scAnno

Introduction

scAnno is an automated annotation tool for single-cell RNA sequencing datasets primarily based on the single cell cluster levels, using a joint deconvolution strategy and logistic regression.

Dependencies

- R version >= 3.5.0.
- R packages: Seurat, dplyr, reticulate, MASS, irlba, future, progress, parallel, glmnet, knitr, rmarkdown, devtools

It should be noted that this package requires interactive use of scikit-learn(version >= 0.24.2) package in Python(version >= 3.7), so users are required to install Python and scikit-learn package in advance. If Python is not installed, we recommend installing anaconda at https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/.

```
After downloading and installing
```

```
#Check to see if there is a Python environment
```

Enter in cmd:

```
python(Enter key)
```

exiting python(ctrl + z),input:

#Check if a conda environment is available

conda --version

#Check if a package is available in conda and the version of the package

conda list scikit-learn

#If scikit-learn package does not exist, install the package

conda install scikit-learn

scAnno will first search python in the environment. If python exists, the program will call it directly internally. If not, the program will prompt users to enter a python path.

Using python in R

```
library(reticulate)
#Check python path
py.path <- Sys.which("python")

#Here I use conda, so specify the python in conda
py.path</pre>
```

```
## python
## "F:\\PROGRA~3\\ANACON~1\\python.exe"

#Specify the python path
use_python(py.path)
```

The human single cell reference profile (hcl.sc.rda) and the mouse single cell reference profile (mca.sc.rda) are built into scAnno.Users can import appropriate reference expression profile according to species.

```
library(scAnno)
```

```
Seurat
##
## Attaching SeuratObject
##
       dplyr
##
##
      'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
#Import human single cell reference profile.
data(hcl.sc)
#Import protein coding gene(19814 genes) to filter reference expression profile.
data(gene.anno)
#Import TCGA bulk data in pan-cancer.
data(tcga.data.u)
#A liver tissue data set to be annotated.
data(GSE136103)
```

Set parameters

Parameters	Description	
query	Seurat object, which need to be annotated.	
ref.expr	Reference gene expression profile.	
ref.anno	cell type information of reference profile, corresponding to the above ref.expr.	
save.markers	Specified the filename of makers need to be saved. Default: markers.	

Parameters	Description			
cluster.col	Column name of clusters to be annotated in meta.data slot of query Seurat object.			
	Default: seurat_clusters.			
factor.size	Factor size for scaling the weight of gene expression. Default: 0.1.			
pvalue.cut	Threshold for filtering cell type-specific markers. Default: 0.01			
seed.num	Number of seed genes of each cell type for recognizing candidate markers, only used			
	when method = 'co.exp'. Default: 10 .			
redo.markers	Re-search candidate markers or not. Default: FALSE.			
gene.anno	Gene annotation data.frame. Default: gene.anno.			
permut.num	Number of permutations for estimating p-values of annotations. Default: 100.			
permut.p	Threshold for significance of predicted scores. Default: 0.01. This threshold can be			
	adjusted by the user as required.			
show.plot	Show annotated results or not. Default: TRUE.			
verbose	Show running messages or not. Default: TRUE.			
tcga.data.u	bulk RNA-seq data of pan-cancer in TCGA.			

Preparing data for input

```
# Seurat object, which need to be annotated.
obj.seu <- GSE136103

#Seurat object of reference gene expression profile.
ref.obj <- hcl.sc

#Reference gene expression profile.
ref.expr <- GetAssayData(ref.obj, slot = 'data') %>% as.data.frame

#Cell type information of reference profile, corresponding to the above `ref.expr`.
ref.anno <- Idents(ref.obj) %>% as.character
```

scRNA-seq data annotation

```
results = scAnno(query = obj.seu,
    ref.expr = ref.expr,
    ref.anno = ref.anno,
    save.markers = "markers",
    cluster.col = "seurat_clusters",
    factor.size = 0.1,
    pvalue.cut = 0.01,
    seed.num = 10,
    redo.markers = FALSE,
    gene.anno = gene.anno,
    permut.num = 100,
    permut.p = 0.01,
    show.plot = FALSE,
    verbose = TRUE,
    tcga.data.u = tcga.data.u
)
```

```
## [INFO] Checking the legality of parameters
## [INFO] 30 cell types in reference, 35 clusters in query objects
## [INFO] Searching candidate marker genes...
## [INFO] Deconvolution by using RLM method
## [INFO] Logistic regression for cell-type predictions, waiting...
## [INFO] Merging the scores of both models, and assign annotations to clusters
## [INFO] Estimating p-values for annotations...
## [INFO] Finish!
```

Results

Details of the results is described in the table below.

output	details	
query	Seurat object, which need to be annotated.	
reference	Seurat object of reference gene expression profile.	
pred.label	Cell types corresponding to each cluster.	
pred.score	The prediction score for each cluster, corresponding to	
_	pred.label.	

results\$query

```
## An object of class Seurat
## 21898 features across 3181 samples within 1 assay
## Active assay: RNA (21898 features, 2830 variable features)
## 2 dimensional reductions calculated: pca, umap
```

results\$reference

```
## An object of class Seurat
## 17020 features across 5561 samples within 1 assay
## Active assay: RNA (17020 features, 0 variable features)
```

results\$pred.label

##	CO		C1	C2
##	"T cell"	"T	cell"	"T cell"
##	C3		C4	C5
##	"T cell"	"T	cell"	"Dendritic cell"
##	C6		C7	C8
##	"T cell"	"T	cell"	"T cell"
##	C9		C10	C11
##	"Monocyte"	"Epithelial	cell"	"Macrophage"
##	C12		C13	C14
##	"T cell"	"Endothelial	cell"	"Monocyte"
##	C15		C16	C17
##	"Endothelial cell"	"Endothelial	cell"	"T cell"
##	C18		C19	C20
##	"Macrophage"	"Smooth muscle	cell"	"T cell"

```
C21
                                                                      C23
##
                                              C22
##
    "Smooth muscle cell"
                                         "B cell"
                                                               "Monocyte"
##
                      C24
                                              C25
##
                 "T cell"
                                         "T cell" "B cell (Plasmocyte)"
##
                      C27
                                              C28
##
        "Dendritic cell"
                              "Endothelial cell"
                                                      "Endothelial cell"
##
                      C30
                                                                      C32
                 "B cell"
                                   "Stromal cell"
                                                      "Endothelial cell"
##
##
                      C33
##
        "Dendritic cell"
                               "Epithelial cell"
```

results\$pred.score

```
## [1] 0.9723480 0.9520757 0.9148112 0.9822452 0.9795799 0.7371121 0.9719681

## [8] 0.8990638 0.9499666 0.9801610 0.6541319 0.8574248 0.9781869 0.8187794

## [15] 0.8494984 0.7513549 0.8912754 0.9847140 0.8377977 0.9509331 0.9676748

## [22] 0.9551006 0.9152382 0.6575122 0.9816572 0.9556431 0.9290306 0.9752786

## [29] 0.8289858 0.9248971 0.8811018 0.4218983 0.8014935 0.9636030 0.8792289
```

Visualization

We plot query object in the two-dimensional space of UMAP based on the clustering information of seurat_cluster, which contains a total of 35 clusters.

```
DimPlot(results$query, group.by = "seurat_clusters", label = TRUE, label.size = 6)
```


scAnno annotation results visualization, the identity of each cell in the scAnno column of the metadata of query Seurat object.

```
DimPlot(results$query, group.by = 'scAnno', label = TRUE, label.size = 6)
```


sessionInfo()

```
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.936
## [2] LC_CTYPE=Chinese (Simplified)_China.936
## [3] LC_MONETARY=Chinese (Simplified)_China.936
  [4] LC_NUMERIC=C
  [5] LC_TIME=Chinese (Simplified)_China.936
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    base
## other attached packages:
                                             SeuratObject_4.1.3 Seurat_4.3.0
## [1] scAnno_1.0.0
                          dplyr_1.0.10
```

```
## [5] reticulate_1.26
##
## loaded via a namespace (and not attached):
##
     [1] Rtsne_0.16
                                colorspace_2.0-3
                                                        deldir_1.0-6
                                                        rstudioapi_0.14
##
     [4] ellipsis_0.3.2
                                ggridges_0.5.4
##
                                farver 2.1.1
                                                        leiden 0.4.3
     [7] spatstat.data 3.0-1
                                ggrepel 0.9.2
                                                        fansi 1.0.3
   [10] listenv 0.9.0
##
    [13] codetools 0.2-19
                                splines_4.1.1
                                                        knitr_1.42
##
    [16] polyclip_1.10-4
                                 jsonlite_1.8.3
                                                        ica_1.0-3
##
   [19] cluster_2.1.3
                                png_0.1-7
                                                        uwot_0.1.14
   [22] shiny_1.7.4
                                sctransform_0.3.5
                                                        spatstat.sparse_3.0-0
   [25] compiler_4.1.1
                                                        Matrix_1.5-1
##
                                httr_1.4.5
##
   [28] fastmap_1.1.0
                                lazyeval_0.2.2
                                                        cli_3.6.0
   [31] later_1.3.0
##
                                prettyunits_1.1.1
                                                        htmltools_0.5.4
##
   [34] tools_4.1.1
                                igraph_1.3.5
                                                        gtable_0.3.3
##
    [37] glue_1.6.2
                                RANN_2.6.1
                                                        reshape2_1.4.4
##
   [40] Rcpp_1.0.9
                                scattermore_0.8
                                                        vctrs_0.5.0
   [43] nlme 3.1-157
                                 spatstat.explore 3.0-5
                                                        progressr_0.13.0
##
   [46] lmtest_0.9-40
                                spatstat.random_3.0-1
                                                        xfun_0.36
   [49] stringr 1.5.0
                                globals_0.16.2
                                                        mime 0.12
##
   [52] miniUI_0.1.1.1
                                lifecycle_1.0.3
                                                        irlba_2.3.5.1
  [55] goftest_1.2-3
                                future_1.32.0
                                                        MASS_7.3-57
##
                                scales_1.2.1
##
   [58] zoo_1.8-11
                                                        hms 1.1.3
##
   [61] promises_1.2.0.1
                                 spatstat.utils_3.0-2
                                                        parallel 4.1.1
##
  [64] RColorBrewer_1.1-3
                                yaml_2.3.6
                                                        pbapply_1.7-0
   [67] gridExtra_2.3
                                ggplot2_3.4.1
                                                        stringi_1.7.8
##
   [70] highr_0.10
                                                        pkgconfig_2.0.3
                                rlang_1.1.0
##
   [73] matrixStats_0.62.0
                                evaluate_0.20
                                                        lattice_0.20-45
##
  [76] ROCR_1.0-11
                                purrr_0.3.4
                                                        tensor_1.5
                                                        htmlwidgets_1.6.2
## [79] labeling_0.4.2
                                patchwork_1.1.2
##
   [82] cowplot_1.1.1
                                 tidyselect_1.2.0
                                                        parallelly_1.35.0
##
   [85] RcppAnnoy_0.0.20
                                plyr_1.8.7
                                                        magrittr_2.0.3
##
   [88] R6_2.5.1
                                generics_0.1.3
                                                        DBI_1.1.3
##
   [91] withr_2.5.0
                                pillar_1.9.0
                                                        fitdistrplus_1.1-8
                                                        sp_1.5-1
    [94] survival 3.3-1
                                abind 1.4-5
##
  [97] tibble_3.1.8
                                future.apply_1.10.0
                                                        crayon_1.5.2
## [100] KernSmooth 2.23-20
                                utf8 1.2.2
                                                        spatstat.geom 3.0-3
## [103] plotly_4.10.1
                                rmarkdown_2.20
                                                        progress_1.2.2
## [106] grid_4.1.1
                                data.table_1.14.4
                                                        digest_0.6.30
## [109] xtable_1.8-4
                                tidyr_1.2.1
                                                        httpuv_1.6.6
## [112] munsell 0.5.0
                                viridisLite_0.4.1
```