PTC3360 - Introdução a Redes e Comunicações

Rádio-enlaces - Parte I

EPUSP

Setembro 2025

(EPUSP) Setembro 2025 1 / 15

- Redes de comunicação
- 2 Introdução às camadas superiores
- Camada de enlace e física
 - Introdução
 - Controle de acesso ao canal compartilhado
 - Endereçamento MAC e switches
 - Camada física: meios de transmissão
 - Rádio-enlaces

(EPUSP) Setembro 2025 3 / 15

- Redes de comunicação
- Introdução às camadas superiores
- Camada de enlace e física
 - Introdução
 - Controle de acesso ao canal compartilhado
 - Endereçamento MAC e switches
 - Camada física: meios de transmissão
 - Rádio-enlaces

(EPUSP) Setembro 2025 4 / 15

- Redes de comunicação
- Introdução às camadas superiores
- Camada de enlace e física
 - Introdução
 - Controle de acesso ao canal compartilhado
 - Endereçamento MAC e switches
 - Camada física: meios de transmissão
 - Rádio-enlaces

(EPUSP) Setembro 2025 5 / 15

- Redes de comunicação
- Introdução às camadas superiores
- Camada de enlace e física
 - Introdução
 - Controle de acesso ao canal compartilhado
 - Endereçamento MAC e switches
 - Camada física: meios de transmissão
 - Rádio-enlaces

(EPUSP) Setembro 2025 6 / 15

- Redes de comunicação
- 2 Introdução às camadas superiores
- Camada de enlace e física
 - Introdução
 - Controle de acesso ao canal compartilhado
 - Endereçamento MAC e switches
 - Camada física: meios de transmissão
 - Rádio-enlaces

(EPUSP) Setembro 2025 7 / 15

Irradiação em antenas

Potência eletromagnética irradiada

Potência irradiada média (saída de energia por tempo) através de uma superfície S:

$$P = \int_{S} \mathbf{N} \cdot \mathbf{dS},$$

8 / 15

sendo N o vetor de Poynting médio.

 $m{N}$ pode ser interpretado como a densidade de potência irradiada (W/m^2)

(EPUSP) Setembro 2025

Lembrando das coordenadas esféricas...

(EPUSP) Setembro 2025 9 / 15

Antenas

Antena ideal (sem perdas)

Antena: dispositivo que visa irradiar a potência injetada. Idealmente, a potência irradiada P é igual à injetada. Não há dissipação em calor.

Exemplo: antena ideal isotrópica

É uma antena ideal que gera densidade de potência média $oldsymbol{N}$ com direção radial e de mesma intensidade em todas as direções:

 $N = N_r u_r$. A uma distância r da antena:

$$N_r = \frac{P}{4\pi r^2} \; \mathrm{W/m}^2$$

(EPUSP) Setembro 2025 10 / 15

Diretividade

Diretividade

Mede como a densidade de potência irradiada se distribui em função de (θ,ϕ) . Toma como referência antena isotrópica irradiando a mesma potência P e considera as densidades à mesma distância r. Na direção dada pelo ângulos θ e ϕ ,

$$D(\theta,\phi) = \frac{N_r}{N_r \text{ de antena isotrópica}} = \frac{4\pi r^2 N_r}{P}$$

Note que:

- **1** Para antena isotrópica $D(\theta, \phi) \equiv 1$
- 2 Para antena não isotrópica, $D(\theta,\phi)>1$ em algumas direções e $D(\theta,\phi)<1$ em outras já que a potência irradiada P é sempre a mesma.

(EPUSP) Setembro 2025

11 / 15

Exemplo

Exemplo: Diretividade do dipolo de meio comprimento de onda

Para um dipolo de comprimento $\lambda/2$ com alimentação central, pode-se mostrar que o módulo da densidade de potência a uma distância r é dada por [Wentworth, 2006, p.251]

$$N_r = \frac{\eta}{4} \left[\frac{I_0}{\pi r} \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} \right]^2$$

sendo I_0 o valor eficaz da corrente senoidal de entrada e η a impedância intrínseca do meio ($\eta\approx 120\pi~\Omega$ para o ar). Além disso, a potência média irradiada por ela é $P\approx 73,\!2I_0^2.$

Determine a diretividade dessa antena em função de θ e ϕ e seu gráfico. Qual o valor e direção de máximo?

(EPUSP) Setembro 2025

12 / 15

Exemplo - Gráficos feitos no Colab

13 / 15

(EPUSP) Setembro 2025

Exemplo: diagramas de $D(\theta,\phi)/D_{max}$ de dipolos

Dipolos

- $\bullet \ D(\theta,\phi)$ não depende de ϕ
- São antenas onidirecionais: num plano (azimutal) radiam igualmente em todas as direções

(EPUSP) Setembro 2025

Referências

Wentworth, S. (2006). Fundamentos de Eletromagnetismo: Com Aplicações em Engenharia. LTC.

(EPUSP) Setembro 2025 15 / 15