

# Psicoacustica Parte 3

Prof. Filippo Milotta milotta@dmi.unict.it



# Timbro percepito (dal testo)

- Il timbro descrive la qualità di un suono, cioè quel parametro che permette di distinguere due suoni con la stessa altezza e volume
  - Il principale determinante fisico del timbro è la forma d'onda, cioè il contenuto armonico del suono (inviluppo, transitori, e fenomeni di vibrato/tremolo)
  - Il contenuto armonico è particolarmente importante per il timbro soprattutto per suoni che rimangono costanti (sostenuti)
  - Nella lingua parlata, quali suoni possono essere sostenuti?



## Timbro percepito Le formanti delle vocali

 Le vocali (a differenza delle consonanti) possono essere sostenute

- Il contenuto armonico delle vocali è caratterizzato dalle formanti: specifiche distribuzioni di energia sulle frequenze, che caratterizzano ciascuna vocale
- Esercizio 2.6.3 →



# Esercitazione Pratica (dal testo)

- 2.6.3 Registrare una vocale e individuare le formanti In un editor audio registrare in successione le vocali usando un microfono
  - Visualizzare la traccia come sonogramma
  - Osservare le principali regioni delle frequenze formanti:

A: 800-1200 Hz

E: 400-600 Hz e 2200-2600 Hz

I: 200-400 Hz e 3000-3500 Hz

O: 400-600 Hz

U: 200-400 Hz



# Esercitazione Pratica (un esempio di risultato)

2.6.3 – Registrare una vocale e individuare le formanti



- Osservare le principali regioni delle frequenze formanti:
  - A: 800-1200 Hz
  - E: 400-600 Hz e 2200-2600 Hz
  - I: 200-400 Hz e 3000-3500 Hz
  - O: 400-600 Hz
  - U: 200-400 Hz



### Timbro percepito Tremolo e Vibrato

- Oltre che dai transitori e dal contenuto armonico, i contributi fondamentali al timbro possono essere modificati dall'eventuale presenza di vibrato / tremolo
- Tremolo:
  - Variazione periodica dell'ampiezza di una nota (modulazione di ampiezza)

#### Vibrato:

Variazione periodica dell'altezza di una nota (modulazione di frequenza)









### Approfondimento:

### la Risoluzione nelle immagini

- La risoluzione grafica indica la densità di pixel in un'immagine
  - → Una maggiore risoluzione significa che saremo in grado di distinguere più dettagli





### Risoluzione in Frequenza

- L'orecchio ha un funzionamento tonotopico
- In teoria, ogni zona dell'orecchio dovrebbe rilevare una specifica frequenza, tuttavia
  - I suoni che giungono all'organo di Corti non sono mai perfettamente puri
  - La zona di attivazione sulla membrana basilare non è puntiforme:
    - Più frequenze ricadono nella stessa regione
- Si parla allora di Risoluzione in Frequenza
  - Capacità discriminatoria del sistema uditivo





# Mascheramento e Banda Critica (dal testo)

- Come calcolare l'ampiezza di banda dei filtri uditivi?
  - Il fenomeno psicoacustico che permette la rilevazione è detto Mascheramento
    - Un segnale forte maschera un segnale debole
  - Un effetto simile è la Cattura, che si verifica nella radio
    - quando una stazione forte impedisce la ricezione di una stazione debole
- L'ampiezza di banda con cui lavorano i filtri uditivi ha assunto il nome di banda critica ...



# Mascheramento e Banda Critica (dal testo)

#### Banda Critica:

- È la gamma (=intervallo) di frequenze all'interno della quale si verificano fenomeni di mascheramento
- I suoni possono essere discriminati solo quando ricadono in differenti bande critiche
- Le bande critiche sono tutte uguali?
- Quanto sono grandi?
- Quante bande critiche esistono?

Risponderemo più avanti a queste domande



### Mascheramento

- Distinguiamo 2 tipi di mascheramento:
  - Tonale:
    - → Il mascheramento avviene con un tono (tono semplice o complesso, cioè con più toni semplici)

#### Non Tonale:

 Il mascheramento avviene con un rumore (a banda larga o stretta)



### Mascheramento Non Tonale Rumore bianco a banda larga

- Il rumore maschera abbastanza uniformemente tutte le frequenze
- Ogni 10dB di incremento d'intensità del rumore, affinché il tono (test tone) rimanga udibile anche quest'ultimo deve essere incrementato di 10dB (>> comportamento lineare)





### Mascheramento Non Tonale Rumore a banda stretta



 Il suono mascheratore è una forma di rumore a banda più o meno stretta in cui non è possibile individuare un tono specifico



 Il mascheramento non tonale impone una soglia più alta del tonale, ma è meno efficace per le alte frequenze



### Mascheramento Tonale Tono semplice (singolo tono puro)

- Distinguiamo fra:
  - Tono Mascheratore e Test tone Mascherati





# Esercitazione Pratica (dal testo)

Simile al 2.6.4, esercizio sulle bande critiche

- 2.6.6 Mascheramento Non Tonale
   In un editor audio generare i seguenti segnali
  - [ T ] Tono puro da 400Hz, ampiezza 0.5
  - [ R ] Rumore bianco (banda larga), ampiezza 0.5
  - Testare il mascheramento in questi vari test
    - Riducendo l'ampiezza di T gradualmente fino a -30dB
    - Filtrare R con Passa-alto=350, Passa-Basso=450 (Banda=100Hz)
    - Aumentare l'ampiezza di R (senza superare il clipping)



### Mascheramento Tonale Tono complesso (più toni semplici)

 Un esempio di tono complesso è dato dalle formanti nelle vocali





# Esercitazione Pratica (dal testo)

- 2.6.5 Mascheramento Tonale
   In un editor audio generare i seguenti segnali
  - [ T1 ] Tono puro da 1000Hz, ampiezza 0.5
  - [ T2 ] Tono puro da 1300Hz, ampiezza 0.5
    - Ascoltare le due tracce mixate
    - Ridurre l'ampiezza di T2, gradualmente, fino a -30dB
    - Notare come T1 maschera T2



### Mascheramento Tonale Tuning Curve

 Anziché fissare il rumore e variare il test tone, proviamo a fare il contrario...





### Mascheramento e Banda Critica Scala di Bark

 L'intera gamma delle frequenze udibili viene ripartita in 24 bande critiche (o filtri auditori, o filtri cocleari)





# Mascheramento e Banda Critica (dal testo)

- Le bande critiche hanno larghezza di banda variabile, a seconda della frequenza
  - □ Frequenza < 500Hz</p>
    - Larghezza di banda critica: circa 100Hz
  - Frequenza > 500Hz
    - Larghezza di banda critica: circa 20% della Frequenza
  - Frequenze molto alte ( > 15kHz)
    - Larghezza di banda critica: circa 6500Hz



# Mascheramento e Banda Critica (dal testo)

- Un piccolo esempio:
  - Dato un tono a 2kHz, qual è la sua banda critica?
  - Generiamo un rumore composto da un insieme di frequenze in un intervallo centrato su 2kHz e raggio variabile

Cioè, come si

calcola?

- Cioè avente banda variabile attorno al tono 2kHz
- Variazioni dell'intensità sonora del suono originale sono apprezzabili solo con rumori aventi larghezza di banda inferiore a 250Hz
- Pertanto, la larghezza di banda critica del segnale da 2kHz è 250Hz



# Esercitazione Pratica (dal testo)

- 2.6.4 Mascheramento nelle bande critiche
   In un editor audio generare i seguenti segnali
  - [ T ] Tono puro da 2000Hz, ampiezza 0.2
  - [ R ] Rumore bianco (banda larga), ampiezza 0.8
  - Testare il mascheramento in questi vari test
    - Riducendo l'ampiezza di T gradualmente fino a -30dB
    - Duplicando R e filtrandolo con questi filtri:
      - □ [R1] Passa-alto=1500, Passa-Basso=2500 (Banda=1kHz)
      - [R2] Passa-alto=1875, Passa-Basso=2125 (Banda=250Hz)
      - □ [R3] Passa-alto=1995, Passa-Basso=2005 (Banda=10Hz)



# Soglia di mascheramento (dal testo)

- La soglia di mascheramento di un tono mascherato è il livello di intensità al quale esso si riesce ad ascoltare anche in presenza di un tono mascheratore
- La quantità di energia mascherata è la differenza fra la soglia di mascheramento e la soglia assoluta di udibilità
  - Vedi curve isofoniche: curva a 0 foni



### Mascheramento



- Negli esempi precedenti abbiamo assunto che tono mascherato e mascheratore fossero emessi nello stesso istante:
  - Mascheramento Simultaneo
  - Esistono anche fenomeni di Mascheramento Temporale



Il mascheramento può essere sfruttato per la compressione del segnale audio, eliminando parti del segnale che non verrebbero percepite dal nostro apparato uditivo



### Approfondimenti (1 di 2)

- Wikipedia [EN]: Auditory Masking https://en.wikipedia.org/wiki/Auditory\_masking#Critical\_bandwidth
- [EN] HyperPhysics (cliccare su "Sound and Hearing")
  <a href="http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html">http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html</a>
- Progetto 05 2018/19: Mascheramento
   A cura di Andronaco M., Campione G., Caruso B.

https://fmilotta.github.io/teaching/computermusic/Projects/ComputerMusic-Project-05mask-2018-IT.pdf



### Approfondimenti (2 di 2)

[EN] YouTube – Masking Part 1

https://www.youtube.com/watch?v=mkZ0mWS2WAE

[EN] YouTube – Masking Part 2

https://www.youtube.com/watch?v=qKmrup8FXYM

[EN] YouTube – Critical Bands

https://www.youtube.com/watch?v=fwi8p\_iSMz4

[EN] YouTube – Loudness

https://www.youtube.com/watch?v=mkZ0mWS2WAE

