Subject	IMU I	nand	IMU (chest	IMU ankle		
	Count	%	Count	%	Count	%	
1	1454	0.39	509	0.14	1327	0.35	
2	2729	0.61	387	0.09	2445	0.55	
3	522	0.21	183	0.07	527	0.21	
4	2214	0.67	213	0.06	1101	0.33	
5	1541	0.41	312	0.08	1980	0.53	
6	1021	0.28	343	0.09	1372	0.38	
7	1506	0.48	257	0.08	1037	0.33	
8	2151	0.53	1308	0.32	1951	0.48	

Table 1. The count and percentage of missing values in PAMAP2.

Subject	Mean ¹		Sample ²		LOCF ³		Linear ⁴		PMM ⁵	
	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
1	7.949	15.723	11.163	22.291	0.431	1.737	0.264	1.206	6.231	13.144
2	5.238	9.932	7.422	14.038	0.338	1.315	0.207	0.97	4.171	8.593
3	4.757	8.909	6.709	12.623	0.289	0.991	0.179	0.668	3.605	7.537
4	5.367	10.467	7.633	14.759	0.299	0.856	0.191	0.567	4.192	8.720
5	5.457	10.692	7.783	15.119	0.387	1.471	0.235	1.047	4.637	9.510
6	5.438	10.286	7.683	14.503	0.432	1.923	0.259	1.416	4.555	9.121
7	5.396	10.391	7.657	14.735	0.372	1.764	0.242	1.339	3.919	8.256
8	5.315	10.091	7.537	14.288	0.377	1.741	0.233	1.256	4.094	8.223

Table 2. Evaluation of different imputation methods on PAMAP2 dataset. ¹Unconditional mean imputation; ²Random sample from observed values; ³Last observation carried forward; ⁴Linear Interpolation; ⁵Predictive mean matching

Raw Bias (RBias), has a similar form Mean Absolute Error (MAE):

RBias =
$$\frac{1}{n} \sum_{i=1}^{n} |\hat{Q} - Q|$$
 (1)

Percent Bias (PBias):

PBias =
$$\frac{1}{n} \sum_{i=1}^{n} |(\hat{Q} - Q)/Q| \times 100$$
 (2)

Root Mean Square Error (RMSE)

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{Q} - Q)^2}$$
 (3)

where Q is missing values, \hat{Q} is the corresponding predicted values, and n is the count of missing values.

$$X_e[k] = \sum_{n=0}^{N-1} X_e[n] e^{-j\frac{2\pi kn}{N}}, \quad S_e[k] = |X_e[k]|^2.$$
 (4)

$$\overline{E} = \frac{\sum_{k=0}^{N-1} S_e[k]}{N}, \quad \text{SNR} = \frac{S_e[\frac{N}{3}]}{\overline{E}}.$$
 (5)