Изучение плазмы газового разряда в неоне.

Дмитрий Павлов, 790 17 декабря 2018 г.

Содержание

1.	Вступление.
	1.1. Цель работы
	1.2. Оборудование
	1.3. Экспериментальная установка
2.	Словарь.
3.	Практическая часть.
	3.1. Вольт-амперная характеристика
	3.2. Зондовые характеристики
	3.3. Рассчитаем плазменную частоту колебаний электронов и дебаевский радиус.

1. Вступление.

1.1. Цель работы.

Снять ВАХ тлеющего разряда и зондовые характеристики при различных токах разряда и по результатам измерений рассчитать концентрацию и температуру электронов в плазме, степень ионизации, плазменную частоту и дебаевский радиус экранирования.

1.2. Оборудование.

- Стеклянная газоразрядная трубка, наполненная изотопом неона;
- Высоковольтный источник питания (ВИП);
- Источник питания постоянного тока;
- Делитель напряжения;
- Потенциометр, амперметры, вольтметры, резистор, переключатели.

1.3. Экспериментальная установка.

Рис. 1. Схема установки для исследования газового разряда.

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полный катод, три анода и геттерный узел — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая пленка (геттер). Трубка наполнена изотопом неона ^{22}Ne при давлении 2 мм рт. ст. Катод и один из анодов (I или II) с помощью переключателя Π_1 подключаются через балластный резистор R_6 (450 кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до 5-ти кВ.

При подключении к ВМП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке — цифровым вольтметром V_1 , подключенным к трубке через высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм.Они подключены к источнику питания GPS через потенциометр R. переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах измеряется с помощью дискретного переключателя V выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 (GDM). Для измерения зондового тока используется мультиметр A_2

2. Словарь.

1) Дебаевский радиус — расстояние, на которое распространяется действие электрического поля отдельного заряда в квазинейтральной среде, содержащей свободные положительно и отрицательно заряженные частицы (плазма, электролиты). Вне сферы радиуса дебаевской длины электрическое поле экранируется в результате поляризации окружающей среды.

3. Практическая часть.

3.1. Вольт-амперная характеристика.

	1	2	3	4	5	6	7	8		
U, B	35	33,8	32,7	31	28,7	28,6	27,6	26,6	26	25,7
I, мА	0,52	1,04	1,56	2,12	2,6	3,12	3,64	4,16	4,68	5,2
$\sigma_{\rm r} = 0.05 \cdot 10^{-3} A \sigma_{\rm rr} = 0.4 {\rm R}$										

Рис. 2. BAX тлеющего разряда.

3.2. Зондовые характеристики.

I = 5,2 MA		I = 3,1	12 мА	I = 1.56 MA		
U_2, B	А_2, мкА	U_2, B	А_2, мкА	U_2, B	А_2, мкА	
-25	-100	25	54	-25,04	-28,6	
-22	-97,9	22	52,4	-22,06	-27,6	
-19	-95,3	19	50,8	-19,05	-26,6	
-16	-91,9	16	49,1	-16,01	-25,5	
-13	-86,7	13	46,8	-13,03	-24,3	
-10	-77,9	10	42,7	-10,12	-22,2	
-8	-69,9	8	38,2	-8,13	-19,8	
-6	-58,2	6	31,9	-6,03	-16,3	
-3,9	-44,3	4,1	23,9	-4,03	-11,8	
-2,1	-30,6	2,1	13,4	-2,05	-6,36	
0	-12,1	0	1,4	-0,01	-0,14	
2	29,5	-2	-13,1	-0,05	0,66	
4	43,8	-4	-23,7	2,01	6,7	
6	57,4	-6,1	-33	3,96	11,8	
8,1	68,9	-8,1	-40,1	6,03	15,5	
10	74,9	-10	-44,6	8,03	19	
13	82,9	-13,1	-49,1	10,03	21,1	
16	87,6	-16	-51,4	13,13	23	
19	90,7	-19,1	-53,2	15,97	24,1	
22,1	93,3	-22	-54,9	19,18	25,1	
24,9	95	-25	-56,5	22,18	26	
				24,7	26,8	

$$\sigma_I = 0.5 \cdot 10^{-6} A, \sigma_U = 0.05 B.$$

Зондовые характеристики. Данные снятые с зонда при разных I, по ним построим ВАХ для каждого I. Определим температуру электронов по формуле:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}\Big|_0} \tag{1}$$

 \bigcirc при I=5.2A, \square при I=3.12A, Δ при I=1.56A.

I, mA	kT, eV	$\sigma_{ m ins}$	$\sigma_{ m std}$	σ
5.2	2.3	0.02	0.65	0.7
ε		1%	28%	28%
3.12	3.2	0.05	0.21	0.21
ε		2%	7%	7%
1.56	3.0	0.09	0.11	0.14
ε		3%	4%	5%

Определим концентрацию электронов по формуле Бома:

$$n_e = \frac{I_{\rm iH}}{0.4eS} \sqrt{\frac{m_e}{2kT}} \tag{2}$$

 $S = \pi \cdot d \cdot l = \pi \cdot 0.9 \text{mm} \cdot 5.2 \text{mm}.$

I, м A	n, M^{-3}	σ
5.2	8	2
3.12	3.8	0.3
1.56	1.83	0.09

3.3. Рассчитаем плазменную частоту колебаний электронов и дебаевский радиус.

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}},$$

$$r_D = \sqrt{\frac{kT_i}{4\pi n_i e^2}}.$$
(3)

$$r_D = \sqrt{\frac{kT_i}{4\pi n_i e^2}}. (4)$$

I, MA	$w_p, c^{-1} \cdot 10^9$	σ	I, м A	r_D, c_M	σ
5.2	16	5	5.2	16	4
3.12	11	0.7	3.12	27.1	1.8
1.56	7.6	0.4	1.56	37.8	1.8

Убедимся, что число частиц $N_D >> 1$:

$$N_D = n_i \frac{4}{3} \pi r_D^3. \tag{5}$$

I, м A	$N_D, 10^{14}$
5.2	13
3.12	31
1.56	41

Определим относительное число ионов:

I, мА	$\alpha, 10^{-10}$	σ
5.2	33	9
3.12	15	1
1.56	7.6	0.4