

Batų rikiavimas

Adnanui priklauso didžiausia Baku batų parduotuvė. Į parduotuvę atvežė dėžę su n porų batų. Kiekvieną batų porą sudaro du vienodo dydžio batai – vienas kairysis ir vienas dešinysis. Adnanas visus 2n batų sudėjo į lentyną, kurioje yra 2n **pozicijų**, sunumeruotų iš kairės į dešinę nuo 0 iki 2n-1.

Adnanas nori, kad batai būtų surikiuoti **tinkama tvarka**. Laikoma, kad batai išrikiuoti tinkama tvarka, jei kiekvienam i ($0 \le i \le n-1$) galioja šios sąlygos:

- ullet Batai, esantys pozicijose 2i ir 2i+1, yra vienodo dydžio.
- Pozicijoje 2i yra kairysis batas.
- Pozicijoje 2i + 1 yra dešinysis batas.

Norėdamas tinkama tvarka surikuoti batus, Adnanas gali sukeitinėti batus. Vienu sukeitimu jis paima du **gretimus** batus ir juos sukeičia vietomis. Du batai yra gretimi, jei jų pozicijos skiriasi vienetu.

Suskaičiuokite, kiek mažiausiai sukeitimų prireiks Adnanui, kol jis surikiuos batus tinkama tarka.

Realizacija

Turite parašyti tokia procedūra:

int64 count swaps(int[] S)

- S: masyvas, sudarytas iš 2n sveikųjų skaičių. Kiekvienam i ($0 \le i \le 2n-1$), |S[i]| yra nelygus nuliui bato, pradiniu momentu padėto į poziciją i, dydis. Čia |x| žymi x modulį, kuris lygus x, jei x>0 arba -x, jei x<0. S[i] modulis reiškia bato dydį ir negali viršyti n. Jei S[i]<0, i-ojoje pozicijoje esantis batas yra kairysis, kitu atveju dešinysis.
- Procedūra turi grąžinti mažiausią gretimų batų porų sukeitimų, kurių prireiks, norint surikiuoti batus tinkama tvarka, skaičių.

Pavyzdžiai

Pavyzdys nr. 1

```
count_swaps([2, 1, -1, -2])
```

Adnanas gali surikiuoti batus tinkama tvarka atlikdamas 4 sukeitimus.

Pavyzdžiui, jis pirmiausia sukeičia batus 1 ir -1, tuomet batus 1 ir -2, po to batus -1 ir -2, ir galiausiai sukeičia batus 2 ir -2. Atlikęs šiuos sukeitimus jis gaus tinkama tvaka surikiuotus batus: [-2,2,-1,1]. Neįmanoma tinkamai surikiuoti batų atliekant mažiau nei 4 sukeitimus. Taigi, procedūra turi gražinti 4.

Pavyzdys nr. 2

Šiame pavyzdyje visi batai yra vienodo dydžio:

```
count_swaps([-2, 2, 2, -2, -2, 2])
```

Adnanas gali sukeisti batus, esančius pozicijose 2 ir 3, ir gauti tinkamą batų išdėstymą [-2,2,-2,2,-2,2], taigi procedūra turėtų grąžinti 1.

Ribojimai

- $1 \le n \le 100000$
- Kiekvienam i ($0 \le i \le 2n-1$) galioja $1 \le |S[i]| \le n$.
- Duomenys tokie, kad egzistuoja sukeitimų seka, kurią atlikus batai bus surikiuoti tinkama tvarka.

Dalinės užduotys

- 1. (10 taškų) n = 1
- 2. (20 taškų) $n \leq 8$
- 3. (20 taškų) Visi batai yra vienodo dydžio.
- 4. (15 taškų) Visi batai, kurių numeriai $0, \ldots, n-1$, yra kairieji, o visi batai, esantys pozicijose $n, \ldots, 2n-1$, yra dešinieji. Taip pat kiekvienam i ($0 \le i \le n-1$), batai, esantys pozicijose i ir i+n, yra vienodo dydžio.
- 5. (20 taškų) $n \le 1000$
- 6. (15 taškų) Papildomų ribojimų nėra.

Pavyzdinė vertinimo programa

Pavyzdinė vertinimo programa skaito duomenis tokiu formatu:

- 1-oji eilutė: n
- 2-oji eilutė: S[0] S[1] S[2] \dots S[2n-1]

Pavyzdinė vertinimo prgrama išveda vieną skaičių: grąžinamą count swaps reikšmę.