Turner Lab Notebook

Callum Malcolm

Contents

Tuesday 02-05-2023	1
Wednesday 03-05-2023	1
Monday 19-06-2023	2
Monday 19-06-2023 Seed EC50	. 2
Tuesday 20-06-2023	3
RNA Extraction for SP Test 3 Sample	. 3
Tapestation_230620	
Reverse Transcription	
PCR Amplification of cDNA	
Wednesday 21-06-2023	6
Tapestation_230619_SPTest3_cDNA	. 6
Thursday 22-06-2023	6
Collect EC50 Plate	. 6
Friday 23-06-23	6
Split Cells	. 6
Seed EC50	

$Tuesday\ 02\text{-}05\text{-}2023$

1. Thawed N2, RBL1, and RAMOS into T75 flasks Note: N2 and RBL1 flaskes seeded with feeders

Wednesday 03-05-2023

1. Splitting cells

Cell Line	$\mathrm{Cells/mL}$	Cells/mL Seeded	CS volume	Final Volume	Last day split	P number
N2	$8.93 \mathrm{x} 10^5$	$3x10^{5}$.	$6.71~\mathrm{mL}$	$12 \mathrm{mL}$	Tues 02-05-23	2
RBL1	$7.73 \text{x} 10^5$	$3x10^5$.	$7.76~\mathrm{mL}$	$12 \mathrm{mL}$	Tues 02-05-23	2

- 2. Expanded N2-Barcodes to T175
- 3. Seeded feeders into 96-well
 - a. Diluted feeders to $3.2\mathrm{x}10^4~\mathrm{cells/mL}$
 - b. Add $100\mu L$ cell suspension to each well

Monday 19-06-2023

- 1. Splitting cells
 - Split N2/RBL1/JIRE
 - $\bullet\,$ Added 10 mL media to BLLW
 - Lots of dead cells observed

Seed EC50

- Plate ID: EC50_230619_Plate1
- Cylophosphamide (Stock: 20mM) EC50 for N2 and RBL1

96 Well Plate Map

Drug Dilutions

Drug	Dilution	Concentration	Units	Starting_Concentration
Cyclophosphamide	1	20	uM	20000
Cyclophosphamide	2	2	uM	2000
Cyclophosphamide	3	0.2	uM	200
Cyclophosphamide	4	0.02	uM	20
Cyclophosphamide	5	0.002	uM	2
Cyclophosphamide	6	0.0002	uM	0.2
Cyclophosphamide	7	2e-05	uM	0.02
Cyclophosphamide	8	2e-06	uM	0.002
Cyclophosphamide	9	2e-07	uM	0.0002

Tuesday 20-06-2023

RNA Extraction for SP Test 3 Sample

- Sample collected:
- Low number of cells so used Pico-Pure Kit
- 1 sample (n = 1)

Note before starting:

- Pre-heat block to 42C
- Pre-make DNAse treatment master mix (1.1n)

Component	Volume	MM volume
DNAse I Stock	$5 \mu L$	$5.5 \ \mu L$
DNA Disgestion Buffer	$35 \mu L$	$38.5 \ \mu L$

RNA Extraction Pico-Pure Protocol

- 1. Extract cells with 100 μ L of Extraction Buffer (XB)
 - Resuspend the cell pellet gently by pipetting
 - DO NOT VORTEX
- 2. Incubate at 42C for 30min
- 3. Centrifuge sample at 3000xg for two minutes
- 4. Collect supernatant
 - Can stop here and freeze RNA at 70C
- 5. Pre-condition the RNA Purification Column
 - Add 250 μ L Conditioning Buffer onto the purification column filter membrane
 - Incubate RNA Purification Column with CB for 5min at RT
 - Centrifuge purification column at 16000xg for 1 min
- 6. Pipette 100 μ L of 70% Ethanol (EtOH) into cell extract
 - Mix well by pipetting
 - DO NOT VORTEX
- 7. Add cell extract to column
- 8. Centrifuge column for 2 minutes at 100 x g and then 16000 x g for 30s
- 9. Pipette 100 μ L Wash Buffer 1 (W1) into the purification column and centrifuge for 1min at 8000 x g
- 10. Add 40 μ L of DNAse treatment master mix to purification tube
- Add directly onto membrane
- 11. Incubate at RT for 15 min
- 12. Pipette 40 μ L Wash Buffer 1 (W1) onto purification column membrane and centrifuge at 8000 x g for 15 seconds

- 13. Pipette 100 μ L Wash Buffer 1 (W2) into purification column membrane and centriguge for one minute at 8000 x g
- 14. Pipette 100 μ L Wash Buffer 1 (W2) into purification column membrane and centriguge for two minutes at 16000 x g
 - Check if any wash buffer remains in column and centrifuge again at $16000 \times g$ for one minute to clear all the liquid
- 15. Transfer purification column to new 0.5mL tube
 - Insert purification column/0.5mL assembly into 1.5mL tube for centrifugation
- 16. Pipette EB directly onto membrane of the purification column
 - Gently touch tip to surface of membrane to ensure maximum absorption of EB into membrane
 - Use 11 μ L to 30 μ L EB
- 17. Incubate purification column for one minute at room temperature
- 18. Centrifuge column for one minute at $1000 \ge g$ to distribute EB in column
- 19. Centrifuge column for one minute at 16000 x g to elute RNA
- 20. Started PCR and completed Tapestation

Tapestation_230620

High-Sensitivity RNA ScreenTape Protocol

Results

- Inconclusive, proceeded with PCR

Reverse Transcription

Notes Before Starting:

- Label PCR strip tubes
- Thaw RT reagents
- Uses WILDseq specific RT primer
- Dilute RT primer to $2\mu\mathrm{M}$
 - Do this in a PCR hood
 - IMPORTANT Do not mix primers and carefully note which RT primer is added to which sample
- Make RT and ExoI master mixes (MM) before starting
 - MM amounts are 1.1n

Protocol:

Note: Used "rt" protocol in callum folder on thermocycler for heating steps

- 1. In PCR strip tubes diluted 1-5ug RNA in a total volume of 10 μ L of RNAse/DNAse-free water
- 2. Added 1 ul of RT primer
- 3. Added 1 ul of dNTPs
- 4. Denatured at 65 C for 5 mins in PCR machine
- 5. Added straight to ice for 2 mins

- 6. Spun to get liquid to bottom of tube
- 7. Prepared master mix of RT enzyme and buffers (Made prior to starting)

Component	Volume	MM volume
5x SSIV Buffer	$4 \mu L$	$4.4~\mu L$
SSIV RT	$1 \mu L$	$1.1~\mu L$
$100~\mathrm{mM}~\mathrm{DTT}$	$1~\mu L$	$1.1~\mu\mathrm{L}$
RNAse Out	$1~\mu { m L}$	$1.1~\mu\mathrm{L}$

- 8. Added 7 μ L of RT MM prepared above to each sample and mix
 - Spun briefly to get liquid to bottom of the tube
- 9. In PCR Machine: incubated at $53\mathrm{C}$ for 10 mins followed by $80\mathrm{C}$ for 10 mins
- 10. Added 3 μ L of ExoI MM to each sample

Component	Volume	MM volume
Thermolabile Exonuclease I NEBuffer r3.1*	$\begin{array}{cc} 1~\mu \mathrm{L} \\ 2~\mu \mathrm{L} \end{array}$	$1.1 \ \mu L \\ 2.2 \ \mu L$

- Most PCR buffers are compatible
- 11. In PCR Machine: heat at $37\mathrm{C}$ for 4 mins followed by $80\mathrm{C}$ for 1 min
 - Spin briefly to get liquid to bottom of the tube
- 12. Add 1 μ L of RNAse H and incubate at 37C for 20 mins
- 13. Dilute final cDNA 1 in 2 with DNAse/RNAse-free water

PCR Amplification of cDNA

1. Prepare mastermix of below reagents at 1.1x the number of samples

Component	Volume	MM volume
Q5 Master Mix	$25~\mu L$	
$P5_R1_fwd (100\mu M)$	$2.5 \ \mu L$	
P7_rev	$2.5~\mu L$	
DNAse/RNAse H20	$13.5~\mu\mathrm{L}$	
Q5 polymerase	$0.5~\mu\mathrm{L}$	
Total Master Mix volume	40 μ L	
cDNA from above	$10~\mu {\rm L}$	

2. Perform PCR using the following parameters:

Steps	Time
Step 1: 98C	30s
Step 2: 98C	10s
Step 3: 61C	30s
Step 4: 72C	30s

Steps	Time
Step 5: 72C	2 min
Step 6: 12C	Hold

20-25 cycles of steps 2-4

Ran overnight and left at 12C

Wednesday 21-06-2023

$Tape station _230619 _SPTest3 _cDNA$

High-Sensitivity DNA ScreenTape Protocol

Results

- * Did not work, bands present but faint and not at 200bp
- * Potential solutions:
- Repeat PCR with increased cycles
- Repeat RNA extration with trizol protocol (Anna)

Thursday 22-06-2023

Collect EC50 Plate

- Plate ID: EC50_230619_Plate1

Friday 23-06-23

Split Cells

1. Threw out BLLW (all dead)

- 2. Split JIRE 1/23. Split N2/RBL1 1/4

Seed EC50

• EC50 Plate ID: EC50_230623_Plate1

96 Well Plate Map EC50_230623_plate1

Drug Dilutions

Drug	Dilution	Concentration	Units	Starting_Concentration
Cyclophosphamide	1	20	uM	20000
Cyclophosphamide	2	13.3	uM	13300
Cyclophosphamide	3	8.89	uM	8890
Cyclophosphamide	4	5.93	uM	5930
Cyclophosphamide	5	3.95	uM	3950
Cyclophosphamide	6	2.63	uM	2630
Cyclophosphamide	7	1.76	uM	1760
Cyclophosphamide	8	1.17	uM	1170
Cyclophosphamide	9	0.78	uM	780