BUAN 6356.501 - Business Analytics with R (Spring 2019) Problem Set 3

Question 1 <- mlb1

1. Null hypothesis is H_0 : $\beta_{13}=0$ vs H_1 : $\beta_{13}\neq0$ with p-value of t-statistic as 0.05432 (> 0.05). Hence, we cannot reject the null hypothesis and can conclude that β_{13} is insignificant at 5% level of significance. However, for a 10% level of significance β_{13} becomes significant. When controlling for all other factors, average salary difference for outfielders and catchers can be derived as $(e^{\beta_{13}}-1)=0.2886\approx29\%$

```
lm(formula = log(salary) ~ years + gamesyr + bavg + hrunsyr +
    rbisyr + runsyr + fldperc + allstar + frstbase + scndbase +
    thrdbase + shrtstop + catcher, data = mlb1)
Residuals:
               1Q
                    Median
                                 3Q
                                         Max
-2.42088 -0.42665 -0.03092
                           0.47925
                                     2.74975
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                       2.3044545
                                    4.830 2.07e-06
(Intercept) 11.1295536
                                    4.760 2.87e-06
years
             0.0584178
                        0.0122732
gamesyr
             0.0097670
                        0.0033776
                                    2.892
                                           0.00408
             0.0004814
bavg
                        0.0011411
                                    0.422
                                           0.67340
            0.0191459
                        0.0159638
                                    1.199
                                           0.23124
hrunsyr
             0.0017875
                        0.0074755
                                    0.239
                                           0.81116
rbisyr
runsyr
             0.0118707
                        0.0045264
                                    2.623
                                           0.00912 **
fldperc
            0.0002833 0.0023078
                                    0.123
                                           0.90239
allstar
            0.0063351
                       0.0028828
                                    2.198
                                           0.02866
frstbase
            -0.1328008
                       0.1309243
                                   -1.014
scndbase
            -0.1611010
                        0.1414296
                                   -1.139
                                           0.25547
thrdbase
            0.0145271
                        0.1430352
                                    0.102
shrtstop
            -0.0605672
                        0.1302031
                                   -0.465
                                           0.64210
catcher
            0.2535592 0.1313128
                                    1.931 0.05432 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.7092 on 339 degrees of freedom
Multiple R-squared: 0.6535,
                                Adjusted R-squared: 0.6403
F-statistic: 49.19 on 13 and 339 DF, p-value: < 2.2e-16
```

2. The null hypothesis is H_0 : $\beta_9 = 0$, $\beta_{10} = 0$, $\beta_{11} = 0$, $\beta_{12} = 0$, $\beta_{13} = 0$ vs H_1 : at least one is not zero with p-value of F-statistic as 0.1168 (> 0.10). Hence, we cannot reject the null hypothesis and can conclude all estimates of β_9 , β_{10} , β_{11} , β_{12} , β_{13} are insignificant at both 5% and 10% level of significance.

```
Model 1: log(salary) ~ years + gamesyr + bavg + hrunsyr + rbisyr + runsyr + fldperc + allstar

Model 2: log(salary) ~ years + gamesyr + bavg + hrunsyr + rbisyr + runsyr + fldperc + allstar + frstbase + scndbase + thrdbase + shrtstop + catcher

Res.Df RSS Df Sum of Sq F Pr(>F)

1 344 174.99
2 339 170.52 5 4.4703 1.7774 0.1168
```

3. Above results are inconsistent for 10% level of significance but consistent for 5% level of significance. This inconsistency could be arising because we are calculating the joint significance of β_{13} which has moderate p-value along with the coefficients that are individually insignificant with very high p-values.

Question 2 <- gpa2

- **1.** We can expect β_3 to be negative as hsperc is lower for better students and β_4 to be positive as sat is higher for better students. We cannot say anything about the coefficients of hsize, female, athlete.
- **2.** $colgpa = \beta_0 + \beta_1 h size + \beta_2 h size^2 + \beta_3 h sperc + \beta_4 sat + \beta_5 f emale + \beta_6 athlete + u$

```
lm(formula = colgpa ~ hsize + I(hsize^2) + hsperc + sat + female +
    athlete, data = gpa2)
Residuals:
    Min
                   Median
              1Q
                                3Q
                                        Max
-2.69216 -0.34954 0.03416 0.38806 1.90159
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.241e+00 7.949e-02 15.616 < 2e-16 ***
                                 -3.477 0.000512 ***
hsize
            -5.685e-02 1.635e-02
I(hsize^2)
            4.675e-03 2.249e-03
                                  2.079 0.037722 *
hsperc
            -1.321e-02 5.728e-04 -23.068 < 2e-16 ***
sat
            1.646e-03 6.682e-05 24.640 < 2e-16 ***
female
            1.549e-01 1.800e-02
                                   8.602 < 2e-16 ***
athlete
            1.693e-01 4.235e-02
                                   3.998 6.5e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5544 on 4130 degrees of freedom
Multiple R-squared: 0.2925, Adjusted R-squared: 0.2915
F-statistic: 284.6 on 6 and 4130 DF, p-value: < 2.2e-16
```

Being an athlete improves the GPA by 0.1693 points and it is statistically significant even at 0.1% level.

3. If sat is dropped, coefficient of athlete drops to 0.005 and becomes insignificant with 0.90318 p-value.

```
lm(formula = colqpa ~ hsize + I(hsize^2) + hsperc + female +
    athlete, data = gpa2)
Residuals:
   Min
            10 Median
-2.5164 -0.3819 0.0205 0.4204 1.8809
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
           3.0476980 0.0329148 92.594 < 2e-16 ***
(Intercept)
                                 -3.050 0.00230 **
           -0.0534038 0.0175092
hsize
I(hsize^2)
            0.0053228 0.0024086
                                   2.210 0.02716 *
           -0.0171365 0.0005892 -29.086 < 2e-16 ***
hsperc
female
                                   3.089 0.00202 **
            0.0581231 0.0188162
athlete
            0.0054487
                      0.0447871
                                  0.122 0.90318
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5937 on 4131 degrees of freedom
Multiple R-squared: 0.1885,
                               Adjusted R-squared: 0.1875
F-statistic: 191.9 on 5 and 4131 DF, p-value: < 2.2e-16
```

Since we are not accounting for *sat* scores, being an athlete does not show a significant effect on GPA. When *sat* scores are taken, only then can we observe that athletes have better GPA than non-athletes.

4. By adding an interaction variable female* athlete to initial model, we get $\frac{\partial calgpa}{\partial athlete} = \beta_6 + \beta_7 female$ $colgpa = \beta_0 + \beta_1 hsize + \beta_2 hsize^2 + \beta_3 hsperc + \beta_4 sat + \beta_5 female + \beta_6 athlete + \beta_7 female* athlete$

```
call:
lm(formula = colgpa ~ hsize + I(hsize^2) + hsperc + sat + female +
    athlete + female:athlete, data = gpa2)
Residuals:
                   Median
     Min
              10
                                3Q
                                        Max
-2.69202 -0.34944 0.03446 0.38799
                                   1.90139
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
               1.242e+00 7.955e-02 15.608 < 2e-16 ***
(Intercept)
               -5.680e-02 1.637e-02 -3.470 0.000525 ***
hsize
I(hsize^2)
               4.670e-03 2.251e-03
                                     2.075 0.038060 *
               -1.321e-02 5.730e-04 -23.056 < 2e-16 ***
hsperc
               1.646e-03
                          6.687e-05 24.618
                                             < 2e-16 ***
sat
                                            < 2e-16 ***
female
               1.546e-01
                          1.831e-02
                                      8.443
athlete
               1.674e-01 4.849e-02
                                      3.453 0.000560 ***
female:athlete 7.692e-03 9.617e-02
                                      0.080 0.936257
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5545 on 4129 degrees of freedom
Multiple R-squared: 0.2925, Adjusted R-squared: 0.2913
F-statistic: 243.9 on 7 and 4129 DF, p-value: < 2.2e-16
```

The null hypothesis that the women athletes and women non-athletes have no difference in colgpa is H_0 : $\beta_6 + \beta_7 = \beta_7 \Rightarrow H_0$: $\beta_6 = 0$ vs H_1 : $\beta_6 \neq 0$ with p-value of t-statistic as 0.00056 (< 0.001). The coefficient estimate of athlete is significant even at 0.1% and we can reject null hypothesis. The effect of athlete on colgpa does not differ by gender as the coefficient of interaction variable is insignificant.

5. By adding an interaction variable female*sat to initial model, we get $\frac{\partial calgpa}{\partial sat} = \beta_4 + \beta_7 female$ $colgpa = \beta_0 + \beta_1 hsize + \beta_2 hsize^2 + \beta_3 hsperc + \beta_4 sat + \beta_5 female + \beta_6 athlete + \beta_7 female*sat$

```
call:
lm(formula = colgpa ~ hsize + I(hsize^2) + hsperc + sat + female +
    athlete + female:sat, data = gpa2)
Residuals:
    Min
               1Q
                    Median
                                  3Q
                                           Max
-2.69877 -0.35033 0.03414 0.38919 1.89876
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.264e+00 9.750e-02 12.962 < 2e-16 ***
                                    -3.480 0.000506 ***
hsize
            -5.691e-02
                         1.635e-02
I(hsize^2)
             4.686e-03
                                    2.083 0.037307 *
                        2.250e-03
hsperc
            -1.323e-02
                        5.737e-04 -23.053 < 2e-16 ***
                        8.516e-05 19.089 < 2e-16 ***
             1.625e-03
sat
             1.023e-01
                        1.338e-01
                                     0.765 0.444547
female
                                      3.944 8.14e-05 ***
athlete
             1.678e-01
                         4.253e-02
             5.121e-05
sat:female
                        1.291e-04
                                      0.397 0.691730
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5545 on 4129 degrees of freedom
Multiple R-squared: 0.2925, Adjusted R-squared: 0.2913
F-statistic: 243.9 on 7 and 4129 DF, p-value: < 2.2e-16
```

Effect of sat on colgpa does not differ by gender as coefficient of interaction variable is insignificant.

Question 3 <- loanapp

- **1.** If there is discrimination against minorities, β_1 will be positive raising approval probability for whites.
- **2.** Coefficient estimate for *white* is 0.2 with high t-statistic of 10.11 and can be concluded as significant. A white person has 20% more approval probability and it is high discrimination against the minorities.

```
lm(formula = approve ~ white, data = loanapp)
Residuals:
    Min
                    Median
                                  3Q
-0.90839
          0.09161
                   0.09161 0.09161
                                     0.29221
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
             0.70779
(Intercept)
                        0.01824
                                   38.81
                                           <2e-16
                                                  ***
white
             0.20060
                         0.01984
                                   10.11
                                           <2e-16
```

3. Coefficient estimate of white reduces to 0.1288 and is significant, acting as evidence of discrimination.

```
call:
lm(formula = approve ~ white + hrat + obrat + loanprc + unem +
    male + married + dep + sch + cosign + chist + pubrec + mortlat1 +
    mortlat2 + vr, data = loanapp)
Residuals:
Min 1Q Median 3Q Max
-1.06482 0.00781 0.06387 0.13673 0.71105
Coefficients:
               17.763 < 2e-16 ***
(Intercept)
                                          6.529 8.44e-11
white
                             0.001263
                                          1.451
               0.001833
                                                    0.1469
hrat
                                         -4.930 8.92e-07
obrat
              -0.005432
                             0.001102
              -0.147300
                             0.037516
loanpro
              -0.007299
                             0.003198
                                         -2.282
                                                    0.0226
unem
              -0.004144
male
                             0.018864
                                         -0.220
                                                    0.8261
               0.045824
                             0.016308
married
                                          2.810
                                                    0.0050
               -0.006827
                             0.006701
                                          -1.019
                                                    0.3084
dep
sch
                             0.016650
                0.001753
                                          0.105
                             0.041139
cosign
                0.009772
                                          0.238
                                                    0.8123
                                          6.906
chist
               0.133027
                             0.019263
                                                 6.72e-12
pubrec
              -0.241927
-0.057251
                             0.028227
                                         -8.571
                                                   < 2e-16
                                                   0.2525
0.0897
mortlat1
                             0.050012
                                         -1.145
                             0.066984
                                         -1.698
mortlat2
               -0.113723
               -0.031441
                             0.014031
                                         -2.241
                                                    0.0252
```

4. Interaction term has coefficient estimate of 0.008 with a low p-value and is significant at 0.1% level.

```
call:
lm(formula = approve ~ white + hrat + obrat + loanprc + unem +
    male + married + dep + sch + cosign + chist + pubrec + mortlat1 +
    mortlat2 + vr + white:obrat, data = loanapp)
Residuals:
Min 1Q Median 3Q Max
-1.05523 0.01253 0.06320 0.12692 0.83284
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                1.180648
                              0.086808
                                          13.601
                                                   < 2e-16
                0.145975
                              0.080263
                                          -1.819 0.069109
white
hrat
                0.001790
                              0.001260
                                           1.421 0.155521
                              0.002216
                                          -5.518 3.88e-08
obrat
               -0.012226
loanpro
               -0.152536
                              0.037436
                                          -4.075 4.79e-05
                              0.003189
               -0.007528
                                          -2.360 0.018352
unem
               -0.006015
                              0.018817
                                          -0.320 0.749241
male
married
                0.045536
                              0.016260
                                           2.800 0.005154
               -0.007630
                              0.006686
                                           1.141 0.253905
dep
                              0.016601
sch
                0.001777
                                           0.107 0.914787
                                           0.431 0.666458
cosign
                0.017709
                              0.041081
                                           6.754 1.90e-11 ***
                0.129855
chist
                              0.019227
                              0.028149
                                          -8.538 < 2e-16
-1.258 0.208400
               -0.240325
                                                    < 2e-16
pubrec
                              0.049891
mortlat1
               -0.062782
               -0.126845
                                          -1.896
                                                  0.058071
mortlat2
                              0.066891
                                          -2.183 0.029188
               -0.030540
                              0.013993
white:obrat
               0.008088
                              0.002290
                                           3.531
                                                  0.000423
```

5. The confidence interval for the linear combination $\frac{\partial approve}{\partial white} = \beta_1 + 32\beta_{16}$ is (0.07325, 0.15243)

Question 4 <- hprice1

1. Compared to OLS, Robust errors increased by 1013% for lotsize, 207% for sqrft, 28% for bdrms.

```
model41 <- lm(price~lotsize+sqrft+bdrms,data=hprice1)
> summary(model41)
call:
lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
                     Median
     Min
                1Q
                                   3Q
                                            Max
-120.026 -38.530
                               32.323 209.376
                     -6.555
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.177e+01 2.948e+01 -0.739 0.46221
             2.068e-03 6.421e-04
                                     3.220 0.00182 **
lotsize
             1.228e-01 1.324e-02
1.385e+01 9.010e+00
sgrft
                                      9.275 1.66e-14 ***
bdrms
                                      1.537 0.12795
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 59.83 on 84 degrees of freedom
Multiple R-squared: 0.6724, Adjusted R-squared: 0.6607
F-statistic: 57.46 on 3 and 84 DF, p-value: < 2.2e-16
> sqrt(diag(vcov(model41)))
(Intercept)
                  lotsize
                                   sqrft
                                                 bdrms
2.947504e+01 6.421258e-04 1.323741e-02 9.010145e+00
  sqrt(diag(vcovHC(model41)))
(Intercept)
                   lotsize
                                   sgrft
                                                 bdrms
41.032694404 0.007148464 0.040732542 11.561790104
```

2. Compared to OLS, Robust errors increased 39% for $\ln(lotsize)$, 30% for $\ln(sqrft)$, 29% for bdrms.

```
> model42 <- lm(log(price)~log(lotsize)+log(sqrft)+bdrms,data=hprice1)
> summary(model42)
call:
lm(formula = log(price) ~ log(lotsize) + log(sqrft) + bdrms,
    data = hprice1)
Residuals:
                 1Q
                      Median
     Min
                                      3Q
                                                Max
-0.68422 -0.09178 -0.01584 0.11213 0.66899
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                            0.65128 -1.992 0.0497 * 0.03828 4.388 3.31e-05 ***
(Intercept) -1.29704
log(lotsize) 0.16797
                0.70023
                                         7.540 5.01e-11 ***
log(sqrft)
                             0.09287
                0.03696
                            0.02753
                                        1.342 0.1831
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1846 on 84 degrees of freedom
Multiple R-squared: 0.643, Adjusted R-squared: 0.
F-statistic: 50.42 on 3 and 84 DF, p-value: < 2.2e-16
                                    Adjusted R-squared: 0.6302
 sqrt(diag(vcov(model42)))
(Intercept) log(lotsize)
                                 log(sqrft)
                                                      bdrms
  0.65128361 0.03828115
                                 0.09286525
                                                0.02753131
 (Intercept) log(lotsize)
0.85045733 0.05327497
                                 log(sqrft)
0.12139232
                                               0.03557555
```

3. Using log transformation reduced the effect of heteroskedasticity and reduced the marginal change between heteroskedasticity corrected robust standard errors and the normal OLS standard errors.

Question 5 <- gpa1

1. The OLS regression of the model $colGPA = \beta_0 + \beta_1 hsGPA + \beta_2 ACT + \beta_3 skipped + \beta_4 PC + u$

```
lm(formula = colGPA ~ hsGPA + ACT + skipped + PC, data = gpa1)
Residuals:
                10
                    Median
-0.84006 -0.20392 -0.03352 0.25346 0.74558
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                                    4.142 6.01e-05 ***
(Intercept) 1.35651
                          0.32750
                                    4.468 1.65e-05 ***
hsGPA
              0.41295
                          0.09243
                                    1.278 0.20353
ACT
              0.01334
                          0.01044
skipped
                                    -2.706
             -0.07103
                          0.02625
                                            0.00768
                                           0.03165 *
              0.12444
                          0.05731
PC
                                     2.171
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3251 on 136 degrees of freedom
Multiple R-squared: 0.2593, Adjusted R-squared: 0.2
F-statistic: 11.9 on 4 and 136 DF, p-value: 2.553e-08
                                  Adjusted R-squared: 0.2375
```

2. $\widehat{u_i}^2 = \delta_0 + \delta_1 \widehat{colGPA} + \delta_2 \left(\widehat{colGPA}\right)^2 + e$

```
call: lm(formula = model51\$resid^2 \sim model51\$fitted + I(model51\$fitted^2))
Residuals:
                  10
                       Median
                                                 Max
     Min
                                        30
 -0.13286 -0.07802 -0.04020 0.04954 0.60632
Coefficients:
                        Estimate Std. Error t value Pr(>|t|) -0.321837 2.005841 -0.160 0.873
(Intercept)
                                                               0.873
                         0.129599
model51$fitted
                                       1.316763
                                                               0.922
                                                    0.098
I(model51$fitted^2) 0.002946
                                                    0.014
                                       0.215660
                                                               0.989
Residual standard error: 0.1237 on 138 degrees of freedom
Multiple R-squared: 0.04934, Adjusted R-squared: 0.03557
F-statistic: 3.581 on 2 and 138 DF, p-value: 0.03045
```

3. All the above fitted values from part 2 are positive with 0.02738 as their minimum value. The WLS regression of the model $colGPA = \beta_0 + \beta_1 hsGPA + \beta_2 ACT + \beta_3 skipped + \beta_4 PC + u$

```
lm(formula = colGPA ~ hsGPA + ACT + skipped + PC, data = gpa1,
    weights = 1/fitted(model52))
Weighted Residuals:
Min 1Q Median 3Q Max
-2.6994 -0.6892 -0.1191 0.7963 2.5098
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                       0.298430
                                  4.696 6.39e-06 ***
(Intercept)
            1.401564
             0.402506
                        0.083362
                                   4.828 3.65e-06 ***
hsgpa
                        0.009827
ACT
             0.013162
                                   1.339 0.182698
skipped
            -0.076365
                        0.022173
                                  -3.444 0.000762 ***
PC
             0.126005
                        0.056339
                                   2.237 0.026945 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.013 on 136 degrees of freedom
Multiple R-squared: 0.3062,
                                Adjusted R-squared: 0.2858
F-statistic: 15.01 on 4 and 136 DF, p-value: 3.488e-10
```

There is very minor difference between OLS and WLS coefficient estimates for skipped and PC. Both the OLS and WLS estimates are significant at 5% level for PC and are significant at 1% level for skipped.

4. Heteroskedasticity robust WLS errors are slightly more when compared to normal WLS errors.