

PATENT ABSTRACTS OF JAPAN

(11)Publicati n number:

07-159786

(43)Date of publication of application: 23.06.1995

(51)Int.CI. G02F 1/1337 G02F 1/13

G02F 1/1333

(21)Application number: 06-222952 (71)Applicant: HITACHI LTD (22)Date of filing: 19.09.1994 (72)Inventor: OE MASATO

KONDO KATSUMI

(30)Priority

Priority number : 05254028

Priority date: 12.10.1993 20.09.1993 Priority country: JP

JP

(54) LIQUID CRYSTAL DISPLAY DEVICE

05233262

(57)Abstract:

PURPOSE: To obtain the device which has high display quality and with which the residual image is hardly generated in the transverse electric field mode by specifying the period of time from the point when the display part is erased after displaying some patterns for a specified time to the point when the display part becomes indiscernible from the non-display part.

CONSTITUTION: In this device, the wire-shaped signal electrode 3. a pixel electrode 4 and a common electrode 5 are formed on the inside of each of a pair of transparent substrates and the insulating film 7 is provided on them and further, each of the resulting substrates is coated with the oriented film 8 which is subjected to orientation treatment. A liquid crystal composition is interposed between the substrates and the bar-shaped liquid crystal molecules 12 are oriented so that their longitudinal direction is at a certain angle to the longitudinal direction of the stripe-likely formed electrodes at the time of applying no electric field. At the time of applying the electric field 9, the direction of the liquid crystal molecules is changed to the direction of the electric field and the change in lighttransmissivity due to the application of the electric field 9 is effected by arranging the polarizing plate 2 in the direction of the polarizing plate transmission axis 11. At this time, the required time for recovering the brightness after continuously

displaying the same patterns and characters for 30min is adjusted to ≤5min. Thus, the liquid crystal display device which has high picture quality and with which the residual image is hardly generated can be obtained.

LEGAL STATUS

[Date of request for examination]

13.10.1998

[Date of sending the examiner's decision of rejection]

19.12.2000

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

To a second second

[Date of final disposal for application]
[Patent number]

3211581

[Date of registration]

19.07.2001

[Number of app al against examiner's decisi n of

rejection]

[Date of requesting appeal against examiner's decision

of r jecti n]

[Dat of xtinction fright]

£x

0162549P

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-159786

(43)公開日 平成7年(1995)6月23日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ	技術表示箇所
G02F	1/1337				
	1/13	500			
	1/1333	505			

審査請求 未請求 請求項の数21 OL (全 16 頁)

(21)出願番号	特願平6-222952	(71)出願人	000005108 株式会社日立製作所
(22)出願日	平成6年(1994)9月19日		東京都千代田区神田駿河台四丁目6番地
		(72)発明者	大江 昌人
(31)優先権主張番号	特願平5-254028		茨城県日立市大みか町七丁目1番1号 株
(32)優先日	平 5 (1993)10月12日		式会社日立製作所日立研究所内
(33)優先権主張国	日本 (JP)	(72)発明者	近藤 克己
(31)優先権主張番号	特願平5-233262		茨城県日立市大みか町七丁目1番1号 株
(32)優先日	平 5 (1993) 9 月20日		式会社日立製作所日立研究所内
(33)優先権主張国	日本 (JP)	(74)代理人	弁理士 小川 勝男

(54) 【発明の名称】 液晶表示装置

(57)【要約】

【目的】残像が少ない高表示品質の液晶表示装置を得る。

【構成】表示画素が、電極により基板上に構成され、該基板には液晶の配向膜が直接又は絶縁膜を介して形成されており、該基板は、配向膜を形成した基板と対向して配置され、該基板により液晶層が挟持され、該電極は、基板と概略平行な電界を発生するように構成され、該電極は、外部の制御手段と接続されており、該液晶層の光学特性を変化させる偏光手段を備えた液晶表示装置であって、図形を30分間表示し、表示部を消去してから、該表示部と非表示部が識別できなくなるまでの時間が5分以内であることを特徴とする液晶表示装置。

. . .

【特許請求の範囲】

【請求項1】表示画素が、電極により基板上に構成され、該基板には液晶の配向膜が直接又は絶縁膜を介して 形成されており、

該基板は、配向膜を形成した基板と対向して配置され、 該基板により液晶層が挟持され、

該電極は、基板と概略平行な電界を発生するように構成 され、

該電極は、外部の制御手段と接続されており、

該液晶層の光学特性を変化させる偏光手段を備えた液晶 10 表示装置であって、

図形を30分間表示し、表示部を消去してから、該表示 部と非表示部が識別できなくなるまでの時間が5分以内 であることを特徴とする液晶表示装置。

【請求項2】表示画素が、電極により基板上に構成され、該基板には液晶の配向膜が直接又は絶縁膜を介して 形成されており、

該基板は、配向膜を形成した基板と対向して配置され、 該基板により液晶層が挟持され、

該電極は、基板と概略平行な電界を発生するように構成 20 され、

該電極は、外部の制御手段と接続されており、

該液晶層の光学特性を変化させる偏光手段を備えた液晶 表示装置であって、

図形を30分間表示し、表示部を消去してから、該表示 部と非表示部が識別できなくなるまでの時間が5分以内 であり、

該液晶層、該配向膜及び/もしくは該絶縁膜の比誘電率 ε_r と比抵抗 ρ の積 $((\varepsilon_r\rho)_{LC}, (\varepsilon_r\rho)_{AF}$ 及び/もしくは $(\varepsilon_r\rho)_{PAS}$)が、 $1\times 10^9\Omega \cdot cm以上8 \times 10^{15}\Omega \cdot cm以下であることを特徴とする液晶表示装置。$

【請求項3】表示画素が、電極により基板上に構成され、該基板には液晶の配向膜が直接又は絶縁膜を介して形成されており、

該基板は、配向膜を形成した基板と対向して配置され、 該基板により液晶層が挟持され、

該電極は、基板と概略平行な電界を発生するように構成 され

該電極は、外部の制御手段と接続されており、

該液晶層の光学特性を変化させる偏光手段を備えた液晶 表示装置であって、

図形を30分間表示し、表示部を消去してから、該表示 部と非表示部が識別できなくなるまでの時間が5分以内 であり、

該配向膜及び/もしくは該絶縁膜の表面抵抗の値が3.

3×10¹¹Ω/□ 以上2.5×10¹⁸Ω/□ 以下であ *

 $0.1 \le (\varepsilon_r \rho) Lc / (\varepsilon_r \rho) AF \le 10$

 $0.1 \le (\varepsilon_r \rho) \operatorname{LC} / (\varepsilon_r \rho) \operatorname{PAS} \le 10 \tag{2}$

 $0.1 \le (\varepsilon_r \rho)_{AF} / (\varepsilon_r \rho)_{PAS} \le 10$ (3)

*ることを特徴とする液晶表示装置。

【請求項4】表示画素が、電極により基板上に構成され、該基板には液晶の配向膜が直接又は絶縁膜を介して 形成されており、

該基板は、配向膜を形成した基板と対向して配置され、 該基板により液晶層が挟持され、

該電極は、基板と概略平行な電界を発生するように構成 され、

該電極は、外部の制御手段と接続されており、

0 該液晶層の光学特性を変化させる偏光手段を備えた液晶表示装置であって、

該液晶層,該配向膜及び/もしくは該絶縁膜の比誘電率 $\varepsilon_{\rm r}$ と比抵抗 ρ の積(($\varepsilon_{\rm r}\rho$) $\iota_{\rm C}$ 、($\varepsilon_{\rm r}\rho$)AF及び/もしくは($\varepsilon_{\rm r}\rho$)PAS)を近似させることを特徴とする 液晶表示装置。

【請求項5】請求項4記載の液晶表示装置において、 該積が 1×1 0 9 Ω · cm 以上 8×1 0 1 0 · cm以下であることを特徴とする液晶表示装置。

【請求項6】表示画素が、電極により基板上に構成され、該基板には液晶の配向膜が直接又は絶縁膜を介して形成されており、

該基板は、配向膜を形成した基板と対向して配置され、 該基板により液晶層が挟持され、

該電極は、基板と概略平行な電界を発生するように構成 され、

該電極は、外部の制御手段と接続されており、

該液晶層の光学特性を変化させる偏光手段を備えた液晶 表示装置であって、

該液晶層,該配向膜及V/もしくは該絶緑膜の比誘電率 30 ε_r と比抵抗 ρ の積(($\varepsilon_r \rho$) ι_c , ($\varepsilon_r \rho$) ι_f 及V/もしくは($\varepsilon_r \rho$) ι_f の最大値と最小値の比が 1 以上 100以下であることを特徴とする液晶表示装置。

【請求項7】表示画素が、電極により基板上に構成され、該基板には液晶の配向膜が直接又は絶縁膜を介して 形成されており、

該基板は、配向膜を形成した基板と対向して配置され、 該基板により液晶層が挟持され、

該電極は、基板と概略平行な電界を発生するように構成 され

40 該電極は、外部の制御手段と接続されており、

該液晶層の光学特性を変化させる偏光手段を備えた液晶 表示装置であって、

該液晶層,該配向膜及び/もしくは該絶縁膜の比誘電率 ε_r と比抵抗 ρ の積(($\varepsilon_r\rho$) ι_C ,($\varepsilon_r\rho$) ι_C ,($\varepsilon_r\rho$) ι_C ,(ι_C 0)の関係が成立していることを特徴とする液晶表示装置。

(1)

【請求項8】表示画素が、走査信号電極、映像信号電極、画素電極及びアクティブ素子により基板上に構成されていることを特徴とする請求項1から4のいずれかに記載の液晶表示装置。

【請求項9】表示画素が、電極により基板上に構成され、該基板には液晶の配向膜が直接又は絶縁膜を介して形成されており。

該基板は、配向膜を形成した基板と対向して配置され、 該基板により液晶層が挟持され、

該電極は、基板と概略平行な電界を発生するように構成 10 され、

該電極は、外部の制御手段と接続されており、

該液晶層の光学特性を変化させる偏光手段を備えた液晶 表示装置であって、

該基板1上の配向膜と該絶縁膜の厚さを合わせて0.5 ~3μm としたことを特徴とする液晶表示装置。

【請求項10】絶縁膜の厚さを0.4μm~2μm としたことを特徴とする請求項9記載の液晶表示装置。

【請求項11】配向膜が有機物であり、絶縁膜が無機物であることを特徴とする請求項1から4のいずれかに記 20 載の液晶表示装置。

【請求項12】配向膜が有機物であり、絶縁膜が無機膜と有機膜の2層構造であることを特徴とする請求項1から4のいずれかに記載の液晶表示装置。

【請求項13】配向膜が有機物、絶縁膜が無機物であり、該有機物で構成される層が該無機物で構成される層より厚いことを特徴とする請求項1から4のいずれかに記載の液晶表示装置。

【請求項14】配向膜及び絶縁膜が共に有機物で構成されることを特徴とする請求項1から4のいずれかに記載 30の液晶表示装置。

【請求項15】配向膜の液晶層に接する側の面が平坦であることを特徴とする請求項1から4のいずれかに記載の液晶表示装置。

【請求項16】配向膜及び絶縁膜が同一材料からなることを特徴とする請求項1から4のいずれかに記載の液晶表示装置。

【請求項17】カラーフィルターを基板のいずれか一方の上に、かつ、該カラーフィルターと液晶層との間に絶縁膜が介在することを特徴とする請求項1から4のいずれかに記載の液晶表示装置。

【請求項18】カラーフィルター上の段差を平坦化する機能を有する平坦化膜が有機物であり、該平坦化膜の上に無機物の膜が形成されていることを特徴とする請求項1から4のいずれかに記載の液晶表示装置。

【請求項19】カラーフィルターを有する基板に構成される配向膜が無機物で構成される層を介していることを特徴とする請求項1から4のいずれかに記載の液晶表示装置。

【請求項20】カラーフィルターが、表示画素として走 50 れ、該基板には液晶の配向膜が直接又は絶縁膜を介して

1

査信号電極、映像信号電極、画素電極及びアクティブ素子を有する基板側に構成され、かつ、該カラーフィルターと液晶層との間に絶縁膜が介在することを特徴とする請求項1から4のいずれかに記載の液晶表示装置。

【請求項21】情報を入力する手段を備え、該情報を演算あるいは所定の処理を行う手段を有し、処理された該情報を出力する装置と記憶する装置及び内蔵電源を具備したことを特徴とする請求項1から4のいずれかに記載の液晶表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、残像の少ない高画質の 液晶表示装置に関する。

[0002]

【従来の技術】従来の液晶表示装置においては、液晶層を駆動する電極は2枚の基板上に形成され、相対向している透明電極を用いていた。これは液晶に印加する電界の方向を基板界面にほぼ垂直な方向とすることで動作する、ツイステッドネマチック表示方式に代表される表示方式を採用していることによる。一方、液晶に印加する電界の方向を基板界面にほぼ平行な方向にする方式として、櫛歯電極対を用いた方式が、例えば特公昭63-21907号公報、WO91/10936により提案されている。この場合、電極は透明である必要は無く、導電性が高く不透明な金属電極が用いられる。

【0003】しかしながら、これらの公知技術においては、液晶に印加する電界の方向を基板界面にほぼ平行な方向にする表示方式(以降、横電界方式と称する)をアクティブマトリクス駆動あるいは単純マトリクス駆動する際、高画質を得るために必要な液晶材料,配向膜及び絶縁膜の物性に関しては何ら言及していない。

[0004]

【発明が解決しようとする課題】ある特定の文字や図形を液晶表示装置に表示していると、その文字や図形を消去しても画面内には画像が焼き付き、その画像がしばらく残る残像と称する表示むらがしばしば発生する。液晶に印加する電界の方向を基板に垂直な方向とする方式でも横電界方式でも、残像が表示品質を損なうという共通の問題がある。特に、横電界方式では、液晶に印加する電界の方向を基板界面にほぼ垂直な方向とする表示方式に比べ、この残像が非常に発生しやすいという問題がある。

【0005】本発明の目的は、横電界方式において、残 像の少ない高表示品質の液晶表示装置を提供することに ある。

[0006]

【課題を解決するための手段】前記課題を解決するため に、本発明者らは以下の発明をした。

【0007】表示画索が、電極により基板上に構成され、該其板には流見の配向間が直接又は絶縁間を介して

形成されており、該基板は、配向膜を形成した基板と対向して配置され、該基板により液晶層が挟持され、該電極は、基板と概略平行な電界を発生するように構成され、該電極は、外部の制御手段と接続されており、該液晶層の光学特性を変化させる偏光手段を備えた液晶表示装置(以下、横電界方式の液晶表示装置とする)であって、図形を30分間表示し、表示部を消去してから、表示部と非表示部が識別できなくなるまでの時間が5分以内であることを特徴とする液晶表示装置を発明した。

【0008】また、表示部と非表示部が識別できなくな 10 るまでの時間は黒表示部の輝度(B(黒))と白表示部の輝度(B(白))を輝度計でモニターすることにより、より定量的に測定できる。この際、B(白)/B(黒)が1以上1.5 以下になったときの時間を表示部と非表示部が識別できなくなるまでの時間とする。

【0009】横電界方式の液晶表示装置において、表示 画素は走査信号電極及び映像信号電極で構成される。さ らに、画素電極及びアクティブ素子を具備することが望 ましい。しかしながら、これに限定されるものではな い

【0010】ここで、配向膜とは液晶を配向させる機能を有する膜である。また、絶縁膜とは電気的な絶縁をする膜であるが、電極を保護する機能も持つことが可能である。

【0011】また、本発明者らは、横電界方式の液晶表示装置において、残像をなくすには、液晶層,配向膜及び/もしくは絶縁膜の比誘電率 ε_r と比抵抗 ρ の積($(\varepsilon_r\rho)_{\rm LC}$, $(\varepsilon_r\rho)_{\rm AF}$ 及び/もしくは $(\varepsilon_r\rho)_{\rm PAS}$)が、 $1\times10^9\,\Omega$ ・cm以上 $8\times10^{15}\,\Omega$ ・cm以下であればよいことを見出した。

*【0012】ここで、液晶層の比誘電率 εは、次式の平均の比誘電率を表す。

 $[0013] \varepsilon_r = (\varepsilon_r + 2\varepsilon_r)/3$

ここで、 ε_1 は分子長軸方向の比誘電率であり、 ε_1 は分子単軸方向の比誘電率である。

【0014】上記の比誘電率 ε_r と比抵抗 ρ の積 $\varepsilon_r \rho$ が、 $1\times 10^9\Omega$ · cm 未満であると、絶縁性を保持できなくなり、また高い電圧保持率を維持できなくなる。上限の値については後述する。

○ 【0015】また、本発明者らは、横電界方式の液晶表示装置において、残像をなくすには、配向膜及び/もしくは絶縁膜の表面抵抗の値が3.3×10¹¹Ω/□以上2.5×10¹⁸Ω/□以下であればよいことを見出した。

【0016】配向膜及び/もしくは絶縁膜の表面抵抗の 値が3.3×10¹¹Ω/□ 未満であると、絶縁性を保持 できなくなり、また高い電圧保持率を維持できなくな る。上限の値については後述する。

【0017】また、本発明者らは、横電界方式の液晶表 元装置であって、液晶層、配向膜及び/もしくは絶縁膜の比誘電率 ε r と比抵抗 ρ の積((ε r ρ) ρ 0 にた、(ε 1 r ρ 2 の AF及び/もしくは(ε 1 r ρ 2 r ρ 3 PAS)を近似させることを特徴とする液晶表示装置を発明した。

【0018】ここで、近似の定義としては、液晶層、配向膜及び/もしくは絶縁膜の比誘電率 ε_r と比抵抗 ρ の 積($(\varepsilon_r\rho)_{LC}$, $(\varepsilon_r\rho)_{AF}$ 及び/もしくは($\varepsilon_r\rho$)PAS)の最大値と最小値の比が1以上100以下であることであり、また、別の定義としては、下記の (1)から(3)の関係が成立していることである。

(1)

*30 [0019]

 $0.1 \le (\varepsilon_r \rho) LC / (\varepsilon_r \rho) AF \le 10$

 $0.1 \le (\varepsilon_r \rho) \operatorname{LC} / (\varepsilon_r \rho) \operatorname{PAS} \le 10 \tag{2}$

 $0.1 \le (\varepsilon_r \rho)_{AF} / (\varepsilon_r \rho)_{PAS} \le 10$ (3)

また、本発明者らは、横電界方式の液晶表示装置において、基板上の配向膜と絶縁膜の厚さを合わせて、0.5~3μm としたことを特徴とする液晶表示装置を発明した。

【0020】本発明の液晶表示装置に、情報を入力する 手段を備え、該情報を演算あるいは所定の処理を行う手 段を有し、処理された該情報を出力する装置と記憶する 装置及び内蔵電源を具備することもできる。

【0021】本発明の液晶表示装置において、絶縁膜の厚さは0.4μm~2μm とすることが望ましい。

【0022】また、本発明の液晶表示装置において、配向膜が有機物であり、絶縁膜が無機物であることが望ましい。さらに、配向膜が有機物であり、絶縁膜が無機膜と有機膜の2層構造であることが望ましい。

【0023】また、本発明の液晶表示装置において、配 向膜が有機物、絶縁膜が無機物であり、該有機物で構成 される層が該無機物で構成される層より厚いことが望ま※50

※しい。

【0024】また、配向膜及び絶縁膜が共に有機物で構成されることも望ましく、配向膜及び絶縁膜が同一材料であることも望ましい。さらに、配向膜の液晶層に接する側の面が平坦であることが望ましい。

【0025】高画質のカラー表示を可能とするためには、カラーフィルターを基板のいずれか一方の上に、かつ、カラーフィルターと液晶層との間に絶縁膜が介在することが望ましい。また、カラーフィルター上の段差を平坦化する機能を有する平坦化膜が有機物であり、平坦化膜の上に無機物の膜が形成されていることが望ましい。さらに、カラーフィルターを有する基板に構成される配向膜が無機物で構成される層を介していることが望ましい。

[0026]

【作用】ここでは電界方向が基板にほぼ平行な方向に印加される横電界方式の原理を最初に述べ、続いて本発明

6

の作用を述べる。

【0027】先ず初めに、電界方向に対する偏光板の偏 光透過軸のなす角 Φ 及び液晶界面近傍での液晶分子長 軸(光学軸)方向のなす角φιςの定義を示す(図2)。 **偏光板及び液晶界面はそれぞれ上下に一対あるので必要** に応じて ϕ_{P1} , ϕ_{P2} , ϕ_{LC1} , ϕ_{LC2} と表記する。なお、 図2は後述する図1の正面図に対応する。

【0028】図1(a),(b)は本発明の液晶パネル内 での液晶の動作を示す側断面を、図1(c),(d)はそ の正面図を表す。図1ではアクティブ素子を省略してあ 10 る。また、本発明ではストライプ状の電極を構成して複 数の画素を形成するが、ここでは一画素の部分を示し た。電圧無印加時のセル側断面を図1(a)に、その時 の正面図を図1 (c)に示す。透明な一対の基板の内側 に線状の信号電極3, 画素電極4、及び共通電極5が形 成され、その上に絶縁膜7が付設され、さらに配向膜8 が塗布及び配向処理されている。基板間には液晶組成物 が挟持されている。棒状の液晶分子12は、電界無印加 時にはストライプ状電極の長手方向に対して若干の角 度、即ち45度 $<\phi$ cc<135度、又は、-45度 $<\phi$ LC<-135度をもつように配向されている。上下界面 上での液晶分子配向方向はここでは平行、即ちølc1= φιc2を例に説明する。また、液晶組成物の誘電異方性 は正を想定している。

【0029】次に、電界9を印加すると図1(b),

(d) に示したように電界方向に液晶分子がその向きを 変える。 偏光板2を偏光板透過軸11に配置することで 電界印加によって光透過率を変えることが可能となる。 このように、本発明によれば透明電極がなくともコント ラストを与える表示が可能となる。液晶組成物の誘電率 30 異方性は正を想定したが、負であっても構わない。その 場合には初期配向状態をストライプ状電極の長手方向に 垂直な方向から若干の角度 | φιc | (即ち、-45度< ϕ_{LC} <45度、または、135度< ϕ_{LC} <225度)を 持つように配向させる。

【0030】なお、図1では共通電極が信号電極及び画 素電極と異層である場合を示したが、共通電極は信号電 極及び画素電極と同層であってもよい。 図3には共通電 極が画素電極と同層である際の画素構造の典型例を、図 4及び図5には共通電極が画素電極と異層である場合の 画素構造の典型例を示す。また、特に共通電極を具備し なくとも、走査電極に共通電極の機能をもたせることも 可能である。しかしながら、以下に記述する本発明の概 念は素子を構成する絶縁材料に関するものであり、種々 の電極構造や薄膜トランジスタ構造に適用可能である。 【0031】同一図形や文字を30分間表示し続けた 後、輝度が回復する時間が5分以内であるようにするこ とで残像のない高画質の液晶表示装置を得ることができ る。残像は液晶層、配向膜又は絶縁膜内に、何らかの原 因で分極が生じた場合に誘発される。したがって、具体 50 に関わらず成立するものである。

的には液晶層、配向膜及び/もしくは絶縁膜の比誘電率 $\varepsilon_{\rm r}$ と比抵抗 ρ の積 $((\varepsilon_{\rm r}\rho)_{\rm LC}, (\varepsilon_{\rm r}\rho)_{\rm AF}$ 及び/も しくは (εrρ) PAS) が、8×10¹⁵Ω·cm以下にする ことによって、蓄積された電荷を速く緩和させることが できるため、残像が軽減される。

8

【0032】この場合の残像低減の原理のモデル図を図 11(a)に示した。すなわち、画像内にある電荷が蓄 積されてもその緩和速度が速く、電荷量が短い時間でな くなることによる。また、図11(b)のように蓄積さ れる電荷量を小さくしてやることにより、緩和速度が速 くなくとも残像を低減することができる。そこで、蓄積 される電荷量を小さくするために、配向膜及び/もしく は絶縁膜の表面抵抗の値を2.5×1018Ω/□ 以下に することによっても残像を改善することができる。さら に、液晶層,配向膜及び/もしくは絶縁膜の比誘電率 ε r と比抵抗 ρ の積、 $\epsilon r \rho$ を、ほぼ等しくすることによ って残像をさらに低減することができる。

【0033】前述のように、残像は液晶層、配向膜又は 絶縁膜内に何らかの原因で分局が生じた場合に誘発され る。また、配向膜に生じた分極は液晶層の二次的な分極 を生み出すなど、各層や膜内の分極は互いに干渉し合 う。例えば、液晶層の分極の緩和過程においても配向膜 の分極が残存していると、その分極は液晶層に影響を与 え液晶層の分極の緩和を妨げるように作用する。したが って、各層あるいは膜に生じた分極が互いに干渉しない ように緩和するためには、それぞれの緩和時間が等しく なければならない。この原理は電界が基板に対して平行 に印加される方式、つまり、横電界方式で特に顕著に成 立することを見出した。横電界方式では液晶層、絶縁膜 及び配向膜に相当する電気的等価回路が並列につながっ ている。したがって、例えば配向膜や絶縁膜の比誘電率 ε_r と比抵抗 ρ の積、 $\varepsilon_r \rho$ が液晶層のそれより大きい と、配向膜や絶縁膜に残存している電圧が液晶層に余分 な電圧として印加され、結果として残像を誘発する。さ らに、抵抗R $M\rho$ d/S(ρ :比抵抗, d:電界方向の 長さ, S:電界に垂直な断面積)で表わされることを考 えると、横電界方式では電界を基板に対して垂直に印加 する方式に比べ、素子構造上非常に大きな抵抗を有して いる。すなわち、横電界方式では残留する直流成分が大 きいことを意味している。このような場合、残像を一層 低減するためには、さらに液晶層、配向膜及び/もしく は絶縁膜の比誘電率 $\varepsilon_{\rm r}$ と比抵抗 ρ の積((ε

rρ) LC, (εrρ) AF及び/もしくは(εrρ) PAS) が、 $8 \times 10^{15} \Omega \cdot cm以下にするとよい。このようにす$ れば、蓄積された電荷の緩和過程において、液晶層、配 向膜及び/もしくは絶縁膜が互いに干渉することなく短 い時間で緩和する。

【0034】これらは、横電界方式において単純マトリ クス駆動方式、あるいはアクティブマトリクス駆動方式 【0035】一方、液晶を配向させる機能を有する膜(配向膜)と電気的な絶縁と電極群を保護する機能を有する膜(絶縁膜)の厚みを合わせて0.5μm以上3μm以下、望ましくは0.7μm以上2.8μm以下にすることにより、各画素における配向膜と絶縁膜の抵抗成分を小さくすることができる。

【0036】実際には、電極群を付設してある基板上の 段差を軽減するためにも、絶縁膜の厚さを0.4μm 以 上2μm以下に設定するのが好ましい。

【0037】前述したように、横電界方式においては、液晶層と配向膜及び絶縁膜に相当する電気的等価回路が並列につながっている。したがって、配向膜や絶縁膜に残留した電圧はそのまま液晶層に印加されることになる。残像は配向膜や絶縁膜に残留した電圧が液晶層に印加されることに起因することを考慮すると、各画素における配向膜と絶縁膜に相当する抵抗成分を小さくすれば配向膜や絶縁膜に残留する電圧を低減でき、液晶層に印加される余分な電圧もなくなる。配向膜及び絶縁膜の抵抗成分を小さくするには、配向膜及び絶縁膜の膜厚を厚くし、電界方向に垂直な断面積を大きくすればよい。

【0038】このような場合、絶縁膜を信頼性が高い無機物で形成し、配向膜を有機物で形成するとよい。また、絶縁膜を無機膜と形成することが比較的容易な有機膜の2層構造にすることもよい。図8に各層の誘電率の大小によって液晶層内で電気力線が変化することを表す模式図を示す。液晶層に比して配向膜や絶縁膜の誘電率が小さいほど理想的な横電界が達成される。したがって、無機物の層を一般に誘電率の小さい有機物の層にできるだけ置き換えることで基板に水平な電界成分を効率良く利用することができる。さらには、絶縁膜を有機物にすることでその効果は有効となる。また、絶縁膜と配向膜を同一材料にすることはプロセス上の高効率化にもつながる。

【0039】液晶表示装置の画質を高めるためには、液晶に接する配向膜表面を平坦化することも重要である。 これにより表面の段差をなくし、ラビングの効果を面内で均一にすることで光漏れを抑えることができる。

【0041】一般に、カラーフィルターの平坦化膜には エポキシ樹脂などの有機物が用いられており、その上に 透明電極が設けられている。しかしながら、横電界方式 では透明電極が前述のごとく必要ないため、平坦化膜が 直接配向膜と接することになる。この場合、配向膜の印 剧性にしばしば問題が生ずるため、平坦化膜の上層に窒 化シリコンなどの無機物層を設けると印刷性を高めるの に効果がある。

【0042】カラーフィルターは必ずしも電極群が存在 50

しない基板側に具備させる必要がなく、むしろ、アクティブ素子や電極群が付設されている基板側に構成することでアラインメントの精度を高めることができる。 【0043】

10

【実施例】本発明を実施例により具体的に説明する。 【0044】〔実施例1〕図3は本発明の単位画素にお ける各種電極の構造を示した第1の例である。研磨した ガラス基板上にA1よりなる走査電極13を形成し、前 記走査電極の表面はA1の陽極酸化膜であるアルミナ膜 10 で被覆した。走査電極を覆うようにゲート絶縁 (ゲート SiN) 膜6とアモルファスシリコン (a-Si) 膜1 4を形成し、このa-Si膜上にn型a-Si膜、画素 電極4及び信号電極3を形成した。さらに、前記画素電 極及び信号電極と同層に共通電極5を付設した。画素電 極及び信号電極の構造としては図3に示すように、いず れもストライプ状の共通電極と平行で、走査電極と交差 するような構造とし、一方の基板上に薄膜トランジスタ 15及び金属電極群が形成された。これらによって、一 方の基板上の画素電極,共通電極間で電界9がかかり、 20 かつその方向が基板界面にほぼ平行となるようにした。 基板上の電極はいずれもアルミニウムからなるが、電気 抵抗の低い金属性のものであれば特に材料の制約はな く、クロム、銅等でもよい。

【0045】画素数は40(×3)×30(即ち、n=120, m=30である。)で、画素ピッチは横方向(即ちコモン電極間)は80μm,縦方向(即ちゲート電極間)は240μmである。コモン電極の幅は12μmで隣接するコモン電極の間隙の68μmよりも狭くし、高い開口率を確保した。また薄膜トランジスタを有する基板に相対向する基板上にストライプ状のR,G,B3色のカラーフィルターを備えた。カラーフィルターの上には表面を平坦化する透明樹脂を積層した。透明樹脂の材料としてはエポキシ樹脂を用いた。更に、この透明樹脂上にポリイミド系の配向膜を塗布した。パネルには図7のように駆動LSIが接続され、TFT基板上に走査信号回路20,映像信号回路21を接続し、電源及びコントローラ22から走査信号電圧,映像信号電圧、タイミング信号を供給し、アクティブマトリクス駆動した

40 【0046】一方、上下界面近傍での液晶分子長軸方向は互いにほぼ平行で、かつ印加電界方向とのなす角度を15度(φιc1=φιc2=15°)とした(図2)。ギャップはは球形のポリマビーズを基板間に分散して挟持し、液晶封入状態で6.5μmとした。2枚の偏光板〔日東電工社製G1220DU〕でパネルを挟み、一方の偏光板の偏光透過軸をラビング方向(界面近傍での液晶分子長軸方向)にほぼ平行、即ちφρ1=15°とし、他方をそれに直交、即ちφρ2=-75°とした。これにより、ノーマリクローズ特性を得た。

50 【 0 0 4 7 】基板間にはトランス,トランス-4 ,4´

ージペンチルートランスー1, 1 ージシクロヘキサンー4ーカルボニトリルを主成分とした誘電異方性 Δ ϵ が 負のZ L I = 2 8 0 6 (メルク社製)を挟持した。液晶の比抵抗は5. 1×1 0^{11} Ω cmであり、平均の比誘電率は6. 5 であった。一方、絶縁膜には窒化シリコン(S

り、比誘電率は8であった。また、配向膜は2,2-ビス[4-(p-アミノフェノキシ)フェニルプロパン] とピロメリット酸二無水物からなるポリイミド配向膜を*

iN)を用い、その比抵抗は2.5×10¹³Ωcmであ

*用い、その比抵抗は $7.5 \times 10^{13} \Omega$ cm,比誘電率は2.9であった。したがって、液晶、絶縁膜及び配向膜のそれぞれの比抵抗 ρ と比誘電率 ϵ rの積 ϵ r ρ は、 $1 \times 10^{9} \Omega \cdot \text{cm以}$ 上 $8 \times 10^{15} \Omega \cdot \text{cm以}$ 下であって、三者の中の最大値と最小値の比が1以上100以下であった。【0048】表1に実施例 $1 \sim 12$,比較例1及び2の積 ϵ r ρ の値を示す。

12

[0049]

【表1】

表

実施例	(ε rp)LC	(ε rp)AF Ω-cm	(ε rp)PAS Ω·cm	log (e rp)AF (e rp)PAS	log (e rp)LC (e rp)AF	log (e rp)LC (e rp)PAS
1	3.3X10 ¹²	2.2X10 ¹⁴	2.0X10 ¹⁴	0	-1.8	-1.8
2	3.1X10 ¹⁵	2.9X10 ¹⁴	2.4X10 15	-0.9	1.0	0.1
3	6.1X10 ¹²	7.8X10 13	5.0X10 ¹⁴	-0.8	-1.1	-1.9
4	9.2X10 ¹³	1.2X10 ¹⁴	4.5X10 12	1.4	0.8	1.3
5 6 7	9.8X10 ¹⁸	1.5X10 ¹⁴	1.7X10 ¹²	2.0	-0.2	1.8
8	1.5X10 ¹⁸	1.0X10 14	1.0X10 "	0	-0.8	-0.8
9	6.1X10 ¹⁴	6.4X10 13	8.0X10 ¹²	0.9	1.0	1.0
10	3.1X10 ¹²	2.9X10 13	2.4X10 14	-0.9	-1.4	-2.3
11	1.2X10 ¹⁵	5.8X10 12	8.0X10 13	-1.1	2.3	1.2
12	1.2X10 ¹⁴	8.0X10 15	8.0X10 15	-2.0	0.2	-1.8

比較例	(ε rp)LC Ω·cm	(εrp)AF Ω·cm	(εrp)PAS Ω•cm	log (e rp)AF (e rp)PAS	log (εrp)LC (εrp)AF	log <u>(ε rp)LC</u> (ε rp)PAS
1	1.2X10 ¹⁶	5.8X10 12	4.8X10 18	-1.1	2.3	1.2
2	3.8X10 ¹⁸	1.6X10 ¹³	1.6X10 ¹⁶	-2.3	0.6	-1.7

【0050】残像は目視で5段階評価した。同一図形パターンを30分間表示し続け、その後消去した際に輝度が回復する時間によって分類した。5は輝度が回復するのに5分を越えるもの、4は1以上5分以内、3は30秒以上1分以内、2は30秒以内であるが残像が起こっていると感じられるもの、1は残像が全く起こらなかったものというように分類評価した。本実施例1の残像の評価段階は1であり、残像が全く発生しなかった。

【0051】本発明は素子を構成する絶縁材料の比誘電率と比抵抗に関するものであり、種々の電極構造やTF T構造に適用可能である。

【0052】〔実施例2〕図4は本発明の単位画案における各種電極の構造を示した第2の例である。研磨した※50

※ガラス基板上にAlよりなる走査電極13及び共通電極5を形成し、前記走査電極の表面はAlの陽極酸化膜で40 あるアルミナ膜で被覆した。走査電極及び共通電極を覆うようにゲート絶縁(ゲートSiN)膜6を形成した。次に、アモルファスシリコン(a-Si)膜14とこのa-Si膜上にn型a-Si膜を形成した。さらに、画素電極4及び信号電極3を付設した。従って、画素電極と共通電極は異層である。画素電極の構造としては図4に示すように、Hの字状の構造にし、共通電極は十字状の形を形成し、それぞれの電極の一部が容量素子として機能するような構造にした。これらによって、一方の基板上の画素電極,共通電極間で電界がかかり、かつその方向が基板界面にほぼ平行となるようにした。基板上の

電極はいずれもアルミニウムからなるが、電気抵抗の低い金属性のものであれば特に材料の制約はなく、クロム、銅等でもよい。画素数は320×160で、画素ピッチは横方向(即ち信号電極間)は100μm、縦方向(即ち走査電極間)は300μmである。パネルには図7のように駆動LSIが接続され、TFT基板上に走査信号回路20、映像信号回路21を接続し、電源及びコントローラ22から走査信号電圧、映像信号電圧、タイミング信号を供給し、アクティブマトリクス駆動した。

【0053】一方、上下界面近傍での液晶分子長軸方向 10 は互いにほぼ平行で、かつ印加電界方向とのなす角度を 105度(ϕ LC1= ϕ LC2=105°)とした(図2)。 ギャップはは球形のボリマビーズを基板間に分散して挟持し、液晶封入状態で 4.2μ mとした。 2枚の偏光板〔日東電工社製G 1220D U〕でパネルを挟み、一方の偏光板の偏光透過軸をラビング方向(界面近傍での液晶分子長軸方向)にほぼ平行、即ち ϕ P1=105°とし、他方をそれに直交、即ち ϕ P2=15°とした。これにより、ノーマリクローズ特性を得た。

【0054】基板間には末端に3つのフルオロ基を有する化合物を主成分とした誘電異方性 Δ ϵ が正の液晶を挟持した。液晶の比抵抗は5.0×10¹⁴ Ω cm であり、平均の比誘電率は6.1 であった。一方、絶縁膜には窒化シリコン (SiN)を用い、その比抵抗は3.0×10¹⁴ Ω cm であり、比誘電率は8であった。また、配向膜は2,2-ビス [4-(p-アミノフェノキシ)フェニルプロバン]とピロメリット酸二無水物からなるポリイミド配向膜を用い、その比抵抗は1.0×10¹⁴ Ω cm,比誘電率は2.9 であった。したがって、液晶,絶縁膜及び配向膜のそれぞれの比抵抗 ρ と比誘電率 ϵ rの積 ϵ r ρ は、1×10⁹ Ω ·cm 以上8×10¹⁵ Ω ·cm以下であって、三者の中の最大値と最小値の比が1以上100以下であった。

【0055】このようにして得られたアクティブマトリクス型液晶表示装置の残像の評価段階は1であり、残像が全く発生しなかった。

【0056】〔実施例3〕本実施例の構成は下記の要件を除けば、実施例2と同一である。

【0057】絶縁膜には無機物である窒化シリコン(SiN)と有機物であるエボキシ樹脂の2層構造とし、この2層の絶縁膜上に配向膜としてRN-718(日産化学製)を塗布した。このとき、絶縁膜の比抵抗は $9.1\times10^{13}\,\Omega$ cmであり、比誘電率は5.5であった。配向膜の比抵抗は $2.5\times10^{13}\,\Omega$ cmであり、比誘電率は3.1であった。また、液晶の比抵抗は $1.0\times10^{12}\,\Omega$ cmであり、比誘電率は6.1であった。したがって、液晶、絶縁膜及び配向膜のそれぞれの比抵抗 ρ と比誘電率 ϵ rの積 ϵ r ρ は、 $1\times10^{9}\,\Omega$ ·cm以上 $8\times10^{15}\,\Omega$ ·cm以下であって、三者の中の最大値と最小値の比が1以上100以下であった。

【0058】このようにして得られたアクティブマトリクス型液晶表示装置の残像の評価段階は1であり、残像が全く発生しなかった。

14

【0059】 (実施例4) 図5は本発明の単位画素にお ける各種電極の構造を示した第3の例である。 薄膜トラ ンジスタ15は画素電極4,信号電極3,走査電極13 及びアモルファスシリコン膜14から構成される。共通 電極5は走査電極13と同層とし、同一の金属をパター ン化した。また、画素電極4と信号電極3も同一金属層 でパターン化して構成した。容量素子は、2本の共通電 極5の間を結合する領域において画素電極4と共通電極 5でゲート絶縁 (ゲートSiN) 膜6を挟む構造として 形成した。 画素電極4は正面断面図 (図5, A-A') において、2本の共通電極5の間に配置されている。画 素ピッチは横方向(すなわち信号電極間)は69μm、 縦方向(すなわち走査電極間)は207µmである。電極 幅はそれぞれ10μmである。一方、開口率向上のため に1画素単位で独立に形成した画素電極4、及び共通電 極5の信号電極3の長手方向に伸びた部分の幅は若干狭 くし、それぞれ 5μ m, 8μ mとした。できるだけ高い 開口率を実現するために絶縁膜を介して共通電極5と信 号電極3を若干(1 μm) 重ね、走査電極方向のみ遮光 板16で遮光した。このようにして、共通電極5と画素 電極4とのギャップが20μm、開口部の長手方向の長 さが157µmとなり、44.0% の高開口率が得られ た。画素数は320本の信号電極と160本の走査電極 とにより320×160個とした。パネルには図7のよ うに駆動LSIが接続され、TFT基板上に走査信号回 路20,映像信号回路21を接続し、電源及びコントロ ーラ22から走査信号電圧,映像信号電圧,タイミング 信号を供給し、アクティブマトリクス駆動した。

【0060】絶縁膜には有機物であるエポキシ樹脂の1層構造とし、この絶縁膜上に配向膜としてRN-718(日産化学製)を塗布した。このとき、絶縁膜の比抵抗は $1.5\times10^{12}\Omega$ cmであり、比誘電率は3.0であった。配向膜の比抵抗は $4.0\times10^{13}\Omega$ cmであり、比誘電率は3.1であった。また、液晶の比抵抗は $1.5\times10^{13}\Omega$ cm であり、比誘電率は6.1であった。したがって、液晶、絶縁膜及び配向膜のそれぞれの比抵抗 ρ と比誘電率 ϵ :の積 ϵ : ρ は、 $1\times10^{9}\Omega$ ·cm 以上8×10 15Ω ·cm以下であって、三者の中の最大値と最小値の比が1以上100以下であった。

【0061】このようにして得られたアクティブマトリクス型液晶表示装置の残像の評価段階は1であり、残像が全く発生しなかった。

【0062】〔実施例5〕本実施例の構成は下記の要件 を除けば、実施例4と同一である。

【0063】絶縁膜中にカラーフィルターを形成した。 まず、窒化シリコン(SiN)を形成後、カラーフィル 50 ターを印刷によって付設した。さらに、表面の平坦化の ためにエポキシ樹脂を塗布した。そして、配向膜として RN-718 (日産化学製)を塗布、形成した。

【0064】このとき、絶縁層の比抵抗は 4.4×10 $^{11}\Omega$ cmであり、比誘電率は3.9であった。配向膜の比抵抗は $4.9 \times 10^{13}\Omega$ cmであり、比誘電率は3.1であった。また、液晶の比抵抗は $1.6 \times 10^{13}\Omega$ cmであり、比誘電率は6.1であった。したがって、液晶,絶縁膜及び配向膜のそれぞれの比抵抗 ρ と比誘電率 ϵ : の積 ϵ : ρ は、 $1 \times 10^{9}\Omega$ ·cm以上 $8 \times 10^{15}\Omega$ ·cm以下であって、三者の中の最大値と最小値の比が1以上100以下であった。

【0065】このようにして得られたアクティブマトリクス型液晶表示装置の残像の評価段階は1であり、残像が全く発生しなかった。

【0066】 〔実施例6〕 本実施例の構成は下記の要件を除けば、実施例5と同一である。

【0067】配向膜の液晶に接する面の平坦性を高めるため、配向膜の膜厚を実施例5で実施した膜厚(1000Å)の5倍、つまり、5000Åに設定した。これにより、表面の平坦性が増し、段差が軽減されたため、ラビング処理を均一に行うことができた。結果的に、段差部での光漏れをなくすことができた。

【0068】このようにして得られたアクティブマトリクス型液晶表示装置の残像の評価段階は1であり、残像が全く発生せず、さらにコントラストも実施例5に比べて大きくなった。

【0069】 (実施例7) 本実施例の構成は下記の要件を除けば、実施例6と同一である。

【0070】エポキシ樹脂層の上へのポリイミド配向膜の印刷性は必ずしも良好なものではない。そこで、カラーフィルターの平坦化と絶縁膜を兼ねているエポキシ樹脂上に無機物である窒化シリコン(SiN)を形成した。このことにより、配向膜の印刷性が向上した。

【0071】このようにして得られたアクティブマトリクス型液晶表示装置の残像の評価段階は1であり、残像が全く発生せず、さらにコントラストも実施例5に比べて大きくなり、配向膜の印刷性が改善され歩留まりが向上した。

【0072】〔実施例8〕本実施例の構成は下記の要件を除けば、実施例4と同一である。

【0073】絶縁膜と配向膜を同一材料にした。したがって、膜形成の工程が減り、スループットが向上した。 絶縁膜と配向膜を兼ねる膜には2,2-ビス[4-(p-アミノフェノキシ)フェニルプロパン]とピロメリット酸二無水物からなるポリイミドを1.5μm形成した。

【0074】絶縁膜と配向膜を兼ねるポリイミド膜の比 ェニルプロパン] とピロメリット酸二無水物からなるポ 抵抗は $3.5\times10^{13}\,\Omega$ cm であり、比誘電率は2.9で リイミド配向膜を用い、その比抵抗は $1.0\times10^{13}\,\Omega$ cm あった。また、液晶の比抵抗は $2.5\times10^{12}\,\Omega$ cmであ m、比誘電率は2.9であった。したがって、液晶層、維 り、比誘電率は6.1 であった。したがって、液晶,絶 50 縁膜及び配向膜のそれぞれの比抵抗 ρ と比誘電率 $\epsilon_{\rm r}$ の

縁膜及び配向膜のそれぞれの比抵抗 ρ と比誘電率 ϵ_r の 積 $\epsilon_r \rho$ は、 $1 \times 10^9 \Omega \cdot \text{cm以} \pm 8 \times 10^{15} \Omega \cdot \text{cm}$ 以下であって、三者の中の最大値と最小値の比が1以上100以下であった。

16

【0075】このようにして得られたアクティブマトリクス型液晶表示装置の残像の評価段階は1であり、残像が全く発生しなかった。

【0076】〔実施例9〕図6は本発明の単位画素における各種電極の構造を示した第4の例である。本実施例では各画素に薄膜トランジスタを付設しなかった。走査電極13と信号電極3は異層とし、それぞれの電極は走査回路ドライバと信号回路ドライバに接続し、単純時分割マトリクス駆動した。

【0077】上下界面近傍での液晶分子長軸方向は互いにほぼ平行で、かつ印加電界方向とのなす角度を105度(Φιcι=Φιc2=105°)とした(図2)。ギャップはは球形のポリマビーズを基板間に分散して挟持し、液晶封入状態で4.2μmとした。2枚の偏光板〔日東電工社製G1220DU〕でパネルを挟み、一方の偏光板の偏光透過軸を界面近傍での液晶分子長軸方向にほぼ平行、即ちΦP1=105°とし、他方をそれに直交、即ちΦP2=15°とした。これにより、ノーマリクローズ特性を得た。

【0079】このようにして得られた液晶表示装置の残像の評価段階は1であり、残像が全く発生しなかった。 【0080】〔実施例10〕本実施例の構成は下記の要件を除けば、実施例1と同一である。

 積 $\varepsilon_r
ho$ は、 $1 \times 10^9 \Omega \cdot cm以上8 \times 10^{15} \Omega \cdot cm以下$ であった。

【0082】このようにして得られたアクティブマトリクス型液晶表示装置の残像の評価段階は3であり、残像の時間は5分以内であった。

【0083】〔実施例11〕本実施例の構成は下記の要件を除けば、実施例2と同一である。

【0085】このようにして得られたアクティブマトリクス型液晶表示装置の残像の評価段階は4であり、残像 20 の時間は5分以内であった。

【0086】〔実施例12〕本実施例の構成は下記の要件を除けば、実施例2と同一である。

【0087】液晶の比抵抗は $2.0\times10^{13}\Omega$ cmであり、平均の比誘電率は6.1であった。絶縁膜には窒化シリコン (SiN)を用い、その比抵抗は $1.0\times10^{15}\Omega$ cm であり、比誘電率は8.0 であった。また、配向膜はRN-718 (日産化学製)を用い、その比抵抗は $3.2\times10^{12}\Omega$ cm,比誘電率は3.1であった。したがって、液晶層,絶縁膜及び配向膜のそれぞれの比抵抗 ρ と比誘電率 ϵ_r の積 ϵ_r ρ は、 $1\times10^{9}\Omega$ ·cm以上 $8\times10^{15}\Omega$ ·cm以下であった。

【0088】このようにして得られたアクティブマトリクス型液晶表示装置の残像の評価段階は4であり、残像の時間は5分以内であった。

【0089】〔実施例13〕実施例4と同様な電極構造とし、アクティブマトリクス駆動した。

【0090】本実施例では絶縁膜として窒化シリコン 全く(SiN)を使用し、絶縁膜の膜厚を0.4μm とし と酉た。さらに、配向膜として4,4′ージアミノジフェニ 40 た。ルエーテルとピロメリット酸二無水物からなるポリイミ ド系配向膜を用いた。この配向膜の膜厚は、0.1μm 件をとした。したがって、絶縁膜と配向膜の膜厚は合わせて 0.5μm となった。 リニ

【0091】両基板間には誘電率異方性 $\Delta \epsilon$ が正でその値が4.5であり、複屈折 Δn が0.072(589nm,20%)のネマチック液晶組成物を挟んだ。一方、上下界面上の液晶分子長軸方向は互いにほぼ平行で、かつ印加電界方向とのなす角度を 95ϵ ($\phi_{LC1} = \phi_{LC2} = 95\epsilon$)とした。ギャップdは球形のポリマビーズを基 50

板間に分散して挟持し、液晶封入状態で $4.5\mu m$ とした。よって $\Delta n \cdot dd0.324\mu m$ である。2枚の個光板〔日東電工社製G1220DU〕でパネルを挟み、一方の個光板の偏光透過軸を界面上の液晶分子長軸方向にほぼ平行、即ち $\phi_{P1}=95^{\circ}$ とし、他方をそれに直交、即ち $\phi_{P2}=5^{\circ}$ とした。これにより、ノーマリクローズ特性を得た。

18

【0084】液晶の比抵抗は $2.0\times10^{14}\Omega$ cmであ り、平均の比誘電率は6.1 であった。絶縁膜には二酸 化珪素(SiO_2)を用い、その比抵抗は 1.0×10^{13} 10 全く発生しなかった。一方、図10に示すように絶縁膜 Ω cmであり、比誘電率は8.0 であった。また、配向膜は2.2-ビス「4-(p-r)ミノフェノキシ)フェニ

【0093】〔実施例14〕本実施例の構成は下記を除けば、実施例13と同じである。

【0095】このようにして得られたアクティブマトリクス型液晶表示装置の残像は評価段階1であり、残像が全く発生しなかった。一方、図10に示すように絶縁膜と配向膜の透明性は90%以上の透過率を確保していた。

【0096】〔実施例15〕本実施例の構成は下記の要件を除けば、実施例13と同一である。

【0097】本実施例では絶縁膜を無機物である窒化シリコン(SiN)と有機物であるエポキシ樹脂の2層構造とした。窒化シリコン層を1.0μm, エポキシ樹脂層を0.6μm とした。さらに、配向膜としてRN-718(日産化学製)を使用し、その膜厚を0.2μm とした。したがって、絶縁膜と配向膜の膜厚は合わせて1.8μm となった。

【0098】このようにして得られたアクティブマトリクス型液晶表示装置の残像は評価段階1であり、残像が全く発生しなかった。一方、図10に示すように絶縁膜と配向膜の透明性は90%以上の透過率を確保していた。

【0099】〔実施例16〕本実施例の構成は下記の要件を除けば、実施例13と同一である。

【0100】本実施例では絶縁膜を無機物である窒化シリコン (SiN)と有機物であるエポキシ樹脂の2層構造とした。窒化シリコン層を $0.3\mu m$, エポキシ樹脂層を $1.5\mu m$ とした。さらに、配向膜としてRN-718 (日産化学製)を使用し、その膜厚を $0.2\mu m$ とした。したがって、絶縁膜と配向膜の膜厚は合わせて $2.0\mu m$ となった。

) 【0101】このようにして得られたアクティブマトリ

クス型液晶表示装置の残像は評価段階1であり、残像が 全く発生しなかった。一方、図10に示すように絶縁膜 と配向膜の透明性は90%以上の透過率を確保してい た。

【0102】 〔実施例17〕 本実施例の構成は下記の要 件を除けば、実施例13と同一である。

【0103】本実施例では絶縁膜として二酸化珪素(S $i O_2$)を使用し、絶縁膜の膜厚を $0.2 \mu m$ とした。 さらに、配向膜として4,4′-ジアミノジフェニルエ ーテルとピロメリット酸二無水物からなるポリイミド系 10 配向膜を使用し、その膜厚を2.0μmとした。したが って、絶縁膜と配向膜の膜厚は合わせて2.2μmとな った。

【0104】このようにして得られたアクティブマトリ クス型液晶表示装置の残像は評価段階1であり、残像が 全く発生しなかった。一方、図10に示すように絶縁膜 と配向膜の透明性は90%以上の透過率を確保してい た。

【0105】〔実施例18〕本実施例の構成は下記の要 件を除けば、実施例13と同一である。

【0106】本実施例では絶縁膜としてエポキシ樹脂を 使用し、絶縁膜の膜厚を 1.8μ mとした。さらに、配 向膜として2,2-ビス[4-(p-アミノフェノキ シ)フェニルプロパン]とピロメリット酸二無水物から なるポイミド系配向膜を使用し、その膜厚を O.5 μm とした。したがって、絶縁膜と配向膜の膜厚は合わせて $2.3 \mu m$ とした。

【0107】このようにして得られたアクティブマトリ クス型液晶表示装置の残像は評価段階1であり、残像が 全く発生しなかった。一方、図10に示すように絶縁膜 30 と配向膜の透明性は90%以上の透過率を確保してい

【0108】 〔実施例19〕 本実施例の構成は下記の要 件を除けば、実施例13と同一である。

【0109】本実施例では絶縁膜と配向膜に用いる物質 を同一にした。つまり、絶縁膜と配向膜の機能を合わせ 持つ2, 2-ビス [4-(p-アミノフェノキシ) フェ ニルプロパン]とピロメリット酸二無水物からなるポイ ミド系配向膜を塗布し、その膜厚を2.8μm とした。 【0110】このようにして得られたアクティブマトリ クス型液晶表示装置の残像は評価段階1であり、残像が 全く発生しなかった。一方、図10に示すように絶縁膜 と配向膜の透明性は90%以上の透過率を確保してい

【0111】〔実施例20〕本実施例の構成は下記の要 件を除けば、実施例13と同一である。

【0112】絶縁膜中にカラーフィルターを形成した。 まず、窒化シリコン(SiN)を形成後、カラーフィル ターを印刷によって付設した。さらに、表面の平坦化の ためにエポキシ樹脂を塗布した。そして、配向膜として 50 た。さらに、配向膜としてRN-718を用いた。この

RN-718 (日産化学製)を塗布,形成した。 【0113】このとき、窒化シリコン層は0.3μm. エポキシ樹脂層は1.5μmとした。また、配向膜は0. 1 µ m 塗布した。

【0114】このようにして得られたアクティブマトリ クス型液晶表示装置の残像は評価段階1であり、残像が 全く発生しなかった。一方、図10に示すように絶縁膜 と配向膜の透明性は90%以上の透過率を確保してい

【0115】 〔実施例21〕 本実施例の構成は下記の要 件を除けば、実施例20と同一である。

【0116】配向膜の液晶に接する面の平坦性を高める ため、エポキシ樹脂層を2.0μm,配向膜RN-718 の膜厚を0.7µm にした。これにより、表面の平坦性 が増し、段差が軽減されたため、ラビング処理を均一に 行うことができた。結果的に段差部での光漏れをなくす ことができた。

【0117】このようにして得られたアクティブマトリ クス型液晶表示装置の残像は評価段階1であり残像が全 く発生せず、さらにコントラストも実施例20に比べて 大きくなった。

【0118】〔実施例22〕本実施例の構成は下記の要 件を除けば、実施例20と同一である。

【0119】エポキシ樹脂層の上へのポリイミド配向膜 の印刷性は必ずしも良好なものではない。そこで、カラ ーフィルターの平坦化と絶縁膜を兼ねている 1.5 µm のエポキシ樹脂上に無機物である窒化シリコン (Si N)を0.3µm 形成した。このことにより、配向膜の 印刷性が向上した。このとき、配向膜RN-718の膜 厚を0.1μm にした。

【0120】このようにして得られたアクティブマトリ クス型液晶表示装置の残像は評価段階1であり残像が全 く発生せず、コントラストも実施例20に比べて大きく なり、さらに配向膜の印刷性が改善され歩留まりが向上 した。

【0121】〔実施例23〕実施例9と同様な電極構造 をし、単純時分割マトリクス駆動し、ノーマリクローズ 特性を得た。

【0122】絶縁膜として窒化シリコン(SiN)を膜 40 厚0.7 μm 形成し、その上に配向膜RN-422(日 産化学製)を膜厚0.9μm 形成した。

【0123】このようにして得られた液晶表示装置の残 像は評価段階1であり、残像が全く発生しなかった。一 方、図10に示すように絶縁膜と配向膜の透明性は90 %以上の透過率を確保していた。

【0124】〔実施例24〕本実施例の構成は下記の要 件を除けば、実施例10と同一である。

【0125】本比較例では絶縁膜として窒化シリコン (SiN)を使用し、絶縁膜の膜厚をO.1μm とし

配向膜の膜厚は、 $0.1 \mu m$ とした。したがって、絶縁 膜と配向膜の膜厚は合わせて 0.2 μ m となった。

【0126】このようにして得られたアクティブマトリ クス型液晶表示装置の残像は評価段階3であって、残像 時間は5分以内であった。一方、図10に示すように絶 縁膜と配向膜の透明性は90%以上の透過率を確保して いた。

【0127】本発明に用いる絶縁膜や配向膜の有機膜は 実施例に述べた有機高分子に限らず、ポリイミド、エポ キシ系高分子などのほかに、ポリエステル、ポリウレタ 10 た。さらに、配向膜としてRN-718を用いた。この ン,ポリビニールアルコール,ポリアミド,シリコー ン、アクリラート、オレフィンースルホン系高分子な ど、非感光性、感光性に関わらず使用することができ る。さらに、有機高分子中に例えばアーアミノプロピル トリエトキシシラン, δ-アミノプロピルメチルジエト キシシラン, $N-\beta$ (アミノエチル) γ -アミノプロピ ルトリメトキシシランなどのアミノ系シランカップリン グ剤、エポキシ系シランカップリング剤、チタネートカ ップリング剤、アルミニウムアルコレート、アルミニウ ムキレート、ジルコニウムキレートなどの表面処理剤を 20 混合もしくは反応することもできる。ただし、これらに 限定されるものではない。

【0128】また、無機膜も窒化シリコン、酸化シリコ ンなどに限らず、窒化ゲルマニウム、酸化ゲルマニウ ム、窒化アルミニウム、酸化アルミニウムなども使用す ることができる。ただし、これらに限定されるものでは ない.

【0129】 [比較例1] 本比較例の構成は下記の要件 を除けば、実施例2と同一である。

【0130】液晶の比抵抗は2.0×1014Ωcmであ り、平均の比誘電率は6.1であった。絶縁膜は窒化シ リコン (SiN) を用い、その比抵抗は6×10¹⁵Ωcm であり、比誘電率は8であった。また、配向膜は2,2 ーピス [4-(p-アミノフェノキシ) フェニルプロパ ン]とピロメリット酸二無水物からなるポリイミド配向 膜を用い、その比抵抗は2.0×10¹²Ωcm, 比誘電率 は2.9であった。したがって、絶縁膜の比抵抗ρと比 誘電率 ε_r の積 $\varepsilon_r \rho$ は、8.0×10¹⁵ Ω cm よりも大き

【0131】このようにして得られたアクティブマトリ クス型液晶表示装置の残像の評価段階は5であった。

【0132】 〔比較例2〕 本比較例の構成は下記の要件 を除けば、実施例2と同一である。

【0133】液晶の比抵抗は6.3×10¹²Ωcmであ り、平均の比誘電率は6.1であった。絶縁膜は窒化シ リコン (SiN) を用い、その比抵抗は2×10¹⁵Ωcm であり、比誘電率は8であった。また、配向膜は2,2 ービス [4-(p-アミノフェノキシ) フェニルプロパ ン]とピロメリット酸二無水物からなるポリイミド配向 膜を用い、その比抵抗は5.5×10¹²Ωcm, 比誘電率

は2.9であった。したがって、絶縁膜の比抵抗ρと比 誘電率 ε_r の積 $\varepsilon_r \rho$ は、8.0×10¹⁵ Ω cm よりも大き くなった。

22

【0134】このようにして得られたアクティブマトリ クス型液晶表示装置の残像の評価段階は5であった。

【0135】 〔比較例3〕 本比較例の構成は下記の要件 を除けば、実施例10と同一である。

【0136】本比較例では絶縁膜として窒化シリコン (SiN)を使用し、絶縁膜の膜厚を0.1 μm とし

配向膜の膜厚は、 0.1μ mとした。したがって、絶縁 膜と配向膜の膜厚は合わせて0.2μmとなった。

【0137】このようにして得られたアクティブマトリ クス型液晶表示装置の残像は評価段階5であった。 [0138]

【発明の効果】本発明によれば、残像の少ない横電界方 式の液晶表示装置が得られる。

【図面の簡単な説明】

【図1】本発明の基板に水平な電界を印加する液晶表示 装置における液晶の動作を示す図。

【図2】本発明の液晶表示装置において、電界方向に対 する界面上の分子長軸配向方向及び偏光板透過軸のなす 角を示す図。

【図3】単位画素の平面図及び断面図 (第1の例)。

【図4】単位画素の平面図及び断面図(第2の例)。

【図5】単位画素の平面図及び断面図(第3の例)。

【図6】単位画素の平面図及び断面図(第4の例)。

【図7】本発明の液晶表示装置におけるシステム構成を 示す図。

【図8】電気力線の屈折の法則の模式図及び各層の相対 的誘電率と層の厚みにより異なる横電界強度の違いを表

【図9】(a)液晶層,絶縁膜及び配向膜の比抵抗ρと 比誘電率ειの積ειρの最大値と残像特性の関係を示す

(b)液晶層,絶縁膜及び配向膜の比抵抗ρと比誘電率 $\varepsilon_{\rm r}$ の積 $\varepsilon_{\rm r}$ ρ の最大値と最小値の比と残像特件の関係を 示す図。

【図10】(a)絶縁膜と配向膜の膜厚の和と残像評価 40 の関係を表した図。

(b) 絶縁膜と配向膜の膜厚の和と膜の透過率の関係を 表した図。

【図11】電荷の充電過程及び放電過程と残像特性の関 係を表した図。

【符号の説明】

1…基板、2…偏光板、3…信号電極、4…画素電極、 5…共通電極、6…ゲート絶縁膜、7…絶縁膜、8…配 向膜、9…電界、10…ラビング方向、11…偏光板透 過軸、12…液晶分子、13…走査電極、14…アモル 50 ファスシリコン膜、15…薄膜トランジスタ、16…遮 光板、17…前段走査電極の突起部、20…走査信号回路、21…映像信号回路、22…電源及びコントロー

ラ、23…共通電極駆動用回路、24…アクティブマト リクス型液晶表示素子。

【図1】 【図2】 図 1 図 2 【図4】 ② 4 【図3】

【図8】

図 8

【図10】

