Midterm Submission

Tuesday, February 22, 2022 10:23 AM

ECE 466 Midterm 1

Name: Zebadich Miles PID: A 56393828

February 21, 2022

- Don't forget to write your name.
- Open textbook.
- Read carefully and write legibly. For the problems with partial credit, show your work.
- For those of you who are remotely solving the exam:
 - You can solve your exam in a-4 sheets or on your tablet.
 - You need to send a scanned pdf or image until 11:45 AM, Tuesday 22nd, to sofuoglu@msu.edu. Otherwise, your exam will not be accepted.
 - Make sure your answers are legible from pdf or scanned image.
- 1. No partial points for the following.
 - (a) [15 Points] Check if the following systems fits the classifications on the columns.

System Equation	Linear	Time Invariant	Static	Causal	Stable
y[n] = x[-n]	/	/			
$y[n] = 2n^2x[n] + nx[n+1]$	/				
$y[n] = cos(2\pi x[n])$	/	/	/		/

(b) [5 Points] The sequence $x[n] = \cos\left(\frac{\pi}{2}n\right)$ was obtained by sampling an analog signal $x(t) = \cos\left(\Omega t\right)$ at a sampling rate of $F_s = 100$ Hz. What are two possible values of Ω ?

 $X[u] = \cos(\overline{x}u)$ $X(t) = \cos(xt)$

 $\frac{\pi}{2} + 2\pi$ $\frac{5\pi}{2} + 2\pi = \frac{9\pi}{2}$

Si = zal

(c) [5 Points] What is the ideal sampling frequency of x(t) = u(t)?

The unit step function cannot be accurately However, an approximation can be produced by using the highest sampling rate allowed by the ADC being used. (d) [5 Points] The causal sequence $x[n] = \{3, 1\}$ is input to a system with impulse response h[n], producing the zero-state response $y[n] = \{6, -1, 2, 1\}$. Determine h[n].

(e) The impulse response of a DT (Discrete Time)-LTI system is given by $h[n] = A(0.7)^n u[n]$. Suppose $x[n] = B\cos(0.2\pi n)u[n]$ is input to the system. Which of the following could be the output signal y[n] = h[n] * x[n]?

i.
$$K_1(0.7)^n \cos(0.2\pi n + \theta)u[n]$$
.

ii.
$$K_1(0.14)^n u[n] + K_1 \cos(0.14\pi n\theta) u[n]$$
.
iii. $K_1(0.7)^n u[n] + K_2 \cos(0.2\pi n + \theta) u[n]$.
iv. $K_1(0.7)^n u[-n] + K_2 \cos(0.2\pi n + \theta) u[n]$.

- 2. [30 Points] Consider a causal LTI system described by the difference equation $y[n] = \frac{2}{15}y[n-1] + \frac{1}{15}y[n-2] + x[n]$ with y[-1] = 1, y[-2] = -1.
 - (a) [6] Find the impulse response h[n].
 - (b) [4] Determine if the system is (1) FIR or IIR, and (2) stable.
 - (c) [8] Find the zero state response for x[n] = u[n]. (Decide on particular response's K first.)
 - (d) [8] Find the zero input response.
 - (e) [4] Find the total response for x[n] = u[n]. Identify the steady state and transient responses.

$$y[n] = \frac{2}{16}y[n-1] + \frac{1}{16}y[n-2] + x(n) \qquad \text{with } y(-1] = 1$$

$$y[-2] = -1$$

$$a) h[n] = C_{1}(\frac{2}{16})^{n} u[n] + C_{2}(\frac{1}{16})^{n} 2 u[n] +$$

$$= \frac{2}{16}(1) + \frac{1}{16}(-1) + x(n)$$

$$= \frac{2}{16}(1) + \frac{1}{16}(1) + \frac{1}{16}(1) + \frac{1}{16}(1)$$

$$= \frac{2}{16}(1) + \frac{1}{16}(1) + \frac{1}{16}(1) + \frac{1}{16}(1)$$

$$= \frac{2}{16}(1) + \frac{1}{1$$

Extra page for Question 2

C.)
$$Z \leq R$$
 $\times [n] = u[n]$
 $y[n] = \frac{2}{16}y[n-1] + \frac{1}{16}y[n-2] + \times (n]$
 $y(2) = \frac{2}{16}2^{-1} + \frac{1}{16}2^{-2} + \times (2)$
 $+1(2) = \frac{2}{16}2^{-1} + \frac{1}{16}2^{-2} + 1$ $\rightarrow \frac{2}{16}2^{-1} + \frac{1}{16}2^{-2} + 1$
 $\times (2)$ $u[n]$

d.) ZIR

$$V_{ZIR}(u) = K_1(\frac{2}{15})^n u(u) + K_2(\frac{1}{15})^n u(u)$$
 $V_{ZIR}(u) = \frac{2}{15}^n u(u) + \frac{1}{15}^n u(u)$

C.) To Lat Response

$$y(n) = \frac{3}{15} \left(\frac{2}{15}\right)^n u(n) + \frac{4}{5} \left(\frac{1}{15}\right)^n u(n)$$

- 3. [30 points] A causal LTI system has a system function $H(z)=\frac{1+z^{-1}}{1-\frac{3}{5}z^{-1}+\frac{2}{25}z^{-2}}$.
 - (a) [5] Determine the difference equation that this system function describes.
 - (b) [2] What is the gain of the system?
 - (c) [5] Plot the pole-zero map.
 - (d) [5] Determine the region of convergence (ROC).
 - (e) [5] Is the system stable? Why?
 - (f) [8] Find the input signal x[n] that will produce the output $y[n] = 2\left(\frac{2}{5}\right)^n u[n] \left(\frac{1}{5}\right)^n u[n]$.

$$\frac{Y(2)}{X(2)} = \frac{1+2^{-1}}{1-\frac{3}{5}2^{-1}+\frac{2}{25}2^{-2}}$$

$$Y(2)\left(1-\frac{3}{5}2^{-1}+\frac{2}{25}2^{-2}\right)=X(2)\left(1+2^{-1}\right)$$

6.)

$$C_{1} = \begin{bmatrix} -\frac{3}{5} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{5} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{5} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{3}{5} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{5} & \frac{3}{5} & \frac{2}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{3}{$$

