الاشتقاق و تطبيقاته

	محتوى الدرس			
2 2 2	تذكير و إضافات 1.1 العدد المشتق – الدالة المشتقة	1		
4	مشتقة مركب دالتين	2		
4	مشتقة الدالة العكسية	3		
5	الدوال الأصلية لدالة	4		

1 تذكير و إضافات

1.1 العدد المشتق - الدالة المشتقة

تعاريف

I منصر من I مغرفة على مجال مفتوح I و a عنصر من

- a قابلة للاشتقاق في a إذا و فقط اذا f .
- f'(a) العدد l يسمى العدد المشتق للدالة في a و نرمز له بالرمز •
- f قابلة للاشتقاق على I إذا كانت f قابلة للاشتقاق في كل نقطة من I
 - $f': x \mapsto f'(x)$ الدالة المشتقة للدالة f على الدالة المشتقة الدالة •

خاصية

a في متصلة في a فإن f متصلة في a

2.1 المماس لمنحني دالة - الدالة التآلفية المماسة

تعاريف

a لتكن f دالة قابلة للاشتقاق في نقطة

- ، المماس لمنحنى الدالة f في النقطة ذات الأفصولa هو المستقيم الذي معادلته f المالس لمنحنى الدالة ويرادي النقطة ذات الأفصول والمستقيم الذي معادلته والدالة والمتعلق المتعلق المت
- الدالة التآلفية المماسة للدالة f في a هي الدالة الدالة الدالة التآلفية المماسة للدالة التآلفية المماسة للدالة والدالة عن الدالة الدالة والدالة والدالة الدالة والدالة والدالة
- العدد f(a+h) يسمى f'(a)h+f(a) بجوار f(a+h)

ملاحظة

h=x-a الدالة φ تكتب كذلك $h\mapsto f'(a)h+f(a)$ الدالة φ تكتب كذلك $\frac{df}{dx}$ و تسمى الكتابة التفاضلية.

جدول مشتقات بعض الدوال الاعتيادية

دالتها المشتقة	قابلة للاشتقاق على	الدالة
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto a; (a \in \mathbb{R})$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto x$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto x^n; (n \in \mathbb{N}^* \setminus \{1\})$
$x \mapsto \cdots \cdots$	\mathbb{R}^*	$x \mapsto \frac{1}{x}$

دالتها المشتقة	قابلة للاشتقاق على	الدالة
$x \mapsto \cdots \cdots$	\mathbb{R}_+^*	$x \mapsto \sqrt{x}$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto \sin x$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto \cos x$
$x \mapsto \cdots \cdots$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$	$x \mapsto \tan x$

تمرين 1

 $f(x)=|x+1|\sqrt{3-2x}$: يلي: $]-\infty; rac{3}{2}$ على الدالة المعرفة على يلي

- 1. أدرس قابلية اشتقاق الدالة f في 1- ثم أول هندسيا النتيجة.
 - -1 هل الدالة f متصلة في -2
- 3. أدرس قابلية اشتقاق الدالة f في $\frac{3}{2}$ ثم أو ل هندسيا النتيجة.
 - $]-1;rac{3}{2}[$ من f'(x) من 4.
- f عدد معادلة المماس لمنحنى الدالة f في النقطة ذات الأفصول f
 - والمرابع المعدد عقريبا للعدد .6• محدد تقريبا للعدد .6

العمليات على الدوال المشتقة

و g دالتان قابلتان للاشتقاق على مجال g و g عدد حقيقى،

دالتها المشتقة	قابلة للاشتقاق على	الدالة
$(f+g)' = \cdots \cdots$	I	f+g
$(kf)' = \cdots \cdots$	I	kf
$(fg)' = \cdots \cdots$	I	fg
$\left(\frac{1}{g}\right)' = \cdots \cdots$	$\{x \in I/g(x) \neq 0\}$	$\frac{1}{g}$
$\left(\frac{f}{g}\right)' = \cdots \cdots$	$\{x \in I/g(x) \neq 0\}$	$\frac{f}{g}$

نتائج

كل دالة حدودية قابلة للاشتقاق على ۩. كل دالة جذرية قابلة للاشتقاق على كل مجال ضمن مجموعة تعريفها.

2 مشتقة مركب دالتين

خاصية

I من معرفتین علی التوالي علی مجالین I و I بحیث $f(I) \subset J$ و منصر من g

- م. وقابلة للاشتقاق في a و وقابلة للاشتقاق في $g \circ f$ فإن f(a) فإن $g \circ f$ قابلة للاشتقاق في $g \circ f$ لدينا: $(g \circ f)'(a) = f'(a)g'(f(a))$

نتائج

I دالة قابلة للاشتقاق على f

- و الدالة f^n قابلة للاشتقاق على I و لدينا: I و لدينا: ولدينا: ولدينا ول
- و الدالة \sqrt{f} قابلة للاشتقاق على $\{x \in I/f(x) > 0\}$ و لدينا: \sqrt{f}

تمرين 2

حدد مشتقات الدوال:

 $i: x \mapsto \sin\left(\sqrt{x^2+5}\right)$ $g: x \mapsto \sqrt{x^3+x^2-2}$ $g: x \mapsto \left(\frac{x+1}{x^2+3x+7}\right)^3$ $g: x \mapsto \cos(x^2+7x-1)$

3 مشتقة الدالة العكسية

نشاط 1

لتكن f دالة متصلة، رتيبة قطعا و قابلة للاشتقاق على مجال I و f^{-1} دالتها العكسية.

- $f(f^{-1})'(f(a))$ و حدد f(a)
 otin f(a) و عنصرا من f(a)
 otin f(a) بين أن f(a)
 otin f(a) و عنصرا من f(a)
 otin f(a) و عن
 - $J = \{x \in f(I)/f'(f^{-1}(x)) \neq 0\}$ على الشتقاق على الشتقاق على f^{-1} عابلة للاشتقاق على 2.
 - J على J على الدالة $f \circ f^{-1}$ على الدالة
 - $(f^{-1})'$ استنتج تعبير الدالة $(\dot{\psi})$

خاصية

لتكن f دالة متصلة، رتيبة قطعا و قابلة للاشتقاق على مجال I و f^{-1} دالتها العكسية.

- f(a) في عنصرا من I بحيث $f'(a) \neq 0$ ، الدالة f^{-1} قابلة للاشتقاق في $(f^{-1})'(f(a)) = \frac{1}{f'(a)}$ لدينا:
 - $J = \{x \in f(I)/f'(f^{-1}(x)) \neq 0\}$ الدالة f^{-1} قابلة للاشتقاق على

$$(\forall x \in J) : (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 لدينا:

نتائج

ليكن n عنصرا من \mathbb{N}^* و f دالة قابلة للاشتقاق على مجال I. الدالة $x\mapsto \sqrt[n]{x}$ قابلة للاشتقاق على 10; $+\infty$ [و لدينا: 100; $+\infty$ [100; $+\infty$ [على 100; $+\infty$ [و لدينا: 100; 10

ملاحظة

 $(\forall r \in \mathbb{Q}^*) : (f^r)' = rf'f^{r-1} \ \mathbf{0} \ (\forall r \in \mathbb{Q}^*) \ (\forall x \in]0; +\infty[) : (x^r)' = rx^{r-1}$

تمرين 3

عدد مشتقات الدوال: $i: x \mapsto x^{\frac{2}{3}} - \sqrt[4]{x^3+1} \; \boldsymbol{\cdot} h: x \mapsto \frac{1}{\sqrt[3]{x^2+7}} \; \boldsymbol{\cdot} g: x \mapsto \sqrt[3]{x^4} + (x-1)^{\frac{1}{3}} \; \boldsymbol{\cdot} f: x \mapsto (x^2+x)^{\frac{1}{3}}$

تمرين 4

1. بين أن كل من الدوال \sin و \cos و \tan تقبل دالة عكسية على التوالي على $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ و \sin و \sin . \sin . \sin و \sin . \sin و \sin بدلالة x فقط.

4 الدوال الأصلية لدالة

نشاط 2

 $F(x)=rac{2x-3}{x+3}-x$ و $f(x)=rac{-x^2-6x}{(x+3)^2}$ يلي: $]-3;+\infty[$ عتبر الدالتين $f(x)=\frac{2x-3}{x+3}-x$

- $(\forall x \in]-3; +\infty[): F'(x) = f(x)$.1.
- $\cdot (\forall x \in]-3;+\infty[):G'(x)=f(x)$ بحيث والة أخرى .2
- $(\forall x \in]-3; +\infty[): H'(x) = f(x)$ عددية تحقق H دالة عددية تحقق .3
 - $-3;+\infty[$ على (H-F)' على $-3;+\infty[$ (ا) استنتج تعبير الدالة -4

تعریف

لتكن f دالة عددية معرفة على مجال I. نسمي دالة أصلية للدالة f على I كل دالة F قابلة للاشتقاق على I و مشتقتها هي f.

خاصية

I لتكن f دالة عددية معرفة على مجال I و F دالة أصلية للدالة f على f الدوال الأصلية للدالة f على f على f على الدوال الأصلية للدالة f على f على f على الدوال الأصلية للدالة f على الدوالة f على الد

تمرین 5

 $g(x)=2x-rac{x-1}{x+1}$ و $g(x)=rac{2x^2+4x}{(x+1)^2}$ يلى: $g(x)=1;+\infty$ و المعرفتين على g(x)=1

- $oldsymbol{\cdot}$ ا-1; $+\infty$ و دالة أصلية للدالة f على g دالة أصلية الدالة g
- $-1;+\infty$ [على f على الدوال الأصلية للدالة على $-1;+\infty$

خاصية

لتكن f دالة عددية معرفة على مجال I و a عنصر من I و عنصر من G(a)=b على I تقبل دالة أصلية على I فإنه توجد دالة أصلية G وحيدة للدالة f على I تحقق I على I تحقق I على المنابق على I على I

تمرين 6

 $g(x)=\cos 2x$ و $f(x)=\sin(x)\cos(x)$ يلي: \mathbb{R} يما يلي: $f(x)=\sin(x)\cos(x)$

- \mathbb{R} على \mathbb{R} احسب الدالة المشتقة للدالة \mathbb{R}
- 2. استنتج مجموعة الدوال الأصلية للدالة g على \mathbb{R} .
- $G\left(-rac{\pi}{2}
 ight)=-1$ التي تحقق G الله الأصلية G للدالة g على G

خاصية

I كل دالة متصلة على مجال I تقبل دالة أصلية على

جدول دوال أصلية لدوال اعتيادية

I الدوال الأصلية للدالة f على	I الججال	f الدالة
$x \mapsto ax + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto a; a \in \mathbb{R}$
$x \mapsto \frac{1}{2}x^2 + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto x$
$x \mapsto \frac{1}{n+1}x^{n+1} + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto x^n; n \in \mathbb{N}^*$
$x \mapsto -\frac{1}{x} + k; k \in \mathbb{R}$	\mathbb{R}^*_+ أو	$x \mapsto \frac{1}{x^2}$
$x \mapsto \frac{1}{(1-n)x^{1-n}} + k; k \in \mathbb{R}$	\mathbb{R}^*_+ أو	$x \mapsto \frac{1}{x^n}; n \in \mathbb{N}^* \setminus \{1\}$
$x \mapsto 2\sqrt{x} + k; k \in \mathbb{R}$	\mathbb{R}_+^*	$x \mapsto \frac{1}{\sqrt{x}}$

I الدوال الأصلية للدالة f على	ا لجال I	f allul
$x \mapsto n\sqrt[n]{x} + k; k \in \mathbb{R}$	\mathbb{R}_+^*	$x \mapsto \frac{1}{\sqrt[n]{x^{n-1}}}; n \in \mathbb{N}^* \setminus \{1\}$
$x \mapsto \sin(x) + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto \cos x$
$x \mapsto -\cos(x) + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto \sin x$
$x \mapsto \tan(x) + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto 1 + \tan^2(x)$

ملاحظة

 $k \in \mathbb{R}$ حيث $x \mapsto rac{1}{r+1}x^{r+1} + k$ هي: $x \mapsto x^r$ على $x \mapsto x^r$ الدوال الأصلية للدالة $x \mapsto x^r$ على $x \mapsto x^r$

العمليات على الدوال الأصلية

و v دالتين قابلتين للاشتقاق على مجال u

دوالة أصلية للدالة f على المجال	المجال	f allul
u + v	I	u' + v'
uv	I	u'v + v'u
$-\frac{1}{u}$	u عليه عليه u نعدم عليه u	$\frac{u'}{u^2}$
$\frac{u}{v}$	v عليه v عليه v	$\frac{u'v - v'u}{v^2}$
$\frac{1}{n+1}u^{n+1}$	I	$u'u^n; n \in \mathbb{N}^*$
$2\sqrt{u}$	u كل مجال ضمن I تكون عليه u موجبة قطعا.	$\frac{u'}{\sqrt{u}}$
$\frac{1}{r+1}u^{r+1}$	u كل مجال ضمن I تكون عليه u موجبة قطعا.	$u'u^r; r \in \mathbb{Q}^* \setminus \{-1\}$
$x \mapsto \frac{1}{a}u(ax+b)$	I	$x \mapsto u'(ax+b); (a;b) \in \mathbb{R}^* \times \mathbb{R}$
$u \circ v$	$oldsymbol{v}(I)\subset I$ کل مجال ا	$x \mapsto v'(x)u'\left(v(x)\right)$

تمرين 7

حدد الدوال الأصلية للدالة f على I في الحالات التالية:

$$I = \mathbb{R} \; ; \; f(x) = x^5 + x^2 - 3x + 6 \; (1)$$

$$I =]0; +\infty[; f(x) = -\frac{2}{\sqrt{x}} + \sin(x) - 1$$

$$I = \mathbb{R} \; ; \; f(x) = \sin\left(2x + \frac{\pi}{6}\right) \; \left(\mathbf{A}\right)$$

$$I = \mathbb{R} \; ; \; f(x) = \frac{x}{\sqrt{x^2 + 1}} \; (j)$$

$$I =]0; +\infty[; f(x) = \frac{3}{x^2} - \cos(x) + 3$$
 (\smile)

$$I = \mathbb{R} \; ; \; f(x) = \cos(3x) \; (2)$$

$$I = \mathbb{R} ; f(x) = \cos(3x)$$

$$I = \mathbb{R} ; f(x) = \frac{2x+1}{(x^2+x+1)^2}$$

$$(9)$$

$$I = \mathbb{R} \; ; \; f(x) = (x-2)(x^2 - 4x + 1)^3 \; (7)$$

تمرين 8

$$f(x)=rac{x^2-2x}{(x-1)^2}$$
 ايلي: $1;+\infty$ المجال المجال على المجال المحرفة على المجال

- $\forall x \in]1; +\infty[: f(x) = a + \frac{b}{(x-1)^2}$:عدد العددين الحقيقيين a و b عيث b و a بحيث b عرب a
 - $-1; +\infty$ المجال الأصلية للدالة f على المجال -2
 - .2 عدد الدالة الأصلية G للدالة f التي تنعدم في G