Chapter 6-8 HW - Prasad Prabhu

- 1. Represent the number 263.3 in 32-bit floating point representation
 - a. 0 10000111 0000011101001100110

- 2. Represent the number -17.625 in 32-bit floating point representation
 - a. 1 10000011 000110100000000000000000

3.

- Using the 2's complement method, express the following negative numbers in binary -7, -12
 - i. -7: 7 in binary is 0111. The 1's complement becomes 1000. Adding 1 to make it a 2's complement becomes 1001. **1001**.
 - ii. -12: 12 in binary is 0 1100. The 1's complement becomes 1 0011. Adding 1 to make it a 2's complement becomes 1 0100. **1 0100.**
- b. Using the 2's complement method, find the value of the following
 - i. 39 + (-25). 39= 010 0111. -25= 110 0111. Using 7 bit binary system **1. 000 1110**

43 - (+71) . 43=0010 1011. -71= 1011 1001 ii. 1. 1110 0100

- 4. Simplify the following Boolean Expression using Boolean laws:
 - a. ABC+A'+AB'C

C(AB+AB')+A' i. by Distributive Law of C C(A(B+B'))+A'ii. by Distributive Law of A by Complementary Law B+B' =1 C(A(1))+A'iii. by Law of Intersection A*1=A ίV. (CA)+A' by Law of Common Identities A+(A'B)= A+B

A'+C ٧.

b. A'B'C'+A'B'C+A'C'

A'(B'C'+B'C+C') by Distributive Law A' i. by Distributive Law B' ii. A'(B'(C'+C)+C')

by Complementary Law C+C' =1 iii. A'(B'(1)+C') by Law of Intersection B'*1=B' iv. A'(B'+C')

c. (AB'(C+BD)+A'B')C

C(AB'(C+BD)+A'B')by Commutative Law i. C((AB'C)+(AB'BD)+A'B') by Distributive Law ii.

iii. C((AB'C)+(A(0)D)+A'B') by Complementary Law B' * B = 0 iv. C((AB'C)+(0)+A'B')by Law of Intersection twice A*0=0

٧. C((AB'C)+A'B')by Law of Union A+0=A vi. C(B'((AC)+A'))by Distributive Law B'

vii. C(B'(A'+C)) by Law of Common Identities A+(A'B)=A+B

viii. B'C(A'+C)rewritten

B'C by Absorption Law ix.

5. Given the Boolean function

a. Obtain the truth table of the function . AB'C+A'B'C+D'AB+DA'B+DAB

Α	В	С	D	AB'C	A'B'C	D'AB	DA'B	DAB	AB'C+A'B'C+D'AB+DA'B+DAB
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	<u>1</u>	0	0	0	1
0	0	1	1	0	<u>1</u>	0	0	0	1
0	1	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	<u>1</u>	<u>0</u>	1
0	1	1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	1	<u>0</u>	1
1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0
1	0	1	0	<u>1</u>	0	0	0	0	1
1	0	1	1	<u>1</u>	0	0	0	0	1
1	1	0	0	0	0	1	0	0	1
1	1	0	1	0	0	0	0	1	1
1	1	1	0	0	0	1	0	0	1
1	1	1	1	0	0	0	0	1	1

- b. Simplify the function to a minimum number of laterals using Boolean algebra.
 - i. AB'C+A'B'C+D'AB+DA'B+DAB
 - ii. B'C(A+A')+B(D'A+DA'+DA) by Distributive Law
 - iii. B'C(1)+B(D'A+DA'+DA) by Complementary Law A+A'=1
 - iv. B'C + B(D'A+DA'+DA) by Law of Intersection A*1=A
 - v. B'C + B(A(D'+D)+DA') by Commutative Law and Distributive Law
 - vi. B'C + B(A(1)+DA') by Complementary Law A+A'=1
 - vii. B'C + B(A+DA') by Law of Intersection A*1=A
 - viii. B'C + B(A+D) by Law of Common Identities
 - ix. B'C+BA+BD
- c. Obtain the truth table of the simplified function

Α	В	С	D	B'C	ВА	BD	B'C+BA+BD
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	1	0	0	1
0	0	1	1	1	0	0	1
0	1	0	0	0	0	0	0
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
1	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1
1	1	0	0	0	1	0	1
1	1	0	1	0	1	1	1
1	1	1	0	0	1	0	1
1	1	1	1	0	1	1	1

6. For the following function prove F+F'=1 and F*F'=0

a. F=DA+BC

i. F+F'=1. F+F' = DA+BC + (DA+BC)'. Applying DeMorgan's Laws twice gives us DA+BC+ (DA)'(BC)' = DA+BC+(D'+A')(B'+C').

Α	В	С	D	DA	ВС	DA+BC	D'+A'	B'+C'	(D'+A')(B'+C')	DA+BC+(D'+A')(B'+C')
0	0	0	0	0	0	0	1	1	1	1
0	0	0	1	0	0	0	1	1	1	1
0	0	1	0	0	0	0	1	1	1	1
0	0	1	1	0	0	0	1	1	1	1

0	1	0	0	0	0	0	1	1	1	1
0	1	0	1	0	0	0	1	1	1	1
0	1	1	0	0	1	1	1	0	0	1
0	1	1	1	0	1	1	1	0	0	1
1	0	0	0	0	0	0	1	1	1	1
1	0	0	1	1	0	1	0	1	0	1
1	0	1	0	0	0	0	1	1	1	1
1	0	1	1	1	0	1	0	1	0	1
1	1	0	0	0	0	0	1	1	1	1
1	1	0	1	1	0	1	0	1	0	1
1	1	1	0	0	1	1	1	0	0	1
1	1	1	1	1	1	1	0	0	0	1

This truth table proves that F+F'=1 because DA+BC+(D'+A')(B'+C') is 1 for all combinations.

ii. F*F'=0. F*F' = (DA+BC) * (DA+BC)'. Applying DeMorgan's Laws twice gives us DA+BC * ((DA)'(BC)') = (DA+BC) * ((D'+A')(B'+C')).

Α	В	С	D	DA	вс	DA+BC	D'+A'	B'+C'	(D'+A')(B'+C')	DA+BC * (D'+A')(B'+C')
0	0	0	0	0	0	<u>0</u>	1	1	<u>1</u>	0
0	0	0	1	0	0	<u>0</u>	1	1	<u>1</u>	0
0	0	1	0	0	0	<u>O</u>	1	1	<u>1</u>	0
0	0	1	1	0	0	<u>O</u>	1	1	1	0
0	1	0	0	0	0	<u>0</u>	1	1	1	0
0	1	0	1	0	0	<u>O</u>	1	1	<u>1</u>	0
0	1	1	0	0	1	1	1	0	<u>0</u>	0
0	1	1	1	0	1	<u>1</u>	1	0	<u>0</u>	0
1	0	0	0	0	0	<u>0</u>	1	1	1	0

1	0	0	1	1	0	1	0	1	<u>0</u>	0
1	0	1	0	0	0	<u>0</u>	1	1	<u>1</u>	0
1	0	1	1	1	0	<u>1</u>	0	1	<u>0</u>	0
1	1	0	0	0	0	<u>0</u>	1	1	<u>1</u>	0
1	1	0	1	1	0	<u>1</u>	0	1	<u>0</u>	0
1	1	1	0	0	1	<u>1</u>	1	0	<u>0</u>	0
1	1	1	1	1	1	1	0	0	<u>0</u>	0

This truth table proves that $F^*F'=0$ because DA+BC * (D'+A')(B'+C') is 0 for all combinations.

b. F=A+BC

i.
$$F+F'=1$$
. $F+F'=(A+BC)+(A+BC)'$. Applying DeMorgan's Laws twice gives us $(A+BC)+(A'*(BC)')=(A+BC)+(A'*(B'+C'))$.

Α	В	С	ВС	B'+C'	A+BC	A' * (B'+C')	(A+BC)+(A' * (B'+C'))
0	0	0	0	1	0	1	1
0	0	1	0	1	0	1	1
0	1	0	0	1	0	1	1
0	1	1	1	0	1	0	1
1	0	0	0	1	1	0	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	0	1
1	1	1	1	0	1	0	1

This truth table proves that F+F'=1 because (A+BC)+(A' * (B'+C')) is 1 for all combinations

ii.
$$F^*F'=0$$
. $F^*F'=(A+BC)^*(A+BC)^*$. Applying DeMorgan's Laws twice gives us $(A+BC)^*(A'^*(BC)) = (A+BC)^*(A'^*(B'+C'))$.

Α	В	С	вс	B'+C'	A+BC	A' * (B'+C')	(A+BC) * (A' * (B'+C'))
0	0	0	0	1	0	1	0
0	0	1	0	1	0	1	0

0	1	0	0	1	0	1	0
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	1	0	1	1	0	0
1	1	0	0	1	1	0	0
1	1	1	1	0	1	0	0

This truth table proves that F*F'=0 because (A+BC) * (A' * (B'+C')) is 0 for all combinations.

- 7. Demonstrate by means of truth tables the validity of the following identities
 - a. De-Morgan's theorem for three variables: (A+B+C)' = A'B'C' and (ABC)'=A'+B'+C'

i.
$$(A+B+C)' = A'B'C'$$
.

Α	В	С	A+B+C	(A+B+C)'	A'B'	A'B'C'
0	0	0	0	1	1	1
0	0	1	1	0	1	0
0	1	0	1	0	0	0
0	1	1	1	0	0	0
1	0	0	1	0	0	0
1	0	1	1	0	0	0
1	1	0	1	0	0	0
1	1	1	1	0	0	0

Therefore, the truth table proves that (A+B+C)' = A'B'C'

Α	В	С	ABC	(ABC)'	A'+B'	A'+B'+C'
0	0	0	0	1	1	1
0	0	1	0	1	1	1
0	1	0	0	1	1	1

0	1	1	0	1	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	0	1	0	1
1	1	1	1	0	0	0

Therefore, the truth table proves that (ABC)'=A'+B'+C'

b. The distributive law: A+BC = (A+B) (A+C).

Α	В	С	ВС	A+BC	A+B	A+C	(A+B)*(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Therefore, the truth table proves that A+BC = (A+B)(A+C)

8. Reduce the following Boolean expressions to the indicated number of literals

```
a. R'T' + RST + RT' to 3 literals.
```

b.
$$(R'S' + T)' + T + RS + UT$$
 to 3 literals

ii.
$$((R'S')' * T') + T + RS + UT$$
 by DeMorgan's Law iii. $((R+S)* T') + T + RS + UT$ by DeMorgan's Law

```
İ٧.
          ((R+S)^* T') + T + RS + UT
                                               by Associative Law
          ((R+S)^* T') + RS + T + UT
                                               by Commutative Law A+B= B+A
     ٧.
    vi.
          ((R+S)^* T') + RS + T
                                               by Absorption Law A*(A+B)=A
                                               by Commutative and AssociativeLaw
    vii.
          T+(T'*(R+S)) + RS
    viii.
          T+(R+S) + RS
                                by Law of Common Identities A+(A'B) = A+B
    ix.
          T+R+S
                                by Associative and Absorption Law
c. R'S(U' + T'U) + S(R + R'TU) to 1 literal
      i.
          R'S(U' + UT') + S(R + R'TU) by Associative Law A^*(B^*C) = A^*B^*C
     ii.
          R'S(U' + T') + S(R + TU)
                                       by Law of Common Identities twice A+(A'B)
          = A+B
          R'SU' + R'ST' + SR + STU
                                       by Distributive Law Twice
     iii.
     iv.
          S(R'U' + R'T' + R + TU)
                                       by Distributive Law
                                       by Associative and Distributive Law
     ٧.
          S(R+R'(U'+T')+TU)
    νi.
          S(R+(U'+T')+TU)
                                by Law of Common Identities A+(A'B) = A+B
    vii.
          S(R+U' + T'+TU)
                                by Associative Law A^*(B^*C) = A^*B^*C
    viii.
          S(R+U' +T'+U)
                                by Law of Common Identities A+(A'B) = A+B
          S(R +T'+U+U')
                                by Commutative Law A+B= B+A
    ix.
     Χ.
          S(R +T'+1)
                                by Complementary Law A'+A=1
                                by Law of Union Twice A+1=1
    χi.
          S(1)
    xii.
                                by Law of Intersection
          S
d. (R' + T)(R' + T')(R + S + T'U) to four literals
          R'+(T*T')(R + S + T'U)
      i.
                                       by Distribution Law
     ii.
          R'+(0) (R + S + T'U)
                                       by Complementary Law
     iii.
          R'(R + S + T'U)
                                       by Law of Union
     iv.
          R'R + R'S + R'T'U
                                       by Distributive Law
     ٧.
          0 + R'S + R'T'U
                                       by Complementary Law A*A'=0
                                       by Law of Union A+0=A
    vi.
          R'S + R'T'U
                                       by Distributive Law
    vii.
          (R'S+R')(R'S+T')(R'S+U)
    viii.
          (R')(R'S+T')(R'S+U)
                                       by Absorption Law
          (R')(T'+R')*(T'+S)(R'S+U)
    ix.
                                       by Distributive Law
     Χ.
          R'(T'+S)(R'S+U)
                                       by Absorption Law
          R'(T'+S)(U+R')(U+S)
                                       by Distributive Law
    χi.
    xii.
          R'(R'+U)(T'+S)(U+S)
                                       by Associative Law
    xiii.
          R'(T'+S)(U+S)
                                       by Absorption Law
          R'(S+T')(S+U)
   XİV.
                                       by Commutative Law
    XV.
          R'(S+(T'U))
                                       by Distributive Law
```

- 9. Using only minimum gates, draw a logic gate diagram for the following expressions:
 - a. ABC+A'+AB'C (This statement is simplified to A'+C as proven in guestion #4)

b. A'B'C'+A'B'C+A'C' (This statement is simplified to <u>A'(B'+C')</u> as proven in question #4)

c. (AB'(C+BD)+A'B')C (This statement is simplified to <u>B'C</u> as proven in question #4)

10. Simply the following functions using 3 variable maps:

The following tables and maps used for question #10 and #11 are

х	у	z	f
0	0	0	А
0	0	1	В
0	1	0	С
0	1	1	D
1	0	0	Е
1	0	1	F

1	1	0	G
1	1	1	Н

The corresponding map is

	y'z'	y'z	yz	yz'
x'	A	В	D	С
x	Е	F	Н	G

a. $F(x,y,z) = \Sigma(0,2,6,7)$

i. 0=000=A. 2=010=C. 6 = 110= G. 7 = 111=H

	y'z'	y'z	yz	yz'
x'	1	0	0	1
х	0	0	1	1

ii. X'y'z'+x'yz' + xyz+xyz' = X'z'(y'+y) + xy(z+z')

iii. f= x'z'+xy

b. $F(x,y,z) = \Sigma(0,2,3,4,6)$

i. 0=000=A 2=010=C 3=011=D 4=100=E 6=110=G

		y'z'	y'z	yz	yz'
X	,	1	0	1	1
х		1	0	0	1

ii. AECG= z'. DC= x'yz+x'yz' = x'y(z+z')=x'y

iii. f= z' + x'y

c. $F(x,y,z) = \Sigma(0,1,2,3,7)$

i. 0=000=A 1=001=B 2=010=C 3=011=D 7 = 111=H

	y'z'	y'z	yz	yz'
X'	1	1	1	1
x	0	0	1	0

ii. ABDC=x' DH= x'yz+xyz = yz(x+x')=yz

iii. f= x'+yz

d. $F(x,y,z) = \Sigma(3,5,6,7)$

i. 3=011=D 5=101=F 6=110=G 7 = 111=H

	y'z'	y'z	yz	yz'
x'	0	0	1	0
x	0	1	1	1

ii. DH= x'yz+zyz= yz.

FH=xy'z+xyz= xz GH=xyz+xyz'=xy

iii. f = yz + xz + xy

11. Simplify the following Boolean expressions, using three-variable maps

a.
$$F(x,y,z) = xy + x'y'z' + x'yz'$$

	y'z'	y'z	yz	yz'
x'	1	0	0	1
x	0	0	1	1

i. AC= x'y'z'+x'yz'= x'z'

HG= xyz+xyz'= xy

ii. f= x'z' + xy

b. F(x,y,z) = x'y' + yz + x'yz'

	y'z'	y'z	yz	yz'
x'	1	1	1	1
х	0	0	1	0

i. ABDC= x'

 $\overline{DH} = x'yz + xyz = yz$

ii. f= x' + yz

c. F(x,y,z) = x'y + yz' + y'z'

	y'z'	y'z	yz	yz'
x'	1	0	1	1
х	1	0	0	1

i. AECG= z'

DC = x'yz+x'yz' = x'y

ii. f=z'+x'y

d. F(x,y,z) = xyz + x'y'z + xy'z'

	y'z'	y'z	yz	yz'
x'	0	1	0	0
Х	1	0	1	0

i. **f= xyz + x'y'z + xy'z'**. The function is already simplified

12. Prove by induction the recursive formula for the Fibonacci numbers:

- a. Define the two Recursive Formula Rules, with the basic rule and the recursive rule.
 - i. Basic Rule Formula: F(1) = 1
 - ii. Recursive Rule: The recursive definition is defined by the equation F(n) = F(n-2) + F(n-1).
 - iii. The closed form equation for F(n):

$$F_n = (x - y)/\sqrt{5}$$
. Where $x = ((1 + \sqrt{5})/2)^n$ and $y = ((1 - \sqrt{5})/2)^n$

- b. Then, using the below information, validate the formula for Fn:
 - i. Base Case: P(1) is true since = f((1)+2) 1 = f(3)-1 = 2-1 = 1, which is the correct value for the sum of the first n terms.
 - ii. Inductive Step:

Inductive Step: Assume the statement P(k) is true for some arbitrary positive integer $k, k \in N$; this means that f(k+2)-1 = f1+f2+f3+...fn

f1+f2+...fk+f(k+1) = f(k+2) - 1 + f(k+1) = f(k+1) + f(k+2) - 1 = f(k+3) - 1Therefore the claim holds and proof by induction is complete