Subset-Saturated Transition Cost Partitioning

Dominik Drexler,^{1,2} Jendrik Seipp,^{1,3} David Speck²

¹Linköping University, ²University of Freiburg, ³University of Basel {dominik.drexler, jendrik.seipp}@liu.se, speckd@informatik.uni-freiburg.de

In a Nutshell

- Optimal classical planning
- ► A* search with admissible heuristic
- Multiple heuristics capture different aspects of task
- ► Beneficial to combine information of these heuristics
- Cost partitioning allows admissible combination
- Greedy method: saturated cost partitioning
- ► Contribution: combine two orthonal generalizations

Induced Transition System

A Planning task Π induces a weighted transition system $\mathcal{T} = \langle S, L, T, s_0, S_{\star}, ocf \rangle$ with

- \triangleright S: set of states, L: set of operator labels,
- ▶ T: set of transitions $T \subseteq S \times L \times S$,
- $ightharpoonup s_0 \in S$: initial state, $S_{\star} \subseteq S$ set of goal states,
- $ightharpoonup ocf: L
 ightharpoonup \mathbb{R}$ the operator costs (nonnegative)

Opt. solution for Π corresp. to **path** $\langle s_0, l_1, s_1, \ldots, l_n, s_n \rangle$ in \mathcal{T} where $s_n \in S_{\star}$ with cheapest cost $\sum_{i=1}^n ocf(l_i)$.

Abstractions and Heuristics

- $\blacktriangleright h(ocf, s)$ is goal distance estimate of state s in S
- ▶ h is admissible if $h(ocf, s) \le h^*(ocf, s)$ for all states s and h^* is perfect estimate
- ► **Abstraction** is simpler version of task where a partitioning of the states S defines the abstract states
- ► Abstraction heuristic maps states to goal distance of corresponding abstract state in the abstraction
- ► Abstraction heuristics are admissible

Saturated Cost Partitioning (SCP)

Saturated cost partitioning algorithm

for heuristic h in sequence h_1, \ldots, h_n do

$$ocf_i \leftarrow saturate(h, ocf)$$

 $ocf \leftarrow ocf - ocf_i$

end for

- ightharpoonup saturate computes a fraction ocf_i of ocf which preserves h(ocf, s) of (later: subset of) all states S
- $ightharpoonup \langle ocf_i, \ldots, ocf_n \rangle$ is a cost partitioning (CP)
- ▶ CP property: $\forall l \in L : \sum_{i=1}^{n} ocf_i(l) \leq ocf(l)$
- $\blacktriangleright h_1(ocf_i,s) + \ldots + h_n(ocf_n,s)$ is admissible

Generalizations of SCP

(1) Costs partitioned among transitions

- $ightharpoonup saturate returns <math>tcf_i: T \to \mathbb{R}$ instead of ocf_i
- More economical: often uses fewer costs
- ightharpoonup Tractability depends on tcf_i , often manageable

(2) Saturate for subset of states S'

- ► E.g. reachable, closer to goal, or single state
- ightharpoonup saturate preserves estimates of only states S'
- More economical: often uses fewer costs

Our Contributions

► Unify (1) and (2)

- ▶ Initial costs ocf(l) = 1 for all $l \in L$
- Edge and node denotations (b),(c),(d)
- (b) and (d) saturate for reachable states
- ► $h(s_0)$: $h^{(b)} = h^{(c)} = 2 + 0 < 2 + 1 = h^{(d)}$
- **Fast computation of** h(tcf, s)
 - Backward search in abstraction avoiding abstract weight computations
 - ▶ Make use of lower bound 0 because tcfis always nonnegative
- **Restrictions on** tcf_i (as alternative to ocf_i)
 - Heuristic estimate in unsolvable state is ∞ independent of tcf_i
 - ▶ Almost no value in cost assignment $\neq 0$

Experiments

	(a)	(b)	(c)	(d)
(a)	_	47	164	59
(b)	488	_	390	55
(c)	345	236	_	34
(d)	683	400	482	_
Coverage	1056	1061	1024	1083

