Math 357 Short quiz 08

2024–02–16 (F)

Your name:	

By popular demand, you are sharing knowledge of modules with your friends while you all share a meal together. "Indeed!" says one, "Why, module homomorphisms are exactly like ring homomorphisms: They both respect addition and multiplication." Respond.

Solution: "Indeed!" say I. "Why, 'exactly' being such a strong word, in a careful response to its use in casual conversation, one almost always finds a 'no', or at least a 'not exactly'." ("Which is 'exactly' why nonmathematicians can find casual conversation with mathematicians tedious," jokes another friend, barely sotto voce. I acknowledge the bait with a grinning frown and continue with my response.) Let me offer three justifications for this "not exactly". First, the multiplication in rings and on modules differs: In ring, multiplication is a binary operation; whereas on modules, (scalar) multiplication is a ring action. This may be clearer in writing," I remark, and taking a handy paper napkin and a loitering pen, I write

In a ring R On an R-module M
$$\times : R \times R \to R$$
 $\cdot : R \times M \to M$

"This different algebraic structure leads to different treatment by the respective homomorphisms," I continue, appending the following rows to the table on the napkin (on the table):

$$\begin{split} \phi(r_1 \times_R r_2) &= \phi(r_1) \times_S \phi(r_2) \\ \text{ for } \phi: R \to S \end{split} \qquad \begin{aligned} \phi(r \cdot_M m) &= r \cdot_N \phi(m) \\ \text{ for } \phi: M \to N \end{aligned}$$

"Now, one could consider the case M=R, with scalar multiplication on the R-module R given by the multiplication in the ring R. In this case, the domain and codomain of the maps \times and \cdot (I point to the table) would be the same, but notice that the homomorphisms would still treat the two multiplications differently. This allows there to be ring homomorphisms that are not R-module homomorphisms, and vice versa," I observe solemnly, appending two final rows to the napkin table:

$$\begin{array}{ll} \phi: \textbf{Z} \rightarrow \textbf{Z} & \qquad \phi: \textbf{F}[t] \rightarrow \textbf{F}[t] \\ \phi(\alpha) = 2\alpha & \qquad \phi(f(t)) = f(t^2) \end{array}$$

"Which," I conclude with a smile, "would be hard to accomplish if these two homomorphisms were exactly alike." My friends joining me in general agreement, I join them in enjoying our shared meal.