单元八 氧化还原反应

【8.1.1】氧化剂与还原剂

\diamond	复述氧化剂、	还原剂的概念
------------	--------	--------

电	子的物质称为氧化剂,	电子的物质和	你为还原剂	
	为氧化剂和还原剂			
氧化剂	氯气、氧气、三价铁离	离子、高锰酸钾		
还原剂	氢气、木炭、一氧化碳	炭、硫化氢		
◆ 判断氧化剂	 和还原剂			
化合价	、电子的物质;	是氧化剂;		
化合价	、电子的物质:	是还原剂		
【练习1】反应	$SO_2 + Br_2 + 2H_2O \rightarrow H_2S$	SO ₄ + 2HBr 中的氧化剂	列是 ()	
A. H ₂ SO ₄	B. H_2O	C. Br ₂	D. SO ₂	
【练习2】在3	$Cl_2+6NaOH = 5NaCl+N$	aClO ₃ +3H ₂ O 反应中,	氧化剂与还原剂	列的
物质的量之比为	J			
【8.1.2】氧化反	反应与还原反应			
◇ 复述氧化反	反应与还原反应的概念			
◇ 判断氧化反	反应与还原反应			
电子	产的反应是氧化反应,	电子的反应是	是还原反应	
【8.1.3】氧化过				
◆ 复述氧化还	医原反应的定义, 识别氧	【化还原反应		
有元素	(特征)、	(本质)的(化学反应是氧化法	还原反应
◇ 解释化合份) 升降、电子转移与氧化	公还原反应的关系		
氧化剂:				
具有	性,在反应中	电子,化合价		
发生	反应,也就是被	,生成	产物。	
还原剂:				
具有	性,在反应中	电子,化合价	,	
发生	反应,也就是被	,生成	产物。	
【练习3】下列	微粒既能跟 Fe ²⁺ 反应,	又能证明 Fe ²⁺ 有还原	性的是()	
A. Cu	$B. OH^-$	C. $S^{2^{-}}$	D. Cl ₂	
【练习4】在	$KClO_3+6HCl = 3Cl_2\uparrow + I$	KCl +3H ₂ O 反应中,		_是氧化产物;
	是还原产物,氧化产生	物与还原产物的物质的	0量之比为	0

◆ 在简单氧化还原反应中描述电子转移方向与数目

	2	2e			
单线桥法:	2Na	+	Cl ₂	点燃	2NaCl

【练习5】氯化铵可除去铜器表面的氧化铜。反应如下:

$$4\text{CuO} + 2\text{NH}_4\text{Cl} \xrightarrow{\Delta} 3\text{Cu} + \text{CuCl}_2 + \text{N}_2 \uparrow + 4\text{H}_2\text{O}$$
 完成下列填空:
 (1) 上述反应中,氧化剂是______,氧化产物是_____。
 (2) 标出上述反应中电子转移的方向和数目。

◆ 解释有关氧化还原反应在生产、生活中的应用

食品包装中用铁粉做吸氧剂抗氧化;用氯气给自来水杀菌消毒等

(3) 当转移 3mol 电子时, 生成 N₂_____L(标准状况)。

【练习6】氧化还原反应在生产、生活中具有广泛的用途。下列生产、生活中的事例不属于 氧化还原反应的是()

- A. 金属冶炼 B. 燃放鞭炮 C. 食物腐败 D. 海水晒盐

【8.2.1】原电池的概念

◆ 复述原电池的概念和原电池的组成

概念	将	能的装置	
组成	①两个活泼性不同的电极、②	②电解质溶液或熔融态电解质、	③闭合回路、
组成	④自发发生的氧化还原反应		

◆ 识别原电池的正、负极及发生反应的类型

较不活泼的],电子流入的电极是	极	,溶液中的微粒被_		,发生	反应
较活泼的,	电子流出的电极是	_极,	电极材料被	,	发生	反应

【练习7】右图为铜锌原电池示意图,下列说法中不正确的是(

- A. 锌为负极,发生氧化反应
- B. 铜片为阴极
- C. 电子由锌片通过导线流向铜片
- D. 该装置能够将化学能转化为电能

【8.2.2】铜锌原电池的原理

◆ 解释铜锌原电池的工作原理

浸在稀硫酸溶液里的锌片和铜片用导线连接后,由于锌比铜活泼,容易失去电子,锌被氧化成 Zn^{2+} 而进入溶液,锌原子失去的电子通过导线流向铜片,溶液里的 H^+ 从铜片上获得电子,被还原成氢原子,氢原子再两两结合成氢分子从铜片上逸出

◆ 描述铜锌原电池工作时两极的现象,书写铜锌原电池总反应的化学方程式

正极(Cu)	产生气泡	$2H^+ + 2e = H_2 \uparrow$	总反应的化学方程式:
负极 (Zn)	不断溶解	$Zn - 2e = Zn^{2+}$	

【练习8】铜一锌原电池如右图所示,下列叙述正确的是()

- A. 氢离子在负极得电子
- B. 锌片逐渐溶解
- C. 铜片上无气泡产生
- D. 溶液变为蓝色

【8.3.1】饱和氯化钠溶液的电解

◆ 复述电解的概念和电解池的组成,说出电解过程中的能量转化

概念	使直流	流电通	1过	溶液而发生_		反应的过程叫做电解
组成	直流	电源、	两个电极、	电解质(水溶液	或熔融态)、	闭合回路
能量转	专化		能转	变为		

◆ 识别电解池的阴极和阳极及发生反应的类型

阴极	与电源	极相连的电极,	发生	_反应
阳极	与电源	极相连的电极,	发生	_反应

【练习9】右图是电解饱和食盐水的装置, a、b 为石墨电极。下列判断正确的是()

- A. a 为正极, b 为负极
- B. a 极上有电子流入
- C. b 极上发生氧化反应
- D. b 极上有电子流入

◆ 解释电解饱和食盐水的原理

在饱和食盐水中,氯化钠完全电离(NaCl=Na⁺+Cl⁻),水仅微弱电离 $(H_2O \Longrightarrow H^+ + OH^-)$,溶液中存在 $Na^+ \times H^+ \times Cl^- \times OH^-$ 四种离子。当接通直流电源后,带正电荷的 Na^+ 和 H^+ 向阴极移动,带负电荷的 Cl^- 和 OH^- 向阳极移动。在阳极上 Cl^- 比 OH^- 容易失去电子,被氧化为 Cl 原子,Cl 原子再两两结合成 Cl_2 分子。在阴极上 H^+ 比 Na^+ 容易得电子,被还原成 H 原子,H 原子两两结合成 H_2 分子。

◆ 描述电解饱和食盐水时两极的产物,书写电解饱和食盐水的化学方程式

阳极 (连接电源正极)	产生氯气	$2Cl^{-}-2e=Cl_{2}\uparrow$
阴极 (连接电源负极)	产生氢气、氢氧化钠	$2H^+ + 2e = H_2 \uparrow$
总反应的化学方程式		

【练习 10】取一张用饱和 NaCl 溶液浸湿的 pH 试纸,两根铅笔芯作电极,接通直流电源,一段时间后,发现 b 电极与试纸接触处出现一个双色同心圆,内圆为白色,外圆呈浅红色。则下列说法错误的是()。

- A. a 电极是阴极
- B. b 电极与电源的正极相连接
- C. 电解过程中, 水被还原
- D. a 电极附近溶液的 pH 变小

【8.3.2】氯化铜溶液的电解

◆ 解释电解氯化铜溶液的原理

在氯化铜溶液中,氯化铜完全电离($CuCl_2 = Cu^{2^+} + 2Cl^-$),水仅微弱电离 $(H_2O \Longrightarrow H^+ + OH^-)$,溶液中存在 Cu^{2^+} 、 H^+ 、 Cl^- 、 OH^- 四种离子。当接通直流电源后,带正电荷的 Cu^{2^+} 和 H^+ 向阴极移动,带负电荷的 Cl^- 和 OH^- 向阳极移动。在阳极上 Cl^- 比 OH^- 容易失去电子,被氧化为 Cl 原子,Cl 原子再两两结合成 Cl_2 分子。在 阴极上 Cu^{2^+} 比 H^+ 容易得电子,被还原成 Cu 原子。

◆ 描述电解氯化铜溶液时两极的产物,书写电解氯化铜溶液的化学方程式

阳极 (连接电源正极)	产生氯气	$2C1^{-} - 2e = C1_{2}\uparrow$
阴极 (连接电源负极)	产生铜	$Cu^{2+} + 2e = Cu$
总反应的化学方程式		

【练习 11】右图是电解 CuCl₂溶液的装置,其中 c、d 为石墨电极。下列判断正确的是()

A.a 为负极

B. d 为阳极

C. c 电极上有氯气产生

D. d 电极上发生氧化反应

单元八 巩固练习

1. 有关氧化还原反应实质的说法中正确的是() A. 是否有元素的电子转移 B. 是否有元素的化合价的变化 C. 是否有氧元素的参加 D. 是否有原子的重新组合 2. 下列反应中氯气只作氧化剂的是() B. $Cl_2 + 2NaOH = NaCl + NaClO + H_2O$ A. $Cl_2+2KI = 2KCl+I_2$ C. CuCl₂ 描直流电 Cl₂↑+ Cu D. 3Cl₂+H₂O ➡ HCl+HClO 3. 如右图,下列说法正确的是(A. 两烧杯中铜片表面均无气泡产生 B. 甲中铜片是正极, 乙中铜片是负极 C. 两烧杯中溶液的氢离子浓度均减小 D. 产生气泡的速度甲比乙慢 4. CCTV报道,解放军总后勤部提出要让每个野外作业的战士都吃上热饭菜,其中一种方 法是利用原电池原理,将食盐颗粒、炭屑、铁屑装入食品包装的夹层中密封起来,使用时撕 开一口子,加入适量水振荡,就会产生热量加热食品。以下叙述正确的是 (A. 铁作负极,发生氧化反应 B. 碳作负极, 发生还原反应 D. 碳作正极, 发生氧化反应 C. 铁作正极,发生还原反应 5. 下列叙述正确的是 () A.在原电池的正极和电解池的阳极上都发生失电子的氧化反应 B.用惰性电极电解氯化铜溶液,阴阳两极产物的物质的量之比为1:2 C.用惰性电极电解饱和 NaCl 溶液, 若有 1 mol 电子转移,则生成 1 mol NaOH D.镀层破损后,镀锡铁板比镀锌铁板更耐腐蚀 6. 氮化硅(Si3N4)陶瓷材料可应用于原子反应堆。氮化硅可由下列反应制得: 3SiO₂ + 6C+ 2N₂ 高温 S_{i3}N₄ + 6CO S_{i3}N₄中氮元素的化合价为-3。 完成下列填空: (1) 标出上述反应中电子转移的方向和数目。 (2) 该反应的氧化剂是_____, 被氧化的元素是_____

(3) 若生成 0.25mol S_{i3}N₄,则反应过程中转移