Discrete Mathematics Lecture 11

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 10

Countable: A is **countable** if $|A| < \infty$ or $|A| = |\mathbb{Z}^+|$

- *A* is countably infinite $\Leftrightarrow A = \{a_1, a_2, ...\}$
- A is countably infinite \Rightarrow so is any infinite subset of A
- A is uncountable \Rightarrow so is any super set of A
- A, B are countably infinite \Rightarrow so are $A \cup B$ and $A \times B$

Schröder-Bernstein: $|A| \le |B|$ and $|B| \le |A| \Rightarrow |A| = |B|$

- $|\mathcal{P}(\mathbb{Z}^+)| = |[0,1)|$
- $|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)| = |[0,1)| = |(0,1)| = |\mathbb{R}|$

Basic Rules of Counting: Sum, Product, Bijection

Permutation of Set: r-permutation (w/o repetition)

Permutation of Multiset: r-permutation

• $A = \{n_1 \cdot a_1, n_2 \cdot a_2, \dots, n_k \cdot a_k\}$ has $\frac{(n_1 + n_2 + \dots + n_k)!}{n_1! n_2! \cdots n_k!}$ permutations.

T-Route

DEFINITION: Let $A = (x, y), B \in \mathbb{Z}^2$. //integral points ***

- A **T-Step** at A is a segment from A to (x + 1, y + 1) or (x + 1, y 1).
- A **T-Route** from *A* to *B* is a route where each step is a **T-step**.

T-Route

THEOREM: There is a T-route from $A = (a, \alpha)$ to $B = (b, \beta)$ only if (1) b > a; (2) $b - a \ge |\beta - \alpha|$; and (3) $2|(b + \beta - a - \alpha)$.

- Let $A = P_0, P_1, ..., P_k = B$ be a T-route from A to B, where $P_i = (x_i, y_i)$.
 - $x_0 = a, y_0 = \alpha; x_k = b, y_k = \beta;$ $\mathcal{T}_{i} = C(x_i)/C(x_i)$
 - $x_i x_{i-1} = 1$; $y_i y_{i-1} \in \{\pm 1\}$ for every i = 1, 2, ..., k
- $b a = x_k x_0 = (x_k x_{k-1}) + (x_{k-1} x_{k-2}) + \dots + (x_1 x_0) = k > 0$
- $\beta \alpha = y_k y_0 = (y_k y_{k-1}) + (y_{k-1} y_{k-2}) + \dots + (y_1 y_0)$
 - $|\beta \alpha| \le |y_k y_{k-1}| + |y_{k-1} y_{k-2}| + \dots + |y_1 y_0| = k = b a$
- $b + \beta \alpha \alpha = \sum_{i=1}^{k} (y_i y_{i-1} + x_i x_{i-1})$
 - $y_i y_{i-1} + x_i x_{i-1} \in \{0,2\}$
 - $2|(b+\beta-a-\alpha)$

REMARK: The T-condition (1)+(2)+(3) is also sufficient for the existence of a T-route.

Number of T-Routes

THEOREM: If $A = (a, \alpha)$, $B = (b, \beta)$ satisfy the T-condition. Then

the number of T-routes from A to B is $\frac{(b-a)!}{(\frac{b-a}{2}+\frac{\beta-\alpha}{2})!(\frac{b-a}{2}-\frac{\beta-\alpha}{2})!}$.

The number of T routes from A to B = the number of shortest paths from A to B on the $p \times q$ -grid.

•
$$AC: y - \alpha = -(x - \alpha); AD: y - \alpha = x - \alpha;$$

•
$$BC: y - \beta = x - b; BD: y - \beta = -(x - b).$$

•
$$p = \frac{1}{2} \cdot (a + b - \alpha + \beta) - a = \frac{1}{2} \cdot (b - a) + \frac{1}{2} \cdot (\beta - \alpha)$$

•
$$q = \frac{1}{2} \cdot (\alpha - \beta + a + b) - a = \frac{1}{2} \cdot (b - a) - \frac{1}{2} \cdot (\beta - a)$$

$$1/2 \cdot (a+b-\alpha+\beta,\alpha+\beta-a+b)$$

The number of T routes from A to B= the number of shortest paths from A

to B on the
$$p \times q$$
-grid. This number is $\frac{(p+q)!}{p!q!} = \frac{(b-a)!}{\left(\frac{b-a}{2} + \frac{\beta-\alpha}{2}\right)!\left(\frac{b-a}{2} - \frac{\beta-\alpha}{2}\right)!}$

Number of T-Routes

THEOREM: Let $A = (a, \alpha), B = (b, \beta)$ satisfy the T-condition, where $\alpha, \beta > 0$. Then # of T-routes from A to B that intersect the x-axis=# of T routes from $A'(a, -\alpha)$ to B. And this number is $\frac{(b-a)!}{\left(\frac{b-a}{2} + \frac{\beta+\alpha}{2}\right)!\left(\frac{b-a}{2} - \frac{\beta+\alpha}{2}\right)!}$.

- Ω : the set of T-routes from *A* to *B*
- $U = \{\omega \in \Omega : \omega \text{ intersects y=0} \}$
- *V*: the set of T-routes from *A'* to *B*
- $f: U \to V \ u \mapsto f(u)$
 - *u*: the brown T route
 - f(u): the blue T route
 - *f* is a bijection

Number of T Routes

THEOREM: Let $A = (a, \alpha), B = (b, \beta) \in \mathbb{Z}^2$ satisfy the

T-condition, where $\alpha, \beta > 0$. Then # of T routes from *A* to *B* that do not intersect the x-axis is

$$\frac{(b-a)!}{\left(\frac{b-a}{2} + \frac{\beta-\alpha}{2}\right)! \left(\frac{b-a}{2} - \frac{\beta-\alpha}{2}\right)!}$$

$$\frac{(b-a)!}{\left(\frac{b-a}{2} + \frac{\beta+\alpha}{2}\right)! \left(\frac{b-a}{2} - \frac{\beta+\alpha}{2}\right)!}$$

$$\frac{(b-a)!}{\left(\frac{b-a}{2} + \frac{\beta+\alpha}{2}\right)! \left(\frac{b-a}{2} - \frac{\beta+\alpha}{2}\right)!}$$

Parenthesization

PROBLEM: Let $a_1, a_2, ..., a_n, a_{n+1}$ be n+1 numbers. Let * be any binary operator. Let C_n be the number of different ways of parenthesizing $a_1 * a_2 * \cdots * a_n * a_{n+1}$ such that the calculation is not ambiguous. What is C_n ?

• n = 3: there are 5 different ways of parenthesizing the expression

$$(a_{1}*a_{2})*a_{3})*a_{4} \qquad a_{1} \downarrow a_{2} \downarrow *a_{3} \downarrow *a_{4} \downarrow * \qquad a_{1} \downarrow 2 \downarrow * * \downarrow * \qquad 0010101$$

$$(a_{1}*a_{2})*(a_{3}*a_{4}) \qquad a_{1} \downarrow a_{2} \downarrow *a_{3} \downarrow a_{4} \downarrow * * \qquad \downarrow \downarrow 2 \downarrow 2 * * \qquad 0010011$$

$$(a_{1}*(a_{2}*a_{3}))*a_{4} \qquad a_{1} \downarrow a_{2} \downarrow a_{3} \downarrow * * a_{4} \downarrow * \qquad \downarrow \downarrow \downarrow 2 * * \qquad 0001101$$

$$a_{1}*(a_{2}*a_{3})*a_{4}) \qquad a_{1} \downarrow a_{2} \downarrow a_{3} \downarrow * a_{4} \downarrow * * \qquad \downarrow \downarrow \downarrow 2 * * \qquad 0001011$$

$$a_{1}*(a_{2}*(a_{3}*a_{4})) \qquad a_{1} \downarrow a_{2} \downarrow a_{3} \downarrow a_{4} \downarrow * * \qquad \downarrow \downarrow \downarrow 2 * * \qquad 0000111$$

- \mathcal{A}_3 : the set of all different parenthesizations of $a_1 * a_2 * a_3 * a_4$
- C_3 : the set of all $x = x_1 x_2 x_3 x_4 x_5 x_6 x_7 \in \{0,1\}_{4}^{7}$ such that
 - There are exactly three 1's in x 4463%
 - In any prefix of x, the number of 1's < the number of 0's

Parenthesization

THEOREM: C_n is the number of solutions of the equation system

$$\begin{cases} x_1 + x_2 + \dots + x_{2n+1} = n \\ x_1 + x_2 + \dots + x_i < i/2, i = 1, 2, \dots, 2n + 1 \\ x_i \in \{0, 1\}, i = 1, 2, \dots, 2n + 1 \end{cases}$$
In particular, $C_n = \frac{(2n)!}{n!(n+1)!}$

In particular,
$$C_n = \frac{(2n)!}{n!(n+1)!}$$

- \mathcal{A}_n : the set of all different parenthesizations of $a_1 * a_2 * \cdots * a_n * a_{n+1}$
- C_n : the set of all $x = x_1 x_2 \cdots x_{2n+1} \in \{0,1\}^{2n+1}$ such that
 - The number of 1's in x is exactly equal to n
 - In any prefix of x, the number of 1's < the number of 0's
- There is a bijection $f: \mathcal{A}_n \to \mathcal{C}_n$
- $C_n = |\mathcal{A}_n| = |\mathcal{C}_n|$
- \mathcal{C}_n is the set of all solutions of the equation system \mathcal{T}_n
- \mathcal{T}_n : the set of all T-routes from (1,1) to (2n + 1,1) above the x-axis

Parenthesization

- From C_n to T_n : Given a solution $(x_1, x_2, ..., x_{2n+1})$ of the equation system
 - Let $P_i = (i, 1 2x_1 + \dots + 1 2x_i)$ for all $i = 1, 2, \dots, 2n + 1$
 - $1 2x_1 + \dots + 1 2x_i > 0$ for $i = 1, 2, \dots 2n + 1$
 - $P_1 = (1,1-2x_1) = (1,1); P_{2n+1} = (2n+1,1)$
- P1, P2 /··· P2n+1 松放 X车由上右

- $P_1, P_2, \dots, P_{2n+1}$ is a T-route above the x-axis
- From \mathcal{T}_n to \mathcal{C}_n : Let $\{P_i = (u_i, v_i): 1 \le i \le 2n + 1\}$ be the points on a T-Route from $P_1 = (1,1)$ to $P_{2n+1} = (2n + 1,1)$, where the T-Route is above the x-axis
 - $x_1 = (1 v_1)/2 = 0$
 - $x_i = (1 (v_i v_{i-1}))/2 \in \{0,1\}, i = 2, ..., 2n + 1$
 - $x_1 + x_2 + \dots + x_{2n+1} = (2n + 1 v_{2n+1})/2 = n$
 - $x_1 + x_2 + \dots + x_i = (i v_i)/2 < i/2, i = 1, 2, \dots, 2n + 1$
- $A = P_1 = (1,1)$: $\alpha = 1$, $\alpha = 1$; $B = P_{2n-1} = (2n + 1,1)$: b = 2n + 1, $\beta = 1$
 - $|\mathcal{C}_n| = \frac{(2n)!}{n!n!} \frac{(2n)!}{(n+1)!(n-1)!} = \frac{(2n)!}{n!(n+1)!}$

Combinations of Sets

DEFINITION: Let $A = \{a_1, ..., a_n\}$ and let $r \in \{0, 1, ..., n\}$.

- **r-combination of A**: an **r-**subset of **A**.
 - Notation: $\{a_{i_1}, \dots, a_{i_r}\}$ with $1 \le i_1 < \dots < i_r \le n$
 - $\binom{n}{r}$: the number of r-combinations of an n-element set

THEOREM: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ for all $n \in \mathbb{Z}^+$ and $r \in \{0,1,...,n\}$.

DEFINITION: Let $A = \{a_1, ..., a_n\}$ and let $r \ge 0$.

- *r*-combination of *A* with repetition: a multiset $\{x_1 \cdot a_1, ..., x_n \cdot a_n\}$ of r elements, where $x_1, ..., x_n \ge 0$ are integers and $x_1 + \cdots + x_n = r$.
 - Notation: $\{a_{i_1}, \dots, a_{i_r}\}$ with $1 \le i_1 \le i_2 \le \dots \le i_r \le n$

THEOREM: The number of r-combinations of an n element set with repetition is $\binom{n+r-1}{r}$

Combinations of Sets

- U: the set of all r-combinations of A with repetition
- \mathcal{V} : the set of all r-combinations of [n+r-1] without repetition
 - Let $U = \{u_1, u_2, ..., u_r\} \in \mathcal{U}$ and $1 \le u_1 \le u_2 \le ... \le u_r \le n$.
 - $1 \le u_1 < u_2 + 1 < u_3 + 2 < \dots < u_r + r 1 \le n + r 1$
 - $\{u_1, u_2 + 1, \dots, u_r + r 1\} \in \mathcal{V}$
 - $f: \mathcal{U} \to \mathcal{V} \{u_1, u_2, ..., u_r\} \mapsto \{u_1, u_2 + 1, ..., u_r + r 1\}$
 - f is bijective. Hence, $|\mathcal{U}| = |\mathcal{V}| = \binom{n+r-1}{r}$

THEOREM: The number of natural number solutions of the

equation
$$x_1 + x_2 + \dots + x_n = r$$
 is $\binom{n+r-1}{r}$.

- $\mathcal{X} = \{(x_1, ..., x_n) : x_1, ..., x_n \in \mathbb{N} \text{ and } x_1 + \dots + x_n = r\}$
- y: the set of all r-combinations of [n] with repetition
- $f: \mathcal{X} \to \mathcal{Y} \quad (x_1, \dots, x_n) \mapsto \{x_1 \cdot 1, x_2 \cdot 2, \dots, x_n \cdot n\}$
 - f is bijective. Hence, $|\mathcal{X}| = |\mathcal{Y}| = \binom{n+r-1}{r}$.

Application

EXAMPLE: What is the value of k after the program execution?

- k := 0;
- for i_1 : = 1 to n do
 - for i_2 : = 1 to i_1 do
 - •
- for i_r : = 1 to i_{r-1} do
 - $k \coloneqq k + 1$;

Analysis:

- Loop variables: $1 \le i_r \le i_{r-1} \le \dots \le i_1 \le n$
- The number of iterations is equal to the number of r-combinations of the set [n] with repetition
- In every iteration, *k* increases by 1.
 - After the program execution, $k = \binom{n+r-1}{r}$

Combinations of Multiset

- **DEFINITION:** Let $A = \{n_1 \cdot a_1, n_2 \cdot a_2, ..., n_k \cdot a_k\}$ be an *n*-multiset. Let $r \in \{0, 1, ..., n\}$.
 - r-combination of A: an r-subset (multiset) of A
 - Notation: $\{x_1 \cdot a_1, x_2 \cdot a_2, \dots, x_k \cdot a_k\}$, where $0 \le x_i \le n_i$ for every $i \in [k]$ and $x_1 + x_2 + \dots + x_k = r$.

EXAMPLE: $A = \{1 \cdot a, 2 \cdot b, 3 \cdot c\}$

• $\{1 \cdot b, 2 \cdot c\}$ is a 3-combination of *A*; a 3-subset of *A*

REMARK:

- For every $r \in \{0,1,...,n\}$, an r-combination of $A = \{a_1, a_2, ..., a_n\}$ without repetition is an r-combination of $\{1 \cdot a_1, 1 \cdot a_2, ..., 1 \cdot a_n\}$.
- For every $r \ge 0$, an r-combination of $A = \{a_1, a_2, ..., a_n\}$ with repetition is an r-combination of $\{\infty \cdot a_1, \infty \cdot a_2, ..., \infty \cdot a_n\}$.

DEFINITION: The **binomial transform** of $\{a_n\}_{n\geq s}$ is a sequence $\{b_n\}_{n\geq s}$ such that

$$b_n = \sum_{k=s}^n \binom{n}{k} a_k \tag{1}$$

DEFINITION: The **inverse binomial transform** of $\{a_n\}_{n\geq s}$ is a sequence $\{b_n\}_{n\geq s}$ such that

$$b_n = \sum_{k=s}^n (-1)^{n-k} \binom{n}{k} a_k \quad (2)$$

QUESTION: Given (1), how to find the sequence $\{a_n\}$?

- Answer: $\{a_n\}$ is the inverse binomial transform of $\{b_n\}$
- Application: determine $\{a_n\}$ via $\{b_n\}$
- Proof?

Combinatorial Proofs

DEFINITION: A **combinatorial proof** of an identity L = R is

- **a double counting proof,** which shows that *L*, *R* count the same set of objects but in different ways:
 - L = |X| = R and L, R count |X| in different ways.
- **a bijective proof,** which shows a bijection between the sets of objects counted by *L* and *R*:
 - L = |X|, R = |Y| and there is a bijection $f: X \to Y$.

EXAMPLE: $\binom{n}{r} = \binom{n}{n-r}$

- $X = \{s \in \{0,1\}^n : s \text{ contains } r \text{ 0s}\} = \{s \in \{0,1\}^n : s \text{ contains } n r \text{ 1s}\}$
 - $\binom{n}{r} = |X|$
 - $\bullet \quad \binom{n}{n-r} = |X|$

LEMMA: $\binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r}$ for any $n, k, r \in \mathbb{N}$ such that $n \ge k \ge r$.

- Let $U = \{u_1, u_2, ..., u_n\}$ be a finite set of n elements
- $S = \{(A, B): A \subseteq U, |A| = k, B \subseteq A, |B| = r\}$
 - choose A then choose B: $|S| = \binom{n}{k} \binom{k}{r}$, the left-hand side
 - choose B then choose A: $|S| = \binom{n}{r} \binom{n-r}{k-r}$, the right-hand side

LEMMA:
$$\sum_{k=r}^{n} (-1)^{n-k} \binom{n}{k} \binom{k}{r} = \begin{cases} 1 & n=r \\ 0 & n>r \end{cases}$$
 when $n \ge r$.

- $\binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r}$ as $n \ge k \ge r \ge 0$
- left = $\sum_{k=r}^{n} (-1)^{n-k} \binom{n}{r} \binom{n-r}{k-r} = \binom{n}{r} \sum_{k=r}^{n} (-1)^{(n-r)-(k-r)} \binom{n-r}{k-r}$ = $\binom{n}{r} \sum_{i=0}^{n-r} (-1)^{(n-r)-i} \binom{n-r}{i}$ = right

LEMMA: Let $n, s \in \mathbb{N}$, $s \leq n$. Then $\sum_{k=s}^{n} \sum_{i=s}^{k} a_{k,i} = \sum_{i=s}^{n} \sum_{k=i}^{n} a_{k,i}$

k i	S	s + 1	s + 2	• • •	n	row sum
S	$a_{s,s}$			•••		$\alpha_{\scriptscriptstyle S}$
s + 1	$a_{s+1,s}$	$a_{s+1,s+1}$		•••		α_{s+1}
s + 2	$a_{s+2,s}$	$a_{s+2,s+1}$	$a_{s+2,s+2}$	•••		α_{s+2}
:	••	:	:	•••	•••	:
n	$a_{n,s}$	$a_{n,s+1}$	$a_{n,s+2}$	•••	$a_{n,n}$	α_n
col sum	eta_s	β_{s+1}	β_{s+2}	• • •	β_n	ΣΣ

THEOREM: Let $\{a_n\}$, $\{b_n\}$ be two sequences s.t. for all $n \ge s$,

$$a_n = \sum_{k=s}^n \binom{n}{k} b_k$$
. Then $b_n = \sum_{k=s}^n (-1)^{n-k} \binom{n}{k} a_k$ $(n \ge s)$.

•
$$\sum_{k=s}^{n} (-1)^{n-k} \binom{n}{k} a_k = \sum_{k=s}^{n} (-1)^{n-k} \binom{n}{k} \sum_{i=s}^{k} \binom{k}{i} b_i$$

$$= \sum_{i=s}^{n} \sum_{k=i}^{n} (-1)^{n-k} \binom{n}{k} \binom{k}{i} b_i = b_n$$

EXAMPLE: Let h(n, m) be the # of ways of coloring a $m \times 1$ grid

with *n* colors such that:

m = 10

- (1) all colors are used; and
- (2) the adjacent squares receive different colors.

Find a formula for h(n, m). $// n \ge 2$

- B_n : the set of ways of coloring a $m \times 1$ grid with n colors s.t. (1), (2) hold
 - Let $b_n = |B_n|$. Then $h(n, m) = b_n$.
- A_n : the set of ways of coloring a $m \times 1$ grid with n colors s.t. (2) holds
 - Let $a_n = |A_n|$. Then $a_n = n(n-1)^{m-1}$.
 - $a_n = \sum_{k=2}^n \binom{n}{k} b_k$ // the sum rule
- $b_n = \sum_{k=2}^n (-1)^{n-k} \binom{n}{k} a_k = \sum_{k=2}^n (-1)^{n-k} \binom{n}{k} k(k-1)^{m-1} // \text{ inversion}$