advertising_and_sales_clean

August 7, 2022

1 Adverting and Sales Data (LinearRegression)

This data is about the relation between Sales and Marketing at different Media (TVs , Radio and Social Media).

Here we will make a linear Regressor and Correlation to show the relation between Data

```
[2]: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline
```

```
[3]: df = pd.read_csv('advertising_and_sales_clean.csv') df.head(20)
```

507					_
[3]:	tv	radio	social_media	influencer	sales
0	16000.0	6566.23	2907.98	Mega	54732.76
1	13000.0	9237.76	2409.57	Mega	46677.90
2	41000.0	15886.45	2913.41	Mega	150177.83
3	83000.0	30020.03	6922.30	Mega	298246.34
4	15000.0	8437.41	1406.00	Micro	56594.18
5	29000.0	9614.38	1027.16	Mega	105889.15
6	55000.0	24893.81	4273.60	Micro	198679.82
7	31000.0	17355.04	2289.85	Nano	108733.93
8	76000.0	24648.90	7130.12	Macro	270189.40
9	13000.0	431.13	2229.42	Mega	48280.58
10	62000.0	24345.19	5151.48	Nano	224961.02
11	42000.0	15807.34	3194.92	Mega	145543.99
12	64000.0	20240.42	3921.15	Micro	229632.38
13	34000.0	226.33	2372.71	Nano	121336.42
14	36000.0	3900.20	60.40	Nano	123526.11
15	60000.0	22353.72	940.80	Mega	212764.40
16	25000.0	9905.84	1853.22	Micro	89819.92
17	100000.0	36116.09	3674.30	Macro	353804.64
18	92000.0	40736.99	4636.56	Nano	329350.54
19	46000.0	12695.09	3884.58	Macro	162191.33

1.1 EDA

```
[4]: df.describe()
[4]:
                                          social_media
                                                                 sales
                       tv
                                   radio
              4546.000000
                             4546.000000
                                           4546.000000
                                                           4546.000000
     count
     mean
             54062.912451
                            18157.533110
                                           3323.472829
                                                         192413.332112
                             9663.259642
             26104.941838
     std
                                           2211.253915
                                                          93019.873216
    min
             10000.000000
                                0.680000
                                              0.030000
                                                          31199.410000
     25%
             32000.000000
                           10555.355000
                                                         112434.610000
                                           1530.822500
     50%
             53000.000000
                            17859.515000
                                           3055.565000
                                                         188963.680000
     75%
             77000.000000
                           25640.605000
                                           4804.922500
                                                         272324.240000
                            48871.160000
            100000.000000
                                          13981.660000
                                                         364079.750000
     max
[5]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 4546 entries, 0 to 4545
    Data columns (total 5 columns):
                        Non-Null Count Dtype
         Column
                        _____
     0
                        4546 non-null
                                        float64
         tv
                        4546 non-null
                                        float64
     1
         radio
     2
         social_media 4546 non-null
                                        float64
     3
         influencer
                        4546 non-null
                                        object
     4
         sales
                        4546 non-null
                                        float64
    dtypes: float64(4), object(1)
    memory usage: 177.7+ KB
[6]: groupping=df.groupby('influencer').count()
     print(groupping)
                       radio
                              social_media sales
                   tv
    influencer
    Macro
                 1112
                        1112
                                      1112
                                              1112
                 1152
                        1152
                                      1152
                                              1152
    Mega
    Micro
                 1148
                        1148
                                       1148
                                              1148
    Nano
                 1134
                        1134
                                       1134
                                              1134
[7]: plt.scatter(df['sales'],df['tv'])
```

[7]: <matplotlib.collections.PathCollection at 0x1ffd022dd90>


```
[8]: plt.scatter(df['sales'],df['radio'] )
```

[8]: <matplotlib.collections.PathCollection at 0x1ffd09b5670>


```
[9]: plt.scatter(df['sales'] , df['social_media'])
```

[9]: <matplotlib.collections.PathCollection at 0x1ffd0a13c40>

2 Linear Regression

```
[10]: X = df.drop('sales',axis=1).values
    y = df['sales'].values
    print(type(X),type(y))

    <class 'numpy.ndarray'> <class 'numpy.ndarray'>
[11]: X_sm = X[:,2]
    print(X_sm.shape,y.shape)

        (4546,) (4546,)
[12]: X_sm= X_sm.reshape(-1,1)
    print(X_sm.shape)

        (4546, 1)
[13]: plt.scatter(X_sm,y)
    plt.xlabel("TV ads.")
    plt.ylabel("Sales")
    plt.show()
```


2.0.1 Fitteing a regression model

```
[14]: from sklearn.linear_model import LinearRegression
    lreg = LinearRegression()
    lreg.fit(X_sm,y)
    predictions = lreg.predict(X_sm)
    plt.scatter(X_sm,y)
    plt.plot(X_sm,predictions,color = 'r')
    plt.xlabel("Social Media ads")
    plt.ylabel("Sales")
    plt.show()
```


Correlation factor for pearsonr , spearmanr and kendalltau

```
[20]: import scipy.stats
     X_{sm} = X_{sm.reshape}(4546,)
      (corr_pear_fitted , p_value_pear_fitted) = scipy.stats.
      →pearsonr(X_sm,predictions)
      (corr_spear_fitted ,p_value_spear_fitted) = scipy.stats.
      (corr_kendal_fitted ,p_value_kendal_fitted) = scipy.stats.
       →kendalltau(X_sm,predictions)
[28]: print('Correlation of pearson social media with the fitted data : {}'.

→format(corr_pear_fitted))
     print('correlation of spearman social media with the fitted data : {}'.
      →format(corr_spear_fitted))
     print('correlation of kendall social media with the fitted data : {}'.
       →format(corr_kendal_fitted))
     Correlation of pearson social media with the fitted data: 1.0
     correlation of spearman social media with the fitted data : 1.0
     correlation of kendall social media with the fitted data: 1.0
[29]: print('p-value for pearson social media with the fitted data : {}'.
      →format(p_value_pear_fitted))
```

p-value for pearson social media with the fitted data : 0.0 p-value for spearman social media with the fitted data : 0.0 p-value for kendall social media with the fitted data : 0.0 $^{\circ}$

```
[23]: import seaborn as sns
sns.heatmap(df.corr(),annot =True)
```

[23]: <AxesSubplot:>


```
[27]: X_tv = X[:,0]
X_rad = X[:,1]
```

```
[25]: (corr_pear_tv,p_value_tv)=scipy.stats.pearsonr(X_sm,X_tv)
  (corr_spear_tv,p_value_tv) = scipy.stats.spearmanr(X_sm,X_tv)
  (corr_kendal_tv,p_value_tv) = scipy.stats.kendalltau(X_sm,X_tv)
```

pearson correlation between social media and tv : 0.527687429313132 spearman correlation between social media and tv : 0.5283872233222907 Kendall tau correlation between social media and tv : 0.3644053913094565

Note: It seems that kendall tau correlation is far from the correlation we got from heat map

2.1 Now we will make colleration between sales with TVs, Radio, Social Media

pearson correlation between Sales and tv : 0.999497365941497 spearman correlation between Sales and tv : 0.9994958189860506 Kendall tau correlation between Sales and tv : 0.9837033941521164

pearson correlation between Sales and Radio : 0.8686378136021529 spearman correlation between Sales and Radio : 0.8733903567887087 Kendall tau correlation between Sales and Radio : 0.6776141094422263

pearson correlation between Sales and Social media: 0.52744642201645 spearman correlation between Sales and Social media: 0.5280717993064484 Kendall tau correlation between Sales and Social media: 0.362235465820529