Fundamentos Matemáticos del Machine Learning

Manuel Gijón Agudo

${\rm \acute{I}ndice}$

1.	Intr	oducción	2	
2.	Pro	babilidad	3	
	2.1.	Introducción	3	
	2.2.	Conceptos básicos	3	
	2.3.	Distribuciones discretas	3	
		2.3.1. Bernulli, $B(1,p)$	3	
		2.3.2. Binomial, $B(n,p)$	3	
		2.3.3. Binomial Negativa, $BN(r,p)$	3	
		2.3.4. Multinomial	3	
		2.3.5. Chi Cuadrado de Pearson, χ^2_n	4	
		2.3.6. T de Student, t_n	4	
		2.3.7. F de Fisher-Snedecor, F_{n_1,n_2}	4	
	2.4.	Teoremas y resultados	4	
3.	Gra	fos	5	
	3.1.	Introducción	5	
	3.2.	Conceptos básicos	5	
4.	Wor	${ m cd2Vect}$	6	
	4.1.	Introducción	6	
	4.2.	The Skip-Gram model	6	
		4.2.1. Parametrización del modelo Skip-Gram	6	
	4.3.	The Continuous Bag-of-Words Models (CBOW)	7	
D.	Poforonains			

1. Introducción

2. Probabilidad

- 2.1. Introducción
- 2.2. Conceptos básicos
- 2.3. Distribuciones discretas
- **2.3.1.** Bernulli, B(1, p)
- **2.3.2. Binomial,** B(n, p)
- **2.3.3.** Binomial Negativa, BN(r, p)
- 2.3.4. Multinomial

La distribución multinomial una generalización de la distribución binomial.

La distribución binomial es la probabilidad de un número de éxitos en N sucesos de Bernoulli independientes, con la misma probabilidad de éxito en cada suceso. En una distribución multinomial, el análogo a la distribución de Bernoulli es la distribución categórica, donde cada suceso concluye en únicamente un resultado de un número finito K de los posibles, con probabilidades $p_1, p_2, ..., p_k$ (tales que $p_i \geq 0$ para $i \in [0, k]$ y $\sum_{i=1}^k p_i = 1$); y con n sucesos independientes.

Sea la variable aleatoria X_i , que indica el número de veces que se ha dado el resultado i entre los n sucesos. El vector $X=(X_1,...,X_k)$ sigue una distribución multinomial con parámetros n y p, donde $p=(p_1,...,p_k)$.

- Parámetros:
 - $n \in \mathbb{N}$: número de pruebas.
 - $p_1, ..., p_k$: probabilidad de un suceso concreto, tales que $\sum p_i = 0$.
- Dominio: $X_i \in \{0,...,n\}$ tales que $\sum X_i = n$.
- Función de densidad:

$$\frac{n!}{x_1!...x_k!}p_1^{x_1}...p_k^{x_k}$$

- Media: $\mathbb{E}(X_i) = np_i$
- Varianza: $Var(X_i) = np_i(1 p_i)$
- \bullet Covarianza: $Cov(X_i,X_j)=-np_ip_j$, $(i\neq j)$
- Función generadora de momentos:

$$\left(\sum_{i=1}^{k} p_i e^{t_i}\right)^n$$

- 2.3.5. Chi Cuadrado de Pearson, χ^2_n
- 2.3.6. T de Student, t_n
- **2.3.7.** F de Fisher-Snedecor, F_{n_1,n_2}
- 2.4. Teoremas y resultados

- 3. Grafos
- 3.1. Introducción
- 3.2. Conceptos básicos

4. Word2Vect

4.1. Introducción

Word2Vect es un grupo de modelos de software creados por Tomas Mikolov (entre otros, [TM]) usados para la producción de word embeddings.

Un word embedding es un mapa, una fución de la forma \mathfrak{W} : palabras $\longrightarrow \mathbb{R}^n$, ie. una función que nos asigna un vector de un espacio de una dimensión elevada (200, 500, ...) a cada palabra. Típicamente definimos esta función mediante una matriz, llamémosla $\mathcal{W} = (w)_{ij}$, cuyas filas se corresponden a las palabras dentro del vocabulario (conjunto de palabras válidas) y cuyas colomnas se corresponden con las n coordenadas del vector imágen de la palabra.

La idea es inicializar los coeficientes $w_{i,j}$ de manera aleatoria y luego conseguir variarlos de la manera más óptima para nuestros objetivos.

4.2. The Skip-Gram model

Dado un conjunto de palabras (corpus of words) ω y su contexto (context) \mathfrak{C} , consideramos las probabilidades condicionadas $p(\mathfrak{C}|\omega)$, y dado un cuerpo de Texto (corpus Text), el objetivo es definir un conjunto de parámetros θ de $p(\mathfrak{C}|\omega;\theta)$ tal que maximice las probabilidades del corpus ω :

$$\arg \max_{\theta} \prod_{\omega \in \text{Texto}} \left[\prod_{c \in C(\omega)} p(c|\omega; \theta) \right]$$
 (1)

en esta ecuación, $C(\omega)$ es el conjunto de palabras del contexto ω . Alternativamente:

$$\arg \max_{\theta} \prod_{(\omega,c) \in \mathfrak{D}} p(c|\omega;\theta) \tag{2}$$

donde \mathfrak{D} es el conjunto de todos los pares palabra y contexto extraídos del texto.

4.2.1. Parametrización del modelo Skip-Gram

Una aproximación viene del la literatura rederente a los modelos de redes neuronales relativos al elnguaje y a modelos de la probabilidad condicional que utilizan soft-max¹:

$$p(c|\omega;\theta) = \frac{e^{v_c \cdot v_\omega}}{\sum_{c' \in \mathfrak{C}} e^{v'_c \cdot v_\omega}}$$
(3)

donde v_c y v_ω pertenecen a \mathbb{R}^d son representaciones vectoriales para c y ω respectivamente y \mathcal{C} es el conjunto de todos los contextos disponibles. Los parámetros θ son v_{c_i}, v_{ω_i} para $\omega \in \mathcal{V}, c \in \mathfrak{C}, i \in \{1, ..., d\}$ (un total del $|\mathfrak{C}| \times |\mathcal{V}| \times d$ parámetros). Nos gustaría fijar los parámetros que maximicen (2).

¹La función softmax o función exponencial normalizada es una generalización de la función logística $P(t) = \frac{1}{1+e^{-t}}$. Se emplea para "comprimir" un vector k-dimensional (\mathfrak{z}) de valores reales arbitrarios en otro vector $(\sigma(\mathfrak{z}))$ también k-dimensional pero con valores en el rango [0,1].

Ahora aplicamos logaritmos para transformar el producto en una suma:

$$\arg \max_{\theta} \sum_{(\omega,c) \in \mathfrak{D}} \log p(c|\omega) = \sum_{(\omega,c) \in \mathfrak{D}} \left(\log e^{v_c \cdot v_\omega} - \log \sum_{c'} e^{v_{c'} \cdot v_\omega} \right)$$
(4)

Bajo todo esto se encuentra la siguiente hipótesis que no explicaremos ahora:

Hipótesis: maximizar (4) nos dará buenos embeddings $v_{\omega} \ \forall \omega \in V$, en el sentido de que palabras similares producirán vectores similares.

Calcular (4) puede ser computacionalmente muy costoso debido a que calcular el término $p(c|\omega;\theta)$ implica calcular el sumatorio $\sum_{c'\in\mathfrak{C}}e^{v_{c'}\cdot v_{\omega}}$. Una manera de hacer este cálculo más factible es remplazar el softmax por un hierarchical softmax.

4.3. The Continuous Bag-of-Words Models (CBOW)

Referencias

[YGOL] Yoav Goldberg and Omer Levy "word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method" 31 (February 14, 2014)
 [XR] Xin Rong "word2vec Parameter Learning Explained" (June 5, 2016)
 [TM] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. "Efficient es-timation of word representations in vector space" CoRR, abs/1301.3781 (2013)
 [SR] Sebastian Raschka "Python Machine Learning" Packt Publishing Open Source (2015)