Restaurant Closures: Project Update

Cole Smith

Recap

Objective is to predict

whether or not a restaurant will close within a given period of time

Based upon factors like

Health Violations (type, frequency), Location (demographics, income), Cuisine Type, Restaurant Type (restaurants vs. sidewalk cafes), and Economic Trends (DJIA, VIX)

Data Sources

Data Merging

- No universal identifier for restaurants between data sets
- Fuzzy Joining found infeasible due to restaurants using either legal or DBA name in data set.
- Common keys are therefore only zip code, year, and month
- Closed restaurants not represented in Inspections data set

thousands of restaurants start business and go out of business every year; only restaurants in an active status are included in the dataset.

Rethinking The Problem

- Two Types of Closures
 - Hard Closures: License expired and not renewed, cannot legally operate presumably voluntary
 - Soft Closures: Health Inspection shutdown, may re-open at some point presumably involuntary
- Hard closures appear related to soft closures on monthly aggregations
- Regression can be performed on All Closures while Classification can be performed on Soft Closures

Data Preparation

Data is set up to be analyzed in two ways:

Restaurant-row format

(Restaurant Inspection Data Set)

Monthly Zip-row format

(Master DataFrame)

Data Exploration: Restaurant Inspection Data Set

- Data extremely imbalanced (0.5% closure rate)
- Estimators perform poorly
- Bootstrap Sampling,
 Downsampling: Estimators perform well but over-fit (lack of specificity)

Fixing Imbalance

- Waiting until NYC releases new data set...
- Netted extra 750 closures over 2 months
- New total closure rate: 3.2% of sampled restaurants

Restaurant Inspections: PCA Visualization

Classification Performance (n=3,476)

- Gradient Boosting Machine
 - F1: 0.51
 - Cohen Kappa: 0.38
- K-Nearest Neighbors
 - F1: 0.12
 - Cohen Kappa: 0.07
- Neural Network
 - F1: 0.46
 - Cohen Kappa: 0.38
- (Positivity Rate Bootstrapped to 25%)

Top Features by RFE-CV and GBM

Score

Grade

Total Inspections

Violation Count

Critical Violations

Data Exploration: Master Data Set

- Includes all previous data plus
 - Economic Trends
 - Demographic
 - Adjusted Gross Income
- Time series: Zip codes in monthly increments
 - Data was treated independent of time, however

Master Data Set Over Time

Total Closures vs DJIA and VIX Closing Prices

Master Regression Performance (n=1,550)

- Gradient Boosting Machine
 - Exp. Var.: 0.78
 - MAE: 0.28
 - R2: **0.78**
- Neural Network
 - No convergence (R2: ~ 0.0)

- Linear Regression
 - Exp. Var.: 0.50
 - MAE: 0.36
 - R2: 0.50

Observations

- **Zip** was not important
 - Nor was demographic data.
- Cuisine type and DJIA/VIX was important (As found by RFE/GBM)
 - 1) American
 - 2) Cafes
 - 3) Chinese

- About 40% of explained variance is non-linear
- Certain violations will always result in a soft closure
- Soft closures can reliably model all closures

Future Work

- Finding unique restaurant identifiers
- Restaurant Inspections Data Set can be collected over time
 - Points may lie on a manifold → Isomap/Spectral Embedding
- Analysis of Social Media Presence