Lecture 2:

2011-10-13

Definition 2.1 (connected):

A graph is called *connected* (zusammenhängend) if there exists a [s,t]-Path between all pairs of vertices $s, t \in V$.

Definition 2.2 (forrest, tree, spanning, forest problem, minimum spanning tree): A *forest* (Wald) is a graph that does not contain a cycle (Kreis). A connected forest is called a *tree* (Baum). A tree in a graph (as subgraph) is called *spanning* (aufspannend), if it contains all vertices.

Given a graph G=(V,E) with edge weights $c_e\in\mathbb{R}$ for all $e\in E$, the task to find a forest $W\subset E$ such that $c(W):=\sum_{e\in W}$ is maximal, is called the *Maximum Forest Problem* (Problem des maximalen Waldes). The task to find a tree $T\subset E$ which spans G and which weight c(T) is minimal, is called the *Minimum Spanning Tree* (MST) problem (minimaler Spannbaum).

Lemma 2.3:

A tree G = (V, E) with at leat 2 vertices has at least 2 vertices of degree 1.

Proof. Let v be arbitrary. Since G is connected, $deg(v) \geq 1$. Assume deg(v) = 1. So $\delta(v) = \{vw\}$. If deg(w) = 1, we found two vertices with $degree\ 1$. If deg(w) > 1, there exist a neighbour of w, different from v : u. Now, again u has $degree\ 1$ or higher. If we repeat this procedure we either find a vertix of degree 1 or find again new vertices. Hence, after at most n-1 vertices we end up at a vertex of degree 1. Now, if $deg(v) \geq 2$, we do the same and find a vertex of degree 1, say w. Then repeat the above, staring from w to find a second vertex of degree 1.

Corollary 2.4:

A tree G = (V, E) with maximum degree Δ has at least Δ vertices of degree 1.

Lemma 2.5: (a) For every graph G = (V, E) it holds that $2|E| = \sum_{u \in V} deg(u)$

(b) for every tree G = (v, E) it holds that |E| = |V| - 1.

Proof. (a) trivial

(b) Proof by induction. Clearly, if |V|=1 or |V|=2 it holds. Assumption: true for $n\geq 2$. Let G be a tree with n+1 vertices. By Lemma 2.3, there exists a vertex $v\in G$ with $deg(v)=1.G-v=G[V\setminus \{v\}]$ is a tree again with n vertices and thus |E(G-v)|=V(G-v)|-1. Since G differs by one vertex and one edge from G-v, the claim holds got G as well.

Lemma 2.6:

If G = (V, E) whith $|V| \ge 2$ has |E| < |V| - 1, G is not connected.

1

Algorithm MST

$$\begin{aligned} & \min_{x \in X} = -max_{x \in X} - c(x) \text{ maximal forest} \\ & \text{X spanning trees} \\ & \min_{x \in X} + (n-1)D = -max_{x \in X} - c(x)(n-1)D = max_{x \in X} \sum \underbrace{D - C_{ij}x_{ij}}_{\geq 0 \text{ if } D \geq max_{ij \in E}c_{ij}} \end{aligned}$$

Theorem 2.7:

Kruskal's Algorithm returns the optimal solution.

Proof. Let T be Kruskal's tree and assume there exists a tree T' with c(T') < c(T). Then there exist an edge $e' \in T' \setminus T$. Then $T \cup \{e'\}$ contains a cycle $\{e_1, e_2, \ldots, e_k, e'\}$. Let $c_f = \max_{i=1,\ldots,k} c_{l_i}$. At the moment Kruskal chooses edge f, edge e' cannot be added yet and therefore $c(e') \geq c(f)$. Now exchange e' by f in T'. Hence the number of differences beetween T' and T is reduced by one, $C(T'_{new}) \leq c(T') < c(T)$. Repeating the procedure results in $c(T) \leq \ldots < c(T)$, a contradiction.