28 599	COEFF AND D	ICIENTS EVELOPM	AND EC	UILIBRI MAND A	BERDEEN	ARMY ARI PROVI.	MAMENT	RESEARC		1		
SSIFIED	JRW	ARD ET	AL. APR	83 ARC	SSL-TR-	32088	F/	G 11/9	NL			
	t.,											
	\$ *											
											DATE	
											6-63	
	SSIFIED	SSIFIED J R W	SSIFIED J R WARD ET	AND DEVELOPMENT CON SSIFIED J R WARD ET AL. APR	AND DEVELOPMENT COMMAND AS SSIFIED JR WARD ET AL. APR 83 ARG	AND DEVELOPMENT COMMAND ABERDEEN SSIFIED J R WARD ET AL. APR 83 ARCSL-TR-	AND DEVELOPMENT COMMAND ABERDEEN PROVI. SSIFIED JR WARD ET AL. APR 83 ARCSL-TR-82088	AND DEVELOPMENT COMMAND ABERDEEN PROVI SSIFIED J R WARD ET AL. APR 83 ARCSL-TR-82088 F/	AND DEVELOPMENT COMMAND ABERDEEN PROVI SSIFIED J R WARD ET AL. APR 83 ARCSL-TR-82088 F/G 11/9	SSIFIED JR WARD ET AL. APR 83 ARCSL-TR-82088 F/G 11/9 NL	AND DEVELOPMENT COMMAND ABERDEEN PROVI SSIFIED J R WARD ET AL. APR 83 ARCSL-TR-82088 F/G 11/9 NL	AND DEVELOPMENT COMMAND ABERDEEN PROVI SSIFIED J R WARD ET AL. APR 83 ARCSL-TR-82088 F/G 11/9 NL END Outs Outs Outs Outs Outs Outs Outs Outs

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

- Address and a

AD

US Army Armament Research and Development Command Aberdeen Proving Ground, Maryland 21010

TECHNICAL REPORT ARCSL-TR-82088

SIMULTANEOUS DETERMINATION OF MOLAR ABSORPTION COEFFICIENTS AND EQUILIBRIUM CONSTANTS FOR MONOMER-DIMER EQUILIBRIA

Ву

J. Richard Ward

Reginald P. Seiders

Chemical Branch Research Division

April 1983

UTIC FILE COPY

3

X 5

A 12

Approved for public release; distribution unlimited.

83 05 24 02

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ARCLS-TR-82088 AD + A12859	3. RECIPIENT'S CATALOG NUMBER
SIMULTANEOUS DETERMINATION OF MOLAR ABSORPTION COEFFICIENTS AND EQUILIBRIUM FOR MONOMER-DIMER EQUILIBRIA	5. TYPE OF REPORT & PERIOD COVERED Technical Report Sept. 81 to August 12 6. PERFORMING ORG. REPORT NUMBER
7. Author(*) J. Richard Ward* Reginald P. Seiders	8. CONTRACT OR GRANT NUMBER(*)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Commander, Chemical Systems Laboratory ATTN: DRDAR-CLB-CA Aberdeen Proving Ground, Maryland 21010	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 1L161101A71A
Controlling office name and address Commander, Chemical Systems Laboratory ATTN: DRDAR-CLJ-R Aberdeen Proving Ground, Maryland 21010	12. REPORT DATE April 1983 13. NUMBER OF PAGES 38
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	UNCLASSIFIED 15. DECLASSIFICATION/DOWNGRADING SCHEDULE NA
16. DISTRIBUTION STATEMENT (of this Report)	

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

*Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland 21010

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Cobalt (II) complexes
Phthalocyanine
Monomer-dimer equilibria
Kinetics

ABSTRACT (Continue on reverse eith if necessary and identify by block number)

The majority of methods for measuring dimerization constants requires that the pure monomer spectrum be known. This spectrum is obtained by successive dilution of a dye solution until Beer's law is obeyed. In practice, there is a limit where the absorbance of the solution is too small to measure precisely. Frequently, the dye is diluted with alcoholic-aqueous solutions to foster monomer formation. We have devised a general scheme to compute molar absorption coefficients and dimerization constants based on Monahan's method. Absorbances are (Continued of reverse side)

· 产品的企业的经验的

DO 1 JAN 73 1473 EDITION OF 1 NOV 45 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Sintered)

20. ABSTRACT (continued)

measured for a series of dye concentrations. A nonlinear least-squares program then finds the best-fit monomer and dimer molar absorption coefficients. Absorbances are remeasured at various temperatures or with different dye concentrations and the calculation repeated. The mean molar absorption coefficients are computed from all the measurements; these values are then used to compute the dimerization constants at each temperature.

This technique was applied with cobalt (II) tetrasulfonated phthalocyanine as the dyestuff. At 662 nm the molar absorption coefficients for monomer and dimer were 9.6 \pm 0.6 x 10⁴ M⁻¹ cm⁻¹ and 7.5 \pm 0.8 x 10⁴ M⁻¹ cm⁻¹, respectively. The error is the sample standard deviation of four dye solutions for measurements made at 5° over the range 15° to 45°C. This monomer value compares favorably with a value of 1.0 x 10⁵ M⁻¹ cm⁻¹ measured in a 2 x 10⁻⁷ M aqueous-ethanol solution for which Beer's law was obeyed.

UNCLASSIFIED

PREFACE

The work described in this report was authorized under Project 1L161101A71A, Research in Defense Systems, Scientific Area B, Chemical Defense Research. This work was performed at CSL as part of a joint research program between BRL and CSL. The work covered in this report was performed during FY 82.

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software. This report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except with permission of the Commander, Chemical Systems Laboratory, ATTN: DRDAR-CLJ-R, Aberdeen Proving Ground, Maryland 21010. However, the Defense Technical Information Center and the National Technical Information Service are authorized to reproduce the document for United States Government purposes.

Acknowledgment

The authors wish to acknowledge the inspiration and assistance of Dr. George T. Davis.

CONTENTS

	Page	?
1.	INTRODUCTION	
2.	MATERIALS AND METHODS	
2.1	Preparation of [29H, 31H - Phthalocyanine - 2,9,16,23 - Tetrasulfonato (2-)- N^{29} , N^{30} , N^{31} , N^{32}] Cobalt (CoTSPC) . 8	
2.2	Spectrophotometric Measurements	
2.3	Determination of Molar Absorbance Coefficients 8	
3.	RESULTS AND DISCUSSION	
3.1	CoTSPC Spectrum in Water	
3.2	Monomer Spectrum by Dilution in Ethanol-Water	
3.3	Simultaneous Determination of Monomer-Dimer Molar	
	Absorption Coefficients	
4.	CONCLUSIONS	
	LITERATURE CITED	
	APPENDICES	
	A. Absorbance Measurements at 662nm to Determine $\epsilon_{\rm M}$ and $\epsilon_{\rm D}$	
	B. Dimerization Constants Determined with Fixed Molar Absorbance Coefficients	
	C. Dimerization Constants for Solutions Which Were Not Used to Determine Molar Absorbance Coefficients 31	
	DISTRIBUTION LIST	

- The same of the same

LIST OF TABLES

Table		Page
1	Maximum Absorbances for CoTSPC Diluted with 20 Percent by Volume Ethanol-Water	11
2	Molar Absorption Coefficients of Monomeric CoTSPC in 20 Percent by Volume Ethanol-Water	12
3	Summary of ϵ_M and ϵ_D Computed From Least-Squares Treatment of Absorbances Vs. CoTSPC Concentration of 662nm	13
4	Summary of Dimerization Constants Determined with ϵ_{M} and ϵ_{D} Fixed	14
5	Summary of Dimerization Constants with Solutions Which Were Not Used for Determining ϵ_M and ϵ_D	14
6	Comparison of Mean Dimerization Constants	15
7	Comparison Between Experimental Dimerization Constant and Those Calculated with Best-Fit Activation Parameters	17
8	Results of Calculations to Determine ΔH° with Equation (9)	18
9	Thermodynamic Parameters for CoTSPC Dimerization in Water .	18

- STATE OF THE STA

SIMULTANEOUS DETERMINATION OF MOLAR ABSORPTION COEFFICIENTS AND EQUILIBRIUM CONSTANTS FOR MONOMER-DIMER EQUILIBRIA

1. INTRODUCTION

Metal complexes of tetrasulfonated phthalocyanine (TSPC, figure 1), like other water-soluble dyestuffs, aggregate in aqueous solution. The formation of the dimer has been the subject of repeated studies for a variety of transition-metal complexes with TSPC. 2-8

 $R = SO_3 Na (TSPC)$ $M = Co^{++}: Cu^{++}$

Figure 1. Structure of Metal Phthalocyanines

The equilibrium constant for formation of a dimer is conveniently obtained spectrophotometrically since TSPC complexes absorb strongly in the visible region. All of the methods employed in the past to determine the dimerization constant of TSPC complexes spectrophotometrically required that the spectrum of the pure monomer be known. This spectrum is obtained by successive dilution of a dye solution until Beer's Law behavior is obeyed. In practice, there is a limit where the absorbance of the solution is too small to measure precisely. Frequently, the dye is diluted in alcoholic-aqueous solution to foster monomer formation. In addition, further approximations on the nature of the dimer spectrum are made, or the absorbance is measured with large amounts of monomer in solution to facilitate mathematical approximations. In the latter case, Reynolds and Kolstad contend that as much as 80% uncertainty can be introduced in the value of the dimerization constant.

This report describes results for a more general scheme that we devised based on a method introduced by Monahan in 1970¹⁰ in which a nonlinear least-squares program computes best-fit molar absorbance coefficients for both monomer and dimer simultaneously from absorbance measurements over a range of dye concentrations. The method is illustrated with cobalt (II) tetrasulfonated phthalocyanine (CoTSPC) as the dyestuff.

ALLE TO THE

2. MATERIAL AND METHODS

2.1 Preparation of [29H,31H-phthalocyanine-2,9,16,23-tetrasulfonato(2-)- N^{29} , N^{30} , N^{31} , N^{32}] Cobalt (CoTSPC).

This material was prepared by the method of Weber and Busch¹¹ using the sodium salt of 4-sulfophthalic acid, ammonium chloride, urea, ammonium molybdate, and cobalt sulfate heptahydrate in hot nitrobenzene. The purification procedure for this 0.05-mol scale reaction differed slightly from the published method. The crude, dark-blue product was broken apart with a spatula, rinsed with 400 ml methanol, and was finely ground in a mortar. The resulting blue powder was dissolved in 1.1 l of 1N HCl saturated with sodium chloride to give a deep blue slurry that was heated to reflux briefly, then was cooled to room temperature and filtered. The air-dried product was dissolved in 700 ml of 0.1N sodium hydroxide, heated to 80°C and filtered (no residue). Sodium chloride (270 gm) was added to salt out the product. This slurry was heated with stirring at 80°C for 3 hours while ammonia evolved. Upon cooling to room temperature, the product was isolated by filtration. This reprecipitation was repeated twice and the final precipitate was washed with 1.8 1 of 80% aqueous ethanol to remove occluded NaCl. A convenient final purification was achieved by washing the blue powder in the thimble of a Soxhlet apparatus with hot 95% ethanol for 18 hours. The product was then dried in vacuo for 2 days to give 22.0 gm (54%) of the desired CoTSPC as determined by UV-VIS spectroscopy.

2.2 Spectrophotometric Measurements.

All spectrophotometric measurements are made with a Beckman Model 25 UV-VIS Spectrophotometer using a cell with a 1-cm path length. The CoTSPC solutions were equilibrated for at least 30 minutes in a water bath that was also connected to the cell compartment of the instrument. The solution was transferred to the spectrophotometer cell and allowed another 3 to 5 minutes to equilibrate. The temperature of the solution was recorded with the thermocouple in the cell compartment that is integral to the spectrophotometer. This thermocouple was calibrated against an NBS thermometer. The water bath kept the cell compartment temperature within +0.1°C.

2.3 Determination of Molar Absorption Coefficients.

The absorbance of a solution in a 1-cm cell containing only monomer and dimer is

$$A = \epsilon_{M} [M] + \epsilon_{D} [D]$$
 (1)

where

A = absorbance

 $\varepsilon_{\rm Ni}$ = molar absorption coefficient, monomer, ${
m M}^{-1}{
m cm}^{-1}$

molar absorption coefficient, dimer, M⁻¹cm⁻¹

[M] = monomer concentration, M

[D] = dimer concentration, M.

THE WAR STREET

The equilibrium between monomer and dimer is

$$K = \frac{[D]}{[M]^2} \tag{2}$$

 $\label{eq:K} K = \frac{\{D\}}{\{M\}^2}$ where K = dimerization constant, M^{-1} . The total concentration of CoTSPC [[Co]] is

$$[Co] = [M] + 2 [D]$$
 (3)

Equations 2 and 3 can be combined to give the monomer concentration in terms of total CoTSPC as

$$[M] = \frac{-1 + \sqrt{1 + 8K [Co]}}{4K}$$
 (4)

With equations (2) and (4), one can rewrite equation (1) in terms of the experimentally accessible total concentration of CoTSPC as

$$A = \varepsilon_{M} \left(\frac{-1 + \sqrt{1 + 8K [Co]}}{4K} \right) + \frac{\varepsilon_{D}}{2} \left[[Co] - \left(\frac{-1 + \sqrt{1 + 8K [Co]}}{4K} \right) \right]$$
 (5)

A series of solutions with different CoTSPC concentrations was made from aliquots of four stock solutions of CoTSPC. The absorbances of these solutions were measured at a given wavelength after temperature equilibration. A nonlinear least-squares program 12 based on the Gauss-Newton technique was used to fit the measured absorbances versus CoTSPC concentrations to equation 5. The program found best-fit values of ε_{M} , ε_{D} , and K and also recalculated the absorbances with these best-fit values. The absorbance measurements were then made at different temperatures. Mean values of the best-fit ε_{M} and ε_{D} were determined from all the experiments. These values were fixed and equation 5 was used to find best-fit values of K for each stock solution and temperature.

The monomer's molar absorption coefficient was also measured by diluting CoTSPC in 20% (by volume) ethanol-water solutions until Beer's Law behavior was observed. Equation 5 will approach

$$A = \epsilon_{N} [Co]$$
 (6)

where 8K[Co] <<1, since $(1 + 2x)^{\frac{1}{2}} \cong (1 + x)$, when 2x <<1.

3. RESULTS AND DISCUSSION

3.1 CoTSPC Spectrum in Water.

Figure 2 illustrates spectra of a 1.17 x 10⁻⁵M solution of CoTSPC between 600 and 700 nm that was heated to 70°C and allowed to cool to room temperature. The shoulder near 620 nm grew and the peak near 660 nm decreased as more dime. formed at the lower temperature. The presence of the isosbestic point at 634 nm

Figure 2. Decrease in Absorbance at 662 nm of CoTSPC and Formation of Isosbestic Point at 634 nm on Cooling to Room Temperature from 70°C

was taken as evidence that only monomer and dimer existed at this concentration. To avoid interference from higher aggregates, subsequent stock solutions were made no more concentrated than $1.2 \times 10^{-5} M$.

3.2 Monomer Spectrum by Dilution in Ethanol-Water.

In order to estimate a molar absorption coefficient for the pure monomer, 1-ml aliquots of a stock solution were diluted to volume with a 20% by volume ethanol-water solution in a series of volumetric flasks. The shoulder near 620 nm disappeared and one nearly symmetrical peak centered at 662 nm remained as the solutions were diluted. Table 1 lists the absorbances recorded at the peak heights along with the corresponding molar absorption coefficients. Since it was necessary to use the 0.1 absorbance full-scale setting, the absorbances for the 25-, 50-, and 100-ml dilutions were remeasured to test the reproducibility of the instrument. These results are also listed in table 1.

Table 1. Maximum Absorbances for CoTSPC Diluted with 20% by Volume Ethanol-Water*

Dilution	$\frac{\text{[CoTSPC]}}{\text{M (x 10}^7)}$	<u>A</u>	$\frac{\epsilon}{M^{-1}cm^{-1} (x 10^{-5})}$	A**	$\frac{\varepsilon}{\text{M}^{-1}\text{cm}^{-1} (x \ 10^{-5})}$
1:10	11.5	0.112	0.98		were we
1:25	4.60	0.0472	1.03	0.0479	1.05
1:50	2.30	0.0242	1.06	0.0243	1.06
1:100	1.15	0.0113	0.99	0.0117	1.02
1:250	0.46	0.0041	0 92		

^{* 1} cm cell; $\lambda = 662$ nm

One can see that the molar absorption coefficient is constant for a $2 \times 10^{-7} M$ solution within the precision of the experiment. Table 2 lists results for a series of solutions prepared from 1-ml aliquots of stock solutions diluted with the ethanolic-water solution into a 50-ml volumetric flask. The mean molar absorption coefficient at 662 nm is $1.05 \pm 0.02 \times 10^{5} M^{-1} cm^{-1}$, the error expressed as the sample standard deviation for the eight solutions. Other reported values are $1.03 \times 10^{5} M^{-1} cm^{-1}$ at $\lambda = 663$ nm, 13 determined by heating a water solution until the absorbance was constant, and $1.2 \times 10^{5} M^{-1} cm^{-1}$ at $\lambda = 663$ nm, 14 determined by dilution in ethanol-water solution.

^{**} Measured absorbance for second trial with same solution.

Table 2. Molar Absorption Coefficients of Monomeric CoTSPC in 20% by Volume Ethanol-Water*

[CoTSPC]	Α	ε
$M \times 10^7$		$M^{-1}cm^{-1} (x 10^{-5})$
2.30	0.0242	1.06
2.34	0.0244	1.04
1.81	0.0186	1.03
2.49	0.0259	1.04
1.58	0.0161	1.02
1.61	0.0172	1.07
2.24	0.0237	1.06
1.74	0.0181	1.05

*1 cm cell; $\lambda = 662$ nm

3.3 Simultaneous Determination of Monomer-Dimer Molar Absorption Coefficients.

The molar absorption coefficients of the monomer and dimer were determined at 662 nm corresponding to the peak absorbance for the monomer. A stock solution of CoTSPC and three aliquots of different volumes were used to prepare four solutions with different CoTSPC concentrations. The absorbances of these solutions were measured at 662 nm and the absorbances fit to equation 5 with the nonlinear least-squares program to give best-fit values of $\varepsilon_{\rm M}$, $\varepsilon_{\rm D}$, and K, and absorbances recalculated with these values.

Sets of solutions were prepared from four stock solutions (A, B, C, and D) and the absorbances for each set of solutions were measured over the temperature range 15° to 45°C at 5°C intervals. In order to get the calculation to converge, it was necessary to use numbers near unity, so the concentrations of CoTSPC were multiplied by 10^5 . In a few instances, negative best-fit values of ε_D or K were computed, or the magnitude of the standard deviation exceeded the value of ε_D . Where negative or near-zero values were encountered, the values of ε_M and ε_D were both discarded. Values of ε_D were discarded where the standard deviation exceeded the computed value.

Appendix A contains the results of these experiments. Table 3 summarizes the values of ϵ_M and ϵ_D along with the mean value and sample standard deviation for each solution over the indicated temperature range. The values of ϵ_M and ϵ_D averaged over the four solutions are 9.65 ± 0.6 x $10^4 M^{-1} cm^{-1}$ and 7.62 ± 0.8 x $10^4 M^{-1} cm^{-1}$, respectively, the error being the sample standard devition. The value of ϵ_M compares favorably with the 1.05 x $10^5 M^{-1} cm^{-1}$ measured

Table 3. Summary of ϵ_M and ϵ_D Computed from Least-Squares Treatment of Absorbances versus CoTSPC Concentration at 662 nm

	$\epsilon_{ extbf{M}}$ for solution				$\epsilon_{ m D}$ for solution			
Temperature	Α	В	С	D	A	В	С	D
°C	М	-1 _{cm} -1	x 10 ⁻⁴		M	-1 _{cm} -1	x 10 ⁻⁴	
16.1	9.23	9.25	8.32	*	7.04	6.94	6.34	*
20.1	9.49	8.54	9.08	9.32	8.30	6.58	6.64	7.55
24.2	10.7	9.04	9.07	8.98	8.30	6.64	7.25	6.65
29.6	10.3	10.7	9.28	13.5	8.82	8.34	7.19	9.59
34.6	9.10	*	*	9.4	3.42	*	*	7.00
41.0	9.51	*	*	10.8	**	*	*	10.3
45.6	9.90	9.55	9.34	10.2	8.76	7.32	**	11.0
Mean	9.75	9.42	9.02	10.4	7.44	7.17	6.80	8.68
Sample Standard Deviation	0.6	0.8	0.4	1.7	2.1	0.9	0.5	1.8

^{*} Negative value of ϵ_{M} , ϵ_{D} , or K

in the dilute ethanolic-aqueous solution, considering the associated errors. Monahan also reported a similar error in his determinations. 10

In order to obtain dimerization constants, the absorbance versus concentration data were refit to equation 5 using fixed values of ϵ_M and ϵ_D . The best fit dimerization constants and absorbances calculated with them are listed in appendix B. The difference between the calculated and experimental absorbances is generally within experimental error. Table 4 summarizes the dimerization constants determined with fixed values of ϵ_M and ϵ_D .

As a further check on the self-consistency of this method for determining dimerization constants, a set of absorbances was then measured for new solutions which had not been used to compute the values of ϵ_{M} and ϵ_{D} . Appendix C summarizes the results of these experiments. Table 5 lists the values as K', the dimerization constants for solutions independent of the determination of ϵ_{M} and ϵ_{D} . Table 6 compares the values of K and K' at the various temperatures.

^{**} Standard deviation exceeds value

Table 4. Summary of Dimerization Constants Determined with $\epsilon_{\mbox{\scriptsize M}}$ and $\epsilon_{\mbox{\scriptsize D}}$ Fixed*

		K of Sol	ution		Sample	
Temperature	A	В	C	D	Mean	Standard Deviation
°C		$M^{-1} \times 1$	0-5			
16.1	4.04	4.42	4.29	4.93	4.17	0.22
20.1	2.75	3.22	3.11	2.99	3.02	0.20
24.2	2.23	3.51	2.45	2.34	2.38	0.12
29.6	1.70	1.78	1.83	1.76	1.77	0.05
34.6	1.12	1.23	1.22	1.18	1.19	0.05
41.0	0.758	0.829	0.856	0.815	0.814	0.04
45.6	0.572	0.639	0.604	0.565	0.595	0.03

^{*} $\varepsilon_{\rm M} = 9.65 \times 10^4 \,{\rm M}^{-1} {\rm cm}^{-1}$; $\varepsilon_{\rm D} = 7.52 \times 10^4 \,{\rm M}^{-1} {\rm cm}^{-1}$ at $\lambda = 662 \,{\rm nm}$

Table 5. Summary of Dimerization Constants with Solutions* Which Were not Used for Determining ϵ_M and ϵ_D

	,				,	
		K' of So	lution	l	Sample	
Temperature	Α	В	С	D	Mean	Standard Deviation
°C		M ⁻¹ x 1	0-5			
20.1	3.21	2.97	2.95	3.09	3.06	0.12
24.9	2.19	2.13	2.00	2.07	2.10	0.08
29.6	1.77	1.59	1.58	1.64	1.64	0.09
34.2	1.28	1.19	1.10	1.20	1.19	0.07
41.0	0.803	0.754	0.710	0.716	0.746	0.04

^{*} $\epsilon_{\rm M}$ = 9.65 x 10⁻⁴ M⁻¹ cm⁻¹; $\epsilon_{\rm D}$ = 7.52 x 10⁴ M⁻¹ cm⁻¹ at λ = 662 nm

Table 6. Comparison of Mean Dimerization Constants*

Temperature	K	К'
°C	M ⁻¹ x 10 ^{-5**}	$M^{-1} \times 10^{-5}$
16.1	4.17 ± 0.22	-
20.1	3.02 ± 0.20	3.06 ± 0.12
24.2	2.38 ± 0.12	-
24.9	~	2.1 ± 0.08
29,6	177 ± 0.05	1.64 ± 0.09
34.2	-	1.19 ± 0.07
34.6	1.19 ± 0.05	-
41.0	0.814 ± 0.04	0.746 ± 0.04
45.6	0.595 ± 0.03	-

^{*} Error expressed as sample standard deviation.

Since the dimerization constants were measured in dilute CoTSPC solutions (10 $^{-5}$ to 10 ^{-6}M), one can assume that these dimerization constants represent the thermodynamic equilibrium constants from which the standard-state free energy, ΔF° , can be determined through the familiar expression

$$\Delta F^{\circ} = -RT \ln(K) \qquad . \tag{7}$$

The temperature dependence of ΔF^o can then be used to determine the standard-state enthalpy and entropy of dimerization.

Figure 3 illustrates a plot of ln(K) versus 1/T suggesting that the enthalpy is independent of temperature. Values of ΔH° and ΔS° were then determined with the nonlinear, least-squares program by fitting the data in table 6 to

$$K = e^{\left(-\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}\right)}$$
 (8)

The best-fit values of ΔH^c and ΔS^o are 12.0 \pm 0.03 kcal/mole and -16 \pm 1 cal/mole-K, respectively, with the error expressed as the standard deviation of the mean, an output of the program. ¹² Table 7 compares dimerization constants calculated with the best-fit values of ΔH^o and ΔS^o with the experimental values.

^{**} Determined with solutions used to establish values for molar absorption coefficients.

Figure 3. Temperature Dependence of the Dimerization Constant of CoTSPC in Water; (Δ) Data Points Represent K'_{Ω}

Recently, Blandamer and co-workers 15 have questioned the physical significance of the values obtained from least-squares treatment of the temperature dependence of rate or equilibrium data, particularly when the parameters being fit have unit correlation coefficients, as is the case here. These workers propose the following expression 16 for determining activation parameters as well as checking the temperature dependence of $\Delta\,H^{\circ}$:

$$K = K_o e^{-\frac{\Delta H_o^o}{R}} \left(\frac{1}{T_o} - \frac{1}{T} \right) + \frac{\Delta C_p^o}{R} \left(\ln \frac{T}{T_o} + \frac{T_o}{T} + 1 \right)$$
 (9)

where

K = equilibrium constant at T

 K_o = equilibrium constant at T_o

 ΔC_{D}° = standard heat capacity.

Table 7. Comparison Between Experimental Dimerization Constant and Those Calculated with Best-Fit Activation Parameters*

Temperature	K Experiment	K Fit	
°C	M ⁻¹ X 10 ⁻⁵	M ⁻¹ X 10 ⁻⁵	
16.1	4.17	4.13	
20.1	3.02; 3.06	3.10	
24.2	2.38	2.33	
24.9	2.10	2.22	
29.6	1.77; 1.64	1.62	
34.2	1.19	1.20	
34.6	1.19	1.17	
41.0	0.814; 0.746	0.784	
45.6	0.595	0.593	

 $^{*\}Delta H^{\circ} = -12.0 + 0.3 \text{ kcal/mole}; \Delta S^{\circ} = -16 + 1 \text{ cal/mole} - K.$

This equation is obtained from integration of the van't Hoff isochore between T_o and T which assumes ΔC_p° is independent of temperature. The quantities K and K_o are the equilibrium constants at T and T_o , respectively, and ΔH_o° is the enthalpy at T_o . For a set of K, T data, any pair are selected as K_o and T_o , and the remaining values fit to equation 9 to find best-fit values of ΔH_o° at T_o and ΔC_p° . The calculation is repeated with new values of K_o , T_o until values of ΔH_o° and ΔC_p° have been obtained for each value of T in the data set.

The non-linear least-squares program was modified for fitting the K, T data in table 6 to equation 9, in which ΔH_o^o and ΔC_p^o were parameters to be fit while K_o and T_o were inserted as fixed parameters. Table 8 summarizes the results of determinations of ΔH^o and ΔC_p^o at each of the nine temperatures from table 6. One sees that the enthalpy is independent of temperature, and the mean value of ΔH^o , -12.0 \pm 0.6 kcal/mole (error representing sample standard deviation), is identical to the value of -12.0 \pm 0.3 kcal/mole obtained from fitting the K, T data to equation 8.

Finally, table 9 lists the results Eyring 7 obtained for the thermodynamics of CoTSPC dimerization from kinetic and spectrophotometric methods at 38°, 48°, and 58°C. The agreement with the thermodynamic parameters measured kinetically is gratifying.

Table 8. Results of Calculations to Determine AH Using Equation 9

Temp	ΔΗο	ΔCp
°C	kcal/mole	cal/mole-K
16.1	-12.4 <u>+</u> 0.6	28 +68*
20.1	-11.2 ±0.8	54 <u>+</u> 95
24.2	-11.1 ±0.7	-156 <u>+</u> 117
24.9	-12.3 ±1.0	154 <u>+</u> 151
29.6	-11.4 +0.5	-230 <u>+</u> 118
34.2	-12.2 ±0.7	- 39 <u>+</u> 117
34.6	-12.0 +0.7	- 63 <u>+</u> 108
40.1	-12.7 <u>+</u> 0.8	- 80 <u>+</u> 87
45.6	-12.6 ±0.7	- 53 <u>+</u> 62

^{*}Error represents standard deviation of the mean.

Table 9. Thermodynamic Parameters for CoTSPC Dimerization in Water

Δ H °	Δ\$°	Method	Reference
kcal/mole	cal/mole-K		
-12.6 ± 1.3*	-14 ± 4*	Ratio of rate coefficients	7
-14 ± 0.9*	-18 ± 3*	Spectrophotometric	7
-12.3 ± 0.3**	-16 ± 1**	Spectrophotometric	This work

^{*} Error estimated by authors.

These results suggest that this technique would be particularly useful in the study of other dye aggregation phenomena, such as the copper phthalocyanine system, where the pure monomer spectrum can not be obtained. We also plan to use this technique to determine the effect of hydroxylic solvents on phthalocyanine aggregation.

4. CONCLUSIONS

a. A spectrophotometric method that does not require the monomer spectrum to be known in advance has been devised for measuring the equilibrium between monomer and dimer.

^{**} Standard deviation of the mean.

b. The method was illustrated using cobalt (II) tetrasulfonated phthalocyanine, for which the dimerization constant was measured at 5° intervals over the temperature range 15° to 45° C. It was shown that the enthalpy of reaction is independent of temperature over this range, being -12.0 ± 0.3 kcal/mole with corresponding entropy of -16 ± 1 cal/mole K.

LITERATURE CITED

- 1. Duff, D. G. and Giles, C. H. "Dyestuffs," in Water, A Comprehensive Treatise. F. Frank, ed. Vol. I, Chap 3, pp 169 to 207. Plenum Press, New York and London. 1975.
- 2. Abel, A. W., Pratt, J. M., and Whelan, R. The Association of Cobalt (II) Tetrasulfophophthalocyanine. J. Chem. Soc. Dalton Trans. pp 509 to 514. 1976.
- 3. Reynolds, W. L. and Kolstad, J. J. Aggregation of 4,4',4",4"'-Tetrasulfophthalocyanine in Electrolyte Solutions. J. Inorg. Nuc. Chem. 38, 1835 to 1838 (1976).
- 4. Blagrove, R. J. and Gruen, L. C. The Aggregation of the Tetrasodium Salt of Copper Phthalocyanine 4,4'4",4"'-Tetrasulfonic Acid. Aust. J. Chem. 25, 2553 to 2558 (1972).
- 5. Farina, R. D., Halko, D. J., and Swinehart, J. H. A Kinetic Study of the Monomer-Dimer Equilibrium in Aqueous Vanadium (IV), Tetrasulfophthalocyanine Solutions. J. Phys. Chem. 76, 2343 to 2348 (1972).
- 6. Sigel, H., Waldmeier, P., Prijs, B. The Dimerization, Polymerization, and Hydrolysis of FeIII-4,4',4'',4'''-Tetrasulfophthalocyanine. Inorg. Nucl. Chem. Letters. 7, 161 to 169 (1971).
- 7. Schelly, Z. A., Harward, D. J., Hemmes, P., and Eyring, E. M. Bonding in Dye Aggregates. Energetics of the Dimerization of Aqueous Cobalt (II)-4,4',4'',4'''-Tetrasulfophthalocyanine Ion. J. Phys. Chem. 74, 3040 to 3042 (1970).
- 8. Fenkart, K., and Brubaker, C. H., Equilibria Among the Species Present in Aqueous Solutions Containing the Manganese (III) Complex with 4,4',4", 4"'-Tetrasulfophthalocyanate Ion. J. Inorg. Nuc. Chem. 30, 3245 to 3251 (1968).
- 9. West, W. and Pearce, S. The Dimeric State of Cyanine Dyes. J. Phys. Chem. 69, 1894 to 1903 (1965).
- 10. Monahan, A. R., and Blossey, D. F. The Aggregation of Arylazonapthols I. Dimerization of Bonadur Red in Aqueous and Methanolic Solutions. J. Phys. Chem. 74, 4014 to 4021 (1970).
- 11. Weber, J. H., and Busch, D. H. Complexes Derived from Stong-Field Ligands XIX. Magnetic Properties of Transition Metal Derivatives of 4,4',4",4"'-Tetrasulfophthalocyanine. Inorg. Chem. 4, 469 to 471 (1965).
- 12. Moore, R. H., and Ziegler, R. K. Los Alamos Scientific Laboratory Report LA-2367. The Solution of the General Least Squares Problem with Special Reference to High-Speed Computers. March 1960.
- 13. Schelly, Z. A., Farina, R. D., and Eyring, E. M. A Concentration-Jump Relation Method Study on the Kinetics of the Dimerization of the Tetrasodium Salt of Aqueous Cobalt (II)-4,4',4",4"'-Tetrasulfophthalocyanines. J. Phys. Chem. 74, 617 to 620 (1970).

- 14. Gruen, L. C. and Blagrove, R. J. The Aggregation and Reaction with Oxygen of the Tetrasodium Salt of Cobalt Phthalocyanine-4,4',4",4"'-Tetrasulfonic Acid. Aust. J. Chem. 74, 617 to 620 (1970).
- 15. Blandamer, M. J., Robertson, R. E., and Scott, J. M. W. An Examination of Parameters Describing the Dependence of Rate Constants on Temperature for Solvolysis of Various Organic Esters in Water and Aqueous Mixtures. Can. J. Chem. 58, 772 to 776 (1980).
- 16. Blandamer, M. J., Robertson, R. E., Scott, J. M. W., and Vrielink, A. Evidence for the Incursion of Intermediates with Hydrolysis of Primary, Secondary, and Tertiary Substrates. J. Am. Chem. Soc. 102, 2585 to 2592 (1980).

- The state of the

APPENDIX A

ABSORBANCE MEASUREMENTS AT 662 nm TO DETERMINE $\epsilon_{M}^{}$ AND $\epsilon_{D}^{}$

Table A-1. Determination of ϵ_{M} and ϵ_{D} for Solution A

					ř	Temperature	e Li							
OTSPC! M # 106	16.1°C	ွ	20.	20.1°C	24.	24.2°C	29.6°C	261	34.	34.6°C	#	41.0°C	\$	45.6°C
	V	A Y	< "	٧	<°	ν	V	٧ڏ	م	۸f	ه ۷	Λſ	v ^a	V
8.09	0.457	0.457	0.485	0.457 0.485 0.485	0.498	0.498 0.498	0.519	0.519	0.549	0.549	0.579	0.579	0.498	0.498
2.	0.253	0.253	. 265	0.265	0.274	0.274 0.274 0.284	0.284	0.284	0.306	0.306	0.324	0.324	0.329	0.329
2.02	0.140	0.140	.14	0.145	0.152	0.152 0.155	0.155	0.156	0.164	0.165	0.173	0.174	0.175	0.176
0.809	0.063	0.063	. 065	0.065	0.069	0.069 0.070	0.010	0.000	0.071	0.00	0.075	0.074	0.076	0.075
c _M ,M ⁻¹ cm ⁻¹ x 10 ⁻⁵	,	0.923		0.949	•	1.07	•	1.03	,	0.910	,	0.951	,	0.890
c _D ,M ⁻¹ cm ⁻¹ x 10 ⁻⁵	•	0.704	'	0.830	,	0.830	,	0.882	•	0.342	1	0.142°		0.876
K,M ⁻¹ x 10 ⁻⁵	1	2.77	3.39	3.39	· ·	4.56	•	3.57	•	0.410		0.308		0.858

a Experimental absorbance

b Absorbance calculated with best-fit values

c Standard deviation exceeds value

Table A-2. Determination of ϵ_{M} and ϵ_{D} for Solution B

					F	Temperature	2 2							
[CoTSPC].M x 106	16.1°C	2	ä	26.1°C	Ä	74. PC	2	29.6°C	7	34.6°C	5	41.0°C	45.6°C	5
	ν°γ	V, b	ve v	٧Ł	۷	۸r	۷*	٧	٧	Αŗ	ه ۷	Λr	4	A _f
1.07	957-0	0.498 0.521	0.521	0.521	6.539	0.539	195.0	. 557	193.	9.507	9.632	9.632	9.632	9.656
*	E.	0, 276 0, 290		6.28	- 38	. 38	0.315	6.313	6.335	1.15	3 5	ž	*	*
1.11	21.54	6. 153 6. 156	0.156	9.156	9. 165	6. 165	0.170	0.173	9.178	6.179	ž.	9.165	H	6. 193
P. 967	3	6.069	0.070		0.073	.3	8	E	9. 976	9.075	8	.93		
c _M ,M ⁻¹ cm ⁻¹ x 10 ⁻⁵	,	925	1	255.	•	¥	4	1.0		. 653	,		•	956
Ep.M-1cm-1 x 10-5	,	2	1	. 65	•	3	•	. 52	,	-0.415°	ı	7. 8°	•	12.
K.M-1 x 10-5	ı	2.		7.	1	1.42	4	3.73	1	0.152	t	-1.638	,	. 53

Experimental absorbance

b Absorbance calculated with best-fit values

Standard deviation exceeds value

Table A-3. Determination of ε_M and ε_D for Solution C

					F	Temperature	e L							
[CoTSPC].M x 106	16.	16.1°C	20.	20.1°C	24.2°C	2°C	29.	29.6°C	34.	34.6°C	41.	41.01°C	45.	45.6°C
	A _e 8	۷ ^L P	Ve Ve	۸۲	A e	۸f	ه ۷	۸f	v e	٧ ^۲	V e	y V	A e	y V
9.66	0.528	0.528 0.551	0.551	0.551	0.572	0.572	0.596	0.596	0.630	0.630	0.665	0.665	0.698	0.698
4.83	0.294	0.293	0. 293 0. 309	0.307	0.317	0.316	0.330	0.330	0.330 0.355	0.354	0.370	0.369	0.387	0.386
2.42	0.181	0.162	0. 162 0. 167	0.170	0.172	0.173	0.181	0.181	0.190	0.192	0.196	0.197	0.206	0.207
0.966	0.072	0.071	0.071 0.078	0.076	0.078	0.077	0.060	0.080	0.083	0.083 0.081	0.084	0.082	0.088	0.087
EM.M-1cm-1 x 10-5	1	0.832	1	906.0	1	0.907		0.928	1	0.879	1	0.882	1	0.934
Ep.M-1cm-1 x 10-5	,	0.634		0.664	1	0.725	•	0.719	1	0.083		0.016 C	,	0.197 ^c
K,M ⁻¹ × 10 ⁻⁵		1.35	1	1.77	1	1.68	1	1.38	τ	0.263	1	0. 163	1	0.234

a Experimental absorbance

b Absorbance calculated with best-fit values

c Standard deviation exceeded value

Table A-4. Determination of ϵ_{M} and ϵ_{D} for Solution D

		}												
					Ĥ	Temperature	ž							
900	1	16 190	ď.	201 100	24.	24.2°C	29.	29.6°C	34.6°C	၁၈	41.0°C	S	45.6°C	ار
[CoTSPC],M x 10	<	A A	<°	A C	A) L	۷.	٧	ه ۷	ν	V e	۸ŗ	۷	V.
5.78	. ¥	0.341	0.358	0.358	0.370	0.371	0.387	0.387	0.410	0.410	0.431	0.432	9.45£	0.453
4.33	0.274	0.271	0.271 0.280	0.280	0.293	0.293 0.290 0.302	0.302	0.301 0.319 0.320	0.319	0.320	0.337	ŷ. 335	0.347	0.349
2.89	9.188		0.192 0.197	0.197	0.202	0.202 0.205 0.212	8.212	0.213 0.225	0.225	9. 224	0.232	6. 23A	9.245	0.243
1.44	0.104		0, 102 0, 108	0.108	0.112	0.112 0.111 0.118	0.118	0.118	0.120	0.120	0.127	0.126	0.128	0.129
EM, M-1cm-1 x 16-5		0.754		0.932	1	0.898		1.35	,	0.940	,	8.	'	1.02
. M.lem-1 x 10 ⁻⁵		.1.55°	,	0.755		0.665	,	6.959	1	0.700	,	3.1	,	1.10
K,M ⁻¹ × 10 ⁻⁵		0.115		2.55	,	1.31	1	14.7	,	0.913	,	7.2	-	1.8
1														

a Experimental absorbance

b Absorbance calculated with best-fit values

c Standard deviation exceeds value

APPENDIX B

DIMERIZATION CONSTANTS DETERMINED WITH FIXED MOLAR ABSORPTION COEFFICIENTS

0.572 0.074 45.6°C 0.329 0.175 0.076 0.318 0.171 0.073 0.758 0.173 0.324 0.075 0.550 0.303 0.165 0.072 1.12 34.6°C 0.286 0.306 0.157 0.164 0.069 0.071 1.70 9°C 29. 0.284 0.155 0.00 Temperature 0.273 0.150 0.068 0.500 0.274 0.152 0.069 0.147 990.0 0.252 0.265 0.267 2.75 20.1°C 0.140 0.144 0.063 0.065 2. 0.063 901 [CoTSPC],M $K, M^{-1} \times 10^{-5}$ 0.809 2.02 8.09 2.

Determination of Best-Fit K with ϵ_{M} and ϵ_{D} Fixed - Solution A

Table B-1.

Absorbance experimental

b Absorbance calculated with best-fit K

Table B-2. Determination of Best-Fit K with ϵ_{M} and ϵ_{D} Fixed - Solution B

		}												
					Ţ	Temperature	<u>2</u>						!	
10	1	16 190	2	20.1°C	24.	24.2°C	29.6°C	8	34.6°C	သို့	41.0°C	္စ	45.6°C	اړ
[CoTSPC],M x 10	<	4	2 °	Y.	<°	7	ه> ا	٧,	ه ۷	٧	~	Λf	٩	Į,
9.07	867 .0	0.498 0.521	0.521	0.521	0.539	0.539 0.540		0.567	0.597 0.598	0.598	0.632	0.634	0.658	0.658
4.54	0.276	0.275	0.284	0.275 0.284 0.288	0.300	0.300 0.299	0.315	0.314 0.335 0.331	0.335	0.331	0.355	6.349	0.360	0.360
2.27	0.154	0.152	0.155	0.152 0.155 0.159	0.165	0.165 0.170	0.170	0.173	0.178	0.173 0.178 0.181	0.184	0.189	0.189 6.193	9 . 1 %
206.0	0.069	0.069	0.010	0.069 0.070 0.072	0.073	0.073 0.074 0.080	0.080	0.077	0.076	0.077 0.076 0.079	6.079	0.061	0.081 0.082	6.082
K M-1 x 10.5	,	4.43	,	3.22	· ,	2.51	'	1.78		1.23	ı	0.819	4	0.639

a Experimental absorbance

b Absorbance calculated with best-fit K

Table B-3. Determination of Best-Fit with ϵ_{M} and ϵ_{D} Fixed - Solution C

-					Ţ	Temperature	e i						!	
9"	الم	16 100	20	20 1°C	24.2°C	300	29.6°C	ာ့	34.6°C	ွင့	41.0°C	ပ္စ	45.6°C	ပ္စ
[CoTSP],M x 10	4 ×	A A	√°	A C	4 ^d	A f	۷°	J.	A o	Ar	٩	Af	A _e	À.
9.66	0.528	0.529	0.529 0.553	0.553	0.572	0.572	0, 596	0.596	0.630	0.632	0.665	0.666	0.698	0.700
4.83	0.294	0.291	0.309	0.291 0.309 0.305	0.317	0.316 0.330	0.330	0.330 0.355 0.349	0.355		0.370	0.367	0.387	0.383
2.42	0.161	0.161	0.167	0.161 0.167 0.169	0.172	0.175	c. 181	0.182	0.190	0.190 0.192	0.196	0.199	0.206	0.206
0.966	0.072	0.073	0.078	0.073 0.078 0.076	0.078	0.078	0.080	0.081	0.081 0.083 0.084	0.084	0.084	0.086	0.088	0.088
K M-1 x 10 ⁻⁵		4.29	, 	3.11	•	2.45	,	1.83		1.22	,	0.856		0.604

a Experimental absorbance

b Absorbance calculated with best-fit K

- SAMMERINE A

Table B-4. Determination of Best-Fit K with $\epsilon_{\rm M}$ and $\epsilon_{\rm D}$ Fixed - Solution D

					F	Temperature	9							
					•									
941 - 21 (7434-77)	2	16.100	2	20.1°C	75	24.2°C	29.6°C	၁	34.6°C	သို့	41.0°C	ړ	45.6°C	ပ္စ
Colstol, m x vo	* «	A V	<	V	ه ک	y V	<°	V	A e	٧	v ^e	۸ſ	ه ه	V.
5.78	9.341	0.34	0.358	0.344 0.358 0.358	0.370	0.371	0.370 0.371 0.387	0.387	0.410	0.410 0.410	0.431	0.431	0.454	0.452
4.33	0.274	0.267	0.280	0.267 0.280 0.280	0.293	0. 290	0.293 0.290 0.302	0.302	0.319	0.319 0.319	0.337	0.335	0.347	0.350
2.89	0.188	0.190	0.197	0.190 0.197 0.198	0.202	0.202 0.205 0.212	0.212	0.213	0.225	0.225 0.225	0.232	0.235	0.245	0.244
1.4	0.104	0.105	0.108	0.105 0.108 0.109	0.112	0.112 0.112	0.118	0.116 0.120 0.121	0.120	0.121	0.127	0.135	0.128	0.128
K.M ⁻¹ × 19 ⁻⁵	1	3.95	,	2.99	,	2.34	١	1.76	,	1.18	,	0.815	,	0.565

Experimental absorbance

Absorbance calculated with best-fit K

APPENDIX C

DIMERIZATION CONSTANTS FOR SOLUTIONS WHICH WERE NOT USED TO DETERMINE MOLAR ABSORPTION COEFFICIENTS

0.8030.2300.418 0.593 41.0°C 0.5920.2300.215 0.3920.7071.28 Ą 34.2°C 0.2170.705 0.394 A 9, 0.2060.374 0.674 1.77 A 29.6°C 0.376 0.207 0.527 0.674 Temperature 0.5120.362 0.2030.654 2.19A 24.9°C 0.649 0.5120.2030.3699.343 0.1900.6213.21 Ą 20.1°C 0.344 0.186 0.621 $[CoTSPC]M^{-1} \times 10^6$ K', M-1

8.34

5.56

Service Marketing of the

Determination of K with ϵ_{M} and ϵ_{D} Fixed - Solution \mathbf{A}^{\prime}

Table C-1.

Experimental absorbance

Absorbance calculated with best-fit K' م

Not determined ပ

Table C-2. Determination of K with $\epsilon_{\rm M}$ and $\epsilon_{\rm D}$ Fixed - Solution B'

				Temperature	ature					
$[CoTSPC]M^{-1} \times 10^6$	20.	20.1°C	24.	24.9°C	29.	29.6°C	34.	34.2°C	41.	41.0°C
	A _e a	A _f b	A	A _f	A e	Af	A _e	A _f	A e	٧Ł
7.60	0.454	0.453	0.477	0.477 0.475	0.497	0.496	0.517	0.517	0.551	0.552
3.80	0.248	0.250	0.264	0.264 0.263	0.272	0.274	0.284	0.285	0.302	0.302
1.90	0.138	0.138	0.145 0.145	0.145	0.149	0.150	0.158	0.155	0.167	0.162
$K', M^{-1} \times 10^{-5}$,	2.97	1	2.13	1	1.59	•	1.19	1	0.754

a Experimental absorbance

b Absorbance calculated with best-fit K'

Table C-3. Determination of K with ε_{M} and ε_{D} Fixed - Solution C'

Appendix C

				Temperature	ture					
$[CoTSPC]M^{-1} \times 10^6$	20.	20.1°C	24.	24.9°C	29.	29.6°C	34.	34.2°C	41.	41.0°C
	A _e B	A _f b	A	Af	A e	Af	A e	$A_{\mathbf{f}}$	A e	Af
7.75	0.462	0.461	0.487 0.487	0.487	0.504	0.504	0.533	0.532	0.567	0.566
3.88	0.254	0.255	0.272	0.272 0.270	0.280	0.279	0.292	0.293	0.307	0.310
1.94	0.139	0.141	0.146 0.148	0.148	0.152	0.153	0.159	0.159	0.168	0.166
K',M ⁻¹ x 10 ⁻⁵	,	2.59	,	2.00	1	1.58	ı	1.10	,	0.710

a Experimental absorbance

b Absorbance calculated with best-fit K'

Table C-4. Determination of K with ϵ_{M} and ϵ_{D} Fixed - Solution D'

		41.0°C	Af	0.437	0.340	0.237	0.716
		41.	A _e	0.436	0.341	0.239	1
n D'		34.2°C	Af	0.407	0.318	0.224	1.20
Solution		34.	A	0.408	0.318	0.223	ı
Fixed -		29.6°C	Af	0.389	0.304	0.215	1.64
G₃ pue	ture	29.	A	0.393	0.306	0.213	1
with ^E M	Temperature	24.9°C	$A_{\mathbf{f}}$	0.376 0.376	0.294 0.294	0.208	2.07
n of K		24.	A	0.376	0.294	0.209	ı
Determination of K with $\epsilon_{ m M}$ and $\epsilon_{ m D}$ Fixed - Solution D'		၁.۱	A _f b	0.355	0.278	0.196	3.09
C-4. Dete		20.1°C	A _e a	0.354	0.280	0.195	1
Table C-		$[CoTSPC]M^{-1} \times 10^6$		5.76	4.32	2.88	K',M ⁻¹ x 10 ⁻⁵
Append	lix C						

a Experimental absorbance

b Absorbance calculated with best-fit K'

DISTRIBUTION LIST 2

Names	Copies	Names Copi	e S
CHEMICAL SYSTEMS LABORATORY			
	•	Federal Emergency Management Agency	
ATTN: DRDAR-CLB	1	Office of Research/NPP	
ATTN: DRDAR-CLB-C	1	ATTN: David W. Bensen	1
ATTN: DRDAR-CLB-PO	1	Washington, DC 20472	
ATTN: DRDAR-CLB-R	1		
ATTN: DRDAR-CLB-R(M)	1	HQ DA	
ATTN: DRDAR-CLB-R(S)	1	Office of the Deputy Chief of Staff for	
ATTN: DRDAR-CLB-T	1	Research, Development & Acquisition	
ATTN: DRDAR-CLC-B	1	ATTN: DAMA-CSS-C	1
ATTN: DRDAR-CLC-C	1	Washington, DC 20310	
ATTN: DRDAR-CLC-E	1		
ATTN: DRDAR-CLF	1	HQ SIxth US Army	
ATTN: DRDAR-CLJ-R	1	ATTN: AFKC-OP-NBC	1
ATTN: DRDAR-CLJ-L	2	Presidlo of San Francisco, CA 94129	
ATTN: DRDAR-CLJ-M	1		
ATTN: DRDAR-CLN	1	Commander	
ATTN: DRDAR-CLT	1	DARCOM, STITEUR	
ATTN: DRDAR-CLW-C	1	ATTN: DRXST-STI	1
ATTN: DRDAR-CLW-P	1	Box 48, APO New York 09710	
ATTN: DRDAR-CLY-A	1		
ATTN: DRDAR-CLY-R	1	Commander USASTCFE0	
COPIES FOR AUTHOR(S)		ATTN: MAJ Mikeworth	1
Research Division	10	APO San Francisco 96328	
RECORD COPY: DRDAR-CLB-A	1		
		Commander	
DEPARTMENT OF DEFENSE		US Army Nuclear & Chemical Agency ATTN: MONA-WE	1
Defense Technical Information Center		7500 Backlick Rd, Bldg 2073	
ATTN: DTIC-DDA-2	12	Springfield, VA 22150	
Cameron Station, Building 5			
Alexandria, VA 22314		Army Research Office	
		ATTN: DRXRO-CB (Dr. R. Ghirardeili)	1
Director		P.O. Box 12211	
Defense Intelligence Agency		Research Triangle Park, NC 27709	
ATTN: DB-4G1	1		
Washington, DC 20301		OFFICE OF THE SURGEON GENERAL	
Commander		Commander	
USASED, USAINSCOM	_	US Army Medical Bioengineering Research	
ATTN: IAFM-SED-III	1	and Development Laboratory	
Fort Meade, MD 20755		ATTN: SGRD-UBD-AL, Bldg 568 Fort Detrick, Frederick, MD 21701	1
DEPARTMENT OF THE ARMY		TOTAL DOTT TONG TO OUGHTON, MD 21701	
		Commander	
HQDA		USA Medical Research Institute of	
ATTN: DAMO-NCC	1	Chemical Defense	
ATTN: DAMO-NC/COL Robinson (P)	1	ATTN: SGRD-UV-L	1
WASH DC 20310		Aberdeen Proving Ground, MD 21010	

US ARMY MATERIEL DEVELOPMENT AND READINESS COMMAND

ATTN: DRDNA-IC

ATTN: DRDNA-IM

Natick, MA 01760

ATTN: DRDNA-ITF (Dr. Roy W. Roth)

READINESS COMMAND	
	Commander
Commander	US Army Armament Research and
US Army Materiel Development and	Development Command
Readiness Command	ATTN: DRDAR-LCA-L 1
ATTN: DRCLDC 1	ATTN: DRDAR-LCE-C 1
ATTN: DRCSF-P 1	ATTN: DRDAR-LCU-CE 1
5001 Elsenhower Ave	ATTN: DRDAR-NC (COL Lymn) 3
Alexandria, VA 22333	ATTN: DRDAR-SCA-T
·	ATTN: DRDAR-SCM 1
Project Manager Smoke/Obscurants	ATTN: DRDAR-SCP 1
ATTN: DRCPM-SMK-S 3	ATTN: DRDAR-SCS
Aberdeen Proving Ground, MD 21005	ATTN: DRDAR-TDC (Dr. D. Gyorog) 1
	ATTN: DRDAR-TSS 2
Commander	ATTN: DRCPM-CAWS-AM 1
US Army Foreign Science & Technology Center	Dover, NJ 07801
ATTN: DRXST-MT3	55761 3 110 57651
220 Seventh St., NE	US Army Armament Research and
Charlottesville, VA 22901	
Charlottesville, VA 22901	Development Command
	Resident Operations Office
Director	ATTN: DRDAR-TSE-OA (Robert Thresher) 1
US Army Materiel Systems Analysis Activity	National Space Technology Laboratories
ATTN: DRXSY-MP	NSTL Station, Mississippi 39529
ATTN: DRXSY-CA (Mr. Metz)	
Aberdeen Proving Ground, MD 21005	Commander
	ARRADCOM
Commander	ATTN: DRDAR-QAC-E
US Army Missile Command	Aberdeen Proving Ground, MD 21010
Redstone Scientific Information Center	
ATTN: DRSMI-RPR (Documents) 1	Commander
Redstone Arsenai, AL 35809	USA Technical Detachment 1
	US Naval EOD Technology Center
Director	Indian Head, MD 20640
DARCOM Fleid Safety Activity	
ATTN: DRXOS-C 1	US ARMY ARMAMENT MATERIEL READINESS
Charlestown, IN 47111	COMMAND
Commander	Commander
US Army Natick Research and Development	US Army Armament Materiel Readiness Command
Laboratories	ATTN: DRSAR-ASN 1
ATTN: DRDNA-0 1	ATTN: DRSAR-IRW 1

US ARMY ARMAMENT RESEARCH AND

DEVELOPMENT COMMAND

Rock Island, IL 61299

Dugway, UT 84022

US Army Dugway Proving Ground

ATTN: Technical Library (Docu Sect)

Commander

US ARMY TRAINING & DOCTRINE COMMAND		US ARMY TEST & EVALUATION COMMAND	
Commandan†		Commander	
US Army Infantry School		US Army Test & Evaluation Command	
ATTN: CTDD, CSD, NBC Branch	1	ATTN: DRSTE-CT-T	1
Fort Benning, GA 31905	•	Aberdeen Proving Ground, MD 21005	•
rori benning, on Jiyo		Abertaeen Froving Stound, Mb 21005	
Commandant		DEPARTMENT OF THE NAVY	
US Army Missile & Munitions Center			
and School		Chief of Naval Research	
ATTN: ATSK-CM	1	ATTN: Code 441	1
ATTN: ATSK-TME	1	800 N. Quincy Street	
Redstone Arsenal, AL 35809		Arlington, VA 22217	
Commander		Project Manager	
US Army Logistics Center		Theatre Nuclear Warfare Project Office	
ATTN: ATCL-MG	1	ATTN: TN-09C	1
Fort Lee, VA 23801		Navy Department	
		Washington, DC 20360	
Commandant			
US Army Chemical School		Commander	
ATTN: ATZN-CM-C	1	Naval Explosive Ordnance Disposal	
ATTN: ATZN-CM-AD	2	Technology Center	
ATTN: ATZN-CM-TPC	2	ATTN: AC-3	1
Fort McClellan, AL 36205		indian Head, MD 20640	
Commander		Commander	
USAAVNC		Naval Surface Weapons Center	
ATTN: ATZQ~D-MS	1	Code G51	1
Fort Rucker, AL 36362		Dahigren, VA 22448	
Commander		Chief, Bureau of Medicine & Surgery	
US Army Infantry Center		Department of the Navy	
ATTN: ATSH-CD-MS-C	1	ATTN: MED 3C33	1
Fort Benning, GA 31905		Washington, DC 20372	
Commander		Commander	
USA Training and Doctrine Command		Naval Air Development Center	
ATTN: ATCD-N	1	ATTN: Code 2012 (Dr. Robert Heimbold)	1
Fort Manroe, VA 23651		Warminster, PA 18974	
Commander		US MARINE CORPS	
US Army Armor Center			
ATTN: ATZK-CD-MS	1	Commandant	
ATTN: ATZK-PPT-PO-C	1	HQ, US Marine Corps	
Fort Knox, KY 40121		ATTN: Code LMW-50	1
		Washington, DC 20380	
Commander			
USA Combined Arms Center and		Commanding General	
Fort Leavenworth		Marine Corps Development and	
ATTN: ATZL-CAM-IM	1	Education Command	
Fort Leavenworth, KS 66027		ATTN: Fire Power Division, D091	1
		Quantico, VA 22134	

DEPARTMENT OF THE AIR FORCE		AMD/RDSX	1
		Brooks AFB, TX 78235	
ASD/AESD	1		
Wright-Patterson AFB, OH 45433		AD/XRO	1
		Egiin AFB, FL 32542	
HQ AFSC/SDZ	1		
ATTN: CPT D. Riediger		OUTSIDE AGENCIES	
Andrews AFB, MD 20334			
		Battelie, Columbus Laboratories	
HQ. AFSC/SDNE	1	ATTN: TACTEC	1
Andrews AFB, MD 20334		505 King Avenue	
		Columbus, OH 43201	
HQ. AFSC/SGB	1		
Andrews AFB, DC 20334		Toxicology Information Center, JH 652	
		National Research Council	1
HQ, NORAD		2101 Constitution Ave., NW	
ATTN: J-3TU	1	Washington, DC 20418	
Peterson AFB, CO 80914	•	445.7.1g.5.1, 55 254.15	
F41415011 AFD, CO 00914		US Public Health Service	
A PANEL CUE		Center for Disease Control	
AFAMRL/HE			
ATTN: Dr. Clyde Reploggle	1	ATTN: Lewis Webb, Jr.	1
Wright-Patterson AFB, OH 45433		Building 4, Room 232	
		Atlanta, GA 30333	
HQ AFTEC/TEL	1		
Kirtiand AFB, NM 87117		Director	
		Central Intelligence Agency	
USAF TAWC/THL	1	ATTN: AMR/ORD/DD/S&T	1
Egiln AFB, FL 32542		Washington, DC 20505	
AFATL/DLV	1	ADDITIONAL ADDRESSEE	
Egiln AFB, FL 32542	•	NOOT FORME NOONEGOEE	
egim may it says		Commandant	
HEAE CO		Academy of Health Sciences, US Army	
USAF SC		ATTN: HSHA-CDH	1
ATTN: AD/YQ	1	ATTN: HSHA-IPM	2
ATTN: AD/YQO (MAJ Owens)	1		2
Eglin AFB, FL 32542		Fort Sam Houston, TX 78234	
USAFSAM/VN			
Deputy for Chemical Defense			
ATTN: Dr. F. Wesley Baumgardner	1		
Brooks AFB, TX 78235	•		
AFAMRL/TS		•	
ATTN: COL Johnson	1		
Wright-Patterson AFB, OH 45433			
AMD/RDTK			
ATTN: LTC T. Kingery	1		
Brooks AFB, TX 78235			
AND (DOCK	•		
AMD/ROSM	1		
Brooks AFB, TX 78235			

