EJEMPLO METAHEURÍSTICAS: CONFIABILIDAD EN SISTEMAS DE DISTRIBUCIÓN

Camilo Andrés Acosta Urrego

CONFIABILIDAD

Fuente: M. Rausand & K. Oien, "The Basic Concepts of Failure Analysis", *Reliability Engineering and System Safety*, v. 53, p-73-83. 1996.

 Capacidad de un ítem de desempeñar una función requerida, en condiciones establecidas durante un periodo de tiempo determinado

MANTENIBILIDAD

Probabilidad de que un componente (o sistema) en estado de falla sea restaurado o reparado hacia una condición específica dentro de un periodo de tiempo, cuando se realice su manutención de acuerdo a procedimientos específicos.

DISPONIBILIDAD

Habilidad de un ítem para encontrarse en operación dentro de un tiempo determinado.

También es una medida de desempeño

$$A = \frac{u}{u+d}$$

$$U = 1 - A$$

A = Disponibilidad (Availability)

u = tiempo de actividad durante el periodo t

d = tiempo de inactividad durante el periodo t

t = u + d, tiempo total de operación

MODOS DE FALLA

Fallas Simples

- Falla independiente, simple de corta duración
- Falla independiente, simple de larga duración
- Desconexión manual, retardada
- Desconexión manual, inmediata
- Fallas de modo común
- Falla línea a tierra en sistemas aislados
- Apertura no intencional del interruptor

Fallas Múltiples

- Fallas independientes múltiples
- Falla independiente e interrupción planeada
- Fallas múltiples a tierra en sistemas aislados
- Falla independiente + falla de la protección
- Falla independiente + sobrealcance de la protección

MODOS DE FALLA

Bogotá, D. C., agosto 29 de 2018

CIRCULAR No.062

PARA: OPERADORES DE RED

DE: DIRECCIÓN EJECUTIVA

ASUNTO: CAUSAS DE EVENTOS EN LOS SDL

CÓDIGO	CAUSA DE EVENTO	DESCRIPCIÓN	CLASIFICACIÓN	CAUSA DE EXCLUSIÓN
1	Afectación de usuarios de transformador por desconexión programada de un único usuario	Apertura causada a usuarios de un transformador debido a la desconexión de un único usuario.	Programada	No Excluida
2	Apertura por ejecución de esquemas suplementarios	Aperturas por actuaciones de esquemas suplementarios que operan en el SDL	No programada	No Excluida
3	Aperturas programadas en zonas especiales por fuera del periodo de continuidad acordado	Apertura programada en el activo que conforma una zona especial, por fuera de las horas correspondientes a los periodos de continuidad acordados	Programada	Literal i
4	Incumplimiento en contrato de servicios públicos por parte del usuario	Apertura solicitada por el comercializador debido al incumplimiento del contrato de condiciones uniformes	Programada	Literal k

Confiabilidad en sistemas de distribución

- Entregar potencia/energía al usuario
- En su mayoría sistemas radiales en la operación
- Pocos sistemas automáticos
- Tendencias:
 - Microgrids
 - Self Healing
 - Smart Grids

ANÁLISIS DE CONFIABILIDAD

Tomado de "confiabilidad en ingeniería", Carlos Julio Zapata

- Análisis de puntos débiles
 - Causas de interrupciones / costo de interrupción
 - Comparación de medidas remediales
- Comparación entre diferentes variantes de planeación
 - Una alternativa de bajo costo necesariamente significa mala confiabilidad?
 - Modernización y simplificación de redes manteniendo una confiabilidad aceptable (optimización económica)
- Importancia de los componentes para la planeación del mantenimiento centrado en la confiabilidad
 - Priorización de aquellas acciones de mantenimiento con alto impacto en el sistema
 - Optimización económica entre mantenimiento y confiabilidad aceptable
- Comparación entre diferentes configuraciones de la red
 - Ejemplo, alimentador en anillo / alimentador radial
- Comparación entre diferentes topologías de subestaciones

- Valoración del reemplazo de líneas aéreas por sistemas subterráneos
- Confiabilidad de la conexión de una unidad de generación a la red
 - Costo de la interrupción de potencia suministrada
- Beneficios para los usuarios ante un cambio en la red
 - Comparación de los costos de inversión contra los costos de interrupción por usuario
- Comparación de la conexión a la red de diferentes usuarios
 - Conocimiento acerca del costo de interrupción de los usuarios
- Pago de penalizaciones para los diferentes contratos de suministro
 - Análisis de nuevas ofertas y tarifas para usuarios especiales
- Comparación de escenarios para automatización de redes de distribución (desconectadores controlados remotamente)
 - Soluciones Iguales o mejores con menos tecnología primaria

 Todo lo anterior conlleva a la mejora de los índices de confiabilidad con los que mide la calidad la CREG en la resolución 015/18

Índice de Frecuencia de Interrupción Promedio del Sistema

SAIFI =
$$\frac{\sum\limits_{i} \text{(Número de clientes interrumpidos durante el incidente i)}}{\text{Número total de clientes · tiempo de observación}}$$
$$\cong \overline{F} \text{ (de todos los clientes)}$$

$$Unidad: 1/año$$

Índice de Duración Promedio de Interrupción del Sistema

 $SAIDI = \frac{\sum\limits_{i=1}^{N} [(Número de clientes interrumpidos durante el incidente i) \cdot (duración de la interrupción)]}{Número total de clientes \cdot tiempo de observación}$ $\cong \overline{Q} \text{ (de todos los clientes)}$ Unidad: hora/año

MEJORAMIENTO ÍNDICES DE CONFIABILIDAD

SHP -> NEPLAN

- Topología
- Datos de línea
- Tensión
- Cargas
- Subestaciones


```
encoding="UTF-8"?
<ShapefileMappingParameters xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <ListShapeProperties>
  <!--Mapear campos de los shapes a objetos de neplan-->
   <ShapefileProperties>
    <!--Mapear los transformadores de distribucion como cargas-->
     <ShapefileName>trafos</ShapefileName>
      <NameInShape>FACILITYID</NameInShape>
      <TypeIn360>Load</TypeIn360>
       <Description>RATEDKVA</Description>
      <InterpolationSize>0.2</InterpolationSize>
       <ZoneName>FEEDERID</ZoneName>
       <IsOnePoleDevice>true</IsOnePoleDevice>
       <Voltage>'13.2'</Voltage>
       <ElementSize>0.4</ElementSize>
       <TechParameters>
         <TechParameter>
          <ShapeName>'1'</ShapeName>
          <NeplanName>LfType</NeplanName>
         </TechParameter>
         <TechParameter>
          <ShapeName>'1'</ShapeName>
           <NeplanName>Unit</NeplanName>
         </TechParameter>
```

```
<ShapefileProperties>
 <ShapefileName>recos</ShapefileName>
 <NameInShape>FACILITYID</NameInShape>
 <!--<TypeIn360>CircuitBreakerOnElem</TypeIn360>-->
 <!--<TypeIn360>CircuitBreaker</TypeIn360>-->
 <TypeOnIn360>CircuitBreakerOnElem</TypeOnIn360>
 <IsOnDevice>true</IsOnDevice>
 <!--<Port>'1'</Port>-->
 <TechParameters>
   <TechParameter>
       <ShapeName>'true'</ShapeName>
       <NeplanName>RelIdeal</NeplanName>
   </TechParameter>
   <TechParameter>
       <ShapeName>'true'</ShapeName>
       <NeplanName>IsRemoteCntl</NeplanName>
   </TechParameter>
   <TechParameter>
       <ShapeName>'true'</ShapeName>
       <NeplanName>RelHasAutoFaultLoc
   </TechParameter>
 </TechParameters>
 <LogicalSwitch>'0'</LogicalSwitch>
 <ElementSize>1.0</ElementSize>
 <InterpolationSize>0.2</InterpolationSize>
 <ZoneName>FEEDERID</ZoneName>
</ShapefileProperties>
```


Modelo de sistemas reparables

Proceso power law (NHPP), tasa de fallas evoluciona con el tiempo

$$\lambda_i(t) = \lambda \cdot \beta \cdot t^{\beta - 1}$$

$$M(t) = \left(\frac{t}{\alpha}\right)^{\beta}$$

Función de intensidad (# eventos)

$$m(t) = \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta - 1}$$

ROCOF (Tipo Weibull)

DATOS NEPLAN

- Un sistema de potencia esta conformado por miles de componentes (transformadores, cables, interruptores, fusibles,...)
- La confiabilidad de cada componente del sistema de potencia puede ser descrita por una serie de parámetros de confiabilidad
- Unos de los mas importantes son
 - la tasa de fallas del componente λ
 - y el tiempo de reparación del componente T_R

PROCESO SIMULACIÓN NEPLAN

MEJORAMIENTO ÍNDICES DE CONFIABILIDAD

ALTERNATIVAS

- Instalación de dispositivos de corte y maniobra
- Interconexión a otros circuitos
- Separación del circuito
- Gestión del mantenimiento
- Cable de guarda
- Otros

ALGORITMO MICROBIAL GA

Fig. 1. The genotypes of the population are represented as a pool of strings. One single cycle of the Microbial GA is represented by the operations PICK (two at random), COMPARE (their fitnesses to determine Winner = W, Loser = L), RECOMBINE (where some proportion of Winner's genetic material 'infects' the Loser), and MUTATE (the revised version of Loser).

• Fuente: https://echenshe.com/class/ea/2-04-microbial-genetic-algorithm.html

ALGORITMO MICROBIAL GA

FUNCIÓN OBJETIVO

$$\frac{B}{C} \ge 1$$
 Requisito proyectos plan de inversiones

$$\max B - C$$

$$\max_{(ENS_0 - ENS)*CRO - (\sum disp_{nuevos} - \sum disp_{retirados})} (SAIDI_0 + SAIFI_0 - SAIDI - SAIFI)*CRR +$$

CODIFICACIÓN

ALGORITMO MICROBIAL GA

1	0	0		0	1
---	---	---	--	---	---

1	0	0	 0	1
0	1	0	 0	0
1	0	0	 0	0
0	0	1	 0	1

OTROS MODELOS BASADOS EN CONFIABILIDAD

$$min_{\{x(i,j)\}}$$
 $\sum_{i=1}^{N} \sum_{j=1}^{N} RCost(i,j) + \sum_{i=1}^{N} OCost(i)$ s.t. (4.2)

$$RCost(i, j) = x(i, j) \cdot CCost(i, j)$$
 (4.3)

$$OCost(i) = \lambda_N(i) \cdot L_a(i) \cdot (k(i) + c(i) \cdot r(i))$$
(4.4)

$$\lambda_{N}(j) = \sum_{i=1}^{N} x(i,j) \cdot \left(\lambda_{N}(i) + \lambda_{L}(i,j)\right) \tag{4.5}$$

$$\lambda_{\mathcal{N}}(s) = \lambda_{\mathcal{S}} \tag{4.6}$$

$$x(i,i) = 0 (4.7)$$

$$\sum_{i=1}^{N} x(i,j) = 1, \quad \forall j \neq s$$
(4.8)

$$x(i, j) + x(j, i) \le 1, \qquad i \ne j$$
 (4.9)

$$\sum_{i=1}^{N} x(s,j) \ge 1 \tag{4.10}$$

$$LF(i,j) = x(i,j) \cdot LC(i,j) \cdot 0.5 \tag{4.11}$$

$$\sum_{j=1}^{N} LF(j,i) = L_{a}(i) + \sum_{j=1}^{N} LF(i,j) \cdot (1 + loss), \quad \forall i \neq s$$
 (4.12)

Tomado de: EnergyForsk "RELIABILITY EVALUATION OF DISTRIBUTION SYSTEMS

OTROS MODELOS BASADOS EN CONFIABILIDAD

Ec (4.5) es no lineal

$$\lambda_N(j) = \sum_{i=1}^N z(i,j) \tag{4.13}$$

$$z(i,j) \le M \cdot x(i,j) \tag{4.14}$$

$$z(i,j) \le (\lambda_N(i) + \lambda_L(i,j)) \tag{4.15}$$

$$z(i,j) \ge \left(\lambda_N(i) + \lambda_L(i,j)\right) - \left(\left(1 - x(i,j)\right) \cdot M\right) \tag{4.16}$$

$$z(i,j) \ge 0 \tag{4.17}$$

where,

z(i,j) Auxiliary variable used for problem reformulation

M A considerably large number