

Robot Learning Spring 2022

Sae Na Na DUV Reticle Stage MTD

April 26, 2024 Wilton CT

I took a Robot Learning class this spring

An introduction to machine learning in robotics

- Supervised and unsupervised learning
- Deep learning
- Forward models
- Reinforcement learning

Structure of the class

- lectures on theory + recent paper discussions
- 5 programming projects in Python

Given an RGB image of the world, choose the best action to reach the goal

Page 6 Public

Neural Networks

Forward propagation

Backpropagation

 $\max(0,x)$

ReLU

Given an RGB image of the world, choose the best action to reach the goal

Page 8 Public

Model Predictive Control, and learning a forward model

Model Predictive Control (MPC)

Can be MIMO, considers future states, needs knowledge of forward model

# links	Prediction horizon	Control horizon	Delta u
1	50	10	0.1
2	40	2	0.1
3	90	10	0.2, 0.1

Forward model

Assume Markovian

$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k, \, \mathbf{u}_k)$$

- \mathbf{x}_k state of the system at time step k
- ullet $oldsymbol{u}_k$ action / command given to the robot at time step k
- \mathbf{x}_{k+1} state of the system at the next time step, k+1
- Using discretized time size of time step Δt not explicitly part of forward model, but often very important

Get the end-effector of the 1-, 2-, and 3-link pendulum to reach the goal within a threshold

Analytical forward model

2.0 Model clock: 0.01s Real clock: 12.142s 1.5 1.0 0.5 0.0 -0.5-1.0-1.5-2.0-1-20 1

Neural network forward model

Get the end-effector of the 1-, 2-, and 3-link pendulum to reach the goal within a threshold

Analytical forward model

3 Model clock: 0s Real clock: 34.436s 2 0 -1-2 -3-2-3

Neural network forward model

ASML

Thanks

Sae Na Na DUV Reticle Stage MTD

Wilton CT