Kapitel 3

Lokale Eigenschaften

§ 15 Lokale Ringe

Definition 15.1

Sei k ein Körper, V quasiprojektive Varietät über $k, x \in V$.

a) $\mathcal{O}_{V,x} = \{[(U,f)]_{\sim} : U \text{ offene Umgebung von } x, f \in \mathcal{O}_V(U)\}$ mit

$$(u, f) \sim (U', f') :\Leftrightarrow f|_{u \cap U'} = f'|_{U \cap U'}$$

 $\mathcal{O}_{V,x}$ heißt **lokaler Ring** von V in x.

b) Die Elemente von $\mathcal{O}_{V,x}$ heißen **Keime** von regulären Funktionen. Schreibweise: $(U,f)_{\sim}=:f_x$

Beispiel

$$V = \mathbb{A}^1(k), x = 0$$

$$U ext{ offen} \Rightarrow U = \mathbb{A}^1(k) - \{x_1, \dots, x_n\}, x_i \neq 0$$

$$f \in \mathcal{O}_V(U) \Rightarrow f = \frac{g}{h}$$
 auf $h(y) \neq 0$ für $y \neq x_i$ $(i = 1, ..., n)$

 $\Rightarrow \mathcal{O}_{\mathbb{A}^1(k),0} = \{ \frac{g}{h} : g, h \in k[X], h(0) \neq 0 \} = k[X]_{(X)} \text{ mit der Notation } (R \text{ Ring}, \mathfrak{p} \text{ Primideal}) \}$

$$R_{\mathfrak{p}} = \left\{ \frac{a}{b} : a \in R, b \in R \setminus \mathfrak{p} \right\}$$

 $\mathfrak{p} \cdot R$ ist das einzige maximale Ideal in $R_{\mathfrak{p}}$.

Bemerkung 15.2

Seien k, V, x und $\mathcal{O}_{V,x}$ wie in 15.1.

- a) Die Abbildung $\varphi_x: \mathcal{O}_{V,x} \to k, f_x \mapsto f(x)$ ist surjektiver k-Algebra-Homomophismus ("Einsetzungshomomorphismus").
- b) $\mathcal{O}_{V,x}$ ist lokaler Ring mit maximalem Ideal $m_x = \{f_x \in \mathcal{O}_{V,x} : f(x) = 0\} = \text{Kern}(\varphi_x)$.

Beweis

- a) ✓
- b) Kern (φ_x) ist maximales ideal, da $\mathcal{O}_{V,x}/m_x = k$ Körper ist.

 m_x ist das einzige maximale Ideal: Sei $f_x \in \mathcal{O}_{V,x} - m_x \Rightarrow f(x) \neq 0 \Rightarrow x \in D(f)$ für ein (U,f) mit $(U,f)_{\sim} = f_x$

$$\Rightarrow g := \frac{1}{f} \in \mathcal{O}_V(U')$$
 für $U' := D(f) \cap U$

$$\Rightarrow g_x := (U', g)_{\sim} \in \mathcal{O}_{V,x}$$

$$\Rightarrow f_x \cdot g_x = 1$$

Bemerkung 15.3

a) Für jedes offene $U \subseteq V$ mit $x \in U$ ist

$$\psi_x^U: \begin{array}{ccc} \mathcal{O}_V(U) & \to & \mathcal{O}_{V,x} \\ f & \mapsto & f_x \end{array}$$

ein k-Algebra-Homomophismus.

b) Zusammen mit dem Restriktionshomomophismus $\varrho_{U'}^U: \mathcal{O}_V(U) \to \mathcal{O}_V(U')$ für $U' \subset U$ bilden die ψ_x^U ein injektives System von k-Algebra-Homomophismen. Es ist $\lim_{\substack{x \in U \\ U \subset V \text{ offen}}} \mathcal{O}_V(U) = \mathcal{O}_{V,x}$

c) ψ_x^U ist injektiv, falls $U \subset \bigcup_{\substack{V_i \text{ irred. Komp.} \\ v, V \text{ mit. } x \in V_i}} V$

Proposition 15.4

Seien V, x wie in Definition 15.1, $V_0 \subseteq V$ offen, affin mit $x \in V_0$. Dann ist $\mathcal{O}_{V,x} \cong k[V_0]_{m_x^{v_0}}$, wobei $m_x^{v_0} = f \in k[V_0]|f(x) = 0$, insbesondere ist $\mathcal{O}_{V,x}$ von V_0 unabhängig

Beweis

Sei
$$\alpha: k[V_0]_{m_x^{V_0}} \to \mathcal{O}_{V,x}, \frac{f}{g} \mapsto (D(g), y \mapsto \frac{f(y)}{g(y)})_{\sim}$$

 α ist wohldefinierter k-Algebra-Homomophismus.

$$\alpha$$
 ist injektiv: Sei $\alpha(\frac{f}{g}) = 0$

Dann gibt es $U \subset G(g)$ offen mit f(y) = 0 für alle $y \in U$.

$$\Rightarrow W = V_0 - U$$
ist abgeschlossen in $V_0, x \notin W$

$$\Rightarrow$$
 Dann gibt es $h \in I(W)$ mit $h(x) \neq 0$ (weil $V(I(W)) = W$ ist)

$$\Rightarrow h \notin m_y^{V_0}$$
 mit $h(y) \cdot f(y) = 0$ für alle $y \in V_0$

$$\Rightarrow f = 0 \text{ in } k[V_0]_{m_x^{V_0}}$$

$$\Rightarrow \frac{f}{g} = 0 \text{ in } k[V_0]_{m_x^{V_0}}$$

 α ist surjektiv: Sei $(U, f)_{\sim} \in \mathcal{O}_{V,x}$

$$\times U \subseteq V_0, U = D(h)$$
 für ein $h \in k[V_0]$

$$\Rightarrow f \in \mathcal{O}_V(U) = \mathcal{O}_{V_0}(U) = k[V_0]_h$$

$$\Rightarrow (U, f)_{\sim} = \alpha(\frac{g}{h^r})$$

Proposition 15.5

Seien V, W quasiprojektive Varietäten, $x \in V, y \in W$. Ist $\mathcal{O}_{V,x} \cong \mathcal{O}_{W,y}$ (als k-Algebren), so gibt es offene Umgebungen $U \subseteq V$ von x und $U' \subseteq W$ von y mit $U \cong U'$ (als quasiprojektive Varietäten).

Beweis

Seien $U_x \subseteq V$, beziehungsweise $U_y \subseteq W$ offene affine Umgebungen von x beziehungsweise y wie in 15.3 c), also $\psi_x^{U_x}$ und $\psi_y^{U_y}$ injektiv. Seien f_1, \ldots, f_r Erzeuger von $\mathcal{O}_V(U_x) = k[U_x]$ als k-Algebra. Sei weiter $\varphi : \mathcal{O}_{V,x} \to \mathcal{O}_{W,y} \cong k[U_y]_{m_x^{U_y}}$ ein Isomorphismus.

Für die Keime gilt also: $(f_i)_x = \frac{g_i}{h_i}$ mit $h_i, g_i \in k[U_y], h_i(y) \neq 0, i = 1, ..., r$ Sei $U_y' \subseteq U_y$ offen, affin mit $\frac{g_i}{h_i} \in \mathcal{O}_W(U_y'), i = 1, ..., r$ (also z. B. $U_y' = U_y \cap D(h_1) \cap ... \cap D(h_r)$) $\Rightarrow \varphi \circ \psi_x^{U_x}$ induziert injektiven k-Algebra-Homomophismus

$$k[U_x] \to k[U_y']$$

Dieser entspricht dominantem Morphismus $f:U_y'\to U_x$. Genauso erhalten wir dominanten Morphismus $g:U_x'\to U_y$.

f und g sind zueinander inverse rationale Abbildung $U_x \stackrel{\longleftarrow}{\to} U_y$

Bemerkung 15.6

Sei $\varphi:V\to W$ Morphismus von quasiprojektiven Varietäten, $x\in V$. Dann induziert φ einen k-Algebra-Homomophismus

$$\varphi_x^\#: \mathcal{O}_{W,\varphi(x)} \to \mathcal{O}_{V,x} \text{ mit } \varphi_x^\#(m_{\varphi(x)}) \subseteq m_x$$

Beweis

 $\times V, W$ affin (wegen Proposition 15.4).

 φ induziert $\varphi^{\#}: k[W] \to k[V]$ (durch $f \mapsto f \circ \varphi$).

Dabei ist $f \in m_{\phi(x)}^W, f(\varphi(x)) = 0 \Leftrightarrow (f \circ \varphi)(x) = 0 \Leftrightarrow \varphi^\#(f) \in m_x^V$

 $\Rightarrow \varphi^{\#}$ induziert

$$\varphi_x^{\#}: \underbrace{k[W]_{m_{\varphi(x)}^W}}_{=\mathcal{O}_{V,x}} \to \underbrace{k[V]_{m_x^V}}_{=\mathcal{O}_{V,x}}$$

 $\operatorname{mit} \, \varphi_x^{\#}(m_{\varphi(x)}) = \varphi_x^{\#}(m_{\varphi(x)}^W \cdot k[W]_{m_{\varphi(x)}^W}) \subseteq m_x^V \cdot k[V]_{m_x^V} = m_x$

§ 16 Tangentialraum

Beispiel 16.1

a)
$$V_1 = \underbrace{V(Y^2 - X^3 + X)}_{Y^2 = X(X-1)(X+1)}, x(0,0)$$

Tangente an V_1 in x "ist" die y-Achse.

b)
$$V_2 = \underbrace{V(Y^2 - X^3 - X^2)}_{Y^2 = X^2(X+1)}, x = (0,0)$$

Es gibt zwei Tangenten in x an V_2 . Jede Gerade durch x ist Grenzwert von Sekanten.

c)
$$V_3 = V(Y^2 - X^3), x = (0,0)$$

Die x-Achse ist (Doppel-) Tangente. Jede Gerade durch x ist Limes von Sekanten.

Erinnerung 16.2 (Taylorentwicklung)

Sei $f \in k[X_1, ..., X_n], x = (x_1, ..., x_n) \in k^n$.

a)
$$f = \sum_{(\nu_1, \dots, \nu_n) \in \mathbb{N}^n} \frac{1}{(\nu_1 + \dots + \nu_n)!} \frac{\partial \nu_1}{\partial X_1} \cdot \dots \cdot \frac{\partial \nu_n}{\partial X_n} f(x) (X_1 - x_1)^{\nu_1} \cdot \dots \cdot (X_n - x_n)^{\nu_n}$$

b)
$$f = f(x) + \underbrace{\sum_{i=1}^{n} \frac{\partial f}{\partial (X_i)}(x)(X - x_i)}_{\in m_x} + \underbrace{\text{h\"{o}here Terme (Grad} \ge 2)}_{\in m_x^2}$$

Definition + Bemerkung 16.3

Sei $f \in k[X_1, ..., X_n], x = (x_1, ..., x_n)$

a)
$$f_x^{(1)} := \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x) X_i =: D_x(f)$$

b) Sei $V \subseteq \mathbb{A}^n(k)$ affine Varietät mit $x \in V, I := I(V) \subseteq k[X_1, \dots, X_n]$ $I_x := \langle \{f_x^{(1)} : f \in I\} \rangle$ $T_{V,x} := V(I_x)$ heißt Tangentialraum an V in x.

c) Wird I von f_1, \ldots, f_r erzeugt, so wird I_x von $(f_1^{(1)})_x, \ldots, (f_r^{(1)})_x$ erzeugt.

d) $T_{V,x}$ ist linearer Unterraum von k^n , genauer

$$T_{V,x} = \operatorname{Kern}\left(\frac{\partial f_i}{\partial X_j}(x)\right)_{\substack{i=1,\dots,r\\j=1,\dots,m}}$$

(Jacobi-Matrix der Abbildung $f: k^n \to k^r, x \mapsto (f_1(x), \dots, f_r(x))$

Beweis

c) Sei
$$g \in I$$
 beliebig, schreibe $g = \sum_{i=1}^{r} g_i f_i, g_i \in k[X_1, \dots, X_n]$

$$D_x(f+g) = D_x(f) + D_x(g)$$

$$D_x(f \cdot g) = f(x) D_x(g) + g(x) D_x(f)$$

$$\Rightarrow D_x(g) = \sum_{i=1}^{r} D_x(g_i f_i) = \sum_{i=1}^{r} [g_i(x) D_x(f_i) + \underbrace{f_i(x)}_{i=0} D_x(g_i)] = \sum_{i=1}^{r} g_i(x) (f_i^{(1)})_x$$

$$= 0, \text{ weil } x \in V \text{ und } f_i \in I(V)$$

Beispiel (Noch einmal Bsp. 16.1)

a)
$$V_1 = V(f)$$
 mit $f = Y^2 - X^3 + X, x = (0, 0)$
 $\Rightarrow f_x^{(1)} = 1 \cdot X + 0 \cdot Y = X$
 $\Rightarrow T_{V,x} = V(X) = y$ -Achse

b)
$$V_2 = V(f)$$
 mit $f = Y^2 - X^3 - X^2$, $x = (0, 0)$
 $\Rightarrow f_x^{(1)} = 0$, also $T_{V,x} = k^2$

c) Genauso

Proposition 16.4

Sei $\varphi: V \to W$ ein Morphismus affiner Varietäten, $V \subseteq \mathbb{A}^n(k), W \subseteq \mathbb{A}^m(k)$. Dann induziert φ für jedes $x \in V$ eine k-lineare Abbildung

$$d_{x\varphi}: T_{V,x} \to T_{W,\varphi(x)}$$

Beweis

Sei $\varphi:V\to W$ gegeben durch $x\mapsto (\varphi_1(x),\ldots,\varphi_m(x)), \varphi_i\in k[X_1,\ldots,X_n]$. Der zugehörige k-Algebra-Homomophismus

$$k[W] = k[Y_1, \dots, Y_m]/I(W) \to k[X_1, \dots, X_n]/I(V) = k[V]$$

wird induziert von $\varphi^{\#}: k[Y_1, \dots, Y_m] \to k[X_1, \dots, X_n], f \mapsto f \circ \varphi_i.$

Genauer: $\varphi^{\#}(Y_j) = \varphi_j$

Dabei ist $\varphi^{\#}(I(W)) \subseteq I(V)$, da $\varphi(V) \subseteq W$. Definiere $\alpha : k[Y_1, \ldots, Y_m] \to k[X_1, \ldots, X_n]$ durch $Y_j \mapsto D_x(\varphi^{\#}(Y_j)) = D_x(\varphi_j) = (\varphi_j^{(1)})_x$.

Behauptung: $\alpha(I_{\varphi(x)}) \subseteq I_x$

Dann induziert α einen k-Algebra-Homomophismus

$$k[Y_1, \dots, Y_m]/I_{\varphi(x)} \to k[X_1, \dots, X_n]/I_x$$

$$= k[T_{W,\varphi(x)}] \qquad = k[T_{V,x}]$$

Und damit Morphismus $T_{V,x} \to T_{W,\varphi(x)}$

Beweis der Behauptung: Sei $g \in I_{\varphi(x)}$

Œ
$$g = h^{(1)}$$
 für ein $h \in I(W)$
 $\alpha(g) = \text{(Weihnachtsrechnung)} = D_x(g \circ \varphi) \in I_x$

Erinnerung

V affine Varietät über einem Körper $k, x \in V$.

 $T_{V,x}=V(I_x), I_x$ erzeugt von den $f_x^{(1)}=\sum\limits_{i=1}^n\frac{\partial f}{\partial X_i}(x)X_i, f\in I(V)$. Die Zuordnung $(V,x)\mapsto T_{V,x}$ ist ein kovarianter Funktor

(affine Varietäten)/k + Punkt $\rightarrow \underline{k}$ -Vektorräume

§ 17 Derivationen und Zariski-Topologie

Definition 17.1

Sei R Ring (kommutativ mit Eins), A eine R-Algebra, M ein A-Modul. Eine R-lineare Abbildung $D: A \to M$ heißt R-**Derivation**, wenn gilt:

$$D(f \cdot g) = f \cdot D(G) + g \cdot D(f)$$
 für alle $f, g \in A$

Beispiel 17.2

a) Sei $A = M = R[X], D(f) := \frac{df}{dg}$

Konkret:
$$D(\sum_{i=0}^{n} a_i X^i) = \sum_{i=1}^{n} i a_i X^{i-1}$$

D ist Derivation: Nachrechnen!!!

b)
$$A = M = R[X_1, \dots, X_n], D_i = \frac{\partial}{\partial X_i}$$

c) $A = R[X_1, ..., X_n], M = R, x = (x_1, ..., x_n) \in \mathbb{R}^n$

M wird zum A-Modul durch $\varphi_x(f) = f(x)$ (Einsetzungshomomophismus).

 $D(f) := \frac{\partial f}{\partial X_i}(x)$ ist R-Derivation, denn:

$$D(fg) = \left(\frac{\partial}{\partial X_i}(fg)\right)(x) = \left(f\frac{\partial g}{\partial X_i} + g\frac{\partial f}{\partial X_i}\right)(x) = f(x)\frac{\partial g}{\partial X_i}(x) + g(x)\frac{\partial f}{\partial X_i}(x) = f \cdot D(g) + g \cdot D(f)$$

Bemerkung 17.3

Seien R, A, M wie in 17.1

- a) Für jede R-Derivation $D: A \to M$ und jedes $a \in R$ gilt D(a) = 0.
- b) $\operatorname{Der}_R(A, M) = \{D : A \to M | D \text{ ist Derivation}\}\$ ist A-Modul.
- c) Ist $\varphi:M_1\to M_2$ ein Homomophismus von A-Moduln, so ist

$$\operatorname{Der}_R(A, M_1) \to \operatorname{Der}_R(A, M_2)$$

 $D \mapsto \varphi \circ D$

ein Homomophismus von A-Moduln.

d) Die Zuordnung $M \mapsto \operatorname{Der}_R(A, M)$ ist ein kovarianter Funktor:

$$A$$
-Moduln $\rightarrow A$ -Moduln

Beweis

a)
$$D(1) = D(1 \cdot 1) = 1 \cdot D(1) + 1 \cdot D(1) \Rightarrow D(1) = 0 \stackrel{D \text{ ist } R\text{-}linear}{\Longrightarrow} D(a) = D(a \cdot 1) = a \cdot D(1) = 0$$

b) ✓

c)
$$(\varphi \circ D)(f \cdot g) = \varphi(f \cdot D(g) + g \cdot D(f)) \stackrel{\varphi A\text{-Mod-Hom}}{=} f \cdot \varphi(D(g)) + g \cdot \varphi(D(f))$$

Bemerkung 17.4

- a) Für A = R[X] ist $Der_R(A, A) = A \cdot D$ $(D = \frac{d}{dX}$ wie in 17.2 a))
- b) Für $A = R[X_1, \dots, X_n]$ ist $Der_R(A, A)$ der freie A-Modul mit Basis $\frac{\partial}{\partial X_1}, \dots, \frac{\partial}{\partial X_n}$
- c) Sei $A = R[X_1, \dots, X_n], x = (x_1, \dots, x_n), M = R$ wie in 17.2 c). $\Rightarrow \operatorname{Der}_R(A, R)$ ist der von den $\frac{\partial}{\partial X_i}(x)$ erzeugte freie R-Modul.

Beweis

a) Sei
$$\delta: A \to A$$
 R-Derivation, $f:=\delta(X)$. $\Rightarrow \delta(X^2)=X\cdot\delta(X)+X\cdot\delta(X)=2f\cdot X$

$$\stackrel{\text{Induktion}}{\Longrightarrow} \delta(X^n)=n\cdot f\cdot X^{n-1} \Rightarrow \delta(\sum_{i=0}^n a_iX^i)=f\cdot \sum_{i=1}^n ia_iX^{n-1} \Rightarrow \delta=f\cdot D$$

c) folgt aus b) und 17.3 c).

Proposition 17.5

Sei $V \subseteq \mathbb{A}^n(k)$ affine Varietät, $x = (x_1, \dots, x_n) \in V$, $\mathcal{O}_{V,x} = \{\frac{f}{g} : f, g \in k[V], g(x) \neq 0\}$. Dann ist $\operatorname{Der}_R(\mathcal{O}_{V,x},k) \cong (m_x/m_x^2)^v$ (Isomorphismus von k-Vektroräumen).

 $\operatorname{Der}_R(\mathcal{O}_{V,x},k)$ und m_x/m_x^2 sind $\mathcal{O}_{V,x}$ -Moduln, in beiden Moduln ist die Multiplikation mit einem Element aus m_x die Nullabbildung.

 \Rightarrow Beide Moduln sind Moduln über $\mathcal{O}_{V,x}/m_x = k$

Beweis

Sei $\delta \in \operatorname{Der}_R(\mathcal{O}_{V,x}, k)$. $\delta|_{m_x}$ ist k-linear.

Behauptung: $m_x^2 \subseteq \text{Kern}(\delta)$

denn: Sei
$$f = g \cdot h \in m_x^2, g, h \in m_x \Rightarrow \delta(f) = \underbrace{g(x)}_{=0} \cdot \delta(h) + \underbrace{h(x)}_{=0} \cdot \delta(g) = 0$$

 $\Rightarrow \delta$ induziert k-lineare Abbildung $m_x/m_x^2 \to k$.

Sei umgekehrt $l \in (m_x/m_x^2)^v$. Definiere $\delta: \mathcal{O}_{V,x} \to k$ durch $\delta(f) := l(\underbrace{\overline{f-f(x)}}_{\in m_-})$ (k-linear: \checkmark).

Seien $f, g \in \mathcal{O}_{V,x}$. Dann ist $(f - f(x))(g - g(x)) \in m_x^2$. $\Rightarrow 0 = l((f - f(x))(g - g(x))) = l(fg - f(x)g(x) - fg(x) - gf(x) + 2f(x)g(x))$

$$\Rightarrow \delta(fg) = l(fg(x) + gf(x) - 2f(x)g(x)) = f(x)l(g - g(x)) + g(x)l(f - f(x)) = f\delta(g) + g\delta(f) \square$$

Satz + Definition 8

Sei V affine Varietät, $x \in V$. Dann gibt es einen natürlichen Isomorphismus

$$T_{V,x} \cong (m_x/m_x^2)^v$$

 $(m_x/m_x^2)^v$ heißt **Zariski-Tangentialraum** an V in x.

Beweis

i) Definiere Abbildung

Jedes $y = (y_1, \ldots, y_n) \in k^n$ induziert Derivation $D_y : k[X_1, \ldots, X_n] \to k$ durch $f \mapsto$ $\sum_{i=1}^n \frac{\partial f}{\partial X_i}(x) y_i$ (17.4 c)). Ist $y \in T_{V,x}$ und $f \in I(V)$, so ist $D_y(f) = 0$ nach Definition, denn $D_y(f) = f_x^1(y).$

 $\Rightarrow D_y \text{ induziert Derivation } D_y: k[V] \to k.$ $\text{Für } \frac{f}{g} \in \mathcal{O}_{V,x} \text{ sei } D_y(\frac{f}{g}) = \frac{g(x)D_y(f) - f(x)D_y(g)}{g(x)^2} \text{ (denn } D_y(\frac{f}{g} \cdot g) = D_y(f) \Rightarrow D_y \text{ induziert } D_y(f) \Rightarrow D_y \text{ induziert } D_y(f) \Rightarrow D_y \text{ induziert } D_y(f) \Rightarrow D_$

Noch zu zeigen: $\frac{f}{g} = 0$ in $\mathcal{O}_{V,x} \Rightarrow \frac{-f(x)D_y(g) + g(x)D_y(f)}{g(x)^2} = 0$

 $denn: \frac{f}{g} = 0 \text{ in } \mathcal{O}_{V,x} \Rightarrow \exists h \in \mathcal{O}_{V,x} \setminus m_x \text{ mit } h \cdot f = 0 \text{ in } k[V] \Rightarrow 0 = D_y(hf) = \overbrace{h(x)}^{\neq 0} D_y(f) + f(x) D_y(h) \Rightarrow D_y(f) = 0 \Rightarrow D_y(f) = 0$ $\underbrace{f(x)}_{=0} D_y(h) \Rightarrow D_y(f) = 0 \Rightarrow D_y(\frac{f}{g}) = 0$

ii)
$$\beta: \begin{pmatrix} (m_x/m_x^2) & \to & T_{V,x} \\ l & \mapsto & \left(l(\overline{X_1-x_1}),\dots,l(\overline{X_n-x_n})\right) \\ Zu \ zeigen: \left(l(\overline{X_1-x_1}),\dots,l(\overline{X_n-x_n})\right) \in T_{V,x} \\ \text{Sei dazu} \ f \in I(V). \ Zu \ zeigen: \ f_x^{(1)}\left(l(\overline{X_1-x_1}),\dots,l(\overline{X_n-x_n})\right) = 0 \\ \text{Es ist } f_x^{(1)}\left(l(\overline{X_1-x_1}),\dots,l(\overline{X_n-x_n})\right) = \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x)l(\overline{X_i-x_i}) = l\left(\sum_{i=1}^n \frac{\partial f}{\partial X_i}(x)(X_i-x_i)\right) \\ \stackrel{(*)}{=} l\left(f_x^{(1)}-f_x^{(1)}(x)\right) = 0, \text{ wegen} \\ Behauptung: \ f_x^{(1)}-f_x^{(1)}(x) \in m_x^2 \\ denn: \text{ Taylor-Entwicklung} \quad \underbrace{f}_{0 \text{ in } k[V]} = \underbrace{f(x)}_{=0, \text{ weil } f \in I(V)} + f_x^{(1)}-f_x^{(1)}(x) + \text{Terme in } m_x^2 \end{pmatrix}$$

iii)
$$\beta \circ \alpha = \mathrm{id}_{T_{V,x}}$$

$$\beta(\alpha(y)) = \beta(f \mapsto \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x)y_i) = \left(\sum_{i=1}^n \frac{\partial (X_1 - x_1)}{\partial X_i}(x)y_i, \dots, \sum_{i=1}^n \frac{\partial (X_n - x_n)}{\partial X_i}(x)y_i\right) = (y_1, \dots, y_n)$$
iv) $\alpha \circ \beta = \mathrm{id}_{(m_x/m_x^2)^v}$

av)
$$\alpha \circ \beta = \operatorname{Id}_{(m_x/m_x^2)^v}$$

$$\alpha(\beta(l))(f) = \alpha(l(X_1 - x_1), \dots, l(X_n - x_n))(f) = \sum_{i=1}^n \frac{\partial f}{\partial X_i}(x)l(X_i - x_i) \stackrel{(*)}{=} l\left(f_x^{(1)} - f_x^{(1)}(x)\right) = l(\overline{f})$$

§ 18 Dimension einer Varietät

Definition 18.1

Sei X topologischer Raum. Dann heißt

$$\dim(X) := \sup\{n \in \mathbb{N} : \exists \text{ Kette } \emptyset \neq V_0 \subsetneq, \ldots, \subsetneq V_n \text{ von irred. abgeschl. Teilm. v. } X\}$$

$Krull\ Dimension\ von\ X.$

Beispiel

- 1) $\dim(\mathbb{R}^n) = 0$ für jedes $n \ge 0$ (mit euklidischer Topologie)
- 2) $\dim(\mathbb{A}^1(k)) = 1$, falls k unendlich ist
- 3) dim $(\mathbb{A}^n(k)) \geq n$, falls k unendlich ist für $n \geq 2$

Bemerkung 18.2

Sei X ein topologischer Raum

- a) Ist $Y \subseteq X$ (mit Spurtopologie), so ist $\dim(Y) \leq \dim(X)$.
- b) Ist $X = \bigcup_{i=1}^{n} X_i$, X_i abgeschlossen, so ist $\dim(X) = \max_{i=1}^{n} (\dim(X_i))$.

Beweis

a) Sei $\emptyset \neq V_0 \subsetneq \ldots, \subsetneq V_d$ Kette von abgeschlossenen Teilmengen von Y. Sei $\overline{V_i}$ der Abschluss von V_i in X.

 V_i ist irreduzibel nach Übung 2, Aufgabe 5.

 $\overline{V_i} \cap Y = V_i$ weil V_i abgeschlossen in Y ist. $\Rightarrow \overline{V_i} \subsetneq \overline{V}_{i+1}$

 $\Rightarrow \emptyset \neq V_0 \subseteq \ldots \subseteq V_d$ ist Kette der Länge d in X.

b) "≥": gilt nach a)

"
$$\leq$$
": Sei $\emptyset \neq V_0 \subsetneq \ldots, \subsetneq V_d$ Kette in X . Dann ist $V_d = V_d \cap (\bigcup_{i=1}^n X_i) = \bigcup_{i=1}^n (\underbrace{V_d \cap X_i}_{\text{abg. in } V_d})$

$$V_d$$
 irreduzibel $\Rightarrow \exists i \text{ mit } V_d \subseteq X_i \Rightarrow d \leq \dim(X_i)$

Definition 18.3

Sei R ein Ring (das heißt kommutativ mit Eins)

a) Sei $\mathfrak{p} \in R$ Primideal. Dann heißt

$$\operatorname{ht}(\mathfrak{p}) := \sup\{n \in \mathbb{N} : \exists \mathfrak{p}_0 \subseteq \ldots \subseteq \mathfrak{p}_n = \mathfrak{p} \text{ Kette von Primelementen in } R\}$$

 $H\ddot{o}he \text{ von } \mathfrak{p}.$

b) $\dim(R) := \sup\{\operatorname{ht}(\mathfrak{p}) : \mathfrak{p} \subset R \text{ Primideal}\}\ \text{heißt } Krull\ Dimension}.$

Beispiel

- 1) dim k = 0 für jeden Körper k
- 2) dim $\mathbb{Z} = 1$
- 3) dim k[X] = 1 für jeden Körper k
- 4) dim $\mathbb{Z}[X] = 2$ (Übung?)

$$(0) \subset (2) \subset (2, X)$$

5) $\dim k[X, Y] = 2??$

Proposition 18.4

Ist k algebraisch abgeschlossen, so gilt für jede affine Varietäten $V \subseteq \mathbb{A}^n(k)$: $\dim(V) = \dim k[V]$

Beweis

Wegen V(I) irred. für I prim und $I(V(I)) \stackrel{HNS}{=} I$ sowie I(V) prim für V irred. und V(I(V)) = V folgt, dass die eine Kette eine gültige andere Kette ist.

Satz 9

Sei k ein Körper, A endlich erzeugte nullteilerfreie k-Algebra.

- a) $\dim k[X_1, ..., X_n] = n$
- b) Ist $\varphi: k[X_1, \ldots, X_n] \to A$ surjektiver Homomophismus von k-Algebran, so ist

$$\dim A + \operatorname{ht}(\operatorname{Kern}(\varphi)) = n$$

c) Jede maximale (nicht verlängerbare) Kette von Primidealen in A hat die Länge A.

Erinnerung

S|R ganze Ringerweiterung \Leftrightarrow jedes $a \in S$ ist Nullstelle eines normierten Polynoms mit Koeffizienten aus R.

Satz 9.1

Sei S|R ganze Ringerweiterung.

- a) ("Going Up") Für jede Primidealkette $\mathfrak{p}_0 \subsetneq \ldots \subsetneq \mathfrak{p}_n$ in R gibt es eine Primidealkette $\mathfrak{P}_0 \subsetneq \ldots \subsetneq \mathfrak{P}_n$ in S mit $\mathfrak{P}_i \cap R = \mathfrak{p}_i$ für $i = 0, \ldots, n$.
- b) $\dim S = \dim R$

Satz 9.2 ("Noether-Normalisierung")

Sei A endlich erzeugte k-Algebra. Dann ist A ganze Ringerweiterung eines Polynomrings über k.

Genauer: Für jedes echte Ideal $I \subset A$ gibt es algebraisch unabhängige Elemente $x_1, \ldots, x_d \in A$, sodass A ganz ist über $k[x_1, \ldots, x_d]$ und $I \cap k[x_1, \ldots, x_d] = (x_{\delta+1}, \ldots, x_d)$ für ein $0 \le \delta \le d$.

Beispiel

A = k[V] für affine Varietät V. $k[x_1, \ldots, x_d] \hookrightarrow A$ Noether-Normalisierung induziert $\varphi : V \to \mathbb{A}^d(k)$. φ ist surjektiv nach Satz 9.1 a).

Der Bew. wird noch nachgefügt

Satz 9.3

("Going Down") Sei A endlich erzeugte nullteilerfreie k-Algebra, $k[x_1, \ldots, x_d] \hookrightarrow A$ Noether-Normalisierung, $\mathfrak{P}_1 \subset A$ Primideal, \mathfrak{p}_0 Primideal mit $\mathfrak{p}_0 \subset \mathfrak{p}_1 := \mathfrak{P}_1 \cap B$. Dann gibt es Primideale $\mathfrak{P}_0 \subset \mathfrak{P}_1$ mit $\mathfrak{P}_0 \cap B = \mathfrak{p}_0$.

$$\exists \mathfrak{P}_0 \subset \mathfrak{P}_1 \qquad A \\ | \qquad | \qquad \bigcup \\ \mathfrak{p}_0 \subset \mathfrak{p}_1 \qquad B$$

Folgerung 18.5

a) ist k unendlich, so ist dim $\mathbb{A}^n(k) = n$.

b) Ist k algebraisch abgeschlossen, so gilt für jede irreduzible affine Varietät $V \subseteq \mathbb{A}^n(k)$:

$$\dim V + \operatorname{ht}(I(V)) = n$$

c) Ist k algebraisch abgeschlossen, so gilt für jede irreduzible affine Varietät $V \subseteq \mathbb{A}^n(k)$ und $x \in V$:

$$\dim \mathcal{O}_{V,x} = \dim k[V]_{m_x} = \operatorname{ht}(m_x) = \dim k[V] = \dim V$$

Definition + Bemerkung 18.6

Sei V eine quasiprojektive Varietät über algebraisch abgeschlossenem Körper $k, x \in V, V_0 \subseteq V$ offene affine Umgebung von x.

- a) $\dim_x(V) = \dim(\mathcal{O}_{V,x})$ heißt **lokale Dimension** von V in x.
- b) $\dim_x(V) = \dim(\mathcal{O}_{V,x}) = \dim(\mathcal{O}_{V_0,x}) = \operatorname{ht}(m_x^{V_0})$
- c) Ist V irreduzibel, so gilt:
 - i) $\dim_x V = \dim_y V$ für alle $x, y \in V$
 - ii) Ist $U \neq \emptyset$ offen, affin in V, so ist dim $U = \dim V$
- d) $\dim_x V = \max\{\dim Z : Z \text{ irreduzible Komponente von } V \text{ mit } x \in Z\}$

Beweis

c) i) Seien U_x und U_y offene affine Umgebungen von x, beziehungsweise y, $U_x \cap U_y \neq \emptyset$, da V irreduzibel. Für $z \in U_x \cap U_y$ gilt nach 18.5 c):

$$\dim_x V = \dim(\mathcal{O}_{V,x}) = \dim(\mathcal{O}_{U_x,x}) = \dim U_x = \dim(\mathcal{O}_{U_x,z})$$
$$= \dim_z(V) = \dim(\mathcal{O}_{U_y,z}) = \dim(\mathcal{O}_{U_y,y}) = \dim_y V$$

- ii) folgt aus i)
- d) $\times V$ affin.

 $\dim \mathcal{O}_{V,x} = \operatorname{ht}(m_x^V) = \max\{d: \exists \text{ Kette } \mathfrak{p}_0 \subsetneq \ldots \subsetneq \mathfrak{p}_d = m_x^V \text{ von Primidealen}\}$ Sei $\mathfrak{p}_0 \subsetneq \ldots \subsetneq \mathfrak{p}_d = m_x^V$ maximale Kette, dann ist \mathfrak{p}_0 minimales Primideal. Die minimalen Primideale entsprechen bijektiv den irreduziblen Komponenten, die x enthalten (auch von $\mathcal{O}_{V,x}$).

Folgerung 18.7

Ist k unendlich, so ist $\mathbb{P}^n(k) = n$.

Definition 18.8

- a) Eine quasiprojektive Varietät der Dimension 1 heißt (algebraische) *Kurve*.
- b) Eine quasiprojektive Varietät der Dimension 2 heißt (algebraische) Fläche.

Proposition 18.9

Sei k algebraisch abgeschlossen, $V \subseteq \mathbb{A}^n(k)$ Hyperfläche, also V = V(f) für ein $f \in k[X_1, \ldots, X_n]$ $(n \ge 1, \deg(f) \ge 1)$. Dann ist dim V = n - 1.

Beweis

Œ f irreduzibel (Bemerkung 18.2 b)) $\stackrel{18.5b}{\Rightarrow}$ dim V = n - ht((f))

Sei $\mathfrak{p} \subset k[X_1,\ldots,X_n]$ Primideal mit $(0) \subsetneq \mathfrak{p} \subseteq (f)$. Wähle $0 \neq h \in \mathfrak{p}$ von minimalem Grad.

$$h \in \mathfrak{p} \subseteq (f) \Rightarrow h = f \cdot g \text{ für ein } g \in k[X_1, \dots, X_n]$$

$$\mathfrak{p} \text{ Primideal} \Rightarrow \left\{ \begin{array}{l} f \in \mathfrak{p} \text{ und damit } (f) = \mathfrak{p} \\ \text{oder } g \in \mathfrak{p}, \text{ da } \deg(f) \geq 1, \text{ ist } \deg(g) < \deg(h) \not \notin \text{ zur Wahl von } h \\ \Rightarrow \operatorname{ht}(f) = 1 \end{array} \right.$$

Beispiel

$$V = V(XZ, YZ) \subset \mathbb{A}^{3}(k)$$

$$V = \underbrace{V(Z)}_{X-,Y-\text{Ebene}} \cup \underbrace{V(X,Y)}_{Z-\text{Achse}}, \dim V = 2$$

Proposition 18.10

Sei $V \subseteq \mathbb{A}^n(k)$ affine Varietät, $I(V) = (f_1, \dots, f_d)$. Dann ist dim $V \ge n - d$

Proposition 18.11 (Krullscher Hauptidealsatz)

Sei R noetherscher Ring, $x \in R \setminus R^{\times}$, $\mathfrak{p} \subset R$ minimales Primideal mit $x \in \mathfrak{p}$. Dann ist $ht(\mathfrak{p}) \leq 1$

Beweis

siehe Eisenbud: Commutative Algebra, Thm. 10.1

Proposition 18.12 (Krullscher Höhensatz)

Sei R noetherscher Ring, $x_1, \ldots, x_d \in R \setminus R^{\times}$ sodass $I = (x_1, \ldots, x_d) \neq R$. Dann ist $\operatorname{ht}(\mathfrak{p}) \leq d$ für jedes minimale Primideal mit $I \subseteq \mathfrak{p}$.

Beweis

Induktion über d:

d = 1: Das ist 18.11.

 $d \geq 2$: Sei \mathfrak{p} Primideal mit $I \subseteq \mathfrak{p}$ und \mathfrak{p} sei minimal mit dieser Eigenschaft. Sei $\mathfrak{p}_0 \subsetneq \ldots \subsetneq \mathfrak{p}_l = \mathfrak{p}$ eine Primidealkette.

Behauptung: Es gibt Primidealkette $\mathfrak{q}_0 \subsetneq \ldots \subsetneq \mathfrak{q}_{l-1} = \mathfrak{p}$ mit $x_d \in \mathfrak{q}_0$.

Dann sei $R' = R/(x_d)$ und $\mathfrak{q}'_i = \mathfrak{q}_i/(x_d)$.

Es ist $\mathfrak{q}'_0 \subsetneq \ldots \subsetneq \mathfrak{q}'_{l-1} = \mathfrak{p}'$ Kette von Primidealen in R'.

 \mathfrak{p}' ist minimal mit $x_1', \ldots, x_d' \in \mathfrak{p}'$ (bzw. $I' \subseteq \mathfrak{p}'$) $\stackrel{\text{Ind. Vor.}}{\Longrightarrow}$ $\operatorname{ht}(\mathfrak{p}') \leq d-1$, andererseits ist $\operatorname{ht}(\mathfrak{p}') \geq l-1 \Rightarrow l-1 \leq d-1 \Rightarrow \operatorname{ht}(\mathfrak{p}) \leq d$

Beweis der Behauptung:

l=1: $\mathfrak{q}_0=\mathfrak{p}$ tut's.

 $l \geq 2$: Ist $x_d \in \mathfrak{p}_{l-1}$, so gibt es nach Induktionsvoraussetzung Kette $\mathfrak{q}_0 \subsetneq \ldots \subsetneq \mathfrak{q}_{l-2} = \mathfrak{p}_{l-1}$ mit $x_d \in \mathfrak{q}_0$. Verlängere durch $\mathfrak{q}_{l-1} = \mathfrak{p}$. Sei also $x_d \notin \mathfrak{p}_{l-1}$ und \mathfrak{q} minimales Primideal mit $I := \mathfrak{p}_{l-2} + (x_d) \subseteq \mathfrak{q} \subseteq \mathfrak{p}$.

In $R' = R/\mathfrak{p}_{l-2}$ ist $(0) = \mathfrak{p}_{l-2} \subsetneq \mathfrak{p}'_{l-1} \subsetneq \mathfrak{p}'$ Kette der Länge $2 \Rightarrow \operatorname{ht}_{R'}(\mathfrak{p}') \geq 2 \stackrel{18.11}{\Longrightarrow}^{A} \mathfrak{p}'$ ist nicht minimal in R' mit $x'_d \in \mathfrak{p}' \Rightarrow \mathfrak{p}$ ist nicht minimal in R mit $(x_d) + \mathfrak{p}_{l-2} \subseteq \mathfrak{p} \Rightarrow \exists$ Primideal \mathfrak{q} mit $I \subseteq \mathfrak{q} \subsetneq \mathfrak{p}$

Nach Induktionsvoraussetzung gibt es Kette $\mathfrak{q}_0 \subsetneq \ldots \subsetneq \mathfrak{q}_{l-2} = \mathfrak{q}$ mit $x_d \in \mathfrak{q}_0 \Rightarrow \mathfrak{q}_0 \subsetneq \ldots \subsetneq \mathfrak{q}_{l-2} \subsetneq \mathfrak{q}_{l-1} = \mathfrak{p}$ ist gewünschte Kette.

§ 19 Singularitäten

Definition 19.1

Sei V quasiprojektive Varietät über einem Körper k. $x \in V$ heißt regulär (oder nichtsingulär), wenn $\dim T_{V,x} = \dim_x V$, andernfalls heißt x singulär. V heißt nichtsingulär, wenn jeder Punkt $x \in V$ regulär ist.

Proposition 19.2 (Jacobi-Kriterium)

Sei $V \subseteq \mathbb{A}^n(k)$ affine Varietät, (f_1, \ldots, f_r) Erzeuger von $I(V), x \in V$. Dann gilt:

$$x \text{ nichtsingul\"ar} \Leftrightarrow \operatorname{Rang}\underbrace{\left(\frac{\partial f_i}{\partial X_i}(x)\right)_{\substack{i=1,\ldots,r\\j=1,\ldots,n}}}_{=\mathcal{J}_f(x)} = n - \dim_x V$$

Beweis

Nach Bemerkung 16.3 d) ist
$$T_{V,x} = \operatorname{Kern}\left(\frac{\partial f_i}{\partial X_i}(x)\right)_{\substack{i=1,\dots,r\\j=1,\dots,n}}$$

Beispiel

Sei
$$V = V(f) \subset \mathbb{A}^n(k)$$
 Hyperfläche. Dann ist $\mathcal{J}_f = \left(\frac{\partial f}{\partial X_1}, \dots, \frac{\partial f}{\partial X_n}\right) \Longrightarrow x$ singulär $\Leftrightarrow \frac{\partial f}{\partial X_1}(x) = \dots = \frac{\partial f}{\partial X_n}(x) = 0$

Konkret:

a)
$$V(X^2+Y^2-Z^2)\subset \mathbb{A}^3(k)$$

 $\mathcal{J}_f=(2X,2Y,-2Z)\Rightarrow (0,0,0)$ ist der einzige singuläre Punkt.

b)
$$V(Y^2 - X^3 + X)$$
, $\mathcal{J} = (-3X^2 + 1, 2Y)$
 (x, y) singulär $\Rightarrow y = 0, 3x^2 = 1, x^3 - x = 0 \Rightarrow$ Es gibt keinen singulären Punkt auf V .

c) Ist
$$\overline{V} \subseteq \mathbb{P}^2(k)$$
 (mit \overline{V} aus b)) auch nichtsingulär?

$$\overline{V} = V(Y^2Z - X^3 + XZ^2)$$

$$V = \overline{V} \cap D(Z), \overline{V} = V \cup (\overline{V} \cap V(Z)) = \underbrace{V \cup \{(0:1:0)\}}_{=:P_{\infty}}$$

$$P_{\infty} \in D(Y)\overline{V} \cap D(Y) = V(\underbrace{z - x^3 + xz^2}_{=:a})$$

$$\mathcal{J}_g = (-3x^2 + z^2, 1 + 2xz) \Rightarrow \mathcal{J}_g(P_\infty) = (0, 1)$$

- $\Rightarrow P_{\infty}$ ist regulärer Punkt
- $\Rightarrow \overline{V}$ ist nichtsingulär

Definition + Bemerkung 19.3

- a) Sei R noetherscher lokaler Ring mit maximalem Ideal m und Restklassenkörper k = R/m. R heißt **regulär**, wenn dim $R = \dim_k(m/m^2)$.
- b) Sei V quasiprojektive Varietät über $k, x \in V$. Dann gilt:

$$x$$
 regulär $\Leftrightarrow \mathcal{O}_{V,x}$ regulär

Beweis

b)
$$\dim_k(m_x/m_x^2) = \dim(T_{V,x})$$
 (Satz 8)
 $\dim \mathcal{O}_{V,x} = \dim_x V$ nach Defininition 18.6

Proposition 19.4

- a) Sei (R, m) lokaler neotherscher Ring. Dann gilt: $\dim_k(m/m^2) \ge \dim R$
- b) Für jede quasiprojektive Varietät V und jedes $x \in V$ gilt: $\dim T_{V,x} \ge \dim_x V$

Beweis

- b) folgt aus a) (19.3 b)
- a) Behauptung: Für $x_1, \ldots, x_n \in m$ gilt:

$$\{x_1,\ldots,x_n\}$$
 minimales Erzeugersystem $\Leftrightarrow \overline{x_1},\ldots,\overline{x_n}$ Basis von m/m^2

Dann hat jedes minimale Erzeugersystem von m dim $_R(m/m^2)$ Elemente. Beweis der Behauptung:

"⇒": Sei x_1, \ldots, x_n minimales Erzeugersystem.

Annahme: $\overline{x_1}, \dots, \overline{x_n}$ linear abhängig, also Œ $\overline{x_1} = \sum_{i=2}^n \lambda_i \overline{x_i}$ für gewisse $\lambda_i \in k$.

$$\Rightarrow x_1 - \sum_{i=2}^n \tilde{\lambda}_i x_i \in m^2 \ (\tilde{\lambda}_i \in R, \overline{\tilde{\lambda}_i} = \lambda_i \text{ in } R/m)$$

$$\Rightarrow x_1 - \sum_{i=2}^n \tilde{\lambda}_i x_i = \sum_{j=1}^n \mu_j x_1 x_j + y \text{ mit } y \in (x_2, \dots, x_n)^2$$

$$\Rightarrow x_1 \left(\underbrace{1 - \sum_{i=i}^n \mu_j x_j}_{\in 1 - m \Rightarrow \notin m \Rightarrow \in R^\times \Rightarrow x_1 \in (x_2, \dots x_n) \notin} \right) \in (x_2, \dots, x_n)$$

 $, \Leftarrow$ ": zu zeigen: x_1, \ldots, x_n erzeugen m

Sei
$$N = (x_1, \ldots, x_n)$$

Dann gilt $m = N + m^2$

Damit folgt m = N aus 19.5

Proposition 19.5 (Nakayama-Lemma)

Sei (R, m) lokaler Ring, M endlicher erzeugter R-Modul, $N \subseteq M$ ein Untermodul mit

$$M = mM + N \qquad (*)$$

Dann gilt M = N

Beweis

 $\times N = 0$, denn: Aus (*) folgt M/N = mM/N.

Ist dann M/N = 0, so ist M = N.

Annahme: $M \neq 0$.

Denn sei x_1, \ldots, x_n minimales Erzeugersystem von M. Nach Voraussetzung gibt es $a_1, \ldots, a_n \in m$ mit $x_1 = \sum_{i=1}^n a_i x_i$

$$\Rightarrow x_1(1-a_1) = \sum_{i=2}^n a_i x_i \Rightarrow x_1 \in (x_2, \dots, x_n) \notin \text{zur Minimalität von } x_1, \dots, x_n$$

Proposition 19.6

Jeder reguläre lokale Ring ist nullteilerfrei.

Folgerung 19.7

Sei V eine quasiprojektive Varietät, $x \in V$ ein Punkt, der auf zwei verschiedenen irreduziblen Komponenten liegt. Dann ist x singulär.

Beweis (Beweis der Folgerung)

Wegen 19.6 ist zu zeigen: $\mathcal{O}_{V,x}$ ist nicht nullteilerfrei.

Œ V affin, $V_1 \neq V_2$ irreduzible Komponenten von V mit $x \in V_1 \cap V_2 \Rightarrow I(V_i)$ ist minimales Primideal in k[V], i = 1, 2. Wegen $x \in V_i$, i = 1, 2, ist $I(V_i) \subset m_x$, $i = 1, 2 \Rightarrow I(V_i) \cdot \mathcal{O}_{V,x}$ ist minimales Primideal in $\mathcal{O}_{V,x} \Rightarrow (0)$ ist kein Primideal in $\mathcal{O}_{V,x} \Rightarrow \mathcal{O}_{V,x}$ nicht nullteilerfrei \square

Beweis (Beweis von Proposition 19.6)

Sei (R, m) regulärer lokaler Ring, $d = \dim R$.

Induktion über d:

$$d=0\colon\ m/m^2=0\Rightarrow m=m^2\stackrel{19.5}{\Rightarrow}m=0\Rightarrow R$$
Körper

 $d \geq 1$: Seien $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ die minimalen Primideale von R. Da $d = \operatorname{ht}(m) \geq 1$ ist, ist $\mathfrak{p}_i \neq m$ für alle i. Außerdem ist $m \neq m^2$, da $\dim_k(m/m^2) = d \geq 1$.

Primvermeidungslemma: (Übung)

$$m \nsubseteq m^2 \cup \mathfrak{p}_1 \cup \ldots \cup \mathfrak{p}_r$$

Wähle $x \in m \setminus m^2 \cup \mathfrak{p}_1 \cup \ldots \cup \mathfrak{p}_r$. Ergänze \overline{x} (in m/m^2) zur Basis $\overline{x_1}, \overline{x_2}, \ldots, \overline{x_d}$.

Sei R' = R/(x) und m' = m/(x) das maximale Ideal in R'. Da $x \notin \mathfrak{p}_i$ für alle minimalen Primideale von R, ist $\operatorname{ht}(\mathfrak{p}) = 1$ für jedes minimale Primideal mit $x \in \mathfrak{p}$ (Proposition 18.11 A).

$$\Rightarrow \dim R' = d - 1$$

m' wird von x'_2, \ldots, x'_d erzeugt (den Bildern der x_i in R'; dabei sei $x_i \in m$ mit Bild $\overline{x_i}$ in m/m^2 , $i=2,\ldots,d$, nach Proposition 19.5 wird m von x,x_2,\ldots,x_d erzeugt)

$$\Rightarrow \dim_k(m'/(m')^2) < d-1$$

$$\stackrel{19.4}{\Longrightarrow} \dim_k(m'/(m')^2) = d-1 \Rightarrow (R',m')$$
 ist regulärer lokaler Ring

 $\stackrel{\text{Ind. Vor.}}{\Longrightarrow} R'$ nullteilerfrei

$$\Rightarrow$$
 (x) ist Primideal $\Rightarrow \exists i \text{ mit } \mathfrak{p}_i \subsetneq (x)$

$$\Rightarrow$$
 Für $b \in \mathfrak{p}_i$ gibt es $a \in R$ mit $b = a \cdot x \stackrel{\mathfrak{p} \text{ prim}}{\Longrightarrow} a \in \mathfrak{p} \Rightarrow \mathfrak{p}_i = \mathfrak{p}_i x = \mathfrak{p}_i m \stackrel{\text{Nakayama}}{\Longrightarrow} \mathfrak{p}_i = (0) \Rightarrow R$ nullteilerfrei

Satz 10

Sei $\emptyset \neq V \in \mathbb{P}^n(k)$ quasiprojektive Varietät über algebraisch abgeschlossenem Körper k und Sing $(V) := \{x \in V : x \text{ singulär}\}$. Dann gilt: Sing(V) ist abgeschlossene echte Teilmenge von V.

Beispiel

Sei char
$$(k) = p$$
 und $V = V(X^p + Y^p - Z^p) \subseteq \mathbb{A}^3(k) \subseteq \mathbb{P}^2(k)$.

Jacobi-Kriterium:
$$\mathcal{J}_f(X, Y, Z) = (pX^{p-1}, pY^{p-1}, pZ^{p-1}) = (0, 0, 0)$$

 $\stackrel{??}{\Rightarrow}$ alle Punkte sind singulär? Was ist I(V)? $(X+Y-Z)^p=X^p+Y^p-Z^p$

Beweis

i) Œ V irreduzibel, denn: sind V_1, \ldots, V_r die irreduziblen Komponenten von $V \Rightarrow$

$$\operatorname{Sing}(V) = \bigcup_{i=1}^{r} \operatorname{Sing}(V_i) \cup \bigcup_{i \neq j} V_i \cap V_j$$
abgeschlossen

Œ V affin $(\subseteq \mathbb{A}^n(k))$, denn "abgeschlossen" ist lokale Eigenschaft. Seien f_1, \ldots, f_r Erzeuger von $I(V) \subseteq k[X_1, \dots, X_n]$ und $\mathcal{J} := (\frac{\partial f_i}{\partial X_j})_{ij}$ die Jacobi-Matrix.

$$\operatorname{Sing}(V) = \{ x \in V : \operatorname{Rang}(\mathcal{J}(x)) < n - \dim V \}$$

- $= \{x \in V : \det(M(x)) = 0 \text{ für alle } (n \dim V) \times (n \dim V) \text{-Untermatrizen } M \text{ von } J\}$ $\det M$ ist Polynom in X_1, \ldots, X_n für jeden Minor M.
- \Rightarrow Sing(V) ist affine Varietät, also abgeschlossen in V.
- ii) Œ V irreduzibel.

Ist Z irreduzible Komponente von V und $\operatorname{Sing}(Z) \neq Z$, so ist $Z - \operatorname{Sing}(Z)$ offen, nichtleer, also dicht in Z.

 $\Rightarrow Z - \operatorname{Sing}(Z)$ enthält Punkte z, die auf keiner anderen irreduziblen Komponente liegen.

$$\Rightarrow \mathcal{O}_{Z,z} = \mathcal{O}_{V,z} \Rightarrow z \in V - \operatorname{Sing}(V).$$

Spezialfall: $V = V(f) \subseteq \mathbb{A}^n(k)$ für ein irreduzibles $f \in k[X_1, \dots, X_n], \deg(f) > 0$

Dann ist
$$\operatorname{Sing}(V) = \{x \in V : \frac{\partial f}{\partial X_1}(x) = \ldots = \frac{\partial f}{\partial X_n}(x) = 0\}.$$

Wäre
$$\operatorname{Sing}(V) = V \Rightarrow \frac{\partial f}{\partial X_i} \in I(V) = (f), i = 1, \dots, n \Rightarrow \frac{\partial f}{\partial X_i} = 0 \text{ für } i = 1, \dots, n.$$

$$\begin{split} &\Rightarrow \left\{ \begin{array}{l} f \text{ ist konstant} &: \text{falls } \operatorname{char}(k) = 0 \\ f \in k[X_1^p, \dots, X_n^p] &: \text{falls } \operatorname{char}(k) = p > 0 \\ &\Rightarrow f = g^p \text{ für ein } g \in k[X_1, \dots, X_n] \not\not\in (\operatorname{zu} f \text{ irreduzibel}) \end{array} \right. \end{split}$$

$$\Rightarrow f = g^p$$
 für ein $g \in k[X_1, \dots, X_n] \not\subset (\text{zu } f \text{ irreduzibel})$

Der allgemeine Fall folgt daraus wegen:

Proposition 19.8

Sei V irreduzible quasiprojektive Varietät der Dimension d. Dann ist V birational äquivalent zu einer Hyperfläche H in $\mathbb{A}^{d+1}(k)$.

Beweis (Fortsetzung Beweis)

Dann gibt es $U \subset V$ offen, dicht und $U' \subseteq H$ offen, dicht und Isomorphismus $\varphi: U \to U'$.

Spezialfall:
$$U' \cap (H - \operatorname{Sing}(H)) \neq \emptyset$$

Für
$$z \in U'$$
 ist $\mathcal{O}_{V,f^{-1}(z)} \cong \mathcal{O}_{U',z} = \mathcal{O}_{H,z}$ regulärer lokaler Ring $\Rightarrow z \notin \operatorname{Sing}(V)$.

Beweis (Beweis von Proposition 19.8)

Nach Satz 6 (bzw. Bemerkung 13.7), ist zu zeigen, dass der Funktionenkörper k(V) zu Quot $(k[X_1,\ldots,X_{d+1}]/(f))$ für ein irreduzibles $f\in k[X_1,\ldots,X_{d+1}]$ isomorph ist (als k-Algebra). Sei Œ V affin. Wähle Noethernormalisierung $k[X_1, \ldots, X_d] \hookrightarrow k[V]$.

$$\Rightarrow k(V)|k(X_1,\ldots,X_d)$$
 ist endliche Körpererweiterung

$$\times k(V)|k(X_1,\ldots,X_d)$$
 separabel (char $(k)=0$: sowieso, char $(k)=p$: Bosch, 7.3, Satz 7)

$$\Longrightarrow$$
 es gibt $y \in k(V)$ mit $k(V) = (X_1, \dots, X_d)[Y]$

Sei
$$h \in k(V) = (X_1, \dots, X_d)[Y]$$
 das Minimalpolynom von y , also $h(Y) = Y^n + a_{n-1}Y^{n-1} + \dots + a_0$ mit $a_i = \frac{f_i}{g_i}, f_i, g_i \in k[X_1, \dots, X_d]$ (teilerfremd)
Sei $g = \text{kgV}(g_0, \dots, g_{n-1})$ und $f := g \cdot h = g \cdot Y^n + \underbrace{g \cdot a_{n-1}}_{b_{n-1} \in k[X_1, \dots, X_d]} Y^{n-1} + \dots + g \cdot a_0$

$$b_0, \ldots, b_n$$
 sind teilerfremd $\Rightarrow f$ irreduzibel und $f(Y) = 0$
 $\Rightarrow \operatorname{Quot}(k[X_1, \ldots, X_d, Y]/(f)) = k(X_1, \ldots, X_d)[Y] \cong k(V)$
 $V(f) \subseteq \mathbb{A}^{d+1}$ ist Hyperfläche $\cong k(V)$

Folgerung 19.9

Für jede irreduzible quasiprojektive Varietät gilt:

$$\dim(V) = \operatorname{trdeg}_k k(V)$$

(Transzendenzgrad = max. Anzahl algebraisch unabhängiger Elemente)

 $Denn: \dim V = \dim k[V] = d$, falls $k[X_1, \dots, X_d] \hookrightarrow k[V]$ Noethernormalisierung. k(V) ist endliche Körpererweiterung von $k(X_1, \dots, X_d) \Rightarrow \operatorname{trdeg}_k(k(V)) = \operatorname{trdeg}_k k(X_1, \dots, X_d) = d$.