Arbori parțiali de cost minim

Conectați pinii astfel încât să folosiți cât mai puțin cablu

- Legăm pini apropiați
- Nu închidem cicluri

conectare cu cost minim ⇒ evităm ciclurile

Deci trebuie să construim

graf conex + fără cicluri ⇒ arbore
cu suma costurilor muchiilor minimă

- ▶ G = (V, E) conex ponderat
 - w : $E \to \mathbb{R}$ funcție **pondere** (cost)
 - notat G = (V, E, w)

- ▶ G = (V, E, w) conex ponderat
- ▶ Pentru A ⊆ E

$$\mathbf{w}(\mathbf{A}) = \sum_{\mathbf{e} \in \mathbf{A}} \mathbf{w}(\mathbf{e})$$

- ▶ G = (V, E, w) conex ponderat
- ▶ Pentru A ⊆ E

$$\mathbf{w}(\mathbf{A}) = \sum_{\mathbf{e} \in \mathbf{A}} \mathbf{w}(\mathbf{e})$$

Pentru T subgraf al lui G

$$\mathbf{w}(\mathbf{T}) = \sum_{\mathbf{e} \in E(T)} \mathbf{w}(\mathbf{e})$$

Reprezentarea grafurilor ponderate

Reprezentarea grafurilor ponderate

Matrice de costuri (ponderi)

Reprezentarea grafurilor ponderate

- Matrice de costuri (ponderi)
- Liste de adiacență

Reprezentarea grafurilor ponderate

- Matrice de costuri (ponderi)
- Liste de adiacență
- Liste de muchii

A.p.c.m

- G = (V, E, w) conex ponderat
- Arbore parțial de cost minim al lui G = un arbore parțial T_{min} al lui G cu

```
w(T_{min}) = min \{ w(T) | T \text{ arbore partial al lui } G \}
```

Aplicații a.p.c.m.

- Construcţia/renovarea unui sistem de căi ferate a.î.:
 - oricare două stații să fie conectate (prin căi renovate)
 - sistem economic
- Proiectarea circuitelor electronice
 - conectarea pinilor cu cost minim
- Clustering ...

Algoritmi de determinare a unui arbore parțial de cost minim

Arbori parțiali de cost minim

Cum determinăm un arbore parțial de cost minim al unui graf conex ponderat?

Arbori parțiali de cost minim

Idee: Prin adăugare succesivă de muchii, astfel încât mulțimea de muchii selectate

- > să aibă costul cât mai mic
- să fie submulțime a mulțimii muchiilor unui arbore parțial de cost minim (apcm)

Arbori parțiali de cost minim

După ce criteriu selectăm muchiile?

Algoritmul lui Kruskal

La un pas este selectată o muchie de cost minim care nu formează cicluri cu muchiile deja selectate (care unește două componente din graful deja construit)

O primă formă a algoritmului

Kruskal

- Iniţial T= (V; ∅)
- pentru i = 1, n-1
 - alege o muchie uv cu cost minim a.î. u,v sunt în componente conexe diferite (T+uv aciclic)
 - \triangleright E(T) = E(T) \cup {uv}

Kruskal

 Iniţial: cele n vârfuri sunt izolate, fiecare formând o componentă conexă

Kruskal

La un pas:

Muchiile selectate formează o **pădure**

Este selectată o muchie de cost minim care unește doi arbori din pădurea curentă (două componente conexe)

Kruskal - Implementare

- 1. Cum reprezentăm graful în memorie?
- 2. Cum selectăm ușor o muchie:
 - de cost minim
 - care unește două componente (nu formează cicluri cu muchiile deja selectate)

Pentru a selecta ușor o muchie de cost minim cu proprietatea dorită ordonăm crescător muchiile după cost și considerăm muchiile în această ordine

Reprezentarea grafului ponderat

 Listă de muchii: memorăm pentru fiecare muchie extremitățile și costul

Cum testăm dacă muchia curentă unește două componente (⇔ nu formează cicluri cu muchiile deja selectate)?

Cum testăm dacă muchia curentă unește două componente (⇔ nu formează cicluri cu muchiile deja selectate)?

verificăm printr-o parcurgere dacă extremitățile muchiei sunt deja unite printr-un lanț

Cum testăm dacă muchia curentă unește două componente (⇔ nu formează cicluri cu muchiile deja selectate)?

verificăm printr-o parcurgere dacă extremitățile muchiei sunt deja unite printr-un lanț

O(mn) – ineficient

Componentele sunt mulţimi disjuncte din V (partiţie a lui V) – **structuri pentru mulţimi disjuncte**

 asociem fiecărei componente un reprezentant (o culoare)

- Operații necesare:
 - Initializare(u) creează o componentă cu un singur vârf, u

- Operații necesare:
 - Initializare(u) creează o componentă cu un singur vârf, u
 - Reprez(u) returnează reprezentantul (culoarea) componentei care conține pe u

- Operații necesare:
 - Initializare(u) creează o componentă cu un singur vârf, u
 - Reprez(u) returnează reprezentantul (culoarea) componentei care conține pe u
 - Reuneste(u,v) unește componenta care conține u cu cea care conține v

O muchie uv unește două componente dacă

 $Reprez(u) \neq Reprez(v)$

```
sorteaza(E)
for(v=1;v<=n;v++)
    Initializare(v);</pre>
```

```
sorteaza(E)
for (v=1; v<=n; v++)
    Initializare(v);
nrmsel=0
for (uv \in E)
 if (Reprez (u) !=Reprez (v))
```

```
sorteaza(E)
for (v=1; v<=n; v++)
    Initializare(v);
nrmsel=0
for (uv \in E)
 if (Reprez (u) !=Reprez (v))
      E(T) = E(T) \cup \{uv\};
      Reuneste (u, v);
      nrmsel=nrmsel+1;
      if(nrmsel==n-1)
          STOP; //break;
```

Complexitate

Complexitate

- ▶ Sortare -> O(m log m) = O(m log n)
- n * Initializare
- 2m * Reprez
- ▶ (n-1) * Reuneste

Depinde de memorarea componentelor conexe

Cum memorăm componentele + reprezentantul / culoarea componentei în care se află un vârf

Varianta 1 – memorăm într-un vector pentru fiecare vârf reprezentantul/culoarea componentei din care face parte r[u] = culoarea componentei care

r[u] = culoarea componentei care conține vârful u

Initializare

Reprez

Reuneste

▶ Initializare – O(1)

```
void Initializare(int u) {
    r[u]=u;
}
```

Reprez

Reuneste

▶ Initializare – O(1)

```
void Initializare(int u) {
    r[u]=u;
}

Reprez - O(1)
  int Reprez(int u) {
    return r[u];
}
```

Reuneste

```
▶ Initializare – O(1)
     void Initializare(int u) {
         r[u]=u;
▶ Reprez – O(1)
     int Reprez(int u) {
          return r[u];
Reuneste – O(n)
                        void Reuneste(int u,int v)
                           r1=Reprez (u) ;//r1=r[u]
                           r2=Reprez(v);//r2=r[v]
                           for (k=1; k \le n; k++)
                             if(r[k]==r2)
                                r[k]=r1;
```

Varianta 1- dacă folosim vector de reprezentanți

```
• Sortare -> O(m log m) = O(m log n)
```

- ▶ n * Initializare -> O(n)
- ▶ 2m * Reprez -> O(m)
- \rightarrow (n-1) * Reuneste -> O(n²)

 $O(m log n + n^2)$

- (4,6)
- (2,4)
- (2,6)
- (3,5)
- (3,6)
- (2,5)
- (1,3)
- (1,2)
- (5,6)

$$r = [1,2,3,4,5,6]$$

(4,6)
$$r(4) \neq r(6)$$

- (2,4)
- (2,6)
- (3,5)
- (3,6)
- (2,5)
- (1,3)
- (1,2)
- (5,6)

$$r = [1,2,3,4,5,6]$$

(4,6) Reuneste(4,6)

$$r = [1,2,3,4,5,6]$$

$$(4,6) \quad r = [1,2,3,4,5,4]$$

Varianta 2 - Structuri pentru mulțimi disjuncte Union/Find - arbori

Varianta 2 - Structuri pentru mulțimi disjuncte Union/Find - arbori

 memorăm componentele conexe ca arbori, folosind vectorul tata; reprezentantul componentei va fi rădăcina arborelui

 Reuniunea se va face în funcţie de înălţimea arborilor (reuniune ponderată) ⇒ arbori de înălţime logaritmică

 arborele cu înălţimea mai mică devine subarbore al rădăcinii celuilalt arbore

Complexitate – dacă folosim arbori

- Sortare $-> O(m \log m) = O(m \log n)$
- ▶ n * Initializare ->
- 2m * Reprez ->
- ▶ (n-1) * Reuneste ->

Complexitate – dacă folosim arbori

- > Sortare \rightarrow O(m log m) = O(m log n)
- ▶ n * Initializare -> O(n)
- ▶ 2m * Reprez -> O(m log n)
- (n-1) * Reuneste -> O(n log n)

O(m log n)

(cu compresie de cale - Reprez+Reuneste O(n+m))

Concluzii complexitate - O(m log n)

Gruparea unor obiecte în k clase cât mai *bine* separate (k dat)

obiecte din clase diferite să fie cât mai diferite

Cuvinte - distanța de editare

este

ana

minim

partial

arbore

care

case

Soluţie posibilă

Cuvinte - distanța de editare

Formal

Idee

- Iniţial fiecare obiect (cuvânt) formează o clasă
- La un pas determinăm cele mai apropiate două obiecte aflate în clase diferite (cu distanţa cea mai mică între ele) şi unim clasele lor

Idee

- Iniţial fiecare obiect (cuvânt) formează o clasă
- La un pas determinăm cele mai apropiate două obiecte aflate în clase diferite (cu distanţa cea mai mică între ele) şi unim clasele lor
- ∘ n k paşi

Cuvinte - distanța de editare

martian
este

ana
ana
minim
partial
arbore
care
care
care
care
care
care
care

martian

care ___ case

este

apa

sinonim

minim

partial

arbore

K = 3 clustere

arbore

Cuvinte - distanța de editare

arbore

arbore

K = 3 clustere

K = 3 clustere

Idee

- Iniţial fiecare obiect (cuvânt) formează o clasă
- La un pas determinăm cele mai apropiate două obiecte aflate în clase diferite (cu distanţa cea mai mică între ele şi unim clasele lor)
- n k paşi

Modelare cu graf ⇒ n - k paşi din algoritmul lui Kruskal

Corectitudine

k-clusteringul obţinut are grad de separare maxim

Algoritmul lui Prim

- Se porneşte de la un vârf (care formează arborele iniţial)
- La un pas este selectată o muchie de cost minim de la un vârf deja adăugat la arbore la unul neadăugat

O primă formă a algoritmului

Kruskal

- Iniţial T= (V; ∅)
- pentru i = 1, n-1
 - alege o muchie uv cu cost minim a.î. u,v sunt în componente conexe diferite (T+uv aciclic)
 - \triangleright E(T) = E(T) \cup uv

Prim

- s- vârful de start
- Iniţial T= ({s}; ∅)
- pentru i = 1, n−1
 - ➤ alege o muchie uv cu cost minim a.î. u∈V(T) şi v∉V(T)
 - $\triangleright V(T) = V(T) \cup \{v\}$
 - \triangleright E(T) = E(T) \cup uv

Kruskal

 Inițial: cele n vârfuri sunt izolate, fiecare formând o componentă conexă

 Se încearcă unirea acestor componente prin muchii de cost minim

Prim

 Inițial: se pornește de la un vârf de start

1

 Se adăugă pe rând câte un vârf la arborele deja construit, folosind muchii de cost minim

Kruskal

La un pas:

Muchiile selectate formează o **pădure**

Prim

La un pas:

Muchiile selectate formează un **arbore**

Kruskal

La un pas:

Muchiile selectate formează o **pădure**

Este selectată o muchie de cost minim care unește doi arbori din pădurea curentă (două componente conexe)

Prim

La un pas:

Muchiile selectate formează un **arbore**

Este selectată o muchie de cost minim care unește un vârf din arbore cu unul care nu este în arbore(neselectat)

$$s = 1$$

Implementare

La fiecare pas parcurgem toate muchiile şi o alegem pe cea de cost minim cu o extremitate selectată şi una neselectată

O(nm)

Implementare

Variante O(n²)/ O(mlog n)

- heap de muchii

sau

 memorăm la fecare pas pentru fiecare vârf muchia de cost minim care îl uneşte de un vârf care este deja în arbore

(v. laborator+seminar + slideuri implementare+ alg. Dijkstra)

Algoritmi bazați pe eliminare de muchii

Temă - Care dintre următorii algoritmi determină corect un arbore parțial de cost minim (justificați)? Pentru fiecare algoritm corect precizați ce complexitate are.

- 2. T ← G
 cât timp T conţine cicluri execută
 alege C un ciclu oarecare din T şi fie e
 muchia de cost maxim din C
 T ← T e

Corectitudine

Corectitudinea algoritmilor

Corectitudinea algoritmilor

Fie G=(V,E, w) un graf conex ponderat

- Propoziție. Algoritmul Kruskal determină un apcm
- Propoziție. Algoritmul Prim determină un apcm

