

Foundations of Scala

Foundations of Software

Martin Odersky

Where are we when modelling Scala?

```
Simple (?) example: List type:
trait List[T] {
  def isEmpty: Boolean; def head: T; def tail: List[T]
def Cons[T](hd: T, tl: List[T]) = new List[T] {
  def isEmpty = false; def head = hd; def tail = tl
def Nil[T] = new List[T] {
  def isEmpty = true; def head = ???; def tail = ???
```

New Problems

- List is parameterized.
- List is *recursive*.
- List can be invariant or covariant.

Covariant List type

```
trait List[+T] {
  def isEmpty = false; def head = hd; def tail = t1
}
Cons, Nil as before.
```

Modelling Parameterized Types

Traditionally: Higher-kinded types.

- Besides plain types, have functions from types to types, and functions over these and so on.
- ▶ Needs a kinding system:

lacktriangle Needs some way to express type functions, such as a λ for types.

Modelling Recursive Types

Traditionally: Have a constructor for recursive types $\mu t. T(t)$.

Example:

```
mu ListInt. { head: Int, tail: ListInt }
```

Tricky interactions with equality and subtyping.

Consider:

```
type T = mu \ t. Int \rightarrow Int \rightarrow t
```

How do T and Int -> T relate?

Modelling Variance

Traditionally: Express definition site variance

```
trait List[+T] ...
    trait Function1[-T, +U] ...
    List[C], Function1[D, E]
as use-site variance (aka Java wildcards):
    trait List[T] ...
    trait Function1[T, U]
    List[_ <: C]
    Function1[_ >: D, _ <: E]</pre>
```

Meaning of Wildcards

A type like Function1[_ >: D, _ <: E] means:

The type of functions where the argument is some (unknown) supertype of D and the result is some (unknown) subtype of E.

This can be modelled as an existential type:

```
Function1[X, Y] forSome { type X >: D; type Y <: E } // Scala ex X >: D, Y <: E. Function1[X, Y] // More traditional notation
```

Combining Several of These Features

... is possible, but gets messy rather quickly

Idea: Use Path Dependent Types as a Common Basis

Here is a re-formulation of List.

```
trait List { self =>
  type T
  def isEmpty: Boolean
  def head: T
  def tail: List { type T = self.T }
def Cons[X](hd: X, tl: List { type T = X }) = new List {
  type T = X
  def isEmpty = false
  def head = hd
  def tail = tl
```

Analogous for Nil.

Handling Variance

```
trait List { self =>
 type T
 def isEmpty: Boolean
  def head: T
 def tail: List { type T <: self.T }</pre>
def Cons[X](hd: X, tl: List { type T <: X }) = new List {</pre>
 type T = X
  def isEmpty = false
  def head = hd
  def tail = tl
```

Elements needed:

- ► Variables, functions
- ► Abstract types { type T <: B }
- ► Refinements C { ... }
- ▶ Path-dependent types self.T.

Abstract Types

- ► An abstract type is a type without a concrete implementation
- ▶ Instead only (upper and/or lower) bounds are given.

Example

```
trait KeyGen {
  type Key
  def key(s: String): this.Key
}
```

Implementations of Abstract Types

▶ Abstract types can be refined in subclasses or implemented as *type aliases*.

Example

```
object HashKeyGen extends KeyGen {
  type Key = Int
  def key(s: String) = s.hashCode
}
```

Generic Functions over Abstract Types

We can write functions that work for all implementations of an abstract type like this:

```
def mapKeys(k: KeyGen, ss: List[String]): List[k.Key] =
    ss.map(s => k.key(s))
```

- k.Key is a path-dependent type.
- ▶ The type depends on the value of k, which is a term.
- ► The type of mapKeys is a dependent function type. mapKeys: (k: KeyGen, ss: List[String]) -> List[k.Key]
- ▶ Note that the occurrence of k in the type is essential; without it we could not express the result type!.

Dependent Functions in Scala

Scala allows to define a dependent method whose result type depends on the parameters. We have seen an example in mapKeys:

```
mapKeys(k: KeyGen, ss: List[String]): List[k.Key] = ...
```

But we cannot express the type of mapKeys directly. The best we can do is use the same encoding we use for simple function types:

```
trait KeyFun {
  def apply(k: KeyGen, ss: List[String]): List[k.Key]
}
mapKeys = new KeyFun {
  def apply(k: KeyGen, ss: List[String]): List[k.Key] = ...
}
```

This means that we need to define need one type per dependent function, there is no way to generalize this.

Formalization

We now formalize these ideas in a calculus.

DOT standards for (path)- \underline{D} ependent \underline{O} bject \underline{T} ypes.

Program:

- Syntax, Typing rules (this week)
- ► An approach to the meta theory (next week).

Syntax

x, y, z	Variable	$\begin{vmatrix} v ::= \\ \nu(x:T)d \\ \lambda(x:T)t \end{vmatrix}$	Value
a, b, c	Term member		object
A, B, C	Type member		lambda
S, T, U :=	Type top type	s, t, u := x	Term variable
⊥	bot type	v	value
{a : T}	field declaration	x.a	selection
{A : S T}	type declaration	$ \begin{array}{c c} x y \\ \text{let } x = t \text{ in } u \end{array} $	application
x.A	type projection		let
$S \wedge T$ $\mu(x:T)$ $\forall (x:S) T$	intersection recursive type dependent function	$egin{aligned} d ::= & \{a=t\} \ \{A=T\} \ d_1 \wedge d_2 \end{aligned}$	Definition field def. type def. aggregate def.

DOT Types

DOT	Scala		
Т	Any	Top type	
\perp	Nothing	Bottom type	
{a: T}	{ def a: T }	Record field	
$\{A:ST\}$	{ type A >: S <: T}	Abstract type	
$T \wedge U$	T & U	Intersection	
		(Together these can form records)	
x.A	x.A	Type projection	
$\mu(x:T)$	{x =>}	Recursive type	
, ,		(Scala allows only recursive records)	
$\forall (x:S) T$	S => T	Dependent function type	
` '		(Scala has only simple function types)	

DOT Definitions

Definitions make concrete record values.

DOT	Scala	
${a=t}$	{ def a = t }	Field definition
$\{A=T\}$	$\{ type A = T \}$	Type definition
$\textit{d}_1 \wedge \textit{d}_2$	-	Record formation
		(Scala uses $\{d_1; \ldots; d_n\}$ directly)

Definitions are grouped together in an object

DOT	Scala	
$\nu(x:T)d$	new { x: T => d }	Instance creation

DOT Terms

DOT values are objects and lambdas.

DOT terms have member selection and application work on *variables*, not values or full terms.

```
x.a instead of t.a
x y instead of t u
```

This is not a reduction of expressiveness. With let, we can apply the following *desugarings*, where x and y are fresh variables:

t.a
$$\longrightarrow$$
 let $x = t$ in x .a
t $u \longrightarrow$ let $x = t$ in let $y = u$ in x y

This way of writing programs is also called *administrative normal form* (ANF).

Programmer-Friendlier Notation

In the following we use the following ASCII versions of DOT constructs.

Encoding of Generics

For generic types: Encode type parameters as type members

For generic *functions*: Encode type parameters as value parameters which carry a type field. Hence polymorphic (universal) types become dependent function types.

Example: The polymorphic type of the twice method

$$\forall X.(X \to X) \to X \to X$$

is represented as

$$(cX: \{A: Nothing..Any\}) \rightarrow (cX.A \rightarrow cX.A) \rightarrow cX.A \rightarrow cX.A$$

cX is a menmonic for "cell containing a type variance X".

Example: Church Booleans

```
Let
type IFT = { if: (x: \{A: Nothing..Any\}) \rightarrow x.A \rightarrow x.A \rightarrow x.A \}
Then define:
     let boolimpl =
       let boolImpl =
          new(b: { Boolean: IFT..IFT } &
                   { true: IFT } &
                   { false: IFT })
            { Boolean = IFT } &
            \{ \text{ true} = \{ \text{ if} = (x: \{A: \text{Nothing..Any}\}) => (t: x.A) => (f: x.A) => t \} \} 
            \{ \text{ false = } \{ \text{ if = } (x: \{A: \text{Nothing..Any}) => (t: x.A) => (f: x.A) => f \} 
     in ...
```

Church Booleans API

To hide the implementation details of boolImpl, we can use a wrapper:

Abbreviations and Syntactic Sugar

We use the following Scala-oriented syntax for type members.

Abbreviations (2)

We group multiple, intersected definitions or declarations in one pair of braces, replacing & with ; or a newline. E.g, the definition

```
{ type A = T; a = t }
expands to
   \{ A = T \} \& \{ a = t \}
and the type
   { type A <: T; a: T }
expands to
   { A: Nothing..T } & { a: T }
```

Abbreviations (3)

We expand type ascriptions to applications:

```
t: T
expands to
  ((x: T) => x) t

(which expands in turn to)
  let y = (x: T) => x in let z = t in y z
```

Abbreviations (4)

```
We abbreviate
    new (x: T)d
to
    new { x \Rightarrow d }
if the type of definitions d is given explicitly, and to
   new { d }
if d does not refer to the this reference x.
```

Church Booleans, Abbreviated

```
let bool =
  new { b =>
    type Boolean = {if: (x: { type A }) -> (t: x.A) -> (f: x.A) -> x.A}
    true = {if: (x: { type A }) => (t: x.A) => (f: x.A) => t}
    false = {if: (x: { type A }) => (t: x.A) => (f: x.A) => f}
}: { b => type Boolean; true: b.Boolean; false: b.Boolean }
```

Example: Covariant Lists

We now model the following Scala definitions in DOT:

```
package scala.collection.immutable
trait List[+A] {
  def isEmpty: Boolean; def head: A; def tail: List[A]
object List {
  def nil: List[Nothing] = new List[Nothing] {
    def isEmpty = true; def head = head; def tail = tail // infinite loops
  def cons[A](hd: A, tl: List[A]) = new List[A] {
    def isEmpty = false; def head = hd; def tail = tl
```

Encoding of Lists

```
let scala_collection_immutable_impl = new { sci =>
  type List = { thisList =>
    type A
    isEmpty: bool.Boolean
    head: thisList.A
    tail: sci.List & {type A <: thisList.A }
  cons = (x: \{type A\}) \Rightarrow (hd: x.A) \Rightarrow
    (tl: sci.List & { type A <: x.A }) =>
      let 1 = new {
        type A = x.A
        isEmpty = bool.false
        head = hd
        tail = tl }
      in 1
```

Encoding of Lists (ctd)

```
nil = (x: {type A}) =>
    let l = new { l =>
        type A = x.A
        isEmpty = bool.true
        head = l.head
        tail = l.tail }
    in l
}
// end implementation new { sci => ...
```

List API

We wrap scala_collection_immutable_impl to hide its implementation types.

```
let scala_collection_immutable = scala_collection.immutable_impl: { sci =>
  type List <: { thisList =>
    type A
    isEmpty: bool.Boolean
    head: thisList.A
    tail: sci.List & {type A <: thisList.A }
  }
  nil: sci.List & { type A = Nothing }
  cons: (x: {type A}) -> (hd: x.A) ->
    (tl: sci.List & { type A <: x.A }) ->
      sci.List & { type A = x.A }
```

Nominal Types

The encodings give an explanation what nominality means.

A nominaltype such as List is simply an abstract type, whose implementation is hidden.

Still To Do

The rest of the calculus is given by three definitions:

An evaluation relation $t \longrightarrow t'$.

Type assignment rules $\Gamma \vdash x \colon T$

Subtyping rules $\Gamma \vdash T <: U$.

Evaluation $t \longrightarrow t'$

Evaluation is particular since it works on variables not values.

This is needed to keep reduced terms in ANF form.

where the evaluation context e is defined as follows:

$$e := [] | let x = [] in t | let x = v in e$$

Note that evaluation uses only variable renaming, not full substitution.

Type Assignment $\Gamma \vdash t : T$

$$\frac{x \colon T \in \Gamma}{\Gamma \vdash x \colon T}$$

$$\frac{\Gamma, \ x \colon T \vdash t \colon U}{\Gamma \vdash \lambda(x \colon T)t \colon \forall (x \colon T)U}$$

$$\frac{\Gamma \vdash x \colon \forall (z \colon S)T \quad \Gamma \vdash y \colon S}{\Gamma \vdash x y \colon [z \coloneqq y]T}$$

$$\frac{\Gamma, \ x \colon T \vdash d \colon T}{\Gamma \vdash \nu(x \colon T)d \colon \mu(x \colon T)}$$

 $\Gamma \vdash x : \{a : T\}$

 $\Gamma \vdash x \cdot a : T$

(All-I)

 $(\{\}-I)$

 $({}_{-}E)$

(VAR)

Type Assignment (2)

$$\Gamma \vdash t : T \quad \Gamma, \ x : T \vdash u : U$$

$$x \notin fv(U)$$

$$\Gamma \vdash \mathbf{let} \ x = t \ \mathbf{in} \ u : U$$

$$\frac{\Gamma \vdash x : T}{\Gamma \vdash x : \mu(x : T)}$$

$$\frac{\Gamma \vdash x : \mu(x : T)}{\Gamma \vdash x : T}$$

 $\Gamma \vdash x : T \quad \Gamma \vdash x : U$

 $\Gamma \vdash x : T \land U$

 $\Gamma \vdash t : T \quad \Gamma \vdash T <: U$

 $\Gamma \vdash t : U$

(AND-I)

(Sub)

Type Assignment

Note that there are now 4 rules which are not syntax-directed: (Sub), (And-I), (Rec-I), and (Rec-E).

It turns out that the meta-throey becomes simpler if (And-I), (Rec-I), and (Rec-E) are not rolled into subtyping.

Definition Type Assignment $\Gamma \vdash d : T$

$$\frac{\Gamma \vdash t : T}{\Gamma \vdash \{a = t\} : \{a : T\}}$$

$$\Gamma \vdash \{A = T\} : \{A : T ...T\}$$

$$\Gamma \vdash d_1 : T_1 \quad \Gamma \vdash d_2 : T_2$$

$$\frac{dom(d_1), dom(d_2) \text{ disjoint}}{\Gamma \vdash d_1 \land d_2 : T_1 \land T_2}$$

$$(ANDDEF-I)$$

Note that there is no subsumption rule for definition type assignment.

Subtyping $\Gamma \vdash T <: U$

$$\Gamma \vdash T <: \top$$
 (Top)
$$\Gamma \vdash L <: T$$
 (Bot)
$$\Gamma \vdash T <: T$$
 (Refl)
$$\frac{\Gamma \vdash S <: T \quad \Gamma \vdash T <: U}{\Gamma \vdash S <: U}$$
 (Trans)
$$\Gamma \vdash T \land U <: T$$
 (And_1-<:)
$$\Gamma \vdash T \land U <: U$$
 (And_2-<:)
$$\frac{\Gamma \vdash S <: T \quad \Gamma \vdash S <: U}{\Gamma \vdash S <: T \land U}$$
 (<:-And)

Subtyping (2)

$$\frac{\Gamma \vdash x : \{A : S .. T\}}{\Gamma \vdash x .A <: T} \qquad (Sel-<:)$$

$$\frac{\Gamma \vdash x : \{A : S .. T\}}{\Gamma \vdash S <: x .A} \qquad (<:-Sel)$$

$$\frac{\Gamma \vdash S_2 <: S_1}{\Gamma, x : S_2 \vdash T_1 <: T_2} \qquad (All-<:-All)$$

$$\frac{\Gamma \vdash T <: U}{\Gamma \vdash T <: U} \qquad (Flo-<:-Flo)$$

 $\Gamma \vdash S_2 <: S_1 \quad \Gamma \vdash T_1 <: T_2$

 $\overline{\Gamma} \vdash \{A : S_1..T_1\} <: \{A : S_2..T_2\}$

$$\Gamma \vdash \forall (x:S_1) I_1 <: \forall (x:S_2) I_2$$

$$\frac{\Gamma \vdash T <: U}{\Gamma \vdash \{a:T\} <: \{a:U\}}$$
(FLD-<:-FLD)

(TYP-<:-TYP)

Conclusion

DOT is a fairly small calculus that can express "classical" Scala programs.

Even though the calculus is small, its meta theory turned out to be surprisingly hard.

More on this next week.