

<u>Homework 1: Estimation,</u> <u>Confidence Interval, Modes of</u>

课程 > Unit 2 Foundation of Inference > Convergence

> 8. Some examples of convergence

8. Some examples of convergence

Rescaled Poisson random variables

2/2 points (graded)

For $n \geq 1$, let X_n be a Poisson random variable with parameter 1/n . Compute

$$\mathbf{P}(X_n = 0) = \begin{bmatrix} \exp(-1/n) & \\ \exp(-1/n) & \\ \end{bmatrix}$$

What can you conclude?

- $igcup X_n o 0$ in probability, but nX_n does not converge in probability
- $^{igodots} X_n o 0$ in probability, $nX_n o 0$ in probability, and $\mathbb{E}\left[\left(nX_n
 ight)^2
 ight]$ converges.
- ullet $X_n o 0$ and $nX_n o 0$ in probability, but $\mathbb{E}\left[(nX_n)^2
 ight]$ does not converge. ullet

STANDARD NOTATION

Solution:

Using the probability mass function of the Poisson distribution, we compute

$$\mathbf{P}\left(X_n=0
ight)=\left(rac{1}{n}
ight)^0rac{1}{0!}\exp\left(-rac{1}{n}
ight)=\exp\left(-rac{1}{n}
ight).$$

As $n \to \infty$, this tends to 1, and therefore $X_n \to 0$ in probability. Moreover, the same calculation tells us the probability $\mathbf{P}(nX_n=0)$, therefore we also obtain that $nX_n \to 0$ in probability.

However, the expectation of the square of nX_n does not go to zero:

$$\mathbb{E}\left[\left(nX_n
ight)^2
ight]=n^2\mathbb{E}\left[X_n^2
ight]=n^2\left(rac{1}{n^2}+rac{1}{n}
ight)=n+1 o\infty.$$

Remark: We also say that nX_n does **not** "converge in L^2 -norm". A sequence of random variables $(Y_n)_{n\geq 1}$ converges in L^2 -norm to a random variable Y, denoted by $Y_n \xrightarrow[n \to \infty]{L^2} Y$, if $\lim_{n \to \infty} \mathbb{E}\left[|Y_n - Y|^2\right] = 0$. Moreover, if $Y_n \xrightarrow[n \to \infty]{L^2} Y$, then $\lim_{n \to \infty} \mathbb{E}\left[|Y_n|^2\right] = \mathbb{E}\left[Y^2\right]$. Hence, in this example, since $\mathbb{E}\left[(nX_n)^2\right] \xrightarrow[n \to \infty]{\infty}$, nX_n does not converge in L^2 -norm.

提交

你已经尝试了1次(总共可以尝试2次)

Answers are displayed within the problem

Limit of rescaled Binomials

1.0/1 point (graded)

Let X_n be a binomial random variable with parameters n and $p=\lambda/n$, where λ is a fixed positive number.

Let $k \in \mathbb{N}$ be fixed. As $n \to \infty$, the probability mass function $\mathbf{P}(X_n = k)$ converges to a number that only depends on λ and k. What is the limit?

(If necessary, enter **fact** to indicate the factorial function. For instance, **fact(10)** denotes **10!**.)

$$\lim_{n\to\infty} \mathbf{P}\left(X_n=k\right) = \boxed{\exp(-\text{lambda})^*\text{lambda}^k/\left(\text{fact(k)}\right)} \qquad \qquad \checkmark \text{ Answer: lambda}^k/\text{fact(k)}^*\exp(-\text{lambda})$$

(Food for thought: What can you conclude?)

泊松分布

STANDARD NOTATION

Solution:

The probability mass function of the Binomial random variable $\,X_n\,$ is given by

$$\mathbf{P}\left(X_n=k
ight)=inom{n}{k}igg(rac{\lambda}{n}igg)^nigg(1-rac{\lambda}{n}igg)^{n-k},$$

where $m{k}$ is an integer between $m{0}$ and $m{n}$.

Writing the binomial coefficient as

$$egin{pmatrix} n \ k \end{pmatrix} = rac{1}{k!} rac{n!}{(n-k)!},$$

we have

$$\mathbf{P}\left(X_n=k
ight)=rac{\lambda^k}{k!}\underbrace{\left(1-rac{\lambda}{n}
ight)^n\left(1-rac{\lambda}{n}
ight)^{-k}}_{=:A_n}\underbrace{rac{n!}{(n-k)!}}_{=:C_n}.$$

Term A_n can be handled by the exponential formula,

$$\left(1+rac{a}{n}
ight)^n \xrightarrow[n o \infty]{} \exp\left(a
ight), \quad ext{for } a \in \mathbb{R}.$$

Hence,

$$A_n o \exp\left(-\lambda
ight),\quad ext{as } n o \infty.$$

Since k is fixed and $\lambda/n o 0$, we have $B_n o 1$. Finally, write

$$egin{aligned} C_n &= rac{n!}{(n-k)!} = &1 imes \left(rac{n-1}{n}
ight) imes \cdots imes \left(rac{n-k+1}{n}
ight) \ &= &1 imes \left(1-rac{1}{n}
ight) imes \cdots imes \left(1-rac{k-1}{n}
ight) o 1, & ext{as } n o \infty. \end{aligned}$$

Combined, we get that

$$\mathbf{P}\left(X_{n}=k
ight)
ightarrowrac{\lambda^{k}}{k!}\mathrm{exp}\left(-\lambda
ight).$$

Since that entails the convergence of the cumulative mass function, $\mathbf{P}(X_n \leq m)$, for any $m \in \mathbb{Z}$ as well, we have just shown that X_n converges in distribution to a Poisson distribution with parameter λ .		
提交 你已经尝试了1次(总共可以尝试3次)		
Answers are displayed within the problem		
讨论		显示讨论
主题: Unit 2 Foundation of Inference:Homework 1: Estimation, Convergence / 8. Some examples of convergence	Confidence Interval, Modes of	
	认证证书是什么?	© 保留所有权利