EKSAMEN DATABLAD VIR DIE FISIESE WETENSKAPPE (CHEMIE)

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Grootte van lading op elektron	е	$1,6 \times 10^{-19} \mathrm{C}$
Massa van 'n elektron	m _e	$9.1 \times 10^{-31} \text{ kg}$
Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,01 × 10 ⁵ Pa
Molêre gas volume by STD	V_{m}	22,4 dm ³ ⋅mol ⁻¹
Standaardtemperatuur	$T^{\scriptscriptstyle{ heta}}$	273 K
Avogadro se konstante	N _A	$6,02 \times 10^{23} \text{ mol}^{-1}$
Faraday se konstante	F	96 500 C·mol ⁻¹

TABEL 2 CHEMIE FORMULES

$n = \frac{m}{M}$		$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$				
$c = \frac{n}{V}$ OF $c = \frac{n}{M}$	n V	$K_{w} = [H_{3}O^{+}] \cdot [OH^{-}] = 1 \times 10^{-14} \text{ by } 298 \text{ K}$					
Q = It		$m{\mathcal{E}}_{ ext{sel}}^{ heta} = m{\mathcal{E}}_{ ext{kato}}^{ heta}$ $m{\mathcal{E}}_{ ext{sel}}^{ heta} = m{\mathcal{E}}_{ ext{oksideermide}}^{ heta}$					

IEB Copyright © 2018 BLAAI ASSEBLIEF OM

TABEL 3 PERIODIEKE TABEL

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H 1			Atoom	getal ((Z)	1 F	2,1 H	Elektr	onega	ntiwitei	it						He
2	3 1,0 Li 7	Be 9				Relat	1 iewe a	toomn	nassa				5 2,0 B 10,8	C	N	O 16	F 19	Ne 20
3	11 0,9 Na 23	12 1,2 Mg 24,3											13 1,5 A? 27	14 1,8 Si 28	15 2,1 P 31	16 2,5 S 32	17 3,0 Cℓ 35,5	18 Ar 40
4	19 0,8 K 39	20 1,0 Ca	21 1,3 Sc 45	22 1,5 Ti 48	23 1,6 V 51	24 1,6 Cr 52	25 1,5 Mn 55	26 1,8 Fe 56	27 1,8 Co 59	28 1,8 Ni 59	29 1,9 Cu 63,5	30 1,6 Zn 65,4	31 1,6 Ga 70	32 1,8 Ge 72,6	33 2,0 As 75	34 2,4 Se 79	35 2,8 Br 80	36 Kr 84
5	37 0,8 Rb	38 1,0 Sr	39 1,2 Y	40 1,4 Zr	41 1,6 Nb	42 1,8 Mo	43 1,9 TC	44 2,2 Ru	45 2,2 Rh	46 2,2 Pd	47 1,9 Ag	48 1,7 Cd	49 1,7 In	50 1,8 Sn	51 1,9 Sb	52 2,1 Te	53 2,5	⁵⁴ Xe
6	85,5 55 Cs	56 Ba	89	91 72 Hf	93 73 Ta	96 74 W	99 75 Re	101 76 Os	103 77 Ir	78 Pt	108 79 Au	112 80 Hg	115 81 T£	119 82 Pb	121 83 Bi	128 84 Po	127 85 At	131 86 Rn
7	133 87 Fr	137,3 88 Ra		178,5	181	184	186	190	192	195	197	200,6	204,4	207	209	_	_	_
•	1 1	ixa																

57 La	⁵⁸ Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	Gd Gd	65 Tb	66 D y	67 Ho	Er	69 Tm	70 Yb	71 Lu
89	90	91	92	93	94	95	⁹⁶ Cm	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am		Bk	Cf	Es	Fm	Md	No	Lw

TABEL 4 STANDAARD ELEKTRODE POTENSIALE

	Half	E°/volt				
	Li ⁺ + e ⁻	=	Li	-3,05		
	K ⁺ + e ⁻	=	K	-2,93		
	Cs ⁺ + e ⁻		Cs	-2,92		
	Ba ²⁺ + 2e ⁻	=	Ва	-2,90		
	Sr ²⁺ + 2e ⁻	=	Sr	-2,89		
	Ca ²⁺ + 2e ⁻	=	Ca	-2,87		
	$Na^+ + e^-$	\rightleftharpoons	Na	-2,71		
	Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2,37		
	$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αl	-1,66		
	$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn	-1,18		
	$2H_{2}O + 2e^{-}$	\rightleftharpoons	$H_2(g) + 2OH^-$	-0,83		
	Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76		
	Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74		
	Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44		
	Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40		
	Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28		
Öë	Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,25		
Toenemende oksideervermoë	Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14		
	Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13		
	Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,04		
	2H ⁺ + 2e [−]	\rightleftharpoons	$H_2(g)$	0,00		
ks	S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+0,14		
e 0	Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15		
nd	$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17		
me	Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34		
neı	$2H_2O + O_2 + 4e^-$		40H ⁻	+0,40		
oe	$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H ₂ O	+0,45		
_	l ₂ + 2e ⁻		2l ⁻	+0,54		
	$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68		
	Fe ³⁺ + e ⁻		Fe ²⁺	+0,77		
	$Hg^{2+} + 2e^{-}$		Hg	+0,79		
	$NO_3^- + 2H^+ + e^-$			+0,80		
	$Ag^{+} + e^{-}$	\rightleftharpoons		+0,80		
	$NO_3^- + 4H^+ + 3e^-$			+0,96		
	Br ₂ + 2e ⁻		2Br ⁻	+1,09		
	$Pt^{2+} + 2e^{-}$		Pt	+1,20		
	$MnO_2 + 4H^+ + 2e^-$		$Mn^{2+} + 2H_2O$	+1,21		
	$O_2 + 4H^+ + 4e^-$			+1,23		
	$Cr_2O_7^{2-} + 14H^+ + 6e^-$			+1,33		
	$C\ell_2(g) + 2e^-$	=		+1,36		
	Au ³⁺ + 3e ⁻		Au Mar ²⁺ and O	+1,42		
	$MnO_4^- + 8H^+ + 5e^-$			+1,51		
	$H_2O_2 + 2H^+ + 2e^-$		2H ₂ O	+1,77		
	F ₂ (g) + 2e ⁻	\rightleftharpoons	2F ⁻	+2,87		

Toenemende reduseervermoë