

微机原理与接口技术

§1 课程介绍

主讲人: 佘青山

Homepage: https://auto.hdu.edu.cn/2019/0403/c3803a93084/page.htm

Email: qsshe@hdu.edu.cn

Mob: 13758167196

Office: 第二教研楼南楼308室

2022年8月29日

1.《微机原理与接口技术》课程定义

学习微型计算机的特点、基本原理、基本组成和系统结构。学习微处理器与存储器结构系统组成、计算机指令系统、汇编语言程序设计、中断技术、输入/输出等接口技术。熟练掌握基本的软件编程方法。熟练掌握硬件接口的初始化技术和硬件系统构成技术。

学习要素:

- 微机原理与结构
- 汇编语言指令及程序设计
- 硬件接口技术

目标: 微型计算机系统应用与开发(而非使用)的开始

2. 什么是微型计算机?

微型计算机(Microcomputer)是指以微处理器为基础,配以内存储器及输入输出(I/O)接口电路和相应的辅助电路而构成的裸机 ,即主机硬件部分。

微型计算机内部数据流

存储程序+程序控制

08:52

由微型计算机配以相应的外围设备(如打印机)及其他专用电路、电源、 面板、机架以及足够的软件构成的系统叫做微型计算机系统 (Microcomputer System)(即通常说的电脑)

微型计算机 百度百科 http://baike.baidu. com/link?url=jTYD 1c a9bvXdFDeSkW YlrdVHq5tz7Bl0iv-YH9hLWU1vr4l6Bx EF8xQxqUadX9ly56 bkMsJIM yvcO0NS nEVV1jAtQCeyKlcS 3CHPtyDX7

若将把微型计算机集成在一个芯片上即构成单片微型计算机(Single Chip Microcomputer, SCM), 简称单片机, 相当于一个简化的计算机 主板。

单片机主要应用于测控领域。使用时通常是处于测控系统的核心地 位并嵌入其中,所以国际上通常把单片机称为<mark>嵌入式控制器</mark>(EMCU, Embedded MicroController Unit),或微控制器(MCU, MicroController Unit)。我国习惯于使用"单片机"这一名称。

单片机是计算机技术发展史上的一个重要里程碑,标志着计算机正 式形成了通用计算机系统和嵌入式计算机(单片机)系统两大分支。

为了统一起见,本课程以下内容将嵌入式计算机(单片机)统一定 义为微控制器

08:52

嵌入式系统

(自动化专业) 计算机类课程体系

(计算机专业) 课程体系

3.《微机原理与接口技术》课程教学内容改革

《微机原理与接口技术》一直是工科专业必修专业之一,但长期以来各院校基本以8086CPU为核心的微机系统及其接口技术作为主要内容。

2018 年 之 前 , 基 于8086CPU的《微机原理与接口技术》教材

8086微机课程体系结构

教学内容调整的可行性和理由

- (1)《微机原理与接口技术》以8086CPU为核心的微机系统及其接口技术 作为主要内容。虽然内容经典,对了解冯.诺依曼结构的计算机体系有 所帮助,但毕竟内容陈旧。现有计算机的内部结构及其CPU与8086大 相径庭。
- (2)《微机原理与接口技术》内容主要三大要点: 计算机(微控制器)工 作原理、汇编程序和接口技术,这些内容都可以在MCS-51微控制器 系统中学到,并且效果更好。其无论是工作原理还是指令系统与 8086CPU十分接近,同时更贴近实用性和实际应用。

(3) 为何仍采用汇编程序教学为主?原因《微机原理与接口技术》仍属于 原理性课程,并非应用技术类课程,汇编是直接与硬件打交道的指令 <mark>系统</mark>,用汇编语言进行MCS-51微控制器技术的教学,可加深学生对 冯.诺依曼微机系统的深刻理解。

> 应用技术将在后续学习的《嵌入式系统》课程内容调整为C语言 教学的ARM CortexM3系列STM32等32位微控制器或51内核 的高端片上系统(SoC)级ADuC834微控制器。

(4) 课程教学和实验中借助虚拟仿真工具——Proteus强大而形象的仿真 功能,以提高教学和训练的实际效果。采用Proteus虚拟仿真实验系 统,穿插在课堂教学和实验环节,甚至将实验直接搬到教室中进行。

08:52

4. 考核方法				少 按 由 宓	评分标准			
1.	コル			考核内容	90-100	75-90	60-75	<60
考核项目	考核内容	关联的 课程目 标	占总评 成绩比 重		报音系理有明文 文之2000,考相之5 大字流。参考相之5 大字流。参考相之5 大学,参考相关,有。 大学,有一个, 大学,一个, 大学, 大学, 大学, 大学, 大学, 大学, 大学, 大学, 大学, 大学	报字考且内料能使心感告数全1500 ≥3 对	报理 , 21000 , 是 大村本较学与 大村之。 大村之。 大村之。 大村之。 大村之。 大村之。 大村之。 大村之。	卷现象,体现 卷现象,体现 不出学生的使 命感与民族自 豪威
平时成绩	课程思 政实践	4	5%					
	课堂提 问及其 他	1,2,3,4	5%					
	课后作 业和随 堂测试	1,2,3	10%		能准确回答提问 思路清晰,内容 完整,甚至能体 现自己的见解与 新思路。	回答问题基本 正确,思路较 为清晰,内容 较为完整。	正确, 思路比	回答问题不够 准确, 思路欠 清楚, 内容缺 失明显。
	实验操 作及报	1,2,3	20%	课后作业和随堂 测试	按照作业题目和随堂测试评分标准据实评价。			
	告	, ,			实验方案完整、正确,验收回答	实验方案基本 完整、正确,	实验方案大致 完整、正确,	实验方案不够 完整、正确,
期末考试	期末闭卷考试	1,2,3	60%	实验操作与报告	问题准确,甚至 能体现自己的见	验收回答问题 较准确,报告	验收回答问题 大致正确,报	验收回答问题 不够正确,报
总评	成绩	1,2,3,4,5	100%		解与新思路,报 告规范、清楚、	较为规范、清 楚、完整、美	告大致规范、 清楚、完整、	告欠规范、清 楚、完整、美
				完整、美观。	观。	美观。	观。	
				期末闭卷考试	按照期末试卷评分标准据实评价			

5. 教程与参考书

(1)《微处理机原理与接口技术》, 王晓萍编著,浙江大学出版社, 2015

(2)《单片机基础(第3版)》, 李广弟等编著,

北京航空航天大学出版社,2007

(3) **(PROTEUS——电子线路设计、制版与仿真)** (第2版),

朱清慧等编著,

清华大学出版社, 2011

(4)《51单片机工程师是怎样炼成的——基于C语言

+Proteus仿真》,

老杨编著,

电子工业出版社, 2012

总学时: 64学时, 讲课42学时, 上机/讨论2学时, 实验16学时。

1. 课程介绍	0.5学时
2. 微处理器概述	1.5学时
3. MCS-51微控制器结构和原理	里 6学时
4. MCS-51指令系统	8学时
5. 汇编程序设计	4学时
6. I/O扩展	4学时
7. 存储器扩展	4学时
8. 中断系统	2学时
9. 定时器与计数器	2学时
9. 模拟接口	4学时
11. 串行数据通讯	2学时
12 . C51语言与程序设计	自学
13. 微控制器应用系统设计	4学时

08:52

6个实验, 16学时, 具体分配如下

1.	开关量输入输出实验	2学时
2.	LED轮换点亮实验	2学时
3.	LED数码管显示实验	3学时
4.	脉冲计数实验	2学时
5.	波形发生器实验	4学时
6.	单温度采集实验	3学时

- □基础性强
- □概念抽象
- **□ 内容繁多**

现象:

它是计算机硬件、计算机软件、计算 机系统的重要基础。

芯片、时序、寻址方式、工作模式、 地址译码、中断等。

硬件体系、工作原理、指令、汇编程 序设计、存储器系统、各种总线以及 接口设计等。

难讲! 难学!

基本要求:

- 1. 课前预习,上课认真听、课后复习
- 2. 有问题及时解决,勿产生堆积
- 3. 多交流,多讨论,建议做好读书笔记
- 4. 独立完成作业和实验

《微机原理与接口技术》还是一本实践性很强的技术性课程 知识与技术的区别?

知识——你知道什么?

技术——你能干什么?

将知识转变为技术需要一个过程!

强烈要求:

5.勤动手!!!

- 1. 学习STM32微控制器,提高微控制器应用能力
- 2. 到实验室去,参加老师课题
- 3. 到企业进行实践训练

1.6 网络资源

- 1、数字杭电网络教学平台
- 2、浙江大学——《微机原理与接口技术》国家精品共享资源课 http://www.icourses.cn/coursestatic/course 4265.html

1. 你对《微机原理与接口技术》课程学习有何计划或打算?

- 2. 在你的电脑中安装好Proteus和Keil软件
 - 1) Proteus pro 7.8 sp2破解 1.1
 - 2) Keil UV3 v8.08 (与Proteus完全配套)
- 3. 自学
 - 《微控制器开发环境介绍》PPT: Proteus仿真电路设计和Keil uVision3使用
 - 《PROTEUS——电子线路设计、制版与仿真》 PPT