Paper / Subject Code: 89384 / Al and DS-1 1 R 2020-21 'c' Duration: 3hrs (1) Question No 1 is Compulsory. (2) Attempt any three questions out of the remaining five. (3) All questions carry equal marks. (4) Assume suitable data, if required and state it clearly. Attempt any FOUR Differentiate Between Forward and Backward chaining Compare different search techniques based on their time complexities. Explain various measures of the central tendencies of a statistical distribution. State PEAS of automated taxis driver. What are the different ways of knowledge. d [10] [10] Can Iliter water be measured using 10 liter and 4 liter jug? Justify. Compare Linear Regression Vs Logistics Regression with suitable diagrams and formulas. State A* algorithm and explain with example how A* searching algorithm helps in finding the goal with optimal path [10] With respect to Quantitative data analysis explain following: i. Measure of central tendencies ii. Measure of spread iii. Skewness and Kurtosis [10] 1. Marcus was a man. 2. Marcus was a Pompeian. 3. All Pompéians were Romans. 4. Caesar was a ruler. 5. All Pompeians were either loyal to Caesar or hated him 6. Every one is loyal to someone. 7. People only try to assassinate rulers they are not loyal to 8. Marcus tried to assassinate Caesar. Was Marcus loyal to Casear 9 Solve using resolution. [10] In detail, explain steps in the Data Science Project. What are the different types of Machine Learning algorithms? Give example of [10] Can min-max be used for team games? Draw sample trees for 2 and 3 teams. [10]

Paper / Subject Code: 89384 / Al and DS-I TE/IT/ R2020-21 'c' Schame / SenVI

6 a Consider you are performing ML for predicting housing prices you have trained [10] three models and following data summarizes the predicted house price by each model for 5 different trial runs.

Model	House Price	Predicted (L	akh Rs)		3
Code	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5
A	3.5	3.4	3.8	3.5	3.4
В	3.9	3.8	3.7	3.9	3.6
C	3.5	3.3	3.6	3.5	3.8

Perform One way ANOVA F Test on this data and comment on whether the mean house price predicted by models A, B, C are same with level of significance 0.05. (Use of F Table is allowed)

b What are the rules of conversion from predicate to CNF? Explain each rule with proper example.

.....

Paper / Subject Code: 37314 / Al and DS-1

	Duration: 3hrs [Max Marks:80]	Y S
利惠 .:	 Question No 1 is Compulsory. Attempt any three questions out of the remaining five. All questions carry equal marks. Assume suitable data, if required and state it clearly. 	
1 8	Attempt any FOUR Write comparison between Business Intelligence and Data Science	[20]
h	What is rational agent? Explain with diagram.	
c	Explain what role is played by Correlation and Covariance in EDA?	3
đ	What are heuristic functions? Where are they used?	
e	What is Unification? Give example	
f	What is Skolemization? Explain Skolem constant and Skolem function	
2 0	Write a detailed note on Hypothesis Testing. What are type I and type II errors?	[10]
2 a	that it is a prime for an American to sell weapons to	[10]
	hostile nations. The country Nono, an enemy of America, has some	
	missiles, and all of its missiles were sold to it by Colonel West, who is	
	American. Prove that Col. West is a criminal!	
•	Explain uniform cost search and best first search in detail with examples and	[10]
3 8		
	compare. Explain various stages in the Data analytics Lifecycle.	[10]
s* ł	Explain various stages in the Data unary	
		[10]
4^a	Explain SVM in detail.	[10]
, Y	Describe PEAS and also write down the PEAS representations for Medical	
·	diagnosis system.	
-0		[10]
<u> </u>	Write in detail issues in machine learning.	[10]
1	Write in detail issues in machine learning. b Elaborate in detail the steps in developing a Machine Learning application with	4 4
cÔ	architectural diagram.	

28438

Page 1 of 2

Paper / Subject Code: 37314 / Al and DS - 1

[10]

[10]

What are the different planning techniques? Explain with example.

b What do you mean by covariance and correlation? Explain the range of coefficients of correlation and covariance. Calculate COV(Observed Value1, Observed Value2) and CORRCOV(Observed Value1, Observed Value2) for

following data. How do you interpret these values?

Observed Value 1	Observed Value2		Experiment No	Observed Value 1	d Observed Value2
38	20		9,5	80	9
62	15	ŝ	10	32	22
22	30	7	11 8	1/2	
38	21	\dagger	12	<u> </u>	20
45	18	10	33	56	19
69	1	+	75),	21	28
75	The state of the s	+	100	34	23
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Carlo)	1	5	76	14
	Value 1 38 62 22 38 45 69 75	Value1 Value2 38 20 62 15 22 30 38 21 45 18 69 12 75 14	Value1 Value2 38 20 62 15 22 30 38 21 45 18 69 12 75 14 14 1	Value1 Value2 Despiration 38 20 9 62 15 10 22 30 11 38 21 12 45 18 13 69 12 14 75 14 15	Value1 Value2 Dappenment No Observed Value1 38 20 9 80 62 15 10 32 22 30 11 51 38 21 12 56 45 18 13 21 69 12 14 34 75 14 15 76

TEISEM VI ITIR-19-20 GSCheme AIADS-

Time: 3 Hrs

Maximum marks = 80

Note: 1) Question one is compulsory. Answer any 3 out of questions 2 to 6.

2) Each sub question of questions 2 to 6 carries 10 marks

- Q1. Solve any 4 out of 6, each question carries 5 marks.
 - a. What is bidirectional search?
 - b. Explain what role is played by Correlation and Covariance in EDA?
 - c. What are the Different Types of Machine Learning?
 - d. Draw and explain structure of rational agent
 - e. Explain various measures of the central tendencies of distribution.
 - f. What is the Difference between Univariate, Bivariate, and Multivariate analysis?
- Q2 a. Explain the Confusion Matrix with respect to Machine Learning Algorithms. What is a False Positive and False Negative and how are they significant?
- Q2 b. What is PEAS? State and explain PEAS of automated taxi driver.
- Q3 a. In detail, explain steps in the Data Science Project.
- Q3 b. Write a note on Hill climbing. Explain an application of it.
- Q4 a Given jugs of 4 and 9 litres measure 1 and 3 litres.
- Q4 b. What are the steps of Exploratory Data Analysis?
- Q5 a. What is ANOVA technique? Explain different types of ANOVA.
- Q5 b. What are the different types of plans?
- Q6 a. Explain Data Visualization and its importance in data analytics?
- Q6 b. Consider you are performing ML for predicting housing prices you have trained three models and following data summarizes the predicted house price by each model for 5 different trial runs.

		House Price Predicted (Lakh Rs)					
41	Model Code	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	
7	A	3.5	3.4	3.8	3.5		3.4
1	В	3.9	3.8	3.7	3.9		3.6
***	C	3.5	3.3	3.6	3.5		3.8

Perform One way ANOVA F Test on this data and comment on whether the mean house price predicted by models A, B, C are same with level of significance 0.05. (Use of F Table is allowed)

15120

Time: 2 hour 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are
Q1.	are the action making parts of an agent that takes in the input for the user.
1.	are the action making parts of an agent that takes in the input for the user.
Option A	Actuators
Option B	
Option C	
Option D	Performance
2.	
Option A	is optimal search algorithm in terms of heuristics Min Max Algorithm
Option B:	
Option C:	
Option D:	
орион D.	A Algoridin
3.	P in PEAS stands for
Option A:	Performance Criteria
Option B:	
Option C:	Performance Measure
Option D:	
4.	is called as greedy local search
Option A:	Hill Climbing
Option B:	Hill Climbing DFS
Option C:	DFS BFS Uniform cost
Option D:	Uniform cost
5.	Backward Chaining and Forward Chaining in AI is
Option A:	Goal-driven and Data-driven approach respectively
Option B:	Boftom -Up and Top-down Approach respectively
Option C:	Goes from fact to result and goes from result to fact respectively.
Option D:	Uses "BFS" and "DFS" respectively
6.	Identify the one which is not a type of learning
Option A:	Reinforcement Learning
Option B:	Semi Unsupervised Learning
Option C:	Supervised Learning
Option D:	Unsupervised Learning
7.	Machine learning is a subset of which of the following.
Option A:	Artificial Intelligence
Option B:	Deep Learning
option C:	Data Learning
Option D:	Statistics
20.00	
8.	Which of the following is not a univariate graphical EDA technique?
ption A:	Histograms
V 7"	

IT)	Ser	n VI 101 Scheme AILDS-I OPCode: 9172					
Option	B: B	ox Plots					
Option	C: St	em and eaf plots					
Option		air plot					
9.	W.	hich statistical tool should be used to test the equality of 3 or more population					
Option	A: A	NOVA					
Option	B: T	test					
Option	C: C	hi-square test					
Option	D: lt	iterval Estimation					
10.	V	hich is NOT the correct statement about the InterQuartile Range.					
Option	11.	he interquartile range tells you the spread of the middle half of your distribution.					
Option	2.	QR = Q3 - Q1					
Option		boxplot upper whisker indicates Q3					
Option	D: In	boxplot IQR is indicated by the edges of the rectangle					
		Sec of the feetangic					
Q2		10					
	Solve	Resolution: 10 marks each					
	1. All	people that are not poor and are smart are happy.					
Α	2. 1110	Those people that read are not stunid					
	5. John	John can read and is wealthy.					
	4. Hap	Happy people have exiting lines Priceling					
	Van an	Tyour or lound with an eveiting life?					
В	What o	lo you mean by EDA? Explain different categorization CDA					
	EDA c	DA explain 1 technique that belongs to it in detail					

В	what do you mean by EDA? Explain different categorizations of EDA. For each type of EDA explain 1 technique that belongs to it in detail.
	The state of the s
Q3	
A	Elaborate in detail the steps in developing a Machine Learning application with

В	 fllustrate with diagram how Goal based agent works. Describe PEAS and also write down the PEAS representations for Automated driver 	car
-		
Q4		On the and the last party plans are party.
A	Compare min max and alpha Behapruning algorithms.	ach

В

models and foll different trial ru	re performing lowing data sul ins.	ML for predict mmarizes the p	ing housing proredicted house	rices you have trained three e price by each model for 5
Model Code		House Pr	rice Predicted	(Lakh B
	Trial 1	Trial 2	Trial 3	The second secon
A	3.5	3.4	3.8	Trial 4 Trial 5
\mathbf{B}	3.9	3.8	3.7	3.5
CS &	3.5	3.3	3.6	3.9

Consider you are performing ML for predicting housing prices you have trained three

		3.8
	Perform One way ANOVA F Test on this data ar	nd comment on wheet
	Perform One way ANOVA F Test on this data ar price predicted by models A, B, C are same with	level of significance the mean house
	price predicted by models A, B, C are same with Table is allowed)	Use of F
3		The state of the s

<u>University of Mumbai</u> Examinations summer 2022

Al and DS1

SEM VI IT

27/05/22

Corrections

Q1 is of 20 marks. Each subquestion is of 2 marks.

Answer any 2 in questions 2,3 and 4

Q2 C	Compare Line formulas.	ar Regression Vs Logist	ics Regression with suitable diagrams and	
	coefficients of	correlation and covariat	correlation? Explain what the range of nce suggest. Calculate COV(Age, Strength) ata. How do you interpret these values?	and
	Journal	Age Strer	ath	
	A	38	20	
	¦B	62	15	
	C	22	30	
	D	38	21	
	E F	45	18	
Q3 C	ĮF.	69	12	
	[G	75	14	
	<u>H</u>	38	28	
	11	80	9	
	IJ	32	22	
	¹K	51	20	
	<u>i</u> L	56	19	
	<u> </u>	21	28	
	N	34	23	
	O	76	14	
Q4 C	example.	-	ard chaining algorithm with the help of earch algorithm types use it?	

Correction in Q.2A) Q.4A)

Q2 A	4. Happy people have exicting life.
Q4 A	Compare min-max and alpha-beta pruning algorithms

2:08pm

