Atomphysik

Gruppe B14
Daniel Wendland
Philipp Bremer
Olexiy Fedorets
Jonathan Hermann

21. November 2017

Versuchsziele

- Verifizierung der T⁴-Abhängigkeit im Stefan-Boltzmann Gesetz
- Bestimmung der Emissionskoeffizienten eines Leslie-Würfels
- Feststellung, welche Seite am ehesten einem schwarzen Strahler gleicht

Gliederung

- Theoretische Grundlagen
- Versuchsaufbau
- Versuchsdurchführung
- Kalibration
 - $0^{\circ}C, 100^{\circ}C$
 - 2 Raumtemperatur T_0
- Auswertung
 - lineare Regression an T^4
 - Ø Bestimmung der Emissionskoeffizienten
 - \odot Fit an T^{\times}
- Fazit

Theoretische Grundlagen

Plancksches Strahlungsgesetz

$$E_{\lambda,s} = 2 \cdot \pi \cdot \frac{h \cdot c^2}{\lambda^5} \cdot \frac{1}{e^{\frac{h \cdot c}{\lambda \cdot k \cdot T}} - 1}$$

Stefan-Boltzmann Gesetz

$$E_s(T) = \epsilon \cdot \sigma \cdot T^4$$
, mit $\sigma = 5.67 \cdot 10^{-8} \frac{W}{m^2 K^4}$

Emissionskoeffizient

$$\epsilon = \frac{P_{\text{gemessen}} \cdot \text{v}}{P_{\text{ideal}}} = \frac{\frac{U_{\text{gemessen}} \cdot \text{v}}{\text{c}}}{A_{\text{sender}} \cdot \frac{A_{\text{empf.}}}{\pi r^2} \cdot \sigma \cdot \left(T_{\text{messung}}^4 - T_0^4\right)}$$

Versuchsaufbau

Abbildung 1: Versuchsaufbau

Versuchsdurchführung

- Messung der Umgebungstemperatur T_0 zu Beginn und am Ende des Versuchs
- Kalibration des Spannungsnullpunkts am Verstärker
- Füllen des Würfels mit Wasser, erhitzen auf 50°C
- Messung der Temperaturstrahlung aller Seiten in 5° C-Schritten
- Rauschmessung von Temperatur und Spannung
- Zwischen jeder Messung Thermosäule auf Wand richten und abschirmen
- Einstellungen am Sensor-CASSY:

Messintervall	Messwertanzahl	Messzeit	U-Messbereich	
50 <i>ms</i>	125	6.25 <i>s</i>	-10V+10V	

Kalibration - $0^{\circ}C$, $100^{\circ}C$

- Messung der Referenztemperatur in Eis- und kochendem Wasser
- Umrechnung der gemessenen Werte in reale mit

$$T_{real} = m \cdot T_{gemessen} + n$$

Abbildung 2: 0° C-Kalibration der Gruppe 1

Kalibration - T_0

Abbildung 3: T_0 -Kalibration der Gruppe 1

• gemittelte Raumtemperatur:

Gruppe 1 Gruppe 2
$$T_0 = (297.501 \pm 0.005)K$$
 $T_0 = (298.053 \pm 0.006)K$

Auswertung - lin. Regression an T^4

$$U(T) = a \cdot (T^4 - T_0^4) + b$$

Abbildung 4: T⁴-Fit der Gruppe 2, weiße Seite

Auswertung - Emissionskoeffizienten

$$\epsilon = \frac{\frac{U \cdot v}{c}}{P_{ideal}} = a \cdot \frac{\pi \cdot r^2 \cdot v}{A_s \cdot A_e \cdot \sigma \cdot c}$$

$$\sigma_{\epsilon, \textit{stat}} = \frac{\textit{vr}^2 \pi}{\textit{A}_{\textit{s}} \textit{A}_{\textit{e}} \sigma \textit{c}} \cdot \sigma_{\textit{a}} \qquad \sigma_{\epsilon, \textit{sys}} = \frac{\textit{avr}^2 \pi}{\textit{A}_{\textit{s}} \textit{A}_{\textit{e}} \sigma \textit{c}^2} \cdot \sigma_{\textit{c}}$$

Seite	Gruppe 1	Gruppe 2
Schwarz	$\epsilon = 0.905 \pm 0.005 \pm 0.027$	$\epsilon = 1.008 \pm 0.012 \pm 0.030$
Weiß	$\epsilon = 0.871 \pm 0.006 \pm 0.026$	$\epsilon = 0.965 \pm 0.017 \pm 0.029$
Messing	$\epsilon = 0.0602 \pm 0.0049 \pm 0.0018$	$\epsilon = 0.0702 \pm 0.0023 \pm 0.0021$
Spiegel	$\epsilon = 0.0399 \pm 0.0016 \pm 0.0012$	$\epsilon = 0.0442 \pm 0.0022 \pm 0.0013$

Tabelle 1: Emissionskoeffizienten $\epsilon \pm \sigma_{stat} \pm \sigma_{sys}$

	Seriennummer	Empfindlichkeit
Gruppe 1	120631	$c_1 = (0.160 \pm 0.0048) \frac{V}{W}$
Gruppe 2	130815	$c_2 = (0.221 \pm 0.0066) \frac{V}{W}$

Tabelle 2: Empfindlichkeiten der verwendeten Thermosäulen

Auswertung - Emissionskoeffizienten

$$\epsilon_{\textit{rel}} = \frac{\epsilon_{\textit{i}}}{\epsilon_{\textit{Schwarz}}} \qquad \sigma_{\epsilon_{\textit{rel}}} = \sqrt{\left(\frac{\epsilon_{\textit{i}}}{\epsilon_{\textit{Schwarz}}^2} \cdot \sigma_{\epsilon,\textit{Schwarz}}\right)^2 + \left(\frac{1}{\epsilon_{\textit{Schwarz}}} \cdot \sigma_{\epsilon,\textit{i}}\right)^2}$$

Relativwerte	Gruppe 1	Gruppe 2
Weiß	$\epsilon_{\it rel} = 0.956 \pm 0.011 \pm 0.041$	$\epsilon_{rel} = 0.957 \pm 0.020 \pm 0.040$
Messing	$\epsilon_{\it rel} = 0.069 \pm 0.005 \pm 0.030$	$\epsilon_{\it rel} = 0.070 \pm 0.012 \pm 0.030$
Spiegel	$\epsilon_{rel} = 0.044 \pm 0.005 \pm 0.030$	$\epsilon_{\it rel} = 0.044 \pm 0.012 \pm 0.030$

Tabelle 3: Relativwerte der Emissionskoeffizienten

Auswertung - Fit an T^{\times}

$U=p_0+p_1\cdot T^{p_2}$	p_0	p_1	<i>p</i> ₂
Gruppe 1 / Weiß	$(-7.0 \pm 1.5)V$	$(1.5 \pm 4.4) \cdot 10^{-9} \frac{V}{K^4}$	3.9 ± 0.5
Gruppe 2 / Messing	$(-0.7 \pm 0.7)V$	$(0.4 \pm 4.3) \cdot 10^{-9} \frac{V}{K^4}$	3.8 ± 1.9

Auswertung - Fazit

- Zusammenhang des Stefan-Boltzmann Gesetzes konnte bestätigt werden, χ^2/ndf sind allerdings zu groß aufgrund von zu kleinen Fehlern
- Fehler auf Emissionskoeffizenten wahrscheinlich zu klein, Werte der Gruppe 2 für schwarz und weiß sind unrealistisch
- Schwarze Seite gleicht wie erwartet am ehesten einem schwarzen Strahler
- 4er-Potenz im Stefan-Boltzmann Gesetz konnte annähernd bestätigt werden (aber mit hoher relativer Unsicherheit)