МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования

> «Московский технический университет связи и информатики» Факультет «Информационные технологии» Кафедра «Искусственный интеллект и машинное обучение»

Лабораторная работа №12 Основы выборки SQL

Автор:

Голиков Михаил Вячеславович, БВТ2402

Цель лабораторной работы

Познакомится с декларативным языком программирования SQL. Изучить основные команды для создания и изменения таблиц, а также научиться писать запросы с фильтрацией.

Ход выполнения лабораторной работы

Первым делом создадим все необходимые таблицы. Для этого выполним следующий код:

```
CREATE TABLE shop (
id INTEGER PRIMARY KEY,
name VARCHAR(255) UNIQUE,
balance FLOAT NOT NULL);
CREATE TABLE product (
id INTEGER PRIMARY KEY,
name VARCHAR (255) UNIQUE,
price FLOAT NOT NULL);
CREATE TABLE warehouse (
shop id INTEGER REFERENCES shop (id),
product id INTEGER REFERENCES product (id),
quantity INTEGER NOT NULL,
PRIMARY KEY (shop id, product id));
CREATE TABLE worker (
worker id INTEGER PRIMARY KEY,
shop id INTEGER REFERENCES product (id),
name VARCHAR (255),
salary INTEGER NOT NULL,
position VARCHAR(255));
```

Элемент 1 — код для создания таблиц

```
INSERT INTO shop
VALUES (1, "Пятёрочка", 1000);
INSERT INTO shop
VALUES (2, "Магнит", 100);
INSERT INTO shop
VALUES (3, "Перекрёсток", 10000);

INSERT INTO product
VALUES (1, "Хлеб", 100);
INSERT INTO product
VALUES (2, "Масло", 1000);
```

```
INSERT INTO product
VALUES (3, "Соль", 10);
INSERT INTO warehouse
VALUES (1, 1, 10);
INSERT INTO warehouse
VALUES (1, 3, 100);
INSERT INTO warehouse
VALUES (2, 2, 1000);
INSERT INTO warehouse
VALUES (3, 1, 100);
INSERT INTO warehouse
VALUES (3, 2, 100);
INSERT INTO warehouse
VALUES (3, 3, 100);
INSERT INTO worker
VALUES (1, 1, "Костя", 1000, "Директор");
INSERT INTO worker
VALUES (2, 1, "Маша", 100, "Кассир");
INSERT INTO worker
VALUES (3, 2, "Паша", 100, "Директор");
INSERT INTO worker
VALUES (4, 2, "Галя", 10, "Кассир");
INSERT INTO worker
VALUES (5, 3, "Миша", 10000, "Директор");
INSERT INTO worker
VALUES (6, 3, "Гоша", 2000, "Кассир");
INSERT INTO worker
VALUES (7, 3, "Толик", 1000, "Кассир");
```

Элемент 2 — код для вставки значений

worker				+ 🏚 Q Search tab
worker_id	shop_id	name	salary	position
1	1	Костя	1000	Директор
2	1	Маша	100	Кассир
3	2	Паша	100	Директор
4	2	Галя	10	Кассир
5	3	Миша	10000	Директор
6	3	Гоша	2000	Кассир
7	3	Толик	1000	Кассир

Элемент 3 — итоговая таблица worker

Теперь напишем запросы с использованием ORDER BY и GROUP BY.

SELECT * FROM worker
ORDER BY salary DESC;

Элемент 4 — код с использованием ORDER BY

Элемент 5 — результат запроса

```
SELECT AVG (salary), shop.name FROM worker
JOIN shop ON shop.id = worker.shop_id
GROUP BY shop_id;
```

Элемент 6 — код с использованием GROUP BY

Элемент 7 — результат запроса

Заключение

Был углубленно изучен декларативный язык программирования SQL на основе SQL Lite. Все задачи выполнены, результаты соответствуют ожидаемым.