```
In [1]: import math
    import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    from sklearn.model_selection import train_test_split
    from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import RepeatedKFold
    from sklearn.model_selection import GridSearchCV
    from sklearn.linear_model import LinearRegression
    from sklearn.linear_model import Ridge
    from sklearn.linear_model import Lasso
    from sklearn.linear_model import ElasticNet
    from sklearn.metrics import mean_squared_error
```

Reading in the data about wine preferences

```
In [2]: wine_quality_data = pd.read_csv("winequality-red.csv", sep=';')
In [3]: wine_quality_data.shape
Out[3]: (1599, 12)
In [4]: wine_quality_data.head(5)
```

Out[4]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	qı
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	

In [5]: wine_quality_data.tail(5)

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0

Train/Test Split

```
In [6]: X = wine_quality_data.iloc[:,:-1]
In [7]: X.head(5)
```

Out[7]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4

```
In [8]: y = wine_quality_data.iloc[:,-1:]
```

```
In [9]: y.head(5)
```

Out[9]:

	quality
0	5
1	5
2	5
3	6
4	5

```
In [10]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra
```

Model Development

Ordinary Least Squares

```
In [11]: lr_model = LinearRegression()
lr_model.fit(X_train, y_train)
```

Perform Cross Validation

```
In [12]: cv_values = [i for i in range(2,11)]
accuracy_values_mse = []
```

Show plot of k number of folds and accuracy values

```
In [14]: plt.plot(cv_values, accuracy_values_mse)
    plt.xlabel("K Folds")
    plt.ylabel("MSE")
    plt.show()
```


Print out the coefficients of the linear regression model corresponding to each of the features, along with the intercept term.

```
In [15]:
         for id_value, column_name in enumerate(X_train.columns):
             print("The coefficient for {} is {}".format(column name, lr model.coef
         lr intercept = lr model.intercept [0]
         print("The intercept term for our model is {}".format(lr_intercept))
         The coefficient for fixed acidity is 0.023085333909279103
         The coefficient for volatile acidity is -1.0013044340678174
         The coefficient for citric acid is -0.14082146122412922
         The coefficient for residual sugar is 0.0065643110414779346
         The coefficient for chlorides is -1.8065031490473662
         The coefficient for free sulfur dioxide is 0.005627334387083055
         The coefficient for total sulfur dioxide is -0.0036444489338687603
         The coefficient for density is -10.351593588833333
         The coefficient for pH is -0.3936877323398524
         The coefficient for sulphates is 0.8411716226093248
         The coefficient for alcohol is 0.2818895674091875
         The intercept term for our model is 14.355105195764843
```

```
In [16]: print("The minimum mse value for ols is: " + str(min(accuracy_values_mse)))
```

The minimum mse value for ols is: 0.43518490403009247

Ridge Regression

Perform repeated k-fold cross validation

```
mse_values = [0, 0, 0, 0, 0]
In [17]:
         alphas = [0.0001, 0.001, 0.01, 0.1, 1.0]
         num iterations = 0
In [18]: kf = RepeatedKFold(n_splits = 10, n_repeats = 10)
         for train index, test index in kf.split(X):
             X_train_indexed, X_test_indexed = X.iloc[train_index, :], X.iloc[test_i
             y train indexed, y test indexed = y.iloc[train index, :], y.iloc[test i
             for i in range(5):
                 alpha = alphas[i]
                 ridge model = Ridge(alpha=alpha)
                 ridge model.fit(X_train_indexed, y_train_indexed)
                 y predicted = ridge model.predict(X test_indexed)
                 mse = mean_squared_error(y_test_indexed, y_predicted)
                 mse values[i] += mse
             num iterations += 1
```

```
In [19]: avg_mse_values = [mse_value / num_iterations for mse_value in mse_values]
```

Create a plot of the alpha (tuning parameter) and average mean squared error values

```
In [20]: plt.plot(alphas, avg_mse_values)
    plt.xlabel("Alpha Values")
    plt.ylabel("Avg MSE Values")
    plt.show()
```


Find the optimal alpha (tuning parameter) value and use it to build a ridge regression model.

```
In [21]: min_avg_mse_value = min(avg_mse_values)
    min_error_index = avg_mse_values.index(min_avg_mse_value)
    alpha = alphas[min_error_index]

In [22]: ridge_model = Ridge(alpha=alpha)
    ridge_model.fit(X_train, y_train)
    y_predicted = ridge_model.predict(X_test)
    mse = mean_squared_error(y_test, y_predicted)
```

Specify the ridge regression model coefficients and intercept

```
In [23]: coefficients = pd.DataFrame({"Features":X.columns,"Coefficients":np.transpc
coefficients.head(11)
```

Out[23]:

	Features	Coefficients
0	fixed acidity	0.014517
1	volatile acidity	-1.012339
2	citric acid	-0.146866
3	residual sugar	0.002027
4	chlorides	-1.735658
5	free sulfur dioxide	0.005721
6	total sulfur dioxide	-0.003657
7	density	-0.079639
8	рН	-0.436087
9	sulphates	0.816781
10	alcohol	0.292164

```
In [24]: intercept = pd.DataFrame({"Intercept": ridge_model.intercept_})
intercept.head()
```

Out[24]:

Intercept

o 4.249021

Specify the minimum cross validation error

```
In [25]: print("The minimum average cross validation mse is: " + str(min_avg_mse_val
```

The minimum average cross validation mse is: 0.4246719328182429

Lasso Regression

Perform repeated k-fold cross validation

```
In [26]: mse_values = [0, 0, 0, 0, 0]
alphas = [0.0001, 0.001, 0.01, 1.0]
num_iterations = 0
```

```
In [27]: kf = RepeatedKFold(n_splits = 10, n_repeats = 10)

for train_index, test_index in kf.split(X):
    X_train_indexed, X_test_indexed = X.iloc[train_index, :], X.iloc[test_i y_train_indexed, y_test_indexed = y.iloc[train_index, :], y.iloc[test_i for i in range(5):
        alpha = alphas[i]
        lasso_model = Lasso(alpha=alpha)
        lasso_model.fit(X_train_indexed, y_train_indexed)
        y_predicted = lasso_model.predict(X_test_indexed)
        mse = mean_squared_error(y_test_indexed, y_predicted)
        mse_values[i] += mse

num_iterations += 1
```

```
In [28]: avg_mse_values = [mse_value / num_iterations for mse_value in mse_values]
```

Create a plot of the alpha (tuning parameter) and average mean squared error values

```
In [29]: plt.plot(alphas, avg_mse_values)
    plt.xlabel("Alpha Values")
    plt.ylabel("Avg MSE Values")
    plt.show()
```


Find the optimal alpha (tuning parameter) value and use it to build a lasso regression model.

```
In [30]: min_avg_mse_value = min(avg_mse_values)
    min_error_index = avg_mse_values.index(min_avg_mse_value)
    alpha = alphas[min_error_index]
```

```
In [31]: lasso_model = Lasso(alpha=alpha)
    lasso_model.fit(X_train, y_train)
    y_predicted = lasso_model.predict(X_test)
    mse = mean_squared_error(y_test, y_predicted)
```

Specify the lasso regression model coefficients and intercept

Eastures Coefficients

```
In [32]: coefficients = pd.DataFrame({"Features":X.columns, "Coefficients":np.transpc
coefficients.head(11)
```

Out[32]:

	Features	Coefficients
0	fixed acidity	0.013953
1	volatile acidity	0.013953
2	citric acid	0.013953
3	residual sugar	0.013953
4	chlorides	0.013953
5	free sulfur dioxide	0.013953
6	total sulfur dioxide	0.013953
7	density	0.013953
8	рН	0.013953
9	sulphates	0.013953
10	alcohol	0.013953

```
In [33]: intercept = pd.DataFrame({"Intercept": lasso_model.intercept_})
intercept.head()
```

Out[33]:

Intercept

0 4.163343

Specify the minimum cross validation error

```
In [34]: print("The minimum average cross validation mse is: " + str(min_avg_mse_val
```

The minimum average cross validation mse is: 0.42491066451983206

Elastic Net

Perform repeated k-fold cross validation

```
In [36]: kf = RepeatedKFold(n_splits = 10, n_repeats = 10)
         for train_index, test_index in kf.split(X):
             X_train_indexed, X_test_indexed = X.iloc[train_index, :], X.iloc[test_i
             y_train_indexed, y_test_indexed = y.iloc[train_index, :], y.iloc[test i
             for i in range(5):
                 alpha = alphas[i]
                 for j in range(5):
                     ratio = ratios[j]
                     elastic net model = ElasticNet(alpha=alpha, 11 ratio=ratio)
                     elastic_net_model.fit(X_train_indexed, y_train_indexed)
                     y predicted = elastic net model.predict(X test indexed)
                     mse = mean squared error(y test indexed, y predicted)
                     mse_values[i][j] += mse
                     num_iterations += 1
```

avg mse values = [mse value / num iterations for mse value array in mse val In [37]:

Create a plot of the alpha and I1_ratio (tuning parameters) and average mean squared error values

```
In [38]:
         print(avg_mse_values)
```

[0.016997942416315717, 0.016998189361100223, 0.016998450227699847, 0.0169 9873982050371, 0.016999056299432342, 0.017024256119224184, 0.017026600759 85282, 0.017029355454885278, 0.01703249650813154, 0.017035778082767013, 0.017325910060408744, 0.017373185322344442, 0.017387701929380456, 0.01740949731946985, 0.017440247655287455, 0.01900360166096478, 0.01958639602768 0045, 0.019688180480933883, 0.01981779864210686, 0.0199795805993513, 0.02 2735024044205916, 0.02520520482272836, 0.025266918431463843, 0.0252752831 60936517, 0.025288100441754766]

```
In [39]:
         print(alphas)
```

[0.0001, 0.001, 0.01, 0.1, 1.0]

```
In [40]: print(ratios)
```

In [41]: x values = alphas * 5

y values = ratios * 5

[0.2, 0.4, 0.6, 0.8, 1.0]

```
In [42]: fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.plot(xs = x_values, ys = y_values, zs = z_values)
```

Out[42]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x1a20cd6cc0>]

Find the optimal alpha and alpha and I1_ratio (tuning parameters) values and use it to build a elastic net model.

```
In [43]: min_avg_mse_value = min(avg_mse_values)
    min_error_index = avg_mse_values.index(min_avg_mse_value)
    alpha = alphas[min_error_index]
    l1_ratio = ratios[min_error_index]
```

```
In [44]: elastic_net_model = ElasticNet(alpha=alpha, l1_ratio=l1_ratio)
    elastic_net_model.fit(X_train_indexed, y_train_indexed)
    y_predicted = elastic_net_model.predict(X_test_indexed)
    mse = mean_squared_error(y_test_indexed, y_predicted)
```

Specify the elastic net model coefficients and intercept

In [45]: coefficients = pd.DataFrame({"Features":X.columns,"Coefficients":np.transpc
coefficients.head(11)

Out[45]:

Features	Coefficients
fixed acidity	0.015212
volatile acidity	0.015212
citric acid	0.015212
residual sugar	0.015212
chlorides	0.015212
free sulfur dioxide	0.015212
total sulfur dioxide	0.015212
density	0.015212
рН	0.015212
sulphates	0.015212
alcohol	0.015212
	fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates

In [46]: intercept = pd.DataFrame({"Intercept": elastic_net_model.intercept_})
 intercept.head()

Out[46]:

Intercept

o 4.241787