

# Project Organisation sns/HIFR

27 beamlines, 1600 users

**Users** 

Users

26 beamlines, 850 unique

users

9 Key scientists Scientific Steering Committee

Scientific Steering Committee

4 Key scientists

Development Team

PM & 16 Developers Development Team

Project Management Board





# How we do it Technically

- Organisation
  - Open source
  - Continuous integration
  - Automated build, test & deploy
  - Distributed team
- C++ Framework
  - Win, Linux, Mac
  - Memory Management
  - Performance optimisationOpenMP
  - Common Interfaces
  - Plug in Mechanism



- Qt GUI
  - Extended from QtiPlot
- Python Scripting
  - Using Boost Python
  - Powerful and extensive coverage
  - Integration with NumPy





#### User interfaces

#### MantidPlot

- 1, 2 and 3D plotting
- Interactive Instrument view
- Ad hoc analysis
- Specific User interfaces
- Integrated scripting
- Extendable with plugins

MantidScript

Pure command line support



Science & Technology Facilities Council



#### ISIS

#### Rollout



SNS

#### ARCS **SEQUOIA** NOMAD BASIS Uhra-Small-Angle Countour Sealisting Instrument (TOF-USANS) • CL-16 (2004) VISION utron Spin Echo Spectromete SNAP (NSE) - BL-15 HYPSPEC terials science, geology, earth and Atomic-level dynamics in single crystals, magnetism, condensed matter sciences Mark Hagen - 865,241,9782 -hagenme@corn.igov BL-4A BL-MA **Fundamental Neutron** Physics Beam Line • BL-13 BL-4B AND A Were commissed by TOPAZ Kameim CNCS E1-300. DOMESTIC STREET Atomic-level structures in chemistry, INSINTE . 21-86 ogy, earth science, materials s condensed matter physics BL-MR (KUS) Atomic-level structures of Hasda Offices Sectioning Spectrometer underline **EQ-SANS** M.-9 (20019)\* Petailed studies of disorder in **POWGEN** H.-III Atomic-level structures in chemistry, materials science, and condensed matter physics including magnetic spin structures Scheduled commissioning date Engineering Materials Diffractomete (VULCAN) - BL -7

**HFIR** 



# Other possible collaborations

#### · ILL

- Pilot starting to evaluate and improve support for Triple Axis apectrometers
- Julich & Helmholtz association
  - Considering piloting Mantid and possible becoming a full partner
- · ESS
  - Planning to use Mantid for data reduction
  - Initial steps will increase Mantid McStas integration





# VATES - Advanced visualisation & analysis

#### Problem

- Large 100GB datasets
- 4+ dimensions
  - Q(x,y,z),  $\omega$ , temp, field, etc.

#### Solution

- Distributed Parallel visualization
  - Paraview
- On the fly parallel data rebinning





# Multidimensional data visualisation









### Mantid & Danse







# Mantid - Danse Scope

**Analysis** 

Reduction

Capture/ Instrument Control







# Integration Possibilities

- Control Scope
  - Maintenance
    - · We cannot do everything
  - Installer/ pre requisite bloat
    - · Harder to install for users and maintain for us
    - Places restrictions on DANSE
- Provide a good user experience
  - Usage
  - Installation
- Maximise reuse effort
- Start Simple!





# Mantid SANS Requirements

- Provide a comprehensive SANS model fitting solution
- Provide an extensible library of models
  - Some cab be integrated from FISH
- Support complex constraint functions





#### **DANSE SANS software**

#### SANS Models

- Library of 50+ models
- Originally from NIST
- Thoroughly tested
- Accessible via C++ and Python

#### SANSView

- Fitting package in 1D and 2D
- Constrained fitting
- "slicing tools"
- P(r) inversion, SLD calculation





## Mantid DANSE SANS plan

- Integrate with SANSView
  - File Transfer for SANSView
    - via CanSAS1S and Nexus formats
  - Reading NIST raw data into Mantid
    - Improve file integration
    - Speed up testing
  - Launch SANSView from Mantid
    - · Identifying file to load
    - · SANSView must be easy to install on Win, Mac and Linux
  - Integrating SANS models into Mantid
    - From both DANSE and FISH
    - Using a thin translation layer if possible





# Mantid DANSE SANS plan

- Integrating SANS models into Mantid
  - From both DANSE and FISH
  - · Using a thin translation layer if possible
- Add a P(r) inversion algorithm to Mantid
  - Using the underlying DANSE package
- Integrating the SANSView Calculators & Data Processors into Mantid
  - Scattering Length Density
  - · Sector averaging
  - · Box summing
  - · All use PeriodicTable (already in use in Mantid)





# Reflectometry

- DANSE SANS software
  - Reflectometry Models
  - GARefl
    - · Simultaneous model fitting for multiple data sets
- Mantid DANSE SANS plan
  - Provide an easy to use user interface
    - Easy to install
  - Launch from within Mantid





#### Inelastic

- VNF
  - Produce Event based Nexus file output
    - · Can be read into Mantid
- · Mystic, Pathos
  - · To be considered for VATES distributed computing
  - Need to be careful about too many C++ Python switches
- Third Party Bindings
  - Gulp, VASP, Quantum Expresso
    - · Could be of direct use in VATES





#### Diffraction

- PDFFit / PDFGUI
  - · Integrate at a file level
  - · Initially via PDFgetN, later direct
- SrRietveld
  - Batch processing of reduced data
    - Already possible in Fullprof directly
  - More interesting:
    - Extract out data from the refinement of multiple datasets
    - Plotting using run meta data
      - » Trend plotting and fitting
      - » Display of 2D and 3D engineering stress maps



