

Self-Attention and Transformer

Gunhee Kim

Computer Science and Engineering

Outline

- Attention
- Self-attention
- Transformer

Attention mechanisms in neural Networks

- Loosely based on the visual attention mechanism in humans
- Focus on a certain region of an image with high resolution while perceiving the surrounding image in low resolution
- Adjust the focal point over time

First successfully applied in neural machine translation

- In previous seq2seq model, the decoder generates a translation solely based on the last hidden state (h_3) from the encoder
- Could be unreasonable that (1) a single vector encodes all information about a potentially very long sentence and (2) the decoder produces a good translation based on only that
- What if the input sentence consists of 50 words?
- Multiple (practical) hacks: (i) reverse the input sentence, or (ii) feed the input sentence twice....

Solution: attention mechanisms!

 The decoder attends to different parts of the source sentence at each step of the output generation

Encoder: a bi-directional RNN

- x_i/y_t : a word of source/translated sentence
- Forward RNN reads the sentence, and calculates forward hidden states $(\overrightarrow{h_i}, \dots, \overrightarrow{h_T})$
- The embedding of each word x_j is obtained by the concatenation $h_i = [\overrightarrow{h_i}^T, \overleftarrow{h_i}^T]$

Solution: attention mechanisms!

 The decoder attends to different parts of the source sentence at each step of the output generation

Decoder by soft-attention

• The context vector c_t with weight α_{it}

$$c_t = \sum_{i=1}^T \alpha_{ti} \, h_i$$

can consider all input i according to its importance

$$\alpha_{ti} = \frac{\exp(e_{ti})}{\sum_{k=1}^{T} \exp(e_{tk})}$$
 how much each input i contributes

to output t

$$e_{ti} = v^T \tanh(W s_{t-1} + V h_i)$$

Solution: attention mechanisms!

• The decoder **attends** to different parts of the source sentence at each step of the output generation

Decoder by soft-attention

The language model equation is

$$P(y_t|y_t,...,y_{t-1},x) = g(y_{t-1},s_t,c_t)$$

where g is a nonlinear (multi-layered) function for probability output (e.g. hidden layers + softmax)

 s_t is an RNN hidden state at time t

$$s_t = f(s_{t-1}, y_{t-1}, c_t)$$

Visualizing the attention weight matrix α

• The decoder **attends** to different parts of the source sentence at each step of the output generation

The model generates each output word by attending sequentially to different input state

Cost of Attention

The size of attention weight matrix α is quadratic

- e.g. if input/output sentence is 50 words long, then the size of α is 50x50 = 2,500
- If we consider character-level tokenization, it could be prohibitively expensive

The previous attention mechanism is counter-intuitive

- For each output, we scan through all the input words (i.e. going back through all of our internal memory)
- Human instantaneously knows which parts of memory should be accessed
- Use reinforcement learning to predict an approximation location to focus to [Mnih 2014]

Image Captioning with Visual Attention

Solution: attention mechanisms!

 The decoder attends to different parts of the source sentence image at each step of the output generation

(b) A person is standing on a beach with a surfboard.

Image Captioning with Visual Attention

Encoder: 14x14 CNN feature map

Let the decoder to selectively focus on certain parts of an image

Decoder: LSTM layer

Similar to the decoder of [Bahdanau et al. ICLR 2015]

Language Model Pretraining

Soft attention:

Summarize ALL locations

$$z = \alpha_a a + \alpha_b b + \alpha_c c + \alpha_d d$$

Derivative $dz/d\alpha$ is nice! Train with gradient descent

Hard attention:

(image cropping) Sample ONE location according to α , z = that vector

With argmax, $dz/d\alpha$ is zero almost everywhere ... Can't use gradient descent; need reinforcement learning

Image Captioning with Visual Attention

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Video Captioning with Temporal Attention

Solution: attention mechanisms!

 The decoder attends to different parts of the source sentence frame at each step of the output generation

Video captioning

Given a short video clip, generate a descriptive sentence

Video Captioning with Temporal Attention

Encoder: 3D spatio-temporal CNN features for frames

Decoder: LSTM layer

- Similar to the decoder of [Bahdanau et al. ICLR 2015]
- **h**_t: hidden state at time t

Video Captioning with Temporal Attention

+Local+Global: A man and a woman are talking on the road

Ref: A man and a woman ride a motorcycle

+Local: Someone is frying something

+Global: The person is cooking **Basic:** A man cooking its kitchen

Ref: A woman is frying food

Ref: SOMEONE and SOMEONE swap a look

SOMEONE shifts his gaze to SOMEONE

+Local: with a smile SOMEONE arrives+Global: SOMEONE sits at a tableBasic: now, SOMEONE grins

Ref: SOMEONE gaze at SOMEONE

Memory Networks

Attention mechanisms

 The decoder attends to different parts of the source sentence/image/frame at each step of the output generation

Another interpretation: memory

• If we regard the source as the information in the memory, attention corresponds to selective memory access with weights

Memory networks = neural networks with external memory

Prevents suffering from vanishing gradient problem

End-to-End Memory Networks

Neural networks (RNN) + explicit storage + attention

Application: question answering

- (i) input: a set of sentences $\{x_i\}$, (ii) query q, and (iii) a single word answer
- Word/sentence order matters

```
Sam walks into the kitchen.

Sam picks up an apple.

Sam walks into the bedroom.

Sam drops the apple.

Q: Where is the apple?

A. Bedroom

Brian is a lion.

Julius is a lion.

Julius is white.

Bernhard is green.

Q: What color is Brian?

A. White
```

End-to-End Memory Networks

Neural networks (RNN) + explicit storage + attention

- Input $\{x_i\}$ are embedded by A, B into m_i, c_i (See the paper)
- Embedding matrices A, B, C, W are learned during training

- (1) Query embedding u = Bq
- (2) Attention in memory $p_i = \operatorname{softmax}(u^T m_i)$
- (3) Memory output $o = \sum_{i} p_{i} c_{i}$
- (4) Answer selection $\hat{a} = \operatorname{softmax}(W(o + u))$

Outline

- Attention
- Self-attention
- Transformer

Representation Learning of Sequential Data

Basic building block of sequence-to-sequence learning

Neural machine translation, summarization, QA, ...

Recurrent Neural Networks (LSTMs, GRUs and variants)

Natural fit for sentences and sequences of pixels

However,

- Sequential computation inhibits parallelization
- No explicit modeling of long and short range dependencies
- No model hierarchy

Representation Learning of Sequential Data

Convolutional neural networks

- Trivial to parallelize (per layer)
- Exploits local dependencies
- 'Interaction distance' between positions linear or logarithmic ...

However,

Long-distance dependencies require many layers

Self-Attention

Why not use attention for representations?

 Self-attention directly models relationships between all words in a sentence, regardless of their respective position

I arrived at the bank after crossing the river

- For representation of "bank", use a weighted average of all words' representations (the attention scores are used as weights)
- Trivial to parallelize (per layer)
- Constant 'path length' between any two positions

Convolution vs Attention

Convolution: different linear transformations by relative position

Convolution: a weighted average for all inputs

Multi-head Attention

Parallel attention layers with different linear transformations on input and output

It turns out that multiple different attentions are helpful

Multi-head Attention

Can combine the knowledge explored by multiple heads or agents instead of doing it by one

Comparison with Other Architectures

Self-attention connects all positions with a constant number of sequentially executed operations

• Moreover, $n \ll d$ usually

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(\hat{k} \cdot n \cdot \hat{d}^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

The amount of computation that can be parallelized

The maximum path length between any two input/output

Outline

- Attention
- Self-attention
- Transformer

Transformer

An encoder-decode structure

• Encoder maps an input sequence $(x_1, ..., x_n)$ Output Probabilities to a latent sequence $(z_1, ..., z_n)$ Softmax Decoder generates an output sequence Linear $(y_1, ..., y_n)$ from z autoregressively Add & Norm (i.e. previously generated outputs becomes Feed Forward an input to generating a next output) Add & Norm Add & Norm Multi-Head Attention **Forward** $N \times$ Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding

Inputs

Outputs

(shifted right)

29

Transformer

Encoding

- Start initial representations for each word (unfilled circles)
- Using self-attention, it aggregates information from all of the other words, generating a new representation per word informed by the entire context (filled balls)
- This step is then repeated multiple times in parallel

Decoding

- The decoder generates one word at a time from left to right
- It attends not only to the other previously generated words, but also to the final representations by the encoder

For every input word x_i

- First encode into a vector x_i and then obtain query q_i , key k_i value v_i as
- $q_i = W_q a_i$, $k_i = W_k a_i$, $v_i = W_v a_i$ where W_* are learnable parameters

Input: LSC is the best!

Attention $\alpha_{i,j}$

• Defined as inner product of Query q_i and Key k_j divided by square root of its dimensions

$$\alpha_{i,j} = \operatorname{softmax}(\frac{q_i \cdot k_j}{\sqrt{d}})$$

Output b_i

 Calculated by sum of attentions multiply by extract information from value of each word paid attention to

$$b_i = \sum_j \alpha_{i,j} \cdot v_j$$

Matricize!

Multi-heads

- Create multiple Attention matrices in one layer
- By simply double the Query, Key and Value combinations, and independently calculates attention matrix

$$A^{1}_{\text{Attention Matrix 1}} = \begin{bmatrix} \alpha_{1,1}^{1} & \alpha_{1,2}^{1} \\ \alpha_{2,1}^{1} & \alpha_{2,2}^{1} \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} \alpha_{1,1}^{2} & \alpha_{1,2}^{2} \\ \alpha_{2,1}^{2} & \alpha_{2,2}^{2} \end{bmatrix}$$
Attention Matrix 2

Transformer Architecture

Input

Add the Input embedding and the positional encoding

Encoder

- A stack of N (=6) identical layers
- (1) Multi-head attention layer: already discussed!
- (2) Position-wise feedforward neural network: a little FFN has identical parameters for each position
- Dropouts and layer normalization per sublayer

Output

Probabilities

Transformer Architecture

Decoder

- Similar to encoder
- A stack of N (=6) identical layers
- Decoder Input: the output Embedding + Positional Encoding up to i-1 outputs
- Masked Multi-Head Attention prevents future words to be part of the attention

Output

36

Transformer Architecture

Multi-head attention

The original pictures are as follows

$$\mathsf{Attention}(Q, K, V) = \mathsf{softmax} \big(QK^T / \sqrt{d_k} \big) V$$

Position encoding

- Unlike sequential RNNs, the transformer is parallel and nonsequential
- Represent the information on the absolute (or relative) position in a sequence

$$PE_{pos,i} = \begin{cases} \sin\left(\frac{pos}{10000\overline{d}}\right) & \text{if } i \text{ is even} \\ \cos\left(\frac{pos}{10000\overline{d}}\right) & \text{if } i \text{ is odd} \end{cases}$$

$$\lim_{t \to \infty} \frac{positional}{positional} = \lim_{t \to \infty} \frac{positional}{position$$

where pos is the position and i is the dimension

étudiant

suis