# Estimation and hypothesis testing

Gianluca Campanella

#### **Contents**

Estimation

Hypothesis testing

#### **Inference**

# Desire to generalise

from a random sample to a population (from which the sample was selected)

- Estimation (including uncertainty quantification)
- Hypothesis testing

## **Estimation**

### Population and sample

#### **Population**

The entire collection of units possessing one or more characteristics we wish to understand (depends on the research question)

#### Sample

A representative subset of units for which we collect information (known as observations) that is then used to estimate one or more characteristics of the whole population

### Sampling

If we draw two samples from the same population, will we always reach the same conclusions?

### Sampling

If we draw two samples from the same population, will we always reach the same conclusions?

### No!

- Sampling variability introduces uncertainty in our estimates
- What happens if we repeat the experiment over and over again?

#### **Estimation**

#### **Point estimation**

One value summarises the characteristic of interest

#### **Interval estimation**

Two values (an interval), usually together with a point estimate, summarise the characteristic of interest and the uncertainty around the estimate

### Quantifying uncertainty: confidence intervals

- Observed (may change from sample to sample)
- Defined such that, were the sampling repeated multiple times, the proportion of CIs that contain the population-level value would match a certain frequency known as confidence level (Note that there is no such thing as the 'probability of containing the population-level value' within any given confidence interval)
- 95% or 99% confidence levels are typical

**Hypothesis testing** 

#### Scenario

- Rothamsted, early 1920s
- Given a cup of tea, a lady claims she can tell whether milk or tea was first added to the cup

#### Question

How would you design an experiment to test her claim?

#### **Scenario**

- To test her claim, Sir Fisher prepares eight cups of tea:
  - Four have the milk added first
  - Four have the tea added first
- The lady performs the experiment by selecting 4 cups (e.g. those she believes had tea poured first)

#### Question

How many cups does she have to correctly identify to convince you?

#### Questions

- How many ways are there to choose 4 cups out of 8?
  (Hint: check scipy.misc.comb or sympy.binomial)
- Of these, how many correspond to correctly identifying...
  - All 4 cups?
  - 3 cups only?

#### Question

The lady correctly identifies all 4 cups. What can Sir Fisher conclude?

- She has no ability, and has chosen the 4 cups purely by chance
- She has the discriminatory ability she claims

Choosing correctly is unlikely in the first case (1 in 70), so Sir Fisher rejected this conclusion in favour of the second

### A/B testing

|               | Cancelled |        | Total |
|---------------|-----------|--------|-------|
| Old packaging | 175       | 39.59% | 442   |
| New packaging | 168       | 38.27% | 439   |

#### Question

Does the new, nicer, more expensive packaging make customers less likely to cancel their subscriptions?

### A/B testing

#### Read the blog post at

https://www.candyjapan.com/behind-the-scenes/ results-from-box-design-ab-test

### Hypothesis testing

- 1. Simplify the question into two competing claims:
  - Null hypothesis *H*<sub>0</sub>
  - Alternative hypothesis H<sub>1</sub>
- 2. Outcome of hypothesis testing is either:
  - 'Reject  $H_0$ ' (in favour of  $H_1$ )
  - 'Do not reject  $H_0$ '
- $H_0$  is usually the hypothesis we wish to disprove
- The test is set up so that it cannot be rejected unless there is sufficient evidence against it

### Absence of evidence is not evidence of absence

If we conclude 'do not reject  $H_0$ ', does it mean  $H_0$  is true?

#### Absence of evidence is not evidence of absence

If we conclude 'do not reject  $H_0$ ', does it mean  $H_0$  is true?

### No!

- It only means that there isn't sufficient evidence against  $H_0$
- $\rightarrow$  The study is inconclusive

### Hypothesis testing step-by-step

- 1. Choose an appropriate statistical test
- 2. Select a significance level  $\alpha$  (i.e. the probability below which you will reject  $H_0$ )
- 3. Conduct the experiment and record its outcome
- 4. Calculate the p-value (i.e. the probability of observing something as or more extreme than the outcome supposing that  $H_0$  is true)
- 5. If  $p < \alpha$ , conclude: ' $H_0$  is rejected at significance level  $\alpha$ ' (the result is 'statistically significant')

### What is the significance level $\alpha$ ?

#### A probability threshold below which:

- The outcome of the test will be deemed 'too large' to have occurred under H<sub>0</sub> (i.e. by chance)
- $H_0$  will be deemed unlikely given the data
- $\rightarrow$   $H_0$  will be rejected

### What is the significance level $\alpha$ ?



 $\rightarrow \alpha$  corresponds to the probability of a 'type I error' (false positive) that we are willing to accept

#### Question

You are conducting n independent tests at some significance level  $\alpha$ . What is the probability of at least one false positive finding?

 $\bullet$  The probability of a FP in any one test is  $\alpha$ 

#### Question

You are conducting n independent tests at some significance level  $\alpha$ . What is the probability of at least one false positive finding?

- ullet The probability of a FP in any one test is  $\alpha$
- ullet The probability of no FP in any one test is 1-lpha

#### Question

You are conducting n independent tests at some significance level  $\alpha$ . What is the probability of at least one false positive finding?

- ullet The probability of a FP in any one test is  $\alpha$
- The probability of no FP in any one test is  $1-\alpha$
- The probability of no FPs overall is  $(1 \alpha)^n$

#### Question

You are conducting n independent tests at some significance level  $\alpha$ . What is the probability of at least one false positive finding?

- ullet The probability of a FP in any one test is  $\alpha$
- ullet The probability of no FP in any one test is  $1-\alpha$
- The probability of no FPs overall is  $(1 \alpha)^n$
- The probability of at least one FP is  $1 (1 \alpha)^n$

#### Question

For  $\alpha = 5\%$  and n = 100 tests, what is the probability of FP  $\geq 1$ ?

#### Question

For  $\alpha = 5\%$  and n = 100 tests, what is the probability of FP  $\geq 1$ ?

Using the previous formula...

$$1 - (1 - 0.05)^{100} \approx 0.994$$
,

which means we are 99.4% likely to have at least one FP!

### **Bonferroni** correction

- Idea: require more evidence to reject  $H_0$
- Using  $\alpha' = \alpha/n$ , the 'overall' significance level (family-wise error rate) is approximately what we intended

In the previous example...

$$\alpha' = 0.05/100 = 0.0005$$

Substituting back...

$$1 - (1 - 0.0005)^{100} \approx 0.05$$