Problem 1: Consider
$$\int_{0}^{\infty} \frac{1-\cos(x)}{x^2} dx$$
.

Now, $\int_{0}^{T} \frac{1 - \cos(z)}{z^{2}} dz = \int_{0}^{T} \frac{1 - \frac{e^{iz} + e^{-iz}}{2}}{z^{2}} dz = -\left[\int_{0}^{T} \frac{e^{iz} - 1}{2z^{2}} dz + \int_{0}^{T} \frac{e^{-iz} - 1}{2z^{2}} dz\right].$ of the functions under the integrands are holomorphic, except at the origin. Using a *u*-substitution, we get $\int_{0}^{T} \frac{e^{-iz}-1}{2z^2} dz = -\int_{x}^{T} \frac{e^{iz}-1}{2z^2} dz$. So,

$$\int_{0}^{T} \frac{1 - \cos(z)}{z^{2}} dz = -\left[\int_{0}^{T} \frac{e^{iz} - 1}{2z^{2}} dz - \int_{0}^{-T} \frac{e^{iz} - 1}{2z^{2}} dz dz \right]$$

$$= \frac{1}{2} \left[\int_{0}^{T} \frac{1 - e^{iz}}{z^{2}} dz - \int_{0}^{-T} \frac{1 - e^{iz}}{z^{2}} dz \right]$$

$$= \frac{1}{2} \left[\int_{-T}^{T} \frac{1 - e^{iz}}{z^{2}} dz \right]$$

Problem 2:

Let $\Omega \subset \mathbb{C}$ be open and simply connected, $f \in \mathcal{O}(\Omega)$, f is always nonzero,

There is an $h \in \mathcal{O}(\Omega)$ such that $e^h = f$. Define $\tilde{h} = h/k$. Then:

$$e^{\tilde{h}k} = f$$

$$e^{\tilde{h}+\tilde{h}+\tilde{h}...+\tilde{h}} = f$$

$$e^{\tilde{h}}e^{\tilde{h}}e^{\tilde{h}}...e^{\tilde{h}} = f$$

Problem 3:

Consider $\sqrt[\sqrt{-1}]{-1} = (-1)^{sqrt-1} = (e)^{\ln(-1)\sqrt{-1}} = e^{\ln(-1)e^{\frac{1}{2}\ln(-1)}}$. As discussed in class, the logarithms of -1 are $(2k+1)\pi i$ for each $k \in \mathbb{Z}$. That is, the possible values of $\sqrt[4]{-1}$ are given by

$$e^{((2k+1)\pi i)e^{\frac{1}{2}((2j+1)\pi i)}}$$

for any given $k, j \in \mathbb{Z}$.

Yet, this is an intractible mess. Consider that $e^{\frac{1}{2}((2j+1)\pi i)} = e^{j\pi i + \frac{1}{2}\pi i} =$ $e^{j\pi i}e^{\frac{1}{2}\pi i}=(-1)^{j}e^{\frac{1}{2}\pi i}$. Thus, our original expression becomes

$$e^{((2k+1)\pi i)(-1)^j e^{\frac{1}{2}\pi i}}$$

To clean this up even more, $e^{\frac{1}{2}\pi i} = i$. So, we have our original expression as

$$e^{((2k+1)\pi i)(-1)^j i} = e^{-((2k+1)\pi)(-1)^j}$$

Now, it is somewhat clear that $\{e^{-((2k+1)\pi)(-1)^j}: j, k \in \mathbb{Z}\} = \{e^{\pm((2k+1)\pi)}: j \in \mathbb{Z}\}$ $k \in \mathbb{Z}$ = { $e^{-((2k+1)\pi)} : k \in \mathbb{Z}$ }.

So, the set of values $\sqrt[n-1]{-1}$ are $\{e^{-((2k+1)\pi)}: k \in \mathbb{Z}\}.$

And yes, taking k = -1 yields a value of e^{π} , which is "about 23".

Problem 4:

Let $\ln(z)$ be the principal branch of the logarithm of z, and let z_1, z_2 have

positive real component. Then $e^{\ln(z_1) + \ln(z_2)} = e^{\ln(z_1)} e^{\ln(z_2)} = z_1 z_2 = e^{\ln(z_1 z_2)}$.

Now, e^{a+bi} is one-to-one given that $a \in \mathbb{R}$ and $b \in (-\pi, \pi)$. Because we're working in the principal branch and the real components of z_1 and z_2 are real, something. Thus, $\ln(z_1) + \ln(z_2) = \ln(z_1 z_2)$.

Problem 5:

Consider $\sin(\frac{1}{z})$. We know that $\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$. So, where defined, $\sin(\frac{1}{z}) = \sum_{n=0}^{\infty} (-1)^n \frac{\frac{1}{z}^{2n+1}}{\frac{1}{(2n+1)!}} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{z^{2n+1}(2n+1)!}.$

That is, we have found a Laurent series for $\sin(\frac{1}{z})$ about 0. We are done.

Problem 6:

Problem 7: