3.3 Autoencoders

An autoencoder is a particular network architecture allowing to do dimension reduction. The idea is to learn to *encode* some vector $x \in \mathbb{R}^D$ in the feature space by another latent vector $y \in \mathbb{R}^d$, and then decode y into a vector \hat{x} with the hope that $\hat{x} \approx x$.

By taking $d \ll D$, it would in principle allow to do dimension reduction.

The architecture of a 1-hidden layer neural network is given in this figure

In this case, the autoencoder can be written as

$$\hat x:=\hat f(x):=W_2\sigma(W_1x+b_1)+b_2$$

Remember: x is input data, W_1 is a weight matrix that maps input from \mathbb{R}^d to \mathbb{R}^D (the number of columns in W_1 must match the dimension of the input vector) where D (number of columns) is the original dimension and d is the reduced dimension. Analogue, W_2 maps the compressed representation (\mathbb{R}^d) back to the original space \mathbb{R}^d

with
$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{d imes D}, W_2 \in \mathbb{R}^{D imes d}, b_1 \in \mathbb{R}^d, b_2 \in \mathbb{R}^D$$

Example

Suppose D=4, d=2

 $W_1\in\mathbb{R}^{2 imes 4}$: Maps from \mathbb{R}^4 to \mathbb{R}^2 (Matrix with 2 rows and 4 columns), $W_2\in\mathbb{R}^{4 imes 2}$ maps back to \mathbb{R}^4

Now multiplying for example

$$W_1 = egin{bmatrix} w_{11} & w_{12} & w_{13} & w_{14} \ w_{21} & w_{22} & w_{23} & w_{24} \end{bmatrix}, \quad x = egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix}$$

So multiplying

$$z=W_1x=egin{bmatrix} w_{11}x_1+w_{12}x_2+w_{13}x_3+w_{14}x_4\ w_{21}x_1+w_{22}x_2+w_{23}x_3+w_{24}x_4 \end{bmatrix}$$

results in a 2 dimensional vector! (reduced dimension). So $W \in \mathbb{R}^{d \times D} x \in \mathbb{R}^D$ results in a d-dimensional vector. **Remember**: The number of columns in any matrices A must equal to the number of rows in B, else the matrix multiplication won't work. That's why the dimension of W are defined like that.

The latent vector is $y = \sigma(W_1x + b_1)$ (compressed representation). In a classical autoencoder, since the purpose is to reconstruct x from itself, the classical loss function is chosen to be, for a dataset $\{x_i\}_{1 \le i \le N}$:

$$\mathcal{L}_{AE}(heta) := rac{1}{N} \sum_{i=1}^N ||\hat{x_i} - x_i||^2$$

Explanation

You may be wondering why θ is passed since no parameters are used in the equation but remember that $\hat{x}_i = W_2 \sigma(W_1 x_i + b_1) + b_2$. The reconstruction error $||\hat{x}_i - x_i||^2$ depends on \hat{x}_i which in turn depends on θ .

Remember

$$||v||^2 = v_1^2 + v_2^2 + \dots v_D^2$$

So here, it's

$$(\hat{x}_{i1} - x_{i1})^2 + (\hat{x}_{i2} - x_{i2}) + \dots$$

where i refers to the i-th data point in the dataset. The subscript 1 or 2 etc refer to the first component of the vector x_i

Example

Suppose you have a dataset of 3 data points

$$x_1 = [1.0 \quad 2.0 \quad 3.0 \quad 4.0], \quad x_2 = [5.0 \quad 6.0 \quad 7.0 \quad 8.0], \quad x_3 = [9.0 \quad 10.0 \quad 11.0 \quad 12.0]$$

So for example $x_{11} = 1.0, x_{23} = 5.0, x_{32} = 10.0$

Back to the script (formula)

where θ denotes the parameters of the network (such as W_1, b_1, W_2, b_2 So $\theta = \{W_1, b_1, W_2, b_2\}$).

Minimizing \mathcal{L}_{AE} will force \hat{x} to be as similar as possible to x, while being represented by a vector y of lower dimension. (the last part here means that the autoencoder doesnt just reconstruct x directly. Instead, it first compresses x into latent space y)

Apart from dimension reduction, autoencoders can be used for other purposes, for instance image denoising. In this setup (when using autoencoders for image denoising), we perturb (\sim disturb) each data point x_i by some random noise ϵ_i (usually Gaussian) and learn to reconstruct x_i from the corrupted image $x_i + \epsilon_i$ by minimizing

$$\mathcal{L}_{AE} := rac{1}{N} \sum_{i=1}^N ||\hat{f}(x_i + \epsilon_i) - x_i||^2$$

 $(\hat{f}(x_i + \epsilon_i))$ just returns a reconstructed *denoised* image). By minimizing L_{AE} the autoencoder learns to remove noise and reconstruct the original image!

While usually, autoencoders verifies the bottleneck property (latent representation) d << D, it may be interesting to allow for $d \geq D$ (latent space can be larger than input space) while forcing some sparsity on y.

What does sparsity mean?

Sparsity (=spärlich) means most of the elements in the latent vector y are **zero** or close to zero. This forces the autoencoder to **focus** on a small number of **important** features in the data, rather than using all available dimensions.

Back to the script

This can be achieved by taking the loss $\mathcal{L} = \mathcal{L}_{AE} + \mathcal{L}_{sp}$ (\mathcal{L}_{sp} is the sparsity penalty) penaltizes large values $y_i = \sigma(W_1x_i + b_i)$. For instance,

$$\mathcal{L}_{sp}(heta) = rac{1}{N} \sum_{i=1}^N ||y_i||_1$$

leads to the L^1 -sparse autoencoder.

Explanation

 $||y_i||_1$ Is the sum of absolute values of the elements in y_i . y_i is the **latent representation** of the i-th data point. $||y_i||_1$ is the L^1 -norm of y_i , which is the sum of absolute values of its elements. For example (values are just imaginary): $||y_i||_1 = |0.1| + |-0.3| + |0.0| + |0.7| = 1.1$ Minimizing \mathcal{L}_{sp} encourages y_i to have many zeros.

 L_{sp} is the average L^1 -norm over all data points in the dataset (bc we average $||y_i||_1$ over all data points!)

3.3.1 Linear autoencoder

In this section, we treat the case of linear autoencoder, i.e. the case where σ is the identity function ($\sigma(z) = z$). This case may seem uninteresting at first glance, but we will see that it nicely links to a previously seen algorithm.

In this particular case, the network reduces to

$$\hat{f}(x)=W_2\sigma(W_1x+b_1)+b_2$$

Since $\sigma(z) = z$, just multiply everything out:

$$\hat{f}(x) = W_2 W_1 x + W_2 b_1 + b_2$$

while the loss is

$$\mathcal{L}_{AE}(b_1,b_2,W_1,W_2) = rac{1}{N} \sum_{i=1}^{N} ||W_2W_1x_i + W_2b_1 + b_2 - x_i||^2$$

(Notice that above we had θ but here since σ is the identity function we can just substitute \hat{x}_i with our network)

and we aim at solving

$$\min_{b_1,b_2,W_1,W_2} \mathcal{L}_{AE}(b_1,b_2,W_1,W_2)$$

We want to make the optimization easier, first we eliminate b_2 because this reduces the number of variables we need to optimize.

First, by taking the gradient w.r.t b_2 and using the optimality condition $\nabla_{b_2} \mathcal{L}_{AE} = 0$, we get that $b_2 = \overline{x} - W_2 W_1 \overline{x} - W_2 b_1$.

Gradient calculation

$$abla_{b_2} \mathcal{L}_{AE} = rac{2}{N} \sum_{i=1}^N (W_2 W_1 x_i + W_2 b_1 + b_2 - x_i)$$

Setting the gradient to zero:

$$rac{2}{N} \sum_{i=1}^{N} (W_2 W_1 x_i + W_2 b_1 + b_2 - x_i) = 0$$

Simplifying:

$$\sum_{i=1}^N (W_2W_1x_i+W_2b_1+b_2-x_i)=0$$

Splitting the sum:

$$W_2W_1\sum_{i=1}^N x_i + W_2b_1N + b_2N - \sum_{i=1}^N x_i = 0$$

Let $\overline{x} = rac{1}{N} \sum_{i=1}^N x_i$ (mean of data points, then)

$$W_2W_1(N\overline{x})+W_2b_1N+b_2N-N\overline{x}=0$$

Dividing by N:

$$W_2W_1\overline{x}+W_2b_1+b_2-\overline{x}=0$$

Solving for b_2 :

$$b_2=\overline{x}-W_2W-\overline{x}-W_2b_1$$

Back to the script

Thus the problem is reduced to

$$\min_{W_1,W_2} rac{1}{N} \sum_{i=1}^N ||W_2 W_1 (x_i - \overline{x}) - (x_i - \overline{x})||^2$$

Expanded version

$$\min_{W_1,W_2} rac{1}{N} \sum_{i=1}^N ||W_2W_1x_i + W_2b_1 + (\overline{x} - W_2W_1 - \overline{x} - W_2b_1) - x_i||^2$$

(substituted b_2 here into original loss function)

Notice that

$$W_2W_1x_i + W_2b_1 + \overline{x} - W_2W_1 - \overline{x} - W_2b_1 - x_i$$

needs to be simplified. Notice that W_2b_1 and $-W_2b_1$ cancel out:

$$W_2W_1x_i + \overline{x} - W_2W_1\overline{x} - x_i = W_2W_1x_i - W_2W_1\overline{x} + \overline{x} - x_i$$

Factoring out we get

$$W_2W_1(x_i-\overline{x})+\overline{x}-x_i$$

We can rewrite the last two terms and thus get

$$W_2W_1(x_i-\overline{x})-(x_i-\overline{x})$$

Back to the script

$$\min_{W_1,W_2} rac{1}{N} \sum_{i=1}^N ||W_2 W_1 (x_i - \overline{x}) - (x_i - \overline{x})||^2$$

Note that both the dependency in b_2 and b_1 have disappeared. Now let $X_0 \in \mathbb{R}^{D \times N}$ be the matrix having $x_i - \overline{x}$ as the i-th column. The previous optimization problem can be rewritten as (dropping the 1/N factor because scaling doesn't affect the minimization)

$$\min_{W_2} \min_{W_1} ||W_2 W_1 X_0 - X_0||^2_{ ext{Fro}}$$

We now aim at finding a closed-form solution of the inner problem

$$\min_{W_1} ||W_2 W_1 X_0 - X_0||_{ ext{Fro}}^2$$

Let $\phi(W_1) = ||W_2W_1X_0 - X_0||^2_{\mathrm{Fro}}$. We recall that the gradient of ϕ at W_1 is defined as the matrix $\nabla \phi(W_1)$ such that for all $H \in \mathbb{R}^{d \times D}$, $D\phi(W_1)$. $H = \langle \phi(W_1), H \rangle_{\mathrm{Fro}} = Tr(\nabla \phi(W_1)H^T)$. Going back to the definition of the differential, we can show that

$$abla \phi(W_1) = 2X_0(X_0 - W_2W_1X_0)^TW_2$$

Hence, the optimality condition is $X_0X_0^TW_2 = X_0X_0^TW_1^TW_2^tW_2$. Remark that the matrix $X_0X_0^T$ is the covariance matrix of the data. Under the assumption that this matrix is invertible, the previous optimality conditions reduces to

$$W_2^T = W_2^T W_2 W_1$$

Lemma 3.3.1

Let $A \in \mathbb{R}^{n \times m}$. Then

$$A^T = A^T A A^{\dagger}$$

Proof: Write the SVD $A = U\Sigma V^T$

First calculate A^TA

$$egin{aligned} A^T &= (U\Sigma V^T)^T = (V\Sigma^T U^T), \quad A &= (U\Sigma V^T) \ A^T A &= (V\Sigma^T U^T)(U\Sigma V^T) = V\Sigma^T \Sigma V^T \end{aligned}$$

Now compute A^{\dagger}

$$A^\dagger = (V \Sigma^\dagger U^T)$$
 $A^T A A^\dagger = (V \Sigma^T \Sigma V^T) (V \Sigma^\dagger U^T)$ $= V \Sigma^T \Sigma \Sigma^\dagger U^T$

Now lets look at $\Sigma^T \Sigma \Sigma^\dagger$

We know that Σ^\dagger is $\frac{1}{\sigma_k}$ on its diagonal and Σ is σ_k on its diagonal, thus $\Sigma\Sigma^\dagger=I$ and we get:

$$A^T A^\dagger = V \Sigma^T U^T = A^T$$

The previous lemma allows us to take $W_1=W_2^\dagger$, which further reduces the problem to

$$\min_{W_2} ||W_2 W_2^\dagger X_0 - X_0||_{ ext{Fro}}^2$$

Proposition 3.3.1

3.3.1 is equivalent to

3.3.2

$$\max_{W_2} Tr(W_2^\dagger X_0 X_0^T W_2)$$

Proof: Developing:

$$||W_2W_2^{\dagger}X_0-X_0||_{\operatorname{Fro}}^2=||X_0||_{\operatorname{Fro}}^2-2\langle X_0,W_2,W_2^{\dagger}X_0\rangle_{\operatorname{Fro}}+||W_2W_2^{\dagger}X_0||_{\operatorname{Fro}}^2$$

we can rewrite $\langle X_0,W_2,W_2^\dagger X_0
angle_{\mathrm{Fro}}=Tr(W_2W_2^\dagger X_0X_0^T)=Tr(W_2^\dagger X_0X_0^TW_2)$ In a similar way,

$$egin{aligned} ||W_2W_2^\dagger X_0||^2_{ ext{Fro}} &= Tr((W_2W_2^\dagger X_0)(W_2W_2^\dagger X_0)^T) \ &= Tr(W_2W_2^\dagger X_0X_0^T(W_2^\dagger)^TW_2^T) \ &= Tr(W_2^\dagger X_0X_0^T(W_2^\dagger)^TW_2^TW_2) \ &= Tr(W_2^\dagger X_0X_0^TW_2) \end{aligned}$$

where we used the fact that $(W_2^{\dagger})^T W_2^T W_2 = W_2$ using the previous Lemma. Hence, <u>3.3.1</u> can be rewritten as

$$\min_{W_0} ||X_0||_{ ext{Fro}}^2 - Tr(W_2^\dagger X_0 X_0^T W_2)$$

which is equivalent to 3.3.2

We now restrict to the extreme case where d=1. In this case $W_2=w_2\in\mathbb{R}^D.$

By noticing that for all $w_2, Tr(w_2^\dagger X_0 X_0^T w_2) = ||w_2 w_2^\dagger X_0||_{\mathrm{Fro}}^2 \geq 0$, we can assume that $w_2 \neq 0$. In this case, $w_2^\dagger = \frac{1}{||w_2||_2^2} w_2^T$ and thus the problem becomes

$$\max_{w_2 \in \mathbb{R}^D \backslash \{0\}} \frac{w_2^T X_0 X_0^T w_2}{||w_2||_2^2}$$

which is equivalent to

$$\max_{||w_2||_2=1} w_2^T X_0 X_0^T w_2$$

As we have seen in the exercises, the optimal w_2 is nothing else that the first eigenvalue of the covariance matrix $X_0X_0^T$. In other words: a linear autoencoder performs PCA!

With a little more work it is possible to show that this is actually the case for all $d \in \{1, ..., D\}$. Hence, a general (nonlinear) autoencoder can be seen as a generaliztion of the PCA