Lehrstuhl für STEUERUNGS-UND REGELUNGSTECHNIK

Technische Universität München Prof. Dr.-Ing./Univ. Tokio Martin Buss

OPTIMIERUNGSVERFAHREN IN DER AUTOMATISIERUNGSTECHNIK

Übung 1: Unrestringierte Minimierung

1. Aufgabe

Der Verlauf der Funktion $f(x)=-x^2e^{-x^2}\,,\,x>0$, wird in der folgenden Skizze abgebildet.

- 1.1 Charakterisieren Sie eventuelle Extrema anhand der Skizze.
- 1.2 Bestimmen Sie das Minimum durch Auswertung der Optimalitätsbedingungen.

2. Aufgabe

Gegeben sind die folgenden zwei Funktionen:

a)
$$f(\underline{x}) = -(x_1^2 - 4x_1 + 9x_2^2 - 18x_2 - 7), \underline{x} \in \mathbb{R}^2$$

b)
$$f(\underline{x}) = x_1^2 - 2x_2^2 + x_1x_2$$

- 2.1 Geben Sie Gleichungen in der Form $x_2=g(x_1)$ für die Isokosten der jeweiligen Gütefunktionen an.
- 2.2 Charakterisieren Sie Extrema und berechnen Sie die Minima/Maxima durch Auswertung der Optimalitätsbedingungen.

3. Aufgabe (Optional)

Zeigen Sie, dass für das Minimum \hat{x} der quadratischen Interpolation $\hat{f} = k_2 x^2 + k_1 x + k_0$ gilt:

$$\hat{x}_1(f(a), f(b), f'(a)) = \frac{1}{2} \frac{2a(f(a) - f(b)) + f'(a)(b^2 - a^2)}{(b - a)f'(a) + f(a) - f(b)}$$