Machine Learning 2020

1. Gaussian Process for Regression

• 根據題目定義,透過 exponential-quadratic kernel function(以下公式)以及題目給定的 theta

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left\{-\frac{\theta_1}{2}||\mathbf{x}_n - \mathbf{x}_m||^2\right\} + \theta_2 + \theta_3 \mathbf{x}_n^{\mathsf{T}} \mathbf{x}_m$$

可以算出相對應的 covariance 和 inverse covariance,接著利用課本上的公式(以下公式)

$$m(\mathbf{x}_{N+1}) = \mathbf{k}^{\mathrm{T}} \mathbf{C}_{N}^{-1} \mathbf{t}$$

$$\sigma^{2}(\mathbf{x}_{N+1}) = c - \mathbf{k}^{\mathrm{T}} \mathbf{C}_{N}^{-1} \mathbf{k}.$$

分別帶入 kernel 和 inverse covarianvce 可以求出 mean 跟 variance,有了 mean 與 variance 就可以畫出 predict result(這次使用 one standard deviation)以及算出 training data 和 testing data 的 RMS error。

• Result Output:

1. theta =
$$[0, 0, 0, 1]$$

RMS error of training data : 3.1292014298222433 RMS error of testing data : 3.3443986601861146

2. theta = [1, 16, 0, 0]

RMS error of training data : 2.4239279278312194 RMS error of testing data : 2.6680517502524466

3. theta = [1, 16, 0, 4]

RMS error of training data : 2.410576487125207 RMS error of testing data : 2.6569980001669165

4. theta = [1, 64, 32, 0]

RMS error of training data : 1.0428861621832217 RMS error of testing data : 1.1627590936118453

5. theta = [8, 256, 0, 0] (trial and error 的結果)

RMS error of training data : 0.6727647429593011 RMS error of testing data : 1.0411559204230687

• Explain your findings and do some discussion :

由結果可以看出第一組 theta 的 RMS error 不論是在 training data 還是 testing data 都相對其他 組來得高,原因是它只用到了 $\mathbf{x}_n^{\mathsf{T}}\mathbf{x}_m$ 的部份,因此複雜度較低,無法良好的 fit data。由第二組和

第三組 theta 可以看出兩組的 RMS error 都相似,因此調整 kernel function 中的 theta2 和 theta3 無法帶來顯著的 fitting 效果,所以我在最後一組 trial and error 的 theta 中主要調整的是 theta0 和 theta1,但是當 theta0 或 theta1 調太大時會發生 overfitting 的現象。

2. Support Vector Machine (SVM)

• Analyze the difference between two decision approaches (one-versus-the-rest and one-versus-one). Decide which one you want to use and explain why you choose this approach. one-versus-the-rest 和 one-versus-one 都是用來做 mulit-class 的分類,差別在於 one-versus-the-rest 會先將取其中一類當作+1 類,剩下的類別當作-1 類,然後得到一個分類器(decision hyperplane),接著一直做到所有類別都有當作+1 類,最後計算 decision value 哪個比較大,就把資料判給哪類。而 one-versus-one 則是取第 1 類和第 2 類得到一個分類器(decision hyperplane),然後第 1 類和第 3 類得到一個分類器,以此類推,直到所有類別都彼此分類學習過為止,最後判別類別的方式為看此樣本被判為哪一類的次數最多,這個樣本就判給那類。在作業中我使用 one-versus-one,原因是 one-versus-the-rest 會有兩種特殊情形需要做額外判定,例如兩類的 decision value 都是正的,或所有類的 decision value 都是負的,但是 one-versus-one 就相對容易且直觀,只須判斷樣本被判別為哪類最多次就好。

• Result Output:

1. linear kernel

2. polynomial kernel

• linear kernel 分類的結果是用 3 條偏直的線去做切割,而 polynomial kernel 則是用 6 條較平滑 的曲線做切割。我認為由 linear kernel 分出來的效果比較好,原因是分錯的類別看起來較少。

3. Gaussian Mixture Model

- K-means :
 - 1. Estimated $\{\mu_k\}_{k=1}^K$

	-		K = 3	(K means) ===				
K means	:		R	` _ G	В			
0	:	133	042622	126.052325	104.298038			
1	:	194	103966	195.771721	182.424996			
2	:	73.	954632	66.601523	52.842755			
======= $K = 5$ (K means) ========								
K means	:		R	G	В			
Θ	:	93	.636061	86.275496	69.826351			
1	:	169	. 289581	167.959980	147.853204			
2	:	133	. 202325	125.333674	103.057953			
3	:	59	. 287432	52.028229	39.960196			
4	:	213	.851592	217.285669	210.257006			
			K = 7	(K means) ===				
K means	:		R	G	В			
0	:	159	. 693862	144.134152	103.724888			
1	:	222	. 220654	225.917431	221.712303			
2	:	133	.040463	141.464008	141.422519			
3	:	183	.849133	183.897332	166.209271			
4	:	82	. 934553	75.356402	61.276823			
5	:	53	.323517	46.382578	34.334622			
6	:	115	. 238474	107.267481	87.405542			
=======			K = 10	(K_means) ==	========			
K_means	:		R	G	В			
Θ	:		578733	195.828142	192.700107			
1	:		945066	84.098107	69.638626			
2	:		594025	38.032862	25.750314			
3	:		019759	62.222684	49.774196			
4	:		192329	184.717343	130.075875			
5	:		218728	233.680028	229.579129			
6	:		906014	159.274768	157.467298			
7	:		220886	139.248419	103.328910			
8	:		313522	108.519658	82.901525			
9	:	118.	687049	124.488493	122.439274			

2. Resulting images

• GMM:

1. Estimated $\{\mu_k\}_{k=1}^K$

		==== K = 3 (GMM) =====	======				
GMM	:	R	G	В				
0	:	137.086419	125.350074	87.284775				
1	:	128.226743	131.853131	124.523432				
2	:	80.297593	67.365795	58.843944				
====== K = 5 (GMM) ========								
GMM	:	R	G	В				
0	:	74.807811	71.179823	60.243718				
1	:	142.004612	151.857162	112.047559				
2	:	126.748776	111.333607	85.991130				
3	:	79.136895	65.641933	58.420525				
4	:	160.663566	166.070501	165.977591				
======		==== K = 7 (
GMM	:	R	G	В				
0	:	127.778992		73.811755				
1	:	227.822218	228.414917	228.398983				
2	:	141.249307	147.030208	147.578251				
3	:	156.264012	164.026257	146.415276				
4	:	69.370623	65.303385	52.977128				
5	:	78.897683	65.593494	58.405930				
6	:	125.631374	108.746704	85.858646				
======= K = 10 (GMM) ========								
GMM	:	R	G	В				
0	:	173.617155	179.129187	170.004794				
1	:	88.102079	85.335860	73.312074				
2	:	62.868977	55.664040	35.696552				
3	:	78.182141	65.313370	58.309823				
4	:	126.834010	130.259682	71.632488				
5	:	227.901905	228.078734	228.141621				
6	:	150.124307	153.773636	151.718401				
7	:	161.407784	147.491783	116.452990				
8	:	126.377608	107.644005	84.047416				
9	:	116.870977	122.468117	126.104567				

2. Resulting images

3. Graph of Log likelihood

• 由 K-means 和 GMM(K=10)的結果圖可以發現 K-means 的圖更接近原圖,對比跟銳度較高, 會影響兩者圖片的差異,我認為是因為 K-means 會考慮距離,將相近的顏色拉在同一類別,而 GMM 則是從機率的角度出發。