Perceptron Report

By Josias Moukpe

1. Training Output

Here is the output of the Network while training

Dataset size 21

Epoch #0

```
error
[[1], [-1], [-1], [-1], [-1], [-1]]
error
[[-2], [2], [0], [0], [0], [0], [0]]
error
[[0], [-2], [2], [0], [0], [0], [0]]
error
[[0],[-2],[-2],[0],[0],[0]]
error
[[0], [0], [0], [-2], [2], [0], [0]]
[[0], [0], [0], [0], [-2], [2], [0]]
error
[[0], [0], [0], [0], [-2], [0], [2]]
error
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0],[2],[-2],[-2],[-2],[0]]
[[0], [0], [2], [0], [0], [-2], [0]]
error
[[0],[0],[0],[2],[0],[0],[0]]
error
[[0],[-2],[0],[0],[2],[0],[-2]]
[[-2],[0],[-2],[-2],[0],[0],[0]]
error
```

```
[[-2],[0],[-2],[0],[0],[0],[2]]
error
[[2],[0],[0],[0],[0],[0],[0],[-2]]
error
[[0],[2],[0],[0],[0],[0],[0],[-1]]
error
[[0],[0],[0],[-2],[0],[0],[0],[0]]
error
[[0],[-2],[0],[0],[0],[0],[0],[0]]
error
[[0],[0],[0],[0],[0],[0],[0],[0]]
error
[[0],[0],[0],[0],[0],[0],[0],[0]]
error
```

Epoch #1

```
error
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0],[0],[0],[0],[-2],[0],[0]]
[[0], [0], [0], [0], [0], [0], [0]]
error
```

```
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [2], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0],[0],[0],[0],[-2],[0],[0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0],[0],[0],[0],[-2],[0],[0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
```

Epoch #2

```
error
[[0],[0],[0],[0],[0],[0],[0],[0]]
error
[[0],[0],[0],[0],[0],[0],[0],[0]]
error
[[0],[0],[0],[0],[0],[0],[0],[0]]
error
[[0],[0],[0],[0],[0],[0],[0],[0]]
error
[[0],[0],[0],[0],[0],[0],[0],[0]]
error
[[0],[0],[0],[0],[0],[0],[0],[0]]
error
```

```
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0],[0],[0],[0],[-2],[0],[0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [2], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
```

Epoch #3

error
[[0],[0],[0],[0],[0],[0],[0],[0]]
error
[[0],[0],[0],[0],[0],[0],[0],[0]]
error
[[0],[0],[0],[0],[-2],[0],[0]]
error
[[0],[0],[0],[0],[0],[0],[0]]
error

```
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
Epoch #4
```

error [[0],[0],[0],[0],[0],[0],[0]] error

```
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
[[0], [0], [0], [0], [0], [0], [0]]
error
[[0], [0], [0], [0], [0], [0], [0]]
```

2. Trained Weights and Biases

```
"Weights": [
    [-5, -1, 1, 5, -1, -9, 3, -1, -1, 3, 9, -1, -1, -1, -1, -1, 7, 1, 7, -1, -1, -1, -1, 5, 3, 9, -1, -1, -1, -1, 1, 1, -1, 1, -1, 3, -1,
5, 5, 9, 9, 5, -1, 3, -3, 3, -1, 3, 1, 3, 3, -3, 3, 3, -1, 1, 3, 1, 5, -3, -5, -3, 1, 9],
    1, 1, 1, 11, -1, 1, 3, 3, 3, 1, 11, 3, -3, 3, 3, -3, 7, 1, 1, -3, -1, -3, 1, -7],
    [-7, -3, 3, 3, 5, -3, 9, -3, 9, 5, 3, 1, 1, 5, 5, 1, 5, -1, 5, 1, 1, 5, 1, -1, 5, 3, 1, -3, 5, -7, -1, 1, -1, -3, 1, 5, -1, -1,
3, 3, -1, -3, 5, -5, 5, 1, 5, -1, 1, -3, 3, 5, 5, 1, -1, 5, -9, -5, -1, 1, -1, -1, 3],
    [5, 5, -1, -1, 1, -7, -3, 5, 1, 5, 3, 5, 5, -7, 1, 5, 5, 3, 5, 1, 5, 1, 5, 3, 1, 3, 1, 9, 1, 1, -5, -3, -1, -3, 13, 1, 3, 3, -1
3, -1, 9, 1, -1, 5, 5, 5, -1, 5, 5, -5, 5, 5, 5, 3, -3, 3, 3, -5, -3, -5, -5, -1],
    1, 5, 5, 1, -5, -1, 1, 7, 3, -1, 1, -5, 3, -3, 7, 7, 3, -7, 3, 1, 5, -3, 7, 5, -3, 17],
    [-3, -3, -9, -1, 1, 1, 5, 1, -3, 5, 3, 5, 1, 1, -3, 1, 5, 3, 1, 9, -3, -3, 1, 3, 1, 3, 9, 1, -3, -3, -5, 1, -1, 5, 5, -3, -1, 3,
-1, 3, 7, 1, -3, 3, 5, 5, 1, 7, -3, 1, -1, 5, 5, 5, -1, 1, -5, -5, -5, 1, -1, -5, -1],
    0, -4, -4, 0, -2, 2, 2, 6, 6, 0, -4, -2, 2, 2, 2, 6, 4, -4, -2, -6, -2, -4, -6, -2, -4]
  "Biases": [
    [-3],[-3],[-5],[-5],[-7],[-5],[-2]
```

3. Example of Correct Prediction

Input Matrix

0	1	2	3	4	5	6	1
		✓	✓	✓		✓	
	/				/	/	
/						/	
~							
~							
/							
/						/	
	/				/		
		~	~	~)

Letter

C

Here are the results from Question 2 when entering wrong data for every letter

Testing

Input Matrix

	0	1	2	3	4	5	6
0			✓	/			
1			/		/		
2		/				/	
3	/					/	
4	/		/	/	~	/	
5	/	/	/	/	/	/	~
6	/						✓
7	✓	~					✓
8	/						

output:

[[1],[1],[-1],[-1],[-1],[-1],[-1]]-> A

Input Matrix

	0	1	2	3	4	5	6
0	✓						
1	✓					/	✓
2	~				/	/	✓
3	✓				/		✓
4	✓	/	/	/	/	✓	✓
5	✓				/	✓	
6	✓			/	/		✓
7	✓					✓	✓
8	✓	✓	✓	✓	✓	✓	

output:

 $[[-1],[1],[-1],[-1],[-1],[-1],[-1]] \rightarrow B$

Input Matrix

output:

[[-1],[-1],[1],[-1],[-1],[-1],[-1]] -> C

Input Matrix

	0	1	2	3	4	5	6
0	✓	\checkmark	\checkmark	\checkmark	\checkmark		
1	✓					~	
2	/					/	✓
3	/					✓	✓
4						✓	✓
5	/					✓	
6	✓					✓	✓
7	✓					✓	✓
8	✓	✓	✓	/	✓		

Input Matrix

	0	1	2	3	4	5	6
0	✓		/	/	/	/	✓
1	/	/	✓	/	/		✓
2	/						
3	~						
4	~	/	/	/	/	/	
5	✓	/					
6	/	/					
7	/				/		
8	/	/	✓	✓	✓	✓	

output:

[[-1],[-1],[-1],[-1],[1],[-1],[-1]] -> E

Input Matrix

	0	1	2	3	4	5	6
0			/	/	/	/	✓
1						~	✓
2						/	
3						/	
4	/	/	~			/	
5		/				~	
6		/				/	
7		/	/			/	
8				✓	✓		

output:

[[-1],[-1],[-1],[-1],[-1],[1],[-1]] -> J

Input Matrix

	0	1	2	3	4	5	6
0	✓				✓	✓	
1	/			/	/		
2	~		/	/			
3	/	✓	✓	✓			
4	/	~		✓			
5	/				/		
6	/				✓		
7	/					/	
8	/						

output:

[[-1],[-1],[-1],[-1],[-1],[-1],[1]] -> K

4. Missing Data

Now here is the output when missing data is manually introduced into the input matrix

A with 5 random missing pixels

output:

B with 5 random missing pixels

output:

$$[[-1],[1],[-1],[-1],[-1],[-1]]$$
 -> B

C with 5 random missing pixels

output:

D with 5 random missing pixels

output:

E with 5 random missing pixels

output:

$$[[-1],[-1],[-1],[-1],[-1],[-1]]$$
 -> E

J with 5 random missing pixels

output:

K with 5 random missing pixels

output:

A with 10 random missing pixels

output:

$$[[1],[-1],[-1],[-1],[-1],[-1]]$$
 -> A

B with 10 random missing pixels output: [[-1],[1],[-1],[-1],[-1],[-1]]

В C with 10 random missing pixels

output:

C [[-1],[-1],[-1],[-1],[-1],[-1],

D with 10 random missing pixels output:

[[-1],[-1],[-1],[1],[-1],[-1],[-1]] D

E with 10 random missing pixels output:

[[-1],[-1],[-1],[-1],[-1],[-1], F

J with 10 random missing pixels output:

[[-1],[-1],[-1],[-1],[-1],[1],[-1]] J

K with 10 random missing pixels output:

[[-1],[-1],[-1],[-1],[-1],[-1],[1]] Κ

A with 15 random missing pixels output:

[[1],[-1],[-1],[-1],[-1],[-1]] Α

B with 15 random missing pixels output:

[[-1],[1],[-1],[-1],[-1],[-1]] В

C with 15 random missing pixels output:

[[-1],[-1],[-1],[-1],[-1], С

D with 15 random missing pixels output:

 $[[-1],[-1],[-1],[-1],[-1],[-1]] \quad \ \ \, \to \quad \, D$

E15 with 15 random missing pixels output:

[[-1],[-1],[-1],[-1],[-1],[-1]] -> E

J with 15 random missing pixels output:

[[-1],[-1],[-1],[-1],[-1], -> J

K with 15 random missing pixels output:

[[-1],[-1],[-1],[-1],[-1],[1]] -> K

A with 20 random missing pixels output:

 $[[1], [-1], [-1], [-1], [-1], [-1]] \rightarrow A$

B with 20 random missing pixels output:

[[-1],[1],[-1],[-1],[-1],[-1]] -> B

C with 20 random missing pixels output:

[[-1],[-1],[-1],[-1],[-1]] -> C

D with 20 random missing pixels output:

[[-1],[-1],[-1],[-1],[-1], -> D

E with 20 random missing pixels output:

[[-1],[-1],[-1],[-1],[-1],[-1]] -> E

J with 20 random missing pixels output:

[[-1],[-1],[-1],[-1],[-1], -> J

K with 20 random missing pixels output:

5. Ease of Identification

The hardest letters to identify are J, D, K in that order The easiest letters to identify are C, A, B, E in that order