Contents

1	Метод вариации произвольной постоянной для решения неоднородных линейных систем	2
2	Числовой ряд. Сходимость и сумма ряда. Необходимый признак сходимости.	5
3	Свойства сходящихся числовых рядов.	7
4	Ряды с положительными членами. Признаки сравнения в разных формах и следствия. Примеры.	8
5	Признак Даламбера, радикальный признак Коши, интегральный признак Коши.	10
6	Достаточный признак сходимости знакопеременного ряда. Абсолютная и условная сходимость.	11
7	Знакочередующиеся ряды. Признак Лейбница. Оценка остатка знакочередующе ряда (теорема Лейбница).	гося 12
8	Определение функционального ряда. Поточечная сходимость. Область сходимости функционального ряда.	13
9	Равномерная сходимость функционального ряда. Свойства равномерно сходящихся функциональных рядов.	14
10	Признак Вейерштрасса.	15
11	Степенные ряды. Первая теорема Абеля.	16
12	Интервал и радиус сходимости степенного ряда. Формулы для радиуса сходимости.	17
13	Свойства радиуса сходимости степенных рядов при их интегрировании и дифференцировании.	19
14	Ряды Тейлора и Маклорена.	20
15	Теорема о представлении функции сходящимся рядом Тейлора.	21
16	Разложение основных элементарных функций в ряд Маклорена.	22

1 Метод вариации произвольной постоянной для решения неоднородных линейных систем

1.1 Метод вариации

$$(1)\dot{X} = A(t)X + B(t)$$

$$\dot{X} = AX, \ X(t) = M(t)C$$

$$]X(t) = M(t) * C(t) \Rightarrow (1)$$

$$\dot{X} = \dot{M}(t)C(t) + M(t)\dot{C}(t)$$

$$\dot{M}(t)C(t) + M(t)\dot{C}(t) = AM(t)C(t) + B(t)$$

$$\dot{M}(t) = AM(t)$$

$$AM(t)C(t) + M(t)\dot{C}(t) = AM(t)C(t) + B(t)$$

$$M(t)\dot{C}(t) = B(t)$$

$$det M = W \neq 0 \dot{C}(t) = M^{-1}(t)B(t)$$

$$\begin{split} \mathrm{I})\dot{X} &= AX + B - \text{общее решение} \\ C(t) &= \int M^{-1}(t) \\ X(t) &= M(t)C_0 + M(t) * \int M^{-1}(t)B(t)dt \\ \overset{o}{X}(t) - M(t)C_0 \\ \overset{*}{X}(t) - \int M^{-1}(t)B(t)dt \end{split}$$

$$\mathrm{II}) \left\{ \begin{aligned} \dot{X} &= AX + B \\ \dot{X}_{|t=t_0} &= X_0 \end{aligned} \right. (1) \; C(t) = \int_{t0}^t M^{-1}(\tau) B(\tau) d\tau \right.$$

$$X(t) = M(t) * \int_{t_0}^t M^{-1}(au) B(au) d au$$
 — Решение задачи Коши

1.2 Пример:

$$\begin{cases} \dot{x} = x - y + 1/\sqrt{\frac{1}{t}} \\ \dot{y} = -2x + 2y + \sqrt{\frac{1}{t}} \end{cases} (2) \ A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix} B(t) = \begin{pmatrix} t^{\frac{-1}{2}} \\ t^{\frac{-1}{2}} \end{pmatrix}$$

$$\begin{split} \det(A-\lambda I) &= \begin{vmatrix} 1-\lambda & -1 \\ -2 & 2-\lambda \end{vmatrix} = (1-\lambda)(2-\lambda) - 2 = \\ &\Leftrightarrow \lambda^2 - 3\lambda = 0 \Leftrightarrow \lambda(\lambda - 3) = 0 \\ &\Leftrightarrow \sigma(A) = \{\lambda_1 = 0(k_1 = 1); \lambda_2 = 3(k_2 = 1)\} \\ &(A-\lambda_1 I)h_1 = 0 \Leftrightarrow \left(\frac{1}{-2} - \frac{1}{2}\right), \sim (1-1) \\ &\Rightarrow h_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ &(A-\lambda_2 I)h_2 = 0 \Leftrightarrow \begin{pmatrix} -2 & -1 \\ -2 & -1 \end{pmatrix}, \sim (2-1) \\ &2x_1 = -x_2 \Leftrightarrow x_2 = -2x_1, x_1 = \alpha \neq 0 \\ &\Rightarrow h_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} \\ &\mathring{X}(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 * e^{3t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} \\ &X_1(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ &X_2(t) = C_2 * e^{3t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} \\ &M(t) = \begin{pmatrix} 1 & e^{3t} \\ 1 & -2e^{3t} \end{pmatrix}; W = -2^{3t} - e^{3t} = -3e^{3t} \neq 0 \\ &M^{-1}(t) = -1/3e^{-3t} \begin{pmatrix} -2e^{3t} & -e^{3t} \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3}e^{-3t} \\ \frac{1}{3}e^{-3t} & \frac{1}{3}e^{-3t} \end{pmatrix} \\ &M^{-1}(t)B(t) = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3}e^{-3t} \\ \frac{1}{3}e^{-3t} & -\frac{1}{3}e^{-3t} \end{pmatrix} \begin{pmatrix} t^{-\frac{1}{2}} \\ t^{-\frac{1}{2}} \end{pmatrix} = \begin{pmatrix} t^{-\frac{1}{2}} \\ 0 \end{pmatrix} \end{split}$$

$$\begin{split} \int \left(t^{\frac{-1}{2}} \right) dt + C_0 &= \binom{2\sqrt{t}}{1} + C_0 = \\ \left(2\sqrt{t} + e^{3t} \right) + C_1^0 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2^0 e^{3t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} \\ \left(x(t) \\ y(t) \right) &= C_1^0 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \begin{pmatrix} 2\sqrt{t} + e^{3t} \\ 2\sqrt{t} - 2e^{3t} \end{pmatrix} \end{split}$$

2 Числовой ряд. Сходимость и сумма ряда. Необходимый признак сходимости.

2.1 Определения

 $\{a_n\}$ – последовательность членов ряд $\{S_n\}$ – последовательность частных сумм

$$S_n := a_1 + \dots \\ a_n = \sum_{k=1}^n a_k \\ S_1 = a_1; \ S_2 = a_1; \ S_3 = a_1 + a_2 + a_3 \\ a_1 = S_1; \ a_2 = S_2 - S_1; \ a_3 = S_3 - S_2 \\ a_n = a_1 + a_2 + a_3 \\ a_1 = S_1; \ a_2 = S_2 - S_1; \ a_3 = S_3 - S_2 \\ a_1 = a_1 + a_2 + a_3 \\ a_1 = S_1; \ a_2 = S_2 - S_1; \ a_3 = S_3 - S_2 \\ a_1 = a_1 + a_2 + a_3 \\ a_1 = S_1; \ a_2 = S_2 - S_1; \ a_3 = S_3 - S_2 \\ a_1 = a_1 + a_2 + a_3 \\ a_1 = S_1; \ a_2 = S_2 - S_1; \ a_3 = S_3 - S_2 \\ a_1 = a_1 + a_2 + a_3 \\ a_1 = S_1; \ a_2 = S_2 - S_1; \ a_3 = S_3 - S_2 \\ a_1 = a_1 + a_2 + a_3 \\ a_1 = S_1; \ a_2 = S_2 - S_1; \ a_3 = S_3 - S_2 \\ a_1 = a_1 + a_2 + a_3 \\ a_1 = S_1; \ a_2 = S_2 - S_1; \ a_3 = S_3 - S_2 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 \\ a_2 = a_1 + a_2 + a_3 \\ a_1 = a_1 + a_2 + a_3 + a_3 \\ a_2 = a_1 + a$$

$$\sum_{n=1}^{+\infty}a_n:=a_1+\ldots+a_n+\ldots(1)$$

$$\sum_{n=1}^{+\infty}a_n:=\lim\,S_n$$

Если $\exists \lim S_n = S < \infty$, то ряд (1) называется сходящимся, а число $S \in \mathbb{R}$ называется его суммой, в противном случае (если $\overline{\exists} \lim S_n$ или $\lim S_n = \infty$) ряд называется расходящимся.

2.1.1 Пример

$$\sum_{n=1}^{+\infty} q^{n-1} = 1 + q + q^2 + \dots + q^{n-1} + q^n + \dots$$

$$q^{n-1} = a_n \; S_n = a_1 + \ldots + a_n = 1 + q + \ldots + q^{n-1} = \tfrac{1-q^n}{1-q}$$

Рассмотрим
$$q^n o egin{bmatrix} 0, \ |q| < 1; \\ +\infty, |q| > 1, \end{cases}$$

$$S = \lim \, S_n = \lim \frac{1-q^n}{1-q} = \begin{bmatrix} \frac{1}{q-1}, \ |q| < 1; \\ +\infty, |q| > 1, \end{bmatrix}$$

$$\sum_{n=1}^{+\infty} 1 = 1 + 1 + \dots = \infty$$

 $\{q^{n-1}\}_{n\in N}$ -геометрическая прогрессия.

$$\displaystyle \sum_{n=1}^{+\infty} q^{n-1}$$
 — геометрический ряд.

$$\sum_{n=1}^{+\infty} q^{n-1} \frac{1}{1-q}, \ |q| < 1$$

$$\sum_{n=m}^{+\infty} q^{n-1} \frac{q^m}{1-q}, \ |q| < 1$$

2.2 Теорема (необходимое условие сходимости)

Если
$$\sum_{n=1}^{+\infty} a_n$$
 сходится, то lim $\, a_n = 0 \; (a_n o 0) \,$

Доказательство:

$$\lim\ a_n=\lim\ (S_N-s_{n-1})=\lim\ S_n-\lim\ S_{n-1}=S-S=0$$

NB: Необходимое условие сходимости еще называют "достаточным условием расходимости".

2.2.1 Пример:

$$\sum_{n=1}^{+\infty}\frac{3n^2+1}{4n^2+7}a_n=\frac{3n^2+1}{4n^2+7}=\frac{n^2(3+\frac{1}{n^2})}{n^2(4+\frac{7}{n^2})}\rightarrow\frac{3}{4}]\neq0\Rightarrow\operatorname{ряд}\sum_{n=1}^{+\infty}\frac{3n^2+1}{4n^2+7}-\operatorname{расходится}.$$

3 Свойства сходящихся числовых рядов.

3.1 Основные свойства рядов

$$(1)\] \ \sum_{n=1}^{+\infty} a_n = S < \infty - \text{сходится}$$

$$\Rightarrow \sum_{n=1}^{+\infty} \alpha a_n = \alpha \sum_{n=1}^{+\infty} a_n \to \alpha S < \infty$$

$$(2)\,]\sum_{n=1}^{+\infty}a_n=A<\infty\sum_{n=1}^{+\infty}b_n=B<\infty\Rightarrow\sum_{n=1}^{+\infty}(\alpha a_n+\beta b_n)=\alpha\sum_{n=1}^{+\infty}a_n+\beta\sum_{n=1}^{+\infty}b_n=\alpha A+\beta B<\infty$$

Со сходящимися рядами можно работать как с конечными суммами.

(3)

Члены сходящегося ряда можно, не меняя их местами, группировать. От этого сходимость ряда не изменится, величина суммы тоже не изменится. (работает ассоциативность)

NB: в расходящихся рядах группировать члены нельзя.

$$(1-1) + (1-1) + \dots = S = 0$$

 $1 - (1+1) - 1 + \dots \neq 0$

$$(4)\sum_{n=1}^{+\infty}a_n,\,m\in\mathbb{N}\sum_{n=1}^{+\infty}a_n=a_1+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots a+1+\ldots+a_{m-1}+a_m=S_ma_{m+1}+\ldots=\sum_{n=m+1}^{+\infty}a_n=a_1+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots a+1+\ldots+a_{m-1}+a_m=S_ma_{m+1}+\ldots=\sum_{n=m+1}^{+\infty}a_n=a_1+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots a+1+\ldots+a_{m-1}+a_m=S_ma_{m+1}+\ldots=\sum_{n=m+1}^{+\infty}a_n=a_1+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m=S_ma_{m+1}+\ldots=\sum_{n=m+1}^{+\infty}a_n=a_1+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m=S_ma_{m+1}+\ldots=\sum_{n=m+1}^{+\infty}a_n=a_1+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m=S_ma_{m+1}+\ldots=\sum_{n=m+1}^{+\infty}a_n=a_1+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots+a_{m+1}+$$

3.2 Теорема (об остатке числового ряда / о "хвосте")

Ряд
$$\sum_{n=1}^{+\infty} a_n$$
 и его остаток $\sum_{n=m+1}^{+\infty} a_n$ сходятся и расходятся одновременно

(Отбрасывание/дописывание конечного числа членов на сходимость не влияет)

3.2.1 Пример

$$\sum_{n=1}^{+\infty}(\frac{c}{n^{\alpha}}+b_n),\;c\in\mathbb{R},\;\alpha\in\mathbb{Q},\;\sum_{n=1}^{+\infty}b_n=S<\infty$$

$$\alpha > 1$$
 – сходится

 $\alpha < 1$ – неопределен

4 Ряды с положительными членами. Признаки сравнения в разных формах и следствия. Примеры.

$$\sum_{n=1}^{+\infty}a_n,\;a_n\geq 0\;(1)$$

4.1 Теорема (Необходимое и достаточное словие сходимости ряда)

Для сходимости ряда (1) \Leftrightarrow (необходимо и достаточно) $\exists M>0: S_n\leq M\ \forall\ n\in N$ NB: Критерий сходимости знакопостоянного ряда по ограниченности частных сумм. $S_n\leq S_{n+1}\Rightarrow \{S_n\}\nearrow,\ S_n\in M\Rightarrow$ ряд сходится.

4.2 Теорема 2 (первый признай сравнения в форме неравенства)

$$]\sum_{n=1}^{+\infty}a_{n}\ (1)\sum_{n=1}^{+\infty}b_{n}\ (2)$$

$$\exists \ a_n \leq b_n \ \forall \ n > N_0 \in \mathbb{N} \\ 0 \leq A_n \leq B_n \to B$$

 \Rightarrow 1) если (2) сходится, то (1) сходится

2) если (1) расходится, то (2) расходится

4.3 Теорема 3 (второй признак сравнения в предельной форме)

$$\lim_{n \to \infty} a_n\left(1\right) sum_{n=1}^{+\infty} b_n\left(2\right) \exists \ l = \lim rac{a_n}{b_n} (l
eq 0, l
eq +\infty) \Rightarrow$$
 (1) и (2) сходятся и расходятся одновременно

4.3.1 Пример:

$$\sum_{n=1}^{+\infty}\frac{1}{n}$$
—гармонический ряд $a_n=\frac{1}{n},\ b_n=\ln(1+\frac{1}{n})l=\lim\frac{a_n}{b_n}=\lim\frac{\frac{1}{n}}{\ln(1+\frac{1}{n})}=|\ln(1+\frac{1}{n})\sim\frac{1}{n};n\to\infty$

4.4 Следствия

- 1. $a_n = \overline{\overline{o}}(b_n) \Rightarrow$ (1) и (2) имеют одинаковую сходимость
- 2. $a_n \sim b_n \Rightarrow$ (1) и (2) имеют одинаковую сходимость

3.

$$\begin{cases} p>1, \sum_{n=1}^{+\infty}a_n-\text{сходится}\\ \\ p\leq 1, \sum_{n=1}^{+\infty}a_n-\text{расходится} \end{cases}$$

- 4. $a_n \sim b_n \stackrel{def}{\iff} \lim \frac{a_n}{b_n} = 1$
- 5. $a_n=\overline{\overline{o}}(b_n) \stackrel{def}{\iff} \lim \frac{a_n}{b_n}=c \neq 0 \Leftrightarrow \exists \ \phi_n:|a_n|\leq \phi_n|b_n|, \ \phi_n$ ограничена

5 Признак Даламбера, радикальный признак Коши, интегральный признак Коши.

5.1 Теорема (Признак Даламбера)

$$\sum_{n=1}^{+\infty}a_n\;(a_n>0)$$
если $\lim\frac{a_{n+1}}{a_n}=d\left\{\begin{array}{l} <\!1-\text{сходится}\\ >\!1-\text{расходится}\end{array}\right.$

5.2 Теорема (Признак Коши радикальный)

$$\sum_{n=1}^{+\infty}a_n\;(a_n>0)\;(1)$$
если $\lim\sqrt[n]{a_n}=c\left\{\begin{array}{c} <1-{\rm сходится}\\ >1-{\rm расходится}\end{array}\right.$

5.3 Теорема (Признак Коши интегральный)

$$\sum_{n=1}^{+\infty}a_n\,(a_n>0),\,f\searrow,\,x\in[m,\,+\infty)f(n)=a_n\Rightarrow\int_m^{+\infty}f(x)\,dx$$
 и $\sum_{n=m}^{+\infty}a_n$ —сходится или расходится од

5.4 Примеры:

1.

Признак Даламбера:
$$\sum_{n=1}^{+\infty} \frac{a^n}{n!},\ a_n = \frac{a^n}{n!},\ a_{n+1} = \frac{a*a^n}{n!(n+1)} \lim \frac{a_{n+1}}{a_n} = \lim \frac{a}{n+1} = 0 < 1 \Rightarrow \mathsf{сход}(a_n)$$

2.

Признак Коши радикальный:
$$\sum_{n=1}^{+\infty}(\frac{7n+1}{6n+5})^{3n+2},\ a_n=(\frac{7n+1}{6n+5})^{3n+2}\lim\ \sqrt[n]{a_n}=\lim\ \sqrt[n]{(\frac{7n+1}{6n+5})^{3n+2}}$$

3.

Признак Коши интегральный:
$$\sum_{n=2}^{+\infty} \frac{1}{n \ ln^{\alpha}n}, \ a_n = \frac{1}{n \ ln^{\alpha}n} = f(n)$$
Рассмотрим $\int_2^{+\infty} \frac{dx}{x \ ln^{\alpha}x} = \lim_{b o +\infty} \frac{dx}{x \ ln^{\alpha}$

6 Достаточный признак сходимости знакопеременного ряда. Абсолютная и условная сходимость.

6.0.1 Определение

$$\sum_{n=1}^{+\infty}a_n$$
, если a_n произвольного знака газывается знакопеременным.
Рассмотрим $\sum_{n=1}^{+\infty}\left|a_n\right|\left(2\right);\,\sum_{n=1}^{+\infty}a_n\left(1\right)$ есл

Теорема Если знакопеременный ряд сходится абсолютно, то он сходится.

Знакочередующиеся ряды. Признак Лейбница. Оценка остатка знакочередующегося ряда (теорема Лейбница).

7.0.1 Определение

Ряд $\Sigma_{n=1}^{\infty}u_n$ - знакопеременный, если u_n произвольного знака.

7.0.2 Определение

Знакопеременный ряд $\Sigma_{n=1}^{\infty}u_n$ - знакочередующийся, если соседние члены ряда различного знака, то есть $u_n \cdot u_{n+1} < 0, \forall n \in \mathbb{N}$

Знакочередующийся ряд удобно записывать в виде $\sum_{n=1}^{\infty} (-1)^n a_n$, где $a_n > 0$.

7.0.3 Теорема (признак Лейбница)

Для того, чтобы знакочередующийся ряд сходился, достаточно выполнения следующих условий:

- 1. $a_n \ge a_{n+1}$ начиная с некоторого номера n;
- 2. $\lim a_n = 0$.

7.0.3.0.1 Пример: Ряд $\sum_{n=1}^{n} (-1)^n \frac{1}{n}$ - сходится, так как:

- 1. $1 \ge \frac{1}{2} \ge \frac{1}{4} \ge \frac{1}{4}$... 2. $\lim \frac{1}{n} = 0$

7.0.4 Теорема Лейбница

$$\begin{split} S &= \Sigma_{n=1}^{\infty} (-1)^n a^n \\ S &= S_n + R_n, \\ S_n &= \Sigma_{m=1}^n (-1)^m a^m \end{split}$$

Остаток знакочередующегося ряда $R_n = S - S_n$ будет меньше по модулю его первого члена: $|R_n| < b_{n+1}$

(прим.: запись \limsup означает $\lim_{n\to\infty}$)

Доказательства теорем можно посмотреть тут. Если надо, оформлю в билете.

8 Определение функционального ряда. Поточечная сходимость. Область сходимости функционального ряда.

8.0.1 Определение

Пусть дана бесконечная последовательность $\{u_n(x)\}_{n=1}^\infty$, которая определена на множестве X. Функциональным рядом называется бесконечная сумма, соответствующая этой последовательности: $\Sigma_{n=1}^\infty u_n(x), x \in X$.

8.0.2 Определение

Каждой точке $x_0 \in X$ соответствует числовой ряд, который может сходиться или расходиться. Если ряд сходится, то x_0 – точка сходимости.

8.0.3 Определение поточечной сходимости

Пусть ряд сходится при всех $x\in X.$ Тогда существует предел частичных сумм $\lim S_n(x)=S(x).$

Более крутыми словами: $\forall \varepsilon>0 \exists N(x,\varepsilon): \forall n>N, |S_n(x)-S(x)|<\varepsilon, x\in X$

8.0.4 Определение

Множество всех точек сходимости называется областью сходимости ряда $X_{\rm cx}$. Понятно, что $X_{\rm cx}\subset X$

9 Равномерная сходимость функционального ряда. Свойства равномерно сходящихся функциональных рядов.

Пусть ряд $\Sigma_{n=1}^\infty u_n(x) = S(x)$ имеет область сходимости $X_{\mathrm{cx}}.$

9.0.1 Определение

Функциональный ряд $\Sigma_{n=1}^\infty u_n(x)=S(x)$ называется равномерно сходящимся на отрезке [a,b], если для любого $\varepsilon>0$ и всех точек $x\in[a,b]$ существует такое число $N_0(\varepsilon)$, что для любого $N>N_0(\varepsilon)$ справедливо: $|S(x)-\Sigma_{n=1}^N u_n(x)|<\varepsilon, x\in X_{\rm cx}.$

9.0.2 Свойства

- 1. Если ряд $\Sigma_{n=1}^\infty u_n(x)$ равномерно сходится на отвезке [a,b], то сумма ряда $S(x)=\Sigma_{n=1}^\infty u_n(x)$ непрерывна на этом отрезке.
- 2. Если ряд $\sum_{n=1}^{\infty}u_n(x)$ равномерно сходится на отвезке [a,b], то ряд можно почленно интегрировать, то есть справедливо равенство:

$$\int_a^x (\Sigma_{n=1}^\infty u_n(t)) dt = \Sigma_{n=1}^\infty \int_a^x u_n(t) dt$$

3. Если на отрезке [a,b] члены функционального ряда $\sum_{n=1}^{\infty}u_n(x)$ имеют непрерывные производные и ряд, составленный из производных $\sum_{n=1}^{\infty}u_n'(x)$ сходится равномерно, то справедливо равенство:

$$(\Sigma_{n=1}^{\infty} u_n(x))' = \Sigma_{n=1}^{\infty} u_n'(x)$$

10 Признак Вейерштрасса.

10.1 Определение (мажорантный ряд)

Ряд $\Sigma_{n=1}^\infty a_n, a_n>0$ называется мажорантным для функционального ряда $\Sigma_{n=1}^\infty u_n(x)$ на множестве X, если в каждой точке $x\in X$, выполняется неравенство $|u_n(x)|\leq a_n$.

10.2 Теорема Вейерштрасса

Функциональный ряд сходится **равномерно** на множестве X, если его мажорантный ряд сходится.

$$\Sigma_{n=1}^{\infty}a_{n}$$
 – cx $\Rightarrow \Sigma_{n=1}^{\infty}u_{n}(x)$ – cx равномерно, $x\in X$

Для доказательства достаточно проверить равномерную сходимость ряда по определению (критерий Коши).

10.2.1 Пример

Исследуем функциональный ряд $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ на равномерную сходимость на множестве X=[-1;1].

На этом множестве можно составить мажорантный ряд $\Sigma_{n=1}^\infty \frac{1}{n^2}$. Этот ряд сходится как гармонический с $\alpha>1$. Следовательно, ряд $\Sigma_{n=1}^\infty \frac{x^n}{n^2}$ – сходится равномерно на отрезке [-1;1].

11 Степенные ряды. Первая теорема Абеля.

11.1 Определение (степенной ряд)

Функциональный ряд вида $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ называется степенным рядом.

Понятно, что заменой переменной $t=x-x_0$ можно свести степенной ряд к виду $\Sigma_{n=0}^\infty a_n(t)^n$, поэтому далее рассматриваются ряды вида $\Sigma_{n=0}^\infty a_n(x)^n$. Такой ряд полностью определяется последовательностью $\{a_n\}_{n=1}^\infty$.

11.2 Теорема Абеля

Если степенной ряд $\Sigma_{n=0}^{\infty}a_n(x)^n$ сходится в точке x_1 , то он сходится **абсолютно** в каждой точке интервала $(-|x_1|,|x_1|)$. Если ряд расходится в точке x_2 , то он расходится в каждой точке интервала $(-\infty,-|x_2|)\cup(|x_2|,+\infty)$.

Скорее всего её можно доказать с помощью признака сравнения в форме неравенства.

12 Интервал и радиус сходимости степенного ряда. Формулы для радиуса сходимости.

В этом ответе рассматривается степенной ряд $\sum_{n=0}^\infty a_n x^n$

12.1 Определение (радиус сходимости)

R>0 называют радиусом сходимости степенного ряда, если ряд сходится при всех x:|x|< R и расходится при всех x:|x|> R. Если ряд расходится во всех точках кроме x=0, то R=0. Если ряд сходится во всех точках $x\in\mathbb{R}$, то $R=\infty$.

12.2 Определение (интервал сходимости)

Интервал (-R,R) называюется интервалом сходимости степенного ряда.

Замечание: интервал сходимости не следует путать с областью сходимости $X_{\rm cx}$. Как следствие из теоремы Абеля: область сходимости степенного ряда совпадает с одним из следующих интервалов:

- 1. (-R; R);
- 2. [-R; R];
- 3. (-R; R];
- 4. [-R; R);

12.3 Теорема (формула Даламбера)

Радиус сходимости степенного ряда можно найти по формуле:

$$R = \lim \left| \frac{a_n}{a_{n+1}} \right|$$

Для доказательства этой формулы можно исследовать ряд из абсолютных величин $\sum_{n=0}^{\infty} |a_n x^n|$ с помощью признака Даламбера.

Ряд сходится абсолютно:

$$d = \lim \frac{|a_{n+1}x^{n+1}|}{|a_nx^n|} < 1 \Leftrightarrow |x| < \lim \left|\frac{a_n}{a_{n+1}}\right|$$

Ряд расходится:

$$d = \lim \frac{|a_{n+1}x^{n+1}|}{|a_nx^n|} > 1 \Leftrightarrow |x| > \lim \left|\frac{a_n}{a_{n+1}}\right|$$

12.4 Теорема (формула Коши-Адамара)

Радиус сходимости степенного ряда можно найти по формуле:

$$R = \frac{1}{\lim \sqrt[n]{|a_n|}}$$

Доказать эту формулу можно так же, как и формулу Даламбера: просто исследовать степенной ряд с помощью признака Коши.

13 Свойства радиуса сходимости степенных рядов при их интегрировании и дифференцировании.

13.1 Теорема

Радиус сходимости степенного ряда при его интегрировании или дифференцировании не изменяется.

Доказать это можно, если просто почленно проинтегрировать или продифференцировать ряд. В результате получится новый степенной ряд, у которого a_n будет такой же, как у исходного. По формуле Даламбера или формуле Коши-Адамара можно найти радиус сходимости нового ряда, и он совпадёт с областью сходимости исходного ряда.

Да, это весь билет. Тут написано даже больше, чем нужно

14 Ряды Тейлора и Маклорена.

Пусть f(x) - дифференцируемая бесконечная число раз функция в окрестности точки $x=x_0$. То есть $f(x)\in C^\infty_{U(x_0)}$.

14.1 Определение (ряд Тейлора)

Рядом Тейлора функции f(x) в точке $x=x_0$ называется степенной ряд:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

14.2 Определение (ряд Маклорена)

Ряд Тейлора функции f(x) в точке x=0 называется рядом Маклорена.

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n$$

Рекомендуется ознакомиться со следующими двумя билетами для более чёткого понимания темы.

Теорема о представлении функции сходящимся рядом Тейлора.

Пусть дана функция $f(x)\in C^\infty_{U(x_0)}$ и её ряд Тейлора в точке $x=x_0$: $\sum_{n=0}^\infty \frac{f^{(n)}(x)}{n!}(x-x_0)^n$.

15.1 Теорема

Если в интервале $(x_0-R;x_0+R)$ функция f(x) имеет производные любого порядка и все они по абсолютной величине ограничены одним и тем же числом, то есть $|f^{(n)}(x)| \leq M(n=1,2,...)$, то ряд Тейлора этой функции сходится к f(x) для любого x из интервала $(x_0-R;x_0+R)$.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} (x - x_0)^n, x \in (x_0 - R; x_0 + R).$$

Следует отметить, что если функция разлагается в степенной ряд, то этот ряд является рядом Тейлора. Такое разложение единственно.

15.2 Определение

Функция, для которой существует ряд Тейлора называется аналитической.

16 Разложение основных элементарных функций в ряд Маклорена.

16.1 Вывод ряда Маклорена для функции

Для примера разложим функцию e^x в ряд Тейлора в точке x=0 (то есть в ряд Маклорена):

$$f^{(n)}(x) = (e^x)^{(n)} = e^x; f^{(n)}(0) = 1$$

Получаем ряд:

$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

Все производные e^x ограничены на любом отрезке [-a;a], то есть $|f^{(n)}(x)|=e^x\leq M=e^a$. Поэтому согласно о теореме о разложении можно записать:

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

Радиус сходимости вычислим по формуле Даламбера.

$$R=\lim\left|\frac{a_n}{a_{n+1}}\right|=\lim\frac{(n+1)!}{n!}=\lim\frac{(n+1)\cdot n!}{n!}=\lim(n+1)=+\infty$$

Тогда интервал сходимости ряда – $(-\infty; +\infty)$

16.2 Разложения основных функций

Следующие разложения и интервалы их сходимости следует запомнить.

$$1. \ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in (-\infty; +\infty)$$

$$2. \ \sin x = \sum_{n=0}^{\infty} \frac{x^{2n-1}}{(2n-1)!}, x \in (-\infty; +\infty)$$

$$3. \ \cos x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, x \in (-\infty; +\infty)$$

$$4. \ (1+x)^m = \sum_{n=0}^{\infty} \frac{m(m-1)...(m-n+1)}{n!} \cdot x^n, x \in (-1; 1)$$

5.
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, x \in (-1;1)$$
6.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, x \in (-1;1)$$

7.
$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} \cdot x^n, x \in (-1;1)$$