

1.1g. 1 TOP

FIG. 2

Figure 4

BITTE ATTENT OF THE GENERAL SOLD AND A STANDAR OF THE STANDAR OF THE STANDAR OF THE STANDAR OF THE STANDARD OF

NGGITGINITTOPE TO A CONTROL OF THE ANGOLOGY OF AND ACCONTRIBION OF THE STANDARY OF THE TOTAL OF THE TOTAL OF THE CONTROL OF TH

A10B = scFv of anti-R-IgG antibody (Pharmacia)

FIG. 6

PIG.

__

RABBIT

FIG. 8

In vivo recombination via direct repeats - Intraplasmidic

Cell	Tet colonies	Amp colonies	Colony PCR	
TG-1	131	21	3/3 at 1 kb	
JC8679	123	31	4/4 at 1 kb	
vector control	51	0		

In vivo recombination via direct repeats - Intraplasmidic

Cell	Tet colonies	Amp colonies	Colony Po	OR
TG-1	28	54	7/7 at 1 k	6
JC8679	149	117	3/3 at 1 k	
vector control	51	Ó		

Homologous Recombination by Fragment Electroporation

Comment	Efficient insertion by homologous recombination with co-electroporated vector	100x less efficient than 1 fragment	Homologous insertion depends on free ends.	If vector is in cells already, high efficiency occurs even though vector is uncut	- control: non-homologous insertion into chromosome	- control: No amp background
% homologous recombination	.100% (N=14)	.100% (N=2)		70% (N=7)		
Amp Tot colonies	1,500	91	0	10,000	0	0
Amp colonies	4,000	2,000	9	2,000	2,000	N.D.
Approach	1- cut vector 1 insert JC8679	2- cut vector 2 inserts JC8679	3-uncut vector 1 insert JC8679	4- no vector 1 insert JO8679::pUCSfi-Sfi	5- no vector 1 insert JC8679	6- cut vector no insert JC8679

Homologous recombination colony PCR:

FIGURE 11

FIGURE 12

EXAMPLES OF CASSES	TTES FOR BACTERIAL VE	crops:
OR = FUC	bruer	PROMOTE RS
A ORI - OUC P	MINCHUM C	LACO LACP
	ST AMEIULINE C	& LACT LACO LACK- &
A ORI PER B	TETRACYCLIA! C	LACIQ LACO LACP -> E
A ORI - PBR D B	TETRACYCLINE C	D LACP &
A ORI PAT B	CHLOPAHPHOLICA C) CACUVS -> E
A ORI - PAT B	CHLORAMPHENI COLK	PHOAP- E
<u> 8</u> –	KANAMACINE	D TACT E
8	KMIAMYCINE (O ARABAD ARAP E
3 -	STREPTOMYCH (TRPP- E
1	STREPTOMYUN C) DPR - 6
		8 XIIC
		D cI857) PL-> E
) c.T. A Pc->
TERMINATORS		À PL→
F MI3 G		0
6 ØX174 G		
F PILCOP G	SIGNAL PEPTIDE	<u>\$</u>
F TEP C	E OMPF F	
F 510 G	E PHOA F	그렇다면 다시 사람들에 위한 제공에 보고 있는 1980년
	€ OMPA F	
SS DNA ORI	as TI = F	
		FIGURE 13
m13	e pel B	
	E BLA	