Engenharia de Reatores Químicos – IQD0048 Semestre 2/2022 – Turma T01 – Prof. Alexandre Umpierre

Lista de Exercícios 3

1) A Tabela 1 apresenta a concentração registrada à saída do reator de um traçador injetado como pulso na alimentação. Determine se o modelo de CSTR's em cascata se ajusta bem aos dados experimentais. Determinar a conversão de A em $A \rightarrow B$ em um PFR não ideal cujo comportamento pode ser descrito pelo modelo de CSTR's em cascata. A constante cinética é dada por $k = 0,25 \text{ s}^{-1}$.

Tabela 1. Concentração c do traçador medida à saída do reator em função do tempo t decorrido.

<i>t</i> (s)	c (mg/L)
0	0
1	1
2	5
3	8
4	10
5	8
6	6
7	4
8	3
9	2,2
10	1,5
12	0,6
14	0

2) Uma reação de segunda ordem é conduzida em um CSTR de 1000 L. A alimentação tem 25 L/min com 8 mol/L e a constante cinética é 0,01 (mol/L)⁻¹min⁻¹. Estimar a conversão esperada assumindo os modelos de segregação e mistura completa. A Tabela 2 abaixo apresenta os dados do ensaio com traçador.

Tabela 2. Concentração c do traçador medida à saída do reator em função do tempo t decorrido.

<i>t</i> (s)	c (mg/L)
0	112
5	95,8
10	82,2
15	70,6
20	60,9
30	45,6
40	34,5
50	26,3
70	15,7
100	7,67
150	2,55
200	0,90