VAN course Lesson 12

Dr. Refael Vivanti vivanti@gmail.com

Loop Closure

- How can we spot a loop closure?
 - Find candidates (light):
 - Geometric intersection
 - Validate candidates (heavy):
 - 3D points clouds matching using ICP
 - Descriptor-based matching
 - Calculate edges and factors:
 - Find transformation using matches/ICP
 - Outlier removal:
 - Olson's method

Many candidates, light operations

Few candidates, heavy operations

Topological Grouping

- Group together topologically-related pose-topose matches to form local matches
- Each group asks a "topological" question: Do two local maps match?

Loop Closure – outliers removal Locally Unambiguous Matches

Goal:

Loop Closure – outliers removal Locally Consistent Matches

- Correct pose-to-pose hypotheses must agree with each other
- Incorrect pose-to-pose hypotheses tend to disagree with each other
- Find subset of self-consistent of hypotheses
- Multiple self-consistent subsets, are an indicator for a "picket fence"!

Loop Closure – outliers removal Do Two Hypotheses Agree?

Consider two hypotheses i and j in the set:

Form a loop using edges from the prior graph

Rigid-body transformation around the loop should be the identity matrix

Loop Closure – outliers removal Idea of Olson's Method

Form pair-wise consistency matrix A-

Loop Closure – outliers removal Single Cluster Graph Partitioning

- Idea: Identify the subset of consistent hypotheses
- Find the best indicator vector (represents a subset of the hypotheses)

$$\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0.15 & 0.5 \\ 0 & 1 & 0.94 & 0.84 \\ 0.15 & 0.94 & 1 & 0.01 \\ 0.5 & 0.84 & 0.01 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$v^{T}$$

$$A$$

$$v$$

We want find v that maximizes λ(v)

$$\lambda(\mathbf{v}) = \frac{\mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}}$$

Graph interpretation:

Graph cuts solution:

Loop Closure – outliers removal Algebraic approach:

• We want find \mathbf{v} that maximizes $\lambda(\mathbf{v})$

$$\lambda(\mathbf{v}) = \frac{\mathbf{v}^{\mathbf{T}} \mathbf{A} \mathbf{v}}{\mathbf{v}^{\mathbf{T}} \mathbf{v}}$$

- Treat as a continuous problem
- We want the dominant eigenvector of A
- We round it to get a binary vector

Loop Closure – outliers removal Consistent Local Matches

- If λ_1/λ_2 is large (e.g., $\lambda_1/\lambda_2>2$) then $\mathbf{v_1}$ is regarded as locally unambiguous
- Else remove all candidates