

Квантовая макрофизика.

Лекция 13: Физика магнетиков. Краткий курс.

Часть 1: О чём и зачем речь?

https://www.tripadvisor.com/LocationPhotoDirectLink-g190746-d188689-i146338610-West_Somerset_Railway-Minehead_Somerset_England.html

«Игровая задача»: взаимодействующие спины на решётке

Antiferromagnetic Spin Seebeck Effect, Stephen M. Wu, Wei Zhang, Amit KC, Pavel Borisov, John E. Pearson, J. Samuel Jiang, David Lederman, Axel Hoffmann, and Anand Bhattacharya Phys. Rev. Lett. 116, 097204

«Игровая задача»: взаимодействующие спины на решётке

Antiferromagnetic Spin Seebeck Effect, Stephen M. Wu, Wei Zhang, Amit KC, Pavel Borisov, John E. Pearson, J. Samuel Jiang, David Lederman, Axel Hoffmann, and Anand Bhattacharya Phys. Rev. Lett. 116, 097204

«Игровая задача»: взаимодействующие спины на решётке

Возможные применения: HDD

https://www.toshiba.co.jp/rdc/rd/fields/12_e08_e.htm

Возможные применения: Spin Valve

Часть 2. Магнитные поля в современной физике

Магнитные поля в современной физике

В природе:

- поле Земли ~ 1Гс
- поле на Солнце ~5 кГс
- магнитные поля в атоме
- •
- поля для изменения атомных термов
- •
- поля в некоторых звёздах (магнетар)
 ~10¹⁴ Гс

www.noao.edu

$$\sim \frac{\mu_B}{a^3} \sim 10^4 \, \Gamma c$$

Магнитные поля в современной физике

смли ~ 1Гс

а Солнце ~5 кГс

паборатории ные поля в атоме

поля для изменения атомных термов

поля в некоторых звёздах (магнетар) ~10¹⁴ Гс

http://www.eso.org/public/images/eso1415a/

https://en.wikipedia.org/wiki/Compass

Магнитные поля 1: до 2 Тл

резистивные водоохаждаемые магниты с сердечником до 1.5-2 Тл вес около тонны мощность ~10 кВт

bruker.com

Магнитные поля 2: 10-20 Тл

СВЕРХПРОВОДИМОСТЬ

ограничено Hc2 (сверхпроводники II рода) требуют температур жидкого гелия

Магнитные поля 2: рекордный СПмагнит

NHMFL, Талахаси, Флорида

Поле: 32Тл

https://nationalmaglab.org

Магнитные поля 3: до 40 Тл

35 Тл в области диаметром 30 мм, мощность 20 МВт

nationalmaglab.org Талахаси, США

Магнитные поля 4: Импульсные поля до 100 Тл

M. Hagiwara, T. Kida, K. Taniguchi, K. Kindo, "Present Status and Future Plan at High Magnetic Field Laboratory in Osaka University", Journal of Low Temperature Physics 170, 531 (2013)

Магнитные поля 5: Взрывное сжатие до 1000 Тл и даже выше...

ВНИИЭФ (Саров)

Кудасов Ю.Б., Волков А.Г., Повзнер А.А., Баянкин П.В., Быков А.И., Гук В.Г., Долотенко М.И., Колокольчиков Н.П., Крюк В.В., Монахов М.П., Маркевцев И.М., Платонов В.В., Селемир В.Д., Таценко О.М., Филиппов А.В., "Переход полупроводник-металл в FeSi в сильном магнитном поле", ЖЭТФ 116, 1770 (1999)

96 97 t, MKC

500

В, Тл

Рекорд «комнатного» магнитного поля 2018

5 МДж, 4 МА, 5 км/сек = = 1200 Тл

Review of Scientific Instruments 89, 095106 (2018)

https://spectrum.ieee.org/nanoclast/semiconductors/nanotechnology/magnetic-field-record-set-with-a-bang-1200-tesla

Рекорд «комнатного» магнитного поля

https://spectrum.ieee.org/nanoclast/semiconductors/nanotechnology/magnetic-field-record-set-with-a-bang-1200-tesla

Часть 3. Классификация магнетиков

Магнитные свойства кристаллов

Магнитные свойства кристаллов

Есть ионы с $j \neq 0$?

Магнитные свойства кристаллов

Есть ионы с $j \neq 0$?

HeT

ПАРАМАГНЕТИК

ПАРАМАГНЕТИК

ФЕРРО-, ФЕРРИ-, АНТИФЕРРО-

Виды магнитного порядка

Виды магнитного порядка

Виды магнитного порядка

Часть 4. Модель молекулярного поля.

Закон Кюри для парамагнетика с S=1/2

Закон Кюри для парамагнетика с S=1/2

$$\langle m_z \rangle = \mu_B \frac{e^{\mu_B B/T} - e^{-\mu_B B/T}}{e^{\mu_B B/T} + e^{-\mu_B B/T}} = \mu_B th \frac{\mu_B B}{T}$$

$$\mu_B \frac{B}{T} \ll 1: \quad \chi = \frac{\langle m_z \rangle}{B} = \frac{\mu_B^2}{k_B T}$$

Магнитный порядок в кристаллах

Магнитный порядок в кристаллах

Магнитный порядок в кристаллах

Температуры упорядочения от долей градуса до 1000 К

Гейзенберговское обменное взаимодействие

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\vec{S}}_i \hat{\vec{S}}_j$$

«Классический» предел модели Гейзенберга

$$\hat{H} = \sum_{\langle i,j \rangle} J_{ij} \hat{\vec{S}}_i \hat{\vec{S}}_j$$

$$E = \sum_{\langle i,j \rangle} J_{ij} \vec{S}_i \vec{S}_j$$

Модель молекулярного поля

$$E = \sum_{\langle i,j\rangle} J_{ij} \vec{S}_i \vec{S}_j$$

$$E = \sum_{\langle i,j\rangle} J_{ij} \vec{S}_i \vec{S}_j$$

$$\langle m_z \rangle = \frac{\mu_B^2}{T} B = \frac{\mu_B^2}{T} (B + B_{eff})$$

$$2\,\mu_B B_{eff} = -\langle S \rangle \sum_j J_{ij}$$

$$\langle m_z \rangle = \frac{\mu_B^2}{T} B = \frac{\mu_B^2}{T} \left(B + B_{eff} \right)$$

$$\langle m_z \rangle = \frac{\mu_B^2}{T} \left(B - \frac{\langle S \rangle}{2\mu_B} \sum_j J_{ij} \right) =$$

$$2\,\mu_B B_{eff} = -\langle S \rangle \sum_j J_{ij}$$

$$\langle m_z \rangle = \frac{\mu_B^2}{T} B = \frac{\mu_B^2}{T} \left(B + B_{eff} \right)$$

$$\langle m_z \rangle = \frac{\mu_B^2}{T} \left(B - \frac{\langle S \rangle}{2\mu_B} \sum_j J_{ij} \right) =$$

$$= \frac{\mu_B^2}{T} \left(B - \frac{\langle m_z \rangle}{4\mu_B^2} \sum_j J_{ij} \right)$$

$$2\,\mu_B B_{eff} = -\langle S \rangle \sum_j J_{ij}$$

$$\langle m_z \rangle = \frac{\mu_B^2}{T} B = \frac{\mu_B^2}{T} \left(B + B_{eff} \right)$$

$$\langle m_z \rangle = \frac{\mu_B^2}{T} \left(B - \frac{\langle S \rangle}{2\mu_B} \sum_j J_{ij} \right) =$$

$$= \frac{\mu_B^2}{T} \left(B - \frac{\langle m_z \rangle}{4\mu_B^2} \sum_j J_{ij} \right)$$

$$2\,\mu_B B_{eff} = -\langle S \rangle \sum_j J_{ij}$$

$$\chi = \frac{\mu_B^2}{T + \Theta}$$

$$\Theta = \frac{1}{4} \sum_j J_{ij} = \frac{S(S+1)}{3} \sum_j J_{ij}$$

$$\chi = \frac{\mu_B^2}{T + \Theta}$$

$$\Theta = \frac{1}{4} \sum_j J_{ij} = \frac{S(S+1)}{3} \sum_j J_{ij}$$

$$g = 2, S = 1/2$$

Часть 5. Спиновые волны в ферромагнетике

Спиновые волны: элементарные возбуждения «классического» гейзенберговского магнетика

Спиновые волны: элементарные возбуждения «классического» гейзенберговского магнетика

$$E = J \sum_{i} \vec{S}_{i} \vec{S}_{i+1} = J N S^{2} \cos^{2}\Theta + J N S^{2} \sin^{2}\Theta \cos \varphi \approx E_{0} - 2J S^{2} N \sin^{2}\Theta \sin^{2}\frac{\Phi}{2}$$

$$E = J \sum_{i} \vec{S}_{i} \vec{S}_{i+1}, J < 0$$

$$B_{eff,i} = -\frac{J}{2\mu_B} (\vec{S}_{i+1} + \vec{S}_{i-1})$$

$$\hbar \frac{d\vec{S}_i}{dt} = (2\mu_B \vec{S}_i) \times \vec{B}_{eff,i}$$

$$E = J \sum_{i} \vec{S}_{i} \vec{S}_{i+1}, J < 0$$

$$B_{eff,i} = -\frac{J}{2\mu_{B}} (\vec{S}_{i+1} + \vec{S}_{i-1})$$

$$\hbar \frac{d\vec{S}_{i}}{dt} = (2\mu_{B}\vec{S}_{i}) \times \vec{B}_{eff,i}$$

$$\hbar \frac{d\vec{S}_{i}}{dt} = (2\mu_{B}\vec{S}_{i}) \times \vec{B}_{eff,i}$$

$$\hbar \frac{d \vec{S}_i}{d t} = J(\vec{S}_{i+1} \times \vec{S}_i + \vec{S}_{i-1} \times \vec{S}_i)$$

$$\hbar \frac{dS_{ix}}{dt} = JS(S_{(i+1), y} + S_{(i-1), y} - 2S_{iy})$$

$$\hbar \frac{dS_{iy}}{dt} = -JS(S_{(i+1),x} + S_{(i-1),x} - 2S_{ix})$$

$$\hbar \frac{d \vec{S}_i}{d t} = J(\vec{S}_{i+1} \times \vec{S}_i + \vec{S}_{i-1} \times \vec{S}_i)$$

$$\hbar \frac{dS_{ix}}{dt} = JS(S_{(i+1), y} + S_{(i-1), y} - 2S_{iy})$$

$$\hbar \frac{dS_{iy}}{dt} = -JS(S_{(i+1), x} + S_{(i-1), x} - 2S_{ix})$$

$$\hbar \frac{d S_{i}^{+}}{d t} = -i JS \left(S_{(i+1)}^{+} + S_{(i-1)}^{+} - 2S_{i}^{+} \right)$$
$$S^{+}(x, t) = A \exp \left(i \left[\omega t - kx \right] \right)$$

$$\hbar \frac{d \vec{S}_i}{d t} = J \left(\vec{S}_{i+1} \times \vec{S}_i + \vec{S}_{i-1} \times \vec{S}_i \right)$$

$$\hbar \frac{dS_{ix}}{dt} = JS(S_{(i+1), y} + S_{(i-1), y} - 2S_{iy})$$

$$\hbar \frac{d S_{iy}}{d t} = -JS(S_{(i+1), x} + S_{(i-1), x} - 2S_{ix})$$

$$\hbar \frac{d S_{i}^{+}}{d t} = -i JS \left(S_{(i+1)}^{+} + S_{(i-1)}^{+} - 2S_{i}^{+} \right)$$

$$\hbar \frac{d S_{i}^{+}}{d t} = -i JS \left(S_{(i+1)}^{+} + S_{(i-1)}^{+} - 2S_{i}^{+} \right)$$

$$\hbar \omega = -J S \left(e^{ika} + e^{-ika} - 2 \right) = S^{+}(x, t) = A \exp \left(i \left[\omega t - kx \right] \right)$$

$$= 4 |J| S \sin^{2} \frac{k a}{2}$$

$$\hbar \omega = 4|J|S\sin^2\frac{k a}{2}$$

Экспериментальное наблюдение спиновых волн в ферромагнетике

Спектр спиновых волн в ферримагнитном магнетите Fe3O4.

Спектр спиновых волн в ферромагнитном сплаве FeCo.

B.N.Brockhouse, "Slow Neutron Spectroscopy and the Grand Atlas pf the Physical World", Nobel lecture (1994)

R.N.Sinclair and B.N.Brockhouse, "Dispersion Relation for Spin Waves in a fcc Cobalt Alloy", Physical Review 120, 1638 (1960)

Магнонный вклад в теплоёмкость

$$\hbar \omega = 4|J|S\sin^2\frac{k a}{2} \approx |J|Sa^2k^2$$

Магнонный вклад в теплоёмкость

$$\hbar \omega = 4|J|S\sin^2\frac{k a}{2} \approx |J|Sa^2k^2$$

$$E = \int \frac{\hbar \omega}{e^{\hbar \omega/T} - 1} \frac{V d^{3} k}{(2\pi)^{3}} \propto T^{5/2}$$

$$C_{mag} \propto T^{3/2}$$

Магнонный вклад в теплоёмкость

$$E = \int \frac{\hbar \omega}{e^{\hbar \omega/T} - 1} \frac{V d^{3} k}{(2\pi)^{3}} \propto T^{5/2}$$

$$C_{mag} \propto T^{3/2}$$
200

SFER (AE ev) $C_{tot} = A T^3 + B T^{3/2}$ $\mathsf{CK}^{3/2}$ (erg/cm 3 deg $^{5/2}$) Sample 1 9 10 $T^{3/2}$ (deg $^{3/2}$)

.04

[111]

Экспериментальная проверка предсказания спин-волновой теории для ферромагнетика. Исследовался образец железо-итриевого граната, температура Кюри около 550К.

Samuel S. Shinozaki, "Specific Heat of Yttrium Iron Garnet from 1.5° to 4.2°K", Physical Review 122, 388 (1961)

$$\Delta M = g \mu_B N_{mag} = g \mu_B \frac{V}{(2\pi)^3} \int \frac{d^3k}{e^{\hbar \omega/T} - 1}$$

$$\Delta M = g \mu_B N_{mag} = g \mu_B \frac{V}{(2\pi)^3} \int \frac{d^3 k}{e^{\hbar \omega/T} - 1}$$

 $\Delta M \propto T^{3/2}$

 $\Delta M \propto T^{3/2}$

Пример экспериментальной проверки закона Блоха. Исследовался ферромагнетик CrBr3 с температурой Кюри 37 К. Регистрировалась частота ЯМР на ядрах 53Cr, изменение которой пропорционально намагниченности ферромагнетика. Отклонение от закона Блоха Т^{3/2} может быть описано учётом отклонения от квадратичного спектра магнонов.

A.C.Gossard, V.Jaccarino, J.P.Remeika, "Experimental test of the spin-wave theory of a ferromagnet", Physical Review Letters 7, 122 (1961)

Часть 6. Анизотропия спин-спиновых взаимодействий. Модель Изинга и ХУ-модель.

Энергия анизотропии

Энергия анизотропии

Одноионная анизотропия

$$E_a = D S_z^2$$

- *D>0*: «легкая плоскость», XY
- *D*<*0*: «легкая ось», изинговская

Энергия анизотропии

Одноионная анизотропия

$$E_a = D S_z^2$$

• *D>0*: «легкая плоскость», XY

Модель Гейзенберга	Модель Изинга	XY-модель
$\sum_{ij} {J}_{ij} \hat{ec{S}}_i \hat{ec{S}}_j$	$\sum_{ij} {J}_{ij} \hat{S}^z_i \hat{S}^z_j$	$\sum_{ij} J_{ij} \left(\hat{S}_i^x \hat{S}_j^x + \hat{S}_i^y \hat{S}_j^y \right)$

Элементарные возбуждения одномерной модели Изинга

Элементарные возбуждения одномерной модели Изинга

Элементарные возбуждения одномерной модели Изинга

Отсутствие «обычного» порядка для двумерной ХУ-модели при Т>0

$$\begin{split} \hat{H} &= \sum_{\langle i,j \rangle} J_{i,j} \Big(\hat{S}_i^x \, \hat{S}_j^x + \, \hat{S}_i^y \, \hat{S}_j^y \Big) \\ &\Delta \, M \! \propto \! N_{\text{\tiny MAZH}} \! \propto \! \int \frac{d^2k}{e^{-ak^2/T} \! - \! 1} \! \propto \! T \int \frac{d\,\xi}{e^{\xi} \! - \! 1} \end{split}$$

$$F = E - TS = F_0 - \pi J \ln \left(\frac{R}{r_0} \right) - 2T \ln \left(\frac{R}{r_0'} \right) \approx$$

$$\approx F_0 - 2 \left(T - \frac{\pi |J|}{2} \right) \ln \left(\frac{R}{r_0} \right)$$

$$T_c \approx \frac{\pi |J|}{2}$$

Топологический фазовый переход:

Спонтанное образование свободных вихрей при Т>Т

$$E \approx E_0 - \frac{1}{2} \sum_i \left(\frac{1}{r_i} \right) N_{r_i} =$$

$$E \approx E_0 - \frac{1}{2} \sum_{i} \left(\frac{1}{r_i} \right) N_{r_i} = E_0 - \pi J \int \frac{dr}{r} = E_0 - \pi J \ln \left(\frac{R}{r_0} \right)$$

$$\psi_{j} = |\dots + + + + + + + + + + + + \dots\rangle$$

$$\psi(k) = \sum_{i} e^{ik R_{j}} \psi_{j}$$

ПОПА

$$\hat{H} \psi(k) = \left[J \sum_{j} \left(S_{j}^{z} S_{j+1}^{z} + \frac{S_{j}^{+} S_{j+1}^{-} + S_{j}^{-} S_{j+1}^{+}}{2} \right) - 2\mu_{B} B \sum_{j} S_{j}^{z} \right] \psi(k) =$$

$$= \left(N_{cbs3eŭ} J S^{2} - 2 \times 2 \times J S^{2} \right) \psi(k) + \frac{J}{2} \left(e^{ika} + e^{-ika} \right) \psi(k) -$$

$$- \left(2\mu_{B} B \frac{N_{cnuh}}{2} + 2\mu_{B} B \right) \psi(k)$$

$$\psi_{j} = |\dots + + + + + + + + + + + + \dots\rangle$$

$$\psi(k) = \sum_{i} e^{ik R_{j}} \psi_{j}$$

$$\begin{split} \hat{H} \, \psi(k) &= \left[J \sum \left(S_{j}^{z} S_{j+1}^{z} + \frac{S_{j}^{+} S_{j+1}^{-} + S_{j}^{-} S_{j+1}^{+}}{2} \right) - 2 \mu_{B} B \sum S_{j}^{z} \right] \psi(k) = \\ &= \left(N_{cerse \check{u}} J \, S^{2} - 2 \times 2 \times J \, S^{2} \right) \psi(k) + \frac{J}{2} \left(e^{i \, k \, a} + e^{-i \, k \, a} \right) \psi(k) - \\ &- \left(2 \mu_{B} B \frac{N_{cnuh}}{2} + 2 \mu_{B} B \right) \psi(k) \end{split}$$

$$\psi(k) = \sum_{i} e^{ikR_{i}} \psi_{j}$$

