CALCULO AVANZADO / MATEMATICA AVANZADA

TIPOS DE SERIES

SERIES CONVERGENTES Y DIVERGENTES.

Sea $\sum_{n=1}^{\infty} u_n$ una serie infinita y sean $\{S_n\}$ la sucesión de sumas parciales que definen a esta serie. Luego, se presentan dos casos:

CASO 1:

Si $\lim_{n\to\infty} S_n = S = \sum_{n=1}^{\infty} u_n$, entonces se dice que la serie es **Convergente** y su suma es "S".

CASO 2:

Si $\lim_{n\to\infty} S_n = \infty$ (No existe) entonces se dice que la series es **Divergente** y que no tiene suma "S".

SERIES CONVERGENTES Y DIVERGENTES IMPORTANTES.

1) SERIES GEOMÉTRICAS.

Es una serie infinita de la forma $\sum_{n=1}^{\infty}ar^{n-1}=a+ar+ar^2+ar^3+ar^4+...+ar^{n-1}+...$ o también $\sum_{n=1}^{\infty}ar^n=a+ar+ar^2+ar^3+...ar^n+...$

NOTA: Observe que "a" es el primer término y "r" es la razón de incremento.

Deducción de una fórmula de "Sn" y de una fórmula de "S" para una serie geométrica.

Para fórmula de S_n

Multiplicando por "r" la ecuación 1

Restando 2 de 1:

$$\mathbf{S}_n - r \mathbf{S}_n = a - ar^n$$

Despejando S_n se tiene:

$$S_n(1-r) = a(1-r^n)$$
 $\therefore S_n = \frac{a(1-r^n)}{1-r}$ Fórmula de S_n

Para fórmula de "S"

Aplicando límites a $S_n = \frac{a(1-r^n)}{1-r}$ se tiene: $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{a(1-r^n)}{1-r}$

$$\left(\frac{1}{2}\right)^1 = \frac{1}{2}$$

$$\left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

$$\left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$\left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

$$S = \frac{a}{1-r} \text{ cuando } |r| < 1$$

En este caso se dice que la <u>serie geométrica es convergente</u> y que su suma es $S = \frac{a}{1-r}$

$$2^2 = 4$$
$$2^3 = 8$$

Por otra parte sí $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{a(1-r^n)}{1-r} = \infty$ cuando $|r| \ge 1$ en este caso se dice que la <u>serie</u> geométrica es divergente.

EJEMPLOS:

1)
$$\sum_{n=1}^{\infty} \frac{1}{2^{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{2^{n-1}} + \dots$$

La razón:
$$r = \frac{1}{2} < 1$$

Al sumar los términos 1.5,1.75,1.87... Se aproxima a 2.

$$S = \frac{a}{1-r} = \frac{1}{1-\frac{1}{2}} = \frac{1}{\frac{1}{2}} = \boxed{2}$$
 Esta serie geométrica es convergente.

:. Esta serie geométrica es divergente.

UNA APLICACIÓN DE LA SERIE GEOMÉTRICA.

Una serie geométrica puede usarse para demostrar que todo decimal periódico puede representarse por un número racional (P/Q).

EJEMPLO:

Represente el siguiente número decimal periódico por su número racional.

1) 0.5555....

SOLUCIÓN:

Se debe descomponer el numero: 0.5555....

$$\frac{5}{10} + \frac{5}{100} + \frac{5}{1000} + \frac{5}{10000} + \dots$$

Entonces
$$a = \frac{5}{10} yr = \frac{1}{10}$$

$$\therefore S = \frac{\frac{5}{10}}{1 - \frac{1}{10}} = \frac{\frac{5}{10}}{\frac{9}{10}} = \frac{5}{9} = 0.5555$$

2) SERIE - PÓ SERIE HIPERARMONICA

Es una serie infinita de la forma:

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots + \frac{1}{n^p} + \dots$$

Esta serie es convergente cuando P > 1, en cambio es divergente cuando P ≤ 1

CASO PARTICULAR: SERIE ARMÓNICA

Cuando P = 1 entonces resulta la serie $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n} + \ln$ cual se llama: serie armónica y que es divergente.

3) SERIE ALTERNADA

Es una serie infinita que tiene términos positivos y negativos en forma alternada, simbólicamente escribimos:

$$\sum_{n=1}^{\infty} (-1)^{n-1} a n = a_1 - a_2 + a_3 - a_4 + \dots (-1)^{n-1} a_n \text{ ó bien}$$

$$\sum_{n=1}^{\infty} (-1)^n an = -a_1 + a_2 - a_3 + a_4 - a_5 + \dots + (-1)^n a_n + \dots$$

EJEMPLOS:

i)
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \frac{1}{32} + \dots$$

ii)
$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots$$

iii)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

CONVERGENCIA ABSOLUTA

Si al hacer positivos todos los términos de la serie alternada la serie resultante es convergente. Luego, se dice que la serie alternada es absolutamente convergente, simbólicamente se escribe así:

Si $\sum_{n=1}^{\infty} \left| (-1)^{n-1} a_n \right|$ es convergente entonces $\sum_{n=1}^{\infty} (-1)^n a_n$ es "absolutamente convergente".

EJEMPLOS:

- a) Al hacer positivos los términos del ejemplo anterior i) se convierte en:
- $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...$ que es convergente ::i) Es absolutamente convergente.
 - b) Al hacer positivos los términos del ejemplo anterior ii) se convierte en:

Serie "P" P>1
$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \dots$$
 que es convergente, por tanto, ii) Es absolutamente convergente.

- c) Al hacer positivo iii) Se convierten en:
- $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\dots$ La cual es divergente porque es una serie armónica.
- ::iii) No es absolutamente convergente.