ΛΥΣΗ

α) Γνωρίζουμε ότι ο βαθμός του γινομένου (μη-μηδενικών) πολυωνύμων είναι ίσος με το άθροισμα των βαθμών των πολυωνύμων αυτών. Επομένως, ο βαθμός του πολυωνύμου $P(x)=(x-1)(x-2)(x-3) \quad \text{είναι} \quad \text{ίσος} \quad \text{με} \quad 3, \quad \text{καθώς} \quad \text{το} \quad P(x) \quad \text{είναι} \quad \text{γινόμενο} \quad \text{τριών} \quad \text{πολυωνύμων} \quad \text{βαθμού 1}.$

β) P(x): $(x-2) = \frac{P(x)}{x-2} = \frac{(x-1)(x-2)(x-3)}{x-2} = (x-1)(x-3)$. Η διαίρεση, επομένως, είναι τέλεια, άρα το υπόλοιπο είναι ίσο με μηδέν.

Συνεπώς,
$$P(x) = (x-2) \cdot \underbrace{(x-1)(x-3)}_{\pi(x)} + \underbrace{0}_{\upsilon(x)}.$$

Άρα,
$$\pi(x) = (x - 1)(x - 3)$$
 και $\upsilon(x) = 0$.

Σχόλιο:

Το θεώρημα «Ταυτότητα της Διαίρεσης» λέει ότι: για κάθε ζεύγος πολυωνύμων $\Delta(x)$ και $\delta(x)$ με $\delta(x) \neq 0$ υπάρχουν δύο μοναδικά πολυώνυμα $\pi(x)$ και v(x) τέτοια ώστε $\Delta(x) = \delta(x) \cdot \pi(x) + v(x)$, όπου το v(x) ή είναι το μηδενικό πολυώνυμο ή έχει βαθμό μικρότερο από το βαθμό του $\delta(x)$.

Από την μοναδικότητα που εγγυάται το θεώρημα για τα πολυώνυμα $\pi(x)$ και $\nu(x)$, προκύπτει ότι και μόνο η παρατήρηση ότι

$$P(x) = (x-2) \cdot (x-1)(x-3) + 0$$

αρκεί για να βγει αμέσως το συμπέρασμα ότι $\pi(x) = (x-1)(x-3)$ και $\upsilon(x) = 0$.