The probability functions of the GP2 distribution and their derivatives

$Yves\ Deville\ deville.yves@alpestat.com$

June 29, 2022

Contents

1	The	e \log -density $\log f$	1
	1.1	Expression	1
	1.2	Taylor expansion for $\xi \approx 0$	2
	1.3	First-order derivatives: expressions	2
	1.4	First-order derivatives: Taylor expansions for $\xi \approx 0 \dots \dots \dots \dots \dots$	3
	1.5	Second-order derivatives: expressions	3
	1.6	Second-order derivatives: limits for $\xi \to 0$	4
2	Cur	$oxed{ ext{nulated hazard (log-survival)}} H = \log S$	4
	2.1	Expression	4
	2.2	Taylor approximation for $\xi \approx 0$	4
	2.3	First-order derivatives: expressions	5
	2.4	First-order derivatives: Taylor expansions for $\xi \approx 0 \ldots \ldots \ldots \ldots$	5
	2.5	Second-order derivatives: expressions	5
	2.6	Second-order derivatives: limits for $\xi \to 0$	6
3	Qua	antile or return period	7
	3.1	Expression	7
	3.2	Taylor approximation for $\xi \approx 0$	7
	3.3	First-order derivatives: expressions	7
	3.4	First-order derivatives: Taylor approximation	7
	3.5	Second-order derivatives: expressions	7
	3.6	Second-order derivatives: limit for $\xi \to 0$	8
_	-		
1	\mathbf{T}	he log-density $\log f$	
1.	1 E	Expression	

Define z by

$$z := \frac{y}{\sigma}. (1)$$

Define A and B by

$$A := \log\left(\frac{\xi y}{\sigma} + 1\right), \qquad B := \frac{y}{\sigma\left(\frac{\xi y}{\sigma} + 1\right)}$$
 (2)

then the log-density is given by

$$\log f = -\left(\frac{1}{\xi} + 1\right) \log \left(\frac{\xi y}{\sigma} + 1\right) - \log \sigma.$$

1.2 Taylor expansion for $\xi \approx 0$

Raw expression

The Taylor approximation of $\log f$ for $\xi \approx 0$ is

$$\log f = -\frac{\sigma \log \sigma + y}{\sigma} - \frac{\left(2y\sigma - y^2\right)\xi}{2\sigma^2} + \frac{\left(3y^2\sigma - 2y^3\right)\xi^2}{6\sigma^3} + \cdots$$

Simplified expression

$$\log f = -\left[\log \sigma + z\right] + \frac{z(z-2)}{2}\xi - \frac{z^2(2z-3)}{6}\xi^2 + o(\xi^2)$$

1.3 First-order derivatives: expressions

Raw expressions

$$\frac{\partial \log f}{\partial \sigma} = \frac{\left(\frac{1}{\xi} + 1\right) \xi y}{\sigma^2 \left(\frac{\xi y}{\sigma} + 1\right)} - \frac{1}{\sigma}$$
$$\frac{\partial \log f}{\partial \xi} = \frac{\log \left(\frac{\xi y}{\sigma} + 1\right)}{\xi^2} - \frac{\left(\frac{1}{\xi} + 1\right) y}{\sigma \left(\frac{\xi y}{\sigma} + 1\right)}$$

Simplified expressions

$$\frac{\partial \log f}{\partial \sigma} = -\frac{1}{\sigma} \left[1 - (\xi + 1)B \right]$$
$$\frac{\partial \log f}{\partial \xi} = \frac{1}{\xi^2} \left[A - \xi(\xi + 1)B \right]$$

1.4 First-order derivatives: Taylor expansions for $\xi \approx 0$ Raw expressions

For $\xi \approx 0$ we have

$$\frac{\partial \log f}{\partial \sigma} = \frac{y - \sigma}{\sigma^2} - \frac{\left(y^2 - \sigma y\right)\xi}{\sigma^3} + \cdots$$

$$\frac{\partial \log f}{\partial \xi} = \frac{y^2 - 2\sigma y}{2\sigma^2} - \frac{\left(2y^3 - 3\sigma y^2\right)\xi}{3\sigma^3} + \cdots$$

Simplified expressions

$$\begin{split} \frac{\partial \log f}{\partial \sigma} &= \frac{z-1}{\sigma} - \frac{z(z-1)}{\sigma} \, \xi + o(\xi) \\ \frac{\partial \log f}{\partial \xi} &= \frac{z(z-2)}{2} - \frac{z^2(2z-3)}{3} \, \xi + o(\xi) \end{split}$$

1.5 Second-order derivatives: expressions

Raw expressions

$$\frac{\partial^2}{\partial \sigma^2} \log f = -\frac{2\left(\frac{1}{\xi} + 1\right)\xi y}{\sigma^3 \left(\frac{\xi y}{\sigma} + 1\right)} + \frac{\left(\frac{1}{\xi} + 1\right)\xi^2 y^2}{\sigma^4 \left(\frac{\xi y}{\sigma} + 1\right)^2} + \frac{1}{\sigma^2}$$

$$\frac{\partial^2}{\partial \sigma \partial \xi} \log f = \frac{\left(\frac{1}{\xi} + 1\right)y}{\sigma^2 \left(\frac{\xi y}{\sigma} + 1\right)} - \frac{y}{\sigma^2 \xi \left(\frac{\xi y}{\sigma} + 1\right)} - \frac{\left(\frac{1}{\xi} + 1\right)\xi y^2}{\sigma^3 \left(\frac{\xi y}{\sigma} + 1\right)^2}$$

$$\frac{\partial^2}{\partial \xi^2} \log f = -\frac{2\log\left(\frac{\xi y}{\sigma} + 1\right)}{\xi^3} + \frac{2y}{\sigma \xi^2 \left(\frac{\xi y}{\sigma} + 1\right)} + \frac{\left(\frac{1}{\xi} + 1\right)y^2}{\sigma^2 \left(\frac{\xi y}{\sigma} + 1\right)^2}$$

Simplified expressions

$$\frac{\partial^2}{\partial \sigma^2} \log f = \frac{1}{\sigma^2} \left[1 - 2(\xi + 1)B + \xi(\xi + 1)B^2 \right]$$
$$\frac{\partial^2}{\partial \sigma \partial \xi} \log f = \frac{1}{\sigma} \left[B - (\xi + 1)B^2 \right]$$
$$\frac{\partial^2}{\partial \xi^2} \log f = \frac{1}{\xi^3} \left[-2A + 2\xi B + \xi^2(\xi + 1)B^2 \right]$$

1.6 Second-order derivatives: limits for $\xi \to 0$

Raw expressions

Here are the limits for $\xi \to 0$

$$\lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial \sigma^2} = -\frac{2y - \sigma}{\sigma^3}$$

$$\lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial \sigma \partial \xi} = -\frac{y^2 - \sigma y}{\sigma^3}$$

$$\lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial \xi^2} = -\frac{y^2 (2y - 3\sigma)}{3\sigma^3}$$

Simplified expressions

The corresponding simplified expressions are

$$\begin{split} &\lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial \sigma^2} = \frac{1-2z}{\sigma^2} \\ &\lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial \sigma \partial \xi} = -\frac{z(z-1)}{\sigma} \\ &\lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial \xi^2} = -\frac{z^2(2z-3)}{3}. \end{split}$$

2 Cumulated hazard (log-survival) $H = \log S$

2.1 Expression

The cumulated hazard $H(y) = \log S(y)$

$$H := \frac{\log\left(\frac{\xi y}{\sigma} + 1\right)}{\xi}$$

2.2 Taylor approximation for $\xi \approx 0$

Raw expression

$$H = \frac{y}{\sigma} - \frac{y^2 \xi}{2 \sigma^2} + \frac{y^3 \xi^2}{3 \sigma^3} + \cdots$$

Simplified expression

$$H = z - \frac{z^2}{2}\xi + \frac{z^3}{3}\xi^2 + o(\xi^2)$$
 (3)

2.3 First-order derivatives: expressions

Raw expressions

$$\frac{\partial H}{\partial \sigma} = -\frac{y}{\sigma^2 \left(\frac{\xi y}{\sigma} + 1\right)}$$

$$\frac{\partial H}{\partial \xi} = \frac{y}{\sigma \xi \left(\frac{\xi y}{\sigma} + 1\right)} - \frac{\log \left(\frac{\xi y}{\sigma} + 1\right)}{\xi^2}$$

Simplified expressions

$$\begin{split} \frac{\partial H}{\partial \sigma} &= -\frac{1}{\sigma} \, B \\ \frac{\partial H}{\partial \xi} &= -\frac{1}{\xi^2} \, \left[A - \xi B \right] \end{split}$$

2.4 First-order derivatives: Taylor expansions for $\xi \approx 0$

Raw expressions

Here are the limits for $\xi \approx 0$

$$\frac{\partial H}{\partial \sigma} = -\frac{y}{\sigma^2} + \frac{y^2 \, \xi}{\sigma^3} + \cdots$$

$$\frac{\partial H}{\partial \xi} = -\frac{y^2}{2 \, \sigma^2} + \frac{2 \, y^3 \, \xi}{3 \, \sigma^3} + \cdots$$

Simplified expressions

$$\begin{split} \frac{\partial H}{\partial \sigma} &= -\frac{z}{\sigma} + \frac{z^2}{\sigma} \, \xi + o(\xi) \\ \frac{\partial H}{\partial \xi} &= -\frac{z^2}{2} + \frac{2z^3}{3} \, \xi + o(\xi) \end{split}$$

2.5 Second-order derivatives: expressions

Raw expressions

$$\begin{split} &\frac{\partial^2}{\partial \sigma^2} \, H = \frac{2 \, y}{\sigma^3 \, \left(\frac{\xi \, y}{\sigma} + 1\right)} - \frac{\xi \, y^2}{\sigma^4 \, \left(\frac{\xi \, y}{\sigma} + 1\right)^2} \\ &\frac{\partial^2}{\partial \sigma \partial \xi} \, H = \frac{y^2}{\sigma^3 \, \left(\frac{\xi \, y}{\sigma} + 1\right)^2} \\ &\frac{\partial^2}{\partial \xi^2} \, H = \frac{2 \, \log \left(\frac{\xi \, y}{\sigma} + 1\right)}{\xi^3} - \frac{2 \, y}{\sigma \, \xi^2 \, \left(\frac{\xi \, y}{\sigma} + 1\right)} - \frac{y^2}{\sigma^2 \, \xi \, \left(\frac{\xi \, y}{\sigma} + 1\right)^2} \end{split}$$

Simplified expressions

$$\frac{\partial^2}{\partial \sigma^2} H = \frac{1}{\sigma^2} \left[2B - \xi B^2 \right]$$
$$\frac{\partial^2}{\partial \sigma \partial \xi} H = \frac{1}{\sigma} B^2$$
$$\frac{\partial^2}{\partial \xi^2} H = \frac{1}{\xi^3} \left[2A - 2\xi B - \xi^2 B^2 \right]$$

2.6 Second-order derivatives: limits for $\xi \to 0$

Here are the limits for $\xi \to 0$

$$\begin{split} &\lim_{\xi \to 0} \frac{\partial^2 H}{\partial \sigma^2} = \frac{2\,y}{\sigma^3} \\ &\lim_{\xi \to 0} \frac{\partial^2 H}{\partial \sigma \partial \xi} = \frac{y^2}{\sigma^3} \\ &\lim_{\xi \to 0} \frac{\partial^2 H}{\partial \xi^2} = \frac{2\,y^3}{3\,\sigma^3} \end{split}$$

The corresponding simplified expressions are

$$\begin{split} &\lim_{\xi \to 0} \frac{\partial^2 H}{\partial \sigma^2} = \frac{2z}{\sigma^2} \\ &\lim_{\xi \to 0} \frac{\partial^2 H}{\partial \sigma \partial \xi} = \frac{z^2}{\sigma} \\ &\lim_{\xi \to 0} \frac{\partial^2 H}{\partial \xi^2} = \frac{2z^3}{3}. \end{split}$$

3 Quantile or return period

3.1 Expression

The quantile corresponding to an exceedance probability q:=1-p for $\xi\neq 0$

$$\rho = \frac{\left(\frac{1}{q^{\xi}} - 1\right)\,\sigma}{\xi}$$

3.2 Taylor approximation for $\xi \approx 0$

$$-\log q \,\sigma + \frac{(\log q)^2 \,\sigma \,\xi}{2} - \frac{(\log q)^3 \,\sigma \,\xi^2}{6} + \cdots \tag{4}$$

3.3 First-order derivatives: expressions

When $\xi \neq 0$ we have

$$\frac{\partial \rho}{\partial \sigma} = \frac{\frac{1}{q^{\xi}} - 1}{\xi}$$

$$\frac{\partial \rho}{\partial \xi} = -\frac{\log q \, \sigma}{q^{\xi} \, \xi} - \frac{\left(\frac{1}{q^{\xi}} - 1\right) \, \sigma}{\xi^{2}}$$

3.4 First-order derivatives: Taylor approximation

$$\frac{\partial \rho}{\partial \sigma} = -\log q + \frac{(\log q)^2 \xi}{2} + \cdots$$
$$\frac{\partial \rho}{\partial \xi} = \frac{(\log q)^2 \sigma}{2} - \frac{(\log q)^3 \sigma \xi}{3} + \cdots$$

3.5 Second-order derivatives: expressions

Raw expressions

$$\begin{split} &\frac{\partial^2 \rho}{\partial \sigma^2} = 0 \\ &\frac{\partial^2 \rho}{\partial \sigma \partial \xi} = -\frac{\log q}{q^{\xi} \; \xi} - \frac{\frac{1}{q^{\xi}} - 1}{\xi^2} \\ &\frac{\partial^2 \rho}{\partial \xi^2} = \frac{(\log q)^2 \; \sigma}{q^{\xi} \; \xi} + \frac{2 \; \log q \; \sigma}{q^{\xi} \; \xi^2} + \frac{2 \; \left(\frac{1}{q^{\xi}} - 1\right) \; \sigma}{\xi^3} \end{split}$$

Simplified expressions

Define $V:=[q^{-\xi}-1]/\xi$ so that $\rho=\sigma V,$ and

$$W := \frac{\partial V}{\partial \xi} = -\frac{1}{\xi} \left\{ V + q^{-\xi} \log q \right\}.$$

$$\begin{split} &\frac{\partial^2 \rho}{\partial \sigma^2} = 0 \\ &\frac{\partial^2 \rho}{\partial \sigma \partial \xi} = W \\ &\frac{\partial^2 \rho}{\partial \xi^2} = \frac{\sigma}{\xi^2} \left\{ 2V + q^{-\xi} \log q \left[2 + \xi \log q \right] \right\} \end{split}$$

3.6 Second-order derivatives: limit for $\xi \to 0$

$$\lim_{\xi \to 0} \frac{\partial^2 \rho}{\partial \sigma^2} = 0$$

$$\lim_{\xi \to 0} \frac{\partial^2 \rho}{\partial \sigma \partial \xi} = \frac{(\log q)^2}{2}$$

$$\lim_{\xi \to 0} \frac{\partial^2 \rho}{\partial \xi^2} = -\frac{(\log q)^3 \sigma}{3}$$