

## Questions I'm going to try to answer

- What is a container and how is it different than a virtual machine?
- Why are containers useful?
- How do I set up a container on my own computer or on a supercomputer, and how can I interact with it? (Demo/interactive part!)
- How do I set up a container to use with VSCode?
- What is Singularity, how is it different than Docker, and how do I move from one to the other?
- How do I use Singularity on a supercomputer?

#### What is a container?

- A tool that allows developers to package and execute an application in a software environment that is <u>consistent</u> and (mostly) <u>isolated</u> from the underlying system and from other processes/containers on that system.
- It has its own OS, software stack, supporting data, and internal directory structure, but still communicates <u>directly</u> with the system hardware.
- It has less overhead/requires fewer resources than a virtual machine, which typically emulates hardware as well as software and has much tighter constraints on its behavior (both are useful, but in different circumstances!)
- Docker is a widely-used open-source containerization platform, but there are several alternatives! (e.g., Podman, LXC, Buildah)





Image from a very useful blog post: https://www.backblaze.com/blog/vm-vs-containers/

# When might you use a container?

- When your software has lots of very specific dependencies (i.e., needs specific versions of libraries)
- When your software is challenging to run on your operating system of choice (e.g., Charm++ on OS X)
- When you want to experiment with new Linux versions, compilers, libraries, applications, etc. without messing up your existing setup.
- When you have too many versions of some program/library/header file on your system and want to isolate your application so it can only use one.
- When you are annoyed with OS/XCode/MacPorts upgrades breaking your Enzo(-E)/Kokkos/etc. installation AGAIN
- When you want to run a bunch of different versions of something (e.g., the same code with different compilation options or using different compilers) for some reason and want them to be independent of each other.

#### How do I use Docker?

- 1. Download and install Docker (at docker.com)
- 2. Go into the FOGGIE repository (to foggie/containers\_tutorial)
- 3. Look at the README.md file!
- 4. Follow along!

(This is the interactive part!)

## Using Docker with VS Code

- It's really easy!
- Install Docker (or figure out where it's installed on a remote machine)
- Install the VS Code Docker Extension
- You can then do any of the following:
  - Use the VSCode Containers tutorial (<a href="https://code.visualstudio.com/docs/devcontainers/tutorial">https://code.visualstudio.com/docs/devcontainers/tutorial</a>) and try an example development container
  - Open an existing folder/project on your machine or a remote machine in a container (using either a base Dev Container template or a custom Dockerfile)
  - Open a Git repository in an isolated container volume

See <a href="https://code.visualstudio.com/docs/devcontainers/containers">https://code.visualstudio.com/docs/devcontainers/containers</a>

and <a href="https://www.youtube.com/watch?v=bUhjY2L1iFc">https://www.youtube.com/watch?v=bUhjY2L1iFc</a> for more info

### Singularity and Rodman - Docker, but for supercomputers!

- Docker requires root access, which is not typically possible on supercomputers (for good reasons)
- Singularity (<a href="https://sylabs.io/">https://sylabs.io/</a>) and Podman (<a href="https://podman.io/">https://podman.io/</a>) are container environment that works on supercomputers. Singularity is supported by the DOE Exascale Computing Project (among others). It supports MPI across multiple cores+nodes and MPI+GPUs (which Docker does as well!). Podman supports most of this as well, but not on Pleiades!
- You can use Dockerfiles to create Singularity and Podman images very easily, and there are tons of Singularity and Rodman images available as well (see, e.g., <a href="https://e4s.io/">https://e4s.io/</a> for Singularity).
- See DOCKER\_NOTES.md and links to resources within that for examples of how to use these tools!