Econometrics Final Concepts

Ryan Safner

Fall 2017

Ordinary Least Squares (OLS) Regression

- Bivariate data and associations between variables (e.g. X and Y)
 - Apparent relationships are best viewed by looking at a scatterplot
 - * Check for associations to be positive/negative, weak/strong, linear/nonlinear, etc
 - * Y: dependent variable
 - * X: independent variable
 - Correlation coefficient (r) can quantify the strength of an association

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right) = \frac{\sum_{i=1}^{n} Z_X Z_Y}{n-1}$$

- * $-1 \le r \le 1$ and r only measures linear associations
- * |r| closer to 1 imply stronger correlation (near a perfect straight line)
- * Correlation does not imply causation! Might be confounding or lurking variables (e.g. Z) affecting X and/or Y
- Population regression model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- $-\beta_1$: $\frac{\Delta Y}{\Delta X}$: the slope between X and Y, number of units of Y from a 1 unit change in X
- $-\beta_0$ is the Y-intercept: literally, value of Y when X=0
- $-\epsilon_i$ is the error or residual, difference between actual value of Y|X vs. predicted value of \hat{Y}
- Ordinary Least Squares (OLS) regression model

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

- Least square estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ estimate population regression line from sample data
- Minimize sum of squared errors (SSE) $min \sum_{i=1}^{n} \epsilon_i^2$ where $\epsilon_i = Y_i \hat{Y}_i$
- OLS regression line

$$\hat{\beta}_1 = \frac{cov(X,Y)}{var(X)} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} = r_{X,Y} \frac{s_Y}{s_X}$$
$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

- Measures of Fit
 - $-R^2$: fraction of total variation on Y explained by variation in X according to model

$$R^2 = \frac{ESS}{TSS}$$

$$R^2 = 1 - \frac{SSE}{TSS}$$

$$R^2 = r_{X,Y}^2$$

*
$$ESS = \sum (\hat{Y}_i - \bar{Y})^2$$

* $TSS = \sum (Y_i - \bar{Y})^2$
* $SSE = \sum \hat{\epsilon_i}^2$

*
$$TSS = \sum (Y_i - \bar{Y})^2$$

- Standard error of the regression (SER): average size of ϵ_i , average distance from regression line to data points

$$SER = \frac{1}{n-2} \sum \hat{\epsilon_i}^2 = \frac{SSE}{n-2}$$

• Hypothesis testing of β_1

$$-H_0: \beta_1 = \beta_{1,0}, \text{ often } H_0: \beta_1 = 0$$

– Two sided alternative
$$H_1: \beta_1 \neq 0$$

– One sided alternatives
$$H_1: \beta_1 > 0, H_2: \beta_1 < 0$$

- t-statistic

$$t = \frac{\hat{\beta}_1 - \beta_{1,0}}{SE[\hat{\beta}_1]}$$

- Compare t against critical value t^* , or compute p-value as usual
- Confidence intervals (95%): $\hat{\beta}_1 \pm 1.96(SE[\hat{\beta}_1])$

 $\hat{\beta}_1$ is a random variable, so it has its own sampling distribution with mean $E[\hat{\beta}_1]$ and standard error $se[\hat{\beta}_1]$

- Mean of OLS estimator $\hat{\beta}_1$ & Bias: Endogeneity & Exogeneity
 - X is **exogenous** if it is not correlated with the error term

$$corr(X, \epsilon) = 0$$

* Equivalently, knowing X should not give you any information about ϵ :

$$E[\epsilon|X] = 0$$

* If X is exogenous, OLS estimate on X is unbiased:

$$E[\hat{\beta_1}] = \beta_1$$

-X is **endogenous** if it is correlated with the error term

$$corr(X, \epsilon) \neq 0$$

* Equivalently, knowing X gives you information about ϵ :

$$E[\epsilon|X] \neq 0$$

* If X is endogenous, OLS estimate on X is biased:

$$E[\hat{\beta}_1] = \beta_1 + corr(X, \epsilon) \frac{\sigma_{\epsilon}}{\sigma_X}$$

- · Can measure strength and direction (+ or -) of bias
- · Note: if unbiased, $corr(X, \epsilon) = 0$, so $E[\hat{\beta}_1] = \beta_1$
- Variance of OLS estimator $\hat{\beta}_1$, measuring precision of estimate

$$var[\hat{\beta_1}] = \frac{\hat{\sigma}^2}{n \times var(X)}$$

and standard error

$$se[\hat{\beta}_1] = \sqrt{\frac{\hat{\sigma}^2}{n \times var(X)}}$$

- Affected by 3 major factors:
 - 1. Model fit, where SER= $\hat{\sigma}$
 - 2. Sample size n
 - 3. Variation in X_j
- Heteroskedasticity and homoskedasticity
 - Homoskedastic errors (ϵ) have the same variance over all values of X
 - Heteroskedastic errors (ϵ) have different variance over values of X
 - \ast Heterosked asticity does not bias our estimates, but incorrectly lowers variance & standard errors (inflating t-statistics and significance!)
 - * Can correct for heteroskedasticity by using robust standard errors

Multivariate Regression

- Omitted Variable Bias
 - A variable ${\cal Z}$ causes omitted variable bias if:
 - 1. $corr(X, Z) \neq 0$, X and Z are correlated
 - 2. $corr(Z, Y) \neq 0$, Z is in the error term that explains Y
 - Omitted variable bias can be avoided by including Z in the regression (as X_2)
- Multivariate Regression Model

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1i} + \widehat{\beta}_2 X_{2i} + \widehat{\epsilon}_i$$

- $-\hat{\beta_0}$: predicted value of $\hat{Y_i}$ when $X_{1i} = 0; X_{2i} = 0$
- $-\hat{\beta_1} = \frac{\Delta Y_i}{\Delta X_{1i}}$, marginal effect of X_{1i} on Y_i , holding X_{2i} constant
- $\hat{\beta_2} = \frac{\Delta Y_i}{\Delta X_{2i}}$, marginal effect of X_{2i} on Y_i , holding X_{1i} constant
- $\bullet\,$ Measuring Omitted Variable Bias
 - Suppose we omit X_{2i} and run an Omitted Regression

$$Y_i = \alpha_0 + \alpha_1 X_{1i} + \nu_i$$

– If we run an Auxiliary Regression of X_{2i} on X_{1i} :

$$X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$$

* Size and significance of δ_1 measures relationship between X_{1i} and X_{2i}

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- Biased estimate α_1 in Omitted Regression picks up:
 - * True effect of X_{1i} on Y_i (β_1)
 - * Effect of X_{2i} on Y_i (β_2) as pulled through the relationship between X_{1i} and X_{2i} (δ_1)
- Conditions for Z being an omitted variable
 - * Z_i must be a determinant of Y_i ($\beta_2 \neq 0$)
 - * Z_i is correlated with X_{1i} ($\delta_1 \neq 0$)

 \hat{eta}_j is a random variable, so it has its own sampling distribution with mean $E[\hat{eta}_j]$ and standard error $se[\hat{eta}_j]$

• Variance of OLS estimators $\hat{\beta}_j$

$$var[\hat{\beta_j}] = \frac{1}{(1-R_j^2)} * \frac{\hat{\sigma}^2}{n \times var[X_j]}$$

and Standard error

$$s.e.[\hat{\beta_j}] = \sqrt{var[\hat{\beta_j}]}$$

- Affected by 4 major factors:
 - 1. Model fit, where SER= $\hat{\sigma}$
 - 2. Sample size n
 - 3. Variation in X_j
 - 4. Variance Inflation Factor (VIF) $\frac{1}{1-R_i^2}$
 - Independent variables are multicollinear if they are correlated

$$corr(X_j, X_l) \neq 0$$
 for $j \neq l$

- Does not bias estimators, but increases their variance & standard errors
- $-R_j^2$ is the R^2 from an auxiliary regression of X_j on all other regressors
- VIF quantifies how by many times the variance of $\hat{\beta}_j$ increased because of multicollinearity *VIF > 10 (or $\frac{1}{VIF} > 0.10$) is bad
- Perfect multicollinearity when a regressor is an exact linear function of (an)other regressor(s) cannot run a regression, a logical impossibility

$$|corr(X_1, X_2)| = 1$$

Dummy Variables

• Dummy variable

$$D_i = \begin{cases} 1 & \text{if } i \text{ meets condition} \\ 0 & \text{if } i \text{ does not meet condition} \end{cases}$$

• Dummy variables measure group means

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 D_i$$

- When $D_i = 0$ (Control group):
 - $* \hat{Y}_i = \hat{\beta}_0$
 - * $E[Y|D_i = 0] = \hat{\beta}_0 \iff$ the mean of Y when $D_i = 0$
- When $D_i = 1$ (Treatment group):
 - $* \hat{Y}_i = \hat{\beta_0} + \hat{\beta_1} D_i$
 - * $E[Y|D_i=1]=\hat{\beta_0}+\hat{\beta_1}\iff$ the mean of Y when $D_i=1$
- Difference in group means:

$$= E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

= $(\hat{\beta}_0 + \hat{\beta}_1) - (\hat{\beta}_0)$
= $\hat{\beta}_1$

- Transforming categorical variables into dummies
 - A categorical variable (e.g. region, class standing, etc) can be added to a regression by making each category option a dummy variable and including them all (minus one)

$$Y_i = \beta_0 + \beta_2 D_1 + \beta_2 D_2 + \beta_3 D_3$$

where observations can fall into category 1, 2, 3, or 4

- Including all category option dummies into a regression yields the dummy variable trap, where all dummies are perfectly multicollinear
- Must drop one category dummy, the "reference group"
- Coefficients on dummy variables are the difference between that category and the reference category:
 - * $\beta_0 = Y$ for category 4 (omitted)
 - * β_1 = difference between category 1 and category 4 (omitted)
 - * β_2 = difference between category 2 and category 4 (omitted)
 - * β_3 = difference between category 3 and category 4 (omitted)
- Interaction terms measure if there is an additional effect of one variable on the value of another, 3 combinations:
 - 1. Between a dummy and a continuous variable

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 \mathbf{X_i} \times \mathbf{D_i}$$

- Coefficients:
 - * β_0 : Y_i for $X_i = 0$ and $D_i = 0$
 - * β_1 : Effect of $X_i \to Y_i$ for $D_i = 0$
 - * β_2 : Effect on Y_i of difference between $D_i = 0$ and $D_i = 1$

- * β_3 : Effect of difference of $X_i \to Y_i$ between $D_i = 0$ and $D_i = 1$
- Easier to see as two different regression lines:
 - * When $D_i = 0$ (Control group):

$$\hat{Y}_i = \hat{\beta_0} + \hat{\beta_1} X_i$$

* When $D_i = 1$ (Treatment group):

$$\hat{Y}_i = (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3)X_i$$

- * Two regression lines may have (same/different) intercepts and (same/different) intercepts, test significance of:
 - · β_2 : difference in intercepts
 - · β_3 : difference in slopes

2. Between two dummy variables

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 \mathbf{D_{1i}} \times \mathbf{D_{2i}}$$

- Coefficients:
 - * β_0 : value of Y for $D_{1i} = 0$ and $D_{2i} = 0$
 - * β_1 : effect on Y of $D_{1i} = 0 \to 1$ when $D_{2i} = 0$
 - * β_2 : effect on Y of $D_{2i} = 0 \to 1$ when $D_{1i} = 0$
 - * β_3 : increment to effect on Y of $D_{1i} = 0 \to 1$ when $D_{2i} = 1$ vs. when $D_{2i} = 0$
- Compare difference in group means:
 - * $D_{1i} = 0, D_{2i} = 0$: $\hat{Y}_i = \hat{\beta}_0$
 - * $D_{1i} = 0, D_{2i} = 1$: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_2$
 - * $D_{1i} = 1, D_{2i} = 0$: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1$
 - * $D_{1i} = 1, D_{2i} = 1$: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$
- 3. Between two continuous variables

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (\mathbf{X_{1i}} \times \mathbf{X_{2i}})$$

- Marginal effects:

*
$$\frac{\Delta Y_i}{\Delta X_{1i}} = \beta_1 + \beta_3 X_{2i}$$
 — marginal effect of $X_{1i} \to Y_i$ depends on X_{2i}

*
$$\frac{\Delta Y_i}{\Delta X_{2i}} = \beta_2 + \beta_3 X_{1i}$$
 — marginal effect of $X_{2i} \to Y_i$ depends on X_{1i}

Transforming Variables

• Polynomial functions

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{i} + \hat{\beta}_{2} X_{i}^{2} + \dots + \hat{\beta}_{r} X_{i}^{r} + \epsilon_{i}$$

where r is highest power X_i is raised to, a function with r-1 bends

Quadratic model

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 X_i^2 + \epsilon_i$$

* Marginal effect of $X_i \to Y_i$:

$$\frac{dY_i}{dX_i} = \hat{\beta_1} + 2\hat{\beta_2}X_i$$

* Value of X_i where Y_i is minimized/maximized:

$$X_i^* = -\frac{1}{2} \frac{\beta_1}{\beta_2}$$

- To determine if a higher-powered term is necessary, test significance of its associated coefficient (e.g. β_2 for quadratic model above)
- To determine if a model is nonlinear, run F-test of all higher-powered terms
- Logarithmic functions (ln)
 - Natural Logs (ln) are used to talk about percentage changes, 3 types of models:
 - 1. Linear-log model:

$$Y = \beta_0 + \beta_1 \ln(\mathbf{X})$$

- * β_1 : A 1% change in $X \to \frac{\beta_1}{100}$ unit change in Y
- 2. Log-linear model:

$$\ln(\mathbf{Y}) = \beta_0 + \beta_1 X$$

- * β_1 : A 1 unit change in $X \to 100 \times \beta_1\%$ change in Y
- 3. Log-log model:

$$\mathbf{ln}(\mathbf{Y}) = \beta_0 + \beta_1 \mathbf{ln}(\mathbf{X})$$

- * β_1 : A 1% change in $X \to \beta_1$ % change in Y (elasticity between X and Y)
- Standardized coefficients

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

- To compare the magnitude of marginal effects (e.g. is $\beta_1 > \beta_2$) across variables of different units, standardize the variables by taking the Z-score of all observations

$$Variable_{std} = \frac{Variable - \overline{Variable}}{sd(Variable)}$$

- Coefficients measure the # of standard deviations change of Y a 1 std. dev. change in X causes
- Joint Hypothesis Testing
 - Joint hypothesis tests against the null hypothesis of a value for multiple parameters, e.g.

$$H_0: \beta_1 = 0, \beta_2 = 0$$

 $H_1: H_0$ is false

- Three common tests
 - 1. H_0 : $\beta_1 = \beta_2 = 0$, testing if multiple variables do not affect Y

- 2. H_0 : $\beta_1 = \beta_2$, testing if multiple variables have the same effect (must be same units)
- 3. H_0 : all β 's= 0, the model overall explains no variation in Y
- In general, with q restrictions:

$$H_0: \beta_j = \beta_{j,0}, \beta_k = \beta_{k,0}, ...$$
 for q restrictions

- Use the F-statistic, (simplified homoskedastic formula below)

$$F_{q,n-k-1} = \frac{\left(\frac{(R_u^2 - R_r^2)}{q}\right)}{\left(\frac{(1 - R_u^2)}{(n - k - 1)}\right)}$$

- Compares the R^2 's of two models:
 - * Unrestricted model: regression with all coefficients
 - * Restricted model: regression under the null hypothesis (e.g. where $\beta_1 = 0, \beta_2 = 0$)
- F tests if the increase in \mathbb{R}^2 from including the suspect variables ($Restricted \rightarrow Unrestricted$) increases by a statistically significant amount

Time Series (Not on Exam)

- Time series data tracks (multiple variables describing) a single individual (person, country, city, etc) over time
- OLS Regression model:

$$Y_t = \hat{\beta_0} + \hat{\beta_1} X_t + \epsilon_t$$

where t represents an observation at time period t

- Lagged variable: 1st lag of Y_t is the value of Y_{t-1}
 - Can take higher-order lags (e.g. 2^{nd} lag of Y is the value of Y_{t-2} , etc.
- Difference: 1^{st} difference of Y:

$$\Delta Y = Y_t - Y_{t-1}$$

using logs to express percentage change:

$$\Delta ln(Y_t) = ln(Y_t) - ln(Y_{t-1}) \times 100\%$$

- Can take higher-order differences (e.g. 2^{nd} difference of $Y = Y_t Y_{t-2}$
- Autocorrelation or serial correlation where error term ϵ_t depends on previous values of ϵ

$$corr(\epsilon_t, \epsilon_{t-1}) \neq 0$$

• First Order Autoregressive Model (AR1) models the error as a linear function of its 1st lag:

$$\epsilon_t = \rho \epsilon_{t-1} + \nu_t$$

- $-1 < \rho < 1$ ("rho") is the strength (and direction) of autocorrelation
 - * If ρ is positive, positive autocorrelation: ϵ_t (residuals) tend to be the same sign (+ or -) as the ones before it (though signs can switch)
 - · A residual plot will be fairly smooth and "sticky", with long periods of positive, and long periods of negative residuals
 - * If ρ is negative, negative autocorrelation: ϵ_t (residuals) tend switch signs (+ or -) between consecutive periods
 - · A residual plot will be very "spiky," constantly switching between positive and negative residuals over time
 - * If $\rho \approx 0$, no autocorrelation: ϵ_t not significantly affected by ϵ_{t-1}
 - · A residual plot is random with no obvious trend of residuals switching or sticking signs
- $-\epsilon_{t-1}$ is the (1st) lagged error
- $-\nu_t$ is a random error term with mean $E[\nu]=0$ and variance σ_v^2
- Can run an auxiliary regression of residuals against lagged residuals and test significance of ρ to detect autocorrelation:

$$\hat{\epsilon_t} = \rho \widehat{\epsilon_{t-1}} + \nu_t$$

• Prais-Winston/Cochrane-Orcutt method of ρ -differencing data to remove autocorrelation:

$$Y_{t} - \rho Y_{t-1} = \beta_{0}(1 - \rho) + \beta_{1}(X_{t} - \rho X_{t-1}) + \nu_{t}$$
$$\tilde{Y}_{t} = \tilde{\beta}_{0} + \beta_{1}\tilde{X}_{t} + \nu_{t}$$

- Generates a Durbin-Watson (DW) statistic:

$$DW \approx 2(1 - \rho)$$

- * DW near 2: no autocorrelation (autocorrelation fixed)
- * DW near 0: positive autocorrelation (needs more fixes)
- * DW near 4: negative autocorrelation (needs more fixes)
- Dynamic model includes lagged dependent variable in regression

$$Y_t = \gamma Y_{t-1} + \beta_0 + \beta_1 X_t + \epsilon_t$$

- Marginal effect of $X_1 \to Y$:
 - * Short-term: β_1 (standard OLS)
 - * Long-term: a 1 unit change in X will change Y by $\frac{\beta_1}{1-\gamma}$
- Often soaks up autocorrelation by including Y_{t-1}
- Trends and Stationarity
 - A variable is stationary if it has the same distribution over time (good)
 - Non-stationarity (bad)
 - * Trend: persistent long-term movement or tendency in data, a nonrandom function of time
 - * Random walk: random trend over time, where the best prediction of Y_t is Y_{t-1} , ϵ_t is a random error

$$Y_t = Y_{t-1} + \epsilon_t$$

- Determine stationarity by examining γ in dynamic model (again:)

$$Y_t = \gamma Y_{t-1} + \epsilon_t$$

- * $\gamma < 1$: standard dynamic model (OLS is fine)
- * $\gamma > 1$: data "explodes"
- * $\gamma = 1$: "unit root," Y follows a random walk (our model is useless)
- Dickey-Fuller test: tests against H_0 : $\gamma = 1$ to check for nonstationarity in each variable

Panel Data

• Panel data tracks the same individuals (a cross-section) over time (time-series)

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

with N number of i groups and T number of t time periods

- A pooled model simply runs this as normal OLS regression
 - Biased: ignores factors correlated with X in ϵ
 - Systematic differences across groups i that may be stable over time
 - Systematic differences across time t that may be stable across groups
- (One-Way) Fixed effects model

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it}$$

- α_i : group-fixed effect (pulled from error term ϵ_{it})
 - * Includes all differences across groups that do not change over time! (e.g. geography, culture, etc. of Maryland vs. Alaska)
 - * Does not include variables that change over time!
 - * Estimates a different intercept for each group
- Least Squares Dummy Variable (LSDV) Approach: can estimate via creating & including a dummy variable for each group (minus 1 to avoid dummy variable trap)

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \sum_{i=1}^{N-1} \alpha_i D_i$$

where α_i is a coefficient and D_i is a dummy variable for group i, for example:

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \beta_2 Alabama_i + \beta_3 Alaska_i + \dots$$

• Two-Way Fixed effects model

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \alpha_i + \tau_t + \nu_{it}$$

- τ_i : time-fixed effect (pulled from error term ϵ_{it})
 - * Includes all differences over time that do not change across groups! (e.g. all States experience recession in 2008, or federal law change)
 - * Does not include variables that are different across groups!
 - * Estimates a different intercept for each time period
- Least Squares Dummy Variable (LSDV) Approach: can estimate via creating & including a dummy variable for each group and each time period (minus 1 for each to avoid dummy variable trap)

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \sum_{i=1}^{N-1} \alpha_i D_i + \sum_{t=1}^{T-1} \tau_i D_t$$

where α_i and τ_t are coefficients, D_i is a dummy variable for group i, and D_t is a dummy variable for time period t, for example:

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \beta_2 A labama_i + \beta_3 A laska_i + \ldots + \beta_{51} 2000_t + \beta_{52} 2001_t + \ldots$$

• Difference-in-Differences model

$$\widehat{Y_{it}} = \beta_0 + \beta_1 \text{Treated}_i + \beta_2 \text{After}_{it} + \beta_3 (\text{Treated}_i \times \text{After}_t) + \epsilon_{it}$$

- Where:

- * Treated_i = 1 if unit i is in treatment group
- * After $_{it} = 1$ if observation it is after treatment period

	Control	Treatment	Group Diff. (ΔY_i)
Before	β_0	$\beta_0 + \beta_1$	β_1
After	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_1 + \beta_3$
Time Diff. (ΔY_t)	β_2	$\beta_2 + \beta_3$	eta_3
			Diff-in-diff $(\Delta \Delta Y)$

 $\Delta \Delta Y = (Treated_{after} - Treated_{before}) - (Control_{after} - Control_{before})$

- OLS Coefficients:
 - * $\hat{\beta}_0$: value of Y for control before treatment
 - * $\hat{\beta_1}$: difference between treatment and control (before treatment)
 - * $\hat{\beta}_2$: time difference between before and after treatment
 - * $\hat{\beta}_3$: difference-in-difference: effect of treatment
- Values of Y for different groups:
 - * Y for Control Group Before: $\hat{\beta}_0$
 - * Y for Control Group After: $\hat{\beta_0} + \hat{\beta_2}$
 - * Y for Treatment Group Before: $\hat{\beta}_0 + \hat{\beta}_1$
 - * Y for Treatment Group After: $\hat{\beta_0} + \hat{\beta_1} + \hat{\beta_2} + \hat{\beta_3}$
 - * Treatment Effect: $\hat{\beta}_3$
- Key assumption about *counterfactual*: if not for treatment, the treated group would change the same over time as the control group (parallel time trends, magenta dotted line)
- Can generalize the model with two way fixed effects:

$$\widehat{Y}_{it} = \alpha_i + \tau_t + \beta_3(\text{Treated}_i \times \text{After}_t) + X_{it} + \epsilon_{it}$$

- * α_i : group-fixed effects, where some groups receive treatment and others do not
- * τ_t : time-fixed effects, where some periods are before treatment and others are after
- * X_{it} : other control variables
- \ast This allows for multiple treatments to happen at different times!

Instrumental Variables

- \bullet A variable IV can act as an instrumental variable if:
 - 1. Inclusion Condition: IV statistically significantly explains X

$$corr(X, IV) \neq 0$$

2. Exclusion Condition: IV doesn't directly affect Y (not in ϵ)

$$corr(Y, IV) = 0$$

- \bullet IV only affects Y through its relationship with X
- IV removes endogenous variation of X (correlated with ϵ) and only uses exogenous variation of X (correlated with IV but not with ϵ) to estimate causal effect of $X \to Y$
- Implement in regression with Two Stage Least Squares (2SLS)
 - 1. First Stage (Auxiliary Regression)

$$\widehat{X}_{1i} = \widehat{\gamma}_0 + \widehat{\gamma}_1 I V_i + \widehat{\gamma}_2 X_{2i} + \widehat{\nu}_i$$

- Use instrument and other control variables (e.g. X_2) to predict value of X_{1i}
- Can test the inclusion restriction by testing significance of γ_1 (|t-statistic| > 3)
- 2. Second Stage

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \widehat{X}_{1i} + \widehat{\beta}_2 X_{2i} + \widehat{\epsilon}_i$$

- Use the predicted value of \widehat{X}_{1i} from First Stage
- There is no statistical test for the exclusion restriction, must argue why IV does not affect Y (except through X)