

Figure 1: The power envelopes $\beta_{\lambda}(h)$ (upper panel) and $\beta_{\mu}(h)$ (lower panel) for $\alpha=0.05$, as functions of $h/\sqrt{c}=\left(h_1,h_2\right)/\sqrt{c}$.

Proposition 4 Let Φ denote the standard normal distribution function. Then,

$$\beta_{\lambda}(h) = 1 - \Phi \left[\Phi^{-1}(1 - \alpha) - \sqrt{-\frac{1}{2} \sum_{i,j=1}^{r} \ln\left(1 - \frac{h_i h_j}{c}\right)} \right] \quad and \tag{14}$$

$$\beta_{\mu}(h) = 1 - \Phi \left[\Phi^{-1}(1 - \alpha) - \sqrt{-\frac{1}{2} \sum_{i,j=1}^{r} \left(\ln \left(1 - \frac{h_i h_j}{c} \right) + \frac{h_i h_j}{c} \right)} \right]. \quad (15)$$

Figure 1 shows the asymptotic power envelopes $\beta_{\lambda}(h)$ and $\beta_{\mu}(h)$ as functions of h_1/\sqrt{c} and h_2/\sqrt{c} when $h=(h_1,h_2)$ is two-dimensional.

It is important to realize that the asymptotic power envelopes derived in Proposition 4 are valid not only for λ - and μ -based tests but also for any test invariant under left orthogonal transformations of the observations $(X \mapsto QX)$, where Q is a $p \times p$ orthogonal matrix), and for any test invariant under multiplication by any non-zero constant and left orthogonal transformations of the observations $(X \mapsto aQX)$, where $a \in \mathbb{R}^+_0$ and Q is a $p \times p$ orthogonal matrix), respectively.