§2 ARITHM. UND LOG. AUSDRÜCKE - ZAHLEN

Leitidee: Die Darstellung von Zahlen durch eine feste Zahl von Bits erfordert eine Reihe von Kompromissen

- Ganzzahl- oder Gleitpunktarithmetik?
- Dual- und Hexadezimalzahlsystem
- Arithmetische Datentypen in C++ Überblick
- Binärdarstellungen für vorzeichenbehaftete ganze Zahlen
- Zahlbereiche und Zahlkonstanten für vorzeichenbehaftetete ganze Zahlen
- Vorzeichenlose ganze Zahlen
- Gleitpunktzahlen und wichtige Kennzahlen der Maschinenarithmetik
- IEEE-Arithmetik als standardisierte Gleitpunktarithmetik

Ganzzahl- oder Gleitpunktarithmetik? (I)

Ganzzahlarithmetik

Bsp.: 1078 (ganze Dezimalzahl)

Idee: Darstellung als Dualzahl (mit fest vorgeg. Bitanzahl)

- Stark eingeschränkter Zahlbereich.
 Mit z.B. 32 Bits lässt sich nur ein Zahlbereich von ca.
 -2³¹..2³¹, d.h -2.1 · 10⁹ ... 2.1 · 10⁹ lückenlos darstellen
- Exakte Ergebnisse bei Addition, Subtraktion und Multiplikation, sofern Zahlbereich nicht verlassen wird.
- Umdefinition der Division erforderlich, sofern immer ganzzahlige Ergebnisse gewünscht ("Ganzzahldivision")

Ganzzahl- oder Gleitpunktarithmetik? (II)

Gleitpunktarithmetik

Idee: $0.8868177 \cdot 10^{31} \rightarrow \underbrace{0.4372349}_{Mantisse} \cdot 2\underbrace{^{104}}_{Exp.}$ (Dualdarst. von Mantisse und Exp. getrennt speichern)

- Großer Zahlbereich.
 Mit 32 Bits lässt sich ein positiver Zahlbereich von ca.
 10⁻³⁸...10³⁸ bei einer Genauigkeit von 6 7
 Dezimalstellen darstellen.
- Normalerweise Rundung erforderlich, dadurch Genauigkeitsverlust.
- + Erreichbar: Grundrechenarten bis auf Rundung korrekt, sofern Zahlbereich nicht verlassen wird.
- Auch innerhalb des Zahlbereichs nicht immer: $x + 1 \neq x$ (Schlecht für Schleifenvariable und Adressrechnung)

Dual- und Hexadezimalsystem

Sei $B \in \mathbb{N}$, $B \ge 2$. Für jedes $z \in \mathbb{Z}$ existieren $v \in \{-1, 1\}$, $N \in \mathbb{N}_0$ und $z_0, \ldots, z_N \in \{0, 1, \ldots, B-1\}$, so dass

$$z = v \cdot \sum_{i=0}^{N} B^{i} z_{i}.$$

B heißt Basis des Zahlsystems, z_0, \ldots, z_N Ziffern der Zahl z.

В	Bezeichnung	Zifferndarstellung
2	Dualsystem	0 1
8	Oktalsystem	01234567
10	Dezimalsystem	0123456789
16	Hexadezimalsystem	0123456789abcdef

- Speicherung von Zahlen (Daten) mit Dualziffern (Bits)
- ► Bei Ein/Ausgabe ggf. Umrechnung aus/in Dezimalsystem
- Hexadezimalzahlen zur Darstellung von Dualzahlen (und Bitmustern) übersichtlicher!
 Bsp.: a 3 b → 1010 0011 1011 [dezimal: 2619]

Arithmetische Datentypen in C++ - Überblick

- ► In C++ gibt es Datentypen für ganze Zahlen und für Gleitpunktzahlen.
- ▶ Die interne Darstellung ist für ganze und für Gleitpunktzahlen unterschiedlich; allerdings ist sie in C++ nicht standardisiert.
- Arithmetische Operationen unterscheiden sich zum Teil in ihrer Wirkung, das gilt insbesondere für die Division.
- Ganzzahl- und Gleitpunktdatentypen haben stark unterschiedliche Zahlbereiche.
- Sowohl für Ganzzahl- als auch für Gleitpunktdatentypen gibt es Ausprägungen mit unterschiedlicher Datenlänge (Bitzahl) und unterschiedlich großem Zahlbereich.
- Bei ganzzahligen Datentypen gibt es zu jedem vorzeichenbehafteten Datentyp einen korrespondierenden vorzeichenlosen Datentyp.

Binärdarstellungen ganzer Zahlen mit n Dualziffern

Darstellung mit Vorzeichen (ungebräuchlich)

$$z = v \cdot \sum_{i=0}^{n-2} 2^i z_i$$
 mit $z_i \in \{0, 1\}, \ v = (-1)^s$ wobei $s \in \{0, 1\}$

Bitmuster:
$$\begin{bmatrix} s & z_{n-2} & z_{n-3} \end{bmatrix} \dots \begin{bmatrix} z_1 & z_0 \end{bmatrix}$$

Bsp.: n = 16

 Darstellung
 Wert

 0000000000010011
 19

 100000000010011
 -19

 011111111111111
 215 - 1 = 32767

111111111111111
$$-2^{15} + 1 = -32767$$

Zahlbereich: $\{-2^{n-1} + 1, \dots, 2^{n-1} - 1\}$

- 0 besitzt zwei Darstellungen, Zahlbereich symmetrisch
- Gesonderte Behandlung des Vorzeichenbits erforderlich

Binärdarstellungen ganzer Zahlen - Fortsetzung

[*] Zweierkomplementdarstellung (üblich)

$$z \in \{-2^{n-1}, \dots, 2^{n-1} - 1\}$$
 wird dargestellt durch die Dualziffern von $\tilde{z} := \left\{ \begin{array}{ccc} z & \text{für} & 0 \leq z \leq 2^{n-1} - 1 \\ z + 2^n & \text{für} & -2^{n-1} \leq z < 0 \end{array} \right.$

Bitmuster: $\tilde{z}_{n-1} | \tilde{z}_{n-2} | \dots | \tilde{z}_1 | \tilde{z}_0$

Bsp.: n = 16

Darstellung	Wert
000000000010011	19
1111111111101101	-19
00000000000000000	0
0000000000000001	1
11111111111111111	-1
01111111111111111	$2^{15} - 1 = 32767$
1000000000000001	$-2^{15} + 1 = -32767$
10000000000000000	$-2^{15} = -32768$

Binärdarstellungen ganzer Zahlen - Fortsetzung II

[*] Zweierkomplementdarstellung - Fortsetzung

- ► Zahlbereich: $\{-2^{n-1}, ..., 2^{n-1} 1\}$
- ▶ 0 besitzt genau eine Darstellung, Zahlbereich ist unsymmetrisch.
- ▶ Höchstes Bit kann als Vorzeichenbit interpretiert werden.
- Entscheidend ist die einfache Berechenbarkeit der Negation positiver Zahlen: Umklappen aller Bits ("1-Komplement") und Addition von 1

$$\left[z \in \{1, \dots, 2^{n-1} - 1\} : \ z = \sum_{i=0}^{n-1} 2^i z_i \text{ mit } z_i \in \{0, 1\}, z_{n-1} = 0 \right]$$

$$\widetilde{-z} = 2^n + (-z) = 2^n - 1 - z + 1 = \sum_{i=0}^{n-1} 2^i (1 - z_i) + 1$$

- Vorteilhaft: Rückführung der Subtraktion auf Addition und Komplementbildung
- ▶ Oft werden die Addition, Subtraktion und Multiplikation modulo 2ⁿ durchgeführt (keine Überlaufbehandlung)

Binärdarstellungen ganzer Zahlen - Fortsetzung III

[*] Zweierkomplementdarstellung - Math. Hintergrund

- $\phi: \mathbb{Z} \to \mathbb{Z}/_{2^n\mathbb{Z}}, z \to [z]_{2^n}$ surjektiver Ringhomomorphismus
- ▶ Die Zweierkomplementdarstellung wird erhalten, wenn als Repräsentant der Äquivalenzkl. $[z]_{2^n}$ $\tilde{z} \in \{0, \dots, 2^n 1\}$ gewählt wird, sofern $z \in \{-2^{n-1}, \dots, 2^{n-1} 1\}$
- $| \phi |_{\{-2^{n-1},...,2^{n-1}-1\}}$ ist bijektiv (*)
- ▶ Aus $\phi(z) + \phi(z') = \phi(z + z')$ und der Bijektivität (*) lässt sich ablesen, dass die Addition der Zweierkompl.darst. modulo 2^n die Zweierkompl.darst. der Summe liefert, wenn $z, z', z + z' \in \{-2^{n-1}, \dots, 2^{n-1} 1\}$
- Entsprechend für die Subtraktion und die Multiplikation.

Ganzzahlige Datentypen mit Vorzeichen in C++

Datentyp	Mindestbitzahl	g++-4.3 (IA/32)	g++-7.5 (AMD/64)
short	16	16	16
int	16	32	32
long	32	32	64

- Hauptsächlich verwendet: int
- ▶ Bei 64-Bit-Betriebssystemen ist long meistens 64 Bit lang.
- ▶ Bei DOS-Compilern (z.B. Turbo C++) war int nur 16 Bit lang.
- Addition, Subtraktion und Multiplikation liefern math. exakte Ergebnisse, wenn die Operanden und das math. korrekte Ergebnis im Zahlbereich des Datentyps liegen.
- ► In der Regel gibt es *keine* Überlaufbehandlung (d.h. keine Fehlermeldungen bei Überschreitungen des Zahlbereichs).
- ▶ Der Zahlbereich von short ist eine echte Teilmenge des Zahlbereichs von long.

Zahlbereiche von ganzen Zahlen mit Vorz. in C++

```
Typ g++-4.3 \ (IA/32) g++-7.5 \ (AMD/64)

short -32768 \dots 32767 -32768 \dots 32767

int -2.1 \cdot 10^9 \dots 2.1 \cdot 10^9 -2.1 \cdot 10^9 \dots 2.1 \cdot 10^9

long -2.1 \cdot 10^9 \dots 2.1 \cdot 10^9 -9.2 \cdot 10^{18} \dots 9.2 \cdot 10^{18}
```

- Die Zahlbereiche sind in limits definiert, z.B. für int std::numeric_limits<int>::min() std::numeric_limits<int>::max()
- Für ihre Benutzung im Programm ist daher #include <limits> erforderlich!
- Namespace-Anw. using namespace std; verringert Schreibaufwand!

Vorzeichenlose ganze Zahlen

Тур		g++-4.3 (IA/32)	g++-7.5 (AMD/64)
unsigned	short	0 65535	0 65535
unsigned	int	$0 \dots 4.3 \cdot 10^9$	$0 \dots 4.3 \cdot 10^9$
unsigned	long	$0 \dots 4.3 \cdot 10^9$	0 1.8 · 10 ¹⁹

- ▶ Die Darstellung vorzeichenloser Zahlen ist laut C++-Standard die Dualdarstellung.
- Addition, Subtraktion und Multiplikation werden modulo 2ⁿ durchgeführt. Das Ergebnis ist immer nichtnegativ.
- ▶ Die Zweierkomplementdarstellung bildet den vorzeichenbehafteten Zahlbereich bijektiv auf den entsprechenden vorzeichenlosen Zahlbereich ab. Der Rest modulo 2ⁿ bleibt dabei unverändert. Daher kann die vorzeichenlose Ganzzahlarithmetik auch für die vorzeichenbehaftete Addition, Subtraktion und Multiplikation benutzt werden. Voraussetzung: Operanden und Ergebnis liegen bei mathematisch exakter Rechnung im Zahlbereich des vorzeichenbehafteten Datentyps.

Ganzzahl-Literale

- Ausgeschriebene ganze Zahlen im Programmtext werden als (Ganzzahl-)Literale bezeichnet.
- Der Typ des Literals ergibt sich durch ein Suffix oder das Fehlen desselben.

```
Bsp.: 5 hat den Datentyp int
5u hat den Datentyp unsigned int
5ul hat den Datentyp unsigned long
```

Komplexere Regeln gelten, wenn die Zahl nicht in den Zahlbereich passt. (Möglichst vermeiden!)

- → Ganzzahlliterale auf Inf.blatt 4, S.1
- Vorsicht: Führende Null impliziert Oktalschreibweise! Vorangestelltes 0x bewirkt Hexadezimalschreibweise.

```
int i1 = 15; // i1: 15
int i2 = 015; // i2: 13
int i3 = 0x15; // i3: 21
```

Gleitpunktzahlen

- ▶ 3 Gleitpkt.datentypen: float, double, long double Hauptsächlich benutzt: double Bsp. für double-Literale: 12.73 498. .2105 7.2e9 (= $7.2 \cdot 10^9$) 20e-30 (= $2 \cdot 10^{-29}$) Suffixe für Literale: keiner \rightarrow double f \rightarrow float $1 \rightarrow$ long double
- Darstellung von Gleitpunktzahlen in der Regel durch normalisierte Maschinenzahlen (NMZ):
 Vorzeichenbit + Mantisse fester Länge + Exp. fester Länge Normalisierung: Erste Ziffer der Mantisse ist ungleich 0 Bsp. (Basis B=10): -42.73 = -0.4273 · 10²
- Wichtige Kenngrößen der Gleitpunktarith. in limits:
 - epsilon() 2 · Maschinengenauigkeit min() kleinste positive NMZ max() größte NMZ
- Heute übliche Gleitpunktarithmetik: "IEEE-Arithmetik"

Einige Eigenschaften der IEEE-Arithmetik

▶ Darstellung für float: $x = (-1)^s \cdot (1.f)_2 \cdot 2^{e-127}$ Bitmuster: self s: 1 Bit e: 8 Bit f: 23 Bit

Einige Eigenschaften der IEEE-Arithmetik II

Zusätzlich zu normalisierten Maschinenzahlen: subnormale Maschinenzahlen

```
subnormale Maschinenzanien \pm\infty ("Unendlich")

NaN ("Not a number")

Bsp.: 1.0/0.0 = \infty 1.0/(-0.0) = -\infty, \log(0.0) = -\infty sqrt (-1.0) = \text{NaN}
```

Voreinstellung: Kein Abbruch wegen mathematisch nicht darstellbarer Ergebnisse, stattdessen NaN.

Vorsicht: Gilt nicht für Ganzzahlarithmetik!

Arithmetische Grundoperationen mit Gleitpunktoperanden liefern stets das gerundete exakte Ergebnis.