ETH Semiconductor Devices 1 Compiled: 2019-03-26 16:32:06 Commit: 5e5e60e Noah Huetter

Disclaimer

This summary is part of the lecture "ETH Semiconductor Devices" by Prof. Dr. Colombo Bolognesi (FS19). It is based on the lecture.

Please report errors to huettern@student.ethz.ch such that others can benefit as well.

The upstream repository can be found at https://github.com/noah95/formulasheets

ETH Semiconductor Devices

Noah Huetter

26. März 2019

1 Introduction

1.1 Electric Field

ullet Electrical current is the movement of electrical charge Q.

•

1.2 Electric resistivity/conductivity

Conductivity σ is a material property describing how easily certain material can conduct electrical current. Resistivity $\rho=1/\sigma$ describes how much a material opposes the current flow. The resistance of a square/round piece of metal is:

$$R = \rho \frac{l}{A} = \rho \frac{l}{r^2 \pi}$$

1.3 Current flow

1.4 Moore's Law

Gordon Moore predicted that the number of transistors on an integrated circuit doubles about every two years. This is described using exponential growth:

$$p(t) = p_0 \cdot b^{t/\tau}$$

Where

p(t) = population at given time

 $p_0 = \text{initial population}$

b = growth rate per time constant

 $\tau=\text{time constant}$