Numerical Optimization for The Artificial Retina Algorithm

preliminary study

Maxim Borisyak ^{1,2} Mikhail Belous ² Andrey Ustyuzhanin ^{1,2} Denis Derkach ^{1,2} May 13, 2016

¹National Research University Higher School of Economics (HSE)

²Yandex School of Data Analysis

Overview

Artificial Retina

Given set of hits $\{x_i\}_{i=1}^N$ and track model parameterized by θ :

$$R(\theta) = \sum_{i=1}^{N} \exp\left(-\frac{\rho^{2}(\theta, \mathbf{x}_{i})}{\sigma^{2}}\right)$$

where $\rho_i(\theta) = \rho(\theta, \mathbf{x}_i)$ --- distance from \mathbf{x}_i to track with parameters θ .

Usage

For sufficiently small σ^2 local maxima¹ of R correspond to track parameters.

1

 $^{^{1}}$ For sufficiently large $R\gg 1$. A noisy hit still produces maximum however with $R\approx 1$.

Example

Consider VELO with tracks as straight lines coming from one point.

Possible track parameterization:

- pseudo-rapidity η and angle in the traverse plane ϕ ;
- track direction $\mathbf{n} = (n_x, n_y, n_z)$

Possible distance functions:

- projection error: $\rho(\mathbf{n}, \mathbf{x}_i) = \|\mathbf{x}_i \mathbf{n}(\mathbf{n} \cdot \mathbf{x}_i)\|$
- projection error in the corresponding VELO plane (z = const).

Example I

Figure 1: An example of an event with two tracks (dashed lines) and some noisy hits (1a) and response of the Artificial Retina in parameter space (1b). Tracks parametrized by $\theta = (x_0, t)$: $x = x_0 + tz$

¹Figures from [Abba et al., 2015].

Example II

Figure 2: Another event example (simplified VELO model, see below).

Example II

Figure 3: Retina response in for the example event on fig. 2.

Interpretation

Interpretation

- approximation of the number of hits that lie on the track;
- · conceptually similar to Hough transform.

Features

- the algorithm is defined by the track model and the distance function ρ;
- the objective function is smooth;
- · robust to noisy hits.

Application

Specialized Artificial Retina processor for LHCb

[Abba et al., 2014] proposes specialized Artificial Retina processor for *real-time* track reconstruction.

Figure 4: Retina schematic (from [Abba et al., 2015]).

Specialized Artificial Retina processor for LHCb

The processor performs grid-search² over the parameter space with two 'major' parameters and three 'minor' ones. However, the computational complexity is dramatically reduced due to intelligent distribution of hits over grid-cells.

Figure 5: The Artificial Retina processor grid (from [Abba et al., 2014]).

²The actual algorithm is more advanced and more efficient, see [Abba et al., 2014] for details.

Numerical optimization study

Artificial Retina challenges

- computing Retina response in a point is a easy task for SIMD processors;
- still the whole parameter space needs to be explored.

Our aim

- reduction in total computational complexity;
- · increase in precision;
- general-purpose Artificial Retina Algorithm for pattern search;
- study alternative approaches for searching maxima of Retina response.

Numerical optimization study

Main idea

Exploit gradient information to reduce total computational time.

Elaboration

Intermediate results of $\operatorname{Hessian}(R)$ computation can be reused to compute R and ∇R .

Hence ∇R and $\operatorname{Hessian}(R)$ can be computed in $\approx 1.5 \times$, $\approx 2 \times$ time of R computation time. E.g. consider ∇R :

$$\nabla R(\theta) = -\frac{1}{\sigma^2} \sum_{i} \exp \frac{-\rho^2(\theta, h_i)}{\sigma^2} \rho(\theta, h_i) \nabla \rho(\theta, h_i)$$
$$= -\frac{1}{\sigma^2} \sum_{i} R_i(\theta) \rho(\theta, h_i) \nabla \rho(\theta, h_i)$$

Numerical optimization

Multi-start algorithm

- 1. generate n initial guesses, set initial σ^2 ;
- 2. perform one step of hill climbing for each of *n* points;
- 3. decrease σ^2 ;
- 4. repeat *m* times from step 2.

Analysis

- + complexity is proportional to the number of initial guesses;
- + much less affected by dimensionality curse,
- stochastic nature;
- less parallelization capacity, hence increase in latency.

Experiment

Implementation details

Details

- · Python;
- theano on GPU for computing R, ∇R and $\operatorname{Hessian}(R)$;
- · truncated Newton-Raphson method.

Parallelization

- · optimization processes are independent;
- R, ∇R and $\operatorname{Hessian}(R)$ can be efficiently implemented on SIMD processors (e.g. GPU);
- latency increases in *n* times, where *n* number of steps for each initial guess.

Simplified model of VELO

Simplified model of VELO was simulated:

- tracks straight lines;
- simplified 'VELO' parameters³:
 - 20 disc layers with inner r = 8 mm, outer R = 42 mm;
 - length: L = 700 mm;
 - probability of a particle interacting with a layer: $P_{\text{int}} = \frac{1}{2}$;
 - hit error: $\epsilon \sim \mathcal{N}(0, 10^{-3})$ mm;
 - number of noisy hits: $N' \sim \text{Poisson}(250)$;
- number of secondary particles: $N \in [50, 350]$
- $\eta \sim \text{Uniform}[1, 5];$
- $\phi \sim \text{Uniform}[0, 2\pi];$
- primary vertex: $z_0 \sim \mathcal{N}(0, 5)mm$.

³Parameters are motivated by upgrade VELO TDR.

Experiment

Evaluation

• track parametrized by spherical angles (θ, ϕ) :

```
n_x = \sin \theta;

n_y = \cos \theta \sin \phi;

n_z = \cos \theta \cos \phi;
```

- a track is considered detected if the method reports local maximum within $\epsilon=5\times10^{-3}$ rad. from the track's parameters;
- computational time is relative to the amount required by grid-search to provide ϵ resolution.
- number of steps for each initial guess n = 5.

Multi-start

Figure 6: Optimization traces (blue lines) for an event in the simplified VELO. Heat map corresponds to the Retina response for the event.

Results

Computational limit is 1 / 3 of grid-search time.

Figure 7: Box plot of method's efficiency (recall) depending on the number of reconstructable tracks. Red line and blue box represent median, lower and upper quartiles. Black lines correspond to 5 % and 95 % quantiles. Ghost rate for the method is strictly zero for all events.

Results

Computational limit is 1/10 of grid-search time.

Figure 8: Box plot of method's efficiency (recall) depending on the number of reconstructable tracks. Note how efficiency decreases as the number of initial guesses (in this case \approx 400) approaches to the number of tracks. Ghost rate for the method is strictly zero for all events.

Summary

Future work

General

- · helix curve fitting;
- hybrid method: grid-search like [Abba et al., 2014] with local refinement.

Method improvements

- · custom heuristic optimization procedure;
- memetic-like algorithms:
 - · global method + local search;
 - presented: random guessing + Newton-Raphson method;
 - possible enhancement: simulated annealing + local search;
- σ^2 optimal regime;

Summary

Artificial Retina algorithm

- efficient for high-luminosities [Abba et al., 2015];
- · high parallelization capacity;

Numerical optimization for Retina

- · gradient and Hessian can be efficiently computed;
- numerical optimization for local track search;

Results

- reduction in total computation time, but
- · probabilistic results and increase in latency;

References I

Simulation and performance of an artificial retina for 40 mhz track reconstruction.

Journal of Instrumentation, 10(03):C03008.

Abba, A., Punzi, G., Spinella, F., Marino, P., Tonelli, D., Stracka, S., Lionetto, F., Ninci, D., Petruzzo, M., Cusimano, A., et al. (2014).

A specialized track processor for the lhcb upgrade. Technical report.