CTCS

Sets

1

Let $h: W \to S$ be a function. Define a function $\operatorname{Hom}(h,T): \operatorname{Hom}(S,T) \to \operatorname{Hom}(W,T)$ by $\operatorname{Hom}(h,T)(g) = g \circ h$. Show that if T has at least 2 elements, then h is surjective iif $\operatorname{Hom}(h,T)$ is injective.

 \implies : Let h be surjective. We wish to show that $\operatorname{Hom}(h,T)$ is injective. Suppose $\operatorname{Hom}(h,T)(f)=\operatorname{Hom}(h,T)(g)$. Then

$$\operatorname{Hom}(h,T)(f) = \operatorname{Hom}(h,T)(g) \tag{1}$$

$$f \circ h = g \circ h \tag{2}$$

Let $y \in S$ be arbitrary. Since h is onto S, there exists x such that y = h(x). Then

$$f(h(x)) = g(h(x)) \tag{3}$$

$$f(y) = g(y) \tag{4}$$

Since y was arbitrary, f = g. Hence Hom(h, T) is injective.

 \Leftarrow : Let h be not surjective. We wish to show that $\operatorname{Hom}(h,T)$ is not injective. Since h is not surjective there exists $y \in S$ such that $y \neq h(x)$ for all x. Let f and g be functions both from XXX that agree on all values in their domain except that $f(y) \neq g(y)$. Note that they are different functions. However $\operatorname{Hom}(h,T)(f) = \operatorname{Hom}(h,T)(g)$ because $g \circ h = f \circ h$. Hence $\operatorname{Hom}(h,T)$ is not injective.

2a

Show that the mapping that takes a pair $(f: X \to S, g: X \to T)$ of functions to the function $\langle f, g \rangle : X \to S \times T$ defined by $\langle f, g \rangle(x) = \langle f(x), g(x) \rangle$ is a bijection from $\operatorname{Hom}(X, S) \times \operatorname{Hom}(X, T)$ to $\operatorname{Hom}(X, S \times T)$.

Surjective: we show that the range of the mapping is equal to the codomain, $\operatorname{Hom}(X, S \times T)$. Let $h \in \operatorname{Hom}(X, S \times T)$ be given. Then $h: X \to S \times T$. We construct f and g as follows. Let x be arbitrary. Then $h(x) \in S \times T$, so h(x) = (a, b). Then let f(x) = a, g(x) = b.

Injective: Suppose $\langle f, g \rangle = \langle h, j \rangle$. Then for all x we have

$$\langle f, g \rangle(x) = \langle h, j \rangle(x)$$
$$(f(x), g(x)) = (h(x), j(x))$$
$$f(x) = h(x)$$
$$g(x) = j(x)$$

Since this is true of all x we have f = h, g = j

2b

If you set $X = S \times T$ in (a) what does $id_{S \times T}$ correspond to under the bijection?

Let $id_{S\times T} = \langle f, g \rangle$. Then

$$id_{S \times T}(s,t) = (s,t)$$
$$\langle f, g \rangle (s,t) = (f(s), g(t))$$
$$f(s) = s$$
$$g(t) = t$$

It corresponds to (id_S, id_T)

3a

Let S and T be disjoint sets. Let V be a set. Let $\phi: \operatorname{Hom}(S,V) \times \operatorname{Hom}(T,V) \to \operatorname{Hom}(S \cup T,V)$ be the mapping that takes a pair $(f:S \to V,g:T \to V)$ to the function $\langle f|g\rangle:S \cup T \to V$ defined by $\langle f|g\rangle(x)=f(x)$ if $x\in S,g(x)$ if $x\in T$. Show that ϕ is a bijection.

Surjective: Let S,T be disjoint sets. Let $h \in \operatorname{Hom}(S \cup T,V)$ be given. Then $h:S \cup T \to V$. Construct $f:S \to V, g:T \to V$ as follow: for each $s \in S$ let f(s)=h(s), and for each $v \in V$ let g(v)=h(v). Then $\langle f|g \rangle = h$.

Injective: Suppose $\langle f|g\rangle = \langle h|j\rangle$. For all $s \in S$ we have

$$\langle f|g\rangle(s) = \langle h|j\rangle(s)$$

 $f(s) = h(s)$

Hence f = h. Similarly, g = j.

3b

If you set $V = S \cup T$ in (a), what is $\phi^{-1}(id_{S \cup T})$?

Let $s \in S, t \in T$. Then $\langle id_S|id_T\rangle(s) = s, \langle id_S|id_T\rangle(t) = t$. Hence $\langle id_S|id_T\rangle = id_{S\cup T}$.

4a

If P(C) denotes the powerset of C (all subsets of C), then $Rel(A,B) = P(A \times B)$ denotes the set of relations from A to B. Let $\phi : Rel(A,B) \to \operatorname{Hom}(A,P(B))$ be defined by $\phi(\alpha)(a) = \{b \in B | (a,b) \in \alpha\}$. Show that ϕ is a bijection.

Surjective: Let $h \in \text{Hom}(A, P(B))$ be given. Then $h : A \to P(B)$ and for all $a \in A$ we have $h(a) \subseteq B$. Construct α as follow: $\alpha = \{(a, b) | a \in A, b \in h(a)\}$. Then

$$\begin{split} \phi(\alpha)(a) &= \{b \in B | (a,b) \in \alpha\} \\ &= \{b \in B | (a,b) \in \{(a,b) | a \in A, b \in h(a)\}\} \\ &= \{b \in B | b \in h(a)\} \\ &= h(a) \end{split}$$

as required.

Injective: suppose $\phi(X) = \phi(Y)$. Then for all $a \in A$,

$$\phi(X) = \phi(Y)$$
$$\phi(X)(a) = \phi(Y)(a)$$
$$\{b \in B | (a, b) \in X\} = \{b \in B | (a, b) \in Y\}$$

so for all $a \in A$, for all $b \in B$,

$$b \in \{b \in B | (a, b) \in X\} \iff b \in \{b \in B | (a, b) \in Y\}$$
$$(a, b) \in X \iff (a, b) \in Y$$

Hence X = Y.

4b

Let A = B. What corresponds to Δ_A under this bijection?

$$\phi(\Delta_A)(a) = \{b|(a,b) \in \Delta_A\}$$
$$= \{b|a=b\}$$
$$= \{a\}$$

It corresponds to the singleton function $f(a) = \{a\}$

4c

If we let A = P(B) then $\phi^{-1} : \operatorname{Hom}(P(B), P(B)) \to \operatorname{Rel}(P(B), B)$. What is $\phi^{-1}(id_{P(B)})$? Let $\phi^{-1}(id_{P(B)}) = \alpha$. Let $s \subseteq B$. Then

$$\begin{split} \phi(\alpha)(s) &= \{b \in B | (s,b) \in \alpha \} \\ &= id_{P(B)}(s) \\ &= s \\ &= \{b \in B | b \in s \} \\ &= \{b \in B | (s,b) \in \{(s,b) | b \in s \} \} \end{split}$$

Hence α is the subset relation.