

The LHCb Computing Model and Real Data

Philippe Charpentier

CERN - LHCb

On behalf of the LHCb Computing

Group

LHCb Data Characteristics

- Data size and rates are modest compared to other LHC experiments
 - □ 35 kB RAW event size
 - Trigger rate: 2000 events/s
 - 25 kB RDST (a.k.a. ESD), 85 kB DST (a.k.a. AOD)
 - Typical reconstruction time: 12 HS06.s/event
- o Physics research channels are rare
 - b-quark CP violation decay modes (BR ~ 10⁻⁹ to 10⁻⁶)
 - □ Typically a few 10'000s to a million events per year (2 fb⁻¹)
 - ☆ A needle in a haystack
 - Easier to extract b decay events if only one primary vertex
 - □ Metrics = average number of visible interactions per beam crossing (μ)
 - \Rightarrow For LHC design characteristics μ =0.4 at LHCb
- LHCb is a small experiment
 - Very small Computing Operations Team (< 5FTE)

Guidelines for the Computing Model

- o Small processing time, but high trigger rate
 - 24 kHS06 required for reconstruction
 - ★ Typically 2000 CPU slots
 - TierO could not provide the necessary CPU power
 - Use Tier1s as well for reconstruction (first pass)
- Most problems for analysis jobs are related to Data Management
 - SE accessibility, scalability, reliability...
 - Restrict the number of sites with data access
 - Use Tier1s for analysis
- High requirements on simulated data
 - Background identification, efficiency estimation for signal
 - Typically 360 HS06.s per event
 - Use all possible non-Tier1 resources for simulation

The LHCb Computing Model

LHCb real data in 2010

- LHC started with very low luminosity
 - Very few colliding bunches
 - Not worth for rare b-physics decays
 - Minimum bias trigger for 2 months
 - ★ Introduce tighter triggers when luminosity increases
- o LHC change of strategy for higher luminosity
 - Large number of protons per bunch
 - Small squeezing
 - Still low number of bunches (16, 25, 48, increasing since September, up to 400 bunches)
 - Consequence: larger number of collisions per crossing
 - $\mu = 1$ to 2.3 !!!
 - ★ Much higher pile-up (1.6 to 2.3 collisions per trigger)
 - Effects on Computing
 - ★ Larger events
 - ☆ More complex events to reconstruct
 - ★ Larger pre-selection retention

Adaptability of the Computing Model

- Needs to be reactive to continuously changing conditions
- First months: minimum bias data
 - No preselection
 - * Reconstruction creating DSTs for all events
- \circ As of July: large μ data
 - Event size

 - * Twice more than design
 - Reconstruction time
 - Quadratic with event size
 - 4 times more than design
 - Stripping time and memory
 - ★ Large combinatorics for pre-selection
 - * Stripping time exponential with event size
 - * Algorithms tuned for μ =0.4 were taking up to 60 HS06.s
 - * Twice the reconstruction time!
 - Memory consumption up to 3 GB (nominally 1.5 GB)

- Reconstruction / stripping jobs
 - Need to fit in Tier1 Grid queues
 - * Reduce file size (nominally 3 GB) to 1 GB
 - Extensive work on reducing computing time
 - * Reconstruction: factor 2 reduction
 - ☆ Stripping: factor 10 reduction in time, large increase in rejection
- Nevertheless, this takes... time!
- For optimisation, data is needed
 - Run with existing applications
 - → High failure rate (CPU time limit, max memory exceeded)
 - Use a lot of space for storing too many (too large) events
 - Possible thanks to the available disk (foreseen for more data)
 - Continuous data management operations
 - Remove obsolete processings (keep only 2)
 - * Reduce number of replicas (from 7 to 3 or 4)

New Computing Conditions

- \circ Both event size and CPU time rise with μ
- Compatible with expectations at μ =0.4

Weaknesses of the Grid

- Workload Management System
 - Mitigated by usage of pilot jobs (DIRAC)
 - Workload optimisation using generic pilot jobs
 - Run multiple payloads (e.g. production + analysis)
- Data Management System
 - Data access by protocol unreliable for long jobs
 - * Errors when opening files (servers overloaded)
 - ☆ Connections broken when job lasts hours
 - Use as few files as possible, i.e. as large as possible
 - * Requires merging of output files (DSTs)
 - * Keep runs (1 hour data taking) as granularity of datasets
 - Mitigated by local copy of input data
 - Standard procedure for reconstruction-stripping jobs and merging
 - Not possible for analysis jobs though...

Data collection

- o 21.9 pb⁻¹ delivered
- o 19.7 pb⁻¹ recorded
- 91.2% data taking efficiency
- Most data collected after15 September

RAW data distribution

- 65.7 TB of physics RAW data collected
 - Slightly more transferred to Castor
 - * Calibration and test data
 - * Not distributed to Tier1s
- Distributed immediately to Tier1s
 - A full run (1 hour) goes to a single Tier1
 - RAW data share according to CPU pledges of Tier1s
 - When a Tier1 is unavailable, share temporarily set to 0

LCG.GRIDKA.de

LCG.Manchester.uk
LCG.IN2P3-T2.fr
LCG.SARA.nl
LCG.NIKHEF.nl

LCG.RAL.uk

LCG.CNAF.it

Global Grid usage

LCG.CSCS.ch

LCG.UNINA.it

.. plus 89 more

LCG.Lancashire.uk

LCG.NIPNE-07.ro
LCG.MILANO-ATLASC.it

Generated on 20.

LCG.IPP.bg

1.5%

1.4%

1.4%

Generated on 2010-10-08 11:49:20 UTC

115 sites used21 countries

4.9%

3.3%

2.8%

2.6%

LCG.RAL-HEP.uk

LCG.Liverpool.uk

LCG.GLASGOW.uk

LCG.LPC.fr

LCG.DESY.de

LCG.JINR.ru

o Simulation: 50%

o Analysis: 29%

o Reconstruction: 21%

Reconstruction jobs

CPU usage for reconstruction

Generated on 2010-10-08 10:53:49 UTC

- Over 250 users used the Grid for analysis
 - Only 2% of analysis at Tier2s (toy MC, private small simulations)
- No a-priori assignment of site: share by availability of resources and data

CPU usage for analysis

- Overall 81% successful jobs
- o Main cause of failures (15%): job exceeding CPU time limit
 - Infinite loop in Geant4 on 64-bit
 - Large μ
 - Also few user jobs
- 4% data access problem in application

Job failures

Further adaptations of the Computing Model (1)

o LHCb Analysis Centers

- Foreseen in Computing TDR: use large Tier2s for Analysis
- Request from sites/countries to run analysis in Tier2s
- Conditions
 - Additional CPU and storage resources w.r.t. pledges
 - Local management team (data placement, user support)
 - ☆ Open to the whole LHCb VO
 - * No "local" or "national" Grid Computing
 - Local analysis done on Tier3s (local job submission, possible Grid storage), desktops, laptops

Main caveat

- Data access is the weakness of the Grid
- ☆ Analysis jobs must use protocol access (rootd, gsidcap, xrootd...)
 - * Possibility to include complex local caching in the framework
 - See D.Remenska's presentation
- ☆ Currently a few sites are under test

Adaptations (2)

- LHCb Reconstruction Centers
 - Recent idea, not yet experimented
 - Keep analysis at Tier1s
 - Mitigate data access problems
 - Move data processing to some Tier2s
 - Anyway using local copy of data
 - * Copy from close SE (same site) of not too far SE (close Tier1)
 - * Requires good network connectivity from Tier1
 - Avoid CPU inefficiency
 - ∴ Use well controlled workflows at Tier2s
 - * Simulation
 - * Reconstruction / stripping
 - Merging at Tier1
 - * Keep entire run at a single Tier1
 - Plan to experiment Reconstruction at Tier2s during winter shutdown

- o The LHCb Computing Model looks global sound
- However the new LHC running conditions imply some changes to the offline reconstruction and analysis conditions
- During 2010, several iterations were needed in order to adapt to these conditions
- The full reprocessing of 2010 data will take place starting in November 2010
- Increase in CPU requirements and disk space will have to be watched carefully in order to match the pledges
- Usage or resources beyond Tier1s for reconstruction and analysis are being investigated

