1 Пределы

Теорема 1. Определение Коши ⇔ определение Гейне.

Доказательство. Докажем "⇒".

Если дана (x_n) , удовл. определению Коши, доказать

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ 0 < \rho(f(x_n), A) < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ 0 < \rho(x, a) < \delta \ \rho(f(x), A) < \varepsilon$$

Для этого
$$\delta \ \exists N \ \forall n > N \rho(x_n, a) < \delta$$

, где $x_n \in D, x_n \neq a$

$$\Rightarrow \rho(f(x_n), A) < \varepsilon$$

Доказательство. Докажем "←"

Пусть определение Коши не выполняется.

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in D \ 0 < \rho(x, a) < \delta \ \rho(f(x), A) \ge \varepsilon$$

$$\delta := \frac{1}{n} \exists x_n \in D \ 0 < \rho(x_n, a) < \frac{1}{n} \ \rho(f(x_n), A) \ge \varepsilon$$

Построена последовательность $(x_n): x_n \in D$ $x_n \neq a$ $\rho(x_n,a) < \frac{1}{n} \Rightarrow \rho(x_n,a) \to 0 \Rightarrow x_n \to a$. Кроме того, $\rho(f(x_n),A) \geq \varepsilon$ — противоречит утверждению Гейне, что $f(x_n) \to A$.

Теорема 2. О единственности предела. $f:D\subset X\to Y, a$ — пред. точка D

$$\lim_{x \to a} f(x) = A; \lim_{x \to a} f(x) = B$$

 ${ Тогда}\ A=B$

Доказательство. По Гейне. $\forall (x_n)$:

- $x_n \to a$
- $x_n \in D$
- $x_n \neq a$

M3137y2019

$$f(x_n) \to A, f(x_n) \to B \xrightarrow{\text{теор. o ед. предела посл.}} A = B$$

Теорема 3. О локальной ограниченности отображения, имеющего предел.

$$f:D\subset X\to Y,$$
 a — пред. точка $D,$ $\exists\lim_{x\to a}f(x)=A$

Тогда $\exists V(a): f$ — огр. на $V(a)\cap D$, т.е. $f(V(a)\cap D)$ содержится в некотором шаре.

Доказательство. Для
$$\varepsilon=1 \ \exists V(a) \ \forall x \in \dot{V}(a) \cap D \ f(x) \in U_{\varepsilon}(A)$$

Если $\not\exists f(a)$, ограниченность доказана. Иначе:

$$\forall x \in V(a) \cap D \ f(x) \in U_{\widetilde{arepsilon}}(A)$$
, где $\widetilde{arepsilon} = \max(arepsilon,
ho(A, f(a)) + 1)$

Теорема 4. О стабилизации знака.

$$f:D\subset X\to Y,$$
 a — пред. точка $D,$ $\exists\lim_{x\to a}f(x)=A$

Пусть
$$B \in Y, B \neq A$$

Тогда
$$\exists V(a) \ \forall x \in \dot{V}(a) \cap D \ f(x) \neq B$$

Доказательство. Для

$$0 < \varepsilon < \rho(A, B) \ \exists V(a) \ \forall x \in \dot{V}(a) \cap D \ f(x) \in U_{\varepsilon}(A)$$

$$U_{\varepsilon}(A)$$
 не содержит B .

Следствие 4.1. $f:D\subset X \to \mathbb{R}$, a – пред. точка, $\lim_{x\to a}f(x)=A>0$ B=0

$$\exists \dot{V}(a) \cap D : f(x) \neq 0$$

В доказательстве
$$0 < \varepsilon < A \ f(x) \in U_{\varepsilon}(A) = (A - \varepsilon, A + \varepsilon)$$

Теорема 5. Об арифметических свойствах предела

 $f,g:D\subset X\to Y,$ X — метрич. пространство, Y — норм. пространство над $\mathbb{R},$ a — пред. точка D

$$\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B$$

$$\lambda: D \to \mathbb{R}, \lim_{x \to a} \lambda(x) = \lambda_0$$

Тогда:

1.
$$\exists \lim_{x \to a} f(x) \pm g(x)$$
 и $\lim_{x \to a} f(x) \pm g(x) = A \pm B$

2.
$$\lim_{x \to a} \lambda(x) f(x) = \lambda_0 A$$

3.
$$\lim_{x \to a} ||f(x)|| = ||A||$$

M3137y2019

4. Для случая $Y=\mathbb{R}$ и для $B\neq 0$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$

 $\frac{f}{g}$ задано на множестве $D'=D\setminus\{x:g(x)=0\}$

a — пр. точка D' по теореме о стабилизации знака $\exists V(a) \ \, \forall x \in V(a) \cap D \ \, g(x)$ — того же знака, что и B, т.е. $g(x) \neq 0$

$$\dot{V}(a)\cap D'=\dot{V}(a)\cap D\Rightarrow a$$
 — пред. точка для D'

Доказательство. По Гейне. $\forall (x_n)$:

- $x_n \to a$
- $x_n \in D$
- $x_n \neq a$

 $f(x_n) + g(x_n) \rightarrow^? A + B$ верно по теореме последовательности.

Аналогично прочие пункты, кроме 4.

$$f(x_n) \to A$$

$$g(x_n) \to B \neq 0 \Rightarrow \exists n_0 \ \forall n > n_0 \ g(x_n) \neq 0$$

$$\frac{f(x_n)}{g(x_n)}$$
 корректно задано при $n>n_0.$

Примечание. Для $\overline{\mathbb{R}}$

Если $Y=\overline{\mathbb{R}}$, можно "разрешить" случай $A,B=\pm\infty$

Тогда 3. тривиально, 1., 2. и 4. верно, если выражения $A\pm B,\,\lambda_0 A,\,\frac{A}{B}$ корректны.

Докажем 1. как в теореме об арифметических свойствах последовательности.

$$\lim_{\substack{x \to a \\ 0 \ \forall x \in D \cap V_{\delta_2}(a)}} f(x) = +\infty; \lim_{\substack{x \to a \\ 0 \ \forall x \in D \cap V_{\delta_2}(a)}} g(x) = +\infty \Leftrightarrow \forall E_1 \ \exists \delta_1 > 0 \ \forall x \in D \cap V_{\delta_1}(a) \ f(x) > E_1 \ \forall E_2 \ \exists \delta_2 > 0 \ \forall x \in D \cap V_{\delta_2}(a) \ g(x) > E_2$$

Это доказательство не будет спрашиваться.

2 Компактные множества

Теорема 6. О простейших свойствах компактных множеств. (X,ρ) — метрическое пространство, $K\subset X$

- 1. $K \text{комп.} \Rightarrow K \text{замкн.}, K \text{огр.}$
- 2. $X \text{комп}, K \text{замкн.} \Rightarrow K \text{комп}.$

M3137y2019

Доказательство. 1.
$$?K$$
 — замкн. $?K^c$ — откр.

$$a \notin K$$
, проверим, что $\exists U(a) \subset K^c$

$$K \subset \bigcup_{x \in K} B(x, \frac{1}{2}\rho(x, a))$$
 — откр. покрытие

$$K$$
 — комп. $\Rightarrow \exists x_1 \dots x_n \quad K \subset \bigcup_{i=1}^n B(x_i, \frac{1}{2}\rho(x_i, a))$ — открытое покрытие

$$r := \min(\frac{1}{2}\rho(x_1, a)) \dots \frac{1}{2}\rho(x_n, a)))$$

B(a,r) не пересекается ни с одним $B(x_i, \frac{1}{2}\rho(x_i,a)) \Rightarrow B(a,r) \subset K^c$

$$?K - \text{orp.}$$

$$b \in X$$

$$K \subset \bigcup_{n=1}^{+\infty} B(b,n) = X$$

$$K$$
 – комп. $\Rightarrow K \subset \bigcup_{n=1}^m \Rightarrow K \subset B(b, \max(n_1 \dots n_m))$

2. ?K - комп.

$$\begin{cases} K \subset \bigcup_{\alpha \in A} G_{\alpha}, G_{\alpha} - \text{откр.} \\ K - \text{замкн.}, K^{c} - \text{откр.} \end{cases} \Rightarrow K^{c} \cup \bigcup_{\alpha \in A} G_{\alpha} - \text{откр. покрытие } X \Rightarrow X \subset (\text{может быть } K^{c}) \cup \bigcup_{i=1}^{n} G_{\alpha_{i}}$$

Лемма 1. О вложенных параллелепипедах. $[a,b]=\{x\in\mathbb{R}^m: \forall i=1\dots m\ a_i\leq x_i\leq b_i\}$ — параллелепипед.

 $[a^{1},b^{1}]\supset [a^{2},b^{2}]\supset\ldots$ — бесконечная последовательность параллелепипедов.

Тогда
$$\bigcap\limits_{i=1}^{+\infty}[a^i,b^i] \neq \!\! \varnothing$$

Если
$$diam[a^n,b^n]=||b^n-a^n|| \to 0$$
, тогда $\exists!c\in \bigcap\limits_{i=1}^\infty [a^i,b^i]$

Доказательство. $\forall i=1\dots m \quad [a_i^1,b_i^1]\supset [a_i^2,b_i^2]\supset \dots \quad \exists c_i\in \bigcap_{n=1}^{+\infty} [a_i^n,b_i^n]. \ c=(c_1\dots c_m)$ общая точка всех параллелепипедов.

$$|a_i^n - b_i^n| \le ||a^n - b^n|| \to 0 \Rightarrow_{\mathsf{T. Kahtopa}} \exists ! c_i \in \bigcap_{n=1}^{+\infty} [a_i^n, b_i^n] \Rightarrow \exists ! c = (c_1 \dots c_m)$$

M3137y2019 November 4, 2019

Лемма 2. [a,b] — компактное множество в \mathbb{R}^m $[a,b]\subset\bigcup_{\alpha\in A}G_\alpha$ — откр. в \mathbb{R}^m

Доказательство. Докажем, что \exists кон. $\alpha=(\alpha_1\dots\alpha_n):[a,b]\subset\bigcup\limits_{i=1}^nG_{\alpha_i}$

Допустим, что не ∃

 $[a^{1},b^{1}]:=[a,b]\Rightarrow [a^{1},b^{1}]$ нельзя покрыть кон. набором

 $[a^2,b^2]:=$ делим $[a^1,b^1]$ на 2^m частей, берем любую "часть", которую нельзя покрыть конечным набором G_α

:

$$diam = [a^n, b^n] = \frac{1}{2} diam[a^{n-1}, b^{n-1}] = \frac{1}{2^{n-1}} diam[a^1, b^1]$$

$$\exists c \in \bigcap_{n=1}^{+\infty} [a^n, b^n]$$

$$c \in [a,b] \subset \bigcup_{\alpha \in A} G_{\alpha}$$

$$\exists \alpha_0 \quad c \in G_{\alpha_0}$$
 — откр.

$$\exists U_{\varepsilon}(c) \subset G_{\alpha_0}$$

$$\exists n \quad diam[a^n, b^n] \ll \varepsilon$$

и тогда
$$[a^n,b^n]\subset U_{arepsilon}(c)\subset G_{lpha_0}$$

Примечание. $x_n \to a$

 \forall подпосл. n_k $x_{n_k} \to a$

Примечание. $\{n_k\} \cap \{m_k\} = \mathbb{N}$

$$\begin{cases} x_{n_k} \to a \\ x_{m_k} \to a \end{cases} \Rightarrow x_n \to a$$

M3137y2019

November 4, 2019

Определение. Секвенциально компактным называется множество $A\subset X: \forall$ посл. (x_n) точек A \exists подпосл. x_{n_k} , которая сходится к точке из A

Теорема 7. О характеристике компактов в \mathbb{R}^m . $K \subset \mathbb{R}^m$. Эквивалентны следующие утверждения:

- 1. K замкнуто и ограничено
- 2. K компактно
- 3. K секвенциально компактно

Доказательство. Докажем $1 \Rightarrow 2$

$$K$$
 — orp. $\Rightarrow K$ содержится в $[a,b]$

$$K$$
 — замкн. в $\mathbb{R}^m \Rightarrow K$ — замкн. в $[a,b]$

Т.к. [a, b] — комп., по простейшему свойству компактов K — комп.

Доказательство. Докажем $2 \Rightarrow 3$

 $\forall (x_n)$ — точки из K.

?сходящаяся последовательность

Если множество значений $D = \{x_n, n \in \mathbb{N}\}$ — конечно, то \exists сход. подпосл. очевидно.

Пусть D — бесконечно

Если D имеет предельную точку, то $x_{m_k} \to a$

Если D — бесконечно и не имеет предельных точек, $K \subset \bigcup_{x \in K} B(x, \varepsilon_x)$, радиус такой, что в этом шаре нет точек D, кроме x (его может тоже не быть). Тогда $\bigcup_{x \in K} B(x, \varepsilon_x)$ — открытое покрытие K. Так как каждый шар содержит 0 или 1 точку, конечное число шаров не может покрыть K, т.к. в K бесконечное число точек (т.к. бесконечное число различных значений D). Таким образом, мы нашли открытое покрытие K, у которого нет конечного подпокрытия — противоречие.

Пусть $a \in K$ — предельная точка. Возьмём из $B(a,r_1)$ точку x_{n_1} . Возьмём $r_2 < r_1$ и из соответствующего шара возьмём x_{n_2} . При $r_n \to 0$ $x_{n_k} \to a$.

Почему вблизи a будет точка из произвольной последовательности?

M3137y2019 November 4, 2019