

Time Series Analysis Foundations I

Dr. Ludovic Amruthalingam

ludovic.amruthalingam@hslu.ch

Informatik

Outline

- Statistical model for time series
- Auto-correlation
- White noise
- Signal + noise model
- Time series decomposition
- Random walks
- Moving average smoothing
- Period adjusted average
- STL decomposition

HSLU Seite 2

Time series examples – ECG signal

Statistical model for time series

A time series (TS) is a collection of data points observed sequentially in time.

Model TS as **stochastic processes**, i.e., collections of **random variables** (RV), $\{X_1, X_2, ... X_n\}$, indexed according to their observation order.

A model specifies the **joint distribution** of the sequence of RVs $P[X_1 \le x_1, ... X_n \le x_n]$ in the continuous case, $P[X_1 = x_1, ... X_n = x_n]$ in the discrete case, where $\{x_1, x_2, ... x_n\}$ is a **realization** of the stochastic process.

A realization of a stochastic process

HSLU

Seite 5

Recap - Probability concepts

Random variables (RV) are real-valued functions whose outcomes vary due to ... randomness.

Property	Expectation	Variance	Covariance
Intuition	Long-term average, mean	Spread around mean	Joint variability, strength and direction of linear relationship
Formula	$E[X] = \sum_{x} x \cdot P(X = x) = \mu_X$	$Var(X) = E[(X - \mu_X)^2] = \sigma_X^2$	$cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = \gamma_{X,Y}$
Linearity	E[aX + b] = aE[X] + b	$Var(aX + b) = a^2 Var(X)$	$cov(aX + b, cY + d) = ac \cdot cov(X, Y)$
Additivity	E[X+Y] = E[X] + E[Y]	Var(X + Y) = Var(X) + Var(Y) + 2cov(X, Y)	cov(X + Y, Z) = cov(X, Z) + cov(Y, Z)

Note that $\gamma_{X,Y} = \gamma_{Y,X}$ (symmetric), that $\gamma_{X,Y} = E[XY] - \mu_X \mu_Y$ and that $\gamma_{X,X} = Var(X)$

We say that X and Y are **independent** $\Leftrightarrow P(X = x, Y = y) = P(X = x)P(Y = y) \Rightarrow \gamma_{X,Y} = 0$

The **correlation** is the normalized covariance: $cor(X,Y) = \frac{\gamma_{X,Y}}{\sigma_X \sigma_Y} = \rho_{X,Y}$ with $-1 \le \rho_{X,Y} \le 1$

With TS, the auto-covariance is denoted $\gamma_{X_S,X_t} = \gamma(s,t)$ and the auto-correlation $\rho_{X_S,X_t} = \rho(s,t)$

Recap - Probability concepts

Probability distributions describe how probabilities are distributed over the values of the random variables.

Normal distribution
$$\mathcal{N}(\mu, \sigma^2)$$
: $f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

HSLU

Seite 7

The auto-correlation function (ACF) $\rho(s,t)$

White noise (WN) process

RVs $\{W_1, W_2, ... W_n\}$ are uncorrelated $(Cov(W_s, W_t) = 0, \forall s \neq t)$, with zero-mean and constant finite variance σ^2 : $W_t \sim WN(0, \sigma^2)$

An additional assumption is that the RVs are **independent** and **identically distributed** $W_t \sim iid\ WN(0, \sigma^2)$: $P[W_1 = w_1, ... W_n = w_n] = P[W_1 = w_1] ... P[W_n = w_n]$

Another useful assumption is that the RVs follow a **Gaussian** distribution (Gaussian WN) $W_t \sim \mathcal{N}(0, \sigma^2)$.

Signal + Noise model and time series decomposition

Signal + noise model: $X_t = \theta_t + E_t$ where θ_t is a modellable signal and E_t are errors (also called **innovations**).

Time series decomposition separates X_t into three components:

- Trend/trend-cycle U_t : increasing/decreasing pattern in the data.
- Seasonality S_t : repeating pattern with roughly fixed period.
- Remainder R_t: everything remaining (**residuals**), E_t if θ_t is fully represented by U_t and S_t .

Additive decomposition $X_t = U_t + S_t + R_t$

Magnitude of trend and seasonal fluctuations do not vary with the value of the TS.

Mutiplicative decomposition $X_t = U_t \times S_t \times R_t$

- Magnitude of trend and seasonal fluctuations are proportional to the value of the TS.
- Equivalent to the additive decomposition of the log transformed TS.

Model with noise - Random walk (RW) process

A random walk is a cumulative sum of iid zero-mean RVs: $X_t = \underbrace{0}_{U_t} + \underbrace{0}_{S_t} + \underbrace{\sum_{i=0}^t W_i}_{R_t}$ with $W_i \sim iid\ WN(0,\sigma^2)$

A RW process is **not iid** since its RVs are correlated: $X_t = X_{t-1} + W_t$ with $X_0 = W_0$.

Model with trend – Random walk with drift

Random walk with drift: $X_t = X_{t-1} + W_t + U_t = \underbrace{\sum_{i=0}^t U_i}_{U_t} + \underbrace{0}_{S_t} + \underbrace{\sum_{i=0}^t W_i}_{R_t}$ with $X_0 = W_0 + U_0$.

Model with seasonality - Seasonal random walk

Seasonal random walk:
$$X_t = X_{t-1} + W_t + A \sin\left(\frac{2\pi t}{P}\right) = \underbrace{0}_{U_t} + \underbrace{\sum_{i=0}^t \left(A \sin\left(\frac{2\pi t}{P}\right)\right)}_{S_t} + \underbrace{\sum_{i=0}^t W_i}_{R_t} \text{ with } X_0 = W_0 + S_0.$$

Model with trend and seasonality - Seasonal random walk with drift

Seasonal RW with drift:
$$X_t = X_{t-1} + W_t + U_t + A \sin\left(\frac{2\pi t}{P}\right) = \underbrace{\sum_{i=0}^t U_i}_{U_t} + \underbrace{\sum_{i=0}^t \left(A \sin\left(\frac{2\pi t}{P}\right)\right)}_{S_t} + \underbrace{\sum_{i=0}^t W_i}_{R_t} \text{ with } X_0 = W_0 + U_0 + S_0.$$

HSLU Seite 15

Decomposing time series with unknown components

Given a time series realization $\{x_1, x_2, ... x_n\}$, assuming additive decomposition:

- 1. Estimate trend component \hat{u}_t
 - Moving average smoothing (classical decomposition)
 - LOESS locally estimated scatterplot smoothing (STL decomposition)
- 2. **Detrend** time series $\hat{d}_t = x_t \hat{u}_t$
- 3. Estimate seasonality component \hat{s}_t
 - Period adjusted averages (classical decomposition)
 - LOESS locally estimated scatterplot smoothing (STL decomposition)
- 4. **Deseasonalize** TS to estimate the remainder $\hat{r}_t = \hat{d}_t \hat{s}_t$

Estimating the trend – Moving average (MA) smoothing

Linear combinations of a TS values are called linear filters. The resulting TS is called a filtered TS.

A moving average of order m (m-MA) **smooths** a TS by averaging **m consecutive points**: $Y_t = \frac{1}{m} \sum_{i=-\lceil (m-1)/2 \rceil}^{\lfloor (m-1)/2 \rfloor} X_{t+i}$ (window of size m)

Estimating the trend – Moving average (MA) smoothing

Variations

- Window center can be shifted e.g., trailing 3-MA $Y_t = \frac{1}{3}(X_{t-2} + X_{t-1} + X_t)$
- Different weights can be assigned observations in the window (weighted MA) $Y_t = \frac{1}{m} \sum_{i=-\lceil (m-1)/2 \rceil}^{\lfloor (m-1)/2 \rfloor} a_i X_{t+i}$

MA can be applied iteratively e.g., 4-MA then 2-MA referred as 2 x 4-MA.

- Additional smoothing
- Symmetry for even orders: 2 x m-MA is equivalent to a weighted (m+1)-MA with $w = \left[\frac{1}{2m}, \frac{1}{m}, \frac{1}{m}, \frac{1}{m}, \frac{1}{m}, \frac{1}{2m}\right]$

MA for trend estimation $\hat{u}_t = y_t$:

- Smooth out fluctuations to reveal underlying trends and cycles.
- Remove seasonal components to understand trend and cyclical behavior: match order with period.
- Sensitive to outliers

Trend Estimation with Moving Average

Estimating the seasonality – Period adjusted averages

Given a detrended TS realization $\{d_1, d_2, \dots d_n\}$ with period P, assuming additive decomposition:

- 1. **Group** seasonal values
 - For t = 1,2,...P, collect all detrended values d_{t+iP} that fall at position t in each cycle.
 - For example, with monthly data and yearly period, group all Jan values, Feb values, etc.
- 2. Average within each group to get the raw seasonal estimates.
- 3. Adjust the components so they **sum to zero** (since we are considering the detrended TS)
 - Subtract the overall average of the seasonal estimates.
- 4. **Repeat** the seasonal component values for each period
 - Assign each time point the seasonal value of its cycle position.
 - For example, Jan gets the Jan seasonal, Feb the Feb seasonal, etc.

Seasonal and trend decomposition using LOESS (STL)

LOESS (locally estimated scatterplot smoothing) is a non-parametric regression method used to fit data.

- · Generalization of moving average and polynomial regression able to capture non-linear trends.
- Apply a **sliding window** across the dataset, where at each point, a small subset of neighboring points is selected to **fit a local linear/polynomial model**.
- Neighbors are weighted according to their proximity.
- The size of the window (span) determines the smoothing strength.

STL uses LOESS to estimate both the trend and seasonality components

- Different sliding window spans for trend and seasonality
- In comparison to period adjusted averages, seasonal component is allowed to change over time.
- Can down-weight outliers to reduce their impact.

HSLU Seite 22

Seite 23

Keeling et al. "Atmospheric CO2 concentrations derived from flask air samples at sites in the SIO network." Trends: a compendium of data on Global Change (2004).

Seite 24

Keeling et al. "Atmospheric CO2 concentrations derived from flask air samples at sites in the SIO network." Trends: a compendium of data on Global Change (2004).

Exercise

Generate 2-3 **synthetic time series** with known components.

- Apply classical and STL time series decomposition.
- Review how well components are extracted, compute the mean squared error.

Generate and interpret the ACF plots of the different forms of random walks presented in this lecture.

Reimplement classical decomposition.

Extend lecture 1 exercise with ACF plots and time series decomposition.

- Compare classical and STL decomposition results.
- Interpret ACF plots and time series components.

HSLU Seite 26