UNIVERSITAT POLITÈCNICA DE CATALUNYA Departament d'Estadística i Investigació Operativa

TERCER CONTROL DE TEORIA

Programació Lineal i Entera, curs 2016-17 2on curs Grau en Estadística UB-UPC

NOM:

	Temps estimat	Punts	Puntuació		100		
Test	20min	2.0 pt	C:	I:			Prohibida la presència de
, e ¹		a) 2.0pt					mòbils durant la prova.
Exercici 1	60min	b) 2.0pt				•	Copiar o facilitar la còpia
6 3		c) 4.0pt					implica suspendre el
Total	90min	10 pt					control.

TEST (2 punts / 30min / sense apunts)

- Encercleu V (vertader) o F (fals) o indiqueu a l'espai [] el contingut mancant a
- Resposta correcta +1pt, incorrecta -0.4pts., en blanc 0.pts.
- TEST 1. Donades dues formulacions vàlides (PE1) i (PE2) del problema de maximització (PE),
- a) V / F $K_{PE1} \subset K_{PE2}$. F
- **b**) **V** / **F** $K_{RL1} \subset K_{RL2} \Rightarrow z_{PE1}^* > z_{PE2}^*$. F
- **V** / **F** $K_{RL1} \subset K_{RL2} \Rightarrow (PE1)$ és més forta que (PE2). V
- TEST 2. Sigui \mathcal{B}^* la base òptima de la relaxació lineal del problema (PE1) a la iteració 1 de l'algorisme de plans de tall de Gomory i $\widetilde{\mathcal{B}}$ la base inicial a partir de la qual es reoptimitzarà amb el símplex dual:
- a) V / F La base $\widetilde{\mathcal{B}}$ té les mateixes variables bàsiques que \mathcal{B}^* . F
- **b)** V / F La base $\widetilde{\mathcal{B}}$ serà sempre factible dual infactible primal. V
- \mathbf{V} / \mathbf{F} Els vector de costos reduïts associat a $\widetilde{\mathcal{B}}$ té una component més que l'associat a \mathcal{B}^* . F

TEST 3. A l'alg. de B&C, el criteris d'eliminació del subproblema (*PEj*) de minimització són:

- a) [
-] $K_{RLj} = \boxed{?}$. $\rightarrow \emptyset$] $\underline{z}_{PEj}^* \boxed{?}$ z^* . $\rightarrow \geq$ b) [
- x_{RLi}^* ? x_{PEi}^* . $\rightarrow \equiv$ c) [
- **TEST 4.** Donat un problema de PLE (PE) de minimització, la formulació vàlida (PE1) és més forta que la formulació vàlida (PE2)
- a) **V** / **F** Si $z_{RL1}^* \ge z_{RL2}^*$. V
- **b**) **V** / **F** Si $z_{PE1}^* \le z_{PE2}^*$. F
- c) **V** / **F** Si $K_{RL1} \subset K_{RL2}$. V

TEST 5. Si la designaltat $a_i x \le b_i$ és un tall de (PE) sobre x_{RL}^* llavors

- a) V / F x_{RL}^* satisfà $a_j x \leq b_j$.
- **b)** V / F Si $x \in K_{RL}$ llavors $a_i x > b_i$. F
-] Si $x \in K_{PE}$ llavors $a_j x$? b_j . $\rightarrow \leq$
- **TEST 6.** Sigui el problema (\widetilde{PE}) definit com el problema (PE) reforçat amb el tall de Gomory associat a x_{RL}^* . Quan obtenim l'òptim x_{RL}^* , reoptimitzant a partir de x_{RL}^* amb l'algorisme del símplex dual:
- a) V / F Sempre obtindrem $x_{\widetilde{RI}}^*$ en una única iteració. F
- **b) V** / **F** x_{RL}^* serà infactible dual per al problema (\widetilde{RL}) . F
- **V** / **F** x_{RL}^* serà factible primal per al problema (\widetilde{RL}). F

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

Programació Lineal i Entera, curs 2016-17 20n curs Grau en Estadística UB-UPC

NOM:

EXERCICI 1. (8 punts / 75min / apunts i calculadora / RESPONEU AL MATEIX FULL)

Considereu la següent formulació vàlida d'un problema de programació lineal entera (PE)

$$(PE1) \begin{cases} \min & x_1 \\ \text{s.a.:} & x_1 + x_2 = 2 & (1) \\ 2x_1 & \geq 1 & (2) \\ x_1, & x_2 \geq 0, x \in \mathbb{Z} \end{cases}$$

- a) (2 punts) Obtingueu:
 - Una formulació vàlida del problema (PE) més forta que (PE1) que no sigui la ideal.
 - La formulació ideal del problema (PE).

Justifiqueu la vostra resposta

Formulació més forta no ideal:	Formulació ideal:
Justificació:	Justificació:

Volem resoldre ara el problema (PE1) amb l'algorisme del B&B i del B&C amb els següents criteris:

- Seleccioneu com a variable de ramificació i de generació del tall la que tingui el menor índex.
- Exploreu l'arbre triant primer la branca de la esquerra $(x_i \le \lfloor x_i^* \rfloor)$ dels últims nodes afegits.
- b) (2 punts) Obtingueu l'arbre d'exploració de l'algorisme de ramificació i poda (B&B). No cal que indiqueu el detall de les iteracions de l'algorisme, només l'arbre d'exploració final. Indiqueu a cada node tractat la fita \underline{z}_{PEj}^* i el valor de x_{RLj}^* i a cada node eliminat els valors de z^* i x^* o el motiu de la seva eliminació

Programació Lineal i Entera, curs 2016-17 20n curs Grau en Estadística UB-UPC

(4 punts) Resoleu el problema (PE) amb l'algorisme de ramificació i tall (B&C) reforçant les formulacions amb un tall de Gomory. Resoleu la primera relaxació lineal gràficament la resta reoptimitzant amb l'algorisme del símplex dual.

Programació Lineal i Entera, curs 2016-17 20n curs Grau en Estadística UB-UPC

SOLUCIÓ EXERCICI 1.

Apartat a)

Formulació més forta no ideal					Formulació ideal						
$(PE2)$ $\begin{cases} mi \\ s.a \end{cases}$	500 ·	$+x_2 = \\ \geq \\ x_2 \geq \\$	$\begin{array}{ccc} & 2 \\ & \frac{3}{4} \\ & 0, x \in \mathbb{Z} \end{array}$	(1) (2.1)	(PEI)	min s.a.:	•	$+x_{2}$ x_{2}	= > >	$\begin{matrix} 2 \\ 1 \\ 0, x \in \mathbb{Z} \end{matrix}$	(1) (2.1)
Justificació: (PE2) és una formulació vàlida de				Justificació : (<i>PEI</i>) és una formulació ideal de (<i>PE</i>) perquè és una formulació vàlida i tots els punts extrems de (<i>RLI</i>) són enters.							

Apartat b)

Apartat c)

$$PE \begin{cases} \min & x_1 \\ s.a.: & x_1 + x_2 = 2 & (1) \\ & 2x_1 & \ge 1 & (2) \\ & x_1, & x_2 \ge 0, x \in \mathbb{Z} \end{cases}$$

B&C, iteració 1: $L = \{(PE1)\}, \underline{z}_{PE1} = -\infty, z^* = +\infty$

- Selecció: (PE1).
- Resolució de (RL1) amb un tall de Gomory:
 - **Resolució gràfica de** (*RL*1, 0): $x_{RL1,0}^* = [1/2 \quad 3/2]', \ z_{RL1,0}^* = \frac{1}{2} \Rightarrow \underline{z}_{PE1}^* := [z_{RL1,0}^*] = 1$
 - Tall de Gomory sobre $x_{RL1,0}^*$ associat a x_2 :

o
$$\mathcal{B} = \{1,2\}; B = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}; B^{-1} = \begin{bmatrix} 0 & 1/2 \\ 1 & -1/2 \end{bmatrix}; x_B = \begin{bmatrix} 1/2 \\ 3/2 \end{bmatrix}$$

o
$$\mathcal{N} = \{3\}; A_N = \begin{bmatrix} 0 \\ -1 \end{bmatrix}; V = B^{-1}A_N = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} v_{13} \\ v_{23} \end{bmatrix}$$

• Tall de Gomory associat a $x_1 = \frac{1}{2}$:

Programació Lineal i Entera, curs 2016-17 20n curs Grau en Estadística UB-UPC

$$x_1 + \lfloor v_{13} \rfloor \cdot x_3 \le \lfloor x_1^* \rfloor \; ; \; x_1 + \lfloor \frac{-1}{2} \rfloor \cdot x_3 \le \lfloor \frac{1}{2} \rfloor \; ; \; x_1 - x_3 \le 0 \; (r3)$$

- **Resolució de** (RL1, 1) = (RL1, 0) + (r3): reoptimització amb el símplex dual a partir de $x_{RL1,0}^* = [x_1, x_2]' = \begin{bmatrix} \frac{1}{2} & \frac{3}{2} \end{bmatrix}'$ per addició de $x_1 - x_3 \le 0$ (r3)
 - Obtenció de la base inicial:

$$\circ$$
 $a_3' = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}, a_{B,3}' = \begin{bmatrix} 1 & 0 \end{bmatrix}, -a_{B,3}'B^{-1} = \begin{bmatrix} 0 & -1/2 \end{bmatrix}.$

$$\circ \quad \mathcal{B} := \{1,2,4\}, \ B^{-1} := \begin{bmatrix} B^{-1} & 0 \\ -a_{B_3}B^{-1} & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1/2 & 0 \\ 1 & -1/2 & 0 \\ 0 & -1/2 & 1 \end{bmatrix}, x_B = \begin{bmatrix} 1/2 \\ 3/2 \\ -1/2 \end{bmatrix}.$$

$$\circ \quad \mathcal{N} = \{3\}, A_N = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}, r' := [0] - \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1/2 \\ 1 & -1/2 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = [1/2] \ge 0$$

- Símplex dual, iteració 1: $\mathcal{B} = \{1, 2, 4\}$, $\mathcal{N} = \{3\}$
 - Identificació de SBF òptima i selecció de la VB de sortida p :

$$x_B = \begin{bmatrix} 1/2 \\ 3/2 \\ -1/2 \end{bmatrix} \not\ge 0 \Rightarrow p = 3, B(3) = 4 \text{ VB sortint}$$

Identificació de problema (D) il·limitat :

$$d'_{r_N} = \beta_3 A_N = \begin{bmatrix} 0 & -1/2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1/2 \end{bmatrix} \ngeq 0$$

Selecció VNB d'entrada q:

$$\theta_{D}^{*} = \min\left\{-r_{j}/d_{r_{N_{j}}}: j \in \mathcal{N} \text{ , } d_{r_{N_{j}}} < 0\right\} = \min\left\{\frac{-1/2}{-1/2}\right\} = 1 \Longrightarrow \boxed{q = 3}$$

Canvi de base i actualitzacions:

$$d_{B} = -B^{-1}A_{3} = -\begin{bmatrix} 0 & 1/2 & 0 \\ 1 & -1/2 & 0 \\ 0 & -1/2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}, \theta^{*} = -\frac{x_{B(3)}}{d_{B(3)}} = 1$$

$$x_{B} := x_{B} + \theta^{*}d_{B} = \begin{bmatrix} 1/2 \\ 3/2 \\ -1/2 \end{bmatrix} + 1 \cdot \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, x_{q} = x_{3} := \theta^{*} = 1$$

$$\mathcal{B} := \{1, 2, 3\}$$

- Símplex dual, iteració 2: $\mathcal{B} = \{1, 2, 3\}$, $\mathcal{N} = \{4\}$
 - Identificació de SBF òptima i selecció de la VB de sortida $p: x_B \ge 0 \Rightarrow$ òptim (*RL*1,1)
- $x_{RL1,1}^* = \begin{bmatrix} 1 & 1 \end{bmatrix}', \ z_{RL1,1}^* = 1, \ \Rightarrow \underline{z}_{PE1}^* := \begin{bmatrix} z_{RL1,1}^* \end{bmatrix} = 1.$
- **Eliminació:** $x_{RL1,1}^* = [1 \quad 1]' = x_{PE1}^*$:
 - $L \leftarrow L \setminus \{(PE1)\} = \emptyset.$
 - Actualització incumbent: $z_{PE1}^* < z^* \Rightarrow z^* \coloneqq 1, x^* \coloneqq \begin{bmatrix} 1 & 1 \end{bmatrix}'$,

B&C, iteració 2: $L = \emptyset$: $x_{PE1}^* = \begin{bmatrix} 1 & 1 \end{bmatrix}', x_{PE1}^* = 1$