Predictions using the Human Activity Recognition Dataset

Csaba Iranyi

The Question

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it.

In this project, I will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants.

Six young health participants were asked to perform one set of 10 repetitions of the Unilateral Dumbbell Biceps Curl in five different fashions:

Movement type	Class
Exactly according to the specification	Class A
Throwing the elbows to the front	Class B
Lifting the dumbbell only halfway	Class C
Lowering the dumbbell only halfway	Class D
Throwing the hips to the fron	Class E

Based on a dataset provide by Human Activity Recognition (HAR) http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har (http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har) I will try:

- to train and evaluate some multi-class classification predictive models using the training dataset with 159 features and one label (classe),
- to use the trained prediction models to predict 20 different test cases (what exercise was performed) from the testing dataset.

Getting data

```
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE, fig.width=10,
fig.height=5)
options(width=120)

library(caret)
library(randomForest)
library(ggcorrplot)
library(ggpubr)
```

Downloading of traning and testing datasets.

Exploratory data analysis

Examining the dimensions and the features of the training dataset.

Number of observations in training dataset: 19622

```
# Number of features
cat("Number of features in training dataset:", length(names(training.data)) - 1, "
\n")

## Number of features in training dataset: 159

cat("Number of features in testing dataset:", length(names(training.data)) - 1, "\
n")
```

```
## Number of features in testing dataset: 159
```

```
# Number of rows
cat("Number of observations in training dataset:", nrow(training.data), "\n")
```

```
cat("Number of observations in testing dataset:", nrow(testing.data), "\n")
```

```
# Create summary of features (and label)
feature.summary <- data.frame(row.names = 1:length(names(training.data)))
feature.summary$feature.index <- 1:length(names(training.data))
feature.summary$feature.name <- names(training.data)
feature.summary$type <- sapply(training.data, class)
feature.summary$NA.rows <- sapply(training.data, function(x) sum(is.na(x)))
feature.summary$NA.rows.percent <- sapply(training.data, function(x) round(sum(is.na(x)) / length(x) * 100.0, digits = 2))
feature.summary$empty.rows <- sapply(training.data, function(x) length(x[x == ""]))
feature.summary$empty.rows.percent <- sapply(training.data, function(x) round(leng th(x[x == ""]) / length(x) * 100.0, digits = 2))
feature.summary$unique.values <- sapply(training.data, function(x) length(unique(x))))
feature.summary[, -1]</pre>
```

##	feature.name	type	NA.rows	NA.rows.percent	empty.rows	empty.r
_	ent unique.values					
## 1		integer	0	0.00	0	
0.00	19622					
## 2	user_name	factor	0	0.00	0	
0.00	6				_	
## 3	raw_timestamp_part_1	integer	0	0.00	0	
0.00	837			0.00		
## 4	raw_timestamp_part_2	ınteger	0	0.00	0	
0.00	16783	61	0	0.00	0	
## 5 0.00	cvtd_timestamp	factor	0	0.00	0	
## 6	20 new window	factor	0	0.00	0	
0.00	2	Tactor	U	0.00	O	
## 7	num_window	integer	0	0.00	0	
0.00	858	11100901	v	0.00	v	
## 8	roll belt	numeric	0	0.00	0	
0.00	1330					
## 9	pitch_belt	numeric	0	0.00	0	
0.00	1840					
## 10	yaw_belt	numeric	0	0.00	0	
0.00	1957					
## 11	total_accel_belt	integer	0	0.00	0	
0.00	29					
## 12	kurtosis_roll_belt	factor	0	0.00	19216	
97.93	397					
## 13	kurtosis_picth_belt	factor	0	0.00	19216	
97.93	317					
## 14	kurtosis_yaw_belt	factor	0	0.00	19216	
97.93	2		_			
## 15	skewness_roll_belt	factor	0	0.00	19216	
97.93	395	. .	-	0.00	1001	
## 16	skewness_roll_belt.1	factor	0	0.00	19216	
97.93	338					

## 17	skewness_yaw_belt	factor	0	0.00	19216
97.93 ## 18	2 max_roll_belt	numeric	19216	97.93	19216
97.93	196	1141110110	1,210	3,,550	1,210
## 19	max picth belt	integer	19216	97.93	19216
97.93	23	_			
## 20	max_yaw_belt	factor	0	0.00	19216
97.93	68				
## 21	min_roll_belt	numeric	19216	97.93	19216
97.93	185				
## 22	min_pitch_belt	integer	19216	97.93	19216
97.93	17	.	•	0.00	10016
## 23 97.93	min_yaw_belt 68	ractor	0	0.00	19216
## 24	amplitude roll belt	numeric	19216	97.93	19216
97.93	149	numeric	17210	27.23	17210
## 25	amplitude pitch belt	integer	19216	97.93	19216
97.93	14				
## 26	amplitude_yaw_belt	factor	0	0.00	19216
97.93	4				
## 27	var_total_accel_belt	numeric	19216	97.93	19216
97.93	66				
## 28	avg_roll_belt	numeric	19216	97.93	19216
97.93	192				
## 29	stddev_roll_belt	numeric	19216	97.93	19216
97.93	70		10016	07.03	10016
## 30 97.93	var_roll_belt 97	numeric	19216	97.93	19216
## 31	avg_pitch_belt	numeric	19216	97.93	19216
97.93	215	Trainer 10	17210	27.23	17210
## 32	stddev_pitch_belt	numeric	19216	97.93	19216
97.93	44				
## 33	var_pitch_belt	numeric	19216	97.93	19216
97.93	64				
## 34	avg_yaw_belt	numeric	19216	97.93	19216
97.93	241				
## 35	stddev_yaw_belt	numeric	19216	97.93	19216
97.93	59				
## 36	var_yaw_belt	numeric	19216	97.93	19216
97.93	146		0	0.00	0
## 37 0.00	gyros_belt_x 140	numeric	0	0.00	0
## 38	gyros_belt_y	numeric	0	0.00	0
0.00	69	Trainer 10	O	0.00	O
## 39	gyros belt z	numeric	0	0.00	0
0.00	169		_		-
## 40	accel_belt_x	integer	0	0.00	0
0.00	164				
## 41	accel_belt_y	integer	0	0.00	0
0.00	143				
## 42	accel_belt_z	integer	0	0.00	0
0.00	299				
## 43	magnet_belt_x	integer	0	0.00	0
0.00	327				

## 44	magnet_belt_y	integer	0	0.00	0
0.00	298				
## 45	magnet_belt_z	integer	0	0.00	0
0.00	457				
## 46	roll_arm	numeric	0	0.00	0
0.00	2654				
## 47	pitch_arm	numeric	0	0.00	0
0.00	3087				
## 48	yaw_arm	numeric	0	0.00	0
0.00	2876				
## 49	total_accel_arm	ınteger	0	0.00	0
0.00	66		10016	07.00	10016
## 50	var_accel_arm	numeric	19216	97.93	19216
97.93	396		10016	07.03	10016
## 51	avg_roll_arm	numeric	19216	97.93	19216
97.93	331		10016	97.93	10216
## 52 97 . 93	stddev_roll_arm 331	numeric	19216	97.93	19216
## 53	var_roll_arm	numeric	19216	97.93	19216
97.93	331	Humeric	17210	37.33	17210
## 54	avg_pitch_arm	numeric	19216	97.93	19216
97.93	331			3,130	27223
## 55	stddev_pitch_arm	numeric	19216	97.93	19216
97.93	331				
## 56	var_pitch_arm	numeric	19216	97.93	19216
97.93	331				
## 57	avg_yaw_arm	numeric	19216	97.93	19216
97.93	331				
## 58	stddev_yaw_arm	numeric	19216	97.93	19216
97.93	328				
## 59	var_yaw_arm	numeric	19216	97.93	19216
97.93	328				
## 60	gyros_arm_x	numeric	0	0.00	0
0.00	643		•	0.00	•
## 61 0.00	gyros_arm_y	numeric	0	0.00	0
## 62	376 gyros_arm_z	numoria	0	0.00	0
0.00	248	numeric	U	0.00	U
## 63	accel_arm_x	integer	0	0.00	0
0.00	777	Integer	· ·	0.00	O
## 64	accel_arm_y	integer	0	0.00	0
0.00	537	3 -			
## 65	accel_arm_z	integer	0	0.00	0
0.00	792				
## 66	magnet_arm_x	integer	0	0.00	0
0.00	1339				
## 67	magnet_arm_y	integer	0	0.00	0
0.00	872				
## 68	magnet_arm_z	integer	0	0.00	0
0.00	1265				
## 69	kurtosis_roll_arm	factor	0	0.00	19216
97.93	330	.	•		10011
## 70	kurtosis_picth_arm	ractor	0	0.00	19216
97.93	328				

## 71 97.93	kurtosis_yaw_arm 395	factor	0	0.00	19216
## 72 97.93	skewness_roll_arm 331	factor	0	0.00	19216
## 73	skewness_pitch_arm	factor	0	0.00	19216
97.93	328				
## 74	skewness_yaw_arm	factor	0	0.00	19216
97.93	395				
## 75	max_roll_arm	numeric	19216	97.93	19216
97 . 93 ## 76	291		10216	97.93	10216
97.93	max_picth_arm 264	numeric	19216	97.93	19216
## 77	max yaw arm	integer	19216	97.93	19216
97.93	52	Integer	17210	37.33	13210
## 78	min_roll_arm	numeric	19216	97.93	19216
97.93	279				
## 79	min_pitch_arm	numeric	19216	97.93	19216
97.93	291				
## 80	min_yaw_arm	integer	19216	97.93	19216
97.93	39				
## 81	amplitude_roll_arm	numeric	19216	97.93	19216
97.93	307				
## 82	amplitude_pitch_arm	numeric	19216	97.93	19216
97.93	295				
## 83	amplitude_yaw_arm	integer	19216	97.93	19216
97.93	52		0	0.00	0
## 84 0.00	roll_dumbbell 16523	numeric	0	0.00	0
## 85	pitch dumbbell	numeric	0	0.00	0
0.00	16040	iiuor 10	ŭ	0.00	· ·
## 86	yaw_dumbbell	numeric	0	0.00	0
0.00	16381				
## 87	kurtosis_roll_dumbbell	factor	0	0.00	19216
97.93	398				
## 88	kurtosis_picth_dumbbell	factor	0	0.00	19216
97.93	401				
## 89	kurtosis_yaw_dumbbell	factor	0	0.00	19216
97.93	2	. .			
## 90	skewness_roll_dumbbell	factor	0	0.00	19216
97.93 ## 91	401 skewness pitch dumbbell	factor	0	0.00	19216
97.93	402	Tactor	U	0.00	19210
## 92	skewness_yaw_dumbbell	factor	0	0.00	19216
97.93	2	100001	·		-70
## 93	max_roll_dumbbell	numeric	19216	97.93	19216
97.93	 339				
## 94	max_picth_dumbbell	numeric	19216	97.93	19216
97.93	340				
## 95	max_yaw_dumbbell	factor	0	0.00	19216
97.93	73				
## 96	min_roll_dumbbell	numeric	19216	97.93	19216
97.93	333		10011	2	4004
## 97	min_pitch_dumbbell	numeric	19216	97.93	19216
97.93	357				

## 98 97.93	min_yaw_dumbbell 73	factor	0	0.00	19216
## 99 97.93	amplitude_roll_dumbbell 388	numeric	19216	97.93	19216
	amplitude_pitch_dumbbell 384	numeric	19216	97.93	19216
## 101 97.93	amplitude_yaw_dumbbell	factor	0	0.00	19216
## 102 0.00	total_accel_dumbbell 43	integer	0	0.00	0
## 103 97.93	var_accel_dumbbell 385	numeric	19216	97.93	19216
## 104 97.93		numeric	19216	97.93	19216
## 105 97.93	stddev_roll_dumbbell 392	numeric	19216	97.93	19216
## 106 97.93	var_roll_dumbbell 392	numeric	19216	97.93	19216
## 107 97.93	avg_pitch_dumbbell 398	numeric	19216	97.93	19216
## 108 97.93	stddev_pitch_dumbbell 392	numeric	19216	97.93	19216
## 109 97.93	var_pitch_dumbbell 392	numeric	19216	97.93	19216
## 110 97.93	avg_yaw_dumbbell 398	numeric	19216	97.93	19216
## 111 97.93		numeric	19216	97.93	19216
## 112	var_yaw_dumbbell	numeric	19216	97.93	19216
97.93 ## 113	392 gyros_dumbbell_x	numeric	0	0.00	0
0.00 ## 114 0.00	241 gyros_dumbbell_y 278	numeric	0	0.00	0
## 115	gyros_dumbbell_z	numeric	0	0.00	0
0.00 ## 116	206 accel_dumbbell_x	integer	0	0.00	0
0.00 ## 117	425 accel_dumbbell_y	integer	0	0.00	0
0.00 ## 118	466 accel_dumbbell_z	integer	0	0.00	0
0.00 ## 119	410 magnet_dumbbell_x	integer	0	0.00	0
0.00 ## 120	1128 magnet_dumbbell_y	integer	0	0.00	0
0.00 ## 121	844 magnet_dumbbell_z	numeric	0	0.00	0
0.00 ## 122	676 roll_forearm	numeric	0	0.00	0
0.00 ## 123	2176 pitch_forearm	numeric	0	0.00	0
0.00 ## 124	2915 yaw_forearm	numeric	0	0.00	0
0.00	1991				

## 125 97.93	kurtosis_roll_forearm 322	factor	0	0.00	19216
## 126 97.93	kurtosis_picth_forearm 323	factor	0	0.00	19216
## 127 97.93	kurtosis_yaw_forearm 2	factor	0	0.00	19216
## 128 97.93	skewness_roll_forearm 323	factor	0	0.00	19216
## 129 97.93	skewness_pitch_forearm 319	factor	0	0.00	19216
## 130 97.93	skewness_yaw_forearm 2	factor	0	0.00	19216
## 131 97.93	max_roll_forearm 272	numeric	19216	97.93	19216
## 132 97.93	max_picth_forearm 156	numeric	19216	97.93	19216
## 133	max_yaw_forearm 45	factor	0	0.00	19216
97.93 ## 134	min_roll_forearm	numeric	19216	97.93	19216
97.93 ## 135	270 min_pitch_forearm 172	numeric	19216	97.93	19216
97.93 ## 136	min_yaw_forearm 45	factor	0	0.00	19216
97.93 ## 137	amplitude_roll_forearm	numeric	19216	97.93	19216
97.93 ## 138	294 amplitude_pitch_forearm	numeric	19216	97.93	19216
97.93 ## 139	184 amplitude_yaw_forearm	factor	0	0.00	19216
97.93 ## 140	3 total_accel_forearm	integer	0	0.00	0
0.00 ## 141	70 var_accel_forearm	numeric	19216	97.93	19216
97.93 ## 142	400 avg_roll_forearm	numeric	19216	97.93	19216
97.93 ## 143	323 stddev_roll_forearm	numeric	19216	97.93	19216
97.93 ## 144	321 var_roll_forearm	numeric	19216	97.93	19216
97.93 ## 145	321 avg_pitch_forearm	numeric	19216	97.93	19216
97.93 ## 146	325 stddev_pitch_forearm	numeric	19216	97.93	19216
97.93 ## 147	324 var_pitch_forearm	numeric	19216	97.93	19216
97.93 ## 148	325 avg_yaw_forearm	numeric	19216	97.93	19216
97.93 ## 149	325 stddev_yaw_forearm	numeric	19216	97.93	19216
97.93 ## 150	323 var_yaw_forearm	numeric	19216	97.93	19216
97.93 ## 151	323 gyros_forearm_x	numeric	0	0.00	0
0.00	298				

## 152	gyros_forearm_y numeric	0	0.00	0	
0.00	741				
## 153	gyros_forearm_z numeric	0	0.00	0	
0.00	307				
## 154	accel_forearm_x integer	0	0.00	0	
0.00	794				
## 155	<pre>accel_forearm_y integer</pre>	0	0.00	0	
0.00	1003				
## 156	accel_forearm_z integer	0	0.00	0	
0.00	580				
## 157	<pre>magnet_forearm_x integer</pre>	0	0.00	0	
0.00	1524				
## 158	<pre>magnet_forearm_y numeric</pre>	0	0.00	0	
0.00	1872				
## 159	<pre>magnet_forearm_z numeric</pre>	0	0.00	0	
0.00	1683				
## 160	classe factor	0	0.00	0	
0.00	5				

Lot of features has either NA or empty values in great percent.

Cleaning data

Removing useless features

Removing constant features and features with NA or empty rows from the training and testing data as well.

```
# Removing useless features
# - Constant features
# - Features with NA rows
# - Features with empty rows
useless.feature.indices <- feature.summary[feature.summary$unique.values == 1 | fe
ature.summary$NA.rows != 0 | feature.summary$empty.rows !=0, 1]
cat("Number of removable useless features:", length(useless.feature.indices), "\n")</pre>
```

```
## Number of removable useless features: 100
```

```
training.data <- training.data[, -useless.feature.indices]
testing.data <- testing.data[, -useless.feature.indices]</pre>
```

Removing unnecessary features

Removing the sequence feature (X) and all time related features () from the training and testing data.

```
# Removing unnecessary features unnecessary.feature.indices <- grep("timestamp|X", names(training.data)) cat("Number of removable unnecessary features:", length(unnecessary.feature.indices), "n")
```

```
## Number of removable unnecessary features: 4
```

```
training.data <- training.data[, -unnecessary.feature.indices]
testing.data <- testing.data[, -unnecessary.feature.indices]</pre>
```

Converting features

Converting all features to numeric type (except the label column).

```
# Converting all features to numeric type (except the label column)
label.column <- training.data$classe
training.data <- data.frame(data.matrix(training.data))
training.data$classe <- label.column
testing.data <- data.frame(data.matrix(testing.data))

# Number of usable features
cat("Number of usable features:", length(names(training.data)) - 1, "\n")</pre>
```

```
## Number of usable features: 55
```

Splitting data

The downloaded test dataset (20 observations) is the the ultimate validation set (one time scoring). Splitting up the downloaded training dataset into a cross-validating (25%) and training dataset (75%).

```
# Initialize RNG
set.seed(333)

# Crete training/CV datasets
partition.indices <- createDataPartition(y = training.data$classe, p = 0.75, list
= FALSE)
cv.data <- training.data[-partition.indices,]
training.data <- training.data[partition.indices,]
cat("Number of rows in training dataset:", nrow(training.data), "\n")</pre>
```

```
## Number of rows in training dataset: 14718
```

```
cat("Number of rows in cross-validation dataset:", nrow(cv.data), "\n")
```

```
## Number of rows in cross-validation dataset: 4904
```

```
cat("Number of rows in testing dataset:", nrow(testing.data), "\n")
```

```
## Number of rows in testing dataset: 20
```

Feature engineering

Finding feature correlations

Calculating feature correlations with the outcome (classe).

```
# Label (outcome) column index
label.index <- which(names(training.data) == "classe")</pre>
# Create summary of usable features
feature.set <- training.data[,-label.index]</pre>
feature.summary <- data.frame(row.names = 1:length(names(feature.set)))</pre>
feature.summary$feature.index <- 1:length(names(feature.set))</pre>
feature.summary$feature.name <- names(feature.set)</pre>
feature.summary$type <- sapply(feature.set, class)</pre>
feature.summary$unique <- sapply(feature.set, function(x) length(unique(x)))</pre>
feature.summary$mean <- sapply(feature.set, function(x) round(mean(x), digits = 4)</pre>
feature.summary$sum <- sapply(feature.set, function(x) round(sum(x), digits = 4))</pre>
feature.summary$sd <- sapply(feature.set, function(x) round(sd(x), digits = 4))</pre>
feature.summary$cor <- sapply(feature.set, function(x) round(abs(cor(x, as.numeric</pre>
(training.data$classe))), digits = 4))
feature.summary <- feature.summary[order(feature.summary$cor, decreasing = TRUE),]</pre>
feature.summary[, -1]
```

```
##
              feature.name
                                                                       sd
                              type unique
                                                mean
                                                             sum
                                                                             cor
## 44
             pitch_forearm numeric
                                      2681
                                             10.7231
                                                       157822.40
                                                                 28.0715 0.3437
                                                      2852697.00 443.2437 0.2987
## 27
              magnet arm x numeric
                                      1323
                                            193.8237
             magnet belt y numeric
                                           593.7373 8738625.00
                                                                  35.0887 0.2817
## 15
                                       288
## 28
              magnet_arm_y numeric
                                       857
                                            156.1741 2298570.00 201.4303 0.2543
## 24
               accel arm x numeric
                                       767
                                            -59.7171
                                                      -878917.00 182.5694 0.2403
                                           -62.6650 -922303.00 181.1984 0.1874
## 50
           accel forearm x numeric
                                       785
## 53
          magnet_forearm_x numeric
                                      1463 -313.3946 -4612542.00 345.9312 0.1768
                 pitch arm numeric
                                                       -69062.66
                                                                  30.7253 0.1759
## 18
                                      2858
                                             -4.6924
## 16
             magnet belt z numeric
                                       437 -345.4974 -5085030.00 64.7346 0.1712
## 46
       total_accel_forearm numeric
                                        67
                                             34.7744
                                                       511809.00 10.0465 0.1565
                                      1258 306.6023 4512572.00 326.5414 0.1519
## 29
              magnet arm z numeric
## 42
         magnet dumbbell z numeric
                                       665
                                             45.9814
                                                       676754.60 140.1708 0.1482
           total_accel_arm numeric
## 20
                                        66
                                            25.5113
                                                       375476.00
                                                                 10.4827 0.1201
## 54
          magnet_forearm_y numeric
                                      1836
                                           378.7137
                                                      5573907.88 510.6675 0.1162
          accel dumbbell x numeric
                                           -28.3435
                                                      -417160.00 66.9324 0.1131
## 37
                                       412
## 31
            pitch dumbbell numeric
                                     12315
                                           -10.7792
                                                     -158648.36
                                                                  36.8117 0.0867
## 17
                  roll_arm numeric
                                             17.8867
                                                       263257.02 72.8711 0.0842
                                      2440
                                                       479601.00 109.7806 0.0838
## 25
               accel arm y numeric
                                       527
                                             32.5860
## 13
              accel_belt_z numeric
                                       293 -72.6519 -1069290.00 100.3117 0.0756
## 7
          total accel belt numeric
                                        28
                                             11.3036
                                                       166367.00
                                                                   7.7427 0.0745
                                      1076 -328.5024 -4834898.00 339.7504 0.0626
## 40
         magnet dumbbell x numeric
## 39
          accel_dumbbell_z numeric
                                       401 -37.4433 -551090.00 109.1693 0.0620
## 4
                 roll_belt numeric
                                      1149
                                             64.4274
                                                       948242.40
                                                                  62.6976 0.0600
                                                                  71.3012 0.0517
## 19
                   yaw arm numeric
                                      2668
                                             -0.6943
                                                       -10218.06
             roll dumbbell numeric
                                                       350962.71
                                                                  70.2060 0.0497
## 30
                                     12662
                                             23.8458
## 45
               yaw_forearm numeric
                                      1827
                                             18.7492
                                                       275950.32 103.2239 0.0462
```

```
## 55
          magnet forearm z numeric
                                                       5765854.91 369.5289 0.0430
                                      1629
                                            391.7553
## 26
               accel arm z numeric
                                       770
                                            -70.8377 -1042589.00 134.2652 0.0420
## 33 total accel dumbbell numeric
                                                        200537.00 10.2235 0.0411
                                        42
                                            13.6253
## 35
          gyros dumbbell y numeric
                                       270
                                              0.0484
                                                           711.83
                                                                    0.6457 0.0340
           accel forearm_y numeric
## 51
                                       983
                                            162.6670
                                                      2394133.00 200.8818 0.0304
## 43
              roll forearm numeric
                                                        492990.89 108.2365 0.0247
                                      1967
                                             33.4958
                                                      6352674.00 248.7035 0.0245
## 3
                num_window numeric
                                       858
                                            431.6262
## 14
             magnet belt x numeric
                                       308
                                             55.3338
                                                        814403.00 63.8920 0.0220
## 9
                                        69
                                                                    0.0781 0.0216
              gyros belt y numeric
                                              0.0394
                                                           579.38
## 22
               gyros arm y numeric
                                       369
                                             -0.2621
                                                         -3857.72
                                                                    0.8546 0.0214
## 8
                                                                    0.2085 0.0190
              gyros belt x numeric
                                       131
                                             -0.0059
                                                           -87.48
## 32
                                                         32015.52 82.4508 0.0185
              yaw dumbbell numeric
                                     12571
                                              2.1753
## 47
           gyros_forearm_x numeric
                                       278
                                              0.1564
                                                                    0.6523 0.0178
                                                          2302.05
## 6
                  yaw belt numeric
                                      1829
                                            -11.4666
                                                      -168765.07 94.9211 0.0151
## 1
                 user name numeric
                                         6
                                               3.3462
                                                         49250.00
                                                                    1.6933 0.0125
## 48
                                                                    3.3551 0.0125
           gyros_forearm_y numeric
                                       718
                                              0.0790
                                                          1162.18
## 11
              accel belt x numeric
                                                        -83662.00 29.5720 0.0111
                                       159
                                             -5.6843
## 49
           gyros forearm z numeric
                                       292
                                              0.1544
                                                          2273.09
                                                                    1.9938 0.0100
## 23
               gyros arm z numeric
                                       237
                                              0.2690
                                                          3959.77
                                                                    0.5549 0.0099
## 10
              gyros_belt_z numeric
                                             -0.1299
                                                         -1912.44
                                                                    0.2416 0.0094
                                       161
## 36
          gyros dumbbell z numeric
                                       199
                                             -0.1215
                                                         -1788.73
                                                                    2.6337 0.0083
## 34
          gyros dumbbell x numeric
                                       236
                                              0.1548
                                                          2278.90
                                                                   1.7272 0.0082
## 21
               gyros_arm_x numeric
                                       638
                                              0.0547
                                                           805.09
                                                                    2.0017 0.0073
## 5
                pitch belt numeric
                                                          6139.26 22.3177 0.0065
                                      1727
                                              0.4171
              accel_belt_y numeric
                                                                   28.5974 0.0055
## 12
                                       140
                                             30.2068
                                                        444583.00
## 38
          accel dumbbell y numeric
                                       452
                                             52.1879
                                                        768102.00
                                                                   80.6613 0.0053
## 52
           accel forearm z numeric
                                       570
                                            -54.9934
                                                      -809393.00 138.6856 0.0046
## 41
         magnet_dumbbell_y numeric
                                       828
                                            220.8063
                                                       3249827.00 327.1579 0.0031
## 2
                new window numeric
                                         2
                                              1.0195
                                                         15005.00
                                                                    0.1383 0.0001
```

Selecting 33 (manually choosen number) features with best correlations with outcome.

```
# The most relevant features (best correlations with outcome)
most.correlated.outcome.feature.indices <- feature.summary$feature.index[1:33]
cat("Relevant features:", feature.summary$feature.name[1], "...", feature.summary$
feature.name[33], "\n")</pre>
```

```
## Relevant features: pitch_forearm ... num_window
```

Searching for duplicated (lineary dependent) features to reduce pair-wise correlations.

```
# Duplicated feature
feature.correlation.matrix <- cor(training.data[, -label.index])
duplicated.feature.indices <- findCorrelation(feature.correlation.matrix, cutoff =
0.9, exact = TRUE)
cat("Removable duplicated features:", paste(names(training.data)[duplicated.feature.indices], collapse = ", "), "\n")</pre>
```

```
## Removable duplicated features: accel_belt_z, roll_belt, accel_belt_y, accel_bel
t_x, gyros_dumbbell_x, gyros_dumbbell_z, gyros_arm_x
```

```
# Plot correlation matrix
ggcorrplot(feature.correlation.matrix, hc.order = TRUE, type = "lower", colors = c
("red", "white", "red"), insig = "blank", tl.cex = list(size = 4))
```


Training and scoring models

Creating a summary dataset to store result of trained models.

```
# Summary of models
model.summary <- data.frame(row.names = 1:6, stringsAsFactors = TRUE)
# Initialize RNG
set.seed(333)</pre>
```

Setting options of random forest.

```
# Number of trees
number.trees <- 50</pre>
```

Random Forest: using all features

```
# Random Forest: all features
start.time <- Sys.time()</pre>
model.all.features <- randomForest(</pre>
  x = training.data[, -label.index],
  y = training.data$classe,
  xtest = cv.data[, -label.index],
  ytest = cv.data$classe,
  ntree = number.trees,
  keep.forest = TRUE,
  proximity = TRUE,
  do.trace = FALSE)
end.time <- Sys.time()</pre>
model.summary <- rbind(model.summary, cbind(</pre>
  trees = model.all.features$ntree,
  features = ncol(training.data) - 1,
  model = "All features",
  training.accuracy = round((1 - sum(model.all.features$confusion[,"class.error"])
) * 100, digits = 3),
  cv.accuracy =round((1 - sum(model.all.features$test$confusion[,"class.error"]))
* 100, digits = 3),
  training.time = round(as.numeric(end.time - start.time, units = "secs"))
```

Random Forest: all features with PCA

```
# Apply PCA
pre.pca <- preProcess(training.data[, -label.index], method = "pca", thresh = 0.99</pre>
training.data.pca <- predict(pre.pca, training.data[, -label.index])</pre>
cv.data.pca <- predict(pre.pca, cv.data[, -label.index])</pre>
testing.data.pca <- predict(pre.pca, testing.data[, -label.index])</pre>
# Random Forest: all feature with PCA
start.time <- Sys.time()</pre>
model.pca.features <- randomForest(</pre>
  x = training.data.pca,
  y = training.data$classe,
  xtest = cv.data.pca,
  ytest = cv.data$classe,
  ntree = number.trees,
  keep.forest = TRUE,
  proximity = TRUE,
  do.trace = FALSE)
end.time <- Sys.time()</pre>
model.summary <- rbind(model.summary, cbind(</pre>
  trees = model.pca.features$ntree,
  features = ncol(training.data.pca),
  model = "PCA",
  training.accuracy = round((1 - sum(model.pca.features$confusion[,"class.error"])
) * 100, digits = 3),
  cv.accuracy = round((1 - sum(model.pca.features$test$confusion[,"class.error"]))
* 100, digits = 3),
  training.time = round(as.numeric(end.time - start.time, units = "secs"))
))
```

Random Forest: the most correlated features

```
# Random Forest: the most correlated features
start.time <- Sys.time()</pre>
model.corr.features <- randomForest(</pre>
  x = training.data[, most.correlated.outcome.feature.indices],
  y = training.data$classe,
  xtest = cv.data[, most.correlated.outcome.feature.indices],
  ytest = cv.data$classe,
  ntree = number.trees,
  keep.forest = TRUE,
  proximity = TRUE,
  do.trace = FALSE)
end.time <- Sys.time()</pre>
model.summary <- rbind(model.summary, cbind(</pre>
  trees = model.corr.features$ntree,
  features = ncol(training.data[, most.correlated.outcome.feature.indices]),
  model = "Correlated",
  training.accuracy = round((1 - sum(model.corr.features$confusion[,"class.error"]
)) * 100, digits = 3),
  cv.accuracy = round((1 - sum(model.corr.features$test$confusion[,"class.error"])
) * 100, digits = 3),
  training.time = round(as.numeric(end.time - start.time, units = "secs"))
))
```

Random Forest: the most correlated features with PCA

```
# Apply PCA
pre.corr.pca <- preProcess(training.data[, most.correlated.outcome.feature.indices</pre>
], method = "pca", thresh = 0.99)
training.data.corr.pca <- predict(pre.corr.pca, training.data[, most.correlated.ou</pre>
tcome.feature.indices])
cv.data.corr.pca <- predict(pre.corr.pca, cv.data[, most.correlated.outcome.featur</pre>
e.indices])
testing.data.corr.pca <- predict(pre.corr.pca, testing.data[, most.correlated.outc
ome.feature.indices])
# Random Forest: the most correlated features with PCA
start.time <- Sys.time()</pre>
model.corr.pca.features <- randomForest(</pre>
  x = training.data.corr.pca,
  y = training.data$classe,
  xtest = cv.data.corr.pca,
  ytest = cv.data$classe,
  ntree = number.trees,
  keep.forest = TRUE,
  proximity = TRUE,
  do.trace = FALSE)
end.time <- Sys.time()</pre>
model.summary <- rbind(model.summary, cbind(</pre>
  trees = model.corr.pca.features$ntree,
  features = ncol(training.data.corr.pca),
  model = "Correlated + PCA",
  training.accuracy = round((1 - sum(model.corr.pca.features$confusion[,"class.err
or"])) * 100, digits = 3),
  cv.accuracy = round((1 - sum(model.corr.pca.features$test$confusion[,"class.erro
r"])) * 100, digits = 3),
  training.time = round(as.numeric(end.time - start.time, units = "secs"))
))
```

Random Forest: reduced features

```
# Random Forest: reduced features
start.time <- Sys.time()</pre>
model.reduced.features <- randomForest(</pre>
  x = training.data[, -c(duplicated.feature.indices, label.index)],
  y = training.data$classe,
  xtest = cv.data[, -c(duplicated.feature.indices, label.index)],
  ytest = cv.data$classe,
  ntree = number.trees,
  keep.forest = TRUE,
  proximity = TRUE,
  do.trace = FALSE)
end.time <- Sys.time()</pre>
model.summary <- rbind(model.summary, cbind(</pre>
  trees = model.reduced.features$ntree,
  features = ncol(training.data[, -c(duplicated.feature.indices, label.index)]),
  model = "Reduced",
  training.accuracy = round((1 - sum(model.reduced.features$confusion[,"class.erro
r''])) * 100, digits = 3),
  cv.accuracy = round((1 - sum(model.reduced.features$test$confusion[,"class.error
"])) * 100, digits = 3),
  training.time = round(as.numeric(end.time - start.time, units = "secs"))
))
```

Random Forest: reduced features with PCA

```
# Apply PCA
pre.reduced.pca <- preProcess(training.data[, -c(duplicated.feature.indices, label</pre>
.index)], method = "pca", thresh = 0.99)
training.data.reduced.pca <- predict(pre.reduced.pca, training.data[, -c(duplicate
d.feature.indices, label.index)])
cv.data.reduced.pca <- predict(pre.reduced.pca, cv.data[, -c(duplicated.feature.in</pre>
dices, label.index)])
testing.data.reduced.pca <- predict(pre.reduced.pca, testing.data[, -c(duplicated.
feature.indices, label.index)])
# Random Forest: reduced features with PCA
start.time <- Sys.time()</pre>
model.reduced.pca.features <- randomForest(</pre>
  x = training.data.reduced.pca,
  y = training.data$classe,
  xtest = cv.data.reduced.pca,
  ytest = cv.data$classe,
  ntree = number.trees,
  keep.forest = TRUE,
  proximity = TRUE,
  do.trace = FALSE)
end.time <- Sys.time()</pre>
model.summary <- rbind(model.summary, cbind(</pre>
  trees = model.reduced.pca.features$ntree,
  features = ncol(training.data.reduced.pca),
  model = "Reduced + PCA",
  training.accuracy = round((1 - sum(model.reduced.pca.features$confusion[,"class.
error"])) * 100, digits = 3),
  cv.accuracy = round((1 - sum(model.reduced.pca.features$test$confusion[,"class.e
rror"])) * 100, digits = 3),
  training.time = round(as.numeric(end.time - start.time, units = "secs"))
))
```

Summary of models

Summarizing the trained models.

```
model.summary$trees = as.numeric(as.character(model.summary$trees))
model.summary$features = as.numeric(as.character(model.summary$features))
model.summary$training.accuracy = as.numeric(as.character(model.summary$training.accuracy))
model.summary$cv.accuracy = as.numeric(as.character(model.summary$cv.accuracy))
model.summary$training.time = as.numeric(as.character(model.summary$training.time))
model.summary$
```

##		trees	features	model	training.accuracy	cv.accuracy	training.time
##	1	50	55	All features	97.499	97.904	41
##	2	50	38	PCA	83.505	86.858	39
##	3	50	33	Correlated	96.408	96.923	41
##	4	50	25	Correlated + PCA	80.398	83.113	39
##	5	50	48	Reduced	97.712	98.051	44
##	6	50	36	Reduced + PCA	80.878	86.352	47

Plotting the cross-validating accuracy.

```
# Cross-validating accuracy chart
gg <- ggbarplot(</pre>
 model.summary, x = "model", y = "cv.accuracy",
 title = "Cross-validating accuracy (%)",
                                                 # Main title
  fill = "model",
                                                 # Color by groups
  sort.val = "desc",
                                                 # Sort value in descending order
                                                 # Label values
  label = model.summary$cv.accuracy,
                                                 # Position for labels
  lab.pos = "in",
  lab.col = "white",
                                                 # Color for labels
  lab.nb.digits = 2,
                                                 # Number of decimal places (round)
 xlab = FALSE,
                                                 # X-axis labels
                                                 # Y-axis labels
 ylab = FALSE,
                                                 # Rotate vertically
 rotate = FALSE,
  font.label = list(color = "white", size = 11, vjust = 1.5),
  ggtheme = theme_pubr()
                                                 # ggplot2 theme
)
ggpar(gg, legend = "none", legend.title = "") # Customize legend
```


Plotting the training times in seconds.

```
# Training time chart
gg <- ggdotchart(</pre>
 model.summary, x = "model", y = "training.time",
 title = "Training time (sec)",
                                                 # Main title
 color = "model",
                                                 # Color by groups
  sorting = "descending",
                                                 # Sort value in descending order
 rotate = FALSE,
                                                 # Rotate vertically
  label = model.summary$training.time,
                                                 # Label values
  add = "segments",
                                                 # Add lolipop lines
 xlab = FALSE,
                                                 # X-axis labels
 ylab = FALSE,
                                                 # Y-axis labels
 dot.size = 10,
                                                 # Large dot size
 y.text.col = TRUE,
                                                 # Color y text by groups
  font.label = list(color = "white", size = 11, face = "bold", vjust = 0.5),
  ggtheme = theme pubr(),
                                                  # ggplot2 theme
ggpar(gg, legend = "none", legend.title = "", ylim = c(min(model.summary$training
.time) * 0.95, max(model.summary$training.time) * 1.05)) + theme cleveland()
```


Testing models

Using all of trained models to make predictions on the test dataset (20 observations). The ground truth dataset consist of the expected good values.

```
# Predictions of the models
test.predictions <- data.frame(row.names = 1:20, stringsAsFactors = TRUE)
test.predictions$ground.truth <- as.factor(c("B", "A", "B", "A", "A", "E", "D", "B
", "A", "A", "B", "C", "B", "A", "E", "E", "A", "B", "B", "B"))
test.predictions$all <- predict(model.all.features, testing.data[,-label.index])
test.predictions$correlated <- predict(model.corr.features, testing.data[, most.co
rrelated.outcome.feature.indices])
test.predictions$corr.with.pca <- predict(model.corr.pca.features, testing.data.co
rr.pca)
test.predictions$reduced <- predict(model.reduced.features, testing.data[, -c(dupl
icated.feature.indices, label.index)])
test.predictions$reduced.with.pca <- predict(model.reduced.pca.features, testing.d
taa.reduced.pca)
test.predictions$</pre>
```

##	ground.truth	all	all.with.pca	correlated	corr.with.pca	reduced	reduced.with.
pca							
## 1	В	В	В	В	В	В	
В							
## 2	A	Α	А	A	A	A	
A							
## 3	В	В	В	В	A	В	
A							
## 4	А	Α	А	A	А	A	
A							
## 5	A	Α	А	А	А	А	
A							
## 6	Е	E	Е	E	Е	Е	
C							
## 7	D	D	D	D	D	D	
<i>mm 1</i> D	D	ט	D	Б	D	D	
## 8	D	ъ	В	ъ	D	ъ	
	В	В	В	В	В	В	
В	_	_	_	_	_	_	
## 9	A	A	A	A	A	A	
A							
## 10	A	A	А	A	A	A	
A							
## 11	В	В	В	В	В	В	
В							
## 12	С	С	С	С	С	C	
С							
## 13	В	В	В	В	В	В	
В							
## 14	A	А	A	А	A	A	
A							
 ## 15	Е	E	Е	E	Е	E	
"" 13 E				ı	_		
## 16	E	E	E	E	E	E	
## 10 E	ь	Ľ	ъ	E.	ь	11	
	7.	7.	7	7	74	73.	
## 17	A	Α	A	А	A	A	
A							
## 18	В	В	В	В	В	В	
В							
## 19	В	В	В	В	В	В	
В							
## 20	В	В	В	В	В	В	
В							

```
# Calculating testing accuracies
model.summary$testing.accuracy <- c(
    sum(equals(test.predictions$ground.truth, test.predictions$all)) / nrow(test.pre
dictions) * 100,
    sum(equals(test.predictions$ground.truth, test.predictions$all.with.pca)) / nrow
(test.predictions) * 100,
    sum(equals(test.predictions$ground.truth, test.predictions$all.with.pca)) / nrow
(test.predictions) * 100,
    sum(equals(test.predictions$ground.truth, test.predictions$correlated)) / nrow(test.predictions) * 100,
    sum(equals(test.predictions$ground.truth, test.predictions$corr.with.pca)) / nrow
(test.predictions) * 100,
    sum(equals(test.predictions$ground.truth, test.predictions$reduced.with.pca)) /
nrow(test.predictions) * 100
)</pre>
```

Plotting the final testing accuracy for 20 observations.

```
# Testing accuracy chart
gg <- ggbarplot(</pre>
 model.summary, x = "model", y = "testing.accuracy",
                                                  # Main title
 title = "Testing accuracy (%)",
 fill = "model",
                                                  # Color by groups
  sort.val = "desc",
                                                  # Sort value in descending order
  label = model.summary$testing.accuracy,
                                                  # Label values
  lab.pos = "in",
                                                  # Position for labels
  lab.col = "white",
                                                  # Color for labels
  lab.nb.digits = 2,
                                                  # Number of decimal places (round
                                                  # X-axis labels
 xlab = FALSE,
                                                  # Y-axis labels
 ylab = FALSE,
                                                  # Rotate vertically
  rotate = FALSE,
  font.label = list(color = "white", size = 11, vjust = 1.5),
  ggtheme = theme_pubr()
                                                  # ggplot2 theme
)
ggpar(gg, legend = "none", legend.title = "") # Customize legend
```


Conclusion

Using all features to train the model give us an appropriate cross-validating and testing accuracy. However the reduced features provide more validating accuracy.

Plotting the error rate tendency of the first trained model.

```
plot(model.all.features, main = "Error rate tendency")
```

Error rate tendency

The error rate doesn't decline a lot after 50 trees.