

Markov Process

Industrial AI Lab.

Prof. Seungchul Lee

Sequential Processes

- Most classifiers ignored the sequential aspects of data
- Consider a system which can occupy one of N discrete states or categories

$$q_t \in \{S_1, S_2, ..., S_N\}$$

- We are interested in stochastic systems, in which state evolution is random
- Any joint distribution can be factored into a series of conditional distributions

$$p(q_0, q_1, ..., q_T) = p(q_0)p(q_1|q_0)p(q_2|q_1q_0) \cdots$$

Almost impossible to compute!

Markov Chain

Joint distribution can be factored into a series of conditional distributions

$$p(q_0,q_1,\cdots,q_T) = p(q_0)\,p(q_1\mid q_0)\,p(q_2\mid q_1,q_0)\cdots$$

Markovian property (assumption)

$$p(q_{t+1}\mid q_t, \cdots, q_0) = p(q_{t+1}\mid q_t)$$

Tractable in computation of joint distribution

$$egin{aligned} p(q_0\,,q_1\,,\cdots,q_T) &= p(q_0)\,p(q_1\mid q_0)\,p(q_2\mid q_1\,,q_0)\,p(q_3\mid q_2\,,q_1\,,q_0)\cdots \ &= p(q_0)\,p(q_1\mid q_0)\,p(q_2\mid q_1)\,p(q_3\mid q_2)\cdots \end{aligned}$$

Markov Process

$$p(q_0, q_1, ..., q_T) = p(q_0)p(q_1|q_0)p(q_2|q_1q_0)p(q_3|q_2q_1q_0) \cdots$$

$$p(q_0, q_1, ..., q_T) = p(q_0)p(q_1|q_0)p(q_2|q_1)p(q_3|q_2) \cdots$$

Possible and tractable

Markov Process

• (Assumption) for a Markov process, the next state depends only on the current state:

$$p(q_{t+1}|q_t, \dots, q_0) = p(q_{t+1}|q_t)$$

More clearly

$$P(q_{t+1} = s_i | q_t = s_i) = P(q_{t+1} = s_i | q_t = s_i, \text{ any earlier history})$$

- Given current state, the past does not matter
- The state captures all relevant information from the history
- The state is a sufficient statistic of the future

State Transition Matrix

• For a Markov state s and successor state s', the state transition probability is defined by

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

• State transition matrix P defines transition probabilities from all states s to all successor states s',

$$\mathcal{P} = \textit{from} egin{bmatrix} \textit{to} \ \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \ dots \ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

Markov Process

• A Markov process is a memoryless random process, i.e., a sequence of random states s_1, s_2, \cdots with the Markov property

Definition

A Markov Process (or Markov Chain) is a tuple $\langle \mathcal{S}, \mathcal{P} \rangle$

- lacksquare \mathcal{S} is a (finite) set of states
- lacksquare $\mathcal P$ is a state transition probability matrix,

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

State Transition Matrix

Property of P Matrix

• Sum of the elements on each row yields 1

$$\sum_{j \in S} p_{i,j} = 1$$

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1/2 & 1/2 & 0 \\ 1/3 & 2/3 & 0 \end{bmatrix}$$

Property of P Matrix

Sum of the elements on each row yields 1

$$\sum_{j \in S} p_{i,j} = 1$$

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1/2 & 1/2 & 0 \\ 1/3 & 2/3 & 0 \end{bmatrix}$$

• Question: P^2 and P^n (will discuss later)

Markov Chain Components

- 1. a finite set of N states, $S = \{S_1, \dots, S_N\}$
- 2. a state transition probability, $P = \{a_{ij}\}_{M \times M}$, $1 \le i, j \le M$
- 3. an initial state probability distribution, $\pi = \{\pi_i\}$

Passive stochastic behavior

Student Markov Chain Episodes

• Starting from S_1 = Class 1

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

Chapman-Kolmogorov Equation

• (1-step transition probabilities) For a Markov chain on a finite state space, $S = \{S_1, \cdots, S_N\}$, with transition probability matrix P and initial distribution $\pi = \{\pi_i^{(0)}\}$ (row vector) then the distribution of X(1) is given by

$$\begin{bmatrix} \pi_1^{(1)} & \pi_2^{(1)} & \pi_3^{(1)} \end{bmatrix} = \begin{bmatrix} \pi_1^{(0)} & \pi_2^{(0)} & \pi_3^{(0)} \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}$$

Chapman-Kolmogorov Equation

• (2-step transition probabilities) For a Markov chain on a finite state space, $S = \{S_1, \cdots, S_N\}$, with transition probability matrix P and initial distribution $\pi = \{\pi_i^{(0)}\}$ (row vector) then the distribution of X(2) is given by

$$\begin{bmatrix} \pi_1^{(2)} & \pi_2^{(2)} & \pi_3^{(2)} \end{bmatrix} = \begin{bmatrix} \pi_1^{(1)} & \pi_2^{(1)} & \pi_3^{(1)} \end{bmatrix} P = \begin{bmatrix} \pi_1^{(0)} & \pi_2^{(0)} & \pi_3^{(0)} \end{bmatrix} P^2$$

Chapman-Kolmogorov Equation

• (n-step transition probabilities) For a Markov chain on a finite state space, $S = \{S_1, \cdots, S_N\}$, with transition probability matrix P and initial distribution $\pi = \{\pi_i^{(0)}\}$ (row vector) then the distribution of X(n) is given by

$$\begin{bmatrix} \pi_1^{(n)} & \pi_2^{(n)} & \pi_3^{(n)} \end{bmatrix} = \begin{bmatrix} \pi_1^{(n-1)} & \pi_2^{(n-1)} & \pi_3^{(n-1)} \end{bmatrix} P = \begin{bmatrix} \pi_1^{(0)} & \pi_2^{(0)} & \pi_3^{(0)} \end{bmatrix} P^n$$

• P^n : n-step transition probabilities

n-step Transition Probability

- $p_{ij}(n) = P[X_n = j | X_0 = i]$
- $p_{ij} = p_{ij}(1) = P[X_1 = j | X_0 = i]$
- Key recursion:

$$p_{ij}(n) = \sum_{k=1}^{N} p_{ik}(n-1) p_{kj}(1)$$

 $i \rightarrow k$ and $k \rightarrow j$ imply $i \rightarrow j$

Example

	n = 1	n = 2	n = 3
$p_{11}(n)$			
$p_{12}(n)$			
$p_{13}(n)$			

$$\begin{bmatrix} \pi_1 & \pi_2 & \pi_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Stationary Distribution

- Steady-state behavior
- Does $p_{ij}(n) = P[X_n = j | X_0 = i]$ converge to some π_j ?
- Take the limit as $n \to \infty$

$$p_{ij}(n) = \sum_{k=1}^{N} p_{ik}(n-1) p_{kj}$$

$$\pi_j = \sum_{k=1}^N \pi_k \, p_{kj}$$

• Need also $\sum_{i} \pi_{i} = 1$

$$\pi = \pi P$$

- How to compute
 - Eigen-analysis
 - Fixed-point iteration

Hidden Markov Model

Hidden Markov Model (HMM)

- True state (or hidden variable) follows Markov chain
- Observation emitted from state

Question: state estimation

What is
$$p(q_t = s_i \mid O_1, O_2, \cdots, O_T)$$

HMM can do this, but with many difficulties

Hidden State

- Assumption
 - We can observe something that's affected by the true state
 - Natural way of thinking
- Limited sensors (incomplete state information)
 - But still partially related
- Noisy sensors
 - Unreliable
- Observation emitted from q_t
 - O_t is noisily determined depending on the current state q_t
 - Assume that O_t is conditionally independent of $\{q_{t-1}, q_{t-2}, \dots, q_0, O_{t-1}, O_{t-2}, \dots, O_0\}$ given q_t

Markov Property

- 1. a finite set of N states, $S = \{ S_1, \dots, S_N \}$
- 2. a state transition probability, $P = \{a_{ij}\}_{M \times M}$, $1 \le i, j \le M$
- 3. an initial state probability distribution, $\pi = \{ \pi_i \}$
- 4. an observation symbol probability distribution, $b_i(O(n))$

Hidden Markov Models

• Question 1: State Estimation What is $P(q_t = Si | O_1 O_2 \cdots O_T)$

Interested for us

- Current state estimation given sequence of observations
- Question 2: Most Probable Path Given $O_1O_2\cdots O_T$, what is the most probable path that I took? And what is that probability?
- Question 3: Learning HMMs Given $O_1O_2...O_T$, what is the maximum likelihood HMM that could have produced this string of observations?

Kalman Filter

Low-pass Filter in Time

New data x_k comes in

$$ar{x}_k = rac{x_1+x_2+\cdots+x_{k-1}+x_k}{k}$$

Recursive

$$egin{align} ar{x}_k &= rac{k-1}{k}ar{x}_{k-1} + rac{1}{k}x_k \ &= lphaar{x}_{k-1} + (1-lpha)x_k, \qquad lpha &= rac{k-1}{k} \ \end{align*}$$

Moving Average Filter

Use only the latest n data points

$$\bar{x}_k = \frac{x_{k-n+1} + x_{k-n+2} + \dots + x_k}{n}$$

$$\bar{x}_{k-1} = \frac{x_{k-n} + x_{k-n+1} + \dots + x_{k-1}}{n}$$

$$\bar{x}_k - \bar{x}_{k-1} = \frac{x_{k-n+1} + x_{k-n+2} + \dots + x_k}{n} - \frac{x_{k-n} + x_{k-n+1} + \dots + x_{k-1}}{n} = \frac{x_k - x_{k-n}}{n}$$

$$\bar{x}_k = \bar{x}_{k-1} + \frac{x_k - x_{k-n}}{n}$$

Exponentially Weighted Average Filter

$$egin{aligned} ar{x}_k &= lpha ar{x}_{k-1} + (1-lpha) x_k \ &= lpha (lpha ar{x}_{k-2} + (1-lpha) x_{k-1}) + (1-lpha) x_k \ &= lpha^2 ar{x}_{k-2} + lpha (1-lpha) x_{k-1} + (1-lpha) x_k \ &dots \ &= (1-lpha) (1 x_k + lpha x_{k-1} + lpha^2 x_{k-2} + \cdots) \end{aligned}$$

Sensor Fusion (Two Measured Observations)

Kalman Filter

• Linear dynamical system of motion

$$egin{aligned} x_{t+1} &= Ax_t + Bu_t \ z_t &= Cx_t \end{aligned}$$

• A, B, C?

Tracking with KFs: Gaussians Initial (prior) estimate

