Data Learning Community¹

Richard Valentín, Yantas Alcántara January 12, 2019

Why we focus on a community?

Convergent understanding.

Networking.

To work in projects.

▶ To involve people interested with this area.

Objectives

► Exchange knowledge and experiences. (Collaborative learning)

► To learn doing. (Learn to do vs Learn doing)

Participate in: contest related to data science, .

Overview

TRAINING

Contents

•0000000

RICS

UCSP

UCSP

Catholic University San Pablo

Statistics

Mathematics	Topics	Speaker
Estadistica inferencial	Regresión and PCA	José Castro
Estadistica inferencial	Estimation	Christian Córdova
Estadistica inferencial	Hypothesis Testing	Christian Córdova
Estadistica inferencial	t - Test	José Castro
Estadistica inferencial	Correlation	José Castro
Teoria de probabilidades	Probability Space, events	Christian Córdova
Teoria de probabilidades	Random Variables	Christian Córdova
Teoria de probabilidades	Dependent and independe	Jose Castro
Teoria de probabilidades	Marginal Probability	José Castro
Teoria de probabilidades	Conditional Probability	Christian Córdova
Teoria de probabilidades	Expectation, variance and	Christian Córdova
Teoria de probabilidades	Bayes' Rule	José Castro
Teoria de probabilidades	Discrete and continuous p	Christian Córdova

RICS Research and Innovation Center in Computer Science Machine learning

 Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Machine learning focuses on the development of computer programs that can access data and use it learn for themselves.

RICS LICSP

Machine learning contents

Machine Learning	Topics	Speaker
Deep Learning	Introduction to neural networks:shallow & deep networks	Marchelo Bragagnini
Deep Learning	Logistic regression & Gradient Descent	Marchelo Bragagnini
Deep Learning	Backpropagation intuition & Random Initialization	Marchelo Bragagnini
Deep Learning	Why deep representations ? & Forward Propagation in a Deep Network	Marchelo Bragagnini
Deep Learning	Forward and Backward Propagation & Parameters vs Hyperparameters	Marchelo Bragagnini
Deep Learning	Convolutional neural networks	Marchelo Bragagnini
Deep Learning	Face recognition example	Marchelo Bragagnini
Deep Learning	Yolo algorithm & Neural Style Transfer	Marchelo Bragagnini
Deep Learning	Word Embeddings: word2vec, fasttext, glove	Marchelo Bragagnini
Deep Learning	Sequences to sequences & attention mechanism	Marchelo Bragagnini
Deep Learning	Machine translation	Marchelo Bragagnini
Deep Learning	Sequence models & Recurrent Neural Networks & BPTT	Marchelo Bragagnini
Deep Learning	GRU & LSTM & BiLSTM & Stack RNN	Marchelo Bragagnini
Traditional ML	SVM	Graciel Lovon
Traditional ML	Time Series	Yvan Tupac
P. Graphical Models	Naive Bayes & Redes bayesianas	Jose Ochoa
P. Graphical Models	Hidden Markov Models	Jose Ochoa
P. Graphical Models	Conditional Random Fields	Jose Ochoa
P. Graphical Models	PCA & Support Vector Machine	Jose Ochoa
P. Graphical Models	Random forest & gradient boosting	Jose Ochoa

Data visualization

Data visualization is a general term that describes any effort to help people understand the significance of data by placing it in a visual context. Patterns, trends and correlations that might go undetected in text-based data can be exposed and recognized easier with data visualization software.

Data Visualization contents

Area	Topics	Speaker
Data Visualization	Introducción a visualización de datos	Gina Muñoz
Data Visualization	Procesamiento de datos Gina Muñoz	
Data Visualization	Visualización de datos espaciales.	Gina Muñoz
Data Visualization	Visualización de datos multidimensionales Gina Muñoz	
Visualización de texto y documentos. Visualización de grafos redes Gina Muñoz		Gina Muñoz
Data Visualization	Percepción e Interacción	Gina Muñoz

Data Science Competition

The best and fastest way to learn data science, especially as a beginner is by working on projects or competitions and this is because the traditional approach to learning cannot keep up with the pace at which the field advances.

DRIVENDATA

Data Science Competitions contents

Area	Topics	Speaker
Introduction to Data Science Competition	Introduction to Kaggle	Richard Yantas/Rel Guzman
Introduction to Data Science Competition	Basics Pandas	Richard Yantas/Rel Guzman
Introduction to Data Science Competition	Data leakages	Richard Yantas/Rel Guzman
Introduction to Data Science Competition	Mean encodings	Richard Yantas/Rel Guzman
Introduction to Data Science Competition	Ensembles	Richard Yantas/Rel Guzman
Introduction to Data Science Competition	KNN features	Richard Yantas/Rel Guzman

Learning Community

Contact

Learning Community

Contact

Lugar: UCSP - Aula N309

Horario:

Miercoles: 10:00am - 12:00am

Sabado: 3:00pm - 6:00pm

Email: richardyantas5@gmail.com

Thanks!