Assessing the Readability of German Sentences with Transformer Ensembles

AComplexity at GermEval 2022

Patrick Gustav Blaneck

IT Center RWTH Aachen, Aachen University of Applied Sciences **Tobias Bornheim**

ORDIX AG, Aachen University of Applied Sciences **Niklas Grieger**

Institute for Data-Driven
Technologies,
Aachen University of
Applied Sciences

Stephan Bialonski

Institute for Data-Driven
Technologies,
Aachen University of
Applied Sciences

Dataset / Task

- 1000 labelled German sentences
- Sourced from 23 Wikipedia articles
- Evaluated by German native-speakers on scale from 1-7

 Task: Predict the mean complexity score of a given sentence.

What Motivated Our Approach

Q1: How does the size of an LLM effect readability assessment?

Q2: Can traditional readability features be incorporated to boost performance?

Does combining multiple models in ensembles increase performance? If so:

Q3: What happens if different model types are combined?

Q4: How many models should an ensemble contain?

Large Language Models

Large Language Models

- GBERT: 1
 - Pre-trained weights: <u>deepset/gbert-large</u>
 - # of parameters: 340M
 - File size: approx. 1.4 GiB
- GPT-2-Wechsel:²
 - Pre-trained weights: <u>malteos/qpt2-xl-wechsel-german</u>
 - # of parameters: 1.5B
 - File size: approx. 6.3 GiB

¹ Chan et al., <u>German's Next Language Model</u> (2020) [GBERT by deepset]

² Minixhofer et al., <u>WECHSEL</u>: <u>Effective initialization of subword embeddings for cross-lingual transfer of monolingual language</u> (2021)

Training

Readability features

- Surface-based:
 - sample size, vocabulary size
- Sentence-based:
 - length, punctuation
- Dependency-based:
 - dependency distance, dependencies per token
- Constituency-based:
 - height syntax tree, clauses per sentence

Training — Finetuning

- transformer + regression head
- regression head: multi-layer perceptron (MLP)

finetuning of the whole model

Training — Readability Features

Training — Readability Features

- transformer is frozen
- second regression head: non-linear MLP

Training — Readability Features

- transformer is frozen
- second regression head: non-linear MLP
- incorporation of readability features

Training — Ensembling

- goal: reduce overfitting and high variance of models
- ensembles average predicted MOS scores
- ensemble members differed in weight initialization and training data

Risch & Krestel, <u>Bagging BERT Models for Robust Aggression Identification</u> (2020)

Answering Our Questions

Q1: size of the LLM (How does the size of an LLM effect readability assessment?)

Q2: readability features (Can traditional readability features be incorporated to boost performance?)

Q3: ensemble composition (What happens if different model types are combined?)

Q4: ensemble size (How many models should an ensemble contain?)

Submissions

two submitted ensembles

	RMSE	mapped RMSE
340 GPT-2-Wechsel	0.461	0.454
100 GPT-2-Wechsel + 100 GBERT	0.442	0.435

- ensemble composition is important
- → big LLMs seem to benefit from traditional readability features

Any questions?

Readability Features

- we used two public libraries^{1,2}
- features were based on
 - readability grades (various metrics and indices)
 - sentence info (number of characters/words, number of long/complex words, ...)
 - POS tags (lexical density, word rarity)
 - word usage (verbs, prepositions, ...)
 - ...
- not all features were appropriate (e.g., some may need longer input texts to be useful)

https://github.com/andreasvc/readability
 https://github.com/tsproisl/textcomplexity

Postprocessing

- during inference on the test data we found that some of our models predicted MOS scores <1.0
- MOS scores were created using a scale from 1.0 to 7.0
- → we discarded all predictions that were smaller than 1.0

Hypothesis: distribution shift between training and test data (also reported by other participants)

Multilingual Models

- we explored two large multilingual LLMs
- models were not finetuned
- Luminous by Aleph Alpha¹ was trained on 5 languages and has an estimated 40-80 billion parameters (proprietary model)
- XLM-RoBERTa_{XXL}² was trained on 2.5 TB of CommonCrawl data containing 100 languages, the model has 10.7 billion parameters

¹https://www.aleph-alpha.com/technology

²https://huggingface.co/facebook/xlm-roberta-xxl

Bootstrapping

- 1. for every setup, a pool of 100 models was trained
- 2. for each ensemble size, a subset of models was randomly picked from the pool and combined into an ensemble
- 3. step 2 was repeated 1000 times

GPT-2 / WECHSEL

