Laboratory practice Nro. 1 Recursion

Juan Sebastián Díaz Osorio

Universidad Eafit Medellín, Colombia jsdiazo@eafit.edu.co

Liz Oriana Rodrigues Cruz

Universidad Eafit Medellín, Colombia lorodriguc@eafit.edu.co

3) Practice for final project defense presentation

3.1 Let n be second dimension to area problem (It means 1 x n is total area), so: T(n) = T(n-1) + T(n-2) + C, is $O(2^n)$

3.2

x (valor)	y (ms)
10	0
13	0
16	0
19	0
22	0

x (valor)	y (ms)
25	0
28	0
31	16
34	15
35	31

x (valor)	y (ms)
37	78
39	203
40	344
41	559
43	1.392

x (valor)	y (ms)
45	3.611
46	5.794
47	9.646
49	24.854
52	104.157

PhD. Mauricio Toro Bermúdez

Docente | Escuela de Ingeniería | Informática y Sistemas Correo: mtorobe@eafit.edu.co | Oficina: Bloque 19 – 627

Tel: (+57) (4) 261 95 00 Ext. 9473

- 3.3 Its complexity is $O(2^n)$. Therefore, the algorithm is so bad with big n numbers and Puerto Antioquia should not depend on this (For clarity, with n = 1000 we talk about 10^{301} processes before the answer).
- 3.4 GroupSum5 algorithm, given an initial integer value (commonly 0), an array and a target value, sum each number in each sub-array from the initial array. For instance, [3, 4, 5], [3, 5], [3, 4], [4, 5], [3], [4], [5] are sub-arrays of [3, 4, 5]. Its sums 14, 8. 7, 9. 3. 4. 5 There is a condition, though. Whether the sub-array has a 5 or a multiple of 5, subarray with this value are valid only if next number, in the array, is not 1. For instance, [3, 15, 1, 4], [8, 15, 4], [3, 15] are sub-arrays from [3, 8, 15, 1, 4], but they are not valid because a multiple of 5 has forward an 1. GroupSum5 returns true if exists, at least, a sub-array with this condition that its sum is target value. Otherwise, returns false.

Examples:

GroupSum5(init = 0, array = [2, 5, 10, 4], target = 19)

$$[2, 5, 10, 4] = 21$$
 X

$$[2, 5, 10] = 17$$
 X

$$[2, 5, 4] = 11$$
 X

returns true

GroupSum5(init = 0, array = [3, 5, 1], target = 9)

[3, 5, 1] **NO VALID**

[3, 5] **NO VALID**

[5, 1] **NO VALID**

[3, 1] X

return false

3.5 CodingBat - Recursion 1

strCount: Let n be the str length and m the sub length:

$$T(n, m) = T(n - m, m) + C_2$$

$$T(n) = T(n-km) + kC_2$$

(Through induction)

$$T(n) = T(n - (n/m) m) + (n/m) C_2$$

(Let k = n/m)

$$T(n) = T(0) + (n/m) C_2$$

$$(T(n) = C_1 + (n/m) C_2)$$

It is O(n/m).

strCopies: Let n be the times that a substring is inside a string:

$$T(n) = T(n - 1) + C_2$$

(Worst case is to search by whole string)

$$(T(n) = C_2n + C_1)$$

It is O(n).

strDist: Let n be the string length:

$$T(n) = T(n - 1) + C_2$$

(Worst case is to cut each character from string)

$$(T(n) = C_2n + C_1)$$

It is O(n).

parenBit: Let n be the string length:

$$T(n) = T(n - 1) + C_2$$

(Worst case is to cut each character from string)

$$(T(n) = C_2n + C_1)$$

It is O(n).

nestParen: Let n be the string length:

$$T(n) = T(n - 2) + C_3$$

(Worst case is to cut each character from string)

$$(T(n) = \frac{1}{4}C_3(2n - 1) + C_2(-1)^n + C_1)$$

It is O(n).

PhD. Mauricio Toro Bermúdez

CodingBat - Recursion 2

groupSum6: Let n be the array length:

$$T(n) = 2T(n - 1) + C_2$$

(Worst case is to use two options in the return)

$$T(n) = C_2(2^n - 1) + C_1(2^{n-1})$$

It is **O(2**ⁿ).

groupNoAdj: Let n be the array length:

$$T(n) = T(n - 1) + T(n - 2) + C$$

It is $O(2^n)$.

(via analysis)

groupSumClump: Let n be the array length:

$$T(n) = n + 2T(n - 1) + C$$

(Worst case is to use two options in the return)

$$T(n) = 2^{n-1}(C_1 + 2C + 4) - C - n - 2$$

It is $O(2^n)$.

splitOdd10: Let n be the array length:

$$T(n) = 2T(n - 1) + C$$

$$T(n) = C_2(2^n - 1) + C_1(2^{n-1})$$

It is $O(2^n)$.

splitArray: Let n be the array length:

$$T(n) = 2T(n - 1) + C$$

$$T(n) = C_2(2^n - 1) + C_1(2^{n-1})$$

It is $O(2^n)$.

3.6 CodingBat - Recursion 1

strCount

- o **n** is a string of characters
- o **m** is a substring of characters

strCopies

o **n** is the number of times a substring of characters is repeated

PhD. Mauricio Toro Bermúdez

strDist

- n is the length of a character string parenBit
- n is the length of a character string nestParen
 - o **n** is the length of a character string

CodingBat - Recursion 2

groupSum6

- *n* is the length of an array of numbers groupNoAdj
- *n* is the length of an array of numbers groupSumClump
- *n* is the length of an array of numbers aplitOdd10
- *n* is the length of an array of numbers splitArray
 - o **n** is the length of an array of numbers

4) Practice for midterms

- **4.1** SumaGrupo(start + 1, nums, target);
- **4.2** a)
- **4.3** Answers:
 - **4.3.1** int res = solucionar (n a, a, b, c);
 - **4.3.2** res = Math.max(res, solucionar(n, b, c, n + 1));
 - **4.3.3** res = Math.max(res, solucionar(n, c, n + 1, n + 1));
- **4.4** a)
- 4.5 Answers:
 - 4.5.1 line 2 : return n; }
 line 3 and 4: return (desconocido (n 1) + desconocido (n 2));
 - **4.5.2** d)
- **4.6** line 10: return sumaAux(n, i + 2); line 12: return (n.charAt (i) '0') + sumaAux(n, i + 1);

PhD. Mauricio Toro Bermúdez

- **4.7** line 9 and 10: return comb (S, I + 1, t S[i]) || comb (S, I + 1, t);
- 4.8 Answers:
 - **4.8.1** line 9: return 0;
 - **4.8.2** line 13: int suma = ni + nj;
- **4.9** b)
- **4.10** a)
- **4.11** Answers:
 - **4.11.1** return fun(n 2) + fun(n 1);
 - **4.11.2** c)

5) Recommended Reading (optional)

We made the conceptual map via Prezi:

https://prezi.com/go7xtgmnkm9h/?utm_campaign=share&utm_medium=copy

6) Teamwork and gradual progress (optional)

We meet once only. This is the record: https://bit.ly/31Gb4qo

It was because we use in-class time, Trello and chats to distributed and analyze the work.

This is the progress report with GitHub commits and Kanban board screenshots https://bit.ly/2ZbNYX6

PhD. Mauricio Toro Bermúdez

