Analysis

Summer

Measure, Integration and Real Analysis

Axler

Authors: Shaleen Baral

Contents

ı.	Riemann Integration	2
	1.1. Review: Riemann Integral	2
	1.2. Riemann Integral Is Not Good Enough	3
2.	Measures	5
	2.1. Outer Measure on $\mathbb R$	5
	2.1.1. Good Properties of Outer Measure	5
	2.1.2. Outer Measure of Closed Bounded Interval	6
	2.1.3. Outer Measure is Not Additive	6
	2.2. Measurable Spaces and Functions	6
	2.2. Measurable Spaces and Functions	6
	2.2.2. Borel Subsets of $\mathbb R$	7
	2.2.3. Inverse Images	7
	2.2.4. Measurable Functions	8
	2.3. Measures and Their Properties	10
	2.3.1. Properties of Measures	11
	2.4. Lebesgue Measure	11
	2.4.1. Additivity of Outer Measure on Borel Sets	11
	2.4.2. Lebesgue Measurable Sets	12
	2.4.3. Cantor Set and Cantor Function	12
	2.5. Convergence of Measurable Functions	12

1. Riemann Integration

1.1. Review: Riemann Integral

Definition 1.1.1 (partition): Suppose $a, b \in \mathbb{R}$ with a < b. A *partition* of [a, b] is a finite list of the form $x_0, x_1, ..., x_n$, where

$$a = x_0 < x_1 < \dots < x_n = b.$$

We use a partition $x_1, x_1, ..., x_n$ of [a, b] to think of [a, b] as a union of closed subintervals,

$$[a,b] = [x_0,x_1] \cup [x_1,x_2] \cup \dots \cup [x_{n-1},x_n].$$

Definition 1.1.2 (notation for infimum and supremum of a function): If f is a real-valued function and A is a subset of the domain of f, then

$$\inf_A f = \inf\{f(x): x \in A\} \ \text{ and } \sup_A f = \sup\{f(x): x \in A\}.$$

Definition 1.1.3 (lower and upper Riemann sums): Suppose $f:[a,b]\to\mathbb{R}$ is a bounded function and P is a partition $x_0,...,x_n$ of [a,b]. The lower Riemann sum L(f,P,[a,b]) and the upper Riemann sum U(f,P,[a,b]) are defined by

$$L(f,P,[a,b]) = \sum_{j=1}^{n} \left(x_{j} - x_{j-1}\right) \inf_{\left[x_{j-1},x_{j}\right]} f$$

and

$$U(f,P,[a,b]) = \sum_{j=1}^n \bigl(x_j - x_{j-1}\bigr) \sup_{[x_{j-1},x_j]} f.$$

Lemma 1.1.1 (inequalities with Riemann sums): Suppose $f : [a, b] \to \mathbb{R}$ is a bounded function and P, P' are partitions of [a, b] such that the list are defining P is a sublist of the list defining P'. Then

$$L(f, P, [a, b]) \le L(f, P', [a, b]) \le U(f, P', [a, b]) \le U(f, P, [a, b]).$$

Lemma 1.1.2 (lower Riemann sums \leq upper Riemann sums): Suppose $f:[a,b] \to \mathbb{R}$ is a bounded function and P,P' are partitions of [a,b]. Then

$$L(f, P, [a, b]) \le U(f, P', [a, b]).$$

Definition 1.1.4 (lower and upper Riemann integrals): Supose $f:[a,b]\to\mathbb{R}$ is a bounded function. The lower Riemann integral L(f,[a,b]) and hte upper Riemann integral U(f,[a,b]) of f are defined by

$$L(f,[a,b]) = \sup_{P} L(f,P,[a,b])$$

and

$$U(f,[a,b]) = \inf_P U(f,P,[a,b])$$

where the supremum and infimum above are taken over all partitions P of [a, b].

Lemma 1.1.3 (lower Riemann integral \leq upper Riemann integral): Suppose $f:[a,b]\to\mathbb{R}$ is a bounded function. Then

$$L(f, [a, b]) \le U(f, [a, b]).$$

Definition 1.1.5 (Riemann integrable; Riemann integral):

- a. A bounded function on a closed bounded interval is called *Riemann integrable* if its lower Riemann integral equals its upper Riemann integral.
- b. If $f:[a,b] \to \mathbb{R}$ is Riemann integrable, then the *Riemann integral* $\int_a^b f$ is defined by

$$\int_{a}^{b} f = L(f, [a, b]) = U(f, [a, b]).$$

Proposition 1.1.1 (continuous functions are Riemann integrable): Every continuous real-valued function on each closed bounded interval is Riemann integrable.

Lemma 1.1.4 (bounds on Riemann integral): Suppose $f:[a,b] \to \mathbb{R}$ is Riemann integrable. Then

$$(b-a)\inf_{[a,b]}f\leq \int_a^bf\leq (b-a)\sup_{[a,b]}f.$$

1.2. Riemann Integral Is Not Good Enough

There are three issues we discuss

- a. Riemann integration does not handle functions with many discontinuities;
- b. Riemann integration does not handle unbounded functions;
- c. Riemann integration does not work well with limits.

Example (a function that is not Riemann integrable): Define $f:[0,1]\to\mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

If $[a, b] \subseteq [0, 1]$ with a < b, then

$$\inf_{[a,b]} f = 0 \quad ext{and} \quad \sup_{[a,b]} f = 1$$

because [a,b] contains an irrational number and contains a rational number. Thus, L(f,P,[0,1])=0 and U(f,P,[0,1])=1 for any partition P of [0,1]. Since $L(f,[0,1])\neq U(f,[0,1])$, we conclude that f is not Riemann integrable.

Example (Riemann integration does not work with unbounded functions): Define $f:[0,1]\to\mathbb{R}$ by

$$f(x) = \begin{cases} \frac{1}{\sqrt{x}} & \text{if } 0 < x \le 1, \\ 0 & \text{if } x = 0. \end{cases}$$

If $x_0, x_1, ..., x_n$ is a partition of [0, 1], then $\sup_{[x_0, x_1]} f = \infty$. Then, $U(f, P, [0, 1]) = \infty$ for every partition P of [0, 1].

However, we should consider the area under the graph of f to be 2 and not ∞ as

$$\lim_{a\downarrow 0} \int_{a}^{1} f = \lim_{a\downarrow 0} \left(2 - 2\sqrt{a}\right) = 2.$$

Calculus courses fix with this issue by just defining $\int_0^1 \frac{1}{\sqrt{x}} dx$ to be $\lim_{a\downarrow 0} \int_a^1 \frac{1}{\sqrt{x}} dx$.

Example (area seems to make sense, but Riemann integral is not defined): Let r_1, r_2, \ldots be a sequence that includes each rational number in (0,1) exactly once and includes no other numbers. For $k \in \mathbb{Z}^+$, define $f_k: [0,1] \to \mathbb{R}$ by

$$f_k(x) = \begin{cases} \frac{1}{\sqrt{x-r_k}} & \text{ if } x > r_k, \\ 0 & \text{ if } x \leq r_k. \end{cases}$$

Then define $f:[0,1]\to [0,\infty]$ by

$$f(x) = \sum_{k=1}^{\infty} \frac{f_{k(x)}}{2^k}.$$

Since every nonempty open subinterval of [0,1] contains a rational number, f is unbounded on every such subinterval. Thus, the Riemann integral of f is undefined on every subinterval of [0,1] with more than one element. However, the area under the graph of each f_k is less than 2. Then by the definition of f, the area under the graph of f should be less than 2.

Example (Riemann integration does not work well with pointwise limits): Let $r_1, r_2, ...$ be a sequence that includes each rational number in [0,1] exactly once and that includes no other numbers. For $k \in \mathbb{Z}^+$, define $f_k : [0,1] \to \mathbb{R}$ by

$$f_k(x) = \begin{cases} 1 & \text{ if } x \in \{r_1, ..., r_k\}, \\ 0 & \text{ otherwise.} \end{cases}$$

Each f_k is Riemann integrable and $\int_0^1 f_k = 0$.

Define $f:[0,1]\to\mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is rational.} \end{cases}$$

Then

$$\lim_{k\to\infty} f_k(x) = f(x) \text{ for each } x\in[0,1].$$

However, f is not Riemann integrable even though f is the pointwise limit of a sequence of integrable functions bounded by 1.

There is a condition under which Riemann integrals behave well with limits—though, this positive result has the undesirable hypothesis of the limit function f being Riemann integrable.

Proposition 1.2.1 (interchanging Riemann integral and limit): Suppose $a, b, M \in \mathbb{R}$ with a < b. Suppose f_1, f_2, \ldots is a sequence of Riemann integrable functions on [a, b] such that

$$|f_k(x)| \leq M$$

for all $k\in\mathbb{Z}^+$ and all $x\in[a,b]$. Suppose $\lim_{k\to\infty}f_k(x)$ exists for each $x\in[a,b]$. Define $f:[a,b]\to\mathbb{R}$ by

$$f(x) = \lim_{k \to \infty} f_k(x).$$

If f is Riemann integrable on [a, b], then

$$\int_a^b f = \lim_{k \to \infty} \int_a^b f_k.$$

2. Measures

2.1. Outer Measure on \mathbb{R}

Definition 2.1.1 (length of open interval): The *length* $\ell(I)$ of an open interval I is define by

$$\ell(I) = \begin{cases} b-a & \text{if } I = (a,b) \text{ for some } a,b \in \mathbb{R} \text{ with } a < b \\ 0 & \text{if } I = \emptyset \\ \infty & \text{if } I = (-\infty,a) \text{ or } I = (a,\infty) \text{ for some } a \in \mathbb{R} \\ \infty & \text{if } I = (-\infty,\infty) \end{cases}$$

Definition 2.1.2 (outer measure): The *outer measure* |A| of a set $A \subseteq \mathbb{R}$ is defined by

$$|A|=\inf \biggl\{ \sum_{k=1}^\infty \ell(I_k) \ | \ I_1,I_2,\dots \text{ are open intervals such that } A\subseteq \bigcup_{k=1}^\infty I_k \biggr\}.$$

Example (finite sets have outer meaure 0): Let $A=\{a_1,...,a_n\}$ be a finite subset of $\mathbb R$. Suppose $\varepsilon>0$. Define the sequence of $I_1,I_2,...$ of open intervals by

$$I_k = \begin{cases} (a_k - \varepsilon, a_k + \varepsilon) & \text{ if } k \leq n \\ \emptyset & \text{ if } k > n. \end{cases}$$

Then I_1,I_2,\ldots is a sequence of open interval whose union contains A. Then, $\sum_{k=1}^\infty \ell(I_k)=2\varepsilon n$. Hence $|A|\leq 2\varepsilon n$. Since ε is an arbitrary positive number, this implies that |A|=0.

2.1.1. Good Properties of Outer Measure

Proposition 2.1.1.1: Every countable subset of \mathbb{R} has outer measure 0.

Proposition 2.1.1.2: Suppose A and B are subsets of \mathbb{R} with $A \subseteq B$. Then $|A| \leq |B|$.

Definition 2.1.1.1 (translation): If $t \in \mathbb{R}$ and $A \subseteq \mathbb{R}$, then the *translation* t + A is defined by

$$t+A=\{t+a\ |\ a\in A\}.$$

Proposition 2.1.1.3 (translation invariant): Suppose $t \in \mathbb{R}$ and $A \subseteq \mathbb{R}$. Then |t + A| = |A|.

Proposition 2.1.1.4 (countable subadditivity): Suppose $A_1, A_2, ...$ is a sequence of subsets of \mathbb{R} . Then

$$\left| \bigcup_{k=1}^{\infty} A_k \right| \le \sum_{k=1}^{\infty} |A_k|.$$

2.1.2. Outer Measure of Closed Bounded Interval

Definition 2.1.2.1 (open cover; finite subcover): Suppose $A \subseteq \mathbb{R}$

- a. A collection \mathcal{C} of open subsets of \mathbb{R} is called an *open cover* of A if A is contained in the union of all the sets in \mathcal{C} .
- b. An open cover \mathcal{C} of A is said to have a *finite subcover* if A is contained in the union of some finite list of sets in \mathcal{C} .

Proposition 2.1.2.1 (Heine-Borel Theorem): Every open cover of a closed bounded subset of \mathbb{R} has a finite subcover.

Proposition 2.1.2.2 (outer measure of a closed interval)): Suppose $a, b \in \mathbb{R}$, with a < b. Then |[a, b]| = b - a.

Proposition 2.1.2.3 (nontrivial intervals are uncountable): Every interval in \mathbb{R} that contains at least two distint elements is uncountable.

2.1.3. Outer Measure is Not Additive

Proposition 2.1.3.1 (non-additivity of outer measure): There exist disjoint subsets A and B of \mathbb{R} such that $|A \cup B| \neq |A| + |B|$.

2.2. Measurable Spaces and Functions

Proposition 2.2.1 (nonexistence of extension of length to all subsets of \mathbb{R}): There does not exist a function μ with all the following properties.

- a. μ is a function from the set of subsets of \mathbb{R} to $[0, \infty]$.
- b. $\mu(I) = \ell(I)$ for every open interval I of \mathbb{R} .
- c. $\mu(\bigcup_{k=1}^{\infty}A_k)=\sum_{k=1}^{\infty}\mu(A_k)$ for every disjoint sequence A_1,A_2,\dots of subsets of $\mathbb R$.
- d. $\mu(t+A) = \mu(A)$ for every $A \subseteq \mathbb{R}$ and every $t \in \mathbb{R}$.

2.2.1. σ -Algebras

Definition 2.2.1.1 (σ -algebra): Suppose X is a set and \mathcal{S} is a set of subsets of X. Then \mathcal{S} is called a σ -algebra on X if the following three conditions are satisfied:

- $\emptyset \in \mathcal{S}$;
- if $E \in \mathcal{S}$, then $X \setminus E \in \mathcal{S}$;
- if E_1, E_2, \dots is a seuqence of elements of \mathcal{S} , then $\bigcup_{k=1}^{\infty} E_k \in \mathcal{S}$.

Example: The following are some σ -algebras on a set X.

- $\{\emptyset, X\}$
- $\mathcal{P}(X)$
- The set of all subsets E of X such that E is countable or $X \setminus E$ is countable.

Proposition 2.2.1.1 (σ -algebras are closed under countable intersection): Suppose \mathcal{S} is a σ -algebra on a set X. Then

- a. $X \in \mathcal{S}$;
- b. if $D, E \in \mathcal{S}$, then $D \cup E \in \mathcal{S}$ and $D \cap E \in \mathcal{S}$ and $D \setminus E \in \mathcal{S}$;
- c. if E_1, E_2, \ldots is a sequence of elements of \mathcal{S} , then $\bigcap_{k=1}^{\infty} E_k \in \mathcal{S}$.

Definition 2.2.1.2 (measurable space; measurable set):

- A measurable space is an ordered pair (X, \mathcal{S}) , where X is a set and \mathcal{S} is a σ -algebra on X.
- An element of S is called an S-measurable set, or just a measurable set if S is clear from the context.

2.2.2. Borel Subsets of \mathbb{R}

Proposition 2.2.2.1 (smallest σ -algebra containing a collection of subsets): Suppose X is a set and \mathcal{A} is a set of subsets of X. Then the intersection of all σ -algebra on X that contain \mathcal{A} is a σ -algebra on X.

Example: For a set X with $\mathcal{A} = \{\{x\} \mid x \in X\}$, the smallest σ -algebra containing \mathcal{A} is the finite-cofinite σ -algebra.

Definition 2.2.2.1 (Borel set): The smallest σ -algebra on \mathbb{R} containing all open subsets of \mathbb{R} is called the collection of *Borel subsets* of \mathbb{R} . An element of this σ -algebra is called a *Borel set*.

Example:

- Every closed subset of $\mathbb R$ is a Borel set because every closed subset of $\mathbb R$ is the complement of an open subset of $\mathbb R$.
- Every countable subset of $\mathbb R$ is a Borel subset because if $B=\{x_1,x_2,\ldots\}$, then $B=\bigcup_{k=1}^\infty \{x_k\}$, which is a Borel set because each $\{x_k\}$ is a closed set.
- Every half-open interval [a,b) (where $a,b\in\mathbb{R}$) is a Borel set because $[a,b)=\bigcap_{k=1}^{\infty} \left(a-\frac{1}{k},b\right)$.
- If $f: \mathbb{R} \to \mathbb{R}$ is a function, then the set of points at which f is continuous is the intersection of a sequence of open sets and thus is a Borel set.

Remark: There is no finite procedure involving countable unions, countable intersection and complements for constructing the collection of Borel subsets.

2.2.3. Inverse Images

Definition 2.2.3.1 (inverse image; $f^{-1}(A)$): If $f: X \to Y$ is a function $A \subseteq Y$, then the set $f^{-1}(A)$ is defined by

$$f^{-1}(A) = \{ x \in X \mid f(x) \in A \}.$$

Proposition 2.2.3.1 (algebra of inverse images): Suppose $f: X \to Y$ is a function. Then

a.
$$f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$$
 for every $A \subseteq Y$;

b.
$$f^{-1}(\bigcup_{A\in\mathcal{A}}A)=\bigcup_{A\in\mathcal{A}}f^{-1}(A)$$
 for every set \mathcal{A} of subsets of Y ;

b.
$$f^{-1}\left(\bigcup_{A\in\mathcal{A}}A\right)=\bigcup_{A\in\mathcal{A}}f^{-1}(A)$$
 for every set \mathcal{A} of subsets of Y ; c. $f^{-1}\left(\bigcap_{A\in\mathcal{A}}A\right)=\bigcap_{A\in\mathcal{A}}f^{-1}(A)$ for every set \mathcal{A} of subsets of Y .

Proposition 2.2.3.2 (inverse image of a composition): Suppose $f: X \to Y$ and $g: Y \to W$ are functions.

$$(g\circ f)^{-1}(A)=f^{-1}\big(g^{-1}(A)\big).$$

. 2.2.4. Measurable Functions

Definition 2.2.4.1 (measurable function): Suppose (X, \mathcal{S}) is a measurable sapce. A function $f: X \to \mathbb{R}$ is called \mathcal{S} -measurable if

$$f^{-1}(B)\in\mathcal{S}$$

for every Borel set $B \subseteq \mathbb{R}$

Definition 2.2.4.2 (characteristic function; χ_E): Suppose E is a subset of a set X. The *characteristic func*tion of E is the function $\chi_E:X\to\mathbb{R}$ defined by

$$\chi_{E(x)} = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{if } x \notin E. \end{cases}$$

Note that,

$$\chi_E^{-1}(B) = \begin{cases} E & \text{if } 0 \notin B \text{ and } 1 \in B, \\ X \setminus E & \text{if } 0 \in B \text{ and } 1 \notin B, \\ X & \text{if } 0 \in B \text{ and } 1 \in B, \\ \emptyset & \text{if } 0 \notin B \text{ and } 1 \notin B. \end{cases}$$

Then,

Lemma 2.2.4.1: χ_E is an \mathcal{S} -measurable function if and only if E in \mathcal{S} .

Proposition 2.2.4.1 (condition for measurable function): Suppose (X, \mathcal{S}) is a measurable space and f: $X \to \mathbb{R}$ is a function such that

$$f^{-1}((a,\infty)) \in \mathcal{S}$$

for all $a \in \mathbb{R}$. Then f is an S-measurable function.

In general, we can say the following things.

Lemma 2.2.4.2 (image of a σ -algebra): Suppose (X, \mathcal{S}) is a measurable space and $f: X \to Y$ a function. Then, the following defines a σ -algebra on Y

$$\mathcal{F} = \left\{ A \subseteq Y \mid f^{-1}(A) \in \mathcal{S} \right\}$$

So, the family from Proposition 2.2.4.1 can be replaced by any family of sets such that the smallest σ -algebra containing it also contains the Borel subsets of \mathbb{R} .

Definition 2.2.4.3 (Borel measurable function): Suppose $X \subseteq \mathbb{R}$. A function $f: X \to \mathbb{R}$ is called *Borel measurable* if $f^{-1}(B)$ is a Borel set for every Borel set $B \subseteq \mathbb{R}$.

Proposition 2.2.4.2 (every continuous function is Borel measurable): Every continuous real-valued function defined on a Borel subset of \mathbb{R} is a Borel measurable function.

Definition 2.2.4.4 (increasing functions; strictly increasing): Suppose $X \subseteq \mathbb{R}$ and $f: X \to \mathbb{R}$ is afunction

- f is called *increasing* if $f(x) \le f(y)$ for all $x, y \in X$ with x < y.
- f is called *strictly increasing* if f(x) < f(y) for all $x, y \in X$ with x < y.

Proposition 2.2.4.3 (every increasing function is Borel measurable): Every increasing function defined on a Borel subset of \mathbb{R} is a Borel measurable function.

Proposition 2.2.4.4 (composition of measurable functions): Suppose (X, \mathcal{S}) is a measurable space and $f: X \to \mathbb{R}$ is an \mathcal{S} -measurable function. Suppose g is a real-valued measurable function defined on a subset of \mathbb{R} that includes the range of f. Then $g \circ f: X \to \mathbb{R}$ is an \mathcal{S} -measurable function.

Proposition 2.2.4.5 (algebraic operations with measurable functions): Suppose (X, \mathcal{C}) is a measurable space and $f, g: X \to \mathbb{R}$ are \mathcal{S} -measurable. Then

- a. f + g, f g and fg are S-measurable functions;
- b. if $g(x) \neq 0$ for all $x \in X$, then $\frac{f}{g}$ is an $\mathcal S$ -measurable function.

Proposition 2.2.4.6 (limit of S-measurable functions): Suppose (X, \mathcal{S}) is a measurable space and $f_1, f_{@}, ...$ is a sequence of S-measurable functions from X to \mathbb{R} . Suppose $\lim_{k \to \infty} f_{k(x)}$ exists for each $x \in X$. Define $f: X \to \mathbb{R}$ by

$$f(x) = \lim_{k \to \infty} f_{k(x)}.$$

Then f is an S-measurable function.

Definition 2.2.4.5 (Borel subsets of $[-\infty, \infty]$): A subset of $[-\infty, \infty]$ is called a *Borel set* if its intersection with $\mathbb R$ is a Borel set.

Definition 2.2.4.6 (measurable function): Suppose (X, \mathcal{S}) is a measurable space. A function $f: X \to [-\infty, \infty]$ is called \mathcal{S} -measurable if

$$f^{-1}(B) \in \mathcal{S}$$

for every Borel set $B \subseteq [-\infty, \infty]$.

Proposition 2.2.4.7 (condition for measurable function): Suppose (X, \mathcal{S}) is a measurable sapce and $f: X \to [-\infty, \infty]$ is a function such that

$$f^{-1}((a,\infty]) \in \mathcal{S})$$

for all $a \in \mathbb{R}$. Then f is an \mathcal{S} -measurable function.

Proposition 2.2.4.8 (infimum and supremum of a sequence of \mathcal{S} -measurable functions): Suppose (X,\mathcal{S}) is a measurable space and f_1,f_2,\ldots is a seuqence of \mathcal{S} -measurable functions from X to $[-\infty,\infty]$. Define $g,h:X\to [-\infty,\infty]$ by

$$g(x) = \inf \bigl\{ f_{k(x)} \mid k \in \mathbb{Z}^+ \bigr\} \quad \text{and} \quad h(x) = \sup \bigl\{ f_{k(x)} \mid k \in \mathbb{Z}^+ \bigr\}.$$

Then g and h are \mathcal{S} -measurable functions.

2.3. Measures and Their Properties

Definition 2.3.1 (measure): Suppose X is a set and \mathcal{S} is a σ -algebra on X. A *measure* on (X,\mathcal{S}) is a function $\mu: \mathcal{S} \to [0,\infty]$ such that $\mu(\emptyset) = 0$ and

$$\mu\bigg(\bigcup_{k=1}^{\infty} E_k\bigg) = \sum_{k=1}^{\infty} \mu(E_k)$$

for every disjoint sequence E_1, E_2, \dots of sets in $\mathcal{S}.$

Example:

- If X is a set, then *counting measure* is the measure μ defined on the σ -algebra of all subsets of X by setting $\mu(E) = n$ if E is a finite set containing exactly n elements and $\mu(E) = \infty$ if E is not a finite set.
- Suppose X is a set, S is a σ -algebra on X, and $c \in X$. Define the *Dirac* measure δ_c on (X, S) by

$$\delta_c(E) = \begin{cases} 1 & \text{if } c \in E, \\ 0 & \text{if } c \notin E. \end{cases}$$

• Suppose X is a set, $\mathcal S$ is a σ -algebra on X, and $\omega:X\to [0,\infty]$ is a function. Define a measure μ on $(X,\mathcal S)$ by

$$\mu(E) = \sum_{x \in E} w(x)$$

for $E \in \mathcal{S}$. THe sum is defined as the supremum of all finite subsums $\sum_{x \in D} w(x)$ as D ranges over all finite subsets of E.

• Suppose X is a set and $\mathcal S$ is the σ -algebra on X consisting of all subsets of X that are either countable or have a countable complement in X. Define a measure on μ on $(X,\mathcal S)$ by

$$\mu(E) = \begin{cases} 0 & \text{if } E \text{ is countable,} \\ 3 & \text{if } E \text{ is uncountable.} \end{cases}$$

- Suppose \mathcal{S} is the σ -algebra on \mathbb{R} consisting of all subsets of \mathbb{R} . Then the function that takes a set $E \subseteq \mathbb{R}$ to |E| (the outer measure of E) is not a measure because it is not finitely additive.
- Suppose \mathcal{B} is the σ -algebra on \mathbb{R} consisting of all Borel subsets of \mathbb{R} . The outer measure is a measure on $(\mathbb{R}, \mathcal{B})$ (proven below).

Definition 2.3.2 (measure space): A *measure space* is an ordered triple (X, \mathcal{S}, μ) , where X is a set, \mathcal{S} is a σ -algebra on X, and μ is a measure on (X, \mathcal{S}) .

2.3.1. Properties of Measures

Proposition 2.3.1.1 (measure preserves order; measure of a set difference): Suppose (X, \mathcal{S}, μ) is a measure space and $D, E \in \mathcal{S}$ are such that $D \subseteq E$. Then

a.
$$\mu(D) \le \mu(E)$$
;

b. $\mu(E \setminus D) = \mu(E) - \mu(D)$ provided that $\mu(D) < \infty$.

Remark: The hypothesis $\mu(D) < \infty$ is required for part (b) to avoid undefined expressions of the form $\infty - \infty$.

Proposition 2.3.1.2 (countable subadditivity): Suppose (X, \mathcal{S}, μ) is a measure space and $E_1, E_2, ... \in \mathcal{S}$. Then

$$\mu\bigg(\bigcup_{k=1}^{\infty} E_k\bigg) \le \sum_{k=1}^{\infty} \mu(E_k).$$

Proposition 2.3.1.3 (measure of an increasing union): Suppose (X, \mathcal{S}, μ) is a measure space and $E_1 \subseteq E_2 \subseteq \cdots$ is an increasing sequence of sets in \mathcal{S} . Then

$$\mu\!\left(\bigcup_{k=1}^\infty E_k\right) = \lim_{k\to\infty} \mu(E_k)$$

Proposition 2.3.1.4 (measure of a decreasing intersection): Suppose (X, \mathcal{S}, μ) is a measure space and $E_1 \supseteq E_2 \supseteq \cdots$ is a decreasing sequence of sets in \mathcal{S} , with $\mu(E_1) < \infty$. Then

$$\mu\bigg(\bigcap_{k=1}^{\infty}E_k\bigg)=\lim_{k\to\infty}\mu(E_k).$$

Remark: The hypothesis $\mu(E_1) < \infty$ is necessary.

Proposition 2.3.1.5 (measure of a union): Suppose (X, \mathcal{S}, μ) is a measure space $D, E \in \mathcal{S}$, with $\mu(D \cap E) < \infty$. Then

$$\mu(D \cup E) = \mu(D) + \mu(E) - \mu(D \cap E).$$

2.4. Lebesgue Measure

2.4.1. Additivity of Outer Measure on Borel Sets

- 2.4.2. Lebesgue Measurable Sets
- 2.4.3. Cantor Set and Cantor Function
- 2.5. Convergence of Measurable Functions