Goal: Evaluate performance of shading technique in VR environments Context: Perception of complex, volume datasets is difficult in VR Shading techniques may enhance shape and depth perception

Use case. Depth perception in VR

- Purpose of the test:
 - Analyze whether shading techniques influence the perception of shapes and depth in VR
- Methodology:
 - Provide images under different shading conditions
 - Ask the users to classify two points of the scene placed at different depths
 - Analyze the results obtained

VIRVIG W

Use case. Depth perception in VR Test preparation: Select shading models (4) Select models (likely unknown to users) Determine number of participants, iterations Low level perception problem -> should be > 10 Latin squares balance results -> 16 per experiment Two tasks

Use case. Depth perception in VR

- Statistical analysis:
 - ANOVA test: One-way analysis of variance to reject the null hypothesis that all correctness means are equal between shading techniques.
 - For a significance level of α = 0.05, a Bonferroni post-hoc test with the same acceptance level to reveal differences between the individual shading techniques
 - Result: reject the null hypothesis when p < 0.05

VIRVIG WALL

Use case. Depth perception in VR

Statistical analysis.

 Chi-square test of association for the categorical variables relative depth and users' answers from tasks 1 and 2

Variables	χ²	p value	Correct answers for each depth category
T1: relative depth vs. users' answers	5.991	< 0.0001	<0.05: 66 %
			0.05-0.1: 88 %
			>0.1: 86 %
T2; relative depth vs. users' answers	5.991	< 0.0001	< 0.05: 63 %
			0.05-0.1: 86 %
			>0.1: 87 %

Use case. Depth perception in VR

- Guidelines and recommendations
 - Using advanced volumetric shading improves depth perception
 - Among the tested shading models the simulation of soft shadows by using directional occlusion shading for desktop-based VR seem to yield better results

Use case. Depth perception in VR

- Guidelines and recommendations
 - Real illumination does not affect depth perception when using advanced volume illumination techniques
 - External lighting may be carefully controlled to provide a pleasant environment
 - Specular highlights on the screen, reflections, or overilluminated areas will certainly affect the correct perception of the data

Use case. Depth perception in VR

- Guidelines and recommendations
 - When trying to judge depth in volume models, the X/Y relative position of the markers or the luminance of the points to classify seems to have no importance

