

University Of Tripoli

Faculty Of Engineering

Materials And Metallurgical Engineering

**Student Name : Marwan Mohammed Ahmed
El-Janzouri**

No:02108594

Numerical methods

MME308

Assignment 6

Grop.

Problem no: 4,8,10

fall 2014

Problem 4

Given :

$$X = \int_a^b \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8 t \right) dt$$

$$A=0 \quad b=25$$

$$F(x) = \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8 t \right)$$

Required :

- a) Use single segment trapezoidal rule find distance between $a= 0$ and $b=25$ second
- b) B) use five segment ($n=5$) trapezoidal rule find distance between $a=0$ and $b=25$ second
- c) Find the absolute relative error between(a) and (b)

Solution :

When using mat lab program the true integration value :

$$\int_0^{25} f(x) dx = 7770.5309$$

a)

$$F(a) = \left(2000 \ln \left[\frac{140000}{140000 - 2100 \cdot 0} \right] - 9.8 \cdot 0 \right) = 0$$

$$F(b) = \left(2000 \ln \left[\frac{140000}{140000 - 2100 \cdot 25} \right] - 9.8 \cdot 25 \right) = 695.0073$$

$$I = (b-a) \frac{f(a)+f(b)}{2} = (25-0) \frac{f(0)+f(25)}{2} = (25-0) \frac{(0)+(6958.0073)}{2}$$

$$= 8687.5907$$

b)

$$\Delta x = \frac{b-a}{n} = \frac{25-0}{5} = 5$$

X	0	5	10	15	20	25
F(x)	0	106.9231	227.0379	362.7845	517.3499	695.0073

$$= (5-0) \frac{(0)+(106.9231)}{2} = 267.3077$$

$$= (10-5) \frac{(106.9231)+(227.0379)}{2} = 834.9025$$

$$= (15-10) \frac{(227.0379)+(362.7845)}{2} = 1474.556$$

$$= (20-15) \frac{(362.7845)+(517.3499)}{2} = 2200.336$$

$$= (25-20) \frac{(517.3499)+(695.0073)}{2} = 3030.893$$

7807.9952

c)

$$|e_a| = \left| \frac{8687.5907 - 7807.9952}{8687.5907} \right| \times 100$$

$$|e_a| = 10.12$$

Problem 8 :

The velocity of a body is given by :

- a) $V(t) = 2t, \quad 1 \leq t \leq 5$
- b) $V(t) = 5t^2 + 3, \quad 5 < t \leq 14$

Required :

Use two-segment Simpson 1/3 rule to compute the distance in meter covered by the body from $t=1$ to $t=7$ seconds most

Solution :

a)

$$h = \Delta x = \frac{b-a}{n} = \frac{7-1}{2} = 3$$

figure1: $V(t) = 2t$

figure2 $V(t) = 5t^2 + 3$

X	1	4	7
F(x)	2	8	248

$$I = \frac{h}{3} [f(x_0) + 4 f(x_1) + f(x_2)]$$

$$I = \frac{2}{3} [2 + 4*8 + 285] =$$

$$I = 282 \text{ m}$$

Problem 10 :

Given:

X	0	0.10	0.20	0.30	0.35	0.40	0.55	0.70	0.85	0.90	0.95	1
F(x)	2	1.72	1.84	1.28	1.18	1.10	0.88	0.7	0.56	0.52	0.48	0.45

Required

Evaluate the integral of the tabular data from 0 to 1 by Simpson's rules .

Solution :

X	0	0.10	0.20	0.30	0.35	0.40	0.55	0.70	0.85	0.90	0.95	1
F(x)	2	1.72	1.84	1.28	1.18	1.10	0.88	0.7	0.56	0.52	0.48	0.45

$$H=0.1$$

$$h=0.05$$

$$h=0.15$$

$$h=0.05$$

At $h = 0.10$

X	0	0.10	0.20	0.30
F(x)	2	1.72	1.28	1.10

$$I_1 = \frac{3h}{8} (2 + 3*1.72 + 3*1.48 + 1.28) = 0.483$$

At $h = 0.05$

X	0.30	0.35	0.40
F(x)	1.28	1.18	1.10

$$I_2 = \frac{h}{3} (1.28 + 4*1.18 + 1.1) = 0.11833$$

At $h = 0.15$

X	0.4	0.55	0.70	0.85
F(x)	1.10	0.88	0.70	0.56

$$I_3 = \frac{3h}{8} (1.1 + 3*0.88 + 3*0.7 + 0.56) = 0.36$$

At $h = 0.05$

X	0.85	0.90	0.95	1
F(x)	0.56	0.52	0.48	0.45

$$I_4 = \frac{3h}{8} (0.56 + 3*0.52 + 3*0.48 + 0.45) = 0.0752$$

$$I_{TOT} = 0.483 + 0.1183 + 0.36 + 0.0752 = 1.0365$$