Online Workshop on Deep Learning - Computer Vision

Read through the pdf "SettingUpEnvironment.pdf" and "Python Cheat Sheet".

Simple Python Introduction

Use Jupyter Notebook, Google Colaboratory, or your program of choice to answer the following questions using Python code.

- 1. Calculate how much money you would have if you compounded \$100 at 10% for 8 years. (Use Python Operators and print the answer to the console).
- 2. Create a variable called "days". Assign the value "7" to this variable. Try to execute the following code print ("There are " + days + " days in a week"). Rewrite the code to avoid the error.

There are 3 popularly used data types in the Python programming language. These data types let you group items into collections with specific properties (that you can then manipulate further later).

- Lists are a collection which is ordered and changeable. Allows duplicate members.
- Dictionaries are a collection which are unordered, changeable, and indexed. No duplicate members
- Sets are a collection which is unordered and unindexed. No duplicate members.
- 3. Create a list with the following elements ["Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday", 42]. Add the string 'Someday' into this list. Add the variable 'days' that you previously created into this list.

Create a new variable called 'sliced_list', which only contain the first 8 elements of the first list. Delete the integer '42' from the list. Change the string 'Someday' to 'Monday'.

4. Create a dictionary with the following key:value pairs.

```
'name':['john','mary','peter','jeff','bill','lisa','jose'],
'age':[23,78,22,19,45,33,20],
'gender':['M','F','M','M','F','M'],
'State':['california','dc','california','dc','california','texas','texas'],
'num_children':[2,0,0,3,2,1,4]
```

Add the following key:value pair to the dictionary. 'num_pets':[5,1,0,5,2,2,3]

- 5. Import the pandas library as pd and the matplotlib.pylot library as plt. Convert the dictionary above to a dataframe.
- 6. Plot a scatterplot of 'num children' against 'num pets'.
- 7. Plot a bar plot of 'name' against 'age'.
- 8. Create a list with the numbers 1 to 10. Write a program to loop through the numbers in the list and print "odd" if the number is odd and "even" if the number is even.

Third-Party Python Libraries

- a. NumPy (for low-level math operations)
- b. Pandas (for data loading and manipulation)
- c. Matplotlib and Seaborn (for data visualization)

NumPy

The purpose of this tutorial is to familiarize with NumPy array creation, its operations like slicing, indexing, transposing and some important mathematical functions.

- NumPy is an N-dimensional array type called ndarray.
- It describes the collection of items of the same type. Each element in ndarray is an object of data-type object (called dtype)
- Images are loaded into NumPy array
- 1. Create a 1-D NumPy array 'A', from list [5 8 10 5 4 3 2 1], check its parameters (ndim, shape, itemsize, dtype)
- 2. Create a 2-D NumPy array 'B'. Check its parameters

3. Create a 1-D NumPy array 'C' of size 4 * 1, consisting of all ones i.e.

```
C = [[1.0], \\ [1.0], \\ [1.0], \\ [1.0]]
```

4. Create a 2-D NumPy array, 'D' of size 4 * 5, consisting of number from

```
0,1,2,3,4....20

D = [[ 0  1  2  3  4]

      [ 5  6  7  8  9]

      [10  11  12  13  14]

      [15  16  17  18  19]]
```

- 5. Add array \c^\prime to array \c^\prime . (You will be doing broadcasting!!)
- 6. Transpose the 2-D array 'D'
- 7. From array 'D' use NumPy 2-D slicing to extract below slice

```
[[ 0 2 4]
[10 12 14]]
```

8. From array 'D' extract the corner elements using NumPy Indexing

9. Modify the 'D' array to make center elements 0 i.e.

```
D = \begin{bmatrix} \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \end{bmatrix} \\ \begin{bmatrix} 5 & 0 & 0 & 0 & 9 \end{bmatrix} \\ \begin{bmatrix} 10 & 0 & 0 & 0 & 14 \end{bmatrix} \\ \begin{bmatrix} 15 & 16 & 17 & 18 & 19 \end{bmatrix} \end{bmatrix}
```

- 10. Initialize a 5 * 4 numpy array `E' with random numbers. Now find the maximum number in all columns and its position. Find the mean and std of the matrix. Now multiply the matrix `E' and matrix `D'.
- 11. Load an image (image.jpg provided) into numpy array. Commands to load an image to numpy array is 'import matplotlib.image as mpimg; img = mpimg.imread('Sample.PNG')'. Now extract a 100*100 matrix from the image and show it with matplotlib. Command to show an image: 'from matplotlib import pyplot as plt; plt.imshow(img)'

Pandas

- There are two central data structures of Pandas are Series and DataFrame
- ❖ Foundation of a DataFrame is a Series. The docstring of DataFrame defines a DataFrame as "Can be thought of as a dict-like container for Series objects"
- So what is a **series**? A Pandas series can be conceptualized in two ways.
 - > It can be envisioned as a single column of tabular data.
 - > It can also be envisioned as a single row of tabular data

Let's assume there is a database table called accounting which stores revenue and expenses across different years.

	year	revenue	expense		
	2017	1000	800		
	2018	1200	900		
	2019	1500	1100		

- 1. Create the table above with Pandas dataframe object.
- 2. Modify the above table to add `savings' and `persons' as shown below.

```
'saving' = 'revenue' - 'expenses'
New modified data table:
```

		year	revenue	expense	savings	persons		
	0	2017	1000	800	200	abc		
	1	2018	1200	900	300	def		
	2	800	1500	1100	400	ghi		

3. Load a CSV file (tips.csv provided) to load a CSV file into a pandas dataframe. Now display '.head()' of dataframe. Then display .description() of dataframe. Name this dataframe as 'tips table'. Sample .head() of tips table.

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

MATPLOTLIB and SEABORN

- Seaborn is built on top of Python's core visualization library Matplotlib.
- It is meant to serve as a complement, and not a replacement.
- Seaborn works well with NumPy and Pandas data structures
- 1. Write a program to draw a scatter_plot with sb.scatterplot taking 'total_bill' as x-axis, 'tip' as y-axis and hue as 'time'.
- 2. Write a program to plot a pie chart of given 'days' data in 'tips table' table.
- 3. Plot a bar plot with sb.barplot taking 'sex' in x-axis and 'total_bill' in y-axis.
- 4. Plot the univariate distribution of various data in the 'tips_table' table with sb.distplot.
- 5. Load a small flower dataset folder named 'small_dataset' and display it using matplotlib grid function.