MEDIOS DE ENLACE

3R1

Ing. Luis Contrera

2025

Gauss

Amper

V+[]

Ecuación de campos estáticos

Maxwell

Ecuación de Maxwell

Ecuación de campos estáticos

POTENCIAL

LEY DE GAUSS (E)

Desplazamiento eléctrico

TEOREMA STOKES

Integral línea

Integral superficie

Forma integral

Forma vectorial

TEOREMA DE LA DIVERGENCIA

Volumétrica
$$S = \frac{Q}{m^3}$$
 .. $Q = \int S dw$

$$J = \frac{A}{m^2} \cdot I = \int J ds$$

$$\nabla \times H = J$$

Densidad Superficial de corriente

ley de Gauss (H)

$$\oint \vec{B} ds = \int \nabla \cdot \vec{B} dv = 0$$

Ec. de Campos Electrost. y Magn.

forma Integral

LEY DE CONTINUIDAD ELECTRICA

VxH=J

Densidad Superficial de corriente

J.VxH = V.J = 0

Expresión vectorial de Kirchhoff

entran y salen de un nodo es igual a cero

establece que la suma de las corrientes que

POTENCIAL ELECTRICO / MAGNETICO

$$\frac{1}{\sqrt{4\pi\epsilon}} \left\{ \frac{P}{V} \right\}$$
 Vector de Potencial eléctrico

$$\overline{A} = \underbrace{\mathcal{I}}_{4T} \left\{ \underbrace{I}_{V} \right\}_{V}$$
 Vector de Potencial magnético

de la Ley de Amper

$$\int_{S_1} J ds_1 + \int_{S_2} J ds_2 \neq 0$$

$$\int_{S_1 + S_2} J ds \neq 0$$

$$I = \frac{9t}{9d}$$
 $d = \begin{cases} 8 & \text{q.} \\ \frac{9}{4} & \text{d.} \end{cases}$

$$\triangle \cdot \frac{95}{95} = -\Delta 1 \quad \therefore \quad \triangle \left(1 + \frac{95}{95}\right) = 0$$

$$\nabla(J + \frac{\partial D}{\partial t}) = 0$$

$$\nabla x H = J + \frac{\partial D}{\partial t}$$

$$\int \frac{1}{\partial t} = 0$$

$$\int \frac{1}{\partial t} =$$

Leyes de Maxwell

$$\int \nabla x H = \int + \frac{\partial D}{\partial t}$$
forma Vectorial

forma Integral