CS 560 Statistical Machine Learning: Homework 4

Instructor: Jie Shen

March 31, 2019

Notation: The solution $w \in \mathbb{R}^d$ is always a column vector, and the feature vector $x \in \mathbb{R}^d$ is always a row vector.

Linear Regression: A Statistical Perspective

Suppose we are given a data set $\{x_i, y_i\}_{i=1}^n$, where each $x_i \in \mathbb{R}^d \times \mathbb{R}$ is a row vector. In order to learn a good model w from the data, it typically boils down to solving the following *least-squares* program:

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} F(\boldsymbol{w}) := \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{w} \|_2^2,$$
 (1)

where X is the data matrix with the *i*th row being x_i , and $y = (y_1, y_2, \dots, y_n)^{\top}$.

Optimization. Denote

$$\boldsymbol{w}^* = \underset{\boldsymbol{w}}{\operatorname{arg\,min}} \ F(\boldsymbol{w}). \tag{2}$$

In Homework 3, we have studied how to make use of gradient descent to obtain an iterate w^t such that

$$\left\| \boldsymbol{w}^t - \boldsymbol{w}^* \right\|_2 \le \epsilon \tag{3}$$

for any user-specified error parameter $\epsilon \in (0,1)$. The paradigm of getting the above approximate solution is called optimization.

Statistical Estimation. Of the central interest in statistical machine learning (SML) is estimating the *groundtruth* model from the training data. That is, SML assumes that there exists a true model w_{true} that generates all the observations in the following way:

$$y_i = \langle \boldsymbol{x}_i, \boldsymbol{w}_{\text{true}} \rangle + e_i, \quad e_i \sim N(0, \sigma^2), \quad i = 1, \dots, n.$$

In the above expression, e_i is random Gaussian noise with mean zero and variance σ^2 .

Since w^* is the one that best fits the training data, a fundamental question raised in SML is when $w^* \approx w_{\text{true}}$.

Parameter. Fix d = 1000 and $\sigma = 0.1$.

Estimation in Low-Dimensions

Randomly generate the groundtruth model $w_{\text{true}} \in \mathbb{R}^d$. You can use the Gaussian distribution, or any other distributions such as uniform distribution over [-1000, 1000]. You need to save the model and never change it throughout the experiments.

Now let $n_{\max} = 10000$. Randomly generate the n_{\max} -by-d data matrix \boldsymbol{X} using the built-in python API numpy.random.randn. Make sure that the variance of this Gaussian distribution is 1. Use the same python API to generate the random Gaussian noise $\boldsymbol{e} = (e_1, \dots, e_{n_{\max}})^{\top}$, but with variance 0.01 (i.e. $\sigma = 0.1$). Finally you will have the response vector $\boldsymbol{y} = \boldsymbol{X} \boldsymbol{w}_{\text{true}} + \boldsymbol{e}$.

We aim to study how the estimation error $\|\boldsymbol{w}^* - \boldsymbol{w}_{\text{true}}\|_2$ changes with the sample size n. To this end, we increase n from 1000 to n_{max} , with a step size 500. For each n,

- 1. Collect $(x_1, y_1), \dots (x_n, y_n)$ and solve the program (1) with gradient descent. As in Homework 3, you should be able to calculate a good learning rate η_0 and run GD for 100 iterations.
- 2. Record the ℓ_2 distance between the final iterate produced by GD and w_{true} . Let us denote it as z_n .

Plot the curve z_n v.s. n and summarize your findings.

Estimation in High-Dimensions

In the preceding experiment, n is always greater than d=1000 which is referred to as low-dimensional regime. Now let us increase n from 100 to 1000 with a step size 100, and for each n we calculate z_n as before. Plot the curve z_n v.s. n and summarize your findings.

Structural Estimation in High-Dimensions

Let the sparsity parameter k=20. Randomly generate a d-dimensional vector $\mathbf{w}'_{\text{true}}$ as before, then keep k coordinates and set others to zero. This way we obtain a $\mathbf{w}_{\text{true}} \in \mathbb{R}^d$ with sparsity k (d=1000). The sparsity structure in \mathbf{w}_{true} is the primary difference.

Let $n_{\text{max}} = 1000$. Generate the n_{max} -by-d data matrix \boldsymbol{X} and n_{max} -dimensional noise \boldsymbol{e} as before. Finally you will have the response vector $\boldsymbol{y} = \boldsymbol{X} \boldsymbol{w}_{\text{true}} + \boldsymbol{e}$ where $\|\boldsymbol{w}_{\text{true}}\|_0 = k$.

Estimation without prior knowledge. Let us increase n from 100 to 1000 with a step size 100, and for each n we run GD and calculate z_n as before. Plot the curve z_n v.s. n and summarize your findings.

Estimation with prior knowledge. Let us increase n from 100 to 1000 with a step size 100, and for each n we run *projected GD* and calculate z_n as before. Note that in order to run projected GD, you need to implement the hard thresholding operator. Plot the curve z_n v.s. n and summarize your findings.