Cognome	Nome	Matricola

(Ingegneria Civile, seconda squadra)

Prof. F. Bottacin

3° Appello — 16 settembre 2009

Esercizio 1. Siano V e W due spazi vettoriali, sia $\{v_1, v_2, v_3, v_4\}$ una base di V e sia $\{w_1, w_2, w_3\}$ una base di W. Indichiamo con $f: V \to W$ un'applicazione lineare tale che

$$f(v_1 - v_3) = w_1 - 2w_2 - 2w_3$$
 $f(v_1 - v_2 + v_3) = w_2$
 $f(v_1 + v_3) = w_1 + 2w_2$ $f(v_1 - v_3 + v_4) = 5w_1 - 4w_3$

- (a) Si dica se f è univocamente determinata dalle condizioni date e si scriva la matrice di f rispetto alle basi date.
- (b) Si determini una base di Ker(f) e una base di Im(f).
- (c) Si determini $f^{-1}(w_1 + w_3)$.
- (d) Si dica se esiste un'applicazione lineare $g:W\to V$ tale che $f\circ g:W\to W$ sia l'identità (**Attenzione:** non è richiesto di determinare una tale g, ma solo di dire se essa esiste oppure no, giustificando la risposta).

Esercizio 2. Nello spazio vettoriale \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (1, 0, -2, 0), u_2 = (-3, -6, 6, 2)$ e $u_3 = (0, 3, 0, -1)$.

- (a) Si determinino le equazioni cartesiane e una base di U e del sottospazio U^{\perp} (ortogonale di U).
- (b) Indichiamo con $\pi: \mathbb{R}^4 \to \mathbb{R}^4$ la proiezione ortogonale sul sottospazio U^{\perp} . Si scriva la matrice di π rispetto alla base canonica di \mathbb{R}^4 e si determinino il nucleo e l'immagine di π .
- (c) Dato il vettore v=(1,1,1,1) si scriva v nella forma v=v'+v'', con $v'\in U$ e $v''\in U^{\perp}.$

Esercizio 3. Nello spazio vettoriale \mathbb{R}^3 si consideri la forma bilineare simmetrica g definita da

$$g(v,w) = x_1y_1 - x_1y_2 + 2x_1y_3 - x_2y_1 + 2x_2y_2 - x_2y_3 + 2x_3y_1 - x_3y_2 + 4x_3y_3,$$

ove $v = (x_1, x_2, x_3)$ e $w = (y_1, y_2, y_3)$.

- (a) Si scriva la matrice di g rispetto alla base canonica.
- (b) Si dica se g è non degenere e se essa è definita positiva, negativa o indefinita.
- (c) Si determini una base ortogonale.
- (d) Si stabilisca se esistono vettori isotropi e, in caso affermativo, se ne determini almeno uno.

Esercizio 4. Nello spazio euclideo tridimensionale sono dati i punti A = (0, -1, 1), B = (-1, 0, 2) e C = (1, -1, -4).

- (a) Si determini l'equazione cartesiana del piano π passante per $A, B \in C$.
- (b) Si determini la retta r passante per A e per il punto medio M del segmento BC.
- (c) Si determini la retta s passante per A, contenuta nel piano π e ortogonale alla retta r.
- (d) Infine, dato il punto P = (1, 1, 1), si determinino le distanze di P dalla retta r e dal piano π .

Cognome	Nome	Matricola
	rione	IIIGIIICOIG

(Ingegneria Civile, seconda squadra)

Prof. F. Bottacin

3° Appello — 16 settembre 2009

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (0, -1, 0, 3), u_2 = (2, 0, 1, 0)$ e $u_3 = (6, -2, 3, 6)$.

- (a) Si determinino le equazioni cartesiane e una base di U e del sottospazio U^{\perp} (ortogonale di U).
- (b) Indichiamo con $\pi: \mathbb{R}^4 \to \mathbb{R}^4$ la proiezione ortogonale sul sottospazio U^{\perp} . Si scriva la matrice di π rispetto alla base canonica di \mathbb{R}^4 e si determinino il nucleo e l'immagine di π .
- (c) Dato il vettore v = (1, -1, 1, -1) si scriva v nella forma v = v' + v'', con $v' \in U$ e $v'' \in U^{\perp}$.

Esercizio 2. Nello spazio euclideo tridimensionale sono dati i punti $A=(2,0,1),\ B=(0,3,-2)$ e C=(1,1,0).

- (a) Si determini l'equazione cartesiana del piano π passante per $A, B \in C$.
- (b) Si determini la retta r passante per A e per il punto medio M del segmento BC.
- (c) Si determini la retta s passante per A, contenuta nel piano π e ortogonale alla retta r.
- (d) Infine, dato il punto P = (2, 2, 2), si determinino le distanze di P dalla retta r e dal piano π .

Esercizio 3. Siano V e W due spazi vettoriali, sia $\{v_1, v_2, v_3, v_4\}$ una base di V e sia $\{w_1, w_2, w_3\}$ una base di W. Indichiamo con $f: V \to W$ un'applicazione lineare tale che

$$f(v_1 + v_4) = w_1 + w_2 + 2w_3$$
 $f(v_1 - v_2 - v_4) = w_3$
 $f(v_1 - v_4) = -w_1 + w_2$ $f(v_1 + v_3 + v_4) = w_1 + 2w_2 + w_3$

- (a) Si dica se f è univocamente determinata dalle condizioni date e si scriva la matrice di f rispetto alle basi date.
- (b) Si determini una base di Ker(f) e una base di Im(f).
- (c) Si determini $f^{-1}(w_1 + w_2)$.
- (d) Si dica se esiste un'applicazione lineare $g:W\to V$ tale che $f\circ g:W\to W$ sia l'identità (**Attenzione:** non è richiesto di determinare una tale g, ma solo di dire se essa esiste oppure no, giustificando la risposta).

Esercizio 4. Nello spazio vettoriale \mathbb{R}^3 si consideri la forma bilineare simmetrica q definita da

$$g(v, w) = 2x_1y_1 + x_1y_2 - x_1y_3 + x_2y_1 + x_2y_2 - 2x_2y_3 - x_3y_1 - 2x_3y_2 + 3x_3y_3$$

ove $v = (x_1, x_2, x_3)$ e $w = (y_1, y_2, y_3)$.

- (a) Si scriva la matrice di g rispetto alla base canonica.
- (b) Si dica se g è non degenere e se essa è definita positiva, negativa o indefinita.
- (c) Si determini una base ortogonale.
- (d) Si stabilisca se esistono vettori isotropi e, in caso affermativo, se ne determini almeno uno.

Cognome	Nome	Matricola

(Ingegneria Civile, seconda squadra)

Prof. F. Bottacin

3° Appello — 16 settembre 2009

Esercizio 1. Nello spazio vettoriale \mathbb{R}^3 si consideri la forma bilineare simmetrica g definita da

$$g(v,w) = 3x_1y_1 + x_1y_2 + 2x_1y_3 + x_2y_1 + x_2y_2 + 2x_2y_3 + 2x_3y_1 + 2x_3y_2 + x_3y_3,$$

ove $v = (x_1, x_2, x_3)$ e $w = (y_1, y_2, y_3)$.

- (a) Si scriva la matrice di g rispetto alla base canonica.
- (b) Si dica se g è non degenere e se essa è definita positiva, negativa o indefinita.
- (c) Si determini una base ortogonale.
- (d) Si stabilisca se esistono vettori isotropi e, in caso affermativo, se ne determini almeno uno.

Esercizio 2. Nello spazio euclideo tridimensionale sono dati i punti A = (1, -2, 0), B = (0, 1, -1) e C = (2, 0, -3).

- (a) Si determini l'equazione cartesiana del piano π passante per $A, B \in C$.
- (b) Si determini la retta r passante per A e per il punto medio M del segmento BC.
- (c) Si determini la retta s passante per A, contenuta nel piano π e ortogonale alla retta r.
- (d) Infine, dato il punto P = (1, 1, 1), si determinino le distanze di P dalla retta r e dal piano π .

Esercizio 3. Nello spazio vettoriale \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (1, 0, -2, 0), u_2 = (-3, -6, 6, 2)$ e $u_3 = (0, 3, 0, -1)$.

- (a) Si determinino le equazioni cartesiane e una base di U e del sottospazio U^{\perp} (ortogonale di U).
- (b) Indichiamo con $\pi : \mathbb{R}^4 \to \mathbb{R}^4$ la proiezione ortogonale sul sottospazio U^{\perp} . Si scriva la matrice di π rispetto alla base canonica di \mathbb{R}^4 e si determinino il nucleo e l'immagine di π .
- (c) Dato il vettore v=(1,1,1,1) si scriva v nella forma v=v'+v'', con $v'\in U$ e $v''\in U^{\perp}.$

Esercizio 4. Siano V e W due spazi vettoriali, sia $\{v_1, v_2, v_3, v_4\}$ una base di V e sia $\{w_1, w_2, w_3\}$ una base di W. Indichiamo con $f: V \to W$ un'applicazione lineare tale che

$$f(v_1 - v_3 + v_4) = 5w_1 - 4w_3$$
 $f(v_1 - v_3) = w_1 - 2w_2 - 2w_3$
 $f(v_1 - v_2 + v_3) = w_2$ $f(v_1 + v_3) = w_1 + 2w_2$

- (a) Si dica se f è univocamente determinata dalle condizioni date e si scriva la matrice di f rispetto alle basi date.
- (b) Si determini una base di Ker(f) e una base di Im(f).
- (c) Si determini $f^{-1}(w_1 + w_3)$.
- (d) Si dica se esiste un'applicazione lineare $g:W\to V$ tale che $f\circ g:W\to W$ sia l'identità (**Attenzione:** non è richiesto di determinare una tale g, ma solo di dire se essa esiste oppure no, giustificando la risposta).

~		
Cognome	Nome	Matricola
	1\0111C	WIAUIICOIA

(Ingegneria Civile, seconda squadra)

PROF. F. BOTTACIN

3° Appello — 16 settembre 2009

Esercizio 1. Nello spazio euclideo tridimensionale sono dati i punti A = (-1, 2, 1), B = (0, 1, -1) e C = (1, -1, 2).

- (a) Si determini l'equazione cartesiana del piano π passante per $A, B \in C$.
- (b) Si determini la retta r passante per A e per il punto medio M del segmento BC.
- (c) Si determini la retta s passante per A, contenuta nel piano π e ortogonale alla retta r.
- (d) Infine, dato il punto P=(2,2,2), si determinino le distanze di P dalla retta r e dal piano π .

Esercizio 2. Siano V e W due spazi vettoriali, sia $\{v_1, v_2, v_3, v_4\}$ una base di V e sia $\{w_1, w_2, w_3\}$ una base di W. Indichiamo con $f: V \to W$ un'applicazione lineare tale che

$$f(v_1 - v_2 - v_4) = w_3$$

$$f(v_1 - v_4) = -w_1 + w_2$$

$$f(v_1 + v_3 + v_4) = w_1 + 2w_2 + w_3$$

$$f(v_1 + v_4) = w_1 + w_2 + 2w_3$$

- (a) Si dica se f è univocamente determinata dalle condizioni date e si scriva la matrice di f rispetto alle basi date.
- (b) Si determini una base di Ker(f) e una base di Im(f).
- (c) Si determini $f^{-1}(w_1 + w_2)$.
- (d) Si dica se esiste un'applicazione lineare $g:W\to V$ tale che $f\circ g:W\to W$ sia l'identità (**Attenzione:** non è richiesto di determinare una tale g, ma solo di dire se essa esiste oppure no, giustificando la risposta).

Esercizio 3. Nello spazio vettoriale \mathbb{R}^3 si consideri la forma bilineare simmetrica q definita da

$$g(v,w) = 2x_1y_1 + 2x_1y_2 + 2x_1y_3 + 2x_2y_1 + x_2y_2 + x_2y_3 + 2x_3y_1 + x_3y_2 + 3x_3y_3,$$

ove $v = (x_1, x_2, x_3)$ e $w = (y_1, y_2, y_3)$.

- (a) Si scriva la matrice di g rispetto alla base canonica.
- (b) Si dica se g è non degenere e se essa è definita positiva, negativa o indefinita.
- (c) Si determini una base ortogonale.
- (d) Si stabilisca se esistono vettori isotropi e, in caso affermativo, se ne determini almeno uno.

Esercizio 4. Nello spazio vettoriale \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U generato dai vettori $u_1 = (0, -1, 0, 3), u_2 = (2, 0, 1, 0)$ e $u_3 = (6, -2, 3, 6)$.

- (a) Si determinino le equazioni cartesiane e una base di U e del sottospazio U^{\perp} (ortogonale di U).
- (b) Indichiamo con $\pi: \mathbb{R}^4 \to \mathbb{R}^4$ la proiezione ortogonale sul sottospazio U^{\perp} . Si scriva la matrice di π rispetto alla base canonica di \mathbb{R}^4 e si determinino il nucleo e l'immagine di π .
- (c) Dato il vettore v = (1, -1, 1, -1) si scriva v nella forma v = v' + v'', con $v' \in U$ e $v'' \in U^{\perp}$.