本プログラムについて

このプログラムは MPM プログラムのインプット作成、結果データの図化を行うプログラムです。

本プログラムの変遷

- 2020:ジオフロントシステム工学研究室の MPM プログラム向けに作成。

- 2021:土木施工システム工学研究室に引き継ぎ

本プログラムの使い方

- ・インプット(粒子)
- ・インプット(粒子+APDI)
- ・インプット(境界条件)
- ・インプットの模式図
- ・結果データの図化

その他

・用語集

インプット作成方法(粒子のみ)

GIMP のみのインプット作成方法を記述する。

1. モデルを準備する

2. index.html を Google Chrome で開く

- 3. 粒子(MP)追加
- 3.1.粒子情報から MP 追加

粒子座標から MP 追加… 等間隔で GIMP 粒子を生成する。

「始点」 (x_1, y_1)

「終点」 (x_2, y_2)

「間隔」dを入力する。

「適用」を押すと粒子が配置される。

("<mark>格子</mark>座標から MP 追加"は端部格子点の座標 と格子内粒子数を入力する。)

input_mp.dat の内容は左図のように生成される。

 粒子番号
 X 座標
 Y 座標
 材料番号

 5 文字
 10 文字
 10 文字
 5 文字

(アウトプットのフォーマット変更方法 →ソースを編集するしかない)

3.2.格子情報から MP 追加

「始点」(x₁, y₁)

「終点」 (x_2, y_2)

「格子幅」dを入力する。

「格子内 MP 数」は1格子あたりの粒子数を入力する。 「適用」を押すと粒子が配置される。

4. input_mp.dat を保存

プレビューは左図のようになる。

(プレビューについて→模式図の頁を参照)

インプット作成方法(粒子+APDI)

要素-粒子混成法のインプット作成方法を示す。しかし、例を示したほうがわかりやすいと思い、ここでは実際に卒論で使用したモデルの作成手順を並べる。

1. モデル作成

モデル作成の注意点:

- ・APDI 要素がすべて 4 頂点を持つようにモデル化をしなければならない。
- ・変形が大きい場所では GIMP を使うため、変形の大きい場所を予め予測しておく必要がある。
- ・<u>モデル右端の APDI 頂点</u>は、右端格子点のほんの少し左側に置いておかなければならない。というのも、頂点が所属する格子が<u>仮想セル</u>になってしまうと、解析が正しく動作しないためである。"モデル右端"を判定するため、まずは"設定"より解析領域を設定する。

2. 計算領域を入力する。

格子設定		
計算格子幅().4	
計算領域 辺長	28	36.4

計算領域は仮想セルを含めた長さを入力する。これは config.dat に載せる計算領域データと同じ値となる。

3. GIMP 粒子を生成する。

格子情報からMPを追加		
材料番号	1	
格子の始点XY	4.4	0.4
格子の終点XY	9.2	21.2
格子幅	0.4	
格子内MP数	1	
□ 左下三角 □ 右下三角 □ 左上三角 □ 右上三角 適用		

←地盤 GIMP (赤色)

格子情報からMPを	追加	
材料番号	2	
格子の始点XY	6.4	21.2
格子の終点XY	7.2	35.6
格子幅	0.4	
格子内MP数	1	
□ 左下三角 □ 右下三角 □ 左上三角 □ 右上三角 適用		

←矢板 GIMP (黄色)

4. 正方形の APDI を生成する。

5. バッファー要素(複雑な形の APDI)を生成する。

6. input_mp.dat、input_apdi.dat を保存する。

APDI入力ファイル(input_apdi.dat) 内容

input_apdi.datを保存

インプット作成方法(境界条件)

境界条件は MP や APDI と独立した情報であり、config.dat の一部のみを生成する。境界条件をこのプログラムで生成する理由は

- ・プレビューに境界条件も図示するため
- ・モデルの位置が正しいか確認するため
- ・境界条件が正しいか確認するため

ことであり、解析を行う際には必ずしも必須ではない。というのも、境界条件は手書きで入力するのと手間が変わらない。

1. モデルの作成

2. 境界条件を追加

3. 完成したプレビュー

インプットの模式図

このプログラムには、プレビューのスタイル設定機能と、各種 ID 表示機能がある。 テキストボックスの数値を変更し、スタイルを調節する。

SVG 画像拡大倍率と SVG キャンバス横幅は固定で良いと思われる。 他の設定は都度変更する。

結果データの図化

結果データを読み込み、数値を色合いで可視化する図を作成する。

1. 結果データを読み込み(beta)を使用

2. ソリューションを含むフォルダを選択し、「Upload」

3. Upload を押す

4. 下図のような表示が出る

□ 混成法5回目 - 巻き込み解消 土木学会・地盤工学会	ファイルを選択
□ solution	□ 1. configファイルを選択

5. フォルダをクリックすると中身を表示できる。

□ 混成法5回目 - 巻き込み解消 土木学会・地盤工学会
_ ⊜ solution
— config.dat □
— input_apdi.dat
— input trac.dat
output output

6. 最初に、config.dat をクリックする。クリックすると選択が完了した状態となる。

7. 次に、混成法では vertex_pos.dat を選択する。GIMP のみの場合では、スキップを押す。

8. 最後に、図示したいデータのデータファイルを選択する。よく図化するのは sigm, epsv, ep, shear-strain, shear-stress。今回は sigm.dat を読み込む。sigm.dat をクリックすると下図のような表示が出る。

↑ 混成法5回目 - 巻き込み解消 土木学会・地盤工学会	ファイルを選択
Solution	✓ 1. configファイルを選択 (混成法5回目 - 巻き込み解消 土木学会・
□ <u>config.dat</u>	地盤工学会/solution/config.dat)
	☑ 2. 頂点時系列データvertex_posファイルを選択 または スキップ (混成法5回目 - 巻き込み解消 土木学会・地解工学
□ □ □ □ □ □ □	会/solution/output/vertex_pos.dat)
noutput	
_ <u>depsx.dat</u>	☑ 3. 読み込む結果データファイルを選択(混成法5回目 - 巻き込み解消 土木学会・地盤工学会/solution/output/sigm.dat) [変更可能]
— ■ depsxy.dat	WI THIS A COME I ASSOCIATION OUTPUT SIGNICALLY [SECTION]
— ■ depsy.dat	**************************************
– ≡ <u>ep.dat</u>	描画設定
— <u>epsv.dat</u>	表示するデータ: 2 X座標データ: 3
— <u>epsx.dat</u>	Y座標データ: 4 □ 格子点のデータとして描画
— <u>epsxy.dat</u>	データの範囲: 0 ~ 300
— <u>epsy.dat</u>	
— ■ <u>material.dat</u>	レジェンドの数値の文字列長さ: 3 □ 指数(E)表示
max_shear_strain.dat	レジェンドの位置: 500 ☑ 白カラーテーマを使用
— ≡ <u>sacc.dat</u>	
─ shear-strain-correct.dat	適用して再描画
— ■ shear-strain.dat	
─ shear-stress-correct.dat	
— shear-stress.dat	
— ≡ sigm.dat	現在フレームを保存▼ □ 背景を透過
— ≡ <u>sigx.dat</u>	MILTO ACKIT
— sigxy.dat	連番ファイルを保存 ●
— ≡ <u>sigy.dat</u>	
— <u>≡ sigz.dat</u>	再生速度(描画フレーム間隔): 1
— ■ <u>svelo.dat</u>	
— ■ <u>svelop-disp.dat</u>	
vertex pos.dat	

config.dat からは粒子数、格子点数を読み込んでいる。

ただし、config.dat のコメント部分を読んでるので、

- # 固相マテリアルポイントの数
- # APDI を用いる
- # X 方向背景計算格子長さ
- # Y 方向背景計算格子長さ
- # 計算格子幅
- # MPM 初期粒子支配領域の幅 or # 初期粒子支配領域の幅 以外ではエラーとなり、入力を迫られる。

← 入力を迫られる例

9. 図を操作する方法について

キーボードの矢印キーまたは、表示されるアイコンやシークバー(操作盤)によって時間を進めることができる。

10. 動画の保存方法 > 連番ファイルを保存

「連番ファイルを保存」をクリックする前に、時間ステップを一番最初まで戻す。

次に、「連番ファイルを保存」をクリックし、シークバーの再生ボタン▶を押す。録画中においては新たに描画される画像を自動的に ZIP に追加する。すべてのステップでの画像が描画し終わったら、

連番ファイルを保存 ■

を押す。ZIP の圧縮が完了したら自動的に ZIP が保存される。

11. 設定項目について

描画設定
表示するデータ: 2 X座標データ: 3 Y座標データ: 4
□ 格子点のデータとして描画
データの範囲: 0 ~ 300
レジェンドの数値の文字列長さ: 3 □ 指数(E)表示
レジェンドの位置: 500 ☑ 白カラーテーマを使用
適用して再描画
現在フレームを保存▼ □ 背景を透過
連番ファイルを保存●
再生速度(描画フレーム間隔): 1

表示するデータ:図化に使用するデータのオフセット(左から何番目) X座標データ:X座標として使用するデータのオフセット(左から何番目)

Y座標データ: Y座標として使用するデータのオフセット(左から何番目)

格子点のデータとして描画:格子点データを描画する際にチェックを入れる。 データの範囲:例えば epsv なら-0.1~0.5 sigm なら 0~400 shear-strain なら 0~1 レジェンド数値の文字列長さ: レジェンドに表示する数字の文字数

レジェンドの位置: レジェンドの左端からの位置

白カラーテーマを使用:黒背景を使用するか、白背景を使用するか

変更後は「適用して再描画」をクリック。

現在フレームを保存:現在表示している画像を SVG/PNG/JPG で保存する。

連番ファイルを保存:動画を保存

再生速度(描画フレーム間隔): 再生ボタンを押した際、何フレームに 1 回表示するか。 4

と設定すると、t=1の次、t=5を描画する。

用語集

- ✓ SVG … ベクター形式の画像。
- ✓ PNG … 透明度ありのラスター画像。
- ✓ IPEG or IPG … 透明度なしのラスター画像。フーリエ変換により高圧縮。
- ✓ ZIP … 複数ファイルをまとめて一つのファイルにし、データを減らす圧縮形式。圧縮 されたファイルを取り出す unzip 作業を"解凍"ということもある。
- ✓ HTML ··· ウェブページの要素を規定する言語。
- ✓ CSS … ウェブページの外観を規定する言語
- ✓ Javascript or JS… ウェブページの動作を規定する言語。
- ✓ MPM … Material Point Method の略で、粒子法の一種。詳しくは竹川卒論 2021 or 内山修論 2021 を参照。
- ✓ GIMP … MPM の派生手法の GIMP 法の粒子を指す。Generalized Interpolation MPM の略で、本マニュアルにおいて、APDI の対比として要素を持たない点粒子を指す。
- ✓ APDI … MPM の派生手法の APDI 法の粒子を指す。Arbitary Particle Domain Interpolation 法の略で、詳しくは桐山 2018、桐山・肥後 2016 を参照。
- ✓ 格子 ··· MPM において、背景に固定されている等幅計算格子のこと。
- ✓ 格子点 … 格子の交点部分の点。
- ✓ 粒子 … MPM における、Material Point と呼ばれる物質点のこと。
- ✓ 頂点 ··· APDI 法において導入される新たな点。四辺形支配領域の頂点にあたる。
- ✓ バッファー要素 … 竹川の独特な呼び方。左右で解像度を変えることができる 4 変形 要素のみでなるメッシュ。
- ✓ コンター図 … 等値線図のこと。
- ✓ レジェンド … 色分けした図における、凡例のこと。
- ✓ ソリューション … Visual Studio における、プロジェクトファイル(.sln)のこと。編集 プロジェクト自体を指すことも。
- ✓ シークバー … 動画の再生時間の時間軸をあらわすバー。
- ✓ フレーム … 動画のある時間での画像一つ一つのこと。フレームを連続的に描画する ことで滑らかな動画となる。