Image-Based Trainable Symbol Recognizer

Devin Smith Christine Alvarado Sarah Harris

Department of Computer Science Harvey Mudd College

July 25, 2007

What is classification?

Many real-world problems arise where we would like to place items into groups based on the inherit properties of each item. We can also think of placing an item into a group as simply labeling the item. The process of labeling an item is known as classification.

Example

Let us place apples and oranges into their respective buckets!

Sketched Digital Logic Symbols

Goal

Develop a general sketched-symbol recognizer which returns a table of symbols and their associated probabilities. For example,

Symbol	And	Or	Not	Nor	Nand
Probability	0.20	0.73	0.01	0.05	0.01

Problems with Raw Sketched-Symbol Data

- Overload of information
- Noise
- Hard to quantify

Understroked Sketched-Symbol

Overstroked Sketched-Symbol

Ambiguous Sketched-Symbol

Simplify our Data!

Working with raw sketch-symbol data presents many challenges. One way to approach sketched-symbol recognition is to transform the data into a visual problem.

1.0	1.0	1.0	0.0
1.0	0.0	1.0	1.0
1.0	0.0	1.0	1.0
1.0	1.0	1.0	0.0

More Information from the Image

As we will see later, it is important that we can access a "minimum-distance-to-pixel" metric for every point (x, y) in an image. Thus, we will also need to create what is known as a distance transform.

Image to Distance Transform

Image

Distance Transform

0.0	1.0	2.0	3.0
1.0	1.4	2.2	2.0
2.0	2.2	1.4	1.0
3.0	2.0	1.0	0.0

Sketched-Symbols to an Average Image

Sketched-Symbols to an Average Image

0.95	0.95	0.91	0.05		
0.94	0.09	0.87	0.75		
0.96	0.06	0.88	0.70		
0.92	0.92	0.90	0.04		

Average Distance Transform

Nand Average Distance Transform

We also create average polar images, and average polar distance transforms. This helps our sketched-symbol recognizer deal with rotated sketched-symbols, as we will see later.

And

Average Polar Image

Or Average Polar Distance Transform

n

Average Polar Image

Not

Average Polar Image

Nor

Average Polar Distance Transform

Average Polar Image

Nand

Average Polar Distance Transform

Rotating a Sketched-Symbol to Match a Definition

 Compute sketched-symbol's polar image around the weighted center.

Rotating a Sketched-Symbol to Match a Definition

- Compute sketched-symbol's polar image around the weighted center.
- Translate the polar image along the theta axis to match each the definition.

Rotating a Sketched-Symbol to Match a Definition

- Compute sketched-symbol's polar image around the weighted center.
- Translate the polar image along the theta axis to match each the definition.
- Rotate the initial sketched-symbol so that the orientation best matches that of the definition.

Sketched-Symbol Image Polar Image And Definition

Sketched-Symbol Image Polar Image And Definition

Hausdorff Distance

- Hausdorff Distance
- Modified Hausdorff Distance

- Hausdorff Distance
- Modified Hausdorff Distance
- Tanimoto Coefficient

- Hausdorff Distance
- Modified Hausdorff Distance
- Tanimoto Coefficient
- Yule Coefficient

Hausdorff

The Hausdorff distance between two binary images A and B is $H(A,B) = \max(h(A,B),h(B,A))$, where $h(A,B) = \max_{a \in A}(\min_{b \in B}||a-b||)$. h(A,B) is the directed Hausdorff distance. Intuitively, every point in A is at most a distance h(A,B) away from some point in B.

Modified Hausdorff

$$H_{mod}(A,B) = \max(h_{mod}(A,B),h_{mod}(B,A)).$$

 $h_{mod}(A,B) = \frac{1}{|A|} \sum_{a \in A} \min_{b \in B} ||a-b||,$ where N_a is the number of points in A .

Tanimoto

 $T_{sc}(A,B) = \alpha T(A,B) + (1-\alpha)T^C(A,B)$, where $T(A,B) = \frac{n_{ab}}{n_a + n_b - n_{ab}}$, $T^C(A,B) = \frac{n_{00}}{n_a + n_b - 2n_{ab} + n_{00}}$, and $\alpha = 0.75 - 0.25(n_a + n_b)/(2N)$, where n_a is the number of points in A, n_b is the number of points in B, n_{ab} is the number of overlapping points in A and B, n_{00} is the number of points in an image.

Yule

$$Y(A, B) = \frac{n_{ab}n_{00} - (n_a - n_{ab})(n_b - n_{ab})}{n_{ab}n_{00} + (n_a - n_{ab})(n_b - n_{ab})}$$