

Guía II de ejercicios: Variables aleatorias

En esta guía usaremos la función:

$$\mathbb{I}_A(x) = \left\{ \begin{array}{ll} 1 & \text{si } x \in A, \\ 0 & \text{si } x \notin A. \end{array} \right.$$

- 1. Una variable aleatoria X puede tomar los valores 30, 40, 50, y 60 con probabilidades 0.4, 0.2, 0.1 y α . Encuentre el valor de α , represente en una tabla la función de probabilidad, y la función de distribución de probabilidad.
- 2. Usted se encuentra rindiendo un examen de 20 preguntas de elección multiple. Cada pregunta tiene cuatro opciones. Debido a su preparación, solo sabe responder con presición las primeras 10 preguntas, mientras que las últimas 10 no. Considerando que responderá las últimas 10 al azar, y definiendo la variable aleatoria X: número de respuestas correctas, encuentre la función de densidad de probabilidad de X y calcule $\mathbb{P}(X > 15)$
- 3. Sea X una variable aleatoria con $\text{Rec}(X) = \{0, 1, \ldots\}$. Pruebe que $f(x) = p(1-p)^x \mathbb{I}_{\mathbb{N}}(x)$ es función de densidad.
- 4. Sea n un entero positivo. Se propone para la variable aleatoria X_n la función de densidad $f_n(x) = 2^{-n} \binom{n}{x}$ sabiendo que $\text{Rec}(X_n) = \{0, 1, \dots, n\}$. Pruebe que f_n es, en efecto, una densidad de probabilidad. Además, calcule las siguientes probabilidades:
 - (a) Calcule $\mathbb{P}(X_n = 0)$.
 - (b) Calcule $\mathbb{P}(X_n = n)$.
 - (c) Calcule $\mathbb{P}(X_4=2)$.
 - (d) Calcule $\mathbb{P}(1 \leq X_4 \leq 3)$.
- 5. Sea X una variable aleatoria cuya función de distribución es $F(x) = \kappa x^3 \mathbb{I}_{[0,1]}(x)$. Encuentre κ de manera tal que F(x) sea una función de distribución.
 - (a) Calcule $\mathbb{P}(2X \leq 1)$.
 - (b) Calcule $\mathbb{P}(\frac{1}{4} \le X \le 1)$.
 - (c) Calcule $p_n = \mathbb{P}(nX \leq 1)$. Explique que sucede cuando $n \to \infty$.
- 6. Considere la función $f_{\gamma}(x) = \gamma x^{\gamma-1} \exp\{-x^{\gamma}\}\mathbb{I}_{\mathbb{R}_+}(x)$. Comente sobre las restricciones de γ para que f_{γ} sea función de densidad
- 7. Sean a, b y c números reales tales que $a \le c \le b$. Sea T una variable aleatoria con densidad

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & \text{si } a \le x \le c \\ \frac{2}{(b-a)} & \text{si } x = c \\ \frac{2(b-x)}{(b-a)(c-a)} & \text{si } c \le x \le b \\ 0 & \text{en otro caso.} \end{cases}$$

- (a) Esboce una gráfica e interprete los parámetros a, b, c.
- (b) Calcule la función de distribución.
- (c) Calcule $\mathbb{P}\left(\frac{(a-c)}{2} \le X \le \frac{(c-b)}{2}\right)$.

8. Demuestre que la siguiente función es una función de distribución

$$F_X(x) = \frac{1}{1 + e^{-x}}, \quad x \in \mathbb{R}$$

además, encuentre la función de densidad asociada.

9. Sea X una variable aleatoria continua con función de densidad f y función de distribución F. Para un valor fijo x_0 se define la función:

$$g(x) = \begin{cases} \frac{f(x)}{1 - F(x_0)} & x \ge x_0 \\ 0 & x < 0 \end{cases}$$

Demuestre que g(x) es una función de densidad (Asuma que $F(x_0) < 1$).

- 10. Suponga que x_u es el percentil u de una variable aleatoria X, es decir, $F_X(x) = u$. Demuestre que si f(-x) = f(x), entonces $x_{1-u} = 1 x_u$.
- 11. Demuestre que $\mathbb{P}(A) = \mathbb{P}(A|X \leq x)F_X(x) + \mathbb{P}(A|X > x)(1 F_X(x))$
- 12. En una cierta construcción, el úmero de fallas en las columnas debido a los esfuerzos de corte producidos, es una variable aleatoria X que se encuentra bien modelada por la siguien te funcion:

$$f_X(x) = \frac{\kappa 5^{2-x}}{78}$$
 para $x = 0, 1, 2, 3$

- (a) Encuentre el valor de κ , de manera que $f_X(x)$ sea una función de cuantía.
- (b) Calcule: $\mathbb{P}[1 \le X \le 6V(X) E(X) \mid X \le V(X)]$, donde E(X) y V(X) son la esperanza y varianza de X respectivamente
- (c) Calcule y grafique la funcion de distribución de $f_X(x)$.
- (d) Calcule la esperanza y varianza de Y = 3X + 2.
- 13. Sea X una variable aleatoria, con media $\mu = \mathbb{E}[X]$ y varianza $\sigma^2 = \mathbb{E}[(X \mathbb{E}[X])^2]$. Considere la siguiente cantidad:

$$\kappa_k = \mathbb{E}\left[\left(\frac{X - \mu}{\sigma}\right)^k\right]$$

- (a) Calcule κ_3 y κ_4 para la densidad $f(x) = \frac{1}{2}\mathbb{I}_{[-1,1]}(x)$.
- (b) Calcule κ_3 y κ_4 para la densidad del ejercicio 6 y del ejercicio 11.
- 14. Sea X una variable aleatoria positiva. Pruebe que

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}[X \ge s] \mathrm{d} s$$

15. Sea X una variable aleatoria con la siguiente función de densidad:

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$

Demuetre que X no tiene ni valor esperado ni varianza.