28.04.2021 NLPIE

- Vectors based on term-frequency (counts of words in a corpus wrt to each document)
- Vectors based on Positive Pointwise Mutual Information (PPMI)

Chararteristics:

- Sparse vectors (large no. of zero entries)
- Large size vectors (length of vector is equal to vocabulary size |V|)
- However, we can reduce the size using dimensionality reduction techniques such as PCA, SVD,etc

Word2Vec

- uses a technique called as skip gram
- negative sampling

Aim: Instead of counting or calculating some values the values, train a classifier.

Task: Prediction - Is a target word t is likely to show up near the context c.

However, we skip the prediction and te weights of the learned classifier will be used as embeddings.

For a classifier, we require a supervised or labelled training data.

The running text from the corpus can be coonsidered as supervised training data.

Skip gram follows the steps as:

- 1) Treat the target word t and its neighbouring context c as positive sample.
- 2) Randomly use the other words in the vocab to obtain the negative samples.
- 3) Train the classifier such as logistic regression.
- 4) Use the regression weights as embeddings.

The Classifier:

Train classifier such that the tuple (t,c), generates the probabilities as

$$P(+ | t,c)$$

 $P(- | t,c) = 1 - P(+ | t,c)$

A target word is likely to appear near the context, if its embedding is similar to the context embedding.

Similarity(t,c) == t . c (dot product) // between - infinity and + infinity

We bound this similarity using the logistic function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$P(+|t,c) = \frac{1}{1+e^{-t\cdot c}}$$

 $P(-|t,c) = 1-P(+|t,c)$

せ・と =せい・とい十七、必くっ t- tekca t1/t2 | ..] . |

positive examples +

negative examples -

	negative examples			
c	t	c	t	c
tablespoon	apricot	aardvark	apricot	seven
of	apricot	my	apricot	forever
jam	apricot	where	apricot	dear
a	apricot	coaxial	apricot	if
	of jam	tablespoon apricot apricot jam apricot	t c tablespoon apricot aardvark of apricot my jam apricot where	t c t tablespoon apricot aardvark apricot of apricot my apricot jam apricot where apricot

 $= \frac{e^{-t \cdot c}}{1 + e^{-t \cdot c}}$

$$P(+|t,c_{1:k}) = \prod_{i=1}^{k} \frac{1}{1+e^{-t \cdot c_i}}$$
$$\log P(+|t,c_{1:k}) = \sum_{i=1}^{k} \log \frac{1}{1+e^{-t \cdot c_i}}$$

Since all the content nords of target word are independent of each other we can multiply the probabilities.

$$L(\theta) = \sum_{(t,c)\in +} \log P(+|t,c) + \sum_{(t,c)\in -} \log P(-|t,c)$$

While training

Goal:

- 1) Maximize the loss of positve samples.
- 2) Minimize the loss of negative samples.

Optimizer like gradient descent may be used to optimize the weights or specifically, the randomly generated embeddings.