HOLMUSK

Data Challenge

Javier Manzano

Agenda

- Problem Statement & Databases
 - "Event_duration.csv" + "Patient_characteristics.csv"
- Data Wrangling Process
 - Merging, Cleaning, ...
- Inconsistencies
 - "treatment_variable"
- Survival Analysis
 - Approach + Methods
 - Results + Insigths

Problem Statement & Databases

- Problem Statement (some points to consider):
 - Patient diagnosed with a specific condition and prescribed either **Drug A** or **Drug B** for the treatment
 - The patients are monitored for the occurrence of a specific event after the start of the treatment
 - To compare the real-world **efficacy of the two drugs** by comparing the risk of events: <u>survival analysis</u>
 - The two groups may not have balanced patient characteristics
 - How to measure and reduce the impact of this, in the analysis approach

2 databases:

- "Event_duration.csv" -> [ed] -> 19284 observations and 4 columns
- "Patient_characteristics.csv" -> [pc] -> 19284 observations and 37 columns

Merging and Cleaning Processes

- Merging: [ed] & [pc]
 - Inner Join: key field -> "patient_id"
 - 15868 observations
 - [ed] and [pc] -> "treatmentVariable_ed" and "treatmentVariable_pc"

patient_id	‡
	0
	1
	2
	3

treatmentVariable_ed 🗘	treatmentVariable_pc 💠
Drug_A	Drug_A
Drug_B	Drug_B

treatmentVariable_ed *	treatmentVariable_pc *
Drug_A	Drug_A
Drug_B	Drug_B
Drug_B	Drug_A
Drug_A	Drug_B
Drug_A	Drug_B
Drug_B	Drug_A

Inconsistencies

- From 15868 observations
 - 8057 observations (~51%): "treatmentVariable_ed" = "treatmentVariable_pc"
 - 7811 observations (~49%): "treatmentVariable_ed" != "treatmentVariable_pc"
- The same patient could not have taken both of the drugs at the same time
 - It may not be clear to identify the effect of either drug A or drug B
 - 7811 observations (~49%) with inconsistencies
- Consequently
 - I decided to select observations w/o inconsistencies
 - 8057 observations (~51%)

Approach

- 8057 observations with unbalanced patient characteristics
- Processing from years to months and days ("yearsInDays")
- Categorizing age variable (median) in "ageCat": adult (<= 79) & senior (80+)
- W/O lab_2 to lab_8: NA´s
- SA 1: all the data (n = 8057)
- Stratified random sampling
 - SA 2: bleedingEvent (n = 3138)
 - SA 3: (+) treatmentVariable (n = 6212)
 - SA 4: (+) sex (n = 6640)
 - SA 5: (+) age -> ageCat (n = 7504)

Methods

- Kaplan-Meier Method
- Cox Method (1+ variables)

Results (I)*: Survival Curves between SA 1 and SA 5

^{*}Check the "resultsSummary_FJMM.pdf" and "code_dataChallenge_FJMM.R" files (in GitHub) for more details

Results (II)*: Kapla-Meier Method and Cox Method

SA	Method		
	Kaplan-Meier (Log-Rank test)	Cox (Hazard ratios)	
SA 1	There is no statistically significant difference between Drug A and Drug B	Variables (+) sex; age/ageCat; other_drugs_1to8; diagnosis_1to15; lab_1; Diag_Score_1to2	
(n = 8057)		Statistically significant at 5% None	
SA 5	There is no statistically significant difference between Drug A and Drug B	Variables (+) sex; age/ageCat; other_drugs_1to8; diagnosis_1to15; lab_1; Diag_Score_1to2	
(n = 7504)		Statistically significant at 5% treatmentVariableDrug; other_drugs_5; other_drugs_8; diagnosis_4	

^{*}Check the "resultsSummary_FJMM.pdf" and "code_dataChallenge_FJMM.R" files (in GitHub) for more details

- Insigths (I)
 - The databases presented inconsistencies between the relevant variable records
 - "treatmentVariable": ed != pc
 - Smaller database, but no inconsistencies
 - To compare the efficacy of the two drugs (A and B)
 - To measure and reduce the impact of the unbalanced patient characteristics
 - Stratified random sampling: bleedingEvent, treatmentVariable, sex and ageCat
 - Balanced sample without losing so many observations
 - n "original" (8057) n "stratified random sample" (7504) = 553 observations

- Insigths (II)
 - Kapla-Meier Method
 - yearsInDays, bleedingEvent and treatmentVariable
 - No differences were identified between the "original" sample (SA 1) and stratified random sample (SA 5)
 - In both, there was no statistically significant difference between drug A and drug B
 - Cox Method (1+ variables)
 - yearsInDays, bleedingEvent, treatmentVariable, sex, age/ageCat, other_drugs_1to8, diagnosis_1to15, lab_1 and Diag_Score_1to2
 - SA 1: None of the variables showed statistical significance at 5%
 - SA 5: treatmentVariableDrug; other_drugs_5; other_drugs_8; diagnosis_4 were statistically significant at 5%
 - Stratified Random Sample (to replicate): it is necessary to use a seed (weakness)

HOLMUSK

Data Challenge

Javier Manzano