

FACULTY OF INFORMATICS

Department of Computing

PROXECTO DE FIN DE CARREIRA DE ENXEÑERÍA INFORMÁTICA

Este será el título del proyecto

Author: Jorge Diz Pico

Tutor: Bertha Guijarro Berdiñas

Director: David Camacho

A Coruña, June 2012

8 June 2012 UNIVERSITY OF A CORUÑA

FACULTY OF INFORMATICS Campus de Elviña s/n 15071 - A Coruña (Spain)

Legal warning:

All total or partial reproduction, modification, and transmission by any means electronic, mechanic, fotocopy, record or other is strictly forbidden without previous written authorization from the author.

Acknowledgements

Quiero agradecer todo este esfuerzo a la gente que me ha apoyado durante todo este tiempo, a la vez que deseo y espero que este trabajo sirva para algo.

Pedro Pérez Pérez Julio de 2009

Abstract

This degree thesis presents a novel approach to adaptive level generation mixing clustering and grammars.

Keywords: procedural content generation, adaptive content generation, level generation, grammars, finite state machines, automata, clustering, gaming, mario

Table of contents

1.	Intr	roduction	1
	1.1.	Domain	1
	1.2.	Theoretical concepts	3
	1.3.	Report structure	3
2.	Obj	ectives	5
	2.1.	State of the Art	5
	2.2.	Problem	5
	2.3.	Proposal	5
3.	Ove	erview	7
	3.1.	Architecture	7
	3.2.	Methodology	8
	3.3.	Tools used	8
4.	Pro	filing	9
	4.1.	Clustering	9
		4.1.1. Data gathering	9
		4.1.1.1. Weka	9
5.	Scho	ematics	11
	5.1.	Profiles	11
	5.2.	Design lessons	11

6.	Der	ivation	13
	6.1.	parse2	13
	6.2.	The automata	13
7.	Exe	cution	15
	7.1.	Straight	15
	7.2.	Mixing	15
	7.3.	Phasing	15
8.	Res	ults	17
	8.1.	Evaluation	17
9.	Con	clusions	19
	9.1.	Future work	19
I.	Glos	ssary	21
	I.1.	Glossary, in itself	21
II.	Use	r manual	23
II	Sch	ematics	25
IV	.CIG	Paper	27
Bi	bliog	raphy	29

Índice de figuras

3.1.	Este sería	el p	ie de	figura.																												7
------	------------	------	-------	---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Table index

List of Algorithms

1.1.	Algoritmo AdaBoost	1
1.2.	Calculate $y = x^n$	2

Introduction

Das Computerwissenschaft.

1.1. Domain

Algorithm 1.1 Algoritmo AdaBoost

- 1. First!
- 2. Second.
 - a) Sub step
 - b) Dubstep
 - c) SCOOTER
- 3. Third.

end while

Algorithm 1.2 Calculate $y = x^n$ Require: $n \ge 0 \lor x \ne 0$ Ensure: $y = x^n$ $y \Leftarrow 1$ if n < 0 then $X \Leftarrow 1/x$ $N \Leftarrow -n$ else $X \Leftarrow x$ $N \Leftarrow n$ end if while $N \neq 0$ do if N is even then $X \Leftarrow X \times X$ $N \Leftarrow N/2$ else[N is odd] $y \Leftarrow y \times X$ $N \Leftarrow N - 1$ end if

1.2. Theoretical concepts

1.3. Report structure

Algorithms $\ref{eq:condition}$ y 1.2 are spectacular.

Objectives

What we intend to do.

2.1. State of the Art

Mondrian.

2.2. Problem

:trollface:

2.3. Proposal

I do.

Overview

Lakitu!

3.1. Architecture

Así introduzco una figura:

Figura 3.1: Este sería el pie de figura.

Figure 3.1 is nice-a.

3.2. Methodology

Didjerama.

3.3. Tools used

YOU're a tool.

Profiling

TSA here please extend your arms.

4.1. Clustering

The Galaxy is in Orion's belt.

4.1.1. Data gathering

I do not know, sir.

4.1.1.1. Weka

weka weka hey hey cause this is africa

Primer rrafo. whenever wherever

Schematics

Not schemes.

5.1. Profiles

Or phenomena, for that matter.

5.2. Design lessons

Planes are cool, though.

Derivation

Integration sucks.

6.1. parse2

Da cool library.

6.2. The automata

Domo arigato, Mr. Roboto.

Execution

Execute order 66.

7.1. Straight

No homo.

7.2. Mixing

aww yeah

7.3. Phasing

The Phantom Menace.

Results

Presults.

8.1. Evaluation

Five by five.

Capítulo 9

Conclusions

My work was great.

9.1. Future work

Nothing else to do!

Appendix I

Glossary

To create a glossary of terms you need to use package makeidx and then call commands makeindex and printindex.

To mark each term in the text, employ the index scope.

Finally, document must be compiled by the MakeIndex application that Latex brings with itself.

I.1. Glossary, in itself

It's probably a good idea to consult on the internet how to make this kind of stuff.

Index will supposedly be created wherever the printindex command is called.

, diagonal matrix, identity index.

Appendix II

User manual

Quick explanation on how to use the software.

Appendix III

Schematics

The different schematics could be attached here at the end.

Appendix IV

CIG Paper

Add, somehow, the CIG Paper here.

Bibliografía

Índice alfabético

diagonal

matrix, 21

hardware, 21

identity

matrix, 21