ผู้จัดทำ 1. นาย สุเจตน์ โพดาพล ID: 5930537921

2. นาย กฤตนัย สัจจพงษ์ ID: 6071403621

1. Simulink result and MATLAB Code

หมายเหตุ:คิดคำนวนโดยให้เฟืองทั้งสองตัวใช้วัสดุชนิดเดียวกัน

Genpath simulation program using simulink

```
clear all;
close all;
clc;
```

Set Parameter

```
% constant parameter
r1 = 0.75*10^-2; %m
r2 = 3*10^-2; %m
k = 350; %N/m
Jp = 10^-5; %kgm^2
m = 0.16; %kg
RG = 50; %Ohm
L = 10^-3; %H
Kt = 0.048; %Vs/rad
% variable parameter
Jg = (r1^4/r2^4)*Jp; %kgm^2
RL = 400; %Ohm
M = m+Jp/(r2^2)+Jg/(r1^2);
```

Run simulation

```
t = 0:0.00001:0.8; %time for simulation 0.06993
sim('Genpath_simulink',t);
```

Power Output

```
Vg = Kt*wg;
Irms = rms(I);
Pavg = Irms^2*RL;
fprintf('Power generate = %6.8f Watt\n', Pavg);
```

Power generate = 0.17278336 Watt

Loop various RL

```
Pd = 0; %collect Pavg
Rd = 0; %collect RL
```

```
ic = 25; %increase step
for i = 1:2000/ic;
    Rd(i+1) = Rd(i)+ic;
    RL = Rd(i+1);
    sim('Genpath_simulink',t);
    Pd(i+1) = rms(I)^2*RL;
end
plot(Rd,Pd);
xlabel('RL [Ohm]');
ylabel('Pavg [Watt]');
title('Pavg at various RL');
```

โดยสามารถสร้างแบบจำลองระบบด้วย SIMULINK ได้ดังรูปที่ 1 และผลการทดสอบผ่าน SIMULINK จะได้ค่า พลังงานทั้งหมด 0.172 Watt ที่ RL = 400 Ohm

รูปที่ 1. SIMULINK จำลองระบบ Genpath

2. Discussing

จากผลการทดลองรันแบบจำลอง พลังงานทั้งหมดที่ได้จากแบบจำลอง Genpath 1 ยูนิทมีค่าประมาณ 0.172 watt หรือ 172 mW ซึ่งหากเปรียบเทียบกับค่าพลังงานที่ต้องการสำหรับเครื่องใช้ไฟฟ้าทั่วไปตาม ตารางที่ 1.แล้วจะพบว่าพลังงานเพียง 172 mW นั้นไม่สามารถใช้กับเครื่องใช้ไฟฟ้าทั่วไปได้ Genpath เพียง 1 ยูนิทสามารถให้พลังงานได้เพียง LED on-off indicator สำหรับสวิทซ์ไฟฟ้าเท่านั้น (LED on-off indicator ใช้ พลังงานราว 7.5-15 mW) หากต้องการให้พลังงานแก่เครื่องใช้ไฟฟ้าชนิดอื่นจำเป็นต้องใช้ Genpath หลาย Unit หรือจำเป็นต้องมีระบบเก็บไฟฟ้าที่ได้จากการใช้งานต่อเนื่อง เพื่อนำพลังงานที่ได้ทั้งหมดไปใช้ในเวลาอื่น

ซึ่งหากคิดสถานการณ์สมมติว่าเรานำเครื่อง Genpath ไปวางไว้ที่สถานีรถฟ้า BTS สาขาสยาม 1 ยูนิท ซึ่ง มีจำนวนคนใช้งานเฉลี่ย 112,600 คนต่อวัน (ข้อมูลจากปี พศ. 2555 https://www.prachachat.net/news_detail.php?newsid=1339485497&grpid=09&catid=no&subcatid=0000) และคิดว่าจำนวนคนใช้งานเดิน ผ่าน Genpath นี้คนละ 1 ครั้ง เราจะได้พลังงานทั้งหมด 19.37 Kw ภายในเวลาหนึ่งวัน ซึ่งเพียงพอที่จะให้ พลังงานแก่บ้านประมาณ 3 หลังภายในช่วงเวลา 1 วันเท่ากัน (อ้างอิงข้อมูลเฉลี่ยการใช้พลังงานไฟฟ้าภายใน ครัวเรือน (https://www.ovoenergy.com/guides/energy-guides/how-much-electricity-does-a-home-use.html)

Appliance	Watts	Appliance	Watts
Blender	500	Bluray Player	15
Can Opener	150	Cable Box	35
Coffee Machine	1000	DVD Player	15
Dishwasher	1200-1500	TV - LCD	150
Espresso Machine	800	TV - Plasma	200
Clothes Dryer - Gas	1800	Router	7
Clothes Washer	800	Smart Phone - Recharge	6
Iron	1200	Tablet - Recharge	8

ตารางที่ 1. เปรียบเทียบค่าพลังงานไฟฟ้า

Credit: WholeSale Solar (https://www.wholesalesolar.com/solar-information/how-to-save-energy/power-table)

ในการออกแบบควรจะมีการปรับปรุงเพิ่มเติม โดยให้มีวงล้อดุนกำลัง (Fly wheel) และเพิ่มกลไกสำหรับ ขับทางเดียว เพื่อให้เกียร์ซึ่งต่อเข้ากับไดนาโมสามารถหมุนไปต่อได้ด้วยแรงเฉื่อย ไม่ใช่หยุดหมุนเมื่อระบบไม่ได้รับ การถ่ายแรงจากการเหยียบ และการเพิ่มวงล้อดุนกำลังยังจะช่วยให้กระแสไฟฟ้าที่ได้มีความต่อเนื่องเมื่อมีการ เหยียบลงไปอย่างต่อเนื่อง

สำหรับค่า RL นั้นจะมีผลต่อระบบดังกราฟที่ 1. และในส่วนของการปรับแต่งพารามิเตอร์อื่นๆเพื่อให้ ระบบดั้งเดิมสามารถให้พลังงานได้มากขึ้นนั้นจะมีการบรรยายในหัวข้อถัดไป

กราฟที่ 1. แสดงความสัมพันธ์ระหว่าง RL และพลังงานที่ระบบสามารถทำได้

3. Parameter tuning

จากการทดลองปรับแต่งค่าพารามิเตอร์ของระบบ สามารถสรุปผลได้ดังตารางที่ 2. พบว่าค่าที่สามารถ ปรับแต่งได้ง่ายและมีผลกระทบกับระบบสูงคือค่า r1 ในขณะที่ค่า k และ m นั้นมีความง่ายในการปรับแต่งเช่นกัน โดยเฉพาะค่า k ที่สามารถทำได้ง่ายเพียงแค่เปลี่ยนรุ่นของสปริง ในส่วนของค่า m นั้นหากปรับแต่งก็สามารถทำได้ เพียงแต่ต้องคำนึงถึงผลกระทบเกี่ยวข้องกับความแข็งแรงของชิ้นงาน และข้อจำกัดทางด้านขนาดและรูปร่าง

ค่าอื่นๆที่หากปรับแต่งแล้วจะมีผลต่อพลังงานที่ได้จากระบบอย่างมีนัยยะสำคัญคือค่า Kt และ RL แต่การ ปรับแต่งทั้งสองค่าไม่สามารถทำได้โดยง่าย หากต้องการปรับแต่งจริงๆควรทำการเลือกมอเตอร์ตัวใหม่ที่มีความ เหมาะสมกับความต้องการ

Single parameter change only							
parameter	Decrease		Assigned	Increase			
r1	0.0045	0.006	0.0075	0.009	0.0105		
Power	0.277	0.223	0.172	0.134	0.105		
r2	0.018	0.024	0.03	0.036	0.042		
Power	0.167	0.171	0.172	0.174	0.174		
k	210	280	350	420	490		
Power	0.188	0.18	0.172	0.165	0.157		
Jp	0.000006	0.000008	0.00001	0.000012	0.000014		
Power	0.174	0.173	0.172	0.172	0.171		
m	0.096	0.128	0.16	0.192	0.224		
Power	0.186	0.18	0.172	0.165	0.157		
RG	30	40	50	60	70		
Power	0.186	0.179	0.172	0.166	0.161		
L	0.0006	0.0008	0.001	0.0012	0.0014		
Power	0.172	0.172	0.172	0.172	0.172		
Kt	0.0288	0.0384	0.048	0.0576	0.0672		
Power	0.079	0.126	0.172	0.214	0.247		
RL	240	320	400	480	560		
Power	0.207	0.189	0.172	0.158	0.144		

ตารางที่ 2. การปรับแต่งพารามิเตอร์