LMD Tipo B

Prueba de clase 27 de Marzo de 2015

Alumno: D.N.I.:

RESPUESTAS A LAS PREGUNTAS TEST¹

	<i>a</i>)	<i>b</i>)	c)	<i>d</i>)
Pregunta 1	V	F	F	F
Pregunta 2	V	F	F	F
Pregunta 3	F	V	F	V
Pregunta 4	F	F	V	F
Pregunta 5	F	F	V	V

PREGUNTAS TEST.

Ejercicio 1. En un álgebra de Boole B se definen las operaciones $a \uparrow b = \overline{ab} \ y \ a \downarrow b = \overline{a+b}$. Entonces:

a)
$$\overline{x \uparrow y} = \overline{x} \downarrow \overline{y}$$

b)
$$(x \downarrow y) \uparrow z = xy\overline{z}$$

c)
$$(x \uparrow y) \uparrow z = x \uparrow (y \uparrow z)$$

d)
$$(x \uparrow x) \uparrow (y \uparrow y) = (x \uparrow y) \uparrow (x \uparrow y)$$

Ejercicio 2. Denotamos por D(m) al conjunto de los divisores del número natural m dotados con las operaciones $\vee = m.c.m.$ $y \wedge = m.c.d.$ Entonces:

- a) D(105) es un álgebra de Boole con 3 coátomos: 35,21 y 15.
- b) D(90) es un álgebra de Boole con 3 átomos: 2,5 y 9.
- c) D(27) es un álgebra de Boole con 3 átomos: 1,3 y 9.
- d) D(154) es un álgebra de Boole con 3 coátomos: 7,14 y 77.

Ejercicio 3. Dadas las funciones booleanas $f, g : \mathbb{B}^5 \to \mathbb{B}$ dadas por

$$f = M_0 \cdot M_1 \cdot M_4 \cdot M_6 \cdot M_{10} \cdot M_{15} \cdot M_{22} \cdot M_{23} \cdot M_{28} \cdot M_{30}$$
$$g = m_0 + m_5 + m_{15} + m_{21} + m_{23} + m_{24} + m_{27} + m_{31}$$

se tiene:

a)
$$f + g = M_1 \cdot M_4 \cdot M_6 \cdot M_{10} \cdot M_{22} \cdot M_{28} \cdot M_{30}$$

b)
$$fg = m_5 + m_{21} + m_{24} + m_{27} + m_{31}$$

c)
$$\overline{g} = M_1 \cdot M_2 \cdot M_3 \cdot M_4 \cdot M_6 \cdot M_7 \cdot M_8 \cdot M_9 \cdot M_{10} \cdot M_{11} \cdot M_{12} \cdot M_{13} \cdot M_{14} \cdot M_{16} \cdot M_{17} \cdot M_{18} \cdot M_{19} \cdot M_{20} \cdot M_{22} \cdot M_{25} \cdot M_{26} \cdot M_{28} \cdot M_{29} \cdot M_{30}$$

d)
$$\overline{f} = m_0 + m_1 + m_4 + m_6 + m_{10} + m_{15} + m_{22} + m_{23} + m_{28} + m_{30}$$

Ejercicio 4. Señala si cada una de las siquientes afirmaciones es equivalentes a

$$\Gamma \vDash \alpha \rightarrow (\beta \rightarrow \neg \gamma)$$

27 de Marzo de 2015 (1)

 $^{^{1}\}mathrm{Cada}$ casilla del cuadro debe ser rellenada con V (verdadero) o F (falso).

Tipo B

a)
$$\Gamma \cup \{\gamma\} \vDash \alpha \rightarrow \beta$$

b)
$$\Gamma \cup \{\alpha \rightarrow \beta\} \vDash \neg \gamma$$

- c) $\Gamma \cup \{\alpha, \beta, \gamma\}$ es insatisfacible.
- d) $\Gamma \cup \{\alpha, \beta \rightarrow \neg \gamma\}$ es satisfacible.

Ejercicio 5. Indica en cada caso si el siguiente conjunto de fórmulas es insatisfacible

a)
$$\{a \to (b \to c), \neg b \to \neg a, \neg c\}$$

b)
$$\{a \rightarrow (b \rightarrow c), \neg b \rightarrow \neg a, c\}$$

c)
$$\{a \lor b \to c, \neg b \to a, \neg c\}$$

d)
$$\{\neg b \rightarrow \neg a, (\neg b \rightarrow \neg a) \rightarrow c, \neg c\}$$

FIN DE LAS PREGUNTAS TEST

Ejercicio 6. Sea $f: \mathbb{B}^5 \to \mathbb{B}$ la función dada por

$$f(x, y, z, t, u) = xyz\overline{t}\overline{u} + \overline{x}y\overline{z}tu + \overline{x}yz\overline{t}u + zu(x\overline{y} \oplus x\overline{t}) + (x \downarrow u)yz\overline{t} + ytu(z \oplus x)$$

Calcula una expresión reducida de f como suma de productos, y expresa \overline{f} usando únicamente los operadores producto y complemento.

Solución 1. En primer lugar calculamos los mintérminos que describen a esta función; algunos vienen ya determinados:

$$xyz\overline{t}\overline{u}$$
 11100 (28)

$$\overline{x}y\overline{z}tu$$
 01011 (11)

$$\overline{x}yz\overline{t}u$$
 01101 (13)

calculamos el resto:

$$zu(x\overline{y} \oplus x\overline{t}) = zu(x\overline{y} \, \overline{x}\overline{t} + \overline{x}\overline{y}x\overline{t}) = zu(x\overline{y}(\overline{x} + t) + (\overline{x} + y)x\overline{t}) = x\overline{y}ztu + xyz\overline{t}u$$

lo que nos proporciona los mintérminos 10111, (23) y 11101, (29). Ahora

$$(x \downarrow u)yz\overline{t} = (\overline{x+u})yz\overline{t} = \overline{x}yz\overline{t}\overline{u}$$

que da el mintérmino 01100, (12). Por último

$$ytu(z \oplus x) = ytu(z\overline{x} + \overline{z}x) = \overline{x}yztu + xy\overline{z}tu$$

que son los mintérminos 01111, (15) y 11011, (27). Así que

$$f(x, y, z, t, u) = \Sigma_5 m(11, 12, 13, 15, 23, 27, 28, 29)$$

Usando el algoritmo de Quine-McClusky, por ejemplo, realizamos la minimización.

Procedemos a obtener las agrupaciones

con lo que en la primera tabla el mintérmino 23 es un implicante primo. Calculando las agrupaciones en la tabla anterior aparece

$$110$$
 , $(12, 13, 28, 29)$

(2) 27 de Marzo de 2015

LMD Tipo B

no de unos	minterm-binario	minterm-decimal		
2	01100	12		
	01011	11		
3	01101	13		
	11100	28		
3	01111	15		
	10111	23		
	11011	27		
	11101	29		

Agrupación	minterm implicados
0110_	12,13
_1100	12,28
01_11	11,15
_1011	11,27
011_1	13,15
_1101	13,29
1110_	28,29

y nos quedan 3 implicantes primos en la segunda tabla: 01_11, _1011, 011_1.

Procedemos ahora a seleccionar qué implicantes primos son esenciales. Con los tres i.p. esenciales solo queda por cubrir el mintérmino 15, y podemos optar por cualquiera de los dos i.p. restantes. Así que tenemos dos posibles soluciones:

$$f(x, y, z, t, u) = x\overline{y}ztu + y\overline{z}tu + yz\overline{t} + \overline{x}ytu$$

o bien

$$f(x, y, z, t, u) = x\overline{y}ztu + y\overline{z}tu + yz\overline{t} + \overline{x}yzu$$

Para dar una expresión de \overline{f} usamos una reducida de f y complementamos:

$$\overline{f}(x,y,z,t,u) = \overline{x\overline{y}ztu + y\overline{z}tu + yz\overline{t} + \overline{x}ytu} =$$

$$= \overline{(x\overline{y}ztu)} \overline{(y\overline{z}tu)} \overline{(yz\overline{t})} \overline{(\overline{x}ytu)}$$

que es una expresión en la que solo se usan productos y complementos.

Tabla de i.p.

		11	12	13	15	23	27	28	29
*	10111					√			
	01_11	√			√				
*	_1011	✓					√		
	011_1			✓	✓				
*	_110_		√	√				√	√
		√	✓	√		√	√	√	✓

27 de Marzo de 2015 (3)

Tipo B

Ejercicio 7. Dadas las fórmulas:

- $\bullet \alpha_1 = a \vee (d \wedge (\neg a \to e)).$
- $\bullet \ \alpha_2 = a \wedge b \to e \vee d.$
- $\bullet \ \alpha_3 = (b \leftrightarrow d) \rightarrow c.$
- $\bullet \alpha_4 = d \to ((a \to b) \land (a \to \neg b)).$
- $\beta = (d \to a) \to (b \land e)$.

estudia si es cierto que $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \models \beta$. Caso de no ser cierto, da una interpretación que lo muestre.

Solución 2. Se trata de estudiar si es cierta la consecuencia lógica

$$\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \vDash (d \to a) \to (b \land e)$$

Así que usando el Teorema de la Deducción es equivalente a

$$\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, d \rightarrow a\} \models b \land e$$

y transformando en un problema de insatisfacibilidad de un conjunto de fórmulas queda

$$\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, d \rightarrow a, \neg(b \land e)\} \vDash \square$$

Calculamos la forma clausular de cada una de las fórmulas del conjunto:

$$\begin{array}{l} \alpha_1 \equiv a \vee (d \wedge (a \vee e)) \equiv (a \vee d) \wedge (a \vee e) \\ \alpha_2 \equiv \neg (a \wedge b) \vee e \vee d \equiv \neg a \vee \neg b \vee e \vee d \\ \alpha_3 \equiv \neg ((\neg b \vee d) \wedge (b \vee \neg d)) \vee c \equiv ((b \wedge \neg d) \vee (\neg b \wedge d)) \vee c \equiv \\ \equiv ((b \vee d) \wedge (\neg d \vee \neg b)) \vee c \equiv (b \vee d \vee c) \wedge (\neg b \vee \neg d \vee c) \\ \alpha_4 \equiv \neg d \vee ((\neg a \vee b) \wedge (\neg a \vee \neg b)) \equiv (\neg d \vee \neg a \vee b) \wedge (\neg d \vee \neg a \vee \neg b)) \\ d \rightarrow a \equiv \neg d \vee a \\ \neg (b \wedge e) \equiv \neg b \vee \neg e \end{array}$$

Ahora sustituyendo cada fórmula por las cláusulas a las que da lugar, el problema original es equivalente a

$$\{a \lor d, \ a \lor e, \ \neg a \lor \neg b \lor e \lor d, \ b \lor d \lor c, \ \neg b \lor \neg d \lor c, \ \neg d \lor \neg a \lor b, \ \neg d \lor \neg a \lor \neg b, \ \neg d \lor a, \ \neg b \lor \neg e\} \models \Box$$

Para el que podemos usar el algoritmo de Davis-Putnam. Hay un literal puro (paso 2), $\lambda = c$, así que eliminamos las cláusulas donde aparece:

$$\{a \lor d, \ a \lor e, \ \neg a \lor \neg b \lor e \lor d, \ \neg d \lor \neg a \lor b, \ \neg d \lor \neg a \lor \neg b, \ \neg d \lor a, \ \neg b \lor \neg e\}$$

Ahora, como no hay cláusulas unit ni literales puros, usamos el Paso 3, y eligiendo un literal cualquiera, por ejemplo a, obtenemos dos conjuntos que deben ser ambos insatisfacibles para que lo sea el inicial. Cuando $\lambda = a$ queda

$$\{\neg b \lor e \lor d, \neg d \lor b, \neg d \lor \neg b, \neg b \lor \neg e\}$$

donde de nuevo debemos aplicar el Paso 3, por ejemplo para $\lambda = \neg b$ y obtendremos:

$$\{\neg d\}$$

que es satisfacible para la interpretación I(d)=0. No hace falta entonces examinar el conjunto de cláusulas para $\lambda=b$ ni $\lambda=\neg a$.

Así que la consecuencia lógica no ocurre, y la interpretación que lo prueba se ha obtenido en el algoritmo

$$I(\neg d) = 1$$
, $I(\neg b) = 1$, $I(a) = 1$, $I(c) = 0$

y cualquier valor para I(e).

(4) 27 de Marzo de 2015