# Exploring the possibility of Alternative Splicing as a path to the regulation of LINE-1 elements in human and mouse

## Brittany Howell

Supervisors: Prof. Dave Adelson and Dr. Dan Kortschak

March 17, 2016



## Overview

▶ Background: Transposable Elements (TEs) including L1s



- Regulation of TEs
- Alternative splicing
- ► Alternative splicing in L1s
- Project Aims

## Background



# The human genome

Repetitive elements are abundant in the human genome



### Other genome content:

Tandem repeats Intergenic regions Duplications Transposable elements

Xu et al. 2010, Singer et al. 2010



# The human genome

Repetitive elements are abundant in the human genome



# The human genome

Repetitive elements are abundant in the human genome



LINE-1 (L1) elements comprise 20% of the human genome

Xu et al. 2010, Singer et al. 2010

# LINE-1 (L1) structure

#### L1s are TEs



#### L1 structure

- Full length L1s are 6-7kb
- ▶ L1s are often 5' truncated, inverted or degraded

Exploring the possibility of Alternative Splicing as a path to the regulation of LINE-1 elements in human and mouse

- Some variants are 4kb HAL1s
  - ► No ORF2



# Retrotransposon replication cycle

LINE-1s are retrotransposons



- ▶ L1s replicate through an RNA intermediate
- ▶ They integrate anywhere in the genome interspersed repeats



## Regulation of TEs



# Regulation of TEs

Why is regulation required?

## Transposable elements can insert anywhere in the genome

| Intronic            | 5' — L1 — 3'                     |
|---------------------|----------------------------------|
| Exonic              | 5'3'                             |
| Upstream element    | 5' <b>TF</b> L1 3'               |
| Intergenic          | 5' L1 3'                         |
| Repetitive sequence | 5' GAA GAA GAA L1 GAA GAA GAA 3' |

# DNA methylation

Methylation of DNA is widespread throughout the genome

- X chromosome inactivation, TE silencing
- TE accumulation occurs when methylation is impaired
- Levels fluctuate in development
- L1s in the female mature gamete aren't fully methylated



# Other regulation

Many other mechanisms have been shown to suppress TEs

- Histone modifications
  - Methylation -SETB1
  - Ubiquitination
  - Acetylation
- RNA interference
  - miRNAs
  - siRNAs
  - piRNAs
- RNA editases
  - APOBEC





## mRNA decay

#### Targeting the L1 RNA intermediate

- ► Targets aberrant transcripts
- Nonsense mediated decay



- lacktriangle Alternative splice event ightarrow Premature Termination Codon ightarrow Target for NMD
- ► The act of splicing means that decay is a possible regulatory mechanism



# **Alternative Splicing**

# mRNA processing

DNA is transcribed to RNA, which is processed to form mature mRNA



# mRNA processing

Alternative splicing can form multiple splice variants



# **Project Motivation**

Belancio et al. (2006) found candidate splice sites in L1 elements and showed evidence of splicing in transfection studies



HAL1s could potentially have resulted from an alternative splicing event

# **Project Aims**



## Aim 1

## Is AS detectable in the mouse transcriptome?

There is evidence that AS occurs in L1 elements, so RNA-Seq data will be used to detect it

## Detecting Alternative Splicing in L1 elements

RNA-Seg reads can be aligned to the genome



 Reads that are split over two locations on the genome with a gap indicate splicing

# Read visualisation with Integrated Genomics Viewer



## Further aims

## Is AS detectable in the mouse genome?

The genome L1s can be compared to full-length L1 consensus sequences, to detect any splicing

## Is AS detectable in the human transcriptome or genome?

If AS is found in both the human genome, further comparative analysis is possible, such as if the same splice donor and acceptor sites are used

## Summary

- ▶ L1s are the most abundant TEs in the human genome, and we are using them as a candidate for TE regulation
- We have some evidence that they are alternatively spliced
- ► The mouse and human transcriptome and genome will be used for detection

## Thank you



## References

Belancio, V. P., Hedges, D. J., and Deininger, P. 2006. LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Research, 34(5):15121521.

Xu, A. G., He, L., Li, Z., Xu, Y., Li, M., Fu, X., Yan, Z., Yuan, Y., Menzel, C., Li, N., Somel, M., Hu, H., Chen, W., P aa bo, S., and Khaitovich, P. 2010. Intergenic and repeat transcription in human, chimpanzee and macaque brains measured by RNA-Seq. PLoS computational biology, 6:e1000843.

Singer, T., McConnell, M. J., Marchetto, M. C. N., Coufal, N. G., and Gage, F. H. 2010. Line-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends in neurosciences, 33(8):34554.