電腦數值模擬導論HW4

B03702030 吳懿峰

2017/3/21

運用excel的循環運算與運算列表功能找數值解

問題一、當系統在最保守的情況下達到穩定狀態時,求Cu的厚度、Ni的厚度、Cu-Ni接面的溫度各為多少?

題目條件:

水的重量	2.4L*1000*1	2400
水的比熱	4.18	4.18
温度差	50-20	30
冷卻水的熱容量(q)= 水的重量*比熱*溫度差	2400*4.18*30	300960

題目資訊及變數

T(Furnace-Cu)	1083℃
T(Cu-Ni)	Z
T(Ni-Water)	50℃
k(Cu)	385
k(Ni)	93
d(Cu)	x
d(Ni)	y

q=-kA[(T2-T1)/d]
T2=T1-(dq/k)
T1=T2+(dq/k)
d=(T1-T2)*k/q
x+y=0.5(m)

	T1(°C)	T2(°C)	K(W/m°C)	d(m)	q(W/m^2)
Ni	896.7	50	93	0.262	300960
Cu	1083	896.7	385	0.238	300960

操作步驟 可以利用左邊三個表以及課本的公式製作上圖。首先可以先將已知欄位填入數值,將 剩下Ni的TI、Cu的T2、Ni及Cu的3欄位。並將這些未知的儲存格帶人公式。 Ni(d)—[TI-72]%(2 Cu(d)—3 Cu(f)(d),Cu(T2)—[II-(d*qk)、Ni(T1)—Cu(T2) 開啟反覆連算即可得上述結果 在考慮有效位數後再以得到,Cu的厚度為23.8公分、Ni的厚度為26.2公分、Cu-Ni接 可於到度者206.4(7)。

1	如果將公式順序顛倒										
		T1(°C)	T2(°C)	K(W/m°C)	d(m)	q(W/m^2)					
	Ni	#NUM!	50	93	#NUM!	300960					
	Cu	1083	#NUM!	385	#NUM!	300960					

但如果將公式順序顛倒,將會發生上述情况····· 經推測,很有可能是因為如此循環造成excel無法算出變數因此顯示錯誤

引題二、 當爐內Cu表面溫度以每100度做間隔至1083度, 爐外Ni和冷水的溫度從20度以10度為間隔至100度 Cu的厚度、Ni的厚度以及Cu-Ni接面的溫度各為多少?

操作步驟 此閩需要利用excel的模擬分析裡的運算列表。首先拉出20-100的行,再拉出 100-1083的的列,然後將第一行第一列填入對應要求的數如要求温度就填=Cu(T 再將變數結存格分別填入欲改變的值,最後依據超目要求得出下列3個表格。

温度										
	896.7	20	30	40	50	60	70	80	90	100
	100	-389.9	-393.0	-396.2	-399.4	-402.6	-405.8	-409.0	-412.2	-415.3
	200	-258.0	-261.2	-264.4	-267.6	-270.8	-273.9	-277.1	-280.3	-283.5
	300	-126.2	-129.3	-132.5	-135.7	-138.9	-142.1	-145.3	-148.5	-151.6
	400	5.7	2.5	-0.7	-3.9	-7.1	-10.2	-13.4	-16.6	-19.8
	500	137.5	134.3	131.2	128.0	124.8	121.6	118.4	115.2	112.1
	600	269.4	266.2	263.0	259.8	256.6	253.5	250.3	247.1	243.9
	700	401.2	398.0	394.9	391.7	388.5	385.3	382.1	378.9	375.8
	800	533.1	529.9	526.7	523.5	520.3	517.2	514.0	510.8	507.6
	900	664.9	661.7	658.6	655.4	652.2	649.0	645.8	642.6	639.5
	1000	796.8	793.6	790.4	787.2	784.0	780.9	777.7	774.5	771.3
	1083	906.2	903.0	899.8	896.7	893.5	890.3	887.1	883.9	880.7
Cu										
	0.238	20	30	40	50	60	70	80	90	100
	100	0.627	0.631	0.635	0.639	0.643	0.647	0.651	0.655	0.659
	200	0.586	0.590	0.594	0.598	0.602	0.606	0.610	0.614	0.619
	300	0.545	0.549	0.553	0.557	0.561	0.566	0.570	0.574	0.578
	400	0.504	0.508	0.513	0.517	0.521	0.525	0.529	0.533	0.537
	500	0.464	0.468	0.472	0.476	0.480	0.484	0.488	0.492	0.496
	600	0.423	0.427	0.431	0.435	0.439	0.443	0.447	0.451	0.456
	700	0.382	0.386	0.390	0.394	0.398	0.403	0.407	0.411	0.415
	800	0.341	0.346	0.350	0.354	0.358	0.362	0.366	0.370	0.374
	900	0.301	0.305	0.309	0.313	0.317	0.321	0.325	0.329	0.333
	1000	0.260	0.264	0.268	0.272	0.276	0.280	0.284	0.288	0.293
	1083	0.226	0.230	0.234	0.238	0.242	0.247	0.251	0.255	0.259
Ni	1									
	0.262	20	30	40	50	60	70	80	90	100
	100	-0.127	-0.131	-0.135	-0.139	-0.143	-0.147	-0.151	-0.155	-0.159
	200	-0.086	-0.090	-0.094	-0.098	-0.102	-0.106	-0.110	-0.114	-0.119
	300 400	-0.045	-0.049	-0.053	-0.057	-0.061	-0.066	-0.070	-0.074	-0.078
	500	-0.004 0.036	-0.008 0.032	-0.013 0.028	-0.017 0.024	-0.021 0.020	-0.025	-0.029	-0.033 0.008	-0.037 0.004
							0.016	0.012		0.004
	600 700	0.077	0.073	0.069	0.065	0.061	0.057	0.053	0.049	0.044
	800	0.118	0.114 0.154	0.110	0.106 0.146	0.102 0.142	0.097	0.093	0.089	0.085
	900	0.159	0.154	0.150	0.146	0.142	0.138	0.134	0.130	0.126
	1000	0.199	0.193	0.191	0.187	0.183	0.179	0.175	0.171	0.167
	1000	0.240	0.230	0.232	0.228	0.224	0.253	0.216	0.212	0.207
	1000	0.277	0.270	0.200	0.202	0.220	0.233	0.277	0.273	0.271

下表為在各個不同溫度下的結果(Cu-Ni接面溫度, Cu厚度, Ni厚度)

	20	30) 40) 50) 60) 70	80	90	100
100	(-389.86, 0.63, -0.13)	(-393.05, 0.63, -0.13)	(-396.23, 0.63, -0.13)	(-399.42, 0.64, -0.14)	(-402.60, 0.64, -0.14)	(-405.79, 0.65, -0.15)	(-408.97, 0.65, -0.15)	(-412.16, 0.66, -0.16)	(-415.34, 0.66, -0.16)
200	(-258.01, 0.59, -0.09)	(-261.20, 0.59, -0.09)	(-264.38, 0.59, -0.09)	(-267.57, 0.60, -0.10)	(-270.75, 0.60, -0.10)	(-273.94, 0.61, -0.11)	(-277.12, 0.61, -0.11)	(-280.31, 0.61, -0.11)	(-283.49, 0.62, -0.12)
300	(-126.16, 0.55, -0.05)	(-129.35, 0.55, -0.05)	(-132.53, 0.55, -0.05)	(-135.72, 0.56, -0.06)	(-138.90, 0.56, -0.06)	(-142.09, 0.57, -0.07)	(-145.27, 0.57, -0.07)	(-148.46, 0.57, -0.07)	(-151.64, 0.58, -0.08)
400	(5.68, 0.50, 0.00)	(2.50, 0.51, -0.01)	(-0.68, 0.51, -0.01)	(-3.87, 0.52, -0.02)	(-7.05, 0.52, -0.02)	(-10.24, 0.52, -0.02)	(-13.42, 0.53, -0.03)	(-16.61, 0.53, -0.03)	(-19.79, 0.54, -0.04)
500	(137.53, 0.46, 0.04)	(134.35, 0.47, 0.03)	(131.16, 0.47, 0.03)	(127.98, 0.48, 0.02)	(124.79, 0.48, 0.02)	(121.61, 0.48, 0.02)	(118.42, 0.49, 0.01)	(115.24, 0.49, 0.01)	(112.05, 0.50, 0.00)
600	(269.38, 0.42, 0.08)	(266.20, 0.43, 0.07)	(263.01, 0.43, 0.07)	(259.83, 0.44, 0.06)	(256.64, 0.44, 0.06)	(253.46, 0.44, 0.06)	(250.27, 0.45, 0.05)	(247.09, 0.45, 0.05)	(243.90, 0.46, 0.04)
700	(401.23, 0.38, 0.12)	(398.05, 0.39, 0.11)	(394.86, 0.39, 0.11)	(391.68, 0.39, 0.11)	(388.49, 0.40, 0.10)	(385.31, 0.40, 0.10)	(382.12, 0.41, 0.09)	(378.94, 0.41, 0.09)	(375.75, 0.41, 0.09)
800	(533.08, 0.34, 0.16)	(529.90, 0.35, 0.15)	(526.71, 0.35, 0.15)	(523.53, 0.35, 0.15)	(520.34, 0.36, 0.14)	(517.16, 0.36, 0.14)	(513.97, 0.37, 0.13)	(510.79, 0.37, 0.13)	(507.60, 0.37, 0.13)
900	(664.93, 0.30, 0.20)	(661.75, 0.30, 0.20)	(658.56, 0.31, 0.19)	(655.38, 0.31, 0.19)	(652.19, 0.32, 0.18)	(649.01, 0.32, 0.18)	(645.82, 0.33, 0.17)	(642.64, 0.33, 0.17)	(639.45, 0.33, 0.17)
1000	(796.78, 0.26, 0.24)	(793.60, 0.26, 0.24)	(790.41, 0.27, 0.23)	(787.23, 0.27, 0.23)	(784.04, 0.28, 0.22)	(780.86, 0.28, 0.22)	(777.67, 0.28, 0.22)	(774.49, 0.29, 0.21)	(771.30, 0.29, 0.21)
1083	(906.22, 0.23, 0.27)	(903.03, 0.23, 0.27)	(899.85, 0.23, 0.27)	(896.66, 0.24, 0.26)	(893.48, 0.24, 0.26)	(890.29, 0.25, 0.25)	(887.11, 0.25, 0.25)	(883.92, 0.25, 0.25)	(880.74, 0.26, 0.24)

ſ	問題三、信	當x=35 (cm),	15(am) (",(T1) - N;(T2) - Cu N	::区 亩:				
	问 思二 ` i	量 X=33 (CIII), :	y=15(cm), C	u(11) · MI(12) · Cu-N	1/血/支				
ſ	Cu									
L	Cu									
	0.238	20	30	40	50	60	70	80	90	100
	720	0.374	0.378	0.382	0.386	0.390	0.394	0.398	0.403	0.407
	730	0.370	0.374	0.378	0.382	0.386	0.390	0.394	0.398	0.403
	740	0.366	0.370	0.374	0.378	0.382	0.386	0.390	0.394	0.398
	750	0.362	0.366	0.370	0.374	0.378	0.382	0.386	0.390	0.394
	760	0.358	0.362	0.366	0.370	0.374	0.378	0.382	0.386	0.390
	770	0.354	0.358	0.362	0.366	0.370	0.374	0.378	0.382	0.386
	780	0.350	0.354	0.358	0.362	0.366	0.370	0.374	0.378	0.382
	790	0.346	0.350	0.354	0.358	0.362	0.366	0.370	0.374	0.378
	800	0.341	0.346	0.350	0.354	0.358	0.362	0.366	0.370	0.374
	810	0.337	0.341	0.346	0.350	0.354	0.358	0.362	0.366	0.370
	820	0.333	0.337	0.341	0.346	0.350	0.354	0.358	0.362	0.366
	830	0.329	0.333	0.337	0.341	0.346	0.350	0.354	0.358	0.362
	840	0.325	0.329	0.333	0.337	0.341	0.346	0.350	0.354	0.358
	850	0.321	0.325	0.329	0.333	0.337	0.341	0.346	0.350	0.354
	860	0.317	0.321	0.325	0.329	0.333	0.337	0.341	0.346	0.350
	870	0.313	0.317	0.321	0.325	0.329	0.333	0.337	0.341	0.346
	880	0.309	0.313	0.317	0.321	0.325	0.329	0.333	0.337	0.341

2.71	_								
Ni									
0.26	52 20	30	40	50	60	70	80	90	100
7	20 0.126	0.122	0.118	0.114	0.110	0.106	0.102	0.097	0.093
	30 0,130	0.126	0.122	0.118	0.114	0.110	0.106	0.102	0.097
2	40 0.134								0.102
		0.130	0.126	0.122	0.118	0.114	0.110	0.106	
	50 0.138 60 0.142	0.134 0.138	0.130 0.134	0.126 0.130	0.122 0.126	0.118 0.122	0.114 0.118	0.110 0.114	0.106 0.110
	70 0.146	0.138	0.134	0.134	0.120	0.126	0.118	0.114	0.110
	80 0.150	0.146	0.142	0.134	0.134	0.120	0.126	0.113	0.114
	90 0.154	0.150	0.146	0.142	0.138	0.134	0.130	0.126	0.122
	0.159	0.154	0.150	0.146	0.142	0.138	0.134	0.130	0.126
8	0.163	0.159	0.154	0.150	0.146	0.142	0.138	0.134	0.130
	20 0.167	0.163	0.159	0.154	0.150	0.146	0.142	0.138	0.134
	30 0.171	0.167	0.163	0.159	0.154	0.150	0.146	0.142	0.138
	40 0.175	0.171	0.167	0.163	0.159	0.154	0.150	0.146	0.142
	50 0.179	0.175	0.171	0.167	0.163	0.159	0.154	0.150	0.146
	0.183	0.179	0.175	0.171	0.167	0.163	0.159	0.154	0.150
	0.187	0.183	0.179	0.175	0.171	0.167	0.163	0.159	0.154
8	0.191	0.187	0.183	0.179	0.175	0.171	0.167	0.163	0.159
	NT NX DD								
	ı-Ni 溫度								
896.66		30	40	50	60	70	80	90	100
	20 427.603 30 440.788	424.418 437.603	421.233 434.418	418.048 431.233	414.863 428.048	411.678 424.863	408.493 421.678	405.308 418.493	402.123 415.308
	40.788	450.788	434.418	431.233	441.233	424.863	434.863	431.678	428.493
7	50 467.157	463.973	460.788	457.603	454.418	451.233	448.048	444.863	441.678
7	60 480.342	477.158	473.973	470.788	467.603	464.418	461.233	458.048	454.863
	70 493.527	490.343	487.158	483,973	480,788	477.603	474.418	471.233	468,048
	80 506.712	503.527	500.343	497.158	493,973	490,788	487.603	484.418	481.233
	90 519.897	516.712	513.527	510.343	507.158	503.973	500.788	497.603	494.418
	00 533.082	529.897	526.712	523.527	520.343	517.158	513.973	510.788	507.603
	10 546.267	543,082	539.897	536.712	533.527	530,343	527.158	523.973	520,788
	20 559.452	556.267	553.082	549.897	546.712	543.527	540.343	537.158	533.973
	30 572.637	569.452	566.267	563.082	559.897	556.712	553.527	550.343	547.158
8	40 585.822	582.637	579.452	576.267	573.082	569.897	566.712	563.527	560.343
8	599.007	595.822	592.637	589.452	586.267	583.082	579.897	576.712	573.527
8	60 612.192	609.007	605.822	602.637	599.452	596.267	593.082	589.897	586.712
	70 625.377 80 638.562	622.192 635.377	619.007 632.192	615.822 629.007	612.637 625.822	609.452 622.637	606.267 619.452	603.082 616.267	599.897 613.082

下表為 當d(Cu)=0.35,d(Ni)=0.15 Cu、Ni、Cu-Ni的温度

Cu溫度	Ni溫度	Cu-Ni溫度
780	20	506.712
790	30	516.712
800	40	526.712
810	50	536.712
820	60	546.712
830	70	556.712
840	80	566.712
850	90	576.712
860	100	586 712

首先根據問題二的觀察可以發現。Cu的厚度隨著Cu這度增加而增加,隨著N的溫度增加增加,因此可以得出結論推測。Cu=0.350(m)時。C 溫度大致上可以介於720~880度,列表後可得上表之結果,並發現有多種可能解。如果再行細分應當可有更多解,因Cu與Ni的差大約為160 而Cu-Ni之間的溫度也會隨著Cu或Ni的溫度高低成正比。

	T1(°C)	T2(°C)	K(W/m°C)	d(m)	q(W/m^2)
Ni	809.4	50	93	0.150	300960
Cu	1083	809.4	385	0.350	300960

問題四、解答本題的心得與想法

在這次的作業中,漸漸地發現到excel其實是一個很死板的程式,雖然他的功能的確有時人性化又方便,但就計算來說,就很常雙不知變適。比如第一題,當公式順序對調理應會得到相同的結果,但在產生答案時卻出現了錯誤,由於我現在對於VBA和或EXC 「不算太了解,只能猜測可能是因為EXCEL的公式是依據順時針循環設計,因此當我們將公式以逆時針輸入時,就會出現錯誤的果。畢竟EXCEL終究是一個工具而已,我們必須妥善利用,而非過分依賴,才會使EXCEL得到最好的效果。