

SAIRAM DIGITAL RESOURCES

Unit III GRAPHS

3.3 MATRIX REPRESENTATION AND ISOMORPHISM

MA8351

DISCRETE MATHEMATICS
COMMON TO CSE & IT

SCIENCE & HUMANITIES

MATRIX REPRESENTATION OF GRAPHS

ADJACENCY MATRIX

When G is a simple graph with n vertices v_1, v_2, \dots, v_n , the matrix A (or A_G) $\equiv [a_{ij}]$, where

$$a_{ij} = \begin{cases} 1, & if \ v_i v_j \ is \ an \ edge \ of \ G \\ 0, & otherwise \end{cases}$$

is called the adjacency matrix of G.

Example:

Let G be the given matrix. The adjacency matrix of G is given by

$$G = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Properties of an adjacency matrix:

- Since a simple graph has no loops, each diagonal entry of matrix G is zero i.e a_{ij}=0.
- The adjacency matrix of simple graph is symmetric i.e $a_{ij} = a_{ji}$
- Deg (v_i) is equal to the number of 1's in the i^{th} row or i^{th} column.
- Pseudographs, direct graphs and multi graphs can also be represented by adjacency matrix which may not be symmetric matrix.

INCIDENCE MATRIX

If G = (V,E) is an undirected graph with n vertices v_1, v_2, \ldots, v_n and m edges e_1, e_2, \ldots, e_m , then the (n x m) matrix B = [b_{ij}], where $b_{ij} = \begin{cases} 1, & when \ edge \ e_j \ is \ incident \ on \ v_i \\ 0, & otherwise \end{cases}$ is called the incidence matrix of G.

Example:

Let G be the given matrix. The incidence matrix of G is given by

Properties of an incidence matrix:

- Each column of B contains exactly two unit entries.
- A row with all 0 entries corresponds to an isolated vertex.
- A row with a single unit entry corresponds to a pendant vertex.
- deg (v_i) is equal to the number of 1's in the i^{th} row.

ISOMORPHISM

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple graphs. G_1 and G_2 are isomorphic if there is a one-to-one and onto function or map f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only G_2 and G_3 are adjacent in G_4 if and only G_4 and G_5 are adjacent in G_6 and G_7 and G_8 are adjacent in G_8 and G_8 are adjacent in G_8 and G_8 are adjacent in G_8 and G_8 are

PERMUTATION MATRIX

A matrix whose rows are the rows of the unit matrix, but not necessarily in their natural order, is called a permutation.

THEOREM:1

Two graphs are isomorphic, if and only if their vertices can be labeled in such a way that the corresponding adjacency matrices are equal.

THEOREM:2

Two labeled graphs G_1 and G_2 with adjacency matrices A_1 and A_2 respectively are isomorphic, if and only if, there exists a permutation matrix P such that $PA_1P^T = A_2$.

PROBLEMS

1) Represent the graph by adjacency matrices.

Solution:

MA8351

DISCRETE MATHEMATICS (COMMON TO CSE & IT)

2) Draw the graph represented by the following adjacency matrix.

Solution:

$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix}$$

MA8351

DISCRETE MATHEMATICS (COMMON TO CSE & IT)

3) Draw the graph represented by the following adjacency matrix.

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

4) Find the number of vertices, the number of edges and the degree of each vertex in the following undirected graphs. Verify also handshaking theorem in each case.

Number of vertices = 6

Number of edges =9

deg(A) = 2, deg(B) = 4, deg(C) = 4, deg(D) = 3, deg(E) = 4, deg(F) = 1,

Handshaking theorem states that

 $\Sigma \text{deg } (vi) = 2e$, (e is the number of edges)

 $\Sigma \deg(v_i) = 2 + 4 + 4 + 3 + 4 + 1 = 18 = 2x9$

Hence the theorem is true.

ii) Graph G_2

Number of vertices = 5

Number of edges = 13

deg(A) = 6, deg(B) = 6, deg(C) = 6, deg(D) = 5, deg(E) = 3

Handshaking theorem states that

 $\Sigma \deg(v_i)$ = 2e , (e is the number of edges)

Now,

 $\Sigma \deg(v_i) = 6 + 6 + 6 + 5 + 3 = 26 = 2 \times 13$. Hence the theorem is true.

5) Find the in-degree and out-degree of each vertex of each of the following directed graphs. Also verify that the sum of the in-degrees equals the number of edges.

Solution:

i) Graph G_1

D

$$deg^{-}(A) = 2$$
, $deg^{-}(B) = 1$, $deg^{-}(C) = 2$, $deg^{-}(D) = 3$ and $deg^{-}(E) = 0$,. $deg^{+}(A) = 1$, $deg^{+}(B) = 2$, $deg^{+}(C) = 1$, $deg^{+}(D) = 1$ and $deg^{+}(E) = 3$. We see that $\Sigma deg^{-}(A) = \Sigma deg^{+}(A) = 8$ = the number of edges of G_1 .

ii) Graph G_2

$$deg^{-}(A) = 5$$
, $deg^{-}(B) = 3$, $deg^{-}(C) = 1$, $deg^{-}(D) = 4$
 $deg^{+}(A) = 2$, $deg^{+}(B) = 3$, $deg^{+}(C) = 6$, $deg^{+}(D) = 2$

We see that $\Sigma deg^{-}(A) = \Sigma deg^{+}(A) = 13$ = the number of edges of G_2 .

6) For each of the following degree sequences, find if there exists graph. In each case, either draw a graph or explain why no graphs exists.

Sum of the degrees of all the vertices = 17, which is an odd number. This is impossible. Hence no graphs exists with the given degree sequence.

There are 6 vertices. Hence a vertex of degree 5 in the graph must be adjacent to all the vertices. As there are 2 vertices each of degree 5, all other vertices should be of degree at least 2. But the given degree sequence contains a 1. Hence, no graph is possible with the given sequence.

A simple graph with the given description is not possible only multigraph is possible.

7) Determine whether the following pairs of graphs are isomorphic.

Solution:

Each of the two graphs have 5 vertices and 8 edges . The vertices u_1 and u_5 are of degree 3 each, u_2 and u_4 are of degree 4 each and u_3 is of degree 2. Similarly v_1 and v_4 are of degree 3 each, v_3 and v_5 are of degree 4 each and v_2 is of degree 2. Thus the two graphs agree with respect to the 3 invariants.

To conclude that the two graphs are isomorphic, we need to prove that the adjacency matrices are same. For this purpose we assume arbitrarily that the vertex u_1 corresponds to v_1 , u_2 corresponds to v_5 and u_3 corresponds to v_2 . The adjacency matrices are as follows.

Since the two adjacency matrices are the same, the two graphs are isomorphic.

8) Test whether the graphs with the following adjacency matrices are isomorphic or not.

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Solution: Let us interchange rows and columns

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} C_{2} \leftrightarrow C_{3}$$

$$\cong \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} R_{2} \leftrightarrow R_{3} \cong A_{2}$$

Therefore A_1 is similar to A_2 and hence $G_1 \cong G_2$.

MA8351

DISCRETE MATHEMATICS (COMMON TO CSE & IT)

9) Are the simple graphs with the following adjacency matrices isomorphic?

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Solution: Let
$$A_1 = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \cong \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} R_{1} \longleftrightarrow R_{4}$$

$$\cong \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} C_1 \longleftrightarrow C_4$$

 A_1 and A_2 cannot be similar. Hence the corresponding graphs are not isomorphic.

10) Examine whether the following pairs of graphs are isomorph. If not isomorphic, give the reasons.

Solution:

There are five vertices and seven edges in each of the two graphs. Here in the first graph deg(B)=4 and there is no corresponding vertex with degree four in the second graph. Hence the graphs are

MA8351

DISCRETE MATHEMATICS (COMMON TO CSE & IT)

11) Draw the graph represented by the following incidence matrix.

Solution:

