Physique des particules – L3

TD 3

Exercice 1

Représenter les deux chronologies possibles pour l'évènement décrit par le diagramme de Feynman ci-dessus. Appliquer le même raisonnement qu'en cours pour calculer l'élément de matrice invariant de Lorentz associé à ce diagramme. ¹

Exercice 2

1. En utilisant les relations de commutation entre les opérateurs position et impulsion, montrer que

$$\left[\hat{L}_x, \hat{L}_y\right] = i\hat{L}_z, \quad \left[\hat{L}_y, \hat{L}_z\right] = i\hat{L}_x, \quad \left[\hat{L}_z, \hat{L}_x\right] = i\hat{L}_y.$$
 (1)

2. En déduire

$$\left[\hat{L}^2, \hat{L}_x\right] = \left[\hat{L}^2, \hat{L}_y\right] = \left[\hat{L}^2, \hat{L}_z\right] = 0.$$
 (2)

3. Montrer que, si l'on pose $\hat{L}_{\pm} = \hat{L}_x \pm \mathrm{i}\hat{L}_y$, on a

$$\left[\hat{L}_z, \hat{L}_{\pm}\right] = \pm \hat{L}_{\pm}, \quad \left[\hat{L}_+, \hat{L}_-\right] = 2\hat{L}_z. \tag{3}$$

4. Montrer que

$$\hat{L}^2 = \hat{L}_- \hat{L}_+ + \hat{L}_z + \hat{L}_z^2. \tag{4}$$

^{1.} Cet exercice est adapté de l'exercice 5.1 du livre *Modern Particle Physics* de Mark Thomson, la figure correspond à la figure 5.5. Les exercices 2 et 4 du présent TD sont adaptés respectivement des exercices 2.15 et 2.16 du même ouvrage.

Exercice 3 : Représentations irréductibles de dimension finie sur \mathbb{C} de $\mathfrak{sl}(2,\mathbb{C})$.

Soit $\{h, e, f\}$ une base d'un \mathbb{C} -espace vectoriel \mathfrak{g} de dimension 3. On définit une opération bilinéaire sur \mathfrak{g} que l'on nomme crochet de Lie ou commutateur et que l'on note $[\cdot, \cdot]$ par :

$$[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h$$
 (5)

et

$$\forall (x,y) \in \mathfrak{g}^2, \quad [x,y] = -[y,x] . \tag{6}$$

On peut montrer que le crochet de Lie ainsi défini vérifie

$$\forall (x, y, z) \in \mathfrak{g}^3, \quad [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.$$
 (7)

Un espace vectoriel muni d'une opération bilinéaire vérifiant (6) et (7) est appelé algèbre de Lie. On s'intéresse ici à l'algèbre de Lie $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$.

On suppose qu'il existe un autre \mathbb{C} -espace vectoriel V de dimension finie $p \in \mathbb{N}^*$ et une application linéaire $\phi : \mathfrak{g} \to \operatorname{End}(V)$ qui vérifie

$$\forall (x,y) \in \mathfrak{g}^2, \quad \phi([x,y]) = \phi(x) \circ \phi(y) - \phi(y) \circ \phi(x) . \tag{8}$$

Un tel couple (V, ϕ) est appelé représentation de dimension p de \mathfrak{g} . On suppose enfin que la représentation est irréductible : si W est un sous-espace vectoriel de V invariant sous ϕ (i.e. $\forall x \in \mathfrak{g}, \phi(x)(W) \subset W$) alors $W = \{0\}$ ou W = V.

- 1. Soit $v \in V$ un vecteur propre pour $\phi(h) : \exists \lambda \in \mathbb{C}, \phi(h)(v) = \lambda v$. Montrer que, s'ils sont non nuls, $\phi(e)(v)$ et $\phi(f)(v)$ sont des vecteurs propres de $\phi(h)$ et déterminer les valeurs propres associées.
- 2. Montrer qu'il existe un vecteur propre v_0 pour $\phi(h)$ (valeur propre λ) tel que $\phi(f)(v_0) = 0$ et qu'il existe un entier $n \leq p-1$ tel que $\phi(e)^{(n+1)}(v_0) = 0$ mais $\phi(e)^{(n)}(v_0) \neq 0$. Pour $k \in \{0, \dots, n\}$ on pose $v_k = \phi(e)^{(k)}(v_0)$.
- 3. Montrer que

$$\forall k \in \{1, \dots, n\}, \quad \phi(f)(v_k) = k(1 - \lambda - k)v_{k-1}. \tag{9}$$

- 4. En déduire que n = p 1.
- 5. Calculer λ .
- 6. Montrer que

$$\phi(f) \circ \phi(e) + \frac{\phi(h)}{2} + \frac{\phi(h)^{(2)}}{4} = \frac{(p-1)(p+1)}{4} \operatorname{Id}_V.$$
 (10)

En mécanique quantique, des représentations de cette algèbre de Lie apparaissent naturellement lorsque l'on s'intéresse au moment angulaire d'une particule. Le spin $l \in \mathbb{N}/2$ est alors défini par p = 2l + 1.

7. Expliciter les éléments de \mathfrak{g} auxquels correspondent $\hat{L}_x, \hat{L}_y, \hat{L}_z, \hat{L}_+, \hat{L}_-$.

8. Trouver des coefficients $\{c_k \in \mathbb{C}^* | 0 \leq k \leq 2l \}$ tels que, si l'on définit, pour $m \in \{-l, -l+1, \cdots, l\}, |l, m\rangle = c_{l+m}v_{l+m} \in V$, on ait

$$\hat{L}_{+}|l,m\rangle = \sqrt{l(l+1) - m(m+1)}|l,m+1\rangle , \qquad (11)$$

$$\hat{L}_{-}|l,m\rangle = \sqrt{l(l+1) - (m-1)m}|l,m-1\rangle$$
 (12)

9. Quelle est l'interprétation de l'égalité (10) en mécanique quantique?

Exercice 4

On rappelle l'expression des matrices de Pauli

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (13)

Calculer $[\sigma_i, \sigma_j]$ et en déduire qu'elles permettent de définir une représentation de spin 1/2 de l'algèbre $\mathfrak{sl}(2, \mathbb{C})$.