Basics of Polymer Science & Its Chronological Development

Dr. Vimal Katiyar
Department of Chemical Engineering
Indian Institute of Technology Guwahati

What is Polymer?

Monomer (elementary repeat unit)

- □Number of small molecules capable of polymerizing
- ☐ Mass of one polymer chain (M)=N × M_{mon}

(No of elementary repeat unit)

Dimer
$$O + O \longrightarrow O \longrightarrow O$$

Trimer
$$O-O+O \longrightarrow O-O-O$$

Polymer
$$\begin{bmatrix} -O - O \end{bmatrix}_n$$
 + $O \longrightarrow \begin{bmatrix} -O - O \end{bmatrix}_{n+}$

Basic Definitions and Nomenclature

Skeletal Structure

Short Branch skeletal

Network skeletal

Large branch skeletal

Dendrimer

Ring

Star-branched

Ladder

H-branched

Basic Definitions and Nomenclature

- Density: Depends on packing of polymer chains
- Strength
 - □Linear PE has higher MP about 20 than that of branched PE
 - □Unlike linear or branched polymers Network does not melt upon heating and will not dissolve
 - □It may swell in compatible solvents properties can be change by tailoring crosslink density.
 - □Cross-linked polymer characterized by their crosslink density or degree of crosslinking related to (no. of junction points per unit volume)

Polymers Based on sequence of Monomers

- **❖** Heteropolymer: Copolymer, terpolymer,...
- ***Copolymer:**
 - **□**Polymer derived from more than one monomer
 - □Polymers whose molecules contains two or more different type of repeat units.
 - Simplest copolymers: A ● and B ● repeat unit.
 - □Statistical copolymers: copolymers in which the sequential distribution of the repeat units obey known statistical law (Markovion)
 - □Random copolymers: Here distribution of repeat units is truly random.
 - □ Alternating copolymers

Polymers Based on sequence of Monomers

❖ Block polymers: where repeat units exist only in long sequences (linear polymers) or blocks of same type.

- ❖Graft polymers: Branched polymers in which the branches have a different chemical structure to that of the main chain.
 - □BC and GC generally show properties characteristics of each of the constituent homopolymer.

Principles of nomenclature for copolymers

Type of copolymers

- **□**Unspecified
- **□Statistical**
- **□**Random
- **□**Alternating
- □Block
- □Graft*

Examples of nomenclature

- Poly(A-co-B)
- Poly(A-stat-B)
- Poly(A-ran-B)
- Poly(A-alt-B)
- PolyA-block-polyB
- PolyA-graft-polyB

Classification of Polymers (Based on molecular structure of the polymers)

Force of intermolecular attraction

❖In the beginning...

- □First natural plastics
 - Tortoise shell
 - Tree resins
 - Insect secretion

- **□Opened business with the use of natural polymers**
- □Made combs out of organic proteins (Keratin and Albuminiod) derived from animal horns, hoofs, an tortoise shells

❖Natural rubber:

mainly polyisoprene

- ☐ Tends to be sticky when hot, brittle when warm
- □Does not reform when stretched
- **□**1851: Hard Rubber— 20-30% Sulfur

Greatly enhances its elasticity and toughness

Charles Goodyear, 1839

His "sulfurized" rubber, later known as "vulcanized" rubber, is still widely used today

❖Cellulose nitrate

Semi-synthetic plastic

- □ Could be heated, formed, and it retained its shape when cooled.
- ☐ Can be molded or carved into products such as buttons, combs, picture frames knife and handles.
- ☐ This was never commercialized due its relatively high cost compared to vulcanized rubber.
- Mix of cotton (wife's apron), nitric acid, and sulfuric acid

Alexander Parkes, 1862

Examples:Buttons, Combs, Pens

- ☐ Blended nitrocellulose with camphor (sap from the laurel tree)
- □ Produce a durable, colorful, and moldable thermoplastic known as *celluloid*.
- ☐ Celluloid was the first commercially successful semi-synthetic plastic.

- *Shirt collars
- *Eyeglass frames
- *Pen housings

John Wesley Hyatt *celluloid* in 1868

Bakelite (1907)

Dr. Leo Baekeland (Belgian born chemist)

- ☐ First totally synthetic plastic
- □Didn't throw away his foul glassware

Catalyst: hexamethylenetetramine

❖Patented in 1909: Right to Kodak Co. (Camera)

- ☐ Thermoset resin, replaced rubber for insulation in electrics
- □ Properties: electrically resistant, chemically stable, heat resistant, rigid, moisture and weather resistant.
- ☐ Hyatt-Burroughs Billiard Ball Company replaced celluloid by Bakelite for their billiard balls due to its superior performance.

IIT Guwahati

Polyvinyl Chloride (PVC)

- ☐ Invented by the German chemist Eugen Baumann.
- Waldo L. Semon, invented a way to make polyvinyl chloride (PVC) useful by adding Plasticizer
- □ PVC is a thermoplast and its formulations can be either rigid or flexible depending their plasticizer concentration.
- □ Initial application for PVC included foul weather gear and electrical wire insulation.

❖Baumann's 1872 experiment

Plasticizers

Polystyrene

❖Scientist from the BASF Corporation developed a commercial process for the manufacture of PS IN 1930.

1939: Wood TV Cabinet

1948: Phenolic TV Cabinet

1970: HIPS TV Cabinet

- ☐ Toy shark, in Polystyrene, with moving jaw, Made in USA around 1950
- □ Dow Chemical brought polystyrene to the U.S. in 1937
- □ Foam egg cartons, burger containers, coffee cups, "peanuts" used in packing and the lightweight foam pieces that cushion new appliances and electronics.
 - •Gas is blown in during the polymerization-- 95 % of styrofoam is air (try dissolving in acetone)
 - ■CFC's were used until the 80's: phased out and replaced with pentane or CO₂

Nylon

- ❖1930's research on polymer chains at DuPont Chemical Department Invented Neoprene and Nylon
- ❖Dr. Wallace H. Carothers, pulled the first long, strong, flexible strands of a synthetic polymer fiber out of a test tube & introduced commercially in 1938.
 - ☐ This artificial fiber had properties similar and in many ways superior to natural fibers.
 - ☐ The material, *poly(hexamethylene adipamide)*, is more commonly known as "nylon 66". One of the earliest uses of nylon 66 fiber: tooth brush bristles.
- **❖During World War II, nylon was used for many applications**
 - ☐ cargo parachutes,
 - □ tire cord for bombers,
 - ☐ glider tow ropes,
 - ☐ flak jackets, mosquito netting,
 - Jungle clothing

Condensates of aliphatic diacids with aliphatic diamines

co-crystalline Nylon 66

Synthetic Rubbers

Neoprene: The first Synthetic Rubber

benzoyl peroxide inititates free radical polymerization

Applications:

7/31/2021

- Gasoline pump hoses,
- Hoses for automobile engines

❖PMMA anionic polymerization (1937)

- □PMMA is a very hard material and have superior optical properties
- ☐ Transparent than glass
- □Used as Hard and soft contact lenses
- **□**Thermoformed aircraft canopies.

□Automotive tail light lenses due to its, where it is still used today.

PMMA is also used as acrylic fibers, paints and coatings, and as a marble replacement for kitchen countertops.

- **❖Polyethylene Terephthalate (PET), 1941**
 - □ Extremely versatile thermoplastic
 - Made by the condensation reaction of ethylene glycol and terephthalic acid.
 - ☐ Initially used for the production of synthetic textile fiber, know today as Dacron®.
 - □ Biaxially oriented PET film, known as Mylar®
 - ☐ However, largest use for PET is -"stretch blow molded" transparent, lightweight, have good barrier properties, and shatter resistant beverage bottles.
 - **□** PET is recyclable.
 - Recycled PET bottles are reprocessed to form PET textile fiber for clothing.

:

IIT Guwahati

Mylar

Polytetrafluoroethylene (PTFE)

- □DuPont Central Research
- ☐First used for artillery shell covers

❖Polytetrafluoroethylene (PTFE), 1938.

- □ DuPont scientist Dr. Roy Plunkett, accidentally discovers polytetrafluoroethylene (PTFE).
- □An inherently slippery and remarkably chemically resistant plastic. Most slippery substance on earth.
- □Commercial introduction of DuPont's Teflon® 1946.
- ☐Teflon® is most widely known for its widespread use in nonstick cookware
- □Cable insulation.
- ☐ Teflon® sheet is used as an insulator and lubricant between the copper skin and the stainless steel skeleton of the Statue of Liberty.
- ☐ The roof of the Pontiac Silverdome is made of a Teflon® coated woven glass fiber fabric.

 IIT Guwahati

❖Polyethylene (1933)

- □Imperial Chemical Industries in England
- □E.W. Fawcett & R.O. Gibson

☐ First used for underwater cable coatings and insulation

for radar

Low density polyethylene

Karl Ziegler changed polymerization of polyethylene

Use of catalysts

Now is most widely produced and perhaps most versatile plastic

Polyethylene

Ultra High Molecular Weight Polyethylene (UHMWPE)

□One of the most interesting medical applications for UHMWPE is the "artificial hip".

□ Each prosthesis is made up of two parts: the acetabular acetabular component (socket portion) that replaces the acetabulum, and the femoral component (stem portion) that replaces the femoral head.

☐ The femoral component is made of titanium, while the acetabular component is made of a metal shell with a plastic inner socket liner. UHMWPE acts like a bearing. It is extremely tough, abrasion resistant and has a very low coefficient of friction.

☐ This is a very good example of how plastics and metals work together to enhance our quality of life.

Titanium

IIT Guwahati

stem

UHMWPE

❖Polyacrylonitrile butadiene styrene ABS (1951)

- ☐ "Blend" of SAN & butadiene rubber
- ☐Butadiene act as an impact modifier.
- □ if the SAN is chemically grafted onto the butadiene rubber

"terpolymer"-provide outstanding Impact strength.

Applications

- ☐ football helmets, which are now made from polycarbonate.
- □Today, ABS is most widely used for consumer electronics and business machine housings.

❖Glass Fiber Reinforced Plastic (1953)

- ☐General Motors introduced-Chevrolet *Corvette* in
- ☐Glass fiber reinforced plastic as a body material
- □ Car was available in white body and red
- □Interior 1953, and sold for \$3,498

2003 50th Anniversary Corvette

❖Polycarbonate (1953)

- □Hermann Schnell from Bayer A.G. & Daniel Fox from GEdiscovered PC
- □Optically transparent engineering thermoplastic
- □Unique combination having:
 - Stiffness and toughness, heat resistance and electrical insulating properties

■ Application

- Automotive headlights,
- Tool housings,
- Helmets and computer enclosures
- All CD's, CD-ROM's and DVD's

- ❖Polypropylene (1957)
- Guilio Natta continued Ziegler's work
 - ☐ Created polypropylene in 1957
 - ☐ Substituted for polyethylene where high temperatures were involved
 - □Ex. Dishwasher safe dishes
 - □Long chain stereo-regular polypropylene molecule.
 - □ Very good balance of properties include stiffness, toughness, chemical resistance, and translucent optics.
 - □Strong ability to form copolymers with most widely used thermoplastics.

Car's front bumper (1978)

"Plastic made MOON possible"

- ☐ July 20, 1969 –greatest technological achievement
- when Neil Armstrong set foot on the moon
- Plastics played an important roll.
- Apollo A7L space suits were a multi-layer plastic structure comprised of
 - Nylon fabric,
 - Neoprene coated nylon fabric,
 - Dacron® (PET) fabric,
 - Aluminized Mylar® (PET) film,
 - Kapton® (PI) film, and Teflon® (PTFE) coated fabric.
 - "fish bowl" helmet polycarbonate.
 - Space suits of today make even more extensive use of plastics.

★ Kevlar® (1960's)

- Five times stronger than steel (on a strength per weight basis)
- Kevlar® is a condensation polymers.
- Bulletproof vests are made;
- In fact, Kevlar® has dozens of important applications, including

Stephanie Kwolek

- •Radial tire cord,
- Brake pads,
- Racing boat sails,
- Aircraft components,
- Suspension bridge cables.

Hydrogen-Bonded Sheet

31

★ Kevlar® Thermal Stability

Stress-strain relation

❖Polyurethane (1937)

□Polyurethane- Formed by reacting a polyol (an alcohol with more than two reactive hydroxyl groups per molecule) with a di-isocyanate or a polymerid isocyanate

□ It can be molded, extruded, or cast,

□ Available as foams, coatings, specialty adhesives and sealants.

☐ The first artificial replacement heart, the *Jarvic-7*, was produced from

a flexible and fatigue resistant polyurethane.

☐ The toughness and abrasion resistance of polyurethane make it an ideal material for applications such as in-line skate wheels

Nobel Prize-Field of Polymers macromolecules

- Hermann Staudinger for his many discoveries in the field of macromolecular chemistry (1953)
- Karl Ziegler and Giulio Natta for their discoveries related to polymer chemistry and new polymerization technologies (1963)
- ❖ Paul J. Flory for fundamental achievements, both theoretical and experimental, in the physical chemistry of macromolecules (1974)
- P.G. de Gennes for creating the reptation model of polymer dynamics used to predict polymer properties and viscosity (1991)
- Alan J. Heeger, Alan G. MacDiarmid and H. Shirakawa for the discovery and development of inherently conductive polymers (2000)
- ❖ Atom Transfer Radical Polymerization-2005
- Robert Grubbs, Richard Schrock, Yves Chauvin for olefin metathesis (2005)

