Table 1. Base-case operating model (OM1) parameters for the anchovy and sardine mixed stock model.

Symbol	Value	Description
Indices		·
S	anc; sar	Index for species: anchovy;
		sardine
t	$.25, 0.5, 0.75, 1, 1.5,, T_1 - 1$	Quarterly time steps (e.g., a year
		divided in 4 quarters) until time
		step before when the
		management procedure (MP)
		starts
T_1		Time step when the MP starts
_		(i.e., 2023)
T ₂	1000 2000	End year for the MP
у	1990,,2022	Annual time step from starting
		year end year in operating model
+	0.25	(i.e., $T_1 - 1$)
t_x	0.25	Time step Indicator for quarter (e.g.,
q	1, 2, 3, 4	2023.1,, 2023.4)
l ^s	3,, 21.5; 3,, 19.5	Length bins (mm)
g	1, 2, and 3	Index for biomass survey during
9	1, 2, 4114 3	1 st and 2 nd quarter and fishery
Parameters		
\hat{R}_0^s	39.03; 38.01	Unfished recruitment (quarterly)
SSB_0^s	1260.9; 457.13	Unfished (quarterly) spawning
· ·	, i	stock biomass
\hat{F}_{init}^{S}	0; 0.23	Initial fishing mortality
\hat{F}_{init}^s \hat{l}_0^s $\hat{\sigma}_{l_0}^s$	3.24; 3.25	Mean length at recruitment
$\hat{\sigma}_{l_0}^{S}$	0.056; 0.057	Standard deviation (SD) for
-0		mean length at recruitment
M^{S}	0.22; 0.25	Instantaneous natural mortality
		(quarterly)
$\hat{\mathcal{K}}^S$	5.00; 1.6	Compensation ratio
$\widehat{\omega}_{\mathcal{Y}}^{s}$		Estimated annual recruitment
0.0		deviations at year y
$\widehat{\omega}_q^s$		Estimated quarterly effect for
rs.a	100 1015 1121 525 721	recruitment deviations
$\hat{l}_{50}^{s,g}$	10.9, 10.15, 11.31; 5.06, 7.34,	Length-at-50% vulnerability
↑S.Q	8.91	(mm)
$\hat{l}_{shp}^{s,g}$	14.61, 13.71, 13.03; 8, 9.4, 10.39	Shape parameter for length-at-vulnerability (mm)
$\widehat{Q}^{s,g}$	0.58, 1.03; 1.26, 0.89	Catchability coefficient
$\widehat{\tau_I}^{s,g}$	0.66, 0.37; 0.52, 0.44	Estimated standard deviation for
ιI	0.00, 0.37, 0.32, 0.44	survey indices
H_{slp}		Slope of the HCR
		Minimum biomass for HCR
B_{min}		William Diomass for ficit

b^{hcr}	0.6	HCR parameter for the risk		
		averse utility function		
L_{∞}^{s}	20.8; 18.1	Mean asymptotic length (mm)		
Ks	0.113; 0.125	Brody growth parameter (mm year ⁻¹)		
σ_G^s	0.1; 0.2	Standard deviation (SD) for individual growth		
Data				
σ_R^S	0.4; 0.3	SD of the recruitment variation		
σ_R^s σ_g^s	0.1, 0.1; 0.1, 0.1	Standard deviation SD for survey biomass indices		
m^s		Maturity proportion at length		
W^{S}		Weight at length (g)		
$I_t^{s,g}$		Acoustic biomass index during 1 st and 2 nd quarter		
Y_t^s		Observed catch biomass (t)		
Y_t^s $C_{t,l}^{s,g}$ I		Observed catch at length		
I		Identity matrix		
T ^S		Transition matrix		
K_{w}	0.7	Kalman weight		
F_{max}	0.95	Maximum fishing mortality rate		
W_k^{c}	8; 8	Weight at recruitment (g)		
\overline{h}^s	0.9; 0.9	Prior mean for steepness		
F_{max} W_k^s \overline{h}^s $\sigma_{\overline{h}}^s$	0.25; 0.25	Prior standard deviation of steepness		
$ar{Q}^{s,g}$	1, 1; 1, 1	Prior mean for Q		
$\sigma^{s,g}_{\bar{o}}$	0.1, 0.1; 0.1, 0.1	Prior standard deviation for Q		
$\sigma_{ar{Q}}^{S,g}$ $\sigma_{ar{Y}}^{S}$	0.01; 0.01	Standard deviation for catch biomass		
$ ho^g$	0.6, 0.6; 0.6,0.6	Autocorrelation parameter for simulated survey indices		
$n_c^{s,g}$	50, 50, 2.5; 50, 50, 2.5	Effective sample size for multinomial likelihoods		
u ^{max}	0.6	Maximum harvest rate for the smooth function		
$n_{\in g}^s$	22, 17; 23, 18	Number of year with length composition		
dev	0.05	Parameter for the Smooth function		
Derived variables				
\hat{h}^s	0.56; 0.29	Steepness		
φ^s		Proportion of recruitment at length		
S_0^s		Diagonal matrix with initial survival		
Ss		Survival at length after fishing		

	and natural mortality
ϕ_0^s	Unfished equilibrium spawning
	biomass per recruit
α^s	Beverton–Holt recruitment
β^s	Beverton–Holt recruitment
F_t^s	Fishing mortality rate
$\widehat{\omega}_t^s$	Estimated recruitment deviates
	in time t
$\overline{\omega}_t^s$	Average recruitment deviates in
	time t
TAC_t^s	TAC for species s
\hat{b}_t^{tot}	Total simulated stock
	assessment biomass
ε_t^g	AR(1) errors for simulated survey
, and the second	indices

Table 2. Description of the operating model for the anchovy and sardine mixed stock model.

Description	Equations
(A1) Initial abundance	$R_{init}^s = n_0^s \hat{R}_0^s t_x$
(A2) Unfished numbers per recruit	$n_0^s = \varphi^s (\boldsymbol{I} - \boldsymbol{T}^s \boldsymbol{S}_0^s)^{-1}$ $\varphi^s = N \sim \left(\hat{l}_0^s, (\hat{\sigma}_{l_0}^s)^2\right)$ $\boldsymbol{S}_0^s = e^{-M^S - F_{init}^S v_l^{s,g_3}}, l \neq t \to 0$
(A3) Abundance population dynamics	$N_{t}^{s} = \begin{cases} R_{init}^{s} & t = 1\\ T^{s}S^{s}N_{t-1}^{s} + \varphi^{s}R_{t-4}^{s} & t > 1 \end{cases}$
(A4) Recruitment and stock- recruit parameters	$R_t^s = \frac{\alpha^s S B_t^s}{1 + \beta^s S B_t^s} e_t^{\widehat{\omega}_t^s - 0.5(\sigma_R^s)^2}$ $\alpha^s = \hat{\kappa}^s / \phi_0^s$ $\beta^s = (\hat{\kappa}^s - 1) / (SSB_0^s)$ $\widehat{\omega}_t^s = \widehat{\omega}_y^s + \widehat{\omega}_q^s$
(A5) Unfished spawning stock biomass	$SSB_0^s = \hat{R}_0^s \phi_0^s$ $\phi_0^s = \sum_{l}^L n_0^s m^s w^s$
(A6) Spawning stock biomass	$SB_t^s = \sum_{l}^{L} N_t^s m^s w^s$
(A7) Vulnerable biomass	$VB_t^{s,g} = \sum_{l}^{L} N_t^s v_l^{s,g} w^s$
(A8) Vulnerability at length	$v_l^{s,g} = 1/\left(1 + e^{-\left[l - \hat{l}_{50}^{s,g}\right]/\left\{\left[\hat{l}_{shp}^{s,g} - \hat{l}_{50}^{s,g}\right]/\log(19)\right\}}\right)$
(A9) Simulated survey biomass indices ($t \ge T_1$)	$I_t''^{s,g} = \hat{Q}^{s,g} V B_t^{s,g} e^{\left[\varepsilon_t^g \hat{\tau}^{s,g} - 0.5(\hat{\tau}^{s,g})^2\right]}$ $\varepsilon_t'^g \sim N(0,1)$ $\varepsilon_t^g = \varepsilon_{t-1}^g \rho^g + \varepsilon_t'^g$
(A10) Simulated stock biomass from a delay-difference model (DDM) population dynamic model ($t \ge T_1$)	$b_{DD_t}^s = e^{-M^s} \left(V B_{t-1}^{s,g_3} e^{-F_{t-1}^s} \right) + w_k^s \hat{R}_0^s e^{\bar{\omega}_t^s - 0.5(\sigma_R^s)^2}$ $\bar{\omega}_t^s = \frac{1}{3} \sum \omega_{t-4}^s + \omega_{t-8}^s + \omega_{t-12}^s$
(A11) Simulated stock assessment biomass (shortcut) $(t \ge T_1)$	$\hat{b}_{t}^{s} = \begin{cases} I_{t}^{\prime\prime s,g_{1}} K_{w} + (1 - K_{w}) b_{DD_{t}}^{s}, & q = 1 \\ I_{t}^{\prime\prime s,g_{2}} K_{w} + (1 - K_{w}) b_{DD_{t}}^{s}, & q = 2,3,4 \end{cases}$ $\hat{b}_{t}^{tot} = \hat{b}_{t}^{anc} + \hat{b}_{t}^{sar}$ $0 < K_{w} < 1$

$TAC_{t} = \begin{cases} max(0, H_{slp}[\hat{b}_{t}^{tot} - B_{min}]) ^{1}/_{3} & q = 1 \\ max(0, H_{slp}[\hat{b}_{t}^{tot} - B_{min}]) & q = 2 \\ max(0, H_{slp}[\hat{b}_{t}^{tot} - B_{min}]) ^{1}/_{3} & q = 3 \\ max(0, H_{slp}[\hat{b}_{t}^{tot} - B_{min}]) ^{2}/_{3} & q = 4 \end{cases}$ $TAC_{t}^{s} = \begin{cases} \hat{b}_{t}^{s,g_{1}}/\hat{b}_{t}^{tot}TAC_{t} & , & q = 1 \\ \hat{b}_{t}^{s,g_{2}}/\hat{b}_{t}^{tot}TAC_{t} & , & q = 2,3,4 \end{cases}$
$u_t^S = TAC_t^S/VB_t^{S,g_3}$
$F_t^s = min(F_{max}, u_t^s/e^{-M^s/2})$
$actC_t^s = (1 - e^{-F_t^s})Vb_t^{s,g_3}e^{-M^s/2}$
$actC_t^{tot} = actC_t^{anc} + actC_t^{sar}$
$\begin{aligned} U_{neutral} &= \sum_{t}^{T_2} act C_t^{tot} \\ U_{averse} &= \sum_{t}^{T_2} (act C_t^{tot} act C_t^{tot})^{b^{hcr}} \end{aligned}$
$U_{averse} = \sum_{t}^{n_2} (actC_t^{tot}actC_t^{tot})^{b^{hcr}}$

Table 3. Description of the size-structured statistical model for anchovy and sardine.

Operating model	
(A17) Parameter estimated	$/\hat{p}s \approx \hat{r}s (s)^4 (s)^{T_1-1} (\hat{r}s,g)$
,	$\Theta^{s} = \begin{pmatrix} \widehat{R}_{0}^{s}, \widehat{\kappa}^{s}, \widehat{F}_{init}^{s}, \{\widehat{\omega}_{q}^{s}\}_{q=1}^{4}, \{\widehat{\omega}_{y}^{s}\}_{y=1}^{T_{1}-1}, \{\widehat{l}_{50}^{s,g}\}_{g=1,2,3}, \{\widehat{l}_{50}^{s,g}\}_{g=1,2,3}, \{\widehat{l}_{50}^{s,g}\}_{g=1,2}, \{\widehat{r}_{l}^{s,g}\}_{g=1,2} \end{pmatrix}$ $u_{t}^{s} = Y_{t}^{s} / \sum_{l}^{L} N_{t} w^{s} m^{s} e^{-M^{s}/2}$
(A18) Fishing and total mortality	$\begin{aligned} u_t^s &= Y_t^s / \sum_{l}^{L} N_t w^s m^s e^{-M^s/2} \\ tmp &= ln \big(e^{u^{max}/dev} + 1 \big) - dev \ln \big(e^{-(u_t^s - u^{max})/dev} + 1 \big) \\ F_t^s &= -ln(1 - tmp) \\ Ftot_t^s &= F_t^s v_l^{s,g_3} \\ Z_t^s &= Ftot_t^s + M^s \end{aligned}$
(A19) Predicted catch at length for the fishery	$C_{t,l}^{\prime s,g_3} = N_{t,l}^s F tot_{t,l}^s (1 - e^{-Z_l^s}) / Z_l^s$ $C_{t,l}^{\prime \prime s,g_3} = C_{t,l}^{\prime s,g_3} / \sum_{l}^{L} C_{t,l}^{\prime s,g_3}$
(A20) Predicted catch at length for surveys	$C_{t,l}^{\prime s,g} = N_{t,l}^{s} v_{l}^{s,g} \qquad g = 1,2$ $C_{t,l}^{\prime \prime s,g} = C_{t,l}^{\prime s,g} / \sum_{l}^{L} C_{t,l}^{\prime s,g}$
(A21) Observed catch at length proportions for survey indices	$C_{t,l}^{s,g} = C_{t,l}^{s,g} / \sum_{l}^{L} C_{t,l}^{s,g}$ $g = 1,2$
(A22) Predicted catch biomass	$Y_t^{\prime s} = \sum_{l}^{L} C_{t,l}^{\prime s,g_3} w_l^s$
(A23) Predicted biomass for survey indices	$I_t^{\prime s,g} = \hat{Q}^{s,g} \sum_{l}^{L} V B_{t,l}^{s,g}$
(A24) Residuals for catch biomass	$\eta_t^s = ln(Y_t^s) - ln(Y_t^{\prime s})$
(A25) Residuals for biomass survey indices	$\xi_t^{s,g} = \ln(I_t^{s,g}) - \ln(I_t^{\prime s,g}) \qquad g = 1,2$
(A26) Standard deviation for survey indices	$\widehat{\tau_I}^{s,g} = \sqrt{\frac{1}{n_{\in g}^s - 2} \sum_{t \in g} \xi_t^{s,g}} \qquad g = 1,2$
(A27) Catchability coefficient for survey indices	$z_t^{s,g} = \ln(I_t^{s,g}/VB_t^{s,g}) \qquad g = 1,2$ $\ln Q^{s,g} = \frac{1}{n_{\in g}^s} \sum_{t \in g} z_t^{s,g}$ $\hat{Q}^{s,g} = e^{\ln Q^{s,g}}$
(A28) Log-likelihood for catch at length compositions	$\mathcal{L}_{c}^{s,g} = n_{c}^{s,g} \sum_{t}^{T_{1}-1} \sum_{l}^{L} C_{t,l}^{s,g} ln(C_{t,l}^{"s,g}) \qquad g = 1,2,3$
(A29) Log-likelihood for survey indices	$\mathcal{L}_{I}^{s,g} = \frac{\sum_{t}^{T_{1}-1} (\xi_{t}^{s,g})^{2}}{2(\sigma_{I}^{s,g})^{2}} g = 1,2$

	T. 4
(A30) Log-likelihood for catch	$\mathcal{L}_{Y}^{s} = \frac{\sum_{t=1}^{l_{1}-1} (\eta_{t}^{s})^{2}}{2(\sigma_{s}^{s})^{2}}$
biomass	$\mathcal{L}_Y = 2(\sigma_Y^s)^2$
(A31) Prior for recruitment	$\nabla^{T_1-1}\nabla (\alpha s)^2 + (\alpha s)^2$
deviates	$p_{\omega}^{s} = \frac{\sum_{y}^{T_{1}-1} \sum_{q} \left(\widehat{\omega}_{q}^{s}\right)^{2} + \left(\widehat{\omega}_{y}^{s}\right)^{2}}{2(\sigma_{s}^{s})^{2}}$
devides	$2(\sigma_R^s)^2$
(400) 0 : (- 2
(A32) Prior for catchability coefficient	$p_0^s = \frac{(\hat{Q}^{s,g} - \bar{Q}^{s,g})^2}{g^2}$ $g = 1,2$
Coefficient	$p_Q^s = \frac{(\hat{Q}^{s,g} - \bar{Q}^{s,g})^2}{2(\sigma_{\bar{Q}}^{s,g})^2} \qquad g = 1,2$
(A33) Prior for steepness	$(\hat{h}^s - \bar{h}^s)^2$
	$p_h^s = \frac{\left(\hat{h}^s - \bar{h}^s\right)^2}{2\left(\sigma_h^s\right)^2}$ $\hat{h}^s = \hat{\kappa}^s / (4 + \hat{\kappa}^s)$
	$2(\sigma_h^3)$
	$h^{s} = \hat{\kappa}^{s}/(4+\hat{\kappa}^{s})$
(424) 01: 6	01.1(05) 05.1 05.0 05.0 05.0 05.0 05.0 05.0 05.0
(A34) Objective function	$Obj(\Theta^{s}) = \mathcal{L}_{Y}^{s} + \mathcal{L}_{c}^{s,g} + \mathcal{L}_{I}^{s,g} + p_{\omega}^{s} + p_{Q}^{s} + p_{h}^{s} g = 1,2$

Table A1. Parameters of the operating models (OM1-OM6) for anchovy (A) and sardine (S).

Parameter	A_OM1	S_OM1	A_OM2	S_OM2	A_OM3	S_OM3	A_OM4	S_OM4	A_OM5	S_OM5	A_OM6	S_OM6
SSB_0	1260.8	457.1	1151.4	1330.1	1401.3	1497.2	1534.3	467.8	1455.0	464.5	810.1	879.5
$\overline{R_0}$	39.0	38.0	35.6	50.3	43.2	54.4	47.3	38.5	44.8	26.0	38.8	49.4
κ	5.00	1.60	9.68	9.00	8.46	8.94	4.48	1.20	4.54	1.40	2.91	1.68
$\overline{l_0}$	3.24	3.25	3.20	3.25	3.25	3.51	3.22	3.46	3.25	5.46	3.22	3.48
σ_{lo}	0.05	0.06	0.14	0.07	0.05	0.51	0.14	0.48	0.01	2.62	0.14	0.49
F init	0.00	0.23	0.00	0.00	0.00	0.00	0.00	0.22	0.00	0.22	0.10	0.10
$l_{50}^{g=3}$	11.31	8.91	11.30	8.77	10.91	8.56	10.93	8.63	10.62	7.95	10.61	8.45
$l_{shp}^{g=3}$	13.03	10.39	13.01	10.23	12.66	10.00	12.69	10.48	12.26	9.56	12.23	10.03
$l_{50}^{g=1}$	10.88	5.08	10.90	5.09	11.05	5.00	11.04	5.14	11.32	0.00	11.32	5.16
$l_{shp}^{g=1}$	14.61	8.00	14.64	8.00	14.99	8.00	14.98	8.00	15.42	8.00	15.42	8.00
$l_{50}^{g=2}$	10.15	7.34	10.16	7.37	9.99	7.47	9.98	7.33	10.06	7.40	10.06	7.44
$l_{shp}^{g=2}$	13.71	9.43	13.74	9.48	13.57	9.57	13.56	9.39	13.69	9.85	13.69	9.55
$Q^{g=1}$	0.59	1.26	0.59	1.36	0.50	1.27	0.50	0.69	0.58	1.07	0.59	1.01
$Q^{g=2}$	1.03	0.89	1.03	0.98	0.88	0.89	0.88	0.45	0.99	0.72	0.99	0.71
$\frac{Q}{\tau_I^{g=1}}$	0.66	0.52	0.66	0.53	0.56	0.47	0.56	0.47	0.57	0.43	0.57	0.48
$\frac{\tau_I}{\tau_I^{g=2}}$	0.37	0.44	0.37	0.44	0.33	0.43	0.33	0.46	0.32	0.45	0.32	0.44
h	0.56	0.29	0.71	0.69	0.68	0.69	0.53	0.23	0.53	0.26	0.42	0.30
F _{MSY}	0.23	0.16	0.38	0.29	0.30	0.27	0.19	0.11	0.18	0.13	0.18	0.11
MSY	66.7	103.6	76.3	106.1	87.5	117.0	75.1	173.7	70.5	132.0	72.3	84.2
SSB _{MSY}	452.1	716.1	355.2	411.5	450.3	472.7	561.34	1686.7	528.2	1038.3	540.2	804.6
R _{MSY}	28.7	49.1	28.9	40.3	34.6	43.8	34.1	97.4	32.3	43.1	33.1	46.8
М	0.88	1.00	0.88	1.00	0.88	1.00	0.88	1.00	0.88	1.00	0.88	1.00
σR	0.40	0.30	0.40	0.30	0.40	0.30	0.40	0.30	0.40	0.30	0.40	0.30
$\frac{\sigma_{G}}{K}$	0.10 0.11	0.20	0.10 0.11	0.20	0.10 0.11	0.20	0.10 0.11	0.20	0.10 0.11	0.20	0.10 0.11	0.20
1	20.80	18.10	20.80	18.10	20.80	18.10	20.80	18.10	20.80	18.10	20.80	18.10
$\sigma^{g=1}$	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
$\frac{\sigma_I}{\sigma_I^{g=2}}$	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
5 77	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
g=1	50.0	50.0	50.0	50.0	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6
$\frac{n_c}{n_c^{g=2}}$	50.0	50.0	50.0	50.0	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6
$\frac{n_c^g}{n_c^{g=3}}$	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
$\frac{h_c}{\bar{h}}$	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
	0.25	0.25	0.05	0.05	0.05	0.05	0.25	0.25	0.25	0.25	0.25	0.25
$\frac{\sigma_{\overline{h}}}{\overline{Q}^{g=1}}$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
$\sigma_{ar{Q}}^{g=1}$	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.05	0.05	0.05	0.05
$\bar{\Omega} a=2$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
$\frac{Q^g}{\sigma_{\bar{Q}}^{g=2}}$	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.05	0.05	0.05	0.05
$Obj(\Theta)$	42669	38195	42682	38226	15370	13846	15353	13773	15385	13786	15386	13822
\mathcal{L}_{Y}	57	73	57	70	37	58	36	38	38	44	38	48
$\mathcal{L}_{I}^{g=1}$	479	313	482	321	343	253	343	257	351	214	351	268
$\mathcal{L}_{I}^{g=z}$	115	171	114	172	93	166	93	190	89	181	89	177
$\frac{\mathcal{L}_{I}^{g=2}}{\mathcal{L}_{C}^{g=3}}$	1025	933	1025	933	1030	939	1029	928	1041	945	1041	936
$\mathcal{L}_{\mathcal{C}}^{g=1}$	20424	18848	20426	18849	6873	6329	6872	6332	6873	6344	6873	6329
$\mathcal{L}_{\mathcal{C}}^{g=2}$	20412	17601	20407	17585	6856	5878	6858	5904	6856	5903	6856	5887