Math 102. Lab 8. Dethogonal Matrices

· Recall: A matrix A & Mnn (R) is invertible if there exists a matrix B & Mnn (R) such that

The matrix B is unique: If there is another matrix $B \in \mathcal{M}_{n,n}(\mathbb{R})$ such that $AB = \overline{B}A = \operatorname{In}$, then

By convention, we denote the inverse B as A^{-1} .

- · Some properties of determinants: Let X, Y ∈ Mnn(R). Then:
 - · det(XY) = det(X) det(Y)
 - $det(X) = det(X^T)$
 - det(In)=1
- Definition: k collection of vectors $\vec{X_i}, \vec{X_2}, ..., \vec{X_n}$ are called orthonormal $i \notin \vec{X_i} \cdot \vec{X_j} = 0$ for $1 \le i \ne j \le n$ and $\vec{X_i} \cdot \vec{X_i} = 1$ for $1 \le i \le n$.

· Definition: A matrix A & Mann (R) is called orthogonal if its row vectors are orthonormal.

A Hint for the problem set:

23. For $A = (a_{ij})_{i,j=1}^n$, $B = (b_{ij})_{i,j=1}^n \in \mathcal{M}_{n,n}(\mathbb{R})$, their product is given by $AB = (c_{ij})_{i,j=1}^n$, where

Cij = [ail aiz ... ain]. bij bzi jth eslumn of B