ELEC5280 Final Project Presentation

XU Jiashuai, LIU Yichen 03/06/2024

- > Architecture of the Receiver
- > Workload Distribution
- Design of Building Blocks
 - i. LNA
 - ii. Mixer
 - iii. IF Amplifier
 - iv. Receiver System
- > Conclusion

- > Architecture of the Receiver
- > Workload Distribution
- Design of Building Blocks
 - i. LNA
 - ii. Mixer
 - iii. IF Amplifier
 - iv. Receiver System
- > Conclusion

Architecture of the Receiver

- > Architecture of the Receiver
- > Workload Distribution
- Design of Building Blocks
 - i. LNA
 - ii. Mixer
 - iii. IF Amplifier
 - iv. Receiver System
- > Conclusion

Workload Distribution (Specifications)

Task	LNA	Mixer	IF Amplifier	Report + System Simulation	Specifications
Person in charge	Yichen	Jiashuai	TA	ALL	/
Noise Figure (dB)	2.9 (<5)	9.8 (<20)	5.1 (<10)	4.0	< 7
Gain (dB)	12.9 (>9)	-1.9 (>-5)	14.6 (>20)	26.7	> 25
IIP3 (dBm)	-5 (>-20)	2.5 (>0)	-5.1 (>-10)	-17.4	> -20
Power Consumption (mW)	19.7 (<20)	6.75 (<15)	1.76 (<10)	28.2	< 30
S11 (dB)	/	/	/	-22.5	< -12
EVM	/	/	/	on-going	< 15%

- > Architecture of the Receiver
- > Workload Distribution
- Design of Building Blocks
 - i. LNA
 - ii. Mixer
 - iii. IF Amplifier
 - iv. Receiver System
- > Conclusion

i. LNA: schematic

- One standard differential low noise amplifier with inductive load
- \triangleright Impedance matching: L_s and L_g
- \succ $C_{\rm d}$: decoupling Q from $C_{\rm gs} \rightarrow {\rm gate}$ induced current noise \downarrow
- L_x : reduce the influence of parasitic $C_x \rightarrow$ noise of M2 relatively decrease \downarrow

$$Z_{in} = \frac{g_m L_s}{C_{gs}} + s \left(L_s + L_g + \frac{1}{C_{gs}} \right)$$

i. LNA: design considerations

- DC operating point selection: trade-off between Gain and NF
- \triangleright Gain: larger with larger $g_{\rm m}$
- NF: trade off between thermal noise and drain current noise
- \triangleright Better linearity when g_m saturates

i. LNA: design considerations

$$NF_{tot} = NF_{LNA} + \frac{NF_{MIXER} - 1}{A_{P_{LNA}}}$$

$$\frac{1}{IP_{3,tot}^2} = \frac{1}{IP_{3,LNA}^2} + \frac{\alpha_{LNA}^2}{IP_{3,MIXER}^2}$$

- System Gain: sum of all blocks
- System NF: mainly determined by LNA
- System IIP3: mainly determined by MIXER due to nearly 13dB gain of LNA

i. LNA: simulation results

Part	Noise Figure (dB)	Gain (dB)	IIP3 (dBm)	Power Consumption (mW)
LNA	2.9(<5)	12.9 (>9)	-5.0 (>-20)	19.7 (<20)

ii. Mixer: schematic

ii. Mixer: design considerations

$$I_{ds} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{gs} - V_{TH})^2$$
$$g_m = \mu_n C_{ox} \frac{W}{L'} (V_{gs} - V_{TH})$$

$$g_{m} = \frac{2I_{ds}}{V_{gs} - V_{TH}}$$

$$Gain = \frac{2}{\pi} g_{mRF} R_{L}$$

IIP3 is directly proportional to both the drive current and the overdrive voltage:

$$IIP3 = 4\sqrt{\frac{2}{3}\frac{I_{dsRF}}{\mu_n C_{ox}}}$$

$$IIP3 = 4\sqrt{\frac{2}{3}(V_{gs} - V_{TH})}$$

$$NF = 10\log\left(2 + \frac{4\gamma}{g_m R_s} + \frac{\pi^2}{2g_m^2 R R_s}\right)$$

ii. Mixer: design process

Total power requirement: 30mW

LNA power: 20mW

IF amplifier power: 2mW (two)

Mixer power: 8mW (<4mW per one)

Power = $V_{DD}I_{SS}$ $I_{SS} < 4.4mA$

- W/L of M2 is chosen around 500 with fixed $I_{SS} = 4$ mA.
- Gain ~ 0 dB
- IIP3 ~ -6 dBm
- $gm \sim 16 mS$
- Vod ~ 200 mV

ii. Mixer: design process

- L_s can be inserted for high IIP3.
- Ideal L_s and TSMC's inductors are different.
- 426 pH is chosen for mixer design.
 - Gain $\sim 0 \text{ dB} \rightarrow -1.9 \text{ dB}$
 - IIP3 \sim -6 dBm \rightarrow 2.5 dB

ii. Mixer: design process

- 1. Set $I_{SS} = 4mA \rightarrow power < 4mW$
- 2. Select suitable $\frac{W}{L'}$ for M3 with suitable $g_m \to \text{headroom}$
- 3. Set $R_L = 100\Omega \rightarrow headroom$
- 4. Select initial $\frac{W}{L'}$ for M2 with suitable $g_{mRF} \rightarrow IIP3$, gain, and V_{dsRF}
- 5. Select initial $\frac{W}{L'}$ for M1 with suitable $g_{mLO} \rightarrow V_{dsLO}$
- 6. Optimize L_s until IIP3 and gain are big.

ii. Mixer: simulation results

Part	Noise Figure (dB)	Gain (dB)	IIP3 (dBm)	Power Consumption (mW)
Mixer	9.8 (<10)	-1.9 (>-5)	2.5 (>0)	6.75

iii. IF Amplifier (given by TA): schematic

- > Simple resistor load differential structure
- Focus on large gain design to amplify the BB signal

iii. IF Amplifier (given by TA): simulation results

Part	Noise Figure (dB)	Gain (dB)	IIP3 (dBm)	Power Consumption (mW)
IF_Amplifier	5.1 (<10)	14.6 (>20)	-5.1 (>-10)	1.76 (<10)

iv. Receiver system

ADS Symbol

ADS circuit

ADS test bench

iv. Receiver system: simulation results

Part	S11(dB)	Noise Figure (dB)	Gain (dB)	IIP3 (dBm)	Power Consumption (mW)
Receiver	-22.5 (<-12)	4.0 (<10)	26.7 (>25)	-17.4 (>-20)	28.2 (<30)

iv. Receiver system: simulation results - Spectrum

Part	S11(dB)	Noise Figure (dB)	Gain (dB)	IIP3 (dBm)	Power Consumption (mW)
Receiver	-22.5 (<-12)	4.0 (<10)	26.7 (>25)	-17.4 (>-20)	<mark>28.2</mark> (<30)

- > Architecture of the Receiver
- Workload Distribution
- > Schematic of Building Blocks
 - i. LNA
 - ii. Mixer
 - iii. IF Amplifier
- > Simulation Results
 - i. LNA
 - ii. Mixer
 - iii. IF Amplifier
 - iv. Receiver System
- > Conclusion

Conclusion

Parameters	Specifications	Simulations
Noise Figure (dB)	< 7	4.0
Conversion Voltage Gain (dB)	> 25	26.7
S11 (dB)	< -12	-22.5
IIP3 (dBm)	> -20	-17.4
Power Consumption (mW)	< 30	28.2
EVM	< 15%	On-going

Acknowledgement

We would like to thank Sarah, Shawn, and Elise for their help of software operation and debug, and Oscar for useful discussions.