HIT, Shenzhen DIFFERENTIAL GEOMETRY AND TOPOLOGY Spring 2018

Homework 2

zhaofeng-shu33

April 17, 2018

2.1. How many topologies could be defined on the two-element set $X = \{a, b\}$?

Solution.

- $T = \{X, \varnothing\}$
- $T = \{X, \varnothing, \{a\}\}$
- $T = \{X, \emptyset, \{b\}\}$
- $T = \{X, \emptyset, \{a\}, \{b\}\}\$
- 2.2. Find the closure of $\{(x, \sin \frac{1}{x} | 0 < x \le 1)\}$ in the 2-dimensional Euclidean space \mathbb{R}^2

Proof. We show that the closure \bar{A} of $A = \{(x, \sin \frac{1}{x} | 0 < x \le 1)\}$ is $\{(0,y)| -1 \le y \le 1\} \cup A$. For $(0,y), |y| \le 1$, we can find $(x_n, \sin \frac{1}{x_n})$, where $x_n = \frac{1}{2\pi n + \arcsin y}$ such that $(x_n, \sin \frac{1}{x_n}) \to (0,y)$.

2.3. Prove that $\mathbb{R}^2 \setminus \{(0,0)\}$ (as a subspace of \mathbb{R}^2) and $\{(x,y,z)|x^2+y^2=1\}$ (as a subspace of \mathbb{R}^2) are homeomorphic.

Proof. We can construct a homeomorphic mapping from $(0, \infty)$ to $(-\infty, +\infty)$, such as $x \to x - \frac{1}{x}$. Then consider the polar coordinate representation of the plane without the origin. For $(r, \theta) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, use mapping $(\cos \theta, \sin \theta, r - \frac{1}{r})$ and we get a point on the cylinder $\{(x, y, z) | x^2 + y^2 = 1\}$. It is easy to check that the mapping is a homeomorphic.

2.4. Let (X,d) be a metric space and $A \subseteq X$ a closed subset. Define $f: X \to \mathbb{R}$ by $f(x) = \inf_{a \in A} d(x,a)$. Prove that f is continuous and that f(x) = 0 if and only if $x \in A$.

Proof. Suppose V is open, then for any $x \in f^{-1}(V), f(x) \in V$, we can find ϵ such that $(f(x) - \epsilon, f(x) + \epsilon) \subseteq V$. We show that $B(x, \frac{1}{2}\epsilon) \subseteq f^{-1}(V)$. Indeed, $\forall y \in B(x, \frac{1}{2}\epsilon), d(y, x) < \frac{1}{2}\epsilon$. Then $d(y, a) \leq d(y, x) + d(x, a) < \frac{1}{2}\epsilon + d(x, a) \Rightarrow f(y) = \inf_{a \in A} d(y, a) \leq \frac{1}{2}\epsilon + d(x, a) \Rightarrow f(y) \leq \frac{1}{2}\epsilon + \inf_{a \in A} d(x, a) < \epsilon + f(x)$. Exchange the position of x and y: $f(x) < \epsilon + f(y) \Rightarrow f(y) \in (f(x) - \epsilon, f(x) + \epsilon) \subseteq V$. Therefore f is continuous.

If $x \in A$, f(x) = 0; if f(x) = 0, there exists $\{y_n\}$ such that $d(x, y_n) \to 0$, and $x \in \bar{A} = A$

2.5. A topological space X is called separable if there is a countable dense subset A. Prove that if two topological spaces X_1, X_2 are separable, then the product $X_1 \times X_2$ is also separable.

Proof. Let A_1, A_2 be dense countable subset of X_1, X_2 respectively. $A_1 \times A_2$ is countable. Below we show that $\overline{A_1 \times A_2} = X_1 \times X_2$. We consider $(x_1, x_2) \notin (A_1, A_2)$ and assume $x_1 \notin A_1$ for example. For $(x_1, x_2) \in X_1 \times X_2$ and an open set $V \in X_1 \times X_2$ covering (x_1, x_2) . $V = \bigcup U_i \times V_i$, where $U_i \in T_{X_1}, V_i \in T_{X_2}$. Then $(x_1, x_2) \in U_i \times V_i$ for some i. Since A_1 is dense in X_1 and $x_1 \notin A_1$, $U_i \setminus \{x_1\} \cap A_1 \neq \emptyset$. $U_i \times V_i \setminus \{(x_1, x_2)\} \cap A_1 \times A_2 \neq \emptyset \Rightarrow V \setminus \{(x_1, x_2)\} \cap A_1 \times A_2 \neq \emptyset \Rightarrow (x_1, x_2) \in (A_1 \times A_2)'$. Therefore, $\overline{A_1 \times A_2} = X_1 \times X_2$.