	TP2 - Exercício 1 Grupo 1 Diogo Coelho da Silva A100092 Pedro Miguel Ramôa Oliveira A97686
	Problema proposto: Considere o problema descrito no documento Lógica Computacional: Multiplicação de Inteiros. Neste documento usa-se um "Control Flow Automaton" como modelo do prograf imperativo que calcula a multiplicação de inteiros positivos representados por vetores de bits. Pretende-se: 1. Construir um SFOTS, usando BitVec's de tamanho n , que descreva o comportamento deste autómato; para isso identifique e codifique em Z3 ou pySMT, as variáveis do modelo, o estado inico, a relação de transição e o estado de erro.
	 Usando k-indução verifique nesse SFOTS se a propriedade (x * y + z = a * b) é um invariante do seu comportamento. Usando k-indução no FOTS acima e adicionando ao estado inicial a condição (a < 2^{n/2}) \land (b < 2^{n/2}), verifique a segurança do programa; nomeadamente prove que, com tal estado inicial, o estado de erro nunca é acessível. Proposta de resolução: A proposta de resolução apresentada neste código tem como objetivo modelar e verificar o comportamento de um algoritmo de multiplicação utilizando vetores de bits com 10 bits. Utilizando a
	biblioteca PySMT, o código declara variáveis de estado essenciais, como pc , x , y , a , b e z , e inicializa estas variáveis com valores fornecidos. As condições de transição entre estados são definidas na função trans(curr, prox), que simula as operações do algoritmo, garantindo que a lógica esteja correta. A função invariant_check(state) verifica a invariância da relação $x*y+z=a*b$, enquanto overflow(state) detecta condições de overflow, assegurando a integridade dos valores. A função principal, bmc_always(inv, K, x_val, y_val), utiliza um solver para avaliar invariantes e detectar overflows para os primeiros k estados do sistema, fornecendo feedback detalhado sobre o estado atual e relatando quaisquer falhas. Assim, a proposta não só simula o algoritmo de multiplicação, mas também verifica formalmente suas propriedades, demonstrando robustez através.
	de testes com valores aleatórios. 1. Importar as bibliotecas importantes • pysmt : Importa a biblioteca PySMT, uma ferramenta para a criação de expressões lógicas e verificação formal. • random : Gera aleatoriedade para simular eventos, como a seleção aleatória de estados ou a determinação de valores em cenários de simulação, proporcionando variabilidade nos resultados e
0]:	<pre>import random from pysmt.shortcuts import * from pysmt.typing import BVType</pre>
	2. Definição da máquina de estados Análise do Código Este código define uma máquina de estados que simula um processo de multiplicação. A máquina possui variáveis de estado que são atualizadas em cada transição. Vamos detalhar as funções presentes po código:
	1. Função declare(i) A função declare é responsável por declarar as variáveis de estado para um índice de estado específico i . Ela cria um dicionário que contém as seguintes variáveis:
	 pc : Contador de Programa (Program Counter) representando o estado atual. x , y , a , b , z : Variáveis de dados utilizadas no cálculo da multiplicação. Cada variável é representada como um símbolo (usando Symbol) com um tamanho de bit especificado por n . 2. Função init(state, x_val, y_val)
	A função init inicializa as variáveis de estado com valores específicos. Ela toma como entrada um estado e dois valores x_val e y_val e cria as seguintes condições: PC : O contador de programa inicia em 0. X : A variável x é inicializada com o valor de x_val. Y : A variável y é inicializada com o valor de y_val.
	 A: A variável a é igual a x_val. B: A variável b é igual a y_val. Z: A variável z inicia em 0. Adicionamos restrições vindas do enunciado para que a < 2^(n/2) and b < 2^(n/2) restricao_a = BVULT(state['a'], BV(half_max, n))
	 restricao_b = BVULT(state['b'], BV(half_max, n)) As condições são representadas por expressões booleanas (usando Equals) que devem ser verdadeiras para o estado inicial ser válido. 2. Função trans(curr, prox)
	A função trans define as condições de transição entre estados, levando em conta o estado atual (curr) e o próximo estado (prox). Existem quatro transições definidas: Transições: • t01 : Transição do estado 0 para o estado 1. • O pc passa de 0 para 1.
	 As variáveis x, y, a, b permanecem inalteradas. z inicia em 0. t12: Transição do estado 1, onde y não é zero. O pc continua em 1. y é decrementado em 1. z é atualizado somando curr['z'] com curr['x'].
	 t23: Transição do estado 1 para o estado 2, onde y é zero. O pc muda para 2. As variáveis x, y, a, b permanecem inalteradas. z permanece igual ao seu valor anterior. t33: Transição no estado 2, onde não há mudanças. O pc permanece em 2.
	■ Todas as variáveis continuam com seus valores inalterados. # Função para declarar variáveis de estado para cada índice i # Cria um dicionário com símbolos para: contador de programa (pc), # e variáveis x, y, a, b e z n = 10
	# Este código implementa uma máquina de estados para simular multiplicação usando operações básicas # Variáveis e estruturas principais: # - n: tamanho em bits para os números (definido como 10) # - state: dicionário que mantém o estado actual da máquina, incluindo: # * pc: contador de programa # * x, y: operandos da multiplicação # * a, b: cópias dos operandos
	<pre># * z: resultado da operação # A função declare(i): # Cria um novo estado com símbolos únicos para cada variável usando um índice i # Utiliza tipos de bitvector (BVType) para representar os números def declare(i): state = {}</pre>
	<pre>state['pc'] = Symbol('pc' + str(i), BVType(n)) # Contador de programa state['x'] = Symbol('x' + str(i), BVType(n)) # Primeiro operando state['y'] = Symbol('y' + str(i), BVType(n)) # Segundo operando state['a'] = Symbol('a' + str(i), BVType(n)) # Cópia de x state['b'] = Symbol('b' + str(i), BVType(n)) # Cópia de y state['z'] = Symbol('z' + str(i), BVType(n)) # Resultado return state</pre>
	<pre># A função init(state, x_val, y_val): # Inicializa o estado com valores específicos para x e y # Define restrições importantes: # - Contador de programa começa em 0 # - Variáveis a e b devem ser menores que 2^(n/2) # - z começa em 0 def init(state, x_val, y_val): half_max = 2 ** (n // 2)</pre>
	PC = Equals(state['pc'], BV(0, n)) X = Equals(state['x'], BV(x_val, n)) Y = Equals(state['y'], BV(y_val, n)) A = Equals(state['a'], BV(x_val, n)) # Mantem a igual a x_val B = Equals(state['b'], BV(y_val, n)) # Mantem b igual a y_val Z = Equals(state['z'], BV(0, n)) # z inicia a 0
	<pre># Adiciona restrições para garantir que os valores não ultrapassem os limites: restricao_a = BVULT(state['a'], BV(half_max, n)) restricao_b = BVULT(state['b'], BV(half_max, n)) # Combina todas as condições num único retorno: return And(PC, X, Y, A, B, Z, restricao_a, restricao_b) # Retorna a conjunção lógica de todas as condições iniciais e restrições</pre>
	# A função trans(curr, prox): # Define as transições possíveis entre estados: # t01: Estado inicial -> Estado de multiplicação # t12: Estado de multiplicação em progresso (y > 0) # Adiciona x ao resultado z e decrementa y # t23: Estado de multiplicação -> Estado final (quando y = 0) # t33: Estado final (mantém os valores) def trans(curr, prox):
	<pre>t01 = And(Equals(curr['pc'], BV(0, n)), Equals(prox['pc'], BV(1, n)), Equals(prox['x'], curr['x']), Equals(prox['y'], curr['y']), Equals(prox['a'], curr['a']), Equals(prox['b'], curr['b']), Equals(prox['z'], BV(0, n))</pre>
	<pre>t12 = And(Equals(curr['pc'], BV(1, n)), NotEquals(curr['y'], BV(0, n)), Equals(prox['x'], curr['x']), Equals(prox['y'], BVSub(curr['y'], BV(1, n))), Equals(prox['a'], curr['a']),</pre>
	<pre>Equals(prox['b'], curr['b']), Equals(prox['z'], BVAdd(curr['z'], curr['x'])), Equals(prox['pc'], BV(1, n))) t23 = And(Equals(curr['pc'], BV(1, n)), Equals(curr['yc'], BV(0, n)),</pre>
	<pre>Equals(prox['x'], curr['x']), Equals(prox['y'], curr['y']), Equals(prox['a'], curr['a']), Equals(prox['b'], curr['b']), Equals(prox['z'], curr['z']), Equals(prox['pc'], BV(2, n)))</pre>
	t33 = And(
	return Or(t01, t12, t23, t33) 3. Restrição para o invariante A função invariant_check verifica uma propriedade específica que deve ser verdadeira em todos os estados de um sistema de computação. Neste caso, a propriedade a ser verificada é:
	$x \cdot y + z = a \cdot b$ Componentes da Função 1. Entrada state: • A função recebe como argumento um dicionário state que contém as variáveis do estado atual da máquina. Essas variáveis incluem x , y , z , a , e b .
	 2. Verificação do Invariante: A expressão BVAdd(BVMul(state['x'], state['y']), state['z']) calcula x * y + z. A expressão BVMul(state['a'], state['b']) calcula a * b. A função Equals verifica se estas duas expressões são iguais. Portanto, a função retorna uma condição booleana que é verdadeira se e somente se a relação x · y + z = a · b se mantiver no estado atual da máquina.
	Verificação da Propriedade como Invariante usando k -Indução A utilização da k -indução para verificar a propriedade $x\cdot y+z=a\cdot b$ como um invariante envolve duas etapas principais: 1. Base de Indução:
	 Inicialmente, você deve verificar se a propriedade é verdadeira no estado inicial da máquina (ou seja, o estado quando o programa começa a executar). Isso geralmente é feito usando a fur de inicialização (como init), onde você define as variáveis de estado. No estado inicial, você assegura que x, y, z, a, e b estão configurados de tal forma que a relação é válida. 2. Passo de Indução: A seguir, deve-se assumir que a propriedade é verdadeira para um estado qualquer k (hipótese de indução) e, em seguida, demonstrar que ela continua a ser verdadeira para o próximo es k + 1. Isso envolve analisar as transições definidas na função trans e garantir que, se a propriedade é verdadeira no estado k, ela também se mantém válida no estado k + 1. Ou seja, deve-se garantir que as operações realizadas nas variáveis de estado durante a transição não violam a igualdade.
	A função invariant_check é essencial para assegurar que a propriedade $x \cdot y + z = a \cdot b$ se mantém ao longo do tempo, independentemente das operações que a máquina realiza. Usar k -indução para verificar este invariante proporciona um método robusto para confirmar que o comportamento do sistema é consistente e correto em relação a esta propriedade ao longo de todas as execuções.
	return Equals(BVAdd(BVMul(state['x'], state['y']), state['z']), BVMul(state['a'], state['b']) 4. Função para verificar se existe overflow
	A função overflow verifica se ocorre um overflow em qualquer uma das variáveis de estado relevantes para a operação. O overflow é um problema que pode acontecer quando um valor excede a capacidade máxima que pode ser representada com um número binário de tamanho fixo. Componentes da Função 1. Valor Máximo: • A variável max_val é definida como o maior valor que pode ser representado com n bits. Isso é calculado como $2^n - 1$.
	 2. Verificação de Overflow: A função retorna True se qualquer uma das variáveis x , y , a , b , ou z for maior que max_val . Isso é feito usando a função BVUGT , que compara as variáveis de estado com max_val . #condição para overflow def overflow(state):
	<pre>max_val = BV((2**n) - 1, n) return Or(BVUGT(state['x'], max_val), BVUGT(state['y'], max_val), BVUGT(state['a'], max_val), BVUGT(state['b'], max_val), BVUGT(state['z'], max_val)))</pre>
4]:	<pre>5. Execução do código def print_state(k, state, solver): # Utiliza f-strings para formatar a saída # solver.get_value() obtém o valor atual de cada variável # bv_unsigned_value() converte o bitvector para um inteiro sem sinal</pre>
	<pre>print(f"Estado {k}: pc = {solver.get_value(state['pc']).bv_unsigned_value()}, "</pre>
	Função de verificação por bounded model checking (BMC) Args Entrada: - inv: função que define o invariante a verificar - K: número de estados a verificar - x_val, y_val: valores iniciais para multiplicação
	Funcionamento passo a passo: 1. Cria um novo solver 2. Declara K+1 estados da máquina 3. Inicializa o estado 0 com os valores fornecidos 4. Para cada estado k até K: — Verifica a transição do estado anterior — Imprime o estado atual
	- Verifica se o invariante se mantém - Verifica se existe overflow - Interrompe se encontrar violação 5. No final: - Confirma que o invariante se verifica - Calcula e verifica o resultado final """ def bmc_always(inv, K, x_val, y_val):
	<pre>with Solver() as solver: states = [declare(i) for i in range(K + 1)] solver.add_assertion(init(states[0], x_val, y_val)) for k in range(K): if k > 0: solver.add_assertion(trans(states[k - 1], states[k])) solver.push()</pre>
	<pre>if solver.solve(): print_state(k, states[k], solver) solver.pop() solver.push() if solver.solve([Not(inv(states[k]))]): print(f"> Invariante falha no estado {k}") print_state(k, states[k], solver)</pre>
	<pre>solver.pop() return if solver.solve([overflow(states[k])]): print(f"> Overflow detetado no estado {k}") print_state(k, states[k], solver) solver.pop() return </pre>
	<pre>solver.pop() print(f"> Invariante verifica-se para os primeiros {K} estados.") final_x = solver.get_value(states[K-1]['x']).bv_unsigned_value() final_y = solver.get_value(states[K-1]['y']).bv_unsigned_value() final_z = solver.get_value(states[K-1]['z']).bv_unsigned_value()</pre>
	<pre>final_a = solver.get_value(states[K-1]['a']).bv_unsigned_value() final_b = solver.get_value(states[K-1]['b']).bv_unsigned_value() expected_sum = final_x * final_y + final_z expected_product = final_a * final_b print(f"Resultado final: x * y + z = {expected_sum}, a * b = {expected_product}. Verificação: {'Correto' if expected_sum == expected_product else 'Incorreto'</pre>
	<pre># Exemplo de teste com valores aleatórios para a e b for _ in range(3): a_val = random.randint(1, 2**(n // 2) - 1) # Gerar valor aleatório para a b_val = random.randint(1, 2**(n // 2) - 1) # Gerar valor aleatório para b print(f"Testando com a = {a_val}, b = {b_val}") bmc_always(invariant_check, 20, a_val, b_val) bmc_always(invariant_check, 20, a_val, b_val)</pre>
E E E	Testando com a = 30, b = 15 Stado 0: pc = 0, x = 30, y = 15, a = 30, b = 15, z = 0 Stado 1: pc = 1, x = 30, y = 15, a = 30, b = 15, z = 0 Stado 2: pc = 1, x = 30, y = 14, a = 30, b = 15, z = 30 Stado 3: pc = 1, x = 30, y = 13, a = 30, b = 15, z = 60 Stado 4: pc = 1, x = 30, y = 12, a = 30, b = 15, z = 90 Stado 5: pc = 1, x = 30, y = 11, a = 30, b = 15, z = 120
E E E E	stado 6: pc = 1, x = 30, y = 10, a = 30, b = 15, z = 150 stado 7: pc = 1, x = 30, y = 9, a = 30, b = 15, z = 180 stado 8: pc = 1, x = 30, y = 8, a = 30, b = 15, z = 210 stado 9: pc = 1, x = 30, y = 7, a = 30, b = 15, z = 240 stado 10: pc = 1, x = 30, y = 6, a = 30, b = 15, z = 270 stado 11: pc = 1, x = 30, y = 5, a = 30, b = 15, z = 300 stado 12: pc = 1, x = 30, y = 4, a = 30, b = 15, z = 330 stado 13: pc = 1, x = 30, y = 3, a = 30, b = 15, z = 360
	stado 14: pc = 1, x = 30, y = 2, a = 30, b = 15, z = 390 stado 15: pc = 1, x = 30, y = 1, a = 30, b = 15, z = 420 stado 16: pc = 1, x = 30, y = 0, a = 30, b = 15, z = 450 stado 17: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450 stado 18: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450 stado 19: pc = 2, x = 30, b = 15, z = 450 stado 19: pc = 2, x = 30, b = 15, z = 450 stado 19: pc = 2, x = 30
	stado 0: pc = 0, x = 30, y = 15, a = 30, b = 15, z = 0 stado 1: pc = 1, x = 30, y = 15, a = 30, b = 15, z = 0 stado 2: pc = 1, x = 30, y = 14, a = 30, b = 15, z = 30 stado 3: pc = 1, x = 30, y = 13, a = 30, b = 15, z = 60 stado 4: pc = 1, x = 30, y = 12, a = 30, b = 15, z = 90 stado 5: pc = 1, x = 30, y = 11, a = 30, b = 15, z = 120 stado 6: pc = 1, x = 30, y = 10, a = 30, b = 15, z = 150
	stado 7: pc = 1, x = 30, y = 9, a = 30, b = 15, z = 180 stado 8: pc = 1, x = 30, y = 8, a = 30, b = 15, z = 210 stado 9: pc = 1, x = 30, y = 7, a = 30, b = 15, z = 240 stado 10: pc = 1, x = 30, y = 6, a = 30, b = 15, z = 270 stado 11: pc = 1, x = 30, y = 5, a = 30, b = 15, z = 300 stado 12: pc = 1, x = 30, y = 4, a = 30, b = 15, z = 330 stado 13: pc = 1, x = 30, y = 3, a = 30, b = 15, z = 360 stado 14: pc = 1, x = 30, y = 2, a = 30, b = 15, z = 390
	stado 15: pc = 1, x = 30, y = 1, a = 30, b = 15, z = 420 stado 16: pc = 1, x = 30, y = 0, a = 30, b = 15, z = 450 stado 17: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450 stado 18: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450 stado 19: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450 stado 19: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450 stado 19: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450 stado 19: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450 stado 19: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450 stado 19: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450 stado 19: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450 stado 19: pc = 2, x = 30, y = 0, a = 30, b = 15, z = 450
	stado 0: pc = 0, x = 5, y = 10, a = 5, b = 10, z = 0 stado 1: pc = 1, x = 5, y = 10, a = 5, b = 10, z = 0 stado 2: pc = 1, x = 5, y = 9, a = 5, b = 10, z = 5 stado 3: pc = 1, x = 5, y = 8, a = 5, b = 10, z = 10 stado 4: pc = 1, x = 5, y = 7, a = 5, b = 10, z = 15 stado 5: pc = 1, x = 5, y = 6, a = 5, b = 10, z = 20 stado 6: pc = 1, x = 5, y = 5, a = 5, b = 10, z = 25 stado 7: pc = 1, x = 5, y = 4, a = 5, b = 10, z = 30
	stado 8: pc = 1, x = 5, y = 3, a = 5, b = 10, z = 35 stado 9: pc = 1, x = 5, y = 2, a = 5, b = 10, z = 40 stado 10: pc = 1, x = 5, y = 1, a = 5, b = 10, z = 45 stado 11: pc = 1, x = 5, y = 0, a = 5, b = 10, z = 50 stado 12: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 13: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 14: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 15: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50
	stado 16: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 17: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 18: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 19: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 Invariante verifica-se para os primeiros 20 estados. Sesultado final: x * y + z = 50, a * b = 50. Verificação: Correto. stado 0: pc = 0, x = 5, y = 10, a = 5, b = 10, z = 0 stado 1: pc = 1, x = 5, y = 10, a = 5, b = 10, z = 0
E E E E E	stado 2: pc = 1, x = 5, y = 9, a = 5, b = 10, z = 5 stado 3: pc = 1, x = 5, y = 8, a = 5, b = 10, z = 10 stado 4: pc = 1, x = 5, y = 7, a = 5, b = 10, z = 15 stado 5: pc = 1, x = 5, y = 6, a = 5, b = 10, z = 20 stado 6: pc = 1, x = 5, y = 5, a = 5, b = 10, z = 25 stado 7: pc = 1, x = 5, y = 4, a = 5, b = 10, z = 30 stado 8: pc = 1, x = 5, y = 3, a = 5, b = 10, z = 35 stado 9: pc = 1, x = 5, y = 2, a = 5, b = 10, z = 40
E E E E E	stado 9: pc = 1, x = 5, y = 2, a = 5, b = 10, z = 40 stado 10: pc = 1, x = 5, y = 1, a = 5, b = 10, z = 45 stado 11: pc = 1, x = 5, y = 0, a = 5, b = 10, z = 50 stado 12: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 13: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 14: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 15: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 16: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50
E E > F T E	stado 17: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 18: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 stado 19: pc = 2, x = 5, y = 0, a = 5, b = 10, z = 50 Invariante verifica-se para os primeiros 20 estados. Sesultado final: x * y + z = 50, a * b = 50. Verificação: Correto. Sestado com a = 29, b = 26 stado 0: pc = 0, x = 29, y = 26, a = 29, b = 26, z = 0 stado 1: pc = 1, x = 29, y = 26, a = 29, b = 26, z = 0
E E E E E	stado 2: pc = 1, x = 29, y = 25, a = 29, b = 26, z = 29 stado 3: pc = 1, x = 29, y = 24, a = 29, b = 26, z = 58 stado 4: pc = 1, x = 29, y = 23, a = 29, b = 26, z = 87 stado 5: pc = 1, x = 29, y = 22, a = 29, b = 26, z = 116 stado 6: pc = 1, x = 29, y = 21, a = 29, b = 26, z = 145 stado 7: pc = 1, x = 29, y = 20, a = 29, b = 26, z = 174 stado 8: pc = 1, x = 29, y = 19, a = 29, b = 26, z = 203 stado 9: pc = 1, x = 29, y = 18, a = 29, b = 26, z = 232
E E E E E	stado 10: pc = 1, x = 29, y = 17, a = 29, b = 26, z = 261 stado 11: pc = 1, x = 29, y = 16, a = 29, b = 26, z = 290 stado 12: pc = 1, x = 29, y = 15, a = 29, b = 26, z = 319 stado 13: pc = 1, x = 29, y = 14, a = 29, b = 26, z = 348 stado 14: pc = 1, x = 29, y = 13, a = 29, b = 26, z = 377 stado 15: pc = 1, x = 29, y = 12, a = 29, b = 26, z = 406 stado 16: pc = 1, x = 29, y = 11, a = 29, b = 26, z = 435 stado 17: pc = 1, x = 29, y = 10, a = 29, b = 26, z = 464
E E > R E	stado 17: pc = 1, x = 29, y = 10, a = 29, b = 26, z = 464 stado 18: pc = 1, x = 29, y = 9, a = 29, b = 26, z = 493 stado 19: pc = 1, x = 29, y = 8, a = 29, b = 26, z = 522 · Invariante verifica-se para os primeiros 20 estados. desultado final: x * y + z = 754, a * b = 754. Verificação: Correto.
E	stado 0: pc = 0, x = 29, y = 26, a = 29, b = 26, z = 0 stado 1: pc = 1, x = 29, y = 26, a = 29, b = 26, z = 0 stado 2: pc = 1, x = 29, y = 25, a = 29, b = 26, z = 29 stado 3: pc = 1, x = 29, y = 24, a = 29, b = 26, z = 58
E E E E E	stado 1: pc = 1, x = 29, y = 26, a = 29, b = 26, z = 0 stado 2: pc = 1, x = 29, y = 25, a = 29, b = 26, z = 29
E E E E E E E E E E E E E E E E E E E	stado 1: pc = 1, x = 29, y = 26, a = 29, b = 26, z = 0 stado 2: pc = 1, x = 29, y = 25, a = 29, b = 26, z = 29 stado 3: pc = 1, x = 29, y = 24, a = 29, b = 26, z = 58 stado 4: pc = 1, x = 29, y = 23, a = 29, b = 26, z = 87 stado 5: pc = 1, x = 29, y = 22, a = 29, b = 26, z = 116 stado 6: pc = 1, x = 29, y = 21, a = 29, b = 26, z = 145 stado 7: pc = 1, x = 29, y = 20, a = 29, b = 26, z = 174 stado 8: pc = 1, x = 29, y = 19, a = 29, b = 26, z = 203 stado 9: pc = 1, x = 29, y = 18, a = 29, b = 26, z = 232 stado 10: pc = 1, x = 29, y = 17, a = 29, b = 26, z = 261