Heinadomi 4 - Lausnir 15/02/21

Shrefin en alltot pan somn:

- 1) Finna tomagangs spenson Noc = Nth (2) Finna sleammhlaups straw Isc
- 3) Nullstilla óháðar lindir, setja 1A uprufustram "á milli a 7 b, þá er Reg = N [sl]spennan yfir stranmlindina.
- 4) Teikum Therein jappildisre a Norton

_	•
.5	- moa
_	V14(=)
	TO 6
	700

$$T_N = \frac{V_{th}}{R_{th}} = \frac{V_{th}}{R_{eq}}$$

Gott at muna:

2. nillstillum linder

(₹) -> / (₹) -> /

1. G=1/R

Dæmi 1 – Spennustýrð straumlind

Hint: Hér er háð lind, þá verðið þið að setja inn 1 A prufustraum og finna spennu yfir straumlind til að meta jafngildisviðnámið.

Breyta	Gildi
μ	$2 \mho$
R_1	30Ω
R_2	20Ω
R_3	4Ω
R_4	5Ω

$$\begin{bmatrix}
G + G_3 + G_4 - G_4 \\
- G_4 - M & G_4
\end{bmatrix}
\begin{bmatrix}
N_0 \\
N_b
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
N_A \\
N_B
\end{bmatrix} = \begin{bmatrix}
0 \sqrt{1} \\
0 \sqrt{1}
\end{bmatrix}$$

$$\begin{bmatrix} G_{+}G_{3}+G_{4}-G_{4} \\ -G_{4}-\mu & G_{4} \end{bmatrix} \begin{bmatrix} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} N_{0} \\ N_{0} \end{bmatrix} = \begin{bmatrix}$$

Dæmi 2 – Óháðar lindir

Breyta	Gildi
$\overline{V_1}$	2 V
I_1	$2\mathrm{mA}$
R_1, R_3	$1\mathrm{k}\Omega$
R_2	$2\mathrm{k}\Omega$
R_4	$0.5\mathrm{k}\Omega$

mm (c) t	is er épet
DV No	en No=V+ioR
Resistive vallege sover	Set ion 1 MNA

$$\begin{bmatrix} G_1 + G_2 - G_2 & 1 \\ -G_2 & G_2 + G_4 & 0 \\ \hline & & & \\ \hline & & &$$

Svo
$$\begin{bmatrix} N_{4} \\ N_{5} \\ \hline \hat{J}_{V} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} V \\ -\frac{2}{3} V \\ \hline -\frac{1}{450} A \end{bmatrix}$$

eta
$$\frac{V_{0c} = V_{b} = -\frac{2}{3}V}{}$$

$$\begin{bmatrix}
G_{14} & G_{2} - G_{2} & 1 & 0 \\
-G_{2} & G_{2} & 0 & 1 \\
\hline
1 & 0 & -R_{3} & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix} 0 \\ -I_1 \\ V_1 \\ O \end{bmatrix} \qquad \begin{bmatrix} N_a \\ N_b \\ \hline j_V \\ I_{5C} \end{bmatrix} = \begin{bmatrix} \frac{4}{5} V \\ 0 V \\ -\frac{6}{5} mA \\ -\frac{8}{5} mA \end{bmatrix}$$

(3) HE en enge hidd linds, andrels!

Reg = Ry || (R₂ + R₁ || R₃)
=
$$416\frac{2}{3}\Omega$$

(Siam at Voc = Isc Reg. Passe

Dæmi 3 – Spennustýrð spennulind

Gildi
5 A
2
4Ω
2Ω
6Ω

$$\begin{bmatrix} V_{4} \\ V_{b} \\ \vdots \end{bmatrix} = \begin{bmatrix} I_{1} \\ O \\ \hline O \end{bmatrix}$$

$$\begin{bmatrix}
V_{4} \\
V_{b} \\
\vdots \\
J
\end{bmatrix} = \begin{bmatrix}
20 \\
3 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
20 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
-10 \\
A
\end{bmatrix}$$

2
$$\frac{1}{a}$$
 $\frac{1}{a}$ $\frac{$

Sio
$$I_{SC} = \frac{N_b - o}{Ry} = \frac{10}{3} A$$

