

TYPE - 01

আপেক্ষিকতা

FORMULA:

1
$$t = \frac{t_o}{\sqrt{1 - v^2/c^2}}$$
 2 $L = L_o \sqrt{1 - v^2/c^2}$

$$m = \frac{m_o}{\sqrt{1 - v^2 / c^2}}$$

to = ঘটনার প্রত্যক্ষদশী কর্তৃক নির্ণীত

t = যে কোন কাঠামোতে ঘটনা ঘটে তার সাপেক্ষে

অন্য কাঠামোতে অবস্থিত পর্যবেক্ষণ কর্তৃক নির্ণীত

 $L_{
m o}=$ স্থির অবস্থায় দন্ডের দৈর্ঘ্য

L= চলমান অবস্থায় দন্ডের দৈর্ঘ্য

m = চলমান অবস্থায় বস্তুর ভর

 $\mathbf{m}_{o}=$ স্থির অবস্থায় বস্তুর ভর

EXAMPLE – 01: 50 মিনিটে শেষ করার জন্যে একজন অধ্যাপক তাঁর ঘড়ি দেখে একজন ছাত্রকে একটি পরীক্ষা করতে দিলেন। ছাত্র এবং অধ্যাপক পরস্পর $0.98~{
m cm s}^{-1}$ আপেক্ষিক বেগে চলছে যখন অধ্যাপক বললেন 'সময় শেষ' তখন ছাত্রের পরিমাপে অধ্যাপকের ঘড়িতে কত সময় অতিবাহিত হয়েছে?

 $SOLVE: t_o = 50$ মিনিট, $v = 0.98 \text{ cms}^{-1}$

আমরা জানি,
$$t=\frac{t_o}{\sqrt{1-v^2/c^2}}=\frac{50}{\sqrt{1-\left(\frac{0.95c}{c}\right)^2}}=251.38$$
 মিনিট। [Ans.]

EXAMPLE - 02: একজন ডাক্তার 80 mh^{-1} বেগে 120 km দূরে কোন hospital এ গিয়ে রোগী দেখল। ডাক্তার এর হিসাব অনুযায়ী 1 hr. 15 min. লাগল। আলোর বেগ 100 kmh^{-1} ধরলে ডাক্তারের বক্তব্য কি সত্য?

 $SOLVE: t_o =$ ডাক্তারের হিসাবকৃত সময় $= 1hr. \ 15 \ mins. = 1.25 \ h.$

t= আমাদের হিসাবকৃত সময়

আমরা জানি, t=
$$\frac{t_o}{\sqrt{1-v^2/c^2}} = \frac{1.25}{\sqrt{1-\left(\frac{80}{100}\right)^2}} = 2.08 \text{ hour}$$

 \therefore এই সময়ে ডাক্তার যে দূরত্ব অতিক্রম করতে পারবে তা হল-x=vt=80 imes2.08=166.7~km

.: 120 km যাওয়ার পর তার হাতে প্রচুর সময় থাকবে যা তিনি রোগী দেখায় ব্যয় করতে পারেন।

∴ ডাক্তারের বক্তব্য সঠিক। [Ans.]

EXAMPLE – 03: ভিন্ন গ্রহের একটি নভোষান $0.6~\mathrm{C}$ গতিতে (মাঠের খেলোয়ারদের পরিমাপ অনুষায়ী) ফুটবল মাঠের দৈর্ঘ্য বরাবর অতিক্রম করে। ফুটবল মাঠিটি $110~\mathrm{m}$ লম্বা এবং $50~\mathrm{m}$ প্রশস্ত। নভোষানের ভিন্ন গ্রহবাসীর পরিমাপ অনুষায়ী ফুটবল মাঠিটির ক্ষেত্রফল কত?

$${f SOLVE}$$
 : পরিবর্তিত দৈর্ঘ্য হবে, $L = Lo\sqrt{1-rac{v^2}{c^2}} = 110 \ \sqrt{1-(0.6)^2} = 88 \ m$

যেহেতু নভোষানটি মাঠটিকে দৈর্ঘ্য বরাবর অতিক্রম করেছে তাই ভিন্ন গ্রহবাসীদের কাছে প্রস্তের কোন পরিবর্তন হবে না।

.. ক্ষেত্রফল =
$$(88 \times 50) \text{ m}^2 = 4400 \text{ m}^2 \text{ [Ans.]}$$

EXAMPLE-04: একটি গতিশীল ইলেক্ট্রনের ভর, স্থির ভরের $\frac{3}{2}$ গুণ হলে, ইলেক্ট্রনটির দ্রুতি বের কর।

SOLVE : দেওয়া আছে,
$$\frac{m}{m_o} = \frac{3}{2}$$

আমরা জানি,
$$m=\frac{m_o}{\sqrt{1-v^2/c^2}}$$
 $\Rightarrow \left(\frac{m_o}{m}\right)^2=1-v^2/\,c^2 \Rightarrow v^2/\,c^2=1-\left(\frac{m_o}{m}\right)^2$

$$\therefore \text{ v} = \text{ c}\sqrt{1 - \left(\frac{\text{m}_{o}}{\text{m}}\right)^{2}} = 3 \times 10^{8} \sqrt{1 - \left(1/3\right)^{2}} = 2.24 \times 10^{8} \text{ ms}^{-1} \text{ [Ans.]}$$

EXAMPLE - 05: 9×10³ kgm⁻³ ঘনত্বে কোন আয়াতকার ঘনবস্তু 0.8C বেগে যাচ্ছে। গতিশীল অবস্থায় ঘনত্ব কত ?

$$extbf{SOLVE}$$
 : স্থির অবস্থায়, $ho_o = rac{m_o}{v_o}$(i)

এবং গতিশীল অবস্থায়
$$ho=rac{m}{v}$$
.....(ii)

$$(ii) \div (i) \ \Rightarrow \frac{\rho}{\rho_o} = \frac{m \times v_o}{m_o \times v} = \frac{m_o}{m_o \sqrt{1 - v^2/c^2}} \times \frac{x_o y_o z_o}{x_o \sqrt{1 - v^2/c^2} \ y_o z_o}$$

$$\rho = \frac{\rho_o}{1 - v^2/c^2} = \frac{9 \times 10^3}{1 - (0.8)^2} = 2.5 \times 10^4 \text{ kgm}^{-3} \text{ [Ans.]}$$

EXAMPLE – 06: একটি মহাকাশ যান 0.8c বেগে গতিশীল। এর উপর $1.5~\mathrm{m}$ দীর্ঘ একটি এন্টেনা 30° কোণে আছে। গতিশীল অবস্থায় কত কোণে থাকবে?

SOLVE: OA = OA_o
$$\sqrt{1 - v^2/c^2} = 1\cos 30^\circ \sqrt{1 - 0.8^2}$$

= 1.5 cos 30° $\sqrt{1 - 0.8^2} = 0.779$ m
AB = $1\sin 30^\circ = 1.5 \sin 30^\circ = 0.75$ m : $\tan \theta = \frac{AB}{OA} = \frac{0.75}{0.779}$
: $\theta = 43.89^\circ$ [Ans.]

TRY YOURSELF

EXERCISE – 01: কোন জীবাণু 20 দিনে দ্বিগুণ হয়। দুইটি জীবাণুকে মহাকাশ যানে রেখে 0.995 c বেগে পাঠানো হল। পৃথিবীর হিসেবে 1080 দিন পরে আসে তবে জীবাণু সংখ্যা কত? [Ans. 64]

EXERCISE – 02: 1.5 MeV গতিশক্তি সম্পন্ন কোন ইলেক্ট্রনের ভর কত ?

EXERCISE – 03: কত বেগে গতিশীল হলে গতিশক্তি স্থির শক্তির দ্বিণ্ডণ হবে? $[{\rm Ans.}\, \frac{\sqrt{3}}{2}c\,]$

EXERCISE — **04:** একজন মহাশূন্যচারী 25 বছর বয়সে $1.8 \times 10^8~{
m ms^{-1}}$ বেগে গতিশীল একটি মহাশূন্যযানে চড়ে মহাকাশ ভ্রমণে গেলেন। পৃথিবীর হিসেবে তিনি 30 বছর মহাকাশে কাটিয়ে এলে তার বয়স কত হবে? [$Ans.~49~{
m y.}$]

EXERCISE – 05: একটি মুক্ত মৌলিক কণার গড় আয়ুষ্কাল $15~{
m min}$, আয়ুষ্কাল $\frac{5}{3}~{
m e}$ ণ হওয়ার জন্যে তার দ্রুতি কত হবে? $[{
m Ans.}~2.4 imes 10^8~{
m ms}^{-1}]$

EXERCISE — 0.6c দ্রুতিতে চলমান একটি কাল্পনিক ট্রেন কোন ছোট স্টেশনের প্লাটফর্ম অতিক্রম করে গেল। প্লাটফর্মে দাঁড়ানো একজন যাত্রী চলমান ট্রেনের দৈর্ঘ্য মাপল $200~\mathrm{m}$ যা প্লাটফর্মের দৈর্ঘ্যের সমান।

(ক) ট্রেনের নিশ্চল দৈর্ঘ্য কত ?(খ) ট্রেনের কোন যাত্রী প্লাটফর্মের দৈর্ঘ্য কত মাপবে? [Ans.(ক) 250 m (খ) 160 m]

EXERCISE – 07: অন্য উপগ্রহ হতে আগত একটি মহাকাশ যান ভূমি থেকে $10{,}000~\mathrm{m}$ উঁচু থেকে 0.8c বেগে ভূপৃষ্ঠের দিকে ছুটে আসছে। মহাকাশযানে অবস্থিত নভোচারীর নিকট এ বায়ুস্তরের উচ্চতা ভূপৃষ্ঠে এসে পৌছবে? [Ans. $6000~\mathrm{m}$, $2.5 \times 10^{-5}~\mathrm{s}$]

EXERCISE – 08: দ্রুতি কত হলে ইলেক্ট্রনের ভর প্রোটনের স্থির ভরের সমান হবে? $[{
m Ans.} \ 2.99 imes 10^8 \ {
m ms}^{-1}]$

EXERCISE — 09: দৈর্ঘ্য বরাবর গতিশীল একটি মিটার ক্ষেলের ভর, এর স্থির ভরের $^{3}/_{2}$ গুণ। গতিশীল অবস্থায় দৈর্ঘ্য বের কর। [Ans. $0.67~\mathrm{m}$]

EXERCISE – 10: একটি প্রোটনের গতিশক্তি m_oc^2 এর সমান। তার ভরবেগ নির্ণয় কর। [$Ans. \sqrt{3} \ m_oc$]

EXERCISE –11: দ্রুত গতিসম্পন্ন একটি বস্তুর দ্রুতি কত হলে গতিশক্তি তার মোট শক্তি $\frac{1}{5}$ অংশ হবে ?

[Ans. $1 \times 10^8 \text{ ms}^-$]

EXERCISE – 12: একটি বস্তুর বেগ 0.6c হলে বস্তুটির আপেক্ষিক ও সনাতন বলবিদ্যার ভরবেগের অনুপাত নির্ণয় কর। [Ans. 1.25]

TYPE - 02

💠 ভর – শক্তি সম্পর্ক

FORMULA:

1 $E_o = m_o c^2$

2 $E = mc^2$

3 $K = (m - m_0) c^2$

 $E_{
m o}=$ স্থিরাবস্থায় বস্তুর শক্তি

 $\mathbf{K}=$ গতিশক্তি

mo = স্থিরাবস্থায় বস্তুর ভর

m = চলমান অবস্থায় বস্তুর ভর

 $\mathbf{EXAMPLE} - \mathbf{01}$: $\frac{\mathbf{c}}{\sqrt{2}}$ বেগে চলামন একটি কণার ভরবেগ, গতিশক্তি ও মোট শক্তি নির্ণয় কর।

SOLVE: $m = \frac{m_o}{\sqrt{1 - v^2/c^2}} = \frac{m_o}{\sqrt{1 - \left(\frac{c}{\sqrt{2c}}\right)^2}} = \sqrt{2} \ m_o$

ভরবেগ, $P=mv=\sqrt{2}\;m_o{\left(rac{c}{\sqrt{2}}
ight)}^2=m_o\;c^2$

গতিশক্তি, $K=(m-m_o)~c=(\sqrt{2}~m-m_o)~c=(\sqrt{2}~-1)~m_oc$

মোটশক্তি, $E = mc^2 = \sqrt{2} m - m_o c^2$ [Ans.]

EXAMPLE - 02: একটি 2MeV ইলেক্সনের বেগ কত? ইলেক্সনের স্থিতিশক্তি 0.5 MeV.

SOLVE: দেওয়া আছে, গতিশক্তি, $K=2~MeV=2\times10^6~eV$

 $= 2 \times 10^6 \times 1.6 \times 10^{-19}$ J $= 3.2 \times 10^{-13}$ J

স্থিতিশক্তি, $E_0=0.5~\text{MeV}=0.5\times 10^6\times 1.6\times 10^{-19}~\text{J}=0.80\times 10^{-13}~\text{J}$

আমরা জানি, $E=K+E_{o}$ \Rightarrow $mc^{2}=k+E_{o}]$ \Rightarrow $\frac{m_{o}c^{2}}{\sqrt{1-v^{2}/c^{2}}}=k+E_{o}$

$$\Rightarrow \sqrt{1-v^2/c^2} = \frac{E_o}{k+E_o} \Rightarrow \frac{v^2}{c^2} = 1 - \left(\frac{E_o}{k+E_o}\right)^2 \Rightarrow v = c\sqrt{\left\{1 - \left(\frac{E_o}{k+E_o}\right)^2\right\}}$$

$$= 3 \times 10^8 \sqrt{1 - \left\{ \frac{0.8 \times 10^{-13}}{3.2 \times 10^{-13} + 0.8 \times 10^{-13}} \right\}^2} = 0.939 \times 10^8 \text{ ms}^{-1} \text{ [Ans.]}$$

TRY YOURSELF

EXERCISE – 01: দেখাও যে, একটি ইলেক্ট্রনের স্থির ভর $(9.1 \times 10^{-31} \ \mathrm{kg}) \ 0.511 \ \mathrm{MeV}$ শক্তির সমতুল্য ।

EXERCISE –02: একটি বস্তু কণার গতিশক্তি $10~{
m MeV}$ পরিমাণ বৃদ্ধি করতে এর ভরের কতটুকু পরিবর্তন করতে হবে? $[{
m Ans.}~1.8 imes 10^{-32}~{
m kg}]$

EXERCISE – 03: একটি বস্তু কণার ভর $9 \times 10^{-31} \ \mathrm{kg}$ কণাটি $0.98 \mathrm{C}$ বেগে গতিশীল হলে এর মোট শক্তি কত? কণাটির নিউটনীয় গতিশক্তি ও আইনস্টাইনের আপেক্ষিকতা গতিশক্তির তুলনা কর। $[\mathrm{Ans.}\ 0.119]$

EXERCISE – 04: নিউটনের দ্বিতীয় গতিসূত্রের আপেক্ষিক তত্ত্বের রূপ নির্ণয় কর।

EXERCISE – 05: $8.3 \times 10^7~{\rm ms}^{-1}$ গতিতে গতিশীল একটি প্রোটনের (i) গতিশক্তি ও (ii) ভরবেগ (iii) সনাতন পদার্থবিদ্যার সূত্র ব্যবহার করলে হিসাবে কত শতাংশ ভুল হত? [Ans. (i) $6.12 \times 10^{12}~{\rm J}$, (ii) $1.44 \times 10^{-19}~{\rm kgms}^{-1}$, (iii) $3.5~{\rm y}$.]

EXERCISE – 06: একটি ইলেক্ট্রনের বেগ $1.2 \times 10^8~{\rm ms^{-1}}$ থেকে $2.4 \times 10^8~{\rm ms^{-1}}$ এ উন্নীত করতে কি পরিমাণ কাজ করতে হবে? [Ans. $0.2947~{\rm eV}$]

TYPE - 03

❖ প্রাঙ্কের কোয়ান্টাম তত্ত্ব

<u>FORMULA</u>:

$$\bullet E = hu$$

$$\mathbf{e} \quad \mathbf{E} = \frac{\mathbf{hc}}{\lambda}$$

$$\bullet P = \frac{h}{\lambda}$$

$$\mathbf{\Phi} P = \frac{E}{C}$$

EXAMPLE - 01: একটি ফোটনের শক্তি 3eV এর কম্পাঙ্ক ও তরঙ্গ দৈর্ঘ্য নির্ণয় কর।

SOLVE : আমরা জানি,
$$E = hv \implies v = \frac{E}{h} = \frac{3 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} \, m$$
 $E = 3 \, eV$

$$= 7.239 \times 10^{14} \text{ Hz}$$

আবার,
$$\upsilon = \frac{c}{\lambda} \Rightarrow \lambda = \frac{c}{\upsilon} = \frac{3 \times 10^8}{7.239 \times 10^{14}} \, \mathrm{m} = 4.143 \times 10^{-7} \, \mathrm{m} \, [\mathrm{Ans.}]$$

EXAMPLE – 02: 400 nm আলো 1.5 mW এর কোন ফটো তড়িৎ কোষের উপর আপতিত হল। যদি আপতিত ফোটনের 0.10% ফটো ইলেক্ট্রন উৎপন্ন করে তবে কোষে তড়িৎ প্রবাহ নির্ণয় কর।

 $extbf{SOLVE}$: t সময়ে q আধান সঞ্চালিত হলে, $I=rac{q}{t}$

এখন t সময়ে N সংখ্যক ফটো ইলেক্ট্রন নির্গত হলে, q=Ne

$$\therefore I = \frac{Ne}{t} \dots (i)$$

t সময়ে আপতিত ফোটনের মোট সংখ্যক n এবং ফোটনের কম্পাঙ্ক f হলে মোট শক্তি E

$$E = \frac{nhf}{\lambda} \text{ for } , \ p = \frac{E}{t} = \frac{nhf}{\lambda t} \quad \Rightarrow n = \frac{p\lambda t}{hc}$$

আবার,
$$N=n$$
 এর $0.1\ y$ %= $n imes \frac{0.1}{100} = n imes 10^{-3} = \frac{p \lambda t}{hc} imes 10^{-3}$

(i) হতে পাই, I
$$= \frac{p\lambda t \times 10^{-3}e}{hct} = \frac{p\lambda e}{hc} \times 10 - 3 = \frac{1.5 \times 10^{-3} \times 400 \times 10^{-9} \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34} \times 3 \times 10^{8}} = 4.8 \times 10^{-7} \text{ A [Ans.]}$$

TRY YOURSELF

EXERCISE – 01: 6000 Å তরঙ্গদৈর্ঘ্যের আলোক রশ্মির প্রতিটি ফোটন কত শক্তি বহন করে? [Ans. 2.07 eV]

EXERCISE – 02: সবুজ আলোর একটি ফোটনের শক্তি 3 eV. এর ভর বেগ কত? $[Ans. 1.6 \times 10^{-27} \ kgms^{-1}]$

EXERCISE – 03: সোডিয়াম থেকে ইলেক্ট্রন নির্গত হতে $2.3 \mathrm{eV}$ শক্তির প্রয়োজন। $680~\mathrm{nm}$ তরঙ্গদৈর্ঘ্য বিশিষ্ট কমলা রঙের আলোর জন্য সোডিয়াম কি আলোক তড়িৎ ক্রিয়া প্রদর্শন করবে? [Ans. করেনা]

EXERCISE — **04:** একটি 40 w এর বাতি থেকে সবুজ আলো ($\lambda = 555 \text{ nm}$) বিকিরিত হচ্ছে। বাতিটির তড়িৎ শক্তির 3% যদি আলোক শক্তিতে রূপান্তরিত হয়, তবে প্রতি সেকেন্ডে বাতি হতে কত সংখ্যক ফোটন নির্গত হয় ? $[\text{Ans. } 3.35 \times 10^{18}]$

TYPE - 04

💠 আলোক তড়িৎ ক্রিয়া

FORMULA:

$$eV_o = \frac{1}{2} mv^2$$

$$\mathbf{2} h \mathbf{v} = \mathbf{W}_{o} + \mathbf{K} \mathbf{m} \mathbf{a} \mathbf{x}$$

$$\mathbf{6} \quad \mathbf{W}_{o} = h \mathbf{v}_{o}$$

EXAMPLE - 01: কোনো ধাতুর কার্য অপেক্ষা 1.83~eV. যদি ঐ ধাতু পৃষ্ঠের ওপর $5500 \times 10^{-10}~m$ তরঙ্গদৈর্ঘ্যের আলো আপতিত হয় তবে নিবৃত্তি বিভব নির্ণয় কর।

SOLVE : দেওয়া আছে,
$$W_o = 1.83 \text{ eV} = 1.83 \times 1.6 \times 10^{-19} \text{ J}$$
 $\lambda = 5500 \times 10^{-10} \text{ m} \text{ V}_o = ?$

আমরা জানি,
$$E=W_o+Kmax \Rightarrow Kmax=E-W_o \Rightarrow \frac{1}{2}mv^2=h\frac{c}{\lambda}-W_o$$

$$= \left(\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{5500 \times 10^{-10}} - 1.83 \times 1.6 \times 10^{-19}\right) J = 0.688 \times 10^{-19} \ J$$

আবার,
$$eV_o = \frac{1}{2} mv^2 \Rightarrow V_o = \frac{0.688 \times 10^{-19}}{1.6 \times 10^{-19}} m = 0.43 \text{ Volt [Ans.]}$$

EXAMPLE-02: কোন একটি ধাতু হতে ইলেক্ট্রন মুক্ত করতে 2.3~eV শক্তির প্রয়োজন। ঐ ধাতুর ওপর $6800~\mathring{A}$ তরঙ্গদৈর্ঘ্যের আলো ফেললে কোন ইলেক্ট্রন মুক্ত হবে কি ?

SOLVE:
$$\lambda = 6800 \text{ Å} = 6800 \times 10^{-10} \text{ m}$$

$$W_o = 2.3eV = 2.3 \times 1.6 \times 10^{-19} J$$

$$\therefore$$
 প্রারম্ভ কম্পাঙ্ক, $\upsilon_o=rac{W_o}{\lambda}=rac{2.3 imes1.6 imes10^{-19}}{6.63 imes10^{-34}}=5.55 imes10^{14}~Hz$

আপতিত ফোটনের কম্পাঙ্ক,
$$\upsilon~=\frac{c}{\lambda}=\frac{3\times10^8}{6800\times10^{-10}}$$
 $=4.41\times10^{14}~{
m Hz}$

এখানে দেখা যায় যে, আপতিত ফোটনের কম্পাঙ্ক v ঐ ধাতুর প্রারম্ভ কম্পাঙ্ক vo অপেক্ষা বেশি। সুতরাং ইলেক্ট্রন মুক্ত হবে।

TRY YOURSELF

EXERCISE – 01: $5~{
m Kv}$ বিভব পার্থক্য প্রয়োগ করলে স্থির অবস্থা থেকে একটি ইলেক্ট্রন যে চূড়ান্ত বেগ প্রাপ্ত হবে তার মান নির্ণয় কর। $[{
m Ans.}~4.19 imes 10^7~{
m ms}^{-1}]$

EXERCISE – 02: একটি ধাতব পৃষ্ঠের ক্ষেত্রে নিঃসৃত ইলেক্ট্রনের সর্বাধিক বেগ $3.8 \times 10^5~{
m ms}^{-1}$. নিবৃত্তি বিভব পার্থক্য 0.4106V হলে $\frac{e}{m}$ নির্ণয় কর।

EXERCISE – 03: একটি কুলিজ নলে 30 kv বিভব পার্থক্যে একটি ইলেক্ট্রনকে অ্যানোডে নিক্ষেপ করা হলো। যদি অ্যানোডের সাথে একটি সংঘর্ষেই ইলেক্ট্রনটি তার সমুদয় গতিশক্তি হারায় তবে নিঃসত এক্সরশ্মির তরঙ্গদৈর্ঘ্য কত?

EXERCISE – 04: $4 \times 10^{15} \; \mathrm{Hz}$ কম্পাঙ্কের বিকিরণ কোনো ধাতবপৃষ্ঠে আপতিত হলে সর্বোচ্চ $3.14 \times 10^{-19} \; \mathrm{J}$ শক্তি সম্পন্ন ইলেক্ট্রন নির্গত হয়। ঐ ধাতুর সূচন কম্পাঙ্ক কত?

EXERCISE – 05: কোনো ধাতুর ওপর $2500~{\rm \AA}$ তরঙ্গদৈর্ঘ্যের অতিবেগুনী রিশ্মির ফেলা হলো। ধাতুটির কার্য অপেক্ষা $2.3 {\rm eV}$. নিঃসৃত ফটো ইলেক্ট্রনের সর্বোচ্চ বেগ কত হবে? ? $[{\rm Ans.}~9.69 \times 10^5~{\rm kgms^{-1}}]$

EXERCISE – 06: কোন ধাতুর আলোক তড়িৎ সূচন তরঙ্গদৈর্ঘ্য $2300~{\rm \AA}$ ধাতু পৃষ্ঠে $1800~{\rm \AA}$ তরঙ্গদৈর্ঘ্যের বিকিরণ ফেললে নিঃসৃত ফটো ইলেক্ট্রনের সর্বোচ্চ গতিশক্তি $1.495~{\rm eV}$ হয়। প্লাকের ধ্রুবকের মান নির্ণয় কর। $[{\rm Ans.}~6.6 \times 10^{-34}~{\rm Js}]$

EXERCISE – 07: সোডিয়ামের প্রারম্ভ কম্পাঙ্ক $4.8 \times 10^{14}~{\rm Hz}$ ন্যূনতম কত শক্তির আলো এর ওপর আপতিত হলে ইলেক্ট্রন নির্গত হবে? $[{\rm Ans.}~3.1824 \times 10^{-19}~{\rm J}]$

TYPE - 05

❖ কম্পটন প্রভাব

FORMULA:

$$\mathbf{0} \ \Delta \lambda = \frac{h}{m_o c} (1 - \cos \theta)$$

- $oldsymbol{2}$ সর্বোচ্চ তরঙ্গদৈর্ঘ্যের ক্ষেত্রে, $oldsymbol{\theta}=180^\circ$
- $oldsymbol{3}$ বৃহত্তম তরঙ্গদৈর্ঘ্যের ক্ষেত্রে, $oldsymbol{ heta}=90^\circ$

 $EXAMPLE - 01: 3 \times 10^{19} \ Hz$ আদি কম্পাঙ্কের একটি X- রিশ্মি ফোটন একটি ইলেক্ট্রনের সাথে সংঘর্ষের ফলে 90° কোণে বিক্ষিপ্ত হয়। এর নতুন কম্পাঙ্ক নির্ণয় কর। ইলেক্ট্রনের কম্পটন তরঙ্গদৈর্ঘ্য $8 \times 10^{-12} \ m$

SOLVE : আমরা জানি,
$$\lambda'=\frac{h}{m_oc}\left(1-\cos\theta\right)+\lambda_o$$

$$=2.43\times10^{-12}\left(1-\cos90^\circ\right)+\frac{c}{v_o}=2.43\times10^{-12}+\frac{3\times10^8}{3\times10^{-19}}$$

$$\lambda'=2.44\times10^{-12}$$

$$\operatorname{এব} v'=\frac{c}{\lambda'}=\frac{3\times10^8}{2.44\times10^{-12}}=1.23\times10^{20}\,\mathrm{Hz}\,[\mathrm{Ans.}]$$
 Vo = $3\times10^{19}\,\mathrm{m}$ $\theta=90^\circ$
$$\frac{h}{m_oc}=2.43\times10^{-12}\,\mathrm{m}$$

TRY YOURSELF

EXERCISE – 01: $0.40~{\rm \AA}$ তরঙ্গদৈর্ঘ্যের একটি এক্সরে ফোটন একটি নিশ্চল ইলেক্ট্রনকে আঘাত করলে ফোটন 90° কোণে বিক্ষিপ্ত হয়। বিক্ষিপ্ত ফোটনের তরঙ্গদৈর্ঘ্য নির্ণয় কর। $[{
m Ans.}~0.424~{
m \AA}]$

TYPE - 06

💠 হাইজেনবার্গ - এর অনিশ্চয়তা নীতি

FORMULA:

EXAMPLE – 01: 1 keV একটি ইলেক্ট্রনের অবস্থান ও ভরবেগ একই সাথে নির্ণয় করা হল। যদি অবস্থান 1 Å এর মধ্যে নির্ধারিত হয় তবে ভরবেগের অনিশ্চয়তার শতকরা হার নির্ণয় কর।

SOLVE: আমরা জানি,
$$E=\frac{p^2}{2m}\Rightarrow P=\sqrt{2mE}$$

$$=\sqrt{2\times9.1\times10^{-31}\times1.6\times10^{-16}}=1.71\times10^{-21}~{\rm kgms^{-1}}$$
 আবার, $\Delta x.~\Delta p\approx\frac{h}{2}\Rightarrow\Delta p=\frac{h}{4\pi\Delta x}=\frac{6.63\times10^{-34}}{4\pi\times10^{-10}}=0.527\times10^{-24}~{\rm kgms^{-1}}$ ∴ ভরবেগের অনিশ্চয়তার হার, $\frac{\Delta P}{P}=\frac{0.527\times10^{-24}}{1.71\times10^{-23}}=0.0308$ = $3.08~{\rm [Ans.]}$

$$\begin{split} m &= 9.1 \times 10^{-3} \ kg \\ E &= 1 \ keV = 1 \times 10^{3} \times 1.6 \times 10^{-19} \ J \\ &= 1.6 \times 10^{-16} \ J \\ \Delta &= 1 \ \mathring{A} = 10^{-10} \ m \end{split}$$

TRY YOURSELF

EXERCISE – 01: একটি ইলেক্ট্রনের অবস্থানের অনিশ্চয়তা হচ্ছে $5 \times 10^{-11}~\mathrm{m}$ ইলেক্ট্রনটির ভরবেগের অনিশ্চয়তা নির্ণয কর ৷ $[\mathrm{Ans.}~6.5 \times 10^{-22}~\mathrm{kgms^{-1}}]$

EXERCISE – 02: অনিশ্চয়তা নীতি থেকে দেখাও যে, নিউক্লিয়াসের অভ্যন্তরে ইলেক্ট্রন থাকতে পারে না।