### Minimum size linear sets

#### Paolo Santonastaso

Università degli Studi della Campania "Luigi Vanvitelli"

Finite Geometries 2022 Sixth Irsee Conference

August 28 - September 03, 2022

$$\Lambda = PG(d, q^n) = PG(W, \mathbb{F}_{q^n}) \quad W = V(d+1, q^n)$$

$$\Lambda = PG(d, q^n) = PG(W, \mathbb{F}_{q^n}) \ W = V(d+1, q^n)$$

$$PG((d+1)n-1,q)$$



$$\Lambda = PG(d, q^n) = PG(W, \mathbb{F}_{q^n}) \ W = V(d+1, q^n)$$

$$PG((d+1)n-1,q)$$



 $\mathcal{S} = \{ \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \colon \mathbf{u} \in \mathit{W}^* \} \text{ is a Desarguesian spread of } \mathrm{PG}(\mathit{W}, \mathbb{F}_q)$ 

### U: $\mathbb{F}_q$ -subspace of W

PG((d+1)n-1,q)



U:  $\mathbb{F}_q$ -subspace of W



$$L_U = \{\langle \mathbf{u} 
angle_{\mathbb{F}_{q^n}} \colon \mathbf{u} \in U \setminus \{\mathbf{0}\}\}$$
  
 $L_U$  is said  $\mathbb{F}_q$ -linear set of  $\Lambda = \mathrm{PG}(d,q^n)$ 

U:  $\mathbb{F}_q$ -subspace of W





$$L_U = \{\langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \colon \mathbf{u} \in U \setminus \{\mathbf{0}\}\}$$
 $L_U$  is said  $\mathbb{F}_q$ -linear set of  $\Lambda = \mathrm{PG}(d,q^n)$ 
The rank of  $L_U$  is  $\mathsf{k}\!=\!\dim_{\mathbb{F}_q}\!U$ 

U:  $\mathbb{F}_q$ -subspace of W



$$L_U = \{\langle \mathbf{u} 
angle_{\mathbb{F}_{q^n}} \colon \mathbf{u} \in U \setminus \{\mathbf{0}\}\}$$
 $L_U$  is said  $\mathbb{F}_q$ -linear set of  $\Lambda = \mathrm{PG}(d,q^n)$ 
The rank of  $L_U$  is  $\mathsf{k}\!=\!\dim_{\mathbb{F}_q}\!U$ 
 $k = \dim_{\mathbb{F}_q}\!(U) \leq dn$ 

U:  $\mathbb{F}_q$ -subspace of W



$$k = \dim_{\mathbb{F}_q}(U) \le dn$$

$$1 \le |L_U| \le \frac{q^k - 1}{q - 1}$$

### Linear sets: weight of a point

$$P = \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \in \Lambda = \mathrm{PG}(d, q^n)$$

The weight of P in  $L_U$  is

$$w_{L_U}(P) := dim_{\mathbb{F}_q}(U \cap \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}}) \leq k$$

PG((d+1)n-1,q)



# Weight spectrum and Weight distribution

**weight spectrum** of  $L_U$  linear set in  $PG(d, q^n)$  of rank  $k \le n$ 

$$(w_1,\ldots,w_t)$$

 $1 \le w_1 < w_2 < \ldots < w_t \le k$  and for every  $P \in L_U$ 

$$w_{L_U}(P) \in \{w_1, \ldots, w_t\}$$

# Weight spectrum and Weight distribution

weight spectrum of  $L_U$  linear set in  $PG(d, q^n)$  of rank  $k \le n$ 

$$(w_1,\ldots,w_t)$$

 $1 \le w_1 < w_2 < \ldots < w_t \le k$  and for every  $P \in L_U$ 

$$w_{L_U}(P) \in \{w_1, \ldots, w_t\}$$

weight distribution of  $L_U$ 

$$(N_{w_1},\ldots,N_{w_t})$$

 $N_{w_i}$  the number of points of  $L_U$  having weight  $w_i$ .

# Weight spectrum and Weight distribution

weight spectrum of  $L_U$  linear set in PG(1,  $q^n$ ) of rank k

$$(w_1,\ldots,w_t)$$

weight distribution of  $L_U$ 

$$(N_{w_1},\ldots,N_{w_t})$$

$$|L_U| = N_{w_1} + \ldots + N_{w_t},$$

$$\sum_{i=1}^{t} N_{w_i}(q^{w_i}-1) = q^k-1.$$

$$\ell = PG(1, q^n)$$

$$\ell = PG(1, q^n)$$

#### Theorem (De Beule and Van de Voorde)

If  $L_U$  is an  $\mathbb{F}_q$ -linear set of rank k in  $PG(1, q^n)$  with at least one point of weight one  $\Rightarrow$ 

$$|L_U|\geq q^{k-1}+1.$$

$$\ell = PG(1, q^n)$$

#### Theorem (De Beule and Van de Voorde)

If  $L_U$  is an  $\mathbb{F}_q$ -linear set of rank k in  $PG(1, q^n)$  with at least one point of weight one  $\Rightarrow$ 

$$|L_U|\geq q^{k-1}+1.$$

$$q^{k-1} + 1 \le |L_U| \le \frac{q^k - 1}{q - 1}$$

$$\ell = PG(1, q^n)$$

#### Theorem (De Beule and Van de Voorde)

If  $L_U$  is an  $\mathbb{F}_q$ -linear set of rank k in  $PG(1, q^n)$  with at least one point of weight one  $\Rightarrow$ 

$$|L_U|\geq q^{k-1}+1.$$

$$q^{k-1} + 1 \le |L_U| \le \frac{q^k - 1}{q - 1}$$

If  $|L_U| = q^{k-1} + 1 \Rightarrow L_U$  of minimum size



### Trace example

$$U = \{(x, \operatorname{Tr}_{q^n/q}(x)) \colon x \in \mathbb{F}_{q^n}\},\ \operatorname{Tr}_{q^n/q}(x) = x + x^q + \dots + x^{q^{n-1}} \ |L_U| = q^{n-1} + 1$$

### Trace example

$$U = \{(x, \operatorname{Tr}_{q^{n}/q}(x)) \colon x \in \mathbb{F}_{q^{n}}\}, \operatorname{Tr}_{q^{n}/q}(x) = x + x^{q} + \dots + x^{q^{n-1}} |L_{U}| = q^{n-1} + 1$$

weight spectrum (1, n-1) weight distribution  $(q^{n-1}, 1)$ 

### Trace example

$$U = \{(x, \operatorname{Tr}_{q^n/q}(x)) \colon x \in \mathbb{F}_{q^n}\},\ \operatorname{Tr}_{q^n/q}(x) = x + x^q + \dots + x^{q^{n-1}} \ |L_U| = q^{n-1} + 1$$

weight spectrum (1, n-1) weight distribution  $(q^{n-1}, 1)$ 

If  $L_{U'}$  has rank n and there exists P s.t.  $w_{L_{U'}}(P) = n - 1 \Rightarrow L_{U'}$  is equivalent to  $L_U$ 

### Theorem (Lunardon and Polverino)

$$\ell = \mathrm{PG}(1,q^n), \quad \mathbb{F}_q(\lambda) = \mathbb{F}_{q^n}, \quad n \geq 3$$
  $U = \langle 1, \lambda \rangle_{\mathbb{F}_q} \times \langle 1, \lambda, \dots, \lambda^{n-3} \rangle_{\mathbb{F}_q} \subset \mathbb{F}_{q^n} \times \mathbb{F}_{q^n}$   $|L_U| = q^{n-1} + 1$ 

### Theorem (Lunardon and Polverino)

$$\ell = \mathrm{PG}(1,q^n), \quad \mathbb{F}_q(\lambda) = \mathbb{F}_{q^n}, \quad n \geq 3$$
  $U = \langle 1,\lambda 
angle_{\mathbb{F}_q} imes \langle 1,\lambda,\ldots,\lambda^{n-3} 
angle_{\mathbb{F}_q} \subset \mathbb{F}_{q^n} imes \mathbb{F}_{q^n}$   $|L_U| = q^{n-1} + 1$   $n > 4$  weight spectrum  $(1,2,n-2)$  weight distribution  $(q^{n-1}-q^{n-3},q^{n-3},1)$ 

#### Theorem (Lunardon and Polverino)

$$\ell=\mathrm{PG}(1,q^n),\quad \mathbb{F}_q(\lambda)=\mathbb{F}_{q^n},\quad n\geq 3$$
  $U=\langle 1,\lambda 
angle_{\mathbb{F}_q} imes \langle 1,\lambda ,\dots ,\lambda^{n-3} 
angle_{\mathbb{F}_q} \subset \mathbb{F}_{q^n} imes \mathbb{F}_{q^n}$   $|L_U|=q^{n-1}+1$   $n>4$  weight spectrum  $(1,2,n-2)$  weight distribution  $(q^{n-1}-q^{n-3},q^{n-3},1)$   $n=4$  weight spectrum  $(1,2)$  weight distribution  $(q^3-q,q+1)$ 

#### Definition

$$b\in \mathbb{F}_{q^n}^*,\quad \mathbb{F}_q(\lambda)=\mathbb{F}_{q^s}\leq \mathbb{F}_{q^n}\ S=b\langle 1,\lambda,\ldots,\lambda^{t-1}
angle_{\mathbb{F}_q}\quad t\leq s$$
 S of *polynomial type* w.r.t. the element  $\lambda$ 

#### Definition

$$b\in \mathbb{F}_{q^n}^*, \quad \mathbb{F}_q(\lambda)=\mathbb{F}_{q^s}\leq \mathbb{F}_{q^n} \ S=b\langle 1,\lambda,\ldots,\lambda^{t-1}
angle_{\mathbb{F}_q} \quad t\leq s \ S ext{ of } ext{polynomial type w.r.t. the element } \lambda$$

#### Example

$$U = \langle 1, \lambda \rangle_{\mathbb{F}_q} \times \langle 1, \lambda, \dots, \lambda^{n-3} \rangle_{\mathbb{F}_q} \subset \mathbb{F}_{q^n} \times \mathbb{F}_{q^n}$$

$$\ell = PG(1, q^n), \quad \mathbb{F}_q(\lambda) = \mathbb{F}_{q^s}, \quad 1 < s \le n$$
  
  $1 \le t_1 \le t_2, \quad t_1 + t_2 \le s + 1$ 

$$\ell = \operatorname{PG}(1, q^n), \quad \mathbb{F}_q(\lambda) = \mathbb{F}_{q^s}, \quad 1 < s \le n$$
 $1 \le t_1 \le t_2, \quad t_1 + t_2 \le s + 1$ 
 $U = \langle 1, \lambda, \dots, \lambda^{t_1 - 1} \rangle_{\mathbb{F}_q} \times \langle 1, \lambda, \dots, \lambda^{t_2 - 1} \rangle_{\mathbb{F}_q}$ 

$$\ell = PG(1, q^{n}), \quad \mathbb{F}_{q}(\lambda) = \mathbb{F}_{q^{s}}, \quad 1 < s \le n$$

$$1 \le t_{1} \le t_{2}, \quad t_{1} + t_{2} \le s + 1$$

$$U = \langle 1, \lambda, \dots, \lambda^{t_{1}-1} \rangle_{\mathbb{F}_{q}} \times \langle 1, \lambda, \dots, \lambda^{t_{2}-1} \rangle_{\mathbb{F}_{q}}$$

$$dim_{q}U = k = t_{1} + t_{2}$$

$$|L_{U}| = q^{k-1} + 1 = q^{t_{1} + t_{2} - 1} + 1$$

### Theorem (Jena and Van de Voorde)

$$\ell = PG(1, q^{n}), \quad \mathbb{F}_{q}(\lambda) = \mathbb{F}_{q^{s}}, \quad 1 < s \le n$$

$$1 \le t_{1} \le t_{2}, \quad t_{1} + t_{2} \le s + 1$$

$$U = \langle 1, \lambda, \dots, \lambda^{t_{1}-1} \rangle_{\mathbb{F}_{q}} \times \langle 1, \lambda, \dots, \lambda^{t_{2}-1} \rangle_{\mathbb{F}_{q}}$$

$$dim_{q}U = k = t_{1} + t_{2}$$

$$|L_{U}| = q^{k-1} + 1 = q^{t_{1} + t_{2} - 1} + 1$$

• s = n,  $t_1 = 1$ ,  $t_2 = n - 1 \Rightarrow$  Trace example

$$\ell = PG(1, q^{n}), \quad \mathbb{F}_{q}(\lambda) = \mathbb{F}_{q^{s}}, \quad 1 < s \le n$$

$$1 \le t_{1} \le t_{2}, \quad t_{1} + t_{2} \le s + 1$$

$$U = \langle 1, \lambda, \dots, \lambda^{t_{1}-1} \rangle_{\mathbb{F}_{q}} \times \langle 1, \lambda, \dots, \lambda^{t_{2}-1} \rangle_{\mathbb{F}_{q}}$$

$$dim_{q}U = k = t_{1} + t_{2}$$

$$|L_{U}| = q^{k-1} + 1 = q^{t_{1}+t_{2}-1} + 1$$

- s = n,  $t_1 = 1$ ,  $t_2 = n 1 \Rightarrow$  Trace example
- s = n,  $t_1 = 2$ ,  $t_2 = n 2 \Rightarrow$  Lunardon-Polverino construction

$$\ell = PG(1, q^{n}), \quad \mathbb{F}_{q}(\lambda) = \mathbb{F}_{q^{s}}, \quad 1 < s \le n$$

$$1 \le t_{1} \le t_{2}, \quad t_{1} + t_{2} \le s + 1$$

$$U = \langle 1, \lambda, \dots, \lambda^{t_{1}-1} \rangle_{\mathbb{F}_{q}} \times \langle 1, \lambda, \dots, \lambda^{t_{2}-1} \rangle_{\mathbb{F}_{q}}$$

$$dim_{q}U = k = t_{1} + t_{2}$$

$$|L_{U}| = q^{k-1} + 1 = q^{t_{1}+t_{2}-1} + 1$$

If 
$$t_1 < t_2$$
 weight spectrum  $(1, 2, ..., i, ..., t_1, t_2)$  weight distribution  $(q^{k-1} - q^{k-3}, ..., ..., q^{k-2i+1} - q^{k-2i-1}, ..., q^{t_2-t_1+1}, 1)$  If  $t_1 = t_2$  weight spectrum  $(1, 2, ..., i, ..., t_1)$  weight distribution  $(q^{k-1} - q^{kn-3}, q^{k-3} - q^{k-5}, ..., q^{k-2i+1} - q^{k-2i-1}, ..., q+1)$ 

V. Napolitano, O. Polverino, PS and F. Zullo: Classifications and constructions of minimum size linear sets. ArXiv.

$$\ell = PG(1, q^{n}), \quad \mathbb{F}_{q}(\lambda) = \mathbb{F}_{q^{s}}, \quad 1 < s \le n$$

$$1 \le t_{1} \le t_{2}, \quad t_{1} + t_{2} \le s + 1$$

$$U = \langle 1, \lambda, \dots, \lambda^{t_{1}-1} \rangle_{\mathbb{F}_{q}} \times \langle 1, \lambda, \dots, \lambda^{t_{2}-1} \rangle_{\mathbb{F}_{q}}$$

$$\dim_{q} U = k = t_{1} + t_{2}$$

$$|L_{U}| = q^{k-1} + 1 = q^{t_{1}+t_{2}-1} + 1$$

$$w_{L_{U}}(\langle (1, 0) \rangle) = t_{1} \quad w_{L_{U}}(\langle (0, 1) \rangle) = t_{2}.$$

### Theorem (Jena and Van de Voorde)

$$\ell = PG(1, q^{n}), \quad \mathbb{F}_{q}(\lambda) = \mathbb{F}_{q^{s}}, \quad 1 < s \leq n$$

$$1 \leq t_{1} \leq t_{2}, \quad t_{1} + t_{2} \leq s + 1$$

$$U = \langle 1, \lambda, \dots, \lambda^{t_{1}-1} \rangle_{\mathbb{F}_{q}} \times \langle 1, \lambda, \dots, \lambda^{t_{2}-1} \rangle_{\mathbb{F}_{q}}$$

$$\dim_{q} U = k = t_{1} + t_{2}$$

$$|L_{U}| = q^{k-1} + 1 = q^{t_{1}+t_{2}-1} + 1$$

$$w_{L_{U}}(\langle (1, 0) \rangle) = t_{1} \quad w_{L_{U}}(\langle (0, 1) \rangle) = t_{2}.$$

If there exist  $P, Q \in L_U$  with  $P \neq Q$  such that

$$w_{L_U}(P) + w_{L_U}(Q) = k$$

*L<sub>U</sub>* is a linear set with two points of complementary weights

### Theorem (Napolitano, Polverino, PS and Zullo)

 $L_U \subset \ell = \operatorname{PG}(1, q^n)$ , *n* prime  $\operatorname{rank}(L_U) = k \leq n$  $L_U$  with points of complem. weights  $t_1$  and  $t_2$ ,  $(t_1 \leq t_2)$ .

$$egin{aligned} egin{aligned} oldsymbol{U} &= oldsymbol{S} imes oldsymbol{T} \ dim_{\mathbb{F}_q} S &= t_1, \quad dim_{\mathbb{F}_q} T &= t_2 \end{aligned}$$

If  $N_{t_1} \ge q^{t_2-t_1} + 2$  then  $|L_U| = q^{k-1} + 1$  and S and T are of polynomial type with respect to the same element  $\lambda$ .

### Theorem (Napolitano, Polverino, PS and Zullo)

 $L_U \subset \ell = \operatorname{PG}(1, q^n)$ , *n* prime  $\operatorname{rank}(L_U) = k \leq n$  $L_U$  with points of complem. weights  $t_1$  and  $t_2$ ,  $(t_1 \leq t_2)$ .

$$egin{aligned} & \emph{U} = \emph{S} imes \emph{T} \ dim_{\mathbb{F}_q} \emph{S} = \emph{t}_1, \quad dim_{\mathbb{F}_q} \emph{T} = \emph{t}_2 \end{aligned}$$

If  $N_{t_1} \ge q^{t_2-t_1} + 2$  then  $|L_U| = q^{k-1} + 1$  and S and T are of polynomial type with respect to the same element  $\lambda$ .

#### Main Tools:

- q-analog of Vosper's theorem (Bachoc, Serra and Zémor)
- q-analog of Cauchy-Davenport inequality (Bachoc, Serra and Zémor)

### Theorem(Napolitano, Polverino, PS and Zullo)

 $L_U \subset \ell = \operatorname{PG}(1, q^n), \quad \operatorname{rank}(L_U) = k \leq n$  $L_U$  of minimum size with a point of weight k-2

#### Theorem(Napolitano, Polverino, PS and Zullo)

 $L_U \subset \ell = \operatorname{PG}(1, q^n), \quad \operatorname{rank}(L_U) = k \leq n$  $L_U$  of minimum size with a point of weight k-2



polynomial type

### Theorem(Napolitano, Polverino, PS and Zullo)

 $L_U \subset \ell = \operatorname{PG}(1, q^n), \quad \operatorname{rank}(L_U) = k \leq n$  $L_U$  of minimum size with a point of weight k-2



polynomial type

*n* prime  $\Longrightarrow L_{II}$  is of polynomial type

$$n=gt$$
,  $g, t \ge 2$ 

$$\mathbf{n=gt}, \quad g, t \ge 2$$

$$L_{U'} \subseteq PG(1, q^t)$$



$$\begin{split} \textbf{n=gt}, & g,t \geq 2 \\ & \textit{$L_{U'} \subseteq \mathrm{PG}(1,q^t)$} \\ \mathbb{F}_{q^t} \leq \mathbb{F}_{q^n}, & \overline{S} \leq_{\mathbb{F}_{q^t}} \mathbb{F}_{q^n}, & \textit{dim}_{\mathbb{F}_{q^t}} \overline{S} = h < n/t \\ & b \in \mathbb{F}_{q^n}^* \quad : \quad \overline{S} \cap b\mathbb{F}_{q^t} = \{0\}. \end{split}$$



$$\begin{array}{c} \mathbf{n} = \mathbf{gt}, \quad g,t \geq 2 \\ L_{\mathcal{U}'} \subseteq \mathrm{PG}(1,q^t) \\ \mathbb{F}_{q^t} \leq \mathbb{F}_{q^n}, \quad \overline{S} \leq_{\mathbb{F}_{q^t}} \mathbb{F}_{q^n}, \quad \dim_{\mathbb{F}_{q^t}} \overline{S} = h < n/t \\ b \in \mathbb{F}_{q^n}^* \quad : \quad \overline{S} \cap b\mathbb{F}_{q^t} = \{0\}. \\ \mathbf{U} = \{(\mathbf{s} + \mathbf{bu_1}, \mathbf{u_2}) \colon \mathbf{s} \in \overline{\mathbf{S}}, (\mathbf{u_1}, \mathbf{u_2}) \in \mathbf{U}'\} \subset \mathbb{F}_{q^n} \times \mathbb{F}_{q^n} \\ L_{\mathcal{U}} \subseteq \mathrm{PG}(1,q^n) \\ L_{\mathcal{U}} & \qquad \mathrm{PG}(1,q^n) \end{array}$$

 $PG(1,q^t)$ 

$$L_{U'} \subseteq \operatorname{PG}(1, q^t)$$
 of rank  $m$   
 $(w'_1, \dots, w'_c)$  the weight spectrum of  $L_{U'}$ 

```
L_{U'} \subseteq \operatorname{PG}(1,q^t) of rank m
(w'_1,\ldots,w'_c) the weight spectrum of L_{U'}
\mathbf{U} = \{(\mathbf{s} + \mathbf{bu_1},\mathbf{u_2}) \colon \mathbf{s} \in \overline{\mathbf{S}}, (\mathbf{u_1},\mathbf{u_2}) \in \mathbf{U}'\} \subset \mathbb{F}_{q^n} \times \mathbb{F}_{q^n}
L_U \subseteq \operatorname{PG}(1,q^n) has rank k = ht + m.
```



$$L_{U'} \subseteq \operatorname{PG}(1, q^t)$$
 of rank  $m$   $(w'_1, \dots, w'_c)$  the weight spectrum of  $L_{U'}$   $U = \{(s + bu_1, u_2) : s \in \overline{S}, (u_1, u_2) \in U'\}$   $L_{U} \subseteq \operatorname{PG}(1, q^n)$  has rank  $k = ht + m$ .

$$\bullet \ w_{L_U}(\langle (1,0)\rangle_{\mathbb{F}_{q^n}}) = ht + w_{L_{U'}}(\langle (1,0)\rangle_{\mathbb{F}_{q^t}});$$

$$L_{U'} \subseteq \operatorname{PG}(1,q^t)$$
 of rank  $m$   $(w'_1,\ldots,w'_c)$  the weight spectrum of  $L_{U'}$   $U = \{(s+bu_1,u_2) \colon s \in \overline{S}, (u_1,u_2) \in U'\}$   $L_U \subseteq \operatorname{PG}(1,q^n)$  has rank  $k = ht + m$ .

- $\bullet \ w_{L_U}(\langle (1,0)\rangle_{\mathbb{F}_{q^n}}) = ht + w_{L_{U'}}(\langle (1,0)\rangle_{\mathbb{F}_{q^t}});$
- $\forall P \in L_U \setminus \{\langle (1,0) \rangle_{\mathbb{F}_{q^n}} \}$ , we have  $w_{L_U}(P) \in \{w'_1, \ldots, w'_c\}$ ;

$$L_{U'} \subseteq \operatorname{PG}(1,q^t)$$
 of rank  $m$   $(w'_1,\ldots,w'_c)$  the weight spectrum of  $L_{U'}$   $U = \{(s+bu_1,u_2)\colon s\in \overline{S}, (u_1,u_2)\in U'\}$   $L_U \subseteq \operatorname{PG}(1,q^n)$  has rank  $k=ht+m$ .

- $\bullet \ w_{L_U}(\langle (1,0)\rangle_{\mathbb{F}_{q^n}}) = ht + w_{L_{U'}}(\langle (1,0)\rangle_{\mathbb{F}_{q^t}});$
- $\forall P \in L_U \setminus \{\langle (1,0) \rangle_{\mathbb{F}_{q^n}} \}$ , we have  $w_{L_U}(P) \in \{w'_1, \ldots, w'_c\}$ ;
- $N_{w'_i} = q^{ht} N'_{w'_i}$ , for any  $i \in \{1, ..., c\}$ .

$$L_{U'} \subseteq \operatorname{PG}(1,q^t)$$
 of rank  $m$   $(w'_1,\ldots,w'_c)$  the weight spectrum of  $L_{U'}$   $U = \{(s+bu_1,u_2) \colon s \in \overline{S}, (u_1,u_2) \in U'\}$   $L_U \subseteq \operatorname{PG}(1,q^n)$  has rank  $k = ht + m$ .

- $\bullet \ w_{L_U}(\langle (1,0)\rangle_{\mathbb{F}_{q^n}}) = ht + w_{L_{U'}}(\langle (1,0)\rangle_{\mathbb{F}_{q^t}});$
- $\forall P \in L_U \setminus \{\langle (1,0) \rangle_{\mathbb{F}_{q^n}} \}$ , we have  $w_{L_U}(P) \in \{w'_1, \dots, w'_c\}$ ;
- $N_{w'_i} = q^{ht} N'_{w'_i}$ , for any  $i \in \{1, ..., c\}$ .
- $|L_U| = q^{ht}(|L_{U'}| \varepsilon) + 1$ , where  $\varepsilon \in \{0, 1\}$ ;

$$L_{U'} \subseteq \operatorname{PG}(1, q^t)$$
 of rank  $m = t_1 + t_2$  of minimum size  $U' = \langle 1, \mu, \dots, \mu^{t_1-1} \rangle_{\mathbb{F}_q} \times \langle 1, \mu, \dots, \mu^{t_2-1} \rangle_{\mathbb{F}_q}$ 

### Theorem (Napolitano, Polverino, PS and Zullo)

$$L_{U'} \subseteq \operatorname{PG}(1, q^t)$$
 of rank  $m = t_1 + t_2$  of minimum size  $U' = \langle 1, \mu, \dots, \mu^{t_1-1} \rangle_{\mathbb{F}_q} \times \langle 1, \mu, \dots, \mu^{t_2-1} \rangle_{\mathbb{F}_q}$ 

- 2  $t_2 \leq t_1 + 1$

### Theorem (Napolitano, Polverino, PS and Zullo)

$$L_{U'} \subseteq \operatorname{PG}(1,q^t)$$
 of rank  $m = t_1 + t_2$  of minimum size  $U' = \langle 1, \mu, \dots, \mu^{t_1-1} \rangle_{\mathbb{F}_q} \times \langle 1, \mu, \dots, \mu^{t_2-1} \rangle_{\mathbb{F}_q}$ 

- ②  $t_2 \le t_1 + 1$   $\Longrightarrow$  w. spec.  $(1, 2, ..., i, ..., t_2, k t_2)$

### Theorem (Napolitano, Polverino, PS and Zullo)

$$L_{U'} \subseteq \operatorname{PG}(1,q^t)$$
 of rank  $m = t_1 + t_2$  of minimum size  $U' = \langle 1, \mu, \dots, \mu^{t_1-1} \rangle_{\mathbb{F}_q} \times \langle 1, \mu, \dots, \mu^{t_2-1} \rangle_{\mathbb{F}_q}$ 

- 2  $t_2 \le t_1 + 1 \implies w.$  spec.  $(1, 2, ..., i, ...t_2, k t_2)$  "new" (with respect to the action of  $\Gamma L(2, q^n)$ )

### Theorem (Napolitano, Polverino, PS and Zullo)

$$L_{U'} \subseteq \operatorname{PG}(1, q^t)$$
 of rank  $m = t_1 + t_2$  of minimum size  $U' = \langle 1, \mu, \dots, \mu^{t_1-1} \rangle_{\mathbb{F}_q} \times \langle 1, \mu, \dots, \mu^{t_2-1} \rangle_{\mathbb{F}_q}$ 

- 2  $t_2 \le t_1 + 1 \implies w. \text{ spec. } (1, 2, ..., i, ...t_2, k t_2)$ "new" (with respect to the action of  $\Gamma L(2, q^n)$ )

### Theorem (Napolitano, Polverino, PS and Zullo)

$$L_{U'} \subseteq \operatorname{PG}(1, q^t)$$
 of rank  $m = t_1 + t_2$  of minimum size  $U' = \langle 1, \mu, \dots, \mu^{t_1-1} \rangle_{\mathbb{F}_q} \times \langle 1, \mu, \dots, \mu^{t_2-1} \rangle_{\mathbb{F}_q}$ 

- 2  $t_2 \le t_1 + 1 \implies w.$  spec.  $(1, 2, ..., i, ...t_2, k t_2)$  "new" (with respect to the action of  $\Gamma L(2, q^n)$ )
- **3**  $t_2 > t_1 + 1 \implies \text{w. spec. } (1, 2, ..., i, ..., t_1, t_2, k t_2)$

### Theorem (Napolitano, Polverino, PS and Zullo)

$$L_{U'} \subseteq \operatorname{PG}(1, q^t)$$
 of rank  $m = t_1 + t_2$  of minimum size  $U' = \langle 1, \mu, \dots, \mu^{t_1-1} \rangle_{\mathbb{F}_q} \times \langle 1, \mu, \dots, \mu^{t_2-1} \rangle_{\mathbb{F}_q}$ 

- 2  $t_2 \le t_1 + 1 \implies w.$  spec.  $(1, 2, ..., i, ...t_2, k t_2)$  "new" (with respect to the action of  $\Gamma L(2, q^n)$ )
- ①  $t_2 > t_1 + 1 \implies w. spec. (1, 2, ..., i, .., t_1, t_2, k t_2)$ "new" weight spectrum;

### Theorem (Napolitano, Polverino, PS and Zullo)

$$L_{U'} \subseteq \operatorname{PG}(1,q^t)$$
 of rank  $m = t_1 + t_2$  of minimum size  $U' = \langle 1, \mu, \dots, \mu^{t_1-1} \rangle_{\mathbb{F}_q} \times \langle 1, \mu, \dots, \mu^{t_2-1} \rangle_{\mathbb{F}_q}$   $A \in \operatorname{GL}(d+2,q^t) \quad \phi_A : \mathbb{F}_{q^t}^2 \to \mathbb{F}_{q^t}^2,$ 

 $L_U \subseteq \operatorname{PG}(1,q^n)$  of rank k = ht + m obtained lifting  $L_{\phi_A(U')}$ 

$$|L_U| = q^{ht+m-1} + 1 \implies L_U \text{ of minimum size;}$$

"new" (with respect to the action of ΓL(2, q<sup>n</sup>));

### Theorem (Napolitano, Polverino, PS and Zullo)

$$L_{U'} \subseteq \operatorname{PG}(1,q^t)$$
 of rank  $m = t_1 + t_2$  of minimum size  $U' = \langle 1, \mu, \dots, \mu^{t_1-1} \rangle_{\mathbb{F}_q} \times \langle 1, \mu, \dots, \mu^{t_2-1} \rangle_{\mathbb{F}_q}$   $A \in \operatorname{GL}(d+2,q^t)$   $\phi_A : \mathbb{F}_{q^t}^2 \to \mathbb{F}_{q^t}^2$ ,

$$|L_U| = q^{ht+m-1} + 1 \implies L_U \text{ of minimum size;}$$

- "new" (with respect to the action of ΓL(2, q<sup>n</sup>));
- "new" weight spectrum;

### Theorem (Napolitano, Polverino, PS and Zullo)

$$L_{U'} \subseteq \operatorname{PG}(1, q^t)$$
 of rank  $m = t_1 + t_2$  of minimum size  $U' = \langle 1, \mu, \dots, \mu^{t_1-1} \rangle_{\mathbb{F}_q} \times \langle 1, \mu, \dots, \mu^{t_2-1} \rangle_{\mathbb{F}_q}$   $A \in \operatorname{GL}(d+2, q^t) \quad \phi_A : \mathbb{F}_{q^t}^2 \to \mathbb{F}_{q^t}^2,$ 

$$|L_U| = q^{ht+m-1} + 1 \implies L_U \text{ of minimum size;}$$

- "new" (with respect to the action of ΓL(2, q<sup>n</sup>));
- "new" weight spectrum;
- "new" minimum size linear set not admitting points of complementary weights.

#### Theorem(Napolitano, Polverino, PS and Zullo)

$$L_U \subset \ell = \operatorname{PG}(1, q^n), \quad \operatorname{rank}(L_U) = k \leq n$$
  
 $L_U$  of minimum size with a point of weight  $k-2$ 



polynomial type

#### Theorem(Napolitano, Polverino, PS and Zullo)

 $L_U \subset \ell = \operatorname{PG}(1, q^n), \quad \operatorname{rank}(L_U) = k \leq n$  $L_U$  of minimum size with a point of weight k-2



polynomial type

S. Adriaensen and PS. Minimum size linear sets in projective spaces. Ongoing project

$$\Lambda = PG(d, q^n)$$

#### Theorem (De Beule and Van de Voorde)

If  $L_U$  spans the entire space and there is at least one hyperplane  $\pi$  of  $PG(d, q^n)$  meeting  $L_U$  in a canonical subgeometry of  $\pi$ 

$$\Downarrow$$

$$|L_U| \ge q^{k-1} + q^{k-2} + \ldots + q^{k-d} + 1.$$

#### Theorem (Jena and Van de Voorde)

$$\Lambda = PG(d, q^n), \quad \mathbb{F}_q(\lambda) = \mathbb{F}_{q^s}, \quad 1 < s \le n 
1 \le t_1, \dots, t_{d+1}, \quad t_i + t_j \le s + 1 
U = \langle 1, \lambda, \dots, \lambda^{t_1-1} \rangle_{\mathbb{F}_q} \times \dots \times \langle 1, \lambda, \dots, \lambda^{t_{d+1}-1} \rangle_{\mathbb{F}_q} 
dim_q U = k = t_1 + \dots + t_{d+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

#### Theorem (Jena and Van de Voorde)

$$\Lambda = PG(d, q^n), \quad \mathbb{F}_q(\lambda) = \mathbb{F}_{q^s}, \quad 1 < s \le n 
1 \le t_1, \dots, t_{d+1}, \quad t_i + t_j \le s + 1 
U = \langle 1, \lambda, \dots, \lambda^{t_1-1} \rangle_{\mathbb{F}_q} \times \dots \times \langle 1, \lambda, \dots, \lambda^{t_{d+1}-1} \rangle_{\mathbb{F}_q} 
dim_q U = k = t_1 + \dots + t_{d+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

If  $k \le s + d \Rightarrow$  there is at least one hyperplane  $\pi$  of  $PG(d, q^n)$  meeting  $L_U$  in a canonical subgeometry of  $\pi$ 

#### Example (Adriaensen and PS)

$$\begin{split} \Lambda &= \mathrm{PG}(3,q^8), \quad n = 8, \quad \mathbb{F}_{q^2}(\lambda) = \mathbb{F}_{q^8} \\ U_1 &= \langle 1, \lambda \rangle_{\mathbb{F}_{q^2}} \times \langle 1, \lambda \rangle_{\mathbb{F}_{q^2}} \subseteq \mathbb{F}_{q^8} \times \mathbb{F}_{q^8} \\ & \qquad \qquad U = U_1 \times \mathbb{F}_q^2 \subseteq \mathbb{F}_{q^8}^4 \quad L_U \subseteq \mathrm{PG}(3,q^8) \\ & \qquad \qquad dim_q U = k = 10 \\ |L_U| &= q^{k-1} + q^{k-2} + q^{k-4} + 1 = q^9 + q^8 + q^6 + 1 \\ &< q^{k-1} + q^{k-2} + q^{k-3} + 1 = q^9 + q^8 + q^7 + 1 \end{split}$$

$$\Lambda = PG(d, q^n)$$

#### Theorem (De Beule and Van de Voorde)

If  $L_U$  spans the entire space and there is at least one hyperplane  $\pi$  of  $PG(d, q^n)$  meeting  $L_U$  in a canonical subgeometry of  $\pi$ 

$$\Downarrow$$

$$|L_U| \ge q^{k-1} + q^{k-2} + \ldots + q^{k-d} + 1.$$

#### Theorem (Adriaensen and PS)

$$\Lambda = PG(d, q^n)$$
  $L_U \subseteq \Lambda$  of rank  $k$ 

If there exists an (r-1)-dimensional space  $\eta$  of  $\mathrm{PG}(d,q^n)$  meeting  $L_U$  in a canonical subgeometry of  $\eta$ 

$$|L_U| \ge q^{k-1} + q^{k-2} + \ldots + q^{k-r} + I_{\eta},$$

where  $I_{\eta}$  is the number of full secant *r*-spaces through  $\eta$ .

#### Theorem (Adriaensen and PS)

$$\Lambda = PG(d, q^n)$$
  $L_U \subseteq \Lambda$  of rank  $k$ 

If there exists an (r-1)-dimensional space  $\eta$  of  $PG(d, q^n)$  meeting  $L_U$  in a canonical subgeometry of  $\eta$ 

$$|L_U| \ge q^{k-1} + q^{k-2} + \ldots + q^{k-r} + I_\eta,$$

where  $I_{\eta}$  is the number of full secant *r*-spaces through  $\eta$ .

$$P \in L_U \quad w_{L_U}(P) = 1 \quad \Rightarrow \quad |L_U| \ge q^{k-1} + I_P,$$

where  $I_P$  is the number of secant lines to  $L_U$  through P.

$$P \in L_U \quad w_{L_U}(P) = 1 \quad \Rightarrow \quad |L_U| \ge q^{k-1} + I_P,$$

where  $I_P$  is the number of secant lines to  $L_U$  through P.

$$L_U \mathbb{F}_q$$
-linear blocking set in  $\operatorname{PG}(2,q^n)$   $P \in L_U$   $w_{L_U}(P) = 1$  n prime

$$\Downarrow$$

$$|I_P| \ge q^{n-1} + 1$$
  $|L_U| \ge q^n + q^{n-1} + 1$ 

#### Theorem (Adriaensen and PS)

$$\Lambda = PG(d, q^n)$$
  $L_U \subseteq \Lambda$  of rank  $k$ 

If there exists an (r-1)-dimensional space  $\eta$  of  $PG(d,q^n)$  meeting  $L_U$  in a canonical subgeometry of  $\eta$ 

$$|L_U| \ge q^{k-1} + q^{k-2} + \ldots + q^{k-r} + I_{\eta},$$

where  $I_{\eta}$  is the number of full secant *r*-spaces through  $\eta$ .

### Theorem (Adriaensen and PS)

sharp for each *r* 



#### Example (Adriaensen and PS)

$$\begin{split} & \Lambda = \operatorname{PG}(3,q^8), \quad n = 8, \quad \mathbb{F}_{q^2}(\lambda) = \mathbb{F}_{q^8} \\ & U_1 = \langle 1, \lambda \rangle_{\mathbb{F}_{q^2}} \times \langle 1, \lambda \rangle_{\mathbb{F}_{q^2}} \subseteq \mathbb{F}_{q^8} \times \mathbb{F}_{q^8} \\ & U = U_1 \times \mathbb{F}_q^2 \subseteq \mathbb{F}_{q^8}^4 \quad L_U \subseteq \operatorname{PG}(3,q^8) \\ & \operatorname{dim}_q U = k = 10 \\ & (x_1, x_2, x_3, x_4) \quad \ell : x_1 = x_2 = 0 \\ & \qquad \qquad \downarrow \\ & |L_U| = q^{k-1} + q^{k-2} + q^{k-4} + 1 = q^9 + q^8 + q^6 + 1 \\ & = q^{k-1} + q^{k-2} + I_\ell = q^9 + q^8 + I_\ell \end{split}$$

# Thank you for your attention!