

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/31
Paper 3 Pure Mather	matics 3 (P3)	Oct	ober/November 2018
			1 hour 45 minutes
Candidates answer o	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

•••••			•••••			•••••	•••••	•••••
•••••	••••••	•••••	••••••	•••••		••••••	••••••	•••••
•••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••	••••••
				•••••				
••••••	••••••	••••••	••••••	•••••	••••••	••••••	••••••	••••••
••••••			•••••	•••••				
•••••	••••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••
		•••••					•••••	
•••••	••••••	••••••	••••••	•••••	•••••	•••••	••••••	••••••
•••••		•••••					•••••	
•••••	••••••	•••••	•••••	•••••			•••••	
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••		•••••	•••••	••••••

2	Showing all necessary working, solve the equation $\frac{2}{6}$ decimal places.	$\frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} = 4$, giving your answer correct to [4]

3	(i)	By sketching a suitable pair of graphs, show that the equation $x^3 = 3 - x$ has exactly one	real
		root.	[2]

(ii) Show that if a sequence of real values given by the iterative formula

$$x_{n+1} = \frac{2x_n^3 + 3}{3x_n^2 + 1}$$

converges, then it converges to the root of the equation in part (i).	[2]

•••••					
••••••	•••••	,		•••••	•••••
		• • • • • • • • • • • • • • • • • • • •			
					•••••
					•••••
					•••••
Use this iterative each iteration to					
Use this iterative each iteration to	•••••		•••••	•••••	•••••
Use this iterative each iteration to					
Use this iterative each iteration to	•••••		••••••	•••••	
Use this iterative each iteration to					•••••
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					
Use this iterative each iteration to					

	4	The	parametric	equations	of a	curve	are
--	---	-----	------------	-----------	------	-------	-----

$$x = 2\sin\theta + \sin 2\theta$$
, $y = 2\cos\theta + \cos 2\theta$,

where $0 < \theta < \pi$.

(i)	Obtain an expression for $\frac{dy}{dx}$ in terms of θ .	[3]
		•••••
		· • • • • •
		· • • • • •
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

y-axis.	[4

The coordinates (x, y) of a general point on a curve satisfy the differential equation

5

у	the curve passes through the point $(1, 1)$. Find the equation of the curve, obtaining an expression for in terms of x .
•••	
•••	
•••	
•••	
••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
••	
•••	

where $R > 0$ and	u 0 < u < 50 .					
•••••				•••••	••••••	
		•••••	•••••		••••••	
		••••	•••••			
			••••••••••••	•••••	••••••	•••••••
			•••••	•••••	•••••	••••••
•••••			•••••	••••••	•••••	
••••••			•••••••	•••••	••••••••••	•
•••••		•	•••••	•••••	••••••	••••••
		· • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	
			•••••			
•••••			•••••	•••••		

Hence solve the equation $(\sqrt{2}) \csc x + \cot x = \sqrt{3}$, for $0^{\circ} < x < 180^{\circ}$.	[4]
	••••••
	•••••

7

The diagram shows the curve $y = 5 \sin^2 x \cos^3 x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M. The shaded region R is bounded by the curve and the x-axis.

Find the x -coordinate of M , giving your answer correct to 3 decimal places.	[5]

	ng t																									
••••	•••••	•••••	•••••		••••		••••	••••	••••	•••••		••••	••••	•••••	••••	•••••	••••	•••••	•••••	•••••	•••••	•••••	••••	•••••	•••••	•••••
••••	•••••	•••••	•••••	•••••	••••		••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••	••••	•••••	••••		••••	•••••	••••	•••••	•••••	••••
••••	•••••		•••••	•••••	••••		••••	••••	••••	••••		••••	••••	••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	•••••	••••
••••	••••		•••••	•••••	••••	•••••	••••	••••			••••			••••	••••			•••••		•••••	••••		••••			••••
					••••									••••			••••									••••
					••••									•••••	••••		••••			•••••						••••
					••••									•••••	••••		••••			•••••						••••
					••••					· • • • • •				•••••												••••
										· • • • • •																
														••••												
••••	•••••	•••••	•••••	•••••	••••		••••	••••	••••	••••	••••	••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	•••••	••••
••••	•••••	•••••	•••••	•••••	••••	•••••	••••	••••	••••	••••	• • • • •	••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	•••••	••••
••••	•••••		•••••	•••••	••••	•••••	••••	••••	••••	••••	••••	••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	•••••	••••
••••	•••••	•••••	•••••	•••••	••••		••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••	••••	•••••	••••		••••	•••••	••••	•••••	•••••	••••
••••	•••••		•••••	•••••	••••	•••••	••••	••••	••••	•••••		••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	•••••	••••
	•••••		•••••		••••				••••		••••			•••••	••••	•••••	••••	•••••		•••••	•••••			•••••		••••
			••••	•••••	••••	•••••			••••					••••	••••	•••••					••••			•••••		••••
					••••									••••						•••••						••••
														•••••												
										· • • • • •																
														••••												
••••	•••••	•••••	•••••	•••••	•••••	•••••	••••	••••	•••••	•••••	••••	••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	•••••	•••••	••••	•••••	•••••	•••••
••••	•••••	• • • • • • •	•••••	•••••	••••	· • • • • •	••••	••••	••••	••••	•••••	••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	••••	•••••	•••••	•••••	•••••	••••
••••	•••••	•••••	•••••	•••••	••••	•••••	••••	••••	••••	••••	• • • • •	••••	••••	••••	••••	•••••	••••	•••••	••••	• • • • •	••••	•••••	••••	•••••	•••••	••••

8 (a)	Showing all necessary working, express the complex number $\frac{2+3i}{1-2i}$ in the form $re^{i\theta}$, where	e r > 0
	and $-\pi < \theta \le \pi$. Give the values of r and θ correct to 3 significant figures.	[5]
		••••••
		••••••

(b)	On an Argand diagram sketch the locus of points representing complex numbers z satisfying the equation $ z - 3 + 2i = 1$. Find the least value of $ z $ for points on this locus, giving your answer in an exact form.

9	Let $f(x) = \frac{6x^2 + 8x + 9}{(2 - x)(3 + 2x)^2}$.
	(i) Express $f(x)$ in partial t

•••••						•••••
• • • • • • • • • • • • • • • • • • • •	•••••	,	•••••	•••••	•••••	••••••
• • • • • • • • • • • • • • • • • • • •	••••••		•••••	••••••	••••••	
• • • • • • • • • • • • • • • • • • • •	•••••	•••••••••••	•••••	•••••	•••••	••••••
••••••	•••••	•••••••••••	•••••	•••••	•••••	
						•••••
••••••		•••••••••••		•••••		•••••
••••••	••••••		••••••	••••••	••••••	••••••
						•••••
••••••				••••••	•••••	••••••

Hence, showing all necessary working, show that $\int_{-1}^{0} f(x) dx = 1 + \frac{1}{2} \ln(\frac{3}{4}).$	
	•••••
	•••••
	••••••

10 The planes m and n have equations 3x + y - 2z = 10 and x - 2y + 2z = 5 respectively. The line l has

(i)	Show that l is parallel to m .	
:/	Colculate the soute and a hetween the planes w and a	
ii)	Calculate the acute angle between the planes m and n .	
ii)	Calculate the acute angle between the planes m and n .	
ii)		
ii)	Calculate the acute angle between the planes m and n .	
ii)	Calculate the acute angle between the planes m and n .	
ii)	Calculate the acute angle between the planes m and n .	
ii)	Calculate the acute angle between the planes <i>m</i> and <i>n</i> .	
iii)	Calculate the acute angle between the planes <i>m</i> and <i>n</i> .	
ii)	Calculate the acute angle between the planes <i>m</i> and <i>n</i> .	
ii)	Calculate the acute angle between the planes <i>m</i> and <i>n</i> .	
ii)	Calculate the acute angle between the planes <i>m</i> and <i>n</i> .	

tne position v	vectors of the tv	wo possible	positions of	Υ.			
	•••••	•••••	•••••		•••••	••••••	•••••
	•••••						•••••
							•••••
•••••							
•••••		•••••	••••••		•••••	•••••	•••••
							•••••
					•••••		•••••
••••••	••••••	••••••	••••••		•••••	••••••	•••••
••••••	••••••	••••••	•••••		•••••	••••••	•••••
		•••••	•••••			•••••	•••••

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.