University of Toronto FACULTY OF ARTS AND SCIENCE

FINAL EXAMINATIONS, DECEMBER 2011

$\begin{array}{c} APM~236H1F\\ Applications~of~Linear~Programming \end{array}$

Examiner:

P. Kergin

Duration:

3 hours

PLEASE HAND IN

AMILY NAME	
IVEN NAME(S)	
TUDENT NO	
GNATURE	

INSTRUCTIONS:

NO calculators or other aids allowed. There are 6 questions, each worth 20 marks. Questions 2, 3, 5, and 6 have part-questions, whose values are stated within the part-questions themselves. Total marks = 120.

This exam consists of 12 pages, printed on both sides of the paper. Write solutions in spaces provided. Pages 3 and 12 are blank and may be used for the solution(s) of any of the problems, or for rough work. Aspects of any question which are indicated in **boldface** will be regarded as crucial during grading. Show your work.

GRADER'S	S REPORT
1	
2	
3	
4	
5	
6	
TOTAL	

1. Use artificial variables to write a linear programming problem in canonical form with non-negative resource vector whose solution will determine whether there exists (and, if so, find) non-negative reals x_1 , x_2 , x_3 , and x_4 such that $x_1+x_2+x_3+x_4=1$ and $x_1\begin{bmatrix}0\\1\end{bmatrix}+x_2\begin{bmatrix}-2\\0\end{bmatrix}+x_3\begin{bmatrix}1\\-2\end{bmatrix}+x_4\begin{bmatrix}0\\-1\end{bmatrix}=\begin{bmatrix}1\\-1\end{bmatrix}$. After you set the problem up, use the simplex method to solve it.

2.(a)(10 marks) Find an **optimal solution**, in \mathbb{R}^3 , of the problem:

Maximize $z = x_1 - 4x_2 + 7x_3$ subject to the constraints

Note that the second constraint has " \geq ". This is not a typographical error.

2.(b)(10 marks) Find all optimal solutions. in \mathbb{R}^3 , of the problem of question 2.(a):

Maximize $z = x_1 - 4x_2 + 7x_3$ subject to the constraints

$$x_1 - x_2 + x_3 \leq 3$$

$$x_1 - 2x_2 + x_3 \le 4$$

3.(a)(10 marks) State the weak duality theorem.

4. Solve the problem:

Minimize $z = 4x_1 + 5x_2 + x_3$ subject to the constraints

5. Consider the primal problem:

Maximize $z = 2x_1 - x_2$ subject to the constraints

5.(a)(4 marks) Solve the primal problem graphically.

5.(b)(4 marks) For i=1, 2, 3, and 4, let w_i denote the dual variable associated with the $i^{\rm th}$ primal constraint. Write the dual of the primal problem, using only the decision variables w_1 , w_2 , w_3 , and w_4 .

5.(c)(12 marks) Let S denote the set of points, $\begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix}$ in \mathbb{R}^4 , which are optimal for the dual problem. Find the extreme points of S.

6. Consider the problem:

Maximize $z = 9x_1 + 8x_2 + 6x_3 + 9x_4 + 11x_5$ subject to the constraints

6.(a)(5 marks) The fourth tableau of the simplex solution of this problem has basic variables $\{x_1, x_3\}$ (in that order). Use this information to find the matrix \mathbf{B}^{-1} which corresponds to the fourth tableau.

6.(b)(15 marks) Beginning from the fourth tableau, use the revised simplex method to solve the problem on page 10:

Maximize $z = 9x_1 + 8x_2 + 6x_3 + 9x_4 + 11x_5$ subject to the constraints

Note that there in no need to write the fourth tableau.

extra page