

- [002] This application claims priority from German Application serial No. 103 14 064.6 filed March 28, 2003. ◆◆
- [003] FIELD OF THE INVENTION ◆◆
- [004] The invention concerns a method for determining the rotation speed and rotation direction of a component, in the manner defined in greater detail in the preamble of Claim 1. ◆◆
- [005] BACKGROUND OF THE INVENTION ◆◆
- [013] —— According to the invention this objective is achieved by a method having the characteristics of Claim 1. ◆◆
- [014] SUMMARY OF THE INVENTION ◆◆
- [018] BRIEF DESCRIPTION OF THE DRAWINGS ◆◆
- [019] —— Other advantages and advantageous further developments of the invention emerge from the claims and from the example embodiments described in principle below. The invention will now be described, by way of example, with reference to the drawing, accompanying drawings in which shows: ◆◆
- [021] Fig. 2 are is a graphic illustration of two at least approximately sinusoidal sensor signals of the sensor device according to Fig. 1, with a corresponding rectangular variation of a sensor output signal produced by pulse signals generated by the sensor device and used to calculate and determine the rotation direction of a rotation speed of the signal wheel; ◆◆
- [029] DETAILED DESCRIPTION OF THE INVENTION ◆◆

[030] Referring to Fig. 1, a sensor device 1 for determining the rotation speed and direction of a rotary component (e.g., signal wheel) 2 is shown, which is arranged a certain distance LS from the component 2. The distance between the component 2 and the sensor device 1 is denoted here as the air gap LS, and during operation this varies dynamically due to manufacturing inaccuracies, for example, out-of-roundness of the component 2.

Page 16, Reference numerals

1	Sensor device
2	Component (e.g., signal wheel)
3	Toothed profile
DB	Flux density change
LS	Air gap
low	Pulse height
high	Pulse height
high_v	Rotation-direction-dependent pulse height
high_r	Rotation-direction-dependent pulse height
s_o	Upper switching limit
s_u	Lower switching limit
t	Time
t_pb	Pulse width
t_pd	Period duration
t_pb_v	Rotation speed- or direction-dependent pulse width
t_pb_r	Rotation speed- or direction-dependent pulse width
t_pb_limit	Limit value of the pulse width
T_w	Time point
T_s	Time point
I, II	Sensor signal