	Teste de Matemática A
	2020 / 2021
T . NO.	
Teste N.º 1	
Matemática A	
12.º Ano de Escolaridade	
	N. 0. —
Nome do aluno:	N.º: Turma
Utilize apenas caneta ou esferográfica d	le tinta azul ou preta.
Não é permitido o uso de corretor. Risqu	ue aquilo que pretende que não seja classificado.
É permitido o uso de calculadora.	
Apresente apenas uma resposta para ca	ada item.
As cotações dos itens encontram-se no	final do enunciado.
Na resposta aos itens de escolha múltip	ola, selecione a opção correta. Escreva na folha o
respostas o número do item e a letra qu	ue identifica a opção escolhida.
Na resposta aos restantes itens. aprese	ente todos os cálculos que tiver de efetuar e toda

as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\ \text{do ângulo ao centro};r-\text{raio})$$

Área lateral de um cone: $\pi r g$ (r – raio da base;

$$g$$
 – geratriz)

Área de uma superfície esférica: $4 \pi r^2 (r - \text{raio})$

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3} \pi r^3 (r - \text{raio})$

Progressões

Soma dos n primeiros termos de uma progressão (u_n)

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a + b) = sen a cos b + sen b cos a

cos(a + b) = cos a cos b - sen a sen b

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n\theta)$$
 ou $(re^{i\theta})^n = r^n e^{in\theta}$

$$\sqrt[n]{\rho \ cis \ \theta} = \sqrt[n]{\rho} \ cis \left(\frac{\theta + 2k\pi}{n}\right)$$
 ou $\sqrt[n]{r \ e^{i\theta}} = \sqrt[n]{r} \ e^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)}$

 $(k \in \{0, \dots, n-1\} \in n \in \mathbb{N})$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n . u^{n-1} . u'(n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u'. \operatorname{sen} u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u'.e^u$$

$$(a^{u})' = u' \cdot a^{u} \cdot \ln a \ (a \in \mathbb{R}^{+} \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \ (n \in \mathbb{N})$$

$$\lim_{x\to 0}\frac{\operatorname{sen} x}{x}=1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \ (p \in \mathbb{R})$$

1. Um baralho de cartas completo é constituído por 52 cartas, repartidas por quatro naipes (espadas, copas, ouros e paus).

Em cada naipe há 13 cartas: um ás, três figuras (rei, dama e valete) e mais nove cartas (do dois ao dez).

- 1.1. Utilizando apenas as doze figuras, quantas sequências de doze cartas, com os reis todos juntos e as damas todas juntas, é possível construir?
- 1.2. Retirando ao acaso, simultaneamente, cinco cartas de um baralho completo, quantos conjuntos distintos de cinco cartas com, no máximo, dois ases é possível formar?
- 1.3. O André, o António, o Pedro e o Rodrigo vão escolher, cada um e em segredo, uma carta do naipe de paus completo.

Qual é a probabilidade de exatamente dois deles escolherem o rei de paus?

(A)
$$\frac{3}{65}$$

(B)
$$\frac{144}{28561}$$

(C)
$$\frac{792}{28\,561}$$

(D)
$$\frac{864}{28561}$$

2. Considere todos os números naturais de seis algarismos que se podem escrever utilizando um algarismo 0, dois algarismos 2, dois algarismos 4 e um algarismo 5.

Determine quantos destes números são superiores a 220 000.

3. Uma determinada linha do triângulo de Pascal tem exatamente 13 elementos.

Escolhem-se ao acaso dois desses 13 elementos.

Qual é a probabilidade de se escolher dois números cuja soma seja igual a 13?

(A)
$$\frac{1}{39}$$

(B)
$$\frac{2}{39}$$

(C)
$$\frac{4}{39}$$

4. Considere o desenvolvimento de $(a + 2x)^6$, com $a \in \mathbb{R}$.

Sabendo que o coeficiente do termo em x^3 é igual a -160, determine o valor da constante a.

5. Seja E o espaço amostral associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos ($A \subset E \ e \ B \subset E$).

Sabe-se que:

•
$$P(A) = 0.3$$

•
$$P(B) = 0.5$$

$$\bullet P(\bar{A} \cap \bar{B}) = 0.4$$

Determine o valor da probabilidade condicionada $P(\bar{B}|(A \cup B))$.

Apresente o resultado na forma de fração irredutível.

6. Um saco contém nove cartões, numerados de 1 a 9 e indistinguíveis ao tato. Retiraram-se todos os cartões do saco, um a um, e colocaram-se em fila numa mesa. Qual é a probabilidade de os números inscritos nos três primeiros cartões serem primos?

(A)
$$\frac{5}{42}$$

(B)
$$\frac{1}{21}$$

(C)
$$\frac{1}{12}$$

(D)
$$\frac{5}{21}$$

7. Um grupo de n amigos, com $n \ge 3$, estão a combinar um jantar. Para tal, estão a decidir qual é o melhor dia da semana para o realizar. Cada um escolhe, de forma aleatória, um dos sete dias da semana.

Qual é a probabilidade de exatamente três dos amigos escolherem a quinta-feira?

(A)
$$\frac{6^{n-3}}{7^n}$$

(B)
$$\frac{n_{A_3}}{n^7}$$

(B)
$$\frac{{}^{n}A_{3}}{n^{7}}$$
 (C) $\frac{{}^{n}C_{3} \times 6^{n-3}}{{}^{7}A'_{n}}$

(D)
$$\frac{{}^{n}C_{3}}{{}^{n}A'_{7}}$$

8. Considere o problema: "Considere todos os números naturais de sete algarismos que se podem escrever utilizando um algarismo 0, um algarismo 1, dois algarismos 8 e três algarismos 9. Determine quantos destes números são pares."

 $^6C_2 \times ^4C_3 + 5^2 \times ^4C_3$ é uma resposta correta ao problema.

Numa pequena composição, explique o raciocínio que conduziu à resposta.

9. Considere a expressão:

$$\frac{(n+1)! - {^n}A_n}{(n-1)!}, n \in \mathbb{N}$$

Para qualquer valor de n, a expressão anterior é igual a:

(A)
nC_n

(B)
$${}^{n}C_{1} \times {}^{n}C_{n-1}$$

(C)
$${}^n\mathcal{C}_1$$

(D)
$${}^{n}C_{1} + {}^{n}C_{n-1}$$

10. Seja *E* o espaço amostral associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos ($A \subset E$ e $B \subset E$).

Sabe-se que A e B têm ambos probabilidade não nula e que $\frac{P(A|B)}{P(B)} = 1$.

Prove que:

$$P(A \cup \overline{B}) = (P(B))^2 - P(B) + 1$$

11. Num instituto europeu de investigação trabalham cientistas de várias nacionalidades, sendo que alguns deles são portugueses.

Sabe-se, ainda, que:

- 40% são cientistas da área da Matemática;
- em cada cinco cientistas da área da Matemática, três não são portugueses.

Escolhendo, ao acaso, um cientista deste instituto, qual é a probabilidade de ele não ser português ou não ser da área da Matemática?

Apresente o resultado na forma de percentagem.

12. Nas férias de verão, um grupo de 15 amigos decidiu alugar três autocaravanas de modelos diferentes. Qualquer um dos amigos pode conduzir e decidiram entre si que cada autocaravana levaria no mínimo quatro pessoas e no máximo sete pessoas.

Nestas condições, e não interessando a organização dos amigos dentro de cada autocaravana, de quantos modos diferentes podem os amigos ficar distribuídos pelas autocaravanas?

FIM

COTAÇÕES

Item														
Cotação (em pontos)														
1.1.	1.2.	1.3.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	
15	15	10	20	10	15	15	10	10	20	10	15	15	20	200