Topolgie

Topologie des espaces

vectoriels normés

Question 1/44

Définition alternative d'un espace complet

Réponse 1/44

Espace où toute suite convergeant absolument est convergeante

Question 2/44

A est une partie étoilée de E

Réponse 2/44

$$\exists a \in A, \, \forall x \in A, \, [a, x] \subset A$$

Question 3/44

Image continue d'un connexe

Réponse 3/44

Si f est continue et A connexe, alors f(A) est connexe

Question 4/44

 $f: A \to B$ est une isométrie

Réponse 4/44

$$f(A) = B$$

$$\forall (a, a') \in A^2, ||f(a) - f(a')|| = ||a - a'||$$

Question 5/44

$$\operatorname{sp}(\operatorname{exp}(M))$$

Réponse 5/44

$$\left\{ e^{\lambda}, \lambda \in \operatorname{sp}(M) \right\}$$

Question 6/44

 $f: E \to \mathbb{K}$ est une application polynomiale sur E de base (e_1, \cdots, e_n)

Réponse 6/44

Si
$$x = \sum_{k=1}^{n} (x_k e_k)$$

$$\exists (\lambda_{k_1,\dots,k_n})_{(k_1,\dots,k_n)\in\mathbb{N}^n} \in \mathbb{K}^{(\mathbb{N}^n)},$$

$$f(x) = \sum_{(k_1,\dots,k_n)\in\mathbb{N}^n} \left(\lambda_{k_1,\dots,k_n} x_1^{k_1} \cdots x_n^{k_n}\right)$$

Question 7/44

Image continue d'un compact

Réponse 7/44

Si f est continue et K un compact, alors f(K) est un compact

Question 8/44

A est une partie connexe par arcs de E

Réponse 8/44

 $\forall (x,y) \in A^2$, il existe un chemin joignant x à y

Question 9/44

Théorème de Riesz

Réponse 9/44

E est de dimension finie si et seulement si sa boule unité est fermée

Question 10/44

Théorème de Bolzano-Weirstrass

Réponse 10/44

Dans un evn de dimension finie, toute suite bornée admet une valeur d'adhérence

Question 11/44

Normes usuelles sur $\mathbb{K}[X]$ Normes avec les valeurs

Réponse 11/44

$$||P||_1 = \int_a^b (|P(t)|) dt$$

$$||P||_2 = \sqrt{\int_a^b (|P(t)|^2) dt}$$

$$||P||_\infty = \sup\{|P(x)|, x \in [a, b]\}$$

Question 12/44

$$M \in \mathcal{M}_n(\mathbb{K})$$
 $\exp(M)$

Réponse 12/44

$$\sum_{n=0}^{+\infty} \left(\frac{M^n}{n!} \right)$$

Question 13/44

$$u \in \mathcal{L}(E)$$
$$\exp(u)$$

Réponse 13/44

$$\sum_{n=0}^{+\infty} \left(\frac{u^n}{n!} \right)$$

Question 14/44

Théorème de Borel-Lebesgue

Réponse 14/44

Si K est un compact et $(\Omega_i)_{i \in I}$ une famille d'ouverts telle que $K \subset \bigcup_{i \in I} (\Omega_i)$

Alors, il existe $J \subset I$ fini tel que $K \subset \bigcup_{i \in J} (\Omega_i)$

Question 15/44

Partie complète A d'un espace métrique E

Réponse 15/44

Toute suite de Cauchy dans A est convergeante dans A

Question 16/44

Image continue d'un connexe par arcs

Réponse 16/44

Si f est continue et A une partie connexe par arcs, alors f(A) est connexe par arcs

Question 17/44

Chemin joignant $x \in E$ à $y \in E$

Réponse 17/44

Application γ continue de [0,1] dans E telle que $\gamma(0)=x$ et $\gamma(1)=y$

Question 18/44

Normes usuelles sur $\ell_{\mathbb{K}}(\mathbb{N})$

Réponse 18/44

$$u \in \ell_{\mathbb{K}}^{1}(\mathbb{N}) : \|u\|_{1} = \sum_{k=0}^{+\infty} (|u_{k}|)$$

$$u \in \ell_{\mathbb{K}}^{2}(\mathbb{N}) : ||u||_{2} = \sqrt{\sum_{k=0}^{+\infty} (|u_{k}|^{2})}$$
$$u \in \ell_{\mathbb{K}}^{\infty}(\mathbb{N}) : ||u||_{\infty} = \sup(\{|u_{k}|, k \in \mathbb{N}\})$$

Question 19/44

Normes usuelles sur \mathbb{K}^n

Réponse 19/44

$$||x||_1 = \sum_{k=1}^{n} (|x_k|)^k$$

 $||x||_{2} = \sqrt{\sum_{k=0}^{n} (|x_{k}|^{2})}$ $||x||_{\infty} = \max(\{|x_{k}|, k \in [1, n]\})$

Question 20/44

 $\|u\|$

Réponse 20/44

$$\sup(\{\|u(x)\|, x \in E, \|x\| = 1\})$$

Question 21/44

Propriétés de $\|\cdot\|$

Réponse 21/44

$$||u \circ v|| \le ||u|| \times ||v||$$

$$||id|| = 1$$

$$||u^{-1}|| \ge \frac{1}{||u||}$$

Question 22/44

Caractérisation des convexes par les applications continues

Réponse 22/44

A est connexe si et seulement si toute application continue de A dans $\{0,1\}$ est constante

Question 23/44

Continuité des applications polynomiales

Réponse 23/44

Une application polynomiale dans un evn de dimension finie est continue

Question 24/44

$$E\setminus \mathring{A}$$

Réponse 24/44

$$\overline{E \setminus A}$$

Question 25/44

N et N' sont équivalentes

Réponse 25/44

$$\exists (\alpha, \beta) \in (\mathbb{R}_+^*)^2, \ \alpha N \leqslant N' \leqslant \beta N$$

Question 26/44

Espace de Hilbert

Réponse 26/44

Espace préhilbertien réel complet

Question 27/44

$$M \in \mathcal{M}_n(\mathbb{K})$$
 $||M||$

Réponse 27/44

$$\sup(\{\|MX\|, X \in \mathcal{M}_{n,1}(\mathbb{K}), \|X\| = 1\})$$

Question 28/44

Espace de Banach

Réponse 28/44

Evn complet

Question 29/44

Expression de $||M||_2$ avec tr

Réponse 29/44

$$\|M\|_2 = \sqrt{\operatorname{tr}\left(\overline{M}^{\top}M\right)}$$

Question 30/44

A

Réponse 30/44

$$\{x \in A, \exists \varepsilon > 0, \mathcal{B}(x, \varepsilon) \subset A\}$$

Question 31/44

Normes usuelles sur $\mathcal{M}_{n,p}(\mathbb{K})$

Réponse 31/44

$$||M||_{1} = \sum_{i=1}^{n} \left(\sum_{j=1}^{p} (|m_{i,j}|) \right)$$

$$||M||_{2} = \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{p} (|m_{i,j}|^{2}) \right)}$$

$$||M||_{\infty} = \max(\{|m_{i,j}|, i \in [1, n], j \in [1, p]\})$$

Question 32/44

Identité du parallélogramme

Réponse 32/44

Pour une norme assiciée à un produit scalaire $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$

Question 33/44

Théorème des bornes atteintes

Réponse 33/44

Si K est un compact non vide et f une application continue, alors f est bornée sur K et atteint ses bornes

Question 34/44

$$\varphi \in \mathcal{L}(E_1 \times \cdot \times E_n, F)$$

$$\|\varphi\|$$

Réponse 34/44

$$\sup_{\substack{(x_1,\dots,x_n)\in E_1\times\dots\times E_n\\N_1(x_1)=\dots=N_n(x_n)=1}} (\|\varphi(x_1,\dots,x_n)\|)$$

Question 35/44

$$M \in \mathcal{M}_n(\mathbb{K})$$
 telle que $||M|| < 1$
 $\sum M^k$

Réponse 35/44

$$I_n - M \in \operatorname{GL}_n(\mathbb{K}) \text{ et } \sum (M^k) = (I_n - M)^{-1}$$

k=0

Question 36/44

Produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$

Réponse 36/44

$$\langle A, B \rangle = \operatorname{tr}(A^{\top}B)$$

Question 37/44

Normes usuelles sur $\mathbb{K}[X]$ Normes avec les coefficients

Réponse 37/44

$$||P||_1 = \sum_{k=0}^{\deg(P)} (|p_k|)$$

$$||P||_2 = \sqrt{\sum_{k=0}^{\deg(P)} (|p_k|^2)}$$

$$||P||_{\infty} = \max(\{|p_k|, k \in [1, \deg(P)]]\})$$

Question 38/44

Normes usuelles sur $\mathcal{C}([a,b])$

Réponse 38/44

$$||f||_1 = \int_a^b (|f(t)|) dt$$

$$||f||_2 = \sqrt{\int_a^b (|f(t)|^2) dt}$$

$$||f||_\infty = \sup(\{|f(x)|, x \in [a, b]\})$$

Question 39/44

$$E \setminus \overline{A}$$

Réponse 39/44

$$\widehat{E \setminus A}$$

Question 40/44

 $\operatorname{fr}(A)$

Réponse 40/44

$$\overline{A}\setminus \mathring{A}$$

Question 41/44

Espace complet

Réponse 41/44

Espace métrique où les suites de Cauchy sont convergeantes

Question 42/44

A est connexe

Réponse 42/44

Les seules parties ouvertes et fermées de A sont A et \varnothing

Question 43/44

Théorème du point fixe de Picard

Réponse 43/44

Soit A une partie complète d'un espace métrique E et $f:A\to A$ une application k-contractante (i.e. k-lipsichtzienne, k < 1) f a un unique poitn fixe $p \in A$ La suite définie par $u_0 \in A$ et $u_{n+1} = f(u_n)$ converge vers p et $d(u_n, p) \leqslant \frac{k^n}{1 - k} d(u_1, u_0)$

Question 44/44

Théorème de Heine

Réponse 44/44

Si f est une application continue sur un compact, alors f est uniformément continue