Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского»

Кафедра Математических Методов Системного Анализа

Расчетная работа с дисциплины "Математическая статистика"

Проверил к.ф.м.н. Каниовская И. Ю. Выполнил студент и просто хороший человек Панченко Е. С.

Содержание

1.	Пос	тановка задачи	3
2.	Реш	ение задачи	3
	2.1.	Построение вариационного ряда данной выборки	3
	2.2.	Графическое изображение выборки	3
	2.3.	Эмпирическая функция распределения	5
	2.4.	Выборочные медиана, мода и асимметрия	6
	2.5.	Нахождение несмещенных оценок математического ожидания и	
		дисперсии	7
	2.6.	Выдвижение гипотезы про распределение, за которым получено	
	2.7.	выборку	7
		на и проверка его свойств	9 10 10
	2.8.	Проверка гипотезы про распределение с помощью критерия Пир-	
		сона	11
	2.9.	Нахождения доверительного интервала гипотетического закона	
		распределения	13
	2.10.	Выволы	14

1. Постановка задачи

Задана выборка

2	1	3	1	0	1	3	2	2	2
4	5	1	3	2	2	2	4	2	2
4	5	6	4	3	5	2	4	2	4
3	3	5	9	6	3	5	7	1	6
3	2	1	4	9	5	4	5	4	5
4	4	9	2	1	6	1	5	3	5
5	3	6	9	3	6	4	4	4	8
3	7	4	5	2	6	4	3	3	3
4	2	4	2	3	5	4	3	4	5
2	2	6	3	5	2	6	2	1	1

Основная цель - найти, каким распределением она порождена и аргументировать, почему.

2. Решение задачи

2.1. Построение вариационного ряда данной выборки

Поскольку в выборке содержатся только целые числа и большинство из них не уникально, то давайте построим дискретный вариационный ряд. Для этого строим табличку, в которой под каждой из вариант содержится ее частота и частость.

варианта	0	1	2	3	4	5	6	7	8	9
частота n_i	1	10	20	18	20	15	9	2	1	4
частость w_i	0.01	0.1	0.2	0.18	0.2	0.15	0.09	0.02	0.01	0.04

2.2. Графическое изображение выборки

Изображение выборки представим в виде гистограммы, где каждый столбец представляет собой варианту, а высота каждого столбца - ее частота. Гистограмма имеет вид:

Рис. 1. Гистограмма выборки

2.3. Эмпирическая функция распределения

Построим эмпирическую функцию распределения:

$$F_{100}^*(x) = \begin{cases} 0, & \text{если } x \leq 0; \\ 0.01, & \text{если } 0 < x \leq 1; \\ 0.01 + 0.1 = 0.11, & \text{если } 1 < x \leq 2; \\ 0.01 + 0.1 + 0.2 = 0.31, & \text{если } 2 < x \leq 3; \\ 0.01 + 0.1 + 0.2 + 0.18 = 0.49, & \text{если } 3 < x \leq 4; \\ 0.01 + 0.1 + 0.2 + 0.18 + 0.2 = 0.69, & \text{если } 4 < x \leq 5; \\ 0.01 + 0.1 + 0.2 + 0.18 + 0.2 + \\ + 0.15 = 0.84, & \text{если } 5 < x \leq 6; \\ 0.01 + 0.1 + 0.2 + 0.18 + 0.2 + \\ + 0.15 + 0.09 = 0.93, & \text{если } 6 < x \leq 7; \\ 0.01 + 0.1 + 0.2 + 0.18 + 0.2 + \\ + 0.15 + 0.09 + 0.02 = 0.95, & \text{если } 7 < x \leq 8; \\ 0.01 + 0.1 + 0.2 + 0.18 + 0.2 + \\ + 0.15 + 0.09 + 0.02 + 0.01 = 0.96, & \text{если } 8 < x \leq 9; \\ 0.01 + 0.1 + 0.2 + 0.18 + 0.2 + \\ + 0.15 + 0.09 + 0.02 + 0.01 + 0.04 = 1, & \text{если } x > 9. \end{cases}$$
рав промежуточные расчеты, получим

Убрав промежуточные расчеты, получим

$$F_{100}^*(x) = \begin{cases} 0, & \text{если } x \leq 0; \\ 0.01, & \text{если } 0 < x \leq 1; \\ 0.11, & \text{если } 1 < x \leq 2; \\ 0.31, & \text{если } 2 < x \leq 3; \\ 0.49, & \text{если } 3 < x \leq 4; \\ 0.69, & \text{если } 4 < x \leq 5; \\ 0.84, & \text{если } 5 < x \leq 6; \\ 0.93, & \text{если } 5 < x \leq 6; \\ 0.93, & \text{если } 6 < x \leq 7; \\ 0.95, & \text{если } 7 < x \leq 8; \\ 0.96, & \text{если } 8 < x \leq 9; \\ 1, & \text{если } x > 9. \end{cases}$$

Ниже приводится график эмпирической функции распределения.

Рис. 2. График эмпирической функции распределения

2.4. Выборочные медиана, мода и асимметрия

Выборочная медиана есть медиана выборки. То есть для ее вычисления достаточно взять среднее арифметическое 50-го и 51-го элементов, когда выборка предварительно упорядочена:

$$(Me^*\xi)_{val} = \frac{4+4}{2} = 4.$$

Выборочной модой есть те варианты, которые в выборке встречаются наибольшее число раз. В данной выборке есть две варианты, которые встречаются

чаще других - это 2 и 4. То есть

$$(Mo^*\xi)_{val} = \{2, 4\}.$$

Выборочная асимметрия считается по формуле

$$As^*(\xi) = \frac{\frac{1}{n} \sum_{i=1}^n (\xi_i - \overline{\xi})^3}{(\mathbb{D}^* \xi)^{3/2}},$$

где $\overline{\xi}$ - выборочное среднее и $\mathbb{D}^*\xi$ - выборочная дисперсия. Считаем значения выборочного среднего и выборочной дисперсии на данной выборке:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{100} x_i = 3.71,$$

$$(\mathbb{D}^* \xi)_{val} = \frac{1}{n} \sum_{i=1}^{100} (x_i - \overline{x})^2 = 3.844343,$$

$$(As^* \xi)_{val} = \frac{\frac{1}{100} \sum_{i=1}^{100} (x_i - 3.71)^3}{(3.844343)^{3/2}} \approx 0.709.$$

2.5. Нахождение несмещенных оценок математического ожидания и дисперсии

Известно, что исправленная выборочная дисперсия - это несмещенная оценка дисперсии генеральной совокупности. В дальнейшей работе этого факта нам будет вполне достаточно. Подробно про несмещенную оценку математического ожидания будет написано в седьмом подзаголовке.

2.6. Выдвижение гипотезы про распределение, за которым получено выборку

Мое предположение, что выборка порождена распределением Пуассона. Для этого есть несколько причин. Самое главное замечание, что в выборке содержаться только целые числа. Из этого я делаю вывод, что распределение, скорее всего, дискретное. Геометрическое вряд-ли, потому что столбцы в гистограмме не убывают. Есть вариант, что это может быть и биномиальное распределение. Сначала я проверю, порождена ли эта выборка распределением Пуассона, и если нет, то перейду на биномиальное распределение. Также я поигрался с разными значениями параметров для распределения Пуассона и биномиального распределения. Ниже можно увидеть ряд графиков, которые подтверждают обе мои гипотезы.

Рис. 3. Случайно сгенерированные выборки, попрожденные законом Пуассона с параметром a=3.71

Рис. 4. Случайно сгенерированные выборки, порожденные биномиальным законом с параметрами size=20, p=0.2

2.7. Нахождение точечной оценки параметра распределения Пуассона и проверка его свойств

Пусть наша выборка порождена распределением Пуассона, то есть

$$\xi \sim Poiss(a)$$
.

Известно, что математическое ожидание случайной величины, распределенной по закону Пуассона с параметром a, есть само число a. Исходя из этого,

выберем в качестве точечной оценки параметра *а* выборочное среднее. Исследуем свойства этой точечной оценки. Известно, что выборочное среднее есть несмещенной оценкой математического ожидания, а также выборочное среднее есть состоятельной оценкой математического ожидания. Проверим эффективность:

$$ln\mathcal{L}(\vec{x}, a) = -n \cdot a + ln(a) \cdot \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} ln(x_i!),$$
$$\frac{\partial ln\mathcal{L}(\vec{x}, a)}{\partial a} = -n + \frac{1}{a} \cdot \sum_{i=1}^{n} x_i = \frac{n}{a} \cdot (\overline{x} - a).$$

Поскольку множитель перед $(\overline{x}-a)$ зависит только от n и от a, то оценка является эффективной.

Подытожим: на данный момент у нас есть несмещенная, состоятельная и эффективная оценка параметра гипотетического закона распределения. Это уже неплохой старт. Найдем теперь точечную оценку параметра a двумя методами - методов моментов и методом максимальной правдоподобности.

2.7.1. Метод моментов

Суть метода моментов в том, что эмпирические моменты приравниваются к теоретическим моментам. Если из этих равенств можно вытянуть неизвестные параметры, то круго. Эти значения можно брать за точечные оценки параметров. К делу, приравняем моменты первых порядков:

$$a^* = E\xi = E^*\xi = \overline{\xi}.$$

Получили, что $a_{{
m MM}}^{*}=\overline{x}=3.71.$

2.7.2. Метод максимальной правдоподобности

Суть метода максимальной правдоподобности в том, чтобы максимизировать значение функции правдоподобности. Прологарифмируем функцию правдоподобности распределения Пуассона:

$$ln\mathcal{L}(\vec{x}, a) = -n \cdot a + ln(a) \cdot \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} ln(x_i!).$$

Найдем критические точки:

$$\frac{\partial ln\mathcal{L}(\vec{x}, a)}{\partial a} = -n + \frac{1}{a} \cdot \sum_{i=1}^{n} x_i = \frac{n}{a} \cdot (\overline{x} - a) = 0 \iff a_{cr} = \overline{x}.$$

Чтобы проверить, что в точке a_{cr} достигается максимум, устремим в функции правдоподобности аргумент a к плюс бесконечности и к нулю. Тогда функция правдоподобности будет стремится к минус бесконечности в обоих случаях. А это значит, что в точке a_{cr} достигается максимум.

Получили, что $a_{\text{MMH}}^* = \overline{x} = 3.71$.

2.8. Проверка гипотезы про распределение с помощью критерия Пирсона

Пусть некая случайная величина распределена по закону Пуассона с параметром a=3.71. Построим табличку, в которой будут хранится значения вероятностей, что эта случайная величина приняла одно из значений от нуля до девяти. Округлим вероятности до четырех знаков после запятой.

значение случ. вел.	0	1	2	3	4
вероятность	0.0244	0.0908	0.1684	0.2083	0.1932
значение случ. вел.	5	6	7	8	9
вероятность	0.1433	0.0886	0.047	0.0218	0.0089

Сумма вероятностей в таблице есть

$$sum_{prob} = 0.9947.$$

Нам необходимо, чтобы сумма вероятностей была равна единице. Для этого вспомним, что случайная величина может принимать значения больше девяти. Добавим эту информацию в последний столбец. Тут мы немного принебрежем округлением. Получим таблицу

значение случ. вел.	0	1	2	3	4
вероятность	0.0244	0.0908	0.1684	0.2083	0.1932
значение случ. вел.	5	6	7	8	≥ 9
вероятность	0.1433	0.0886	0.047	0.0218	0.0142

Теперь умножим каждую из вероятностей на размер выборки, то есть на сотню.

значение случ. вел.	0	1	2	3	4
$n \cdot p$	2.44	9.08	16.84	20.83	19.32
значение случ. вел.	5	6	7	8	≥ 9
$n \cdot p$	14.33	8.86	4.7	2.18	1.42

Объясним, что сейчас будет происходить. Мы собираемся воспользоваться критерием Пирсона. Для этого мы вводим нулевую гипотезу H_0 - гипотеза, что выборка порождена распределением Пуассона с параметром 3.71. Наша цель показать, что гипотеза H_0 выполняется. В таком случае работу можно оканчивать и не проверять биномиальное распределение.

По алгоритму проверки гипотезы по критерию Пирсона, необходимо разбить множество возможных значений случайной величины на несколько непересекающихся классов. Возьмем начальное число классов равным десяти. Наша цель - объединить некоторые классы так, чтобы в каждом из классов величина $n \cdot p$ была не меньше десяти. Для этого объеденим первые два класса и последние четыре. Перепишем нашу табличку, а также внесем в нее дополнительные строки - частоты на множествах значений случайной величины, и разницы соответствующих значений.

значение случ. вел. ξ_i	$\{0,1\}$	2	3	4	5	≥ 6
$n \cdot p_i$	11.52	16.84	20.83	19.32	14.33	17.16
частота n_i	11	20	18	20	15	16
разница $n_i - n \cdot p_i$	-0.52	3.16	-2.83	0.68	0.67	-1.16

Теперь необходимо подсчитать меру расхождения η_{val} . По определению

$$\eta = \sum_{i=1}^{r} \frac{(n_i - n \cdot p_i)^2}{n \cdot p_i}.$$

Подставляя числа из таблицы, получим

$$\eta_{val} = \frac{(-0.52)^2}{11.52} + \frac{(3.16)^2}{16.84} + \frac{(-2.83)^2}{20.83} + \frac{(0.68)^2}{19.32} + \frac{(0.67)^2}{14.33} + \frac{(-1.16)^2}{17.16} \approx 1.1346.$$

По теореме Пирсона статистика η стремится по распределению к распределению χ^2_{r-s-1} , где r - число классов, а s - число неизвестных параметров. В нашем случае r=6 и s=1, а уровень значимости $\alpha=0.05$ по условию. Смотрим в таблицу квантилей распределения Пирсона, и находим, что $t_{cr}=9.49$.

Поскольку $\eta_{val} < t_{cr}$, то можно порадоваться, ведь наши данные не противоречат выдвинутой гипотезе H_0 .

2.9. Нахождения доверительного интервала гипотетического закона распределения

По центральной граничной теореме, приблизительно имеем, что

$$\overline{\xi} \sim N(E\xi, \frac{D\xi}{n}).$$

Или

$$\overline{\xi} \sim N(a, \frac{a}{n}).$$

Или, нормируя случайную величину:

$$\eta = \frac{(\overline{\xi} - a) \cdot \sqrt{n}}{\sqrt{a}} \sim N(0, 1).$$

Задача нахождения доверительного интервала состоит в том, чтобы отыскать такие числа t_1 и t_2 , чтобы $P\{t_1 < a < t_2\}$ была не менее γ . По условию $\gamma = 0.95$. Для упрощения задачи будем искать именно симметричный интервал. Тогда наша вероятность перепишется в виде

$$P\{|\eta| < t_{\gamma}\} = \gamma,$$

где t_{γ} находится из таблицы Лапласа. Поскольку

$$P\{|\eta|откуда $arepsilon=t_{\gamma}=1.96.$$$

Запишем цепочку преобразований

$$|\eta| < 1.96 \iff \frac{|\overline{x} - a| \cdot \sqrt{n}}{\sqrt{a}} < 1.96 \iff$$

$$\frac{|3.71 - a| \cdot 10}{\sqrt{a}} < 1.96 \iff (3.71 - a)^2 \cdot 100 < 1.96^2 \cdot a \iff$$

$$a^2 - 7.42 \cdot a + 13.7641 < 0.038416 \cdot a \iff 3.3512 < a < 4.10722.$$

То есть доверительный интервал есть (3.3512, 4.10722).

2.10. Выводы

Подведем итоги. Сначала было сделано предположение, что данная выборка порождена дискретным распределением. Тут сразу возникли сомнения на счет закона распределения. Поигравшись с графиками было обнаружено, что выборка похожа как и на Poiss(3.71), так и на Bin(20,0.2). При этом значения параметров в биномиальном распределении брались на глаз. Сейчас можно немного объяснить их оправданность. Биномиальное распределение с такими параметрами имеет математическое ожидание $E\xi=4$ и дисперсию $D\xi=3.2$. Как видим, эти величины похожи на аналогичные эмпирические. Больше уверенности приходит, если высчитать медиану $Me\xi=4$ и моду $Mo\xi=4$. А вот с асимметрией $As\xi \approx 0.33$ есть расхождения, ведь $As^*\xi \approx 0.709$.

Но это неудивительно: во-первых, расхождение не так уж и велико; вовторых, асимметрия показывает, насколько график асимметричен. Понятно, что в какой-то конкретной выборке может случиться перевес в одну из сторон, пусть и небольшой. Это могло и случиться с нашей выборкой, поэтому из-за такой нестыковки в асимметрии нельзя сразу же отбрасывать закон. По хорошему, нужно проводить вычисления, аналогичные тому, что уже приведены в работе. Поскольку это немного затратное занятие, то в работе нет ни единой проверки на возможность биномиального распределения. Но все же интерес берет верх, поэтому я сделал поверхностные быстрые расчеты.

По их результатам выборка могла быть порождена биномиальным распределением. Точнее, она не противоречит критерию Пирсона с уровнем значимости $\alpha=0.05$.

Что касается всех проверок на распределение Пуассона, то здесь проблем не возникло. Не было никаких сомнений, что что-то расходится или не складывается. Единственное мое удивление было, когда при проверке на удовлетворение критерия Пирсона, у меня значение меры расхождения вышло намного меньше, чем критическое пороговое значение. У меня была идея увеличить количество интервалов, пусть при этом не все рекомендательные условия выполнялись бы. Но я все же решил этого не делать. Действительно, по моим расчетам на глаз, мера расхождения не превышала бы критическое пороговое значение.