

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: М32021	К работе допущен:
Студент: Корнилов Н. В.	Работа выполнена:
Преподаватель: Тимофеева Э. О.	Отчёт принят:

Рабочий протокол и отчет по лабораторной работе №4.10

1. Цель работы:

Исследование характера поляризации лазерного излучения. Экспериментальная проверка законов Малюса и Брюстера.

2. Задачи, решаемые при выполнении работы:

- 1. Определение степени поляризованности естественного и лазерного источника света
- 2. Экспериментальное определение коэффициентов пропускания поляризаторов
- 3. Определение угла Брюстера и показателя преломления стеклянной пластинки

3. Рабочие формулы и исходные данные:

$$P = rac{I_{max} - I_{min}}{I_{max} + I_{min}}$$
 $I_{0 ext{TH}} = rac{I}{I_{max}}$
 $an_{lpha_{ ext{Bp}}} = rac{n_2}{n_1} = n_{21}$
 $P = rac{(n^2 - 1)^2}{2(n^2 + 1)^2 - (n^2 - 1)^2}$
 $k_{||} = rac{I_{max}}{I_{\Pi}}$ и $k_{\perp} = rac{I_{min}}{I_{\Pi}}$

4. Схема установки

5. Ход работы

Упражнение 1

Источник - лазер

 $I_0 = 1,568 \, \mathrm{Bt/m2}$

	Лазер			
α,°	I1, Вт/м2	I2, BT/M2	Іср, Вт/м2	
150	0,65	0,637	0,644	
140	0,55	0,556	0,553	
130	0,42	0,416	0,418	
120	0,27	0,275	0,273	
110	0,156	0,159	0,158	
100	0,054	0,054	0,054	
90	0,01	0,01	0,01	
80	0,014	0,014	0,014	
70	0,069	0,07	0,07	
60	0,169	0,166	0,168	
50	0,304	0,31	0,307	
40	0,45	0,455	0,453	
30	0,61	0,61	0,61	
20	0,74	0,725	0,733	
10	0,86	0,869	0,865	
0	0,864	0,855	0,86	
-10	0,86	0,86	0,86	
-20	0,789	0,805	0,797	
-30	0,67	0,67	0,67	
-40	0,53	0,541	0,536	
-50	0,395	0,403	0,399	

-60	0,26	0,255	0,258
-70	0,135	0,136	0,136
-80	0,049	0,049	0,049
-90	0,007	0,007	0,007
-100	0,015	0,015	0,015
-110	0,07	0,071	0,071
-120	0,18	0,176	0,178
-130	0,305	0,308	0,307
-140	0,45	0,455	0,453
-150	0,61	0,616	0,613

 $P_{\text{лазер}} = 0.98$

α,°	Іотн
150	0,752
140	0,637
130	0,486
120	0,313
110	0,181
100	0,063
90	0,012
80	0,016
70	0,08
60	0,196
50	0,352
40	0,521
30	0,706
20	0,856
10	0,995
0	1
-10	0,995
-20	0,913
-30	0,775
-40	0,613
-50	0,457
-60	0,301
-70	0,156
-80	0,057
-90	0,008
-100	0,017
-110	0,081
-120	0,208
-130	0,353
-140	0,521
-150	0,706

$$k_{||}=0$$
,554 и $k_{\perp}=0$,004

Источник – белый свет

$$I_0' = 1,551 \, \mathrm{BT/m2}$$
 $I' = 0,448 \, \mathrm{BT/m2}$
 $I_{max} = 0,231; I_{min} = 0,04$
 $P_{\mathrm{бел \, CBeT}} = 0,70$

Белый свет			
α,°	I1 ,	I2,	Icp,
	Вт/м2	Вт/м2	Вт/м2
150	0,163	0,166	0,165
140	0,132	0,135	0,134
130	0,105	0,105	0,105
120	0,08	0,082	0,081
110	0,06	0,059	0,06
100	0,046	0,045	0,046
90	0,04	0,04	0,04
80	0,048	0,047	0,048
70	0,069	0,07	0,07
60	0,09	0,091	0,091
50	0,123	0,121	0,122
40	0,153	0,155	0,154
30	0,182	0,178	0,18
20	0,209	0,211	0,21
10	0,226	0,231	0,229
0	0,231	0,226	0,229
-10	0,224	0,222	0,223
-20	0,195	0,195	0,195
-30	0,181	0,183	0,182
-40	0,148	0,147	0,148
-50	0,118	0,116	0,117
-60	0,08	0,081	0,081
-70	0,058	0,059	0,059
-80	0,045	0,045	0,045
-90	0,04	0,04	0,04
-100	0,049	0,05	0,05
-110	0,064	0,063	0,064
-120	0,093	0,095	0,094
-130	0,122	0,122	0,122
-140	0,15	0,147	0,149
-150	0,176	0,174	0,175
•	•	•	•

Упражнение 2

$$\alpha_{\rm брюстера}=60^{\circ}$$

Угол наколона, °	I, Вт/м2	Іобр, Вт/м2
30	0,318	0,312
32	0,318	0,312
34	0,316	0,322
36	0,312	0,318
38	0,308	0,305
40	0,302	0,302
42	0,295	0,292
44	0,287	0,293
46	0,277	0,277
48	0,274	0,271
50	0,272	0,267
52	0,262	0,262
54	0,246	0,246
56	0,233	0,231
58	0,226	0,224
60	0,213	0,213
62	0,204	0,2
64	0,187	0,185
65	0,18	0,176

Под углом Брюстера	
Угол анализатора, °	I,
	BT/m2
0	0,019
90	0,016

$$I_{max} = 0.213 \text{BT/m2}; I_{min} = 0.147 \text{BT/m2}$$

Показатель преломления стекла: $n_2 = 1.732$

Степень поляризации:

$$P_{\text{лазера}} = 0.285$$

$$P_{\text{pacy}} = 0.1428$$

Степень поляризации:

$$P_{\text{бел}} = 0.183$$

$$P_{\text{pac}^{\text{u}}} = 0.1428$$

6. Выводы

Во время лабораторной работы был экспериментально найден угол Брюстера, доказан закон Малюса, а также исследован характер поляризации света.

7. Ответы на контрольные вопросы

1. Чем отличается линейно-поляризованный свет от естественного?

Линейно-поляризованный свет отличается от естественного света ориентацией своих электрических полей. В линейно-поляризованном свете, все векторы электрического поля колеблются в одной плоскости, тогда как в естественном свете эти векторы ориентированы случайным образом во всех возможных направлениях.

2. Чем отличается линейно-поляризованный свет от света, поляризованного по кругу?

В линейно-поляризованном свете векторы электрического поля колеблются строго в одной плоскости, в то время как в кругово-поляризованном свете вектор электрического поля вращается в плоскости, перпендикулярной направлению распространения света, создавая круговую траекторию. В результате, векторы электрического поля кругово-поляризованного света изменяют свою ориентацию в пространстве таким образом, что их кончики описывают круг, если смотреть вдоль направления распространения света.

3. Чему равна степень поляризации циркулярно-поляризованного света?

Степень поляризации циркулярно-поляризованного света равна 100%, поскольку вся его энергия передается в одной, строго определенной форме поляризации. В отличие от естественного или частично поляризованного света, циркулярно-поляризованный свет полностью поляризован, но его поляризация имеет круговую форму.

4. Можно ли имея в распоряжении поляризатор и анализатор определить тип поляризации света (линейная, круговая, эллиптическая)?

Да, можно. При пропускании света через поляризатор и последующем его анализе с помощью анализатора, вращая анализатор, можно наблюдать изменение интенсивности проходящего света. Для линейно-поляризованного света интенсивность будет колебаться между максимумом и нулем в зависимости от угла между поляризатором и анализатором. Для циркулярно- и эллиптически-поляризованного света, после прохода через первый поляризатор, свет становится линейно-поляризованным, и анализируя его далее, можно выявить его исходную поляризацию по характеру изменения интенсивности при вращении анализатора.

5. Как зависит угол Брюстера от показателя преломления первой среды?

Угол Брюстера обратно пропорционален показателю преломления первой среды. При увеличении показателя преломления первой среды при неизменном показателе второй среды, угол Брюстера уменьшается.

6. Как зависит угол Брюстера от показателя преломления второй среды?

Угол Брюстера прямо пропорционален показателю преломления второй среды. При увеличении показателя преломления второй среды при неизменном показателе первой среды, угол Брюстера увеличивается.

7. Какова связь между углами Брюстера при падении света на границу воздух-стекло со стороны воздуха и со стороны стекла?

Связь между углами Брюстера при падении света на границу раздела двух сред, например воздуха и стекла, со стороны воздуха и стекла обратно пропорциональна из-за разности показателей преломления. Когда свет падает на границу воздух-стекло, угол Брюстера зависит от показателя преломления стекла относительно воздуха. При изменении направления падения (со стекла на воздух) угол Брюстера будет зависеть от обратного отношения показателей преломления. Эти углы связаны через относительные показатели преломления сред.