darinka.dentcheva@stevens.edu

Homework 5

due Wednesday, April 8, 2020

- **Problem 1.** Consider the chess game from Assignment 2. Assume that if you play timid your probability of making a draw is p = 0.8 and the probability to win is the same as the probability to lose.
 - (a) Solve the problem again with this new probability setting.
 - (b) Investigate how your strategy changes when the probability of wining changes in the case of a timid play. The probability of wining can change from 0 to 0.15.
- **Problem 2.** We have a tree farm. At any time, the size s of a tree is 0, 1, 2, 3, 4, where 0 means that the tree has died, and 4 is the size of a mature tree. We need to decide when to harvest a given tree. Each year it costs about \$ 10+s to maintain a tree, and \$ 30+5s to harvest a tree. The sales price of a tree of each size is as follows:

The transition probability matrix for the size of the tree is as follows:

sizes	0	1	2	3	4
0	1	0	0	0	0
1	0.05	$0.15 \\ 0$	0.7	0.1	0
2	0.05			0.7	0.05
3	0.05	0	0	0.5	0.45
4	0.05	0	0	0	0.95

- (a) Describe a dynamic programming problem to determine an optimal harvesting policy.
- (b) Solve the problem numerically. What numerical methods are applicable to this problem and why?