Math 137 Problem Set 9

Lev Kruglyak

May 3, 2022

I collaborated with Ignasi Segura Vicente on this problem set.

Throughout, K is assumed to be an algebraically closed field.

Problem 1 (bonus). Let $n \geq 2$ and let $F_d \cong K^{\binom{n+d}{n}}$ be the vector space of polynomials $f \in K[X_1, \ldots, X_n]$ of degree $\leq d$.

- a) If d > 2n 3, show that there is a nonempty Zariski open subset $U \subseteq F_d$ such that the set $\mathcal{V}(f) \subseteq K^n$ doesn't contain a straight line for any $f \in U$.
- b) If d < 2n 3, show that for every $f \in F_d$, if $\mathcal{V}(f) \subseteq K^n$ contains a straight line, then it contains infinitely many.
- c) (too difficult for a bonus problem and totally unfair) If $d \leq 2n 3$, show that there is a nonempty Zariski open subset $U \subseteq F_d$ such that the set $\mathcal{V}(f)$ contains at least one straight line for all $f \in U$.

Hint: Look at the proof of Theorem 13.5.1. What is the dimension of "the space of straight lines" in K^n ? What is the dimension of the space of $f \in F_d$ such that $\mathcal{V}(f)$ contains a particular straight line?

Problem 2. Show that a polynomial $f \in K[X_1, ..., X_n]$ vanishes on the entire line spanned by a nonzero vector $x \in K^n$ if and only if all of its homogeneous parts f_d vanish at x.

Let $f \in K[X_1, ..., X_n]$ be an arbitrary polynomial with homogenization $f = \sum_{d \geq 0} f_d$. It's trivial to see that if all f_d vanish at λx for all $\lambda \in K$, so does f, since it is a sum of the f_d . Next suppose in the forward direction that f vanishes at all λx . Let D be the maximal integer such that $f_d \neq 0$, so $f = f_0 + \lambda f_1 + \cdots \lambda$. Note that for any nonzero vector $x \in K^n$, we have $f(\lambda x) = \sum_{d \geq 0}^{D} \lambda^d f_d(x)$, since each f_d is homogeneous of degree d. Say we choose some real numbers $\lambda_1, \ldots, \lambda_D$. Then we have the matrix relation

$$\begin{bmatrix} \lambda_1^0 & \lambda_1^1 & \cdots & \lambda_1^D \\ \lambda_2^0 & \lambda_2^1 & \cdots & \lambda_2^D \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_D^0 & \lambda_D^1 & \cdots & \lambda_D^D \end{bmatrix} \begin{bmatrix} f_0(x) \\ f_1(x) \\ \vdots \\ f_D(x) \end{bmatrix} = 0.$$

Matrices of this form are called *Vandermonde matrices*, and we can choose for example $\lambda_1 = 1, \lambda_2 = 2, \ldots$ to get an invertible matrix in characteristic zero, and some other distinct set of values if K is an infinite field of characteristic p. This matrix being invertible means that $f_d(x) = 0$ for all d, so we are done.

Problem 3. Let $A = \mathcal{V}(I)$ for an ideal I of $K[X_1, \ldots, X_n]$. Let $S \subseteq K[X_0, \ldots, X_n]$ be the set of homogenizations of elements of I at X_0 . Show that $\mathcal{V}_{\mathbb{P}^n_K}(S)$ is the Zariski closure of the image of A under the 0-th standard affine chart map φ_0 .

First we'll show that $\varphi_0(A) \subset \mathcal{V}_{\mathbb{P}^n_K}(S)$, this will imply that $\overline{\varphi_0(A)} \subset \mathcal{V}_{\mathbb{P}^n_K}(S)$ since the later is an algebraic set. Let $(x_1, \ldots, x_n) \in A$, so $\varphi_0(x_1, \ldots, x_n) = [1 : x_1 : \cdots : x_n]$. Then $[1 : x_1 : \cdots : x_n] \in \mathcal{V}_{\mathbb{P}^n_K}(S)$ because

$$^{h}f(1:x_{1}:\cdots:x_{n})=1^{\deg f}f\left(\frac{x_{1}}{1},\cdots,\frac{x_{n}}{1}\right)=0,$$

where ${}^{h}f$ denotes the homogenization of f. Next, we'll show that

$$\mathcal{V}_{\mathbb{P}^n_K}(S) \subset \bigcap_{\varphi_0(A) \subset H \text{ algebraic}} H = \overline{\varphi_0(A)}.$$

This is equivalent to checking that every homogeneous polynomial $g \in K[x_0, \ldots, x_n]$ such that $g(1, x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$ vanishes everywhere in A must also satisfy $g(0, x_1, \ldots, x_n)$ vanishing everywhere on $B = \bigcap_{f \in I} \mathcal{V}_{K^n}(^h f(0, x_1, \ldots, x_n)) \subset K^n$. By Problem 2 however, since $g(1, x_1, \ldots, x_n)$ vanishes everywhere on A, the homogeneous parts also do. This implies that $g(0, x_1, \ldots, x_n)^k \in I$ since $\mathcal{I}(A) = \sqrt{I}$. Thus by definition $g(0, x_1, \ldots, x_n)^k$ vanishes everywhere on B and so $g(0, x_1, \ldots, x_n)$ vanishes everywhere in B as well, completing the proof.

Problem 4. Any invertible linear map $g:K^{n+1}\to K^{n+1}$ induces a map $f:\mathbb{P}^n_K\to\mathbb{P}^n_K$ sending the line spanned by $x\in K^{n+1}$ to the line spanned by $g(x)\in K^{n+1}$. Maps $f:\mathbb{P}^n_K\to\mathbb{P}^n_K$ of this form are called projective transformations.

- a) Consider the projective line $\mathbb{P}^1_K = K \sqcup \{\infty\}$. Let P, Q, R be three distinct points in \mathbb{P}^1_K . Show that there is a projective transformation $f: \mathbb{P}^1_K \to \mathbb{P}^1_K$ sending P to 0, Q to 1, and R to ∞ .
- b) We say that points P_1, \ldots, P_m in \mathbb{P}^n_K are in general linear position if no d+2 of them lie on a d-dimensional linear subspace for any $0 \le d \le \min(m-2, n-1)$. Let the points $P_1, \ldots, P_{n+2} \in \mathbb{P}^n_K$ be in general linear position and let $Q_1, \ldots, Q_{n+2} \in \mathbb{P}^n_K$ be in general linear position. Show that there is a unique projective transformation $f: \mathbb{P}^n_K \to \mathbb{P}^n_K$ sending P_i to Q_i for $i=1,\ldots,n+2$.
- (a) Let p,q,r be nonzero representatives of the equivalence classes $P,Q,R\in\mathbb{P}^1_K$ respectively, i.e. nonzero points on the lines P,Q,R. The lines are distinct, so p,q,r are pairwise linearly independent. Let's choose p,r. We know that these form a basis for K^2 . Then we can write q=ap+br for some nonzero $a,b\in K$. Now consider the linear transformation $L:K^2\to K^2$ given by sending p to [1/a:0] and r to [0:1/b] for some nonzero $k\in K$. Then in the induced linear transformation $\widetilde{L}:\mathbb{P}^1_K\to\mathbb{P}^1_K$ sends P to a line of slope 0/(1/a)=0, Q to a line of slope (b/b)/(a/a)=1, and R to a line of slope $(1/b)/0=\infty$.
- (b) As in (a), let's chose representatives $p_1, \ldots, p_{n+2} \in K^{n+1}$ for the lines P_1, \ldots, P_{n+2} and q_1, \ldots, q_{n+2} for Q_1, \ldots, Q_{n+2} . Since these lines are in general linear position, (p_1, \ldots, p_{n+1}) and (q_1, \ldots, q_{n+1}) are bases for K^{n+1} . Then write $p_{n+2} = a_1p_1 + \cdots + a_{n+1}p_{n+1}$ and $q_{n+2} = b_1p_1 + \cdots + b_{n+1}p_{n+1}$. Then the linear map $L: K^{n+1} \to K^{n+1}$ which sends p_i to q_ib_i/a_i .

We claim that the induced linear map $\widetilde{L}: \mathbb{P}^n_K \to \mathbb{P}^n_K$ sends P_i to Q_i . Note that for all $i \leq n+1$, $L(p_i) = (b_i/a_i)q_i$ so $\widetilde{L}(P_i) = Q_i$. For i = n+2, we have $L(p_i) = (b_1/a_1)a_1q_1 + \cdots + (b_{n+1}/a_{n+1})a_{n+1}q_{n+1} = b_1q_1 + \cdots + b_{n+1}q_{n+1} = q_{n+2}$ so $\widetilde{L}(P_i) = Q_i$ and we are done.

Problem 5 (Pappus's hexagon theorem). Let $g \neq h$ be lines in \mathbb{P}^2_K that intersect in the point P. Let A, B, C be points on g and A', B', C' be points on h (all seven points P, A, B, C, A', B', C' distinct). Let P be the point of intersection of the lines P and P and P be the point of intersection of the lines P and P and P be the point of intersection of the lines P and P and P be the point of intersection of the lines P and P and P be the point of intersection of the lines P and P and P be the point of intersection of the lines P and P and P are collinear. (Hint: Apply a projective transformation to for example make P = [0:0:1], A = [1:0:0], B = [1:0:1], C = [r:0:1], A' = [0:1:1], B' = [0:1:0], C' = [0:s:1]. Then compute P and P are collinear.

Since A, B, A', and B' are in general linear position, by the previous problem there is a projective transformation L which maps A to [0:0:1], B to [1:0:1], A' to [0:1:1], and B' to [0:1:0] since these are also in general linear position. This projection maps P to [0:0:1] because it is the intersection of the lines AB and A'B'. Similar arguments show that C and C' must map to [r:0:1] and [0:s:1] respectively. Now we can calculate that the intersection of f(A)f(B') and f(A')f(B') is [-1:1:0], the intersection of f(A')f(C) and f(A')f(C') is [r-rs:s:1], and the intersection of f(B)f(C') and f(B')f(C) is [r:s-rs:1]. It's easy to check that these points of intersection are colinear in the image of the projective transformation, so they must be colinear in the preimage, i.e. X, Y, Z are colinear.