Name	Period
Chemical Kinetics F Calculating Reac	
1) Give the symbol and equation for reaction rate	e. What units are used to measure it?
2) Suppose you are trying to explain reaction rate the speed of an automobile on a highway. What is analogous to each of the following? a) The distance traveled by the automobile	
b) The amount of time the automobile travels	
c) The speed at which the automobile travels	
3) Explain how you can tell from a plot of productually calculating reaction rates, whether the remaining constant.	
4) The concentration of a substance changes from a) Is the substance a reactant or product?	n 4.0 M to 2.0 M in 40.0 minutes.
b) Explain how you know.	
c) Express the rate of this reaction in M/min.	
5) Dinitrogen pentoxide decomposes into nitrogen following equation: $2N_2O_5\left(g\right) \rightarrow 4NO_2$	

If the change in oxygen concentration was found to be 2.5~M/s, what is the reaction rate in terms of dinitrogen pentoxide?

6) Ammonia reacts with oxygen gas to produce nitrogen dioxide and water vapor.a) Write a balanced equation for the reaction.	
b) At the instant when ammonia is reacting at a rate of 0.80 M/min, what is the rate at which oxygen is disappearing?	
c) At what rate is each product being formed (in part b above)?	
7) Ammonia is formed from its elements according to the equation below:	
$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	
One mole of nitrogen is mixed with one mole of hydrogen in a one-liter container. After 5.0 s the reaction is stopped, and the gasses are re-measured. There are 0.90 mol of nitrogen, and 0.70 mol of hydrogen. Calculate the reaction rate in terms of each reactant.	
N_2	
H_2	
8) Dinitrogen pentoxide is decomposed to oxygen gas and nitrogen dioxide gas a) Write a balanced equation for the reaction.	
b) Calculate the rate of this reaction, if $0.0021~\rm M$ oxygen gas is produced from zero to $600~\rm seconds$, at a temperature of $50\rm ^{\circ}C$.	
c) Assuming the rate of this reaction is doubled with every ten degrees (Celsius or Kelvin) increase in temperature, how long would it take to produce $0.0021~\text{M}$ oxygen at a temperature of 100°C ?	