Cache Oblivious Search Trees via Binary Trees of Small Height

Gerth Stolting Brodal Rolf Fagerberg Riko Jacob

Lecture Outline

- > Motivation
- > General idea & Working methods
- > van Emde Boas memory layout
- > The algorithm
 - Dictionary operations
 - Insertion complexity proof
- > Experiments & Results
- > Summary

Motivation

- Modern computers contain a hierarchy of memory levels.
- Access time is about 1 [cyc] for registers/ L1 cache, and 100,000 [cyc] for the disk.
- The cost of a memory access depends highly on what is the lowest memory level containing the data.
- The evolution of CPU speed and memory access time indicates that these differences are likely to increase in the future.

Motivation

- > Our goal:
 - To find an implementation for binary search tree that tries to minimize cache misses.
 - That algorithm will be cache oblivious.
- By optimizing an algorithm to one unknown memory level, it is optimized to each memory level automatically!

General idea & Working methods

- > Definitions:
- ➤ A tree T1 can be embedded in another tree T2, if T1 can be obtained from T2 by pruning subtrees.
- Implicit layout the navigation between a node and its children is done based on address arithmetic, and not on pointers.

General idea & Working methods

- > Assume we have a binary search tree.
- > Embed this tree in a static complete tree.
- Save this (complete) tree in the memory in a cache oblivious fashion.
- Whenever n is doubled we create a new static tree.

General idea & Working methods

- > Advantages:
 - Minimizing memory transfers.
 - Cache obliviousness
 - No pointers better space utilization:
 - A larger fraction of the structure can reside in lower levels of the memory.
 - More elements can fit in a cache line.
- Disadvantages:
 - Implicit layout: higher instruction count per navigation – slower.

- > Recursive definition:
- > A tree with only one node is a single node record.
- > If a tree T has two or more nodes:
 - Divide T to a top tree T₀ with height [h(T)/2] and a collection of bottom trees T₁,...,Tk with height [h(T)/2], numbered from left to right.
 - The van Emde Boas layout of T consist of the v.E.B. layout of T_0 followed by the v.E.B. layout of $T_1,...,T_k$

- > Search:
 - Standard search in a binary tree.
 - Memory transfers: O(log_Bn) worst case
- > Range query:
 - Standard range query in a binary tree:
 - Search the smallest element in the range
 - Make an inorder traversals till you reach an element greater then or equals to the greatest element in the range.
 - Memory transfers: O(log_Bn + k/B) worst case

> Notations:

T =the dynamic tree.

H =the height of the static complete tree.

s(v) = the size of the subtree in the complete tree rooted at v.

$$\rho(v) = \frac{|T_v|}{s(v)} =$$
the density of v .

We'll define a sequence of evenly distributedy density thresholds: $0 < \tau_1 < \tau_2 < ... < \tau_H = 1$

by:
$$\tau_i = \tau_{i-1} + \Delta$$

$$\Delta = \frac{(1 - \tau_1)}{(H - 1)}$$

Example:
$$H = 5$$

$$\tau_1 = 0.6$$

$$\tau_2 = 0.7$$

$$\tau_3 = 0.8 \qquad \Rightarrow \quad \Delta = 0.1$$

$$\tau_4 = 0.9$$

$$\tau_5 = 1$$

Invariant: for the root r:

$$\rho(r) \le \tau_1 \implies H \ge \log(\frac{n}{\tau_1} + 1)$$

- > Insertions:
 - Locate the position in T of the new node (regular search)
 - If d(v) = H+1 we rebalance T

1. Find the nearest ancestor w of v with:

$$\rho(w) < \tau_{d(w)}$$

- That means: find the nearest ancestor of v which is not too dense.
- In order to do so we have to calculate $|T_w|$
- We can do it by a simple traversal Why?

- 2. After having located w we rebalance w as follows:
 - Create a sorted array of all elements in Tw by an inorder traversal of Tw.
 - The middle element in the array stored at w.
 - The smallest (greatest) half elements are recursively redistributed at the left (right) child of w.

> Example: insert 7

$$\tau_1 = 0.8,$$
 $\tau_2 = 0.9,$
 $\tau_3 = 1$
 $\rho = 0.71$
 $\rho = 0.33$
 $\rho = 1$
 $\rho = 0.33$

> Example: insert 7

$$\tau_1 = 0.8,$$
 $\tau_2 = 0.9,$
 $\tau_3 = 1$

$$\rho = 0.71$$

$$\rho = 0.33$$

10

$$\tau_1 = 0.8,$$
 $\tau_2 = 0.9,$
 $\tau_3 = 1$

$$\rho = 0.71$$

> Example: insert 7

> Example: insert 7

$$au_1 = 0.8,$$
 $au_2 = 0.9,$
 $au_3 = 1$

$$\rho = 0.71$$

$$\rho = 0.33$$

4 4

10

> Example: insert 7

$$\tau_1 = 0.8,$$
 $\tau_2 = 0.9,$
 $\tau_3 = 1$
 $\rho = 0.71$
 $\rho = 0.33$
 $\rho = 1$

6

10

> Example: insert 7

> The next insertion will cause a rebuilding

Insertion complexity

> Lemma: A redistribution at v implies

$$\left[\rho(v) \cdot s(w) - 1 \right] \le \left| T_w \right| \le \left[\rho(v) \cdot s(w) \right]$$

for all descendants w of v

In other words: after a redistribution at v, for all descendant w

$$\rho(w) \cong \rho(v)$$

Proof: (induction)

Insertion complexity

> Theorem: Insertions require amortized $O(\frac{\log^2 n}{1-\tau_1})$ time

and amortized
$$O(\log_B n + \frac{\log^2 n}{B(1-\tau_1)})$$
 memory transfers

- > Proof:
 - Consider a distribution at a node v, caused by an insertion below v.
 - \Longrightarrow for a child w of v :

$$\rho(w) \ge \tau_{d(w)} \implies |T_w| \ge \tau_{d(w)} \cdot s(w)$$

- Proof (cont.):
 - The Lemma argues that immediately after a redistribution at v, for all descendant w of v: $|T_w| \le \lceil \rho(v) \cdot s(w) \rceil$
 - Since the redistribution took place at v:

$$\rho(v) < \tau_{d(v)}$$

$$|T_w| \le \tau_{d(v)} \cdot s(w) + 1$$

- Proof (cont.):
 - It follows that the number of insertions below w since the last redistribution at v or an ancestor of v is at least:

$$\tau_{d(w)} \cdot s(w) - (\tau_{d(v)} \cdot s(w) + 1)$$

The number of elements in w right now, because w become "dense"

The number of elements at w immediately after the last redistribution at v or at ancestor of v

> Proof (cont.):

$$\tau_{d(w)} \cdot s(w) - (\tau_{d(v)} \cdot s(w) + 1)$$

$$= \tau_{d(w)} \cdot s(w) - \tau_{d(v)} \cdot s(w) - 1$$

$$= s(w) \left(\tau_{d(w)} - \tau_{d(v)}\right) - 1$$

$$= s(w) \cdot \Delta - 1$$

- > Proof (cont.):
 - The redistribution at v takes O(s(v)) which can be covered by maxelements. 1 }
 Hence, each node is charged at:

 $O\left(\frac{s(v)}{\text{max}\{b, s(v)\}}\right) = O(\frac{1}{2})$ for each of the heartions below w.

- Proof (cont.):
 - Since each node has at most H ancestors it will be charged at most H times and the amortized complexity will be:

$$H \cdot O\left(\frac{1}{\Delta}\right) = O\left(\frac{H}{\Delta}\right) = O\left(\frac{H^2}{1 - \tau_1}\right) = O\left(\frac{\log^2 n}{1 - \tau_1}\right)$$

Insertion complexity (memory transfers)

> Proof:

- A top down search requires O(log_B n) memory transfers.
- The redistribution itself is like a range quary when k-c(v), hence takes:

 O(Finding the ancestor at the ancestor)
- Amortizea got:

$$O(\log_B n + \frac{\log^2 n}{B(1-\tau_1)})$$

Experiments & Results

- > The platform:
 - Two 1[GHz] Pentium 3 processors.
 - 256[KB] of cache
 - 1[GB] R.A.M.
 - Operating system: Linux kernel 2.4.3-12smp.
- > The experiments searches with:
 - Various tree sizes (different n)
 - Various memory layouts
 - Implicit and pointer based versions

Experiments & Results

- Red: cache aware algs.
- Blue: v.E.B layout.
- Green: BFS implicit
- Black: inorder implicit

Experiments & Results

➤ Red: v.E.B
pointer
➤ Green: v.E.B
implicit
➤ Black: B.F.S.
pointer
➤ Blue: B.F.S.
implicit

Summary

- We introduced the van Emde Boas layout.
- We learned a cache oblivious search tree implementation and its time & memory transfers bounds.
- We saw that this implementation is indeed efficient and competitive with cache aware implementations.

Thank you all

14/6/04 Elad Levi