1. For a polynomial $P(x) = ax^3 + bx^2 + cx + d$

$$\alpha + \beta + \gamma = -b/a$$

$$\alpha * \beta * \gamma = c/a$$

where α, β, γ are the roots of the polynomial.

2. For a polynomial $P(x) = ax^2 + bx + c$

$$lpha=rac{b-\sqrt{b^2-4*a*c}}{2*a}$$

$$\beta = \frac{-b - \sqrt{b^2 - 4 * a * a}}{2 * a}$$

 $\alpha = \frac{\frac{b-\sqrt{b^2-4*a*c}}{2*a}}{2*a}$ $\beta = \frac{-b-\sqrt{b^2-4*a*c}}{2*a}$ where α, β are the roots of the polynomial.

3.
$$1^3 + 2^3 + 3^3 + \ldots + n^3 = \left[\frac{n*(n+1)}{2}\right]^2$$

3.
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n*(n+1)}{2}\right]^2$$

4. $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n*(n+1)*(2n+1)}{6}$

5. For a arithmetic progression

$$a, a+d, a+2d, a+3d...$$

$$T(n) = a + (n-1) * d$$

$$S(n) = \frac{n}{2}[2a + (n-1)d]$$

6) For a geometric progression

$$a, ar, ar^2, ar^3...$$

$$S(n)=a(rac{r^n-1}{r-1})$$

$$S(\infty) = \frac{a}{1-r}$$
 where $[-1 < r < 1]$

- 7)Bertland Ballot's Theorem problem -
- "In an election where candidate a receives p votes and b receives q votes with p>q, what is the probability that a will be strictly ahead of b throughout the count"

Ans -
$$\frac{p-q}{p+q}$$

And if ties are allowed then

Ans -
$$\frac{p-q+1}{p+1}$$

8. $(\frac{A}{B})\% mod = (A\% mod * x\% mod)\% mod$

where x is the modular multiplicative inverse of B under mod

9)Fermat's little theorem

$$a^{m-2} \equiv a^{-1} \% mod$$

when
$$mod$$
 is prime

10) $E_p(n!)$: Exponent of p in n! where p is a prime

$$E_p(n!) = \lfloor rac{n}{p}
floor + \lfloor rac{n}{p^2}
floor + \lfloor rac{n}{p^3}
floor + \lfloor rac{n}{p^4}
floor + \ldots$$

11. let N be a natural number

$$N=p_1^{lpha^1}*p_2^{lpha^2}*p_3^{lpha^3}.\dots$$

Then total number of divisors =

$$(\alpha_1 + 1) * (\alpha_2 + 1) * (\alpha_3 + 1) * \dots$$

$$(\alpha_1 + 1) * (\alpha_2 + 1) * (\alpha_3 + 1) * \dots$$
Sum of divisors $= (\frac{p_1^{\alpha_1 + 1} - 1}{p_1 - 1}) * (\frac{p_2^{\alpha_2 + 1} - 1}{p_2 - 1}) * (\frac{p_3^{\alpha_3 + 1} - 1}{p_3 - 1}) \dots$
Product of divisors $= n^{\frac{(\alpha_1 + 1)(\alpha_2 + 1) \times \dots \times (\alpha_m + 1)}{2}}$

Product of divisors
$$= n^{\frac{(\alpha_1+1)(\alpha_2+1)\times\cdots\times(\alpha_m+1)}{2}}$$

If n is perfect square then multiply it by \sqrt{x} in case of product of divisor

- 12. $a^b\%mod = a^{b\%(mod-1)}\%mod$ when mod is prime
- 13. $a^b\%mod = a^{b\%\phi(mod)}\%mod$ when mod is not prime

where $\phi(mod)$ = Euler totient function of mod

14. Derangement of N elements

$$D_n = n!(1 - \frac{1}{1!} + -\frac{1}{2!} + (-1)^n \frac{1}{n!})$$

- 15. If m and n are two co-prime numbers then the biggest number which can not be represented as (am + bn) for non negative integer m and n is mn - m - n
- 16. Euler Totient function $(\phi(n))$: Number of numbers which are coprime with n in range of [1,n]

$$\phi(n) = n(1 - rac{1}{p_1})(1 - rac{1}{p_2})(1 - rac{1}{p_3})$$
 where $n = p_1^{lpha 1} * p_2^{lpha^2} * p_3^{lpha^3} \ldots$

- 15. Centroid of a triangle $(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})$ 16. Incentre $(\frac{ax_1+bx_2+cx_3}{a+b+c}, \frac{ay_1+by_2+cy_3}{a+b+c})$ 17. Area of triangle $\frac{1}{2}[x_1*(y_2-y_3)+x_2*(y_3-y_1)+x_3*(y_1-y_2)]$ 18. Angle between two lines $\tan \theta = |\frac{m_1-m_2}{1+m_1*m_2}|$
- 19. Distance of a point from a line

$$\left|rac{ax_1+by_1+c}{\sqrt{a^2+b^2}}
ight|$$

20. Image of a point on a line

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = -2 * \frac{ax_1+by_1+c}{a^2+b^2}$$

21. Distance between parallel lines

$$\frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$$

22. For a simple polygon pick's theorem states that

$$A = I + \frac{B}{2} - 1$$

- $\boldsymbol{A}=$ Area of simple polygon
- B =Number of points on its boundary
- I =be the number of integer points strictly inside the polygon

23. For a line from (a, b) to (c, d)

the number of lattice points on it is gcd(c-a, d-b) + 1