

planetmath.org

Math for the people, by the people.

if A is convex and f linear then f(A) and $f^{-1}(A)$ are convex

 ${\bf Canonical\ name} \quad {\bf If AIs Convex And FLinear Then FAAnd F1AAre Convex}$

Date of creation 2013-03-22 14:36:18 Last modified on 2013-03-22 14:36:18

Owner matte (1858) Last modified by matte (1858)

Numerical id 8

Author matte (1858)
Entry type Theorem
Classification msc 52A99
Related topic InverseImage
Related topic DirectImage

Proposition 1. Suppose X, Y are vector spaces over \mathbb{R} (or \mathbb{C}), and suppose $f: X \to Y$ is a linear map.

- 1. If $A \subseteq X$ is convex, then f(A) is convex.
- 2. If $B \subseteq Y$ is convex, then $f^{-1}(B)$ is convex, where f^{-1} is the inverse image.

Proof. For the first claim, suppose $y, y' \in f(A)$, say, y = f(x) and y' = f(x') for $x, x' \in A$, and suppose $\lambda \in (0, 1)$. Then

$$\lambda y + (1 - \lambda)y' = \lambda f(x) + (1 - \lambda)f(x')$$
$$= f(\lambda x + (1 - \lambda)x'),$$

so $\lambda y + (1 - \lambda)y' \in f(A)$ as A is convex.

For the second claim, let us first recall that $x \in f^{-1}(B)$ if and only if $f(x) \in B$. Then, if $x, x' \in f^{-1}(B)$, and $\lambda \in (0, 1)$, we have

$$f(\lambda x + (1 - \lambda)x') = \lambda f(x) + (1 - \lambda)f(x').$$

As B is convex, the right hand side belongs to B, and $\lambda x + (1 - \lambda)x' \in f^{-1}(B)$.