

The inversion sequence of the apo-dystrophin-4 cDNA (SEQ ID NO 1)

Figure 1

The inversion sequence of the apo-dystrophin-4 cDNA plus a 10 base-pair region 5' to the start of the inversion sequence (SEQ ID NO 1A).

Figure 1A

The inversion sequence of the apo-dystrophin-4 cDNA plus the upstream 150 bp from the start of the inversion at 860 to the Hpa I enzyme site (SEQ ID NO 1B)

Figure 1B

The polynucleotide sequence of apo-dystrophin-4 (SEQ ID NO 2)

Figure 2

																			ACAT
;	N	D	F.	P	N	G	K	E	\mathbf{T}	Ľ	*	С	Y	ь	S	А	P	F	V
۱A	GTC	TGT	CTT'	TCT'	TTC	тст	TTG	TTT	TCC	AGG	ACA	CAA	TGT	AGG	AAG	TCT	TTT	CCA	CATG
_			-+-			+				+			-+-			+			+
Т	CAG	ACA	GAA	AGA	AAG	AGA	AAC	AAA	AGG	TCC	TGT	GTT	ACA	TCC	TTC	AGA	AAA	GGT	GTAC
ζ	S	V	F	L	S	L	С	F	P	G	Н	N	V	G	S	L	F	H	M
																			AGGA
																			+
												LAG	TON	GIP	$\iota \cup \iota \cup$	$t \perp \cup \perp$	AL.I		
													7.7						TCCT
				G					S				v			D	Е	E	G
A.	D	D	L	G	R	Α	М	E	S	L	v	S		М	Т	D	Е	E	
A GC	D AGA	D ATA	L AAT	G GTT	R TTA	A .CAA	M CTC	E CTG	S ATT	L	V GCA	s .TGG	TTT	M 'TTP	T AATA	D TAT	E 'TCA	E .TAC	G
A GC	D AGA	D ATA	L AAT -+-	G GTT	R TTA	A CAA	M CTC	E	S ATT	r CCC	V GCA	S .TGG	TTT -+-	M TTP	T AAT	D LTAT	E TCA	E TAC	G AACA
₹ 	D AGA TCT	D ATA	L AAT -+-	G GTT	R TTA AAT	A CAA	M CTC 'GAG	E	S ATT	r CCC	V GCA 	S TGG 	TTT -+-	M TTTP 	T AATA ITTA'	D LTAT	E TCA	E TAC	G AACA
A EC CG	D AGA TCT E	D ATA TAT *	L AAT -+- TTA M	G GTT .CAA F	R TTA AAT Y	A CAA + 'GTT N	M CTC 'GAG	E CTC GGAC	S ATT TAA F	L CCC +	V GCA GCGI H	S TGG 'ACC G	TTT -+- AAA F	M TTP AAT Y	T ATA '' 'ATT N	D TATA '+ 'ATA'	E TCA AGT H	E TAC ATG	G CAACA + TTGT T
A G G A A A	D AGA TCT E	D ATA TAT *	L AAT -+- TTA M	G GTT CAA F	R TTA AAT Y	A CAA + 'GT'T N	M CTC 'GAG S	E CTC GGAC *	S ATT TAA F	L CCCC + GGG P	V GCA GCGI H	S TGG 'ACC 'ACC	TTTT -+- AAA F	M ATT' Y T'TA'	T AATA TTA' ITTT'	D TAT 'ATA I	E TCA AGT H	E TAC 'ATG T	G AACA TTGT T
A CG A	D AGA TCT E	D ATA TAT *	L AAT -+- TTA M TAG	G GTT CAA F ACA	R TTA AAT Y GTA	A CAA 'GTT N AGA	M CTC 'GAG S	E CTG GGAC *	S ATT TTAA F LAAG	L CCCC + GGG P	V GCA GCGT H	S TGG ACC	TTTT CAAA F	M ATT' TAA' Y	T AATA TTA' N TTT'	D TATAT TATA I GTG	E TCA AGT H	E TAC	G AACA TTGT T
A CG A AA TT	D AGA TCT E GAG	D ATA TAT * * * * * * * * * * * * * * * * * *	L AAT -+- TTA M TAG -+- ATC	G GTT CAA F ACA TGT	R TTA AAT Y GTA CAT	A CAA + 'GTT N AAGA	M CTC GAG S GTT	E CCTG GGAC * TTAC	S ATT F AAG	L CCCC + GGGG P LAAA	V GCA GCGT H TAA	S TGG 'ACC G ATC	-+- AAA F TTAT	M TTTA AATT Y TTAATT	T AAAAAAAATT	D ATAT ATAT I CGTG ACAC	E TCA AGT H AAAG	E TAC T GGGT	G AACA TTGT T AGTG
A CG A AA	D AGA TCT E	D ATA TAT *	L AAT -+- TTA M TAG -+- ATC	G GTT CAA F ACA	R TTA AAT Y GTA	A CAA 'GTT N AGA	M CTC 'GAG S	E CTG GGAC *	S ATT TTAA F LAAG	L CCCC + GGG P	V GCA GCGT H	S TGG ACC	TTTT CAAA F	M ATT' TAA' Y	T AATA TTA' N TTT'	D TATAT TATA I GTG	E TCA AGT H	E TAC	G AACA TTGT T
7	D AGA FCT E GAG CTC	D ATA TAT * * * * * * * * * * * * * * * * * *	L AAT -+- TTA M TAG -+- ATC	G GTT CAA F ACA TGT	R TTA AAT Y GTA CAT	A CAA + 'GTT N AAGA	M CTC GAG S GTT	E CCTG GGAC * TTAC	S ATT F AAG	L CCCC + GGGG P LAAA	V GCA GCGT H TAA	S TGG 'ACC G ATC	-+- AAA F TTAT	M TTTA AATT Y TTAATT	T AAAAAAAATT	D ATAT ATAT I CGTG ACAC	E TCA AGT H AAAG	E TAC T GGGT	G AACA TTGT T AGTG

Figure 2 (cont'd)

Figure 2 (cont'd)

Figure 3A

Figure 3B

Figure 4A

Figure 4C

Figure 4B

Figure 4D

Figure 5

Figure 6

begin exon 79 AAGTCTGTCTTTCTCTTTTGTTTTCCAGGACACAATGTAGGAAGTCTTTTCCACATG -----+ 480 TTCAGACAGAAAGAAAGAGAAACAAAAGGTCCTGTGTTACATCCTTCAGAAAAGGTGTAC K S V F L S L C F P G H N V G S L F H M GCAGATGATTTGGGCAGAGCGATGGAGTCCTTAGTATCAGTCATGACAGATGAAGAAGGA 481 -----+ 540 ${\tt CGTCTACTAAACCCGTCTCGCTACCTCAGGAATCATAGTCAGTACTGTCTACTTCTTCCT}$ A D D L G R A M E S L V S V M T D E E G GCAGAATAAATGTTTTACAACTCCTGATTCCCGCATGGTTTTTATAATATTCATACAACA _____+ 600 CGTCTTATTTACAAAATGTTGAGGACTAAGGGCGTACCAAAAATATTATAAGTATGTTGT AE*MFYNS*FPHGFYNIHTT (---N---) AAGAGGATTAGACAGTAAGAGTTTACAAGAAATAAATCTATATTTTTGTGAAGGGTAGTG ----+ 660 TTCTCCTAATCTGTCATTCTCAAATGTTCTTTATTTAGATATAAAAACACTTCCCATCAC KRIRQ * E F T R N K S I F L * R V V GTATTATACTGTAGATTTCAGTAGTTTCTAAGTCTGTTATTGTTTTGTTAACAATGGCAG 720 CATAATATGACATCTAAAGTCATCAAAGATTCAGACAATAACAAAACAATTGTTACCGTC V L Y C R F Q * F L S L L F C * Q W Q GTTTTACACGTCTATGCAATTGTACAAAAAAGTTATAAGAAAACTACATGTAAAATCTTG _____+ 780 CAAAATGTGCAGATACGTTAACATGTTTTTTCAATATTCTTTTGATGTACATTTTAGAAC V L H V Y A I V Q K S Y K K T T C K I L ATAGCTAAATAACTTGCCATTTCTTTATATGGAACGCATTTTGGGTTGTTTAAAAATTTA ----+ 840 TATCGATTTATTGAACGGTAAAGAAATATACCTTGCGTAAAACCCAACAAATTTTTAAAT I A K * L A I S L Y G T H F G L F K N L inversion start site TAACAGTTATAAAGAAAGAATTATAAAGGAAAAAGAAAATAACGCAATGGACAAGTGGTG ______ 900 * Q L * R K N Y K G K R K * R N G Q V V AAGCTGTGAACTCAGGTGTGCACAATTATCAGGAACACCCCAAAACCAAAGTGAGGTAGA _____+ 960 901 TTCGACACTTGAGTCCACACGTGTTAATAGTCCTTGTGGGGTTTTGGTTTCACTCCATCT KL * TQ V C T I I R N T P K P K * G R AATAGCATGAGAAGCCGTGTTTGATGTTAATTAATT _____ 961

Figure 6 (cont'd)

TTATCGTACTCTTCGGCACAAACTACAATTAATTAA N S M R S R V * C * L I

Figure 7

*cDNA map is not precisely drawn to scale

Figure 8

Figure 9A

Figure 10A

Figure 10B

	50				1
Mgen1073 Hapo1234 Consensus	ctagtttcct	attcaatgta	tagtgcacca	aaggtcaatt	caagagttta
	51				100
Mgen1073 Hapo1234 Consensus		tttcaaccca		gagagaaaat	
Mgen1073 Hapo1234 Consensus	101 accatagcct	cagaagcaag	ttcACAGgCT ccaACAGcCT	n GRAIL exc tAAgCAGCca gAAaCAGCtt -AA-CAGC	gtAAATGAcA tgAAATGA <u>aA</u>
Mgen1073 Hapo1234 Consensus	AgTtggtgtg	gcggtgatgg	tggcagtgaT	AtgtGgtAgt AatgGtgAcc AGA	gAtGgttggG
Mgen1073 Hapo1234 Consensus	TGCTGGTgAT	GGTagTggTA	GttGtgA.AG	apo-4 aaGGTGgTaG gtGGTGaTg <u>G</u> GGTG-T-G	TGgTTTGATt
Mgen1073 Hapo1234 Consensus	GatAgtaaaa	AaAaTgTtCg	ttAatAcAAg	TAcAagtatA TAgAgagtaA TA-AA	GTAAtcaatc
Mgen1073 Hapo1234 Consensus	aatcactcat	agcCAAgGTG	gaAAAGaTGT	M3 gTgCCATtAc aTcCCATcAt -T-CCAT-A-	ggAataTTCc
Hapo1234	aatcactcat 351 cG tGttctgata	agcCAAgGTG	tgAAAGgTGT gaAAAGaTGTAAAG-TGT cCTTgTCTAT gCTTaTCTAT	gTgCCATtAc aTcCCATcAt -T-CCAT-A- GaAgTTC GgAaTTCttt	acAtctTTCt ggAataTTCc
Hapo1234 Consensus Mgen1073 Hapo1234	atc aatcactcat 351 cG tGttctgata -G 401 TaggAagatG TtacAttggG	agcCAAgGTGCAA-GTG GtgATaagag GaaATcttgt GAT AAtCatcAat	tgAAAGgTGT gaAAAGaTGTAAAG-TGT cCTTGTCTAT gCTTaTCTAT -CTT-TCTAT TtaCaT TagCtTgaca	gTgCCATtAc aTcCCATcAt -T-CCAT-A- GaAgTTC GgAaTTCttt G-A-TTC TTcTcCCcat TTtTtCCatg	acAtctTTCt ggAataTTCcATTC- 400 TGAGATGTGT TGA-AT-T-T 450 cAAAtgaCAc
Hapo1234 Consensus Mgen1073 Hapo1234 Consensus Mgen1073 Hapo1234	atcactcat 351 cG tGttctgata -G 401 TaggAagatG TtacAttggG TAG 451 cAtgCTGATC tAgcCTGATC	agcCAAgGTGCAA-GTG GtgATaagag GaaATcttgt GAT AAtCatcAat AAcCtgaAtg AA-CA begin CAgtATTAAG CAacATTAAG	tgAAAGgTGT gaAAAGaTGTAAAG-TGT CCTTGTCTAT gCTTaTCTAT -CTT-TCTAT TtaCaT TagCtTgaca TC-T mouse GRAI: CTaATACTAA CTGATACTAA	gTgCCATtAc aTcCCATcAt -T-CCAT-A- GaAgTTC GgAaTTCttt G-A-TTC TTcTcCCcat TTtTtCCatg TT-T-CC	acAtctTTCt ggAataTTCcATTC- 400 TGAGATGTGT TGA-AT-T-T 450 cAAAtgaCAc tAAAcacCAg -AAACA- 500 tgcAatGCTT gtaAtgGCTT
Mgen1073 Hapo1234 Consensus Mgen1073 Hapo1234 Consensus Mgen1073 Hapo1234 Agen1073 Hapo1234	351 cG tGttctgata -G 401 TaggAagatG TtacAttggG TAG 451 cAtgCTGATC tAgcCTGATC -ACTGATC 501 CATTAACAAG CATTAALAAG	agcCAAgGTGCAA-GTG GtgATaagag GaaATcttgt GAT AAtCatcAat AAcCtgaAtg AA-CA begin CAgtATTAAG CA-ATTAAG GATTTGCTTC GCTTTGCTTC	tgAAAGgTGT gaAAAGaTGTAAAG-TGT cCTTgTCTAT gCTTaTCTAT -CTT-TCTAT TtaCaT TagCtTgaca TC-T mouse GRAI: CTaATACTAA CTGATACTAA CTGATACTAA TTGCTaGAAA TTCCTgGAAA	gTgCCATtAc aTcCCATcAt -T-CCAT-A- GaAgTTC GgAaTTCttt G-A-TTC TTcTcCCcat TTtTtCCatg TT-T-CC L exon CACca CaaacaACgt CAC	acAtctTTCt ggAataTTCcATTC- 400 TGAGATGTGT TGA-AT-T-T 450 cAAAtgaCAc tAAAcacCAg -AAACA- 500 tgcAatGCTT gtaAtgGCTTAGCTT 550 AaCggACtgT AtCaaACctT

Figure 11

Mgen1073 Hapo1234 Consensus	GaAATGAtTt	CCcAaAtqGc	aAAgaAacaG	tacaATaCT. agtgATgCTa AT-CT-	tctatcTGCA
Mgen1073 Hapo1234 Consensus	651 CacTTTGTAA CctTTTGTAA CTTTGTAA	AgtctgTCTT	TCTTTCTCTT TCTTTCTCTT TCTTTCTCTT	TGTTTTCCAG TGTTTTCCAG TGTTTTCCAG	GACACAATGT
Mgen1073 Hapo1234 Consensus	701 AGGAAGCCTT AGGAAGTCTT AGGAAG-CTT	TTCCACATGG TTCCACATGG TTCCACATGG	CAGATGATTT CAGATGATTT CAGATGATTT	GGGCAGAGCG GGGCAGAGCG GGGCAGAGCG	ATGGAGTCCT
Mgen1073 Hapo1234 Consensus	751 TAGTTTCAGT TAGTATCAGT TAGT-TCAGT	CATGACAGAT CATGACAGAT CATGACAGAT	GAAGAAGGAG	CAGAATAAAT CAGAATAAAT CAGAATAAAT	800 GTTTTACAAC GTTTTACAAC GTTTTACAAC
Mgen1073 Hapo1234 Consensus		CGCATGGTTT CGCATGGTTT CGCATGGTTT	TTATAATATT	CgTACAACAA CaTACAACAA C-TACAACAA	AGAGGATTAG
Mgen1073 Hapo1234 Consensus	ACAGTAAGAG	TTTACAAGAA TTTACAAGAA TTTACAAGAA	AT.AAATCTA	TATTTTTGTG TATTTTTGTG TATTTTTGTG	900 AAGGGTAGTG AAGGGTAGTG AAGGGTAGTG
Mgen1073 Hapo1234 Consensus	901 GTACTATACT GTATTACT GTATACT	GTAGATTTCA	GTAGTTTCTA GTAGTTTCTA GTAGTTTCTA	AGTCTGTTAT	950 TGTTTTGTTA TGTTTTGTTA TGTTTTGTTA
Mgen1073 Hapo1234 Consensus	ACAATGGCAG	GTTTTACACG GTTTTACACG GTTTTACACG	TCTATGCAAT TCTATGCAAT TCTATGCAAT	TGTACAAAAA	1000 AGTTAAAAGA AGTTA+AAGA AGTTA-AAGA
Mgen1073 Hapo1234 Consensus	1001 AAACATG AAactACATG AAACATG	TAAAATCTTG	ATAGCTAAAT	AACTTGCCAT AACTTGCCAT AACTTGCCAT in inversio	
Mgen1073 Hapo1234 Consensus	GGAACGCATT	TTGGGTTGTT	TAAAAATTTA TAAAAATTTA	TAACAGTTAT TAACAGTTAT TAACAGTTAT	1100 AAAGAAAGAt AAAGAAAGAa
Mgen1073 Hapo1234 Consensus	TtatAAaggA	. Aaa	AgAAAAtAAc	ttgtTtataA gcaaTggacA TA	1150 AaacccctAa AgtggtgaAg AA-
Mgen1073 Hapo1234 Consensus	ctgtgaACtC	AgGtgtgCAC	AattAtcagg	AacacCcCAa	1200 AcaCAcAcTG AacCAaAgTG ACA-A-TG
Mgen1073 Hapo1234 Consensus	AGGtAGaAat	agcaTgaGaA	. gccgTgTttg	gTGTatcaTA aTGTtaatTA -TGTTA	. att

Figure 11 (cont'd)

Figure 12A

-70 bp from 5' end of apo-4

Inr = GCCC TCAT TCTG GAGAC

apo-4 = GCGG TGAT GGTG GCAGT-48% perfect homology with Inr
71% match on type of base
(purine vs. pyrimidine)

Figure 12B

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17A

Figure 17B

Figure 17C

OPENIA TO A CONTROL OF THE CONTROL O

Figure 18A

в. inversion breakpoint1 11640 11650 11660 | 11670 11680 dystrophin T TTATAACAGT TATAAAGAAA GA^TTGTAAAC TAAAGTGTGC A AATATTGTCA ATATTTCTTT CT^AACATTTG ATTTCACACG apo-4 cDNA 840 850 | T TTATAACAGT TATAAAGAAA GA^TTaTAAAg gAAAaaGaaa> [138] dystrophin T TTATAACAGT TATAAAGAAA GA^TTGTAAAC TAAAGTGTGC 11690 11700 11710 11720 11730 * * * * * dystrophin TTTATAAAAA AAAGTTGTTT ATAAAAACCC CTAAAAACAA AACAAACACA AAATATTTTT TTTCAACAAA TATTTTTGGG GATTTTTGTT TTGTTTGTGT apo-4 cDNA 880 890 900 910 920 930 aTaAaAtggA cAAGTgGTga ATgtgAACtC aggtgtgCAc AAttAtCAgg> [138] dystrophin TTTATAAAAA AAAGTTGTTT ATAAAAACCC CTAAAAAACAA AACAAACACA 11740 11750 dystrophin CACACACA CATACACACA GTGTGTGTGT GTATGTGTGT 940 950 apo-4 cDNA aACAC-CcCA -AaAC-CAaA> [138] dystrophin CACACACA CATACACACA

Figure 18B

Figure 18C

Figure 18D

Figure 19

Linearize plasmid with either Hpa I (truncated) or Pst I (full length). Gene Clean and incubate with T7 polymerase and dNTPs to produce RNA in vitro.

Incubate RNA with Wheat Germ Extract or Rabbit Reticulocyte Lysates to produce *in vitro* translation

Separate translation products by SDS-PAGE. Fix, Amplify and Dry Gel. Perform Autoradiography

Figure 20

Figure 20A

Figure 20B

Figure 23

Figure 24

Figure 25A

Figure 25B

...

H2 starting at second methionine - 321 bp, predicted weight = 17.4Kd + 1 N-glycosylation site + 20.4 Kd.

Figure 26A

Figure 26B

Start	Exon No.	Exon Position	Exon Length	Intron No.	Intron Position	Intron Length
@88 bp	78.3	@74-180	106 bp	79.1	@181-529	349 bp
	79.1	@530-654	125 bp	79.4	@655-720	66 bp
	79.4	@721-769	49 bp	79.55	@770-875	105 bp
	79.55	@876-893	18 bp	79.75	@894-932	39 bp
	79.85	@933- 966	33 bp			

Hydrophobicity Scale KD; Candidate membrane-spanning segments:

Certain 1 12- 32 1.8833

Figure 26C

~ Predicted TM structure

>: Too long to be significative

"<: Too short to be significative</p>

LI: Loop length

KR: Number of Lys and Arg

KR Diff: Positive charge difference

CE: Net charge energy

CE Diff: Net charge difference

CH Diff: Charge difference over N-term segments

Figure 26D

A readthrough apo-4S product using the second available methionine

The Apo-4S peptide sequence

P1 Begin TM1(R)

+30 | P2

MYPIMEYSCSD RNLVLIYGIL LIYIYIGNLN VARHFSMKTP VARSNIKLIL 80

TNNVKWLHKK GFASSWKLVK NOTLLCTPSM OLLCCLHPEM GNDFPNGKET 130

P3

ERCYLSAPFV KSVFLSLCFP GHNVGSLFHM ADDLGRAMES LVSVMTDEEG 180

AEKMFYNSRF PHGFYNIHTT KRIRQKEFTR NKSIFLRRVV VLYCRFOKFL 230

SLLLFCKOWQ VLHVYAIVQK SYKKTTCKIL IAKKLAISLY GTHFGLFKNL 280

KQLKRKNYKG KRKKRNGQVV KLRTQVCTII RNTPKPKRGR NSMRSRVRCK 330

LI 332 (302aa in predicted polypeptide)

Figure 27A

Candidate membrane-spanning segments:

 Certain
 1
 41-61
 1.9073

 Putative
 2
 101-121
 0.8052

 Certain
 3
 132-152
 1.2552

 Putative
 4
 217-237
 1.1833

 Putative
 5
 254-274
 0.9240

Transmembrane segments included in structure No. 8: 1 2 3 4 5

Loop lengths: 11 39 10 64 16 58; K+R profile: 1 2 5 (9 > 22)

K+R difference: -23: -> Orientation: N-out

Charge-difference over N-terminal Membr. segs. (±15 residues): -4 -> Orientation: N-out

CYT-EXT profile (neg. values indicate cytoplasmic preference): < -0.13 <

CYT-EXT difference: 0.13: -> Orientation: N-out

Figure 27B

>: 5'oo long to be significative <: Too short to be significative

LI: 'Loop length

KR: Number of Lys and Arg

KR Diff: Positive charge difference

CE: Net charge energy

CE Diff: Net charge difference

CH Diff: Charge difference over N-term segments

Figure 27C

Figure 28

era sada er da da kaspada sadidiski da kaspada ar da anaka ana

Figure 28 (cont'd)

Figure 29

Figure 29 (cont'd)

Figure 30

Figure 31

Figure 31 (cont'd)

Figure 32

Figure 32 (cont'd)

1 1 1

Ш

Figure 33

Additional Oligonucleotide primers used for apo-dystrophin-4 southern blotting and sequencing

FORWARD

GTT CGT TAA TAC AAG TAG	F2.3(@28)	(SEQ ID NO 15)
GCC AAG GTG GAA AAG ATG	F2.2(@73)	(SEQ ID NO 16)
CCA GTA GCC TGA TCC AAC	F3.2(@208)	(SEQ ID NO 17)
GGC TTC ATT AAT AAG	F3.1(@257)	(SEQ ID NO 18)
GGC AAA GAA ACA GAG TG	F4.2(@379)	(SEQ ID NO 19)
CAG GAC ACA ATG TAG GA	F4.1(@449)	(SEQ ID NO 20)
GTT ATA AAG AAA GAA TTA TAA AG	FJn(@846)	(SEQ ID NO 21)
GAA AAT AAC GCA ATG GAC	F5.1(@875)	(SEQ ID NO 22)
DEVEDCE		
REVERSE		
GAT GGG ATA CAT CTT TTC C	R6.1(@99)	(SEQ ID NO 23)
CAA GCT ACA TTC AGG TTC CC	F2.2R(@188)	(SEQ ID NO 24)
GGA CTC CAT CGC TCT GCC	R4.1(@510)	(SEQ ID NO 25)
GAC TTA GAA ACT ACT G	R3.4(@694)	(SEQ ID NO 26)
ATA GAC GTG TAA AAC CTG C	R2.1(@735)	(SEQ ID NO 27)
ATA GAC GTG TAA AAC CTG C AAC TGT TAT AAA TTT TTA	R2.1(@735) RSP2(@848)	(SEQ ID NO 27) (SEQ ID NO 28)

Figure 34

An Additional Splice Product Predicted From The Apo-4 Gene

A second potential theoretical splice product which retains exon 78.3 is shown below.

H2 p1-124 spliced product =351 bp, 117 amino acids + 10 from vector + 1 N-glycosylation site; predicted weight = 21.9 Kd

Figure 35A

Peptide Generated

MFVNTTKVEKMYPIMEYSCSD<u>RNLVLIYGILLIYIYIGNLN</u>MKKEQNKCFTTPDSRMVFII FIQQRGLDSKSLQEINLYFCEGFYTSMQLYKKVIRKLHKITQWTRTPQNQSEVEIA (117 amino acids) (SEQ ID NO 30)

Figure 35B

Start	Exon No.	Exon	Exon	Intron	Intron	Intron
		Position	Length	No.	Position	Length
@26 bp	78.1	@16-41	26 bp	78.3	@42-74	33 bp
	78.3	@75-181	106 bp	79.1	@182-530	349 bp
	79.1	@531-655	125 bp	79.4	@656-721	66 bp
	79.4	@722-770	49 bp	79.55	@771-876	105 bp
	79.55	@877-894	18 bp	79.75	@895-933	39 bp
	79.85	@934-	33 bp			
		967				

Hydrophobicity Scale KD; Candidate membrane-spanning segments:

Certain 1 22- 42 1.8833

Figure 35C

Figure 35D

Nucleic Acid Subsequence Sites Identified In Apo-4

<u>Motif</u>	Position	Significance
CpG	-7, (+28, +106)	DNA methylation site
CAAT	-132, (+127, +131)	Binding of CAAT factors
TATAAT (5/6)	-120, -114, (+10)	TFIID Binding site
TATA	-154	Binds RNA polymerase Π
		and TFIID
CCATTCA	-162, -131	Cap Site I
TATCAGT	+12, (+25)	Cap Site II
TGGCTGCAAGCCCAA (10/14	Binds CTF/NF-I protein	
GTGATGG	-140, -4, +11, +32	Eucaryotic Transcription
		Initiation Site

Figure 36

Top Pred predicts 4-5 transmembrane domains for a full-length apo-4F product in which all the stop codons are suppressed.

Protein sequence and position of predicted TM domains

Begin TM1(R)

P1 | P2

MFVNTSREKV INQSLIAKVE KMYPIMEYSCSD RNLVLIYGIL LIYIYIGNLN VARHFSMK60

TPVARSNIKL ILTNNVKWLH KKGFASSWKL VKNQTLLCTP SMQLLCCLHP EMGNDFPNGK 120

P3

ETERCYLSAP FVKSVFLSLC FPGHNVGSLF HMADDLGRAM ESLVSVMTDE EGAEKMFYNS180

RFPHGFYNIH TTKRIRQKEF TRNKSIFLRR VVVLYCRFQK FLSLLLFCKQ WQVLHVYAIV 240

QKSYKKTTCK ILIAKKLAIS LYGTHFGLFK NLKQLKRKNY KGKRKKRNGQ VVKLRTQVCT 300

IIRNTPKPKR GRNSMRSRVR CKLI (324 amino acids) (SEQ ID NO 31)

Hydrophobicity Scale KD

Figure 37A

Apo-4F: Candidate membrane-spanning segments:

Certain	1	33- 53 1.9073
Putative	2	93-113 0.8052
Certain	3	124- 144 1.2552
Putative	4	209- 229 1.1833
Putative	5	246- 266 0.9240

I. Transmembrane segments included in structure 8: 1 2 3 4 5; Loop lengths: 32 39 10 64 16 58

K+R difference: -19; -> Orientation: N-out; Charge-difference over N-terminal Membr. segs.

(±15 residues): -3; -> Orientation: N-out

CYT-EXT profile (neg. values indicate cytoplasmic preference): < < < -0.13 <

CYT-EXT difference: 0.13

-> Orientation: N-out

II. Transmembrane segments included in structure 7: 1 3 4 5; Loop lengths: 32 70 64 16 58

K+R profile: 5 > 22 > 5; K+R difference: 22 -> Orientation: N-in

Charge-difference over N-terminal Membr. segs. (±15 residues): -3; -> Orientation: N-out

CYT-EXT profile (neg. values indicate cytoplasmic preference): < -0.13 < -0.26 <

CYT-EXT difference: 0.13; -> Orientation: N-out

Figure 37B (cont'd)

TopPred predicts a cytoplasmic N-terminus for four TM domains

>: Too long to be significative <: Too short to be significative KR Diff: Positive charge difference CE: Net charge energy
CE Diff: Net charge difference U: Loop length
KR: Number of Lys and Arg CH Diff: Charge difference over N-term segments CE = -0 26 KR => LL = 70 CE =< KR = 5 LL = 16 LL = 58 KR = 22 CE = < LL = 32 KR = 5 CE =< LL = 64 KR => CE = -0.13 **CYTOPLASM** KR Diff = 22 OUTSIDE CH Diff = -3Structure no. 7 **OUTSIDE** CE Diff = 0.13

Figure 37C

Figure 38A

Structure of the apo-4 inversion element before rearrangement

Figure 38B

h

RNA transcript is promoted from cell sequences but enhanced and terminated by viral sequences.

Figure 39A

RNA transcript is promoted from cell sequences but enhanced and terminated by inversion sequences which may also activate suppressor tRNAs or reverse transcriptase activity to prevent the recognition of stop codons. Inverted repeats (IR) are present at both ends of the inversion, as they are in retroviruses and transposable elements.

Figure 39B