Package 'PheVis'

October 20, 2023

Type Package

Title Automatic Phenotyping of Electronic Health Record at Visit

Resolution

Version 1.0.4 Date 2023-10-20

Description Using Electronic Health Record (EHR) is difficult because most of the time the true characteristic of the patient is not available. Instead we can retrieve the International Classification of Disease code related to the disease of interest or we can count the occurrence of the Unified Medical Language System. None of them is the true phenotype which needs chart review to identify. However chart review is time consuming and costly. 'PheVis' is an algorithm which is phenotyping (i.e identify a characteristic) at the visit level in an unsupervised fashion. It can be used for chronic or acute diseases. An example of how to use 'Phe-Vis' is available in the vignette. Basically there are two functions that are to be used: `train_phevis()` which trains the algorithm and `test_phevis()` which get the predicted probabilities. The detailed method is described in preprint by Ferté et al. (2020) <doi:10.1101/2020.06.15.20131458>.

License GPL (>= 2)

Depends R (>= 3.5.0)

Imports dplyr, ggplot2, glmnet, knitr, lme4, purrr, randomForest, Rcpp (>= 1.0.3), stats, tidyr, viridis, zoo

Suggests PRROC, rmarkdown, testthat

LinkingTo Rcpp

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation yes

Author Thomas Ferte [aut, cre],

Boris P. Heiblum [aut]

Maintainer Thomas Ferte <thomas.ferte@u-bordeaux.fr>

Repository CRAN

Date/Publication 2023-10-20 08:30:02 UTC

boot_df

R topics documented:

ndex		21
	train_phevis	. 19
	test_phevis	
	sur_exp_smooth	
	safe_selection	
	roll_time_sum	
	rolling_var	
	pretty_cv.glmnet	
	pred_lme4model	
	phenorm_longit_simpl	
	phenorm_longit_fit	
	norm_var	
	noising	
	matrix_exp_smooth	
	ggindividual_plot	
	fct_surrogate_quanti	
	expcorrectC	
	data_phevis	
	data_perf	
	cum_lag	
	check_arg_train_phevis	
	check_arg_test_phevis	
	build_quali	
	build_qantsur	
	boot_df	

Description

Sample rows with replacement from a matrix

Usage

```
boot_df(x_matrix, y_sur, ID = NULL, size = 10^5, seed = 1, prob = NULL)
```

Arguments

x_matrix	matrix to perform sampling on
y_sur	The numeric vector of the qualitative surrogate.
ID	The patient ID
size	size of matrix returned
seed	seed for sampling
prob	Vector for weight sampling

build_qantsur 3

Value

A list with the sampled explanatory matrix and the sampled qualitative surrogate (y_sur)

build_qantsur build_qantsur

Description

build quantile threshold based on icd variables and omega constant

Usage

```
build_qantsur(df, var.icd, omega)
```

Arguments

df the dataframe containing the icd codes.

var.icd the main icd codes

omega the constant to define the extrema populations

Value

A numeric vector with the thresholds for the extrema populations.

build_quali build_quali

Description

build_quali

Usage

```
build_quali(x, p, q)
```

Arguments

x A numeric vectorp The lower quantileq The upper quantile

Value

The qualitative surrogate (x in three categories) defining the extrema populations

 ${\tt check_arg_test_phevis} \ \ {\it check_arg_test_phevis}$

Description

Function to check arguments passed to test_phevis()

Usage

```
check_arg_test_phevis(
   train_param,
   df_test,
   surparam,
   model,
   START_DATE,
   PATIENT_NUM,
   ENCOUNTER_NUM
)
```

Arguments

train_param	Parameters for the model training (variables used, main ICD and CUIS, half_life, gold standard, omega). Usually obtained from train_phevis() function.
df_test	The dataframe on which to make the prediction.
surparam	The parameters used to compute the surrogate. Usually obtained by train_phevis() function.
model	The random intercept logistic regression. Usually obtained by train_phevis() function.
START_DATE	Column name of the time column. The time column should be numeric
PATIENT_NUM	Column name of the patient id column.
ENCOUNTER_NUM	Column name of the encounter id column.

Value

No return value, stop the code execution if one condition is not met.

check_arg_train_phevis

5

```
check\_arg\_train\_phevis check\_arg\_train\_phevis
```

Description

Function to check arguments passed to train_phevis()

Usage

```
check_arg_train_phevis(
  half_life,
  df,
  START_DATE,
  PATIENT_NUM,
  ENCOUNTER_NUM,
  var_vec,
  main_icd,
  main_cui,
  rf,
  p.noise,
  bool_SAFE,
  omega,
  GS
)
```

Arguments

half_life	Duration of cumulation. For a chronic disease you might chose Inf, for acute disease you might chose the duration of the disease.
df	data.frame containing all the variables.
START_DATE	Column name of the time column. The time column should be numeric
PATIENT_NUM	Column name of the patient id column.
ENCOUNTER_NUM	Column name of the encounter id column.
var_vec	Explanatory variables used for the prediction, including the main variables.
main_icd	Character vector of the column names of the main ICD codes.
main_cui	Character vector of the column names of the main CUIs.
rf	should pseudo-labellisation with random forest be used (default is true)
p.noise	percentage of noise introduced during the noising step (default is 0.3)
bool_SAFE	A boolean. If TRUE, SAFE selection is done, else it is not (default is TRUE)
omega	Constant for the extrema population definition (default is 2)
GS	Character string corresponding to the name of the gold-standard variable (de-

fault is null for which a vector of 0 will be taken).

6 data_perf

Value

No return value, stop the code execution if one condition is not met.

 cum_lag

cum_lag

Description

helpful function to cumulate information.

Usage

```
cum_lag(x, n_lag)
```

Arguments

x numeric vector for which lag variable should be computed

n_lag size of lag window

Value

return numeric vector.

data_perf

Control data for test

Description

Simulated dataset for PheVis phenotyping.

Usage

```
data(data_perf)
```

Format

An object of class numeric of length 2.

data_phevis 7

data_phevis PheVis simulated

Description

Simulated dataset for PheVis phenotyping.

Usage

```
data(data_phevis)
```

Format

An object of class data. frame with 19659 rows and 15 columns.

expcorrectC	expcorrectC	

Description

c++ function to compute exponential cumulation of information.

Usage

```
expcorrectC(mat, diffdate, lambda)
```

Arguments

mat A matrix where each column is a variable to be cumulated.

diffdate Number of days between each sojourn. NA for switch of patient and restart

cumulation.

lambda A double to set the exponential cumulation.

Details

expcorrectC

Value

A matrix corresponding to the mat argument with cumulated exponential decay

8 fct_surrogate_quanti

```
fct_surrogate_quanti fct_surrogate_quanti
```

Description

Compute the quantitative surrogate and then apply thresholds to get the qualitative surrogate.

Usage

```
fct_surrogate_quanti(
   main_icd,
   main_cui,
   df,
   half_life,
   date,
   patient_id,
   encounter_id,
   omega = 2,
   param = NULL
)
```

Arguments

main_icd	Character vector of the column names of the main ICD codes.
main_cui	Character vector of the column names of the main CUIs.
df	Dataframe containing all variables.
half_life	Duration of accumulation. For a chronic disease you might chose Inf, for acute disease you might chose the duration of the disease.
date	Column name of the time column. The time column should be numeric
patient_id	Column name of the patient id column.
encounter_id	Column name of the encounter id column.
omega	Constant for the extrema population definition.
param	param of a previous train_phevis() result.

Value

A list

- table Main result: data. frame with the rolling variables and the surrogates
- param the parameters for the standardisation of ICD and CUI
- roll_all a subset of table with the rolling variables only
- quantile_vec the quantile defining the extrema populations

ggindividual_plot 9

Description

Plot individual predictions.

Usage

```
ggindividual_plot(subject, time, gold_standard, prediction)
```

Arguments

```
subject numeric vector subject id
time numeric vector time or date
gold_standard numeric vector of gold standard
prediction numeric vector of prediction
```

Value

```
a ggplot graph
```

Examples

```
ggindividual_plot(subject = rep(1,10),
  time = 1:10,
  gold_standard = c(0,0,1,1,0,0,1,1,0,0),
  prediction = runif(n = 10, min = 0, max = 1))
```

matrix_exp_smooth

matrix_exp_smooth

Description

Function to accumulate the information with exponential decay.

Usage

```
matrix_exp_smooth(half_life, df, date, patient_id, encounter_id)
```

10 norm_var

Arguments

half_life Duration of accumulation. For a chronic disease you might chose Inf, for acute

disease you might chose the duration of the disease.

df Dataframe of the explanatory variables.

date Vector of date. The date should be in a numeric format.

patient_id The vector of patient id
encounter_id The vector of visit id

Value

A data.frame object with both the raw variables and the accumulated ones.

noising noising

Description

Noise a matrix

Usage

```
noising(X_boot, p = 0.3)
```

Arguments

X_boot matrix to perform noise on

p amount of noise

Value

A noised matrix

norm_var norm_var

Description

Standardize a numeric variable

Usage

norm_var(x)

phenorm_longit_fit 11

Arguments

x A numeric variable

Value

The standardized variable

Description

Apply simplified 'PheNorm' algorithm on longitudinal data with bootstrap and noise.

Usage

```
phenorm_longit_fit(
    x_matrix,
    y_sur,
    ID,
    size = 10^5,
    seed = 1,
    p.noise = 0.3,
    do_sampling = TRUE,
    do_noise = TRUE,
    prob = NULL,
    calc.prob = TRUE,
    nAGQ = 0,
    glmer.control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
)
```

Arguments

```
x matrix to sample, noise and predict on
x_matrix
                   surrogate with 3 values (0 and 1 the extremes and 3 middle patients)
y_sur
ID
                   Vector of patient ID
                   size of sampling. default is 10<sup>5</sup>
size
                   seed. default is 1.
seed
p.noise
                  noise probability parameter. default is .3.
                   should algorithm do sampling. default is TRUE.
do_sampling
                   should algorithm do noise. default is TRUE.
do_noise
                   sampling probability during noising denoising step
prob
calc.prob
                   should the 'prob' argument be calculated
nAGQ
                   glmer parameter
glmer.control
                  glmer parameter
```

Value

A list with the fixed effects, the predicted responses and the model used (mixed effect or logistic regression)

```
phenorm_longit_simpl phenorm_longit_simpl
```

Description

'PheNorm' like function adapted to longitudinal data.

Usage

```
phenorm_longit_simpl(
   df,
   var_surrogate,
   surrogates_quali,
   id_rnd,
   rf = FALSE,
   ntree = 100,
   bool_weight = FALSE,
   p.noise = 0.3,
   bool_SAFE = TRUE,
   size = 10^5
)
```

Arguments

dataframe variables used for building the surrogates var_surrogate surrogates_quali numeric vector of the qualitative surrogate id_rnd ID for random effect rf should pseudo-labellisation with random forest be used (default is FALSE) number of tree for randomforest (default is 100) ntree bool_weight should the sampling probability balance the number of positive and negative extrema. percentage of noise introduced during the noising step p.noise bool_SAFE A boolean. If TRUE, SAFE selection is done, else it is not (default is TRUE) size minimum size of sampling

Value

A list with the logistic model, the random forest model, the variables selected for prediction and the predictions

pred_lme4model 13

pred_lme4model

pred_lme4model

Description

function to predict probability from 'lme4' or 'glm' objects

Usage

```
pred_lme4model(model = NULL, fe.model = NULL, df)
```

Arguments

model lme4 model

fe.model the fixed effect of a model df dataframe for prediction

Value

A vector of the predictions

pretty_cv.glmnet

pretty_cv.glmnet

Description

Train a 'glmnet' with cross validation (cv) model and return convenient results (model and results with non zero coefficients)

Usage

```
pretty_cv.glmnet(
   x_glmnet,
   y,
   alpha = 1,
   family = "binomial",
   s = "lambda.1se",
   weights = rep(1, nrow(x_glmnet)),
   ...
)
```

14 rolling_var

Arguments

 x_glmnet Independent variable matrix (X) y Dependent variable vector (Y)

alpha parameter of glmnet (default = 1)

family family parameter of glmnet (default = "binomial")

s lambda chosen from cv.glmnet (default = "lambda.1se")

weights glmnet parameter

... additional parameters passed to glmnet

Value

A list with the model, the coefficient associated with variables and the selected variables.

rolling_var rolling_var

Description

Compute rolling variables (last visit, last 5 visits, last month and last year)

Usage

```
rolling_var(id, var, start_date, id_encounter)
```

Arguments

id Patient id numeric vectorvar Variable numeric vectorstart_date Time numeric vectorid_encounter Encounter id vector

Value

A dataframe containing the rolling variables.

roll_time_sum

roll_time_sum roll_time_sum

Description

Compute the cumulated information of what happened in past month and past year.

Usage

```
roll_time_sum(
  id,
  id_encounter,
  var,
  start_date,
  win_size1 = 30,
  win_size2 = 365,
  name1 = "cum_month",
  name2 = "cum_year"
)
```

Arguments

idPatient id numeric vector id_encounter Encounter id vector Variable numeric vector var Time numeric vector start_date win_size1 First window size (default is 30) win_size2 Second window size (default is 365) name of first rolling var (default is "cum_month") name1 name of second rolling var (default is "cum_year") name2

Value

A dataframe containing the rolling variables.

safe_selection

safe_selection

safe_selection

Description

Select the variables from dataframe by removing the rare variables and apply 'SAFE' on it.

Usage

```
safe_selection(
   df,
   var_surrogate,
   surrogate_quali,
   threshold = 0.05,
   alpha = 0.5,
   remove_var_surrogate = TRUE,
   bool_weight = FALSE,
   ...
)
```

Arguments

```
df
                  dataframe
                  variables used for building the surrogates
var_surrogate
surrogate_quali
                  surrogate with 3 values (0 and 1 the extremes and 3 middle patients)
threshold
                  rareness threshold (default = 0.05).
                  glmnet parameter (default is 0.5 elastic net)
alpha
remove_var_surrogate
                  does the glmnet algorithm should learn on features in var_surrogate (default is
                  TRUE).
bool_weight
                  Should the glmnet function be weighted to balance the extrema populations (de-
                  fault is FALSE).
                  arguments to pass to pretty_cv.glmnet
```

Value

A list

- glmnet_model A list of three elements: the cv.glmnet fitted model, the coefficients of non zero variables and the vector of non zero coefficient variables.
- important_var A vector with the variables used for the surrogate and the non zero variables.
- surrogate_quali The surrogate_quali argument.

sur_exp_smooth 17

sur_exp_smooth	sur_exp_smooth
----------------	----------------

Description

Function to cumulate surrogate with exponential decay

Usage

```
sur_exp_smooth(half_life, sur, date, patient_id, encounter_id)
```

Arguments

half_life Duration of cumulation. For a chronic disease you might chose Inf, for acute

disease you might chose the duration of the disease.

sur The quantitative surrogate.

date A numeric vector of time of days unit.

patient_id Vector of patient ID
encounter_id Vector of encounter ID

Value

A dataframe with the cumulated surrogate.

```
test_phevis test_phevis
```

Description

```
test_phevis
```

Usage

```
test_phevis(
   train_param,
   df_test,
   surparam,
   model,
   START_DATE,
   PATIENT_NUM,
   ENCOUNTER_NUM
)
```

18 test_phevis

Arguments

train_param Parameters for the model training (variables used, main ICD and CUIS, half_life, gold standard, omega). Usually obtained from train_phevis() function. df_test The dataframe on which to make the prediction. The parameters used to compute the surrogate. Usually obtained by train_phevis() surparam function. mode1 The random intercept logistic regression. Usually obtained by train_phevis() function. START_DATE Column name of the time column. The time column should be numeric PATIENT_NUM Column name of the patient id column. ENCOUNTER_NUM Column name of the encounter id column.

Value

A dataframe with the predictions.

Examples

```
library(dplyr)
library(PRROC)
PheVis::data_phevis
PheVis::data_perf
var_vec <- c(paste0("var",1:10), "mainCUI", "mainICD")</pre>
main_icd <- "mainICD"</pre>
main_cui <- "mainCUI"</pre>
GS <- "PR_state"
half_life <- Inf
df <- data_phevis %>%
        mutate(ENCOUNTER_NUM = row_number(),
                time = round(as.numeric(time)))
trainsize <- 0.8*length(unique(df$subject))</pre>
trainid <- sample(x = unique(df$subject), size = trainsize)</pre>
testid <- unique(df$subject)[!unique(df$subject) %in% trainid]</pre>
df_train <- as.data.frame(df[df$subject %in% trainid,])</pre>
df_test <- as.data.frame(df[df$subject %in% testid,])</pre>
##### train and test model #####
train_model <- PheVis::train_phevis(half_life = half_life,</pre>
                                       df = df_train,
                                       START_DATE = "time",
                                      PATIENT_NUM = "subject",
                                      ENCOUNTER_NUM = "ENCOUNTER_NUM",
                                       var_vec = var_vec,
                                      main_icd = main_icd,
                                      main_cui = main_cui)
```

train_phevis 19

train_phevis

train_phevis

Description

Global function to train phevis model.

Usage

```
train_phevis(
  half_life,
  df,
  START_DATE,
  PATIENT_NUM,
  ENCOUNTER_NUM,
  var_vec,
  main_icd,
  main_cui,
  rf = TRUE,
  p.noise = 0.3,
  bool_SAFE = TRUE,
  omega = 2,
  GS = NULL
)
```

Arguments

half_life Duration of cumulation. For a chronic disease you might chose Inf, for acute disease you might chose the duration of the disease.

df data.frame containing all the variables.

START_DATE Column name of the time column. The time column should be numeric

PATIENT_NUM Column name of the patient id column.

20 train_phevis

ENCOUNTER_NUM	Column name of the encounter id column.
var_vec	Explanatory variables used for the prediction, including the main variables.
main_icd	Character vector of the column names of the main ICD codes.
main_cui	Character vector of the column names of the main CUIs.
rf	should pseudo-labellisation with random forest be used (default is true)
p.noise	percentage of noise introduced during the noising step (default is 0.3)
bool_SAFE	A boolean. If TRUE, SAFE selection is done, else it is not (default is TRUE)
omega	Constant for the extrema population definition (default is 2)
GS	Character string corresponding to the name of the gold-standard variable (default is null for which a vector of 0 will be taken).

Value

A list

- surparam the parameters used to compute the surrogate
- model the random intercept logistic regression
- df_train_result the data.frame containing the output predictions
- train_param parameters for the model training (variables used, main ICD and CUIS, half_life, gold standard)

Examples

Index

```
* datasets
    data_perf, 6
     data_phevis, 7
boot_df, 2
build_qantsur, 3
build_quali, 3
{\tt check\_arg\_test\_phevis, 4}
check_arg_train_phevis, 5
cum_lag, 6
data_perf, 6
data\_phevis, 7
expcorrectC, 7
fct\_surrogate\_quanti, 8
{\tt ggindividual\_plot}, 9
\verb|matrix_exp_smooth|, 9
noising, 10
\texttt{norm\_var},\, \textcolor{red}{10}
phenorm_longit_fit, 11
phenorm_longit_simpl, 12
pred_lme4model, 13
\verb"pretty_cv.glmnet", 13"
roll_time_sum, 15
rolling_var, 14
safe_selection, 16
sur_exp_smooth, 17
test_phevis, 17
train_phevis, 19
```