correspond to the state where $x_3 = 1$, then x will be represented by

$$\mathbf{x} = (0, 0, 1, 0, 0, 0)^{\mathrm{T}}. (3.13)$$

Note that such vectors satisfy $\sum_{k=1}^{K} x_k = 1$. If we denote the probability of $x_k = 1$ by the parameter μ_k , then the distribution of \mathbf{x} is given by

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k} \tag{3.14}$$

where $\mu = (\mu_1, \dots, \mu_K)^T$, and the parameters μ_k are constrained to satisfy $\mu_k \geqslant 0$ and $\sum_k \mu_k = 1$, because they represent probabilities. The distribution (3.14) can be regarded as a generalization of the Bernoulli distribution to more than two outcomes. It is easily seen that the distribution is normalized:

$$\sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu}) = \sum_{k=1}^{K} \mu_k = 1$$
 (3.15)

and that

$$\mathbb{E}[\mathbf{x}|\boldsymbol{\mu}] = \sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu})\mathbf{x} = \boldsymbol{\mu}.$$
 (3.16)

Now consider a data set \mathcal{D} of N independent observations $\mathbf{x}_1, \dots, \mathbf{x}_N$. The corresponding likelihood function takes the form

$$p(\mathcal{D}|\boldsymbol{\mu}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{\left(\sum_n x_{nk}\right)} = \prod_{k=1}^{K} \mu_k^{m_k}$$
(3.17)

where we see that the likelihood function depends on the ${\cal N}$ data points only through the ${\cal K}$ quantities:

$$m_k = \sum_{n=1}^{N} x_{nk},\tag{3.18}$$

which represent the number of observations of $x_k = 1$. These are called the *sufficient statistics* for this distribution. Note that the variables m_k are subject to the constraint

$$\sum_{k=1}^{K} m_k = N. (3.19)$$

To find the maximum likelihood solution for μ , we need to maximize $\ln p(\mathcal{D}|\mu)$ with respect to μ_k taking account of the constraint (3.15) that the μ_k must sum to one. This can be achieved using a Lagrange multiplier λ and maximizing

Appendix C

$$\sum_{k=1}^{K} m_k \ln \mu_k + \lambda \left(\sum_{k=1}^{K} \mu_k - 1 \right). \tag{3.20}$$

Section 3.4