Introduction to Topology

Naive Set Theory, Lecture 1

Haoming Wang

14 June 2019

This is the Lecture Note for the *Introduction to Topology*. The course covers the following topics: Naive Set Theory, Elementary Number Theory, Group Theory, Topological Spaces and Continuous Maps, Introduction to Algebraic Topology.

Proposition

If p,q are statements, We denote "if p then a" as $p \Rightarrow q$. The only case where this proposition is false is p is true while q is false, thus $p \Rightarrow q \Leftrightarrow (\neg p) \lor q$. When we use proof by contradiction to prove a proposition like $p \Rightarrow q$, what we do is that $\neg(p \Rightarrow q)$ leads to a contradiction, that is $p \land \neg q$ leads to a contradiction.

Quantifier

There are two quantifiers : "for all" \forall and "exists" \exists . There are two commonly-used Propositions:

1 $\exists x, \forall y, \text{ s.t. proposition } P(x, y) \text{ holds};$

 $2 \forall y, \exists x, \text{ s.t. proposition } P(x, y) \text{ holds};$

The difference between these proposition is former x in P(x,y) could be constant, but the latter would be not.

Set

Inclusion

Suppose *A* and *B* are sets, we say $A \subseteq B$ if $\forall x$, s.t. $x \in A \Rightarrow x \in B$; and $B \subseteq A$ if $\forall x$, s.t. $x \in B \Rightarrow x \in A$. Correspondingly, A = B if $\forall x$, s.t. $x \in A \Leftrightarrow x \in B$.

Example 1. Suppose $A = \{x \in \mathbb{R} | x = x + 1\}$, $B = \{x \in \mathbb{Q} | x^2 = 2\}$. There's no element in either A or B, although it is a little wilder, but still fits our definition above, thus A = B.

Operations on set

Definition 1 (Difference). Given sets *A*, *B*, the difference of sets is $A \setminus B := \{x \in A | x \notin B\}.$

CONTENT:

- 1. Proposition
- 2. Quantifier
- 3. Set
 - 3.1 Inclusion
 - 3.2 Operations on set
 - 3.3 Relation
- 4 Maps

Note 1. It is easy to check that the former is the sufficient condition of the latter. For example, suppose $P(x,y) = \llbracket x < y \rrbracket$, then the latter holds but the former does not.

Note 2. Suppose $\emptyset \nsubseteq A$, which means $\exists x \in \emptyset$, s.t. $x \notin A$. But there is no element in \emptyset , thus $\emptyset \subseteq A$ logically.

Definition 2 (Union and Intersection). Given $S_i(i \in I)$, a family of sets indexed by a set *J*. Then, the union of sets is

$$\cup_{i\in I} S_i := \{x | \exists j \in J, x \in S_i\};$$

the intersection of sets is

$$\cap_{i\in J} S_i := \{x | \forall j \in J, x \in S_i\}.$$

Definition 3 (Power set). Given a set S, the power set of S is $\mathcal{P}(S) :=$ $\{A|A\subseteq S\}$, that is $\forall A,A\in\mathcal{P}(S)\Leftrightarrow A\subseteq S$.

Example 2. Suppose $S = \{0,1\}$, then $\mathcal{P}(S) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$. If there are n elements in a finite set S, then there are 2^n elements in its power set $\mathcal{P}(S)$. Thus sometimes we also denote the power set of S by 2^S .

Definition 4 (Cartesian porduct). Given sets *X* and *Y*, then the cartesian product of them is $X \times Y := \{(x, y) | x \in X \land y \in Y\}.$

Relation

Definition 5 (Relation). Given sets X, Y, we say a subset R of $X \times Y$ induces a binary relation among elements of *X* and *Y*.

If $x \in X, y \in Y$ fit $(x, y) \in R \subset X \times Y$, we say x, y has relation R, denote as xRy. Different subsets of $X \times Y$ induce different relation, the \emptyset , also a subset of $X \times Y$, means elements in X have no relationship with elements in *Y*.

Definition 6 (Equivalence relation). $R \in X \times X$ is an equivalence relation on *X* if:

- 1. $\forall x \in X, (x, x) \in R$;
- 2. $\forall x, x' \in X, (x, x') \in R \Rightarrow (x', x) \in R$;
- 3. $\forall x, x', x'' \in X, (x, x') \in R \land (x', x'') \in R \Rightarrow (x, x'') \in R$.

Example 3. 1. If $R = \{(x, x) | x \in X\}$, that is R is the diagonal of $X \times X$, then R induces Equal relation.

2. If $X = \mathbb{Z}$, $R = \{(x, x') | x \equiv x' \pmod{3}\}$, then R is an equivalence relation.

Definition 7 (Partial order). $R \subseteq X \times X$ is a partial order on X if:

- 1. $\forall x \in X, (x, x) \in R$;
- 2. $\forall x, x' \in X, (x, x') \in R \land (x', x) \in R \Rightarrow x = x';$
- 3. $\forall x, x', x'' \in X, (x, x') \in R \land (x', x'') \in R \Rightarrow (x, x'') \in R$.

Example 4. Less than or equal (\leq) , as well as greater than or equal (\geq) , are partial order on \mathbb{Z} . Given a set S, inclusion (\subseteq) is a partial order on $\mathcal{P}(S)$.

Note 3. The pair (x, y) is defined as a set $\{\{x\}, \{x,y\}\}$ which indicates a truth: if $x, x' \in X, y, y' \in Y$, then $(x,y) = (x',y') \Leftrightarrow x = x' \land y = y'.$ The reason why we define the pair (x, y) as such form is that there is no order in set, that is $\{\{x\}, \{y\}\} =$ $\{\{y\}, \{x\}\}.$

Note 4. If we eliminate the second condition, then R is a Pre-order.

Definition 8 (Total order). A total order on *X* is a partial order *R* on *X* such that $\forall x, x', (x, x') \in R \lor (x', x) \in R$.

Example 5. Given a set S, inclusion (\subseteq) is not a total order on $\mathcal{P}(S)$, e.g. neither ($\{0\}, \{1\}$) nor ($\{0\}, \{1\}$) in relation \subseteq on $\mathcal{P}(\{0, 1\})$.

Definition 9 (Well order). A well order on *X* is a total order *R* on *X* such that: $\forall S, S \subseteq X \land S \neq \emptyset \Rightarrow \exists s := \min_R S \in S, \forall s' \in S \Rightarrow \exists s' \in S, \forall s' \in S \Rightarrow \exists s' \in S, \forall s' \in S \Rightarrow \exists s' \in S, \forall s' \in S \Rightarrow \exists s' \in S, \forall s' \in S \Rightarrow \exists s' \in S, \forall s' \in S \Rightarrow \exists s' \in S, \forall s$ S, s.t. $(s,s') \in R$.

Example 6. \leq is a well order on \mathbb{N}_0 , but not on \mathbb{Z} . But we can define a new relation R, such that R is a well order on \mathbb{Z} . For example, define

$$n(p) = \begin{cases} 2p - 1 & p > 0, \\ -2p & p < 0, \\ 0 & p = 0 \end{cases}$$

where $p \in \mathbb{Z}$, thus $n(p) \in \mathbb{N}$, define

$$R = \{(x, x') \in X \times X | n(x) \le n(x')\},$$

then *R* is a well order on \mathbb{Z} . For example $(3, -10) \in R$, since n(3) = 5and n(-10) = 20. And $\min_{\mathbb{R}} \{x \in \mathbb{Z} | x < 4\} = 0$.

Note 5. Actually, For any non-empty set, there exists a well order on it by Axiom of Choice.

Maps

Definition 10 (Map). Given sets X, Y, A relation $f \subseteq X \times Y$ is called a map from X to Y, if $\forall x \in X$, $\exists ! y \in Y$, $(x, y) \in f$.

Note 6. $\exists ! y \in Y$ represents there is one and only one $y \in Y$.

Definition 11. Given a map: $X \xrightarrow{f} Y$, for $A \subseteq X$, $B \subseteq Y$, we say:

- 1. The domain of f, $D_f := X$;
- **2**. The codomain of f, $C_f := Y$;
- 3. The image of *A* under f, $f(A) := \{f(a) | a \in A\}$;
- 4. The pre-image of *B* under f, $f^{-1}(B) := \{x \in X | f(x) \in B\}$;
- 5. The range of f, $R_f := f(X)$.

Note 7. Notice that f^{-1} is not a map. $f^{-1}(Y) = X$.

Exercise 1. Given maps $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$. Show that for $A \subseteq X$, $(g \circ f)(A) = g(f(A))$; for $C \subseteq Z$, $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$.

Proof. 1. Trivial; 2. By definition, we have $(g \circ f)^{-1}(C) = \{x \in A \}$ $X|g(f(x)) \in C\} =: U, f^{-1}(g^{-1}(C)) = \{x \in X | f(x) \in \{y \in C\}\}$ $Y|g(y) \in C\}\} =: K. \text{ if } x \in U, x \notin K, \text{ then } f(x) \notin \{y \in Y|g(y) \in X\}$ C}} and $g(f(x)) \notin C$, which leads to a contradiction, thus $U \subseteq K$. Correspondingly, we can prove $K \subseteq U$ by contradiction, thus U =Κ.

1. For a family of subset $T_j \subseteq Y(j \in J)$, have

$$f^{-1}(\cup_{i\in I}T_i) = \cup_{i\in I}f^{-1}(T_i)$$
 and $f^{-1}(\cap_{i\in I}T_i) = \cap_{i\in I}f^{-1}(T_i)$;

2. For
$$B, B' \in Y$$
, $f^{-1}(B \backslash B') = f^{-1}(B) \backslash f^{-1}(B')$;

3. For a family of subset $S_i \subseteq X(j \in I)$, have

$$f(\cup_{j\in J}S_j)=\cup_{j\in J}f(S_j)$$
 and $f(\cap_{j\in J}S_j)\subseteq\cap_{j\in J}f(S_j)$;

4. For $A, A' \in X$, $f(A) \setminus f(A') \subseteq f(A \setminus A')$.

Proof. 1. \cup : If

$$x \in f^{-1}(\cup_{j \in J} T_j) \Rightarrow f(x) \in \cup_{j \in J} T_j$$
$$\Rightarrow f(x) \in T_j(\exists j \in J)$$
$$\Rightarrow x \in f^{-1}(T_j) \subseteq \cup_{j \in J} f^{-1}(T_j)$$

thus $f^{-1}(\cup_{j\in J}T_j)\subseteq \cup_{j\in J}f^{-1}(T_j)$. If

$$x \in \bigcup_{j \in J} f^{-1}(T_j) \Rightarrow x \in f^{-1}(T_j) (\exists j \in J)$$
$$\Rightarrow f(x) \in T_j \subseteq \bigcup_{j \in J} T_j$$
$$\Rightarrow x \in f^{-1}(\bigcup_{j \in J} T_j)$$

thus $\bigcup_{j \in J} f^{-1}(T_j) \subseteq f^{-1}(\bigcup_{j \in J} T_j)$. Thus $f^{-1}(\bigcup_{j \in J} T_j) = \bigcup_{j \in J} f^{-1}(T_j)$.

 \cap : If

$$x \in f^{-1}(\cap_{j \in J} T_j) \Rightarrow f(x) \in \cap_{j \in J} T_j$$

$$\Rightarrow f(x) \in T_j (\forall j \in J)$$

$$\Rightarrow x \in f^{-1}(T_j) (\forall j \in J)$$

$$\Rightarrow x \in \cap_{j \in J} f^{-1}(T_j),$$

thus $f^{-1}(\cap_{j\in J}T_j)\subseteq\cap_{j\in J}f^{-1}(T_j)$; If

$$\begin{split} x \in \cap_{j \in J} f^{-1}(T_j) &\Rightarrow x \in f^{-1}(T_j) (\forall j \in J) \\ &\Rightarrow f(x) \in T_j (\forall j \in J) \\ &\Rightarrow f(x) \in \cap_{j \in J} T_j \\ &\Rightarrow x \in f^{-1}(\cap_{j \in J} T_j), \end{split}$$

thus $\cap_{i \in I} f^{-1}(T_i) \subseteq f^{-1}(\cap_{i \in I} T_i)$, and $f^{-1}(\cap_{i \in I} T_i) = \cap_{i \in I} f^{-1}(T_i)$.

2. If

$$f^{-1}(B \backslash B') \Rightarrow f(x) \in B \backslash B'$$

$$\Rightarrow f(x) \in B \land f(x) \notin B'$$

$$\Rightarrow x \in f^{-1}(B) \land x \notin f^{-1}(B')$$

$$\Rightarrow x \in f^{-1}(B) \backslash f^{-1}(B').$$

If

$$x \in f^{-1}(B) \backslash f^{-1}(B') \Rightarrow f \in f^{-1}(B) \land x \notin f^{-1}(B')$$
$$\Rightarrow f(x) \in B \land f(x) \notin B'$$
$$\Rightarrow f(x) \in B \backslash B'$$
$$\Rightarrow x \in f^{-1}(B \backslash B');$$

Thus
$$f^{-1}(B\backslash B')=f^{-1}(B)\backslash f^{-1}(B')$$
.
3. \cup : If

$$y \in f(\cup_{j \in J} S_j) \Rightarrow y \in f(S_j)(\exists j \in J)$$
$$\Rightarrow y \in \cup_{j \in J} f(S_j)$$

and if

$$y \in \bigcup_{j \in J} f(S_j) \Rightarrow y \in f(S_j) (\exists j \in J)$$

 $\Rightarrow y \in f(\bigcup_{i \in J} S_i).$

Thus $f(\bigcup_{i\in I}S_i)=\bigcup_{i\in I}f(S_i)$.

 \cap : for $\forall j \in J$, we have $f(\cap_{i \in I} S_i) \subseteq f(S_i)$, thus $f(\cap_{i \in I} S_i) \subseteq I$ $\bigcap_{i \in I} f(S_i)$. If $y \in \bigcap_{j \in I} f(S_j)$ then for $\forall j \in J$, there exists $S_i \in S_j$ such that $s_i \in f^{-1}(y)$. BUT, we can not confirm that s_i are the same number in different S_i , thus $\cap_{i \in I} S_i$ could be \emptyset . For example, assume that f(x) = |x| with domain X = [-2,2]. Set $S_1 =$ $(-2,0), S_2 = (0,2), y = 1$, then $y \in f(S_1) \cap f(S_2) = (0,2)$ but $f(S_1 \cap S_2) = f(\emptyset) = \emptyset \subseteq f(S_1) \cap f(S_2) = (0,2).$

4. If $y \in f(A) \setminus f(A')$ then $y \in f(A) \land y \notin f(A')$. Thus $\exists a \in A'$ A, s.t. $a \in f^{-1}(y)$ and $\forall a' \in A'$, s.t. $a' \notin f^{-1}(y)$, which means $a \notin A'$, and $a \in A \setminus A'$, thus $y \in f(A \setminus A')$. Thus $f(A) \setminus f(A') \subseteq$ $f(A \backslash A')$.

Set
$$A = (-2,0)$$
, $A' = (1,2)$, then $f(A \setminus A') = f(A) = (0,2)$. But $f(A) \setminus f(A') = (0,2) \setminus (1,2) = (0,1] \subseteq f(A \setminus A')$.

Note 8. It is easy to prove that if $S_1 \subseteq S_2$ then $f(S_1) \subseteq f(S_2)$ and $f^{-1}(S_1) \subseteq f^{-1}(S_2)$.

Figure 1: f(x) = |x|

Note 9. Overview of basic results about images and preimages