TTIC 31230 Fundamentals of Deep Learning

Transformer Problems.

Problem 1. A self-attention layer in the transformer takes a sequence of vectors $h_{\text{in}}[T,J]$ and computes a sequence of vectors $h_{\text{out}}[T,J]$ using the following equations where k ranges over "heads". Heads are intended to allow for different relationship between words such as "coreference" or "subject of" for a verb. But the actual meaning emerges during training and is typically difficult or impossible to interpret. In the following equations we typically hve U < J and we require I = J/K so that the concatenation of K vectors of dimension I is a vector of dimension J.

Query $[k,t,U] = W^Q[k,U,J]h_{\mathrm{in}}[t,J]$ S(ore (k,t,T_2)) $Key[k,t,U] = W^K[k,U,J]h_{\mathrm{in}}[t,J]$ = $Query[k,t_1,U]Key[k,t_2,U]$ (ore $Query[k,t_1,U]Key[k,t_2,U]$ = $Query[k,t_1,U]K$

A summation over N terms can be done in parallel in $O(\log N)$ time.

(a) For a given head k and position t_1 what is the parallel running time of the above softmax operation, as a function of T and U where we first compute the scores to be used in the softmax and then compute the normalizing constant Z.

Solution: The scores can be computed in parallel in $\ln U$ time and then Z can be computed in $\ln T$ time. We then get $O(\ln T + \ln U)$. In practice the inner product used in computing the scores would be done in O(U) time giving $O(U + \ln T)$.

(b) What is the order of running time of the self-attention layer as a function of T, J and K (we have I and U are both less than J.)

Solution: $O(\ln T + \ln J)$. In practice the inner products would be done serially which would give $O(J + \ln T)$.

Problem 2. Just as CNNs can be done in two dimensions for vision and in one dimension for language, the Transformer can be done in two dimensions for vision — the so-called spatial transformer.

(a) Rewrite the equations from problem 1 so that the time index t is replaced by spatial dimensions x and y.

Solution:

$$\begin{aligned} &\operatorname{Query}[k,x,y,U] &= W^Q[k,U,J]h_{\operatorname{in}}[x,y,J] \\ &\operatorname{Key}[k,x,y,U] &= W^K[k,U,J]h_{\operatorname{in}}[x,y,J] \\ &\alpha[k,x_1,y_1,x_2,y_2] &= \operatorname{softmax}_{x_2,y_2} \operatorname{Query}[k,x_1,y_1,U]\operatorname{Key}[k,x_2,y_2,U] \\ &\operatorname{Value}[k,x,y,I] &= W^V[k,I,J]h_{\operatorname{in}}[x,y,J] \\ &\operatorname{Out}[k,x,y,I] &= \sum_{x',y'} \alpha[k,x,y,x',y']\operatorname{Value}[k,x',y',I] \\ &h_{\operatorname{out}}[x,y,J] &= \operatorname{Out}[1,x,y,I];\cdots;\operatorname{Out}[K,x,y,I] \end{aligned}$$

(b) Assuming that summations take logarithmic parallel time, give the parallel order of run time for the spatial self-attention layer as a function of X, Y, J and K (we have that I and U are both less than J).

Solution: $O(\ln XY + \ln J)$