Compte-rendu du TP4

Ye Daniel, Kouadri Amine.

23 décembre 2017

Notre code est constitué des fichiers "Prime.py", "factorisation.py", bezout.py", et "rsa.py". Voici les réponses aux questions du tp (hors programmation) :

question 1.a:

On obtient le quotient de la division de a par b avec "a/b", quant au reste il s'obtient en codant comme suit, "a%b".

question 1.b:

Un nombre premier est un nombre qui n'est divisible que par lui-même et par 1. 2 est le premier nombre premier, et le seul nombre premier paire.

question 1.c:

Une méthode pour savoir si un nombre est premier ou non est de voir si il est divisible par tous les nombres inférieurs à sa racine carrée. 1001 est divisible par 7, il n'est pas premier. 89999 est divisible par 7, il n'est pas premier. 2017 3001 et 49999 sont premiers.

question 1.d:

Les nombres de Fermat sont les nombres de la forme $F_n=2^{2^n}+1$ Voici les 5 premiers nombres de Fermat : $F_0=3$, $F_1=5$, $F_2=17$, $F_3=257$, $F_4=65537$, les 4 premiers nombres sont bien premiers. $F_5=4294967297$.

Le mathématicien Euler a démontré que tout diviseur premier de F_n est de la forme : $p=k\times 2^{n+1}+1$ En prenant k=10 on trouve bien un nombre premier qui divise F5. On a p=641. Le quotient de cette division est 6700417. On a $F5=641\times 6700417$ et par conséquent F5 n'est pas premier.

question 2.a:

On considère tous les nombres inférieurs à n. Le crible d'Erathosène consiste à procéder par élimination en supprimant tous les multiples de 2 ensuite tous les multiples des nombres restants. L'algorithme s'arrête lorsque le carrée du premier nombre restant est supérieur au dernier nombre restant. (C'est-à-dire lorsque le plus petit nombre restant est supérieur à la racine carrée du plus grand nombre restant.)

Voici la liste des nombres premiers inférieurs à 200: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199

question 2.c:

Voici le contenu du fichier txt qui comprend tous les nombres premiers inférieurs à 1000 :

2	3	5	7	1.1	13	17	1.0	23	29
	_	_	•	11	_	17	19		_
31	37	41	43	47	53	59	61	67	71
73	79	83	89	97	101	103	107	109	113
127	131	137	139	149	151	157	163	167	173
179	181	191	193	197	199	211	223	227	229
233	239	241	251	257	263	269	271	277	281
283	293	307	311	313	317	331	337	347	349
353	359	367	373	379	383	389	397	401	409
419	421	431	433	439	443	449	457	461	463
467	479	487	491	499	503	509	521	523	541
547	557	563	569	571	577	587	593	599	601
607	613	617	619	631	641	643	647	653	659
661	673	677	683	691	701	709	719	727	733
739	743	751	757	761	769	773	787	797	809
811	821	823	827	829	839	853	857	859	863
877	881	883	887	907	911	919	929	937	941
947	953	967	971	977	983	991	997		

question 2.d:

Soit $\pi(n)$ le nombre de nombres premiers inférieurs à n. Voici le graphique de $\pi(n)$ en fonction de n, pour n variant de 2 à 1000, ainsi que la fonction $f(n) = \frac{n}{\log(n)}$:

On a $\lim_{x\to +\infty}\pi(x)\frac{\log(x)}{x}=1$ C'est-à-dire que les fonctions $\pi(x)$ et $\frac{n}{\log(n)}$ sont équivalentes lorsque x tend vers

question 2.e:

Voici le fichier txt qui donne $\pi(n)$, $\frac{n}{\log(n)}$, pour $n=10^k$, k variant de 1 à

n		pi(n)	$-n/\log(n)$
10		4	4.3429448190325175
100		25	21.71472409516259
1000		168	144.76482730108395
10000		1229	1085.7362047581294
100000	ĺ	9592	8685.889638065037
1000000	ĺ	78498	72382.41365054197

question 3.a:

Le théorème fondamental de l'arithmétique s'énonce ainsi : Tout nombre s'écrit de façon unique comme un produit de facteurs premiers.

question 3.b:

$$924 = 2^2 \times 3 \times 7 \times 11$$

question 4.a:

Le PGCD de deux nombres est le plus grand diviseur commun aux deux nombres.

question 4.b:

On compare les décompositions en facteurs premiers des deux nombres, on prend les nombres communs à ces décompositions élevés à la plus petite puissance du nombre retrouvée dans les décompositions. Par exemple, pour 4864 et 3458. On a :

```
4864 = 2^8 \times 19

3458 = 2 \times 7 \times 13 \times 19
```

Le PGCD de ces deux nombres est égal à 2×19 , c'est-à-dire 38.

On peut aussi retrouver le PGCD avec la méthode d'Euclide dite des divisions successives. (Nous avons utilisé les deux méthodes présentes dans le fichier "bezout.py")

question 4.c:

Identité de Bézout : soit a et b deux entiers naturels et d leur PGCD. Il existe deux entiers relatifs x et y tels que ax + by = d.

question 4.d:

Avec l'algorithme d'Euclide étendu on obtient, pour a=4864 et b=3458, d=38, x=32 et y=-45.