

Tema 3 (parte 2). Cinemática inversa del robot

Índice

Introducción a la cinemática inversa del robot

Métodos analíticos de resolución del problema cinemático inverso

Cinemática inversa mediante matrices de transformación

Espacio de trabajo del robot. Número de soluciones. Ejemplos de uso.

Introducción a la cinemática inversa del robot

La cinemática inversa del robot se basa en encontrar los valores que deben adoptar las n coordenadas articulares del robot $[q_1, q_2, ..., q_n]$ para que su elemento terminal se posicione y oriente según una

- Más complejo. Con frecuencia la solución del problema cinemático inverso no es única.
- Hay soluciones numéricas basadas en métodos iterativos (problemas de convergencia y mínimos locales)
- Solución analítica cerrada. Siempre que se pueda, conviene encontrar una solución matemática explícita de la forma:

$$q_k = f_k(x, y, z, \phi, \theta, \psi)$$

 $k = 1...n$ (GDL)

Soluciones Múltiples

 Unas coordenadas en el espacio de la tarea, pueden corresponder a varias coordenadas articulares

 Se deben evitar cambios bruscos de configuración

Soluciones Múltiples

Codo abajo

Métodos iterativos numéricos (idea conceptual)

- Se dispone del Modelo Cinemático Directo (MCD)
- Establecer una función de error a minimizar (error entre el punto actual y el deseado)

$$E = (x_d - x)^2 + (y_d - y)^2$$

- Proponer una solución q
- Evaluar (x,y) con esa q mediante el MCD

$$x = L_1 C_1 + L_2 C_{12}$$
$$y = L_1 S_1 + L_2 S_{12}$$

 Ir mejorando la propuesta de q en base a minimiar el error (gradiente)

Métodos analíticos de resolución del problema cinemático inverso

Al igual que ocurría con el problema cinemático directo, la cinemática inversa puede abordarse mediante dos enfoques:

- Métodos geométricos: Sólo válidos para casos simples (robots con pocos GDL) o si se resuelve sólo para la posición del elemento terminal (para cualquier orientación)
- Métodos basados en el cambio del sistema de referencia: validos para robots con n grados de libertad. Basados en la manipulación matemática de las soluciones del problema cinemático directo:
 - Usando matrices de transformación.
 - Usando cuaterniones (ABB RobotWare)

Métodos geométricos - Robot 3 Grados de libertad

$$q_1 = \operatorname{arctg}\left(\frac{p_{y}}{p_{x}}\right)$$

$$\begin{vmatrix} r^2 = p_x^2 + p_y^2 \\ r^2 + p_z^2 = l_2^2 + l_3^2 + 2l_2l_3\cos q_3 \end{vmatrix} =$$

$$\cos q_3 = \frac{p_x^2 + p_y^2 + p_z^2 - l_2^2 - l_3^2}{2l_2l_3}$$

$$\operatorname{sen} q_3 = \pm \sqrt{1 - \cos^2 q_3}$$

Solución Doble

$$q_{3} = \arctan\left(\frac{2\sqrt{1 + \cos q_{3}}}{\cos q_{3}}\right)$$

$$\cos q_{3} = \frac{p_{x}^{2} + p_{y}^{2} + p_{z}^{2} - l_{2}^{2} - l_{3}^{2}}{2l_{2}l_{3}}$$

Métodos geométricos – Robot 3 Grados de libertad (II)

$$q_{2} = \beta - \alpha$$

$$\beta = \arctan\left(\frac{p_{z}}{r}\right) = \arctan\left(\frac{p_{z}}{\pm \sqrt{p_{x}^{2} + p_{y}^{2}}}\right)$$

$$\alpha = \arctan\left(\frac{l_{3} \operatorname{sen} q_{3}}{l_{2} + l_{3} \operatorname{cos} q_{3}}\right)$$

Robot polar de 2 GDL

¿Existen soluciones para cualquier punto P = (x,y)? ¿Cuántas?

En las fronteras (exterior e interior) hay solo una única solución

Cinemática inversa mediante matrices de transformación

Basada en la solución del problema cinémático directo, que recordemos que permite relacionar el sistema de referencia de la base y del elemento terminal mediante una única matriz de transformación T

$$\mathbf{T}(q_1 \cdots q_n) = {}^{0} \mathbf{A}_1(q_1) \cdot {}^{1} \mathbf{A}_2(q_2) \cdots {}^{n-1} \mathbf{A}_n(q_n)$$

Obtenida T se conocen las relaciones matemáticas que expresan la posición y orientación del extremo del robot en función de sus coordenadas articulares

La cinemática inversa se resuelve manipulando matemáticamente dichas relaciones para despejar $[q_1, q_2, ..., q_n]$:

$$x = f_x(q_1, q_2, q_3, q_4, q_5, q_6)$$

$$y = f_y(q_1, q_2, q_3, q_4, q_5, q_6)$$

$$z = f_z(q_1, q_2, q_3, q_4, q_5, q_6)$$

$$\phi = f_\alpha(q_1, q_2, q_3, q_4, q_5, q_6)$$

$$\theta = f_\beta(q_1, q_2, q_3, q_4, q_5, q_6)$$

$$\psi = f_\gamma(q_1, q_2, q_3, q_4, q_5, q_6)$$

Este procedimiento no es trivial. A menudo aparecen ecuaciones transcendentes y/o se tienen más ecuaciones de las necesarias

 $q_k = f_k(x, y, z, \phi, \theta, \psi)$ $k = 1...n \quad (GDL)$

Cinemática inversa mediante matrices de transformación

Ejemplo con un robot de cuatro grados de libertad

i	θ_{i}	d _i	a _i	α_{i}
1	q_1	I ₁	0	0
2	90	d_2	0	90
3	0	d_3	0	0
4	q_4	l ₄	0	0

$$\mathbf{T} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3} {}^{3}\mathbf{A}_{4} = \begin{bmatrix} -S_{1}C_{4} & S_{1}S_{4} & C_{1} & C_{1}(d_{3} + l_{4}) \\ C_{1}C_{4} & -C_{1}S_{4} & S_{1} & S_{1}(d_{3} + l_{4}) \\ S_{4} & C_{4} & 0 & d_{2} + l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$p_z = d_2 + l_1 \Rightarrow d_2 = p_z - l_1$$

$$p_{x}^{2} + p_{y}^{2} = C_{1}^{2}(d_{3} + l_{4})^{2} + S_{1}^{2}(d_{3} + l_{4})^{2} =$$

$$= (S_{1}^{2} + C_{1}^{2})(d_{3} + l_{4})^{2}$$

$$= d_{3} = \sqrt{p_{x}^{2} + p_{y}^{2}} - l_{4}$$

$$\frac{p_y}{p_x} = \frac{S_1(d_3 + l_4)}{C_1(d_3 + l_4)} \Rightarrow q_1 = \operatorname{arctg}\left(\frac{p_y}{p_x}\right)$$

$$q_4 = \operatorname{arctg}\left(\frac{S_4}{C_4}\right) = \operatorname{arctg}\left(\frac{n_z}{o_z}\right)$$

Cinemática inversa mediante matrices de transformación

Sistema de 12 ecuaciones no lineales con n incógnitas

Inviable despejar todas las incógnitas a la vez.

Mejor aislar las variables y despejarlas una a una

Matrices Inversas

Robot esférico, de 3 GDL

Resuelve el problema cinemático inverso para el robot de 3 grados de libertad definido por la siguiente tabla de parámetros D-H, considerando

sólo la posición del elemento terminal

En este caso se trata de un robot esférico. Resolvemos en 3D (transformadas 4x4):

$q_{\scriptscriptstyle 2}$		q_3
	Y	⁰ A ₁ =
X	q_1	

$$\mathbf{A} = \begin{bmatrix} C_1 & 0 & S_1 & 0 \\ S_1 & 0 & -C_1 & 0 \\ 0 & 1 & 0 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{A}_2 = \begin{bmatrix} C_2 & 0 & -S_2 & 0 \\ S_2 & 0 & C_2 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{A}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3

 θ_{i}

 q_1

 q_2

0

d_i

 q_3

 a_{i}

0

 α_{i}

90

-90

0

$$\mathbf{T} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3} = {}^{0}\mathbf{A}_{3} = \begin{bmatrix} C_{1}C_{2} & -S_{1} & -C_{1}S_{2} & -q_{3}C_{1}S_{2} \\ S_{1}C_{2} & C_{1} & -S_{1}S_{2} & -q_{3}S_{1}S_{2} \\ S_{2} & 0 & C_{2} & q_{3}C_{2} + l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\left({}^{0}\mathbf{A}_{1} \right)^{-1}\mathbf{T} = {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3}$$

Inciso – Inversa matriz de transformación homogenea

No son Ortonormales

$$\begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} n_{x} & n_{y} & n_{z} & -\mathbf{n}^{T}\mathbf{p} \\ o_{x} & o_{y} & o_{z} & -\mathbf{o}^{T}\mathbf{p} \\ a_{x} & a_{y} & a_{z} & -\mathbf{a}^{T}\mathbf{p} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}\mathbf{A_{1}}^{-1} = \begin{bmatrix} C_{1} & 0 & S_{1} & 0 \\ S_{1} & 0 & -C_{1} & 0 \\ 0 & 1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} C_{1} & S_{1} & 0 & 0 \\ 0 & 0 & 1 & -l_{1} \\ S_{1} & -C_{1} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}\mathbf{A}_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}\mathbf{A}_{1}^{-1} = \begin{bmatrix} C_{1} & 0 & S_{1} & 0 \\ S_{1} & 0 & -C_{1} & 0 \\ 0 & 1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} C_{1} & S_{1} & 0 & 0 \\ 0 & 0 & 1 & -l_{1} \\ S_{1} & -C_{1} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}\mathbf{A}_{2}^{-1} = \begin{bmatrix} C_{2} & 0 & -S_{2} & 0 \\ S_{2} & 0 & C_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} C_{2} & S_{2} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -S_{2} & C_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Robot esférico, de 3 GDL

$$\begin{bmatrix} {}^{0}\mathbf{A}_{1} \end{pmatrix}^{-1}\mathbf{T} = {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3}$$

$$\begin{bmatrix} C_{1} & S_{1} & 0 & 0 \\ 0 & 0 & 1 & -l_{1} \\ S_{1} & -C_{1} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_{2} & 0 & -S_{2} & 0 \\ S_{2} & 0 & C_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_{2} & 0 & S_{2} & -S_{2}q_{3} \\ S_{2} & 0 & C_{2} & C_{2}q_{3} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$S_1 p_x - C_1 p_y = 0 \Rightarrow \tan(q_1) = \frac{S_1}{C_1} = \frac{p_y}{p_x} \Rightarrow q_1 = \arctan\left(\frac{p_y}{p_x}\right)$$

$$\begin{bmatrix} {}^{1}\mathbf{A}_{2} \end{pmatrix}^{-1} \begin{pmatrix} {}^{0}\mathbf{A}_{1} \end{pmatrix}^{-1}\mathbf{T} = {}^{2}\mathbf{A}_{3} \\ \begin{bmatrix} {}^{C_{2}} & {}^{S_{2}} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -S_{2} & {}^{C_{2}} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{C_{1}} & {}^{S_{1}} & 0 & 0 \\ 0 & 0 & 1 & -l_{1} \\ {}^{S_{1}} & -{}^{C_{1}} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{n_{x}} & {}^{o_{x}} & {}^{a_{x}} & {}^{p_{x}} \\ {}^{n_{y}} & {}^{o_{y}} & {}^{a_{y}} & {}^{p_{y}} \\ {}^{n_{z}} & {}^{o_{z}} & {}^{a_{z}} & {}^{p_{z}} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} {}^{C_{2}}\mathbf{C}_{1} & {}^{C_{2}}\mathbf{S}_{1} & {}^{C_{2}} & {}^{-l_{1}}\mathbf{S}_{2} \\ -S_{1} & {}^{C_{1}} & 0 & 0 \\ -S_{2}\mathbf{C}_{1} & {}^{-S_{2}}\mathbf{S}_{1} & {}^{C_{2}} & {}^{-C_{2}}l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{n_{x}} & {}^{o_{x}} & {}^{a_{x}} & {}^{p_{x}} \\ {}^{n_{y}} & {}^{o_{y}} & {}^{a_{y}} \\ {}^{n_{z}} & {}^{o_{z}} & {}^{a_{z}} \\ {}^{0} & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} {}^{1} & 0 & 0 & \mathbf{0} \\ 0 & 1 & 0 & \mathbf{0} \\ 0 & 0 & 1 & q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C_2C_1p_x + C_2S_1p_y + S_2p_z - l_1S_2 = C_2(C_1p_x + S_1p_y) + S_2(p_z - l_1) = 0$$

$$\tan(q_2) = \frac{S_2}{C_2} = -\frac{C_1p_x + S_1p_y}{(p_z - l_1)}$$

$$q_3 = -S_2C_1p_x - S_2S_1p_y + C_2p_z - C_2l_1 = C_2(p_z - l_1) - S_2(C_1p_x + S_1p_y)$$

Relaciones trigonométricas frecuentes

$$A.\cos(\theta) + B.\sin(\theta) = 0 \Rightarrow \begin{cases} \theta = atan2(A, -B) \\ \theta = atan2(-A, B) \end{cases}$$

$$A.\cos(\theta) + B.\sin(\theta) = C \Rightarrow \theta = atan2(B,A) \pm atan2(\sqrt{A^2 + B^2 - C^2},C)$$

$$A.\cos(\theta) - B.\sin(\theta) = C$$

$$A.\sin(\theta) + B.\cos(\theta) = D$$

$$\Rightarrow \theta = atan2(D,C) - atan2(B,A)$$

$$A.\cos(\theta) + B.\sin(\theta) = C$$

$$D.\sin(\theta) + E.\cos(\theta) = F$$

$$\Rightarrow \theta = atan2(CF - CE, CD - BF)$$

- Los procedimientos anteriores son complejos, o inutilizables, cuando el número de grados de libertad es elevado.
- El desacoplamiento cinemático trata de dividir el problema de 6 gdl en 2 de 3 gdl
- Es aplicable cuando los 3 últimos grados de libertad se cortan en un punto

- Desacopla los 3 primeros gdl de los 3 últimos (utilizados para orientar el efector final)
 - A partir de la posición y orientación deseadas se establece la posición donde debe estar la "muñeca" (punto de corte de los ejes de las 3 últimas articulaciones)
- 2. Se calculan los valores de q1,q2,q3 que posicionan la muñeca en este punto.
- 3. Con los datos de orientación [noa] y los valores ya calculados de q1,q2 y q3 se obtiene los de q4,q5,q6

Fase 1.- Obtención de q1, q2 y q3

- Conocida la posición y orientación final deseada, se puede conocer las coordenadas de donde debe estar pm (muñeca)
- q1, q2, q3 se obtienen para poner pm en dichas coordenadas (método geométrico u otro)

Fase 2.- Obtención de q4, q5 y q6 (q1,q2,q3 ya conocidas)

 A partir de ⁰R₆ (= [noa] conocida) y de ⁰R₃ (conocida al conocer q1,q2,q3) se obtiene ³R₆, que depende de q4, q5, q6

$${}^{0}\mathbf{R}_{3}{}^{3}\mathbf{R}_{6} = [\mathbf{noa}] \Rightarrow^{3} \mathbf{R}_{6} = \left({}^{0}\mathbf{R}_{3}\right)^{T} [\mathbf{noa}]$$

 De las 9 ecuaciones que resultan se despejan q4,q5,q6 (se puede proceder despejando variable a variable)

i	$\boldsymbol{\theta}_{i}$	d _i	a _i	α_{i}
1	q_1	1 ₁	0	90
2	q_2	0	12	0
3	q_3	0	0	90
4	q_4	1 ₃	0	-90
5	q_5	0	0	90
6	q_6	1 ₄	0	0

$$\mathbf{R}_6^3 = (\mathbf{R}_3^0)^T[\mathbf{noa}]$$

$${}^{3}\mathbf{R}_{6} = \begin{bmatrix} C_{4}C_{5}C_{6} - S_{4}S_{6} & -C_{4}C_{5}S_{6} - S_{4}C_{6} & C_{4}S_{5} \\ S_{4}C_{5}C_{6} + C_{4}S_{6} & -S_{4}C_{5}S_{6} + C_{4}C_{6} & -S_{4}C_{5} \\ -S_{5}C_{6} & S_{5}S_{6} & C_{5} \end{bmatrix} \qquad q_{4} = \arcsin\left(\frac{\mathbf{r}_{23}}{\mathbf{r}_{33}}\right)$$

$$q_{5} = \arccos(\mathbf{r}_{33})$$

$$q_{6} = \arctan\left(-\frac{\mathbf{r}_{23}}{\mathbf{r}_{33}}\right)$$

$$q_4 = \arcsin\left(\frac{\mathbf{r}_{23}}{\mathbf{r}_{33}}\right)$$

$$q_5 = \arccos(r_{33})$$

$$q_6 = \arctan\left(-\frac{\mathbf{r}_{32}}{\mathbf{r}_{31}}\right)$$

Robótica Industrial – Grado en Ingeniería de Rob