ZID: z5230310 Name: Tian Liu Date: 6/6/2020

$\mathbf{Q}\mathbf{1}$

We can handle this problem by a divide and conquer recursion.

When we want to compute M^n , we could compute $y=M^{\lfloor \frac{n}{2} \rfloor}$. We compute $\frac{n}{2}$ bu flooring. Then doing new recursion assign $\lfloor \frac{n}{2} \rfloor$ as the new N and do next recursion. If n is even, we compute $M^n=y^2$, otherwise n is odd, we do $M^n=y^2*M$ as we do floor operation for n/2.

Doing those, until n=0 and this is also a boundary condition. Since each recursion reduces the exponent by half, the number of recursive layers is $O(\log n)$, and the algorithm can get results in a very short time.

 $\mathbf{Q2}$

Q3

 $\mathbf{Q4}$

 $\mathbf{Q5}$