(A Constituent College of Somaiya Vidyavihar University)
DEPARTMENT OF MECHANICAL ENGINEERING

Engineering Mechanics Lab

July - Dec 2023

Name: Ritesh S. Jha						
Batch: P4-1	Roll No.: 16010423076	Experiment No.: 10				
Marks:						
Signature of I	ab Teacher with date:					

1) Problem statement

Given the equation of motion x=7t^3+3t^2-6t+8

- 1. Find the expressions for velocity and acceleration.
- 2. Plot the graphs of displacement, velocity, and acceleration from t=0 to t=15s.

2) Analytical solution of the problem

Given equation of displacement (x) $x = 7t^3 + 3t^2 - 6t + 8$
$\frac{dx}{dt} = 21t^2 + 6t - 6 = \text{velocity}$
$d^2 x = 42t + 6 = acceleration$ dt^2

Department of Mechanical Engineering July - Dec 2023

(A Constituent College of Somaiya Vidyavihar University)
DEPARTMENT OF MECHANICAL ENGINEERING

Engineering Mechanics Lab

July - Dec 2023

3 7	Far the graph, we substitute the value of time t from O to 15s in the three equations,						
	1	74	. v	a			
	0	8	-6	6			
	2	46	78	90			
	4	200	246	174			
	6	532	486	258			
	8	1144	798	342			
	10	2154	1182	426			
	12	3696	1638	510			
	14	5880	2166	594			
	- 15	7248	.2457	636			

Department of Mechanical Engineering July - Dec 2023

(A Constituent College of Somaiya Vidyavihar University)
DEPARTMENT OF MECHANICAL ENGINEERING

Engineering Mechanics Lab

July - Dec 2023

Department of Mechanical Engineering July - Dec 2023

(A Constituent College of Somaiya Vidyavihar University)
DEPARTMENT OF MECHANICAL ENGINEERING

Engineering Mechanics Lab

July - Dec 2023

3) Screenshots of the work done in software showing input parameters, coding, graphs, results etc.

<u>Calculation of velocity and acceleration equations from displacement equations:</u>

```
[3] import matplotlib.pyplot as plt
import numpy as np
from sympy import symbols,diff,lambdify
from sympy.integrals.integrals import integrate

[4] t = symbols('t')

[5] eqn_x = (7*t**3)+(3*t**2)-(6*t)+8

[6] eqn_v = diff(eqn_x,t)
eqn_a = diff(eqn_v,t)

[7] int_v = integrate(eqn_v)
int_a = integrate(eqn_a,t)

Print("Velocity(dx/dt) = ",eqn_v)
print("Acceleration(dv/dt) = ",eqn_a)
print("\n\nIntegration of velocity is displacement= ",int_v)
print("Integration of acceleration is velocity = ",int_a)

Velocity(dx/dt) = 21*t**2 + 6*t - 6
Acceleration(dv/dt) = 42*t + 6

Integration of velocity is displacement= 7*t**3 + 3*t**2 - 6*t
Integration of acceleration is velocity = 21*t**2 + 6*t
```

1)Graph of displacement(x):

```
eq_fn = lambdify(t, eqn_x, modules='numpy')
tvalue = np.linspace(0,15,400)
xvalue = eq_fn(tvalue)
fig = plt.figure(figsize = (8,6))
plt.plot(tvalue,xvalue)
plt.xlabel('Time (t)')
plt.ylabel('Displacement (x)')
plt.title('Displacement vs Time')
plt.grid(True)
plt.show()
```

(A Constituent College of Somaiya Vidyavihar University)
DEPARTMENT OF MECHANICAL ENGINEERING

Engineering Mechanics Lab

July - Dec 2023

2)Graph of velocity(v):

```
eq_fn = lambdify(t, eqn_v, modules='numpy')
tvalue = np.linspace(0,15,400)
xvalue = eq_fn(tvalue)
fig = plt.figure(figsize = (8,6))
plt.plot(tvalue,xvalue)
plt.xlabel('Time (t)')
plt.ylabel('Velocity (v)')
plt.title('Velocity vs Time')
plt.grid(True)
plt.show()
```

(A Constituent College of Somaiya Vidyavihar University)
DEPARTMENT OF MECHANICAL ENGINEERING

Engineering Mechanics Lab

July - Dec 2023

3)Graph of acceleration(a):

```
eq_fn = lambdify(t, eqn_a, modules='numpy')
tvalue = np.linspace(0,15,400)
xvalue = eq_fn(tvalue)
fig = plt.figure(figsize = (8,6))
plt.plot(tvalue,xvalue)
plt.xlabel('Time (t)')
plt.ylabel('Acceleration (a)')
plt.title('Acceleration vs Time')
plt.grid(True)
plt.show()
```

(A Constituent College of Somaiya Vidyavihar University)
DEPARTMENT OF MECHANICAL ENGINEERING

Engineering Mechanics Lab

July - Dec 2023

4) Result

The velocity(v) is equal to $21t^2+6t-6$ and the acceleration(a) is equal to 42t+6. The graph of Displacement(x) vs Time(t) is of 3^{rd} order , the graph of Velocity(v) vs Time(t) is of 2^{rd} order & the graph Acceleration(a) vs Time(t) is linear.

5) Conclusion

We solved an Engineering Mechanics problem using both analytical methods and computational tools. Through mathematical derivations and expressions, we'll solve it analytically. Furthermore, Python will aid in graphical analysis, providing visual and numerical insights.