```
addpath('./data');
```

Load the Dataset

```
load('trunk12-patches.mat');

% Extract training and testing data and labels
trainData = trunk.train.data;
trainLabels = trunk.train.labels;
testData = trunk.test.data;
testLabels = trunk.test.labels;

% Normalize the images to the range [0, 1]
trainData = double(trainData) / 255;
testData = double(testData) / 255;
```

Basic CNN Architecture

```
layers = [
    imageInputLayer([40 40 3])

convolution2dLayer(3, 8, 'Padding', 'same')

maxPooling2dLayer(2, 'Stride', 2)

convolution2dLayer(3, 16, 'Padding', 'same')

maxPooling2dLayer(2, 'Stride', 2)

fullyConnectedLayer(64)

fullyConnectedLayer(12)
    softmaxLayer
    classificationLayer
];
```

Specify Training Options

```
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',30, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{testData, testLabels}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
```

net = trainNetwork(trainData, trainLabels, layers, options);

Evaluate the Model

```
predictedLabels = classify(net, testData);
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
fprintf('Test accuracy: %.2f%\n', accuracy * 100);
```

Test accuracy: 57.29%

Generate confusion matrix

```
figure('Visible', 'on');
confusionchart(testLabels, predictedLabels);
title('Confusion Matrix for my Basic CNN Model');
```

Confusion Matrix for my Basic CNN Model 🖳														
alder	171		21	32		5	23	21	8		3	4		
beech	2	257	1			14	6			6	1	1		
birch	12		198	21	8	6	3	9	1	23	4	3		
chestnut	32	3	22	78	3	2	36	14	24	7	60	7		
g ginkgo biloba			3		261		1		1	21		1		
S hornbeam	4	59	1	1		215	2	1	1	4				
horse chestnut	38		20	12	3		154	29	3	22	4	3		
⊢ linden	54	1	18	39	1		39	71	12	16	10	27		
oak	19		11	54	22	2	40	40	71	9	10	10		
oriental plane		1	6		122	5	4	1	2	147				
pine	3		5	36	8		15	7	18	24	107	65		
spruce	1		8	10	8		1	1	5	1	3	250		
alder beech birch biloba biloba bar oak plane pine chestnut horse chestnut linden oak plane pine spruce dinkgo horse chestnut linden oak plane pine spruce Bredicted Class														

```
% Select a subset of test images for visualization
numSamples = 10; % Number of samples to visualize
sampleIndices = randperm(numel(testLabels), numSamples);
figure('Visible', 'on');
for i = 1:numSamples
    index = sampleIndices(i);
    img = testData(:,:,:,index);
    trueLabel = testLabels(index);
    predictedLabel = predictedLabels(index);
    subplot(2, numSamples/2, i);
    imshow(img, 'InitialMagnification', 'fit');
    if trueLabel == predictedLabel
        borderColor = 'g'; % Green for correct classification
       titleText = sprintf('Correct: %s', string(trueLabel));
    else
        borderColor = 'r'; % Red for incorrect classification
       titleText = sprintf('Wrong: %s (Pred: %s)', string(trueLabel),
string(predictedLabel));
    end
```

```
rectangle('Position', [0.5, 0.5, size(img, 2), size(img, 1)], 'EdgeColor',
borderColor, 'LineWidth', 3);
  title(titleText);
end
```

Correct: ginkgo bilanarrect: chestnutCorrect: spr@arrect: horse chestr@drrect: beech Frong: ginkgo biloba (Pred: or@artalcpl.took/cbng: ox//c/f/regclorliedtari)plane (Predcreotr/horse)chestnut

drawnow;

Improving by adding pre-processing (Normalisation)

```
% Normalize the images to mean 0 and variance 1
meanTrain = mean(trainData(:));
stdTrain = std(trainData(:));
trainData = (trainData - meanTrain) / stdTrain;
testData = (testData - meanTrain) / stdTrain; % Use the same mean and std as train
data
```

```
% Visualization of the original and normalized images
numSamples = 5; % Number of samples to visualize
sampleIndices = randperm(size(trunk.train.data, 4), numSamples);
sampleData = trunk.train.data(:,:,:,sampleIndices);
normalizedSampleData = double(sampleData) / 255;
normalizedSampleData = (normalizedSampleData - meanTrain) / stdTrain;
```

```
figure('Visible', 'on');
```

```
for i = 1:numSamples
    % Original image
    subplot(2, numSamples, i);
    imshow(uint8(sampleData(:,:,:,i)));
    title('Original Image');

% Normalized image
    subplot(2, numSamples, numSamples + i);
    imshow(mat2gray(normalizedSampleData(:,:,:,i))); % mat2gray scales the image to
[0, 1] for display
    title('Normalized Image');
end
```



```
layers = [
  imageInputLayer([40 40 3])

convolution2dLayer(3, 8, 'Padding', 'same')

maxPooling2dLayer(2, 'Stride', 2)

convolution2dLayer(3, 16, 'Padding', 'same')
```

```
maxPooling2dLayer(2, 'Stride', 2)

fullyConnectedLayer(64)

fullyConnectedLayer(12)
   softmaxLayer
   classificationLayer
];
```

```
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',30, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{testData, testLabels}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
```

netImproved = trainNetwork(trainData, trainLabels, layers, options);


```
predictedLabels = classify(netImproved, testData);
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
fprintf('Test accuracy: %.2f%\n', accuracy * 100);
```

Test accuracy: 57.75%

```
figure;
confusionchart(testLabels, predictedLabels);
title('Confusion Matrix for Model with Normalization');
```

Confusion Matrix for Model with Normalization

alder	149		17	18		6	40	41	13	1	2	1
beech		250				29	4	3		1	1	
birch	9	5	174	26	5	3	9	10	6	33	7	1
chestnut	18	1	16	62	1	4	37	37	52	9	48	3
က္က ginkgo biloba		1	1		254		1	2	4	25		
o girikgo biloba	6	46	6	3	2	188	13	12	2	10		
P horse chestnut	9	1	13	2	1	1	179	47	11	16	8	
⊢ linden	34	1	9	22	2		68	110	22	10	4	6
oak	12		4	43		3	49	50	100	5	15	7
oriental plane		2	3		104		7	4	2	166		
pine		1	6	23	1		29	8	41	17	142	20
spruce		1	2	12	7				15	8	21	222

alder beech birch chestnut hioba beam linden oak plane pine spruce oriental plane pine horse chestnut oriental plane pine spruce

```
numSamples = 10;
sampleIndices = randperm(numel(testLabels), numSamples);
figure('Visible', 'on');
for i = 1:numSamples
    index = sampleIndices(i);
    img = testData(:,:,:,index);
   trueLabel = testLabels(index);
    predictedLabel = predictedLabels(index);
    subplot(2, numSamples/2, i);
    imshow(img, 'InitialMagnification', 'fit');
    if trueLabel == predictedLabel
        borderColor = 'g';
       titleText = sprintf('Correct: %s', string(trueLabel));
    else
        borderColor = 'r';
       titleText = sprintf('Wrong: %s (Pred: %s)', string(trueLabel),
string(predictedLabel));
    end
```

```
rectangle('Position', [0.5, 0.5, size(img, 2), size(img, 1)], 'EdgeColor',
borderColor, 'LineWidth', 3);
  title(titleText);
end
```


Not Normalised Data with Enhanced CNN model

```
trainData_not_normalised = trunk.train.data;
trainLabels = trunk.train.labels;
testData_not_normalised = trunk.test.data;
testLabels = trunk.test.labels;
```

```
layers = [
   imageInputLayer([40 40 3], 'Normalization', 'none')

convolution2dLayer(3, 32, 'Padding', 'same')
   batchNormalizationLayer
   reluLayer
   maxPooling2dLayer(2, 'Stride', 2)
```

```
convolution2dLayer(3, 64, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)

convolution2dLayer(3, 128, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)

fullyConnectedLayer(256)
dropoutLayer(0.5) % Add dropout to prevent overfitting
reluLayer

fullyConnectedLayer(numel(unique(trainLabels)))
softmaxLayer
classificationLayer
];
```

```
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',20, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{testData_not_normalised, testLabels}, ...
    'ValidationFrequency',15, ...
    'Verbose',false, ...
    'Plots','training-progress');
```

```
% Train the network
netImproved2 = trainNetwork(trainData_not_normalised, trainLabels, layers, options);
```



```
predictedLabels = classify(netImproved2, testData_not_normalised);
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
fprintf('Test accuracy: %.2f%%\n', accuracy * 100);
```

Test accuracy: 78.21%

```
figure;
confusionchart(testLabels, predictedLabels);
title('Confusion Matrix for Model with Batch Normalization, RELU, and Drop out
layer without normalised Data');
```

on Matrix for Model with Batch Normalization, RELU, and Drop out layer without

	alder	240	1	14	11		11	2	2	6		1	
b	eech		286				2						
	birch	6	5	233	6	2	1	2		1	26	4	2
che	stnut	23	3	7	124			12		45	1	70	3
က္က ginkgo b	iloba					277	1	1		1	8		
ginkgo b	eam		47		2		233				6		
을 horse che	stnut	5		17	1		7	217	22	1	5	12	1
⊢ li	nden	27	1	10	18			51	155	10	8	4	4
	oak	12		2	9	2	2	16	16	193	4	17	15
oriental p	olane		2	1		41	8	1			235		
	pine			2	6			19		3	1	223	34
sp	oruce					1							287
	2	llger pe	ech r	irch chee	trut o bi	oba	sam sam	tnut Iin	den	oak otal p	ane	pine SP	uce

```
numSamples = 10;
sampleIndices = randperm(numel(testLabels), numSamples);
figure('Visible', 'on');
for i = 1:numSamples
    index = sampleIndices(i);
    img = testData(:,:,:,index);
    trueLabel = testLabels(index);
    predictedLabel = predictedLabels(index);
    subplot(2, numSamples/2, i);
    imshow(img, 'InitialMagnification', 'fit');
    if trueLabel == predictedLabel
        borderColor = 'g'; % Green for correct classification
        titleText = sprintf('Correct: %s', string(trueLabel));
    else
        borderColor = 'r'; % Red for incorrect classification
        titleText = sprintf('Wrong: %s (Pred: %s)', string(trueLabel),
string(predictedLabel));
    end
    rectangle('Position', [0.5, 0.5, size(img, 2), size(img, 1)], 'EdgeColor',
borderColor, 'LineWidth', 3);
    title(titleText);
```


Normalised Data with Enhanced CNN model

```
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',20, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{testData, testLabels}, ...
    'ValidationFrequency',15, ...
    'Verbose',false, ...
    'Plots','training-progress');
```

```
% Train the network
netImproved3 = trainNetwork(trainData, trainLabels, layers, options);
```



```
predictedLabels = classify(netImproved3, testData);
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
fprintf('Test accuracy: %.2f%\\n', accuracy * 100);
```

Test accuracy: 80.15%

```
figure;
confusionchart(testLabels, predictedLabels);
title('Confusion Matrix for Model with Batch Normalization, RELU, and Drop out
layer with Normalised Data');
```

sion Matrix for Model with Batch Normalization, RELU, and Drop out layer with N

	alder	262		5	5		2	6	5	3			
	beech		280				8						
	birch	10		243		3	2	4	3		16	5	2
	chestnut	36		12	140		1	11	2	17		68	1
S	ginkgo biloba					280				1	6		1
Class	hornbeam		32		2	2	237		2		13		
True	horse chestnut	9		18	1		4	218	19	1	7	11	
—	linden	29		5	4			28	192	14	5	9	2
	oak	28		2	21	2	2	4	21	193		10	5
	oriental plane		1			98	1		2		186		
	pine				4			4	6	4	1	252	17
	spruce									1			287
	à	liger pe	ech r	inch hee	itnut bil	oba	sam	inut lin	den	OSK	ane,	pine Spr	uce

alder beech birch strut biloba beam inden oak plane pine spruce

```
numSamples = 10;
sampleIndices = randperm(numel(testLabels), numSamples);
figure('Visible', 'on');
for i = 1:numSamples
    index = sampleIndices(i);
    img = testData(:,:,:,index);
    trueLabel = testLabels(index);
    predictedLabel = predictedLabels(index);
    subplot(2, numSamples/2, i);
    imshow(img, 'InitialMagnification', 'fit');
    if trueLabel == predictedLabel
        borderColor = 'g'; % Green for correct classification
        titleText = sprintf('Correct: %s', string(trueLabel));
    else
        borderColor = 'r'; % Red for incorrect classification
        titleText = sprintf('Wrong: %s (Pred: %s)', string(trueLabel),
string(predictedLabel));
    end
    rectangle('Position', [0.5, 0.5, size(img, 2), size(img, 1)], 'EdgeColor',
borderColor, 'LineWidth', 3);
    title(titleText);
```

Correct: alder Correct: chestnutCorrect: spruce Correct: beech

Frong: oriental plane (Pred: gi 6) ogroebilidika) plang: chestnut (Pred:Quime)ct: spruc@orrect: hornbeam

Remove ReLU Activation from Enhanced Model with Normalised Data

```
layers = [
    imageInputLayer([40 40 3], 'Normalization', 'none')

convolution2dLayer(3, 32, 'Padding', 'same')
batchNormalizationLayer
    maxPooling2dLayer(2, 'Stride', 2)

convolution2dLayer(3, 64, 'Padding', 'same')
batchNormalizationLayer
    maxPooling2dLayer(2, 'Stride', 2)

convolution2dLayer(3, 128, 'Padding', 'same')
batchNormalizationLayer
    maxPooling2dLayer(2, 'Stride', 2)

fullyConnectedLayer(256)
dropoutLayer(0.5) % Add dropout to prevent overfitting

fullyConnectedLayer(numel(unique(trainLabels)))
softmaxLayer
```

```
classificationLayer
];
```

```
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',20, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{testData, testLabels}, ...
    'ValidationFrequency',15, ...
    'Verbose',false, ...
    'Plots','training-progress');
```

```
% Train the network
netImproved4 = trainNetwork(trainData, trainLabels, layers, options);
```



```
predictedLabels = classify(netImproved4, testData);
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
fprintf('Test accuracy: %.2f%%\n', accuracy * 100);
```

Test accuracy: 74.68%

```
figure;
confusionchart(testLabels, predictedLabels);
title('Confusion Matrix for Removed ReLU Activation from Enhanced Model with
Normalised Data');
```

onfusion Matrix for Removed ReLU Activation from Enhanced Model with Norma

	alder	227		7	28		1	15	3	6		1	
	beech		282				4		2				
	birch	2	1	204	29	2	5	2	3	5	27	7	1
	chestnut	16		4	190		1	1		34	1	41	
S	ginkgo biloba					282	1			2	2	1	
Class	hornbeam	1	45	2	2	1	232			2	3		
Tre	horse chestnut	16		11	6		2	196	30	3	1	21	2
-	linden	20	1	4	36			36	172	11	2	5	1
	oak	41			47	13	11	15	38	105		9	9
	oriental plane					66	6	6			210		
	pine	1	1	1	18	2		13	1	18	5	196	32
	spruce					1				1		1	285
		yer.	ech.	n _{oni}	mut .	oba	am	mut	4en	oak,	ane.	aine	.vce

alder beech birch chestnut biloba hombeam inden oak plane pine spruce ginkgo hombeam oriental plane pine spruce

```
numSamples = 10;
sampleIndices = randperm(numel(testLabels), numSamples);
figure('Visible', 'on');
for i = 1:numSamples
    index = sampleIndices(i);
    img = testData(:,:,:,index);
    trueLabel = testLabels(index);
    predictedLabel = predictedLabels(index);
    subplot(2, numSamples/2, i);
    imshow(img, 'InitialMagnification', 'fit');
    if trueLabel == predictedLabel
        borderColor = 'g';
       titleText = sprintf('Correct: %s', string(trueLabel));
    else
        borderColor = 'r';
       titleText = sprintf('Wrong: %s (Pred: %s)', string(trueLabel),
string(predictedLabel));
    end
    rectangle('Position', [0.5, 0.5, size(img, 2), size(img, 1)], 'EdgeColor',
borderColor, 'LineWidth', 3);
    title(titleText);
```

Correct: ginkgo bilob@orrect: pin@orrect: ginkgo l©ibobæct: ginkgo l©ibobæct: ginkgo biloba

Correct: hornbea@orrect: chest/mong: oak (Pred: ald@prrect: oak

Removed dropout layer from Enhanced Model with Normalised Data

```
layers = [
    imageInputLayer([40 40 3], 'Normalization', 'none')
   convolution2dLayer(3, 32, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    convolution2dLayer(3, 64, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    convolution2dLayer(3, 128, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    fullyConnectedLayer(256)
    reluLayer
```

```
fullyConnectedLayer(numel(unique(trainLabels)))
softmaxLayer
classificationLayer
];
```

```
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',20, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{testData, testLabels}, ...
    'ValidationFrequency',15, ...
    'Verbose',false, ...
    'Plots','training-progress');
```

% Train the network netImproved5 = trainNetwork(trainData, trainLabels, layers, options);


```
predictedLabels = classify(netImproved5, testData);
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
fprintf('Test accuracy: %.2f%%\n', accuracy * 100);
```

Test accuracy: 79.20%

```
figure;
confusionchart(testLabels, predictedLabels);
```

Confusion Matrix for Removed dropout layer from Enhanced Model with Normali

	alder	237		5	14		3	5	6	17			1
True Class	beech		285				3						
	birch	9		235	9		1	4	3		20	6	1
	chestnut	15	1	20	143		3	6	7	34	1	56	2
	ginkgo biloba			1		282					5		
	hornbeam		47	1	3	1	233				3		
	horse chestnut	12	2	14	8		5	198	30	2	5	12	
H	linden	29	3	8	13		1	22	170	18	12	10	2
	oak	11			34	6	3	9	19	193	4	7	2
	oriental plane		2		6	25	2		2		251		
	pine			2	5			10	5	8	5	224	29
	spruce				1					1			286
		196	-c/v	ch	tun	-na	m	tur	1,0,1	-aK	-00	ine	.00

alder beech birch chestnut biloba hornbeam shut linden oak plane pine spruce

```
numSamples = 10;
sampleIndices = randperm(numel(testLabels), numSamples);
figure('Visible', 'on');
for i = 1:numSamples
    index = sampleIndices(i);
    img = testData(:,:,:,index);
   trueLabel = testLabels(index);
    predictedLabel = predictedLabels(index);
    subplot(2, numSamples/2, i);
    imshow(img, 'InitialMagnification', 'fit');
    if trueLabel == predictedLabel
        borderColor = 'g';
       titleText = sprintf('Correct: %s', string(trueLabel));
    else
        borderColor = 'r';
       titleText = sprintf('Wrong: %s (Pred: %s)', string(trueLabel),
string(predictedLabel));
    end
```

```
rectangle('Position', [0.5, 0.5, size(img, 2), size(img, 1)], 'EdgeColor',
borderColor, 'LineWidth', 3);
  title(titleText);
end
```


Remove increased convolutional filters (original filters)

```
layers = [
    imageInputLayer([40 40 3], 'Normalization', 'none')

convolution2dLayer(3, 32, 'Padding', 'same')
batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)

convolution2dLayer(3, 64, 'Padding', 'same')
batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)

fullyConnectedLayer(2, 'Stride', 2)

fullyConnectedLayer(256)
dropoutLayer(0.5) % Add dropout to prevent overfitting
    reluLayer
```

```
fullyConnectedLayer(numel(unique(trainLabels)))
softmaxLayer
classificationLayer
];
```

```
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',20, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{testData, testLabels}, ...
    'ValidationFrequency',15, ...
    'Verbose',false, ...
    'Plots','training-progress');
```

% Train the network netImproved6 = trainNetwork(trainData, trainLabels, layers, options);


```
predictedLabels = classify(netImproved6, testData);
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
fprintf('Test accuracy: %.2f%\n', accuracy * 100);
```

Test accuracy: 71.50%

```
figure;
confusionchart(testLabels, predictedLabels);
```

t for Removed increased convolutional filters (original filters) from Enhanced Mc

	alder	189		6	27		7	16	33	9		1	
	beech		282				6						
	birch	10	4	217	13	1	6	8	2		12	11	4
	chestnut	19	1	5	73		1	30	10	48		99	2
S	ginkgo biloba			1		276					11		
Class	hornbeam		63		4		217				4		
True (horse chestnut	2	3	6	4			189	50	2	5	27	
F	linden	3	1	4	16			53	177	3	4	20	7
	oak	7			48	2	2	17	26	160	3	14	9
	oriental plane		3		14	73	10	6	4	3	175		
	pine			2	7			12	2	3		231	31
	spruce									1		2	285
	á	lger ~e	ech r	inch .c	trut	oba w	sam	trut	den	oak o	ane ,	oine or	uce

alder beech birch chestrut biloba hombeam inden oak plane pine spruce ginkgo hombeam oriental plane pine spruce

```
numSamples = 10;
sampleIndices = randperm(numel(testLabels), numSamples);
figure('Visible', 'on');
for i = 1:numSamples
    index = sampleIndices(i);
    img = testData(:,:,:,index);
    trueLabel = testLabels(index);
    predictedLabel = predictedLabels(index);
    subplot(2, numSamples/2, i);
    imshow(img, 'InitialMagnification', 'fit');
    if trueLabel == predictedLabel
        borderColor = 'g';
       titleText = sprintf('Correct: %s', string(trueLabel));
    else
        borderColor = 'r';
       titleText = sprintf('Wrong: %s (Pred: %s)', string(trueLabel),
string(predictedLabel));
    end
```

```
rectangle('Position', [0.5, 0.5, size(img, 2), size(img, 1)], 'EdgeColor',
borderColor, 'LineWidth', 3);
   title(titleText);
end
drawnow;
```