LÝ THUYẾT TÍNH TOÁN

BÀI 6: VĂN PHẠM PHI NGỮ CẢNH

Phạm Xuân Cường Khoa Công nghệ thông tin cuongpx@tlu.edu.vn

Nội dung bài giảng

1. Khái niệm

2. Định nghĩa hình thức

3. Văn phạm nhập nhằng

4. Dạng chuẩn tắc Chomsky

Khái niệm

Khái niệm

- ullet Văn phạm phi ngữ cảnh = Context-free Grammar (CFG)
- CFG: Là một phương pháp mạnh hơn để mô tả ngôn ngữ
- Úng dụng:
 - Bộ biên dịch trong các ngôn ngữ lập trình
 - Bộ phân tích trong các trình biên dịch và thông dịch
- Ví du:

$$\mathsf{E} \to \mathsf{E} + \mathsf{T} \mid \mathsf{T}$$

$$T \rightarrow T \times F \mid F$$

$$\mathsf{F} o (\mathsf{E}) \mid \mathsf{a}$$

Khái niệm

Một văn phạm gồm có:

- Tập các quy tắc thay thế \equiv các sản xuất
- Mỗi quy tắc là một dòng bao gồm 1 ký hiệu và 1 xâu được ngăn cách bởi dấu mũi tên
- Ký hiệu ≡ biến ≡ Các ký hiệu in hoa
- Ký hiệu kết thúc ≡ Các ký hiệu in thường, số hoặc ký tự đặc biêt
- Biến ban đầu thường xuất hiện bên trái của quy tắc trên cùng

$$E \rightarrow E + T \mid T$$
$$T \rightarrow T \times F \mid F$$
$$F \rightarrow (E) \mid a$$

Dẫn xuất

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T$$
$$\Rightarrow a + F \Rightarrow a + (E) \Rightarrow a + (T)$$
$$\Rightarrow a + (T \times F) \Rightarrow a + (F \times F)$$
$$\Rightarrow a + (a \times F) = a + (a \times a)$$

Cũng có thể viết:

$$E \stackrel{*}{\Rightarrow} a + (a \times a)$$
$$E \stackrel{*}{\Rightarrow} a + (E) \Rightarrow a + (T) \stackrel{*}{\Rightarrow} a + (a \times a)$$

- Dẫn xuất trái nhất: Luôn lựa chọn dẫn xuất ở bên trái $\ldots \Rightarrow \textbf{F} + \textbf{T} \Rightarrow \textbf{a} + \textbf{T} \Rightarrow \ldots \textbf{a} + (\textbf{a} \times \textbf{a})$
- Dẫn xuất phải nhất: Luôn lựa chọn dẫn xuất ở bên phải $\dots \Rightarrow F + T \Rightarrow F + F \Rightarrow \dots a + (a \times a)$

Cây dẫn xuất

6

Định nghĩa hình thức

Định nghĩa hình thức

CFG:
$$G = (V, \Sigma, R, S)$$

Trong đó:

- V là tập hữu hạn gồm các biến
- ullet Σ là tập hữu hạn các ký hiệu kết thúc $\Sigma
 ewidth ullet$
- R tập các quy tắc
- S biến bắt đầu

Định nghĩa hình thức

Định nghĩa 1

Ngôn ngữ của văn phạm là $\{w|w\in\Sigma^*\ \text{và S}\stackrel{*}{\Rightarrow}w\}$

Định nghĩa 2

Một **ngôn ngữ phi ngữ cảnh** (CFL) là ngôn ngữ được tạo ra bởi một **văn phạm phi ngữ cảnh** (CFG)

Ví dụ CFL

- $S \rightarrow (S)|SS|\epsilon$ $A = \{\epsilon, (),()(),(()()), \dots\}$
- Ngôn ngữ B = $\{0^n1^n|\ n\geq 0\}$

$$\begin{array}{l} S \rightarrow \epsilon \\ S \rightarrow 0S1 \end{array}$$

Cho CFG sau:

$$\mathsf{E} \to \mathsf{E} + \mathsf{E}$$

- \rightarrow E \times E
- ightarrow (E)
- ightarrow a

a+a*a

→ Mỗi cây dẫn xuất đều có duy nhất một cây dẫn xuất trái nhất và duy nhất một cây dẫn xuất phải nhất

Văn phạm nhập nhằng

Ngôn ngữ nhập nhằng

Chuỗi nhập nhằng:

 Có nhiều hơn 2 cây dẫn xuất ⇔ Có nhiều cách để tạo ra chuỗi đó

Văn phạm nhập nhằng:

 Một văn phạm là nhập nhằng nếu một vài chuỗi có thể được sinh ra bởi nhiều cách

Văn phạm nhập nhằng:

$$\mathsf{E} \to \mathsf{E} + \mathsf{E}$$

$$\to \mathsf{E} \times \mathsf{E}$$

$$\rightarrow$$
 (E)

$$\rightarrow \, \mathsf{a}$$

Văn phạm không nhập nhằng:

$$\mathsf{E} \to \mathsf{E} + \mathsf{T}$$

$$\rightarrow \mathsf{T}$$

$$\mathsf{T}\to\mathsf{T}\times\mathsf{F}$$

$$\rightarrow \mathsf{F}$$

$$\mathsf{F} \to (\mathsf{E})$$

$$\rightarrow \mathsf{a}$$

Ngôn ngữ chính quy và CFG

Định lý 1

Mọi ngôn ngữ chính quy đều là phi ngữ cảnh

Chứng minh

Ý TƯ $\mathring{\text{O}}$ NG: Cho một DFA, xây dựng một văn phạm có thể tạo ra cùng 1 ngôn ngữ với DFA

- Chuyển các trạng thái thành các biến
- Chuyển trạng thái bắt đầu thành biến bắt đầu
- Chuyển các cạnh thành các quy tắc
- ullet Thêm 1 quy tắc arepsilon cho mỗi trạng thái kết thúc

Tập hợp ngôn ngữ

Dạng chuẩn tắc Chomsky

Dạng chuẩn tắc Chomsky

Định nghĩa

Một văn phạm phi ngữ cảnh ở dạng chuẩn tắc Chomsky nếu tất cả các quy tắc của nó có dạng:

 $A \rightarrow BC$

 $\mathsf{A} \to \mathsf{a}$

Trong đó,

- a là một ký hiệu kết thúc
- A, B, C là các biến bất kỳ, B,C không thể là biến bắt đầu

Ngoài ra ta có thểm quy tắc: S ightarrow ϵ với S là biến bắt đầu

Định lý 2

Mọi ngôn ngữ phi ngữ cảnh nào cũng được sinh ra bởi một văn phạm phi ngữ cảnh ở dạng chuẩn tắc Chomsky

Chứng minh định lý 2

Chứng minh định lý 2:

Với mọi CFG ta chuyển chúng về dạng chuẩn tắc Chomsky

- Bước 1: Đảm bảo rằng biến bắt đầu không xuất hiện bên phía bên phải của quy tắc ⇔ Thêm một biến bắt đầu mới
- Bước 2: Loại bỏ các quy tắc có dạng A ightarrow ϵ
- Bước 3: Khử tất các các quy tắc đơn vị $A \to B$
- Bước 4: Loại bỏ các quy tắc có nhiều hơn 2 biến ở phần bên phải

$$A \rightarrow BCDE$$

$$\mathsf{A} \to \mathsf{Bcde}$$

 Bước 5: Đảm bảo rằng chỉ còn tồn tại các quy tắc có dạng sau:

$$A \rightarrow BC$$

$$A \rightarrow a$$

Cho văn phạm sau:

 $\mathsf{S} \to \mathsf{ASA} \mid \mathsf{aB}$

 $\mathsf{A}\to\mathsf{B}|\mathsf{S}$

 $B\to b|\epsilon$

Hãy chuyển về dạng chuẩn tắc Chomsky

• Bước 1: Thêm biến bắt đầu mới

$$\begin{split} &S_0 \to S \\ &S \to ASA \mid aB \\ &A \to B |S \\ &B \to b |\epsilon \end{split}$$

ullet Bước 2: Loại bỏ các quy tắc A ightarrow ϵ

 \bullet Bước 3: Khử tất các các quy tắc đơn vị A \rightarrow B

$$\begin{split} &S_0 \rightarrow S \\ &S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid \begin{matrix} S \\ \\ A \rightarrow B \mid S \\ & B \rightarrow b \\ \end{split}$$

Loại bỏ
$$S_0 \rightarrow S$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

Loại bỏ S
$$\rightarrow$$
 S
$$S_0 \rightarrow S$$
 S \rightarrow ASA | aB | a | SA | AS A \rightarrow B|S

 $\mathsf{B} \to \mathsf{b}$

Bước 3: Tiếp

Ta có:

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$\mathsf{S} \to \mathsf{ASA} \mid \mathsf{aB} \mid \mathsf{a} \mid \mathsf{SA} \mid \mathsf{AS}$$

$$A \rightarrow B|S$$

$$\mathsf{B}\to\mathsf{b}$$

Loại bỏ A
$$ightarrow$$
 S S₀ $ightarrow$ ASA | aB | a | SA | AS S $ightarrow$ ASA | aB | a | SA | AS A $ightarrow$ B | ASA | aB | a | SA | AS B $ightarrow$ b

Loại bỏ A ightarrow B

$$S_0 \to S$$

$$\mathsf{S} \to \mathsf{ASA} \mid \mathsf{aB} \mid \mathsf{a} \mid \mathsf{SA} \mid \mathsf{AS}$$

$$\mathsf{A}\to \textbf{b}|\mathsf{S}$$

$$\mathsf{B} \to \mathsf{b}$$

 Bước 4: Loại bỏ các quy tắc có nhiều hơn 2 biến ở phần bên phải. Ví dụ:

Thay A \rightarrow BCDE bằng A \rightarrow BA $_1$ A $_1 \rightarrow$ CA $_2$ A $_2 \rightarrow$ DE

$$\begin{split} &S_0 \rightarrow \mathsf{ASA} \mid \mathsf{aB} \mid \mathsf{a} \mid \mathsf{SA} \mid \mathsf{AS} \\ &S \rightarrow \mathsf{ASA} \mid \mathsf{aB} \mid \mathsf{a} \mid \mathsf{SA} \mid \mathsf{AS} \\ &\mathsf{A} \rightarrow \mathsf{B} |\mathsf{ASA} \mid \mathsf{aB} \mid \mathsf{a} \mid \mathsf{SA} \mid \mathsf{AS} \\ &\mathsf{B} \rightarrow \mathsf{b} \end{split}$$

$$\begin{split} &S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS \\ &S \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS \\ &A \rightarrow B \mid AA_1 \mid aB \mid a \mid SA \mid AS \\ &A_1 \rightarrow SA \\ &B \rightarrow b \end{split}$$

• Bước 5: Thay thế A \rightarrow bC bằng A \rightarrow A₁C và A₁ \rightarrow b

$$\begin{split} &S_0 \rightarrow AA_1 \mid \textbf{a}B \mid \textbf{a} \mid SA \mid AS \\ &S \rightarrow AA_1 \mid \textbf{a}B \mid \textbf{a} \mid SA \mid AS \\ &A \rightarrow B |AA_1 \mid \textbf{a}B \mid \textbf{a} \mid SA \mid AS \\ &A_1 \rightarrow SA \\ &B \rightarrow b \end{split}$$

Thêm quy tắc $A_2 \rightarrow a$ $S_0 \rightarrow AA_1 \mid A_2B \mid a \mid SA \mid AS$ $S \rightarrow AA_1 \mid A_2B \mid a \mid SA \mid AS$ $A \rightarrow B|AA_1 \mid A_2B \mid a \mid SA \mid AS$ $A \rightarrow B|AA_1 \mid A_2B \mid a \mid SA \mid AS$ $A_1 \rightarrow SA$ $A_2 \rightarrow a$ $B \rightarrow b$

ightarrow Đây là dạng chuẩn tắc Chomsky

