Contents

	Introduction (Lecture)	3
10	Studying Adaptation Hypothesis Testing: Oxpeckers Reconsidered	4
4	Evolutionary Trees How to Read an Evolutionary Tree	
3	Natural Selection Lecture Notes	-/
6	Mendelian Genetics	9
7		10
8		1 1
9		12
11		13
12		14
13		15
14		16
16		17
17		18

Cullyn Newman	Evolution	October 4, 2020	
18		19	
		19	
20		20	
		20	
15		21	

1 Evolutionary Thinking

Introduction (Lecture)

- Essential questions of evolutionary biology:
 - Why do organisms look so different?
 - Why develop elaborate sexual traits?
 - Why do organisms senesce?
- ▶ Evolution is mainly an historical science and thus must relay on other methods of reconstructing the past or making inferences about evolutionary forces.
- ▶ **Proximate**: a question about a mechanistic cause; provides an immediate explanation about how a mechanistic cause functions.
- ▶ **Ultimate**: why, or the reason, a trait or organism is the way it is; an evolutionary explanation.
- ▶ Example of proximate vs ultimate in Galapagos finches:
 - Proxmate: developmental growth factor is increased/decreased in some birds.
 - Ultimate: different habits are selected on breaks that maxmize food gathering ability.
- ▷ Evolutionary biology's approach to answering questions:
 - **Empirical data**: observation studies, experiments; the *comparative method*.
 - **Theory**: predictions that use models and mathematical reasoning which can be be tested with empirical data.
- ▷ Overview of the components of evolution by natural selection:
 - o Genetic variation exists, via mutations.
 - Mutations are heritable.
 - The is an advantage to survival and/or reproduction from the mutation.
 - o Individuals with the advantage in survival/reproduction are selected for.

10 Studying Adaptation

Hypothesis Testing: Oxpeckers Reconsidered

- ▶ **Adaption**: a trait, or a suite of traits, that increases the fitness of its possessor.
- No hypothesis for the adaptive value of a trait should be accepted simply because of its plausibility.
- Oxpeckers and impalas traditionally were thought to have a mutally beneficial existence; oxpeckers ate ticks and impalas provided a safe environment.
- ▶ Experiments on cattle were done to test whether this observation was true:
 - Results show red-billed oxpeckers have no effect tick loads of cattle.
 - Red-billeld oxpeckers maintained open wounds, even enlarging existing wounds to feed on the cattle's blood.
 - Red-billed oxpeckers removed hosts' earwax; whether this is good of bad is unclear.
 - Even these results must remain in question, as cattle are not the native host for the birds.
- ▷ Other important points to remember:
 - Differences among populations or species are not always adaptive.
 - Not every trait is adaptive.
 - Not every adaptation is perfect, often the adaption just happened to work well enough or by chance better than other adaptations.

Experimental Design

- ▶ Defining and testing effective control groups is critical.
- ▶ Treatments of controls and experimental measures must be handled as close to exactly alike as possible.
- ▶ Randomization is a key technique for equalizing miscellaneous effects and a tool to avoid bias.
- ▶ Reproduction is essential in order to help remove potential outlier effects.
 - Allows for greater understanding of precision, accuracy, and variation by providing more data for statistical tests.

4 Evolutionary Trees

How to Read an Evolutionary Tree

- ▶ **Phylogeny**: aka evolutionary tree or phylogenetic tree, is a diaggram showing the history of divergence and evolutionary change. Essentially, it's the genealogical relationships of organisms based on descent with modification.
 - Taxa: the units you are analyzing, e.g. certain species or DNA sequences.
 - Character: a feature or trait present among the taxa of interest, e.g. teeth of mammals or nucleotides of DNA sequences.
 - Character state(s): an alternative condition of a character, which are able to evolve one to another, e.g. pointed/flat teeth of mammals.
 - Ancestral character: a trait that was possessed by the common ancestor.
 - Derived character: a trait the was not possessed by the common ancestor and instead evolved in at least one of the descendants.
 - **Synapomorphy**: derived character state shared by two or more taxa and used to define a clade of taxa.
 - · **Autapomorphy**: derived character state in only one taxon.
 - Outgroup: a taxon or taxa that are used to root the phylogeny or determine ancestral character states.
 - **Ingroup**: the set of taxa that are the focus of the phylogeny.
 - **Nodes**: points at which the tree splits; represents mutations, speciation events, or character changes.
 - **Anagensis**: descent with modification, but no speciation.
 - Cladogenesis: speciation, origin of clades.
 - Clade: also known as a monophyletic group, an ancestor and all of its descendants.
 - Paraphyletic group: a group of organisms consisting of an ancestor and some of its descendants.
 - **Sister**: a taxa or clade that are most closely related to each other; they share the most recent common ancestor.
- ▶ Homology: similarity due to common descent; continuity of a trait, character, or character state through time.

- Homologous trait: found in a taxa that inherited the trait from a common ancestor.
- ▶ **Homoplasy**: or analogous, similarity in the characters or traits in different taxa due to convergent evolution, parallelism, or reversal, but not due to common descent.
 - Convergent evolution: similar traits due to selective forces and not shared ancestry.
 - o Parallelism: convergent evolution in recently diverged taxa.
 - Reversal: derived traits or character states that revert to the ancestral form.

Inferring Phylogenetic Trees

- ▶ Parsimony: the hypothesis of relationshipsthat requires the smallest number of character changes is most likely to be correct.
 - Based on derived traits(synapomorphies).
 - Reconstruction using parsimony:
 - 1. Code characters.
 - 2. Make up a taxon x character matrix.
 - 3. Search for synapomorphies, and theshortest tree.
 - Outgroups can help polarize the characters.
 - Treelength: a measure of evolutionary change using parsimony.
 - Shortest tree length produces most parsimonious tree.
 - Length determined by number of synapomorphies.
 - Homoplasious characters increase tree length.
- ▶ Distance Methods: converts a sequence alignment to genetic distances between pairs of sequences.
 - Branch length is proportional to genetic differences.
- ▶ Baysian
- Bootstraping

Quiz 1 3 Natural Selection

3 Natural Selection

Lecture Notes

 \triangleright

Discussion Questions: Dog Domestication

- ▶ Background and Goals
 - What hypotheses about dog domestication are examined in this paper?
 - The origin of domestic dogs was the main focus; genetic data suggested East Asia, but fossil data suggested Europe and Siberia.
 - What predictions do these hypotheses make? What would the expected phylogenetic trees look like under each of these hypotheses (i.e. what are the expected topologies)?
 - Dogs and wolves would fall under a monophyletic group from a particular area indication origin.

▶ Methods

- What taxa were sampled for this study?
 - Hypothesis was tested using DNA extracted to trace mitochondrial genomes from 18 prehistoric canids and 20 modern wolves from Eurasian and American origin.
- What gene sequences were used for this study?
 - Wolves, dogs, including divergent breeds, recently published chinese indigenous dogs, and coyotes. (148 mitochondrial genomes)
- What phylogenetic methods were used to reconstruct the phylogenetic tree in Figure 1?
 - Maximum likelyhood, coalescence, and bayesian.

▶ Results and Discussion

- In Figure 1, which wolf sequence is most closely related to the extant dog clade A, and what geographic region is it from?
 - Argentina (pre-Columbian within clade A)
- In Figure 1, which clade of modern dog sequences has the oldest origin?
 Approximately how old is this clade?
 - Dog clade C, Germany, 14,700 years ago.

Quiz 1 3 Natural Selection

 Based upon Figure 1, how many times does it appear that modern extant dogs could possibly have been domesticated?

- Figure 1 suggests 4, but the the authors state, "the inferred recent divergence of clade B from wolves now found in Sweden and Ukraine implies that is might represent a mitochondrial genome introgressed from wolves rather than one established by domestication."
- What was the topology of the phylogenetic tree that was recovered, and therefore, which hypothesis was supported?
 - The findings support the conclusion that legacy of dogs derives from wolves of European origin.
 - Analysis of coalescence times support divergence time of >15,000 years ago.
 - Past mitochondrial and Y chromosome analysis suggestesd non-European, but had less supported data than these findings.

▶ Conclusions

- What are the major conclusions of the paper?
 - Three of four modern dog clades are more closely related to sequences from ancient European rather than extant wolves with divergence times >15,000 years ago.
- Was the taxonomic sampling sufficient to rule out alternative hypotheses?
 - Ancient panel did not contain specimens from Middle East or China.
 No, no ancient dog remains older than 13,000 years are known from those regions.
 - The mtDNA sequence tree is well supported, but represents a single genetic locus. Independent loci could offer more power to resolve phylogenetic relations.

6 Mendelian Genetics

7

8

9

11

12

13

14

16

Quiz 5 17

17

Quiz 5 18

18

Quiz 6 20

20

Quiz 6 15

15