

hysics Wallah

By- Amit Mahajan Sir

Topics to be covered

- N
 - Medics Test, Revision of Last Class
- 2
- Different Types of Enthalpies
- 3

Magarmach Practice Questions, Home work from Modules,

Rules to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your Magarmach Practice Questions.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

Rules to Attend Class

- Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.

Revision of Last Class

Different Types of Enthalpies

Standard Enthalpy of Formation

Clements in Clementary state.

$$\nabla H = \nabla H^{\dagger}(H^{\circ})$$

$$\nabla H = \nabla H_0^{\dagger}$$
 (NH3)

- Which on represents OHF

 (1) IH2(9) + \$5(9) > IHIG) OHF (HI)
- @ 113(9) + 13(8) >2HI(g) AH + OH; (HI) AH = 2XAH; CHI)
- (3) = Ha(9) + = Bag(1) >> HBa(9) AH = NHf(HBA)
- (A) IS8 (MonorLinic) + 102 -> SQ (9) AH ZAH, (SQ)
- (5) S (Rohambic) + 18=> 502(9) AH = AH & (soe)

The species which by definition has ZERO standard molar enthalpy of formation at 298 K is:

- A Br_{2(g)} X
- Cl_{2(g)}
- C H₂O_(g) ✓
- D CH_{4(g)} √

QUESTION - (AIIMS 2005)

ΔH°_{f} (298K) of methanol is given by the chemical equation:

CH30H

$$A$$
 $CH_4(g) + 1/2 O_2(g) \rightarrow CH_3OH(g)$

$$C_{\text{(graphite)}} + 1/2 O_2(g) + 2H_2(g) \rightarrow CH_3OH(l)$$

$$C_{\text{(diamond)}} + 1/2 O_2(g) + 2H_2(g) \rightarrow CH_3OH(l)$$

$$\bigcirc$$
 $CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$

A -> B + x J (>c J of Heat is released) AH = -x J

$$C \Rightarrow D \left(-x\overline{s}\right) \left(x\overline{J} \text{ of Heat is absorbed}\right)$$

 $\Delta H = +x\overline{s}$

The enthalpy of formation of HCl(g) from the following reaction:

$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g) + 44$$
 kcal is: $\Delta H = -HHK$ (al

- A -44 kcal/mol = H2(9) +1(12(9) -> [H(1(9) AH = -44 = -22 K(al)
- -22 kcal mol⁻¹
- © 22 kcal/mol
- -88 kcal mol⁻¹

QUESTION - (AIIMS 2017, 2013)

H20(9)

Cog(3) Co(g) The $\Delta_f H^\circ$ for $CO_2(g)$, CO(g) and $H_2O(g)$ are -393.5, -110.5 and -241.8 kJ/mol respectively, the standard enthalpy change (in kJ) for the reaction

 $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$ is:

The enthalpy of formation of ammonia gas is -46.0 kJ/mol. The enthalpy change for the reaction $2NH_3(g) \longrightarrow N_2(g) + 3H_2(g)$ is: ①

- 46.0 kJ ING(9)+ 3 H(9) > INH3(8) AH=(-46) KJ/mol (2)
- 23.0 kJ
- -92.0 kJ

neverse eq. (2) X S.C. ? 2NH3(9) -> 1 Ng(9) + 3 Hg(9)

Standard Enthalpy of Combustion

mole Compound + Og(g) -> Cog(g) + Hgo(1) AH = AH comb
(Hydrocarbon)

(3) (jo given > formula wika)

jo bucha > woh matter nahi karta

 $\frac{1 \text{ CH}_{H}(q) + 202(q) \rightarrow 102(q) + 2 \text{ H}_{2}0(1) \quad \Delta H = \Delta H_{comb}}{\Delta H = 1 \times \Delta H_{chy} + 2 \times 0 - 1 \times \Delta H_{f}_{f}comb} + 2 \times \Delta H_{comb} \text{ H}_{2}} \quad \text{CHy (8)}$ $1 \text{ S(Rhombic)} + 102(q) \rightarrow 1 \text{ So2}(q) \quad \Delta H = \Delta H_{comb}$ 4 Graph

 $|C_3H_8(g) + 5 O_2(g) \rightarrow 3CO_2(g) + HH_2O(1) \Delta H = \Delta H_{comb}$. $|C(graphite) + |O_3(g) \rightarrow |CO_2(g) \Delta H = \Delta H_{comb} = \Delta H_{f} CO_2(g)$ = d((graphit))

If ΔH_f° of $CH_4^{(g)} = -x \, kJ/mol$, and ΔH_f° of $CO_2 = -y \, kJ/mol$. Find ΔH for following reaction: $(\Delta_f^{\circ} H_2O(l) = -2kJ/mol)$

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l) \Delta H = ?$$

$$\Delta H = [1x - y + 2x - z] - [1x - x + 2x0]$$

$$= [-y - 2z + 2x] KJ$$

The standard enthalpies of combustion of $C_6H_6(l)$, $C_{(graphite)}$ and $H_2(g)$ are respectively -3270 kJ mol⁻¹, -394 kJ mol⁻¹ and - 286 kJ mol⁻¹. What is the standard enthalpy of formation of $C_6H_6(l)$ in kJ mol⁻¹?

QUESTION - (AIIMS 1998)

Combustion of glucose takes place according to the equation: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$, $\Delta H = -72$ kcal. The energy required for production of 1.6 g of glucose is (molecular mass of glucose is 180 g)

- (A) 0.064 kcal 6(02 + 6H20
- B 0.64 kcal
- 6.4 kcal
- D 64 kcal

QUESTION - (AIIMS 2018, 27 May)

$$C_3H_6 + H_2 \rightarrow C_3H_8$$

 $C_3H_8 + 50_2 \rightarrow 3C0_2 + 4H_20$
 $H_2 + 1/2 O_2 \rightarrow H_20$

$$\Delta H_1 = -124 \text{ kJ}$$

$$\Delta H_2 = -2027 \text{ kJ}$$

$$\Delta H_3 = -286 \text{ kJ}$$

Calculate enthalpy of combustion of propene?

$$C_3H_6 + 902(9) -> 3C02(9) + 3H_20(1)$$

