Classification II

Learning Outcomes

- Upon successful completion of this lab, you will have demonstrated the abilities to:
 - Building a k-NN model for different data sets
 - Determine/compare the efficiency of models
 - Perform hyperparameter setting and model selection

Instructions:

- 1. Read the tutorial here (http://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial6/tutorial6.html)
- 2. Download the following data sets from the UCI Machine Learning Repository:
 - https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
 (https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data))
 - https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+(Version+1)
 (https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+(Version+1))

Do the following steps on both data sets:

Part I (inference efficiency):

Build a k-NN model and compare its efficiency with another model:

- 1. Perform preprocessing (normalization) if it is necessary
- 2. Build k-NN classifier for k = 5:
 - A. Use 90% of data set for the **train** and 10 % for the **test**, and perform evaluation 5 times, the final results are the average of trails performance
 - B. You should report the <u>final</u> average *F-measure*, and *average test time* (the time that model spends to predict labels for the test dataset instances). Use bar charts.
- 3. Repeat (2) for building a decision tree classifier (use default parameters).
- 4. Compare results of part (2) and (3) using appropriate charts

Part II (model selection):

Perform model selection for the k-NN and decision tree:

- 1. Perform preprocessing (normalization) if it is necessary
- 2. Build *k-NN* classifier for different **k** (1, 2, 3, 4, 5) and select the best **k**:
 - A. Use 90% of data set for **train** and 10 % for the **test**, and 10% of the train for **validation**
 - B. Build the k-NN model using the **train** data set and select the best **k** based on *F-measure* on the **validation** set

- 3. Build the decision tree model using the **train** data set and select the best tree:
 - A. Change the tree depth (3, 4...10) and calculate *F-measure* on the **validation** set
 - B. Compare results of part (2) and (3) using the appropriate charts

Report:

- 1. Your report should have a cover letter including the group member names
- 2. Organize all your diagrams and interpretations in your lab report (PDF format)
- 3. Include your code and report in a folder (you can zip the folder) and submit it

Resources:

- 1. <u>https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html</u> (<u>https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html</u>)
- 2. https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)

 (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)
- 3. https://matplotlib.org/3.1.1/gallery/lines_bars_and_markers/barchart.html#sphx-glr-gallery-lines-bars-and-markers-barchart-py)