COMPARATIVE EVALUATION OF CO-CRYSTALLIZATION METHODS FOR SOLUBILITY ENHANCEMENTOF POORLY WATER SOLUBLE DRUG OF BCS CLASS II

Mahima A Mudhole, D'Souza Leejoan Mataias, Harish K H. Department of pharmaceutics, KLE'S college of pharmacy, Hubballi, Karnataka-580031 mahimamudhole29@gmail.com

RESULTS

Abstract Code:

INTRODUCTION

Co-crystallization is a process of formation of co-crystals by the mixture of API and crystal conformer to form a co-crystal formation.

Drugs with low water solubility are predisposed to poor and variable oral bioavailability and therefore to variability in clinical response that might be overcome through an appropriate formulation of the drug.

The polymorphic solids exhibit different physiological properties. Polymorphism has acheived significance during recent years due to the fact that different polymorphs of a same drug exhibit different solubilities.

Piroxicam is a non steroidal anti inflamatory drug{NSAID} It is indicated for acute or longterm use in the signs and symptoms of osteoarthitis and rheumatoid arthritis.

According to the biopharmaceutic Drug Classification system [bcs]piroxicam is a class 2 drug, characterized by low solubility -high permeability.

The main motivation to explore co-crystals of pharmaceuticals is to potentially modiy their physical properties, primarily solubility and dissolution rates, bioavailability and physical stability.

MATERIALS & METHODS

Standardisation of drug estimation by

ultraviolet spectroscopy

Preparation of 6.8pH buffer solution

6.8buffer

Citric acid

• Determination of absorbance maxima

• Calibration curve of Pirixicam in

Citric acid

MP of Piroxicam API

Trial 2 Trial 3

197.8

Melting point of the drug in °C

Average

197.6

°C with decomposi

153.09

 73.96 ± 0.8

84.3 ± 0.95

 99.96 ± 0.2

benzoic acid

Piroxicam-PABA

_	Citric acid PABA	96.96 ± 0.8 93.3 ± 0.4 100.3 ± 0.45 98.3 ± 0.45	cooling method								
Acetone Slow cooling	Benzoie acid		Time		Concin µg/ml	Conc inmg/ml	Concin10 ml	Conc in900 ml	CLA	CDR	%CDR
	PABA	99.96± 0.2	0	0	0	0	0	0	0	0	0
Acetonitrile ent evaporation	Benzoic acid	94.3 ± 0.95	10	0.163	3.0697	0.00306	0.00613	5.5254	0	5.52549	38.911
	Citric acid	93.2 ± 0.2	20	0.206	3.9262	0.00392	0.0078	7.0673	0.00613	7.0734	49.813
	PABA	94.9 ± 1.21	30	0.228	4.3645	0.00436	0.00872	7.8561	0.01399	7.87016	55.423
Acetonitrile low cooling	Benzoic acid	95.23 ± 0.89	40	0.245	4.70318	0.00470	0.00940	8.46573	0.02272	8.48845	59.7778
	Citric acid	93.86 ± 0.5	50	0.268	5.16135	0.00516	0.01032	9.29043	0.03212	9.32256	65.6518
	РАВА	95.23 ± 0.45	60	0.297	5.73904	0.0057	0.01147	10.3302	0.04245	10.3727	73.0473

Dissolution of piroxicam by

solvent evaporation and slow

Dissolution of piroxicam by slow cooling method Concin µg/ml Conc inmg/ml Conc in10 ml Conc in900 ml CLA

Time	1103	Concin µg/im				CLIT	CDK	/ UCDI K
0	0	0	0	0	0	0	0	0
10	0.173	3.28884	0.00328	0.00657		0	5.91992	41.689
20	0.205	3.90637		0.00781	7.03147	0.00657	7.03805	49.5637
30	0.235	4.50398	0.00450	0.00900	8.10717	0.01439	8.1215	57.19
40	0.249	4.78286	0.00478	0.00956	8.60916	0.02339	8.63256	60.7926
50	0.280	5.40039	0.00540	0.01080	9.72071	0.0329	9.75368	68.6878
60	0.308	5.95816	0.00595	0.01191	10.7247	0.04376	10.7684	75.8342
XI	RD of piro	xicam AI	PI		XRD	of piroxic	cam benzo	oic acid
						-	oration me	

cooling method

Acetonitrile

Preparation of co-crystals Selection of solvents

Piroxicam

Benzoic acid

PABA

Citric acid

Ethanol

Acetone

- Investigation of co-formers
- Selection of Co-formers
- Based on Hansen Solubility Parameter

Preparation of piroxicam co-crystals • The ratio drug-co-former ratio

employed for the preparation ofcocrystals

*****METHODS

- Solvent evaporation method
- Slow coolig method
- Charaterization of co-crystals
- Melting point
- Estimation of drug content in co-crystals
- Aqueous solubility studies
- In-vitro dissolution studies

CONCLUSIONS

- UV analytical method was developed for piroxicam in a 6.8 pH buffer solution. The λmax 353 nm was used as analytical wavelength and Beer Lambert's law obeyed in the range of 2 to 20 μ g/ml (R2 = 0.996).
- Piroxicam co-crystal s approach was used to modify the physicochemical properties of piroxicam.
- Hansen's solubility parameter was calculated for twenty-one co-formers out of which three co-formers were used in preparing the cocrystals by two methods of co- crystallization with three different solvents. Out of which one type of co-crystal produced by a particular solvent was selected for instrumental methods of analysis.
- The melting points of piroxicam co-crystals indicated variations in the melting range, suggesting the possible formation of cocrystals.
- The dissolution of piroxicam alone and the various co-crystals prepared by two different methods in the 6.8 pH buffer were attempted. All the co-crystals showed improved dissolution rate compared to piroxicam API.
- The results of FTIR showed significant changes in their bands in prepared piroxicam co-crystals.
- XRD pattern of the piroxicam co-crystals indicated the presence of additional peaks.
- The topography of all the co-crystals are not smooth due to the presence of co-former on their surface

- 1. Patole T, Deshpande A. Cocrystallization-a technique for solubility enhancement.
- 2. Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015 Oct 15;20(10):18759-76.
- 3. Zhang C, Xiong Y, Jiao F, Wang M, Li H. Redefining the term of "cocrystal" and broadening its intention. Crystal Growth & Design. 2019 Jan 23;19(3):1471-8.
- 4. Ghadi R, Ghuge A, Ghumre S, Waghmare N, Kadam VJ. Co-crystals: emerging approach in pharmaceutical design. American Journal of Pharm Research. 2014;4(07).
- 5. Eddleston MD, Patel B, Day GM, Jones W. Cocrystallization by freeze-drying: preparation of novel multicomponent crystal forms. Crystal growth & design. 2013 Oct 2;13(10):4599-606.
- 6. Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics. 2018 Jan 25;10(1):18.