AAA616: Program Analysis

Lecture 6 — Abstract Interpretation Framework

Hakjoo Oh 2025 Fall

Abstract Interpretation Framework

A powerful framework for designing correct static analysis

- "framework": correct static analysis comes out, reusable
- "powerful": all static analyses are understood in this framework
- "simple": prescription is simple
- "eye-opening": any static analysis is an abstract interpretation

Step 1: Define Concrete Semantics

The concrete semantics describes the real executions of the program. Described by semantic domain and function.

- A semantic domain **D**, which is a CPO:
 - ▶ D is a partially ordered set with a least element \bot .
 - Any increasing chain $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D has a least upper bound $\bigsqcup_{n \geq 0} d_n$ in D.
- A semantic function F:D o D, which is continuous: for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$,

$$F(\bigsqcup_{n>0}d_i)=\bigsqcup_{n>0}F(d_n).$$

Then, the concrete semantics (or collecting semantics) is defined as the least fixed point of semantic function $F:D\to D$:

$$\mathit{fix} F = \bigsqcup_{i \in N} F^i(\bot).$$

Step 2: Define Abstract Semantics

Define the abstract semantics of the input program.

- ullet Define an abstract semantic domain CPO $\hat{m{D}}$.
 - Intuition: $\hat{m{D}}$ is an abstraction of $m{D}$
- ullet Define an abstract semantic function $\hat{F}:\hat{D} o\hat{D}.$
 - Intuition: \hat{F} is an abstraction of F.
 - \hat{F} must be monotone:

$$\forall \hat{x}, \hat{y} \in \hat{D}. \ \hat{x} \sqsubseteq \hat{y} \implies \hat{F}(\hat{x}) \sqsubseteq \hat{F}(\hat{y})$$

(or extensive: $\forall x \in \hat{D}.\ x \sqsubseteq \hat{F}(x)$)

Then, static analysis is to compute an upper bound of:

$$igsqcup_{i\in\mathbb{N}}\hat{F}^i(ot)$$

How can we ensure that the result soundly approximate the concrete semantics?

Requirement 1: Galois Connection

D and \hat{D} must be related with Galois-connection:

$$D \xrightarrow[\alpha]{\gamma} \hat{D}$$

That is, we have

- abstraction function: $\alpha \in D o \hat{D}$
 - lacktriangleright represents elements in D as elements of \hat{D}
- ullet concretization function: $\gamma \in \hat{D} o D$
 - lacktriangle gives the meaning of elements of \hat{D} in terms of D
- $\forall x \in D, \hat{x} \in \hat{D}. \ \alpha(x) \sqsubseteq \hat{x} \iff x \sqsubseteq \gamma(\hat{x})$
 - lacktriangledown lpha and γ respect the orderings of D and \hat{D}
 - ▶ If an element $x \in D$ is safely described by $\hat{x} \in \hat{D}$, i.e., $\alpha(d) \sqsubseteq \hat{d}$, then the element described by \hat{x} is also safe w.r.t. x, i.e., $x \sqsubseteq \gamma(\hat{x})$

Galois-Connection

Example: Sign Abstraction

$$\wp(\mathbb{Z}) \xrightarrow{\gamma} (\{\bot, +, 0, -, \top\}, \sqsubseteq)$$
 $lpha(Z) = \left\{ egin{array}{l} \bot & Z = \emptyset \ + & orall z \in Z. \ z > 0 \ 0 & Z = \{0\} \ - & orall z \in Z. \ z < 0 \ \top & ext{otherwise} \end{array}
ight.$
 $\gamma(\bot) = \emptyset \ \gamma(\top) = \mathbb{Z} \ \gamma(+) = \{z \in \mathbb{Z} \mid z > 0\} \ \gamma(0) = \{0\} \ \gamma(-) = \{z \in \mathbb{Z} \mid z < 0\} \ \end{array}$

Example: Interval Abstraction

$$egin{aligned} \wp(\mathbb{Z}) & \stackrel{\gamma}{\longleftarrow} \{\bot\} \cup \{[a,b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}\} \ & \gamma(\bot) &= \emptyset \ & \gamma([a,b]) &= \{z \in \mathbb{Z} \mid a \leq z \leq b\} \ & \alpha(\emptyset) &= \bot \ & \alpha(X) &= [\min X, \max X] \end{aligned}$$

cf) Alternate Formulation

D and \hat{D} are related with Galois-connection:

$$D \stackrel{\gamma}{\underset{\alpha}{\longleftrightarrow}} \hat{D}$$

iff (α, γ) satisfies the following conditions:

- ullet lpha and γ are monotone functions
- $\gamma \circ \alpha$ is extensive, i.e., $\gamma \circ \alpha \supseteq \lambda x.x$
 - abstraction typically loses precision
 - $(\gamma \circ \alpha)(\{1,3\}) = \{1,2,3\}$
- $\alpha \circ \gamma$ is reductive: i.e., $\alpha \circ \gamma \sqsubseteq \lambda x.x$
 - If $\alpha \circ \gamma = \lambda x.x$, Galois-insertion.
 - With Galois-insertion, no two abstract elements describe the same concrete element, which may be true with Galois-connection.

Proof (\Rightarrow)

If we have a Galois-connection:

$$\forall x \in D, \hat{x} \in \hat{D}. \ \alpha(x) \sqsubseteq \hat{x} \iff x \sqsubseteq \gamma(\hat{x})$$

then

- $\lambda x.x \sqsubseteq \gamma \circ \alpha$: $\alpha(x) \sqsubseteq \alpha(x)$ and hence $x \sqsubseteq \gamma(\alpha(x))$ by Galois-connection.
- $\alpha \circ \gamma \sqsubseteq \lambda x.x$: $\gamma(\hat{x}) \sqsubseteq \gamma(\hat{x})$ and hence $\alpha(\gamma(\hat{x})) \sqsubseteq \hat{x}$ by Galois-connection.
- γ is monotone: if $\hat{x} \sqsubseteq \hat{y}$, then $\alpha(\gamma(\hat{x})) \sqsubseteq \hat{y}$. Hence $\gamma(\hat{x}) \sqsubseteq \gamma(\hat{y})$ by Galois-connection.
- α is monotone: if $x\sqsubseteq y$, then $x\sqsubseteq \gamma(\alpha(y))$. Hence $\alpha(x)\sqsubseteq \alpha(y)$ by Galois-connection.

Proof (\Leftarrow)

- Assume $\alpha(x) \sqsubseteq \hat{x}$. Since γ is monotone, $\gamma(\alpha(x)) \sqsubseteq \gamma(\hat{x})$. Because $\gamma \circ \alpha$ is extensive, we have $x \sqsubseteq \gamma(\hat{x})$.
- Assume $x \sqsubseteq \gamma(\hat{x})$. Since α is monotone, $\alpha(x) \sqsubseteq \alpha(\gamma(\hat{x}))$. Because $\alpha \circ \gamma$ is reductive, we have $\alpha(x) \sqsubseteq \hat{x}$.

Properties of Galois-Connection (1)

Given $D \stackrel{\gamma}{\longleftrightarrow} \hat{D}$, we have:

- $\bullet \ \gamma \circ \alpha \ \circ \gamma = \gamma$
 - From $\alpha \circ \gamma \sqsubseteq \lambda x.x$ and monotonicity of γ , we have $\gamma \circ \alpha \circ \gamma \sqsubseteq \gamma$. We have $\gamma \circ \alpha \circ \gamma \supseteq \gamma$ from $\gamma \circ \alpha \supseteq \lambda x.x$.
- $\bullet \ \alpha \circ \gamma \circ \alpha = \alpha$
- $\alpha \circ \gamma$ and $\gamma \circ \alpha$ are idempotent:

$$(\alpha \circ \gamma)^2 = \alpha \circ \gamma, (\gamma \circ \alpha)^2 = \gamma \circ \alpha$$

ullet γ uniquely determines $lpha(D,\hat{D}$ complete lattices):

$$\alpha(d) = \bigcap \{\hat{d} \mid d \sqsubseteq \gamma(\hat{d})\}$$

which implies that $\alpha(d)$ is the best abstraction of d.

• α uniquely determines γ :

$$\gamma(\hat{d}) = \big| \ \big| \{ d \mid \alpha(d) \sqsubseteq \hat{d} \}$$

Properties of Galois-Connection (2)

- α is strict, i.e., $\alpha(\bot) = \hat{\bot}$. Proof. From $\bot \sqsubseteq \gamma(\hat{\bot})$, we have $\alpha(\bot) \sqsubseteq \hat{\bot}$ by Galois-connection.
- ullet lpha is continuous: for any chain S in D,

$$\alpha(\bigsqcup_{x \in S} x) = \bigsqcup_{x \in S} \alpha(x).$$

Proof. Since α is monotonic,

$$\bigsqcup_{x \in S} lpha(x) \sqsubseteq lpha(\bigsqcup_{x \in S} x).$$

Since $\lambda x.x \sqsubseteq \gamma \circ \alpha$ and γ is monotonic,

$$\bigsqcup_{x \in S} x \sqsubseteq \bigsqcup_{x \in S} \gamma(\alpha(x)) \sqsubseteq \gamma(\bigsqcup_{x \in S} \alpha(x))$$

By Galois-connection, we have

$$\alpha(\bigsqcup_{x\in S}x)\sqsubseteq\bigsqcup_{x\in S}\alpha(x)$$

Deriving Galois-Connections

• Pointwise lifting: Given $D \stackrel{\gamma}{\longleftrightarrow} \hat{D}$ and a set S, then

$$S \to D \xrightarrow{\gamma'} S \to \hat{D}$$

with $\alpha'(f) = \lambda s \in S.\alpha(f(s))$ and $\gamma(f) = \lambda s \in S.\gamma(f(s))$.

• Composition: Given $X_1 \stackrel{\gamma_1}{\underset{\alpha_1}{\longleftarrow}} X_2 \stackrel{\gamma_2}{\underset{\alpha_2}{\longleftarrow}} X_3$, we have

$$X_1 \stackrel{\gamma_1 \circ \gamma_2}{\longleftarrow} X_3$$

Requirement 2: $\hat{\boldsymbol{F}}$ and \boldsymbol{F}

• \hat{F} is a sound abstraction of F:

$$F \circ \gamma \sqsubseteq \gamma \circ \hat{F} \quad (\alpha \circ F \sqsubseteq \hat{F} \circ \alpha)$$

or, alternatively,

$$\alpha(x) \sqsubseteq \hat{x} \implies \alpha(F(x)) \sqsubseteq \hat{F}(\hat{x})$$

Best Abstract Semantics

From
$$D \stackrel{\gamma}{ \stackrel{}{ \longleftarrow} } \hat{D}$$
 and $F \circ \gamma \sqsubseteq \gamma \circ \hat{F}$, we have

$$lpha \circ F \circ \gamma \sqsubseteq lpha \circ \gamma \circ \hat{F}$$
 $lpha$ is monotone $\sqsubseteq \hat{F}$ $lpha \circ \gamma \sqsubseteq \lambda x.x$

The result means that $\alpha \circ F \circ \gamma$ is the best abstraction of F and any sound abstraction \hat{F} of F is greater than $\alpha \circ F \circ \gamma$.

Composition

When F, F' are concrete operators and \hat{F}, \hat{F}' are abstract operators, if \hat{F} and \hat{F}' are sound abstractions of F and F', respectively, then $\hat{F} \circ \hat{F}'$ is a sound abstraction of $F \circ F'$.

Fixpoint Transfer Theorems

Theorem (Fixpoint Transfer)

Let D and \hat{D} be related by Galois-connection $D \stackrel{\gamma}{ \underset{\alpha}{\longleftarrow}} \hat{D}$. Let $F:D \to D$ be a continuous function and $\hat{F}:\hat{D} \to \hat{D}$ be a monotone function such that $\alpha \circ F \sqsubseteq \hat{F} \circ \alpha$. Then,

$$lpha(\mathit{fix} F) \sqsubseteq igsqcup_{i \in \mathbb{N}} \hat{F}^i(\hat{\bot}).$$

Theorem (Fixpoint Transfer2)

Let D and \hat{D} be related by Galois-connection $D \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} \hat{D}$. Let $F:D \to D$ be a continuous function and $\hat{F}:\hat{D} \to \hat{D}$ be a monotone function such that $\alpha(x) \sqsubseteq \hat{x} \implies \alpha(F(x)) \sqsubseteq \hat{F}(\hat{x})$. Then,

$$lpha(\mathit{fix} F) \sqsubseteq igsqcup_{i \in \mathbb{N}} \hat{F}^i(\hat{\bot}).$$

Proof of Fixpoint Transfer

• From $\alpha \circ F \sqsubseteq \hat{F} \circ \alpha$, we can derive

$$\forall n \in \mathbb{N}. \ \alpha \circ F^n \sqsubseteq \hat{F}^n \circ \alpha \quad (\forall n \in \mathbb{N}. \ \alpha(F^n(\bot)) \sqsubseteq \hat{F}^n(\hat{\bot}))$$

by induction as follows:

$$\begin{array}{lll} \alpha\circ F^{n+1} & = & \alpha\circ F\circ F^n \\ & \sqsubseteq & \alpha\circ F\circ \gamma\circ \alpha\circ F^n & \cdots \alpha\circ F \text{ is mono. and } \lambda x.x\sqsubseteq \gamma\circ \alpha \\ & \sqsubseteq & \alpha\circ F\circ \gamma\circ \hat{F}^n\circ \alpha & \cdots \alpha\circ F\circ \gamma \text{ is mono. and by I.H.} \\ & \sqsubseteq & \hat{F}\circ \hat{F}^n\circ \alpha & \cdots \alpha\circ F\circ \gamma\sqsubseteq \hat{F} \end{array}$$

ullet Since $lpha,F,\hat{F}$ are monotone, $\{lpha(F^i(oldsymbol{\perp}))\}_i$ and $\{\hat{F}^i(\hat{oldsymbol{\perp}})\}_i$ are chains, and

$$\bigsqcup_{i \in \mathbb{N}} \alpha(F^{i}(\bot)) \sqsubseteq \bigsqcup_{i \in \mathbb{N}} \hat{F}^{i}(\hat{\bot}) \tag{1}$$

• Since α and F are continuous.

$$\bigsqcup_{i\in\mathbb{N}} lpha(F^i(ot)) = lpha(\bigsqcup_{i\in\mathbb{N}} (F^i(ot))) = lpha(\mathit{fix} F)$$

By replacing the left-hand side of (1), we have

$$lpha(\mathit{fix} F) \sqsubseteq igsqcup_{i \in \mathbb{N}} \hat{F}^i(\hat{oldsymbol{\perp}})$$

Computing $\bigsqcup_{i\in\mathbb{N}}\hat{F}^i(\hat{\perp})$

 $m{\bullet}$ If the abstract domain $\hat{m{D}}$ has finite height (i.e., all chains are finite), we can directly calculate

$$igsqcup_{i\in\mathbb{N}}\hat{F}^i(\hat{oldsymbol{\perp}}).$$

• If the domain \hat{D} has infinite height, the computation may not terminate. In this case, we find a finite chain $\hat{X}_0 \sqsubseteq \hat{X}_1 \sqsubseteq \hat{X}_2 \sqsubseteq \dots$ such that

$$igsqcup_{i\in\mathbb{N}}\hat{F}^i(\hat{ot})\sqsubseteq\lim_{i\in\mathbb{N}}\hat{X}_i$$

Fixpoint Accerlation with Widening

Define finite chain \hat{X}_i by an widening operator $\nabla:\hat{D}\times\hat{D}\to\hat{D}$:

$$\hat{X}_{0} = \hat{\bot}$$

$$\hat{X}_{i} = \hat{X}_{i-1} \quad \text{if } \hat{F}(\hat{X}_{i-1}) \sqsubseteq \hat{X}_{i-1}$$

$$= \hat{X}_{i-1} \nabla \hat{F}(\hat{X}_{i-1}) \quad \text{otherwise}$$
(2)

Conditions on ∇ :

- $\bullet \ \forall a,b \in \hat{D}. \ (a \sqsubseteq a \mathbin{\bigtriangledown} b) \ \land \ (b \sqsubseteq a \mathbin{\bigtriangledown} b)$
- ullet For all increasing chains $(x_i)_i$, the increasing chain $(y_i)_i$ defined as

$$y_i = \left\{ egin{array}{ll} x_0 & ext{if } i=0 \ y_{i-1} igtriangledown x_i & ext{if } i>0 \end{array}
ight.$$

eventually stabilizes (i.e., the chain is finite).

Decreasing Iterations with Narrowing

- ullet We can refine the widening result $\lim_{i\in\mathbb{N}}\hat{X}_i$ by a narrowing operator $\Delta:\hat{D} imes\hat{D} o\hat{D}$.
- ullet Compute chain $(\hat{Y}_i)_i$

$$\hat{Y}_i = \begin{cases} \lim_{i \in \mathbb{N}} \hat{X}_i & \text{if } i = 0\\ \hat{Y}_{i-1} \triangle \hat{F}(\hat{Y}_{i-1}) & \text{if } i > 0 \end{cases}$$
 (3)

- Conditions on ∧
 - $\blacktriangleright \ \forall a,b \in \hat{D}. \ a \sqsubseteq b \implies a \sqsubseteq a \land b \sqsubseteq b$
 - lacktriangleright For all decreasing chain $(x_i)_i$, the decreasing chain $(y_i)_i$ defined as

$$y_i = \left\{ egin{array}{ll} x_i & ext{if i} = 0 \ y_{i-1} igwedge x_i & ext{if } i > 0 \end{array}
ight.$$

eventually stabilizes.

Safety of Widening and Narrowing

Theorem (Widening's Safety)

Let \hat{D} be a CPO, $\hat{F}:\hat{D}\to\hat{D}$ a monotone function, $\nabla:\hat{D}\times\hat{D}\to\hat{D}$ a widening operator. Then, chain $(\hat{X}_i)_i$ defined as (2) eventually stabilizes and

$$igsqcup_{i\in\mathbb{N}}\hat{F}^i(\hat{ot})\sqsubseteq\lim_{i\in\mathbb{N}}\hat{X}_i.$$

Theorem (Narrowing's Safety)

Let \hat{D} be a CPO, $\hat{F}:\hat{D}\to\hat{D}$ a monotone function, $\triangle:\hat{D}\times\hat{D}\to\hat{D}$ a narrowing operator. Then, chain $(\hat{Y}_i)_i$ defined as (3) eventually stabilizes and

$$igsqcup_{i\in\mathbb{N}}\hat{F}^i(\hat{ot})\sqsubseteq\lim_{i\in\mathbb{N}}\hat{Y}_i.$$

Proof of Widening's Safety

• We first show that $\{\hat{F}(\hat{X}_i)\}_i$ is an increasing chain (if so, by the second condition of widening, the widening sequence $\{\hat{X}_i\}_i$ eventually stabilizes). Note that, by (2), $\hat{F}(\hat{X}_{i+1})$ is either $\hat{F}(\hat{X}_i)$ or $\hat{F}(\hat{X}_i \nabla \hat{F}(\hat{X}_i))$. Since $\hat{X}_i \sqsubseteq \hat{X}_i \nabla \hat{F}(\hat{X}_i)$ and \hat{F} is monotone, for all i we have

$$\hat{F}(\hat{X}_i) \sqsubseteq \hat{F}(\hat{X}_{i+1})$$

- ullet We next show that $orall i\in\mathbb{N}.$ $\hat{F}^i(\hat{ot})\sqsubseteq\hat{X}_i$.
 - ightharpoonup Base case. $\hat{F}^0(\hat{\perp}) = \hat{\perp} \sqsubseteq \hat{X}_0$.
 - Inductive case. From the induction hypothesis (I.H.), i.e., $\hat{F}^i(\hat{\perp}) \sqsubseteq \hat{X}_i$, and the monotonicity of \hat{F} , we have

$$\hat{F}^{i+1}(\hat{\perp}) \sqsubseteq \hat{F}(\hat{X}_i) \tag{4}$$

There are two cases to consider:

- ① When $\hat{F}(\hat{X}_i) \sqsubseteq \hat{X}_i$ and $\hat{X}_{i+1} = \hat{X}_i$: we have $\hat{F}(\hat{X}_i) \sqsubseteq \hat{X}_{i+1}$ and therefore $\hat{F}^{i+1}(\hat{\bot}) \sqsubseteq \hat{X}_{i+1}$.

Proof of Narrowing's Safety

• We first show that $\{\hat{F}(\hat{Y}_i)\}_i$ is a decreasing chain (if so, by the second condition of narrowing, the narrowing sequence $\{\hat{Y}_i\}_i$ eventually stabilizes). We can show that $\{\hat{F}(\hat{Y}_i)\}_i$ is a decreasing chain if the following holds:

$$\forall i \in \mathbb{N}. \ \hat{Y}_i \supseteq \hat{F}(\hat{Y}_i).$$
 (5)

This is because, from (5), we have $\hat{Y}_i \supseteq \hat{Y}_i \triangle \hat{F}(\hat{Y}_i) \supseteq \hat{F}(\hat{Y}_i)$ and by the mono. of \hat{F} , we have

$$\hat{F}(\hat{Y}_i) \sqsupseteq \hat{F}(\hat{Y}_i igwedge \hat{F}(\hat{Y}_i)) = \hat{F}(\hat{Y}_{i+1})$$

Proof of (5): exercise.

• We next show that $\forall i \in \mathbb{N}. \ \hat{F}^i(\hat{\bot}) \sqsubseteq \hat{Y}_i$ by induction (exercise).