পরমানুর গঠন

1. আইসোবার, আইসোটন, আইসোটপ কাকে বলে? উধাহরন সহ লিথ?

আইসোটোপ:যে সব মৌলের প্রোটন সংখ্যা সমান কিন্তু ভর সংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে পরস্পরের আইসোটোপ বলে। গ্রিক শব্দ iso অর্থ একই, tope অর্থ স্থান। আইসোটোপ অর্থ একই স্থান।

- ১. হাইড়োজেনের আইসোটোপ: ${}^1_1H($ প্রোটিয়াম $), {}^2_1H($ ডিউটেরিয়াম $){}^3_1H($ ট্রিটিয়াম)
- ২. কার্বনের আইসোটোপ: ¹²C ¹³C ¹⁴C
- ৩. অক্সিজেনের আইসোটোপ: $^{16}_{8}O$ $^{17}_{8}O$ $^{18}_{8}O$
- 8. ক্লোরিনের আইসোটোপ: $^{35}_{17}Cl$ $^{36}_{17}Cl$ $^{37}_{17}Cl$

বৈশিষ্ট্য:

- ১.আইসোটোপ সমৃহ একই মৌলের পরমাণু।
- ২.এ(দর পারমাণবিক বা প্রোটন সংখ্যা সমান, কিন্তু ভর সংখ্যা এবং নিউট্রন সংখ্যা ভিন্ন।
- ৩. পর্যায় সারণিতে একই মৌলের আইসোটোপ সমূহের অবস্থান একই।
- 8. রাসায়নিক ধর্ম অভিন্ন, কিন্তু কতিপ্য় ভৌত ধর্ম ভিন্ন

আইসোবার:যেসব পরমাণুর ভর সংখ্যা সমান কিন্ত প্রোটন সংখ্যা ভিন্ন ভাদেরকে পরস্পরের আইসোবার বলে। বৈশিষ্ট্য:

- ১. ভিন্ন ভিন্ন মৌলের পরমাণু,
- ২. ভরসংখ্যা সমান, কিন্তু পারমাণবিক বা প্রোটন সংখ্যা ভিন্ন। সুতরাং এদের প্রোটন ও নিউট্রন সংখ্যা ভিন্ন ভিন্ন।
- ৩. পর্যায় সারণিতে এদের অবস্থান ভিন্ন ভিন্ন।
- ৪. ভৌত ও রাসায়নিক ধর্ম ভিন্ন।

উদাহরণ: ${}_{1}^{3}H$ ${}_{2}^{3}He$, ${}_{6}^{14}C$ ${}_{7}^{14}N$, ${}_{29}^{64}Cu$ ${}_{30}^{64}Zn$

- 2. হাইড়োজেনের ক্মটি আইসোটপ ও কি কি?
- 3. কোয়ান্টাম সংখ্যা কি? কত প্রকার ও কি কি?

সংজ্ঞা - পরমাণুতে অবস্থিত ইলেকট্রনের শক্তিষ্করের আকার, আকৃতি, ত্রিমাতৃক বিন্যাস প্রকরণ এবং আবর্তনের দিক প্রকাশক সংখ্যা সমূহকে কোয়ান্টাম সংখ্যা বলে।

প্রকারভেদঃ- কোয়ান্টাম সংখ্যাকে ৪ ভাগে ভাগ করা হয়েছে

- ১) প্রধান কোয়ান্টাম সংখ্যা,
- ২) সহকারী কোয়ান্টাম সংখ্যা,
- ৩) ম্যাগনেটিক কোয়ান্টাম সংখ্যা,
- ৪) স্পিন কোয়ান্টাম সংখ্যা,
- ১) **প্রধান কোয়ান্টাম সংখ্যাঃ** যে কোয়ান্টাম সংখ্যার সাহায্যে পরমাণুতে অবস্থিত ইলেকট্রনের শক্তিস্করের আকার নির্নয় করা যায় তাকে প্রধাণ কোয়ান্টাম সংখ্যা বলে।

প্রধান কোয়ান্টাম সংখ্যাকে n দ্বারা প্রকাশ করা হয়। যেমনঃ- n=1,2,3,4,5 ইত্যাদি।

- ২) সহকারী কোয়ান্টাম সংখ্যাঃ- যে কোয়ান্টাম সংখ্যার সাহায্যে শক্তিম্বরের আকৃতি নির্নয় করা যায় তাকে সহকারী কোয়ান্টাম সংখ্যা বলে। একে । দ্বারা প্রকাশ করা হয়। $1=0\sim(n-1)$. সহকারী কোয়ান্টাম সংখ্যা প্রধান কোয়ান্টাম সংখ্যার উপর নির্ভরশীল
- **৩) ম্যাগনেটিক কোয়ান্টাম সংখ্যাঃ** যে সকল সংখ্যার সাহায্যে ইলেকট্রনের কক্ষপথের ত্রিমাতৃক দিক বিন্যাস প্রকরন সমূহ প্রকাশ করাহয়তাকে ম্যাগনেটিক কোয়ান্টাম সংখ্যা বলে। একে m দ্বরা প্রকাশ করা হয়।
- **৪) স্পিন কোয়ান্টাম সংখ্যাঃ** নিজস্ব অক্ষের চারদিকে ইলেকট্রনের ঘুর্ননের দিক প্রকাশক সংখ্যা সমূহকে স্পিন কোয়ান্টাম সংখ্যা বলে। একে s দ্বরা প্রকাশ করা হয়।
- 4. নিচেব নীতি গুলো লিখঃ
 - (১) পলিব বির্জন নীতি (২) হুন্ডেব নীতি (৩) আউফবাউ নীতি
- 5. অববিট ও অববিটালেব মধ্যে পার্থক্য লিখ?

5. MAINE O MAINE (NA MINE) 1941	
<u>অরবিট</u>	অরবিটালের
 নিউক্লিয়াসকে কেল্ল করে ও নির্দিষ্ট দূরত্ব বজায় রেখে যে বৃত্তাকার বা উপবৃত্তাকার পথে ইলেকট্রন আবর্তনশীল, সেই বৃত্তাকার বা উপবৃত্তাকার পথকেই অরবিট বলা হয়। 	1.অরবিটাল হলো নিউক্লিয়াসের বাইরে কিন্তু এর শক্তিক্ষেত্রের মধ্যে অবস্থিত এমন একটি ত্রিমাত্রিক অঞ্চল, যেথানে ইলেকট্টনকে পাওয়ার সম্ভাবনা সর্বাধিক।
2.অরবিট হল একটি দ্বিমাত্রিক পথ	2. অরবিটাল হল একটি ত্রিমাত্রিক অঞ্চল। s-অরবিটাল ছাড়া অন্যান্য অরবিটালের নির্দিষ্ট দিক নির্দেশক ধর্ম আছে।
3.বৃত্তাকার বা উপবৃত্তাকার পথে আবর্তনশীল ইলেকট্রনের অবস্থান ও ভরবেগ একই সঙ্গে নির্ণয় করা সম্ভব।	3.অরবিটাল ইলেকট্রনের সামগ্রিক অবস্থান নির্দেশ করে কোনাে বিশেষ মূহর্তে ইলেকট্রনের অবস্থান নির্দেশ করে না।
4.অরবিটে ইলেকট্রল ধারণ ক্ষমতা = 2n2 (যেখালে n = প্রধান কোমান্টাম সংখ্যা)	4.অরবিটালের ইলেকট্রন ধারণ ক্ষমতা কথনােই 2 এর বেশি হতে পারে না।

- 6. কোন পরমানুর М শক্তিস্তরে 9টি ইলেকট্রন আছে। মোলটির নাম, সংকেত এবং পাঃ সংখ্যা লিথ?
- 7. N=3 হলে সকল কোয়ান্টাম সংখ্যার মান লিখ।

পর্যায় সাবণিব বৈশিষ্ট্য

আধৃনিক পর্যায় সারণির উল্লেখযোগ্য বৈশিষ্ট্যগুলা নিম্নরূপ:

- পর্যায় সারণিতে ৭টি পর্যায় বা আনুভূমিক সারি (row) ও ১৮ টি গ্রুপ বা থাড়া স্তম্ভ (column) রয়েছে।
- প্রতিটি পর্যায় বাম দিক থেকে গ্রুপ- ১ হিসেবে শুরু করে গ্রুপ ১৮ পর্যন্ত বিস্তৃত।
- মূল পর্যায় সারণির নিচে ২ টি আনুভূমিক সারি এবং ১৪টি খাড়া স্তম্ভবিশিষ্ট একটি ছোট ছক প্রদর্শিত হয়েছে।
- পর্যায় ১ -এ শুধুমাত্র দুটি মৌল রয়েছে, যারা গ্রুপ ১ ও গ্রুপ ১৮ তে অবস্থিত। একইভাবে পর্যায় ২ ও পর্যায়- ৩ এ আটটি করে মৌল আছে যারা গ্রুপ ১ থেকে গ্রুপ- ৩ এবং গ্রুপ ১৩ থেকে গ্রুপ ১৮ -এর মধ্যে অবস্থিত।
- পর্যায় -৪ থেকে পর্যায় -৭ পর্যন্ত সবগুলো পর্যায়ের প্রতিটি গ্রুপই মৌল দ্বারা পূর্ণ।
 মৌলসমূহের ধর্মের ভিত্তিতে পর্যায় সারণিকে বিবেচনা করি।
 - একই পর্যায়ে বামদিক খেকে ভানদিকে মৌলসম্বরে ধর্ম পরিবর্তিত হয়।
 - একই গ্রুপের সকল মৌলের ভৌত ও রাসায়িনক ধর্ম প্রায় একই রকম।
 - সাধারণভাবে কোনো মৌলের সর্বশেষ স্তরের ইলেকট্রন সংখ্যা তার গ্র"প সংখ্যার সমান।
 - काला भৌलत प्रविभाष्टे कऋभथ प्रश्या जात भयाग प्रश्यात प्रभाग।

<mark>[সোলা, রুপা; যাদেরকে অভিজাত ধাতু (noble metal)</mark> বলে] এবং অধিক সক্রিয় ধাতু [<mark>লোহা, দস্তা; যাদেরকে নিকৃষ্ট ধাতু (inferior metals) বলে</mark>] হিসেবে বিভক্ত করা হয়।

ম্যান্ডেলিকের পর্যায় সূত্র: "যদি মৌলসমূহকে ক্রমবর্ধমান পারমাণবিক ভর অনুসারে সাজানো হয়, ভবে তাদের ভৌত ওরাসায়নিক ধর্মাবলি পর্যায়ক্রমে আবর্তিত হয়"।

১৯১৩ সালে বিজ্ঞানী হেনরি মোসলে পারমাণবিক সংখ্যা আবিষ্কারের পর ম্যান্ডেলিফ তার পর্যায় সূত্র সংশোধন করেন। ম্যান্ডেলিফের সংশোধিত পর্যায় সূত্র: "মৌলসমূহের ভৌত ও রাসায়নিক ধর্মাবলি তাদের পারমাণবিক সংখ্যা অনুযায়ী পর্যায়ক্রমে আবর্তিত হয়"।

পর্মান্থ সারণির মূল ভিক্তি: বিজ্ঞানী ম্যান্ডেনিফ প্রথম আধুনিক পর্যায় সারণিতে মৌলসমূহের পারমাণবিক ভরের ভিত্তিতে সাজানোর চেষ্টা করেন। কিন্তু পারমাণবিক ভরের ভিত্তিতে মৌলসমূহের বিন্যাস করলে কিছু কিছু ব্যতিক্রম লক্ষ করা যায়। পটাসিয়াম (K)ও আর্গন (Ar)-এ র অবস্থান উদাহরণ হিসেবে বিবেচনা কর। পটাসিয়ামের (K) পারমাণবিক ভর – ৩৯ ও আর্গনের (Ar) পারমাণবিক ভর হলো– ৪০। যদি পারমাণবিক ভর অনুসারে সাজানো হয়, ভাহলে পটাসিয়ামকে আর্গনের আর্গে স্থান দিতে হয়। সেক্ষেত্রে পটাসিয়ামের অবস্থান হয় গ্রুপ– ১৮ তে এবং গ্রুপ – ১ –এ স্থান পায় আর্গন। বাস্তবে ভৌত ও রাসায়নিক ধর্মাবলির বিচারে পটাসিয়ামের সাখে গ্রুপ – ১ –এ অবি স্থভ ক্ষার ধাতুগুলোর এবং আর্গনের সাখে গ্রুপ – ১৮– তে অবস্থিত নিষ্ক্রিয় গ্যাসের সাদৃশ্য পরিলক্ষিত হয়। কিন্তু মৌলসমূহকে পারমাণবিক সংখ্যার ভিত্তিতে সাজালে এধরনের জটিলতার অবসান হয়। প্রেটন সংখ্যাকেই পারমাণবিক সংখ্যা বলে। আর কোনোমৌলে যতটি ইলেকট্রন থাকে ঠিক ততটি প্রোটন খাকে। তাহলে কোনো মৌলের ইলেকট্রন সংখ্যাকেও তার পারমাণবিক সংখ্যা বলা যায়। যদিও ইলেকট্রন সাখে পরমাণুর পরিবর্তন হয়। পরমাণবিক সংখ্যা করিন্তানের উপর ভিত্তি করেই মৌলসমূহের ভৌত ও রাসায়নিক ধর্মাবলি তাদের পারমাণবিক সংখ্যা অনুযায়ী পর্যায়ক্রমে আবর্তিত হয়। কোনো মৌলের ইলেকট্রন বিন্যাসই মূলত তার রাসায়নিক ধর্মাবলি নির্দেশ করে।

মৌলের পর্যায়বৃত্ত ধর্ম: পর্যায় সারণিতে যে কোনো একটি পর্যায়ের দিকে লক্ষ করলে দেখি যে, বাম দিকের মৌলগুলো সাধারণত ধাতু ক্রমে তা অপধাতু এবং অধাতুতে আবর্তিত হয়। ৩য় পর্যায়ের সর্ব বামে সোডিয়াম রয়েছে, যা একটি সক্রিয় ধাতু। অন্যদিকে ক্লোরিন (ডালদিকে দ্বিতীয়) একটি সক্রিয় অধাতু। এ দ্বুয়ের মাঝ ামাঝিমৌলগুলোর মধ্যে ধাতু খেকে অধাতুতে রূপান্তরের একটি ধারাবাহিকতা পরিলক্ষিত হয়। সোডিয়াম, ম্যাগলেসিয়াম ও অ্যালুমিনিয়াম ধাতব প্রকৃতির। সিলিকন একটি অপধাতু (যা ধাতু ও অধাতু উভয়ের বৈশিষ্ট্য বহন করে)। ফসফরাস, সালফার ও ক্লোরিন এরা সবাই অধাতু ও এদের গলনাংক ও ক্ষুটনাংক কম। যে কোনো গ্রুপে মৌলসমূহের ভৌত ও রাসায়নিক ধর্ম ধীরে ধীরে এবং অনেকটা নিয়মিতভাবে আবর্তিত হয়। যেমন — গ্রুপ – ১ – এর স্কার ধাতুসমূহ প্রত্যেকেই নরম, নিল্ল গলনাংকবিশিষ্ট। এ গ্রুপের ধাতুসমূহের গলনাংক পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে কমে। পর্যায় সারনির বাম দিক থেকে ডান দিকে অর্থাৎ গ্রুপ–১ থকে গ্রুপ–১৭ পর্যন্ত মৌলসমূহের গলনাংক ও ক্ষুটনাংক প্রথমে বৃদ্ধি পেয়ে (ধাতু পর্যন্ত) পরবর্তীতে (অধাতু থেকে) হ্রাস পায়।

এভাবে গ্রুপ-১৭ অর্থাৎ হ্যালোজেনসমূহের গলনাংক ও স্ফুটনাংক গ্রুপ-১ -এর স্কার ধাতুসমূহের তুলনায় অনেক কম হয়। হ্যালোজেনসমূহের ক্ষেত্রেবিভিন্ন ভৌত ধর্মে একই রূপে ধারাবাহিক পরিবর্তন দেখা যায়।

যেমল–এসব মৌলের গলনাংক, স্ফুটনাংক ও ঘনত্ব পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে বাড়ে। এছাড়াও মৌলসমূহের কিছু গুরুত্বপূর্ণ বৈশিষ্ট্য যেমন, পারমাণবিক আকার, আয়নিকরণ শক্তি, ভড়িৎ ঋণাত্মকতা, ইলেকট্রন আসক্তি ইত্যাদি ধর্ম পর্যায় সারণিতে পর্যায়ক্রমে পরিবর্তিত হয়। পর্যায় সারণির একই পর্যায়ের বামদিক থেকে ডানদিকে পারমাণবিক আকার ব্রাস পায় এবং কোনো গ্র"পের উপর খেকে নিচের দিকে পারমাণবিক আকার বৃিদ্ধ পায়। পারমাণবিক আকার ব্যতীত অন্যান্য ধর্মসমূহ সাধারণভাবে (কিছু ব্যতিক্রমসহ) পর্যায় সারণির একই পর্যায় বাম দিক থেকে ডান দিকে পারমাণবিক সংখ্যা বৃদ্ধির সাথে বৃদ্ধি পায়। অর্থাৎ গ্রুপ–১ –এর ক্ষার ধাতুসমূহের আয়নিকরণ শক্তি কম এবং গ্রুপ–১৭ –এর হ্যালোজেনসমূহের আয়নিকরণ শক্তি বেশি। একইভাবে কোনো একটি গ্রুপের মৌলসমূহের পারমাণবিক সংখ্যা বৃদ্ধির সাথে উক্ত ধর্মসমূহ ক্রমান্ধ্যে ব্রাস পায়।

বিভিন্ন শ্রেণিতে উপস্থিত মৌলসমূহের বিশেষ নাম (ক্ষার ধাতু, মৃৎক্ষার ধাতু, মুদ্রা ধাতু, হ্যালোজেন, নিষ্ক্রিয় গ্যাস, অবস্বান্তর মৌল)ক্ষার ধাতু: পর্যায় সারণিতে গ্রুপ- ১ –এ অবস্থিত মৌলসমূহ যেমন– Li, Na, K, Rb, Cs এবং Fr স্থার ধাতু (alkali metal) বলা হয়। এরা প্রত্যেকেই পানির সাথে বিক্রিয়া করে হাইড্রোজেন গ্যাস ও স্কার দ্রবণ তৈরি করে। সর্ববহিঃস্থ শক্তিস্তরে অবস্থিত একমাত্র ইলেকউনটি প্রদান করে আয়নিক যৌগ (লবণ) তৈরি করে।

মৃৎক্ষার ধাতু: গ্রুপ- ২ –এ অবস্থিত Be থেকে শুরু করে Ra পর্যন্ত মৌলসমূহকে মৃৎক্ষার ধাতু বলা (alkaline earth meta) হয়। এদের ধর্ম অনেকটা ক্ষার ধাতুর মতোই। এদের অক্সাইড সমূহ পানিতে ক্ষারীয় দ্রবণ তৈরি করে। এরাও সর্ববহিঃস্থ শক্তিস্তরের ২ টি ইলেকট্রন প্রদান করে আয়নিক যৌগ (লবণ) তৈরি করে। এই মৌলসমূহ বিভিন্ন যৌগ হিসেবে মাটিতে থাকে।

অবস্থান্তর মৌল:পর্যায় সারণিতে গ্রুপ- ৩ থেকে গ্রুপ-১১ পর্যন্ত গ্রুপে অবস্থিত মৌলসমূহ অবস্থান্তর মৌল (transition meta) হিসেবে পরিচিত। অবস্থান্তর মৌলসমূহের নিজস্ব বর্ণ রয়েছে। এরা ধাতব পদার্থ হিসেবে প্রচুর ব্যবহৃত হয়। সর্ববহিঃস্থ শক্তিস্তারের ইলেকট্রন প্রদান করে আয়নিক যৌগ তৈরি করে। কোনো পর্যায়ের অবস্থা ন্তর মৌলসমূহের মধ্যে বামদিকের মৌল থেকে ডালদিকের মৌল দ্বারা গঠিত যৌগের বৈশিষ্ট্য আয়নিক থেকে সমযোজীতে পরিবর্তিত হয়। মুদ্রা ধাতু:পর্যায় সারণিতে গ্রুপমি ১১ তে অবস্থিত মৌলমি তামা (Cu), রুপা (Ag) ও সোলা (Au) এদের ধাতব বৈশিষ্ট্য যেমন উদ্ধলতা বিদ্যমান। প্রতিহাসিকভাবে এসব ধাতু দ্বারা মুদ্রা তৈরি করে তাদেরকে ক্রয়-বিক্রয় ও অন্যান্য প্রয়োজনে বিনিময়ের মাধ্যম হিসেবে ব্যবহার করা হয়। এদেরকে মুদ্রা ধাতু (coinage metals) বলা হয়। প্রকতপক্ষে এরা অবস্থান্তর মৌল।

হ্যালোজেন:গ্র"প– ১৭ তে অবন্থিত মৌলমি F, Cl, Br, । এবং At এই ৫টি মৌলকে একত্রে হ্যালোজেন (halogen) বলে। হ্যালোজেন শব্দের অর্থ লবণ গঠনকারী (salt maker)। এরা সর্ববহিঃস্থ শক্তিস্তরে একটি ইলেকট্রন গ্রহণের মাধ্যমে হ্যালাইড আয়ন তৈরি করে। হ্যালোজেনসমূহের মূল উৎস সামুদ্রিক লবণ। এরা নিজে নিজেই ইলেকট্রন ভাগাভাগির (electron sharing) মাধ্যমে দ্বি–মৌল অণু তৈরি করে।

নিষ্ক্রিয় গ্যাস:পর্যায় সারণিতে গ্রুপ- ১৮ তে অবস্থিত মৌলসমূহকে নিষ্ক্রিয় মৌল বলে। এদের সর্ববহিঃস্থ শক্তিস্তর প্রয়োজনীয় সংখ্যক ইলেক্ট্রন দ্বারা পূর্ণ থাকায় এরা ইলেক্ট্রন আদান-প্রদান বা শেয়ারের মাধ্যমে যৌগ গঠনে সাধারণত আগ্রহ প্রদর্শন করে না। অর্থাৎ বন্ধন গঠনে বা রাসায়নিক বিক্রিয়ার প্রতি এই মৌলসমূহ নিষ্ক্রিয় থাকে।)

ইলেক্ট্রন বিন্যাস করার নিয়ম:

Rule 1: S অর্বিটালে ইলেক্ট্রন বিন্যাস থামলে তার সংখ্যাটায় হচ্ছে গ্রুপ নাম্বার।

Na(11) (৩ পর্যায়, Group-I (উপরে চার্টে দেখ**)** 1s² 2s² 2p⁶ <mark>3s¹</mark>
Rule 2: S,p যখন একসাথে থাকে তখন S+P+10=গ্রুপ সংখ্যা। Ar(18)(৩ পর্যায়, Group-18 (উপরে চার্টে দেখ) 1s² 2s² 2p⁶ 3s² 3p⁶

একসাথে থাকে তখন s+d=গ্রুপ সংখ্যা।

d⁴d⁹ থাকলে হাফ ফিল বলা হয়। যা ইলেক্ট্রনগুলো স্থিতিশীল নয়। তাই একে ফুল ফিল করতে হলে সর্বনিম শক্তিন্তর হতে একটি ইলেকট্রন নিয়ে স্থিতিশীল আনতে হয়। অর্থ্যাৎ, s¹d⁵, s¹d¹⁰

Rule-3 s,d যখন

Cr(24))(৪র্থ পর্যায়, Group-বের কর) 1s² 2s² 2p⁶ 3s² 3p⁶ <mark>3d⁵ 4s¹</mark>

কতগুলো মৌলের ইলেকট্রন বিন্যাস:

- 1. Electron configuration
 - (i) $Cu_{(24)}$ (ii) $Pd_{(46)}$ (iii) $As_{(41)}$
- 2. Positive আয়নের electron বিন্যাস
 - (i) $Na^{+}_{(10)}$ (ii) $Cu^{+}_{(28)}$ (iii) $Cu^{++}_{(27)}$ (iv) $Fe^{++}_{(24)}$
 - $(v) Mg^{2+}_{(10)}$
- 3. Negative আয়নের electron বিন্যাস
 - (i) $V_{(24)}^{-}$ (ii) $Cl^{2-}_{(19)}$ (iii) $Zn^{3-}_{(33)}$ (iv) $Cu_{(30)}^{-}$ (v) $Cu^{2-}_{(31)}$

Iodine(53)-I	1s²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ⁶	4d ¹⁰	5s ²	5p⁵
Antimony(51)-	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ⁶	4d ¹⁰	5s ²	5p ³
Sb											
Tin(50)	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ⁶	4d ¹⁰	5s ²	5p ²
Silver(47)	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ⁶	4d ¹⁰	5s ¹	
Arsenic(33)	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ³			
Germanium(32)	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ²			
Zinc(30)	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²				
Cobalt(27)	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ⁷	4s ²				
Silicon(14)	1s²	2s ²	2p ⁶	3s ²	3p ²						

Strontium(38)	1s ²	$2s^2$	2p ⁶	3s ²	3n ⁶	3d ¹⁰	4s ²	4n ⁶	5s ²	
01.0			P		P			٠,٢		

রাসায়নিক বন্ধন

<mark>আমূনিক বন্ধন:</mark> লিখিয়াম কীভাবে হিলিয়াম এবং ফ্লোরিন কীভাবে নিয়নের ইলেকট্রন বিন্যাস লাভ করবে? লিখিয়াম পরমাণু যোজ্যভা স্তরের একটি ইলেকট্রন বর্জন করে হিলিয়ামের স্থায়ী দুই–এর (duplet)এবং ফ্লোরিন পরমাণু যোজ্যভা স্তরে একটি ইলেকট্রন গ্রহণ করে নিমূনের যোজ্যভা স্তরের স্থায়ী অষ্টক (octet) বিন্যাস লাভ করবে।

দুটি পরমাণু যথন কাছাকাছি আসে তথন লিখিয়াম পরমাণু তার যোজ্যতা স্তরের ইলেকট্রনটি ক্লোরিন পরমাণুকে দান করবে এবং ক্লোরিন সেই দানকৃত ইলেকট্রনটি গ্রহণ করে যখাক্রমে আয়নে পরিণত হবে। দুটি আয়ন যুক্ত হয়ে যৌগে পরিণত হবে।

উপরের উদাহরণগুলো পর্যলোচনা করলে দেখা যায় ধাতুসমূহ ইলেকট্রন বর্জন এবং অধাতুসমূহ ধাতু কর্তৃক দানকৃত ইলেকট্রন/ইলেকট্রনসমূহ গ্রহণ করে যথাক্রমে ক্যাটায়ন ও অ্যানায়নে পরিণত হয়। ক্যাটায়ন ও অ্যানায়ন কাছাকাছি এসে আ্যানিক বন্ধন গঠন করে।ইলেকট্রন আদান-প্রদানের মাধ্যমে গঠিত ক্যাটায়ন (ধনাত্মক আ্যান) এবং অ্যানায়নসমূহ (ঋণাত্মক আ্যান) যে আকর্ষণ বল দ্বারা যৌগের অণুতে আবদ্ধ থাকে তাকে আ্যানিক বন্ধন বলে।দুটি ভিন্নধর্মী পরমাণুর মাধ্যমে গঠিত হয় আ্যানিক যৌগ।

চিত্র: NaClএর আয়নিক বন্ধন গঠন

জানা প্রয়োজন আয়নিক বন্ধন সাধারণত পর্যায় সারণির গ্রুপ ১ ও ২ -এর ধাতু এবং গ্রুপ ১৬ ও ১৭ -এ র অধাতুর মধ্যে ঘটে খাকে। পর্যায় সারণির মাঝামাঝি অবস্থানে অবস্থিত ধাতুসমূহের শেষ শক্তিস্তারে অধিকসংখ্যক ইলেকউন খাকার কারণে, ইলেকউন দান বা গ্রহণের জন্য অধিক শক্তির প্রয়োজন হয় যার ফলে সাধারণত এরা তিন বা চার সংখ্যক ইলেকউন গ্রহণ বা বর্জনে উৎসাহী হয় না। এর মধ্যে ব্যতিক্রম হলো আয়ন। তাও দেখা যায় A1 সব সময় তিনটি ইলেকউন বর্জন করে আয়নিক বন্ধন গঠন করে না। উল্লেখ্য যে পর্যায় সারণির ১ খেকে ২০ পর্যন্ত পারমাণবিক সংখ্যাবিশিষ্ট মৌলসমূহই প্রকৃতভাবে বন্ধন গঠনকালে দুই এর (duplet) ও অষ্টক (octet) নীতি অনুসরণ করে।

সমযোজী বন্ধন: হাইড্রোজেন, কার্বন, অক্সিজেন, নাইট্রোজেন ও স্লোরিনের ইলেকট্রন বিন্যাসের চিত্র আঁক।

অধাতু –অধাতু বন্ধন গঠন করার ক্ষেত্রে কী ঘটে? যদি একটি হাইড্রোজেন পরমাণু অপর একটি হাইড্রোজেন পরমাণুর সাথে যুক্ত হয় তথন কী ঘটে? এ ক্ষেত্রে হিলিয়াম পরমাণুর স্থায়ী দুই–এর বিন্যাস লাভ করার জন্য হাইড্রোজেনের ইলেকট্রন গ্রহণ বা বর্জন সম্ভব নয়। সেক্ষেত্রে পরমাণুদ্বয় পরস্পর ইলেকট্রন শেয়ার করে হিলিয়ামের স্থায়ী বিন্যাস লাভ করবে।

কার্বন, নাইট্রোজেনে ও স্লোরিনের যোজ্যতা স্তরে কভটি ইলেকট্রন আছে? কার্বনের ৪ টি, নাইট্রোজেনের ৫ টি ও স্লোরিনের ৭ টি–

চিত্র ৫.৫: বিভিন মৌলের ইলেকটন বিন্যাস

অধাতুর সাথে বন্ধন গঠনের সময় নিয়নের যোজ্যতা স্তরের স্থায়ী অষ্টক গঠনের জন্য অথবা হিলিয়ামের স্থায়ী ইলেকট্রন বিন্যাস গঠনের জন্য কার্বনের ৪ টি ইলেকট্রন গ্রহণ বা বর্জন প্রয়োজন। নাইটোজেনের ৩ টি ইলেকট্রন গ্রহণ বা ৫ টি ইলেকট্রন বর্জন প্রয়োজন। ক্লোরিনের ৭ টি ইলেকট্রন বর্জন গঠনের স্মেয়। অধাতুনঅধাতুর বন্ধন গঠনের ক্ষেত্রে কী ঘটবে? কোনো মৌলের পক্ষে এত অধিকসংখ্যক ইলেকট্রল গ্রহণ বা বর্জন সম্ভব ন্ম। কারণ এর জন্য অধিক পরিমাণ শক্তি ব্যয় করতে হয় যা যে কোনো মৌলের ক্ষমতার বাইরে।

ক্লোরিন অণু গঠনের ক্ষেত্রে কী ঘটবে?

চিত্র ৫.৬: আগনের ইলেকটন বিন্যাস

চিত্র ৫.৭: Cl, অণ্র বন্ধন গঠন

দেখা যাচ্ছে অণুর বন্ধন গঠনের ক্ষেত্রে প্রতিটি পরমাণুর যোজাতা স্তরের একটি করে ইলেকট্রন শেয়ার করে তার নিকটবর্তী নিষ্ক্রিয় গ্যাস আর্গনের ইলেকট্রন বিন্যাস লাভ করে। উপরে আলোচিত সবই মৌলিক অণু। ভিন্ন ভিন্ন অধাতু পরমাণু মিলে যখন যৌগ গঠন করে তখন কী ঘটে লক্ষ কর।পানির একটি অণু যা দুইটি হাইড্রোজেন ও একটি অক্সিজেন পরমাণু নিয়ে গঠিত।অক্সিজেনের পারমাণবিক সংখ্যা ৮, এর ইলেকট্রন বিন্যাস: ২, ৬। হাইড্রোজেনের পারণবিক সংখ্যা ১, এর ইলেকট্রন বিন্যাস ১। নিয়নের ইলেকট্রন বিন্যাস লাভের জন্য অক্সিজেনের সর্ববিহিঃস্থ স্তরে ২ টি ইলেকট্রন প্রয়োজন। সে কারণে দুইটি হাইড্রোজেন পরমাণু একটি করে ইলেকট্রন অক্সিজেনের যোজ্যতা স্তরের দুইটি ইলেকট্রনের সাথে শেয়ার করে অক্সিজেন অস্টক ও হাইড্রোজেন দুই–এর বিন্যাস লাভ করবে।

চিত্র ৫.৮: Η,Ο অগর গঠন

যোজ্যতা স্তরের ইলেকট্রন শেয়ারের মাধ্যমে সমযোজী অণুর গঠনের চিত্র দেখানো যায়।

চিত্র ৫.৯: যোজ্যতা স্তরের ইলেকটন শেয়ারের মাধ্যমে HCl অণ্র কম্পন গঠন

সমযোজী বন্ধনের মাধ্যমে গঠিত হয় সমযোজী যৌগ এবং সমযোজী অণুু। নিচের ছকে (ছক ৫.১) কিছু অণুুুর সংকেত দেওয়া হলো। এদের বন্ধন গঠনচিত্র অংকন কর (যোজ্যতা স্তরের ইলেকট্রন শেয়ারের মাধ্যমে)।

		বন্ধন গঠন চিত্ৰ
মিথেন	C+4H	
CH₄		
অ্যামোনিয়া	N+3H	
NH₃		
কাৰ্বন -ডাই-অক্সাইড	C+20	
CO₂		

ছক: সমযোজী বন্ধন গঠনের চিত্র

উপরের সবগুলো উদাহরণ পর্যালোচনা করলে দেখা যায় সমযোজী অণু গঠনকারী প্রতিটি পরমাণুই অধাতু। হাইড্রোজেন ছাড়া সব অধাতু মৌলেরই শেষ শক্তিস্তরে তিনের অধিক ইলেকট্টন রয়েছে। দুই–এর ও অষ্টক নিয়ম অনুসারে যৌগ'দুই এর গঠন করার জন্য ইলেকট্টন ত্যাগ বা গ্রহণের জন্য যতটা শক্তি প্রয়োজন তা তাদের নেই। ফলে নিজেদের মধ্যে তারা ইলেকট্টন শেয়ার করে।

সর্বশেষ শক্তিস্তরে স্বায়ী ইলেকট্্রন বিন্যাস লাভের জন্য ইলেকট্রন শেয়ারের মাধ্যমে যে বন্ধন গঠিত হয়, তাকে সমযোজী বন্ধন বলে। **লক্ষনীয় –**

সাধারণত দুটি অধাতব পরমাণুর মধ্যে সমযোজী বন্ধন ঘটে থাকে।

 বন্ধলে অংশগ্রহণকারী পরমাণু সমসংখ্যক ইলেকট্রন যোগান দিয়ে এক বা একাধিক ইলেকট্রন যুগল সৃষ্টি করে যা উভয় পরমাণু সমানভাবে শেয়ার করে। সমযোজী বন্ধনে গঠিত মৌলিক অণুকে (যেমন সমযোজী অণু এবং যৌগকে সমযোজী যৌগ (যেমন)বলে। কিছু সমযোজী অণু কম তাপমাত্রায় গ্যাসীয় অবস্থায় থাকে (ইত্যাদি) কিছু তরল অবস্থায় থাকে (ইথানল ইত্যাদি) এবং কিছু কঠিন অবস্থায় থাকে (সালফার), আয়োডিন ইত্যাদি)। এদের অণুসমূহ দুর্বল ত্যানডার ওয়ালস (van der Weals) শক্তি দ্বারা আবদ্ধ থাকে যা কম তাপমাত্রায় তেঙে যায়।,, ইত্যাদির অণুসমূহের মধ্যে ত্যানডার ওয়ালস (van der Waals) শক্তি নেই বললেই চলে, যার ফলে এরা গ্যাসীয় অবস্থায় একক অণু হিসেবে ঘূরে বেড়ায়।

চিত্র ৫.১০: সবশেষশক্তি স্তরের ইলেকটন শেয়ারের মাধ্যমে CO2 অণ্ গঠন

[তথ্য: আয়নিক যৌগের অণুতে ধনাত্মক ও ঋণাত্মক প্রান্ত খাকায় এদের আন্তঃআণবিক শক্তি বেশি হয়। অপরদিকে

সমযোজী যৌগের অণু নিরপেক্ষ হওয়ায় এদের অণুসমূহের মধ্যে দুর্বল ভ্যানডার ওয়ালস আকর্ষণশক্তি বিদ্যমান থাকে।]

দ্রবণীয়তা: পানিতে প্রায় সকল আয়নিক যৌগসমূহ দ্রবীভূত হয়, যদিও পানি একটি সমযোজী যৌগ,অপর দিকে বেশির ভাগ সমযোজী যৌগ পানিতে দ্রবীভূত হয় না।**চিন্তা কর: কার্বনের দুটি রূপভেদ, হীরক বিদ্যুৎ অপরিবাহী কিন্তু গ্রাফাইট বিদ্যুৎ পরিবাহী কেন?** (ভখ্য: হীরকে প্রতিটি কার্বন পরমাণু চারটি কার্বন পরমাণুর সাথে এবং গ্রাফাইটে প্রতিটি কার্বন পরমাণু তিনটি কার্বন পরমাণুর সাথে সমযোজী বন্ধন গঠন করে।)

- 1. টিকা লিখঃ
 - (i)সিগমাবন্ধন (ii) পাইবন্ধন(iii)হাইড্রোজেনবন্ধন
- 2. নিচের যৌগ সমুহের বিভিন্ন অংশে কোন কোন ধরনের বন্ধন আছে?
 - (i) NH₄Cl (ii) CaCl₂ (iii) CH₄ (iv) (H₂O)_n (v) K₄[Fe(CN)₆]₆ (vi) SO₄²⁻
- 3. বরফ পানিতে ভাসে কেন?
- 4. পানি অপেক্ষা বরফের ঘনত্ব কম কেন?
- 5. MgCl₂ও AlCl₃ এর মধ্যে কোনটি অধিক সমযোজী এবং কেন?
- 6. সংজ্ঞা লিখঃ
 - (১) আয়নের বিকৃতি বা পোলারায়ন
 - (২) পোলার যৌগ
 - (৩) ডাইপোল
- 7. CaCl2 ওKCl2র মধ্যে কোনটি বেশি আয়নিক?

অম্ল ক্ষার সাম্যবস্থা

- 1. প্রমান দ্রবন ও বাফার দ্রবন কাকে বলে?
- 2. PH কি?PH এর সমীকরন প্রতিস্টা কর?
- 3. "NH₃একটি স্থারক" ব্যাখ্যা কর?
- 4. "CO₃একটি স্থারক" ব্যাখ্যা কর?
- 5. Na₂CO₃এর জলীয় দ্রবন স্ফারীয় কেন- ব্যাখ্যা কর?
- 6. CuSO₃এর জলীয় দ্রবন অম্লীয় কেন- ব্যাখ্যা কর?
- 7. H₂O অম্ল 3 ফারক কেন?
- 8. H₃PO₄3HNO₄এরমধ্যে কোনটি অধিক শক্তিশালী এসিড?
- 9. অম্লত বের করঃ CaO, Al₂O₃, Fe(OH)₃
- 10. AICI₃ এর জলীয় দ্রবন অম্লীয় কেন?
- 11. নির্দেশক কাকে বলে?

জারন-বিজারন

জারণ বিজারণের ইলেক্ট্রনীয় মতবাদ [Electronic theory of oxidation and reduction]

- ভুমিকা [Introduction]:- জারণ ও বিজারণ রসায়নে একটি গুরুত্বপূর্ণ বিক্রিয়া । সাধারণত কোনো মৌলে বা যৌগে অক্সিজেনের সংযুক্তি বা কোনো যৌগ খেকে হাইড্রোজেনের বিযুক্তিকে জারণ এবং কোনো মৌলে বা যৌগে হাইড্রোজেনের সংযুক্তি বা কোনো যৌগ খেকে অক্সিজেনের বিযুক্তিকে বিজারণ বলা হয় ।
- **ইলেকট্রনীয় মতবাদ** [Electronic theory]:- পরমাণু সমূহের রাসায়নিক বিক্রিয়াকালে বিক্রিয়ায় অংশ নেয় এদের কিছু ইলেকট্রন । জারণ ও বিজারণও যেহেতু এই ধরনের এক প্রকার রাসায়নিক বিক্রিয়া; সূতরাং, স্বাভাবিকভাবেই এই সিদ্ধান্তে আসা যায়, জারণ ও বিজারণ বিক্রিয়াতে ক্রিয়াশীল পদার্থের ইলেকট্রনগুলিই অংশ নেয় । এই ধারণার ভিত্তিতেই গড়ে উঠেছে জারণ–বিজারণ সম্পর্কিত ইলেকট্রনীয় মতবাদ । **জারণ** [Oxidation]:-
- সংজ্ঞা:- যে রাসায়নিক বিক্রিয়ায় কোনো অণু, প্রমাণু বা আয়ন এক বা একাধিক ইলেকট্রন ত্যাগ করে তাকে জারণ বলে। জারণেরঅর্থ ইলেকট্রন ত্যাগ। বেমন— Na পরমাণু বাইরের কক্ষের একটি ইলেকট্রন ত্যাগ করে Na+ আয়নে পরিণত হয়। এথানে Na পরমাণুটি একটি ইলেকট্রন ত্যাগ করায় ওর জারণ হল (এক একক পরাচার্জবাহী সোডিয়াম আয়ন হয়েছে)। Na le → Na+ (জারণ)। বিজারণ [Reduction]:-

- সংজ্ঞা:- যে রাসায়নিক বিক্রিয়ায় কোনো অণু, প্রমাণু বা আয়ন এক বা একাধিক ইলেকট্রন গ্রহণ করে তাকে বিজারণ বলে। বিজারণের অর্থ ইলেকট্রন
- **গ্রহণ**। যেমন— Cu++ আয়ন 2টি ইলেকট্রন গ্রহণ করে Cu -এ পরিণত হয়, এথানে Cu++ আয়নের বিজারণ হল । Cu++ + 2e → (ধাতব) Cu (বিজারণ) ।
- **জারণ সংখ্যা** [Oxidation Number]:- কোনো যৌগের মধ্যে উপাদান মৌলগুলি জারণ বিজারণের যে বিশেষ স্থরে অবস্থান করে, তা যে সংখ্যা দিয়ে প্রকাশ করা যায়, সেই সংখ্যাকে জারণ সংখ্যা বলে । যেমন— Cu2+, Na1+, S2- ইত্যাদি আয়নগুলির জারণসংখ্যা হল যখাক্রমে +2, +1, -2 ইত্যাদি । **জারক পদার্থ ও বিজারক পদার্থ** [Oxidising and Reducing agents]:-
- জারক পদার্থ [Oxidising agents]:- যে পদার্থ রাসামূলিক বিক্রিয়া কালে অন্য পদার্থকে জারিত করে নিজে বিজারিত হয় তাকে জারক পদার্থ বলে
- । ইলেকট্রনীয় মতবাদ অনুযায়ী জারক দ্রব্য ইলেকট্রন গ্রহণ করে নিজে বিজারিত হয় এবং অপরকে জারিত করে । বিক্রিয়ার ফলে জারক দ্রব্যের জারণ সংখ্যা ফ্রাস পায় । যেমন— CuO এবং H2 -এর বিক্রিয়াটিতে জারক দ্রব্য CuO, কারণ CuO হাইড্রোজেনকে জলে জারিত করেছে এবং নিজে বিজারিত হচ্ছে ধাতব কপারে । CuO + H2 → Cu ↓+ H2O
- বিজারক পদার্থ [Reducing agents]:- রাসামনিক বিক্রিমার সময় যে পদার্থ অন্য পদার্থকে বিজারিত করে নিজে জারিত হয় তাকে বিজারক পদার্থ বলে । ইলেকট্রনীয় মতবাদ অনুযায়ী, বিজারক পদার্থ ইলেকট্রন ত্যাগ করে নিজে জারিত হয় এবং অপরকে বিজারিত করে, তার ফলে বিজারক দ্রব্যের জারণ সংখ্যা বৃদ্ধি পায় । যেমন— CuO এবং H2 -এর বিক্রিয়ায় বিজারক দ্রব্য H2; কারণ H2, CuO -কে বিজারিত করে
- 1. কিছু জাবক ও বিজাবকেব নাম লিখ?

ক্ষেক্টি জাবক পদার্থ:-

কঠিন	ভ্রল	গ্যাসীয়
(i) ম্যাঙ্গানিজ ডাইঅক্সাইড [MnO2]	(i) নাইট্রিক অ্যাসিড [HNO3]	(i) অক্সিজেন [O2]
(ii) পটাশিয়াম পারম্যাঙ্গালেট [KMnO4]	(ii) গাঢ় সালফিউরিক অ্যাসিড [H2SO4]	(ii) ওজোন [O3]
(iii) পটাশিয়াম ডাই-ক্রোমেট [K2Cr2O7]	(iii) হাইড্রোজেন পারক্সাইড [H2O2]	(iii) ফ্লুওরিন [F]
(iv) রেড লেড [Pb3O4]	(iv) তরল ব্রোমিন [Br2]	(iv) ক্লোরিন [Cl2]

ক্ষেকটি জাবকের জারণ ক্ষমতার উদাহরণ:-

জারক পদার্থ	জারণের উদাহরণ	কোন পদার্থকে জারণ করে
02	C + O2 = CO2	C -কে জারিত করে, C → CO2
HNO3	C + 4HNO3 = CO2 + 4NO2 + 2H2O	C -কে জারিত করে, C → CO2
गां H2SO4	S + 2H2SO4 = 3SO2 + 2H2O	S -কে জারিত করে, S → SO2
H2O2	PbS + 4H2O2 = PbSO4 + 4H2O	PbS -কে জারিত করে, PbS → PbSO4
CI2	H2S + Cl2 = 2HCl + S ↓	H2S -কে জারিত করে, H2S → S

ক্ষেকটি বিজাবক পদার্থ:-

কঠিন		গ্যাসীয়
কাতৰ	ত্রল	31)1414
(i) কাৰ্বন [C]	(i) নাইট্রাস অ্যাসিড [HNO2]	(i) হাইড্রোজেন [H2]
(ii) সোডিয়াম [Na]	(ii) হাইড়োব্রোমিন অ্যাসিড [HBr]	(ii) হাইড্রোজেন সালফাইড [H2S]
(iii) অ্যালুমিনিয়াম [Al]	(iii) হাইড্রোআয়োডিক অ্যাসিড [HI]	(iii) অ্যামোনিয়া [NH3]
(iv) স্ট্যানাস ক্লোরাইড [SnCl2]	(iv) হাইড্রোজেন পারক্সাইড [H2O2]	(iv) সালফার ডাইঅক্সাইড [SO2]

ক্মেকটি বিজাবকেব বিজাবণ ক্ষমতাব উদাহবণ:-

বিজারক পদার্থ	বিজারণের উদাহরণ	কোন পদার্থকে বিজারিত করে
H2	CuO + H2 = Cu + H2O	CuO -কে বিজারিত করে, CuO → Cu
NH3	3CuO + 2NH3 = 3Cu + N2 + 3H2O	CuO -কে বিজারিত করে, CuO → Cu
С	FeO + C = Fe + CO	FeO -কে বিজারিত করে, FeO → Fe
H2S	H2S + Cl2 = 2HCl + S	CI2 -কে বিজারিত করে, CI2 → HCI
СО	CuO + CO = Cu + CO2	CuO -কে বিজারিত করে, CuO → Cu

একই পদার্থ কখনো জারক আবার কখনো বিজারক হাতে পারে না: কোনো একটি বিক্রিয়ায় একটি জারক দ্রব্য অপর একটি বিক্রিয়ায়বিজারক রূপে ব্যবহার করতে পারে

যেমল, SO2 -এর সঙ্গে Br2-এর বিক্রিয়ার সময় SO2, Br2 -কে বিজারিত করে HBr -এ পরিণত করে । এই বিক্রিয়ায় SO2 বিজারক দ্রব্য । আবার H2S -এর সঙ্গে SO2 -এর বিক্রিয়ায় SO2, H2S -কে জারিত করে সালফারে পরিণত করে । এখালে SO2 জারক রূপে কাজ করে ।

হাইড়োজেন পারুএক্সাইডের জারুণ ক্রিয়া:- H2O2, সালফিউরাস অ্যাসিডকে জারিত করে সালফিউরিক অ্যাসিডে পরিণত করে ।

হা**ইড্রোজেন পার্ত্রক্সাইডের বিজারণ ক্রিয়া**:- ক্লোরিনকে H2O2 বিজারিত করে HCI -এ পরিণত করে ।

অনুরূপে নাইট্রাস অ্যাসিড [HNO2], আয়োডিন [12] প্রভৃতির জারণ এবং বিজারণ ক্ষমতা আছে ।

জারণ ও বিজারণ একসঙ্গে ঘটে [Oxidation and reduction take place simultaneously]:-

রাসায়নিক বিক্রিয়ায় জারণ ও বিজারণ প্রক্রিয়া একই সঙ্গে ঘটে । অর্থাৎ, জারণ ও বিজারণ ক্রিয়া পরস্পরের পরিপূরক । কোনো বিক্রিয়ায় জারণ–ক্রিয়া ঘটলেই বিজারণ ক্রিয়াও ঘটবে । এই রকম রাসায়নিক বিক্রিয়াকে **রেডক্স বিক্রিয়া** [Redox reaction] বলা হয় ।

(i) যেমন, কালো রং –এর লেড সালফাইডের [PbS] সঙ্গে হাইড়োজেন পারঅক্সাইডের [H2O2] বিক্রিয়া ঘটলে সাদা রং –এর লেডসালফেট [PbSO4] এবং জল উত্তপন্ন হয় । এথানে H2O2 নিজে O2 ছেড়ে দিয়ে বিজারিত হয়ে H2O -তে পরিণত হয়েছে এবং PbS সঙ্গে সঙ্গে ওই ছেড়ে দেওয়া O2 গ্রহণ করে জারিত হয়ে সাদা PbSO4 হয়েছে । সূতরাং দেখা গেল যে, বিক্রিয়াটিতে জারণ এবং বিজারণ একসঙ্গে ঘটে ।

ইলেকট্রনীয় মতবাদ অনুযায়ী জারণ–বিজারণ বিক্রিয়া অবশ্যই এক সঙ্গে ঘটবে । কারণ কোনো বস্তুকে বিজারিত হতে গেলে এক বা একাধিক ইলেকট্রন গ্রহণ করতে হবে এবং এই ইলেকট্রন আসবে অপর কোনো বস্তু থেকে । যে বস্তু থেকে ইলেকট্রন আসবে সেটি হবে জারিত, আবার যে বস্তুটি ইলেকট্রন গ্রহণ করবে তা হবে বিজারিত এবং প্রতিক্ষেত্রে বর্জিত ইলেকট্রন সংখ্যা = গৃহিত ইলেকট্রন সংখ্যা । কারণ যে–কোনো রাসায়নিক বিক্রিয়া তডিৎ–প্রশম । যেমন— ফেরিক আয়ন [Fe3+] এবং স্ট্যানাস আয়ন [Sn2+] -এর বিক্রিয়ায় একটি স্ট্যানাস আয়ন 2টি ইলেকট্রন ত্যাগ করে স্ট্যানিক আয়নে [Sn4+] পরিবর্তিত হয় এবং দুটি ফেরিক আয়ন [Fe3+] ওই দুটি ইলেকট্রন গ্রহণ করে ফেরাস আয়নে [Fe2+] পরিবর্তিত হয় । এখানে স্ট্যানাস আয়ন জারিত হয়েছে কিন্তু ফেরিক আয়ন একই সঙ্গে ওই ইলেকট্রন গ্রহণ করে বিজারিত হয়েছে । রাসায়নিক বিক্রিয়াটি হল : 2FeCl3 + SnCl2 = 2FeCl2 + SnCl4

জারন-বিজারন

- 2. কিছু জারক ও বিজারকের নাম লিখ?
- 3. জারন সংখ্যা নির্ণয় কর?
 - (i) $K_2[Fe(CN)_6]$ (ii) $[Co(NH_3)_6]^{2+}$ (iii) PO_4^{3-} , SO_4^{2-} , MnO_4^{--} , $Cr_2O_4^{2-}$, NH_4^{+-} , $Cr_2O_7^{2-}$

তড়িৎ পরিবাহিতা ও তড়িৎ বিশ্লেষন

্র **তড়িৎ-বিশ্লেষ্য পদার্থ** [Electrolytes]:-যেসব পদার্থ জলে দ্রবীভূত বা গলিত অবস্থায় আয়নে বিশ্লিষ্ট হয়ে তড়িৎ পরিবহন করে এবং তড়িৎ পরিবহনের ফলে নিজেরা রাসায়নিকভাবে বিশ্লিষ্ট হয়ে নতুন ধর্মবিশিষ্ট পদার্থ উত্তপন্ন হয়, সেই সব পদার্থকে তড়িৎ-বিশ্লেষ্য পদার্থ বলে।

- [i] অ্যাসিড:- সালফিউরিক, নাইট্রিক, হাইড্রোক্লোরিক প্রভৃতি I
- [ii] স্কার:- কস্টিক সোডা, কস্টিক পটাশ ইত্যাদি ।
- [iii] লবণ:- সোডিয়াম ক্লোরাইড, জিম্ব সালফেট, ম্যাগনেসিয়াম ক্লোরাইড ইত্যাদি ।

এই জাতীয় পদার্থগুলি গলিত অবস্থায় বা জলে দ্রবীভূত অবস্থায় তড়িৎ পরিবহন করে এবং তড়িৎ পরিবহন করার সঙ্গে সদার্থগুলির রাসায়নিক পরিবর্তন ঘটে নতুন পদার্থ উত্পন্ন হয় । এইগুলি সব **তডিৎ-বিশ্লেষ্য পদার্থ**।

ভড়িৎ-বিশ্লেষণ [Electrolysis]:- যে পদ্ধতিতে উপযুক্ত দ্রাবকে দ্রবীভূত অবস্থায় কিংবা বিগলিত অবস্থায় তড়িৎ-বিশ্লেষ্য পদার্থের মধ্য দিয়ে তড়িৎপ্রবাহ চালনা করলে ওই পদার্থের রাসায়নিক বিয়োজন ঘটে নতুন ধর্মবিশিষ্ট পদার্থ উত্পন্ধ হয়, সেই পদ্ধতিকে **তড়িৎবিশ্লেষণ** বলে । তড়িৎবিশ্লেষণে তড়িৎ শক্তি রাসায়নিক শক্তিতে রূপান্তরিত হয় ।

্ব আমন [lons]:- জলে দ্রবীভূত বা গলিত অবস্থায় তড়িৎবিশ্লেষ্য পদার্খের অণুগুলি বেশ কিছু সংখ্যক বিয়োজিত হয়ে **ধনাত্মক** [positive] এবং **ঋণাত্মক** [negetive] তড়িৎগ্রস্থ কণায় পরিণত হয় । এই তড়িৎগ্রস্থ কণাগুলিকে **আমন** বলে ।

- ক্যাটায়ন [Cations]:- ধনাত্মক তড়িৎগ্ৰস্থ আয়নগুলিকে ক্যাটায়ান বলে। যেমন— H+, Ca2+, Al3+, NH4+ ইত্যাদি ।
- অ্যালামূল [Anions]: ঋণাত্মক ভডিৎগ্ৰন্থ আমূলগুলিকে অ্যালামূল বলে। (যমল— Cl-, NO3-, SO42-, PO43- ইত্যাদি।

একটি উদাহরণ—

ভড়িষার [Electrodes]:- ভোল্টামিটারে রাখা গলিত বা জলে দ্রবীভূত তড়িৎ-বিশ্লেষ্যের মধ্যে দুটি সুপরিবাহী ধাতব পাতকে আংশিক ডুবিয়ে রাখা হয় এবং এদের সাহায্যে তড়িৎ-বিশ্লেষ্যের মধ্য দিয়ে তড়িৎপ্রবাহ চালালো হয় । এই **পাত দুটিকে তড়িষ্মার** বলে । প্ল্যাটিনাম, নিকেল, কপার, আয়রন, গ্যাস কার্বন, গ্রাফাইট প্রভৃতি তডিষ্মাররূপে ব্যবহৃত হয় ।

অ্যালোড:- যে তড়িদ্বারের সঙ্গে ব্যাটারির ধনাত্মক মেরু যুক্ত থাকে, সেই তড়িদ্বারটিকে অ্যালোড বলে ।

• ক্যাথোড:- যে তড়িছারের সঙ্গে ব্যাটারির ঋণাত্মক মেরু যুক্ত থাকে, সেই তড়িছারটিকে ক্যাথোড বলে । ব্যাটারির সঙ্গে তড়িৎ পরিবহনে সক্ষম পদার্থটিকে যোগ করলে তড়িৎপ্রবাহ অ্যালোডের মধ্য দিয়ে তড়িৎ-বিশ্লেষ্যে প্রবেশ করে ক্যাথোডের মধ্য দিয়ে ব্যাটারিতে ফিরে যায় । তড়িৎ-বিশ্লেষ্য পদার্থের মধ্য দিয়ে তড়িৎপ্রবাহ চলার সঙ্গে ওর রাসায়নিক বিয়োজন ঘটে; যেমন— প্ল্যাটিনাম তড়িছারের সাহায্যে গলিত NaCI-এর মধ্য দিয়ে তড়িৎপ্রবাহ করা হলে, ক্যাথোডে সোডিয়াম ও অ্যানোডে ক্লোরিন উত্পন্ন হয় ।

ভড়িৎ-অবিশ্লেষ্য পদার্থ [Non-Electrolytes]:- যে সমস্ত পদার্থগুলি গলিত বা জলে দ্রবীভূত অবস্থায় আয়নে বিশ্লিষ্ট হয় না এবং তড়িৎ পরিবহন করতে পারে না, তাদের তড়িৎ-অবিশ্লেষ্য পদার্থ বলে । যেমন— চিনির দ্রবণ, গ্লিসারিন, পেটোল, কেরোসিন, ইখার, বেঞ্জিন, অ্যালকোহল তড়িৎ পরিবহন করে না । এরা সব তড়িৎ-অবিশ্লেষ্য পদার্থ । তড়িৎ-অবিশ্লেষ্য পদার্থ গলিত বা জলে দ্রবীভূত অবস্থায় আয়নিত হয় না, তাই তড়িৎ পরিবহন করতে পারে না ।

- 1. ফ্যারাডের তডিৎ বিশ্লেষন সূত্র দ্ব্য় লিখ?
- 2. ইলেকট্রোপ্লেটিং বা ভড়িৎ প্রলেপন বলতে কি বুঝ?

বাসামূলিক বিক্রিয়া, প্রভাবন এবং প্রভাবক

দুটি প্রাইমারী ও দুটি সেকেন্ডারী যৌগের লাম ও সংকেত লিথ?

"যেসব যৌগে C বর্ণ আছে তারা সবাইপ্রাইমারী স্ট্যান্ডার্ড পদার্থ।" হোক সেটা কার্বন (C) হোকসেটা ক্রোমিয়াম (Cr)(Cl ব্যাতীত)C বর্ণ থাকলেই সেটা প্রাইমারী স্ট্যান্ডার্ডপদার্থ" (যমন-.Na₂CO₃, H₂C₂O₄, K₂Cr₂O₇, Na₂C₂O₄. 2H₂O

ব্যতিক্রম – HCl . অর্থাত্ এযৌগে C বর্ণ থাকা সত্ত্বেওএটি প্রাইমারী স্ট্যান্ডার্ডপদার্থ ন্য়।এটি সেকেন্ডারী স্ট্যান্ডার্ডপদার্থ। যেসব যৌগে C বর্ণ নেইতারাসেকেন্ডারী স্ট্যান্ডার্ডপদার্থ। যেমন–. $NaOH, H_2SO_4, KMnO_4, Na_2S_2O_310H_2O$

1. তাপহারী ও তাপ উৎপাদী বিক্রিয়া কাকে বলে এবং উধাহরন দাও?

Exothermic & Endothermic Reaction:

- (i) Exothermic: যে রাসায়নিক পরিবর্তনের ফলে তাপশক্তি উৎপন্ন হয় এবং বিক্রিয়া অঞ্চলের তাপমাত্রা বৃদ্ধি পায়, তাকে তাপউৎপাদী বিক্রিয়া বলে । যেমনঃ কয়লাকে পোড়ালে কার্বন–ডাই–অক্সাইড উৎপন্ন হয় এবং তাপের উদ্ভব ঘটেঃ C+O=CO+তাপ ।
- (ii) Endothermic: যে রাসায়নিক পরিবর্তনের ফলে তাপশক্তির শোষণ এবং বিক্রিয়া অঞ্চলের তাপমাত্রা হ্রাস পায়, তাকে তাপহারী বিক্রিয়া বলে । যেমনঃ উচ্চ তাপমাত্রায় নাইট্রোজেন ও অক্সিজেন তাপ শোষন করে নাইট্রিক অক্সাইড উৎপন্ন করেঃ N +O = 2NO – তাপ ।
- 2. আইসোমারিজম ও পলিমারকরণ কাকে বলে উধাহরন সহ লিথ?
- 3. জটিললবনওযুগ্মলবনেরনামলিখ?

শিল্পক্ষেত্রে অনুঘটকের ব্যবহার :

শিল্প	বিক্রিয়া	অনুঘটক
NH₃ উৎপাদন	$N_2+3H_2 \leftrightharpoons 2NH_3$	Fe(প্ৰভাবক) , Mo(সহায়ক)
H₂SO₄ উৎপাদ ৰ	$2SO_2 + O_2 \leftrightharpoons 2SO_3$	Ptবা V₂O₃
HNO₃ উৎপাদৰ	$4NH_3+5O_2 \leftrightharpoons 4NO+6H_2O$	Pt-Ir
মিথানল উৎপাদন	CO+2H₂ → CH₃OH	ZnO+Cr ₂ O ₃
ইথানল উৎপাদন	$C_6H_{12}O_6 \rightarrow 2CH_3-CH_2-OH+2CO_3$	<u>জাইমেজ</u>
ভিৰেগার উৎপাদৰ	$CH_3-CH_2-OH+O_2 \rightarrow CH_3-COOH+H_2O$	মাইকোডারমা অ্যাসিটিলিন
ত্বল স্থালানি উৎপাদন	$CO+H_2O \rightarrow C_nH_{2n+2}+H_2O$	Co-Fe-Ni
ভালভা উৎপাদন	$C=C+H_2 \rightarrow CH-CH$	Ni

অক্সাইড

- 1. প্রমান কর যে নিচের অক্সাইড গুলো উভধর্মী অক্সাইড। ${\rm Al}_2{\rm O}_3$, ${\rm ZnO}$, ${\rm SnO}$
- 2. কিউপ্রিক কার্বনেটকে উত্তপ্ত করলে কি হ্য়?
- 3. কিউপ্রিক হাইড্রোক্সাইডকে উত্তপ্ত করলে কি হ্ম?
- 4. কিউপ্রিক নাইট্রেটকে উত্তপ্ত করলে কি হ্ম?
- 5. হাইড্রোজেন সালফাইড ও ক্লোরিনের বিক্রিয়া কী উৎপন্ন হয়?
- 1. খর পানি ও মৃদু পানির পার্থক্য লিখ?

थ्य भाव	মৃদু পানি
১। শক্ত হাড় ও দাঁত গঠনের জন্য ক্যালসিয়াম লবণ অত্যাবশ্যক	১) বয়লারে ব্যবহার করলে তাতে খর পানির ন্যায় কোন
বলেশিশুর দেহ গঠনে খর পানি বিশেষ উপযোগী।	কঠিন পদাথের্র আস্তরন সৃষ্টি হয় না।
২। খর পানিতে যে সকল ধাতব লবণ (ঈধ-লবণ) দ্রবীভূত	২) ধৌত কার্যে খর পানির তুলনায় মৃদু পানি ব্যবহার করলে
থাকে তা স্বাস্থ্যের জন্য উপকারী বলে খাবার পানিহিসাবে	সাবানের অপচয় হয় না।
সামান্য খর পানির ব্যবহার বাঞ্ছনীয়।	
৩। খর পানি আপেক্ষা মৃদু পানিতে সীসা অধিক পরিমাণে দ্রবীভূত	৩) রন্ধন কার্যে খর পানির তুলনায় মৃদু পানি ব্যবহার করলে
হয়। তাই খাবার পানি সামান্য খর হলে সীসক নির্মিত নলের মধ্যে	খাদ্যদ্রব্য সহজে সিদ্ধ হয় না।
দিয়ে সরবরাহ করা নিরাপদ। কারণ তাতে সীসক বিষ ক্রিয়ার ভয় কম	
থাকে।	

2. অস্থায়ী থরতা ও স্থায়ী থরতার পার্থিক্য লিখ?

অস্থায়ী খরতা	স্থায়ী খরতা
 গানিতে ক্যালসিয়াম, ম্যাগনেশিয়াম ও আয়য়নের	১। ক্যালসিয়াম, ম্যাগনেশিয়াম ও অ্যালুমিনিয়াম প্রভৃতির ক্লোরাইড বা
বাইকার্বনেট দ্রবীভূত থাকলে পানির যে খয়তা হয়	সালফেট লবণ পানিতে দ্রবীভূত থাকলে পানির যে খরতা হয় তাকে স্থায়ী
তাকে অস্থায়ী খয়তা বলে।	খরতা বলে। খর পানি স্বাস্থ্যের ক্ষেত্রে কোন সমস্যা সৃষ্টি করে না।
২। এ খরতাকে অস্থায়ী বলার কারণ এই যে, পানির	২ । স্থায়ী খরতা সাধারণত সহজ পদ্ধতি যেমন পানির স্ফুটন দ্বারা দূর
স্কুটন দ্বারা এই খরতা সহজেই দূর করা যায় না।	করা যায় না।

3. সংজ্ঞা লিখঃ

(i) সালফার পানি (ii) চ্যালিবিট পানি (iii) তিক্তা পানি (iv) পারমুটিট

4. পানির খরতাদ্রিকরনের পদ্ধতির নাম গুলা লিখ?

মূলনীতি:যেহেতু পানিতে ক্যালসিয়াম, ম্যাগনেশিয়াম ও আয়রন প্রভৃতির বাইকার্বনেট, ক্লোরাইড ও সালফেট জাতীয় লবণ দ্রবীভূত থাকার জন্যই পানির খরতার সৃষ্টি হয়, সুতরাং ঐ সমস্তদ্রবীভূত লবণকে রাসায়নিক প্রক্রিয়ায় অদ্রবীভূত লবনে পরিণত করে তাকে পানি হতে পৃথক করলে পানির খরতা দূর হয়। পানির খরতা দূরীকরণের প্রধান প্রণালীগুলো হলে ১. সোডা পদ্ধতি ২. পারমুটিট পদ্ধতি ৬. আয়ন বিনিম্ম রেজিন পদ্ধতি ইত্যাদি

 পারমূটিট দিয়ে থর পানির থরতা দূরীকরণের সমীকরণ কি? পারমূটি প্রণালী: এই প্রণালীই বর্তমানে অধিক প্রচলিত। এর সাহায্যে পানির অস্থায়ী ও স্থায়ী উভয় খরতাই দূর করা যায়। বিজ্ঞানী গ্যান (এঁহ) এই প্রণালীর আবিদ্ধারক বলে একে গ্যানের প্রণালীও (Gan's Process) বলা হয়। এতে আর্দ্র সোডিয়াম অ্যালুমিনিয়াম অর্থোসিলিকেট (NaAlSiO4.3H2O) বিকারক হিসাবে ব্যবহৃত হয়। ইহা প্রকৃতিতে জিওলাইট(Zeolites) নামক খনিজ হিসেবে পাওয়া যায় এবং পরীক্ষাগারে কৃত্রিম উপায়েও প্রম্ভত করা যায়।

পারমুটিট প্রণালিতে খর পানি মৃদুকরণ।

খর পানিকে পারমুটিটের ভিতর দিয়ে চালনা করলে অদ্রবণীয় ক্যালসিয়াম ও ম্যাগনেশিয়াম পারমুটিট উৎপন্ন হয়, ফলে মৃদু পানি পাওয়া যায়

 $[2NaAlSiO_4 + CaCl_2 \rightleftharpoons Ca(AlSiO_4)_2 + 2NaCl]$

Na- পারমুটিট+ Mgলবণ⇌ Mg-পারমুটিট+ Na−লবণ

দীর্ঘ সময় ব্যবহারে পারমুটিটের শক্তি হাস পায় একে পুনরায়ক্রয়াশীল কিরতে এর ভেতর দিয়ে সোডিয়াম ক্লোরাইডের তীব্র দ্রবণ চালনা করা হয়।

Ca− পারমুটিট+ 2NaCl = 2Na − পরমুটিট+ CaCl₂

Mg-পারমুটিট+ 2NaCl = 2Na − পারমুটিট+ MgCl₂

এই প্রণালীতে একটি খাড়া পাত্রের মধ্যে চিত্রের ন্যায় পারমুটিটকে অন্যান্য প্রয়োজনীয় দ্রব্যের সংগে রাখা হয় এবং উপর হতে নিমুদিকে খর পানি চালনা করা হয়।

ধাতু

থনিজ ও আকরিক [Mineral and Ore]:-

সোনা, রুপো, তামা, মার্কারি, প্লাটিনাম প্রভৃতি ক্ষেকটি ধাতু প্রকৃতিতে মুক্ত অবস্থায় পাওয়া যায় । এই ধাতুগুলি ছাড়া অন্যান্য ধাতুগুলিকে কখনও প্রকৃতির মধ্যে মুক্ত অবস্থায় পাওয়া যায় না । ওইগুলিকে যৌগরূপে ভূপ্ষ্ঠে বালি, মাটি ইত্যাদির সঙ্গে মিশ্রিত অবস্থায় প্রকৃতির মধ্যে পাওয়া যায় । মিশ্রিত বালি, মাটি ইত্যাদি অশুদ্ধি বা অপদ্রব্যকে থনিজমল [Gangue] বলে ।

থনিজ [Mineral]:- প্রকৃতির মধ্যে বিভিন্ন ধাতব যৌগকে পাখরের মতো কঠিন অবস্থায় কখনও ভূগর্তের নিচে বা ভূপ্র্টে, বানি, মাটি এবং কাদার সঙ্গে মিপ্রিত অবস্থায় পাওয়া যায় । প্রকৃতিজাত এইসব অজৈব পদার্খগুলিকে খনিজ পদার্খ বলে । যেমন: রেড হেমাটাইট [Fe2O3] হল লোহার একটি খনিজ । আকরিক [Ores]:- যেসব খনিজ থেকে সহজে ও সুলভে প্রয়োজনীয় ধাতু নিষ্কাশন করা যায়, তাদের ওই ধাতুর আকরিক বলে । কোনো ধাতুর সব খনিজই খরচ ও সহজ লভ্যতার প্রেক্ষিতে ধাতু নিষ্কাশনের উপযুক্ত নাও হতে পারে । যে কারণে বলা হয়— কোনো ধাতুর আকরিকগুলি এর খনিজ, কিন্তু যেকোনো খনিজই এর আকরিক নাও হতে পারে । যেমন: রেড হেমাটাইট [Fe2O3] থেকে সহজে ও কম ব্যয়ে লোহার নিষ্কাশন করা যায় । তাই রেড হেমাটাইট লোহার আকরিক বলে । কিন্তু আয়রন পাইরাইটিস [FeS2] থেকে সহজে ও কম ব্যয়ে লোহা নিষ্কাশন সম্ভব হয় না । তাই আয়রন পাইরাইটিস লোহার খনিজ হলেও একে আকরিক বলা যায় না

অ্যালুমিলিয়াম

অ্যালুমিনিয়াম ধাতুকে যৌগরূপে প্রকৃতির মধ্যে প্রচুর পাওয়া যায় । ভু-পৃষ্ঠের সব ধাতুর মধ্যে অ্যালুমিনিয়ামের পরিমাণ সবচেয়ে বেশি। অ্যালুমিনিয়ামের সংকেত— Al পারমাণবিক সংখ্যা— 13 তর— 26.98 যোজ্যতা— 3

• অ্যালুমিনিয়ামের প্রধান আকরিকগুলি হল :- [i] ডায়াম্পোর (Diaspore) Al_2O_3 . $H_2O[ii]$ বক্সাইট (Bauxite), Al_2O_3 . $2H_2O$ [iii] গিবসাইট (Gibbsite), Al_2O_3 . $3H_2O$ [iv] ক্রায়োলাইট (Cryolite) Na_3AlF_6 ।

বক্সাইট অ্যালুমিনিয়ামের প্রধান আকরিক: বক্সাইট আকরিক (Al_2O_3 . $2H_2O$) (থকে প্রথমে বিশুদ্ধ অ্যালুমিনা (Al_2O_3) প্রস্তুত করা হয় । বিশুদ্ধ অ্যালুমিনার সঙ্গে ক্রামোলাইট (Cryolite), Na_3AlF_6 এবং ক্লুওস্পার (CaF_2) মিশিয়ে গলিত অবস্থায় তড়িও বিশ্লেষণ করলে ক্যাখোডে অ্যালুমিনিয়াম ধাতু মুক্ত হয় । ভারতে বিহার, ওড়িশা, গুজরাট, কর্ণাটক ও উত্তরপ্রদেশে প্রচুর পরিমাণে বক্সাইট পাওয়া যায় । ব্যবহার:

- [i] विमान ७ (माটेत গাড়ির কাঠামো প্রস্তুতিতে অ্যালুমিনিয়াম ব্যবহৃত হয় ।
- [ii] বৈদ্যুতিক যন্ত্রপাতি ও বৈদ্যুতিক তার তৈরিতে অ্যালুমিনিয়াম ব্যবহৃত হয় ।
- [iii] প্যাকেজিং শিল্পে, দরজা-জানলার ফ্রেম, চে্য়ার-টেবিল, রান্নার বাসনপত্র এবং রন্ধনপাত্র প্রভৃতি প্রস্তুত করতে অ্যালুমিনিয়াম ব্যবহৃত হয় ।
- [iv] কতকগুলি সংকর ধাতু [Alloy] প্রস্তুতিতে অ্যালুমিনিয়াম ব্যবহৃত হয় । যেমন— ম্যাগনেলিয়াম [Mg + Al], তুলাদন্ড, মোটরগাড়ির কাঠামো এবং যন্ত্রপাতি প্রস্তুতিতে অ্যালুমিনিয়াম ব্যবহৃত হয় । ত্যালুমিনিয়াম ব্রোঙ্গ [Al + Cu], মূর্তি, মূদ্রা, বাসনপত্র প্রস্তুতিতে অ্যালুমিনিয়াম ব্যবহৃত হয় । তুরালুমিন [Al + Cu + Mg + Mn], বিমান ও মোটর গাড়ির বিভিন্ন অংশ প্রস্তুতিতে অ্যালুমিনিয়াম ব্যবহৃত হয় ।
- [vi] খার্মিট পদ্ধতিতে লোহার ভাঙ্গা অংশ জোড়া দিতে এবং ক্রোমিয়াম, ম্যাঙ্গানিজ প্রভৃতি ধাতু নিষ্কাশনে অ্যালুমিনিয়াম ব্যবহৃত হয় । অ্যালুমিনিয়াম পাতে মোড়া আচার থাওয়া উচিত নয়— কারণ আচারে ভিনিগার (অ্যাসেটিক অ্যাসিড) থাকে যা অ্যালুমিনিয়ামের সঙ্গে বিক্রিয়া করে লবণ উত্পন্ন করে । এই লবণ আচারের সঙ্গে দেহে প্রবেশ করে শরীরের স্ফতিসাধন করে ।

ম্যাগ্ৰেসিয়াম

উৎস: ম্যাগনেসিয়ামকে প্রকৃতির মধ্যে মুক্ত অবস্থায় পাওয়া যায় না । এর নানা রকম যৌগ প্রচুর পরিমাণে প্রকৃতিতে পাওয়া যায় । • ম্যাগনেসিয়ামের প্রধান আকরিকগুলি হল :-[i] স্যাগলেসাইট (Magnesite) $MgCO_3$, [ii] ডলোমাইট (Dolomite) $MgCO_3$, $CaCO_3$ [iii] কার্নালাইট (Carnallite) $MgCl_2$, KCl, $6H_2O$ । • কার্নালাইট এবং ম্যাগনেসাইট আকরিত থেকে ধাতব ম্যাগনেসিয়াম নিষ্কাশন করা হয় । অনার্দ্র MgCl2 -এর গলিত অবস্থায় তডিৎ বিশ্লেষণ করলে ক্যাখোডে ম্যাগনেসিয়াম ধাতু মুক্ত হয় । • ব্যবহার:-[i] পরীক্ষাগারে বিজারক রূপে এবং জৈব রসায়নে গ্রিগনার্ড বিকারকরূপে ম্যাগনেসিয়াম ব্যবহৃত হয় । [ii] বোরন এবং সিলিকন নিষ্কাশনে ম্যাগনেসিয়াম ব্যবহৃত হয় I [iii] ফটোগ্রাফির ক্ল্যাশ বাল্ল ও সাংকেতিক আলো উত্পাদনে, বাজি ও বোমা প্রস্তুতে ম্যাগনেসিয়াম ব্যবহৃত হয় । [iv] হালকা ধাতু সংকর, যেমন— ম্যাগনেলিয়া (Mg + Al), তুলাদন্ড, এবং যানবাহনের কাঠামো প্রস্তুতে ম্যাগনেসিয়াম ব্যবহৃত হয় । ইলেকট্রন (Mg + Zn), বিমাল এবং মোটর গাড়ির যন্ত্রাংশ প্রস্তুভিত্তে ম্যাগলেসিয়াম ব্যবহৃত হয় । ডুরা<mark>লুমিল (Mg + Al + Cu + Mn),</mark> বিমাল এবং মোটর গাড়ির যন্ত্রাংশ প্রস্তুতিতে ম্যাগনেসিয়াম ব্যবহৃত হয় । [v] ম্যাগনেসিয়ামের কয়েকটি যৌগ ওসুধ উত্পাদনে ব্যবহৃত হয় I 🖿 ম্যাগলেসিয়াম ধাতৃতে আগুন লাগলে সেই আগুন কার্বন ডাই-অক্সাইড [CO2]গ্যাস দিয়ে নিভানো যায় না কেন ? ম্যাগনেসিয়াম ধাতুতে আগুন লাগলে CO2 গ্যাসের সাহায্যে সেই আগুন নেভানো যায় না, কারণ হুলন্ত ম্যাগনেসিয়াম CO2 গ্যাসের সঙ্গে বিক্রিয়া করে ম্যাগনেসিয়াম অক্সাইড [MgO] ও কার্বন উত্পন্ন করে, যথা- 2Mg + CO2 = 2MgO + C*** দস্তা বা জিঙ্ক দস্তা বা জিঙ্ক –এর সংকেত— Zn পারমাণবিক সংখ্যা— 30 পারমাণবিক ভর— 65.5 যোজ্যতা—2 ঘনত্ব —7.14 গ্রাম / সিসি গলনাস্ক — উৎস: দস্তা বা জিঙ্ক ধাতুকে প্রকৃতির মধ্যে মুক্ত অবস্থায় পাওয়া যায় না । • **জিঙ্কের প্রধান আকরিকগুলি** হল:– [i] জিঙ্কাইট (Zincite) ZnO, [ii] ক্যালামাইন Calamine(*ZnCO*3) [iii] জিঙ্কব্লেন্ড (Zincblend) ZnS I • জিঙ্গব্লেন্ড (ZnS) আকরিক থেকে ধাতব জিঙ্ক নিষ্কাশন করা হয় । জিঙ্গব্লেন্ড জিঙ্গের প্রধান আকরিক । • ব্যবহার:-[i] (लोर प्रत्यात उपत जिल्हत अलभ पित्य (ग्रामिकानोरेजियन) मत्राह निवातम कता रस । [ii] জিঙ্ক হোয়াইট নামক সাদা রং প্রস্তুতিতে জিঙ্কের ব্যবহার হয় । [iii] পরীক্ষাগারে H2 গ্যাস উত্পাদনে এবং বিজারকরূপে জিঙ্কের ব্যবহার হয় । [iv] বৈদ্যুতিক সেল এবং ড্রাই সেল প্রস্তুতিতে জিঙ্কের ব্যবহার হয় । [v] সিক্ত পদ্ধতিতে সিলভার এবং গোল্ড ধাতুর নিষ্কাশনে জিঙ্কের ব্যবহার হয় । [vi] কতকগুলি অতি প্রয়োজনীয় সংকর ধাতু প্রস্তুতিতে জিঙ্কের ব্যবহার হয়, যেমল– <mark>জার্মান সিলভার [50% Cu + 30% Zn + 20% Ni],</mark> বাসনপত্র, মুদ্রা, ফুলদানি প্ৰভৃতি প্ৰস্তুতিতে এবং **শিতল [30% Zn + 70% Cu**], বাসনপত্ৰ, জলের কল, টেলিস্কোপ প্ৰস্তুতিতে জিঙ্কের ব্যবহার হয় । **ইলেকট্ৰন** [5% Zn + 95% Mg], বিমানের যন্ত্রাংশ প্রস্তুতিতে জিঙ্কের ব্যবহার হয় । **ভাচ মেটাল [20% Zn + 80% Cu]**, যন্ত্রপাতি প্রস্তুতিতে জিঙ্কের ব্যবহার হয় । <mark>গা**ল মেটাল** [10% Zn + 85% Cu + 5% Sn],</mark> বন্দুক ও সামরিক যন্ত্রপাতি প্রস্তুতিতে জিঙ্কের ব্যবহার হয় । জাহাজের প্রপেলার, বিয়ারিং, ভালব প্রভৃতি প্রস্তুতিতে জিঙ্কের ব্যবহার হ্য • দম্ভার পাত্রে কিম্বা দম্ভার প্রলেপ দেওয়া পাত্রে থাদ্যদ্রব্য রাথা উচিত নয় । কারণ সেক্ষেত্রে দম্ভার সঙ্গে থাদ্যদ্রব্যের বিক্রিয়ায় উত্পন্ন দম্ভাঘটিত লবণ আমাদের শরীরে প্রবেশ করে বিষক্রিয়া সৃষ্টি করে । লোহা বা আয়বুন এর সংকেত— Fe পারমাণবিক সংখ্যা— 26 পারমাণবিক ভর— 55.85 যোজ্যতা— 2 এবং 3 উত্স: আয়রনের প্রধান আকরিকগুলি হল: [i] ম্যাগনেটাইট (Magnetite) Fe_3O_4 [ii] রেড হেমাটাইট (Red Haematite) Fe_2O_3 [iii] আয়রন পাইরাইটস (Iron Pyrites)FeS₂ [iv] সিডারাইট (Siderite)FeCO₃ • वाप्रायनिक धर्म :-[১] বায়ুর সঙ্গে বিক্রিয়া [Reaction with air]:-[i] শুষ্ক বায়ুর সঙ্গে লোহা বিক্রিয়া করে না । আমরনকে প্রকৃতিতে মুক্ত অবস্থাম পাওয়া যায় না । পৃখিবীর বিভিন্ন স্থানে প্রচুর আমরনের আকরিক পাওয়া যায় [iii] বায়ু বা অক্সিজেনের উপস্থিতিতে লোহাকে তীব্রভাবে উত্তপ্ত করলে স্থলে ওঠে এবং ফেরোসোফেরিক অক্সাইড [Fe3O4] উত্পন্ন হয় । 3Fe + 2O2 = Fe3O4

[২] **জলের সঙ্গে বিক্রিয়া** [Reaction with water] :-

3Fe + 4H2O = Fe3O4 + 4H2↑

[i] সাধারণ উষ্ণতায় বিশুদ্ধ লোহার সঙ্গে জলের কোনো বিক্রিয়া হয় না I

[ii] লোহিত তপ্ত লোহার উপর দিয়ে শ্টিম চালনা করলে ফেরোসোফেরিক অক্সাইড এবং হাইড্রোজেন গ্যাস উত্পন্ন হয় ।

***কাস্ট আমূবন বা ঢালাই লোহা: কাস্ট আয়রন: এটি একটি অশুদ্ধ লোহা । এর মধ্যে 2 থেকে 4.5 শতাংশ কার্বন থাকে । এছাড়া সামান্য পরিমাণে সিলিকন [Si], ম্যাঙ্গানিজ [Mn], সালফার [S] এবং কসফরাস কা**স্ট আমূরনের ব্যবহার** : ছাঁচে ঢালাই করা দ্রব্য, যেমন— লোহার নল, আলোকস্বন্ধ, উনুনের শিক প্রভৃতি প্রস্তুতিতে ব্যবহৃত হয় । এছাড়া রট আয়রন এবং ইস্পাত প্রস্তুতিতে কাস্ট আয়রনের বেশির ভাগ অংশ ব্যবহৃত হয়। *** স্টিল : স্টিল: এর মধ্যে কার্বনের পরিমাণ 0.15 থেকে 1.5 শতাংশ থাকে । স্টিলকে লোহিত তপ্ত করে জলে ডুবিয়ে আবার 200°C — 350°C উষ্ণতায় উত্তপ্ত করলে এর নমনীয়তা ও দূঢ়তা বাড়ে । এই পদ্ধতিকে ইস্পাতের পানদান বলা হয় । 🄁 লের ব্যবহার : রেল এবং ট্রামলাইন, গাড়ি, জাহাজ, কড়ি, নানরকম যুদ্ধান্ত্র, যন্ত্রপাতি, ছুরি, কাঁচি, রেড, চাষের জন্য লাঙ্গলের ফলা, ট্রান্টর প্রভৃতি প্রস্তুত করা হয় । করাত, স্বায়ী চুম্বক, সেতু, গাড়ির স্প্রিং গ্রভৃতিতে স্টিল ব্যবহৃত হয় । এছাড়া স্টিলের সঙ্গে সামাল্য পরিমাণ অন্য ধাতু মিশিয়ে নানারকম সংকর স্টিল [alloy steel] উত্পল্ল করা হয় । যেমন [iii] ম্যাঙ্গানিজ স্টিল : ম্যাঙ্গানিজ [Mn] 12 - 14% — রেল লাইন, সিন্দুক, পাখর চূর্ণ করার মেশিন, হেলমেট ইত্যাদি প্রস্তুতিতে ব্যবহার করা হয় । [iv] কলংকহীন ইম্পাত বা স্টেইনলেস স্টিল : ক্রোমিয়াম [Cr] 10% - 15% — অম্রোপচারে ব্যবহৃত ছুরি, কাঁচি, এবং বাসন প্রস্তুতিতে ব্যবহৃত হয় । [vi] টাংস্টেন স্টিল : টাংস্টেন [W] 18% এবং ক্রোমিয়াম [Cr] 5% — যেসব যন্ত্র দ্রুত ঘোরালো হয়, সেসব যন্ত্র প্রস্তুতিতে ব্যবহৃত হয় । *** <mark>রট আয়রন বাপেটা লোহা:</mark> এই জাতীয় লোহা অনেকটা বিশুদ্ধ । এর মধ্যে 0.1 থেকে 0.15 শতাংশ কার্বন থাকে । রট আমরন বা পেটা লোহার ব্যবহার : ভড়িৎচুম্বকের মন্ধা, তার, শিকল, পেরেক, ডামনামো ও মোটরের ভিতরের অংশ, তালা–চাবি, ঢালাই করার জন্য লহর রড প্রভৃতি প্রস্তুতিতে এবং ওয়েল্ডিং -এর কাজে ব্যবহৃত হয় । আমরন পাইরাইটিসকে লোহার আকরিক বলা হয় না— কারণ : আয়রন পাইরাইটিস (Iron Pyrites) FeS2 থেকে সুলভে ও সহজে আয়রন নিষ্কাশন করা যায় না । পক্ষান্তরে, সালফিউরিক অ্যাসিডের পণ্য উত্পাদনের ক্ষেত্রে আয়রন পাইরাইটিস SO2 প্রস্তুত করতে ব্যবহার করা হয় । FeS2 -কে অতিরিক্ত বায়ুতে পোড়ালে SO2 উত্পন্ন হয় । যখা: 4FeS2 + 1102 = 2Fe2O3 (ফেরিক অক্সাইড) + 8SO2↑। অতএব, আয়রন পাইরাইটিস [FeS2] লোহার একটি খনিজ, কিন্তু লোহার আকরিক নয় । তামা বা কপার এর সংকেত— Cu পারমাণবিক সংখ্যা— 29 পারমাণবিক ভর— 63.5 যোজ্যতা— 1 এবং 2 **উৎস**:- প্রকৃতিতে মৌল অবস্থায় থুব সামান্য পরিমাণ কপার পাওয়া যায় । বেশির ভাগ ক্ষেত্রে কপারকে বিভিন্ন যৌগরূপে প্রকৃতিতে পাওয়া যায় । কানাডার লেক সুপিরিয়রের কাছে এবং সাইবেরিয়ার পর্বতে মুক্ত অবস্থায় তামা বা কপার পাওয়া যায় । ullet কপারের প্রধান আকরিকগুলি হল : [i] কপার থ্লানস (Copper glance) Cu_2S , [ii] কপার পাইরাইটিস বা চ্যালকোপাইরাইটিস (Copper Pyrites), $2CuFeS_2$ [iii] ম্যালাকাইট (Malakite $CuCO_3$. $Cu(OH)_2$ [iv] আজুরাইট (Azurite) 2CuCO3, Cu(OH)22 $CuCO_3$. $Cu(OH)_2$ | • ব্যবহার:-[i] বৈদ্যুতিক তার, তড়িৎ কোশ, বৈদ্যুতিক মোটর, ডায়নামো প্রভৃতিতে কপার ব্যবহার করা হয় । [ii] তড়িং-লেপন, তড়িংদার, টাইপ প্রভৃতিতে প্রচুর কপারের ব্যবহার হয় । [iii] রন্ধনের পাত্র, ক্যালোরিমিটার, বয়লারের বিভিন্ন অংশ স্টিম পাইপ এবং মুদ্রা প্রভৃতিতে কপার ব্যবহৃত হয় । [iv] বিভিন্ন রকম প্রয়োজনীয় সংকর ধাতু প্রস্তুতিতে কপার ব্যবহার করা হয় । <mark>ব্লাস [Cu + Zn]—</mark> বাসন, টেলিস্কোপ, পাইপ, ব্যারোমিটার প্রস্তুতিতে ; ্রাে**ঞ্জ [Cu + Sn]—** মুদ্রা, মূর্তি, যন্ত্রের অংশ প্রস্তুতিতে ; <mark>জার্মান সিলভার [Cu + Zn + Ni]—</mark> বাসন, ফুলদানি, অলংকার প্রস্তুতিতে; <mark>বেল মেটাল [Cu + Sn]—</mark> বাসনপত্র, ঘন্টা প্রভৃতি প্রস্তুতিতে কপার ব্যবহৃত হয় । 🖿 বৈদ্যুতিক তার হিসাবে তামা এবং রাল্লার বাসনপত্র নির্মাণে অ্যালুমিনিয়াম ব্যবহার করা হয়— কারণ, বিদ্যুত্তের সুপরিবাহী বলে ভামাকে বৈদ্যুত্তিক ভার হিসাবে ব্যবহার করা হয় । অ্যালুমিনিয়াম ভাপের সুপরিবাহী ও হালকা ধাতু । ভাই রান্নার বাসনপত্র নির্মাণে অ্যালুমিনিয়াম ব্যবহার করা হয় । *** ধাতু-সংক্রের নাম, উপাদান, এবং ব্যবহার :-(১) পিতল [Brass] :- তামা [Cu] 60-80% এবং দস্তা [Zn] 40-20 % -এর মিশ্রিত ধাতু সংকর । ব্যবহার : বাসনপত্র, নল, টেলিক্ষোপ, মূর্তি, ব্যারোমিটার, বিভিন্ন যন্তের অংশ, জলের কল প্রভৃতি প্রস্তুতিতে পিতলের ব্যবহার হয় । (২) **কাঁসা** [Bell Metal]:- তামা [Cu] 80% এবং টিন [Sn] 20% -এর মিশ্রিত ধাতু সংকর । ব্যবহার : খালা, গ্লাস, মুদ্রা, বাটি, মূর্তি, ঘন্টা প্রভৃতি প্রস্তুতিতে কাঁসার ব্যবহার হয় । (৩) রোঝ [Bronze]:- তামা [Cu] 75-90% এবং টিন [Sn] 25-10% -এর মিশ্রিত ধাতু সংকর । ব্যবহার : মূর্তি, থালা, যন্ত্রের বিভিন্ন অংশ, বাসনপত্র, মেডেল, মুদ্রা প্রভৃতি প্রস্তুতিতে ব্রোঞ্জের ব্যবহার হয় । (৪) **অ্যালুমিনিয়াম-রোঞ্জ** [Aluminium-Bronze]:- তামা [Cu] 90% এবং অ্যালুমিনিয়াম [Al] 10% -এর মিশ্রিত ধাতু সংকর । ব্যবহার : মূর্তি, থালা, ফটোফ্রেম শৌখিন দ্রব্য প্রভৃতি প্রস্তুতিতে অ্যালুমিনিয়াম–ব্রোঞ্জের ব্যবহার হয় । (৫) **জার্মান সিলভার** [German Silver]:- তামা [Cu] 50%, দস্তা [Zn] 30% এবং নিকেল [Ni] 20% -এর মিশ্রিত ধাতু সংকর । ব্যবহার : বাসনপত্র, ফুলদানি ও নানা রকম শৌখিন দ্রব্য প্রস্তুতিতে জার্মান সিলভারের ব্যবহার হয় । (৬) **ডুরালুমিন** [Duralumin]:- অ্যালুমিনিয়াম [Al] 95%, তামা [Cu] 4%, ম্যাগনেসিয়াম [Mg] 0.5% এবং ম্যাঙ্গানিজ [Mn] 0.5%-এর মিশ্রিত খাতু সংকর । ব্যবহার :মোটর গাড়ির বিভিন্ন যন্ত্রাংশ, বিমানের কাঠামো নানা রকম যন্ত্রাংশ প্রস্তুতিতে ডুরালুমিন ব্যবহার হয় ।

(৭) **ম্যাগনেলিয়াম** [Magnelium]:- অ্যালুমিনিয়াম [Al] 98% এবং ম্যাগনেসিয়াম [Mg] 2% -এর মিশ্রিত ধাতু সংকর । ব্যবহার : তুলাদন্ড, বিমানের কাঠামো এবং নানা রকম যন্ত্রাংশ নির্মাণে ম্যাগনেলিয়াম ব্যবহার হয় । (৮) **স্টেইনলেস স্টিল** [Stainless Steel]:- লোহা [Fe] 80-90% এবং ক্রোমিয়াম [Cr] 10-20% -এর মিশ্রিত ধাতু সংকর ।

ব্যবহার : ট্যাপ, বাসন্পত্র, সাইকেলের যন্ত্রাংশ, সার্জিক্যাল যন্ত্রপাতি ইত্যাদি নির্মাণে স্টেইনলেস স্টিল ব্যবহার হয় ।

কতগুলো প্রশ্ন:

- ১. কপার ম্যাট কাকে বলে?
- ২. ব্লিষ্টার কপারের মধ্যে কি কি ভেজাল দ্রব্য থাকে?
- ৩. বক্সাইট আকরিক হতে অ্যালুমিনিয়াম নিষ্কাশনের স্তর তিনটি কি?
 - (i) স্পেল্টার বিশোধন কাকে বলে?
 - (ii) লৌহের নিষ্ক্রিতা কাকে বলে
- 8. $3Fe + 4H_2O = ?$
- ৫. শীতল ও লঘু NHO₃এসিডের সাথে বিক্রিয়ায় কি ঘটে?
- ৬. শীতল ও গাড NHO₃এসিডের সাথে বিক্রিয়ায় কি ঘটে?
- ৭. উষ্ণ ও গাড NHO₃এসিডের সাথে বিক্রিয়ায় কি ঘটে?
- ৮. উত্তপ্ত গাড় সালফিউরিক এসিডের সাথে Cu যোগ করলে কি উৎপন্ন হয়?
- ৯. উত্তপ্ত গাড় নাইট্রিক এসিডের সাথে Cu যোগ করলে কি উৎপন্ন হয়?
- ১০. শীতল ও লঘু NHO₃সাথে Zn বিক্রিয়া করে কী ঘটে?
- ১১. শীতল ও গাড় NHO₃সাথে Zn विक्रिय़ा करत की घर्টि? গাড় ও উত্তপ্ত H₂SO₄ সাথে Al যোগ कतल कि হ्य?
- ১২. গাড় NHO₃ সাথে AI যোগ করলে কি হ্য়?

জৈব যৌগ

1. সমগোত্রীয় শ্রেণী কাকে বলে? এদের সাধাহরন সংকেত ও নাম লিথ?

যে সকল জৈব যৌগ একই মৌলের সমন্বয়ে গঠিত তাদেরকে তাদের ভরের ক্রম অনুসারে একটি সারিতে সাজালে অর্থাৎ কার্বন পরমাণুর সংখ্যার বৃদ্ধিক্রমে সাজালে যদি পাশাপাশি দুইটি যৌগের মাঝে মিখিলিন (-CH₂-) মূলকের পার্থক্য থাকে তথন ওই যৌগসমূহকে একটি সাধারাণ সংকেত দ্বারা প্রকাশ করা যায় এবং ঐ সারিকে ঐ সব জৈব যৌগের সমগোত্রীয় শ্রেণি বা হোমোলগাস শ্রেণি বলে। সমগোত্রীয় শ্রেণির প্রত্যেক সদস্যকে সমগোত্রক বা হোমোলগ বলে।

2. कार्यकाती मृलक वा क्रियापनी मृलक की? पूष्टि कार्यकाती मृल्कत नाम 3 प्रश्तिक लिथ?

कार्यकाती मृतक	সংকেত
অ্যালকিন মূলক	-C=C-
অ্যালকাইন মূলক	-C=C-
ब्यानकारेन शानारे छ भूनक	-R-X
হাইড্রোক্সি মূলক	-OH
অ্যালডিহাইড মূলক	-СНО
কিটোল মূলক	-CO
কার্বক্সিলক মূলক	-СООН
ইথার মূলক	-0-
অ্যামিনো মূলক	-NH2
এসিড অ্যামাইড/অ্যামাইডো মূলক	-CONH2
এসিড ক্লোরাইড/এসিড ক্লোরাইড মূলক	-COCI
স্টার/এস্টার মূলক	-COOR
সালফোনিক এসিড	-SO3H
এসিড হ্যালাইড	-COX
এসিড অ্যামাইড	-CONH2
शासान	-SH
কিটোল	-CO-
অ্যালকাইল মূলক	-R
কার্বক্সিলিক এসিড	-СООН

- 3. পলিমারকরন কাকে বলে? দুইটি উধাহরন লিখ?
- 4. অ্যালকেলকে প্যারাফিল বলা হ্য কেল?
- 5. PVC কি?PVC প্রস্তুত প্রনালী অথবা CaCO3(থকে কিভাবে PVC উৎপন্ন করে লিথ? PVC ব্যবহার লিথ?

$$CaO + 3C \longrightarrow CaC_2 + CO$$

$$CaC_2 + 2H_2O \longrightarrow CH \equiv CH + Ca(OH)_2$$

$$CH \equiv CH + HCL \longrightarrow CH_2 = CHCl$$

$$CH_2 = CHCl \longrightarrow [-CH - CHCl -]n(PVC)$$

6. সংজ্ঞা লিখঃ

(i)ফরমেন্টেশন (ii)উড গ্যাস (iii)ম্যাস (iv)মন্ট (v)মোলাসেস (vi)মেখিলেটেড (vii)ডিকার্বক্সিলেশন (viii)সোডালাইম

্ মেখিলেটেড স্পিরিট [Methylated spirit]:- 95% ইথাইল অ্যালকোহলের [CH3CH2OH] জলীয় দ্রবণকে রেকটিফায়েড স্পিরিট বলে । রেকটিফায়েড স্পিরিটকে পানের অযোগ্য করার জন্য রেকটিফায়েড স্পিরিটের সঙ্গে মিখাইল অ্যালকোহল (10%), সামান্য পিরিডিল (0.5%), ল্যাপথা এবং রবার নির্যাস কাওকোসিল মিশিয়ে বিষাক্ত করে দেওয়া হয় । এই বিষাক্ত মিশ্রণকে মেখিলেটেড স্পিরিট বলে ।

্ বেকটিফামেড স্পিরিট [Rectified spirit, C_2H_5OH]:-ইখাইল অ্যালকোহলের লঘু দ্রবণের আংশিক পাতন প্রক্রিয়া থেকে 95.6% গাঢ় ইখাইল অ্যালকোহল এবং 4.4% জলের মিশ্রণ পাওয়া যায়। এই মিশ্রণকে শোধিত অ্যালকোহল বা রেকটিফামেড স্পিরিট বলে।

্র ভিনিগার [Vinegar, CH3COOH]:-

ভিনিগার হল কার্বক্সিলিক অ্যাসিড জাতীয় যৌগ— অ্যাসেটিক অ্যাসিডের লঘু জলীয় দ্রবণ । এতে প্রায় 4% — ৪% অ্যাসেটিক অ্যাসিড ও সামান্য অ্যালকোহল থাকে । (ix)পাওয়ার অ্যালকোহল ইথানলকে অন্যান্য রাসায়নিক পদার্থ সহযোগে মোটরগাড়ির ইঞ্জিনের স্বালানিরুপে ব্যবহার করা হলে তাকে পাওয়ার অ্যালকোহল বলে। প্রায় ২০% থেকে ৩০% ইথানলের সাথে পেট্রোল, ইথার, বেনজিন ইত্যাদি মিশিয়ে পাওয়ার অ্যালকোহল তৈরি করা হয়। এটি মোটরযানের বিকল্প স্বালানি হিসেবে ব্যবহৃত হয়।

(x)উর্টস বিক্রিয়া (xi)এনজাইম (xii)ফরমালিন (xiii)নাইটেশন

7. মনোমারওপলিমারেরমধ্যেপার্থক্যলিথ?

মনোমার	পলিমার
যে বিক্রিয়ায় বহুসংখ্যক স্কুদ্র ও সরল অণুর পারস্পরিক সংযোগের ফলে	যে সরল ক্ষুদ্র অণুগুলি দিয়ে বৃহৎ পলিমার গঠিত হয় তাদের মলোমার
ভিন্ন ধর্ম ও উচ্চ আণবিক ভরবিশিষ্ট (20,000 - 2,50,000) অতিবৃহৎ – অণু	(monomer-একক অংশ) বলে ।
গঠিত হয় সেই বিক্রিয়াকে পলিমেরাইজেশন বিক্রিয়া বলে । ওই বিক্রিয়ায়	
উত্পন্ন বৃহৎ-অণুকে পলিমার বলে ।	
উদ্ভিদ এবং প্রাণী খেকে প্রাপ্ত উল্লেখযোগ্য পলিমারগুলি হল— স্টার্চ,	ৃ
প্রোটিন, RNA,DNA, রবার, সিল্ক, পশম, সেলুলোজ ইত্যাদি । কৃত্রিমভাবে	
উত্পন্ন পলিমার হল— নাইলন, টেফলন, PVC ইত্যাদি ।	

- ৪. মিখেনের সাথে ক্লোরিনের রাসায়নিক বিক্রিয়া সমীকরণসহ লিখ? অথবা মৃদূ স্র্যালোকে মিখেনের সাথে ক্লোরিনের প্রতিস্থাপন বিক্রিয়া সমূহ লিখ? অথবা অ্যালকেনের হ্যালোজেনশন লিখ?
- 9. विक्षिश्व वा भृपू पूर्यालाक देशला प्राप्त प्राप्तिला विक्रिया प्रभीकर्तिण लिथ?
- 10. মিখেন ও ইখেনে পারস্পারিক পরিবর্তন বিক্রিয়ার মাধ্যমে দেখাও?
- 11. মনো হাইড্রিক অ্যালকোহল শ্রেনীবিভাগ আলোচনা কর?
- 12. অ্যাসিটিলিন বা ইখাইন মৃদু অম্লধর্মী কেন? ব্যাখ্যা কর?
- 13. বেনজিলের সাথে ক্লোরিলের প্রতিশ্বাপন বিক্রিয়া সমীকরণ সমূহ লিথ?
- 14. সংকেত লিখঃ
 - (i) গ্যামাক্সিন (ii) প্লাইঅক্সাল (iii) ডিমাইল ক্লোরাইড (iv) অ্যাসিটিক এসিড বা ইথায়োনিক এসিড
- 15. অ্যালকাইনের ৫টি বৈশিষ্ট লিখ?
- 16. ইথিলিন ও অ্যাসিটিলিনের পারস্পারিক রূপান্তর কর?

জৈব যৌগের বিক্রিয়া:

- ১. পলিমারকরন:
- ২. যুত পলিমারকরন:

$$n(CH_2 = CH_2) \xrightarrow{200^{\circ}C, O_2} n(-CH_2 - CH_2 -)$$

- পরীক্ষাগারে অ্যালকেন প্রস্তৃতি:
- 8. **অ্যালকেনের হ্যালোজিনেশন**:

$$R-COONa+NaO-H \xrightarrow{CaO} R-H+Na_2CO_3$$

$$CH_4+Cl_2 \xrightarrow{\sqrt[3]{2}} CH_3Cl+HCl$$
 $CH_3Cl+Cl_2 \xrightarrow{\sqrt[3]{2}} CH_2Cl_2+HCl$ $CH_2Cl_2+Cl_2 \xrightarrow{\sqrt[3]{2}} CHCl_3+HCl$

$$CHCl_3 + Cl_2 \xrightarrow{\begin{subarray}{c} \begin{subarray}{c} \begin{$$

৫. অ্যালকেনের নাইট্রেশনः

$$R - H + HO - NO_2 \xrightarrow{400^{\circ}C} R - NO_2 + H_2O$$

 $CH_3 - H + HO - NO_2 \xrightarrow{400^{\circ}C} CH_3 - NO_2 + H_2O$

৬. অ্যালকিনের শিল্পোৎপাদন:

$$R - CH_2 - CH_2 - OH \xrightarrow{Al_2O_3} R - CH = CH_2 + H_2O$$

৭. পরীক্ষাগারে অ্যালকিন প্রস্তুতি:

$$R - CH_2 - CH_2OH + H_2SO_4 \longrightarrow R - CH = CH_2 + H_2O.H_2SO_4 \quad [R = CH_3]$$

b. ডাইহ্যালো অ্যালকেন X_2 থেকে অপসারন:

$$BrCH_2 + BrCH_2 \xrightarrow{*} CH_2 = CH_2 + ZnBr_2$$

১. মার্কনিকভের নিয়ম:

$$CH_3-CH=CH_2\overset{HBr}{\longrightarrow} CH_3-CHBr-CH_3$$

যেখানে হাইড্রোজেন বেশী আছে সেখানে হাইড্রোজেন যোগ করতে হবে। অর্থ্যাৎ, তেলের মাধায় তেল দেওয়া।

১০ বিপরীত মার্কনিকভের নিয়ম:

$$CH_3 - CH = CH_2 \stackrel{HBr}{\longrightarrow} CH_3 - CH_2 - CH_2Br$$
 তাহলে, নিজেই চিন্তা করে দেখ কি হবে?

১১. অ্যালকিনের সঙ্গে ওজন বিক্রিয়া:

$$\begin{array}{c} CH_2 = CH_2 + O_3 \longrightarrow CH_2O - O - CH_2O \stackrel{Zn}{\longrightarrow} 2CH_2O + ZnO \\ CH_3 - CH_2 - CH = CH_2 + O_3 \longrightarrow CH_3 - CH_2 - CHO - O - CH_2O \end{array}$$

১২. অ্যালকেনের হাইড্রোক্সিমূলক সংযোজন:

$$CH_2 - CH_2 + H_2O + [O] \xrightarrow{KMnO_4} CH_2OH - CH_2OH$$
(ইথিলিন গ্লাইকল)

১৩. পরীক্ষাগারে অ্যাসিটিলিন প্রস্কৃতি:

$$CaC_2 + 2H_2O \xrightarrow{\cdot} CH \equiv CH + Ca(OH)_2$$

১৪. ইথিলিন হতে অ্যাসিটিলিন এর পারস্পরিক পরিবর্তন:

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2Br - CH_2Br + 2KOH \rightarrow CH \equiv CH + 2KBr + 2H_2O$$

$$CH \equiv CH + H_2 \rightarrow CH_2 = CH_2$$

১৫. বেয়ারর *KMnO*4 দ্রবন পরীক্ষা:

$$CH_2 = CH_2 + H_2O + [O] \rightarrow CH_2OH - CH_2OH$$
(উৎপন্ন যৌগের নাম কি ? মনে আছে তো!)

১৬. অ্যালিফেটিক অসমপৃক্ত যৌগ KMnO₄ দ্বারা সহজে জারিত হয়:

$$CH = CH + 4[O] \xrightarrow{kMnO_4} COOH - HOOC$$

১৭. অ্যালকোহলীয় কঙঐ সহ বিক্রিয়া:

$$CH_3 - CH_2 - CH_2Br + KOH \xrightarrow{\cdot} CH_3 - CH = CH_2 + KBr + H_2O$$

১৮. ম্যাগনেসিয়াম ধাতুসহ বিক্রিয়া:

$$CH_3 - I + Mg \xrightarrow{\mathfrak{S}$$
 ह्था 3 $CH_3 - MgI$

১৯. গ্রিগনার্ড বিকারক থেকে হাইড্রোকার্বন:

$$C_2H_5 - MgI + H - OH \rightarrow C_2H_6 + Mg(OH)I$$

২০. উর্টজ বিক্রিয়া

$$2CH_3 - I + 2Na \xrightarrow{\mathfrak{GRF} \mathfrak{A} \mathfrak{A}} CH_3 - CH_3 + 2NaI$$

২১. কার্বানাইল যৌগ হতে অ্যালকোহল:

$$CH_3 - CHO + 2[H] \xrightarrow{\cdot} CH_3 - CH_2OH$$

२२. *२*° ख्यानकारन উৎপाদनः

$$CH_3 - CO - CH_3 + 2[H] \xrightarrow{LiAlH_4} CH_3 - CH(OH) - CH_3$$

২৩. ইথানয়িক এসিড হতে ইথানল:

$$CH_3 - COOH + 4[H] \xrightarrow{\cdot} CH_3 - CH_2OH + H_2O$$

২৪. ফার্মান্টেশন বা গাজন:

$$C_6H_{12}O_6 \xrightarrow{\overline{\text{SMFLVG}}} 2\mathcal{O} \sim \stackrel{\downarrow}{\sim} \mathcal{C}^c$$
 $2CH_3 - CH_2OH + 2CO_2$

२৫. ज्यानकारन উৎপाদनः

$$CH_3-NH_2+HNO_2 \xrightarrow{NaNO_2} CH_3-OH+H_2O+N_2$$

Magical Reaction of Organic Reaction: (From optimum guide)

 $CH_4 \xrightarrow{1500^{\circ}\text{C}} CH \equiv CH \xrightarrow{H_2} CH_2 = CH_2 \xrightarrow{H_2} CH_3 - CH_3 \xrightarrow{Br_2} CH_3 CH_2 Br \xrightarrow{KOH} CH_3 CH_2 OH \xrightarrow{[O]} CH_3 COOH \xrightarrow{NaOH} CH_3 COONa \xrightarrow{NaO+CaO} CH_4 \xrightarrow{1500^{\circ}\text{C}} ?$ গুরুত্বপর্ণ রাসায়নিক বিক্রিয়া:

```
1. 4NH_3 + 5O_2 \xrightarrow{Pt,750^{\circ}C} 4NO + 6H_2O
2. FeCl_3 + 3NaOH \longrightarrow Fe(OH)_3 + 3NaCl
3. Cr(OH)_3 + 3NaOH \longrightarrow Na_3CrO_3 + 3H_2O
4. V_2O_5 + 6HCl \longrightarrow 2VOCl_2 + 3H_2O + Cl_2
5. V_2O_5 + 3Na_2CO_3 \longrightarrow 2Na_3VO_4 + 3CO_2
6. 2FeCl_3 + SnCl_2 \longrightarrow 2FeCl_2 + SnCl_4
7. 2FeCl_3 + H_2S \longrightarrow 2FeCl_2 + 2HCl + S
8. 2FeCl_3 + 2H_2O + SO_2 \longrightarrow 2FeCl_2 + 2HCl + H_2SO_4
9. 2NH_3 + 3Cl_2 \longrightarrow N_2 + 6HCl
10. 2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI
11. CH_4 + Cl_2 \xrightarrow{\mathfrak{A} \forall sa} \mathfrak{I}_{sa} C + 4HCl
12. Ca(OCl)Cl + 2HCl \longrightarrow CaCl_2 + H_2O + Cl_2
13. Cl_2 + H_2O \longrightarrow HCl + HClO
14. Cl_2 + NaOH \longrightarrow NaCL + NaClO + H_2O
15. 2Cl_2 + 2Ca(OH)_2 \longrightarrow Ca(ClO)_2 + CaCl_2 + 2H_2O
16. NaCl + NaHSO_4 \longrightarrow Na_2SO_4 + HCl
17. PCl_3 + 3H_20 \longrightarrow H_3PO_3 + 3HCl
18. 2NaBrO_3 + I_2 \longrightarrow 2NaIO_3 + Br_2
19. PCl_5 + H_2O \longrightarrow POCl_3 + 2HCl
20. POCl_3 + 3H_2O \longrightarrow H_3PO_4 + 3HCl
21. 3Cu + 8HNO_3 \longrightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O
22. 4NO + 2NaOH \longrightarrow 2NaNO_2 + N_2O + H_2O
23. NaNO_2 + 2HNO_3 \longrightarrow NaNO_3 + 2NO_2 + H_2O
24. 2NO_2 + 2NaOH \longrightarrow NaNO_2 + NaNO_3 + H_2O
25. P_2O_5 + 2NaOH \longrightarrow 2NaPO_3 + H_2O
26. P_2O_5 + 2HNO_3 \longrightarrow N_2O_5 + 2HPO_3
27. P_2O_5 + H_2SO_4 \longrightarrow 2HPO_3 + SO_3
28. Al_2O_3 + 6HCl \longrightarrow 2AlCl_3 + 3H_2O
29. Al_2O_3 + 2NaOH \longrightarrow 2NaAlO_2 + H_2O
30. C_{12}H_{22}O_{11} + 11H_2SO_4 \longrightarrow 12C + 11H_2SO_4.H_2O_4
31. 2CH \equiv CH + 5O_2 \longrightarrow 4CO_2 + 2H_2O + \overline{O}?
32. Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2
```

MD. AL FOYSAL RABBI

CSE, DUET