ELEC 3035, Lecture 2: State space and polynomial representations Ivan Markovsky

- Dynamical systems and their representations
- Linear time-invariant systems
- Input/output and input/state/output representations
- Non-uniqueness of the representations

Set notation

- $\mathcal{B} = \{ w^1, \dots, w^N \}$ the set consisting of the elements w^1, \dots, w^N
- $\mathcal{B} = \{ w \mid f(w) = 0 \}$ the set of all w that satisfy f(w) = 0
- $w \in \mathcal{B}$ w is an element of the set \mathcal{B}

What is a model?

Classic problem: Fit the points

$$w_1 = \begin{bmatrix} -2 \\ -6 \end{bmatrix}, \ w_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \dots, \ w_5 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

by a line passing through the origin.

Classic solution: Define $w_i =: col(u_i, y_i)$ and solve the least squares problem

$$\operatorname{col}(u_1,\ldots,u_5)x=\operatorname{col}(y_1,\ldots,y_5).$$

The model is the line

$$\mathscr{B} := \{ w = \operatorname{col}(u, y) \mid ux_{1s} = y \}$$

and not the equation $ux_{ls} = y$.

Dynamical system

The set of functions (signals) $w : \mathbb{T} \to \mathbb{W}$ from \mathbb{T} to \mathbb{W} is denoted by $\mathbb{W}^{\mathbb{T}}$.

- W variable space
- T ⊂ R time axis
- W^T trajectory space

A dynamical system $\mathscr{B} \subset \mathbb{W}^{\mathbb{T}}$ is a set of trajectories (a behaviour).

 $w \in \mathcal{B}$ means that w is a possible trajectory of the system \mathcal{B}

Note: the set definition is extremely general (and therefore abstarct). For example, it is not specialized to linear time-invariant systems.

Representations of dynamical systems

Systems are often described by equations

$$f(\mathbf{w}) = 0, \qquad f: \mathbb{W}^{\mathbb{T}} \to \mathbb{R}^{\mathbf{g}},$$

via representations

$$\mathscr{B} = \{ w \in \mathbb{W}^{\mathbb{T}} \mid f(w) = 0 \}.$$
 (repr)

Note: f(w) = 0 is a specific but nonunique description of \mathcal{B} .

We will consider systems, which variable space is R^w and time axis

- $\mathbb{T} = \mathbb{R}$ continuous-time systems, or
- $\mathbb{T} = \mathbb{Z}$ discrete-time systems.

Linear time-invariant systems

Properties of a system are defined in terms of its behaviour ${\mathscr B}$ and are translated to equivalent statements in terms of representations.

$$\mathscr{B}$$
 is linear if $w, v \in \mathscr{B} \implies \alpha w + \beta v \in \mathscr{B}$, for all $\alpha, \beta \in \mathbb{R}$

Recall the shift operator $(\sigma w)(t) = w(t+1)$.

 \mathscr{B} is time-invariant if $w \in \mathscr{B} \implies \sigma^t w \in \mathscr{B}$, for all t.

Input/output (I/O) partitioning

Let $\Pi \in \mathbb{R}^{w \times w}$ be a permutation matrix, and define

(This is just a reordering of the variables.)

The variable *u* is an input if the behaviour associate with *u* if free, *i.e.*,

$$\mathscr{B}_u := \{ u \in (\mathbb{R}^m)^{\mathbb{T}} \mid \text{there is } y \text{ such that } \Pi^{-1} \begin{bmatrix} u \\ y \end{bmatrix} \in \mathscr{B} \} = (\mathbb{R}^m)^{\mathbb{T}}.$$

(I/O) is an I/O partitioning for \mathcal{B} if u is free and dim(u) is maximal.

We will consider systems with given I/O partition and w.l.g. assume that $\Pi = I$

Difference equations

The difference equation

$$R_0 w(t) + R_1 w(t+1) + \cdots + R_\ell w(t+\ell) = 0,$$
 for all $t \in \mathbb{Z}$

is more compactly written using the shift operator σ as

$$R_0\sigma^0w + R_1\sigma^1w + \dots + R_\ell\sigma^\ell w = 0. \tag{*}$$

Define the polynomial matrix

$$R(z) = R_0 + R_1 z + \dots + R_\ell z^\ell \in \mathbb{R}^{g \times w}[z]$$

and note that

$$R(\sigma)w=0$$

is a convenient short hand notation for (*).

Differential equations

The differential equation

$$R_0 \frac{\mathsf{d}^0}{\mathsf{d}t^0} w + R_1 \frac{\mathsf{d}^1}{\mathsf{d}t^1} w + \dots + R_\ell \frac{\mathsf{d}^\ell}{\mathsf{d}t^\ell} w = 0$$

is more compactly written as

$$R\left(\frac{\mathsf{d}}{\mathsf{d}t}\right)w=0,$$

where again R is the polynomial matrix

$$R(z) = R_0 + R_1 z + \cdots + R_\ell z^\ell.$$

For continuous-time systems, redefine σ as the derivative operator d/dt, so $R(\sigma)w = 0$ is a difference/differential eqn., depending on the context.

Input/output representation

The difference (in discrete-time) or differential (in continuous-time) eqn

$$P(\sigma)y = Q(\sigma)u, \qquad P \in \mathbb{R}^{g \times p}[z], \ \ Q \in \mathbb{R}^{g \times m}[z]$$
 (I/O eqn)

defines an LTI system B via

$$\mathscr{B}_{\mathsf{i/o}}(P,\mathsf{Q}) := \{ w = (u,y) \in (\mathbb{R}^{\mathsf{w}})^{\mathbb{N}} \mid (\mathsf{I/O}\,\mathsf{eqn})\,\mathsf{holds} \}$$
 (I/O repr)

If g = p and $det(P) \neq 0$, (I/O repr) is called an input/output repr.

The class of system that admit (I/O repr) is called finite dimensional.

Transfer function

Consider a system $\mathscr{B}_{\mathbf{i}/\mathbf{o}}(P, \mathbf{Q})$ and let \mathscr{L} be the Laplace transform.

$$P(\frac{d}{dt})y = Q(\frac{d}{dt})u \implies P(s)Y(s) = Q(s)U(s)$$

where $Y := \mathcal{L}(y)$ and $U := \mathcal{L}(u)$.

The rational function

$$Y(s)U^{-1}(s) = P^{-1}(s)Q(s) =: H(s)$$

is called transfer function.

In the SISO case

$$\frac{\mathsf{Y}(\mathsf{s})}{\mathsf{U}(\mathsf{s})} = \frac{\mathsf{Q}(\mathsf{s})}{\mathsf{P}(\mathsf{s})} =: \mathsf{h}(\mathsf{s}).$$

State of the system

a system \(\mathcal{B} \),

Given

- a "past" trajectory of \mathcal{B} , $(\dots w_p(-2), w_p(-1))$, and
 - a "future" input $u_f = (u_f(0), u_f(1),...)$

find the future output y_f of \mathcal{B} , such that

$$w := (..., w_p(-2), w_p(-1), w_f(0), w_f(1),...)$$

is a trajectory of \mathcal{B} .

It turns out that for $\mathscr{B} = \mathscr{B}_{\mathrm{i/o}}(p,q)$, it isn't necessary to know the whole (infinite) past w_{D} in order to find y_{f} !

Suffices to know a finite dimensional, so called "state", vector x(0) of \mathcal{B} .

Input/state/output (I/S/O) representation

A finite dimensional LTI system $\mathscr{B} \in \mathscr{L}^w$ admits a representation

$$\mathscr{B}_{\mathsf{i/s/o}}(A,B,C,D) := \{ w := \mathsf{col}(u,y) \in (\mathbb{R}^{\mathsf{w}})^{\mathbb{N}} \mid \exists \ x \in (\mathbb{R}^{\mathsf{n}})^{\mathbb{N}},$$
 such that $\sigma x = Ax + Bu, \ y = Cx + Du \}.$ (I/S/O repr)

- x an auxiliary variable called state
- n := dim(x) state dimension, \mathbb{R}^n state space
- $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$ parameters of \mathscr{B}
- m := dim(u) input dimension, p := dim(y) output dimension

single input single output (SISO) systems — $\dim(u) = \dim(y) = 1$ multi input multi output (MIMO) systems — $\dim(u) \ge 1$, $\dim(y) \ge 1$

- A state transition matrix, B input matrix
- C output matrix, D feedthrough matrix
- $\sigma x = Ax + Bu$ state equation
- y = Cx + Du output equation

- A shows how x(t+1) depends on x(t) (state transition)
- B shows how u(t) influences x(t+1)
- C shows how y(t) depends on x(t)
- D shows how u(t) influences y(t) (static I/O relation)

Trivial extension: A, B, C, D functions of t leads to time-varying system

Comparison between I/O and I/S/O representations

- (I/S/O repr) is first order in x and zeroth order in w
- (I/O repr) has no auxiliary variable and is for higher order in w

If the system is single output,

- (I/S/O repr) is vector difference/differential equation
- (I/O repr) is a scalar difference/differential equation

We will consider the problems of constructing I/S/O repr from an I/O one and vice verse, *i.e.*,

$$(P,Q) \mapsto (A,B,C,D)$$
 and $(A,B,C,D) \mapsto (P,Q)$

Nonuniqueness of an I/S/O representation

There are two sources of nonuniqueness of (I/S/O repr):

- 1. redundant states n := dim(x) bigger than "necessary"
- 2. nonuniqueness of A, B, C, D choice of state space basis

minimal I/S/O representations — dim(x) is as small as possible

For any nonsingular matrix $T \in \mathbb{R}^{n \times n}$ and

$$\widetilde{A} = T^{-1}AT$$
, $\widetilde{B} = T^{-1}B$, $\widetilde{C} = CT$, $\widetilde{D} = D$

we have that

$$\mathscr{B}_{i/s/o}(A, B, C, D) = \mathscr{B}_{i/s/o}(\widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D}).$$

Change of state space basis

Consider an LTI system $\mathscr{B} = \mathscr{B}_{i/s/o}(A, B, C, D)$.

For any $(u, y) \in \mathcal{B}$, there is x, such that

$$\sigma x = Ax + Bu, \qquad y = Cx + Du.$$
 (**)

Let $\widetilde{x} = T^{-1}x$, where $T \in \mathbb{R}^{n \times n}$ is nonsingular, so that $x = T\widetilde{x}$.

Substituting in (**) and multiplying the first equation by T, we obtain

$$\sigma \widetilde{x} = \underbrace{T^{-1}AT}_{\widetilde{A}}\widetilde{x} + \underbrace{T^{-1}B}_{\widetilde{B}}u, \qquad y = \underbrace{CT}_{\widetilde{C}}\widetilde{x} + \underbrace{D}_{\widetilde{D}}u.$$

 $x = T\widetilde{x}$, with T nonsingular, means change of basis in \mathbb{R}^n (from I to T).

Nonuniqueness of an I/O representation

There are two sources of nonuniqueness of (I/O repr):

- 1. redundant equations g := row dim(P) bigger than "necessary"
- 2. nonuniquencess of P, Q equivalence of equations

minimal I/O representations — row dim(P) is as small as possible

In the single output case, P, Q are unique up do a scaling factor, i.e.,

$$\widetilde{P} = \alpha P$$
, $\widetilde{Q} = \alpha Q$, for $\alpha \in \mathbb{R}$

we have that

$$\mathscr{B}_{i/o}(P,Q) = \mathscr{B}_{i/o}(\widetilde{P},\widetilde{Q}).$$

For multi output systems the nonuniqueness of *P*, Q is more essential.

I/S/O → transfer function

The transfer function corresponding to a system $\mathcal{B}_{i/s/o}(A, B, C, D)$ is

$$H(s) = C(sI - A)^{-1}B + D.$$

With
$$X := \mathcal{L}(x)$$
, $Y := \mathcal{L}(y)$, $U := \mathcal{L}(u)$, we have

$$\sigma x = Ax + Bu \implies sX = AX + BU$$

 $y = Cx + Du \implies Y = CX + DU$

The first equation implies

$$(sI-A)X = BU \implies X = (sI-A)^{-1}BU.$$

Substitute in the second equation to get

$$Y = C(sI - A)^{-1}BU + DU = \left(\underbrace{C(sI - A)^{-1}B + D}_{H(s)}\right)U$$