REMARKS

Claims 1, 4, and 15 have been amended. Claims 1 through 20 remain in the application.

Claims 1 through 20 were rejected under 35 U.S.C. § 103 as being unpatentable over Shih et al. (U.S. Patent No. 6,831,640). Applicants respectfully traverse this rejection.

As to patentability, 35 U.S.C. § 103 provides that a patent may not be obtained:

If the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. <u>Id.</u>

The United States Supreme Court interpreted the standard for 35 U.S.C. § 103 in Graham v. John Deere, 383 U.S. 1, 148 U.S.P.Q. 459 (1966). In Graham, the Court stated that under 35 U.S.C. § 103:

The scope and content of the prior art are to be determined; differences between the prior art and the claims at issue are to be ascertained; and the level of ordinary skill in the pertinent art resolved. Against this background, the obviousness or non-obviousness of the subject matter is determined. 148 U.S.P.Q. at 467.

Using the standard set forth in <u>Graham</u>, the scope and content of the prior art relied upon by the Examiner will be determined.

As to the scope and content of the art, U.S. Patent No. 6,831,640 to Shih et al. discloses systems and methods for sculpting virtual objects in a haptic virtual reality environment. A haptic rendering process 16 may constrain or limit the motion of a tool 28 along one or more degrees of freedom using a force feedback approach. Constraints may take the form of geometric entities, equations, rules, or other methods of defining a restriction to tool motion.

Tool constraints may limit the ability of the tool 28 to move, translate, and or rotate in virtual space. In addition, geometric constraints may be associated with point, line, curve, surface, or space representation. Geometric constraints can either restrict the user's movements by "holding" her on the geometry or by blocking her from the geometry. In one embodiment, the user receives a force feedback impression that the tool 28 is "stuck" to the geometric constraint, in this example, the plane. In one embodiment, the tool 28 is constrained based on the constraint geometry, the position of the virtual object 26, the position of the virtual tool 28, and the haptic interface location 98. In another embodiment the tool 28 is also constrained by the virtual surface 25. Shih et al. does <u>not</u> disclose a stick-to-surface force and a property-feedback force being determined and applied to a haptic device to constrain a motion of the haptic device to stick <u>and</u> be orientated normal to a virtual surface representing a surface of a geometric model.

In contradistinction, claim 1, as amended, clarifies the invention claimed as a system of interactive evaluation of a geometric model including a computer system having a memory, a processor, a user input device, and a display device. The system also includes a computer generated geometric model stored in the memory of the computer system. The system further includes a haptic interface operatively in communication with the computer system. The haptic interface includes a haptic device for transmitting information between a user and the geometric model. A haptic device position and orientation are acquired with respect to a surface of the geometric model and mapped into a geometric model coordinate reference system. A closest point position and orientation on the surface of the geometric model to the haptic device position is determined. A surface property of the geometric model at the closest point position and orientation is extracted. A stick-to-surface force and a property-feedback force are determined and applied to the haptic device to constrain a motion of the haptic device to stick and be orientated normal to a virtual surface representing the surface of the geometric model, thereby

constraining a hand of a user to always be on the surface to enable the user to explore and feel the geometric model.

The United States Court of Appeals for the Federal Circuit (CAFC) has stated in determining the propriety of a rejection under 35 U.S.C. § 103, it is well settled that the obviousness of an invention cannot be established by combining the teachings of the prior art absent some teaching, suggestion or incentive supporting the combination. See In re Fine, 837 F.2d 1071, 5 U.S.P.Q.2d 1596 (Fed. Cir. 1988); Ashland Oil, Inc. v. Delta Resins & Refractories, Inc., 776 F.2d 281, 227 U.S.P.Q. 657 (Fed. Cir. 1985); ACS Hospital Systems, Inc. v. Montefiore Hospital, 732 F.2d 1572, 221 U.S.P.Q. 929 (Fed. Cir. 1984). The law followed by our court of review and the Board of Patent Appeals and Interferences is that "[a] prima facie case of obviousness is established when the teachings from the prior art itself would appear to have suggested the claimed subject matter to a person of ordinary skill in the art." In re Rinchart, 531 F.2d 1048, 1051, 189 U.S.P.Q. 143, 147 (C.C.P.A. 1976). See also In re Lalu, 747 F.2d 703, 705, 223 U.S.P.Q. 1257, 1258 (Fed. Cir. 1984) ("In determining whether a case of prima facie obviousness exists, it is necessary to ascertain whether the prior art teachings would appear to be sufficient to one of ordinary skill in the art to suggest making the claimed substitution or other modification.")

As to the differences between the art and the claims at issue, Shih et al. '640 merely discloses systems and methods for sculpting virtual objects in a haptic virtual reality environment in which geometric constraints can either restrict the user's movements by "holding" her on the geometry or by blocking her from the geometry. Shih et al. '640 lacks a stick-to-surface force and a property-feedback force being determined and applied to a haptic device to constrain a motion of the haptic device to stick and be orientated normal to a virtual surface representing a surface of a geometric model. In Shih et al. '640, the tool 28 is constrained based

on the constraint geometry, the position of the virtual object 26, the position of the virtual tool 28, and the haptic interface location 98, but Shih et al. '640 does <u>not</u> constrain a motion of a haptic device to stick <u>and be orientated normal</u> to a virtual surface representing the surface of the geometric model.

As to the level of ordinary skill in the pertinent art, there is absolutely no teaching of a level of skill in the virtual reality art to include a stick-to-surface force and a property-feedback force that is determined and applied to a haptic device to constrain a motion of the haptic device to stick and be orientated normal to a virtual surface representing a surface of a geometric model, thereby constraining a hand of a user to always be on the surface to enable the user to explore and feel the geometric model. The Examiner may not, because she doubts that the invention is patentable, resort to speculation, unfounded assumptions or hindsight reconstruction to supply deficiencies in the factual basis. See In re Warner, 379 F. 2d 1011, 154 U.S.P.Q. 173 (CCPA 1967).

The present invention sets forth a unique and non-obvious combination of a system and method of interactive evaluation of a geometric model that constrains a user's motion to stick to a surface of a geometric model within a virtual environment. The reference, if modifiable, fails to teach or suggest the combination of a system of interactive evaluation of a geometric model including a haptic device for transmitting information between a user and the geometric model wherein a haptic device position and orientation are acquired with respect to a surface of the geometric model and mapped into a geometric model coordinate reference system, a closest point position and orientation on the surface of the geometric model to the haptic device position is determined, a surface property of the geometric model at the closest point position and orientation is extracted, and a stick-to-surface force and a property-feedback force are determined and applied to the haptic device to constrain a motion of the haptic device to stick and be

orientated normal to a virtual surface representing the surface of the geometric model, thereby constraining a hand of a user to always be on the surface to enable the user to explore and feel the geometric model as claimed by Applicants. Thus, the Examiner has failed to establish a case of prima facie obviousness. Therefore, it is respectfully submitted that claim 1 and the claims dependent therefrom are allowable over the rejection under 35 U.S.C. § 103.

As to claim 4, claim 4, as amended, clarifies the invention claimed as a method of interactive evaluation of a geometric model. The method includes the steps of acquiring a haptic device position and orientation with respect to a surface of the geometric model. The haptic device is operatively connected to a haptic interface and the geometric model is stored in a memory of a computer system. The method also includes the steps of mapping the haptic device position and orientation into a geometric model coordinate reference system. The method includes the steps of determining a closest point position and orientation on the surface of the geometric model to the haptic device position and extracting a surface property of the geometric model at the closest point position and orientation. The method further includes the steps of determining a stick-to-surface force and a property feedback force using the surface property at the closet point position and orientation and applying the stick-to-surface force and property feedback force to the haptic device to constrain a motion of the haptic device to stick and be orientated normal to a virtual surface representing the surface of the geometric model, thereby constraining a hand of a user to always be on the surface to enable the user to explore and feel the geometric model.

Shih et al. '640 does <u>not</u> teach or suggest the claimed invention of claim 4. Specifically, Shih et al. '640 <u>merely</u> discloses systems and methods for sculpting virtual objects in a haptic virtual reality environment in which geometric constraints can either restrict the user's movements by "holding" her on the geometry or by blocking her from the geometry. Shih et al.

'640 lacks determining a stick-to-surface force and a property feedback force using a surface property at a closet point position and orientation and applying a stick-to-surface force and property feedback force to a haptic device to constrain a motion of the haptic device to stick and be orientated normal to a virtual surface representing the surface of the geometric model, thereby constraining a hand of a user to always be on the surface to enable the user to explore and feel the geometric model. In Shih et al. '640, the tool 28 is constrained based on the constraint geometry, the position of the virtual object 26, the position of the virtual tool 28, and the haptic interface location 98, but Shih et al. '640 does <u>not</u> constrain a motion of a haptic device to stick <u>and be orientated normal</u> to a virtual surface representing the surface of the geometric model.

There is absolutely <u>no teaching</u> of a level of skill in the virtual reality art to determine a stick-to-surface force and a property feedback force using a surface property at a closet point position and orientation and to apply the stick-to-surface force and property feedback force to a haptic device to constrain a motion of the haptic device to stick <u>and be orientated normal</u> to a virtual surface representing a surface of a geometric model, thereby constraining a hand of a user to always be on the surface to enable the user to explore and feel the geometric model. The Examiner may not, because she doubts that the invention is patentable, resort to speculation, unfounded assumptions or hindsight reconstruction to supply deficiencies in the factual basis. See <u>In re Warner</u>, 379 F. 2d 1011, 154 U.S.P.Q. 173 (CCPA 1967).

The present invention sets forth a unique and non-obvious combination of a method of interactive evaluation of a geometric model in which the motion of the user is constrained to the virtual surface representing the geometric model, to provide the user with an enhanced understanding of the geometric properties of the model. The reference, if modifiable, fails to teach or suggest the combination of a method of interactive evaluation of a geometric model including the steps of determining a stick-to-surface force and a property feedback force

using a surface property at a closet point position and orientation and applying the stick-to-surface force and property feedback force to control a location and force output of a haptic device to constrain a motion of the haptic device to stick and be orientated normal to a virtual surface representing the surface of the geometric model, thereby constraining a hand of a user to always be on the surface to enable the user to explore and feel the geometric model as claimed by Applicants.

Further, the CAFC has held that "[t]he mere fact that prior art could be so modified would not have made the modification obvious unless the prior art suggested the desirability of the modification". In re Gordon, 733 F.2d 900, 902, 221 U.S.P.Q. 1125, 1127 (Fed. Cir. 1984). The Examiner has failed to show how the prior art suggested the desirability of modification to achieve Applicants' invention. Thus, the Examiner has failed to establish a case of prima facie obviousness. Therefore, it is respectfully submitted that claim 4 and the claims dependent therefrom are allowable over the rejection under 35 U.S.C. § 103.

As to claim 15, claim 15, as amended, clarifies the invention claimed as a method of interactive evaluation of a geometric model. The method includes the steps of selecting a geometric model from a database in the memory of a computer system and acquiring a haptic device position and orientation with respect to a surface of the geometric model. The haptic device is operatively connected to a haptic interface. The method also includes the steps of mapping the haptic device position and orientation into a geometric model coordinate reference system and determining a closest point position and orientation on the surface of the geometric model to the haptic device position. The method includes the steps of extracting a surface property at the closest point position and orientation and mapping the surface property of the closest point position and orientation into a vector. The method further includes the steps of mapping the surface property of the closest point position and orientation into the haptic device

coordinate reference system, determining a stick-to-surface force and a property feedback force using the surface property of the geometric model at the closet point position and orientation, and adding the stick-to-surface force and property feedback force together to form an applied force and applying the applied force to the haptic device to constrain a motion of the haptic device to stick and be orientated normal to a virtual surface representing the surface of the geometric model, thereby constraining a hand of a user to always be on the surface to enable the user to explore and feel the geometric model.

Shih et al. '640 does <u>not</u> teach or suggest the claimed invention of claim 15. Specifically, Shih et al. '640 <u>merely</u> discloses systems and methods for sculpting virtual objects in a haptic virtual reality environment in which geometric constraints can either restrict the user's movements by "holding" her on the geometry or by blocking her from the geometry. Shih et al. '640 lacks determining a stick-to-surface force and a property feedback force using a surface property of a geometric model at a closet point position and orientation, adding the stick-to-surface force and property feedback force together to form an applied force, and applying the applied force to the haptic device to constrain a motion of the haptic device to stick <u>and be orientated normal</u> to a virtual surface representing the surface of the geometric model, thereby constraining a hand of a user to always be on the surface to enable the user to explore and feel the geometric model. In Shih et al. '640, the tool 28 is constrained based on the constraint geometry, the position of the virtual object 26, the position of the virtual tool 28, and the haptic interface location 98, but Shih et al. '640 does <u>not</u> constrain a motion of a haptic device to stick <u>and be orientated normal</u> to a virtual surface representing the surface of the geometric model.

There is absolutely <u>no teaching</u> of a level of skill in the virtual reality art to determine a stick-to-surface force and a property feedback force using a surface property of a geometric model at a closet point position and orientation, add the stick-to-surface force and

property feedback force together to form an applied force, and apply the applied force to the haptic device to constrain a motion of the haptic device to stick and be orientated normal to a virtual surface representing the surface of the geometric model, thereby constraining a hand of a user to always be on the surface to enable the user to explore and feel the geometric model.

The present invention sets forth a unique and non-obvious combination of a method of interactive evaluation of a geometric model, wherein the motion of the user is constrained to the virtual surface representing the geometric model to provide the user with an enhanced understanding of the geometric properties of the model. The reference, if modifiable, fails to teach or suggest the combination of a method of interactive evaluation of a geometric model including mapping a surface property of a closest point position and orientation into a haptic device coordinate reference system, determining a stick-to-surface force and a property feedback force using the surface property of the geometric model at the closet point position and orientation, and applying the stick-to-surface force and property feedback force to control a location and force output of the haptic device to constrain a motion of the haptic device to stick and be orientated normal to a virtual surface representing the surface of the geometric model, thereby constraining a hand of a user to always be on the surface to enable the user to explore and feel the geometric model as claimed by Applicants. Thus, the Examiner has failed to establish a case of prima facie obviousness. Therefore, it is respectfully submitted that claim 15 and the claims dependent therefrom are allowable over the rejection under 35 U.S.C. § 103.

Obviousness under § 103 is a legal conclusion based on factual evidence (<u>In re Fine</u>, 837 F.2d 1071, 1073, 5 U.S.P.Q.2d 1596, 1598 (Fed. Cir. 1988), and the subjective opinion of the Examiner as to what is or is not obvious, without evidence in support thereof, does not suffice. Since the Examiner has not provided a sufficient factual basis, which is supportive of his/her position (see <u>In re Warner</u>, 379 F.2d 1011, 1017, 154 U.S.P.Q. 173, 178 (C.C.P.A. 1967),

cert. denied, 389 U.S. 1057 (1968)), the rejection of claims 1 through 20 is improper. Therefore, it is respectfully submitted that claims 1 through 20 are allowable over the rejection under 35 U.S.C. § 103.

Based on the above, it is respectfully submitted that the claims are in a condition for allowance, which allowance is solicited.

Respectfully submitted,

Daniel H. Bliss Reg. No. 32,398

BLISS McGLYNN, P.C. 2075 West Big Beaver Road, Suite 600 Troy, Michigan 48084 (248) 649-6090

Date: June 21, 2006

Attorney Docket No.: 0693.00263 Ford Disclosure No.: 200-1451