Nama : Teosofi Hidayah Agung

NRP : 5002221132

7.1

10. Misalkan g(x) := 0 jika $x \in [0,1]$ adalah rasional dan g(x) := 1/x jika $x \in [0,1]$ adalah irasional. Jelaskan mengapa $g \notin \mathcal{R}[a,b]$. Namun, tunjukkan bahwa terdapat sebuah barisan $(\dot{\mathcal{P}}_n)$ dari partisi bertanda di [a,b] sedemikian sehingga $\|\dot{\mathcal{P}}_n\| \to 0$ dan $\lim_n S(g;\dot{\mathcal{P}}_n)$ ada.

Jawab:

Asumsikan g terbatas di $M \ge 1$ $(g(x) \le M, \forall x \in [0,1])$. Ambil $x_0 = t/M$ dimana $t \in [0,1]$ dan irasional, sehingga $g(x_0) = 1/x_0 = M/t$. Sebab $M \ge 1$ dan $0 \le t \le 1$, maka $g(x_0) = M/t > M$. Hal ini kontradiksi dengan mengasumsikan g terbatas, Sehingga didapatkan kesimpulan bahwa g tidak terbatas di [0,1].

Teorema: Jika
$$f \in \mathcal{R}[a,b]$$
, maka f terbatas di $[a,b]$

 $\therefore g \notin \mathcal{R}[0,1].$

Misalkan $(\dot{\mathcal{P}}_n)$ adalah barisan dimana $\dot{\mathcal{P}}_n$ merupakan partisi bertanda di $[c,d]\subseteq [0,1]$ dengan n sub-interval yang panjangnya sama, setiap partisi ditandai dengan bilangan irasional (kepadatan bilangan real). Sehingga dapat ditulis $\|\dot{\mathcal{P}}_n\| = (d-c)/n$, dari hal tersebut didapatkan $\|\dot{\mathcal{P}}_n\| = 0$. Di sisi lain untuk bilangan rasional, $S(g;\dot{\mathcal{P}}_n) = \sum_{i=1}^n g(t_i)(x_i - x_{i-1}) = \sum_{i=1}^n 0 \cdot (x_i - x_{i-1}) = 0$. $\therefore \lim S(g;\dot{\mathcal{P}}_n) = 0$.

- 13. Andaikan $c \leq d$ sebuah titik di [a.b]. Jika $\varphi: [a,b] \to \mathbb{R}$ memenuhi $\varphi(x) = \alpha > 0$ untuk $x \in [c,d]$ dan $\varphi(x) = 0$ untuk yang lain di [a,b], tunjukkan bahwa $\varphi \in \mathcal{R}[a,b]$ dan $\int_a^b \varphi = \alpha(d-c)$. [Petunjuk: Diberikan $\varepsilon > 0$ misalkan $\delta_\varepsilon := \varepsilon/4\alpha$ dan tunjukkan bahwa jika $\|\dot{\mathcal{P}}\| < \delta_\varepsilon$ maka didapatkan $\alpha(d-c-2\delta_\varepsilon) \leq S(\varphi;\dot{\mathcal{P}}) \leq \alpha(d-c+2\delta_\varepsilon)$] Jawab:
 - Andaikan $\dot{\mathcal{P}}$ adalah sembarang partisi bertanda di [a,b]. Asumsikan:
 - $\dot{\mathcal{P}}_1 \subseteq \dot{\mathcal{P}}$ partisi bertanda di [a,c)
 - $\dot{\mathcal{P}}_2 \subseteq \dot{\mathcal{P}}$ partisi bertanda di [c,d]
 - $\dot{\mathcal{P}}_3 \subseteq \dot{\mathcal{P}}$ partisi bertanda di (d,b]

Sehingga $S(\varphi; \dot{\mathcal{P}}) = S(\varphi; \dot{\mathcal{P}}_1) + S(\varphi; \dot{\mathcal{P}}_2) + S(\varphi; \dot{\mathcal{P}}_3)$. Sebab $\varphi(t_i) = 0$ untuk setiap titik di $\dot{\mathcal{P}}_1$ dan $\dot{\mathcal{P}}_3$ maka integral riemann-nya adalah 0. Sekarang

akan dibuktikan integral riemann menggunakan definisi $\varepsilon - \delta$.

Untuk setiap $\varepsilon > 0$ terdapat $\delta_{\varepsilon} > 0$ Sehingga jika $\dot{\mathcal{P}}_2$ sebarang partisi bertanda dari [c,d] dengan $\dot{\mathcal{P}} < \delta_{\varepsilon}$, maka $|S(\varphi;\dot{\mathcal{P}}) - \alpha(d-c)| < \varepsilon$. Sekarang asumsikan karena $\varphi(t_i) = \alpha$ di [c,d], sehingga dapat ditulis sebagai berikut

$$\begin{split} [c+\delta_{\varepsilon},d-\delta_{\varepsilon}] &\subseteq [c,d] \subseteq [c-\delta_{\varepsilon},d+\delta_{\varepsilon}] \\ \alpha(d-\delta_{\varepsilon}-(c+\delta_{\varepsilon})) &\leq S(\varphi;\dot{\mathcal{P}}_{2}) \leq \alpha(d+\delta_{\varepsilon}-(c-\delta_{\varepsilon})) \\ \alpha(d-c-2\delta_{\varepsilon}) &\leq S(\varphi;\dot{\mathcal{P}}_{2}) \leq \alpha(d-c+2\delta_{\varepsilon}) \\ -2\alpha\delta_{\varepsilon} &\leq S(\varphi;\dot{\mathcal{P}}_{2}) - \alpha(d-c) \leq 2\alpha\delta_{\varepsilon} \\ |S(\varphi;\dot{\mathcal{P}}_{2}) - \alpha(d-c)| &= |S(\varphi;\dot{\mathcal{P}}) - \alpha(d-c)| \leq 2\alpha\delta_{\varepsilon} \end{split}$$

Dari asumsi diatas, dapat dipilih $\delta_{\varepsilon} < \varepsilon/2\alpha$. Akhirnya didapatkan $|S(\varphi; \dot{\mathcal{P}}) - \alpha(d-c)| \le 2\alpha\delta_{\varepsilon} < 2\alpha(\varepsilon/2\alpha) = \varepsilon$. $\therefore \varphi \in \mathcal{R}[a,b]$ dan $\int_a^b \varphi = \alpha(d-c)$.

7.2

12. Tunjukkan bahwa $g(x) := \sin(1/x)$ untuk $x \in (0,1]$ dan g(0) := 0 berada di $\mathcal{R}[0,1]$.

Jawab:

Dengan teorema apit didapatkan $-1 \le \sin(1/x) \le < 1$

15. Jika f terbatas dan suatu himpunan E yang elemennya berhingga sedemikian sehingga f kontinu di setiap titik pada $[a,b]\backslash E$, tunjukkan bahwa $f\in \mathcal{R}[a,b]$.

Jawab:

Karena f kontinu di setiap titik pada $[a,b] \setminus E$, dapat disimpulkan bahwa $E \cap [a,b] = \emptyset$. Karena f terbatas maka $|f(x)| \leq M$ untuk suatu M > 0, sehingga didapatkan

$$\int_{a}^{b} f \le \int_{a}^{b} |f| \le \int_{a}^{b} M = M(a - b)$$

 $\therefore f \in \mathcal{R}[a,b]$