Feasibility Study of Stochastic Streaming with 4K UHD Video Traces

International Conference on ICT Convergence (ICTC) Jeju Island, Republic of Korea, October 2015.

Joongheon Kim, Intel Corporation, Santa Clara, CA, USA (Email: <u>joongheon.kim@intel.com</u>) **Eun-Seok Ryu**, Gachon University, Republic of Korea (Email: <u>esryu@gachon.ac.kr</u>)

- Cisco Visual Networking Index (VNI) says
 - The summation of all possible forms of **video** contents will constitute 80% to 90% of global data traffic by 2017, and the traffic from **mobile and wireless portable devices** will exceed the traffic from wired devices by 2016.
 - → Efficient wireless video streaming algorithms are of the highest importance
- Based on this importance, stochastic streaming algorithms have been investigated
 - Aiming at the time-average quality maximization subject to video queue stability.

Related Work in Stochastic Video Streaming

- [TON-2015]
 - Stochastic video streaming algorithms for device-to-device distributed computing systems are proposed.
 - Device-to-device stochastic video streaming with two types of schedulers (centralized vs. distributed) is discussed.
- [TCOMM-2015]
 - Stochastic video streaming in small cell networks is proposed.

[TON-2015] J. Kim, G. Caire, and A.F. Molisch, "Quality-Aware Streaming and Scheduling for Device-to-Device Video Delivery," *IEEE/ACM Trans. on Networking*, [Published Online: July 2015]. [TCOMM-2015] D. Bethanabhotla, G. Caire, and M.J. Neely, "Adaptive Video Streaming for Wireless Networks With Multiple Users and Helpers," *IEEE Trans. on Communications*, 63(1):268-285, January 2015.

Related Work in Stochastic Video Streaming (Cont'd)

- In the two research directions, they discuss about stochastic network optimization applications to adaptive video streaming (i.e., stochastic streaming) which maximizes time-average video streaming quality subject to queue/buffer stability.
 - If we transmit maximum quality video streams all the time, the streaming quality will be maximized whereas the queue/buffer within the transmitter will be overflowed.
 - On the other hand, if we transmit minimum quality video streams all the time, the queue/buffer will be stable whereas the streaming quality will be minimized.
 - Therefore, the proposed stochastic streaming adapts the quality of each video stream depending on current queue-backlog length.

Motivation and Novelty

- In [TON-2015] and [TCOMM-2015], the used video traces are MPEG test sequences, however the test sequences are not used in current consumer electronics applications.
- Therefore, this work evaluates the stochastic streaming algorithms with **up-to-date 4K ultra-high-definition (UHD)** video test sequences.
- After observing the performance evaluation results with 4K UHD video traces, we can numerically identify how much the novel stochastic streaming algorithm is better than queue-independent non-adaptive video streaming algorithms.

Proposed Stochastic Video Streaming

Proposed Stochastic Video Streaming

Proposed Stochastic Video Streaming

Controlling the Arrival Process of TX Queue using *Drift-Plus-Penalty (DPP) Algorithms*

Stochastic Optimization

In each time slot, **choose quality mode** *q*

PSNR of current chunk with quality mode q

Bitrate of current chunk with quality mode q

Feasibility Study – Text Sequence Generation

Category	Values
Resolution	3840-by-2048 (for 4K UHD video)
Frame rate	30 fps (30 frames per second)
Bit depth	8 bits
Test sequence name	Traffic (for video standard testing)
Profile name	Main
Intra period	32
GOP size	8
Four different video qualities with QP (quantization Parameters)	22, 27, 32, 37
Encoder	HM ver. 15.0 (HEVC standard reference codes)
PC	Intel i7 CPU, Windows7 64bit OS

Feasibility Study – 4K UHD Video Traces

Feasibility Study – 4K UHD Video Traces

Feasibility Study – Simulation Results with Various K

Feasibility Study – Simulation Results

Intel Corporation

Conclusions

- Feasibility study results of stochastic streaming algorithms with 4K ultra-high-definition (UHD) video traces.
- The performance improvements with the stochastic video streaming algorithms were verified with traditional MPEG test sequences in previous work; however there were no research results with up-to-date 4K UHD video traces.
- Thus, this work
 - Verifies the performance of the stochastic streaming algorithms with 4K UHD video traces
 - Shows that the stochastic algorithms perform better than queue-independent algorithms.

Q&A

Intel Corporation 15/14