

Lösningsförslag till tentamen 21 april 2022

Del I – Grundläggande problem

- 1. Låt $V = \mathbb{C}[x]$ vara vektorrummet av polynom med komplexa koefficienter. Låt $L: V \longrightarrow V$ vara operatorn som ges av L(p(x)) = (x-1)(p(x)+p(-x)).
 - (a) Bestäm en bas för kärnan $\ker L$ och en bas för bilden $\operatorname{im} L$. (2 p)
 - (b) $\text{Är } V \text{ en inre direkt summa av } \ker L \text{ och } \text{im } L$?

Lösningsförslag. Vi använder basen $1, x, x^2, \dots$ Eftersom p(x) + p(-x) är 0 för udda funktioner och 2p(x) för jämna funktioner har vi att:

$$L(x^n) = \begin{cases} 2(x-1)x^n & \text{om } 2|n\\ 0 & \text{om } 2\nmid n \end{cases}$$

Eftersom $L(1)=2(x-1),L(x^2)=2(x-1)x^2,L(x^4)=2(x-1)x^4,\ldots$ är linjärt oberoende (de har alla olika grad) så är detta en bas för bilden. En bas för kärnan är därför x,x^3,x^5,\ldots

V är en inre direkt summa av $\ker L$ och im L precis då baserna för $\ker L$ och im L tillsammans utgör en bas för V. Detta är fallet då $\mathrm{Span}\{x,2(x-1)\}=\mathrm{Span}\{1,x\},$ $\mathrm{Span}\{x^3,2(x-1)x^2\}=\mathrm{Span}\{x^2,x^3\}$ osv.

Anmärkning: Bilden har basen $L(1), L(x^2), L(x^4), \ldots$ och kärnan har basen x, x^3, x^5, \ldots Men att $1, x, x^2, x^3, \ldots$ är en bas medför inte automatiskt att $V = \ker L \oplus \operatorname{im} L$. Detta är till exempel falskt om L(p(x)) = x(p(x) + p(-x)).

Svar.

- (a) En bas för kärnan är $\{x^{2k+1}:k\in\mathbb{N}\}=\{x,x^3,x^5,\dots\}$. En bas för bilden är $\{2(x-1)x^{2k}:k\in\mathbb{N}\}=\{2(x-1),2(x-1)x^2,2(x-1)x^4,\dots\}$.
- (b) Ja.

- 2. Låt $V=\mathbb{C}[x]_{\leq 4}$ vara vektorrummet av polynom av grad ≤ 4 med komplexa koefficienter. Ge V den inre produkten $\langle p(x)|q(x)\rangle = \overline{p(0)}q(0) + \overline{p'(0)}q'(0) + \cdots + \overline{p^{(4)}(0)}q^{(4)}(0)$. Bestäm alla $a,b\in\mathbb{C}$ sådana att operatorn $L\colon V\longrightarrow V$, som ges av L(p(x))=p(ax+b), är självadjungerad. (4 **p**)
- **Lösningsförslag.** Låt $p(x) = a_4x^4 + a_3x^3 + \cdots + a_0$ och $q(x) = b_4x^4 + b_3x^3 + \cdots + b_0$. Då är $\langle p(x)|q(x)\rangle = \overline{a_0}b_0 + \overline{a_1}b_1 + \cdots + (4!)^2\overline{a_4}b_4$. Alltså är $1, x, \frac{1}{2!}x^2, \frac{1}{3!}x^3, \frac{1}{4!}x^4$ en ortonormal bas. I denna bas blir matrisen för L:

$$A = \begin{bmatrix} 1 & b & \frac{1}{2}b^2 & \frac{1}{6}b^3 & \frac{1}{24}b^4 \\ 0 & a & ab & \frac{1}{2}ab^2 & \frac{1}{6}ab^3 \\ 0 & 0 & a^2 & a^2b & \frac{1}{2}a^2b^2 \\ 0 & 0 & 0 & a^3 & a^3b \\ 0 & 0 & 0 & 0 & a^4 \end{bmatrix}.$$

Eftersom basen är ortonormal så är A självadjungerad om och endast om A är Hermitesk, dvs $A=A^{\dagger}$. Vi ser först att det är nödvändigt att b=0. Då blir matrisen diagonal. En diagonalmatris är självadjungerad om och endast om elementen är reella och detta sker precis när a är reellt.

Svar. L är självadjungerad när b=0 och $a\in\mathbb{R}$.

- 3. Betrakta den komplexa matrisen $A = \begin{bmatrix} 1 & i & 0 \\ 0 & 1 & 1 \end{bmatrix}$.
 - (a) Bestäm singulärvärdena till A. (2 p)
 - (b) Bestäm höger- och vänstersingulärvektorer till det största singulärvärdet. (2 p)

Lösningsförslag. Vi utgår från

$$AA^{\dagger} = \begin{bmatrix} 1 & i & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -i & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & i \\ -i & 2 \end{bmatrix}$$

Egenvärdena till AA^{\dagger} är singulärvärdena i kvadrat och motsvarande normaliserade egenvektorer är de vänstersingulära vektorerna.

Vi har det karakteristiska polynomet $(t-2)^2-1=t^2-4t+3$ vilket har rötterna $\lambda=2\pm1=1,3.$ Vi har alltså singulärvärdena 1 och $\sqrt{3}$.

En normaliserad egenvektor till 3 är $\mathbf{y} = \frac{1}{\sqrt{2}} \begin{bmatrix} i \\ 1 \end{bmatrix}$. Detta är alltså en vänster singulärvektor till singulärvärdet $\sqrt{3}$. Motsvarande högra singulärvektor ges av:

$$\mathbf{x} = \frac{1}{\sqrt{3}} A^{\dagger} \mathbf{y} = \frac{1}{\sqrt{6}} \begin{bmatrix} i \\ 2 \\ 1 \end{bmatrix}.$$

Svar.

- (a) $\sigma = 1$ och $\sigma = \sqrt{3}$.
- (b) En högersingulär vektor är $\mathbf{x} = \frac{1}{\sqrt{6}} \begin{bmatrix} i \\ 2 \\ 1 \end{bmatrix}$ och en vänstersingulär vektor är $\mathbf{y} = \frac{1}{\sqrt{2}} \begin{bmatrix} i \\ 1 \end{bmatrix}$.

DEL II – BEGREPP OCH SATSER

- 4. Låt V vara ett ändligtdimensionellt komplext inre produktrum och låt $W \subset V$ vara ett delrum.
 - (a) Definiera det ortogonala komplementet W^{\perp} . (1 p)
 - (b) Givet en ortonormal bas b_1, \dots, b_r för W, ge en formel för den *ortogonala projektionen* på W.
 - (c) Visa att $V = W \oplus W^{\perp}$ är en inre direkt summa. (1 p)
 - (d) Ge ett exempel på ett vektorrum V, ett delrum W och två inre produkter på V som ger olika ortogonala komplement W^{\perp} . (1 p)

Lösningsförslag.

(a) Det ortogonala komplementet består av de vektorer i V som är ortogonala mot alla vektorer i W, dvs

$$W^{\perp} = \{ \mathbf{x} \in V : \langle \mathbf{x} | \mathbf{y} \rangle = 0, \ \forall \mathbf{y} \in W \}.$$

(b) Den ortogonala projektionen på W är operatorn $\operatorname{proj}_W : V \longrightarrow V$ som ges av

$$\operatorname{proj}_{W}(\mathbf{x}) = \sum_{i=1}^{r} \langle \mathbf{b}_{i} | \mathbf{x} \rangle \mathbf{b}_{i}.$$

- (c) Utöka $\{\mathbf{b}_1,\ldots,\mathbf{b}_r\}$ till en ortonormal bas $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$ för V (Gram-Schmidt). Detta ger den inre direkta summan $V=\operatorname{Span}\{\mathbf{b}_1,\ldots,\mathbf{b}_r\}\oplus\operatorname{Span}\{\mathbf{b}_{r+1},\ldots,\mathbf{b}_n\}$. Den första termen är W och den andra termen är W^\perp , ty $\mathbf{b}_{r+1},\ldots,\mathbf{b}_n$ är ortogonala mot $\mathbf{b}_1,\ldots,\mathbf{b}_r$ per konstruktion.
- (d) Välj $V = \mathbb{C}^2$ och $W = \operatorname{Span}\{\mathbf{e}_1\}$. Med den vanliga inre produkten på \mathbb{C}^2 så är $W^{\perp} = \operatorname{Span}\{\mathbf{e}_2\}$. Vi beskriver nu en annan inre produkt $\langle -|-\rangle'$. Det räcker att beskriva vad en ortonormal bas är. Vi väljer $\mathbf{f}_1 = \mathbf{e}_1$ och $\mathbf{f}_2 = \mathbf{e}_1 + \mathbf{e}_2$ som ortonormal bas. Då blir det ortogonala komplementet till $W = \operatorname{Span}\{\mathbf{f}_1\}$ alltså $\operatorname{Span}\{\mathbf{f}_2\} = \operatorname{Span}\{\mathbf{e}_1 + \mathbf{e}_2\}$. Den nya inre produkten ges alltså av:

$$\langle \mathbf{f}_i | \mathbf{f}_j \rangle' = \delta_{ij}$$

eller uttryckt i standardbasen ($\mathbf{e}_1 = \mathbf{f}_1$ och $\mathbf{e}_2 = \mathbf{f}_2 - \mathbf{f}_1$):

$$G = (\langle \mathbf{e}_i | \mathbf{e}_j \rangle')_{ij} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$

där den inre produkten ges av G via:

$$\langle \mathbf{x} | \mathbf{y} \rangle' = [\mathbf{x}]_{\mathcal{E}}^{\dagger} G[\mathbf{y}]_{\mathcal{E}}.$$

- 5. Låt V vara ett ändligtdimensionellt vektorrum och låt S och T vara operatorer på V.
 - (a) Vad innebär det att S och T kommuterar och vad innebär det att de är samtidigt diagonaliserbara? (1 p)
 - (b) Vilket/vilka samband gäller mellan egenskaperna i (a)? (1 p)
 - (c) Visa att om V är ett komplext inre produktrum och S och T är kommuterande och självadjungerade så finns en ortonormal bas till V bestående av egenvektorer till både S och T.

Lösningsförslag.

- (a) Att S och T kommuterar innebär att ST = TS. Att S och T är samtidigt diagonaliserbara innebär att det finns en bas \mathcal{B} bestående av egenvektorer till både S och T, det vill säga, så att $[S]_{\mathcal{B}}$ och $[T]_{\mathcal{B}}$ båda är diagonalmatriser.
- (b) Om S och T är operatorer på ett ändligtdimensionellt vektorrum så kommuterar de om och endast om de är samtidigt diagonaliserbara.
- (c) Vi vet att om S och T kommuterar så är de samtidigt diagonaliserbara, dvs vi har en bas i vilken båda är diagonala. Låt $\mathbf{b}_1,\ldots,\mathbf{b}_n$ vara en sådan bas. Låt $S\mathbf{b}_i=\lambda_i\mathbf{b}_i$ och $T\mathbf{b}_i=\mu_i\mathbf{b}_i$. Låt sedan $E_{\lambda,\mu}$ vara delrummet som spänns upp av de \mathbf{b}_i för vilka $\lambda_i=\lambda$ och $\mu_i=\mu$. Detta är precis skärningen av det två egenrummen $E_{S,\lambda}$ och $E_{T,\mu}$ och visar att V är en inre direkt summa av skärningarna av egenrummen till S och T. Vi vet att hos en självadjungerad operator är egenrummen ortogonala mot varandra. Om $\lambda\neq\lambda'$ eller $\mu\neq\mu'$ så är alltså $E_{\lambda,\mu}$ och $E_{\lambda',\mu'}$ ortogonala mot varandra. Det räcker därför att välja en ortogonal bas för varje $E_{\lambda,\mu}$.

Alternativt kan vi göra om beviset för kommuterar \iff samtidigt diagonaliserbar. Ta ett egenvärde λ för S och motsvarande egenrum $E_{S,\lambda}$. Då är $ST\mathbf{x} = TS\mathbf{x} = T\lambda\mathbf{x} = \lambda(T\mathbf{x})$ om $\mathbf{x} \in E_{S,\lambda}$ och alltså är även $T\mathbf{x} \in E_{S,\lambda}$. Det innebär att T inducerar en operator på $E_{S,\lambda}$ och denna är också självadjungerad och har därför en ortogonal bas av egenvektorer. Eftersom $E_{S,\lambda}$ och $E_{S,\lambda'}$ är ortogonala om $\lambda \neq \lambda'$ kommer dessa baser tillsammans ge en ortogonal bas av samtidiga egenvektorer.

DEL III – AVANCERADE PROBLEM

6. Låt n vara ett positivt heltal. Låt $V = \mathbb{C}[x]_{\leq n}$ vara vektorrummet av komplexa polynom av grad $\leq n$. Bestäm Jordans normalform till operatorn $L \colon V \longrightarrow V$ som ges av L(p(x)) = p(x+1) - p(x).

Lösningsförslag. Vi beräknar

$$L(x^n) = (x+1)^n - x^n = nx^{n-1} + \text{termer av lägre grad.}$$

Om $p(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ är ett polynom av grad $d \le n$, så är alltså:

$$L(p(x)) = da_d x^{d-1} + \text{termer av lägre grad.}$$

Operatorn L minskar alltså graden med ett. Speciellt är $L^{d+1}(p(x))=0$ men $L^d(p(x))\neq 0$ om p(x) har grad d. Vi drar slutsatsen att

$$\ker L^d = \text{Span}\{1, x, x^2, \dots, x^{d-1}\}.$$

Alltså är $\dim(\ker L^d)=d$ för alla $d\leq n+1$. Vi drar slutsatsen att Jordans normalform till L består av ett enda block med egenvärde 0. Alltså $(n+1)\times(n+1)$ -matrisen:

$$\begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

Svar. Jordans normalform består av ett enda block med egenvärde 0.

7. Betrakta "Fibonaccis" talföljd $x_1 = 1$, $x_2 = 1$ och $x_{n+2} = x_{n+1} + x_n$ för alla $n \ge 1$ men där talen x_1, x_2, \ldots tillhör den ändliga kroppen $\mathbb{Z}/5\mathbb{Z}$. Vad är x_{2022} ? (4 p)

Lösningsförslag. Vi skriver om rekursionen som en matrisekvation:

$$\begin{bmatrix} x_{n+2} \\ x_{n+1} \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}}_{A} \begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix}.$$

Det karakteristiska polynomet för A är

$$p_A(t) = (t-1)t - 1 = t^2 - t - 1.$$

Över kroppen $\mathbb{Z}/5\mathbb{Z}$ har vi dubbelroten -2 = 3:

$$(t+2)^2 = t^2 + 4t + 4 = t^2 - t - 1.$$

Egenrummet till $\lambda = -2$ ges av ekvationen

$$\ker(A+2I) = \ker\begin{bmatrix} 3 & 1\\ 1 & 2 \end{bmatrix}$$

vilket spänns upp av $\xi_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ och är en-dimensionellt. En generaliserad egenvektor ges av ekvationen

$$(A+2I)\boldsymbol{\xi}_2 = \boldsymbol{\xi}_1$$

vilket t ex har lösningen $\boldsymbol{\xi}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. I Jordanbasen $\{\boldsymbol{\xi}_1, \boldsymbol{\xi}_2\}$ är matrisen $\begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix}$ och vi kan beräkna potenser av matrisen genom binomialsatsen där $N^2 = 0$:

$$\begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix}^n = (-2I + N)^n = (-2)^n I + n(-2)^{n-1} N = \begin{bmatrix} (-2)^n & n(-2)^{n-1} \\ 0 & (-2)^n \end{bmatrix}.$$

Alltså är:

$$A^{n}(\xi_{1}) = (-2)^{n}\xi_{1}$$
 $A^{n}(\xi_{2}) = n(-2)^{n-1}\xi_{1} + (-2)^{n}\xi_{2}$

Vi har att

$$\begin{bmatrix} x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \boldsymbol{\xi}_1 - \boldsymbol{\xi}_2$$

och alltså

$$\begin{bmatrix} x_{2022} \\ x_{2021} \end{bmatrix} = A^{2020}(\boldsymbol{\xi}_1 - \boldsymbol{\xi}_2) = (-2)^{2020}\boldsymbol{\xi}_1 - \left(2020(-2)^{2019}\boldsymbol{\xi}_1 + (-2)^{2020}\boldsymbol{\xi}_2\right)$$
$$= \begin{bmatrix} (-2)^{2020} - 2020(-2)^{2019} \\ \dots \end{bmatrix}$$

Eftersom 2020=0 och $(-2)^4=1$ i $\mathbb{Z}/5\mathbb{Z}$ så får vi att $x_{2020}=1$.

Alternativ lösning: Genom beräkning så ser vi att följden är periodisk med perioden 20:

$$1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, \dots$$

och alltså är $x_{2022} = x_2 = 1$. Från lösningen ovan så ser vi periodiciteten från att $(-2)^n$ är periodisk med period 4 och n är periodisk med period 5, detta ger tillsammans periodiciteten $20 = 4 \cdot 5$.

Svar. $x_{2022} = 1$.

8. Låt A och B vara komplexa 2×2 -matriser. Antag att A har egenvärdena 0 och 1 och B har egenvärdena -3 och 3. Bestäm alla möjliga egenvärden till A + B om:

(a)
$$AB = BA$$
,

- (b) A och B är godtyckliga, (2 p)
- (c) A och B är Hermiteska. (1 p)

Lösningsförslag. Eftersom A har distinkta egenvärden kan vi välja en bas där A är diagonal.

- (a) Om A och B kommuterar så är de samtidigt diagonaliserbara, dvs vi kan välja en bas där även B är diagonal. Då blir A+B diagonal med summan av egenvärdena på diagonalen. Alltså finns två möjligheter: $\{-3,4\}$ och $\{-2,3\}$.
- (b) I en bas där A är diagonal har vi att:

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$$

där alla $a,b,c\in\mathbb{C}$ som uppfyller ekvationen

$$\det B = -a^2 - bc = -9$$

är möjliga. Detta ger

$$A + B = \begin{bmatrix} a & b \\ c & 1 - a \end{bmatrix}$$

vilken har spåret 1, och alltså egenvärdena λ och $1-\lambda$, samt determinanten $\lambda(1-\lambda)=a(1-a)-bc=a-a^2-bc=a-9$. Väljer vi λ godtyckligt kan vi bestämma a ur ekvationen:

$$a = 9 + \lambda(1 - \lambda).$$

och sedan välja b och c så att de uppfyller ekvationen för $\det B$. Alltså är egenvärdena $\{\lambda, 1-\lambda\}$ möjliga för alla $\lambda \in \mathbb{C}$.

(c) Om B är Hermitesk så är a reellt och $c=\bar{b}$. Detta ger $|b|^2=9-a^2$ ur $\det B=-9$ vilket medför att $-3\leq a\leq 3$ och för alla sådana a kan vi hitta en Hermitesk matris med $\det B=-9$. Eftersom A+B är Hermitesk vet vi även att λ är reellt och vi kan anta att λ är det minsta egenvärdet, dvs $\lambda\leq\frac{1}{2}$. Villkoret att $a=9+\lambda(1-\lambda)$ ligger i intervallet [-3,3] ger:

$$-12 \le \lambda(1-\lambda) \le -6$$

vilket för $\lambda \leq \frac{1}{2}$ är uppfyllt precis om $-3 \leq \lambda \leq -2$. Det andra egenvärdet uppfyller $3 \leq 1 - \lambda \leq 4$.

Anmärkning: för en Hermitesk matris C med egenvärden λ_1,λ_2 så är $\min\{\lambda_1,\lambda_2\} \leq \frac{|A\mathbf{x}|}{|\mathbf{x}|} \leq \max\{\lambda_1,\lambda_2\}$ (använd att C är ortogonalt diagonaliserbar). Från detta kan man dra slutsatsen att $-3 \leq \lambda$ och $1-\lambda \leq 4$.

Svar.

- (a) $\{-3,4\}$ och $\{-2,3\}$.
- (b) $\{\lambda, 1 \lambda\}$ där $\lambda \in \mathbb{C}$.
- (c) $\{\lambda, 1 \lambda\}$ där $-3 \le \lambda \le -2$.

- 9. Låt $L: M_{n,n} \longrightarrow M_{n,n}$ vara operatorn på vektorrummet av reella $n \times n$ -matriser som ges av $L(A) = A A^T + \operatorname{tr}(A)I$. Bestäm minimalpolynomet och det karakteristiska polynomet för L för varje positivt heltal n.
- **Lösningsförslag.** Vi vet att $M_{n,n}$ är den inre direkta summan av de symmetriska matriserna $M_{n,n}^s$ och de anti-symmetriska matriserna $M_{n,n}^{as}$. För symmetriska matriser är $L(A) = \operatorname{tr}(A)I$ och för anti-symmetriska matriser är L(A) = 2A. Speciellt så tar L symmetriska matriser på symmetriska matriser och anti-symmetriska matriser på anti-symmetriska matriser. Vidare är de symmetriska matriserna den inre direkta summan av de spårlösa symmetriska matriser $M_{n,n}^{s,sl}$ och $\operatorname{Span}\{I\}$. Ty vi kan skriva varje symmetrisk matris A som $\left(A \frac{\operatorname{tr}(A)}{n}I\right) + \frac{\operatorname{tr}(A)}{n}I$ och $M_{n,n}^{s,sl} \cap \operatorname{Span}\{I\} = \{0\}$ eftersom aI har spår an. Detta ger

$$M_{n,n} = M_{n,n}^{as} \oplus M_{n,n}^{s,sl} \oplus \operatorname{Span}\{I\}$$

Slutligen är L(A)=0 för symmetriska spårlösa matriser och L(A)=nA om A=aI. Vi har alltså visat att L är diagonal med egenvärdet 2 (anti-symmetriska matriser), egenvärdet 0 (spårlösa symmetriska matriser) och egenvärdet n (identitetsmatrisen), dvs:

$$E_0 = M_{n,n}^{s,sl}$$

$$E_2 = M_{n,n}^{as}$$

$$E_n = \text{Span}\{I\}$$

För att bestämma det karakteristiska polynomet behöver vi bestämma dimensionerna av dessa egenrum.

$$\dim E_0 = \dim M_{n,n}^s - 1 = (1 + 2 + 3 + \dots + n) - 1 = \frac{n(n+1)}{2} - 1$$

$$\dim E_2 = \dim M_{n,n}^{as} = 1 + 2 + 3 + \dots + (n-1) = \frac{n(n-1)}{2}$$

$$\dim E_n = 1$$

Det karakteristiska polynomet blir således:

$$p_L(x) = x^{\frac{n(n+1)}{2} - 1} (x-2)^{\frac{n(n-1)}{2}} (x-n).$$

Eftersom L är diagonaliserbar så förekommer varje faktor bara en gång i minimalpolynomet. Om n=1 är $E_0=E_2=\{0\}$ så minimalpolynomet blir $q_L(x)=x-1$. Om n=2 blir minimalpolynomet $q_L(x)=x(x-2)$. Om n>2 blir minimalpolynomet $q_L(x)=x(x-2)(x-n)$.

Svar. Det karakteristiska polynomet är

$$p_L(x) = x^{\frac{n(n+1)}{2}-1}(x-2)^{\frac{n(n-1)}{2}}(x-n)$$

och minimalpolynomet är

$$q_L(x) = \begin{cases} x - 1 & \text{om } n = 1 \\ x(x - 2) & \text{om } n = 2 \\ x(x - 2)(x - n) & \text{om } n > 2 \end{cases}$$