Teoria degli Automi e Calcolabilità a.a. 2021/22 Prova scritta 26 gennaio 2022

Esercizio 1 Si consideri il seguente automa a stati finiti non deterministico.

- 1. Si spieghi perché la stringa abab non è accettata.
- 2. Si descriva in modo preciso (per esempio, attraverso un'espressione regolare) il linguaggio riconosciuto.
- 3. Si scriva l'automa in formato tabellare e lo si trasformi in un automa deterministico.

Soluzione

1. Le computazioni possibili per la stringa abab sono:

$$\begin{split} & \langle q_0, abab \rangle \rightarrow \langle q_1, bab \rangle \\ & \langle q_0, abab \rangle \rightarrow \langle q_3, bab \rangle \rightarrow \langle q_0, ab \rangle \rightarrow \langle q_1, b \rangle \\ & \langle q_0, abab \rangle \rightarrow \langle q_3, bab \rangle \rightarrow \langle q_0, ab \rangle \rightarrow \langle q_3, b \rangle \rightarrow \langle q_0, \epsilon \rangle \end{split}$$

Nessuna di queste computazioni è accettante (le prime due sono bloccate, l'ultima termina in uno stato non finale), quindi la stringa è rifiutata.

- 2. Il linguaggio riconosciuto è $(ab)^*a(ab)^*$.
- 3. Diamo l'automa in formato tabellare e il corrispondente automa deterministico.

	a	b
$\rightarrow q_0$	q_1, q_3	
$\star q_1$	q_2	
q_2		q_1
q_3		q_0

	a	b
$\rightarrow \{q_0\}$	$\{q_1,q_3\}$	Ø
$\star \{q_1, q_3\}$	$\{q_2\}$	$\{q_0\}$
q_2	Ø	$\{q_1\}$
$\star \{q_1\}$	$\{q_2\}$	Ø
Ø	Ø	Ø

Esercizio 2 Dare un automa a pila che riconosca (per pila vuota) il linguaggio $\{a^nb^n \mid n \geq 1\} \setminus \{aabb\}$. È possibile dare un automa deterministico?

Soluzione Una possibile soluzione è la seguente:

Questo automa è deterministico.

Esercizio 3 Dare una macchina di Turing che riconosca le stringhe sull'alfabeto $\{0,1\}$ che terminano con 101.

Soluzione Una possibile soluzione (nel formato del simulatore) è la seguente (la testina si sposta fino alla fine della stringa e poi torna indietro verificando di trovare 101):

```
0 0 0 r goR

0 1 1 r goR

goR 0 0 r goR

goR 1 1 r goR

goR _ 1 goL

goL 1 1 l goLL

goLL 0 0 l goLLL

goLLL 1 1 * halt-accept
```

Esercizio 4 Per ognuno dei seguenti insiemi di programmi (che calcolano funzioni da \mathbb{N} in \mathbb{N}) si dica se è ricorsivamente enumerabile, motivando la risposta.

- 1. L'insieme dei programmi che su nessun input restituiscono un output pari.
- 2. L'insieme dei programmi che su qualche input restituiscono un output pari in meno di 10 passi.
- 3. L'insieme dei programmi che sull'input 11 restituiscono un output pari.

Soluzione

- 1. No. Infatti il complementare, ossia l'insieme dei programmi che su qualche input restituiscono un output pari, è ricorsivamente enumerabile (basta eseguire il programma su ogni input con la tecnica a zig-zag, e se su qualche input viene restituito un output pari accettare). D'altronde entrambi gli insiemi non sono ricorsivi per il teorema di Rice in quanto estensionali e non banali, quindi l'insieme dato non può essere ricorsivamente enumerabile per il teorema di Post.
- 2. Sì. Infatti, basta eseguire 10 passi successivamente su tutti gli input e se su qualche input viene restituito un output pari accettare.
- 3. Sì. Infatti, basta eseguire il programma sull'input 11, e se la computazione termina con un output pari accettare.

Esercizio 5 Si provi che, se due linguaggi A e B su Σ sono ricorsivamente enumerabili, allora lo è anche il linguaggio $A \cdot B$. Ricordiamo che $A \cdot B = \{u \cdot v \mid u \in A, v \in B\}$.

Soluzione Dato che A e B sono ricorsivamente enumerabili esistono due algoritmi \mathcal{M}_A e \mathcal{M}_B che data una stringa su Σ restituiscono 1 se la stringa appartiene ad A (rispettivamente, a B), non terminano altrimenti.

Data una stringa $\sigma_1 \dots \sigma_n$ su Σ , $n \geq 0$, questa può essere decomposta in due stringhe u e v in n+1 modi possibili:

$$u_0 = \epsilon, \ v_0 = \sigma_1 \dots \sigma_n$$

 $u_1 = \sigma_1, \ v_1 = \sigma_1 \dots \sigma_n$
 \dots
 $u_n = \sigma_1 \dots \sigma_n, \ v_n = \epsilon$

Basta allora eseguire in interleaving:

$$\mathcal{M}_A(u_0), \mathcal{M}_B(v_0), \ldots, \mathcal{M}_A(u_n), \mathcal{M}_B(v_n)$$

e se esiste una decomposizione $u_i \cdot v_i$ tale che $u_i \in A$ e $v_i \in B$ questa sarà trovata.