## Learning with Deficient Supervision-II

CS771: Introduction to Machine Learning
Purushottam Kar



#### **Announcements**

- End sem examination: November 17, 1600-1900, L18,19,20, ERES
  - Open notes (handwritten only)
  - Please bring a pencil and eraser with you
  - Seating arrangement same as midsem will announce again
- Project presentation schedule open for slot choice
  - 15 minute presentations for each group
  - Please choose a slot by November 18 1159 hrs
  - Please do not overwrite each other's slots
- Final project report due November 26 1159PM IST (premidnight)
  - No late submission deadline since grade submission is overdue by then
  - Please refer to Piazza post on how to write and structure your report

#### Recap

- We saw how label imbalance impacts classification problems
  - Binary, multi-class and multi-label
- For binary classification problems we saw three solutions
  - Resampling
    - Oversample rare class or undersample popular class
    - Not nice as either throws away data or bloats up training set
    - Not extendable to multi-class and multi-label settings elegantly
  - Reweighted learning
    - Assign different weights to point of different classes
    - Nicely extends to multi-class settings
  - Changing the evaluation/training loss function
    - F-measure, AUC etc
    - Algorithms more involved but the extra work does pay off!
- Today: learning with weak, active, and semi-supervision



# Learning with Weak Supervision





Refers to supervision at a high level



- Refers to supervision at a high level
- Related concepts distant supervision, multi-instance learning



- Refers to supervision at a high level
- Related concepts distant supervision, multi-instance learning





- Refers to supervision at a high level
- Related concepts distant supervision, multi-instance learning



Man, Horse, Dog



- Refers to supervision at a high level
- Related concepts distant supervision, multi-instance learning



Man, Horse, Dog





- Refers to supervision at a high level
- Related concepts distant supervision, multi-instance learning



Man, Horse, Dog



Man, Horse, Dog



- Refers to supervision at a high level
- Related concepts distant supervision, multi-instance learning



Man, Horse, Dog



Man, Horse, Dog





Refers to supervision at a high level

Related concepts – distant supervision, multi-instance

Weak supervision

Less effort to label



Man, Horse, Dog



Man, Horse, Dog



- Refers to supervision at a high level
- Related concepts distant supervision, multi-instance learning



Nov 15, 2017 wikipedia.com

- Refers to supervision at a high level
- Related concepts distant supervision, multi-instance learning





- Refers to supervision at a high level
- Related concepts distant supervision, multi-instance learning



**CREATE(WALT DISNEY, MICKEY MOUSE)** 



- Refers to supervision at a high level
- Related concepts distant supervision, multi-instance learning



**CREATE(WALT DISNEY, MICKEY MOUSE)** 



Refers to supervision at a high level

• Related concepts – distant supervision, multi-instance learning



#### CREATE(WALT DISNEY, MICKEY MOUSE)



Refers to supervision at a high level

• Related concepts – distant supervision, multi-instance learning



CREATE(WALT DISNEY, MICKEY MOUSE)

CREATE(WALT DISNEY, MICKEY MOUSE)

Nov 15, 2017 wikipedia.com CS771: Intro to ML

Refers to supervision at a high level

Related concepts – distant supervision, multi-instance



CREATE(WALT DISNEY, MICKEY MOUSE)

CREATE(WALT DISNEY, MICKEY MOUSE)

Nov 15, 2017 wikipedia.com

Weak

Refers to supervision at a high level

Related concepts – distant supervision, multi-instance



**CREATE(WALT DISNEY, MICKEY MOUSE)** 

#### CREATE(WALT DISNEY, MICKEY MOUSE)

No human labeller needed if encyclopedia present

Nov 15, 2017 wikipedia.com

Weak

Refers to supervision at a high level

Related concepts – distant supervision, multi-instance



#### CREATE(WALT DISNEY, MICKEY MOUSE)

Relation extraction problem

#### **CREATE(WALT DISNEY, MICKEY MOUSE)**

No human labeller needed if encyclopedia present

Nov 15, 2017 wikipedia.com

Weak

- Supervision at high level distant superv., multi-instance learning
- Multi-instance learning: every data point is a "bag" of m "items"  $x^i = \left\{x^{i,1}, x^{i,2}, \dots, x^{i,m}\right\}$ 
  - Every possible bounding box is an item. Their collection is the image
  - Every sentence is an item. Their collection is the Wikipedia document
- The "bag" has a multi-label  $\mathbf{y}^i \in \{0,1\}^L$ 
  - Labels in the image example could be man, horse, dog, cat, tree, river, ...
  - A bit more tricky to define labels for relation extraction so skip it for now
- ullet Not told which item(s) caused individual labels  $\mathbf{y}_k^i$  to turn on or off
  - Which bounding box contains the dog?
  - Which sentence signals the relationship b/w Disney and Mickey?
- "Fine" supervision could have, for e.g., labelled every item in the bag

Nov 15, 2017

#### Solutions?

- Can often be elegantly cast as latent variable learning problems
- For every bounding box/sentence, latent vars.  $z^{i,j,k}$ ,  $j \in [m]$ ,  $k \in [L]$
- $z^{i,j,k} = +1$  if that item is of "interest" w.r.t. label k else  $z^{i,j,k} = 0$
- Final label can be  $\mathbf{y}_k^i = \text{UNION}(z^{i,1,k}, z^{i,2,k}, \dots, z^{i,m,k})$ 
  - $\mathbf{y}_k^i = 1$  if any item declares that label to be present
  - Other "aggregation" techniques possible ask at least 2 items to declare
- Learn models for joint inference of latent variables and final label
- Alternative is a two-stage process
  - First find item that are of interest i.e. for which  $z^{i,j} \neq 0$ 
    - Use object detection techniques to find useful bounding boxes
    - Use entity detection techniques to find mentions
  - Label each interesting item and aggregate to get labels for bag



## Active Learning



#### The active teacher

- The algorithm only gets unlabelled data points  $S = \{x^1, ..., x^n\}$
- However, labels can be requested for  $k \ll n$  points "on demand"
  - Need not ask all labels in a single go
  - Can ask for one label, process that, then ask for another label, and so on
- $\bullet$  k must be small since most often, an actual human is involved
- We have only studied "passive" models till now where teacher retires after presenting the data
- Lots of techniques available for active learning
  - Most rely on some form of expected knowledge gain
  - Which unlabelled data point expected to surprise me the most?
  - Very "active" area (pun intended) dedicated workshops at NIPS, ICML
  - Very useful in guiding consumer surveys cannot have a lot of them!
  - Carefully choose which customers to entice into revealing more info









 Suppose data is has k clusters and each cluster is pure (only red or only green)





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label
- Label the cluster!





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label
- Label the cluster!





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label
- Label the cluster!





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label
- Label the cluster!





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label
- Label the cluster!





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label
- Label the cluster!
- Many challenges





- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label
- Label the cluster!
- Many challenges
  - Clusters not pure in general



- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label
- Label the cluster!
- Many challenges
  - Clusters not pure in general
  - Clustering is itself a tricky problem



- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label
- Label the cluster!
- Many challenges
  - Clusters not pure in general
  - Clustering is itself a tricky problem
  - Clustering mistakes disastrous



- Suppose data is has k clusters and each cluster is pure (only red or only green)
- Apply clustering (k-means, agglomerative, kernel k-means)
- Choose one data point from each cluster and query its label
- Label the cluster!
- Many challenges
  - Clusters not pure in general
  - Clustering is itself a tricky problem
  - Clustering mistakes disastrous
- Many solutions discuss one<sup>27</sup>





























- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points





- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points





- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights





- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight sparse graph!





- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!





- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight sparse graph!





- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points





- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points





- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points





- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points





- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points





- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points





Many possibilities e.g. each node passes its label ±1 to its neighbours multiplied by weight of the edge

• Credovei

Neighbors pass them on in successive iterations – "message passing"

.ge weights

- Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points





Many possibilities e.g. each node passes its label ±1 to its neighbours multiplied by weight of the edge

Credover

Neighbors pass them on in successive iterations – "message passing"

.<del>se</del> weights

- Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points





Many possibilities e.g. each node passes its label ±1 to its neighbours multiplied by weight of the edge

Credover

Neighbors pass them on in successive iterations – "message passing"

.ge weights

- Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points





Many possibilities e.g. each node passes its label ±1 to its neighbours multiplied by weight of the edge

• Credovei

Neighbors pass them on in successive iterations – "message passing"

.ge weights

- Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points





Many possibilities e.g. each node passes its label ±1 to its neighbours multiplied by weight of the edge

Crec <sup>N</sup> over

Neighbors pass them on in successive iterations – "message passing"

Some nodes may end up getting mixed messages

 "Propagate" labels from labelled to unlabelled points





Many possibilities e.g. each node passes its label ±1 to its neighbours multiplied by weight of the edge

Over Successive iterations - "message passing"

Some nodes may end up getting mixed messages

labellea

200

... or be very unsure of their label





- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points





- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points
- Query unlabelled data points that are "confused"



- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points
- Query unlabelled data points that are "confused"

### **Active Learning Attempt I**



- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points
- Query unlabelled data points that are "confused"

### **Active Learning Attempt I**



- Cluster and get labels for cluster representatives
- Create a "similarity graph" over data points
  - May use a Mercer kernel for edge weights
  - Don't include edges with very small weight – sparse graph!
- "Propagate" labels from labelled to unlabelled points
- Query unlabelled data points that are "confused"
- Repeat!

## **Active Learning Attempt II**

Learning theoretic result

- To learn classifier with  $\epsilon$  error, SVM/NN need  $\mathcal{O}\left(\frac{1}{\epsilon}\right)$  labeled data pts
- Suppose data  $S \subset [0,1]$  and true classifier is a threshold  $y=2\cdot \mathbb{I}\{x\geq \nu^*\}-1$
- Notice that we can perform binary search to estimate  $\nu^*$
- Let a = 0, b = 1
- For t = 1, 2, ...



- Query the label of the data point (a + b)/2
- If label is -1 let  $a \leftarrow (a+b)/2$  else let  $b \leftarrow (a+b)/2$
- If  $b a < \epsilon$ , stop and output  $\hat{v} = (a + b)/2$
- We queried only  $\log(1/\epsilon)$  labels and yet ensured  $|\hat{\nu} \nu^*| < \epsilon$
- Exponential improvement in number of labelled samples needed!

### **Active Learning Attempt II**

- This is the most simple form of version space search
- Search the space of all classifiers
  - In the previous example, classifiers corresponded to thresholds
- Can get tricky to do this efficiently even over linear classifiers
- Also tricky to handle cases that are not linearly separable
- Can't we do boosting or bagging to solve this problem?
- Yes, search for ActBoost (the name is lame but the algo isn't)



#### **Active Learning**

- Many other techniques to query labels
- If working with a Bayesian model, query data point whose predictive posterior variance is largest
- Query-by-committee maintain a committee of several models and query data point on which committee disagrees the most
- Related concept of disagreement coefficient
- Expected model drift maintain a single model but query the data point whose label, if known, will change the model the most



# Semi-supervised Learning



#### Semi-supervision

- Labeled data is expensive since manual effort often involved
- Unlabelled data often free to obtain by crawling repo/www
- Why is unlabelled data of any use?
- Since it gives us valuable access to  $\mathbb{P}[x]$
- If we have a super awesome model of  $\mathbb{P}[x]$  then under some assumptions, a few labelled data points enough to learn  $\mathbb{P}[y,x]$
- Assumptions?? Yes, SSL usually works by imposing a heavy inductive bias
  - Points deemed similar by blah notion of similarity have similar labels
  - Points in the same cluster given by blah clustering algo have same labels
  - Some assumption necessary to relate labelled and unlabelled data
- If assumption is inappropriate then SSL method suffers

### SSL Attempt I - Generative Learning

- Labelled  $L = \left\{x^i, y^i\right\}_{i=1,\dots,n}$  and unlabeled data  $U = \left\{x^j\right\}_{j=n+1,\dots,n+m}$
- Learn a generative model  $\Theta$  that models  $\mathbb{P}[x]$  and  $\mathbb{P}[y \mid x] \log \mathbb{P}[L \cup U \mid \Theta] = \log \mathbb{P}[L \mid \Theta] + \log \mathbb{P}[U \mid \Theta]$

$$= \sum_{i=1}^{n} \log \mathbb{P}[y^{i} \mid x^{i}, \Theta] + \log \mathbb{P}[x^{i} \mid \Theta] + \sum_{j=n+1}^{n+m} \log \mathbb{P}[x^{j} \mid \Theta]$$

• Introduce latent variables  $z^j \in [C]$  to model labels of points in U

$$= \sum_{i=1}^{n} \log \mathbb{P}[y^{i} \mid x^{i}, \Theta] + \log \mathbb{P}[x^{i} \mid \Theta] + \sum_{j=n+1}^{n+m} \log \left( \sum_{z^{j}=1}^{C} \mathbb{P}[z^{j} \mid x^{j}, \Theta] \cdot \mathbb{P}[x^{j} \mid \Theta] \right)$$

• Have fun executing the EM algorithm on this ©

#### SSL Attempt II - Bootstrapping

- Basically the hard-assignment version for the previous slide
- Makes sense even in non-PML settings though
- ullet Use any nice algo on L to learn a classifier  $f^{\,0}$
- For t = 1, 2, ...
  - Use  $f^{t-1}$  to label data points in U i.e.  $z^{t,j}=f^{t-1}(x^j), j=n+1,\ldots,$
  - Use the nice algo on the dataset  $L \cup \{x^j, z^{t,j}\}$  to learn  $f^t$
  - Stop when tired
- Very simple to try out first before attempting more fancy methods
- Be careful may reinforce wrong predictions
- No way to even detect if  $f^t$  getting better on U or not



## SSL Attempt III - Regularization

- Incorporate a prior to force "similar" points to have similar labels
- Lets switch to a regression problem for simplicity
- Assume a notion of similarity between points  $a_{ij} = K(x^i, x^j)$ 
  - ullet Should not depend on the label i.e. can be computed over U as well
- Want  $f(x^i)$  to be close to  $f(x^j)$  if  $a_{ij}$  is large
- Can enforce this by asking  $a_{ij} \cdot \left( f(x^i) f(x^j) \right)^2$  to be small

$$\arg\min_{f} \sum_{i=1}^{n} \ell(f(x^{i}), y^{i}) + \sum_{i,j=1}^{m+n} a_{ij} \cdot (f(x^{i}) - f(x^{j}))^{2}$$

• Can also incorporate a usual regularizer r(f)



### SSL Attempt III - Regularization

- Incorporate a prior to force
- Lets switch to a regression
- Assume a notion of similarit
- If  $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$  and  $r(\mathbf{w}) = \lambda \cdot ||\mathbf{w}||_2^2$ , then Assume a notion of similarit where  $X = [\mathbf{x}^1, ..., \mathbf{x}^{m+n}] \in \mathbb{R}^{d \times (m+n)}$ . Find  $X = [\mathbf{x}^1, ..., \mathbf{x}^{m+n}] \in \mathbb{R}^{d \times (m+n)}$ . Find  $X = [\mathbf{x}^1, ..., \mathbf{x}^{m+n}] \in \mathbb{R}^{d \times (m+n)}$ .
- Want  $f(x^i)$  to be close to  $f(x^j)$ .
- Can enforce this by asking  $a_{ij} \cdot \left(f(x^i) f(x^j)\right)^2$  to be small

$$\arg\min_{f} \sum_{i=1}^{n} \ell(f(x^{i}), y^{i}) + \sum_{i,j=1}^{m+n} a_{ij} \cdot (f(x^{i}) - f(x^{j}))^{2}$$

• Can also incorporate a usual regularizer r(f)



## Additional regularization $\mathbf{w}^{\mathsf{T}}XLX^{\mathsf{T}}\mathbf{w}$ . Overall regularization $\mathbf{w}^{\mathsf{T}}R\mathbf{w}$ where $R = XLX^{\mathsf{T}} + \lambda \cdot I$

- Incorporate a prior to force
- Lets switch to a regression
- Assume a notion of similarit
  - Should not depend on the lake
- If  $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x}, \mathbf{w} \rangle = \lambda \cdot ||\mathbf{w}||_2^2$ , then  $\arg\min_{\mathbf{w}} \sum_{i=1}^{\infty} \ell(\langle \mathbf{w}, \mathbf{x}^i \rangle, y^i) + \lambda \cdot ||\mathbf{w}||_2^2 + \mathbf{w}^{\mathsf{T}} X L X^{\mathsf{T}} \mathbf{w}$ where  $X = [\mathbf{x}^1, ..., \mathbf{x}^{m+n}] \in \mathbb{R}^{d \times (m+n)}$ . Find L?
- Want  $f(x^i)$  to be close to  $f(x^j)$ .
- Can enforce this by asking  $a_{ij} \cdot \left( f(x^i) f(x^j) \right)^2$  to be small

$$\arg\min_{f} \sum_{i=1}^{n} \ell(f(x^{i}), y^{i}) + \sum_{i,j=1}^{m+n} a_{ij} \cdot (f(x^{i}) - f(x^{j}))^{2}$$

• Can also incorporate a usual regularizer r(f)



#### SSL Attempt IV - Transductive SVM

- Transduction is a special form of learning where test features are used to train the model – note, test labels still taboo to look at
- However, the "transductive" SVM works in SSL settings too
- Minimizes hinge loss on labelled points and keeps unlabelled points away from the hyperplane on at least one side

$$\min_{\mathbf{w}, \{\xi_i\}} \frac{1}{2} ||\mathbf{w}||_2^2 + \sum_{i=1}^{m+n} \xi_i 
y^i \cdot \langle \mathbf{w}, \mathbf{x}^i \rangle \ge 1 - \xi_i, i = 1, ..., n 
|\langle \mathbf{w}, \mathbf{x}^j \rangle| \ge 1 - \xi_j, j = n + 1, ..., m + n 
\xi_i \ge 0, i = 1, ..., n, n + 1, ..., m + n$$

• Results in a non-convex optimization problem – difficult to solve

Nov 15, 2017

#### SSL Attempt IV – Transductive SVM



Can show that for unlabelled points, TSVM uses the symmetric hinge loss function  $\ell(\mathbf{w}, \mathbf{x}^j) = \min\left\{ \left[ 1 - \langle \mathbf{w}, \mathbf{x}^j \rangle \right]_+, \left[ 1 + \langle \mathbf{w}, \mathbf{x}^j \rangle \right]_+ \right\}$ 

ane on at least on

m+n

label a points an Note that if  $|\langle \mathbf{w}, \mathbf{x}^j \rangle| \ge 1 - \xi_i$ then  $z^j \cdot \langle \mathbf{w}, \mathbf{x}^j \rangle \ge 1 - \xi_i$  for either  $z^j = 1$  or  $z^j = -1$ 

$$\min_{\mathbf{w}, \{\xi_i\}} \frac{1}{2} \|\mathbf{w}\|_2^2 + \sum_{i=1}^{j} \xi_i$$

$$y^i \cdot \langle \mathbf{w}, \mathbf{x}^i \rangle \ge 1 - \xi_i, i = 1, ..., n$$

$$|\langle \mathbf{w}, \mathbf{x}^j \rangle| \ge 1 - \xi_j, j = n + 1, ..., m + n$$

$$\xi_i \ge 0, i = 1, ..., n, n + 1, ..., m + n$$

• Results in a non-convex optimization problem – difficult to solve

#### SSL Attempt IV – Transductive SVM



**Exercise**: show TSVM actually solves

$$\min_{\mathbf{w},\{\xi_i\},\{z^j\}} \frac{1}{2} \|\mathbf{w}\|_2^2 + \sum_{i=1}^{m+n} \xi_i$$

$$y^i \cdot \langle \mathbf{w}, \mathbf{x}^i \rangle \geq 1 - \xi_i, i = 1, \dots, n$$

$$z^j \cdot \langle \mathbf{w}, \mathbf{x}^j \rangle \geq 1 - \xi_j, j = n+1, \dots, m+n$$

$$\xi_i \geq 0, i = 1, \dots, m+n$$

$$z^j \in \{-1,+1\}, j = n+1, \dots, m+n$$
i.e. jointly optimizes latent vars and model

points, TSVM ss function  $+\langle \mathbf{w}, \mathbf{x}^j \rangle ]$ 

 $|\mathbf{x}^j\rangle| \ge 1 - \xi_j$  $\rangle \ge 1 - \xi_j$  for or  $z^j = -1$ 

 $|\langle \mathbf{w}, \mathbf{x}^j \rangle| \ge 1 - \xi_j, j = n$  m + n

Results in a non-convex optimization p

 $\xi_i \ge 0, i = 1, ..., n, n + 1$ , Bootstrapping using an SVM would have solved the same problem using hard AltMin

## Time to Wrap Up!

A whirlwind tour of topics we did not discuss



#### Many topics we did not cover

- Bayesian learning (applicable to several problem areas CS775)
- Graphical models (model interactions within data feat. CS772)
- Transfer learning (when exam syllabus may have a "drift")
- Reinforcement learning (learn from an evolving teacher CS773)
- Multi-task learning (solve several problems on the same data)
- Multi-view learning (different feature rep. of the same data)
- Sparse recovery (learn space-efficient models CS772/CS777)
- Time series modelling (HMMs, AR, ARMA, RNNs)
- Learning theory (provable goodness of learnt models CS777)
- Learning on data streams (experts, bandits CS773)
- Advanced Optimization Techniques (CS774/CS777)

## Please give your Feedback

http://tinyurl.com/ml17-18afb

