Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Generative Models

Outline

- What are generative models
- Types of generative models

Generative Models vs. Discriminative Models

Discriminative models

Features Class $X \to Y$ P(Y|X)

Generative models

Noise Class Features
$$\xi, Y \to X$$

$$P(X|Y)$$

Generative Models vs. Discriminative Models

Generative models

Noise Class Features
$$\xi, Y \to X$$

$$P(X|Y)$$

Generative Models

Generative Adversarial Networks

Available from: https://arxiv.org/abs/1804.00891

Generative Models

Variational Autoencoders Latent Encoder Decoder Latent Decoder

Generative Adversarial Networks

Available from: https://arxiv.org/abs/1804.00891

Summary

• Generative models learn to produce examples

Discriminative models distinguish between classes

Up next, GANs!

Real Life GANs

Outline

- Cool applications of GANs
- Major companies using them

GANs Over Time

4.5 years of GAN progress on face generation.

arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434 arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196 arxiv.org/abs/1812.04948

GANs Over Time

Face Generation StyleGAN2

These people do not exist!

Karras, Tero, et al. "Analyzing and improving the image quality of stylegan." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

GANs Over Time

StyleGAN2

Mimics the distribution of the training data

Karras, Tero, et al. "Analyzing and improving the image quality of stylegan." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

https://9gag.com/gag/aWYZKWx

GANs for Image Translation

From one domain to another

CycleGAN

Park, Taesung, et al. "Semantic image synthesis with spatially-adaptive normalization." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.

GANs for Image Translation

Park, Taesung, et al. "Semantic image synthesis with spatially-adaptive normalization." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.

GANs are Magic!

Zakharov, Egor, et al. "Few-shot adversarial learning of realistic neural talking head models." *Proceedings of the IEEE International Conference on Computer Vision*. 2019.

GANs for 3D Objects

Wu, Jiajun, et al. "Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling." *Advances in neural information processing systems*. 2016.

Companies Using GANs

Next-gen Photoshop

Text Generation

Data Augmentation

Image Filters

Super-resolution

Summary

- GANs' performance is rapidly improving
- Huge opportunity to work in this space!
- Major companies are using them

Intuition Behind GANs

Outline

- The goal of the generator and the discriminator
- The competition between them

Generator learns to make *fakes* that look **real**

Discriminator learns to distinguish real from fake

Fake Real Discriminator learns to distinguish real from fake

Generator learns to make *fakes*that look **real**

Discriminator learns to distinguish real from fake

Discriminator learns to distinguish real from fake

The Game Is On!

5% Real

40% Real

80% Real

The Game Is On!

30% Real

60% Real

95% Real

The Game Is On!

Summary

- The generator's goal is to fool the discriminator
- The discriminator's goal is to distinguish between real and fake
- They learn from the competition with each other
- At the end, fakes look real

Discriminator

Outline

- Review of classifiers
- The role of classifiers in terms of probability
- Discriminator

Classifiers

Distinguish between different classes

Turtle

Fish

Classifiers

Distinguish between different classes

Turtle

Bird

"It meows, and plays with yarn"

Classifier

Cat

Dog

Fish

Neural Networks

Neural Networks

Classifiers (training)

Classifiers

Turtle

Fish

Classifiers

$$P(Fake \mid X)$$

$$P(\text{Fake} \mid \text{Fake}) = 0.85$$
 Fake

Summary

- The discriminator is a classifier
- It learns the probability of class Y (real or fake) given features X
- The probabilities are the feedback for the generator

deeplearning.ai

Generator

Outline

- What the generator does
- How it improves its performance
- Generator in terms of probability

Generator

Turtle Generates examples of the class

Fish

Neural Networks

Noise (random features)

Neural Networks

Generator: Learning

Generator

Turtle

Bird

P

Cat

Dog

Fish

Generator

Images available from: http://thesecatsdonotexist.com/

Summary

- The generator produces fake data
- It learns the probability of features X
- The generator takes as input noise (random features)

Outline

- Binary Cross Entropy (BCE) Loss equation by parts
- How it looks graphically

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log (1 - h(x^{(i)}, \theta))$$

$$y^{(i)} h(x^{(i)}, \theta) y^{(i)} \log h(x^{(i)}, \theta)$$

$$0 \quad \text{any} \quad 0$$

$$1 \quad 0.99 \quad \sim 0$$

$$1 \quad \sim 0 \quad -\inf$$

$$1 \quad \text{the label is 1}$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log (1 - h(x^{(i)}, \theta)) \right]$$

$$y^{(i)} h(x^{(i)}, \theta) | (1 - y^{(i)}) \log (1 - h(x^{(i)}, \theta))$$

$$1 \quad \text{any} \quad 0$$

$$0 \quad 0.01 \quad \text{~~~} 0$$

$$0 \quad \text{~~~} 1 \quad \text{-inf}$$

$$0 \quad \text{~~~} 1 \quad \text{he label is 0}$$

Ensures that the cost is always greater or equal to 0

Summary

- The BCE cost function has two parts (one relevant for each class)
- Close to zero when the label and the prediction are similar
- Approaches infinity when the label and the prediction are different

Putting It All Together

Outline

- How the whole architecture looks
- How to train GANs

GANs Model

Training GANs: Discriminator

Training GANs: Generator

Training GANs

Discriminator Output

Superior — Fakes as 100% — No way to improve

Summary

- GANs train in an alternating fashion
- The two models should always be at a similar "skill" level

deeplearning.ai

Intro to PyTorch (Optional)

Outline

- Comparison with TensorFlow
- Defining Models
- Training

PyTorch vs TensorFlow

PyTorch

TensorFlow

Imperative, computations on the go

3

Dynamic Computational Graphs

Symbolic, first define and then compile

```
C = A + B
f = compile(C)
print(f(A = 1, B = 2))
```

Static Computational Graphs

Tensorflow > 2.0 moves toward PyTorch by including Eager Execution

PyTorch vs TensorFlow

PyTorch

TensorFlow

Currently very similar frameworks!

Tensorflow > 2.0 moves toward PyTorch by including Eager Execution

Defining Models in PyTorch

```
import torch
from torch import nn
                                                                   Custom layers for DL
class LogisticRegression(nn.Module):
                                                              Define the model as a class
     def init (self, in):
                                                              Initialization method with parameters
          super(). init ()
          self.log reg = nn.Sequential(
              nn.Linear(in, 1),
                                                              Definition of the architecture
              nn.Sigmoid()
     def forward(self, x):
                                                              Forward computation of the model
          return self.log reg(x)
                                                              with inputs x
```

Training Models In PyTorch

```
model = LogisticRegression(16)
                                                                   Initialization of the model
criterion = nn.BCELoss()
                                                                   Cost function
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
                                                                   Optimizer
                                                                   Training loop for number of
for t in range(n_epochs):
                                                                   epochs
    y pred = model(x)
                                                                   Forward propagation
    loss = criterion(y pred, y)
    optimizer.zero grad()
    loss.backward()
                                                                   Optimization step
    optimizer.step()
```


Summary

- PyTorch makes computations on the run
- Dynamic computational graphs in Pytorch
- Just another framework, and similar to Tensorflow!

