

Enterprise Computing Input/Output

Prof. Dr.-Ing. Wilhelm G. Spruth Dipl. Inf. Gerald Kreißig

WS2016/17

System z I/O-Konfiguration

Einige Steuereinheiten können in den System z Rechner integriert werden. Das wichtigste Beispiel ist der OSA Adapter für den Anschluß von Local Area Networks (LAN), z.B. Ethernet.

I/O Geräte werden grundsätzlich über Steuereinheiten (Control Units) angeschlossen. Steuereinheiten sind meistens in getrennten Boxen untergebracht, und über Glasfaser (z.B. FICON) an den System z Rechner angeschlossen.

Es existieren viele unterschiedliche Typen von Steuereinheiten. Die wichtigsten schließen externe Speicher (Platten, Magnetband-Archivspeicher) und Kommunikationsleitungen an.

Es existieren Steuereinheiten für viele weiteren Gerätetypen. Beispiele sind Belegleser für Schecks oder Drucker für die Erstellung von Rentenbescheiden.

Input/Output Teil 1 Plattenspeicher Technologie

IBM 350 Festplattenspeicher von 1956

IBM 350 aus dem Jahre 1956

Am 13. September 1956 stellte IBM das erste Festplattenspeichersystem der Welt vor, die "IBM 350 Plattenspeichereinheit", die zusammen mit dem "IBM 305 RAMAC" (Random Access Method of Accounting and Control)-Rechner ausgeliefert wurde. Der Festplattenspeicher im Kleiderschrankformat wog fast eine Tonne.

Auf einundfünfzig mit Eisenoxyd-beschichteten Platten mit einem Durchmesser von 61 cm (24-Zoll) speicherte die RAMAC sechs Millionen Zeichen. Hätte man damals schon Daten in Form von Bytes abgelegt, entspräche dies einer Kapazität von fünf Megabyte. Die IBM 350 Plattenspeichereinheit verbrauchte 2,5 Kilowatt an elektrischer Energie und wurde seinerzeit auf Mietbasis für 10 000 D-Mark pro Monat vertrieben.

Die modernen Festplattenscheiben verfügen nur über einen Durchmesser von 2,5 Zoll (6,35 cm) oder weniger. Das derzeit stärkste aktuelle Speichersystem der IBM, das System Storage DS8870, hat mit 2,3 PByte Kapazität eine um ca. 400 Millionen mal größere Speicherkapazität als die RAMAC.

Bei den magnetischen Festplattenspeichern wird der technologische Fortschritt daran gemessen, wie viele Bit auf einem Quadratmillimeter Oberfläche gespeichert werden können.

Dargestellt ist die 50 jährige Entwicklung mit dem jährlichen Wachstum der Plattenspeicherdichte. Auf der y-Achse ist die Speicherdichte mit einer logarithmischen Skala dargestellt. Das bedeutet, ein exponentielles Wachtum wird durch eine gerade Linie dargestellt.

Über mehrere Jahrzehnte betrug das Wachstum konstant etwa 25 % pro Jahr. In den 90er Jahren beschleunigte sich das Wachstum auf etwa 100 % pro Jahr. Ab Anfang der 2000er Jahre verlangsamt sich das Wachstum wieder auf etwa 30 % pro Jahr.

Plattenspeichermechanik

An der ursprünglichen Form eines Plattenspeichers hat sich in den Jahrzehnten nicht viel geändert. Der Plattenspeicher besteht in der Regel aus mehreren Platten, von denen beide Oberflächen für die Aufzeichnung von Information genutzt wird. Die Information ist in kreisförmigen **Spuren (Tracks)** auf der Oberfläche angeordnet. Jeder Spur ist eine Spuradresse zugeordnet. Die Spuren selbst sind heutzutage in Sektoren aufgeteilt.

Abgebildet ist die Implementierung einer Seagate Barracuda 7200.7 Festplatte (2006).

Eine Life Demo kann unter http://www.youtube.com/watch?v=L0nbo1VOF4M gesehen werden.

Slider

Linearmotor

Gebräuchliche Umdrehungsgeschwindigkeiten bei modernen Platten betragen:

3600 U/min	16,67 ms/Umdrehung
5400 U/min	11,11 ms/Umdrehung
7200 U/min	8,33 ms/Umdrehung
10 000 U/min	6 ms/Umdrehung
15 000 U/min	4 ms/Umdrehung

Bei diesen Umdrehungszeiten bewegt sich der Kopf gegenüber der Plattenoberfläche mit etwa ²/₃ Schallgeschwindigkeit. Bei einer größeren Geschwindigkeit würde der laminare Luftstrom zwischen Plattenoberfläche und Kopf abreißen und zu Turbulenzen führen. Dann kann der geringe Abstand zur Plattenoberfläche nicht mehr eingehalten werden.

Füllt man einen Plattenspeicher mit Helium statt mit Luft, sind höhere Umdrehungszahlen möglich. Die Schallgeschwindigkeit beträgt in Luft etwa 340 m/s, in Helium etwa 980 m/s.

Pro Oberfläche gibt es mindestens einen Lese/Schreib-Kopf. Die Köpfe für alle Oberflächen sind auf einer gemeinsamen **Zugriffsarmstruktur (Slider)** befestigt, welche alle Köpfe mittels eines Linearmotors auf eine der vielen Spuren bewegt. Der Linearmotor bewegt sich senkrecht zur Achse des Sliders.

Der **Linearmotor** wird oft auch als **Voice Coil Motor** bezeichnet, weil er das gleiche Prinzip benutzt wie der Linearmotor in einem Lautsprecher, der die Membrane antreibt. Eine Ansteuerungselektronik setzt eine Spuradresse in die entsprechenden Signale für den Linearmotor um.

Zugriffscharakteristik - Profil der Suchzeiten (Seek Time)

Die Bewegung durch den Linearmotor erfolgt relativ langsam. Der Wechel von einer Spur auf eine unmittelbar benachbarte Spur kann mehrere Millisekunden betragen. Der Wechel von einer Spur auf eine entfernte Spur kann bis zu 100 Millisekunden dauern. Diese Zeit ist kritisch für das Leistungsverhalten eines Plattenspeichers; sie wird als **Suchzeit (seek time)** bezeichnet.

Hersteller von Festplatten geben eine "mittlere Zugriffszeit" an, die aus einer Mischung von vielen benachbarten und wenigen entfernten Zugriffen ermittelt wird. Zu fragen ist, ob diese Mischung realitätsnahe ist.

Die Speicherkapazität von Plattenspeichern ist in mehreren Jahrzehnten enorm gestiegen, von 5 MByte bei der ursprünglichen IBM RAMAC 350 bis zu mehreren TByte heute. Spuren werden sehr viel enger gepackt und auch die Anzahl der Bits auf einer Spur ist sehr viel größer geworden.

An der Zugriffscharakteristik hat sich aber nur wenig geändert.

Der Lese/Schreibkopf wird mit etwa 100 g beschleunigt und abgebremst (1 g = Anziehungskraft auf der Erdoberfläche). Jenseits von 100 g beginnt Metall sich zu verformen. Es ist daher in den letzten Jahrzehnten nicht möglich gewesen, die Geschwindigkeit der mechanischen Bewegung des Linearmotors deutlich zu verbessern.

Die Platte dreht sich gegenüber dem Kopf mit etwa ²/₃ Schallgeschwindigkeit. Es entsteht ein Luftstrom zwischen Platte und Kopf. Der Kopf hat eine Fläche von etwa 1 mm². Er ist aerodynamisch wie der Flügel eines Flugzeuges geformt und erhält einen Auftrieb gegenüber der Plattenoberfläche. Der Auftrieb ist umso größer, je geringer die Entfernung Kopf – Platte ist. Eine Feder drückt den Kopf gegen die Plattenoberfläche. Es stellt sich eine Flughöhe ein, bei der Auftrieb und Federdruck im Gleichgewicht sind. Die Flughöhe beträgt etwa 50 nm.

Ein kleines Gedankenexperiment soll dies verdeutlichen. Vergrößern wir diese Struktur um einen Faktor 100 000. Das Ergebnis ist ein Flugzeug-ähnliches Gebilde mit einer Flügelweite von 100 Meter, dass mit nahezu Schallgeschwindigkeit mit einem Abstand von 5 mm über die Erdoberfläche fliegt. Jede Berührung des Kopfes mit der Plattenoberfläche bewirkt einen irreparablen Plattenspeichercrash.

Um die Zugriffszeit zu verbessern, werden häufig zwei (oder mehr) Lese/Schreibköpfe pro Plattenoberfläche eingesetzt. Dabei kann ein Kopf z.B. nur die äußeren Spuren und der andere Kopf nur die inneren Spuren abdecken. Hierdurch wird die maximale Distanz zwischen zwei Spuren halbiert.

Zusätzlich fasst man Spuren, die auf zwei oder mehr Oberflächen übereinander liegen, zu einem "Zylinder" zusammen. Dadurch entstehen größere Speichereinheiten, die ohne eine Bewegung des Zugriffsarms adressiert werden können. Beim Wechsel von einer Spur zu einer anderen Spur des gleichen Zylinders muss nur die Elektronik der Lese/Schreibköpfe umgeschaltet werden, was im µs Bereich erfolgen kann.

In der Hardware und Betriebssystem-Software eines Rechners existieren sehr weitgehende Einrichtungen, die helfen, das an sich sehr schlechte Zugriffsverhalten eines Plattenspeichers zu verbessern. Es hat auch in den letzten Jahrzehnten viele Versuche gegeben, Plattenspeicher auf Grund ihres schlechten Zugriffsverhaltens durch eine alternative Technologie zu ersetzen. Das ist über viele Jahre nicht erfolgreich gewesen. Mit der Einführung von Solid State Drives (SSD) wird sich das in der absehbaren Zukunft wahrscheinlich ändern.

Spur Formattierung

Ursprünglich waren die Spuren auf einer Scheibe nicht formatiert, sondern nur mit einer Anfangsmarkierung versehen. Das Betriebsystem war für das Layout der Spuren verantwortlich.

Count Key Data (CKD)

Die Vorläufer von z/OS initialisierten die Platten mit dem sogenannten Count Key Data Track Format. Diese bestand aus einer Reihe von Records, die jeweils wieder in 3 Felder (Count-, Key-, Data-Field) mit variabler Länge unterteilt waren. Zwischen den Feldern und den Records waren Zwischenräume (Gaps), die dazu dienten, die nächste I/O Operation vorzubereiten. CKD Records werden synchron prozessiert, d.h. alle Activitäten zur Beendigung eines CCW und zum Starten des nächste müssen in den "Gaps" zwischen den CKD Feldern geschehen!

Extended Count Key Data (eCKD)

Die Übertragung der Daten zwischen dem Channel und der Control Unit ist nicht synchronisiert mit der Übertragung der Daten zwischen CU und der Platte.

Die Ausführung von CCWs und das Starten neuer CCWs müssen nicht innerhalb des "Gaps"zwischen 2 Records erfolgen.

Fixed Block Architecture (FBA)

Seit Mitte der 70-er Jahre begannen die Plattenspeicherhersteller, die Spuren mit einer festen Blockgröße vorzuformattieren und auszuliefern. Dabei sind alle Spuren einer Platte in Blöcke mit fester Länge (e.g. 512 B, 4 KB) eingeteilt. Dieses Format wurde von MVS nie unterstützt und obwohl inzwischen alle Plattenspeicher in diesem Format ausgeliefert werden, unterstützt auch z/OS keine FBA Platten.

Stattdessen erstellt z/OS <u>CKD Track Images</u> im Arbeitsspeicher und führt die eCKD und CKD Channel Programme auf diesem Image aus. Um die Unterschiede zwischen den "fixed block sized" Platten und den "variable length eCKD/CKD record" Format zu überbrücken, wird das CKD Track Image auf eine Folge von festen Blöcken abgebildet, die dann zwischen der Control Unit und der FBA Platte transportiert werden.

Solid State Drive

Ein Solid State Drive (SSD) ist ein Speichermedium, das wie eine herkömmliche magnetische Festplatte eingebaut und angesprochen werden kann, ohne eine rotierende Scheibe oder andere bewegliche Teile zu enthalten, da nur Halbleiterspeicherbausteine verwendet werden.

Der englische Begriff solid state in der Geschichte der Elektronik bedeutet, dass keinerlei bewegliche Teile wie Relais oder Röhren usw. verwendet werden, sondern Halbleiterbauteile, die durch die Entwicklungen in der Festkörperphysik möglich wurden. Insofern erscheint die Bezeichnung paradox, da ein eben gerade ohne bewegliche Teile auskommendes Medium als 'Drive' bzw. 'Disk' angesprochen wird. Dies geschieht in Analogie zu anderen Festplatten.

In SSD-Laufwerken werden in aller Regel Flash-Speicher Chips eingesetzt. Dabei wird die Information in Form von elektrischen Ladungszuständen der einzelnen Flash-Speicherzellen gespeichert. Das Speichern der Daten erfolgt nicht flüchtig, das heißt die Ladungen bleiben erhalten unabhängig davon, ob das Medium an die Stromzufuhr angeschlossen ist oder nicht. Das bedeutet, dass sich SSD-Speicher in der gleichen Art und Weise nutzen lassen wie Festplatten.

Man unterscheidet bei Flash Speicher Chips 2 Arten von Technolgien:

Bei NOR Flashes kann jede Zelle einzeln angesprochen werden.

Damit können NOR Flashes wie Arbeitsspeicher adressiert werden und in vielen Fällen wird ein NOR Flash Speicher als **Boot Flash** in den unteren Adressbereich eingeblendet, um von dort zu booten. Der Nachteil der direkten Adressierung sind die zusätzlichen Adressleitungen im Chip und die damit verbundenen zusätzlichen Pins am Gehäuse, die ein NOR Flash Chip wesentlich größer werden lassen.

einfacher aufgebaut, da bei ihnen immer eine Gruppe von Zellen angesprochen werden, d.h. der Zugriff erfolgt durch **serielles Lesen** einer Reihe von Speicherzellen. Dafür benötigen sie aber auch immer einen Controller, der die Zugriffe durchführt. Alle üblichen USB Memory Sticks, SD Karten und entsprechende Speichermedien enthalten NAND Flashes.

Da die physikalischen Eigenschaften der Speicherzellen bewirken, dass beim Schreiben die Speicherfähigkeit abnutzt, ist die Anzahl der Schreibzyklen bei Flash Speicher begrenzt. Dieser Nachteil kann durch geschicktes Programmierung des Controllers (Bad Block Handling, Wear Levelling, etc.) zu einem gewissen Teil umgangen werden.

In den letzten Jahren werden zusätzlich zu (und bei mobilen Geräten an Stelle von) Plattenspeichern Solid State Drives eingesetzt. Zu diesem Zweck habe sie das Format und das Device Interface einer HDD

Intern bestehen Solid State Drives aus einer Menge von NAND Flashes, einem Controller und dem Host Interface:

Der Flash Controller ist verantwortlich für das Management der einzelnen Flash Memory Chips und für das Zurfügungstellen der gekauften Speicherkapazität.

Der Buffer dient als sogenannter Disk-Cache und seine Größe hat signifikanten Einfluß auf die Performance der SSD. Controller

Vorteile eines Solid State Drive sind Robustheit, schnelle Zugriffszeiten und Energieverbrauch. Nachteile sind Kapazität

und Preis. In großen Mainframe Installationen findet man häufig zusätzlich zu den Plattenspeichern eine begrenzte Anzahl von SSDs für die Auslagerung von Daten für besonders performance-kritische Vorgänge.

NAND Flash Memory

SATA

Die Zukunft des Plattenspeichers

Plattenspeicher behaupten ihre dominierende Rolle gegenüber SSDs, weil der Preisunterschied pro Byte Speicherkapazität etwa einen Faktor 10 beträgt.

Seit Jahren wird angenommen, dass SSDs in der Zukunft kostenmäßig gleichziehen werden. Das ist bis heute nicht geschehen.

Dennoch ist mit einem Zeithorizont von Jahrzehnten anzunehmen, dass man dann den magnetischen Plattenspeicher als genauso archaisch betrachten wird, wie man heute die Lochkarte sieht. Wenn sich SSDs als Alternative zu magnetischen rotierenden Plattenspeichern durchsetzen, ist es denkbar, diese anders als herkömmliche Plattenspeicher zu nutzen. Dies könnte zu signifikanten Änderungen in der Betriebssystem Struktur führen.

Panta rhei (griechisch , πάντα ῥεῖ, "Alles fließt") sagte schon der griechische Philosoph Heraklit.

Direct Memory Access

Plattenspeicher werden mittels eines "Direct Memory Access" (DMA) Controllers an den Hauptspeicher angeschlossen. In einem zEC12 Mainframe ist dies eine Fanout Card innerhalb eines Books. Der DMA Controller (die Fanout Card) ist wiederum mit einer Channel Adapter Card in einem I/O Cage verbunden.

Die Channel Adapter Card stellt mittels eines Glasfaserkabels die Verbindung zur Elektronik eines Plattenspeichers her. Das Glasfaserkabel wird als Channel, Ficon Channel oder Channel Path bezeichnet (die Begriffe sind weitgehend austauschbar). Ein Mainframe kann mehrere 100 Glasfaseranschlüsse aufweisen. Die Distanz Recher – Plattenspeicher kann viele Kilometer betragen.

Plattenspeicher werden in getrennten Gehäusen, sog. "Enterprise Storage Servern" (ESS) untergebracht. Ein ESS kann Hunderte von Plattenspeichern enthalten. Für die Ansteuerung enthält ein ESS mehrere Spezialrechner, deren Firmware von außen nicht zugreifbar ist.

Der DMA Controller ist Bestandteil der Fanout Card (Host Channel Adapter). Der Channel Adapter ist als I/O Card implementiert, und befindet sich in einem I/O Drawer.

DMA (Direct Memory Access) Steuerung

Der Processor (CPU) und der DMA (Direct Memory Access) Controller greifen mit Adress-, Daten- und Steuerleitungen gleichzeitig und parallel auf den Hauptspeicher zu. Jeder Hauptspeicherzyklus wird entweder von der CPU oder von dem DMA Controller genutzt.

Die Host Channel Adapter (HCA) in den zEC12 Rechnern werden auch als Fanout Card bezeichnet, und enthalten einen DMA Controller.

Aufgaben der DMA-Steuerung:

- Adressieren des Hauptspeichers durch Adressfortschaltung
- Adressieren der Geräteschnittstelle
- Steuerung der Buszugriffe für Lesen oder Schreiben
- · Zählen der übertragenen Bytes
- Rückmelden an CPU

Das SADR enthält die Hauptspeicheradresse des zu übertragenenden Bytes. Für die Übertragung eines größeren Datenblocks wird das SADR automatisch hochgezählt. Das BCR enthält die Länge des zu übertragenden Datenblocks.

Für einen Übertragungsvorgang werden DMA-Steuerung und I/O Controller (I/O adapter card) von der CPU initialisiert, z.B. Laden der Steuer(Control)- und Adressregister.

Unterbrechungsgesteuerte Ein/Ausgabe

Die zu übertragenden Daten befinden sich in einem als I/O Buffer bezeichnetem Bereich des Hauptspeichers. Das Anwendungsprogramm definiert die Adresse und Länge des I/O Buffers,, und führt z.B. einen WRITE Befehl aus.

Der DMA Controller übernimmt Adresse und Länge in seine SADR und BCR Register und setzt sein Control Register auf Write.

Danach liest er automatisch und unabhängig von der CPU die Daten aus dem I/O Puffer und überträgt sie zum Plattenspeicher. Nach der Übertragung eines jeden Bytes wird der Length Count in dem BCR Register (Byte Count Register) heruntergezählt und das SADR Register wird inkrementiert. Die CPU arbeitet während dieser Zeit unabhängig weiter.

Wenn der Wert in dem Längenregister den Wert 0 erreicht, ist die I/O Operation beendet. Dies wird der CPU über eine I/O Unterbrechung mitgeteilt.

Input/Output Teil 2 SCSI und FICON

Moderne Plattenspeicher-Anschlussarten

Moderne Plattenspeicher werden heute fast ausschließlich über ein serielles Protokoll angeschlossen. Die wichtigsten Protokolle sind:

• IDE / PATA Integrated Drive Electronics / Parallel AT Attachment

SCSI Small Computer System Interface

SATA (serial ATA)
 SAS (serial attached SCSI)
 Nachfolger für parallell SCSI
 Nachfolger für parallell SCSI

• iSCSI Internet SCSI (benutzt Ethernet, von Mainframes nicht unterstützt)

FC-SCSI
 Fibre Channel SCSI

SATA domiminiert beim PC und anderen Arbeitsplatzrechnern. Die verschiedenen SCSI Arten dominieren bei Servern. Fibre Channel SCSI kann sowohl für Punkt–zu–Punkt Verbindungen als auch als FC-AL Version (Fibre Channel Arbitrated Loop) eingesetzt werden.

Seagate z.B. bietet z.B. (2010) die Barracuda Familie von Plattenspeichern mit der SATA und der SAS Schnittstelle an; Speicherkapazität bis zu 4,0 TByte. Für "Mission Critical Applications" ist die Cheetah Familie von Plattenspeichern mit einer 4-Gb/s Fibre Channel Interface verfügbar; Speicherkapazität bis zu 600 GByte. Cheetah Plattenspeicher sind laut Seagate für Anwendungen vorgesehen, "where system availability and reliability is of outmost importance".

Letzteres ist vor allem bei Mainframes gegeben. Dafür wird die deutlich geringere Speicherkapazität in Kauf genommen. In anderen Worten: Plattenspeicher in Ihrem PC haben pro Einheit in der Regel eine deutlich höhere Speicherkapazität als die Plattenspeicher eines Mainframes.

Historische Entwicklung S/360 Channel und SCSI

Für den Anschluss von I/O Geräten führte das Sytem/360 im Jahre 1964 den "Selektor" und 1970 den "Block Multiplex" Kanal ein. IBM veröffentlichte diese I/O Schnittstelle unter dem Namen **OEMI (Original Equipment Manufacturer Interface)**, was dazu führte, dass viele unabhängige Hersteller I/O Geräte für den Anschluss an die damaligen Mainframes entwickelten und installierten. Das ist auch heute noch der Fall.

Ab 1982 wurde auf Initiative der Firmen Shugart und NCR eine Modifikation des OEMI Standards durch das ANSI (American National Standards Institute) unter dem Namen SCSI (Small Computer System Interface) für den Einsatz in kleineren Systemen veröffentlicht. Hierbei wurde die auf extreme Zuverlässigkeit ausgelegte OEMI Verkabelung (elektrische Interface) vereinfacht. Die logische Interface wurde weitestgehend beibehalten.

OEMI und SCSI BUS

Das logische OEMI und SCSI Interface bestand aus einem 8 Bit (plus Parity) Datenbus sowie einer Reihe von teils unidirektionalen, teils bidirektionalen Steuersignalen. Die OEMI Schnittstelle wird heute von IBM als "Parallel Channel" bezeichnet. Ein Parallel Channel hat eine Datenrate von max. 4.5 MByte/s. und überbrückt Distanzen bis zu 130 m. Der Parallel Channel benutzt zwei Kupfer Kabel: *Bus* und *Tag*. . Ein Bus Kabel überträgt Information (ein Byte in jeder Richtung). Daten auf dem Tag Kabel definieren die Bedeutung der Information auf dem Bus Kabel.

Später entwickelten sich die OEMI und SCSI Schnittstellen unabhängig voneinander weiter. Der ursprünglich 8 Bit breite Datenbus der SCSI-1 Schnittstelle wurde auf 16 und später 32 Bit verbreitet. Anschließend entstanden serielle Versionen, die bei IBM zu den Glasfaser-gestützten ESCON (Enterprise Systems Connection) und dann den FICON (Fibre Connection) Kanälen führten. Bei SCSI entstanden die Serial SCSI und die Glasfaser FC-SCSI Versionen.

Wegen der höheren Anforderungen im Großrechnerbereich hatten die IBM Kanäle immer einen deutlich höheren Funktionsumfang als die SCSI Schnittstellen. Auch heute kann der mit einem FICON Netzwerk erzielbare Durchsatz durch ein SCSI Netzwerk nicht erreicht werden.

Die ursprünglich parallel übertragenen OEMI oder SCSI Daten werden bei SAS (serial attached SCSI) in einen Rahmen (Frame) gepackt und über ein Kupferkabel seriell übertragen. Die Fibre Channel SCSI (FC-SCSI) Version verwendet statt dessen zwei Glasfaserkabel (für Hin- und Rückleitung).

Das aus dem Parallel Channel (OEMI) entwickelte serielle Fibre Channel FICON Protokoll benutzt ebenfalls Glasfasern. Es hat im Vergleich zu FC-SCSI einen wesentlich höheren Funktionsumfang und damit eine bessere I/O Leistung.

Serielle und parallele Kanäle

Der Parallel Channel dominierte die Mainframe I/O Konfigurationen bis zum Anfang dieses Jahrhunderts. Er hat viel Ähnlichkeit mit der parallelen SCSI Interface. Heutige Mainframes unterstützen den Parallel Channel nicht mehr.

Serielle Channels haben den älteren parallel Channels abgelöst. Es existieren zwei Serial Channel Typen:

- Der (ältere) ESCON Channel erlaubt Datenraten von 17 MByte/s. Er wurde 1990 eingeführt, und wird in zukünftigen Mainframe Modellen nicht mehr verfügbar sein.
- Ein FICON Channel erlaubt Datenraten bis zu 800 MByte/s. Das FICON Protokoll wurde 1997 eingeführt.

Die über 10 Jahre alte "Shark" Plattenspeichereinheit unseres eigenen Mainframe Rechners jedi.informatik.uni-leipzig.de wurde über ESCON Verbindungen angeschlossen. Unsere neuere DS6800 Plattenspeichereinheit verwendet FICON Verbindungen.

Serielle Channel verwenden Glasfaserkabel an Stelle von Kupferverbindungen. Es können Entfernungen bis zu 100 km überbrückt werden. Außerdem verfügen sie über eine erweiterte I/O Adressierung.

Formal wird ein Channel als "Channel Path" bezeichnet, und durch einen 8 Bit CHPID (Channel Path Identifier) gekennzeichnet. In der Umgangssprache werden Channel Path nach wie vor als Kanäle (Channels) bezeichnet, und auch Experten kennen den Unterschied nicht genau.

Fibre Channel (FC)

Fibre Channel (FC) ist für serielle, kontinuierliche Hochgeschwindigkeitsübertragung großer Datenmengen konzipiert worden. Die erreichten Datenübertragungsraten liegen heute bei **8 Gbit/s**, was im Vollduplex-Betrieb für Datentransferraten von 800 MB/s ausreicht. Als Übertragungsmedium findet man gelegentlich Kupferkabel (hauptsächlich innerhalb von Storage-Systemen; überbrückt bis zu 30 m), meistens aber Glasfaserkabel. Letzteres wird vor allem zur Verbindung von Rechnern mit Storage-Systemen oder aber von Storage-Systemen untereinander eingesetzt. Hierbei werden Entfernungen bis zu 10 km überbrückt. Der Zugriff auf die Festplatten erfolgt blockbasiert.

Es können generell zwei Arten von Fibre-Channel-Implementierungen unterschieden werden, die Switched Fabric, meist als **Fibre Channel Switched Fabric (FC-SW)** bezeichnet und die **Arbitrated Loop (FC-AL)**.

Bei der Fibre Channel-Switched Fabric werden Punkt-zu-Punkt-Verbindungen (Point To Point) zwischen den Endgeräten geschaltet. Beim Fibre Channel-Arbitrated Loop handelt es sich um einen logischen Bus, bei dem sich alle Endgeräte die gemeinsame Datenübertragungsrate teilen.

Das Fibre Channel-Switched Fabric ist die leistungsfähigste und ausfallsicherste Implementierung von Fibre Channel. In den meisten Fällen ist Switched Fabric gemeint, wenn nur von Fibre Channel gesprochen wird. Im Zentrum der Switched Fabric steht der **Fibre Channel Switch** (von IBM als "**Director**" bezeichnet). Über dieses Gerät werden alle anderen Geräte miteinander verbunden, so dass es über den Fibre Channel Switch möglich wird, direkte logische Punkt-zu-Punkt-Verbindungen zwischen je zwei beliebigen angeschlossenen Geräten zu schalten.

FC-AL erlaubt es, bis zu 127 Geräte an einem logischen Bus zu betreiben. Dabei teilen sich alle Geräte die verfügbare Datenübertragungsrate (bis 8 GBit/s). Die Verkabelung kann sternförmig über einen Fibre Channel Hub erfolgen. Es ist auch möglich, die Geräte in einer Schleife (Loop) hintereinander zu schalten (Daisy Chain), da viele Fibre-Channel-Geräte über zwei Ein- bzw. Ausgänge verfügen. Dies ist z.B. beim IBM DSS 8700 Enterprise Storage Server der Fall.

Fibre Channel ist ähnlich wie TCP/IP ein Schichten-Protokoll und besteht aus 5 Lagen:

- FC0 Der Physical Layer beschreibt Kabel Fiber Optics, Konnektoren, Pinouts usw.
- FC1 Der Data Link Layer implementiert das 8b/10b Encoding und Decoding der Signale.
- FC2 Der Network Layer definiert die Kommunikationsprotokolle und die Port-to-Port Verbindungen
- FC3 Der Common Services Layer ist für Erweiterungen vorgesehen, und könnte in Zukunft Funktionen wie Encryption oder RAID implementieren.
- FC4 Im Protocol Mapping Layer werden Protokolle wie FC-SCSI oder FICON abgebildet.

Fibre Channel Architektur

Die Fibre Channel Architektur verwendet ein Schichtenmodell, vergleichbar mit (aber unabhängig von) den TCP/IP oder OSI Schichtenmodellen. Die unterste Schicht verwendet in den meisten Fällen optische Kabel. Wichtig ist besonders die oberste Schicht FC4. Hierüber ist es möglich, unterschiedliche Protokolle zu betreiben.

FC-SCSI ist eine serielle Form des SCSI Protokolls, die über Fibre Channel Verbindungen erfolgt. (Das als "Serial SCSI" bezeichnete Protokoll benutzt keinen Fibre Channel).

FICON ist das universell von Mainframes eingesetzte Protokoll, um Rechner miteinander und mit I/O Geräten zu verbinden.

Ein spezieller Fibre Channel Adapter wird für die Echtzeitübertragung von Fernsehprogrammen benutzt.

"IP over Fibre Channel" und "Ethernet over Fibre Channel" wurde standardisiert, wird aber nur wenig benutzt.

Literatur:

http://www.answers.com/topic/fibre-channel?cat=technology

Fibre Channel ATA (FATA)

In der Praxis verwenden SCSI Platten bessere mechanische und elektronische Komponenten als SATA Platten. Dies bewirkt:

- schnellere Zugriffszeiten
- höhere Zuverlässigkeit
- deutlich höhere Kosten

Aus Zuverlässigkeitsgründen verwenden SCSI Platten selten die neueste Plattenspeichertechnologie. Dies ist einer der Gründe, warum für einen Personal Computer Plattenspeicher mit einer höheren Speicherkapazität erhältlich sind als dies im Mainframe Bereich der Fall ist.

FATA-Laufwerke sind SATA-Plattenlaufwerke mit einem Fibre Channel (FC) Anschluss. Sie arbeiten mit den mechanischen Komponenten von ATA-Festplatten, jedoch mit vorgeschalteter FC-Schnittstelle. In anderen Worten, es sind SATA Platten, bei denen die elektrische serielle ATA Schnittstelle durch eine Fibre Channel Schnittstelle ersetzt wurde. Die FATA-Technologie hat den Vorteil, dass sie in einer Mischung mit anderen FC-Laufwerken betrieben werden können.

FATA Platten werden auch als "Nearline-Platten" bezeichnet. Sie werden im Großrechnerbereich dann eingesetzt, wenn Zuverlässigkeit und Zugriffszeit weniger wichtig sind, z.B. um Bilddateien (Images) zu archivieren.

Plattenspeicher Anschluss Alternativen

- a) Ein SCSI Adapter kann eine oder mehrere SCSI Platten mit dem I/O Bus eines Rechners verbinden.
- b) Bei größeren Mengen an Plattenspeichern sind diese über eine Control Unit oder einen Storage Server mit dem SCSI Adapter verbunden.
- c) Mainframes ersetzen den SCSI Adapter durch einen Channel Adapter. Plattenspeicher sind grundsätzlich über Control Units mit dem Channel Adapter verbunden.

S/360 I/O Konfiguration

Dargestellt ist die ursprüngliche S/360 I/O Konfiguration.

Plattenspeicher sind über Control Units, Kanal-Verbindungskabel (Channel Cables) und Kanal-Adapter mit dem Hauptspeicher des Systems verbunden. Die Verbindungskabel des "Parallel Channels" waren bis zu 400 Fuß (130 m) lang. Die Kanal-Adapter konnten mittels DMA direkt auf den Hauptspeicher des Systems zugreifen.

Die Control Unit führte Befehle aus, die vom Kanal-Adapter aus dem Hauptspeicher ausgelesen und zwecks Ausführung an die Control Unit übergeben wurden.

Magnetbandgeräte und Drucker werden ähnlich wie Plattenspeicher über Control Units an den Mainframe Rechner angeschlossen.

Aufgaben der Plattenspeicher-Steuereinheit

Dargestellt ist die Aufgabenaufteilung zwischen Kanal-Adapter, Steuereinheit (Control Unit) und der Plattenspeicher-Elektronik.

Der Kanal (die Kanal-Adapter Karte) ist nur dazu da, um stellvertretend für die Steuereinheit per DMA Daten und Kanalbefehle (CCWs) aus dem Hauptspeicher auszulesen und an die entfernte Steuereinheit weiter zu geben.

Der Plattenspeicher selbst enthält umfangreiche elektronische und logische Komponenten.

Was ist Firmware?

Komponenten, die früher mittes hart verdrahteter Transistorlogik erstellt wurden, verwenden heute häufig statt dessen einen dedizierten Mikroprozesser mit speziellem Code. Dieser Code hat die Eigenschaft, dass ein normaler Benutzer nicht darauf zugreifen, ihn ändern oder erweitern kann. Derartiger Code wird wahlweise als Microcode oder als Firmware bezeichnet ist.

Firmware Code eines Mainframes wird von Prozessoren mit der System z Architektur ausgeführt. Microcode eines Mainframes wird von nicht-System z Prozessoren ausgeführt, z.B. von PowerPC Prozessoren. Auf den weiter unten erwähnten SAPs (System Assist Prozessor) läuft Firmware; auf der Channel Adapter Card befindet sich ein PowerPC Prozessor, der Microcode ausführt.

Außerhalb der Mainframes Welt ist der Unterschied zwischen Firmware und Microcode weniger sauber definiert. Firmware/Microcode läuft z.B. auf dem Prozessor, der einen WLAN Access Point, einem Mobiltelefon, eine Geschirrspülmaschine oder den elektrischen Fensterheber Ihres Mercedes S-Klasse Autos steuert.

Das auf der folgenden Abbildung erwähnte "Channel Subsystem" besteht aus "System Assist Processoren (SAP)" plus Firmware. Control Units und Enterprise Storage Server verwenden sehr leisungsfähige Prozessoren aber keine Firmware, da ihr Code nicht auf System z Prozessoren läuft.

System z Plattenspeicher Anschluss

Ein Mainframe kann über mehrere (bis zu 8) Kanäle mit einer bestimmten Control Unit verbunden werden, und ein I/O Gerät kann an mehr als eine Control Unit angeschlossen werden.

Das Channel Subsystem bildet die logische I/O Konfiguration, wie sie das Betriebssystem sieht, auf die physische Konfiguration ab.

Heute werden mehrere Control Units und angeschlossene Plattenspeicher zu einem physischen "Enterprise Storage System" zusammengefasst. Control Units (und das Channel Subsystem) sind jedoch Teil der System z Architektur-Spezifikation; das Enterprise Storage System ist lediglich eine Implementierung und ist nicht Teil der Architektur.

Ein Plattenspeicher ist typischerweise an zwei Control Units angeschlossen. Die Kommunikation mit der CPU erfolgt wahlweise über eine der beiden Control Units.

z/Architecture Principles of Operation, SA22-7201, Seite 2-6

System Assist Processor

Ein zEC12 Rechner hat bis zu 4 x 36 = 144 Prozessoren (Cores). Von diesen wird nur der größere Teil als CPUs eingesetzt. Mehrere Prozessoren, als **System Assist Processoren (SAP)** bezeichnet und vorkonfiguriert, führen ausschließlich Firmware Code aus. Bei einem maximal hochgerüsteten zEC12 Rechner sind dies mindestens 16 SAPs. Die SAPs weisen die gleiche Hardware Architektur auf wie die CPUs; auf ihnen läuft aber Firmware und kein z/OS. Bei der Installation eines neuen System z Rechners wird über eine Konfigurationsdatei eingestellt, wie viele der vorhandenen Prozessoren als CPUs bzw. SAPs eingesetzt werden.

SAPs und ihr Firmware Code wird vor allem für drei Funktionen benötigt:

- Fehlerbehandlungs- und Recovery Funktionen
- Channel Subsystem
- PR/SM Hypervisor Software f
 ür LPAR virtuelle Maschinen (wird sp
 äter diskutiert).

Für Firmware (und dazugehörige Daten) sind in einem zEC12 Rechner 16 oder 32 GByte Speicherplatz vorgesehen. Von dem installierten physischen Speicher werden diese 16 oder 32 GByte abgeteilt und stehen als "Hardware System Area" (HSA) für Firmware Zwecke zur Verfügung. Der Rest kann als Hauptspeicher genutzt werden.

Bitte beachten: Den Begriff SAP (System Assist Processor) nicht verwechseln mit dem Namen der Firma SAP AG in Walldorf (Baden).

Mehrfache Pfade zu einem I/O Gerät

System z I/O Geräte werden über Steuereinheiten (Control Units) an das Kanal Subsystem angeschlossen. Viele Funktionen, die auf Ihrem PC von der CPU als I/O Driver Code ausgeführt werden, sind bei einem Mainframe in den Control Units implementiert. Sie belasten die CPU's nur wenig, und ermöglichen die Ansteuerung einer sehr großen Anzahl von Festplatten.

Steuereinheiten können über mehr als einen Kanalpfad an das Kanalsubsystem angeschlossen werden und I/O Geräte (z.B. Plattenspeicher) können an mehr als eine Steuereinheit angeschlossen werden.

z/OS kann auf ein beliebiges I/O Gerät über bis zu 8 unterschiedliche Kanalpfade zugreifen (und umgekehrt).

Der Zugriffsweg kann dynamisch geändert werden, sogenannte **Dynamic Path Selection (DPS)**. Eine I/O Operation muss nicht auf dem gleichen Weg abgeschlossen werden, auf dem sie gestartet wurde. Hiermit kann erreicht werden, dass sequentielle und zufallsbedingte Zugriffe sich nicht gegensätzlich beeinträchtigen.

Z.B. angenommen zwei Plattenspeicher, die an die gleiche Steuereinheit angeschlossen sind. Ein Plattenspeicher überträgt einen großen Block sequentieller Daten, während der zweite Plattenspeicher gleichzeitig viele kurze Datenpakete mit einem zufallsbedingten Zugriffsmuster überträgt. Kein Plattenspeicher soll die Nutzung einer Verbindung für einen längeren Zeitraum usurpieren.

In anderen Worten, es gibt mehrere Wege, auf denen Daten (und Steuerinformation) zwischen Platte und CPU übertragen werden können.

Diese dynamische Weg-Steuerung ist rechenaufwendig. Deswegen belastet man mit dieser Aufgabe nicht die CPUs und das Betriebssystem, sondern überträgt sie einer getrennten Verarbeitungseinheit, dem **Channel Subsystem**. Eine Beispiel-Konfiguration ist in der folgenden Abbildung wiedergegeben.

System z Disk Storage Attachment

Der auf der blauen CPU a) laufende Prozess greift auf die drei blauen Plattenspeicher a) zu. Diese können über die ersten beiden Control Units erreicht werden. Der blaue Prozess verwendet hierzu vier blau gezeichnete Kanäle, von denen jeweils zwei mit den beiden Control Units verbunden sind.

Ähnliches gillt für den Prozess auf der orange markierten CPU b).

An eine Control Unit können bis zu 8 Kanäle angeschlossen sein.

Das Channel Subsystem kann die Zuordnung von Kanälen zu Prozessen dynamisch ändern.

FICON Director

Die obige Abbildung zeigt zwei Mainframe Rechner und zahlreiche Control Units mit ihren Plattenspeichern. Jeder zEC12 Mainframe Rechner kann bis zu 101 CPUs enthalten und verfügt über ein eigenes Channel Subsystem.

Es ist in der Regel notwendig, beide (bis zu 32) Mainframe Rechner mit allen Control Units und allen Plattenspeichern zu verbinden.

Da die Verkabelung sehr unübersichtlich ist, schaltet man einen FICON Switch (offizielle Bezeichnung "**FICON Director**") zwischen die Channel Subsysteme und und die Control Units. Vielfach wird an Stelle eines einzelnen FICON Switches ein ganzes Netzwerk von FICON Switchen eingesetzt (nicht gezeigt).

Große Mainframe Installationen können über 10 000 Glasfaserkabel aufweisen.

Die I/O Anforderungen der Prozesse auf den einzelnen CPUs müssen ihren Weg durch das Netzwerk zu dem gewünschten Plattenspeicher finden. Die Channel Subsysteme der einzelnen Rechner haben die Aufgabe, das Routing der I/O Anforderungen über das FICON Netzwerk zu übernehmen. Ähnlich wie im Internet kann sich der Weg zwischen CPU und Plattenspeicher während der Ausführung einer I/O Operation dynamisch ändern.

Ein derartiges Netzwerk wird als **Storage Area Netzwerk (SAN)** bezeichnet. Ein SAN benutzt das Fibre Channel Protokoll an Stelle der in Communicationsnetzen üblichen TCP/IP oder SNA Protokolle.

Die in der obigen Abbildung gezeigten beiden Channel Subsysteme haben eine weitere Aufgabe: Sie verbergen die komplexe I/O Konfiguration vor den z/OS Betriebssystemen, die auf den beiden Rechnern laufen. Ein z/OS Betriebssystem arbeitet mit der Illusion, dass alle Plattenspeicher über individuelle Punkt-zu-Punkt Verbindungen direkt an seine CPUs angeschlossen sind. Diese Verbindungen werden als "Subchannels" bezeichnet; je ein Subchannel pro Plattenspeicher. Es ist die Aufgabe des Channel Subsystems, logische Subchannels auf physische Kanalpfade und die Topologie des FICON Netzwerkes dynamisch abzubilden.

Heutige Mainframes können alternativ neben FICON Plattenspeichern auch Fibre Channel SCSI Plattenspeicher anschließen. Dies ist z.B. beim Einsatz von zLinux üblich. Der Großteil der Daten einer Mainframe Installation wird aber auf FICON Platten gespeichert.

Input/Output Teil 3 Mainframe I/O

z/OS Volume

DASD volume

tape volume

volser=SL0001

Ein "**Volume**" (**Datenträger**) ist eine logische externe Speicher-Einheit, beispielsweise ein Festplattenspeicher oder eine Magnetbandkassette. Ein Volume speichert zahlreiche Dateien.

In einer Mainframe Installation ist ein jedes Volume durch eine eindeutige "Volume Serial Number" (volser) gekennzeichnet, die auf dem Datenträger an einer bestimmten Stelle aufgezeichnet ist. Nicht alle vom Betriebssystem erfassten Volumes müssen in jedem Augenblick für das Betriebssystem zugreifbar sein. Beispielsweise kann eine Nachricht auf der Konsole den System-Administrator auffordern, eine Magnetbandkassette mit einer bestimmten Volume Serial Number manuell aus einem Regal zu entnehmen, und in eine angeschlossene Magnetbandeinheit einzulegen.

Channel und Control Unit

deutsche Begriffe: Kanal und Steuereinheit bzw. Plattenspeicher Steuereinheit

Ein Kanal (Channel) ist ein Verbindungskabel zwischen einem Rechner und einer Plattenspeicher-Steuereinheit. Ein Channel Adapter ist eine Steckkarte im I/O Cage eines Rechners, die Steckkontakte für Kanalkabel enthält. Kanäle werden heute als FICON Fibre Channel Verbindungen implementiert.

Channel Adapter und Control Unit sind zwei physische Einheiten, die über ein Kanal-Kabel miteinander verbunden sind. Die Kombination stellt jedoch eine einzige logische Einheit dar. Die Aufteilung ist erforderlich, weil aus Platzgründen die Control Units in einer gewissen Entfernung voneinander und vom Rechner aufgestellt werden müssen.

In manchen Fällen ist es möglich, die Control Unit im gleichen Gehäuse wie die CPUs unterzubringen. In diesem Fall werden Control Unit und Channel Adapter als eine einzige Baugruppe implementiert. Ein Beispiel ist der OSA Adapter. Dies ist eine Steckkarte im I/O Drawer eines Rechners, die zum Anschluss von Ethernet Verbindungen dient.

Ausführen einer I/O Operation

Unix Systeme steuern ihre Plattenspeicher über ein als I/O Driver bezeichnetes Programm, welches von der CPU ausgeführt wird. Die Funktion eines Unix I/O Drivers wird bei einem Mainframe zum allergrößten Teil in die Control Unit ausgelagert. Das dort ablaufende Programm wird als **Channel Program** bezeichnet. Ein Channel Program besteht aus einzelnen Befehlen, die als **Channel Command Words (CCW)** bezeichnet werden. Beim Starten einer I/O Operation werden die Befehle des Channel Programms aus dem Hauptspeicher ausgelesen, an die Control Unit übergeben und dort ausgeführt.

Dargestellt ist das Zusammenspiel des Anwendungsprogramms im User State, des Kernels im Kernel State (Supervisor State) und des Kanalprogramms.

Das Anwendungsprogramm führt einen READ Befehl aus. Dies führt zu einem Aufruf des Kernels (Supervisor) über einen SVC Maschinenbefehl. Der Kernel ruft seine I/O Routinen auf und veranlasst zunächst die Erstellung, und danach die Ausführung des Kanalprogramms durch Kanal und Control Unit mittels eines Start Subchannel (SSCH) Maschinenbefehls. Die Control Unit führt die I/O Befehle (CCWs) der Reihe nach aus.

Der Abschluss der Kanalprogrammverarbeitung wird der CPU von der Control Unit mittels einer I/O Unterbrechung (Channel End Device End, CEDE) mitgeteilt.

Einfaches Plattenspeicher - Steuerprogramm

Dargestellt ist ein einfaches Kanalprogramm und seine CCWs für die Datenübertragung vom/zum Plattenspeicher, wie es in den S/370 Rechnern gebräuchlich war. Heutige Kanalprogramme sind deutlich komplexer.

3390 Plattenspeicher

Control Units entlasten die CPUs, indem der I/O Driver Code außerhalb der CPUs in den Control Units ausgeführt wird. Zum Betriebssystem gehören nur Skelette für einige wenige I/O Driver Routinen, z.B. je eine generische Routine für Plattenspeicher, Magnetbänder, Drucker und Netzanschlüsse. Die I/O Driver Routinen werden als "Channel Programs" bezeichnet, die jeweils aus einer Gruppe von Anweisungen, den "Channel Command Words" (CCW) bestehen.

Das Anwendungsprogramm ergänzt das Channel Programm um Daten wie Adresse und Länge des I/O Buffers im Hauptspeicher oder die logische Adresse des I/O Gerätes (das Channel Subsystem bildet die logische auf die physische I/O Adresse ab). Der Betriebssystem Kernel überträgt daraufhin den Channel Program Code an die Control Unit, wo er ausgeführt wird.

Über viele Jahre war IBM – als Erfinder der Festplattenspeicher Technologie - der führende Hersteller von magnetischen Festplattenspeichern. Während dieser Zeit hatten IBM Festplattenspeicher einen Durchmesser von 14 Zoll.

1993 wurde das letzte Modell dieser Art als **IBM 3390 Plattenspeicher** und der **IBM 3990 Control Unit** herausgebracht. Es hatte eine Speicherkapazität von 8,5 GByte. In der Folge wurde 5 ½ und 3 ¼ Zoll Festplatten eingesetzt.

Bis 1993 wurden für alle neuen Festplattenmodelle eigene Control Units und eigene Channel Programme entwickelt. Davon nahm man ab 1993 Abstand und standardisierte die Software Unterstützung auf das 3390 Modell.

Um dies zu erreichen, arbeitet der OS Kernel und die Control Unit mit der Illusion eines generischen 3390 Festplattenspeichers. Die Eigenschaften dieses physischen Plattenspeichers wurden für die Definition der logischen 3390 Plattenspeicher übernommen. Parameter wie Spuren pro Zylinder und Bytes pro Spur sind festgelegt, und sind wie bei allen 3390 Plattenspeichern identisch. Die Anzahl der Zylinder pro Plattenspeicher kann als Parameter definiert werden, woraus sich unterschiedliche Speicherkapazitäten ergeben.

Das Betriebssystem kennt nur 3390 Festplattten mit deren Struktur bezüglich Anzahl Zylinder, Anzahl Spuren, Bytes pro Spur usw. Das Nachfolgemodell des 3390 Plattenspeichers war der IBM **Enterprise Storage Server (ESS)**. Das ursprüngliche "Shark" Modell wurde später durch die "DS6000" und "DS8000" Enterprise Storage Server abgelöst.

Diese ESS benutzen bis zu 1024 Standard 3 ½ Zoll oder 2 ½ Zoll SCSI Festplatten mit bis zu je 600 GByte Speicher-kapazität sowie zwei 4-way PowerPC Multiprozessoren für die Emulation mehrerer 3990 Control Units, für die Emulation der angeschlossenen 3390 Plattenspeicher und für weitere fortschrittliche Funktionen, u.A. die Verwaltung sehr großer Plattenspeicher-Caches. Ein Enterprise Storage Server kann unterschiedliche Arten von Festplatten enthalten, mit unterschiedlicher Speicherkapazität und Struktur. Es ist die Aufgabe des Enterprise Storage Servers, die virtuellen 3390 Plattenspeicher auf die tatsächlich eingesetzten physischen Festplatten und deren Struktur abzubilden. Spezifisch haben heutige Festplatten eine größere Speicherkapazität als die virtuellen 3390 Plattenspeicher. Es werden deshalb immer mehrere virtuelle 3390 Platten auf einer physischen Festplatte emuliert.

Physical and Logical Volume

Beispiel:

Ein etwa 100 GByte großer 3 ½ Zoll Festplatte, die zehn Plattenspeicher vom Typ 3390 - 9 emuliert.

Emulierte 3390 Plattenspeicher werden als **Logical Volumes (LV)** bezeichnet. Sie existieren als zwei unterschiedliche standardisierte Größen, die als "Modell 3" und "Modell 9" bezeichnet werden. Die Spur- (track) Geometrie innerhalb einer Modellserie ist immer identisch.

Eine **3390-Modell 3** Plattenspeicher ist in 3339 Cylinder aufgeteilt, mit 15 Tracks pro Cylinder. Ein Track hat hierbei eine Kapazität von 56,664 Bytes, woraus sich eine Gesamtkapazität von 2.84 GByte für die Festplatte ergibt. Das **3390-Modell 9** hat die 3-fache Anzahl von Spuren (10 017) und damit die 3-fache Kapazität des Modell 3 (8,51 GByte). Auch hier sind 56,664 Bytes pro Spur vorhanden. Das z/OS Betriebssystem ist häufig auf Model 3 Platten installiert.

Tatsächlich hängt die effektive Kapazität von der Größe der Blocksize ab, mit der Data Sets angelegt (allocated) werden, und der Struktur der Data Sets. So können z.B. VSAM Data Sets maximal 2,3 GByte an Daten auf einer Modell 3 Festplatte speichern; der Rest wird für Verwaltungsinformation benötigt.

DASD Speicherkapazität der Modelle 3390

	3390-3	3390-9
Zylinder pro Plattenstapel	3 339	10 017
Spuren pro Zylinder	15	15
Bytes pro Spur	56 664	56 664
Bytes pro Zylinder	849 960	849 960
MByte pro Plattenstapel	2 838	8 514
4096 Byte Blocks pro Spur	12	12

Die hier wiedergegebenen Daten sind für das Allocate von Data Sets interessant. Beispielsweise sollte der Parameter **BLKSIZE** (siehe Tutorial 1a) so gewählt werden, dass es bei 56 664 Bytes/Spur möglichst wenig Verschnitt gibt. Bei der Optimierung hilft ein BLKSIZE Calculator, siehe http://webspace.webring.com/people/lp/programmingstuff/blksize.htm.

Es bietet sich das "half-track blocking" an: 2 Blöcke pro Spur. Eine Blockgröße von 27 998 Bytes (55 996 / 2 = 27 998) ermöglichst 2 Blöcke/Spur, oder eine Nutzung von 99 %. Eine Blockgröße von 28 000 Bytes gestattet nur einen Block pro Spur. Dies bedeutet einen Verschnitt von etwa 50 %.

Eine populäre Wahl ist, 349 logische Record zu je 80 Bytes in einen Block von 27920 Bytes zu packen.

RAID-System

Ein RAID-System (ursprünglich Redundant Array of Inexpensive Disks, heute Redundant Array of Independent Disks) dient zur Organisation mehrerer physischer Festplatten eines Computers zu einem logischen Laufwerk, das eine höhere Datensicherheit bei Ausfall einzelner Festplatten und/oder einen größeren Datendurchsatz erlaubt als eine physische Festplatte. Während die meisten in Computern verwendeten Techniken und Anwendungen darauf abzielen, Redundanzen (das Vorkommen doppelter Daten) zu vermeiden, werden bei RAID-Systemen redundante Informationen gezielt erzeugt, damit beim Ausfall einzelner Komponenten das RAID als Ganzes seine Funktionalität behält.

Der Begriff wurde von Patterson, Gibson und Katz 1987 an der University of California, Berkeley in ihrer Arbeit "A Case for Redundant Array of Inexpensive Disks (RAID)" zum ersten Mal verwendet. Darin wurde die Möglichkeit untersucht, kostengünstige Seagate Festplatten im Verbund als logisches Laufwerk zu betreiben, um die Kosten für einen großen (zum damaligen Zeitpunkt sehr teuren) 14 Zoll IBM Festplattenspeicher einzusparen. Dem gestiegenen Ausfallrisiko im Verbund sollte durch die Speicherung redundanter Daten begegnet werden, die einzelnen Anordnungen wurden als RAID-Level diskutiert.

Die weitere Entwicklung des RAID-Konzepts führte zunehmend zum Einsatz in Serveranwendungen, die den erhöhten Datendurchsatz und die Ausfallsicherheit nutzen. Der Aspekt der Kostenersparnis wurde dabei aufgegeben. Heute existiert meistens die Möglichkeit, in einem solchen System einzelne Festplatten im laufenden Betrieb zu wechseln.

Der ursprüngliche Vorschlag von Patterson, Gibson und Katz bestand darin, eine einzige 14 Zoll Plattedurch eine Gruppe (Array) kostengünstiger, aber weniger zuverlässiger Seagate 5,25-Zoll Platten zu ersetzen.

Die Idee ist, dass das Disk Array für das Betriebssystem wie eine einzige Platte aussieht.

Array of small Disks

RAID-Level

Der Betrieb eines RAID-Systems setzt mindestens zwei Festplatten voraus. Die Festplatten werden gemeinsam betrieben und bilden einen Verbund, der leistungsfähiger ist als die einzelnen Festplatten. Mit RAID-Systemen kann man folgende Vorteile erreichen:

- Erhöhung der Ausfallsicherheit (Redundanz)
- Steigerung der Daten-Transferraten (Leistung)
- Aufbau großer logischer Laufwerke
- Austausch von Festplatten und Erhöhung der Speicherkapazität während des Systembetriebes
- Kostenreduktion durch Einsatz mehrerer preiswerter Festplatten

Die genaue Art des Zusammenwirkens der Festplatten wird durch den RAID-Level spezifiziert. Die gebräuchlichsten RAID-Levels sind RAID 0, RAID 1, RAID 5, RAID 6 und RAID 10.

Aus Sicht des Benutzers, eines Anwendungsprogramms oder des Betriebssystems unterscheidet sich ein logisches RAID-Laufwerk nicht von einer einzelnen physischen Festplatte.

http://en.wikipedia.org/wiki/Standard_RAID_levels

RAID 0 bietet gesteigerte Transferraten, indem die beteiligten Festplatten in zusammenhängende Blöcke gleicher Größe (z.B. 16KB) in Streifen (eng. stripes) aufgeteilt werden, wobei jeder Streifen eines Datenblocks auf einer separaten Festplatte gespeichert wird. Diese Blöcke werden quasi im Reißverschlussverfahren zu einer großen logischen Festplatte angeordnet . Somit können Zugriffe auf allen Platten parallel durchgeführt werden (engl. striping, was "in Streifen zerlegen" bedeutet). Die Datendurchsatz-Steigerung (bei sequentiellen Zugriffen, aber besonders auch bei hinreichend hoher Nebenläufigkeit) beruht darauf, dass die notwendigen Festplatten-Zugriffe in höherem Maße parallel abgewickelt werden können.

Streng genommen handelt es sich bei RAID 0 nicht um ein wirkliches RAID, da es keine Redundanz gibt. Beim Ausfall einer Festplatte sind die Daten des gesamten RAID 0 Verbandes verloren.

RAID 1 ist der Verbund von mindestens 2 Festplatten. Ein RAID 1 speichert auf beiden Festplatten die gleichen Daten, auch als Spiegelung bezeichnet. Beim Ausfall einer Platte sind die Daten identisch auf der zweiten Festplatte vorhanden. Beim Spiegeln von Festplatten an einem Kanal spricht man von Disk Mirroring, beim Spiegeln an unabhängigen Kanälen von Disk Duplexing (zusätzliche Sicherheit).

Fällt eine der gespiegelten Platten aus, kann die andere weiterhin alle Daten liefern. Besonders für sicherheitskritische Echtzeitanwendungen ist das unverzichtbar. RAID 1 ist eine einfache und schnelle Lösung zur Datensicherheit und Datenverfügbarkeit, besonders geeignet für kleinere Nutzkapazitäten. Lediglich die Hälfte der Gesamtkapazität steht als nutzbarer Bereich zur Verfügung.

RAID 3 und 4

Wie bei RAID 0 werden die Daten auf den Festplatten verteilt. Auf einem Sicherheitslaufwerk werden Paritätsdaten abgelegt. Durch diese Parität stehen selbst bei einem Ausfall einer Festplatte alle Daten weiterhin zur Verfügung. Lediglich die Kapazität einer Festplatte geht für die Redundanz verloren. Bei einem RAID 3 oder 4 Verband mit 5 Festplatten stehen 80 Prozent der Gesamtkapazität als Nutzkapazität zur Verfügung.

Beim Schreiben kleiner Datenblöcke wird das Paritätslaufwerk sehr stark belastet was die Performance deutlich negativ beeinflusst. RAID 4 arbeitet im Gegensatz zu RAID 3 mit unabhängigen Datenpfaden für jedes Laufwerk. Dies bringt vor allem beim Schreiben und Lesen großer Dateien eine bessere Performance.

Anders als bei RAID 4 werden die Paritätsdaten Ap, Bp. Cp und Dp auf allen Festplatten im Verband gleichmäßig verteilt. Dies garantiert bei allen Zugriffen eine optimale Auslastung der Laufwerke. Selbst bei zufallsbedingten (random) Zugriffen, wie sie für ein multitasking/multiuser Betriebssystem typisch sind, kann somit eine optimale Performance erreicht werden. RAID 5 bietet beim Ausfall einer Festplatte die gleiche Sicherheit und Datenverfügbarkeit wie RAID 4.

In schreibintensiven Umgebungen mit kleinen, nicht zusammenhängenden Änderungen ist RAID 5 benachteiligt, da bei zufälligen Schreibzugriffen der Durchsatz aufgrund des zweiphasigen Schreibverfahrens deutlich abnimmt (an dieser Stelle wäre eine RAID-0+1-Konfiguration vorzuziehen).

Wenn bei RAID 5 eine Festplatte ausfällt, wird der laufende Betrieb dadurch zunächst nicht beeinträchtigt. Die fehlerhafte Festplatte muss baldigst durch eine neue Festplatte ersetzt werden. Nachdem dies geschehen ist, kann ein Unterprogramm des Enterprise Storage Servers den Inhalt der neue Platte aus den Inhalten der restlichen RAID 5 Platten automatisch generieren. Bis dies geschehen ist, ist die volle Ausfallsicherheit nicht mehr gewährleistet.

RAID 5 ist eine der kostengünstigsten Möglichkeiten, Daten auf mehreren Festplatten redundant zu speichern und dabei das Speichervolumen effizient zu nutzen.

RAID 6 funktioniert ähnlich wie RAID 5, verkraftet aber den gleichzeitigen Ausfall von bis zu zwei Festplatten. Insbesondere beim intensiven Einsatz hochkapazitiver Festplatten kann die Wiederherstellung der Redundanz nach einem Plattenausfall viele Stunden dauern. Während dieser Zeit besteht kein Schutz gegen einen weiteren Ausfall.

Im Gegensatz zu RAID 5 gibt es bei RAID 6 mehrere mögliche Implementierungsformen, die sich insbesondere in der Schreibleistung und dem Rechenaufwand unterscheiden, und von unterschiedlichen Herstellern unter dem Namen RAID 6 vertrieben werden. Im allgemeinen gilt: Bessere Schreibleistung wird durch erhöhten Rechenaufwand erkauft.

Im einfachsten Fall wird eine zusätzliche XOR-Operation über eine orthogonale Datenzeile berechnet. Auch die zweite Parität wird rotierend auf alle Platten verteilt. Eine andere RAID 6 Implementierung rechnet mit nur einer Datenzeile, produziert allerdings keine Paritätsbits, sondern einen Zusatzcode, der 2 Einzelbit-Fehler beheben kann. Das Verfahren ist rechnerisch aufwändiger.

Aus einer Kombination von RAID 0 (Performance) und RAID 1 (Datensicherheit) ist der RAID Level 10 entstanden. Raid 10 ist eine Kombination aus RAID 0 + 1. Dabei werden immer 2 x n Platten zu einem RAID 0 zusammen gefasst - und dann per RAID 1 miteinander verbunden. Dabei ist $n \ge 2$.

RAID 10 Verbände bieten optimale Performance bei optimaler Ausfallsicherheit. Wie bei RAID 0 wird die optimale Geschwindigkeit allerdings nur bei sequentiellen Zugriffen erreicht und wie bei RAID 1 gehen 50 Prozent der Gesamtkapazität für die Redundanz verloren.

Persistenz

Auf Festplatten abgelegte Daten haben den Vorteil, dass bei einem Stromausfall (oder beim Abschalten eines Rechners) Daten nicht verloren gehen.

Mit einem ausreichend hohem RAID Aufwand kann erreicht werden, dass Daten beliebige und auch sehr seltene Fehlerfälle intakt überstehen. Dieses Ziel wird in Mainframe Installationen häufig mit RAID 6 Systemen erreicht, die in zwei unterschiedlichen geografischen Lokationen gespiegelt werden. Eine moderne Mainframe Installation geht heute davon aus, dass RAID Daten beliebig hohe Sicherheitsanforderungen erfüllen und nie verloren gehen.

Derartig gespeicherte Daten werden als persistent bezeichnet. Daten im Hauptspeicher eines Rechners sind nicht persistent, da sie bei einem Stromausfall verloren gehen, oder bei einem Hardware oder Software Fehler beschädigt werden können.

Die persistente Speicherung von Daten ist besonders bei der Transaktionsverarbeitung ein wichtiges Kriterium.

Hot Plug

Unter Hot Plug versteht man den Austausch einer defekten Festplatte eines RAID Verbundes im laufenden Betrieb (oftmals auch als Hot Swap bezeichnet).

- Beim Hot Plug wird die Ersatzfestplatte im Betrieb manuell getauscht
- Während Hot Plug besteht weiterhin volle Datenverfügbarkeit
- Die Einbindung der Ersatzfestplatte geschieht automatisch durch das Hot Plug Programm

Input/Output Teil 4 Enterprise Storage Server

Plattenspeicher-Cache

Zugriffe zu einem Festplattenspeicher benötigen Millisekunden. Um die Zugriffseigenschaften zu verbessern, wird bei jedem Lesezugriff ein größerer Block an Daten (evtl. eine ganze Spur oder ein ganzer Zylinder) in einen Cache Speicher gelesen. Vor allem bei einer Folge von sequentiellen Zugriffen können diese dann aus dem Cache befriedigt werden

Ein Cache für Plattenspeicherdaten kann sich im Hauptspeicher (Buffer Pool bei Datenbanken), und/oder in der Steuereinheit (Enterprise Storage Server) und/oder auf dem Plattenspeicher selbst befinden.

Unter z/OS wird der Plattenspeicher Cache im Hauptspeicher meistens als "Buffer Pool" realisiert. Unabhängig davon unterhält der Enterprise Storage Server einen umfangreichen Plattenspeicher Cache. Auch die Elektronik eines Plattenspeichers unterhält heute in der Regel einen weiteren Cache.

Disk Cache

In der historischen Entwicklung wurden zuerst Control Units um einen Cache-Speicher erweitert. Dieser ermöglichte es ihnen, einen Teil der Lesezugriffe auf die physischen Platten zu vermeiden. Die ersten Control Unit Caches hatten Größen von nur 16 bis 32 MByte. Mit den Caches wurde es notwendig, Mikrocode zu entwickeln, der in der Control Unit ablief und eine effiziente Datenpufferung ermöglichte.

In den nächsten Schritten wurden die Caches grösser, und dann wurden mit dem Aufkommen von preisgünstig zu produzierenden 3 ½ Platten die großen 14 Zoll Platten ersetzt. Jetzt wurden auch die Datenstrukturen und Plattenformate wie Count-Key-Data als real existierende Formate aufgelöst und durch die Control Units emuliert. Diese Control Units hatten damit bereits eine Komplexität erreicht, die sie zu eigenständigen Systemen machte. Heute werden diese als Enterprise Storage Server implementiert.

Lesezugriffe können mit Hilfe eines Caches deutlich beschleunigt werden. Wünschenswert ist es, auch Schreibvorgänge zu beschleunigen, in dem Daten zunächst in den Cache, und dann asynchron auf die Platte geschrieben werden.

Dies ist grundsätzlich problematisch. Wenn ein Problem auftritt, ehe das Schreiben der Daten aus dem Cache auf den Plattenspeicher abgeschlossen ist, gehen die Daten verloren. Ein typisches Beispiel ist ein Stromausfall. Wenn zum Zeitpunkt eines Stromausfalls der Cache nicht vollständig geleert wurde, sind Daten verloren gegangen.

Als Lösung bildet man einen Teil des Enterprise Storage Server (ESS) Caches als **Non-Volatile Storage (NVS)** aus. Dies ist ein Halbleiterspeicher mit einer eigenen Batterie zur Stromversorgung. Letztere stellt sicher, dass bei einem Stromausfall (oder in anderen Fehlerfällen) die NVS Daten nicht verloren gehen. Weitere Einrichtungen stellen sicher, dass eine I/O Operation als abgeschlossen gelten kann, wenn die Daten im NVS gelandet sind. Der entgültige Datentransfer zum Plattenspeicher erfolgt dann asynchron und unbemerkt vom Betriebssystem.

Enterprise Storage Server

Früher waren Control Units getrennte physische Einheiten in ihren eigenen Gehäusen.

Heute werden mehrere Control Units und angeschlossene Plattenspeicher zu einem physischen "Enterprise Storage Server" (ESS) zusammengefasst, der auch die angeschlossenen Plattenspeicher enthält.

Der ESS emuliert mehrere logische Control Units, hat Anschlüsse für zahlreiche FICON Kanäle und bringt zahlreiche Plattenspeicher im gleichen Gehäuse unter.

Es können beliebig viele ESS angeschlossen werden.

z/Architecture Principles of Operation, SA22-7201

Aufbau eines Enterprise Storage Servers

Front end "Host Adapter" Anschlüsse für den Anschluss an FICON Kanäle Front End Schnittstellen **Host Adapter Der Enterprise Storage Server** Cache übernimmt die Funktion Non-Volatile meherer Control Units. Storage (NVS) **Back End Schnittstellen Device Adapter Back End Store** bis zu 1024 Festplatten Normale 3 ½ Zoll (oder 2 ½ Zoll) Festplatten, jede mit einem eigenen Festplatten Cache

Enterprise Storage Server

Im Wesentlichen besteht jeder Enterprise Storage Server aus vier Teilen:

- Front End, welches die Schnittstelle zu den Rechnern darstellt (Host Adapter). Beim Anschluss an System z Rechner sind dies Host Adapter für FICON-Kanäle. UNIX-Systeme verwenden Host Adapter für das Fibre Channel SCSI Protokoll.
- Ein oder (aus Zuverlässigkeitsgründen) **zwei Multiprozessoren plus Cache**, welcher aus zwei Teilen besteht: Einem Cache für Daten, die gelesen werden können, und einem Cache für Daten, die geschrieben werden sollen. Letzterer heißt Non-Volatile Storage (NVS) und bezeichnet damit einen Cache, der extra gegen Stromausfälle und andere Störfälle gesichert ist, z.B. durch eine Pufferung mit Batterien.
- Back-End-Schnittstellen (Device Adapter), welche bei den meisten heutigen Enterprise Storage Servern FC-AL (Fibre Channel Arbitrated Loop) Anschlüsse sind.
- Back End Store. Dieser besteht aus zahlreichen Festplatten und kann unterschiedlich sein. So bauen einige Hersteller SCSI-Platten ein, während andere Hersteller FATA oder SATA Disk Arrays bevorzugen. Jede der Platten verfügt noch einmal, ähnlich wie PC-Platten, über einen eigenen kleinen Cache.

Heutige Enterprise Storage Server besitzen sehr große Caches von z.B. 256 GByte. Der Non-Volatile Storage kann deutlich kleiner sein, da er nur zum vorübergehenden Zwischenspeichern der Schreibzugriffe benötigt wird. Zu schreibende Daten werden dann asynchron auf den Back End Store geschrieben, ohne dass die Anwendung davon etwas bemerkt.

Die bedeutensten Hersteller von Enterprise Storage Servern sind neben IBM die Firmen EMC, Hitachi, MaxData und StorageTek, die im internen Aufbau alle große Ähnlichkeiten haben. Als Beispiel wird im folgenden der IBM DS8700 Enterprise Storage Server beschrieben. In vielen Fällen setzen Mainframe Installationen Enterprise Storage Server anderer Hersteller ein; besonders Enterprise Storage Server der Firma EMC sind häufig anzutreffen.

IBM DS8700 Enterprise Storage Server

Zur Verbindung mit dem Host besitzt der DS8700 Enterprise Storage Server bis zu 32 Host Adapter (HA), die entweder je 4 FC-SCSI- Verbindungen oder je 4 FICON bzw. Fibre Channel Verbindungen nach aussen implementieren.

Intern besteht der Storage Processor aus 2 unabhängigen Rechnern (Cluster), die jeweils aus (bis zu 4) PowerPC Prozessoren, dem Cache Storage und dem Non-Volatile Storage bestehen. Der Non-Volatile-Cache wird für die Zwischenspeicherung von Schreiboperationen benutzt. Die Idee ist: Wenn Daten einmal im ESS angekommen sind, gelten sie als sicher (persistent). Die Anwendung muss nicht das Schreiben auf den Festplatte abwarten.

Die beiden Cluster emulieren mehrere 3390 Control Units. Sie verfügen über getrennte Stromversorgungen und verhalten sich wie zwei unabhängige Rechner in der gleichen Box, außer dass sie über ein internes Netzwerk miteinander in Verbindung stehen. Zum Back Store besitzt jeder Cluster 8 Device Adapter mit je 4 FC-AL Ports. Die Adapter arbeiten immer paarweise, und die Plattenstränge (Disk Arrays) oder *Ranks* sind über eine FC-AL Loop mit den Device Adaptern verbunden.

FC-AL stellt eine serielle Kreisverbindung (Loop) für SCSI-Platten dar. Es existieren 2 Lese- und 2 Schreibverbindungen, von denen jede mit 40 MByte/s arbeitet, was eine Gesamtkapazität von 160 MByte/s ergibt.

Es werden 300, 450 oder 600 GByte Festplatten eingesetzt. Alternativ kann ein Teil auch aus Solid State Drives (SSD) bestehen. SSDs sind sehr teuer, bewähren sich aber für I/O-intensive Workloads. Sie ermöglichen eine bis zu 100fache Verbesserung des Throughput und bis zu 10fache bessere Antwortzeit als mit 15K U/min rotierende Festplatten. Sie verbrauchen auch weniger Enerigie als rotierende Festplatten.

IBM DS8700 Enterprise Storage Server Beispiel

IBM DS8700 Enterprise Storage Server

Die obige Abbildung demonstriert die Gliederung der Ranks in einer DS8700 Loop.

Dargestellt ist ein DS8700 Enterprise Storage Server mit 2 Cluster Prozessoren, je 4 x SMP, PowerPC, je 128 GByte Hauptspeicher/Cache sowie 2 x 8 Device Adaptoren . Jeweils eine FC-AL Loop mit 64 Festplatten ist an 2 Device Adaptoren angeschlossen. Jede FC-AL Loop besteht aus 2 Lese- und zwei Schreibverbindungen.

Jede FC-AL Loop besteht aus 64 aktiven Festplatten, aufgeteilt in 8 Ranks zu je 8 Platten. Die Ranks können als RAID 5, RAID 6 oder RAID 10 konfiguriert werden. Ein RAID 5 Rank würde aus 7 Platten für die Daten und einer Platte für Parity bestehen. Zusätzlich zu den 64 aktiven Platten einer FC_AL Loop existieren 2 Reserveplatten (Spares), die im Fehlerfall automatisch aktiviert (zugeschaltet) werden können. Die FC-AL Loop enthält somit 8 x 8 = 64 + 2 = 66 Festplatten.

Alle Festplatten sind als Hot Plug Steckplatten ausgeführt. Während des laufenden Betriebs können Platten entfernt und neu zugesteckt werden.

In dem hier gezeigten Beispiel enthält der Enterprise Storage Server 8 x 64 = 512 aktive Festplatten. Manche Modelle verfügen über 1024 aktive Platten. Wenn alle Plattenplätze mit 600 GByte Festplatten bestückt sind, ergibt dies eine gesamte Speicherkapazität von 633 TByte.

Enterprise Storage Server

Consolidated Storage

In einigen Situationen ist es attraktiv, mehrere physische Rechner mit unterschiedlichen Architekturen (z.B. z/OS, AIX, Solaris, Linux) an einen gemeinsamen Enterprise Storage Server, z. B. eine IBM DS8700 anzuschließen. Die Verbindungen zwischen den Servern und dem (den) Enterprise Storage Server(n) erfolgen über ein Fibre Channel Storage Area Network (SAN). Mainframes werden über FICON Front End Host Adapter, Unix und Linux Rechner über FC-SCSI Front End Host Adapter angeschlossen.

Input/Output Teil 5 Datenarchivierung

Datenarchivierung

In der Wirtschaft und öffentlichen Verwaltung hat die Datenarchivierung eine große Bedeutung. Der Gesetzgeber verlangt für manche Daten eine Archivierungsdauer von 30 Jahren. Bei Versicherungen kann die Archivierungsdauer auch noch länger sein.

Gelegentlich werden CDs und DVDs für die Archivierung eingesetzt. Das Standard Archivierungsmedium sind jedoch Magnetbandkassetten (Cartridges).

Bei manchen archivierten Daten fordert der Gesetzgeber eine Garantie, dass Daten nicht nachträglich modifiziert worden sind. Magnetbandkassetten sind deshalb in zwei Ausführungen verfügbar:

- Read/Write Kassetten können mehrfach beschrieben werden. Daten können überschrieben werden.
- WORM (Write Once, Read Many) Kassetten können nur einmal beschrieben werden.

Ein in jede Kassette eingebauter Microprozessor stellt die Eigenschaften einer WORM Kassette sicher. Weitere technologische Eigenschaften garantieren, dass eine betrügerische Änderung von Daten in einer WORM Kassette unmöglich ist.

Magnetbandspeicher

Fast alle Mainframe Installationen verwenden Magnetbänder um weniger häufig gebrauchte Daten zu speichern, und/oder um Daten zu archivieren.

Auf Magnetbänder (Tapes) wird mit Hilfe von Robotern zugegriffen. Diese verfügen über eigene Control Units, die von z/OS angesteuert werden. Ein Magnetband-Roboter ist in der Lage, eine Magnetbandkassette aus einem Regal zu entnehmen und in eine Magnetband Lese-/Schreibstation einzulegen, um einen automatischen Zugriff zu ermöglichen. Der Umfang dieser Magnetbanddaten übertrifft den Umfang der Plattenspeicherdaten typischerweise um einen Faktor 10.

Eine typischerweise nochmals um einen Faktor 10 – 100 größere Datenmenge ist zu Archivierungszwecken ausgelagert.

Auch Magnetbandspeicher oder Magnetbandroboter werden über Control Units an den Mainframe Rechner angeschlossen.

IBM 3592 WORM and R/W Kassetten

Die IBM 3592 Magnetbandkassette (Cartridge) hat Abmessungen von 24.5 mm H x 109 mm B x 125 mm T und verwendet ein ½ Zoll breites Magnetband mit einer Länge von 825 Meter. Die Speicherkapazität beträgt bis zu 4 TByte. Mainframes benutzen Datenkomprimierung für die Magnetbandspeicherung, was die Speicherkapazität zusätzlich um einen Faktor 2 – 3 erhöht.

IBM garaniert eine Lebensdauer der Kasseten von 10 Jahren. 30 Jahre sind wahrscheinlich. Die meisten Unternehmen kopieren archivierte Magnetband-Daten viel häufiger um, um auf der sicheren Seite zu sein (z.B. alle 5 Jahre).

Der IBM System TS1130 Tape Drive (Magnetbandeinheit) liest und schreibt 3592 Kasseten mit einer Datenrate von 160 MByte/s.

IBM 3494 Tape Library

Früher hat ein menschlicher Operator die Magnetbandkassetten in eine Magnetbandeinheit eingelegt und wieder entfernt. Heute verwendet man hier Magnetbandroboter, auch als Tape Libraries bezeichnet. Eine Tape Library in einer Mainframe Installation kann viele Tausend Kassetten verwalten.

Die 3494 Enterprise Tape Library unterstützt ein Maximum von 6,240 Kassetten für eine Speicherkapazität von mehreren PetaBytes (Pbyte). Sie unterstützt bis zu 132 Tape Drives in einer System z Umgebung.

Der 3494 Cartridge Accessor mit dem dualen Gripper holt Kassetten aus einem Regal und legt sie in einen der Tape Drives ein.

Es können bis zu 265 Cartridge Exchanges/Stunde mit einem einzige Greifarm (Gripper), und bis zu 610 Exchanges/Stunde mit einem dualen Gripper und dualen aktiven Accessors durchgeführt werden.

Virtual-Tape-Library

Eine Virtual-Tape-Library (VTL, anderer Name Virtual I/O, VIO) ist ein Speicher auf Basis eines Festplatten Arrays, der nach außen hin eine Tape-Library emuliert.

Eine VTL stellt sich für angeschlossene Computer wie eine oder mehrere Tape-Librarys dar. Die Anzahl der Librarys und darin enthaltener Slots und Bandlaufwerke sind dabei frei konfigurierbar. Virtuelle Bänder können zumeist von der VTL direkt auf "echte" Bänder geschrieben werden, ohne dass die Backup-Software oder ein Server an diesem Vorgang beteiligt ist.

Magnetbandkassetten tolerieren nur eine begrenzte Anzahl von Zugriffen. Wenn überhaupt auf die Daten einer Magnetbandkassette zugegriffen wird, sind zahlreiche Zugriffe auf einzelne physische Datensätze oder Slots häufig die Folge. Eine VTL arbeitet so etwa wie ein mittels einer Festplatte implementierter Cache für eine Magnetbandkassette.

Weiterhin ist es möglich, Backup-To-Disk-Konzepte in bestehendene Datensicherungsumgebungen, die in der Regel auf Bandlaufwerken basieren, einzubinden. Ein Beispiel sind temporär genutzte Data Sets in der Stapelverarbeitung. JES nimmt hierfür in der Regel Magnetbandlaufwerke an.

Drucker Ausgabe

Mainframe Installationen haben sehr unterschiedliche Anforderungen bezüglich Printer I/O.

Die Annahme, dass mit wachsender Bildschirmausgabe und wachsender digitaler Speicherung von Dokumenten der Papierverbrauch rückläufig sein würde, hat sich fast nirgendwo bewahrheitet. Im Allgemeinen kann man davon ausgehen, dass der Papierverbrauch in Unternehmen und staatlichen Organisation Jahr für Jahr nach wie vor steigt.

Beispiele sind Kontoauszüge und Überweisungsbelege im Bankenbereich, Mitteilungen der staatlichen Rentenversicherung oder Abrechnungen von Krankenkassen. Derartige Dokumente werden teilweise auf dem Postweg in Briefumschlägen (Kuvert) versandt.

Drucker können wie Plattenspeicher über eine Printer-Control Unit und FICON Channel Kabel mit einer I/O Card eines Mainframe Systems verbunden werden. Mehrere Hersteller liefern derartige Produkte. Unter z/OS existiert ein generischer I/O Driver für die Drucker-Ansteuerung. Dieser überträgt ein entsprechendes Kanalprogramm an die Printer Control Unit.

Alternativ kann Print Output als Datei über einen Netzanschluss an einen getrennten Druck Server übergeben werden. Weitergehende Formattierungen erfolgen dezentral und unabhängig von z/OS.

Es existieren weitere exotische Ein/Ausgabegeräte. Ein Beispiel sind zentrale Scheck Lese Geräte für die automatische Verarbeitung von großen Mengen von Überweisungen und Bank-Schecks.

Input/Output Teil 6 Kommunikation

OSI – Protokollhierarchie

Um die Komplexität einer Netzwerkimplementierung besser verwalten zu können, hat man 1980 mit dem **Open System Interconnection (OSI) Modell** ein Referenzmodell für Netzwerkkommunikation definiert, Darin teilt man die Komponenten in 7 Schichten auf. Jede Schicht glaubt, Nachrichten direkt an die entsprechende Schicht des Partners zu senden. In Wirklichkeit werden Nachrichten an die darunterliegende Schicht weiter gegeben. Nur die beiden Komponenten der untersten Schicht kommunizieren in Wirklichkeit miteinander.

Netzwerkschichten und ihre Komponenten

OSI Model				
Layer		Protocol data unit (PDU)	Function ^[3]	Examples
Host layers	7. Application	Data	High-level APIs, including resource sharing, remote file access, directory services and virtual terminals	FTP, HTTP, SMTP, SSH, Telnet
	6. Presentation		Translation of data between a networking service and an application; including character encoding, data compression and encryption/decryption	CSS, GIF, HTML
	5. Session		Managing communication sessions, i.e. continuous exchange of information in the form of multiple back-and-forth transmissions between two nodes	PAP, RPC, SQL, TLS
	4. Transport	Segment (TCP) / Datagram (UDP)	Reliable transmission of data segments between points on a network, including segmentation, acknowledgement and multiplexing	NETBEUI, TCP, UDP
Media layers	3. Network	Packet	Structuring and managing a multi-node network, including addressing, routing and traffic control	AppleTalk, ICMP, IPsec, IPv4, IPv6
	2. Data link	Frame	Reliable transmission of data frames between two nodes connected by a physical layer	IEEE 802.2, L2TP, LLDP, MAC, PPP
	1. Physical	Bit	Transmission and reception of raw bit streams over a physical medium	DOCSIS, DSL, Ethernet physical layer, ISDN, USB

(https://en.wikipedia.org/wiki/OSI_model)

Die verschiedenen Protokolle und Dienste für die Netzwerkkommunikation lassen sich den einzelnen Schichten zuordnen. Innerhalb jeder Schicht tauschen die Teilnehmer die entsprechenden Protokoldaten aus. Dabei werden die schichtenspezifischen Protokoldaten dem Funktionsaufruf der darunterliegenden Schicht als Parameter mitgegeben und dort als Benutzerdaten mit den Protokoldaten dieser Schicht zu einem Datenblock zusammengefaßt.

OSI verlor die Schlacht um Marktanteile an TCP/IP. Mit ganz wenigen Ausnahmen wird kein Geld mehr in weitere OSI-Entwicklungen investiert. Das OSI Layer Referenzmodell wurde jedoch fortgeschrieben, um auch TCP/IP und SNA zu beschreiben. Dargestellt ist die Abbildung des OSI-Modells auf TCP/IP und SNA.

Das z/OS "Communication Server Subsystem" läuft in einem eigenen Address Space und unterstützt neben dem TCP/IP Stack einen vollständigen SNA Stack. Dieser wird heute benutzt, um SNA-Nachrichten in TCP/IP-Nachrichten zu verpacken und entpacken.

Sneakernet

Die Infrastruktur eines großen Unternehmens besteht neben dem Mainframe aus einer Vielzahl unterschiedlicher Rechner mit unterschiedlichen Betriebssystemen. Sehr häufig dienen die Ergebnisse auf einem Rechner als Input für den nächsten Rechner.

In der Vergangenheit war es üblich, die Ergebnisse eines Rechners in der Form von Magnetbändern oder Lochkarten zu Fuß zum nächsten Rechner zu tragen. Dies geschah durch einen menschlichen Operator, daher der Ausdruck "Sneakernet". Noch in den 90er Jahren wurden jeden Abend umfangreiche Daten, die im Werk Bremen der Firma Daimler Benz anfielen, in der Form von Magnetbändern in einen PKW geladen, um am nächsten Morgen im Werk Sindelfingen verarbeitet zu werden.

Andrew S. Tanenbaum: "Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway."

Amazon Snowball

Eine moderne Version des Sneakernet ist der **Import/Export Snowball** von Amazon. Für ihr **Cloud Angebot (Amazon Web Services)** ist es immer wieder notwendig, große Mengen von Daten zwischen dem Kunden und dem Cloud Anbieter zu transferrieren, z.B. beim Einrichten der Cloud und dem initailen Füllen mit den Kundendaten, oder im Falle eines Anbieters von Foto und Video Dienste, der täglich oder wöchentlich die großen Foto- oder Videodateien in die Cloud laden muss.

Für diese Zwecke ist eine DSL Datenrate von ca. 10 Mb/sec viel zu langsam und deshalb hat Amazon seine **Storage Appliance Snowball** erfunden.

Es ist eine Spezialbox mit mehrere Terabyte an Plattenplatz, die redundant ausgelagt sind und verfügt über mehrere Highspeed Interfaces für das Kopieren der Kundendaten auf die Box. Sie ist mit diversen Schutzmechanismen ausgestattet, so dass nur der Kunde und Amazon Web Services Zugriff auf die Daten auf den Platten haben

Der Kunde bestellt bei Amazon diese Storage Box, die dann wie ein Amazon Paket mit einem Paketdienst geliefert wird. Der Kunde erstellt einen entsprechenden Kopierjob, wird aufgefordert, die Box anzuschliessen und die Daten werden auf die Storagebox kopiert. Abschliessend wird ein Rücksendeaufkleber angebracht und der Kunde bringt die Box zu seinem Paketdienst oder läßt sie abholen.

Amazon Simple Storage Services (Amazon S3)

Input/Output Teil 7 Weiterführende Information

Life Demo eines Festplattenspeicher Zugriffsarms

http://www.youtube.com/watch?v=L0nbo1VOF4M

Ein sehenswertes Video demonstriert ein altes Rechenzentrum in den 90er Jahren

http://www.youtube.com/watch?v=Cwj6pfhWBps&feature=related

In 1992 IBM released the 3495 Tape Library using a bright yellow robot which this video shows in great detail. This is a great look back to technology in the early 1990s.

http://www.youtube.com/watch?v=GwMn7YpF8r8&feature=fvwrel

Eine ähnliche Demo mit der Ultrium Tape Unit wird gezeigt in

http://www.youtube.com/watch?v=INa_D1HIjww&feature=related

Youtube Video zu den Vorteilen eines Storage Area Network:

http://www.youtube.com/watch?v=KjggHyIfGL4

91

Youtube Video zum Thema IBM Impact Printer circa 1990

http://www.youtube.com/watch?v=kEWcvmUluyE

IBM war Marktführer mit mechanischen High Speed Druckern der Serien 1403 und 3203 von 1959 bis in die 1990's, see also

http://www.youtube.com/watch?v=Cwj6pfhWBps