1 Gleichstromkreis

1.1 Grundlagen

$$e=1.6\cdot 10^{-19}C$$

$$[Q]=1 \text{ Coulomb}$$

$$I=\frac{Q}{t} \qquad \qquad [I]=1 \text{ Ampère}$$

$$[U]=1 \text{ Volt} \qquad \qquad [R]=1 \text{ Ohm, } 1 \Omega$$

Die Spannung U ist von \oplus nach \ominus gerichtet.

$$F = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2}$$

$$\epsilon_0 = 8.854 \cdot 10^{-12} \frac{As}{Vm}$$
 Elektronengeschwindigkeit: $v = \frac{I}{enA}$

Arbeit:
$$W=QU$$

$$W=ItU$$
 Leistung: $P=\frac{W}{t}=UI=\frac{U^2}{R}=I^2R$
$$[P]=W=\frac{J}{s}$$

1.2 Farbkodierung

Farbe	1. Ring	2. Ring	3. Ring	4. Ring	5. Ring	6. Ring
	(1. Ziffer)	(2. Ziffer)	(3. Ziffer)	(Multiplikator)	(Toleranz)	(TempKoeffizient)
silber	_	_	_	10 ⁻²	_	_
gold	_	_	_	10 ⁻¹	_	_
schwarz	_	0	0	10 ⁰	_	200 10 ⁻⁶ K ⁻¹
braun	1	1	1	10 ¹	±1%	100 10 ⁻⁶ K ⁻¹
rot	2	2	2	10 ²	±2 %	50 10 ⁻⁶ K ⁻¹
orange	3	3	3	10 ³	_	15 10 ⁻⁶ K ⁻¹
gelb	4	4	4	10 ⁴	_	25 10 ⁻⁶ K ⁻¹
grün	5	5	5	10 ⁵	±0.5 %	_
blau	6	6	6	10 ⁶	±0.25 %	10 10 ⁻⁶ K ⁻¹
violett	7	7	7	_	±0.1%	5 10 ⁻⁶ K ⁻¹
grau	8	8	8	_	±0.05 %	_
weiss	9	9	9	_	_	_

Widerstandswert in Ω Toleranz								
			Widerstandswert in Ω					
Farbe		1. Ring 2. Ring (1. Ziffer)		3. Ring (Multiplikator)	4. Ring			
"keine"	х	_	_	_	±20 %			
silber		_	_	10-2 = 0.01	±10 %			
gold		_	_	10 ⁻¹ = 0.1	±5 %			
schwarz		_	0	100 = 1	_			
braun		1	1	10 ¹ = 10	±1 %			
rot		2	2	10 ² = 100	±2 %			
orange		3	3	10 ³ = 1.000	_			
gelb		4	4	104 = 10.000	_			
grün		5	5	105 = 100.000	±0.5 %			
blau		6	6	10 ⁶ = 1.000.000	±0.25 %			
violett		7	7	10 ⁷ = 10.000.000	±0.1%			
grau		8	8	108 = 100.000.000	±0.05 %			
weiss		9	9	109 = 1.000.000.000	_			

1.3 Spezifischer Widerstand

$$\begin{split} R &= \rho \frac{l}{A} \qquad \kappa = \frac{1}{\rho} \qquad [\rho] = \Omega m \qquad [\kappa] = \frac{S}{m} \\ \rho(T) &= \rho_{20^{\circ}C} [1 + \alpha (T - 20^{\circ}C)] = \rho_{20^{\circ}C} (1 + \alpha \Delta T) \end{split}$$

für Halbleiter ist $\alpha < 0$. ρ nimmt mit steigender Temperatur ab.

Material	spezifischer Widerstand	spezifischer Widerstand		
	[Ωm²/m]	[Ωmm²/m]		
Silber	1.6·10 ⁻⁸	1.6·10 ⁻²		
Kupfer	1.7·10 ⁻⁸	1.7·10 ⁻²]	
Gold	2.4·10 ⁻⁸	2.4·10 ⁻²	Leiter	
Aluminium	2.8·10 ⁻⁸	2.8·10 ⁻²		
Stahl	14·10 ⁻⁸ 14·10 ⁻²			
Kohlenstoff	3.5·10 ⁻⁵	35		
Germanium	0.42	4.2·10 ⁵	Halbleiter	
Silizium	640	6.4·10 ⁸	паівіеітег	
Glas	2·10 ¹²	2·10 ¹⁸		
Porzellan	5·10 ¹²	5·10 ¹⁸	Nichtleiter	
Gummi	10 ¹³ bis 10 ¹⁵	10 ¹⁹ bis 10 ²¹		

1.3.1 Beispiel

$$n = 37 d = 2 \,\text{mm} \rho_{20^{\circ}C} = 2.65 \times 10^{-2} \,\Omega \,\text{mm}^{2} \,\text{m}^{-1}$$

$$R = \rho \frac{l}{A} = 2.65 \times 10^{-2} \,\Omega \,\text{mm}^{2} \,\text{m}^{-1} \frac{1000 \,\text{m}}{116.2 \,\text{mm}^{2}} = 0.228 \,\Omega$$

$$A = n \frac{d^{2}\pi}{4} = 116.2 \,\text{mm}^{2}$$

$$P = UI = I^{2}R = (100 \,\text{A})^{2}(0.228 \,\Omega)$$

$$\rho_{45^{\circ}C} = \rho_{20^{\circ}C}(1 + \alpha \Delta T) \Rightarrow R_{45^{\circ}C} = \dots$$

1.4 Parametrische Widerstände

1.4.1 PTC

Positive Temperature Coefficient, Kaltleiter, Widerstand steigt mit steigender Temperature, $\alpha>0$.

1.4.2 NTC

Negative Temperature Coefficient, Heissleiter, Widerstand sinkt mit steigender Temperatur, $\alpha < 0$.

1.4.3 LDR

Light Dependent Resistor, Widerstand sinkt mit wachsendem Lichteinfall, relative lange Reaktionszeit.

1.4.4 Varistor

VARiable resISTOR, Voltage Dependent Resistor: VDR, oberhalb bestimmter Schwellspannung wird Widerstand plötzlich kleiner.

1.4.5 Halbleiterplättchen

Widerstand wird kleiner mit steigender Temperatur.

2 Netzwerkanalyse

2.1 Kirchhoffsche Gesetze

2.1.1 Knotengleichungen

$$\sum_{k=1}^{n} I_k = 0$$

Die Summe der Ströme über einen Knoten ist 0.

Die Summe der Ströme über eine Hüllfläche ist 0.

2.1.2 Maschengleichung

$$\sum_{k=1}^{n} U_k = 0$$

Die Summe aller Spannungen in einer Masche ist 0.

2.2 Reihenschaltung

Alle Bauelemente haben gleichen Strom. Summe der Teilspannungen ergibt Gesamtspannung.

$$\frac{U_i}{U} = \frac{R_i}{R_q}$$

$$R_g = \sum_{k=1}^n R_k$$

2.3 Parallelschaltung

Alle Bauelemente haben gleiche Spannung.

$$\frac{I_i}{I} = \frac{R_g}{R_i}$$

$$R_g = (\sum_{k=1}^n 1/R_i)^{-1}$$

2.3.1 Spannungsteiler

2.3.2 Stromteiler

$$I_1 = \frac{R_2}{R_1 + R_2} I$$

$$\bigcup_{U} I_i R_i R_2$$

2.4 Leistungsanpassung

Die maximale Leistung über den Lastwiderstand R_a ergibt sich bei Widerstandsanpassung: $R_a = R_i$.

Leistung:
$$(\frac{U_q}{R_i + R_a})^2 R_a$$

$$P_m ax \rightarrow \frac{dP_{R_a}}{dR_a}$$

Maximal abgegebene Leistung:
$$P_{Ra,max} = \frac{U_q^2}{4R_i} = \frac{U_q^2}{4R_a}$$

2.5 Spannungsquelle / Stromquelle

Äquivalente Quellen: $U_q = I_q R_{i,I}$ $I_q = U_q / R_{i,U}$ $\Rightarrow R_{i,I} = R_{i,U}$

2.6 Wirkungsgrad

$$\begin{split} \eta &= \frac{P_{R_a}}{P_{Ges}} = \frac{P_{Nutzbar}}{P_{Zugefuehrt}} \leq 1 \\ \text{Verlustleistung: } P_{Ges} - P_{R_a} \end{split}$$

Im Falle der Leistungsanpassung ist $\eta = 50\%$. Für $R_a \gg R_i$ geht η gegen 100% allerdings wird auch die Gesamtleistung kleiner.

2.7 Stern-Dreieck-Umwandlung

 $Dreieck \rightarrow Stern$ $R_{1} = \frac{R_{12}R_{31}}{R_{12} + R_{23} + R_{31}} \qquad R_{12} = R_{1} + R_{2} + \frac{R_{1}R_{2}}{R_{3}}$ $R_{2} = \frac{R_{23}R_{12}}{R_{12} + R_{23} + R_{31}} \qquad R_{23} = R_{2} + R_{3} + \frac{R_{2}R_{3}}{R_{1}}$ $R_{3} = \frac{R_{23}R_{31}}{R_{12} + R_{23} + R_{31}} \qquad R_{31} = R_{3} + R_{1} + \frac{R_{3}R_{1}}{R_{2}}$

 $Stern \rightarrow Dreieck$

$$R_{12} = R_1 + R_2 + \frac{R_1 R_2}{R_3}$$

$$R_{23} = R_2 + R_3 + \frac{R_2 R_3}{R_1}$$

$$R_{24} = R_2 + R_4 + \frac{R_3 R_1}{R_1}$$

bei Symmetrie: $R_{\lambda} = \frac{R_{\Delta}^2}{3R_{\Delta}} = \frac{R_{\Delta}}{3}$ $3R_{\lambda} = R_{\Delta}$

2.8 Superpositionsprinzip

$$I_1 = I_{11} + I_{12}$$

Wenn eine Schaltung mehrere Quellen enthält, können Ströme und Spannungen für jede Quelle einzeln berechnet werden. Spannungsquelle \rightarrow Kurzschluss, Stromquelle \rightarrow Leerlauf.

2.9 Ersatzspannungsquelle

aktiver Zweipol: besteht nur aus linearen Quellen und Widerständen. Kann durch eine Ersatzspannungsquelle mit U_q ersetzt werden. (U_q erhalten aus dem aktiven Zweipol mit $R_a = \infty$

$$U_q = R_i I_K$$

$$P_{max}|_{R_L = R_i} = \left(\frac{U_q}{2}\right)^2 \cdot \frac{1}{R_i}$$

2.10 Maschenstromverfahren

- 1. Ersetze **Stromquellen** durch einen **Leerlauf**, dabei werden die beiden **Elementarmaschen**, die die Stromquelle enthielten, zu einer neuen.
- 2. Weise jeder Elementarmasche einen Maschenstrom mit Umlaufsinn zu.
- 3. Füge die Stromquellen wieder ein. Ergänze zusätzliche Maschenströme, die jeweils nur über eine Stromquelle fliessen und in Richtung des Stromes der Quelle weisen. Maschenstrom = Strom durch Quelle.
- 4. Stelle für jede Elementarmasche die Maschengleichung auf. $U_{R_i} = R_i * \sum I_{M,R_i}$.

V1: nur Maschenströme fliessen, benötigte Zweigströme mit Knotengleichgewicht berechnen.

V2: über Maschengleichung alle Ströme verknüpfen, mit Knotengleichgewichten ergänzen \rightarrow alle Zweigströme direkt.

2.11 Knotenpotenzialverfahren

- 1. Wähle einen **Bezugsknoten** K_0 mit Potential = 0;
- 2. Ersetze Spannungsquellen durch Kurzschlüsse.
- 3. Weise $K_{i\neq 0}$ Potentiale ϕ_i zu.
- 4. Trenne virtuelle Kurzschlüsse und weise $\phi_u + U_{\nu}$ zu.
- 5. Stelle für alle $K_{i\neq 0}$ die Knotengleichungen in Abhängigkeit von ϕ_i auf. $\sum I_i = 0$

3 Elektrische Felder

3.1 Coulomb'sches Gesetz

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{a^2} \qquad \epsilon_0 = 8.8541 \times 10^{-12} \,\mathrm{A\,s\,V^{-1}\,m^{-1}} \label{eq:epsilon} \\ \vec{E} = \frac{\vec{F}}{Q} \qquad [E] = \mathrm{V\,m^{-1}}$$

3.2 Kapazität

$$Q = CU$$

$$[C] = A s V^{-1} = F$$

$$F = QE \qquad W = Fs = QEs \qquad E = \frac{U}{s}$$

$$U = \int E ds \qquad C = \epsilon_0 \frac{A}{s}$$

3.2.1 Parallel-/Serienschaltung

$$C = \sum_{k=1}^{n} C_k$$

$$\frac{1}{C} = \sum_{k=1}^{n} \frac{1}{C_k}$$

3.3 Plattenkondensator mit Dielektrikum

 $E_i = \frac{E}{\epsilon_r}$ E im Dieletkrikum

3.3.1 TEILWEISE/VOLLSTÄNDIG GEFÜLLT:

Teilweise: $C_{tot} = \left(\frac{d-d_1}{\epsilon_0 A} + \frac{d_1}{\epsilon_0 \epsilon_r A}\right)$

d=Gesamtdicke, d_1 = Dicke des Dielektrikums mit ϵ_r

$$U_d = \frac{U}{\epsilon_r}$$

$$C_d = \epsilon_r \frac{Q}{U} = \epsilon_r C = \epsilon_r \epsilon_0 \frac{A}{s}$$

3.4 Elektrischer Fluss

$$\Psi = \int_A \epsilon_0 \vec{E} d\vec{A}$$

$D = \frac{\Psi}{A}$

3.5 Gauss'scher Satz der Elektrostatik

$$Q = \oint_A \epsilon_0 \vec{E} d\vec{A}$$

3.6 Energie im Kondensator

$$W = \int_0^Q \frac{q}{C} dq = \frac{1}{2} QU = \frac{1}{2} CU^2$$

3.7 Folienkondensatoren

allgemein: geringe Kapazitätsdichte, hohe Strombelastbarkeit

Kunststoff-Folienkondensatoren ($\epsilon_r=3.3(PET), \epsilon_r=2.2(Polypropylen)$) mit Dielektrikum aus isolierender Kunststofffolie.

Metall folien konden satoren besitzen eine sehr hohe Stromimpulsbelastbarkeit.

metallisierte~Kunststoff-Folienkondensatoren~bestehen aus auf Kunststofffolien aufgedampften Metallisierungen. Selbstheilend \to Kurzschluss verdampft infolge hoher Lichtbogentemperatur

3.8 Elektrolytkondensatoren (Elko)

allgemein: gepolte Kondensatoren, Spannung von Anode zu Kathode muss positiv sein, ansonsten Schädigung der Bauteile. Relativ hohe Kapazitätsdichte, relativ geringe erlaubte Strombelastbarkeit.

Aluminium-Elko $(\epsilon_r = 9.6)$ Anode: aufgerauhte Aluminium-folie (höhere Oberfläche als bei glatter Folie) mit dünner Oxidschicht. Kathode: leitfähige Flüssigkeit oder Polymer

3.9 Keramikkondensatoren

multi-layer ceramic capacitor (MLCC):

Klasse 1 ($\epsilon_r \approx 20-40$, feldstärkenunabhängig), definierte lineare Temperaturabhängigkeit.

Klasse 2 (10000 > ϵ_r > 200, feldstärkenabhängig bis -80%), nichtlineare Temperatur und Spannungsabhängigkeit.

3.10 Transiente Vorgänge in RC-Schaltkreisen

→ Kleinbuchstaben für veränderliche Grössen. Kirchhoffsche Gesetze bleiben gültig:

 $\sum_{k=1}^{n} i_k = 0 \text{ für Knoten} \qquad \sum_{k=1}^{n} u_k = 0 \text{ für Maschen}$

3.10.1 Strom-/Spannungsbeziehung am Kondensator

$$i = i_R = i_c = C \frac{du_C}{dt}$$
 $RC \frac{du_C}{dt} + u_C = U$

$$u_C(t) = u_{C_n}(t) + u_{C_h}(t)$$
 $u_C(t) = U - Ue^{-\frac{t}{RC}}$

$$u_C(t) = u_C(\infty) - [u_C(\infty) - u_C(0)]e^{-\frac{t}{RC}}$$

wobei $RC = \tau$, ($[\tau] = s$) die Zeitkonstante ist.

nach $\tau s \ u_C = 63\%U$, nach $3\tau \ u_C = 95\%U$.

Spannungsverlauf am Kondensator ist IMMER stetia.

MAGNETISCHE FELDER

4.1 Feldlinien

- Von Nordpol zu Südpol
- immer in sich geschlossen

4.1.1 Kraft auf einen Stromdurchflossenen Leiter

$$F = BI \ l \sin(\alpha) \qquad \vec{F} = I \ \vec{l} \times \vec{B}$$
$$[B] = N A^{-1} m^{-1} = V s m^{-2} = T$$

4.1.2 Magnetischer Fluss

$$\Phi = BA\cos(\alpha)$$
 $\Phi = \int_A \vec{B}d\vec{A}$ $[\Phi] = Vs = Wb$

$$\oint_A \vec{B} d\vec{A} = 0$$

4.1.3 Magnetische Feldstärke

$$B = \mu_0 \frac{I}{2\pi r}$$
 $\mu_0 = 4\pi 10^{-7} \,\mathrm{V \, s \, A^{-1} \, m^{-1}}$ $B = \mu_0 \mu_r H$

4.1.4 Durchflutungsgesetz

$$\oint_S \vec{H} d\vec{S} = \int_A \vec{I} d\vec{A} = \Theta$$

daraus für Torusspule $\Theta = H2\pi r \Rightarrow H = \frac{NI}{2\pi r}$ $\vec{H} = \frac{NI}{2\pi r} \vec{e}_{\phi}$ innerhalb und ausserhalb der Spule H=0daraus für gerade Spule $H_x = \frac{NI}{I}$

4.2 Materie im Magnetfeld

4.2.1 Diamagnetische Stoffe

- $\mu_r < 1$
- Schwächen äusseres Magnetfeld leicht ab.
- Werden von einem magneten leicht abgestossen.

4.2.2 Paramagnetische Stoffe

- $\mu_r > 1$
- Verstärken äusseres Magnetfeld leicht.
- Werden von einem Magneten leicht angezogen.

4.2.3 Ferromagnetische Stoffe

- $\mu_r \gg 1$
- Verstärken ein äusseres Magnetfeld stark.
- Werden von einem Magneten stark angezogen.
- Es gibt Bereiche mit gleicher Ausrichtung der Dipole (Weiss'sche Bezirke).

4.2.4 Hysteresis

- 1. Wirkung der Weiss'schen Bezirke hebt sich auf.
- 2. Ausgerichtete Bezirke wachsen. Danach sprunghaftes Umklappen
- 3. Sättigung bei hohen Feldstärken
- 4. Reduktion der Feldstärke führt zur Remanenz-Flussdichte B_r .
- 5. Um wieder zu B=0 zu kommen ist Koerzitivfeldstärke H_c nötig.

Oberhalb der Curie-Temperatur T_c gehen ferromagnetische Eigenschaften verloren.

magnetisch hart/weich → breite/schmale Hysteresiskurve

4.3 Induktivität

$$L=\frac{\Psi}{I}=\frac{N\Phi}{I} \qquad \Psi=\text{verketteter magnetischer Fluss}$$

$$[L]=\text{V s A}^{-1}=\text{H}$$

$$L_{Ringkernspule} = \mu_r \mu_0 N^2 \frac{h}{2\pi} \ln(\frac{b}{a}) \begin{cases} a, b & \text{in. und äus. Radius} \\ h & \text{H\"ohe} \end{cases}$$

$$R_m = \frac{l_m}{\mu_0 \mu_r A} \quad l_m = \pi(a+b) \quad A = (b-a)h$$

für eine Ringkernspule mit $a \approx b$ gilt:

$$R_m=rac{l}{\mu A}$$
 magnetischer Widerstand / Reluktanz
 $\Theta=NI=\Phi R_m$ Durchflutung des mag. Kreises
 $R_m=rac{N^2}{L}$

4.4 Reihenschaltung / Parallelschaltung Induktivität

$$L_g = \sum_{K=1}^n L_k \qquad \qquad \frac{1}{L_g} = \sum_{k=1}^n \frac{1}{L_k}$$

4.5 Magnetischer Kreis

$$R_{m2} = \frac{l_2}{\mu A_2}$$
 $\Phi = \frac{\Theta}{R_m}$ $\Phi = \Phi_i$
 $L = \frac{\Phi}{I} = \sum_i \frac{N_i \Phi_i}{I}$

$$\oiint \vec{B}d\vec{A} = 0 \Rightarrow \sum_{i} \Phi_{i} = 0$$

Knotengleichgewicht

4.5.1 Zusammenfassung

elektrisch magnetisch

$$\kappa \qquad \qquad \mu = \mu_r \mu_0$$

$$R = \frac{l}{\kappa A} \qquad \qquad R_m = \frac{l}{\mu A}$$

$$U_{12} = \int_{P_1}^{P_2} \vec{E} d\vec{s} \qquad \qquad V_{m12} = \int_{P_1}^{P_2} \vec{H} d\vec{s}$$

$$I = \iint_A \vec{J} d\vec{A} \qquad \qquad \iint_A \vec{B} d\vec{A}$$

$$U = RI \qquad \qquad \Theta = R_m \Phi$$

$$U_0 = \sum_{\text{Masche}} U = \sum_{\text{Masche}} RI \qquad \Theta = NI = V_m = \sum_{\text{Masche}} R_m \Phi$$

$$\sum_{\text{Masche}} I = 0 \qquad \qquad \sum_{\text{Masche}} \Phi = 0$$
Knoten

4.6 Lorentzkraft

$$F_m = Q\vec{v} \times \vec{B}$$

Kräftegleichgewicht:
$$|\vec{F}_C| = |F_m| \Rightarrow \vec{E}_i = \vec{v} \times \vec{B}$$
 $u = El_{12}$

Rechte Hand:

[Daumen, Zeige-, Mittelfinger] = [Strom, Feld, Kraft]

4.7 Induktionsgesetz

$$U = N \frac{d\Phi}{dt}$$

Linke Hand: $[Daumen, Finger] = [\dot{\Phi}, induzierterStrom]$

4.8 Lenz'sche Regel

Die induzierte Spannung ist so gerichtet das ein durch sie hervogerufener Strom der Ursache ihrer Entstehung entgegenwirkt.

Für die Induktivität: Eine Veränderung des Stroms bewirkt eine induzierte Spannung, die die Veränderung des Stroms erschwert.

4.9 Selbstinduktion

$$u = L \frac{di}{dt}$$

4.10 Energie in der Induktivität

$$dW = uidt = \underbrace{L\frac{di}{dt}}_{u} = Lidi$$

$$W = L \int_{0}^{I} idi = \frac{1}{2}LI^{2}$$

4.11 Hystereseverluste

magnetische Energiedichte: $W_m = \frac{1}{2}\mu H^2 = \frac{B^2}{2\mu}$

(= Fläche zwischen B-Achse und Hysteresekurve.)

Die Hystereseverluste sind proportional zum Flächeninhalt der Hysteresekurve.

4.12 Magnetischer Kreis mit Luftspalt

$$L = N^2 \frac{\mu_r \mu_0 A}{l_m + l_L \mu_r}$$
 $N = \sqrt{L \frac{l_m + l_L \mu_r}{\mu_r \mu_0 A}}$

$$R_m = R_{mK} + R_{mL} = \frac{l_m}{\mu_0 \mu_r A} + \frac{l_L}{\mu_0 A} \stackrel{\mu_r \to \infty}{\longrightarrow} R_{mL}$$

$$L=N^2 \frac{\mu_0 A}{l_L}=N^2 \frac{1}{R_{mL}}$$
 (also nur abhängig von l_L)

4.13 Magnetische Kopplung

$$U=N \frac{d\Phi}{dt}$$

$$u_2=N_2 \frac{d\Phi_{12}}{dt} \qquad u_2=L_{21} \frac{di_1}{dt}$$
 gekoppelte Induktivitäten $L_{21}=L_{12}$ (Anordnungsabhängig)

4.14 Idealer Übertrager

$$u_1 = N_1 \frac{d}{dt} (\phi_{11} - \phi_{12}) = L_{11} \frac{di_1}{dt} - L_{12} \frac{di_2}{dt}$$
$$u_2 = N_2 \frac{d}{dt} (-\phi_{21} + \phi_{22}) = -L_{21} \frac{di_1}{dt} + L_{22} \frac{di_2}{dt}$$

Idealisierung:

- $\mu_r \to \infty$
- \bullet Widerstände der Wicklungen $\to 0$
- Hystereseverluste $\rightarrow 0$

$$\Theta = N_1 i_1 - N_2 i_2 = R_m \Phi_{ges} = \frac{l}{\mu A} (\Phi_1 - \Phi_2)$$

$$u_2 = -\frac{N_2}{N_1} u_1 \qquad \frac{i_1}{i_2} = \frac{N_2}{N_1}$$

4.15 Transiente Vorgänge in RL-Netwerken

$$i_L(t) = \frac{U}{R}(1 - e^{-\frac{t}{\tau}}) = I_L(\infty) - [i_L(\infty) - i_l(0)]e^{-\frac{t}{\tau}}$$

$$V_L(t) = L\frac{dV_L(t)}{dt} = R_e f f [I_l(\infty) - I_L(0)]e^{-\frac{t}{\tau}}$$
wobei $\tau = \frac{L}{R_o f f}$

und R_eff der Widerstand der Schaltung, betrachtet von den Klemmen der Induktivität. (Strommquellen = Leerlauf, Spannungsquellen = Kurzschluss)

4.16 Maschenstromverfahren für RL-Netzwerke

- 1. Stromquellen durch Leerlauf ersetzen \rightarrow reduziertes Elementarmaschenset E^*
- 2. Maschenströme i_i einführen.
- 3. Stromquellen wiedereinsetzen und für jede den jeweiligen Maschenstrom einführen.
- 4. Maschengleichungen aufstellen. $\sum U_i = 0$, $U_i = R_i * i_i$, $L_i \frac{di}{dt}$
- 5. Strom-Spannungsbeziehung für die Kapazitätsspannung aufstellen. $C_i \frac{du_C}{dt}$

4.17 Kernmaterialien für Transformatoren

4.17.1 Blechkern

Bleche als Kern \rightarrow je dünner das Blech desto kleiner die Wirbelstromverluste.

Wirbelstromverlust \to magnetischer Fluss durch Querschnitt induziert Spannung, welche durch Wirbelstrom ausgegelichen wird.

4.17.2 Eisenpulver

Pulver und Kleber wird zu Kern verpresst. Über das Massenverhältnis kann μ eingestellt werdend \to Kleber wirkt als Luftspalt.

4.17.3 Charakteristische Sättigungdichten

Kernmaterial Sättigungsdichte MnZn-Ferrit 0.39 T Nanokristallin 1.2 T

Amorph $1.56\,\mathrm{T}$ Silizium-Eisen $1.73\,\mathrm{T}$

5 Wechselstrom

5.1 Grundbegriffe

5.1.1 Wechselgröße

Mittelwert einer zeitabhängigen Grösse ist 0. Sonst Mischgrösse.

5.1.2 Sinusförmige Signale

$$\hat{u} = NBhl\omega \Rightarrow u(t) = \hat{u}\sin(\omega t)$$

 $\begin{array}{ll} \text{Scheitelwert} & \hat{u} \\ \text{Kreisfrequenz} & \omega \\ \text{Periode} & T = \frac{2\pi}{\omega} \\ \text{Frequenz} & f = \frac{1}{T} = \frac{\omega}{2\pi} \\ \end{array}$

5.1.3 Phasenverschiebung

$$u = \hat{u}\sin(\omega t + \phi_u)$$
$$i = \hat{i}\sin(\omega t + \phi_i)$$

Phasenverschiebung $\phi = \phi_u - \phi_i$

5.1.4 Gleichrichtwert

zeitlicher Mittelwert des Betrages:

$$|\bar{i}| = \frac{1}{T} \int_0^T |i| dT = \frac{2}{\pi} \hat{i}$$

5.1.5 Effektivwert

Wert des Gleichstroms der in einem Widerstand denselben Verlust wie der betrachtete Wechselstrom erwirkt.

$$W = \int_0^T p dt = \int_0^T i^2 R dt \Rightarrow P = \frac{W}{T}$$

Gleichsetzen der Wärmeleistungen:

$$I_{eff} = \sqrt{\frac{1}{T} \int_0^T i^2 dt} = \frac{\hat{i}}{\sqrt{2}}$$

5.2 Zeigerdiagramm

Spitzenwertzeiger \vec{u} Effektivwertzeiger $\underline{\vec{U}}$ Addition von gleichfrequenten Zeigern \to (geometrische) Vektoraddition

5.2.1 für gleichfrequente Vektoren

$$u = \hat{u}\sin(\omega t + \phi_u) \rightarrow \underline{U'} = Ue^{j(\omega t + \phi_u)}$$

$$\underline{U'} = \underbrace{Ue^{i\phi_u}}_{\text{Zeitunabhängig}} \cdot \underbrace{e^{i\omega t}}_{\text{Zeitabhängig}}$$

$$\underline{U} \longrightarrow Ue^{i\phi_u}$$

5.2.2 Komplexe Rechnung

$$\Re(\underline{Z}) = X = Z\cos(\phi)$$

$$\Im(\underline{Z}) = Y = Z\sin(\phi)$$

$$\underline{Z} = Z(\cos(\phi) + j\sin(\phi))$$

$$Z = Z \cdot e^{j\phi}$$

$$\begin{aligned} |\underline{Z}| &= Z = \sqrt{X^2 + Y^2} \\ \phi &= \arctan(\frac{Y}{X}) \\ Z \cdot Z^* &= X^2 + Y^2 = Z^2 \end{aligned}$$

5.2.3 Operationen

$$\begin{split} \underline{Z_1} + \underline{Z_2} &= X_1 + X_2 + j(Y_1 + Y_2) \\ \underline{Z_1} \cdot \underline{Z_2} &= Z_1 \cdot Z_2 \cdot e^{j(\phi_1 + \phi_2)} \\ \underline{\frac{Z_1}{Z_2}} &= \underline{Z_1} \cdot e^{j(\phi_1 - \phi_2)} \\ j\underline{Z} &= e^{j\frac{\pi}{2}} Z e^{j\phi} &= Z e^{j(\phi + \frac{\pi}{2})} \\ \frac{1}{i}\underline{Z} &= -j\underline{Z} = Z e^{j(\phi - \frac{\pi}{2})} \end{split}$$

5.3 Bauelemente

$$i(t) = |\underline{I}|\sqrt{2}\sin(\omega t + \angle I_c)$$

$$u(t) = |\underline{U}|\sqrt{2}\sin(\omega t + \angle U_c)$$

5.4 Reihen und Parallelschaltung von Impedanzen

$$\begin{split} &\underline{Z}_{ges} = \sum_{k=1}^{n} Z_k \text{ und } \underline{\underline{U}_1}_{\underline{U}_2} \text{ bzw. } \underline{\underline{U}_1}_{\underline{U}_{ges}} = \underline{\underline{Z}_1}_{\underline{Z}_{ges}} \\ &\underline{1}_{\underline{Z}_{ges}} = \sum_{k=1}^{n} \underline{1}_{\underline{Z}_k} \text{ und } \underline{\underline{I}_1}_{\underline{I}_2} = \underline{\underline{Z}_2}_{\underline{Z}_1} \text{ bzw. } \underline{\underline{I}_1}_{\underline{I}_{ges}} = \underline{\underline{Z}_{ges}}_{\underline{Z}_1} \end{split}$$

5.5 Ersatzquelle für Wechselstromkreise

- 1. Leerlaufspannung $|\underline{Z}_a| \to \infty$
- 2. Kurzschluss-Strom $\underline{I}_k \to \underline{Z}_i = \frac{\underline{U}_q}{I_k}$
- Ohmsches Gesetz, Kirhoff'sche Gesetze, Maschenstrom-, Knotenpotenzialverfahren, Superpositionsprinzip sind analog gültig, unter der Voraussetzung das alle Quellen unter der gleichen Frequenz arbeiten.
- Stern-Dreieck-Umwandlung, der Satz der Ersatzspannungsquelle und das Verfahren für äquivalente Quellen sind immer nur für eine Frequenz gültig!

5.6 Frequenzabhängiger Spannungsteiler (Tiefpass)

$$\boxed{\frac{U_2}{U_1} = \frac{1}{\sqrt{1 + (\omega RC)^2}} \qquad \phi = -\arctan(\omega RC)}$$

$$\underline{U}_2 = \frac{\underline{U}_1}{j\omega CR + 1}$$

5.7 Umwandlung von Reihen- und Parallelschaltung

$$R_2 = \frac{R_1^2 + X_1^2}{R_1}$$
 und $X_2 = \frac{R_1^2 + X_1^2}{X_1}$

5.8 Leistung im Wechselstromkreis

 $p(t) = UI(1-\cos(2\omega t) \qquad \qquad UI \text{ zeitlicher Mittelwert}$ U und I Effektivwerte.

5.8.1 Leistung im RL-Netzwerk

$$u = \hat{u}\sin(\omega t + \phi)$$

$$u_R = \hat{u}_R\sin(\omega t)$$

$$u_L = \hat{u}_L\sin(\omega t + \pi/2)$$

$$p_R = \hat{i}\hat{u}\cos(\phi)\frac{1}{2}(1-\cos(2\omega t))$$
$$p_L = \hat{i}\hat{u}\sin(\phi)\sin(\omega t)\cos(\omega t)$$

5.8.2 Leistung mit allgemeiner Impedanz

$$\begin{split} u &= \hat{u}\sin(\omega t + \phi) & i &= \hat{i}\sin(\omega t) \\ p &= \hat{u}\hat{i}\sin(\omega t + \pi)\sin(\omega t) = UI\cos(\phi) - UI\cos(2\omega t + \phi) \end{split}$$

$$\boxed{P = UI\cos(\phi)} \text{ Wirkleistung}$$

5.9 Blindleistung

Allgemeine Augenblicksleistung im Verbraucher Z:

$$\underbrace{UI\cos(\phi)[1-\cos(2\omega t+2\pi]}_{\text{Wirkleistung}} - \underbrace{UI\sin(\phi)\sin(2\omega t+2\phi)}_{\text{Blindleistung}}$$

Blindleistung ist der pendelnde Anteil der Leistung mit Mittelwert 0.

$$Q = UI\sin(\phi)$$
 Blindleistung

 $[Q] = \operatorname{VAr} = \operatorname{volt-Ampere\ reactive}$

5.9.1 BEI RECHNUNG MIT REINEN EFFEKTIVWERTEN

Kondensator: $Q = -UI = -U\omega C = -I^2 \frac{1}{\omega C}$ Induktivität: $Q = +UI = \frac{U^2}{\omega L} = I^2 \omega L$

5.10 Scheinleistung

S = UI Scheinleistung $\cos \phi = \frac{P}{S}$ Leistungsfaktor

$$\underline{S} = P + jQ = \underline{UI^*} = UI(\underbrace{\cos(\phi)}_{\text{Wirkleistung}} + \underbrace{i\sin(\phi)}_{\text{Blindleistung}}$$

5.11 Leistungsanpassung

$$P = I^2 R_a = \frac{U_q^2 R_a}{(R_i + R_a)^2 + (X_i + X_a)^2}$$
 wird maximal bei
$$\boxed{\underline{Z}_a = \underline{Z}_i^*}$$

5.12 Blindleistungskompensation

Blindstromanteil I_b überträgt keine Wirkleistung, verursacht nur Blindleistung.

Zuschalten eines Kondensators bewirkt eine Verringerung der Phase. I_c kompensiert den Blindstrom I_b .

5.13 RL-Tiefpassfilter

$$\frac{U_2}{U_1} = \frac{R}{\sqrt{R^2 + (\omega L)^2}} \qquad \phi = -\arctan(\frac{\omega L}{R})$$

$$\omega_g = \frac{R}{L} = 2\pi f_g$$
 Grenzfrequenz

5.14 RL-Hochpassfilter

$$\frac{U_2}{U_1} = \frac{\omega L}{\sqrt{R^2 + (\omega L)^2}}$$

$$\omega_g = \frac{R}{L} = 2\pi f_g$$
 Grenzfrequenz

5.15 RLC-Serienschwingkreis

$$w(t) = w_C(t) + w_L(t) = \frac{1}{2}Cu^2 + \frac{1}{2}Li^2 = const.$$

$$\underline{Z} = R + j(\omega L - \frac{1}{\omega C})$$

$$\omega_r = \frac{1}{\sqrt{LC}}$$
 rein reelle Impedanz

 \approx für $\omega = \omega_r$

$$Q_s = \frac{2\pi W_{ges}}{|\Delta W|} = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{\omega_{r}L}{R} = \frac{1}{R\omega_{r}C} \approx \frac{U_L}{U} = \frac{U_C}{U}$$
Güte

5.16 RLC-Parallelschwingkreis

$$\underline{Y} = G + j(\omega C - \frac{1}{\omega L})$$

$$\omega_r = \frac{1}{\sqrt{LC}} = 2\pi f_r$$
 rein reelle Impedanz

 $\approx \text{für } \omega = \omega_r$

$$Q_p = \frac{2\pi W_{ges}}{|\Delta W|} = R\sqrt{\frac{C}{L}} = \frac{\omega_r C}{1/R} = \frac{1/\omega_r L}{1/R} \approx \frac{I_L}{I} = \frac{I_C}{I}$$
Güte

$$d = \frac{1}{Q}$$
 Dämpfung

6 Reale Bauelemente

6.1 Parasitäre Effekte bei Spulen

Ideale Induktivitäten, Kapazitäten und ohmsche Widerstände nicht realisierbar \to Ersatzschaltung.

$$Q_L = \frac{\omega L}{R}$$
 Spulengüte

 $d = \tan(\delta) = \frac{R}{\omega L}$ | Verlustfaktor und Verlustwinkel

Phasenverschiebungwinkel: $\delta = 90^{\circ} - \phi$

6.1.1 Parasitäre Kapazität

Im Betrieb liegt ergibt sich zwischen den einzelnen Windungen ein elektrisches Feld und damit eine parasitäre Kapazität.

Näherungsweise Zusammenfassung zu einer parasitären Gesamtkapazität C_p , die parallel zur Spule liegt.

6.2 Parasitäre Effekte bei Kondensatoren

Da die verwendeten Dielektrika nicht ideal sind fliesst im realen Kondensator ein Leckstrom.

$$d = \tan \delta = \frac{\kappa}{\omega \epsilon_0 \epsilon_r}$$
 Verlustfaktor

 κ Leitfähigkeit des Dielektrikums

$$\delta = 90^{\circ} - |\phi|$$

6.2.1 Parasitärer Widerstand / Induktivität

Neben dem Leckstrom ergeben sich beim Betrieb dynamische Verluste, welche in Wärme umgesetzt werden. Diese Umpolarisierungsverluste können durch den äquivalenten Serienwiderstand R_{ESR} beschrieben werden.

Das vom Wechstrom erzeugte magnetische Feld in Zuleitungen und Kondensator wird durch eine äquivalente Serieninduktivität L_{ESL} modelliert.

6.3 Parasitäre Effekte bei Widerständen

In einem gewickelten Widerstand ergibt sich eine relativ grosse parasitäre Serieninduktivität. Analog zu den Spulen haben auch Widerstände eine parasitäre Kapazität.

Zur Verringerung der Induktivität: bifilare Wicklung. Dadurch wird jedoch die parasitäre Kapazität erhöht. Alternativ können Schichtwiderstände verwendet werden, wodurch die Serieninduktivität stark gesenkt wird.

6.4 Skin-Effekt

Veränderlicher Strom erzeugt magnetisches Wechselfeld, erzeugt veränderlichen magnetischen Fluss, induziert Spannung \rightarrow Wirbelstrom in der Mitte des Leiters entgegen der eigentlichen Stromrichtung. So wird die effektive Stromdichte in der Mitte des Leiters verringert und am Rand erhöht.