Three Stages of heuristic/informed:

- * Uniform cost search
- * Greedy (Best-first search)

UNIFORM - COST STARCH (UCS):

benevalizes BFS

L+ allow arbitrary cost for action > 0.

Expand node

- check if goal

- if not, generate children.

(state space)

3[6]: 5+5=1

S-B-G

(10st is 10)

If we had checked goal during generation, we would have ended at S-A-G with cost of co.

- * Completeness: Yes
- * Optimal: Yes, Lower cost before any higher east.
- Time Complexity: Bfs is subtype. So it is atteast as bad as Bfs.

Suppose ξ is the smallest cost of any action. If the optimal solution has cost L^* , then I may have to go down to depth $\int c^*/\xi dt$ ey: $\xi = \frac{1}{2}$ $c^* = 5$

Mex. depth = 10

rc*/87

* Space Complexity: 6 C*/ET

[Dijkstra's Algorithm]

GBFS needs a bevristic which is the "Straight-line

distance from any point to Fs.

never completes?

UCS checks past \rightarrow cost till now! [9(n)]

breedy checks future \rightarrow estimate of future cost.

[h(n)]

A SEARCH:

Evalution function.

COLUTION: A -S-RY-P- B

EVALUATION FUNCTION:

$$f(n)$$
: $g(n) + h(n)$
 $g(n)$: cost so for to reach n
 $h(n)$: estimated cost to goal from n "heuristic"
 $f(n)$: estimated total cost of a path that
 $goes$ throug h .

Heuristic is "admissible" -> h(n) & h*(n) { least cost to go from n to goal] Don't overestimate $\rightarrow h(n) \geqslant 0$. h(b) = \$\phi\$ for a goal state 6. A* with an admissible heuristic (h(n)) is Optimac! the bln, faster the solution. Higher OEC PRODE: not optimal

ს,

optional

Assume 2 paths to FS (b), namely 67, 62. 61, is optimal. So, our algorithm is optimal, if

for any intermediate node along the path IS-61, 111 lincluding IS 111, 111 be picked over 111, 111 and 111.

To prove: 111

= 9(p²)

= 1(p²/ = 3(p²/ +p(p²/

= 9(62)

G, is optional

=> 3(p1) < 3(p2) -()

As n is along the path Is to b, and hin) is admissible

$$g(n) = g(n) + (cost from n to goal)$$

$$= g(n) + h^*(n)$$

$$\geq g(n) + h(n)$$

$$\geq f(n) - \Theta$$

(ombine 1), 2

HEURISTIC h(n):

ς	4	
6	ι	8
7	3	2

ı	2	. 3	
8		4	
7	6	5	

n G: goal state

Tho berristics (admissible):

h,: Number of onisplaced numbers

All except '7', so [127]: 7//

h₂: Manhattan distance of each number from Original position to goal position

2+3+3+2+4+2+0+2= 18

when h2 (n) = h, (n)

and both are admissible

h2(v) > p'(v) > p*(v)

h, dominates h, //

	Mean number	er of nodes	expanded	
MINIMUM MOVES NEEDED (d)	IOJ	A* (h,)	A* (h2)	
2	10	6	Ь	
6	680	20	18	
8	6384	39	25	
12	31 4404	227	73	
14	3473 941	539	11 3	
16	:	130)	211	
;				
24		39135	164	
Upictorme Totormed				

→ beffer heuristic.

What if h_1 and h_2 are not dominating each other? $h_1(x) \ge h_2(x)$ for some x $h_2(x) \ge h_1(x)$ for some other x

he choose

h(n)=0 is always admissible. This is nothing but Uniform Cost Search.