

All differential routes must be same length on PCB. Differential Impedance matching: 100 Ω Do not put ground under the magnetics IC.

Power and activity LEDs

File: Liveview.sch

Title: Zynq-Based Master Controller

 Size: A4
 Date: 2020-10-08
 Rev: 1.0

 KiCad E.D.A. kicad (5.1.6)-1
 Id: 2/17

Differential pairs must be same length on PCB. Differential impedance matching: 90 Ω

Size: A4 Date: 2020-10-08

Rev: 1.0 KiCad E.D.A. kicad (5.1.6)-1 ld: 3/17

EMI Filter, ESD Protection, and SD Card Connector

All switching inputs must be same length on PCB. Impedance matching: 50 Ω Place filter IC close to connector.

Sheet: /Storage/ File: Storage.sch

Title: Zynq-Based Master Controller

 Size: A4
 Date: 2020-10-08
 Rev: 1.0

 KiCad E.D.A. kicad (5.1.6)-1
 Id: 4/17

```
150060VS75000 (Green LED):
                                                                                        150060SS75000 (Red LED):
                                          Vf = 2 V (typ)

If = 5 mA
                                                                                        Vf = 1.9 V (typ)
If = 5 mA
                                                                                        R = (3.3 \text{ V} - 1.9 \text{ V}) / 5 \text{ mA} = 280 \Omega
                                           R = (3.3 \text{ V} - 2 \text{ V}) / 5 \text{ mA} = 260 \Omega
                                                                     Both rounded up to 300 \Omega.
Bluetooth Module
                                                                                        150060SS75000
                                           IC?
Wurth_2608011024010
                                                                UTXD 12 DTXD
                                                                URXD 13 RXD
                                                                                       150060VS75000 300 R
                                                                  RTS 14 DRTS
     FB? ResetD >100 R @ 100 MHz
                                                                  CTS 15 OCTS
                                                             WAKE_UP 16 X GND_2 GND_2
                                 × 8 OP_MODE
                                 × 9 RESERVED_2
                            GND
```

Do not put ground under the antenna. Place antenna at edge of PCB.

Sheet: /Bluetooth/ File: Bluetooth.sch

Title: Zynq-Based Master Controller

 Size: A4
 Date: 2020-10-08
 Rev: 1.0

 KiCad E.D.A. kicad (5.1.6)-1
 Id: 5/17

Sheet: /INS/ File: INS.sch

Title:	Zynq-	Based	Master	Controller

Size: A4	Date: 2020-10-08	Rev: 1.0
KiCad E.D.A. kid	cad (5.1.6)-1	ld: 7/17

Sheet: /CAN_Interface/ File: CAN_Interface.sch

Title: Zynq-Based Master Controller

 Size: A4
 Date: 2020-10-08
 Rev: 1.0

 KiCad E.D.A. kicad (5.1.6)-1
 Id: 8/17

Sheet: /EEPROM/ File: EEPROM.sch

Title: Zynq-Based Master Controller

 Size: A4
 Date: 2020-10-08
 Rev: 1.0

 KiCad E.D.A. kicad (5.1.6)-1
 Id: 10/17

On-PCB sensor signals 24.3 R C? 24.3 R 280 nF -DXADC_LVSV_P -DXADC LVSV N GND (1-41.2 R C? 41.2 R 330 nF LVSCurrentD> -DXADC_LVSC_P -DXADC LVSC N GND (R? 160 R C? R? 160 R 150 nF DashAMSCurrent[-DXADC DASHAMSC F GND 👉 -DXADC_DASHAMSC_N 160 R C? 160 R 330 nF TSCINV12CurrentD -DXADC TSCINV12C F -DXADC_TSCINV12C_N R? 160 R C? R? 160 R 330 nF NetINV34CurrentD GND 👉 -DXADC_NetINV34C_N -DXADC_BrakeC_P 41.2 R C? 41.2 R 330 nF GND (-DXADC_BrakeC_N 41.2 R C? 41.2 R 330 nF 4.02k RTDSCurrentD--DXADC_RTDSC_P -DXADC RTDSC N GND (R? 137 R 500 nF -DXADC CoolC P CoolCurrentD GND (-DXADC_CoolC_N

Calculation steps
Voltage divider:
R_series = (V_max - 1) * R_shunt
Pick R_shunt and calculate R_series; real values
Calculate R_parallel (R_series || R_shunt)

f_s = 100 Hz ---> t_samp = 10 ms

Pick capacitor for anti-aliasing, C_AA
R_AA = (t_samp / 2) / (2 * 9.01 * C_AA) - R_parallel

Resulting t_s will be around 5 ms, cut-off frequency around 285 Hz.

Place filters close to JX headers.

 $\begin{array}{l} V_-F \text{ max: } 1.4 \text{ V} \\ I_-F \text{ min: } 1 \text{ mA} \\ \\ V_-R = 1.8 - 1.4 = 0.4 \text{ V} \\ R_-\text{min} = 0.4 \text{ / } 0.0015 = 270 \text{ R} \\ \end{array}$

Sheet: /Actuator/ File: Actuator.sch

Title: Zynq-Based Master Controller

 Size: A4
 Date: 2020-10-08
 Rev: 1.0

 KiCad E.D.A. kicad (5.1.6)-1
 Id: 13/17

All Zynq connections with same denomination should have same length. P/N pairs should be differentially routed.

100 Ohm differential impedance

50 Ohm single-ended impedance

Molex_52885-0474 Molex_52885-0474 +12V ← $\frac{2}{\cdot}$ GND 4 \$CMC_2x1 CMC_1x1 \rightarrow 3 3 PL_1×1N ♦ 5 5 CMC_1×2 ♦ 5 5 6 6 ◆PL_2x1N 8 8 → PL_2x2P CMC_1×3♦ 10 → PL_2x2N 12 → PL_2x3P 10 10 ♦ CMC_2×4 GND 11 11 12 12 GND 14 14 >CMC_2x5 PL_1x3N ♦ 13 13 CMC_1x5\$ 13 13 14 14 \$PL_2x3N PL_1x4P \(\frac{15}{15} \)
PL_1x4N \(\frac{17}{17} \) CMC_1×6 ♦ 15 15 16 16 → PL_2x4P 16 16 → CMC_2×6 16 18 \$PL_2x4P 18 \$PL_2x4N 20 \$GND 22 \$PL_3x1 CMC_1×7 \$\frac{17}{17} 17 18 18 → CMC_2x7 +5V < 19 19 $20 \rightarrow +3.3V$ CMC connections CMC_1x8\$ 21 21 22 22 \$CMC_2x8 24 24 \$CMC_2x9 PL_4x2 \$\leftrightarrow 23 23 CMC_1x9\$ 23 23 24 24 \$PL_3x2 Not high-speed. CMC_1x9\$\(\) 25
CMC_1x10\$\(\) 25
GND \(\) 27
CMC_1x11\$\(\) 29
CMC_1x12\$\(\) 31
CMC_1x13\$\(\) 33
CMC_1x13\$\(\) 33 PL_4x3 \$\left(\frac{25}{25} \)
PL_4x4 \$\left(\frac{27}{27} \)
PL_4x4 \$\left(\frac{27}{27} \) 26 26 CMC_2x10 26 26 \$PL_3x3 28 28 GND 30 30 GND 32 32 X PL_4x5 \(\display \) 29 PL_4x6 \(\display \) 31 34 34 X PL_4x7 \$ 33 33 34 34 >PL_3x7 CMC_1x14\$\rightarrow 35 \\
+5V \rightarrow 37 \\
70 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
37 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\
38 \\ 36 36 X PL_4x8\$ 35 36 36 ♦PL 3x8 GND 37 37 GND 39 39 38 38 GND 40 GND 38 38 +3.3V +5V 39 39 39 40 40 +3.3V

Receptacles:

Expansion Headers

Molex SlimStack 52885-0474 40 pins, 0.635mm pitch, 100 V, 0.5 A

24 total CMC 32 total Zynq

Sheet: /Expansion/ File: Expansion.sch

Title: Zynq-Based Master Controller

 Size: A4
 Date: 2020-10-08
 Rev: 1.0

 KiCad E.D.A. kicad (5.1.6)-1
 Id: 14/17

Size: A4 Date: 2020-10-08 Rev: 1.0 KiCad E.D.A. kicad (5.1.6)-1 Id: 16/17

TO-DO: Add user LEDs (driven by PL).

