Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has five (5) pages, including this one.
- Enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	30	
3	30	
4	20	
5	20	
Total	100	

Problem 1 (20 pts). Evaluate each integral:

Exam#3.

(a)
$$\int (5x + \frac{2}{3x^5} - \sqrt{2}e^x) dx$$

(b)
$$\int (3\sin x - 2\sec^2 x) dx$$

(c)
$$\int (1+\sin t)^{90}\cos t \, dt$$

(d)
$$\int \frac{5x^4}{(x^5+1)^2} dx$$

Problem 2 (10 pts). Suppose that a point moves along a curve y = f(x) in the xy-plane in such a way that at each point (x,y) on the curve the tangent line has slope $\sin x$. Find an equation for the curve, given that it passes through the point (0, -2).

Problem 3 (30 pts). Sketch the graph of the rational function $f(x) = \frac{2x^2 - 8}{x^2 - 16}$.

Indicate clearly:

- x- and y-intercepts.
- \bullet Vertical and horizontal asymptotes.
- Intervals of increase, decrease and different concavity.
- Location of relative extrema and inflection points.

Problem 4 (10 pts). Find the absolute extrema of $f(x) = 6x^{4/3} - 3x^{1/3}$ on the interval [-1, 1].

Absolute maximum at

Absolute minimum at

Problem 5 (10 pts). Let $f(x) = \cos x$. Verify that the hypotheses of Rolle's Theorem are satisfied on the interval $\left[\frac{\pi}{2}, 3\frac{\pi}{2}\right]$.

Choose one of the following two story-problems:

Problem 6 (20 pts). The function $s(t) = t^4 - 4t^2 + 4$ describes the position of a particle moving along a coordinate line, where s is in feet and $t \ge 0$ is in seconds.

- (a) Find the velocity and acceleration functions.
- (b) When is the particle speeding up? Slowing down? (Justify your answers with sign charts).

Problem 7 (20 pts). A container with square base, vertical sides, and open top is to be made from 1000 ft² of material. Find the dimensions of the container with greatest volume.

Dimensions of container: