

GigaMOS™ Trench HiperFET™ Power MOSFET

IXFK360N10T IXFX360N10T

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum F	Ratings
V _{DSS}	$T_J = 25^{\circ}\text{C}$ to 175°C	100	V
V _{DGR}	$T_J = 25^{\circ}\text{C}$ to 175°C, $R_{GS} = 1M\Omega$	100	
V _{GSS}	Continuous	± 20	V
V _{GSM}	Transient	± 30	
I _{D25} I _{L(RMS)}	$T_{\rm C} = 25^{\circ}$ C (Chip Capability)	360	A
	External Lead Current Limit	160	A
	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	900	A
I _A	$T_{c} = 25^{\circ}C$	100	A
E _{AS}	$T_{c} = 25^{\circ}C$	3	J
P _D	T _C = 25°C	1250	W
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 175^{\circ}C$	20	V/ns
T _J		-55 +175	°C
T _{JM}		175	°C
T _{stg}		-55 +175	°C
T _L	1.6mm (0.062 in.) from Case for 10s	300	°C
T _{SOLD}	Plastic Body for 10s	260	
M_d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in.
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb.
Weight	TO-264	10	g
	PLUS247	6	g

SymbolTest ConditionsChara $(T_J = 25^{\circ}C)$ Unless Otherwise Specified)Min.			cteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_{D} = 1mA$		100			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 3mA$		2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$				25	μΑ
		$T_J = 150^{\circ}C$			2.5	mA
R _{DS(on)}	$V_{GS} = 10V$, $I_D = 100A$, Notes	1 & 2			2.9	mΩ

 $V_{DSS} = 100V$ $I_{D25} = 360A$ $R_{DS(on)} \le 2.9m\Omega$ $t_{rr} \le 130ns$

TO-264 (IXFK)

PLUS247 (IXFX)

G = Gate D = DrainS = Source Tab = Drain

Features

- International Standard Packages
- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Synchronous Recification
- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

Symbol	Test Conditions Unless Otherwise Specified)	Characteristic Values Min. Typ. Max.		
g_{fs}	$V_{\rm DS} = 10$ V, $I_{\rm D} = 60$ A, Note 1	110	180	S
C _{iss}	ט י ט י		33	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3160	pF
C _{rss}			400	pF
R_{Gi}	Gate Input Resistance		1.20	Ω
t _{d(on)}			47	ns
t _r	Resistive Switching Times $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 100A$		100	ns
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.35$ V_{DSS} , $I_D = 100A$ $R_G = 1\Omega$ (External)		80	ns
t _f	G ()		160	ns
Q _{g(on)}			525	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_{D25}$		145	nC
\mathbf{Q}_{gd}			165	nC
\mathbf{R}_{thJC}				0.12 °C/W
R _{thCS}			0.05	°C/W

Source-Drain Diode

Symbol		Characteristic Values			
$(1_{J} = 25^{\circ}C, U)$	Inless Otherwise Specified)	Min.	Тур.	Max	
Is	$V_{GS} = 0V$			360	Α
I _{SM}	Repetitive, Pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			1440	Α
V _{SD}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ \ {\rm Note} \ 1$			1.2	V
$\left\{egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{I}_{RM} & \\ \mathbf{Q}_{RM} & \end{array}\right\}$	$I_{_{\rm F}}=100\text{A},\ V_{_{\rm GS}}=0\text{V}$ $-\text{di/dt}=100\text{A}/\mu\text{s}$ $V_{_{\rm R}}=50\text{V}$		6.60 0.33	130	ns A µC

Notes 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

2. Includes lead resistance.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-264 Outline

Dim.	Milli	meter	Inches	
D	Min.	Max.	Min. Max.	
Α	4.82	5.13	.190	.202
A1	2.54	2.89	.100	.114
A2	2.00	2.10	.079	.083
b	1.12	1.42	.044	.056
b1	2.39	2.69	.094	.106
b2	2.90	3.09	.114	.122
С	0.53	0.83	.021	.033
D	25.91	26.16	1.020	1.030
Е	19.81	19.96	.780	.786
е	5.46 BSC		.215 BSC	
J	0.00	0.25	.000	.010
K	0.00	0.25	.000	.010
L	20.32	20.83	.800	.820
L1	2.29	2.59	.090	.102
Р	3.17	3.66	.125	.144
Q	6.07	6.27	.239	.247
Q1	8.38	8.69	.330	.342
R	3.81	4.32	.150	.170
R1	1.78	2.29	.070	.090
S	6.04	6.30	.238	.248
Т	1.57	1.83	.062	.072

PLUS 247™ Outline

Terminals: 1 - Gate

- 2 Drain (Collector)
- 3 Source (Emitter) 4 Drain (Collector)

Dim.	Millimeter		Incl	nes	
	Min.	Max.	Min.	Max.	
Α	4.83	5.21	.190	.205	
A,	2.29	2.54	.090	.100	
A ₂	1.91	2.16	.075	.085	
b	1.14	1.40	.045	.055	
b ₁	1.91	2.13	.075	.084	
b ₂	2.92	3.12	.115	.123	
С	0.61	0.80	.024	.031	
D	20.80	21.34	.819	.840	
Е	15.75	16.13	.620	.635	
е	5.45	BSC	.215 BSC		
L	19.81	20.32	.780	.800	
L1	3.81	4.32	.150	.170	
Q	5.59	6.20	.220	0.244	
R	4.32	4.83	.170	.190	

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 180A Value vs. Junction Temperature

Fig. 5. Normalized R_{DS(on)} vs. Drain Current

Fig. 6. Drain Current vs. Case Temperature

Fig. 9. Forward Voltage Drop of Intrinsic Diode 320 280 240 - Amperes <u>'</u> 120 T_J = 150°C 80 $T_J = 25^{\circ}C$ 40 0 0.2 0.3 0.4 0.5 0.7 0.8 1.0 1.1 0.6 0.9 V_{SD} - Volts

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

