2003年3月

 $oldsymbol{1}$ 次の式で与えられる4次正方行列を $A=(a_{ij})$ とおく.

$$a_{ij} = \left\{ egin{array}{ll} j & i \leq j \, \mathfrak{O}$$
とき $0 & i > j \, \mathfrak{O}$ とき $0 & i \leq i, j \leq 4 \end{array}
ight.$

このとき、次の問に答えよ.

- (1) 行列 A の逆行列 A^{-1} を求めよ.
- (2) 行列 A^{-1} の固有値を求めよ.
- (3) 行列 A^{-1} の最小の固有値に対する固有ベクトルを求めよ.
- (4) $X=(x_{ij})$ を n 次正方行列で、各要素が行列 A と同じように

$$x_{ij} = \left\{ egin{array}{ll} j & i \leq j \, \mathfrak{O}$$
とき $0 & i > j \, \mathfrak{O}$ とき $0 & i \leq i, j \leq n \end{array}
ight.$

で与えられているものとする.このとき,行列 X の逆行列 X^{-1} の形を問 (1) で導いた答より予想し,それが正しいことを示せ.

 $oxed{2}$ 2次の実正方行列全体の作る線形空間をVとし、

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

とおく.

- (1) $\mathcal{M}=\{A_1,A_2,A_3,A_4\}$ がV の基底であることを示せ.
- (2) V の元 $\begin{pmatrix}1&3\\2&4\end{pmatrix}$ の基底 $\mathcal{M}=\{A_1,A_2,A_3,A_4\}$ に関する成分を求めよ.
- (3) 写像 $F:V \rightarrow V$ を

$$F\left(\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}\right) = \begin{pmatrix} 2x_{11} & x_{21} \\ x_{12} & -x_{22} \end{pmatrix}$$

により定義する.この写像 F が線形写像であることを示せ.

- (4) (3) の線形写像 F の基底 $\mathcal{M} = \{A_1, A_2, A_3, A_4\}$ に関する行列表現を求めよ.
- (5) (3) の線形写像 F は逆写像 F^{-1} をもつか.もつときは $F^{-1}\left(\begin{pmatrix}y_{11}&y_{12}\\y_{21}&y_{22}\end{pmatrix}\right)$ を求めよ.もたないときは, F の核 $\ker F$ を求めよ.

3 $n=1,2,\ldots$ に対して

$$a_n = \int_0^1 \frac{dx}{1 + x^n}$$

とおくとき、次の問に答えよ.

- (1) a_1 と a_2 を求めよ.
- (2) $a_n \ge \log 2$ を示せ.
- (3) 数列 $\{a_n\}$ は上に有界な単調増加数列であることを示せ.
- (4) $\lim_{n\to\infty}a_n$ を求めよ.
- 4 5つの要素からなる有限体 F_5 上で考える.
- (1) 多項式 $x^2 + 1$ を F_5 上で因数分解せよ.
- (2) 2 次式 $x^2 + ax + b$ $(a, b \in F_5)$ が F_5 上で既約になるための (a, b) の条件を求めよ.
- (3) (2) の条件をみたす (a,b) の集合を S とするとき

$$\prod_{(a,b)\in S} (x^2 + ax + b) = \frac{x^{24} - 1}{x^4 - 1}$$

を示せ.

 $oxed{5}$ $oxed{Q}$ を有理数体とし、

$$\alpha = \sqrt{(2+\sqrt{2})(5+\sqrt{5})}, \quad \beta = \sqrt{(2-\sqrt{2})(5+\sqrt{5})}$$

$$\gamma = \sqrt{(2+\sqrt{2})(5-\sqrt{5})}, \quad \delta = \sqrt{(2-\sqrt{2})(5-\sqrt{5})}$$

とおく. Q の 8 次拡大体 $K = Q(\sqrt{2}, \sqrt{5}, \alpha)$ について次の問に答えよ.

- (1) $\beta/\alpha,\ \gamma/\alpha$ をそれぞれ $Q(\sqrt{2})$ および $Q(\sqrt{5})$ の元として表せ. (2 重根号を用いずに表すこと.)
- (2) $(\alpha + \delta)^2$ を計算し, $\sqrt{10 + 3\sqrt{10}} \in K$ であることを示せ.
- (3) $K/\mathbf{Q}(\sqrt{5})$ および $K/\mathbf{Q}(\sqrt{2})$ はガロア拡大で、それらのガロア群はそれぞれ

$$\sigma(\alpha) = \beta, \qquad \tau(\alpha) = \gamma$$

を満たす K の自己同型 σ および τ によって生成される巡回群であることを示せ、また、 $\sigma\tau=\tau\sigma$ であることを示せ、

 $M(3, \mathbf{R})$ を 3 次の実正方行列全体の集合とし、9 次元ユークリッド空間 \mathbf{R}^9 と自然に同一視した位相を与える。次のような $M(3, \mathbf{R})$ の部分位相空間 G, M と写像 ϕ を考える。

$$G = \{ X \in M(3, \mathbf{R}) \mid {}^{t}X = X^{-1}, \det X = 1 \},$$

$$M = \{ A \in M(3, \mathbf{R}) \mid {}^{t}A = A, \operatorname{Trace}A = 0 \},$$

$$\phi : G \times M \to M, \quad \phi(X, A) = XAX^{-1} \quad (X \in G, A \in M).$$

このとき、次の問に答えよ.

- (1) G は行列の積に関して、位相群になることを示せ、
- (2) 写像 ϕ は定義可能で, G の M への連続な作用を与えることを示せ.
- (3) $A=\begin{pmatrix}2&0&0\\0&-1&0\\0&0&-1\end{pmatrix}$ および $B=\begin{pmatrix}3&0&0\\0&-1&0\\0&0&-2\end{pmatrix}$ における等方部分群 G_A,G_B を求めよ. ただし $G_A=\{X\in G\,|\,\phi(X,A)=A\}$ を、A における等方部分群という.

 $oxed{7}$ 平面内の領域 D 上で定義された曲面 $M=\{(x,y,z)\,|\,z=f(x,y),\,(x,y)\in D\}$ のガウス曲率 K は

$$K = \frac{f_{xx}f_{yy} - f_{xy}^{2}}{(1 + f_{x}^{2} + f_{y}^{2})^{2}}$$

と計算されることが知られている。このことを用いて、関数 $z=\frac{1}{2}(ax^2+2bxy+cy^2)$ により与えられる 2 次曲面 M 上の点 P=(0,0,0) の周りの M の形状について論ぜよ。ただしa,b,c, は実数である。

8

(a)
$$f(1) = 1$$

(b)
$$f(x+y) = f(x) + f(y)$$
 $(0 \le x, y < +\infty)$

という性質をもつ $[0,+\infty)$ 上の連続関数 f(x) はどのような形をしているか.

- 9 複素関数 f(z) は次を満たすとする.
- (a) f(z) は上半平面 Im z > 0 で有限個の極を除いて正則.
- (b) f(z) は原点 0 を 1 位の極とするほか実軸上に極を持たない.
- (c) $\lim_{z \to \infty} f(z) = 0$.

このとき, $g(z)=f(z)e^{imz}$ (m>0) とおく. $\Gamma(r)$ を中心 0 ,半径 r>0 の下の図のような半円とし,向きは偏角の増加する方向にとる.また, $\mathrm{Res}(g,\alpha)$ は関数 g の点 α における留数を表わす.

- (1) $\lim_{arepsilon o 0}\int_{arGamma(arepsilon)}g(z)\,dz=\mathrm{Res}(g,0)\pi i$ を示せ.
- (2) $\lim_{R o +\infty} \int_{arGamma(R)} g(z) \, dz = 0$ を示せ.

(3)
$$\lim_{R \to +\infty, \varepsilon \to 0} \left(\int_{-R}^{-\varepsilon} + \int_{\varepsilon}^{R} \right) g(x) \, dx = 2\pi i \sum_{\text{Im}\alpha > 0} \text{Res}(g, \alpha) + \pi i \text{Res}(g, 0)$$
 を示せ.

ここで右辺の第1項の和は上半平面に含まれる f(z) の極 lpha についてとる.

$$(4)$$
 上の結果を利用して $\lim_{R o +\infty, arepsilon o 0} \int_{arepsilon}^R rac{\sin x}{x} \, dx$ の値を求めよ .

10 2つの整数の添字 $j,k\in Z$ をもつ複素数列 $(x_{j,k})$ で , $\sum\limits_{j,k=-\infty}^{\infty}|x_{j,k}|^2<\infty$ をみたすものからなるヒルベルト空間を $\mathcal H$ とする.各 $m\in Z$ について $j\neq m$ ならば $x_{j,k}=0$ となる数列 $(x_{j,k})$ からなる $\mathcal H$ の部分空間 $\mathcal M_m$ への射影作用素を P_m とし , S を第2の添字に関するシフト作用素 , つまり , 数列 $(x_{j,k})$ を $y_{j,k}=x_{j,k-1}$ を満たす数列 $(y_{j,k})$ に変換する作用素とする.このとき , 作用素 U を $U=\sum\limits_{m=-\infty}^{\infty}P_mS^m$ と定義する.

- (1) U はユニタリ作用素であることを示せ.
- (2) \mathcal{H} に属する数列 $(x_{j,k})$ を U で変換して得られる数列 $(z_{j,k})$ が

$$\sum_{j,k=-\infty}^{\infty} |x_{j,k}|^2 = \sum_{j=-\infty}^{\infty} |z_{j,j}|^2$$

4

を満たすような数列 $(x_{j,k})$ をすべて求めよ.

11 2次元ユークリッド空間における基底を

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

と定める. X_1, X_2, \ldots を $\{e_1, e_2\}$ に値をとる独立な確率ベクトルの列で

$$P(X_n = e_1) = P(X_n = e_2) = \frac{1}{2}, \qquad n = 1, 2, \dots$$

を満たすものとし、

$$S_n = X_1 + X_2 + \dots + X_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$$

とおく. 次の問に答えよ.

- (1) x_n は二項分布 $B(n,\frac{1}{2})$ に従う確率変数であることを示せ.
- (2) 確率ベクトル S_n の平均 $M_n = \mathbf{E}(S_n)$ を計算せよ.
- (3) $\mathbf{E}(\|S_n M_n\|^2)$ を計算せよ. ただし, $\|a\|$ はユークリッドノルムであり,

$$||a||^2 = \alpha^2 + \beta^2, \qquad a = \begin{pmatrix} \alpha \\ \beta \end{pmatrix},$$

によって定義される.