

Image Registration 1:

Spring 2021

Slides by: Dr Carole Twining

Presented by: Terence Morley

Handouts & Lecture Notes

Report in Scientific American (June 2014):

"In each study, however, those who wrote out their notes by hand had a stronger conceptual understanding and were more successful in applying and integrating the material than those who used [sic] took notes with their laptops."

The Pen Is Mightier Than the Keyboard

P. A. Mueller, D. M. Oppenheimer, *Psychological Science*, Vol 25, Issue 6, pp. 1159 – 1168, April-23-2014.

- Handouts are to aid note taking, not a total replacement for note taking
- Podcasts, slides, pdfs etc on BlackBoard

Overview

- What is registration?
- Why registration?
- Example biomedical image data
- Breakdown of image registration problem

Image matching

Representing warps & regularisation

Optimisation

What is Non-Rigid Registration? (NRR)

Source Image

Target Image

- Warp source image to look like target image
- Warp: spatial deformation

Landmark Based Registration

Annotated Images

Original image

Frame of mean shape

- Interpolate movement of landmarks to warp image patch
 - [In AAM case, it was done using barycentric coordinates and triangulation]
- If we could do it without landmarks, only have to annotate one image to build shape & appearance model
- Manual annotation not always possible or feasible
- Registration just using images => automatic model building

Why do we need to do registration?

- Automatic model building
- Registering two images:

Aligns common structures

Dense (pixel by pixel or voxel to voxel) correspondence

- Compare information from two different images
- Combine information from two different images

Comparing MR brain images

3D CT image

3D equivalent

of the 2D pixel

3D PET image

Combined

Biomedical Image Data

 Vast amount of 2D, 3D, 4D (3D+time) data available Routine patient scans (diagnosis & disease progression)
 Research studies (multimodality & population studies)
 Human NeuroScanning Project (whole brain, sectioned)

Various Registration Scenarios:

- Same individual, same modality (Intra-subject)
 Patient movement, organ movement, pre & post intervention
- Same individual, different modality e.g. PET vs CT
 Movement between scans, functional versus structural imaging
- Population studies, many individuals (Inter-subject)
 Atlas construction, variation/similarity between subjects
- Histological sections (2D slices from 3D object)

Correspondence Problem

Intra(same)-subject case:

Identify real correspondence between different images

Inter(different)-subject case:

Meaningful anatomical correspondence between different individuals

Correspondence between individual and some anatomical atlas

Histological case:

Reconstruct real correspondence distorted by preparation

Unslicing the loaf!

Example Biomedical Images

Same individual, same modality

Pre-Operative MR, 1.5 Tesla

Intra-Operative MR, 0.15 Tesla

Same individual, same modality

Marcin Wierzbicki, Maria Drangova, Gerard Guiraudon, Terry Peters, Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries, Medical Image Analysis, 8(3),2004, Pages 387-401.

2D slices from sequence of 3D images

3 frames
overlaid and
colour-coded to
show movement
between frames

Innate organ motion, or motion between scans

Multimodal Imaging

STRUCTURAL

Angiography

Computed Tomography

FUNCTIONAL

SPECT:
Single
Photon
Emission
Computed
Tomography

PET:
Positron
Emission
Tomography

Data Fusion:

Functional (fMRI) overlaid on Anatomical MRI:

Link activation to specific anatomical structures

ASIDE: fMRI & Mind-Reading!

- Patients in persistent vegetative states (PVS)
- Show brain activity & can answer yes/no questions

Owen et al.,

Detecting Awareness in the Vegetative State
Science 8 September
2006

- Scott Routley able to answer that he was not in pain
- Raises important ethical issues.....

Population Studies

Normal and abnormal anatomical variation

Individual to Atlas

Courtesy of J-P. Thirion, INRIA

Histological Sections: Removed prostates

Histological section of prostate

Registered MR image

Superimposed

Example: Histological sections

Whole human brain embedded in paraffin wax

Microtome

- Stretched, dried, wax removed, stained, mounted
- Distortion occurs during this process

Histological Sections: Rat Brain

Modersitzki-, Schmitt and Wirtz, Registration of Histological Serial Sectionings, Mathematical Models for Registration and Applications to Medical Imaging

Before registration

After volume preserving registration

 Artificial slice of reconstructed 3D rat brain from histological sections

Basic Structure of Pairwise Registration Algorithms

Pairwise Registration Algorithm

- Two images, source and target (also called moving & reference, moving & stationary, template & reference etc etc.)
- Warp one image into the frame of the other
- Assess image matching
- Optimize the match

Three Main Questions:

- How do we measure image match/image difference?
- How do we represent image warping?
- How do we find the optimum match?

Image Matching

Two main strands:

Geometric Matching:

Extract sparse features (manually or automatically): points, lines, edges, ridge lines, surfaces etc Register extracted features

Problems: manual annotation, matching features, interpolating/extrapolating the paired features

Intensity-Based Registration:

pixel-by-pixel comparison warped & stationary images

Agrees with our intuition about matching

Makes maximal use of available image information

Image & Warped Image: Matching

$$\mathcal{I}_1(\underline{X})$$
 $\mathcal{I}_2(\underline{X})$

- Both defined on same pixellated grid: $X = \{p_a\}$
- Pixel-by-pixel comparison:

$$\mathcal{I}_1(\underline{p}_a)$$
 versus $\mathcal{I}_2(\underline{p}_a)$

- Sum of Absolute Differences (SAD): $\sum_{\mathbf{a}} \left| \mathcal{I}_{\mathbf{1}}(\underline{p}_{\mathbf{a}}) \mathcal{I}_{\mathbf{2}}(\underline{p}_{\mathbf{a}}) \right|$
- Sum of Squared Differences (SSD): $\sum_{\mathbf{a}} \left(\mathcal{I}_{1}(\underline{p}_{\mathbf{a}}) \mathcal{I}_{2}(\underline{p}_{\mathbf{a}}) \right)^{2}$
- Both assume best match = same values
- If this is not the case, correlation or mutual information
- Resampling the images onto common pixel grid?

Correlation & Mutual Information

Subtract mean of each image

$$\hat{\mathcal{I}}(\underline{p}_{\mathbf{a}}) = \mathcal{I}(\underline{p}_{\mathbf{a}}) - \frac{1}{\mathbf{n}_{\mathbf{p}}} \sum_{\mathbf{b}} \mathcal{I}(\underline{p}_{\mathbf{b}})$$

Normalised cross-correlation

$$\frac{\sum_{\mathbf{a}} \hat{\mathcal{I}}_{1}(\underline{p}_{\mathbf{a}}) \hat{\mathcal{I}}_{2}(\underline{p}_{\mathbf{a}})}{\sqrt{\sum_{b} (\hat{\mathcal{I}}_{1}(\underline{p}_{b}))^{2} \sum_{c} (\hat{\mathcal{I}}_{2}(\underline{p}_{c}))^{2}}}$$

Tries to make joint distribution a straight line

Mutual Information (Viola, 1995):

Useful when no simple ordering relation between intensities:

multi-modality registration

Tries to make joint distribution as peaky as possible

Mutual Information & Entropy

- ullet Histogram, bins: $\{ f i \}$ probabilities: $\{ {
 m P}_{f i} \}, \sum_{f i} {
 m P}_{f i} = 1$
- Entropy: $\mathbf{E} = -\sum_{i} \mathbf{P}_{i} \log \mathbf{P}_{i}$

Single bin: E = 0

Else E>0

Mutual Information:

- Entropy of distribution of pixel values for image 1
- Entropy of distribution of pixel values for image 2
- minus entropy of joint 2D histogram

Sampling the Warped Image

Push-Forward Mapping

- ullet $\mathcal{I}_{\mathbf{S}}$ & $\mathcal{I}_{\mathbf{t}}$ both defined on regular pixel grid X
- Mapping: ϕ : $\underline{x} \mapsto \phi(\underline{x})$
- Warped source: $\mathcal{I}_{\mathbf{S}}$: $\mathcal{I}_{\mathbf{S}}(\phi(\underline{X})) \doteq \mathcal{I}_{\mathbf{S}}(\underline{X})$
- Pixel-by-pixel comparison in frame of target image
- Comparing $\mathcal{I}_{\mathbf{S}}(\phi(\underline{X}))$ with $\mathcal{I}_{\mathbf{t}}(\underline{X})$: resample source from irregular grid to regular grid
- Computationally expensive

Pull-Back Mapping

- ullet $\mathcal{I}_{\mathbf{S}}$ & $\mathcal{I}_{\mathbf{t}}$ both defined on regular pixel grid X
- Mapping: ϕ : $\underline{x} \mapsto \phi(\underline{x})$
- Pixel-by-pixel comparison in frame of source image
- Warped target: $\tilde{\mathcal{I}}_t : \tilde{\mathcal{I}}_t(\underline{X}) \doteq \mathcal{I}_t(\phi(\underline{X}))$
- lacktriangle Compare $\mathcal{I}_{\mathbf{S}}$ with $\mathcal{I}_{\mathbf{t}}$
- Computing $\tilde{\mathcal{I}}_t$: $\mathcal{I}_t(\underline{X}) \to \mathcal{I}_t(\phi(\underline{X}))$ resample target from regular grid to irregular grid
- Computationally easier

Image matching alone not enough

- If we: Shuffle pixels in any fashion
- Add in intensity changes due to interpolation
- Result: Match almost anything to almost anything! Ideal Solution:
- Retain proximity:
 close in one image = close in the other
- lacktriangle Deformation field $\phi(\underline{x})$ continuous and smooth
- No folds or tears

Summary:

Why registration & example image data

Pairwise Registration:

- Image matching, single or multi modal cases
- Creating warped image
- Why image matching alone isn't enough!

Next Lectures:

Warp Regularisation:

Parametric Warps:

Meshes, barycentric coordinates & splines

Non-Parametric Warps:

Dense deformation fields, elastic solids & fluids