СЕМ, лекция 14

(2021-01-14)

Доверителни интервали

Постановка:

- Случайна величина X;
- $F_X(x,\theta)$ е разпределение, което искаме да разберем, като знаем че то зависи параметрично от някакъв параметър θ ;
- $\theta = (\theta_1, \dots, \theta_s)$ имаме s на брой параметри (например при нормалното разпределение са s=2: средно μ и стандартно отклонение σ)

 $\overrightarrow{X}(X_1,\dots,X_n)$ - вектор от n независими еднакво разпределени наблюдения над X (прототипи на X). На база на тези наблюдения, които в крайна сметка ще бъдат сведени до някакви числа (за модела/за експеримента) трябва да намерим някаква оценка $\hat{\theta}=\hat{\theta}(\overrightarrow{X})$, която да я вземем близо до θ , така че да определи това

точкова оценка разпределение $F_X(x,\, heta)$.

Проблема на точковата оценка е, че сама по себе си тя е доста динамична. Това е логично, тъй като извадките могат да бъдат различни. Хубаво ще е освен тази $\hat{\theta}$, да имаме и някаква вероятност, с която истинския параметър θ да попада в интервал, който може да нарачем *доверителен*.

Ще разглеждаме само едномерни параметри θ ($\theta \in \mathbb{R}$).

<u>Цел</u>: Ще търсим две числа $I_1=I_1(\overrightarrow{X}) < I_2=I_2(\overrightarrow{X})$ такаива, за които $\mathbb{P}(I_1<\theta< I_2)=\gamma$ (като γ обикновено е число по-голямо от 0.9 и по-малко от 0.999 и има следния смисъл: колкото по-малко е γ , толкова по-широки интервали ще се получават, за да може с по-голяма вероятност да хванем истинския параметър θ . Стандартно $\gamma=0.95$, а $\gamma=0.90$ е за не чак толкова важни изследвания. За медицински цели се използва $\gamma\geq0.999$.)

<u>Дефиниция</u>: (**Централна статистика ЦС**) Казваме, че $T = T(\overrightarrow{X}, \theta)$ е централна статистика, ако:

- 1) T е монотонна по heta
- 2) $\mathbb{P}(T < x) = F_T(x)$ не зависи от θ (T е функция на θ , но разпределението и не зависи от θ)
- \bigoplus Имаме \overrightarrow{X} (вектор от наблюдения) и искаме да намерим някакъв доверителен интервал: (I_1,I_2) за θ , т.е. $\theta\in (I_1,I_2)$. Целта ни е да имаме някакво ниво на доверие $\gamma=\mathbb{P}(q_1< T< q_2)$. За улеснение ще допуснем, че T расте по θ (но тя може и да намалява по θ).

Тъй като T е монотонна по θ , то

при фиксиран вектор на

 $\gamma = \mathbb{P}(q_1 < T < q_2)$ наблюдения \overrightarrow{X} $\mathbb{P}\left(T^{-1}(q_1) < \theta < T^{-1}(q_2)\right)$, защото сме допуснали, че T расте по θ . Ако T намаляваше по θ , щяхме да имаме $\gamma = \mathbb{P}\left(T^{-1}(q_2) < \theta < T^{-1}(q_1)\right)$. Следователно интервала ще е $I_1 = T^{-1}(q_1), I_2 = T^{-1}(q_2)$.

 f_T - плътността на централната статистика (ЦС)

Има много начини, по които може да изберем q_1 и q_2 , така че вероятността между тях да е γ .

Имаме параметър $\theta \in \mathbb{R}$, който искаме да оценяваме. Търсим I_1 и I_2 , които да зависят от наблюденията \overrightarrow{X} и $I_1(\overrightarrow{X}) < I_1(\overrightarrow{X})$. Те образуват т.нар. доверителен интервал за θ с ниво на доверие $\gamma = \mathbb{P}\left(\theta \in (I_1,I_2)\right)$.

T е централна статистика за heta, ако удовлетворява дефиницията за ЦС.

 \oplus Ако T е симетрична случайна величина,

тогава се търсят такова q_1 и q_2 , че $q_1 = -\ q = -\ q_2$, за които

$$\mathbb{P}(T<-q)=1-\mathbb{P}(T<1)=rac{1-\gamma}{2}$$
 (за да имаме по средата вероятност γ)

<u>По-общо</u>: Ако имаме някакво несиметрично разпределение на T:

проверка :
$$\mathbb{P}(T < q_2) - \mathbb{P}(T < q_1) = \frac{1+\gamma}{2} - \frac{1-\gamma}{2} = \frac{1+\gamma-1+\gamma}{2} = \gamma$$

Имаме много начини, по които може да изберем q_1 и q_2 , но тези които демонстрираме по-горе са изпитани от практиката рецепти за избиране и имат конкретен смисъл за симетричните разпределения.

$$\underbrace{\gamma}_{} = \mathbb{P}(q_1 < T < q_2) = \mathbb{P}\big(\underbrace{T^{-1}(q_1) < \theta < T^{-1}(q_2)}\big).$$
 фиксирана
$$\underbrace{T \text{ нарастваща}}$$

Тази вероятност γ е фиксирана и се задава предварително от изследователите. Какво може да оптимизираме ние като математици? - може да търсим q_1 и q_2 такива, за които е изпълнено: $\min_{q_1 < q_2} = \left\{ \begin{array}{l} |T^{-1}(q_2) - T^{-1}(q_1)| \end{array} \right\}.$

$$q_1 < q_2$$
 у = $\mathbb{P}(q_1 < T < q_2)$ искаме най-малък интервал, за да може да свием опциите за θ -максимално

Т.е. минимизираме доверителния интервал при фиксирано ниво на доверие!

$$X \in \mathcal{N}(\mu, \sigma^2)$$
 , σ^2 е известно, т.е. интересуваме се само от случайна величина, която искаме да изучаваме

параметъра $\mu=\theta$ (едномерен). Искаме да видим как може да оценим μ и да намерим за него доверителен интервал.

Ние знаем, че
$$\hat{\mu}=\overline{X_n}=\frac{1}{n}\sum_{j=1}^n X_j$$
. Тогава $T(\overrightarrow{X},\mu)=\frac{\overline{X_n}-\mu}{\frac{\sigma}{\sqrt{n}}}\in\mathcal{N}(0,1),\,\sigma$ е известно

число. Това е така, защото линейност

$$\sum_{j=1}^n X_j \overset{\text{ Ha } \mathcal{N}}{\in} \mathscr{N}(n\mu,\, n\, \sigma^2) \Rightarrow \frac{1}{n} \sum_{j=1}^n X_j \in \mathscr{N}\left(\frac{n\mu}{n}, \frac{n\, \sigma^2}{n^2}\right) = \mathscr{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

По-подробно обяснение на свойството линейност на нормалното разпределение:

$$\overline{X_n} = \frac{\sum_{j=1}^n X_j}{n} \in \mathcal{N}(x,y^2) \,. \, \mathbb{E}\overline{X_n} = \frac{n\mu}{n} = x; \, \operatorname{Var}(\overline{X_n}) = \frac{1}{n^2} \sum_{j=1}^n \sigma^2 = \frac{\sigma^2}{n} = y^2 \bigg]$$
 T е намаляваща функция по μ и $\mathbb{P}(T \leq x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{y^2}{2}} \, \mathrm{d}\, y$ - не зависи от $\mu \stackrel{def.}{\Rightarrow}$

T е централна статистика за μ (тя е монотонна и намаляваща по μ и нейното разпределение съвпада с $\mathcal{N}(0,1)$, т.е. не зависи от θ)

Тогава, $\gamma = \mathbb{P}(-q < T < q)$, тъй като $\mathcal{N}(0,1)$ е симетрично:

Това ни гарантира, че (-q,q) ще е най-тесния интервал, тъй като в $(-\infty,-q)$ и (q,∞) е сбита най-малко маса (навсякъде извън тези интервали е сбита повече маса)

 $q=q_{rac{1}{2}+rac{7}{2}}$, който квантил го има в таблицата за нормалното стандартно разпределение.

$$\gamma = \mathbb{P}(-q < T < q) = \mathbb{P}\left(-q_{\frac{1}{2} + \frac{\gamma}{2}} < \frac{\overline{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}} < q_{\frac{1}{2} + \frac{\gamma}{2}}\right) \Rightarrow$$

$$\Rightarrow \mathbb{P}\left(\mu \in \left(\overline{X_n} - \frac{\sigma}{\sqrt{n}} \times q_{\frac{1}{2} + \frac{\gamma}{2}}, \overline{X_n} + \frac{\sigma}{\sqrt{n}} \times q_{\frac{1}{2} + \frac{\gamma}{2}}\right)\right) = \gamma \Rightarrow$$

$$\Rightarrow I_1 = \overline{X_n} - \frac{\sigma}{\sqrt{n}} \times q_{\frac{1}{2} + \frac{\gamma}{2}}; \ I_2 = \overline{X_n} + \frac{\sigma}{\sqrt{n}} \times q_{\frac{1}{2} + \frac{\gamma}{2}}.$$

 $X \in \mathcal{N}(\mu, \sigma^2)$, но този път не знаем σ .

Как да конструираме доверителен интервал само за μ ? Припомняме, че

$$\hat{\mu} = \overline{X_n}$$
 и оценката за дисперсията е $s^2 = \frac{1}{n-1} \sum_{j=1}^n {(X_j - \overline{X_n})^2}$ и е неизместена. независимо дали знаем или не σ

Фактора $\frac{1}{n-1}$ го има, тъй като тя е неизместена оценка за дисперсията.

<u>Твърдение</u>: Имаме, че $X \in \mathcal{N}(\mu, \sigma^2)$ и $\overrightarrow{X} = (X_1, \dots, X_n)$ са наблюдения над X. Тогава е вярно, че:

а) $\hat{\mu}$ е независимо от s^2 : $\hat{\mu} \perp \!\!\! \perp s^2$;

6)
$$(n-1)\frac{s^2}{\sigma^2} \in \mathcal{X}^2(n-1).$$

$$T=rac{\overline{X_n}-\mu}{\sqrt{n}}$$
. Ако знаехме σ , последното щеше да е разпределено като $\mathcal{N}(0,1)$

(както направихме в предходния пример), но ние не знаем σ . Но друго, което знаем е, че:

$$T=rac{\overline{X_n}-\mu}{rac{\sigma}{\sqrt{n}}}=rac{rac{\overline{X_n}-\mu}{rac{\sigma}{\sqrt{n}}}}{\sqrt{rac{n-1}{n-1}\cdotrac{s^2}{\sigma^2}}}=rac{\overline{X_n}-\mu}{rac{s}{\sqrt{n}}}$$
 е централна статистика!

Тъй като
$$\dfrac{\overline{X_n}-\mu}{\frac{s}{\sqrt{n}}}=\dfrac{Z}{\sqrt{\frac{Y}{n-1}}}$$
, където $Z\in\mathcal{N}(0,1),\ Y\in\mathcal{X}^2(n+1)$ и $Z\perp\!\!\!\perp Y$.

Заключения:

- T е намаляваща по μ
- $T \in t(n-1)$ и не зависи от $\mu \Rightarrow T$ е централна статистика за μ .

$$T = \frac{Z}{\sqrt{\frac{Y}{n-1}}}; \ Z = \frac{\overline{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}}; \ Y = \frac{(n-1)s^2}{\sigma^2}.$$

T е симетрична, тъй като в числителя имаме симетрична случайна величина $(Z) \Rightarrow$

т.е. имаме, че I_1 и I_2 зависят от s и квантилите не са от нормалното разпределение а от t-Student's разпределението.

Бележки:
$$T-\frac{\overline{X_n}-\mu}{\frac{s}{\sqrt{n}}}=\frac{Z}{\sqrt{\frac{Y}{n-1}}},\,Z\perp\!\!\!\perp Y,\,Z\in\mathcal{N}(0,1),\,Y\in\mathcal{X}^2(n-1)$$

 $Y = \sum_{j=1}^{n-1} V_j$, където $(V_j)_{j=1}^{n-1}$ са независими и еднакво разпределени (i.i.d.) с $\mathcal{X}^2(1)$. От ЗГЧ: $\frac{Y}{n-1} \xrightarrow[n \to \infty]{\text{п.с.}} \mathbb{E} V_1 = 1$. Следователно за големи $n: T pprox \frac{Z}{1} pprox \mathcal{N}(0,1);$

Ако знаем дисперсията:
$$\dfrac{\overline{X_n}-\mu}{\dfrac{\sigma}{\sqrt{n}}}\overset{d}{\longrightarrow}\mathcal{N}(0,1)$$
 за произволни $X_1,\,\ldots,\,X_n,\,\ldots$ $\mathbb{E}X_1=\mu;\;\mathrm{Var}(X_1)=\sigma^2.$

$$Y \in \mathcal{N}(\mu, \sigma^2)$$
, знаем $\mu, \, \hat{\sigma}^2 = \frac{1}{n} \sum_{j=1}^n (X_j - \mu)^2$. Искаме да оценим дисперсията.

Трябва да си конструираме централна статистика. ЦС не трябва да зависи от σ , но в $\hat{\sigma}^2$, X_i зависи от σ и трябва да отстраним тази зависимост.

Нагаждаме:
$$\frac{n\hat{\sigma}^2}{\sigma^2}=\sum_{j=1}^n\left(\underbrace{\frac{X_j-\mu}{\sigma}}_{Z_i^2}\right)=\sum_{j=1}^nZ_j^2$$
, но $Z_j\in\mathcal{N}(0,1)$, тъй като центрираме и

нормираме с неизвестна дисперсия. Следователно $\sum_{j=1}^n Z_j^2 \in \mathcal{X}^2(n)$, защото сумира

n квадрати на независими нормални стандартно разпределени $Z\Rightarrow$ статистиката

 $T=rac{n\,\hat{\sigma}^2}{\sigma^2}$ е централна по дефиниция (разпределението и е $\mathcal{X}^2(n)$ - не зависи от σ^2 и тя е монотонно намаляваща по σ).

За квантилите:

наблюдения.

$$\gamma = \mathbb{P}(q_1 < T < q_2) = \mathbb{P}\left(\frac{n\hat{\sigma}^2}{q_2} < \frac{n\hat{\sigma}^2}{q_1}\right) \Rightarrow \begin{cases} I_1 = \frac{n\hat{\sigma}^2}{q_2} \\ I_2 = \frac{n\hat{\sigma}^2}{q_1} \end{cases}$$

 \oplus $X \in \mathcal{N}(\mu, \sigma^2)$, не знаем μ и се интересуваме от σ^2 . Знаем, че s^2 е неизместена оценка за σ^2 :

 $(n-1)s^2=\sum_{j=1}^n (X_j-\overline{X_n})^2$ и нашата цел е да конструираме статистика за σ^2 , т.е. да намерим ЦС, отговаряща на дефиницията. Ако разделим на σ^2 , от дясно не можем да направим никакво заключение: $\frac{(n-1)s^2}{\sigma^2}=\frac{\sum_{j=1}^n (X_j-\overline{X_n})^2}{\sigma^2}$, но знаем от твърдението, че $T=\frac{(n-1)s^2}{\sigma^2}\in\mathcal{X}^2(n-1)$ (с една степен по-малко, защото сме изхабили една степен за оценката на μ). От n наблюдения все едно имаме n-1

 \Rightarrow T е централна статистика (монотонна намаляваща по σ^2 и независима от σ^2)

$$\gamma = \mathbb{P}\left(q_1 < \frac{(n-1)s^2}{\sigma^2} < q_2\right) = \mathbb{P}\left(\frac{(n-1)s^2}{q_2} < \sigma^2 < \frac{(n-1)s^2}{q_1}\right)$$

$$I_1 = \frac{1}{q_2}(n-1)s^2; \ I_2 = \frac{1}{q_1}(n-1)s^2$$

При голямо n (n>30 например) може да ползваме както от предходния пример все едно знаем σ .

Проверка на хипотези

Теорията за тестване на хипотези е въведена и развита за първи път от Нейман и Пиърсън през 40-те години на миналия век. Тя най-често се задава със следната математическа постановка:

X е случайна величина с функция на разпределение $F_X(x,\theta)$, нулева хипотеза H_0 и алтернативна такава H_1 , където θ е оценявания параметър.

$$H_0: \theta = \theta_0$$

$$H_1: \theta = \theta_1$$

Искаме да конструираме някакво множество $W \in \mathbb{R}^n$ такова, че ако \overrightarrow{X} попадне в W ($\overrightarrow{X} \in W$), тогава отхвърляме H_0 (в полза на H_1), ако вектора от наблюдения \overrightarrow{X} не попадне в W, то тогава не отхвърляме H_1 .

 H_0 и H_1 се наричат прости хипотези (нулева и алтернативна). Прости хипотези са $\theta=\theta_1$ (число). Сложни хипотези са $\theta>\theta_i,\, \theta\neq\theta_i,\, \theta\in I$ и т.н.

<u>Цел</u>: При наблюденията $\overrightarrow{X} \in \mathbb{R}^n$, търсим да конструираме $W \subseteq \mathbb{R}^n$: ако $\overrightarrow{X} \in W$, то отхвърляме H_0 и приемаме H_1 , а ако $\overrightarrow{X} \in \overline{W}$, то приемаме H_0 .

$$W\subseteq \mathbb{R}^n: \left\{ egin{array}{l} \overrightarrow{X}\in W\Rightarrow ext{ отхвърляме}\, H_0 \ \overrightarrow{X}\in \overline{W}\Rightarrow ext{ приемаме}\, H_0 \end{array}
ight.$$

Грешки, които може да допуснем:

- Грешка от $I^{\text{-BИ}}$ род: Да отхвърлим H_0 , когато H_0 е вярна, т.е. $\alpha = \mathbb{P}(\overrightarrow{X} \in W \,|\, H_0)$
- Грешка от $II^{-\mathsf{pu}}$ род: При положение, че е вярна хипотезата H_1 , ние сме приели H_0 , т.е. $\beta = \mathbb{P}(\overrightarrow{X} \in \overline{W} \,|\, H_1)$

 $\pi = 1 - \beta$ се нарича мощност на W.

 $igoplus H_0$: дадена ваксина е вредна $(heta= heta_0)$ H_1 : ваксината не е вредна $(heta= heta_1)$

Има по-голям резон за H_0 да вземем по-опасната/рисковата хипотеза. Това е тази хипотеза, която е по-вероятно да я отхвърлим. Това е така, защото грешката от $I^{-\mathrm{BU}}$ род ще бъде контролирана/задавана от изследователя (той ще казва дали иска/допуска да е $0.01,\,0.05,\,0.1$ и т.н.)

<u>Дефиниция</u>: (**Оптимална критична област**) При фиксирана грешка от $I^{\mathsf{-BII}}$ род $\alpha,\ W\ ^*\subseteq\mathbb{R}^n$ се нарича оптимална критична област (ОКО), ако

$$\mathbb{P}(\overrightarrow{X} \not\in W * | H_1) = \min_{\substack{\underline{W} \subseteq \mathbb{R}^2 \\ \text{всички крит.}}} \mathbb{P}(\overrightarrow{X} \not\in W | H_1).$$

<u>Постановка</u>: X е случайна величина; $F_X(x,\theta)$ е разпределението на X, което зависи от накакъв параметър θ , но допускаме, че $f_X(x,\theta)$ е плътността на X (т.е.

допускаме, че $\frac{\partial x}{\partial}F_X(x,\theta)$ съществува). Въвеждаме

$$f_{\overrightarrow{X}}(x,\theta)=\underbrace{L(X,\theta)}_{}$$
 $=\prod_{j=1}^n f_X(x_j,\theta)$, където $x\in\mathbb{R}^n$ и $x=(x_1,\ldots,x_n)$.

Тогава е верен следния резултат:

<u>Лема</u>: (**Нейман-Пиърсън**) Нека X удовлетворява горните условия от постановката и тестваме следната хипотеза:

$$H_0$$
 : $\theta=\theta_0$ срещу H_1 : $\theta=\theta_1$.

Ако
$$L_0(x) = L(x,\theta_0)$$
 и $L_1(x) = L(x,\theta_1)$ и

$$\exists k \geq 0: W^* \subseteq \{x \in \mathbb{R}^n: L_1(x) \geq kL_0(x)\}, \overline{W^*} \subseteq \{X \in \mathbb{R}^2: L_1(x) \leq kL_0(x)\}$$
 и $\alpha = \mathbb{P}(X \in W^* \mid H_0)$ е зададена, то W^* е ОКО (оптимална критична област).

Доказателство:

$$\underbrace{\alpha = \mathbb{P}(\overrightarrow{X} \in W * | H_0) = \mathbb{P}(\overrightarrow{X} \in W | H_0)}_{\text{имаме}} \Rightarrow \underbrace{\mathbb{P}(\overrightarrow{X} \not\in W * | H_1) \leq \mathbb{P}(\overrightarrow{X} \not\in W | H_1)}_{\text{искаме да докажем}}$$

$$\mathbb{P}(\overrightarrow{X} \notin W \mid H_1) \stackrel{\theta=\theta_1}{=} \int_{\overline{W}} L_1(x) dx = \int_A L_1(x) dx + \int_C L_1(x) dx + \int_B L_1(x) dx - \int_B L_1(x) dx = \int_{\overline{W}^*} L_1(x) dx + \int_A L_1(x) dx - \int_B L_1(x) dx = \mathbb{P}(\overrightarrow{X} \in W * \mid H_1) + \underbrace{\int_A L_1(x) dx - \int_B L_1(x) dx}_{\stackrel{?}{>} 0} \ge \underbrace{\int_{\overline{W}^*} L_1(x) dx + \int_A L_1(x) dx - \int_B L_1(x) dx}_{\stackrel{?}{>} 0} = \underbrace{\int_{\overline{W}^*} L_1(x) dx + \int_A L_1(x) dx - \int_B L_1(x) dx}_{\stackrel{?}{>} 0} = \underbrace{\int_{\overline{W}^*} L_1(x) dx + \int_A L_1(x) dx - \int_B L_1(x) dx - \int_B L_1(x) dx}_{\stackrel{?}{>} 0} = \underbrace{\int_{\overline{W}^*} L_1(x) dx + \int_A L_1(x) dx - \int_B L_1(x) dx}_{\stackrel{?}{>} 0} = \underbrace{\int_{\overline{W}^*} L_1(x) dx + \int_A L_1(x) dx - \int_B L_1(x) dx}_{\stackrel{?}{>} 0} = \underbrace{\int_{\overline{W}^*} L_1(x) dx + \int_A L_1(x) dx - \int_B L_1(x) dx}_{\stackrel{?}{>} 0} = \underbrace{\int_{\overline{W}^*} L_1(x) dx + \int_A L_1(x) dx}_{\stackrel{?}{>} 0} = \underbrace{\int_{\overline{W}^*} L_1($$

 $\geq \mathbb{P}(\overrightarrow{X} \not\in W * | H_1)$, което искахме да докажем.

Т.е. всичко се свежда до това да проверим, че $\int_A L_1(x) \mathrm{d}\,x - \int_B L_1(x) \mathrm{d}\,x \geq 0$, но

$$\int_A L_1(d) dx - \int_B L_1(x) dx \ge k \int_A L_0(x) dx - k \int_B L_0(x) dx$$

$$\underbrace{\int_A L_0(x) dx - k \int_B L_0(x) dx}_{\stackrel{?}{=}0}$$

$$\alpha = \int_{W^*} L_0(x) dx = \int_A L_0(x) dx + \int_D l_0(x) dx = \int_W L_0(x) dx = \int_B L_0(x) dx + \int_D L_0(x) dx$$

$$\Rightarrow \int_A L_0(x) dx = \int_B L_0(x) dx.$$