Sex: The gender of the person, where 1 represents male and 0 represents female.

Target: A binary variable where 1 represents the presence of a heart disease and 0 represents the absence of a heart disease.

```
import pandas as pd
import numpy as np
df = pd.read_csv("/content/1645792390_cep1_dataset (2).csv")
df.head()
```

```
1
  age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
0
   63
         1
             3
                     145
                           233
                                           0
                                                  150
                                                          0
                                                                  2.3
                                                                          0
                                                                              0
                                                                                    1
                                                                                            1
   37
             2
                     130
                           250
                                  0
                                           1
                                                  187
                                                           0
                                                                  3.5
                                                                          0
                                                                              0
                                                                                    2
                                                                                            1
2
                                  0
                                           0
                                                                          2
                                                                                            1
   41
         0
             1
                     130
                           204
                                                  172
                                                          0
                                                                  1.4
                                                                              0
                                                                                    2
3
   56
             1
                     120
                           236
                                  0
                                                  178
                                                           0
                                                                  8.0
                                                                          2
                                                                              0
                                                                                    2
                                                                                            1
4
   57
         0 0
                     120
                           354
                                                  163
                                                                  0.6
                                                                          2 0
                                                                                    2
                                                                                            1
                                  0
                                           1
                                                          1
```

```
df.shape
    (303, 14)
df.columns
    dtype='object')
df.isnull().sum()
              0
    age
              0
    sex
    ср
              0
    trestbps
              0
    chol
              0
    fbs
              0
    restecg
              0
    thalach
              0
    exang
              0
    oldpeak
              0
              0
    slope
              0
    ca
    thal
              0
    target
              0
    dtype: int64
df.duplicated().sum()
    1
# Remove a single duplicated row
df.drop_duplicates(keep="first", inplace=True)
df.duplicated().sum()
df.describe()
```

		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope
<pre>cat = df.select_dtypes(include=["object"]).columns.tolist() cat</pre>												
	[] min ee there	29.00000 is no any ca	0.000000 tegorical type	0.000000 e data colun	94.000000 nn in the dat	126.000000 taset.	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000
import seaborn as sns import matplotlib.pyplot as plt columns = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal']												
# Plo for c	t count	t plots for columns:	all columns	teeg, exc	, SIOP	e, ca, ti	ier 1					

sns.boxplot(x="target", y="age", data=df)

sns.histplot(data=df, x="trestbps", hue="target", kde=True)

<Axes: xlabel='trestbps', ylabel='Count'>

sns.scatterplot(x="chol", y="target", data=df)

<Axes: xlabel='chol', ylabel='target'>

 $\verb|sns.pairplot(data=df, \cdot vars=["age", \cdot "trestbps", \cdot "chol", \cdot "thalach", \cdot "oldpeak"]||$

sns.pairplot(data = df, vars = ["exang", "slope", "ca", "thal"], hue = 'target')


```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from \ sklearn.linear\_model \ import \ LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix
# Split the data into training and testing sets
X = df.drop("target", axis=1)
y = df["target"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=10)
# Preprocess the data
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Train a logistic regression model
clf = LogisticRegression(random_state=42)
clf.fit(X_train, y_train)
\mbox{\tt\#} Evaluate the model on the testing set
y_pred = clf.predict(X_test)
print(y_pred)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
```

[[23 10] [3 25]]					
		precision	recall	f1-score	support
	0	0.88	0.70	0.78	33
	1	0.71	0.89	0.79	28
accurac	у			0.79	61
macro av	g	0.80	0.79	0.79	61
weighted av	g	0.81	0.79	0.79	61

Colab paid products - Cancel contracts here

① 0s completed at 10:11 PM