AMENDMENTS TO THE CLAIMS

Please cancel claims 1, 6, 8, 9, 11, 27, 28 and 33 without prejudice to further prosecution in a divisional, continuation, continuation-in-part or other application. Please amend claims 2-5, 7, 10, 12, 13, 18, 22, 24-26, 29-32, 34 and 35 and add new claims 36-58 as shown below.

(Canceled) 1 1. 2. (Currently Amended) The SBC optical system of claim 104, wherein said 1 2 mirror further comprises a reflective coating applied to said first facet of said broad-stripe laser 3 diode. 3. (Currently Amended) The SBC optical system of claim 104, wherein said 1 2 collimating optical system is located a distance from said second facet of said broad-stripe laser 3 <u>diode</u> substantially equivalent to a collimating optical system focal length. 1 4. (Currently Amended) The SBC optical system of claim 104, wherein said collimating optical system is located a distance from said dispersive element substantially 2 equivalent to a collimating optical system focal length. 3 1 5. (Currently Amended) The SBC optical system of claim 104, further 2 comprising a divergence reducing optical system adjacent to second facet of said broad-stripe 3 laser diode, said divergence reducing optical system reducing divergence in the emissions corresponding to a fast axis of said broad-stripe laser diode. 4 1 6. (Canceled) 1 7. (Currently Amended) The SBC optical system of claim 106, wherein said aperture is selected from the group consisting of slits, circular apertures and oblong apertures 2 1 8. (Canceled) (Canceled) 9.

1	10. (Currently Amended) The SBC A spectral beam combining (SBC) optical			
2	system of claim 6, comprising:			
3	a broad-stripe laser diode;			
4	an external resonator cavity comprising:			
5	a mirror located adjacent to a first facet of said broad-stripe laser diode; and			
6	an output coupler, wherein emissions from a second facet of said broad-stripe			
7	laser diode are incident on said output coupler, said output coupler outputting a single			
8	output beam;			
9	a dispersive element interposed between said broad-stripe laser diode and said			
10	output coupler, said dispersive element reflecting a portion of said emissions back into said			
11	broad-stripe laser diode;			
12	a collimating optical system interposed between said broad-stripe laser diode and			
13	said dispersive element, said collimating optical system spatially overlapping emissions from			
14	said broad-stripe laser diode onto said dispersive element;			
15	a spatial filter interposed between said dispersive element and said output coupler.			
16	wherein said spatial filter comprises an aperture; and			
17	means for creating a plurality of pseudo emitters across said second facet of said			
18	broad-stripe laser diode with a corresponding lateral spacing between adjacent pseudo emitters,			
19	said means located within said external cavity, wherein said means generates wavelength-			
20	periodic variations in transmission or reflectivity, and wherein an aperture width associated with			
21	said aperture forms an image at said second facet of said broad-stripe laser diode less than twice			
22	said lateral spacing of adjacent pseudo emitters multiplied by a factor by which the output beam			
23	divergence exceeds the diffraction limit.			
1	11. (Canceled)			
1	12 (Cymanthy Amandad) The SDC antical gystom of claim 101 whomain said			
2	12. (Currently Amended) The SBC optical system of claim <u>10</u> 1, wherein said			
2	pseudo emitter creating means is comprised of a birefringent material.			
1	13. (Currently Amended) The SBC optical system of claim 101, wherein said			
2	pseudo emitter creating means is comprised of an etalon.			

(Original) The SBC optical system of claim 13, wherein said etalon is 14. 1 located between said broad-stripe laser diode and said dispersive element. 2 (Original) The SBC optical system of claim 2, wherein said pseudo 15. 1 2 emitter creating means is comprised of an etalon, said etalon comprising said broad-stripe laser 3 diode, said reflective coating applied to said first facet of said broad-stripe laser diode and a 4 second reflective coating applied to said second facet of said broad-stripe laser diode. 1 16. (Original) The SBC optical system of claim 15, wherein a maximum gain corresponding to said plurality of pseudo emitters is at least 1.5 times higher than a minimum 2 3 gain corresponding to said plurality of pseudo emitters. (Original) The SBC optical system of claim 16, wherein said maximum 17. 1 2 gain is between 2 and 4 times higher than said minimum gain. (Currently Amended) The SBC optical system of claim 101, wherein a 1 18. maximum gain corresponding to said plurality of pseudo emitters is at least 1.5 times higher than 2 a minimum gain corresponding to said plurality of pseudo emitters. 3 19. (Original) The SBC optical system of claim 18, wherein said maximum 1 2 gain is between 2 and 4 times higher than said minimum gain. 20. 1 (Original) The SBC optical system of claim 15, wherein lasing is suppressed at a plurality of minimum gain locations associated with said plurality of pseudo 2 emitters. 3 (Original) The SBC optical system of claim 20, wherein said plurality of 1 21. minimum gain locations correspond to a plurality of wavelengths. 2 22. (Currently Amended) The SBC optical system of claim 104, wherein 1 lasing is suppressed at a plurality of minimum gain locations associated with said plurality of 2

pseudo emitters.

1	23. (Original) The SBC optical system of claim 22, wherein said plurality of			
2	minimum gain locations correspond to a plurality of wavelengths.			
1	24. (Currently Amended) The SBC optical system of claim <u>10</u> 1, wherein said			
2	lateral spacing is at least equivalent to one half of a fundamental mode diameter associated with			
3	said external resonator cavity.			
1	25. (Currently Amended) The SBC optical system of claim <u>10</u> 4, wherein said			
2	lateral spacing is at least equivalent to a fundamental mode diameter associated with said			
3	external resonator cavity.			
1	26. (Currently Amended) The SBC A spectral beam combining (SBC) optical			
2	system of claim-1, comprising:			
3	a broad-stripe laser diode;			
4	an external resonator cavity comprising:			
5	a mirror located adjacent to a first facet of said broad-stripe laser diode; and			
6	an output coupler, wherein emissions from a second facet of said broad-stripe			
7	laser diode are incident on said output coupler, said output coupler outputting a single			
8	output beam;			
9	a dispersive element interposed between said broad-stripe laser diode and said			
10	output coupler, said dispersive element reflecting a portion of said emissions back into said			
11	broad-stripe laser diode;			
12	a collimating optical system interposed between said broad-stripe laser diode and			
13	said dispersive element, said collimating optical system spatially overlapping emissions from			
14	said broad-stripe laser diode onto said dispersive element;			
15	a spatial filter interposed between said dispersive element and said output coupler			
16	<u>and</u>			
17	means for creating a plurality of pseudo emitters across said second facet of said			
18	broad-stripe laser diode with a corresponding lateral spacing between adjacent pseudo emitters,			
19	said means located within said external cavity, wherein said means generates wavelength-			
20	periodic variations in transmission or reflectivity, and wherein said lateral spacing is equivalent			

21	to at least one half of a fundamental mode diameter associated with said external resonator cavity				
22	multiplied by a factor by which the output beam divergence exceeds the diffraction limit.				
1		27.	(Canceled)		
1		28.	(Canceled)		
1		29.	(Currently Amended) The method of claim 3228, wherein said forming		
2	step comprises	the ste	ep of transmitting the output of the broad-stripe laser diode through an		
3	etalon.		•		
1		30.	(Currently Amended) The method of claim 3428, wherein said forming		
2	step further co	mprise	s the step of laterally spacing said pseudo emitters by at least one half of a		
3	fundamental ca	- avity m	node diameter.		
1		31.	(Currently Amended) The method of claim 3428, wherein said forming		
2	step further comprises the step of laterally spacing said pseudo emitters by at least a fundamental				
3	cavity mode di	ameter	•		
1		32.	(Currently Amended) The method of claim 28, wherein said forming step		
2	further comprises the step of A method for improving the beam quality of a broad-stripe laser				
3	diode, the method comprising the steps of:				
4		formin	ng a plurality of pseudo emitters from an output of the broad-stripe laser		
5	diode;				
6		lateral	ly spacing said pseudo emitters by at least one half of a fundamental cavity		
7	mode diameter	multip	plied by a factor corresponding to an amount by which an output beam		
8	divergence exc	eeds a	system diffraction limit; and		
9		passing	g a plurality of emissions corresponding to said plurality of pseudo emitters		
10	through an SB	C optic	eal system.		
1		33.	(Canceled)		

1	34. (Currently Amended) the method of claim 28, further comprising the step				
2	of A method for improving the beam quality of a broad-stripe laser diode, the method comprising				
3	the steps of:				
4	forming a plurality of pseudo emitters from an output of the broad-stripe laser				
5	diode;				
6	passing a plurality of emissions corresponding to said plurality of pseudo emitters				
7	through an SBC optical system; and				
8	selecting a slit width for a slit associated with a spatial filter of said SBC optical				
9	system so that an image of said slit projected onto a front facet of the broad-strip laser diode is				
10	less than twice a lateral spacing of adjacent pseudo emitters multiplied by a factor corresponding				
11	to an amount by which an output beam divergence exceeds a system diffraction limit.				
1	35. (Currently Amended) The method of claim <u>3228</u> , further comprising the				
2	step of suppressing lasing at a plurality of wavelengths corresponding to pseudo emitter				
3	minimums.				
1	36. (New) The SBC optical system of claim 26, wherein said mirror further				
2	comprises a reflective coating applied to said first facet of said broad-stripe laser diode.				
1	37. (New) The SBC optical system of claim 26, wherein said collimating				
2	optical system is located a distance from said second facet of said broad-stripe laser diode				
3	substantially equivalent to a collimating optical system focal length.				
1	38. (New) The SBC optical system of claim 26, wherein said collimating				
2	optical system is located a distance from said dispersive element substantially equivalent to a				
3	collimating optical system focal length.				
1	39. (New) The SBC optical system of claim 26, wherein said spatial filter				
2	comprises an aperture.				
1	40. (New) The SBC optical system of claim 39, wherein said aperture is				
2	selected from the group consisting of slits, circular apertures and oblong apertures.				

(New) The SBC optical system of claim 39, wherein an aperture width 1 41. associated with said aperture forms an image at said second facet of said broad-stripe laser diode 2 less than twice said lateral spacing of adjacent pseudo emitters. 3 (New) The SBC optical system of claim 39, wherein said aperture 1 42. 2 comprises a slit, and wherein a slit width associated with said slit forms an image at said second facet of said broad-stripe laser diode less than twice said lateral spacing of adjacent pseudo 3 4 emitters. (New) The SBC optical system of claim 26, further comprising a 1 43. 2 divergence reducing optical system adjacent to second facet of said broad-stripe laser diode, said divergence reducing optical system reducing divergence in the emissions corresponding to a fast 3 axis of said broad-stripe laser diode. 4 (New) The SBC optical system of claim 26, wherein said pseudo emitter 1 44. creating means is comprised of a birefringent material. 2 (New) The SBC optical system of claim 26, wherein said pseudo emitter 45. 1 2 creating means is comprised of an etalon. (New) The SBC optical system of claim 45, wherein said etalon is located 46. 1 between said broad-stripe laser diode and said dispersive element. 2 (New) The SBC optical system of claim 36, wherein said pseudo emitter 1 47. 2 creating means is comprised of an etalon, said etalon comprising said broad-stripe laser diode, said reflective coating applied to said first facet of said broad-stripe laser diode and a second 3 reflective coating applied to said second facet of said broad-stripe laser diode. 4

corresponding to said plurality of pseudo emitters is at least 1.5 times higher than a minimum

(New) The SBC optical system of claim 47, wherein a maximum gain

48.

gain corresponding to said plurality of pseudo emitters.

1

2

3

- 1 49. (New) The SBC optical system of claim 48, wherein said maximum gain 2 is between 2 and 4 times higher than said minimum gain.
- 1 50. (New) The SBC optical system of claim 26, wherein a maximum gain corresponding to said plurality of pseudo emitters is at least 1.5 times higher than a minimum gain corresponding to said plurality of pseudo emitters.
- 1 51. (New) The SBC optical system of claim 50, wherein said maximum gain 2 is between 2 and 4 times higher than said minimum gain.
- 1 52. (New) The SBC optical system of claim 47, wherein lasing is suppressed at a plurality of minimum gain locations associated with said plurality of pseudo emitters.
- 1 53. (New) The SBC optical system of claim 52, wherein said plurality of minimum gain locations correspond to a plurality of wavelengths.
- 1 54. (New) The SBC optical system of claim 26, wherein lasing is suppressed at a plurality of minimum gain locations associated with said plurality of pseudo emitters.
- 1 55. (New) The SBC optical system of claim 54, wherein said plurality of minimum gain locations correspond to a plurality of wavelengths.
- 1 56. (New) The SBC optical system of claim 26, wherein said lateral spacing 2 is at least equivalent to a fundamental mode diameter associated with said external resonator cavity.
- 1 57. (New) The method of claim 34, wherein said forming step comprises the step of transmitting the output of the broad-stripe laser diode through an etalon.
- 1 58. (New) The method of claim 34, further comprising the step of suppressing lasing at a plurality of wavelengths corresponding to pseudo emitter minimums.