Data Mining and Machine Learning

Assignment Project Exam Help

Statistical Modelling of Sequences (2)

Add WeChat powcoder

Peter Jančovič

Objectives

- So far, we introduced Markov models
- Hidden Markov models (HMMs)
 Assignment Project Exam Help
 Calculating the probability of an observation
- Calculating the probability of an observation sequence https://powcoder.com
- The Forward Probability as a lowest on
- HMM training

Hidden Markov Models (HMMs)

- Let's go back to our original shopping example
- Suppose that when a shopper visits a shop he or she makes a single purchase from a set of M possible items I_1 , \dots I_M
- Suppose that https://www.obderwing.the sequence of shops, we observe the sequence of purchases Add WeChat powcoder
- Because different shops may sell the same item it is in general not possible to know the shop sequence unambiguously from the purchase sequence

This is an example of a Hidden Markov process

HMMs (continued)

- In a HMM we assume that the current item purchased depends only on the current state (shop) and not on items previously purchased or shops previously visited
- Suppose x_t is the state and y_t is the item purchased at time t Add WeChat powcoder
- The diagram indicates the dependencies:

Markov Model

Hidden Markov Model

• In a hidden Markov model, the relationship between the observation sequence and the state sequence is ambiguous.

HMMs Continued

- Let B_n be the probability distribution for items bought in shop S_n (n=1,...,N)
- Then B_n Assignment Project (Fixam Help $B_n(M)$), where $B_n(m)$ is the probability of buying item I_m in shop S_n
- Or (better), $B_n^{\mathbf{A}}(\mathbf{b}_t)$ We That t has is independent of t. Note
- We can write all of these probabilities as a $N \times M$ matrix B whose n^{th} row is B_n .

Formal definition of a HMM

- An N state HMM with observations $\{I_1,...,I_M\}$ comprises:
- An underlyingn Metatt P Mark of xmodele defined by an initial state probability vector P_0 and $N \times N$ state transition probability matrix A, where:

$$-P_0(n) = P(A) dd$$
 Chat powcoder

$$-A_{nm} = P(x_t = S_m \mid x_{t-1} = S_n)$$

• An $N \times M$ state output probability matrix B where

$$-B_{nm} = B_n(m) = P(y_t = I_m / x_t = S_n)$$

Example HMM Probability Calculation

Let's start with our simple 3 state Markov model

In addition let suppose that there are 4 possible items $I_1, ..., I_4$ that wantscap with the probabilities $B_n(m)$ for n = 1, 2, 3 and m = 1, 2, 3, 4. Suppose

$$B = \begin{bmatrix} 0.6 & 0.1 & 0.1 & 0.2 \\ 0.1 & 0.1 & 0.1 & 0.7 \\ 0.2 & 0.2 & 0.3 & 0.3 \end{bmatrix}$$

UNIVERSITY^{OF} BIRMINGHAM

Example (Continued)

- What is the probability of observing the sequence $I = I_2I_3$?
- This sequence must correspond to an underlying Assignment Project Exam Help state sequence $x = x_1x_2$. Suppose $x_1 = S_1$, $x_2 = S_2$
- Then P(I, x) https://powcoder.com

$$= P(I_2|x_1) \times P(I_2|x_2) \times P(x_2|x_1) \times P(x_2|x_1)$$

$$= B_1(2) \times B_2(3) \times P_0(1) \times a_{12}$$

$$= 0.1 \times 0.1 \times 0.5 \times 0.2 = 0.001$$

UNIVERSITYOF BIRMINGHAM

Example (Continued)

- So, P(I, x) = 0.001
- But S_1S_2 is just one of the state sequences that could have generated I. It could also have arisen from S_1S_1 or S_1S_2 or S_2S_3 by S_2S_4 by S_3S_3 or S_3S_3 https://powcoder.com
- As always, when calculating the probability of an event I which may have arisen through a number of ways x, we have to sum the joint probability P(I,x) over all possible values of x. In other words:

Example (Continued)

- So,
 - $-P(I, S_1S_1) = 0.0025$

 - $P(I, S_1S_2) = 0.0010$ $P(I, S_1S_3) = 0.0045$ Project Exam Help
 - $P(I, S_2S_1)$ + topologowcod pegen P(I) = 0.0264
 - $P(I, S_2S_2) = 0.0002$ $P(I, S_2S_3) = 0.0048$ Chat powcoder

 - $-P(I, S_3S_1) = 0.0024$
 - $-P(I,S_3S_2)=0$
 - $-P(I, S_3S_3) = 0.0108$

Calculating the probability of an observed sequence

- Even in our simple example with 3 states and 2 observations there are 9 terms in the summation
- In general, if the Markov model is fully connected and has N statespand we chater. Tooks ervations, then the number of state sequences (and therefore the number of terms in the summation) is N^T . This makes direct calculation of P(I) computationally impractical.
- However, there is an efficient solution....

The Forward Probability calculation

- This is very similar to Dynamic Programming
- Given a sequence of observations $y_1, y_2, ..., y_T$, for each t and t define $\alpha_t(t) = P(y_1, y_2, ..., y_t, x_t = S_i)$
- In words, α_t (tilt is: the pyobability that the subsequence y_1 , x_{2dd} we chat powed and the Markov process is in state S_i at time t.
- This is easier to understand with a picture...

Graphical interpretation of $\alpha_t(i)$

Corresponds to $\alpha_3(2)$

UNIVERSITYOF BIRMINGHAM

Recursive equation for $\alpha_t(i)$

From the diagram,

Add WeChat powcoder

Similarly: $\alpha_2(2) = 0.0012$, $\alpha_2(3) = 0.0201$

 $P(y_1y_2) =$ $der.cop_{(y_1, y_2, x_2)} = S_1) +$

dd We chat powcoder,
$$y_2, x_2 = S_2$$
) + $P(y_1, y_2, x_2 = S_3) = P(y_1, y_2, x_2 = S_3)$

$$P(y_1, y_2, x_2 = S_3) =$$

$$\alpha_2(1) + \alpha_2(2) + \alpha_2(3) =$$

$$0.0051 + 0.0012 + 0.0201$$

$$= 0.0264$$

HMM Parameter Estimation

- Given a HMM and a sequence y we can calculate P(y)
- But where does the HMM come from? In other words how do we estimate the HMM's parameters?
 Assignment Project Exam Help

 This is done from data, using an algorithm similar to
- This is done from data, using an algorithm similar to the E-M algorithm/fprovioleting the parameters of a GMM

 Add WeChat powcoder
- The HMM training algorithm is called the Baum-Welch algorithm
- Like the E-M algorithm, it involves making an initial estimate and then iteratively improving the estimate until convergence. Hence it is only locally optimal university of the estimate.

HMM training

- 1. Make an initial estimate of the HMM M_0
- 2. Obtain a large set of training data *Y*Assignment Project Exam Help
 3. Set *i=1*
- 4. Apply the Baum-Welch algorithm to Y and M_{i-1} to get a new madel We such that $P(Y|M_i) \ge P(Y|M_{i-1})$
- 5. If $|P(Y|M_i) P(Y|M_{i-1})| \le \varepsilon$ then stop, else
 - 1. i = i+1
 - 2. Go back to step 4.

Local optimality

Summary

- Hidden Markov Models
- Calculating the probability of an observation Assignment Project Exam Help
- The forward ptobablity calculation
- HMM trainingdd WeChat powcoder

