The Standard Model

Part III e 2019

Lectures by Fernando Quevedo

Report typos to: uco21@cam.ac.uk
More notes at: uco21.user.srcf.net

January 18, 2020

Contents

1	Introduction and History	2
	1.1 Introduction	2

1 Introduction and History

1.1 Introduction

Definition 1 (standard model): A theoretical physics construction (theory, model) that describes all known elementary particles and their interactions based on relativistic quantum field theory (QFT).

Ingredients

- (i) spacetime: 3 + 1 dimensional Minkowski space symmetry: Poincaré group
- (ii) particles:

spin
$$s = 0$$
 Higgs

spin s = 1/2 three families of quarks and leptons

(iii) interactions:

s = 1 three gauge interactions

s = 1 gravity²

Gauge (local) symmetry: $SU(3)_C \times SU(2)_L \times U(1)_Y \xrightarrow{Symmetry} SU(3)_C \times U(1)_{EM}$

C color: strong

L left: electroweak

Y hypercharge

These are related via $Q = T_3 + Y$.

Particle representations³:

²as important as it is, we will not be concerned with gravity for most of this course

³numbers tell us representations under (C, L; Y)

families (flavour)

• Quarks and Leptons:
$$\overbrace{3}_{Q_L} \underbrace{[(3,2;\frac{1}{6}) + (\overline{3},1;-\frac{2}{3}) + (\overline{3},1;\frac{1}{3})}_{U_R} + \underbrace{(1,2;-\frac{1}{2})}_{L_L} + \underbrace{(1,1;1)}_{e_R} + \underbrace{(1,1;0)}_{\nu_R}]$$

• Higgs: $(1, 2; -\frac{1}{2})$

• Gauge: $\underbrace{(8,1;0)}_{gluons} + \underbrace{(1,3;0)}_{W^{\pm},\mathbb{Z}} + \underbrace{(1,1;0)}_{\gamma}$

Comments

· interactions given by QFT

· main tool: symmetry

• total symmetry: spacetime ⊗ internal (gauge)¹

• also accidental (global) symmetries ~ baryon + lepton number

• plus approximate (flavour) symmetries:

• very rigid: $\sum Y = \sum Y^3 = 0^2$, #3 = # $\overline{3}$, #2 even

• rich structure (3 phases: Coulomb, Higgs, confining)

Motivation

Why to learn about the SM?

- It is fundamental.
- It is based on elegant principles of symmetry.
- It is true!
 - outstanding predictions: $(\mathbb{Z}^0, W^{\pm}, \text{Higgs}, ...)$
 - precision tests:
 anomalous magnetic dipole moment of the electron:

$$a = \frac{g - 2}{2} = (1159.65218091 \pm 0.00000026) \times 10^{-6}$$
 (1.1)

¹Theorem: cannot mix these two symmetries. Supersymmetry provides a way around this.

²gravitational anomaly

fine structure constant (at $E \ll 10^3 \text{GeV}$):

$$\alpha^{-1} = \frac{\hbar c}{e^2} = 137.035999084(21) \tag{1.2}$$

- It is the best test of QFT.
- It is incomplete!