

Spheres are arranged in nearly perfect crystal order.

FIG. 2

Electron beam evaporation of nickel onto the prepared substrate

FIG. 3

Deposition through the interstitial spaces
results in triangular shaped deposits on the surface

FIG. 4

After coating and removal
of the sphere mask,
an array of deposited
triangles is exposed.

FIG. 5A

After a thermal
anneal at 800C,
the particles become
more spherical.

FIG. 5B

Schematically represents the pattern generated by two monolayers offset by 30 degrees.

FIG. 6A

A Microscopy image of such an array fabricated with the disclosed method.

FIG. 6B

Schematically represents the pattern generated by two monolayers offset by 10 degrees.

FIG. 7A

A Microscopy image of such an array fabricated with the disclosed method.

FIG. 7B

A schematic representation
of an array of spheres
on a surface.

FIG. 8A

Represents a coating atop
the spheres, which leaves
deposits in the interstices
between spheres.

FIG. 8B

Shows the effect of dissolution
of the spheres, and the resulting
freestanding mask with holes plus the
substrate with its corresponding deposits.

FIG. 8C