Estimação pontual e intervalar

Principais estimadores e procedimentos para intervalos de confiança

Prof. Me. Lineu Alberto Cavazani de Freitas

Departamento de Estatística Laboratório de Estatística e Geoinformação

Inferência

- ► Temos interesse em determinada característica (parâmetro) na **população**, alguma medida tal como uma média, variância, proporção, etc.
- ► Com base nos dados (evidência amostral), precisamos estimar os parâmetros.
- ▶ Uma estimativa/estatística é uma quantidade calculada a partir dos dados.
- A distribuição de probabilidades de uma estimativa/estatística é chamada distribuição amostral.

Inferência

- Uma estimativa pontual fornece apenas um valor plausível de ser o verdadeiro valor do parâmetro.
- Uma estimativa intervalar/intervalo de confiança leva em conta a incerteza devido a termos apenas uma amostra.
 - É uma faixa de valores com determinada probabilidade de conter o parâmetro.

Em resumo

- 1. Definimos a variável aleatória de interesse na população (Y, por exemplo).
- 2. Esta variável tem o comportamento dado pela sua distribuição $(Y \sim f(\theta))$.
- 3. Tomamos uma amostra aleatória $(Y_1, Y_2, ..., Y_n)$ cujos elementos são independentes e identicamente distribuídos, seguindo a mesma distribuição de Y. Ou seja, $Y_i \sim f(\theta)$.
- 4. Estamos interessados em estudar algum parâmetro (θ) na população.
- 5. Estimamos esta característica com base na amostra usando algum estimador $(\hat{\theta} = f(Y_1, Y_2, ..., Y_n)).$
- 6. Expressamos a incerteza associada a esta estimativa (por estarmos usando uma amostra).
- 7. Avaliamos hipóteses sobre esta estimativa.
- 8. Interpretamos e tiramos conclusões.

Propriedades dos estimadores

- ► Mais de uma função da amostra pode ser proposta para estimar um parâmetro de interesse (por exemplo, no caso da variância).
- ► Para facilitar a escolha entre estimadores, é importante verificar se possuem algumas características desejáveis.
- ▶ Algumas características a serem verificadas são: vício, consistência e eficiência.
- ▶ Um bom estimador é: não viciado, consistente e eficiente.

Vício

- ▶ Um estimador $\hat{\theta}$ é não viciado ou não viesado para um parâmetro θ se seu valor esperado coincide com o parâmetro de interesse.
- $ightharpoonup E(\hat{\theta}) = \theta.$
- ► Independente do tamanho amostral esta propriedade deve ser válida.

Consistência

- ▶ Um estimador $\hat{\theta}$ é consistente, se:
 - ▶ À medida que aumenta-se o tamanho amostral, o valor esperado converge para o parâmetro de interesse: $\lim_{n\to\infty} E(\hat{\theta}) = \theta$.
 - A medida que aumenta-se o tamanho amostral, a variância converge para o: $\lim_{n\to\infty} Var(\hat{\theta}) = 0$.
- Note como o conceito de consistência está diretamente ligado ao tamanho amostral, diferentemente do conceito de vício.

Eficiência

Dados dois estimadores $\hat{\theta}_1$ e $\hat{\theta}_2$, ambos não viciados para um parâmetro θ , dizemos que $\hat{\theta}_1$ é mais eficiente que $\hat{\theta}_2$ se $Var(\hat{\theta}_1) < Var(\hat{\theta}_1)$, ou seja, quanto menor a variância, maior a eficiência.

Propriedades dos estimadores

$$\hat{\mu} = \bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

$$\hat{p} = \frac{\text{número de sucessos}}{n}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}$$

 Os estimadores apresentados para μ e p são não viciados e consistentes.

► A expressão da variância populacional (n no denominador) é viciada e consistente, já a expressão amostral (n-1 no denominador) é não viciada e consistente

Distribuições amostrais

Média e variância

- ► Se σ^2 é conhecido
 - $\qquad \hat{\mu} \sim N(\mu; \sigma^2/n).$
 - $\qquad \qquad (\hat{\mu} \mu)/(\sigma/\sqrt{n}) \sim \mathcal{N}(0; 1).$

- Se σ^2 é desconhecido
 - $(\hat{\mu} \mu)/(S/\sqrt{n}) \sim t_{n-1}.$
 - $(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$.

Proporção

 $ightharpoonup \hat{p} \sim \mathcal{N}\left(p, \frac{p(1-p)}{n}\right).$

- ▶ Uma estimativa pontual é um valor candidato ao parâmetro de interesse baseado em uma amostra.
- ▶ Por ser baseado na amostra, a estimativa pontual carrega consigo uma incerteza.
- Um intervalo de confiança é uma faixa de valores com determinada probabilidade de conter o parâmetro.
- Usa a estimativa pontual e informações da distribuição amostral.

- ▶ Para média, proporção e variância as operações são razoavelmente simples.
- ▶ O ponto mais importante é a fixação do nível de confiança (1α) .
- ▶ O nível de confiança é um número entre 0 e 1 que determina os valores limites a serem usados nos intervalos.
- ▶ É uma quantidade que define a probabilidade do intervalo conter o parâmetro.

- ▶ O intervalo de confiança é calculado a partir de uma amostra, logo o intervalo também é aleatório.
- O valor do parâmetro é fixo, quem varia são as estimativas e os intervalos (de acordo com a amostra).
- ► Como o valor do parâmetro é fixo, é o intervalo que deve conter o valor do parâmetro, e não o contrário.

Interpretações, considerando um nível de confiança de $(1 - \alpha) \times 100\%$:

- ► ERRADA: temos $(1 \alpha) \times 100\%$ de confiança de que o parâmetro se encontra no intervalo.
- ► CORRETA: temos $(1 \alpha) \times 100\%$ de confiança de que o intervalo contém o parâmetro.

Forma alternativa de interpretação:

- ▶ Se pudermos obter 100 amostras e calcular um intervalo de confiança de 95% para cada uma das 100 amostras, esperamos que 5 destes intervalos não contenham o verdadeiro valor do parâmetro.
- ► A interpretação é análoga para outros níveis de confianca.

Podemos definir o nível de confiança como 100%?

- Quanto maior o nível de confiança, maior será o intervalo de confiança associado.
- ▶ Um intervalo muito grande deixa de ser informativo.
- ▶ Por isso, o nível de confiança age como uma espécie de compromisso entre risco de errar a inferência e fornecer uma informação com uma precisão e interpretação razoável.

Passos gerais

- 1. Verificar os requisitos.
- 2. Determinar o nível de confiança.
- 3. Encontrar os valores críticos.
- 4. Calcular os limites superior e inferior do intervalo.
- 5. Interpreta os resultados.

Veremos

- Intervalo de confiança para média com variância populacional conhecida.
- Intervalo de confiança para média com variância populacional desconhecida.
- Intervalo de confiança para proporção.
- ► Intervalo de confiança para variância.

Intervalo de confiança para a média (μ) com variância populacional (σ^2) conhecida

IC para a média com variância conhecida

▶ Supondo que σ^2 é conhecido:

$$\bar{Y} \sim N\left(\mu; \frac{\sigma^2}{n}\right) \text{ ou } \frac{(\bar{Y} - \mu)}{(\sigma/\sqrt{n})} \sim N(0, 1).$$

- Para obter um intervalo de confiança para média com σ conhecido, as seguintes condições devem ser atendidas:
 - A amostra deve ser aleatória simples.
 - \triangleright σ deve ser conhecido.
 - ightharpoonup A população deve seguir distribuição Normal ou n > 30 (regra empírica TLC).

IC para a média com variância conhecida

▶ Ao fixar uma probabilidade $1 - \alpha$ podemos encontrar os limites inferior (\bar{y}_{LI}) e superior (\bar{y}_{LS}) do intervalo de confiança, tal que

$$P(y_{LI} < \mu < y_{LS}) = 1 - \alpha.$$

► Vários intervalos podem gerar o resultado acima, trabalharemos com intervalos simétricos em relação à estimativa pontual.

IC para a média com variância conhecida

▶ Para obtenção do intervalo basta definir os limites de Z na distribuição amostral padronizada.

$$P\left(z_{LI} < \frac{\bar{y} - \mu}{\sigma/\sqrt{n}} < z_{LS}\right) = 1 - \alpha.$$

 \triangleright Isolando μ e garantindo intervalos simétricos temos que:

$$P\left(\bar{y}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}<\mu<\bar{y}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)=1-\alpha.$$

- $ightharpoonup Z_{\alpha/2}$ é o quantil da distribuição Normal padrão para o valor de $1-\alpha$ fixado.
- ▶ Valores comuns para 1α são 90, 95, 99, contudo qualquer valor é possível.

Intervalo de confiança para a média (μ) com variância populacional (σ^2) desconhecida

IC para a média com variância desconhecida

▶ Supondo que σ^2 é desconhecido:

$$t = \frac{(\bar{Y} - \mu)}{(S/\sqrt{n})} \sim t_{n-1}.$$

ightharpoonup A notação t_{n-1} denota a distribuição t-Student com n - 1 graus de liberdade.

IC para a média com variância desconhecida

- \blacktriangleright Para obter um intervalo de confiança para média com σ desconhecido, as seguintes condições devem ser atendidas:
 - A amostra deve ser aleatória simples.
 - $ightharpoonup \sigma$ é desconhecido mas exite uma estimativa s.
 - A população deve seguir distribuição Normal ou n > 30 (regra empírica TLC).
- ▶ A expressão do intervalo de confiança é similar à do caso para variância conhecida, apenas a distribuição se altera:

$$P\left(\bar{y}-t_{\alpha/2}\frac{s}{\sqrt{n}}<\mu<\bar{y}+t_{\alpha/2}\frac{s}{\sqrt{n}}\right)=1-\alpha.$$

IC para proporção

► Seja $Y_i \sim Bernoulli(p)$:

$$\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$$
.

- ► Para obter um intervalo de confiança para a proporção, as seguintes condições devem ser atendidas:
 - ► A amostra deve ser aleatória simples.
 - A variável é binária (sucesso ou fracasso).
 - As tentativas são independentes e a probabilidade de sucesso constatnte (binomial).
 - ▶ $np \ge 5$ e $np(1-p) \ge 5$ (garante aproximação com a distribuição normal).

IC para proporção

▶ De maneira análoga aos casos anteriores temos que:

$$P\left(\hat{p} - Z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}$$

IC para proporção

$$P\left(\hat{p}-Z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}$$

- ► Perceba um problema: a expressão do intervalo de confiança depende do p verdadeiro.
- Existem duas alternativas:
 - ightharpoonup Otimista: usar \hat{p} dentro da raiz.
 - Conservativo: usar 0.5 no lugar de p dentro da raiz. Esta alternativa vai conduzir ao maior intervalo de confiança possível para a proporção.

IC para variância

► Seja $Y_i \sim N(\mu, \sigma^2)$:

$$(n-1)\frac{S^2}{\sigma^2} \sim \chi_{n-1}^2$$

em que n-1 representa os graus de liberdade.

IC para variância

▶ Neste caso, o intervalo fica dado por:

$$IC_{1-\alpha}(\sigma^2) = \left(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}; \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right),$$

em que $\chi^2_{\alpha/2,n-1}$ e $\chi^2_{1-\alpha/2,n-1}$ são os quantis da cauda direita e da cauda esquerda da distribuição χ^2 com n-1 graus de liberdade.

► Neste caso o intervalo de confiança não é simétrico como no caso da média e da proporção pois a distribuição amostral não é simétrica.

De forma geral:

► IC p/ μ com σ^2 conhecido: $IC(\mu) = \bar{y} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

► IC p/ μ com σ^2 desconhecido: $IC(\mu) = \bar{y} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$

► IC p/ p: $IC(p) = \hat{p} \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{p}}$

► IC p/ σ^2 : $IC_{1-\alpha}(\sigma^2) = \left(\frac{(n-1)S^2}{\chi^2_{\alpha|2,n-1}}; \frac{(n-1)S^2}{\chi^2_{1-\alpha|2,n-1}}\right)$

O que foi visto:

- ► Principais estimadores e estimativas.
- Propriedades dos estimadores.
- ► Intervalos de confiança.
 - Média com variância conhecida.
 - Média com variância desconhecida.
 - Proporção (otimista e conservativo).
 - ► Variância

Próximos assuntos:

- ► Tamanho amostral.
 - Média com variância conhecida.
 - Média com variância desconhecida.
 - Proporção.