Supporting Information

Article title: The Australian temperate flora has no global analogue – diversification dynamics and the evolution of old biodiversity hotspots

Francis J. Nge^{1,2,4}, Ed Biffin^{1,2}, Kevin R. Thiele³, Michelle Waycott^{1,2}

Author for correspondence: Francis Nge

Supplementary Methods

Genbank sequences were imported into Geneious v. 9.1.5 (Kearse, M., Moir, R., et al. 2012) and aligned using the MUSCLE plugin (Edgar, R.C. 2004) with default parameters, and manually checked and adjusted (Table S1). For divergence-age estimates, all BEAST analyses were run on the CIPRES Science Gateway portal (Miller, M.A., Pfeiffer, W., et al. 2010).

Sampling fraction for each phylogeny was specified based on the sampling fraction in Table S2, for BAMM, DDD, TreePar, and CoMET analyses. In addition to explicitly specifying the sampling fraction of our phylogeny in these diversification analyses to account for incomplete sampling, we also accounted for this by running BAMM analyses across a range of different global sampling fractions following the approach of Gubry-Rangin, C., Kratsch, C., et al. (2015), of groups that showed a shift in radiation –Haemodoraceae, *Pomaderris*, *Cassinia*, *Persoonia* (**Figs. S4**). Additional BAMM analyses were conducted with the following sampling fractions: 20%, 50%, 80%, 100%. For the BAMM analyses, post-run visualisations were conducted using the R package BAMMTools v2.5.0 (Rabosky, D.L., Grundler, M., et al. 2014).

Lineage-through-time (LTT) plots for each phylogeny was constructed using the 'ltt' function in the phytools package (Revell, 2012) in R. The LTT derived from each empirical phylogeny was then plotted and compared with 100 simulated LTTs under the pure-birth model with the same number of species, using the function 'pbtree' in phytools. The γ statistic of Pybus, O.G. and Harvey, P.H. (2000) was also computed using the 'ltt' function in phytools. The γ statistic and visualisation of empirical

¹School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia

²State Herbarium of South Australia, G.P.O. Box 1047, Adelaide, South Australia 5001

³School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA 6009, Australia

⁴Corresponding author Email: francis.nge@adelaide.edu.au

LTT with simulated pure-birth LTTs allowed us to assess whether each of the different plant groups had undergone an early radiation, constant diversification, or recent radiation.

For the diversification rate comparisons, the subset of species-rich genera were only obtained for SWA/SEA and tropical rainforest regions as other biodiversity hotspots either lack large endemic species-rich lineages (i.e. high species richness within the regions were derived from a divesrity of different medium-small genera) or a paucity of adequate molecular phylogenetic studies have been conducted on those groups. Nevertheless, this did not significantly affect our results, as the average diversification rate of the SWA flora was even lower than the subset obtained from species-rich SWA groups only.

Supplementary Results and Discussion

BAMM results from additional sampling fraction regimes

Diversification rate shifts detected in the four groups (see main text) were also present across all other sampling fraction regimes (Fig. S4).

Group-specific diversification dynamics

For the assessment of speciation rates through time, we had relied on the BAMM estimates given that it consistently gave the most conservative estimate out of the other analyses (TreePar, CoMET) that we had included in this study for this metric. Many of the declines in speciation rates noted in both TreePar and CoMET and not in BAMM were near the present (i.e. 1–2 Ma) and hence were most likely artifacts of incomplete sampling rather than real shifts in speciation rates (Cusimano, N. and Renner, S.S. 2010) (Table S18).

From our TreePar analyses, all significant shifts in diversification except for three detected in TreePar were negative shifts in diversification towards the present (**Fig. S5**). The three groups that showed a significant positive shift in diversification through time include two SWA-specific groups (*Daviesia*, *Anigozanthos–Conostylis* clade) and one SEA-specific group (*Dianella*).

Other shifts in diversification were recent slowdowns and might not be real due to incomplete lineage sampling and the effects of protracted speciation (Cusimano, N. and Renner, S.S. 2010). However, we did also detect older slowdowns from LTT of near-complete species-level phylogenies of SWA-specific groups. These include *Calytrix*, which slowed in diversification during the late Miocene (*c.* 13

Ma) towards the present, and *Daviesia* which showed a decline *c*. 5 Ma (**Fig. S6**). Slowdowns in speciation rates were also observed for *Calytrix* and *Daviesia* from our CoMET analyses, corroborating our TreePar results (**Figs. S3, S5**).

Phylogenetic Niche Conservatism in the Australian flora

The gradual aridification of the continent since the Miocene plays an important role over much of the Australian biota (e.g. Brennan, I.G. and Oliver, P.M. 2017, Hancock, L.P., Obbens, F., et al. 2018). Paleorecords indicate the expansion of xeromorphic vegetation from the centre of the continent, with movement of more mesic elements towards the continental coastal fringe (Hill, R.S. 1998, Hill, R. and Brodribb, T. 2001, Hill, R.S. 2001, Hill, R.S. 2004, Macphail, M. 2007). The relatively old age and constant diversification of sclerophyllous SWA and SEA floras might be explained partly by their migration outwards, as they track their respective biomes avoiding large-scale extinction. There has been a growing body of evidence that phylogenetic niche conservatism (PNC) is present across many of these Australian plant lineages (Jabaily, R.S., Shepherd, K.A., et al. 2014, Cardillo, M., Weston, P.H., et al. 2017, Hancock, L.P., Obbens, F., et al. 2018, Nauheimer, L., Schley, R.J., et al. 2018). PNC both accounts for the survival of sclerophyllous and rainforests lineages as they track the mesic biomes, as well as the paucity of transitions between mesic and arid biomes in the Australian flora. This is in contrast to other regions where transitions to different biomes have spurred radiations (Fahr, J. and Kalko, E.K. 2011, Holstein, N. and Renner, S.S. 2011, Pérez, F., Lavandero, N., et al. 2020). As aridity further intensified during the Pliocene c. 3 Ma across Australia, a slow down in diversification is witnessed across many sclerophyllous lineages in this study (Figs. S3, S5–S7). A decrease in speciation rates during this time period shown in this study further corroborates this phenomenon for several groups, especially those found in SWA (Figs. 5, S1). These declines in diversification coincided with the intensifying aridification period in the Pliocene as sclerophyllous mesic biomes contract in the expense of more arid vegetation, and may also partly explain the low diversification rate of the flora (Byrne, M., Yeates, D.K., et al. 2008). Radiations of arid-adapted taxa during this period at the expense of scleromorphic groups should be expected, but the diversification of the Australian arid flora is currently poorly understood. Further studies on species-rich xeromorphic groups should yield further insights on this topic. More recent Quaternary diversification dynamics and population genetic studies would be critical in determining whether recent speciation declines could be attributed to responses to environmental drivers or are an artefact of incomplete sampling.

Supplementary Tables and Figures

- **Table S1.** Sampled groups with source of study and gene regions used.
- **Table S2.** Sampling of each group, represented by percentage (%) sampled out of the total species for each phylogeny and subclade.
- **Table S3.** Calibration priors used in Beauti for the dated BEAST phylogenies.
- **Table S4.** MCMC generations, sampling frequency, and ESS convergence of BEAST runs for each phylogeny.
- **Table S5.** SWA- and SEA-majority groups, i.e. groups with 50% or more of their extant species found in SWA or SEA respectively.
- **Table S6.** Diversification rate estimated with moderate relative extinction rates ($\kappa = 0.5$), of SWA/SEA, other Australian biomes, tropical rainforest regions, and other biodiversity hotspots.
- **Table S7.** Average speciation rates of SWA/SEA and other biodiversity hotspots.
- **Table S8.** Average stem age (Ma) and diversification rate of SWA/SEA and other biodiversity hotspots, and summary statistics for correlation tests between diversification rates and stem age (Ma) across SWA/SEA and other global biodiversity hotspots.
- **Tabel S9.** Average speciation rates of SWA/SEA and Australian biomes, and summary statistics for correlation tests between diversification rates and stem age (Ma) across SWA/SEA and other Australian regions.
- **Table S10.** Speciation rates for each of group, region-specific groups, and summary statistics for differences in speciation rates between SWA and SEA.
- **Table S11.** Summary statistics from STRAPP analyses for each plant group with p-values.
- **Table S12.** Best model out of the 36 implemented in GeoHiSSE for each group, determined based on the model with the highest AIC weight.
- **Table S13.** The oldest stem age (Ma) of SWA and SEA clades for each group and summary statistics for correlation tests between tip-specific speciation rates (STRAPP) and stem age (Ma).
- **Table S14.** Summary statistics for chi-square tests on meta-dataset.
- **Table S15.** Individual results for each group: BAMM speciation rate towards present, diversification shifts in TreePar, and speciation shifts in CoMET.
- **Table S16.** Best DDD model out nine implemented in DDD for each group, based on weighted AICs.

- **Table S17.** γ statistic values for each group, along with their significance. adrenalin
- **Figure S1a.** Diversification dynamics of region-specific plant groups categorised as SWA-majority, SEA-majority, and evenly distributed across SWA and SEA. Proportion of region-specific groups showing proportion of region-specific groups that have higher STRAPP tip-specific speciation rates in SWA (green), SEA (yellow), other regions (pink), or have equal speciation rates across SWA and SEA (blue).
- **Figure S1b.** Diversification dynamics of region-specific plant groups categorised as SWA-majority, SEA-majority, and evenly distributed across SWA and SEA. Number of region-specific groups showing declining speciation rates towards present estimated through BAMM (green), increasing speciation rates (pink), constant (yellow), and variable (blue).
- **Figure 1c.** Diversification dynamics of region-specific plant groups categorised as SWA-majority, SEA-majority, and evenly distributed across SWA and SEA. Number of region-specific groups showing density-dependent diversification (DDD; green), pure-birth constant diversification (BD; yellow), protracted speciation (PD; pink), and time-dependent diversification (blue).
- **Figure S2.** Diversification dynamics of region-specific plant groups categorised as SWA-majority, SEA-majority, and evenly distributed across SWA and SEA. Proportion of region-specific groups showing negative (significant p < 0.05; dark red), negative (non-significant; pale red), positive (significant p < 0.05; yellow), and positive (non-significant; blue) y statistic values.
- **Figure S3.** CoMET analyses summary results under the mass extinction survival probability threshold of 0.5: speciation and extinction rates over time (Ma), and their posterior probabilities, and mass extinction Bayes Factor and posterior probability. For the other extinction thresholds (0.2, 0.8) included in this study please refer to the full dataset repository.
- **Figure S4.** BAMM 95% credible rate shift configurations for groups that showed a radiation shift, under different global sampling fraction regimes: 20%, 40%, 50%, 80%, 100%. F = probability; percentage of samples in posterior assigned to shift configurations.
- **Figure S5.** TreePar diversification through time plots and 2Ma sliced TreePar diversification through time plots.
- **Figure S6.** Lineage-through-time plot visualised over actual phylogeny and 100 simulated LTTs under constant birth-death model.
- **Figure S7.** BAMM speciation rate towards the present (Ma) and distributions of speciation rates (sp sp⁻¹ My⁻¹) derived from STRAPP.

Table S1 Sampled groups with source of study and gene regions used. Table lines demarcate different families and highlighted sections in colour represent subclades within a phylogeny.

No.	Phylogenies	Genera or clade	Source	<u> </u>	Nuclear
1	1	Adenanthos (Proteaceae)	own study	Plastid genes **	genes ITS
2	2	Calytrix (Myrtaceae)	own study	atpB, ndhF, matK,	ITS
3	3	Pomaderreae (Rhamnaceae)	own study	ndhF, matK, rpl16, trnL	ITS
4		Pomaderris (Rhamnacae)	own study	n/a	30 loci
5		Stenanthemum (Rhamnaceae)	own study	ndhF, matK, rpl16, trnL	ITS
6		Trymalium (Rhamnaceae)	own study	ndhF, matK, rpl16, trnL	ITS
7	4	Gastrolobium (Fabaceae)	Chandler, G.T., Bayer, R.J., et al. (2001) Crisp, M.D., Cayzer,	matK, psbA- trnH	ETS
8	5	Daviesia (Fabaceae)	L., et al. (2017) Orthia, L., Crisp, M.,	ndhF, trnL	ITS
9	6	Pultenaea (Fabaceae)	et al. (2005)	ndhF, trnL-F	n/a
10	7	Banksia (Proteaceae)	Cardillo, M. and Pratt, R. (2013) Holmes, G.D.,	rpl16, psbA- trnH, trnT-trnL	n/a
			Weston, P.H., et al.		
11	8	Persoonia (Proteaceae)	(2018)	trnL-trnF	ITS
			Cardillo, M., Weston,		
12	9	Hakea (Proteaceae)	P.H., et al. (2017)	n/a	450 loci
13	10	Cassinia & Ozothamnus (Asteraceae)	Schmidt-Lebuhn, A.N. and Constable, L. (2013) Schmidt-Lebuhn, A.N.	matK-psbA, psbA-trnH, ycf6- pbsM matK-psbA,	ITS, ETS
14		Cassinia (Asteraceae)	and Constable, L. (2013)	psbA-trnH, ycf6- pbsM	ITS, ETS
			Hopper, S.D., Smith,		,
15	11	Haemodoraceae	R.J., et al. (2009)	matK, trnL-trnF	n/a
16		Haemodorum	Hopper et al. (2009)	matK, trnL-trnF	n/a
17		Anigozanthos–Tribonanthes	Hopper et al. (2009)	matK, trnL-trnF	n/a
18		Anigozanthos	Hopper et al. (2009)	matK, trnL-trnF	n/a
19		Conostylis	Hopper et al. (2009)	matK, trnL-trnF	n/a
20	12	Dianella (Asphodelaceae)	Muscat, K.M., Ladiges, P.Y., et al.	rpl14-rpl36, rps16-trnK, trnQ-rps16	ITS, ETS

			(2019)		
			Wilson, T.C., Conn,		
21	13	Prostanthera (Lamiaeae)	B.J., et al. (2012)	ndhF-rpl32, trnT-trnL	ETS
		Casuarina–Allocasuarina	Steane, D.A., Wilson,		
22	14	(Casuarinaceae)	K.L., et al. (2003)	matK	n/a
			Larter, M., Pfautsch,		ITS,
23	15	Callitris* (Cupressaceae)	S., et al. (2017)	rbcL, matK, trnL, psbB, petB	needly, leafy

Table S1 Continued.

No.	Phylogenies	Genera or clade	Source	Plastid genes	Nuclear genes
			Foster, C.S., Ho, S.Y.,		
24	16	Loganiaceae	et al. (2014)	petD, rps16	n/a
			Foster, C.S., Ho, S.Y.,	1 / 1	
25		Logania–Orianthera	et al. (2014)	petD, rps16	n/a
			Foster, C.S., Ho, S.Y.,	P *** , . P ** * *	
26		Orianthera	et al. (2014)	petD, rps16	n/a
			Barrett, R.A., Bayly,	p 0.2 , . p 2 2 3	
27	17	Zieria (Rutaceae)	M.J., et al. (2018)	n/a	ITS,ETS
			French, P.A., Brown,	11/ a	113,113
28	18	Correa (Rutaceae)	G.K., et al. (2016)	n/a	ITS
			Mishler, B.D., Knerr,	rpl32-trnL, matK,	110
29	19	Acacia (Fabaceae)	N., et al. (2014)	psbA-trnH, trnL,	ITC ETC
		Acacia subtree2 (SEA)	Mishler, B.D., Knerr,	trnL-F rpl32-trnL, matK,	ITS,ETS
30		sensu. Renner, M.A., Foster, C.S., et al. (2020)	N., et al. (2014)	psbA-trnH, trnL, trnL-F	ITS,ETS
		1 00001, 0.0.1, 00 001 (2020)	González-Orozco,	, , , <u>, , , , , , , , , , , , , , , , </u>	115,215
31	20	Eucalypts (Myrtaceae)	C.E., Pollock, L.J., et		
31	20	Eucarypts (Myrtaecae)	al. (2016) González-Orozco,	matK, npsbA	ITS, ETS
			C.E., Pollock, L.J., et		
32		Eucalyptus (Myrtaceae)	al. (2016)	matK, npsbA	ITS, ETS
			González-Orozco,		
33		Corymbia (Myrtaceae)	C.E., Pollock, L.J., et al. (2016)	V	ITC ETC
			Gardner, A.G., Sessa,	matK, npsbA	ITS, ETS
34	21	Goodeniaceae	E.B., et al. (2016)		,
			Gardner, A.G., Sessa,	trnL, matK	n/a
35		Dampiera (Goodeniaceae)	E.B., et al. (2016)		
		=pvc. a (Soodelliacode)	Puente-Lelièvre, C.,	trnL, matK	n/a
			Hislop, M., et al.		
36	22	Styphelieae (Ericaceae)	(2016)	atpB, rbcL, matK	ITS

^{*}indicates a non-flowering gymnosperm group

^{***}some nuclear/chloroplast excluded due to topology conflicts (sig) e.g. Zieria, Correa, Adenanthos.

Table S2 Sampling of each group, represented by percentage (%) sampled out of the total species for each phylogeny and subclade. Highlighted sections in colour represent subclades within a phylogeny. Bolded groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications. Bolded % values indicate values below the 50% threshold.

Phylogenies	Genera or clade	total species	sampling	% sampled
1	Adenanthos (Proteaceae)	33	24	73
2	Calytrix (Myrtaceae)	90	72	80
3	Pomaderreae (Rhamnaceae)	231	192	83
	Pomaderris (Rhamnacae)	75	75	100
	Stenanthemum (Rhamnaceae)	31	29	94
	Trymalium (Rhamnaceae)	13	13	100
4	Gastrolobium (Fabaceae)	112	95	85
5	Daviesia (Fabaceae)	126	112	89
6	Pultenaea (Fabaceae)	131	56	43
7	Banksia (Proteaceae)	170	170	100
8	Persoonia (Proteaceae)	103	93	90
9	Hakea (Proteaceae)	150	146	97
10	Cassinia & Ozothamnus (Asteraceae)	152	98	64
	Cassinia (Asteraceae)	44	33	75
11	Haemodoraceae	171	151	88
	Haemodorum	24	15	63
	Anigozanthos–Tribonanthes	67	59	88
	Anigozanthos	11	9	82
	Conostylis	45	45	100
12	Dianella (Asphodelaceae)	30	30	100
13	Prostanthera (Lamiaeae)	104	66	63
14	Casuarina-Allocasuarina (Casuarinaceae)	79	64	81
15	Callitris* (Cupressaceae)	22	22	100
16	Loganiaceae	137	69	50
	Logania–Orianthera	73	37	51
	Orianthera	13	13	100
17	Zieria (Rutaceae)	60	58	97
18	Correa (Rutaceae)	12	12	100
19	Acacia (Fabaceae)	1000	510	51
	Acacia subtree2 (SEA)	71	71	100
	sensu. Renner et al. (2020)			
20	Eucalypts (Myrtaceae)	700	683	98
	Eucalyptus (Myrtaceae)	600	598	100
	Corymbia (Myrtaceae)	101	74	73
21	Goodeniaceae	436	216	50
	Dampiera (Goodeniaceae)	71	37	52
22	Styphelieae (Ericaceae)	428	242	57

^{*}indicates a non-flowering gymnosperm group

Table S3a Calibration priors used in Beauti for the dated BEAST phylogenies. Fossil or secondary calibrations followed those used in the listed references. Bolded node constraints indicate enforced monophyly, with crown group enforced when stems are bolded. Bolded clades indicate families or infrafamilial (e.g. tribal/subfamilial) classifications.

Genera or clade	Age (Ma)	Node constrained	Prior distribution	M	S	Offset	References
Gastrolobium							Nge, F.J., Biffin, E., et
(Fabaceae)	23.5	stem	log-normal	1.8	0.3	18	al. (2020)
Daviesia (Fabaceae)	43.9	stem	log-normal	1.7	0.4	39	
	20.2				0.2	22.7	Cook, L.G., Hardy,
- D. I.	28.2	crown	log-normal	2	0.3	22.7	N.B., et al. (2015)
Pultenaea	40.5	Mirbelioids	1 1	1.0	0.1	4.5	Nge, F.J., Biffin, E., et
(Fabaceae)	48.5	crown	log-normal	1.8	0.1	4.5	al. (2020)
	n/a	Pultenaea s.l.	n/a	n/a	n/a	n/a	
Persoonia							Sauquet, H., Weston,
(Proteaceae)	49	stem	log-normal	1.8	0.4	44	P.H., et al. (2009)
Cassinia &							
Ozothamnus							Nie, Z.L., Funk, V.A.,
(Asteraceae)	14	stem	log-normal	1.8	0.4	9.5	et al. (2016)
	n/a	Ozothamnus	n/a	n/a	n/a	n/a	
							Janssen, T. and Bremer,
Haemodoraceae	81	crown <i>Conostylis</i> –	log-normal	1.8	0.3	79.2	K. (2004), Hopper, S.D., Smith, R.J., et al. (2009)
	n/a	Blancoa	n/a	n/a	n/a	n/a	
 Dianella	11/ 64	Dimicon	11/ 4	11/ 4	11/ 4	11/ 4	McLay, T.G.B. and
(Asphodelaceae)	10	stem	log-normal	1.8	0.4	4.5	Bayly, M.J. (2016)
Prostanthera							Yao, G., Drew, B.T., et
(Lamiaeae)	30	stem	log-normal	1.8	0.4	25	al. (2016)
<i>C</i> :	82.8	stem	log-normal	1.8	0.3	76.5	Xiang, XG., Wang, W., et al. (2014)
Casuarina— Allocasuarina (Casuarinaceae)	25.7	Allocasuarina crown	uniform	14 ^A	33 ^B	n/a	
, ,	29.6	<i>Casuarina</i> crown	uniform	17 ^A	38^{B}	n/a	
Ziania (Patana)							Bayly, M.J., Holmes,
Zieria (Rutaceae)	22	stem	log-normal	1.8	0.32	16	G.D., et al. (2013)
							Bayly, M.J., Holmes,
Correa (Rutaceae)	22	stem	log-normal	1.8	0.3	16.5	G.D., et al. (2013)

Angeig (Enhance)							Miller, J.T., Murphy,
Acacia (Fabaceae)	23	stem	log-normal	0.01	10	23	D.J., et al. (2013)

Alower bound, Bupper bound.

Table S3a Continued.

Table S3a C	ontinuca.						
Genera or clade	Age (Ma)	Node constrained	Prior distributio n	M	S	Offset	References
Eucalypts (Myrtaceae)	53.2	stem	exponentia 1	1.0	n/a	53.2	Thornhill, A.H. and Macphail, M. (2012), Thornhill, A.H., Ho, S.Y., et al. (2015)
Eucalyptus (Myrtaceae)	33.9	stem	exponentia 1	0.8 9	n/a	33.9	
Corymbia (Myrtaceae)	46.7	stem	exponentia 1	2.1 7	n/a	45	
Goodeniace ae	67.3 (90–53)	stem	log-normal	1.8	0.3	61.8	Jabaily, R.S., Shepherd, K.A., et al. (2014)
		Scaevola	n/a	n/a	n/a	n/a	
Styphelieae	22.66– 32.61	stem	log-normal	1.8	0.4	19	Puente-Lelièvre, C., Harrington, M.G., et al. (2013)

Table S3b Available dated phylogenies sourced from published studies. Bolded clades indicate families or infrafamilial (e.g. tribal/subfamilial) classifications.

Genera or clade	References
Banksia (Proteaceae)	Cardillo, M. and Pratt, R. (2013)
Hakea (Proteaceae)	Cardillo, M., Weston, P.H., et al. (2017)
Callitris* (Cupressaceae)	Larter, M., Pfautsch, S., et al. (2017)
Loganiaceae	Foster, C.S., Ho, S.Y., et al. (2014)

^{*}indicates a non-flowering gymnosperm group

Table S4 MCMC generations, sampling frequency, and ESS convergence of BEAST runs for each phylogeny. Bolded groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications.

Genera or clade	MCMC generations	Sampling frequency	ESS Convergence*
Gastrolobium (Fabaceae)	20 million	1000	399
Daviesia (Fabaceae)	40 million	1000	651
Pultenaea (Fabaceae)	20 million	1000	487
Persoonia (Proteaceae)	20 million	1000	291
Cassinia & Ozothamnus (Asteraceae)	20 million	1000	586
Haemodoraceae	70 million	1000	813
Dianella (Asphodelaceae)	20 million	1000	3316
Prostanthera (Lamiaeae)	20 million	1000	466
Casuarina-Allocasuarina (Casuarinaceae)	20 million	1000	765
Zieria (Rutaceae)	20 million	1000	685
Correa (Rutaceae)	10 million	1000	1385
Goodeniaceae	300 million	1000	196
Styphelieae	100 million	1000	904
Calytrix (Mytaceae)	200 million	1000	966
Adenanthos (Proteaceae)	30 million	1000	4756
Pomaderreae	200 million	1000	284

^{*}Values derived from the first BEAST run, second run values not shown as the range is similar.

Table S5a SWA-majority groups, i.e. groups with 50% or more of their extant species found in SWA. The more conservative 70% cut-off threshold is highlighted in blue, with groups below the threshold highlighted in red. Bolded groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications. Groups with identical phylogeny numbers are from the same phylogeny.

Phylogenies	Genera or clade	SW species	SE species	%SW	%SE	SW:SE ratio
11	Anigozanthos (Haemodoraceae)	11	0	100.0	0.0	n/a
11	Conostylis (Haemodoraceae)	45	0	100.0	0.0	n/a
11	Anigozanthos–Tribonanthes	66	0	98.5	0.0	n/a
4	Gastrolobium (Fabaceae)	109	0	97.3	0.0	n/a
1	Adenanthos (Proteaceae)	31	2	93.9	6.1	15.5
3	Trymalium (Rhamnaceae)	12	1	92.3	7.7	12.0
7	Banksia (Proteaceae)	156	16	91.8	9.4	9.8
16	Orianthera (Loganiaceae)	10	2	76.9	15.4	5.0
3	Stenanthemum (Rhamnaceae)	23	4	74.2	12.9	5.8
5	Daviesia (Fabaceae)	93	36	73.8	28.6	2.6
11	Haemodoraceae	76	5	73.1	4.8	15.2
21	Dampiera (Goodeniaceae)	51	14	71.8	19.7	3.6
22	Styphelieae (Ericaceae)	274	138	64.0	32.2	2.0
9	Hakea (Proteaceae)	95	43	63.3	28.7	2.2
2	Calytrix (Myrtaceae)	56	9	61.5	9.9	6.2
15	Callitris* (Cupressaceae)	10	13	50.0	65.0	0.8

^{*}indicates a non-flowering gymnosperm group

Table S5b SEA-majority groups, i.e. groups with 50% or more of their extant species found in SEA. The more conservative 70% cut-off threshold is highlighted in blue, with groups below the threshold highlighted in red. Bolded groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications. Groups with identical phylogeny numbers are from the same phylogeny.

Dhylogon	ies Genera or clade	SW	SE		-	SW:SE
Phylogen	nes Genera of clade	species	species	%SW	%SE	ratio
18	Correa (Rutaceae)	1	12	8.3	100.0	0.1
19	Acacia subtree2 (Fabaceae)	1	69	1.4	97.2	0.0
10	Cassinia (Asteraceae)	1	42	2.3	95.5	0.0
10	Cassinia & Ozothamnus (Asteraceae)	8	91	7.8	88.3	0.1
3	Pomaderris (Rhamnacae)	6	63	8.0	84.0	0.1
17	Zieria (Rutaceae)	0	49	0.0	83.1	0.0
6	Pultenaea (Fabaceae)	32	104	24.4	79.4	0.3
13	Prostanthera (Lamiaeae)	23	74	22.1	71.2	0.3
15	Callitris* (Cupressaceae)	10	13	50.0	65.0	0.8
12	Dianella (Asphodelaceae)	2	17	6.7	56.7	0.1
8	Persoonia (Proteaceae)	42	58	40.8	56.3	0.7
3	Pomaderreae (Rhamnaceae)	100	122	43.3	52.8	0.8
14	Casuarina-Allocasuarina (Casuarinaceae)	27	40	34.2	50.6	0.7

^{*}indicates a non-flowering gymnosperm group

Table S5c Groups with equal numbers of species in both SWA and SEA, represented by SW:SE and SE:SW ratios (rounded to nearest integer). Groups that also fall in the SEA-majority category are highlighted in green. Groups that fall in both SEA & SWA-majority categories are highlighted in red. Highlighted groups are not included in the 'temperate Au no overlap' category (see main text). Bolded groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications.

Phylogenies	Genera or clade	SW:SE ratio	SE:SW ratio	%SW	%SE
8	Persoonia (Proteaceae)	0.7	1.4	40.8	56.3
14	Casuarina–Allocasuarina				
14	(Casuarinaceae)	0.7	1.5	34.2	50.6
19	Acacia (Fabaceae)	0.7	1.4	30.1	41.3
15	Callitris* (Cupressaceae)	0.8	1.3	50.0	65.0
3	Pomaderreae (Rhamnaceae)	0.8	1.2	43.3	52.8
20	Eucalypts (Myrtaceae)	0.9	1.1	40.3	43.0
20	Eucalyptus (Myrtaceae)	1.0	1.0	45.5	44.1
16	Loganiaceae	1.1	0.9	27.0	24.8
16	Logania-Orianthera (Loganiaceae)	1.8	0.6	39.7	21.9
11	Haemodorum (Haemodoraceae)	2.0	0.5	41.7	20.8

^{*}indicates a non-flowering gymnosperm group

Table S6a Diversification rate estimated with moderate relative extinction rates ($\kappa = 0.5$), of SWA/SEA species rich genera (> 40 spp.) sourced from Nge et al. (2020).

region	genera	family	total species	SW%	SE%	stem age (Ma)	div. 0.5
SWA	Banksia	Proteaceae	170	92	9	61	0.0729265
SWA	Petrophile	Proteaceae	66	88	9	56	0.06270617
SWA	Conospermum	Proteaceae	53	81	19	41	0.08038627
SWA	Dampiera	Goodeniaceae	71	72	20	39.4	0.09095226
SWA	Chamelaucium	Myrtaceae	39	95	0	24.77	0.120942
SWA	Verticordia	Myrtaceae	102	94	0	24.77	0.1591272
SWA	Gastrolobium	Fabaceae	112	97	0	23.5	0.1716698
SWA	Dryandra	Proteaceae	94	100	0	20	0.1930365
SWA	Conostylis	Haemodoraceae	45	100	0	17.7	0.1771466
SWA	Thysanotus	Asparagaceae	58	78	19	17.2	0.1967669
SWA	Darwinia	Myrtaceae	71	83	18	16.31	0.219713
SWA	Andersonia	Ericaceae	41	100	0	12.9	0.2360095
SWA	Drosera Section Lamprolepis (pygmy droseras)	Droseraceae	44	80	0	11	0.2830468
SWA	Leucopogon	Ericaceae	249	78	21	10.8	0.4470661
SWA	Diuris	Orchidaceae	71	72	21	10.5	0.3412875
SEA	Prostanthera	Lamiaceae	104	22	71	29.5	0.1342649
SEA	Pultenaea	Fabaceae	131	24	79	25	0.1675862
SEA	Zieria	Rutaceae	59	0	83	22	0.1545999
SEA	Pomaderris	Rhamnaceae	75	8	84	20.6	0.1765819
SEA	Ozothamnus	Asteraceae	54	13	81	13	0.2549374
SEA	Epacris	Ericaceae	53	0	92	8.3	0.3970888
SEA	Cassinia	Asteraceae	44	2	95	4	0.7783788

Table S6b Diversification rate of species rich genera (> 40 spp.) of the Australian arid flora and genera of Gondwanan rainforest elements, with moderate relative extinction rates (κ = 0.5). Note diversification rate of Gondwanan rainforest lineages were not based on species-rich lineages as there

are no extant species rich genera or groups found in this biome.

Region	Lineage	Family	species	stem age (Ma)	div. rate (0.5)	reference s
arid	Ptilotus	Amaranthaceae	120	20	0.2162	(Hammer, T. 2019)
arid	Calandrinia	Montiaceae	74	30	0.1208	(Hancock, L.P., Obbens, F., et al. 2018)
arid	Atriplex	Amaranthaceae	50	6	0.5398	(Kadereit, G., Mavrodie v, E.V., et al. 2010)
arid	Triodia	Poaceae	69	20	0.1778	(Toon, A., Crisp, M., et al. 2015)
arid	Eremophila s.l.	Scrophulariaceae	280	10.7	0.4622	(Navarro- Pérez, M.L., López, J., et al. 2013)
arid	Acacia	Fabaceae	60	9	0.3797	This study
rainforest	Tasmannia	Winteraceae	10	69.97	0.0244	(Thomas, N., Bruhl, J.J., et al. 2014)
rainforest	Elaeocarpus holopetalus	Elaeocarpaceae	1	45.46	0.0000	(Phoon, SN. 2015)
rainforest	Elaeocarpus node 22	Elaeocarpaceae	8	34.72	0.0433	(Phoon, SN. 2015)
rainforest	Elaeocarpus node 60	Elaeocarpaceae	16	20.51	0.1043	(Phoon, SN. 2015)
rainforest	Elaeocarpus node 112	Elaeocarpaceae	12	15.81	0.1184	(Phoon, SN. 2015)
rainforest	Agathis Au	Araucariaceae	3	39.8	0.0174	(Klaus, K.V. and Matzke, N.J. 2020)
rainforest	Wollemia–Agathis clade	Araucariaceae	4	50	0.0183	(Klaus, K.V. and

						Matzke, N.J. 2020)
rainforest	Podocarpus	Podocarpaceae	7	39.8	0.0348	(Klaus, K.V. and Matzke, N.J. 2020)
rainforest	Araucaria	Araucariaceae	4	54.4	0.0168	(Klaus, K.V. and Matzke, N.J. 2020)
rainforest	Richea	Ericaceae	11	17.1	0.1048	(Wagstaff, S.J., Dawson, M.I., et al. 2010)
rainforest	Dracophyllum	Ericaceae	6	17.1	0.0733	(Wagstaff, S.J., Dawson, M.I., et al. 2010)
rainforest	Drymophila	Alstroemeriaceae	2	24	0.0169	(Vinnerste n, A. and Bremer, K. 2001)
rainforest	Musgravea	Proteaceae	2	9.1	0.0446	(Sauquet, H., Weston, P.H., et al. 2009)
rainforest	Austromuellera	Proteaceae	2	9.1	0.0446	(Sauquet, H., Weston, P.H., et al. 2009)
rainforest	Buckinghamia	Proteaceae	2	35.1	0.0116	(Sauquet, H., Weston, P.H., et al. 2009)
rainforest	Darlingia	Proteaceae	2	16.3	0.0249	(Sauquet, H., Weston, P.H., et al. 2009)
rainforest	Hollandaea	Proteaceae	4	5.5	0.1666	(Sauquet, H., Weston, P.H., et al. 2009)
rainforest	Backhousia s.1.	Myrtaceae	11	46.5	0.0385	(Harringto n, M.G., Jackes, B.R., et al.

						2012)
rainforest	Choricarpia	Myrtaceae	2	15	0.0270	(Harringto n, M.G., Jackes, B.R., et al. 2012)

Table S6c Diversification rate of species rich genera (> 100 spp.) of the three main global tropical rainforest regions (SE Asia, Afrotropics, and Neotropics), estimated with moderate relative extinction rates ($\kappa = 0.5$). Most species-rich genera in the Afrotropics were determined using the checklist from Sosef, M.S., Dauby, G., et al. (2017), Neotropics from Cardoso, D., Särkinen, T., et al. (2017), and SE Asia from Cámara-Leret, R., Frodin, D.G., et al. (2020).

Region	Lineage	Family	species	stem age (Ma)	div. rate (0.5)	references
SE Asia	Cyrtandra	Gesneriaceae	800	16	0.3745	(Atkins, H.J., Bramley, G.L., et al. 2020)
SE Asia	Calamus	Arecaceae	440	24	0.2248	(Couvreur, T.L., Forest, F., et al. 2011)
SE Asia	Syzygieae	Myrtaceae	1189	26.4	0.2420	(Biffin, E., Lucas, E.J., et al. 2010)
SE Asia	Myrteae (Eugenia 1050+ spp.)	Myrtaceae	2379	35	0.2023	(Biffin, E., Lucas, E.J., et al. 2010)
SE Asia	Helicia	Proteaceae	110	5	0.8033	(Sauquet, H., Weston, P.H., et al. 2009)
SE Asia	Begonia	Begoniaceae	n/a	n/a	0.6100	(Moonlight, P.W., Richardson, J.E., et al. 2015)
SE Asia	Ноуа	Apocynaceae	300	9	0.5571	(Liede- Schumann, S., Kong, H., et al. 2012)
SE Asia	Bulbophyllum	Orchidaceae	1564	20	0.3331	(Gamisch, A. and Comes, H.P. 2019)
SE Asia	Gartnera	Rubiaceae	16	3.9	0.5487	(Malcomber, S.T. 2002)
SE Asia	Licuala	Arecaceae	134	16	0.2633	(Baker, W.J. and Couvreur, T.L. 2013)
SE Asia	Pinanga	Arecaceae	131	12	0.2633	(Baker, W.J. and Couvreur, T.L. 2013)
SE Asia	Daemonorops	Arecaceae	101	31.69	0.1241	(Baker, W.J.

						Couvreur, T.L. 2013)
SE Asia	Hedyotis	Rubiaceae	180	21.67		(Neupane, S., Lewis, P.O.,
					0.2079	et al. 2017)
SE Asia	Rhaphidophora	Araceae	100	32	0.1226	
SE Asia	Dipterocarpaceae	Asia (mainly) & Africa	695	35.6	0.1644	(Magallón, S., Gómez- Acevedo, S., et al. 2015)
SE Asia	Phalaenopsis	Orchidaceae	70	9.54	0.3742	(Givnish, T.J., Spalink, D., et al. 2016)
SE Asia	Dendrobium	Orchidaceae	1800	13.52	0.5032	(Givnish, T.J., Spalink, D., et al. 2016)
Afrotropics	Begonia	Begoniaceae	n/a	n/a	0.2300	(Moonlight, P.W., Richardson, J.E., et al. 2015)
Afrotropics	Impatiens A3 clade (half of phylogeny)	Balsaminaceae	110*	5	0.8033	(Janssens, S.B., Knox, E.B., et al. 2009)
Afrotropics	Bulbophyllum	Orchidaceae	80	13	0.2847	(Gamisch, A. and Comes, H.P. 2019)
Afrotropics	Bulbophyllum Madagascar subset	Orchidaceae	210	17.6	0.2647	(Gamisch, A. and Comes, H.P. 2019)
Afrotropics	Dypsis (Madagascar)	Arecaceae	140	13.4	0.3176	(Baker, W.J. and Couvreur, T.L. 2013)
Afrotropics	Streptocarpinae (Streptocarpus, Sainpaulia, Acanthema etc.)	Gesneriaceae	200	41	0.1124	(Roalson, E.H. and Roberts, W.R. 2016)
Afrotropics	Polystachyinae subtribe (Vandeae tribe)	Orchidaceae	230	29	0.1638	(Givnish, T.J., Spalink, D., et al. 2015)
Afrotropics	Polystachya	Orchidaceae	224	27	0.1749	(Givnish, T.J., Spalink, D., et al. 2016)
Afrotropics	Combretum	Combretaceae	300	48.2	0.1040	(Magallón, S., Gómez- Acevedo, S.,
					0.1040	et al. 2015)

Afrotropics	Rinorea	Violaceae	280	54		(Xi, Z., Ruhfel, B.R.,
					0.0866	et al. 2012)
Afrotropics	Aerangis	Orchidaceae	50	7.62	0.4250	(Givnish, T.J., Spalink, D., et al. 2016)
Afrotropics	Diphananthe	Orchidaceae	33	7.62	0.3718	(Givnish, T.J., Spalink, D., et al. 2016)
Afrotropics	Angraecinae	Orchidaceae	445	13.25	0.4081	(Givnish, T.J., Spalink, D., et al. 2016)
Afrotropics	Angraecum Madagascar Clade II	Orchidaceae	220	15.5	0.3035	(Andriananja manantsoa, H.N., Engberg, S.,
Neotropics	Begonia	Begoniaceae	n/a	n/a	0.5000	et al. 2016) (Moonlight, P.W., Richardson, J.E., et al. 2015)
Neotropics	Bulbophyllum	Orchidaceae	94	13	0.2970	(Gamisch, A. and Comes, H.P. 2019)
Neotropics	Inga	Fabaceae	300	10	0.5014	(Richardson, J.E., Pennington, R.T., et al. 2001)
Neotropics	Gautteria	Annonaceae	265	11.4	0.4290	(Erkens, R.H., Chatrou, L.W., et al. 2007)
Neotropics	Anthurium	Araceae	900	27	0.2263	(Carlsen, M.M. 2011)
Neotropics	Anthurium core Clade B	Araceae	898		0.5820	(Carlsen, M.M. 2011)
Neotropics	core Tillandsioids	Bromeliaceae	1236	15.2	0.4228	(Givnish, T.J., Barfuss, M.H., et al. 2011)
Neotropics	Tank epiphytes (Bromelioideae)	Bromeliaceae	629	5.8	0.4228	(Givnish, T.J., Barfuss, M.H., et al. 2011)
Neotropics	Brazilian shield (Bromelioideae)	Bromeliaceae	753	9.4	0.6311	(Givnish, T.J., Barfuss, M.H., et al.

						2011)
Neotropics	Pleurothallidinae (Pleurothallis, Masdevallia, Restrepia, Dilomilis etc.)	Orchidaceae	4000	25.1	0.3028	(Givnish, T.J., Spalink, D., et al. 2016)
Neotropics	Masdevallia	Orchidaceae	500	9.4	0.5876	(Givnish, T.J., Spalink, D., et al. 2016)
Neotropics	Pleurothallis	Orchidaceae	1240	9.4	0.6841	(Givnish, T.J., Spalink, D., et al. 2016)
Neotropics	Epidendrum	Orchidaceae	1500	8.77	0.7549	(Givnish, T.J., Spalink, D., et al. 2016)
Neotropics	Laeliinae	Orchidaceae	1788	15.3	0.4442	(Givnish, T.J., Spalink, D., et al. 2016)
Neotropics	Oncidium	Orchidaceae	330	18.15	0.2815	(Givnish, T.J., Spalink, D., et al. 2016)

^{*} a conservative estimate of species richness based on Grey-Wilson, C. (1980).

Table S6d Diversification rate of lineages found across other biodiversity hotspots estimated with moderate relative extinction rates ($\kappa = 0.5$). These regions include other Mediterranean hotspots, oceanic islands, and young mountainous regions. Plant groups with available diversification rates estimates were sourced from Hughes, C.E. and Atchison, G.W. (2015) and Chen, Y.-S., Deng, T., et al. (2018).

Region	Lineage	Family	spec ies	stem age (Ma)	div. rate (0.5)	References
Himalaya	Delphinium + Oligophyllum	Ranunculaceae	300	9.875	0.5080	(Jabbour, F. and Renner, S.S. 2012)
Himalaya	Delphinium subg. Aconitum	Ranunculaceae	250	7.9	0.6117	(Jabbour, F. and Renner, S.S. 2012)
Himalaya	Rheum	Polygonaceae	55	10.95	0.3043	(Sun, Y., Wang, A., et al. 2012)
Himalaya	Ligularia– Parasenecio complex	Asteraceae	200	10.85	0.4249	(Liu, JQ., Wang, YJ., et al. 2006)
Himalaya	Rhodiola	Crassulaceae	60	5	0.6835	(Zhang, JQ., Meng, SY., et al. 2014)
Himalaya	Rhododendron subg. Hymenanthes	Ericaceae	215	4	1.1705	(Milne, R.I., Davies, C., et al. 2010)
Himalaya	Isodon	Lamiaceae	70	5	0.7139	(Yu, XQ., Maki, M., et al. 2014)
Himalaya	Delphinium	Ranunculaceae	120	5.8	0.7074	(Jabbour, F. and Renner, S.S. 2012)
Himalaya	Sausurrea	Asteraceae	175	10.5	0.4264	(Wang, YJ., Susanna, A., et al. 2009)
New Zealand	Ourisia	Plantaginaceae	13	0.85	2.2893	(Meudt, H.M., Lockhart, P.J., et al. 2009)
New Zealand	Pachycladon	Brassicaceae	11	1	1.7918	(Joly, S., Heenan, P.B., et al. 2014)
New Zealand	Mysotis	Boraginaceae	35	5	0.5781	(Winkworth, R.C., Grau, J., et al. 2002)
New Zealand	Ranunculus	Ranuculaceae	16	5	0.4280	(Lockhart, P.J., McLenachan, P.A., et al. 2001)
East Africa	<i>Lobelia telekii</i> clade	Campanulaceae	5	3	0.3662	(Knox, E.B. and Li, C. 2017)
East Africa	Lobelia giant (L.mildbradeii clade)	Campanulaceae	10	5	0.3409	(Knox, E.B. and Li, C. 2017)
East Africa	Dendrosenecio	Asteraceae	15	3	0.6931	(Knox, E.B. and Palmer, J.D. 1995)
East Africa	Stoebe	Asteraceae	3	2	0.3466	(Bergh, N.G. and Linder, H.P. 2009)
East Africa	<i>Alchemilla</i> dwarf shrub	Rosaceae	9	2	0.8047	(Gehrke, B., Bräuchler, C., et al.

	clade					2008)
East Africa	Hypericum	Hypericaceae	20	4.8	0.4899	(Meseguer, A.S., Aldasoro, J.J., et al. 2013)
New Guinea	Rhodendron Section Schistanthe	Ericaceae	29	5	0.5416	(Brown, G.K., Nelson, G., et al. 2006)
Madagascar	Bulbophyllum (Madagascar subset)	Orchidaceae	210	17.6	0.2647	(Gamisch, A. and Comes, H.P. 2019)
Madagascar	Dypsis	Arecaceae	140	13.4	0.3176	(Baker, W.J. and Couvreur, T.L. 2013)
Madagascar	Angraecum Madagascar Clade II	Orchidaceae	220	15.5	0.3035	(Andriananjamanan tsoa, H.N., Engberg, S., et al. 2016)

Table S6e Diversification rate of lineages found across other biodiversity hotspots estimated with moderate relative extinction rates ($\kappa = 0.5$). These regions include other Mediterranean hotspots, oceanic islands, and young mountainous regions. These diversification rate estimates were sourced from Madriñán, S., Cortés, A.J., et al. (2013).

Region	Lineage	Family	species	stem age (Ma)	div. rate (0.5)
California	Calochortus	Liliaceae	38	7.3	0.3
California	Calycadenia	Asteraceae	11	7.64	0.15
California	Ceanothus	Rhamnaceae	44	13.9	0.17
California	Gilia	Polemoniaceae	39	12.11	0.19
California	Linanthus-	Polemoniaceae	23	17.58	0.1
California	Lithophragma	Saxifragaceae	10	1.47	0.745
Cape flora	Crotalarieae	Fabaceae	633	44	0.11
Cape flora	Ehrharta	Poaceae	15	36.44	0.04
Cape flora	Heliophileae s.l.	Brassicaceae	59	2.6	1.01
Cape flora	Moraea	Iridaceae	127	24.25	0.14
Cape flora	Muraltia	Polygalaceae	55	10.89	0.235
Cape flora	Pelargonium	Geraniaceae	160	12.23	0.295
Cape flora	Pentaschistis	Poaceae	64	5.55	0.485
Cape flora	Phylica	Rhamnaceae	150	7.4	0.475
Cape flora	Protea	Proteaceae	70	17.7	0.155
Cape flora	Restionaceae	Restionaceae	350	43.83	0.1
Cape flora	Satyrium	Orchidaceae	63	14.38	0.185
Cape flora	Tribolium-	Poaceae	24	4.33	0.415
Cape flora	Zaluzianskya	Scrophuliaraceae	9	3.03	0.34
Succulent Karoo	Core Aizoaceae	Aizoaceae	1563	3.8	1.535
Succulent Karoo	Ehrharta	Poaceae	13	10	0.13
Succulent Karoo	Heliophileae	Brassicaceae	18	1.49	1.05
Succulent Karoo	Melianthus	Melianthaceae	3	9.32	0.025
Succulent Karoo	Moraea	Iridaceae	65	15.11	0.18
Succulent Karoo	Muraltia	Polygalaceae	45	2.51	0.945
Succulent Karoo	Pelargonium	Geraniaceae	50	17.36	0.145
Succulent Karoo	Pentaschistis	Poaceae	9	1.56	0.65
Succulent Karoo	Zaluzianskya	Scrophuliaraceae	19	3.03	0.53
Mediterranean europe	Aquilegia	Ranunculaceae	21	2.54	0.67
Mediterranean europe	Cistus-	Cistaceae	33	2.11	0.995
Mediterranean europe	Dianthus	Caryophyllaceae	200	1.095	3.47
Mediterranean europe	Erodium	Geraniaceae	53	24.36	0.1
Mediterranean europe	Geranium	Geraniaceae	54	18.41	0.14
Mediterranean europe	Narcissus	Amaryllidaceae	80	17.8	0.165
Mediterranean europe	Reseda	Resedaceae	5	0.6	0.995
Mediterranean europe	Ruta	Rutaceae	9	20	0.055
Cerrado	Andira	Fabaceae	3	1.8	0.15
Cerrado	Lupinus	Fabaceae	11	1.9	0.62

Cerrado	Mimosa	Fabaceae	3	1.6	0.16
Cerrado	Mimosa 3	Fabaceae	34	4.4	0.48
Cerrado	Mimosa 4	Fabaceae	11	1.6	0.735
Cerrado	Mimosa 6	Fabaceae	4	0.9	0.5
Cerrado	Mimosa 7	Fabaceae	8	3.2	0.29
Cerrado	Mimosa 8	Fabaceae	50	4.1	0.605
Cerrado	Mimosa 9	Fabaceae	27	8.4	0.23
Hawaii	Tetramolopium	Asteraceae	11	0.65	1.8
Hawaii	Geranium	Geraniaceae	5	2	0.3
Hawaii	Hawaiin mints	Lamiaceae	11	5	0.52
Hawaii	Hesperomannia	Asteraceae	5	4.91	0.05
Hawaii	Kokia	Malvaceae	57	3	0.15
Hawaii	Lobelioideae	Campanulaceae	3	13.6	0.245
Hawaii	Metrosideros	Myrtaceae	4	0.75	0.795
Hawaii	Silversword alliance	Asteraceae	126	5.2	0.385
Hawaii	Viola	Violaceae	5	3.7	0.295
Paramo	Aragoa	Plantaginaceae	17	0.42	3.625
Paramo	Arcytophyllum	Rubiaceae	14	10.96	0.125
Paramo	Berberis	Berberidaceae	32	3.8	3.83
Paramo	Calceolaria	Calceolariaceae	65	2.45	1.085
Paramo	Draba	Brassicaceae	55	3.05	0.84
Paramo	Espeletiinae	Asteraceae	120	4.04	0.815
Paramo	Festuca	Poaceae	36	4.28	0.51
Paramo	Gaultheria	Ericaceae	19	4.59	0.35
Paramo	Gentianella	Gentianaceae	48	2.3	1.055
Paramo	Halenia	Gentianaceae	43	0.65	3.59
Paramo	Jamesonia +	Pteridaceae	32	7.6	0.27
Paramo	Lachemilla	Rosaceae	35	3.66	0.585
Paramo	Lupinus	Fabaceae	66	1.47	1.86
Paramo	Lysipomia	Campanulaceae	27	8.95	0.215
Paramo	Oreobolus	Cyperaceae	5	3.01	0.195
Paramo	Puya	Bromeliaceae	46	0.8	2.995
Paramo	Senecio	Asteraceae	68	1.52	1.815
i ai aiiio					

Table S6f Diversification rate estimated with moderate relative extinction rates (κ = 0.5), of all SWA genera across 20 plant families sourced from Nge et al. (2020).

region	genera	total species	SW%	SE%	stem age (Ma)	0.5
SWA	Kunzea	60	50	37	33	0.1036
SWA	Argentipallium	6	50	0	13	0.0964
SWA	Sondottia	2	50	0	2	0.2027
SWA	Caesia	12	50	33	33	0.0567
SWA	Drakaea	10	50	0	16	0.1065
SWA	Grevillea	362	52	35	15.8	0.3292
SWA	Actinotus	21	52	38	66	0.0363
SWA	Logania	35	54	37	23.12	0.1250
SWA	Velleia	21	57	48	21	0.1142
SWA	Tricoryne	14	57	36	47	0.0429
SWA	Cryptandra	57	58	35	32	0.1052
SWA	Lepyrodia	22	59	41	36	0.0678
SWA	Myriocephalus	15	60	13	15	0.1386
SWA	Rhodanthe	45	60	38	14	0.2240
SWA	Erymophyllum	5	60	0	1	1.0986
SWA	Drummondita	10	60	0	7	0.2435
SWA	Scaevola	83	60	19	30	0.1246
SWA	Hakea	150	63	29	17.51	0.2471
SWA	Lepidosperma	107	64	30	22.0	0.0228
SWA	Brachyloma	17	65	47	5.4	0.4069
SWA	Platysace	29	66	24	18	0.1504
SWA	Strangea	3	67	33	39	0.0178
SWA	Millotia	16	69	44	15	0.1427
SWA	Laxmannia	13	69	31	19.1	0.1024
SWA	Angianthus	20	70	30	2	1.1757
SWA	<i>Drosera</i> Section Erythrorhiza	14	71	29	8	0.2519
SWA	Tricostularia	7	71	14	37.0	0.0375
SWA	Dampiera	71	72	20	39.4	0.0910
SWA	Diuris	71	72	21	10.5	0.3413
SWA	Schoenus	107	72	36	51.0	0.0718
SWA	Lasiopetalum	48	73	31	5.98	0.5349
SWA	Stenanthemum	31	74	13	31	0.0894
SWA	polianthion	4	75	25	32	0.0286
SWA	Xanthosia	20	75	50	39	0.0603
SWA	Actinobole	4	75	25	1	0.9163
SWA	Orianthera	13	77	15	17.35	0.1122
SWA	Thysanotus	58	78	19	17.2	0.1968
SWA	Lepidobolus	9	78	11	15.9	0.1012
SWA	Acanthocarpus	9	78	0	11.4	0.1412
SWA	Leucopogon	249	78	21	10.8	0.4471

SWA	Isomoosu	38	79	21	44	0.0675
	Isopogon					0.0675
SWA	Drosera Section Lamprolepis	44	80	0	11	0.2830
SWA	Physopsis	5	80	0	31	0.0354
SWA	Cyanostegia	5	80	0	25	0.0439
SWA	Phyllangium	5	80	60	16.44	0.0668
SWA	Lechenaultia	30	80	3	60.6	0.0452
SWA	Aotus	25	80	28	25	0.1026
SWA	Chordifex	21	81	19	31	0.0774
SWA	Conospermum	53	81	19	41	0.0804
SWA	Homalocalyx	11	82	9	34	0.0527
SWA	Darwinia	71	83	18	16.31	0.2197
SWA	Podotheca	6	83	17	2	0.6264
SWA	Cyathochaeta	6	83	17	19.5	0.0642
SWA	Drosera Section Ergaleium	31	84	16	20	0.1386
SWA	Petrophile	66	88	9	56	0.0627
SWA	Pileanthus	8	88	0	30.2	0.0498
SWA	Gnephosis	17	88	24	11	0.1997
SWA	Asteridea	9	89	11	7	0.2299
SWA	Lambertia	10	90	10	35	0.0487
SWA	Sphaerolobium	22	91	9	49	0.0498
SWA	Eutaxia	23	91	9	25	0.0994
SWA	Banksia	170	92	9	61	0.0729
SWA	Trymalium	13	92	8	27.4	0.0710
SWA	Astroloma	32	94	9	10.3	0.2722
SWA	Adenanthos	33	94	6	36.7	0.0772
SWA	Verticordia	102	94	0	24.77	0.1591
SWA	Chamelaucium	39	95	0	24.77	0.1209
SWA	Chorizema	26	96	4	22	0.1183
SWA	Hypocalymma	33	97	0	31	0.0914
SWA	Gastrolobium	112	97	0	23.5	0.1717
SWA	Thomasia	39	97	3	5.98	0.5010
SWA	Franklandia	2	100	0	79	0.0051
SWA	Brachysola	2	100	0	37	0.0110
SWA	Tremulina	2	100	0	32	0.0127
SWA	Platychorda	2	100	0	31	0.0131
SWA	Pentapeltis	2	100	0	30	0.0135
SWA	Actinodium	2	100	0	28.68	0.0141
SWA	Tremandra	2	100	0	24.3	0.0167
SWA	Evandra	2	100	0	23.0	0.0176
SWA	Alexgeorgea	3	100	0	36	0.0193
SWA	Pyrorchis	2	100	50	18	0.0225
SWA	Arnocrinum	3	100	0	27	0.0257
SWA	Leptocarpus	3	100	33	26.2	0.0265
SWA	Papistylus	2	100	0	13.1	0.0310

SWA	Stawellia	2	100	0	13	0.0312
SWA	Stypandra	2	100	50	13	0.0312
SWA	Phlebocarya	3	100	0	24.5	0.0283
SWA	Chamaescilla	4	100	25	34	0.0269
SWA	Chaetanthus	3	100	0	22.5	0.0308
SWA	Stirlingia	7	100	0	58	0.0239
SWA	Anthotium	5	100	0	39.4	0.0279
SWA	Loxocarya	5	100	0	35	0.0314
SWA	Mesomelaena	5	100	0	35.0	0.0314
SWA	Tribonanthes	6	100	0	42	0.0298
SWA	Geleznowia	2	100	0	9	0.0451
SWA	Platytheca	4	100	0	24.3	0.0377
SWA	Onychosepalum	3	100	0	15.2	0.0456
SWA	Tetraria	10	100	10	51.0	0.0334
SWA	Pogonolepis	2	100	50	7	0.0579
SWA	Harperia	4	100	0	17.9	0.0512
SWA	Urodon	4	100	0	17.5	0.0524
SWA	Lawrencella	2	100	0	6	0.0676
SWA	Verreauxia	3	100	0	11.2	0.0619
SWA	Lachnostachys	6	100	0	24	0.0522
SWA	Hemiphora	5	100	0	19	0.0578
SWA	Latrobea	9	100	0	31	0.0519
SWA	Elythranthera	2	100	0	5	0.0811
SWA	Sphenotoma	7	100	0	23.7	0.0585
SWA	Chamaexeros	4	100	0	11.4	0.0804
SWA	Hypolaena	8	100	13	22.5	0.0668
SWA	Siloxerus	4	100	25	10	0.0916
SWA	Dithyrostegia	2	100	0	3	0.1352
SWA	Hensmania	3	100	0	5	0.1386
SWA	Desmocladus	15	100	7	22.4	0.0928
SWA	Diplolaena	15	100	0	22	0.0945
SWA	Synaphea	51	100	0	41	0.0795
SWA	Johnsonia	6	100	0	9	0.1392
SWA	Anigozanthos	11	100	0	13.2	0.1357
SWA	Drosera Section Stolonifera	10	100	0	8	0.2131
SWA	Conostylis	45	100	0	17.7	0.1771
SWA	Guichenotia	17	100	0	9.24	0.2378
SWA	Lysiosepalum	5	100	0	3	0.3662
SWA	Dryandra	94	100	0	20	0.1930
SWA	Andersonia	41	100	0	12.9	0.2360
SWA	Waitzia	5	100	20	2	0.5493
SWA	Pithocarpa	4	100	25	1	0.9163
SWA	Hyalosperma	9	100	44	2	0.8047

Table S6g Diversification rate estimated with moderate relative extinction rates (κ = 0.5), of all SEA genera across 20 plant families sourced from Nge et al. (2020).

region	genera	total species	SW%	SE%	stem age (Ma)	0.5
SEA	Acrothamnus	6	0	50	8	0.1491
SEA	Eriostemon	2	0	50	18	0.0225
SEA	Sporadanthus	8	25	50	39	0.0386
SEA	Cladium	2	0	50	60	0.0068
SEA	Strychnos	4	0	50	38	0.0241
SEA	Schizacme	4	0	50	16	0.0557
SEA	Mackinlaya	2	0	50	57	0.0071
SEA	Donatia	2	0	50	66	0.0061
SEA	Townsonia	2	0	50	31	0.0131
SEA	Orthoceras	2	0	50	11	0.0386
SEA	Glossodia	2	0	50	6	0.0676
SEA	Drosera Section Arcturia	2	0	50	26	0.0156
SEA	Eidothea	2	0	50	86	0.0047
SEA	Triunia	4	0	50	35	0.0262
SEA	Hicksbeachia	2	0	50	13	0.0317
SEA	Gahnia	36	42	53	35	0.0834
SEA	Persoonia	103	41	56	14	0.2822
SEA	Dianella	30	7	57	9	0.3045
SEA	Euryomyrtus	7	25	57	29	0.0559
SEA	Lomatia	12	0	58	61	0.0307
SEA	Arthropodium	15	33	60	17	0.1209
SEA	Chrysocephalum	9	33	67	9	0.1788
SEA	Leucochrysum	6	17	67	5	0.2506
SEA	Anemocarpa	3	33	67	2	0.3466
SEA	Crowea	3	33	67	24	0.0289
SEA	Oreobolus	9	0	67	69	0.0233
SEA	Caustis	6	50	67	23	0.0779
SEA	Centella	3	33	67	16	0.0433
SEA	Prostanthera	104	22	71	30	0.1343
SEA	Leptospermum	89	21	72	32	0.1190
SEA	Spyridium	46	39	72	30	0.1059
SEA	Orites	8	0	75	41	0.0367
SEA	Chloanthes	4	25	75	19	0.0482
SEA	Xerochrysum	12	8	75	9	0.2080
SEA	Melichrus	8	13	75	5	0.2785
SEA	Argyrotegium	4	0	75	2	0.2783
	.					
SEA	Baumea Caladania	17	59 62	76	13	0.1726
SEA SEA	Caladenia	267	62	77	3	1.9591
SEA SEA	Westringia	31	29	77	30	0.0940
SEA	Pultenaea	131	24	79	25	0.1676
SEA	Ozothamnus	54	13	81	13	0.2549
SEA	Goodia	6	33	83	44	0.0285
SEA	Sannantha	16	0	83	25	0.0863

SEA	leptecophylla	6	0	83	8	0.1491
SEA	Zieria	59	0	83	22	0.1546
SEA	Craspedia	30	10	83	11	0.2492
SEA	Pomaderris	75	8	84	21	0.1766
SEA	Nematolepis	7	14	86	19	0.0730
SEA	Trochocarpa	8	0	88	7	0.2212
SEA	Monotoca	12	8	92	4	0.4532
SEA	Leionema	26	0	92	22	0.0939
SEA	Epacris	53	0	92	8	0.3971
SEA	Cassinia	44	2	95	4	0.7784
SEA	Symphionema	2	0	100	59	0.0069
SEA	Calorophus	2	0	100	36	0.0113
SEA	Telopea	5	0	100	43	0.0255
SEA	Ochrosperma	6	0	100	47	0.0268
SEA	Cyathodes	3	0	100	19	0.0373
SEA	Almaleea	5	0	100	25	0.0439
SEA	Ixodia	2	0	100	7	0.0579
SEA	Stuartina	2	50	100	6	0.0676
SEA	Thelionema	3	0	100	10	0.0693
SEA	Ewartia	4	0	100	14	0.0654
SEA	Baloskion	8	0	100	28	0.0539
SEA	Odixia	2	0	100	5	0.0811
SEA	Oxylobium	5	0	100	15	0.0758
SEA	Pentachondra	4	0	100	11	0.0848
SEA	Podolobium	6	0	100	16	0.0808
SEA	Rupicola	4	0	100	8	0.1104
SEA	Correa	12	8	100	22	0.0851
SEA	Platylobium	9	0	100	16	0.1038
SEA	Richea	11	0	100	17	0.1048
SEA	Sprengelia	7	0	100	11	0.1284
SEA	Leptorhynchos	10	30	100	9	0.1894
SEA	Eriochlamys	4	0	100	1	0.9163
SEA	Leiocarpa	10	0	100	1	1.7047
SEA	Costularia	7	43	100	50	0.0277

Table S7 Average speciation rates of SWA/SEA and other biodiveristy hotspots. Speciation rates of SWA and SEA were obtained from the STRAPP analyses of this study (Table S10a). Speciation rates of other hotspots were obtained using the methods-of-moments approach (Magallón, S. and Sanderson, M.J. 2001) with no relative extinction ($\kappa = 0$). Speciation rate and Stem age (Ma) values are coloured from low–high (blue–red).

Region	speciation rate	stem age (Ma)
SWA	0.180	29.0
SEA	0.220	19.5
California	0.387	10.0
Cape	0.396	17.4
Succulent karoo	0.757	7.1
Cape combine	0.543	13.2
Mediterranean	1.075	10.9
Cerrado	0.585	3.8
Hawaii	0.726	4.3
Paramo	1.880	4.3
African rift	0.695	3.3
Himalaya	0.718	7.8
New Zealand	1.670	3.0
Madagascar	0.340	15.5
New Guinea	0.673	5.0
SE Asia	0.405	21.3
Afrotropics	0.341	25.6
Neotropics	0.575	17.5

Table S8a Average stem age (Ma) and diversification rate of SWA/SEA and other biodiveristy hotspots. Diversification rate estimates were obtained using the methods-of-moments approach (Magallón, S. and Sanderson, M.J. 2001) with moderate relative extinction ($\kappa = 0.5$). Diversification rate and Stem age (Ma) values are coloured from low–high (blue–red).

Region	rate (K = 0.5)	stem age (Ma)				
SWA	0.228	29.0				
SEA	0.294	19.5				
California	0.276	10.0				
Cape	0.307	17.4				
Succulent karoo	0.577	7.1				
Cape combine	0.417	13.2				
Mediterranean	0.824	10.9				
Cerrado	0.415	3.8				
Hawaii	0.504	4.3				
Paramo	1.329	4.3				
African rift	0.507	3.3				
Himalaya radiation	0.617	7.8				
New Zealand	1.272	3.0				
Madagascar	0.295	15.5				
New Guinea	0.542	5.0				
SE Asia	0.350	21.3				
Afrotropics	0.289	25.6				
Neotropics	0.509	17.5				

Table S8b Summary statistics for correlation tests between diversification rates and stem age (Ma) across SWA/SEA and other global biodiversity hotspots.

Dataset	Test	p-value	rho	S
hotspots	Spearman's rank	0.00495	-0.643	1592

Table S9a Average speciation rates of SWA/SEA and Australian biomes. Speciation rates of SWA and SEA were obtained from the STRAPP analyses of this study (Table S10a). Speciation rates of other regions were obtained using the methods-of-moments approach (Magallón, S. and Sanderson, M.J. 2001) with no relative extinction ($\kappa = 0$). Speciation rate and Stem age (Ma) values are coloured from low-high (blue-red).

Region	speciation rate	stem age (Ma)
SWA	0.228	29.0
SEA	0.294	19.5
Arid flora	0.316	14.5
Gondwanan rainforest	0.052	29.8
Temperate Australia (SWA & SEA)	0.261	24.3
Australian average	0.222	23.2

Table S9b Summary statistics for correlation tests between diversification rates and stem age (Ma) across SWA/SEA and other Australian regions.

Dataset	Test	p-value	rho	S
Australian biomes	Spearman's rank	0.0833	-1	20

Table S10a Speciation rates from STRAPP. Bolded regions indicate groups that have higher speciation rates in regions containing less species (e.g. SWA-specific majority group having higher speciation rates in SEA). Units are net speciation events per Myr per lineage (sp sp⁻¹ My⁻¹). Table lines demarcate different families and highlighted sections in colour represent subclades within a phylogeny. Bolded

groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications.

Genera or clade	Higher speciation	STRAPP	STRAPP	STRAPP
	rate	SWA sp.	SEA sp.	Other sp.
Adenanthos (Proteaceae)	SWA	0.1201	0.0961	0.0961
Calytrix (Myrtaceae)	non-SWA	0.0853	n/a	0.0935
Pomaderreae (Rhamnaceae)	non-SWA (& SEA)	0.0895	0.1353	0.1409
Pomaderris (Rhamnacae)	SEA	0.2674	0.2824	0.2674
Stenanthemum (Rhamnaceae)	non-SWA	0.1260	n/a	0.1347
Trymalium (Rhamnaceae)	non-SWA	0.1102	n/a	0.1246
Gastrolobium (Fabaceae)	SWA	0.1990	n/a	0.0272
Daviesia (Fabaceae)	non-SWA	0.1360	0.1551	0.1567
Pultenaea (Fabaceae)	SEA	0.2440	0.2892	0.2426
Banksia (Proteaceae)	non-SWA	0.0853	n/a	0.0909
Persoonia (Proteaceae)	SEA	0.1009	0.1328	0.1328
Hakea (Proteaceae)	non-SWA	0.1035	n/a	0.1122
Cassinia & Ozothamnus (Asteraceae)	n/a	n/a	0.4024	0.3242
Cassinia (Asteraceae)	n/a	n/a	n/a	n/a
Haemodoraceae	SWA	0.1198	n/a	0.0820
Haemodorum	SWA	0.2852	0.2697	0.1618
Anigozanthos-Tribonanthes	n/a	n/a	n/a	n/a
Anigozanthos	n/a	n/a	n/a	n/a
Conostylis	n/a	n/a	n/a	n/a
Dianella (Asphodelaceae)	equal	n/a	0.3222	0.3297
Prostanthera (Lamiaeae)	non-SEA	n/a	0.2025	0.2411
Casuarina–Allocasuarina				
(Casuarinaceae)	equal	0.1303	n/a	0.1341
Callitris* (Cupressaceae)	equal	0.1443	0.1408	0.1493
Loganiaceae	SWA	0.2632	0.2444	0.2447
Logania–Orianthera	equal	0.2789	0.2795	0.2794
Orianthera	equal	0.3047	0.3070	0.3070
Zieria (Rutaceae)	equal	n/a	0.3198	0.3235
Correa (Rutaceae)	n/a	n/a	n/a	n/a
Acacia (Fabaceae)	SEA	0.2461	0.3268	0.2496
Acacia subtree2 (SEA)	n/a	n/a	n/a	n/a
sensu. Renner et al. (2020)				
Eucalypts (Myrtaceae)	n/a	n/a	n/a	n/a
Eucalyptus (Myrtaceae)	SE	0.2995	0.3100	0.3044
Corymbia (Myrtaceae)	equal	0.2429	0.2355	0.2350
Goodeniaceae	non-SW	0.1546	0.1507	0.1659
Dampiera (Goodeniaceae)	SE	0.1541	0.1657	0.1585
Styphelieae (Ericaceae)	equal	0.2566	0.2529	0.2503

Table S10b Average speciation rates from STRAPP according to region-specific groups. Units are net speciation events per Myr per lineage (sp sp⁻¹ My⁻¹).

<u> </u>	, es (sp sp) /·		
Average	STRAPP SW sp.	STRAPP SE sp.	STRAPP Other sp.
all combined	0.182	0.224	0.190
SWA majority	0.150	0.161	0.137
SEA majority	0.174	0.236	0.229
SWA majority 70%	0.151	0.157	0.131
SEA majority 70%	0.251	0.299	0.280

Table S10c Speciation rates derived from the methods-of-moments approach (with relative extinction rate of 0) for clades that post-dates the Eocene–Oligocene boundary. Units for speciation rates are net speciation events per Myr per lineage (sp sp⁻¹ My⁻¹).

Genera or clade	Region	Speciation rate	Species no.	Stem (Ma)
Haemodorum (Haemodoraceae)	SWA	0.161	10	10
Orianthera (Loganiaceae)	SWA	0.089	29	30.2
Adenanthos (Proteaceae)	SWA	0.120	33	23.4
Callitris* (Cupressaceae)	SWA	0.058	10	27.8
Correa (Rutaceae)	SEA	0.081	12	22
Acacia subtree2 (Fabaceae)	SEA	0.714	71	5
Cassinia (Asteraceae)	SEA	0.761	42	4
Cassinia & Ozothamnus	SEA	0.308	91	12.4
Pomaderris (Rhamnaceae)	SEA	0.198	63	17.4
Zieria (Rutaceae)	SEA	0.145	49	22
Pultenaea (Fabaceae)	SEA	0.180	104	21.9
Prostanthera (Lamiaceae)	SEA	0.117	74	30.8
Callitris* (Cupressaceae)	SEA	0.066	12	28.2
Dianella (Asphodelaceae)	SEA	0.324	17	6.6
Persoonia (Proteaceae)	SEA	0.148	58	22.8

^{*}indicates a non-flowering gymnosperm group

Table S10d Summary statistics for differences in speciation rates between SWA and SEA obtained from STRAPP and the methods-of-moments approach. Units are net speciation events per Myr per lineage (sp sp $^{-1}$ My $^{-1}$). Values shown for p-values * represent significance levels of p < 0.05.

Dataset	Test	p-value	df	chi-square
all combined	Kruskal-Wallis	0.1545	2	3.7348
combined, exclude other regions	Kruskal-Wallis	0.05*	1	3.8416
combined post E-O boundary, exclude other	Kruskal-Wallis	0.9456	1	0.0047
SE majority	ANOVA	0.3270	2	n/a
SE majority, exclude other regions	ANOVA	0.1820	1	n/a
SW majority, exclude other regions	Kruskal-Wallis	0.8011	1	0.0635
methods-of-moments post E-O boundary	Wilcoxon	0.0336*	n/a	n/a

Table S11 Summary statistics from STRAPP analyses with p-values. Table lines demarcate different families and highlighted sections in colour represent subclades within a phylogeny. Bolded groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications.

Genera or clade	rho estimate	p-value
Adenanthos (Proteaceae)	-0.003	0.999
Calytrix (Myrtaceae)	0.005	0.993
Pomaderreae (Rhamnaceae)	-0.748	0.931
Pomaderris (Rhamnacae)		
Stenanthemum (Rhamnaceae)	-0.004	0.997
Trymalium (Rhamnaceae)	0.004	0.996
Gastrolobium (Fabaceae)	0.000	0.994
Daviesia (Fabaceae)	-0.007	0.906
Pultenaea (Fabaceae)	0.641	0.965
Banksia (Proteaceae)	-0.002	0.995
Persoonia (Proteaceae)	-0.417	0.892
Hakea (Proteaceae)	-0.001	0.998
Cassinia & Ozothamnus (Asteraceae)	0.270	0.869
Cassinia (Asteraceae)	n/a	n/a
Haemodoraceae	0.270	0.857
Haemodorum	-0.001	0.989
Anigozanthos–Tribonanthes	n/a	n/a
Anigozanthos	n/a	n/a
Conostylis	n/a	n/a
Dianella (Asphodelaceae)	-0.054	0.942
Prostanthera (Lamiaeae)	0.008	0.997
Casuarina-Allocasuarina (Casuarinaceae)	-0.071	0.984
Callitris* (Cupressaceae)	0.009	0.997
Loganiaceae	0.012	0.995
Logania–Orianthera	-0.005	0.998
Orianthera	-0.013	0.992
Zieria (Rutaceae)	-0.003	0.990
Correa (Rutaceae)	n/a	n/a
Acacia (Fabaceae)	0.465	0.421
Acacia subtree2 (SEA)	n/a	n/a
sensu. Renner et al. (2020)		
Eucalypts (Myrtaceae)	n/a	n/a
Eucalyptus (Myrtaceae)	-0.057	0.747
Corymbia (Myrtaceae)	0.003	0.991
Goodeniaceae	-0.150	0.926
Dampiera (Goodeniaceae)	0.000	0.998
Styphelieae (Ericaceae)	0.089	0.963
*indicates a non-flowering gymnosperm gro		

^{*}indicates a non-flowering gymnosperm group

Table S12 Best model out of the 36 implemented in GeoHiSSE for each group, determined based on the model with the highest AIC weight. Table lines demarcate different families and highlighted sections in colour represent subclades within a phylogeny. Bolded groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications. For specifications and details of the 36 models refer to Caetano, D.S., O'Meara, B.C., et al. (2018). ** indicates significant range-dependent diversification (GeoSSE model).

Genera or clade	GeoHiSSE SWA	GeoHiSSE SEA
Adenanthos (Proteaceae)	1	n/a
Calytrix (Myrtaceae)	4**	3
Pomaderreae (Rhamnaceae)	24	4
Pomaderris (Rhamnacae)	2,20**	
Stenanthemum (Rhamnaceae)	1	n/a
Trymalium (Rhamnaceae)	1	1
Gastrolobium (Fabaceae)	2,20**	n/a
Daviesia (Fabaceae)	15	15
Pultenaea (Fabaceae)	18	4, 18
Banksia (Proteaceae)	13	1
Persoonia (Proteaceae)	14	14
Hakea (Proteaceae)		
Cassinia & Ozothamnus (Asteraceae)	n/a	15
Cassinia (Asteraceae)	n/a	n/a
Haemodoraceae	n/a	n/a
Haemodorum	1	7
Anigozanthos–Tribonanthes	n/a	n/a
Anigozanthos	n/a	n/a
Conostylis	n/a	n/a
Dianella (Asphodelaceae)	n/a	18
Prostanthera (Lamiaeae)	3	3
Casuarina–Allocasuarina (Casuarinaceae)	18	4
Callitris* (Cupressaceae)	13	1
Loganiaceae	1	1
Logania–Orianthera	1	1
Orianthera	7,13	7
Zieria (Rutaceae)	n/a	7
Correa (Rutaceae)	n/a	n/a
Acacia (Fabaceae)	4	5
Acacia subtree2 (SEA)	n/a	21
sensu. Renner et al. (2020)		
Eucalypts (Myrtaceae)	17	17
Eucalyptus (Myrtaceae)	16	17
Corymbia (Myrtaceae)	14	18
Goodeniaceae	4	4
Dampiera (Goodeniaceae)	13	1

Styphelieae (Ericaceae)	18	18

^{*}indicates a non-flowering gymnosperm group

Table S13a The oldest stem age (Ma) of SWA and SEA clades for each group, with 95% confidence intervals. Bolded groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications.

Genera or clade	SWA stem	lower	upper	SEA stem	lower	upper
Genera or clade	(Ma)	95%	95%	(Ma)	95%	95%
Haemodoraceae	81.1	78	84	8.7	2.5	15.3
Banksia (Proteaceae)	60	n/a	n/a	23	n/a	n/a
Daviesia (Fabaceae)	45	38	53	26.5	18.9	33
Calytrix (Myrtaceae)	40.8	36.4	45.4	25.9	20.2	31
Dampiera (Goodeniaceae)	40.3	30	51.5	12.3	4.9	22.7
Trymalium (Rhamnaceae)	34.9	26.1	43.6	20.7	12.5	29.7
Callitris* (Cupressaceae)	27.8	0	0	28.2	0	0
Adenanthos (Proteaceae)	23.4	23.1	25.6	13.3	6.2	21.3
Styphelieae	20.2	15.9	26.2	23	18.5	28.6
Persoonia (Proteaceae)	49	46	54	22.8	12.2	33.4
Pultenaea (Fabaceae)	47.5	42	50	21.9	15.5	26.9
Casuarina–Allocasuarina	25.3	19.5	30.2	29.1	23.5	33
Pomaderris (Rhamnaceae)	23.3	16.8	27.3	17.4	12.1	22.4
Correa (Rutaceae)	2	0.6	3.7	22.4	20.2	32.7
Prostanthera (Lamiaceae)	11.6	7.6	15.8	30.8	27.3	35.5
Cassinia & Ozothamnus	9.9	4.6	15.8	12.4	7.2	17
Dianella (Asphodelaceae)	7.5	4.4	11	6.6	3.9	9.8
Cassinia (Asteraceae)	0.7	0.08	1.6	4.1	2.1	6.4
Eucalyptus (Myrtaceae)	34.8	0	0	18.4	0	0
Loganiaceae	26.1	0	0	22.48	0	0
Logania-Orianthera	16.7	0	0	22.48	0	0
Haemodorum						
(Haemodoraceae)	10.4	5.6	16.1	8.7	2.5	15.3

^{*}indicates a non-flowering gymnosperm group

Table S13b Summary statistics for correlation tests between tip-specific speciation rates (STRAPP)

and stem age (Ma).

Dataset	Test	p-value	rho	S
SWA majority groups	Spearman's rank	0.0082	-0.65	1120
SEA majority groups	Spearman's rank	0.1449	-0.38	939.4
SWA majority, post E-O boundary	Pearson's	0.1100	-0.61	n/a

Table S14 Summary statistics for chi-square tests on meta-dataset. Complete dataset refers to all six categories: SWA & SEA 50% majority, SWA & SEA 70% majority, temperate Au, and temperate Au with no overlap. Values shown for p-values: '*' represent significance levels of p < 0.05, '**' represent

significance levels of p < 0.01, '***' represent significance levels of p < 0.001.

Dataset	p-value
STRAPP complete	2.20e-16 ***
STRAPP SWA & SEA 50% majority only	2.20e-16 ***
BAMM speciation complete	2.20e-16 ***
BAMM speciation SWA & SEA 50% majority only	5.83e-12 ***
DDD complete	2.20e-16 ***
DDD SWA & SEA 50% majority only	4.38e-5 ***
γ statistic complete	7.82e-5 ***
γ statistic SWA & SEA 50% majority only	0.86
stem age complete	0.0497 *

Table S15 Individual results for each group: BAMM speciation rate towards present, diversification shifts in TreePar, and speciation shifts in CoMET. Positive shifts in diversification detected in TreePar are bolded. TreePar 2 Ma slice represent analyses of phylogenies with tips in 2 Ma slice from present trimmed to account for PBD. Table lines demarcate different families and highlighted sections in colour represent subclades within a phylogeny. Bolded groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications.

Genera or clade	BAMM speciation	TreePar	TreePar 2 Ma	CoMET
Adenanthos (Proteaceae)	decline	0	n/a	0
Calytrix (Myrtaceae)	decline	1	1	1
Pomaderreae (Rhamnaceae)	decline	1	0	0
Pomaderris (Rhamnacae)	constant	1	0	0
Stenanthemum (Rhamnaceae)	constant	0	n/a	0
Trymalium (Rhamnaceae)	decline	0	n/a	0
Gastrolobium (Fabaceae)	decline	0	0	0
Daviesia (Fabaceae)	decline	3	1	1
Pultenaea (Fabaceae)	decline	0	0	0
Banksia (Proteaceae)	decline	1	0	0
Persoonia (Proteaceae)	increase	1	0	0
Hakea (Proteaceae)	decline	1	1	1
Cassinia & Ozothamnus (Asteraceae)	increase	0	0	0
Cassinia (Asteraceae)	increase	0	0	0
Haemodoraceae	increase	0	n/a	1
Haemodorum	constant	0	n/a	0
Anigozanthos-Tribonanthes	increase	1 (increase)	n/a	1
Anigozanthos	constant	0	n/a	~
Conostylis	decline	1	0	~
Dianella (Asphodelaceae)	increase	1 (increase)	1 (increase)	0
Prostanthera (Lamiaeae)	decline	1	0	0
Casuarina-Allocasuarina (Casuarinaceae)	constant	0	0	0
Callitris* (Cupressaceae)	decline	0	n/a	0
Loganiaceae	increase	0	n/a	0
Logania-Orianthera	constant	0	n/a	0
Orianthera	constant	0	n/a	~
Zieria (Rutaceae)	constant	0	n/a	0
Correa (Rutaceae)	constant	0	n/a	1

Acacia (Fabaceae)	variable, decrease	0	0	1
Acacia subtree2 (SEA)	constant	1	~	~
sensu. Renner et al. (2020)				
Eucalypts (Myrtaceae)	increase	3	2 (increase)	1
Eucalyptus (Myrtaceae)	increase	2	0	0
Corymbia (Myrtaceae)	constant	0	0	1
Goodeniaceae	increase	0	1	0
Dampiera (Goodeniaceae)	decrease	0	n/a	1
Styphelieae (Ericaceae)	decline	1	0	0

Table S16 Best DDD model out nine implemented in DDD for each group, based on weighted AICs. Multiple models are listed when they have comparable best AIC weights. Models that include density-dependent as one of the best models for the respective group are bolded. ':' indicate the second-best model after the best model was eliminated from subsequent analyses. DDD 2Ma slice represent analyses of phylogenies with tips in 2 Ma slice from present trimmed to account for PBD. Table lines demarcate different families and highlighted sections in colour represent subclades within a phylogeny. Bolded groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications.

Genera or clade	DDD	DDD 2Ma slice
Adenanthos (Proteaceae)	TDL3, DDLS1, DDLS1.3, PBD	TDL3, DDLS1, DDLS1.3
Calytrix (Myrtaceae)	DDLS1, DDLS1.3	n/a
Pomaderreae (Rhamnaceae)	PBD	BD, TDL1, TDL3
Pomaderris (Rhamnacae)	PBD	BD, TDL1, TDL3
Stenanthemum (Rhamnaceae)	PBD	PBD: TDL3
Trymalium (Rhamnaceae)	DDLS1, DDLS1.3	DDLS1, DDLS1.3
Gastrolobium (Fabaceae)	PBD	TDL3, PBD
Daviesia (Fabaceae)	DDLE3	PBD: TDL3, DDLS1, LS1.3
Pultenaea (Fabaceae)	DDXS2.2	DDXS2
Banksia (Proteaceae)	PBD	DDLS1, DDLS1.3
Persoonia (Proteaceae)	PBD: TDL3, DDLS1, 1.3	TDL3
Hakea (Proteaceae)	PBD: DDLS1	TDL3
Cassinia & Ozothamnus (Asteraceae)	PBD	DDLS1, DDLS1.3
Cassinia (Asteraceae)	PBD	BD, TDL1
Haemodoraceae	PBD: BD, TDL1	PBD: BD, TDL1
Haemodorum	BD, TDL1, TDL3	n/a
Anigozanthos-Tribonanthes	PBD	PBD: BD, TDL1
Anigozanthos	BD, TDL1	n/a
Conostylis	DDXS2	n/a
Dianella (Asphodelaceae)	BD, TDL1	DDLS1, DDLS1.3
Prostanthera (Lamiaeae)	PBD	DDLS1, DDLS1.3
Casuarina–Allocasuarina (Casuarinaceae)	PBD	DDLS3
Callitris* (Cupressaceae)	DDLS1, DDLS1.3	DDLS1, DDLS1.3

Loganiaceae	BD, TDL1	n/a		
Logania–Orianthera	BD, TDL1	n/a		
Orianthera	BD, TDL1	n/a		
Zieria (Rutaceae)	PBD: TDL3,TDL1, BD	PBD: TDL3		
Correa (Rutaceae)	DDLS1, DDLS1.3	n/a		
Acacia (Fabaceae)	TDL3	BD, TDL1		
Acacia subtree2 (SEA)	PBD	BD, TDL1		
sensu. Renner et al. (2020)				
Eucalypts (Myrtaceae)	DDLS1.3: PBD	BD, TDL1		
Eucalyptus (Myrtaceae)	PBD: TDL3, DDLS1	BD, TDL1		
Corymbia (Myrtaceae)	PBD	DDLS1, DDLS1.3		
Table S16. Continued.				
Genera or clade	DDD	DDD 2Ma slice		
Goodeniaceae	PBD	BD, TDL1		
Dampiera (Goodeniaceae)	TDL3	TDL3		
Styphelieae (Ericaceae)	PBD	PBD: TDL3		

Table S17 γ statistic values for each group, along with their significance. Positive γ statistic values are shown in bold. Values shown for p-values: '*' represent significance levels of p < 0.05, '**' represent significance levels of p < 0.01. Table lines demarcate different families and highlighted sections in colour represent subclades within a phylogeny. Bolded groups indicate families or infrafamilial (e.g. tribal/subfamilial) classifications.

Genera or clade	y statistic	p-value significance
Adenanthos (Proteaceae)	-2.216	***
Calytrix (Myrtaceae)	-3.888	***
Pomaderreae (Rhamnaceae)	-3.558	***
Pomaderris (Rhamnacae)	-2.023	*
Stenanthemum (Rhamnaceae)	-1.532	non-sig
Trymalium (Rhamnaceae)	-1.721	non-sig
Gastrolobium (Fabaceae)	-4.935	*
Daviesia (Fabaceae)	-5.664	***
Pultenaea (Fabaceae)	-1.507	non-sig
Banksia (Proteaceae)	-0.977	non-sig
Persoonia (Proteaceae)	-3.190	**
Hakea (Proteaceae)	-5.406	***
Cassinia & Ozothamnus (Asteraceae)	-1.274	non-sig
Cassinia (Asteraceae)	-3.310	***
Haemodoraceae	-0.539	non-sig
Haemodorum	-0.375	non-sig
Anigozanthos-Tribonanthes	-0.539	non-sig
Anigozanthos	0.495	non-sig
Conostylis	-2.927	***

Dianella (Asphodelaceae)	-0.193	non-sig
Prostanthera (Lamiaeae)	-4.349	***
Casuarina–Allocasuarina (Casuarinaceae)	-1.730	non-sig
Callitris* (Cupressaceae)	0.286	non-sig
Loganiaceae	0.544	non-sig
Logania–Orianthera	0.427	non-sig
Orianthera	0.436	non-sig
Zieria (Rutaceae)	-0.625	non-sig
Correa (Rutaceae)	0.966	non-sig
Acacia (Fabaceae)	-6.539	***
Acacia subtree2 (SEA)	-3.590	***
sensu. Renner et al. (2020)		
Eucalypts (Myrtaceae)	-7.805	***
Eucalyptus (Myrtaceae)	-11.622	***
Corymbia (Myrtaceae)	-1.811	non-sig
Goodeniaceae	-1.062	non-sig
Dampiera (Goodeniaceae)	-3.159	***
Styphelieae (Ericaceae)	-4.604	***

Table S18. BAMM, CoMET speciation rates, and TreePar diversification rate shifts through time, for each group. Dissimilar results between BAMM and CoMET/TreePar are highlighted in bold. * marks recent declines in speciation rates that are likely artefactual due to incomplete sampling. n/a in TreePar results indicate that no significant diversification shifts were detected for the group.

Genera or clade	BAMM speciation	CoMET speciation rate	TreePar
Adenanthos (Proteaceae)	decline	gradual decline from 15 Ma	n/a
Calytrix (Myrtaceae)	decline	notable decline from 15 Ma	decline at 12 Ma
Pomaderreae (Rhamnaceae)	decline	notable decline from 4 Ma*	decline at 1 Ma*
Pomaderris (Rhamnacae)	constant	n/a	decline at 1 Ma*
Stenanthemum (Rhamnaceae)	constant	notable decline at 4 Ma*	n/a
Trymalium (Rhamnaceae)	decline	gradual decline	n/a
Gastrolobium	decline	notable decline at 5 Ma	n/a

(Fabaceae)

Daviesia (Fabaceae)	decline	increase at 15 Ma followed by decrease at 6 Ma	increase at 15 Ma, folowed by decrease at 5 Ma
Pultenaea (Fabaceae)	decline	variable, notable decrease at 13 Ma followed by increase then gradual decrease	n/a
Banksia (Proteaceae)	decline	notable decline at 3 Ma*	decline at 1 Ma*
Persoonia (Proteaceae)	increase	decline from 10 Ma	decline at 2 Ma
Hakea (Proteaceae)	decline	gradual decline from 15 Ma	decline at 10 Ma
Cassinia & Ozothamnus (Asteraceae)	increase	notable decline at 1 Ma*	n/a
Cassinia (Asteraceae)	increase	n/a	n/a
Haemodoraceae	increase	increase at 10 Ma followed by decline at 5 Ma	n/a
Haemodorum	constant	constant	n/a
Anigozanthos— Tribonanthes	increase	increase at 10 Ma, followed by decline at 3 Ma	increase at 8 Ma
Anigozanthos	constant	n/a	n/a
Conostylis	decline	n/a	n/a
Dianella (Asphodelaceae)	increase	increase at 7 Ma, followed by decline at 2 Ma	increase at 5 Ma
Prostanthera (Lamiaeae)	decline	notable decline at 2 Ma*	decline at 2.5 Ma
Casuarina— Allocasuarina (Casuarinaceae)	constant	notable decline at 2 Ma*	n/a
Callitris* (Cupressaceae)	decline	constant	n/a
Loganiaceae	increase	n/a	n/a
Logania-Orianthera	constant	constant	n/a
Orianthera	constant	n/a	n/a
Zieria (Rutaceae)	constant	variable, decrease at 5 Ma	n/a
Correa (Rutaceae)	constant	constant	n/a
Acacia (Fabaceae)	variable, decrease	variable, decline at 2 Ma *	n/a
Acacia subtree2 (SEA) sensu. Renner et al. (2020)	constant	n/a	decline at 1 Ma*
Eucalypts (Myrtaceae)	increase	variable, increase at 10 ma, followed by decline at 2 Ma*	increase at 10 Ma, followed by decline at 1 Ma
Eucalyptus (Myrtaceae)	increase	decline at 3 Ma*	decline at 2 Ma*
Corymbia (Myrtaceae)	constant	variable, decrease at 14 Ma, followed by	n/a

		increase at 7 Ma, then decline at 3 Ma*	
Goodeniaceae	increase	decline at 2 Ma*	n/a
Dampiera (Goodeniaceae)	decrease	gradual decline from 20 Ma	n/a
Styphelieae (Ericaceae)	decline	decline at 2 Ma*	decline at 1.5 Ma

Fig. S1a. Summary

STRAPP Speciation

Fig. S1b. Summary BAMM

Fig. S1c. Summary DDD

Density-dependent

Fig. S1d. Summary γ statistic

Fig. S2. Summary γ statistic

References

Andriananjamanantsoa HN, Engberg S, Louis Jr EE, Brouillet L. 2016. Diversification of *Angraecum* (Orchidaceae, Vandeae) in Madagascar: revised phylogeny reveals species accumulation through time rather than rapid radiation. PloS one, 11:e0163194.

Atkins HJ, Bramley GL, Johnson MA, Kartonegoro A, Nishii K, Kokubugata G, Moeller M, Hughes M. 2020. A molecular phylogeny of Southeast Asian *Cyrtandra* (Gesneriaceae) supports an emerging paradigm for Malesian plant biogeography. Frontiers of Biogeography, 12:e44814.

Baker WJ, Couvreur TL. 2013. Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. II. Diversification history and origin of regional assemblages. Journal of Biogeography, 40:286–298.

Barrett RA, Bayly MJ, Duretto MF, Forster PI, Ladiges PY, Cantrill DJ. 2018. Phylogenetic analysis of *Zieria* (Rutaceae) in Australia and New Caledonia based on nuclear ribosomal DNA shows species polyphyly, divergent paralogues and incongruence with chloroplast DNA. Australian Systematic Botany, 31:16–47.

Bayly MJ, Holmes GD, Forster PI, Cantrill DJ, Ladiges PY. 2013. Major clades of Australasian Rutoideae (Rutaceae) based on *rbcL* and *atpB* sequences. PLoS One, 8:e72493.

Bergh NG, Linder HP. 2009. Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae–Gnaphalieae). Molecular Phylogenetics and Evolution, 51:5–18.

Biffin E, Lucas EJ, Craven LA, Ribeiro da Costa I, Harrington MG, Crisp MD. 2010. Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Annals of Botany, 106:79–93.

Brennan IG, Oliver PM. 2017. Mass turnover and recovery dynamics of a diverse Australian continental radiation. Evolution, 71:1352–1365.

Brown GK, Nelson G, Ladiges PY. 2006. Historical biogeography of *Rhododendron* section Vireya and the Malesian Archipelago. Journal of Biogeography, 33:1929–1944.

Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MAJ, Cooper S, Donnellan SC, Keogh JS, Leys R, *et al.* 2008. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology, 17:4398–4417.

Caetano DS, O'Meara BC, Beaulieu JM. 2018. Hidden state models improve state - dependent diversification approaches, including biogeographical models. Evolution, 72:2308–2324.

Cámara-Leret R, Frodin DG, Adema F, Anderson C, Appelhans MS, Argent G, Guerrero SA, Ashton P, Baker WJ, Barfod AS. 2020. New Guinea has the world's richest island flora. Nature, 584:579–583.

Cardillo M, Pratt R. 2013. Evolution of a hotspot genus: geographic variation in speciation and extinction rates in *Banksia* (Proteaceae). BMC Evolutionary Biology, 13:1471–2148.

Cardillo M, Weston PH, Reynolds ZK, Olde PM, Mast AR, Lemmon EM, Lemmon AR, Bromham L. 2017. The phylogeny and biogeography of *Hakea* (Proteaceae) reveals the role of biome shifts in a continental plant radiation. Evolution, 71:1928–1943.

Cardoso D, Särkinen T, Alexander S, Amorim AM, Bittrich V, Celis M, Daly DC, Fiaschi P, Funk VA, Giacomin LL. 2017. Amazon plant diversity revealed by a taxonomically verified species list. Proceedings of the National Academy of Sciences, 114:10695–10700.

Carlsen MM. 2011. Understanding the origin and rapid diversification of the genus *Anthurium* Schott (Araceae), integrating molecular phylogenetics, morphology and fossils. St Louis, University of Missouri.

Chandler GT, Bayer RJ, Crisp MD. 2001. A molecular phylogeny of the endemic Australian genus *Gastrolobium* (Fabaceae: Mirbelieae) and allied genera using chloroplast and nuclear markers. American Journal of Botany, 88:1675–1687.

Chen Y-S, Deng T, Zhou Z, Sun H. 2018. Is the East Asian flora ancient or not? National Science Review, 5:920–932.

Cook LG, Hardy NB, Crisp MD. 2015. Three explanations for biodiversity hotspots: small range size, geographical overlap and time for species accumulation. An Australian case study. New Phytologist, 207:390–400.

Couvreur TL, Forest F, Baker WJ. 2011. Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biology, 9:44.

Crisp MD, Cayzer L, Chandler GT, Cook LG. 2017. A monograph of *Daviesia* (Mirbelieae, Faboideae, Fabaceae). Phytotaxa, 300:1–308.

Cusimano N, Renner SS. 2010. Slowdowns in diversification rates from real phylogenies may not be real. Systematic Biology, 59:458–464.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32:1792–1797.

Erkens RH, Chatrou LW, Maas JW, van der Niet T, Savolainen V. 2007. A rapid diversification of rainforest trees (*Guatteria*; Annonaceae) following dispersal from Central into South America. Molecular Phylogenetics and Evolution, 44:399–411.

Fahr J, Kalko EK. 2011. Biome transitions as centres of diversity: habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography, 34:177–195.

Foster CS, Ho SY, Conn BJ, Henwood MJ. 2014. Molecular systematics and biogeography of *Logania* R. Br.(Loganiaceae). Molecular Phylogenetics and Evolution, 78:324–333.

French PA, Brown GK, Bayly MJ. 2016. Incongruent patterns of nuclear and chloroplast variation in *Correa* (Rutaceae): introgression and biogeography in south-eastern Australia. Plant Systematics and Evolution, 302:447–468.

Gamisch A, Comes HP. 2019. Clade-age-dependent diversification under high species turnover shapes species richness disparities among tropical rainforest lineages of *Bulbophyllum* (Orchidaceae). BMC Evolutionary Biology, 19:93.

Gardner AG, Sessa EB, Michener P, Johnson E, Shepherd KA, Howarth DG, Jabaily RS. 2016. Utilizing next-generation sequencing to resolve the backbone of the Core Goodeniaceae and inform future taxonomic and floral form studies. Molecular Phylogenetics and Evolution, 94:605–617.

Gehrke B, Bräuchler C, Romoleroux K, Lundberg M, Heubl G, Eriksson T. 2008. Molecular phylogenetics of *Alchemilla*, *Aphanes* and *Lachemilla* (Rosaceae) inferred from plastid and nuclear intron and spacer DNA sequences, with comments on generic classification. Molecular Phylogenetics and Evolution, 47:1030–1044.

Givnish TJ, Barfuss MH, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC. 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight - locus plastid phylogeny. American Journal of Botany, 98:872–895.

Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Doucette A, Caro GG, McDaniel J, Clements MA. 2016. Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. Journal of Biogeography, 43:1905–1916.

Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Iles WJ, Clements MA, Arroyo MT, Leebens-Mack J. 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proceedings of the Royal Society B: Biological Sciences, 282:20151553.

González-Orozco CE, Pollock LJ, Thornhill AH, Mishler BD, Knerr N, Laffan SW, Miller JT, Rosauer DF, Faith DP, Nipperess DA. 2016. Phylogenetic approaches reveal biodiversity threats under climate change. Nature Climate Change, 6:1110.

Grey-Wilson C. 1980. Impatiens of Africa. Rotterdam, CRC Press.

Gubry-Rangin C, Kratsch C, Williams TA, McHardy AC, Embley TM, Prosser JI, Macqueen DJ. 2015. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. Proceedings of the National Academy of Sciences, 112:9370–9375.

Hammer T. 2019. Mulling over the mulla mullas: taxonomy and evolution of the Australian genus Ptilotus and relatives in the aervoid clade (Amaranthaceae). Perth, the University of Western Australia.

Hancock LP, Obbens F, Moore AJ, Thiele K, de Vos JM, West J, Holtum JA, Edwards EJ. 2018. Phylogeny, evolution, and biogeographic history of *Calandrinia* (Montiaceae). American Journal of Botany, 105:1021–1034.

Harrington MG, Jackes BR, Barrett MD, Craven LA, Barrett RL. 2012. Phylogenetic revision of Backhousieae (Myrtaceae): Neogene divergence, a revised circumscription of *Backhousia* and two new species. Australian Systematic Botany, 25:404–417.

Hill R, Brodribb T. 2001. Macrofossil evidence for the onset of xeromorphy in Australian Casuarinaceae and tribe Banksieae (Proteaceae). Journal of Mediterranean Ecology, 2:127–136.

Hill RS. 1998. Fossil evidence for the onset of xeromorphy and scleromorphy in Australian Proteaceae. Australian Systematic Botany, 11:391–400.

Hill RS. 2001. Biogeography, evolution and palaeoecology of *Nothofagus* (Nothofagaceae): the contribution of the fossil record. Australian Journal of Botany, 49:321–332.

Hill RS. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society of London: Biological Sciences, 359:1537–1549.

Holmes GD, Weston PH, Murphy DJ, Connelly C, Cantrill DJ. 2018. The genealogy of geebungs: phylogenetic analysis of *Persoonia* (Proteaceae) and related genera in subfamily Persoonioideae. Australian Systematic Botany, 31:166–189.

Holstein N, Renner SS. 2011. A dated phylogeny and collection records reveal repeated biome shifts in the African genus *Coccinia* (Cucurbitaceae). BMC Evolutionary Biology, 11:28.

Hopper SD, Smith RJ, Fay MF, Manning JC, Chase MW. 2009. Molecular phylogenetics of Haemodoraceae in the Greater Cape and Southwest Australian floristic regions. Molecular Phylogenetics and Evolution, 51:19–30.

Hughes CE, Atchison GW. 2015. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytologist, 207:275–282.

Jabaily RS, Shepherd KA, Gardner AG, Gustafsson MH, Howarth DG, Motley TJ. 2014. Historical biogeography of the predominantly Australian plant family Goodeniaceae. Journal of Biogeography, 41:2057–2067.

Jabbour F, Renner SS. 2012. A phylogeny of Delphinieae (Ranunculaceae) shows that *Aconitum* is nested within *Delphinium* and that Late Miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification. Molecular Phylogenetics and Evolution, 62:928–942.

Janssen T, Bremer K. 2004. The age of major monocot groups inferred from 800+ *rbcL* sequences. Botanical Journal of the Linnean Society, 146:385–398.

Janssens SB, Knox EB, Huysmans S, Smets EF, Merckx VS. 2009. Rapid radiation of *Impatiens* (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. Molecular Phylogenetics and Evolution, 52:806–824.

Joly S, Heenan PB, Lockhart PJ. 2014. Species radiation by niche shifts in New Zealand's rockcresses (*Pachycladon*, Brassicaceae). Systematic Biology, 63:192–202.

Kadereit G, Mavrodiev EV, Zacharias EH, Sukhorukov AP. 2010. Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. American Journal of Botany, 97:1664–1687.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28:1647–1649.

Klaus KV, Matzke NJ. 2020. Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Systematic Biology, 69:61–75.

Knox EB, Li C. 2017. The East Asian origin of the giant lobelias. American Journal of Botany, 104:924–938.

Knox EB, Palmer JD. 1995. The origin of *Dendrosenecio* within the Senecioneae (Asteraceae) based on chloroplast DNA evidence. American Journal of Botany, 82:1567–1573.

Larter M, Pfautsch S, Domec JC, Trueba S, Nagalingum N, Delzon S. 2017. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus *Callitris*. New Phytologist, 215:97–112.

Liede-Schumann S, Kong H, Meve U, Thiv M. 2012. *Vincetoxicum* and *Tylophora* (Apocynaceae: Asclepiadoideae: Asclepiadeae)—two sides of the same medal: Independent shifts from tropical to temperate habitats. Taxon, 61:803–825.

Liu J-Q, Wang Y-J, Wang A-L, Hideaki O, Abbott RJ. 2006. Radiation and diversification within the *Ligularia–Cremanthodium–Parasenecio* complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Molecular Phylogenetics and Evolution, 38:31–49.

Lockhart PJ, McLenachan PA, Havell D, Glenny D, Huson D, Jensen U. 2001. Phylogeny, radiation, and transoceanic dispersal of New Zealand alpine buttercups: molecular evidence under split decomposition. Annals of the Missouri Botanical Garden, 88:458–477.

Macphail M. 2007. Australian palaeoclimates: Cretaceous to Tertiary a review of palaeobotanical and related evidence to the year 2000. Bentley, Perth, CRC LEME.

Madriñán S, Cortés AJ, Richardson JE. 2013. Páramo is the world's fastest evolving and coolest biodiversity hotspot. Frontiers in genetics, 4:1–7.

Magallón S, Gómez - Acevedo S, Sánchez - Reyes LL, Hernández - Hernández T. 2015. A metacalibrated time - tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist, 207:437-453.

Magallón S, Sanderson MJ. 2001. Absolute diversification rates in angiosperm clades. Evolution, 55:1762–1780.

Malcomber ST. 2002. Phylogeny of *Gaertnera* Lam.(Rubiaceae) based on multiple DNA markers: evidence of a rapid radiation in a widespread, morphologically diverse genus. Evolution, 56:42–57.

McLay TGB, Bayly MJ. 2016. A new family placement for Australian blue squill, *Chamaescilla*: Xanthorrhoeaceae (Hemerocallidoideae), not Asparagaceae. Phytotaxa, 275:97–111.

Meseguer AS, Aldasoro JJ, Sanmartín I. 2013. Bayesian inference of phylogeny, morphology and range evolution reveals a complex evolutionary history in St. John's wort (*Hypericum*). Molecular Phylogenetics and Evolution, 67:379–403.

Meudt HM, Lockhart PJ, Bryant D. 2009. Species delimitation and phylogeny of a New Zealand plant species radiation. BMC Evolutionary Biology, 9:111.

Miller JT, Murphy DJ, Ho SY, Cantrill DJ, Seigler D. 2013. Comparative dating of *Acacia*: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records. Australian Journal of Botany, 61:436–445.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), New Orleans, LA, p. 1-8.

Milne RI, Davies C, Prickett R, Inns LH, Chamberlain DF. 2010. Phylogeny of *Rhododendron* subgenus *Hymenanthes* based on chloroplast DNA markers: between-lineage hybridisation during adaptive radiation? Plant Systematics and Evolution, 285:233–244.

Mishler BD, Knerr N, González-Orozco CE, Thornhill AH, Laffan SW, Miller JT. 2014. Phylogenetic measures of biodiversity and neo-and paleo-endemism in Australian *Acacia*. Nature Communications, 5:4473.

Moonlight PW, Richardson JE, Tebbitt MC, Thomas DC, Hollands R, Peng CI, Hughes M. 2015. Continental - scale diversification patterns in a megadiverse genus: The biogeography of Neotropical *Begonia*. Journal of Biogeography, 42:1137–1149.

Muscat KM, Ladiges PY, Bayly MJ. 2019. Molecular phylogenetic relationships reveal taxonomic and biogeographic clades in *Dianella* (flax lilies; Asphodelaceae, Hemerocallidoideae). Systematics and Biodiversity, 17:308–329.

Nauheimer L, Schley RJ, Clements MA, Micheneau C, Nargar K. 2018. Australasian orchid biogeography at continental scale: molecular phylogenetic insights from the sun orchids (*Thelymitra*, Orchidaceae). Molecular Phylogenetics and Evolution, 127:304–319.

Navarro-Pérez ML, López J, Fernández-Mazuecos M, Rodríguez-Riaño T, Vargas P, Ortega-Olivencia A. 2013. The role of birds and insects in pollination shifts of *Scrophularia* (Scrophulariaceae). Molecular Phylogenetics and Evolution, 69:239–254.

Neupane S, Lewis PO, Dessein S, Shanks H, Paudyal S, Lens F. 2017. Evolution of woody life form on tropical mountains in the tribe Spermacoceae (Rubiaceae). American Journal of Botany, 104:419–438.

Nge FJ, Biffin E, Thiele KR, Waycott M. 2020. Extinction pulse at Eocene–Oligocene boundary drives diversification dynamics of the two Australian temperate floras. Proceedings of the Royal Society B, 287:20192546.

Nie ZL, Funk VA, Meng Y, Deng T, Sun H, Wen J. 2016. Recent assembly of the global herbaceous flora: evidence from the paper daisies (Asteraceae: Gnaphalieae). New Phytologist, 209:1795–1806.

Orthia L, Crisp M, Cook L, De Kok R. 2005. Bush peas: a rapid radiation with no support for monophyly of *Pultenaea* (Fabaceae: Mirbelieae). Australian Systematic Botany, 18:133–147.

Pérez F, Lavandero N, Ossa CG, Hinojosa LF, Jara-Arancio P, Arroyo MTK. 2020. Divergence in Plant Traits and Increased Modularity Underlie Repeated Transitions Between Low and High Elevations in the Andean Genus *Leucheria*. Frontiers in Plant Science, 11:714.

Phoon S-N. 2015. Systematics and biogeography of *Elaeocarpus* (Elaeocarpaceae). James Cook University.

Puente-Lelièvre C, Harrington MG, Brown EA, Kuzmina M, Crayn DM. 2013. Cenozoic extinction and recolonization in the New Zealand flora: the case of the fleshy-fruited epacrids (Styphelieae, Styphelioideae, Ericaceae). Molecular Phylogenetics and Evolution, 66:203–214.

Puente-Lelièvre C, Hislop M, Harrington M, Brown EA, Kuzmina M, Crayn DM. 2016. A five-marker molecular phylogeny of the Styphelieae (Epacridoideae, Ericaceae) supports a broad concept of *Styphelia*. Australian Systematic Botany, 28:368–387.

Pybus OG, Harvey PH. 2000. Testing macro–evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society B: Biological Sciences, 267:2267–2272.

Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, Huang H, Larson JG. 2014. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution, 5:701–707.

Renner MA, Foster CS, Miller JT, Murphy DJ. 2020. Increased diversification rates are coupled with higher rates of climate space exploration in Australian *Acacia* (Caesalpinioideae). New Phytologist, 226:609–622.

Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM. 2001. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science, 293:2242–2245.

Roalson EH, Roberts WR. 2016. Distinct processes drive diversification in different clades of Gesneriaceae. Systematic Biology, 65:662–684.

Sauquet H, Weston PH, Anderson CL, Barker NP, Cantrill DJ, Mast AR, Savolainen V. 2009. Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proceedings of the National Academy of Sciences, 106:221–225.

Schmidt - Lebuhn AN, Constable L. 2013. Phylogenetic relationships of the Australasian shrubby everlastings *Ozothamnus* and *Cassinia* (Asteraceae: Asteroideae: Gnaphalieae). Cladistics, 29:574–588.

Sosef MS, Dauby G, Blach-Overgaard A, Van Der Burgt X, Catarino L, Damen T, Deblauwe V, Dessein S, Dransfield J, Droissart V. 2017. Exploring the floristic diversity of tropical Africa. BMC Biology, 15:1–23.

Steane DA, Wilson KL, Hill RS. 2003. Using matK sequence data to unravel the phylogeny of Casuarinaceae. Molecular Phylogenetics and Evolution, 28:47–59.

Sun Y, Wang A, Wan D, Wang Q, Liu J. 2012. Rapid radiation of *Rheum* (Polygonaceae) and parallel evolution of morphological traits. Molecular Phylogenetics and Evolution, 63:150–158.

Thomas N, Bruhl JJ, Ford A, Weston PH. 2014. Molecular dating of Winteraceae reveals a complex biogeographical history involving both ancient Gondwanan vicariance and long - distance dispersal. Journal of Biogeography, 41:894-904.

Thornhill AH, Ho SY, Külheim C, Crisp MD. 2015. Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molecular Phylogenetics and Evolution, 93:29–43.

Thornhill AH, Macphail M. 2012. Fossil myrtaceous pollen as evidence for the evolutionary history of Myrtaceae: A review of fossil *Myrtaceidites* species. Review of Palaeobotany and Palynology, 176:1–23.

Toon A, Crisp M, Gamage H, Mant J, Morris D, Schmidt S, Cook LG. 2015. Key innovation or adaptive change? A test of leaf traits using Triodiinae in Australia. Scientific Reports, 5:1–12.

Vinnersten A, Bremer K. 2001. Age and biogeography of major clades in Liliales. American Journal of Botany, 88:1695–1703.

Wagstaff SJ, Dawson MI, Venter S, Munzinger J, Crayn DM, Steane DA, Lemson KL. 2010. Origin, diversification, and classification of the Australasian genus *Dracophyllum* (Richeeae, Ericaceae). Annals of the Missouri Botanical Garden, 97:235–258.

Wang Y-J, Susanna A, Von Raab-Straube E, Milne R, Liu J-Q. 2009. Island-like radiation of *Saussurea* (Asteraceae: Cardueae) triggered by uplifts of the Qinghai–Tibetan Plateau. Biological Journal of the Linnean Society, 97:893–903.

Wilson TC, Conn BJ, Henwood MJ. 2012. Molecular phylogeny and systematics of *Prostanthera* (Lamiaceae). Australian Systematic Botany, 25:341–352.

Winkworth RC, Grau J, Robertson AW, Lockhart PJ. 2002. The origins and evolution of the genus *Myosotis* L.(Boraginaceae). Molecular Phylogenetics and Evolution, 24:180–193.

Xi Z, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, Endress PK, Matthews ML, Stevens PF, Mathews S. 2012. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proceedings of the National Academy of Sciences, 109:17519–17524.

Xiang X-G, Wang W, Li R-Q, Lin L, Liu Y, Zhou Z-K, Li Z-Y, Chen Z-D. 2014. Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspectives in Plant Ecology, Evolution and Systematics, 16:101–110.

Yao G, Drew BT, Yi T-S, Yan H-F, Yuan Y-M, Ge X-J. 2016. Phylogenetic relationships, character evolution and biogeographic diversification of *Pogostemon* s.l. (Lamiaceae). Molecular Phylogenetics and Evolution, 98:184–200.

Yu X-Q, Maki M, Drew BT, Paton AJ, Li H-W, Zhao J-L, Conran JG, Li J. 2014. Phylogeny and historical biogeography of *Isodon* (Lamiaceae): Rapid radiation in south-west China and Miocene overland dispersal into Africa. Molecular phylogenetics and evolution, 77:183–194.

Zhang J-Q, Meng S-Y, Allen GA, Wen J, Rao G-Y. 2014. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage *Rhodiola* (Crassulaceae). Molecular Phylogenetics and Evolution, 77:147–158.