Linear Threshold Units

$$h(\mathbf{x}) = \begin{cases} +1 & \text{if } w_1 x_1 + \ldots + w_n x_n \ge w_0 \\ -1 & \text{otherwise} \end{cases}$$

- We assume that each feature x_j and each weight w_j is a real number (we will relax this later)
- We will study three different algorithms for learning linear threshold units:
 - Perceptron: classifier
 - Logistic Regression: conditional distribution
 - Linear Discriminant Analysis: joint distribution

What can be represented by an LTU:

Conjunctions

$$x_1 \land x_2 \land x_4 \Leftrightarrow y$$

 $1 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 + 1 \cdot x_4 \ge 3$

At least m-of-n

at-least-2-of
$$\{x_1, x_3, x_4\} \Leftrightarrow y$$

 $1 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + 1 \cdot x_4 \ge 2$

Things that cannot be represented:

Non-trivial disjunctions:

$$(x_1 \wedge x_2) \vee (x_3 \wedge x_4) \Leftrightarrow y$$

 $1 \cdot x_1 + 1 \cdot x_2 + 1 \cdot x_3 + 1 \cdot x_4 \geq 2$ predicts
 $f(\langle 0110 \rangle) = 1$.

Exclusive-OR:

$$(x_1 \wedge \neg x_2) \vee (\neg x_1 \wedge x_2) \Leftrightarrow y$$

A canonical representation

- Given a training example of the form $(\langle x_1, x_2, x_3, x_4 \rangle, y)$
- transform it to $(1, x_1, x_2, x_3, x_4), y)$
- The parameter vector will then be $\mathbf{w} = \langle w_0, w_1, w_2, w_3, w_4 \rangle$.
- We will call the *unthresholded* hypothesis $u(\mathbf{x}, \mathbf{w})$ $u(\mathbf{x}, \mathbf{w}) = \mathbf{w} \cdot \mathbf{x}$
- Each hypothesis can be written $h(\mathbf{x}) = \text{sgn}(u(\mathbf{x},\mathbf{w}))$
- Our goal is to find w.

The LTU Hypothesis Space

- Fixed size: There are $O(2^{n^2})$ distinct linear threshold units over n boolean features
- Deterministic
- Continuous parameters

Geometrical View

Consider three training examples: $(\langle 1.0, 1.0 \rangle, +1)$ $(\langle 0.5, 3.0 \rangle, +1)$ $(\langle 2.0, 2.0 \rangle, -1)$

We want a classifier that looks like the following:

The Unthresholded Discriminant Function is a Hyperplane

The equationu(x) = w ⋅ xis a plane

$$\hat{y} = \begin{cases} +1 & \text{if } u(\mathbf{x}) \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Machine Learning and Optimization

- When learning a classifier, the natural way to formulate the learning problem is the following:
 - Given:
 - A set of N training examples $\{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$
 - A loss function L
 - Find:
 - The weight vector **w** that minimizes the expected loss on the training data

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} L(\operatorname{sgn}(\mathbf{w} \cdot \mathbf{x}_i), y_i).$$

In general, machine learning algorithms apply some optimization algorithm to find a good hypothesis. In this case, J is <u>piecewise</u> constant, which makes this a difficult problem

Approximating the expected loss by a smooth function

Simplify the optimization problem by replacing the original objective function by a smooth, differentiable function. For example, consider the *hinge loss*:

$$\tilde{J}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} max(0, 1 - y_i \mathbf{w} \cdot \mathbf{x}_i)$$

When
$$y = 1$$

Minimizing \tilde{J} by Gradient Descent Search

- Start with weight vector w₀
- Compute gradient $\nabla \tilde{J}(\mathbf{w}_0) = \left(\frac{\partial \tilde{J}(\mathbf{w}_0)}{\partial w_0}, \frac{\partial \tilde{J}(\mathbf{w}_0)}{\partial w_1}, \dots, \frac{\partial \tilde{J}(\mathbf{w}_0)}{\partial w_n}\right)$
- Compute $\mathbf{w}_1 = \mathbf{w}_0 \eta \nabla \tilde{J}(\mathbf{w}_0)$ where η is a "step size" parameter
- Repeat until convergence

Computing the Gradient

Let
$$\tilde{J}_{i}(\mathbf{w}) = \max(0, -y_{i}\mathbf{w} \cdot \mathbf{x}_{i})$$

$$\frac{\partial \tilde{J}(\mathbf{w})}{\partial w_{k}} = \frac{\partial}{\partial w_{k}} \left(\frac{1}{N} \sum_{i=1}^{N} \tilde{J}_{i}(\mathbf{w}) \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\partial}{\partial w_{k}} \tilde{J}_{i}(\mathbf{w}) \right)$$

$$\frac{\partial \tilde{J}_{i}(\mathbf{w})}{\partial w_{k}} = \frac{\partial}{\partial w_{k}} \max \left(0, -y_{i} \sum_{j} w_{j} x_{ij} \right)$$

$$= \begin{cases} 0 & \text{if } y_{i} \sum_{j} w_{j} x_{ij} > 0 \\ -y_{i} x_{ik} & \text{otherwise} \end{cases}$$

Batch Perceptron Algorithm

```
training examples (\mathbf{x}_i, y_i), i = 1 \dots N
Given:
Let \mathbf{w} = (0, 0, 0, 0, \dots, 0) be the initial weight vector.
Let g = (0, 0, ..., 0) be the gradient vector.
Repeat until convergence
       For i = 1 to N do
              u_i = \mathbf{w} \cdot \mathbf{x}_i
              If (y_i \cdot u_i < 0)
                      For j = 1 to n do
                              g_j = g_j - y_i \cdot x_{ij}
       \mathbf{g} := \mathbf{g}/N
```

Simplest case: $\eta = 1$, don't normalize g: "Fixed Increment Perceptron"

 $\mathbf{w} := \mathbf{w} - \overline{\eta}\mathbf{g}$

Online Perceptron Algorithm

Let $\mathbf{w} = (0, 0, 0, 0, \dots, 0)$ be the initial weight vector. Repeat forever

Accept training example i: $\langle \mathbf{x}_i, y_i \rangle$

$$u_i = \mathbf{w} \cdot \mathbf{x}_i$$
If $(y_i u_i < 0)$
For $j = 1$ to n do
 $g_j := y_i \cdot x_{ij}$
 $\mathbf{w} := \mathbf{w} + \eta \mathbf{g}$

This is called <u>stochastic gradient descent</u> because the overall gradient is approximated by the gradient from each individual example

Learning Rates and Convergence

The learning rate η must decrease to zero in order to guarantee convergence. The online case is known as the Robbins-Munro algorithm. It is guaranteed to converge under the following assumptions:

$$\lim_{t \to \infty} \eta_t = 0$$

$$\sum_{t=0}^{\infty} \eta_t = \infty$$

$$\sum_{t=0}^{\infty} \eta_t^2 < \infty$$

- The learning rate is also called the <u>step size</u>. Some algorithms (e.g., Newton's method, conjugate gradient) choose the stepsize automatically and converge faster
- There is only one "basin" for linear threshold units, so a local minimum is the global minimum. Choosing a good starting point can make the algorithm converge faster

Decision Boundaries

A classifier can be viewed as partitioning the <u>input space</u> or <u>feature</u> <u>space</u> X into decision regions

A linear threshold unit always produces a linear decision boundary. A set of points that can be separated by a linear decision boundary is said to be <u>linearly separable</u>.

Exclusive-OR is Not Linearly Separable

Extending Perceptron to More than Two Classes

If we have K > 2 classes, we can learn a separate LTU for each class. Let w_k be the weight vector for class k. We train it by treating examples from class y = k as the positive examples and treating the examples from all other classes as negative examples. Then we classify a new data point x according to

$$\widehat{y} = \underset{k}{\operatorname{argmax}} \mathbf{w}_k \cdot \mathbf{x}.$$

Summary of Perceptron algorithm for LTUs

- Directly Learns a Classifier
- Local Search
 - Begins with an initial weight vector. Modifies it iterative to minimize an error function. The error function is loosely related to the goal of minimizing the number of classification errors

Eager

- The classifier is constructed from the training examples
- The training examples can then be discarded
- Online or Batch
 - Both variants of the algorithm can be used

Logistic Regression

- Learn the conditional distribution $P(y \mid x)$
- Let $p_y(\mathbf{x}; \mathbf{w})$ be our estimate of $P(y \mid \mathbf{x})$, where \mathbf{w} is a vector of adjustable parameters. Assume only two classes y = 0 and y = 1, and

$$p_1(\mathbf{x}; \mathbf{w}) = \frac{\exp \mathbf{w} \cdot \mathbf{x}}{1 + \exp \mathbf{w} \cdot \mathbf{x}}.$$

$$p_0(\mathbf{x}; \mathbf{w}) = 1 - p_1(\mathbf{x}; \mathbf{w}).$$

On the homework, you will show that this is equivalent to

$$\log \frac{p_1(\mathbf{x}; \mathbf{w})}{p_0(\mathbf{x}; \mathbf{w})} = \mathbf{w} \cdot \mathbf{x}.$$

In other words, the log odds of class 1 is a linear function of x.

Why the exp function?

One reason: A linear function has a range from $[-\infty, \infty]$ and we need to force it to be positive and sum to 1 in order to be a probability:

Deriving a Learning Algorithm

- Since we are fitting a conditional probability distribution, we no longer seek to minimize the loss on the training data. Instead, we seek to find the probability distribution *h* that is most likely given the training data
- Let S be the training sample. Our goal is to find h to maximize P(h | S):

$$\begin{array}{lll} \operatorname{argmax} P(h|S) &=& \operatorname{argmax} \frac{P(S|h)P(h)}{P(S)} & \text{by Bayes' Rule} \\ &=& \operatorname{argmax} P(S|h)P(h) & \text{because } P(S) \text{ doesn't depend on } h \\ &=& \operatorname{argmax} P(S|h) & \text{if we assume } P(h) = \operatorname{uniform} \\ &=& \operatorname{argmax} \log P(S|h) & \text{because log is monotonic} \end{array}$$

The distribution P(S|h) is called the <u>likelihood function</u>. The log likelihood is frequently used as the objective function for learning. It is often written as $\ell(\mathbf{w})$.

The *h* that maximizes the likelihood on the training data is called the maximum likelihood estimator (MLE)

Computing the Likelihood

■ In our framework, we assume that each training example (x_i,y_i) is drawn from the same (but unknown) probability distribution P(x,y). This means that the log likelihood of S is the sum of the log likelihoods of the individual training examples:

$$\log P(S|h) = \log \prod_{i} P(\mathbf{x}_{i}, y_{i}|h)$$
$$= \sum_{i} \log P(\mathbf{x}_{i}, y_{i}|h)$$

Computing the Likelihood (2)

Recall that any joint distribution P(a,b) can be factored as P(a|b) P(b). Hence, we can write

$$\underset{h}{\operatorname{argmax}} \log P(S|h) = \underset{h}{\operatorname{argmax}} \sum_{i} \log P(\mathbf{x}_{i}, y_{i}|h)$$
$$= \underset{h}{\operatorname{argmax}} \sum_{i} \log P(y_{i}|\mathbf{x}_{i}, h) P(\mathbf{x}_{i}|h)$$

In our case, P(x | h) = P(x), because it does not depend on h, so

$$\underset{h}{\operatorname{argmax}} \log P(S|h) = \underset{h}{\operatorname{argmax}} \sum_{i} \log P(y_{i}|\mathbf{x}_{i},h) P(\mathbf{x}_{i}|h)$$
$$= \underset{h}{\operatorname{argmax}} \sum_{i} \log P(y_{i}|\mathbf{x}_{i},h)$$

Log Likelihood for Conditional Probability Estimators

- We can express the log likelihood in a compact form known as the <u>cross entropy</u>.
- Consider an example (x_i,y_i)
 - If $y_i = 0$, the log likelihood is log $[1 p_1(\mathbf{x}; \mathbf{w})]$
 - if $y_i = 1$, the log likelihood is log $[p_1(\mathbf{x}; \mathbf{w})]$
- These cases are mutually exclusive, so we can combine them to obtain:

```
\ell(y_i; \mathbf{x}_i, \mathbf{w}) = \log P(y_i \mid \mathbf{x}_i, \mathbf{w}) = (1 - y_i) \log[1 - p_1(\mathbf{x}_i; \mathbf{w})] + y_i \log p_1(\mathbf{x}_i; \mathbf{w})
```

The goal of our learning algorithm will be to find w to maximize

$$J(\mathbf{w}) = \sum_{i} \ell(y_i; \mathbf{x}_i, \mathbf{w})$$

Fitting Logistic Regression by Gradient Ascent

$$\frac{\partial J(\mathbf{w})}{\partial w_j} = \sum_i \frac{\partial}{\partial w_j} \ell(y_i; \mathbf{x}_i, \mathbf{w})
\frac{\partial}{\partial w_j} \ell(y_i; \mathbf{x}_i, \mathbf{w}) = \frac{\partial}{\partial w_j} ((1 - y_i) \log[1 - p_1(\mathbf{x}_i; \mathbf{w})] + y_1 \log p_1(\mathbf{x}_i; \mathbf{w}))
= (1 - y_i) \frac{1}{1 - p_1(\mathbf{x}_i; \mathbf{w})} \left(-\frac{\partial p_1(\mathbf{x}_i; \mathbf{w})}{\partial w_j} \right) + y_i \frac{1}{p_1(\mathbf{x}_i; \mathbf{w})} \left(\frac{\partial p_1(\mathbf{x}_i; \mathbf{w})}{\partial w_j} \right)
= \left[\frac{y_i}{p_1(\mathbf{x}_i; \mathbf{w})} - \frac{(1 - y_i)}{1 - p_1(\mathbf{x}_i; \mathbf{w})} \right] \left(\frac{\partial p_1(\mathbf{x}_i; \mathbf{w})}{\partial w_j} \right)
= \left[\frac{y_i(1 - p_1(\mathbf{x}_i; \mathbf{w})) - (1 - y_i)p_1(\mathbf{x}_i; \mathbf{w})}{p_1(\mathbf{x}_i; \mathbf{w})(1 - p_1(\mathbf{x}_i; \mathbf{w}))} \right] \left(\frac{\partial p_1(\mathbf{x}_i; \mathbf{w})}{\partial w_j} \right)
= \left[\frac{y_i - p_1(\mathbf{x}_i; \mathbf{w})}{p_1(\mathbf{x}_i; \mathbf{w})(1 - p_1(\mathbf{x}_i; \mathbf{w}))} \right] \left(\frac{\partial p_1(\mathbf{x}_i; \mathbf{w})}{\partial w_j} \right)$$

Gradient Computation (continued)

Note that p_1 can also be written as

$$p_1(\mathbf{x}_i; \mathbf{w}) = \frac{1}{(1 + \exp[-\mathbf{w} \cdot \mathbf{x}_i])}.$$

From this, we obtain:

$$\frac{\partial p_1(\mathbf{x}_i; \mathbf{w})}{\partial w_j} = -\frac{1}{(1 + \exp[-\mathbf{w} \cdot \mathbf{x}_i])^2} \frac{\partial}{\partial w_j} (1 + \exp[-\mathbf{w} \cdot \mathbf{x}_i])$$

$$= -\frac{1}{(1 + \exp[-\mathbf{w} \cdot \mathbf{x}_i])^2} \exp[-\mathbf{w} \cdot \mathbf{x}_i] \frac{\partial}{\partial w_j} (-\mathbf{w} \cdot \mathbf{x}_i)$$

$$= -\frac{1}{(1 + \exp[-\mathbf{w} \cdot \mathbf{x}_i])^2} \exp[-\mathbf{w} \cdot \mathbf{x}_i] (-x_{ij})$$

$$= p_1(\mathbf{x}_i; \mathbf{w}) (1 - p_1(\mathbf{x}_i; \mathbf{w})) x_{ij}$$

Completing the Gradient Computation

The gradient of the log likelihood of a single point is therefore

$$\frac{\partial}{\partial w_j} \ell(y_i; \mathbf{x}_i, \mathbf{w}) = \left[\frac{y_i - p_1(\mathbf{x}_i; \mathbf{w})}{p_1(\mathbf{x}_i; \mathbf{w})(1 - p_1(\mathbf{x}_i; \mathbf{w}))} \right] \left(\frac{\partial p_1(\mathbf{x}_i; \mathbf{w})}{\partial w_j} \right) \\
= \left[\frac{y_i - p_1(\mathbf{x}_i; \mathbf{w})}{p_1(\mathbf{x}_i; \mathbf{w})(1 - p_1(\mathbf{x}_i; \mathbf{w}))} \right] p_1(\mathbf{x}_i; \mathbf{w})(1 - p_1(\mathbf{x}_i; \mathbf{w})) x_{ij} \\
= (y_i - p_1(\mathbf{x}_i; \mathbf{w})) x_{ij}$$

The overall gradient is

$$\frac{\partial J(\mathbf{w})}{\partial w_j} = \sum_i (y_i - p_1(\mathbf{x}_i; \mathbf{w})) x_{ij}$$

Batch Gradient Ascent for Logistic Regression

```
Given: training examples (\mathbf{x}_i, y_i), i = 1 \dots N

Let \mathbf{w} = (0, 0, 0, 0, \dots, 0) be the initial weight vector.

Repeat until convergence

Let \mathbf{g} = (0, 0, \dots, 0) be the gradient vector.

For i = 1 to N do

p_i = 1/(1 + \exp[-\mathbf{w} \cdot \mathbf{x}_i])

\operatorname{error}_i = y_i - p_i

For j = 1 to n do

g_j = g_j + \operatorname{error}_i \cdot x_{ij}

\mathbf{w} := \mathbf{w} + \eta \mathbf{g} step in direction of increasing gradient
```

- An online gradient ascent algorithm can be constructed, of course
- Most statistical packages use a second-order (Newton-Raphson) algorithm for faster convergence. Each iteration of the second-order method can be viewed as a weighted least squares computation, so the algorithm is known as Iteratively-Reweighted Least Squares (IRLS)

Logistic Regression Implements a Linear Discriminant Function

■ In the 2-class 0/1 loss function case, we should predict ŷ = 1 if

$$E_{y|\mathbf{x}}[L(0,y)] > E_{y|\mathbf{x}}[L(1,y)]$$

$$\sum_{y} P(y|\mathbf{x})L(0,y) > \sum_{y} P(y|\mathbf{x})L(1,y)$$

$$P(y=0|\mathbf{x})L(0,0) + P(y=1|\mathbf{x})L(0,1) > P(y=0|\mathbf{x})L(1,0) + P(y=1|\mathbf{x})L(1,1)$$

$$P(y=1|\mathbf{x}) > P(y=0|\mathbf{x})$$

$$\frac{P(y=1|\mathbf{x})}{P(y=0|\mathbf{x})} > 1 \quad \text{if } P(y=0|X) \neq 0$$

$$\log \frac{P(y=1|\mathbf{x})}{P(y=0|\mathbf{x})} > 0$$

$$\mathbf{w} \cdot \mathbf{x} > 0$$

A similar derivation can be done for arbitrary L(0,1) and L(1,0).

Extending Logistic Regression to K > 2 classes

Choose class K to be the "reference class" and represent each of the other classes as a logistic function of the odds of class k versus class K:

$$\log \frac{P(y=1|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_1 \cdot \mathbf{x}$$

$$\log \frac{P(y=2|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_2 \cdot \mathbf{x}$$

$$\vdots$$

$$\log \frac{P(y=K-1|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_{K-1} \cdot \mathbf{x}$$

 Gradient ascent can be applied to simultaneously train all of these weight vectors
 w_k

Logistic Regression for K > 2 (continued)

The conditional probability for class k ≠ K can be computed as

$$P(y = k | \mathbf{x}) = \frac{\exp(\mathbf{w}_k \cdot \mathbf{x})}{1 + \sum_{\ell=1}^{K-1} \exp(\mathbf{w}_\ell \cdot \mathbf{x})}$$

For class K, the conditional probability is

$$P(y = K|\mathbf{x}) = \frac{1}{1 + \sum_{\ell=1}^{K-1} \exp(\mathbf{w}_{\ell} \cdot \mathbf{x})}$$

Summary of Logistic Regression

- Learns conditional probability distribution $P(y \mid x)$
- Local Search
 - begins with initial weight vector. Modifies it iteratively to maximize the log likelihood of the data
- Eager
 - the classifier is constructed from the training examples, which can then be discarded
- Online or Batch
 - both online and batch variants of the algorithm exist