

Современные технологии ООП численных методов

Карпаев Алексей, аспирант ФАКИ

Обзор курса

Лекция 1

Вступительные вопросы

- Кто имел дело с языком Python?
- Какие online-курсы проходили?

Мотивация создания курса

Ситуация: недостаток времени на рассмотрение технологий программирования в институтском курсе «Вычислительная математика» ⇒ проблемы:

- неоптимальный выбор языка программирования
- написание программ в неоптимальной парадигме/подходе
- нежелательное оформление кода программ:

```
Bibop alfa:
xy:=dx/dy; yx:=dy/dx;
begin almax: 0;
for k: = 0 step 1 until K do
for j: = 0 step 1 until J do
begin kx := KX (jxdx, kxdy);
ky := KY(jxdx, kxdy);
almax: = almax + min end j, k;
almax := almax /((J+1)x(K+1)) end NE 5;
for j := 0, 3, 6 do for i := 0, 1, 2 do al [j+i] := - \text{almax } \uparrow ((8))
for k: = 0 step 1 until K do
for j := 0 step 1 until J do begin if k = 0 then
B[k, j] := -KY(ixdx, (k-1/2)xdy)xxy;
if i = 0 then D [k, j] = -KX((j - 1/2)xdx, kxdy);
xyx; if k = K then H[k, j] := -KY(jxdx, (k + 1/2)xdy)xxy;
if j = J then F[k, j] := -KX((j + 1/2)xdx, kxdy)xyx;
E[k, j] := -((if k = K then H [k, j] else B[k, j]) + (if k = 0)
then B[k, j] else H[k, j]) + (if j = 0 then D[k, j] else
F[k, j]) + (if j = J then F[k, j] else D[k, j]))
end ki:
for j: = 0 step 1 until J do
begin B[K, j] = 2xB[K, j];
```

Цели курса

- Обучение основам языка Python
- Обучение использованию принципов парадигмы ООП на **простых примерах вычислительных задач**
- Демонстрация приближенного стандарта оформления кода вычислительных программ.

Мотивация посещений курса

• Ситуация: множество курсов по Python в сети Интернет

- В чем отличие моего курса?
 - Совмещение этих подходов.

Введение в ООП

Некоторые парадигмы программирования **Парадигма программирования** - это совокупность принципов, методов и понятий, определяющих способ конструирования программ.

Процедурное программирование: разбиение программы на процедуры (функции), использование ранее написанных процедур

Структурное программирование - более развитая версия процедурного

ОО программирование: объединение переменных и процедур, соответствующих определенным сущностям, в единое целое

Когда выгодно использовать ООП?

ООП используют **при создании крупных программных комплексов**. По сравнению с процедурным программированием:

- Лучшая организация кода
- Более легкое расширение функциональности ООП основано на понятиях **класса** и **объекта.**

Мой алгоритм выбора подхода:

Цепочка обобщений

Переменная – для хранения 1 величины

Структура – для хранения нескольких величин

Класс – ?

Структура: простейший пример

```
struct Vector {
      double x, y;
};
// функция для работы со структурой
double CalculateWidth(struct Vector* v) {
      return sqrt((v->x)*(v->x) + (v->y)*(v-
>y));
```

Класс: простейший пример

Если поместим функцию внутрь структуры – «получим» класс

```
class Vector {
    public:
        double x, y;
        double CalculateWidth() {
            return sqrt(x*x + y*y);
        }
};
```

Функция внутри класса «знает» переменные этого класса – передавать аргументы не требуется.

Классы – основа ООП

- Класс обобщение типа данных структура
- **Класс = переменные** + **функции** для работы с этими переменными
- **Классы** создаются для представления сущностей: вектор, человек, транспортное средство, записная книжка, ...; интегратор, солвер ОДУ, ...

Классы – основа ООП

- Переменные класса поля
- Функции класса для работы с полями методы
- Экземпляр класса объект.

Основные принципы ООП

Абстракция

Инкапсуляция

Наследование

Полиморфизм

Абстракция

• Принцип позволяет определить, какие параметры необходимо поместить в класс в качестве полей, а какими параметрами можно пренебречь в контексте конкретной программы.

Абстракция: пример

Человек, параметры:

- ФИО
- пол
- возраст
- вес
- цвет волос
- национальность
- прописка
- результаты ЕГЭ
- факультет в ВУЗе
- оценки в ВУЗе
- зарплата
- должность
- •

Человек

Абстракция: пример

KOHTEKCT	НЕОБХОДИМЫЕ ПАРАМЕТРЫ
Работник в компании	ФИО, должность, зарплата
Студент в университете	ФИО, результаты ЕГЭ, факультет, оценки
Пациент в поликлинике	ФИО, пол, возраст, вес
Гражданин в государстве	ФИО, пол, возраст, национальность, прописка

Инкапсуляция

- Принцип сокрытия данных от внешнего воздействия.
- Обеспечивает безопасность пользования программой сторонними пользователями
- Осуществляется разделением прав доступа к полям класса на **private** и **public** (или **protected**).

Инкапсуляция: пример

- Пользователю доступны только кнопки переключения каналов (аналоги методов)
- Устройство «шестеренок» внутри (аналоги полей) сокрыто.

Наследование

• Принцип позволяет избежать повторения кода при расширении функциональности программ, используя ранее написанный код.

Наследование: пример

- У трамваев, автобусов и троллейбусов имеются общие параметры: число мест, дверей, колес, ...
- Чтобы избежать повторения кода эти параметры 1 раз помещаются в отдельный класс, от которого наследуются классы трамвай, автобус и троллейбус.

Полиморфизм

- Это способность объектов с одинаковым названием иметь различные реализации
- Примеры полиморфизма:
 - полиморфизм функций: работа с различными типами входных параметров
 - одинаковый набор методов, но различны их реализации (в классах, входящих в иерархию наследования)
 - одинаковая реализация, но различны типы аргументов (шаблоны из C++).

Закончили с ООП.

Выбор языка программирования для курса

Языки программиро вания: широкий выбор

Языки программиро вания: широкий выбор

Почему Python, а не Matlab?

- Более широкий спектр применения:
 - вычислительная математика (как и Matlab)
 - web-разработка
 - GUI
 - Unix-shell скрипты
- Open Source
- Высокая популярность.

Почему Python, а не C++?

• Более лаконичный синтаксис позволяет сконцентрироваться только на изучении аспектов ООП

Программы на Python исполняются «медленней» программ на C++, но эта проблема отчасти решается с помощью библиотек.

Язык Python: библиотеки из курса

Язык Python: другие библиотеки

На заметку

Последовательность этапов разработки вычислительных программ:

Темы из курса

Введение в синтаксис Python

Введение в библиотеки и синтаксис классов

Решение стандартных задач вычислительной математики с помощью ОО-программ

Обзор симулятора **Chaste** для численного моделирования в электрофизиологии

Сравнение средств ускорения Python Численное <u>диффер</u>енцирование

> Численное интегрирование

Моделирование функциональных пространств

МКР для ОДУ

МКР для УрЧП

МКЭ для аппроксимации функций (раздел дисциплины «Анализ данных»)

МКЭ для ОДУ

Итоги

1. ООП используется при написании крупных программных комплексов

- 2. Основные принципы ООП:
 - абстракция
 - инкапсуляция
 - наследование
 - полиморфизм

- 3. Язык 🙌 python :
- с лаконичным синтаксисом
- медленный
- большой набор библиотек
- подходит для

прототипирования

P.S. «Ускоренный» прототип — может подойти на роль программы для защиты диплома (Вы должны уточнить это у своего научного руководителя; возможно, Вам скажут заменить Python \rightarrow Matlab)

Касательно дипломной программы

Случай численного решения системы уравнений нефтяной гидродинамики (Є классу УрЧП) на мелкой пространственной сетке (соотношения примерные):

Случай численного решения системы уравнений молекулярной динамики с «огромным» (требуемым на практике) числом частиц (соотношения примерные):

Заключение

По окончании курса

- Знание языка Python и его «основных» библиотек на 70%
- Знание основных принципов ООП
- Умение использовать последние для написания крупных вычислительных программ

Полученные в курсе знания можно применить для написания программы, выносящейся на защиту диплома.

Спасибо за внимание. Готов ответить на ваши вопросы.

karpaev@phystech.edu

Спасибо за внимание. Готов ответить на ваши вопросы.

karpaev@phystech.edu