Anexo

2

Tecnicas de análise e soluçao de problemas adotadas para analise de falhas e problemas em contextos com projetos

Anexo 2 – TECNICAS MASP Tecnicas de analise e solução de problemas adotadas para analise de falhas e problemas em contextos com projetos

Mapa mental (Burzan, 2005):

Uum gestor com base nas características individuais de cada projeto (Ambiente, escopo, perfil de riscos etc.) pode construir um mapa mental de todos as ameaças, modos de falhas e pontos potenciais de crises, associações e relacionamento entre os elementos e verificar como estas ameacas alteram a capacidade de gerar valor

Figura 2.1: - Modelos de um mapa mental (árvore heurística)

Funcionamento:

No nó central pode ser estabelecido um elemento ou parâmetro considerado de valor e a partir deste nó associar elementos que possam reduzir ou inviabilizar a entrega de valor, e diagnosticar se algum dos elementos ocorrem no Ambiente com projetos analisado.

Diagrama Ishikawa (PMI 2018):

Neste procedimento são relacionadas numa figura similar a uma espinha de peixe as possíveis causas vinculadas com método de trabalho, materiais, máquinas, meio ambiente, medições (ou medidas).

E contextos com com projetos um gestor e seu grupo de apoio podem elencar as possíveis razões para um efeito observado.

Figura 2.2: Diagrama Ishikawa (espinha de peixe) - 6M

. Figura 2.3: Diagrama Ishikawa (espinha de peixe) - sem categorização fixa

Funcionamento:

Como ferramenta de apoio, o diagrama Ishikawa poderá ser utilizado como forma de estabelecer um potencial ou real efeito na geração do valor esperado a partir dos problemas mapeados nos métodos, recursos, mão de obra ou outro elemento analisado.

Cada categoria poderá ser sdividida em subcategorias e, assim, as possíveis causas são detalhadas nas ramificações.

O processo geralmente é conduzido por uma equipe multidisciplinar, visando identificar e analisar as causas possiveis causas.

Apos identificação e catalogação, são tomadas medidas para corrigir ou melhorar o processo, ou corrigir o(s) problema(s) e seus efeito(s).

FMEA - (Failure Mode and Effect Analysis) / Análise de Modos de Falha e seus Efeitos (Stamatis, 2003):

Trata-se de uma metodologia que permite analisar possíveis falhas e o que sua ocorrência poderia causar dentro de um processo ou projeto, e tem como principal objetivo gerar uma relação de análise envolvendo as possibilidades de falhas, as possíveis causas e os efeitos.

O FMEA pode ser aplicado nas seguintes atividades:

- Redução da probabilidade da ocorrência de falhas reais ou potenciais em projetos de novos produtos ou processos;
- Aumentar a confiabilidade de produtos ou processos em operação através da análise das falhas que já ocorreram;
- Diminuir os riscos de erros e aumentar a qualidade em procedimentos e processos.
- Em contextos com projetos, gestores podem optar por enfatizar modos de falhas que possam afetar a geração de valor.

ld	Modo de falha	Efeito potencial da falha	Possibili dade de ocorrenda (1-Remoto 10-Varias vezes no dia)	Severidade da Fal ha (1-Não det ectavel 10-Alta)	Possibilidade de detecção (1-Alta 10-Não detectavel)	RPN - Risk Priority Number	Classificação	Ação corretiva planejada	Responsavel	prazo	Status
1	Scope creep	Descontrole no escopo	6	4	2	48	Risco Baixo				
2	Erros de se que nciamento das atividades	caminho critico Errado	8	10	2	160	Risco Moderado				
3	Desligamento de um especialista	paralisação da atividade	8	10	10	800	Risco Critico				
4											
5											
6											
7											
8											
9											
10											

Figura 2.3: Um modelo de planilha FMEA para um contexto com projetos

Funcionamento:

- Estabelecer uma equipe Multidisciplinar para execução do método,
- o Estabelecer os modos das falhas que possam atuar nos produtos e processos relacionados com o projeto,
- o Identificar seus possíveis efeitos;
- Identificar prováveis causas primarias (ou raiz) e causas secundarias
- o Priorizar as falhas através do nível de amaça (risco negativo) oferecido.
- Definir o prazo e o responsável pela ação preventiva
- Executar ações preventivas (detecção de falhas e atuação em ações corretiva);

Matriz GUT – Gravidade, urgência e tendências (Kepner e Tregoe, 1981, Daychoum, 2018):

A técnica de análise de gravidade urgência e tendência (GUT) esta relacionadas com a construção de uma matriz de priorização dos problemas em termos de intensidade (gravidade), tempo de respostas (urgência) e orientação evolutiva (tendência), cada problema deve avaliado conforme um sistema de pontuação e os problemas com maiores pontuações deverão ser priorizados.

Critérios de avaliação - GUT

GRAU	GRAVIDADE	PES0
Total	Extremamente grave	10
Alta	Muito grave	8
Média	Grave	6
Baixa	Pouco grave	3
Nenhuma	Danos mínimos, sem gravidade.	1
GRAU	URGÊNCIA	PES0
GRAU Total	URGÊNCIA Evento em ocorrência	PESO 10
Total	Evento em ocorrência	10
Total Alta	Evento em ocorrência Evento prestes a ocorrer Evento prognosticado	10

Figura 2.4: Critérios de avaliação – GUT

Pesos - GUT

GRAU	TENDÊNCIA	PES0
Total	Evolução imediata	10
Alta	Alta Evolução em curto prazo	
Média	Evolução em médio prazo	6
Baixa	Evolução em longo prazo	3
Nenhuma	Não vai evoluir.	1

Figura 2.5: Pesos e tendencias

Matriz GUT - preenchida

Problema	Gravidade	Urgência	Tendência	Pontuação	Priorida de
Mudança de escopo	8.	10	10	800	10
Retrabalhos	8	6	6	528	2 ⁰
Atraso	10	6	3.	180	3°

Figura 2.6: Matriz GUT preenchida

Funcionamento:

- 1. Liste os problemas (ameaças ou oportunidades) que precisam ser tratados,
- 2. Defina notas para os critérios da GUT, atribuindo notas de 1 a 5 para cada um dos critérios da GUT (gravidade, urgência, tendência).
- 3. Multiplique as notas dadas aos critérios da GUT
- 4. Elabore o ranking dos problemas
- 5. Atue sobre as ameaças / problemas com da maior prioridade para a menor (ou distribua entre equipe responsabilidades para solucionar os problemas de modo concorrente).

Matriz de avaliação de situações de crises:

Uma possível forma de identificar situações que podem ser caracterizadas como de crises, enfatizando os aspectos de emergência e propagação destes eventos, adotando os seguintes passos muito similares as análises utilizando a técnica GUT:

- Execução de um mapeamento de eventos de falhas e riscos não devidamente tratados, inclusive com apoio do mapa mental apresentada neste deste livro é possível relacionar os eventos aos tipos de crises potenciais ou já instaladas no projeto.
- Estabelecimentos de probabilidades, e atribuições de pesos relativos para impactos, grau de urgência, tendências e relações de sinergia entre estes eventos. (emergência, sinergia e formas e propagação)
- Priorização de ações de enfrentamento de crises, tomando cuidado de verificar eventuais fontes de retroalimentação e eventos com efeitos multiplicadores (reações em cadeia).

Se um conjunto de eventos possuírem atributos de alto impacto, urgência, tendência de agravamento e sinergia com ou demais eventos quer por emergência de padrões indesejáveis ou pela existência de ciclos (feedback) de reforço é possível determinar um evento como potencial gatilho para crises dentro de um projeto, especialmente quando estes eventos restringirem a capacidade de geração de valor.

Na figura 2.7 apresentamos um exemplo da matriz.

Matriz de avaliação de situações de crises

Eventos	Probabilidade	Impactos	Urgência	Tendencia	sinergia	Priorização
Inviabilidade financeira	0,2	10	8	10	10	1600
Atrasos em atividades no						
caminho crítico	0,5	6	6	6	5	540
Tecnologia inexistente	0,4	10	1	1	10	40

Impacto	
Muito alto	10
alto	8
relevante	6
Pouco relevante	3
Minimo	1
Inexistente	0
Urgência	
Evento em ocorrência	10
Evento prestes a ocorrer	8
Evento prognosticado para breve	6
Evento prognosticado para médio - longo prazo	3
Evento imprevisto	1
Tendência	
Evolução imediata	10
Evolução em curto prazo	8
Evolução em médio prazo	6
Evolução em longo prazo	3
Não vai evoluir.	1
Sinergia com outros	Eventos
Alta	10
Media	5
Baixa	2
Nenhuma	0

Figura 2.7: Matriz de determinando situações de crises

Funcionamento:

- 1. Liste os eventos que são fontes potenciais de crises no contexto com projeto
- 2. Estime probabilidade de ocorrência, impactos, urgências, tendencias e possibilidade de sinergia entre os eventos.
- 3. Multiplique as notas dadas no passo 2
- 4. Elabore o ranking dos problemas
- 5. Elabore planos de ação contingência para atuar sobre crises com maiores potenciais de ocorrência e distribua entre equipe responsabilidades para solucionar os problemas de modo concorrente.

FTA - Fault Tree Analysis (Stamatelatos, 2002):

A FTA Possui como objetivo construir e analisar um modelo gráfico, onde as combinações das falhas são descritas, com especial enfase na identificação de eventos ocorrem em série ou paralelo (Logica "e" / "ou") e se estas falhas vão resultar na ocorrência de eventos indeseiados.

As etapas de construção de uma arvore de falhas está representada na figura abaixo, conforme Stamatelatos, et al (2002):

Figura 2.8: Processo FTA

Funcionamento:

Os passos de funcionamento são apresentadas na figura 2.8, a seguir analisamos um exemplo de uso:

- 1. A partir da construção da arvore FTA serão executados estudos dos modos de falhas para cada componente e seus efeitos no sistema principal. Por exemplo num projeto de construção de um muro serão analisadas quais as probabilidade e efeitos no Componente A (falhas na limpeza do terreno), no componente B (falhas no Empilhamento das pedras) e no componente C (falhas no acabamento no muro de pedras).
- 2. Em seguida deve-se identificar quais elementos possuem maior probabilidade (ou potencial) de restringir ou inviabilizar a entrega do valor esperado pelo projeto,
- 3. Priorizar as falhas através do nível de amaça (risco negativo) oferecido,
- 4. Definir o prazo e o responsável pela ação preventiva relacionada com as falhas potenciais,
- 5. Executar ações preventivas (detecção de falhas e atuação em ações corretiva) sobre os modos de falhas.

Figura 2.9: Arvores de Falhas (FTA).