

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE CIUDAD MADERO

TECNOLÓGICO NACIONAL DE MEXICO INSTITUTO TECNOLÓGICO DE CIUDAD MADERO

Carrera: Sistemas Computacionales

Tema: Análisis del Proyecto

Equipo: Rojo Carmesí

Integrantes:

Reyes Villar Luis Ricardo

Rocha Suarez María Fernanda

Hernández del Ángel Ángel Ivan

Garcia Valles Roberto Carlos

Profesora: Elizabeth Cortez Razo

Materia: Simulación

Hora: 10:00 – 11:00 hrs

Grupo: 6505A

Fecha de entrega: 18 de Mayo del 2023

Periodo Semestral: Enero 2023 – Junio 2023

Problema.

La demanda de azúcar en una tienda sigue una distribución exponencial con media de 100 kg/día. El dueño de la tienda revisa el inventario cada 7 días, y hace un pedido a la planta igual a la capacidad de la bodega menos la cantidad de azúcar que tiene disponible en ese momento; la entrega es inmediata. La demanda no surtida por falta de existencias representa ventas perdidas. La capacidad de almacenamiento de la bodega es de 700 kg. El costo de ordenar es de \$1,000/orden. El costo de faltante es de \$6/kg, y el costo de llevar el inventario es de \$1/kg. Determine el comportamiento del inventario a lo largo del tiempo y el costo promedio/día para un horizonte de dos meses.

Análisis.

Según nos dice el problema tenemos una distribución exponencial con media de 100 kg/día, esto quiere decir que las variables aleatorias que tenemos que generar son variables aleatorias continuas exponenciales.

$$X \rightarrow e(x)$$

Analizando el contexto del problema, se sabe que las variables aleatorias a generar (Xi) representan la demanda de azúcar de un día.

Para generar las variables aleatorias exponenciales se tiene la fórmula:

$$Xi = -\frac{1}{\lambda} * \ln (1 - ri)$$

Siendo $\frac{1}{\lambda}$ la media y ri los números pseudoaleatorios validados previamente en las pruebas estadísticas.

En este caso, se menciona que la media es de 100 kg/día, por lo que $\frac{1}{\lambda} = 100$.

Antes de comenzar a realizar la simulación se tiene que obtener la tabla para el método de Montecarlo, esto con la finalidad de saber la distribución que tienen las variables aleatorias.

Para esto se tienen que realizar múltiples simulaciones que se asemejen a la demanda de azúcar establecida, el problema dice que sigue una distribución exponencial con media de 100 kg/día, también se dice que el dueño de la tienda revisa el inventario cada 7 días. A su vez, menciona que la finalidad del problema es determinar el comportamiento del inventario a lo largo del tiempo y el costo promedio/día para un horizonte de dos meses. Con esta información se deja en claro que nuestra medida de tiempo es el día, y dado a lo que se menciona se comprende que se debe simular un periodo de tiempo de dos meses (60 días). Dada esta información se comprende que se deben generar 60 variables aleatorias para la simulación, pero antes de eso, es necesario generar múltiples simulaciones solamente considerando la demanda de azúcar diaria, esto para obtener el promedio de la demanda de azúcar diaria, esto para poder establecer los rangos de nuestra tabla para el método de Montecarlo y conocer las probabilidades de obtener cierta demanda en un día.

Las variables aleatorias utilizadas en las simulaciones antes de ser usadas deben pasar la prueba de ajuste de bondad, esto para saber que las variables siguen una distribución uniforme, una vez que pasen la prueba, se obtiene la suma total de la demanda de azúcar en el periodo de los 60 días y se obtiene el promedio. Posteriormente, se debe conocer el mayor y menor promedio calculado en todo el conjunto de simulaciones, después con los datos conocidos y el total de simulaciones, se debe calcular la probabilidad de que se de la demanda de azúcar de los valores que están empezando desde el promedio menor hasta el mayor, una vez se obtiene esto, se podrá realizar la tabla del método de Montecarlo y realizar la simulación.

Demostración.

Numero Aleatorio	Demanda (Variable Aleatoria)
0.90037	230.6291955
0.06661	6.893215904
0.44368	58.64116107
0.68519	115.5785997
0.94853	296.6756165
0.97091	353.7360806
0.26662	31.0091294
0.10862	11.49844553
0.17983	19.82436431
0.23388	26.64164635
0.46998	63.48405373
0.08812	9.224687651
0.77651	149.8388609
0.29677	35,20712714
0.80724	164.6309387
0.16364	17.86961366
0.6778	113.2582808
0.94128	283.4974895
0.6008	91.82927345
0.09606	10.09922925
0.92275	256.0708363
0.14675	15.87026912
0.15355	16.67041459
0.35776	44.27932134
0.79922	160.5545498
0.87526	208.1523708
0.608	93.64934392
0.9664	339.3229212
0.39289	49.90452852
0.43625	57.31443882
0.0314	3.190354901
0.09859	10.37950749
0.97199	357.519369
0.47645	64.71227422
0.70046	120.5507314
0.06442	6.658862116
0.41499	53.61263379
0.22167	25.06046802

0.91375	245.0505223
0.4939	68.10210008
0.39372	50.04133534
0.50154	69.62319335
0.15423	16.7507824
0.37868	47.59090319
0.33985	41.52881971
0.5498	79.80633505
0.228	25.8770729
0.1984	22.11455487
0.93625	275.2786095
0.6564	106.8277089
0.08609	9.002318065
0.74114	135.1467904
0.92884	264.2824416
0.27437	32.07150359
0.52788	75.05220884
0.86572	200.7828107
0.94711	293.9540994
0.70173	120.9756162
0.24249	27.77185404
0.88014	212.1430884
	6393.314874

6393.314874 **106.5552479**

Dados los números pseudoaleatorios, se aplica la formula:

$$Xi = -\frac{1}{\lambda} * \ln (1 - ri)$$

Sustituyendo los valores conocidos quedaría como:

$$Xi = -100 * \ln (1 - ri)$$

Por ende, para calcular las variables aleatorias para cada día, se sustituye su respectivo numero pseudoaleatorio, para obtener la respectiva variable aleatoria que hace referencia a la demanda de azúcar de cierto día.

$$X1 = -100 * \ln (1 - 0.90037)$$

$$X1 = -100 * \ln (0.09963)$$

$$X1 = (-100)(-2.30629195)$$

$$X1 = 230.6291955$$

Este procedimiento se repetirá para cada una de las variables, desde X₁ hasta X₆₀.

Una vez obtenidos los promedios, se establece un rango y la probabilidad de que cierto promedio se encuentre dentro de este rango, poniendo un ejemplo, si tenemos 10 promedios diferentes generados de 10 simulaciones, y tenemos como rangos [80,90), [90,100), [100,110), se analiza cada promedio y se cuentan cuantas variables están entre cada rango, se tiene que hay 3 en el rango [80,90), 2 en el rango [90,100) y 5 en el rango [100,110), dados estos valores, calculamos la probabilidad de que una variables esté en cada rango, dividiendo el numero de variables en cada rango sobre el numero total de simulaciones. Posteriormente obtenemos la probabilidad acumulada sumando todas las probabilidades, establecemos el limite inferior y limite superior, teniendo estos datos, se concluye con la tabla del modelo de Montecarlo.

Demostración.

Simulaciones	Promedios/día
1	106.5552479
2	81.83423008
3	107.7325483
4	90.70359706
5	105.1267259
6	101.1536117
7	100.2920695
8	88.97225278
9	87.45941497
10	90.32994282

Demanda de azúcar	Probabilidad	Prob. Acumulada	LM	LS
>=80 && <90	0.3	0.3	0	0.3
>=90 && <100	0.2	0.5	0.3	0.5
>=100 && <110	0.5	1	0.5	1

Se puede decir que la formula para obtener la probabilidad de cada rango es:

$$Probabilidad = \frac{Cantidad\ de\ promedios}{Total\ de\ simulaciones}$$

Dado que las variables aleatorias son números enteros y en el método de Montecarlo se representan valor entre 0 y 1 representando la probabilidad, se analizan los valores posibles para nuestras variables y se sabe que se puede llegar hasta los millares, por ende, multiplicamos los valores en los límites por 1000 para poder realizar la simulación correctamente.

Demanda de azúcar	Probabilidad	Prob. Acumulada	LM	LS
>=80 && <90	0.3	0.3	0	300
>=90 && <100	0.2	0.5	300	500
>=100 && <110	0.5	1	500	1000

Posteriormente, se llega a la incógnita de que valor es el que se debe escoger entre los rangos para nuestra simulación, dada esta incógnita se comprende que debido a que la simulación es una herramienta que ayuda a pronosticar (en este caso) el comportamiento de nuestro inventario, se opta por poner el valor mínimo de los rangos en caso de que una variable, ya en una simulación final, se encuentre dentro de los límites obtenidos.

Demanda de azúcar	Probabilidad	Prob. Acumulada	LM	LS
80	0.3	0.3	0	300
90	0.2	0.5	300	500
100	0.5	1	500	1000

Cabe aclarar que en el caso de que se ingrese un valor de una variable aleatoria mayor a los límites, el valor asignado a ese día será el número 100 (dentro de este ejemplo).

Una vez obtenidas las distribuciones de probabilidades, se puede proceder a la simulación real, para esto es necesario continuar con el análisis del problema estableciendo ciertos puntos clave para poder representar la simulación.

Según el contexto dado, se sabe que:

- El inventario se rellena cada 7 días, haciendo un pedido igual a la capacidad de la bodega menos la cantidad de azúcar disponible; la entrega es inmediata.
- La bodega tiene una capacidad de 700 kg/día.
- La demanda no surtida por falta de existencias representa ventas perdidas.
- El costo de ordenar (costo del pedido) es de \$1,000/orden.
- El costo del faltante es de \$6/kg.
- El costo de manejo de inventario es de \$1/kg.
- Se busca determinar el comportamiento del inventario a lo largo de dos meses.
- Se busca obtener el costo promedio/día para un horizonte de dos meses.

Con estos datos se es posible conocer o generar las formulas necesarias para obtener los valores requeridos para la simulación.

 $Costo\ de\ ordenar=1000$

 $Faltante = Capacidad\ bodega - Cantidad\ de\ az\'ucar$

Costo del Faltante = Faltante * 6

 $Costo\ manejo\ de\ inventario=Faltante$

Costo total de ordenar será referenciado por CostoT.

CostoT = Costo de ordenar + Costo del Faltante + Costo manejo de inventario

A la hora de realizar la orden pueden haber dos casos.

- 1. Que la bodega esté completamente vacía.
- 2. Que la bodega no esté completamente vacía

Si la bodega está completamente vacía, entonces sustituyendo los valores de las fórmulas quedaría:

Costo de ordenar =
$$1000$$

Faltante = $700 - 0$

$$Faltante = 700$$

Costo del Faltante =
$$700 * 6$$

$$Costo\ del\ Faltante = 4200$$

Costo manejo de inventario = 700

$$CostoT = 1000 + 4200 + 700$$

$$CostoT = 5900$$

Si la bodega no está completamente vacía, por poner un ejemplo, quedaría:

$$Costo\ de\ ordenar=1000$$

$$Faltante = 700 - 256$$

$$Faltante = 444$$

Costo del Faltante =
$$444 * 6$$

$$Costo \ del \ Faltante = 2664$$

Costo manejo de inventario = 444

$$CostoT = 1000 + 2664 + 444$$

$$CostoT = 4108$$

Con el análisis completado, los datos recopilados y las fórmulas generadas, se puede proceder a realizar la simulación

Demostración.

Dia		Kg	Kg	Kg	\$	Kg	Ri	Xi
2 620 80 540 0.06661 6.8932159 3 540 80 460 0.44368 58.6411611 4 460 80 380 0.68519 115.5786 5 380 80 300 0.94853 296.675617 6 300 90 210 0 0.97091 353.73661 7 700 80 620 3800 0.26662 31.0091294 8 620 80 540 0.10862 11.4984455 9 540 80 460 0.17983 13.8243643 10 460 80 380 0.23388 26.6416464 11 380 80 300 0.46998 63.4840537 12 300 80 220 0.08812 9.22468765 13 220 80 140 3800 0.77551 149.838861 14 700 80 620 0.29677 35.2071271	Día	Inventario	Demanda		Costo_Orden	Perdidas		· ·
3	1	700	80	620			0.90037	230.629196
4 460 80 380 0.68819 115.5786 5 380 80 300 0.94853 296.675617 6 300 90 210 0 0.97091 353.736081 7 700 80 620 3800 0.26662 31.0091294 8 620 80 540 0.10862 11.4984455 9 540 80 460 0.17983 19.8243643 10 460 80 380 0.23388 26.6416464 11 380 80 300 0.46998 63.4840537 12 300 80 220 0.08812 9.22468765 13 220 80 140 3800 0.77651 149.83861 14 700 80 620 0.29677 35.2071271 15 620 80 540 0.80724 164.630939 16 540 80 380 0.6778 113.258281	2	620	80	540			0.06661	6.8932159
5 380 80 300 0.94853 296.675617 6 300 90 210 0 0.97091 353.736081 7 700 80 620 3800 0.26662 31.0091294 8 620 80 540 0.10862 11.4984455 9 540 80 460 0.17983 19.8243643 10 460 80 380 0.23388 26.6416464 11 380 80 300 0.46998 63.4840537 12 300 80 220 0.08812 9.22468765 13 220 80 140 3800 0.77651 149.838861 14 700 80 620 0.29677 35.2071271 15 620 80 540 0.80724 164.630939 16 540 80 380 0.16364 17.8696137 17 460 80 380 0.6778 113.258281<	3	540	80	460			0.44368	58.6411611
6 300 90 210 0 0.97091 353.736081 7 700 80 620 3800 0.26662 31.0091294 8 620 80 540 0.10862 11.4984455 9 540 80 460 0.17983 19.8243643 10 460 80 380 0.23388 26.6416464 11 380 80 300 0.46998 63.4840537 12 300 80 220 0.08812 9.22468765 13 220 80 140 3800 0.77651 149.838861 14 700 80 620 0.29677 35.2071271 15 620 80 540 0.80724 164.630939 16 540 80 460 0.16364 17.8696137 17 460 80 380 0.6778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 <t< td=""><td>4</td><td>460</td><td>80</td><td>380</td><td></td><td></td><td>0.68519</td><td>115.5786</td></t<>	4	460	80	380			0.68519	115.5786
7 700 80 620 3800 0.26662 31.0091294 8 620 80 540 0.10862 11.4984455 9 540 80 460 0.17983 19.8243643 10 460 80 380 0.23388 26.6416464 11 380 80 300 0.46998 63.4840537 12 300 80 220 0.08812 9.22468765 13 220 80 140 3800 0.77651 149.838861 14 700 80 620 0.29677 35.2071271 15 620 80 540 0.80724 164.630939 16 540 80 460 0.16364 17.8696137 17 460 80 380 0.6778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.82927	5	380	80	300			0.94853	296.675617
8 620 80 540 0.10862 11.4984455 9 540 80 460 0.17983 19.8243643 10 460 80 380 0.23388 26.6416464 11 380 80 300 0.46998 63.4840537 12 300 80 220 0.08812 9.22468765 13 220 80 140 3800 0.77651 149.838861 14 700 80 620 0.29677 35.2071271 15 620 80 540 0.80724 164.630939 16 540 80 460 0.16364 17.8696137 17 460 80 380 0.6778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293	6	300	90	210		0	0.97091	353.736081
9 540 80 460 0.17983 19.8243643 10 460 80 380 0.23388 26.6416464 11 380 80 300 0.46998 63.4840537 12 300 80 220 0.08812 9.22468765 13 220 80 140 3800 0.77651 149.838861 14 700 80 620 0.29677 35.2071271 15 620 80 540 0.80724 164.630939 16 540 80 460 0.16364 17.8696137 17 460 80 380 0.0778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.16365 15.8702691 23 540 80 460 0.15355 16.6704146 24 460 80 380 0.380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.6008 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.93289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.09859 10.3795075	7	700	80	620	3800		0.26662	31.0091294
10 460 80 380 0.23388 26.6416464 11 380 80 300 0.46998 63.4840537 12 300 80 220 0.08812 9.22468765 13 220 80 140 3800 0.77651 149.838861 14 700 80 620 0.29677 35.2071271 15 620 80 540 0.80724 164.630939 16 540 80 460 0.16364 17.8696137 17 460 80 380 0.6778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691	8	620	80	540			0.10862	11.4984455
11 380 80 300 0.46998 63.4840537 12 300 80 220 0.08812 9.22468765 13 220 80 140 3800 0.77651 149.838861 14 700 80 620 0.29677 35.2071271 15 620 80 540 0.80724 164.630939 16 540 80 460 0.16364 17.8696137 17 460 80 380 0.6778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691 23 540 80 460 0.15355 16.6704146	9	540	80	460			0.17983	19.8243643
12 300 80 220 0.08812 9.22468765 13 220 80 140 3800 0.77651 149.838861 14 700 80 620 0.29677 35.2071271 15 620 80 540 0.80724 164.630939 16 540 80 460 0.16364 17.8696137 17 460 80 380 0.6778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691 23 540 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.5	10	460	80	380			0.23388	26.6416464
13 220 80 140 3800 0.77651 149.838861 14 700 80 620 0.29677 35.2071271 15 620 80 540 0.80724 164.630939 16 540 80 460 0.16364 17.8696137 17 460 80 380 0.6778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691 23 540 80 460 0.15355 16.6704146 24 460 80 380 0.35776 44.2793213 25 380 80 30 2680 0.79922 160.55	11	380	80	300			0.46998	63.4840537
14 700 80 620 0.29677 35.2071271 15 620 80 540 0.80724 164.630939 16 540 80 460 0.16364 17.8696137 17 460 80 380 0.6778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691 23 540 80 460 0.15355 16.6704146 24 460 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371	12	300	80	220			0.08812	9.22468765
15 620 80 540 0.80724 164.630939 16 540 80 460 0.16364 17.8696137 17 460 80 380 0.6778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691 23 540 80 460 0.15355 16.6704146 24 460 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439	13	220	80	140	3800		0.77651	149.838861
16 540 80 460 0.16364 17.8696137 17 460 80 380 0.6778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691 23 540 80 460 0.15355 16.6704146 24 460 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 <	14	700	80	620			0.29677	35.2071271
17 460 80 380 0.6778 113.258281 18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691 23 540 80 460 0.15355 16.6704146 24 460 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.0314 3.1903549 <td>15</td> <td>620</td> <td>80</td> <td>540</td> <td></td> <td></td> <td>0.80724</td> <td>164.630939</td>	15	620	80	540			0.80724	164.630939
18 380 80 300 0.94128 283.49749 19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691 23 540 80 460 0.15355 16.6704146 24 460 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.0314 3.1903549 <td>16</td> <td>540</td> <td>80</td> <td>460</td> <td></td> <td></td> <td>0.16364</td> <td>17.8696137</td>	16	540	80	460			0.16364	17.8696137
19 300 80 220 3240 0.6008 91.8292735 20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691 23 540 80 460 0.15355 16.6704146 24 460 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314	17	460	80	380			0.6778	113.258281
20 220 80 140 0.09606 10.0992293 21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691 23 540 80 460 0.15355 16.6704146 24 460 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075<	18	380	80	300			0.94128	283.49749
21 700 80 620 0.92275 256.070836 22 620 80 540 0.14675 15.8702691 23 540 80 460 0.15355 16.6704146 24 460 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	19	300	80	220	3240		0.6008	91.8292735
22 620 80 540 0.14675 15.8702691 23 540 80 460 0.15355 16.6704146 24 460 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	20	220	80	140			0.09606	10.0992293
23 540 80 460 0.15355 16.6704146 24 460 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	21	700	80	620			0.92275	256.070836
24 460 80 380 0.35776 44.2793213 25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	22	620	80	540			0.14675	15.8702691
25 380 80 300 2680 0.79922 160.55455 26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	23	540	80	460			0.15355	16.6704146
26 300 80 220 0.87526 208.152371 27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	24	460	80	380			0.35776	44.2793213
27 220 80 140 0.608 93.6493439 28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	25	380	80	300	2680		0.79922	160.55455
28 700 90 610 0.9664 339.322921 29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	26	300	80	220			0.87526	208.152371
29 610 80 530 0.39289 49.9045285 30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	27	220	80	140			0.608	93.6493439
30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	28	700	90	610			0.9664	339.322921
30 530 80 450 0 0.43625 57.3144388 31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	29	610	80	530			0.39289	49.9045285
31 450 80 370 2190 0.0314 3.1903549 32 370 80 290 0.09859 10.3795075	30	530	80	450		0	0.43625	57.3144388
32 370 80 290 0.09859 10.3795075	31	450	80	370	2190		0.0314	
	32	370	80	290			0.09859	
33 290 90 200 0.97199 357.519369	33	290	90	200				

34	200	80	120			0.47645	64.7122742
35	700	80	620			0.70046	120.550731
36	620	80	540			0.06442	6.65886212
37	540	80	460	1560		0.41499	53.6126338
38	460	80	380			0.22167	25.060468
39	380	80	300			0.91375	245.050522
40	300	80	220			0.4939	68.1021001
41	220	80	140			0.39372	50.0413353
42	700	80	620			0.50154	69.6231934
43	620	80	540	1000		0.15423	16.7507824
44	540	80	460			0.37868	47.5909032
45	460	80	380			0.33985	41.5288197
46	380	80	300			0.5498	79.8063351
47	300	80	220			0.228	25.8770729
48	220	80	140			0.1984	22.1145549
49	700	80	620	4360		0.93625	275.27861
50	620	80	540			0.6564	106.827709
51	540	80	460			0.08609	9.00231807
52	460	80	380			0.74114	135.14679
53	380	80	300			0.92884	264.282442
54	300	80	220		0	0.27437	32.0715036
55	220	80	140	3800		0.52788	75.0522088
56	700	80	620			0.86572	200.782811
57	620	80	540			0.94711	293.954099
58	540	80	460			0.70173	120.975616
59	460	80	380			0.24249	27.771854
60	380	80	300		0	0.88014	212.143088
	Venta	80.5		26430			
	promedio/día:		Costo	440.5	0		
			promedio/día:	440.5	0		

Y así concluye el análisis del problema, en base a los resultados arrojados por la simulación, se pueden llegar a distintas conclusiones y culminar con la finalidad de la simulación.