

Notice of Allowability	Application No.	Applicant(s)
	10/788,736	MILLER ET AL.
	Examiner Dirk Wright	Art Unit 3681

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address--

All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. This communication is responsive to Applicant's election filed May 16, 2005.
2. The allowed claim(s) is/are 18-49 and 51.
3. The drawings filed on 26 February 2004 are accepted by the Examiner.
4. Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All
 - b) Some* c) None of the:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received: _____.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.

5. A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.
6. CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
 - (a) including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached
 - 1) hereto or 2) to Paper No./Mail Date _____.
 - (b) including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date _____.

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to 37 CFR 1.121(d).

7. DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1. Notice of References Cited (PTO-892)
2. Notice of Draftsperson's Patent Drawing Review (PTO-948)
3. Information Disclosure Statements (PTO-1449 or PTO/SB/08),
Paper No./Mail Date _____
4. Examiner's Comment Regarding Requirement for Deposit
of Biological Material
5. Notice of Informal Patent Application (PTO-152)
6. Interview Summary (PTO-413),
Paper No./Mail Date _____
7. Examiner's Amendment/Comment
8. Examiner's Statement of Reasons for Allowance
9. Other _____.

Claims Allowed

Claims 18-49, and 51 are allowable over the prior art of record. The claims are allowed because the prior art does not anticipate nor render obvious the claimed combination of: a variable speed transmission, comprising; a longitudinal axis; a plurality of balls distributed radially about the longitudinal axis, each ball having a tiltable axis about which it rotates, a rotatable input disc positioned adjacent to the balls and in contact with each of the balls; a fixed output disc positioned adjacent to the balls opposite the input disc and in contact with each of the balls; a rotatable idler having a constant outside diameter and positioned radially inward of and in contact with each of the balls; a cage, adapted to maintain the radial position and axial alignment of the balls and that is rotatable about the longitudinal axis; and an idler shaft connected to the idler adapted to receive a torque output from the idler and transmit the torque output out of the transmission; or: a variable speed transmission, comprising; a longitudinal axis; a first plurality of balls distributed radially about the longitudinal axis, each ball having a tiltable axis about which it rotates; a second plurality of balls distributed radially about the longitudinal axis, each ball having a tiltable axis about which it rotates; a first rotatable input disc positioned adjacent to the first plurality of balls and in contact with each of the first plurality of balls; a second rotatable input disc positioned adjacent to the second plurality of balls and in contact with each of the first plurality of balls; an input shaft coaxial with the longitudinal axis and connected to the first and second input discs; a rotatable output disc positioned between the first and second pluralities of balls and in contact with each of the first and second pluralities of balls; a first generally cylindrical idler positioned radially inward of and in contact with each of the first plurality of balls; and a second generally cylindrical idler positioned radially inward of and in

contact with each of the second plurality of balls; or: a rolling traction variable speed transmission, comprising a longitudinal axis; a plurality of round speed adjusters distributed about the longitudinal axis, each speed adjuster having a tiltable axis about which it rotates; an input disc that is coaxial with and rotatable about the longitudinal axis and that is positioned adjacent to and in contact with each of the speed adjusters; an output disc that is coaxial with and rotatable about the longitudinal axis and that is positioned adjacent to and in contact with each of the speed adjusters; and an axial force generator adapted to apply an axial force to increase contact force between the input disc, the output disc and the plurality of speed adjusters, the axial force generator further comprising, a bearing disc coaxial with and rotatable about the longitudinal axis having an outer diameter and an inner diameter and having a threaded bore formed in its inner diameter, a plurality of perimeter ramps attached to a first side of the bearing disc near its outer diameter; a plurality of bearings adapted to engage the plurality of bearing disc ramps; a plurality of input disc perimeter ramps mounted on the input disc on a side opposite of the speed adjusters adapted to engage the bearings; a generally cylindrical screw coaxial with and rotatable about the longitudinal axis and having male threads formed along its outer surface, which male threads are adapted to engage the threaded bore of the bearing disc; a plurality of central screw ramps attached to an end of the screw facing the speed adjusters; and a plurality of central input disc ramps affixed to the input disc and adapted to engage the plurality of central screw ramps; or: a support cage that supports and positions a plurality of speed adjusting tiltable balls in a rolling traction transmission, which utilizes an input disc and an output disc on either side of the plurality of balls, the cage comprising: first and second flat support discs that are each a generally circular sheet having a plurality of slots extending radially inward from an outer

edge, each slot having two sides; and a plurality of flat supporting spacers extending between said first and second support discs each spacer having a front side, a back side, a first end and a second end; wherein the first and second ends each have a mounting surface, wherein each mounting surface has a curved surface, and wherein the spacers are positioned angularly about the support discs between the grooves in the support discs such that the curved surfaces are aligned with the sides of the grooves; or: a support leg for a ratio changing mechanism, which changes the transmission ratio in a rolling traction transmission by tilting an axle that forms the axis of rotation of a ratio-determining ball, wherein the leg comprises: an elongated body; an axle-connecting end; a cam end opposite the axle-connecting end; a front side that faces the ball and a backside that faces away from the ball; and a central support portion between the axle-connecting end and the cam end; wherein the axle-connecting end has a bore formed through it adapted to receive the axle, and wherein a convexly curved camming surface is formed on the front side of the cam end that is adapted to assist in controlling the alignment of the bore; or: a fluid pumping ball for use in a variable speed rolling traction transmission utilizing a plurality of balls rotatable about their respective tilttable axes, an input disc on one side of and in contact with each of the plurality of balls, and an output disc on another side of and in contact with each of the plurality of balls, the fluid pumping ball comprising: a spherical ball having a bore formed through a diameter of the ball creating a cylindrical inner surface through the ball; and at least one helical groove formed in the inner surface of the ball and extending through the ball; or: a fluid pumping axle for use in a variable speed rolling traction transmission utilizing a plurality of balls having respective axes formed by diametrical bores formed therethrough, an input disc on one side of and in contact with each of the plurality of balls, and an output disc on another side

of and in contact with each of the plurality of balls, the fluid pumping axle comprising: a generally cylindrical axle of a diameter smaller than that of the bore through the balls and having first and second ends and a middle region, wherein when the axle is positioned properly within the bore of its respective ball, the first and second ends extend out of opposite sides of the ball and the middle region resides within the ball; and at least one helical groove formed on an outside surface of the axle, wherein the helical groove begins at a point outside of the ball and extends into at least a portion of the middle region; or: A shifting mechanism for a variable speed rolling traction transmission having a longitudinal axis and that utilizes a plurality of tilting balls distributed in planar alignment about the longitudinal axis and each ball contacted on opposing sides by an input disc and an output disc, in order to control a transmission ratio of the transmission, the shifting mechanism comprising: a tubular transmission axle running along the longitudinal axis; a plurality of ball axles each extending through a bore formed through a corresponding one of the plurality of balls and forming a tiltable axis of the corresponding ball about which that ball spins, and each ball axle having two ends that each extend out of the ball; a plurality of legs, one leg connected to each of the ends of the ball axles, the legs extending radially inward toward the transmission axle; an idler having a substantially constant outside diameter that is positioned coaxially about the transmission axle and radially inward of and in contact with each of the balls; two disc-shaped shift guides, one on each end of the idler, and each having a flat side facing the idler and a convex curved side facing away from the idler, wherein shift guides extend radially to contact all of the respective legs on the corresponding side of the balls; a plurality of roller pulleys, one for each leg, wherein each roller pulley is attached to a side of its respective leg facing away from the balls; a generally cylindrical pulley

stand extending axially from at least one of the shift guides; a plurality of guide pulleys positioned radially about and attached to the pulley stand; and a flexible tether having first and second ends with the first end extending through the axle and out a slot, which is formed in the axle proximate to the pulley stand, the first end of the tether further mapping around each of the roller pulleys and each of the guide pulleys, wherein the second end extends out of the axle to a shifter, wherein the guide pulleys are each mounted upon one or more pivot joints to maintain alignment of each guide pulley with its respective roller pulley and wherein when the tether is pulled by the shifter, the second end draws each of the roller pulleys in to shift the transmission; or: a shifting mechanism for a variable speed transmission having longitudinal axis and that utilizes a plurality of tilting balls, each having a ball radius from respective ball centers, in order to control a transmission ratio of the transmission, comprising: a plurality of ball axles each extending through a bore formed through a corresponding ball and forming the tiltable axis of the corresponding ball, and each ball axle having two ends that each extend out of the ball; a plurality of legs, one leg connected to each of ends the ball axles, the legs extending radially inward toward the transmission axle; a generally cylindrical idler with a substantially constant radius positioned coaxially and radially inward of and in contact with each of the balls; first and second disc-shaped shift guides, one on each end of the idler, and each having a flat side facing the idler and a convex curved side facing away from the idler, wherein shift guides extend radially to contact all of the respective legs on the corresponding side of the balls; and a plurality of guide wheels each having a guide wheel radius, one guide wheel for each leg, each guide wheel rotatably mounted at a radially inward end of its respective leg, wherein the guide wheels contact the curved surface of its respective shift guide; wherein respective shapes of the convex

curves are determined by a set of two-dimensional coordinates, the origin of which is centered at the intersection of the longitudinal axis and a line drawn through the centers of any two diametrically opposing balls, wherein the coordinates represent the location of the point of contact between the guide wheel surface and the shift guide surface as a function of the axial movement of the idler and shift guide, assuming that the convex curve is substantially tangent to the guide wheel at the point of contact; or: a coasting mechanism for a rolling traction transmission coupled to a rotating prime mover, which transmission utilizes a plurality of speed adjusting tiltable balls between opposing input and output discs to control a transmission ratio, the coasting mechanism comprising: a connector extending from a side of the input disc opposite the balls, wherein the connector has a first end and a second end, the first end of the connector rigidly attached to the input disc, the second end extending from the input disc a clutch lever having a first clutch end, a second clutch end and a middle portion, the first clutch end operably engaged with the second end of the connector, the second clutch end attached to a pawl, the middle portion having an aperture therethrough, which forms a fulcrum that is adapted to provide an axis about which the clutch lever can pivot; an elongated resilient rod adapted to hold the clutch lever, the resilient rod having an outside size that is smaller than the aperture of the clutch lever so that the clutch lever may rotate freely, wherein the resilient rod is adapted to rotate at a slower speed than the input disc when the input disc is rotating and the input torque has stopped, and wherein the resilient rod rotates at a slower speed than the prime mover when prime mover has resumed and the input disc is not rotating; at least one ratcheting disc having teeth formed on its outer diameter and having a hole formed through its center through which the resilient rod extends; at least one pawl mounted to the second end of the clutch lever and adapted to engage

Art Unit: 3681

the teeth of the at least one ratcheting disc; wherein an application of an input torque from the prime mover subsequent to previous cessation of an input torque causes the ratchet disc to rotate, thereby releasing the pawl and allowing the clutch lever to pivot and causing the connector to move to maintain contact with the clutch lever thereby causing the input disc to rotate in a direction such that it comes into contact with the balls.

No particular single feature of any one claim renders the claim as a whole patentable. Only the claim taken as a whole combination is deemed new and unobvious.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Prior Art Discussed

The examiner has considered all of the references cited by applicant in his Information Disclosure Statement filed August 6, 2004. None of the references appear to anticipate or render obvious the claimed combination and the cited patents by applicant do not appear to recite conflicting subject matter.

The references cited by the examiner are deemed pertinent to applicant's disclosure. The cited patents by applicant do not appear to recite conflicting subject matter.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Dirk Wright whose telephone number is 571-272-7098. The examiner can normally be reached on Monday through Friday, 8AM-4:30PM.

Art Unit: 3681

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Charles Marmor can be reached on 571-272-7095. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Dirk Wright
Primary Examiner
Art Unit 3681

DW
Monday, July 25, 2005

