Tips for the Final Project

박사과정 김성빈 <u>chengbinjin@inha.edu</u>, 지도교수 김학일 교수 <u>hikim@inha.ac.kr</u> 인하대학교 컴퓨터비전 연구실

Grading Policy

Evaluation							
Mid Exam	Final Exam	Assignments	Class Activity (be present)	Term Project	Quiz	Presentation	Total
10 %	10 %	10%	5 %	30 %	25 %	10 %	100 %
2018.10.24	2018.12.05	Every week	Every week	2018.12.12	Every week	Every week	

Note:

- 1. Mid & final exam: lectures (PPT) & coding parts in assignments
- 2. Assignments: assignment 1~3 of the CS231n 2016 http://cs231n.stanford.edu/2016/syllabus.html
- 3. Class activity: attendance check before class
- 4. Term project:
 - (1) license plate detection and recognition; (2) on-road object detection
 - Scores will be evaluated based on the team ranking
 - No open or commercial library is allowed.
- 5. Quiz: will be taken in the beginning of every class to check students' pre-studying the CS231n video
- 6. Presentation: 2 or 3 students every week

Python Numpy Tutorial:

http://cs231n.github.io/python-numpy-tutorial/

Dataset

License Plate Type

Туре	License Plate		Туре	
1	52가 3108		P1	
2	3942764		P2	Pocognizing
3	H3108	서울52바3108	P3	Recognizing plate type is not our task
4	설52바 3108	서울52바3108	P4	
5	6510	43가6510	P5	
6	무 6662	부산27무6662	P6	

Parking Data (285 Test Samples)

I. Parking Dataset

789 473 343 76 46고7080

• Ground-truths for parking dataset are saved as txt file.

CCTV Data (451 Test Samples)

• Every test image includes one plate that near to the camera only!

II. CCTV Dataset


```
<annotation>
    <folder>01_12131640</folder>
    <filename>00 00030 0000030.png</filename>
    <path>C:\workspace\project\labelImg\Object-Detection\images\01_12131640\00_00030_0000030.png</path>
    <source>
       <database>Unknown</database>
    </source>
    <size>
       <width>1920</width>
       <height>1080</height>
       <depth>3</depth>
    </size>
    <segmented>0</segmented>
    <object>
       <name>P1 102|0284</name>
       <pose>Unspecified</pose>
       <truncated>0</truncated>
       <difficult>0</difficult>
       <bndbox>
           <xmin>1412
           <ymin>315
           <xmax>1473
           <ymax>330
       </bndbox>
    </object>
</annotation>
```

 Ground-truths for cctv dataset are saved as xml file that follows PASCAL VOC GT format.

Metrics for Final Project

Final Project

Subject:

License Plate Recognition (LPR)

Deep Learning Platform:

Definition of the Score

$$Score = Score_{park} + Score_{cctv} + 0.1 \times \left(100 - PT_{park}\right) + 0.1 \times \left(100 - PT_{cctv}\right)$$

$$PT = m \sec . / image(average)$$

$$Score_i = Accuracy_{det} + Accuracy_{rec}$$
 $(i = park or cctv)$

$$Accuracy_{det} = \frac{1}{n} \sum_{i=0}^{n-1} \frac{\#TP_{det} - \#FP_{det}}{\#GT} \times 100\%$$

$$Accuracy_{rec} = \frac{1}{n} \sum_{i=0}^{n-1} \frac{\#TP_{rec}}{\#GT} \times 100\%$$

- #TP_{det}: number of true positive for detection
- #FP_{det}: number o false positive for detection
- #TP_{rec}: number of true positive for recognition
- #GT: number of ground-truth
- TP_{det}: IoU >= θ , θ =0.7
- FP_{det} : $IoU < \theta$

Rules

Processing Time

- Insert time check function in the for loop
- Start tic after read frame
- End toc after model forward
- But, if you have preprocess stage, preprocessing time is also included in time tic toc

```
def test(self):
   if self.load model():
        logger.info(' [*] Load SUCCESS!')
    else:
        logger.info(' [!] Load Failed...')
   num iters = 20
    total time = 0.
    for iter time in range(num iters):
        print('iter time: {}'.format(iter time))
        # measure inference time
        start time = time.time()
        imgs = self.model.sample test() # inference
        total time += time.time() - start time
        self.model.plots test(imgs, iter time, self.test out dir)
    print('Avg PT: {:.2f} msec.'.format(total_time / num iters * 1000.))
```

Batch_Size in Test Mode

- Batch_size can be bigger than 1 in training mode
- But in test mode batch_size have to 1!

Example:

Write Prediction Results in Log File

- Prediction results should be written in "dataset_name.csv" file (cctv.csv or parking.csv)
- Please refer to the write_csv.py function
 - https://github.com/ChengBinJin/License plate recognition
 - There are read_xml.py, write_csv.py, and eval.py function to help you

1	parking\img_gt_1\infty000000.jpg	46고7080	789	473	1132	549
2	parking₩img_gt_1₩000001.jpg	21도3971	929	505	1286	579
3	parking₩img_gt_1₩000002.jpg	16서1179	761	475	1087	558
4	parking₩img_gt_1₩000003.jpg	07부0441	747	474	1073	561
5	parking₩img_gt_1₩000004.jpg	36누4289	722	449	1065	542
6	parking₩img_gt_1₩000005.jpg	35소3169	590	446	924	532
7	parking₩img_gt_1₩000006.jpg	50마3480	607	479	925	552
8	parking₩img_gt_1₩000007.jpg	48보7976	586	516	890	594
9	parking₩img_gt_1₩000008.jpg	29러8820	810	488	1131	557
10	parking₩img_gt_1₩000009.jpg	57出2830	727	500	1061	578

img_file recognition bounding box (x1, y1, x2, y2)

Test examples:

Specification of the Evaluation Server

Equipment: Use same server in the CVLab. (Room 525, Hi-Tech Building)
 (Use same server to check processing time and run evaluation function to get accuracy on a test set)

OS: Ubuntu 16.04

• **CPU**: Intel(R) Core™ i9-7900X CPU @3.30GHz x 20

• **RAM**: 64GB

• **GPU:** GeForce GTX 1080Ti x 4 (just use one to evaluate)

 Ubuntu system and Windows system are different. Highly recommend to test your code on Ubuntu first.

Teams

No.	Team Name	Members	Num. of Students	Deep learning library
1	ICVL1	배규호, 수랴	2	
2	Team 1	송광호, 이윤선 이화선	3	
3	Team 2	윤정언, 이반	2	
4	Team 3	이명오, 알만	2	
5	Al Lab	아자맛, 자와힐, 아지즈	3	
6	SBS	쇼크루, 뷔뇨벡, 사이드라술콘	3	
7	Geeks	네마트전, 코필전	2	

Competition

- Time: December 10-11 (Mon. and Tue.)
- <u>09:30-11:30, 14:00-17:00, and 20:00-24:00</u>
- Each team has the limited 1 hour (very strict) to finish all of the process including install necessary libraries and test.
- Each team can try two times for one dataset and select the most good one to record the score.

Thank you for your attention!