UBC MATH CIRCLE 2024 PROBLEM SET 9 SOLUTION

Problem 1. Prove that the equation $x^2 - 5y^2 = 1$ has infinitely many solutions in integers.

Solution. Note that (9,4) is a solution to the equation above. Consider the subset $\mathbb{Z}[\sqrt{5}] \subset \mathbb{R}$ given by elements of the form $x + y\sqrt{5}$ with $x, y \in \mathbb{Z}$. Define a function $N : \mathbb{Z}[\sqrt{5}] \to \mathbb{Z}$ given by $N(x+y\sqrt{5}) = (x+y\sqrt{5})(x-y\sqrt{5}) = x^2-5y^2$. The definition immediately implies that if $r, s \in \mathbb{Z}[\sqrt{5}]$, then N(rs) = N(r)N(s). In other words, for any $k \in \mathbb{N}$,

$$N((9+4\sqrt{5})^k) = 1$$

Thus if we write $x_k + y_k\sqrt{5} = (9 + 4\sqrt{5})^k$, we find that (x_k, y_k) is also a solution to the equation above. Note finally that if x, y > 0 then $(x + y\sqrt{5})^2 = x^2 + 5y^2 + 2xy\sqrt{5}$ and $x^2 + 5y^2 > x$. Thus the sequence $\{(x_k, y_k)\}_{k \in \mathbb{N}}$ contains infinitely many distinct elements. In other words $x^2 - 5y^2 = 1$ has infinitely many solutions in integers.

Problem 2. Let P be a polynomial with integer coefficients such that $n \mid P(2^n)$ for every positive integer n. Prove that $P \equiv 0$.

Solution. Let p and q be two odd primes. Note that $pq \mid P(2^{pq})$ implies that $P(2^{pq}) \equiv 0$ mod p for any prime q. By Fermat's little theorem, $2^{pq} \equiv (2^q)^p \equiv 2^q \mod p$. Hence

$$0 \equiv P(2^{pq}) \equiv P(2^q) \mod p$$

Thus $p \mid P(2^q)$ for all odd primes p, q. Taking p sufficiently large implies that $P(2^q) = 0$ for all odd primes q. Thus P(x) has infinitely many roots and $P \equiv 0$.

Problem 3. A set X consisting of n positive integers is called good if the following condition holds:

(*) For any two distinct subsets $A, B \subset X$, the number $\sum_{a \in A} a - \sum_{b \in B} b$ is not divisible by 2^n .

Given $n \in \mathbb{N}$, find the number of good sets of size n, all of whose elements are strictly less than 2^n .

Solution. Given a nonzero integer n, write $n=2^km$ where $\gcd(2,m)=1$. Denote by $\nu_2(n)=k$. We claim that for any n>0, the good sets are exactly sets $S=\{m_0,\ldots,m_{n-1}\}$ such that $\nu_2(m_i)=i$. Indeed, if $A,B\subset S$ are distinct, then by properties $\nu_2(-)$ (namely the fact that if $\nu_2(a)\neq\nu_2(b)$ then $\nu_2(a+b)=\min\{\nu_2(a),\nu_2(b)\}$), we see that

$$\nu_2 \left(\sum_{a \in A} a - \sum_{b \in B} b \right) = \min \{ \nu_2(x) : x \in A \cup B \} \le \nu_2(m_{n-1}) = n - 1$$

In particular, any set of this form is good. Conversely, call a set X n-good if it satisfies (*), even if it doesn't necessarily have n elements. we show by induction that any n-good set of size n must be of this form, and that there are no n-good sets of size n + 1. If n = 1, then evidently $S = \{x\}$ is a good set if and only if x is odd, i.e. $\nu_2(x) = 0$ and there are no good sets S of size 2. Now suppose that we have shown the result for n = m - 1. Let S

Date: April 19, 2024.

be a m-good set. If every element of S is even, then let $T=\{x/2:x\in S\}$. Then T is a m-1-good set for of size m, which is a contradiction. Thus S contains an odd number r. Consider the collection $E=\{\sum_{a\in A}a:A\subset S\}$. Note that $|E|=2^n$ and that by assumption, all of the remainders $\mod 2^n$ of elements of E are distinct. Hence we conclude that E forms a complete set of residues $\mod 2^n$. Let $F=\{\sum_{a\in A}:r\not\in A\subset S\}$. By the earlier remark, the sets $\{\{f,f+r\}:f\in F\}$ partitions the set of residues $\mod 2^n$. But this implies that every element $f\in F$ must be even. Thus every element of $T=S\setminus \{r\}$ is even. In particular, $R=\{x/2:x\in T\}$ is an m-1-good set of size |S|-1. If |S|-1=m-1, then we conclude by the induction hypothesis that every element of E has a different 2-adic valuation. If E is E induction hypothesis gives a contradiction.

Finally, note that the set of elements $m < 2^n$ such that $\nu_2(m) = k$ is precisely 2^{n-k-1} . Thus the number of good sets of size n all of whose elements are strictly less than 2^n is

$$\prod_{k=0}^{n-1} 2^{n-k-1} = \prod_{k=0}^{n-1} 2^k = 2^{n(n-1)/2} = 2^{\binom{n}{2}}$$