Test HC-SR04 & VL53LOX

- Projekt
- Daten
- Ultraschall
- HC-SR04
- HC-SR04 Timing Diagram
- HC-SR04 Leistungstest
- HC-SR04 Berechnung
- VL53L0X
- VL53L0X Anwendungen
- Elektromagnetisches Spektrum
- VL53L0X Block diagram
- VL53LOX Entfernung
- Continouous Wave
- ToF Sichtfeld
- ESP32 Schaltplan
- Python Libraries

- Python auf ESP32
- main.py Informationen
- Versuche
- REPL Thonny
- Termite
- Serielle Kommunikation
- USB-to-TTL
- Python Monitor
- PC-Monitor in Python
- PC Monitor
- PyInterface.py Informationen
- ESP32 Pinout
- Messverfahren
- Links

Projekt	
	 Entfernungsmessung mit Hilfe von Ultraschall und Infrarotlicht.
	Programmiersprache Python/MicroPython.
	 Messwerte auf OLED und PC-Monitor ausgeben.
	Vergleich der physikalischen Messmethoden.
	Vor- und Nachteile der Messmethoden.
	Funktionsweisen der Sensoren
GitHub:	https://github.com/EKlatt/Experiences
Ordner:	HC-SR04 & VL53LOX

Daten

	Ultraschall HC-SR04	Infrarotlaser V53LOX	
Maximale Reichweite	4,0 m	Weißes Ziel typisch:	2,0 m (long range)
		Minimum:	1,2 m
		Graues Ziel typisch:	80 cm
		Minimum:	70 cm
Minimale Reichweite	2 cm	> 5 mm	
Erkennungswinkel	<= 15 °	25 °	
Arbeitsfrequenz	40 kHz	940 nm laser VCXEL	
Trigger	10 μs TTL Pulse		
Echo	TTL Puls		
		I ² C	
Betriebsarten		default bis 1200 mm long range bis 2200 m	m

Ultraschall

https://edistechlab.com/ultraschallsensor-hc-sr04-einfach-erklaert/?v=3a52f3c22ed6

HC-SR04

https://randomnerdtutorials.com/micropython-hc-sr04-ultrasonic-esp32-esp8266/

HC-SR04 Timing Diagram

https://opencircuit.shop/blog/de-hc-sr04-ultrasonische-afstands-detectie

HC-SR04 Leistungstest

Beste Werte bei (2 x 15°) = 30°

HC-SR04 Datasheet iteadstudio.com

HC-SR04 Berechnung

Wie wird die Entfernung berechnet?
Der HC-SR04 nutzt das Prinzip der Ultraschallreflexion. Das Modul sendet acht Ultraschallimpulse (40 kHz) aus und wartet auf dessen Empfang.
Die Zeit zwischen Senden und Empfangen dieser Impulse kann dann zur Berechnung der Entfernung herangezogen werden. Die Schallgeschwindigkeit durch Luft beträgt etwa 343 m/s : Geschwindigkeit = 0,034 cm/ μ s.
Die Zeit "t" zwischen Senden und Empfangen muss durch 2 geteilt werden, da das Schallsignal die 2-fache Distanz zum Objekt (hin und zurück) zurückgelegt hat.
T _{max} ca. 38 ms (bei nicht reflektiertem Signal, entspricht 13 m)
Mit diesen Daten kann die Entfernung nach folgender Formel berechnet werden:
Entfernung = Geschwindigkeit * Zeit / 2
Entfernung = (t μs * 0,034 cm/μs) / 2

VL53L0X

VCSEL	Vertical Cavity Surface-Emitting Laser
	 Der VL53L0X funktioniert nach dem Time-of-Flight (ToF) Prinzip?
	 Er besitzt einen IR Laser dessen reflektierte Strahlen hinsichtlich ihrer Flugzeit ausgewertet werden.
	 Der VCSEL arbeitet mit einer Wellenlänge von 940 nm.
	Das reflektierte Licht wird von einem Photodioden Array detektiert.
	• Um einen Millimeter zurückzulegen, benötigt Licht ca. 3.3×10^{-12} Sekunden.

https://www.neumueller.com/Downloads/News/Article/PDF/Fachartikel-Time-of-Flight-2016.pdf

https://wolles-elektronikkiste.de/vl53l0x-und-vl53l1x-tof-abstandssensoren

https://de.wikipedia.org/wiki/Elektrooptische Entfernungsmessung

VL53L0X Anwendungen

Hinderniserkennung und -vermeidung in der Robotik.
Näherungssensor in Smartphones.
Autofokus in Kameras.
Gestenerkennung.
Erkennung von Handbewegungen (Wasserhähne).
Benutzerkennung in Laptops.

Elektromagnetisches Spektrum

https://psi.physik.kit.edu/313.php

VL53L0X Block diagram

https://www.mouser.com/pdfdocs/enDM00270461.pdf

VL53LOX Entfernung

http://www.d3noob.org/2022/10/connecting-time-of-flight-sensor-to.html

Continouous Wave

ToF Sichtfeld

"Time of Flight Sensor" Sichtfeld

engerer Sendekegel im Vergleich zu akustischen Wellen 30°

FoV: full field of view

http://www.d3noob.org/2022/10/connecting-time-of-flight-sensor-to.html

ESP32 Schaltplan

fritzing

Python Libraries	
HC-SR04 als "hcsr04.py"	https://github.com/rsc1975/micropython-hcsr04/blob/master/hcsr04.py
VL53l0X Als "vl53l0x.py"	https://www.grzesina.de/az/theremin/VL53L0X.py
SSD1306 als "ssd1306.py"	https://github.com/adafruit/micropython-adafruit-ssd1306/blob/master/ssd1306.py
SSD1306 (neuere Version)	https://github.com/adafruit/Adafruit CircuitPython SSD1306/blob/main/adafruit ssd1306.py

Python auf ESP32

Editor	Portable Thonny 4.1.1		
Dateien auf ESP32	boot.py	(Standard, nicht benutzt)	
	hcsr04.py	(Library HC-SR04)	
	vl53l0x.py	(Library VL53L0X)	
	ssd1306.py	(Library OLED)	
	main.py	(Hauptprogramm, wird bei RESET gestartet)	
Microcontroller	MicroPython dev	vice	
(device)	🕏 boot.py		
	hcsr04.py		
	🔷 main.py		
	楟 ssd1306.py		
	🕏 vI53I0x.py		

main.py Informationen

```
# ESP32 quick reference I2C:
# https://docs.micropython.org/en/latest/esp32/quickref.html
# Recommended values for SoftI2C: scl=Pin(22), sda=Pin(21)
# ssd1306 OLED driver, I2C:
# https://randomnerdtutorials.com/micropython-oled-display-esp32-esp8266/
# https://www.engineersgarage.com/micropython-esp8266-esp32-ssd1306/
# Python library for ssd1306:
# https://github.com/adafruit/micropython-adafruit-ssd1306/blob/master/ssd1306.py
# VL53L0X TOF Sensor with ESP32:
# https://www.az-delivery.de/en/blogs/azdelivery-blog-fur-arduino-und-raspberry-pi/digitales-theremin-mit-esp32-in-micropython
# https://www.electronicwings.com/esp32/vl53l0x-sensor-interfacing-with-esp32
# Python library for VL53L0X:
# https://www.grzesina.de/az/theremin/VL53L0X.py
# A def ping(self)-function has been added to vI53I0x.pv
# HC-SR04 Ultrasonic Sensor with ESP32:
# https://randomnerdtutorials.com/micropython-hc-sr04-ultrasonic-esp32-esp8266/
# https://esp32io.com/tutorials/esp32-ultrasonic-sensor
# https://github.com/rsc1975/micropython-hcsr04/tree/master
# Python library for HCSR-04:
# https://github.com/rsc1975/micropython-hcsr04/blob/master/hcsr04.py
# UART duplex serial communication
# https://docs.micropython.org/en/latest/library/machine.UART.html#machine.UART
# https://docs.micropython.org/en/latest/esp32/quickref.html#uart-serial-bus
```

Versuche

Einfluss von
farbigen Hintergründen
Oberflächenbeschaffenheit
absorbierenden Flächen
Sensorkegel (Winkel)
 Umgebungslicht

REPL Thonny

Besonderheit: Taster zum Start drücken.

```
Shell ×
>>> %Run -c $EDITOR CONTENT
 MPY: soft reboot
 Press Button or sendData
 Data will be send.
 VL:254
 HC:250
 VL:261
 HC:249
 VL:267
 HC:249
 VL:261
 HC:249
 Traceback (most recent call last):
    File "<stdin>", line 105, in <module>
 KeyboardInterrupt:
>>>
```

Termite

Besonderheit: Eingabe des Befehls "sendData".

\sim \cdot \cdot		1/	
Seriel	10	Kommuni	kation
		1101111111111	

Problem	• MicroPython läuft als Interpreter auf dem Mikrokontroller (μ C).	
	• Der Thonny-Editor ist über USB mit dem μC verbunden.	
	• Der Thonny-Editor greift auf das Dateisystem des μC zu.	
	 Hier liegt die auszuführende "main.py". 	
	Die USB-Schnittstelle kann nicht zur Kommunikation genutzt werden.	
Abhilfe	UART-TTL Adapter	
	Zusätzliche serielle Schnittstelle.	
ESP32	Vordefinierte UART2 gewählt.	

USB-to-TTL

	UART0	UART1	UART2
tx	1	10	17
rx	3	9	16

Code:

```
# Create a UART object for EPS32 with UART2
# GPIO17: tx=17,
# GPIO16: rx=16
uart = UART(2, 115200)
uart.write("Wait for 'sendData'\n")
```

FT232RL (kompatibel) | USB-to-TTL | 3,3V / 5V | Serial UART FTDI Arduino ESP32 | eBay https://docs.micropython.org/en/latest/esp32/quickref.html

Python Monitor	
Idee	Eine graphische Oberfläche (GUI) zur Darstellung von Daten.
Alternativen	 Python-GUI MicroPython mit Webinterface MicroPython mit MQTT und Node-Red
Python Tools	Klassen "tkinter" und "ttkinter"
Nachteil	Deutlich größerer Aufwand als z.B. SmallBasic.
Vorteil	Python als gemeinsame Programmiersprache!

PC-Monitor in Python

Editor	PyScripter
Python	Python 3.11 vorinstalliert (Pfad im Environment bekannt)
Projekt	PyInterface
Dateien	PyInterface.py

Installierte Libraries	> cmd.exe > pip list
Ausgabe	pip 23.2.1 pyFirmata 1.1.0 pyserial 3.5 (Hier vorhanden, muss evtl. installiert werden) readchar 4.0.5 setuptools 65.5.0
Installation mit pip:	> cmd.exe > pip install pyserial

PC Monitor

Funktionen:

- Portliste erneuern
- Port öffnen
- Port schließen
- Anzeige Ports
- Ausgabe der Daten
- Einzelwertanzeige
- Balkenanzeige
- xy-Diagramm

PyInterface.py Informationen

https://tkdocs.com/shipman/ttk-style-layer.html

```
# https://tmml.sourceforge.net/doc/tk/keyword-index.html#KW-container
# https://docs.python.org/3/library/tkinter.ttk.html
# https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html
# https://www.pythontutorial.net/tkinter-button/
# https://www.pythontutorial.net/tkinter-combobox/
# https://www.plus2net.com/python/tkinter-Combobox.php
# https://www.inf-schule.de/software/gui/entwicklung_tkinter/auswahl/listbox
# https://pyserial.readthedocs.io/en/latest/shortintro.html
# https://github.com/pyserial/pyserial/issues/655
# https://docs.huihoo.com/tkinter/tkinter-reference-a-gui-for-python/grid.html
# https://www.w3resource.com/python-exercises/tkinter/python-tkinter-canvas-and-graphics-exercise-4.php
```

Quellcode auf: Experiences/HC-SR04 & VL53LOX at main · EKlatt/Experiences · GitHub

ESP32 Pinout

Messverfahren

https://wolles-elektronikkiste.de/en/vl6180x-tof-proximity-and-ambient-light-sensor

https://wolles-elektronikkiste.de/en/vl53l0x-and-vl53l1x-tof-distance-sensors

https://de.wikipedia.org/wiki/Elektrooptische_Entfernungsmessung

https://www.neumueller.com/Downloads/News/Article/PDF/Fachartikel-Time-of-Flight-2016.pdf

https://www.ti.com/lit/wp/sloa190b/sloa190b.pdf

Links

https://learn.adafruit.com/adafruit-vl53l0x-micro-lidar-distance-sensor-breakout/downloads

https://github.com/adafruit/Adafruit_VL53L0X

https://learn.adafruit.com/adafruit-vl53l0x-micro-lidar-distance-sensor-breakout/arduino-code

adafruit-vl53l0x-micro-lidar-distance-sensor-breakout.pdf

http://www.d3noob.org/2022/10/connecting-time-of-flight-sensor-to.html

https://wiki.hshl.de/wiki/index.php/Ultraschallsensor_HC-SR04

https://www.az-delivery.de/blogs/azdelivery-blog-fur-arduino-und-raspberry-pi/wie-gross-bin-ich-koerpergroesse-messen-mit-vl53l0x-tof-sensor-und-sprachausgabe-in-micropython