Interpretación Abstracta de Programas Logicos

Claudio Vaucheret

April 3, 2021

Contents

Introducción

- analisis / sintesis de programas (Ciencias de la Computación)
- Probar que un programa P tiene tal propiedad (analisis de programas)
- \bullet Alternativamente: Derivar propiedades que tiene el programa P
- Dado Un programa P, generar un programa P' que sea:
 - en algún sentido equivalente a P
 - funcione mejor que P con respecto a algún criterio

(analisis / sintesis de programas)

- Aproximación Estandard:
 - identificar que ocurre algún invariante y
 - especializar el programa para el caso particular

Analisis de Programas

- Frecuente en compiladores aunque raramente tratados en modo formal:
 - "optimización de código"
 - "eliminación de codigo muerto"
 - "movimiento de código"

– . . .

- Interpretación Abstracta provee un marco formal para desarrollar herramientas de análisis de programas
- Fase de Análisis + fase de sintesis Interpretación Abstracta + Transformación de Programas

¿Qué es la Interpretación Abstracta?

• Considere detectar que una rama no ocurre:

```
int x,y,z; y:=read(file); x:= y * y;
if x >= 0 then z := 1 else z:= 0
```

- Analisis Exhaustivo en el dominio estandard: no termina
- Razonamiento humano de los programas Usa abstracciones o aproximaciones: signos, ordenes de magnitud, par/impar, . . .
- Idea Básica: usar representaciones aproximadas (generalmente finitas) de los objetos computacionales para hacer tratable el problema del analisis del flujo del programa
- Analisis Abstracto es la formalización de esta idea:
 - define una semantica no estandard que puede aproximar el significado o funcionamiento del programa en un modo finito
 - las expresiones son computadas en un dominio (abstracto) aproximado en lugar del dominio concreto.

Ejemplo: La regla de los signos

- Consideremos el dominio D = Z (enteros)
- y el operador de multiplicación: $*: \mathbb{Z}^2 \to \mathbb{Z}$
- Definimos un dominio abstracto: $D_{\alpha} = \{[-], [+]\}$
- y la multiplicación abstracta $*_{\alpha}: D_{\alpha}^{2} \to D_{\alpha}$ definido por:

$*_{\alpha}$	[-]	[+]
[-]	[+]	[-]
[+]	[-]	[+]

• Esto nos permite razonar, por ejemplo, que $y=x^2=x*x$ nunca es negativo

Algunas observaciones:

- si tenemos z=x*y entonces: si $x,y\in Z$ son aproximados con $x_\alpha,y_\alpha\in D_\alpha$ entonces $z\in Z$ es aproximado con $z_\alpha=x_\alpha*y_\alpha$
- Es importante formalizar esta noción de aproximación para poder probar que un análisis es correcto
- La computación aproximada es generalmente menos precisa pero mas rápida.

Ejemplo: La regla de los signos (cont.)

- De nuevo D = Z (enteros)
- y el operador $*: Z^2 \to Z$
- Definimos un mas refinado dominio abstracto: $D'_{\alpha} = \{[-], [0], [+]\}$
- y la multiplicación abstracta $*_{\alpha}: D'_{\alpha}{}^2 \to D'_{\alpha}$ definido por:

$*_{\alpha}$	[-]	[0]	[+]
[-]	[+]	[0]	[-]
[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]

• Esto nos permite razonar, que z = y * (0 * x) es cero

Algunas observaciones:

- Hay un grado de libertad en definir operadores abstractos y dominios diferentes
- El requerimiento mínimo es que sea seguro o correcto
- Definiciones "seguras" diferentes llevan a clase de análisis diferentes

Ejemplo: La regla de los signos (cont.)

- De nuevo D = Z (enteros)
- y el operador de $suma +: Z^2 \to Z$
- No podemos usar: $D'_{\alpha} = \{[-], [0], [+]\}$ porque no sabríamos como representar el resultado de $[+] +_{\alpha} [-]$ (i.e. la suma abstracta no sería cerrada)
- $\bullet\,$ Un nuevo elemento " \top " (supremum) que es la aproximación para todo entero
- Nuevo dominio abstracto: $D_\alpha'' = \{[-], [0], [+], \top\}$

suma abstracta

• $+_{\alpha}: D_{\alpha}^{"2} \to D_{\alpha}^{"}$ definido por:

$+_{\alpha}$	[-]	[0]	[+]	Т
[-]	[-]	[-]	Т	Т
[0]	[-]	[0]	[+]	\top
[+]	Τ	[+]	[+]	\top
T	T	T	T	Τ

 $\bullet\,$ Esto nos permite ahora razonar que $z=x^2+y^2$ nunca es negativo

Observaciones Importantes

- Además de la imprecisión debido a la "tosquedad" o lo "básico" de D_{α} , las versiones abstractas de las operaciones (que dependen de D_{α}) pueden introducir mas imprecisión
- Así, la elección del dominio abstracto y la definición de las operaciones abstractas son cruciales.

Propiedades de la Interpretación Abstracta

• Requeridas:

- Exactitud aproximaciones correctas: a causa de que las propiedades mas "interesantes" son indecidibles el análisis necesariamente tiene que ser aproximado. Queremos asegurarnos de que el análisis es "conservador" y se equivoca en el "lado seguro"
- Terminación la compilación definitivamente debe terminar
- Deseable "en la práctica"
 - Eficiencia: en la práctica, el tiempo de análisis finito no es suficiente: finito y pequeño
 - Precisión de la información recopilada: depende de la idoneidad de el dominio abstracto y el nivel de detalle al que el procedimiento de interpretación imita la semántica del lenguaje
 - Utilidad: determina qué información vale la pena recopilar

Aproximaciones Correctas

ullet Idea básica en aproximación: para alguna propiedad p queremos mostrar

$$\forall x, x \in S \Rightarrow p(x)$$

Alternativa: construir un conjunto $S_a \supseteq S$ y demostrar

$$\forall x, x \in S_a \Rightarrow p(x)$$

entonces, S_a es una aproximación segura de S

• Aproximación de funciones: para alguna propiedad p queremos mostrar

$$\forall x, x \in S \Rightarrow p(F(x))$$

• Una función

$$G:S \to S$$

es una aproximación segura de F si

$$\forall x, x \in S, p(G(x)) \Rightarrow p(F(x))$$

Aproximación del significado de un programa

• El significado de un programa P es un mapeo F_P de entrada a salida, cuyos valores de entrada y salida \in a un dominio "estándar" D:

$$F_P:D\to D$$

• "Elevemos" este significado para asignar conjuntos de entradas a conjuntos de salidas

$$F_P^*: \wp(D) \to \wp(D)$$

donde $\wp(S)$ denota el conjunto potencia de S, y

$$F_P^*(S) = \{F_P(x) | x \in S\}$$

• Una función

$$G:\wp(D)\to\wp(D)$$

es una aproximación segura de F_P^* si

$$\forall S, S \in \wp(D), G(S) \supseteq F_P^*(S)$$

 \bullet Las propiedades se pueden demostrar usando G en lugar de F_P^*

Aproximación del significado de un programa (cont.)

- Para alguna propiedad p queremos mostrar que para las entradas $S, p(F_P^*(S))$
- mostramos que para las entradas $S_a, p(G(S_a))$
- Dado que $G(S_a) \supseteq F_P^*(S_a)$ para las entradas $S_a, p(F_P^*(S_a))$ (Nota: abuso de notación F_P^* no funciona con valores abstractos S_a)
- Siempre que F_P^* sea monótono:

$$S_a \supseteq S \Rightarrow F_P^*(S_a) \supseteq F_P^*(S)$$

• Y como $S_a \supseteq S$, entonces: para las entradas $S, p(F_P^*(S))$

Dominio abstracto y función de concretización

- El dominio $\wp(D)$ se puede representar mediante un dominio "abstracto" D_{α} de representaciones finitas de (posiblemente) objetos infinitos en $\wp(D)$
- La representación de $\wp(D)$ por D_{α} se expresa mediante una función (monótona) llamada función de concretización:

$$\gamma: D_{\alpha} \mathfrak{g}(D)$$

tal que $\gamma(\lambda) = d$ si d es el elemento más grande (bajo \supseteq) de $\wp(D)$ que λ describe $[(\wp(D), \supseteq)$ es obviamente una retículo completo]

Ejemplo

• En el ejemplo de los "signos", con $D_{\alpha} = \{[-], [0], [+], \top\}, \gamma$ viene dado por

$$\gamma([-]) = \{x \in Z | x < 0\}
\gamma([0]) = \{0\}
\gamma([+]) = \{x \in Z | x > 0\}
\gamma(\top) = Z$$

• $\gamma(?) = \emptyset \to \text{definimos } \bot | \gamma(\bot) = \emptyset$

Función de abstracción

También podemos definir (no estrictamente necesario) una función de abstracción (monótona)

$$\alpha: \wp(D) \to D_{\alpha}$$

 $\alpha(d)=\lambda$ si λ es el elemento "mínimo" de D_α que describe d [bajo un orden adecuado definido en los elementos de $D_\alpha]$

p.ej. en el ejemplo de los "signos",

$$\alpha(\{1, 2, 3\}) = [+](no\top)$$

$$\alpha(\{-1, 2, 3\}) = [-](no\top)$$

$$\alpha(\{0\}) = [0]$$

$$\alpha(\{-1, 0, 1\}) = \top$$

Significado abstracto y seguridad

• Ahora podemos definir una función de significado abstracto como

$$F_{\alpha}:D_{\alpha}\to D_{\alpha}$$

que es segura si

$$\forall \lambda, \lambda \in D_{\alpha}, \gamma(F_{\alpha}(\lambda)) \supseteq F_{P}^{*}(\gamma(\lambda))$$

- Entonces podemos probar una propiedad de la salida de una clase dada de entradas, probando que todos los elementos de $\gamma(F_{\alpha}(\lambda))$ tienen tal propiedad
- P.ej. puede demostrarse, una propiedad como "si este programa toma un número positivo producirá un número negativo como salida"

Demostrar propiedades en abstracto

- Generando F_{α} :
 - F_P obtenido del programa y la semántica predefinida de operadores (x+z)3, $F_P=(x+z)3$
 - Análisis automático: F_{α} debería obtenerse del programa y la semántica de operadores abstractos (propiedades compositivas) $\{odd, even, +_{\alpha,\alpha}\} \Rightarrow F_{\alpha} = (x +_{\alpha} z)_{\alpha} odd$
- "Si este programa toma un número positivo, producirá un número negativo como salida"
- P = (y := x3), entrada x, salida y
- $F_P = x3$
- $F_{\alpha} = x_{\alpha}[-]$
- $F_{\alpha}([+]) = [+]_{\alpha}[-] = [-]$

Semánticas Colectoras

- La semántica de "entrada-salida" es a menudo demasiado tosca para un análisis útil: información sobre el "Estado" en los puntos de programa generalmente requieren \rightarrow "semánticas extendidas"
- Los puntos del programa se pueden alcanzar muchas veces, desde diferentes puntos y en diferentes "Estados" \to "semanticas colectoras"

$$\{x>3\}y:=x3\{y<9\} \text{ o } \{x<3\}y:=x3\{y>9\}$$

$$\{x=[+]\}y:=x3\{y=[-]\} \text{ o } \{x=[-]\}y:=x3\{y=[+]\}$$

• El análisis a menudo calcula una colección de estados abstractos para un punto de programa.

$${x = \{[+], [-]\}}y := x3{y = \{[-], [+]\}}$$

• A menudo, es más eficiente "resumir" estados en uno que ofrezca la mejor descripción → estructura de retículo en un dominio abstracto

$$\{x=\sqcup\{[+],[-]\}\}y:=x3\{y=\sqcup\{[-],[+]\}\}$$

Estructura de Retículo

- El ordenamiento en $\wp(D)$, \subseteq , induce un ordenamiento en D_{α} , \leq_{α} ("se aproxima mejor") Por ejemplo, podemos elegir $\alpha(\{1,2,3\}) = [+]$ o $\alpha(\{1,2,3\}) = \top$, pero $\gamma([+]) = \{x \in Z | x > 0\}$ y $\gamma(\top) = Z$, y dado que $\{x \in Z | x > 0\}$ $\subseteq Z$ tenemos $[+] \leq_{\alpha} \top$, es decir, [+] se aproxima mejor que \top , es mas preciso.
- Generalmente se requiere que $(D_{\alpha}, \leq_{\alpha})$ sea una retículo completo
- Por lo tanto, para todo $S \subseteq D_{\alpha}$ existe un único mínimo límite superior $\sqcup S \in D_{\alpha}$, es decir, tal que
 - $\forall \lambda_S \in S, \lambda_S \leq_{\alpha} \sqcup S$
 - $(\forall \lambda_S \in S, \lambda_S \leq_{\alpha} \lambda) \Rightarrow \sqcup S \leq_{\alpha} \lambda$
- Intuición: dado un conjunto de aproximaciones del "estado actual" en un punto dado en un programa, para asegurarse de que sea la mejor descripción "general" para el punto:
 - $-\ \sqcup S$ se aproxima a todos los elementos de S
 - $\sqcup S$ es la mejor aproximación en D_{α}

Ejemplo: aritmética entera de signos

- Consideramos $D_{\alpha} = \{[-], [0], [+], \top\}$
- Agregamos \bot (infimum) para que $\alpha(\emptyset)$ exista y para tener una retículo completo: $D_{\alpha} = \{\bot, [-], [0], [+], \top\}$
- (Intuición: representa un punto del programa que nunca será alcanzado)
- La función de concretización debe ampliarse con

$$\gamma(\perp) = \emptyset$$

• El reticulo es:

 $\bullet \ \sqcup \{[+],[-]\} = \sqcup \{[-],[+]\} = \top$

Ejemplo: aritmética entera de signos (cont.)

• Para hacer t mas significative, considerames $D_{\alpha} = \{\bot, [-], [0^-], [0], [0^+], [+], \top\}$

$$\begin{array}{llll} \gamma(\bot) & = & \emptyset & \gamma(\top) & = & Z \\ \gamma([-]) & = & \{x \in Z | x < 0\} & \gamma([+]) & = & \{x \in Z | x > 0\} & \gamma([0]) = \{0\} \\ \gamma([0^-]) & = & \{x \in Z | x \le 0\} & \gamma([0^+]) & = & \{x \in Z | x \ge 0\} \end{array}$$

• El reticulo es:

• ⊔{[-],[0]} = [0⁻] representa con precisión un punto del programa donde una variable puede ser negativa o cero

El enfoque de la inserción de Galois

- A continuación, nos referiremos a $\wp(D)$ simplemente como D
- Las semánticas (colectoras) de los programas a menudo son dadas por lfp(F) (el mínimo S tal que S=F(S), Siendo F la función semántica dependiente del programa en D)
- Por lo tanto, necesitamos relacionar este punto fijo con (el de) la función semántica aproximada F_{α} (que se aproxima a F y opera sobre los elementos de un dominio abstracto D_{α})
- Suponga: $D ext{ y } D_{\alpha}$ son retículos completos; $\gamma: D_{\alpha} \to D ext{ y } \alpha: D \to D_{\alpha}$ son funciones monotónicas. La estructura $(D_{\alpha}, \gamma, D, \alpha)$ se denomina inserción de Galois si:
 - $\ \forall \lambda \in D_{\alpha}.\lambda = \alpha(\gamma(\lambda))$
 - $\forall d \in D.d \subseteq \gamma(\alpha(d))$

La Aproximación segura

- definida ahora en términos de una inserción de Galois: Sea una inserción de Galois $(D_{\alpha}, \gamma, D, \alpha), \lambda \in D_{\alpha}$ aproxima en forma segura a $d \in D$ ssi $d \subseteq \gamma(\lambda)$
- Teorema fundamental [Cousot]: Dada una inserción de Galois $(D_{\alpha}, \gamma, D, \alpha)$ y dos funciones (monótonas) $F: D \to D$ y $F_{\alpha}: D_{\alpha} \to D_{\alpha}$ entonces si F_{α} es una aproximación de F, $lfp(F_{\alpha})$ es una aproximación de lfp(F)

Terminación: condiciones en F_{α} y D_{α}

- La pregunta es si $lfp(F_{\alpha})$ es finitamente computable
- El operador abstracto F_{α} opera sobre los elementos de un dominio abstracto D_{α} , que hemos requerido que sea un retículo completo, y F_{α} es monótona, por lo tanto

$$lfp(F_{\alpha}) = F_{\alpha} \uparrow n$$

para algún n que nos gustaría sea finito (es decir, nos gustaría que la secuencia de Kleene fuera finita)

- Recordando las características de los puntos fijos en retículos, la secuencia de Kleene será finito en casos que incluyen:
 - $-D_{\alpha}$ es finito
 - D_{α} es cadena ascendente finita

Estructura de Retículos

finito cadena finita ascendente

Terminación: Discusión

- Demostrar la monotonicidad de F_{α} puede ser más difícil que mostrar que D_{α} cumple con las condiciones de finitud
- Puede haber un F_{α} que termina incluso si no se cumplen las condiciones
- Las condiciones también se relajan restringiendo la clase de programas (por ejemplo, los programas no recursivos presentan pocas dificultades, aunque apenas son interesantes)
- En algunos casos, una aproximación desde arriba $(gfp(F_{\alpha}))$ también puede ser interesante
- Existen otras alternativas a la finitud: profundidad acotada dinámica, etc. (Ver: widening y narrowing)

Análisis de programas lógicos

- ¿Qué semántica?
 - Semántica declarativa: relacionada a qué es una consecuencia del programa
 - * Semántica de la teoría de modelos mínimos
 - * Semántica de punto fijo (basada en el operador T_P) (cf. estilo de base de datos, evaluación bottom-up)
 - Semántica operativa: cercana al comportamiento del programa
 - * Basado en resolución SLD (conjuntos éxitosos)
 - * Denotacional
 - * Puede cubrir posibilidades distintas a SLD: reactivo, paralelo,
- Los análisis basados en semántica declarativa a menudo se denominan análisis **bottom up**
- Los análisis basados en la semántica operativa (de arriba hacia abajo) a menudo se denominan Análisis **top down**
- Además, casos intermedios (generalmente logrados mediante la transformación de programas)

Caso de Estudio: Semántica de punto fijo

- Dado el lengua je de primer orden L asociado con un programa P dado, el universo de Herbrand (U) es el conjunto de todos los términos básicos de L.
- La Base de Herbrand (B) es el conjunto de todos los átomos instanciados (ground) de L.
- Una interpretación de Herbrand es un subconjunto de B. I es el conjunto de todas las interpretaciones de Herbrand $(\wp(B))$
- Un modelo de Herbrand es una interpretación de Herbrand que contiene todos las consecuencias del programa.
- El operador de consecuencia inmediata (T_P) es un mapeo $T_P: I \to I$ definido por:

$$T_P(M) = \{h \in B | \exists C \in ground(P), C = h \leftarrow b_1, \dots, b_n \ y \ b_1, \dots, b_n \in M\}$$
 (en particular, si $(a \leftarrow) \in P$, entonces $ground(a) \subseteq T_P(M)$, para cada M).

- T_P es monótono, por lo que tiene un minimo punto fijo $lfp(T_P)$ que se puede obtener como $T_P \uparrow \omega$ comenzando desde el elemento inferior del retículo (la interpretación vacía, \emptyset).
- (Teorema de caracterización) [Van Emden y Kowalski]: El menor modelo de Herbrand P, H es $lfp(T_P)$

Semántica de punto fijo: Ejemplo

$$P = \{p(f(X)) \leftarrow p(X).$$

$$p(a).q(a).q(b).\}$$

$$B = \{\ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), p(f(f(a))), \\ p(f(f(b))), \ q(f(a)) \dots \}$$

I = todos los subconjuntos de B

$$H = \{ q(a), q(b), p(a), p(f(a)), p(f(f(a))), \dots \}$$

$$T_P \uparrow 1 = \{p(a), q(a), q(b), p(f(a))\}$$

$$T_P \uparrow 2 = \{p(a), q(a), q(b), p(f(a)), p(f(f(a)))\}$$

$$\cdots$$

$$T_P \uparrow \omega = H$$

Interpretación abstracta "Bottom up"

- Encuentra una aproximación de H al aproximar $lfp(T_P)$
- Aplicamos interpretación abstracta:
 - Dominio: I^{α} , tal que elementos de I^{α} son aproximaciones de elementos de $I = \wp(B)$.
 - Función de concretización: $\gamma:I^{\alpha}\to I$
 - Función de abstracción: $\alpha:I\to I^\alpha$
 - Operador Abstracto: versión abstracta del operador T_P $T_P^\alpha:I^\alpha\to I^\alpha$

Interpretación abstracta "Bottom up" (cont.)

- Aplicamos interpretación abstracta:
 - Exactitud:
 - * $(I^{\alpha}, \gamma, I, \alpha)$ debe ser una inserción de Galois, es decir, I^{α} retículo completo y debería aproximar a $I: \forall M \in I, \gamma(\alpha(M)) \supseteq M$

- * T_P^{α} aproximación segura de T_P , es decir, $\forall d,d \in I^{\alpha}, \gamma(T_P^{\alpha}(d)) \supseteq T_P(\gamma(d))$
- Terminación:
 - * T_P^{α} es monótono.
 - * I^{α} (al menos) cadena ascendente finita.
- Entonces, $H^{\alpha}=lfp(T_{P}^{\alpha})=T_{P}^{\alpha}\uparrow n$ se obtendrá en un número finito de pasos n y H^{α} se aproximará a H.

Interpretación abstracta "Bottom up" (cont.)

Ejemplo: simple inferencia de "tipos"

 \bullet Problema de "inferencia de tipo" mínimal [Sondergaard]: Aproximación de qué predicados están en H

- pred(a): denota el símbolo de predicado de un átomo a
- $B^{\alpha} = S$ (conjunto de símbolos de predicado en un programa P) Entonces $I^{\alpha} = \wp(S)$, lo llamamos S^*
- Función de concretización:

$$-\gamma: S^* \to I$$
$$-\gamma(D) = \{a \in B | pred(a) \in D\}$$

• Función de abstracción:

$$-\alpha: I \to S^*$$
$$-\alpha(M) = \{ p \in S | \exists a \in M, pred(a) = p \}$$

• (S^*, γ, I, α) es una inserción de Galois.

Ejemplo: simple inferencia de "tipos" (cont.)

• Versión abstracta de T_P (después de alguna simplificación):

$$T_P\alpha: S^* \to S^*$$

$$T_P^{\alpha}(D) = \{ p \in S | \exists C \in P, C = h \rightarrow b_1, \dots, b_n, pred(h) \leftarrow pred(b_1), \dots, pred(b_n) \equiv p \leftarrow p_1, \dots, p_n, y p_1, \dots, p_n \in D \}$$

• S^* finito (número finito de símbolos de predicado en el programa) y T_P^{α} monótona \rightarrow El análisis terminará en un número finito de pasos n y $H^{\alpha} = T_P^{\alpha} \uparrow n$ se aproxima a H.

Ejemplo: simple inferencia de "tipos" (cont.)

• Ejemplo:

$$P = \{p(f(X)) \leftarrow p(X).p(a).r(X) \ \mathsf{L}(X,Y).q(a).q(b).\}$$

$$P_{\alpha} = \{p \leftarrow p.p.r \, \Box t.q.\}$$

- $S = \{p/1, q/1, r/1, t/2\}$
- Abstracción: $\alpha(\{p(a),p(b),q(a)\})=\{p/1,q/1\}$

• Concretización:

$$\gamma(\{p/1, q/1\}) = \{A \in B | pred(A) = p/1 \lor pred(A) = q/1\}$$

$$= \{p(a), p(b), p(f(a)), p(f(b)), \dots, q(a), q(b), q(f(a)), \dots\}$$
(2)
(3)

• Análisis:

$$T_P^{\alpha} \uparrow 0 = T_P^{\alpha}(\emptyset) = p/1, q/1$$

 $T_P^{\alpha} \uparrow 1 = T_P^{\alpha}(\{p/1, q/1\}) = \{p/1, q/1\} = T_P^{\alpha} \uparrow 0 = H^{\alpha}$

Análisis bottom up basado en T_P : Discusión

- Ventajas:
 - Simple y elegante. Basado en la semántica declarativa de punto fijo
 - General: resultados independientes de la consulta
- Desventajas:
 - Información solo sobre "salida del procedimiento". Normalmente se necesita información en varios puntos del programa en la compilación, por ejemplo, "patrones de llamada"
 - La "variable lógica" no es observada (usa datos instanciados). Información sobre estado de instanciación, sustituciones, etc. a menudo necesarios en la compilación
 - No dirigido a consultas: analiza el programa completo, no la parte (y los modos) que corresponden al uso "normal" (expresado a través de una consulta)

Análisis Top down (resumido)

- Definir una semántica concreta extendida (recolectora), derivada de la resolución SLD, haciendo observable la información relevante.
- Dominio abstracto: generalmente "sustituciones abstractas".
- Operaciones abstractas: unificación, composición, proyección, extensión, . . .

- Función semántica abstracta: toma una forma de consulta (abstracción del objetivo inicial o conjunto de metas iniciales) y el programa y devuelve descripciones abstractas de la sustituciones en puntos relevantes del programa.
- Las variables complican las cosas:
 - corrección (debido al aliasing),
 - terminación (fusión de información relacionada con aliasing)
- Las variables lógicas son, de hecho, punteros (que se comportan bien): X = tree(N,L,R), L = nill, Y = N, Y = 3, ...
- esto hace que el análisis de programas lógicos sea muy interesante (y bastante relevante para otros paradigmas).

Arbol AND-OR abstracto

• Exploración del árbol ?- p. h:- p1, ... pn.

- Operacons Basicas:
 - Procedure entry: de λ_{call} obtiene $\beta 1_{entry}$
 - Entry-to-exit (b): de $\beta 1_{entry}$ obtiene $\beta 1_{exit}$
 - Clause entry: de $\beta 1_{entry}$ obtiene λ_1 (y clause exit)
 - Body traversal: de λ_1 obtiene λ_{n+1} (iterativamente aplicando (a))
 - Procedure exit: de (each or all of the) βi_{exit} obtiene $\lambda_{success}$

Optimización de Punto Fijo

• Punto fijo es requerido solo en los predicados recursivos:

- Recursivo simple (a)
- Mutuamente Recursivos (b) "Usa la sustitución de exito actual e itera hasta que el punto fijo es alcanzado"

Ciaopp

- Entrada
 - Programas Lógicos
 - aserciones y extensiones sintácticas (opcionalmente)
- Salida
 - Mensajes de Errores
 - Programa Transformado con:
 - * Resultados de analisis (como aserciones)
 - * Resultados de chequeo estático de aserciones
 - * Aserciones de chequeo en tiempo de ejecución
 - * Optimizaciones (especialización, paralelización, etc).

Aserciones

- estado de las aserciones
 - check (default) Es la semántica intentada, para ser chequeada,
 es la especificación del programa, ingresada por el usuario.
 - trust semántica real, ingresada por el usuario y creída por el compilador (es una guía).

- true o false semántica real, salida del compilador.
- checked validación: es un check que ha sido probado. (igual a true).
- ejemplo

Propiedades del estado de éxito

• Propiedades del estado de **éxito**. Son similiares en naturaleza a las postcondiciones usadas en verificación de programas

```
:- success Goal => Postcond.
```

debe ser interpretada como "para toda llamada de la forma Goal que tiene éxito, al momento del éxito Postcond debería ser verdadero".

• Restricción de las aserciones a un subconjunto de las llamadas

```
:- success Goal : Precond => Postcond.
```

debe ser interpretada como "para toda llamada de la forma Goal para la cual Predcond ocurre, si la llamada tiene éxito, al momento del éxito Postcond debería ser verdadero".

Propiedades en la llamada y computación

• Propiedades en el estado de llamada de un predicado que pueden aparecer en tiempo de ejecución.

```
:- calls Goal : Cond.
```

se debe interpretar "toda llamada de la forma Goal debería satisfacer Cond".

• Propiedades de la computación

```
:- comp Goal : Precond + Comp_prop.
```

se debe interpretar "para toda llamada de la forma Goal para la cual Precond ocurre, Comp_prop debería ocurrir también para la computación de Goal".

Composición de Aserciones

Para facilitar la escritura una aserción compuesta de un predicado puede ser usado como azúcar sintáctico para las aserciones básicas. La aserción compuesta siguiente

```
:- pred Pred : Precond => Postcond + Comp_prop.
```

corresponde a la siguiente aserción de éxito:

```
:- success Pred : Precond => Postcond.
```

si la aserción **pred** tiene un campo => (y un campo :). También corresponde a una aserción de computación de la forma:

```
:- comp Pred : Precond + Comp_prop.
```

si la aserción pred tiene los campos + y :

Ejemplo de aserciones compuestas

• Consideremos el programa clasico quicksort qsort . Podemos usar la siguiente aserción para requerir que la salida del procedimiento qsort sea una lista.

```
:- success qsort(A,B) => list(B).
```

• alternativamente podemos requerir que **qsort** es llamado con una lista en su primer argumento y tiene exito, entonces el segundo argumento también sera una lista.

```
:- success qsort(A,B) : list(A) => list(B).
```

La diferencia reside en que se espera que B sea una lista en los casos en que A sea una lista.

Ejemplo de aserciones compuestas (cont.)

• Además podemos requerir que en todas las llamadas al predicado qsort el primer argumento debe ser una lista:

```
:- calls qsort(A,B) : list(A).
```

• El procedimiento qsort debe ordenar cualquier lista. Asi, requeriremos que todas las llamadas con una lista en el primer argumento y una variable en el segundo no fallen:

```
:- comp qsort(A,B) : (list(A) , var(B)) + does_not_fail.
```

Ejemplo de aserciones compuestas (cont.)

En lugar de todas estas aserciones se puede usar la compuesta:

```
:- pred qsort(A,B) : (list(A) , var(B)) => list(B) + does_not_fail.
que es equivalente a:
:- calls qsort(A,B) : (list(A), var(B)).
:- success qsort(A,B) : (list(A), var(B)) => list(B).
:- comp qsort(A,B) : (list(A) , var(B)) + does_not_fail.
```

Ejemplo de aserciones compuestas (cont.)

si queremos llamar a **qsort** con algo diferente a una variable en el segundo argumento se debe agregar:

```
:- pred qsort(A,B) : (list(A) , var(B)) => list(B) + does_not_fail.
:- pred qsort(A,B) : list(A) => list(B).

que es equivalente a:
:- calls qsort(A,B) : ((list(A), var(B)) ; list(A)).
:- success qsort(A,B) : ((list(A), var(B)) ; list(A)). => list(B).
:- comp qsort(A,B) : (list(A) , var(B)) + does_not_fail.
```

Tipos Regulares

Tipos Regulares son propiedades cuyas definiciones son "programas regulares". Ejemplos:

Lenguaje de aserciones

• ejemplo de pred/1

```
:- pred length(L,N) : list * var => list * integer
# "Computes the length of L.".
:- pred length(L,N) : var * integer => list * integer
# "Outputs L of length N.".
:- pred length(L,N) : list * integer => list * integer
# "Checks that L is of length N.".
```

• ejemplo de pred/2

```
:- check pred length(L,N) : list * var => list * integer.
```

• ejemplo de comp/1

```
:- comp append(Xs,Ys,Zs) : var * var * var + not_fail.
```

• test es similar a success pero especifica un caso de test como parte de la especificación del predicado

```
:- test length(L,N) : ( L = [1,2,5,2] ) => ( N = 4 ).
```

Lenguaje de aserciones (cont.)

• definición de nuevos modos

```
:- modedef +A : nonvar(A) # "A is bound upon predicate entry.".
:- pred p(+A,B) : integer(A) => ground(B).
es equivalente a:
:- pred p(A,B) : (nonvar(A),integer(A)) => ground(B)
# "A is bound upon predicate entry.".
```

• documentación

```
:- doc(Pred,Comment).
```

:- doc(p(A,B), "A is bound upon predicate entry.").

Ciaopp

Analisis

• Entrada

Analisis

• Entrada

```
:- module(qsort, [qsort/2], [assertions]).
:- entry qsort(A,B) : (list(num, A), var(B)).

qsort([X|L],R) :-
    partition(L,X,L1,L2),
    qsort(L2,R2), qsort(L1,R1),
    append(R2,[X|R1],R).

qsort([],[]).

partition([],_B,[],[]).
partition([E|R],C,[E|Left1],Right):-
    E < C, !, partition(R,C,Left1,Right).
partition([E|R],C,Left,[E|Right1]):-
    E >= C, partition(R,C,Left,Right1).

append([],X,X).
append([H|X],Y,[H|Z]):- append(X,Y,Z).
```

Analisis

```
• dominio shfr sin el ~:- entry . . . ~
     :- true pred qsort(_A,R)
        : mshare([[_A],[_A,R],[R]])
        => mshare([[_A,R]]).
     :- true pred partition(_A,_B,Left,Right)
        : ( mshare([[_A],[_A,_B],[_B],[Left],[Right]]), var(Left), var(Right) )
        => ( mshare([[_B]]), ground([_A,Left,Right]) ).
     :- true pred append(_A,X,_B)
        : ( mshare([[X],[X,_B],[_B]]), ground([_A]) )
        => ( mshare([[X,_B]]), ground([_A]) ).
Analisis
   • dominio shfr con el :- entry qsort(A,B) : (list(num, A), var(B)).
     :- true pred qsort(A,B)
        : ( mshare([[B]]), var(B), ground([A]) )
        => ground([A,B]).
     :- true pred partition(_A,_B,Left,Right)
        : ( mshare([[Left],[Right]]), var(Left), var(Right), ground([_A,_B]) )
        => ground([_A,_B,Left,Right]).
     :- true pred append(_A,X,_B)
        : ( mshare([[_B]]), var(_B), ground([_A,X]) )
        => ground([_A,X,_B]).
Analisis
   • dominio eterms sin :- entry qsort(A,B) : (list(num, A), var(B)).
     :- true pred qsort(_A,R)
        : ( term(_A), term(R) )
        => ( list(_A), list(R) ).
     :- true pred partition(_A,_B,Left,Right)
```

```
: ( term(_A), term(_B), term(Left), term(Right) )
=> ( list(arithexpression,_A), term(_B),
list(arithexpression,Left), list(arithexpression,Right) ).
:- true pred append(_A,X,_B)
: ( list(_A), non_empty_list(X), term(_B) )
=> ( list(_A), non_empty_list(X), non_empty_list(_B) ).
```

Analisis

• dominio eterms con :- entry qsort(A,B) : (list(num, A), var(B)).

```
:- true pred qsort(A,B)
    : ( list(num,A), term(B) )
    => ( list(num,A), list(num,B) ).

:- true pred partition(_A,_B,Left,Right)
    : ( list(num,_A), num(_B), term(Left), term(Right) )
    => ( list(num,_A), num(_B), list(num,Left), list(num,Right) ).

:- true pred append(_A,X,_B)
    : ( list(num,_A), list1(num,X), term(_B) )
    => ( list(num,_A), list1(num,X), list1(num,_B) ).
```

Debugging

• Entrada

```
:- module(qsort, [qsort/2], [assertions]).
:- entry qsort(A,B) : (list(num, A), var(B)).

qsort([X|L],R) :-
    partition(L,X,L1,L2),
    qsort(L2,R2), qsort(L1,R1),
    append(R2,[x|R1],R). % <-- 'x' should be X (variable)
qsort([],[]).

partition([],B,[],[]).
partition([E|R],C,[E|Left1],Right):-</pre>
```

```
E < C, !, partition(R,C,Left1,Right).
partition([E|R],C,Left,[E|Right1]):-
    E >= C,    partition(R,C,Left,Right1).

append([],X,X).
append([H|X],Y,[H|Z]):- append(X,Y,Z).
```

Debugging

• Salida

```
:- true pred qsort(A,B)
    : ( list(num,A), term(B) )
    => ( list(num,A), list(^(x),B) ).
```

Debugging

• Entrada

```
:- module(_, [qsort/2], [assertions]).
:- entry qsort(A,B) : (list(num, A), var(B)).

qsort([X|L],R) :-
    partition(L,L1,X,L2),  % <-- swapped second and third arguments
    qsort(L2,R2), qsort(L1,R1),
    append(R2,[X|R1],R).

qsort([],[]).

partition([],_B,[],[]).

partition([e|R],C,[e|Left1],Right):-  % <-- 'e' should be E (variable)
    E < C, !, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-
    E >= C, partition(R,C,Left,Right1).

append([],X,X).
append([H|X],Y,[H|Z]):- append(X,Y,Z).
```

Debugging

• Salida

```
{In /home/claudio/tmp/orgfiles/data/ciaopp/clase2/hacerslides/debugging/qsort2.pl WARNING (preproc_errors): (lns 4-8) goal qsort2:partition(L,L1,X,L2) at literal 1 } {ERROR (ctchecks_messages): error printing:message_clause_incompatible(qsort2:partition([e|C],A,[D|E],B),[A,B,C,D,E],[C,Right,R,E,Left1]) } {In /home/claudio/tmp/orgfiles/data/ciaopp/clase2/hacerslides/debugging/qsort2.pl WARNING (preproc_errors): (lns 14-15) goal arithmetic:>=(E,C) at literal 1 does not succeed!
```

Debugging

• Chequear Aserciones

```
:- module(qsort3, [qsort/2], [assertions,regtypes,nativeprops]).
:- entry qsort(A,B) : (list(num, A), var(B)).
:- calls qsort(A,B) : list(num, A).
                                                             % A1
:- success qsort(A,B) => (ground(B), sorted_num_list(B)). % A2
                                                             % A3
:- calls partition(A,B,C,D) : (ground(A), ground(B)).
:- success partition(A,B,C,D) => (list(num, C),ground(D)). % A4
:- calls append(A,B,C) : (list(num,A),list(num,B)).
                                                             % A5
:- prop sorted_num_list/1.
sorted_num_list([]).
sorted_num_list([X]):- number(X).
sorted_num_list([X,Y|Z]):-
    number(X), number(Y), X=<Y, sorted_num_list([Y|Z]).</pre>
qsort([X|L],R) :-
    partition(L,X,L1,L2),
    qsort(L2,R2), qsort(L1,R1),
    append (R2, [x|R1], R).
qsort([],[]).
partition([],_B,[],[]).
```

```
partition([E|R],C,[E|Left1],Right):-
    E < C, !, partition(R,C,Left1,Right).
partition([E|R],C,Left,[E|Right1]):-
    E >= C, partition(R,C,Left,Right1).

append([],X,X).
append([H|X],Y,[H|Z]):- append(X,Y,Z).
```

Optimización

• Entrada

:- module(_1,[dup_first/2],[assertions]).

dup_first([A|B],[A,A|B]).

• Entrada

Optimización

```
:- module(append,[appe/3],[assertions] ) .
:- entry appe(A,B,C).
appe(A,B,C) :- append([1,2,3|A],B,C).
append([],X,X).
append([H|X],Y, [H|Z]):- append(X,Y,Z) .
```

• Salida

Optimización

• Entrada

```
:- module(exponential_ac, [ent/2], [assertions]) .
:- entry ent(Base,_) : int(Base).
ent(Base,Res) :- exp(Base,3,Res).

exp(Base,Exp,Res):- exp_ac(Exp,Base,1,Res).

exp_ac(0,_,Res,Res).

exp_ac(Exp,Base,Tmp,Res) :- Exp > 0,
    Expl is Exp - 1,
    NTmp is Tmp * Base,
    exp_ac(Exp,Base,NTmp,Res).
```

Optimizacion

• Salida

```
:- module(_1,[ent/2],[assertions]).
```

Certificación

• Entrada

```
:- module(multiply,_,[assertions]).
:- entry mmultiply(X,Y,Z): (var(Z),list(X,list(num)),list(Y,list(num))).
:- entry mmultiply(X,Y,Z) : (var(Z),ground(X),ground(Y)).
mmultiply([],_,[]).
mmultiply([V0|Rest],V1,[Result|Others]):-
    mmultiply(Rest, V1, Others),
    multiply(V1, V0, Result).
multiply([],_,[]).
multiply([V0|Rest], VI, [Result|Others]):-
    multiply(Rest, VI, Others),
    vmul(VO, VI, Result).
vmul([],[],0).
vmul([H1|T1],[H2|T2],Result):-
    vmul(T1,T2,Newresult),
    Product is H1*H2,
    Result is Product+Newresult.
```

Certificación

• Certificado