Instituto Superior Técnico - 1^o Semestre 2006/2007

Cálculo Diferencial e Integral I

LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

Soluções da 4^a Ficha de Exercícios

1. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = \alpha \in \mathbb{R}$$

 $u_{n+1} = (-1)^n u_n + \frac{u_n}{n}$, (para todo o $n \in \mathbb{N}$).

Suponhamos que (u_n) é convergente. Seja $l = \lim u_n$. Vejamos que $\lim u_n = 0$.

Tem-se

$$u_{2n+1} = -u_{2n+1} + \frac{u_{2n+1}}{2n+1}$$
 e $u_{2n} = u_{2n} + \frac{u_{2n}}{2n}$.

Como (u_{2n+1}) é uma subsucessão de (u_n) e $l=\lim u_n$, então (u_{2n+1}) converge e

$$\lim u_{2n+1} = \lim u_n = l.$$

Logo, tem-se

$$\lim u_{2n+1} = \lim \left(-u_{2n+1} + u_{2n+1} \frac{1}{2n+1} \right) \Leftrightarrow l = -l + l \cdot 0 \Leftrightarrow 2l = 0 \Leftrightarrow l = 0.$$

Logo, $\lim u_n = 0$.

2. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 1$$
 $u_{n+1} = \frac{2u_n + 3}{4}$, (para todo o $n \in \mathbb{N}$).

(a) Vejamos que $u_n < \frac{3}{2}$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $u_1=1<\frac{3}{2}.$ Logo, a proposição é verdadeira para n=1. Seja $n\in\mathbb{N}.$

HI (hipótese de indução): $u_n < \frac{3}{2}$.

Tese: $u_{n+1} < \frac{3}{2}$.

Demonstração (da tese):

$$u_{n+1} = \frac{2u_n + 3}{4} < \frac{2\frac{3}{2} + 3}{4} = \frac{3}{2}.$$

Deste modo, tem-se: $u_{n+1} < \frac{3}{2}$.

Logo, tem-se: $u_n < \frac{3}{2}$, para todo o $n \in \mathbb{N}$.

(b) Tem-se $u_2 - u_1 = \frac{5}{4} - 1 = \frac{1}{4} \ge 0$. Vejamos que $u_{n+1} - u_n \ge 0$, para todo o $n \in \mathbb{N}$. Seja $n \in \mathbb{N}$. Tem-se

$$u_{n+1} - u_n = \frac{2u_n + 3}{4} - u_n = \frac{3 - 2u_n}{4} > \frac{3 - 2\frac{3}{2}}{4} = 0.$$

Logo, tem-se $u_{n+1} - u_n \ge 0$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é crescente.

Em alternativa, sem recorrer à alínea (a), podemos mostrar por indução que $u_{n+1} - u_n \ge 0$, para todo o $n \in \mathbb{N}$.

Ora já se viu que $u_2 - u_1 \ge 0$.

HI (hipótese de indução): $u_{n+1} - u_n \ge 0$.

Tese: $u_{n+2} - u_{n+1} \ge 0$.

Demonstração (da tese):

$$u_{n+2} - u_{n+1} = \frac{2u_{n+1} + 3}{4} - \frac{2u_n + 3}{4} = \frac{1}{2} (u_{n+1} - u_n) \ge \frac{1}{2} 0 = 0.$$

Deste modo, tem-se: $u_{n+2} - u_{n+1} \ge 0$.

Logo, tem-se: $u_{n+1} - u_n \ge 0$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é crescente.

(c) A sucessão (u_n) é majorada e por ser crescente também é minorada. Logo, como (u_n) é monótona e limitada, então (u_n) é convergente.

Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l$$

Logo, tem-se

$$\lim u_{n+1} = \lim \frac{2u_n + 3}{4} \Leftrightarrow l = \frac{2l+3}{4} \Leftrightarrow 4l = 2l+3 \Leftrightarrow l = \frac{3}{2}.$$

Logo, $\lim u_n = \frac{3}{2}$.

(d) Tem-se

$$|u_{n+2} - u_{n+1}| = \left| \frac{2u_{n+1} + 3}{4} - \frac{2u_n + 3}{4} \right| = \frac{1}{2} |u_{n+1} - u_n| \le \frac{1}{2} |u_{n+1} - u_n|.$$

Logo, existe $c = \frac{1}{2} \in]0,1[$ tal que para todo o $n \in \mathbb{N}$ se tem

$$|u_{n+2} - u_{n+1}| \le c |u_{n+1} - u_n|.$$

Deste modo, a sucessão (u_n) é contractiva.

3. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 1$$

 $u_{n+1} = \frac{2}{3}\alpha u_n + 1$, (para todo o $n \in \mathbb{N}$).

(a) Seja $\alpha = 1$.

(a1) Vejamos que $u_n < 3$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $u_1=1<3$. Logo, a proposição é verdadeira para n=1.

Seja $n \in \mathbb{N}$.

HI (hipótese de indução): $u_n < 3$.

Tese: $u_{n+1} < 3$.

Demonstração (da tese):

$$u_{n+1} = \frac{2}{3}u_n + 1 < \frac{2}{3}3 + 1 = 3.$$

Deste modo, tem-se: $u_{n+1} < 3$.

Logo, tem-se: $u_n < 3$, para todo o $n \in \mathbb{N}$.

(a2) Vejamos que (u_n) é monótona.

Tem-se $u_2 - u_1 = \frac{5}{3} - 1 = \frac{2}{3} \ge 0$. Vejamos que $u_{n+1} - u_n \ge 0$, para todo o $n \in \mathbb{N}$.

Seja $n \in \mathbb{N}$. Tem-se

$$u_{n+1} - u_n = \frac{2}{3}u_n + 1 - u_n = -\frac{1}{3}u_n + 1 > -\frac{1}{3}3 + 1 = 0.$$

Logo, tem-se $u_{n+1} - u_n \ge 0$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é crescente.

Em alternativa, sem recorrer à alínea (a1), podemos mostrar por indução que $u_{n+1} - u_n \ge 0$, para todo o $n \in \mathbb{N}$.

Ora já se viu que $u_2 - u_1 \ge 0$.

HI (hipótese de indução): $u_{n+1} - u_n \ge 0$.

Tese: $u_{n+2} - u_{n+1} \ge 0$.

Demonstração (da tese):

$$u_{n+2} - u_{n+1} = \left(\frac{2}{3}u_{n+1} + 1\right) - \left(\frac{2}{3}u_n + 1\right) = \frac{2}{3}\left(u_{n+1} - u_n\right) \underset{\text{por HI}}{\ge} \frac{2}{3}0 = 0.$$

Deste modo, tem-se: $u_{n+2} - u_{n+1} \ge 0$.

Logo, tem-se: $u_{n+1} - u_n \ge 0$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é crescente.

(a3) A sucessão (u_n) é majorada e por ser crescente também é minorada. Logo, como (u_n) é monótona e limitada, então (u_n) é convergente.

Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l.$$

Logo, tem-se

$$\lim u_{n+1} = \lim \left(\frac{2}{3}u_n + 1\right) \Leftrightarrow l = \frac{2}{3}l + 1 \Leftrightarrow \frac{1}{3}l = 1 \Leftrightarrow l = 3.$$

Logo, $\lim u_n = 3$.

(b) Seja $\alpha = -1$, neste caso, a sucessão (u_n) não é monótona pois:

$$u_{n+2} - u_{n+1} = \left(-\frac{2}{3}u_{n+1} + 1\right) - \left(-\frac{2}{3}u_n + 1\right) = \frac{2}{3}\left(u_n - u_{n+1}\right)$$

e assim, as expressões $u_{n+2} - u_{n+1}$ e $u_n - u_{n+1}$ têm o mesmo sinal, quando deveriam ter sinal contrário para que a sucessão (u_n) pudesse ser monótona.

Vejamos que (u_n) é contractiva.

Tem-se

$$|u_{n+2} - u_{n+1}| = \left| \left(-\frac{2}{3}u_{n+1} + 1 \right) - \left(-\frac{2}{3}u_n + 1 \right) \right| = \frac{2}{3}|u_{n+1} - u_n| \le \frac{2}{3}|u_{n+1} - u_n|.$$

Logo, existe $c = \frac{2}{3} \in]0,1[$ tal que para todo o $n \in \mathbb{N}$ se tem

$$|u_{n+2} - u_{n+1}| \le c |u_{n+1} - u_n|$$
.

Deste modo, a sucessão (u_n) é contractiva. Logo, (u_n) é convergente.

4. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = \frac{3}{2}$$

$$u_{n+1} = \frac{u_n^2 + 2}{3}, \text{ (para todo o } n \in \mathbb{N}).$$

(a) Vejamos que $1 < u_n < 2$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $1 < u_1 = \frac{3}{2} < 2$. Logo, a proposição é verdadeira para n=1. Seja $n \in \mathbb{N}$.

HI (hipótese de indução): $1 < u_n < 2$.

Tese: $1 < u_{n+1} < 2$.

 ${\bf Demonstração}~({\rm da~tese}):$

$$1 = \frac{1^2 + 2}{3} \underset{\text{por HI}}{<} u_{n+1} = \frac{u_n^2 + 2}{3} \underset{\text{por HI}}{<} \frac{\left(\frac{3}{2}\right)^2 + 2}{3} = \frac{17}{12} < 2.$$

Deste modo, tem-se: $1 < u_{n+1} < 2$.

Logo, tem-se: $1 < u_n < 2$, para todo o $n \in \mathbb{N}$.

(b) Vejamos que (u_n) é decrescente.

Tem-se $u_2 - u_1 = \frac{17}{12} - \frac{3}{2} = -\frac{1}{12} \le 0$. Vejamos que $u_{n+1} - u_n \le 0$, para todo o $n \in \mathbb{N}$. Seja $n \in \mathbb{N}$. Tem-se

$$u_{n+1} - u_n = \frac{u_n^2 + 2}{3} - u_n = \frac{u_n^2 - 3u_n + 2}{3} = \frac{1}{3} (u_n - 1) (u_n - 2) < \frac{1}{3} \cdot 0 = 0.$$

Logo, tem-se $u_{n+1} - u_n \leq 0$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é decrescente.

Em alternativa, podemos mostrar por indução que $u_{n+1} - u_n \leq 0$, para todo o $n \in \mathbb{N}$.

Ora já se viu que $u_2 - u_1 \le 0$.

HI (hipótese de indução): $u_{n+1} - u_n \le 0$.

Tese: $u_{n+2} - u_{n+1} \le 0$.

Demonstração (da tese):

$$u_{n+2} - u_{n+1} = \frac{u_{n+1}^2 + 2}{3} - \frac{u_n^2 + 2}{3} = \frac{1}{3} (u_{n+1} - u_n) (u_{n+1} + u_n) \leq \frac{1}{3} 0 = 0,$$

note-se que $u_n > 0$, para todo o $n \in \mathbb{N}$.

Deste modo, tem-se: $u_{n+2} - u_{n+1} \le 0$.

Logo, tem-se: $u_{n+1} - u_n \leq 0$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é decrescente.

(c) Como (u_n) é monótona e limitada, então (u_n) é convergente.

Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l.$$

Logo, tem-se

$$\lim u_{n+1} = \lim \frac{u_n^2 + 2}{3} \Leftrightarrow l = \frac{l^2 + 2}{3} \Leftrightarrow l^2 - 3l + 2 = 0 \Leftrightarrow (l = 1 \text{ ou } l = 2).$$

Como $1 < u_n < 2$, para todo o $n \in \mathbb{N}$, e a sucessão (u_n) é decrescente, então $\lim u_n = 1$.

5. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 0$$

 $u_{n+1} = \frac{1}{4} (1 - u_n^2), \text{ (para todo o } n \in \mathbb{N}).$

(a) Vejamos que $0 \le u_n \le 1$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $0 \le u_1=0 \le 1$. Logo, a proposição é verdadeira para n=1. Seja $n \in \mathbb{N}$.

HI (hipótese de indução): $0 \le u_n \le 1$.

Tese: $0 \le u_{n+1} \le 1$.

 ${\bf Demonstração}~({\rm da}~{\rm tese}):$

$$0 = \frac{1}{4} 0 \le u_{n+1} u_{n+1} = \frac{1}{4} (1 - u_n^2) \le \frac{1}{4} (1 - 0) = \frac{1}{4} \le 1.$$

Deste modo, tem-se: $0 \le u_{n+1} \le 1$.

Logo, tem-se: $0 \le u_n \le 1$, para todo o $n \in \mathbb{N}$.

(b) Vejamos que (u_n) é contractiva.

Tem-se

$$|u_{n+2} - u_{n+1}| = \left| \frac{1}{4} \left(1 - u_{n+1}^2 \right) - \frac{1}{4} \left(1 - u_n^2 \right) \right| = \frac{1}{4} |u_{n+1} - u_n| |u_{n+1} + u_n| \le$$

$$\leq \frac{1}{4} |u_{n+1} - u_n| (|u_{n+1}| + |u_n|) \leq \frac{1}{4} |u_{n+1} - u_n| (1+1) = \frac{1}{2} |u_{n+1} - u_n|.$$

Logo, existe $c = \frac{1}{2} \in]0,1[$ tal que para todo o $n \in \mathbb{N}$ se tem

$$|u_{n+2} - u_{n+1}| \le c |u_{n+1} - u_n|.$$

Deste modo, a sucessão (u_n) é contractiva.

(c) Como a sucessão (u_n) é contractiva, então (u_n) é convergente.

Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l.$$

Logo, tem-se

$$\lim u_{n+1} = \lim \left[\frac{1}{4} \left(1 - u_n^2 \right) \right] \Leftrightarrow l = \frac{1}{4} \left(1 - l^2 \right) \Leftrightarrow l^2 + 4l - 1 = 0 \Leftrightarrow \left(l = -2 + \sqrt{5} \text{ ou } l = -2 - \sqrt{5} \right).$$

Como $0 \le u_n \le 1$, para todo o $n \in \mathbb{N}$, e $-2 - \sqrt{5} < 0$, então $\lim u_n = -2 + \sqrt{5}$.

6. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 1$$

 $u_{n+1} = \frac{1}{3+2u_n}$, (para todo o $n \in \mathbb{N}$).

(a) Vejamos que $0 \le u_n \le 1$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $0 \le u_1=1 \le 1$. Logo, a proposição é verdadeira para n=1. Seja $n \in \mathbb{N}$.

HI (hipótese de indução): $0 \le u_n \le 1$.

Tese: $0 \le u_{n+1} \le 1$.

Demonstração (da tese):

$$0 \le \frac{1}{5} = \frac{1}{3+2} \underset{\text{por HI}}{\le} u_{n+1} = \frac{1}{3+2u_n} \underset{\text{por HI}}{\le} \frac{1}{3} \le 1.$$

Deste modo, tem-se: $0 \le u_{n+1} \le 1$.

Logo, tem-se: $0 \le u_n \le 1$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é limitada.

(b) A sucessão (u_n) não é monótona pois:

$$u_{n+2} - u_{n+1} = \frac{1}{3 + 2u_{n+1}} - \frac{1}{3 + 2u_n} = \frac{2}{(3 + 2u_{n+1})(3 + 2u_n)} (u_n - u_{n+1})$$

e assim, as expressões $u_{n+2} - u_{n+1}$ e $u_n - u_{n+1}$ têm o mesmo sinal $(u_n \ge 0$, para todo o $n \in \mathbb{N}$), quando deveriam ter sinal contrário para que a sucessão (u_n) pudesse ser monótona.

(c) Vejamos que (u_n) é contractiva.

Tem-se

$$|u_{n+2} - u_{n+1}| = \left| \frac{1}{3 + 2u_{n+1}} - \frac{1}{3 + 2u_n} \right| \underset{u_n \ge 0, \ \forall n \in \mathbb{N}}{=}$$

$$= \frac{2}{(3+2u_{n+1})(3+2u_n)} |u_{n+1}-u_n| \leq \frac{2}{u_n \geq 0, \forall n \in \mathbb{N}} \frac{2}{9} |u_{n+1}-u_n|.$$

Logo, existe $c = \frac{2}{9} \in \left]0,1\right[$ tal que para todo o $n \in \mathbb{N}$ se tem

$$|u_{n+2} - u_{n+1}| \le c |u_{n+1} - u_n|$$
.

Deste modo, a sucessão (u_n) é contractiva.

(d) Como a sucessão (u_n) é contractiva, então (u_n) é de Cauchy. Logo, (u_n) é convergente. Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l.$$

Logo, tem-se

$$\lim u_{n+1} = \lim \frac{1}{3+2u_n} \Leftrightarrow l = \frac{1}{3+2l} \Leftrightarrow 2l^2 + 3l - 1 = 0 \Leftrightarrow \left(l = \frac{-3+\sqrt{17}}{4} \text{ ou } l = \frac{-3-\sqrt{17}}{4}\right).$$

Como $0 \le u_n \le 1$, para todo o $n \in \mathbb{N}$, e $\frac{-3 - \sqrt{17}}{4} < 0$, então $\lim u_n = \frac{-3 + \sqrt{17}}{4}$.

7. Considere as expressões:

$$u_1 = 1$$
 $u_{n+1} = \frac{u_n}{2} + \frac{2}{u_n}$, (para todo o $n \in \mathbb{N}$).

(a) Vejamos que $u_n > 0$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $u_1=1>0$. Logo, a proposição é verdadeira para n=1. Seja $n\in\mathbb{N}$.

HI (hipótese de indução): $u_n > 0$.

Tese: $u_{n+1} > 0$.

Demonstração (da tese):

$$u_{n+1} = \frac{u_n}{2} + \frac{2}{u_n} > 0.$$

Deste modo, tem-se: $u_{n+1} > 0$.

Logo, tem-se: $u_n > 0$, para todo o $n \in \mathbb{N}$.

(b) Vejamos que $u_n \geq 2$, para todo o $n \geq 2$. Tem-se

$$u_{n+1} \ge 2 \Leftrightarrow \frac{u_n}{2} + \frac{2}{u_n} \ge 2 \Leftrightarrow \frac{u_n^2 - 4u_n + 4}{2u_n} \ge 0 \Leftrightarrow \frac{(u_n - 2)^2}{2u_n} \ge 0.$$

Logo, como a condição $\frac{(u_n-2)^2}{2u_n} \ge 0$ é verdadeira, a condição $u_{n+1} \ge 2$ também é verdadeira, para todo o $n \in \mathbb{N}$. Deste modo, tem-se $u_n \ge 2$, para todo o $n \ge 2$.

(c) Vejamos que (u_n) é monótona. Tem-se

$$u_{n+1} - u_n = \frac{u_n}{2} + \frac{2}{u_n} - u_n = -\frac{u_n}{2} + \frac{2}{u_n} = \frac{4 - u_n^2}{2u_n} \le 0.$$

Logo, (u_n) é decrescente, para todo o $n \geq 2$.

(d) A sucessão (u_n) é minorada e por ser decrescente também é majorada. Logo, como (u_n) é monótona e limitada, então (u_n) é convergente.

Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l$$

Logo, tem-se

$$\lim u_{n+1} = \lim \left(\frac{u_n}{2} + \frac{2}{u_n}\right) \Leftrightarrow l = \frac{l}{2} + \frac{2}{l} \Leftrightarrow 2l^2 = l^2 + 4 \Leftrightarrow (l = 2 \text{ ou } l = -2).$$

Como $u_n \ge 2$, para todo o $n \ge 2$, e -2 < 0, então $\lim u_n = 2$.

8. Considere as expressões:

$$u_1 = 1$$
 $u_{n+1} = \frac{2u_n}{1 + 2u_n}$, (para todo o $n \in \mathbb{N}$).

(a) Vejamos que $u_n > 0$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $u_1=1>0$. Logo, a proposição é verdadeira para n=1.

Seja $n \in \mathbb{N}$.

HI (hipótese de indução): $u_n > 0$.

Tese: $u_{n+1} > 0$.

 ${f Demonstração}$ (da tese):

$$u_{n+1} = \frac{2u_n}{1 + 2u_n} > 0.$$

Deste modo, tem-se: $u_{n+1} > 0$.

Logo, tem-se: $u_n > 0$, para todo o $n \in \mathbb{N}$.

(b) Vejamos que $u_n \geq \frac{1}{2}$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $u_1=1\geq \frac{1}{2}.$ Logo, a proposição é verdadeira para n=1.

Seja $n \in \mathbb{N}$.

HI (hipótese de indução): $u_n \ge \frac{1}{2}$.

Tese: $u_{n+1} \ge \frac{1}{2}$.

Demonstração (da tese):

$$u_{n+1} = \frac{2u_n}{1+2u_n} = \frac{2u_n+1-1}{1+2u_n} = 1 - \frac{1}{1+2u_n} \ge 1 - \frac{1}{1+2\frac{1}{2}} = \frac{1}{2}.$$

Deste modo, tem-se: $u_{n+1} \ge \frac{1}{2}$.

Logo, tem-se: $u_n \ge \frac{1}{2}$, para todo o $n \in \mathbb{N}$.

(c) Tem-se $u_2 - u_1 = \frac{2}{3} - 1 = -\frac{1}{3} \le 0$. Vejamos que $u_{n+1} - u_n \le 0$, para todo o $n \in \mathbb{N}$. Seja $n \in \mathbb{N}$. Tem-se

$$u_{n+1} - u_n = \frac{2u_n}{1 + 2u_n} - u_n = \frac{2u_n - u_n - 2u_n^2}{1 + 2u_n} = \frac{u_n - 2u_n^2}{1 + 2u_n} = \frac{1}{1 + 2u_n} u_n \left(1 - 2u_n\right) \underset{\text{(a) e (b)}}{\leq} 0.$$

Logo, tem-se $u_{n+1} - u_n \leq 0$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é decrescente.

Em alternativa, podemos mostrar por indução que $u_{n+1} - u_n \leq 0$, para todo o $n \in \mathbb{N}$.

Ora já se viu que $u_2 - u_1 \le 0$.

HI (hipótese de indução): $u_{n+1} - u_n \le 0$.

Tese: $u_{n+2} - u_{n+1} \le 0$.

Demonstração (da tese):

$$u_{n+2} - u_{n+1} = \left(1 - \frac{1}{1 + 2u_{n+1}}\right) - \left(1 - \frac{1}{1 + 2u_n}\right) = \frac{2(u_{n+1} - u_n)}{(1 + 2u_n)(1 + 2u_{n+1})} = \leq \sup_{\text{por HI e por (a)}} 0,$$

note-se que $u_n > 0$, para todo o $n \in \mathbb{N}$.

Deste modo, tem-se: $u_{n+2} - u_{n+1} \le 0$.

Logo, tem-se: $u_{n+1} - u_n \leq 0$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é decrescente.

(d) A sucessão (u_n) é minorada e por ser decrescente também é majorada. Logo, como (u_n) é monótona e limitada, então (u_n) é convergente.

Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l$$

Logo, tem-se

$$\lim u_{n+1} = \lim \frac{2u_n}{1+2u_n} \Leftrightarrow l = \frac{2l}{1+2l} \Leftrightarrow 2l^2 + l = 2l \Leftrightarrow l\left(2l-1\right) = 0 \Leftrightarrow \left(l=0 \text{ ou } l = \frac{1}{2}\right).$$

Como $u_n \ge \frac{1}{2}$, para todo o $n \in \mathbb{N}$, então $\lim u_n = \frac{1}{2}$.

9. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 1,$$
 $u_{n+1} = \sqrt{2u_n} - \frac{1}{4n},$ (para todo o $n \in \mathbb{N}$).

(a) Vejamos que $u_n \leq 2$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $u_1=1\leq 2$. Logo, a proposição é verdadeira para n=1. Seja $n\in\mathbb{N}$.

HI (hipótese de indução): $u_n \le 2$.

Tese: $u_{n+1} \le 2$.

Demonstração (da tese):

$$u_{n+1} = \sqrt{2u_n} - \frac{1}{4n} \le \sqrt{2.2} - \frac{1}{4n} = 2 - \frac{1}{4n} \le 2.$$

Deste modo, tem-se: $u_{n+1} \leq 2$.

Logo, tem-se: $u_n \leq 2$, para todo o $n \in \mathbb{N}$.

(b) Vejamos que (u_n) é crescente, isto é, $u_{n+1} - u_n \ge 0$, para todo o $n \in \mathbb{N}$.

Tem-se $u_2 - u_1 = \sqrt{2} - \frac{1}{4} - 1 = \sqrt{2} - \frac{5}{4} \ge 0$. Logo, a proposição é verdadeira para n = 1.

HI (hipótese de indução): $u_{n+1} - u_n \ge 0$.

Tese: $u_{n+2} - u_{n+1} \ge 0$.

Demonstração (da tese):

$$u_{n+2} - u_{n+1} = \left(\sqrt{2u_{n+1}} - \frac{1}{4n+4}\right) - \left(\sqrt{2u_n} - \frac{1}{4n}\right) = \left(\sqrt{2u_{n+1}} - \sqrt{2u_n}\right) + \left(\frac{1}{4n} - \frac{1}{4n+4}\right) =$$

$$= \frac{2(u_{n+1} - u_n)}{\sqrt{2u_{n+1}} + \sqrt{2u_n}} + \frac{1}{n(4n+4)} = \geq 0,$$

$$\lim_{n \to \infty} 0,$$

note-se que $u_n > 0$, para todo o $n \in \mathbb{N}$.

Deste modo, tem-se: $u_{n+2} - u_{n+1} \ge 0$.

Logo, tem-se: $u_{n+1} - u_n \ge 0$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é crescente.

(c) A sucessão (u_n) é majorada e por ser crescente também é minorada. Logo, como (u_n) é monótona e limitada, então (u_n) é convergente.

Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l$$

Logo, tem-se

$$\lim u_{n+1} = \lim \left(\sqrt{2u_n} - \frac{1}{4n} \right) \Leftrightarrow l = \sqrt{2l} \Leftrightarrow l^2 = 2l \Leftrightarrow l(l-2) = 0 \Leftrightarrow (l=0 \text{ ou } l=2).$$

Como a sucessão (u_n) é crescente, $u_n \ge u_1 = 1$, para todo o $n \in \mathbb{N}$, e então $\lim u_n = 2$.

10. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 2,$$
 $u_{n+1} = \sqrt{1 + u_n}, \text{ (para todo o } n \in \mathbb{N}).$

(a) Vejamos que (u_n) é decrescente, isto é, $u_{n+1} - u_n \leq 0$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $u_2-u_1=\sqrt{3}-2\leq 0$. Logo, a proposição é verdadeira para n=1. Seja $n\in\mathbb{N}$.

HI (hipótese de indução): $u_{n+1} - u_n \le 0$.

Tese: $u_{n+2} - u_{n+1} \le 0$.

Demonstração (da tese):

$$u_{n+2} - u_{n+1} = \sqrt{1 + u_{n+1}} - \sqrt{1 + u_n} = \frac{u_{n+1} - u_n}{\sqrt{1 + u_{n+1}} + \sqrt{1 + u_n}} \le \frac{0}{\sqrt{1 + u_{n+1}} + \sqrt{1 + u_n}} = 0,$$

Deste modo, tem-se: $u_{n+2} - u_{n+1} \le 0$.

Logo, tem-se: $u_{n+1} - u_n \leq 0$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é decrescente.

(b) A sucessão (u_n) é minorada pois $u_n > 0$, para todo o $n \in \mathbb{N}$, e por ser decrescente também é majorada. Logo, como (u_n) é monótona e limitada, então (u_n) é convergente.

Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l$$

Logo, tem-se

$$\lim u_{n+1} = \lim \sqrt{1+u_n} \Leftrightarrow l = \sqrt{1+l} \Leftrightarrow l^2 - l - 1 = 0 \Leftrightarrow \left(l = \frac{1+\sqrt{5}}{2} \text{ ou } l = \frac{1-\sqrt{5}}{2}\right).$$

Como $u_n > 0$, para todo o $n \in \mathbb{N}$, e $\frac{1 - \sqrt{5}}{2} < 0$, então $\lim u_n = \frac{1 + \sqrt{5}}{2}$.

11. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = \sqrt{5}$$
, $u_{n+1} = \sqrt{5 + u_n}$, (para todo o $n \in \mathbb{N}$).

(a) Vejamos que $u_n \geq 0$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $u_1=\sqrt{5}\geq 0$. Logo, a proposição é verdadeira para n=1.

Seja $n \in \mathbb{N}$.

HI (hipótese de indução): $u_n \ge 0$.

Tese: $u_{n+1} \ge 0$.

Demonstração (da tese): $u_{n+1} = \sqrt{5 + u_n} \ge 0$.

Logo, tem-se: $u_n \geq 0$, para todo o $n \in \mathbb{N}$.

(b) Vejamos que (u_n) é contractiva.

Tem-se $|u_{n+2} - u_{n+1}| =$

$$= \left| \sqrt{5 + u_{n+1}} - \sqrt{5 + u_n} \right| = \frac{|u_{n+1} - u_n|}{\sqrt{5 + u_{n+1}} + \sqrt{5 + u_n}} \leq \frac{|u_{n+1} - u_n|}{\sqrt{5 + 0} + \sqrt{5 + 0}} = \frac{\sqrt{5}}{10} \left| u_{n+1} - u_n \right|.$$

Logo, existe $c = \frac{\sqrt{5}}{10} \in]0,1[$ tal que para todo o $n \in \mathbb{N}$ se tem

$$|u_{n+2} - u_{n+1}| \le c |u_{n+1} - u_n|$$
.

Deste modo, a sucessão (u_n) é contractiva.

(c) Como a sucessão (u_n) é contractiva, então (u_n) é de Cauchy. Logo, (u_n) é convergente. Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l.$$

Logo, tem-se

$$\lim u_{n+1} = \lim \sqrt{5 + u_n} \Leftrightarrow l = \sqrt{5 + l} \Leftrightarrow l^2 - l - 5 = 0 \Leftrightarrow \left(l = \frac{1 + \sqrt{21}}{2} \text{ ou } l = \frac{1 - \sqrt{21}}{2}\right).$$

Como
$$u_n \ge 0$$
, para todo o $n \in \mathbb{N}$, e $\frac{1-\sqrt{21}}{2} < 0$, então $\lim u_n = \frac{1+\sqrt{21}}{2}$.

12. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 2$$

$$u_{n+1} = \frac{1}{3 - u_n} + \frac{1}{n}, \text{ (para todo o } n \in \mathbb{N}).$$

(a) Vejamos que $0 \le u_n \le 2$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $0 \le u_1=2 \le 2$. Logo, a proposição é verdadeira para n=1.

Seja $n \in \mathbb{N}$.

HI (hipótese de indução): $0 \le u_n \le 2$.

Tese: $0 \le u_{n+1} \le 2$.

Demonstração (da tese):

$$0 \le \frac{1}{3} + \frac{1}{n} \le u_{n+1} = \frac{1}{3 - u_n} + \frac{1}{n} \le \frac{1}{3 - 2} + \frac{1}{n} \le \frac{1}{3 - 2} + 1 = 2.$$

Deste modo, tem-se: $0 \le u_{n+1} \le 2$.

Logo, tem-se: $0 \le u_n \le 2$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é limitada.

(b) Vejamos que (u_n) é decrescente, isto é, $u_{n+1} - u_n \leq 0$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $u_2-u_1=2-2=0\leq 0$. Logo, a proposição é verdadeira para n=1. Seja $n\in\mathbb{N}$.

HI (hipótese de indução): $u_{n+1} - u_n \le 0$.

Tese: $u_{n+2} - u_{n+1} \le 0$.

Demonstração (da tese):

$$u_{n+2} - u_{n+1} = \left(\frac{1}{3 - u_{n+1}} + \frac{1}{n+1}\right) - \left(\frac{1}{3 - u_n} + \frac{1}{n}\right) = \left(\frac{1}{3 - u_{n+1}} - \frac{1}{3 - u_n}\right) + \left(\frac{1}{n+1} - \frac{1}{n}\right) = \frac{u_{n+1} - u_n}{(3 - u_{n+1})(3 - u_n)} + \left(\frac{1}{n+1} - \frac{1}{n}\right) \underset{\text{por HI e por (a)}}{\leq} 0 + \left(\frac{1}{n+1} - \frac{1}{n}\right) \leq 0,$$

Deste modo, tem-se: $u_{n+2} - u_{n+1} \le 0$.

Logo, tem-se: $u_{n+1} - u_n \leq 0$, para todo o $n \in \mathbb{N}$, e assim, a sucessão (u_n) é decrescente.

(c) Como a sucessão (u_n) é monótona (por (b)) e limitada (por (a)), então (u_n) é convergente.

Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l$$

Logo, tem-se

$$\lim u_{n+1} = \lim \left(\frac{1}{3 - u_n} + \frac{1}{n} \right) \Leftrightarrow l = \frac{1}{3 - l} \Leftrightarrow l^2 - 3l + 1 = 0 \Leftrightarrow \left(l = \frac{3 + \sqrt{5}}{2} \text{ ou } l = \frac{3 - \sqrt{5}}{2} \right).$$

Como
$$0 \le u_n \le 2$$
, para todo o $n \in \mathbb{N}$, e $\frac{3+\sqrt{5}}{2} > 2$, então $\lim u_n = \frac{3-\sqrt{5}}{2}$.

13. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = 1$$
 $u_{n+1} = 1 + \frac{1}{u_n}$, (para todo o $n \in \mathbb{N}$).

Vejamos primeiro que $u_n > 0$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $u_1=1>0$. Logo, a proposição é verdadeira para n=1.

Seja $n \in \mathbb{N}$.

HI (hipótese de indução): $u_n > 0$.

Tese: $u_{n+1} > 0$.

Demonstração (da tese):

$$u_{n+1} = 1 + \frac{1}{u_n} >_{\text{por HI}} 0.$$

Logo, tem-se: $u_n > 0$, para todo o $n \in \mathbb{N}$.

(a) A sucessão (u_n) não é monótona pois:

$$u_{n+2} - u_{n+1} = \left(1 + \frac{1}{u_{n+1}}\right) - \left(1 + \frac{1}{u_n}\right) = \frac{1}{u_n u_{n+1}} \left(u_n - u_{n+1}\right)$$

e assim, as expressões $u_{n+2} - u_{n+1}$ e $u_n - u_{n+1}$ têm o mesmo sinal (note-se que $u_n > 0$, para todo o $n \in \mathbb{N}$), quando deveriam ter sinal contrário para que a sucessão (u_n) pudesse ser monótona.

(b) Vejamos que

$$\sqrt{2} < u_n < 2,$$

para todo o $n \in \mathbb{N}$ com $n \geq 3$.

Para n=3 tem-se $\sqrt{2} < u_3 = \frac{3}{2} < 2$. Logo, a proposição é verdadeira para n=3.

Seja $n \in \mathbb{N}$ com $n \geq 3$.

HI (hipótese de indução): $\sqrt{2} < u_n < 2$.

Tese: $\sqrt{2} < u_{n+1} < 2$.

Demonstração (da tese):

$$\sqrt{2} < \frac{3}{2} = 1 + \frac{1}{2} < u_{n+1} = 1 + \frac{1}{u_n} < u_{n+1} = 1 + \frac{1}{\sqrt{2}} < 2.$$

Logo, tem-se: $\sqrt{2} < u_n < 2$, para todo o $n \in \mathbb{N}$ com $n \geq 3$.

Por outro lado, tem-se

$$|u_{n+2} - u_{n+1}| = \left| \left(1 + \frac{1}{u_{n+1}} \right) - \left(1 + \frac{1}{u_n} \right) \right| = \underbrace{\frac{1}{u_n > 0, \, \forall n \in \mathbb{N}}}_{u_n u_{n+1}} \left| u_n - u_{n+1} \right| < \underbrace{\frac{1}{\sqrt{2} < u_n, \, \forall n > 3}}_{\sqrt{2} < u_n, \, \forall n > 3} \frac{1}{2} \left| u_{n+1} - u_n \right|,$$

para todo o $n \in \mathbb{N}$ com $n \geq 3$.

Logo, tem-se

$$|u_{n+2} - u_{n+1}| \le \frac{1}{2} |u_{n+1} - u_n|,$$

para todo o $n \in \mathbb{N}$ com $n \geq 3$.

Para n = 1 tem-se

$$|u_3 - u_2| = \left| \frac{3}{2} - 2 \right| = \frac{1}{2} \le \frac{1}{2} |2 - 1| = \frac{1}{2} |u_2 - u_1|.$$

Para n=2 tem-se

$$|u_4 - u_3| = \left| \frac{5}{3} - \frac{3}{2} \right| = \frac{1}{6} \le \frac{1}{4} = \frac{1}{2} \left| \frac{3}{2} - 2 \right| = \frac{1}{2} |u_3 - u_2|.$$

Logo, tem-se

$$|u_{n+2} - u_{n+1}| \le \frac{1}{2} |u_{n+1} - u_n|,$$

para todo o $n \in \mathbb{N}$.

(c) Pela alínea (b), existe $c = \frac{1}{2} \in]0,1[$ tal que para todo o $n \in \mathbb{N}$ se tem

$$|u_{n+2} - u_{n+1}| \le \frac{1}{2} |u_{n+1} - u_n|.$$

Logo, a sucessão (u_n) é contractiva. Como a sucessão (u_n) é contractiva, então (u_n) é de Cauchy. Logo, (u_n) é convergente.

Seja $l = \lim u_n$. Como (u_{n+1}) é uma subsucessão de (u_n) , então (u_{n+1}) converge e

$$\lim u_{n+1} = \lim u_n = l.$$

Logo, tem-se

$$\lim u_{n+1} = \lim \left(1 + \frac{1}{u_n} \right) \Leftrightarrow l = 1 + \frac{1}{l} \Leftrightarrow l^2 - l - 1 = 0 \Leftrightarrow \left(l = \frac{1 + \sqrt{5}}{2} \text{ ou } l = \frac{1 - \sqrt{5}}{2} \right).$$

Como $u_n > 0$, para todo o $n \in \mathbb{N}$, e $\frac{1 - \sqrt{5}}{2} < 0$, então $\lim u_n = \frac{1 + \sqrt{5}}{2}$.

14. Considere a sucessão (u_n) de números reais definida por:

$$u_1 = u_2 = \frac{1}{2}$$

 $u_{n+2} - u_{n+1} + \frac{1}{4}u_n = 0$, (para todo o $n \in \mathbb{N}$).

(a) Vejamos que $u_{n+1} > \frac{1}{2}u_n$, para todo o $n \in \mathbb{N}$.

Para n=1 tem-se $u_2=\frac{1}{2}>\frac{1}{2}\frac{1}{2}=\frac{1}{2}u_1$. Logo, a proposição é verdadeira para n=1. Seja $n\in\mathbb{N}$.

HI (hipótese de indução): $u_{n+1} > \frac{1}{2}u_n$.

Tese: $u_{n+2} > \frac{1}{2}u_{n+1}$.

Demonstração (da tese):

$$u_{n+2} = u_{n+1} - \frac{1}{4}u_n = \frac{1}{2}u_{n+1} + \frac{1}{2}u_{n+1} - \frac{1}{4}u_n = \frac{1}{2}u_{n+1} + \frac{1}{2}\left(u_{n+1} - \frac{1}{2}u_n\right) > \underset{\text{por HI}}{\underbrace{1}} \frac{1}{2}u_{n+1}.$$

Logo, tem-se: $u_{n+1} > \frac{1}{2}u_n$, para todo o $n \in \mathbb{N}$.

(b) Vejamos que (u_n) é decrescente, isto é, $u_{n+1} - u_n \leq 0$, para todo o $n \in \mathbb{N}$.

Como

$$u_{n+2} - u_{n+1} = -\frac{1}{4}u_n,$$

para que se tenha $u_{n+2} - u_{n+1} \le 0$, basta verificar que $u_n > 0$, para todo o $n \in \mathbb{N}$.

Para n = 1 tem-se $u_1 = \frac{1}{2} > 0$. Logo, a proposição é verdadeira para n = 1.

Seja $n \in \mathbb{N}$.

HI (hipótese de indução): $u_n > 0$.

Tese: $u_{n+1} > 0$.

Demonstração (da tese):

$$u_{n+1} > \frac{1}{2} u_n > 0.$$

Logo, tem-se: $u_n > 0$, para todo o $n \in \mathbb{N}$.

Deste modo, como $u_2 - u_1 = \frac{1}{2} - \frac{1}{2} = 0$ e

$$u_{n+2} - u_{n+1} = -\frac{1}{4}u_n < 0,$$

para todo o $n \in \mathbb{N}$, então tem-se

$$u_{n+1} - u_n \le 0,$$

para todo o $n \in \mathbb{N}$, e assim a sucessão (u_n) é decrescente.

(c) A sucessão (u_n) é minorada pois $u_n > 0$, para todo o $n \in \mathbb{N}$, e por ser decrescente também é majorada. Logo, como (u_n) é monótona e limitada, então (u_n) é convergente.

Seja $l = \lim u_n$. Como (u_{n+1}) e (u_{n+2}) são subsucessões de (u_n) , então (u_{n+1}) e (u_{n+2}) convergem e

$$\lim u_{n+1} = \lim u_{n+2} = \lim u_n = l$$

Logo, tem-se

$$\lim u_{n+2} = \lim \left(u_{n+1} - \frac{1}{4}u_n \right) \Leftrightarrow l = l - \frac{1}{4}l \Leftrightarrow l = 0.$$

Logo $\lim u_n = 0$.

19

(1) A série $\sum_{n=0}^{+\infty} \left(\frac{1}{n!} - \frac{1}{(n+2)!} \right)$ é uma série de Mengoli do tipo $\sum_{n=0}^{+\infty} (x_n - x_{n+k})$, com k=2 e $x_n = \frac{1}{n!}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=0}^{+\infty} \left(\frac{1}{n!} - \frac{1}{(n+2)!}\right)$ converge absolutamente, uma vez que $\frac{1}{n!} - \frac{1}{(n+2)!} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=0}^{+\infty} \left(\frac{1}{n!} - \frac{1}{(n+2)!} \right) = x_0 + x_1 - 2\lim x_n = 1 + 1 - 2\lim \frac{1}{n!} = 2.$$

(2) A série $\sum_{n=1}^{+\infty} \left(\cos \frac{\pi}{n+2} - \cos \frac{\pi}{n} \right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_{n+k} - x_n)$, com k = 2 e $x_n = \cos \frac{\pi}{n}$. Atendendo a que $\lim x_n = 1 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\cos \frac{\pi}{n+2} - \cos \frac{\pi}{n}\right)$ converge absolutamente, pois $\cos \frac{\pi}{n+2} - \cos \frac{\pi}{n} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\cos \frac{\pi}{n+2} - \cos \frac{\pi}{n} \right) = 2 \lim x_n - (x_1 + x_2) = 2 - (-1) = 3.$$

(3) Tem-se $\sum_{n=1}^{+\infty} \frac{1}{4n^2 - 1} = \sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$. A série $\sum_{n=1}^{+\infty} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com k = 1 e $x_n = \frac{1}{2n-1}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$ converge absolutamente, pois $\frac{1}{2n-1} - \frac{1}{2n+1} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right) = x_1 - \lim x_n = 1 - \lim \frac{1}{2n-1} = 1.$$

Logo, a série $\sum_{n=1}^{+\infty}\frac{1}{4n^2-1}=\sum_{n=1}^{+\infty}\frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)\text{ converge absolutamente e a sua soma é}$

$$\sum_{n=1}^{+\infty} \frac{1}{4n^2 - 1} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right) = \frac{1}{2} \sum_{n=1}^{+\infty} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right) = \frac{1}{2} 1 = \frac{1}{2}.$$

(4) Tem-se
$$\sum_{n=3}^{+\infty} \frac{1}{n(n-2)} = \sum_{n=3}^{+\infty} \frac{1}{2} \left(\frac{1}{n-2} - \frac{1}{n} \right)$$
.
A série $\sum_{n=3}^{+\infty} \left(\frac{1}{n-2} - \frac{1}{n} \right)$ é uma série de Mengoli do tipo $\sum_{n=3}^{+\infty} (x_n - x_{n+2})$, com $k = 2$ e $x_n = \frac{1}{n-2}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=3}^{+\infty} \left(\frac{1}{n-2} - \frac{1}{n}\right)$ converge absolutamente, uma vez que $\frac{1}{n-2} - \frac{1}{n} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=3}^{+\infty} \left(\frac{1}{n-2} - \frac{1}{n} \right) = x_3 + x_4 - 2\lim x_n = 1 + \frac{1}{2} - 2\lim \frac{1}{n-2} = \frac{3}{2}.$$

Logo, a série $\sum_{n=3}^{+\infty} \frac{1}{n(n-2)} = \sum_{n=3}^{+\infty} \frac{1}{2} \left(\frac{1}{n-2} - \frac{1}{n} \right)$ converge absolutamente e a sua soma é

$$\sum_{n=3}^{+\infty} \frac{1}{n(n-2)} = \sum_{n=3}^{+\infty} \frac{1}{2} \left(\frac{1}{n-2} - \frac{1}{n} \right) = \frac{1}{2} \sum_{n=3}^{+\infty} \left(\frac{1}{n-2} - \frac{1}{n} \right) = \frac{1}{2} \frac{3}{2} = \frac{3}{4}.$$

(5) Tem-se
$$\sum_{n=1}^{+\infty} \frac{1}{(2n+1)(2n+3)} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{2n+1} - \frac{1}{2n+3} \right)$$
.

A série $\sum_{n=1}^{+\infty} \left(\frac{1}{2n+1} - \frac{1}{2n+3} \right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com k = 1 e $x_n = \frac{1}{2n+1}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{1}{2n+1} - \frac{1}{2n+3} \right)$ converge absolutamente, pois $\frac{1}{2n+1} - \frac{1}{2n+3} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{2n+1} - \frac{1}{2n+3} \right) = x_1 - \lim x_n = \frac{1}{3} - \lim \frac{1}{2n+1} = \frac{1}{3}.$$

Logo, a série $\sum_{n=1}^{+\infty} \frac{1}{(2n+1)(2n+3)} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{2n+1} - \frac{1}{2n+3} \right)$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \frac{1}{(2n+1)(2n+3)} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{2n+1} - \frac{1}{2n+3} \right) = \frac{1}{2} \sum_{n=1}^{+\infty} \left(\frac{1}{2n+1} - \frac{1}{2n+3} \right) = \frac{1}{2} \frac{1}{3} = \frac{1}{6}.$$

(6) Tem-se
$$\sum_{n=1}^{+\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}} = \sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right).$$

A série $\sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com k = 1 e $x_n = \frac{1}{\sqrt{n}}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$ converge absolutamente, pois $\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) = x_1 - \lim x_n = 1 - \lim \frac{1}{\sqrt{n}} = 1.$$

(7) Tem-se
$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + 2n} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$
.

A série $\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+2}\right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+2})$, com k = 2 e $x_n = \frac{1}{n}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+2}\right)$ converge absolutamente, uma vez que $\frac{1}{n} - \frac{1}{n+2} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+2} \right) = x_1 + x_2 - 2\lim x_n = 1 + \frac{1}{2} - 2\lim \frac{1}{n} = \frac{3}{2}.$$

Logo, a série $\sum_{n=1}^{+\infty} \frac{1}{n^2 + 2n} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + 2n} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right) = \frac{1}{2} \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+2} \right) = \frac{1}{2} \frac{3}{2} = \frac{3}{4}.$$

(8) Tem-se
$$\sum_{n=1}^{+\infty} \log \left(\frac{n+1}{n} \right) = \sum_{n=1}^{+\infty} (\log (n+1) - \log n).$$

A série $\sum_{n=1}^{+\infty} (\log (n+1) - \log n)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_{n+1} - x_n)$, com k = 1 e $x_n = \log n$. Atendendo a que $\lim x_n = +\infty \notin \mathbb{R}$, então (x_n) diverge.

Como (x_n) diverge, a série de Mengoli $\sum_{n=1}^{+\infty} (\log (n+1) - \log n)$ diverge.

(9) Tem-se
$$\sum_{n=1}^{+\infty} \frac{2n+1}{n^2(n+1)^2} = \sum_{n=1}^{+\infty} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right)$$
.

A série $\sum_{n=1}^{+\infty} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2}\right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com k = 1 e

 $x_n = \frac{1}{n^2}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2}\right)$ converge absolutamente, pois $\frac{1}{n^2} - \frac{1}{(n+1)^2} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right) = x_1 - \lim x_n = 1 - \lim \frac{1}{n^2} = 1.$$

(10) Tem-se

$$\sum_{n=1}^{+\infty} \frac{n}{(n+1)(n+2)(n+3)} = \sum_{n=1}^{+\infty} \frac{n+1-1}{(n+1)(n+2)(n+3)} =$$

$$= \sum_{n=1}^{+\infty} \left[\frac{n+1}{(n+1)(n+2)(n+3)} - \frac{1}{(n+1)(n+2)(n+3)} \right] =$$

$$= \sum_{n=1}^{+\infty} \left[\frac{1}{(n+2)(n+3)} - \frac{1}{(n+1)(n+2)(n+3)} \right].$$

A série $\sum_{n=1}^{+\infty} \frac{1}{(n+2)(n+3)} = \sum_{n=1}^{+\infty} \left(\frac{1}{n+2} - \frac{1}{n+3}\right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com k = 1 e $x_n = \frac{1}{n+2}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{1}{n+2} - \frac{1}{n+3} \right)$ converge absolutamente, pois $\frac{1}{n+2} - \frac{1}{n+3} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n+2} - \frac{1}{n+3} \right) = x_1 - \lim x_n = \frac{1}{3} - \lim \frac{1}{n+2} = \frac{1}{3}.$$

Por outro lado, tem-se

$$\sum_{n=1}^{+\infty} \frac{1}{(n+1)(n+2)(n+3)} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{(n+1)(n+2)} - \frac{1}{(n+2)(n+3)} \right).$$

A série $\sum_{n=1}^{+\infty} \left(\frac{1}{(n+1)(n+2)} - \frac{1}{(n+2)(n+3)} \right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com k = 1 e $x_n = \frac{1}{(n+1)(n+2)}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{1}{(n+1)(n+2)} - \frac{1}{(n+2)(n+3)} \right)$ converge absolutamente, pois $\frac{1}{(n+1)(n+2)} - \frac{1}{(n+2)(n+3)} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{(n+1)(n+2)} - \frac{1}{(n+2)(n+3)} \right) = x_1 - \lim x_n = \frac{1}{6} - \lim \frac{1}{(n+1)(n+2)} = \frac{1}{6}.$$

Logo, a série $\sum_{n=1}^{+\infty} \frac{1}{(n+1)(n+2)(n+3)}$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \frac{1}{(n+1)(n+2)(n+3)} = \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{(n+1)(n+2)} - \frac{1}{(n+2)(n+3)} \right) =$$

$$= \frac{1}{2} \sum_{n=1}^{+\infty} \left(\frac{1}{(n+1)(n+2)} - \frac{1}{(n+2)(n+3)} \right) = \frac{1}{2} \frac{1}{6} = \frac{1}{12}.$$

Deste modo, a série $\sum_{n=1}^{+\infty} \frac{n}{(n+1)(n+2)(n+3)}$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \frac{n}{(n+1)(n+2)(n+3)} = \sum_{n=1}^{+\infty} \left[\frac{1}{(n+2)(n+3)} - \frac{1}{(n+1)(n+2)(n+3)} \right] =$$

$$= \sum_{n=1}^{+\infty} \frac{1}{(n+2)(n+3)} - \sum_{n=1}^{+\infty} \frac{1}{(n+1)(n+2)(n+3)} = \frac{1}{3} - \frac{1}{12} = \frac{1}{4}.$$

(11) Tem-se
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} (2n+1)}{n (n+1)} = \sum_{n=1}^{+\infty} \left[(-1)^{n-1} \frac{1}{n} - (-1)^n \frac{1}{n+1} \right].$$
 A série
$$\sum_{n=1}^{+\infty} \left[(-1)^{n-1} \frac{1}{n} - (-1)^n \frac{1}{n+1} \right]$$
 é uma série de Mengoli do tipo
$$\sum_{n=1}^{+\infty} (x_n - x_{n+1}), \text{ com}$$

k=1 e $x_n=(-1)^{n-1}\frac{1}{n}$. Atendendo a que $\lim x_n=0\in\mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left[(-1)^{n-1} \frac{1}{n} - (-1)^n \frac{1}{n+1} \right]$ converge e a sua soma é

$$\sum_{n=1}^{+\infty} \left[(-1)^{n-1} \frac{1}{n} - (-1)^n \frac{1}{n+1} \right] = x_1 - \lim x_n = 1 - \lim \left[(-1)^{n-1} \frac{1}{n} \right] = 1.$$

A série de Mengoli

$$\sum_{n=1}^{+\infty} \left[(-1)^{n-1} \frac{1}{n} - (-1)^n \frac{1}{n+1} \right] = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} (2n+1)}{n (n+1)}$$

converge simplesmente pois a série

$$\sum_{n=1}^{+\infty} \left| (-1)^{n-1} \frac{1}{n} - (-1)^n \frac{1}{n+1} \right| = \sum_{n=1}^{+\infty} \left| \frac{(-1)^{n-1} (2n+1)}{n (n+1)} \right| = \sum_{n=1}^{+\infty} \frac{(2n+1)}{n (n+1)}$$

diverge por comparação com a série divergente $\sum_{n=1}^{+\infty} \frac{1}{n}$.

(12) Tem-se
$$\sum_{n=1}^{+\infty} \frac{n}{2^n} = \sum_{n=1}^{+\infty} \left[2 \left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}} \right) + \left(\frac{1}{2} \right)^n \right].$$

A série $\sum_{n=1}^{+\infty} \left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}} \right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com k = 1 e $x_n = \frac{n}{2^n}$.

Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, pela escala de sucessões, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}}\right)$ converge absolutamente, uma vez que $\frac{n}{2^n}-\frac{n+1}{2^{n+1}}=\frac{n-1}{2^{n+1}}\geq 0$ para todo o $n\in\mathbb{N},$ e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}} \right) = x_1 - \lim x_n = \frac{1}{2} - \lim \frac{n}{2^n} = \frac{1}{2}.$$

Logo, a série $\sum_{n=1}^{+\infty} 2\left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}}\right)$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} 2\left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}}\right) = 2\sum_{n=1}^{+\infty} \left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}}\right) = 2\frac{1}{2} = 1.$$

A série $\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n$ é uma série geométrica de razão $\frac{1}{2}$. Como $\left|\frac{1}{2}\right| = \frac{1}{2} < 1$, a série $\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1.$$

Logo, a série $\sum_{n=1}^{+\infty} \frac{n}{2^n} = \sum_{n=1}^{+\infty} \left[2\left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}}\right) + \left(\frac{1}{2}\right)^n \right]$ converge absolutamente, por ser a série soma de duas séries absolutamente convergentes, e a sua soma é

$$\sum_{n=1}^{+\infty} \frac{n}{2^n} = \sum_{n=1}^{+\infty} \left[2\left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}}\right) + \left(\frac{1}{2}\right)^n \right] = \sum_{n=1}^{+\infty} 2\left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}}\right) + \sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n = 1 + 1 = 2.$$

(13) Tem-se

$$\sum_{n=1}^{+\infty} \frac{-2}{n\sqrt{n+1} + (n+1)\sqrt{n}} = \sum_{n=1}^{+\infty} \frac{-2}{\sqrt{n+1}\sqrt{n}} \frac{1}{\sqrt{n+1} + \sqrt{n}} =$$

$$= \sum_{n=1}^{+\infty} \frac{-2}{\sqrt{n+1}\sqrt{n}} \left(\sqrt{n+1} - \sqrt{n}\right) = \sum_{n=1}^{+\infty} (-2) \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right).$$

A série $\sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com k = 1 e $x_n = \frac{1}{\sqrt{n}}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$ converge absolutamente, pois $\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) = x_1 - \lim x_n = 1 - \lim \frac{1}{\sqrt{n}} = 1.$$

Logo, a série $\sum_{n=1}^{+\infty} \frac{-2}{n\sqrt{n+1} + (n+1)\sqrt{n}}$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \frac{-2}{n\sqrt{n+1} + (n+1)\sqrt{n}} = \sum_{n=1}^{+\infty} (-2)\left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right) = \frac{1}{2} \left(-\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n+1}}\right) = \frac{1}{2} \left(-\frac{1}{\sqrt{$$

$$= (-2)\sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right) = (-2)1 = -2.$$

(14) Tem-se
$$\sum_{n=2}^{+\infty} (-1)^n \frac{e^{-n+1}}{2^{-n+1}} = \sum_{n=2}^{+\infty} \frac{e}{2} \left(-\frac{2}{e}\right)^n$$
.

A série $\sum_{n=2}^{+\infty} \frac{e}{2} \left(-\frac{2}{e}\right)^n$ é uma série geométrica de razão $-\frac{2}{e}$. Como $\left|-\frac{2}{e}\right| = \frac{2}{e} < 1$, a série $\sum_{n=2}^{+\infty} \frac{e}{2} \left(-\frac{2}{e}\right)^n$ converge absolutamente e a sua soma é

$$\sum_{n=2}^{+\infty} \frac{e}{2} \left(-\frac{2}{e} \right)^n = \frac{\frac{e}{2} \left(-\frac{2}{e} \right)^2}{1 - \left(-\frac{2}{e} \right)} = \frac{\frac{2}{e}}{1 + \frac{2}{e}} = \frac{2}{e + 2}.$$

(15) Tem-se
$$\sum_{n=1}^{+\infty} \frac{5^{n-1}}{2^{2n}} = \sum_{n=1}^{+\infty} \frac{1}{5} \left(\frac{5}{4}\right)^n$$
.

A série $\sum_{n=1}^{+\infty} \frac{1}{5} \left(\frac{5}{4} \right)^n$ é uma série geométrica de razão $\frac{5}{4}$. Como $\left| \frac{5}{4} \right| = \frac{5}{4} > 1$, a série $\sum_{n=1}^{+\infty} \frac{1}{5} \left(\frac{5}{4} \right)^n$ diverge.

(16) Tem-se
$$\sum_{n=1}^{+\infty} \frac{(-2)^{-n-1}}{5^{n-1}3^{-(2n+1)}} = \sum_{n=1}^{+\infty} \left(-\frac{15}{2}\right) \left(-\frac{9}{10}\right)^n$$
.

A série $\sum_{n=1}^{+\infty} \left(-\frac{15}{2}\right) \left(-\frac{9}{10}\right)^n$ é uma série geométrica de razão $-\frac{9}{10}$. Como $\left|-\frac{9}{10}\right| = \frac{9}{10} < 1$, a série $\sum_{n=1}^{+\infty} \left(-\frac{15}{2}\right) \left(-\frac{9}{10}\right)^n$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \left(-\frac{15}{2} \right) \left(-\frac{9}{10} \right)^n = \frac{\left(-\frac{15}{2} \right) \left(-\frac{9}{10} \right)}{1 - \left(-\frac{9}{10} \right)} = \frac{\frac{27}{4}}{\frac{19}{10}} = \frac{135}{38}.$$

(17) Tem-se
$$\sum_{n=1}^{+\infty} \frac{2^n + 3^n}{6^n} = \sum_{n=1}^{+\infty} \left[\left(\frac{1}{3} \right)^n + \left(\frac{1}{2} \right)^n \right].$$

A série $\sum_{n=1}^{+\infty} \left(\frac{1}{3}\right)^n$ é uma série geométrica de razão $\frac{1}{3}$. Como $\left|\frac{1}{3}\right| = \frac{1}{3} < 1$, a série $\sum_{n=1}^{+\infty} \left(\frac{1}{3}\right)^n$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{3}\right)^n = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2}.$$

A série $\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n$ é uma série geométrica de razão $\frac{1}{2}$. Como $\left|\frac{1}{2}\right| = \frac{1}{2} < 1$, a série $\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1.$$

Logo, a série $\sum_{n=1}^{+\infty} \frac{2^n + 3^n}{6^n} = \sum_{n=1}^{+\infty} \left[\left(\frac{1}{3} \right)^n + \left(\frac{1}{2} \right)^n \right]$ converge absolutamente, por ser a série soma de duas séries absolutamente convergentes, e a sua soma é

$$\sum_{n=1}^{+\infty} \frac{2^n + 3^n}{6^n} = \sum_{n=1}^{+\infty} \left[\left(\frac{1}{3} \right)^n + \left(\frac{1}{2} \right)^n \right] = \sum_{n=1}^{+\infty} \left(\frac{1}{3} \right)^n + \sum_{n=1}^{+\infty} \left(\frac{1}{2} \right)^n = \frac{1}{2} + 1 = \frac{3}{2}.$$

(18) Tem-se
$$\sum_{n=1}^{+\infty} \frac{5 + (-1)^n}{3^{n-1}} = \sum_{n=1}^{+\infty} \left[5 \left(\frac{1}{3} \right)^{n-1} + (-1) \left(-\frac{1}{3} \right)^{n-1} \right].$$

A série $\sum_{n=1}^{+\infty} 5\left(\frac{1}{3}\right)^{n-1}$ é uma série geométrica de razão $\frac{1}{3}$. Como $\left|\frac{1}{3}\right| = \frac{1}{3} < 1$, a série $\sum_{n=1}^{+\infty} 5\left(\frac{1}{3}\right)^{n-1}$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} 5\left(\frac{1}{3}\right)^{n-1} = \frac{5}{1-\frac{1}{3}} = \frac{5}{\frac{2}{3}} = \frac{15}{2}.$$

A série $\sum_{n=1}^{+\infty} (-1) \left(-\frac{1}{3}\right)^{n-1}$ é uma série geométrica de razão $-\frac{1}{3}$. Como $\left|-\frac{1}{3}\right| = \frac{1}{3} < 1$, a série $\sum_{n=1}^{+\infty} (-1) \left(-\frac{1}{3}\right)^{n-1}$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} (-1) \left(-\frac{1}{3} \right)^{n-1} = \frac{-1}{1 - \left(-\frac{1}{3} \right)} = \frac{-1}{\frac{4}{3}} = -\frac{3}{4}.$$

Logo, a série $\sum_{n=1}^{+\infty} \frac{5 + (-1)^n}{3^{n-1}} = \sum_{n=1}^{+\infty} \left[5 \left(\frac{1}{3} \right)^{n-1} + (-1) \left(-\frac{1}{3} \right)^{n-1} \right]$ converge absolutamente, por ser a série soma de duas séries absolutamente convergentes, e a sua soma é

$$\sum_{n=1}^{+\infty} \frac{5 + (-1)^n}{3^{n-1}} = \sum_{n=1}^{+\infty} \left[5 \left(\frac{1}{3} \right)^{n-1} + (-1) \left(-\frac{1}{3} \right)^{n-1} \right] =$$

$$= \sum_{n=1}^{+\infty} 5 \left(\frac{1}{3} \right)^{n-1} + \sum_{n=1}^{+\infty} (-1) \left(-\frac{1}{3} \right)^{n-1} = \frac{15}{2} - \frac{3}{4} = \frac{27}{4}.$$

(19) Tem-se
$$\sum_{n=1}^{+\infty} \frac{2^n + n^2 + n}{2^{n+1}n(n+1)} = \sum_{n=1}^{+\infty} \left[\frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right) + \left(\frac{1}{2} \right)^{n+1} \right].$$

A série $\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com k = 1 e $x_n = \frac{1}{n}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$ converge absolutamente, uma vez que $\frac{1}{n} - \frac{1}{n+1} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = x_1 - \lim x_n = 1 - \lim \frac{1}{n} = 1.$$

Logo, a série $\sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right)$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \frac{1}{2} \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \frac{1}{2} \mathbf{1} = \frac{1}{2}.$$

A série $\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^{n+1}$ é uma série geométrica de razão $\frac{1}{2}$. Como $\left|\frac{1}{2}\right| = \frac{1}{2} < 1$, a série $\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^{n+1}$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^{n+1} = \frac{\left(\frac{1}{2}\right)^2}{1 - \frac{1}{2}} = \frac{1}{2}.$$

Logo, a série $\sum_{n=1}^{+\infty} \frac{2^n + n^2 + n}{2^{n+1}n(n+1)} = \sum_{n=1}^{+\infty} \left[\frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right) + \left(\frac{1}{2} \right)^{n+1} \right]$ converge absolutamente, por ser a série soma de duas séries absolutamente convergentes, e a sua soma é

$$\sum_{n=1}^{+\infty} \frac{2^n + n^2 + n}{2^{n+1}n(n+1)} = \sum_{n=1}^{+\infty} \left[\frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right) + \left(\frac{1}{2} \right)^{n+1} \right] =$$

$$= \sum_{n=1}^{+\infty} \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right) + \sum_{n=1}^{+\infty} \left(\frac{1}{2} \right)^{n+1} = \frac{1}{2} + \frac{1}{2} = 1.$$

(20) Tem-se $\sum_{n=1}^{+\infty} \left[\left(\frac{2}{3} \right)^n + \frac{n-1}{n!} \right] = \sum_{n=1}^{+\infty} \left[\left(\frac{2}{3} \right)^n + \left(\frac{1}{(n-1)!} - \frac{1}{n!} \right) \right].$ A série $\sum_{n=1}^{+\infty} \left(\frac{1}{(n-1)!} - \frac{1}{n!} \right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1}), \text{ com } k = 1 \text{ e}$ $x_n = \frac{1}{(n-1)!}. \text{ Atendendo a que } \lim x_n = 0 \in \mathbb{R}, \text{ então } (x_n) \text{ converge.}$

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{1}{(n-1)!} - \frac{1}{n!} \right)$ converge absolutamente, pois $\frac{1}{(n-1)!} - \frac{1}{n!} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{(n-1)!} - \frac{1}{n!} \right) = x_1 - \lim x_n = 1 - \lim \frac{1}{(n-1)!} = 1.$$

A série $\sum_{n=1}^{+\infty} \left(\frac{2}{3}\right)^n$ é uma série geométrica de razão $\frac{2}{3}$. Como $\left|\frac{2}{3}\right| = \frac{2}{3} < 1$, a série $\sum_{n=1}^{+\infty} \left(\frac{2}{3}\right)^n$ converge absolutamente e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{2}{3}\right)^n = \frac{\frac{2}{3}}{1 - \frac{2}{3}} = 2.$$

Logo, a série $\sum_{n=1}^{+\infty} \left[\left(\frac{2}{3} \right)^n + \frac{n-1}{n!} \right] = \sum_{n=1}^{+\infty} \left[\left(\frac{2}{3} \right)^n + \left(\frac{1}{(n-1)!} - \frac{1}{n!} \right) \right]$ converge absolutamente, por ser a série soma de duas séries absolutamente convergentes, e a sua soma é

$$\sum_{n=1}^{+\infty} \left[\left(\frac{2}{3} \right)^n + \frac{n-1}{n!} \right] = \sum_{n=1}^{+\infty} \left[\left(\frac{2}{3} \right)^n + \left(\frac{1}{(n-1)!} - \frac{1}{n!} \right) \right] =$$

$$= \sum_{n=1}^{+\infty} \left(\frac{2}{3} \right)^n + \sum_{n=1}^{+\infty} \left(\frac{1}{(n-1)!} - \frac{1}{n!} \right) = 2 + 1 = 3.$$

(21) Tem-se
$$\sum_{n=1}^{+\infty} \left[\frac{1}{ne^{1/n} - n} - \frac{1}{(n+1)e^{1/(n+1)} - n - 1} \right] = \sum_{n=1}^{+\infty} \left[\frac{\frac{1}{n}}{e^{1/n} - 1} - \frac{\frac{1}{n+1}}{e^{1/(n+1)} - 1} \right].$$

A série $\sum_{n=1}^{+\infty} \left[\frac{\frac{1}{n}}{e^{1/n} - 1} - \frac{\frac{1}{n+1}}{e^{1/(n+1)} - 1} \right]$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com k = 1

e $x_n = \frac{\overline{n}}{e^{1/n} - 1}$. Atendendo a que $\lim x_n = 1 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left[\frac{\frac{1}{n}}{e^{1/n}-1} - \frac{\frac{1}{n+1}}{e^{1/(n+1)}-1} \right]$ converge e a sua soma é

$$\sum_{n=1}^{+\infty} \left[\frac{\frac{1}{n}}{e^{1/n} - 1} - \frac{\frac{1}{n+1}}{e^{1/(n+1)} - 1} \right] = x_1 - \lim x_n =$$

$$= \frac{1}{e-1} - \lim \frac{\frac{1}{n}}{e^{1/n} - 1} = \frac{1}{e-1} - 1 = \frac{2-e}{e-1}.$$

(22) Tem-se
$$\sum_{n=2}^{+\infty} (-1)^n \frac{2e(-\pi)^{-n+2}}{(-e)^{-n+1}} = \sum_{n=2}^{+\infty} (-2\pi^2) \left(-\frac{e}{\pi}\right)^n$$
.

A série $\sum_{n=2}^{+\infty} (-2\pi^2) \left(-\frac{e}{\pi}\right)^n$ é uma série geométrica de razão $-\frac{e}{\pi}$. Como $\left|-\frac{e}{\pi}\right| = \frac{e}{\pi} < 1$, a série $\sum_{n=2}^{+\infty} (-2\pi^2) \left(-\frac{e}{\pi}\right)^n$ converge absolutamente e a sua soma é

$$\sum_{n=2}^{+\infty} \left(-2\pi^2\right) \left(-\frac{e}{\pi}\right)^n = \frac{\left(-2\pi^2\right) \left(-\frac{e}{\pi}\right)^2}{1 - \left(-\frac{e}{\pi}\right)} = \frac{-2\pi e^2}{\pi + e}.$$

(23) Tem-se

$$\sum_{n=1}^{+\infty} \left[(-1)^n \left(n \operatorname{sen} \frac{1}{n+2} + (n+1) \operatorname{sen} \frac{1}{n+3} \right) \right] = \sum_{n=1}^{+\infty} \left[(-1)^n n \operatorname{sen} \frac{1}{n+2} - (-1)^{n+1} (n+1) \operatorname{sen} \frac{1}{n+3} \right].$$

A série $\sum_{n=1}^{+\infty} \left[(-1)^n n \operatorname{sen} \frac{1}{n+2} - (-1)^{n+1} (n+1) \operatorname{sen} \frac{1}{n+3} \right]$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com k = 1 e $x_n = (-1)^n n \operatorname{sen} \frac{1}{n+2}$. Atendendo a que

$$\lim x_{2n} = \lim \left(2n \operatorname{sen} \frac{1}{2n+2} \right) = \lim \left(\frac{\operatorname{sen} \frac{1}{2n+2}}{\frac{1}{2n+2}} \frac{2}{2 + \frac{2}{n}} \right) = 1$$

e

$$\lim x_{2n+1} = \lim \left[-\left((2n+1)\operatorname{sen} \frac{1}{2n+3} \right) \right] = \lim \left(-\frac{\operatorname{sen} \frac{1}{2n+3}}{\frac{1}{2n+3}} \frac{2 + \frac{1}{n}}{2 + \frac{3}{n}} \right) = -1$$

tem-se $\lim x_{2n} \neq \lim x_{2n+1}$, e então (x_n) diverge.

Como (x_n) diverge, a série de Mengoli $\sum_{n=1}^{+\infty} \left[(-1)^n n \operatorname{sen} \frac{1}{n+2} - (-1)^{n+1} (n+1) \operatorname{sen} \frac{1}{n+3} \right]$ diverge.

(24) Tem-se
$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + 3n + 2} = \sum_{n=1}^{+\infty} \frac{1}{(n+1)(n+2)} = \sum_{n=1}^{+\infty} \left(\frac{1}{n+1} - \frac{1}{n+2}\right)$$
.
A série $\sum_{n=1}^{+\infty} \left(\frac{1}{n+1} - \frac{1}{n+2}\right)$ é uma série de Mengoli do tipo $\sum_{n=1}^{+\infty} (x_n - x_{n+1})$, com $k = 1$ e

 $x_n = \frac{1}{n+1}$. Atendendo a que $\lim x_n = 0 \in \mathbb{R}$, então (x_n) converge.

Como (x_n) converge, a série de Mengoli $\sum_{n=1}^{+\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right)$ converge absolutamente, pois $\frac{1}{n+1} - \frac{1}{n+2} \ge 0$ para todo o $n \in \mathbb{N}$, e a sua soma é

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) = x_1 - \lim x_n = \frac{1}{2} - \lim \frac{1}{n+1} = \frac{1}{2}.$$

20

(1) Como
$$\frac{2^{2n}}{3^n+1} = \frac{4^n}{3^n+1} = \left(\frac{4}{3}\right)^n \frac{1}{1+\frac{1}{3^n}} \to (+\infty) \frac{1}{1+0} = +\infty \neq 0$$
, então a série $\sum_{n=1}^{+\infty} \frac{2^{2n}}{3^n+1}$ diverge.

(2) Como
$$\frac{2n-1}{3n+2} = \frac{2-\frac{1}{n}}{3+\frac{2}{n}} \to \frac{2}{3} \neq 0$$
, então a série $\sum_{n=1}^{+\infty} \frac{2n-1}{3n+2}$ diverge.

(3) Como
$$\lim_{n \to \infty} \left(\frac{1}{n^2}\right)^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{\sqrt[n]{n}}\right)^2 = \left(\frac{1}{\lim_{n \to \infty} \frac{1}{n}}\right)^2 = \left(\frac{1}{\lim_{n \to \infty} \frac{1}{n}}\right)^2 = 1^2 = 1 \neq 0,$$

and a series $\sum_{n \to \infty} \left(\frac{1}{n}\right)^{\frac{1}{n}}$ diverges

então a série $\sum_{n=1}^{+\infty} \left(\frac{1}{n^2}\right)^{\frac{1}{n}}$ diverge.

(4) Seja
$$x_n = \frac{(-1)^n e^{n+1}}{1+2^n}$$
. Como

$$\lim x_{2n} = \lim \frac{e^{2n+1}}{1+2^{2n}} = \lim \left[\left(\frac{e^2}{4} \right)^n \frac{e}{\frac{1}{4^n} + 1} \right] = (+\infty) \frac{e}{0+1} = +\infty \neq 0,$$

então $x_n \to 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} \frac{(-1)^n e^{n+1}}{1+2^n}$ diverge.

(5) Seja
$$x_n = (-1)^n \frac{3^n}{n^3 2^n}$$
. Como

$$\lim x_{2n} = \lim \frac{3^{2n}}{(2n)^3 2^{2n}} = \lim \left(\frac{1}{8} \frac{9^n}{n^3 4^n}\right) = \lim \left(\frac{1}{8} \frac{\left(\frac{9}{4}\right)^n}{n^3}\right) = \frac{1}{8} (+\infty) = +\infty \neq 0,$$

então $x_n \to 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} (-1)^n \frac{3^n}{n^3 2^n}$ diverge.

(6) Seja $x_n = \cos(n^2\pi)$. Como

$$\lim x_{2n} = \lim \cos (4n^2\pi) = \lim 1 = 1 \neq 0,$$

então $x_n \nrightarrow 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} \cos\left(n^2\pi\right)$ diverge.

- (7) Como $\lim \cos(e^{-n}) = \cos(e^{-\infty}) = \cos 0 = 1 \neq 0$, então a série $\sum_{n=1}^{+\infty} \cos(e^{-n})$ diverge.
- (8) Como $\lim \frac{n!}{n^2 + 2^n} = \lim \left(\frac{n!}{2^n} \frac{1}{\frac{n^2}{2^n} + 1} \right) = (+\infty) \frac{1}{0+1} = +\infty \neq 0$, então a série $\sum_{n=1}^{+\infty} \frac{n!}{n^2 + 2^n}$ diverge.
 - (9) Como $\cos^2 \frac{1}{n^n} \to \cos^2 \left(\frac{1}{+\infty}\right) = \cos^2 0 = 1 \neq 0$, então a série $\sum_{n=1}^{+\infty} \cos^2 \frac{1}{n^n}$ diverge.
 - (10) Como $\left(1+\frac{2}{n}\right)^n \to e^2 \neq 0$, então a série $\sum_{n=1}^{+\infty} \left(1+\frac{2}{n}\right)^n$ diverge.
 - (11) Seja $x_n = (-1)^n \frac{\sqrt[5]{n}}{1 + \log n}$. Como

$$\lim x_{2n} = \lim \frac{\sqrt[5]{2n}}{1 + \log(2n)} = \lim \left(\frac{(2n)^{1/5}}{\log(2n)} \frac{1}{\frac{1}{\log(2n)} + 1} \right) = (+\infty) \frac{1}{0+1} = +\infty \neq 0,$$

então $x_n \nrightarrow 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} (-1)^n \frac{\sqrt[5]{n}}{1 + \log n}$ diverge.

- (12) Como $e^{1/n!} \to e^{1/(+\infty)} = e^0 = 1 \neq 0$, então a série $\sum_{n=1}^{+\infty} e^{1/n!}$ diverge.
- (13) Seja $x_n = \frac{1}{n!(-n)^{-n}}$. Como $x_{2n} = \frac{(2n)^{2n}}{(2n)!} \to +\infty \neq 0$, então $x_n \neq 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} \frac{1}{n!(-n)^{-n}} \text{ diverge.}$
 - (14) Como $\lim \frac{2+n!}{n!} = \lim \left(1+\frac{2}{n!}\right) = 1 \neq 0$, então a série $\sum_{n=1}^{+\infty} \frac{2+n!}{n!}$ diverge.
 - (15) Como $\lim \sqrt[n]{e} = \lim \frac{e}{e} = \lim 1 = 1 \neq 0$, então a série $\sum_{n=1}^{+\infty} \sqrt[n]{e}$ diverge.
- (16) Seja $x_n = [1 + (-1)^n]$. Como $x_{2n} = 2 \to 2 \neq 0$, então $x_n \to 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} [1 + (-1)^n]$ diverge.

(17) Seja
$$x_n = \cos\left(\frac{(-2)^n}{n!}\right)$$
. Como $\lim x_{2n} = \lim\left[\cos\left(\frac{2^{2n}}{(2n)!}\right)\right] = \cos 0 = 1 \neq 0$, então $x_n \to 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} \cos\left(\frac{(-2)^n}{n!}\right)$ diverge.

(18) Seja
$$x_n = \frac{1}{2 + \cos(n\pi)}$$
. Como $\lim x_{2n} = \lim \frac{1}{2 + \cos(2n\pi)} = \lim \frac{1}{2 + 1} = \frac{1}{3} \neq 0$, então $x_n \neq 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} \frac{1}{2 + \cos(n\pi)}$ diverge.

(19) Seja
$$x_n = \left(\frac{1}{n}\right)^{(-1)^n}$$
. Como

$$\lim x_{2n+1} = \lim \left(\frac{1}{2n+1}\right)^{(-1)^{2n+1}} = \lim \left(\frac{1}{2n+1}\right)^{-1} = \lim (2n+1) = +\infty \neq 0,$$

então $x_n \to 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} \left(\frac{1}{n}\right)^{(-1)^n}$ diverge.

(20) Como
$$\frac{n2^n}{n+2^n} = \frac{n}{\frac{n}{2^n}+1} \to \frac{+\infty}{0+1} = +\infty \neq 0$$
, então a série $\sum_{n=1}^{+\infty} \frac{n2^n}{n+2^n}$ diverge.

(21) Como
$$\operatorname{arctg} \frac{n}{n+1} = \operatorname{arctg} \frac{1}{1+\frac{1}{n}} \to \operatorname{arctg} \frac{1}{1+0} = \operatorname{arctg} 1 = \frac{\pi}{4} \neq 0$$
, então a série
$$\sum_{n=1}^{+\infty} \operatorname{arctg} \frac{n}{n+1} \text{ diverge.}$$

(22) Como
$$\frac{1}{n \log(1+1/n)} = \frac{1/n}{\log(1+1/n)} \to 1 \neq 0$$
, então a série $\sum_{n=1}^{+\infty} \frac{1}{n \log(1+1/n)}$ diverge.

(23) Seja
$$x_n = (-1)^n \frac{n + \log n}{2n + \log^2 n}$$
. Como

$$\lim x_{2n} = \lim \frac{2n + \log(2n)}{4n + \log^2(2n)} = \lim \frac{1 + \frac{\log(2n)}{2n}}{2 + \frac{\log^2(2n)}{2n}} = \frac{1 + 0}{2 + 0} = \frac{1}{2} \neq 0,$$

então $x_n \nrightarrow 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} (-1)^n \frac{n + \log n}{2n + \log^2 n}$ diverge.

(24) Como
$$2^{-1/n} \to 2^0 = 1 \neq 0$$
, então a série $\sum_{n=1}^{+\infty} 2^{-1/n}$ diverge.

(25) Seja
$$x_n = (-1)^{n+2} \frac{n^2}{n^2 + 2}$$
. Como $x_{2n} = \frac{4n^2}{4n^2 + 2} = \frac{1}{1 + \frac{1}{2n^2}} \rightarrow \frac{1}{1+0} = 1 \neq 0$, então $x_n \neq 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} (-1)^{n+2} \frac{n^2}{n^2 + 2}$ diverge.

- (26) Seja $x_n = [1 + (-1)^n]^n$. Como $x_{2n} = [1 + (-1)^{2n}]^{2n} = 2^{2n} \to +\infty \neq 0$, então $x_n \to 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} [1 + (-1)^n]^n$ diverge.
 - (27) Como $n^n e^{-n} = \frac{n^n}{e^n} \to +\infty \neq 0$, então a série $\sum_{n=1}^{+\infty} n^n e^{-n}$ diverge.
- (28) Seja $x_n = (-1)^n \frac{(n+1)^n}{n^n}$. Como $x_{2n} = \frac{(2n+1)^{2n}}{2n^{2n}} = \left(1 + \frac{1}{2n}\right)^{2n} \to e \neq 0$, então $x_n \neq 0$, e assim, a série $\sum_{n=1}^{+\infty} x_n = \sum_{n=1}^{+\infty} (-1)^n \frac{(n+1)^n}{n^n}$ diverge.
 - (29) Como $\frac{2^n}{1+ \operatorname{arctg} n} \to \frac{+\infty}{1+\frac{\pi}{2}} = +\infty \neq 0$, então a série $\sum_{n=1}^{+\infty} \frac{2^n}{1+ \operatorname{arctg} n}$ diverge.
 - (30) Como arcsen $\left(1 \frac{1}{n!}\right) \to \arcsin 1 = \frac{\pi}{2} \neq 0$, então a série $\sum_{n=1}^{+\infty} \arcsin \left(1 \frac{1}{n!}\right)$ diverge.
 - (31) Como $n \operatorname{sen} \frac{1}{n} = \frac{\operatorname{sen} \frac{1}{n}}{\frac{1}{n}} \to 1 \neq 0$, então a série $\sum_{n=1}^{+\infty} n \operatorname{sen} \frac{1}{n}$ diverge.
 - (32) Como

$$\frac{(n+1)^{n+2} + 2^n + n!}{\log n + (n^2 + 1) n^n} = \frac{n^2 n^n}{n^2 n^n} \frac{\left(1 + \frac{1}{n}\right)^2 \left(1 + \frac{1}{n}\right)^n + \frac{1}{n^2} \frac{2^n}{n^n} + \frac{1}{n^2} \frac{n!}{n^n}}{\frac{1}{n^2} \frac{\log n}{n^n} + 1 + \frac{1}{n^2}} = \frac{n!}{n^2 n^n}$$

$$=\frac{\left(1+\frac{1}{n}\right)^2\left(1+\frac{1}{n}\right)^n+\frac{1}{n^2}\frac{2^n}{n^n}+\frac{1}{n^2}\frac{n!}{n^n}}{\frac{1}{n^2}\frac{\log n}{n^n}+1+\frac{1}{n^2}}\to\frac{(1+0)^2\,e+0.0+0.0}{0.0+1+0}=e\neq 0,$$

então a série $\sum_{n=1}^{+\infty} \frac{(n+1)^{n+2} + 2^n + n!}{\log n + (n^2 + 1) n^n}$ diverge.