1A	Consider the forced oscillation of a particle described by the equation:	1	Part-
	$0.5\ddot{x} + 8x = 10\cos(3t)$ with the initial conditions: $x(0) = 0$, $\dot{x}(0) = 0$. The general solution (complementary function + particular integral) of this equation of motion can be written as: $x(t) = C_1\cos(4t) + C_2\sin(4t) + C_3\cos(3t)$. Then the value of C_1 is given by $C_1 =$	Marks	A
	Ans. = - 2.857 (-20/7) (Range: -2.6 to -3.0)		
	Solutions (1A), (1B), (1C): This equation has the complementary solution $x_c = C_1 cos(\omega_0 t) + C_2 sin(\omega_0 t) \text{ where } \omega_0 = \sqrt{k/m} = \sqrt{8/0.5} = 4$ And the particular solution $x_p = \frac{F_0}{m(\omega_0^2 - \omega^2)} cos(\omega t)$		
	The general solution is therefore, $x = C_1 cos(\omega_0 t) + C_2 sin(\omega_0 t) + \frac{F_0}{m(\omega_0^2 - \omega^2)} cos(\omega t)$		
	with $F_0 = 10$ and $\omega = 3$ giving $\frac{F_0}{m(\omega_0^2 - \omega^2)} = \frac{20}{16 - 9} = \frac{20}{7}$		
	$x = C_1 cos(4t) + C_2 sin(4t) + C_3 cos(3t) \text{ where } C_3 = \frac{20}{7} = 2.857$		
	Using initial conditions: $x(0) = 0$, $\dot{x}(0) = 0$ we see $C_1 = -C_3 = -20/7$ and $C_2 = 0$		
1B	Consider the forced oscillation of a particle described by the equation:	1 Marks	Part-
	$0.5\ddot{x} + 8x = 10\cos{(3t)}$ with the initial conditions: $x(0) = 0$, $\dot{x}(0) = 0$. The general solution (complementary function + particular integral) of this equation of motion can be written as: $x(t) = A_1\cos{(4t)} + A_2\sin{(4t)} + A_3\cos{(3t)}$. Then the value of A_2 is given by $A_2 =$	WAINS	
	Ans. = 0 (Range: NA)		
1C	Consider the forced oscillation of a particle described by the equation:	1 Marks	Part-
	$0.5\ddot{x} + 8x = 10\cos(3t)$ with the initial conditions: $x(0) = 0$, $\dot{x}(0) = 0$. The general solution (complementary function + particular integral) of this equation of motion can be written as: $x(t) = A\cos(4t) + B\sin(4t) + C\cos(3t)$. Then the value of C is given by $C =$	WIGH	
	Ans. = 2.857 (20/7) (Range: 2.6 to 3.0)		
2 A	Consider a forced damped oscillator with the equation of motion given by $m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F_0 \cos(\omega t)$. The values of $k = 32, m = 0.5, b = 1$ in MKS units and $F_0 = 10 N$ and $\omega = 2\omega_0$, where $\omega_0^2 = k/m$. If the steady state solution is given by $x_p(t) = x_0 \cos(\omega t - \varphi)$, then the value of x_0 (in meters) is	2 Marks	Part-B
	Ans. = 0.103 (Range: 0.08 to 0.2)		
	Solutions (2A), (2B), (2C)		
	$\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{32}{0.5}} = 8$, $\omega = 2\omega_0 = 16$ and $\beta = \frac{b}{2m} = \frac{1}{2 \times 0.5} = 1$		
	The steady state solution (particular solution) is given by:		
	$x_p(t) = x_0 \cos(\omega t - \varphi) = \frac{F_0}{m} \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\beta\omega)^2}} \cos(\omega t - \varphi)$		
	$x_0 = \frac{F_0}{m} \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\beta\omega)^2}} = \frac{10}{0.5} \frac{1}{\sqrt{(64 - 4\times64)^2 + (2\times2\times8)^2}} = 20 \frac{1}{\sqrt{(3\times64)^2 + (32)^2}} \approx 0.1027$		

	Th. 1.1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
	The driven oscillator has its maximum amplitude at a frequency		
	$\omega = \sqrt{\omega_0^2 - \left(\frac{b^2}{2m^2}\right)} = \sqrt{\omega_0^2 - 2\beta^2} = \sqrt{64 - 2} = \sqrt{62} \approx 7.874$		
	For the velocity amplitude, we differentiate displacement equation yielding		
	$v_0 = \frac{F_0}{m} \frac{\omega}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\beta\omega)^2}}$; for maximum velocity amplitude we maximize v_0 w.r.t ω this		
	results $\omega = \omega_0 = 8$		
2B	Consider a forced damped oscillator with the equation of motion given by $m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F_0 \cos(\omega t)$. The values of $k = 32$, $m = 0.5$, $b = 1$ in MKS units and $F_0 = 1$	2 Marks	Part- B
	10 N and $\omega = 2\omega_0$ where $\omega_0^2 = k/m$. The steady state solution is given by $x_p(t) = 1$		
	$x_0 \cos(\omega t + \varphi)$. If ω_m be the angular frequency of driven oscillator for which the amplitude is maximum, then the value of ω_m^2 in rad^2/sec^2 is		
	Ans. = 7.874 (Range: 7 to 8)		
2C	Consider a forced damped oscillator with the equation of motion given by $m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F_0 \cos(\omega t)$. The values of $k = 32$, $m = 0.5$, $b = 1$ in MKS units and $F_0 = 10$ N and $\omega = 2\omega_0$ where $\omega_0^2 = k/m$. The steady state solution is given by $x_p(t) = x_0 \cos(\omega t + \varphi)$. If ω_v denote the angular frequency of driven oscillator for which the velocity amplitude is maximum, then the value of ω_v in rad/sec is	2 Marks	Part-B
	Ans. 8 (Range: NA)		
3 A	A coupled pendula setup consists of two identical pendula and a light spring. Initially the left mass is at $x = 2.0 cm$ and the right mass is at $x = 0$. The masses are then released. The left mass starts oscillating with a period of $1.1 sec$. At $t = 11 sec$, both masses oscillate with equal amplitude. At $t = 22 sec$, the right mass is oscillating with maximum amplitude but the left mass is motionless. If ω_b and ω_p are the normal mode angular frequencies, then from these data calculate the value of beat frequency, $\omega_b - \omega_p$ in rad/sec	1 Marks	Part-A
	Ans. 0.1428 (1/7) (Range: 0.1 to 0.2)		
	Solutions (3A), (3B), (3C): The beating is caused by the mixing of two normal modes. Initially left mass is at maximum amplitude and right mass is at equilibrium, after 22 sec., the right mass is at maximum amplitude. Therefore, at 44 sec. The left mass will be at maximum amplitude, hence beat frequency is 1/44 Hz.		
	So, $f_b - f_p = 1/44$ i.e., $\frac{\omega_b}{2\pi} - \frac{\omega_p}{2\pi} = 1/44$ or $\omega_b - \omega_p = \frac{2\pi}{44} = \frac{\pi}{22} = \frac{1}{7} = 0.14279$ When So, $f_b - f_p = 1/40 = 0.025$		
	Given the period of fast oscillation is 1.1 sec. So $T_{\text{fast}} = \frac{2\pi}{\omega_{average}} = \frac{4\pi}{\omega_b + \omega_p} = 1.1$ so ω_b +		
	$\omega_p = \frac{4\pi}{11} = \frac{80}{7} = 11.423 \rightarrow \frac{(\omega_b + \omega_p)}{2} = 5.71$		
3 B	In the experiment of coupled pendula consisting two identical pendula and a light spring, at $t=0$, the right mass is at $x=0$ and the left mass is at $x=2.2$ cm. The two masses are then released. The left mass starts oscillating with a period of 1.1 sec. At $t=10$ sec, both masses oscillate with equal amplitude. At $t=20$ sec, the right mass is oscillating with maximum amplitude but the left mass is motionless. If f_b and f_p are the normal mode frequencies, then calculate the value of beat frequency, $f_b - f_p$ in Hz	1 Marks	Part-A
	- · · · · · · · · · · · · · · · · · · ·		

	Ans. 0.025 (1/40) (Range: 0.01 to 0.03)		
	Ans. 0.025 (1/40) (Range: 0.01 to 0.03)		
3 C	The left mass of a coupled pendula apparatus at $t=0$ is at position $x=2.0$ cm and the right mass is at $x=0$. The masses are then released. The left mass starts oscillating with a period of 1.1 sec. At $t=10$ sec, both masses oscillate with equal amplitude. At $t=20$ sec, the right mass is oscillating with maximum amplitude but the left mass is motionless. If ω_b and ω_p are the normal mode angular frequencies, then the average angular frequency, $(\omega_b + \omega_p)/2$ in rad/sec is	1 Marks	Part-A
4A	Ans: 5.71 (Range: 4.71 to 6.71)	2	Part-
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Marks	В
	For the spring-mass system shown above, the force on the left mass is calculated as		
	$F_1 = Akx_1 + Bkx_2 \qquad (A \text{ and } B \text{ are integers})$		
	The value of A and B are and		
	Ans: A=-3, B= 2 (Range: NA)		
	Solutions to (4A), (4B), (4C):		
	$F_1 = -kx_1 + 2k(x_2 - x_1)$ and $F_2 = -2k(x_2 - x_1) - 3kx_2$		
	Therefore, $F_1 = -3kx_1 + 2kx_2$ $F_2 = 2kx_1 - 5kx_2$ and $F_2 - F_1 = 5kx_1 - 7kx_2$		
4B	For the spring-mass system shown above, the force on the right mass is calculated as $F_2 = Ckx_1 + Dkx_2$ (<i>C</i> and <i>D</i> are integers) The value of <i>C</i> and <i>D</i> are and	2 Marks	Part-B
	Ans: C= 2, D= -5 (Range: NA)		
4C		2 Marks	Part- B

	k m 2k m 3k 3k		
	are calculated as F_1 and F_2 respectively and the difference is given by $F_2 - F_1 = pkx_1 + qkx_2 \qquad (p \text{ and } q \text{ are integers})$		
	The value of p and q are and		
	Ans: $p=5$, $q=-7$ (Range: NA)		
5A	A coupled pendula setup with identical pendula has $m = 0.10 kg$, $l = 0.10 m$ and $k = 5.0 N/m$. The angular frequencies of the two normal modes (pendulum mode and breathing mode) are respectively given by ω_p and ω_b . In a place where $g = 10 m/s^2$, the value of ω_p and ω_b in rad/sec are and	2 Marks	Part-B
	Ans: $\omega_p = 10.0$, $\omega_b = 14.14$ Solution (5A): The angular frequencies of the pendulum mode and breathing mode are respectively $\omega_p = \sqrt{\frac{g}{l}} = \sqrt{\frac{10}{0.10}} = 10.0 \text{ and } \omega_b = \sqrt{\frac{g}{l} + \frac{2k}{m}} = \sqrt{\frac{10}{0.10} + \frac{10}{0.10}} \approx 14.14$		
5B	A coupled pendula setup with identical pendula has $m = 0.40 \ kg$, $l = 0.40 \ m$ and $k = 5.0 \ N/m$. The angular frequencies of the two normal modes (pendulum mode and breathing mode) are respectively given by ω_p and ω_b . In a place where $g = 10 \ m/s^2$, the value of ω_p and ω_b in rad/sec are and	2 Marks	Part-B
	Ans: $\omega_p = 5$, $\omega_b = 7.07$ Solution (5B): The angular frequencies of the pendulum mode and breathing mode are respectively $\omega_p = \sqrt{\frac{g}{l}} = \sqrt{\frac{10}{0.40}} \approx 5 \text{ and } \omega_b = \sqrt{\frac{g}{l} + \frac{2k}{m}} = \sqrt{\frac{10}{0.40} + \frac{10}{0.40}} = 5\sqrt{2} \approx 7.07$		
5C	A coupled pendula setup with identical pendula has $m=0.20~kg$, $l=0.20~m$ and $k=5.0~N/m$. The angular frequencies of the two normal modes (pendulum mode and breathing mode) are respectively given by ω_p and ω_b . In a place where $g=10~m/s^2$, the value of ω_p and ω_b in rad/sec are and	2 Marks	Part-B
	Solution (5C): The angular frequencies of the pendulum mode and breathing mode are respectively $\omega_p = \sqrt{\frac{g}{l}} = \sqrt{\frac{10}{0.2}} \approx 7.07 \text{and } \omega_b = \sqrt{\frac{g}{l} + \frac{2k}{m}} = \sqrt{\frac{10}{0.2} + \frac{10}{0.2}} \approx 10$		

6 A	A particle of mass 0.08 kg in a potential $V(x) = V_0 e^{\alpha x^2}$ exhibit a simple harmonic motion for small displacements from its equilibrium position. If the time period of the small oscillations about the equilibrium position is 4π s, then the value of α (in m ⁻²) is (Take $V_0 = 1V$)	Part-
	Ans: 0.125 (Range: NA) (if you take it as gravitational potential)	
	0.01 (If you take it as potential energy)	
	Hints: $F = m \frac{dV}{dx} \rightarrow \ddot{x} + 2\alpha x = 0 \rightarrow T = 2\pi \sqrt{\frac{1}{2\alpha}}$	
	$F = \frac{dV}{dx} \rightarrow m\ddot{x} + 2\alpha x = 0 \rightarrow T = 2\pi \sqrt{\frac{m}{2\alpha}} $ (if you take it as energy)	
6 B	A particle of mass 0.08 kg in a potential $V(x) = V_0 e^{\alpha x^2}$ exhibit a simple harmonic motion for small displacements from its equilibrium position. If the time period of the small oscillations about the equilibrium position is 2π s, then the value of α (in m ⁻²) is (Take V_0 = 1V)	Part- A
	Ans: 0.5 (Range: NA)	
	And 0.04 (If you take it as potential energy)	
	Hints: $F = -m \frac{dV}{dx} \rightarrow \ddot{x} + 2\alpha x = 0 \rightarrow T = 2\pi \sqrt{\frac{1}{2\alpha}}$	
	$F = -\frac{dV}{dx} \rightarrow m\ddot{x} + 2\alpha x = 0 \rightarrow T = 2\pi \sqrt{\frac{m}{2\alpha}} $ (if you take it as potential energy)	
6 C	A particle of mass 0.16 kg in a potential $V(x) = V_0 e^{\alpha x^2}$ exhibit a simple harmonic motion for small displacements from its equilibrium position. If the time period of the small oscillations about the equilibrium position is 2π s, then the value of α (in m ⁻²) is (Take V_0 = 1V)	Part- A
	Ans: 0.5 (Range: NA)	
	0.08 (If you take it as potential energy)	
	Hints: $F = -m \frac{dV}{dx} \rightarrow \ddot{x} + 2\alpha x = 0 \rightarrow T = 2\pi \sqrt{\frac{1}{2\alpha}}$	
	$F = -\frac{dV}{dx} \rightarrow m\ddot{x} + 2\alpha x = 0 \rightarrow T = 2\pi \sqrt{\frac{m}{2\alpha}} $ (if you take it as potential energy)	
7 A	A molecule of DNA is 2.17 μ m long. The ends of the molecule become singly ionized: negative on one end, positive on the other. If the DNA molecule acts like a spring and compresses 1 % upon becoming charged, then the effective spring constant (in nN/m) of the molecule is (Take: $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2}$)	Part-B
	Ans: 2.30 (Range: 2.28 to 2.32)	
	Hints: DNA molecule compresses $1 \% \Rightarrow x_f = (2.17 - 0.0217) \times 10^{-6} = 2.1483 \times 10^{-6} m$	
	$\Delta x = 0.0217 \mu m$	
L		

	$F_{coulomb} = 9 \times 10^9 \times \frac{(1.6 \times 10^{-19})^2}{x_f^2} = k_{eff} \Delta x \rightarrow$	
	$k_{eff} = 9 \times 10^9 \times \frac{(1.6 \times 10^{-19})^2}{x_f^2 \Delta x}$	
7 B	A molecule of DNA is 2.2 µm long. The ends of the molecule become singly ionized: negative on one end, positive on the other. If the DNA molecule acts like a spring and compresses 2 % upon becoming charged, then the effective spring constant (in nN/m) of the molecule is $(Take: \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \frac{Nm^2}{C^2})$	Part- B
	Ans: 1.13 (Range: 1.11 to 1.15)	
7 C	A molecule of DNA is 2 µm long. The ends of the molecule become singly ionized: negative on one end, positive on the other. If the DNA molecule acts like a spring and compresses 2 % upon becoming charged, then the effective spring constant (in nN/m) of the molecule is $(Take: \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \frac{Nm^2}{C^2})$	Part- B
	Ans: 1.49 (Range: 1.47 to 1.51)	
8 A	A mass of 0.03 kg rests on a horizontal table and is attached to one end of a spring of spring constant 12 N/m. The other end of the spring is attached to a rigid support. The mass is subjected to a harmonic driving force $F = F_0 \cos \omega t$, where $F_0 = 0.15$ N, $\omega = 20$ rad/s and a damping force F_d =-rv, where $r = 0.06$ kg/s. The energy dissipated per cycle (in mJ) by the damping force at an angular frequency 20 rad/s is	Part- B
	Ans: 58.9 (Range: 55 to 60)	
	Hints: Instantaneous power dissipated $P = Force \times Velocity \rightarrow The energy dissipated per cycle$	
	$= \int_0^{\frac{2\pi}{\omega}} P dt = \pi r \omega A^2$ Where A is amplitude of the oscillation.	
	The energy dissipatio n per cycle:	
	$=\pi r \omega A^2$	
	$= 3.14 \times 0.06 \times 20 \times \left(\frac{0.15}{0.03 \times \sqrt{[(12/0.03) - 20^{2}]^{2} + 4 \times \left(\frac{0.06}{2 \times 0.03}\right)^{2} \times 20^{2}}}\right)^{2}$ $= 3.14 \times 0.06 \times 20 \times \frac{0.0225}{0.03 \times ((400 - 400)^{2} + 4 \times 1 \times 400)}$ $= 3.14 \times 1.2 \times \frac{0.0225}{0.03 \times 0.03 \times (1600)}$ $= 58.875 \times 10^{-3} J.$	
8 B	A mass of 0.05 kg rests on a horizontal table and is attached to one end of a spring of spring constant 12 N/m. The other end of the spring is attached to a rigid support. The mass is subjected to a harmonic driving force $F = F_0 \cos \omega t$, where $F_0 = 0.2$ N,	Part- B

	,	
	ω = 20 rad/s and a damping force F_d =-rv, where r = 0.06 kg/s. The energy dissipated per cycle (in mJ) by the damping force at an angular frequency 20 rad/s is	
	Ans: 2.3 (Range: 2.2 to 2.4)	
	Hints: Instantaneous power dissipated P = Force x Velocity \rightarrow The energy dissipated per	
	cycle = $\int_0^{\frac{2\pi}{\omega}} P dt = \pi r \omega A^2$ Where A is amplitude of the oscillation. The energy dissipation per cycle:	
	$=\pi r \omega A^2$	
)2	
	= 3.14×0.06×20×	
	$= 3.14 \times 0.06 \times 20 \times \left[\frac{0.2}{0.05 \times \sqrt{[(12/0.05) - 20^2]^2 + 4 \times \left(\frac{0.06}{2 \times 0.05}\right)^2 \times 20^2}} \right]$	
	$=3.14\times0.06\times20\times\frac{0.04}{0.05\times0.05\times((240-400)^2+4\times0.36\times400)}$	
	$=3.0144 \times 20 \times \frac{1}{25600 + 576} = 2.3 \times 10^{-3} J.$	
8 C	A mass of 0.05 kg rests on a horizontal table and is attached to one end of a spring of spring constant 12 N/m. The other end of the spring is attached to a rigid support. The mass is subjected to a harmonic driving force $F = F_0 \cos \omega t$, where $F_0 = 0.2$ N, $\omega = 2$ rad/s and a damping force F_d =-rv, where $r = 0.06$ kg/s. The energy dissipated per cycle (in mJ) by the damping force at an angular frequency 2 rad/s is	Part- B
	Ans: 0.108 (Range: 0.09 to 0.13) 0.108	
	Hints: Instantaneous power dissipated $P = Force \times Velocity \rightarrow The energy dissipated per$	
	cycle = $\int_0^{\frac{2\pi}{\omega}} P dt = \pi r \omega A^2$ Where A is amplitude of the oscillation.	
	The energy dissipation per cycle:	
	$=\pi r \omega A^2$	
	$= 3.14 \times 0.06 \times 2 \times \left(\frac{0.2}{0.05 \times \sqrt{[(12/0.05) - 2^2]^2 + 4 \times \left(\frac{0.06}{2 \times 0.05}\right)^2 \times 2^2}} \right)^2$	
	$= 3.14 \times 0.06 \times 2 \times \frac{0.04}{0.05 \times 0.05 \times ((240 - 4)^2 + 4 \times 0.36 \times 4)}$	
	$= 3.0144 \times 2 \times \frac{1}{55696 + 5.76} = \frac{60.288}{55701.76} = 1.08 \times 10^{-4} J.$	
9 A	A mass of 0.03 kg rests on a horizontal table and is attached to one end of a spring of spring constant 12 N/m. The other end of the spring is attached to a rigid support. The mass is subjected to a harmonic driving force $F = F_0\cos \omega t$, where $F_0 = 0.15$ N, $\omega = 20$ rad/s and a damping force F_d =-rv, where $r = 0.06$ kg/s. The Amplitude (in cm) of the steady-state oscillations at frequency 20 rad/s is	Part- A

	Ans: 12.5 (Range: 10 to 15)	<u> </u>	
	· · · · · · · · · · · · · · · · · · ·		
	Hints: $A = \frac{F_0}{\left[m\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\beta^2 \omega^2}\right]}$		
	$\begin{bmatrix} m\sqrt{(\omega_0-\omega_0)} & 1+p-\omega \end{bmatrix}$		
9 B	A mass of 0.03 kg rests on a horizontal table and is attached to one end of a spring of spring constant 12 N/m. The other end of the spring is attached to a rigid support. The mass is subjected to a harmonic driving force $F = F_0 \cos \omega t$, where $F_0 = 0.15$ N, $\omega = 2$ rad/s and a damping force F_d =-rv, where $r = 0.06$ kg/s. The Amplitude (in cm) of the steady-state oscillations at frequency 2 rad/s is		Part-A
	Ans: 1.3 (Range: 1 to 1.5)		
	Hints: A = $\frac{F_0}{\left[m\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}\right]}$		
9 C	A mass of 0.03 kg rests on a horizontal table and is attached to one end of a spring of spring constant 12 N/m. The other end of the spring is attached to a rigid support. The mass is subjected to a harmonic driving force $F = F_0 \cos \omega t$, where $F_0 = 0.15$ N, $\omega = 20$ rad/s and a damping force F_d =-rv, where $r = 0.06$ kg/s. The magnitude of the phase angle (in radians) between the driving force and the displacement of the mass for steady-state oscillations at a frequency 20 rad/s is		Part-A
	Ans: 1.57 (Range: 1.5 to 1.6)		
	Hints: $\phi = \tan^{-1} \left(\frac{2\beta\omega}{\omega_0^2 - \omega^2} \right)$		
10 A	A mass of 0.5 Kg, attached to a spring, exhibiting under damped oscillations with a time period $T = \frac{2\pi}{6}$ sec in a medium with damping constant (r) 2 N s/m. When the medium is changed then the corresponding change in the time period is $\frac{2\pi}{4}$ sec. Calculate the damping constant (r) of the new medium in N s/m.	2 Marks	Part-B
	Ans: 5.85 (Range: 3 to 6)		
	Solution (10A): $New\ Time\ period = \frac{2\pi}{6} + \frac{2\pi}{4} = \frac{5\pi}{6}; \ \omega_{new} = 2.4;$ $\omega_1^2 = \omega_0^2 - \beta_1^2 \ ; \ \omega_0^2 = \frac{k}{M} = \ \omega_1^2 + \beta_1^2 \ ; \ k = 0.5(6^2 + 2^2) = 20\ \text{N/m}^2$ $\beta_2^2 = \left(\frac{r_2}{2\ M}\right)^2 = \omega_0^2 - \ \omega_{new}^2 = \frac{20}{0.5} - \ 2.4^2$ $r_2 = 2\ M\sqrt{40 - 5.76} = \sqrt{34.24} = 5.85\ N\ s/m$		
10 B	A mass of 0.5 Kg, attached to a spring, exhibiting under damped oscillations with a time period $T = \frac{2\pi}{6}$ sec in a medium with damping constant (r) 2 N s/m. When the medium is changed then the corresponding change in the time period is $\frac{2\pi}{5}$ sec. Calculate the damping constant (r) of the new medium in N s/m.	2 Marks	Part-B
	Ans: 5.70 (Range: 3 to 6)		
	Solution (10B):		
	New Time period $=$ $\frac{2\pi}{6}$ $+$ $\frac{2\pi}{5}$ $=$ $\frac{11\pi}{15}$; ω_{new} $=$ 2.73;		

	J.		
	$\omega_1^2 = \omega_0^2 - \beta_1^2$; $\omega_0^2 = \frac{\kappa}{M} = \omega_1^2 + \beta_1^2$; $k = 0.5(6^2 + 2^2) = 20 N/m$		
	$\beta_2^2 = \left(\frac{r_2}{2M}\right)^2 = \omega_0^2 - \omega_{new}^2 = \frac{20}{0.5} - 2.73^2$		
	$r_2 = 2 M \sqrt{40 - 7.45} = 5.70 N s/m$		
10 C	A mass of 0.5 Kg, attached to a spring, exhibiting under damped oscillations with a time period	2	Part-
	$T = \frac{2\pi}{5}$ sec in a medium with damping constant (r) 1 N s/m. When the medium is changed	Marks	В
	then the corresponding change in the time period is $\frac{2\pi}{3}$ sec. Calculate the damping constant (r) of the new medium in N s/m.		
	Ans: 4.74 (Range: 3 to 6)		
	Solution (10C): Solution		
	New Time period $=$ $\frac{2\pi}{3} + \frac{2\pi}{5} = \frac{16\pi}{15}$; $\omega_{new} = 1.875$;		
	$\omega_1^2 = \omega_0^2 - \beta_1^2$; $\omega_0^2 = \frac{k}{M} = \omega_1^2 + \beta_1^2$; $k = 0.5(5^2 + 1^2) = 13 N/m$		
	$\beta_2^2 = \left(\frac{r_2}{2M}\right)^2 = \omega_0^2 - \omega_{new}^2 = \frac{13}{0.5} - 1.875^2$		
	$r_2 = 2 M\sqrt{26 - 3.51} = 4.74 N s/m$		
11A	A mass of 0.5 Kg is attached to a spring, with the spring constant 4.5 N/m, exhibiting damped oscillations. The damping constant (r) is 5 N s/m. At the initial time (t = 0) an initial velocity is given to the mass which is 2 m/s and the initial position $x = 0$. Find the position (in cm) of the mass after 0.1 seconds. Note that $\omega_0^2 = 9$; $\beta = 5$.	1 Marks	Part-A
	Ans: 12.45 (Range: 12 to 13)		
	Solution (11A): Oscillations of overdamped.		
	The solution is $x(t) = \frac{v_0}{\omega} e^{-\beta t} \sinh(\omega t)$		
	$v_0 = 2\frac{m}{s}$; $\omega = \sqrt{\beta^2 - \omega_0^2} = \sqrt{25 - 9} = 4$		
	x(t = 0.1) = 0.124567 m => 12.45 cm		
11 B	A mass of 0.5 Kg is attached to a spring, with the spring constant 4.5 N/m, exhibiting damped oscillations. The damping constant (r) is 5 N s/m. At the initial time (t = 0) an initial velocity is given to the mass which is 2 m/s and the initial position $x = 0$. Find the position (in cm) of the mass after 0.2 seconds. Note that $\omega_0^2 = 9$; $\beta = 5$.	1 Marks	Part- A
	Ans: 16.33 (Range: 15.3 to 17.3)		
	Solution (11B):		
	Oscillations of overdamped. The solution is $x(t) = v_0 - a^{-\beta}t$ Sinh(α)		
	The solution is $x(t) = \frac{v_0}{\omega} e^{-\beta t} \sinh(\omega t)$		
	$v_0 = 2\frac{m}{s}$; $\omega = \sqrt{\beta^2 - \omega_0^2} = \sqrt{25 - 9} = 4$		
	x(t = 0.2) = 0.1633 m = 16.33 cm		

11 C	A mass of 0.5 Kg is attached to a spring, with the spring constant 4.5 N/m, exhibiting damped oscillations. The damping constant (r) is 5 N s/m. At the initial time (t = 0) an initial velocity is given to the mass which is 2 m/s and the initial position $x = 0$. Find the position (in cm) of the mass after 0.5 seconds. Note that $\omega_0^2 = 9$; $\beta = 5$.	1 Marks	Part-A
	Ans: 14.88 (Range: 13.8 to 15.8)		
	Solution (11C): Oscillations of overdamped. The solution is $x(t) = \frac{v_0}{\omega} e^{-\beta t} \sinh(\omega t)$		
	$v_0 = 2\frac{m}{s}$; $\omega = \sqrt{\beta^2 - \omega_0^2} = \sqrt{25 - 9} = 4$ x(t = 0.5) = 0.1488 m = 14.88 cm		
12 A	The given LCR (L=0.01 H, C=1 μF , and R=400 Ω) circuit follows the differential equation for voltage	1 Mark	Part A
	$C\frac{d^2V}{dt^2} + \frac{1}{R}\frac{dV}{dt} + \frac{1}{L}V = 0$		
	The quality factor of the circuit is R L C L		
	Ans: 4 (3 to 5)		
	Hints: $Q_p = R\sqrt{\frac{C}{L}} = 400 \sqrt{\frac{10^{-6}}{0.01}} = 4,$		
12 B	The given LCR (L=0.1 mH, C=1 $\mu F,$ and R=400 Ω) circuit follows the differential equation for voltage	1 Mark	Part A
	$C\frac{d^2V}{dt^2} + \frac{1}{R}\frac{dV}{dt} + \frac{1}{L}V = 0$		
	The quality factor of the circuit is		
	Ans: 40 (39 to 41)		
	Hints: $Q_p = R\sqrt{\frac{C}{L}} = 400 \sqrt{\frac{10^{-6}}{0.1 \times 10^{-3}}} = 40,$		
12 C	The given LCR (L=0.01 H, C=1 μ F, and R=2 Ω) circuit follows the differential equation for	1 Mark	Part
	charge. The quality factor of the circuit is		A
	Ans: 50 (49 to 51)		
	Hints: $L\ddot{q}(t) + R\dot{q} + \frac{1}{2}q = 0$		
	Hints: $L\ddot{q}(t) + R\dot{q} + \frac{1}{C}q = 0$ $Q_s = \frac{1}{R}\sqrt{\frac{L}{C}} = \frac{1}{2}\sqrt{\frac{0.01}{10^{-6}}} = \frac{100}{2} = 50,$		

Part-

Α

Marks

Find the first two of the lowest standing wave frequencies on a rod of length 2m clamped at one end and free at the other. Waves on a metal rod travel at **3450m/s**.

$${\boldsymbol f}_1 =$$
 ------ Hz and ${\boldsymbol f}_2 =$ ------ Hz

Ans.
$$f_1 = 431.25$$
 and $f_2 = 1293.75$

Range: f₁= 425 to 435

f₂= 1285 to 1300

To find the frequency of this standing wave, we use Equation (16-1):

$$v = \lambda t$$

From our forced locations of nodes and antinodes in the drawing we also know that:

$$L = \lambda/4$$
 or $\lambda = 4L$

Substituting and solving for f we conclude that the frequency of the standing wave is:

$$f = v/(4L) = (3450m/s) / (4 \cdot 2m) = 431.25Hz$$

	Counting the number of nodes and antinodes in the drawing we see that here: $L = 3\lambda/4 \text{ or } \lambda = 4L/3$ Substituting and solving for f we conclude that the frequency of the standing wave is: $f = 3\nu/(4L) = (3 \cdot 3450m/s) / (4 \cdot 2m) = 1293.75Hz$		
14B	Find the first two of the lowest standing wave frequencies on a rod of length 2m clamped at both ends. Waves on a metal rod travel at 3450m/s .	2 Marks	Part- A
	$oldsymbol{f_1} =$		
	Ans. $f_1 = 862.5$ and $f_2 = 1725$		
	Range: $f_1 = 855 \ to \ 870$		
	$f_2 = 1720 \ to \ 1730$		
	This is the rather clearly half of a wave so that we see:		
	$L = \lambda/2 \text{ or } \lambda = 2L$ Substituting and solving for f we conclude that the frequency of the standing wave is: $f = v/(2L) = (3450m/s) / (2 \cdot 2m) = 862.5Hz$		
	L = 2m		
	We can see that this is a full wave, so we get:		
	$L = \lambda$ Substituting and solving for f we conclude that the frequency of the standing wave is:		
	f = v/(L) = (3450m/s) / (2m) = 1725Hz		
14C	Waves on a metal rod of length 2m travel at 3450m/s . Find the lowest standing wave	2	Part-
	frequency (f_1) on the rod if the rod is clamped at one end and free at the other. If the rod is clamped at both ends then what is the lowest standing wave frequency (f_2)	Marks	Α
		•	

$$f_1 =$$
 ------ Hz and $f_2 =$ ------ Hz

Ans.
$$f_1 = 431.25$$
 and $f_2 = 862.5$

Range:
$$f_1 = 425$$
 to 435

$$f_2 = 855 to 870$$

To find the frequency of this standing wave, we use Equation (16-1):

$$v = \lambda f$$

From our forced locations of nodes and antinodes in the drawing we also know that:

$$L = \lambda/4$$
 or $\lambda = 4L$

Substituting and solving for f we conclude that the frequency of the standing wave is:

$$f = v/(4L) = (3450m/s) / (4 \cdot 2m) = 431.25Hz$$

This is the rather clearly half of a wave so that we see:

$$L = \lambda/2$$
 or $\lambda = 2L$

Substituting and solving for f we conclude that the frequency of the standing wave is:

$$f = v/(2L) = (3450m/s) / (2 \cdot 2m) = 862.5Hz$$

Part-

В

Marks

12	Consider two waves defined by the wave functions
	Consider two waves defined by the wave functions
I A	

 $y_1(x,t) = 0.50 \, sin \left(\frac{2\pi}{3.00} x + \frac{\pi}{2.00} t \right)$ and $y_2(x,t) = 0.50 \, sin \pi \left(\frac{x}{3.00} - \frac{2t}{4.00} \right)$ in SI units. The speed of the waves in SI unit are respectively $v_1 = ----$ and $v_2 = ----$

Ans: $v_1 = 0.75$ and $v_2 = 1.50$

Range: $v_1 = 0.70$ to 0.80; $v_2 = 1.40$ to 1.60

Solution: $v_1 = \frac{\omega}{k} = \frac{\pi}{2.00} / \frac{2\pi}{3.00} = 0.75 \text{ m/sec}$ and $v_2 = \frac{\omega}{k} = \frac{2\pi}{4.00} / \frac{\pi}{3.00} = 1.5 \text{ m/sec}$

		T _	
15B	Consider two waves defined by the wave functions $y_1(x,t) = 0.20 \sin \left(\frac{2\pi}{6.00}x - \frac{\pi}{100}\right)$	1 Marks	Part- B
	$\frac{\pi}{2.00}t$) and $y_2(x,t) = 0.20 \cos \frac{\pi}{3}(x-1.5t)$ in SI units. The speed of the waves in		
	SI unit are respectively $v_1 =$ and $v_2 =$		
	Ans: $v_1 = 1.50$ and $v_2 = 1.50$		
	Range: 1.40 to 1.60 for both.		
	Solution: $v_1 = \frac{\omega}{k} = \frac{\pi}{2.00} / \frac{2\pi}{6.00} = 1.50 \text{ m/sec}$ and $v_2 = \frac{\omega}{k} = \frac{1.5\pi}{3} / \frac{2\pi}{6} = 1.50 \text{ m/sec}$		
15C	Consider two waves defined by the wave functions $y_1(x,t) = 0.50 \sin \pi \left(\frac{x}{4.00} - \frac{x}{4.00}\right)$	1 Marks	Part- B
	$\frac{2t}{4.00}$) and $y_2(x,t) = 0.20 \cos \frac{\pi}{3}(x+1.5 t)$ in SI units. The phase velocity of the	IVIGIRS	D
	waves in SI unit are respectively $v_1 = \cdots$ and $v_2 = \cdots$		
	Ans: $v_1 = 2.0$ and $v_2 = 1.50$ or -1.50		
	Range: v ₁ = NA		
	$v_2 = 1.40 \ to \ 1.60$		
	-1.40 to -1.60		
	Solution: $v_1 = \frac{\omega}{k} = \frac{2\pi}{4.00} / \frac{\pi}{4.00} = 2.0 \text{ m/sec}$ and $v_2 = \frac{\omega}{k} = \frac{1.5\pi}{3} / \frac{2\pi}{6} = 1.50 \text{ m/sec}$		
	1.50 m/sec		
16 A	A wave is described by the equation $Y=10 \sin 2\pi \ (2t-x/\lambda)$. All quantities are in	1 Marks	Part- A
	SI units. If the maximum particle velocity is equal to 6 times the wave velocity, then	TVIGINO	, ,
	the wavelength (in m) of the wave is		
	Ans: 10.47		
	Range: 9.5 to 11.5		
	Sol: $(dy/dt)_{max} = 40\pi = 6*2*\lambda$		
16	A wave is described by the equation $Y = 5 \sin 2\pi (4t - x/\lambda)$. All quantities are in SI	1	Part-
В	units. If the maximum particle velocity is equal to 6 times the wave velocity, then the wavelength (in m) of the wave is	Marks	Α
	Ans: 5.23		
	Range: 4.5 to 6.5		
	Sol: (dy/dt) $_{\text{max}}$ = 40 π = 6*4* λ		
L		<u> </u>	

16 C	A wave is described by the equation $Y=4\sin 2\pi \ (6t-x/\lambda)$. All quantities are in SI units. If the maximum particle velocity is equal to 6 times the wave velocity, then the wavelength (in m) of the wave is	1 Marks	Part- A
	Ans: 4.19		
	Range: 3.5 to 5.5 (dy/dt) $_{\text{max}}$ = 48 π = 6*6* λ		
17	A travelling pulse is represented by $f(x,t) = \frac{0.6}{(10x+20t)^2+4}$, where x and f are in	2 Marks	Part- B
A	meters and t in seconds.	IVIdIKS	Б
	(a) The distance travelled by the pulse in 5 sec is m		
	(b) The maximum displacement is cm		
	Ans: (a) 10; Range: NA		
	(b) 15 cm ; Range: 14 to 16		
	Sol: $f(x,t) = \frac{0.6}{(10x+20t)^2+4} = \frac{0.6}{100(x+2t)^2+4}$		
	(a) The distance travelled by the wave= velocity * time= 2*5= 10 m		
	(b) The displacement is maximum when x+2=0 \rightarrow f _{max} = 0.6/4 = 15 cm		
17 B	A travelling pulse is represented by $f(x,t) = \frac{1}{(20x-40t)^2+5}$, where x and f are in	2 Marks	Part-
	meters and t in seconds.		
	(a) The distance travelled by the pulse in 3 sec is m		
	(b) The maximum displacement is cm		
	Ans: (a) 6; Range: NA		
	(b) 20; Range: 19 to 21		
17 C	A travelling pulse is represented by $f(x,t) = \frac{10}{(5x+20t)^2+5}$, where x and f are in meters	2 Marks	Part- B
	and t in seconds.		
	(a) The distance travelled by the pulse in 2 sec is m		
	(b) The maximum displacement is m		
	Ans: (a) 8; Range: NA (b) 2; Range: NA		

18A	On a string with a length of 0.75 m and a mass of 150 g formed 1.5 sinusoidal waves with a frequency of 50 Hz. The tension of the rope is	1 Mark	Part- A
	Ans: 125 N (Range: NA)		
	Sol: Given, $l = 0.75 \text{ m}$, $m = 0.15 \text{ kg}$, $v = 50 \text{ Hz}$.		
	$\mu = \frac{0.15}{0.75} = 0.2 \text{ kg/m}.$		
	$\lambda = \frac{0.75}{1.5} = 0.5 \text{ m}, \text{ v} = 50 \times 0.5 = 25 \text{ m/s}.$		
	$T = v^2 \mu = 625 \times 0.2 = 125 N.$		
18B	On a string with length of 1.05 m and mass of 105 g formed 1.5 sinusoidal waves with frequency of 50 Hz. The tension of the rope is	1 Mark	Part- A
	Ans: 122.5 N (Range: 121 to 124)		
	Sol: Given, $l = 1.05 \text{ m}$, $m = 0.105 \text{ kg}$, $v = 50 \text{ Hz}$.		
	$\mu = \frac{0.105}{1.05} = 0.1 \text{ kg/m}.$		
	$\lambda = \frac{1.05}{1.5} = 0.7 \text{ m}, \text{ v} = 50 \times 0.7 = 35 \text{ m/s}.$		
	$T = v^2 \mu = 1225 \times 0.1 = 122.5 N.$		
18C	On a string with length of 1.2 m and mass of 150 g formed 1.5 sinusoidal waves with frequency of 40 Hz. The tension of the rope is	1 Mark	Part- A
	Ans: 128 N (Range: NA)		
	Sol: Given, $l = 1.2 \text{m}$, $m = 0.15 \text{kg}$, $v = 40 \text{Hz}$.		
	$\mu = \frac{0.15}{1.2} = 0.125$ kg/m.		
	$\lambda = \frac{1.2}{1.5} = 0.8 \text{ m}, \text{ v} = 40 \times 0.8 = 32 \text{ m/s}.$		
	$T = v^2 \mu = 1024 \times 0.125 = 128 N.$		
19A	A wire of length 1.5 meters and mass 150 grams is fixed between two points under a tension of 90 N. A standing wave has formed which has seven nodes including the end points. What is the frequency (in Hz) of this wave? 2 Marks	2 Marks	Part- B
	Ans: 60 (Range: NA) Sol: Fraguency = n velocity		
	Sol: $Frequency = n \frac{velocity}{2 \ length}$		
	$velocity = \sqrt{\frac{T}{\mu}}$; $\mu = \frac{mass}{length} = \frac{0.15}{1.5} = 0.1 \frac{Kg}{m}$; $velocity = 30 \text{ m/s}$		
	Frequency = $6\frac{30}{2*1.5} = 6*10 = 60 \text{ Hz}$		

19B	A wire of length 2.5 meters and mass 250 grams is fixed between two points under a tension of 40 N. A standing wave has formed which has four nodes including the end points. What is the frequency (in Hz) of this wave?	2 Marks	Part- B
	Ans: 12 (Range: NA)		
	Sol: $Frequency = n \frac{velocity}{2 \ length}$		
	$velocity = \sqrt{\frac{T}{\mu}}$; $\mu = \frac{mass}{length} = \frac{0.25}{2.5} = 0.1 \frac{Kg}{m}$; $velocity = 20 \text{ m/s}$		
	Frequency = $3\frac{20}{2*2.5} = 3*4 = 12 Hz$		
19C	A wire of length 1.5 meters and mass 150 grams is fixed between two points under a tension of 90 N. A standing wave has formed which has six nodes including the end points. What is the frequency (in Hz) of this wave?	2 Marks	Part- B
	Ans: 50 (Range: NA)		
	Sol: $Frequency = n \frac{velocity}{2 \ length}$		
	$velocity = \sqrt{\frac{T}{\mu}}$; $\mu = \frac{mass}{length} = \frac{0.15}{1.5} = 0.1 \frac{Kg}{m}$; $velocity = 30 \text{ m/s}$		
	Frequency = $5\frac{30}{2*1.5} = 5*10 = 50 \text{ Hz}$		
20A	A string of length 3 meters fixed between two points, A (left) and B (right), under tension 90 N. A standing wave has produced with five nodes including the end points. What is the position of the third antinode from the end B (in m)?	1 Mark	Part- A
	Ans: +1.88 (Range:1.75 to 1.95) or -1.88 (Range:-1.75 to -1.95)		
	Sol: Distance between two nodes is $3/(5-1) = 3/4$ meters. Answer is $3/4 + 3/4 + 3/8 = 15/8 = 1.875$ meters		
20B	A string of length 4 meters fixed between two points, A (left) and B (right), under tension 100 N. A standing wave has produced with five nodes including the end points. What is the position of the third antinode from the end B (in m)?	1 Mark	Part- A
	Ans: +2.5 (Range: 2.4 to 2.6) or -2.5 (Range: -2.4 to -2.6) Sol: Distance between two nodes is 4/(5-1) = 1 meter. Answer is 4/4 + 4/4 + 4/8 = 2.5 meters		
20C	A string of length 2 meters fixed between two points, A (left) and B (right), under tension 70 N. A standing wave has produced with five nodes including the end points. What is the position of the third antinode from the end B (in m)?	1 Mark	Part- A
	Ans: +1.25 (Range: 1.15 to 1.35) or -1.25 (Range: -1.15 to -1.35)		
	Sol: Distance between two nodes is $2/(5-1) = 0.5$ meter. Answer is $0.5 + 0.5 + 0.25 = 1.25$ meters		