

I. ຟີຊິກສາດແມ່ນຫຍັງ?

ແມ່ນວິທະຍາສາດຂະແໜງໜຶ່ງທີ່ສຶກສາຄົ້ນຄວ້າກ່ຽວກັບມວນສານແລະພະລັງງານເພື່ອໄປອະທິບາຍ ປາກິດການທາງທຳມະຊາດທີ່ສາມາດສັງເກດເຫັນໄດ້ຫຼືເພື່ອແກ້ໄຂບັນຫາທີ່ດຶກລັບທາງທຳມະຊາດ.

II. ຟີຊິກສາດແບ່ງອອກເປັນ2ປະເພດໃຫຍ່ຄື:

ຟີຊິກສາດຍຸກເກົ່າ(Classical Physics)

ຄືສຶກສາເພື່ອຄົ້ນຄວ້າຫາກິດເກນແລະຂະບວນການເພື່ອມາອະທິບາຍປາກິດການທາງທຳມະຊາດທີ່ ສັງເກດເຫັນດ້ວຍຕາເປົ່າ.

ຟີຊິກສາດຍຸກໃໝ່(Modern Physics)

ຄືສຶກສາຄິ້ນຄວ້າສິ່ງທີ່ດຶກລັບຊື່ງບໍ່ສາມາດເບີ່ງເຫັນດ້ວຍຕາເປົ່າເຊັ່ນ: ການພົວພັນຂອງພະລັງງານທີ່ໄດ້ ຈາກນິວເຄຍຂອງທາດໂດຍສຶກສາໂຄງສ້າງຂອງທາດຕ່າງໆເຫຼົ່ານັ້ນ.

III. ຫຼືວໜ່ວຍວັດແທກ

ຕືວວັດ	- 82	ສັນຍາລັກ
ລວງຍາວ(Length)	ແມັດ	m
ມວນສານ(Mass)	ກິໂລກາມ	kg
ເວລາ(Time)	ວິນາທີ	s
ກະແສໄຟຟ້າ(Electric Current)	ອຳແປ	Α
ອຸນຫະພູມ(Thermodynamic Temperature)	ແກນວີນ	K
ປະລິມານທາດ(Amount of Substance)	เทม	mol
ຄວາມສະຫວ່າງ(Luminous Intensity)	ແຄນເດລາ	cd

> ຫຼວໜ່ວຍປະສູກ

ຕືວວັດແທກ	ຊື່ຫິວໜ່ວຍ	ສັນຍາ	ຊື່ຫິວໜ່ວຍ
		ລັກ	ขึ้มຖາม
ບໍລິມາດ(Volume)	ແມັດກ້ອນ	m ³	m ³
ຄວາມໄວ(Velocity)	ແມັດຕໍ່ວິນາທີ	m/s	m/s
ຄວາມແຮງ(Force)	ນິວເຕີນ	N	kgm/s ²
ຄວາມເລັ່ງ(acceleration)	ແມັດຕໍ່ວິນາທີກຳລັງສອງ	m/s ²	m/s ²

> ສັນຍາລັກໃຊ້ແທນຕິວຄຸນຍຶກກຳລັງ

ä	ສັນຍາລັກ	ຕິວຄູນ	ຈຳນວນເທົ່າ
ເທີຣາ(Terra)	10 ¹²	Т	ລ້ານລ້ານ
ຈິກາ(Giga)	10 ⁹	G	ພັນລ້ານ
ເມກາ(Mega)	10 ⁶	М	ລ້ານ
ກິໂລ(Kilo)	10 ³	K	ขับ
ເຮັກໂຕ(Hecto)	10 ²	h	ຮ້ອຍ
ເດກາ(Deca)	10 ¹	da	ສິບ
ໜ່ວຍພື້ນຖານ	10°		
ເດຊີ(Deci)	10 ⁻¹	d	ສິບ
ສັງຕີ(Centi)	10 ⁻²	С	ຮ້ອຍ
ມິນລີ(Milli)	10 ⁻³	m	ขับ
ມິໂກ(Micro)	10 ⁻⁶	μ	ລ້ານ
ນາໂນ(Nano)	10 ⁻⁹	n	ພັນລ້ານ
ພີໂກ(Pico)	10 ⁻¹²	р	ລ້ານລ້ານ

IV. ປະລິມານທາງຟີຊິກມີຂປະລິມານຄື:

- ປະລິມານສະກາແລ(scalar) ເປັນປະລິມານທີ່ບອກພຽງແຕ່ຂະໜາດຢ່າງດຽວເຊັ່ນ: ມວນສານ, ໄລຍະທາງ, ເວລາ...
- ປະລິມານເວັກເຕີ(Vector) ເປັນປະລິມານທີ່ບອກທັງຂະໜາດແລະທິດທາງເຊັ່ນ: ຄວາມໄວ, ຄວາມ ເລັ່ງ...

V. <u>ກາ∞ ແກ້ຍິດເລກຟິຊິກ.</u>

1. ປັກາທີ່ຄວາເອົາໃຈໃສ່:

- ຕ້ອງເຂນີໃຈເນື້ອໃ ຂອງບົດເລກ (ມີເງື່ອນໄຂແ ວໃດ ແລະ ໃຫ້ຊອກຫຍັງ)
- ວາງແຜ ຂອງຂັ້ນຕອ ແກ້ບົດຝຶກຫັດ (ຈາກຂໍ້ມູ ທີ່ມີຈະໄປຮອດຄຳຕອບຕ້ອງຄິດໄລ່ ຈັກຂັ້ນຕອ)
- ຕ້ອງກຳໃຫ້ໄດ້ກາ ພົວພັ ຂອງຄຸ ຄ່າຟີຊິກຕ່າງໆໃ ສູດທີ່ໃຊ້.
- ໂຈດໜຶ່ງໆ ຈະມີຫຼາຍວິທິແກ້ ຕ້ອງຊອກວິທີ, ທີ່ງ່າຍທີ່ສຸດ ແລະ ໃຊ້ເວລາໜ້ອຍທີ່ສຸດ.

2. ຂັ້ນຕອ ກາ ແກ້ຍິດເລກ

- 1. ອ່າ ບົດຝຶກຫັດໃຫ້ຖີ້ຖ້ວ ແລະໄຈ້ແຍກບັ ຫາໃຫ້ລະອງດ, ຊຸງ ຂໍ້ມູ ທີ່ເພິ່ນໃຫ້ ແລະ ສີ່ງທີ່ຕ້ອງກາ ໃຫ້ຊອກຫາ.
- 2. ແຕ້ມຮູບປະກອບ ເພື່ອໃຫ້ເຫັ ແຈ້ງປະກິດກາ ໃ ບິດຝຶກຫັດ.
- 3. ຄິດຫາສົມກາ ຫຼືສົມຕີ ທີ່ສອດຄ່ອງກັບສະຖາ ະກາ ດັ່ງກ່າວ ແລະຊອກຫາວິ ທີທີ່ຈະໃຊ້ສົມຕີ ນັ້ນ ເພື່ອໃຫ້ໄດ້ຄຳຕອບ.
- 4. ຄັດຈ້ອ ສຳ ວ ເລກທີ່ໄດ້ ໃຫ້ກະທັດລັດທີ່ສຸດ ກ່ອ ຈະແທ ຄ່າເປັ ຕົວເລກໃສ່.
- 5. ກວດກາເບິ່ງຫົວໜ່ວຍກ່ອ ຈະແທ ໃສ່ສູດ
- 6. ແທ ຄ່າຕົວເລກຂໍ້ມູ ໃສ່ ແລ້ວຄິດໄລ່ຄຳຕອບ ຂຸງ ຄຳຕອບໃຫ້ຖືກຕາມຫົວໜ່ວຍທີ່ ເພິ່ນຕ້ອງກາ ແລະຕາມຕົວເລກໄ ທີ່ຖືກຕ້ອງ.
- 7. ພິຈາລະ າວ່າ ຄຳຕອບທີ່ໄດ້ນັ້ນສືມເຫດສືມຜື ບໍ່.

າ. ການເຄື່ອນທີ່ປິ່ນ

$$V = \omega R$$

$$f = \frac{1}{T}$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

$$V = \frac{2\pi R}{T} = 2\pi f$$

$$F_C = \frac{mv^2}{R} = m\omega^2 R$$

$$\varepsilon = \frac{\Delta \omega}{\Delta t}$$
$$\omega = \frac{\Delta \theta}{\Delta t}$$

 $\tau = I\varepsilon$

$$I = mr^2$$

ການສັ່ນໄກວ ຄື້ນ ແລະ ສຽງ

ການສັ່ນໄກວ

1. ສິມຜິ ຂອງກາ ສັ່ນໄກວ

$$x = A\sin(\omega t + \varphi)$$

$$x = A\cos(\omega t + \varphi)$$

$$\omega = 2\pi f$$

 $x = A\sin(\omega t + \varphi)$ ສື່ມຜືນການສັ່ນໄກວ

t=ເວລາ(s)

 φ =มูมปะภอบ(rad)

A=ໄລຍະປ່ຽນ(m)

f=ຄວາມຖີ່(Hz)

T=ເວລາຮອບວຽນ(ຮອບ\s)

໙ ຄວາມໄວມູມ(rad∖s)

$$f=rac{1}{T}$$

$$\omega = \frac{2\pi}{T}$$

2. ການສັ່ນໄກວຂອງລໍຊໍ

$$\vec{F} = -K\vec{x}$$

$$\vec{a} = -\frac{k\vec{x}}{m}$$

$$x = A \cos \omega t$$

$$v = -\omega A \sin \omega t$$

$$\omega = \sqrt{\frac{k}{m}} = 2\pi f$$

$$f = \frac{1}{T}$$

F=ຄວາມແຮງ(N)

K=ສຳປະສິດຫິດຢຶດຂອງລໍຊໍ(N\m)

X=ໄລຫິດຢຶດຍ(m)

A=ໄລຍະປ່ຽນ(m)

V=ถอามไอ(m\s)

a=ຄວາມເລັ່ງ(m\s²)

f=ຄວາມຖີ່(Hz)

T=ເວລາຮອບວຽນ(ຮອບ\s)

l=ລວງຍາວ(m)

໙ ຄວາມໄວມູມ(rad∖s)

$$a = -\omega^2 A \cos \omega t = -\omega^2 x$$

> ລຸກໄກວດ່ຽວ

$$\omega = \sqrt{\frac{l}{g}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$$

3. ພະລັງງາ/ ຂອງກາ/ ສັ່ນໄກວ/

$$E = E_C + E_P$$

ກ. ພະລັງງາ ເດີ ເຄື່ອນ

$$E_C = \frac{1}{2}kA^2\sin^2(\omega t + \varphi)$$

ຂ. ພະລັງງາ ⁄ ທ່າຕັ້ງ

$$E_P = \frac{1}{2}kA^2\cos^2(\omega t + \varphi)$$

> ພະລັງງາ/ ທັງໝົດຂອງກາ/ ສັ່ນໄກວແມ່/

$$E = E_C + E_P$$

$$E = \frac{1}{2}kA^{2}[\cos^{2}(\omega t + \varphi) + \sin^{2}(\omega t + \varphi)]$$

$$E = rac{1}{2}kA^2 = const$$
 $E_{\kappa=}$ ພະລັງງານເດີນເຄື່ອນ $E_{\kappa=}$ ພະລັງງານທ່າຕັ້ງ(J)

E=ພະລັງງານ(J)

E_C=ພະລັງງານເດີນເຄື່ອນ(J)

A=ໄລຍະປ່ຽນ(m)

K=ສາປະສິດຫິດຢຶດ(N\m)

∞ ถอามไอมูม(rad\s)

> ຄື້ນ

4.ຄວາມໄວຂອງຄື້ນ

$$v = f \cdot \lambda = \frac{\lambda}{T}$$

ກໍລະນີຄື້ນນ້ຳຖ້າ d ເປັນຄວາມເລິກຂອງນ້ຳ ຄື້ນຢູ່ໜ້ານ້ຳມີຄວາມຍາວຄື້ນຫຼາຍກວ່າຄວາມເລິກຂອງນ້ຳຈະໄດ້

$$v = \sqrt{gd}$$

5. ສີມຜິນການຂອງຄື້ນ

$$y = A \sin 2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right)$$

6. ການຫັກຂອງຄື້ນ

$$\frac{n_1}{n_2} = \frac{Sin\theta_1}{Sin\theta_2} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$$

7. ການສອດສະຫຼັບຂອງຄື້ນ

ການສອດສະຫຼັບແບບເພີ່ມ

$$S_1 P - S_2 P = n\lambda$$

ການສອດສະຫຼັບແບບຫັກລ້າງ

$$S_1 P - S_2 P = \left(n + \frac{1}{2}\right) \lambda$$

 v_1,λ_1 ແມ່ ຄວາມໄວ ແລະ ລວງ ຍາວຄື້ນໃ ແວດລ້ອມທີ່ໜຶ່ງ.

 v_2,λ_2 ແມ່ ຄວາມໄວ ແລະ ລວງ ຍາວຄື້ນຂອງແວດລ້ອມທີສອງ.

 $heta_{\scriptscriptstyle 1}$ ແມ່ ມູມຮອດໃ ແວດລ້ອມໜຶ່ງ; $heta_{\scriptscriptstyle 2}$ ແມ່ ມູມຫັກໃ ແວດລ້ອມສອງ.

V =ถอามไอ (m\s)

f =ຄວາມຖີ່(Hz)

 λ _ຄວາມຍາວຄື້ນ(**m**)

 $S_1 = ແຫ່ງກຳເນີດຄື້ນທີ່າ$

S₂=ແຫ່ງກຳເນີດຄື້ນທີ່2

> ພາກສຽງ

າ) ຄວາມໄວຂອງສຽງທີ່ຂຶ້ນກັບອຸນຫະພູມ

$$V_t = 331 + 0.6t$$

2)ສຽງບີດ

$$f_B = \Delta f = |f_2 - f_1|$$
$$f_B \le 7Hz$$

3)ຄວາມເຂັ້ມຂອງສຽງ

$$I = \frac{P}{4\pi R^2}$$

4)ລະດັບຄວາມເຂັ້ມຂອງສຽງ

$$\beta = 10 Log \left(\frac{I}{I_0}\right)$$

V_t=ຄວາມໄວສຽງຕາມອຸນຫະພູມ(m/s)

t=ອໍກລະລໍກ(,c)

f_B=ຄວາມຖີ່ບີດ(Hz)

l=ຄວາມເຂັ້ມສຽງ(W/m²)

P=ກຳລັງສຽງ(W)

R=ລັດສະໜີ(m)

β=ລະດັບສຽງ(dB)

l_o=10⁻¹²Wm ຄວາມເຂັ້ມສຽງຕໍ່າສຸດ

> ไฟฟ้าแม่เตู้ภา

$$\Phi = BA$$

$$F = qvB\sin\theta$$

$$r = \frac{mv}{qB}$$

$$F = IlB$$

Ø = រ្គីរាជ្រាវ្រាវ (Wb)

B=ຄວາມໜາແໜ້ນຟູັກແມ່ເຫຼັກ(T)

A=ເນື້ອທີ່ໜ້າຕັດ(m²)

F=ຄວາມແຮງແມ່ເຫຼັກ(N)

q=ไฟฟ้าบันจุ(C)

V=ถอามไอ(m/s)

m=ມວນສານ(kg)

r=ລັດສະໝີ(m)

L=ລວງຍາວາ(m)

I=ກະແສໄຟຟ້າ(A)

ທົ່ງແມ່ເຫຼັກເກີດຈາກສາຍໄຟຊື່ຍາວ
$$oldsymbol{B}=rac{\mu_0 I}{2\pi r^2}$$

ທົ່ງແມ່ເຫຼັກເກີດຈາກສາຍໄຟຮູບວົງມິນ
$$oldsymbol{B}=rac{\mu_0 I}{2r}$$

ສະພາບຊາບຊື້ມໄດ້ທາງແມ່ເຫຼັກ $\mu_0 = 4\pi$. $10^{-7} H/m$