Блок-схема

Материал из Википедии — свободной энциклопедии

Схе́ма — графическое представление определения, анализа или метода решения задачи, в котором используются символы для отображения данных, потока, оборудования и т. д. $^{[1]}$

Блок-схема — распространенный тип схем (графических моделей), описывающих алгоритмы или процессы, в которых отдельные шаги изображаются в виде блоков различной формы, соединенных между собой линиями, указывающими направление последовательности. Правила выполнения регламентируются ГОСТ 19.701-90 «Схемы алгоритмов, программ, данных и систем. Условные обозначения и правила выполнения» [1]. Стандарт в частности регулирует способы построения схем и внешний вид их элементов.

Содержание

- 1 Основные элементы схем алгоритма
 - 1.1 Действие
 - 1.2 Данные
 - 1.3 Предопределенный процесс
 - 1.4 Вопрос
 - 1.5 Терминатор
 - 1.6 Цикл

1.6.1

Пример блок-схемы расчета факториала с использованием цикла

- 1.6.2 Пример вложенных циклов
- 1.7 Соединитель

171

Разделение алгоритма на две части с использованием соединителей

- 1.8 Комментарий
- 1.9 Параллельные действия
- 2 Представление алгоритмов в виде графов
- 3 Критика
- 4 См. также
- 5 Примечания

Основные элементы схем алгоритма

При начертании элементов рекомендуется придерживаться строгих размеров, определяемых двумя значениями а и b. Значение а выбирается из ряда 15, 20, 25.. мм, b рассчитывается из соотношения 2a = 3b. Определение размеров несет рекомендательный характер, однако, стоит отметить, что при соблюдении выполнения размеров блок-схемы имеют более

аккуратный вид.

Действие

Символ отображает функцию обработки данных любого вида (выполнение определенной операции или группы операций, приводящее к изменению значения, формы или размещения информации или к определению, по которому из нескольких направлений потока следует двигаться).

Данные

Символ отображает данные, носитель данных не определен.

Преобразование данных в форму, пригодную для обработки (ввод) или отображения результатов обработки (вывод). Данный символ не определяет носителя данных (для указания типа носителя данных используются специфические символы).

Предопределенный процесс

Символ отображает предопределенный процесс, состоящий из одной или нескольких операций или шагов программы, которые определены в другом месте (в подпрограмме, модуле). Например, в программировании – вызов процедуры или функции.

Вопрос

Символ отображает решение или функцию переключательного типа, имеющую один вход и ряд альтернативных выходов, один и только один из которых может быть активизирован после вычисления условий, определенных внутри этого символа. Соответствующие результаты вычисления могут быть записаны по соседству с линиями, отображающими эти пути.

Отображает решение или функцию переключательного типа с одним входом и двумя или более альтернативными выходами, из которых только один может быть выбран после вычисления условий, определенных внутри этого элемента. Вход в элемент обозначается линией, входящей обычно в верхнюю вершину элемента. Если выходов два или три, то обычно каждый выход обозначается линией, выходящей из оставшихся вершин (боковых и нижней). Если выходов больше трех, то их следует показывать одной линией, выходящей из вершины (чаще нижней) элемента, которая затем разветвляется. Соответствующие результаты вычислений могут записываться рядом с линиями, отображающими эти пути. Примеры решения: в общем случае – сравнение (три выхода: >, <, =); в программировании – условные операторы if (два выхода: true, false) и саse (множество выходов).

Терминатор

Символ отображает выход во внешнюю среду и вход из внешней среды (начало или конец схемы программы, внешнее использование и источник или пункг назначения данных).

На практике имеют смысл следующие описания терминаторов: начало/конец, запуск/останов, перезапуск (подразумевает перезапуск данной блок-схемы), ошибка (подразумевает завершение алгоритма с ошибкой), исключение (подразумевает генерацию программною исключения)

Символ, состоящий из двух частей, отображает начало и конец цикла. Обе части символа имеют один и тот же идентификатор. Условия для инициализации, приращения, завершения и т. д. помещаются внутри символа в начале или в конце в зависимости от расположения операции, проверяющей условие.

Пример блок-схемы расчета факториала с использованием цикла

Пример вложенных циклов

Соединитель

Символ отображает выход в часть схемы и вход из другой части этой схемы и используется для обрыва линии и продолжения ее в другом месте. Соответствующие символы-соединители должны содержать одно и то же уникальное обозначение.

Разделение алгоритма на две части с использованием соединителей

Комментарий

Символ используют для добавления описательных комментариев или пояснительных записей в целях объяснения или примечаний. Пунктирные линии в символе комментария связаны с соответствующим символом или могут обводить группу символов. Текст комментариев или примечаний должен быть помещен около ограничивающей фигуры.

Также символ комментария следует использовать в тех случаях, когда объём текста, помещаемого внутри некоего символа (например, символ процесса, символ данных и др.), превышает размер самого этого символа. Комментарии используют совместно с терминаторами для описания входных аргументов алгоритма при описании функций

Параллельные действия

Символ представляется двумя параллельными линиями, отображает синхронизацию двух или более параллельных операций. В случае входа нескольких операций в параллельные линии, выполнение алгоритма будет продолжено только в случае окончания всех входящих процессов.

Параллельные действия могут быть использованы для асинхронных процессов или для процессов, последовательность которых не важна. В представленном примере стоит обратить внимание, что созданные в одних параллельных линиях процессы не обязаны также параллельно заканчиваться.

Описание других элементов схем можно найти в соответствующих $\Gamma OCT^{[1]}$. Среди элементов существуют:

- Запоминаемые данные
- Документ
- Ручной ввод

- Карта
- Дисплей
- Ручная операция
- Передача управления
- Альтернативная связь между двумя или более символами
- и др.

Представление алгоритмов в виде графов

Порядок выполнения действий задается путём соединения вершин дугами, что позволяет рассматривать блок-схемы не только как наглядную интерпретацию алгоритма, удобную для восприятия человеком, но и как взвешенный ориентированный граф (т. н. граф-схема алгоритма, ГСА). Подобное представление алгоритмов используется при построении систем логического управления, реализующих заданные управляющие алгоритмы, в задачах распараллеливания вычислений и т. д.

Критика

Распространённой и ошибочной практикой является попытка использования блок-схем для иллюстрации алгоритма на низком уровне (на уровне кода) — то есть, попытка вписывать в блоки схемы фрагменты кода на каком-либо искусственном языке. Такой подход применим только к программам, организованным согласно структурному подходу, и не может отразить, к примеру, алгоритма, который реализуется во взаимодействии абстракций при объектно-ориентированном подходе. Для целей описания алгоритмов, взаимодействия частей системы и иллюстрации многих других сопутствующих вещей существует нотация UML.

См. также

- Диаграмма Насси Шнейдермана
- Диаграмма связей
- Псевдокод (язык описания алюритмов)

Примечания

1. ГОСТ 19.701-90. Сжемы алгоритмов, программ, данных и систем. Условные обозначения и правила выполнения (http://cert.obninsk.ru/gost/282/282.html)

Источник — «https://ru.wikipedia.org/w/index.php?title=Бок-схема&oldid=88907107»

Эта страница последний раз была отредактирована 10 ноября 2017 в 13:40.

Текст доступен по <u>лицензии Creative Commons Attribution-ShæeAlike</u>; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.

Свяжитесь с нами