Méthodes d'apprentissage IFT603 - 712

Concepts fondamentaux Par Pierre-Marc Jodoin

Apprentissage Automatique

Question : comment reconnaître des caractères manuscrits?

Réponse : Énumérer des règles?

- ➤ Une série de pixels alignés => '1'
- Une série de pixels en rond => '0'Etc.

Apprentissage Automatique

Question : comment reconnaître des caractères manuscrits?

Réponse : Énumérer des règles? NON!

> Généralise mal à tous les cas / 1 / / 1 1

Apprentissage Automatique Question: comment reconnaître des caractères manuscrits? Question: comment reconnaître des caractères manuscrits?

Apprentissage Automatique

Question : comment reconnaître des caractères manuscrits?

 $\pmb{R\acute{e}ponse}: Laisser \ l'ordinateur « \ \pmb{apprendre} \ » \ les \ r\grave{e}gles$

➤ Algorithmes d'apprentissage (machine learning)

Deux grandes approches

Apprentissage supervisé

Apprentissage non-supervisé.

Apprentissage supervisé

On fournit à l'algorithme des données d'entraînement

0001011

...et l'algorithme retourne une fonction capable de **généraliser** à de nouvelles données

/ 1 | 0 | 0 0 ? ? ? ? ? ? ? ?

7

Apprentissage supervisé

On fournit à l'algorithme des données d'entraînement

0000101111

On note l'ensemble d'entraînement

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

où $\vec{x}_i \in \Re^d$ est une **entrée** (donnée brute) et t_i est la **cible**

Objectif des algorithmes d'apprentissage

Partant d'un **ensemble d'entraînement:** $D = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2), ..., (\vec{x}_N, t_N)\}$

 $\vec{x}_i \in \Re^d$ donnée t_i cible associée à \vec{x}_i

le but est **d'apprendre** une function qui sache prédire t_i partant de \vec{x}_i

 $y_{\vec{w}}(\vec{x}_i) \rightarrow t_i$

où \vec{w} sont les **paramètres** du modèle

Apprentissage supervisé

Une fois le modèle $y_{\vec{w}}(\vec{x})$ entraîné, on utilise un **ensemble de test** D_{test} pour mesurer la performance du modèle en **généralisation.**

10

Deux grandes approches

Apprentissage supervisé

Apprentissage non-supervisé.

11

Apprentissage non supervisé

L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée

> Partitionnement de données / clustering

Apprentissage non supervisé

L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée

> Partitionnement de données / clustering

13

Apprentissage non supervisé

L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée

> Partitionnement de données / clustering

14

Apprentissage non supervisé

L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée

> Partitionnement de données / clustering

Apprentissage non supervisé

L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée

 \succ A souvent pour but d'apprendre une loi de probabilité p(x) dont les données sont issues

16

Apprentissage non supervisé

L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée

ightharpoonup A souvent pour but d'apprendre une loi de probabilité p(x) dont les données sont issues

Exemple : trouver 2 groupes d'étudiants suite à un examen

Apprentissage non supervisé

L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée

 \succ A souvent pour but d'apprendre une loi de probabilité p(x) dont les données sont issues

Autres applications

- Compression de fichiers
 Visualisation de données
 Segmentation d'images
 etc.

Supervisé vs non supervisé

Apprentissage supervisé : il y a une cible

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

Apprentissage non-supervisé: la cible n'est pas fournie

$$D = \left\{ \vec{x}_1, \vec{x}_2, \dots, \vec{x}_N \right\}$$

Apprentissage supervisé

Deux grandes familles d'applications

- ➤ Classification: la cible est un indice de classe t∈{1, ..., K}
 Exemple: reconnaissance de caractères
 ✓ x̄: vecteur des intensités de tous les pixels de l'image
 ✓ t: identité du caractère
- ➤ Régression : la cible est un nombre réel t ∈ R
 Exemple : prédiction de la valeur d'une action à la bourse
 ✓ X: vecteur contenant l'information sur l'activité économique de la journée
 ✓ t: valeur d'une action à la bourse le lendemain

Exemple simple de classification binaire

Exemple de base de données de classification

Inria person dataset

- 2 classes
- 20,252 images,
 - => 14,596 entraînement
 - => 5,656 test
- Chaque image est en RGB
 - =>64x128x3

On peut simplement **vectoriser ces images** et les représenter par des vecteurs de 64x128x3 = **9.984 dimensions**.

Exemple de base de données de classification Exemples, Cifar10 airplane automobile bird cat deer dog frog horse ship truck

Exemple de base de données de classification

Exemples, Cifar10

- 10 classes
- 60,000 images,
 - => 50,000 entraînement
 - => 10,000 test
- · Chaque image est RGB
 - => 32x32x3

On peut simplement **vectoriser ces images** et les représenter par des vecteurs de 32x32x3 = 3072 dimensions.

Exemple de base de données de classification

Exemple de base de données de classification

- 10 classes
- 70,000 images
 - => 60,000 entraînement
 - => 10,000 test
- Les images sont en niveaux de gris
 - =>28x28

On peut simplement **vectoriser ces images** et les représenter par des vecteurs de 28x28 = 784 dimensions.

Apprentissage supervisé Inria person dataset Espace à 9,984 dimensions Personne Personne Autre 36

Exemple formel: régression 1D

Régression 1D

Exemple simple: régression 1D

- > Données
 - ✓ entrée : scalaire *x* ✓ cible : scalaire *t*
- \triangleright Ensemble d'entraînement D contient:

$$\checkmark X = (x_1, \dots, x_N)^T$$

 $\checkmark T = (t_1, \dots, t_N)^T$

➤ Objectif:

 \vec{x} Faire une prédiction \hat{t} pour chaque nouvelle entrée \hat{x}

 $-y_{\bar{w}}(x)$

 $-y_{\bar{w}}(x)$

Régression polynomiale

 \succ On va supposer que nos données suivent une forme polynomiale

$$y_{\bar{w}}(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

= $\sum_{i=0}^{M} w_i x^i$

 $\triangleright y_{\bar{w}}(x)$ est notre **modèle**

✓ Représente nos hypothèses sur le problème à résoudre ✓ Un modèle a toujours des paramètres qu'on doit trouver (ici \vec{w})

Inconnues

$$y_{\bar{w}}(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

$$= \sum_{i=0}^{M} w_i x^i$$

Deux inconnus

$$M\in \mathbf{N}^{\geq 0}$$

Entraînement
$$y_{\vec{w}}(x) = w_0 + w_1 x + w_2 x^2 + ... + w_M x^M$$

$$= \sum_{l=0}^{M} w_l x^l$$
Deux inconnues
$$\vec{W} \in R^M$$

$$M \in N^{\geq 0}$$
Entraînement = trouver w (et parfois M) à partir de X et T

Régression polynomiale

➤ Une fois entraîné, un modèle prédit la cible d'une nouvelle entrée x à l'aide d'un bout de code comme celui-ci:

def predict(x,w):
 x_poly = x ** np.arange(len(w))
 return np.dot(x_poly,w)

- $\triangleright y_{\bar{w}}(x)$ est notre modèle

 - ✓ Représente nos hypothèses sur le problème à résoudre ✓ Un modèle a toujours des paramètres qu'on doit trouver (ici \vec{w})

Régression polynomiale

 \triangleright Connaissant M, comment trouver le bon \vec{w} ?

Le « meilleur » \vec{w} est celui qui minimise la somme de notre perte / erreur / coût sur les données d'entraînement

$$E_D(\vec{w}) = \sum_{n=1}^{N} (y_{\vec{w}}(x_n) - t_n)^2$$

➤ La solution à ce problème sera vue au chapitre 3.

$$\vec{w} = \arg\min_{\vec{w}} E_D(\vec{w})$$

Sur- et sous-apprentissage

➤ Comment trouver le bon M?

Le problème avec les hyper-paramètres est qu'ils ne **peuvent pas être estimés** à l'aide des **algorithmes d'optimisation classiques** (descente de gradient, méthode de Newton, etc.) comme pour les paramètres \vec{w} .

Par conséquent, on fixe souvent « à la main » les hyper-paramètres.

Mais attention, leur valeur influence grandement le résultat final.

46

Sur- et sous-apprentissage

➤ Comment trouver le bon *M*?

Un petit M donne un modèle trop simple causant du **sous-apprentissage**

Sur- et sous-apprentissage

➤ Comment trouver le bon M?

Un grand M donne un modèle qui « apprend par cœur » les données d'apprentissage ce qui cause du ${f sur-apprentissage}$

 $E_D(\vec{w}) \Rightarrow \text{TRÈS faible}$

 $E_{D_{lest}}(\vec{w}) \Longrightarrow \text{\'elev\'ee}$

Sur- et sous-apprentissage

➤ Comment trouver le bon *M*?

Idéalement, il faudrait une valeur intermédiaire de sorte que l'erreur d'entraînement et de test soient faibles.

 $E_D(\vec{w}) \Rightarrow \text{faible}$

 $E_{D_{lest}}(\vec{w}) \Rightarrow \text{faible}$

Sur- et sous-apprentissage

Plus la capacité est grande, plus la différence entre l'erreur d'entraînement et l'erreur de test augmente

v en régression, l'erreur sur tout un ensemble est souvent
mesurée par la racine de la moyenne des erreurs au carré
(root-mean-square error)

$$E_{RMS} = \sqrt{\frac{E(\vec{w})}{N}}$$

Généralisation

Plus la quantité de données d'entraînement augmente, plus le modèle entraîné va bien généraliser

Régularisation

Valeurs apprise des paramètres \vec{w} pour différents M sans régularisation

	M = 0	M = 1	M = 3	M = 9
w_0	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_{q}				125201.43

Régularisation

Lorsqu'on souhaite éviter qu'on modèle sur-apprenne

- 1. On choisi un petit « M »
- 2. On réduit la capacité du modèle par régularisation

Constante qui contrôle la capacité Exemple : on pénalise la somme du carré des paramètres

$$E_{D}(\vec{w}) = \sum_{n=1}^{N} (t_{n} - y_{\bar{w}}(\vec{x}))^{2} + \lambda ||\vec{w}||^{2}$$
$$||\vec{w}||^{2} = \vec{w}^{\mathsf{T}} \vec{w} = w_{0}^{2} + w_{1}^{2} + \dots + w_{M}^{2}$$

$$\|\vec{w}\|^2 = \vec{w}^T \vec{w} = w_0^2 + w_1^2 + ... + w_M^2$$

Régularisation

Forte régularisation = modèle moins flexible

On peut également sur- et sousapprendre en classification

$$\begin{split} E_D(\vec{w}) &= \sum_{n=1}^N (y_{\vec{w}}(x_n) - t_n)^2 + \lambda \|\vec{w}\|^2 \\ \|\vec{w}\|^2 &= \vec{w}^T \vec{w} = w_0^2 + w_1^2 + \dots + w_M^2 \end{split}$$

Sélection de modèle

Comment trouver les bons hyper-paramètres?

M et λ

59

Sélection de modèle

Comment trouver le bon M et le bon λ ?

- Très mauvaise solution : choisir au hasard
- Mauvaise solution: prendre plusieurs paires (M, λ) et garder celle dont l'erreur d'entraînement est la plus faible
 Sur-apprentissage
- Mauvaise solution : prendre plusieurs paires (M, λ) et garder celle dont l'erreur de test est la plus faible
 - $\triangleright D_{test}$ ne doit pas être utilisé pour entraı̂ner le modèle
- Bonne solution: prendre plusieurs paires (M, λ) et garder celle dont <u>l'erreur de validation</u> est la plus faible

Validation croisée (cross-validation) 1- Diviser au hasard les données d'entraînement en 2 groupes Données étiquetées 100% D_{train} D_{valid} 80% 20% 2- Pour M allant de M_{min} à M_{max} Pour λ allant de λ_{min} à λ_{max} Entraîner le modèle sur D_{train} Calculer l'erreur sur D_{valid} 3- Garder la paire (M, λ) dont <u>l'erreur de validation</u> est la plus faible

En résumé, un algorithme d'apprentissage

- ✓ entraîne un modèle à partir d'un ensemble d'entraînement, pouvant faire des prédictions sur de nouvelles données
- √ a des hyper-paramètres qui contrôlent la capacité du modèle entraîné, choisis à l'aide d'une procédure de sélection de modèle
- \checkmark mesure sa performance de généralisation sur un ensemble de test
- ✓ Aura une meilleure performance de généralisation si la quantité de données d'entraînement augmente
- ✓ Peut souffrir de sous-apprentissage (pas assez de capacité) ou de sur-apprentissage (trop de capacité)

64

Bien que nous n'ayons pas encore vu les algorithmes permettant de faire de la régression, vous pouvez déjà en explorer les tenants et les aboutissants avec sklearn et la fonction « Ridge ».

scikit-learn.org/stable/modules/generated/sklearn.linear model.Ridge.html scikit-learn.org/stable/auto examples/linear model/plot polynomial interpolation.html

