Introduction to Statistics - Young Researchers Fellowship Program

Lecture 3 - Introduction to probability

Daniel Sánchez Pazmiño

Laboratorio de Investigación para el Desarrollo del Ecuador

September 2024

Why probability?

- Probability is a foundational concept in inferential statistics.
- It is related to the idea that because it is hard to access the entire population, we can use a sample to make inferences about the population.
- We then take a sample, which is thought to be representative of the population, and use it to make inferences about the population.

Why probability?

- However, even if we ensure the sample is similar to the population based on theoretical knowledge, we would never expect that it is exactly the same.
 - There will always be some difference, potentially due to random variation, which make the sample different from the population.
- Probability is the mathematical tool that allows us to quantify the uncertainty associated with the sample.
 - How far are we from the population?
 - If there are significant differences, are we looking for an unrepresentative sample?
 - lacktriangle Is a sample mean fundamentally different from the population mean?
- All the questions above can be answered using the concepts of probability.

Probability

- A measure of the likelihood through which an event will occur.
- For example: when seeing gray clouds, we might think that it will rain. The probability of rain is higher when we see gray clouds.
 - However, it is not certain that it will rain. It might rain, or it might not (it is uncertain).

Approaches to probability calculation

- There are two main approaches to calculate probability:
 - Frequentist approach
 - Bayesian approach
- The frequentist approach is based on the idea that probability is the long-run frequency of an event.
 - For example, the probability of getting a head when flipping a coin is 0.5 because in the long run, half of the flips will be heads.
- This means that frequentist probability will calculate a probability based on past data

$$Probability = \frac{\text{Number of times an event occurred}}{\text{Total number of trials}}$$

Approaches to probability calculation

- Another major approach to probability is the Bayesian approach (pronounced "bay-zee-an").
- The Bayesian approach is based on the idea that probability is a a measure of the degree of belief that an event will occur.
 - Hence, it is like a measure of how "good" our information is.
- We won't focus Bayesian approaches on this module, but it is good to know that it exists, and researchers have devoted a lot of time to it.
 - Typically, we will want to understand frequentist approaches first and gain mathematical intuition before we move to Bayesian approaches.

Basic probability rules

- Two major rules govern probability:
- **1** All probabilities are between 0 and 1.
 - A probability of 0 means that the event will never happen (0% chance).
 - A probability of 1 means that the event will always happen (100% chance).
 - This means probabilities are always in proportion form, but can be easily converted to percentages.
- The sum of the probabilities for all possible outcomes of an event must sum to 1.
 - In an exam, you'd have two outcomes: pass or fail (assuming no other "weird" outcomes).
 - The probability of passing plus the probability of failing must sum to 1.
 - This means 100% of outcomes are covered in the "possible outcomes" set, each with a probability.

Probability: the world of board games

- Two typical examples often emerge when discussing probability:
 - Flipping a "fair" coin
 - Rolling a "fair" die
- A fair coin is a coin that has an equal probability of landing on heads or tails.
- So, because there is 1 head and 1 tail, the probability of getting a head is 1/2, and the probability of getting a tail is 1/2.

$$(P(H)) = \frac{Number of heads}{Total number of outcomes} = \frac{1}{2}$$

$$(P(T)) = \frac{Number of tails}{Total number of outcomes} = \frac{1}{2}$$

Probability: the world of board games

- The other common example is rolling a die.
- A die has 6 faces, each with a number from 1 to 6.
- The probability of getting a 1 is 1/6, the probability of getting a 2 is 1/6, and so on.

Probability: the world of board games

- It is common to also see drawing a card from a deck of cards as an example of probability.
- Decks of cards have 52 cards, with 4 suits (hearts, diamonds, clubs, and spades) and 13 cards in each suit.
- Special cards include the King, Queen, the Jack, and the Ace.
 - There are 4 of each of these cards in the deck.
 - The probability of drawing a King is 4/52, the probability of drawing a Queen is 4/52, and so on.

The lingo: experiments, events, outcomes and sample spaces

- There is specific terminology and definitions in probability that must be understood before we move forward.
- An **experiment** is a process that generates well-defined outcomes, and we're interested in probabilities associated with these outcomes.
 - For example, flipping a coin, rolling a die, or drawing a card from a deck.
- An **event** is a subset of the outcomes of an experiment.
 - For example, in flipping a coin, the event of getting a head is a subset of the outcomes of the experiment.

The lingo: experiments, events, outcomes and sample spaces

- In simple experiments, we often see "events" covering one outcome, and not more.
 - However, events can "group" outcomes in a specific way.
 - E.g. the event of getting an even number when rolling a die. This event covers outcomes 2, 4, and 6.
- The sample space is the set of all possible outcomes of an experiment.
 - For example, when flipping a coin, the sample space is {H, T}.
 - When rolling a die, the sample space is $\{1, 2, 3, 4, 5, 6\}$.

Set theory and probability

- Probability is closely related to set theory.
 - Sets are collections of objects, and in probability, we often think of events as sets of outcomes.
- Thus, it is common to see notation from set theory in probability.
 - A set is denoted by curly braces, e.g. {1, 2, 3, 4, 5, 6}.
 - We use letters to denote sets, e.g. A, B, C, etc.
 - We use set operations to calculate probabilities.
 - We use Venn diagrams to visualize probabilities.
- Set theory operators, such as belongs to (\in) , union (\cup) , intersection (\cap) , and complement (') are used in probability.

Basic operations in probability

- There are three basic operations in probability:
 - Union
 - Intersection
 - Complement

Union of