Thermodynamics & Statistical Physics Chapter 11. Statistical mechanics for non-equilibrium processes

Yuan-Chuan Zou zouyc@hust.edu.cn

School of Physics, Huazhong University of Science and Technology

December 30, 2013

Table of contents

- Chpt 11. Statistical mechanics for non-equilibrium processes
 - 11.1 Relaxation time approximation of Boltzmann's equation
 - 11.2 Viscous phenomenon of gas
 - 11.3 Conductivity of metal
 - 11.4 Boltzmann integro-differential equation
 - 11.5 *H* theorem
 - ullet 11.6 Detailed balance principle and f in equilibrium

• For the system in non-equilibrium state, it approaches to the equilibrium automatically, also the distribution function $f(\vec{r}, \vec{v}, t)$,

• For the system in non-equilibrium state, it approaches to the equilibrium automatically, also the distribution function $f(\vec{r}, \vec{v}, t)$, where $f(\vec{r}, \vec{v}, t) \mathrm{d} \tau \mathrm{d} \omega$ means the number of molecules at time t, in unit phase space $\mathrm{d} \tau \cdot \mathrm{d} \omega = \mathrm{d} x \mathrm{d} y \mathrm{d} z \cdot \mathrm{d} v_x \mathrm{d} v_y \mathrm{d} v_z$.

• For the system in non-equilibrium state, it approaches to the equilibrium automatically, also the distribution function $f(\vec{r}, \vec{v}, t)$, where $f(\vec{r}, \vec{v}, t) d\tau d\omega$ means the number of molecules at time t, in unit phase space $d\tau \cdot d\omega = dx dy dz \cdot dv_x dv_y dv_z$. (f = ?)

- For the system in non-equilibrium state, it approaches to the equilibrium automatically, also the distribution function $f(\vec{r}, \vec{v}, t)$, where $f(\vec{r}, \vec{v}, t) \mathrm{d}\tau \mathrm{d}\omega$ means the number of molecules at time t, in unit phase space $\mathrm{d}\tau \cdot \mathrm{d}\omega = \mathrm{d}x \mathrm{d}y \mathrm{d}z \cdot \mathrm{d}v_x \mathrm{d}v_y \mathrm{d}v_z$. (f=?)
- Taylor expansion: $f(\vec{r}, \vec{v}, t + dt) = f(\vec{r}, \vec{v}, t) + \frac{\partial f}{\partial t} dt$.

- For the system in non-equilibrium state, it approaches to the equilibrium automatically, also the distribution function $f(\vec{r}, \vec{v}, t)$, where $f(\vec{r}, \vec{v}, t) \mathrm{d}\tau \mathrm{d}\omega$ means the number of molecules at time t, in unit phase space $\mathrm{d}\tau \cdot \mathrm{d}\omega = \mathrm{d}x \mathrm{d}y \mathrm{d}z \cdot \mathrm{d}v_x \mathrm{d}v_y \mathrm{d}v_z$. (f=?)
- Taylor expansion: $f(\vec{r}, \vec{v}, t + dt) = f(\vec{r}, \vec{v}, t) + \frac{\partial f}{\partial t} dt$.
- The number changes in dt, in phase space $d\tau d\omega$: $\frac{\partial f}{\partial t}dtd\tau d\omega$.

- For the system in non-equilibrium state, it approaches to the equilibrium automatically, also the distribution function $f(\vec{r}, \vec{v}, t)$, where $f(\vec{r}, \vec{v}, t) \mathrm{d}\tau \mathrm{d}\omega$ means the number of molecules at time t, in unit phase space $\mathrm{d}\tau \cdot \mathrm{d}\omega = \mathrm{d}x \mathrm{d}y \mathrm{d}z \cdot \mathrm{d}v_x \mathrm{d}v_y \mathrm{d}v_z$. (f=?)
- Taylor expansion: $f(\vec{r}, \vec{v}, t + dt) = f(\vec{r}, \vec{v}, t) + \frac{\partial f}{\partial t} dt$.
- The number changes in $\mathrm{d}t$, in phase space $\mathrm{d}\tau\mathrm{d}\omega$: $\frac{\partial f}{\partial t}\mathrm{d}t\mathrm{d}\tau\mathrm{d}\omega$.
- Origin of this change: 1. movement of the molecules, move out of the "volume" $d\tau d\omega$;

- For the system in non-equilibrium state, it approaches to the equilibrium automatically, also the distribution function $f(\vec{r}, \vec{v}, t)$, where $f(\vec{r}, \vec{v}, t) d\tau d\omega$ means the number of molecules at time t, in unit phase space $d\tau \cdot d\omega = dxdydz \cdot dv_x dv_y dv_z$. (f =?)
- Taylor expansion: $f(\vec{r}, \vec{v}, t + dt) = f(\vec{r}, \vec{v}, t) + \frac{\partial f}{\partial t} dt$.
- The number changes in dt, in phase space $d\tau d\omega$: $\frac{\partial f}{\partial t} dt d\tau d\omega$.
- Origin of this change: 1. movement of the molecules, move out of the "volume" $d\tau d\omega$: 2. collisions between molecules, change the velocities.

★ Movement part:

- ⋆ Movement part:
- 'x' as an example: consider the molecules moving into/outside the volume $\mathrm{d}x\mathrm{d}y\mathrm{d}z$ through surface x and $x+\mathrm{d}x$.

- ⋆ Movement part:
- 'x' as an example: consider the molecules moving into/outside the volume $\mathrm{d}x\mathrm{d}y\mathrm{d}z$ through surface x and $x+\mathrm{d}x$. In $\mathrm{d}t$, all the molecules in the volume $v_x\mathrm{d}t\cdot\mathrm{d}y\mathrm{d}z$ will move inside the volume through surface x.

- ⋆ Movement part:
- 'x' as an example: consider the molecules moving into/outside the volume $\mathrm{d}x\mathrm{d}y\mathrm{d}z$ through surface x and $x+\mathrm{d}x$. In $\mathrm{d}t$, all the molecules in the volume $v_x\mathrm{d}t\cdot\mathrm{d}y\mathrm{d}z$ will move inside the volume through surface x. The number: $(fv_x)_x\mathrm{d}t\mathrm{d}y\mathrm{d}z\mathrm{d}\omega$.

- ⋆ Movement part:
- 'x' as an example: consider the molecules moving into/outside the volume $\mathrm{d}x\mathrm{d}y\mathrm{d}z$ through surface x and $x+\mathrm{d}x$. In $\mathrm{d}t$, all the molecules in the volume $v_x\mathrm{d}t\cdot\mathrm{d}y\mathrm{d}z$ will move inside the volume through surface x. The number: $(fv_x)_x\mathrm{d}t\mathrm{d}y\mathrm{d}z\mathrm{d}\omega$.
- The number moving out through surface x + dx: $(fv_x)_{x+dx}dtdydzd\omega = [(fv_x)_x + \frac{\partial}{\partial x}(fv_x)dx]dtdydzd\omega.$

- ⋆ Movement part:
- 'x' as an example: consider the molecules moving into/outside the volume $\mathrm{d}x\mathrm{d}y\mathrm{d}z$ through surface x and $x+\mathrm{d}x$. In $\mathrm{d}t$, all the molecules in the volume $v_x\mathrm{d}t\cdot\mathrm{d}y\mathrm{d}z$ will move inside the volume through surface x. The number: $(fv_x)_x\mathrm{d}t\mathrm{d}y\mathrm{d}z\mathrm{d}\omega$.
- The number moving out through surface x + dx: $(fv_x)_{x+dx} dt dy dz d\omega = [(fv_x)_x + \frac{\partial}{\partial x} (fv_x) dx] dt dy dz d\omega.$
- The net increase: $-\frac{\partial}{\partial x}(fv_x)dxdtdydzd\omega$ = $-\frac{\partial}{\partial x}(fv_x)dtd\tau d\omega = -\frac{\partial}{\partial x}(f\dot{x})dtd\tau d\omega$.

• Similar for the velocity if there exists some external force, which makes the velocity changes (equivalently moving in the phase space):

 Similar for the velocity if there exists some external force, which makes the velocity changes (equivalently moving in the phase space): $-\frac{\partial}{\partial v_x}(f\dot{v_x})dtd\tau d\omega$.

- Similar for the velocity if there exists some external force, which makes the velocity changes (equivalently moving in the phase space): $-\frac{\partial}{\partial v_x}(f\dot{v_x})\mathrm{d}t\mathrm{d}\tau\mathrm{d}\omega$.
- In total, the number for the whole "volume": $-[\frac{\partial}{\partial x}(fv_x) + \frac{\partial}{\partial y}(fv_y) + \frac{\partial}{\partial z}(fv_z) + \frac{\partial}{\partial v_x}(f\dot{v_x}) + \frac{\partial}{\partial v_y}(f\dot{v_y}) + \frac{\partial}{\partial v_z}(f\dot{v_z})]\mathrm{d}t\mathrm{d}\tau\mathrm{d}\omega.$

- Similar for the velocity if there exists some external force, which makes the velocity changes (equivalently moving in the phase space): $-\frac{\partial}{\partial v_x}(f\dot{v_x})\mathrm{d}t\mathrm{d}\tau\mathrm{d}\omega$.
- In total, the number for the whole "volume": $-[\frac{\partial}{\partial x}(fv_x) + \frac{\partial}{\partial y}(fv_y) + \frac{\partial}{\partial z}(fv_z) + \frac{\partial}{\partial v_x}(f\dot{v_x}) + \frac{\partial}{\partial v_y}(f\dot{v_y}) + \frac{\partial}{\partial v_z}(f\dot{v_z})]\mathrm{d}t\mathrm{d}\tau\mathrm{d}\omega.$
- As x and v_x are independent, i.e., $\frac{\partial v_x}{\partial x} = 0$.

- Similar for the velocity if there exists some external force, which makes the velocity changes (equivalently moving in the phase space): $-\frac{\partial}{\partial v_x}(f\dot{v_x})\mathrm{d}t\mathrm{d}\tau\mathrm{d}\omega$.
- In total, the number for the whole "volume": $-[\frac{\partial}{\partial x}(fv_x) + \frac{\partial}{\partial y}(fv_y) + \frac{\partial}{\partial z}(fv_z) + \frac{\partial}{\partial v_x}(f\dot{v_x}) + \frac{\partial}{\partial v_y}(f\dot{v_y}) + \frac{\partial}{\partial v_z}(f\dot{v_z})]\mathrm{d}t\mathrm{d}\tau\mathrm{d}\omega.$
- As x and v_x are independent, i.e., $\frac{\partial v_x}{\partial x} = 0$.
- $\dot{v_x}$ means the force in x. Generally only two kinds: gravity and electro-magnetic force.

- Similar for the velocity if there exists some external force, which makes the velocity changes (equivalently moving in the phase space): $-\frac{\partial}{\partial v_x}(f\dot{v_x})\mathrm{d}t\mathrm{d}\tau\mathrm{d}\omega$.
- In total, the number for the whole "volume": $-[\frac{\partial}{\partial x}(fv_x) + \frac{\partial}{\partial y}(fv_y) + \frac{\partial}{\partial z}(fv_z) + \frac{\partial}{\partial v_x}(f\dot{v_x}) + \frac{\partial}{\partial v_y}(f\dot{v_y}) + \frac{\partial}{\partial v_z}(f\dot{v_z})]\mathrm{d}t\mathrm{d}\tau\mathrm{d}\omega.$
- As x and v_x are independent, i.e., $\frac{\partial v_x}{\partial x} = 0$.
- v_x means the force in x. Generally only two kinds: gravity and electro-magnetic force. Gravity: $v_x = g$ is not related to v_x ;

- Similar for the velocity if there exists some external force, which makes the velocity changes (equivalently moving in the phase space): $-\frac{\partial}{\partial v_x}(f\dot{v_x})dtd\tau d\omega$.
- In total, the number for the whole "volume": $-\left[\frac{\partial}{\partial x}(fv_x) + \frac{\partial}{\partial y}(fv_y) + \frac{\partial}{\partial z}(fv_z) + \frac{\partial}{\partial v_x}(f\dot{v_x}) + \right]$ $\frac{\partial}{\partial v_y}(f\dot{v_y}) + \frac{\partial}{\partial v_z}(f\dot{v_z}) dt d\tau d\omega.$
- As x and v_x are independent, i.e., $\frac{\partial v_x}{\partial x} = 0$.
- \dot{v}_x means the force in x. Generally only two kinds: gravity and electro-magnetic force. Gravity: $\dot{v_x} = g$ is not related to v_x ; e-m force: $\dot{v_x} = \frac{e}{m} [E_x + (\vec{v} \times \vec{B})_x]$ is also not related to v_x .

- Similar for the velocity if there exists some external force, which makes the velocity changes (equivalently moving in the phase space): $-\frac{\partial}{\partial v_x}(f\dot{v_x})\mathrm{d}t\mathrm{d}\tau\mathrm{d}\omega$.
- In total, the number for the whole "volume": $-\left[\frac{\partial}{\partial x}(fv_x) + \frac{\partial}{\partial y}(fv_y) + \frac{\partial}{\partial z}(fv_z) + \frac{\partial}{\partial v_x}(f\dot{v_x}) + \frac{\partial}{\partial v_x}(f\dot{v_y}) + \frac{\partial}{\partial v_z}(f\dot{v_z})\right] \mathrm{d}t \mathrm{d}\tau \mathrm{d}\omega.$
- As x and v_x are independent, i.e., $\frac{\partial v_x}{\partial x} = 0$.
- \vec{v}_x means the force in x. Generally only two kinds: gravity and electro-magnetic force. Gravity: $\vec{v}_x = g$ is not related to v_x ; e-m force: $\vec{v}_x = \frac{e}{m}[E_x + (\vec{v} \times \vec{B})_x]$ is also not related to v_x .

• : $-(v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + \dot{v_x} \frac{\partial f}{\partial y} + \dot{v_y} \frac{\partial f}{\partial y} + \dot{v_z} \frac{\partial f}{\partial z}) dt d\tau d\omega$.

• Set $X = v_x$, $Y = v_y$, $Z = v_z$, the number: $-(v_x\frac{\partial f}{\partial x} + v_y\frac{\partial f}{\partial u} + v_z\frac{\partial f}{\partial z} + X\frac{\partial f}{\partial v_x} + Y\frac{\partial f}{\partial v_y} + Z\frac{\partial f}{\partial v_z})dtd\tau d\omega.$

- Set $X=\dot{v_x}$, $Y=\dot{v_y}$, $Z=\dot{v_z}$, the number: $-(v_x\frac{\partial f}{\partial x} + v_y\frac{\partial f}{\partial y} + v_z\frac{\partial f}{\partial z} + X\frac{\partial f}{\partial v_x} + Y\frac{\partial f}{\partial v_y} + Z\frac{\partial f}{\partial v_z})dtd\tau d\omega.$
- ★ Collision part:

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- Set $X = \dot{v_x}$, $Y = \dot{v_y}$, $Z = \dot{v_z}$, the number: $-(v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}) dt d\tau d\omega.$
- * Collision part:
- Notice the collisions (energy exchange) make the system approaching the equilibrium.

- Set $X = \dot{v_x}$, $Y = \dot{v_y}$, $Z = \dot{v_z}$, the number: $-(v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}) dt d\tau d\omega.$
- ★ Collision part:
- Notice the collisions (energy exchange) make the system approaching the equilibrium.
- If the considered volume $d\tau$ is small in macroscopic view and is big in microscopic view,

- Set $X = \dot{v_x}$, $Y = \dot{v_y}$, $Z = \dot{v_z}$, the number: $-(v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}) \mathrm{d}t \mathrm{d}\tau \mathrm{d}\omega.$
- ★ Collision part:
- Notice the collisions (energy exchange) make the system approaching the equilibrium.
- If the considered volume $d\tau$ is small in macroscopic view and is big in microscopic view, it is temporally in equilibrium.

- Set $X = \dot{v_x}$, $Y = \dot{v_y}$, $Z = \dot{v_z}$, the number: $-(v_x\frac{\partial f}{\partial x} + v_y\frac{\partial f}{\partial u} + v_z\frac{\partial f}{\partial z} + X\frac{\partial f}{\partial v_x} + Y\frac{\partial f}{\partial v_u} + Z\frac{\partial f}{\partial v_z})dtd\tau d\omega.$
- ★ Collision part:
- Notice the collisions (energy exchange) make the system approaching the equilibrium.
- If the considered volume $d\tau$ is small in macroscopic view and is big in microscopic view, it is temporally in equilibrium. The distribution obeys the Maxwell speed distribution: $f^{(0)} = n(\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}(v-v_0)^2}$.

- Set $X = \dot{v_x}$, $Y = \dot{v_y}$, $Z = \dot{v_z}$, the number: $-(v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}) dt d\tau d\omega.$
- ★ Collision part:
- Notice the collisions (energy exchange) make the system approaching the equilibrium.
- If the considered volume $\mathrm{d}\tau$ is small in macroscopic view and is big in microscopic view, it is temporally in equilibrium. The distribution obeys the Maxwell speed distribution: $f^{(0)} = n(\frac{m}{2\pi kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}(v-v_0)^2}$. Notice n, T, v_0 changes with \vec{r} and t.

• The real distribution f may deviate from $f^{(0)}$. Collisions make the deviation back to the equilibrium.

7 / 34

- The real distribution f may deviate from $f^{(0)}$. Collisions make the deviation back to the equilibrium.
- Obviously, the bigger the deviation, the stronger the tendency being back. Reasonable to suppose:

$$\frac{\partial (f-f^{(0)})}{\partial t}=-rac{f-f^{(0)}}{ au_0}$$
 ,

- The real distribution f may deviate from $f^{(0)}$. Collisions make the deviation back to the equilibrium.
- Obviously, the bigger the deviation, the stronger the tendency being back. Reasonable to suppose: $\frac{\partial (f-f^{(0)})}{\partial t} = -\frac{f-f^{(0)}}{\tau_0}, \text{ called relaxation time approximation of Boltzmann's equation.}$

- The real distribution f may deviate from $f^{(0)}$. Collisions make the deviation back to the equilibrium.
- Obviously, the bigger the deviation, the stronger the tendency being back. Reasonable to suppose: $\frac{\partial (f-f^{(0)})}{\partial t} = -\frac{f-f^{(0)}}{\tau_0} \text{, called relaxation time approximation of Boltzmann's equation.}$
- Combining the movement part and the collision part, the number changing:

- The real distribution f may deviate from $f^{(0)}$. Collisions make the deviation back to the equilibrium.
- Obviously, the bigger the deviation, the stronger the tendency being back. Reasonable to suppose: $\frac{\partial (f-f^{(0)})}{\partial t} = -\frac{f-f^{(0)}}{\tau_0}, \text{ called relaxation time approximation of Boltzmann's equation.}$
- Combining the movement part and the collision part, the number changing: $\frac{\partial f}{\partial t} = -(v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial y} + Y \frac{\partial f}{\partial y} + Z \frac{\partial f}{\partial y}) \frac{f f^{(0)}}{\tau_0}$.

Relaxation time approximation of Boltzmann's equation

- The real distribution f may deviate from $f^{(0)}$. Collisions make the deviation back to the equilibrium.
- Obviously, the bigger the deviation, the stronger the tendency being back. Reasonable to suppose: $\frac{\partial (f-f^{(0)})}{\partial t}=-\frac{f-f^{(0)}}{\tau_0}$, called relaxation time approximation of Boltzmann's equation.
- Combining the movement part and the collision part, the number changing: $\frac{\partial f}{\partial t} =$ $-(v_x\frac{\partial f}{\partial x} + v_y\frac{\partial f}{\partial y} + v_z\frac{\partial f}{\partial z} + X\frac{\partial f}{\partial v_x} + Y\frac{\partial f}{\partial v_z} + Z\frac{\partial f}{\partial v_z}) - \frac{f - f^{(0)}}{\tau_0}.$
- For the steady state: $\frac{\partial f}{\partial t} = 0$,

Relaxation time approximation of Boltzmann's equation

- The real distribution f may deviate from $f^{(0)}$. Collisions make the deviation back to the equilibrium.
- Obviously, the bigger the deviation, the stronger the tendency being back. Reasonable to suppose: $\frac{\partial (f-f^{(0)})}{\partial t} = -\frac{f-f^{(0)}}{\tau_0}$, called relaxation time approximation of Boltzmann's equation.
- Combining the movement part and the collision part, the number changing: $\frac{\partial f}{\partial t} =$ $-(v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial u} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_u} + Z \frac{\partial f}{\partial v_z}) - \frac{f - f^{(0)}}{\tau_0}.$
- For the steady state: $\frac{\partial f}{\partial t} = 0$, then $v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial y_x} + Y \frac{\partial f}{\partial y_x} + Z \frac{\partial f}{\partial y_z} = -\frac{f - f^{(0)}}{\tau_0}.$

Table of contents

- Chpt 11. Statistical mechanics for non-equilibrium processes
 - 11.1 Relaxation time approximation of Boltzmann's equation
 - 11.2 Viscous phenomenon of gas
 - 11.3 Conductivity of metal
 - 11.4 Boltzmann integro-differential equation
 - 11.5 H theorem
 - ullet 11.6 Detailed balance principle and f in equilibrium

- Gradient in the velocity of gas flowing.
- Newton's viscosity law: $P_{xy} = \eta \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$, where η is viscosity coefficient.

- Gradient in the velocity of gas flowing.
- Newton's viscosity law: $P_{xy} = \eta \frac{\mathrm{d} v_0(x)}{\mathrm{d} x}$, where η is viscosity coefficient.

• Only macroscopic velocity in y-axis: $\overline{v}_x = 0$, $\overline{v}_y = v_0(x)$, $\overline{v}_z = 0$,

- Gradient in the velocity of gas flowing.
- Newton's viscosity law: $P_{xy}=\eta \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$, where η is viscosity coefficient.

- Only macroscopic velocity in y-axis: $\overline{v}_x = 0$, $\overline{v}_y = v_0(x)$, $\overline{v}_z = 0$,
- From (7.3.16), in unit time, crossing the unit area at x_0 , the number of molecules: $d\Gamma = v_x f d\omega$.

- Gradient in the velocity of gas flowing.
- Newton's viscosity law: $P_{xy} = \eta \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$, where η is viscosity coefficient.

- Only macroscopic velocity in y-axis: $\overline{v}_x = 0$, $\overline{v}_y = v_0(x)$, $\overline{v}_z = 0$,
- From (7.3.16), in unit time, crossing the unit area at x_0 , the number of molecules: $d\Gamma = v_x f d\omega$.
- Each molecule has momentum mv_y .

- Gradient in the velocity of gas flowing.
- Newton's viscosity law: $P_{xy} = \eta rac{\mathrm{d} v_0(x)}{\mathrm{d} r}$, where η is viscosity coefficient.

- Only macroscopic velocity in y-axis: $\overline{v}_x = 0$, $\overline{v}_y = v_0(x), \ \overline{v}_z = 0,$
- From (7.3.16), in unit time, crossing the unit area at x_0 , the number of molecules: $d\Gamma = v_x f d\omega$.
- Each molecule has momentum mv_y . The total momentum from left to the right:

$$\int_0^\infty \mathrm{d}v_x \int_{-\infty}^\infty \mathrm{d}v_y \int_{-\infty}^\infty \mathrm{d}v_z (mv_y \cdot v_x f) ... (a)$$

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}$$

Similarly, from right to the left:

$$-\int_{-\infty}^{0} dv_x \int_{-\infty}^{\infty} dv_y \int_{-\infty}^{\infty} dv_z (mv_y \cdot v_x f) ...(b)$$

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}$$

• Similarly, from right to the left:

$$-\int_{-\infty}^{0} dv_x \int_{-\infty}^{\infty} dv_y \int_{-\infty}^{\infty} dv_z (mv_y \cdot v_x f) ...(b)$$

• The net momentum from right to the left (b)-(a):

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}$$

• Similarly, from right to the left:

$$-\int_{-\infty}^{0} dv_x \int_{-\infty}^{\infty} dv_y \int_{-\infty}^{\infty} dv_z (mv_y \cdot v_x f) ...(b)$$

• The net momentum from right to the left (b)-(a):

$$P_{xy} = -\iiint_{-\infty}^{\infty} m v_x v_y f d\omega.$$

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}$$

• Similarly, from right to the left:

$$-\int_{-\infty}^{0} dv_x \int_{-\infty}^{\infty} dv_y \int_{-\infty}^{\infty} dv_z (mv_y \cdot v_x f) ...(b)$$

- The net momentum from right to the left (b)-(a): $P_{xy} = -\iiint_{-\infty}^{\infty} mv_x v_y f \mathrm{d}\omega.$
- Notice $F = \frac{\Delta P}{\Delta t}$, P_{xy} is also the force on unit area (parallel to the surface).

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}$$

• Similarly, from right to the left:

$$-\int_{-\infty}^{0} dv_x \int_{-\infty}^{\infty} dv_y \int_{-\infty}^{\infty} dv_z (mv_y \cdot v_x f) ...(b)$$

- The net momentum from right to the left (b)-(a): $P_{xy} = -\iiint_{-\infty}^{\infty} mv_x v_y f d\omega.$
- Notice $F = \frac{\Delta P}{\Delta t}$, P_{xy} is also the force on unit area (parallel to the surface).
- If $v_y = v_0 = \text{const.}$, uniform flowing.

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}$$

- Similarly, from right to the left:
 - $-\int_{-\infty}^{0} dv_x \int_{-\infty}^{\infty} dv_y \int_{-\infty}^{\infty} dv_z (mv_y \cdot v_x f) ...(b)$
- The net momentum from right to the left (b)-(a): $P_{xy} = -\iiint_{-\infty}^{\infty} mv_x v_y f d\omega.$
- Notice $F = \frac{\Delta P}{\Delta t}$, P_{xy} is also the force on unit area (parallel to the surface).
- If $v_y = v_0 = \text{const.}$, uniform flowing. Gas is in equilibrium,

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}$$

- Similarly, from right to the left:
 - $-\int_{-\infty}^{0} dv_x \int_{-\infty}^{\infty} dv_y \int_{-\infty}^{\infty} dv_z (mv_y \cdot v_x f) ...(b)$
- The net momentum from right to the left (b)-(a): $P_{xy} = -\iiint_{-\infty}^{\infty} mv_x v_y f \mathrm{d}\omega.$
- Notice $F = \frac{\Delta P}{\Delta t}$, P_{xy} is also the force on unit area (parallel to the surface).
- If $v_y=v_0=\mathrm{const.}$, uniform flowing. Gas is in equilibrium, $f^{(0)}=n(\frac{m}{2\pi kT})^{\frac{3}{2}}e^{-\frac{m}{2kT}[v_x^2+(v_y-v_0)^2+v_z^2]}$.

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}$$

- Similarly, from right to the left:
 - $-\int_{-\infty}^{0} \mathrm{d}v_{x} \int_{-\infty}^{\infty} \mathrm{d}v_{y} \int_{-\infty}^{\infty} \mathrm{d}v_{z} (mv_{y} \cdot v_{x}f) ...(b)$
- The net momentum from right to the left (b)-(a): $P_{xy} = -\iiint_{-\infty}^{\infty} m v_x v_y f d\omega.$
- Notice $F = \frac{\Delta P}{\Delta t}$, P_{xy} is also the force on unit area (parallel to the surface).
- If $v_y = v_0 = \text{const.}$, uniform flowing. Gas is in equilibrium, $f^{(0)} = n(\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}[v_x^2 + (v_y - v_0)^2 + v_z^2]}$.
- Notice f is only function of x, without external force $(X=0, Y=0, Z=0), (11.1.13): v_x \frac{\partial f}{\partial x} = -\frac{f-f^{(0)}}{\tau_0}.$

Chpt 11. Statistical mechanics for non-equilibrium processes 11.2 Viscous phenomenon of gas

$$v_x \frac{\partial f}{\partial x} = -\frac{f - f^{(0)}}{\tau_0}$$
, $f^{(0)} = n(\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}[v_x^2 + (v_y - v_0)^2 + v_z^2]}$

11 / 34

$$v_x \frac{\partial f}{\partial x} = -\frac{f - f^{(0)}}{\tau_0}$$
, $f^{(0)} = n(\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}[v_x^2 + (v_y - v_0)^2 + v_z^2]}$

• Expand f as: $f = f^{(0)} + f^{(1)}$. $(f^{(1)} \ll f^{(0)})$

$$v_x \frac{\partial f}{\partial x} = -\frac{f - f^{(0)}}{\tau_0}, \quad f^{(0)} = n(\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}[v_x^2 + (v_y - v_0)^2 + v_z^2]}$$

• Expand f as: $f = f^{(0)} + f^{(1)}$. $(f^{(1)} \ll f^{(0)})$ Get $v_x \frac{\partial f^{(0)}}{\partial x} = -\frac{f^{(1)}}{\tau_0}$.

$$v_x \frac{\partial f}{\partial x} = -\frac{f - f^{(0)}}{\tau_0} , \quad f^{(0)} = n \left(\frac{m}{2\pi kT} \right)^{\frac{3}{2}} e^{-\frac{m}{2kT} \left[v_x^2 + (v_y - v_0)^2 + v_z^2 \right]}$$

 $\begin{array}{l} \bullet \ \, \text{Expand} \ f \ \text{as:} \ f = f^{(0)} + f^{(1)}. \ \left(f^{(1)} \ll f^{(0)}\right) \\ \text{Get} \ v_x \frac{\partial f^{(0)}}{\partial x} = -\frac{f^{(1)}}{\tau_0}. \\ \bullet \ \Rightarrow f^{(1)} = -\tau_0 v_x \frac{\partial f^{(0)}}{\partial x}. \end{array}$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- Expand f as: $f = f^{(0)} + f^{(1)}$. $(f^{(1)} \ll f^{(0)})$ Get $v_x \frac{\partial f^{(0)}}{\partial x} = -\frac{f^{(1)}}{\tau_0}$.
- $\bullet \Rightarrow f^{(1)} = -\tau_0 v_x \frac{\partial f^{(0)}}{\partial x}.$
- $\bullet \frac{\partial f^{(0)}}{\partial r} = A \frac{\partial e^{-\frac{m}{2kT}(v_y v_0)^2}}{\partial r}$

Chpt 11. Statistical mechanics for non-equilibrium processes
$$v_x \frac{\partial f}{\partial x} = -\frac{f - f^{(0)}}{\tau_0} \,, \quad f^{(0)} = n (\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT} [v_x^2 + (v_y - v_0)^2 + v_z^2]}$$

- Expand f as: $f = f^{(0)} + f^{(1)}$. $(f^{(1)} \ll f^{(0)})$ Get $v_x \frac{\partial f^{(0)}}{\partial x} = -\frac{f^{(1)}}{5}$.
- $\bullet \Rightarrow f^{(1)} = -\tau_0 v_x \frac{\partial f^{(0)}}{\partial x}.$
- $\frac{\partial f^{(0)}}{\partial x} = A \frac{\partial e^{-\frac{m}{2kT}(v_y v_0)^2}}{\partial x}$ $=A\cdot(-\frac{m}{2kT})\cdot 2(v_0-v_u)\cdot \frac{\partial(v_0-v_y)}{\partial x}e^{-\frac{m}{2kT}(v_0-v_y)^2};$

11 / 34

Chpt 11. Statistical mechanics for non-equilibrium processes
$$v_x \frac{\partial f}{\partial x} = -\frac{f - f^{(0)}}{\tau_0} \text{ , } f^{(0)} = n(\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}[v_x^2 + (v_y - v_0)^2 + v_z^2]}$$

- Expand f as: $f = f^{(0)} + f^{(1)}$. $(f^{(1)} \ll f^{(0)})$ Get $v_x \frac{\partial f^{(0)}}{\partial x} = -\frac{f^{(1)}}{\tau}$.
- $\bullet \Rightarrow f^{(1)} = -\tau_0 v_x \frac{\partial f^{(0)}}{\partial x}.$
- $\frac{\partial f^{(0)}}{\partial x} = A \frac{\partial e^{-\frac{m}{2kT}(v_y v_0)^2}}{\partial x}$ $= A \cdot (-\frac{m}{2kT}) \cdot 2(v_0 - v_y) \cdot \frac{\partial (v_0 - v_y)}{\partial x} e^{-\frac{m}{2kT}(v_0 - v_y)^2};$ $\frac{\partial f^{(0)}}{\partial v_y} = A \cdot (-\frac{m}{2kT}) \cdot 2(v_y - v_0) e^{-\frac{m}{2kT}(v_y - v_0)^2}$

Chpt 11. Statistical mechanics for non-equilibrium processes
$$v_x \frac{\partial f}{\partial x} = -\frac{f - f^{(0)}}{\tau_0} \text{ , } f^{(0)} = n(\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}[v_x^2 + (v_y - v_0)^2 + v_z^2]}$$

- Expand f as: $f = f^{(0)} + f^{(1)}$. $(f^{(1)} \ll f^{(0)})$ Get $v_r \frac{\partial f^{(0)}}{\partial x} = -\frac{f^{(1)}}{2}$.
- $\bullet \Rightarrow f^{(1)} = -\tau_0 v_x \frac{\partial f^{(0)}}{\partial x}.$
- $\frac{\partial f^{(0)}}{\partial x} = A \frac{\partial e^{-\frac{m}{2kT}(v_y v_0)^2}}{\partial x}$ $=A\cdot(-\frac{m}{2kT})\cdot 2(v_0-v_y)\cdot \frac{\partial(v_0-v_y)}{\partial x}e^{-\frac{m}{2kT}(v_0-v_y)^2};$ $\frac{\partial f^{(0)}}{\partial v_{ii}} = A \cdot (-\frac{m}{2kT}) \cdot 2(v_y - v_0) e^{-\frac{m}{2kT}(v_y - v_0)^2}$
- $\bullet \Rightarrow \frac{\partial f^{(0)}}{\partial x} = -\frac{\partial f^{(0)}}{\partial v_x} \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}.$

Chpt 11. Statistical mechanics for non-equilibrium processes
$$v_x \frac{\partial f}{\partial x} = -\frac{f - f^{(0)}}{\tau_0} \text{ , } f^{(0)} = n(\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}[v_x^2 + (v_y - v_0)^2 + v_z^2]}$$

- Expand f as: $f = f^{(0)} + f^{(1)}$. $(f^{(1)} \ll f^{(0)})$ Get $v_r \frac{\partial f^{(0)}}{\partial x_r} = -\frac{f^{(1)}}{x_r}$.
- $\bullet \Rightarrow f^{(1)} = -\tau_0 v_x \frac{\partial f^{(0)}}{\partial x}.$
- $\frac{\partial f^{(0)}}{\partial x} = A \frac{\partial e^{-\frac{m}{2kT}(v_y v_0)^2}}{\partial x}$ $=A\cdot(-\frac{m}{2kT})\cdot 2(v_0-v_y)\cdot \frac{\partial(v_0-v_y)}{\partial x}e^{-\frac{m}{2kT}(v_0-v_y)^2};$ $\frac{\partial f^{(0)}}{\partial v_{ii}} = A \cdot (-\frac{m}{2kT}) \cdot 2(v_y - v_0) e^{-\frac{m}{2kT}(v_y - v_0)^2}$
- $\bullet \Rightarrow \frac{\partial f^{(0)}}{\partial x} = -\frac{\partial f^{(0)}}{\partial v_u} \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}.$
- $\bullet \Rightarrow f^{(1)} = \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_x} \frac{\mathrm{d} v_0(x)}{\mathrm{d} x}.$

11.2 Viscous phenomenon of gas Viscous phenomenon of gas $P_{xy} = \eta \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} f^{(1)} = \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$$

•
$$P_{xy} = -\iiint_{-\infty}^{\infty} m v_x v_y f d\omega$$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

Viscous phenomenon of gas
$$P_{xy} = \eta \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$$

$$f^{(0)} = n(\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}[v_x^2 + (v_y - v_0)^2 + v_z^2]} f^{(1)} = \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_x} \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$$

•
$$P_{xy} = -\iiint_{-\infty}^{\infty} m v_x v_y f d\omega$$

= $-\iiint_{-\infty}^{\infty} m v_x v_y [f^{(0)} + \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx}] d\omega$

Viscous phenomenon of gas $P_{xy} = \eta \frac{\mathrm{d} v_0(x)}{\mathrm{d} x}$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} f^{(1)} = \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$$

•
$$P_{xy} = -\iiint_{-\infty}^{\infty} m v_x v_y f d\omega$$

$$= -\iiint_{-\infty}^{\infty} m v_x v_y [f^{(0)} + \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx}] d\omega$$

$$= -\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx} d\omega$$

Viscous phenomenon of gas $P_{xy} = \eta \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} f^{(1)} = \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$$

•
$$P_{xy} = -\iiint_{-\infty}^{\infty} m v_x v_y f d\omega$$

$$= -\iiint_{-\infty}^{\infty} m v_x v_y [f^{(0)} + \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx}] d\omega$$

$$= -\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx} d\omega$$

$$= -(\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} d\omega) \cdot \frac{dv_0(x)}{dx}$$

Viscous phenomenon of gas $P_{xy} = \eta rac{\mathrm{d} v_0(x)}{\mathrm{d} x}$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} f^{(1)} = \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$$

•
$$P_{xy} = -\iiint_{-\infty}^{\infty} m v_x v_y f d\omega$$

$$= -\iiint_{-\infty}^{\infty} m v_x v_y [f^{(0)} + \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx}] d\omega$$

$$= -\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx} d\omega$$

$$= -(\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} d\omega) \cdot \frac{dv_0(x)}{dx}$$
• $\Rightarrow \eta = -\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} d\omega$

Viscous phenomenon of gas $P_{xy} = \eta \frac{dv_0(x)}{dx}$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} f^{(1)} = \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$$

$$P_{xy} = -\iiint_{-\infty}^{\infty} m v_x v_y f d\omega$$

$$= -\iiint_{-\infty}^{\infty} m v_x v_y [f^{(0)} + \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx}] d\omega$$

$$= -\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx} d\omega$$

$$= -(\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} d\omega) \cdot \frac{dv_0(x)}{dx}$$

$$\Rightarrow \eta = -\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} d\omega$$

$$= -m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_x^2 v_y \frac{\partial f^{(0)}}{\partial v_y} d\omega$$

12 / 34

Viscous phenomenon of gas $P_{xy} = \eta \frac{dv_0(x)}{dx}$

$$\int_{[r-v_0]^2 + v_z^2} \left[f^{(1)} = \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_z} \frac{\mathrm{d}v_0(x)}{\mathrm{d}x} \right]$$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} f^{(1)} = \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$$

$$P_{xy} = -\iiint_{-\infty}^{\infty} m v_x v_y f d\omega$$

$$= -\iiint_{-\infty}^{\infty} m v_x v_y [f^{(0)} + \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx}] d\omega$$

$$= -\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx} d\omega$$

$$= -(\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} d\omega) \cdot \frac{dv_0(x)}{dx}$$

$$\Rightarrow \eta = -\iiint_{-\infty}^{\infty} m v_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} d\omega$$

$$= -m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_x^2 v_y \frac{\partial f^{(0)}}{\partial v_y} d\omega$$

$$= -m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} v_y \frac{\partial f^{(0)}}{\partial v_y} dv_y$$

Viscous phenomenon of gas $P_{xy} = \eta \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} f^{(1)} = \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{\mathrm{d}v_0(x)}{\mathrm{d}x}$$

•
$$P_{xy} = -\iiint_{-\infty}^{\infty} mv_x v_y f d\omega$$

$$= -\iiint_{-\infty}^{\infty} mv_x v_y [f^{(0)} + \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx}] d\omega$$

$$= -\iiint_{-\infty}^{\infty} mv_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} \frac{dv_0(x)}{dx} d\omega$$

$$= -(\iiint_{-\infty}^{\infty} mv_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} d\omega) \cdot \frac{dv_0(x)}{dx}$$
• $\Rightarrow \eta = -\iiint_{-\infty}^{\infty} mv_x v_y \tau_0 v_x \frac{\partial f^{(0)}}{\partial v_y} d\omega$

$$= -m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_x^2 v_y \frac{\partial f^{(0)}}{\partial v_y} d\omega$$

$$= -m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} v_y \frac{\partial f^{(0)}}{\partial v_y} dv_y$$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]}$$

•
$$\eta =$$

$$-m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 [f^{(0)}v_y|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)}dv_y]$$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]}$$

•
$$\eta =$$

$$-m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 [f^{(0)}v_y|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)}dv_y]$$

$$= m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} f^{(0)}dv_y$$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]}$$

•
$$\eta =$$

$$-m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 [f^{(0)}v_y|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)}dv_y]$$

$$= m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} f^{(0)}dv_y$$

$$= m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_x^2 f d\omega$$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]}$$

•
$$\eta =$$

$$-m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 [f^{(0)}v_y]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)}dv_y]$$

$$= m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} f^{(0)}dv_y$$

$$= m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_x^2 f d\omega$$

$$= n\overline{\tau}_0 (m\overline{v_x^2})$$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]}$$

•
$$\eta =$$

$$-m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 [f^{(0)}v_y|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)}dv_y]$$

$$= m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} f^{(0)}dv_y$$

$$= m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_x^2 f d\omega$$

$$= n\overline{\tau}_0 (m\overline{v_x^2})$$

$$= n\overline{\tau}_0 kT.$$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]}$$

- $\eta = -m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 [f^{(0)}v_y|_{-\infty}^{\infty} \int_{-\infty}^{\infty} f^{(0)}dv_y] \\
 = m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} f^{(0)}dv_y \\
 = m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_x^2 f d\omega \\
 = n\overline{\tau}_0 (m\overline{v_x^2}) \\
 = n\overline{\tau}_0 kT.$
- Approximately, $\overline{\tau}_0$ is the duration between two collisions.

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]}$$

- $\eta = -m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 [f^{(0)}v_y|_{-\infty}^{\infty} \int_{-\infty}^{\infty} f^{(0)}dv_y] \\
 = m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} f^{(0)}dv_y \\
 = m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_x^2 f d\omega \\
 = n\overline{\tau}_0 (m\overline{v_x^2}) \\
 = n\overline{\tau}_0 kT.$
- Approximately, $\overline{\tau}_0$ is the duration between two collisions. Define mean free path $\overline{l} \equiv \overline{v} \, \overline{\tau}_0$.

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]}$$

- $\bullet \eta =$ $-m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 [f^{(0)}v_y]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)}dv_y]$ $= m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} f^{(0)} dv_y$ $= m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_r^2 f d\omega$ $= n\overline{\tau}_0(m\overline{v_x^2})$ $= n\overline{\tau}_0 kT$.
- Approximately, $\overline{\tau}_0$ is the duration between two collisions. Define mean free path $l \equiv \overline{v} \, \overline{\tau}_0$. Notice $v_r^2 = \frac{1}{2}v^2, \ v^2 \sim \overline{v}^2.$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]}$$

- $\eta =$ $-m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 [f^{(0)}v_y|_{-\infty}^{\infty} \int_{-\infty}^{\infty} f^{(0)}dv_y]$ $= m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} f^{(0)}dv_y$ $= m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_x^2 f d\omega$ $= n\overline{\tau}_0 (m\overline{v_x^2})$ $= n\overline{\tau}_0 kT.$
- Approximately, $\overline{\tau}_0$ is the duration between two collisions. Define mean free path $\overline{l} \equiv \overline{v}\,\overline{\tau}_0$. Notice $\overline{v_x^2} = \frac{1}{3}\overline{v^2}$, $\overline{v^2} \sim \overline{v}^2$. $\therefore \eta \simeq nm\overline{\tau}_0\frac{\overline{v^2}}{3}$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]}$$

- $\eta =$ $-m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 [f^{(0)}v_y|_{-\infty}^{\infty} \int_{-\infty}^{\infty} f^{(0)}dv_y]$ $= m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} f^{(0)}dv_y$ $= m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_x^2 f d\omega$ $= n\overline{\tau}_0 (m\overline{v_x^2})$ $= n\overline{\tau}_0 kT.$
- Approximately, $\overline{\tau}_0$ is the duration between two collisions. Define mean free path $\overline{l} \equiv \overline{v} \, \overline{\tau}_0$. Notice $\overline{v_x^2} = \frac{1}{3} \overline{v^2}$, $\overline{v^2} \sim \overline{v}^2$. $\therefore \eta \simeq nm \overline{\tau}_0 \overline{v_3^2} \simeq nm \overline{\tau}_0 \overline{v_3^2}$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]}$$

- $\eta =$ $-m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 [f^{(0)}v_y|_{-\infty}^{\infty} \int_{-\infty}^{\infty} f^{(0)}dv_y]$ $= m\overline{\tau}_0 \int_{-\infty}^{\infty} dv_z \int_{-\infty}^{\infty} dv_x v_x^2 \int_{-\infty}^{\infty} f^{(0)}dv_y$ $= m\overline{\tau}_0 \iiint_{-\infty}^{\infty} v_x^2 f d\omega$ $= n\overline{\tau}_0 (mv_x^2)$ $= n\overline{\tau}_0 kT.$
- Approximately, $\overline{\tau}_0$ is the duration between two collisions. Define mean free path $\overline{l} \equiv \overline{v} \, \overline{\tau}_0$. Notice $\overline{v_x^2} = \frac{1}{3} \overline{v^2}$, $\overline{v^2} \sim \overline{v}^2$. $\therefore \eta \simeq nm \overline{\tau}_0 \overline{v_3^2} \simeq nm \overline{\tau}_0 \, \overline{v_3^2} \simeq \frac{1}{3} nm \overline{v} \overline{l}$.

Table of contents

- Chpt 11. Statistical mechanics for non-equilibrium processes
 - 11.1 Relaxation time approximation of Boltzmann's equation
 - 11.2 Viscous phenomenon of gas
 - 11.3 Conductivity of metal
 - 11.4 Boltzmann integro-differential equation
 - 11.5 *H* theorem
 - ullet 11.6 Detailed balance principle and f in equilibrium

• In external electric field E_z , the current density (Ohm's law): $J_z = \sigma E_z$, where σ is the conductivity.

15 / 34

- In external electric field E_z , the current density (Ohm's law): $J_z = \sigma E_z$, where σ is the conductivity.
- Use f to represent the average number of electrons in a quantum state (unit volume, certain momentum p).

- In external electric field E_z , the current density (Ohm's law): $J_z = \sigma E_z$, where σ is the conductivity.
- Use f to represent the average number of electrons in a quantum state (unit volume, certain momentum p). The number of quantum states:

$$\frac{2\mathrm{d}\Omega}{h^3} = \frac{2m^3\mathrm{d}v_x\mathrm{d}v_y\mathrm{d}v_z}{h^3} = \frac{2m^3\mathrm{d}\omega}{h^3}.$$

- In external electric field E_z , the current density (Ohm's law): $J_z = \sigma E_z$, where σ is the conductivity.
- Use f to represent the average number of electrons in a quantum state (unit volume, certain momentum p). The number of quantum states:

$$\frac{2\mathrm{d}\Omega}{h^3} = \frac{2m^3\mathrm{d}v_x\mathrm{d}v_y\mathrm{d}\dot{v}_z}{h^3} = \frac{2m^3\mathrm{d}\omega}{h^3}.$$

• The number density of electrons: $n = \int f \frac{2m^3}{h^3} d\omega$.

- In external electric field E_z , the current density (Ohm's law): $J_z = \sigma E_z$, where σ is the conductivity.
- Use f to represent the average number of electrons in a quantum state (unit volume, certain momentum p). The number of quantum states:

$$\frac{2\mathrm{d}\Omega}{h^3} = \frac{2m^3\mathrm{d}v_x\mathrm{d}v_y\mathrm{d}\dot{v}_z}{h^3} = \frac{2m^3\mathrm{d}\omega}{h^3}.$$

- The number density of electrons: $n = \int f \frac{2m^3}{h^3} d\omega$.
- Current density: $J_z = (-e) \int f v_z \frac{2m^3}{h^3} d\omega$.

- In external electric field E_z , the current density (Ohm's law): $J_z = \sigma E_z$, where σ is the conductivity.
- Use f to represent the average number of electrons in a quantum state (unit volume, certain momentum p). The number of quantum states:

$$\frac{2\mathrm{d}\Omega}{h^3} = \frac{2m^3\mathrm{d}v_x\mathrm{d}v_y\mathrm{d}\dot{v}_z}{h^3} = \frac{2m^3\mathrm{d}\omega}{h^3}.$$

- The number density of electrons: $n = \int f \frac{2m^3}{h^3} d\omega$.
- Current density: $J_z = (-e) \int f v_z \frac{2m^3}{h^3} d\omega$.
- No external field, it is Fermi distribution:

$$f^{(0)} = \frac{1}{e^{\beta(\frac{p^2}{2m} - \mu)} + 1}.$$

- In external electric field E_z , the current density (Ohm's law): $J_z = \sigma E_z$, where σ is the conductivity.
- Use f to represent the average number of electrons in a quantum state (unit volume, certain momentum p). The number of quantum states:

$$\frac{2\mathrm{d}\Omega}{h^3} = \frac{2m^3\mathrm{d}v_x\mathrm{d}v_y\mathrm{d}\dot{v}_z}{h^3} = \frac{2m^3\mathrm{d}\omega}{h^3}.$$

- The number density of electrons: $n = \int f \frac{2m^3}{h^3} d\omega$.
- Current density: $J_z = (-e) \int f v_z \frac{2m^3}{h^3} d\omega$.
- No external field, it is Fermi distribution:

$$f^{(0)} = \frac{1}{e^{\beta(\frac{p^2}{2m} - \mu)} + 1}.$$

• In external field, it obeys eq. (11.1.13).

Conductivity of metal $J_z = (-e) \int f v_z \frac{2m^3}{L^3} d\omega$

• Eq. (11.1.13).

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

Conductivity of metal
$$J_z = (-e) \int f v_z \frac{2m^3}{h^3} d\omega$$

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

• Notice f should be only related to v_z , and the force

$$Z = -\frac{eE_z}{m}$$
.

Conductivity of metal
$$J_z = (-e) \int f v_z \frac{2m^3}{h^3} d\omega$$

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

• Notice f should be only related to v_z , and the force

$$Z = -\frac{eE_z}{m}$$
. $\Rightarrow -\frac{eE_z}{m}\frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}$.

Conductivity of metal
$$J_z = (-e) \int f v_z \frac{2m^3}{h^3} d\omega$$

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

• Notice f should be only related to v_z , and the force

$$Z = -\frac{eE_z}{m}. \Rightarrow -\frac{eE_z}{m}\frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

• Expand f as $f^{(0)} + f^{(1)}$.

Conductivity of metal
$$J_z = (-e) \int f v_z \frac{2m^3}{h^3} d\omega$$

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

• Notice f should be only related to v_z , and the force

$$Z = -\frac{eE_z}{m}. \Rightarrow -\frac{eE_z}{m}\frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

• Expand f as $f^{(0)} + f^{(1)}$, then $\frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial v} = \frac{f^{(1)}}{\tau_0}$;

Conductivity of metal
$$J_z = (-e) \int f v_z \frac{2m^3}{h^3} d\omega$$

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

• Notice f should be only related to v_z , and the force

$$Z = -\frac{eE_z}{m}$$
. $\Rightarrow -\frac{eE_z}{m}\frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}$.

• Expand f as $f^{(0)}+f^{(1)}$, then $\frac{eE_z}{m}\frac{\partial f^{(0)}}{\partial n}=\frac{f^{(1)}}{\pi}$; and $f = f^{(0)} + \tau_0 \frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial v}$.

Conductivity of metal
$$J_z = (-e) \int f v_z \frac{2m^3}{h^3} d\omega$$

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

• Notice f should be only related to v_z , and the force

$$Z = -\frac{eE_z}{m}. \Rightarrow -\frac{eE_z}{m}\frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

- Expand f as $f^{(0)} + f^{(1)}$, then $\frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial v} = \frac{f^{(1)}}{\tau_0}$; and $f = f^{(0)} + \tau_0 \frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial v_z}.$
- The current density:

$$J_z = (-e) \int (f^{(0)} + \tau_0 \frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial v_z}) v_z \frac{2m^3}{h^3} d\omega$$

Conductivity of metal
$$J_z = (-e) \int f v_z \frac{2m^3}{h^3} d\omega$$

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

- Notice f should be only related to v_z , and the force $Z = -\frac{eE_z}{m}$. $\Rightarrow -\frac{eE_z}{m}\frac{\partial f}{\partial v_x} = -\frac{f-f^{(0)}}{\tau_0}$.
- Expand f as $f^{(0)}+f^{(1)}$, then $\frac{eE_z}{m}\frac{\partial f^{(0)}}{\partial v_x}=\frac{f^{(1)}}{\tau_0}$; and $f = f^{(0)} + \tau_0 \frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial v_n}$.
- The current density:

$$J_z = (-e) \int (f^{(0)} + \tau_0 \frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial v_z}) v_z \frac{2m^3}{h^3} d\omega$$
$$= (-e) \int \tau_0 \frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial v_z} v_z \frac{2m^3}{h^3} d\omega$$

Conductivity of metal
$$J_z = (-e) \int f v_z \frac{2m^3}{h^3} d\omega$$

$$v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

• Notice f should be only related to v_z , and the force

$$Z = -\frac{eE_z}{m}. \Rightarrow -\frac{eE_z}{m}\frac{\partial f}{\partial v_z} = -\frac{f - f^{(0)}}{\tau_0}.$$

- Expand f as $f^{(0)} + f^{(1)}$, then $\frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial n} = \frac{f^{(1)}}{\pi}$; and $f = f^{(0)} + \tau_0 \frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial v}$.
- The current density:

$$J_z = (-e) \int (f^{(0)} + \tau_0 \frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial v_z}) v_z \frac{2m^3}{h^3} d\omega$$
$$= (-e) \int \tau_0 \frac{eE_z}{m} \frac{\partial f^{(0)}}{\partial v_z} v_z \frac{2m^3}{h^3} d\omega$$
$$= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \frac{\partial f^{(0)}}{\partial v} v_z d\omega$$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} J_z = \sigma E_z$$

•
$$J_z = -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \frac{\partial f^{(0)}}{\partial v_z} v_z d\omega$$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} \left[J_z = \sigma E_z \right]$$

•
$$J_z = -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \frac{\partial f^{(0)}}{\partial v_z} v_z d\omega$$

 $= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y \int \frac{\partial f^{(0)}}{\partial v_z} v_z dv_z$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

17 / 34

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} \left[J_z = \sigma E_z \right]$$

•
$$J_z = -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \frac{\partial f^{(0)}}{\partial v_z} v_z d\omega$$

$$= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y \int \frac{\partial f^{(0)}}{\partial v_z} v_z dv_z$$

$$= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y [v_z f^{(0)}]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)} dv_z]$$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} \boxed{J_z = \sigma E_z}$$

•
$$J_z = -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \frac{\partial f^{(0)}}{\partial v_z} v_z d\omega$$

$$= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y \int \frac{\partial f^{(0)}}{\partial v_z} v_z dv_z$$

$$= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y [v_z f^{(0)}|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)} dv_z]$$

$$= e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y \int_{-\infty}^{\infty} f^{(0)} dv_z$$

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} \boxed{J_z = \sigma E_z}$$

•
$$J_z = -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \frac{\partial f^{(0)}}{\partial v_z} v_z d\omega$$

$$= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y \int \frac{\partial f^{(0)}}{\partial v_z} v_z dv_z$$

$$= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y [v_z f^{(0)}|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)} dv_z]$$

$$= e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y \int_{-\infty}^{\infty} f^{(0)} dv_z$$

$$= e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int f^{(0)} d\omega$$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} \boxed{J_z = \sigma E_z}$$

$$J_z = \sigma E_z$$

•
$$J_z = -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \frac{\partial f^{(0)}}{\partial v_z} v_z d\omega$$

 $= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y \int \frac{\partial f^{(0)}}{\partial v_z} v_z dv_z$
 $= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y [v_z f^{(0)}|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)} dv_z]$
 $= e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y \int_{-\infty}^{\infty} f^{(0)} dv_z$
 $= e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int f^{(0)} d\omega$
 $= e\tau_F \frac{eE_z}{m} \int f^{(0)} \frac{2m^3}{h^3} d\omega$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} \left[J_z = \sigma E_z \right]$$

$$J_z = \sigma E_z$$

$$\begin{split} \bullet \ J_z &= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \frac{\partial f^{(0)}}{\partial v_z} v_z \mathrm{d}\omega \\ &= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \mathrm{d}v_z \int \mathrm{d}v_y \int \frac{\partial f^{(0)}}{\partial v_z} v_z \mathrm{d}v_z \\ &= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \mathrm{d}v_z \int \mathrm{d}v_y [v_z f^{(0)}|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)} \mathrm{d}v_z] \\ &= e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \mathrm{d}v_z \int \mathrm{d}v_y \int_{-\infty}^{\infty} f^{(0)} \mathrm{d}v_z \\ &= e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int f^{(0)} \mathrm{d}\omega \\ &= e\tau_F \frac{eE_z}{m} \int f^{(0)} \frac{2m^3}{h^3} \mathrm{d}\omega \\ &= ne\tau_F \frac{eE_z}{m}. \end{split}$$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$f^{(0)} = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[v_x^2 + (v_y - v_0)^2 + v_z^2\right]} \boxed{J_z = \sigma E_z}$$

•
$$J_z = -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int \frac{\partial f^{(0)}}{\partial v_z} v_z d\omega$$

$$= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y \int \frac{\partial f^{(0)}}{\partial v_z} v_z dv_z$$

$$= -e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y [v_z f^{(0)}|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f^{(0)} dv_z]$$

$$= e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int dv_z \int dv_y \int_{-\infty}^{\infty} f^{(0)} dv_z$$

$$= e\tau_F \frac{eE_z}{m} \frac{2m^3}{h^3} \int f^{(0)} d\omega$$

$$= e\tau_F \frac{eE_z}{m} \int f^{(0)} \frac{2m^3}{h^3} d\omega$$

$$= ne\tau_F \frac{eE_z}{m}.$$
• $\Rightarrow \sigma = \frac{ne^2\tau_F}{m}.$

Table of contents

- Chpt 11. Statistical mechanics for non-equilibrium processes
 - 11.1 Relaxation time approximation of Boltzmann's equation
 - 11.2 Viscous phenomenon of gas
 - 11.3 Conductivity of metal
 - 11.4 Boltzmann integro-differential equation
 - 11.5 H theorem
 - ullet 11.6 Detailed balance principle and f in equilibrium

• From $\S 11.1$, $\frac{\partial f}{\partial t}$ comes from two aspects: movement part and collision part.

• From §11.1, $\frac{\partial f}{\partial t}$ comes from two aspects: movement part and collision part. Collision part was simplified by relaxation time approximation.

- From $\S 11.1$, $\frac{\partial f}{\partial t}$ comes from two aspects: movement part and collision part. Collision part was simplified by relaxation time approximation.
- Here we go into the details of the collisions,

- From $\S 11.1$, $\frac{\partial f}{\partial t}$ comes from two aspects: movement part and collision part. Collision part was simplified by relaxation time approximation.
- Here we go into the details of the collisions, with approximation: elastic ball to mimic each molecule.

- From $\S 11.1$, $\frac{\partial f}{\partial t}$ comes from two aspects: movement part and collision part. Collision part was simplified by relaxation time approximation.
- Here we go into the details of the collisions, with approximation: elastic ball to mimic each molecule.
- Consider a simple case: no 3 or more molecules collide simultaneously, i.e., the number density is low enough.

- From $\S 11.1$, $\frac{\partial f}{\partial t}$ comes from two aspects: movement part and collision part. Collision part was simplified by relaxation time approximation.
- Here we go into the details of the collisions, with approximation: elastic ball to mimic each molecule.
- Consider a simple case: no 3 or more molecules collide simultaneously, i.e., the number density is low enough.
- For this two-body collision: set mass m_1, m_2 ,

- From $\S 11.1$, $\frac{\partial f}{\partial t}$ comes from two aspects: movement part and collision part. Collision part was simplified by relaxation time approximation.
- Here we go into the details of the collisions, with approximation: elastic ball to mimic each molecule.
- Consider a simple case: no 3 or more molecules collide simultaneously, i.e., the number density is low enough.
- For this two-body collision: set mass m_1, m_2 , diameter $d_1, d_2,$

19 / 34

- From $\S 11.1$, $\frac{\partial f}{\partial t}$ comes from two aspects: movement part and collision part. Collision part was simplified by relaxation time approximation.
- Here we go into the details of the collisions, with approximation: elastic ball to mimic each molecule.
- Consider a simple case: no 3 or more molecules collide simultaneously, i.e., the number density is low enough.
- For this two-body collision: set mass m_1, m_2 , diameter d_1, d_2 , velocity before collision \vec{v}_1, \vec{v}_2 ,

- From $\S 11.1$, $\frac{\partial f}{\partial t}$ comes from two aspects: movement part and collision part. Collision part was simplified by relaxation time approximation.
- Here we go into the details of the collisions, with approximation: elastic ball to mimic each molecule.
- Consider a simple case: no 3 or more molecules collide simultaneously, i.e., the number density is low enough.
- For this two-body collision: set mass m_1, m_2 , diameter d_1, d_2 , velocity before collision \vec{v}_1, \vec{v}_2 , velocity after collision \vec{v}_1', \vec{v}_2' .

- From $\S 11.1$, $\frac{\partial f}{\partial t}$ comes from two aspects: movement part and collision part. Collision part was simplified by relaxation time approximation.
- Here we go into the details of the collisions, with approximation: elastic ball to mimic each molecule.
- Consider a simple case: no 3 or more molecules collide simultaneously, i.e., the number density is low enough.
- For this two-body collision: set mass m_1, m_2 , diameter d_1, d_2 , velocity before collision \vec{v}_1, \vec{v}_2 , velocity after collision \vec{v}_1', \vec{v}_2' .
- Before and after the collision, momentum and energy are conserved.

• $m_1\vec{v}_1 + m_2\vec{v}_2 = m_1\vec{v}_1' + m_2\vec{v}_2'$,

•
$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$$
,
 $\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 {v_1'}^2 + \frac{1}{2} m_2 {v_2'}^2$.

- $m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$, $\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 {v_1'}^2 + \frac{1}{2} m_2 {v_2'}^2$.
- 4 equations, 6 unknown variables (\vec{v}_1', \vec{v}_2') .

- $m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$, $\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 {v_1'}^2 + \frac{1}{2} m_2 {v_2'}^2$.
- 4 equations, 6 unknown variables (\vec{v}_1', \vec{v}_2') .
- Direction is needed.

- $m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$, $\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 {v_1'}^2 + \frac{1}{2} m_2 {v_2'}^2$.
- 4 equations, 6 unknown variables (\vec{v}_1', \vec{v}_2') .
- Direction is needed.
- Set the direction (unit vector) \vec{n} as shown in the right figure.

- $m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$, $\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 {v_1'}^2 + \frac{1}{2} m_2 {v_2'}^2$.
- 4 equations, 6 unknown variables (\vec{v}_1', \vec{v}_2') .
- Direction is needed.
- Set the direction (unit vector) \vec{n} as shown in the right figure.

- $m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$, $\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 {v_1'}^2 + \frac{1}{2} m_2 {v_2'}^2$.
- 4 equations, 6 unknown variables (\vec{v}_1', \vec{v}_2') .
- Direction is needed.
- Set the direction (unit vector) \vec{n} as shown in the right figure.
 - The solution:

$$\vec{v}_1' = \vec{v}_1 + \frac{2m_2}{m_1 + m_2} [(\vec{v}_2 - \vec{v}_1) \cdot \vec{n}] \vec{n}$$

$$\vec{v}_2' = \vec{v}_2 - \frac{2m_1}{m_1 + m_2} [(\vec{v}_2 - \vec{v}_1) \cdot \vec{n}] \vec{n}$$

•
$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$$
,
 $\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 {v_1'}^2 + \frac{1}{2} m_2 {v_2'}^2$.

- 4 equations, 6 unknown variables (\vec{v}_1', \vec{v}_2') .
- Direction is needed.
- Set the direction (unit vector) \vec{n} as shown in the right figure.
 - The solution:

$$\vec{v}_1' = \vec{v}_1 + \frac{2m_2}{m_1 + m_2} [(\vec{v}_2 - \vec{v}_1) \cdot \vec{n}] \vec{n}$$

$$\vec{v}_2' = \vec{v}_2 - \frac{2m_1}{m_1 + m_2} [(\vec{v}_2 - \vec{v}_1) \cdot \vec{n}] \vec{n}$$

• Reverse the solution:

•
$$\vec{v}_1 = \vec{v}_1' + \frac{2m_2}{m_1 + m_2} [(\vec{v}_2' - \vec{v}_1') \cdot \vec{n}] \vec{n}$$

 $\vec{v}_2 = \vec{v}_2' - \frac{2m_1}{m_1 + m_2} [(\vec{v}_2' - \vec{v}_1') \cdot \vec{n}] \vec{n}$

$$\begin{split} \bullet \ \, \vec{v}_1 &= \vec{v}_1' + \frac{2m_2}{m_1 + m_2} [(\vec{v}_2' - \vec{v}_1') \cdot \vec{n}] \vec{n} \\ \vec{v}_2 &= \vec{v}_2' - \frac{2m_1}{m_1 + m_2} [(\vec{v}_2' - \vec{v}_1') \cdot \vec{n}] \vec{n} \\ \Leftrightarrow \\ \vec{v}_1 &= \vec{v}_1' + \frac{2m_2}{m_1 + m_2} [(\vec{v}_2' - \vec{v}_1') \cdot (-\vec{n})] (-\vec{n}) \\ \vec{v}_2 &= \vec{v}_2' - \frac{2m_1}{m_1 + m_2} [(\vec{v}_2' - \vec{v}_1') \cdot (-\vec{n})] (-\vec{n}) \end{split}$$

•
$$\vec{v}_1 = \vec{v}_1' + \frac{2m_2}{m_1 + m_2} [(\vec{v}_2' - \vec{v}_1') \cdot \vec{n}] \vec{n}$$

$$\vec{v}_2 = \vec{v}_2' - \frac{2m_1}{m_1 + m_2} [(\vec{v}_2' - \vec{v}_1') \cdot \vec{n}] \vec{n}$$

$$\Leftrightarrow$$

$$\vec{v}_1 = \vec{v}_1' + \frac{2m_2}{m_1 + m_2} [(\vec{v}_2' - \vec{v}_1') \cdot (-\vec{n})] (-\vec{n})$$

$$\vec{v}_2 = \vec{v}_2' - \frac{2m_1}{m_1 + m_2} [(\vec{v}_2' - \vec{v}_1') \cdot (-\vec{n})] (-\vec{n})$$

elementary inverse collision

elementary direct collision

- To calculate the frequency of collisions.
- Build coordinate at the center of molecule 1.

- To calculate the frequency of collisions.
- Build coordinate at the center of molecule 1.
- Set $v_r = |\vec{v}_2 \vec{v}_1|$.

- To calculate the frequency of collisions.
- Build coordinate at the center of molecule 1.
- Set $v_r = |\vec{v}_2 \vec{v}_1|$.
- d_{12} is the distance of two centers, i.e., radius of the dashed circle.

- To calculate the frequency of collisions.
- Build coordinate at the center of molecule 1.
- Set $v_r = |\vec{v}_2 \vec{v}_1|$.

- d_{12} is the distance of two centers, i.e., radius of the dashed circle.
- The collisions on the surface of m_1 in $d\Omega$, should be on the surface of $d_{12}^2d\Omega$ for m_2 's center.

• Length in dt: $v_r dt$.

- Length in dt: $v_r dt$.
- Volume: $d_{12}^2 v_r \cos \theta d\Omega dt$.

- Length in dt: $v_r dt$.
- Volume: $d_{12}^2 v_r \cos \theta d\Omega dt$.
- Number in the volume: $f_2\mathrm{d}\omega_2d_{12}^2v_r\cos\theta\mathrm{d}\Omega\mathrm{d}t,$ where $f_2=f(\vec{r},\vec{v}_2,t)$ is the distribution of injection molecules.

- Length in dt: $v_r dt$.
- Volume: $d_{12}^2 v_r \cos \theta d\Omega dt$.
- Number in the volume: $f_2\mathrm{d}\omega_2d_{12}^2v_r\cos\theta\mathrm{d}\Omega\mathrm{d}t,$ where $f_2=f(\vec{r},\vec{v}_2,t)$ is the distribution of injection molecules.

• Setting $\Lambda d\Omega \equiv d_{12}^2 v_r \cos \theta d\Omega$, the number: $f_2 \Lambda d\omega_2 d\Omega dt$, also means the number of collisions for a given molecule 1.

- Length in dt: $v_r dt$.
- Volume: $d_{12}^2 v_r \cos \theta d\Omega dt$.
- Number in the volume: $f_2\mathrm{d}\omega_2d_{12}^2v_r\cos\theta\mathrm{d}\Omega\mathrm{d}t,$ where $f_2=f(\vec{r},\vec{v}_2,t)$ is the distribution of injection molecules

- Setting $\Lambda d\Omega \equiv d_{12}^2 v_r \cos \theta d\Omega$, the number: $f_2 \Lambda d\omega_2 d\Omega dt$, also means the number of collisions for a given molecule 1.
- Number of m_1 : $f_1 d\tau d\omega_1$.

- Length in dt: $v_r dt$.
- Volume: $d_{12}^2 v_r \cos \theta d\Omega dt$.
- Number in the volume: $f_2 d\omega_2 d_{12}^2 v_r \cos\theta d\Omega dt$ where $f_2 = f(\vec{r}, \vec{v}_2, t)$ is the distribution of injection molecules

- Setting $\Lambda d\Omega \equiv d_{12}^2 v_r \cos \theta d\Omega$, the number: $f_2\Lambda d\omega_2 d\Omega dt$, also means the number of collisions for a given molecule 1.
- Number of m_1 : $f_1 d\tau d\omega_1$.
- Total number of collisions: $f_1 f_2 d\omega_1 d\omega_2 \Lambda d\Omega dt d\tau$.

 Those are elementary direct collisions, which makes the molecules in $d\omega_1$ decrease $(f_1f_2d\omega_1d\omega_2\Lambda d\Omega dt d\tau)$.

- Those are elementary direct collisions, which makes the molecules in $d\omega_1$ decrease $(f_1f_2d\omega_1d\omega_2\Lambda d\Omega dt d\tau)$.
- The elementary inverse collisions make the molecules in $d\omega_1$ increase.

- Those are elementary direct collisions, which makes the molecules in $d\omega_1$ decrease $(f_1f_2d\omega_1d\omega_2\Lambda d\Omega dt d\tau)$.
- The elementary inverse collisions make the molecules in $d\omega_1$ increase. Number of the inverse collisions: $f'_1 f'_2 d\omega'_1 d\omega'_2 \Lambda' d\Omega dt d\tau$.

 Those are elementary direct collisions, which makes the molecules in $d\omega_1$ decrease $(f_1 f_2 d\omega_1 d\omega_2 \Lambda d\Omega dt d\tau)$.

• The elementary inverse collisions make the molecules

- in $d\omega_1$ increase. Number of the inverse collisions: $f_1' f_2' d\omega_1' d\omega_2' \Lambda' d\Omega dt d\tau$.
- Coordinate transferring shows $d\omega_1 d\omega_2 = d\omega_1' d\omega_2'$, and $\Lambda = d_{12}^2 v_r \cos \theta = d_{12}^2 (\vec{v}_2 - \vec{v}_1) \cdot \vec{n} = d_{12}^2 (\vec{v}_2' - \vec{v}_1') \cdot \vec{n}' = \Lambda'$

24 / 34

- Those are elementary direct collisions, which makes the molecules in $d\omega_1$ decrease $(f_1 f_2 d\omega_1 d\omega_2 \Lambda d\Omega dt d\tau)$.
- The elementary inverse collisions make the molecules in $d\omega_1$ increase. Number of the inverse collisions: $f_1' f_2' d\omega_1' d\omega_2' \Lambda' d\Omega dt d\tau$.
- Coordinate transferring shows $d\omega_1 d\omega_2 = d\omega_1' d\omega_2'$, and $\Lambda = d_{12}^2 v_r \cos \theta = d_{12}^2 (\vec{v}_2 - \vec{v}_1) \cdot \vec{n} = d_{12}^2 (\vec{v}_2' - \vec{v}_1') \cdot \vec{n}' = \Lambda'$
- Then the number: $f'_1 f'_2 d\omega_1 d\omega_2 \Lambda d\Omega dt d\tau$.

24 / 34

- Those are elementary direct collisions, which makes the molecules in $d\omega_1$ decrease $(f_1f_2d\omega_1d\omega_2\Lambda d\Omega dt d\tau)$.
- The elementary inverse collisions make the molecules in $d\omega_1$ increase. Number of the inverse collisions: $f_1'f_2'd\omega_1'd\omega_2'\Lambda'd\Omega dtd\tau$.
- Coordinate transferring shows $d\omega_1 d\omega_2 = d\omega_1' d\omega_2'$, and $\Lambda = d_{12}^2 v_r \cos \theta = d_{12}^2 (\vec{v}_2 \vec{v}_1) \cdot \vec{n} = d_{12}^2 (\vec{v}_2' \vec{v}_1') \cdot \vec{n}' = \Lambda'$
- Then the number: $f_1' f_2' d\omega_1 d\omega_2 \Lambda d\Omega dt d\tau$.
- ... the number change because of the collisions: $(\frac{\partial f_1}{\partial t})_{\rm c} {\rm d}t {\rm d}\tau {\rm d}\omega_1 = {\rm d}t {\rm d}\tau {\rm d}\omega_1 \int \int (f_1' f_2' f_1 f_2) {\rm d}\omega_2 \Lambda {\rm d}\Omega$.

- Those are elementary direct collisions, which makes the molecules in $d\omega_1$ decrease $(f_1f_2d\omega_1d\omega_2\Lambda d\Omega dt d\tau)$.
- The elementary inverse collisions make the molecules in $d\omega_1$ increase. Number of the inverse collisions: $f_1'f_2'd\omega_1'd\omega_2'\Lambda'd\Omega dtd\tau$.
- Coordinate transferring shows $d\omega_1 d\omega_2 = d\omega_1' d\omega_2'$, and $\Lambda = d_{12}^2 v_r \cos \theta = d_{12}^2 (\vec{v}_2 \vec{v}_1) \cdot \vec{n} = d_{12}^2 (\vec{v}_2' \vec{v}_1') \cdot \vec{n}' = \Lambda'$
- Then the number: $f_1' f_2' d\omega_1 d\omega_2 \Lambda d\Omega dt d\tau$.
- ... the number change because of the collisions: $(\frac{\partial f_1}{\partial t})_{\rm c} {\rm d}t {\rm d}\tau {\rm d}\omega_1 = {\rm d}t {\rm d}\tau {\rm d}\omega_1 \int \int (f_1' f_2' f_1 f_2) {\rm d}\omega_2 \Lambda {\rm d}\Omega$.
- $1 \to , 2 \to 1$, (11.1.12):

- Those are elementary direct collisions, which makes the molecules in $d\omega_1$ decrease $(f_1f_2d\omega_1d\omega_2\Lambda d\Omega dt d\tau)$.
- The elementary inverse collisions make the molecules in $d\omega_1$ increase. Number of the inverse collisions: $f_1' f_2' d\omega_1' d\omega_2' \Lambda' d\Omega dt d\tau$.
- Coordinate transferring shows $d\omega_1 d\omega_2 = d\omega_1' d\omega_2'$, and $\Lambda = d_{12}^2 v_r \cos \theta = d_{12}^2 (\vec{v}_2 \vec{v}_1) \cdot \vec{n} = d_{12}^2 (\vec{v}_2' \vec{v}_1') \cdot \vec{n}' = \Lambda'$
- Then the number: $f_1'f_2'\mathrm{d}\omega_1\mathrm{d}\omega_2\Lambda\mathrm{d}\Omega\mathrm{d}t\mathrm{d}\tau$.
- ... the number change because of the collisions: $(\frac{\partial f_1}{\partial t})_{\rm c} {\rm d}t {\rm d}\tau {\rm d}\omega_1 = {\rm d}t {\rm d}\tau {\rm d}\omega_1 \int \int (f_1' f_2' f_1 f_2) {\rm d}\omega_2 \Lambda {\rm d}\Omega.$
- 1 \rightarrow ,2 \rightarrow 1, (11.1.12): $\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial y} + Y \frac{\partial f}{\partial y} + Z \frac{\partial f}{\partial y} = \iint (f'f'_1 ff_1) d\omega_1 \Lambda d\Omega$.

Table of contents

- Chpt 11. Statistical mechanics for non-equilibrium processes
 - 11.1 Relaxation time approximation of Boltzmann's equation
 - 11.2 Viscous phenomenon of gas
 - 11.3 Conductivity of metal
 - 11.4 Boltzmann integro-differential equation
 - \bullet 11.5 H theorem
 - ullet 11.6 Detailed balance principle and f in equilibrium

•
$$\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}$$

= $\int \int (f' f'_1 - f f_1) d\omega_1 \Lambda d\Omega$.

- $\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}$ = $\iint (f'f'_1 - ff_1) d\omega_1 \Lambda d\Omega$.
- Define $H \equiv \iint f \ln f d\tau d\omega$.

- $\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}$ = $\iint (f'f'_1 - ff_1) d\omega_1 \Lambda d\Omega$.
- Define $H \equiv \iint f \ln f d\tau d\omega$.
- $\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \iint f \ln f \mathrm{d}\tau \mathrm{d}\omega$

- $\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}$ = $\iint (f' f'_1 - f f_1) d\omega_1 \Lambda d\Omega$.
- Define $H \equiv \iint f \ln f d\tau d\omega$.
- $\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \iint f \ln f \, \mathrm{d}\tau \, \mathrm{d}\omega = \iint \frac{\partial}{\partial t} (f \ln f) \, \mathrm{d}\tau \, \mathrm{d}\omega$

- $\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}$ = $\iint (f' f'_1 - f f_1) d\omega_1 \Lambda d\Omega$.
- Define $H \equiv \iint f \ln f d\tau d\omega$.
- $\frac{dH}{dt} = \frac{d}{dt} \iint f \ln f d\tau d\omega = \iint \frac{\partial}{\partial t} (f \ln f) d\tau d\omega$ = $\iint (1 + \ln f) \frac{\partial f}{\partial t} d\tau d\omega$

- $\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}$ = $\iint (f'f'_1 - ff_1) d\omega_1 \Lambda d\Omega$.
- Define $H \equiv \iint f \ln f d\tau d\omega$.

• Define
$$H = \int f \int f \ln f d\tau d\omega$$
.
• $\frac{dH}{dt} = \frac{d}{dt} \int \int f \ln f d\tau d\omega = \int \int \frac{\partial}{\partial t} (f \ln f) d\tau d\omega$
= $\int \int (1 + \ln f) \frac{\partial f}{\partial t} d\tau d\omega$
= $-\int \int (1 + \ln f) (v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z}) d\tau d\omega$ (1)
- $\int \int (1 + \ln f) (X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}) d\tau d\omega$ (2)
- $\int \int \int \int (1 + \ln f) (f f_1 - f' f'_1) d\tau d\omega_1 \Lambda d\Omega$ (3)

- $\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}$ = $\iint (f'f'_1 - ff_1) d\omega_1 \Lambda d\Omega$.
- Define $H \equiv \iint f \ln f d\tau d\omega$.

•
$$\frac{dH}{dt} = \frac{d}{dt} \iint f \ln f d\tau d\omega = \iint \frac{\partial}{\partial t} (f \ln f) d\tau d\omega$$

$$= \iint (1 + \ln f) \frac{\partial f}{\partial t} d\tau d\omega$$

$$= -\iint (1 + \ln f) (v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z}) d\tau d\omega \quad (1)$$

$$-\iint (1 + \ln f) (X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}) d\tau d\omega \quad (2)$$

$$-\iiint (1 + \ln f) (f f_1 - f' f'_1) d\tau d\omega_1 \Lambda d\Omega \quad (3)$$

• Inside (1), $\int (1 + \ln f)(\vec{v} \cdot \nabla f) d\tau$

- $\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}$ = $\iint (f'f'_1 - ff_1) d\omega_1 \Lambda d\Omega$.
- Define $H \equiv \iint f \ln f d\tau d\omega$.
- $\frac{dH}{dt} = \frac{d}{dt} \iint f \ln f d\tau d\omega = \iint \frac{\partial}{\partial t} (f \ln f) d\tau d\omega$ $= \iint (1 + \ln f) \frac{\partial f}{\partial t} d\tau d\omega$ $= -\iint (1 + \ln f) (v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z}) d\tau d\omega \quad (1)$ $\iint (1 + \ln f) (X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}) d\tau d\omega \quad (2)$ $\iiint (1 + \ln f) (f f_1 f' f'_1) d\tau d\omega_1 \Lambda d\Omega \quad (3).$
- Inside (1), $\int (1 + \ln f)(\vec{v} \cdot \nabla f) d\tau = \int \nabla \cdot (\vec{v} f \ln f) d\tau$

- $\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}$ = $\iint (f'f'_1 - ff_1) d\omega_1 \Lambda d\Omega$.
- Define $H \equiv \iint f \ln f d\tau d\omega$.
- $\frac{dH}{dt} = \frac{d}{dt} \iint f \ln f d\tau d\omega = \iint \frac{\partial}{\partial t} (f \ln f) d\tau d\omega$ $= \iint (1 + \ln f) \frac{\partial f}{\partial t} d\tau d\omega$ $= -\iint (1 + \ln f) (v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z}) d\tau d\omega \quad (1)$ $-\iint (1 + \ln f) (X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}) d\tau d\omega \quad (2)$ $-\iiint (1 + \ln f) (f f_1 f' f'_1) d\tau d\omega_1 \Lambda d\Omega \quad (3).$
- Inside (1), $\int (1 + \ln f)(\vec{v} \cdot \nabla f) d\tau = \int \nabla \cdot (\vec{v} f \ln f) d\tau$ = $\oint d\vec{\Sigma} \cdot \vec{v} f \ln f$

$\S 11.5~H$ theorem

- $\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}$ = $\iint (f'f'_1 - ff_1) d\omega_1 \Lambda d\Omega$.
- Define $H \equiv \iint f \ln f d\tau d\omega$.
- $\frac{dH}{dt} = \frac{d}{dt} \iint f \ln f d\tau d\omega = \iint \frac{\partial}{\partial t} (f \ln f) d\tau d\omega$ $= \iint (1 + \ln f) \frac{\partial f}{\partial t} d\tau d\omega$ $= -\iint (1 + \ln f) (v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z}) d\tau d\omega \quad (1)$ $\iint (1 + \ln f) (X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z}) d\tau d\omega \quad (2)$ $\iiint (1 + \ln f) (f f_1 f' f'_1) d\tau d\omega_1 \Lambda d\Omega \quad (3).$
- Inside (1), $\int (1 + \ln f)(\vec{v} \cdot \nabla f) d\tau = \int \nabla \cdot (\vec{v} f \ln f) d\tau$ = $\oint d\vec{\Sigma} \cdot \vec{v} f \ln f = 0$, as \oint represents the integration along the surface of the container.

• Inside (2), $\int (1+\ln f)(X\frac{\partial f}{\partial v_x}+Y\frac{\partial f}{\partial v_y}+Z\frac{\partial f}{\partial v_z})\mathrm{d}\omega$

• Inside (2),
$$\int (1 + \ln f) \left(X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} \right) d\omega$$
$$= \int (1 + \ln f) \left(\frac{\partial (Xf)}{\partial v_x} + \frac{\partial (Yf)}{\partial v_y} + \frac{\partial (Zf)}{\partial v_z} \right) d\omega$$

• Inside (2),
$$\int (1 + \ln f) \left(X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} \right) d\omega$$
$$= \int (1 + \ln f) \left(\frac{\partial (Xf)}{\partial v_x} + \frac{\partial (Yf)}{\partial v_y} + \frac{\partial (Zf)}{\partial v_z} \right) d\omega$$
$$= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_z} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$$

• Inside (2),
$$\int (1 + \ln f) \left(X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} \right) d\omega$$

$$= \int (1 + \ln f) \left(\frac{\partial (Xf)}{\partial v_x} + \frac{\partial (Yf)}{\partial v_y} + \frac{\partial (Zf)}{\partial v_z} \right) d\omega$$

$$= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_y} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$$

$$= \int dv_y dv_z (Xf \ln f) |_{v_x = -\infty}^{v_x = \infty} + ... + ..$$

• Inside (2),
$$\int (1 + \ln f) \left(X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} \right) d\omega$$

$$= \int (1 + \ln f) \left(\frac{\partial (Xf)}{\partial v_x} + \frac{\partial (Yf)}{\partial v_y} + \frac{\partial (Zf)}{\partial v_z} \right) d\omega$$

$$= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_y} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$$

$$= \int dv_y dv_z (Xf \ln f) \Big|_{v_x = -\infty}^{v_x = \infty} + ... + ... = 0.$$

• Inside (2), $\int (1 + \ln f) \left(X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} \right) d\omega$ $= \int (1 + \ln f) \left(\frac{\partial (Xf)}{\partial v_x} + \frac{\partial (Yf)}{\partial v_y} + \frac{\partial (Zf)}{\partial v_z} \right) d\omega$ $= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_y} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$ $= \int dv_y dv_z (Xf \ln f) |_{v_x = -\infty}^{v_x = \infty} + ... + ... = 0.$ • $\frac{dH}{dt} = -\int (1 + \ln f) (ff_1 - f'f_1') d\tau d\omega d\omega_1 \Lambda d\Omega$

• Inside (2),
$$\int (1 + \ln f) \left(X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} \right) d\omega$$

$$= \int (1 + \ln f) \left(\frac{\partial (Xf)}{\partial v_x} + \frac{\partial (Yf)}{\partial v_y} + \frac{\partial (Zf)}{\partial v_z} \right) d\omega$$

$$= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_y} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$$

$$= \int dv_y dv_z (Xf \ln f) |_{v_x = -\infty}^{v_x = \infty} + ... + ... = 0.$$

• $\frac{\mathrm{d}H}{\mathrm{d}t} = -\int (1+\ln f)(ff_1 - f'f_1')\mathrm{d}\tau \mathrm{d}\omega \mathrm{d}\omega_1 \Lambda \mathrm{d}\Omega \dots$

- Inside (2), $\int (1 + \ln f) \left(X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} \right) d\omega$ $= \int (1 + \ln f) \left(\frac{\partial (Xf)}{\partial v_x} + \frac{\partial (Yf)}{\partial v_y} + \frac{\partial (Zf)}{\partial v_z} \right) d\omega$ $= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_y} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$ $= \int dv_y dv_z (Xf \ln f) \Big|_{v_x = -\infty}^{v_x = \infty} + ... + ... = 0.$
- $\frac{\mathrm{d}H}{\mathrm{d}t} = -\int (1+\ln f)(ff_1 f'f_1')\mathrm{d}\tau \mathrm{d}\omega \mathrm{d}\omega_1 \Lambda \mathrm{d}\Omega \dots = -\frac{1}{4} \iiint [\ln(ff_1) \ln(f'f_1')](ff_1 f'f_1')\mathrm{d}\omega \mathrm{d}\omega_1 \Lambda \mathrm{d}\Omega \mathrm{d}\tau.$

- Inside (2), $\int (1 + \ln f) \left(X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} \right) d\omega$ $= \int (1 + \ln f) \left(\frac{\partial (Xf)}{\partial v_x} + \frac{\partial (Yf)}{\partial v_y} + \frac{\partial (Zf)}{\partial v_z} \right) d\omega$ $= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_y} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$ $= \int dv_y dv_z (Xf \ln f) |_{v_x = -\infty}^{v_x = \infty} + ... + ... = 0.$
- $\frac{dH}{dt} = -\int (1 + \ln f)(ff_1 f'f_1')d\tau d\omega d\omega_1 \Lambda d\Omega \dots = -\frac{1}{4} \iiint [\ln(ff_1) \ln(f'f_1')](ff_1 f'f_1')d\omega d\omega_1 \Lambda d\Omega d\tau.$
- The integrand is like $(x-y)(e^x-e^y)$

- Inside (2), $\int (1 + \ln f) \left(X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} \right) d\omega$ $= \int (1 + \ln f) \left(\frac{\partial (Xf)}{\partial v_x} + \frac{\partial (Yf)}{\partial v_y} + \frac{\partial (Zf)}{\partial v_z} \right) d\omega$ $= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_y} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$ $= \int dv_y dv_z (Xf \ln f) |_{v_x = -\infty}^{v_x = \infty} + ... + ... = 0.$
- $\frac{dH}{dt} = -\int (1 + \ln f)(ff_1 f'f_1')d\tau d\omega d\omega_1 \Lambda d\Omega \dots = -\frac{1}{4} \iiint [\ln(ff_1) \ln(f'f_1')](ff_1 f'f_1')d\omega d\omega_1 \Lambda d\Omega d\tau.$
- The integrand is like $(x-y)(e^x-e^y) \ge 0$.

- Inside (2), $\int (1 + \ln f) \left(X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} \right) d\omega$ $= \int (1 + \ln f) \left(\frac{\partial (Xf)}{\partial v_x} + \frac{\partial (Yf)}{\partial v_y} + \frac{\partial (Zf)}{\partial v_z} \right) d\omega$ $= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_y} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$ $= \int dv_y dv_z (Xf \ln f) |_{v_x = -\infty}^{v_x = \infty} + ... + ... = 0.$
- $\frac{dH}{dt} = -\int (1 + \ln f)(ff_1 f'f_1')d\tau d\omega d\omega_1 \Lambda d\Omega \dots = -\frac{1}{4} \iiint [\ln(ff_1) \ln(f'f_1')](ff_1 f'f_1')d\omega d\omega_1 \Lambda d\Omega d\tau.$
- The integrand is like $(x y)(e^x e^y) \ge 0$. $\therefore \frac{dH}{dt} \le 0$, H theorem.

- Inside (2), $\int (1 + \ln f) \left(X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} \right) d\omega$ $= \int (1 + \ln f) \left(\frac{\partial (Xf)}{\partial v_x} + \frac{\partial (Yf)}{\partial v_y} + \frac{\partial (Zf)}{\partial v_z} \right) d\omega$ $= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_y} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$ $= \int dv_y dv_z (Xf \ln f) |_{v_x = -\infty}^{v_x = \infty} + ... + ... = 0.$
- $\frac{dH}{dt} = -\int (1 + \ln f)(ff_1 f'f_1')d\tau d\omega d\omega_1 \Lambda d\Omega \dots = -\frac{1}{4} \iiint [\ln(ff_1) \ln(f'f_1')](ff_1 f'f_1')d\omega d\omega_1 \Lambda d\Omega d\tau.$
- The integrand is like $(x-y)(e^x-e^y) \ge 0$. $\therefore \frac{dH}{dt} \le 0$, H theorem.

Direction of the f in collisions. (Movement does not change f.)

- Inside (2), $\int (1+\ln f)(X\frac{\partial f}{\partial v_x}+Y\frac{\partial f}{\partial v_x}+Z\frac{\partial f}{\partial v_z})d\omega$ $=\int (1+\ln f)(\frac{\partial(Xf)}{\partial v_{-}}+\frac{\partial(Yf)}{\partial v_{-}}+\frac{\partial(Zf)}{\partial v_{-}})\mathrm{d}\omega$ $= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_y} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$ $= \int dv_u dv_z (Xf \ln f)|_{v_x = -\infty}^{v_x = \infty} + \dots + \dots = 0.$
- $\frac{\mathrm{d}H}{\mathrm{d}t} = -\int (1+\ln f)(ff_1 f'f_1')\mathrm{d}\tau \mathrm{d}\omega \mathrm{d}\omega_1 \Lambda \mathrm{d}\Omega \dots =$ $-\frac{1}{4} \iiint [\ln(ff_1) - \ln(f'f'_1)](ff_1 - f'f'_1) d\omega d\omega_1 \Lambda d\Omega d\tau.$
- The integrand is like $(x-y)(e^x-e^y) > 0$. $\therefore \frac{dH}{dt} \leq 0$, H theorem.
 - Direction of the f in collisions. (Movement does not change f.)
- \bullet $\frac{dH}{dt} = 0$ only if $ff_1 = f'f'_1$,

- Inside (2), $\int (1+\ln f)(X\frac{\partial f}{\partial v_x}+Y\frac{\partial f}{\partial v_x}+Z\frac{\partial f}{\partial v_z})d\omega$ $=\int (1+\ln f)(\frac{\partial(Xf)}{\partial v_{-}}+\frac{\partial(Yf)}{\partial v_{-}}+\frac{\partial(Zf)}{\partial v_{-}})\mathrm{d}\omega$ $= \int \left[\frac{\partial}{\partial v_x} (Xf \ln f) + \frac{\partial}{\partial v_y} (Yf \ln f) + \frac{\partial}{\partial v_z} (Zf \ln f) \right] d\omega$ $= \int dv_u dv_z (Xf \ln f)|_{v_x = -\infty}^{v_x = \infty} + \dots + \dots = 0.$
- $\frac{dH}{dt} = -\int (1 + \ln f)(ff_1 f'f'_1)d\tau d\omega d\omega_1 \Lambda d\Omega \dots =$ $-\frac{1}{4} \iiint [\ln(ff_1) - \ln(f'f'_1)](ff_1 - f'f'_1) d\omega d\omega_1 \Lambda d\Omega d\tau.$
- The integrand is like $(x-y)(e^x-e^y) > 0$. $\therefore \frac{dH}{dt} \leq 0$, H theorem.
 - Direction of the f in collisions. (Movement does not change f.)
- $\frac{dH}{dt} = 0$ only if $ff_1 = f'f'_1$, in equilibrium.

Table of contents

- Chpt 11. Statistical mechanics for non-equilibrium processes
 - 11.1 Relaxation time approximation of Boltzmann's equation
 - 11.2 Viscous phenomenon of gas
 - 11.3 Conductivity of metal
 - 11.4 Boltzmann integro-differential equation
 - 11.5 *H* theorem
 - ullet 11.6 Detailed balance principle and f in equilibrium

11.6 Detailed balance principle and f in equilibrium

§11.6 Detailed balance principle and the distribution function in equilibrium

§11.6 Detailed balance principle and the distribution function in equilibrium

• $ff_1 = f'f'_1$ is the detailed balance,

December 30, 2013

§11.6 Detailed balance principle and the distribution function in equilibrium

• $ff_1 = f'f'_1$ is the detailed balance, means in equilibrium, the f changed by collisions is canceled.

§11.6 Detailed balance principle and the distribution function in equilibrium

- $ff_1 = f'f'_1$ is the detailed balance, means in equilibrium, the f changed by collisions is canceled.
- $ff_1 = f'f'_1 \Leftrightarrow \text{overall equilibrium}$.

§11.6 Detailed balance principle and the distribution function in equilibrium

- $ff_1 = f'f'_1$ is the detailed balance, means in equilibrium, the f changed by collisions is canceled.
- $ff_1 = f'f'_1 \Leftrightarrow \text{overall equilibrium}$.
- In equilibrium, $ff_1 = f'f'_1$, and $\frac{\partial f}{\partial t} = 0$.

§11.6 Detailed balance principle and the distribution function in equilibrium

- $ff_1 = f'f'_1$ is the detailed balance, means in equilibrium, the f changed by collisions is canceled.
- $ff_1 = f'f'_1 \Leftrightarrow \text{overall equilibrium}$.
- In equilibrium, $ff_1 = f'f'_1$, and $\frac{\partial f}{\partial t} = 0$. Boltzmann integro-deferential equation (11.4.16) $\rightarrow v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = 0$,

§11.6 Detailed balance principle and the distribution function in equilibrium

- $ff_1 = f'f'_1$ is the detailed balance, means in equilibrium, the f changed by collisions is canceled.
- $ff_1 = f'f'_1 \Leftrightarrow \text{overall equilibrium}$.
- In equilibrium, $ff_1 = f'f'_1$, and $\frac{\partial f}{\partial t} = 0$. Boltzmann integro-deferential equation (11.4.16) \rightarrow $v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = 0,$ means the f changed by movement is also canceled.

29 / 34

§11.6 Detailed balance principle and the distribution function in equilibrium

- $f f_1 = f' f'_1$ is the detailed balance, means in equilibrium, the f changed by collisions is canceled.
- $ff_1 = f'f'_1 \Leftrightarrow$ overall equilibrium.
- In equilibrium, $ff_1 = f'f'_1$, and $\frac{\partial f}{\partial t} = 0$. Boltzmann integro-deferential equation (11.4.16) \rightarrow $v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = 0,$ means the f changed by movement is also canceled.
- $ff_1 = f'f'_1 \Rightarrow \ln f_1 + \ln f_2 = \ln f'_1 + \ln f'_2$.

29 / 34

§11.6 Detailed balance principle and the distribution function in equilibrium

- $ff_1 = f'f'_1$ is the detailed balance, means in equilibrium, the f changed by collisions is canceled.
- $ff_1 = f'f'_1 \Leftrightarrow \text{overall equilibrium}$.
- In equilibrium, $ff_1 = f'f'_1$, and $\frac{\partial f}{\partial t} = 0$. Boltzmann integro-deferential equation (11.4.16) $\rightarrow v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = 0$, means the f changed by movement is also canceled.
- $f f_1 = f' f'_1 \Rightarrow \ln f_1 + \ln f_2 = \ln f'_1 + \ln f'_2$. $\ln f(\vec{r}, \vec{v}_1, t) + \ln f(\vec{r}, \vec{v}_2, t) = \ln f(\vec{r}, \vec{v}'_1, t) + \ln f(\vec{r}, \vec{v}'_2, t)$

§11.6 Detailed balance principle and the distribution function in equilibrium

- $ff_1 = f'f'_1$ is the detailed balance, means in equilibrium, the f changed by collisions is canceled.
- $ff_1 = f'f'_1 \Leftrightarrow \text{overall equilibrium}$.
- In equilibrium, $ff_1 = f'f'_1$, and $\frac{\partial f}{\partial t} = 0$. Boltzmann integro-deferential equation (11.4.16) $\rightarrow v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = 0$, means the f changed by movement is also canceled.
- $ff_1 = f'f_1' \Rightarrow \ln f_1 + \ln f_2 = \ln f_1' + \ln f_2'$.

$$\ln f(\vec{r}, \vec{v}_1, t) + \ln f(\vec{r}, \vec{v}_2, t) = \ln f(\vec{r}, \vec{v}_1', t) + \ln f(\vec{r}, \vec{v}_2', t)$$

 Means before and after the collision, something is conserved.

§11.6 Detailed balance principle and the distribution function in equilibrium

- $ff_1 = f'f'_1$ is the detailed balance, means in equilibrium, the f changed by collisions is canceled.
- $ff_1 = f'f'_1 \Leftrightarrow \text{overall equilibrium}$.
- In equilibrium, $ff_1 = f'f'_1$, and $\frac{\partial f}{\partial t} = 0$. Boltzmann integro-deferential equation (11.4.16) \rightarrow $v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = 0,$ means the f changed by movement is also canceled.
- $ff_1 = f'f'_1 \Rightarrow \ln f_1 + \ln f_2 = \ln f'_1 + \ln f'_2$.

$$\ln f(\vec{r}, \vec{v}_1, t) + \ln f(\vec{r}, \vec{v}_2, t) = \ln f(\vec{r}, \vec{v}_1', t) + \ln f(\vec{r}, \vec{v}_2', t)$$

• Means before and after the collision, something is conserved. Number, momentum, energy.

• Particular solutions: $\ln f = 1, mv_x, mv_y, mv_z, \frac{1}{2}mv^2$.

- Particular solutions: $\ln f = 1, mv_x, mv_y, mv_z, \frac{1}{2}mv^2$.
- General solution:

$$\ln f = \alpha_0 + \alpha_1 m v_x + \alpha_2 m v_y + \alpha_3 m v_z + \alpha_4 \frac{1}{2} m v^2.$$

- Particular solutions: $\ln f = 1, mv_x, mv_y, mv_z, \frac{1}{2}mv^2$.
- General solution:

$$\ln f = \alpha_0 + \alpha_1 m v_x + \alpha_2 m v_y + \alpha_3 m v_z + \alpha_4 \frac{1}{2} m v^2.$$

• $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4$ can be solved by: $n = \int f \mathrm{d}\omega$, $v_{0x} = \frac{1}{n} \int v_x f \mathrm{d}\omega$, $v_{0y} = \frac{1}{n} \int v_y f \mathrm{d}\omega$, $v_{0z} = \frac{1}{n} \int v_z f \mathrm{d}\omega$, and $\frac{3}{2}kT = \frac{1}{n} \int \frac{1}{2}m(\vec{v} - \vec{v_0})^2 f \mathrm{d}\omega$.

- Particular solutions: $\ln f = 1, mv_x, mv_u, mv_z, \frac{1}{2}mv^2$.
- General solution:

$$\ln f = \alpha_0 + \alpha_1 m v_x + \alpha_2 m v_y + \alpha_3 m v_z + \alpha_4 \frac{1}{2} m v^2.$$

- $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4$ can be solved by: $n = \int f d\omega$, $v_{0x} = \frac{1}{n} \int v_x f d\omega$, $v_{0y} = \frac{1}{n} \int v_y f d\omega$, $v_{0z} = \frac{1}{n} \int v_z f d\omega$, and $\frac{3}{2}kT = \frac{1}{n} \int \frac{1}{2}m(\vec{v} - \vec{v_0})^2 f d\omega$.
- The result:

$$f = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2\right]}.$$

- Particular solutions: $\ln f = 1, mv_x, mv_y, mv_z, \frac{1}{2}mv^2$.
- General solution:

$$\ln f = \alpha_0 + \alpha_1 m v_x + \alpha_2 m v_y + \alpha_3 m v_z + \alpha_4 \frac{1}{2} m v^2.$$

- $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4$ can be solved by: $n = \int f \mathrm{d}\omega$, $v_{0x} = \frac{1}{n} \int v_x f \mathrm{d}\omega$, $v_{0y} = \frac{1}{n} \int v_y f \mathrm{d}\omega$, $v_{0z} = \frac{1}{n} \int v_z f \mathrm{d}\omega$, and $\frac{3}{2}kT = \frac{1}{n} \int \frac{1}{2}m(\vec{v} \vec{v_0})^2 f \mathrm{d}\omega$.
- The result:

$$f = n(\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2]}.$$

• Take f into (11.6.2): $v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = 0$

- Particular solutions: $\ln f = 1, mv_x, mv_y, mv_z, \frac{1}{2}mv^2$.
- General solution:

$$\ln f = \alpha_0 + \alpha_1 m v_x + \alpha_2 m v_y + \alpha_3 m v_z + \alpha_4 \frac{1}{2} m v^2.$$

- $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4$ can be solved by: $n = \int f \mathrm{d}\omega$, $v_{0x} = \frac{1}{n} \int v_x f \mathrm{d}\omega$, $v_{0y} = \frac{1}{n} \int v_y f \mathrm{d}\omega$, $v_{0z} = \frac{1}{n} \int v_z f \mathrm{d}\omega$, and $\frac{3}{2}kT = \frac{1}{n} \int \frac{1}{2}m(\vec{v} \vec{v}_0)^2 f \mathrm{d}\omega$.
- The result:

$$f = n(\frac{m}{2\pi kT})^{\frac{3}{2}} e^{-\frac{m}{2kT}[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2]}.$$

• Take f into (11.6.2): $v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + v_z \frac{\partial f}{\partial z} + X \frac{\partial f}{\partial v_x} + Y \frac{\partial f}{\partial v_y} + Z \frac{\partial f}{\partial v_z} = 0$ $\Rightarrow \frac{1}{f} \vec{v} \cdot \nabla f + \frac{1}{f} \vec{F} \cdot (\frac{\partial f}{\partial v_x} \vec{i} + \frac{\partial f}{\partial v_y} \vec{j} + \frac{\partial f}{\partial v_z} \vec{k}) = 0$

$$f = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2\right]}$$

•
$$\Rightarrow \vec{v} \cdot \nabla \ln f + \vec{F} \cdot (\frac{\partial \ln f}{\partial v_x} \vec{i} + \frac{\partial \ln f}{\partial v_y} \vec{j} + \frac{\partial \ln f}{\partial v_z} \vec{k}) = 0.$$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$f = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2\right]}$$

•
$$\Rightarrow \vec{v} \cdot \nabla \ln f + \vec{F} \cdot (\frac{\partial \ln f}{\partial v_x} \vec{i} + \frac{\partial \ln f}{\partial v_y} \vec{j} + \frac{\partial \ln f}{\partial v_z} \vec{k}) = 0.$$
Notice $\ln f = \ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v_0})^2$,

$$f = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2\right]}$$

$$\Rightarrow \vec{v} \cdot \nabla \ln f + \vec{F} \cdot (\frac{\partial \ln f}{\partial v_x} \vec{i} + \frac{\partial \ln f}{\partial v_y} \vec{j} + \frac{\partial \ln f}{\partial v_z} \vec{k}) = 0.$$
 Notice $\ln f = \ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2$, and $\frac{\partial \ln f}{\partial v_x} = -\frac{m}{2kT} 2(v_x - v_{0x})$,

$$f = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2\right]}$$

$$f = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2\right]}$$

$$\bullet \Rightarrow$$

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0.$$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$f = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2\right]}$$

- $$\begin{split} \bullet &\Rightarrow \vec{v} \cdot \nabla \ln f + \vec{F} \cdot (\frac{\partial \ln f}{\partial v_x} \vec{i} + \frac{\partial \ln f}{\partial v_y} \vec{j} + \frac{\partial \ln f}{\partial v_z} \vec{k}) = 0. \\ \text{Notice } &\ln f = \ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} \frac{m}{2kT} (\vec{v} \vec{v}_0)^2, \\ \text{and } &\frac{\partial \ln f}{\partial v_x} = -\frac{m}{2kT} 2 (v_x v_{0x}), \\ \text{then } &\frac{\partial \ln f}{\partial v_x} \vec{i} + \frac{\partial \ln f}{\partial v_y} \vec{j} + \frac{\partial \ln f}{\partial v_z} \vec{k} = -\frac{m}{kT} (\vec{v} \vec{v}_0). \end{split}$$
- \Rightarrow $\vec{v} \cdot \nabla [\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} \frac{m}{2kT} (\vec{v} \vec{v_0})^2] \frac{m}{kT} \vec{F} \cdot (\vec{v} \vec{v_0}) = 0.$ Equation about $a_0 + a_1 \vec{v} + a_2 \vec{v}^2 + a_3 \vec{v}^3 = 0$, where \vec{v} is arbitrary.

$$f = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2\right]}$$

- $$\begin{split} \bullet &\Rightarrow \vec{v} \cdot \nabla \ln f + \vec{F} \cdot (\frac{\partial \ln f}{\partial v_x} \vec{i} + \frac{\partial \ln f}{\partial v_y} \vec{j} + \frac{\partial \ln f}{\partial v_z} \vec{k}) = 0. \\ \text{Notice } &\ln f = \ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} \frac{m}{2kT} (\vec{v} \vec{v}_0)^2, \\ \text{and } &\frac{\partial \ln f}{\partial v_x} = -\frac{m}{2kT} 2 (v_x v_{0x}), \\ \text{then } &\frac{\partial \ln f}{\partial v_x} \vec{i} + \frac{\partial \ln f}{\partial v_y} \vec{j} + \frac{\partial \ln f}{\partial v_z} \vec{k} = -\frac{m}{kT} (\vec{v} \vec{v}_0). \end{split}$$
- \Rightarrow $\vec{v} \cdot \nabla [\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} \frac{m}{2kT} (\vec{v} \vec{v_0})^2] \frac{m}{kT} \vec{F} \cdot (\vec{v} \vec{v_0}) = 0.$ Equation about $a_0 + a_1 \vec{v} + a_2 \vec{v}^2 + a_3 \vec{v}^3 = 0$, where \vec{v} is arbitrary. So $a_0 = 0, a_1 = 0, a_2 = 0, a_3 = 0$.

$$f = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2\right]}$$

- $\Rightarrow \vec{v} \cdot \nabla \ln f + \vec{F} \cdot (\frac{\partial \ln f}{\partial v_x} \vec{i} + \frac{\partial \ln f}{\partial v_y} \vec{j} + \frac{\partial \ln f}{\partial v_z} \vec{k}) = 0.$ Notice $\ln f = \ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2$, and $\frac{\partial \ln f}{\partial v} = -\frac{m}{2kT}2(v_x - v_{0x})$, then $\frac{\partial \ln f}{\partial v_x}\vec{i} + \frac{\partial \ln f}{\partial v_x}\vec{j} + \frac{\partial \ln f}{\partial v_z}\vec{k} = -\frac{m}{kT}(\vec{v} - \vec{v_0}).$
- $\bullet \Rightarrow$ $\vec{v} \cdot \nabla [\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0.$ Equation about $a_0 + a_1 \vec{v} + a_2 \vec{v}^2 + a_3 \vec{v}^3 = 0$. where \vec{v} is arbitrary. So $a_0 = 0$, $a_1 = 0$, $a_2 = 0$, $a_3 = 0$.
- $\bullet \ a_3 = \nabla \frac{m}{2kT}$

$$f = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2\right]}$$

- $\Rightarrow \vec{v} \cdot \nabla \ln f + \vec{F} \cdot (\frac{\partial \ln f}{\partial v_x} \vec{i} + \frac{\partial \ln f}{\partial v_y} \vec{j} + \frac{\partial \ln f}{\partial v_z} \vec{k}) = 0.$ Notice $\ln f = \ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2$, and $\frac{\partial \ln f}{\partial v} = -\frac{m}{2kT}2(v_x - v_{0x})$, then $\frac{\partial \ln f}{\partial v_{-}}\vec{i} + \frac{\partial \ln f}{\partial v_{-}}\vec{j} + \frac{\partial \ln f}{\partial v_{-}}\vec{k} = -\frac{m}{kT}(\vec{v} - \vec{v}_0).$
- $\bullet \Rightarrow$ $\vec{v} \cdot \nabla [\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0.$ Equation about $a_0 + a_1 \vec{v} + a_2 \vec{v}^2 + a_3 \vec{v}^3 = 0$. where \vec{v} is arbitrary. So $a_0 = 0, a_1 = 0, a_2 = 0, a_3 = 0$.
- $a_3 = -\nabla \frac{m}{2kT}$, $\Rightarrow \frac{\partial T}{\partial x} = \frac{\partial T}{\partial y} = \frac{\partial T}{\partial z} = 0$.

$$f = n\left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m}{2kT}\left[(v_x - v_{0x})^2 + (v_y - v_{0y})^2 + (v_z - v_{0z})^2\right]}$$

- $\Rightarrow \vec{v} \cdot \nabla \ln f + \vec{F} \cdot (\frac{\partial \ln f}{\partial v_x} \vec{i} + \frac{\partial \ln f}{\partial v_y} \vec{j} + \frac{\partial \ln f}{\partial v_z} \vec{k}) = 0.$ Notice $\ln f = \ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2$, and $\frac{\partial \ln f}{\partial v} = -\frac{m}{2kT}2(v_x - v_{0x})$, then $\frac{\partial \ln f}{\partial v_{-}}\vec{i} + \frac{\partial \ln f}{\partial v_{-}}\vec{j} + \frac{\partial \ln f}{\partial v_{-}}\vec{k} = -\frac{m}{kT}(\vec{v} - \vec{v}_0).$
- $\bullet \Rightarrow$ $\vec{v} \cdot \nabla [\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v_0})^2] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v_0}) = 0.$ Equation about $a_0 + a_1 \vec{v} + a_2 \vec{v}^2 + a_3 \vec{v}^3 = 0$. where \vec{v} is arbitrary. So $a_0 = 0, a_1 = 0, a_2 = 0, a_3 = 0$.
- $a_3 = -\nabla \frac{m}{2kT}$, $\Rightarrow \frac{\partial T}{\partial x} = \frac{\partial T}{\partial y} = \frac{\partial T}{\partial z} = 0$. Meaning: Temperature is uniform in equilibrium.

$$[\vec{v} \cdot \nabla [\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v_0})^2] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v_0}) = 0$$

• For a_2 , i.e., $\vec{v} \cdot \nabla \left[\frac{m}{kT} (\vec{v} \cdot \vec{v}_0) \right] = 0$.

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0$$

• For a_2 , i.e., $\vec{v} \cdot \nabla \left[\frac{m}{kT} (\vec{v} \cdot \vec{v}_0) \right] = 0$. Solution is $\vec{v}_0 = \vec{a} + \vec{\omega} \times \vec{r}$, where \vec{a} and $\vec{\omega}$ are constant vectors.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0$$

• For a_2 , i.e., $\vec{v} \cdot \nabla \left[\frac{m}{kT} (\vec{v} \cdot \vec{v}_0) \right] = 0$. Solution is $\vec{v}_0 = \vec{a} + \vec{\omega} \times \vec{r}$, where \vec{a} and $\vec{\omega}$ are constant vectors. Meaning: To be in equilibrium, the whole motion can only be uniformly moving or/and rotating with constant angular velocity.

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0$$

- For a_2 , i.e., $\vec{v} \cdot \nabla \left[\frac{m}{kT} (\vec{v} \cdot \vec{v}_0) \right] = 0$. Solution is $\vec{v}_0 = \vec{a} + \vec{\omega} \times \vec{r}$, where \vec{a} and $\vec{\omega}$ are constant vectors. Meaning: To be in equilibrium, the whole motion can only be uniformly moving or/and rotating with constant angular velocity.
- For a_1 , i.e., $\nabla (\ln n \frac{m}{2\nu T}v_0^2) \frac{m}{\nu T}\vec{F} = 0$.

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0$$

- For a_2 , i.e., $\vec{v} \cdot \nabla [\frac{m}{kT}(\vec{v} \cdot \vec{v}_0)] = 0$. Solution is $\vec{v}_0 = \vec{a} + \vec{\omega} \times \vec{r}$, where \vec{a} and $\vec{\omega}$ are constant vectors. Meaning: To be in equilibrium, the whole motion can only be uniformly moving or/and rotating with constant angular velocity.
- For a_1 , i.e., $\nabla (\ln n \frac{m}{2kT}v_0^2) \frac{m}{kT}\vec{F} = 0$. Notice $\vec{F} = - \nabla \varphi$, where φ is kind of potential energy.

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0$$

- For a_2 , i.e., $\vec{v} \cdot \nabla \left[\frac{m}{kT} (\vec{v} \cdot \vec{v}_0) \right] = 0$. Solution is $\vec{v}_0 = \vec{a} + \vec{\omega} \times \vec{r}$, where \vec{a} and $\vec{\omega}$ are constant vectors. Meaning: To be in equilibrium, the whole motion can only be uniformly moving or/and rotating with constant angular velocity.
- For a_1 , i.e., $\nabla (\ln n \frac{m}{2kT}v_0^2) \frac{m}{kT}\vec{F} = 0$. Notice $\vec{F} = - \nabla \varphi$, where φ is kind of potential energy.

$$\Rightarrow \nabla (\ln n - \frac{m}{2kT}v_0^2 + \frac{m}{kT}\varphi) = 0.$$

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0$$

- For a_2 , i.e., $\vec{v} \cdot \nabla [\frac{m}{kT}(\vec{v} \cdot \vec{v}_0)] = 0$. Solution is $\vec{v}_0 = \vec{a} + \vec{\omega} \times \vec{r}$, where \vec{a} and $\vec{\omega}$ are constant vectors. Meaning: To be in equilibrium, the whole motion can only be uniformly moving or/and rotating with constant angular velocity.
- For a_1 , i.e., $\nabla (\ln n \frac{m}{2kT}v_0^2) \frac{m}{kT}\vec{F} = 0$. Notice $\vec{F} = -\nabla \varphi$, where φ is kind of potential energy.

$$\Rightarrow \nabla (\ln n - \frac{m}{2kT}v_0^2 + \frac{m}{kT}\varphi) = 0.$$

 $\Rightarrow \ln n - \frac{m}{2kT}v_0^2 + \frac{m}{kT}\varphi = \ln n_0$, where $\ln n_0$ is the

integration constant.

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0$$

$$\bullet \Rightarrow n = n_0 e^{\frac{m}{2kT}v_0^2 - \frac{m}{kT}\varphi}.$$

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0$$

 $\bullet \Rightarrow n = n_0 e^{\frac{m}{2kT}v_0^2 - \frac{m}{kT}\varphi}.$

Meaning: number of density can change with place. (\vec{v}_0 and φ can vary with coordinate.)

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0$$

- $\bullet \Rightarrow n = n_0 e^{\frac{m}{2kT}v_0^2 \frac{m}{kT}\varphi}$
 - Meaning: number of density can change with place. (\vec{v}_0 and φ can vary with coordinate.)
- For a_0 , $\vec{v_0} \cdot \vec{F} = 0$.

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0$$

 $\bullet \Rightarrow n = n_0 e^{\frac{m}{2kT}v_0^2 - \frac{m}{kT}\varphi}.$

Meaning: number of density can change with place. $(\vec{v_0} \text{ and } \varphi \text{ can vary with coordinate.})$

• For a_0 , $\vec{v_0} \cdot \vec{F} = 0$. Meaning: the whole motion must be perpendicular to the external force

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$\vec{v} \cdot \nabla \left[\ln n + \frac{3}{2} \ln \frac{m}{2\pi kT} - \frac{m}{2kT} (\vec{v} - \vec{v}_0)^2 \right] - \frac{m}{kT} \vec{F} \cdot (\vec{v} - \vec{v}_0) = 0$$

- $\bullet \Rightarrow n = n_0 e^{\frac{m}{2kT}v_0^2 \frac{m}{kT}\varphi}$. Meaning: number of density can change with place. (\vec{v}_0 and φ can vary with coordinate.)
- For a_0 , $\vec{v_0} \cdot \vec{F} = 0$. Meaning: the whole motion must be perpendicular to the external force.
- To have equilibrium, the 4 conditions (properties) above should all be satisfied. $\frac{\partial T}{\partial x} = \frac{\partial T}{\partial y} = \frac{\partial T}{\partial z} = 0$; $\vec{v}_0 = \vec{a} + \vec{\omega} \times \vec{r}$: $n = n_0 e^{\frac{m}{2kT}v_0^2 - \frac{m}{kT}\varphi}$ and $\vec{v}_0 \cdot \vec{F} = 0$.

Table of contents

- Chpt 11. Statistical mechanics for non-equilibrium processes
 - 11.1 Relaxation time approximation of Boltzmann's equation
 - 11.2 Viscous phenomenon of gas
 - 11.3 Conductivity of metal
 - 11.4 Boltzmann integro-differential equation
 - 11.5 *H* theorem
 - ullet 11.6 Detailed balance principle and f in equilibrium