Uppgift 1

(a) Låt versaler beteckna täckningsvariabler för motsvarande primimplikatorer. Täckningsfunktionen erhålls ur tabellen enligt:

$$P = (A+B)(B+C+D)B(D+E+F)(E+F)(A+F) = B(F+AE)$$

- (b) Kolumndominans: $m_1 \to m_3, m_2 \to m_3, m_4 \to m_5$ Raddominans: $b \to c, d \to c, f \to e$
- (c) Från (a) framgår att en minimal satisfiering av täckningsfunktionen erhålls genom BF, dvs den minimala täckningen utgörs av primimplikatorerna: b och f.

Uppgift 2

Svar: (a) G = 1; (b) G = X (Eftersom $X + \overline{X} = X$)

Uppgift 3

Svar: $5\tau \le t \le 6\tau$

Uppgift 4

Uppgift 5

$$a=\bar{x}\bar{w}$$
 $c=z\bar{w}$ $e=\bar{x}y$ Användning av De Morgan's lag påverkar ej hasard-
 $b=yw$ $d=x\bar{z}w$ $f=yz$ friheten.

$$F_{h-fri} = \bar{a} \cdot \bar{b} \cdot \bar{c} \cdot \bar{d} \cdot \bar{e} \cdot \bar{f} = (x+w)(\bar{y}+\bar{w})(\bar{z}+w)(\bar{x}+z+\bar{w})(x+\bar{y})(\bar{y}+\bar{z})$$

Uppgift 6

Uppgift 6 forts.

Kodning

Q	q ₁ q ₂ q ₃		
A	000		
В	010		
C	110		
D	100		
E	001		
F	011		
G	111		

Kodad tillståndstabell

х		x =		= 0	x = 1	
δ(λ)	0	1	J ₁	K ₁	J ₁	K ₁
000	010(0)	110(0)	0	-	1	1
010	100(0)	001(0)	1	-	0	-
110	001(0)	001(0)	-	1	-	1
100	011(0)	111(0)	_	1	-	0
001	101(0)	101(0)	1	-	1	-
011	000(0)	000(0)	0	-	0	-
111	000(0)	000(1)	_	1	-	1
101	000(1)	000(1)	_	1	-	1

Karnaughdiagram

101

Η

Uppgift 7

Den givna $\delta(\lambda)$ -tabellen går ej att tillståndsminimera. Eftersom insignalsrestriktioner gäller kan en primitiv $\delta(\lambda)$ -tabell ställas upp. Dela upp tillståndet 1 i 1a och 1b samt dela upp tillståndet 3 i 3a och 3b

Primitiv $\delta(\lambda)$ -tabell

δ(λ)	00	01	11	10
1a	-	3b(-)	1a(1)	1b(1)
1b	3a(-)	-	1a(1)	1b(1)
2	-	3b(0)	2 (0)	1b (-)
3a	3a(0)	3b(0)	-	4 (0)
3b	3a(0)	3b(0)	2 (0)	-
4	3a(0)	-	1a(-)	4 (0)

$\underline{Implikation stabell}$

forts.

Uppgift 7 forts.

Relationsgraf

Maximala förenlighetsmängder

$$\{1a, 1b\}, \{2, 3b\}, \{3a, 3b\}, \{3a, 4\}$$

De maximala förenlighetsmängderna: {1a, 1b}, {2, 3b} och {3a, 4} uppfyller villkoren på minimalitet, täckning och slutenhet.

Svar:

$\delta(\lambda)$	00	01	11	10
$A = \{1a, 1b\}$	C(-)	B(-)	A(1)	A(1)
$B = \{2, 3b\}$	C(0)	B(0)	B(0)	A(-)
$C = \{3a, 4\}$	C(0)	B(0)	A(-)	C(0)

Uppgift 8

Felsignalen kan propagera till en utgång på två sätt, antingern via F_3 eller F_4 . Nätets totala testvektorfunktionen T ges då av $T = T(Z_1) + T(Z_2)$ där $T(Z_i)$ betecknar testvektorfunktionen för utgång i.

(1) Propagering till Z_2 :

Sensibiliseringskravet kräver att felsignalen kan propagera genom \boldsymbol{F}_4 , dvs

$$\frac{d}{dq}F_4(X,q) = 1$$
. Aktivering av felet kräver $F_2(X) = 0/1$ för stuck-at-1/0 fel.

(2) Propagering till Z_1 :

Sensibiliseringskravet kräver att (i) felsignalen kan propagera genom ${\cal F}_3$, dvs

$$\frac{d}{dy}F_3(X,y) = 1.$$

Dessutom krävs (ii) att felvärdet kan propagera från q till y genom NAND-grinden, vilket kan uttryckas enligt relationen: $F_1(X) = 1$.

Aktivering av felet kräver (iii): $F_2(X) = 0/1$ för stuck-at-1/0 fel.

Testvektorfunktionen $T(Z_1)$ erhålls som konjunktionen av relationerna (i) - (iii):

$$T(Z_1) = \frac{d}{dy} F_3(X, y) \cdot F_1(X) \cdot A(X),$$

där
$$A(X) = F_2(X)$$
 för s-a-0 fel och $A(X) = \overline{F_2(X)}$ för s-a-1 fel

Svar: (1) och (2) ger testvektorfunktionerna:

$$T_{\overline{q}} = F_2(\mathbf{X}) \cdot \left[\frac{d}{dy} F_3(\mathbf{X}, y) \cdot F_1(\mathbf{X}) + \frac{d}{dq} F_4(\mathbf{X}, q) \right]$$
 för q s-a-0

$$T_q = \overline{F_2(X)} \cdot \left[\frac{d}{dy} F_3(X, y) \cdot F_1(X) + \frac{d}{dq} F_4(X, q) \right] \text{ för } q \text{ s-a-1}$$