UNIVERSITY OF SCIENCE - VIETNAM NATIONAL UNIVERSITY FACULTY OF INFORMATION TECHNOLOGY

Quang - Thang Nguyen

ANALYZING SORTING ALGORITHMS AND COMPARE THEM

Ho Chi Minh City, 11/2023

UNIVERSITY OF SCIENCE - VIETNAM NATIONAL UNIVERSITY FACULTY OF INFORMATION TECHNOLOGY

Quang - Thang Nguyen

ANALYZING SORTING ALGORITHMS AND COMPARE THEM

Lecturer

Mr. Huy-Thong Bui

Ho Chi Minh City, 11/2023

Contents

$\mathbf{C}_{\mathbf{c}}$	Contents					
1	Intr	oducti	on	1		
2	Info	rmatic	on	2		
3	Alg	orithm	presentation	3		
	3.1	Selecti	on sort	3		
		3.1.1	Idea of algorithm	3		
		3.1.2	Pseudo code	3		
		3.1.3	Illustration	4		
		3.1.4	Complexity Analysis	4		
		3.1.5	Optimize	5		
	3.2	Inserti	on sort	5		
		3.2.1	Idea of algorithm	5		
		3.2.2	Pseudo code	5		
		3.2.3	Illustration	6		
		3.2.4	Complexity Analysis	6		
		3.2.5	Optimize	7		
	3.3	Binart	insertion sort	7		
		3.3.1	Pseudo code	7		
	3.4	Shell s	ort	8		
		3.4.1	Idea of algorithm	8		
		3.4.2	Pseudo code	8		
		3.4.3	Illustration	8		
		3.4.4	Complexity Analysis	9		
	3.5	Bubble	e sort	10		
		3.5.1	Idea of algorithm	10		
		3.5.2	Illustration	10		
		3.5.3	Pseudo code	11		
		3.5.4	Complexity Analysis	11		
		3.5.5	Optimize	11		
	3.6	Shaker	rsort	12		
		3.6.1	Idea of algorithm	12		
		3.6.2	Pseudo code	13		

	3.6.3	Illustration	13
	3.6.4	Complexity Analysis	14
3.7	Counti	ing sort	15
	3.7.1	Idea of algorithm	15
	3.7.2	Pseudo code	15
	3.7.3	Illustration	16
	3.7.4	Complexity Analysis	16
3.8	Heap s	sort	16
	3.8.1	Definition of data structure heap	16
	3.8.2	Idea of algorithm	17
	3.8.3	Pseudo code	18
	3.8.4	Complexity Analysis	19
	3.8.5	Illustration	19
3.9	Merge	sort	21
	3.9.1	Idea of algorithm	21
	3.9.2	Illustration	21
	3.9.3	Pseudo code	21
	3.9.4	Complexity Analysis	23
3.10	Quick	sort	23
	3.10.1	Idea of algorithm	23
	3.10.2	Illustration	23
	3.10.3	Pseudo code	24
	3.10.4	Complexity Analysis	24
3.11	Radix	sort	25
	3.11.1	Idea of algorithm	25
	3.11.2	Illustration	25
	3.11.3	Pseudo code	25
	3.11.4	Complexity Analysis	26
3.12	Flash	sort	27
	3.12.1	Idea of algorithm	27
	3.12.2	Illustration	27
	3.12.3	Pseudo code	28
	3.12.4	Complexity Analysis	29
Exp	erimer	ntal results and comments	30
4.1			30
4.2			33
4.3	·		36
4.4			39
4.5			42

4

5	Project organization and Programming notes	43
6	References	44

List of Figures

4.1	Sorted data - Comparisons	30
4.2	Sorted data - Running time	31
4.3	Nearly sorted data - Comparisons	33
4.4	Nearly sorted data - Running time	35
4.5	Reversed sorted data - Comparisons	36
4.6	Reversed sorted data - Running time	38
4.7	Random data - Comparisons	39
4.8	Random data - Running time	41

List of Tables

2.1	Computer information	2
3.1	Illustration for Selection sort	4
3.2	Illustration for Insertion sort	6
3.3	Illustration for Shell sort	9
3.4	Compare running time between Insertion sort and Shell sort	9
3.5	Illustration for Bubble sort	10
3.6	Illustration for Shaker sort	14
3.7	Compare running time between Bubble sort and Shaker sort	14
3.8	Illustration for Heap sort	20
3.9	Illustration for Merge sort	21
3.10	Illustration for Quick sort	23
3.11	Illustration for Radix sort	25
11	Data - order: sorted data	วก
4.1		
4.2	Data - order: nearly sorted data	
4.3	Data - order: reversed sorted data	37
4.4	Data - order: reversed sorted data	40

Chapter 1

Introduction

In practical contexts, data sorting holds significant importance. Through sorting, information is organized systematically, enhancing the ease of search and management.

In tandem with the evolution of computer science, sorting algorithms have developed over time. Presently, there exists a multitude of sorting algorithms, each with its own merits and drawbacks. Within the scope of this report, I will conduct an investigation and implementation of 11 classical sorting algorithms, commonly taught to current computer science students.

Chapter 2

Information

Table 2.1: Computer information

Student name	Quang - Thang Nguyen
Processor	Intel(R) Core(TM) i7-10750H CPU
System type	64-bit operating system, x64-based processor
Installed RAM	8.00 GB (7.83 GB usable)
Main OS	Windows 11 Home Single Language
Main OS version	22H2
WSL version	2.0.9.0
WSL OS	Ubuntu 22.04.3 LTS
WSL compiler	g++ 11.4.0

Chapter 3

Algorithm presentation

3.1 Selection sort

3.1.1 Idea of algorithm

- This algorithm operates through the partitioning of an array into two segments: a sorted region and an unsorted region.
- Typically, the sorted region evolves incrementally from the left side of the array.
- The algorithm iterates through n-1 steps, during each of which it identifies the minimum value within the unsorted region and exchanges it with the leftmost unsorted element.
- Consequently, the demarcation between the sorted and unsorted regions is shifted one element to the right after each step.
- The algorithm concludes upon completing n-1 steps.

3.1.2 Pseudo code

```
1 Function selectionSort(arr)
      n \leftarrow length(arr);
      One by one, move boundary of unsorted region
      for i \leftarrow 0 to n - 2 do
          m \leftarrow 0;
         Find minimum of unsorted region
6
          for j \leftarrow i + 1 to n do
             if arr/j = arr/m then m \leftarrow j;
         Bring minimum element to leftmost position of unsorted region
         if m != i then
11
             swap(arr[i], arr[m]);
12
          end
13
      end
14
15 end
```

Algorithm 1: Selection sort

3.1.3 Illustration

Assume this array needs to be sorted

$$arr = \{6, 3, 0, 5\}$$

The table shows how the algorithm sorts array

Table 3.1: Illustration for Selection sort

step	array	explain	
0	$\{ 6, 3, 1, 5 \}$	At first, sorted region has no element.	
1	{ 6, 3, 1, 5 }	After first step, minimum element, 1, is chosen.	
		It will be brought to leftmost position of unsorted	
		region, position 0.	
2	{ 1, 6, 3 , 5 }	Now the smallest unsorted element is 3, who will	
		be brought to position 1 on next step.	
3	{ 1, 3, 6, 5 }	Now the smallest unsorted element is 5, who will	
		be brought to position 2, leftmost position of un-	
		sorted region, on next step.	
4	$\{1, 3, 5, 6\}$	Now the array is sorted. The algorithm does not	
		work with last element since it is already at right	
		position.	

3.1.4 Complexity Analysis

Space

Since the algorithm does not requires extra arrays, space complexity is $\Theta(1)$ for all cases.

Time

- The for loop in line 4 has to execute n-1 times.
- The for loop in line 7 has to execute n-1-i times.
- Therefore, the number of comparison operations needed is

$$\sum_{i=0}^{n-2} (n-1-i) = \frac{n(n-1)}{2}$$

• Both loops are independent from data distribution, so time complexity is always $\Theta(n^2)$.

4

3.1.5 Optimize

At each step, the minimum and maximum can be determined at the same time. Then the loop will not have to be executed n-1 times, but can be decreased approximately two times. Therefore running time will decrease about two times.

3.2 Insertion sort

3.2.1 Idea of algorithm

- Like Selection sort (3.1), insertion sort operates through the partitioning of an array into 2 segments: sorted region and an unsorted region.
- Typically, the sorted region evolves incrementally from the left side of the array
- The algorithm individually considers each element in an unsorted array and accurately places it within its appropriate position in the sorted region.
- This entails inserting the selected element into the sorted region by displacing all elements greater than the current one, creating a void that is subsequently filled by the chosen element.

3.2.2 Pseudo code

```
1 Function insertionSort(arr)
       n \leftarrow length(arr);
       for i \leftarrow 1 to n - 1 do
 3
           selected \leftarrow arr[i];
 4
           j \leftarrow i - 1;
 5
           Find position to add selected element
 6
           while j >= 0 \&\& arr[j] > selected do
 7
               arr[j + 1] \leftarrow arr[j];
 8
               j - - ;
 9
           end
10
           arr[j+1] \leftarrow selected;
11
       end
12
13 end
```

Algorithm 2: Insertion sort

3.2.3 Illustration

Assume this array needs to be sorted

$$arr = \{12, 11, 13, 5, 6\}$$

The table shows how algorithm sorts array

Table 3.2: Illustration for Insertion sort

step	array	explain
0	{ 12, 11, 13, 5, 6 }	At first, sorted region has 1 element.
1	{ *, 12, 11 , 13, 5, 6 }	11 is chosen, and the suitable position for it
		is marked by *
2	{ 11, 12, *, 13 , 5, 6 }	13 is chosen, and the suitable position for it
		is marked by *
3	{ *, 11, 12, 13, 5 , 6 }	5 is chosen, and the suitable position for it is
		marked by *
4	{ 5, *, 11, 12, 13, 6 }	6 is chosen, and the suitable position for it is
		marked by *
5	{ 5, 6, 11, 12, 13, }	The array is now sorted.

3.2.4 Complexity Analysis

Space

Since the algorithm does not requires extra arrays, space complexity is $\Theta(1)$ for all cases.

Time

- The for loop in line 3 has to execute n-1 times.
- In best case, the while loop does not have to execute (in case of original array is already sorted). Then, the number of comparison operations needed is

$$(n-1)*1=1$$

• In worse case, the *while* loop has to execute *i* times (when array is reversely sorted). Then, the number of comparison operations needed is

$$\sum_{1} n - 1(i) = \frac{n(n-1)}{2}$$

• Therefore, in best case, time complexity is $\Omega(n)$, and in worse case, it is $O(n^2)$.

• Average time complexity is $O(n^2)$.

3.2.5 Optimize

In Insertion sort, finding the location to insert is sequential. The searching speed can be increased by using binary search.

3.3 Binart insertion sort

3.3.1 Pseudo code

```
1 Function binaryInsertionSort(arr)
      n \leftarrow length(arr);
      for i \leftarrow 1 to n - 1 do
3
          selected \leftarrow arr[i];
          j \leftarrow i - 1;
          Find position to insert using binary search
          loc \leftarrow binarySearch(arr, selected, 0, j);
7
          Move all elements after location to create space
          while j >= loc do
              arr[j+1] \leftarrow arr[j];
10
             j - - ;
11
          end
12
          arr[j+1] \leftarrow selected;
13
      end
14
15 end
16 Function binarySearch(arr, key, low, high)
      if high <= low then
17
          return (key > arr[low]) ? (low + 1) : low;
18
      end
19
      mid \leftarrow (low + high) / 2;
20
      if key == arr/mid then
21
          return mid + 1;
22
      end
23
      if key > arr/mid then
24
          return binarySearch(arr, key, mid + 1, high);
25
      end
26
      return binarySearch(arr, key, low, mid - 1);
28 end
```

Algorithm 3: Binary Insertion sort

If an element has to be moved far (in case of reversed sorted array), many movements are involved. Shell sort was invented to fix this problem.

3.4 Shell sort

3.4.1 Idea of algorithm

- The idea of Shell sort is to allow the exchange of far items.
- In Shell sort, we make the array h-sorted for a large value of h.
- h is reduced until it becomes 1.
- An array is said to be h-sorted if all sub-lists of every h'th element are sorted.

3.4.2 Pseudo code

```
1 Function shellSort(arr)
       n \leftarrow length(arr);
       Rearrange elements at each n/2, n/4, n/8, ... intervals
 3
       interval \leftarrow n / 2;
 4
       while interval > 0 do
 5
           Insertion sort for interval
 6
           for i \leftarrow interval to n - 1 do
               selected \leftarrow arr[i];
 8
               j \leftarrow i;
               while j >= interval \&\& arr[j - interval] > selected do
10
                    arr[j] \leftarrow arr[j - interval];
11
                   j \leftarrow j - interval;
                end
13
               arr[j] \leftarrow selected;
           end
15
           interval \leftarrow \lfloor interval / 2 \rfloor ;
16
       end
17
18 end
```

Algorithm 4: Shell sort

3.4.3 Illustration

Assume this array needs to be sorted

$$arr = \{12, 11, 13, 5, 6\}$$

Table 3.3: Illustration for Shell sort

inverval	i	array	explain
2	2	{ 12 , 11, 13 , 5, 6 }	Insertion for 13 and 12.
2	3	{ 12, 11 , 13, 5 , 6 }	Insertion for 5 and 11.
2	4	{ 12, 5, 13 , 11, 6 }	Insertion for 5 and 11.
2	4	{ 12, 5, 6, 11, 13 }	Finish with $interval = 2$.
1	1	{ 12 , 5, 6, 11, 13 }	Insertion for 12
1	2	12 , 5 , 6, 11, 13 }	Insertion for 5 and 12.
1	3	{ 5 , 12 , 6 , 11, 13 }	Insertion for 6, 12 and 5.
1	4	{ 5 , 6 , 12 , 11 , 13 }	Insertion for 11 , 12 , 6 and 5 .
1	5	$\{ 5, 6, 11, 12, 13 \}$	Insertion for 13 12 , 11 , 6 and 5 .
1	6	{ 5,6,11,12,13 }	The array is sorted.

3.4.4 Complexity Analysis

Space

Since the algorithm does not requires extra arrays, space complexity is $\Theta(1)$.

Time

Time complexity of shell sort depends on the intervals the programmer chose. In the pseudo code implemented in 3.4.2, the original algorithm by Shell (1959) is selected.

- In worst case, time complexity is $O(n^2)$, because worst case for insertion sort in line 6 is $O(n^2)$. The reduction of intervals alone doesn't create a logarithmic time complexity in the overall algorithm.
- In best case, time complexity is $\Omega(n \log n)$.

An experiment is made to compare Insertion sort and Shell sort. In worst cases, Insertion sort's running time increases very fast when n increases.

Table 3.4: Compare running time between Insertion sort and Shell sort

Data distribution	Randomized		Reversed sorted	
n	10 000	100 000	10 000	100 000
Insertion sort	53.9181	5013.86	104.36	10165.9
Shell sort	1.555	24.0713	0.5074	6.0847

3.5 Bubble sort

3.5.1 Idea of algorithm

- The algorithm iterates through n-1 steps, examining pairs of adjacent elements in each iteration. Upon detecting an inversion, the algorithm swaps the elements and proceeds to evaluate the next pair.
- Following the initial step, the largest element is positioned at the rightmost of the array. Subsequently, the second largest element is situated at the second rightmost position. This process is repeated for a total of n-1 steps, ultimately resulting in a sorted array.

3.5.2 Illustration

Assume this array needs to be sorted

$$arr = \{6, 0, 3, 5\}$$

The table shows how algorithm sorts array

Table 3.5: Illustration for Bubble sort

step	array	explain
0	$\{6, 0, 3, 5 \mid \}$	At first, sorted region has 0 element.
1	{ 6 , 0 , 3, 5 }	6 and 0 form an inversion, swap them.
1	{ 0, 6 , 3 , 5 }	6 and 3 form an inversion, swap them.
1	{ 0, 3, 6 , 5 }	6 and 5 form an inversion, swap them.
1	$\{0, 3, 5, 6\}$	First loop ends here. 6 is now at right position.
2	{ 0 , 3 , 5, 6 }	0 and 3 does not form an inversion. Continue.
2	{ 0, 3 , 5 , 6 }	3 and 5 does not form an inversion. Continue.
2	$\{0, 3, 5, 6\}$	Second loop ends here. 5 is now at right position.
3	{ 0 , 3 , 5, 6 }	0 and 3 does not form an inversion. Continue.
3	$\{ \mid 0, 3, 5, 6 \}$	Third loop ends here. The array is now sorted.

3.5.3 Pseudo code

```
1 Function bubbleSort(arr)
      n \leftarrow length(arr);
2
      // loop through the array
      for i \leftarrow \theta to n - 1 do
4
          Bring the largest element to the end of array
          for j \leftarrow 0 to n - i - 1 do
6
              if arr/j/ > arr/j + 1/ then
                 swap(arr[j], arr[j + 1]);
              end
          end
10
       end
12 end
```

Algorithm 5: Bubble sort

3.5.4 Complexity Analysis

Space

Since the algorithm does not requires extra arrays, space complexity is $\Theta(1)$ for all cases.

Time

- Base operator is comparisons.
- The for loop in line 4 has to execute n times.
- The for loop in line 7 has to execute n-i times.
- Therefore, the number of comparison operations needed is

$$\sum_{i=0}^{n-1} (n-i) = \frac{n(n+1)}{2}$$

• Both loops are independent from data distribution, so time complexity is always $\Theta(n^2)$.

3.5.5 Optimize

When looping to a certain step, if the array is already sorted, further looping is pointless and time-consuming. Therefore, it is possible to improve by placing a flag in that turn whether or not a change of position is performed.

```
1 Function bubbleSort(arr)
      n \leftarrow length(arr);
\mathbf{2}
      // loop through the array
3
      for i \leftarrow \theta to n - 1 do
4
          swapped: if no swap is made in a loop, then array is sorted
\mathbf{5}
          swapped \leftarrow false;
          Bring the largest element to the end of array
 7
          for j \leftarrow 0 to n - i - 1 do
8
              if arr/j/ > arr/j + 1 then
                 swap(arr[j], arr[j + 1]);
10
                 swapped \leftarrow true;
11
              end
12
          end
13
          If no two elements were swapped by inner loop, then break
14
          if swapped == false then break;
15
16
      end
17
18 end
```

Algorithm 6: Bubble sort optimized

In the remaining of this report, the optimized version of bubble sort will be used when "bubble sort" mentioned.

The aforementioned enhancement proves notably efficient when sorting an array that is already ordered or has undergone substantial reduction in sorting time. However, in instances where a low-value element is positioned at the end of the array with the remaining elements in ascending order, the algorithm must traverse the entire array to relocate that element to the begin. This is due to each traversal merely shifting the element back by one position.

To address this issue, Shaker Sort adopts a strategy of reversing the traversal direction after each pass, thereby mitigating the mentioned drawback.

3.6 Shaker sort

3.6.1 Idea of algorithm

• Shaker sort is a variant of bubble sort. Bubble sort is one - way travel, shaker sort is two - way travel, forward and backward.

3.6.2 Pseudo code

```
1 Function shakerSort(arr)
      n \leftarrow length(arr);
      start \leftarrow 0;
3
      end \leftarrow n - 1;
4
      swapped \leftarrow true;
      while swapped do
6
          swapped \leftarrow false;
7
          Bubble sort from left to right
          for i \leftarrow start to end - 1 do
9
              if arr/i > arr/i + 1 then
10
                  swap(arr[i], arr[i + 1]);
11
                  swapped \leftarrow true \ ;
12
              end
13
          end
14
           If nothing moved, then array is sorted
15
          if !swapped then
              break;
17
          end
18
          Otherwise, reset the swapped flag
19
          swapped \leftarrow false;
20
          Bubble sort from right to left
21
          for i \leftarrow end - 1 to start do
22
              if arr/i < arr/i - 1/ then
23
                  swap(arr[i], arr[i-1]);
\mathbf{24}
                  swapped \leftarrow true;
25
              end
26
          end
27
      end
28
29 end
```

Algorithm 7: Shaker sort

3.6.3 Illustration

Assume this array needs to be sorted

$$arr = \{6, 0, 3, 5\}$$

The table shows how algorithm sorts array

Table 3.6: Illustration for Shaker sort

step	array	explain
0	{ 6, 0, 3, 5 }	At first, both sorted regions have 0 element.
1	$ \{ 6, 0, 3, 5 \} $	6 and 0 form an inversion, swap them.
1	{ 0, 6 , 3 , 5 }	6 and 3 form an inversion, swap them.
1	{ 0, 3, 6 , 5 }	6 and 5 form an inversion, swap them.
1	{ 0, 3, 5, 6 }	First loop ends here. 6 is now at right posi-
		tion.
2	$ \{ 0, 3, 5, 6 \} $	3 and 5 does not form an inversion. Continue.
2	{ 0 , 3 , 5, 6 }	0 and 3 does not form an inversion. Continue.
2	{ 0, 3, 5, 6 }	Second loop ends here. 0 is now at right po-
		sition.
3	{ 0, 3 , 5 , 6 }	3 and 5 does not form an inversion. Continue.
3	$\{0, 3, 5, 6\}$	The array is sorted.

3.6.4 Complexity Analysis

Space

Since the algorithm does not requires extra arrays, space complexity is $\Theta(1)$ for all cases.

Time

- Since shaker sort is variant of bubble sort, time complexity is still $\Theta(n^2)$.
- But running time is faster because the number of swapping operations is reduced.

An experiment is made to compare Bubble sort and Shaker sort. Due to the implementation of the random nearly sorted array function, a small and a large value are swapped. Bubble sort needs more time to bring the small values located at the end of array to their right position.

Table 3.7: Compare running time between Bubble sort and Shaker sort

Data distribution	Randomized		Nearly sorted	
n	50 000	500 000	50 000	500 000
Bubble sort	6334.1	643998	2100.23	213153
Shaker sort	4660.84	477125	2.0739	27.4674

3.7 Counting sort

3.7.1 Idea of algorithm

- Counting sort is a non comparison based algorithm.
- The algorithm stores the count of each unique element of the input array at their respective indices in a frequency array.
- Store the prefix sum of elements of frequency array. This will help in placing the elements of the input array at the correct index in the output array.
- From the prefix sum array, the sorted array will be formed.
- Counting sort works with integers only.

3.7.2 Pseudo code

```
1 Function countingSort(arr)
      n \leftarrow length(arr);
      Find the maximum element of array
3
      h \leftarrow \max(arr);
4
      Create frequency array
5
      f \leftarrow array[n];
      Set all elements of frequency array to 0
      for i \leftarrow 0 to n - 1 do f[i] = 0;
8
      Count frequency of each element appeared in array
      for i \leftarrow 0 to n - 1 do f[arr[i]] + +;
10
      Prefix sum to get its last position in sorted array
11
      for i \leftarrow 1 to h do f[i] \leftarrow f[i] + f[i-1];
12
      Temporary array to save sorted array
13
      tmp \leftarrow array[n];
14
      for i \leftarrow 0 to n - 1 do
15
          tmp[f[arr[i]] - 1] \leftarrow arr[i];
16
          f[arr[i]]- - ;
17
      end
18
      Copy data from temp array back to origin array
19
      arr \leftarrow tmp;
20
21 end
```

Algorithm 8: Counting sort

3.7.3 Illustration

Assume this array needs to be sorted

$$arr = \{3, 4, 3, 5, 4, 3, 2, 2, 1, 3, 1\}$$

The frequency array is

$$f = \{0, 2, 2, 4, 2, 1\}$$

- $f[\mathbf{0}] = 0$ means there are no elements have value of $\mathbf{0}$ in the array.
- f[1] = 2 means there are 2 elements have value of 1 in the array.
- f[2] = 2 means there are 2 elements have value of 2 in the array.
- f[3] = 4 means there are 4 elements have value of 3 in the array.
- f[4] = 2 means there are 2 elements have value of 4 in the array.
- f[5] = 1 means there are 1 elements have value of 5 in the array.

The sorted array is

$$arr = \{1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5\}$$

3.7.4 Complexity Analysis

Space

Since the algorithm requires a frequency array of length $\max(arr) - \min(arr)$ (denote: k), therefore space complexity is O(k).

Time

Time complexity is O(n+k) in all cases.

3.8 Heap sort

3.8.1 Definition of data structure heap

- A heap is a binary tree satisfies any node's key value is not smaller than its children's key value in a relationship.
- In max heap, any node's key value is not smaller than its children's key value.
- In min heap, any node's key value is not greater than its children's key value.

- In ascending order sorting algorithm, max heap is used, an its elements is stored in an array, where left-child of node at position i, if exists, is at position 2 * i + 1, and right-child of node at position i, if exists, is at position 2 * i + 2.
- So max heap now is an array satisfies

$$\begin{cases} arr[i] \ge arr[2*i+1] \\ arr[i] \ge arr[2*i+2] \end{cases}, \forall i \in \left[0, \left\lfloor \frac{n-2}{2} \right\rfloor\right]$$

3.8.2 Idea of algorithm

- Heap sort uses data structure heap to sort an array.
- The algorithm first turns whole array into a max heap (in case of ascending sort).
 - From left to right, the node and its children, if one or both of them exist, are considered. The father node will be swapped with the greater of its children.
 - This process is repeated until a first leaf node is considered.
- After building a heap, the array will be sorted
 - The root is taken out, and stored at the backward of the array. The heap's boundary is reduced by 1. The heap is rebuilt to have new root.
 - This process is repeated until the heap is empty. The array is sorted.

3.8.3 Pseudo code

```
1 Function heapify(arr, l, r)
       i \leftarrow l;
      j \leftarrow 2 * i + 1;
       x \leftarrow arr[i];
       while i \le i do
          If node pointing by j has two children
 6
          if j < r then
 7
              j point to smaller node
              if arr[j] < arr[j + 1] then
                  j++
10
              end
11
          end
12
          If true, then the heap is built.
13
          if x >= arr/j then
14
              break;
15
          end
16
          swap(arr[j], arr[i]);
17
          Prepare for new loop
18
          i \leftarrow j;
19
          j \leftarrow 2 * i + 1;
20
       end
21
22 end
23 Function heapSort(arr)
       n \leftarrow length(arr);
24
       Prepare heap
25
       From right to left, push each element to heap
26
      for l \leftarrow \left| \frac{n}{2} \right| - 1 to \theta do heapify(arr, l, n - 1);
27
       Heap sort
28
       r \leftarrow n - 1;
29
       while r > \theta do
30
          Swap top element of heap to last of array
31
          swap(arr[0], arr[r]);
32
33
          r - - ;
          Push swapped element to heap again
34
          heapify(arr, 0, r);
35
       end
36
з7 end
```

Algorithm 9: Heap sort

3.8.4 Complexity Analysis

Space

Since the algorithm does not requires extra arrays, space complexity is $\Theta(1)$ for all cases.

Time

- Building a heap costs O(n).
- For sorting, it costs O(n) to sort. In best case, it costs O(1) to push new root back to heap, and in worst case, it costs $O(\log n)$.

Totally, it costs O(n) in best case, and $O(n \log n)$ in worse case and average.

3.8.5 Illustration

To have another view, the min - heap and descending - order sorting algorithm is used for illustration.

Assume this array needs to be sorted

$$arr = \{27, 9, 1, 6, 3, 13, 14, 7, 28\}$$

Table 3.8: Illustration for Heap sort

position	array	explain
3	{ 27, 9, 1, 6 , 3, 13, 14, 7, 28 }	First position is $\left[\frac{n-2}{2} = \frac{9-2}{2} = 3\right]$. 6 is at right position.
2	{ 27, 9, 1, 6, 3, 13, 14, 7, 28 }	1 is at right position.
1	{ 27, 9, 1, 6, 3, 13, 14, 7, 28 }	9 will be swapped with β .
1	{ 27, 3, 1, 6, 9, 13, 14, 7, 28 }	9 does not have any children. It stays there.
0	{ 27 , 3, 1, 6, 9, 13, 14, 7, 28 }	27 will be swapped with 1.
0	{ 1, 3, 27 , 6, 9, 13, 14, 7, 28 }	27 will be swapped with 13.
0	{ 1, 3, 13, 6, 9, 27 , 14, 7, 28 }	27 does not have any children. It stays there

The \min - heap is built. Now the array will be sorted.

step	array	explain
0	{ 1, 3, 13, 6, 9, 27, 14, 7, 28 }	Firstly, sorted region have no elements. The root
		of a heap is selected and brought to the right of
		array.
0	{ 28 , 3, 13, 6, 9, 27, 14, 7, 1 }	28 will be pushed back to heap.
0	{ 3, 6, 13, 7, 9, 27, 14, 28 , 1 }	28 is at right position.
1	{ 3 , 6, 13, 7, 9, 27, 14, 28, 1 }	The root of a heap, 3, is selected and brought to
		the right of array.
1	{ 28 , 6, 13, 7, 9, 27, 14, 3, 1 }	28 will be pushed back to heap.
1	{ 6, 7, 13, 28 , 9, 27, 14, 3, 1 }	28 is at right position.
2	{ 6 , 7, 13, 28, 9, 27, 14, 3, 1 }	6 , is selected and brought to the right of array.
2	{ 14 , 7, 13, 28, 9, 27, 6, 3, 1 }	14 will be pushed back to heap.
2	$\{7, 9, 13, 28, 14, 27, 6, 3, 1\}$	14 is at right position.
3	{ 7 , 9, 13, 28, 14, 27, 6, 3, 1 }	7, is selected and brought to the right of array.
3	{ 27 , 9, 13, 28, 14, 7, 6, 3, 1 }	27 will be pushed back to heap.
3	{ 9, 14, 13, 28, 27 , 7, 6, 3, 1 }	27 is at right position.
4	9 , 14, 13, 28, 27, 7, 6, 3, 1 }	9 is selected and brought to the right of array.
4	27 , 14, 13, 28, 9, 7, 6, 3, 1 }	27 will be pushed back to heap.
4	{ 13, 14, 27 , 28, 9, 7, 6, 3, 1 }	27 is at right position.
5	{ 13 , 14, 27, 28, 9, 7, 6, 3, 1 }	13 is selected and brought to the right of array.
5	{ 28 , 14, 27, 13, 9, 7, 6, 3, 1 }	28 will be pushed back to heap.
5	{ 14, 28 , 27, 13, 9, 7, 6, 3, 1 }	28 is at right position
6	{ 14 , 28, 27, 13, 9, 7, 6, 3, 1 }	28 is at right position
6	{ 27 , 28, 14, 13, 9, 7, 6, 3, 1 }	27 will be pushed back to heap.
6	{ 27 , 28, 14, 13, 9, 7, 6, 3, 1 }	27 is at right position.
7	{ 27 , 28, 14, 13, 9, 7, 6, 3, 1 }	27 is selected and brought to the right of array.
7	{ 28, 27, 14, 13, 9, 7, 6, 3, 1 }	The array is sorted.

3.9 Merge sort

3.9.1 Idea of algorithm

Merge sort is a recursive algorithm works by following steps:

- If array contains less than two elements, do nothing and return.
- Else, divide array into two halves, sort them and merge them back into one array.

3.9.2 Illustration

Assume this array needs to be sorted

$$arr = [4, 2, 3, 1, 8, 6, 7, 5]$$

The table shows how algorithm sorts array

Table 3.9: Illustration for Merge sort

array	explain
[4, 2, 3, 1, 8, 6, 7, 5]	The array will be divided into two halves.
[[4, 2, 3, 1], [8, 6, 7, 5]]	Each half will be divided into two halves.
[[[4, 2], [3, 1]], [[8, 6], [7, 5]]]	Each half will be divided into two halves.
[[[[4], [2]], [[3], [1]]], [[8], [6]], [7], [5]]]	Each half will be divided into two halves.
[[[2, 4], [1, 3]], [[6, 8], [5, 7]]]	Merge two halves.
[[1, 2, 3, 4], [5, 6, 7, 8]]	Merge two halves.
[1, 2, 3, 4, 5, 6, 7, 8]	Merge two halves.

3.9.3 Pseudo code

```
1 Function mergeSort(arr, l, r)
      if l < r then
\mathbf{2}
          \operatorname{mid} \leftarrow l + \left| \frac{r - l}{2} \right| ;
3
          Sort first and second halves
4
          mergeSort(arr, l, mid);
          mergeSort(arr, mid + 1, r);
          Merge the sorted halves
          merge(arr, l, mid, r);
8
      end
10 end
11 Function merge(arr, l, m, r)
      Create temporary arrays
12
      leftArr \leftarrow arr[l..m];
13
      rightArr \leftarrow arr[m+1..r];
14
      Merge the temp arrays back into arr[l..r]
15
16
      leftID \leftarrow 0;
      rightID \leftarrow 0;
17
      mergedId \leftarrow 1;
18
       while leftID < length(leftArr) && rightID < length(rightArr) do
19
          if leftArr/leftID/ <= rightArr/rightID/ then
20
              arr[mergedId] \leftarrow leftArr[leftID];
\mathbf{21}
              leftID++;
          end
23
          else
24
              arr[mergedId] \leftarrow rightArr[rightID];
25
              rightID++;
26
          end
27
          mergedId++;
28
29
      end
      Copy remaining elements of leftArr[] if any
30
       while leftID < length(leftArr) do
31
          arr[mergedId] \leftarrow leftArr[leftID];
32
          leftID++;
33
          mergedId++;
34
      end
35
      Copy remaining elements of rightArr[] if any
36
       while rightID < length(rightArr) do
37
          arr[mergedId] \leftarrow rightArr[rightID];
38
          rightID++;
39
          mergedId++;
40
      end
41
42 end
```

Algorithm 10: Merge sort

3.9.4 Complexity Analysis

Space

Each recursive step requires extra array to copy data, space complexity is $\Theta(n)$ for all cases.

Time

- It takes O(n) to merge two halves.
- The original is divided $\log_2 n$ times.
- So time complexity is $O(n \log n)$ in all cases, since above steps are executed independently of data distribution.

3.10 Quick sort

3.10.1 Idea of algorithm

- One random element is chosen as a pivot.
- The array will be split into to segments: one segment contains elements smaller than pivot, another contains elements greater than pivot.
- The algorithm call itself to partition two segments.

3.10.2 Illustration

Assume this array needs to be sorted, an pivot is the rightmost element of the array

$$arr = [4, 1, 3, 2, 7, 6, 8, 5]$$

The table shows how algorithm sorts array

Table 3.10: Illustration for Quick sort

array	explain
[4, 1, 3, 2, 7, 6, 8, 5]	The array will be divided into two segments.
[[4, 1, 3, 2], 5 , [6, 8, 7]]	The array is partitioned.
[[4, 1, 3, 2], 5, [6, 8, 7]]	Recursive sort to sub-array.
[[[1], 2 , [3, 4]], 5, [[6], 7 , [8]]]	Finish next stage.
[[1], 2, [3, 4]], 5, [6], 7, [8]]	Recursive sort to sub-array.
[[1], 2, [3, 4]], 5, [6], 7, [8]]	The array is sorted.

3.10.3 Pseudo code

```
1 Function quickSort(arr, l, r)
      if l < r then
         pi is partitioning index, arr[pi] is now at right place
3
         pi \leftarrow partition(arr, l, r);
 4
         Separately sort elements before partition and after partition
         quickSort(arr, l, pi - 1);
 6
         quickSort(arr, pi + 1, r);
      end
9 end
10 Function partition(arr, l, r)
      Choose the pivot
11
      swap(arr[random(l, r)], arr[r]);
12
      pivot \leftarrow arr[r];
13
      Index of smaller element and indicate the right position of pivot
14
      found so far
      i \leftarrow (l-1);
15
      for j \leftarrow l to r do
16
          If current element is smaller than the pivot
17
         if arr/j < pivot then
18
             Increment index of smaller element
19
             i++;
20
             swap(arr[i], arr[j]) ;
\mathbf{21}
         end
22
      end
23
      swap(arr[i+1], arr[r]);
24
      return (i+1);
25
26 end
```

Algorithm 11: Quick sort

3.10.4 Complexity Analysis

Space

Since the algorithm does not requires extra arrays, space complexity is $\Theta(1)$ for all cases.

Time

- Best cases: $\Omega(n \log n)$. This case occurs when the pivot chosen at each step divides the array into two halves.
- Worst csae: $O(n^2)$. This occurs when the pivot chosen at each step is always the smallest or largest element.
- Average: $\Theta(n \log n)$.

3.11 Radix sort

3.11.1 Idea of algorithm

- Radix sort is a non-comparative integer sorting algorithm that sorts data with integer keys by grouping keys by the individual digits which share the same significant position and value.
- There are two variations: LSD and MSD. In number 1234, if digit 1 is checked first, it is MSD (Most Significant Digit), if 4 is checked first, it is LSD (Least Significant Digit).
- In this report, the chosen radix is 10, and LSD.

3.11.2 Illustration

Assume this array needs to be sorted

$$arr = [72, 34, 52, 44, 76, 56]$$

The table shows how algorithm sorts array

Table 3.11: Illustration for Radix sort

digit	array	explain
0	[72, 34, 52, 44, 76 , 56]	The maximum element has two digits.
1	[72, 34, 52, 44, 76, 56]	The array will be divided into groups
		based on their last significant digit.
1	$\{ \{72, 52\}, \{34, 44\}, \{76, 56\} \}$	The array is divided into three groups.
1	[72, 52, 34, 44, 76, 56]	Merged back.
2	[7 2, 5 2, 3 4, 4 4, 7 6, 5 6]	The array will be divided into groups
		based on their second last significant
		digit
2	{ { 3 4 }, { 4 4 }, { 5 2, 5 6 }, { 7 2, 7 6 } }	The array is divided into three groups.
2	[34, 44, 56, 56, 72, 76]	Merged back.

3.11.3 Pseudo code

```
1 Function radixSort(arr)
       n \leftarrow length(arr);
       Find the maximum number to know the number of digits
3
       \max Num \leftarrow \max(arr);
4
       Do counting sort for every digit
5
       for exp \leftarrow 1; maxNum / exp > 0; exp *= 10 do
          countSort(arr, n, exp);
7
       end
8
9 end
10 Function countSort(arr, n, exp)
       Counting sort of arr[] according to the digit represented by exp
11
       k \leftarrow 10;
12
       output \leftarrow \operatorname{array}[n];
13
       count \leftarrow \operatorname{array}[k] with all elements 0;
14
       Count occurrences of each digit in the input array
15
       for i \leftarrow 0 to n - 1 do
16
          count[(arr[i] / exp) \% 10] + + ;
17
18
       end
       Update count[i] to store the position of the next occurrence
19
       for i \leftarrow 1 to k - 1 do
20
          count[i] += count[i - 1];
\mathbf{21}
22
       end
       Build the output array
23
       for i \leftarrow n - 1 to \theta do
\mathbf{24}
           output[count[(arr[i] / exp) % 10] - 1] \leftarrow arr[i];
25
           \operatorname{count}[(\operatorname{arr}[i] / \exp) \% 10] - ;
26
       end
27
       Copy the output array to arr[] so that arr[] contains sorted
\mathbf{28}
       numbers based on current digit
       arr[i] \leftarrow output[i];
29
30 end
```

Algorithm 12: Radix sort

3.11.4 Complexity Analysis

Space

Since the algorithm does not requires extra arrays, space complexity is $\Theta(1)$.

Time

- Best cases: $\Omega(n \log n)$. This case occurs when the pivot chosen at each step divides the array into two halves.
- Worst csae: $O(n^2)$. This occurs when the pivot chosen at each step is always the smallest or largest element.
- Average: $\Theta(n \log n)$.

3.12 Flash sort

3.12.1 Idea of algorithm

 \bullet The algorithm divides elements into m segments.

• Element
$$x$$
 belongs to segment $k[x] = \left\lfloor (m-1) * \frac{x - min(arr)}{max(arr) - min(arr)} \right\rfloor$.

• After partitioning, use insertion sort for each partitions.

3.12.2 Illustration

Assume this array needs to be sorted

$$arr = [4, 1, 0, 3, 2]$$

With m = 3, the partitioning table is

element	segment
4	3
1	1
0	1
3	3
2	2

After partition, array becomes

$$arr = [1,0,|3,2,|4]$$

3.12.3 Pseudo code

```
1 Function flashSort(arr, n)
        Step 0: Find min and max
        \min \leftarrow \min(arr);
 3
        \max \leftarrow \max(arr);
 4
        If arr[i] == arr[j], for all i, j
        if max == min then return;
 6
 7
        Step 1: Determine the size of partitions
        m \leftarrow n * 0.45;
        if m \le 2 then m \leftarrow 2;
10
11
        L \leftarrow \operatorname{array}[m] with all elements 0;
12
        for i \leftarrow \theta to n - 1 do
13
            k \leftarrow (m-1) * \left\lfloor \frac{arr[i] - min}{max - min} \right\rfloor ;
14
            L[k]++;
15
        end
16
        for k \leftarrow 1 to m-1 do L[k] \leftarrow L[k] + L[k-1];
17
        Step 2: Partition
18
        i \leftarrow 0;
19
        count \leftarrow 0;
20
        k \leftarrow m - 1;
21
        while count < n do
22
             while i >= L/k/ do
23
24
                k \leftarrow (m-1) * \left| \frac{arr[i] - min}{max - min} \right| ;
25
26
             end
            flash \leftarrow arr[i];
27
            while i != L[k] do
 k \leftarrow (m-1) * \left\lfloor \frac{flash - min}{max - min} \right\rfloor ;
28
29
                 swap(arr[L[k] - 1], flash);
30
31
                 count++;
32
             end
33
        end
34
35 end
```

Algorithm 13: Flash sort

The array is partitioned into m segments. Use insertion sort 3.2 for sorting each segment. Insertion sort is chosen because its speed when sorting array with small number of elements.

3.12.4 Complexity Analysis

Space

Space complexity is O(m), for array L in line 13.

Time

- Time complexity for partition step is O(n), sice each element is considered once.
- In average, each segment after partitioning has $\frac{n}{m}$ elements. Therefore, due to the time complexity of insertion sort, time complexity for sorting each segment is $O(\frac{n^2}{m^2})$. There are m segments, so time complexity for sorting array is $O(\frac{n^2}{m^2}*m) = O(\frac{n^2}{m})$.
- After experiments, m = 0.43n returns best complexity. (Neubert, 1998).
- In worst case, time complexity can reach $O(n^2)$, when data is unevenly distributed.

Chapter 4

Experimental results and comments

4.1 Sorted data

These charts show number of comparisons when the algorithms sort the sorted array

Figure 4.1: Sorted data - Comparisons
Sorted data - Comparisons

Remove Selection sort from a chart

The number of comparisons made by Selection sort is very high, since Insertion sort

works very fast when sorting the sorted arrays, Bubble sort and Shaker sort both have a mechanism allowed them to break when meeting a sorted array, and the other algorithms are much more efficient than Selection sort.

These line graph show running time when the algorithms sort the sorted array

Sorted data - Running time 250000 200000 150000 100000 50000 0 10000 30000 50000 100000 300000 50000 Insertion sort = - Bubble sort Shaker sort Selection sort -Quick sort Shell sort Heap sort Merge sort Counting sort — Radix sort - Flash sort

Figure 4.2: Sorted data - Running time

The reason why Selection sort costs lots of time to run it explained above. Remove Selection sort from a graph

Only one line is not normal here, Quick sort's running time is much higher than the others. This happens because the pivot chosen is random, and because the array is already sorted, the probability of the pivot chosen separate the array into two halves is low. That is why its running time is much higher than other algorithms.

Table 4.1: Data - order: sorted data

		Data	Data order Sorted data	ıta		
Datasize	1000	000	30	30000	20	20000
Resulting statics	Comparisons	Running time	Comparisons	Running time	Comparisons	Running time
Selection sort	100019998	96.2864	900029998	805.218	2500099998	2294.9
Insertion sort	29998	0.0272	86668	0.0841	149998	0.1647
Bubble sort	20001	0.0168	60001	0.0522	100001	0.1163
Shaker sort	19999	0.0182	59999	0.0562	66666	0.0879
Shell sort	360042	0.3254	1170050	1.1348	2100049	2.9733
Heap sort	518705	1.0428	1739633	3.7386	3056481	7.9947
Merge sort	475242	0.8436	1559914	3.5848	2722826	6.8961
Quick sort	356967	7.8724	1276873	33.0438	2005123	49.3276
Counting sort	70003	0.3501	210003	0.4068	350003	0.7236
Radix sort	140056	0.897	510070	2.4651	850070	3.8429
Flash sort	119000	0.404	357000	1.269	595000	2.0921

Datasize	100	100000	300	300000	50	50000
Resulting statics	Comparisons	Running time	Comparisons	Running time	Comparisons	Running time
Selection sort	10000199998	9285.45	90000299998	85347.3	250000999998	234893
Insertion sort	299998	0.2788	866668	0.7971	1499998	1.7079
Bubble sort	200001	0.1744	600001	0.5113	1000001	1.0486
Shaker sort	199999	0.1874	599999	0.5489	666666	0.9716
Shell sort	4500051	4.4216	15300061	16.0825	25500058	29.5994
Heap sort	6519813	13.8387	21431637	40.9354	37116275	73.1254
Merge sort	5745658	9.8761	18645946	31.4051	32017850	52.1767
Quick sort	4490896	89.9941	15934253	272.911	25195263	399.325
Counting sort	700003	1.5004	2100003	4.48189	3500003	7.7054
Radix sort	1700070	8.1059	6000084	29.3186	10000084	47.417
Flash sort	1190000	4.3061	3570000	12.4245	5950000	23.3434

4.2 Nearly sorted data

These charts show number of comparisons when the algorithms sort the nearly sorted array

Figure 4.3: Nearly sorted data - Comparisons

Nearly sorted data - Comparisons

Remove Selection sort and Bubble sort from a chart

Nearly sorted data - Comparisons

The reason why the number of comparisons of Bubble sort gets high is explained in 3.5.5. Insertion sort keeps its fast speed because this experiment uses nearly sorted data.

Table 4.2: Data - order: nearly sorted data

		Data or	Data order Nearly sorted data	ed data		
Datasize	10	10000	30	30000	20	20000
Counting sort	Comparisons	Running time	Comparisons	Running time	Comparisons	Running time
Selection sort	100019998	95.8791	900059998	800.118	2500099998	2235.68
Insertion sort	126638	0.1222	450282	0.4489	778254	0.8097
Bubble sort	93924040	84.3582	760536657	655.726	2461312017	2100.23
Shaker sort	219879	0.4084	899775	1.2233	1299831	2.0739
Shell sort	400902	0.433799	1296018	1.5364	2386473	3.1536
Heap sort	518548	1.0452	1739672	4.4733	3056461	6.5843
Merge sort	502717	0.856	1638335	4.0481	2894240	4.648
Quick sort	346580	10.5369	1168928	28.7507	2104137	42.4138
Counting sort	70003	0.5179	210003	0.4138	350003	0.7268
Radix sort	140056	0.6279	510070	2.4048	850070	4.1443
Flash sort	118977	0.614	356973	1.2148	594977	2.0378

Datasize	10000	000	300	300000	200	20000
Counting sort	Comparisons	Running time	Comparisons	Running time	Comparisons	Comparisons Running time
Selection sort	10000199998	9163.6	90000599998	85308.5	250000999998	247640
Insertion sort	1814974	2.106	2616150	2.8135	9103482	9.8182
Bubble sort	9697196352	8490.01	54459301425	48587.6	245213328752	213153
Shaker sort	2999775	4.3468	7799831	9.3559	16999711	27.4674
Shell sort	5131771	6.8392	16122798	18.5211	27814150	31.1973
Heap sort	6519805	12.9089	21431691	42.0096	37111283	78.8615
Merge sort	6035245	9.6227	19360056	31.4401	33634038	54.6727
Quick sort	4221055	77.3767	15481165	242.769	26830065	421.998
Counting sort	700003	1.5704	2100003	4.6373	3500003	6:9059
Radix sort	1700070	8.4764	6000084	30.8014	10000084	46.5434
Flash sort	1189975	4.0161	3569975	13.0936	5949976	21.9048

Figure 4.4: Nearly sorted data - Running time

Nearly sorted data - Running time

Remove Selection sort and Bubble sort from a chart

The weakness of Quick sort when sorting a nearly sorted array is as same as when sorting sorted array. Bubble sort runs faster than Selection sort because it has mechanism to realize when the array is sorted. The mechanism is explained in Algorithm 6

4.3 Reversed sorted data

These charts show number of comparisons when the algorithms sort the reversed sorted array

Figure 4.5: Reversed sorted data - Comparisons

Reversed sorted data - Comparisons

Remove Selection sort, Insertion sort, Bubble sort, Shaker sort from a chart

Reversed sorted data - Comparisons

This experiment uses reversed sorted array, therefore the advantages of Insertion sort and Shaker sort are gone. Selection sort, Insertion sort, Bubble sort and Shaker sort now are same, they are all $O(n^2)$ algorithms.

Table 4.3: Data - order: reversed sorted data

		20000	Running time	2136.16	2486.1	5514.29	5050.89	2.8571	6.4839	4.4712	43.859	0.7191	3.7914	1.8048
		20	Comparisons	2500099998	25000499999	2500099998	25000000000	2844628	2848016	2733945	2038327	350003	850070	468754
CIBCA BOILDA MANA	d data	30000	Running time	788.027	907.416	1872.56	1822.39	1.8662	5.3303	4.0715	28.0837	0.6512	2.4029	1.2023
Table 4:9. Data - Oldel: levelsed solved data	Data order Reverse sorted data	300	Comparisons	866620006	900029999	900029998	000000006	1554051	1622791	1573465	1164547	210003	510070	281254
TODIC TO	Data orde	000	Running time	96.3312	104.36	210.961	206.309	0.5074	1.0432	0.8646	12.3484	0.2683	1.0803	0.5597
		1000	Comparisons	100019998	100009999	100019998	100000000	475175	476739	476441	338677	70003	140056	93754
		Datasize	Resulting statics	Selection sort	Insertion sort	Bubble sort	Shaker sort	Shell sort	Heap sort	Merge sort	Quick sort	Counting sort	Radix sort	Flash sort

Datasize	10000	000	300	300000	200	20000
Resulting statics	Comparisons	Running time	Comparisons	Running time	Comparisons	Running time
Selection sort	10000199998	8617.05	90000299998	76592.2	250000999998	229732
Insertion sort	10000099999	10165.9	90000299999	91942.3	250000499999	261026
Bubble sort	10000199998	21226	90000299998	190314	250000999998	529091
Shaker sort	100000000000	19656.4	00000000006	183563	2500000000000	505338
Shell sort	6089190	6.0847	20001852	20.7879	33857581	36.2318
Heap sort	6087452	14.1803	20187386	40.4779	35135730	72.3901
Merge sort	5767897	10.1321	18708313	32.2165	32336409	77.1762
Quick sort	4424587	76.8702	14524899	243.568	24559163	412.199
Counting sort	700003	1.3295	2100003	4.0414	3500003	6.6226
Radix sort	1700070	7.865	6000084	32.1407	10000084	46.5935
Flash sort	937504	3.8868	2812504	11.3812	4687504	19.6628

These graph show running time when the algorithms sort the reversed sorted array

Figure 4.6: Reversed sorted data - Running time Reversed sorted data - Running time

Remove 4 $O(n^2)$ algorithms from a graph

Reversed sorted data - Running time

Bubble sort and its optimization algorithm, Shaker sort are the slowest algorithms. Sorting reversed data makes them very slow. Counting sort is the fastest algorithm, and right behind it is Flash sort.

4.4 Random data

These charts show number of comparisons when the algorithms sort the random array

Random data - Comparisons ■ 10000 ■ 30000 ■ 50000 ■ 100000 ■ 300000 ■ 50000 3E+11 2.5E+11 2E+11 1.5E+11 1E+11 5E+10 0 Selection Insertion Bubble Shaker Shell sort Heap Radix Flash Quick Counting Merge sort sort sort sort sort sort sort sort sort

Figure 4.7: Random data - Comparisons

Remove Selection sort, Insertion sort, Bubble sort, Shaker sort from a chart

Random data - Comparisons

Shaker sort uses more comparisons than Bubble sort because Shaker sort is an optimization of Bubble sort, it travels less than Bubble sort. And they are both worse than Insertion sort. Selection sort uses a lot of comparisons while sorting array. But using most comparisons does not mean it is the slowest algorithm.

Table 4.4: Data - order: reversed sorted data

		Data orc	Data order Randomized data	data		
Datasize	10	10000	30	30000	200	20000
Resulting statics	Comparisons	Running time	Comparisons	Running time	Comparisons	Comparisons Running time
Selection sort	100019998	98.1629	900029998	811.446	2500099998	2251
Insertion sort	49974355	53.9181	449016555	466.717	1251895433	1301.13
Bubble sort	100018480	224.997	900056032	2233.54	2500091901	6334.1
Shaker sort	74769471	171.252	674399600	1628.38	1872046519	4660.84
Shell sort	646678	1.555	2302725	5.7788	4646259	10.2784
Heap sort	497302	1.3724	1680515	5.9896	2952195	11.2431
Merge sort	583780	1.4579	1937280	7.1702	3383011	8.9642
Quick sort	353748	11.3624	1181451	28.0247	2111668	46.1852
Counting sort	70003	0.1645	209999	0.4619	349997	0.867
Radix sort	140056	0.6038	510070	2.4963	850070	3.7654
Flash sort	97527	9009.0	306271	1.6157	494626	3.3008

Datasize	100	100000	300	300000	20(20000
Resulting statics	Comparisons	Running time	Comparisons	Running time	Comparisons	Running time
Selection sort	10000199998	8980.34	90000599998	79508.7	250000999998	222164
Insertion sort	5001866366	5013.86	44889583761	50845.5	125203211331	126346
Bubble sort	10000038397	25753.4	90000425277	245011	249999759005	643998
Shaker sort	7512085359	18813.2	67378937591	167260	187603956736	477125
Shell sort	10165918	24.0713	33927734	86.2957	63944956	126.51
Heap sort	6304095	18.2059	20798663	66.2753	36121793	108.54
Merge sort	7166164	17.2295	23382960	56.788	40382902	94.5375
Quick sort	4262666	85.0057	14183472	255.788	25438524	431.141
Counting sort	700003	1.5582	2100003	5.0146	3499999	9.5448
Radix sort	1700070	8.6169	6000084	54.1411	10000084	48.3469
Flash sort	954259	9.028	2845227	25.095	4688996	31.6843

These graph show number of comparisons when the algorithms sort the random array

Insertion sort = - Bubble sort -Shaker sort Shell sort -Heap sort Merge sort Quick sort Counting sort —— Radix sort Flash sort 700000 600000 500000 400000 300000 200000 100000 30000 50000 100000 10000 50000

Figure 4.8: Random data - Running time
Random data - Running time

Although using most comparisons, Selection sort is not the slowest. Because comparisons are executed in cache, and assignments are executed in RAM. Cache is much faster than RAM.

Counting sort and Flash sort run very fast. But these experiments use small data. For larger data, Counting sort cannot be used.

4.5 Overall

Counting sort and Flash sort are the fastest algorithms, in all data distribution cases. Counting sort is faster than Flash sort because its programming constant is less than Flash sort. But for large data, counting sort cannot be used.

Bubble sort, and Shaker sort should be mentioned too, are the slowest algorithms. Shaker sort is better than Bubble sort, but not much change. In some special cases, when the data is sorted or nearly sorted, they are fast because there is a mechanism allowed them to realize when the array is already sorted.

The experiments show that Quick sort is unstable algorithm in time.

Chapter 5

Project organization and Programming notes

All the source code files are saved in **SOURCE** directory.

- SOURCE/algorithms sub-directory saves 24 files, 22 algorithms' source code (.cpp and .hpp), and helpFunctions files contains some functions used in algorithms' source code.
- **SOURCE** directory contains the remain codes.
- No special library is used.
- Directory **script** contains scripts to make it easier to create files and build files. They must be moved to root, mean outside SOURCE, to be used.

There are two main files:

- overview.cpp: To run the experiments and give you an overview about algorithms.
 - Build: Stay in SOURCE directory and run
 g++ algorithms/*.cpp DataGenerator.cpp helpler.cpp sort_execute.cpp
 overview.cpp -o overview.exe (Do not include sort.cpp here).
 - Run: ./overview.exe to run it. If you want to save the output to file a.csv, run ./overview.exe a.csv instead.
- overview.cpp: To run the experiments and give you an overview about algorithms.
 - Build: Stay in SOURCE directory and run
 g++ algorithms/*.cpp DataGenerator.cpp helpler.cpp sort_execute.cpp
 overview.cpp -o sort.exe (Do not include overview.cpp here).

Chapter 6

References

- 1. Mr Nguyen Thanh Phuong's lectures.
- 2. https://www.geeksforgeeks.org/sorting-algorithms/
- D. L. Shell. 1959. A high-speed sorting procedure. Commun. ACM 2, 7 (July 1959), 30–32. https://doi.org/10.1145/368370.368387
- 4. Neubert, Karl-Dietrich, "The Flashsort Algorithm," Dr. Dobb's Journal, p. 123, 1998.