

# Thesis Defense: A Formal Analysis of Bitcoin Cash

Yu Shen

## **Outline**



- Background
- Bitcoin Cash Backbone Protocol
- Comparison with Real World Network

# **Cryptocurrencies**



|   | # 📥 | Name             | Price       | 24h            | 7d              | Market Cap 🕧      | Volume 📵                              | Circulating Supply | Last 7 Days |   |
|---|-----|------------------|-------------|----------------|-----------------|-------------------|---------------------------------------|--------------------|-------------|---|
| ☆ | 1   | Bitcoin BTC      | \$49,795.58 | <b>▲</b> 8.43% | ▼ 8.50%         | \$924,610,894,312 | \$53,548,614,604<br>1,079,658 BTC     | 18,642,200 BTC     | purponen    | ÷ |
| ☆ | 2   | ♦ Ethereum ETH   | \$1,581.71  | <b>▲</b> 9.77% | <b>▼</b> 12.07% | \$179,839,542,025 | \$23,978,480,535<br>15,316,682 ETH    | 114,875,712 ETH    | Month       | ÷ |
| ☆ | 3   | Cardano ADA      | \$1.30      | ▼ 2.16%        | <b>▲</b> 19.21% | \$41,459,440,348  | \$10,000,495,100<br>7,706,300,647 ADA | 31,948,309,441 ADA | mmmmmm      | ÷ |
|   |     |                  |             |                |                 |                   |                                       |                    |             |   |
| ☆ | 11  | Bitcoin Cash BCH | \$506.79    | ▲ 8.67%        | ▼19.97%         | \$9,365,354,777   | \$3,635,754,277<br>7,247,188 BCH      | 18,668,063 BCH     | frank       | : |

## **Basic Info about Bitcoin Cash**



- A "hard fork" of Bitcoin.
- Was created on Aug. 1 2017.
- Split ratio 1:1.
- Motivation: accommodate an increasing count of transactions.



## Bitcoin Cash vs. Bitcoin



|                      | Bitcoin                                                      | Bitcoin Cash                       |  |  |  |
|----------------------|--------------------------------------------------------------|------------------------------------|--|--|--|
| Ledger Start         | Jan 3 2009                                                   | Jan 3 2009,<br>split at Aug 1 2017 |  |  |  |
| Mining               | Proof-of-Work(SHA-256)                                       |                                    |  |  |  |
| Block Size Limit     | 1MB -> 4MB                                                   | 8MB -> 32MB                        |  |  |  |
| Issuance schedule    | Initially 50 BTC(BCH) per block, halved every 210,000 blocks |                                    |  |  |  |
| Block time           | 10 minutes                                                   |                                    |  |  |  |
| Supply Limit         | 21,000,000 BTC(BCH)                                          |                                    |  |  |  |
| Target Recalculation | Every 2 weeks                                                | Every block                        |  |  |  |

# **Relative Hashrate in Percentage of Total**





# **Average Number of Blocks per Hour**





## **Blockchain Data Structure**





• A block  $\langle r, st, x, ctr \rangle$  is valid if it has a small hash value, providing a proof-of-work:

$$H(r, st, x, ctr) < T$$
.

 A chain is valid if all its blocks provide a proof-of-work and each block extends the previous one:

For each 
$$i$$
,  $st_{i+1} = H(r, st, x, ctr)$  and  $r_{i+1} > r_i$ .





- Emergency Difficulty Adjustment (EDA):
  - Bitcoin's DAA + decrease the mining difficulty of Bitcoin Cash by 20%, if the time difference between 6 successive blocks was greater than 12 hours.
- Simple Moving Average (SMA):
  - Adjusts the mining difficulty after each block; a moving window of last 144 blocks.
- Absolutely Scheduled Exponentially Rising Targets (ASERT)



- The target is recalculated every m blocks.
  - Bitcoin uses m=2016 (approximately two weeks) and calls the period between two recalculation points an *epoch*.
  - If one want to extend the chain of length  $\lambda m$ , first determines target T by the last m blocks.
- Informally, if the m blocks were calculated quickly, then increase difficulty (decrease T), otherwise decrease difficulty (increase T).
- Suppose the last m blocks were computed in  $\Delta$  rounds for target T. If we want to have m blocks in every m/f rounds, set

$$T' = \frac{\Delta}{m/f} \cdot T$$
 ( $f = \text{block production rate}$ ).





$$T' = \begin{cases} \frac{1}{\tau} \cdot T & if \frac{\Delta}{m/f} \cdot T < \frac{1}{\tau} \cdot T \\ \tau \cdot T & if \frac{\Delta}{m/f} \cdot T > \tau \cdot T \\ \frac{\Delta}{m/f} \cdot T & otherwise \end{cases}$$

- Bahack's difficulty raising attack:
  - The adversary builds the next epoch all by himself with fake timestamps, resulting in huge difficulty for then next epoch.
  - Works with constant probability.





- Emergency Difficulty Adjustment (EDA):
  - Bitcoin's DAA + decrease the mining difficulty of Bitcoin Cash by 20%, if the time difference between 6 successive blocks was greater than 12 hours.
- Simple Moving Average (SMA):
  - Adjusts the mining difficulty after each block; a moving window of last 144 blocks.
- Absolutely Scheduled Exponentially Rising Targets (ASERT)





$$T' = \begin{cases} \frac{1}{\tau} \cdot T^{avg} & if \frac{\Delta}{m/f} \cdot T^{avg} < \frac{1}{\tau} \cdot T^{avg} \\ \tau \cdot T^{avg} & if \frac{\Delta}{m/f} \cdot T^{avg} > \tau \cdot T^{avg} \\ \frac{\Delta}{m/f} \cdot T^{avg} & otherwise \end{cases}$$

- Simple Moving Average (SMA):
  - Adjusts the mining difficulty after each block
  - A sliding window of last 144 blocks (approximately 1 day).
  - Based on the average target of the 144 blocks.
  - (Epoch-like) m: length of the sliding window.









- Absolutely Scheduled Exponentially Rising Targets (ASERT):
  - Adjusts after each block.
  - Based on the comparison with the calibrated timestamp (the timestamp this block should have if it has the generating rate exactly f).
  - Intrinsically prevents the raising difficulty attack.
  - m: smoothing factor (288 in use, approximately 2 days).
- For v-th block with timestamp  $r_v$ , its target is calculated by

$$T' = T_0 \cdot 2^{\left(\frac{r_v - (v-1)/f}{m/f}\right)}$$





## **Outline**



- Background
- Bitcoin Cash Backbone Protocol
- Comparison with Real World Network

### This Work



- A follow-up work of the Bitcoin Backbone Protocol ([GKL15, GKL17]).
- First formal analysis of Bitcoin Cash's target recalculation functions.
- New analysis methodology for target recalculation functions in the dynamic setting.

## Model



- Time is divided into rounds.
- Bounded Delay Network: △ round delay.
- A total number of parties n and an adversary that controls t parties
  - Honest parties act independently.
  - Parties controlled by the adversary collaborate.
- Parties communicate by diffusing a message.
  - The adversary can inject messages into a party's incoming message.
  - The adversary can reorder a party's incoming messages.
- Anonymous setting: parties cannot associate a message to a sender.
- Hash function is modeled as a random oracle (RO).

# **Respecting Environment**



Static

**Permissionless** 

**Dynamic** 

- It is impossible to achieve desired properties in permissinless setting.
  - If the number of parties increases rapidly, it would generate too many forks (Consistency hurts).
  - If the number of parties decreases rapidly, transactions sent to the ledger cannot be confirmed (*Liveness* breaks).
- A dynamic environment: the fluctuation of number of parties is bounded.

# **Respecting Environment**



Static

**Permissionless** 

**Dynamic** 

**Definition 1.** For  $\gamma, \Gamma \in \mathbb{R}^+$ , we call a sequence  $(n_r)_{r \in \mathbb{N}}$   $(\langle \gamma, \sigma \rangle, \langle \Gamma, \Sigma \rangle)$ -respecting if it holds that in a sequence of rounds S with  $|S| \leq \Sigma$  rounds,  $\max_{r \in S} n_r \leq \Gamma \cdot \min_{r \in S} n_r$  and for any consecutive sub-sequence rounds  $S' \preccurlyeq S$  with  $|S'| \leq \sigma$  rounds,  $\max_{r \in S'} n_r \leq \gamma \cdot \min_{r \in S'} n_r$ .

- The environment Z can increase or decrease the total number of parties at the beginning of each round, but subject to a constraint.
  - Long term fluctuation:  $\forall S, |S| = \Sigma, \max_{r \in S} n_r \leq \Gamma \cdot \min_{r \in S} n_r$ .
  - Short term fluctuation:  $\forall S', |S'| = \sigma, \max_{r \in S} n_r \le \gamma \cdot \min_{r \in S} n_r$ .
  - Consistent with the recalculation function that adjusts difficulty for each block.

## **Blockchain Properties**



## **Common Prefix**

• With parameter  $k \in N$ , at any round of the execution, if a chain C belongs to an honest party, then for any valid chain C' in the same round such that either diff(C') > diff(C), or diff(C') = diff(C) and diff(C') and

# **Chain Quality**

• With parameters  $\mu \in R$  and  $\ell \in N$ , for any party P with chain C in  $view_{\Pi,A,Z}$ , and any segment of that chain of difficulty d such that the timestamp of the first block of the segment is at least  $\ell$  smaller than the timestamp of the last block, the blocks the adversary has contributed in the segment have a total difficulty that is at most  $\mu \cdot d$ .

# **Blockchain Properties**



#### **Common Prefix:**



## **Chain Quality:**



The percentage of blocks mined by the adversary in the stable blockchain is bounded.

# **Ledger Properties**



A robust transaction ledger must satisfy:

# Consistency

• For any two honest parties  $P_1, P_2$ , reporting  $\mathcal{L}_1, \mathcal{L}_2$  at rounds  $r_1 \leq r_2$ , resp., it holds that the settled part of  $\mathcal{L}_1$  is a prefix of  $\mathcal{L}_2$ .

## Liveness

• If a transaction tx is provided to all honest parties for u consecutive rounds, then it holds that for any player P, tx will be in  $\mathcal{L}$ .

## **Bitcoin Cash Backbone Protocol**



- In each round r, each party with a chain  $C_0$  performs the following:
  - Receive from the network chains  $C_1$ ,  $C_2$ , ...
  - Choose the first heaviest chain C among the valid ones in  $\{C_0, C_1, C_2, ...\}$  (Heaviest means the largest accumulated difficulty).
  - Try to extend the heaviest chain C (Modeled as a Bernoulli trial with a probability of success that depends on the target T).
  - Suppose its last block is the *i*-th one and equal to  $(r_i, st_i, x_i, ctr_i)$  with  $st = H(r_i, st_i, x_i, ctr_i)$ . Find a ctr such that H(r, st, x, ctr) < T. If succeed, let  $C \leftarrow C \parallel (r, st, x, ctr)$
  - If  $C \neq C_0$  (miner extends the chain or switch to another heavier chain), diffuse the new chain C.

## **Bitcoin Cash Backbone Protocol**



**Algorithm 4** The Bitcoin Cash backbone protocol in the dynamic setting at round "round" on local state  $(st, \mathcal{C})$  parameterized by the *input contribution function*  $I(\cdot)$  and the *chain reading function*  $R(\cdot)$ . The ready flag is **false** if and only if the party was inactive in the previous round.

```
1: if readv = true then
           DIFFUSE('ready')
           \widetilde{\mathcal{C}} \leftarrow \mathsf{maxvalid}(\mathcal{C} \text{ all chains } \mathcal{C}' \text{ found in Receive}())
           \langle st, x \rangle \leftarrow I(st, \mathcal{C}, \mathtt{round}, \mathtt{INPUT}(), \mathtt{RECEIVE}())
          \mathcal{C}_{\mathsf{new}} \leftarrow \mathsf{pow}(\mathsf{round}, x, \widetilde{\mathcal{C}})
           if (C \neq C_{new}) \vee ('Join' \in Receive()) then
                \mathcal{C} \leftarrow \mathcal{C}_{\mathsf{new}}
                \text{Diffuse}(\mathcal{C})
                                           b chain is diffused when it is updated or when someone wants to join.
           end if
           if INPUT() contains READ then
10:
                write R(\mathbf{x}_{\mathcal{C}}) to OUTPUT()
11:
                DIFFUSE(RoundComplete)
12:
           end if
13:
14: else
15:
           ready \leftarrow true
           DIFFUSE(Join, RoundComplete)
17: end if
```

# **Summary of Parameters**



- $\delta$ : Advantage of honest parties,  $\forall r(t_r/h_r < 1 \delta)$ .
- $-\gamma, \sigma, \Gamma, \Sigma$ : Determine how the number of parties fluctuates across rounds in a period (cf. Definition 1 and Fact 1).
- f: Probability that at least one honest party succeeds generating a PoW in a round assuming  $h_0$  parties and target  $T_0$  (the protocol's initialization parameters).
- m: Smoothing factor (cf. Definition 4).
- $-\tau$ : Parameter that regulates the target that the adversary could query the PoW with.
- $-\epsilon$ : Quality of concentration of random variables (cf. Definition 7).
- $\kappa$ : The length of the hash function output.
- $-\varphi$ : Related to the properties of the protocol.
- L: The total number of rounds in the execution of the protocol.

$$\varphi = \Theta(m) = polylog(\kappa)$$

# **Proof Roadmap**



- Assuming the execution begins with good initial parameters (the initial block production rate is very close to f).
- Consider a sliding window of  $\Theta(m)$  rounds.
- If a chain is C is adopted by an honest party, then C satisfies the following with overwhelming probability (in  $\kappa$ ):
  - Is never abandoned by honest parties for  $\Omega(m/f)$  rounds,
  - Is O(m/f)-accurate,
  - Has "good" recalculation points,
  - Has blocks with good targets.

# **Proof Roadmap**



 Accuracy: no adversarial blocks are present with a timestamp that deviates too much from its real creation time.

**Definition 6** (Accuracy). A block created at round u is *accurate* if it has a timestamp v such that  $|u-v| \leq \ell + 2\Delta$ . A chain is *accurate* if all its blocks are accurate. A chain is *stale*, if for some  $u \geq \ell + 2\Delta$ , it does not contain an honest block with timestamp  $v \geq u - \ell - 2\Delta$ .

• Goodness: for a round r, the probability of block generation given current target  $T_r$  and number of miners  $n_r$ , is very close to the initial block generation rate f.

**Definition 5** (Goodness). Round r is good if  $f/2\gamma(2-\delta)\Gamma^3 \leq ph_rT_r^{\min}$  and  $ph_rT_r^{\max} \leq 2\gamma\Gamma^3f$ . A target-recalculation point r is good if the target T for the next block satisfies  $f/2(2-\delta)\Gamma^3 \leq ph_rT \leq 2\Gamma^3f$ . A chain is good if all its target-recalculation points are good.

## **Random Variables**



- $D_r$ : Honest party successfully extends a chain.
  - Sum of the difficulties of all blocks computed by honest parties.
- $Y_r$ : Maximum difficulty among all blocks computed by honest parties.
- $Q_r$ : Isolated successful (consider the  $\Delta$  round delay).
  - Equal to  $Y_r$  when  $D_u = 0$  for all  $r < u < r + \Delta$  and 0 otherwise.
- Adversary: consider a set of consecutive adversarial queries J.
  - A(I): sum of the difficulties of all adversarial blocks in I for target at least  $T(I)/\tau$
  - -B(J): sum of the difficulties of all adversarial blocks in J for target at least T(J)

# **Typical executions**



For the honest parties:

For any set S of at least  $\ell$  consecutive good rounds,

$$(1 - \epsilon)[1 - 2\gamma \Gamma^3 f]^{\Delta} ph(S) < Q(S) \le D(S) < (1 + \epsilon)ph(S).$$

For the adversarial parties:

For any set J indexing a set of consecutive adversarial queries and  $\alpha(J)=2(\frac{1}{\epsilon}+\frac{1}{3})\varphi/T(J),$ 

$$A(J) < p|J| + \max\{\epsilon p|J|, \tau\alpha(J)\}$$
 and  $B(J) < p|J| + \max\{\epsilon p|J|, \alpha(J)\}.$ 

No insertions, copies, predictions.

# **Typical executions**



#### Get concentration of the random variables:

**Definition 8.** [MU05, Chapter 12] A sequence of random variables  $X_0, X_1, \ldots$  is a martingale with respect to sequence  $Y_0, Y_1, \ldots$ , if, for all  $n \geq 0$ ,  $(1)X_n$  is a function of  $Y_0, \ldots, Y_n$ ,  $(2)\mathbb{E}[|X_n|] < \infty$ , and  $(3) \mathbb{E}[X_{n+1}|Y_0, \ldots, Y_n] = X_n$ .

**Theorem 16.** [McD98, Theorem 3.15] Let  $X_0, X_1, \ldots$  be a martingale with respect to the sequence  $Y_0, Y_1, \ldots$  For  $n \geq 0$ , let  $V = \sum_{i=1}^n \text{var}(X_i - X_{i-1}|Y_0, \ldots, Y_{i-1})$  and  $b = \max_{1 \leq i \leq n} \sup(X_i - X_{i-1}|Y_0, \ldots, Y_{i-1})$ , where  $\sup$  is taken over all possible assignments to  $Y_0, \ldots, Y_{i-1}$ . Then, for any  $t, v \geq 0$ ,

$$\Pr[(X_n \ge X_0 + t) \land (V \le v)] \le \exp\left\{-\frac{t^2}{2v + 2bt/3}\right\}.$$

**Theorem 3.** Assuming the Bitcoin Cash backbone protocol runs for L rounds, the event "E is not typical" is bounded by  $poly(L) \cdot e^{-\Omega(polylog(\kappa))}$ .

# **Typical executions**



 Accuracy: can be proved by the properties of the typical execution, the honest party would accumulate more difficulties than the adversary party after some rounds.

#### Goodness:

- for SMA, it generally follows the approach in [GKL17], with modifications to overcome the adoption of average targets.
- However, the previous analysis on goodness is epoch-based, which fails in the ASERT function.

## "Goodness" in ASERT function



$$T' = T_0 \cdot 2^{\left(\frac{r_v - (v-1)/f}{m/f}\right)}$$

- Observation: the next target in ASERT is w.r.t. timestamp and block height.
- Once we fix a sequence of number of parties:
  - For i-th block with timestamp r, and corresponding number of honest parties  $h_r$ , if  $r=\frac{i-1}{f}+\frac{m}{f}\log\frac{h_0}{h_r}$  (the calibrated timestamp), the i-th block would have block generating rate exactly f.
  - r is a good target recalculation point if

$$\frac{i-1}{f} + \frac{m}{f}\log(2(2-\delta)\Gamma^3 \cdot \frac{h_0}{h_r}) \le r \le \frac{i-1}{f} + \frac{m}{f}\log(2\Gamma^3 \cdot \frac{h_0}{h_r})$$

## "Goodness" in ASERT function



• A new variable  $X_i$  to describe the deviation of calibrated timestamp:

$$X_1 = 0$$
 and  $X_{i+1} = X_i + (r_{i+1} - r_i) - \frac{1}{f} - \frac{m}{f} \log(\frac{h_{i+1}}{h_i})$  for  $i \ge 0$ .

- Three parts:
  - $(r_{i+1} r_i)$ : the difference of their timestamps;
  - -1/f: the ideal block interval;
  - $(m/f)\log(h_{i+1}/h_i)$ : the influence of the party fluctuation.
- For good target recalculation points, X<sub>i</sub> should satisfy

$$-\frac{m}{f}\log 2(2-\delta)\Gamma^3 \le X_i \le \frac{m}{f}\log 2\Gamma^3.$$

## "Goodness" in ASERT function



Problem: we cannot bound the accumulation of the party fluctuation.

**Definition 1.** For  $\gamma, \Gamma \in \mathbb{R}^+$ , we call a sequence  $(n_r)_{r \in \mathbb{N}}$   $(\langle \gamma, \sigma \rangle, \langle \Gamma, \Sigma \rangle)$ -respecting if it holds that in a sequence of rounds S with  $|S| \leq \Sigma$  rounds,  $\max_{r \in S} n_r \leq \Gamma \cdot \min_{r \in S} n_r$  and for any consecutive sub-sequence rounds  $S' \leq S$  with  $|S'| \leq \sigma$  rounds,  $\max_{r \in S'} n_r \leq \gamma \cdot \min_{r \in S'} n_r$ .

- The sequence can capture exponential growth.
  - The total run time is bounded by a polynomial (in  $\kappa$ ), and thus the growth is also polynomially bounded.
- However, this is not enough for term  $\frac{m}{f}\log(\frac{h_{i+1}}{h_i})$  in the steps.



 A new variable W<sub>i</sub> to describe the deviation of a specific calibrated timestamp (i.e., relatively calibrated timestamp):

$$W_u = X_u \text{ and } W_{i+1} = W_i + (r_{i+1} - r_i) - \frac{1}{f} \text{ for } i \ge u.$$

- Two parts:
  - $(r_{i+1} r_i)$ : the difference of their timestamps;
  - -1/f: the ideal block interval.
- For good target recalculation points,  $W_i$  should satisfy

$$-\frac{m}{f}\log 2(2-\delta)\Gamma^2 \le W_i \le \frac{m}{f}\log 2\Gamma^2.$$



• The states based on  $W_i$ :



• For good target recalculation points,  $W_i$  should satisfy

$$-\frac{m}{f}\log 2(2-\delta)\Gamma^2 \le W_i \le \frac{m}{f}\log 2\Gamma^2.$$





- For blocks  $\{B_u, \dots, B_v\}$  in in a sliding window, it holds that:
  - For a block  $B_i$ , i>u, with  $W_i$  (w.r.t.  $B_u$ ) in state Cold, we can construct a new sliding window with  $W_i$  (w.r.t.  $B_i$ ) in state VolatileLeftInner, VolatileRightInner or Cold.
  - Extend the analysis of a sliding window from the beginning to the whole execution.





- For blocks  $\{B_u, \dots, B_v\}$  in in a sliding window, it holds that:
  - If  $W_u$  is in state VolatileLeftInner, VolatileRightInner or Cold, the probability of  $W_i$ , i > u reaching HotLeft or HotRight is negligible.
  - Never escape to the Hot state (i.e., never break goodness).





- For blocks  $\{B_u, \dots, B_v\}$  in in a sliding window, it holds that:
  - If  $W_u$  is in state VolatileLeftInner, VolatileRightInner or Cold,  $W_i(i > u)$  will once return to Cold with overwhelming probability.
  - Always feasible to move the sliding window.

# **Conditions in the analysis**



- In order to satisfy the analysis, two conditions on the parameters should be satisfied:
  - We will assume that  $\ell$  is appropriately small compared to the length m of a sliding interval/window:

$$2\ell + 6\Delta \le \frac{\epsilon m}{2\gamma \Gamma^3 f}$$
.

– The advantage  $\delta$  of the honest parties over adversarial parties to be large enough to absorb error factors:

$$[1 - 2\gamma \Gamma^3 f]^{\Delta} \ge 1 - \epsilon$$
 and  $\epsilon \le \delta/8 \le 1/8$ .

#### **Outline**



- Background
- Bitcoin Cash Backbone Protocol
- Comparison with Real World Network

#### **Real World Network & Parameters**



- Party fluctuation  $(\Gamma, \gamma)$ .
  - Extract it from hashrate.
- Network delay (Δ).
  - Mainly stems from its multi-hop broadcast and block propagation mechanism.
  - Block propagation time was > 15s in 2014.
- Honest advantage  $(\delta)$ .
- Quality of concentration  $(\epsilon)$ .

# Bitcoin Cash's Hashrate per Second





Party fluctuation ratio > 8.

# Bitcoin Cash's Daily Average Hashrate





#### **Bitcoin Security under Temporary Dishonest Majority**

Georgia Avarikioti, Lukas Kaeppeli, Yuyi Wang, Roger Wattenhofer

We prove Bitcoin is secure under temporary dishonest majority. We assume the adversary can corrupt a specific fraction of parties and also introduce crash failures, i.e., some honest participants are offline during the execution of the protocol. We demand a majority of honest online participants on expectation. We explore three different models and present the requirements for proving Bitcoin's security in all of them: we first examine a synchronous model, then extend to a bounded delay model and last we consider a synchronous model that allows message losses.

# Bitcoin Cash's Daily Average Hashrate





A quiet environment with  $\Gamma = 1.398$  and  $\gamma = 1.057$ .



An environment of wild fluctuation with  $\Gamma=1.88$  and  $\gamma=1.099$ .

# **Bitcoin Cash's Block Propagation Time**



- Network delay  $(\Delta)$ .
  - Mainly stems from its multi-hop broadcast and block propagation mechanism.









# **Bitcoin Cash's Block Propagation Time**





# **Real World Specs**



| Parameter                                   | Value                      |
|---------------------------------------------|----------------------------|
| Block generating rate $f$                   | 0.01 (1 round = 6 seconds) |
| Network delay $\Delta$                      | 1 (=1 round=6 seconds)     |
| Party fluctuation ratio $\Gamma$ , $\gamma$ | 1.88, 1.099                |
| Honest advantage $\delta$                   | 0.99                       |
| Quality of concentration $\epsilon$         | 0.123                      |

$$2\ell + 6\Delta \le \frac{\epsilon m}{2\gamma \Gamma^3 f}.$$
$$[1 - 2\gamma \Gamma^3 f]^{\Delta} \ge 1 - \epsilon \text{ and } \epsilon \le \delta/8 \le 1/8.$$

#### **Conclusions**



- Under current parameters, the probability to escape to Hot state (break the goodness) is tiny ( $< 10^{-9}$ ).
- Under current parameters, the probability of not returning to Cold state is also tiny ( $< 10^{-12}$ ).
- ASERT is better than SMA, because wilder fluctuation can be inserted into ASERT function.
  - SMA fails when we plugin  $\Gamma = 1.88$ .
- In order to achieve desired ledger properties, the smoothing factor *m* should be much larger (approximately several years) to get the ideal ledger properties.

# **Future/Ongoing Work**



- Non-monotonically increasing timestamps
  - In Bitcoin/Bitcoin Cash, the timestamp of a block should be larger than the medium of the last 11 blocks.
  - This work assumes monotonically increasing timestamps.
- Adaptive adversaries



**TEXAS A&M UNIVERSITY** 

# Engineering