Chan-Vese Segmentation Équation de Hamilton-Jacobi

Anass El Yaagoubi, Victor Le Maistre, Simon Delecourt

Institut National des Sciences Appliquées de Rouen Normandie

19 novembre 2018

- Introduction
 - Segmentation d'image
 - Contours actifs paramétriques
 - Méthodes level-set
- Formulation du problème
 - Modèle de Mumford-Shah
 - Modèle de Chan-Vese
- Schéma numérique
- Résultats
- Conclusion
 - Perspectives d'évolutions
 - Apports du projets

- Introduction
 - Segmentation d'image
 - Contours actifs paramétriques
 - Méthodes level-set.
- - Modèle de Mumford-Shah
 - Modèle de Chan-Vese

- - Perspectives d'évolutions
 - Apports du projets

Introduction

Définition

La segmentation d'image est une opération de traitement d'images qui a pour but de rassembler des pixels entre eux suivant des critères pré-définis. Les pixels sont ainsi regroupés en régions, qui constituent un pavage ou une partition de l'image.

Segmentation

Exemple

Contours actifs paramétriques

Exemple

Level set

Exemple

- Introduction
 - Segmentation d'image
 - Contours actifs paramétriques
 - Méthodes level-set
- Formulation du problème
 - Modèle de Mumford-Shah
 - Modèle de Chan-Vese
- Schéma numérique
- A Résultats
- Conclusion
 - Perspectives d'évolutions
 - Apports du projets

Modèle de Mumford-Shah

Modélisation du problème de segmentation :

 $f:\Omega \to \mathbb{R}$ image à segmenter (1)

 $\hat{u} \approx f$ segmentation de l'image (2

Modèle de Mumford-Shah

Modélisation du problème de segmentation :

$$\hat{u} = \underset{u,C}{\operatorname{argmin}} \quad \mu \cdot Length(C) + \lambda \int_{\Omega} \left[f(x) - u(x) \right]^{2} dx + \int_{\Omega \setminus C} |\nabla u(x)|^{2} dx$$
(3)

 $u \in \{ \text{ fonctions lisses par morceaux } \}$

Modèle de Chan-Vese

Modélisation du problème de segmentation :

$$u = \begin{cases} c_1 \text{ si x à l'intérieur de } C \\ c_2 \text{ si x à l'extérieur de } C \end{cases}$$
 (4)

Modèle de Chan-Vese

Modélisation du problème de segmentation :

$$\hat{u} = \underset{u,C}{\operatorname{argmin}} \quad \mu \cdot Length(C) + \nu \cdot Area(Inside(C)) + \lambda_1 \int_{inside(C)} \left[f(x) - c_1 \right]^2 dx + \lambda_2 \int_{outside(C)} \left[f(x) - c_2 \right]^2 dx$$
(5)

Formulation Level-Set

Si φ est une fonction de distance alors :

$$C = \left\{ x \in \Omega : \varphi(x) = 0 \right\}$$

$$Length(C) = \int_{\Omega} \left| \nabla H(\varphi(x)) \right| dx = \int_{\Omega} \delta(\varphi(x)) \left| \nabla \varphi(x) \right| dx \qquad (6)$$

$$Area(C) = \int_{\Omega} H(\varphi(x)) dx$$

Formulation Level-Set

On a donc:

$$\hat{u} = \underset{u}{\operatorname{argmin}} \mu \cdot \int_{\Omega} \delta(\varphi(x)) |\nabla \varphi(x)| dx + \nu \cdot \int_{\Omega} H(\varphi(x)) dx + \lambda_{1} \int_{\Omega} \left[f(x) - c_{1} \right]^{2} H(\varphi(x)) dx + \lambda_{2} \int_{\Omega} \left[f(x) - c_{2} \right]^{2} \left(1 - H(\varphi(x)) \right) dx$$

$$(7)$$

$$\underset{\varphi}{\operatorname{argmin}} J[\varphi] = \int_{\Omega} \mathcal{L}(x, \varphi, \nabla \varphi) dx \tag{8}$$

Equation d'Euler-Lagrange :

$$\frac{\partial \mathcal{L}}{\partial \varphi} - \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(\frac{\partial \mathcal{L}}{\partial \varphi_{x_{i}}} \right) = 0 \tag{9}$$

Formulation Level-Set

Par déscente de gradient en φ :

$$\begin{cases}
\frac{\partial \varphi}{\partial t} = \delta_{\epsilon}(\varphi) \left[\mu * \operatorname{div}\left(\frac{\nabla \varphi}{|\nabla \varphi|}\right) - \nu - \lambda_{1} (f_{i,j} - c_{1})^{2} + \lambda_{2} (f_{i,j} - c_{2})^{2} \right] \\
\frac{\delta_{\epsilon}(\varphi)}{|\nabla \varphi|} \frac{\partial \varphi}{\partial \hat{n}} = 0
\end{cases}$$
(10)

- Introduction
 - Segmentation d'image
 - Contours actifs paramétriques
 - Méthodes level-set
- Formulation du problème
 - Modèle de Mumford-Shah
 - Modèle de Chan-Vese
- Schéma numérique
- 4 Résultats
- Conclusion
 - Perspectives d'évolutions
 - Apports du projets

Fonction Heaviside et Masse de Dirac

Régularisation de H et de δ :

Schéma numérique

Le schéma numérique est construit en discrétisant φ en espace comme suit :

$$\begin{split} \frac{\partial \varphi_{i,j}}{\partial t} = & \delta_{\epsilon}(\varphi_{i,j}) \Big[\mu \big(\nabla_{\mathbf{x}}^{-} \frac{\nabla_{\mathbf{x}}^{+} \varphi_{i,j}}{\sqrt{\eta^{2} + (\nabla_{\mathbf{x}}^{+} \varphi_{i,j})^{2} + (\nabla_{\mathbf{y}}^{0} \varphi_{i,j})^{2}}} \\ & + \nabla_{\mathbf{y}}^{-} \frac{\nabla_{\mathbf{y}}^{+} \varphi_{i,j}}{\sqrt{\eta^{2} + (\nabla_{\mathbf{x}}^{0} \varphi_{i,j})^{2} + (\nabla_{\mathbf{y}}^{+} \varphi_{i,j})^{2}}} \big) - \nu \\ & - \lambda_{1} (f_{i,j} - c_{1})^{2} + \lambda_{2} (f_{i,j} - c_{2})^{2} \Big] \end{split}$$

avec ∇_x^+ le schéma forward dans la direction x, ∇_x^- le schéma backward dans la direction x et $\nabla_y^0 = (\nabla_y^+ + \nabla_y^-)/2$.

Schéma numérique

De façon à ne garder qu'une seule copie de φ en mémoire, le temps est discrétisé avec le schéma, semi-explicite, de Gauss-Seidel. En notant :

$$A_{i,j} = \frac{\mu}{\sqrt{\eta^2 + (\nabla_x^+ \varphi_{i,j})^2 + (\nabla_y^0 \varphi_{i,j})^2}}$$
(11)

$$A_{i,j} = \frac{\mu}{\sqrt{\eta^2 + (\nabla_x^+ \varphi_{i,j})^2 + (\nabla_y^0 \varphi_{i,j})^2}}$$

$$B_{i,j} = \frac{\mu}{\sqrt{\eta^2 + (\nabla_x^0 \varphi_{i,j})^2 + (\nabla_y^+ \varphi_{i,j})^2}}$$
(12)

Schéma numérique

Nous obtenons le schéma suivant :

$$\varphi_{i,j}^{n+1} \leftarrow \left[\varphi_{i,j}^{n} + dt \delta_{\epsilon}(\phi_{i,j}^{n}) \left(A_{i,j} \varphi_{i+1,j}^{n} + A_{i-1,j} \varphi_{i-1,j}^{n+1} + B_{i,j} \varphi_{i,j+1}^{n} + B_{i,j-1} \varphi_{i,j-1}^{n+1} - \nu - \lambda_{1} (f_{i,j} - c_{1})^{2} + \lambda_{2} (f_{i,j} - c_{2})^{2} \right) \right]$$

$$/ \left[1 + dt \delta_{\epsilon}(\varphi_{i,j}^{n+1}) (A_{i,j} + A_{i-1,j} + B_{i,j} + B_{i,j-1}) \right]$$

Algorithme

```
Initialize \varphi
for n = 1, 2, ... do
```

Compute c_1 and c_2 as the region averages Evolve φ with one semi-implicit timestep

if $\|\varphi^{n+1} - \varphi^n\|_2/|\Omega| \le tol$ then stop

(Optional) If n is divisible by N, reinitialize φ

Algorithm 1

- Introduction
 - Segmentation d'image
 - Contours actifs paramétriques
 - Méthodes level-set
- Formulation du problème
 - Modèle de Mumford-Shah
 - Modèle de Chan-Vese
- Schéma numérique
- 4 Résultats
- Conclusion
 - Perspectives d'évolutions
 - Apports du projets

Skimage implementation - 103 iterations

Our implementation - 33 iterations

Figure – Variation de l'hyper-paramètre μ

(a) Avec $\nu = -0.1$

(b) Avec $\nu = 0.1$

Figure – Variation de l'hyper-paramètre ν

- Introduction
 - Segmentation d'image
 - Contours actifs paramétriques
 - Méthodes level-set
- Formulation du problème
 - Modèle de Mumford-Shah
 - Modèle de Chan-Vese
- Schéma numérique
- 4 Résultats
- Conclusion
 - Perspectives d'évolutions
 - Apports du projets

Perspectives d'évolution

- Prendre en charge des images en couleur
- Implémenter la méthode Narrow-Band

Apports du projet

- Nouvelle technique de segmentation d'image
- Résolution numérique d'une équation de Hamilton-Jacobi

