Curs 4

Amintiri - Termeni (expresii)

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Definiție

Mulţimea S-sortată a termenilor cu variabile din X,

$$T_{\Sigma}(X)$$
,

este cea mai mică mulțime de șiruri finite peste alfabetul

$$L = \bigcup_{s \in S} X_s \cup \bigcup_{w,s} \Sigma_{w,s} \cup \{(,)\} \cup \{,\}$$

care verifică:

- **2** Dacă $\sigma : \to s$ în Σ , atunci $\sigma \in T_{\Sigma}(X)_s$,
- 3 Dacă $\sigma: s_1 \dots s_n \to s$ în Σ și $t_i \in T_{\Sigma}(X)_{s_i}$, or. $1 \le i \le n$, atunci $\sigma(t_1, \dots, t_n) \in T_{\Sigma}(X)_s$.
- \Box $t \in T_{\Sigma}(X)$ se numește termen (expresie).
- $\square \ T_{\Sigma} = T_{\Sigma}(\emptyset)$

Amintiri - Inducția pe termeni

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Fie P o proprietate astfel încât:

□ pasul iniţial:

$$P(x) = true$$
, or. $x \in X$, $P(\sigma) = true$, or. $\sigma : \rightarrow s$.

□ pasul de inducție:

pt. or.
$$\sigma: s_1 \dots s_n \to s$$
 și or. $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$, dacă $\mathbf{P}(t_1) = \dots = \mathbf{P}(t_n) = true$, atunci $\mathbf{P}(\sigma(t_1, \dots, t_n)) = true$.

Atunci P(t) = true, oricare $t \in T_{\Sigma}(X)$.

Amintiri - Algebra termenilor

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Definiție

Mulțimea S-sortată a termenilor $T_{\Sigma}(X)$ este o (S, Σ) -algebră, numită algebra termenilor cu variabile din X și notată tot $T_{\Sigma}(X)$, cu operațiile definite astfel:

 \square pt. or. $\sigma : \rightarrow s$ din Σ , operația corespunzătoare este

$$T_{\sigma}:=\sigma\in T_{\Sigma}(X)_s$$

 \square pt. or. $\sigma: s_1 \dots s_n \to s$ din Σ , operația corespunzătoare este

$$T_{\sigma}: T_{\Sigma}(X)_{s_1...s_n} \to T_{\Sigma}(X)_s$$

 $T_{\sigma}(t_1, \ldots, t_n) := \sigma(t_1, \ldots, t_n)$

or.
$$t_1 \in T_{\Sigma}(X)_{s_1}, \ldots, t_n \in T_{\Sigma}(X)_{s_n}$$
.

 \Box T_{Σ} algebra termenilor fără variabile $(X = \emptyset)$

Amintiri - Algebra inițială

Definiție

 $\mathcal I$ este (S,Σ) -algebră inițială dacă pentru orice (S,Σ) -algebră $\mathcal B$ există un unic morfism $f:\mathcal I\to\mathcal B$.

Corolar

 T_{Σ} este (S, Σ) -algebra inițială.

Cuprins

1 Algebre libere

2 Congruențe

Algebre libere

Algebră liberă

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Definiție

O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ este liber generată de X dacă

Algebră liberă

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Definiție

- O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ este liber generată de X dacă
 - \square $X \subseteq A_S$, i.e. exista funcția S-sortată incluziune a lui X în A_S $i_A: X \hookrightarrow A_S$,

Algebră liberă

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Definiție

- O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ este liber generată de X dacă
 - \square $X \subseteq A_S$, i.e. exista funcția S-sortată incluziune a lui X în A_S $i_A: X \hookrightarrow A_S$,
 - □ pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$ și orice funcție S-sortată $f: X \to B_S$, există un unic (S, Σ) -morfism $\tilde{f}: \mathcal{A} \to \mathcal{B}$ astfel încât

$$i_A$$
; $\tilde{f} = f$.

Teoremă

Dacă \mathcal{A} și \mathcal{B} sunt liber generate de X, atunci $\mathcal{A}\simeq\mathcal{B}.$

Teoremă

Dacă \mathcal{A} și \mathcal{B} sunt liber generate de X, atunci $\mathcal{A} \simeq \mathcal{B}$.

Demonstrație

- □ Fie $\mathcal{A} = (A_S, A_Σ)$ și $\mathcal{B} = (B_S, B_Σ)$ două (S, Σ)-algebre liber generate de X.
- □ Notăm cu $i_A: X \hookrightarrow A_S$ și $i_B: X \hookrightarrow B_S$ funcțiile S-sortate incluziune ale lui X în A_S și, respectiv, B_S .
- □ Demonstraţia are patru paşi:

Demonstrație (cont.)

- Deoarece A este liber generată de X, există un unic (S, Σ) -morfism $f: A \to \mathcal{B}$ astfel încât i_A ; $f = i_B$.
- Similar, deoarece $\mathcal B$ este liber generată de X, există un unic (S,Σ) -morfism $g:\mathcal B\to\mathcal A$ astfel încât $i_B;g=i_A$.
- Avem i_A ; $(f;g) = (i_A;f)$; $g = i_B$; $g = i_A$ și i_A ; $1_A = i_A$. Cum A este liber generată de X, morfismele f; g și 1_A sunt unice cu proprietatea de mai sus, deci f; $g = 1_A$.
- Avem i_B ; $(g; f) = (i_B; g)$; $f = i_A$; $f = i_B$ \S i i_B ; $1_B = i_B$. Cum \mathcal{B} este liber generată de X, obținem că g; $f = 1_{\mathcal{B}}$.

Din egalitațile obținute la 3 și 4, deducem că f și g sunt izomorfisme.

Evaluarea termenilor în algebre

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Teoremă

Fie $\mathcal{B}=(\mathcal{B}_S,\mathcal{B}_\Sigma)$ o (S,Σ) -algebră. Orice funcție S-sortată

$$e: X \rightarrow B_S$$

se extinde unic la un (S, Σ) -morfism

$$\tilde{e}: T_{\Sigma}(X) \to \mathcal{B}.$$

- □ e dă interpretarea, evaluarea variabilelor în mulțimi S-sortate.
- ☐ ẽ dă interpretarea, evaluarea termenilor în algebre.

Demonstrație.

Fie \mathcal{B} o (S,Σ) -algebră și $e:X\to B_S$ o funcție S-sortată. Demonstrăm că există un unic morfism $\tilde{e}:T_\Sigma(X)\to\mathcal{B}$ astfel încât $\tilde{e}_s(x)=e_s(x)$, or. $x\in X_s$.

Existența. Definim $\tilde{e}: T_{\Sigma}(X) \to \mathcal{B}$ prin inducție pe termeni:

$$(\mathbf{P}(t) = "\tilde{e}(t) \text{ este definit"}).$$

- pasul inițial:
 - \square dacă $x \in X_s$, atunci $\tilde{e}_s(x) := e_s(x)$,
 - \Box dacă σ :→ s ∈ Σ , atunci $\tilde{e}_s(\sigma)$:= B_{σ} .
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$ astfel încât $\tilde{e}_{s_1}(t_1), \dots, \tilde{e}_{s_n}(t_n)$ definite, atunci $\tilde{e}_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(\tilde{e}_{s_1}(t_1), \dots, \tilde{e}_{s_n}(t_n))$.

Conform principiului inducției pe termeni, $\tilde{e}(t)$ este definit pentru orice $t \in T_{\Sigma}(X)$. Evident, $\tilde{e}_s(x) = e_s(x)$, or. $x \in X_s$.

Mai trebuie arătat că \tilde{e} este morfism - exercițiu!

Demonstrație. (cont.)

Unicitatea. Fie $g: T_{\Sigma}(X) \to \mathcal{B}$ un morfism astfel încât $g_s(x) = e_s(x)$, or. $x \in X_s$. Demonstrăm că $g = \tilde{e}$ prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = \tilde{e}_s(t)").$$

- pasul iniţial:
 - \square dacă $x \in X_s$, atunci $g_s(x) = e_s(x) = \tilde{e}_s(x)$,
 - □ dacă $\sigma : \rightarrow s \in \Sigma$, atunci $g_s(\sigma) = B_\sigma = \tilde{e}_s(\sigma)$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$ astfel încât $g_{s_1}(t_1) = \tilde{e}_{s_1}(t_1), \dots, g_{s_n}(t_n) = \tilde{e}_{s_n}(t_n)$, atunci $g_s(\sigma(t_1, \dots, t_n)) = B_{\sigma}(g_{s_1}(t_1), \dots, g_{s_n}(t_n)) = B_{\sigma}(\tilde{e}_{s_1}(t_1), \dots, \tilde{e}_{s_n}(t_n)) = \tilde{e}_s(\sigma(t_1, \dots, t_n))$.

Conform principiului inducției pe termeni, $g_s(t) = \tilde{e}_s(t)$, oricare $t \in T_{\Sigma}(X)_s$, deci $g = \tilde{e}$.

Consecința

Corolar

 $T_{\Sigma}(X)$ este (S, Σ) -algebra liber generată de X.

Consecința

Corolar

 $T_{\Sigma}(X)$ este (S, Σ) -algebra liber generată de X.

- □ O expresie este un element dintr-o algebră liberă.
- □ Pentru a evalua un termen t cu variabile din X într-o (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$, este suficient să evaluăm variabilele din X în B_S , i.e. să definim o funcție $e: X \to B_S$.

Exemplu

$$NATEXP = (S = \{nat\}, \Sigma)$$

 $\ \ \, \square \ \, \Sigma = \{0: \rightarrow \textit{nat}, \textit{s}: \textit{nat} \rightarrow \textit{nat}, +: \textit{nat} \ \textit{nat} \rightarrow \textit{nat}, \star: \textit{nat} \ \textit{nat} \rightarrow \textit{nat}\}$

$$X: X_{nat} = \{x, y\}$$

Exempli

$$NATEXP = (S = \{nat\}, \Sigma)$$

$$\square \Sigma = \{0 :\rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, \star : nat \ nat \rightarrow nat \}$$

$$X: X_{nat} = \{x, y\}$$

$$T_{NATEXP}(X): T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, +(0, 0), +(0, x), +(x, y), \star(0, +(s(0), 0)), \dots\}$$

Exemplu

$$NATEXP = (S = \{nat\}, \Sigma)$$

$$\square \ \Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, \star : nat \ nat \rightarrow nat\}$$
 $X : X_{nat} = \{x, y\}$

$$T_{NATEXP}(X): T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, +(0,0), +(0,x), +(x,y), \star(0,+(s(0),0)), \dots\}$$

NATEXP-algebra A: multimea suport $A_{nat} = \mathbb{Z}_4$ și operațiile obișnuite.

NATEXP =
$$(S = \{nat\}, \Sigma)$$

$$\square \Sigma = \{0 :\rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, \star : nat \ nat \rightarrow nat\}$$

$$X: X_{nat} = \{x, y\}$$

$$T_{NATEXP}(X): T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, +(0, 0), +(0, x), +(x, y), \star(0, +(s(0), 0)), \dots\}$$

O interpretare a termenilor din $T_{NATEXP}(X)$ în A

NATEXP-algebra A: mulțimea suport $A_{nat} = \mathbb{Z}_4$ și operațiile obișnuite.

15 / 33

Exempli

NATEXP =
$$(S = \{nat\}, \Sigma)$$

$$\square \Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, \star : nat \ nat \rightarrow nat\}$$
X: $X_{nat} = \{x, y\}$

$$T_{NATEXP}(X): T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, +(0, 0), +(0, x), +(x, y), \star (0, +(s(0), 0)), \dots\}$$
NATEXP-algebra A : multimea suport $A_{nat} = \mathbb{Z}_4$ și operațiile obișnuite.

O interpretare a termenilor din $T_{NATEXP}(X)$ în A definim $e: X \to A_{nat}$, e(x) := 1, e(y) := 3

15 / 33

Exempli

$$NATEXP = (S = \{nat\}, \Sigma)$$

$$\square \ \Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, \star : nat \ nat \rightarrow nat\}$$
 $X : \ X_{nat} = \{x, y\}$

$$T_{NATEXP}(X) : \ T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, + (0, 0), + (0, x), + (x, y), \star (0, + (s(0), 0)), \dots\}$$
 $NATEXP$ -algebra \mathcal{A} : multimea suport $A_{nat} = \mathbb{Z}_4$ și operațiile obișnuite.

O interpretare a termenilor din $T_{NATEXP}(X)$ în \mathcal{A}

$$\square$$
 definim $e : X \rightarrow A_{nat}, \ e(x) := 1, \ e(y) := 3$
Exemple de interpretări ale termenilor:

 $\tilde{e}(+(x,y)) = A_+(e(x),e(y)) = 1+3=0 \pmod{4}$

Exemplu

NATEXP =
$$(S = \{nat\}, \Sigma)$$

 \square $\Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, \star : nat \ nat \rightarrow nat\}$
X: $X_{nat} = \{x, y\}$
 $T_{NATEXP}(X)$: $T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, +(0,0), +(0,x), +(x,y), \star(0,+(s(0),0)), \dots\}$
NATEXP-algebra A : multimea suport $A_{nat} = \mathbb{Z}_4$ și operațiile obișnuite.
O interpretare a termenilor din $T_{NATEXP}(X)$ în A
 \square definim $e: X \rightarrow A_{nat}$, $e(x) := 1$, $e(y) := 3$
Exemple de interpretări ale termenilor:
 \square $\tilde{e}(+(x,y)) = A_+(e(x), e(y)) = 1 + 3 = 0 \pmod{4}$
 \square $\tilde{e}(\star(s(x), s(s(0)))) = A_+(A_s(e(x)), A_s(A_s(A_0))) =$

 $(1+1) \star (0+1+1) = 2 \star 2 = 0 \pmod{4}$

Exempli

```
STIVA = (S = \{elem, stiva\}, \Sigma)
  \square \Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, push : elem stiva <math>\rightarrow stiva,
               pop : stiva \rightarrow stiva, top : stiva \rightarrow elem
STIVA-algebra A:
  \square Multimea suport: A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*
  \square Operații: A_0 := 0, A_{emptv} := \lambda, A_{push}(n, n_1 \dots n_k) := nn_1 \dots n_k,
      A_{pop}(\lambda) := \lambda, A_{pop}(n) := \lambda, A_{pop}(n_1 n_2 \dots n_k) := n_2 \dots n_k, pt k \geq 2
      A_{top}(\lambda) := 0, A_{top}(n_1 \dots n_k) := n_1, \text{ pt. } k > 1
STIVA-algebra \mathcal{B}:
  \square Multimea suport: B_{elem} := \{0\}, B_{stiva} := \mathbb{N}
  \square Operații: B_0 := 0, B_{empty} := 0, B_{push}(0, n) := n + 1,
      B_{pop}(0) := 0, B_{pop}(n) := n - 1, pt. n \ge 1, B_{top}(n) := 0
```

Exemplu (Cont.)

$$X: X_{elem} = \{x, y\}, X_{stiva} = \{s\}$$

Fie $t := push(x, push(y, s)) \in T_{STIVA}(X)_{stiva}$.

- O interpretare a lui t în A:
 - \Box $e: X \to A, e(x) := 5, e(y) := 3, e(s) := 6.7$
 - $\square \ \tilde{e}(t) = A_{push}(e(x), A_{push}(e(y), e(s))) = 5 \ 3 \ 6 \ 7$
- O interpretare a lui t în \mathcal{B} :
 - \Box $e: X \to B, e(x) := 0, e(y) := 0, e(s) := 10$
 - \Box $\tilde{e}(t) = B_{push}(e(x), B_{push}(e(y), e(s))) = (10+1)+1=12$

Propoziție

Fie $h: \mathcal{A} \to \mathcal{B}$ un (S, Σ) -morfism surjectiv și X o mulțime de variabile. Pentru orice (S, Σ) -morfism $f: T_{\Sigma}(X) \to \mathcal{B}$, există un (S, Σ) -morfism $g: T_{\Sigma}(X) \to \mathcal{A}$ astfel încât g; h = f.

Demonstrație.

- \square Fie $f: T_{\Sigma}(X) \to \mathcal{B}$ un morfism.
- □ Cum h este surjectiv, pt. or. $x \in X_s$, există $a \in A_s$ astfel încât $h_s(a) = f_s(x)$.
- □ Pentru orice $s \in S$ și $x \in X_s$, alegem $a \in A_s$ astfel încât $h_s(a) = f_s(x)$ și definim $e_s(x) := a$.
- \square Deci $e: X \rightarrow A$.
- \square Considerăm $\tilde{e}: T_{\Sigma}(X) \to \mathcal{A}$ extensia unică a lui $e: X \to A$.
- □ Cum $T_{\Sigma}(X)$ este algebră liberă și $(\tilde{e}; h)_s(x) = f_s(x)$, or. $x \in X_s$, obținem că $\tilde{e}; h = f$.
- \square Luăm $g := \tilde{e}$.

Notație. Dacă $f: A \to \mathcal{B}$ este un (S, Σ) -morfism și $X \subseteq A_S$, atunci $f \upharpoonright_X$ este restricția lui f la X, i.e. $(f \upharpoonright_X)_s(x) = f_s(x)$, or. $x \in X_s$.

Notație. Dacă $f: A \to \mathcal{B}$ este un (S, Σ) -morfism și $X \subseteq A_S$, atunci $f \upharpoonright_X$ este restricția lui f la X, i.e. $(f \upharpoonright_X)_s(x) = f_s(x)$, or. $x \in X_s$.

Propoziție

Fie \mathcal{B} o (S,Σ) -algebră și X o mulțime de variabile. Dacă $f:T_{\Sigma}(X)\to\mathcal{B}$ și $g:T_{\Sigma}(X)\to\mathcal{B}$ sunt morfisme, atunci

$$g = f \Leftrightarrow g \upharpoonright_X = f \upharpoonright_X$$
.

Demonstrație.

Exercițiu! Se demonstrează că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)").$$

20 / 33

Propoziție

Dacă $X \simeq Y$, atunci $T_{\Sigma}(X) \simeq T_{\Sigma}(Y)$.

Demonstrație.

Exercițiu! A se vedea demonstrația pentru:

două algebre liber generate de X sunt izomorfe.

21 / 33

Concluzii

Fie (S, Σ) o signatură multisortată și X mulțime de variabile.

- \square T_{Σ} este (S, Σ) -algebră inițială.
- \Box $T_{\Sigma}(X)$ este (S, Σ) -algebră liber generată de X.
- \Box T_{Σ} este liber generată de \emptyset .

Congruențe

Congruențe

Fie (S, Σ) o signatură multisortată și $\mathcal{A} = (A_S, A_\Sigma)$ o (S, Σ) -algebră.

Definiție

- O relație S-sortată $\equiv = \{\equiv_s\}_{s \in S} \subseteq A_S \times A_S$ este o congruență dacă:
 - $\square \equiv_s \subseteq A_s \times A_s$ este echivalență, or. $s \in S$:
 - □ reflexivă
 - □ simetrică
 - ☐ tranzitivă
 - □ ≡ este compatibilă cu operațiile:

pt. or.
$$\sigma: s_1 \dots s_n \to s$$
 și or. $a_i, b_i \in A_{s_i}$, $i = 1, \dots, n$
 $a_i \equiv_{s_i} b_i$, or. $i = 1, \dots, n \Rightarrow A_{\sigma}(a_1, \dots, a_n) \equiv_s A_{\sigma}(b_1, \dots, b_n)$

Exemplu

Exemple

```
NAT = (S, \Sigma)
\square S = \{nat\}
\square \Sigma = \{0 : \rightarrow nat, \ succ : nat \rightarrow nat\}
NAT-algebra A
\square \text{ Mulţimea suport: } A_{nat} := \mathbb{N}
\square \text{ Operaţii: } A_0 := 0, \ A_{succ}(x) := x + 1
n_1 \equiv_{nat} n_2 \Leftrightarrow 2 | (n_1 - n_2) \text{ este congruență (congruență modulo 2):}
\square \equiv_{nat} \text{ este echivalență}
\square \text{ dacă } n_1 \equiv_{nat} n_2, \text{ atunci } A_{succ}(n_1) \equiv_{nat} A_{succ}(n_2)
```

Fie $\mathcal A$ o (S,Σ) -algebră și \equiv o congruență pe $\mathcal A$. Definim:

 $\square [a]_{\equiv_s} := \{a' \in A_s \mid a \equiv_s a'\} \text{ (clasa de echivalență a lui } a)$

Fie \mathcal{A} o (S, Σ) -algebră și \equiv o congruență pe \mathcal{A} . Definim:

- \square $[a]_{\equiv_s} := \{a' \in A_s \mid a \equiv_s a'\}$ (clasa de echivalență a lui a)
- $\square A_s/_{\equiv_s} := \{[a]_{\equiv_s} \mid a \in A_s\}, \text{ or. } s \in S$

Fie \mathcal{A} o (S, Σ) -algebră și \equiv o congruență pe \mathcal{A} . Definim:

- \square $[a]_{\equiv_s} := \{a' \in A_s \mid a \equiv_s a'\}$ (clasa de echivalență a lui a)
- \square $A_s/_{\equiv_s} := \{[a]_{\equiv_s} \mid a \in A_s\}, \text{ or. } s \in S$
- \square $A/_{\equiv} := \{A_s/_{\equiv_s}\}$ devine (S, Σ) -algebră, notată $A/_{\equiv}$, cu operațiile:

Fie \mathcal{A} o (S,Σ) -algebră și \equiv o congruență pe \mathcal{A} . Definim:

- \square $[a]_{\equiv_s} := \{a' \in A_s \mid a \equiv_s a'\}$ (clasa de echivalență a lui a)
- \square $A_s/_{\equiv_s} := \{[a]_{\equiv_s} \mid a \in A_s\}, \text{ or. } s \in S$
- \square $A/_{\equiv}:=\{A_s/_{\equiv_s}\}$ devine (S,Σ) -algebră, notată $A/_{\equiv}$, cu operațiile:
 - \square $(A/_{\equiv})_{\sigma}:=[A_{\sigma}]_{\equiv_s}$, or. $\sigma:\to s$,

```
Fie \mathcal{A} o (S, \Sigma)-algebră și \equiv o congruență pe \mathcal{A}. Definim: \square \ [a]_{\equiv_s} := \{a' \in A_s \mid a \equiv_s a'\} \ (\text{clasa de echivalență a lui } a) \square \ A_s/_{\equiv_s} := \{[a]_{\equiv_s} \mid a \in A_s\}, \text{ or. } s \in S \square \ A/_{\equiv} := \{A_s/_{\equiv_s}\} \ \text{devine } (S, \Sigma)\text{-algebră, notată } \mathcal{A}/_{\equiv}, \text{ cu operațiile:} \square \ (A/_{\equiv})_{\sigma} := [A_{\sigma}]_{\equiv_s}, \text{ or. } \sigma : \to s, \square \ (A/_{\equiv})_{\sigma} ([a_1]_{\equiv_{s_1}}, \dots, [a_n]_{\equiv_{s_n}}) := [A_{\sigma}(a_1, \dots, a_n)]_{\equiv_s}, \text{ or.} \sigma : s_1 \dots s_n \to s \text{ și } a_1 \in A_{s_1}, \dots, a_n \in A_{s_n}. \square \ \mathcal{A}/_{\equiv} \text{ se numește algebră cât a lui } \mathcal{A} \text{ prin congruența } \equiv.
```

 \square $[\cdot]_{=}: \mathcal{A} \to \mathcal{A}/_{=}, a \mapsto [a]_{=_{c}}, \text{ or. } a \in \mathcal{A}_{s}, \text{ este morfism surjectiv.}$

 $[a]_{=s} = [b]_{=s} \Leftrightarrow a \equiv_s b \Leftrightarrow (a, b) \in \equiv_s$

Exemple

Exemplu

```
STIVA: S = \{elem, stiva\}, \Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva,
              push : elem stiva \rightarrow stiva, pop : stiva \rightarrow stiva, top : stiva \rightarrow elem}
STIVA-algebra A:
   \square A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*
   Operații: A_0 := 0, A_{empty} := \lambda, A_{push}(n, n_1 \dots n_k) := nn_1 \dots n_k,
        A_{pop}(\lambda) := \lambda, A_{pop}(n) := \lambda, A_{pop}(n_1 n_2 \dots n_k) := n_2 \dots n_k, pt k \geq 2
        A_{top}(\lambda) := 0, A_{top}(n_1 \dots n_k) := n_1, \text{ pt. } k > 1
\equiv \{ \equiv_{elem}, \equiv_{stiva} \} congruență pe \mathcal{A}:
   \square \equiv_{elem} := \mathbb{N} \times \mathbb{N}
   \square \equiv_{\text{stiva}} := \{(w, w') \mid w, w' \in \mathbb{N}^*, |w| = |w'|\}
A/= \simeq \mathcal{B}, unde STIVA-algebra \mathcal{B}:
   \square B_{elem} := \{0\}, B_{stive} := \mathbb{N}
   \square Operații: B_0 := 0, B_{empty} := 0, B_{push}(0, n) := n + 1,
        B_{pop}(0) := 0, B_{pop}(n) := n - 1, pt. n > 1, B_{top}(n) := 0
```

Nucleul unui morfism

Fie $f: A \to B$ un morfism de (S, Σ) -algebre.

Nucleul lui f este $Ker(f) = \{Ker(f_s)\}_{s \in S}$, unde

$$Ker(f_s) := \{(a, a') \in A_s \times A_s \mid f_s(a) = f_s(a')\}, \text{ or. } s \in S.$$

Propoziție

- II Ker(f) este o congruență pe A.
- 2 Dacă \equiv este o congruență pe A, atunci $Ker([\cdot]_{\equiv}) = \equiv$.

Demonstrație.

Exercițiu!

Proprietatea de universalitate

Teoremă (Proprietatea de universalitate a algebrei cât)

Fie \mathcal{A} o (S, Σ) -algebră $\mathfrak{s}i \equiv o$ congruență pe \mathcal{A} . Pentru orice (S, Σ) -algebră \mathcal{B} $\mathfrak{s}i$ pentru orice morfism $h: \mathcal{A} \to \mathcal{B}$ a.î. $\exists \subseteq \mathit{Ker}(h)$, există un unic morfism $\overline{h}: \mathcal{A}/_{\equiv} \to \mathcal{B}$ a.î. $[\cdot]_{\equiv}; \overline{h} = h$.

Demonstrație

- Fie \mathcal{B} o (S, Σ) -algebră și $h : \mathcal{A} \to \mathcal{B}$ un morfism a.î. $\equiv \subseteq \mathit{Ker}(h)$.
 - □ **Existența:** Definim $\overline{h}_s([a]_{\equiv_s}) := h_s(a)$, pentru orice $a \in A_s$.
 - □ \overline{h} este bine definit: Tb. să arătăm $[a_1]_{\equiv_s} = [a_2]_{\equiv_s} \Rightarrow h_s(a_1) = h_s(a_2)$. Presupunem că $[a_1]_{\equiv_s} = [a_2]_{\equiv_s}$. Atunci $(a_1, a_2) \in \equiv_s \subseteq Ker(h)$, deci $h_s(a_1) = h_s(a_2)$.
 - $\Box \overline{h}$ este morfism:
 - dacă $\sigma:\to s\in\Sigma$, atunci $\overline{h}_s((A/_{\equiv})_{\sigma})=\overline{h}_s([A_{\sigma}]_{\equiv s})=h_s(A_{\sigma})=B_{\sigma}$.
 - lacktriangledown dacă $\sigma:s_1\dots s_n o s\in \Sigma$ si $a_1\in A_{s_1},\dots,a_n\in A_{s_n}$, atunci

$$\begin{split} \overline{h}_{s}((A/_{\equiv})_{\sigma}([a_{1}]_{\equiv_{s_{1}}}, \dots, [a_{n}]_{\equiv_{s_{n}}})) &= \overline{h}_{s}([A_{\sigma}(a_{1}, \dots, a_{n})]_{\equiv_{s}}) \\ &= h_{s}(A_{\sigma}(a_{1}, \dots, a_{n})) \\ &= B_{\sigma}(h_{s_{1}}(a_{1}), \dots, h_{s_{n}}(a_{n})) \\ &= B_{\sigma}(\overline{h}_{s_{1}}([a_{1}]_{\equiv_{s_{1}}}), \dots, \overline{h}_{s_{n}}([a_{n}]_{\equiv_{s_{n}}})). \end{split}$$

Unicitatea: Fie $g: \mathcal{A}/_{\equiv} \to \mathcal{B}$ a.î. $[\cdot]_{\equiv}$; g = h. Atunci $g_s([a]_{\equiv_s}) = h_s(a) = \overline{h}_s([a]_{\equiv_s})$, or. $a \in A_s$.

Consecințe

Propoziție (*)

Fie $\mathfrak K$ o clasă de (S,Σ) -algebre. Dacă

$$\equiv_{\mathfrak{K}}:=\bigcap\{Ker(h)\mid h:T_{\Sigma}\to\mathcal{B}\in\mathfrak{K} \text{ morfism}\},$$

atunci următoarele proprietăți sunt adevărate:

- $\blacksquare \equiv_{\mathfrak{K}}$ este congruența pe T_{Σ} ,
- **2** pt. or. $\mathcal{B} \in \mathfrak{K}$, există un unic morfism $\overline{h}: T_{\Sigma}/_{\equiv_{\mathfrak{K}}} \to \mathcal{B}$.

Demonstrație

- Rezultă din faptul că intersecția unei familii arbitrare de congruențe este congruență (exercițiu!).
- 2 Fie $\mathcal{B} \in \mathfrak{K}$ și $h: T_{\Sigma} \to \mathcal{B}$ unicul morfism.
 - Existenţa: Deoarece $\equiv_{\mathfrak{K}} \subseteq Ker(h)$, din Proprietatea de universalitate a algebrei cât există un unic morfism $\overline{h}: T_{\Sigma}/_{\equiv_{\mathfrak{K}}} \to \mathcal{B}$ astfel încât $[\cdot]_{\equiv_{\mathfrak{K}}}; \overline{h} = h$.
 - **Unicitatea:** Fie $g: T_{\Sigma}/_{\equiv_{\mathfrak{K}}} \to \mathcal{B}$ un morfism. Atunci $[\cdot]_{\equiv_{\mathfrak{K}}}; g: T_{\Sigma} \to \mathcal{B}$ morfism. Deci $[\cdot]_{\equiv_{\mathfrak{K}}}; g=h$. Morfismul g verifică proprietatea care îl definește în mod unic pe \overline{h} , deci $g=\overline{h}$.

Pe săptămâna viitoare!