

Does the Home Run Derby Affect a Batter's Swing?

Samantha Nadler

60-Day Baseball Analytics Challenge Project #1

Overview

- **Myth**: Participating in the Home Run harms a batter's second-half performance.
- Hypothesis: There is no difference between a batter's pre-Derby batting performance and their post-Derby batting performance.

Methodology

- 1. Collect data from the 2024 MLB season.
- 2. Split data into pre-All-Star Break and post-All-Star Break (All-Star Break was July 15-18).
- 3. Determine variables needed for appropriate data analysis.
- 4. Devise a metric for calculating hitting performance between both halves of the season.
- 5. Calculate this metric on each of the eight 2024 Home Run Derby participants.
- 6. Visualize any other batting trends necessary for disproof of the "Home Run Derby curse" (e.g. at-bat event distributions, count distributions, at-bat lengths, swing data trends).

Data

Data Used: 2024 MLB Statcast data (provided by Baseball Savant)

Variables Used:

- game_date: Splits the season data into two halves (before July 15 and after July 18)
- player_name and batter: Identify the same player (player_name is a String, batter is a numerical ID)
- events and bb_type: One-hot encode the final outcome of an at-bat or batted ball
- balls, strikes, and pitch_number: Determine final ball and strike counts and determine plate discipline
- launch_speed and launch_angle: Determine kinematic shifts in swings on in-play balls

Created a new variable count that aggregates balls and strikes

Data

Eight players' performances were observed and analyzed:

- Pete Alonso, NYM
- Alec Bohm, PHI
- Adolis Garcia, TEX
- Gunnar Henderson, BAL
- Teoscar Hernandez, LAD
- Marcell Ozuna, ATL
- Jose Ramirez, CLE
- Bobby Witt Jr., KC

Post-Break Performance Index (PBPI)

Compares a player's first-half performance to their second-half performance

For pitchers:

$$PBPI_{p} = 100 \times \left(\frac{\Delta ERA \times w_{ERA} + \Delta FIP \times w_{FIP} + \Delta WHIP \times w_{WHIP}}{w_{ERA} + w_{FIP} + w_{WHIP}} \right)$$

where

$$\Delta ERA = \frac{ERA_0 - ERA}{ERA_0}$$

$$\Delta FIP = \frac{FIP_0 - FIP}{FIP_0}$$

$$\Delta WHIP = \frac{WHIP_0 - WHIP}{WHIP_0}$$

$$w_{ERA} = 0.8, w_{FIP} = 1.0, w_{WHIP} = 0.6$$

$$PBPI_{P} = 100 \times \left(\frac{\Delta ERA \times w_{ERA} + \Delta FIP \times w_{FIP} + \Delta WHIP \times w_{WHIP}}{w_{ERA} + w_{FIP} + w_{WHIP}} \right)$$

$$S PBPI_{H} = 100 \times \left(\frac{\Delta OPS \times w_{OPS} + \Delta wOBA \times w_{wOBA} + \Delta ISO \times w_{ISO}}{w_{OPS} + w_{wOBA} + w_{ISO}} \right)$$

where:

- $\Delta OPS = \frac{OPS_{After} OPS_{Before}}{OPS_{Def}}$
- $\Delta wOBA = rac{wOBA_{After} wOBA_{Before}}{wOBA_{Before}}$
- $\Delta ISO = \frac{ISO_{After} ISO_{Before}}{ISO_{Before}}$
- w_{OPS} , w_{wOBA} , and w_{ISO} are the weighting coefficients for each metric. These can be adjusted, but a suggested starting point is to give slightly more weight to the most comprehensive stats. For example, $w_{wOBA} = 1.0$, $w_{OPS} = 0.8$, and $w_{ISO} = 0.6$.

Post-Break Performance Indices for each player:

PBPI for Pete Alonso:	5.69
PBPI for Alec Bohm:	-20.63
PBPI for Adolis Garcia:	-0.62
PBPI for Gunnar Henderson:	-21.07
PBPI for Teoscar Hernandez:	18.95
PBPI for Marcell Ozuna:	-15.02
PBPI for Jose Ramirez:	7.46
PBPI for Bobby Witt Jr.:	21.59
Overall PBPI for the above batters:	-0.98

Alonso

K% increased 9.8% but 6MO% decreased 1.6% BB% increased 4.6%

Bohm

K% increased 0.9% but 6MO% increased 5.8% BB% decreased 2.4%

Garcia

K% increased 2.1% but 6MO% decreased 0.5% BB% decreased 1.1%

Henderson

K% decreased 4.1% but 6MO% increased 0.5% BB% increased 0.3%

Hernandez

K% increased 3.2% but 6MO% increased 1.5% BB% decreased 0.1%

Ozuna

K% increased 2.9% but 6M0% decreased 0.5% BB% decreased 0.5%

Ramirez

K% decreased 2.9% but 6MO% decreased 1.3% BB% increased 1.3%

Witt

K% decreased 3.9% but 6M0% decreased 4.0% BB% increased 3.1%

Six-Main-Out rate (6MO%): Calculates a player's rate of ending an at-bat in the following ways (denoted by **strikeout** and **field_out**):

- Striking out
- Grounding out
- Flying out
- Lining out
- Popping out
- Fouling out

Grounding into a double play does not count towards this metric, as the metric is independent of the current base path situation.

Alonso

K% increased 9.8% but 6MO% decreased 1.6% BB% increased 4.6%

Bohm

K% increased 0.9% but 6MO% increased 5.8% BB% decreased 2.4%

Garcia

K% increased 2.1% but 6MO% decreased 0.5% BB% decreased 1.1%

Henderson

K% decreased 4.1% but 6MO% increased 0.5% BB% increased 0.3%

Hernandez

K% increased 3.2% but 6MO% increased 1.5% BB% decreased 0.1%

Ozuna

K% increased 2.9% but 6M0% decreased 0.5% BB% decreased 0.5%

Ramirez

K% decreased 2.9% but 6M0% decreased 1.3%

Witt

K% decreased 3.9% but 6M0% decreased 4.0% BB% increased 3.1%

Four batters' walk rate (BB%) increased:

- Pete Alonso
- Gunnar Henderson
- Jose Ramirez
- Bobby Witt Jr.

Of the four, two (Ramirez and Witt) decreased both their strikeout rate (K%) and Six-Main-Out rate (6MO%).

Alec Bohm saw undesirable at-bat outcomes between halves, decreasing his walk rate and increasing his 6MO% to the highest degree.

Pete Alonso, New York Mets At-Bat Events

Pete Alonso, New York Mets Plate Discipline

Pete Alonso, New York MetsPlate Discipline

Pete Alonso, New York Mets At-Bat Events

Discussion

So does the Home Run Derby affect a batter's swing?

- Collectively, no (as a group, performed slightly worse with no significant change)
- Only about half of participants' performance improved after the All-Star break
- Some batters (e.g. Bohm and Henderson) severely weakened after the All-Star break
- Others (e.g. Garcia) had almost no significant change

Some trends to consider:

- Strikeout rate decreased, walk rate increased for most batters
- At-bat length trended upwards (higher mean length with higher but similar deviation)
- Almost all batters increased exit velocity, decreased launch angle after the break (Bohm)

Some things to consider from the data:

At-bat distributions between halves (more games before 2024 All-Star break)

The code used for this project has been made publicly available at:

https://github.com/sknadler/60-day-baseball-analytics-challenge

