Southern University of Science and Technology Linear Algebra I Final Examination

Department:	Math	Class:	
Student ID:		Name:	
Answer all parts of Qu	uestions (1))-(8). Total is	100 points.
试卷包含	含八道大题	Ī. 总分100.	

(1) (15 points)Let

$$A = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 1 & 1 & 4 \end{array} \right].$$

- (i) Describe the row space of A.
- (ii) Find a basis for the orthogonal complement of the row space of A.(Hint: Given a subspace V of \mathbb{R}^n , the space of all the vectors in \mathbb{R}^n orthogonal to V is called the orthogonal complement of V.)
- (iii) Split $\mathbf{x}=(3,3,3)^T$ into a row space component $\mathbf{x_r}$ and a nullspace component $\mathbf{x_n}$, i.e., $\mathbf{x}=\mathbf{x_r}+\mathbf{x_n}$.
- (1) (15 分)假定

$$A = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 1 & 1 & 4 \end{array} \right].$$

- (i) 写出 A 的行空间.
- (ii) 找出 A 的行空间的正交补的一组基.(提示: 给定 \mathbb{R}^n 的子空间 V, 则 V 的正交补是指所有与 V 中每个向量正交的向量构成的空间)
- (iii) 将向量 $\mathbf{x} = (\mathbf{3}, \mathbf{3}, \mathbf{3})^{\mathbf{T}}$ 分解为 $\mathbf{x} = \mathbf{x_r} + \mathbf{x_n}$, 其中 $\mathbf{x_r}$ 和 $\mathbf{x_n}$ 分别属于 A 的行空间和零空间.
- (2) (10 points)Let

$$A = \begin{bmatrix} 2 & 1-i \\ 1+i & 1 \end{bmatrix}, i = \sqrt{-1}.$$

- (i) Is A Hermitian?
- (ii) Find all the eigenvalues and eigenvectors of A.
- (iii) Find a unitary matrix U (namely, $U^{-1} = U^H$) that diagonalizes A, in other words, $U^{-1}AU = \Lambda$, Λ is a diagonal matrix with the eigenvalues on the main diagonal.
- (2) (10 分)考虑

$$A = \begin{bmatrix} 2 & 1-i \\ 1+i & 1 \end{bmatrix}, i = \sqrt{-1}.$$

- (i) A 是否为厄米特型矩阵?
- (ii) 找出 A 的所有的特征值及其对应的特征向量.
- (iii)找到酉矩阵 U (即 $U^{-1}=U^H$) 使 A 对角化, 换言之, $U^{-1}AU=\Lambda$, Λ 是一个对角阵,对角元为矩阵 A 的特征值.

- (3) (10 points) (i) Describe the positive definiteness of a matrix.
 - (ii)Decide whether the following matrices are positive definite, positive semidefinite or indefinite. (Hint: Use the determinant test)

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 0 & -2 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 0 & -2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 0 & -2 & 3 \end{bmatrix}.$$

- (3) (10 分) (i) 给出正定矩阵的定义.
 - (ii)判断下列矩阵是否正定,半正定,或者不定.(提示:利用行列式判别法)

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 0 & -2 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 0 & -2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -2 \\ 0 & -2 & 3 \end{bmatrix}.$$

(4) (10 points) Let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

- (i) Check the solvability of the system of linear equations $A\mathbf{x} = \mathbf{b}$.
- (ii) If the above system is not solvable, find the best estimate $\hat{\mathbf{x}}$ by least squares. (Hint: $\hat{\mathbf{x}}$ minimizes $||A\mathbf{x} \mathbf{b}||^2$).
- (iii) Suppose **p** is the projection of **b** onto the column space of A, that is, $\mathbf{p} = A\hat{\mathbf{x}}$. Verify that the error $\mathbf{b} \mathbf{p}$ is perpendicular to the columns of A.
- (4) (10 分) 考虑

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

- (i) 判断 $A\mathbf{x} = \mathbf{b}$ 是否可解.
- (ii) 如果上述方程不可解, 用最小二乘法求出一个最佳估计 $\hat{\mathbf{x}}$.(提示: \hat{x} 使得 $||A\mathbf{x} \mathbf{b}||^2$ 达到最小).
- (iii) 设 \mathbf{p} 为 \mathbf{b} 在 A 的列空间中的投影, 即: $\mathbf{p} = A\hat{\mathbf{x}}$, 证明误差向量 $\mathbf{b} \mathbf{p}$ 正交于 A 的列向量.

(5) (15 points)Let

- (i) Find the cofactor of x.
- (ii) If x = 0, find det A.
- (iii) Find det A for $x \neq 0$.

(5) (15 分)假定

- (i) 求 x 对应的代数余子式.
- (ii) 如果 x = 0, 求 det A.
- (iii) 如果 $x \neq 0$, 求 detA.

(6) (10 points)Let

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{array} \right].$$

- (i) Find the determinant of A.
- (ii) Find the condition under which A is invertible, and then find the inverse of A.

(6) (10 分)假设

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{array} \right].$$

- (i) 求出A 的行列式.
- (ii) 找出A 可逆的条件,并在该条件下求出它的逆.

(7) (15 points)Let

$$A = \left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \end{array} \right].$$

- (i) Find AA^T and A^TA .
- (ii) Find all the singular values of A.
- (iii) Find all the eigenvectors of both AA^T and A^TA .
- (iv) Find the singular value decomposition of A, in other words, find orthogonal matrices U and V, such that $A = U\Sigma V^T$.

(7) (15 分)考虑

$$A = \left[\begin{array}{rrr} -1 & 1 & 0 \\ 0 & -1 & 1 \end{array} \right].$$

- (i) 求出 AA^T 和 A^TA .
- (ii) 求出 A 的所有奇异值.
- (iii) 分别找出 AA^T 和 A^TA 的所有特征向量.
- (iv) 将 A 进行奇异值分解, 换言之, 找出正交矩阵 U 和 V, 使得 $A = U \Sigma V^T$.

(8) (15 points) Let

$$A = \left[\begin{array}{ccc} 0 & 2 & -1 \\ 2 & 3 & -2 \\ -1 & -2 & 0 \end{array} \right].$$

- (i) Find the eigenvalues and eigenvectors of A.
- (ii) Find an orthogonal matrix Q (namely, $Q^{-1} = Q^{T}$) that diagonalizes A (i.e. $Q^{-1}AQ = \Lambda$, Λ is a diagonal matrix).
- (iii) Compute A^k , where k is a positive integer.

(8) (15 分) 考虑

$$A = \left[\begin{array}{ccc} 0 & 2 & -1 \\ 2 & 3 & -2 \\ -1 & -2 & 0 \end{array} \right].$$

- (i) 找出 A 的所有的特征值及其对应的特征向量.
- (ii) 找到正交矩阵 Q (即 $Q^{-1}=Q^T$) 把 A 对角化(i.e., $Q^{-1}AQ=\Lambda$, Λ 是一个对角矩阵).
- (iii) 计算 A^k , 这里 k 是一个正整数.