Homework #7 due to be announced

Questions

(1)

- (a) Show that the languages L_1 , $L_2 \subseteq \{a,b,c,d\}^*$ given below are context-free languages (*CFL*): $L_1 = \{a^nb^nc^md^m; n,m \ge 0\}$; $L_2 = \{a^nb^mc^md^n; n,m \ge 0\}$
- **(b)** Is the language $L = \{\omega \in \{a,b,c,d\}^* \mid \text{in } \omega : \#a'\text{s} = \#b'\text{s} \text{ and } \#c'\text{s} = \#d'\text{s} \}$ a *CFL* ? If so find a *CFG* that generates L or a *PDA* that accepts L; if not prove your claim using the *pumping lemma* for CFGs.
- **(2)** A *CFG* is called *right linear* if *all* productions are of the form $A \rightarrow a B$ or $A \rightarrow e$ and called *left linear* if *all* productions are of the form $A \rightarrow B a$ or $A \rightarrow e$ where $A, B \in V$ and $a \in T$ and e is the empty string. Show that both *right linear* and *left linear* grammars generate *regular languages*. Specify finite state machines corresponding respectively to right and left linear grammars.

Main Text: Exercise 7.1.4, 7.4.3(b), (c)