```
In [3]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [4]: df=pd.read_csv(r"C:\Users\DELL\Downloads\car_insurance_premium_dataset.csv")

In [5]: df.head()

Out[5]:

	Driver Age	Driver Experience	Previous Accidents	Annual Mileage (x1000 km)	Car Manufacturing Year	Car Age	Insurance Premium (\$)
0	56	32	4	17	2002	23	488.35
1	46	19	0	21	2025	0	486.15
2	32	11	4	15	2020	5	497.55
3	60	0	4	19	1991	34	498.35
4	25	7	0	13	2005	20	495.55

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 7 columns):

Column	Non-Null Count	Dtype
Driver Age	1000 non-null	int64
Driver Experience	1000 non-null	int64
Previous Accidents	1000 non-null	int64
Annual Mileage (x1000 km)	1000 non-null	int64
Car Manufacturing Year	1000 non-null	int64
Car Age	1000 non-null	int64
<pre>Insurance Premium (\$)</pre>	1000 non-null	float64
	Driver Age Driver Experience Previous Accidents Annual Mileage (x1000 km) Car Manufacturing Year Car Age	Driver Age 1000 non-null Driver Experience 1000 non-null Previous Accidents 1000 non-null Annual Mileage (x1000 km) 1000 non-null Car Manufacturing Year 1000 non-null Car Age 1000 non-null

dtypes: float64(1), int64(6)

memory usage: 54.8 KB

In [7]: df.describe()

Out[7]:		Driver Age	Driver Experience	Previous Accidents	Annual Mileage (x1000 km)	Car Manufacturing Year	Car Age
	count	1000.000000	1000.000000	1000.0000	1000.000000	1000.000000	1000.000000
	mean	41.575000	14.759000	2.5680	17.933000	2007.637000	17.363000
	std	13.765677	10.544292	1.6989	4.410665	10.363331	10.363331
	min	18.000000	0.000000	0.0000	11.000000	1990.000000	0.000000
	25%	30.000000	6.000000	1.0000	14.000000	1999.000000	8.000000
	50% 42.000000 75% 53.000000 max 65.000000		13.000000	3.0000	18.000000	2008.000000	17.000000
			23.000000	4.0000	22.000000	2017.000000	26.000000
			40.000000	5.0000	25.000000	2025.000000	35.000000
	4 @						•
In [8]:	df.isn	ull().sum()					
Out[8]:	Previo Annual Car Ma Car Ag Insura	Experience ous Accidents Mileage (x1 nufacturing	000 km) 0 Year 0)))			
In [9]:	df.shape						
Out[9]:	(1000,	7)					
In [10]:	df.dup	licated()					
Out[10]:	0 1 2 3 4 995 996 997 998 999 Length	False	e: bool				
In [11]:	df.hea	d()					

Out[11]:		Driver Age	Driver Experience	Previous Accidents	Annual Mileage (x1000 km)	Car Manufacturing Year	Car Age	Insurance Premium (\$)
	0	56	32	4	17	2002	23	488.35
	1	46	19	0	21	2025	0	486.15
	2	32	11	4	15	2020	5	497.55
	3	60	0	4	19	1991	34	498.35
	4	25	7	0	13	2005	20	495.55
In [12]: In [13]:	y = sns.	df['In boxplo	p(['Insurance surance Prem: t(df) (figsize=(10	ium (\$)'])'], axis=1	1)		
	2000	, [
	1750	,]						
	1500	' -						
	1250) -						
	1000	, -						
	750							
	500							
	250) -						
	C	,					_	
		Drive	rDAngiererExpRer	reiveiro Austra Aucadio	NeihetasGaer (MZe)	ბი რ ak bou)ringC¥adeaAs	gueance	Premium (\$)
			ze 1000x3000 e 1000x3000 w		;>			
In [14]:	def	Q1 = d: Q3 = d: IQR = : UL = Q LL = Q df.loc	rtreat(df,co f[col].quant f[col].quant Q3 - Q1 3 + IQR 1 - IQR [df[col]>UL,c [df[col] <ll,c< td=""><td>ile(0.25) ile(0.75) col] = df[co</td><td></td><td></td><td></td><td></td></ll,c<>	ile(0.25) ile(0.75) col] = df[co				

```
outliertreat(df,"Driver Age")
In [15]:
In [16]: outliertreat(df,"Driver Experience")
In [17]: outliertreat(df, "Previous Accidents")
In [18]: outliertreat(df, "Annual Mileage (x1000 km)")
In [19]: outliertreat(df, "Car Manufacturing Year")
In [20]: outliertreat(df, "Car Age")
In [21]: outliertreat(df, "Insurance Premium ($)")
In [22]: plt.figure(figsize=(8,10))
          sns.boxplot(df)
          plt.show()
         2000
         1750
         1500
         1250
         1000
          750
          500
          250
               Driver AgiBriver Experiterations/Attracted Misleage/Cart 1/0/060 Union turing YeCart Atmsurance Premium ($)
```

```
In [23]: from sklearn.preprocessing import StandardScaler
         SS=StandardScaler()
In [24]:
         from sklearn.model_selection import train_test_split
In [25]:
        df["Car Manufacturing Year"]=SS.fit_transform(df[["Car Manufacturing Year"]])
In [26]:
In [27]:
         df["Driver Age"]=SS.fit_transform(df[["Driver Age"]])
         df["Driver Experience"]=SS.fit_transform(df[["Driver Experience"]])
In [28]:
         df["Previous Accidents"]=SS.fit_transform(df[["Previous Accidents"]])
In [29]:
         df["Annual Mileage (x1000 km)"]=SS.fit_transform(df[["Annual Mileage (x1000 km)"]
In [30]:
In [31]: df["Car Age"]=SS.fit_transform(df[["Car Age"]])
         df["Insurance Premium ($)"]=SS.fit_transform(df[["Insurance Premium ($)"]])
In [32]:
In [33]:
         df.hist()
         plt.show()
                  Driver Age
                                      Driver Experience
                                                              Previous Accidents
         100
                                  100
                                                           100
           50
                                    0
        Annual Mileage (x11000 Carr) Manufacturing Year
                                                                  −1Car⊄ge 1
                                  100
                                                           100
         100
                                   50
                                                            50
           50
            0
                                                             0
           Insuratice Premium ($)
                                          -1
                                                0
                                                                   -1
                                                     1
         100
```

```
In [34]: plt.figure(figsize=(8,10))
    sns.boxplot(df)
    plt.show()
```

0

-2

0

Driver Ag@river ExperPerevieousAntruideMisleageC(ar1101060ukfan)turing Ye2arr Algnesurance Premium (\$)

```
In [35]: df.skew(numeric_only=True)
Out[35]: Driver Age
                                      -0.047599
         Driver Experience
                                       0.446676
         Previous Accidents
                                      -0.064745
         Annual Mileage (x1000 km)
                                       0.019283
         Car Manufacturing Year
                                      -0.037801
         Car Age
                                       0.037801
         Insurance Premium ($)
                                      -0.081066
         dtype: float64
In [36]: from sklearn.preprocessing import PowerTransformer
In [37]: PT=PowerTransformer()
In [38]: df[['Driver Age','Previous Accidents','Annual Mileage (x1000 km)','Insurance Pre
In [40]: sns.heatmap(df.corr(numeric_only=True))
```


In [44]: from sklearn.preprocessing import LabelEncoder
In [49]: LE=LabelEncoder()
In [52]: df['Driver Experience']=LE.fit_transform(df['Driver Experience'])
In [53]: df['Previous Accidents']=LE.fit_transform(df['Previous Accidents'])
In [54]: df.head()

	_		_	
Out	[!	54	1	:

	Driver Age	Driver Experience	Previous Accidents	Annual Mileage (x1000 km)	Car Manufacturing Year	Car Age	Insurance Premium (\$)	In P
0	1.051806	32	4	-0.204619	-0.544209	0.553817	-0.985432	-C
1	0.305622	19	0	0.699163	1.676265	-1.700524	-1.379856	-1
2	-0.704576	11	4	-0.661633	1.193553	-1.200460	0.663977	С
3	1.354392	0	4	0.248952	-1.606175	1.586226	0.807403	С
4	-1.196660	7	0	-1.121210	-0.254582	0.267939	0.305410	С

```
In [55]: from sklearn.model selection import train test split
In [56]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=4
In [66]: from sklearn.linear_model import LinearRegression
         from sklearn.tree import DecisionTreeRegressor
         from sklearn.neighbors import KNeighborsRegressor
         from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
In [67]: LR=LinearRegression()
In [68]: LR.fit(X_train,y_train)
Out[68]:
             LinearRegression
         LinearRegression()
In [70]: LR_pred = LR.predict(X_test)
In [71]: from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
In [74]: mean_absolute_error(y_test,LR_pred)
Out[74]: 0.6982000000000009
In [75]: mean_squared_error(y_test,LR_pred)
Out[75]: 2.952095546874999
In [80]: r2_score(y_test, LR_pred)
Out[80]: 0.8980582686377323
In [85]: LR.score(X_train,y_train)*100
Out[85]: 89.06312739785875
In [86]: LR.score(X_test,y_test)
Out[86]: 0.8980582686377323
In [87]: KNR = KNeighborsRegressor(n neighbors=7)
In [88]: KNR.fit(X_train,y_train)
Out[88]:
                KNeighborsRegressor
         KNeighborsRegressor(n_neighbors=7)
In [89]: KNR pred = KNR.predict(X test)
In [90]: mean_absolute_error(y_test,KNR_pred)
```

```
Out[90]: 1.9589428571428553
In [92]: mean_squared_error(y_test,LR_pred)
Out[92]: 2.952095546874999
In [93]: r2_score(y_test, KNR_pred)
Out[93]: 0.7866936267954454
In [99]: KNR.score(X_train,y_train)*100
Out[99]: 84.46056880549351
In [100...
          KNR.score(X_test,y_test)
          0.7866936267954454
Out[100...
         RFR=RandomForestRegressor(n_estimators=100, random_state=42)
In [101...
In [102...
          RFR.fit(X_train, y_train)
Out[102...
                  RandomForestRegressor
          RandomForestRegressor(random_state=42)
          RFR_pred = RFR.predict(X_test)
In [105...
In [112...
         mean_absolute_error(y_test, RFR_pred)
Out[112... 0.800775999999993
In [113...
         mean_squared_error(y_test, RFR_pred)
Out[113... 2.3414879419999868
In [114...
         r2_score(y_test, RFR_pred)
Out[114... 0.919143763817527
In [115...
          RFR.score(X_train,y_train)*100
Out[115...
         99.04901477218021
In [116...
         RFR.score(X_test,y_test)
Out[116... 0.919143763817527
In [117...
         DTC = DecisionTreeRegressor(random_state=42)
In [120...
         DTC.fit(X_train, y_train)
```

```
Out[120...
                  DecisionTreeRegressor
          DecisionTreeRegressor(random_state=42)
         y_pred_dt = DTC.predict(X_test)
In [124...
In [127...
         mean_absolute_error(y_test, y_pred_dt)
Out[127... 1.3024000000000013
In [132...
         mean_squared_error(y_test, y_pred_dt)
Out[132... 3.692720000000007
         r2_score(y_test,y_pred_dt )
In [138...
Out[138... 0.872483033066269
In [142...
         DTC.score(X_train,y_train)*100
Out[142... 100.0
In [143... DTC.score(X_test,y_test)
Out[143... 0.872483033066269
In [145...
         GBL = GradientBoostingRegressor(random_state=42, n_estimators=100, learning_rate
In [147...
         GBL.fit(X_train, y_train)
Out[147...
                  GradientBoostingRegressor
          GradientBoostingRegressor(random_state=42)
In [155...
          gbl_pred = GBL.predict(X_test)
In [158...
         mean_squared_error(y_test, gbl_pred)
Out[158... 2.280836315268464
In [161...
         mean_absolute_error(y_test, gbl_pred)
Out[161... 0.7619309738786116
In [165...
         r2_score(y_test,gbl_pred)
Out[165... 0.9212381851330886
In [167...
         GBL.score(X_train,y_train)*100
Out[167... 98.21631826760195
In [170... GBL.score(X_test,y_test)
```

```
Out[170... 0.9212381851330886
In [175... from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
In [177...
          param_grid = {
              'n_estimators': [50, 100, 200],
              'max_depth': [None, 10, 20, 30],
          }
          rf_model = RandomForestRegressor(random_state=42)
In [179...
In [181...
         grid_search = GridSearchCV(
              estimator=RandomForestRegressor(random_state=42),
              param_grid=param_grid,
In [183...
         grid_search.fit(X_train, y_train)
Out[183...
                GridSearchCV (1) ?
           ▶ estimator: RandomForestRegressor
                RandomForestRegressor
In [184...
         grid_search.best_params_
Out[184... {'max_depth': 20, 'n_estimators': 200}
In [185... Best_GS=grid_search.best_estimator_
In [186... y_pred=Best_GS.predict(X_test)
In [187... print("Best MSE:", -grid_search.best_score_)
         Best MSE: -0.9297245088699227
          best_rf_model = grid_search.best_estimator_
In [188...
          rf_pred = best_rf_model.predict(X_test)
In [189...
         rf_r2 = r2_score(y_test, rf_pred)
In [190... print("Tuned Random Forest - MSE:", "R2:", rf_r2)
         Tuned Random Forest - MSE: R2: 0.9230631762565836
In [191... pip install --upgrade gradio
```

```
Requirement already satisfied: gradio in c:\users\dell\anaconda3\lib\site-package
s (5.13.1)
Requirement already satisfied: aiofiles<24.0,>=22.0 in c:\users\dell\anaconda3\li
b\site-packages (from gradio) (23.2.1)
Requirement already satisfied: anyio<5.0,>=3.0 in c:\users\dell\anaconda3\lib\sit
e-packages (from gradio) (4.2.0)
Requirement already satisfied: fastapi<1.0,>=0.115.2 in c:\users\dell\anaconda3\l
ib\site-packages (from gradio) (0.115.6)
Requirement already satisfied: ffmpy in c:\users\dell\anaconda3\lib\site-packages
(from gradio) (0.5.0)
Requirement already satisfied: gradio-client==1.6.0 in c:\users\dell\anaconda3\li
b\site-packages (from gradio) (1.6.0)
Requirement already satisfied: httpx>=0.24.1 in c:\users\dell\anaconda3\lib\site-
packages (from gradio) (0.26.0)
Requirement already satisfied: huggingface-hub>=0.25.1 in c:\users\dell\anaconda3
\lib\site-packages (from gradio) (0.27.1)
Requirement already satisfied: jinja2<4.0 in c:\users\dell\anaconda3\lib\site-pac
kages (from gradio) (3.1.4)
Requirement already satisfied: markupsafe~=2.0 in c:\users\dell\anaconda3\lib\sit
e-packages (from gradio) (2.1.3)
Requirement already satisfied: numpy<3.0,>=1.0 in c:\users\dell\anaconda3\lib\sit
e-packages (from gradio) (1.26.4)
Requirement already satisfied: orjson~=3.0 in c:\users\dell\anaconda3\lib\site-pa
ckages (from gradio) (3.10.15)
Requirement already satisfied: packaging in c:\users\dell\anaconda3\lib\site-pack
ages (from gradio) (23.2)
Requirement already satisfied: pandas<3.0,>=1.0 in c:\users\dell\anaconda3\lib\si
te-packages (from gradio) (2.2.2)
Requirement already satisfied: pillow<12.0,>=8.0 in c:\users\dell\anaconda3\lib\s
ite-packages (from gradio) (10.3.0)
Requirement already satisfied: pydantic>=2.0 in c:\users\dell\anaconda3\lib\site-
packages (from gradio) (2.5.3)
Requirement already satisfied: pydub in c:\users\dell\anaconda3\lib\site-packages
(from gradio) (0.25.1)
Requirement already satisfied: python-multipart>=0.0.18 in c:\users\dell\anaconda
3\lib\site-packages (from gradio) (0.0.20)
Requirement already satisfied: pyyaml<7.0,>=5.0 in c:\users\dell\anaconda3\lib\si
te-packages (from gradio) (6.0.1)
Requirement already satisfied: ruff>=0.2.2 in c:\users\dell\anaconda3\lib\site-pa
ckages (from gradio) (0.9.2)
Requirement already satisfied: safehttpx<0.2.0,>=0.1.6 in c:\users\dell\anaconda3
\lib\site-packages (from gradio) (0.1.6)
Requirement already satisfied: semantic-version~=2.0 in c:\users\dell\anaconda3\l
ib\site-packages (from gradio) (2.10.0)
Requirement already satisfied: starlette<1.0,>=0.40.0 in c:\users\dell\anaconda3
\lib\site-packages (from gradio) (0.41.3)
Requirement already satisfied: tomlkit<0.14.0,>=0.12.0 in c:\users\dell\anaconda3
\lib\site-packages (from gradio) (0.12.0)
Requirement already satisfied: typer<1.0,>=0.12 in c:\users\dell\anaconda3\lib\si
te-packages (from gradio) (0.15.1)
Requirement already satisfied: typing-extensions~=4.0 in c:\users\dell\anaconda3
\lib\site-packages (from gradio) (4.11.0)
Requirement already satisfied: uvicorn>=0.14.0 in c:\users\dell\anaconda3\lib\sit
e-packages (from gradio) (0.34.0)
Requirement already satisfied: fsspec in c:\users\dell\anaconda3\lib\site-package
s (from gradio-client==1.6.0->gradio) (2024.3.1)
```

Requirement already satisfied: websockets<15.0,>=10.0 in c:\users\dell\anaconda3

Requirement already satisfied: idna>=2.8 in c:\users\dell\anaconda3\lib\site-pack

\lib\site-packages (from gradio-client==1.6.0->gradio) (11.0.3)

ages (from anyio<5.0,>=3.0->gradio) (3.7)

```
Requirement already satisfied: sniffio>=1.1 in c:\users\dell\anaconda3\lib\site-p
         ackages (from anyio<5.0,>=3.0->gradio) (1.3.0)
         Requirement already satisfied: certifi in c:\users\dell\anaconda3\lib\site-packag
         es (from httpx>=0.24.1->gradio) (2024.7.4)
         Requirement already satisfied: httpcore==1.* in c:\users\dell\anaconda3\lib\site-
         packages (from httpx>=0.24.1->gradio) (1.0.2)
         Requirement already satisfied: h11<0.15,>=0.13 in c:\users\dell\anaconda3\lib\sit
         e-packages (from httpcore==1.*->httpx>=0.24.1->gradio) (0.14.0)
         Requirement already satisfied: filelock in c:\users\dell\anaconda3\lib\site-packa
         ges (from huggingface-hub>=0.25.1->gradio) (3.13.1)
         Requirement already satisfied: requests in c:\users\dell\anaconda3\lib\site-packa
         ges (from huggingface-hub>=0.25.1->gradio) (2.32.2)
         Requirement already satisfied: tqdm>=4.42.1 in c:\users\dell\anaconda3\lib\site-p
         ackages (from huggingface-hub>=0.25.1->gradio) (4.66.4)
         Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\dell\anaconda3
         \lib\site-packages (from pandas<3.0,>=1.0->gradio) (2.9.0.post0)
         Requirement already satisfied: pytz>=2020.1 in c:\users\dell\anaconda3\lib\site-p
         ackages (from pandas<3.0,>=1.0->gradio) (2024.1)
         Requirement already satisfied: tzdata>=2022.7 in c:\users\dell\anaconda3\lib\site
         -packages (from pandas<3.0,>=1.0->gradio) (2023.3)
         Requirement already satisfied: annotated-types>=0.4.0 in c:\users\dell\anaconda3
         \lib\site-packages (from pydantic>=2.0->gradio) (0.6.0)
         Requirement already satisfied: pydantic-core==2.14.6 in c:\users\dell\anaconda3\l
         ib\site-packages (from pydantic>=2.0->gradio) (2.14.6)
         Requirement already satisfied: click>=8.0.0 in c:\users\dell\anaconda3\lib\site-p
         ackages (from typer<1.0,>=0.12->gradio) (8.1.8)
         Requirement already satisfied: shellingham>=1.3.0 in c:\users\dell\anaconda3\lib
         \site-packages (from typer<1.0,>=0.12->gradio) (1.5.4)
         Requirement already satisfied: rich>=10.11.0 in c:\users\dell\anaconda3\lib\site-
         packages (from typer<1.0,>=0.12->gradio) (13.3.5)
         Requirement already satisfied: colorama in c:\users\dell\anaconda3\lib\site-packa
         ges (from click>=8.0.0->typer<1.0,>=0.12->gradio) (0.4.6)
         Requirement already satisfied: six>=1.5 in c:\users\dell\anaconda3\lib\site-packa
         ges (from python-dateutil>=2.8.2->pandas<3.0,>=1.0->gradio) (1.16.0)
         Requirement already satisfied: markdown-it-py<3.0.0,>=2.2.0 in c:\users\dell\anac
         onda3\lib\site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (2.2.0)
         Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\users\dell\anaconda3
         \lib\site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (2.15.1)
         Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\dell\anaconda
         3\lib\site-packages (from requests->huggingface-hub>=0.25.1->gradio) (2.0.4)
         Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\dell\anaconda3\lib
         \site-packages (from requests->huggingface-hub>=0.25.1->gradio) (2.2.2)
         Requirement already satisfied: mdurl~=0.1 in c:\users\dell\anaconda3\lib\site-pac
         kages (from markdown-it-py<3.0.0,>=2.2.0->rich>=10.11.0->typer<1.0,>=0.12->gradi
         o) (0.1.0)
         Note: you may need to restart the kernel to use updated packages.
In [192...
          import gradio as gr
          import numpy as np
In [193...
          def predict(driver_age, driver_experience, previous_accidents, annual_mileage, driver_experience, previous_accidents, annual_mileage, driver_experience
              input_data = np.array([driver_age, driver_experience, previous_accidents, an
              input data = scaler.transform(input data)
              prediction = model.predict(input_data)
              return prediction[0]
In [217...
         iface = gr.Interface(
```

fn=predict,
inputs=[

```
gr.Number(label="Driver Age"),
                 gr.Number(label="Driver Experience"),
                 gr.Number(label="Previous Accidents"),
                 gr.Number(label="Annual Mileage"),
                 gr.Number(label="Car Manufacturing Year"),
                 gr.Number(label="Car Age")
             ],
            outputs= predict(inputs)
       NameError
                                                  Traceback (most recent call last)
       Cell In[217], line 11
             1 iface = gr.Interface(
             2
                   fn=predict,
             3
                   inputs=[
             4
                       gr.Number(label="Driver Age"),
             5
                       gr.Number(label="Driver Experience"),
             6
                       gr.Number(label="Previous Accidents"),
             7
                       gr.Number(label="Annual Mileage"),
             8
                       gr.Number(label="Car Manufacturing Year"),
             9
                       gr.Number(label="Car Age")
            10
                   ],
       ---> 11
                   outputs= predict(inputs)
            12 )
       NameError: name 'inputs' is not defined
In [ ]: iface.launch()
In [ ]:
```