Package 'fssemR'

October 13, 2022

October 13, 2022
Title Fused Sparse Structural Equation Models to Jointly Infer Gene Regulatory Network
Version 0.1.8
Author Xin Zhou, Xiaodong Cai
Maintainer Xin Zhou <xxz220@miami.edu></xxz220@miami.edu>
Description An optimizer of Fused-Sparse Structural Equation Models, which is the state of the art jointly fused sparse maximum likelihood function for structural equation models proposed by Xin Zhou and Xiaodong Cai (2018 <doi:10.1101 466623="">).</doi:10.1101>
License GPL (>= 3)
Encoding UTF-8
Depends methods
Imports Rcpp, Matrix, stats, igraph, mvtnorm, qtl, stringr, glmnet, MASS, qpdf
Suggests plotly, knitr, rmarkdown, network, ggnetwork
LinkingTo Rcpp, RcppEigen
RoxygenNote 7.1.2
<pre>URL https://github.com/Ivis4ml/fssemR</pre>
NeedsCompilation yes
Repository CRAN
VignetteBuilder knitr
Date/Publication 2022-02-11 13:00:02 UTC
R topics documented:
cv.multiFSSEMiPALM cv.multiFSSEMiPALM2 cv.multiNFSSEMiPALM2 cv.multiRegression cwiseGradient4FSSEM

flinvB	7
S D	8
fssemR	8
implFSSEM	9
nitLambdaiPALM	10
initLambdaiPALM2	10
initLambdaiPALM3	11
nitRhoiPALM	12
initRhoiPALM2	12
nitRhoiPALM3	13
inverseB	14
invoneB	14
logLikFSSEM	15
logLikNFSSEM	15
multiFSSEMiPALM	16
multiFSSEMiPALM2	18
multiNFSSEMiPALM2	20
multiRegression	22
obj.multiRegression	23
opt.multiFSSEMiPALM	24
opt.multiFSSEMiPALM2	25
opt.multiNFSSEMiPALM2	27
pninvB	28
pnoneB	28
proc.centerFSSEM	29
proc.centerFSSEM2	29
randomFSSEMdata	30
randomFSSEMdata2	31
randomFSSEMdata4Cor	32
	33
iransx	33
	34
	initLambdaiPALM2 initLambdaiPALM3 initRhoiPALM initRhoiPALM2 initRhoiPALM3 inverseB invoneB logLikFSSEM logLikFSSEM logLikNFSSEM multiFSSEMiPALM2 multiFSSEMiPALM2 multiRegression obj.multiRegression opt.multiFSSEMiPALM4 opt.multiFSSEMiPALM5 ponneB proc.centerFSSEM proc.centerFSSEM proc.centerFSSEM2 randomFSSEMdata randomFSSEMdata4Cor TPR transx

Description

cv.multiFSSEMiPALM

Usage

```
cv.multiFSSEMiPALM(
    Xs,
    Ys,
    Bs,
    Fs,
    Sk,
    sigma2,
    nlambda = 20,
    nrho = 20,
    nfold = 5,
    p,
    q,
    wt = TRUE,
    plot = FALSE
)
```

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
nlambda	number of hyper-parameter of lasso term in CV
nrho	number of hyper-parameter of fused-lasso term in CV
nfold	CVfold number. Default 5/10
р	number of genes
q	number of eQTLs
wt	use adaptive lasso or not. Default TRUE.
plot	plot contour of cvmean or not. Default FALSE.

Value

list of cross-validation result

cv.multiFSSEMiPALM2

Description

cv. multiFSSEMiPALM2

Usage

```
cv.multiFSSEMiPALM2(
  Χs,
  Ys,
  Вs,
  Fs,
  Sk,
  sigma2,
  nlambda = 20,
  nrho = 20,
  nfold = 5,
  р,
  q,
  wt = TRUE,
  plot = FALSE
)
```

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
nlambda	number of hyper-parameter of lasso term in CV
nrho	number of hyper-parameter of fused-lasso term in CV
nfold	CVfold number. Default 5/10
р	number of genes
q	number of eQTLs
wt	use adaptive lasso or not. Default TRUE.
plot	plot contour of cvmean or not. Default FALSE.

Value

list of cross-validation result

cv.multiNFSSEMiPALM2 5

cv.multiNFSSEMiPALM2 cv.multiNFSSEMiPALM2

Description

cv. multiNFSSEMiPALM2

Usage

```
cv.multiNFSSEMiPALM2(
   Xs,
   Ys,
   Bs,
   Fs,
   Sk,
   sigma2,
   nlambda = 20,
   nrho = 20,
   nfold = 5,
   p,
   q,
   wt = TRUE,
   plot = FALSE
)
```

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
nlambda	number of hyper-parameter of lasso term in CV
nrho	number of hyper-parameter of fused-lasso term in CV
nfold	CVfold number. Default 5/10
p	number of genes
q	number of eQTLs
wt	use adaptive lasso or not. Default TRUE.
plot	plot contour of cvmean or not. Default FALSE.

Value

list of cross-validation result for NFSSEM

6 cwiseGradient4FSSEM

cv.multiRegression cv.multiRegression

Description

cv.multiRegression

Usage

```
cv.multiRegression(Xs, Ys, Sk, ngamma = 20, nfold = 5, n, p, k)
```

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Sk	eQTL index of genes
ngamma	number of hyper-parameter in CV
nfold	CVfold number. Default 5/10
n	number of observations

number of genes р number of eQTLs k

Value

gamma_min optimal gamma to minimize cross-validation error

cwiseGradient4FSSEM cwiseGradient4FSSEM

Description

function generator function

Usage

```
cwiseGradient4FSSEM(n, c, Y, R, Y2norm, sigma2)
```

Arguments

n	number	of	observations

cofactor vector С

Υ Matrix of gene expression

R Residual matrix Column of YtY Y2norm sigma2 noise variance

FDR 7

Value

function whose argument is column vector bi

FDR FDR

Description

False discovery rate for network prediction

Usage

```
FDR(X, B, PREC = 0)
```

Arguments

X list of predicted network matrices

B list of true network matrices

PREC precision threshold for FDR test. Default 0.

flinvB flinvB

Description

inversed difference of two B matrices. For adaptive fused lasso penalty

Usage

flinvB(Bs)

Arguments

Bs list of network matrices

Value

inversed difference matrices

8 fssemR

floneB

floneB

Description

if you do not want adaptive fused lasso penalty, floneB replace flinvB

Usage

```
floneB(Bs)
```

Arguments

Bs

list of network matrices

Value

matrix whose entries are all 1

fssemR

Solving Sparse Structural Equation Model

Description

An optimizer of Fused-Sparse Structural Equation Models, which is the state of the art jointly fused sparse maximum likelihood function for structural equation models proposed by Xin Zhou and Xiaodong Cai (2018 <doi:10.1101/466623>)

Author(s)

Xin Zhou <<xxz220@miami.edu>>

Examples

```
seed = as.numeric(Sys.time())
N = 100
                                                   # sample size
Ng = 5
                                                   # gene number
Nk = 5 * 3
                                                   # eQTL number
Ns = 1
                                                   # sparse ratio
sigma2 = 0.01
                                                   # sigma2
set.seed(seed)
library(fssemR)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2,
                       u = 5, type = "DG", nhub = 1, dag = TRUE)
gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 20, nfold = 5,
                           N, Ng, Nk)
     = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, N, Ng, Nk,
```

implFSSEM 9

```
trans = FALSE)
Χs
     = data$Data$X
Υs
     = data$Data$Y
Sk
     = data$Data$Sk
## cross-validation
## cvfitc <- cv.multiFSSEMiPALM(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
                                sigma2 = fit$sigma2, nlambda = 10, nrho = 10,
                                nfold = 5, p = Ng, q = Nk, wt = TRUE)
##
fitm <- opt.multiFSSEMiPALM(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
                           sigma2 = fit$sigma2, nlambda = 10, nrho = 10,
                           p = Ng, q = Nk, wt = TRUE)
fitc0 <- fitm$fit</pre>
(TPR(fitc0$Bs[[1]], data$Vars$B[[1]]) + TPR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
(FDR(fitc0$Bs[[1]], data$Vars$B[[1]]) + FDR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
TPR(fitc0$Bs[[1]] - fitc0$Bs[[2]], data$Vars$B[[1]] - data$Vars$B[[2]])
FDR(fitc0$Bs[[1]] - fitc0$Bs[[2]], data$Vars$B[[1]] - data$Vars$B[[2]])
```

implFSSEM

implFSSEM

Description

implementor function of FSSEM solver

Usage

```
implFSSEM(data = NULL, method = c("CV", "BIC"))
```

Arguments

data

Data archive of experiment measurements, includeing eQTL matrices, Gene expression matrices of different conditions, marker of eQTLs and data generation

SEM model

method

Use cross-validation (CV) or bayesian-information-criterion(BIC)

Value

List of TPR and FDR

10 initLambdaiPALM2

initLambdaiPALM

initLambdaiPALM

Description

in it Lamb dai PALM

Usage

```
initLambdaiPALM(Xs, Ys, Bs, Fs, Sk, sigma2, Wl, Wf, p, k)
```

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
Wl	weight matrices for adaptive lasso terms
Wf	weight matrix for adaptive fused lasso term
р	number of genes
k	number of eQTL

Value

lambda_max

initLambdaiPALM2

initLambdaiPALM2

Description

in it Lamb dai PALM2

```
initLambdaiPALM2(Xs, Ys, Bs, Fs, Sk, sigma2, Wl, Wf, p, k)
```

initLambdaiPALM3

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
Wl	weight matrices for adaptive lasso terms
W1 Wf	weight matrices for adaptive lasso terms weight matrix for adaptive fused lasso term

Value

lambda_max

initLambdaiPALM3 initLambdaiPALM3

Description

in it Lamb dai PALM3

Usage

```
initLambdaiPALM3(Xs, Ys, Bs, Fs, Sk, sigma2, Wl, Wf, p, k)
```

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
Wl	weight matrices for adaptive lasso terms
Wf	weight matrix for adaptive fused lasso term
р	number of genes
k	number of eQTL

Value

 $lambda_max$

12 initRhoiPALM2

initRhoiPALM

initRhoiPALM

Description

in it Rhoi PALM

Usage

```
initRhoiPALM(Xs, Ys, Bs, Fs, Sk, sigma2, Wl, Wf, lambda, n, p)
```

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
Wl	weight matrices for adaptive lasso terms
Wf	weight matrix for adaptive fused lasso term
lambda	lambda w.r.t. rho_max
n	number of observations

number of genes

Value

р

rho_max

initRhoiPALM2

initRhoiPALM2

Description

initRhoiPALM2

```
initRhoiPALM2(Xs, Ys, Bs, Fs, Sk, sigma2, Wl, Wf, lambda, n, p)
```

initRhoiPALM3

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
Wl	weight matrices for adaptive lasso terms
Wf	weight matrix for adaptive fused lasso term
lambda	lambda w.r.t. rho_max
n	number of observations

number of genes

Value

р

 rho_max

Description

initRhoiPALM3

Usage

```
initRhoiPALM3(Xs, Ys, Bs, Fs, Sk, sigma2, Wl, Wf, lambda, n, p)
```

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
Wl	weight matrices for adaptive lasso terms
Wf	weight matrix for adaptive perturbation group lasso term
lambda	lambda w.r.t. rho_max
n	number of observations
p	number of genes

Value

rho_max

14 invoneB

inverseB

inverseB

Description

inverse matrices of B network for adaptive FSSEM

Usage

inverseB(Bs)

Arguments

Bs

list of network matrices

Value

list of inversed B matrices

invoneB

invoneB

Description

if you do not want to get inversed B matrces, invoneB gives you a matrix with constant 1 instead in FSSEM

Usage

invoneB(Bs)

Arguments

Bs

list of network matrices

Value

list of invone B matrices

logLikFSSEM 15

logLikFSSEM	logLikFSSEM
-------------	-------------

Description

logLikFSSEM

Usage

```
logLikFSSEM(Bs, Wl, Wf, lambda, rho, sigma2, Dets, n, p)
```

Arguments

Bs	Network matrices
Wl	Weights for lasso term
Wf	Weights for fused term
lambda	Hyperparameter of lasso term
rho	Hyperparameter of fused lasso term
sigma2	noise variance
Dets	determinants of I-B matrices
n	number of observations
р	number of genes

Value

objective value of FSSEM with specified hyper-paramters

logLikNFSSEM	logLikNFSSEM	

Description

logLikNFSSEM

```
logLikNFSSEM(Bs, Wl, Wf, lambda, rho, sigma2, Dets, n, p)
```

Arguments

Bs	Network matrices
Wl	Weights for lasso term
Wf	Weights for group perturb lasso term
lambda	Hyperparameter of lasso term
rho	Hyperparameter of group fused lasso term
sigma2	noise variance
Dets	determinants of I-B matrices
n	number of observations
р	number of genes

Value

objective value of NFSSEM with specified hyper-paramters

multiFSSEMiPALM multiFSSEMiPALM

Description

Implementing FSSELM algorithm for network inference. If Xs is identify for different conditions, multiFSSEMiPALM will be use, otherwise, please use multiFSSEMiPALM2 for general cases

```
multiFSSEMiPALM(
 Χs,
 Ys,
 Bs,
 Fs,
  Sk,
  sigma2,
 lambda,
  rho,
 Wl,
 Wf,
  p,
 maxit = 100,
  inert = inert_opt("linear"),
  threshold = 1e-06,
  verbose = TRUE,
  sparse = TRUE,
  trans = FALSE,
 B2norm = NULL,
  strict = FALSE
)
```

Arguments

eQTL matrices
Gene expression matrices
initialized GRN-matrices
initialized eQTL effect matrices
eQTL index of genes
initialized noise variance from ridge regression
Hyperparameter of lasso term in FSSEM
Hyperparameter of fused-lasso term in FSSEM
weight matrices for adaptive lasso terms
weight matrix for adaptive fused lasso term
number of genes
maximum iteration number. Default 100
inertial function for iPALM. Default as k-1/k+2
convergence threshold. Default 1e-6
Default TRUE
Sparse Matrix or not
Fs matrix is transposed to $k \times p$ or not. If Fs from ridge regression, trans = TRUE, else, trans = FALSE
B2norm matrices generated from ridge regression. Default NULL.
Converge strictly or not. Default False
Ciii Ei II V

Value

fit List of FSSEM model

Bs coefficient matrices of gene regulatory networks

Fs coefficient matrices of eQTL-gene effect

mu Bias vector

sigma2 estimate of covariance in SEM

Examples

```
seed = 1234
N = 100
                                                  # sample size
Ng = 5
                                                  # gene number
Nk = 5 * 3
                                                  # eQTL number
Ns = 1
                                                  # sparse ratio
sigma2 = 0.01
                                                  # sigma2
set.seed(seed)
library(fssemR)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2,
                       u = 5, type = "DG", nhub = 1, dag = TRUE)
```

```
## If we assume that different condition has different genetics perturbations (eQTLs)
## gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 20, nfold = 5,
                              N, Ng, Nk)
gamma = 0.6784248
                      ## optimal gamma computed by cv.multiRegression
fit = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, N, Ng, Nk,
                      trans = FALSE)
Xs
      = data$Data$X
Υs
      = data$Data$Y
Sk
      = data$Data$Sk
cvfitc <- cv.multiFSSEMiPALM(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,</pre>
                             sigma2 = fit$sigma2, nlambda = 5, nrho = 5,
                             nfold = 5, p = Ng, q = Nk, wt = TRUE)
fitc0 <- multiFSSEMiPALM(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
                         sigma2 = fit$sigma2, lambda = cvfitc$lambda, rho = cvfitc$rho,
                         Wl = inverseB(fit$Bs), Wf = flinvB(fit$Bs),
                         p = Ng, maxit = 100, threshold = 1e-5, sparse = TRUE,
                         verbose = TRUE, trans = TRUE, strict = TRUE)
(TPR(fitc0$Bs[[1]], data$Vars$B[[1]]) + TPR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
(FDR(fitc0$Bs[[1]], data$Vars$B[[1]]) + FDR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
TPR(fitc0$Bs[[1]] - fitc0$Bs[[2]], data$Vars$B[[1]] - data$Vars$B[[2]])
FDR(fitc0$Bs[[1]] - fitc0$Bs[[2]], data$Vars$B[[1]] - data$Vars$B[[2]])
```

multiFSSEMiPALM2

multiFSSEMiPALM2

Description

Implementing FSSELM algorithm for network inference. If Xs is identify for different conditions, multiFSSEMiPALM will be use, otherwise, please use multiFSSEMiPALM2 for general cases

```
multiFSSEMiPALM2(
   Xs,
   Ys,
   Bs,
   Fs,
   Sk,
   sigma2,
   lambda,
   rho,
   Wl,
   Wf,
   p,
```

```
maxit = 100,
inert = inert_opt("linear"),
threshold = 1e-06,
verbose = TRUE,
sparse = TRUE,
trans = FALSE,
B2norm = NULL,
strict = FALSE
)
```

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance from ridge regression
lambda	Hyperparameter of lasso term in FSSEM
rho	Hyperparameter of fused-lasso term in FSSEM
Wl	weight matrices for adaptive lasso terms
Wf	weight matrix for adaptive fused lasso term
p	number of genes
maxit	maximum iteration number. Default 100
inert	inertial function for iPALM. Default as k-1/k+2
threshold	convergence threshold. Default 1e-6
verbose	Default TRUE
sparse	Sparse Matrix or not
trans	Fs matrix is transposed to $k \times p$ or not. If Fs from ridge regression, trans = TRUE, else, trans = FALSE
B2norm	B2norm matrices generated from ridge regression. Default NULL.
strict	Converge strictly or not. Default False

Value

fit List of FSSEM model

Bs coefficient matrices of gene regulatory networks

Fs coefficient matrices of eQTL-gene effect

mu Bias vector

sigma2 estimate of covariance in SEM

Examples

```
seed = 1234
N = 100
                                                   # sample size
Ng = 5
                                                   # gene number
Nk = 5 * 3
                                                   # eOTL number
Ns = 1
                                                   # sparse ratio
sigma2 = 0.01
                                                   # sigma2
set.seed(seed)
library(fssemR)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2,
                       u = 5, type = "DG", nhub = 1, dag = TRUE)
## If we assume that different condition has different genetics perturbations (eQTLs)
data$Data$X = list(data$Data$X, data$Data$X)
## gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Da, ngamma = 20, nfold = 5,
                              N, Ng, Nk)
gamma = 0.6784248
                      ## optimal gamma computed by cv.multiRegression
fit = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, N, Ng, Nk,
                      trans = FALSE)
Χs
     = data$Data$X
     = data$Data$Y
Ys
     = data$Data$Sk
Sk
cvfitc <- cv.multiFSSEMiPALM2(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
                             sigma2 = fit$sigma2, nlambda = 5, nrho = 5,
                             nfold = 5, p = Ng, q = Nk, wt = TRUE)
fitc0 <- multiFSSEMiPALM2(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
                          sigma2 = fit$sigma2, lambda = cvfitc$lambda, rho = cvfitc$rho,
                          Wl = inverseB(fit$Bs), Wf = flinvB(fit$Bs),
                          p = Ng, maxit = 100, threshold = 1e-5, sparse = TRUE,
                          verbose = TRUE, trans = TRUE, strict = TRUE)
(TPR(fitc0$Bs[[1]], data$Vars$B[[1]]) + TPR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
(FDR(fitc0$Bs[[1]], data$Vars$B[[1]]) + FDR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
TPR(fitc0\$Bs[[1]] - fitc0\$Bs[[2]], data\$Vars\$B[[1]] - data\$Vars\$B[[2]])
FDR(fitc0$Bs[[1]] - fitc0$Bs[[2]], data$Vars$B[[1]] - data$Vars$B[[2]])
```

multiNFSSEMiPALM2

multiNFSSEMiPALM2

Description

Implementing NFSSEM algorithm for network inference. If Xs is identify for different conditions, multiNFSSEMiPALM will be use, otherwise, please use multiNFSSEMiPALM2 for general cases

```
multiNFSSEMiPALM2(
```

```
Χs,
Ys,
Βs,
Fs,
Sk,
sigma2,
lambda,
rho,
Wl,
Wf,
p,
maxit = 100,
inert = inert_opt("linear"),
threshold = 1e-06,
verbose = TRUE,
sparse = TRUE,
trans = FALSE,
B2norm = NULL,
strict = FALSE
```

eQTL matrices

Arguments Xs

Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance from ridge regression
lambda	Hyperparameter of lasso term in NFSSEM
rho	Hyperparameter of fused-lasso term in NFSSEM
Wl	weight matrices for adaptive lasso terms
Wf	weight matrix for columnwise 12 norm adaptive group lasso
p	number of genes
maxit	maximum iteration number. Default 100
inert	inertial function for iPALM. Default as k-1/k+2
threshold	convergence threshold. Default 1e-6
verbose	Default TRUE
sparse	Sparse Matrix or not
trans	Fs matrix is transposed to $k \times p$ or not. If Fs from ridge regression, trans = TRUE, else, trans = FALSE
B2norm	B2norm matrices generated from ridge regression. Default NULL.
strict	Converge strictly or not. Default False

22 multiRegression

Value

fit List of NFSSEM model

Bs coefficient matrices of gene regulatory networks

Fs coefficient matrices of eQTL-gene effect

mu Bias vector

sigma2 estimate of covariance in SEM

multiRegression

multiRegression

Description

Ridge regression on multiple conditions, initialization of FSSEM algorithm

Usage

```
multiRegression(Xs, Ys, Sk, gamma, n, p, k, trans = FALSE)
```

Arguments

Xs	eQTL matrices. eQ	QTL matrix can be	matrix/list of multiple conditions

Ys Gene expression matrices

Sk eQTL index of genes

gamma Hyperparameter for ridge regression

n number of observations

p number of genesk number of eQTLs

trans if rows for sample, trans = TRUE, otherwise, trans = FALSE. Default FALSE

Value

fit List of SEM model

Bs coefficient matrices of gene regulatory networks

fs eQTL's coefficients w.r.t each gene

Fs coefficient matrices of eQTL-gene effect

mu Bias vector

sigma2 estimate of covariance in SEM

obj.multiRegression 23

Examples

```
seed = 1234
N = 100
                                                  # sample size
Ng = 5
                                                  # gene number
Nk = 5 * 3
                                                  # eQTL number
Ns = 1
                                                  # sparse ratio
sigma2 = 0.01
                                                  # sigma2
set.seed(seed)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2,
                       u = 5, type = "DG", nhub = 1, dag = TRUE)
## If we assume that different condition has different genetics perturbations (eQTLs)
## data$Data$X = list(data$Data$X, data$Data$X)
gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 20, nfold = 5,
                           N, Ng, Nk)
fit = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, N, Ng, Nk,
                      trans = FALSE)
```

obj.multiRegression obj.multiRegression

Description

obj.multiRegression

Usage

```
obj.multiRegression(Xs, Ys, fit, trans = F)
```

Arguments

Xs	eQTL matrices
Ys	gene expression matrices
fit	regression fit result object
trans	if rows for sample, trans = TRUE, otherwise, trans = FALSE. Default FALSE

Value

```
error squared norm of ||(I-B)Y - FX||_2^2
```

```
opt.multiFSSEMiPALM opt.multiFSSEMiPALM
```

Description

optimize multiFSSEMiPALM's parameters by minimize BIC, when feature size is large (> 300), BIC methods will be much faster than Cross-validation

Usage

```
opt.multiFSSEMiPALM(
    Xs,
    Ys,
    Bs,
    Fs,
    Sk,
    sigma2,
    nlambda = 20,
    nrho = 20,
    p,
    q,
    wt = TRUE
)
```

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
nlambda	number of hyper-parameter of lasso term in CV
nrho	number of hyper-parameter of fused-lasso term in CV
p	number of genes
q	number of eQTLs
wt	use adaptive lasso or not. Default TRUE.

Value

list of model selection result

Examples

```
seed = 1234
N = 100
                                                   # sample size
Ng = 5
                                                   # gene number
Nk = 5 * 3
                                                   # eOTL number
Ns = 1
                                                   # sparse ratio
sigma2 = 0.01
                                                   # sigma2
set.seed(seed)
library(fssemR)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2,
                       u = 5, type = "DG", nhub = 1, dag = TRUE)
## If we assume that different condition has different genetics perturbations (eQTLs)
## data$Data$X = list(data$Data$X, data$Data$X)
## gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 20, nfold = 5,
                              N, Ng, Nk)
gamma = 0.6784248
                      ## optimal gamma computed by cv.multiRegression
    = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, N, Ng, Nk,
                      trans = FALSE)
Χs
      = data$Data$X
      = data$Data$Y
Ys
      = data$Data$Sk
Sk
fitm <- opt.multiFSSEMiPALM(Xs = Xs, Ys = Ys, Bs = fit$Bs, Fs = fit$Fs, Sk = Sk,
                           sigma2 = fit$sigma2, nlambda = 10, nrho = 10,
                           p = Ng, q = Nk, wt = TRUE)
fitc0 <- fitm$fit</pre>
(TPR(fitc0$Bs[[1]], data$Vars$B[[1]]) + TPR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
(FDR(fitc0$Bs[[1]], data$Vars$B[[1]]) + FDR(fitc0$Bs[[2]], data$Vars$B[[2]])) / 2
TPR(fitc0$Bs[[1]] - fitc0$Bs[[2]], data$Vars$B[[1]] - data$Vars$B[[2]])
FDR(fitc0$Bs[[1]] - fitc0$Bs[[2]], data$Vars$B[[1]] - data$Vars$B[[2]])
```

opt.multiFSSEMiPALM2 opt.multiFSSEMiPALM2

Description

optimize multiFSSEMiPALM's parameters by minimize BIC, when feature size is large (> 300), BIC methods will be much faster than Cross-validation

```
opt.multiFSSEMiPALM2(
  Xs,
  Ys,
  Bs,
  Fs,
  Sk,
```

```
sigma2,
nlambda = 20,
nrho = 20,
p,
q,
wt = TRUE
)
```

Arguments

Xs	eQTL matrices
Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
nlambda	number of hyper-parameter of lasso term in CV
nrho	number of hyper-parameter of fused-lasso term in CV
p	number of genes
q	number of eQTLs
wt	use adaptive lasso or not. Default TRUE.

Value

list of model selection result

Examples

```
seed = 1234
N = 100
                                                   # sample size
Ng = 5
                                                   # gene number
Nk = 5 * 3
                                                   # eQTL number
Ns = 1
                                                   # sparse ratio
sigma2 = 0.01
                                                   # sigma2
set.seed(seed)
library(fssemR)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2,
                       u = 5, type = "DG", nhub = 1, dag = TRUE)
## If we assume that different condition has different genetics perturbations (eQTLs)
data$Data$X = list(data$Data$X, data$Data$X)
## gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 20, nfold = 5,
##
                              N, Ng, Nk)
                      ## optimal gamma computed by cv.multiRegression
gamma = 0.6784248
fit = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, N, Ng, Nk,
                      trans = FALSE)
     = data$Data$X
Χs
     = data$Data$Y
Υs
Sk
      = data$Data$Sk
```

opt.multiNFSSEMiPALM2

Description

optimize multiNFSSEMiPALM's parameters by minimize BIC, when feature size is large (> 300), BIC methods will be much faster than Cross-validation

Usage

```
opt.multiNFSSEMiPALM2(
    Xs,
    Ys,
    Bs,
    Fs,
    Sk,
    sigma2,
    nlambda = 20,
    nrho = 20,
    p,
    q,
    wt = TRUE
)
```

Arguments Xs

Ys	Gene expression matrices
Bs	initialized GRN-matrices
Fs	initialized eQTL effect matrices
Sk	eQTL index of genes
sigma2	initialized noise variance
nlambda	number of hyper-parameter of lasso term in CV
nrho	number of hyper-parameter of fused-lasso term in CV

eQTL matrices

28 pnoneB

p number of genesq number of eQTLs

wt use adaptive lasso or not. Default TRUE.

Value

list of model selection result

pninvB

pninvB

Description

inversed column 12 norm for perturbed group lasso penalty

Usage

pninvB(Bs)

Arguments

Bs

list of network matrices

Value

inversed 12 norm of B2 - B1

pnoneB

pnoneB

Description

if you do not want adaptive group lasso penalty, pnoneB replace pninvB

Usage

pnoneB(Bs)

Arguments

Bs

list of network matrices

Value

inversed 12 norm of B2 - B1 with all entries is 1

proc.centerFSSEM 29

proc.centerFSSEM proc.centerFSSEM

Description

proc.centerFSSEM

Usage

```
proc.centerFSSEM(Xs, Ys)
```

Arguments

Xs eQTL matrices

Ys list of gene expression matrices

Value

centered Xs and Ys and mean vectors

proc.centerFSSEM2 proc

proc.centerFSSEM2

Description

proc.centerFSSEM2

Usage

```
proc.centerFSSEM2(Xs, Ys)
```

Arguments

Xs list of eQTL matrices

Ys list of gene expression matrices

Value

centered Xs and Ys and mean vectors

30 randomFSSEMdata

randomFSSEMdata

random FSSEM data

Description

random FSSEM data

Usage

```
randomFSSEMdata(
    n,
    p,
    k,
    sparse = 0.1,
    df = 0.2,
    sigma2 = 0.01,
    u = 5,
    type = c("DG", "ER"),
    dag = TRUE,
    coef = c(0.2, 0.4),
    nhub = 2
)
```

Arguments

n	number of observations
p	number of genes
k	number of eQTLs
sparse	ratio of edges / gene_number
df	ratio of differential edges among two network
sigma2	noise variance of error
u	variance of bias in SEM model.
type	type of generated network, can be selected as DG, ER, Scale-free network
dag	network is directed-acyclic or not. Default TRUE
coef	Range of absolute value of coefficients in simulated network matrices. Default $(0.2,0.4)$, or $(0.5,1)$
nhub	If you select to generate ER network, nhub is the number of pre-defined hub node number. Default 2

Value

list of generated data

```
Data List of observed, Xs, Ys, SkVars List of model, Bs, Fs, mu, n, p, k
```

randomFSSEMdata2 31

randomFSSEMdata2

random FSSEM data 2

Description

randomFSSEMdata2

Usage

```
randomFSSEMdata2(
    n,
    p,
    k,
    sparse = 0.1,
    df = 0.2,
    sigma2 = 0.01,
    u = 5,
    type = c("DG", "ER"),
    dag = TRUE,
    coef = c(0.2, 0.4),
    nhub = 2
)
```

Arguments

n	number of observations. Vector for unbalance observations
р	number of genes
k	number of eQTLs
sparse	ratio of edges / gene_number
df	ratio of differential edges among two network
sigma2	noise variance of error
u	variance of bias in SEM model.
type	type of generated network, can be selected as DG, ER, Scale-free network
dag	network is directed-acyclic or not. Default TRUE
coef	Range of absolute value of coefficients in simulated network matrices. Default $(0.2,0.4)$, or $(0.5,1)$
nhub	If you select to generate ER network, nhub is the number of pre-defined hub node number. Default 2

Value

list of generated data

```
Data List of observed, Xs, Ys, Sk
Vars List of model, Bs, Fs, mu, n, p, k
```

32 randomFSSEMdata4Cor

randomFSSEMdata4Cor

randomFSSEMdata4Cor

Description

randomFSSEMdata4Cor

Usage

```
randomFSSEMdata4Cor(
    n,
    p,
    k,
    sparse = 0.1,
    df = 0.2,
    sigma2 = 0.01,
    u = 5,
    type = c("DG", "ER"),
    dag = TRUE,
    coef = c(0.2, 0.4),
    nhub = 2,
    r = 0.5
)
```

Arguments

n	number of observations. Vector for unbalance observations
p	number of genes
k	number of eQTLs
sparse	ratio of edges / gene_number
df	ratio of differential edges among two network
sigma2	noise variance of error
u	variance of bias in SEM model.
type	type of generated network, can be selected as DG, ER, Scale-free network
dag	network is directed-acyclic or not. Default TRUE
coef	Range of absolute value of coefficients in simulated network matrices. Default $(0.2,0.4),$ or $(0.5,1)$
nhub	If you select to generate ER network, nhub is the number of pre-defined hub node number. Default 2
r	correlation between different observations

TPR 33

Value

list of generated data

Data List of observed, Xs, Ys, Sk

Vars List of model, Bs, Fs, mu, n, p, k

TPR TPR

Description

Power of detection for network prediction

Usage

```
TPR(X, B, PREC = 0)
```

Arguments

X list of predicted network matrices

B list of true network matrices

PREC precision threshold for FDR test. Default 0.

transx transx

Description

transx

Usage

transx(data)

Arguments

data

Collecting data structure generated by randomFSSEMdata function

Value

transformed list of eQTL matrices

Index

```
cv.multiFSSEMiPALM, 2
                                                randomFSSEMdata2, 31
cv.multiFSSEMiPALM2, 4
                                                randomFSSEMdata4Cor, 32
cv.multiNFSSEMiPALM2, 5
                                                TPR, 33
cv.multiRegression, 6
                                                transx, 33
cwiseGradient4FSSEM, 6
FDR, 7
flinvB, 7
floneB, 8
fssemR, 8
implFSSEM, 9
initLambdaiPALM, 10
initLambdaiPALM2, 10
initLambdaiPALM3, 11
initRhoiPALM, 12
initRhoiPALM2, 12
initRhoiPALM3, 13
inverseB, 14
invoneB, 14
logLikFSSEM, 15
logLikNFSSEM, 15
multiFSSEMiPALM, 16
multiFSSEMiPALM2, 18
multiNFSSEMiPALM2, 20
multiRegression, 22
obj.multiRegression, 23
opt.multiFSSEMiPALM, 24
opt.multiFSSEMiPALM2, 25
opt.multiNFSSEMiPALM2, 27
package-fssemR (fssemR), 8
pninvB, 28
pnoneB, 28
proc.centerFSSEM, 29
proc.centerFSSEM2, 29
randomFSSEMdata, 30
```