Detecting Selection in Experimental Evolution Experiment

Arya Iranmehr airanmehr@ucsd.edu

Bafna Lab University of California, San Diego

February, 2016

Arya Iranmehr

Introduction

- We are interested in (quickly) identifying genetic adaptations, in different organisms in find genes (or alleles) that are beneficial w.r.t. a selective pressure.
- Examples of interesting selective pressures:
 - harsh environmental conditions
 - antibiotics
 - chemotherapy
 - anti-viruses
 - pesticides
 - etc.

Datasets

- Classical Static Datasets Given a single observation of Allele Frequency Spectrum(AFS) or Haplotypes of a region (say 50Kbp) a whole library of tests of selection is available.
- Modern Dynamic Datasets, multiple observations are available.

Arya Iranmehr

3 / 13

Experimental Evolution

Single Locus Logistic Model: Carrier Frequency

Bottleneck

• side-effect of not tracking new mutations and restricting population to founder-lines.

Figure: Mean and 95% CI of 1000 simulations for strong selection.

Figure: Mean and 95% CI of 1000 simulations for weak selection.

Experiments

- for each setting we performs 200 simulations, (100 neutral and 100 selection), and predictive performance of all the methods in detecting selection.
- We computed ROC curve and defined power of a method as area under ROC curve when False-Positive rate is less than 0.1.

Arya Iranmehr

8 / 13

Summary

- Behaviour of different population statistics in time is studied.
- A method based on single locus AF is proposed and shown to have superior performance than multi-locus and traditional methods.
- Analysis of real data and locating genes in the genome is our next step.

Thanks!

Single Locus Model: Carrier Frequency

• By differentiating update equations $(x_{t+1} = x_t + \frac{sx_t(1-x_t)}{2+2sx_t})$ w.r.t. t and solving differential equation, we have

$$\nu_t = \sigma \left(st/2 + \eta(\nu_0) \right)$$

where $\sigma(.)$ is logistic function and $\eta = \sigma^{-1}$ is the logit function and ν_t is the frequency of the carrier at time t.

Arya Iranmehr Detecting Selection in Experimental 1 February, 2016

Multi Locus Model: Average Haplotype Allele Frequency

$$\mathbb{E}[1\text{-HAF}(t)] = \|\mathbf{x}_t\|^2 \approx \theta \nu_t \left(\frac{\nu_t + 1}{2} - \frac{1}{(1 - \nu_t)n + 1}\right) + \theta(1 - \nu_t) \left(\frac{n + 1}{2n} - \frac{1}{(1 - \nu_t)n + 1}\right)$$
where \mathbf{x}_t is vector of AF at time t and $\nu_t = \sigma\left(st/2 + \eta(\nu_0)\right)$.

Arva Iranmehr Detecting Selection in Experimental February, 2016 12 / 13

Critics to GP

- Its too complex, likely to overfit with small number of iid replicates.
- Although the likelihood model is based on different parameters, in practice, it can learn only one parameter at a time.
- not tractable, its time complexity is quartic!
- worse, each iteration requires maxGeneration recursion which makes it very hard to analyse late epochs of sweeps.
- In addition to PoolSeq data, it requires initial population haplotypes.
- Despite its elegant theory, it has not compared with classical methods.
- In practice, single locus scan is performed and multi-locus (with 3-7 seg. sites.) model is fitted at regions of interests.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○