National University of Computer and Emerging Sciences, Lahore Campus

ANTIONAL UNIVERSE	Course:	Operating System	Course Code:	CS-205
WHITE SEE	Program:	BS(Computer Science)	Semester:	Fall 2018
§ (A) =	Duration:	1 hour	Total Marks:	40
SOIENCE	Paper Date:	2 nd October, 2018	Weight:	15%
SANSHAM SEMERGINES	Section:	All	Page(s):	4
. 8.EMER.	Exam:	Mid-1	Roll No.	

WAS EMERGIA	Exam:	Mid-1		Roll No.		
		ons on the question pap				
•		deduction of marks. U	Jse extra sheet fo	or rough work, cut	ting and blotting on	this
sheet will result in	deduction of m	arks.				
Question 1 (3 poin	ts): List four m	ain components of com	puter system whi	ich the kernel has to	manage.	
(1)	(3)					
(2)	(4) I/O including network management					
		connected to a(a				
(a)			(b)			
Question 3 (2 poin	ts): Which of the	ne following scheduling	algorithms is no	n-preemptive?		
(a) Round Robin (c) Sho		(c) Shortest	test Remaining Time First			
(b) FCFS						
-		machine level command le the device controllers		the CPU which, w	hen executed, can cha	inge
(a) True			(b) False			
Question 5 (5 poir column.	nts): Write in	each cell what type of	Inter Process Co	ommunication is di	scussed. Tick the cor	rect
		Scenario		Shared Memory	Message Passing	
Done correct	tly, sharing of in	formation is faster using	g this technique			
Pro	cesses use writ	e() and read() systen	n calls			
In some form	ns only one way	communication is poss	ible at one time			
The pro	cesses must use	some synchronization r	nechanism			
A queue is	used and mostly	the queue is controlled	by the kernel			
instructions in its in	struction stream	n machine runs one inst The program is loaded k ticks to finish, is this c	d into memory ar	•		
(a) Yes			(b) No			
Question 7 (4 poin	ts): Name any	two methods used for pa	arameter passing	between a process	and the kernel.	
(a)			(b)			

Question 8 (5 points): Tell the output of the following code. Assume that the parent process running following code has the PID = 100. Each new fork() creates a new process. Each child process gets the process ID in following way. The first digits of the child process ID are all borrowed from the parent. The last digit is equal to the number of fork() done by the parent. For example, if parent whose PID = 100, the child created in result of the first fork will have the PID = 1001 and the child created in result of the second fork will have PID = 1002.

Assume that each instruction runs in the order. Meaning instructions written on smaller line numbers will necessarily execute before the instructions written on bigger line numbers.

Hint:The function getpid() returns the PID of the calling process.

```
1
             # include <stdio.h>
2
             int main(void)
3
             {
4
             int pid=0;
             pid = fork();
5
6
             if ( pid == 0)
7
                      printf("%d,", getpid());
8
9
                      pid = fork();
10
                      if ( pid == 0)
11
                               printf("%d,", getpid());
12
                               pid = fork();
13
                               if ( pid > 0)
14
15
                                         printf("%d,", getpid());
16
17
                                         pid = fork();
18
                                         if (pid > 0)
19
                                         {
                                                  printf("%d,", getpid());
pid = fork();
20
21
22
                                                  if ( pid == 0)
23
                                                  {
24
                                                           printf("%d,", getpid());
25
                                                  }
26
                                        }
27
                               }
                      }
28
29
30
             }
             else if (pid > 0)
31
32
             {
                      printf("%d,", getpid());
33
34
             }
35
             return 0;
36
             }
```

Question 9 (5 points): Inspired from the "100,1001,1002,1003" (without the quotes) Meaning the line written before will execute	he above code, write a similar code using fork() which prints the string.). You can make the same assumption about the execution order as above e before.

Question 10 (10 points): Suppose in a machine the CPU executes one instruction per clock cycle. There are three Ethernet cards in the machine. Each machine runs some CPU cycle then reads data from any of the Ethernet cards. The processes arrive in order, i.e. P_1 then P_2 and then P_3

Explanation: The columns CPU Burst+Length show the number of CPU clock cycles needed by the process. The columns I/O Burst+Length show the number of Ethernet cycles needed after each CPU Burst. The table only shows the order in which processes need those cycles, how they will execute depends upon the scheduling algorithm.

- Using the FCFS algorithm list down the order of execution of the processes.
- Calculate the total time of execution of all processes.
- Calculate the average waiting time.

Process Name	Length	CPU Burst	I/O Burst
P_1	3	Yes	-
P_2	6	Yes	-
P_3	8	Yes	-
P_1	12	-	Yes
P_2	4	-	Yes
P_3	7	-	Yes
P_1	7	Yes	-
P_2	5	Yes	-
P ₃	3	Yes	-
P_1	13	-	Yes
P_2	10	-	Yes
P ₃	7	-	Yes
P_1	3	Yes	-
P_2	25	Yes	-
P ₃	12	Yes	-
P_1	17	-	Yes
P_2	15	-	Yes
P ₃	8	-	Yes
P_1	3	Yes	-
P_2	3	Yes	-
P ₃	3	Yes	-