SlepovAS 29112024-140741

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.32144 - 0.43562i, \, s_{31} = 0.47636 + 0.3515i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -19 дБн 2) -21 дБн 3) -23 дБн 4) -25 дБн 5) -27 дБн 6) -29 дБн 7) -31 дБн 8) -33 дБн 9) 0 дБн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 2? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

Варианты ОТВЕТА:

1)
$$\{16; -71\}$$
 2) $\{10; -43\}$ 3) $\{16; -71\}$ 4) $\{4; 27\}$ 5) $\{4; -15\}$ 6) $\{10; -43\}$ 7) $\{13; -57\}$

8) {10; -43} 9) {13; -57}

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 298 МГц, частота ПЧ 50 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 50 MΓ_{II}
- 2) 844 MΓ_{II}
- 3) 1192 MΓ_{II}
- 348 MΓη.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $3168~\mathrm{M}\Gamma\mathrm{q}$ с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью плюс $9~\mathrm{д}\mathrm{Em}$.

Колебание ПЧ формируется с помощью генератора меандра частотой 865 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 0 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 10410 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 4034 МГц до 4076 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -73 дБм 2) -76 дБм 3) -79 дБм 4) -82 дБм 5) -85 дБм 6) -88 дБм 7) -91 дБм 8) -94 дБм 9) -97 дБм

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 3.9 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 8 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 12.6 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 4.3 дБ 2) 4.9 дБ 3) 5.5 дБ 4) 6.1 дБ 5) 6.7 дБ 6) 7.3 дБ 7) 7.9 дБ 8) 8.5 дБ 9) 9.1 дБ

Для полного подавления **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 11 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 203 М Γ ц?

Варианты ОТВЕТА:

1) 39.9 нГн 2) 47.6 нГн 3) 32.3 нГн 4) 38.5 нГн