ЛАБОРАТОРНА РОБОТА 8

Нормальний алгоритм Маркова

ТЕОРЕТИЧНИЙ МАТЕРІАЛ

Алфавіт — скінченна непорожня множина символів.

Рядок — будь-яка послідовність символів.

Довжина рядка — кількість символів у ньому.

Порожній рядок — рядок нульової довжини (для його позначення використовують спеціальний символ, наприклад, ∅.

Підстановка — операція над рядками, яка задається парою рядків (P, Q) і полягає в наступному: у заданому рядку R знаходять перше входження P і замінюють це входження на рядок Q. Якщо таких входжень немає, то вважається, що підстановка (P, Q) незастосовна до рядка R. Деякі підстановки вважаються заключними і позначаються $\bullet(P, Q)$.

Рядок	Підстановка	Результат
рядочок	(40, ∅)	рядок
шрам	(pa, ap)	шарм
10 1011 01	(01, 10)	10 1101 01
текст	(∅, ∅)	текст
текст	(тес, сет)	підстановка незастосовна

Загальна стратегія роботи нормального алгоритму Маркова полягає у тому, щоб, застосувавши декілька операцій до вхідного рядка x, перетворити його у вихідний рядок y.

Опис алгоритму:

Нехай маємо вхідний рядок *R* і систему (послідовність) підстановок, серед яких можуть бути заключні.

Перебираємо по черзі підстановки і шукаємо першу застосовну. Застосовуємо її до рядка і отримуємо результуючий рядок R_0 . Якщо ця підстановка заключна, то завершуємо роботу алгоритму, якщо ні — починаємо алгоритм спочатку для рядка R_0 .

Якщо усі підстановки виявилися незастосовними, то завершуємо роботу алгоритму.

Якщо алгоритм зациклюється, то кажуть, що він незастосовний до рядка *R*.

Приклад запису алгоритму:

Нехай $A = \{ab\}$ — алфавіт довжини 2. Тоді нормальний алгоритм Маркова, який вилучає перше входження символу a і незастосовний до рядків, які містять лише символи b, може бути записаний так:

$$A=[ab]; \begin{cases} \bullet(a, \emptyset); \\ (b, b). \end{cases}$$

Демонстраційний приклад роботи алгоритму:

$$A=[ab]; \begin{cases} (ab, bb); \\ \bullet (aaa, a); \\ (ba, aa). \end{cases}$$

Застосуємо наведений вище алгоритм до рядка abba:

- застосовуємо до abba першу підстановку: abba → bbba та починаємо алгоритм спочатку;
- 2) перша і друга підстановки незастосовні до *bbba*, застосовуємо третю підстановку: *bbba* → *bbaa* та починаємо алгоритм спочатку;
- 3) перша і друга підстановки незастосовні до *bbaa*, застосовуємо третю підстановку: *bbaa* → *baaa* та починаємо алгоритм спочатку;
- 4) перша підстановка незастосовна до *baaa*, застосовуємо другу підстановку: *baaa* → *ba* і завершуємо алгоритм, бо ця підстановка заключна.

ІНДИВІДУАЛЬНЕ ЗАВДАННЯ

Написати функцію, яка приймає алфавіт, систему підстановок (серед них має бути принаймі одна заключна) і рядок та повертає рядок, перетворений за нормальним алгоритмом Маркова. Продемонструвати реалізацію на прикладах.