Little Summary

1 Theorem (Uniqueness of solutions to linear systems)

For a matrix A, the following are equivalent:

- (a) $A\mathbf{x} = \mathbf{0}$ has no non-trivial solution (i.e. $\mathbf{x} = \mathbf{0}$ is the only solution).
- (b) If $A\mathbf{x} = \mathbf{b}$ is consistent, then it has a unique solution.
- (c) The columns of A are linearly independent.
- (d) A has a pivot position in every column (i.e. all variables are basic).
- (e) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- (f) The kernel of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is $\{\mathbf{0}\}$.

2 Theorem (Existence of solutions to linear systems)

For an $m \times n$ matrix A, the following statements are logically equivalent:

- (a) For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- (b) Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- (c) The columns of A span \mathbb{R}^m .
- (d) A has a pivot position in every row.
- (e) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto.
- (f) The range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is \mathbb{R}^m .

3 Geometric Linear Transformations of \mathbb{R}^2

(Pick from textbook)

Transformation	Image of the Unit Square	Standard Matrix
Reflection through the x_1 -axis	$\begin{bmatrix} x_2 \\ 0 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection through	<i>x</i> ₂	$\begin{bmatrix} -1 & 0 \end{bmatrix}$

the x_2 -axis

 $\begin{bmatrix} 0 & 1 \end{bmatrix}$

Reflection through the line $x_2 = x_1$

Reflection through the line $x_2 = -x_1$

 $\left[\begin{matrix} 0 & -1 \\ -1 & 0 \end{matrix} \right]$

Reflection through the origin

 $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

TABLE 2 Contractions and Expansions

TABLE 3 Shears

Transformation	Image of the Unit Square	Standard Matrix
Projection onto the x_1 -axis	<i>x</i> ₂	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right]$
	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	
Projection onto the x_2 -axis	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right]$
	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \longrightarrow x_1$	