	Utech
Name:	
Roll No.:	In Annual Of Exemple for 20th Uniform
Invigilator's Signature :	

2012

MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) Let R be the relation on the set $A = \{a, b, c\}$ where $R = \{(a, a), (b, b), (a, b), (b, a)\}$. Then R is
 - a) an equivalence relation
 - b) reflexive, symmetric but not transitive
 - c) reflexive but not symmetric and transitive
 - d) symmetric, transitive but not reflexive.
- ii) A semigroup (G,*) will be monoid if
 - a) associative law holds under (*)
 - b) commutative law holds under (*)
 - c) inverse element exists $\forall a \in G$
 - d) G contains an identity element.

4201(O) [Turn over

- iii) The set of all residue class $\,Z_6^{}\,$ contains
 - a) 6 elements
- b) 5 elements
- c) 7 elements
- d) none of these.
- iv) Solution of the recurrence relation $a_n = 3a_{n-1}, \ a_0 = 1$ is $a_n =$
 - a) 3^n

b) 3^{n-1}

c) 3^{n+1}

- d) none of these.
- v) In a Boolean Algebra, (a+b)' + (a+b') is
 - a) *b*

b) *a*

c) a'

- d) *ab*.
- vi) In a lattice { 1, 5, 25, 125 }, the complement of 25 is
 - a) 1

b) 5

c) 25

- d) 125.
- vii) If a graph has 4 vertices and 7 edges, then the order of Adjacency matrix is
 - a) 4 × 4

b) 4 × 7

c) 7×4

- d) 7×7 .
- viii) A complete graph with n vertices has
 - a) (n-1) edges
- b) n(n-1)/2 edges
- c) 2n edges
- d) n(n+1)/2 edges.
- ix) The degree of any vertex of a null graph is
 - a) 0

b) 1

c) 2

d) none of these.

x)	The hamming distance between 11010 and 10101 is					
	a)	2	b)	3 Annual of Families and Conference		
	c)	4	d)	0.		
xi)	The order of Dihedral Group D_4 is					
	a)	4	b)	6		
	c)	8	d)	64.		
xii)	If th		ns 11	distinct elements, then		
	a)	2 generators	b)	7 generators		
	c)	9 generators	d)	10 generators.		
xiii)		ch of the following tiplication?	g se	ets is closed under		
	a)	$\{1, -1, 0, 2\}$	b)	$\{1, i\}$		
	c)	$\{1, \omega, \omega^2\}$	d)	$\{1,\omega\}$.		
xiv)	A tro	ee contains at least				
	a)	one vertex	b)	two vertices		
	c)	three vertices	d)	four vertices.		
xv)	A rii	ng with zero divisors is o	called	an integral domain.		
	a)	True	b)	False.		
GROUP – B						
(Short Answer Type Questions)						
Answer any <i>three</i> of the following. $3 \times 5 = 15$						
Show that centre of a group G , given by						
$Z(G) = \{a \in G : ag = ga \forall g \in G\}$ is a normal subgroup of G .						
Show that the ring of matrices of the form $\begin{bmatrix} 2\alpha & 0 \\ 0 & 2\beta \end{bmatrix}$, $\alpha, \beta \in Z$						
cont	ains	divisors of zero. ($Z =$	set	of all integers and the		

2.

3.

operations are matrix addition and multiplication)

- 4. In a lattice (L, \wedge, \vee) prove that $a \wedge b = a$ if and only if $a \vee b = b$, $a, b \in L$.
- 5. Express E = y' + z(x' + y) as a full disjunctive normal form.
- 6. Draw the graph whose incidence matrix is

7. Define a planer graph. If G be a connected planner graph with n_v vertices, n_e edges and n_f faces, then show that $n_v - n_e + n_f = 2 \,.$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Using generating function, solve the recurrence relation $a_n-7a_{n-1}+10a_{n-2}=0 \ \text{for} \ n>1 \ \text{and} \ a_0=3 \ , \ a_1=3 \ .$
 - b) Show that the set of all roots of the equation $x^4 = 1$ forms a group under multiplication.
 - c) Show that the set of matrices $s = \left\{ \begin{pmatrix} \alpha & 0 \\ \beta & 0 \end{pmatrix} : \alpha, \beta \in \mathbb{R} \right\}$ is a left ideal but not a right ideal of 2×2 real matrices.

$$5 + 5 + 5$$

- 9. a) Show that for any two subgroups H and K of a group G, $H \cap K$ is also a subgroup of G.
 - b) Show that the mapping $f:(\mathbb{Z}_6,+)\to (\mathbb{Z}_6,+)$ defined by $f(x)=5x,\ x\in\mathbb{Z}_6$ is a group homomorphism. Find the $\ker f$.

- c) Prove that in a lattice (L, \leq) , for any $a, b, c \in L$, if $a \leq b \leq c \Rightarrow a \vee b = b \wedge c$ and $(a \wedge b) \vee (b \wedge c) = b$ = $(a \vee b) \wedge (a \vee c)$.
- 10. a) Applying Dijkstra's algorithm, find the shortest path from v_1 to v_4 in the following graph :

- b) Prove that every cut set in a connected graph contains at least one branch of every spanning tree of graph.
- c) Define Isomorphic graph. Examine whether the following two graphs are isomorphic or not.

11. a) Apply Prim's algorithm to find a minimal spanning tree for the following weighted graph:

- b) Show that if every element of a group is its own inverse, then it is an Abelian group.
- c) Show that $f: R \to R$, f(x) = 2x + 3 is a bijective mapping. 6 + 4 + 5
- 12. a) Show that a ring R satisfies cancellation law if and only if R is without zero divisor.
 - b) A relation ρ is defined on Z by " $a \rho b$ if and only if $a^2 b^2$ is divisible by 5" for $a, b \in Z$. Prove that ρ is an equivalence relation on Z. Show that there are three distinct equivalence classes. 3+2

4201(O)

c) Draw the dual of the following graph:

5
