1º appello — 15 giugno 2021

Esercizio 1. Sia $M(2,\mathbb{R})$ lo spazio vettoriale delle matrici 2×2 a coefficienti reali. Data $A = \begin{pmatrix} 0 & 2 \\ -1 & 1 \end{pmatrix}$, sia $U \subset M(2,\mathbb{R})$ il sottospazio formato dalle matrici che commutano con A:

$$U = \{ B \in M(2, \mathbb{R}) \mid AB = BA \}.$$

- (a) Determinare la dimensione e una base di U.
- (b) Sia $W \subset M(2,\mathbb{R})$ il sottospazio formato dalle matrici che contengono il vettore (3,-2) nel loro nucleo. Determinare la dimensione e una base di W.
- (c) Determinare $U \cap W \in U + W$.
- (d) Stabilire se U contiene qualche matrice con rango < 2 e diversa dalla matrice nulla.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 1 & 1 & t & -3 \\ 1 & -2 & 0 & 3 \\ -1 & 1 & 2 & -1 \end{pmatrix}$$

- (a) Determinare per quale valore di t la funzione f non è suriettiva.
- (b) Per il valore di t trovato determinare delle basi del nucleo e dell'immagine di f.
- (c) Poniamo ora t=0. Sia $U \subset \mathbb{R}^4$ il sottospazio generato dai vettori $u_1=(1,0,0,0)$, $u_2=(0,0,1,0), u_3=(-1,2,0,3)$. Scrivere la matrice della funzione $\tilde{f}\colon U\to\mathbb{R}^3$, definita ponendo $\tilde{f}(u)=f(u)$, rispetto alla base $\{u_1,u_2,u_3\}$ di U e alla base canonica di \mathbb{R}^3 .
- (d) Verificare che $\tilde{f}: U \to \mathbb{R}^3$ è un isomorfismo.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da f(1,0,0) = (2,-2,-2), f(0,1,0) = (-2,5,-1) e tale che v = (1,-1,-1) sia un autovettore relativo all'autovalore $\lambda = 6$.

- (a) Scrivere la matrice A di f rispetto alla base canonica.
- (b) Determinare gli autovalori e autovettori di f e dire se A è diagonalizzabile.
- (c) Stabilire se esiste una base **ortonormale** di \mathbb{R}^3 formata da autovettori di f e, se esiste, trovarla.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati i punti $A=(0,3,3),\,B=(1,1,2),\,C=(2,2,1).$

- (a) Verificare che l'angolo \widehat{ABC} è retto e trovare un punto D tale che \widehat{ABCD} sia un rettangolo.
- (b) Trovare il punto E, intersezione delle diagonali del rettangolo ABCD.
- (c) Scrivere un'equazione cartesiana del piano π che contiene il rettangolo ABCD.

$1^{\rm o}$ appello — 15 giugno 2021

Esercizio 1. Sia $M(2,\mathbb{R})$ lo spazio vettoriale delle matrici 2×2 a coefficienti reali. Data $A = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix}$, sia $U \subset M(2,\mathbb{R})$ il sottospazio formato dalle matrici che commutano con A:

$$U = \{B \in M(2, \mathbb{R}) \mid AB = BA\}.$$

- (a) Determinare la dimensione e una base di U.
- (b) Sia $W \subset M(2,\mathbb{R})$ il sottospazio formato dalle matrici che contengono il vettore (1,3) nel loro nucleo. Determinare la dimensione e una base di W.
- (c) Determinare $U \cap W \in U + W$.
- (d) Stabilire se U contiene qualche matrice con rango < 2 e diversa dalla matrice nulla.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 1 & 5 & t & -4 \\ -1 & 3 & 0 & -2 \\ 2 & -2 & 2 & 1 \end{pmatrix}$$

- (a) Determinare per quale valore di t la funzione f non è suriettiva.
- (b) Per il valore di t trovato determinare delle basi del nucleo e dell'immagine di f.
- (c) Poniamo ora t=0. Sia $U \subset \mathbb{R}^4$ il sottospazio generato dai vettori $u_1=(1,0,0,0)$, $u_2=(0,0,1,0),\ u_3=(0,2,1,3)$. Scrivere la matrice della funzione $\tilde{f}\colon U\to\mathbb{R}^3$, definita ponendo $\tilde{f}(u)=f(u)$, rispetto alla base $\{u_1,u_2,u_3\}$ di U e alla base canonica di \mathbb{R}^3 .
- (d) Verificare che $\tilde{f}: U \to \mathbb{R}^3$ è un isomorfismo.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da f(1,0,0) = (2,1,-1), f(0,1,0) = (1,2,1) e tale che v = (1,-1,1) sia un autovettore relativo all'autovalore $\lambda = 0$.

- (a) Scrivere la matrice A di f rispetto alla base canonica.
- (b) Determinare gli autovalori e autovettori di f e dire se A è diagonalizzabile.
- (c) Stabilire se esiste una base **ortonormale** di \mathbb{R}^3 formata da autovettori di f e, se esiste, trovarla.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati i punti $A=(0,2,1),\,B=(2,3,-1),\,C=(3,3,0).$

- (a) Verificare che l'angolo \widehat{ABC} è retto e trovare un punto D tale che \widehat{ABCD} sia un rettangolo.
- (b) Trovare il punto E, intersezione delle diagonali del rettangolo ABCD.
- (c) Scrivere un'equazione cartesiana del piano π che contiene il rettangolo ABCD.

1º appello — 15 giugno 2021

Esercizio 1. Sia $M(2,\mathbb{R})$ lo spazio vettoriale delle matrici 2×2 a coefficienti reali. Data $A = \begin{pmatrix} 0 & 1 \\ 3 & -2 \end{pmatrix}$, sia $U \subset M(2,\mathbb{R})$ il sottospazio formato dalle matrici che commutano con A:

$$U = \{ B \in M(2, \mathbb{R}) \, | \, AB = BA \}.$$

- (a) Determinare la dimensione e una base di U.
- (b) Sia $W \subset M(2,\mathbb{R})$ il sottospazio formato dalle matrici che contengono il vettore (2,3) nel loro nucleo. Determinare la dimensione e una base di W.
- (c) Determinare $U \cap W \in U + W$.
- (d) Stabilire se U contiene qualche matrice con rango < 2 e diversa dalla matrice nulla.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 1 & 0 & t & -4 \\ 2 & -3 & -3 & 1 \\ -1 & 2 & 3 & -2 \end{pmatrix}$$

- (a) Determinare per quale valore di t la funzione f non è suriettiva.
- (b) Per il valore di t trovato determinare delle basi del nucleo e dell'immagine di f.
- (c) Poniamo ora t=0. Sia $U\subset\mathbb{R}^4$ il sottospazio generato dai vettori $u_1=(0,1,0,0),$ $u_2=(0,0,1,0),$ $u_3=(2,2,-1,1).$ Scrivere la matrice della funzione $\tilde{f}\colon U\to\mathbb{R}^3$, definita ponendo $\tilde{f}(u)=f(u)$, rispetto alla base $\{u_1,u_2,u_3\}$ di U e alla base canonica di \mathbb{R}^3 .
- (d) Verificare che $\tilde{f}: U \to \mathbb{R}^3$ è un isomorfismo.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da f(0,1,0) = (2,5,1), f(0,0,1) = (-2,1,5) e tale che v = (2,-1,1) sia un autovettore relativo all'autovalore $\lambda = 0$.

- (a) Scrivere la matrice A di f rispetto alla base canonica.
- (b) Determinare gli autovalori e autovettori di f e dire se A è diagonalizzabile.
- (c) Stabilire se esiste una base **ortonormale** di \mathbb{R}^3 formata da autovettori di f e, se esiste, trovarla.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati i punti $A=(2,1,1),\,B=(3,0,2),\,C=(4,2,3).$

- (a) Verificare che l'angolo \widehat{ABC} è retto e trovare un punto D tale che \widehat{ABCD} sia un rettangolo.
- (b) Trovare il punto E, intersezione delle diagonali del rettangolo ABCD.
- (c) Scrivere un'equazione cartesiana del piano π che contiene il rettangolo ABCD.

1º appello — 15 giugno 2021

Esercizio 1. Sia $M(2,\mathbb{R})$ lo spazio vettoriale delle matrici 2×2 a coefficienti reali. Data $A = \begin{pmatrix} 1 & 3 \\ -2 & 0 \end{pmatrix}$, sia $U \subset M(2,\mathbb{R})$ il sottospazio formato dalle matrici che commutano con A:

$$U = \{ B \in M(2, \mathbb{R}) \mid AB = BA \}.$$

- (a) Determinare la dimensione e una base di U.
- (b) Sia $W \subset M(2,\mathbb{R})$ il sottospazio formato dalle matrici che contengono il vettore (3,-1) nel loro nucleo. Determinare la dimensione e una base di W.
- (c) Determinare $U \cap W \in U + W$.
- (d) Stabilire se U contiene qualche matrice con rango < 2 e diversa dalla matrice nulla.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 1 & -2 & t & 1 \\ 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \end{pmatrix}$$

- (a) Determinare per quale valore di t la funzione f non è suriettiva.
- (b) Per il valore di t trovato determinare delle basi del nucleo e dell'immagine di f.
- (c) Poniamo ora t=0. Sia $U \subset \mathbb{R}^4$ il sottospazio generato dai vettori $u_1=(1,0,0,0)$, $u_2=(0,0,1,0), u_3=(1,2,-1,3)$. Scrivere la matrice della funzione $\tilde{f}\colon U\to\mathbb{R}^3$, definita ponendo $\tilde{f}(u)=f(u)$, rispetto alla base $\{u_1,u_2,u_3\}$ di U e alla base canonica di \mathbb{R}^3 .
- (d) Verificare che $\tilde{f}: U \to \mathbb{R}^3$ è un isomorfismo.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da f(0,1,0) = (-1,2,-1), f(0,0,1) = (-1,-1,2) e tale che v = (1,0,-1) sia un autovettore relativo all'autovalore $\lambda = 3$.

- (a) Scrivere la matrice A di f rispetto alla base canonica.
- (b) Determinare gli autovalori e autovettori di f e dire se A è diagonalizzabile.
- (c) Stabilire se esiste una base **ortonormale** di \mathbb{R}^3 formata da autovettori di f e, se esiste, trovarla.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati i punti $A=(3,0,-2),\ B=(-1,1,-1),\ C=(-1,2,-2).$

- (a) Verificare che l'angolo \widehat{ABC} è retto e trovare un punto D tale che \widehat{ABCD} sia un rettangolo.
- (b) Trovare il punto E, intersezione delle diagonali del rettangolo ABCD.
- (c) Scrivere un'equazione cartesiana del piano π che contiene il rettangolo ABCD.