

Produktionswirtschaft II (Operative Produktionsplanung und -steuerung)

Univ.-Prof. Dr. Michael Manitz

Tel.: (0203) 379 - 1443

E-Mail: michael.manitz@uni-due.de

Universität Duisburg/Essen

Fakultät für Betriebswirtschaftslehre (Mercator School of Management)

Lehrstuhl für Betriebswirtschaftslehre,

insb. Produktionswirtschaft und Supply Chain Management

Lotharstr. 65

47057 Duisburg

www.scm.msm.uni-due.de

Ziel und Inhalt der Veranstaltungen

Modul Produktionswirtschaft und Supply Chain Management

- ► Einblick in einige wichtige Fragestellungen der Strukturierung und des Betriebs von Produktionssystemen
- Verwendung quantitativer Optimierungsmodelle
- ▶ Darstellung der Bedeutung der Berücksichtigung knapper Kapazitäten
- ▶ Darstellung tatsächlich existierender, praxisrelevanter Problemstellungen
- ▶ Übung an Hand von kleinen Anwendungsbeispielen

Ziel und Inhalt der Veranstaltungen

Modul Produktionswirtschaft und Supply Chain Management

- ► Einblick in einige wichtige Fragestellungen der Strukturierung und des Betriebs von Produktionssystemen
- Verwendung quantitativer Optimierungsmodelle
- ▶ Darstellung der Bedeutung der Berücksichtigung knapper Kapazitäten
- ▶ Darstellung tatsächlich existierender, praxisrelevanter Problemstellungen
- ▶ Übung an Hand von kleinen Anwendungsbeispielen

Vorlesung Produktionswirtschaft II (Operative Produktionsplanung und -steuerung)

- ► Einführung in die Fragestellungen der Produktionsprogrammplanung (Supply Network Planning: Master Planning, Capacity Check)
- ▶ Überblick über die Planungsaufgaben bei der Ressourceneinsatz- und Reihenfolgeplanung (Scheduling: Betriebssteuerung, Feinplanung)

Produktionswirtschaft II (Operative Produktionsplanung)

- Strukturelle Rahmenbedingungen der operativen Produktionsplanung und -steuerung

 - erwartete Nachfrage (Nachfrageprognose)
- Produktionsprogrammplanung
- Losgrößen- und Ressourceneinsatzplanung
 - - Ressourceneinsatzplanung: Resource-constrained Project Scheduling
 - * Feinsteuerung und Ablaufplanung: Scheduling
 - ▷ ... bei Fließproduktion
 - * Losgrößen- und Reihenfolgeplanung: Economic Lot Scheduling
 - * Einlastungsplanung: Car Sequencing & Level Scheduling
 - ▷ ... bei Zentrenproduktion

Domschke, W., A. **Scholl** und St. **Voß**, *Produktionsplanung* — *Ablauf-organisatorische Aspekte*

Günther, H.-O., und H. **Tempelmeier**, Supply Chain Analytics: Operations Management und Logistik vormals Produktion und Logistik

Helber, St., Operations Management Tutorial: Grundlagen der Modellierung und Analyse der betrieblichen Wertschöpfung

Tempelmeier, H., Production Analytics — Modelle und Algorithmen zur Produktionsplanung ehemals Produktionsplanung in Supply Chains

Tempelmeier, H., *Analytics im Bestandsmanagement* ehemals *Bestandsmanagement in Supply Chains*

Tempelmeier, H., Analytics in Supply Chain Management und Produktion: Übungen und Mini-Fallstudien

Weitere Informationen und Literaturhinweise unter:

www.produktion-und-logistik.de

www.advanced-planning.de

www.operations-management-online.de

Struktureller Rahmen der operativen Produktionsplanung

- Markt- und Produktionsstrategien
- Standorte/Logistikstruktur
- ► Infrastruktur/Materialflusssysteme
- ⇒ Schaffung von Leistungspotentialen/Aufbau von Kapazitäten

Gegenstand der operativen Produktionsplanung

- vom Kunden ausgehende Nachfrage
- vorhandener Bestand an Ressourcen
- ⇒ Ausschöpfen der Leistungspotentiale/Nutzung der Kapazitäten

(vgl. Tempelmeier (2008))

(vgl. Drexl/Fleischmann/Günther/Stadtler/Tempelmeier (1993), Tempelmeier (2008))

(vgl. Drexl/Fleischmann/Günther/Stadtler/Tempelmeier (1993), Tempelmeier (2008))

(vgl. Drexl/Fleischmann/Günther/Stadtler/Tempelmeier (1993), Tempelmeier (2008))

Nachfrageprognose

Zeitreihenanalyse und -extrapolation

Prognoseverfahren

Ausgangspunkt: Zeitpunkt t

Prognoseverfahren

Abschätzung erwarteter Nachfragemengen (Prognosewerte p_{t+1}, p_{t+2}, \ldots) aus n beobachteten Vergangenheitswerten $(\underbrace{\ldots, y_{t-n+1}, y_{t-n+2}, \ldots, y_{t-1}, y_t}_{,, Zeitreihe"})$ "Zeitreihe" (,, n-Tage-Linie")

Prognoseverfahren

Vorgehensweise

- 1. Untersuchung der charakteristischen Merkmale der Zeitreihe
- 2. Auswahl eines geeigneten Prognosemodells

- ► T langfristiger Trend
- ightharpoonup C mittelfristige (konjunkturelle) zyklische Schwankung
- ightharpoonup S kurzfristige (saisonale) zyklische Schwankung
- ▶ I irreguläre, zufällige Restschwankung

- ► T langfristiger Trend
- ightharpoonup C mittelfristige (konjunkturelle) zyklische Schwankung
- ightharpoonup S kurzfristige (saisonale) zyklische Schwankung
- ▶ I irreguläre, zufällige Restschwankung

Man stellt sich die Zeitreihe als Verknüfung der einzelnen Komponenten vor, z. B.:

$$ightharpoonup T + C + S + I$$

Nachfragemenge ${\cal Y}$

Nachfragemenge Y = T

Nachfragemenge Y = T + (S + I)

Nachfragemenge Y = T + S + I

Nachfragemenge Y = T + C

Nachfragemenge Y = (T + C)

Nachfragemenge Y = (T + C) + S + I

Restschwankungsfaktoren $\frac{Y}{T+C}$: S=I

- ► T langfristiger Trend
- ightharpoonup C mittelfristige (konjunkturelle) zyklische Schwankung
- ightharpoonup S kurzfristige (saisonale) zyklische Schwankung
- ▶ I irreguläre, zufällige Restschwankung

Man stellt sich die Zeitreihe als Verknüfung der einzelnen Komponenten vor, z. B.:

- ightharpoonup T + C + S + I
- $ightharpoonup T \cdot C \cdot S \cdot I$
- $ightharpoonup (T+C) \cdot S + I$
- $ightharpoonup (T+C) \cdot S \cdot I$

- ► T langfristiger Trend
- ightharpoonup C mittelfristige (konjunkturelle) zyklische Schwankung
- ightharpoonup S kurzfristige (saisonale) zyklische Schwankung
- ▶ I irreguläre, zufällige Restschwankung

Man stellt sich die Zeitreihe als Verknüfung der einzelnen Komponenten vor, z. B.:

$$ightharpoonup T + C + S + I$$

$$ightharpoonup T \cdot C \cdot S \cdot I$$

$$ightharpoonup (T+C) \cdot S + I$$

$$ightharpoonup (T+C) \cdot S \cdot I$$

- ightharpoonup glatte Komponente = T + C
- \triangleright Saisonfaktoren = S
- hdsaisonbereinigte Zeitreihe = $(T+C)\cdot I$

Prognoseverfahren

Vorgehensweise

- 1. Untersuchung der charakteristischen Merkmale der Zeitreihe
- 2. Auswahl eines geeigneten Prognosemodells
- 3. Schätzung der Koeffizienten des Prognosemodells
- 4. laufende Anwendung des Prognosemodells (Berechnung der Prognosewerte)
- 5. Beobachtung und Analyse der Prognosegenauigkeit im Zeitablauf

Prognoseverfahren

Ausgangspunkt: Zeitpunkt t

Prognoseverfahren

Abschätzung künftiger Nachfragemengen (Prognosewerte p_{t+1}, p_{t+2}, \ldots) aus n beobachteten Vergangenheitswerten $(\underbrace{\ldots, y_{t-n+1}, y_{t-n+2}, \ldots, y_{t-1}, y_t}_{\ldots})$

Ex-post-Prognose

Überprüfung der Prognosequalität durch Vergleich der Ex-post-Prognosewerte $p_{t-n+1}, p_{t-n+2}, \dots, p_{t-1}, p_t$ mit den beobachteten Vergangenheitswerten $y_{t-n+1}, y_{t-n+2}, \dots, y_{t-1}, y_t$

Prognosefehler

$$e_k = y_k - p_k \text{ oder } e_k = p_k - y_k \qquad (k = t - n + 1, \dots, t)$$

Ex-post-Prognose

Prognosefehler

$$e_k = y_k - p_k$$
 oder $e_k = p_k - y_k$ $(k = t - n + 1, \dots, t)$

mittlerer Prognosefehler (misst das Niveau der Prognosefehler)

$$\mu_e(t) = \frac{1}{n} \sum_{k=t-n+1}^{t} e_k$$

Varianz der Prognosefehler (misst die Streuung der Prognosefehler)

$$\sigma_e^2(t) = \frac{1}{n-1} \sum_{k=t-n+1}^{t} (e_k - \mu_e(t))^2$$

Standardabweichung der Prognosefehler

(misst die Streuung der Prognosefehler)

$$\sigma_e(t) = \sqrt{\sigma_e^2(t)}$$

Überwachung der Prognosequalität

mittlere absolute Abweichung (misst die Streuung der Prognosefehler)

$$MAD(t) = \frac{1}{n} \sum_{k=t-n+1}^{t} |e_k|$$

geglättete absolute Abweichung (misst die Streuung der Prognosefehler)

$$MAD(t) = \gamma \cdot |e_t| + (1 - \gamma) \cdot MAD(t - 1)$$

geglätteter Prognosefehler (misst das Niveau der Prognosefehler)

$$ERR(t) = \delta \cdot e_t + (1 - \delta) \cdot ERR(t - 1)$$

Abweichungssignal

$$SIG(t) = \frac{ERR(t)}{MAD(t)}$$

Man geht von der Eignung des Prognoseverfahrens aus, wenn:

Nachfrageprognose bei konstantem Niveau der Nachfragemengen

 $y_t = \text{konstantes Niveau} + \epsilon_t$

Ein unverzerrtes Prognosemodell ist gekennzeichnet durch:

$$\mathrm{E}\left\{\epsilon_{t}\right\} = 0$$

Prognosefunktion: $\widehat{y}_t = \mathbb{E}\{y_t\} = \mathbb{E}\{\text{konstantes Niveau}\} =: a$

Prognosefehler: $e_t = y_t - \hat{y}_t = y_t - a$

Minimiere den quadrierten Prognosefehler:

$$e_t^2 = (y_t - a)^2 = y_t^2 - 2 \cdot y_t \cdot a + a^2$$

$$\frac{\mathrm{d}e_t^2}{\mathrm{d}a} = -2 \cdot y_t + 2 \cdot a = 2 \cdot (a - y_t) \stackrel{!}{=} 0 \iff a = y_t$$

Die aktuellste Beobachtung ist die beste Prognose. Sie muss aber nicht repräsentativ sein. Aus diesem Grund sollte man die Prognose auf mehrere Beobachtungswerte beziehen.

 $y_t = \text{konstantes Niveau} + \epsilon_t$

Ein unverzerrtes Prognosemodell ist gekennzeichnet durch:

$$\mathbf{E}\left\{\epsilon_{t}\right\} = 0$$

Prognosefunktion: $\widehat{y}_t = \mathbb{E}\{y_t\} = \mathbb{E}\{\text{konstantes Niveau}\} =: a$

 $y_t = \text{konstantes Niveau} + \epsilon_t$

Ein unverzerrtes Prognosemodell ist gekennzeichnet durch:

$$\mathrm{E}\left\{\epsilon_{t}\right\} = 0$$

Prognosefunktion: $\widehat{y}_t = \mathbb{E}\{y_t\} = \mathbb{E}\{\text{konstantes Niveau}\} =: a$

Ex-post-Prognosefehler:

$$e_k = y_k - \widehat{y}_k = y_k - a$$

$$(k = t - n + 1, t - n + 2, \dots, t)$$

Schätzfunktion:

$$\widehat{y}_t = \frac{1}{n} \cdot \sum_{k=t-n+1}^t y_k$$

 $\implies n$ -periodiger ungewichteter gleitender Mittelwert

Mögliche Prognosefunktionen (zusammenfassende Übersicht)

► aktuelle Beobachtung

$$p_{t+i} = \hat{y}_t = y_t$$
 $(i = 0, 1, 2, \ldots)$

gleitender Durchschnitt (erster Ordnung)

$$p_{t+i} = \hat{y}_t = \frac{1}{n} \cdot \sum_{k=t-n+1}^{t} y_k$$
 (i = 0, 1, 2, ...)

exponentiell geglätteter Durchschnitt (erster Ordnung)

$$p_{t+i} = \hat{y}_t = (1 - \alpha) \cdot \hat{y}_{t-1} + \alpha \cdot y_t$$
 $(i = 0, 1, 2, ...)$

$$\widehat{y}_t = y_t^{(1)} := \alpha \cdot y_t + (1 - \alpha) \cdot y_{t-1}^{(1)}$$

Periode	Nachfragemenge
t	y_t
0	
1	3119
2	3591
3	1885
4	1680
5	3160
6	1975
7	2473
8	229
9	3882
10	2358
11	2250
12	2860
13	2650
14	2050

Periode	Nachfragemenge	$\alpha = 0.15$	$\alpha = 0.30$	$\alpha = 0.70$
t	y_t	$y_t^{(1)}$	$y_t^{(1)}$	$y_t^{(1)}$
0		3119.000	3119.000	3119.000
1	3119	3119.000	3119.000	3119.000
2	3591	3189.800	3260.600	3449.400
3	1885	2994.080	2847.920	2354.320
4	1680	2796.968	2497.544	1882.296
5	3160	2851.423	2696.281	2776.689
6	1975	2719.959	2479.897	2215.507
7	2473	2682.915	2477.828	2395.752
8	229	2314.828	1803.179	879.026
9	3882	2549.904	2426.826	2981.108
10	2358	2521.118	2406.178	2544.932
11	2250	2480.451	2359.325	2338.480
12	2860	2537.383	2509.527	2703.544
13	2650	2554.276	2551.669	2666.063
14	2050	2478.634	2401.168	2234.819

Einfluss des Glättungsparameters

Exponentielle Glättung erster Ordnung: Durchschnitte

Exponentielle Glättung erster Ordnung: Prognosen

Periode	Nachfragemenge	· ·	ntielle Glä	ttung mi	$t \alpha = 0.1$	15
t	y_t	$p_{t+1+\dots} = y_t^{(1)}$	e_t	ERR_t	MAD_t	SIG_t
0		3119.000				
1	3119	3119.000	0.000			
2	3591	3189.800	472.000			
3	1885	2994.080	-1304.800	0.000	592.267	0.000
4	1680	2796.968	-1314.080	-65.704	628.357	-0.105
5	3160	2851.423	363.032	-44.267	615.091	-0.072
6	1975	2719.959	-876.423	-85.875	628.158	-0.137
7	2473	2682.915	-246.959	-93.929	609.098	-0.154
8	229	2314.828	-2453.915	-211.929	701.339	-0.302
9	3882	2549.904	1567.172	-122.973	744.630	-0.165
10	2358	2521.118	-191.904	-126.420	716.994	-0.176
11	2250	2480.451	-271.118	-133.655	694.700	-0.192
12	2860	2537.383	379.549	-107.995	678.943	-0.159
13	2650	2554.276	112.617	-96.964	650.626	-0.149
14	2050	2478.634	-504.276	-117.330	643.309	-0.182

Periode	Nachfragemenge	· .	ntielle Glä	ttung mi	$t \alpha = 0.3$	30
t	y_t	$p_{t+1+\dots} = y_t^{(1)}$	e_t	ERR_t	MAD_t	SIG_t
0		3119.000				
1	3119	3119.000	0.000			
2	3591	3260.600	472.000			
3	1885	2847.920	-1375.600	0.000	615.867	0.000
4	1680	2497.544	-1167.920	-58.396	643.469	-0.091
5	3160	2696.281	662.456	-22.353	644.419	-0.035
6	1975	2479.897	-721.281	-57.300	648.262	-0.088
7	2473	2477.828	-6.897	-54.780	616.194	-0.089
8	229	1803.179	-2248.828	-164.482	697.825	-0.236
9	3882	2426.826	2078.821	-52.317	766.875	-0.068
10	2358	2406.178	-68.826	-53.142	731.973	-0.073
11	2250	2359.325	-156.178	-58.294	703.183	-0.083
12	2860	2509.527	500.675	-30.346	693.057	-0.044
13	2650	2551.669	140.473	-21.805	665.428	-0.033
14	2050	2401.168	-501.669	-45.798	657.240	-0.070

Periode	Nachfragemenge	· ·	ntielle Glä	ttung mi	$t \alpha = 0.$	70
t	y_t	$p_{t+1+\dots} = y_t^{(1)}$	e_t	ERR_t	MAD_t	SIG_t
0		3119.000				
1	3119	3119.000	0.000			
2	3591	3449.400	472.000			
3	1885	2354.320	-1564.400	0.000	678.800	0.000
4	1680	1882.296	-674.320	-33.716	678.576	-0.050
5	3160	2776.689	1277.704	31.855	708.532	0.045
6	1975	2215.507	-801.689	-9.822	713.190	-0.014
7	2473	2395.752	257.493	3.544	690.405	0.005
8	229	879.026	-2166.752	-104.971	764.223	-0.137
9	3882	2981.108	3002.974	50.426	876.160	0.058
10	2358	2544.932	-623.108	16.749	863.508	0.019
11	2250	2338.480	-294.932	1.165	835.079	0.001
12	2860	2703.544	521.520	27.183	819.401	0.033
13	2650	2666.063	-53.544	23.147	781.108	0.030
14	2050	2234.819	-616.063	-8.814	772.856	-0.011

Periode	Nachfragemenge	gleiten	der Durch	schnitt r	nit n =	t
t	y_t	$p_{t+1+\dots} = y_t^{(1)}$	e_t	ERR_t	MAD_t	SIG_t
0		3119.000				
1	3119	3119.000	0.000			
2	3591	3355.000	472.000			
3	1885	2865.000	-1470.000	0.000	647.333	0.000
4	1680	2568.750	-1185.000	-59.250	674.217	-0.088
5	3160	2687.000	591.250	-26.725	670.068	-0.040
6	1975	2568.333	-712.000	-60.989	672.165	-0.091
7	2473	2554.714	-95.333	-62.706	643.323	-0.097
8	229	2264.000	-2325.714	-175.856	727.443	-0.242
9	3882	2443.778	1618.000	-86.164	771.971	-0.112
10	2358	2435.200	-85.778	-86.144	737.661	-0.117
11	2250	2418.364	-185.200	-91.097	710.038	-0.128
12	2860	2455.167	441.636	-64.460	696.618	-0.093
13	2650	2470.154	194.833	-51.496	671.529	-0.077
14	2050	2440.143	-420.154	-69.929	658.960	-0.106

Periode	Nachfragemenge	_	der Durchs	schnitt m	nit n = 1	4
t	y_t	$p_{t+1+\dots} = y_t^{(1)}$	e_t	ERR_t	MAD_t	SIG_t
0		2440.143				
1	3119	2440.143	678.857			
2	3591	2440.143	1150.857			
3	1885	2440.143	-555.143	0.000	794.952	0.000
4	1680	2440.143	-760.143	-38.007	793.212	-0.048
5	3160	2440.143	719.857	-0.114	789.544	0.000
6	1975	2440.143	-465.143	-23.365	773.324	-0.030
7	2473	2440.143	32.857	-20.554	736.301	-0.028
8	229	2440.143	-2211.143	-130.084	810.043	-0.161
9	3882	2440.143	1441.857	-51.487	841.634	-0.061
10	2358	2440.143	-82.143	-53.019	803.659	-0.066
11	2250	2440.143	-190.143	-59.876	772.983	-0.077
12	2860	2440.143	419.857	-35.889	755.327	-0.048
13	2650	2440.143	209.857	-23.602	728.053	-0.032
14	2050	2440.143	-390.143	-41.929	711.158	-0.059

Beispiel II Nachfrageprognose mit exponentieller Glättung ($\alpha = 0.2$)

Periode	1	2	3	4	5	6	7	8
Nachfragemenge	180	220	230	265	280	300	320	360

$$y_1^{(1)} := 180$$

Beispiel II Nachfrageprognose mit exponentieller Glättung ($\alpha = 0.2$)

Periode	1	2	3	4	5	6	7	8
Nachfragemenge	180	220	230	265	280	300	320	360

$$y_1^{(1)} := 180$$

 $y_2^{(1)} = 0.2 \cdot 220 + (1 - 0.2) \cdot 180.00 = 188.00$

Beispiel II Nachfrageprognose mit exponentieller Glättung ($\alpha = 0.2$)

Periode	1	2	3	4	5	6	7	8
Nachfragemenge	180	220	230	265	280	300	320	360

$$y_1^{(1)} := 180$$

$$y_2^{(1)} = 0.2 \cdot 220 + (1 - 0.2) \cdot 180.00 = 188.00$$

$$y_3^{(1)} = 0.2 \cdot 230 + (1 - 0.2) \cdot 188.00 = 196.40$$

$$y_4^{(1)} = 0.2 \cdot 265 + (1 - 0.2) \cdot 196.40 = 210.12$$

$$y_5^{(1)} = 0.2 \cdot 280 + (1 - 0.2) \cdot 210.12 = 224.10$$

$$y_6^{(1)} = 0.2 \cdot 300 + (1 - 0.2) \cdot 224.10 = 239.28$$

$$y_7^{(1)} = 0.2 \cdot 320 + (1 - 0.2) \cdot 239.28 = 255.42$$

$$y_8^{(1)} = 0.2 \cdot 360 + (1 - 0.2) \cdot 255.42 = 276.34$$

Beispiel II Nachfrageprognose mit exponentieller Glättung ($\alpha = 0.2$)

Periode	1	2	3	4	5	6	7	8
Nachfragemenge	180	220	230	265	280	300	320	360

$$y_1^{(1)} := 180$$

$$y_2^{(1)} = 0.2 \cdot 220 + (1 - 0.2) \cdot 180.00 = 188.00$$

$$y_3^{(1)} = 0.2 \cdot 230 + (1 - 0.2) \cdot 188.00 = 196.40$$

$$y_4^{(1)} = 0.2 \cdot 265 + (1 - 0.2) \cdot 196.40 = 210.12$$

$$y_5^{(1)} = 0.2 \cdot 280 + (1 - 0.2) \cdot 210.12 = 224.10$$

$$y_6^{(1)} = 0.2 \cdot 300 + (1 - 0.2) \cdot 224.10 = 239.28$$

$$y_7^{(1)} = 0.2 \cdot 320 + (1 - 0.2) \cdot 239.28 = 255.42$$

$$y_8^{(1)} = 0.2 \cdot 360 + (1 - 0.2) \cdot 255.42 = 276.34 = \dots = p_8 = p_9 = p_{10} = p_{11} = \dots$$

Beispiel II Nachfrageprognose mit exponentieller Glättung ($\alpha = 0.2$)

Periode	1	2	3	4	5	6	7	8
Nachfragemenge	180	220	230	265	280	300	320	360

Periode t	Beobachtung y_t	Durchschnitt $y_t^{(1)}$	Prognose p_t
1	180	180.00	
2	220	188.00	180.00
3	230	196.40	188.00
4	265	210.12	196.40
5	280	224.10	210.12
6	300	239.28	224.10
7	320	255.42	239.28
8	360	276.34	255.42
9			276.34
10			276.34
11			276.34
l i			:

Liegt ein Trend vor, laufen die Prognosewerte mittels exponentieller Glättung erster Ordnung systematisch hinterher.

Jeder Durchschnitt aus mehreren aufeinanderfolgenden Beobachtungswerten — welcher Art auch immer — läuft dem Trend systematisch hinterher.

Beim arithmetischen Mittel ("gleitender Durchschnitt", "n-Tage-Linie") ist das Alter der Durchschnitts-/Prognosewerte leicht ermittelbar: $\frac{n-1}{2}$.

Wie sieht es bei den mit Hilfe der exponentiellen Glättung ermittelten Durchschnitts-/Prognosewerten aus?

Beispiel II Nachfrageprognose mit exponentieller Glättung ($\alpha = 0.2$)

Periode	1	2	3	4	5	6	7	8
Nachfragemenge	180	220	230	265	280	300	320	360

Beispiel II Nachfrageprognose mit exponentieller Glättung ($\alpha = 0.2$)

Periode	1	2	3	4	5	6	7	8
Nachfragemenge	180	220	230	265	280	300	320	360

Für jede Durchschnittsberechnung ...

- .. müssen die folgenden Fragen beanzwortet werden:
- ► Zu welchem Zeitpunkt wird der Durchschnitt berechnet?
- ► Auf welchen Zeitpunkt bezieht sich der berechnete Durchschnitt?
- ► Auf welchen Zeitpunkt beziehen sich die daraus abgeleiteten Prognosen?
 - ▷ Ex-ante-Prognosen: I. d. R. auf die künftige Entwicklung.
 - Ex-post-Prognosen: I. d. R. auf den Berechnungszeitpunkt und auf die vergangene Entwicklung, um die Entwicklung der Prognosefehler zu beobachten ("Trainingsdaten").

Die Antworten auf diese Fragen sind kontextbezogen.

Noch'n Beispiel Ihr Notendurchschnitt nach dem 2. Semester

Der Studiendekan bestimmt zum Ende des 2. Semesters Ihren Notendurchschnitt, um eine Einschätzung und Prognose abzugeben, wie Ihr Leistungsfortschritt aussieht (ex-post-Durchschnitt) und wie es wohl weitergehen wird (ex-ante-Prognose). S. Prüfungsordnung!

Für jede Durchschnittsberechnung bei Trend gilt:

Beispiel II Nachfrageprognose mit exponentieller Glättung ($\alpha = 0.2$)

Periode	1	2	3	4	5	6	7	8
Nachfragemenge	180	220	230	265	280	300	320	360

Nachfrageprognose bei trendförmigem Nachfrageverlauf

Exponentielle Glättung bei Vorliegen eines Trends: Trendkorrektur

Trendmodell

Trendgerade (über n Beobachtungswerte, auf t - n = 0 bezogen):

$$y_i = a + b \cdot i + \epsilon_i \qquad (i = t - n + 1, t - n + 2, \dots, t)$$

Prognosefunktion (extrapolierte Trendgerade) (ex-ante oder ex-post, auf den Koordinatenursprung bezogen):

$$p_i = E\{y_i\} = a + b \cdot i + E\{\epsilon_i\}$$
 $(i = \dots, t - n + 1, t - n + 2, \dots, t, t + 1, t + 2, \dots)$

Exponentiell geglätteter Durchschnittswert (zum Zeitpunkt t):

$$y_{t}^{(1)} = \alpha \cdot y_{t} + (1 - \alpha) \cdot y_{t-1}^{(1)}$$

$$= \alpha \cdot y_{t} + (1 - \alpha) \cdot \alpha \cdot y_{t-1} + (1 - \alpha)^{2} \cdot y_{t-2}^{(1)}$$

$$= \alpha \cdot y_{t} + (1 - \alpha) \cdot \alpha \cdot y_{t-1} + (1 - \alpha)^{2} \cdot \alpha \cdot y_{t-2} + (1 - \alpha)^{3} \cdot y_{t-3}^{(1)}$$

$$= \alpha \cdot y_{t} + (1 - \alpha) \cdot \alpha \cdot y_{t-1} + (1 - \alpha)^{2} \cdot \alpha \cdot y_{t-2} + (1 - \alpha)^{3} \cdot \alpha \cdot y_{t-3} + (1 - \alpha)^{4} \cdot y_{t-4}^{(1)}$$

$$= \sum_{k=0}^{t-1} \alpha \cdot (1 - \alpha)^{k} \cdot y_{t-k} + (1 - \alpha)^{t} \cdot y_{0}^{(1)}$$

Exponentiell geglätteter Durchschnittswert (zum Zeitpunkt t):

$$y_t^{(1)} = \alpha \cdot y_t + (1 - \alpha) \cdot y_{t-1}^{(1)}$$

$$= \sum_{k=0}^{t-1} \alpha \cdot (1 - \alpha)^k \cdot y_{t-k} + (1 - \alpha)^t \cdot y_0^{(1)}$$

Exponentiell geglätteter Durchschnittswert (zum Zeitpunkt t):

$$y_t^{(1)} = \alpha \cdot y_t + (1 - \alpha) \cdot y_{t-1}^{(1)}$$

$$= \sum_{k=0}^{t-1} \alpha \cdot (1 - \alpha)^k \cdot y_{t-k} + (1 - \alpha)^t \cdot y_0^{(1)}$$

$$E\left\{y_{t}^{(1)}\right\} = \sum_{k=0}^{t-1} \alpha \cdot (1-\alpha)^{k} \cdot (a+b\cdot(t-k)) + (1-\alpha)^{t} \cdot E\left\{y_{0}^{(1)}\right\}$$

$$\lim_{t \to \infty} \mathbf{E} \left\{ y_t^{(1)} \right\} = \underbrace{\sum_{k=0}^{\infty} \alpha \cdot (1 - \alpha)^k \cdot (a + b \cdot t) - b \cdot \sum_{k=0}^{\infty} k \cdot \alpha \cdot (1 - \alpha)^k}_{= 1}$$

Für $t \to \infty$ gilt offenbar:

$$\mathrm{E}\left\{y_{t}^{(1)}\right\} = \mathrm{E}\left\{y_{t}\right\} - b \cdot \frac{1-\alpha}{\alpha} \iff \text{systematischer Fehler}$$

Exponentiell geglättete Durchschnitte erster Ordnung:

$$y_t^{(1)} = \alpha \cdot y_t + (1 - \alpha) \cdot y_{t-1}^{(1)}$$

Exponentiell geglättete Durchschnitte zweiter Ordnung (d. h., die Durchschnitte erster Ordnung werden nochmal exponentiell geglättet):

$$y_t^{(2)} = \alpha \cdot y_t^{(1)} + (1 - \alpha) \cdot y_{t-1}^{(2)}$$

Schätzwert für das aktuelle Niveau der Beobachtungswerte zum Zeitpunkt t (= aktueller Achsenabschnitt der Trendgeraden):

$$\widehat{a}_t = 2 \cdot y_t^{(1)} - y_t^{(2)}$$

Schätzwert für die Steigung der Trendgeraden zum Zeitpunkt t:

$$\widehat{b}_t = \frac{\alpha}{1 - \alpha} \cdot \left(y_t^{(1)} - y_t^{(2)} \right)$$

Prognose bei linearem Trend

Prognose bei linearem Trend

Exponentiell geglättete Durchschnitte erster Ordnung:

$$y_t^{(1)} = \alpha \cdot y_t + (1 - \alpha) \cdot y_{t-1}^{(1)}$$

Exponentiell geglättete Durchschnitte zweiter Ordnung (d. h., die Durchschnitte erster Ordnung werden nochmal exponentiell geglättet):

$$y_t^{(2)} = \alpha \cdot y_t^{(1)} + (1 - \alpha) \cdot y_{t-1}^{(2)}$$

Schätzwert für das aktuelle Niveau der Beobachtungswerte zum Zeitpunkt t (= aktueller Achsenabschnitt der Trendgeraden):

$$\widehat{a}_t = 2 \cdot y_t^{(1)} - y_t^{(2)}$$

Schätzwert für die Steigung der Trendgeraden zum Zeitpunkt t:

$$\widehat{b}_t = \frac{\alpha}{1 - \alpha} \cdot \left(y_t^{(1)} - y_t^{(2)} \right)$$

Prognosewert des Bedarfs für eine zukünftige Periode t + i:

$$p_{t+i} = \hat{a}_t + \hat{b}_t \cdot i = 2 \cdot y_t^{(1)} - y_t^{(2)} + \frac{\alpha}{1 - \alpha} \cdot \left(y_t^{(1)} - y_t^{(2)} \right) \cdot i$$

Initialisierung:

$$y_0^{(1)} = \widehat{a}_0 - \widehat{b}_0 \cdot \frac{1 - \alpha}{\alpha}$$

$$y_0^{(2)} = \widehat{a}_0 - 2 \cdot \widehat{b}_0 \cdot \frac{1 - \alpha}{\alpha}$$

Aktualisierung der gleitenden Durchschnitte:

$$y_t^{(1)} = \alpha \cdot y_t + (1 - \alpha) \cdot y_{t-1}^{(1)}$$

$$y_t^{(2)} = \alpha \cdot y_t^{(1)} + (1 - \alpha) \cdot y_{t-1}^{(2)}$$

Aktualisierung der Parameter der Trendgeraden:

$$\widehat{a}_t = 2 \cdot y_t^{(1)} - y_t^{(2)}$$

$$\widehat{b}_t = \frac{\alpha}{1 - \alpha} \cdot \left(y_t^{(1)} - y_t^{(2)} \right)$$

Prognosewert des Bedarfs für eine zukünftige Periode t + i:

$$p_{t+i} = \widehat{a}_t + \widehat{b}_t \cdot i$$

Beispiel Exponentielle Glättung mit Trendkorrektur ($\alpha = 0.1$)

Nachfragedaten für 1997:

t	y_t	$y_t^{(1)}$	$y_t^{(2)}$	\widehat{a}_t	\widehat{b}_t	p_{t+1}	e_t
0		177.0800	79.1600	275.0000	10.8800	285.8800	
1	317	191.0720	90.3512	291.7928	11.1912	302.9840	31.1200
2	194	191.3648	100.4526	282.2770	10.1014	292.3784	-108.9840
3	312	203.4283	110.7501	296.1065	10.2976	306.4041	19.6216
4	316	214.6855	121.1437	308.2273	10.3935	318.6208	9.5959
5	322	225.4169	131.5710	319.2629	10.4273	329.6902	3.3792
6	334	236.2752	142.0414	330.5091	10.4704	340.9795	4.3098
7	317	244.3477	152.2721	336.4234	10.2306	346.6540	-23.9795
8	356	255.5129	162.5961	348.4298	10.3241	358.7538	9.3460
9	428	272.7617	173.6127	371.9106	11.0166	382.9272	69.2462
10	411	286.5855	184.9100	388.2610	11.2973	399.5583	28.0728
11	494	307.3269	197.1517	417.5022	12.2417	429.7439	94.4417
12	412	317.7942	209.2159	426.3726	12.0643	438.4368	-17.7439

(vgl. Tempelmeier (2008))

Beispiel Exponentielle Glättung mit Trendkorrektur ($\alpha = 0.1$)

Nachfragedaten für 1998:

t	y_t	$y_t^{(1)}$	$y_t^{(2)}$	\widehat{a}_t	\widehat{b}_t	p_{t+1}	e_t
12	412	317.7942	209.2159	426.3726	12.0643	438.4368	-17.7439
13	460	332.0148	221.4958	442.5338	12.2799	454.8137	21.5632
14	395	338.3133	233.1776	443.4491	11.6818	455.1309	-59.8137
15	392	343.6820	244.2280	443.1360	11.0504	454.1864	-63.1309
16	447	354.0138	255.2066	452.8210	10.9786	463.7996	-7.1864
17	452	363.8124	266.0672	461.5577	10.8606	472.4183	-11.7996
18	571	384.5312	277.9136	491.1488	11.8464	502.9952	98.5817
19	517	397.7781	289.9000	505.6561	11.9864	517.6426	14.0048
20	397	397.7003	300.6800	494.7205	10.7800	505.5005	-120.6426
21	410	398.9302	310.5051	487.3554	9.8250	497.1804	-95.5005
22	579	416.9372	321.1483	512.7261	10.6432	523.3694	81.8196
23	473	422.5435	331.2878	513.7992	10.1395	523.9387	-50.3694
24	558	436.0891	341.7679	530.4103	10.4801	540.8905	34.0613

(vgl. Tempelmeier (2008))

