1. Cours : Fonctions trigonométriques

Dans tout ce chapitre, on se place dans un repère $(O; \vec{t}, \vec{j})$ orthonormé.

1 Rappels

1.1 Enroulement de la droite des réels

Définition 1 : On appelle cercle trigonométrique le cercle de centre O et de rayon 1 que l'on parcourt dans le sens inverse des aiguilles d'une montre. Ce sens est appelé sens trigonométrique.

On trace la droite des réels à droite de ce cercle trigonométrique, parallèlement à l'axe des ordonnées, puis on l'enroule autour d'une cercle trigonométrique. A chaque point x sur cette droite des réels, on associe ainsi un unique point M(x) sur le cercle.

Propriété 1 : Deux réels dont la différence est le produit de 2π et d'un nombre entier ont la même image par M.

1.2 Cosinus et sinus d'un nombre réel

Définition 2 : Soit x un réel et M(x) son image sur le cercle trigonométrique. On appelle :

- Cosinus de x, noté cos(x), l'abscisse de M(x);
- Sinus de x, noté sin(x), l'ordonnée de M(x).

■ Exemple 1 : On retiendra en particulier les valeurs remarquables suivantes.

Degré	0	30	45	60	90	180
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
Cosinus	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
Sinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

1 Rappels 3

Propriété 2 : Pour tout réel x,

$$-1 \leqslant \cos(x) \leqslant 1$$
 $-1 \leqslant \sin(x) \leqslant 1$ $\cos(x)^2 + \sin(x)^2 = 1$

■ **Exemple 2**: On considère la fonction $f: x \mapsto \frac{1+x}{2+\sin(x)}$.

Puisque, pour tout $x \in \mathbb{R}$, $1 \ge \sin(x) \ge -1$, alors $3 \ge 2 + \sin(x) \ge 1 > 0$. f est donc bien définie sur \mathbb{R} .

Par ailleurs, la fonction inverse étant décroissante sur $]0;+\infty[$, on a $\frac{1}{3} \le \frac{1}{2+\sin(x)} \le 1$ et donc, en multipliant par 1+x qui est strictement positif sur $]0;+\infty[$, $\frac{1+x}{3} \le f(x)$.

Or,
$$\lim_{x \to +\infty} \left(\frac{1+x}{3} \right) = +\infty$$
. Par comparaison, $\lim_{x \to +\infty} f(x) = +\infty$.

1.3 Résolution d'équation et d'inéquation

- Exemple 3 : Les solutions de l'équation $cos(x) = \frac{1}{2} sur [-\pi; \pi] sont -\frac{\pi}{3}$ et $\frac{\pi}{3}$.
- Exemple 4 : Le solutions de l'équation cos(x) = 0 sur $[0; 2\pi]$ sont $\frac{\pi}{2}$ et $\frac{3\pi}{2}$.
- Exemple 5 : L'ensemble des solutions de l'inéquation $\cos(x) \leqslant \frac{\sqrt{3}}{2}$ sur $[0; 2\pi]$ est l'intervalle $\left[\frac{\pi}{6}; \frac{11\pi}{6}\right]$.

Sur l'intervalle $[-\pi;\pi]$ l'ensemble des solutions de cette inéquation est $\left[-\pi;-\frac{\pi}{6}\right]\cup\left[\frac{\pi}{6};\pi\right]$.

Il faut donc faire attention à l'intervalle de résolution.. Dans tous les cas, le cercle trigonométrique sera votre plus précieux allié.

2 Fonctions trigonométriques

2.1 Définition et variations

Définition 3 : La fonction cosinus est la fonction qui, à tout réel x, associe $\cos(x)$. La fonction sinus est la fonction qui, à tout réel x, associe $\sin(x)$.

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
cos	-1	0	1	0	-1
$\cos(x)$	-	- 0	+	0 -	-

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
sin	0	-1	0	1	0
sin(x)	0	_	0	+	0

Propriété 3 : Pour tout $x \in \mathbb{R}$, on a

- cos(-x) = cos(x), la fonction cosinus est paire.
 sin(-x) = -sin(x); la fonction sinus est impaire.

Cela se traduit graphiquement par le fait que la courbe de la fonction cosinus est symétrique par rapport à l'axe des ordonnées alors que la courbe de la fonction sinus est symétrique par rapport à l'origine du repère.

■ Exemple 6:
$$\cos\left(-\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
 ; $\sin\left(-\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$.

Propriété 4 : Pour tout $x \in \mathbb{R}$ et pour tout $k \in \mathbb{Z}$, on a

- $cos(x+k\times 2\pi) = cos(x)$; $sin(x+k\times 2\pi) = sin(x)$.

On dit que les fonctions sinus et cosinus sont 2π -périodiques.

■ Exemple 7:
$$\cos\left(\frac{25\pi}{3}\right) = \cos\left(\frac{24\pi}{3} + \frac{\pi}{3}\right) = \cos\left(4 \times 2\pi + \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$
.

Dérivée des fonctions trigonométriques

Propriété 5: Les fonctions cos et sin sont dérivables sur \mathbb{R} . Par ailleurs, pour tout réel x,

$$\sin'(x) = \cos(x)$$
 et $\cos'(x) = -\sin(x)$

■ Exemple 8 : On considère la fonction $g: x \mapsto 2\cos(x) - x$ définie sur $I = [-\pi, \pi]$. g est dérivable sur I et pour tout $x \in I$, $g'(x) = -2\sin(x) - 1$.

Ainsi, $g'(x) \ge 0$ si et seulement si $\sin(x) \le -\frac{1}{2}$.

Pour résoudre cette inéquation on peut utiliser le cercle trigonométrique.

Ainsi, $g'(x) \ge 0$ si et seulement si $\sin(x) \le -\frac{1}{2}$.

Pour résoudre cette inéquation on peut utiliser le cercle trigonométrique.

L'ensemble des solutions de l'inéquation $\sin(x) \leqslant -\frac{1}{2} \sin[-\pi; \pi]$ $y = -\frac{1}{2}$

est $\left[-\frac{5\pi}{6}; -\frac{\pi}{6}\right]$. On peut alors construire le tableau de variations de f sur l'intervalle $[-\pi;\pi]$

x	$-\pi$		$-\frac{5\pi}{6}$		$-\frac{\pi}{6}$		π
g'(x)		_	0	+	0	_	
g	$\pi-2$		$\frac{5\pi}{6} - \sqrt{3}$		$\frac{\pi}{6} + \sqrt{3}$	<u></u>	$-2-\pi$

Il est également possible de dérivée des fonctions composées avec le cosinus ou le sinus.

Propriété 6 : Soit u une fonction définie et dérivable sur un intervalle I. Alors $\sin(u)$ et $\cos(u)$ sont également dérivables sur cet intervalle I et on a

$$(\sin(u))' = u' \times \cos(u)$$
 et $(\cos(u))' = -u' \times \sin(u)$

Exemple 9 : Pour tout réel x, on pose $f(x) = \sin(3x^2 - 4x + 5)$. f est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = (6x-4)\sin(3x^2-4x+5)$.

Propriété 7 : Soit a un réel non nul.

- Une primitive de $x \mapsto \cos(ax)$ sur \mathbb{R} est $x \mapsto \frac{\sin(ax)}{a}$. Une primitive de $x \mapsto \sin(ax)$ sur \mathbb{R} est $x \mapsto -\frac{\cos(ax)}{a}$.

Démonstration 1 : Il suffit de dériver. Attention au signe !

- Exemple 10 : Pour tout réel x, on pose $f(x) = 3\cos(2x) 5\sin(9x)$. Une primitive de f sur $\mathbb R$ est la fonction *F* définie pour tout réel *x* par $F(x) = \frac{3}{2}\sin(2x) + \frac{5}{9}\cos(9x)$.
- Exemple 11 : Pour $x \in \mathbb{R}$, on pose $g(x) = \cos(x)\sin(x)$. Pour tout $x \in \mathbb{R}$, on a $g(x) = \sin'(x) \times \sin(x)$. Une primitive de g sur \mathbb{R} est la fonction G définie pour tout réel x par $G(x) = \frac{1}{2}\sin^2(x)$.
- Exemple 12 : On considère la fonction $f: x \mapsto \sin^3(x) dx$ définie sur \mathbb{R} et $I = \int_0^{\pi} f(x) dx$.

D'une part, pour tout réel x,

$$f(x) = \sin(x) \times \sin^2(x) = \sin(x)(1 - \cos^2(x)) = \sin(x) - \sin(x)\cos^2(x).$$

Ainsi, $I = \int_0^{\pi} \sin(x) dx + \int_0^{\pi} (-\sin(x)\cos^2(x)) dx$. D'une part,

$$\int_0^{\pi} \sin(x) \, \mathrm{d}x = [-\cos(x)]_0^{\pi} = -\cos(\pi) - (-\cos(0)) = -(-1) - (-1) = 2.$$

D'autre part, pour tout réel $x \in [0; \pi]$, on $a - \sin(x)\cos^2(x) = \cos'(x) \times \cos^2(x)$.

Une primitive de la fonction $x \mapsto -\sin(x)\cos^2(x)$ sur $[0; \pi]$ est donc la fonction $x \mapsto \frac{\cos^3(x)}{2}$. Ainsi,

$$\int_0^{\pi} (-\sin(x)\cos^2(x)) \, \mathrm{d}x = \left[\frac{\cos^3(x)}{3} \right]_0^{\pi} = \frac{\cos^3(\pi)}{3} - \frac{\cos^3(0)}{3} = -\frac{1}{3} - \frac{1}{3} = -\frac{2}{3}.$$

Finalement,
$$I = 2 - \frac{2}{3} = \frac{4}{3}$$
.

2. Exercices

Rappels

► Exercice 1 – Voir le corrigé

On se place sur le cercle trigonométrique tracé ci-dessus et sur lequel sont placés certains points.

Déterminer les points images par l'enroulement de la droite des réels sur le cercle trigonométrique des réels suivants.

$$\frac{\pi}{2} \qquad \frac{3\pi}{2} \qquad \frac{17\pi}{2} \qquad \frac{-7\pi}{2} \\
\frac{\pi}{6} \qquad \frac{3\pi}{4} \qquad \frac{-5\pi}{3} \qquad \frac{8\pi}{3} \\
\frac{-7\pi}{4} \qquad \frac{19\pi}{3} \qquad \frac{-37\pi}{6} \qquad \frac{23\pi}{4}$$

► Exercice 2 – Voir le corrigé

En utilisant le cercle trigonométrique, déterminer les valeurs suivantes.

$$\cos\left(-\frac{\pi}{3}\right) \qquad \sin\left(-\frac{\pi}{3}\right) \qquad \cos\left(\frac{2\pi}{3}\right) \qquad \sin\left(\frac{2\pi}{3}\right) \\
\cos\left(-\frac{\pi}{4}\right) \qquad \sin\left(\frac{5\pi}{4}\right) \qquad \cos\left(\frac{3\pi}{4}\right) \qquad \sin\left(\frac{3\pi}{4}\right) \\
\cos\left(\frac{11\pi}{6}\right) \qquad \sin\left(-\frac{5\pi}{6}\right) \qquad \cos\left(\frac{5\pi}{6}\right) \qquad \sin\left(-\frac{\pi}{6}\right)$$

► Exercice 3 – Voir le corrigé

Résoudre les équations suivantes, d'inconnue $x \in]-\pi;\pi]$.

$$\cos(x) = \frac{1}{2}$$
 $\sin(x) = \frac{\sqrt{2}}{2}$ $\cos(x) = 0$ $\sin(x) = -\frac{\sqrt{3}}{2}$

► Exercice 4 – Voir le corrigé

Résoudre les équations suivantes, d'inconnue $x \in [0; 2\pi]$.

$$\sin(x) = \frac{1}{2}$$
 $\cos(x) = -\frac{\sqrt{2}}{2}$ $\cos(x) = 0$ $\sin(x) = \frac{\sqrt{3}}{2}$

► Exercice 5 – Voir le corrigé

Résoudre l'équation $\cos(x)^2 - \frac{1}{2} = 0$ sur $[0; 2\pi]$.

2. Exercices

► Exercice 6 - Voir le corrigé

Résoudre les inéquations suivantes sur $[-\pi;\pi]$.

$$\cos(x) \leqslant \frac{1}{2}$$

$$\cos(x) \geqslant 0$$

$$\cos(x) \leqslant -\frac{\sqrt{3}}{2} \qquad \qquad \cos(x) < \frac{\sqrt{2}}{2}$$

$$\cos(x) < \frac{\sqrt{2}}{2}$$

► Exercice 7 – Voir le corrigé

Résoudre les inéquations suivantes sur $[-\pi; \pi]$.

$$2\cos(x) + 1 > 2$$

$$-\frac{1}{2} \leqslant \cos(x) \leqslant \frac{\sqrt{3}}{2}$$

$$1 - \sqrt{3} \leqslant -2\cos(x) + 1 \leqslant 0$$

► Exercice 8 – Voir le corrigé

Soit x un réel. Que vaut $(\cos(x) + \sin(x))^2 + (\cos(x) - \sin(x))^2$?

Fonctions trigonométriques

► Exercice 9 – Voir le corrigé

On considère la fonction $f: x \mapsto \frac{1}{2 + \cos(x)}$.

- 1. Justifier que f est définie sur \mathbb{R} .
- 2. Calculer $f\left(\frac{\pi}{3}\right)$ et $f(-\pi)$.
- 3. Trouver deux réels m et M tels que pour tout réel x, $m \le f(x) \le M$.

► Exercice 10 – Voir le corrigé

On admet que les fonctions suivantes sont dérivables sur \mathbb{R} . Donner une expression de leur dérivée.

$$f_1: x \mapsto \cos(3x) + x$$

$$f_3: x \mapsto \cos(e^x)$$

$$f_5: x \mapsto \frac{\sin(x)}{2 + \cos(x)}$$

$$f_2: x \mapsto \sin(x)\cos(x)$$

 $f_4: x \mapsto (\sin(x))^3$

$$f_6: x \mapsto \ln(1 + \cos(x)^2)$$

► Exercice 11 – Voir le corrigé

Le but de cet exercice est de prouver d'une nouvelle manière que pour tout réel x, on a $(\cos(x))^2 + (\sin(x))^2 = 1$. Pour tout réel x, on pose $f(x) = (\cos(x))^2 + (\sin(x))^2$.

- 1. Que vaut f(0)?
- 2. Justifier que f est dérivable sur \mathbb{R} et calculer f'(x) pour tout réel x. Conclure.

► Exercice 12 – Voir le corrigé

Pour tout réel x, on pose $f(x) = x + \cos(x)$.

- 1. Construire le tableau de variations de f en incluant les éventuelles limites en $-\infty$ et $+\infty$.
- 2. Donner l'équation de la tangente à la courbe de f à l'abscisse 0.

► Exercice 13 – Voir le corrigé

On considère la fonction $f: x \mapsto \frac{\sin(x)}{2 + \cos(x)}$, définie sur $[0; 2\pi]$.

- 1. Justifier que f est dérivable sur $[0;2\pi]$ et que pour tout réel $x \in [0;2\pi]$, $f'(x) = \frac{1+2\cos(x)}{(2+\cos(x))^2}$
- 2. Construire le tableau de variations de f sur $[0; 2\pi]$.

► Exercice 14 – Voir le corrigé

Montrer que pour tout réel $x \ge 0$, on a $x \ge \sin(x)$.

► Exercice 15 - Voir le corrigé

Pour tout réel x, on pose $f(x) = \cos(e^{-x^2})$.

- 1. Déterminer, si elles existent, les limites de f en $+\infty$ et en $-\infty$.
- 2. Justifier que f est dérivable sur \mathbb{R} et que calculer sa dérivée.
- 3. Montrer que pour tout réel x, $0 \le e^{-x^2} \le 1$.
- 4. En déduire que pour tout réel x, $\sin(e^{-x^2}) \ge 0$.
- 5. En déduire le tableau de variations de f.

► Exercice 16 – Voir le corrigé

Soit f la fonction définie pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ par $f(x) = x - \sin(x)$.

- 1. Montrer que f est strictement croissante sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- 2. En déduire que l'équation $\sin(x) = x$ possède une unique solution dans l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Quelle est-elle ?

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = \sin(u_n)$.

- 3. Montrer que pour tout entier naturel n, $0 \le u_n \le \frac{\pi}{2}$ et que la suite (u_n) est décroissante.
- 4. En déduire que la suite (u_n) converge. Quelle est sa limite ?

► Exercice 17 – Voir le corrigé

Pour tout réel x > 0, on pose $f(x) = \frac{x}{2} (\sin(\ln x) - \cos(\ln x))$ et $g(x) = \sin(\ln x)$. Montrer que f est une primitive de g sur $]0; +\infty[$.

► Exercice 18 – Voir le corrigé

On admet que les fonctions suivantes sont continues sur \mathbb{R} . Donner une primitive de ces fonctions.

$$f_1: x \mapsto \cos(3x) - 2\sin(5x)$$

$$f_3: x \mapsto 2x\cos(x^2)$$

$$f_2: x \mapsto \cos(x) - \sin(x)$$

 $f_4: x \mapsto \sin(x)\cos(x)$

► Exercice 19 – Voir le corrigé

Calculer les intégrales suivantes

a.
$$\int_0^{\pi} \cos(x) dx$$

d.
$$\int_0^{\pi} \cos(x) \sin(x)^3 dx$$

b.
$$\int_0^{\pi/4} \sin(x) dx$$

e.
$$\int_0^{\sqrt{\pi}} x \cos(2x^2)$$

c.
$$\int_0^{\pi/6} \sin(2x) dx$$

f. $\int_0^{\pi/4} \frac{\sin(x)}{1 - \sin(x)^2} dx$

► Exercice 20 – Voir le corrigé

À l'aide d'une intégration par parties, déterminer $\int_0^{\pi/2} x \cos(x) dx$.

► Exercice 21 – Voir le corrigé

A l'aide de deux intégrations par parties successives, déterminer $\int_0^{\pi/2} e^x \cos(x) dx$.

10 2. Exercices

► Exercice 22 (Guyane 2018) – Voir le corrigé

Un publicitaire souhaite imprimer le logo ci-dessous sur un T-shirt :

Il dessine ce logo à l'aide des courbes de deux fonctions f et g définies sur \mathbb{R} par :

$$f(x) = e^{-x}(-\cos(x) + \sin(x) + 1)$$
 et $g(x) = -e^{-x}\cos(x)$.

On admet que les fonctions f et g sont dérivables sur \mathbb{R} .

Partie A : Étude de la fonction f

1. Justifier que pour tout $x \in \mathbb{R}$,

$$-e^{-x} \leqslant f(x) \leqslant 3e^{-x}$$
.

- 2. En déduire la limite de f en $+\infty$.
- 3. Démontrer que, pour tout réel x,

$$f'(x) = e^{-x}(2\cos(x) - 1).$$

4. Déterminer le signe de f'(x) pour x appartenant à l'intervalle $[-\pi; \pi]$ et en déduire les variations de f sur cet intervalle.

Partie B: Aire du logo

On note \mathscr{C}_f et \mathscr{C}_g les représentations graphiques des fonctions f et g dans un repère orthonormé (O,\vec{i},\vec{j}) . Le logo correspond au domaine délimité par la courbe \mathscr{C}_f , la courbe \mathscr{C}_g ainsi que les droites d'équation $x=-\frac{\pi}{2}$ et $x=\frac{3\pi}{2}$.

- 1. Calculer f(x) g(x) pour tout réel x.
- 2. En déduire que la courbe de f est toujours au dessus de la courbe de g.
- 3. Soit *H* la fonction définie pour tout réel *x* par $H(x) = \left(-\frac{\cos(x)}{2} \frac{\sin(x)}{2} 1\right)e^{-x}$. Montrer que *H* est une primitive de la fonction $x \mapsto (\sin(x) + 1)e^{-x}$ sur \mathbb{R} .
- 4. En déduire l'aire du logo en unité d'aires.

► Exercice 23 (Centres étrangers 2024) – Voir le corrigé

On considère les équations différentielles (E): $y' = y - \cos(x) - 3\sin(x)$ et (E_0) : y' = y.

- 1. Déterminer toutes les solutions de l'équation (E_0) .
- 2. On considère la fonction $h: x \mapsto 2\cos(x) + \sin(x)$, que l'on admet définie et dérivable sur \mathbb{R} . Montrer que h est solution de l'équation différentielle (E).
- 3. Soit f une fonction définie et dérivable sur \mathbb{R} . Montrer que f est solution de (E) si et seulement si f - h est solution de (E_0) .
- 4. En déduire toutes les solutions de l'équation différentielle (E).
- 5. Déterminer l'unique solution g de (E) telle que g(0) = 0.

► Exercice 24 (Amérique du Nord 2024) – Voir le corrigé

Pour tout entier naturel n, on considère les intégrales suivantes :

$$I_n = \int_0^{\pi} e^{-nx} \sin(x) dx \qquad J_n = \int_0^{\pi} \cos(x) dx$$

- 1. Calculer I_0
- 2. (a) Justifier que pour tout entier naturel n, on a $I_n \ge 0$.
 - (b) Justifier que pour tout entier naturel n, on a $I_{n+1} I_n \le 0$.
 - (c) Déduire des deux questions précédentes que la suite (I_n) converge.
- 3. (a) Justifier que pour tout entier naturel n, on a $I_n \leq \int_0^{\pi} e^{-nx} dx$
 - (b) Montrer que pour tout entier naturel $n \ge 1$, on a :

$$\int_0^{\pi} e^{-nx} dx = \frac{1 - e^{-n\pi}}{n}$$

- (c) Déduire des deux questions précédentes la limite de la suite (I_n) .
- 4. (a) Rappeler la formule d'intégration par parties.
 - (b) En intégrant par parties l'intégrale I_n de deux façons différents, établir les deux relations suivantes, pour tout entier naturel $n \ge 1$.

$$I_n = 1 + e^{-n\pi} - nJ_n$$
 et $I_n = \frac{1}{n}J_n$

- (c) En déduire que, pour tout entier naturel $n \ge 1$, on a $I_n = \frac{1 + e^{-n\pi}}{n^2 + 1}$
- 5. On souhaite obtenir le rang n à partir duquel la suite (I_n) devient inférieure à 0,1. Recopier et compléter la cinquième ligne du script Python ci-dessous avec la commande appropriée.

```
from math import *
def seuil():
    n = 0
    I = 2
    ...
    n = n + 1
    I = (1 + exp(-n * pi))/(n*n + 1)
    return n
```

12 **2. Exercices**

Pour aller plus loin...

► Exercice 25 (Fonction tangente) – Voir le corrigé

Pour x tel que $cos(x) \neq 0$, on appelle tangente de x, noté tan(x), le réel :

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Partie A: Quelques valeurs

1. Que valent
$$\tan\left(\frac{\pi}{4}\right)$$
, $\tan\left(\frac{2\pi}{3}\right)$ et $\tan\left(\frac{-3\pi}{4}\right)$?

2. On considère un réel
$$x \in \left] -\pi; \frac{-\pi}{2} \right[\text{ tel que } \sin(x) = -\frac{11}{61}.$$

- (a) Que vaut cos(x)?
- (b) Que vaut tan(x)?
- 3. Résoudre l'inéquation $tan(x) \le 0$ sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.

Partie B : Un peu d'étude de la tangente

On considère la fonction $x \mapsto \tan(x)$, définie sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.

- 1. Montrer que la fonction tan est impaire.
- 2. Montrer que pour tout réel $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, 1 + (\tan(x))^2 = \frac{1}{(\cos(x))^2}.$
- 3. Justifier que tan est dérivable sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ et que tan est solution de l'équation différentielle $y' = 1 + y^2$ sur cet intervalle.
- 4. En déduire le sens de variation de la fonction tan sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.
- 5. Justifier que tan est deux fois dérivable sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ et déterminer les intervalles de $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ sur lesquels cette fonction est convexe.
- 6. Tracer la courbe représentative de la fonction tan sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ dans un repère orthogonal.
- 7. Déterminer l'unique primitive de tan sur $\left[0; \frac{\pi}{2}\right]$ qui vaut 0 en 0.

► Exercice 26 (Tension efficace) – Voir le corrigé

Soit f une fonction continue sur un intervalle [a;b]. On appelle valeur efficace de la fonction f est égale à la racine carrée de la valeur moyenne de f^2 sur l'intervalle [a,b].

En électricité, la valeur efficace d'un courant ou d'une tension variables au cours du temps correspond à la valeur d'un courant continu ou d'une tension continue qui produirait un échauffement identique dans une résistance.

Dans le cas d'un régime sinusoïdal, l'intensité du courant est donnée par une fonction $i: t \mapsto I_{max} \sin(\omega t)$, où I_{max} est un réel positif et ω désigne la pulsation du signal. L'intervalle considérée est l'intervalle $\left[0; \frac{2\pi}{\omega}\right]$;

- 1. Montrer que la fonction $x \mapsto \frac{I_{max}^2}{2} \left(x \frac{\sin(\omega x)\cos(\omega x)}{\omega} \right)$ est une primitive de i^2 sur $[0; 2\pi]$.
- 2. En déduire que l'intensité efficace d'un tel courant vaut $\frac{I_{max}}{\sqrt{2}}$.

► Exercice 27 (Fonction arcsinus) – Voir le corrigé

L'objectif de l'exercice est de présenter la réciproque de la fonction sinus sur l'intervalle $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

1. Soit $x \in [-1; 1]$. Justifier que l'équation $\sin(a) = x$, d'inconnue réelle a, possède exactement une solution sur l'intervalle $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

Cette solution sera notée $\arcsin(x)$. On définit alors la fonction arcsin comme étant la fonction qui à un réel $x \in [-1; 1]$ associe l'unique de l'équation $\sin(a) = x$ d'inconnue a sur l'intervalle $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

- 2. Soit $x \in [-1;1]$. Que vaut $\sin(\arcsin(x))$? Que vaut $\arcsin(\sin(\pi))$?
- 3. Montrer que pour tout $x \in [-1; 1]$, $\cos(\arcsin(x)) = \sqrt{1 x^2}$.
- 4. On admet que la fonction $x \mapsto \arcsin(x)$ est dérivable sur]-1;1[. En utilisant les deux questions précédentes, montrer que pour tout $x \in]-1;1[$

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}.$$

5. A l'aide d'une intégration par parties, déterminer $\int_{0}^{1/2} \arcsin(x) dx$.

► Exercice 28 (Intégrales de Wallis) – Voir le corrigé

Pour tout entier naturel n, on pose $W_n = \int_0^{\pi/2} \sin^n(x) dx$.

Partie A : Convergence de la suite (W_n)

- 1. Calculer W_0 et W_1 .
- 2. Justifier que pour tout entier naturel $n, W_n > 0$.
- 3. Montrer que la suite (W_n) est décroissante.
- 4. Que peut-on en déduire sur la suite (W_n) ?

Partie B : Calcul du terme général

- 1. Montrer que pour tout entier naturel n, on a $W_{n+2} = \frac{n+1}{n+2}W_n$. On pourra utiliser une intégration par parties en utilisant la fonction $u: x \mapsto \sin^{n+1}(x)$ et en déterminant une fonction v telle que pour tout réel $x \in \left[0; \frac{\pi}{2}\right]$, $v'(x) = \sin(x)$.
- 2. En déduire que pour tout entier naturel p, on a

$$W_{2p} = \frac{\pi}{2} \frac{(2p)!}{(2^p p!)^2}$$
 et $W_{2p+1} = \frac{(2^p p!)^2}{(2p+1)!}$

Partie C : Étude asymptotique

Pour tout entier naturel n, on pose $J_n = (n+1)W_{n+1}W_n$.

- 1. En s'aidant de la question **B1**, montrer que la suite (J_n) est constante. Quelle est sa valeur ?
- 2. En s'aidant des questions B1 et A3, montrer que pour tout entier naturel n, on a

$$\frac{n+1}{n+2} \leqslant \frac{W_{n+1}}{W_n} \leqslant 1.$$

3. Déduire des questions précédentes que $\lim_{n \to +\infty} \frac{2}{\pi} n W_n^2 = 1$.

3. Corrigés

Rappels

► Correction 1 – Voir l'énoncé

$\pi:I'$	$2\pi:I$	$-3\pi:I'$	$18\pi:I$
$\frac{\pi}{2}:J$	$rac{3\pi}{2}:J'$	$rac{17\pi}{2}:J$	$\frac{-7\pi}{2}:J$
$\frac{\pi}{6}:A$	$\frac{3\pi}{4}:E$	$\frac{-5\pi}{3}:C$	$\frac{8\pi}{3}$: E
$\frac{-7\pi}{4}$: B	$\frac{19\pi}{3}:C$	$\frac{-37\pi}{6}:A$	$\frac{23\pi}{4}:N$

► Correction 2 – Voir l'énoncé

$$\cos\left(-\frac{\pi}{3}\right) = \frac{1}{2} \qquad \sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2} \qquad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \qquad \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

$$\cos\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} \qquad \sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} \qquad \cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2} \qquad \sin\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2} \qquad \sin\left(-\frac{5\pi}{6}\right) = -\frac{1}{2} \qquad \cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2} \qquad \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$$

▶ Correction 3 – Voir l'énoncé

Sur l'intervalle $]-\pi;\pi]...$

$$\cos(x) = \frac{1}{2} \sin x = \frac{\pi}{3} \text{ ou } x = -\frac{\pi}{3}$$

$$\cos(x) = 0 \sin x = \frac{\pi}{2} \text{ ou } x = -\frac{\pi}{2}$$

$$\sin(x) = \frac{\sqrt{2}}{2} \sin x = \frac{\pi}{4} \text{ ou } x = \frac{3\pi}{4}$$

$$\sin(x) = -\frac{\sqrt{3}}{2} \sin x = -\frac{\pi}{4} \text{ ou } x = -\frac{2\pi}{4}$$

$$\sin(x) = -\frac{\sqrt{3}}{2} \sin x = -\frac{\pi}{4} \text{ ou } x = -\frac{2\pi}{4}$$

► Correction 4 – Voir l'énoncé

Sur l'intervalle $[0; 2\pi[...$

$$\sin(x) = \frac{1}{2} \sin x = \frac{\pi}{6} \text{ ou } x = \frac{5\pi}{6}$$

$$\cos(x) = 0 \sin x = \frac{\pi}{2} \text{ ou } x = \frac{3\pi}{2}$$

$$\cos(x) = -\frac{\sqrt{2}}{2} \sin x = \frac{3\pi}{4} \text{ ou } x = \frac{5\pi}{4}$$

$$\sin(x) = \frac{\sqrt{3}}{2} \sin x = \frac{\pi}{3} \text{ ou } x = \frac{2\pi}{3}$$

► Correction 5 – Voir l'énoncé

Soit
$$x \in [0; 2\pi]$$
, $\cos(x)^2 - \frac{1}{2} = 0$ ssi $\cos(x) = \frac{\sqrt{2}}{2}$ ou $\cos(x) = -\frac{\sqrt{2}}{2}$. Les solutions sont $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$ et $\frac{7\pi}{4}$.

► Correction 6 – Voir l'énoncé

Sur l'intervalle $[-\pi; \pi]$...

$$\cos(x) \leqslant \frac{1}{2} \sin x \in \left[-\pi; -\frac{\pi}{3} \right] \cup \left[\frac{\pi}{3}; \pi \right] \qquad \cos(x) \geqslant 0 \sin x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

$$\cos(x) \leqslant -\frac{\sqrt{3}}{2} \sin x \in \left[-\pi; -\frac{5\pi}{6} \right] \cup \left[\frac{5\pi}{6}; \pi \right] \qquad \cos(x) < \frac{\sqrt{2}}{2} \sin x \in \left[-\pi; -\frac{\pi}{4} \right[\cup \right] \frac{\pi}{4}; \pi \right]$$

► Correction 7 – Voir l'énoncé

Sur l'intervalle $[-\pi; \pi]$...

•
$$2\cos(x) + 1 > 2 \operatorname{ssi} \cos(x) > \frac{1}{2} \operatorname{ssi} x \in \left] -\frac{\pi}{3}; \frac{\pi}{3} \right[.$$

•
$$-\frac{1}{2} \leqslant \cos(x) \leqslant \frac{\sqrt{3}}{2} \operatorname{ssi} x \in \left[-\frac{2\pi}{3}; -\frac{\pi}{6} \right] \cup \left[\frac{\pi}{6}; \frac{2\pi}{3} \right]$$

•
$$1 - \sqrt{3} \leqslant -2\cos(x) + 1 \leqslant 0$$
 ssi $\frac{\sqrt{3}}{2} \geqslant \cos(x) \geqslant \frac{1}{2}$ ssi $x \in \left[-\frac{\pi}{3}; -\frac{\pi}{6} \right] \cup \left[\frac{\pi}{6}; \frac{\pi}{3} \right]$

► Correction 8 – Voir l'énoncé

Soit x un réel.

$$(\cos(x) + \sin(x))^2 + (\cos(x) - \sin(x))^2 = \cos(x)^2 + 2\cos(x)\sin(x) + \sin(x)^2 + \cos(x)^2 + 2\sin(x)\cos(x) + \sin(x)^2$$

Ainsi,
$$(\cos(x) + \sin(x))^2 + (\cos(x) - \sin(x))^2 = 2(\cos(x)^2 + \sin(x)^2) = 2.$$

Fonctions trigonométriques

► Correction 9 – Voir l'énoncé

Pour tout réel x, $\cos(x) \le -1$ et donc $2 + \cos(x) \le 1$. En particulier, $2 + \cos(x) \ne 0$. f est définie sur \mathbb{R} .

$$f\left(\frac{\pi}{3}\right) = \frac{1}{2 + \cos\left(\frac{\pi}{3}\right)} = \frac{1}{2 + \frac{1}{2}} = \frac{1}{\frac{5}{2}} = \frac{2}{5} \text{ et } f(-\pi) = \frac{1}{2 + \cos(-\pi)} = \frac{1}{2 - 1} = 1.$$

Par ailleurs, pour tout réel x, $-1 \le \cos(x) \le 1$ donc $1 \le 2 + \cos(x) \le 3$ et finalement $1 \ge \frac{1}{2 + \cos(x)} \ge \frac{1}{3}$.

► Correction 10 – Voir l'énoncé

Pour tout réel x...

•
$$f_1'(x) = -3\sin(3x) + 1$$
.

•
$$f_2'(x) = \cos(x)\cos(x) + \sin(x) \times (-\sin(x)) = \cos(x)^2 - \sin(x)^2$$
.

•
$$f_3'(x) = -e^x \sin(e^x)$$
.

•
$$f_4'(x) = 3\cos(x)\sin(x)^2$$
.

•
$$f_5'(x) = \frac{\cos(x)(2+\cos(x))-\sin(x)\times(-\sin(x))}{(2+\cos(x))^2} = \frac{2\cos(x)+\cos(x)^2+\sin(x)^2}{(2+\cos(x))^2} = \frac{1+2\cos(x)}{(2+\cos(x))^2}$$

•
$$f_6'(x) = \frac{-2\sin(x)\cos(x)}{1+\cos(x)^2}$$
.

► Correction 11 – Voir l'énoncé

On a
$$f(0) = \cos(0)^2 + \sin(0)^2 = 1^2 + 0^2 = 1$$
.

Par ailleurs, f est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = -2\sin(x)\cos(x) + 2\cos(x)\sin(x) = 0$.

f est donc constante : pour tout réel x, on a f(x) = f(0) = 1.

16 3. Corrigés

► Correction 12 – Voir l'énoncé

Pour tout réel $x, x-1 \leqslant f(x) \leqslant x+1$. Or, $\lim_{x \to +\infty} (x-1) = +\infty$. Ainsi, par comparaison, $\lim_{x \to +\infty} f(x) = +\infty$. Par ailleurs, $\lim_{x \to -\infty} (x+1) = -\infty$. Par comparaison, $\lim_{x \to -\infty} f(x) = -\infty$.

f est dérivable sur \mathbb{R} et pour tout réel x, $f'(x) = 1 - \sin(x)$. Or, puisque pour tout réel x, $\sin(x) \le 1$, on en déduit que pour tout réel x, $f'(x) \ge 0$. f est donc croissante sur \mathbb{R} .

La tangente à la courbe de f à l'abscisse 0 a pour équation y = f'(0)(x-0) + f(0) soit y = x+1.

▶ Correction 13 – Voir l'énoncé

On considère la fonction $f: x \mapsto \frac{\sin(x)}{2 + \cos(x)}$, définie sur $[0; 2\pi]$.

f est dérivable comme quotient de fonctions dérivables dont le dénominateur ne s'annule pas (en effet, pour tout réel x, $2 + \cos(x) \ge 1 > 0$). De plus, pour tout réel x,

$$f'(x) = \frac{\cos(x)(2+\cos(x)) - \sin(x) \times (-\sin(x))}{(2+\cos(x))^2} = \frac{2\cos(x) + \cos(x)^2 + \sin(x)^2}{(2+\cos(x))^2} = \frac{1+2\cos(x)}{(2+\cos(x))^2}.$$

f'(x) est donc du signe de $1 + 2\cos(x)$.

Or, sur
$$[0;2\pi]$$
, $1+2\cos(x)\geqslant 0$ ssi $\cos(x)\geqslant -\frac{1}{2}$ soit $x\in\left[0;\frac{2\pi}{3}\right]\cup\left[\frac{4\pi}{3};2\pi\right]$.

x	0		$2\pi/3$		$4\pi/3$		2π
f'(x)		+	0	_	0	+	
f	0 -		$\frac{1}{\sqrt{3}}$		$-\frac{1}{\sqrt{3}}$, 0

► Correction 14 – Voir l'énoncé

Pour tout réel $x \ge 0$, on pose $f(x) = x - \sin(x)$. f est dérivable sur \mathbb{R}_+ et pour tout réel $x \ge 0$, $f'(x) = 1 - \cos(x) \ge 0$. f est donc croissante sur \mathbb{R}_+ . Ainsi, pour tout réel $x \ge 0$, $f(x) \ge f(0)$, soit $x - \sin(x) \ge 0$ et donc $x \ge \sin(x)$.

► Correction 15 – Voir l'énoncé

- 1. On sait que $\lim_{x \to +\infty} -x^2 = -\infty$, $\lim_{X \to -\infty} \mathrm{e}^X = 0$ et $\lim_{Y \to 0} \cos(x) = 1$. Par composition de limite, $\lim_{x \to +\infty} f(x) = 1$. De même, $\lim_{x \to -\infty} f(x) = 1$.
- 2. f est la composée de fonctions dérivables sur \mathbb{R} , elle est donc également dérivable sur \mathbb{R} . De plus, pour tout réel x, $f'(x) = 2xe^{-x^2}\sin(e^{-x^2})$.
- 3. D'une part, pour tout réel x, $e^{-x^2} \ge 0$. Par ailleurs, pour tout réel x, $-x^2 \le 0$ et, par croissance de l'exponentielle sur \mathbb{R} , $e^{-x^2} \le e^0$ soit $e^{-x^2} \le 1$.
- 4. Pour tout réel x, $0 \le e^{-x^2} \le 1$. Or, la fonction sin est croissante sur [0;1]. Ainsi, pour tout réel x, $\sin(0) \le \sin(e^{-x^2}) \le \sin(1)$ et en particulier, $\sin(e^{-x^2}) \ge 0$.
- 5. Pour tout réel x, f'(x) est donc du signe de x.

X	-∞		0		+∞
f'(x)		_	0	+	
f	1		sin(1)		, 1

► Correction 16 – Voir l'énoncé

- 1. f est dérivable sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et pour tout réel x de cet intervalle, $f'(x) = 1 \cos(x) \geqslant 0$ car $\cos(x) \leqslant 1$. Par ailleurs, f' s'annule uniquement en 0. f est donc strictement croissante sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- 2. On a $f\left(-\frac{\pi}{2}\right) = -\frac{\pi}{2} + 1 \leqslant 0$ et $f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} 1 \geqslant 0$. Par ailleurs, f est continue sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. D'après le théorème des valeurs intermédiaires, l'équation f(x) = 0 possède une solution sur cet intervalle. De plus, la fonction f étant strictement croissante sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, cette solution est unique.

Or, f(0) = 0. 0 est donc l'unique solution sur $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ de l'équation $x - \sin(x) = 0$, soit $\sin(x) = x$.

- 3. Pour tout entier naturel n, on pose P(n) : « $0 \le u_{n+1} \le u_n \le \frac{\pi}{2}$ ».
 - On a $u_0 = 1$ et $u_1 = \sin(1) \geqslant 1$. On a bien $0 \leqslant u_1 \leqslant u_0 \leqslant \frac{\pi}{2}$. P(0) est vraie.
 - Soit $n \in \mathbb{N}$ tel que P(n) est vraie. On a alors $0 \le u_{n+1} \le u_n \le \frac{\pi}{2}$. En appliquant la fonction sinus qui est croissante sur $\left[0; \frac{\pi}{2}\right]$, on a alors $\sin(0) \le \sin(u_{n+1}) \le \sin(u_n) \le \sin\left(\frac{\pi}{2}\right)$. Or, $\sin\left(\frac{\pi}{2}\right) = 1 \le \frac{\pi}{2}$. On a donc bien $0 \le u_{n+2} \le u_{n+1} \le \frac{\pi}{2}$.
 - Par récurrence, P(n) est vraie pour tout entier naturel n.
- 4. La suite (u_n) est décroissante et minorée, elle est donc convergente, de limite $\ell \in \left[0; \frac{\pi}{2}\right]$. La fonction sinus étant continue sur cet intervalle, on a alors $\sin(\ell) = \ell$ et donc $\ell = 0$ d'après la question 2.

► Correction 17 – Voir l'énoncé

Pour tout réel x > 0, posons $u(x) = \sin(\ln(x))$ et $v(x) = \cos(\ln(x))$. u et v sont dérivables et pour tout réel x > 0, $u'(x) = \frac{\cos(\ln(x))}{r}$ et $v'(x) = -\frac{\sin(\ln(x))}{r}$. Ainsi, pour tout réel x > 0,

$$f'(x) = \frac{1}{2}(\sin(\ln x) - \cos(\ln x)) + \frac{x}{2}\left(\frac{\cos(\ln(x))}{x} - \left(-\frac{\sin(\ln(x))}{x}\right)\right) = \sin(\ln(x)).$$

f est une primitive de g sur $]0; +\infty[$.

► Correction 18 – Voir l'énoncé

Une primitive de $f_1: x \mapsto \cos(3x) - 2\sin(5x)$ est $F_1: x \mapsto \frac{1}{3}\sin(3x) + \frac{2}{5}\sin(5x)$.

Une primitive de $f_2: x \mapsto \cos(x) - \sin(x)$ est $F_2: x \mapsto \sin(x) + \cos(x)$.

Pour tout réel x, on pose $u(x) = x^2$. On a alors $f_3 = u' \cos(u)$, une primitive de f_3 est donc $\sin(u)$ soit $x \mapsto \sin(x^2)$.

Pour tout réel x, on pose $u(x) = \sin(x)$. On a alors $f_4 = u'u = \frac{1}{2}(2u'u)$.

18 3. Corrigés

Une primitive de f_4 est donc $\frac{u^2}{2}$ soit $x \mapsto \frac{\sin(x)^2}{2}$.

► Correction 19 – Voir l'énoncé

Calculer les intégrales suivantes

a.
$$\int_0^{\pi} \cos(x) \, dx = [\sin(x)]_0^{\pi} = \sin(\pi) - \sin(0) = 0 - 0 = 0.$$

b.
$$\int_0^{\pi/4} \sin(x) \, \mathrm{d}x = \left[-\cos(x) \right]_0^{\pi/4} = -\cos\left(\frac{\pi}{4}\right) - \left(-\cos(0) \right) = -\frac{\sqrt{2}}{2} + 1 = \frac{2 - \sqrt{2}}{2}.$$

$$\mathbf{c.} \int_0^{\pi/6} \sin(2x) \, \mathrm{d}x = \left[-\frac{\cos(2x)}{2} \right]_0^{\pi/6} = -\frac{\cos\left(\frac{\pi}{3}\right)}{2} - \left(-\frac{\cos(0)}{2} \right) = -\frac{1}{4} + \frac{1}{2} = \frac{1}{4}.$$

d. Pour tout réel x, on pose $u(x) = \sin(x)$. On a alors $\cos(x)\sin(x)^3 = u'(x) \times u(x)^3 = \frac{1}{4} \times 4u'(x)u(x)^3$. Une primitive de $x \mapsto \cos(x)\sin(x)^3$ est donc $x \mapsto \frac{\sin(x)^4}{4}$.

Ainsi,
$$\int_0^{\pi} \cos(x) \sin(x)^3 dx = \left[\frac{\sin(x)^4}{4} \right]_0^{\pi} = 0 - 0 = 0.$$

e. Pour tout réel x, on pose $u(x) = 2x^2$. On a alors $x\cos(2x^2) = \frac{1}{4}u'(x)\cos(u(x))$.

Une primitive de $x \mapsto x\cos(2x^2)$ est donc $x \mapsto \frac{\sin(2x^2)}{4}$.

Ainsi,
$$\int_0^{\sqrt{\pi}} x \cos(2x^2) = \left[\frac{\sin(2x^2)}{4} \right]_0^{\sqrt{\pi}} = \frac{\sin(2\pi)}{4} - \frac{\sin(0)}{4} = 0 - 0 = 0.$$

f. Pour tout réel $x \in [0; \frac{\pi}{4}]$, $\frac{\sin(x)}{1 - \sin(x)^2} = \frac{\sin(x)}{\cos(x)^2} = -\frac{u'(x)}{u(x)^2}$ en posant $u(x) = \cos(x)$.

Une primitive de $x \mapsto \frac{\sin(x)}{1-\sin(x)^2}$ sur $\left[0; \frac{\pi}{4}\right]$ est donc $x \mapsto \frac{1}{\cos(x)}$.

Ainsi,
$$\int_0^{\pi/4} \frac{\sin(x)}{1 - \sin(x)^2} \, \mathrm{d}x = \left[\frac{1}{\cos(x)} \right] 0^{\pi/4} = \frac{1}{\cos(\pi/4)} - \frac{1}{\cos(0)} = \sqrt{2} - 1.$$

► Correction 20 – Voir l'énoncé

Pour tout réel x, on pose u(x) = x on cherche v tel que $v'(x) = \cos(x)$: on prend donc $v: x \mapsto \sin(x)$. D'après la formule d'intégrations par parties, $\int_0^{\pi/2} uv'(x) dx = [uv]_0^{\pi/2} - \int_0^{\pi/2} u'v(x) dx$. Ainsi,

$$\int_0^{\pi/2} x \cos(x) \, \mathrm{d}x = \left[x \sin(x) \right]_0^{\pi/2} - \int_0^{\pi/2} \sin(x) \, \mathrm{d}x = \frac{\pi}{2} - 0 - \left[-\cos(x) \right]_0^{\pi/2} = \frac{\pi}{2} - (-0 - (-1)) = \frac{\pi}{2} - 1.$$

► Correction 21 – Voir l'énoncé

Notons
$$I = \int_0^{\pi/2} e^x \cos(x) dx$$
.

Pour tout réel x, on pose $u(x) = e^x$ on cherche v tel que $v'(x) = \cos(x)$: on prend donc $v: x \mapsto \sin(x)$. D'après la formule d'intégrations par parties, $\int_0^{\pi/2} uv'(x) \, \mathrm{d}x = [uv]_0^{\pi/2} - \int_0^{\pi/2} u'v(x) \, \mathrm{d}x$.

Ainsi,
$$\int_0^{\pi/2} e^x \cos(x) dx = \left[e^x \sin(x) \right]_0^{\pi/2} - \int_0^{\pi/2} e^x \sin(x) dx = e^{\pi/2} - \int_0^{\pi/2} e^x \sin(x) dx.$$

Cherchons alors à calculer $\int_0^{\pi/2} e^x \sin(x) dx$.

Pour tout réel x, on pose $u(x) = e^x$ on cherche v tel que $v'(x) = \sin(x)$: on prend donc $v: x \mapsto -\cos(x)$.

D'après la formule d'intégrations par parties, $\int_0^{\pi/2} uv'(x) dx = [uv]_0^{\pi/2} - \int_0^{\pi/2} u'v(x) dx.$

Ainsi,
$$\int_0^{\pi/2} e^x \cos(x) dx = [-e^x \cos(x)]_0^{\pi/2} - \int_0^{\pi/2} (-e^x \cos(x)) dx = 1 + I.$$

Ainsi, en reprenant la première IPP, on a $I = e^{\pi/2} - (1+I)$ et donc $2I = e^{\pi/2} - 1$ et finalement, $I = \frac{e^{\pi/2} - 1}{2}$.

► Correction 22 – Voir l'énoncé

Partie A : Étude de la fonction f

- 1. Pour tout réel x, $-1 \le \sin(x) \le \text{et } -1 \le -\cos(x) \le 1$. En ajoutant ces inégalités puis en ajoutant 1 à chauqe membre, on a que pour tout réel x, $-1 \le -\cos(x) + \sin(x) + 1 \le 3$, puis, en multipliant par e^{-x} qui est positif, $-e^{-x} \le f(x) \le 3e^{-x}$.
- 2. On a $\lim_{x \to +\infty} -e^{-x} = \lim_{x \to +\infty} 3e^{-x} = 0$.

Ainsi, d'après le théorème d'encadrement, $\lim_{x \to +\infty} f(x)$ existe et vaut 0.

- 3. Pour tout réel x, $f'(x) = -e^{-x}(-\cos(x) + \sin(x) + 1) + e^{-x}(\sin(x) + \cos(x)) = e^{-x}(2\cos(x) 1)$.
- 4. Sur $[-\pi, \pi]$, f' est du signe de $2\cos(x) 1$.

Or, sur cet intervalle, $2\cos(x) - 1 \ge 0$ ssi $\cos(x) \ge \frac{1}{2}$ soit $x \in \left[-\frac{\pi}{3}; \frac{\pi}{3} \right]$.

х	$-\pi$	$-\frac{\pi}{3}$		$\frac{\pi}{3}$		π
f'(x)	_	0	+	0	_	
f				<i>y</i> \		

Partie B: Aire du logo

- 1. Pour tout réel x, $f(x) g(x) = e^{-x}(\sin(x) + 1)$.
- 2. Pour tout réel x, $e^{-x} > 0$ et $\sin(x) + 1 \ge 0$. Ainsi, pour tout réel x, $f(x) g(x) \ge 0$: la courbe de f est toujours au dessus de la courbe de g.
- 3. Pour tout réel x,

$$H'(x) = \left(\frac{\sin(x)}{2} - \frac{\cos(x)}{2}\right)e^{-x} + \left(-\frac{\cos(x)}{2} - \frac{\sin(x)}{2} - 1\right) \times (-e^{-x}).$$

Ainsi,

$$H'(x) = e^{-x} \left(\frac{\sin(x)}{2} - \frac{\cos(x)}{2} - \left(-\frac{\cos(x)}{2} - \frac{\sin(x)}{2} - 1 \right) \right) = (\sin(x) + 1)e^{-x}.$$

H est une primitive de la fonction $x \mapsto (\sin(x) + 1)e^{-x} \operatorname{sur} \mathbb{R}$.

4. L'aire du logo en unité d'aires vaut $\int_{-\pi/2}^{3\pi/2} (f(x) - g(x))$.

Or, pour tout réel x, $f(x) - g(x) = (\sin(x) + 1)e^{-x}$. Une primitive de f - g est H.

Ainsi, $\int_{-\pi/2}^{3\pi/2} (f(x) - g(x)) = [H(x)]_{-\pi/2}^{3\pi/2} \simeq 2,4$. L'aire du logo est d'environ 2,4 unités d'aire.

20 3. Corrigés

► Correction 23 – Voir l'énoncé

- 1. Les solutions de (E_0) sont les fonctions $x \mapsto Ce^x$, pour C réel.
- 2. Pour tout réel x, on a $f'(x) = -2\sin(x) + \cos(x)$ et

$$h(x) - \cos(x) - 3\sin(x) = 2\cos(x) + \sin(x) - \cos(x) - 3\sin(x) = -2\sin(x) + \cos(x) = h'(x).$$

Ainsi, h est bien solution de (E).

- 3. Puisque h est solution de (E), on a $h' = h \cos(x) 3\sin(x)$ et donc $-\cos(x) 3\sin(x) = h h'$. On a f solution de (E) si et seulement si $f' = f - \cos(x) - 3\sin(x) = f - (h - h')$ si et seulement si f' - h' = f - h si et seulement si (f - h)' = f - h. Ainsi, f est solution de (E) si et seulement si f - h est solution de (E_0) .
- 4. Les solutions de (E) sont les fonctions $x \mapsto Ce^x + 2\cos(x) + \sin(x)$, pour C réel.
- 5. On cherche C tel que $Ce^0 + 2\cos(0) + \sin(0) = 0$. On a donc C + 2 = 0 et donc C = -2. Ainsi, pour tout réel x, $g(x) = -2e^x + 2\cos(x) + \sin(x)$.

► Correction 24 – Voir l'énoncé

- 1. On a $I_0 = \int_0^{\pi} \sin(x) dx$. Une primitive de sin étant $-\cos$, on a $I_0 = [-\cos(x)]_0^{\pi} = -\cos(\pi) - (-\cos(0)) = -(-1) - (-1) = 2$.
- 2. (a) Pour tout entier naturel n et pour tout réel $x \in [0; \pi]$, $e^{-nx} > 0$ et $\sin(x) > 0$. Ainsi, $e^{-nx} \sin(x) > 0$ et donc $I_n \ge 0$.
 - (b) Pour tout entier naturel n et pour tout réel x, $e^{-(n+1)x}\sin(x) e^{-nx}\sin(x) = e^{-nx}\sin(x) \times (e^{-x} 1)$. Or, pour tout réel $x \in [0; \pi]$, $e^{-x} \le 1$ et donc $e^{-x} 1 \le 0$. Ainsi, pour tout $x \in [0; \pi]$, on a $e^{-(n+1)x}\sin(x) e^{-nx}\sin(x) \le 0$. Alors $\int_0^{\pi} (e^{-(n+1)x}\sin(x) e^{-nx}\sin(x)) dx \le 0$ soit $\int_0^{\pi} e^{-(n+1)x}\sin(x) dx \int_0^{\pi} e^{-nx}\sin(x) dx \le 0$. Finalement, $I_{n+1} I_n \le 0$.
 - (c) D'après la question 2a, la suite (I_n) est minorée. D'après la question 2b, la suite (I_n) est décroissante. Ainsi, la suite (I_n) converge.
- 3. (a) Pour tout réel x, $\sin(x) \le 1$. Ainsi, pour tout entier naturel n et pour tout réel $x \in [0; \pi]$, $e^{-nx} \sin(x) \le e^{-nx}$. En intégrant cette inégalité, on a donc $I_n \le \int_0^{\pi} e^{-nx} dx$.
 - (b) Une primitive de $x \mapsto e^{-nx}$ est $x \mapsto -\frac{e^{-nx}}{n}$. Ainsi, $\int_0^{\pi} e^{-nx} dx = \left[-\frac{e^{-nx}}{x} \right]_0^{\pi} = \frac{1 e^{-n\pi}}{n}$.
 - (c) Ainsi, pour tout entier naturel $n, 0 \le I_n \le \frac{1 \mathrm{e}^{-n\pi}}{n}$. Or, $\lim_{n \to +\infty} \frac{1 \mathrm{e}^{-n\pi}}{n} = \lim_{n \to +\infty} 0 = 0$. D'après le théorème d'encadrement, on a donc $\lim_{n \to +\infty} I_n = 0$.
- 4. (a) On rappelle que $I_n = \int_0^{\pi} e^{-nx} \sin(x) dx$. D'une part, pour tout réel $x \in [0; \pi]$, on pose $\begin{cases} u(x) = e^{-nx} & u'(x) = -ne^{-nx} \\ v(x) = -\cos(x) & v'(x) = \sin(x) \end{cases}$ D'après la formule d'intégration par parties,

$$I_n = \left[-e^{-nx}\cos(x) \right]_0^{\pi} - \int_0^{\pi} (-ne^{-nx}) \times (-\cos(x)) dx = 1 + e^{-n\pi} - n \int_0^{\pi} e^{-nx}\cos(x) dx = 1 + e^{-n\pi} - n J_n.$$

D'autre part, pour tout réel $x \in [0; \pi]$, on pose $\begin{cases} w(x) = \sin(x) & w'(x) = \cos(x) \\ p(x) = -\frac{e^{-nx}}{n} & p'(x) = e^{-nx} \end{cases}$

D'après la formule d'intégration par parties,

$$I_n = \left[-\frac{e^{-nx}}{n} \sin(x) \right]_0^{\pi} - \int_0^{\pi} \left(-\frac{e^{-nx}}{n} \right) \cos(x) dx = 0 - 0 + \frac{1}{n} \int_0^{\pi} e^{-nx} \cos(x) dx = \frac{1}{n} J_n.$$

(b) On a donc $I_n = \frac{1}{n} J_n$ donc $J_n = n I_n$. Or, $I_n = 1 + e^{-n\pi} - n J_n = 1 + e^{-n\pi} - n^2 I_n$. Ainsi, $(n^2 + 1) I_n = 1 + e^{-n\pi}$ et finalement $I_n = \frac{1 + e^{-n\pi}}{1 + n^2}$.

```
51 from math import *
2 def seuil():
3    n = 0
4    I = 2
5    while I >= 0.1:
6    n = n+1
7    I = (1+exp(-n*pi))/(n*n+1)
8    return n
```

Pour aller plus loin...

► Correction 25 – Voir l'énoncé

Partie A: Quelques valeurs

1.
$$\tan\left(\frac{\pi}{4}\right) = \frac{\sin\left(\frac{\pi}{4}\right)}{\cos\left(\frac{\pi}{4}\right)} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1$$
 $\tan\left(\frac{2\pi}{3}\right) = \frac{\sin\left(\frac{2\pi}{3}\right)}{\cos\left(\frac{2\pi}{3}\right)} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = -\sqrt{3}.$ $\tan\left(\frac{-3\pi}{4}\right) = \frac{\sin\left(\frac{-3\pi}{4}\right)}{\cos\left(\frac{-3\pi}{4}\right)} = \frac{-\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} = 1.$

2. Puisque
$$x \in \left] -\pi; \frac{-\pi}{2} \right[$$
, alors $\cos(x) \le 0$. De plus, $\cos(x)^2 + \sin(x)^2 = 1$.
Ainsi, $\cos(x)^2 = 1 - \frac{121}{3721} = \frac{3600}{3721}$ et donc $\cos(x) = -\sqrt{\frac{3600}{3721}} = -\frac{60}{61}$ Ainsi, $\tan(x) = \frac{-\frac{11}{61}}{-\frac{60}{61}} = \frac{11}{60}$.

3. Soit $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$. Alors $\cos(x) > 0$, $\tan(x)$ est donc du signe de $\sin(x)$. Ainsi, $\tan(x) \le 0$ si et seulement si $x \in \left] -\frac{\pi}{2}; 0\right]$.

Partie B: Un peu d'étude de la tangente

1. L'intervalle $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ est centré en 0. De plus, pour tout réel x de cet intervalle, $\tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin(x)}{\cos(x)} = -\tan(x)$. La fonction tan est impaire.

2. Pour tout réel
$$x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$$
, $1 + (\tan(x))^2 = 1 + \frac{\sin(x)^2}{\cos(x)^2} = \frac{\cos(x)^2 + \sin(x)^2}{(\cos(x))^2} = \frac{1}{\cos(x)^2}$.

3. tan est dérivable sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ comme quotient de fonctions dérivables dont le dénominateur ne s'annule

22 3. Corrigés

pas sur cet intervalle. De plus, pour tout réel $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$

$$\tan'(x) = \frac{\cos(x)\cos(x) - \sin(x) \times (-\sin(x))}{\cos(x)^2} = \frac{\cos(x)^2 + \sin(x)^2}{\cos(x)^2} = \frac{1}{\cos(x)^2} = 1 + \tan(x)^2$$

tan est solution de l'équation différentielle $y' = 1 + y^2$ sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.

- 4. Pour tout réel $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, \tan'(x) \geqslant 0$. tan est donc croissante sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.
- 5. La fonction $\tan': x \mapsto \frac{1}{\cos(x)^2}$ est dérivable $\sup \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ et pour tout réel x de cet intervalle, on a $\tan''(x) = -\frac{\sin(x)}{\cos(x)^4} = \frac{\sin(x)}{\cos(x)^4}$. \tan'' est donc du signe de sin. Or, la fonction sinus est négative sur $\left[-\frac{\pi}{2}; 0 \right]$ et positive sur $\left[0; \frac{\pi}{2} \right[$. \tan est donc concave $\sup \left[-\frac{\pi}{2}; 0 \right]$ et convexe $\sup \left[0; \frac{\pi}{2} \right[$.
- 6. On trace la courbe représentative de la fonction tan sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ dans un repère orthogonal.

7. Pour tout $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, $\tan(x) = -\frac{\cos'(x)}{\cos(x)}$. De plus, $\sup \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, $\cos(x) > 0$. Les primitives de tan $\sup \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ sont donc les fonctions $x \mapsto -\ln(\cos(x)) + C$, où C est un réel. Or, $-\ln(\cos(0)) = -\ln(1) = 0$. L'unique primitive de tan $\sup \left[0; \frac{\pi}{2} \right]$ qui vaut 0 en 0 est donc la fonction $x \mapsto -\ln(\cos(x))$.

► Correction 26 – Voir l'énoncé

On considère la fonction $F: x \mapsto \frac{I_{max}^2}{2} \left(x - \frac{\sin(\omega x)\cos(\omega x)}{\omega} \right)$. f est dérivable et pour tout réel x,

$$F'(x) = \frac{I_{max}^2}{2} \left(1 - \frac{\omega \cos(\omega x) \cos(\omega x) - \omega \sin(\omega x) \sin(\omega x)}{\omega} \right) = \frac{I_{max}^2}{2} \left(1 - \cos^2(\omega x) + \sin^2(\omega x) \right).$$

En rappelant que pour tout réel X, $\cos^2(X) + \sin^2(X) = 1$, on obtient alors

$$F'(x) = \frac{I_{max}^2}{2}(\sin^2(\omega x) + \sin^2(\omega x)) = I_{max}^2 \sin^2(\omega x) = i^2(x).$$

F est une primitive de i^2 sur $[0;2\pi].$ L'intensité efficace d'un tel courant vaut

$$\sqrt{\frac{1}{\frac{2\pi}{\omega} - 0} \int_0^{\frac{2\pi}{\omega}} i^2(x) \, \mathrm{d}x} = \frac{\sqrt{\omega}}{\sqrt{2\pi}} \sqrt{F\left(\frac{2\pi}{\omega}\right) - F(0)}.$$

Or,
$$F\left(\frac{2\pi}{\omega}\right) = \frac{\pi I_{max}^2}{\omega}$$
 et $F(0) = 0$. Ainsi, l'intensité efficace vaut $\frac{\sqrt{\omega}}{\sqrt{2\pi}} \times \sqrt{\frac{\pi I_{max}^2}{\omega}} = \frac{I_{max}}{\sqrt{2}}$.

► Correction 27 – Voir l'énoncé

- 1. La fonction sinus est continue et strictement croissante sur l'intervalle $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$. Par ailleurs, $\sin\left(-\frac{\pi}{2}\right) = -1$ et $\sin\left(\frac{\pi}{2}\right) = 1$. Ainsi, d'après le théorème des valeurs intermédiaires appliqué aux fonctions strictement monotones, l'équation $\sin(a) = x$ admet une unique solution sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ pour tout réel x dans l'intervalle [-1;1].
- 2. Soit $x \in [-1; 1]$. Par définition, $\sin(\arcsin(x)) = x$. En revanche $\arcsin(\sin(\pi)) = \arcsin(0) = 0$. En particulier, on n'a pas $\arcsin(\sin(x)) = x$ pour tout réel x: cette égalité n'est vraie que sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.
- 3. Pour tout $x \in [-1; 1]$, $\cos^2(\arcsin(x)) + \sin^2(\arcsin(x)) = 1$ d'où $\cos^2(\arcsin(x)) + x^2 = 1$ et donc $\cos^2(\arcsin(x)) = 1 - x^2$. Par ailleurs, puisque $\arcsin(x) \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$, on a $\cos(\arcsin(x)) \ge 0$. On en déduit que $\cos(\arcsin(x)) = \sqrt{1-x^2}$
- 4. On admet que la fonction $x \mapsto \arcsin(x)$ est dérivable sur]-1;1[. Pour tout $x \in]-1,1[$, on a $\sin(\arcsin(x)) = x$. En dérivant, on en déduit que pour tout $x \in]-1;1[$, $\arcsin'(x) \times \cos(\arcsin(x)) = 1$, soit $\arcsin'(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1-x^2}}$.
- 5. Pour tout réel $x \in \left[0; \frac{1}{2}\right]$, on pose $u(x) = \arcsin(x)$ et v(x) = x. On a alors $u'(x) = \frac{1}{\sqrt{1-x^2}}$ et v'(x) = 1. Par intégration par parties

$$\int_0^{1/2} \arcsin(x) \, \mathrm{d}x = \left[x \arcsin(x) \right]_0^{1/2} - \int_0^{1/2} \frac{x}{\sqrt{1 - x^2}} \, \mathrm{d}x.$$

D'une part,
$$[x \arcsin(x)]_0^{1/2} = \frac{1}{2} \arcsin(\frac{1}{2}) - 0 = \frac{1}{2} \times \frac{\pi}{6} = \frac{\pi}{12}$$
.

Par ailleurs, si l'on pose, pour tout réel x, $w(x) = 1 - x^2$, alors w'(x) = -2x. On a alors $-\frac{x}{\sqrt{1-x^2}} = \frac{-2x}{2\sqrt{1-x^2}} = \frac{w'(x)}{2\sqrt{w(x)}}$.

On a alors
$$-\frac{x}{\sqrt{1-x^2}} = \frac{-2x}{2\sqrt{1-x^2}} = \frac{w'(x)}{2\sqrt{w(x)}}$$

Ainsi, une primitive de la fonction $x \mapsto \frac{-x}{\sqrt{1-x^2}}$ sur $\left[0; \frac{1}{2}\right]$ est la fonction $x \mapsto \sqrt{1-x^2}$. Il en vient

$$-\int_0^{1/2} \frac{x}{\sqrt{1-x^2}} dx = \left[\sqrt{1-x^2}\right]_0^{1/2} = \sqrt{1-\left(\frac{1}{2}\right)^2} - \sqrt{1-0^2} = \frac{\sqrt{3}}{2} - 1.$$

Finalement,

$$\int_0^{1/2} \arcsin(x) \, \mathrm{d}x = \frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1.$$

Oui, il faut parfois s'attendre à ce genre de résultat pas franchement sexy.

24 3. Corrigés

► Correction 28 – Voir l'énoncé

Partie A : Convergence de la suite (W_n)

1. On a $W_0 = \int_0^{\pi/2} 1 \, dx = \frac{\pi}{2}$ et $W_n = \int_0^{\pi/2} \sin^1(x) \, dx = [-\cos(x)]_0^{\pi/2} = 0 - (-1) = 1$.

2. Pour tout $x \in \left[0, \frac{\pi}{2}\right]$, $\sin(x) \ge 0$. Il en vient que, pour tout entier naturel $n, W_n \ge 0$. De plus, pour tout $x \in \left[\frac{\pi}{6}; \frac{\pi}{2}\right], \sin(x) \geqslant \frac{1}{2}$ et donc

$$W_n \geqslant \int_{\pi/6}^{\pi/2} \sin^n(x) dx \geqslant \int_{\pi/6}^{\pi/2} \left(\frac{1}{2}\right)^n dx = \frac{\pi}{3} \left(\frac{1}{2}\right)^n > 0.$$

3. Pour tout entier naturel n,

$$W_{n+1} - W_n = \int_0^{\pi/2} (\sin^{n+1}(x) - \sin^n(x)) \, \mathrm{d}x = \int_0^{\pi/2} \sin^n(x) (\sin(x) - 1) \, \mathrm{d}x.$$

Or, pour tout $x \in \left[0, \frac{\pi}{2}\right]$, $\sin^n(x) \ge 1$ et $\sin(x) - 1 \le 0$. Il en vient que $W_{n+1} - W_n \le 0$. La suite (W_n) est donc décroissante.

4. La suite (W_n) est décroissante et minorée par 0, elle est donc convergente.

Partie B : Calcul du terme général

1. Soit *n* un entier naturel.

On considère la fonction $u: x \mapsto \sin^{n+1}(x)$ et $v: x \mapsto -\cos(x)$, définies sur $\left[0; \frac{\pi}{2}\right]$. Pour tout réel x de cet intervalle, on a alors $u'(x) = (n+1)\cos(x)\sin^n(x)$ et $v'(x) = \sin(x)$. Par intégration par parties, on obtient alors

$$W_{n+2} \int_0^{\pi/2} \sin^{n+2}(x) dx = \int_0^{\pi/2} \sin^{n+1}(x) \times \sin(x) dx = \left[-\sin^{n+1}(x) \cos(x) \right]_0^{\pi/2} + (n+1) \int_0^{\pi/2} \cos^2(x) \sin^n(x) dx.$$

D'une part, $\left[-\sin^{n+1}(x)\cos(x)\right]_0^{\pi/2} = 0$. Par ailleurs, pour tout réel x, $\cos^2(x) = 1 - \sin^2(x)$. Ainsi,

$$W_{n+2} = (n+1) \int_0^{\pi/2} (1 - \sin^2(x)) \sin^n(x) dx = (n+1) \int_0^{\pi/2} (\sin^n(x) - \sin^{n+2}(x)) dx = (n+1)(W_n - W_{n+2}).$$

On a donc $W_{n+2} = (n+1)W_n - (n+1)W_{n+2}$ et donc $(n+2)W_{n+2} = (n+1)W_n$. Finalement, on retrouve bien $W_{n+2} = \frac{n+1}{n+2}W_n$.

2. Pour tout entier naturel p, on a alors

$$W_{2p} = \frac{2p-1}{2p}W_{2p-2} = \frac{2p-1}{2p}\frac{2p-3}{2p-2}W_{2p-4} = \dots = \frac{2p-1}{2p} \times \frac{2p-3}{2p-2} \times \dots \times \frac{3}{4} \times \frac{1}{2}W_0.$$

Or, en factorisant chaque terme par 2, on a

$$2p(2p-2)(2p-4)...\times 4\times 2=2^p\times p(p-1)(p-2)...\times 1=2^pp!.$$

On retrouve au numérateur le produit de tous les nombres impairs de 1 à 2p-1 et au dénominateur le produit de tous les nombres pairs de 2 à 2p-2. En multipliant numérateur et dénominateur par le produit $2p(2p-2)(2p-4)...\times 4\times 2$, on complète alors le produit du numérateur : on multiplie tous les nombres de 1 à 2p: il s'agit tout simplement de (2p)!.

Finalement, pour tout entier naturel p, $W_{2p} = \frac{(2p)!}{(2pn)^2} W_0 = \frac{\pi}{2} \frac{(2p)!}{(2pn!)^2}$

De même, pour tout entier naturel p

$$W_{2p+1} = \frac{2p}{2p+1}W_{2p-1} = \frac{2p}{2p+1}\frac{2p-2}{2p-1}W_{2p-3} = \cdots = \frac{2p}{2p+1} \times \frac{2p-2}{2p-1} \times \cdots \times \frac{2}{3} \times W_1.$$

En multipliant encore une fois le numérateur et le dénominateur par $2p(2p-2)(2p-4)...\times 4\times 2$, on a alors $W_{2p+1}=\frac{(2^pp!)^2}{(2p+1)!}W_1=\frac{(2^pp!)^2}{(2p+1)!}$. Si vous savez manipuler la notation produit \prod , n'hésitez pas à l'utiliser pour résoudre cet exercice.

Partie C : Étude asymptotique

Pour tout entier naturel n, on pose $J_n = (n+1)W_{n+1}W_n$.

1. Pour tout entier naturel n, $J_{n+1} - J_n = (n+2)W_{n+2}W_{n+1} - (n+1)W_{n+1}W_n$. Or, d'après la question **B1**, $W_{n+2} = \frac{n+1}{n+2}W_n$.

Ainsi,
$$J_{n+1} - J_n = (n+2)\frac{n+1}{n+2}W_nW_{n+1} - (n+1)W_{n+1}W_n = 0.$$

- Or, $J_0 = W_1 W_0 = \frac{\pi}{2}$. La suite (J_n) est donc constante égale à $\frac{\pi}{2}$.
- 2. D'une part, la suite (W_n) est décroissante et positive. Ainsi, pour tout entier naturel $n, \frac{W_{n+1}}{W_n} \leq 1$. Par ailleurs, toujours par décroissance de la suite (W_n) , pour tout entier naturel n, $W_{n+1} \geqslant W_{n+2}$ et donc, en utilisant la question **B1**, $W_{n+1} \geqslant \frac{n+1}{n+2} W_n$ d'où $\frac{n+1}{n+2} \leqslant \frac{W_{n+1}}{W_n}$.

 3. Pour tout entier naturel non nul n, $nW_nW_{n-1} = \frac{\pi}{2}$ d'où $W_{n-1} = \frac{\pi}{2nW_n}$.
- Or, pour tout entier naturel non nul n, $\frac{n}{n+1} \leqslant \frac{W_n}{W_{n-1}} \leqslant 1$.

Ainsi, en remplaçant W_{n-1} dans cette inégalité, on a $\frac{n}{n+1} \leqslant \frac{2}{\pi} n W_n^2 \leqslant 1$.

Or, $\lim_{n \to +\infty} \frac{n}{n+1} = \lim_{n \to +\infty} = 1$. D'après le théorème d'encadrement, $\lim_{n \to +\infty} \frac{2}{\pi} n W_n^2$ existe et vaut 1.