Airy function: Kawai+Takei vs. Mariño

Aaron Fenyes

April 4, 2022

Kawai and Takei want to solve

$$\left[\left(\frac{d}{dx} \right)^2 - \eta^2 x \right] \psi(x, \eta) = 0.$$

They define $\psi_B(x,y)$ as the inverse Laplace transform of $\psi(x,\eta)$ with respect to η .

With $w = x\eta^{2/3}$, the equation above is equivalent to

$$\left[\left(\frac{d}{dw} \right)^2 - w \right] \psi(w\eta^{-2/3}, \eta) = 0.$$

Proof: substitute back to get

$$\left[\eta^{-4/3} \left(\frac{d}{dx}\right)^2 - \eta^{2/3} x\right] \psi(x,\eta) = 0$$

$$\left[\eta^{-4/3} \left(\frac{d}{dx}\right)^2 - \eta^{-4/3} \eta^2 x\right] \psi(x,\eta) = 0$$

$$\eta^{-4/3} \left[\left(\frac{d}{dx}\right)^2 - \eta^2 x\right] \psi(x,\eta) = 0.$$

Hence, $\psi(w\eta^{-2/3},\eta)=k(\eta)\operatorname{Ai}(w)$ is a solution for any holomorphic function k.