AE. 1A - Etude d'un mouvement circulaire

<u>Objectifs</u>: Etudier, à partir d'une vidéo, à l'aide d'un logiciel de pointage et d'un tableur, les caractéristiques du vecteur vitesse et du vecteur accélération du mouvement du centre d'inertie d'un mobile sur une table à coussin d'air évoluant dans le plan et soumis à une force toujours dirigée vers un point fixe de l'espace.

Matériel mis à disposition du candidat :

- un ordinateur ;
- une vidéo « mvt circulaire » contenant la vidéo d'une plaque métallique tournant autour d'un point fixe. La diagonale de la plaque présente sur cette vidéo est de 10 cm.
- un logiciel de pointage avec une notice simplifiée (Aviméca) ;
- un tableur avec une notice simplifiée (Regressi).

Document : Modélisation du mouvement de la plaque métallique

Un repère (O, x, y) est placé au point d'accrochage du fil à la table.

On associera l'**origine des dates à l'image n°10** et on pointera la position du centre d'inertie G de la plaque jusqu'à la 56ème image.

On note R, la distance du centre d'inertie G à l'origine O des axes.

Les coordonnées $\binom{V_X}{V_Y}$ du vecteur vitesse se calculent en dérivant les coordonnées $\binom{X}{Y}$ du vecteur position par rapport au temps :

$$v_x = \frac{dx}{dt}$$
 et $v_y = \frac{dy}{dt}$

Les coordonnées $\binom{a_x}{a_y}$ du vecteur accélération se calculent en dérivant les coordonnées $\binom{V_x}{V_y}$ du vecteur vitesse par rapport au temps :

$$a_x = \frac{dv_x}{dt}$$
 et $a_y = \frac{dv_y}{dt}$

Chapitre 1 TRAVAIL A EFFECTUER

Mouvement et interactions

Modélisation du mouvement de la plaque métallique

Proposer un protocole expérimental utilisant les logiciels mis à disposition pour obtenir les
coordonnées $inom{V_x}{V_{ u}}$ du vecteur vitesse $ec{v}$ du centre G de cette plaque, la valeur du rayon R de la
trajectoire et la valeur de la vitesse v .
Mettre en œuvre le protocole puis compléter les questions suivantes :
1/ Résultat pout <i>R</i> :
2/ Résultat de la modélisation de $v(t)$: $v = \dots \pm \dots \pm \dots$
3/ Préciser la direction et le sens du vecteur vitesse.
direction:
sens:
4/ Comment qualifier le mouvement de la plaque métallique ? Justifier.
Proposer un protocole expérimental pour obtenir les coordonnées $inom{a_\chi}{a_ u}$ du vecteur accélération $ec{a}$ du
centre ${m G}$ de cette plaque ainsi que la valeur a de l'accélération.
Mettre en œuvre le protocole puis compléter les questions suivantes :
5 / Résultat de la modélisation de $a(t)$: $a = \dots \pm \dots \pm \dots$

APPEL n°1 Appeler le professeur pour lui présenter les réponses ou en cas de difficulté

Chapitre 1

Mouvement et interactions

6/ Faire apparaître le graphe y = f(x). Sur la page « Graphe », cliquer sur l'icône « Vecteurs » pour faire apparaître les vecteurs vitesse et accélération. Cliquer sur l'icône « Axes », vérifier que « Axes orthonormés » est coché.

Préciser la direction et le sens du vecteur accélération.

direction:....

sens:....

7/ Sur le schéma ci-dessous, représenter le vecteur vitesse et le vecteur accélération au point G. Préciser les échelles de représentation de \vec{v} et de \vec{a} . Préciser également le sens du mouvement.

APPEL n°2

Appeler le professeur pour lui présenter les réponses ou en cas de difficulté

8/ Créer la grandeur a_n de l'accélération normale $a_n = \frac{v^2}{R}$.

Résultat de la modélisation de $a_n(t)$: $a_n(t) = \dots$

9/ Calculer l'écart relatif entre la valeur de l'accélération a et celle de a_n en utilisant la relation :

$$\frac{|a-a_n|}{a_n} \times 100.$$

10/ Représenter sur le schéma de la question **7**/ le repère de Frenet. Exprimer \vec{a} dans ce repère.

11/ Conclure sur l'accélération d'un mouvement circulaire uniforme (3 qualificatifs).

.....

Fermer les logiciels et les vidéos avant de quitter la salle.