Tutorial 2.2.1.

1. Prove Theorem 2.9.

Consider $k \in \mathbb{R}$ and sequences with the following properties as $n \to \infty$: $a_n \to \infty$, $b_n \to \infty$, $c_n \to c \in \mathbb{R}$, $d_n \to -\infty$. Then as $n \to \infty$,

(a)
$$ka_n = \begin{cases} \infty & \text{if} \quad k > 0, \\ -\infty & \text{if} \quad k < 0, \\ 0 & \text{if} \quad k = 0. \end{cases}$$

- (b) $a_n + b_n \to \infty$,
- (c) $a_n + c_n \to \infty$,
- (d) $-d_n \to \infty$,

(e)
$$a_n c_n \to \begin{cases} \infty & \text{if } c > 0, \\ -\infty & \text{if } c < 0. \end{cases}$$

(f) $a_n b_n \to \infty$.

Proof.

(a) If k=0, then $ka_n=0$ for all $n\in\mathbb{N}$, and therefore $ka_n\to 0$ as $n\to\infty$ by Theorem 2.3(a). Now let $k \neq 0$. Let $A \in \mathbb{R}$. Since $a_n \to \infty$ as $n \to \infty$, there is $K \in \mathbb{R}$ such that $a_n > \frac{A}{k}$ for n > K. For k > 0, we conclude $ka_n > A$ for n > K, and therefore $ka_n \to \infty$ as $n \to \infty$. For k < 0, we conclude $ka_n < A$ for n > K, and therefore $ka_n \to -\infty$ as $n \to \infty$.

- (b) Let $A \in \mathbb{R}$. There are $K_1, K_2 \in \mathbb{R}$ such that $a_n > A$ for $n \ge K_1$ and $b_n > 0$ for $n \ge K_2$. For $n \ge K = \max\{K_1, K_2\}$, we conclude $a_n + b_n > A + 0 = A$. Therefore $a_n + b_n \to \infty$ as $n \to \infty$.
- (c) Let $A \in \mathbb{R}$. There are $K_1, K_2 \in \mathbb{R}$ such that $a_n > A c + 1$ for $n \ge K_1$ and $c_n > c 1$ for $n \ge K_2$. For $n \ge K = \max\{K_1, K_2\}$, we conclude $a_n + c_n > A - c + 1 + c - 1 = A$. Therefore $a_n + c_n \to \infty$ as $n \to \infty$.
- (d) is similar to (a) with k = -1.
- (e) First let c > 0. Let $A \in \mathbb{R}$. There are $K_1, K_2 \in \mathbb{R}$ such that $a_n > \frac{2A}{c}$ and $c_n > \frac{c}{2}$ for $n \geq K_2$. For $n \ge K = \max\{K_1, K_2\}$, we conclude $a_n c_n = \frac{2A}{c} \frac{c}{2} = A$. Therefore $a_n c_n \to \infty$ as $n \to \infty$. If c < 0, then $a_n(-c_n) \to \infty$ as $n \to \infty$ since -c > 0, and then $a_n c_n \to -\infty$ by part (a).
- (f) Let $A \in \mathbb{R}$. There are $K_1, K_2 \in \mathbb{R}$ such that $a_n > A$ for $n \ge K_1$ and $b_n > 1$ for $n \ge K_2$. For $n \geq K = \max\{K_1, K_2\}$, we conclude $a_n b_n > A \cdot 1 = A$. Therefore $a_n b_n \to \infty$ as $n \to \infty$.
- 2. Use suitable rules or first principles to find

(a)
$$\lim_{n \to \infty} (n^2 + 2n - 10)$$
 (b) $\lim_{n \to \infty} (n - \frac{1}{n})$ (c) $\lim_{n \to \infty} \frac{n^3 - 3n^2}{n + 1}$

Solution. We use the trivial statement that $n \to \infty$ as $n \to \infty$.

(a) Since $n^2 + 2n - 10 = n\left(n + 2 + \frac{1}{n}\right)$, it follows from Theorems 2.3, 2.6 and 2.9 that $\lim_{n \to \infty} \left(n^2 + 2n - 10\right) = \infty$.

- (b) In view of Theorems 2.6 and 2.9, $\lim_{n\to\infty} \left(n-\frac{1}{n}\right) = \infty$.
- (c) Since

$$\frac{n^3 - 3n^2}{n+1} = n^2 \frac{n-3}{n+1} = n^2 \left(1 - \frac{4}{n+1}\right),$$

it follows from Theorems 2.3, 2.6 and 2.9 that $\lim_{n\to\infty} \frac{n^3-3n^2}{n+1} = \infty$.

3. Prove that if $\lim_{n\to\infty} |a_n| = \infty$, then (a_n) diverges.

Proof. Assume that (a_n) converges. By Theorem 2.7, (a_n) is bounded, i.e. there are $m, M \in \mathbb{R}$ such that

$$m \leq a_n \leq M$$
 for all $n \in \mathbb{N}$,

and hence $-a_n \leq -m$. It follows that

$$|a_n| \le \max\{M, -m\} := L \text{ for all } n \in \mathbb{N},$$

which contradicts $\lim_{n\to\infty} |a_n| = \infty$, since the latter implies that there are $n\in\mathbb{N}$ with $|a_n| > L$.

4. Prove that if $p \in \mathbb{N}$, p > 0, then $n^p \to \infty$ as $n \to \infty$.

Proof. The result follows from Theorems 2.6 and 2.8.

5. Define a sequence as follows:

$$a_0 = 0$$
, $a_1 = \frac{1}{2}$, $a_{n+1} = \frac{1}{3} (1 + a_n + a_{n-1}^3)$ for $n \ge 2$.

- (a) Use induction to show that $0 \le a_n \le \frac{2}{3}$ for all $n \in \mathbb{N}$.
- (b) Use induction to show that $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$.
- (c) Explain why we may conclude that (a_n) converges. (d) Using the fact that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{n-1} = \lim_{n\to\infty} a_{n+1}$, find $\lim_{n\to\infty} a_n$.

Solution.

(a) The statement is true for n=0 and n=1 since $a_0=0$ and $a_1=\frac{1}{2}$.

Now let $n \geq 1$ and assume that the estimate is true for all $k \in \mathbb{N}$ with $k \leq n$. Clearly, $0 \leq a_{n+1}$. Furthermore,

$$a_{n+1} = \frac{1}{3} \left(1 + a_n + a_{n-1}^3 \right)$$

$$\leq \frac{1}{3} \left(1 + \frac{2}{3} + \frac{8}{27} \right)$$

$$\leq \frac{1}{3} \frac{53}{27} < \frac{1}{3} \frac{54}{27} = \frac{2}{3}.$$

(b) A straight forward calculation gives

$$a_2 = \frac{1}{3} \left(1 + a_1 + a_0^3 \right) = \frac{1}{2}.$$

Hence, we have $a_0 \le a_1 \le a_2$.

Now let $n \geq 2$ and assume that $a_k \leq a_{k+1}$ for $k \in \mathbb{N}$ such that k < n. Then

$$a_n = \frac{1}{3} (1 + a_{n-1} + a_{n-2}^3) \le a_{n+1} = \frac{1}{3} (1 + a_n + a_{n-1}^3) = a_{n+1}.$$

(c) In (a), we have seen that (a_n) is bounded, and in (b), we have seen that the sequence is increasing. By Theorem 2.10 (1), the sequence converges.

(d) Let $a = \lim_{n \to \infty} a_n$. Taking limits as $n \to \infty$ in $a_{n+1} = \frac{1}{3} \left(1 + a_n + a_{n-1}^3 \right)$ we arrive at

$$a = \frac{1}{3} (1 + a + a^3),$$

which can be written as

$$a^3 - 2a + 1 = 0.$$

Hence a is a zero of the polynomial p is given by

$$p(x) = x^3 - 2x + 1.$$

We have p(0) = 1 > 0 and p(1) = 0, so that p has one zero at 1 and one zero on the negative real axis. Hence a must be the remaining third zero of p, i.e. a is the unique zero of p in the interval (0,1).

6. Let $\lim_{n\to\infty}a_n=\infty$, $\lim_{n\to\infty}b_n=\infty$, $\lim_{n\to\infty}c_n=0$. Show, by giving examples, that no general conclusion can be made about the behaviour of the following sequences:

(a) a_n-b_n , (b) a_nc_n , (c) $\frac{a_n}{b_n}$, (d) $\frac{a_n}{c_n}$.

(a)
$$a_n - b_n$$
, (b) $a_n c_n$, (c) $\frac{a_n}{b_n}$, (d) $\frac{\ddot{a_n}}{c_n}$

Solution.

(a) We show that any sequence can be obtained in this way. So let (d_n) be a sequence and define

$$a_n = n + |d_n| + d_n, \qquad b_n = n + |d_n|.$$

Then $a_n \geq n$ and $b_n \geq n$ show that both $\lim_{n \to \infty} a_n = \infty$ and $\lim_{n \to \infty} b_n = \infty$, whereas $a_n - b_n = d_n$.

(b) Again, let (d_n) be sequence and define now

$$a_n = n(1 + |d_n|), \qquad c_n = \frac{d_n}{n(1 + |d_n|)}.$$

Then $a_n \geq n$, so that $\lim_{n \to \infty} a_n = \infty$, $|c_n| \leq \frac{1}{n}$, so that $\lim_{n \to \infty} c_n = 0$, and $a_n c_n = d_n$. (c) Here let (d_n) be sequence with $d_n > 0$ for all $n \in \mathbb{N}$ and define

$$a_n = \begin{cases} n & \text{if} \quad d_n \le 1, \\ nd_n & \text{if} \quad d_n > 1, \end{cases} \quad b_n = \begin{cases} \frac{n}{d_n} & \text{if} \quad d_n \le 1, \\ n & \text{if} \quad d_n > 1. \end{cases}$$

The $a_n, b_n \geq n$, so that $\lim_{n \to \infty} a_n = \infty$ and $\lim_{n \to \infty} b_n = \infty$. Furthermore, $\frac{a_n}{b_n} = d_n$.

(d) Here, of course, $c_n \neq 0$ for all $n \in \mathbb{N}$. This case is different since we can conclude that

$$\left| \frac{a_n}{c_n} \right| \to \infty \text{ as } n \to \infty.$$

We can therefore make the following statements:

(i) If there are atmost finitely many $n \in \mathbb{N}$ such that $c_n < 0$, then $\lim_{n \to \infty} \frac{a_n}{c_n} = \infty$. (ii) If there are atmost finitely many $n \in \mathbb{N}$ such that $c_n > 0$, then $\lim_{n \to \infty} \frac{a_n}{c_n} = -\infty$.

(iii) If there are infinitely many $n \in \mathbb{N}$ such that $c_n < 0$ and infinitely many $n \in \mathbb{N}$ such that $c_n > 0$, then $\left(\frac{a_n}{c_n}\right)$ is neither bounded above nor bounded below.

7. Let (a_n) and (b_n) be sequences such that $a_n \leq b_n$ for all $n \in \mathbb{N}$. Show that

$$\lim_{n\to\infty}\inf\ a_n\leq \lim_{n\to\infty}\inf\ b_n\ \text{and}\ \lim_{n\to\infty}\sup\ a_n\leq \lim_{n\to\infty}\sup\ b_n\ .$$

Proof. We are proving the statement for \liminf . The proof for \limsup is similar. If (a_n) is not bounded below, then $\lim \inf a_n = -\infty$, and nothing has to be proved.

Now let (a_n) be bounded below and define $\alpha_n = \inf\{a_k : k \ge n\}, n \in \mathbb{N}$. Since $a_k \le b_k$ for all $k \in \mathbb{N}$, $\alpha_n \leq a_k \leq b_k$ for $k \geq n$, which shows that α_n is a lower bound of $\{b_k : k \geq n\}$. Hence (b_k) is bounded below and $\beta_n := \inf\{b_k : k \ge n\} \ge \alpha_n$.

If $\lim_{n\to\infty}\inf b_n=\infty$, nothing has to be shown. So let $\beta=\lim_{n\to\infty}\inf b_n\in\mathbb{R}$. Then

$$\alpha_n \leq \beta_n \leq \beta$$
,

and hence (why?)

$$\lim_{n \to \infty} \inf a_n = \lim_{n \to \infty} \alpha_n \le \beta = \lim_{n \to \infty} \inf b_n.$$

8. (a) Show that $\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$ exists for all $x \in \mathbb{R}$ and that $\exp(1) = e$.

Hint. Adapt the proof of Example 2.2.3.

(b) Use Bernoulli's inequality to prove that

$$\lim_{n \to \infty} \left(\frac{1 + \frac{x+y}{n}}{1 + \frac{x+y}{n} + \frac{xy}{n^2}} \right)^n = 1$$

for all $x, y \in \mathbb{R}$.

- (c) Use (b) to show that $\exp(x+y)=\exp(x)\,\exp(y)$ for all $x,y\in\mathbb{R}$.
- (d) Show that $\exp(x) \ge 1 + x$ for all x > 0.
- (e) Show that $\exp(x) > 0$ for all $x \in \mathbb{R}$.
- (f) Show that exp is strictly increasing.
- (g) Show that $\exp(n) = e^n$ for all $n \in \mathbb{Z}$

Proof.

(a) $\exp(1)=e$ follows from Example 2.2.3. Also, $\exp(0)=\lim_{n\to\infty}1=1$.

Now let $x \in \mathbb{R}$ and put $a_n = \left(1 + \frac{x}{n}\right)^n$. For the limit, we may assume that $n \ge n_0$, where $n_0 > -x$. Hence n + x > 0 and $x \le n + x$, which gives

$$-\frac{x}{(n+1)(n+x)} > -1.$$

Using Bernoulli's inequality, we calculate

$$\frac{a_{n+1}}{a_n} = \frac{\left(\frac{n+1+x}{n+1}\right)^{n+1}}{\left(\frac{n+x}{n}\right)^n} = \left(\frac{n(n+1+x)}{(n+1)(n+x)}\right)^{n+1} \frac{n+x}{n}$$

$$= \left(1 - \frac{1}{(n+1)(n+x)}\right)^{n+1} \frac{n+x}{n}$$

$$\geq \left(1 - \frac{x}{n+x}\right) \frac{n+x}{n} = \frac{n}{n+x} \frac{n+x}{n} = 1.$$

By the Archimedean principle, we can choose $k \in \mathbb{N} \setminus \{0\}$ such that $x \leq k$. For $n \geq n_0$, we have

$$0 < 1 + \frac{x}{n} \le 1 + \frac{k}{n} \le \left(1 + \frac{1}{n}\right)^k$$

Therefore,

$$\left(1 + \frac{x}{n}\right)^n < \left(\left(1 + \frac{1}{n}\right)^n\right)^k < e^k,$$

where the inequality follows from Example 2.2.3. Hence (a_n) is bounded, and it follows by Theorem 2.10 that (a_n) converges.

(b) For sufficiently large n, here n > -2(x+y) such that $n^2 > -2xy$, we have

$$\left(\frac{1+\frac{x+y}{n}}{1+\frac{x+y}{n}+\frac{xy}{n^2}}\right)^n = \left(1-\frac{\frac{xy}{n^2}}{1+\frac{x+y}{n}+\frac{xy}{n^2}}\right)^n \ge 1-\frac{\frac{xy}{n^2}}{1+\frac{x+y}{n}+\frac{xy}{n^2}},$$

and the right hand side tends to 1 as $n \to \infty$. Hence

$$\lim_{n\to\infty}\inf\left(\frac{1+\frac{x+y}{n}}{1+\frac{x+y}{n}+\frac{xy}{n^2}}\right)^n\geq 1.$$

Similarly,

$$\left(\frac{1+\frac{x+y}{n}}{1+\frac{x+y}{n}+\frac{xy}{n^2}}\right)^n = \left(1+\frac{\frac{xy}{n^2}}{1+\frac{x+y}{n}+\frac{xy}{n^2}}\right)^n \geq 1+\frac{\frac{xy}{n}}{1+\frac{x+y}{n}},$$

and the right hand side tends to 1 as $n \to \infty$. Hence

$$\lim_{n\to\infty}\inf\left(\frac{1+\frac{x+y}{n}}{1+\frac{x+y}{n}+\frac{xy}{n^2}}\right)^n\geq 1.$$

which implies

$$\lim_{n\to\infty}\sup\left(\frac{1+\frac{x+y}{n}}{1+\frac{x+y}{n}+\frac{xy}{n^2}}\right)^n=\frac{1}{\lim_{n\to\infty}\inf\left(\frac{1+\frac{x+y}{n}}{1+\frac{x+y}{n}+\frac{xy}{n^2}}\right)^n}\leq 1.$$

Hence \limsup and \liminf of the sequence in question are both 1, and the sequence converges to 1 by Theorem 2.11.

(c) Putting $a_n(x) = \left(1 + \frac{x}{n}\right)^n$, the sequence considered in (b) is $\left(\frac{a_n(x+y)}{a_n(x)a_n(y)}\right)$. Therefore

$$\exp(x+y) = \lim_{n \to \infty} a_n(x+y) = \lim_{n \to \infty} \frac{a_n(x+y)}{a_n(x)a_n(y)} \lim_{n \to \infty} a_n(x) \lim_{n \to \infty} a_n(y) = (1) \exp(x) \exp(y).$$

(d) With the notation from (c) and the Bernoulli's inequality, we have

$$a_n(x) = \left(1 + \frac{x}{n}\right)^n \ge 1 + x.$$

Now take the limit . \Box

(e) Since $a_n(x) > 0$ for sufficiently large n, we have $\exp(x) \ge 0$. Also, $a_n(0) = 1$ shows $\exp(0) = 1$. From (c), we have $\exp(x) \exp(-x) = \exp(0) = 1$, so that $\exp(x) \ne 0$. Hence, $\exp(x) > 0$.

(f) Let $x, y \in \mathbb{R}$ with x < y. In view of y - x > 0, it follows from (c) and (d) that

$$\exp(x) < (1 + (y - x)) \exp(x) \le \exp(y - x) \exp(x) = \exp(y).$$

(g) We already know this for n = 0 and n = 1. For integers $n \ge 2$ the statement follows by induction on n and by (c), and for negative integers it then follows immediately from (c) since

$$\exp(-x) = \frac{\exp(-x)\exp(x)}{\exp(x)} = \frac{\exp(0)}{\exp(x)} = \frac{1}{\exp(x)}.$$