4 - Intro to R

Models and Testing

1

Load data

- library(ggplot2)
- Automatically loads tips data
- head(tips)

Basic Tests

- binom.test()
- chisq.test()
- t.test() #talk about this later

3

Clean the data

- Data is not usually ready to work with.
- Examine data first.
- Rename variables?

Fitting Models

- Model grammar, Formula
- Linear Models
- Diagnostics

5

lm

- lm(formula, data, weight, subset, na.action)
- Formula
 - $y \sim x1 + x2 + x3*x4$

Simple linear regression

- Plot beforehand?
- Formula: y ~ x
- Let's use:
 - tips.reg <- lm(tip ~ bill,
 data = tips)</pre>

7

Output

- Coefficients, fitted values, residuals
- Anova table
- Can get predictions for future values

Diagnostics

- Residual sums of squares (deviance)
- AIC (Akaike Information Criterion)
- Residual plots, normal quantile plots

9

Your Turn

- Do a simple linear regression using psize as your predictor.
- Does it provide a good fit?
- Check the diagnostics
- Compare this fit to the previous model.

Multiple Regression

- Pretty much the same but we're adding more continuous variables.
- Formula:
 - $y \sim x1 + x2$ (additive)
 - y ~ x1 + x2 + x1:x2 (with interaction)

11

Your Turn

- Should we keep the interaction term in the model?
- Based on the model you choose what is the predicted value for a bill of 40 for a party size 3.

Anova

- Want to test means for multiple categories
- Formula is same: y ~ x
- Only difference is that x is categorical.
- R fits a treatment effects model by default

13

Constraints

- To make the model full rank R uses a "set first to 0" identifiability constraint. (contr.treatment)
- SAS uses "set last to 0" (contr.SAS)
- Another option: "sum to 0" (contr.sum)
- use getOption("contrasts") or options()\$contrasts to check which one(s) you're using

Example

Friday	Saturday	Sunday	Thursday
μ	μ + Sat	μ + Sun	μ+Thur

15

Ancova and other models

- Can have categorical and continuous variables in a model.
- When adding terms
 - a:b is the interaction between a and b
 - a*b gives linear terms and interaction
 - a*b is the same as a + b + a:b

Your Turn

- Calculate basic summary stats for the variables.
- Create a few plots to show the relationships between the variables and tip.
- Are there any unusual points?
- Explore the data. Find a good model to predict tips.

17

Your Turn

- Create a new variable called tiprate
 - tips\$tiprate <- tips\$tip/tips
 \$bill</pre>
 - Explore the relationship between the variables and tiprate.
 - Find a good model to explain tiprate.