Análise Matemática III EDO's lineares de ordem superior a 2

Ricardo Moura

Escola Naval

7 de outubro de 2021

Definição

Definição

Uma EDO linear de ordem n de coeficientes constantes é dada por:

$$\sum_{i=0}^{n} a_i y^{(n-i)} = f(x) \tag{1}$$

onde a_i , i = 1, ..., n são constantes reais. A equação

$$\sum_{i=0}^{n} a_i y^{(n-i)} = 0$$

denomina-se equação homogénea associada a (1).

Polinómio Característico

Definição

A EDO linear de ordem n de coeficientes constantes (1) pode ser escrita recorrendo ao operador de derivação D, em que a cada função y faz corresponder à sua derivada, isto é, $Dy = \frac{d}{dx}y$. Para tal podemos escrever a equação (1) através de

$$P(D)y = \sum_{i=0}^{n} a_i D^{(n-i)} y = f(x)$$

onde $a_i,\ i=1,...,n$ são constantes reais e P(D) é denominado polinómio característico

$$P(D) = \sum_{i=0}^{n} a_i D^{(n-i)} = a_0 D^n + a^1 D^{n-1} \cdots + a_{n-1} D + a_n.$$

Definição (Matriz Wronskiana e Wronskiano)

Assumindo que estamos perante n funções $y_i(x)$, $i=1,\ldots,n$ funções diferenciáveis num aberto I, soluções da EDO homogénea

$$\sum_{i=0}^{n} a_i y^{(n-i)} = 0, a_0 \neq 0$$

chama-se matriz Wronskiana à matriz

$$\begin{bmatrix} y_1(x) & \dots & y_n(x) \\ \vdots & \dots & \vdots \\ y_1^{(n)}(x) & \dots & y_n^{(n)}(x) \end{bmatrix}$$

e ao seu determinante, Wronskiano.

Exemplo

$$y''-2y'+y=0?$$

Exemplo

$$y''-2y'+y=0?$$

$$\rightarrow$$
 $y(x) = e^x$?

Exemplo

$$y''-2y'+y=0?$$

$$\rightarrow$$
 $y(x) = e^x$?

$$y(x) = e^{-x}$$
?

Exemplo

$$y''-2y'+y=0?$$

$$y(x) = e^x?$$

▶
$$y(x) = e^{-x}$$
?

▶
$$y(x) = 5e^x$$
?

Exemplo

$$y''-2y'+y=0?$$

$$\rightarrow$$
 $y(x) = e^x$?

$$y(x) = e^{-x}$$
?

$$y(x) = 5e^x?$$

$$\rightarrow$$
 $y(x) = xe^x$?

Exemplo

Quais poderão ser soluções de

$$y''-2y'+y=0?$$

- \rightarrow $y(x) = e^x$?
- $y(x) = e^{-x}$?
- $y(x) = 5e^x$?
- $ightharpoonup y(x) = xe^x?$

As duas soluções encontradas são linearmente independentes?

Teorema 1: Independência linear de duas funções

Se $y_1(x)$ e $y_2(x)$ são duas funções diferenciáveis num aberto I e se, para um $x_0 \in I$, o seu Wronskiano é diferente de zero, então as duas funções são linearmente independentes.

Teorema 2: sol. de uma EDO linear homogénea de 2.º grau de coef. constantes

Sejam $y_1(x)$ e $y_2(x)$ soluções da EDO homogénea $a_0y''+a_1y'+a_2y=0$ num aberto I, se o Wronskiano associado é diferente de zero para algum $x_0 \in I$, então toda a solução desta EDO pode ser expressa através da combinação linear de $y_1(x)$ e $y_2(x)$, i. e., $y=C_1y_1(x)+C_2y_2(x)$, onde C_1 , C_2 são constantes reais arbitrárias.

Nota

O teorema 2 pode ser extensível a qualquer EDO linear homogénea de n-ésimo grau de coef. constantes.

Nota

As soluções destas EDO's lineares homogéneas de n-ésimo grau de coef. constantes estão associadas às soluções da equação característica (P(D)=0).

O polinómio característico terá sempre soluções do tipo $D_k = \alpha_k + \beta_k i, k = 1, ..., n$, e, portanto, a solução da EDO linear homogénea de $2.^{\circ}$ grau de coef. constantes, será, para C_1 e C_2 constantes reais arbitrárias,

$$y = C_1 e^{\alpha_1 x} (\cos(\beta_1 x) + \sin(\beta_1 x)) + C_2 e^{\alpha_1 x} (\cos(\beta_2 x) + \sin(\beta_2 x)),$$

excepto se $\alpha_1=\alpha 2=\alpha$ e $\beta_1=\beta_2=0$. Nesse caso, teríamos uma solução dupla e duas funções linearmente dependentes $y_1(x)=C_1e^{\alpha x}$ e $y_1(x)=C_2e^{\alpha x}$. Para tal desfazemos a linearidade apresentando a solução:

$$y = C_1 e^{\alpha x} + C_2 x e^{\alpha x}.$$

Resumidamente, temos três casos particulares, considerando P(D) = 0

$$\triangleright D = \alpha_1 \land D = \alpha_2, \quad \alpha_1 \neq \alpha_2 \in \mathbb{R} \implies$$

$$y(x) = C_1 e^{\alpha_1 x} + C_2 e^{\alpha_2 x}$$

 $ightharpoonup D = \alpha, \quad \alpha \in \mathbb{R} \quad \text{raiz dupla} \implies$

$$y(x) = C_1 e^{\alpha x} + C_2 x e^{\alpha x}$$

 $D = \alpha \pm \beta i, \quad \alpha, \beta \in \mathbb{R}$

$$y(x) = e^{\alpha x} \left[C_1 \cos(\beta x) + C_2 \sin(\beta x) \right]$$

Podemos, portanto, concluir que, para qualquer ordem n, se uma das raízes de P(D) é

- real α e distinta de todas as outras raízes, uma das soluções será $y(x) = C_1 e^{\alpha x}$;
- real α e múltipla de multiplicidade m, uma das soluções será $y(x) = P_{m-1}(x)e^{\alpha x}$, sendo $P_{m-1}(x)$ um polinómio de grau m-1 de constantes reais arbitrárias.
- complexa $\alpha \pm \beta i$ com multiplicidade m, uma das soluções será $y(x) = e^{\alpha x} \left[P_{m-1}(x) \cos(\beta x) + Q_{m-1} \sin(\beta x) \right]$, sendo $P_{m-1}(x)$ e $Q_{m-1}(x)$ polinómios de grau m-1 de constantes reais arbitrárias.

Exemplo

Integre as equações:

$$y'' + 2y' + y = 0$$

$$y'' - y' - 2y = 0$$

$$y'' + y' + y = 0$$

$$y^{(4)} - 2y^{(3)} + 2y'' - 2y' + y = 0$$

Teorema 3: Solução geral da EDO linear de ordem n de coeficientes constantes

A solução geral de uma EDO linear de ordem n de coeficientes constantes, equação (1), é dada pela soma da solução geral da eq. homogénea associada, y_{sgh} , com a solução particular da equação completa, y_{spc} , i.e.,

$$y(x) = y_{sgh}(x) + y_{spc}(x).$$

Como o próprio nome indica, só falta encontrar uma solução particular $y_{spc}(x)$ que verifique $\sum_{i=0}^{n} a_i y^{(n-i)} = f(x)$, dado que já tínhamos visto como se obtém y_{sgh} .

Caso $f(x) = e^{\delta x} [A_n(x) \cos(\gamma x) + B_m(x) \sin(\gamma x)]$, onde $A_n(x)$ e $B_m(x)$ são polinómios de grau n e m, respetivamente, a solução particular será dada por:

$$y_{spc} = e^{\delta x} \left[P_N(x) \cos(\gamma x) + Q_N(x) \sin(\gamma x) \right]$$

se $\delta \pm \gamma i$ não for zero de P(D), ou

$$y_{spc} = x^{k-1}e^{\delta x} \left[P_N(x)\cos(\gamma x) + Q_N(x)\sin(\gamma x) \right]$$

se $\delta \pm \gamma i$ for zero de P(D) de multiplicidade k, onde $P_N(x)$ e $Q_N(x)$ serão polinómios de grau $N = \max\{n, m\}$.

Nota

Repare-se que, no método anterior, se $\gamma=0$, teremos $f(x)=e^{\delta x}A_n(x)$. Neste caso, a solução particular da equação completa reduz-se a dois casos mais simples:

- $y_{spc} = e^{\delta x} P_n(x)$, se δ não for zero de P(D);
- $y_{spc} = x^{k-1}e^{\delta x}P_n(x)$, se δ for zero de P(D) com multiplicidade k, onde $P_n(x)$ será um polinómio de grau n.

Exemplo

Integre as equações:

$$y'' - 2y' + y = x^2$$

$$y'' - 6y' + 13y = e^{3x} \cos(x)$$

$$y'' - 6y' + 13y = e^{3x} \cos(2x)$$