BÀI TẬP VỀ PHẢN ỨNG TÁCH ANKAN

A. Lý thuyết và phương pháp giải

Dạng 1: Phản ứng tách H₂ của ankan

1. Lý thuyết và phương giải

Dưới tác dụng của nhiệt độ và chất xúc tác thích hợp, các ankan có phân tử khối nhỏ bị tách hi<mark>đ</mark>ro thành hi<mark>đ</mark>ro cacbon không no tương ứng.

VD:
$$CH_3 - CH_3 \xrightarrow{500^{\circ}C,xt} CH_2 = CH_2 + H_2$$

- Một số công thức thường dùng để giải toán
- $+\,\,n_{_{
 m H_2}\,{
 m sinh}\,{
 m ra}}^{}=n_{
 m tăng}^{}=n_{
 m h\~o}_{
 m n}$ hỗn hợp sau phản ứ $_{
 m ng}^{}-n_{
 m ankan}$ ban đầu
- $+ m_{
 m trước\ phản\ ứng} = m_{
 m sau\ phản\ ứng}$
- + Vì phản ứng không làm thay đổi khối lượng hỗn hợp nên lượng C và H cũng được bảo toàn \rightarrow Đốt cháy hỗn hợp sau phản ứng thu được số mol CO_2 và H_2O bằng đốt cháy hỗn hợp trước phản ứng.
- + Sản phẩm sau phản ứng dẫn qua dung dịch Br $_2$ thì: $n_{\mathrm{Br,\ phản\ úng}}=\,n_{\mathrm{H}_2\,\mathrm{sinh\ ra}}$

2. Ví dụ minh họa

Ví dụ 1: Đề hi<mark>đ</mark>ro hóa hỗn hợp A gồm: C_2H_6 , C_3H_8 , C_4H_{10} . Sau một thời gian thu được hỗn hợp khí B, $d_{A/B} = 1,75$. % ankan bị đề hi<mark>đ</mark>ro hóa là:

A. 50%

B. 75%

C. 25%

D. 90%

Hướng dẫn giải:

Giả sử gọi mol A là 1 mol

$$\frac{M_{A}}{M_{B}} = \frac{n_{B}}{n_{A}} = 1,75 \Longrightarrow n_{B} = 1,75 \bmod B$$

 $n_{ankan\;ph\dot{a}n\;\dot{u}ng}=n_B-n_A=0{,}75\;mol$

$$H = \frac{0.75}{1}.100\% = 75\%$$

Đáp án B

Ví dụ 2: Tách hi<mark>đ</mark>ro từ ankan X thu được hỗn hợp Y gồm 3 chất có tỉ khối so với hi<mark>đ</mark>ro bằng 13,75. Đốt cháy hoàn toàn Y thu được 2,64 gam CO₂ và 1,44 gam H₂O. Công thức phân tử của ankan và hiệu suất phản ứng ankan hóa là

Hướng dẫn giải:

Đốt cháy Y cũng là đốt cháy X

$$X + O_2 \rightarrow 0.06 \text{ mol CO}_2 + 0.08 \text{ mol H}_2O$$

$$n_{X} = n_{H,O} - n_{CO_{2}} = 0.08 - 0.06 = 0.02 \text{ mol}$$

X có số nguyên tử
$$C = 0.06 : 0.02 = 3$$
; Số nguyên tử $H = 8$ suy ra X là C_3H_8

$$m_X = m_Y = 0.02.44 = 0.88$$
 gam $\rightarrow n_Y = 0.88 : 27.5 = 0.032$ mol

$$\rightarrow$$
 n_{ankan phản ứng} = 0,032 - 0,02 = 0,012 mol

$$\rightarrow$$
 H = $\frac{0.012}{0.02}$.100% = 60%

Đáp án C

Dạng 2: Phản ứng crackinh ankan (không xét trường hợp xảy ra cracking thứ cấp)

1. Lý thuyết và phương giải

- Ở nhiệt độ cao và có mặt chất xúc tác thích hợp, ngoài việc bị tách hi<mark>đ</mark>ro, các ankan còn có thể bị phân cắt mạch cacbon tạo thành các phân tử nhỏ hơn

VD:
$$C_3H_8 \xrightarrow{t^{\circ},xt} CH_4 + C_2H_4$$

- Chú ý:
- + Phản ứng không làm thay đổi khối lượng hỗn hợp

$$m_{\text{trước phản ứng}} = m_{\text{sau phản ứng}} \Longrightarrow \frac{M_{\text{d}}}{M_{\text{s}}} = \frac{n_{\text{s}}}{n_{\text{d}}}$$

- + Hàm lượng C và H trước và sau phản ứng không đổi
- + Phản ứng luôn làm tăng số mol khí:

$$n_{sau} > n_{tru\acute{o}c} \Rightarrow P_{sau} > P_{d\grave{a}u}$$

+ Số mol anken sinh ra:
$$n_{anken} = n_s - n_d$$
; Hiệu suất phản ứng: $H = \frac{n_s - n_d}{n_d}.100\%$

2. Ví dụ minh họa

Ví dụ 1: Khi cracking hoàn toàn một thể tích hexan (X) thu được bốn thể tích hỗn hợp Y (các thể tích khí đo ở cùng điều kiện nhiệt độ và áp suất); tỉ khối của Y so với H₂ bằng d. Giá trị của d là

A. 10,25

B. 10,5.

C. 10,75.

D. 9,5.

Hướng dẫn giải:

$$\frac{V_X}{V_Y} = \frac{n_X}{n_Y} = \frac{1}{4}$$

$$\frac{n_X}{n_Y} = \frac{M_Y}{M_X} = \frac{1}{4}$$

$$=> M_Y = \frac{86}{4} = 21.5 ; d_{Y/H_2} = \frac{21.5}{2} = 10.75$$

Đáp án C

Ví dụ 2: Nung một lượng butan trong bình kín (có xúc tác thích hợp) thu được hỗn hợp khí X gồm ankan và anken. Tỉ khối của X so với H_2 là 21,75. Phần trăm thể tích của butan trong X là

A. 20%

B. 33,33%

C. 50%

D. 66, 67%

Hướng dẫn giải:

$$d_{X/H_2} = 21,75 \Rightarrow M_X = 21,75.2 = 43,5$$

Lấy 1 mol hỗn hợp X. Bảo toàn khối lượng:

$$\begin{split} n_{C_4H_{10}}.M_{C_4H_{10}} &= n_X.M_X \to n_{C_4H_{10}} = \frac{n_X.M_X}{M_{C_4H_{10}}} = 0,75 \text{mol} \\ C_4H_{10} \to CH_3CH = CHCH_3 + H_2 \\ C_4H_{10} \to CH_3CH = CH_2 + CH_4 \\ C_4H_{10} \to CH_2 = CH_2 + CH_3CH_3 \\ a & a & mol \end{split}$$

Sau p/u: b

P/u:

mol

$$\begin{cases} a+b=0.75 \\ 2a+b=1 \end{cases} \Rightarrow \begin{cases} a=0.25 \\ b=0.5 \end{cases}$$
$$\Rightarrow \% V_{C_4H_{10}} = \frac{0.5}{1}.100\% = 50\%$$

Đáp án C

Dạng 3: Bài toán tổng hợp phản ứng tách của ankan

Ví dụ minh họa

Ví dụ 1: Crackinh propan thu được 67,2 lít (đktc) hỗn hợp X gồm H₂, C₃H₆, CH₄, C₂H₄, C₃H₈. Dẫn toàn bộ X vào bình đựng dung dịch Br₂ dư thì thấy có 160 gam brom phản ứng (biết rằng chỉ có C₂H₄, C₃H₆ phản ứng với Br₂ và đều theo tỉ lệ số mol 1:1). Vậy % propan đã phản ứng là

A. 30%

B. 40%

C. 50%

D. 60%

Hướng dẫn giải:

$$n_{X} = \frac{67,2}{22,4} = 3 \text{ mol}; \ n_{anken} = n_{Br_{2}} = \frac{160}{160} = 1 \text{ mol}$$

$$n_{propan} = 3 - 1 = 2 \text{ mol}; H = \frac{3 - 2}{2}.100\% = 50\%$$

Đáp án C

Ví dụ 2: Craking m gam n-butan thu được hợp A gồm H₂, CH₄, C₂H₄, C₂H₆, C₃H₆, C₄H₈ và một phần butan chưa bị cracking. Đốt cháy hoàn toàn A thu được 9 gam H₂O và 17,6 gam CO₂. Giá trị của m là

A. 5,8.

B. 11,6.

C. 2,6.

D. 23,2.

Hướng dẫn giải:

$$n_{butan} = n_{H_2O} - n_{CO_2} = \frac{9}{18} - \frac{17.6}{44} = 0.1 \text{ mol}$$

$$m = 0,1.58 = 5,8 \text{ gam}$$

Đáp án A

B. Luyện tập

Câu 1: Thực hiện phản ứng đề hiđro hóa một hiđrocacbon M thuộc dãy đồng đẳng của metan thu được một hỗn hợp gồm H_2 và 3 hiđrocacbon N, P, Q. Đốt cháy hoàn toàn 4,48 lít khí N hoặc P, hoặc Q đều thu được 17,92 lít CO_2 và 14,4 gam H_2O (thể tích các khí ở đktc). Công thức cấu tạo của M là

A. CH₃-CH₂-CH₂-CH₃

B. CH_3 - $CH(CH_3)_2$

C. CH_3 - CH_2 - $CH(CH_3)_2$

D. CH₃-CH₂-CH₂-CH₃

Hướng dẫn giải:

$$n_N = 0.2 \text{mol}; n_{CO_2} = 0.8 \text{mol}; n_{H_2O} = 0.8 \text{mol}$$

Ta thấy: $n_{H,O} = n_{CO_2} = hi \frac{d}{dr}$ rocacbon N là anken

$$C_nH_{2n} + O_2 \rightarrow CO_2 + nH_2O$$

0,2 0,8

$$=> 0.2n = 0.8 => n = 4 => anken là C_4H_8$$

=> N, P, Q là các đồng phân của nhau và cùng CTPT là C₄H₈

Khi đốt cháy N hoặc P hoặc Q đều cho số mol CO₂ và H₂O giống nhau

$$CH_3$$
- CH_2 - CH_3 (1)

$$CH_3$$
- $CH(CH_3)$ - CH_3 (2)

Trong 2 đồng phân trên chỉ có (1) tách hi<mark>đ</mark>ro cho 3 sản phẩm là đồng phân của nhau

$$CH_3$$
- CH_2 - CH_3 $\rightarrow CH_3$ - CH = CH - CH_3 + H_2 (cis-trans)

$$CH_3\text{-}CH_2\text{-}CH_2\text{-}CH_3 \ \to \ CH_2\text{-}CH_2\text{-}CH_3 \ + H_2$$

Đáp án D

Câu 2: Khi crackinh hoàn toàn một thể tích ankan X thu được ba thể tích hỗn hợp Y (các thể tích khí đo ở cùng điều kiện nhiệt độ và áp suất); tỉ khối của Y so với H₂ bằng 12. Công thức phân tử của X là

A. C_2H_6

B. C_3H_8

 $C. C_4H_{10}$

D. C₅H₁₂

Hướng dẫn giải:

Giả sử cracking 1 mol ankan X thu được 3 mol hỗn hợp Y

$$M_Y = 12.2 = 24 \rightarrow m_Y = 3.24 = 72 \text{ gam}$$

Bảo toàn khối lượng: $m_X = m_Y = 72g$

$$\rightarrow M_X = 72 \rightarrow 14n + 2 = 72 \rightarrow n = 5$$

X là C_5H_{12}

Đáp án D

Câu 3: Cracking 8,8 gam propan thu được hỗn hợp A gồm H₂, CH₄, C₂H₄, C₃H₆ và một phần propan chưa bị cracking. Biết hiệu suất phản ứng là 90%. Khối lượng phân tử trung bình của A là:

A. 39,6.

B. 23,16.

C. 2,315.

D. 3,96.

Hướng dẫn giải:

Gọi số mol của C₃H₈ phản ứng là a và số mol của C₃H₈ dư là b mol

$$\begin{cases} a+b=0,2\\ \frac{a}{0,2}.100\% = 90\% \end{cases} \rightarrow a = 0,18; b = 0,02.$$

Số mol A = 2a + b = 0.38

 $M_{tb} = 8.8 : 0.38 = 23.16$

Đáp án B

Câu 4: Crackinh n-butan thu được 35 mol hỗn hợp A gồm H₂, CH₄, C₂H₄, C₂H₆, C₃H₆, C₄H₈ và một phần butan chưa bị cracking. Giả sử chỉ có các phản ứng tạo ra các sản phẩm trên. Cho A qua bình nước brom dư thấy còn lại 20 mol khí. Nếu đốt cháy hoàn toàn A thì thu được x mol CO₂. Hiệu suất phản ứng tạo hỗn hợp A và giá trị của x là

A. 57,14%; 70

B. 75,00%; 80

C. 57,14%; 80

D. 75,00%; 70

Hướng dẫn giải:

Phương trình phản ứng:

$$C_4H_{10} \rightarrow CH_4 + C_3H_6$$
 (1)

$$C_4H_{10} \rightarrow C_2H_6 + C_2H_4$$
 (2)

$$C_4H_{10} \rightarrow H_2 + C_4H_8$$
 (3)

Từ phương trình phản ứng, ta thấy: $\sum n_{CH_4, C_2H_6, H_2} = \sum n_{C_3H_6, C_2H_4, C_4H_8}$

$$\begin{split} n_{C_4H_{10}pu} &= n_{(CH_4,C_2H_6,H_2)} = n_{(C_3H_6,C_2H_4,C_4H_8)} = a(mol); \, n_{C_4H_{10}pu} = b(mol) \\ \Rightarrow n_{_A} &= 2a + b = 35(*) \end{split}$$

Khi cho hỗn hợp A qua bình dựng brom dư thì chỉ có C_3H_6 , C_2H_4 , C_4H_8 phản ứng và bị giữ lại trong bình chứa brom. Khí thoát ra khỏi bình chứa brom là H_2 , CH_4 , C_2H_6 , C_4H_{10} dư nên suy ra:

$$\Rightarrow n_{H_2, CH_4, C_2H_6} + n_{C_4H_{10}} = a + b = 20(**)$$

Từ (*) và (**) ta có: a = 15 và b = 5

$$H = \frac{15}{15+5}.100\% = 75\%$$

Đốt cháy A cũng như đốt cháy lượng C_4H_{10} ban đầu sẽ thu được lượng CO_2 như nhau

Bảo toàn C:
$$n_{CO_2} = 4.n_{C_4H_{10}} = 4.20 = 80 \text{ mol}$$

Đáp án B

Câu 5: Khi tiến hành cracking 22,4 lít khí C_4H_{10} (đktc) thu được hỗn hợp A gồm CH_4 , C_2H_6 , C_2H_4 , C_3H_6 , C_4H_8 , H_2 và C_4H_{10} dư. Đốt cháy hoàn toàn A thu được x gam CO_2 và y gam H_2O . Giá trị của x và y tương ứng là

A. 44 và 18.

B. 44 và 72.

C. 176 và 90.

D. 176 và 180

Hướng dẫn giải:

Coi đốt cháy hoàn toàn A chính là đốt cháy C₄H₁₀ ban đầu

$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5H_2O$$

$$\rightarrow$$
 x = 4.44 = 176 và y = 5.18 = 90

Đáp án C

Câu 6: Cho etan qua xúc tác (ở nhiệt độ cao) thu được một hỗn hợp X gồm etan, etilen, axetilen và H_2 . Tỉ khối của hỗn hợp X đối với etan là 0,4. Nếu cho 0, 4 mol hỗn hợp X qua dung dịch Br_2 dư thì số mol Br_2 đã phản ứng là

A. 0,16 mol

B. 0, 24 mol

C. 0,32 mol

D. 0,40 mol

Hướng dẫn giải:

$$d_{X/_{etan}} = 0.4 \Longrightarrow M_X = 0.4.30 = 12(g / mol)$$

$$C_2H_6 \rightarrow C_2H_4 + H_2; C_2H_6 \rightarrow C_2H_2 + 2H_2$$

Ta có: $m_{trước} = m_{sau phản ứng}$

$$\Rightarrow$$
 $M_{C_2H_6}.n_{C_2H_6} = M_X.n_X$

$$\Rightarrow$$
 $n_{C_2H_6} = \frac{M_X.n_X}{M_{C_2H_6}} = \frac{12.0,4}{30} = 0,16 \text{(mol)}$

$$n_{H_2} = n_X - n_{C_2H_6} = 0, 4 - 0, 16 = 0, 24 \text{(mol)}$$

 H_2 tách ra được thay bằng $Br_2 \rightarrow n_{Brom} = 0.24$ (mol)

Đáp án B

Câu 7: Cracking 40 lít n-butan thu được 56 lít hỗn hợp A gồm H₂, CH₄, C₂H₄, C₂H₆, C₃H₆, C₄H₈ và một phần n-butan chưa bị cracking (các thể tích khí đo ở cùng điều kiện nhiệt độ và áp suất). Giả sử chỉ có các phản ứng tạo ra các sản phẩm trên. Hiệu suất phản ứng tạo hỗn hợp A là

A. 40%

B. 50%

C. 60%

D. 70%

Hướng dẫn giải:

Coi tỉ lệ về thể tích cũng là tỉ lệ về số mol

$$H = \frac{56 - 40}{40}.100\% = \frac{16}{40}.100\% = 40\%$$

Đáp án A

Câu 8: Khi cracking hoàn toàn một ankan X thu được hỗn hợp Y (các thể tích khí đo ở cùng điều kiện nhiệt độ và áp suất); tỉ khối của Y so với H_2 bằng 14,5. Công thức phân tử của X là

A. C_3H_8

B. C_4H_{10}

C. C_5H_{12}

D. C_2H_6

Hướng dẫn giải:

$$\begin{aligned} M_Y &= 14,5.2 = 29 \\ m_X &= m_Y \Longrightarrow M_X.n_X = M_Y.n_Y \\ \Longrightarrow \frac{M_X}{M_Y} &= \frac{n_Y}{n_X} = 2 \Longrightarrow M_X = 2.M_Y = 58 \\ \Longrightarrow C_4 H_{10} \end{aligned}$$

Đáp án B

Câu 9: Thực hiện phản ứng cracking 11,2 lít butan (đkc) thu được hỗn hợp A gồm các ankan và anken. Trong hỗn hợp A chứa 4,35g chất X mà khi đốt cháy thu được 6,72 lít CO₂ và 6,75g H₂O . Hiệu suất phản ứng cracking là

A. 70%

B. 75%

C. 80%

D. 85%

Hướng dẫn giải:

 $n_{butan} = 0,5 \text{ (mol)};$

$$n_{CO_2} = 0.3 \text{ (mol)}; n_{H_2O} = 0.375 \text{ (mol)}$$

Do số mol nước lớn hơn số mol CO2 nên X là ankan

$$\rightarrow$$
 n_{ankan} = 0,075 (mol), ankan đó là C₄H₁₀

 $n_{butan\;ph\text{\'{a}}n\;\text{\'{u}}ng}=0,\!5$ - $0,\!075=0,\!425\;(mol)$

$$H = \frac{0.425}{0.5}.100\% = 85\%$$

Đáp án D

Câu 10: Một hỗn hợp X gồm hai ankan A, B đồng đẳng kế tiếp. Cracking 11,2 lít (đktc) hỗn hợp X thu được 22,4 lít hỗn hợp Y (đktc) gồm ankan, anken và H₂, tỉ khối hơi của Y đối với H₂ là 8,2. Vậy công thức phân tử và số mol của A, B lần lượt là:

A. C₃H₈ (0,2 mol); C₄H₁₀ (0,3 mol).

B. C₂H₆ (0,3 mol); C₃H₈ (0,2 mol).

 $C_{\bullet} C_2 H_6 (0,1 \text{ mol}); C_3 H_8 (0,4 \text{ mol}).$

D. C_2H_6 (0,4 mol); C_3H_8 (0,1 mol).

Hướng dẫn giải:

$$\begin{split} &n_X = 0,5 \text{ mol}; \ n_Y = 1 \text{ mol}; \ M_Y = 8,2.2 = 16,4 \\ &m_X = m_Y \Rightarrow M_X.n_X = M_Y.n_Y \\ &\Rightarrow M_X = \frac{M_Y.n_Y}{n_X} = 32,8 \\ &\Rightarrow 14n + 2 = 32,8 \Rightarrow n = 2,2 \\ &\Rightarrow C_2H_6; C_3H_8 \end{split}$$
 Ta có:
$$n_{C_2H_6} + n_{C_3H_8} = 0,5$$

$$\frac{n_{C_2H_6}}{n_{C_3H_8}} = \frac{44 - 32,8}{32,8 - 30} = \frac{4}{1}$$

$$\Rightarrow$$
 $n_{C,H_6} = 0,4 \text{(mol)}; n_{C,H_8} = 0,1 \text{(mol)}$

Đáp án D

Câu 11: Cracking pentan một thời gian thu được 1,792 lít hỗn hợp X chỉ gồm các hiđrocacbon. Thêm 4,48 lít khí hiđro vào X rồi nung nóng với Ni đến phản ứng hoàn toàn thu được 5,824 lít khí hỗn hợp Y. Các thể tích đo ở điều kiện tiêu chuẩn. Đốt cháy hoàn toàn Y rồi cho sản phẩm cháy hấp thụ vào nước vôi trong dư. Khối lượng kết tủa tạo thành là bao nhiêu?

A. 20g

B. 25g

C. 30g

D. 35g

Hướng dẫn giải:

$$n_{X} = 0.08 \text{(mol)}; n_{H_{Y}} = 0.2 \text{(mol)}; n_{Y} = 0.26 \text{(mol)}$$

Ta có:

$$n_{H_2pu} = n_X + n_{H_2bd} - n_Y = 0.02 \text{ (mol)} < 0.2 \text{ nên } H_2 \text{ du}$$

Mặt khác vì phản ứng xảy ra hoàn toàn nên anken trong X đã phản ứng hết

$$\rightarrow$$
 n_{anken trong X} = n_{H_a phản ứng} = 0,02 (mol)

Do đó :
$$n_{\text{ankan trong X}} = \frac{0.08 - 0.02}{0.08} = 0.06 \text{ mol}$$

$$\Rightarrow$$
 $n_{C_5H_{12}bd} = n_{anken_X} = 0,06 \text{ mol}$

Bảo toàn C ta có

$$n_{CO_2(Y)} = 5.0,06 = 0,3 \text{ mol}$$

 $\Rightarrow m_1 = 0,3.100 = 30g$

Đáp án C

Câu 12: Thực hiện phản ứng cracking 11,2 lít hơi isopentan (đktc) thu được hỗn hợp A chỉ gồm các ankan và anken. Trong hỗn hợp A có chứa 7,2 gam một chất X mà khi đốt cháy thì thu được 11,2 lít khí cacbonic (đktc) và 10,8 gam nước. Hiệu suất của phản ứng này là bao nhiêu?

A. 80%

B. 75%

C. 70%

D. 60%

Hướng dẫn giải:

Ta có:
$$n_{C_5H_{12}} = \frac{11,2}{22,4} = 0,5 \text{(mol)}$$

Đốt cháy X được:

 $n_{CO_2} = 11,2:22,4 = 0,5 \text{(mol)}; \ n_{H_2O} = 10,8:18 = 0,6 \text{(mol)} > n_{CO_2}$

 \Rightarrow X: ankan; $n_x = 0, 6 - 0, 5 = 0, 1 \text{mol}$

Suy ra số C trong X là: 0,5:0,1=5

Số H trong X là: 2.0, 6:0, 1 = 12

Vậy X là isopentan còn dư

Suy ra hiệu suất của phản ứng là:

H% = 80%

Đáp án A

Câu 13: Cracking 1 ankan A thu được hỗn hợp sản phẩm B gồm 5 hi<mark>đ</mark>rocacbon có khối lượng mol trung bình là 36,25 g/mol; hiệu suất phản ứng là 60%. Công thức phân tử A là

A. C_3H_8

B. C₄H₁₀

C. C_5H_{12}

D. C_2H_6

Hướng dẫn giải:

 $Gia sử n_{ankan ban dâu} = 1 mol$

 $H = 60\% => n_{ankan phản ứng} = 0.6 \text{ mol} => n_{khí tăng} = 0.6 \text{ mol}$

$$=> n_{hh B} = n_A + n_{khi tăng} = 1 + 0.6 = 1.6 mol$$

Áp dụng định luật bảo toàn khối lượng ta có:

$$\mathbf{m}_{_{\mathbf{A}}}=\mathbf{m}_{_{\mathbf{B}}}\Longrightarrow\mathbf{M}_{_{\mathbf{A}}}.\mathbf{n}_{_{\mathbf{A}}}=\mathbf{M}_{_{\mathbf{B}}}.\mathbf{n}_{_{\mathbf{B}}}$$

$$\Rightarrow$$
 $M_A = \frac{M_B.n_B}{n_A} = \frac{1,6.36,25}{1} = 58$

$$\Rightarrow C_4H_{10}$$

Đáp án B

Câu 14: Cracking 5,8 gam C_4H_{10} được hỗn hợp X. Khối lượng H_2O thu được khi đốt cháy hoàn toàn X là

A. 4,5 gam

B. 9 gam

C. 18 gam

D. 27 gam

Hướng dẫn giải

 $n_{C_4H_{10}} = 0.1 \text{ mol}$

Đốt cháy hỗn hợp X cũng giống như đốt cháy C_4H_{10} đều thu được số mol CO_2 và $H_2O)$ như nhau

Bảo toàn nguyên tố H: $n_{H_2O} = 5.n_{C_4H_{10}} = 0.5$ mol

$$=> m_{\rm H_2O} = 0.5.18 = 9 (g)$$

Đáp án B

Câu 15: Cracking m gam butan thu được hỗn hợp A. Đốt cháy hoàn toàn A thu được 9 gam nước. Giá trị của m là

A. 2,6

B. 5,8

C. 11,6

D. 23,2

Hướng dẫn giải:

Do thành phân nguyên tố C, H không đổi nên đốt cháy hỗn hợp A cũng chính là đốt C_4H_{10} .

Bảo toàn nguyên tố H: $C_4H_{10} \rightarrow 5H_2O$

$$=> n_{C_4H_{10}} = \frac{n_{H_2O}}{5} = 0.1 \text{ mol } => m_{C_4H_{10}} = 0.1.58 = 5.8 \text{ gam}$$

Đáp án B