NBA Player Performance Prediction

Name: Shefali Khera

Roll no: 22csu426

Affiliation: The NorthCap University

INTRODUCTION

Background:

- The NBA is rich with player statistics, and analyzing these stats can help predict future performance.
- Machine learning models can play a critical role in generating predictions based on past performance, helping teams optimize their strategies.

Problem Statement:

• How can we use historical data from the 2023-24 season to predict future player performance metrics, like points per game, rebounds?

Objective:

• Build a machine learning model to predict key performance indicators (KPIs) like points, assists, and rebounds for NBA players based on their 2023-24 season stats that help teams make informed decisions about player utilization, game strategy, and player development

Dataset Description

Dataset Source:

• The dataset was sourced from Kaggle and contains comprehensive NBA player statistics for the 2023-24 season, including playoff data.

Data Overview:

- The dataset includes 68 columns and 52218 rows.
- The dataset includes categorical data like PLAYER_NAME, TEAM_NAME, LOCATION, and Conference, and numerical data such as FGM, MIN_x, REB, PTS, AST, 3PA, 3PM, FTA, and FTM, which quantify player performance.
- The dataset consists of regular-season and playoff data, with no missing values or duplicate rows.

Key Features:

- Player Stats: Minutes Played, Field Goals Made, Rebounds, Assists, etc.
- Team Stats: Team name, opponent stats such as points in the paint, and overall team rank.

Preprocessing and Data Cleaning

Data Cleaning:

- No missing values were detected, simplifying preprocessing.
- No duplicate rows were found (dups. sum() = 0)

Outlier Removal:

• The Interquartile Range (IQR) calculated the bounds, capping values outside this range.

Feature Engineering:

- New features like PER (Player Efficiency Rating) were created from existing statistics.
- Text vectorization on the Comments column to convert textual data into numerical features for machine learning analysis.

Data Transformation:

- Categorical variables such as Conference were prepared for machine learning models using one-hot encoding.
- Log transformation to reduces skewness by converting values into their logarithmic form

DUPLICATE VALUES

```
[ ] dups = df.duplicated()
print('Number of duplicate rows = %d' % (dups.sum()))

df[dups]

Number of duplicate rows = 0

PLAYER_NAME PLAYER_ID TEAM_NAME_x LOCATION MIN_x FGM FGA FG_PCT FG3M FG3A ... DEF_RATING_RANK DREB_RANK DREB_PCT_RANK STL_RANK BLK_RANK OPP_PTS_OFF_TOV_RANK

O rows × 68 columns
```

NULL VALUES

OUTLIER DETECTION

ONE-HOT ENCODING

LOG TRANSFORMATION

```
import numpy as np
    df['log PTS'] = np.log(df['PTS'] + 1)
    print(df[['PTS', 'log_PTS']])
₹
           PTS log_PTS
          4.11 1.631199
          4.86 1.768150
          2.75 1.321756
          2.17 1.153732
          3.63 1.532557
    2413 29.83 3.428488
    2414 7.57 2.148268
    2415
          1.17 0.774727
    2416 1.50 0.916291
    2417
          1.67 0.982078
    [2418 rows x 2 columns]
```

- OneHotEncoder transforms categorical data (like 'Conference') into numerical format using binary vectors
- Log transformation `np.log(df['PTS'] + 1)` calculates the natural logarithm of the 'PTS' column, adding 1 to avoid log(0).

Exploratory Data Analysis (EDA)

Visualizations

- A correlation matrix was generated using numeric columns.
- A heatmap visually represented the strength of these correlations.
- A count plot showed the distribution of players across different conferences.
- Radar charts to compare player statistics across different dimensions
- Create word clouds to visualize the most common words used like player comments.

Key Insights

- The correlation heatmap revealed a strong positive correlation between assists (AST) and points (PTS). Players who assist more tend to score more points.
- A significant correlation was found between rebounds (REB) and minutes played (MIN_x), indicating that players on the court longer secure more rebounds.
- These insights can guide strategic decisions in team management, player development, and understanding player dynamics.

COUNT PLOT

• The correlation matrix shows the relationships between numerical variables, while the count plot displays the frequency of each conference and the histogram shows the distribution of field goal made.

HIST PLOT

CORRELATION MATRIX

RADAR CHART

 The radar chart visualizes the average statistics (PTS, AST, REB, STL, BLK) of several players. Each player's stats are represented by a polygon, allowing for a comparison of their performance across various metrics. It helps in understanding the strengths and weaknesses of individual players relative to others.

SCATTER PLOT

SCATTER PLOT

- Scatter Plot: Shows the relationship between two continuous variables (e.g., FGA and FGM).
- Box Plot: Displays the distribution of a continuous variable (e.g., PTS) across different categories (e.g., conferences). It provides information on the median, quartiles, and outliers.
- Violin Plot: Similar to box plot, but also shows the probability density of the data at different values, providing a more complete view of the distribution.

SCATTER PLOT

VIOLIN PLOT

Machine Learning Models

Regression Models

• Linear Regression:

Application: Predict continuous outcomes such as points scored (PTS) based on features like assists (AST), rebounds (REB), and field goals made (FGM).

• XGBoost (for Regression):

Application: Predict continuous performance metrics like Player Efficiency Rating (PER) using player statistics.

Classification Models

• Random Forest:

Application: Classify players based on performance categories, such as whether a player will score above a certain threshold in a game.

• XGBoost (for Classification):

Application: Predict categorical outcomes, such as whether a player will be an All-Star based on their performance metrics.

• Neural Networks:

Application: Classify player performance into categories like "high scorer" or "role player" based on their statistics.

PREDICTION FOR CLASSIFICATION

```
PREDICTION

[ ] sample_data = [[30, 8, 2, 5, 3, 6]]

[ ] sample_df = pd.DataFrame(sample_data, columns=['MIN_x', 'FGM', 'FG3M', 'FTM', 'OREB', 'DREB_x'])

[ ] predicted_conference = nb_model.predict(sample_df)
    print("Predicted Conference:", predicted_conference[0])

Predicted Conference: East
```

This code uses a classification model with features (`MIN_x`, `FGN`, `FG3M`, `FTM`, `OREB`, `DREB_x`) to predict the conference (East or West) and prints the predicted result.

PREDICTION FOR REGRESSION

This code creates sample data with features (`MIN_x`, `FGN`, `FG3M`, `FTM`, `OREB`, `DREB_x`) and uses a trained model (`regressor`) to predict points (`PTS`), then prints the predicted result.

Classification Model Analysis

XGBoost Classifier and Random Forest have the highest accuracy, indicating that they
are the best-performing models for predicting the 'Conference' variable. Neural Network
and Naive Bayes show lower accuracy, suggesting they may not be the most suitable
choices for this task.

Regression Model Analysis

• XGBoost Regression demonstrates the highest R-squared value. This implies that it explains the variance in the 'PTS' variable (the target for regression) the best. Multiple Linear Regression also shows a high R-squared, meaning that it fits the data well.

Feature Selection

Feature selection using `SelectKBest` with `f_classif` (ANOVA F-value) offers several benefits:

- 1. **Improved Model Performance**: Selecting the most relevant features reduces noise and irrelevant information that can negatively impact model performance. This often leads to higher accuracy, precision, recall, and other evaluation metrics.
- 2. **Reduced Overfitting**: Using fewer features can help prevent overfitting, which occurs when a model performs well on training data but poorly on unseen data. By focusing on the most informative features, we create a simpler and more generalizable model.
- 3. Faster Training: With fewer features, the model training process is faster and requires fewer computational resources.
- 4. **Enhanced Interpretability**: A model with a smaller set of features can be easier to interpret and understand. You can gain insights into the underlying relationships between the selected features and the target variable.

- We are using feature selection to identify the **top 10** features that are most relevant to predicting the `Conference` variable.
- The `f_classif` function is used for feature selection in classification problems.
- `SelectKBest` selects the top k features based on their statistical significance.

```
XGBoost Classifier Accuracy (Without Feature Selection): 0.993801652892562
/usr/local/lib/python3.10/dist-packages/sklearn/feature_selection/_univariate_selection.py:112: UserWarning: Features [23]
    warnings.warn("Features %s are constant." % constant_features_idx, UserWarning)
/usr/local/lib/python3.10/dist-packages/sklearn/feature_selection/_univariate_selection.py:113: RuntimeWarning: invalid val
    f = msb / msw
XGBoost Classifier Accuracy (With Feature Selection): 1.0
Difference in Accuracy: 0.006198347107438051
```

• The XGBoost classifier in the code achieves an accuracy of approximately 0.9938. This signifies a very high level of accuracy, indicating that the model is performing exceptionally well in predicting the 'Conference' variable. The model's performance is further enhanced by feature selection, resulting in potentially a slightly higher accuracy.

#