

Lecture 3: Neural Networks

Slides based off of Machine Learning at Berkeley https://github.com/mlberkeley/Machine-Learning-Decal-Fall-2018

Today's Lesson Plan

Linear and Logistic Regression Review

Motivation

The Perceptron

Feed-forward Neural Networks

Learning In NNs

Coding Demo

Linear Regression Linear model

$$Y = f(X, \mathbf{w_1}, b_1)$$
 $f(x, w, b) = x \cdot w + b$
 $X = \mathbf{w} + \mathbf{b} = \mathbf{w} + \mathbf{b} = \mathbf{w}$

Let
$$\hat{y_i} = h(x) = b_0 + b_1 x$$

$$RSS(w) = \sum_{i=1}^{N} (y_i - w^T x_i)^2$$

derivate

$$J(b_0, b_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

Variance in our data described by govssian distribution

Logistic Regression classification model

$$Z = f(X, \frac{\mathbf{w_1}, \mathbf{b_1}}{\mathbf{w_1}})$$
$$Y = g(Z)$$

$$g(x) = \frac{1}{1 + e^{-x}}$$

in but weight bias
$$x + b = Z$$

$$Z = y$$

$$J(b) = -\sum_{i=1}^{m} \left(y^{(i)} \cdot \ln z^{(i)} + (1 - y^{(i)}) \cdot \ln (1 - z^{(i)}) \right)$$

Motivation

What I see

What a computer sees

zo aray Pixel values

- Ability to learn complex, non-linear functions
- Does not assume the inherent data distribution
 - Better at modeling non-constant variance

NN good for

Biological Inspiration

ex: Sigmoid function 1 + e-Bix+Bz,

function take input and then outputs a number: **Biological Inspiration** x weight activation I gen term for param that you want to kuin from your model

- Inputs to the neuron are multiplied by weights
- Bias then summed with weighted inputs
- Non-linear activation function applied on wTx +b

gradient descent

Biological Inspiration - A Layered Architecture

Input Layer: takes in input data (size corresponds to input space)
Hidden Layer: neurons hidden from view (this is where the magic happens)
Output Layer: neurons in this layer provide the output of the network

The Perceptron (model) line which will perfect split two class and daising

Inputs

perceptron => specific case of Sigmoid. more flexible

Image Credits From StackExchange

Perceptron Decision Boundary

perception map your input space into something that can be linearly seperable

Activation Functions

For gradient descent to work, we need activation functions that are:

- Continuous
- Differentiable
- Monotonically Increasing

Sigmoid/Logistic

bounded 0-1

Hyperbolic tangent (tanh)

Rectified Linear Unit (ReLU)

$$f(x) = \max(0, x)$$

gradient vanishing

Input Layer: takes in input data (size corresponds to input space)
Hidden Layer: neurons hidden from view (this is where the magic happens)
Output Layer: neurons in this layer provide the output of the network

Neural Networks in Matrix Form

Neural Network Expressivity

Neural Network Expressivity

Neural Network Expressiveness

- Neural networks approximate functions without assuming an initial data distribution up proximate functions
- NNs learn function approximations (anything that maps an input, to a single output)

 $f: X \to Y$ Supervised learning

Universal Approximation Theorem

"Every bounded continuous function can be approximated with arbitrary precision by a single-layer neural network" (Hornik, 1991)

Learning in Neural Networks

Optimization Via Gradient Descent -> spenty cost function That we wan't to minimize

Gradient Descent

Define a differentiable, convex objective to minimize:

$$C(x, \text{parameters}) = \frac{1}{2}(y - \hat{f}(x))^2$$
Where:

Where:

- y is the actual output
- f_hat is our hypothesis function (output of the network) dependent on our learned parameters and inputs

$$J(\mathbf{w}) = \frac{1}{2} (y - h_{\mathbf{w}}(\mathbf{x}))^{2} = \frac{1}{2} (y - o_{N+H+1})^{2}$$
hypothesis

We use gradient descent to allow us to find a local minima of C given the derivative of C with respect to its parameters

Backpropagation

Neural network:

Input layer Hidden layer Output layer network:
$$h_{\Theta}(x) \in \mathbb{R}^K \quad (h_{\Theta}(x))_i = i^{th} \text{ output}$$

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right]$$

$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2$$

Stochastic Gradient Descent

Initialize all weights to small random numbers.

- Repeat until convergence:
 - Pick a training example. Shale input
 - Feed example through network to compute output o = o_{N+H+}

Forward pass

For the output unit, compute the correction:

$$\delta_{N+H+1} \leftarrow o(1-o)(y-o)$$

 $\delta_{N+H+1} \leftarrow o(1-o)(y-o)$ For each hidden unit h, compute its share of the correction:

Backpropagation

- $\begin{array}{c} \text{(orrectfully}\\ \text{(orrectfully}\\ \text{(orrectfully}\\ \text{o}_h \leftarrow o_h (1-o_h) w_{N+H+1,h} \delta_{N+H+1} \\ \text{- Update each network weight:} \quad \text{Using gradient descent} \end{array}$

 $w_{h,i} \leftarrow w_{h,i} + \alpha_{h,i} \delta_h x_{h,i}$ which hidder unit Learning rate

Gradient descent

Forms of Gradient Descent

Stochastic Gradient Descent: compute error using a <u>single sample</u> at a time, update weights, repeat

Batch Gradient Descent: compute error on <u>all examples</u>, update weights based on error, repeat

highest that you can

Mini-batch Gradient Descent: randomly select a subset from the training data, calculate error on subset, update weights, repeat

better modelling
better modelling
whole dishisorion
work accompany
and ant descent

Picking α - Adaptive Learning Rates

ADAM, RMSProp, Adagrad, etc.

<u>More Information on Stochastic Gradient Descent and Different Optimization Methods</u>

Coding Demo

Thanks!

Any questions?

Reminders:

Homework 2 due before next lecture.

