An approximate Bayesian inversion framework based on local Gaussian likelihoods

Martin Jullum

University of Oslo, Norway

Odd Kolbjørnsen

Lundin Norway (formerly Norwegian Computing Center)

martinju@math.uio.no

September 10, 2015

Outline

Inverse problem Our local approach Illustration Conclusio

Outline

Outline

An approximate Bayesian inversion framework based on local Gaussian likelihoods

Forward model

- r: Rock properties (e.g. saturation, porosity, permeability, lithology, etc.)
- **m**: Geophysical properties (= elastic parameters V_p , V_s and ρ)
- d: Geophysical data (= Seismic AVO data)

Forward model

Inverse problem

- r: Rock properties (e.g. saturation, porosity, permeability, lithology, etc.)
- m: Geophysical properties (= elastic parameters $\mathbf{V}_p, \mathbf{V}_s$ and ρ)
- d: Geophysical data (= Seismic AVO data)

Inverse problem: Which values of **r** generated the observed **d**?

Inverse problem

- r: Rock properties (e.g. saturation, porosity, permeability, lithology, etc.)
- m: Geophysical properties (= elastic parameters $\mathbf{V}_{p}, \mathbf{V}_{s}$ and ρ)
- d: Geophysical data (= Seismic AVO data)

Inverse problem: Which values of \mathbf{r} generated the observed \mathbf{d} ?

Statistical model setup

- r: Rock properties (e.g. saturation, porosity, permeability, lithology, etc.)
- **m**: Geophysical properties (= elastic parameters \mathbf{V}_p , \mathbf{V}_s and ρ)
- d: Geophysical data (= Seismic AVO data)

Inverse problem: Which values of **r** generated the observed **d**?

- Statistical model setup
- The Bayesian approach is natural
 - Inversion \Leftrightarrow consult posterior distribution $p(\mathbf{r}|\mathbf{d})$

Computing posterior

Posterior distribution: $p(\mathbf{r}|\mathbf{d}) \propto \int p(\mathbf{d}|\mathbf{m})p(\mathbf{m}|\mathbf{r})p(\mathbf{r}) d\mathbf{m}$

- High dimensional problem
- Enormous amount of highly correlated data d
- Complex dependency structures

Posterior distribution: $p(\mathbf{r}|\mathbf{d}) \propto \int p(\mathbf{d}|\mathbf{m})p(\mathbf{m}|\mathbf{r})p(\mathbf{r}) d\mathbf{m}$

High dimensional problem

Inverse problem

- Enormous amount of highly correlated data d
- Complex dependency structures
- Analytical expression for posterior seldom available
- Full Gaussian linear inversion (Buland and Omre (2003)) and similar approaches may not be valid
- MCMC can be very time consuming

- Divide the global inversion problem into several local inversions
 - Approximate marginal posterior $p(\mathbf{r}_i|\mathbf{d})$ for each cell i in the gridded region, rather than the global $p(\mathbf{r}|\mathbf{d})$ for the full region

- Divide the global inversion problem into several local inversions
 - Approximate marginal posterior $p(\mathbf{r}_i|\mathbf{d})$ for each cell i in the gridded region, rather than the global $p(\mathbf{r}|\mathbf{d})$ for the full region
- ullet Dimension reduction by only using variables spatially close to cell i
- Clever utilization of properties of Gaussian distributions
- Monte Carlo sampling of lower dimensional integral

- Divide the global inversion problem into several local inversions
 - Approximate marginal posterior $p(\mathbf{r}_i|\mathbf{d})$ for each cell i in the gridded region, rather than the global $p(\mathbf{r}|\mathbf{d})$ for the full region
- ullet Dimension reduction by only using variables spatially close to cell i
- Clever utilization of properties of Gaussian distributions
- Monte Carlo sampling of lower dimensional integral
- Can be parallelized under stationarity assumptions

- Divide the global inversion problem into several local inversions
 - Approximate marginal posterior $p(\mathbf{r}_i|\mathbf{d})$ for each cell i in the gridded region, rather than the global $p(\mathbf{r}|\mathbf{d})$ for the full region
- Dimension reduction by only using variables spatially close to cell i
- Clever utilization of properties of Gaussian distributions
- Monte Carlo sampling of lower dimensional integral
- Can be parallelized under stationarity assumptions

Assumptions:

- $p(\mathbf{d}|\mathbf{m}) \sim N(G\mathbf{m}, \Sigma)$, i.e. $\mathbf{d} = G\mathbf{m} + \varepsilon$, $\varepsilon \sim N(0, \Sigma)$
- We may sample from $p(\mathbf{m}|\mathbf{r})$ and $p(\mathbf{r})$

Local variables

Inversion for cell $i: p(\mathbf{r}_i|\mathbf{d})$

• 3 neighborhoods of cells:

$$B = B(i), C = C(i),$$

$$D = D(i)$$

 These have corresponding local variables: r_B, m_C, d_D

Local variables

Our local approach

Inversion for cell $i: p(\mathbf{r}_i|\mathbf{d})$

3 neighborhoods of cells:

$$B = B(i), C = C(i),$$

$$D = D(i)$$

 These have corresponding local variables: $\mathbf{r}_B, \mathbf{m}_C, \mathbf{d}_D$

Rely on the following relations

$$p(\mathbf{r}_i|\mathbf{d}) \approx p(\mathbf{r}_i|\mathbf{d}_D) = \int p(\mathbf{r}_B|\mathbf{d}_D) \, \mathrm{d}\mathbf{r}_{B_{-i}} \propto \int p(\mathbf{d}_D|\mathbf{r}_B) p(\mathbf{r}_B) \, \mathrm{d}\mathbf{r}_{B_{-i}}.$$

Local variables

Inversion for cell $i: p(\mathbf{r}_i|\mathbf{d})$

• 3 neighborhoods of cells:

$$B = B(i), C = C(i),$$

$$D = D(i)$$

 These have corresponding local variables: r_B, m_C, d_D

Rely on the following relations

$$p(\mathbf{r}_i|\mathbf{d}) \approx p(\mathbf{r}_i|\mathbf{d}_D) = \int p(\mathbf{r}_B|\mathbf{d}_D) \, \mathrm{d}\mathbf{r}_{B_{-i}} \propto \int p(\mathbf{d}_D|\mathbf{r}_B) p(\mathbf{r}_B) \, \mathrm{d}\mathbf{r}_{B_{-i}}.$$

• We shall approximate $p(\mathbf{d}_D|\mathbf{r}_B)$

$$p(\mathbf{d}_D|\mathbf{r}_B) = \int p(\mathbf{d}_D|\mathbf{m}_C)p(\mathbf{m}_C|\mathbf{r}_B) \,\mathrm{d}\mathbf{m}_C$$

$$p(\mathbf{d}_D|\mathbf{r}_B) = \int p(\mathbf{d}_D|\mathbf{m}_C)p(\mathbf{m}_C|\mathbf{r}_B) \,\mathrm{d}\mathbf{m}_C$$

•
$$p(\mathbf{d}|\mathbf{m}) \sim N(G\mathbf{m}, \Sigma) \Rightarrow p(\mathbf{d}_D|\mathbf{m}_C) \approx p^*(\mathbf{d}_D|\mathbf{m}_C) \sim N(G_0\mathbf{m}_C, \Sigma_0)$$

$$p(\mathbf{d}_D|\mathbf{r}_B) = \int p(\mathbf{d}_D|\mathbf{m}_C)p(\mathbf{m}_C|\mathbf{r}_B) \,\mathrm{d}\mathbf{m}_C$$

- $p(\mathbf{d}|\mathbf{m}) \sim N(G\mathbf{m}, \Sigma) \Rightarrow p(\mathbf{d}_D|\mathbf{m}_C) \approx p^*(\mathbf{d}_D|\mathbf{m}_C) \sim N(G_0\mathbf{m}_C, \Sigma_0)$
- $p(\mathbf{m}_C|\mathbf{r}_B) \approx p^*(\mathbf{m}_C|\mathbf{r}_B) \sim N(\mu, \Gamma)$, where

$$\mu = \mu(\mathsf{r}_B) = \mathsf{E}^*[\mathsf{m}_C|\mathsf{r}_B]$$
 and $\Gamma = \Gamma(\mathsf{r}_B) = \mathsf{Cov}^*[\mathsf{m}_C|\mathsf{r}_B]$

$$p(\mathbf{d}_D|\mathbf{r}_B) = \int p(\mathbf{d}_D|\mathbf{m}_C)p(\mathbf{m}_C|\mathbf{r}_B) \,\mathrm{d}\mathbf{m}_C$$

- $p(\mathbf{d}|\mathbf{m}) \sim N(G\mathbf{m}, \Sigma) \Rightarrow p(\mathbf{d}_D|\mathbf{m}_C) \approx p^*(\mathbf{d}_D|\mathbf{m}_C) \sim N(G_0\mathbf{m}_C, \Sigma_0)$
- $p(\mathbf{m}_C|\mathbf{r}_B) \approx p^*(\mathbf{m}_C|\mathbf{r}_B) \sim N(\mu, \Gamma)$, where

$$\mu = \mu(\mathsf{r}_B) = \mathsf{E}^*[\mathsf{m}_\mathcal{C}|\mathsf{r}_B]$$
 and $\Gamma = \Gamma(\mathsf{r}_B) = \mathsf{Cov}^*[\mathsf{m}_\mathcal{C}|\mathsf{r}_B]$

- Sample large number of 'pairs' $(\mathbf{m}_C, \mathbf{r}_B)$ from joint distribution
- ullet Fit μ -function by nonlinear regression
- Use residuals to fit different Γ -functions for different r_B

$$p(\mathbf{d}_D|\mathbf{r}_B) = \int p(\mathbf{d}_D|\mathbf{m}_C)p(\mathbf{m}_C|\mathbf{r}_B) \,\mathrm{d}\mathbf{m}_C$$

- $p(\mathbf{d}|\mathbf{m}) \sim \mathcal{N}(G\mathbf{m}, \Sigma) \Rightarrow p(\mathbf{d}_D|\mathbf{m}_C) \approx p^*(\mathbf{d}_D|\mathbf{m}_C) \sim \mathcal{N}(G_0\mathbf{m}_C, \Sigma_0)$
- $p(\mathbf{m}_C|\mathbf{r}_B) \approx p^*(\mathbf{m}_C|\mathbf{r}_B) \sim N(\mu, \Gamma)$, where

$$\mu = \mu(\mathsf{r}_B) = \mathsf{E}^*[\mathsf{m}_C|\mathsf{r}_B]$$
 and $\Gamma = \Gamma(\mathsf{r}_B) = \mathsf{Cov}^*[\mathsf{m}_C|\mathsf{r}_B]$

- Sample large number of 'pairs' $(\mathbf{m}_C, \mathbf{r}_B)$ from joint distribution
- ullet Fit μ -function by nonlinear regression
- \bullet Use residuals to fit different $\Gamma\text{-}\text{functions}$ for different $r_{\mathcal{B}}$
- Final approximation:

$$p(\mathbf{d}_D|\mathbf{r}_B) \approx \int p^*(\mathbf{d}_D|\mathbf{m}_C)p^*(\mathbf{m}_C|\mathbf{r}_B) \,\mathrm{d}\mathbf{m}_C$$
$$= p^*(\mathbf{d}_D|\mathbf{r}_B) \sim N(G_0\mu, \Sigma_0 + G_0\Gamma G_0^t)$$

Approximate inversion quantities

Approximate local posterior:

$$p(\mathbf{r}_i|\mathbf{d}_D) \approx p^*(\mathbf{r}_i|\mathbf{d}_D) \propto \int p^*(\mathbf{d}_D|\mathbf{r}_B)p(\mathbf{r}_B) d\mathbf{r}_{B-i}$$

 Inversion: Compute inversion quantities like the posterior mean, median, sd or credibility intervals

Approximate inversion quantities

Approximate local posterior:

$$p(\mathbf{r}_i|\mathbf{d}_D) \approx p^*(\mathbf{r}_i|\mathbf{d}_D) \propto \int p^*(\mathbf{d}_D|\mathbf{r}_B)p(\mathbf{r}_B) d\mathbf{r}_{B-i}$$

 Inversion: Compute inversion quantities like the posterior mean, median, sd or credibility intervals

Weighted Monte Carlo:

- Sample from $p(\mathbf{r}_B)$
- Weight the sampled \mathbf{r}_i by $p^*(\mathbf{d}_D|\mathbf{r}_B)$ and normalize the weights
- Compute appropriate weighted averages over r_i to approximate inversion quantities

Approximate inversion quantities

Approximate local posterior:

$$p(\mathbf{r}_i|\mathbf{d}_D) \approx p^*(\mathbf{r}_i|\mathbf{d}_D) \propto \int p^*(\mathbf{d}_D|\mathbf{r}_B)p(\mathbf{r}_B) d\mathbf{r}_{B-i}$$

 Inversion: Compute inversion quantities like the posterior mean, median, sd or credibility intervals

Weighted Monte Carlo:

- Sample from $p(\mathbf{r}_B)$
- Weight the sampled \mathbf{r}_i by $p^*(\mathbf{d}_D|\mathbf{r}_B)$ and normalize the weights
- Compute appropriate weighted averages over r_i to approximate inversion quantities
- Under stationarity: Re-use the general form of $p^*(\mathbf{d}_D|\mathbf{r}_B)$ and the samples from $p(\mathbf{r}_B)$ and repeat the Weighted Monte Carlo procedure for all i in the region

Inverse problem Our local approach (Illustration) Conclusion

Illustration: CO_2 monitoring \Rightarrow map saturation

Real case

 $\mathbf{d} = \text{Seismic AVO difference data}$ $\mathbf{m} = \text{change in log of } (\mathbf{V}_p, \mathbf{V}_s, \boldsymbol{\rho})$ $\mathbf{r} = \text{saturation change}$

Real case

Seismic amplitude differences

 $\mathbf{d}=$ Seismic AVO difference data $\mathbf{m}=$ change in log of $(\mathbf{V}_p,\mathbf{V}_s,\boldsymbol{
ho})$ $\mathbf{r}=$ saturation change

18 000 cells inverted < 30 min on 4-cored Windows laptop

Real case

Vertical trace

An approximate Bayesian inversion framework based on local Gaussian likelihoods

Method comparison based on inversion of synthetic data

Regular Gaussian inversion: $p^*(\mathbf{m}|\mathbf{d}) \propto p(\mathbf{d}|\mathbf{m})p^*(\mathbf{m})$, Buland and Omre (2003)

Method comparison based on inversion of synthetic data

Regular Gaussian inversion: $p^*(\mathbf{m}|\mathbf{d}) \propto p(\mathbf{d}|\mathbf{m})p^*(\mathbf{m})$, Buland and Omre (2003)

Define $\mathbf{r}=$ change in log density $(oldsymbol{
ho})$

Our method: $p^*(\mathbf{r}_i|\mathbf{d}) \propto \int p^*(\mathbf{d}_D|\mathbf{r}_B)p(\mathbf{r}_B) d\mathbf{r}_{B_{-i}}$

Method comparison based on inversion of synthetic data

Regular Gaussian inversion: $p^*(\mathbf{m}|\mathbf{d}) \propto p(\mathbf{d}|\mathbf{m})p^*(\mathbf{m})$, Buland and Omre (2003)

Define $\mathbf{r} = \text{change in log density } (\boldsymbol{\rho})$

Our method: $p^*(\mathbf{r}_i|\mathbf{d}) \propto \int p^*(\mathbf{d}_D|\mathbf{r}_B)p(\mathbf{r}_B) d\mathbf{r}_{B_i}$

verse problem Our local approach Illustration Conclusion

Conclusion

Our method summarized:

- Split the global inversion problem into lots of cell-wise inversions
- Use only information in variables spatially close to the cell to invert
- Clever local-Gaussian approximations and weighted Monte Carlo

- Conceptually easy to extend the method
- Well suited for parallelization