CPSC 511 — Fall 2014 Solutions for Question #2 on Midterm Test

In this question you were asked to consider the following *decision problems*.

k-Clique

Instance: An undirected graph G = (V, E) and a positive integer k such

that $k \leq |V|$

Question: Does there exist a clique with size at least k in G?

Half-Clique

Instance: An undirected graph G = (V, E) such that |V| = 2n for some

positive integer n

Question: Does there exist a clique with size at least n = |V|/2 in G?

You were asked to use the fact that the k-Clique problem is \mathcal{NP} -complete to prove that the **Half-Clique** problem is \mathcal{NP} -complete as well.

Assumptions about Encodings

A1. Instances of both problems are encoded over an alphabet Σ_G such that

$$\{v,0,1,2,3,4,5,6,7,8,9,(,),,\}\subseteq\Sigma_{G}$$

so vertices in a graph G can be ordered as

$$V = \{v_0, v_1, \dots, v_{n-1}\}$$

where n=|V|, and vertices can be represented in a straightforward way. For example, the vertex v_i might be encoded using the letter ${\bf v}$ followed by an unpadded decimal representation of the index i. Suppose that encodings of vertices do not include the symbols (,), or ,.

- A2. It is possible to decide whether a string $\omega \in \Sigma_G^\star$ is a valid encoding of some instance (G,k) of k-Clique deterministically, using time that is polynomial in the length $|\omega|$ of ω , in the worst case.
- A3. It is possible to decide whether a string $\omega \in \Sigma_G^\star$ is a valid encoding of some instance G of *Half-Clique* deterministically, using time that is polynomial in the length $|\omega|$ of ω , in the worst case.
- A4. If $\omega \in \Sigma^*$ is a valid encoding of an instance of either k-Clique or Half-Clique, that includes an undirected graph G = (V, E), then the length of ω is
 - at least linear in the number of vertices in G, and
 - at most polynomial in the number of vertices in *G*.
- A5. If ω is a valid encoding of an instance of **Half-Clique** that is, an undirected graph G=(V,E) including an even number of vertices then every vertex $v\in V$ has an encoding as a string in Σ_G^\star whose length is at most polynomial in $|\omega|$.
- A6. If ω is a valid encoding of an instance of **Half-Clique** that is, an undirected graph G=(V,E) and μ is a string in Σ_G^\star whose length is at most polynomial in the length of ω , then it is possible to decide whether μ encodes a vertex in V deterministically, using time that is polynomial in the length of ω as well.
- A7. If ω is a valid encoding of an instance of either k-Clique or Half-Clique that includes an undirected graph G=(V,E), then the decimal representation of the number |V| of vertices in G can be computed deterministically from ω using time that is polynomial in the length of ω .
- A8. If ω is a valid encoding of an instance of k-Clique then the decimal representation of the integer input k can also be computed deterministically from ω using time that is polynomial in the length of ω .
- A9. If ω is a valid encoding of an instance of either k-Clique or Half-Clique that includes an undirected graph G=(V,E), and $\mu,\nu\in\Sigma_G^\star$ are strings encoding vertices $u,v\in V$ respectively, then it is possible to use ω,μ and ν to do each of the following, deterministically, and using time that is polynomial in the length of ω :
 - Check whether u=v.
 - Check whether $(u, v) \in E$.

Note: It is certainly acceptable if some (or even most) of these assumptions are not mentioned in your answer! However, they all do (very probably) get used in a complete solution for this problem.

¹Indeed, it is likely that every vertex has an encoding whose length is at most *logarithmic* in $|\omega|$, too, but the above assumption is really all that is needed here.

Proof of Membership in \mathcal{NP}

Suppose, now, that $\omega \in \Sigma_G^{\star}$ is an encoding of a Yes-instance of *Half-Clique*. That is, ω encodes a graph G = (V, E) such that G has a clique with size at least n, where |V| = 2n.

A *certificate* for ω will initially be defined to be an encoding of a set $S \subseteq V$ such that |S| = n and S is a clique in G.

This might be encoded as a string over an alphabet Σ_C that includes the symbols listed in Assumption A1, above, so that vertices can also be represented as strings in Σ_C^* .

In this case a certificate μ for ω might have the form

$$(\mu_1,\mu_2,\ldots,\mu_n)$$

where $\mu_1, \mu_2, \dots \mu_n$ are strings in Σ_C^* that encode vertices $u_1, u_2, \dots, u_n \in V$, respectively.

Note that, by assumptions A1, A4 and A5, it is possible to choose strings μ_1,μ_2,\ldots,μ_n , in the above certificate, whose lengths are at most polynomial in the length of ω — so that there exist integer constants c_1 and c_2 such that every encoding ω of a Yes-instance of **Half-Clique** has a certificate with length at most $p(|\omega|)$, where $p:\mathbb{N}\to\mathbb{N}$ is the polynomial function such that $p(n)=c_1n^{c_2}$ for every integer $n\geq 0$.

The definition of a *certificate* will now be slightly modified: A certificate for an encoding ω of a Yes-instance of *Half-Clique* is an encoding $\mu \in \Sigma_C^{\star}$ of a clique in G with size n (where |V|=2n) such that $|\mu| \leq p(|\omega|)$.

Suppose now that # is a symbol that does not belong to either Σ_G or Σ_C , so that it can be used as a separator between an encoding of an instance of *Half-Clique* and a certificate for this. A *verification algorithm* for *Half-Clique* is an algorithm, taking a string $\zeta \in (\Sigma_G \cup \Sigma_C \cup \{\#\})^*$ as input, that is as shown in Figure 1 on page 4.

It should be clear by an inspection of this algorithm that it accepts a string ζ if and only if ζ is an encoding of a Yes-instance of *Half-Clique* along with a certificate for this encoding, as this has been defined above. Thus this is a *correct* verification algorithm for *Half-Clique*. It should also be clear that the above assumptions — including, in particular, assumptions A3, A4, A6 and A9 — can be used to show that this algorithm can be implemented as a deterministic algorithm (or Turing machine) that uses a number of steps that is polynomial in the length of the encoding ω of the Yes-instance that is part of the input string ζ in the worst case. Thus this is a *polynomial time verification algorithm* for *Half-Clique*, as needed to show that *Half-Clique* $\in \mathcal{NP}$.

On input $\zeta \in (\Sigma_G \cup \Sigma_C \cup \{\#\})^*$:

- 1. If $\zeta = \omega \# \mu$ where $\omega \in \Sigma_G^{\star}$, $|\mu| \leq p(|\omega|)$, and $\mu \in \Sigma_C^{\star}$, then go to step 2. Otherwise *reject*.
- 2. If ω is a valid encoding of an instance of *Half-Clique* including an undirected graph G=(V,E) such that |V|=2n for some integer $n\geq 0$ then go to step 3. Otherwise *reject*.
- 3. If μ is an encoding of a set

$$S = \{u_1, u_2, \dots, u_n\}$$

of n vertices in V then go to step 4. Otherwise **reject**.

4. If u_1, u_2, \dots, u_n are distinct and $(u_i, u_j) \in E$ for all integers i and j such that $1 \le i < j \le n$ then **accept**. Otherwise **reject**.

Figure 1: A Polynomial-Time Verification Algorithm for Half-Clique

Proof That *Half-Clique* is \mathcal{NP} -Hard

Consider a total function

$$f: \Sigma_G^{\star} \to \Sigma_G^{\star}$$

with the following properties.

• If a string $\omega \in \Sigma_G^{\star}$ is not a valid encoding of an instance of k-Clique, then $f(\omega)$ is an encoding of an undirected graph G = (V, E) with four vertices and no edges —

- that is, an encoding of a small No-instance of *Half-Clique*.
- If a string $\omega \in \Sigma_G^\star$ is a valid encoding of an instance of k-Clique including an integer input k such that either k=0 or k=1 so that this is an encoding of a Yes-instance of k-Clique then $f(\omega)$ is an encoding of an undirected graph G=(V,E) with two vertices and no edges —

- that is, an encoding of a small Yes-instance of *Half-Clique*.
- Otherwise ω is a valid encoding of an instance of k-Clique that includes an undirected graph G=(V,E) and an integer k such that $2\leq k\leq n=|V|$. In this case $f(\omega)$ is an encoding of a graph $\widehat{G}=(\widehat{V},\widehat{E})$ that is as follows.
 - $\widehat{V} = V \cup \{v_{n+1}, v_{n+2}, \dots, v_{2n}\}$ where the vertices $v_{n+1}, v_{n+2}, \dots, v_{2n}$ are distinct and do not belong of V so that $|\widehat{V}| = 2n = 2 \cdot |V|$.
 - \widehat{E} includes
 - * the edges in E
 - * edges (v_{n+i}, v_{n+j}) for all integers i and j such that $1 \le i < j \le n-k$, and
 - * edges (u,v_{n+i}) for each vertex $u\in V$ and for every integer i such that $1\leq i\leq n-k$
 - and no others. Note that it follows that none of the vertices $v_{2n-k+1}, v_{2n-k+2}, \dots v_{2n}$ have any neighbours in \widehat{G} .

Claim: If ω encodes a Yes-instance (G,k) of **k-Clique** then f(w) encodes a Yes-instance of **Half-Clique**.

Proof: This is certainly true if k=0 or k=1. Suppose, instead, that (G,k) is a Yes-instance of k-Clique such that $k\geq 2$. Then there exists a subset S of V such that |S|=k and S is a clique in G. It is easy to confirm that the set

$$S \cup \{v_{n+1}, v_{n+2}, \dots, v_{n-k}\}$$

is then a subset of \widehat{V} with size $n=|\widehat{V}|/2$ that is a clique in \widehat{G} , as needed to show that \widehat{G} is a Yes-instance of *Half-Clique*.

Claim: If $f(\omega)$ is an encoding of a Yes-instance \widehat{G} of **Half-Clique** then ω is a valid encoding of a Yes-instance (G,k) of **k-Clique**.

Proof: Once again, the claim is trivial if ω is not a valid encoding of an instance of k-Clique at all (since $f(\omega)$ encodes a No-instance of **Half-Clique** in this case) or if ω is a valid encoding of an instance (G,k) of k-Clique such that k=0 or k=1 (in which case this is trivially a Yes-instance of this problem). It remains only to consider the case that ω is a valid encoding of an instance (G,k) of k-Clique such that $k\geq 2$.

Since $f(\omega)$ encodes a Yes-instance $\widehat{G}=(\widehat{V},\widehat{E})$ of **Half-Clique** such that $|\widehat{V}|=2n\geq 2k\geq 4$, there exists a set $S\subseteq \widehat{V}$ with size $n\geq 2$ such that S is a clique in \widehat{G} . As noted above, the vertices $v_{2n-k+1},v_{2n-k+2},\ldots,v_{2n}$ do not have any neighbours in \widehat{G} so they cannot belong to S, and

$$S \subseteq V \cup \{v_{n+1}, v_{n+2}, \dots, v_{2n-k}\}.$$

Now since |S| = n and

$$|S \cap \{v_{n+1}, v_{n+2}, \dots, v_{2n-k}\}| \le |\{v_{n+1}, v_{n+2}, \dots, v_{2n-k}\}| = n - k,$$

it follows that

$$|S \cap V| \ge |S| - (n - k) = k.$$

It is now reasonably easy to check that $S \cap V$ is a clique in G with size at least k, as required to confirm that (G, k) is a Yes-instance of k-Clique.

Finally, it should be reasonably clear that the function $f:\Sigma_G^\star\to\Sigma_G^\star$ that has now been described can be computed, deterministically, using time that is at most polynomial in the length of the input string ω — see assumptions A1, A2, A7 and A8 above. Thus f is a polynomial-time mapping reduction from k-Clique to Half-Clique, so that

$$k$$
-Clique \leq Half-Clique.

Since k-Clique is \mathcal{NP} -hard, it follows that **Half-Clique** is \mathcal{NP} -hard as well.

Conclusion

Since $\textit{Half-Clique} \in \mathcal{NP}$ and Half-Clique is \mathcal{NP} -hard, it follows that Half-Clique is \mathcal{NP} -complete.

A Final Note

This solution is *definitely* longer and more detailed than anything needed to receive full marks for this question on the midterm test! However, for full marks it was necessary that

- a certificate for a Yes-instance of Half-Clique was clearly described,
- at least a little bit of information about a polynomial-time verification algorithm was provided, and
- a polynomial-time mapping reduction from k-Clique to Half-Clique was clearly presented and discussed.