Теория параллелилзма

Отчёт

Оптимизированные библиотеки

Выполнил Грищенко Александр Михайлович, 21932

1 Цели работы

Реализовать решение уравнение теплопроводности (пятиточечный шаблон) в двумерной области на равномерных сетках.

Перенести программу на GPU используя директивы OpenACC.

Операцию редукции на графическом процессоре реализовать через вызовы функций из библиотеки cuBLAS.

Произвести профилирование программы и оптимизацию кода.

Сравнить скорость работы для разных размеров сеток на центральном и графическом процессоре (реализация с библиотекой cuBLAS и реализация без неё).

2 Используемый компилятор

pgc++ с флагом -Mcudalib=cublas

3 Используемый профилировщик

nsys (NVIDIA Nsight Systems) с флагом –trace=cublas,openacc,nvtx.

4 Как проводился замер времени работы

Для замера времени работы использовалась библиотека chrono. Замер времени производился несколько раз, затем бралось среднее время.

5 Выполнение на CPU

Данные из предыдущего задания.

5.1 CPU-onecore

Размер сетки	Время выполнения, с	Точность	Количество операций
128*128	0.1	9.5e-07	11136
256*256	1.8	9.8e-07	37376
512*512	25	9.8e-07	120832

5.2 CPU-multicore

Размер сетки	Время выполнения, с	Точность	Количество операций
128*128	0.5	9.5e-07	11136
256*256	3.5	9.8e-07	37376
512*512	20	9.8e-07	120832
1024*1024	145	9.89e-07	365568

6 Выполнение на GPU

6.1 Этапы оптимизации на сетке 512*512 (количество итераций при профилировании 100)

Этап №	Время вы- полнения, с	Точность	Количество операций	Комментарии (что было сделано)			
0	0.23	N/A*	100	Код из предыдущего задания.			
0	0.22	0.035	100	Код из предыдущего задания (ошиб- ка считается на каждой итерации, од- номерные матрицы).			
1	0.6	0.035	100	Вычисление максимальной ошибки через функции из cuBLAS			
2	0.6	N/A*	100	Ошибка считается не каждую итерацию, асинхронность			

 $^{^*}$ Из-за того, что период пересчёта ошибки намного меньше размера сетки, нет возможности определить точность на сотой итерации.

Этап 0 (без оптимизаций)

Этап 1

Этап2

6.2 Диаграмма оптимизации (по горизонтали номер этапа; по вертикали время работы)

6.3 GPU – оптимизированный вариант (без cuBLAS)

Размер сетки	Время выполнения, с	Точность	Количество опреаций
128*128	0.3	9.5e-07	11136
256*256	0.5	9.8e-07	37376
512*512	1.5	9.8e-07	120832
1024*1024	16.7	9.9e-07	365568

6.4 GPU – оптимизированный вариант (cuBLAS)

Размер сетки	Время выполнения, с	Точность	Количество опреаций
128*128	0.7	9.5e-07	11136
256*256	0.8	9.8e-07	37376
512*512	1.3	9.8e-07	120832
1024*1024	10	9.9e-07	365568

6.5 Скриншот массива 15*15 после заполнения границ и после работы всей программы

Borde	ers					_								
10.00	10.71	11.43	12.14	12.86	13.57	14.29	15.00	15.71	16.43	17.14	17.86	18.57	19.29	20.00
10.71	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.71
11.43	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	21.43
12.14	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	22.14
12.86	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	22.86
13.57	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	23.57
14.29	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	24.29
15.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	25.00
15.71	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	25.71
16.43	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	26.43
17.14	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	27.14
17.86	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	27.86
18.57	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	28.57
19.29	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	29.29
20.00	20.71	21.43	22.14	22.86	23.57	24.29	25.00	25.71	26.43	27.14	27.86	28.57	29.29	30.00
Resu														
10.00	10.71	11.43	12.14	12.86	13.57	14.29	15.00	15.71	16.43	17.14	17.86	18.57	19.29	20.00
10.71	11.43	12.14	12.86	13.57	14.29	15.00	15.71	16.43	17.14	17.86	18.57	19.29	20.00	20.71
11.43	12.14	12.86	13.57	14.29	15.00	15.71	16.43	17.14	17.86	18.57	19.29	20.00	20.71	21.43
12.14	12.86	13.57	14.29	15.00	15.71	16.43	17.14	17.86	18.57	19.29	20.00	20.71	21.43	22.14
12.86	13.57	14.29	15.00	15.71	16.43	17.14	17.86	18.57	19.29	20.00	20.71	21.43	22.14	22.86
13.57	14.29	15.00	15.71	16.43	17.14	17.86	18.57	19.29	20.00	20.71	21.43	22.14	22.86	23.57
14.29	15.00	15.71	16.43	17.14	17.86	18.57	19.29	20.00	20.71	21.43	22.14	22.86	23.57	24.29
15.00	15.71	16.43	17.14	17.86	18.57	19.29	20.00	20.71	21.43	22.14	22.86	23.57	24.29	25.00
15.71	16.43	17.14	17.86	18.57	19.29	20.00	20.71	21.43	22.14	22.86	23.57	24.29	25.00	25.71
16.43	17.14	17.86	18.57	19.29	20.00	20.71	21.43	22.14	22.86	23.57	24.29	25.00	25.71	26.43
17.14	17.86	18.57	19.29	20.00	20.71	21.43	22.14	22.86	23.57	24.29	25.00	25.71	26.43	27.14
17.86	18.57	19.29	20.00	20.71	21.43	22.14	22.86	23.57	24.29	25.00	25.71	26.43	27.14	27.86
18.57	19.29	20.00	20.71	21.43	22.14	22.86	23.57	24.29	25.00	25.71	26.43	27.14	27.86	28.57
19.29	20.00	20.71	21.43	22.14	22.86	23.57	24.29	25.00	25.71	26.43	27.14	27.86	28.57	29.29
20.00	20.71	21.43	22.14	22.86	23.57	24.29	25.00	25.71	26.43	27.14	27.86	28.57	29.29	30.00

7 Диаграмма сравнения времени работы CPUone, CPU-multi, GPU, GPU cuBLAS для разных размеров сеток

8 Вывод

Используя библиотеку cuBLAS можно достичь прироста производительности на больших сетках. Для небольших сеток нет смысла использовать библиотеку, поскольку создание handle и работа с памятью занимают существенное время.

9 Приложение

9.1 Ссылка на GitHub

 $\verb|https://github.com/busyhedg03/ParallelismTheory/tree/master/task_3|$