实验一单管放大电路仿真及实验

张蔚桐 2015011493 自 55

2017年3月14日

1 预习任务

1.1 电路放大原理

以阻容耦合电路为例,如图 1所示,集电极电源 V_{CC} 通过基极电阻 R_b 和集电极电阻 R_c 提供合适的 U_{be} 和 U_{ce} ,使晶体管处于放大区。为了保证放大电路正常工作,需要通过调整参数得到合适的静态工作点,保证输入信号在一定范围内时最终的信号不会失真。有交流小信号 u_i 作用时,交流量驼载在直流量上。输入信号通过容抗很小的电容加在发射结上,小电流经过晶体管放大后,在集电极产生放大的电流,通过 R_c 转换为电压变化,从而实现了对动态电压信号的放大。

图 1: 基本阻容耦合电路图

1.2 理论预估

如图 2所示是实验用电路图,其中进行理论估算时取 $r_{bb'}=100\Omega$ 于是可得 $r_{be}=r_{bb'}+\frac{Ur}{I_{BQ}}\approx 100\Omega+\frac{26\text{mV}}{10\mu\text{A}}\approx 1\text{k}\Omega$ 其中上式的各项参数按照经典值进行估计, β 估计为 100。上式仅为在数量级上的估计。

同样可以得到 $R_i \approx 10k\Omega, R_o \approx 3.3k\Omega, \dot{A} = -\frac{\beta R_L'}{r_{he}} \approx -30$

图 2: 单管共射放大电路

图 4: 晶体管输出特性

$\mathbf{2}$ EDA 中对 β 的测量

采用如图 3的电路进行测试,将晶体管按照 IV 测试仪的指示接入 IV 测试仪,将"Component"设置为"BJT NPN",将 I_b 设置为 $0A-10\mu A$, U_{ce} 设置为 0V 10V 进行宽范围测试,得到图 4所示的结果 在图 4中标识了在 $U_{ce}=2V$ 和 $U_{ce}=8V$ 下, I_c 随着 I_b 的变化情况,具体来说可以总结为下表

图 3: 晶体管 β 测试电路 图

3 理论计算 3

$I_b/\mu A$	$I_c/\mathrm{mA@U_{ce}} = 2\mathrm{V}$	$I_c/\text{mA@U}_{ce} = 8\text{V}$
0.00	0.0005	0.0007
1.11	0.2258	0.2389
2.22	0.4568	0.4834
3.33	0.6890	0.7291
4.44	0.9217	0.9754
5.56	1.1549	1.2220
6.67	1.3880	1.4689
7.78	1.6213	1.7158
8.89	1.8546	1.9627
10	2.0880	2.2097

于是可以对两种情况下的 I_c 和 I_b 做直线拟合得到

$$I_c=209.06I_b-5.2456(\mu {\rm A})@{\rm U_{ce}}=2{\rm V,R^2}=1,\beta=209.06$$

$$I_c=221.24I_b-5.5308(\mu {\rm A})@{\rm U_{ce}}=8{\rm V,R^2}=1,\beta=221.24$$
 因此可以认为晶体管的 $\beta=215$

3 理论计算