MATH 323: Probability

Anna Brandenberger

September 21, 2018

This is a transcript of the lectures given by Prof. David Stephens¹ during the fall semester of the 2018-2019 academic year (09-12 2018) for the Probability class (MATH 240). **Subjects covered** are: sample space, events, conditional probability, independence of events, Bayes' Theorem; basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions; independence of random variables; inequalities, weak law of large numbers, central limit theorem.

¹ david.stephens@mcgill.ca, BH 1225

Basics of Probability

1 Review of Set Theory

Definition 1.1. A **set** *S* is a collection of elements $s \in S$:

- FINITE: finite number of elements
- COUNTABLE: countably infinite number of elements
- UNCOUNTABLE: uncountably infinite number of elements

Definition 1.2. The **power set** $\mathcal{P}(A)$ of A is the set of all subsets of A: $\mathcal{P}(A) = \{B \mid B \subseteq A\}.$

SET OPERATIONS

- 1. INTERSECTION: $s \in A \cap B \iff s \in A \text{ and } s \in B$ extends to A_1, A_2, \dots, A_K (finite): $s \in \bigcap_{k=1}^K A_k \iff s \in A_k \ \forall k$
- 2. UNION: $s \in A \cup B \iff s \in A \text{ or } s \in B$ extends to A_1, A_2, \ldots, A_K (finite²): $s \in \bigcup_{k=1}^K A_k \iff \exists k \text{ s.t. } s \in A_k$
- 3. Complement: for $A \subseteq S$, $s \in A' \iff s \in S$ but $s \notin A$
- 4. SET DIFFERENCE $A B \equiv A \setminus B \equiv A \cap B'$
- 5. EXCLUSIVE OR (XOR): $A \oplus B \equiv A \cup B A \cap B$

Definition 1.3. A_1, A_2, \ldots, A_K is called a **partition** of S if these sets are pairwise disjoint $A_j \cap A_k = \emptyset \ \forall j \neq k$ and exhaustive $\bigcup_{k=1}^K A_k = S$.

Theorem 1.1 (De Morgan's Laws).

$$A' \cap B' = (A \cup B)'$$
 $A \cup B' = (A \cap B)'$

Probability is a numerical value representing the chance of a particular event occurring given a particular set of circumstances.

Let $A \subseteq S$:

$$A \cap \emptyset = \emptyset$$
 $A \cup \emptyset = A$
 $A \cap S = A$ $A \cup S = S$

Intersection \cap and union \cup are commutative and associative.

² technically also extends to a countably infinite number of sets.

Proof. Let $A_1 = A \cup B$, $A_2 = A' \cap B'$. To show that $A_1' = A_2$, one must show $A_1 \cup A_2 = \emptyset$ and $A_1 \cup A_2 = S$.

$$A_1 \cap A_2 = (A \cup B) \cap A_2 = (A \cap A_2) \cup (B \cap A_2)$$
$$= (A \cap A' \cap B') \cup (B \cap A' \cap B')$$
$$= \emptyset \cup \emptyset = \emptyset$$
$$A_1 \cup A_2 = A_1 \cup (A' \cap B') = (A_1 \cup A') \cap (A_1 \cup B')$$

$$= (A \cup B \cup A') \cap (A \cup B \cup B')$$
$$= S \cap S = S \qquad \Box$$

1.2 Sample Spaces and Events

Definition 1.4. The set *S* of possible outcomes of an experiment is the **sample space** of an experiment, and the individual elements in *S* are **sample points** or **outcomes**.

Definition 1.5. An **event** A is a collection of sample outcomes $A \subseteq S$. Individual sample outcomes $E_1, E_2, \ldots, E_K, \cdots \in A$ are termed **simple** (**elementary**) events. We say that A **occurs** if the outcome $s \in A$. S is the **certain** event; \emptyset the **impossible** event.

Definition 1.6. The **probability function** P(.) assigns numerical values to events: $P: \mathcal{A} \longrightarrow \mathbb{R}$, $A \longrightarrow p$ (i.e. P(A) = p, $A = \mathcal{P}(\mathcal{S})$).

1.3 Axioms and Consequences

Theorem 1.2. Basic probability axioms:

- 1. $P(A) \ge 0$
- 2. P(S) = 1
- 3. *P* is countably additive: if A_1, A_2, \ldots s.t. $A_i \cap A_k = \emptyset \ \forall j \neq k$:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Corollary 1.3. $\forall A \ P'(A) = 1 - P(A)$

Corollary 1.4. $P(\emptyset) = 0$

Corollary 1.5. $\forall A \ P(A) \leq 1$

Corollary 1.6. $\forall A \subseteq B, P(A) \leq P(B)$

Corollary 1.7 (General Addition Rule).

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Using inductive arguments, one can construct a formula for $P(\bigcup_{i=1}^{n} A_i)$ (c.f. MATH 240) but we will mostly use:

Theorem 1.8 (Boole's Inequality). $P(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i)$

As a method, one can lay out probabilities in table form such as in Table 1, ensuring that $0 \le p_{\star} \le 1$ and probabilities along rows and column add up correctly.

Proof.
$$S = A \cup A'$$
. By Theorem 1.2(3), $P(S) = P(A) + P(A') = 1$ $\implies P'(A) = 1 - P(A)$

Proof. Simple from Corollary 1.3. □

Proof. By Theorem 1.2 and 1.3,
$$1 = P(S) = P(A) + P(A') \ge P(A)$$

Proof. Take
$$B = A \cup (A' \cap B)$$
. Then, $P(B) = P(A) + P(A' \cap B) \ge P(A)$

Proof. First,
$$(A \cup B) = A \cup (A' \cap B)$$

 $\implies P(A \cup B) = P(A) + P(A' \cap B)$ [1
Then, take $B = (A \cap B) \cup (A' \cap B)$

$$\Rightarrow P(B) = P(A \cap B) + P(A' \cap B)$$
 [2] So taking [1] - [2], we get:

$$P(A \cup B) - P(B) = P(A) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \quad \Box$$

	A	A'	Total
В	$p_{A\cap B}$	$p_{A'\cap B}$	p_B
B'	$p_{A\cap B'}$	$p_{A'\cap B'}$	$p_{B'}$
Total	p_A	$p_{A'}$	p_S

Table 1: Probabilities laid out in a table.

Specifying probabilities

Definition 1.7 (Equally likely sample outcomes). Suppose *S* finite, with sample outcomes E_1, \ldots, E_N , then $P(E_i) = \frac{1}{N} \ \forall i = 1, \ldots, N$. For an event $A \in S$, $\exists n \leq N$ s.t. $A = \bigcup_{i=1}^{n} E_{i_A}$, $i_A \in \{1, ..., n\}$ $\implies P(A) = \frac{n}{N} = \frac{\text{\# sample outcomes in } A}{\text{\# sample outcomes in } S}$

Examples of experiments with equally likely sample outcomes include fair coins, dice and cards.

Definition 1.8 (Relative frequencies). For a given experiment with a sample space S and interest event A, consider a finite sequence of N repeat experiments and *n* the number of times that *A* occurs. The **fre**quencist definition of probability, generalizes the previous definition to $P(A) = \lim_{N \to \infty} \frac{n}{N}$, the relative frequency of appearance of A.

Definition 1.9 (Subjective assessment). For a given experiment with sample space S, the probability of event A is further generalized to a numerical representation of one's own personal degree of belief that the actual outcome lies in A, assuming one is **internally consistent**, i.e. rational and coherent.

Combinatorial Rules

- 1. Multiplication principle: a sequence of k operations i, each with n_i possible outcomes, results in $n_1 \times n_2 \times \cdots \times n_k$ possible sequences of outcomes.
- 2. Selection principles: selecting from a finite set can be done:
 - WITH REPLACEMENT: each selection is independent;
 - WITHOUT REPLACEMENT: set is depleted by each selection.
- 3. Ordering: the order of a sequence of selections can be:
 - IMPORTANT (312 distinct from 123);
 - UNIMPORTANT (312 identical to 123).
- 4. DISTINGUISHABLE ITEMS: objects being selected can be:
 - DISTINGUISHABLE: individually labelled (e.g. lottery balls);
 - INDISTINGUISHABLE: labelled according to a type (e.g. colors).

Definition 1.10. A **permutation** is an ordered arrangement of *r* distinct objects. The number of possible permutations for a set *r* is $P_r^n = \frac{n!}{(n-r)!}$.

c.f. MATH 240 notes for examples.

Definition 1.11. The number of ways of partitioning n distinct elements into k disjoint subsets of sizes n_1, \ldots, n_k is the **multinomial coefficient** $N = \binom{n}{n_1, \ldots, n_k} \coloneqq \frac{n!}{n_1! \times n_2! \times \cdots \times n_k!}$. This is a generalization of the **binomial coeff.** $\binom{n}{j} = \frac{n!}{j!(n-j)!} \coloneqq \binom{n}{j,n-j}$.

Definition 1.12. The number of **combinations** C_r^n is the number of subsets of size r that can be selected from n objects $C_r^n = \binom{n}{r} = n! \cdot P_r^n$.

1.6 Conditional Probability

Definition 1.13. The **conditional probability** of *A* given *B* is $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ when P(B) > 0.

Corollary 1.9.
$$P(A | S) = P(A)$$
 $P(A | A) = 1$ $P(A | B) \le 1$

Warning 1. Important distinction between $P(A \cap B)$ and $P(A \mid B)$:

- $P(A \cap B)$: chance of A and B occurring RELATIVE TO S
- $P(A \mid B)$: chance of A and B occurring RELATIVE TO B non-symmetric: in general, $P(A \mid B) \neq P(B \mid A)$.

Theorem 1.10. The conditional probability function satisfies the probability axioms (Theorem 1.2).

Proof. 1.
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \ge 0$$

2.
$$P(S \mid B) = \frac{P(S \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

3.
$$P\left(\bigcup_{i=1}^{\infty}(A_i\mid B)\right) = \frac{P\left(\bigcup_{i=1}^{\infty}A_i\cap B\right)}{P(B)} = \frac{\sum_{i=1}^{\infty}P(A_i\cap B)}{P(B)} = \sum_{i=1}^{\infty}P(A_i\mid B)$$
 and since A_i disjoint $\forall i, (A_i, B)$ also disjoint.

Given partial knowledge (B happened) i.e. knowing $s \in B \subseteq S$, one can make a more accurate probability assessment of some other event A, as $s \in A \cap B$.

Example 1.1. Given three two-sided cards, one RR, one RB and one BB, one card is selected randomly and one side displayed: it is red (R). Find the probability that the other side is red.

Answer. $S = \{R_1, R_2, B, R, B_1, B_2\}$ Card 1 (RR) selected $A = \{R_1, R_2\} \implies P(A) = 2/6$ Red side exposed: $B = \{R_1, R_2, R\} \implies P(B) = 3/6$ $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{2/6}{3/6} = 2/3$