

BUNDESREPUBLIK DEUTSCHLAND

Rec'd PCT/PTO 29 APR 2005

REC'D 16 JAN 2004
WIPO PCT

10/533438

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 102 50 716.3
Anmeldetag: 31. Oktober 2002
Anmelder/Inhaber: Ulrich Müller, Hückelhoven/DE
Bezeichnung: Verfahren zur Herstellung eines porösen,
plattenförmigen Metallverbundes
IPC: G 10 K, F 02 C

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 13. November 2003
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

Hoß

**PRIORITY
DOCUMENT**
 SUBMITTED OR TRANSMITTED IN
 COMPLIANCE WITH RULE 17.1(a) OR (b)

Ulrich Müller
Wassenbergerstraße 44a
41836 Hückelhoven

DIPL.-ING. WOLFRAM WATZKE (-1999)
DIPL.-ING. HEINZ J. RING**
DIPL.-ING. MICHAEL RAUSCH**
DIPL.-ING. BERND WEISBRODT**
DIPL.-ING. STEFAN BRINKMANN**
PATENTANWÄLTE*
EUROPEAN PATENT ATTORNEYS

Uns. Zeichen 02-0898
Our ref.

Ihr Zeichen ./.
Your ref.

Datum 30. Okt. 2002

Verfahren zur Herstellung eines porösen, plattenförmigen Metallverbundes

Die Erfindung betrifft ein Verfahren zur Herstellung eines porösen, plattenförmigen Metallverbundes. Ferner ist Gegenstand der Erfindung eine Schalldämmplatte.

Die Herstellung poröser, plattenförmiger Metallverbunde, die beispielsweise als Leichtbauelemente oder Schalldämmplatten verwendet werden können, sind aus dem Stand der Technik an sich bekannt.

So offenbart beispielsweise die DE 39 35 120 ein Verfahren zur Herstellung von Metallverbundplatten, bei dem zwei äußere, ungelochte Metalltafeln mit einem dazwischenliegenden Stegematerial in Form eines Metallgitters aus Draht miteinander verbunden werden. Die Besonderheit dieses Verfahrens besteht dabei darin, daß die Gitterknotenpunkte des Metallgitters vor einem Verbinden des Metallgitters mit den Metalltafeln zunächst durch einen Walzvorgang auf die Dicke eines Drahtes flachgewalzt werden, so daß danach die Gitterknotenpunkte des Metallgitters mit den Metalltafeln verschweißt oder verklebt werden können. Mit Vorteil stellt sich auf diese Weise eine Metallverbundplatte ein, die durch eine nachträgliche Verformungsbehandlung noch weiterverarbeitet werden kann.

Ein weiteres Verfahren zur Herstellung von Metallverbundplatten ist aus der DE 20 57 474 bekannt. Offenbart werden hier poröse Metallfaserplatten sowie ein Verfahren zu dessen Herstellung. Gekennzeichnet ist das hier beschriebene Verfahren durch die Verwendung eines Faservlies, das bei einer Temperatur zwischen 100°C und 150°C in örtlich vorbestimmten Bereichen mit einem Druck

Telefon 0049(0)211572131
Telefax 0049(0)211588225
E-Mail info@stewari.de
Internet www.stewari.de

BHF-Bank, Düsseldorf (BLZ 30020500) 40113276
Stadt-Sparkasse, Düsseldorf (BLZ 30050110) 10090769

von 700 N/cm² bis 1.200 N/cm² gepreßt wird, wobei nur in diesen vorbestimmten Bereichen auch eine Sinterung der Fasern erfolgt. Im Ergebnis ergibt sich so eine nur in Teilbereichen gesinterte Metallfaserplatte, die über eine hinreichend große Festigkeit verfügt, gleichwohl aber noch Bereiche mit einer vergleichsweise großen Faseroberfläche aufweist.

Bekannt ist aus der DE 199 24 675 zudem ein sintermetallurgisches Verfahren zur Herstellung eines Filterkörpers aus schmelzextrahierten Metallfasern. Angewendet wird dieses Verfahren beispielsweise zur Herstellung eines porösen Körpers, insbesondere eines Filterkörpers aus Fasern, insbesondere Metallfasern. Vorgesehen ist dabei, daß die in einem Haufwerk vorliegenden losen Fasern durch Agitation vereinzelt und in eine Form gefüllt und die Füllung anschließend unter Erhitzung gesintert wird. Im Ergebnis ergibt sich ein infolge der Sinterung fester und stabiler poröser Körper, der beispielsweise als Filterkörper eingesetzt werden kann.

Neben der vorbeschriebenen Verwendungsmöglichkeit als Filterkörper ist der Einsatz von gesinterten Metallfaserwerkstoffen auch im Bereich der Schalldämmung bekannt. So hat sich der Einsatz solcher gesinteter Metallfaserwerkstoffe beispielsweise zur Minderung der Geräuschemission in Gasturbinen bewährt.

Bei allen den vorgenannten Verfahren erfolgt der Vorgang des Sinterns typischerweise bei einer Temperatur, die zwischen der Liquidus- und der Solidustemperatur des verwendeten Werkstoffs liegt. Die Faserlänge und der Faserdurchmesser der mittels Sintern miteinander zu verbindenden Fasern können dabei stark variieren, wobei der Faserdurchmesser im Bereich von 1 µm bis 250 µm und die Faserlänge im Bereich zwischen 50 µm bis 50 mm liegen kann.

Um eine vorzeitige Oxidation der Fasern zu verhindern wird der Sinterprozeß in einem Vakuumofen durchgeführt. Die reinen Sinterzeiten liegen dabei im Bereich mehrerer Stunden, wobei das zu sinternde Material mechanisch verpreßt bzw. vorgepreßt in den Sintervorgang gegeben wird. Die auf diese Weise hergestellten Sinterkörper werden im Anschluß an die Verfahrensdurchführung zugeschnitten

und können sodann als beispielsweise akustisches Dämmmaterial verwendet und beispielsweise in Abgasmufflern von Gasturbinen eingesetzt werden.

Von Nachteil bei dem vorbekannten Verfahren ist jedoch der Umstand, das bedingt durch die Größe verfügbarer Sinteröfen nur solche Sinterkörper herstellbar sind, die in Korrespondenz zur Größe des verwendeten Ofens in ihrer geometrischen Ausgestaltung begrenzt sind. Sollen beispielsweise Sinterkörper der vorgenannten Art geschaffen werden, die zumindest in einer Längenrichtung eine Größe von beispielsweise 1500 mm übersteigen, so ist dies unter Verwendung des vorgenannten Verfahrens nicht möglich. Um gleichwohl derartige Sinterkörper herstellen zu können, ist es erforderlich, zunächst in einem ersten Verfahrensschritt eine Mehrzahl vergleichsweise kleinerer Sinterkörper herzustellen, die dann anschließend in einem zweiten Verfahrensschritt entsprechend miteinander verbunden, beispielsweise miteinander verklebt oder verschweißt werden. Eine solche Verfahrensdurchführung ist in nachteiliger Weise nicht nur zeit- sondern auch kostenaufwendig.

Es ist daher Aufgabe der Erfindung, unter Vermeidung der vorgenannten Nachteile ein Verfahren vorzuschlagen, mit welchem bei gleichzeitiger Reduzierung der Herstellkosten ein plattenförmiger Metallverbund aus sinterbaren Fasern in beliebiger Größe zumindest in Bezug auf eine Dimension hergestellt werden kann. Auch soll mit der Erfindung eine Schalldämmplatte vorgeschlagen werden.

Zur Lösung dieser Aufgabe wird mit der Erfindung ein Verfahren zur Herstellung eines porösen, plattenförmigen Metallverbundes vorgeschlagen, bei dem Metallfasern in einem Arbeitsschritt gepreßt und miteinander verschweißt werden.

Im Unterschied zu den aus dem Stand der Technik bekannten Verfahren erfolgt mithin erfindungsgemäß eine stoffflüssige Verbindung der einzelnen Metallfasern nicht durch Sintern, sondern mittels Verschweißen. Dies ist nicht nur vergleichsweise kostengünstig, auch wird hierdurch die Möglichkeit eröffnet, in Bezug auf zumindest eine Dimension einen Metallverbund beliebiger Länge auszubilden.

Zur Durchführung des erfindungsgemäßen Verfahrens werden Metallfasern in eine dafür vorgesehene Schweißvorrichtung eingebracht. Vorzugsweise werden die Metallfasern in Form vorgefertigter Metallfasermatten verarbeitet, die beispielsweise als quasi Endlosmatten von einer Rolle abgewickelt werden. Alternativ kann auch vorgesehen sein, die Metallfasern einem Haufwerk entstammend in einem ersten Arbeitsschritt gegebenenfalls zunächst zu vereinzeln und anschließend als loses Metallfasergut der Schweißvorrichtung zuzuführen. Das Einbringen in die Schweißvorrichtung kann hierbei kontinuierlich fortlaufend erfolgen, so daß in der weiteren Fortführung des Verfahrens Metallverbundplatten unbeschränkter Längenausdehnung hergestellt werden können. Die in die Schweißvorrichtung eingebrachten Fasern werden sodann in einen Arbeitsschritt gepreßt und miteinander verschweißt, wozu in vorteilhafterweise beidseitig des auszubildenden Metallverbundes flächenhaft ausgebildete Elektroden angeordnet sind, die zum einen der Verschweißung der einzelnen Metallfasern als auch zum anderen dem Aufbringen einer hinreichenden Preßkraft dienen.

Als Schweißverfahren wird mit Vorteil das Impulsschweißverfahren, vorzugsweise das Kondensatorimpulsschweißverfahren, eingesetzt, wobei die verwendeten Elektroden eine flächenhafte Ausdehnung von vorzugsweise zwischen 10 mm² und 25.000 mm² aufweisen. Ein besonderes Kennzeichen des Kondensatorimpulsschweißverfahrens ist die vergleichsweise kurze Dauer des eigentlichen Schweißvorganges, die in der Regel weniger als 1 s beträgt; im Zusammenhang mit der Durchführung des erfindungsgemäßen Verfahrens sogar weniger als 10 ms betragen kann.

Durch den sehr kurzen und sehr hohen Stromimpuls von bis zu 200.000 A bildet sich von Faser zu Faser des zusammengepreßten Metallverbundes ein elektrischer Widerstand aus, der dazu führt, daß das Material dort erhitzt und mit der nächst anliegenden Faser punktuell verschweißt wird. Die aufgebrachte spezifische Schweißenergie beträgt dabei 0,2 J/mm² bis 7,5 J/mm².

Vor und/oder während des Schweißvorgangs werden die Metallfasern des Metallverbundes mit einem Druck beaufschlagt, wobei der Druck vorzugsweise mit einer Preßkraft von 0,1 N/mm² bis 10 N/mm², vorzugsweise von 1,5 N/mm² bis 6 N/mm², erzeugt wird.

Von Vorteil des erfindungsgemäßen Verfahrens ist ferner, daß der auf Basis einzelner Metallfasern zusammengestellte Metallverbund infolge der schockartig einwirkenden elektrischen Ladung in seiner Struktur zusätzlich verdichtet wird. Hierdurch kann eine insgesamt höhere Verdichtung des Metallverbundes während des Schweißvorganges erreicht werden.

Unter Einsatz einer geeigneten Automatisierungsvorrichtung, auf die an dieser Stelle nicht weiter eingegangen werden soll, können die als Haufwerk oder in Form von Matten vorliegenden Metallfasern endlos zumindest in einer Dimension den Elektroden abschnittsweise zugeführt werden. Die Breite des Metallverbundes kann dabei auf 10 mm bis 2000 mm, vorzugsweise auf 250 mm bis 1250 mm festgelegt werden. Die Fasern haben einen Durchmesser von durchschnittlich 1 μm bis 250 μm , vorzugsweise von 30 μm bis 100 μm . Die verwendeten Metallfasern können hierbei die gleiche Dicke, aber eine unterschiedliche Länge aufweisen, wobei sich gerade durch die Verwendung von Metallfasern unterschiedlicher Längen beim Pressen und Schweißen eine sehr stabile Faserstruktur, d.h. Fasermatrix ausbildet.

Ein nach dem erfindungsgemäßen Verfahren hergestellter Metallverbund kann in Anschluß an seine Herstellung konfektioniert und als schallschluckendes Medium verwendet und beispielsweise in ein Mufflersystem oder Abgasrohr einer Turbine eingesetzt werden. Die wesentlichen Vorteile gegenüber den bisherigen Metallverbunden, die mittels Sintern hergestellt werden, bestehen in den zumindest bezüglich einer Dimension unbeschränkten Abmassen sowie in den deutlich günstigeren Herstellungskosten. Zudem kann durch die Möglichkeit des Kondensatorimpulsschweißverfahrens die Dicke der Metallverbunde beeinflußt werden, ohne daß ein weiterer Fertigungsschritt, wie z.B. das Walzen notwendig wäre. Auch hierdurch ergibt sich eine zusätzliche Kosteneinsparung, was sich gegenüber den herkömmlichen Verfahren als gleichfalls vorteilhaft erweist. Von Vorteil ist ferner, daß der nach dem erfindungsgemäßen Verfahren hergestellte Metallverbund in nachgeschalteten Verarbeitungsschritten weiterverarbeitet werden kann. So ist es beispielsweise möglich durch plastische Formgebung, z. B. durch Tiefziehen den nach dem Verfahren hergestellten Metallverbund auch zu geometrisch komplexen Strukturen umzuformen. So können beispielsweise sphärische Formkörper ausgebildet werden. Da der nach dem erfindungsgemäßen

Verfahren hergestellte Metallverbund hitzebeständig ist, eignet er sich insbesondere als Schalldämmung in Verbrennungsturbinen. Auch eignet sich der erfindungsgemäß hergestellte Metallverbund als Gasbrennereinsatz, der in vorteilhafterweise eine homogene Verbrennung auf der gesamten Oberfläche des Brenners ermöglicht.

Um eine Oxidation während des Schweißvorganges zu verhindern, kann gemäß einem weiteren Merkmal der Erfindung vorgesehen sein, das Verfahren unter Schutzgas durchzuführen. Als Schutzgase eignen sich beispielsweise Argon, Helium und dergleichen.

Gemäß einem weiteren Merkmal der Erfindung ist vorgesehen, daß der Metallverbund auf seinen beiden Flachseiten mit jeweils einem Drahtgewebe als Decklage verschweißt wird. Die Anordnung derartiger Drahtgewebe ist insofern von Vorteil, als daß das Verfahren weitestgehend unabhängig von Länge und Durchmesser der verwendeten Fasern durchführbar ist, was dazu führen kann, daß einzelne Fasern mit ihren Enden aus dem Metallverbund herausstehen. Um diesem Umstand zu begegnen, wird der Faserverbund beidseitig mit einem Drahtgewebe als Decklage verschweißt. Dabei kann ein Verschweißen der Drahtgewebe mit dem Metallverbund in vorteilhafterweise zeitgleich mit dem Verschweißen der Metallfasern durchgeführt werden, so daß ein zusätzlicher Arbeitsschritt infolge des Verschweißens der Decklagen nicht erforderlich ist.

Mit Bezug auf die Schalldämmplatte wird zur Lösung der vorgenannten Aufgabe vorgeschlagen eine Schalldämmplatte, gebildet aus einem zwischen zwei Decklagen angeordneten Metallfaservlies, dessen Metallfasern miteinander verschweißt sind.

Anders als herkömmliche poröse Metallfaservliese sind die einzelnen Metallfasern der erfindungsgemäßen Schalldämmplatte nicht durch Sintern miteinander stoffflüssig verbunden, sondern mittels Schweißen. Dies erlaubt nicht nur eine vergleichsweise günstigere Herstellung der Schalldämmplatten, auch ist es möglich, die Schalldämmplatten zumindest in Bezug auf eine geometrische Dimension fortlaufend zu produzieren, so daß ein quasi endloses Metallfaservlies

hergestellt werden kann. Zur weiteren Verwendung des Metallfaservlieses ist dieses dann bedarfsgerecht auf Länge zu konfektionieren.

Das Metallfaservlies ist gemäß einem weiteren Vorschlag der Erfindung auf seinen beiden gegenüberliegenden Flachseiten mit einer Decklage, die vorzugsweise aus Drahtgewebe gebildet ist, verschweißt. Hierdurch ergibt sich ein insgesamt sandwichartiger Aufbau mit zwei aus Drahtgewebe bestehenden Decklagen zwischen denen das Metallfaservlies angeordnet ist.

Die erfindungsgemäße Schalldämmplatte ist in vorteilhafterweise formstabil, erlaubt aber gleichwohl eine Weiterverarbeitung in einem nachfolgenden Verarbeitungsschritt. So ist es beispielsweise möglich, die erfindungsgemäßen Schalldämmplatten durch plastische Formgebung, z. B. durch Tiefziehen zu sphärischen Körpern weiterzubilden. Mit herkömmlich durch Sintern hergestellten Schalldämmplatten war dies bisher nicht möglich, so daß mit der erfindungsgemäßen Schalldämmplatte neue Möglichkeiten auch für die Weiterverarbeitung geschaffen werden.

Aufgrund der porösen Struktur eignen sich die erfindungsgemäß hergestellten Metallverbunde insbesondere als Schalldämmplatten. Im Unterschied zum herkömmlichen Sinterverfahrens bleibt die ursprünglich vorhandene Porösität der zur Bildung des späteren Metallverbundes zusammengeführten Metallfasern auch nach einem Verschweißen der einzelnen Metallfasern vergleichsweise weitestgehend vorhanden, so daß die erfindungsgemäßen Schalldämmplatten eine vergleichsweise größere Porösität aufweisen, als die aus dem Stand der Technik bekannten und mittels Sintern hergestellten Schalldämmplatten. Die erfindungsgemäßen Schalldämmplatten können daher gegenüber herkömmlichen Schalldämmplatten eine verbesserte Emissionseigenschaften aufweisen.

Eine weitere Verwendungsmöglichkeit für den erfindungsgemäßen Metallverbund ist der Einsatz als Gasbrennereinsatz. Von Vorteil ist dabei die vielseitige Verwendbarkeit aufgrund der möglichen geometrischen Formenvielfalt durch z. B. plastische Formgebung, die kontrollierte und bestimmmbare Ausdehnung bei Wärmeausdehnung, das geringe Gewicht sowie die Gewährleistung einer homogenen Verbrennung auf der gesamten Oberfläche des Brenners. Zudem

bietet der erfindungsgemäße Metallverbund eine hohe Sicherheit gegen Flammrückschlag, Korrosionsschutz auch bei höheren Temperaturen, eine hohe mechanische Schockbeständigkeit sowie eine geringe thermische Inertion.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der Beschreibung anhand der nachfolgenden Figuren. Dabei zeigen:

- Fig. 1: in einer schematischen Darstellung das erfindungsgemäße Verfahren gemäß einem ersten Verfahrensschritt;
- Fig. 2: in einer schematischen Darstellung das erfindungsgemäße Verfahren gemäß einem zweiten Verfahrensschritt und
- Fig. 3: in einer schematischen Darstellung das erfindungsgemäße Verfahren gemäß einem dritten Verfahrensschritt.

Die Durchführung des erfindungsgemäßen Verfahrens zeigen die Figuren 1 bis 3. Dabei ist schematisch in Fig. 1 ein erster, in Fig. 2 ein zweiter und in Fig. 3 ein dritter Verfahrensschritt dargestellt.

Gemäß der Darstellung nach Fig. 1 werden in einem ersten Verfahrensschritt die Metallfasern 1 als unverdichtetes Fasergut auf beiden gegenüberliegenden Flachseiten mit jeweils einem Drahtgewebe 2 belegt. Auf den den Metallfasern 1 jeweils abgewandten Seiten der Drahtgewebe 2 ist jeweils eine flächenhaft ausgebildete Elektrode 3 vorgesehen, die beide jeweils in Richtung auf die Metallfasern 1 verfahren werden und so nach Art einer Zange die Drahtgewebe 2 und die Metallfasern 1 zusammenführen und verpressen. Dargestellt ist dieser Verfahrensschritt schematisch in Fig. 2.

Die Elektroden 3 werden mit einer vordefinierten Kraft F beispielsweise hydraulisch derart weit zusammengefahren, bis eine definierte Flächenlast, d.h. ein definierter Anpreßdruck auf die Metallfasern 1 und das Drahtgewebe 2 aufgebracht ist. Zeitgleich zum Zusammenpressen der Metallfasern 1 und der Drahtgewebe 2 wird über den Stromanschluß 4 Strom in die Elektroden 3 eingeführt. Die Stromeinleitung erfolgt dabei erfindungsgemäß mittels in dieser Figur nicht

dargestellter Kondensatoren, wobei durch schlagartige Entladung der Kondensatoren ein kurzer und starker Stromimpuls von bis zu 200.000 A durch die Drahtgewebe 2 und die Metallfasern 1 geleitet wird. Infolge des Einleiten dieses Stromimpulses bilden sich zwischen den einzelnen Metallfasern elektrische Widerstände aus, was dazu führt, daß das Material an diesen Stellen örtliche erhitzt und mit der nächstliegenden Faser punktuell verschweißt wird. Um Oxidationen während dieses Schweißvorganges zu verhindern, wird der gesamte Vorgang unter einer Schutzgasatmosphäre durchgeführt.

Fig. 3 zeigt den fertig hergestellten Metallfaserverbund, der sandwichartig aufgebaut ist und als Decklagen zwei Drahtgewebe aufweist, zwischen denen die zusammengepreßten und miteinander verschweißten Metallfasern 1 angeordnet sind. Infolge des vorbeschriebenen Schweißprozesses sind dabei nicht nur die einzelnen Metallfasern 1 miteinander sondern auch die Drahtgewebe 2 mit den Metallfasern 1 verschweißt, so daß ein insgesamt stabiler poröser und schallschluckender Metallverbund entsteht, der aber zugleich auch noch die Möglichkeit einer Nachbearbeitung durch z.B. Tiefziehen ermöglicht.

Bezugszeichenliste

- 1 Metallfasern
- 2 Drahtgewebe
- 3 Elektrode
- 4 Stromanschluß
- F Preßkraft

Patentansprüche

1. Verfahren zur Herstellung eines porösen, plattenförmigen Metallverbundes, bei dem Metallfasern in einem Arbeitsschritt gepreßt und miteinander verschweißt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Metallfasern in Form vorgefertigter Metallfasermatten verarbeitet werden.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Metallfasern einem Haufwerk entstammend zunächst vereinzelt werden.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der Metallverbund auf seinen beiden Flachseiten mit jeweils einem Drahtgewebe als Decklage verschweißt wird.
5. Verfahren nach Anspruch 1, 2, 3 oder 4, dadurch gekennzeichnet, daß dieses zur Ausbildung eines endlosen Metallverbundes fortlaufend durchgeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß dieses unter Schutzgas durchgeführt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Metallfasern mittels Impulsschweißen, vorzugsweise mittels Kondensatorimpulsschweißens, miteinander verschweißt werden.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schweißvorgang in weniger als 1 s, vorzugsweise in weniger als 10 ms, durchgeführt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Metallfasern vor und/oder während des Schweißvorganges mit einem Druck beaufschlagt werden.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der Druck mit einer Druckkraft von $0,1 \text{ N/mm}^2$ bis 10 N/mm^2 , vorzugsweise von $1,5 \text{ N/mm}^2$ bis $6,0 \text{ N/mm}^2$, erzeugt wird.
11. Schalldämmplatte, gebildet aus einem zwischen zwei Decklagen angeordneten Metallfaservlies, dessen Metallfasern miteinander verschweißt sind.
12. Schalldämmplatte nach Anspruch 11, dadurch gekennzeichnet, daß das Metallfaservlies mit den Decklagen verschweißt ist.
13. Schalldämmplatte nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Decklagen aus Drahtgewebe gebildet sind.
14. Gasbrennereinsatz, gebildet aus einem zwischen zwei vorzugsweise aus Drahtgewebe gebildeten Decklagen angeordneten Metallfaservlies, dessen Metallfasern miteinander verschweißt sind.

Z u s a m m e n f a s s u n g

Die Erfindung betrifft ein Verfahren zur Herstellung eines porösen, plattenförmigen Metallverbundes. Um ein Verfahren bereitzustellen, mit welchem bei gleichzeitiger Reduzierung der Herstellkosten ein plattenförmiger Metallverbund aus sinterbaren Fasern in beliebiger Größe zumindest in Bezug auf eine Dimension hergestellt werden kann, wird mit der Erfindung ein Verfahren vorgeschlagen, bei dem Metallfasern in einem Arbeitsschritt gepreßt und miteinander verschweißt werden.

(Fig. 2)

RS/BK/sn

Fig. 2

Fig.1

Fig.2

Fig. 3

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.