

planetmath.org

Math for the people, by the people.

difference of lattice elements

 ${\bf Canonical\ name} \quad {\bf Difference Of Lattice Elements}$

Date of creation 2013-03-22 17:57:44 Last modified on 2013-03-22 17:57:44

Owner porton (9363) Last modified by porton (9363)

Numerical id 10

Author porton (9363) Entry type Definition Classification msc 06B99

Related topic ComplementedLattice

Related topic Pseudodifference

Related topic SectionallyComplementedLattice

Let \mathfrak{A} is a lattice with least element 0.

Let $a, b \in \mathfrak{A}$. A of a and b is an element $c \in \mathfrak{A}$ that $b \cap c = 0$ and $a \cup b = b \cup c$. When there is only one difference of a and b, it is denoted $a \setminus b$.

One immediate property is: 0 is the unique difference of any element a and itself $(a \setminus a = 0)$. For if c is such a difference, then $a \cap c = 0$ and $a = a \cup c$. So $c \leq a$ by the second equation, and hence that $c = a \cap c = 0$ by the first equation.

For arbitrary lattices of two given elements do not necessarily exist. For some lattices there may be more than one difference of two given elements.

For a distributive lattice with bottom element 0, the difference of two elements, if it exists, must be unique. To see this, let c and d be two differences of a and b. Then

- $b \cap c = b \cap d = 0$, and
- $a \cup b = b \cup c = b \cup d$.

So $c = c \cap (b \cup c) = c \cap (b \cup d) = (c \cap b) \cup (c \cap d) = 0 \cup (c \cap d) = c \cap d$. Similarly, $d = d \cap c$. As a result, $c = c \cap d = d \cap c = d$.