[4]

Q.6 Attempt any two:

- i. Arrivals at a telephone both are considered to be Poisson at an 5 average time of 8 min between one arrival and the next. The length of the phone call is distributed exponentially, with a mean of 4 min. Determine-
 - (a) Expected fraction of the day that the phone will be in use.
 - (b) Expected number of units in the system & expected number of units in the queue
 - (c) Expected waiting time in the system & expected waiting time in the queue.
 - (d) Expected number of units in queue that form time to time.
- ii. Two player A and B match coins. If the coins match, then A wins two 5 units of value, if the coin do not match, then B win 2 units of value.Determine the optimum strategies for the players and the value of the game.
- iii. Write in detail about elements of a queuing system.

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

E OI-CAR	
UNIVERSITY Knowledge is Power	

5

Faculty of Engineering End Sem Examination May-2024 ME3CO30

Industrial Engineering & Operations Research
Programme: B.Tech. Branch/Specialisation: ME

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

icces	sai y . 1	Notations and symbols have	then usual meaning.	
Q.1	i.	Work study consists of-		1
		(a) Effective use of plant	and equipment	
		(b) Effective use of huma	n effort	
		(c) Evaluation of human	work	
		(d) All of these		
	ii.	In process charts, the syn	abol used for inspection is-	1
		(a) Circle (b) Square	(c) Arrow (d) Triangle	
	iii.	Standard time is equal to		1
		(a) Normal time	(b) Allowances	
		(c) Normal time + allowa	nces(d) Normal time – allowances	
	iv.	PMTS stands for-		1
		(a) Predetermined Motion	n Time System	
		(b) Predetermined Motion	n Time Study	
		(c) Picture Motion Time	System	
		(d) Previous Motion Tim	e Study	
	v.	Simplex problem is cons	dered as infeasible when-	1
		(a) All the variables in en	tering column are negative	
		(b) Variable in the basis a	are negative	
		(c) Artificial variable is p	resent in basis	
		(d) Pivotal value is negat	ive	
	vi.	Linear Programming Pro	blem is a technique of finding the	1
		(a) Optimal value	(b) Approximate value	
		(c) Initial value	(d) Infeasible value	

vii.	The method used for solving an assignment problem is called -	1
	(a) Reduced matrix method (b) MODI method	
	(c) Hungarian method (d) None of these	
viii.	The dummy source or destination in a transportation problem is	1
	added to-	
	(a) Satisfy rim conditions	
	(b) Prevent solution from becoming degenerate	
	(c) Ensure that total cost does not exceed a limit	
	(d) None of these	
ix.	Service mechanism in a queuing system is characterized by-	1
	(a) Server's behaviour (b) Customer's behaviour	
	(c) Customers in the system (d) All of these	
х.	What happens when maximin and minimax values of the game are	1
	same?	_
	(a) No solution exists (b) Solution is mixed	
	(c) Saddle point exists (d) None of these	
	(a) Frome of these	
	Attempt any two:	
i.	What are the recording techniques of method study? Explain flow	5
	process chart with example.	
ii.	What is a SIMO chart? Explain with suitable example.	5
iii.	Write the procedure for cyclograph & chrono cyclograph. Why are	5
111.	they used?	
	they used.	
i.	If in a time study, the observed time is 0.75 min, rating factor = 110%	2
1.	and allowances are 20% of normal time, then what is the standard	_
	time?	
ii.	What is meant by work measurement? Give its objectives and steps	8
11.	involved.	U
iii.	What is meant by rating an operator? What are the techniques used	8
111.	for rating?	O
	Tor running.	
i.	Find graphically the maximum value of $Z = 3x + 4y$	3
	subjected to constraints:	-
	$x + y \le 4$	
	$x + y \le 4$ $x \ge 0$ and $y \ge 0$	
	$x \leq 0$ and $y \leq 0$	

Q.2

Q.3

OR

Q.4

OR	ii. iii.	Maximize $Z = 30X_1$ subject to:	+30X2	<u>.</u>					7
		$5X_1 + 5X_2 \le 600$ $5X_1 + 6X_2 \le 1100$							
		and $X_1, X_2 \ge 0$							
Q.5	i. ii.	State the difference between transportation & assignment model. Find the Ibfs for the following transportation problem by (a) Least Cost Method (b) Row Minima Method							
		` '							
		· · · · · · · · · · · · · · · · · · ·		_			Е	Supply (tons)	
		P	4	1	3	4	4	1	
		Q	2	3	2	2	3	35	
		$\begin{array}{c} X_1+X_2\leq 12\\ 2X_1+X_2\leq 16,\\ X_1\geq 0; X_2\geq 0\\ \\ \text{iii.} \text{Solve by Simplex Method-}\\ \text{Maximize } Z=30X_1+40X_2\\ \text{subject to:}\\ 3X_1+2X_2\leq 600\\ 3X_1+5X_2\leq 800\\ 5X_1+6X_2\leq 1100\\ \text{and } X_1, X_2\geq 0\\ \\ \text{ii.} \text{State the difference between transportation \& assignment model.}\\ \text{iii.} \text{Find the Ibfs for the following transportation problem by}\\ \text{(a) Least Cost Method}\\ \text{(b) Row Minima Method}\\ \text{(c) Column Minima Method}\\ \text{(d) Vogel's Approximation Method}\\ \text{The transportation cost is given below.}\\ \\ \hline \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
		Demand (tons)	22	45	20	18	30	J	
OR	iii.	Solve the following	Assig	gnment	t probl	em for	minin	nization.	8

	A	В	C	D	E
1	11	17	8	16	20
2	9	7	12	6	15
3	13	16	15	12	16
4	21	24	17	28	26
5	14	10	12	11	13

[4]

Marking Scheme Industrial Engineering & Operations Research (T) ME3CO30 (T)

Q.1	i)	Work study consists of	1
		a. Effective use of plant and equipment	
		b. Effective use of human effort	
		c. Evaluation of human work	
		d. All of the above	
		(Ans: d)	
	ii)	In process charts, the symbol used for inspection is	1
		a. Circle	
		b. Square	
		c. Arrow	
		d. Triangle	
		(Ans: b)	
	iii)	Standard time is equal to	1
		a. Normal time	
		b. Allowances	
		c. Normal time + allowances	
		d. Normal time – allowances	
		(Ans: c)	
	iv)	PMTS stands for	1
		a. Predetermined Motion Time System	
		b. Predetermined Motion Time Study	
		c. Picture Motion Time System	
		d. Previous Motion Time Study	
		(Ans: a)	
	v)	Simplex problem is considered as infeasible when	1
		a. All the variables in entering column are negative	
		b. Variable in the basis are negative	
		c. Artificial variable is present in basis	
		d. Pivotal value is negative	
		(Ans: c)	
	vi)	Linear Programming Problem is a technique of finding the	1
		a. optimal value	
		b. approximate value	
		c. initial value	
		d. infeasible value	
		(Ans: a)	
	vii)	The dummy source or destination in a transportation problem is added to	1
		a. Satisfy rim conditions	
		b. Prevent solution from becoming degenerate	

		c. Ensure that total cost does not exceed a limit d. None of the above		
		(Ans: a)		
•	viii)	The method used for solving an assignment problem is cal a. Reduced matrix method	led	1
		b. MODI method		
		c. Hungarian method d. None of the above		
		(Ans: c)		
	ix)	Service mechanism in a queuing system is characterized by	V	1
		(aserver's behavior	,	
)		
		customer's behavior		
		(b		
)		
		customers in the system		
		(c		
)		
		all of the above		
		(d		
)		
		(Ans: a)		
,	x)	What happens when maximin and minimax values of the g	game are same?	1
	,	(a) no solution exists	,	
		(b) solution is mixed		
		(c) saddle point exists		
		(d) none of these (Ans: c)		
		(Alis. C)		
		Attempt any two:		
-	i.	What are the recording techniques of method study? Explachart with example.	in flow process	5
		Ans:		
		Recording Techniques	3 Marks	
	::	Flow Process Example What is a SIMO abort? Explain with suitable example	2 Marks	_
	ii.	What is a SIMO chart? Explain with suitable example. Ans:		5
		SIMO chart	3 Marks	
		Example	2 Marks	
	iii.	Write the procedure for cyclograph & chrono cyclograph	Why are they used?	5

Q.2

OR

OR

Ans:

$\Gamma \cap I$
171

		£ 3		
		Procedure Uses:	3 Marks 2 Marks	
Q.3	i.	If in a time study, the observed time is 0.75 min, rating factor allowances are 20% of normal time, then what is the standard Ans-c Standard time = Observed time x Performance rating factor x Allowances)	time?	2
		Substituting these values into the formula, we get:		
		Standard time = $0.75 \text{ min x } 110\% \text{ x } (1 + 0.2)$		
		Standard time = $0.75 \text{ min x } 1.1 \text{ x } 1.2$		
	ii.	Standard time = 0.99 min What is meant by work measurement? Give its objectives and Ans-	2 Marks d steps involved	8
		Definition 2	Marks Marks	
0.5		1	Marks	0
OR	iii.	What is meant by rating an operator? What are the techniques Ans:	used for rating?	8
		Rating an operator	2 Marks	
		The techniques used for rating	6 Marks	
Q.4	i.	Find graphically the maximum value of $Z = 3x + 4y$ subjected to constraints: - $x + y \le 4$, $x \ge 0$ and $y \ge 0$		3
		Ans:-		

. Solve by Simplex Method Maximize $Z=40X_1+30X_2$ Subject to: $X_1+X_2 \le 12$

 $2X_1 + X_2 \le 16$

 $X_1 \ge 0; X_2 \ge 0$

Ans:-

Iteration-1

the entering variable is x1. the leaving basis variable is S2.

The pivot element is 2.

Iteration-2

the entering variable is x2. the leaving basis variable is S1.

the pivot element is 1/2.

X1=4, X2=8, Zmax=400

OR iii. Solve by Simplex Method Maximize $Z = 30X_1 + 40X_2$ subject to $3X_1 + 2X_2 \le 600$

2 Marks 1 Mark

3 Marks

3 Marks

1 **Mark**

7

[2]

 $3X_1 + 5X_2 \le 800$ $5X_1 + 6X_2 \le 1100$ and $X_1, X_2 \ge 0$

Ans:

Iteration-1

the entering variable is X_2 . the leaving basis variable is S_2 .

The pivot element is 5

3 Marks

Iteration-2

the entering variable is X_1 . the leaving basis variable is S_3 . the pivot element is 7/5

3 Marks

X1=100, X2=100, Zmax=7000

1 Mark

Q.5 i. State the difference between Transportation & Assignment Model.

2 Marks

2

ii. Find the Ibfs for the following transportation problem by

- i. Least Cost Method
- ii. Row Minima Method
- iii. Column Minima Method
- iv. Vogel's Approximation Method.

	A	В	C	D	E	Supply (tons)
P	4	1	3	4	4	60
Q	2	3	2	2	3	35
R	3	3	2	4	4	40
Demand (tons)	22	45	20	18	30	

Ans:

i. Least Cost Method

[3]

	D_1	D_2	<i>D</i> ₃	D_4	<i>D</i> ₅	Supply
S_1	4	1 (45)	3	4 (5)	4 (10)	60
S_2	2 (22)	3	2	2 (13)	3	35
S_3	3	3	2 (20)	4	4 (20)	40
Demand	22	45	20	18	30	

The minimum total transportation cost

=1×45+4×5+4×10+2×22+2×13+2×20+4×20=295

2 Marks

ii. Row Minima Method

	D_1	D_2	D_3	D_4	D_5	Supply
S_1	4	1 (45)	3 (15)	4	4	60
S_2	2 (22)	3	2	2 (13)	3	35
S_3	3	3	2 (5)	4 (5)	4 (30)	40
Demand	22	45	20	18	30	

The minimum total transportation cost

=1×45+3×15+2×22+2×13+2×5+4×5+4×30=310

2 Marks

iii. Column Minima Method

	D_1	D_2	D_3	D_4	D_5	Supply
S_1	4	1 (45)	3	4 (5)	4 (10)	60
S_2	2 (22)	3	2	2 (13)	3	35
S_3	3	3	2 (20)	4	4 (20)	40
Demand	22	45	20	18	30	

The minimum total transportation cost $=1\times45+4\times5+4\times10+2\times22+2\times13+2\times20+4\times20=295$

2 Marks

iv. Vogel's Approximation Method.

	D_1	D_2	D_3	D_4	D_5	Supply	
<i>S</i> ₁	4	1(45)	3	4	4(15)	60	
<i>S</i> ₂	2(17)	3	2	2(18)	3	35	
S_3	3(5)	3	2(20)	4	4(15)	40	
Demand	22	45	20	18	30		Ī

The minimum total transportation cost

=1×45+4×15+2×17+2×18+3×5+2×20+4×15=290

2 Marks

100		11	111	1,	
1	11	17	8	16	20
2	9	7	12	6	15
3	13	16	15	12	16
4	21	24	17	28	26
5	14	10	12	11	13

Ans:

Optimal solution is Optimal solution is

Work Job Cost Work Job Cost A 1 11 A 1 11 B 2 7 B 4 6 C 4 12 C 5 16 D 3 17 D 3 17 E 5 13 E 2 10 Total 60 Total 60	Optimal solution is			Optimal solution is			
B 2 7 B 4 6 C 4 12 C 5 16 D 3 17 D 3 17 E 5 13 E 2 10	Work	Job	Cost	Work	Job	Cost	
C 4 12 C 5 16 D 3 17 D 3 17 E 5 13 E 2 10	A	1	11	A	1	11	
D 3 17 D 3 17 E 5 13 E 2 10	В	2	7	В	4	6	
E 5 13 E 2 10	C	4	12	C	5	16	
	D	3	17	D	3	17	
Total 60 Total 60	E	5	13	E	2	10	
		Total	60		Total	60	

OR Alternate solution

8 Marks

8

Q.6 Attempt any two:

- i. Arrivals at a telephone both are considered to be Poisson at an average time of 8 min between one arrival and the next. The length of the phone call is distributed exponentially, with a mean of 4 min. Determine
 - (a) Expected fraction of the day that the phone will be in use.
 - (b) Expected number of units in the system & expected number of units in the queue
 - (c) Expected waiting time in the system & expected waiting time in the queue.
 - (d) Expected number of units in queue that form time to time.

The mean arrival rate = $\lambda = 1/8 \times 60 = 7.5$ / hour.

The mean service = $\mu = x 60 = 15$ / hour.

(a) Fraction of the day that the phone will be in use $\rho = \lambda / \mu = 7.5/15 = 0.5$

1 Mark

1 Mark

1 Mark

(b) L = Lq+
$$(\lambda / \mu)$$
 = 0.5+0.5= 1 person

Lq=
$$\lambda^2/\mu(\mu - \lambda) = 7.5^2/15(15-7.5) = 0.5$$
 (units) person

(c) W=Wq +1/
$$\mu$$
 =0.066+1/15=0.133
Wq=Lq/ λ = 0.5/7.5=0.066 hrs

D=
$$\mu/(\mu - \lambda)$$
= 15/(15-7.5)=2 persons

OR ii. Two player A and B match coins. If the coins match, then A wins two units of value, if the coin do not match, then B win 2 units of value. Determine the optimum strategies for the players and the value of the game.

Ans:

The pay off matrix for player A

	Player B	
Player A	н т	Row minimum
H	2 -2	-2
T	-2 2	-2

Column Maximums 2 2

maxmin is not equal to minmax, therefore there is no unique saddle point.

$$\begin{array}{c} & \textbf{1 Mark} \\ P_1 = a_{22} - a_{21}/a_{11} + a_{22} - (a_{12} + a_{21}) = 1/2 \\ P_2 = 1 - P_1 = 1/2 \\ Q_1 = a_{22} - a_{12}/a_{11} + a_{22} - (a_{12} + a_{21}) = 1/2 \\ Q_2 = 1/2 \\ \textbf{1 Mark} \\ \textbf{1 Mark} \\ \textbf{1 Mark} \\ \end{array}$$

OR iii. Write in detail about elements of a queuing system.

5 Marks
