Assignment 2

Solutions

Compiler Design I (Kompilatorteknik I) 2011

1 Context-free grammars

Give the definition of a context free grammar over the alphabet $\Sigma = \{a, b\}$ that describes all strings that have a different number of 'a's and 'b's.

Answer:

$$\begin{split} S &\to U|V \\ U &\to TaU|TaT \\ V &\to TbV|TbT \\ T &\to aTbT|bTaT|\epsilon \end{split}$$

The intuition is that the string will have either more 'a's (non-terminal U) or more 'b's (non-terminal V). Non-terminal T produces a string with balanced 'a's and 'b's.

2 Parsing and semantic actions

The following context-free grammar can parse all the lowercase roman numerals from 1-99. The terminal symbols are $\{c, l, x, v, i\}$ and the initial symbol is S. If you are unfamiliar with roman numerals, please have a look at http://en.wikipedia.org/wiki/Roman_numerals.

1. Draw a parse tree for 42: "xlii"

Answer:

2. Is this grammar ambiguous?

Answer: No

3. Write semantic actions for each of the 14 rules in the grammar (remember $X \to A|B$ is short for $X \to A$ and $X \to B$) to calculate the decimal value of the input string. You can associate a synthesized attribute val to each of the non-terminals to store their value. The final value should be returned in S.val.

Answer:

Given $\mathbf{c}.val = 100$, $\mathbf{l}.val = 50$, $\mathbf{x}.val = 10$, $\mathbf{v}.val = 5$, $\mathbf{i}.val = 1$ and $\epsilon.val = 0$:

```
\mathbf{x}TU
                          {S.val = T.val - \mathbf{x}.val + U.val}
S \\ S
               1X
                          {S.val = 1.val + X.val}
               X
                           {S.val = X.val}
T
                           \{T.val = \mathbf{c}.val\}
               \mathbf{c}
T
               1
                           \{T.val = 1.val\}
X_1
                          \{X_1.val = \mathbf{x}.val + X_2.val\}
               \mathbf{x}X_2
X
               U
                          {X.val = U.val}
U
               iY
                          \{U.val = Y.val - \mathbf{i}.val\}
U
              \mathbf{v}I
                          {U.val = \mathbf{v}.val + I.val}
U
             I
                          \{U.val = I.val\}
Y
               \mathbf{x}
                          \{Y.val = \mathbf{x}.val\}
Y
              \mathbf{v}
                          {Y.val = \mathbf{v}.val}
        \rightarrow iI_2
                          \{I_1.val = \mathbf{i}.val + I_2.val\}
                          \{I.val = \epsilon.val\}
```

3 LL(1) Parsers

In the following context-free grammar, the symbols 0, 1, 2 and 3 are terminals and S is the initial symbol.

1. Explain briefly why this grammar is not LL(1).

Answer:

This grammar cannot be parsed by a recursive descent parser. This can be shown by the following two examples:

- If the parser has to expand an S non-terminal and the next token is $\mathbf{1}$, it is not possible to choose between the 2 productions from S that start with $\mathbf{1}$ with just this information. However $\mathrm{LL}(1)$ languages allow for just one look-ahead symbol.
- If the parser were to make use of the $A \to AS$ production, for some look-ahead symbol, then in the new state it would still have to expand the new A with the same look-ahead, leading to an infinite loop.
- 2. Convert this grammar to an equivalent that is LL(1).

Answer:

• Factorize the S productions and eliminate immediate left recursion from the A productions:

ullet Inline singular A production rule to uncover another possible factorization:

• Factorize the S' production and inline the new singular S' it in S's production:

3. For the grammar of the previous subtask, construct the complete LL(1) parsing table.

Answer:

$$\begin{array}{llll} First(S) & = \{ \mathbf{0}, \mathbf{1} \} \\ First(S'') & = \{ \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3} \} \\ First(A') & = \{ \mathbf{0}, \mathbf{1}, \epsilon \} \end{array} \begin{array}{lll} Follow(S) & = \{ \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \$ \} \\ Follow(S'') & = \{ \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \$ \} \\ Follow(A') & = \{ \mathbf{3} \} \end{array}$$

	0	1	2	3	\$
S	$S \rightarrow 0$	$S \rightarrow 1 \ S \ S''$			
S''	$S'' \rightarrow A'$ 3	$S'' \rightarrow A'$ 3	$S'' \rightarrow 2 \ S \ 3$	$S'' \to A'$ 3	
A'	$A' \rightarrow S A'$	$A' \rightarrow S A'$		$A' \to \epsilon$	

4. Show all the steps required to parse the input string: 1 1 0 2 0 3 0 1 0 3 3

Answer:

Stack	Input	Action
S \$	1 1 0 2 0 3 0 1 0 3 3 \$	$S \rightarrow 1 \ S \ S''$
1 S S" \$	1 1 0 2 0 3 0 1 0 3 3 \$	terminal
S S'' \$	1020301033\$	$S \rightarrow 1 \ S \ S^{\prime\prime}$
1 S S" S" \$	1020301033\$	terminal
S S'' S'' \$	0 2 0 3 0 1 0 3 3 \$	S o 0
0 S" S" \$	0 2 0 3 0 1 0 3 3 \$	terminal
S'' S'' \$	20301033\$	$S'' \rightarrow 2 \ S \ 3$
2 S 3 S" \$	20301033\$	terminal
S 3 S" \$	0 3 0 1 0 3 3 \$	S o 0
0 3 S'' \$	0 3 0 1 0 3 3 \$	terminal
3 S" \$	301033\$	terminal
S" \$	01033\$	$S'' \to A'$ 3
A' 3 \$	01033\$	$A' \to S A'$
S A' 3 \$	01033\$	S o 0
0 A' 3 \$	01033\$	terminal
A' 3 \$	1033\$	$A' \to S A'$
S A' 3 \$	1033\$	$S \rightarrow 1 \ S \ S^{\prime\prime}$
1 S S" A' 3 \$	1033\$	terminal
S S'' A' 3 \$	0 3 3 \$	S o 0
0 S'' A' 3 \$	0 3 3 \$	terminal
$S'' \ A' \ 3 \ $ \$	3 3 \$	$S'' \to A'$ 3
$A' \; 3 \; A' \; 3 \; \$$	3 3 \$	$A' \to \epsilon$
3 A' 3 \$	3 3 \$	terminal
A' 3 \$	3 \$	$A' \to \epsilon$
3 \$	3 \$	terminal
\$	\$	ACCEPT

LR(1) Parsers 4

In the following context-free grammar, the symbols (a, a) and a are terminals. and a is the initial symbol.

- $\begin{array}{cccc} (2) & S & \rightarrow & \mathbf{a} \\ (2) & S & \rightarrow & \mathbf{a} \\ (3) & L & \rightarrow & L , S \\ (4) & L & \rightarrow & S \end{array}$

Because , is a symbol of the language we are going to use | as a separator between the core of the LR(1) items and the lookahead symbols. Lookaheads with the same core can be separated as usual with /.

1. Calculate the closure of the LR(1) item [$S \rightarrow (\cdot L) \mid \$$]

Answer:

2. Construct the full LR(1) DFA, showing all items in each state.

New unique initial production: (0) $E \to S$

3. Construct the LR(1) parsing table using the DFA. For the reduce actions, please use the provided enumeration of the productions in the grammar.

Answer:

State	(a)	,	\$	S	L
0	s3	s2				1	
1					ACCEPT		
2					r2		
3	s4	s6				5	7
4	s4	s6				5	9
5			r4	r4			
6			r2	r2			
7			s8	s11			
8					r1		
9			s10	s11			
10			r1	r1			
11	s4	s6				12	
12			r3	r3			

4. Show all the steps required to parse the input string: ((${\bf a}$, ${\bf a}$) , ${\bf a}$, ${\bf a}$)

Answer:

Stack	Symbols	Input	Action
0		((a,a),a,a)\$	shift
0,3	((a,a),a,a)\$	shift
0,3,4	((a,a),a,a)\$	shift
0,3,4,6	((a	, a) , a , a)\$	reduce
0,3,4,5	((S	, a), a, a)\$	reduce
0,3,4,9	((L	, a) , a , a)\$	shift
0,3,4,9,11	(L,	a),a,a)\$	shift
0,3,4,9,11,6	((L , a), a, a)\$	reduce
0,3,4,9,11,12	((L , S), a, a)\$	reduce
0,3,4,9	((L), a, a)\$	shift
0,3,4,9,10	((L)	, a , a)\$	reduce
0,3,5	(S	, a , a)\$	reduce
0,3,7	(L	, a , a)\$	shift
0,3,7,11	(L,	a, a)\$	shift
0,3,7,11,6	(L , a	, a)\$	reduce
0,3,7,11,12	(L, S)	, a)\$	reduce
0,3,7	(L	, a)\$	shift
0,3,7,11	(L,	a)\$	shift
0,3,7,11,6	(L , a)\$	reduce
0,3,7,11,12	(L, S))\$	reduce
0,3,7	(L)\$	shift
0,3,7,8	(L)	\$	reduce
0,1	S	\$	ACCEPT!