Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Elektronika 2

Modeli tranzistora za mali signal

Model FET-a za mali signal

Koristi se u području zasićenja

Slijedi iz: $i_d = g_m u_{gs} + u_{ds}/r_d$

Drugi oblik

$$u_{ds} = -\mu u_{gs} + r_d i_d, \ \mu = g_m r_d$$

faktor naponskog pojačanja

$$\mu = -\frac{\mathrm{d}u_{DS}}{\mathrm{d}u_{GS}}\bigg|_{I_D = \text{konst}} = -\frac{u_{ds}}{u_{gs}}\bigg|_{u_{ds} = 0}$$

Za neopterećen izlaz $\rightarrow i_d = 0$ $u_{ds} = -g_m r_d u_{gs} = -\mu u_{gs}$ maksimalno naponsko pojačanje FET- a

Model za visoke frekvencije

Kapaciteti C_{gs} i C_{gd} :

za MOSFET → kapacitet MOS strukture

za JFET → kapacitet zaporno polariziranih *pn*-spojeva

za MESFET → kapacitet zaporno polariziranog spoja metal-poluvodič

Analitičko određivanje dinamičkih parametara (1)

Strmina:

MOSFET

$$i_D = \frac{K}{2} (u_{GS} - U_{GS0})^2$$

$$g_m = \frac{di_D}{du_{GS}} = K (U_{GS} - U_{GS0}) = \sqrt{2KI_D}$$

JFET

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2$$

$$g_m = \frac{\mathrm{d}i_D}{\mathrm{d}u_{GS}} = \frac{2I_{DSS}}{-U_P} \left(1 - \frac{U_{GS}}{U_P} \right) = \frac{2}{-U_P} \sqrt{I_{DSS} I_D}$$

Analitičko određivanje dinamičkih parametara (2)

Izlazni dinamički otpor:

model nagiba izlaznih

karakteristika u području zasićenja

$$r_d = \frac{1}{g_d} \approx \frac{1}{\lambda I_D}$$

MOSFET

$$i_{D} = \frac{K}{2} (u_{GS} - U_{GS0})^{2} (1 + \lambda u_{DS})$$

$$g_{d} = \frac{di_{D}}{du_{DS}} = \lambda \frac{K}{2} (U_{GS} - U_{GS0})^{2} \approx \lambda I_{D}$$

JFET

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2 \left(1 + \lambda u_{DS} \right)$$

$$g_d = \frac{\mathrm{d}i_D}{\mathrm{d}u_{DS}} = \lambda I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2 \approx \lambda I_D$$

Hibridni π-model bipolarnog tranzistora

Visokofrekvencijski hibridni π-model

Koristi se u normalnom aktivnom području

Kapaciteti:

 $C_{b'e} \rightarrow$ kapacitet spoja emiter-baza; difuzijski kapacitet

 $C_{bc} \rightarrow$ kapacitet spoja kolektor-baza; kapacitet osiromašenog sloja

Niskofrekvencijski modeli bipolarnog tranzistora

Model sa strminom g_m

Model s faktorom strujnog pojačanja h_{fe}

Ulazni dinamički otpor bipolarnog tranzistora

ukupni otpor $r_{be} \rightarrow r_{be} = r_{bb'} + r_{b'e}$

 \square serijski otpor baze $r_{hh'} \rightarrow$

 $lue{}$ dinamički otpor spoja emiter-baza $r_{b'e}$

$$\begin{split} i_B &= i_{PE} + i_R = q S D_{pE} \frac{p_{0E}}{L_{pE}} \exp\left(\frac{u_{B'E}}{U_T}\right) + q S \frac{w_B n_{0B}}{2\tau_{nB}} \exp\left(\frac{u_{B'E}}{U_T}\right) \\ \frac{1}{r_{b'e}} &= \frac{di_B}{du_{B'E}} = \frac{i_B}{U_T} \end{split}$$

u radnoj točki:
$$r_{b'e} = \frac{U_T}{I_B}$$

Izlazni dinamički otpor bipolarnog tranzistora

model nagiba izlaznih karakteristika u području zasićenja

$$U_A \equiv \text{Earlyjev napon}$$

$$i_C = \beta i_B \left(1 + \frac{u_{CE}}{U_A} \right)$$

$$\frac{1}{r_{ce}} = \frac{di_C}{du_{CE}} = \frac{i_C}{u_{CE} + U_A}$$

$$r_{ce} = \frac{U_{CE} + U_A}{I_C} \approx \frac{U_A}{I_C}$$

Dinamički faktor strujnog pojačanja u spoju zajedničkog emitera

opisuje pojačanje tranzistora

$$h_{fe} = \frac{\operatorname{d} i_C}{\operatorname{d} i_B} \bigg|_{u_{CE} = \text{konst}} = \frac{i_c}{i_b} \bigg|_{u_{ce} = 0}$$

$$h_{fe} \approx \beta$$

očitavanje iz izlaznih karakteristika

$$h_{fe} = \frac{\Delta i_C}{\Delta i_B} \bigg|_{u_{CE} = \text{konst}} = \frac{\Delta i_C}{I_{B2} - I_{B1}} \bigg|_{u_{CE} = \text{konst}}$$

Strmina bipolarnog tranzistora

drugi parametar koji opisuje pojačanje tranzistora

$$g_m = \frac{\mathrm{d}i_C}{\mathrm{d}u_{B'E}}\bigg|_{u_{CE} = \text{konst}} = \frac{i_c}{u_{b'e}}\bigg|_{u_{ce} = 0}$$

$$g_m = \frac{\mathrm{d}i_C}{\mathrm{d}u_{B'E}} = \frac{\mathrm{d}i_C}{\mathrm{d}i_B} \frac{\mathrm{d}i_B}{\mathrm{d}u_{B'E}} = \frac{h_{fe}}{r_{b'e}}$$

u radnoj točki:
$$g_m \approx \frac{\beta}{U_T/I_R} = \frac{I_C}{U_T}$$