

(8pts)Problem 1

Find the area of the region bounded by the curves

$$f(x) = x^2$$
 and $g(x) = 2 - x^2$, $0 \le x \le 2$.

Solution

Method 1 without graphing

$$A = \int_0^2 |f(x) - g(x)| dx$$

$$= \int_0^2 |x^2 - (2 - x^2)| dx$$

$$= \int_0^2 |2x^2 - 2| dx$$

$$= 2\int_0^2 |x^2 - 1| dx.$$
 (4pts)

To remove the absolute value, we need to check the sign of $x^2 - 1$ between 0 and 2.

$$A = 2 \left[\int_{0}^{1} -(x^{2}-1) dx + \int_{1}^{2} (x^{2}-1) dx \right]$$

$$= 2 \left(\frac{2}{3} + \frac{4}{3} \right) = 4$$
 (4pts)

(8pts)Problem 2

Find the arc length of the graph of

$$f(x) = e^{\frac{x}{2}} + e^{-\frac{x}{2}}$$

on the interval [-2, 2].

Solution

$$L = \int_{-2}^{2} \sqrt{1 + [f'(x)]^{2}} dx$$

$$f'(x) = \frac{1}{2} \left(e^{\frac{x}{2}} - e^{-\frac{x}{2}} \right)$$

$$[f'(x)]^{2} = \frac{1}{4} \left(e^{\frac{x}{2}} - e^{-\frac{x}{2}} \right)^{2}$$

$$= \frac{1}{4} e^{x} - \frac{1}{2} + \frac{1}{4} e^{-x}$$

$$1 + [f'(x)]^{2} = \frac{1}{4} e^{x} + 1 - \frac{1}{2} + \frac{1}{4} e^{-x}$$

$$= \frac{1}{4} e^{x} + \frac{1}{2} + \frac{1}{4} e^{-x}$$

$$= \left[\frac{1}{2} \left(e^{\frac{x}{2}} + e^{-\frac{x}{2}} \right) \right]^{2}$$

$$L = \int_{-2}^{2} \sqrt{\left[\frac{1}{2}\left(e^{\frac{x}{2}} + e^{-\frac{x}{2}}\right)\right]^{2}} dx \qquad (4pts)$$

$$= \int_{-2}^{2} \frac{1}{2}\left(e^{\frac{x}{2}} + e^{-\frac{x}{2}}\right) dx$$

$$= \frac{1}{2}\left(2e^{\frac{x}{2}} - 2e^{-\frac{x}{2}}\right)\Big|_{-2}^{2}$$

$$= \left(e^{\frac{x}{2}} - e^{-\frac{x}{2}}\right)\Big|_{-2}^{2} = \left(e - e^{-1}\right) - \left(e^{-1} - e\right)$$

$$= 2e - 2e^{-1} = 4.7008 \qquad (4pts)$$

(8pts) Problem 3

Find the volume of the solid formed by revolving the region bounded by y = 2x + 1, x = 4 and y = 3 about the line x = -4.

Solution

By Shell Method

The shell method is more convenient for this problem.

By the Disc Method

(8pts)Problem 4.

Find the area of the surface generated by revolving the parametric curve

$$x = e^t - t$$
 and $y = 4e^{t/2}$, $0 < t < 1$.

about the x-axis.

Solution

$$S = 2\pi \int_0^1 y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = (e^t - 1)^2 + (2e^{t/2})^2$$

$$= e^{2t} - 2e^t + 4e^t + 1$$

$$= e^{2t} + 2e^t + 1$$

$$= (e^t + 1)^2 \quad (\mathbf{3pts})$$

$$S = 2\pi \int_0^1 4e^{t/2} \sqrt{(e^t + 1)^2} dt$$

$$= 2\pi \int_0^1 4e^{t/2} (e^t + 1) dt$$

$$= 8\pi \int_0^1 (e^{3t/2} + e^{t/2}) dt$$

$$= 8\pi \left(2e^{\frac{1}{2}} + \frac{2}{3}e^{\frac{3}{2}} - \frac{8}{3} \right) = 90.945$$
 (5pts)

(8pts)Problem 5.

Find the slope and the equation of the tangent line to the graph of the polar curve

$$r = e^{2\theta}$$

at $\theta = 0$.

Solution

$$x = r\cos\theta$$
 and $y = r\sin\theta$

$$x = e^{2\theta} \cos \theta \text{ and } y = e^{2\theta} \sin \theta$$
Slope
$$= \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2e^{2\theta} \sin \theta + e^{2\theta} \cos \theta}{2e^{2\theta} \cos \theta - e^{2\theta} \sin \theta}$$
 (4pts)

At $\theta = 0$, the slope is

$$m = \frac{0+1}{2-0} = \frac{1}{2}.$$
 (2pts)

When $\theta = 0$, x = 1 and y = 0.

The equation of the tangent line is

$$y = \left(\frac{1}{2}\right)(x-1) + 0$$

$$y = \frac{1}{2}x - \frac{1}{2} \qquad (\mathbf{2pts})$$