Groupes

Aperçu

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs

Groupes

- 1. Loi de composition
- 1.1 Loi de composition ; associativité ; commutativité
- 1.2 Élément neutre ; éléments symétrisables
- 1.3 Partie stable; loi induite
- 1.4 Loi interne sur $\mathcal{P}(E)$ déduite d'une loi interne définie sur E
- 1.5 Loi interne définie sur $\mathcal{F}(X, E)$ déduite d'une loi interne sur E
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- Générateurs

- 1. Loi de composition
- 1.1 Loi de composition ; associativité ; commutativité
- 1.2 Élément neutre ; éléments symétrisables
- 1.3 Partie stable; loi induite
- 1.4 Loi interne sur $\mathcal{P}(E)$ déduite d'une loi interne définie sur E
- 1.5 Loi interne définie sur $\mathcal{F}(X, E)$ déduite d'une loi interne sur E
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs

D 1 Soit E un ensemble. On appelle loi de composition interne sur E une application

$$T: E \times E \rightarrow E$$
.

La valeur T(x, y) de T pour un couple $(x, y) \in E \times E$ s'appelle le **composé** de x et de y pour cette loi.

- **E 2** 1. Les applications $(X,Y) \mapsto X \cup Y$ et $(X,Y) \mapsto X \cap Y$ sont des lois de composition sur l'ensemble des parties d'un ensemble E.
 - 2. Dans l'ensemble $\mathbb N$ des entiers naturels, l'addition, la multiplication, l'exponentiation sont des lois de composition interne (les composés de $x \in \mathbb N$ et $y \in \mathbb N$ pour ces lois se notant respectivement x+y, xy ou x.y, et x^y).
 - 3. La soustraction n'est pas une loi de composition interne sur \mathbb{N} puisque 3-7 n'existe pas. Mais c'est une loi de composition interne dans \mathbb{Z} .

D 3 Soit une loi de composition interne $(x, y) \mapsto x \star y$ sur un ensemble E. On dit que \star est **associative** si

$$\forall (x, y, z) \in E^3, (x \star y) \star z = x \star (y \star z).$$

D 4 On dit que deux éléments x et y commutent (ou sont permutables) si

$$y \star x = x \star y$$
.

On dit que \star est **commutative** si deux éléments quelconques de E commutent pour cette loi, c'est-à-dire si

$$\forall (x, y) \in E^2, y \star x = x \star y.$$

- **E 5** La soustraction n'est pas associative dans \mathbb{Z} car $7 (3 1) \neq (7 3) 1$ et n'est pas commutative car $8 4 \neq 4 8$.
- **E 6** La composition des applications est une loi associative, mais en général non commutative dans l'ensemble $\mathcal{F}(E,E)$.

Par exemple, si $f,g:\mathbb{R}\to\mathbb{R}$ sont définies par f(x)=x+1 et $g(x)=x^2$, alors $(g\circ f)(x)=(x+1)^2$ et $(f\circ g)(x)=x^2+1$. Ces deux applications sont bien différentes car elles ne prennent pas la même valeur en 1.

E 7 Quelles sont les propriétés de la loi $x \star y = \frac{x+y}{2}$ dans \mathbb{R} ? La loi \star est commutative, non associative car $4 \star (4 \star 8) = 5$ et $(4 \star 4) \star 8 = 6$.

1. Loi de composition

- 1.1 Loi de composition ; associativité ; commutativité
- 1.2 Élément neutre ; éléments symétrisables
- 1.3 Partie stable ; loi induite
- 1.4 Loi interne sur $\mathcal{P}(E)$ déduite d'une loi interne définie sur E
- 1.5 Loi interne définie sur $\mathcal{F}(X, E)$ déduite d'une loi interne sur E
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs

D 8 Soit une loi de composition interne $(x, y) \mapsto x \star y$ sur un ensemble E. Un élément e de E est dit élément neutre si

$$\forall x \in E, e \star x = x \star e = x.$$

Il existe au plus un élément neutre pour une loi donnée \star , car si e et e' sont éléments neutres, on a $e=e\star e'=e'$.

- **E 9** L'application Id_E est l'élément neutre de la loi de composition \circ dans $\mathscr{F}(E,E)$.
- **E 10** La loi $x \star y = \frac{x+y}{2}$ dans $\mathbb R$ possède-t-elle un élément neutre? La loi \star n'admet pas d'élément neutre puisque $x \star e = x$ n'est réalisé que pour e = x, valeur qui dépend de x.

- **D 11** Soient une loi de composition interne $(x, y) \mapsto x \star y$ sur un ensemble E possédant un élément neutre e et x et x' deux éléments de E.
 - On dit que x' est symétrique de x pour \star si l'on a $x' \star x = x \star x' = e$.
 - On dit qu'un élément x de E est symétrisable s'il possède un symétrique.

1. Loi de composition

- 1.1 Loi de composition ; associativité ; commutativité
- 1.2 Élément neutre ; éléments symétrisables
- 1.3 Partie stable; loi induite
- 1.4 Loi interne sur $\mathcal{P}(E)$ déduite d'une loi interne définie sur E
- 1.5 Loi interne définie sur $\mathcal{F}(X, E)$ déduite d'une loi interne sur E
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs

D 12 Une partie A d'un ensemble E est dite **stable** pour un loi de composition interne \star sur E si le composé de deux éléments de A appartient à A:

$$\forall (x, y) \in A^2, x \star y \in A.$$

L'application $(x, y) \mapsto x \star y$ de $A \times A$ dans A s'appelle alors la **loi induite** sur A par la loi \star .

1. Loi de composition

- 1.1 Loi de composition ; associativité ; commutativité
- 1.2 Élément neutre ; éléments symétrisables
- 1.3 Partie stable; loi induite
- 1.4 Loi interne sur $\mathcal{P}(E)$ déduite d'une loi interne définie sur E
- 1.5 Loi interne définie sur $\mathcal{F}(X, E)$ déduite d'une loi interne sur E
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs

Soit $\varphi: E \times E \to E$ une loi de composition interne sur un ensemble E. $(x, y) \mapsto x \star y$

Cette loi induit une loi de composition interne sur $\mathcal{P}(E)$ définie par

$$\mathcal{P}(E) \times \mathcal{P}(E) \rightarrow \mathcal{P}(E)$$

$$(A, B) \mapsto \{ x \star y \mid x \in A \text{ et } y \in B \}$$

Pourvu que cette notation ne prête pas à confusion¹, on note encore $A \star B$ l'ensemble des éléments $x \star y$ de E tels que $x \in A$ et $y \in B$ (autrement dit, l'image directe de $A \times B$ par l'application $\varphi : E \to E, (x,y) \mapsto x \star y$).

$$A \star B = \{ x \star y \mid x \in A \text{ et } y \in B \}$$

d'où l'équivalence

$$u \in A \star B \iff \exists (x, y) \in A \times B, u = x \star y.$$

Si $a \in E$, on écrit généralement $a \star B$ au lieu de $\{a\} \star B$, et $A \star a$ au lieu de $A \star \{a\}$.

¹Par exemple, si \times désigne une multiplication, $A \times B$ désigne déjà le produit cartésien. On écrira alors plutôt $AB = \{ xy \mid x \in A \text{ et } y \in B \}$.

E 13 L'addition sur \mathbb{Z} induit une loi de composition interne sur $\mathcal{P}(\mathbb{Z})$, par exemple

$$\{3,7,10\} + \{1,5,8\} = \{4,8,11,12,15,18\},\$$

 $10 + \{1,5,8\} = \{11,15,18\},\$
 $\mathbb{Z} + \mathbb{Z} = \mathbb{Z}.$

De même, la multiplication sur $\mathbb Z$ induit une loi de composition interne sur $\mathcal P(\mathbb Z)$, par exemple

$$\{3,7,10\}\$$
 $\{1,5,8\}$ = $\{3,7,10,15,24,35,50,56,80\}$,
 $10\{1,5,8\}$ = $\{10,50,80\}$,
 $2\mathbb{Z} = \{\dots,-8,-6,-4,-2,0,2,4,6,8,\dots\}$

1. Loi de composition

- 1.1 Loi de composition ; associativité ; commutativité
- 1.2 Élément neutre ; éléments symétrisables
- 1.3 Partie stable ; loi induite
- 1.4 Loi interne sur $\mathcal{P}(E)$ déduite d'une loi interne définie sur E
- 1.5 Loi interne définie sur $\mathcal{F}(X, E)$ déduite d'une loi interne sur E
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs

X étant un ensemble quelconque et E un ensemble muni d'une loi de composition interne \star , considérons deux applications f et g de X dans E, c'est-à-dire deux éléments de $\mathscr{F}(X,E)$; on désignera par $f\star g$ l'application définie par

$$f \star g : X \to E$$

 $x \mapsto f(x) \star g(x)$

On dit que $f \star g$ est définie ponctuellement. On voit que si \star est associative et commutative sur E, il en est de même sur $\mathscr{F}(X,E)$. Si \star possède un élément neutre e, la fonction constante prenant cette valeur e pour tout x de E est élément neutre pour la loi sur $\mathscr{F}(X,E)$.

E 14 Soit $X = E = \mathbb{R}$, pour $f, g, s, p \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, on aura

$$s = f + g \iff \forall x \in \mathbb{R}, s(x) = f(x) + g(x);$$

 $p = fg \iff \forall x \in \mathbb{R}, p(x) = f(x)g(x).$

Les applications s et p sont respectivement la somme et le produit des deux fonctions f et g.

- 1. Loi de composition
- 2. La structure de groupe
- 2.1 Groupes
- 2.2 Itérés, puissances, multiples
- 2.3 Groupe produit
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs

1. Loi de composition

- 2. La structure de groupe
- 2.1 Groupes
- 2.2 Itérés, puissances, multiples
- 2.3 Groupe produit
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs

- **D 15** On appelle **groupe** un couple formé d'un ensemble G et d'une loi de composition interne \star sur l'ensemble G associative, possédant un élément neutre et pour laquelle tout élément est symétrisable. Autrement dit,
 - $\forall (x, y, z) \in G^3, x \star (y \star z) = (x \star y) \star z.$
 - $\exists e_G \in G, \forall x \in G, e_G \star x = x \star e_G = x.$
 - $\forall x \in G, \exists x' \in G, x \star x' = x' \star x = e_G.$

Si de plus la loi \star est commutative, on dit que le groupe est commutatif ou abélien.

Le cardinal d'un groupe fini est généralement appelé son **ordre**, noté |G|.

- P 16 Soit (G, \star) un groupe. Alors
 - 1. G est non-vide : il contient au moins son élément neutre.
 - 2. L'élément neutre de G est unique.
 - 3. Le symétrique de tout élément de G est unique.

E 17

- 1. Munis de la multiplication usuelle, $(\mathbb{Q}^{\star}, \cdot), (\mathbb{R}^{\star}, \cdot), (\mathbb{R}^{\star}, \cdot), (\mathbb{C}^{\star}, \cdot)$ sont des groupes commutatifs. L'élément neutre est 1.
- 2. Munis de l'addition usuelle, $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ sont des groupes commutatifs. L'élément neutre est 0 et le symétrique de x est -x. En revanche, $(\mathbb{N},+)$ n'est pas un groupe car si $n \in \mathbb{N}$ est strictement positif, il n'a pas de symétrique pour +.

et $b \in \mathbb{C}$, l'élément neutre est l'identité $z \mapsto z$ et le symétrique de $z \mapsto az + b$ est $z \mapsto \frac{1}{a}z - \frac{b}{a}$.

E 19 Pour $n \in \mathbb{N}^*$, (\mathbb{U}_n, \cdot) est un groupe fini d'ordre n.

On emploie le mot **inverse** au lieu du mot symétrique, et le mot **inversible** au lieu du mot symétrisable. L'inverse de x se note alors généralement

$$x^{-1}$$
.

Parfois l'élément neutre e_G se note 1 (ou 1_G) et s'appelle élément unité (ou unité).

P 20 Soit (G, \star) un groupe. Alors, pour tous $x, y \in G$

$$(x^{-1})^{-1} = x$$
 et $(x \star y)^{-1} = y^{-1} \star x^{-1}$.

P 21 Soit (G, \star) un groupe. Pour tous $a, b, x \in G$,

$$(a \star x = b \iff x = a^{-1} \star b)$$
 et $(x \star a = b \iff x = b \star a^{-1})$.

En particulier, on a les implications

$$(a \star x = a \star y \implies x = y)$$
 et $(x \star a = y \star a \implies x = y)$.

Quand on déduit l'égalité x = y de l'égalité $a \star x = a \star y$, on dit que l'on simplifie à gauche par a ; si on la déduit de $x \star a = y \star a$, on dit que l'on simplifie à droite par a. Si le groupe est commutatif, on se contente de dire que l'on simplifie par a.

Supposons la loi de composition interne commutative notée $(x, y) \mapsto x + y$, comme une addition.

L'élément neutre se note souvent 0 (ou 0_G) et s'appelle zéro ou élément nul (ou parfois origine).

La définition de groupe se traduit comme suit:

- $\forall (x, y, z) \in G^3, x + (y + z) = (x + y) + z.$
- $\forall x \in G, \exists x' \in G, x + x' = x' + x = 0_G.$

À laquelle il faut rajouter la commutativité

 $\forall (x, y) \in G^2, x + y = y + x.$

N

Convention Nous conviendrons qu'une loi notée additivement est toujours associative et commutative.

N

Supposons la loi de composition interne commutative notée $(x, y) \mapsto x + y$, comme une addition.

On dit **opposé** au lieu de symétrique, et on note l'opposé de x

$$-x$$

L'équation

$$a + x = b$$

possède une et une seule solution à savoir

$$x = b + (-a)$$

que l'on écrit d'ailleurs

$$x = b - a$$
.

Convention Nous conviendrons qu'une loi notée additivement est toujours associative et commutative.

- 1. Loi de composition
- 2. La structure de groupe
- 2.1 Groupes
- 2.2 Itérés, puissances, multiples
- 2.3 Groupe produit
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs

Ν

Supposons la loi de composition interne notée $(x, y) \mapsto x \star y$, Dans ce cas, étant donnés des éléments x_1, x_2, \dots, x_n de G, on pose par définition

$$\mathop{\bigstar}\limits_{i=1}^{n} x_{i} = x_{1} \star x_{2} \star \cdots \star x_{n} = \left(x_{1} \star x_{2} \star \cdots \star x_{n-1}\right) \star x_{n}$$

(récurrence sur n), et on a alors la relation pour tout entier p tel que $1 \le p \le n$,

$$x_1 \star x_2 \star \dots \star x_n = (x_1 \star x_2 \star \dots \star x_p) \star (x_{p+1} \star x_2 \star \dots \star x_n)$$

Lorsque la loi de composition interne est notée comme une multiplication, on écrit

$$\prod_{i=1}^n x_i = x_1 \cdots x_n.$$

Lorsque la loi de composition interne est notée comme une addition, on écrit

$$\sum_{i=1}^{n} x_i = x_1 + \dots + x_n.$$

- **D 22** Soit (G, \star) un groupe, d'élément neutre e_G et $x \in G$. On définit les **puissances** entières de x de la manière suivante:
 - On pose $x^0 = e_G$.
 - Pour tout $n \in \mathbb{N}^*$, on pose $x^n = x \star x^{n-1}$, c'est-à-dire

$$x^n = x \star x \star \cdots \star x$$
 (*n* facteurs).

Pour tout $n \in \mathbb{N}^*$, on pose $x^{-n} = (x^{-1})^n$.

L'élément x^n est donc bien un élément du groupe (G, \star) .

À l'aide de l'associativité de la multiplication dans G, on vérifie facilement les règles de calculs suivantes.

P 23 Pour tout $x \in G$ et tout $(p,q) \in \mathbb{Z}^2$,

$$x^{p}x^{q} = x^{p+q}$$
 et $(x^{p})^{-1} = x^{-p}$ et $(x^{p})^{q} = x^{pq}$.

N Lorsqu'une loi de groupe sur G est noté + ayant pour élément neutre 0_G , on note à la place

Si
$$n \in \mathbb{N}^*$$
, $n \cdot x = x + x + \dots + x$ (n facteurs),

$$\blacktriangleright$$
 et $(-n) \cdot x = n \cdot (-x)$ si n est un entier négatif.

On dit que les nx sont les **multiples entiers** de x. On retrouve les formules

$$px + qx = (p+q)x$$
 et $-(px) = (-p)x$ et $p(qx) = (pq)x$.

On a aussi la relation

R

$$px + py = p(x + y).$$

Dans un groupe quelconque G (donc noté multiplicativement), la formule analogue

$$x^p y^p = (xy)^p$$

est fausse en général. Par exemple

$$(xy)^2 = xyxy \neq xxyy = x^2y^2,$$

sauf si x et y commutent.

- 1. Loi de composition
- 2. La structure de groupe
- 2.1 Groupes
- 2.2 Itérés, puissances, multiples
- 2.3 Groupe produit
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs

T 24 Soient deux groupes (G_1, T) et (G_2, \bot) . On définit une loi \star sur $G = G_1 \times G_2$ par

$$\left(x_1,x_2\right)\star\left(y_1,y_2\right)=\left(x_1\top y_1,x_2\bot y_2\right).$$

- 1. La loi \star confère à $G_1 \times G_2$ une structure de groupe appelé **produit direct des groupes** (G_1, T) et (G_2, \bot) .
- 2. Le produit de deux groupes commutatifs est un groupe commutatif.

De manière analogue, on peut définir le produit direct $G = G_1 \times \cdots \times G_n$ de n groupes G_1, \ldots, G_n .

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 3.1 Sous-groupes d'un groupe
- 3.2 Sous-groupes de $(\mathbb{Z}, +)$
- 3.3 Intersection de sous-groupes
- 3.4 Sous-groupes d'un groupe fini
- 4. Morphismes de groupes
- 5. Générateurs

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 3.1 Sous-groupes d'un groupe
- 3.2 Sous-groupes de $(\mathbb{Z}, +)$
- 3.3 Intersection de sous-groupes
- 3.4 Sous-groupes d'un groupe fini
- 4. Morphismes de groupes
- 5. Générateurs

- **D 25** Soit (G, \star) un groupe. On appelle **sous-groupe** de G une partie H de G possédant les propriétés suivantes
 - 1. L'élément neutre de G appartient à H

$$e_G \in H$$
;

2. H est stable pour \star , c'est-à-dire

$$\forall (x, y) \in H^2, x \star y \in H;$$

3. H est stable par passage à l'inverse, c'est-à-dire

$$\forall x \in H, x^{-1} \in H.$$

P 26 Soit (G, \star) un groupe et H une partie de G. Alors H est un sous-groupe de G si, et seulement si

$$H \neq \emptyset$$
 et $\forall (x, y) \in H^2, x \star y^{-1} \in H$.

P 27

1. Soient (G, \star) un groupe et H un sous-groupe de G. Alors (H, \star) est lui-même un groupe pour la loi de composition induite sur H par la loi de composition de G:

$$\begin{array}{ccc} H \times H & \to & H \\ (x,y) & \mapsto & x \star y \end{array}.$$

2. Réciproquement, si H est une partie du groupe G telle que (H, \star) est un groupe, alors H est un sous-groupe de G.

Dans la pratique, pour montrer qu'un ensemble H est un groupe, il peut être plus facile de montrer que c'est un sous-groupe d'un groupe connu.

E 28

- 1. Si (G, \star) est un groupe d'élément neutre e, alors $\{e\}$ est un sous-groupe de G. De même, G est un sous-groupe de G. Le sous-groupe $\{e\}$ est appelé sous-groupe trivial de G.
- 2. Tout sous-groupe de G, distinct de $\{e\}$ et G est appelé sous-groupe propre de G.
- 3. Chacun des groupes $(\mathbb{Q}^*,.),(\mathbb{R}^*,.),(\mathbb{C}^*,.)$ est un sous-groupe de tous les suivants.
- 4. L'ensemble $\mathbb U$ des nombres complexes de module un est un sous-groupe de $\mathbb C^\star$. En effet, 1 est de module un $(1 \in \mathbb U)$, si z est de module un, alors 1/z est de module un (car |1/z| = 1/|z|), et si z, w sont de module un, alors zw aussi (car |zw| = |z| |w|).
- 5. La géométrie élémentaire fournit de nombreux exemples de sous-groupes du groupe des permutations : le groupe des translations sur la droite, ou dans le plan, ou dans l'espace ; le groupe des rotations autour d'un point dans le plan ou dans l'espace ; le groupe des déplacements dans le plan, ou dans l'espace ; le groupe des homothéties de centre donné et de rapport *non nul* dans le plan ou dans l'espace, etc, etc,...

En notation additive, une partie H d'un groupe (G,+) est un sous-groupe de G si, et seulement si

 $0_G \in H$,

R

- $\forall (x, y) \in H^2, x + y \in H,$
- $\forall x \in H, -x \in H.$

Ou encore, de manière équivalente

$$H \neq \emptyset$$
 et $\forall (x, y) \in H^2, x - y \in H$.

- **E 29** 1. Chacun des groupe $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$ est un sous-groupe de tous les suivants.
 - 2. \mathbb{R}_+^* est un sous-groupe de $(\mathbb{R}^*,.)$ mais n'est pas un sous-groupe de $(\mathbb{R},+)$.

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 3.1 Sous-groupes d'un groupe
- 3.2 Sous-groupes de $(\mathbb{Z}, +)$
- 3.3 Intersection de sous-groupes
- 3.4 Sous-groupes d'un groupe fini
- 4. Morphismes de groupes
- 5 Générateurs

T 30 Pour $a \in \mathbb{Z}$, l'ensemble

$$a\mathbb{Z} = \{ ka \mid k \in \mathbb{Z} \}$$

est un sous-groupe de $(\mathbb{Z}, +)$.

Démonstration. En effet, $a\mathbb{Z} \neq \emptyset$ car $0 \in a\mathbb{Z}$.

Soient $x, y \in a\mathbb{Z}$. Il existe donc $x', y' \in \mathbb{Z}$ tel que x = ax' et y = ay'. On a donc

$$x - y = (ax') - (ay') = a(x' - y')$$
 et $x' - y' \in \mathbb{Z}$,

c'est-à-dire, $x - y \in a\mathbb{Z}$.

Réciproquement,

T 31 Soit H un sous-groupe de de $(\mathbb{Z}, +)$. Il existe un entier $a \ge 0$ et un seul tel que $H = a\mathbb{Z}$.

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 3.1 Sous-groupes d'un groupe
- 3.2 Sous-groupes de $(\mathbb{Z}, +)$
- 3.3 Intersection de sous-groupes
- 3.4 Sous-groupes d'un groupe fini
- 4. Morphismes de groupes
- 5. Générateurs

Cette proposition se généralise à une intersection quelconque de sous-groupes d'un groupe G.

T 33 Soit $(H_i)_{i \in I}$ une famille de sous-groupes d'un groupe (G, \star) . Alors l'intersection des H_i ,

$$H = \bigcap_{i \in I} H_i$$

est encore un sous-groupe de (G, \star) .

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 3.1 Sous-groupes d'un groupe
- 3.2 Sous-groupes de $(\mathbb{Z}, +)$
- 3.3 Intersection de sous-groupes
- 3.4 Sous-groupes d'un groupe fini
- 4. Morphismes de groupes
- 5. Générateurs

T 34 Théorème de Lagrange

Soit G un groupe fini et H un sous-groupe de G. Alors l'ordre de H divise l'ordre de G.

Démonstration. En exercice.

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 4.1 Définitions
- 4.2 Noyau et image d'un morphisme de groupes
- Générateurs

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 4.1 Définitions
- 4.2 Noyau et image d'un morphisme de groupes
- 5. Générateurs

D 35 Soit (G, \star) et (H, \top) deux groupes. On appelle morphisme de groupes ou homomorphisme de groupes une application $f: G \to H$ telle que

$$\forall (x, y) \in G^2, f(x \star y) = f(x) \top f(y).$$

- Lorsque l'application f est bijective, on dit que f est un **isomorphisme de** groupes.
- Lorsque G = H, on dit que f est un endomorphisme de G.
- Lorsque G = H et que f est bijectif, on dit que f est un **automorphisme** de G.
- **D** 36 S'il existe un isomorphisme de (G, \star) dans (H, T), on dit que (G, \star) et (H, T) sont isomorphes.

E 37

- 1. $(\mathbb{R}_+^*,.) \rightarrow (\mathbb{R},+)$ est un isomorphisme de groupes.
 - $x \mapsto \ln x$
- 2. $(\mathbb{C},+) \rightarrow (\mathbb{C},+)$ est un automorphisme de groupes.
 - $z \mapsto \bar{z}$
- 3. $(\mathbb{Z},+) \rightarrow (\mathbb{R}_{+}^{\star},.)$ est un morphisme de groupes non-surjectif.
 - $n \mapsto 5^n$
- 4. $(\mathbb{Z},+) \rightarrow (\{-1,1\},.)$ est un morphisme de groupes non-injectif.
 - $n \mapsto (-1)^n$

$$\begin{array}{ccc} \mathcal{P}(E) & \to & \mathcal{P}(E) \\ A & \mapsto & \mathbb{C}_E A \end{array}$$

est un isomorphisme de $(\mathcal{P}(E), \cap)$ dans $(\mathcal{P}(E), \cup)$ et également un isomorphisme de $(\mathcal{P}(E), \cup)$ dans $(\mathcal{P}(E), \cap)$ (loi de Morgan). Ce n'est cependant pas un automorphisme car la loi n'est pas la même au départ et à l'arrivée.

- 1. $f(e_G) = e_H$.
- 2. $\forall x \in G, f(x^{-1}) = (f(x))^{-1}$.
- 3. $\forall x \in G, \forall n \in \mathbb{Z}, f(x^n) = (f(x))^n$.

- 1. $f(e_G) = e_H$.
- 2. $\forall x \in G, f(x^{-1}) = (f(x))^{-1}$.
- 3. $\forall x \in G, \forall n \in \mathbb{Z}, f(x^n) = (f(x))^n$.

P 40 La composée de deux morphismes de groupes est un morphisme de groupes.

P 41 Si un morphisme de groupes est bijectif, l'application réciproque est encore un morphisme de groupes.

T 42 Soit f un morphisme du groupe G dans le groupe H.

1. Si H' est un sous-groupe de H, alors l'image réciproque

$$f^{-1}\left(H'\right) = \left\{ \; x \in G \; \middle| \; f(x) \in H' \; \right\}$$

est un sous-groupe de G.

2. Si G' est un sous-groupe de G, alors l'image

$$f\left(G'\right) = \left\{ f(x) \mid x \in G' \right\} = \left\{ y \in H \mid \exists x \in G', y = f(x) \right\}$$

est un sous-groupe de H.

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 4.1 Définitions
- 4.2 Noyau et image d'un morphisme de groupes
- 5. Générateurs

D 43 Soit f un morphisme du groupe G dans le groupe H. L'ensemble des antécédents de l'élément neutre de H par f est appelé **noyau** de f et se note $\ker(f)$.

$$\ker(f) = \left\{ \left. x \in G \mid f(x) = e_H \right. \right\} = f^{-1} \left(\left\{ \left. e_H \right. \right\} \right).$$

L'image f(G) de f se note Im(f).

$$Im(f) = \{ f(x) \mid x \in G \} = \{ y \in H \mid \exists x \in G, y = f(x) \}.$$

$$x \in \ker f \iff x \in G \text{ et } f(x) = e_H.$$

 $y \in \operatorname{Im}(f) \iff \exists x \in G, y = f(x).$

- P 44 Soit f un morphisme du groupe G dans le groupe H.
 - 1. ker(f) est un sous-groupe de G.
 - 2. Im(f) est un sous-groupe de H.

E 45 L'application

$$\varphi: (\mathbb{R}, +) \to (\mathbb{C}^*, \cdot)$$

$$t \mapsto e^{it}$$

est un morphisme de groupe. On a

$$\ker(\varphi) = 2\pi \mathbb{Z} = \{ k2\pi \mid k \in \mathbb{Z} \} \quad \text{et} \quad \operatorname{Im}(\varphi) = \mathbb{U} = \{ z \in \mathbb{C} \mid |z| = 1 \}.$$

$$f: (\mathbb{C}^*,.) \to (\mathbb{R}^*,.)$$
$$z \mapsto |z|$$

est un morphisme de groupes. On a

$$\ker(f) = \left\{ z \in \mathbb{C}^* \mid |z| = 1 \right\} = \mathbb{U} \quad \text{ et } \quad \operatorname{Im}(f) = \mathbb{R}_+^*.$$

E 47 L'application

$$\pi: (\mathbb{Z}, +) \to (\mathbb{U}_n, .)$$

$$k \mapsto e^{2ik\pi/n}$$

est un morphisme de groupes surjectif. On a

$$\ker(\pi) = n\mathbb{Z}.$$

T 48 Soient G et H deux groupes et f un morphisme de G dans H.

- 1. f est injectif si et seulement si $ker(f) = \{e_G\}$.
- 2. f est surjectif si et seulement si Im(f) = H.

- 1. Si $b \notin \text{Im}(f)$, l'équation f(x) = b d'inconnue $x \in G$ n'a pas de solution.
- 2. Si $b \in \text{Im}(f)$, alors en notant x_0 un antécédent de b par f, on a

$$\{ x \in G \mid f(x) = b \} = x_0 \ker(f) = \{ x_0 h \mid h \in \ker(f) \}.$$

Si la loi de G est notée comme une addition.

$$\{ x \in G \mid f(x) = b \} = x_0 + \ker(f) = \{ x_0 + h \mid h \in \ker(f) \}.$$

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs
- 5.1 Sous-groupe engendré par une partie
- 5.2 Description des groupes monogènes

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs
- 5.1 Sous-groupe engendré par une partie
- 5.2 Description des groupes monogènes

Soit A une partie d'un groupe G. Il existe des sous-groupes de G qui contiennent A (par exemple G lui-même); l'intersection de tous ces sous-groupes

$$\bigcap_{\substack{H \text{ sous-groupe de } G\\ A \subset H}} H$$

est encore un sous-groupe et contient encore A, tout en étant contenue, par construction même, dans tout sous-groupe de G contenant A. Ce sous-groupe intersection est donc le «plus petit» de tous les sous-groupes de G contenant A.

- **D 50** Soient (G, \star) un groupe et A une partie de G.
 - Le sous-groupe engendré par A est le plus petit sous-groupe contenant cette partie A. On le note souvent $\langle A \rangle$ ou $\mathbf{Gr}(A)$.
 - On dit que G est un groupe monogène lorsqu'il existe $a \in G$ tel que $\langle a \rangle = G$. Un tel a est un générateur de G.
 - On qualifie de cyclique tout groupe monogène fini.

T 51 Soit G un groupe et $a \in G$.

 \blacktriangleright En notation multiplicative, le sous-groupe de G engendré par l'élément a est

$$\langle a \rangle = \left\{ \left. a^k \mid k \in \mathbb{Z} \right. \right\}.$$

 \blacktriangleright En notation additive, le sous-groupe de G engendré par l'élément a est

$$\langle a \rangle = \{ ka \mid k \in \mathbb{Z} \}.$$

Un groupe monogène est donc toujours abélien.

- **E 52** Dans (\mathbb{C}^*, \cdot) ,
 - le sous-groupe engendré par i est \mathbb{U}_4 ;
 - ▶ le sous-groupe engendré par -1 est $\mathbb{U}_2 = \{-1, +1\}$.
- **E 53** Dans $(\mathbb{Z}, +)$, le sous groupe engendré par n est $n\mathbb{Z}$.
- **E 54** 1. $(\mathbb{Z}, +)$ est un groupe monogène, engendré par 1.
 - 2. (\mathbb{U}_n, \cdot) est un groupe cyclique, engendré par $\omega = e^{2i\pi/n}$.

$$\langle a,b\rangle = \left\{ a^i b^j \mid (i,j) \in \mathbb{Z}^2 \right\}.$$

En notation additive, cela s'écrirait $\langle a, b \rangle = \{ ia + jb \mid (i, j) \in \mathbb{Z}^2 \}$.

T 56 Montrer que $\langle A \rangle$ est l'ensemble de tous les produits que l'on peut former à partir des éléments de A et de leurs inverses

$$\langle A \rangle = \left\{ \left. x_1 \dots x_n \, \right| \, n \in \mathbb{N} \, \text{ et } \, \forall i \in \llbracket 1, n \rrbracket, x_i \in A \, \text{ ou } \, x_i^{-1} \in A \, \right\}.$$

- 1. Loi de composition
- 2. La structure de groupe
- 3. Sous-groupes
- 4. Morphismes de groupes
- 5. Générateurs
- 5.1 Sous-groupe engendré par une partie
- 5.2 Description des groupes monogènes

D 57 Soit $a \in G$.

- Si le sous-groupe $\langle a \rangle$ est fini, on appelle **ordre** de a le cardinal de $\langle a \rangle$.
- Si le sous-groupe $\langle a \rangle$ est infini, on dit que a est d'ordre infini.

On peut noter $\omega(a)$ l'ordre de a.

T 58 Description des groupes monogènes

Soit $G = \langle a \rangle$ un groupe monogène. Alors,

- 1. Si a est d'ordre infini, alors G est isomorphe au groupe $(\mathbb{Z}, +)$.
- 2. Si a est d'ordre fini $p \in \mathbb{N}^*$, alors G est isomorphe au groupe (\mathbb{U}_p, \cdot) .
- **C 59** Soit (G, \cdot) un groupe d'élément neutre e_G et $a \in G$.

Les assertions suivantes sont équivalentes.

- (i) L'ensemble $\{k \in \mathbb{N}^* \mid a^k = e_G\}$ est non vide et son minimum est égal à p.
- (ii) Pour tout $k \in \mathbb{Z}$, on a l'équivalence $(a^k = e_G \iff k \in p\mathbb{Z})$.
- (iii) Les éléments de $\langle a \rangle$ sont exactement e_G, a, \ldots, a^{p-1} et ils sont deux à deux distincts.
- (iv) Le sous-groupe $\langle a \rangle = \{ a^k \mid k \in \mathbb{Z} \}$ est fini de cardinal p.

Dans ce cas p est l'ordre de a.

Soit a un élément d'un groupe fini G. Alors l'ordre de a divise l'ordre de G.

C 61 Soit G un groupe fini d'ordre n. On a alors

$$\forall x \in G, x^n = e_G.$$