ECE6703J

Computer-Aided Design of Integrated Circuits

Simulated Annealing Placement

Iterative Improvement Placer: Problem?

- Imagine you could plot Σ HPWL for **all** possible placements.
 - Our random method only takes swaps that **improve** wirelength.

• Can only find good answers **downhill** from our random starting solution

All possible placement solutions

Getting Stuck: Downhill vs Uphill Methods

- If we could go **uphill**, we could maybe get better placements.
- New problem: how to control this? Such changes make placement worse!

All possible placement solutions

Random Iterative Improvement is Greedy

- 1. Randomly swap two gates
- 2. Evaluate $\Delta L = \text{Change in } \Sigma \text{HPWL}$
- 3. Is $\Delta L < 0$?
 - 1) Yes. Keep swap. Go to 1.
 - 2) No. UNDO swap.

Need some new idea!

New Idea: Improvement with Hill-Climbing

- 1. Randomly swap two gates
- 2. Evaluate $\Delta L = \text{Change in } \Sigma HPWL$
- 3. Is $\Delta L < 0$?
 - 1) Yes. Keep swap. Go to 1.
 - 2) No...
 - Evaluate function $P(\Delta L, T)$. **Accept swap** with probability P.

New:

Hill-climbing control parameter:

T=temperature

Idea: Probabilistic Swap Accept Criterion

else **undo** swap

New Random Improvement Algorithm

- Almost same as old, greedy one, with 2 big changes.
 - Hill-climbing temperature T, start with T=Hot=BIG, slowly reduce T over many swaps.
 - Only after many swaps you reduce T, then do many swaps, reduce T again ... (repeat).
 - If a swap makes wirelength <u>worse</u>, randomly accept it, with probability $P(\Delta L, T) = e^{-\frac{\Delta L}{T}}$.
 - Note: when T is BIG (initially), $e^{-\frac{\Delta L}{T}} \approx 1$, many worse improvements are accepted; when T is SMALL, $e^{-\frac{\Delta L}{T}} \approx 0$, many worse improvements are rejected.

New Random Improvement Algorithm

• Accepting probability $P(\Delta L, T) = e^{-\frac{\Delta L}{T}}$ versus T

New Famous Algorithm: Simulated Annealing

Physical Analogy: Annealing

- Suppose you want to make a perfect crystal from a material.
 - Perfect = all atoms lined up on crystal lattice sites; lowest energy "state" of the atoms.

Perfect order,
has minimum energy

Physical Analogy: Annealing

- How you get to the perfect order?
 - Get the material really **hot** (so atoms have energy to move around, even to bad places)...
 - ... then, **cool** very, very slowly (so atoms settle in "good" spots).
- This process has a name: **Annealing**.

Physical Analogy: Annealing

• How do you simulate this crystal with a computer program?

Move 1 atom. Evaluate $\Delta E =$ change in Energy

Two situations: $\Delta E < 0$ and $\Delta E > 0$

In physics, what is probability of this atomic move, if $\Delta E < 0$?

Answer: 1

What is probability if $\Delta E \gtrsim 0$?

Answer: $e^{-\overline{KT}}$

(*K* is **Boltzmann constant**. In real physics, *K* converts units of Temperature to units of Energy)

Annealing versus Placement

- Annealing process in physics
 - Optimize energy E
 - Perturbation: move of a single atom
 - Temperature T
 - $\Delta E < 0$, keep the move
 - $\Delta E > 0$, accept move with probability $e^{-\frac{\Delta E}{KT}}$

- Placement
 - Optimize the total HPWL L
 - Perturbation: swap two gates
 - Temperature T
 - $\Delta L < 0$, keep the swap
 - $\Delta L > 0$, accept swap with probability $e^{-\frac{\Delta L}{T}}$

This New Method: Simulated Annealing

- General optimization method, used widely in VLSI CAD
 - Invented at IBM in early 1980s.
 - S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. "Optimization by Simulated Annealing". Science 220 (4598): 671–680, 1983.

Annealing Placer: Pseudo-code

```
Start with a random initial placement with wirelength = \sumHPWL(net);
T = temperature = hot; frozen = false;
while (! frozen) {
  for (s=1; s< M* #gates in layout; s++) { // M is how many swaps-per-gate
    Swap two random gates Gi and Gj;
    Compute \Delta L = [\Sigma HPWL(net) \text{ after swap}] - [\Sigma HPWL(net) \text{ before swap}];
    if (\Delta L < 0) then accept this swap; //this is a new, better placement
    else {
      if( uniform_random() < exp( -\Delta L/T ) )
      then accept this 'uphill' swap; //this is a new, worse placement
      else undo this 'uphill' swap;
                                                                     Randomly
                                                                    accept swap
  if (\(\sumerrightarrow\) HPWL(net) still decreasing over the last few temperatures)
  then T = 0.9 * T; // cool the temperature; do more gate swaps
  else frozen = true;
                                                               Annealing
return (final placement as best solution);
                                                              temperature
                                                          cooling outer loop
```

Probabilistic Acceptance of Swaps

```
if( uniform_random() < exp( -∆L/T ) )
  then accept this 'uphill' swap; //this is a new, worse placement
  else undo this 'uphill' swap;</pre>
```

- This little piece of code implements a **famous idea**
 - <u>Idea</u>: "randomly accepting" a perturbation of system, with specific probability, will correctly simulate the real physics of that real system.
 - Name: Metropolis Criterion

Metropolis Criterion: Behavior

```
if( uniform_random() < exp( -∆L/T ) )
  then accept this 'uphill' swap; //this is a new, worse placement
  else undo this 'uphill' swap;</pre>
```

- How does this really work?
 - It really is **random**.
 - You might accept swap, you might not. Depends on random number you generate.
 - Suppose T=10 and $\Delta L=+20$. $\exp(-\Delta L/T)=0.14$. So, 0.14 probability to accept swap with $\Delta L=+20$.
 - Suppose that at this temperature T, you try 100,000 **different** swaps, among which 5,000 evaluate to $\Delta L = +20$. Then, roughly $0.14 \times 5000 = 700$ of them will be accepted.
 - If you change the random number seed and run code again, you get a different result...
 - ...but, if you still have 5,000 moves with $\Delta L = +20$, still expect ~700 (different) accepts.

How Well Does Annealing Work?

- It works great
 - Same ~2500 gate benchmark
 - HOT=800, M=100 moves/gate
 - Do 100 × 2500 swaps/temperature
 - About 30% less HPWL wirelength!
- Typical annealing "cost" curve
 - X axis is T=temperature, **LOG** scale
 - Y axis is ΣHPWL
 - Cool fact: curves always look like this!

A Few Facts About Simulated Annealing

- Does annealing always find the best global optimum?
 - NO. It is just good at avoiding a lot of local minimums.
- Does annealing work on **every type** of optimization problem?
 - NO. But it does work on many. However, it is not always the most efficient option.
- Is annealing always **slow** doing all those many swaps over many temperatures?
 - NO. Lots of engineering tricks to speed it up.

A Few Facts About Simulated Annealing

- Do you need to set all the parameters HOT, M swaps/gate
 - by trial and error?
 - NO. There are fancy adaptive techniques to determine these automatically.
- What happens if running annealer several **different** times, with different random seeds?
 - You get a **different** (random) answer each time.
 - To get a better solution, run it **multiple** times!

Simulated Annealing Placement: Summary

- Simulated annealing is a very famous, successful method.
 - Much better than simple random iterative improvement.
 - Dominant method for placers in 1980s, 1990s
 - And still today used in lots of other VLSI CAD tasks.
 - Important to understand!
- But... **not** how we really do placers today
 - Annealing works well for up to 100K 500K gates
 - Annealing too inefficient for things with 1M+ gates
 - Need yet **another** new set of ideas...