Neural Networks

Lecture 11: Neural Reinforcement Architectures

http://www.informatik.uni-hamburg.de/WTM/

Motivation & State of the Art

 Human level control in complex environments [Minh et al. 2015]

- Basic idea: Learn from rewards
 - Advantages
 - No expert knowledge needed
 - Drawbacks
 - High training times
 - Lots of "useless" or dangerous actions

Benefits of (Deep) Reinforcement Learning

- No annotated training data needed
 - E.g. complex control problems
 - Pilot an airplane crash gives negative reward
- Learning of action sequences
- Model free
- End-to-end learning

Overview

- Reinforcement learning
- Neural architecture for reinforcement learning
- Deep reinforcement learning continuous states
 - Stability
- Continuous deep reinforcement learning
 - Actor-Critic architecture
- Related approaches

Part 1:

Reinforcement Learning

A Navigation Example

Actions:

- Objective: get to the target position as quickly as possible
- Condition: no knowledge about the environment or actions outcome, only at the end of the sequence
- Method: Reinforcement Learning

Agent-Environment Interaction

- Reinforcement Learning (RL):
 - Perceive state s
 - Select and perform an action a
 - Sometimes receive reward r

- Markov Decision Process (MDP):
 - fixed transition probabilities
 - fixed reward probabilities
 - independent of previous states

[Sutton, Barto 98]

Elements for Learning

- Feedback in the form of reward r
 - Different ways to model rewards
- Stopping conditions
 - When to stop taking actions
 - E.g. when does a vacuum-bot stop to clean

- Action-value function Q(s, a)
 - How "valuable" is an action a in state s?
 - Alternative: State-value function V(s)
- A strategy to discover solutions policy π
 - E.g. greedy strategy: $\pi(s) = argmax_a Q(s, a)$

Generalized Policy Interaction

- Value functions Q(s,a) and policy π closely interact during search for optimal functions Q^* , π^* that perform optimal actions
 - π selects action based on Q
 (i.e. the action a with the highest Q(s,a) for a given state s)
 - Q is updated by actual reward
 - Update to Q changes action selection of π

Repeat until convergence

How to Find Q-Function

- With some luck the agent reaches the goal receiving a reward r
- Learn \rightarrow update the expectation $Q(s,a) \leftarrow r$
- What to do without immediate reward after action?

Temporal-difference learning:

$$Q(s,a) \leftarrow r + \gamma Q(s',a')$$

γ: importance of future reward
 0 < γ < 1 discount factor
 large γ → far-sighted, planning
 small γ → impatient robots

Gridworld Example

Optimal Policy

How to find the optimal path?

- Random exploration can find better solutions
- Exploitation vs. exploration

Action Selection Policies

Action selection:

- randomly
- greedy $\operatorname{argmax}_{i'} Q(s_j, a_{i'})$
- *ϵ*-greedy
- Boltzmann (soft-max)

$$P(a_i = 1) = \frac{e^{h_i/\tau}}{\sum_k e^{h_k/\tau}}, \, h_n = Q(s, a_n)$$

large $\tau \to \text{large } \epsilon \to \text{exploration}$
small $\tau \to \text{small } \epsilon \to \text{exploitation}$

```
ε-greedy

if random(0,1) < ε:
   choose random action
else
   chose argmax<sub>i</sub>, Q(s<sub>j</sub>,a<sub>i</sub>)

small chance to perform random action; else
   greedy
```

After Enough Exploration

Part 2:

Neural Architecture for Reinforcement Learning

How does the neural architecture work?

- Classification or regression?
 - Regression for function approximation
- What function is approximated
 - Q-Function Q(a,s)
- What information is available after each action?
 - Reward & state
- Input and output to neural network?
 - Input: (Action &) state Output: Q-value for each action

Implementing Reinforcement Learning Algorithms

$$Q(s,a) = \sum_{k,l} w_{k,l} a_k s_l$$

w: weight a: action

s: state

$$s_j = egin{cases} 1, & ext{agent in position } j \ 0, & ext{else} \end{cases}$$

$$a_i = \begin{cases} 1, & \text{agent takes action } i \\ 0, & \text{else} \end{cases}$$

Q-value for each action

States

Learning Rule

- current estimated at position j and action i: Q(s, a)
- Q is estimated as function of the weights: $Q(s, a) = w_{ij} a_i s_j$
- expected reward 1 step ahead: $r + \gamma Q(s', a')$
- error function: $E = \frac{1}{2} (\underbrace{r + \gamma Q(s', a') Q(s, a)})^2$
- weight update by gradient descent on error:

$$\Delta w_{ij} pprox -rac{\partial E}{\partial w_{ij}} = \delta \underbrace{a_i s_j}_{Hebb}$$
 $w_{ij} + = \Delta w_{ij}$

Details of Learning Rule

- Update
 - state s → s' by action a
 - Next action a^c

•
$$E = \frac{1}{2} (r + \gamma Q(s', a') - Q(s, a))^2$$

- How to compute Q(s',a')?
 - Selection of next action a^c
 - Value of Q(s',a')

- ← Different TD learning alg.
- ← Neural network

Variations of TD Learning Algorithms

• Q-learning: update based on next best possible estimates $Q(s,a) \leftarrow \eta \ (r + \gamma \ \max_{a} (Q(s',a')) - Q(s,a))$

- SARSA: update estimates based on next chosen action $Q(s,a) \leftarrow \eta \ (r + \gamma \ Q(s',a') Q(s,a))$
- Actor-Critic: on-policy with two memories $V(s) \leftarrow \eta \left(r + \gamma V'(s) V(s)\right)$

Update actor A(s) depending on prediction error δ

Part 3:

Deep Reinforcement Learning

Motivation for Deep Reinforcement Learning

How many states?

Deep Q-Learning

Convolutional Neural Networks (CNN) provide good features for highly structured data

Example: Breakout

Input: game state s (video feed/image)

 Output: Q-value for each possible action a (left/right)

Learns without any domain knowledge, only looking at pixels

Deep Reinforcement Learning

Deep Reinforcement Learning Architecture

- CNN → object identification and localization
- MLP → reinforcement learning
- End-to-end training of CNN + MLP → deep RF

Translational Invariance & Velocities

- No pooling layers
 - Less translational invariance
 - Alternatives: Pyramid Networks

- [Lin et al. 2017]
- Blending of ~4 consecutive frames
 - Compensate flickering
 - Represent velocities

Stability

- Why is stability a problem?
- Q is updated using Q

•
$$E = \frac{1}{2} (r + \gamma Q(s', a') - Q(s, a))^2$$

- One lucky/unlucky episode can strongly influence future learning
- Coupled episodes
 - Learning experience does not represent the problem properly
 - E.g. exploration limited to some part of the state space "Race car stuck in left turn"

Stability: Replay Memory

- Replay Memory
 - Buffer of size n
 - n ~ 10⁶
 - Use random actions to fill buffer with samples
 - Draw x random samples for training step

- Prioritized replay memory [Schaul et al. 2015]
 - What samples to keep?
 - What samples to delete?
 - What samples to prioritize?

Stability: Double Q-Learning & Q-Freezing

- Consistent targets during training
 - Q-Freezing^[Mnih et al. 2015]
 - Keep constant copy of Q for some time (freezing)
 - Update after time interval
 - Double Q learning[van Hasselt et al. 2016]
 - Use 2 Q-functions
 - One function updates the other

Part 4:

Continuous Deep Reinforcement Learning

Motivation for Continuous Deep RL

What are the actions?

Curse of dimensionality

Source: Wikipedia

Source: sourceforge.net/projects/torcs/

Deep Reinforcement Learning

Curse of Dimensionality

- How to deal with continuous actions?
 - E.g. Joint configuration of robot
- Discretization of actions
 - E.g. +5° / -5° for specific joint
- Number of possible actions for robot with 30 joints?
 - Number of actions with 1º discretization?
- Large number of possible actions makes deep RL infeasible

Actor-Critic Learning

[Sutton, Barto 98]

Actor-Critic Learning

Separate networks for critic and actor

Actor-Critic Explained

- Critic can be trained
 - ~ Q(s,a)
- Actor can not be trained (directly)
 - No information on correct action
- Transfer of gradient from critic to actor
 - Critic is differentiable
 (e.g. gradient computation for update weights of critic network)
 - Critic is also differentiable w.r.t. actions
 - This gradient can be used to update the actor

Stability, again!

- Target Networks
 - Keep target network constant during training phase
 - Gradually adjust target network towards updated network
 - θ model parameters
 - τ update factore.g. τ = 0.001
 - $\theta' \leftarrow \tau\theta + (1-\tau)\theta'$, $\tau << 1$

Step by Step

- Update the critic by minimizing the loss w.r.t. Q-value estimation
- Then the actor policy is updated using the sampled policy gradient
- Update actor target network (modulated by τ)
- Update critic target network (modulated by τ)

Example

Part 5:

Related Approaches

Learning to Grasp from 50k Tries and 700 Robot Hours[Pinto et al. 2016]

- Platform
 - Two fingered parallel gripper
 - Grasping from top

[Pinto et al. 2016]

- CNN-based classifier
 - Image patch → Grasp likelihood of different grasp angles
- At test time
 - Sample patches at different positions
 - Choose top graspable location & gripper angle

Learning to Grasp from 50k Tries and 700 Robot Hours [Pinto et al. 2016]

- Multi-Staged Learning
 - Previously trained network used to collect samples for training next stage of network

Combining Advantages of Supervised and Unsupervised Learning

- Robot generates annotated training data through interaction with the environment
 - Goals
 - No annotated data needed
 - No information about kinematic needed (model free)
 - As fast as supervised training
 - Minimal human supervision
 - Minimal damage potential

Experimental Setup: Gathering Training Data

Interaction with the environment

- Move hand to home position
- Close hand
 - Select position on table from memory
 - 2. Places object on table
 - 3. Remove hand ...
 - and record training data (image – joint value pairs)
 - 5. Grasp abject again (with last used joint values)
- 3. Repeat

Neural Architecture

- One neural network
 - Supervised training
 - Output: Actions (joint configurations)

NICO Playing with Die

Perspective on RL: Developmental Robotics

- Learn and teach don't program
 - "autonomously acquire an increasingly complex set of sensorimotor and mental capabilities" [Cangelosi & Schlesinger 2015]
- Advantages
 - HRI: Suitable for non-expert users
 - "I failed to grasp the cup, can you please put it in my hand?"
 - Teacher as intuitive role
 - Scientific exchange [Lungarella et al. 2013]
 - Evaluate models from developmental sciences
 - Adapt findings from ontogenetic development

Part 6:

Current Research Challenges

Current Research Challenges & Directions

- Minimize (physical) training time:
 - Transfer from simulator → real world
 - Transfer between different tasks
 - Use pretrained networks (e.g. vision networks)
- → Lifelong learning
- Optimize exploration & learning
 - Reward curiosity [Hafez et al. 2018]
 - Provide simplified training instances [Kerzel et al. 2018]
 - Alter episodes stored in replay memory → Hindsight Experience Replay (HER)

Dynamic Target Adjustment

Online Continuous Deep Reinforcement Learning for a Reach-to-grasp Task in a Mixed-reality Environment

Hadi Beik Mohammadi, Mohammad Ali Zamani, Matthias Kerzel, Stefan Wermter

University of Hamburg Department of Informatics Knowledge Technology

http://www.knowledge-technology.info

Hindsight Experience Replay

- How to learn from failures?
 - Set a goal
 - Perform a sequence of actions
 - Does the outcome achieve the goal?
 - Yes: great use the sample for learning
 - No: great pretend that you wanted to achieve the outcome and learn from that
- Advantage
 - Every learning episode is valuable

Hindsight Experience Replay

Source: www.youtube.com/watcg?v=aKSILzbAqJs

Achievements & Challenges

Achievements

- Learn from raw sensory input
- Domains with simple rules
 - E.g. "stay in the middle of the road on the race track"
- Learn from observed expert behavior

Challenges

- Time consuming
- Transfer and reuse of learned knowledge
- Design of reward functions

Conclusion

- RL: Solution is not determined by labelled data (SL) but by exploratively acting in an environment, maximizing reward.
- Neural networks provide the ability to learn state space representations instead of hand-crafted engineering.
- Different architectures allow continuous state spaces and actions.
- Drawback: Slower to train, difficult to analyze.

References

- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.
- Pinto, L., & Gupta, A. (2016, May). Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours. In Robotics and Automation (ICRA), 2016 IEEE International Conference on (pp. 3406-3413). IEEE.
- Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). Endto-end training of deep visuomotor policies. Journal of Machine Learning Research, 17(39), 1-40.