Linear Regression

Professor Jie Peng, PhD

Department of Statistics

University of California, Davis

Model Ingredients

Key Ingredients

- (i) Fixed component: How does the mean of the response variable change with the X value(s)?
- (ii) Random component: Given the X value(s), what is the distribution of the response variable?

Notes: We consider **fixed designs** – X variable(s) treated as non-random.

Figure: Illustration of regression model

Heights

Figure: Child's height versus midparent's height

- ► The average child's height within each vertical strip (bin) lies approximately on a straight line.
- ► The degree of dispersion is roughly the same across bins.

Heights

Model the mean of child's height (Y) as a linear function of the midparent's height (X):

$$E(Y) = \beta_0 + \beta_1 X$$

Model the distribution of child's height as having a constant variance:

$$Var(Y) = \sigma^2$$

© Jie Peng 2022. This content is protected and may not be shared, uploaded, or distributed.

Simple Regression Model

Simple Linear Regression Model

Only one *X* variable:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, ..., n.$$

- Y_i value of the response variable in the *ith* case; X_i value of the X variable in the *ith* case.
- ▶ random errors: ϵ_i uncorrelated, zero-mean, equal-variance random variables
- ▶ Unknown parameters: β_0 regression intercept; β_1 regression slope; σ^2 error variance

Given X_i , the response Y_i is the sum of two terms:

Non-random term:

$$E(Y_i) = \beta_0 + \beta_1 X_i$$

Random error:

 $\epsilon_i \sim$ zero mean, common variance, uncorrelated

The simple linear regression model says:

- \triangleright The response variable Y_i is a random variable.
- lts mean is linearly related to X_i .
- lts variance is a constant (i.e., not depending on X_i).
- ▶ Two responses Y_i and Y_i ($i \neq j$) are uncorrelated.

Regression Line

$$y = \beta_0 + \beta_1 x$$

- \triangleright β_1 regression slope: the change in mean of Y per unit change of X.
- ▶ β_0 regression intercept: the value of E(Y) when X = 0.

Least-Squares Estimator

Which Line is the "Best" Fit?

© Jie Peng 2022. This content is protected and may not be shared, uploaded, or distributed.

Least-Squares Principle

The sum of squared vertical deviations of the observations

$$\{(X_i, Y_i)\}_{i=1}^n$$
 from line $y = b_0 + b_1 x$:

$$Q(b_0,b_1)=\sum_{i=1}^n (Y_i-(b_0+b_1X_i))^2.$$

The least squares (LS) principle is to fit the observed data by a line that minimizes the sum of squared vertical deviations.

Least-Squares Estimator

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = r_{XY} \frac{s_Y}{s_X}, \qquad \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

- $ightharpoonup \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \ \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$, are the sample means.
- $ightharpoonup s_X = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (X_i \overline{X})^2}, \quad s_Y = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (Y_i \overline{Y})^2}, \text{ are the sample standard deviations.}$
- $ightharpoonup r_{XY}$ is the **sample correlation** between X and Y.
- ▶ If X_is are all equal, then LS estimator is not defined.

Least-Squares Line

$$y = \hat{\beta}_0 + \hat{\beta}_1 x = \overline{Y} + r_{XY} \frac{s_Y}{s_X} (x - \overline{X}).$$

- ▶ The LS line passes through the **center of the data** $-(\overline{X}, \overline{Y})$.
- ▶ If the data are **centered** (i.e., $\overline{X} = 0$, $\overline{Y} = 0$), then $\hat{\beta}_0 = 0$ and the LS line passes the origin (0,0).
- ▶ If the data are **standardized**, then $\hat{\beta}_0 = 0$ and $\hat{\beta}_1 = r_{XY}$.
- ▶ **Regression effect**: One standard deviation change in X leads to r_{XY} standard deviation change in Y. (Recall $|r_{XY}| \le 1$)

Derive the LS Estimator

The pair (b_0, b_1) that minimizes the function $Q(\cdot, \cdot)$ satisfies:

$$\frac{\partial Q(b_0,b_1)}{\partial b_0}=0, \quad \frac{\partial Q(b_0,b_1)}{\partial b_1}=0.$$

This leads to the **normal equations**:

$$nb_0 + b_1 \sum_{i=1}^n X_i = \sum_{i=1}^n Y_i$$

$$b_0 \sum_{i=1}^n X_i + b_1 \sum_{i=1}^n X_i^2 = \sum_{i=1}^n X_i Y_i$$

The solution is the LS estimator.

Fitted Values and Residuals

Fitted Values and Residuals

Fitted values are predictions by the LS line :

$$\widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i = \overline{Y} + \hat{\beta}_1 (X_i - \overline{X}), \quad i = 1, \dots n.$$

▶ Residuals are differences between the observed values and their respective fitted values:

$$e_{i} = Y_{i} - \widehat{Y}_{i} = Y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}X_{i}), \quad i = 1, \dots n.$$

$$= (Y_{i} - \overline{Y}) - \hat{\beta}_{1}(X_{i} - \overline{X}).$$

Example

Case	Xi	Yį	$X_i - \overline{X}$	$Y_i - \overline{Y}$	$(X_i - \overline{X})^2$	$(X_i - \overline{X})(Y_i - \overline{Y})$
1	1.86	3.34	-0.17	-0.94	0.03	0.16
2	0.22	1.79	-1.81	-2.48	3.29	4.50
3	3.55	5.66	1.52	1.39	2.30	2.11
4	3.29	5.83	1.26	1.56	1.58	1.96
5	1.25	4.74	-0.78	0.47	0.61	-0.36
Col. Sum	10.17	21.36	0.00	0.00	7.81	8.37
Col. Mean	2.03	4.27				

$$\hat{\beta}_1 = 8.37/7.81 = 1.07, \quad \hat{\beta}_0 = 4.27 - 1.07 \times 2.03 = 2.09$$

Figure: LS line, fitted values and residuals

Properties of Residuals

(i)
$$\sum_{i=1}^n e_i = 0$$
; (ii) $\sum_{i=1}^n X_i e_i = 0$; (iii) $\sum_{i=1}^n \widehat{Y}_i e_i = 0$

Case	Xi	Yi	\widehat{Y}_i	ei
1	1.86	3.34	4.09	-0.75
2	0.22	1.79	2.33	-0.54
3	3.55	5.66	5.90	-0.23
4	3.29	5.83	5.62	0.22
5	1.25	4.74	3.43	1.31

Mean Squared Error

Estimation of Error Variance

- ▶ Error variance $\sigma^2 = \text{Var}(\epsilon_i)$. (Recall $\epsilon_i = Y_i (\beta_0 + \beta_1 X_i)$)
- Idea: Estimate σ^2 by the "variance" of residuals. (Recall residual $e_i = Y_i \hat{Y}_i = Y_i (\hat{\beta}_0 + \hat{\beta}_1 X_i)$)
- Error sum of squares (SSE):

$$SSE := \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Mean squared error (MSE):

$$MSE = \frac{SSE}{n-2}$$

Degrees of Freedom

- The degrees of freedom of a random vector is the number of its components that are free to vary.
- ▶ Recall $\sum_{i=1}^{n} e_i = 0$, $\sum_{i=1}^{n} X_i e_i = 0$ → degrees of freedom of (e_1, \dots, e_n) is n-2.
- ▶ d.f.(SSE) = n 2.
- ► $E(SSE) = (n-2)\sigma^2$ and thus $E(MSE) = \sigma^2 \rightarrow MSE$ is an unbiased estimator of σ^2 .

Example (Cont'd)

Case	X_i	Y_i	\widehat{Y}_i	e _i
1	1.86	3.34	4.09	-0.75
2	0.22	1.79	2.33	-0.54
3	3.55	5.66	5.90	-0.23
4	3.29	5.83	5.62	0.22
5	1.25	4.74	3.43	1.31

$$SSE = (-0.75)^2 + (-0.54)^2 + (-0.23)^2 + 0.22^2 + 1.31^2 = 2.6715$$

$$MSE = \frac{2.6715}{5 - 2} = 0.8905.$$

LS Estimator: Properties

Mean and Variance

LS estimators are unbiased:

未知,待会在se中会用MSE【 2无偏估计】代替
$$\sigma^2\{\hat{\beta}_0\} = \underline{\sigma^2} \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \right]$$

$$\sigma^2\{\hat{\beta}_1\} = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2}.$$

 $E(\hat{\beta}_0) = \beta_0, \quad E(\hat{\beta}_1) = \beta_1$

©Jie Peng 2022. This content is protected and may not be shared, uploaded, or distributed.

Standard Error (SE) se=对 2 hat 参数 的无偏估计

se=对 2 hat 参数 的无偏估计 用可以计算的对 2的无偏估计MSE代替了 Var中的未知的 2

Replace σ^2 by *MSE* and take square-root:

$$s\{\hat{\beta}_{0}\} = \sqrt{MSE\left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}\right]}$$

$$s\{\hat{\beta}_{1}\} = \sqrt{\frac{MSE}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}}$$

- SE decreases with the increase of the sample size n or the sample variance s_X^2 . (Recall $\sum_{i=1}^n (X_i \overline{X})^2 = (n-1)s_X^2$)
- SE tends to increase with the increase of the error variance σ^2 .

Figure: Effects of the dispersion of *X* on the sampling variability of the LS line

Simulation Experiment

Simulation

ightharpoonup n = 5 cases with the X values

$$X_1 = 1.86, X_2 = 0.22, X_3 = 3.55, X_4 = 3.29, X_5 = 1.25,$$

fixed throughout.

- The responses:
 - First generate $\epsilon_1, \dots, \epsilon_5$ i.i.d. from N(0, 1).
 - Then set the response variable as:

$$Y_i = 2 + X_i + \epsilon_i, i = 1, \dots, 5.$$

Repeat 100 times → 100 data sets.

data set 1 case X
$$1 \quad 1.86 \ 3.08$$

$$2 \quad 0.22 \ 2.27$$

$$3 \quad 3.55 \ 4.38$$

$$4 \quad 3.29 \ 5.12$$

$$5 \quad 1.25 \ 1.38$$

$$\hat{\beta}_0 = 1.34, \, \hat{\beta}_1 = 0.94, \, \textit{MSE} = 0.79.$$

. . . , . . .

data set 100 case X Y
$$1 \quad 1.86 \quad 3.36$$

$$2 \quad 0.22 \quad 2.50$$

$$3 \quad 3.55 \quad 5.93$$

$$4 \quad 3.29 \quad 5.36$$

$$5 \quad 1.25 \quad 2.67$$

$$\hat{\beta}_0 = 1.75, \ \hat{\beta}_1 = 1.09, \ MSE = 0.24.$$

Figure: Sampling distributions of $\hat{\beta}_0, \hat{\beta}_1$ and MSE

Sample means are 1.99, 1.02, 1.04, respectively. True parameters are 2, 1, 1, respectively.

Figure: True: red solid; LS lines: grey broken; mean LS line: blue broken

Compare sample mean and sample standard deviation of these 100 realizations of $\hat{\beta}_0, \hat{\beta}_1$ to the respective theoretical values.

 \triangleright $\hat{\beta}_0$: Theoretical mean and standard deviation:

$$E(\hat{\beta}_0) = \beta_0 = 2, \quad \sigma\{\hat{\beta}_0\} = \sqrt{\sigma^2 \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right]} = 0.854$$

Sample mean and sample standard deviation: 1.99, 0.847.

 $\hat{\beta}_1$: Theoretical mean and standard deviation:

$$E(\hat{\beta}_1) = \beta_1 = 1, \quad \sigma\{\hat{\beta}_0\} = \sqrt{\frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2}} = 0.358$$

Sample mean and sample standard deviation: 1.002, 0.36.