# Arbeit im Wandel: Das Zeitalter der Künstlichen Intelligenz





### Über mich

#### Dr. Joschka Hüllmann

Assistant Professor an der Universität Twente (NL)

#### Forschungsschwerpunkte:

- Die Zukunft der Arbeit mit neuen Technologien
- People Analytics und Algorithmisches Management
- Analyse Digitaler Fußspuren
- Social Process Mining

Kontakt: www.joschka-huellmann.de

# Produktivitätssteigerung in Wissensarbeit





# Industrie will Techkompetenz



Figure 1. Adoption of Data-Driven Decision-Making in US Manufacturing



### Viele Branchen sind von KI betroffen





— Al share of the Total number of vacancies

Number of vacancies requiring AI skills (in thousands)

### **Lohn Effekte**









# **Smart Farming**









# **Smart Manufacturing**



### **Smart Krankenhaus**



### Öffentlicher Verkehr





# Sport-, Kunden-, People Analytics









Arbeit im Wandel.

#### **Ist KI anders?**





- KI-Modelle sind eine "Blackbox".
- KI-Modelle haben Fehler und Unsicherheiten.
- 3. KI-Modelle bauen dauert lange.
- 4. KI-Modelle haben systematische Verzerrungen.



#### Menschliche Eigenschaften

- 1. Vertrauen in Mensch vs. Künstliche Intelligenz.
- 2. Aversion gegen Künstliche Intelligenz.



#### **Technische Eigenschaften**

- 1. Es braucht viele Daten.
- 2. Viele Annahmen über die Domäne.
- 3. Dynamiken in der Domäne.
- 4. Multidisziplinäres Wissen.



# Adoption von KI (Unternehmenssicht)



Schatten-IT

Fachkräftemangel



### Welches KI Tool ist das richtige?





# Adoption von KI (Unternehmenssicht)



"Unsere Daten stecken in Silos und haben uneinheitliche Formate."







"Die Mitarbeiter bevorzugen bewährte Prozesse."

"Sorge vor Kontrollverlust und Relevanzverlust."





# Adoption von IT (Nutzersicht)



# Adoption von KI (Nutzersicht)



#### Mehr Toleranz gegenüber Menschen

Fehler durch KI bleiben hängen. Fehler durch Menschen werden verziehen.

Je mehr man es kennenlernt,

→ desto kritischer werden Nutzer.

Je besser man es versteht,

→ desto einsichtiger werden Nutzer.





# Mitarbeiterentwicklung für Kl





# KI "Literacy" schaffen



#### Rolle von Alter



#### Anfängliche Nutzungsentscheidungen:

#### Jüngere Arbeitnehmer:

Benutzerfreundlichkeit / Nützlichkeit der Technologie stärker im Fokus

#### Älteren Arbeitnehmer:

Sozialer Einfluss und Rahmenbedinungen stärker im Fokus

#### Langfristig:

Angleichung und Internalisierungsprozess erfolgt schnell

#### **Geschlecht:**

Männer konzentrieren sich mehr auf Nützlichkeit

### Arbeitnehmer mit höherem Alter

■ Erwerbstätigenquoten nach Altersgruppen 1991 - 2022¹ in % der Bevölkerung² der jeweiligen Altersgruppe





<sup>&</sup>lt;sup>1</sup> Aufgrund methodischer Änderungen in mehreren Jahren ist der Vergleich im Detail eingeschränkt, jedoch ist die Trendausage belastbar. Werte für 2022 vorläufig. <sup>2</sup> Ab 2017 ohne Personen in Gemeinschaftsunterkünften.





### Jobidentität bei Kl



### Sinn der Arbeit bei Kl

#### KI Implementierung

- 1. Substitution
- Neue Aufgaben (spannend)
- 3. Neue Aufgaben (langweilig)
- Verbessern existierender Aufgaben



#### **Bedeutungsvolle Arbeit**

- 1. Integrität der Aufgaben
- Kompetenzentwicklung und –nutzung
- 3. Wichtigkeit der Aufgaben
- 4. Autonomie
- 5. Zugehörigkeit





# KI im Recruiting



KI-basierte Bewerbungsgespräche



**KI-basierte Assessment Spiele** 

# KI in Personalentwicklung







Netzwerkanalysen

#### KI in Routinearbeit



Datengetriebene Prozessoptimierung (z.B. "Process Mining")

KI- und Simulationsbasierte operative und strategische Personalplanung



Danke.

### **Jetzt sind Sie dran!**

### Quellen

- 1. Abdelwahed, A., van den Berg, P. L., Brandt, T., Collins, J., & Ketter, W. (2020). Evaluating and optimizing opportunity fast-charging schedules in transit battery electric bus networks. Transportation Science, 54(6), 1601-1615.
- 2. Abdelwahed, A., van den Berg, P. L., Brandt, T., Ketter, W., & Mulder, J. (2021). A Boost for Urban Sustainability: Optimizing Electric Transit Bus Networks in Rotterdam. INFORMS Journal on Applied Analytics, 51(5), 391-407.
- 3. Acemoglu, D., Koster, H. R., & Ozgen, C. (2023). Robots and workers: Evidence from the Netherlands (No. w31009). National Bureau of Economic Research.
- 4. Alekseeva, L., Azar, J., Gine, M., Samila, S., & Taska, B. (2021). The demand for Al skills in the labor market. Labour economics, 71, 102002.
- 5. Benbya, H., Pachidi, S., & Jarvenpaa, S. (2021). Special issue editorial: Artificial intelligence in organizations: Implications for information systems research. Journal of the Association for Information Systems, 22(2), 10.
- 6. Brynjolfsson, E., & McElheran, K. (2016). The rapid adoption of data-driven decision-making. American Economic Review, 106(5), 133-139.
- 7. Dell'Acqua, F., McFowland, E., Mollick, E. R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S., ... & Lakhani, K. R. (2023). Navigating the jagged technological frontier: Field experimental evidence of the effects of AI on knowledge worker productivity and quality. Harvard Business School Technology & Operations Mgt. Unit Working Paper, (24-013).
- 8. Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., ... & Socher, R. (2021). Deep learning-enabled medical computer vision. NPJ digital medicine, 4(1), 5.
- 9. Hatzius, J. (2023). The Potentially Large Effects of Artificial Intelligence on Economic Growth (Briggs/Kodnani). Goldman Sachs.
- 10. Hüllmann, J. A., Göritz, L., Hagen, S., Beinke, J. H., & Thomas, O. (2023). Servitization in Automotive: The Digital Transformation of Selling Product-Service Systems at a Large German Car Manufacturer. In Proceedings of the 31st European Conference on Information Systems (ECIS), Kristiansand, Norway.
- 11. Hüllmann, J. A., Krebber, S., & Troglauer, P. (2021). The IT Artifact in People Analytics: Reviewing the Tools to Understand a Nascent Field. In Proceedings of the 16th International Conference on Wirtschaftsinformatik, Duisburg-Essen, Germany.
- 12. Hüllmann, J. A., Precht, H., & Wübbe, C. (2023). Configurations of Human-Al Work in Agriculture: Adoption and Use of Intelligent Systems by Agricultural Workers. In Proceedings of the GIL-Jahrestagung 2023, Osnabrück, Germany.
- 13. Marcelino, R., Sampaio, J., Amichay, G., Gonçalves, B., Couzin, I. D., & Nagy, M. (2020). Collective movement analysis reveals coordination tactics of team players in football matches. Chaos, Solitons & Fractals, 138, 109831.
- 14. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
- 15. Rivas-Blanco, I., Pérez-Del-Pulgar, C. J., García-Morales, I., & Muñoz, V. F. (2021). A review on deep learning in minimally invasive surgery. IEEE Access, 9, 48658-48678.
- 16. Rothmeier, K., Pflanzl, N., Hüllmann, J. A., & Preuss, M. (2020). Prediction of Player Churn and Disengagement Based on User Activity Data of a Freemium Online Strategy Game. IEEE Transactions on Games, 13(1), 78-88.
- 17. Sharp, M., Ak, R., & Hedberg Jr, T. (2018). A survey of the advancing use and development of machine learning in smart manufacturing. Journal of manufacturing systems, 48, 170-179.
- 18. Van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709.
- 19. Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of manufacturing systems, 48, 144-156.
- 20. Xenopoulos, P., Rulff, J., & Silva, C. (2022). GgViz: Accelerating large-scale esports game analysis. Proceedings of the ACM on Human-Computer Interaction, 6(CHI PLAY), 1-22.
- 21. Zhao, B., Waterman, R. S., Urman, R. D., & Gabriel, R. A. (2019). A machine learning approach to predicting case duration for robot-assisted surgery. Journal of medical systems, 43, 1-8.
- 22. Venkatesh, V. (2022). Adoption and use of Al tools: a research agenda grounded in UTAUT. Annals of Operations Research, 308(1), 641-652.
- 23. Mirbabaie, M., Brünker, F., Möllmann, N. R., & Stieglitz, S. (2022). The rise of artificial intelligence—understanding the Al identity threat at the workplace. *Electronic Markets*, 1-27.
- 24. Araujo, T., Helberger, N., Kruikemeier, S., & De Vreese, C. H. (2020). In Al we trust? Perceptions about automated decision-making by artificial intelligence. Al & society, 35, 611-623.

### Quellen

- 25. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478.
- 26. Berger, B., Adam, M., Rühr, A., & Benlian, A. (2021). Watch me improve—algorithm aversion and demonstrating the ability to learn. Business & Information Systems Engineering, 63(1), 55-68.
- 27. Bitzer, T., Wiener, M., & Morana, S. (2021). The Role of Algorithmic Transparency in Contact-tracing App Adoption. In ICIS.
- 28. Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: people erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114.
- 29. Kocielnik, R., Amershi, S., & Bennett, P. N. (2019, May). Will you accept an imperfect ai? exploring designs for adjusting end-user expectations of ai systems. In *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems* (pp. 1-14).
- 30. Logg, J. M., Minson, J. A., & Moore, D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes, 151, 90-103.
- 31. Moussawi, S., Koufaris, M., & Benbunan-Fich, R. (2023). The role of user perceptions of intelligence, anthropomorphism, and self-extension on continuance of use of personal intelligent agents. *European Journal of Information Systems*, 32(3), 601-622.
- 32. Pinski, M., & Benlian, A. (2024). Al literacy for users—A comprehensive review and future research directions of learning methods, components, and effects. *Computers in Human Behavior: Artificial Humans*, 100062.
- 33. Morris, M. G., & Venkatesh, V. (2000). Age differences in technology adoption decisions: Implications for a changing work force. *Personnel psychology*, 53(2), 375-403.
- 34. Morris, M. G., Venkatesh, V., & Ackerman, P. L. (2005). Gender and age differences in employee decisions about new technology: An extension to the theory of planned behavior. *IEEE transactions on engineering management*, 52(1), 69-84.
- 35. Heß, M. (2024). Altersdiskriminierung am Arbeitsplatz -wie gehen wir damit um? In: Navigate 2024 Konferenz.
- 36. Easterlin, R. A., & O'Connor, K. J. (2022). The easterlin paradox. In Handbook of labor, human resources and population economics (pp. 1-25). Cham: Springer International Publishing.
- 37. Blömer, M., Fischer, L., Pannier, M., & Peichl, A. (2024). "Lohnt" sich Arbeit noch? Lohnabstand und Arbeitsanreize im Jahr 2024. ifo Schnelldienst, 77(01), 35-38.
- 38. Garnitz, J., Schaller, D., & Selleng, N. (2024). Arbeitswelt im Wandel: Herausforderungen des Arbeitskräftemangels und die Dynamik des hybriden Arbeitens. ifo Schnelldienst, 77(01), 49-54.
- 39. Krause, S., Trumpp, A., Dichtl, T., Kiese, S., & Rutsch, A. (2024). Neue Arbeitswelt, neue Arbeitsorte: Auswirkungen von Homeoffice auf den Büroimmobilienmarkt. ifo Schnelldienst, 77(03), 63-73.
- 40. Bailey, C., Yeoman, R., Madden, A., Thompson, M., & Kerridge, G. (2019). A review of the empirical literature on meaningful work: Progress and research agenda. *Human Resource Development Review*, *18*(1), 83-113.
- 41. Bankins, S., & Formosa, P. (2023). The ethical implications of artificial intelligence (AI) for meaningful work. *Journal of Business Ethics*, 185(4), 725-740.
- 42. Lipschitz, J. M., Pike, C. K., Hogan, T. P., Murphy, S. A., & Burdick, K. E. (2023). The engagement problem: A review of engagement with digital mental health interventions and recommendations for a path forward. *Current treatment options in psychiatry*, 10(3), 119-135.
- 43. Thiebes, S., Lins, S., & Sunyaev, A. (2021). Trustworthy artificial intelligence. *Electronic Markets*, 31, 447-464.
- 44. Ångström, R. C., Björn, M., Dahlander, L., Mähring, M., & Wallin, M. W. (2023). Getting Al Implementation Right: Insights from a Global Survey. California Management Review, 66(1), 5-22.
- 45. Demlehner, Q., & Laumer, S. (2020). Shall We Use It or Not? Explaining the Adoption of Artificial Intelligence for Car Manufacturing Purposes.
- 46. Dornelles, J. D. A., Ayala, N. F., & Frank, A. G. (2023). Collaborative or substitutive robots? Effects on workers' skills in manufacturing activities. *International Journal of Production Research*, 61(22), 7922-7955.
- 47. Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). The processes of technological innovation. Lexington, Massachusetts: Lexington Books.
- 48. Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530-1534.
- 49. Crowston, K., & Bolici, F. (2019). Impacts of machine learning on work. HICSS proceedings.
- 50. Kanitz, R., & Gonzalez, K. (2021). Are we stuck in the predigital age? Embracing technology-mediated change management in organizational change research. *The Journal of Applied Behavioral Science*, 57(4), 447-458.
- 51. Brechtelsbauer, B., & Laumer, S. (2024). Risks and Benefits of Technologies for Organizational Change Enablement-A Role Theory Perspective. HICSS Proceedings.