Homework 4

Feed Forward Tasks:

Graph of loss curve for 5 different learning rates

Learning rates used: 0.03 (original), 0.09, 0.27, 0.81, 0.01, and 0.0033.

Graph of loss curve for 5 different numbers of hidden nodes

Hidden state value: 1, 2, 4, 8, 12, and 16 (original). From testing, twelve seemed to be the lowest state value you could use before learning became really poor (and even here it becomes weird towards the end).

Graph of loss curve with an additional layer

RNN Tasks:

RNN Loss Curve

RNN Classification of 5 Different Length Sequences

```
mynet.forward_predict(torch.FloatTensor([1,0,0,1,0,1,1,0,0,0,0,1,1,1,1]))
tensor([[0.5029, 0.4971]], grad_fn=<SoftmaxBackward>)

mynet.forward_predict(torch.FloatTensor([1,0,0,1,0,1,1,0,0,0,0,1,0,1,1,0,1,0,1,1,1]))
tensor([[0.5033, 0.4967]], grad_fn=<SoftmaxBackward>)

mynet.forward_predict(torch.FloatTensor([0,0,0]))
tensor([[9.9993e-01, 6.6495e-05]], grad_fn=<SoftmaxBackward>)

mynet.forward_predict(torch.FloatTensor([1,0,0,1,0,1,1,0,0,0,0,1,1,0,0,1,0,1,1,0,0,0,0,1]))
tensor([[0.3852, 0.6148]], grad_fn=<SoftmaxBackward>)

mynet.forward_predict(torch.FloatTensor([1,0,0,1,0]))
tensor([[0.5005, 0.4995]], grad_fn=<SoftmaxBackward>)
```