

Chapter 8: Relational Database Design

Database System Concepts, 6th Ed.

Edited by Radhika Sukapuram

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Testing whether a set α is a superkey

 \square An attribute B is functionally determined by a set of attributes α if

$$\alpha \rightarrow B$$

- \square To test whether α is a superkey
 - Compute a set of attributes functionally determined by α
- For this,
 - 1. Compute F+
 - 2. Take all FDs with α as the LHS
 - Take the union of the RHS of each such FD

Expensive, as F+ can be large.

Closure of Attribute Sets

- Given a set of attributes α , define the *closure* of α under F (denoted by α^+) as the set of attributes that are functionally determined by α under F
- \square Algorithm to compute α^+ , the closure of α under F

```
 \begin{array}{l} \textit{result} := \alpha; \\ \textit{repeat} \\ \textit{for each } \beta \rightarrow \gamma \textit{ in } F \textit{ do} \\ \textit{begin} \\ \textit{if } \beta \subseteq \textit{result then } \textit{result} := \textit{result} \cup \gamma \\ \textit{end} \\ \\ \textit{until (no change to } \textit{result)} \\ \end{array}
```


Example of Attribute Set Closure

$$\square$$
 $R = (A, B, C, G, H, I)$

$$\begin{array}{ccc}
\Box & F = \{CG \to H \\
CG \to I \\
B \to H \\
A \to B \\
A \to C\}
\end{array}$$

□ Compute (AG)⁺

- □ Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Does $AG \rightarrow R$? == Is $(AG)^+ \supseteq R$
 - 2. Is any subset of AG a superkey?
 - 1. Does $A \rightarrow R$? == Is $(A)^+ \supseteq R$
 - 2. Does $G \rightarrow R$? == Is $(G)^+ \supseteq R$

Example of Attribute Set Closure

- R = (A, B, C, G, H, I)
- $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$
- □ (*AG*)+
 - 1. result = AG
 - 2. result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. $result = ABCGH \quad (CG \rightarrow H \text{ and } CG \subseteq ABCG)$
 - 4. $result = ABCGHI \ (CG \rightarrow I \text{ and } CG \subseteq AGBCH)$
- □ Is AG a candidate key?
 - Is AG a super key?
 - 1. Does $AG \rightarrow R$? == Is $(AG)^+ \supseteq R$
 - 2. Is any subset of AG a superkey?
 - 1. Does $A \rightarrow R$? == Is $(A)^+ \supseteq R$
 - 2. Does $G \rightarrow R$? == Is $(G)^+ \supseteq R$

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- □ Testing for superkey:
 - To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of R.
- Testing functional dependencies
 - □ To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
 - □ That is, we compute α ⁺ by using attribute closure, and then check if it contains β .
 - Is a simple and cheap test, and very useful
- Computing closure of F
 - □ For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$ such that $\gamma \cap S = \emptyset$

$$F = \{ AB -> C, AD -> B, B -> D \}$$

Compute F+ using the method of attribute closure.

1. For each $\gamma \subseteq R$, find the closure γ^+ :

$$F = \{ AB -> C, AD -> B, B -> D \}$$

Compute F+ using the method of attribute closure.

1. For each $\gamma \subseteq R$, find the closure γ^+ :

$$A+ = A, B+ = BD, C+ = C, D+ = D$$

$$F = \{ AB -> C, AD -> B, B -> D \}$$

Compute F+ using the method of attribute closure.

1. For each $\gamma \subseteq R$, find the closure γ^+ :

$$A+ = A, B+ = BD, C+ = C, D+ = D$$

AB+ = ABCD, AC+ = AC, AD+ = ABCD, BC+ = BCD, BD+ = BD, CD+ = CD

$$F = \{AB -> C, AD -> B, B -> D\}$$

Compute F+ using the method of attribute closure.

1. For each $\gamma \subseteq R$, find the closure γ^+ :

$$A+ = A, B+ = BD, C+ = C, D+ = D$$

$$AB+ = ABCD$$
, $AC+ = AC$, $AD+ = ABCD$, $BC+ = BCD$, $BD+ = BD$, $CD+ = CD$

$$ABC+ = ABD+ = ACD+ = ABCD$$
, $BCD+ = BCD$

$$F = \{AB -> C, AD -> B, B -> D\}$$

Compute F+ using the method of attribute closure.

1. For each $\gamma \subseteq R$, find the closure γ^+ :

$$A+ = A, B+ = BD, C+ = C, D+ = D$$

$$AB+ = ABCD$$
, $AC+ = AC$, $AD+ = ABCD$, $BC+ = BCD$, $BD+ = BD$, $CD+ = CD$

$$ABC+ = ABD+ = ACD+ = ABCD$$
, $BCD+ = BCD$

2. For each $S \subseteq \gamma^+$,output a functional dependency $\gamma \to S$ such that $\gamma \cap S = \emptyset$:

$$F = \{AB -> C, AD -> B, B -> D\}$$

Compute F+ using the method of attribute closure.

1. For each $\gamma \subseteq R$, find the closure γ^+ :

$$A+ = A, B+ = BD, C+ = C, D+ = D$$

$$AB+ = ABCD$$
, $AC+ = AC$, $AD+ = ABCD$, $BC+ = BCD$, $BD+ = BD$, $CD+ = CD$

$$ABC+ = ABD+ = ACD+ = ABCD$$
, $BCD+ = BCD$

2. For each $S \subseteq \gamma^+$,output a functional dependency $\gamma \to S$ such that $\gamma \cap S = \emptyset$:

The rest are trivial or already present

Proof of algorithm for attribute closure of α under F

```
1 result := \alpha;
2 while (changes to result) do
3 for each \beta \to \gamma in F do
4 begin
5 if \beta \subseteq result then result := result \cup \gamma
6 end
```


Proof of algorithm for attribute closure of α under F

```
1 result := \alpha;

2 while (changes to result) do

3 for each \beta \to \gamma in F do

4 begin

5 if \beta \subseteq result then result := result \cup \gamma

6 end
```

- Step 1- Correct since $\alpha \rightarrow \alpha$ holds. Why ? $\alpha \rightarrow result$ is trivially true in the beginning
- We can add γ to result only if $\beta \subseteq result$ and $\beta \to \gamma$ (steps 3 and 5) $\beta \subseteq result$ implies $result -> \beta$ by reflexivity $\alpha -> result$, $result -> \beta$. Therefore $\alpha -> \beta$ Now $\alpha -> \beta$, $\beta \to \gamma$. Therefore $\alpha -> \gamma$ $\alpha -> result$, $\alpha -> \gamma$. By the union rule, $\alpha -> result \cup \gamma$
- \square α functionally determines any new *result* generated in the while loop
- \square Any attribute returned by the algorithm is in α +

The algorithm finds all of α +

- Assume there is an attribute that is α + that is not yet in *result* at any point during execution
- There must be an FD $\beta \rightarrow \gamma$ for which $\beta \subseteq \textit{result}$ and at least one attribute in γ not in result
- When the algorithm terminates, all such FDs have been processed and the attributes in γ added to result
- □ Thus all attributes in γ are in *result*

Extraneous Attributes

- Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F.
 - Attribute A is **extraneous** in α if $A \in \alpha$ and F logically implies $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$.
 - □ Attribute *A* is **extraneous** in β if $A \in \beta$ and the set of functional dependencies $(F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$ logically implies *F*.
- Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
 - E.g. : $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$ always implies F

Testing if an Attribute is Extraneous

- Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F.
- \square To test if attribute $A \in \alpha$ is extraneous in α
 - 1. compute $(\{\alpha\} A)^+$ using the dependencies in F
 - 2. check that $(\{\alpha\} A)^+$ contains β ; if it does, A is extraneous in α

- □ Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - \square B is extraneous in $AB \rightarrow C$ because

 $\{A \to C, AB \to C\}$ logically implies $A \to C$ (I.e. the result of dropping B from $AB \to C$).

Testing if an Attribute is Extraneous

- Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F.
- **To test if attribute** $A \in \beta$ is extraneous in β
 - 1. compute α^+ using only the dependencies in $F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\},$
 - 2. check that α^+ contains A; if it does, A is extraneous in β
- □ Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - □ C is extraneous in $AB \rightarrow CD$ since $AB \rightarrow C$ can be inferred even after deleting C from CD