Apoplexy - Ein Fitnesstracker zur Rehabilitation von Schlaganfall-Patienten

Lukas Rost

Albert-Schweitzer-Gymnasium Erfurt

Aufbau und Schaltung des Geräts

• Elektromyografie-Sensor:

- Messung der Stärke der Armmuskel-Kontraktionen anhand von Potentialänderungen auf der Haut
- drei Oberflächenelektroden
- Ausgabe eines Analogsignals (Spannung) proportional zur Muskelaktivität

Mikrocontroller Atmel ATmega:

- Weitergabe der Sensordaten an den Bluetooth-Chip
- 8-Bit-Mikrocontroller mit RISC-Architektur (reduzierter Befehlssatz, aber schneller)
- Harvard-Struktur mit getrennten Speicherbereichen für Befehle und Daten
- gut für den Einsatzzweck geeignet (schnell, besitzt alle nötigen Schnittstellen)

Bluetooth-Chip HC-05:

- drahtlose Kommunikation mit dem Android-Mobilgerät über Funk
- alle nötigen Bestandteile auf einem Chip integriert
- Kommunikation zwischen Mikrocontroller und HC-05 per UART-Schnittstelle (digitale serielle Schnittstelle zur Datenübertragung)

Abbildung 1. vereinfachtes Blockschaltbild

Programmierung des Geräts

- 1. Initialisierung der Schnittstellen und Funktionen
- 2. Messung der Spannung per Analog-Digital-Wandler
- 3. Senden des aktuellen Wertes an den Bluetooth-Chip im Abstand einer halben Sekunde

Abbildung 2. aufgebaute Schaltung auf einem Breadboard

Konzept des Minispiels

- Steuerung eines virtuellen Flugzeuges über eine Gebirgslandschaft mit Bergen unterschiedlicher Höhe
- Höhe des Flugzeugs ~ gemessene Muskelaktivität
- Ziel: Flugzeug möglichst lange fliegen lassen, ohne gegen Berg zu stoßen
- zur Implementierung genutzt: eigenes Android-Oberflächenelement (View)

Konzept und Aufbau der Begleitapp

Kommunikation mit dem Gerät

 Ausgleichen von Schwankungen der Messwerte durch eine Warteschlange (Queue)

Abbildung 3. Funktionsweise einer Queue

Berechnung eines Prozentwerts aus den Messdaten:

$$p = 100 * \frac{avg(Q) - U_{min}}{U_{max} - U_{min}}$$

Implementierung der Gamification

Verteilung der Erfahrungspunkte:

- lacktriangle abhängig von: Liste der prozentualen Messwerte L, Anzahl der Messwerte d
- Punktzahl P für eine Übung:

$$P = \frac{min(L) + avg(L) + max(L)}{3}$$

• Punktzahl P_S für ein Minispiel:

$$P_S = P + 2 \cdot d$$

- Quests sollen verschiedene Anforderungen zur Fertigstellung voraussetzen
- SQL-Datenbank zum Speichern dieser Anforderungen gut geeignet (SQLite)
- Aufbau der Datenbanktabelle: Titel, Beschreibung, Symbol, ...
- mögliche Anforderungen:
 - 1. bestimmte Anzahl an XP
 - 2. Messwert einmal während einer Übung erreichen
 - 3. Messwert über eine bestimmte Zeitspanne halten
- Erfolge werden für den Nutzer sichtbar gemacht (über Dialoge etc.)

Abbildung 4. Aufbau einer relationalen Datenbank