Proofs of the Exercises in Chapter 1

Vincent Tran

June 14, 2022

Exercise 1. Proof. Let $a,b,c,d,e,f\in\mathbb{Z}$ and $x,y,z\in\mathbb{Z}/m$ such that (b,m)=(d,m)=(f,m)=1 and $xb\equiv a,yd\equiv c,zf\equiv e\pmod m$. Then we can show that $\frac{a}{b}+\frac{c}{d}=\frac{e}{f}\implies x+y\equiv z$:

$$\frac{a}{b} + \frac{c}{d} = \frac{e}{f}$$

$$adf + cbf = ebd$$

$$xbdf + ybdf \equiv zbdf$$

$$x + y \equiv z$$

Furthermore, if $\frac{ac}{bd} = \frac{e}{f}$ for possibly different e, f, then $xy \equiv z$ for possible different z:

$$\frac{ac}{bd} = \frac{e}{f}$$

$$acf = bed$$

$$xbydf \equiv bzfd$$

$$xy \equiv z$$

Exercise 2. Proof. Consider the sequence $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \cdots \frac{1}{p-1}$. We can show that no two elements in this series are equivalent mod odd p. FTOC suppose there are two integers a,b such that $\frac{1}{a} \equiv \frac{1}{b}$, let this be equal to x. Then $ax \equiv 1 \equiv bx$. Since p is prime, all integers in [1,p-1] are relatively prime to p. Thus $ax \equiv bx \implies a \equiv b$, which is impossible since $a \neq b$ and a+pk>p-1 for $k \in \mathbb{N}$ as $a \geq 1$. Thus every fraction is uniquely equivalent to an element in \mathbb{Z}/p .

Thus the sum of all the elements in this series is just $1+2+3+4+\cdots+p-1$ as every element of \mathbb{Z}/p must be in this series (there are p-1 elements in \mathbb{Z}/p and p-1 unique elements in the sequence). Thus the sum is just $(p-1)(p)/2 \equiv 0$.

Exercise 3. Proof. By the hypothesis, $x^4 + y^4 = x^7y + 1 \equiv 0 \pmod{x^4 + y^4}$. Thus $y \equiv \frac{-1}{x^7} \implies x^4 + (\frac{-1}{x^7})^4 = \frac{x^{32} + 1}{x^{28}} \equiv 0 \implies x^{32} + 1 \equiv 0$.

Exercise 4. Proof. Let (a,m)=d. Thus a=dk for some $k \in \mathbb{Z}$ such that (k,m)=1. Thus we have it that $dkx \equiv b$. Thus dkx=b+mj for some $j \in \mathbb{Z}$. Since $d \mid m, d \mid b$. Then we can show that if $d \mid b, \exists x$. We can show that $x \equiv k^{-1}(e+fj)$ where ed=b and fd=m is a solution: $ax \equiv dkk^{-1}(e+fj) \equiv de+dfj \equiv b+mj \equiv b$. Thus $\exists x \text{ iff } d \mid b$.

Exercise 5. Proof. Let $x = 3a + r_1 = 4b + r_2 = 5c + r_3$ for some $a, b, c \in \mathbb{Z}$. Then $3a + r_1 \equiv r_2 \pmod{4}$. Thus $3a \equiv r_2 - r_1 \implies a \equiv 3r_2 - 3r_1 \equiv 3r_2 + r_1$. Therefore $a = 3r_2 + r_1 + 4d$ for some integer d. Substituting into x, we get $x = 9r_2 + 3r_1 + 12d$. We can repeat this with $x = 5c + r_3$ to get the result.

Exercise 6. *Proof.* The verify part is just back-of-the-napkin math, so I'll leave it out of this. Then we do some algebra:

10ind
$$2+60$$
ind $y\equiv 70$ ind $14\pmod{9}$
$$1+6$$
ind $y\equiv 7\cdot 7$
$$6$$
ind $y\equiv 48$
$$ind \ y\equiv 8$$

$$y\equiv 9$$

Exercise 7. Proof.

ind
$$y = [t_0, t_1, t_2] \implies \text{ind } y^2 = [2t_0, 2t_1, 2t_2]$$

Thus $y^2 \equiv 2^{2t_2} \equiv 1 \pmod{3}$ and $y^2 \equiv (-1)^{2t_0} 5^{2t_1} \equiv 1 \pmod{8}$. Thus $y^2 \equiv 1$.

Exercise 8. Proof. Let ind $y = [t_0, t_1, t_2, \dots, t_s]$. Thus ind $y^4 = [4t_0, \dots, 4t_s]$. For a non-trivial solution, $4t_i \equiv 0 \pmod{\phi(p_i^{a_i})}$. Since t_i varies, the only way for this to occur is for $\phi(p_i^{a_i})|4 \Longrightarrow \phi(p_i^{a_i}) = 1, 2, 4$. Testing small p_i and a_i reveals that this is only the case when $p_i = 3, 5, 4, 8, 16$ (trivial to see that it can't be greater).