

PROPOSAL PENGAJUAN TUGAS AKHIR PERANCANGAN DAN REALISASI PENGUAT DAYA MENGGUNAKAN MONOLITHIC MICROWAVE INTEGRATED CIRCUITS GALI2+ UNTUK APLIKASI RADAR C-BAND PADA FREKUENSI 5,6 GHZ

BIDANG KEGIATAN PROPOSAL TUGAS AKHIR PROGRAM D4 TEKNIK TELEKOMUNIKASI

Diusulkan oleh:

Fhadz Dwi Bayu Pangestu

151344013 / 2015

POLITEKNIK NEGERI BANDUNG BANDUNG 2019

PENGESAHAN PROPOSAL TUGAS AKHIR

Judul Kegiatan : Perancangan Dan Realisasi Penguat

Daya menggunakan Monolithic Microwave Integrated Circuits Gali 2+ untuk Aplikasi Radar C-Band pada

Frekuensi 5,6 Ghz

2. Bidang Kegiatan : Proposal Tugas Akhir Program D4

Teknik Telekomunikasi

3. Pengusul

a. Nama Lengkap : Fhadz Dwi Bayu Pangestu

b. NIM : 151344013 c. Jurusan : Teknik Elektro

d. Universitas/Institut/Politeknik : Politeknik Negeri Bandung e. Alamat Rumah : Kp Cikiray RT 03 RW 11 Desa

Singaparna Kec. Singaparna

f. Nomor Tel/HP : 081221816552

4. Alamat email : pangestufhadz@gmail.com

5. Dosen Pendamping

a. Nama Lengkap dan Gelar : Sutrisno, BSEE., MT.

b. NIDN : 0019105703

c. Alamat Rumah : Л. Intisari No.15 Perumahan Tani

Mulya Cimahi / 081321324616

Biaya Kegiatan Total

a. Kemristekdikti : Rp 3.261.000

b. Sumber lain : Rp. -

7. Jangka Waktu Pelaksanaan : 5 (lima) bulan

Bandung, Januari 2019

Fhadz Dwi Bayu Pangestu

Menyetujui,

Dosen Pendamping, Ketua Pelaksana Kegiatan

Sutrisno, BSEE., MT.

NIDN. 0019105703 NIM. 151344013

DAFTAR ISI

PENGESAHAN PROPOSAL TUGAS AKHIR	11
DAFTAR ISI	iii
BAB I	1
1.2 Perumusan Masalah	2
1.3 Tujuan	2
BAB II	4
BAB III	5
3.1 Perancang	5
3.2 Realisasi	6
3.3 Pengujian	6
3.4 Analisis	7
3.5 Evaluasi	7
BAB IV	8
4.1. Anggaran Biaya	8
4.2. Jadwal Kegiatan	8
DAFTAR PUSTAKA	9
LAMPIRAN – LAMPIRAN	10
Lampiran 1. Biodata Pengusul dan Pedamping	10
Lampiran 2. Justifikasi Anggaran Kegiatan	15
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Tugas	16
Lampiran 4. Surat Pernyataan Ketua Peneliti	17
Lampiran 5. Teknologi yang Hendak Diterapkembangkan	
Lampiran 6. Datasheet	19

BABI

PENDAHULUAN

1.1 Latar Belakang Masalah

C-Band merupakan salah satu gelombang elektromagnetik yang di definisikan oleh IEEE (*Institute of Electrical and Electronics Enigineers*) untuk frekuensi 4-8 Ghz. Gelombang mikro ini digunakan untuk beberapa komunikasi satelit dan untuk radar.

Radar adalah singkatan dari *radio detection and ranging*, yaitu merupakan sistem gelombang elektromagnetik yang digunakan untuk mendeteksi, mengukur jarak dan membuat map benda-benda seperti pesawat terbang, kendaraan bermotor dan informasi cuaca/ hujan. Jenis radar bermacam-macam diantaranya, *Doppler Radar* merupakan jenis radar yang menggunakan Efek Doppler untuk mengukur kecepatan radial dari sebuah objek yang masuk daerah tangkapan radar. Contoh *Doppler Radar* yaitu *Weather Radar* yang digunakan untuk mendeteksi cuaca. (Skolnik, M, 2001).

Salah satu sub sitem dalam radar adalah penguat daya atau *power amplifier*, *power amplifier* berfungsi untuk menguatkan sinyal keluaran sebelum dikirim lewat antena pemancar agar daya yang dipancarkan mempunyai jarak jangkauan yang jauh.

Berdasarkan permasalahan di atas penulis akan merancang dan merealisasikan penguat daya yang dapat digunakan untuk aplikasi radar C-band dengan frekuensi 5,6.

dalam perancangannya, penguat daya akan menggunakan komponen aktif berjenis *Monolithic Microwave Integrated Circuits* (MMIC) Gali2+, komponen aktif ini digunakan karena cenderung stabil, murah, dan ukurannya kecil dibandingkan dengan komponen aktif lainnya seperti transistor BJT ataupun FET. (Mulyadi, Bilqisthi. 2016). MMIC berjenis Gali2+ ini memiliki efisiensi yang tinggi, selain itu memiliki konsumsi tegangan yang rendah dan pita frekuensi yang lebar. Penguat akan dibuat dua tingkat dengan menggunakan komponen aktif yang sama dengan di coupling antar tingkat/*stage* menggunakan *coupling capasitor*, selain itu rangkaian bias yang akan digunakan adalah rangkaian bias aktif.

1.2 Perumusan Masalah

Permasalahan yang timbul pada perancangan dan realisasi sebuah penguat daya yang bekerja di frekuensi 5,6 Ghz adalah bagaimana merancang rangkaian biasing aktif dan penguat daya dua tingkat dengan penyesuaian impedansi menggunakan teknik *single stub* dan penggabungan penguat tingkat satu dan tingkat dua menggunakan capasitor coupling coupling agar bekerja secara optimal dan merealisasikannya.

1.3 Tujuan

Tujuan dari pembuatan tugas akhir ini adalah:

- Merancang,dan merealisasikan penguat daya pada pita frekuensi 5,6 Ghz dengan gain ≥ 20 dB, faktor kestabilan > 1,dan nilai VSWR antara 1-1,5
- 2. Merancang dan mensimulasikan penguat daya pada pita frekuensi 5,6 Ghz dengan menggunakan *software* Advanced Design System 2016.
- 3. Mensimulasikan penguat daya menggunakan impedansi 50Ω dengan frekuensi kerja 5,6 GHz, serta merealisasikan penguat daya menggunakan impedansi 50 dengan frekuensi 5,6 Ghz sebagai pembanding bahwa simulasi yang di lakukan benar.

1.4 Batasan Masalah

Batasan masalah untuk tugas akhir ini adalah :

- 1. Perancangan dan realisasi hanya dikhususkan untuk penguat daya pada aplikasi Radar C-Band dengan Bandwidth 20 Mhz.
- 2. Bahan atau substrat yang digunakan untuk pembuatan *power amplifier* ini adalah rogers RO4340 atau sejenisnya, dengan er 3.5 dan ketebalan 0,30mm.
- 3. Simulasi menggunakan ADS (*Advanced Design System*) 2016 sebagai simulator.
- 4. Spesifikasi penguat yang akan dirancang bangun, sebagai berikut:

a). Frekuensi : 5,6 GHz b). Bandwidth : 20 Mhz

c). Penguatan satu tingkat $:\ge 10 \text{ dB}$

d). Penguatan dua tingkat $: \ge 20 \text{ dB}$

e). Impedansi input : 50Ω

f). Impedansi output : 50Ω

g). VSWR $:\leq 1.5$

1.5 Luaran

Luaran yang diharapkan dari pembuatan proposal ini adalah prototype RF *Amplifier* untuk aplikasi radar C-band yang dapat dimanfaatkan oleh Badan Meteorologi Klimatologi dan Geofisika (BMKG) dengan memanfaatkan komponen yang ada di pasaran sehingga harganya lebih murah tetapi memiliki tingkat ketahanan yang sangat tinggi.

BAB II

TINJAUAN PUSTAKA

Telah ditinjau beberapa proyek untuk menemukan titik perbedaan dan persamaan dengan proyek yang akan dibuat, serta menjadi landasan dalam pembuatan proyek ini.

Penguat RF dua tingkat pada frekuensi 3 Ghz dengan menggunakan penyesuai impedansi stub ganda untuk aplikasi radar s-band. Menghasilkan *power gain* sebesar 18 dB (Risman, A. Rozak. 2015)

Perancangan dan realisasi penguat daya pada frekuensi s-band untuk radar pengawas pantai. Menghasilkan *power gain* sebesar 30 db dan VSWR sebesar 1.009. (Mulyadi, Bilqisthi. 2016)

Perancangan dan realisasi penguat daya pada frekuensi 1,265 – 1,275 GHz untuk *synthetic aperture radar*. Pada *single stage* menghasilkan *power gain* sebesar 31.0295 pada frekuensi 1.1 Ghz dan 16.025 pada frekuensi 1,27 Ghz dan VSWR sebesar 1.221 sedangkan pada *double stage* menghasilkan *power gain* sebesar 6.7336 dB pada frekuensi 1,75 Ghz dan -8.1888 dB pada frekuensi 1,27 Ghz dengan VSWR 1,471 (Hanimaulia. 2015).

Desain dan Realisasi High Power Amplifier pada Pita Frekuensi 3 Ghz untuk Aplikasi Sistem Radar. Menghasilkan gain sebesar 14.481 dB (Naufal, Wildan. 2014).

Sedangkan pada proyek ini ini akan dilakukan Perancangan dan Realisasi Penguat Daya untuk radar C-Band pada frekuensi 5,6 Ghz untuk dengan proses *matching impedance* supaya memperoleh transfer daya maksimum. Dimana akan dibuat dua tingkat penguat daya dengan menggunakan MMIC Gali 2+, sehingga menghasilkan daya keluaran yang lebih besar dan daerah cakupan yang dapat dijangkau oleh radar cuaca semakin luas dibandingkan dengan penguat daya satu tingkatan saja.

BAB III

METODE PELAKSANAAN

3.1 Perancangan

Gambar 3.1 Block Diagram Penguat Daya RF

Blok diagram di atas adalah blok diagram penguat daya RF yang akan di rancang dan di realisasikan, pada tahap perancangan dimulai dengan menentukan spesifikasi komponen, perhitungan, dan melakukan proses simulasi menggunakan software perangkat lunak ADS (*Advanced Desain System 2016*).

Komponen aktif yang di gunakan adalah Monolithic Microwave Integrated Circuit Gali2+. Pemilihan komponen ini berdasarkan *datasheet*. Pada *datasheet* yang tercantum untuk komponen ini dapat bekerja di frekuensi 0,1 – 8 Ghz, oleh karena itu dapat digunakan untuk merancang penguat di frekuensi 5,6 GHz.

Dikarenakan penguat yang akan di rancang memiliki spesifikasi penguatan ≥ 20 dB maka penguat akan di buat dua tingkat dengan menggunakan *capasitor coupling* sebagai penyambung antar tingkat satu dan tingkat duanya, selain itu, *capasitor* berfungsi untuk memblok tegangan DC yang bisa masuk dari rangkaian prategangan, sedangkan untuk mengantisipasi sinyal AC menginterferensi rangkaian prategangan maka di tempatkan RF Choke pada rangkaian dan untuk penyesuaian impedansi yang digunakan adalah penyesuaian impedansi tipe single stub.

Gambar 3.2 Model RF Chokes

Biasing circuit yang di gunakan adalah rangkaian Biasing Circuit Aktif yang berfungsi untuk mensupply dan membagi tegangan ke penguat daya supaya aktif bekerja dan supaya penguat daya RF ini tidak mendapatkan arus berlebih yang dapat mengakibatkan kerusakan pada komponen agar rangkaian penguat daya RF ini dapat bekerja dengan baik.

3.2 Realisasi

Blok diagram yang sudah ada akan dibuat desain skema dan di realisasikan pada PCB. kemudian mulai dilakukan perancangan dan menentukan komponen-komponen yang akan digunakan untuk rangkaiannya, dimana penentuan komponen tersebut didasarkan kepada beberapa pertimbangan yang mengacu pada kebutuhan dan hasil penelitian perangkat yang akan digunakan. Selanjutnya dilakukan simulasi menggunakan software ADS (Advance Design System). Jika data hasil simulasi sudah sesuai dengan apa yang diinginkan, selanjutnya hasil perancangan dibuatkan layout pada PCB rangkaian tersebut kemudian dilakukan pengambilan data kembali.

3.3 Pengujian

Penguat daya yang telah direalisasikan akan diukur untuk mengetahui performasinya. Pengukuran yang dilakukan pada penguat daya yaitu pengkuran daya *output*, pengukuran penguatan *return loss*, pengukuran VSWR.

Sebelum melakukan pengukuran menggunakan *Network Analyzer*, langkah pertama yaitu kalibrasi. Berikut adalah langkah kalibrasi *Network Analyzer*:

- 1. Mengatur *range Network Analyzer* sesuai simulasi (5,6 Ghz)
- 2. Mengatur daya referensi pada posisi 0dB

- 3. Kalibrasi menggunakan terminasi 50 Ohm pada kedua port network analyzer
- 4. Setelah kalibrasi selesai, pasangkan penguat dengan kabel *coaxial port* 1 dan *port* 2 yang terdapat pada *network analyzer*.

3.4 Analisis

Pada tahap ini akan dianalisis data yang dihasilkan per-bagian penguat (rangkaian *biasing* dan *matching impedance*) kemudian data hasil perancangan secara keseluruhan seperti parameter S, respon frekuensi, *VSWR*, pengukuran daya *output* dan *gain*. Jika ada data yang tidak sesuai dengan yang diinginkan maka dianalisa pula hal apa yng dapat membantu peningkatan kualitas alat tersebut.

3.5 Evaluasi

Diharapkan alat ini dapat digunakan untuk menguatkan daya dengan baik sehingga radar di frekuensi 5,6 GHz dapat bekerja secara optimal dan dapat mencakup area yang luas.

BAB IV BIAYA DAN JADWAL KEGIATAN

4.1. Anggaran Biaya

Untuk pembuatan penguat daya ini, diperlukan:

Tabel 4.1 Anggaran biaya miniatur perangkat antena mikrostrip

No	Jenis Pengeluaran	Biaya (Rp)
1	Perlengkapan yang Diperlukan	225.000
2	Bahan Habis Pakai	2.616.000
3	Lain-lain	420.000
	JUMLAH	3.261.000

4.2. Jadwal Kegiatan

No	Kegiatan			Bulan k	ie	
		1	2	3	4	5
1	Mempelajari mikrostrip, rangkaian biasing,					
1	karakteristik MMIC Gali2+					
2	Merancang rangkaian penguat 1 tingkat					
3	Merancang rangkaian penguat 2 tingkat					
4	Melakukan simulasi menggunakan software ADS (Advance Design System) versi 2016					
5	Pembelian Alat dan Komponen					
6	Pembuatan design layout pada PCB hasil perancangan					
7	Pengukuran penguat awal					
8	Pengukuran penguat akhir					
9	Penggabungan rangkaian penguat awal dengan penguat					
	akhir					
10	Pengukuran dan pengambilan data hasil perancangan					_

DAFTAR PUSTAKA

- Fawaz. 2014. Pengertian Radar, Jenis Radar, Sistem Radar dan Kerja Radar, http://bantucom.blogspot.com/2014/04/pengertian-radar-jenis-radar-sistem.html. 02 Januari 2019.
- Dwiannisa, Rizka. 2016. Macam-macam Radar, http://electroeverywhere-rizka.blogspot.com/2016/04/macam-macam-radar.html. 02 Januari 2019.
- Skolnik, M. 2001. *Introduction to Radar Systems* 3rd Edition, McGraw-Hill, New York.
- Bowick, Chris. (1945). RF Circuit Desaign. The Howard W, Sams Company, Indiapolis.
- Anandita Rahayu, Resmi. 2018. Perancangan dan Realisasi Penguat Daya RF Linier untuk Pemancar Televisi Digital pada Kanal 40 Uhf Dengan Proses Matching Impedance Menggunakan Mikrostrip. Laporan Tugas Akhir. Politeknik Negeri Bandung. Bandung.
- Abdul Rozak, Risman. 2015. Penguat RF Dua Tingkat pada Frekuensi 3 GHz dengan Mengunakan Penyesuai Impedansi Stub Ganda untuk Aplikasi Radar S-Band. Laporan Tugas Akhir. Politeknik Negeri Bandung. Bandung.
- Mulyadi, Bilqisthi. 2016. Perancangan dan Realisasi Penguat Daya pada Frekuensi S-Band untuk Radar Pengawas Pantai. Laporan Tugas Akhir. Universitas Telkom. Bandung.
- Hanimaulia. 2015. Perancangan dan Realisasi Penguat Daya pada Frekuensi 1.265 1.275 GHz untuk Synthetic Aperture Radar. Laporan Tugas Akhir. Universitas Telkom. Bandung.
- Naufal, Wildan.2014. Desain dan Realisasi High Power Amplifier pada Pita Frekuensi 3 Ghz Untuk Aplikasi Sistem Radar. Laporan Tugas Akhir. Politeknik Negeri Bandung. Bandung

LAMPIRAN – LAMPIRAN

Lampiran 1. Biodata Pengusul dan Pedamping

1. Biodata Pengusul

A. Identitas Diri

1	Nama Lengkap	Fhadz Dwi Bayu Pangestu
2	Jenis Kelamin	Laki laki
3	Program Studi	D4 Teknik Telekomunikasi
4	NIM	151344013
5	Tempat&Tanggal Lahir	Tasikmalaya, 07 Januari 1997
6	E-mail	pangestufhadz@gmail.com
7	Nomor Telepon/HP	081221816552

B. Kegiatan Kemahasiswaan yang Sedang/ Pernah Diikuti

No.	Ionis Vagiatan	Status dalam	Walsty dan Tampat
NO.	Jenis Kegiatan	Kegiatan	Waktu dan Tempat
1	Kunjungan Industri 1.0	Peserta	2016/Indosat
2	Kunjungan Industri 2.0, Pelatihan Pengenalan Sistem Komunikasi Kabel Laut serta Praktek Penyambungan & Pengukuran Sinyal Optic	Peserta	30 Oktober 2017 / Indosat SKKL Ancol
3	Program Kreativitas Mahasiswa – Karsa Cipta Tahun 2017/2018	Anggota	04 Januari 2018/POLBAN
4	Workshop Cisco Networking Fundamental	Peserta	09 September 2017/Telkom University
6	Pelatihan Bela Negara dan Kedisiplinan Mahasiswa POLBAN	Peserta	11 September 2015/Pusdikhub Cimahi
7	ESQ Character Building	Peserta	4 – 5 September 2015/POLBAN
8	Program Pengenalan Kehidupan Kampus 2015 dan LKMM Pra Dasar dengan	Peserta	16 – 20 Agustus 2015/POLBAN

	Tema "The Power Of Doing		
	Good"		
	Butterfly Act Learning Re-		17 – 18 Agustus
9	Creation The Power Of Doing	Peserta	2015/POLBAN
	Good PPKK POLBAN 2015		2013/FOLDAN
	Kegiatan Pendidikan Karakter		
	Melalui Mentoring Agama	Peserta	Tahun 2015/POLBAN
10	Semester Genap Tahun		
	Akademik 2015/2016		2013/POLDAN
	POLBAN		
11	Himpunan Mahasiswa Teknik	Kadiv	2016/2017
11	Telekomunikasi Polban	Kaulv	Polban

C. Penghargaan yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Program Kreativitas Mahasiswa	Politeknik Negeri Bandung	2018

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan persyaratan dalam pengajuan proposal tugas akhir.

Bandung,	2019
Pengusul,	

Fhadz Dwi Bayu Pangestu NIM. 151344013

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap	Sutrisno
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Telekomunikasi
4	NIP/NIDN	195710191984031001
5	Tempat dan Tanggal Lahir	Bandung 19 Oktober 1957
6	E-mail	t_sutrisno@yahoo.com
7	Nomor Telepon/HP	081912161945

B. Riwayat Pendidikan

Gelar Akademik	Sarjana	S2/Magister	S3/Doktor
Nama Institusi	Universite of	Institut Teknologi	-
	Kentucky USA	Bandung	
Jurusan	Teknik Elektro	Teknik	
	Tekilik Elekilo	Telekomunikasi	-
Tahun Masuk-Lulus	1988 – 1990	2006–2009	-

C. Rekam Jejak Tri Darma PT

C.1 Pendidikan/ Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Teknik Pengukuran Frekuensi	Wajib	3
	Tinggi		
2	Sistem Komunikasi Radio	Wajib	3

C.2 Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Internet Access using Ethernet	TELKOMNIKA	Vol.3
	over PDH Technology for	Indonesian Journal for	No.2.Februa
	Remote Area	Electrical Engineering	ri 2015
2	Building Telecommunication	IOSR	Vol.11
	Facilities for Railway	IOSK	No.5

		International	Oktober
		Organization of	2016
		Scientific	
		Research	
3	Optical Transceiver Design	IJERD	Vol 13
	and Geometric Loss	International Journal of	No.9
	Measurement for Free Space	Engineering Research	September
	Optic Communication	and Development	2017
4	Wireless Optical Link for Discharge Warning System	IJERD International Journal of Engineering Research and Development	Jurnal sudah diterima: IJRED journal Ref id AB712009 Rencana akan di publikasika n pada jurnal IJERD terbitan Januari 2019

C.3 Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Pendampingan dan Pelatihan Teknik	DIPA	2016
	Perancangan, Penginstalan dan	Politeknik Negeri	
	Pengoperasian Sistem Komunikasi	Bandung	
	Radio dan Data Untuk Anggota		
	Senkom Mitra POLRI		
2.	Perancangan, Instalasi,Pengoperasian	DIPA	2016
	dan Perawatan Sound System di	Politeknik Negeri	
	Lingkungan Masjid	Bandung	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan dalam pengajuan proposal tugas akhir.

Bandung,.....2019

Dosen Pendamping,

Sutrisno, BSEE, MT NIDN. 0019105703

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Jenis Perlengkapan yang Diperlukan	Volume	Harga Satuan (Rp)	Jumlah (Rp)			
Toolset elektronik	1 set	100.000	100.000			
ADS 2015	1 Set	125.000	125.000			
		SUB TOTAL (Rp)	225.000			
2. Bahan Habis Pakai	Volume	Harga Satuan (Rp)	Jumlah (Rp)			
Gali 2+	4	285.000	1.140.000			
PCB Rodger	1	300.000	300.000			
TCCH-80 + RF Choke	4	225.000	900.000			
Konektor SMA	4	8.000	32.000			
Case	1	100.000	100.000			
Pencetakan PCB	1	100.000	100.000			
Capasitor 2400 pF	4	4.500	18.000			
Kapasitor 0,1 uF	4	4.500	18.000			
Resistor 210 Ohm	4	1.000	4.000			
Resistor 3,01 Ohm	4	1000	4.000			
		SUB TOTAL (Rp)	2.616.000			
3. Lain-lain	Volume	Harga Satuan (Rp)	Jumlah (Rp)			
Tinta printer	4 set	40.000	160.000			
Kertas HVS A4	2 rim	30.000	60.000			
Cetak/Print Skema PCB	2 set	100.000	200.000			
	420.000					
	3.261.000					
(Terbilang tiga juta dua ratus enam puluh satu ribu rupiah)						

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Tugas

No	Nama/ Nim	Program Studi	Bidang Ilmu	Alokasi Waktu (jam / minggu)	Uraian Tugas
1.	Fhadz Dwi Bayu Pangestu (151344013)	D4	Teknik Telekomunikasi	16 Minggu	Membuat perancangan rangkaian penguat daya untuk Radar dengan menggunakan MMIC Gali2+ dan merealisasikannya

Lampiran 4. Surat Pernyataan Ketua Peneliti

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI

POLITEKNIK NEGERI BANDUNG

Jalan Gegerkalong Hilir,Ds. Ciwaruga, Bandung 40012, Kotak Pos 1234, Telepon (022) 2013789, Fax. (022) 2013889 Homepage: www.polban.ac.id Email: polban@polban.ac.id

SURAT PERNYATAAN PENELITI/PELAKSANA

Saya yang menandatangani Surat Pernyataan ini: Nama : Fhadz Dwi Bayu Pangestu

NIM : 151344013

Program Studi : D4-Teknik Telekomunikasi

Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa proposal pengajuan tugas akhir saya dengan

judul:

"PERANCANGAN DAN REALISASI PENGUAT DAYA MENGGUNAKAN MONOLITHIC MICROWAVE INTEGRATED CIRCUITS GALI2+ UNTUK APLIKASI RADAR C-BAND PADA FREKUENSI 5,6 GHZ"

yang diusulkan untuk tahun anggaran 2019 adalah asli karya saya dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, Januari 2019

Mengetahui

Ketua Jurusan, Yang menyatakan,

Malayusfi, BSEE,MT.

NIP. 19540101 198403 1001

Fhadz Dwi Bayu Pangestu

NIM. 151344013

Lampiran 5. Teknologi yang Hendak Diterapkembangkan

Gambar 5.1 Block diagram radar

Sistem Radar cuaca ini terbagi atas dua bagian utama yaitu *transmitter* (pemancar) dan *receiver* (penerima). Hasil deteksi Radar akan ditampilkan oleh *Display unit* yang mengolah sinyal/ data yang diterima dari bagian *Receiver* menjadi suatu gambar yang dapat diinterpretasikan dengan mudah oleh pengguna. salah satu komponen yang penting pada *transmitter* adalah *power amplifier* dimana berperan untuk meningkatkan daya yang dipancarkan agar daerah cakupan radar semakin luas, di harapkan dengan proyek ini dapat membuat *power amplifier* dengan dimensi yang kecil dan bahan komponen yang sedikit agar efisiensi tempat dapat dioptimalkan tetapi dengan kualitas yang baik.

Lampiran 6. Datasheet

Surface Mount

Monolithic Amplifier

DC-8 GHz

Product Features

- InGaP HBT microwave amplifier
- Miniature SOT-89 package
- Frequency range, DC to 8 GHz
- Internally Matched to 50 Ohms.
- Output power, 12.9 dBm typ.
- Excellent package for heat dissipation, exposed metal bottom
- Low thermal resistance for high reliability.
- Aqueous washable
- Protected by US Patent 6,943,629

Typical Applications

- Cellular.
- PCS
- Communication receivers & transmitters

«No.HD Comp.Sart Pre+Sults dentiles 9:045 Compliance Seed

to AdAS Compliance methodologies and qualifications

CASE STYLE: DE780

General Description

Galis:2+ (RoHS compliant) is a wideband amplifier offering high dynamic range. Lead finish is SnAgNi. It has repeatable performance from lot to lot, and is enclosed in a SOT-89 package. It uses patented Transient Protected Darlington configuration and is fabricated using InGaP HBT technology. Expected MTTF is 20,000 years at 85°C case temperature. Gali_s2+ is designed to be rugged for ESD and supply switch-on transients.

simplified schematic and pin description

Function	Pin Number	Description
RF IN	1	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
RF-OUT and DC-IN	а	RF output and bias pin. DC voltage is present on this pin; therefore a DC blocking capacitor is necessary for proper operation. An RF choice is needed to feed DC bias without loss of RF signal due to the bias connection, as shown in "Recommended Application Circuit".
GND	2,4	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.

Monolithic InGaP HBT MMIC Amplifier

Gali₁ 2+

Electrical Specifications at 25°C and 40mA, unless noted

Parameter		Min.	Typ.	Max.	Units
Frequency Range*		DC		8	GHz
Gain	1:0.1 GHz	_	16.2		dB
	f=1 GHz	_	15.8	_	
	f±2 GHz	12	14.B	_	
	f±8 GHz	_	13.7	_	
	f=4 GHz	_	12.7	_	
	1±6 GHz	_	13.2	_	
	f±B GHz	_	15.1	_	
Input Return Loss	f= DC to 3 GHz		12.5		dB
	f=3 to 8 GHz		7.5		
Output Return Loss	f= DC to 3 GHz		12.5		dB
	1:: 3 to 8 GHz		7.0		
Output Power @ 1 dB compression	f±2 GHz	11.0	12.9		dBm
Output IP3	1±2 GHz		27		dBm
Noise Figure	f±2 GHz		4.6		dB
Recommended Device Operating Current			40		mA
Device Operating Voltage		3.0	3.5	4.1	٧
Dovice Voltage Variation vs. Temperature at 40 mA			-2.5		mV/°C
Device Voltage Variation vs. Current at 25°C			6.2		mV/mA
Thermal Resistance, junction-to-case ¹			101		°C/W

^{*}Guaranteed specification DG-8 GHz. Low frequency out off determined by external coupling capacitors.

Absolute Maximum Ratings

Parameter	Ratings
Operating Temperature'	-45°C to 85°C
Storage Temperature	-85°C to 150°C
Operating Current	55mA
Input Power	15dBm

Note: Permanent damage may occur if any of these limits are exceeded. These strings are not intended for continuous normal operation. Class is defined as ground leads.

**Takend on typical case temperature rise 2°C shows emblant.

Heles.

A recomposite of configuration of context this is the special occurred as allowed to an excusive motion of terrapide of the special occurred.

B. include specialists and parameters context in the special occurred as allowed on the context parameters and instruction and management of the context parameters and the special occurred as a special

Product Marking

Additional Detailed Technical Information

Additional information is available on our web site. To access this information enter the model number on our web site home page.

Performance data, graphs, s-parameter data set (.zip file)

Case Style: DF782

Plastic package, exposed paddle, lead finish: tin-silver over nickel

Tape & Reel: F55

7" reels with 20, 50, 100, 200, 500, 1K devices. Suggested Layout for PCB Design: PL-019

Evaluation Board: TB-409-2+

Environmental Ratings: ENV08T2

Recommended Application Circuit

Test Found includes case, correctors, and components (in both) soldiered to PCB

R BIAS					
Vcc	"1%" Res. Values (ohms) for Optimum Biasing				
7	88.7				
8	113				
9	137				
10	162				
11	187				
12	215				
13	237				
14	261				
15	287				
16	316				
17	340				
18	365				
19	302				
20	412				

Monolithic InGaP HBT MMIC Amplifier

Gali²+

ESD Rating

Human Body Model (HBM): Class 1A (250v to < 500v) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (< 100v) in accordance with ANSVESD STM 5.2 - 1999

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDECJ-STD-020C

No.	Test Required	Condition	Standard	Quantity
1	Visual Inspection	Low Power Microscope Magnification 40x	MIP-IN-0003 (MCT spec)	45 units
2	Electrical Test	Room Temperature	SCD (MCL spec)	45 units
3	SAM Analysis	Less than 10% growth in term of delamination	J-Std-020C (Jedec Standard)	45 units
4	Moisture Sensitivity Level 1	Bake at 125°C for 24 hours Soak at 85°C/85%,RH for 168 hours Reflow 3 cycles at 260°C peak	J-Std-020C (Jedec Standard)	45 units

MSL Test Flow Chart

Holes A percentage of quality distallers are complete to dispetation of the spectrosism content and element of the spectrosism content and element of the spectrosism of the spectrosism

GALI-2+

Typical Performance Data

NOTE: Use PDF Bookmarks to view DATA at required conditions or to view GRAPHS.

Definitions:

Input Return Loss = -811 (dB) Gain(Power Gain) = 821 (dB) Reverse Isolation = -812 (dB) Output Return Loss = -822 (dB)

TEST CONDITIONS: Icc = 40mA, Vd = 3.41V @Temperature = +25degC

FREQ	Gain	Isolation	Input Return Loss	Output Return Loss	Stat	ollity	IP3 Output	1dB Comp. Output	Noise Figure
(MHz)	(dB)	(dB)	(dB)	(dB)	K	Delta	(dBm)	(dBm)	(dB)
50	16.53	20.00	45.59	26.22	1.08	0.67	29.34	13.87	3.06
100	16.51	19.94	48.75	25.68	1.08	0.67	29.33	13.81	3.20
200	16.45	19.91	49.48	25.39	1.08	0.67	29.50	13.89	3.01
400	16.35	19.92	42.71	25.48	1.08	0.68	29.06	13.83	3.14
600	16.23	19.99	39.99	25.05	1.09	0.65	28.54	13.71	3.13
800	16.10	20.01	40.02	25.10	1.10	0.64	29.03	13.60	3.20
1000	15.97	20.05	38.88	25.20	1.11	0.62	28.88	13.45	3.19
1200	15.83	20.09	38.28	25.76	1.12	0.61	28.42	13.19	3.21
1400	15.69	20.16	33.50	28.89	1.13	0.60	27.81	13.28	3.33
1800	15.53	20.24	31.11	28.22	1.15	0.58	28.18	13.13	3.32
1800	15.38	20.31	28.54	30.70	1.18	0.57	28.21	13.12	3.46
2000	15.23	20.39	25.98	35.78	1.18	0.55	27.93	13.25	3.15
2200	15.07	20.50	23.88	67.90	1.20	0.54	27.58	13.33	3.21
2400	14.89	20.63	22.21	38.25	1.22	0.52	27.18	13.28	3.40
2600	14.74	20.78	20.48	29.90	1.24	0.50	26.67	13.23	3.43
2800	14.59	20.91	19.20	26.29	1.27	0.49	26.52	12.98	3.40
3000	14.44	21.08	18.19	23.85	1.29	0.47	26.43	12.69	3.26
3200	14.31	21.25	17.10	21.68	1.32	0.48	26.06	12.61	3.35
3400	14.18	21.42	18.35	20.40	1.35	0.45	25.70	12.68	3.55
3800	14.03	21.57	15.65	19.24	1.37	0.44	25.03	12.50	3.61
3800	13.90	21.78	15.10	18.21	1.40	0.43	24.32	12.48	3.70
4000	13.79	21.95	14.58	17.44	1.43	0.42	23.93	12.51	3.57
4200	13.69	22.11	14.27	16.87	1.48	0.41	24.01	12.41	3.54
4400	13.60	22.25	14.15	18.58	1.49	0.40	23.94	12.07	2.58
4800	13.54	22.40	13.98	18.14	1.51	0.39	23.72	11.83	3.81
4800	13.49	22.58	14.02	16.01	1.54	0.38	23.17	11.58	3.97
5000	13.51	22.72	14.00	15.87	1.55	0.38	22.88	11.20	3.81
5200	13.51	22.80	14.23	15.82	1.57	0.37	22.73	10.78	3.69
5400	13.55	22.92	14.49	15.78	1.58	0.37	22.39	10.45	3.63
5600	13.63	23.01	14.68	15.68	1.58	0.38	21.99	10.07	3.74
5800	13.69	23.02	15.21	15.68	1.57	0.38	21.22	10.08	3.84
6000	13.77	23.03	15.67	15.81	1.57	0.38	20.48	9.67	3.88
6200	13.89	22.97	16.50	15.83	1.54	0.37	20.10	9.60	3.68
6400	14.02	22.94	17.15	15.78	1.53	0.37	19.65	9.35	3.68
6600	14.12	22.82	18.49	15.92	1.50	0.38	19.15	9.05	3.72
6800	14.27	22.55	20.12	15.52	1.45	0.39	18.52	8.70	3.88
7000	14.35	22.52	21.23	15.57	1.44	0.40	18.02	8.51	3.91
7200	14.41	22.25	23.35	15.24	1.40	0.41	17.77	8.15	3.85
7500	14.40	21.77	23.33	14.49	1.35	0.44	17.60	7.76	4.04
8000	13.89	21.13	16.97	13.43	1.32	0.48	17.02	6.20	3.98

Mini-Circuits

REV. X1 GALI-2+ 070821

GALI-2+

Typical Performance Data

Definitions:

Input Return Loss = -S11 (dB) Gain(Power Gain) = S21 (dB) Reverse isolation = -S12 (dB) Output Return Loss = -S22 (dB)

TEST CONDITIONS: Icc = 32mA, Vd = 3.36V @Temperature = +25degC

FREQ	Gain	Isolation	Input Return Loss	Output Return Loss	Stat	bility	IP3 Output	1dB Comp. Output	Noise Figure
(MHz)	(dB)	(dB)	(dB)	(dB)	K	Delta	(dBm)	(dBm)	(dB)
50	18.30	19.60	32.54	31.87	1.07	0.68	25.82	11.69	3.03
100	16.27	19.67	34.62	30.43	1.08	0.68	25.82	11.57	3.14
200	16.22	19.76	34.59	30.24	1.08	0.68	25.99	11.78	3.01
400	16.11	19.77	35.17	30.22	1.09	0.68	25.84	11.64	3.13
600	16.00	19.77	33.51	29.71	1.09	0.65	25.38	11.67	3.12
800	15.85	19.77	32.52	29.29	1.10	0.64	25.93	11.52	3.18
1000	15.74	19.82	31.41	29.40	1.11	0.62	25.82	11.25	3.15
1200	15.59	19.89	30.21	29.78	1.12	0.61	25.37	10.89	3.19
1400	15.44	19.94	28.26	31.55	1.14	0.59	24.88	11.17	3.29
1800	15.30	20.05	26.88	34.49	1.15	0.58	25.23	10.90	3.29
1800	15.16	20.11	24.87	41.74	1.18	0.58	25.53	10.87	3.40
2000	15.03	20.21	23.25	48.93	1.18	0.55	25.31	11.01	3.11
2200	14.84	20.33	21.69	34.50	1.20	0.53	25.07	11.17	3.19
2400	14.68	20.45	20.17	29.09	1.22	0.52	24.97	11.22	3.37
2800	14.54	20.61	18.87	25.97	1.24	0.50	24.81	11.11	3.38
2800 3000	14.38	20.74	17.87 16.82	23.62	1.27	0.49	24.87 24.98	10.70	3.34
3200	14.08	21.07	15.94	20.11	1.32		24.79	10.37	3.19
3400	13.95	21.07	15.94	19.02	1.34	0.48	24.79	10.46	3.50
3800	13.83	21.21	14.71	18.14	1.37	0.45	23.89	10.75	3.54
3800	13.68	21.59	14.18	17.23	1.40	0.43	23.29	10.53	3.63
4000	13.60	21.78	13.74	18.55	1.42	0.42	22.98	10.83	3.51
4200	13.48	21.94	13.50	18.07	1.48	0.41	23.08	10.92	3.49
4400	13.40	22.05	13.33	15.77	1.48	0.40	22.95	10.64	3.51
4800	13.34	22.23	13.27	15.48	1.50	0.40	22.65	10.38	3.77
4800	13.30	22.35	13.23	15.31	1.52	0.39	22.20	10.08	3.91
5000	13.31	22.52	13.30	15.27	1.54	0.38	22.08	9.82	3.75
5200	13.30	22.58	13.44	15.21	1.55	0.38	22.08	9.43	3.88
5400	13.38	22.70	13.70	15.17	1.58	0.37	21.81	9.20	3.58
5600	13.43	22.82	13.93	15.12	1.57	0.37	21.49	8.88	3.69
5800	13.49	22.78	14.37	15.13	1.58	0.37	20.78	8.99	3.78
6000	13.59	22.78	14.85	15.25	1.55	0.37	20.09	8.65	3.80
6200	13.69	22.74	15.52	15.25	1.53	0.37	19.78	8.56	3.60
6400	13.83	22.71	16.15	15.20	1.51	0.38	19.29	8.39	3.61
6600	13.90	22.60	17.20	15.38	1.50	0.38	18.73	8.13	3.66
6800	14.08	22.33	18.55	15.03	1.44	0.40	18.11	7.82	3.78
7000	14.10	22.31	19.37 20.52	15.12 14.83	1.44	0.40	17.80 17.37	7.69	3.83
7200 7500	14.15	22.03 21.59	20.52	14.83	1.40 1.35	0.42	17.37	7.26 6.99	3.97
8000	13.58	20.93	16.09	13.33	1.33	0.48	16.71	5.49	3.85

Mini-Circuits

REV. X1 GALI-2+ 070821 Page 2 of 11

GALI-2+

Typical Performance Data

Definitions:

Input Return Loss = -S11 (dB) Gain(Power Gain) = S21 (dB) Reverse Isolation = -S12 (dB) Output Return Loss = -S22 (dB)

TEST CONDITIONS: Icc = 48mA, Vd = 3.46V @Temperature = +25degC

FREQ	Gain	Isolation	Input Return Loss	Output Return Loss	Stat	sility	IP3 Output	1dB Comp. Output	Noise Figure
(MHz)	(dB)	(dB)	(dB)	(dB)	K	Delta	(dBm)	(dBm)	(dB)
50	16.68	20.08	37.49	23.75	1.08	0.68	31.95	15.28	3.10
100	16.65	20.08	35.77	23.63	1.08	0.68	32.01	15.20	3.24
200	16.60	20.05	38.32	23.51	1.08	0.67	32.20	15.21	3.05
400	16.49	20.07	35.53	23.50	1.08	0.68	31.47	15.11	3.17
600	16.37	20.12	34.99	23.13	1.09	0.65	30.67	14.98	3.16
800	16.25	20.14	38.26	23.14	1.10	0.64	30.83	14.77	3.22
1000	16.10	20.16	37.05	23.40	1.11	0.63	30.45	14.84	3.22
1200	15.98	20.23	37.78	23.82	1.12	0.61	29.98	14.43	3.25
1400	15.82	20.26	38.73	24.53	1.13	0.60	29.38	14.39	3.38
1800	15.66	20.36	34.59	25.78	1.15	0.58	29.58	14.34	3.38
1800	15.51	20.43	31.39	27.65	1.16	0.57	29.17	14.34	3.51
2000	15.38	20.52	28.18	31.27	1.18	0.55	28.92	14.42	3.21
2200	15.20	20.64	25.69	38.50	1.20	0.53	28.37	14.44	3.26
2400	15.03	20.76	23.70	47.17	1.22	0.52	27.79	14.27	3.48
2800	14.87	20.88	21.68	33.17	1.24	0.50	27.13	14.27	3.48
2800	14.72	21.03	20.26	28.47	1.27	0.49	26.79	14.09	3.45
3000	14.58	21.17	19.14	25.39	1.29	0.47	26.55	13.81	3.32
3200	14.42	21.37	17.94	22.89	1.32	0.48	26.13	13.57	3.42
3400	14.28	21.52	17.10	21.35	1.35	0.45	25.74	13.61	3.61
3800	14.14	21.69	16.38	20.04	1.38	0.43	25.09	13.48	3.66
3800	14.02	21.88	15.74	18.93	1.41	0.42	24.48	13.33	3.74
4000	13.91	22.08	15.17	18.00	1.44	0.41	24.07	13.28	3.62
4200	13.81	22.21	14.87	17.41	1.48	0.40	24.13	13.08	3.59
4400	13.72	22.38	14.73	17.09	1.49	0.39	24.09	12.77	3.63
4800	13.66	22.55	14.52	18.59	1.52	0.39	23.80	12.55	3.88
4800	13.61	22.67	14.57	18.44	1.54	0.38	23.27	12.32	4.01
5000	13.62	22.84	14.55	16.28	1.58	0.37	22.85	11.95	3.86
5200	13.62	22.93	14.79	18.28	1.57	0.37	22.70	11.52	3.76
5400	13.66	23.05	15.05	18.12	1.59	0.38	22.34	11.19	3.70
5600	13.74	23.17	15.22 15.81	16.02	1.50	0.38	21.92	10.79	3.80
5800 6000	13.81 13.89	23.16 23.16	16.30	16.08	1.58 1.57	0.38	21.18 20.45	10.89	3.89
6200 6400	14.01	23.11	17.18 17.89	18.20	1.55 1.53	0.38	20.08	10.25	3.74 3.78
6600	14.14	23.08 22.97	19.43	16.10 16.31	1.53	0.37	19.68	10.02 9.67	3.81
	14.41	22.70		15.83	1.45	0.39	18.60	9.30	3.94
6800 7000	14.49	22.70	21.35	15.83	1.45	0.40	18.05	9.08	4.01
7200	14.58	22.42	28.07	15.55	1.40	0.41	17.82	8.69	3.92
7500	14.58	21.90	25.80	14.73	1.34	0.44	17.88	8.29	4.13
8000	14.11	21.23	17.52	13.53	1.31	0.47	16.98	6.72	4.05

REV. X1 GALI-2+ 070821 Page 3 of 11

GALI-2+

Typical Performance Data

Definitions:

Input Return Loss = -811 (dB)

Gain(Power Gain) = 821 (dB)

Reverse Isolation = -812 (dB)

Output Return Loss - -822 (dB)

TEST CONDITIONS: Icc = 40mA, Vd = 3.59V @Temperature = -45degC

FREQ	Gain	Isolation	Input Return Loss	Output Return Loss	Stat	sility	IP3 Output	1dB Comp. Output	Noise Figure
(MHz)	(dB)	(dB)	(dB)	(dB)	K	Delta	(dBm)	(dBm)	(dB)
50	18.72	20.13	48.18	25.44	1.08	0.68	30.00	14.10	2.48
100	16.69	19.99	60.69	25.99	1.07	0.68	29.94	14.01	2.60
200	16.64	20.02	47.50	28.47	1.07	0.68	30.19	14.11	2.45
400	16.53	20.05	35.92	23.74	1.08	0.67	29.83	14.10	2.57
600	16.44	20.05	36.02	23.58	1.08	0.68	29.42	14.02	2.52
800	16.31	20.08	37.18	23.56	1.09	0.65	29.91	13.89	2.59
1000	16.19	20.10	38.59	24.15	1.10	0.64	29.77	13.70	2.53
1200	16.05	20.15	37.94	24.18	1.11	0.62	29.34	13.48	2.59
1400	15.92	20.19	37.88	24.85	1.12	0.61	28.83	13.59	2.68
1800	15.78	20.26	33.74	26.22	1.13	0.60	29.22	13.44	2.65
1800	15.64	20.34	31.50	27.77	1.15	0.58	29.33	13.37	2.79
2000	15.49	20.40	28.44	29.70	1.18	0.57	29.10	13.55	2.50
2200	15.33	20.51	26.54	33.20	1.18	0.55	28.76	13.64	2.53
2400	15.18	20.64	24.68	42.37	1.20	0.53	28.43	13.68	2.71
2600	15.03	20.76	22.08	34.73	1.22	0.52	28.00	13.62	2.71
2800	14.88	20.90	20.50	28.54	1.24	0.50	27.90	13.32	2.67
3000	14.74	21.04	18.97	24.39	1.26	0.49	27.89	13.08	2.55
3200	14.59	21.23	18.03	22.15	1.29	0.48	27.58	13.07	2.65
3400	14.47	21.35	17.48	21.17	1.31	0.48	27.35	13.13	2.80
3600	14.33	21.47	16.68	19.88	1.34	0.45	26.62	12.99	2.78
3800	14.21	21.69	18.19	18.99	1.37	0.44	25.89	12.90	2.91
4000	14.11	21.84	15.61	18.07	1.39	0.43	25.44	13.03	2.80
4200	14.01	21.98	15.60	17.65	1.42	0.42	25.55	13.08	2.78
4400	13.94	22.12	15.49	17.35	1.44	0.41	25.85	12.87	2.81
4800	13.88	22.30	15.40	16.79	1.47	0.40	25.48	12.64	3.00
4800	13.83	22.41	15.33	18.49	1.48	0.40	25.08	12.48	3.13
5000	13.85	22.58	15.48	18.34	1.50	0.39	24.75	12.23	3.01
5200	13.84	22.67	15.38	16.16	1.51	0.38	24.69	11.77	2.95
5400	13.88	22.81	15.32	15.84	1.52	0.38	24.43	11.51	2.89
5800	13.98	22.92	15.72	15.50	1.52	0.38	24.14	11.09	2.95
5800 6000	14.03	22.91	16.15	15.20 14.94	1.51 1.50	0.38	23.48	11.04 10.60	3.04
	14.10	22.93	18.17			0.38	22.75		
6200	14.23	22.89	17.53	14.88	1.49	0.38	22.44	10.62	2.90
6400	14.38	22.85	18.45	14.61	1.48	0.39	21.99	10.52	2.95
6600	14.52	22.74	20.23	14.88	1.44	0.40	21.39	10.21	2.97
6800 7000	14.70	22.51 22.48	22.04	14.59	1.39 1.37	0.41	20.74	9.81	3.03
7200	14.82	22.46	30.01	14.90	1.37	0.42	19.94	9.56	3.06
7500	15.07	21.70	25.65	14.04	1.27	0.48	19.80	9.08	3.02
8000	14.77	21.03	17.42	13.37	1.23	0.51	19.87	7.55	3.14

Mini-Circuits

REV. X1 GALI-2+ 070821 Page 4 of 11

GALI-2+

Typical Performance Data

Definitions:

Input Return Loss = -S11 (dB) Gain(Power Gain) = S21 (dB) Reverse Isolation = -S12 (dB) Output Return Loss = -S22 (dB)

TEST CONDITIONS: Icc = 32mA, Vd = 3.54V @Temperature = -45degC

FREQ	Gain	Isolation	Input Return Loss	Output Return Loss	Stat	bility	IP3 Output	1dB Comp. Output	Noise Figure
(MHz)	(dB)	(dB)	(dB)	(dB)	K	Delta	(dBm)	(dBm)	(dB)
50	18.51	19.89	38.57	28.68	1.08	0.68	28.31	11.69	2.44
100	16.47	19.86	34.62	29.71	1.08	0.68	28.28	11.50	2.53
200	16.44	19.89	33.15	31.04	1.08	0.67	26.44	11.68	2.43
400	16.35	19.88	40.04	26.82	1.08	0.67	28.29	11.65	2.55
600	16.25	19.89	39.03	26.33	1.09	0.68	26.01	11.58	2.51
800	16.12	19.90	38.72	26.37	1.09	0.65	26.58	11.53	2.58
1000	15.99	19.95	34.08	27.16	1.10	0.63	28.48	11.25	2.54
1200	15.85	19.99	33.39	27.16	1.11	0.62	26.08	10.94	2.58
1400	15.73	20.03	32.28	27.98	1.12	0.61	25.84	11.18	2.66
1800	15.59	20.09	29.70	29.91	1.13	0.60	25.94	10.98	2.63
1800	15.48	20.16	27.82	32.13	1.15	0.58	26.25	10.89	2.76
2000	15.31	20.24	25.54	35.27	1.18	0.57	26.08	11.08	2.44
2200	15.16	20.36	24.11	41.48	1.18	0.55	25.88	11.20	2.50
2400	15.01	20.48	22.58	38.08	1.20	0.53	25.81	11.33	2.68
2800	14.85	20.61	20.37	29.50	1.22	0.52	25.68	11.28	2.67
2800	14.71	20.75	19.15	25.62	1.24	0.50	25.80	10.87	2.63
3000	14.57	20.88	17.74	22.58	1.26	0.49	25.98	10.65	2.49
3200	14.42	21.05	16.96	20.81	1.29	0.48	25.92	10.71	2.62
3400	14.29	21.18	16.40	19.98	1.31	0.47	25.78	10.85	2.76
3600	14.16	21.33	15.68	18.86	1.33	0.48	25.08	10.82	2.75
3800	14.04	21.53	15.29	18.11	1.38	0.44	24.41	10.78	2.87
4000	13.94	21.70	14.77	17.27	1.39	0.43	24.09	10.92	2.76
4200	13.85	21.85	14.82	16.90	1.41	0.42	24.24	11.13	2.76
4400	13.78	21.94	14.71	16.66	1.43	0.42	24.28	11.01	2.79
4800	13.73	22.12	14.64	16.13	1.48	0.41	24.01	10.82	2.98
4800	13.68	22.23	14.50	15.91	1.47	0.40	23.64	10.65	3.11
5000	13.69	22.40	14.68	15.76	1.49	0.39	23.58	10.67	2.99
5200	13.69	22.49	14.59	15.62	1.50	0.39	23.67	10.28	2.92
5400	13.73	22.84	14.58	15.30	1.51	0.39	23.54	10.14	2.85
5600	13.81	22.73	14.97	14.98	1.51	0.38	23.33	9.77	2.94
5800	13.88	22.73	15.35	14.73	1.50	0.39	22.73	9.93	2.98
6000	13.95	22.74	15.38	14.48	1.49	0.39	22.07	9.56	3.04
6200	14.09	22.69	16.68	14.48	1.47	0.39	21.84	9.50	2.84
6400	14.23	22.65	17.42	14.23	1.45	0.39	21.45	9.52	2.88
6600	14.38	22.55	18.91	14.49	1.43	0.40	20.80	9.33	2.90
6800	14.53	22.33	20.38	14.23	1.38	0.42	20.15	9.00	2.99
7000 7200	14.68	22.27 22.00	22.95 25.01	14.54 14.39	1.37	0.42	19.82	8.77	3.00 2.94
7500	14.85	21.53	23.34	13.80	1.33	0.44	19.22	8.44	3.19
8000	14.50	20.88	18.71	13.24	1.24	0.51	19.04	6.93	3.07

REV. X1 GALI-2+ 070821 Page 5 of 11

GALI-2+

Typical Performance Data

Definitions:

Input Return Loss = -811 (dB)

Gain(Power Gain) = 821 (dB)

Reverse isolation = -812 (dB)

Output Return Loss = -822 (dB)

TEST CONDITIONS: Icc = 48mA, Vd = 3.64V @Temperature = -45degC

FREQ	Gain	Isolation	Input Return Loss	Output Return Loss	Stat	ollity	IP3 Output	fdB Comp. Output	Noise Figure
(MHz)	(dB)	(dB)	(dB)	(dB)	K	Delta	(dBm)	(dBm)	(dB)
50	16.84	20.23	38.78	23.76	1.07	0.88	32.63	15.47	2.51
100	16.82	20.16	39.39	24.16	1.07	0.68	32.65	15.45	2.64
200	16.77	20.22	43.34	24.62	1.08	0.67	32.84	15.52	2.47
400	16.66	20.14	31.80	22.20	1.08	0.67	32.32	15.47	2.58
600	16.56	20.19	32.05	22.21	1.09	0.68	31.63	15.34	2.54
800	16.43	20.20	33.26	22.18	1.09	0.65	31.94	15.17	2.63
1000	16.31	20.21	35.38	22.85	1.10	0.64	31.63	15.04	2.58
1200	16.17	20.27	35.26	22.78	1.11	0.62	31.22	14.83	2.61
1400	16.04	20.29	37.23	23.38	1.12	0.61	30.74	14.83	2.70
1600	15.89	20.38	35.57	24.44	1.13	0.60	30.99	14.79	2.68
1800	15.75	20.44	34.08	25.80	1.15	0.58	30.73	14.78	2.84
2000	15.61	20.51	30.52	27.47	1.16	0.57	30.51	14.89	2.52
2200	15.45	20.64	28.60	29.93	1.18	0.55	30.08	14.91	2.57
2400	15.29	20.75	26.35	38.15	1.20	0.53	29.57	14.82	2.72
2600	15.14	20.88	23.41	40.55	1.22	0.52	28.90	14.82	2.73
2800	14.99	21.00	21.62	31.08	1.24	0.50	28.63	14.60	2.68
3000	14.85	21.15	19.90	25.77	1.27	0.49	28.39	14.51	2.57
3200	14.70	21.32	18.89	23.21	1.29	0.47	28.00	14.29	2.72
3400	14.57	21.44	18.26	22.01	1.32	0.48	27.82	14.32	2.83
3600	14.43	21.61	17.37	20.60	1.34	0.45	27.15	14.24	2.83
3800	14.31	21.78	16.88	19.62	1.37	0.44	28.45	14.13	2.93
4000	14.21	21.95	18:24	18.64	1.40	0.43	25.98	14.11	2.88
4200	14.11	22.09	16.25	18.19	1.42	0.42	26.04	13.98	2.84
4400	14.03	22.21	16.11	17.82	1.44	0.41	28.17	13.72	2.83
4800	13.07	22.37	16.01	17.24	1.47	0.40	28.05	13.52	3.04
4800	13.92	22.51	15.93	16.87	1.49	0.39	25.58	13.34	3.16
5000	13.94	22.70	16.08	16.73	1.51	0.39	25.16	13.08	3.05
5200	13.93	22.78	15.94	18.53	1.52	0.38	25.07	12.58	2.99
5400	13.97	22.92	15.85	16.18	1.53	0.38	24.77	12.32	2.93
5600	14.05	23.04	16.27	15.85	1.53	0.37	24.43	11.93	3.01
5800	14.11	23.02	16.77	15.53	1.52	0.37	23.80	11.75	3.05
6000	14.18	23.07	16.73	15.24	1.51	0.37	23.03	11.35	3.10
6200	14.32	23.01	18.19	15.20	1.49	0.38	22.70	11.33	2.94
6400	14.48	22.99	19.21	14.91	1.47	0.38	22.25	11.28	3.00
6600	14.61	22.88	21.27	15.17	1.44	0.39	21.71	10.91	3.00
6800	14.80	22.62	23.15	14.87	1.30	0.41	21.13	10.48	3.11
7000	14.93	22.59	27.75	15.20	1.38	0.41	20.57	10.14	3.11
7200	15.07	22.32	37.44	14.99	1.33	0.44	20.27	9.79	3.08
7500	15.21	21.84	28.35	14.27	1.27	0.47	20.11	9.74	3.29
8000	14.97	21.13	17.72	13.53	1.22	0.51	19.94	8.10	3.22

REV. X1 GALI-2+ 070821 Page 6 of 11

GALI-2+

Typical Performance Data

Definitions:

Input Return Loss = -811 (dB) Gain(Power Gain) = 821 (dB) Reverse Isolation = -812 (dB) Output Return Loss - -822 (dB)

TEST CONDITIONS: Icc = 40mA, Vd = 3.27V @Temperature = +85degC

(MHz) (dB) (dB)	(dB)	(dB)			l	Output	Figure
		(db)	K	Delta	(dBm)	(dBm)	(dB)
50 16.37 19.70	42.03	27.37	1.07	0.68	29.05	13.64	3.54
100 16.34 19.80	47.40	28.07	1.08	0.67	29.08	13.64	3.63
200 16.28 19.83	40.68	24.68	1.08	0.68	29.40	13.66	3.47
400 16.18 19.85	41.78	28.40	1.09	0.65	28.72	13.59	3.62
600 16.05 19.87	39.05	28.50	1.10	0.64	28.11	13.48	3.60
800 15.92 19.90	35.64	27.19	1.10	0.63	28.42	13.28	3.69
1000 15.78 19.94	33.72	27.99	1.11	0.62	28.16	13.12	3.67
1200 15.63 19.98	31.45	29.00	1.13	0.61	27.68	12.91	3.74
1400 15.49 20.08	29.48	30.08	1.14	0.59	27.08	12.92	3.85
1600 15.33 20.16	27.68	32.33	1.18	0.57	27.47	12.80	3.85
1800 15.17 20.24	25.73	38.40	1.17	0.58	27.27	12.78	4.01
2000 15.02 20.34	23.64	47.12	1.19	0.54	26.94	12.94	3.70
2200 14.85 20.47		37.65	1.21	0.52	26.49	12.93	3.80
2400 14.69 20.50	20.41	30.63	1.23	0.51	25.98	12.81	4.00
2800 14.52 20.74		28.95	1.28	0.49	25.35	12.74	4.05
2800 14.37 20.88		24.63	1.28	0.48	25.08	12.42	4.00
3000 14.22 21.03		22.53	1.31	0.47	24.88	12.07	3.88
3200 14.08 21.25		20.68	1.34	0.45	24.48	12.03	3.95
3400 13.91 21.30		19.34	1.38	0.44	24.15	12.07	4.18
3600 13.76 21.56		18.24	1.39	0.43	23.42	11.88	4.24
3800 13.64 21.78		17.31	1.42	0.42	22.78	11.72	4.32
4000 13.52 21.90		16.47	1.48	0.41	22.41	11.71	4.19
4200 13.42 22.16		18.02	1.49	0.40	22.52	11.50	4.14
4400 13.32 22.31		15.70	1.52	0.39	22.27	11.15	4.20
4800 13.28 22.40		15.41	1.55	0.38	21.94	10.85	4.48
4800 13.20 22.50		15.42	1.57	0.38	21.32	10.45	4.59
5000 13.22 22.78		15.43	1.50	0.37	20.94	10.03	4.48
5200 13.23 22.87		15.54	1.60	0.38	20.73	9.57	4.37
5400 13.25 22.90		15.58	1.62	0.38	20.34	9.26	4.31
5600 13.33 23.05		15.74	1.62	0.38	19.95	8.90	4.43
5800 13.39 23.05		15.98	1.61	0.35	19.16	8.93	4.58
6000 13.44 23.04		18.14	1.61	0.38	18.53	8.50	4.85
8200 13.54 23.01		18.33	1.50	0.38	18.15	8.34	4.48
6400 13.64 22.91 6800 13.71 22.80		18.38 18.72	1.57 1.58	0.38	17.68 17.19	8.02 7.76	4.41
6800 13.81 22.52 7000 13.83 22.52		18.12 18.07	1.50 1.50	0.38	16.44	7.36 7.23	4.88
7200 13.83 22.5		15.56	1.47	0.38	15.88	6.64	4.82
7500 13.65 21.76		14.64	1.43	0.41	15.62	6.48	4.95
8000 12.88 21.10		13.27	1.42	0.42	14.81	4.80	5.15

REV. X1 GALI-2+ 070821 Page 7 of 11

GALI-2+

Typical Performance Data

Definitions:

Input Return Loss = -S11 (dB) Gain(Power Gain) = S21 (dB) Reverse Isolation = -S12 (dB) Output Return Loss = -S22 (dB)

TEST CONDITIONS: Icc = 32mA, Vd = 3.22V @Temperature = +85degC

FREQ	Gain	Isolation	Input Return Loss	Output Return Loss	Stat	sility	IP3 Output	1dB Comp. Output	Noise Figure
(MHz)	(dB)	(dB)	(dB)	(dB)	K	Delta	(dBm)	(dBm)	(dB)
50	16.11	19.50	30.07	34.93	1.08	0.68	25.57	11.68	3.57
100	16.08	19.60	33.74	32.08	1.08	0.67	25.59	11.63	3.61
200	16.01	19.60	38.25	29.23	1.09	0.68	25.88	11.78	3.50
400	15.90	19.65	31.85	32.07	1.09	0.65	25.40	11.73	3.66
600	15.80	19.66	30.37	32.72	1.10	0.64	25.02	11.65	3.62
800	15.65	19.66	28.87	34.33	1.11	0.63	25.52	11.43	3.71
1000	15.52	19.72	27.55	38.20	1.12	0.62	25.40	11.22	3.67
1200	15.37	19.78	28.50	37.55	1.13	0.60	24.95	10.88	3.72
1400	15.23	19.84	25.48	41.48	1.14	0.59	24.42	11.11	3.86
1800	15.08	19.95	24.11	47.57	1.18	0.57	24.78	10.89	3.85
1800	14.93	20.01	22.62	42.28	1.17	0.58	25.09	10.87	3.97
2000	14.77	20.12	21.14	34.49	1.19	0.54	24.87	11.08	3.68
2200	14.60	20.28	19.88	29.83	1.21	0.52	24.59	11.18	3.74
2400	14.44	20.40	18.61	26.13	1.23	0.51	24.41	11.09	4.00
2600	14.28	20.53	17.44	23.92	1.26	0.49	24.11	10.97	4.02
2800	14.12	20.69	16.63	22.30	1.28	0.48	24.08	10.48	3.94
3000	13.99	20.82	15.74	20.61	1.30	0.47	24.05	10.13	3.81
3200	13.83	21.05	14.93	19.19	1.33	0.45	23.80	10.33	3.91
3400	13.69	21.20	14.17	18.05	1.38	0.44	23.55	10.43	4.15
3800	13.53	21.40	13.59	17.18	1.39	0.43	22.85	10.38	4.17
3800	13.40	21.59	13.12	16.31	1.42	0.42	22.23	10.37	4.27
4000	13.29	21.76	12.64	15.84	1.45	0.42	21.98	10.48	4.13
4200	13.18	21.98	12.48	15.28	1.48	0.40	22.08	10.42	4.11
4400	13.10	22.10	12.31	14.98	1.50	0.40	21.85	10.07	4.16
4800	13.01	22.28	12.28	14.75	1.54	0.39	21.50	9.73	4.38
4800	12.98	22.37	12.30	14.74	1.55	0.38	20.98	9.36	4.57
5000	12.98	22.54	12.34	14.79	1.58	0.38	20.67	8.99	4.41
5200	12.99	22.64	12.58	14.87	1.50	0.37	20.54	8.58	4.33
5400	13.03	22.75	12.67	14.92	1.60	0.37	20.17	8.28	4.28
5600	13.09	22.88	12.88	15.12	1.61	0.38	19.80	7.94	4.39
5800	13.15	22.80	13.35	15.32	1.60	0.38	19.03	8.10	4.51
6000	13.21	22.80	13.58	15.52	1.60	0.38	18.38	7.71	4.61
6200	13.30	22.74	14.07	15.70	1.58	0.38	18.02	7.55	4.39
6400	13.40	22.71	14.54	15.77	1.57	0.37	17.49	7.28	4.34
6600	13.48	22.60	15.58	16.05	1.55	0.37	16.99	6.99	4.37
6800	13.54	22.28	16.55	15.58	1.50	0.38	16.22	6.68	4.60
7000	13.53	22.24	17.00	15.55	1.50	0.39	15.93	6.52	4.78
7200	13.52	21.98	18.03	15.11	1.47	0.40	15.65	5.91	4.69
7500	13.34	21.58	18.55	14.35	1.44	0.41	15.42	5.88	4.88
8000	12.53	20.91	15.23	13.21	1.44	0.42	14.72	4.18	5.05

REV. X1 GALI-2+ 070821 Page 8 of 11

GALI-2+

Typical Performance Data

Definitions:

Input Return Loss = -811 (dB) Gain(Power Gain) = 821 (dB) Reverse isolation = -812 (dB) Output Return Loss = -822 (dB)

TEST CONDITIONS: Icc = 48mA, Vd = 3.32V @Temperature = +85degC

FREQ	Gain	Isolation	Input Return Loss	Output Return Loss	Stat	sility	IP3 Output	1dB Comp. Output	Noise Figure
(MHz)	(dB)	(dB)	(dB)	(dB)	K	Delta	(dBm)	(dBm)	(dB)
50 100 200 400 800 1000 1200 1400 1800 2000 2200 2400 2800 2800 2800	(4B) 18.54 18.51 18.45 18.21 18.07 15.94 15.79 15.63 15.48 15.33 15.18 15.00 14.83 14.68 14.51	(dB) 19.91 19.90 19.97 20.04 20.03 20.08 20.14 20.19 20.28 20.37 20.48 20.59 20.72 20.87 20.99 21.14	40.22 35.11 32.58 37.33 37.92 41.75 40.27 37.15 33.38 30.77 27.92 25.58 21.58 20.07 18.88 17.78	24.50 23.69 22.55 24.05 24.05 24.08 24.85 25.28 28.07 27.09 28.57 31.01 38.18 51.10 35.24 29.80 28.80 28.80 29.80 29.80 29.80	1.07 1.07 1.08 1.09 1.10 1.11 1.13 1.14 1.15 1.17 1.19 1.21 1.23 1.28 1.28	0.68 0.68 0.67 0.88 0.84 0.83 0.62 0.61 0.59 0.57 0.58 0.52 0.51 0.52 0.51	(dBm) 31.88 31.79 32.04 30.97 29.99 29.92 29.45 28.89 28.31 28.52 27.80 27.80 26.91 26.25 25.51 26.14 24.82	(dBm) 14.81 14.89 14.61 14.75 14.52 14.28 14.18 13.86 13.86 13.86 13.89 13.84 13.57 13.53 13.27 12.93	(dB) 3.49 3.63 3.43 3.60 3.55 3.66 3.73 3.86 3.86 4.02 3.78 4.01 4.06 4.00 3.87
\$200 \$400 \$800 \$800 \$800 4200 4400 4800 4800 5000 5200 5400	14.20 14.05 13.91 13.77 13.66 13.55 13.46 13.33 13.35 13.35 13.34 13.36	21.37 21.52 21.69 21.91 22.11 22.28 22.42 22.60 22.72 22.90 23.00 23.11 23.21	18.84 15.77 15.08 14.43 13.84 13.84 13.41 13.44 13.48 13.68 13.88 14.03	21.71 20.25 19.02 17.90 17.02 18.47 18.14 15.79 15.75 15.77 15.84 15.88 18.04	1.57 1.39 1.43 1.48 1.49 1.55 1.57 1.80 1.81	0.45 0.44 0.43 0.42 0.41 0.40 0.39 0.38 0.37 0.37 0.38	24.39 24.03 23.38 22.70 22.39 22.45 22.18 21.84 21.20 20.82 20.80 20.82 20.80 19.84	12.68 12.73 12.58 12.41 12.27 12.01 11.68 11.40 10.99 10.56 10.15 9.40	3.97 4.18 4.22 4.33 4.20 4.15 4.20 4.43 4.59 4.47 4.41 4.47
5600 5800 6000 6200 6400 6800 7000 7200 7500 8000	13.45 13.50 13.57 13.66 13.78 13.83 13.95 13.96 13.97 13.83 13.06	23.21 23.19 23.20 23.17 23.10 23.00 22.89 22.63 22.35 21.91 21.23	14.03 14.54 14.89 15.41 18.03 17.27 18.73 19.43 21.03 22.03 18.44	18.04 18.23 16.44 18.80 18.96 18.96 18.34 18.27 15.73 14.75 13.28	18 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.35 0.35 0.35 0.35 0.38 0.38 0.38 0.39 0.41 0.42	19.84 19.05 18.40 18.05 17.18 18.40 16.07 15.81 15.80 14.72	9.40 9.42 9.08 8.85 8.50 8.19 7.81 7.84 7.05 6.87 5.11	4.47 4.58 4.89 4.52 4.48 4.51 4.76 4.99 5.02 5.04 5.18

REV. X1 GALI-2+ 070821 Page 9 of 11

GALI-2+

Typical Performance Curves

Mini-Circuits

REV. X1 GALI-2+ 070821 Page 10 of 11

P.C. Box 850166, Brooky, New York 11205-0006 (First State Conformance space & stronglant P.C. Box 850166, Brooky, New York 11205-0006 (First State Box 650 First State

GALI-2+

Typical Performance Curves

GALI-2+

Typical Performance Curves

REV. X1 GALI-2+ 070821 Page 1 of 2

AVAP ANCACHANG COMPONENTS - SEC 1881 (ED 1480) AS INTER CONTINUE COMPONENT P.C. Box 350166, Brooky, New York 11255-000; [Pril] 804-600; For joint 205-600.

The Design Engineers Search Engine Ands the model you need Instantly - For detailed conformance space & shooping online se

GALI-2+

Typical Performance Curves

