

Algorithms

An <u>algorithm</u> is a finite sequence of precise instructions for performing a computation or for solving a problem.

Algorithms will be described in "pseudocode"

➤ provides an intermediate step between an English language description of an algorithm and an implementation of this algorithm in a programming language

Algorithms – Maximum Element

Task: Find the largest element in a finite sequence

Example: Given the sequence {1, 3, 12, 8, 2, 47, 58, 54, 7} return 58

procedure
$$\max(a_1, a_2, \ldots, a_n)$$

•
$$\max := a_1$$

for
$$i := 2$$
 to n

if
$$\max < a_i$$
 then $\max := a_i$

return max

- 1. Initialize temporary max to the 1st term in the sequence
- 2. Compare the 2nd term in sequence to max. If it's larger, set max to this integer
- 3. Repeat previous step if there are more terms in sequence
- 4. Stop when there are no more terms.

Algorithms – Properties

Input: An algorithm has inputs from a particular set.

Output: From each set of inputs, the algorithm produces outputs. The outputs are the solution to the problem.

Definiteness: The steps in the algorithm are defined precisely.

Correctness: The algorithm should produce the correct output for each set of inputs.

Finiteness: An algorithm should terminate in finite time.

Generality: An algorithm should be applicable for all problems of the desired form.

Why do we care? — Algorithms perform computations and / or solve problems.

➤ We would like to know how efficiently they can solve these problems.

Different measures of efficiency:

- How long does it take to run? (time complexity)
- How much memory does it require? (space complexity)

"Time Complexity"

- Different computers run at different speeds.
- Instead we focus on the number of operations needed.
 - e.g. comparisons, additions, multiplications, etc...

Task: Find a solution that minimizes or maximizes some parameter.

Applications:

- Finding a route between cities that minimizes distance
- Encode a message using the fewest bits possible

Greedy Algorithms select the locally optimal choice at each step, the goal is global optimization.

Not guaranteed to find the overall optimal solution... must check after a solution has been found.

Task: Consider making *n* cents change with quarters, dimes, nickels, and pennies, using the least total amount of coins.

Example: Suppose we want to make change for 67 cents.

Task: Consider making n cents change with quarters, dimes, nickels, and pennies, using the least total amount of coins.

Let $c_1 > c_2 > \cdots > c_r$ denote coin denominations

$$\begin{aligned} \textbf{procedure} & \text{Change}(c_1, c_2, \dots, c_r) \\ & \textbf{for } i := 1 \textbf{ to } r \\ & d_i := 0 \\ & \textbf{while } n \geq c_i \\ & d_i := d_i + 1 \\ & n := n - c_i \end{aligned} \qquad \text{\# add one coin of denom. } c_i$$

Fact: The number of coins used to make n cents using quarters, dimes, nickels, and pennies in the previous algorithm is optimal.

Fact: If we only used quarters, dimes, and pennies (and no nickels) then the algorithm would not produce an optimal solution

Example: Suppose we wanted to make change for 30 cents using only quarters, dimes, and pennies

Our algorithm would use 1 quarter (25 cents) and 5 pennies (5 cents) for a total of 6 coins used

But a more optimal solution would be to use 3 dimes

Task: Given a number N, find the largest Decent Number with N digits. If no such number exists, return -1.

A **Decent Number** is a number that includes only 3's and 5's:

- 1. The number of 3's is divisible by 5
- 2. The number of 5's is divisible by 3

Examples:

- The largest 3-Digit Decent Number is 555
- The largest 5-Digit Decent Number is 33333
- The largest 8-Digit Decent Number is 55533333

Algorithms – Linear Search

Task: Find the location of an element in a list or determine that the desired element is not in the list.

Example: Find 34 in the sequence {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89}

procedure LinearSearch
$$(x, a_1, a_2, \dots, a_n)$$

$$i := 1$$

while
$$(i \le n \text{ and } x \ne a_i)$$

$$i := i + 1$$

if $i \le n$ then location := i

else
$$location := -1$$

return location

- 1. Compare x with a_1 . If $x=a_1$, the solution is the location of a_1 (namely 1)
- 2. When $x \neq a_1$, compare x with a_2 .
- 3. Continue comparing x successively with each term on the list until a match is found.
- 4. If entire list is searched without locating x, return 0.

Algorithm Complexity – Linear Search

Example: What is the time complexity of a linear search?

Typical Strategy: Count the most common or expensive operation.

```
def LinearSearch (x, a):
   i = 0
   while (i < len(a) and x!=a[i]):
       i = i+1
   if (i < len(a)):
       location = i
   else:
       location = -1
   return (location)
```

Worst Case Scenario:

In the while loop

- i < len(a) +n
- > x != a[i] +n

One final check to leave the while loop

- ▶ i < len(a) +1
- If statement
- ➤ i < len(a) +1</pre>

Total Comparisons: n+n+1+1=2n+2

Algorithms – Binary Search

Task: Find the location of an element in a list or determine that the desired element is not in the list.

Example: Find 34 in the sequence {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89}

```
procedure BinarySearch(x, a_1, a_2, \dots, a_n)
```

- i := 1 # i is left endpoint of search interval
- j := n # j is right endpoint of search interval

while i < j

 $m := \lfloor (i+j)/2 \rfloor$ # m is index of largest in left list

if
$$x > a_m$$
 then $i := m + 1$, else $j := m$

if $x = a_i$ then location := i, else location := -1

return location

- 1. Cut list in half.
- 2. Compare *x* with last term in first half of list.
- 3. If x is larger, x must be in second half of list (assuming it's in list).
- 4. Repeat
- 5. If entire list is searched without locating *x*, return 0.

Algorithms – Binary Search

Task: Find the location of an element in a list or determine that the desired element is not in the list.

Example: Find 34 in the sequence {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89}

Algorithm Complexity – Binary Search

21 = 2 K-1

Example: What is the time complexity of a binary search?

Worst case scenario.

```
def BinarySearch (x, a):
    location = -1
    left = 1; right = N
    while (left < right):</pre>
        large_left = [(left+right)/2]
        if (x > a[large_left]):
            left = large left + 1
        else:
            right = large left
    if (x==a[left]): location = left
    return (location)
```

• Assume that # elements $n=2^k$ where k is some integer

Make the first cut

> two lists that are 2^{k-1} in length • $\frac{2^{k-1}}{2!} = 2^{k-1-1}$

Make the second cut

 \triangleright two lists that are 2^{k-2} in length

 $n = 2^{k}$ $\log_2 n = \log_2 2^{k}$

Make the k-th cut

 \triangleright remaining "list" is $2^{k-k} = 2^0 = 1$ in length

 $= K \log_2 2$

After maximum of k steps, check that we should really leave the while loop +1

Check x == a[left] +1

Total Comparisons: $k + 2 = \log_2 n + 2$

Question: Which is more efficient: Linear Search at 2n+2 or Binary Search at $2\log_2 n+2$?

- Both of the previous complexity counts were for the worst-case scenario.
- There's a good chance that in practice, they would finish much faster.
- Instead, we can try to calculate the average-case complexity.

Example: What is the average time complexity of a linear search?

```
If x is the first element in the list
                                                > 0 < len(a)
                                                                +1
                                                                                       3 comparisons
                                                \rightarrow x != a[0]
                                                                +1
                                                > i<len(a)
                                                                +1
def LinearSearch (x, a):
     i = 0
                                                If x is the second element in the list
    while (i < len(a) and x!=a[i]):
                                                > 0 < len(a)
                                                                +1
                                                \rightarrow x != a[0]
                                                                +1
          i = i+1
                                                > 1 < len(a)
                                                                                       5 comparisons
                                                                +1
     if (i < len(a)):
                                                \rightarrow x != a[1]
                                                                +1
                                                > i<len(a)
          location = i
                                                                +1
    else:
                                                If x is the third element in the list
          location = -1
                                                                                       7 comparisons
    return (location)
                                                If x is the n-th element in the list.
```

Example (continued): What is the average time complexity of a linear search?

Algorithms – Sorting

Task: Given an unordered list of elements, organize them according to some notion of order.

e.g. Alphabetizing

- Ordering a list can be the goal in_and_ of itself.
- Ordering a list can make other tasks easier.

Algorithms – Bubble Sort

Task: Given an unordered list of elements, organize them according to some notion of order.

Example: Sort the list {3, 2, 4, 1, 5}

procedure BubbleSort
$$(a_1, a_2, \dots, a_n)$$

for
$$i := 1$$
 to $n - 1$

for
$$j := 1$$
 to $n - i$

if $a_j > a_{j+1}$ then interchange a_j and a_{j+1}

- 1. Make passes through the list, interchanging adjacent pairs that are in the wrong order.
- 2. Repeat until the list is sorted.
- 3. Large elements sink to bottom, small elements bubble to top.

Algorithms – Bubble Sort

Task: Given an unordered list of elements, organize them according to some notion of order.

Example: Sort the list {3, 2, 4, 1, 5}

Algorithms – Insertion Sort

Task: Given an unordered list of elements, organize them according to some notion of order.

Example: Sort the list {3, 2, 4, 1, 5}

```
procedure insertion sort(a_1, a_2, \ldots, a_n): real numbers with n \geq 2
for j := 2 to n
      i := 1
      while a_i > a_i
            i := i + 1
      m := a_j
      for k := 0 to j - i - 1
            a_{j-k} := a_{j-k-1}
      a_i := m
\{a_1, \ldots, a_n \text{ is in increasing order}\}
```

- 1. Make passes through the list, successively insert next unsorted element into the already sorted front end of the list.
- 2. Repeat until the list is sorted.

Algorithms – Insertion Sort

Task: Given an unordered list of elements, organize them according to some notion of order.

Example: Sort the list {3, 1, 5, 4, 2}

•
$$\{3, 1, 5, 4, 2\}$$
 ⇒ $\{1, 3, 5, 4, 2\}$
• $\{1, 3, 5, 4, 2\}$ ⇒ $\{1, 3, 5, 4, 2\}$
• $\{1, 3, 5, 4, 2\}$ ⇒ $\{1, 3, 4, 5, 2\}$
• $\{1, 3, 4, 5, 2\}$ ⇒ $\{1, 2, 3, 4, 5\}$

last time: 1+2+3+4+--+ n = n(n+1)

Example: What is the time complexity of a bubble sort?

```
def bubbleSort (x, a):
     for i in range(1, n-1):
          for j in range(1, n-i):
               if (a[j] > a[j+1]): (then swap a[j] and a[j+1])
   First pass
  Third pass ~2
                                        Fourth pass
                                                         : an interchange
                                                         ( : pair in correct order
                                                           numbers in color
                                                           guaranteed to be in correct order
```

n elements to be sorted:

first pass: n-1 comparisons

second pass: n-2 comparisons

third pass: n-3 comparisons

i-th pass: n-i comparisons

last pass: 1 comparison

Example (alternate way): What is the time complexity of a bubble sort?

```
def bubbleSort (x, a):
    for i in range(1, n-1):
        for j in range(1, n-i):
            if (a[j] > a[j+1]): (then swap a[j] and a[j+1])
```

A way to count if you have pseudocode:

- Count operations in inner-most loop.
- Turn loops into summations.

Caveat: here (and elsewhere), we are neglecting the comparison needed to make sure we are still within the for loops (Rosen, p. 221)

$$\sum_{i=1}^{n-1} \sum_{j=1}^{n-i} 1 = \sum_{i=1}^{n-1} \left(\sum_{j=1}^{n-i} 1 \right) = \sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i = n(n-1) - \frac{(n-1)n}{2} = \frac{(n-1)n}{2}$$

Bubble sort:
$$\frac{(n-1)n}{2}$$
, which can be rewritten as $\frac{1}{2}(n^2-n)$

Insert sort:
$$\frac{n(n+1)}{2} - 1$$
, which can be rewritten as $\frac{1}{2}(n^2 - n) + n - 1$

Example: What can you say about the performance of an algorithm with n^2 complexity, as n grows? More specifically, if I sort a list, and then sort a list that is twice as long, how do the two times compare?

Time (short list) $= n^2$ (list length)

Time (short list)
$$= n^2$$

Time (long list) $= (2n)^2 = 4n^2$

Time (long list) $= \frac{4n^2}{n^2} = 4$

Time (short list)

 There are several conventions that allow us to talk about the efficiency of algorithms without writing out their precise operation counts.

Question: S'pose we have two algorithms that solve the same problem.

Algorithm A uses $100n^2 + 17n + 4$ operations.

Algorithm B uses n^3 operations.

Which should you use?

perating counts

What we've done:

- Complexity of Algorithms
- Estimating growth rates of functions
- Greedy Algorithms
- ❖ PB&J algorithms

Next:

More Complexity and Matrices

log_(n)