

Data Structures and Algorithms (ES221)

QUEUES (HEAPS)

Dr. Zubair Ahmad

Priority Queues

- Jobs sent to a line printer are generally placed on a queue
- In a multiuser environment, the operating system scheduler must decide which of several processes to run
- The queue is FCFS
 - dequeue the first job
 - run it until either it finishes or its time limit is up, and
 - enqueue if not done within the time limit
 - FCFS may not always be so efficient
 - May not be fair with the short jobs, waiting too long in the queue
- What is the solution?
- Shortest job first (SJF)
 - finish the short jobs as fast as possible
 - Shorter jobs should have preference over longer jobs running
- Priority Queues
 - Some jobs that are not short are still very important and should also have preference

Priority Queues

FCFS

- High Priority jobs may be delayed
- A long job may force several smaller jobs to wait for unreasonably long period of time

Pages	100	4	2	2	2	1	111
Wait time	0	100	104	106	108	110	528
Printing Time	100	104	106	108	110	111	539

Average waiting time = 528 / 6 = 88 units

Average printing time = 539 / 6 = 89.8 units

SJF (Shortest Job First)

Pages	1	2	2	2	4	100	111
Wait time	0	1	3	5	7	11	27
Printing Time	1	3	5	7	11	111	138

Average waiting time = 27 / 6 = 4.5 units

Average printing time = 138 / 6 = 23 units

Priority Queues Implementation

- Two usual operations
 - *Insert*. Insert a new job in the queue
 - *delete_min*: Remove the shortest/highest priority job from the queue

Priority Queues Implementation

- Simple linked list implementation
 - Insert: Insert at the front/end of the queue
 - O(1) running time
 - *Delete_min:* requires to traverse the whole list
 - O(*n*) running time
- Sorted linked list implementation
 - Insert: Insert at its proper location requires traversal
 - O(n) running time
 - Delete_min: delete the first element which is the min.
 - O(1) running time

Priority Queues Implementation

- Binary search tree implementation
 - Insert: Insert at it proper location requires tree traversal
 - $O(\log n)$ running time
 - Delete_min: delete the deepest child from the leftmost subtree
 - $O(\log n)$ running time
 - Insertions are random
 - deletions are not (why?)
 - Repeated removal of the minimum will hurt the balance of the tree (how?)
 - Worst case scenario
 - The left subtree is depleted (all its nodes deleted)
 - the right subtree would have at most twice as many elements as it should.
 - This adds only a small constant to its expected depth
 - Using Binary Search is over skill
 - We only need two operations

Heaps

- binary heap ~ heap
- A binary tree which is completely filled
- The last level may not be completely filled
 - It is filled from left to right
- It is easy to show that a complete binary tree of height h has between 2h and 2h+1 1 nodes
- The height of a complete binary tree is [log n] which is clearly O(log n).

Heaps

Value of an element at a node is less than or equal to that of its descendants. (Heap property)

A heap

Not a heap

Heaps: Array implementation

An important observation is that because a complete binary tree is so regular, it can be represented in an array and no pointers are necessary

- Start from index 1
- For any element in array position i,
 - the left child is in position 2*i*,
 - the right child is in the cell after 2×2 = 4 the left child (2i + 1), and
 - the parent is in position i/2
- Any problem?
 - an estimate of the maximum heap size is required in advance

Heaps - Operations

- Insert
- Delete

Heaps – insert operation

- Insert x into the heap
 - Create a hole in the next available location
 - since otherwise the tree will not be complete
 - If x can be placed in the hole without violating heap order, then
 - we do so and are done
 - Else
 - bubble the hole up
 - by sliding the element that is in the hole's parent node into the hole
 - Continue this process until x can be placed in the hole
 - This general strategy is known as a percolate up;
 - the new element is percolated up the heap until the correct location is found

	13	21	16	24	31	19	68	65	26	32			
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	13	21	16	24		19	68	65	26	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	13	14	16	24	21	19	68	65	26	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

- We could have implemented the percolation in the insert routine by performing repeated swaps until the correct order was established
 - but a swap requires three assignment statements.
- If an element is percolated up d levels, the number of assignments performed by the swaps would be 3d

Heaps – delete_min Operation

- Analogous to insertions.
- When the minimum is removed, a hole is created at the root.
- Since the heap now becomes one smaller, it follows that the last element x in the heap must move somewhere in the heap
- If x can be placed in the hole (which is unlikely) then
 - we are done
- Else
 - push the hole down one level
 - by sliding the smaller of the hole's children into the hole
- Repeat this step until x can be placed in the hole
- The result is: place x in its correct spot along a path from the root containing minimum children
 - This general strategy is known as a percolate down;

	13	14	16	19	21	18	68	65	26	32	31		
 0	1	2	3	4	5	6	7	8	9	10	11	12	13

		14	16	19	21	18	68	65	26	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	14		16	19	21	18	68	65	26	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	14	19	16		21	18	68	65	26	32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	14	19	16	26	21	18	68	65		32	31		
0	1	2	3	4	5	6	7	8	9	10	11	12	13

	14	19	16	26	21	18	68	65	31	32			
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Heap Operations: Build Heap

- The general algorithm is to place the *n* keys into the tree in any order, maintaining the structure property.
- Then, if percolate_down(i) percolates down from node i, perform the following algorithm to create a heap-ordered tree

```
for(i = n / 2; i > 0; i - - )
percolate_down(i);
```


Initial (unordered) Heap

Heap after percolate_down(7)

Heap after percolate_down(6)

Heap after percolate_down(6)

Heap after percolate_down(5)

Heap after percolate_down(4)

Heap after percolate_down(3)

Heap after percolate_down(2)

Heap after percolate_down(1)

Heap after percolate_down(1)

Heap Operations: Decrease Key

- The decrease_key(x, del, H) operation lowers the value of the key at position x by a positive amount del.
- Since this might violate the heap order, it must be fixed by a *percolate up*.
- This operation could be useful to system administrators:
 - they can make their programs run with highest priority

Heap Operations: Increase Key

- The *increase_key(x*, del , *H)* operation increases the value of the key at position *x* by a positive amount *del*.
- This is done with a percolate down.
- Many schedulers automatically drop the priority of a process that is consuming excessive CPU time.

decrease_key(6, 15, H)

Heapdorfasseplegyofate5_up(6)

Heap after percolate_up(6)

Increase_key(3, 35, H)

Healprobefase_plenyc(Gl,a36_, 6tb) wn(3)

percolate_down(3) in action

Heap after percolate_down(3)

- The delete(x, H) operation removes the node at position x from the heap.
- This is done by first performing decrease_key(x, ∞, H)
- and then performing delete_min (H).
- When a process is terminated by a user (instead of finishing normally), it must be removed from the priority queue.

delete(6, H) in action: decrease_key(6, ∞, H)

delete(6, H) in action: decrease_key(6, ∞, H)

percolate_up(6)

delete(6, H) in action: decrease_key(6, ∞, H)

percolate_up(6)

delete(6, H) in action: decrease_key(6, ∞, H)

→ **delete**lateinu(bl/6)

delete(6, H) in action: decrease_key(6, ∞, H)

delete_min (H)

delete(6, H) in action: decrease_key(6, ∞, H)

→ delete_min (H)

delete(6, H) in action: decrease_key(6, ∞, H)

delete_min (H)

delete(6, H) in action: decrease_key(6, ∞, H)

delete_min (H)

Questions?

zahmaad.github.io