Mathematics for Computing Science (CS2013)

Formal Languages and Finite State Automata

Finite State Automata (FSA)

- Very simple kind of computer
 - No software or hardware
 - Rudimentary functionality
 - 1. Read one input characters
 - 2. Update a state of computation
- We present a formal/mathematical definition (see next)

Formal definition of Finite State Automata (FSA)

A Finite State Automaton (FSA) A is a 5-tuple (Q, I, F, T, E) where:

- $Q = \{q_1, q_2, ..., q_n\}$ is the finite set of states
- $I \subseteq Q$, $I \neq \emptyset$, is the set of initial states (a nonempty subset of Q)
- $F \subseteq Q$, is the **set of final states** (a subset of Q)
- $T = \{a_1, a_2, ..., a_m\}$, is an alphabet of symbols $a_i \ 1 \le i \le m$
- $E \subseteq Q \times (T \cup \{\lambda\}) \times Q$, is the set of edges (subset of Cartesian product)

Formal definition of Finite State Automata (FSA)

Example FSA $A_1 = (Q, I, F, T, E)$ formally defined:

- $Q = \{q_1, q_2, q_3, q_4\}$
- *I* = {1}
- $F = \{4\}$
- $T = \{a, b\}$
- $E = \{(q_1, a, q_2), (q_1, b, q_4), (q_2, a, q_3), (q_2, b, q_4), (q_3, a, q_3), (q_3, b, q_3), (q_4, a, q_2), (q_4, b, q_4)\}$

Finite State Automata (FSA)

- Formal definition has a more intuitive visual/graphic representation
 - It resembles a graph
 - Each state is a node/vertex; states are connected via edges/arcs
 - Edges/arcs have a label
 - Label indicates the input character we need in order to follow the edge

Start states are indicated by incoming arrow; final states indicated by double

circles

• Previous example:

Paths in a Finite Automaton

- If (x, a, y) is an edge, x is its **start** state and y is its **end** state
 - Notice: x, a, and y stand for variables (any values of states and labels)
- A path is a sequence of edges $\langle e_1, e_2, ..., e_n \rangle$, $e_i = (x_i, a_i, y_i)$, $1 \le i \le n$, such that $y_{j-1} = x_j$, $1 < j \le n$, (end state of e_{j-1} is the start state of e_j)
 - Example: $p_1 = \langle (q_2, b, q_4), (q_4, a, q_2), (q_2, a, q_3) \rangle$
- A successful path $\langle e_1, e_2, ..., e_n \rangle$, $e_i = (x_i, a_i, y_i)$, $1 \le i \le n$, is one in which $x_1 \in I$ (start state of first edge is an initial state), and $y_n \in F$ (end state of last edge is a final state)
 - Example: $p_2 = \langle (q_1, b, q_4), (q_4, a, q_2), (q_2, b, q_4), (q_4, b, q_4) \rangle$
- The **label of a path** $p = \langle e_1, e_2, ..., e_n \rangle$, $e_i = (x_i, a_i, y_i)$, $1 \le i \le n$, label(p), is the sequence of edge labels $\langle a_1, a_2, ..., a_n \rangle$
 - Example: $label(p_1) = baa$

Accepted strings and languages of FSAs

- A string is accepted by a FSA if, and only if, it is the label of a successful path
 - Example: babb is accepted by A_1 , because label(p_2) = babb
- The language accepted by FSA A is the set of all strings accepted by A, represented as L(A)
- What's the language of A_1 ?
 Answers (in increasing order of precision):
 - 1. Stuff, like.
 - 2. Strings of a's and b's
 - 3. Strings of a's and b's which end in b, and in which no two a's are adjacent

Putting an FSA to work

- A computational mechanism to "run" an FSA
 - Inputs: an FSA definition A and a string w
 - Output: yes $(w \in L(A))$ or no $(w \notin L(A))$

```
algorithm RecogniseString
input: an FSA A = (Q, I, F, T, E) and a string w = a_1, a_2, ..., a_n
                          % choose an initial state (non-determinism)
 select q \in I
 for i = 1 to n do
                          % for each symbol a_i from string w
    select (q, a_i, q') \in E % choose an edge (non-determinism)
                          % update state q to new state q'
    q \leftarrow q'
 if q \in F
                          % if last state is a final state
    output yes
                          % w \in L(A)
                          % otherwise
 else
                          \% w \notin L(A)
    output no
```

Non-determinism and determinism

- Two steps in algorithm used "select" (choose one of many)
- This is non-determinism
 - It really means "there are choices" (no explanation on how to best choose)
 - Formal definition allows, for instance, (q_1, a, q_2) and (q_1, a, q_3)
- What if we make the wrong choice?
 - Solution: we must try all choices exhaustively
- Algorithm must be run repeatedly to try out
 - All initial states and every possible edge (and their combinations)
- Non-deterministic algorithms/solutions are easier to describe
 - They are inefficient, though, as they require exponential time/memory

Non-determinism and determinism (cont'd)

- Deterministic FSA (DFSA):
 - There is only one initial state, that is, |I| = 1 and
 - For all states $s \in Q$ there is at most one edge $(s, a, s') \in E$ for any symbol $a \in T$
 - RecogniseString algorithm works very efficiently (linear) if input A is a DFSA
- Important: we don't require a comprehensive set of edges
 - If there are "missing" edges (e.g., string aa in FSA below); we may get "stuck" in a state...
- Convention:
 - If FSA is in a state and there is no edge for the current input symbol then we stop and reject the string
 - This is also the case even if we are in a final state
 - In light of this convention, what is $L(A_2)$?

Non-determinism and determinism (cont'd)

- Notice that we allow transitions/edges with λ
 - $E \subseteq Q \times (T \cup \{\lambda\}) \times Q$
- What does a λ -transition mean?
 - We follow that transition without "consuming" symbols from string
 - In terms of our algorithm, the "for-loop" does not increment
- Try at home:
 - Adapt/extend algorithm to handle non-determinism
 - Adapt/extend algorithm to handle λ -transitions

What kind of questions with FSAs?

These are some of the questions in connection with FSAs:

- Given a language description, provide an FSA to accept the language
 - Only strings which should be accepted must be accepted;
 - Strings which should not be accepted must not be accepted
- Given an FSA what language does it recognise?
 - Language description must be as precise as possible
- Given a partial FSA and a language, complete missing parts
- Given two FSAs, what the intersection of their languages is
- And so on...

Let's work together

Let's draw deterministic FSAs for the following languages

- 1. All strings of 0s and 1s starting with 0
- 2. All strings of 0s and 1s ending with 0
- 3. All strings of 0s and 1s containing a sequence 00

Is it possible to draw a deterministic FSA to accept all strings of 0s and 1s that contain an equal number of 0s and 1s (in any order)?

All strings of 0s and 1s starting with 0

- Clear cases: strings which start with 0 and with 1; two states needed
- The strings we want to accept start with 0, so q_2 is a final state
- Provisions for any subsequent symbol (loops in q_2 and q_3)
- Is there a smaller FSA to accept the same language (i.e., with fewer states)?

All strings of 0s and 1s ending with 0

- Attempt to re-use previous solution...
- Splitting initial cases wasn't necessary
- Is there a smaller FSA to accept the same language?

All strings of 0s and 1s containing 00

Check-list

- Is there an initial state and at least one final state?
- Do all states have 2 edges (one for each symbol)?

Strings with equal numbers of 0 and 1

- These are strings like 01, 0011, 0101, 1010, 000111, 101010, etc.
 - Characters may appear in any order
 - We need to "count" the number of 0s and 1s
- FSAs cannot "count" there is no FSA to recognise this language
- There are more expressive/powerful "devices" to handle this
 - We'll cover these later in the course
- There are languages that cannot be recognised by any device
 - This is the limit of computation (or computability)
 - There is no point in waiting for the next generation of computers...

Minimum size of FSAs

- For any two strings $x, y \in T^*$, x and y are distinguishable with regards to FSA A if there is a string $z \in T^*$, such that exactly one of xz or yz are in L(A)
 - We say that z distinguishes x and y with respect to A
- This means that with x and y as input, A must end in different states
 - A has to distinguish x and y in order to give the right results for xz or yz
- Theorem: Let $L \subseteq T^*$. If there are n elements of T^* such that any two are distinguishable with respect to A, then any FSA that recognises L must have at least n states

Applying the theorem

- Let L_5 be the set of strings of 0s and 1s containing 00 (from A_5 above)
- Distinguishable: all of {11,10,00}
 - {11,10}: 100 is in L, 110 is out
 - {11,00}: 001 is in L, 111 is out
 - {10,00}: 001 is in L, 101 is out.
- {11,10,00} has 3 elements, hence FSA for L₅ requires at least 3 states
- If you were not able to find an FSA with fewer states, blame this theorem...

Applying the theorem (Cont'd)

- Let L_5 be the set of strings of 0s & 1s with equal number of 0s & 1s
 - For n = 2, we have $\{01,001\}$ and we need 2 states
 - For n = 3, we have $\{01,001,0001\}$ and we need 3 states
 - For n = 4, we have $\{01,001,0001,00001\}$ and we need 4 states
- For any finite *n*, there are *n* elements that are distinguishable
- Hence the FSA for L_5 would need an infinite number of states
 - This is not permitted by our definition of FSA

Exploiting non-determinism

- The definition of an FSA allows nondeterminism
 - Choice of initial state to start from
 - Choice of edge/transition to follow
 - Following λ -transitions (which do not depend on input string)
- Consider the following FSA below: abab $\in L(A_6)$?
 - No, if we follow $q_3q_3q_3q_3$ (loop in q_3)
 - Yes, if we follow $q_1q_2q_4q_2q_4$
 - Yes, if we follow $q_1q_4q_4q_2q_4$

Equivalence of DFSAs and NDFSAs

- Theorem: A language L is accepted by an NDFSA if, and only if, L is accepted by a DFSA
 - NDFSA and DFSA have equal computational power
 - Choice of which one to use is for convenience
- The proof of the theorem is an algorithm to convert NDFSAs onto DFSA which preserve the language it recognises

Summary

- Formal definition of FSA
- How definition enable us to check if a string belongs to a language
- Graphical representation of FSA
- Non-determinism vs. determinism
- Important results (theorems)

Further reading

- Chapters 0 and 1 of "Introduction to the theory of computation", by Michael Sipser (there are copies in the library)
- Chapters 1 and 2 of "An Introduction to Formal Languages and Automata", by Peter Linz (PDF available on-line)

