

WELCOME

U.S. Department of Transportation
Office of the Assistant Secretary for
Research and Technology

Welcome

Ken Leonard, Director ITS Joint Program Office Ken.Leonard@dot.gov

www.pcb.its.dot.gov

CV271: Using the ISO TS 19091 Standard to Implement V2I Intersection Applications Introduction

Instructor

Patrick Chan, P.E.

Senior Technical Staff
Consensus Systems
Technologies
(ConSysTec)
New York, NY, USA

Learning Objectives

Identify **benefits of standardization** for agencies, system developers, and suppliers

Describe the **scope** of ISO TS 19091 Standard

Describe the **use cases** addressed by ISO TS 19091 Standard

Explain the **relationship** between ISO TS 19091 and SAE J2735

Applying ISO TS 19091 Standard content to your project

Learning Objective 1

Identify **benefits** of standardization for agencies, system developers, and suppliers

Benefits of Standardization for Agencies, System Developers, and Suppliers

Interoperability

- The ability of two or more systems or components to exchange information and use the information that has been exchanged
- Promotes competition and innovation
- Example: Wi-Fi with other internet standards

Benefits of Standardization for Agencies, System Developers, and Suppliers

Overall Benefits of Standards

Benefit	Agency	System Developer	Supplier	Public
Facilitates regional integration	V			
Decreases scope of the testing effort and makes testing easier	√	√	√	
Expand market share	\checkmark		\checkmark	
Reduces risk	\checkmark	\checkmark	\checkmark	
Allows innovation	\checkmark	\checkmark	\checkmark	
Safety, Mobility, Environmental Benefits				1
More consistent provision of services				V

A C T I V I T Y

Question

Which of the following is NOT a benefit of standardization?

Answer Choices

- a) Supports interoperability
- b) Reduces risk
- c) Prohibits proprietary solutions
- d) Helps with design and procurement

Review of Answers

a) Supports interoperability

Incorrect. Standards support interoperability both within and between systems.

b) Reduces risk

Incorrect. Standards reduces risk by aiding testing.

c) Prohibits proprietary solutions

Correct! Standards allow proprietary extensions to allow for innovations.

d) Helps with design and procurement

Incorrect. Standards help with design and procurement by helping system developers to specify functions and communications.

Learning Objectives

Identify **benefits of standardization** for agencies, system developers, and suppliers

Describe the **scope** of ISO TS 19091 Standard

Learning Objective 2

Describe the **scope** of ISO TS 19091 Standard

What is a Connected Vehicle Environment, in Particular a V2I Environment?

Identify a Connected Vehicle Environment

- Vehicles broadcast their:
 - Current position
 - Current kinematics (speed, acceleration)
 - Sensor information
- Vehicles receive information that:
 - Can reduce the likelihood of incidents
 - Can improve mobility (e.g., reduce delays)
- Could also be a mobile device, such as a smartphone on a pedestrian or bicyclist

What is a Connected Vehicle Environment, in Particular a V2I Environment?

V2I Scenario

Vehicle Data:

Latitude, Longitude, Speed, Brake Status, Turn Signal Status,

Vehicle Type

Infrastructure Data:

- Signal Phase and Timing
- Time when vehicle will be allowed to travel through the intersection (Green)
- Time when desired movement is no longer allowed (yellow)
- Priority or preemption request granted

What is a Connected Vehicle Environment, in Particular a V2I Environment?

Typical Communications Requirements

How do we communicate?

Wireless on the same frequency.

What language are we using?

Agree on the grammar and dictionary.

How many people are talking in the room?

Talk louder or softer or change rooms or channels

Required for Deployment:

Different manufacturers

How do we trust each other? Authentication.

ISO TS 19091 Standard

- Intelligent transport systems Cooperative ITS – Using V2I and I2V communications for applications related to signalized intersections
- Expected to be published in 2017
- Defines the dialogs, messages, data structures, and data elements to support exchanges between the roadside equipment and vehicles related to signalized applications
 - Procure, implement and test in a consistent manner

Applications Supported

Priority/Preemption applications

ID **Use Cases**

PR1

Localized Public Transport Signal Priority (TSP)

PR1-a

Localized TSP - Near Side Stop

TSP Along an Arterial PR2

PR3

Localized Freight Signal Priority

PR3-a

Localized Freight Signal Priority with a Platoon

Arterial Freight Signal Priority for a Platoon

PR3-b **Emergency Vehicle Single or Multiple Vehicles** PR4 PR5

Emergency Vehicle Single or Multiple Vehicles High Power PSOBE (Public Safety OBE)

Mixed Emergency Vehicle and other priority eligible PR6

Applications Supported

Safety applications

ID	Use Cases
SA1	Dilemma Zone Protection
SA2	Red Light Violation Warning
SA3	Stop Sign Violation Warning
SA4	Turning Assistant – Oncoming Traffic
SA5	Turning Assistant – Vulnerable Road User Avoidance
SA6	Non-Signalized Crossing Traffic Warning
SA7	Crossing Vulnerable Road User Advisory (non-signalized)

Reference: ISO TS 19091 Table A.1

Applications Supported

Mob	ility/Sustainability applications	10 70
ID	Use Cases	Factors that may be influencing the Oriver ID: B7244 HOS Remaining: 11 hrs
MS1	Basic Local Traffic Signal Actuation	recommended speed Alenness Index: 99 Icy
MS2	Platoon Detection for Coordinated Signa	als
MS3	Congested Intersection Adjustment	
MS4	Traffic Signal Optimal Speed Advisory	
MS5	Signalized Corridor Eco-Driving Speed (Guidance
MS6	Idling Stop Support	
MS7	Start Delay Prevention	
MS9	Inductive Charging at Signals	
MS10	Don't Block the Box	

A C T I V I T Y

Question

Which of the following is NOT an application supported by ISO TS 19091?

Answer Choices

- a) Localized Public Transport Signal Priority
- b) Signalized Corridor Eco-Driving Speed Guidance
- b) Red Light Violation Warning
- c) Forward Collision Warning

Review of Answers

a) Localized Public Transport Signal Priority

Incorrect. Public transport signal priority involves signalized intersections and is thus within the scope of the ISO TS 19091.

b) Signalized Corridor Eco-Driving Speed Guidance

Incorrect. Eco-driving uses traffic signal information to optimize vehicle trajectory and is thus within the scope of the ISO TS 19091.

c) Red Light Violation Warning

Incorrect. Red light violation warning involves signalized intersections and is thus within the scope of the ISO TS 19091.

d) Forward Collision Warning

Correct! Forward collision warning is a V2V application and thus not within the scope.

Learning Objectives

Identify **benefits of standardization** for agencies, system developers, and suppliers

Describe the scope of ISO TS 19091 Standard

Describe the **use cases** addressed by ISO TS 19091 Standard

Learning Objective 3

Describe the **use cases** addressed by ISO TS 19091 Standard

The Contents of the Standard

ISO TS 19091

- Scope
- Normative References
- Terms and Definitions
- Symbols and Abbreviation Terms
- General Description
- Function Description
- Messages
- Conformance

Con	tents	Pag
Forev	word	
Intro	duction	
1	Scope	
2	Normative references	
_	Terms and definitions	
3		
4	Symbols and abbreviation terms	1
5	General description (informative)	1
5.1	Functional model	
5.2	Safety use cases	
5.3	Mobility/sustainability use cases	
5.4	Priority/pre-emption use cases	2
6	Function description (informative)	2
6.1	Public safety vehicle	
6.2	Signal pre-emption	
6.3	Public transport and commercial vehicle	
6.4	Signal priority requirements	
6.5	Broadcast area's geometrics	
6.6	Broadcast GNSS augmentation details	
6.7	Signalized intersection requirements	
6.8	Broadcast cross traffic sensor information	
6.9	Broadcast vulnerable road user sensor information	
6.10 6.11	Broadcast dilemma zone violation warning	
6.12	Message identifier	
6.13	System performance requirements	
6.14	Transmission rates - signal preferential treatment	
6.15	Transmission rate requirements - broadcast roadway geometrics information	
6.16	Transmission rate requirements - GNSS augmentations detail broadcasts	
6.17	Transmission rate requirements - broadcast signal phase and timing information	
6.18	Transmission rate requirements - broadcast cross traffic sensor information	4
6.19	Transmission rate requirements - broadcast vulnerable road user sensor	
	information	4
7	Messages	4
8	Conformance	
Ö	COMOTHANCE	4

The Contents of the Standard

ISO TS 19091

- Annex A Use Cases
- Annex B Use Case to Requirements Traceability
- Annex C RTM
- Annex D Extension procedures
- Annex E, F, G J2735 Profiles

Anne	x A (informative) Use cases	49
Anne	x B (informative) Use case to requirements traceability	109
B.1	Symbols indicating requirement status	
B.2	Conditional status notation	
B.3	Prioritization and pre-emption use case to requirements table	111
B.4	Safety related use case to requirements matrix	
B.5	Mobility/sustainability related use case to requirements matrix	118
Anne	x C (informative) Requirements traceability matrix	121
Anne	x D (normative) Extension procedures	132
Anne	x E (normative) Profile A for J2735™	
E.1	General description	133
E.2	MAP	
E.3	SPaT	133
E.4	SRM	135
E.5	SSM	135
E.6	Examples	136
Anne	x F (normative) Profile B for J2735™	137
F.1	General description	137
F.2	Normative references	137
F.3	Informative references	138
F.4	MAP message specification	138
F.5	SPaT message specification	150
F.6	SRM message specification	157
F.7	SSM message specification	158
F.8	The PICS list for this Annex	158
	x G (normative) Profile C for J2735™	
G.1	General description	159
G.2	Normative references	= = .
G.3	Conformance	159
G.4	Message content revision strategy	160
G.5	Data extensions "addGrpC"	160
G.6	Framework for including extension data	
G.7	Extension data frame control structure "REGION"	165
G.8	Usage of the SAEJ2735™ messages, data frames and elements	167
G.9	Basic interpretation of the messages	173
G 10	ASN 1 specification for extensions of the SAF 12735™ ASN 1 module "DSRC"	170

Use Case Types

The V2I applications covered in ISO TS 19091 are described by use cases

- Defines the operations between the actors
- Defines information needs for communication between vehicles and infrastructure
- Identifies information needs for the applications

Three types of use cases:

PR: priority/preemption

SA: safety

MS: mobility/sustainability

Use Case Examples

Table A.2 — PR1: Localized public transport signal priority (TSP)

Use Case Name	Basic TSP Scenario - Single Public Transport Vehicle at One Signalized Intersection	
Category	Mobility	
Infrastructure Role	Data Receiver, Traffic Signal Control, Data Transmitter	
Short Description	This use case describes the basic priority control for connected Public Transport vehicles	
Goal	Improved Public Transport efficiency and reliability	
Constraints	Use of DSRC or other medium that will meet the performance requirements for this use case (the RSE and OBE include radio devices that operate in the medium used)	
	Alternate: Wide area broadband communications is available for the public transport vehicle to indicate its TSP request via an alternate media than DSRC through Back-office Processing Center (BOPC). (Data flow #5 supports that situation)	
Geographic Scope	Localized to a specific intersection	
Actors	Public Transport Vehicle Equipped with On-board Equipment (OBE)	
	Road Side Equipment (RSE) & Traffic Signal Controller (TSC)	
	Alternate: Traffic Management Central System (BOPC).	

Use Case

Use Case Examples		
Preconditions	 The transportation agency(ies) have established a policy for priority control (called N-level priority) and the fleet management (Public Transport) system is prepared to provide priority service for vehicles on routes. The traffic signal controller is programmed with a variety of priority control schemes such as early green, green extension, phase rotation, phase skilling, etc.; the traffic signal controller has an intelligent algorithm for providing priority signal timing for priority requests. 	
Main flow	Vehicle to TSC - Direct	
	 The use case begins when an equipped Public Transport vehicle enters the radio range of an RSE (note that if another medium is used, the same assumption applies). The OBE (Public Transport vehicle) receives MAP and SPaT from the RSE. The OBE sends Basic Safety Messages [BSM] or Cooperative Awareness Message [CAM]. 	
Alternate flow(s)	 [7] The Public Transport vehicle changes speed and the RSE updates priority timing based on travel time estimates. (insert between steps 12-13) The RSE updates the Public Transport vehicle served performance measures. 	
	Vehicle to Intersection – Indirect through BOPC	
	 OBE monitors its vehicle position using an on-board map and location algorithms. Hence, the vehicle determines which intersection(s) is approaching and the likely time of arrival. Precondition: the vehicle must have on-board map information 	

Use Case

Post-conditions	The TSC initiates recovery operations to restore normal timing operation which might include appropriate coordination. Some recovery may include split time compensation to clear
	queues which might have formed on the phases that were adversely affected by the priority request.

Requirements Cur clea

Information

SPaT

Current manoeuvre(s) permitted, remaining time for manoeuvre, yellow clearance time, red clearance time, next manoeuvre to be serviced, queue length or end of queue information, and pedestrian warning

MAP

Intersection Geometry (MAP base), permitted manoeuvres, and changes to MAP other than base

Etc.

Issues 1

- 1. This use case assumes that the scenarios needed for the Public Transport vehicle are pre-determined and loaded into TSC.
 - 2. It also presumes that the Public Transport vehicle knows which of the scenarios that the controller can support should be invoked to meet its specific needs although these might be included in the SSM. Note that this also assumes that the vehicle knows its route and hence knows what exit lane (or manoeuvre) to request.
- 3. Etc...

Source docs/references

MMITSS, CEN, USDOT J2735™ SE Candidate

The Types of Requirements Described in the Standard

Requirements

- The use cases describe the information flows between the actors
 - Defines what data is needed and why
- ISO 19091 lists requirements describing the details of that data
- Deployments that follow ISO 19091 would build to the same requirements – helps ensures interoperability

The Types of Requirements Described in the Standard

Requirement Types

- Two types of requirements in ISO TS 19091
 - Functional Requirements
 - Performance Requirements
 - Transmission Rates

Use Cases

Functional Requirements

Performance Requirements

The Types of Requirements Described in the Standard

Functional Requirement Types

Grouped by:

- Device
 - Public safety vehicle
 - Public transport and commercial vehicle
 - Signalized intersection
 - Cross Traffic Sensor
 - Vulnerable Road User
 Sensor Information

- Information
 - Signal Phase and Timing information
 - Signal preemption / priority
 - Signal preemption / priority Status
 - Roadway Geometrics
 - GNSS Augmentation Details

A C T I V I T Y

Question

Which of the following is NOT a category of use cases in ISO TS 19091?

Answer Choices

- a) Safety
- b) Electronic Payment
- c) Mobility/Sustainability
- d) Signal Priority/Preemption

Review of Answers

a) Safety

Incorrect. Safety (SA) use cases are included in ISO TS 19091.

b) Electronic Payment

Correct! Electronic payment is not covered in ISO TS 19091, although it is a category of applications.

c) Mobility/Sustainability

Incorrect. Mobility/Sustainability (MS) is a category of uses cases in ISO TS 19091.

d) Signal Priority/Preemption

Incorrect. Signal Priority and Preemption (PR) is a category of use cases in ISO TS 19091.

Learning Objectives

Identify **benefits of standardization** for agencies, system developers, and suppliers

Describe the scope of ISO TS 19091 Standard

Describe the **use cases** addressed by ISO TS 19091 Standard

Explain the **relationship** between ISO TS 19091 and SAE J2735

Learning Objective 4

Explain the relationship between ISO TS 19091 and SAE J2735TM

ISO TS 19091 and SAE J2735

- SAE J2735, Dedicated Short Range Communications (DSRC) Message Set Dictionary, is a data dictionary
 - Specifies the message set for DSRC
 - Specifies data frames and data elements
- Analogy: English language

ISO TS 19091 and SAE J2735

- Analogy: English grammar
- ISO TS 19091 is the *grammar*
 - References SAE J2735 for the messages, data structures and data elements for V2I applications
 - Adds the rules for the use of these messages, data structures and data elements

ISO TS 19091 and SAE J2735

ISO TS 19091

- Works together with SAE J2735 to define the design to fulfill the functional requirements in ISO TS 19091
- Provides a matrix that defines the SAE J2735 design to fulfill each functional requirement in ISO TS 19091
 - The design may be in the form of a message, data frame or data element

The Relationship of This Standard with SAE J2735TM

ISO TS 19091 and SAE J2735

Example:

- Requirement 6.7.1 Broadcast signal phase and timing information
 - An RSE shall broadcast a message with signal phase and timing information. Signal phase and timing information may be used to provide connected devices with the current status of a signalized intersection. Together with the intersection geometric information, connected vehicles can determine what maneuvers are currently permitted by lane/approach, and when their permitted maneuver may end.
 - ISO TS 19091 defines the SAE J2735 Signal Phase and Timing Message (SPaT) to fulfill this requirement

ISO TS 19091 and SAE J2735

Other SAE J2735 Messages used to fulfill requirements in ISO TS 19091:

- Basic Safety Message (BSM (P1))
- Signal Request Message (SRM)
- MAP Data Message (MAP). Describes the geometry of the roadway intersection
- NMEA Message (NMEA). Provides differential GPS corrections.
- RTCM Message (RTCM). Provides differential GPS corrections.
- Signal Status Message (SSM)

ISO TS 19091 and SAE J2735

Example:

- Requirement 6.7.2 Broadcast signal phase and timing – message identifier
 - An RSE shall include a message identifier as part of the signal phase and timing message broadcast. A change in the message identifier indicates a change in the message content. This requirement allows a connected device to ignore (not process) messages from an RSE when the content has not changed.
 - ISO TS 19091 defines the SAE J2735 data element MsgCount within the (SAE J2735) SPaT message to fulfill this requirement

ISO TS 19091 and SAE J2735

- SAE J2735 allows DE_MsgCount to be incremented every time a message is broadcasted OR when the contents of the message changes
 - ISO TS 19091 standardizes the use of DE_MsgCount for SPAT and MAP messages so it is only incremented when the contents change

 Decreases risk of misinterpretations, which may compromise safety

A C T I V I T Y

Question

How does ISO TS 19091 use SAE J2735 to specify message contents?

Answer Choices

- a) Fulfill requirements based on ISO 19091 use cases
- b) Fulfill requirements found in the SAE J2735 standard
- c) Directly satisfy the user needs derived from the ISO 19091 use cases
- d) Directly satisfy the user needs in the SAE J2735 standard

Review of Answers

a) Fulfill requirements based on ISO 19091 use cases

Correct! SAE J2735 defines the message contents to fulfill requirements derived from the use cases in ISO 19091.

b) Fulfill requirements found in the SAE J2735 standard

Incorrect. SAE J2735 is used to fulfill requirements in ISO 19091.

SAE J2735 does not contain requirements.

c) Directly satisfy the user needs derived from the ISO 19091 use cases

Incorrect. There are no user needs in ISO 19091 and SAE J2735 is used to fulfill requirements, not satisfy user needs.

d) Directly satisfy the user needs in the SAE J2735 standard Incorrect. SAE J2735 defines a message set and does not identify user needs.

Learning Objectives

Identify **benefits of standardization** for agencies, system developers, and suppliers

Describe the **scope** of ISO TS 19091 Standard

Describe the **use cases** addressed by ISO TS 19091 Standard

Explain the **relationship** between ISO TS 19091 and SAE J2735

Applying ISO TS 19091 Standard content to your project

Learning Objective 5

Applying ISO TS 19091
Standard content to your project

Use Case to Requirements Matrix

Provides traceability from use cases to requirements.

- Organized by use case operational type (PR, SA, MS), then by specific use case
- Indicates for each use case whether a requirement is:
 - Mandatory (M or M.#)
 - Optional (O or O.#)
 - Conditional (C)
 - Not Applicable (N/A)
 - Excluded or Prohibited (X)
 - Regional selection (REG:)
 - Internal RSE <-> TSC (Traffic Signal Controller) use only with 'x' replaced by the status symbols listed above

Use Case to Requirements Matrix

SA2: Red Light Violation Warning

Table B.5 — Safety related use case to requir

	Requirements	Safety	related us	se cases
ID	Title	SA2	SA3	SA4
6.5.1	Broadcast Area Geometrics	M	M	M
6.5.2	Broadcast Roadway Geometrics - Message Identifier	М	М	M
6.5.3	Broadcast Intersection - Identifier	М	M	M
6.5.4	Broadcast Intersection - Reference Point	М	M	M
6.5.5	Broadcast Intersection – Lane/Approach Default Width	M	М	M
6.5.6	Broadcast Intersection - Egress Lanes	X	X	REG:M
6.5.7	Broadcast Intersection - Approach Lanes	M	М	M
6.5.8	Broadcast Intersection – Lane/Approach Number	М	М	M
6.5.9	Broadcast Intersection – Lane/Approach Centerline Coordinates	М	М	М
6.5.10	Broadcast Intersection - Vehicle Lane/Approach Maneuvers	M	М	M
6.5.11	Broadcast Intersection - Pedestrian Lane/Approach Maneuvers	X	X	0
6.5.12	Broadcast Intersection - Special Lane/Approach Maneuvers	X	Х	0
6.5.13	Broadcast Intersection - Version Identifier	0	X	0
6.5.14	Broadcast Intersection - Crossings	X	Х	0
6.5.15	Broadcast Intersection – Lane/Approach Width	0	0	0
6.5.16	Broadcast Intersection - Node Lane/Approach Width	0	0	0

Reference: ISO TS 19091 Table B.5

Provides traceability between requirements and design:

- Dialogs
- Messages
- Data Frames
- Data Elements
- Used to determine the design of the communications for the system
- Used by a tester to determine what requirements need to be verified, and help design the test cases

Dialogs

- For ISO TS 19091, the dialogs consists of broadcast messages (See Section 5.1.3)
 - A device broadcasts the message content to all entities within range
- The sequence that messages are broadcasted can be found in the use cases
- Dialogs mostly handled by the DSRC communications stack, but may be other wireless communications technologies (3G, 4G, LTE, etc.)
- Message sets, data frames and data elements are defined in SAE J2735.

Rqmt ID	Requirement Title	Msg	Parent Identifier	Parent type	Identifier	Identifier type
6.5.1	Broadcast area geometrics	MAP	N/A	N/A	Message Types	MapData
6.5.2	Broadcast roadway geometrics – message identifier	MAP	MSG_Ma pData	MapData	msglssue Revision	MsgCount
6.5.3	Broadcast intersection - identifier	MAP	intersecti ons	Intersection Geometry	id	Intersection ReferenceID
6.5.4	Broadcast intersection – reference point	MAP	refPoint	Position3D	lat	Latitude
6.5.4	Broadcast intersection – reference point	MAP	refPoint	Position3D	long	Longitude
6.5.4	Broadcast intersection – reference point	MAP	refPoint	Position3D	elevation	Elevation

57

Using the RTM

RTM uses the same key defined in the Use Case Requirements Matrix

- Mandatory (M or M.#)
- Optional (O or O.#)
- Conditional (C)

- Not Applicable (N/A)
- Excluded or Prohibited (X)

Requirement		Design	Project Implementation		
ID	Title	Identifier Type	Conform- ance	Support / Project Rqmt	Additional rqmt
6.5.4	Broadcast intersection – reference point	Latitude	M	Yes	
6.5.4	Broadcast intersection – reference point	Longitude	M	Yes	
6.5.4	Broadcast intersection – reference point	Elevation	0	Yes No	

Reference: ISO TS 19091 Table C.1

Using the RTM

Rqmt ID	Requirement Title	Identifier	Conform ance	Support / Project Rqmt	Additional Reqt
6.15.1	Minimum transmission rate – broadcast roadway geometrics	N/A	0	Yes No	Rate of Hz 1 Hz
6.15.2	Maximum transmission rate – broadcast roadway geometrics	N/A	0	Yes No	Rate of Hz 10 Hz
6.15.3	Default transmission rate – broadcast roadway geometrics	N/A	0	Yes No	Rate of Hz
6.16.1	Minimum transmission rate – GNSS augmentation details broadcasts	N/A	0	Yes No	Rate of Hz 1 Hz

Reference: ISO TS 19091 Table C.1

Application of Annexes E, F, & G

Regional Extensions

Annexes E, F, G describe different profiles for J2735 for use in 3 different international regions

- Annex E : North America
- Annex F: Japan
- Annex G: Europe

- Regional specific requirements appear in the Use Case to Requirements Matrix
- Annex D describes the extension mechanisms for SAE J2735

Application of Annexes E, F, & G

Annex E

Use cases, requirements, and traceability matrices for North America

- No additional requirements defined for the MAP, SRM or SSM messages
- SPAT message Defines two additional optional data frames and data elements
 - Provide an indication that a pedestrian or bicycle call has been requested for a movement through the intersection
 - Provide support for the current signal state of a special lane (e.g., tracked) at the intersection

Conformance Statement

An implementation is conformant with ISO TS 19091 when:

 The implementation's data content shall fulfill the mandatory and selected optional requirements as identified in the requirements traceability matrix (Annex C) or as defined in the selected annexes

AND

Conformance Statement

 The implementation's message structure fulfills the requirements of the selected annex

AND

■ To conform to a requirement in this technical specification, a system or device interface shall **implement all data elements traced from that requirement** (and in the order specified in the technical specification). To be consistent with a requirement, a system or device interface shall be able to **fulfill the requirement using only messages**, **data frames**, **and data elements** that (the) conforming system or device interface is **required to support**

Transit Signal Priority

- First, go to Annex A and examine the Use Case Table
 - Complete list of use cases covered in ISO TS 19091
 - Select appropriate use cases for deployment
- For our example, assume a transit signal priority application

Transit Signal Priority

Table A.1 — Table of identified use cases

ID	Title
PR1	A.2 — PR1: Localized public transport signal priority (TSP)
PR1-a	A.3 — PR1-a: Localized public transport signal priority – near side stop
PR2	A.4 — PR2: Public transport signal priority along an arterial (group of intersections)
PR3	A.5 — PR3: Localized freight signal priority
PR3-a	A.6 — PR3-a: Localized freight signal priority with a platoon
PR3-b	A.7 — PR3-b: Arterial freight signal priority for a platoon
PR4	A.8 — PR4: Emergency vehicle single or multiple vehicles (normal power PSOBE)
PR5	A.9 — PR5: Emergency vehicle single or multiple vehicles (high power PSOBE)
PR6	A.10 — PR6: Mixed emergency vehicle and other priority eligible vehicles

Reference: ISO TS 19091 Table A.1

Transit Signal Priority

Table A.2 — PR1: Localized public transport signal priority (TSP)

Use Case Name	Basic TSP Scenario - Single Public Transport Vehicle at One Signalized Intersection			
Category	Mobility			
Infrastructure Role	Data Receiver, Traffic Signal Control, Data Transmitter			
Short Description	This use case describes the basic priority control for connected Public Transport vehicles			
Goal Improved Public Transport efficiency and reliability				
Constraints	Use of DSRC or other medium that will meet the performance requirements for this use case (the RSE and OBE include radio devices that operate in the medium used)			
	Alternate: Wide area broadband communications is available for the public transport vehicle to indicate its TSP request via an alternate media than DSRC through Back-office Processing Center (BOPC). (Data flow #5 supports that situation)			
Geographic Scope	Localized to a specific intersection			
Actors	Public Transport Vehicle Equipped with On-board Equipment (OBE) Road Side Equipment (RSE) & Traffic Signal Controller (TSC) Alternate: Traffic Management Central System (BOPC).			

Use Case to Requirements Matrix

PR1: Localized Public Transport Signal Priority (TSP)

	Requirements	Use Cases					
ID	Title	PR1	PR1-a				
6.1.1	Broadcast public safety vehicle information	M	M				
6.1.2	Broadcast emergency response indication	X	X				
6.2.1	Transmit pre-empt request	0	O				
6.2.2	Request signal pre-empt – message identifier	0	0				
6.2.4	Request signal pre-empt – intersection identifier	0	0				

(P2)

emergency

response

indication

<Safa1>

Requirement		Design					
ID	Title	Msg	Parent identifier	Parent type	Identifier	Identifier type	
6.1.1	Broadcast public safety vehicle information (Safe1)	BSM (P1)	N/A	N/A	MessageT ypes	BasicSafety Message	
6.1.1	Broadcast public (safety vehicle information (Safe2)	CAM	N/A	N/A	CAM	CoopAwar eness	
6.1.2	Broadcast	BSM	supplemental	Supplemen	classDetai	VehicleClas	

ls

sification

talVehicleE

xtensions

Requirement		Design	Project Implementation		
ID	Title	Identifier Type	Confor mance		Additional Reqt

M.4(1) (BasicSafetyMessage) **Broadcast public** 6.1.1

safety vehicle information (Safe1)

Yes No M.4(1)6.1.1 Broadcast public CoopAwareness safety vehicle

information (Safe2)

Yes No **Broadcast emergency** VehicleClassification M 6.1.2 response indication <Safe1>

LightbarInUse Yes (N Broadcast emergency M 6.1.2 response indication

Requirements Traceability Matrix

Requirement		Design	Project Implementation		
ID	Title	Identifier Type	Confor mance	Support / Project Rqmt	Additional Reqt
6.2.5	Request signal pre- empt – approach lane	IntersectionAcces sPoint	M	Yes	
6.2.6	Request signal pre- empt – egress lane	IntersectionAcces sPoint	0	Yes/ No	
6.2.7	Request signal pre- empt – vehicle class	BasicVehicleRole	0	Yes/ No	
6.2.7	Request signal pre- empt – vehicle class	RequestSubRole	0	Yes No	
6.2.7	Request signal pre- empt – vehicle class	RequestImportanc eLevel	0	Yes No	

Requirements Traceability Matrix

Assuming DSRC

Rqmt ID	Requirement Title	Message	Conform ance	Support / Project Rqmt	Additional Reqt
6.14.1	Maximum transmission rate – request signal preferential treatment	SRM	0	Yes / No	Rate of Hz
6.14.2	Maximum response time – request signal preferential treatment	SSM	0	Yes / No	<u>100</u> ms
6.14.3	Minimum transmission rate – signal status message	SSM	0	Yes / No	Rate of Hz
6.14.4	Minimum transmission period – signal status message	SSM	0	Yes / No	Period of

71

A C T I V I T Y

Question

Which matrices allow a system designer to select system requirements based on use cases?

Answer Choices

- a) Needs to Requirements Traceability Matrix
- b) Requirements Traceability Matrix
- c) Use Case to Requirements Traceability
- d) Test Case to Requirements Traceability Matrix

Review of Answers

a) Needs to Requirements Traceability Matrix

Incorrect. There is no NRTM included in ISO TS 19091.

b) Requirements Traceability Matrix

Incorrect. The RTM traces requirements to design.

c) Use Case to Requirements Traceability

Correct! The Use Case to Requirements Traceability traces requirements to use cases and allows a system designer to select requirements for a deployment.

d) Test Case to Requirements Traceability Matrix

Incorrect. There is no TCRTM in ISO TS 19091.

Module Summary

Identify **benefits of standardization** for agencies, system developers, and suppliers

Describe the **scope** of ISO TS 19091 Standard

Describe the **use cases** addressed by ISO TS 19091 Standard

Explain the **relationship** between ISO TS 19091 and SAE J2735

Applying ISO TS 19091 Standard content to your project

We Have Now Completed the CV Curriculum

Module I261: Vehicle-to-Infrastructure (V2I) ITS Standards for Project Managers

Module 1262: Vehicle-to-Vehicle (V2V) ITS Standards for Project Managers

Module CV271: Using the ISO TS 19091 Standard to Implement V2I Intersection Applications Introduction

Next Course Module

Module CV-T160: Connected Vehicles Certification Testing Introduction

Concepts taught in next module (Learning Objectives):

- 1) Identify key elements of ATC 5201 standard equipment for testing documentation
- 2) Describe within the context of a systems engineering lifecycle the role of a test plan and the testing to be undertaken
- Describe the application of good testing documentation for transportation controller equipment based on the ATC 5201 v06 standard
- 4) Describe the testing of ATC using a sample testing documentation

Thank you for completing this module.

Feedback

Please use the Feedback link below to provide us with your thoughts and comments about the value of the training.

Thank you!

