Amortiseret analyse

Søren Dahlgaard

Datalogisk Institut, Københavns Universitet

Diskret Matematik og Algoritmer, 2015 Baseret på CLRS kapitel 17

Motivation

Når vi udfører mange operationer kan worst-case af en enkelt operation være misvisende.

Vi ønsker en måde at sige n operationer bruger samlet højest T(n) tid.

Alternativt: Når vi udfører n operationer tager hver højest $T^{\prime}(n)$ tid.

Simpelt eksempel

At tælle dumt

Forestil os at vi har en sorteret tabel $A \mod n$ tal mellem $1 \log m$.

Vi ønsker at køre en funktion f(A[i],A[i+1]) for alle $1 \le i \le n-1$, hvor f(x,y) tager tid O(y-x).

Hvis A[i]=1 og A[i+1]=m får vi at f(A[i],A[i+1]) tager O(m) tid. Altså tager alle operationerne til sammen O(mn).

Det er rigtigt, men vores grænse er alt for høj.

Summen af forskellene kan højest være m, da tallene er i sorteret rækkefølge! Altså bruger vi kun O(m) tid!

Eksempel: Multi-pop

Vi har en stack S med de sædvanlige operationer (pop og push).

Derudover kan vi også multipop(S, k), som fjerner op til k elementer fra vores stack S.

Spørgsmål: Hvad er køretiden af n pop, push, og multipop operationer?

Svar: multipop kan tage O(n) tid, så det hele er $O(n^2)$.

Bedre svar: Hvert element, som er blevet pushed kan højest poppes én gang. Højest n elementer pushes, så de n operationer tager højest O(n) tid!

Vi siger at den amortiserede køretid for push, pop og multipop er O(1).

Eksempel: En binær tæller

Vi ønsker at tælle fra 1 til n og vide hvor mange bits vi flipper i alt.

Svar: Simpelt.. Der er højest $\lceil \log_2 n \rceil$ bits der kan flippes hver gang, så $O(n \log n)$ i alt!

Kan vi give en bedre grænse?

Idé: Nogle gange kan $\lceil \log_2 n \rceil$ bits flippes, men ofte bliver der kun flippet én. Kan vi beskrive hvor ofte i bits flippes for hver i?

Eksempel: En binær tæller

Eksempel fortsat

Lad os kigge på de første tal i binær:

Tal	Binær
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001

Eksempel: En binær tæller

Eksempel fortsat

Observation: Den mindst signifikante bit flippes hver gang. Den næstmindst signifikante flippes hver anden gang, den tredjemindst signifikante bit flippes hver fjerde gang, osv.

Altså har vi i alt $\approx n + n/2 + n/4 + ... + 1 \le 2n$ flips!

Hvis vi vil tælle fra 1 til n flipper vi altså højest O(n) bits. Dvs. at den amortiserede køretid pr. inkrement er O(1).

Revisorens metode

En anden måde at regne på

Det er ikke altid, at vi nemt kan regne den totale køretid ud som i de forrige eksempler!

Idé: Giv hver operation en amortiseret pris \hat{c}_i , så summen af de udførte operationer $\sum_{i=1}^k \hat{c}_i$ altid er mindst lige så stor som den reelle pris $\sum_{i=1}^k c_i$ for alle k.

Mål: De amortiserede priser er nemmere at regne på, så vi kan give en grænse.

Intuition: Når vi udfører den i'te operation betaler vi \hat{c}_i ind på vores "konto" og hæver c_i . Hvis der altid er ≥ 0 penge på kontoen er vi glade.

Revisorens metode: Eksempel

Multipop igen

Den reelle pris for stakoperationerne fra før er:

Operation	Pris
Pop	1
Push	1
Multipop	$\min(k, S)$

Vi kan bruge den amortiserede pris:

Operation	Amortiseret pris
Pop	0
Push	2
Multipop	0

Revisorens metode: Eksempel

Multipop fortsat

Husk priserne:

Operation	Amortiseret pris
Pop	0
Push	2
Multipop	0

Hvorfor virker det? Hver gang vi pusher et element betaler vi 1 for at pushe det samt 1 for at poppe det senere. Derfor kan pop være gratis amortiseret.

Ud fra priserne i tabellen herover er det nemt at se, at alle operationer er O(1) amortiseret. Nemmere end hvis vi skulle analysere den samlede pris!