Nom:

Question de cours :

- Rappeler les limites suivantes : $\lim_{x \to +\infty} \frac{\ln(x)}{\sqrt{x}}$ et $\lim_{x \to -\infty} xe^x$
- Rappeler le théorème des valeurs intermédiaires.

Exercice:

Montrer que les fonctions réelles définies ci-dessous sont continues :

Montrer que les fonctions reelles definies circles
$$x^2 \ln(x) = \begin{cases} x^2 \ln(x) & \text{si } x > 0 \\ x^2 & \text{si } x < 0 \\ 0 & \text{si } x = 0 \end{cases}$$

$$2. \forall x \in \mathbb{R}, \quad g(x) = \begin{cases} 0 & \text{si } x = 0 \\ \frac{e^{-\frac{1}{|x|}}}{x^3} & \text{sinon} \end{cases}$$

Exercice:

On dit qu'une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ est 1-périodique si pour tout $x \in \mathbb{R}$, f(x+1) = f(x). Soit f une fonction 1-périodique telle qu'il existe $a \in \mathbb{R}$ tel que $\lim_{x \to +\infty} = a$.

- 1. Soient $x \in [0,1[$ et $n \in \mathbb{N}$, montrer que $\lim_{n \to +\infty} f(x+n) = a$. 2. Soient $x \in [0,1[$ et $n \in \mathbb{N}$, que peut-on dire de f(x+n)? En déduire que $\lim_{n \to +\infty} f(x+n) = f(x)$.
- 3. En déduire que f est constante.

Exercice:

Soit $f:[0,1] \longrightarrow [0,1]$ une fonction continue. Montrer qu'il existe un point fixe, c'est-à-dire un point $x_0 \in [0,1]$ tel que $f(x_0) = x_0$.

Commentaire:

Nom:

Question de cours :

- Rappeler les limites suivantes : $\lim_{x\to 0} \sqrt{x}e^x$ et $\lim_{x\to 0} x \ln(x)$
- Que dire de l'image d'une segment par une application continue?

Exercice:

Montrer que les fonctions définies ci-dessous sont continues sur leur domaine de définition :

Montrer que les fonctions definites ci-dessous sont continues
$$1.\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 2x \ln\left(\frac{1}{x}\right) & \text{si } x > 0 \\ e^{\frac{1}{x}} & \text{si } x < 0 \\ 0 & \text{si } x = 0 \end{cases}$$
$$2.\forall x \in]-1,1[, \quad g(x) = \begin{cases} 1 & \text{si } x = 0 \\ \frac{\sqrt{1-x}-\sqrt{1+x}}{x} & \text{sinon} \end{cases}$$

Exercice:

Que dire d'une fonction continue $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que pour tout $x \in \mathbb{R}, f(x)^2 = 1$?

On dit qu'une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ est périodique de période T > 0 si pour tout $x \in \mathbb{R}$, f(x+T) = f(x).

- 1. Donner une représentation graphique d'une fonction périodique.
- 2. Montrer que toute fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ périodique continue est bornée.

Commentaire:

Nom:

Question de cours :

- $\bullet \ \ \text{Rappeler les limites suivantes} : \lim_{x \to +\infty} \frac{e^x}{x^5} \ \text{et} \ \lim_{x \to 0} x^2 \ln(x)$
- Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $a \in \mathbb{R}$. Rappeler la définition de la continuité de f en a.

Exercice:

Montrer que les fonctions réelles définies ci-dessous sont continues :

Montrer que les fonctions réelles définies ci-des
$$1.\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 \text{ si } x = 1 \\ \ln(x^2 - x + 1) \text{ sinon} \end{cases}$$
$$2.\forall x \in \mathbb{R}, \quad g(x) = \begin{cases} 1 & \text{si } x = 0 \\ x^2 + x + 1 & \text{si } x < 0 \\ x^x & \text{si } x > 0 \end{cases}$$

Exercice:

Soit $f:\mathbb{R}\longrightarrow\mathbb{R}$ définie pour tout $x\in\mathbb{R}$ par $f(x)=\frac{x}{1+|x|}$. Montrer que f réalise une bijection de \mathbb{R} dans]-1,1[.

Exercice:

1. Soit $g: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue telle que $\lim_{x \to -\infty} g(x) = -\infty$ et $\lim_{x \to +\infty} g(x) = +\infty$. Montrer qu'il existe un point $x_0 \in \mathbb{R}$ tel que $g(x_0) = 0$.

On se donne un fonction $f:\mathbb{R}\longrightarrow\mathbb{R}$ continue et décroissante. Le but de l'exercice est démontrer que f possède un point fixe, c'est-à-dire un point $x_0 \in [0,1]$ tel que $f(x_0) = x_0$. On pose $g: x \mapsto f(x) - x$.

- 2. Montrer que $\lim_{x\to -\infty}g(x)=+\infty$ et $\lim_{x\to +\infty}g(x)=-\infty.$
- 3. En déduire que f possède un point fixe.

Commentaire: