Electricity in the home

Infrastructure and Electrical safety

Bibliography

http://www.tlc-direct.co.uk/Book/1.1.htm

3 phase residential distribution

Single Phase: Live, Neutral and Earth

- Live
 - 230/240Vac single phase
- Neutral
 - is it actually neutral? i.e. 0V
- Earth
 - Physically pinned to the electric potential of the ground

Earth wire (1)

- Physical contact to earth
- Safety
 - Prevent build up of static
 - Path to ground in case of insulation failure
- Measurement
 - Potential reference
 - Infinite sink source
 - Low impedence

Earth wire (2)

- Cable
 - Overhead
 - Live and Neutral only
 - DIY Earth
 - Underground
 - Metal sheath, armoured, cable

Earth wire (3)

 Earth loop impedance tester

Earth wire (4)

- Floating vs grounded
 - Grounded: Completely define all points on a circuit
 - Expensive infrastructure
 - "Guaranteed" safety
 - Floating: Define nothing respect to anything!
 - "Complete" isolation from earth
 - Cheaper

Neutral wire

Residential wiring

• Earth (green)

Electricity in the home

Fuse

- Fuse is a sacrificial device for over current detection
- First "fuse" proposed by Bregeut in 1847
- Modern fuse patented by Edision in 1890

- Construction
 - Wire: small cross section
 - Wire material: Zn, Cu, Al, Ag
 - Housing: Glass, ceramic, plastic, fibreglass
 - Inner medium: Air, sand (HV)
 - Variations: solder fuse, spring fuse

Types of Fuse

- Rated current
- Rated voltage
- Speed
- I²t value
- Voltage drop
- Break capacity

Circuit Breaker

3 Phase 110kV oil drum circuit breaker

Mechanical (Miniature) Circuit Breaker (MCB)

Circuit breakers operate on the same principle regardless of their size

- Detect fault condition
- Cut off (break) current flow
- Suppress arcs

MCB: How it works

- 1. Actuator lever
- Actuator mechanism
- 3. Contacts
- 4. Terminals
- 5. Bimetallic strip
- 6. Calibration screw
- 7. Solenoid
- 8. Arc divider / extinguisher

Residual Current Detector

- Residual current circuit breaker
- Kirschoff's first law

Trips on an imbalance between the current's

in the L and N lines

Test button

Consumer Unit

- MCB
- RCCD
- Busbar
 - Split Neutral
- WiringConsiderations

Wires and loops

Purpose

Wire rating

- Lighting
 - Ceiling rose
- Radial
- Ring
 - Spurs
- Special cases
 - Immersion heater
 - Showers
 - Cookers
 - Out buildings

	lapp / A	Imax / A	CSA / mm ²
Lighting (100 W)	0.4 (4)	13.5 to 17.5	1 to 1.5
Sockets (double)	26 (18.2)	24!	2.5
Shower (8.5KW)	35	41	6
Shower (11.5KW)	48	57	10
Cooker (14KW)	29 (58)	32	4
Garage	16 – 26	24 - 32	2.5 – 4

- Diversity: Likelihood of having max demand
- X is the full load current of the largest appliance or circuit
 Y is the full load current of the second largest appliance or circuit
 Z is the full load current of the remaining appliances or circuits
- 100%X + 40%(Y+Z)

Lighting

Radial vs Ring

Radial Circuit (20A)

Ring Circuit (32A)

