ENE 104 Electric Circuit Theory

Lecture 03: Basic Nodal and Mesh Analysis

Week #3: Dejwoot KHAWPARISUTH

office: CB40906 Tel: 02-470-9065

Email: dejwoot.kha@mail.kmutt.ac.th

http://webstaff.kmutt.ac.th/~dejwoot.kha/

Objectives:

- Implementation of the nodal analysis
- Implementation of the mesh analysis
- Supernodes and Supermeshes
- Basic computer-aided circuit analysis

Example: 4.2

find the nodes voltages:

A KCL equation for node 1:

$$\frac{v_1 - v_3}{4} - (-3) + \frac{v_1 - v_2}{3} - (-8) = 0$$

Node 2:

$$\frac{v_2 - v_3}{7} + \frac{v_2}{1} + \frac{v_2 - v_1}{3} + (-3) = 0$$

Node 3:

$$\frac{v_3 - v_2}{7} + \frac{v_3}{5} + (-25) + \frac{v_3 - v_1}{4} = 0$$

Node 1:

$$3 + \frac{v_1 - v_3}{2\Omega} + \frac{v_1 - v_2}{1\Omega} = 0$$

Node 2:

$$\frac{v_2 - v_1}{1\Omega} + \frac{v_2}{3\Omega} + \frac{v_2 - v_3}{4\Omega} = 0$$

Node 3: $-7 + \frac{v_3 - v_1}{2\Omega} + \frac{v_3 - v_2}{4\Omega} + \frac{v_3}{5\Omega} = 0$

The Supernode:

find the nodes voltages:

The Supernode:

find the nodes voltages:

A KCL equation for

Node 1:

$$\frac{v_3}{4} - (-3) + \frac{v_1 - v_2}{3} - (-8) = 0$$

Node 2:

$$i + \frac{v_2}{1} + \frac{v_2 - v_1}{3} + (-3) = 0$$

Node 3:

$$-i + \frac{v_3}{5} + (-25) + \frac{v_3 - v_1}{4} = 0$$

The Supernode:

find the nodes voltages:

A KCL equation for Node 1:

$$\frac{v_3}{4} - (-3) + \frac{v_1 - v_2}{3} - (-8) = 0$$

The Supernode (Node 2+3):

$$\frac{v_2}{1} + \frac{v_2 - v_1}{3} + (-3) + \frac{v_3}{5} + (-25) + \frac{v_3 - v_1}{4} = 0$$

And one additional equation:

$$v_3 - v_2 = 22$$

Compute the voltage across each current source

Node 1:

$$-4 + \frac{v_1 - v_2}{\frac{1}{3}\Omega} + i + \frac{v_1}{\frac{1}{2}\Omega} = 0$$

Node 2:

$$\frac{v_2 - v_1}{\frac{1}{3}\Omega} - i + \frac{v_2}{\frac{1}{6}\Omega} - 9 = 0$$

Supernode 1-2: $-4 + \frac{v_1 - v_2}{\frac{1}{3}\Omega} + \frac{v_1}{\frac{1}{2}\Omega} + \frac{v_2 - v_1}{\frac{1}{3}\Omega} + \frac{v_2}{\frac{1}{6}\Omega} - 9 = 0$

Example: 4.4

Determine the node-to-reference voltages in the circuit below.

Example:

Determine the node-to-reference voltages in the circuit below.

Node 1:

$$v_1 = -12 \text{ V}.$$

Node 2:

$$\frac{v_2 - v_1}{0.5} + \frac{v_2 - v_3}{2} - 14 = 0$$

The 3-4 supernode:

$$\frac{v_3 - v_2}{2} - 0.5v_x + \frac{v_4}{1} + \frac{v_4 - v_1}{2.5}$$

$$\frac{v_3 - v_2}{2} - 0.5(v_2 - v_1) + \frac{v_4}{1} + \frac{v_4 - v_1}{2.5}$$

Need an additional equation:

$$v_3 - v_4 = 0.2v_y$$
$$v_3 - v_4 = 0.2(v_4 - v_1)$$

Use nodal analysis to find v_x , if element A is (a) a 25 Ω ; (b) a 5-A current source, arrow pointing right; (c) a 10-V voltage source, positive terminal on the right; (d) a short circuit

Practice:

Use nodal analysis to determine the nodal voltage in the circuit.

Mesh Analysis:

Mesh analysis is applicable only to those networks which are planar.

Examples of planar and nonplanar networks

Mesh is a loop that doesn't contain any other loops.

Path, Closed path, and Loop:

(a) The set of branches identified by the heavy lines is neither a path nor a loop. (b) The set of branches here is not a path, since it can be traversed only by passing through the central node twice. (c) This path is a loop but not a mesh, since it encloses other loops. (d) This path is also a loop but not a mesh. (e, f) Each of these paths is both a loop and a mesh.

Example: 4.6

Determine the two mesh currents, i_1 and i_2 , in the circuit below.

For the left-hand mesh,

$$-42 + 6 i_1 + 3 (i_1 - i_2) = 0$$

For the right-hand mesh,

$$3(i_2-i_1) + 4i_2 - 10 = 0$$

Solving, we find that $i_1 = 6$ A and $i_2 = 4$ A.

(The current flowing downward through the 3- Ω resistor is therefore $i_1 - i_2 = 2$ A.)

Determine i₁ and i₂

$$-6+14i_1+10(i_1-i_2)=0$$

$$10(i_2 - i_1) + 10i_2 + 5 = 0$$

Example: 4.7

determine the three mesh currents

Example:

determine the three mesh currents

$$\operatorname{Mesh} i_3$$
:

$$2(i_3 - i_1) - 6 + 3(i_3 - i_2) + 1i_3 = 0$$

Determine i₁ and i₂

Mesh 1:

$$-10+4(i_1-i_2)+3=0$$

Mesh 2:

$$4(i_2-i_1)+5i_2+9i_2+10(i_2-i_3)=0$$

Mesh 3:

$$-3+10(i_3-i_2)+8i_3=0$$

Find the three mesh currents in the circuit below.

Find the three mesh currents in the circuit below.

Apply KVL:

 $\operatorname{Mesh} i_1$:

$$-7 + 1(i_1 - i_2) + v + 2(i_1 - i_3) = 0$$

 $Meshi_2$:

$$1(i_2 - i_1) + 2i_2 + 3(i_2 - i_3) = 0$$

$$2(i_3 - i_1) - v + 3(i_3 - i_2) + 1i_3 = 0$$

A supermesh (i_1, i_3) :

$$-7 + 1(i_1 - i_2) + 3(i_3 - i_2) + 1i_3 = 0$$

Mesh: i_2

$$1(i_2 - i_1) + 2i_2 + 3(i_2 - i_3) = 0$$

Find the three mesh currents in the circuit below.

Creating a "supermesh" from meshes 1 and 3:

$$-7 + 1(i_1 - i_2) + 3(i_3 - i_2) + 1i_3 = 0$$
 [1]

Around mesh 2:

$$1(i_2 - i_1) + 2i_2 + 3(i_2 - i_3) = 0$$
 [2]

Finally, we relate the currents in meshes 1 and 3:

$$i_1 - i_3 = 7$$
 [3]

Rearranging,

$$i_1 - 4 i_2 + 4 i_3 = 7$$
 [1]
 $-i_1 + 6 i_2 - 3 i_3 = 0$ [2]
 $i_1 - i_3 = 7$ [3]

Solving,

$$i_1 = 9 \text{ A}, i_2 = 2.5 \text{ A}, \text{ and } i_3 = 2 \text{ A}.$$

Find the voltage v_3 in the circuit below.

Find the voltage v_3 in the circuit below.

 $\operatorname{Mesh} i_A$:

Find the voltage v_3 in the circuit below.

$\operatorname{Mesh} i_{A}$:

$$-80+10i_A+20(i_A-i_B)+30(i_A-i_C)=0$$

$\operatorname{Mesh} i_{B}$:

$$20(i_B - i_A) - 30 + 15i_1 = 0$$

$$20(i_B - i_A) - 30 + 15i_A = 0$$

$Meshi_C$:

$$30(i_C - i_A) - 15i_1 + 40i_C = 0$$

$$30(i_C - i_A) - 15i_A + 40i_C = 0$$

Node v_1 :

$$\frac{v_1 - 100}{8} + \frac{v_1}{4} + \frac{v_1 - v_2}{2} = 0$$

Node v_2 :

$$\frac{v_2 - v_1}{2} + \frac{v_2}{3} + \frac{v_2 - v_3}{10} - 8 = 0$$

Node v_3 :

$$8 + \frac{v_3 - v_2}{10} + \frac{v_3}{5} = 0$$

Solving; $v_1 = 25.89 \text{ V.}, v_2 = 20.31$

$$\therefore i_x = \frac{v_1 - v_2}{2} = 2.79 \text{ A.}$$

Mesh
$$i_1$$
:

$$-100 + 8i_1 + 4(i_1 - i_2) = 0$$

Mesh i_2 :

$$4(i_2 - i_1) + 2i_2 + 3(i_2 - i_3) = 0$$

Mesh i_3 :

$$3(i_3 - i_2) + 10(i_3 + 8) + 5i_3 = 0$$

Ch4-26 p.94 Determine each mesh current in the circuit

Computer-Aided:

Computer-Aided:

Ch4.58 p.100 Write an appropriate input deck for SPICE to find v_5 in the circuit. Submit a printout of the output file, with the solution highlight

Homework:

Reference:

W.H. Hayt, Jr., J.E. Kemmerly, S.M. Durbin, Engineering Circuit Analysis, Sixth Edition.

Copyright ©2002 McGraw-Hill. All rights reserved.