Two-Sample Confidence Intervals

Stat 250

Click here for PDF version

Bill lengths by species

species	min	Q1	median	Q3	max	mean	sd	n	missing
Adelie	32.10	36.75	38.80	40.75	46.00	38.79	2.66	151	1
Chinstrap	40.90	46.35	49.55	51.08	58.00	48.83	3.34	68	0
Gentoo	40.90	45.30	47.30	49.55	59.60	47.50	3.08	123	1

Review: Pivotal quantity

A statistic that depends on the random sample, X_1, \ldots, X_n , and the parameter, θ , but whose distribution <u>does not</u> depend on θ .

Your turn

Let $X_1,\ldots,X_n\stackrel{iid}{\sim} N(\mu_1,\sigma_1^2)$ and $Y_1,\ldots,Y_m\stackrel{iid}{\sim} N(\mu_2,\sigma_2^2).$ X_i and Y_i are independent.

- 1. Find $E(\bar{X}_n \bar{Y}_m)$
- 2. Find $Var(\bar{X}_n \bar{Y}_m)$
- 3. What distribution will does Z have?

$$Z = \frac{(\bar{X}_n - \bar{Y}_m) - E(\bar{X}_n - \bar{Y}_m)}{SD(\bar{X}_n - \bar{Y}_m)}$$

4. Is Z a pivotal quantity?

Your turn

Calculate and interpret a 90% confidence interval for the difference in mean bill length between Gentoo and Chinstrap penguins.

species	min	Q1	median	Q3	max	mean	sd	n	missing
Adelie	32.10	36.75	38.80	40.75	46.00	38.79	2.66	151	1
Chinstrap	40.90	46.35	49.55	51.08	58.00	48.83	3.34	68	0
Gentoo	40.90	45.30	47.30	49.55	59.60	47.50	3.08	123	1

Underlying validity conditions

- Each random sample is taken from a normal population distribution
- The random samples are independent

Ask Yourself...

- Are the observations independent?
- Are the samples of observations independent?
- Are the observations approximately normal?

Checking conditions

- Are the penguins independent within the species?
- Are the species independent?
- Are the bill lengths for each species approximately normal?

Robustness two-sample t

- If the population distribution is roughly symmetric and unimodal, then the procedure works well for sample sizes of at least 10–15 (just a rough guide)
- If the two population distributions have the same shape and the sample sizes are too different, skewness isn't a problem
- t-procedure is in trouble if the two population distributions have very different shapes (but would we even want to compare means then?)
- t-procedures are not resistant to outliers
- If observations are not independent, the results can be misleading

Revisiting matched pairs

Is it safe to look at social media while driving?

- Previous research on smart phone use while driving has primarily focused on phone calls and texting.
- Study looked at the effects of different smart phone tasks on car-following performance in a driving simulator.
- Drivers performed driving only baseline simulation
- Drivers performed other phone tasks: texting, reading Facebook posts, exchanging photos on Snapchat, viewing updates on Instagram
- Brake reaction times (in seconds) recorded

Cls for matched pairs data

- For a matched pairs experiment, look at the differences between responses for each unit (pair)
- Compute a new variable for differences, then use a onesample t procedure

Subject	Baseline	Facebook	Texting	Instagram	SnapChat				
1	0.863	1.254	1.011	0.963	0.865				
2	0.847	1.100	0.900	0.600	0.783				
3	0.836	1.021	1.064	0.947	0.808				
4	0.655	0.864	0.974	0.726	1.010				
5	0.900	0.793	0.856	0.817	0.837				
6	0.957	1.252	1.178	1.134	1.175				
7	0.780	0.856	1.010	0.861	0.817				
And so on for 10 more rows									

Subject	Baseline	Facebook	Texting	Instagram	SnapChat
8	0.954	0.814	1.250	1.022	0.861
And so o	n for 10 mo	ore rows			

Cls for matched pairs data

Summary statistics for Facebook - Baseline brake reaction times

min	Q1	median	Q3	max	mean	sd	n	missing
-0.14 0).12	0.21	0.37	1.51	0.30	0.39	18	0

Calculate a 92% confidence interval for the mean difference in reaction times.