Лабораторная работа №6

Задача об эпидемии

Липатникова М.С. группа НФИбд-02-19

Содержание

1	Цель работы	4
2	Задание работы 2.0.1 Вариант 37	5 5
3	Теоретическое введение 3.1 Постановка задачи	6
4	Выполнение лабораторной работы 4.1 Код в OpenModelica	8 8
5	Вывод	12
6	Список литературы	13

List of Figures

4.1	1 Код программы	 	 8
4.2	2 $$ График SIR для случая I(t)> I^* $$	 	 9
4.3	3 Γ рафик SIR для случая I $\leq I^* \ldots \ldots \ldots \ldots$	 	 10
4.4	4 График IR для случая I $\leq I^*$ $\dots\dots\dots\dots$.	 	 11
4.5	5 $\;$ График S для случая I $< I^*$ \ldots \ldots \ldots \ldots	 	 11

1 Цель работы

Построить графики изменения числа особей в каждой из трех групп. Рассмотреть, как будет протекать эпидемия в случае:

- I(t)≤I
- $I(t)>I^*$

2 Задание работы

2.0.1 Вариант 37

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12 600) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=160, А число здоровых людей с иммунитетом к болезни R(0)=56. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)- R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотреть, как будет протекать эпидемия в случае:

- I(t)≤I
- $I(t)>I^*$

3 Теоретическое введение

3.1 Постановка задачи

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа - это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) - это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$ тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$\begin{cases} \frac{dS}{dt} = -\alpha * S, I(t) > I^* \\ 0, I(t) \leq I \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\begin{cases} \frac{dI}{dt} = \alpha * S - \beta * I, I(t) > I^* \\ -\beta * I, I(t) \leq I \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни)

$$\frac{dR}{dt} = \beta * I$$

Постоянные пропорциональности α , β , - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: I(0) $\leq I^*$ и I(0)> I^* .

4 Выполнение лабораторной работы

4.1 Код в OpenModelica

Задаем параметры и прописываем функцию, записываем дифференциальные уравнения.(fig. 4.1)

Figure 4.1: Код программы

Получаем график SIR для случая $I(t)>I^*$. (fig. 4.2)

Figure 4.2: График SIR для случая $I(t)>I^*$

И график SIR для случая I $\leq I^*$. (fig. 4.3)

Figure 4.3: График SIR для случая I $\leq I^*$

Т.к. график плохо читается, разбиваем на IR(fig. 4.4) и S(fig. 4.5).

Figure 4.4: График IR для случая I $\leq I^*$

Figure 4.5: График S для случая I $\leq I^*$

5 Вывод

В ходе выполнения лабораторной работы:

Построили графики изменения числа особей в каждой из трех групп. Рассмотрели, как будет протекать эпидемия в случае:

- I(t)≤I
- $I(t)>I^*$

6 Список литературы

1. Теоретические материалы курса.