

Content

relevant subtitle in this line

1 场景

2 算法

3 问题

4

引子

数据格式为 (身高/体重/[患有脂肪肝])

捣蛋猫

瞅什魔

趴趴鲶

(165cm, False) (164cm, False) (155cm, True)

> (40kg) (41kg) (100kg)

数据格式对比

- (a) Horizontal Federated Learning (b) Vertical Federated Learning (c) Federated Transfer Learning

Figure 1: Three categories of Federated Learning

横向联邦: (身高,体重,脂肪肝)

流浪商人手上: (165cm,40kg,False)(164cm,41kg,False)

➤ 黑市商人手上: (155cm,100kg,True)

[1]Liu Y, Kang Y, Zou T, et al. Vertical Federated Learning: Concepts, Advances, and Challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2024.

VFL

符 号	含义
N	样本数为 N
K	K 个参与方
H_k	本地模型输出 $H_k = \mathcal{G}_i\left(\mathbf{x}_k, heta_k ight)$
θ_k	被动方模型
ψ_K	主动方模型
\mathcal{F}_K	global module \mathcal{F}_K
${\cal G}_i$	local model \mathcal{G}_i <br<math>> (我觉得叫module好一点)</br<math>
\mathbf{x}, \mathbf{y}	$\mathcal{D} riangleq \{(\mathbf{x}_i, y_i)\}_{i=1}^N$

VFL

Algorithm 1 A General VFL Training Procedure.

Input: learning rates η_1 and η_2

Output: Model parameters $\theta_1, \theta_2 \dots \theta_K, \psi_K$

```
1: Party 1,2,\ldots,K, initialize \theta_1,\,\theta_2,\,\ldots\,\theta_K,\,\psi_K.
 2: for each iteration j = 1, 2, \dots do
        Randomly sample a mini-batch of samples \mathbf{x} \subset \mathcal{D}
        for each party k=1,2,\ldots,K in parallel do
           Party k computes H_k = \mathcal{G}_k(\mathbf{x}_k, \theta_k);
 5:
           Party k sends \{H_k\} to party K;
        end for
        Active party K updates \psi_K^{j+1} = \psi_K^j - \eta_1 \frac{\partial \ell}{\partial \psi_K};
        Active party K computes and sends \frac{\partial \ell}{\partial H_k} to all other parties;
 9:
        for each party k=1,2,\ldots,K in parallel do
10:
           Party k computes \nabla_{\theta_k} \ell with Equation (3);
11:
           Party k updates \theta_k^{j+1} = \theta_k^j - \eta_2 \nabla_{\theta_k} \ell;
12:
        end for
13:
14: end for
```

$$\nabla_{\theta_k} \ell = \frac{\partial \ell}{\partial \theta_k} = \sum_{i} \frac{\partial \ell}{\partial H_{i,k}} \frac{\partial H_{i,k}}{\partial \theta_k}$$

Q&A:一场误会

```
Algorithm 1 A General VFL Training Procedure.
Input: learning rates \eta_1 and \eta_2
Output: Model parameters \theta_1, \theta_2 \dots \theta_K, \psi_K
 1: Party 1,2,\ldots,K, initialize \theta_1, \theta_2, \ldots \theta_K, \psi_K.
 2: for each iteration j = 1, 2, \dots do
        Randomly sample a mini-batch of samples \mathbf{x} \subset \mathcal{D}
       for each party k=1,2,\ldots,K in parallel do
           Party k computes H_k = \mathcal{G}_k(\mathbf{x}_k, \theta_k);
           Party k sends \{H_k\} to party K;
        end for
       Active party K updates \psi_K^{j+1} = \psi_K^j - \eta_1 \frac{\partial \ell}{\partial \psi_K}
       Active party K computes and sends \frac{\partial \ell}{\partial H_k} to all other parties;
           Party k computes \nabla_{\theta_k} \ell with Equation (3):
11:
           Party k updates \theta_k^{j+1} = \theta_k^j - \eta_2 \nabla_{\theta_k} \ell;
12:
        end for
14: end for
```

- 1.第9行这个求导,有预测值,还要知道label才能求啊?
- ► Label可以是共享的(我一直以为Label是所有人都有的)
- ▶ 可以是只有活跃方拥有的(本篇的场景)
- 2.被动方有label的话,为啥不在本地自己做反向传播? (可能不存在这个问题哈)
- ► 因为单个Party的数据维度不够,或者说想吃别的client手上的维度
- 3.联邦学习中的最重要的问题,某个client怎么吃到别的client的数据?
- \triangleright 这里下发的是 $\frac{\partial l}{\partial H_k}$, 这里, ∂l 是用完整维度的数据计算的 损失, 包含了所有client的数据维度

