Stanford CS224W: GNNs for Recommender Systems

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Stanford CS224W: Recommender Systems: Task and Evaluation

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Preliminary of Recommendation

- Information Explosion in the era of Internet
 - 10K+ movies in Netflix
 - 12M products in Amazon
 - 70M+ music tracks in Spotify
 - 10B+ videos on YouTube
 - 200B+ pins (images) in Pinterest
- Personalized recommendation (i.e., suggesting a small number of interesting items for each user) is critical for users to effectively explore the content of their interest.

Matrix Factorization

Item embedding

User embedding

The embeddings are learned such that their dot product is a good approximation of the user-item matrix

Matrix-factorization as a shallow neural network model

Recommender System as a Graph

- Recommender system can be naturally modeled as a bipartite graph
 - A graph with two node types: users and items.
 - Edges connect users and items
 - Indicates user-item interaction (e.g., click, purchase, review etc.)
 - Often associated with timestamp (timing of the interaction).

Recommendation Task

Given

Past user-item interactions

Task

- Predict new items each user will interact in the future.
- Can be cast as link prediction problem.
 - Predict new user-item interaction edges given the past edges.

Stanford CS224W: Recommender Systems: Embedding-Based Models

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu

Notation

Notation:

- U: A set of all users
- V: A set of all items
- **E**: A set of observed user-item interactions
 - $E = \{(u, v) \mid u \in U, v \in V, u \text{ interacted with } v\}$

Score Function

- To get the top-K items, we need a score function for user-item interaction:
 - For $u \in U$, $v \in V$, we need to get a real-valued scalar score(u, v).
 - K items with the largest scores for a given user u (excluding alreadyinteracted items) are then recommended.

For K=2, recommended items for user u would be $\{v_1, v_3\}$.

Embedding-Based Models

- We consider embeddingbased models for scoring useritem interactions.
 - For each user $u \in U$, let $u \in \mathbb{R}^D$ be its D-dimensional embedding.
 - For each item $v \in V$, let $v \in \mathbb{R}^D$ be its D-dimensional embedding.
 - Let $f_{\theta}(\cdot,\cdot)$: $\mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$ be a parametrized function.
 - Then, $score(u, v) \equiv f_{\theta}(u, v)$

Why Embedding Models Work?

- Underlying idea:Collaborative filtering
 - Recommend items for a user by collecting preferences of many other similar users.
 - Similar users tend to prefer similar items.
- Key question: How to capture similarity between users/items?

Why Embedding Models Work?

- Embedding-based models can capture similarity of users/items!
 - Low-dimensional embeddings cannot simply memorize all user-item interaction data.
 - Embeddings are forced to capture similarity between users/items to fit the data.
 - This allows the models to make effective prediction on unseen user-item interactions.

Stanford CS224W: LightGCN

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Adjacency and Embedding Matrices

- Adjacency matrix of a (undirected) bipartite graph.
- Shallow embedding matrix.

 $m{R}_{uv}=1$ if user u interacts with item v, $m{R}_{uv}=0$ otherwise.

Matrix Formulation of GCN

- Recall: Diffusion matrix of C&S.
- Let **D** be the degree matrix of **A**.
- Define the normalized adjacency matrix \widetilde{A} as

$$\widetilde{A} \equiv D^{-1/2}AD^{-1/2}$$

Note: Different from the original GCN, self-connection is omitted here.

- Let $E^{(k)}$ be the embedding matrix at k-th layer.
- Each layer of GCN's aggregation can be written in a matrix form:

$$E^{(k+1)} = \text{ReLU}(\widetilde{A}E^{(k)}W^{(k)})$$

Matrix of node embeddings $E^{(k)}$

Each row stores node embedding

Neighbor aggregation

Learnable linear transformation

Simplifying GCN (1)

Simplify GCN by removing ReLU non-linearity:

$$E^{(k+1)} = \widetilde{A}E^{(k)}W^{(k)}$$
 Original idea from SGC [Wu et al. 2019]

The final node embedding matrix is given as

$$E^{(K)} = \widetilde{A} E^{(K-1)} W^{(K-1)}$$

$$= \widetilde{A} (\widetilde{A} E^{(K-2)} W^{(K-2)}) W^{(K-1)}$$

$$= \widetilde{A} (\widetilde{A} (\cdots (\widetilde{A} E^{(0)} W^{(0)}) \cdots) W^{(K-2)}) W^{(K-1)}$$

$$= \widetilde{A}^{K} E (W^{(0)} \cdots W^{(K-1)})$$

Simplifying GCN (2)

Removing ReLU significantly simplifies GCN!

$$E^{(K)} = \widetilde{A}^K E W$$

Diffusing node embeddings along the graph

(similar to C&S that diffuses soft labels along the graph)

- Algorithm: Apply $E \leftarrow \widetilde{A} E$ for K times.
 - Each matrix multiplication diffuses the current embeddings to their one-hop neighbors.
 - Note: \widetilde{A}^K is dense and never gets materialized. Instead, the above iterative matrix-vector product is used to compute $\widetilde{A}^K E$.

 $\mathbf{W} \equiv \mathbf{W}^{(0)} \cdots \mathbf{W}^{(K-1)}$

Multi-Scale Diffusion

We can consider multi-scale diffusion

$$\alpha_0 E^{(0)} + \alpha_1 E^{(1)} + \alpha_2 E^{(2)} + \cdots + \alpha_K E^{(K)}$$

- The above includes embeddings diffused at multiple hop scales.
- $\alpha_0 E^{(0)} = \alpha_0 \widetilde{A}^0 E^{(0)}$ acts as a self-connection (that is omitted in the definition \widetilde{A})
- The coefficients, α_0 , ..., α_K , are hyper-parameters.
- For simplicity, LightGCN uses the uniform coefficient, i.e., $\alpha_k = \frac{1}{K+1}$ for $k=0,\ldots,K$.

LightGCN: Model Overview (1)

Given:

- Adjacency matrix A
- Initial learnable embedding matrix E

LightGCN: Model Overview (2)

Iteratively diffuse embedding matrix E using \widetilde{A}

LightGCN: Model Overview (3)

 Average the embedding matrices at different scales.

LightGCN: Model Overview (4)

Score function:

 Use user/item vectors from E_{final} to score useritem interaction

LightGCN: Intuition

- Question: Why does the simple diffusion propagation work well?
- Answer: The diffusion directly encourages the embeddings of similar users/items to be similar.
 - Similar users share many common neighbors (items) and are expected to have similar future preferences (interact with similar items).

LightGCN and GCN/C&S

- The embedding propagation of LightGCN is closely related to GCN/C&S.
- Recall: GCN/C&S (neighbor aggregation part)

$$\boldsymbol{h}_{v}^{(k+1)} = \sum_{u \in N(v)} \frac{1}{\sqrt{d_{u}} \sqrt{d_{v}}} \cdot \boldsymbol{h}_{u}^{(k)}$$
Node degree

- Self-loop is added in the neighborhood definition.
- LightGCN uses the same equation except that
 - Self-loop is not added in the neighborhood definition.
 - Final embedding takes the average of embeddings from all the layers: $h_v = \frac{1}{\kappa+1} \sum_{k=0}^{K} h_v^{(k)}$.

LightGCN and MF: Comparison

- Both LightGCN and Matrix Factorization (MF)
 learn a unique embedding for each user/item.
- The difference is that
 - MF directly uses the shallow user/item embeddings for scoring.
 - LightGCN uses the diffused user/item embeddings for scoring.
- LightGCN performs better than MF but are also more computationally expensive due to the additional diffusion step.
 - The final embedding of a user/item is obtained by aggregating embeddings of its multi-hop neighboring nodes.

LightGCN: Summary

- LightGCN simplifies NGCF by removing the learnable parameters of GNNs.
- Learnable parameters are all in the shallow input node embeddings.
 - Diffusion propagation only involves matrix-vector multiplication.
 - The simplification leads to better empirical performance than NGCF.