1.阵列接收信号模型

声学成像设置多个探测的平面区域,并将每个平面区域划分为网格。具体模型如图 1 所示。

图 1 麦克风阵列扫描平面示意图

其中,麦克风阵列上总共有M个麦克风,并且将扫描平面划分为 $N \times N$ 个网格,所以扫描平面一共有 $(N+1)^2$ 个网格点。

选取某一个空间参考点,以该空间参考点作为坐标原点,建立三维笛卡尔坐标系,那么 第*m*个麦克风的三维坐标可以表示为

$$\mathbf{p}_m = [p_{mx}, p_{my}, p_{mz}]^T, m = 1, ..., M$$
 (1.1)

某个扫描平面上, 网格点的坐标可以表示为

$$\mathbf{g}_n = [g_{nx}, g_{ny}, g_{nz}]^T, n = 1, \dots, (N+1)^2$$
(1.2)

一般情况下,对于均匀阵列选择麦克风阵列的中心点作为参考点,麦克风分布在参考点 所在的x-y平面内,z轴穿过扫描平面的中心,并垂直于扫描平面,参考点即

$$\sum_{m=1}^{M} \boldsymbol{p}_{m} = \mathbf{0} \tag{1.3}$$

假设声源在麦克风阵列的远场范围,声波在空间中以平面波的形式在空间中传播,定义距离 d_n 为扫描平面上第n个网格点到空间参考点的距离, d_{nm} 为扫描平面上第n个网格点到第m个麦克风的距离。

$$d_n = \sqrt{g_{nx}^2 + g_{ny}^2 + g_{nz}^2} (1.4)$$

$$d_{nm} = \sqrt{(g_{nx} - p_{mx})^2 + (g_{ny} - p_{my})^2 + (g_{ny} - p_{my})^2}$$
(1.5)

在麦克风阵列的远场假设下,各个麦克风阵元接受信号都是入射信号的延迟信号。某麦克风阵元接收信号相对于参考点信号的时间延迟与 d_{nm} 和 d_n 之间的差值有关。假设在空气中

的声速为c,则定义时间延迟

$$\tau_{nm} = (d_{nm} - d_n)/c \tag{1.6}$$

当τ为负数时,表明麦克风接收信号提前到达,当τ为正数时,表明麦克风接收信号延后 到达。

假设只有一个点声源位于网格点n,在参考点接收的来自网格点n的信号波形为s(t),那么第m个麦克风所接收来自网格点n的信号波形为 $s_m(t)=s(t-\tau_{nm})$,对信号进行傅里叶变换可得

$$S_m(\omega) = S(\omega) e^{-j\omega\tau_{nm}} \tag{1.7}$$

其中 $S(\omega)$ 表示信号s(t)经过傅里叶变换后的结果,也就是信号s(t)的频谱。

将各个麦克风阵元接收的信号写成维度为M×1的列向量的形式为

$$\mathbf{x}_{s}(t) = [s_{1}(t), ..., s_{m}(t), ..., s_{M}(t)]^{T}$$
(1.8)

定义阵列的导向向量

$$\boldsymbol{a}_n = [e^{-j\omega\tau_{n1}}, \dots, e^{-j\omega\tau_{nm}}, \dots, e^{-j\omega\tau_{nM}}]^T \tag{1.9}$$

因此可得出麦克风阵列接受信号 $x_s(t)$ 的频谱 $X_s(\omega)$ 可以表示为

$$X_{s}(\omega) = a_{n}S(\omega) \tag{1.10}$$

若我们将噪声考虑在内,那么各个麦克风阵元接收的信号由式(1.8)变为

$$\mathbf{x}(t) = [s_1(t) + n_1(t), \dots, s_m(t) + n_m(t), \dots, s_M(t) + n_M(t)]^T$$
(1.11)

式(1.11)经过傅里叶变换后为

$$X(\omega) = a_n S(\omega) + N(\omega) \tag{1.12}$$

其中 $N(\omega)$ 为噪声的频谱,是由 $[n_1(t),...,n_m(t),...,n_M(t)]^T$ 经过傅里叶变换后的到的。

最后, 阵列接收数据可以协方差矩阵和维度为M×M的交叉谱矩阵

$$\mathbf{R}_{x} = E[\mathbf{x}\mathbf{x}^{H}] \tag{1.13}$$

$$CSM(\omega) = E[X(\omega)X^{H}(\omega)]$$
 (1.14)

2.1 空域匹配滤波波束形成

空域匹配滤波波束形成的权重向量为

$$\mathbf{w} = \mathbf{a}_{n_0} / M \tag{2.1}$$

其中 n_0 表示波束观察网格点。

空域匹配滤波波束形成的输出功率谱为

$$\sigma^2 = \mathbf{w}^H \mathbf{R}_x \mathbf{w} = \mathbf{a}_{n_0}^H \mathbf{R}_x \mathbf{a}_{n_0} / M^2 \tag{2.2}$$

2.2 MVDR 波束形成

根据式 (1.12) 和式 (1.13) 可得:

$$\mathbf{R}_{x} = \mathbf{R}_{s} + \mathbf{R}_{n} \tag{2.3}$$

其中 \mathbf{R}_s 为期望信号的协方差矩阵, \mathbf{R}_n 为噪声的协方差矩阵。

MVDR 波束形成器的目的是要让它对感兴趣的方位的信号能够无失真地输出,而同时能够使噪声的方差最小。即

$$\min(\mathbf{w}^H \mathbf{R}_n \mathbf{w}) \ s.t. \mathbf{w}^H \mathbf{a}_n = 1 \tag{2.4}$$

通过拉格朗日乘子解法可得

$$\mathbf{w} = \frac{\mathbf{R}_x^{-1} \mathbf{a}_n}{\mathbf{a}_n^H \mathbf{R}_x^{-1} \mathbf{a}_n} \tag{2.5}$$

MVDR 波束形成的输出功率谱为

$$\sigma^2 = \mathbf{w}^H \mathbf{R}_{x} \mathbf{w} = \frac{1}{\mathbf{a}_n^H \mathbf{R}_{x}^{-1} \mathbf{a}_n}$$
 (2.6)

3 阵列性能比较

波束响应是指波束形成器对某个方向的单位功率的平面波信号的响应,可以反映波束形成器的空间响应特性,并且表示阵列对于不同方位到达信号的复增益。

阵列的波束响应B(n)有

$$B(n) = \mathbf{w}^H \mathbf{a}_n \tag{3.1}$$

将波束响应化为以分贝为单位的形式

$$B_{dB}(n) = 20log_{10}|B(n)| (3.2)$$

首先采用空域匹配滤波波束形成器来计算波束响应,即选择式(2.1)作为权重向量 当n取 n_0 ,即求阵列对于观察网格点的波束响应时,把 n_0 代入式(2.2)得

$$B(n_0) = \mathbf{a}_{n_0}^H \mathbf{a}_{n_0} / M = 1 \tag{3.3}$$

所以在采用空域匹配滤波波束形成的权重向量时,观察网格点的波束响应 $B_{dB}(n_0)=0~dB$ 。

均匀十字阵

设计参数: 麦克风阵元数M, 阵元间距d, 其中 $M = 4\alpha + 1$, $\alpha = 1,2,3,...$ 。

十字阵的中心阵元坐标为(0,0,0),每个支臂上的阵元数为 $\frac{M-1}{4}$,上支臂的阵元坐标 $\boldsymbol{p}_m=[0,(m-1)d,0]^T,m=2,...,\frac{M+3}{4}$, 右 支 臂 的 阵 元 坐 标 $\boldsymbol{p}_m=[\left(m-\frac{M+3}{4}\right)d,0,0]^T,m=\frac{M+7}{4}$,..., $\frac{M+1}{2}$,下支臂的阵元坐标 $\boldsymbol{p}_m=[0,\left(m-\frac{M+1}{2}\right)d,0]^T,m=\frac{M+3}{2}$,..., $\frac{3M+1}{4}$,左支臂的阵元坐标 $\boldsymbol{p}_m=[\left(m-\frac{3M+1}{4}\right)d,0,0]$, $m=\frac{3M+5}{4}$,...,M

均匀圆阵

设计参数: 麦克风阵元数M. 阵元间距d。

圆阵的中心阵元坐标为(0,0,0),每个麦克风间的夹角 $\theta=\frac{2\pi}{M-1}$,根据几何关系可得圆周的半径 $r=\frac{d}{2\sin{(\theta/2)}}$,阵元坐标表示为

$$\boldsymbol{p}_m = [r \times \cos{((m-1) \times \theta)}, r \times \sin{((m-1) \times \theta)}, 0]^T, m = 1, \dots, M-1_{\circ}$$

均匀矩形阵

设计参数: 麦克风阵元数M, 阵元间距d, 其中 $M = \alpha^2$, $\alpha = 1,2,3,...$ 。

将阵列中第 m_r 行第 m_c 列的阵元编号为 (m_r, m_c) ,其中 $m_r, m_c = 1, 2, ..., \sqrt{M}$ 。

阵元的坐标可以表示为
$$p_{m_rm_c}=[(m_c-rac{\sqrt{M}+1}{2})d,(m_r-rac{\sqrt{M}+1}{2})d,0]^T$$

由此可得阵列流形向量中阵元 (m_r, m_c) 的阵列接收响应为

$$e^{-j(-\omega sin\varphi cos\ (m_c-\frac{\sqrt{M}+1}{2})d-\omega sin\varphi sin\ (m_r-\frac{\sqrt{M}+1}{2})d)/c}$$

阿基米德螺旋阵

设计参数:麦克风阵元数M,最大半径 r_{max} ,最小半径 r_{min} ,螺旋转动的幅度 φ 阵元的分布位置的极坐标计算公式为

$$\theta_m = \frac{(m-1)\varphi}{M-1} \tag{3.4}$$

$$r_m = r_{min} + \frac{r_{max} - r_{min}}{\varphi} \theta_m \tag{3.5}$$

Dougherty 对数螺旋阵

设计参数:麦克风阵元数M,最大半径 r_{max} ,最小半径 r_{min} ,螺旋切线与半径夹角v阵元的分布位置的极坐标计算公式为

$$\theta_{m} = \frac{1}{\cot(v)} \ln\left(1 + \frac{\cot(v)l_{m}}{r_{min}\sqrt{1 + \cot^{2}(v)}}\right)$$

$$r_{m} = r_{min}e^{\cot(v)\theta_{m}}$$
(3.6)

$$r_m = r_{min} e^{\cot(v)\theta_m} \tag{3.7}$$

其中

$$l_m = \frac{(m-1)r_{min}\sqrt{1+\cot^2(v)}}{(M-1)\cot(v)}$$
(3.8)

Underbrink 多臂螺旋阵

设计参数: 最大半径 r_{max} , 最小半径 r_{min} , 螺旋切线与半径夹角v, 螺旋臂的数目为 N_{arm} , 每个螺旋臂上的麦克风数为 M_{arm} 。

在 Underbrink 多臂螺旋阵中, r_{am} 表示第a个螺旋臂上的第m个麦克风, a = $1,2,...,N_{arm},m=1,2,...,M_{arm},$ 每个螺旋臂上的第一个阵元的半径为 r_{min} ,即

$$r_{1m} = r_{min} \tag{3.9}$$

当 $a = 2,3,...,N_{arm}$ 时,阵元的极坐标为

$$r_{am} = \sqrt{\frac{2m-3}{2N_{arm}-3}} r_{max} \tag{3.10}$$

$$\theta_{am} = \frac{\ln{(r_{am}/r_{min})}}{\cot{(v)}} + \frac{2\pi(n-1)}{N_{arm}} r_{min}$$
 (3.11)

获得了阵元的极坐标后, 可得阵元的笛卡尔坐标为

 $\boldsymbol{p}_m = [r_m \cos(\theta_m), r_m \sin(\theta_m), 0]^T, m = 1, ..., M - 1_{\circ}$

仿真实验条件:

扫描频率: 2000Hz

扫描平面尺寸: 4m×4m (角度范围为127°)

扫描平面距离阵列距离: 2m

扫描平面网格点划分: 101×101

定义:

半功率束宽(-3dB 束宽): 波束主瓣功率分别在 \times 轴和 \times 轴上下降到-3dB前的最远的两个网格点之间的距离的平均值。

旁瓣级: 最高旁瓣值与期望方向主旁瓣值的差。

3.1 保持阵元间距不变

3.1 体行阵兀凹此个党				
阵列	均匀圆阵	均匀十字阵	均匀矩形阵	
阵元数	25	25	25	
阵元间距	0.05m	0.05m	0.05m	
阵列图	0.2 0.15 0.1 0.05 0.005 0	0.3 0.2 0.1 0 0.1 0.2 0.3 X(m)	0.10 0.08 0.06 0.04 0.02 0.02 0.02 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.08 0.01 0.05 0.1 0.05 0.1	
波束图	X(m) 2 2 Y(m)	(g) -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	Beam Response (B) 10 20 2 4 4 4 4 Y(m)	
波束图截面	Section of Beam Pattern -5 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	Section of Beam Pattern 1	Section of Beam Pattern 5-5-10-10-10-10-10-10-10-10-10-10-10-10-10-	

-3dB 束宽	0.64m	0.64m	1.28m
旁瓣级	-9.20dB	-5.27dB	-12.90dB

均匀圆阵 阵元数: 25 间距: 0.05*m*

-3dB 带宽为**0**.64*m*

十字阵

阵元数: 25 间距: 0.05*m*

-3dB 带宽为**0**.64m

均匀方阵 阵元数: 25 间距: 0.05*m*

-3dB 带宽为1.28m

3.2 保持阵列孔径不变

均匀圆阵 阵元数: 65 间距: 0.049*m*

Beam Pattern

-3dB 带宽为**0.16**m

十字阵

阵元数: 65

间距: 0.0625m

-3dB 带宽为**0.16**m

Archimedean 螺旋阵

阵元数: 65 旋转角: 11π/2 最小半径: 0.1m 最大半径: 0.5m

-3dB 带宽为**0.32**m Dougherty 螺旋阵

阵元数: 65

旋转角: 15π/32 最小半径: 0.1m 最大半径: 0.5m

-3dB 带宽为**0.32**m

Underbrink 多臂螺旋阵

阵元数: $65(8 \times 8)$ 旋转角: $5\pi/16$ 最小半径: 0.1m 最大半径: 0.5m

-3dB 带宽为**0.32**m