

REASONING SYSTEMS DAY 5

https://robohub.org/wp-content/uploads/2016/11/bigstock-Retro-Robot-Reading-A-Book-Is-110707406.jpg

DAY 5 AGENDA

5.1 Hybrid Reasoning Systems

5.2 Contemporary Reasoning Systems

5.3 Course Assessment 2 (60 minutes)

5.4 Create Hybrid Reasoning System Workshop(Graded workshop & project deliverables)

DAY 5 TIMETABLE

No	Time	Topic	By Whom	Where
1	9 am	5.1 Hybrid Reasoning Systems	GU Zhan (Sam)	Class
2	10.10 am	Morning Break		
3	10.30 am	5.2 Contemporary Reasoning Systems	GU Zhan (Sam)	Class
4	10:45 am	5.3 Course Assessment 2	All	Class
5	12.10 pm	Lunch Break		
6	1.30 pm	5.4 Create Hybrid Reasoning System Workshop 1	All	Class
7	3.10 pm	Afternoon Break		
8	3.30 pm	5.4 Create Hybrid Reasoning System Workshop 2	All	Class
9	4.50 pm	Summary and Review	All	Class
10	5 pm	End		

Hybrid Intelligent systems are intelligent systems which combine two or more machine reasoning techniques:

- Deductive Reasoning used in Analytic Problem Solving
 - Learnt : Knowledge-driven Rule/Process Systems; Fuzzy Logic
 - To learn: Cognitive Systems; Belief Desire Intention (BDI) framework
- Inductive Reasoning used in Data Mining & Machine Learning
 - Learnt: Decision Tree; Association Rule
 - To learn: Neural Networks; Bayesian Net; Reinforcement Learning
- Planning & Optimization used in Synthetic Problem Solving
 - Learnt: Search; Genetic Algorithms
 - To learn: Swarm Intelligence; Multi-Agent Systems

② Another common term for hybrid intelligent systems is "Hybrid Soft Computing Systems".

Four broad types of system architectures

- 1. Independent Sub-systems
- 2. Competing Experts
- 3. Self-Tuning
- 4. Cooperating Experts

- 1. Independent Sub-systems
- Sub-divide problem into independent parts.
- Each is solved by an appropriate technique or sub-system.
- No cooperation is required, e.g. a decision support system has several independent sub-systems (functions).

Business Operation

Rule/Process Based System **Business Forecast**

Decision Tree Neural Net **Business Planning**

Search
Genetic Algorithms

- 2. Competing Experts
- Different solution strategies (experts) offer alternative solutions.
- Another process decides which solution to accept or how to combine the solutions, e.g. majority vote algorithm or a rule-based system. (auction, tender, bidding)

3. Self-Tuning

 One technique is used to tune or learn the architecture for another, e.g. Decision Tree used to learn a ruleset, e.g. trading strategies; Genetic Algorithms used to optimise initial solution, e.g. investment portfolio, based on predicted/simulated value from rule based system, in order to maximize trading profit.

4. Co-operating Experts

Pooled Expertise: Different techniques/sub-systems work together
as a team to produce a single solution. No single technique/expert
is sufficient alone, e.g. Machine learning and human analyst both
provide inputs required to forecast macroeconomics based on
business rules and weights, under different market conditions.

- 4. Co-operating Experts
- Use case: Approving business loan to a small company

4. Co-operating Experts

 Use case: IT helpdesk diagnostic system (decision tree + case based reasoning)

4. Co-operating Experts

Use case: Plant Abnormal Situation Prediction (Predictive Maintenance)

Sub-systems: Time Series Forecast, Association Rule, Graph Search, Heuristic Score

Bot	Games	Win	Loss	Win %	AvgTime	Game Time Limit	Crash	Frame Timeout
SAIDA	2590	2484	106	95.91	15:36	27	0	8
CherryPi	2592	2355	237	90.86	12:21	19	0	0
CSE	2591	2257	334	87.11	11:59	5	1	0
BlueBlueSky	2586	2107	479	81.48	12:13	18	1	0
Locutus	2586	2095	491	81.01	12:14	29	1	0
ISAMind	2586	2029	557	78.46	12:07	13	1	0
DaQin	2590	1875	715	72.39	12:45	11	1	2
McRave	2592	1704	888	65.74	12:36	7	83	120
Iron	2582	1647	935	63.79	13:23	32	50	42
ZZZKBot	2576	1317	1259	51.13	8:35	3	1	0
Steamhammer	2583	1317	1266	50.99	11:48	8	0	22
Microwave	2582	1303	1279	50.46	12:09	11	17	7
LastOrder	2598	1279	1319	49.23	16:01	30	10	0
Tyr	2592	1156	1436	44.6	13:14	11	3	0
MetaBot	2393	1063	1330	44.42	14:32	38	80	80
LetaBot	2553	965	1588	37.8	15:45	78	29	12
Arrakhammer	2586	963	1623	37.24	12:21	8	11	10
Ecgberht	2579	947	1632	36.72	13:55	45	4	0
UAlbertaBot	2587	898	1689	34.71	11:32	50	46	0
Ximp	2579	841	1738	32.61	17:09	39	197	249
CDBot	2583	826	1757	31.98	10:29	8	130	6
Aiur	2570	811	1759	31.56	13:34	64	37	0
KillAll	2591	768	1823	29.64	11:01	12	3	15
WillyT	2586	718	1868	27.76	12:53	7	121	0
AILien	2584	698	1886	27.01	13:11	2	485	121
CUNYBot	2399	236	2163	9.84	11:04	10	320	44
Hellbot	2572	35	2537	1.36	9:01	21	5	0
Total	34694	34694	34694	N/A	12:43	303	1637	738

<u>Link</u> https://www.youtube.com/watch?v=fai 1cRra_Go

Link
https://www.cs.mun.ca/~dchurchill/star
craftaicomp/2018/

<u>Link</u> https://github.com/TeamSAIDA/SAIDA

Bot	Win %	SAID	Cher	CSE	Blue	Locu	ISAM	DaQi	McRa	Iron	ZZZK	Stea	Micr	Last	Tyr	Meta	Leta	Arra	Ecgb	UAIb	Ximp	CDBo	Aiur	Kill	Will	AILi	CUNY	Hell
SAIDA	95.91	-	083/100	093/100	097/100	096/100	089/100	095/100	086/100	098/100	097/100	097/100	100/100	100/100	100/100	90/94	098/100	100/100	100/100	087/100	098/100	096/100	095/100	096/100	099/100	100/100	94/96	100/100
CherryPi	90.86	017/100	-	072/100	086/100				085/100			80/99		082/100														100/100
CSE	87.11		028/100	-	066/100	068/100	078/100	084/100	71/99																			100/100
BlueBlueSky	81.48			034/100	-	061/100	066/100		072/100							60/94							072/100					100/100
Locutus	81.01			032/100	039/100	-	056/100	076/100	054/100																			100/100
ISAMind	78.46			022/100	034/100	044/100	-	063/100	049/100														082/100					100/100
DaQin	72.39					024/100	037/100	-	042/100		087/100					58/95	095/100			088/100	073/100		081/100					100/100
McRave	65.74					046/100	051/100	058/100	-	055/100	072/100	063/100	079/100			49/97	074/100			71/99	041/100		077/100	058/100	074/100	083/100		100/100
Iron	63.79								045/100	-	041/100	073/100	086/100	091/100			066/100					088/100		085/100				100/100
ZZZKBot	51.13								028/100	059/100	-	059/100	057/100	055/100	035/100	68/85	040/100	083/100		086/100		072/100		058/100		073/100	77/91	099/100
Steamhammer	50.99								037/100		041/100	-	024/100	025/100	053/100	50/88	074/100	057/100	096/100	089/100	079/100	084/100	088/100			083/100		100/100
Microwave	50.46										043/100	076/100	-	057/100	052/100	66/92	080/100	068/100	073/100	081/100	065/100	078/100	081/100		086/100	50/99		100/100
LastOrder	49.23			000/100							045/100	075/100	043/100	-	057/100		075/100	083/100	004/100	095/100	085/100		095/100		035/100	092/100		100/100
Tyr	44.6				000/100	003/100		001/100	012/100	006/100	065/100	047/100	048/100	043/100	-	20/98	061/100	096/100	046/100	058/100	098/100	100/100	050/100	094/100	049/100	062/100		100/100
MetaBot	44.42				34/94	06/96		37/95	48/97	01/86	17/85	38/88		12/99	78/98	-	32/78	56/91	79/92	52/94	38/94	64/94	62/85	47/95		62/95		87/88
LetaBot	37.8								026/100	034/100	060/100		020/100		039/100	46/78	-	042/100	076/100	041/100	078/100	044/100	036/100	053/100		092/100		100/100
Arrakhammer	37.24										017/100	043/100	032/100	017/100	004/100	35/91	058/100	-	069/100	043/100	071/100	077/100	054/100	059/100	094/100	063/100		100/100
Ecgberht	36.72	000/100			000/100			000/100	004/100		075/100		027/100	096/100	054/100	13/92	024/100	031/100	-	058/100	079/100	038/100	057/100	066/100	058/100	084/100		095/100
UAlbertaBot	34.71							012/100	28/99	009/100			019/100	005/100	042/100	42/94	059/100	057/100	042/100	-	048/100	045/100	064/100	075/100	041/100	070/100	78/94	098/100
Ximp	32.61							027/100	059/100	001/100	000/100			015/100		56/94	022/100	029/100	021/100	052/100	-	003/100	068/100	084/100	096/100	064/100	71/85	094/100
CDBot	31.98				004/100	000/100	001/100	003/100	000/100		028/100			011/100	000/100	30/94	056/100	023/100	062/100	055/100		-	023/100	062/100	078/100	066/100	79/89	093/100
Aiur	31.56				028/100	005/100	018/100	019/100	023/100	003/100	011/100				050/100	23/85	064/100	046/100	043/100		032/100	07//100		02//100	061/100	038/100	65/85	096/100
KillAll	29.64								042/100	015/100	042/100			011/100	006/100	48/95	047/100	041/100	034/100	025/100	016/100	038/100	0/3/100	001/100	039/100	0/0/100		095/100
WillyT	27.76								020/100	000/100	008/100		40/00	005/100	051/100	08/93	077/100	000/100	042/100	059/100	004/100	022/100	039/100	061/100	-	043/100		100/100
AILien	27.01 9.84								01//100	007/100	14/01	017/100	49/99	008/100	038/100	33/95	008/100	037/100	010/100	16/04	14/05	10/00	002/100	030/100	057/100	04/01	87/91	100/100 80/84
CUNYBot											001/100									10/94			004/100				04/84	80/84
Hellbot	1.36	000/100	000/100	000/100	000/100	000/100	000/100	000/100	000/100	000/100	001/100	000/100	000/100	000/100	000/100	01/88	000/100	000/100	005/100	002/100	000/100	007/100	004/100	005/100	000/100	000/100	04/64	1

4. Co-operating Experts

Manager

Use case: StarCraft Multi-Agent Systems

Manager

Manager

Tools

Summary

- Hybrid Systems offer solutions to a greater range of problems: "The sum is greater than the parts".
- Four categories of typical hybrid system architectures have been introduced. These are not exhaustive: Other patterns are possible.
- Software integration can be problematic, but it's becoming increasing easier.
- System modelling is the most important task.
- (Multi-)Agent technology offers flexibility and possibility to build hybrid distributed intelligent systems, which can be both proactive and responsive for real-time use cases.

Exercise

- A soup manufacturer plans to produce a new type of canned soup. The new soup will contain up to 27 ingredients, namely 10 types of meat/fish, 7 types of vegetables, 5 flavour enhancers, 3 types of preservative, salt and sugar.
- To determine the relative quantities of each of the ingredients, the company conducts a market survey. Several hundred volunteers taste various prototype soups in which the 27 ingredients are mixed in different ratios, e.g. 30% chicken feet, 14% fish eyes, 15% turnips. Each taster is given 5 prototype soups to taste and asked to assign each to one of 7 categories.

Class Discussion

Suggest a top-level design for a hybrid system that uses the results
of the market survey to determine the mix of raw ingredients likely
to achieve the highest consumer rating.

- 7 Categories for describing the prototype soup
- (a) horrible taste
- (b) would only eat if very hungry
- (c) weak taste
- (d) average taste
- (e) good taste
- (f) very good taste
- (g) heavenly taste

- Draw a block diagram of your system. Label each module with the intelligent system technique that is being performed, e.g. Heuristic Search, GA, Decision Tree, etc. Indicate clearly the inputs and outputs of each module.
- Explain in words how the system will operate, e.g. how would it determine the best mix of raw ingredients from the results of the market survey.
- Suggest how the market survey data can be pre-processed in order to normalise across the different surveyed soup-tasters, e.g. eliminate the variation in soup scores due to the overall bias of the person doing the tasting, e.g. one person may dislike all soups and so score all sampled soups lower than others.

Possible solution:

To Find Best Soup Receipt (Ingredients)

Decision Tree + Rule Based System + Genetic Algorithms

Question Answering System: IBM Debater

https://www.youtube.com/watch?v=cBBREqCyDj4

Intelligent Assistant: Google Assistant Duplex

Intelligent Assistant: Mycroft (open source)

https://github.com/MycroftAl

Game Al: DeepMind StarCraft Agent System

https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/ https://github.com/davechurchill/commandcenter

Source https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Interactive visualisation which shows the competitors of the AlphaStar league. The agents that played against

TLO and MaNa are specifically labelled.

Source https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Game Al: DeepMind AlphaGo Zero

Reinforcement Learning

https://deepmind.com/blog/alphago-zero-

<u>learning-scratch/</u>

https://telescopeuser.wordpress.com/

DiDi: A Reinforcement Learning Agent

Reinforcement Learning in Daily Life

[Author: DiDi & GU Zhan (Sam)]

[Tags: MTech IS, AI, Reinforcement learning, Agent, Markov decision process]

5.3

COURSE ASSESSMENT

(GRADED INDIVIDUAL EXAM)

MY MODULES MODULE SEARCH

CONTENT BANKS

RESEARCH RECRUITMENT

GUESTS & GROUPS

STUDENT FEEDBACK

ISY5001

Intelligent Reasoning Systems -Reasoning Systems

TOOLS

0

Announcements

Chat

Conferencing

Consultation

Files

Forum

Gradebook

Multimedia

Files

Nan	ne	Opening Date	Expiry Date	Status	
	Reasoning Systems 01 - Courseware			Open	
	Reasoning Systems 02 - Wor kshop n Project			Open	
	Reasoning Systems 02 - Wor kshop n Project Submission			Open	• • •
	Reasoning Systems 03 - Ass essment			Open	— 1 I _ J
	Reasoning Systems 03 - Ass essment Submission			Open	J

5.4 WORKSHOP CREATE HYBRID REASONING SYSTEM

(GRADED WORKSHOP & PROJECT DELIVERABLES)

5.4 WORKSHOP CREATE HYBRID REASONING SYSTEM MTech Thru-Train

Group Project Submission before due date

- Continue to integrate, test, and deploy hybrid system components
- Deliver final intelligent system as minimum viable product (MVP)
- Prepare project report; user guide; system demo cases; video presentation;
- For submission, refer to <u>Project Submission Template</u>

© Candidate Hybrid Airport Gate Assignment System (HAGAS); etc;

HAGAS: http://ousar.lib.okayama-u.ac.jp/files/public/4/48534/20160528091554614463/K0004584_honbun.pdf

5.4 WORKSHOP CREATE HYBRID REASONING SYSTEM

Requirement Analysis

Problem selection: Identify business value and purposes

Design (Problem Modelling & Representation)

- Technical definition of problem domain
- System design

Implementation

System development

Testing

Integrate, test, revise, deploy, and use

https://i1.wp.com/melsatar.blog/wp-content/uploads/2012/03/sdlc.png?fit=830%2C374&ssl=1

Evolution

DAY 5 REFERENCE

Ahmed Thanyan AL-Sultan. (2012). The Airport Gate
 Assignment Problem: Scheduling Algorithms and Simulation
 Approach

http://ousar.lib.okayamau.ac.jp/files/public/4/48534/20160528091554614463/K0004584 honbun.pdf

- Approximate string matching (Fuzzy Matching)
 https://en.wikipedia.org/wiki/Approximate_string_matching
- 3. Introduction to the A* Algorithm from Red Blob Games https://www.redblobgames.com/pathfinding/a-star/introduction.html
- 4. Constraint Satisfaction Problems

 http://www.cse.chalmers.se/edu/year/2013/course/TIN171/slides/chapter06.pg
 http://www.cse.chapter06.pg
 http://www.cse.chapter06.p
- 5. GU Zhan, et al. (2016). Application of data mining techniques to build master plant relationships based on heterogeneous databases

https://ieeexplore.ieee.org/document/7848002/authors#authors