Séquence 03 - TP01 - Îlot 04

Lycée Dorian Renaud Costadoat Françoise Puig

Géométrie pour la mécanique

Référence S03 - TP01 - I04

Compétences B2-14: Modéliser la cinématique d'un ensemble de solides.

Description Déterminer une fermeture géométrique et vérifier expérimentalement.

Système Plateforme Stewart

Objectif du TP:

Modéliser la loi d'entrée/sortie géométrique d'un système

La démarche de l'ingénieur permet :

- De vérifier les performances attendues d'un système, par évaluation de l'écart entre un cahier des charges et les réponses expérimentales (écart 1),
- De proposer et de valider des modèles d'un système à partir d'essais, par évaluation de l'écart entre les performances mesurées et les performances simulées (écart 2),
- De prévoir le comportement à partir de modélisations, par l'évaluation de l'écart entre les performances simulées et les performances attendues du cahier des charges (écart 3).

Pour ce TP, vous aurez à votre diposition les documents suivants :

- La du système,
- de la procédure d'utilisation de Simscape disponible à la page 4,
- Les divers documents des système.

1 Modélisation géométrique

Des données sur le système sont disponibles ici : système.

- **Question 1** Écrire les vecteurs $\overrightarrow{O_FB_i}$, $\overrightarrow{B_iA_i}$ et $\overrightarrow{A_iO_M}$ dans les bases respectives $B_F(\overrightarrow{x_F},\overrightarrow{y_F},\overrightarrow{z_F})$, $B_i(\overrightarrow{x_i},\overrightarrow{y_i},\overrightarrow{z_i})$ et $B_M(\overrightarrow{x_M},\overrightarrow{y_M},\overrightarrow{z_M})$. On mesurera $\|\overrightarrow{O_FB_i}\|$ et $\|\overrightarrow{O_MA_i}\|$ directement sur le système et on prendra $\|\overrightarrow{A_iB_i}\| = I(t)$ variable. On prendra aussi pour simplifier $\overrightarrow{O_FO_M} = z(t).\overrightarrow{z_F}$ et $(\overrightarrow{x_F},\overrightarrow{x_M}) = \frac{\pi}{6}$.
- Question 2 Donner la relation qui existe entre ces vecteurs.
- **Question 3** Projeter cette relation dans la base $B_0(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ afin d'obtenir deux équations scalaires. On fera apparaître les angles θ_1 et θ_2 .
- **Question 4** A partir de ces équations, déterminer la relation $\theta_2 = f(\theta_1)$.

2 Vérification par la simulation

- Question 5 Simuler le modèle Simulink sans le modifier, vérifier les données affichées.
- **Question 6** Éditer le modèle en recopiant la formule de la première partie dans le bloc fonction et comparer les résultats des deux modèles.

3 Vérification expérimentale

- **Question 7** Filmer le mouvement de la plateforme Stewart dans la même vue que celle du schéma cinématique.
- **Question 8** A l'aide du logiciel Tracking repérer les trajectoires des points du schéma cinématique et valider les résultats précédents.

Utilisation de Matlab Simscape

La procédure suivante explique comment utiliser Matlab afin de simuler un modèle Simscape.

Ce modèle a été construit à partir des pièces, assemblages et contraintes d'un modèle Solidworks. Ce dernier n'est pourtant pas nécessaire pour le faire tourner.

Procédure:

- Dézipper l'archive à télécharger Modèle Simscape,
- Lancer Matlab 🍑 MATLAB R2016b
- Depuis Matlab, naviguer la la la dossier dézippé jusqu'au dossier contenant les fichiers « .slx » et « Simscape »,

— Faire un clic-droit sur le dossier « Simscape » et cliquer sur « Add to Path »,

<table-cell-rows>

→ 🔁 🛜 🌗 → P: → Mes do

 Double-cliquer sur le fichier correspondant au TP et à la version de Matlab utilisée, il doit avoir une extension en « slx ».

- Afin d'exporter des données, il est nécessaire d'insérer un bloc To File disponible dans la section Sinks et de le connecter à la donnée à extraire,
- Double-cliquer dessus afin de modifier le paramètre Save format en Array. Cela a pour effet de créer un fichier fichier.mat,
- Celui-ci peut être convertit en fichier fichier.csv en utilisant les commandes suivantes. FileData = load('fichier.mat'); csvwrite('fichier.csv', FileData.ans);

4 Correction

Question 1:

 $\overrightarrow{AB} = a \cdot \overrightarrow{y_0}$, $\overrightarrow{AC} = I(t) \cdot \overrightarrow{x_1}$ et $\overrightarrow{BC} = b \cdot \overrightarrow{x_2}$, avec a=112mm et b=81mm.

Question 2:

 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$.

Question 3:

$$I(t) \cdot \cos\theta_1 = b \cdot \cos\theta_2 \tag{1}$$

$$I(t) \cdot \sin\theta_1 = a + b \cdot \sin\theta_2 \tag{2}$$

Question 4:

$$tan\theta_1 = \frac{a + b \cdot sin\theta_2}{b \cdot cos\theta_2} \tag{3}$$

Question 5:

$$\theta_1 = \arctan\left(\frac{a + b \cdot \sin\theta_2}{b \cdot \cos\theta_2}\right) \tag{4}$$

Question 6:

$$\begin{aligned} b \cdot \sin\theta_{1} \cdot \cos\theta_{2} &= a \cdot \cos\theta_{1} + b \cdot \sin\theta_{2} \cdot \cos\theta_{1} \\ b \cdot (\sin\theta_{1} \cdot \cos\theta_{2} - \sin\theta_{2} \cdot \cos\theta_{1}) &= a \cdot \cos\theta_{1} \\ b \cdot \sin(\theta_{1} - \theta_{2}) &= a \cdot \cos\theta_{1} \\ \theta_{1} - \theta_{2} &= \arcsin\left(\frac{a}{b} \cdot \cos\theta_{1}\right) \\ \theta_{2} &= \theta_{1} - \arcsin\left(\frac{a}{b} \cdot \cos\theta_{1}\right) \end{aligned} \tag{5}$$

