Econ 240A Econometrics

Fall 2018

Problem Set 2 Solutions

Due date: Sept. 17, 2018 Fengshi Niu

1. Probability integral transform

Since $F : \mathbb{R} \to [0,1]$ is continuous and strictly increasing, its inverse, $F^{-1} : (0,1) \to \mathbb{R}$, exists and is also strictly increasing. This implies $x \le y \Leftrightarrow F^{-1}(x) \le F^{-1}(y)$. For any $y \in (0,1)$,

$$F_Y(y) = P(Y \le y) = P(F(X) \le y) = P(F^{-1}(F(X)) \le F^{-1}(y))$$

$$= P(X \le F^{-1}(y))$$

$$= F(F^{-1}(y))$$

$$= y.$$

This shows

$$F_Y(y) = \begin{cases} 0 & x \le 0 \\ y & 0 < y < 1 \\ 1 & y \ge 1 \end{cases}.$$

Hence, $Y \sim U[0, 1]$.

2. Inverse transform sampling

Since $F : \mathbb{R} \to [0,1]$ is continuous and strictly increasing, its inverse, $F^{-1} : (0,1) \to \mathbb{R}$, is well defined. Also notice $x \le y \Leftrightarrow F(x) \le F(y)$. For any $x \in \mathbb{R}$,

$$F_X(x) = P(X \le x) = P\left(F^{-1}(Y) \le x\right) = P\left(F\left(F^{-1}(Y)\right) \le F(x)\right)$$
$$= P(Y \le F(x))$$
$$= F(x).$$

Hence, $X \sim F$.

3. Moments and moment generating functions

(a) Method 1

For any 0 < l < r, $|x|^l \le |x|^r$, if $|x| \ge 1$; $|x|^l < 1$, if |x| < 1. This suggests for any $x \in \mathbb{R}$,

$$|x|^{l} \le \mathbf{1}(|x| < 1) \cdot 1 + \mathbf{1}(|x| \ge 1)|x|^{r} < 1 + |x|^{r}.$$

Hence, $|X|^l < 1 + |X|^r$. Take expectation on both sides.

$$\mathbb{E}(|X|^l) < 1 + \mathbb{E}(|X|^r).$$

If the RHS is finite, the LHS must be finite.

Method 2

For any 0 < l < r, the function $g: [0, \infty) \to \mathbb{R}$, $g(x) = x^{\frac{l}{r}}$, is a concave function on $[0, \infty)$. Use Jensen's inequality for r.v. $Y := |X|^r$ and function g.

$$\mathbb{E}(|X|^l) = \mathbb{E}\left((|X|^r)^{\frac{l}{r}}\right) = \mathbb{E}\left(g(Y)\right) \leq g\left(\mathbb{E}\left(Y\right)\right) = \left(\mathbb{E}\left(|X|^r\right)\right)^{\frac{l}{r}}.$$

If the RHS is finite, the LHS must be finite.

(b) $X \sim N(0, 1)$.

$$M_X(t) = \mathbb{E}(e^{tX})$$

$$= \int e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

$$= \int \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-t)^2}{2}} dx \cdot e^{\frac{t^2}{2}}$$

$$= e^{\frac{t^2}{2}}$$

$$\mathbb{E}(X) = \frac{d}{dx} M_X(t)|_{t=0} = t e^{\frac{t^2}{2}}|_{t=0} = 0$$

$$\mathbb{E}(X^2) = \frac{d^2}{dx^2} M_X(t)|_{t=0} = (t^2 + 1) e^{\frac{t^2}{2}}|_{t=0} = 1$$

$$\mathbb{E}(X^3) = \frac{d^3}{dx^3} M_X(t)|_{t=0} = (t^3 + 3t) e^{\frac{t^2}{2}}|_{t=0} = 0$$

$$\mathbb{E}(X^4) = \frac{d^4}{dx^4} M_X(t)|_{t=0} = (t^4 + 6t^2 + 3) e^{\frac{t^2}{2}}|_{t=0} = 3.$$

4. Covariance

(a) $(X,Y)' \sim U((-1,1) \times (-1,1))$ means

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{4} & (x,y)' \in (-1,1) \times (-1,1) \\ 0 & \text{otherwise} \end{cases}$$
.

$$\begin{aligned} \operatorname{Cov}(X,Y) &= \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) \\ &= \int \int xy \cdot f_{X,Y}(x,y) dx dy - \int \int x \cdot f_{X,Y}(x,y) dx dy \cdot \int \int y \cdot f_{X,Y}(x,y) dx dy \\ &= 0 - 0 \cdot 0 = 0 \qquad \text{by symmetry.} \end{aligned}$$

X and Y are uncorrelated. Moreover, since

$$f_X(x) = \begin{cases} \frac{1}{2} & -1 < x < 1\\ 0 & \text{otherwise} \end{cases} \qquad f_Y(y) = \begin{cases} \frac{1}{2} & -1 < y < 1\\ 0 & \text{otherwise} \end{cases},$$

 $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$ for any $(x,y)' \in \mathbb{R}^2$. This implies X and Y are independent.

(b) Denote the ball
$$\{(x,y)' \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$
 by $B((0,0)',1)$. $(X,Y)' \sim U(B((0,0)',1))$

means

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi} & (x,y)' \in B\left((0,0)',1\right) \\ 0 & \text{otherwise} \end{cases}.$$

$$Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

$$= \int \int xy \cdot f_{X,Y}(x,y) dxdy - \int \int x \cdot f_{X,Y}(x,y) dxdy \cdot \int \int y \cdot f_{X,Y}(x,y) dxdy$$

$$= 0 - 0 \cdot 0 = 0 \quad \text{by symmetry.}$$

X and Y are uncorrelated. However, since

$$f_X(x) = \begin{cases} \frac{2\sqrt{1-x^2}}{\pi} & -1 < x < 1 \\ 0 & \text{otherwise} \end{cases} \qquad f_Y(y) = \begin{cases} \frac{2\sqrt{1-y^2}}{\pi} & -1 < y < 1 \\ 0 & \text{otherwise} \end{cases},$$

 $f_{X,Y}(x,y) \neq f_X(x) \cdot f_Y(y)$ for a set in \mathbb{R}^2 with positive measure. This implies X and Y are not independent.

Remark. Other arguments also work. For example, the conditional distribution of Y|X = x clearly depends on x. This implies X and Y are not independent. Or the cdf of the joint isn't equal to the product of the marginals'.

(c) Since $g(\cdot)$ and $h(\cdot)$ are non-decreasing functions on \mathbb{R} ,

$$(g(x) - g(y))(h(x) - h(y)) \ge 0, \ \forall x, y \in \mathbb{R}.$$

Consider random variables $X_1, X_2 \stackrel{\text{iid}}{\sim} F$. We have

$$(g(X_1) - g(X_2)) (h(X_1) - h(X_2)) \ge 0$$

$$\Longrightarrow \mathbb{E} [(g(X_1) - g(X_2)) (h(X_1) - h(X_2))] \ge 0.$$

Notice

$$0 \leq \mathbb{E} \left[(g(X_1) - g(X_2)) \left(h(X_1) - h(X_2) \right) \right]$$

$$= \mathbb{E} \left[g(X_1) h(X_1) \right] - \mathbb{E} \left[g(X_1) h(X_2) \right] - \mathbb{E} \left[g(X_2) h(X_1) \right] + \mathbb{E} \left[g(X_2) h(X_2) \right]$$

$$= \mathbb{E} \left[g(X) h(X) \right] - \mathbb{E} [g(X)] \mathbb{E} [h(X)] - \mathbb{E} [g(X)] \mathbb{E} [h(X)] + \mathbb{E} \left[g(X) h(X) \right]$$

$$= 2 \left(\mathbb{E} \left[g(X) h(X) \right] - \mathbb{E} [g(X)] \mathbb{E} [h(X)] \right)$$

$$= 2 \operatorname{Cov} \left(g(X), h(X) \right)$$

$$\Longrightarrow \operatorname{Cov} \left(g(X), h(X) \right) \geq 0.$$

5. The gamma distribution

(a)

$$\begin{split} \Gamma(x+1) &= \int_0^\infty t^x e^{-t} dt \\ &= -\int_0^\infty t^x de^{-t} \\ &= -(t^x e^{-t}|_0^\infty - \int_0^\infty e^{-t} dt^x) \\ &= x \int_0^\infty t^{x-1} e^{-t} dt \\ &= x \Gamma(x). \end{split}$$

Since $\Gamma(1) = \int_0^\infty e^{-t} dt = -e^{-t}|_0^\infty = 1 = 0!,$

$$\Gamma(n+1) = n\Gamma(n)$$

$$= n \cdot (n-1)\Gamma(n-2)$$

$$\dots$$

$$= n \cdot (n-1) \cdots 2 \cdot 1\Gamma(1)$$

$$= n!$$
 for any n

for any n = 1, 2, ...

- (b) *
- (c) First, $p(x) \ge 0$ for any $x \in \mathbb{R}$. Second,

$$\int p(x)dx = \int_0^\infty \frac{1}{\Gamma(\alpha)\beta^\alpha} x^{\alpha-1} e^{-x/\beta} dx$$

$$= \int_0^\infty \frac{1}{\Gamma(\alpha)} t^{\alpha-1} e^{-t} dt \qquad \text{by change of variable } t = x/\beta$$

$$= \frac{\Gamma(\alpha)}{\Gamma(\alpha)}$$

$$= 1.$$

This shows $p(\cdot)$ is a pdf.

- (d) *
- (e) *
- (f) *

6. Best linear predictor

To get the minimizer (α^*, β^*) of the criteria function $h(\alpha, \beta) := \mathbb{E}\left[(Y - (\beta X + \alpha))^2 \right]$, we look at the derivatives of h.

$$\frac{\partial}{\partial \alpha} h(\alpha, \beta) = -2[\mathbb{E}(Y) - \beta \mathbb{E}(X) - \alpha]$$
$$\frac{\partial}{\partial \beta} h(\alpha, \beta) = -2\mathbb{E}[(Y - \beta X - \alpha)X]$$

The first-order condition says the two partial derivatives are 0 at the minimizer.

$$-2[\mathbb{E}(Y) - \beta^* \mathbb{E}(X) - \alpha^*] = 0$$
$$-2\mathbb{E}[(Y - \beta^* X - \alpha^*)X] = 0.$$

Solve this system of linear equations. The first equation implies $\alpha^* = \mathbb{E}(Y) - \beta^* \mathbb{E}(X)$. Plug it into the second equation. When $\mathbb{E}(X^2) - (\mathbb{E}X)^2 = \text{Var}(X) > 0$ (the following discussion assume Var(X) > 0),

$$\beta^* = \frac{\mathbb{E}[(Y - \mathbb{E}Y)X]}{\mathbb{E}[(X - \mathbb{E}X)X]}$$
$$= \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}.$$

Next, let's check the second-order condition.

$$H(\alpha,\beta) = \begin{pmatrix} \frac{\partial^2}{\partial \alpha^2} h(\alpha,\beta) & \frac{\partial^2}{\partial \beta \partial \alpha} h(\alpha,\beta) \\ \frac{\partial^2}{\partial \alpha \partial \beta} h(\alpha,\beta) & \frac{\partial^2}{\partial \beta^2} h(\alpha,\beta) \end{pmatrix} = 2 \begin{pmatrix} 1 & \mathbb{E}(X) \\ \mathbb{E}(X) & \mathbb{E}(X^2) \end{pmatrix}.$$

The Hessian doesn't depend on (α, β) and is positive definite; because for any $(a, b)' \in \mathbb{R}^2$, $(a, b)' \neq (0, 0)'$, the quadratic form

$$\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} 1 & \mathbb{E}(X) \\ \mathbb{E}(X) & \mathbb{E}(X^2) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = a^2 + 2ab\mathbb{E}(X) + b^2\mathbb{E}(X^2) = \mathbb{E}[(a+bX)^2] > 0.$$

This implies the function h is strictly convex on \mathbb{R}^2 and the solution of the first-order condition, $(\hat{\alpha}, \hat{\beta})$, is the unique global minimizer. Our derivation shows $\frac{\text{Cov}(X,Y)}{\text{Var}(X)}(X - \mathbb{E}(X)) + \mathbb{E}(Y)$ is the unique best linear predictor of Y using X when Var(X) > 0. When Var(X) = 0, X is a constant. h is weakly convex and the minimizer is not unique. Any (α, β) s.t. $\alpha + \beta \mathbb{E}(X) - \mathbb{E}(Y) = 0$ is a minimizer.

7. Kullback-Leibler divergence

Consider a random variable X with density p. Define random variable $Y := \frac{q(X)}{p(X)}$. Y is alway positive. To apply Jensen's inequality, consider the convex function $g:(0,\infty)\to\mathbb{R},\ g(x)=-\log(x)$.

$$-\int \log\left(\frac{q(x)}{p(x)}\right) p(x) dx = \mathbb{E}(g(Y))$$

$$\geq g(\mathbb{E}(Y)) \qquad \text{(by Jensen's inequality)}$$

$$= -\log\left(\int \frac{q(x)}{p(x)} \cdot p(x) dx\right)$$

$$= -\log\left(\int q(x) dx\right)$$

$$= -\log(1)$$

$$= 0.$$

Since g is strictly convex, Jensen's inequality achieves equality if and only if Y is a constant a.s.. Suppose Y=c a.s.. Notice $c=\mathbb{E}(Y)=\int \frac{q(x)}{p(x)}\cdot p(x)dx=1$. Hence Y=1 a.s., which

means p(X) = q(X) a.s.. This is just saying p(x) = q(x) almost surely with respect to p.