Problems

(1) Implement the trapezoidal rule to solve the initial value problem

$$y' = f(t, y)$$

where

$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, f(t, y) = \begin{pmatrix} f_1(t, y) \\ f_2(t, y) \end{pmatrix}, y(0) = y_0.$$

Use repeated Richardson extrapolation to improve the results. Then, use your code to solve

$$\begin{cases} t^2y'' + ty' + (t^2 - 1)y = 0, t \in [0, 3\pi] \\ y(0) = 0, \quad y'(0) = \frac{1}{2} \end{cases}$$

Use repeated Richardson extrapolation to compute $y(3\pi)$ with 10 digits of accuracy.

First, let's reduce our ODE to a system of first order ODEs as

$$\mathbf{y}' = \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} y_2 \\ \frac{1}{t^2} ((1 - t^2)y_1 - ty_2) \end{pmatrix}$$

where $y_1 = y$ and $y_2 = y'$. Now, notice our ODE has a singularity at t = 0. To get around this, we can simply expand our solution about t = 0 to get the approximate system

$$\mathbf{y}' = \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} y_2 \\ -\frac{3}{8}t + \mathcal{O}(t^2) \end{pmatrix}.$$

So, to use these systems in my code, I will use my code to solve the second system when we are near t=0 to avoid the singularity and then use the first system when we are away form the singularity. Doing so, my code gives me

$$y(3\pi) = 0.17672519830082117$$

which is accurate to at least 10 digits of the Bessel function of the first kind of order one at $t = 3\pi$!

My code is given at the end of the document.

(2) Show that the two step method

$$y_{n+1} = \frac{1}{2}(y_n + y_{n-1}) + \frac{h}{4}(4f(t_{n+1}, y_{n+1}) - f(t_n, y_n) + 3f(t_{n-1}, y_{n-1}))$$

is second order.

$$y(t_{n+1}) - \frac{1}{2}(y(t_n) + y(t_{n-1})) - \frac{h}{4}(4f(t_{n+1}, y(t_{n+1})) - f(t_n, y(t_n)) + 3f(t_{n-1}, y(t_{n-1}))) =$$

$$y(t_n) + hy'(t_n) + \frac{1}{2}h^2y''(t_n) + \mathcal{O}(h^3) -$$

$$\frac{1}{2}(y(t_n) + y(t_n) - hy'(t_n) + \frac{1}{2}h^2y''(t_n) + \mathcal{O}(h^3)) -$$

$$\frac{h}{4}(4(y'(t_n) + hy''(t_n) + \mathcal{O}(h^2)) - y'(t_n) + 3(y'(t_n) - hy''(t_n) + \mathcal{O}(h^2))) =$$

$$y(t_n) - y(t_n) + \mathcal{O}(h^3) +$$

$$h\left(y'(t_n) + \frac{1}{2}y'(t_n) - y'(t_n) + y'(t_n) + \frac{3}{4}y'(t_n)\right) + \mathcal{O}(h^3) +$$

$$h^2\left(\frac{1}{2}y''(t_n) - \frac{1}{4}y''(t_n) - y''(t_n) + \frac{3}{4}y''(t_n)\right) + \mathcal{O}(h^3) = \mathcal{O}(h^3).$$

So, the method is order two.

(3) Determine order of the multistep method

$$y_{n+1} = 4y_n - 3y_{n-1} - 2hf(t_{n-1}, y_{n-1})$$

and illustrate with an example that the method is unstable.

$$y(t_{n+1}) - 4y(t_n) + 3y(t_{n-1}) + 2hf(t_{n-1}, y(t_{n-1})) =$$

$$y(t_n) + hy'(t_n) + \frac{1}{2}h^2y''(t_n) + \frac{1}{6}h^3y'''(t_n) + \mathcal{O}(h^4) -$$

$$4y(t_n) + 3(y(t_n) - hy'(t_n) + \frac{1}{2}h^2y''(t_n) - \frac{1}{6}h^3y'''(t_n)) + \mathcal{O}(h^4) +$$

$$2h(y'(t_n) - hy''(t_n) + \frac{1}{2}h^2y'''(t_n) + \mathcal{O}(h^3)) =$$

$$\frac{1}{6}h^3y'''(t_n) + \mathcal{O}(h^4) = \mathcal{O}(h^3).$$

So, the method is order two.

A nice and simple example where the multistep is method is unstable is in the autonomous ODE

$$\begin{cases} y' = y(2-y) \\ y(0) = 1 \end{cases}$$

which should have a solution that just tends to y = 2 as t increases. Furthermore, even if the solution over shoots y = 2, we should expect the ODE to pull the equation back down to 2. If we start the multistep method with $y_0 = 0$, $y_1 = 1$, and h = 0.1 we get

$$y_2 = 4$$

 $y_3 = 12.8$
 $y_4 = 40.8$
 $y_5 = 152.448$

and so on with a number that just keeps growing even though our ODE has a stable equilibrium at y = 2. Even with very tiny step sizes, our solution still blows up because the $4y_n$ term dominates the growth of the solution. One last thing, even if we start on the stable equilibrium, this multistep method will pull away from the stable equilibrium to infinity.

(4) Show that the multistep method

$$y_{n+3} + a_2 y_{n+2} + a_1 y_{n+1} + a_0 y_n = h(b_2 f(t_{n+2}, y_{n+2}) + b_1 f(t_{n+1}, y_{n+1}) + b_0 f(t_n, y_n))$$

is fourth order only if $a_0 + a_2 = 8$ and $a_1 = -9$. Deduce that this method cannot be both fourth order and convergent.

$$\begin{aligned} y_{n+3} + a_2 y_{n+2} + a_1 y_{n+1} + a_0 y_n - h(b_2 f(t_{n+2}, y_{n+2}) - b_1 f(t_{n+1}, y_{n+1}) - b_0 f(t_n, y_n)) &= \\ y(t_n) + 3h y'(t_n) + \frac{1}{2} 3^2 h^2 y''(t_n) + \frac{1}{6} 3^3 h^3 y'''(t_n) + \frac{1}{24} 3^4 h^4 y^{(4)}(t_n) + \mathcal{O}(h^5) + \\ a_2 y(t_n) + 2a_2 h y'(t_n) + \frac{1}{2} 2^2 a_2 h^2 y''(t_n) + \frac{1}{6} 2^3 a_2 h^3 y'''(t_n) + \frac{1}{24} 2^4 a_2 h^4 y^{(4)}(t_n) + \mathcal{O}(h^5) + \\ a_1 y(t_n) + a_1 h y'(t_n) + \frac{1}{2} a_1 h^2 y''(t_n) + \frac{1}{6} a_1 h^3 y'''(t_n) + \frac{1}{24} a_1 h^4 y^{(4)}(t_n) + \mathcal{O}(h^5) + \\ -b_2 h y'(t_n) - 2b_2 h^2 y''(t_n) - \frac{1}{2} 2^2 b_2 h^3 y'''(t_n) - \frac{1}{6} 2^3 b_2 h^4 y^{(4)}(t_n) + \mathcal{O}(h^5) + \\ -b_1 h y'(t_n) - b_1 h^2 y''(t_n) - \frac{1}{2} b_1 h^3 y'''(t_n) - \frac{1}{6} b_1 h^4 y^{(4)}(t_n) + \mathcal{O}(h^5) + \\ -b_0 h y'(t_n) = \\ (1 + a_2 + a_1 + a_0) y(t_n) + \mathcal{O}(h^5) + \\ (3 + 2a_2 + a_1 - b_2 - b_1 - b_0) h y'(t_n) + \mathcal{O}(h^5) + \\ \left(\frac{1}{2} 3^2 + \frac{1}{2} 2^2 a_2 + \frac{1}{2} a_1 - 2b_2 - b_1\right) h^3 y'''(t_n) + \mathcal{O}(h^5) + \\ \left(\frac{1}{6} 3^3 + \frac{1}{6} 2^3 a_2 + \frac{1}{6} a_1 - \frac{1}{2} 2^2 b_2 - \frac{1}{2} b_1\right) h^3 y'''(t_n) + \mathcal{O}(h^5) + \\ \left(\frac{1}{24} 3^4 + \frac{1}{24} 2^4 a_2 + \frac{1}{24} a_1 - \frac{1}{6} 2^3 b_2 - \frac{1}{6} b_1\right) h^4 y^{(4)}(t_n) + \mathcal{O}(h^5) + \end{aligned}$$

which implies our multistep method is only fourth order if our coefficients solve the system

$$1 + a_2 + a_1 + a_0 = 0$$

$$3 + 2a_2 + a_1 - b_2 - b1 - b_0 = 0$$

$$\frac{1}{2}3^2 + \frac{1}{2}2^2a_2 + \frac{1}{2}a_1 - 2b_2 - b_1 = 0$$

$$\frac{1}{6}3^3 + \frac{1}{6}2^3a_2 + \frac{1}{6}a_1 - \frac{1}{2}2^2b_2 - \frac{1}{2}b_1 = 0$$

$$\frac{1}{24}3^4 + \frac{1}{24}2^4a_2 + \frac{1}{24}a_1 - \frac{1}{6}2^3b_2 - \frac{1}{6}b_1 = 0.$$

Reducing this system yields

$$a_0 + a_2 = 8$$

$$a_1 = -9$$

$$-\frac{1}{3}a_2 + b_2 = 3$$

$$-\frac{4}{3}a_2 + b_1 = -6$$

$$-\frac{1}{3}a_2 + b_0 = -3.$$

So, for our method to have any hope of being fourth order, we must have $a_0 + a_2 = 8$, $a_1 = -9$, and a few other conditions. Now, the polynomials associated with our multistep method are given by

$$\rho(\omega) = a_0 + a_1\omega + a_2\omega^2 + \omega^3$$

and

$$\sigma(\omega) = b_0 + b_1 \omega + b_2 \omega^2.$$

Then, if we want our method to be fourth order, our $\rho(\omega)$ becomes

$$\rho(\omega) = 8 - a_2 - 9\omega + a_2\omega^2 + \omega^3.$$

So, finding the roots of $\rho(\omega)$ yields the roots

$$\omega_1 = 1$$

$$\omega_2 = \frac{1}{2} \left(-a_2 - 1 - \sqrt{a_2^2 - 2a_2 + 33} \right)$$

$$\omega_3 = \frac{1}{2} \left(-a_2 - 1 + \sqrt{a_2^2 + 2a_2 + 33} \right).$$

From these, we can clearly see that ω_1 is on the unit disk and simple. However, there is no a_2 such that both ω_2 and ω_3 are within the unit disk and so there no a_2 such that our polynomial satisfies the root condition. Therefore, by the Dahlquist equivalence theorem, our fourth order multistep method cannot converge.

Code Used

Note: some of the symbols are missing in my code snippet because LATEX does not support all unicode characters.

```
2 # 2×2 First Order ODE Solver Using Trapezoidal rule
   Author: Caleb Jacobs
   Date last modified: 14-Mar-2022
8 using Plots
9 using SpecialFunctions
10 using ForwardDiff
11 using LinearAlgebra
13 # First order Bessel Equation system
14 function f(t, y)
      \# Use approximation if we are near the singularity t = 0
      if t < 1e-10
16
          return [y[2], -3*t/8] # Higher order terms + 5*(t^3)/96 - 7*(t^5)/3072]
17
          return [y[2], ((1 - t^2)*y[1] - t*y[2]) / (t^2)]
      end
20
21 end
22
23 # Newton method system solver
  function newton(f; maxIts = 100, = 1e-8, y0 = [0, 0])
                                # Initial guess
      y = y0
26
      for i 1 : maxIts
27
          J = ForwardDiff.jacobian(f, y) # Get jacobian
28
          ynew = y - (J \setminus f(y))
                                             # Find next iterate
29
          # Check for convergence
          if norm(y - ynew) <=</pre>
32
               y = ynew
34
               return y
          end
37
                                             # Pass to next iteration
          y = ynew
38
      end
39
40
      return y
41
42 end
44 # Trapezoidal rule
45 function trapz(f, a, y0, h, n)
                           # Initial conditions
      yi = y0
46
      ti = a
                            # Initial time
```

```
tf = a + h
                           # First time step
48
49
      # Run trapezoidal until desired time
      for i = 1 : n
          # Current trapezoidal equation
          g(y) = y - (yi + h * (f(ti, yi) + f(tf, y)) / 2)
54
          yi = newton(g)
                           # Solve trapezoidal equation
                           # Store new time
          ti = tf
57
          tf = ti + h
                           # Compute next time
      end
59
60
      return yi
61
62 end
63
64 # Trapezoidal rule with Richardson Extrapolation
65 function richTrap(f, a, b, y0; n = 1, rn = 1)
      h = (b - a) / n
                                        # Compute time step
66
      r = zeros(Float64, rn, rn)
                                        # Initialize richardson matrix
      sol = trapz(f, a, y0, h, n)
                                        # Get initial solution
69
      r[1, 1] = sol[1]
                                        # Store initial solution
70
      # Begin Richardson exptrapolation
72
      for i = 1 : rn - 1
          h /= 2
                                        # Half time step size
74
          n *= 2
                                        # Double number of step to take
76
          sol = trapz(f, a, y0, h, n) # Get solution with current step size
          r[i + 1, 1] = sol[1]
                                        # Store solution
78
          # Compute richardson exptrapolation with current data
          for j = 1 : i
81
              r[i + 1, j + 1] = ((4^{j}) * r[i + 1, j] - r[i, j]) / (4^{j} - 1)
82
83
      end
84
      return r[rn, rn]
87 end
88
89 besselJ = richTrap(f, 0, 3*, [0,1/2], n = 40, rn = 10)
90 display(besselJ)
91 display(besselJ - besselj(1, 3*))
```