课程链接: CS224W: Machine Learning with Graphs

课程视频: 【课程】斯坦福 CS224W: 图机器学习 (2019 秋 | 英字)

这一课主要是讲**子图 (subnetworks) **的一些参数。

目录

- 1. 序: 子图 (Subnetworks)
- 2. Subgraphs, Motifs and Graphlets
 - 2.1 Network Motifs
 - 2.2 Graphlets: Node feature vectors
 - 2.3 Finding Motifs and Graphlets
- 3. Structural Role in Networks
 - 3.1 Role的定义
 - 3.2 Discovering Structural Role in Networks

1. 序: 子图 (Subnetworks)

子图(subnetworks/subgraph)是网络的局部组成,可以用来辨别和区分网络。(类似于分子中的不同原子结构)

子图的结构可以有很多种,比如有向图的三节点子图 (n-node subgraphs,这里 n=3) 就有如下几种形式:

对于一张网络来说,你可以得到很多个子图,那么什么样的子图是有意义的呢?这就需要一些参数,来衡量子图的重要性。这样,不同的网络就可以表示为以这些子图为基的特征向量。

For each subgraph:

- Imagine you have a metric capable of classifying the subgraph "significance" [more on that later]
 - Negative values indicate under-representation
 - Positive values indicate over-representation

• We create a **network significance profile:**

A feature vector with values for all subgraph types

下面是一些例子:

Networks from the same domain have similar significance profiles

我们首先看这张图最底下,横坐标,是前面讲到的13种子图的类型,上面的每一行就是不同网络关于这13种子图的一些特征值。可以看到,**同领域的网络,它的特征向量其实是相似的**。比如最后一行的语言网络,对于英语、发育、西班牙语、日语

等不同的语言来说,他们尽管语法不尽相同、词语不同,但是它们的特征是一致的。

那么,我们今天的课程内容就是来看一下怎么去定义这样的"motifs"(可以理解为以子图构成的基底),怎么去得到网络关于这些基的特征值。

2. Subgraphs, Motifs and Graphlets

2.1 Network Motifs

首先,我们先来看一下Network Motifs的定义:

"recurring, significant patterns of interconnections"

Motifs的作用:

- Help us understand how networks work (帮助我们了解网络是如何工作的)
- Help us predict operation and reaction of the network in a given situation
 (帮助我们预测网络在特定情况下的运行和反应)

Motifs的一些例子:

Motifs	图例	出现的网络
Feed-forward loops 前馈环路	X Y Z	这种Motifs会在神经元网络中出现,会用来中和"生物噪音(biological noise)"。(这应该是属于生物信息学中的相关概念)
Parallel loops 平行环路	X	会在食物链网络中出现
Single-input modules	X a b c d	在基因控制网络中发现

这里有三个关键词:

- **Pattern**: motifs的模式是小的诱导子图(small induced subgraph。这里需要 厘清诱导子图的定义(子图、诱导子图和生成子图)
- **recurring**:需要在网络中重复很多次;并且重复的Motifs里会有相同的单元 (节点)。
- **significant**: 比想象中出现得更加频繁。这里可以由一个关键点来衡量—— Subgraphs that occur in a real network much more often than in a random network have functional significance(也就是说,定义的motifs在真实网络中出现的频率要比在随机图中出现的频率要高得多)。【可以看这篇文章:<u>在论文中经常读到的motifs是什么意思?</u>】这里需要注意的是用来做检测的随机网络需要和真实网络有相同的 #(nodes), #(edges), #(degree distribution),#表示数目。

我们怎样去计算这个significance(显著性)呢?设 Z_i 表示motif i的统计显著性。

$$Z_i = (N_i^{real} - \overline{N}_i^{rand})/std(N_i^{rand})$$

这里 N_i^{real} 是指在真实网络 G^{real} 中motif i出现的次数, N_i^{rand} 是指在随机网络 G^{rand} 中motif i出现的次数。

那么,网络的motif i的显著性(Network Significance Profile, SP)由标准化后的 Z_i 表示:

$$SP_i = Z_i / \sqrt{\sum_j Z_j^2}$$

SP更强调不同子图之间的相对显著性,这对于不同规模的网络比较十分有意义,因为一般来说网络规模越大,Z-score越高,而标准化处理则可以降低尺度效应的影响。

这里有个问题,就是我们怎么得到随机网络 G^{rand} 呢(Configuration model)?并且这个随机网络 G^{rand} 需要和真实网络有相同的 #(nodes), #(edges), #(degree distribution)。

这里介绍两种方式。

第一种方式,我们可以通过给定的节点数量和节点的度序列(degree sequence k_1,k_2,\cdots,k_N)来生成随机图:

注意,这里为了保留随机性,不会遍历所有的搭配可能;并且可以看到,因为我们会忽略自环和双边,最后生成的随机图中节点B的度为3(给定的度为4)。

第二种方式称为Switching。

- Start from a given graph G
- Repeat the switching step Q · |E| times:
 - Select a pair of edges A→B, C→D at random
 - **Exchange** the endpoints to give $A \rightarrow D$, $C \rightarrow B$
 - Exchange edges only if no multiple edges or self-edges are generated

- Result: A randomly rewired graph:
 - Same node degrees, randomly rewired edges

我们从一个给定的图开始(这个图和真实的网络有相同的度),重复以下步骤 $Q\cdot$ |E|次,Q会取一个较大的值(如100)来使整个过程达到收敛:

- 随机选取一条边 (例如A->B, C->D)
- 将边的终点随机改变。注意的是新生成的边不能构成自环或者双边。

RECAP: Detecting Motifs

- Count subgraphs i in G^{real}
- Count subgraphs i in random networks G^{rand}:
 - **Configuration model:** Each G^{rand} has the same #(nodes), #(edges) and #(degree distribution) as G^{real}
- Assign Z-score to i:
 - $Z_i = (N_i^{\text{real}} \overline{N}_i^{\text{rand}})/\text{std}(N_i^{\text{rand}})$
 - High Z-score: Subgraph i is a network motif of G

关于Motifs也有很多其他形式表示的定义:

Variations on the Motif Concept

- Canonical definition:
 - Directed and undirected
 - Colored and uncolored
 - Temporal and static motifs

- Variations on the concept
 - Different frequency concepts
 - Different significance metrics
 - Under-Representation (anti-motifs)
 - Different constraints for null model

2.2 Graphlets: Node feature vectors

Graphlets(图元, connected non-isomorphic subgraphs)是指大规模网络中那些节点数目较少的连通诱导子图。

Induced subgraphs of any frequency

For n = 3, 4, 5, ... 10 there are 2, 6, 21, ... 11716571 graphlets!

图元通常会用来比较网络之间的相似和差异。基于图元,我们来介绍**Graphlet Degree Vector(GDV**) 方法。

Graphlet Degree Vector(GDV) 方法是Przulj在2003年提出的利用图元及图元向量来刻画网络中节点邻域关系的方法,具体指在小连通非同构子图中计算每个节点的自同构轨道,即每个节点所接触的图形数量。这种方法基于网络拓扑和邻域定义了一系列非同构子图和图向量,用于识别网络中结构相似的模块。

- ——宋祥帅, 杨伏长, 谢江,等. Graphlet Degree Vector方法的优化与并行[J]. 计算机应用, 2020, 40(2):398-403.
- Graphlet Degree Vector (GDV): a vector with the frequency of the node in each orbit position
- Graphlet degree vector counts #(graphlets)
 that a node touches

Graphlet Degree Vector(GDV)是一个向量,表示每个轨道位置具有该节点的频率。它刻画的是每个节点接触的图元数量。

我们看下面这个例子:

Example: Graphlet degree vector of node v

For a node u of graph G, the automorphism orbit of u is $Orb(u) = \{v \in V(G); v = f(u) \text{ for some } f = \operatorname{Aut}(G)\}.$

The Aut denotes an automorphism group of *G*, *i.e.*, an isomorphism from *G* to itself.

我们有三种不同的轨道(orbit),轨道上有a、b、c、d四种节点位置(orbit position)。对于节点v来说,其在轨道位置a上有2个图元,在轨道位置b上有1个图元,在轨道位置c上没有图元,在轨道位置d上有2个图元。 这里需要注意的是图元是诱导子图。

因此, Graphlet Degree Vector(GDV)的实际意义在于:

- Graphlet degree vector counts #(graphlets) that a node touches at a particular orbit. 刻画了某个节点所接触的图元(某个特殊的轨道位置的图元)的数量。
- Graphlet degree vector provides a measure of a node's local network topology.
 刻画了网络中节点的局部属性。

2.3 Finding Motifs and Graphlets

第一步,找到所有的子图: Counting Subgraphs——Exact subgraph enumeration (ESU)算法

ESU算法中有两个重要的集合:

 $V_{subgraph}$ ——表示当前创建的子图(motif)。

 $V_{extension}$ ——表示可以用来扩展motif的节点集合。

ESU的基本思想是:从一个节点v出发,从 $V_{extension}$ 中添加满足下面两个条件的节点u--①节点u的编号要大于节点v的编号;②节点u可以是当前新增点w的邻居节点,但不能是已经在 $V_{subgraph}$ 集中的节点的邻居节点。

ESU算法的伪代码如下:

```
Algorithm: EnumerateSubgraphs(G, k) (esu)
Input: A graph G = (V, E) and an integer 1 \le k \le |V|.
Output: All size-k subgraphs in G.
      for each vertex v \in V do
  02
          V_{Extension} \leftarrow \{u \in N(\{v\}) : u > v\}
          call ExtendSubgraph(\{v\}, V_{Extension}, v)
  03
ExtendSubgraph (V_{Subgraph}, V_{Extension}, v)
      if |V_{Subgraph}| = k then output G[V_{Subgraph}] and return
      while V_{Extension} \neq \emptyset do
          Remove an arbitrarily chosen vertex w from V_{Extension}
  E3
  E_4
          V'_{Extension} \leftarrow V_{Extension} \cup \{u \in N_{excl}(w, V_{Subgraph}) : u > v\}
          call ExtendSubgraph (V_{Subgraph} \cup \{w\}, V'_{Extension}, v)
  E5
  E6 return
```

 $N_{excl}(w, V_{Subgraph}) = N(w) \setminus (V_{Subgraph} \cup N(V_{Subgraph}))$ is exclusive neighborhood: All nodes neighboring w but not of $V_{Subgraph}$ or $N(V_{Subgraph})$

ESU算法是通过递归实现的,算法的过程可以看成是深为k的递归树——ESU树。

- Nodes in the ESU-tree include two adjoining sets:
 - V_{subgraph}: Current subgraph (a set of adjacent nodes)
 - $lackbox{$V_{extension}$: Nodes adjacent to $V_{subgraph}$ whose node_ids are larger than starting node $v$$

第二步:对找到的子图进行统计: Count the graphs

Classify subgraphs placed in the ESU-Tree leaves into non-isomorphic size-k classes:

- Determine which subgraphs in ESU-Tree leaves are topologically equivalent (isomorphic) and group them into subgraph classes accordingly
- Use McKay's nauty algorithm [McKay 1981]

将ESU树叶子节点上的子图分成k阶不同构的各种类别。这里涉及到怎么判断图之间是否同构,采用的是McKay的方法。

3. Structural Role in Networks

3.1 Role的定义

Roles are "functions" of nodes in a network

区别Role和Group/Communities:

- role是指在网络中具有相似功能的节点:例如不同项目组中的研究员,这些研究员在网络中可能并没有连接(互不认识),但他们从事同样的一份工作。即 role取决于相似性而不是相互连接性。
- group/community则是互相连接的个体(节点),核心在于连接性。
 - Roles and communities are complementary
 - Consider the social network of a CS Dept:
 - Roles: Faculty, Staff, Students
 - Communities: Al Lab, Info Lab, Theory Lab

我们来给role一个更严谨的定义。属于相同role的节点具有**结构等价性(structural equivalence**)——Nodes u and v are structurally equivalent if they have the same relationships to all other nodes.

3.2 Discovering Structural Role in Networks

Why are Roles important?

Task	Example Application
Role query	Identify individuals with similar behavior to a known target
Role outliers	Identify individuals with unusual behavior
Role dynamics	Identify unusual changes in behavior
Identity resolution	Identify, de-anonymize, individuals in a new network
Role transfer	Use knowledge of one network to make predictions in another another
Network comparison	Compute similarity of networks, determine compatibility for knowledge transfer

方法: RoIX——Automatic discovery of nodes' structural roles in networks [Henderson, et al. 2011b] 该方法的特点:

- Unsupervised learning approach 无监督学习方法
- No prior knowledge required 不需要任何先验知识
- Assigns a mixed-membership of roles to each node 为每个节点分配角色的混合成员关系
- Scales linearly in #(edges) 算法的复杂度随着网络中的边的数量线性增长

Role Discovery

- ✓ Automated discovery
- ✓ Behavioral roles
- √Roles generalize

RoIX方法流程图:

