Assignment-

Abheek Ghosh 140123047

October 9, 2017

1 Question 1

Code for R

```
1 library (mvtnorm)
   surfGumbel <- function(theta) {</pre>
      copula <- function(u, v) {
         y = exp(-((-log(u))^theta + (-log(v))^theta)^(1/theta));
         return (y);
 6
      n = 100;
      X = seq(0, 1, length.out = n);
      Y = X;
      Z = numeric();
10
      for (i in 1:n) {
11
         for (j in 1:n) {
12
            Z = c(Z, copula(X[i], Y[j]));
13
14
15
16
      Z = matrix(Z, nrow = n, ncol = n);
17
      persp(X, Y, Z, xlab = "u", ylab = "v", zlab = "Copula", col = "red",
18
19
       main = "Surface plot of bivariate gumbel copula with parameter 1.5");
      dev.copy(png, "plots/plot_q1_1.png"); dev.off ();
20
21
22
   surfNormal <- function(theta) {</pre>
23
24
      copula \leftarrow function(u, v)  {
25
         x_up = qnorm(u); y_up = qnorm(v);
         Sig = matrix(c(1, theta, theta, 1), nrow=2, ncol=2);
26
         pmvnorm(lower = c(-Inf, -Inf), upper = c(x_up, y_up), mean = c(0, 0), corr = Sig);
27
         # pdf \leftarrow function(x, y) {
28
         \# X = matrix(X, nrow=2, ncol=1);
29
         # ans = det(2*pi*Sig)^(-1/2) * exp(-t(X) %*% Sig^(-1) %*% X / 2);
30
```

```
# return (ans)
31
32
         # }
33
         # integrate(function(y) {
           sapply(y, function(y) {
34
               integrate(function(x) {
35
                  sapply (x, function(x) pdf(x, y)), -10, x_up)$value
36
37
               })
         \# }, -10, y_up)
38
39
40
41
     n = 100;
42
     X = seq(0, 1, length.out = n);
     Y = X;
43
44
      Z = numeric();
      for (i in 1:n) {
45
         for (j in 1:n) {
46
47
           Z = c(Z, copula(X[i], Y[j]));
48
         }
49
      }
50
     Z = matrix(Z, nrow = n, ncol = n);
51
      persp(X, Y, Z, xlab = "u", ylab = "v", zlab = "Copula", col = "red",
52
       main = "Surface plot of bivariate normal copula with parameter 0.7");
53
      dev.copy(png, "plots/plot_q1_2.png"); dev.off();
54
55
56
57
  surfGumbel(1.5);
58 surfNormal(0.7);
```

2

Surface plot of bivariate gumbel copula with parameter 1.5

Surface plot of bivariate normal copula with parameter 0.7

2 Question 2

Code for R

```
contGumbel \leftarrow function(theta, mu, sig, df) {
               copula <- function(u, v) {
                      y = exp(-((-log(u))^theta + (-log(v))^theta)^(1/theta));
                      return (y);
  5
               pdf_copula <- function(u, v) {
  6
                      y = (dnorm(qnorm(u, mean = mu, sd = sig), mean = mu, sd = sig) *
                              dt(qt(v, df = df), df = df) *
                              (theta - 1)*((-log(u))^theta + (-log(v))^theta)^(2/theta - 2))/(u*v) - (theta*)
                                        \exp(-((-\log(u))^{+} + (-\log(v))^{+} + (-\log(v))^{+} + (-\log(u))^{+} + (-\log(u))^{+
                                         ))^{(theta - 1)*(1/theta - 1)*((-log(u))^{theta} + (-log(v))^{theta})^{(1/theta - 2))/(}
                                        u*v));
10
11
              n = 100;
12
              X_{-} = seq(1/n, 1 - 1/n, length.out = n);
13
14
              Z = numeric();
15
               for (i in 1:n) {
16
                      for (j in 1:n) {
17
                              Z = c(Z, pdf\_copula(X_[i], Y_[j]));
18
19
               }
20
21
              X = qnorm(X_-, mean = mu, sd = sig);
              Y = qt(Y_-, df = df);
22
23
               # print(X); print(Y); print(Z);
24
              Z = matrix(Z, nrow = n, ncol = n, byrow = TRUE);
               persp(X, Y, Z, xlab = "Quantile from N(3,4)", ylab = "Quantile from T(3)", zlab = "Density"
25
26
                 main = "Density of bivariate gumbel copula with parameter 1.4");
               dev.copy(png, "plots/plot_q2_1.png"); dev.off ();
27
28
               contour(X, Y, Z, main = "Density of bivariate gumbel copula with parameter 1.4");
29
               dev.copy(png, "plots/plot_q2_2.png"); dev.off ();
30
              Z = numeric();
31
32
               for (i in 1:n) {
33
                      for (j in 1:n) {
                              Z = c(Z, copula(X_{-}[i], Y_{-}[j]));
34
35
36
37
              Z = matrix(Z, nrow = n, ncol = n, byrow = TRUE);
               persp(X, Y, Z, xlab = "Quantile from N(3,4)", ylab = "Quantile from T(3)", zlab = "CDF",
38
                 main = "CDF of bivariate gumbel copula with parameter 1.4");
```

```
dev.copy(png, "plots/plot_q2_3.png"); dev.off ();
contour(X, Y, Z, main = "CDF of bivariate gumbel copula with parameter 1.4");
dev.copy(png, "plots/plot_q2_4.png"); dev.off ();

43
44
45
46 theta = 1.4;
47 mu = 3;
8 sig = 2;
49 df = 3;
contGumbel(theta, mu, sig, df);
```

Density of bivariate gumbel copula with parameter 1.4

Density of bivariate gumbel copula with parameter 1.4

CDF of bivariate gumbel copula with parameter 1.4

CDF of bivariate gumbel copula with parameter 1.4

