→ ★ Regression Model to Predict Cement Compressive Strength

Compressive strength of cement at 7 and 28 days

Features in the dataset:

- 1. GRE Scores (290 to 340)
- 2. TOEFL Scores (92 to 120)
- 3. University Rating (1 to 5)
- 4. Statement of Purpose (1 to 5)
- 5. Letter of Recommendation Strength (1 to 5)
- 6. Undergraduate CGPA (6.8 to 9.92)
- 7. Research Experience (0 or 1)
- 8. Chance of Admit (0.34 to 0.97)

```
# import library
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

import data
cement = pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Concrete%20Compressive%20's

view data
cement.head()

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)	S1
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	

info of data
cement.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1030 entries, 0 to 1029
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Cement (kg in a m^3 mixture)	1030 non-null	float64
1	Blast Furnace Slag (kg in a m^3 mixture)	1030 non-null	float64
2	Fly Ash (kg in a m^3 mixture)	1030 non-null	float64
3	Water (kg in a m^3 mixture)	1030 non-null	float64
4	Superplasticizer (kg in a m^3 mixture)	1030 non-null	float64
5	Coarse Aggregate (kg in a m^3 mixture)	1030 non-null	float64
6	Fine Aggregate (kg in a m^3 mixture)	1030 non-null	float64
7	Age (day)	1030 non-null	int64
8	Concrete Compressive Strength(MPa, megapascals)	1030 non-null	float64
	67 (

dtypes: float64(8), int64(1)

memory usage: 72.5 KB

summary statistics
cement.describe()

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Cc Aggre (kg mixt
count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.00
mean	281.165631	73.895485	54.187136	181.566359	6.203112	972.91
std	104.507142	86.279104	63.996469	21.355567	5.973492	77.75
min	102.000000	0.000000	0.000000	121.750000	0.000000	801.00
25%	192.375000	0.000000	0.000000	164.900000	0.000000	932.00
50%	272.900000	22.000000	0.000000	185.000000	6.350000	968.00
75%	350.000000	142.950000	118.270000	192.000000	10.160000	1029.40
max	540.000000	359.400000	200.100000	247.000000	32.200000	1145.00
4				_		>

check for missing value
cement.isna().sum()

Cement (kg in a m^3 mixture)

0

```
Blast Furnace Slag (kg in a m^3 mixture)

Fly Ash (kg in a m^3 mixture)

Water (kg in a m^3 mixture)

Superplasticizer (kg in a m^3 mixture)

Coarse Aggregate (kg in a m^3 mixture)

Fine Aggregate (kg in a m^3 mixture)

Age (day)

Concrete Compressive Strength(MPa, megapascals)

dtype: int64
```

check for categories cement.nunique()

Cement (kg in a m^3 mixture)	280
Blast Furnace Slag (kg in a m^3 mixture)	187
Fly Ash (kg in a m^3 mixture)	163
Water (kg in a m^3 mixture)	205
Superplasticizer (kg in a m^3 mixture)	155
Coarse Aggregate (kg in a m^3 mixture)	284
Fine Aggregate (kg in a m^3 mixture)	304
Age (day)	14
Concrete Compressive Strength(MPa, megapascals)	938
dtype: int64	

visualize pairplot
sns.pairplot(cement)

<seaborn.axisgrid.PairGrid at 0x7f242a230bd0>

columns name
cement.columns

```
# define y
y = cement['Concrete Compressive Strength(MPa, megapascals) ']
```

```
8/30/22, 1:14 PM
                              13 Regression Model to Predict Cement Compressive Strength Project.ipynb - Colaboratory
   # split data
   from sklearn.model_selection import train_test_split
   X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=.30, random_state=2529)
   # verify shape
   X_train.shape, X_test.shape, y_train.shape, y_test.shape
         ((721, 8), (309, 8), (721,), (309,))
   # select model
   from sklearn.linear_model import LinearRegression
   model = LinearRegression()
   # train model
   model.fit(X_train, y_train)
         LinearRegression()
   # predict with model
   y_pred = model.predict(X_test)
    # model evaluation
   from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error, mean_squared_error
   # model MAE
   mean_absolute_error(y_test,y_pred)
         8.683767775410708
```

```
# model MAPE
mean_absolute_percentage_error(y_test, y_pred)
```

0.3134440184320867

```
# model MSE
mean_squared_error(y_test, y_pred)
```

120.40313453787677

```
# future prediction
sample = cement.sample()
sample
```

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)
792	349.0	0.0	0.0	192.0	0.0	1047.0	806.0	360
4								>

```
# define X_new
X_new = sample.loc[:,X.columns]
X_new
```

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)
792	349.0	0.0	0.0	192.0	0.0	1047.0	806.0	360

predict for X_new
model.predict(X_new)

array([71.13016829])

Colab paid products - Cancel contracts here

✓ 0s completed at 1:14 PM