \alpha]$
 - 1. $n = x^j \Rightarrow \dot{e} = I \cdot \dot{n} = I \cdot \dot{x}^j$
 - 2. estimate γ by weighted average

$$\widehat{\gamma}(y, W) = \frac{E_N \left[K_i \cdot I \cdot \widehat{g}^i\right]}{E_N [K_i]}$$

Maximilian Kasy
Who wins, who loses?

Conclusion

Inference

- $ightharpoonup \widehat{g}^j$ depends on data in 3 ways:
 - 1. through x^{j} , α ,
 - 2. quantile \hat{v}^j ,
 - 3. controls $(\widehat{v}^1, \dots, \widehat{v}^{j-1})$.
- 1 standard, 2 negligible, 3 nasty
- to avoid dealing with 3: non-analytic methods of inference
 - bootstrap
 - Bayesian bootstrap
 - subsampling

Maximilian Kasy Harvard 43 of 46

Generalization of identification to $dim(\alpha) > 1$

$$g(x,\alpha) = E[\partial_{\alpha}x|x,\alpha] \in \mathbb{R}^{l}, h(x,\alpha) = g(x,\alpha) \cdot f(x|\alpha)$$

- $\nabla \cdot h := (\nabla \cdot h^1, \dots, \nabla \cdot h^l)$
- Most results immediately generalize
- In particular

Theorem

$$\partial_{\alpha} f = -\nabla \cdot h \tag{17}$$

Maximilian Kasy Harvard 44 of 46

Theorem

The identified set for h is contained in

$$h^0 + \mathscr{H} \tag{18}$$

where

$$\mathcal{H} = \{ \tilde{h} : \nabla \cdot \tilde{h} \equiv 0 \}$$

$$h^{0j}(x,\alpha) = f(x|\alpha) \cdot \partial_{\alpha} Q(v^{j}|v^{1},...,v^{j-1},\alpha)$$

$$v^{j} = F(x^{j}|x^{1},...,x^{j-1},\alpha)$$

- open question: is this sharp?
- does the model restrict the set of admissible g?

ction Setup Identification Aggregation Estimation Application Conclusion

A partial answer

Lemma

The system of PDEs

$$\partial_{\alpha}x(\alpha) = g(\alpha, x)$$
$$x(0) = x^{0}$$

has a local solution iff

$$\partial_{\alpha}g^{j} + \partial_{x}g^{j} \cdot g \tag{19}$$

is symmetric \forall j.

This solution is furthermore unique.

Proof: if: differentiation. only if: Frobenius' theorem.

- cf. proof of sharpness in 1-d case
- Q: what is the convex hull of all such g?

▶ Back

Maximilian Kasy Harvard
Who wins, who loses? 46 of 46