LP20. Conversion de Puissance

Maria Ubero Gonzalez

1.1 Rails de Laplace

Fig. 2 – Dispositif des rails de Laplace.

2.1 Structure et principe de fonctionnement. Eléments principaux

Circuits électriques

- Induit : circuit électrique soumis au champ magnétique et placé sur la partie mobile
- Inducteur : il constitue la source de champ magnétique dans la machine

Circuits magnétiques

- Stator: partie fixe de la machine qui est suffisamment massive pour ne pas être mise en mouvement par l'action de la partie mobile.
- Rotor : partie mobile, solidaire de l'arbre mécanique.
- Entrefer : Espacement présent entre l'inducteur et l'induit

2.1 Structure et principe de fonctionnement. Stator

Lignes de courant du champ magnétique

2.1 Structure et principe de fonctionnement. Rotor

2.1 Structure et principe de fonctionnement. Principe de fonctionnement

2.1 Structure et principe de fonctionnement. Convention

Fig. 12 – Modèle électromécanique du moteur à excitation indépendante. Les flèches indiquent le sens du mouvement associé à un signe positif pour les grandeurs C et Ω . Le sens positif de Ω est lié au sens du fléchage de E, le sens positif de E est lié au sens du fléchage de E. Pour simplifier, le circuit inducteur n'est pas représenté sur cette figure.

2.2 Modes de fonctionnement

2.3 Bilan de puissance moteur

2.3 Bilan de puissance générateur

3.1 Réalisation d'un champ tournant

Bobines en série

Bobines diphasées

3.2 Machines synchrones

Points de fonctionnement Couple résistant

3.3 Machines asynchrones

Rotor: Cage à écureuil

3.3 Machines asynchrones: rotor

$$e = -\frac{d\Phi}{dt} \qquad \Phi = \vec{B} \cdot \vec{S} \qquad \Phi = NS\vec{B}\vec{n}$$

$$\vec{B} = B_0 \cos(\omega t + \theta_0) \vec{u_x} + B_0 \sin(\omega t + \theta_0) \vec{u_y}$$
$$\vec{n} = \cos(\Omega t) \vec{u_x} + \sin(\Omega t) \vec{u_y}$$

$$e = -\frac{d}{dt}(NSB_0cos((\omega - \Omega)t + \theta_0)) = (\omega - \Omega)NSB_0sin((\omega - \Omega)t + \theta_0)$$

3.3 Machines asynchrones : rotor

$$\underline{e} = (R + jL(\omega - \Omega))\underline{i}$$

Modèle électromécanique équivalent

$$i = \frac{(\omega - \Omega)NSB_0}{\sqrt{R^2 - L^2(\omega - \Omega)^2}} sin\left((\omega - \Omega)t + \theta_0 - Arctan\left(\frac{L(\omega - \Omega)}{R}\right)\right)$$

$$\varphi = Arctan\left(\frac{L(\omega - \Omega)}{R}\right)$$

$$\vec{M} = NSi\vec{n} = NSi(cos(\Omega t)\vec{u_x} + sin(\Omega t)\vec{u_y})$$

3.3 Machines asynchrones

$$\vec{\Gamma} = \vec{M} \wedge \vec{B}$$

$$\langle \vec{\Gamma}(t) \rangle = \frac{(\omega - \Omega)(NSB_0)^2}{2\sqrt{R^2 + L^2(\omega - \Omega)^2}} cos(\varphi) \vec{u_z}$$

$$(\omega - \Omega) = g\omega$$

$$(\omega - \Omega) = g\omega$$

$$\langle \vec{\Gamma}(t) \rangle = \frac{g\omega(NSB_0)^2 R}{2(R^2 + g^2 L^2 \omega^2)} \vec{u_z}$$

Conclusion

Type de moteur	Caractéristiques générales	Remarques	Emploi
Moteur à courant continu (MCC)	 Vitesse de rotation facilement commandée par la dpp d'alimentation S'adapte au couple résistant par faible diminution de vitesse. Possibilité de régulation 	 Fragilité du système collecteur-balais Le moteur série fonctionne en alternatif (moteur universel) Depuis années 80, progrès de l'électronique de puissance. 	 Grande vitesse de rotation possible Utilisation en faible puissance dans l'automobile (essuieglaces, lève-vitres). En grande puissance (traction électrique, laminoirs)
Moteur synchrone	 Vitesse de rotation cte w/n (limité à 3000 tr/min pour alimentation 50 Hz) Décrochage si charge trop importante Nécessité d'un moteur auxiliaire de démarrage Le rendement peut dépasser 90 % 	 Depuis années 80, progrès de l'électronique de puissance : variation de vitesse par alimentation à fréquence variable, résolution des problèmes de démarrage et de décrochage (moteurs auto- pilotés). 	 Emploi en très faible puissance (programmateurs, commande de disques durs d'ordinateur) et en haute puissance dans les machines où on désire une synchronisation de vitesse
Moteur asynchrone	 Vitesse de rotation légèrement inférieur à w/n (limité à 3000 tr/min pour alimentation 50 Hz) Adaptation à augmentation de la charge avec faible perte de vitesse Rendement voisin de 80 % 	 Actuellement vitesses plus élevées grâce à des alimentations à fréquence variable Possibilité de régulation de vitesse 	 Faible puissance (pompes de vidange, ventilateurs) et grande puissance en alimentation triphasée.