Empleando R como Sistema de Información Geográfica (SIG)

Gustavo Ahumada Sept 13, 2019

1. Representación simple de datos espaciales

Los objetos espaciales usualmente son representados por datos tipo vector. Tales tipos de datos consisten en la geometría o la forma de los objetos. Por ejemplo, un conjunto de datos vector que contienen el limite de los paises del mundo (geometría) y también contienen su respectivo tamaño poblacional para el año 2010. Por otra parte, se tienen los datos espaciales continuos, los cuales son frecuentemente representados con datos tipo raster. A continuación se representante este tipo de datos utilizando R. Parte del codigo que será utilizado en esta sección está disponible en https://rspatial.org/spatial/index.html.

1.1. Datos tipo vector

```
# cargar librerias
library(pacman)
pacman::p_load(raster, sf, maptools, rgdal, ggplot2, tidyverse, broom)
# Creación de 10 estaciones climaticas (llamadas de A a J)
nombre <- LETTERS[1:10]</pre>
longitud <- c(-116.7, -120.4, -116.7, -113.5, -115.5,
              -120.8, -119.5, -113.7, -113.7, -110.7)
latitud \leftarrow c(45.3, 42.6, 38.9, 42.1, 35.7, 38.9,
             36.2, 39, 41.6, 36.9)
est_climatic<- cbind(longitud, latitud)</pre>
# Simulación de datos de lluvia
set.seed(0)
precip <-round((runif(length(latitud))*10)^3)</pre>
nivel_precip <- 1 + precip/500</pre>
{plot(est climatic, cex=nivel precip, pch=20, col='blue', main='Precitación por estaciones')
# adicionar etiquetas
text.default(est_climatic, nombre, pos = 4)
# adicionar leyenda
breaks <- c(100, 250, 500, 1000)
legend.psize <- 1+breaks/500</pre>
legend("topright", legend=breaks, pch=20, pt.cex=legend.psize, col='blue', bg='gray')}
```

Precitación por estaciones

Precipitación por estaciones


```
# Tabla de datos
tabla <- data.frame(longitud, latitud, nombre, precip)
tabla</pre>
```

```
##
      longitud latitud nombre precip
## 1
        -116.7
                   45.3
                                   721
## 2
        -120.4
                   42.6
                              В
                                    19
                              С
## 3
        -116.7
                   38.9
                                    52
        -113.5
                              D
## 4
                   42.1
                                   188
                              Ε
## 5
        -115.5
                   35.7
                                   749
        -120.8
                   38.9
                              F
## 6
                                     8
                              G
                                   725
## 7
        -119.5
                   36.2
## 8
        -113.7
                   39.0
                             Η
                                   843
## 9
                              Ι
                                   289
        -113.7
                   41.6
## 10
        -110.7
                   36.9
                                   249
```

1.2. Datos tipo raster

```
# Crear un esqueleto de una base de datos raster
rast <- raster(ncol=10, nrow=10, xmx=-80, xmn=-150, ymn=20, ymx=60)
rast</pre>
```

class : RasterLayer

```
## dimensions : 10, 10, 100 (nrow, ncol, ncell)
## resolution : 7, 4 (x, y)
## extent : -150, -80, 20, 60 (xmin, xmax, ymin, ymax)
## crs
             : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
# Asignar valores a objetos tipo raster
values(rast) <- runif(ncell(rast))</pre>
rast
## class
              : RasterLayer
## dimensions : 10, 10, 100 (nrow, ncol, ncell)
## resolution : 7, 4 (x, y)
## extent : -150, -80, 20, 60 (xmin, xmax, ymin, ymax)
             : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
## crs
## source : memory
## names : layer
## values : 0.01339033, 0.9926841 (min, max)
# Podemos asignar el número de celdas
values(rast) <- 1:ncell(rast)</pre>
rast
## class
            : RasterLayer
## dimensions : 10, 10, 100 (nrow, ncol, ncell)
## resolution : 7, 4 (x, y)
## extent : -150, -80, 20, 60 (xmin, xmax, ymin, ymax)
## crs
             : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
## source : memory
## names : layer
## values : 1, 100 (min, max)
plot(rast)
```



```
# Podemos crear un esqueleto de una base de datos raster
{rast <- raster(ncol=10, nrow=10, xmx=-80, xmn=-150, ymn=20, ymx=60)</pre>
# asignar valores a objetos tipo raster
values(rast) <- runif(ncell(rast))</pre>
# podemos asignar el número de celdas
values(rast) <- 1:ncell(rast)</pre>
rast
# plottear objeto tipo raster
plot(rast)
# adicionar puntos y poligonos
longitud <- c(-116.8, -114.2, -112.9, -111.9, -114.2, -115.4, -117.7)
latitud <- c(41.3, 42.9, 42.4, 39.8, 37.6, 38.3, 37.6)
lonlat <- cbind(longitud, latitud)</pre>
pols <- spPolygons(lonlat, crs='+proj=longlat +datum=WGS84')</pre>
points(lonlat, col='red', pch=20, cex=3)
plot(pols, border='blue', lwd=2, add=TRUE)}
```

