Transmission de l'information Couche Physique

Support physique Rappel & complément (1)

- La norme 802.3 spécifie pour chaque média un nom :
 - Auquel correspond des caractéristiques spécifiques
 - Vitesse de transmission, type de codage, identification du média et/ou longueur maximum du segment en centaine de mètre.

NOM	Caractéristiques
10 Base 5	10 Mb/s, en bande de base avec un segment de 500 m au maximum.
10 Base 2	10 Mb/s, en bande de base, avec un segment de 200 m (185 m) au maximum.
10 Base T	10 Mb/s, en bande de base, sur câble en paires torsadées (T = Twister).
10 Base F	10 Mb/s, en bande de base, sur câble fibre optique.
100 Base Tx	100 Mb/s, en bande de base, sur câble en paires torsadées
100 Base T4	100 Mb/s, en bande de base, sur 4 paires torsadées.
100 Base Fx	100 Mb/s, en bande de base, sur câble fibre optique.
1000 Base T	1000 Mb/s, en bande de base, sur 4 paires torsadées.
1000 Base SX	100 Mb/s, en bande de base, sur câble fibre optique monomode
1000 Base LX	100 Mb/s, en bande de base, sur câble fibre optique multimode.
10 Gbase LX4	10 Gb/s sur câble fibre optique

Support physique Rappel & complément (2)

- Plus le diamètre du conducteur est petit, plus grand sera sa résistance, et donc plus il y aura de pertes.
- Plus la fréquence augmente, plus il y aura de pertes.
- Plus on augmente la longueur du câble, plus il y aura de pertes.

Support physique Rappel & complément (3)

Aperçu du signal

Transmitted Signal

Attenuation

Limited Bandwidth fc

Delay Distortion

Line Noise

Received Signal

Sampling Impulse

Support physique Rappel & complément (4)

- Transfert <u>non instantané</u> qui dépend
 - Du support (air, cuivre, fibre optique)
 - De la distance (du mètre à des milliers de kilomètres)
- Transfert non parfait du à
 - Déformation de l' onde durant son transport.
 - Perturbations externes.

Support physique Rappel & Définitions (5)

- Bande Passante (Hz) :
 - Caractérise tous les supports de transmission, c'est la bande de fréquences dans laquelle les signaux sont correctement reçus

BP = F maximale - F minimale

- Définit pour un rapport de puissance (Pe/Pr) en dB
 10 log (P émission / P reçue) ≤ N
- Par convention, on prend N = 3 soit 50 % de "perte"
- Exemples :
 - Sensibilité de l'oreille dans la bande de fréquence 20 à 20000 Hz
 - Caractéristiques Haut parleur Hi-fi: 30 à 18000Hz
 - Bande passante du téléphone 300 à 3700 Hz (4000 Hz ± 300 Hz)

Support physique Rappel & complément (6)

- On apprécie un câble suivant différentes caractéristiques :
 - L'atténuation du signal électrique
 - Diminution de l'intensité du signal quand il se déplace le long d'un fil de cuivre
 - L'impédance
 - La bande passante
 - Définie par la différence entre la fréquence minimale et la fréquence maximale.
 - L'expression « bande passante» est utilisée pour désigner la quantité maximale théorique de bits par seconde qui peut être véhiculée
 - Le bruit
 - Les câbles de cuivre => véhiculent des impulsions électriques qui dégages des ondes électromagnétique.
 - \Leftrightarrow interférences entre plusieurs câbles
 - => perturbation de la qualité du signal.

Support physique Rappel & Définitions (7)

- Le <u>débit binaire</u> (D) caractérise plus une liaison au niveau réseau informatique (bits/s ou bps) :
 - formule de Shannon
 - Est une fonction directe de la bande passante (BP) :
 - $D = BP log_2 (1 + S/N)$
 - S/N = signal/bruit
 - C'est la quantité maximale d'information transmissible sur une voie
 - exemple : nos lignes téléphoniques
 - BP ≈ 3400 Hz
 - S/N ≈ 1000 => Débit binaire maximal théorique ≈ 34000 bits/s

Plan

- La couche physique
- La transmission en bande de base
- Le codage de l'information
- La transmission modulée
- Multiplexage
- ADSL

Introduction

La Couche Physique

- Transmission des bits de façon brute
 - si l'émetteur envoie un bit à 1 alors le récepteur reçoit un bit à 1
- Les normes de la couche physique
 - > définissent le type de signaux émis (modulation, puissance, portée...)
 - > la nature et les caractéristiques des supports (câble, fibre optique...)

La Couche Physique Nature de l'information

Transmission de données En série / En parallèle

- L'information peut être acheminée :
 - en série ou en parallèle.
- Transmission en parallèle
 - Surtout utilisée pour tout échange rapide entre l'unité centrale d'un ordinateur et de ses périphériques se trouvant à proximité
- Transmission en série
 - Largement utilisée pour la communication entre équipements éloignés les uns des autres

Transmission de données

En série / En parallèle

- Transmission parallèle,
 - Tous les bits sont acheminés en même temps sur un support de communication composé d'autant de fil que de bits transmis.
- Transmission sérielle,
 - Les bits d'un caractère sont acheminés les uns après les autres sur un seul fil

Transmission de données

En série / En parallèle

La Couche Physique

- L'émission est toujours cadencée par une horloge dont la vitesse donne le débit de la ligne en bauds
 - ⇒ le nombre de tops d'horloge en une seconde

Exemple:

100 bauds = 100 émissions par seconde

 Si à chaque top d'horloge un signal représentant 0 ou 1 est émis, alors dans ce cas le débit en bit/s = au débit en baud

Transmission de données en série Synchrone ou asynchrone

 La transmission de plusieurs bits en série peut s'effectuer de manière :

1. Synchrone

 l'émetteur et le récepteur se mettent d'accord sur une base de temps (un top d'horloge) qui se répète régulièrement durant tout l'échange.

2. Asynchrone

- pas de négociation préalable
- => chaque caractère envoyé est précédé d'un bit de start et immédiatement suivi d'un ou deux bits de stop

Synchronisation des transmissions séries

Transmission asynchrone(1)

- Transmission asynchrone :
 - Longueur du caractère dépend du codage utilisé.
 - Entre l'émission de deux trames, la ligne est au repos pour une durée quelconque.

Synchronisation des transmissions séries Transmission asynchrone(2)

- La synchronisation se fait par un motif binaire pour indiquer le début et la fin de la transmission.
- Les motifs sont :
 - Envoyés indépendamment
 - Synchronisés indépendamment
- La technique du bit start/stop est utilisée

Synchronisation des transmissions séries Transmission asynchrone(3)

- Transmissions asynchrones
 - Suite de données à instants aléatoires transmise caractère par caractère
 - Succession de trains de symboles binaires <u>séparés par des</u> <u>intervalles de temps quelconques</u>
 - La transmission asynchrone des données nécessite l'adjonction à chaque caractère transmis d'éléments de repérage : Start et Stop bits
 - Durée du Start bit = durée de 1 bit du caractère déclenchement de l'horloge locale
 - Durée du Stop bit = 1, ou 2 bits du caractère (arrêt de l'horloge)
 - Bit de Parité de vérification de la validité du caractère reçu

Synchronisation des transmissions séries Transmission asynchrone(4)

- Les horloges ne sont pas synchronisées entre l'éméteur et le récepteur.
- La synchronisation se fait seulement durant la transmission d'un mot binaire
- Les intervalles entre les mots binaire varient

Synchronisation des transmissions séries Transmission asynchrone(5)

- Durée entre chaque bit est constante.
- Synchronisation se fait sur le bit de départ.
- Déphasage de l'horloge :
 - D'autant plus grand que la fréquence de l'horloge de réception est éloignée de celle de l'horloge de d'émission.
- Exemple de vitesse de transmission en bit/s:

75-110-150-300-600-1200-2400-4800-9600-1920 0-28800-56600

Synchronisation des transmissions séries <u>Transmission synchrone (1)</u>

- Deux équipements sont synchronisés :
 - Par une liaison supplémentaire commune qui permet de transporter le signal d'horloge.
 - Par l'inclusion d'éléments de synchronisation dans le message à transmettre.
- 2^e solution utilisée en générale
 - Principe:
 - Le récepteur doit pouvoir utiliser les changements d'états du signal (front montant et/ou descendant) pour se recaler au cours de la lecture.

Synchronisation des transmissions séries

Transmission synchrone (2)

Transmissions synchrones :

- Suite de données synchrone : le temps séparant les différents instants significatifs est un entier multiple du même intervalle de temps *T*.
- Les caractères se suivent sans séparation.
- Un signal <u>d'horloge</u> est toujours associé aux données (base de temps).

 http://david.bromberg.fr

Synchronisation des transmissions séries Transmission synchrone (3)

Problème :

- Il n'est pas garantie que le signal comporte suffisamment d'alternances
- Il faut en introduire à l'émission et les prendre en compte pour l'interprétation du message au niveau du récepteur
- ⇔ Le remède est simple : on va modifier le signal!
- ⇔ Technique du *Bit stuffing*

Synchronisation des transmissions séries *Transmission synchrone (3)*

- Bit stuffing
 - Chaque fois qu'un signal comporte "n" états identiques consécutifs on ajoute un bit à l'état inverse.

Types de transmissions

- Transmission <u>analogique</u>:
 - Signal analogique (radio, TV, téléphone...)
 - Signal numérique (ordinateur) (transmission par transposition de Fréquence)
- Transmission <u>numérique</u> :
 - Signal numérique (Bande de Base)
 - Signal analogique (MIC*)(notion de numérisation via un codec)
 - MIC: Modulation par Impulsion et Codage (Pulse Coding Modulation).

Types de transmissions Définitions

• Signal numérique :

 L'amplitude varie en ne prenant que des valeurs discrètes par intervalle.

• Signal analogique:

- L'amplitude varie de manière continue dans le temps, les valeurs étant différentes à chaque instant.
- Un tel signal n'admet pas de discontinuité.

Transmission analogique

- Historiquement les premières transmissions analogiques (télex, LS bas débit au début des années 60)
 - Base installée importante de liaison cuivre (PT ou coaxial) dans les villes
 - 2ième jeunesse avec xDSL (<u>Digital Subscriber Line</u>)
- Exemple le plus courant la liaison série V24 (CCITT) ou RS232C (EIA)
 - Spécification mécaniques, électriques et fonctionnelles de la connexion physique
 - Exemple simple de la transmission de données
 - Connexion PC-Modem (V32,V34,V90 ...), mode console
- Encore très répandue dans le monde informatique
 - LS vers sites distants (V35, V11...)
 - Signaux numériques

Transmission numérique

- Remplace petit à petit la transmission analogique
- Transmission numérique + performante
 - Faible taux d'erreur des liaisons
 - Simplicité du signal (0 ou 1) => Simplicité amplificateur
 - Pas d'effet cumulatif lié aux parasites
 - Multiplexage plus facile
- Exemples pratiques :
 - ≠ qualité CD et qualité vinyle
 - V90 (TX : 33.6k, RX 56k) basée sur la qualité du réseau numérique
 - Convertisseur Numérique -> Analogique : débit 33.6k

Transmission du signal numérique

- Longueur de la liaison ~= quelques centaines de mètres
 - ⇔ Les informations peuvent être transmises sur le support de liaison sans transformation.

- Qu'est ce ?
 - Consiste à envoyer directement les suite de bits sur le support à l'aide de signaux carrés constitués par un courant électrique pouvant prendre 2 valeurs.
 - Directement Sans transformation du signal numérique en signal analogique et sans transposition de fréquence.

- Principalement dans les réseaux locaux.
 - Circuit de données à grand débit avec faible portée.
 - Débits supérieurs à 1Mb/s pour des distances <
 1Km
 - ⇒ Utilisation de supports physique métallique
 - Paires torsadées ou câble coaxiaux.
 - Ou câble optique.

- Signal binaire n'est généralement pas transmis directement sur la ligne :
 - Différents types de codages numériques sont utilisés entre autres pour :
 - Récupération de l'horloge nécessaire en transmission synchrone.
 - Facilitée par des séquences qui présentent des changements d'états fréquent.
 - ⇔ Evitent les longues séquences de 0 et de 1.

Transmission en bande de base Problèmes ?

Peut-il y avoir un problème de transmission ?

Transmission en bande de base Problèmes ?

Problème 1

- Le signal possède électriquement une composante continue.
- ⇔ Le signal se propage mal sur les lignes de transmission longue distance
- ⇔ Les supports de transmission et les circuits électroniques des récepteurs ne supportent pas bien les composantes continues.
- ⇔ L'énergie moyenne des signaux doit se situer dans la bande passante optimale du câble : elle est rarement axée sur les basses fréquences

Transmission en bande de base Problèmes ?

Problème 1

- ⇔ La composante continue provoque un échauffement du à l'effet Joule
- ⇔ Utiliser un codage comme le NR

Transmission en bande de base Problèmes ?

Problème 2

- Dans une longue suite de 1 ou de 0, le signal ne présente pas de transitions permettant la synchronisation du récepteur du train de bits.
- ⇔ Très rapidement émetteur et récepteur vont se trouver en désynchronisme
- ⇔ Technique du bit stuffing

Transmission en bande de base Problèmes & solutions

- Transformer le signal numérique en un autre
 - Réduire la composante continue
 - Choisir un codage tel que le spectre du nouveau signal soit mieux adapté aux caractéristiques du support de transmission.
 - Assurer un minimum de transitions même lors de la transmission de longues séquences de niveaux logiques bas ou hauts.

Transmission en bande de base Les codages

• Codage de l'information peut être de différents types :

Transmission en bande de base NRZ et tout ou rien

- le code tout ou rien : un courant nul code le 0 et un courant positif indique le 1.
- le code NRZ: pour éviter la difficulté à obtenir un courant nul, on code le 1 par un courant positif et le 0 par un courant négatif.

Transmission en bande de base NRZ et tout ou rien

- Ce codage ne permet pas la création de transition lors de longues séquences de 0 ou de 1
- Risque de perte de synchronisation

Transmission en bande de base Code RZ et Manchester

- le code RZ: le 0 est codé par un courant nul et le 1 par un courant positif qui est annulé au milieu de l'intervalle de temps prévu pour la transmission d'un bit.
- le code Manchester : ici aussi le signal change au milieu de l'intervalle de temps associé à chaque bit. Pour coder un 0 le courant sera négatif sur la première moitié de l'intervalle et positif sur la deuxième moitié, pour coder un 1, c'est l'inverse. Autrement dit, au milieu de l'intervalle il y a une transition de bas en haut pour un 0 et de haut en bas pour un 1.

- Le codage Manchester tient compte du sens de la transition
 Tient compte de la polarité du signal
- Faire attention de ne pas inverser les fils
- Consomme le double de bande passante par rapport à un signal non codé !!
- Nécessite un débit 2x plus élevé que le codage binaire

- Le codage Manchester est notamment utilisé pour :
 - L'Ethernet 10Base5, 10Base2, 10BaseT, 10BaseFL
- Codage très difficilement utilisable pour des débits élevés.
 - Pour 1Gbit/s il faudrait une fréquence maximale du signal à 1 Ghz.
 - ⇔ Incompatible avec les possibilités de câblages actuels.
 - Augmentation de phénomènes de perturbation électromagnétique.

- Codage rentable pour des liaisons courtes.
- Cela pose toujours un problème pour les communications à longue distance ou à la bande passante est chère.
- Solutions
 - Le codage de Miller
 - Réduit la consommation de la bande passante

Transmission en bande de base Miller

- Si un bit à coder est au niveau logique bas alors pas de transition
- Si le bit à coder est au niveau logique bas et le suivant aussi alors transition à la fin du bit
- Si le bit à coder est au niveau logique haut alors la transition est au milieu du bit

Transmission en bande de base Miller

Transmission en bande de base Codage bipolaire

- le code bipolaire : c'est un code tout ou rien dans lequel le 0 est représenté par un courant nul, mais ici le 1 est représenté par un courant alternativement positif ou négatif pour éviter de maintenir des courants continus.
- Avantage :
 - Permet une réduction encore plus importante du spectre en ne codant qu'un seul type de bit (ex, les niveaux hauts)
- Inconvénient
 - Problème lors de longues séquences de niveaux bas,
 risque de perte d'horloge

Transmission en bande de base Codage bipolaire

Transmission en bande de base Codage HDBn

- Codes bipolaires améliorés pour éviter les longues suites de niveaux bas.
 - HDBn = Haute Densité Binaire d'ordre n
- Si le bit de rang n+1 est au niveau bas on le remplace par un particulier.
 - Ce bit sans signification = viol de parité détecté par le système.
 - Polarité de ce bit non inversé par rapport au bit codé précédemment
- Pour respecter la bipolarité du codage :
 - Les bits de viol sont alternativement inversés.
 - => Les bits de viol peuvent ne plus être en viol par rapport au dernier bit supplémentaire -> ajout d'un bit de bourrage

Transmission en bande de base Codage HDBn

Transmission en bande de base Codage HDBn

• Utilisé sur les lignes E1 et E3

Transmission en bande de base Autres codes nB/mB

- Codes de type nB/mB
 - Substitue un bloc de n bits par un bloc de m bits
 - Avec n < m
 - Donc il existe 2ⁿ combinaisons contre 2ⁿ
 - ⇔ Permet de choisir les combinaisons qui permettent de supprimer la composante continue et de favoriser la synchronisation.
 - Exemple : 4B/5B
 - Sélection des éléments qui n'ont pas plus de un zéro en début et de 2 zéros en fin de séquence.
 - ⇔ pas plus de 3 bits à 0 successifs.

Transmission en bande de base Autres codes nB/mB

Binaire	4B/5B
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111