Hyperbolic Embeddings and Hyperbolic GNNs

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

Readings

- Readings are updated on the website (syllabus page)
- Lecture 18 readings:
 - TransE: Translating Embeddings for Modeling Multi-relational Data
 - RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space
 - TuckER: Tensor Factorization for Knowledge Graph Completion
- Lecture 19 readings:
 - HGCN: Hyperbolic Graph Convolutional Neural Networks
 - Hyperbolic GNN survey

Content

Non-Euclidean Space

Hyperbolic Embeddings

Hyperbolic GNNs

Content

Non-Euclidean Space

Hyperbolic Embeddings

Hyperbolic GNNs

Recap: Graph Representation Learning

- Step 1: Obtain node and edge features, possibly augment them with structural properties of the input graphs
- **Step 2**: Use a parameterized **encoder** to map nodes to an embedding space
- Step 3: Make predictions on nodes/edges/graphs based on embeddings
- Step 4: Compute loss and optimize the parameters

Architecture vs. Embedding Geometry

- Architecture and embedding geometry are both crucial to the expressive power of a neural network
- Embedding geometry is closely related to the objective function
- Better embedding geometry can benefit a variety of architectures

Question

Embedding space \mathbb{R}^n $\overset{\mathbf{z}_v}{\bullet}$

Euclidean Space can not always capture complex graph structures

What embedding space geometry is optimal for data?

Consider non-euclidean space!

Non-Euclidean Space

- Euclidean Space (satisfy the fifth parallel postulate of Euclidean Geometry)
 - Given a line and a point not on it, exactly one line parallel to the given line can be drawn through the given point.
- Non-Euclidean Space:
 - Hyperbolic: negative curvature, infinitely many parallel lines (curve away from each other)
 - Spherical: positive curvature, no parallel lines

Riemannian Manifold

- Manifold: high-dimensional surface
- Riemannian Manifold ${\mathcal M}$
 - Equipped with
 - Tangent space $\mathcal{T}_p\mathcal{M}$: an \mathbb{R}^d that approximates the manifold at any point $p\in\mathcal{M}$
 - Inner product $g_p: \mathcal{T}_p\mathcal{M} \times \mathcal{T}_p\mathcal{M} \to \mathbb{R}$
 - Both functions vary smoothly (differentiable) on the manifold

Tangent Space

- Curve: smooth path along manifold $\gamma: [0,1] \to \mathcal{M}$
- **Speed:** direction of change along the curve $\dot{\gamma}$: $[0,1] \to \mathcal{T}_{\chi}\mathcal{M}$
- Tangent space T_xM : space of speed vectors v of all curves γ that go through point x on the manifold $\mathcal M$

Curvature

 The curvature (<u>sectional curvature</u>) at a point measures how drastically a surface bends away from its tangent plane at this point

High-level Intuition:

- If the surface locally lives **entirely on one side** of the tangent space $\mathcal{T}_p\mathcal{M}\Rightarrow \mathsf{Positive}$ curvature at point p
- If the tangent space $\mathcal{T}_p\mathcal{M}$ cuts through the surface \Rightarrow Negative curvature at point p
- If the surface has a line along which the surface agrees with the tangent space $\mathcal{T}_p\mathcal{M} \Rightarrow \mathbf{Zero}$ curvature at point p

Hyperbolic Space

- Hyperbolic space is a Riemannian manifold with constant negative curvature
 - -1/K, where (K > 0)
 - Becomes Euclidean when $K \to \infty$

• In Euclidean space, we can also find manifolds with constant negative

curvature:

two sheet hyperboloid (source: Wikipedia)

Periodic Amsler Surfaces

Hyperbolic Space and Minkowski Space

Hilbert's Theorem (1901): There exists no hyperbolic surface with constant negative curvature that can be embedded into \mathbb{R}^3 .

- However, we can embed hyperbolic geometry into Minkowski Space
- The Minkowski metric in the Minkowski space is different from the Euclidean metric.
 - Euclidean Metric: $g_E(\boldsymbol{u}, \boldsymbol{v}) = u_1 v_1 + u_2 v_2 + \dots + u_d v_d$
 - Minkowski Metric: $g_M(\boldsymbol{u},\boldsymbol{v}) = \pm (u_1v_1 u_2v_2 \cdots u_dv_d)$
 - Note: dimension 1 is treated differently in Minkowski Space.

Hyperboloid in Different Spaces

two sheet hyperboloid in 3D Euclidean space

Distance in Euclidean: $d_E(x, y) = \sqrt{2(1 - g_E(x, y))}$ (with normalized x and y)

2D Hyperboloid model in 3D Minkowski space

Distance in Minkowski: $D_M^K(x, y) = \sqrt{K} \operatorname{arcosh}(-\frac{g_M(x, y)}{K})$

Inner Product

- Hyperboloid model as a Riemannian manifold:
 - With Constant Minkowski metric:

$$\langle x, y \rangle_{\mathcal{L}} : \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \to \mathbb{R}$$

$$\langle x, y \rangle_{\mathcal{L}} = -x_0 y_0 + x_1 y_1 + \dots + x_d y_d$$
Time-like Space-like

- Hyperboloid model $\mathbb{H}^{d,K} = \{x \in \mathbb{R}^{d+1}: \langle x, x \rangle_{\mathcal{L}} = -K\}, -\frac{1}{K}$ is the curvature
- Note: the points in hyperboloid model $\mathbb{H}^{d,K}$ are represented in (d+1)-dimensional Minkowski space.
- The metric of hyperboloid model is different from the Euclidean metric!

Hyperboloid Model

- Hyperboloid Model (Lorentz Model)
 - Upper sheet of 2-sheet hyperboloid
 - ullet d-dimensional Hyperboloid can be represented in (d+1)-dimensional Minkowski space
 - Subset of Euclidean space
 - Numerically more stable, simpler formula

two sheet hyperboloid

Poincaré Model

Poincaré Model

- Radius proportional to \sqrt{K} ($-\frac{1}{K}$ is the curvature)
- Open ball (exclude boundary)
- Each triangle in the figure has the **same** area
- Exponentially many triangles with the same area towards the boundary of Poincaré Ball

Poincaré: intuitive visualization

Equivalence

- d-dimensional Poincaré model and (d+1)-dimensional hyperboloid model are **equivalent**!
- 2d Poincaré model can be derived using a **projection** of 3d hyperboloid model through a specific point onto the unit circle of the z=0 plane.

Geodesic

- Geodesic: shortest path in manifold
 - Analogous to straight lines in \mathbb{R}^n
 - Curved in hyperbolic space
- Geodesics visualization in Poincaré model: curved!

Set of geodesic lines from the red point to boundary of the Poincare ball that are parallel to the blue line

Geodesic Distance

• Geodesic distance between x and y for $\mathbb{H}^{d,\mathrm{K}}$:

$$D_{\mathcal{L}}^{K}(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{K}\operatorname{arcosh}(-\frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle_{\mathcal{L}}}{K})$$

- The more negative the curvature:
 - the more geodesics bends inward
 - geodesic distance increases

$$\operatorname{arcosh}(x) = \ln(x + \sqrt{x^2 + 1})$$

Dark blue: high curvature boundary and geodesics **Light blue**: low curvature boundary and geodesics

Tangent Space

- Tangent space expression under **hyperboloid model** $\mathbb{H}^{d,K}$ at point x:
 - $\mathcal{T}_{\boldsymbol{x}}\mathbb{H}^{d,K} = \{\boldsymbol{v} \in \mathbb{R}^{d+1} : \langle \boldsymbol{v}, \boldsymbol{x} \rangle_{\mathcal{L}} = 0\}$
- A vector space (linear structure) with the same dimension as the hyperboloid model
- ullet The best linear approximation to the manifold $\mathbb{H}^{\mathrm{d,K}}$ at point $oldsymbol{x}$

Mapping to and from Tangent Space

- Exponential map: $\mathcal{T}_{x}\mathbb{H}^{d,K}\to\mathbb{H}^{d,K}$
 - from tangent space (Euclidean) to manifold
- Logarithmic map: $\mathbb{H}^{d,K} \to \mathcal{T}_{x}\mathbb{H}^{d,K}$
 - from manifold to tangent space
 - inverse operation of exponential map

Exponential Map:

- For hyperboloid model $\mathbb{H}^{d,K} = \{x \in \mathbb{R}^{d+1} : \langle x, x \rangle_{\mathcal{L}} = -K\}$ at point x
- Exponential Map:

$$\exp_{\mathbf{x}}^{K}(\mathbf{v}) = \cosh\left(\frac{\|\mathbf{v}\|_{\mathcal{L}}}{\sqrt{K}}\right)\mathbf{x} + \sqrt{K}\sinh\left(\frac{\|\mathbf{v}\|_{\mathcal{L}}}{\sqrt{K}}\right)\frac{\mathbf{v}}{\|\mathbf{v}\|_{\mathcal{L}}}$$

- $\boldsymbol{v} \in \mathcal{T}_{\boldsymbol{x}} \mathbb{H}^{\mathrm{d,K}}$
- $\cosh(x) = \frac{e^x + e^{-x}}{2}$, $\sinh(x) = \frac{e^x e^{-x}}{2}$
- $\|v\|_{\mathcal{L}} = \langle v, v \rangle_{\mathcal{L}}$

Logarithmic Map

- For hyperboloid model $\mathbb{H}^{d,K}=\{x\in\mathbb{R}^{d+1}:\langle x,x\rangle_{\mathcal{L}}=-K\}$ at point x
- Logarithmic map:

$$\log_{\mathbf{x}}^{K} \mathbf{y} = D_{\mathcal{L}}^{K}(\mathbf{x}, \mathbf{y}) \frac{\mathbf{y} + \frac{1}{K} \langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}} \mathbf{x}}{\left\| \mathbf{y} + \frac{1}{K} \langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}} \mathbf{x} \right\|_{\mathcal{L}}}$$

- $\mathbf{y} \in \mathbb{H}^{d,K}$
- $D_{\mathcal{L}}^K(\mathbf{x}, \mathbf{y}) = \sqrt{K} \operatorname{arcosh}(-\frac{\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}}{K})$ is geodesic distance

Parallel Transport (1)

• Parallel Transport: transport a vector along a smooth curve on the surface and keep parallel to itself locally.

Transport a tangent vector \boldsymbol{v} along the surface with non-zero curvature. When travelling from A to N to B back to A, the direction of the vector \boldsymbol{v} changes!

Parallel Transport (2)

- Parallel Transport $P_{x \to y}(\cdot)$ maps a vector $v \in \mathcal{T}_x \mathcal{M}$ to $P_{x \to y}(v) \in \mathcal{T}_y \mathcal{M}$
- If two points x and y on the hyperboloid $\mathbb{H}^{d,K}$ are connected by a geodesic, then the parallel transport of tangent vector $v \in \mathcal{T}_x \mathbb{H}^{d,K}$ to $\mathcal{T}_y \mathbb{H}^{d,K}$:

$$P_{x \to y}(v) = v - \frac{\langle \log_x^K(y), v \rangle_{\mathcal{L}}}{D_{\mathcal{L}}^K(x, y)^2} (\log_x^K y + \log_y^K x)$$

- \log_x^K is the **Logarithmic map** at point x.
- $D_{\mathcal{L}}^K(\mathbf{x}, \mathbf{y}) = \sqrt{K} \operatorname{arcosh}(-\frac{\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}}{K})$ is geodesic distance

Content

Non-Euclidean Space

Hyperbolic Embeddings

Hyperbolic GNNs

Optimal Embedding

Given a graph G(V, E). Mapping $f: V \to W$, with distances d_V and d_W How to measure the **quality of embedding**?

High-level Intuition:

- Consider node $i \in V$, the embeddings of neighbor node in $\mathcal{N}(i)$ should be close to f(i) in the embedding space W
- Distances between embedding vectors f(i) and f(j) in the embedding space W should be close to the distance in original graph G
 - Recall Position-aware GNNs (lecture 10)

Distance Distortion

Distance Distortion:

$$D(f) = \frac{1}{c_n^2} \left(\sum_{i,j \in V, i \neq j} \frac{|d_W(f(i),f(j)) - d_V(i,j)|}{d_V(i,j)} \right)$$

- $C_n^2 = \frac{n(n-1)}{2}$
- The lower distortion, the better embedding
- The best distortion is D(f) = 0, preserving the distances between node pairs exactly

Mean Average Precision

Mean Average Precision (mAP)

$$mAP(f) = \frac{1}{|V|} \sum_{a \in V} \frac{1}{\deg(a)} \sum_{b_i \in \mathcal{N}_a} \frac{|\mathcal{N}_a \cap R_{a,b_i}|}{|R_{a,b_i}|}$$

- V is the node set, deg(a) denotes the degree of node a
- \mathcal{N}_a denotes the 1-hop neighbor nodes of a
- R_{a,b_i} is the set of nodes whose embeddings fall into the smallest ball centered at the embedding of a, that can retrieve b_i
- Used <u>here</u> at page 3
- The larger MAP, the better embedding.
- $MAP(f) \leq 1$
- Note: we do not consider node features here

Distortion vs. mAP

- mAP is a local measurement which does not depend on an explicit distance
 - It combines the effect of **precision** and **recall** when performing link prediction task
- Distortion is a global metric and helps to preserves the explicit value of distances
 - It can be useful in applications where we need to approximate more complex distances than link prediction (which can be viewed as a binary version of distance)
 - Examples: graph / sequence edit distance, shortest path distance, transportation distance (e.g., Google Map) ...

Graph with Grids and Cycles

- Euclidean space preserves neighbor nodes and distances for grid-like graphs
- Spherical space preserves neighbor nodes and distances for cycle-like graphs
- MAP(f) = 1, D(f) = 0

Graph with Grids and Cycles

- Euclidean space preserves neighbor nodes and distances for grid-like graphs
- Spherical space preserves neighbor nodes and distances for cycle-like graphs
- MAP(f) = 1, D(f) = 0

Exponential volume growth

• The **volume** of d-dimensional Euclidean Ball with radius r:

$$V_d^E(r) \propto r^d$$

- In a tree, the number of nodes grows exponentially with the tree depth
- The volume of a Poincaré model in the hyperbolic space grows exponentially with its radius!

$$V_2^H(r) \propto e^r$$

a hierarchical tree

Lower Distance Distortion

- In Poincaré model, geodesic bends inwards
- similar to trees: shortest path go through the LCA (lowest common ancestor)

Content

Non-Euclidean Space

Hyperbolic Embeddings

Hyperbolic GNNs

Challenges in Hyperbolic GNN

Challenges:

- Input node features are usually **Euclidean**
- Perform hyperbolic aggregation for message passing

 Choose hyperbolic spaces with the right amount of curvature at every layer of the GNN

 $T_x(M^P)$

exp(.)

 $= log(\gamma(1))$

 $\gamma(1) = exp(v)$

log(.)

Recap: Knowledge Graph

Knowledge in graph:

- A set of triplets <head entity, relationship, tail entity>
- Capture entities, types, and relationships
- Nodes are entities
- Nodes are labeled with their types
- Edges between two nodes capture relationships between entities
- KG is an example of a heterogeneous graph
 - Recap: Heterogenous graph is a graph with multiple node types and edge types

E: entity

R: relation

Tasks

• Graph representation learning on hierarchical graphs

• Link Prediction

Node Classification

Poincaré embedding (Nickel et. al.)

Problem Setting

- Given a Graph G = (V, E), V is vertex set, E is edge set,
- $x_i^{0,E}$ indicates the **initial (first layer) feature** of node i in a Euclidean Space
- We use E to indicate the features in Euclidean Space, H to denote hyperbolic space, l to denote the l-th layer feature
- Goal: learn a mapping f which maps nodes to d-dimension embedding vectors

$$f: (V, E, (x_i^{0,E})_{i \in V}) \to Z \in \mathbb{R}^{|V| \times d}$$

Overview: Hyperbolic GNN (HGCN)

•
$$\boldsymbol{h}_i^{l,H} = \mathrm{Msg}(\boldsymbol{x}_i^{l-1,H})$$

Message

•
$$\mathbf{y}_i^{l,H} = \mathrm{AGG}^{K_{l-1}}(\mathbf{h}_i^{l,H})$$

Aggregation

•
$$\boldsymbol{x}_{i}^{l,H} = \text{Update}^{K_{l-1},K_{l}}(\boldsymbol{y}_{i}^{l,H})$$

Update

 K_l : curvature at layer l

At every layer:

Hyperbolic GNN: Transformation

• $x^{0,E} \in \mathbb{R}^d$ denotes input Euclidean features

• We use $o = {\sqrt{K}, 0, ..., 0} \in \mathbb{H}^{d,K}$ (the north pole in $\mathbb{H}^{d,K}$) as a reference point to perform exponential mapping

• $\mathcal{T}_{\boldsymbol{o}}\mathbb{H}^{d,K} = \{\boldsymbol{v} \in \mathbb{R}^{d+1} : \langle \boldsymbol{v}, \boldsymbol{o} \rangle_{\mathcal{L}} = 0\}$

• We have $\langle \boldsymbol{o}, (0, \boldsymbol{x}^{0,E}) \rangle = 0$

 $(0, \mathbf{x}^{0,E})$ can be interpreted as a point in $\mathcal{T}_o \mathbb{H}^{\mathrm{d,K}}$!

Hyperbolic GNN: Transformation

Input Transformation

$$\boldsymbol{x}^{0,H} := \exp_{\boldsymbol{o}}^{K} \left((0, \boldsymbol{x}^{0,E}) \right)$$

$$= \left(\sqrt{K} \cosh \left(\frac{\|\boldsymbol{x}^{0,E}\|_{2}}{\sqrt{K}} \right), \sqrt{K} \sinh \left(\frac{\|\boldsymbol{x}^{0,E}\|_{2}}{\sqrt{K}} \right) \frac{\boldsymbol{x}^{0,E}}{\|\boldsymbol{x}^{0,E}\|_{2}} \right)$$

- $(0, \mathbf{x}^{0,E})$ is a point in $\mathcal{T}_o \mathbb{H}^{d,K}$
- $\exp_{\mathbf{0}}^{\mathbf{K}}$ maps the point to $\mathbb{H}^{d,K}$

Hyperbolic GNN: Message

Message:

$$\boldsymbol{h}_{i}^{l,H} = \left(W^{l} \otimes^{K_{l-1}} \boldsymbol{x}_{i}^{l-1,H} \right) \oplus^{K_{l-1}} \boldsymbol{b}^{l}$$

- Hyperbolic linear: $W^l \otimes^K x^H := \exp_o^K (W^l \log_o^K (x^H))$
 - \log_{o}^{K} maps hyperbolic points x^{H} to tangent space $\mathcal{T}_{o}\mathbb{H}^{d_{1},K}$
 - do linear transformation in $\mathcal{T}_o\mathbb{H}^{\mathrm{d,K}}$ with transformation matrix $W^l\in\mathbb{R}^{d_1 imes d_2}$
 - $\exp_{\mathbf{0}}^{K}$ maps points back to the hyperboloid $\mathbb{H}^{d_2,K}$
- Mobius addition: $\mathbf{x}^{H} \oplus^{K} \mathbf{b} \coloneqq \exp_{\mathbf{x}^{H}}^{K} (P_{o \to \mathbf{x}^{H}}^{K}(\mathbf{b}))$

In tangent space $\mathcal{T}_{x^H}\mathbb{H}^{d,K}$

Recap: Parallel Transport

$$P_{x \to y}(v) = v - \frac{\langle \log_x^K(y), v \rangle_{\mathcal{L}}}{D_{\mathcal{L}}^K(x, y)^2} (\log_x^K y + \log_y^K x)$$

Hyperbolic GNN: Aggregation

- Given hyperbolic messages $m{h}_i^{l,H}$, $m{h}_j^{l,H}$ of node i and node j
- Map $h_i^{l,H}$, $h_j^{l,H}$ to the tangent space of the origin $\mathcal{T}_o\mathbb{H}^{d,K}$ and calculate attention weight w_{ij}^l (node j to node i)

$$w_{ij}^{l} = \operatorname{Softmax}_{j \in \mathcal{N}(i)}(\operatorname{MLP}(\log_{o}^{K}(h_{i}^{l,H})||\log_{o}^{K}(h_{j}^{l,H})))$$

Aggregation:

$$\mathbf{y}_{i}^{l,H} = AGG^{K}(\mathbf{h}^{l,H})_{i} \coloneqq \exp_{\mathbf{h}_{i}^{l,H}}^{K}(\sum_{j \in \mathcal{N}(i)} w_{ij}^{l} \log_{\mathbf{h}_{i}^{l,H}}^{K}(\mathbf{h}_{j}^{l,H}))$$

Note: curvature K is layer-wise and trainable!

Note: do aggregation in Tangent space $\mathcal{T}_{h_i^{l,H}}\mathbb{H}^{\mathrm{d,K}}$ when considering node i

Hyperbolic GNN: Update

Update:

$$x_i^{l,H} = \text{Update}^{K_{l-1},K_l}(y_i^{l,H}) \coloneqq \exp_o^{K_l}(\sigma(\log_o^{K_{l-1}}(y_i^{l,H})))$$

- σ is a non-linear activation
- Apply activation in $\mathcal{T}_o \mathbb{H}^{d,K_{l-1}}$ and then map back to \mathbb{H}^{d,K_l}
- Tangent space of origin $\mathcal{T}_o\mathbb{H}^{\mathrm{d},\mathrm{K}}$ is shared across hyperboloids $\mathbb{H}^{\mathrm{d},\mathrm{K}}$ with any curvature K
- Update $K_{l-1},K_l(\cdot)$ enables HGNN to **smoothly vary curvature** at each layer from K_{l-1} to K_l

Hyperbolic GNN: Predict

• For link prediction, HGCN uses Fermi-Dirac decoder:

$$p\left((i,j) \in E \mid x_i^{L,H}, x_j^{L,H}\right) = \left[e^{(d_L^{K_L}\left(x_i^{L,H}, x_j^{L,H}\right)^2 - r)/t} + 1\right]^{-1}$$

- $p\left((i,j) \in E \mid x_i^{L,H}, x_j^{L,H}\right) \in (0,1]$
- $d_L^{K_L}(\cdot, \cdot)$ is the hyperbolic distance in $\mathbb{H}^{\mathrm{d},\mathrm{K}_L}$
- r and t are hyper-parameters
- For node classification, use exponential map to map hyperbolic embeddings into Euclidean tangent space at O, and perform multi-class classification with standard softmax and cross entropy

δ -Hyperbolicity

Gromov's δ -Hyperbolicity

An undirected graph G=(V,E) can be viewed as a metric space V with the graph distance d_G . Given $u,v,w,t\in V$ satisfying

$$d(u,v) + d(w,t) \ge d(u,t) + d(w,v) \ge d(u,w) + d(v,t),$$

we denote

Four-points condition

$$\delta(u, v, w, t) = \frac{d(u, v) + d(w, t) - d(u, t) - d(w, v)}{2}$$

The δ -Hyperbolicity of the graph is defined as

$$\delta(G, d_G) = \sup_{u, v, w, t \in V} \delta(u, v, w, t)$$

δ -Hyperbolicity

- The **lower** δ , the **more hyperbolic** is the graph
- $\delta = 0$ for trees.

$$\delta = 0$$

$$\delta = 3.0$$

$$\delta = 4.5$$

Experimental Results

	Dataset	DISEASE $\delta=0$		DISEASE-M $\delta=0$		Human PPI $\delta=1$		$\begin{array}{c} AIRPORT \\ \delta = 1 \end{array}$		$\begin{array}{c} {\sf PUBMED} \\ \delta = 3.5 \end{array}$		$\begin{array}{c} \textbf{CORA} \\ \delta = 11 \end{array}$	
	Hyperbolicity δ												
	Method	LP	NC	LP	NC	LP	NC	LP	NC	LP	NC	LP	NC
Shallow	Euc	59.8 ± 2.0	32.5 ± 1.1	-	-	-	-	92.0 ± 0.0	60.9 ± 3.4	83.3 ± 0.1	48.2 ± 0.7	82.5 ± 0.3	23.8 ± 0.7
	HYP [29]	63.5 ± 0.6	45.5 ± 3.3	-	-	-	-	94.5 ± 0.0	70.2 ± 0.1	87.5 ± 0.1	68.5 ± 0.3	87.6 ± 0.2	22.0 ± 1.5
	EUC-MIXED	49.6 ± 1.1	35.2 ± 3.4	-	-	-	-	91.5 ± 0.1	68.3 ± 2.3	86.0 ± 1.3	63.0 ± 0.3	84.4 ± 0.2	46.1 ± 0.4
	HYP-MIXED	55.1 ± 1.3	56.9 ± 1.5	-	-	-	-	93.3 ± 0.0	69.6 ± 0.1	83.8 ± 0.3	73.9 ± 0.2	85.6 ± 0.5	45.9 ± 0.3
Z	MLP	72.6 ± 0.6	28.8 ± 2.5	55.3 ± 0.5	55.9 ± 0.3	67.8 ± 0.2	55.3±0.4	89.8 ± 0.5	68.6 ± 0.6	84.1 ± 0.9	72.4 ± 0.2	83.1 ± 0.5	51.5 ± 1.0
	HNN[10]	75.1 ± 0.3	41.0 ± 1.8	60.9 ± 0.4	56.2 ± 0.3	72.9 ± 0.3	59.3 ± 0.4	90.8 ± 0.2	80.5 ± 0.5	94.9 ± 0.1	69.8 ± 0.4	89.0 ± 0.1	54.6 ± 0.4
GNN	GCN[21]	64.7 ± 0.5	69.7 ± 0.4	66.0 ± 0.8	59.4 ± 3.4	77.0 ± 0.5	69.7 ± 0.3	89.3 ± 0.4	81.4 ± 0.6	91.1 ± 0.5	78.1 ± 0.2	90.4 ± 0.2	81.3 ± 0.3
	GAT [41]	69.8 ± 0.3	70.4 ± 0.4	69.5 ± 0.4	62.5 ± 0.7	76.8 ± 0.4	70.5 ± 0.4	90.5 ± 0.3	81.5 ± 0.3	91.2 ± 0.1	79.0 ± 0.3	93.7 ± 0.1	83.0 ± 0.7
	SAGE [15]	65.9 ± 0.3	69.1 ± 0.6	67.4 ± 0.5	61.3 ± 0.4	78.1 ± 0.6	69.1 ± 0.3	90.4 ± 0.5	82.1 ± 0.5	86.2 ± 1.0	77.4 ± 2.2	85.5 ± 0.6	77.9 ± 2.4
	SGC [44]	65.1 ± 0.2	69.5 ± 0.2	66.2 ± 0.2	60.5 ± 0.3	76.1 ± 0.2	71.3 ± 0.1	89.8 ± 0.3	80.6 ± 0.1	94.1 ± 0.0	78.9 ± 0.0	91.5 ± 0.1	81.0 ± 0.1
Ours	HGCN	90.8 ± 0.3	74.5 \pm 0.9	78.1 \pm 0.4	72.2 \pm 0.5	84.5 \pm 0.4	74.6 \pm 0.3	96.4 \pm 0.1	90.6 \pm 0.2	96.3 ± 0.0	80.3 ± 0.3	92.9 ± 0.1	79.9 ± 0.2
	(%) Err Red	-63.1%	-13.8%	-28.2%	-25.9%	-29.2%	-11.5%	-60.9%	-47.5%	-27.5%	-6.2%	+12.7%	+18.2%

- LP denotes link prediction
- NC denotes node classification

Embedding Visualization

- Visualization on the Poincaré disk for link prediction on *DISEASE* ($\delta=0$)
- Color indicates the depth/hierarchy of the node in a tree
 - Darker color ⇒ deeper in a tree ⇒lower hierarchy
- GCN hardly captures hierarchy, while HGNN preserves node hierarchies

Attention Visualization

- Attention weights in 2-hop neighbor of a center node on DISEASE ($\delta=0$)
- Darkness of the color denotes their hierarchy. Intensity of the edges denotes the attention weights
- In HGNN, the center node pays more attention to its (grand) parent, who is with a higher hierarchy.

Performance V.S. Curvature

- Adjusting and training the curvature leads to improve the performance
- **Decreasing** the curvature **improves** link prediction performance on *DISEASE* $(\delta = 0)$

Summary of Hyperbolic Embedding

- Hyperbolic embeddings use hyperbolic geometry with constant negative curvature to preserve graph distances and complex relationships, particularly for hierarchical and tree-like graphs.
- HGCN: Graph convolutional network in hyperbolic space
 - maps Euclidean input features to hyperbolic embedding space, performs message aggregation in the tangent space and maps back to the hyperbolic space
- Experiments show decreasing the curvature of embedding space improves the performance over graphs with lower δ -Hyperbolicity.