Genomic/Protein Databases

BIFX-550 S. Ravichandran, Ph.D. ravichandran@hood.edu

Discussion?s

- Midterm
 - Biology/basics (C1)
 - Command-line (C2-3)
 - Linux; R; edirect
 - Databases (C4)
 - NCBI, Ensembl, UniProt
 - Pairwise-Sequence comparison (C5-6)
 - Theory
 - Matrices (PAM/BLOSUM)
 - Dynamic Programming
 - BLAST (C7)
 - Tool for sequence comparison
 - MSA (C8)

2/6/2020

 Multiple sequence comparison S. Ravichandran, Ph.D. March 7 to 15 break Midterm: March 19

Discussion ?s

Final Project

 Have you decided on a gene for the final project?

Have you created an account for galaxy?

Discussion

 Explain how do you think Linux will be useful for your Bioinformatics career?

 Explain one case where the e-direct tool can be useful?

Are you challenged by R?

Database (DB)

- Electronic filing system
 - Yellow book or telephone book

- DB contains
 - Data
 - organized
 - Fields, records, files with links
 - Collection of data (biological data)

Database

- Good database should let users
 - Search
 - Compare
 - Download relevant information in a meaningful format

Databases

 As soon as WWW was born, Computer devices became the storage medium of choice

- Margaret Dayhoff and Colleagues (1965)
 - Protein sequences (book form; till 1970s)
 - Eventually it gave rise to PIR

Databases

- Primary
 - Original Submission
 - Authors (control the data)
 - GenBank, SNP
- Secondary
 - Derived from primary
 - annotations
 - controlled by DB creators (NCBI ex.)
 - NCBI protein, Refseq, TPA, UniGene, Structure, Conserved Domain, RefSNP etc.

Goals for this talk

How do we store, group, extract (easily) Genomic/Protein data and also use them for analysis?

Two common approaches in Bioinformatics

- Individual genes/mRNA/proteins
 - HBB, Locus, Chromosomes, isoforms etc.
 - Promoters, Introns, exons
 - Where/when is it expressed (tissues)?
 - Protein (structure, homodimer etc.)
 - Relationship to diseases
 - Variation of expression (SNP etc.)

Two common approaches in Bioinformatics

- Comparing genes
 - Can we compare all the variants across all genes from a family?
 - Globin family
 - For a specific mutated gene, we might want to compare the expression (mRNA) of all the genes in a cell type
 - Microarray and RNAseq
 - Having identified some 100 genes, can we sequence them and compare them?
 - For an individual?

Genomic Databases

Basic Unit of size

Base Pairs	Unit (bp)	Abbr.	Ex. size
1	1 base pair	1 bp	
10 ³	Killobase pair	1 kb	Coding region
10 ⁶	1 megbase pair	1 Mb	Bacterial genome
10 ⁹	1 gigabase pair	1 Gb	Human genome
10 ¹²	1 terabase pair	1 Tb	
10 ¹⁵	1 petabase pair	1 Pb	

Size of DNA

- 1 bp \sim 3.4 Angstrom \sim 3.4 x 10⁻⁹ m
 - 1 kilo bp = 1000 bp
 - 1 Mega bp = 1,000,000 bp
 - 1 Giga bp = 1,000,000,000 bp

3 billion bp in one copy of human genome. Total length ~ 2 meters

- Total DNA length
 - One copy 3 billion bp * (total # of cells in a body)
 - $(0.34 \times 10^{-9} \text{m}) * (2 * 3,000,000,000) * 10^{13}$
 - $-2*10^{13}$ m
- Length of human cell 10-100 micro m
 - -10^{-5} to 10^{-4} m

How much can I store?

3 Billion bp (a typical genome)

```
-3 \times 10^9 \text{ byte}
```

3 x Gigabyte

-3 GB

```
Kilobyte 10<sup>3</sup>
Megabyte 10<sup>6</sup>
Gigabyte 10<sup>9</sup>
Terabyte 10<sup>12</sup>
Petabyte 10<sup>15</sup>
```

Computers (work on bits, $1kilobyte = 2 \times 10^8 = 1024$)

Figures 2.1 Bioinformatics and Functional Genomics, (3rd Ed.) by Jonathan Pevsner

Data Sharing across three repositories and synced daily.

Let us focus on GenBank

GenBank

- Built and maintained at Los Alamos National Laboratory (LANL)
- 1990: Congressional Mandate moved to NCBI
 - Database: Literature scanning, typing
- 1993: Started direct data submission
- Mid 1990s: Collaborative efforts
 - DDBJ, EMBL, NCBI

GenBank

- Original submitted sequences
 - Primary database
- Nucletotide Sequences only
 - mRNA (with coding regions)
 - segments of genomic DNA (single or multiple genes)
 - Ribosomal RNA gene clusters
 - gene encodes a protein
 - CDs are added and eventually entered into protein db
- Redundant database

GenBank DNA-Level Data

- Divisions
- Main
 - mRNA or genomic sequence from the submitter
 - EST (Expressed Sequence Tags)
 - "short (usually <1000 bp), single-pass sequence reads from mRNA (cDNA)"
 - Post-splicing-after leaving nucleus...
 - GSS (Genomic Survey Sequences)
 - "most of the sequences are genomic in origin, rather than cDNA (mRNA)"
 - Pre splicing
 - Whole Genome Shotgun (WGS) Sequences
 - US Patent office (sequences from issued patents), other Sequencing centers etc...

NextGen

IonTorrent
Illumina
SOLiD
Helicos &
Complete
Genomics

Trace Archive

Seq. Data from Gel/Capillary Platforms ABI 3730

WG Shotgun

Figure 2.2 c from Bioinformatics and Functional Genomics, (3rd Ed.) by Jonathan Pevsnsr

SEQUENCES

BASES

GenBank: ~211 B

GenBank

GenBank: ~193 M

WGS ~338 M

WGS: Whole Genome Shotgun

Figures from NCBI

Whole-Genome Shotgun (WGS) NOT PART OF GenBank

Commonly Analyzed Genomes in GenBank

Table 2.4 from Bioinformatics and Functional Genomics, (3rd Ed.) by Jonathan Pevsner

Table 2.4 Ten most sequenced organisms in GenBank.

Entries	Bases	Species	Common name
20,614,460	17,575,474,103	Homo sapiens	Human
9,724,856	9,993,232,725	Mus musculus	Mouse
2,193,460	6,525,559,108	Rattus norvegicus	Rat
2,203,159	5,391,699,711	Bos taurus	Cow
3,967,977	5,079,812,801	Zea mays	Maize
3,296,476	4,894,315,374	Sus scrofa	Pig
1,727,319	3,128,000,237	Danio rerio	Zebrafish
1,796,154	1,925,428,081	Triticum aestivum	Bread wheat
744,380	1,764,995,265	Solanum lycopersicum	Tomato
1,332,169	1,617,554,059	Hordeum vulgare subsp. vulgare	Barley

Source: GenBank, NCBI, # ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt (GenBank release 194.0).

Figure 2.4 from

Functional

by

Bioinformatics and

Genomics, (3rd Ed.)

Jonathan Pevsnsr

Figures 2.4 from Bioinformatics and Functional Genomics, (3rd Ed.) by Jonathan Pevsner

Databases

Genome dbVar

GenBank SRA dbGSS dbHTGS UniSTS dbSNP

dbEST UniGene GEO profiles GEO datasets

UniProt Protein Data Bank Conserved Domain Database

Genomic Database in Detail

- DNA-Level (Sequence Tagged Sites (STSs)
- What is STS
 - ~500 bp genomic landmark sequences
 - Polymorphic; very useful for mapping
- What Organism?
 - Several hundred Organisms
- Where is it stored?
 - Probe DB

Search Probe using unists["Properties"]

Unists used to be an STS db

https://www.ncbi.nlm.nih.gov/probe

High-Throughput Genomic Sequence (HTGS)

- What are HTGS sequences?
 - "unfinished" genomic data but made rapidly available for scientific study
- Where is the data coming from?
 - high-throughput sequencing centers using traditional clone-based Sanger sequencing.

https://www.ncbi.nlm.nih.gov/genbank/htgs/

RNA-Level Data

dbEST

- 200-800 nt long
- "Unedited, randomly selected single-pass sequence derived from cDNA libraries."
 - Nagaraj et al, Brief Bioinform, 8,1,2007
- Low cost effort & not high quality
- Either the 5' or 3' end of cDNA clone will be sequenced

UniGene

- Related to EST db
- What is the goal of UniGene Project?
 - To group EST
 sequences into
 a gene oriented nr
 set.

	Hs.551506		
adipose tissue	0	0/12866	
adrenal gland	0	0/32940	
ascites	0	0/39834	
bladder	0	0/29860	
blood	0	0/122252	
bone	0	0/71618	
bone marrow	0	0/48737	
brain	0	0/1092688	
cervix	0	0/48486	
connective tissue	0	0/149072	
ear	0	0/16100	
embryonic tissue	0	0/212896	
esophagus	0	0/20154	
eye	0	0/208840	
heart	0	0/89524	
intestine	25	6/231981	
kidney	0	0/210778	
larynx	0	0/23466	
liver	0	0/205291	
lung	0	0/334815	
lymph	0	0/44302	

UniGene

- More entries, more commonly (?) expressed
- Ideally the number of genes = number of UniGene Clusters
- Some genes have more than 1 entries

Breakdown by Health State				
	Hs.551506			
adrenal tumor	0		0/12655	
bladder carcinoma	0		0/17584	
breast (mammary gland) tumor	0		0/93090	
cervical tumor	0		0/34484	
chondrosarcoma	0		0/82838	
colorectal tumor	17	•	2/112517	
esophageal tumor	0		0/17245	
gastrointestinal tumor	0		0/118498	
germ cell tumor	0		0/263230	
glioma	0		0/107194	
head and neck tumor	0		0/133826	
kidney tumor	0		0/68872	
leukemia	0		0/94479	
liver tumor	0		0/96023	
lung tumor	0		0/102765	
lymphoma	0		0/72196	
non-neoplasia	0		0/96623	
normal	2		7/3328811	
ovarian tumor	13		1/76185	

UniGene

mRNA sequences (34)	
BC046142.1	Homo sapiens breast cancer 1, early onset, mRNA (cDNA clone IMAGE:4342873)
NM_007294.3	Homo sapiens breast cancer 1, early onset (BRCA1), transcript variant 1, mRNA
NM_007297.3	Homo sapiens breast cancer 1, early onset (BRCA1), transcript variant 3, mRNA
NM_007298.3	Homo sapiens breast cancer 1, early onset (BRCA1), transcript variant 4, mRNA
NM_007299.3	Homo sapiens breast cancer 1, early onset (BRCA1), transcript variant 5, mRNA
NM_007300.3	Homo sapiens breast cancer 1, early onset (BRCA1), transcript variant 2, mRNA
BC062429.1	Homo sapiens breast cancer 1, early onset, mRNA (cDNA clone IMAGE:3686198), partial cds
BC072418.1	Homo sapiens breast cancer 1, early onset, mRNA (cDNA clone IMAGE:6181860), complete cds
AY354539.2	Homo sapiens IRIS mRNA, complete cds; alternatively spliced
AY751490.1	Homo sapiens breast and ovarian cancer susceptibility protein (BRCA1) mRNA, BRCA1-2201T/2430C/2731T/3232G/3667G/4427C/4956G allele, partial cds
BC085615.1	Homo sapiens breast cancer 1, early onset, mRNA (cDNA clone IMAGE:6042052), partial cds
BC106746.1	Homo sapiens breast cancer 1, early onset, mRNA (cDNA clone IMAGE:40017570), partial cds
BC106745.1	Homo sapiens breast cancer 1, early onset, mRNA (cDNA clone IMAGE:40017569), partial cds
BC114562.1	Homo sapiens cDNA clone IMAGE:40017575, containing frame-shift errors
BC114511.1	Homo sapiens breast cancer 1, early onset, mRNA (cDNA clone IMAGE:40017573)
BC115037.1	Homo sapiens breast cancer 1, early onset, mRNA (cDNA clone MGC:131629 IMAGE:7961446), complete cds
U14680.1	Homo sapiens breast and ovarian cancer susceptibility (BRCA1) mRNA, complete cds

BRCA1 UniGene

Collections of EST and mRNAs

AI016870.1	Clone IMAGE:1627848	mixed
AI040685.1	Clone IMAGE:1656659	mixed
BX102233.1	Clone IMAGp998C11519_;_IMAGE:241474	mixed
Al217721.1	Clone IMAGE:1844798	mixed
CB158976.1	Clone L18POOL1n1-32-H11	liver
CB108172.1	Clone L3SNU475-26-B03	liver
CB118225.1	Clone L3SNU475s1-13-B05	liver
CB136844.1	Clone L5HLK1-40-A10	liver
CB150491.1	Clone C1SNU17-30-H04	cervix
CB155501.1	Clone L12JSHC0s1-6-G05	liver
U25774.1	Clone 694:11	mammary gland
U25782.1	Clone 694:5	mammary gland
AI589028.1	Clone IMAGE:2154839	intestine
AI680547.1	Clone IMAGE:2266185	uterus
AI684595.1	Clone IMAGE:2302861	mixed
AI915085.1	Clone IMAGE:2216863	ovary
AL043576.1	Clone DKFZp434F0227	testis

EST sequences (149)

ESTs mapped to HBB to create UniGene Cluster

Figures 2.5 from Bioinformatics and Functional Genomics, (3rd Ed.) by Jonathan Pevsner

Figures 2.5 from
Bioinformatics and
Functional Genomics, (3rd
Ed.) by Jonathan Pevsner

Hemoglobin, beta (HBB)

Human protein-coding gene HBB. Represented by 2363 ESTs from 234 cDNA libraries. Corresponds to reference sequence NM_000518.4. [UniGene 914190 - Hs.523443]

companison or cius	ter transcripts with RefSeq proteins. The alignments can	suggest full-cutif of the	e cruster.	
	Best Hits and Hits from model organisms	Species	Id(%)	Len(aa)
XP_508242.1	PREDICTED: hemoglobin subunit beta isoform 2	P troglodytes	100.0	14
NP_000509.1	HBB gene product	H. sapiens	100.0	14
NP_001188320.1	hemoglobin subunit beta-1-like	M. musculus	83.7	14
NP_001091375.1	uncharacterized protein LQC100037217	X. laevis	61.9	14
NP_571095.1	ba1 gene product	D. rerio	52.7	14
	Other hits (2 of 21) [Show all]	Species	1d(%)	Len(aa)
NP_001157900.1	HBB gene product	M. mulatta	95.9	14
NP_001162318.1	HBB gene product	P. anubis	95.2	14

GENE EXPRESSION

Tissues and development stages from this gene's sequences survey gene expression, Links to other NCBI expression resources.

EST Profile: Approximate expression patterns inferred from EST sources.

[Show more entries with profiles like this]

GEO Profiles: Experimental gene expression data (Gene Expression Omnibus).

cDNA Sources: blood; mixed; muscle; placenta; bone marrow; lung; brain; spleen; pancreas; connective tissue;

pharynx; eye; ovary; uterus; liver; bone; heart; prostate; mammary gland; kidney;

uncharacterized tissue, skin; adipose tissue; intestine; stomach; umbilical cord; adrenal gland; nerve; vascular, thymus; testis; embryonic tissue; pituitary gland; parathyroid; ganglia; thyroid;

lymph node; pineal gland; ear

Figures 2.5 from Bioinformatics and Functional Genomics, (3rd Ed.) by Jonathan

Pevsner

Tissues and development stages from this gene's sequences survey gene expression, Links to other NCBI expression resources. EST Profile: Approximate expression patterns inferred from EST sources. [Show more entries with profiles like this] GEO Profiles: Experimental gene expression data (Gene Expression Omnibus). cDNA Sources: blood; mixed; muscle; placenta; bone marrow; lung; brain; spleen; pancreas; connective tissue; pharynx, eye; ovary; uterus; liver; bone; heart; prostate; mammary gland; kidney; uncharacterized tissue; skin; adipose tissue; intestine; stomach; umbilical cord; adrenal gland; nerve; vascular; thymus; testis; embryonic tissue; pituitary gland; parathyroid; ganglia; thyroid;

lymph node; pineal gland; ear

Protein Database

UniProt

Why?

- Protein function is key to many research areas
 - Medicine, Drug discovery, Biotechnology etc.
- Data generation in unprecedented amounts especially after NextGen sequencing methods
- UniProt acts as an Universal Protein Resource
 - Consolidating all the experimental, inferred information in one site

External:

EMBL/GenBank/DDBJ (plus metagenomics sequences) Ensembl (VEGA), PDB, RefSeq + Others

UniProt

Universal Protein Resource

- Protein data only
- Collaborative effort:
 - EMBL-EBI, SIB and PIR
 - European Bioinformatics Institute, the Swiss Institute of Bioinformatics and the Protein Information Resource.
- Cross-references to other 150 DBs

Datasets of UniProt

- UniProtKB/TrEMBL
 - Swiss-Prot
 - 550,690 (05/2016)
 - manually annotated
 - TrEMBL
 - 63,686,057 (05/2016)
 - automatic not reviewed
 - Extra information drug binding etc.
- UniParc (Sequence Archive)

UniProtKB

UniProt Knowledgebase

Swiss-Prot (550,960)

Manually annotated and reviewed.

TrEMBL (63,686,057)

Automatically annotated and not reviewed.

Pictures from UniProt Page

UniParc

Sequence archive

UniRef

Sequence clusters

Datasets of UniProt

- UniParc: Sequence archive
 - Non-redundant; Each sequence stored once-gets unique ID
- Proteomes

Pictures from UniProt Page

UniProtKB

Swiss-Prot (548,454)

annotated and reviewed.

TrEMBL (47,452,313)

Automatically annotated and not reviewed.

UniParc

Sequence archive

UniRef

Sequence clusters

UniRef100, UniRef90

- Combines all identical sequences from all organisms into a single entry
 - Lists all merged entries with links

UniRef

Sequence clusters

Picture from UniProt Page

UniRef100_P09848	Cluster: Lactase- phlorizin hydrolase	1	P09848	Homo sapiens (Human)	1,927	100%
UniRef90_P09848	Cluster: Lactase- phlorizin hydrolase	23	P09848 UPI0006250A0D UPI00029DB8E7 F6RJ72 F6V0B1 G7NB02 A0A0D9RUU4 G3RPU6 G7PN30 +13	Homo sapiens (Human) Aotus nancymaae (Ma's night monkey) Gorilla gorilla gorilla (Western lowland gorilla) Callithrix jacchus (White-tufted-ear	1,927	90%

UniRef

• "UniRef90 is built by clustering UniRef100 sequences such that each cluster is composed of sequences that have at least 90% sequence identity to the longest sequence (the seed sequence) of the cluster." Taken from EBI website

 "UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to the longest sequence in the cluster." Taken from EBI website

UniProtKB

UniProt Knowledgebase

Swiss-Prot (550,960)

Manually annotated and reviewed.

TrEMBL (63,686,057)

Automatically annotated and not reviewed.

UniRef

Sequence clusters

UniParc

Sequence archive

Proteomes

Supporting data

Literature citations

Cross-ref. databases

Taxonomy

Diseases

XXX

Subcellular locations

Keywords

UniProt Consortium Nucleic Acids Research, 2015, Vol. 43, Database issue D204-12

Figure 1. Growth of UniProt and UniRef databases.

NCBI Entrez

Search NCBI databases

Lactose intolerance

Search

Results found in 21 databases for "Lactose intolerance"

Literature			Genes		
Books	275	books and reports	EST	0	expressed sequence tag sequences
MeSH	2	ontology used for PubMed indexing	Gene	4	collected information about gene loci
NLM Catalog	50	books, journals and more in the NLM Collections	GEO Data Sets	0	functional genomics studies
PubMed	3,263	scientific & medical abstracts/citations	GEO Profiles	0	gene expression and molecular abundance profiles
PubMed Central	2,601	full-text journal articles	HomoloGene	0	homologous gene sets for selected organisms
Health			PopSet	0	sequence sets from phylogenetic and population studies
ClinVar	0	human variations of clinical significance	UniGene	21	clusters of expressed transcripts
dbGaP	17	genotype/phenotype interaction studies	Proteins		
GTR	14	genetic testing registry			
MedGen	17	medical genetics literature and links	Conserved Domains	0	conserved protein domains
OMIM	7	online mendelian inheritance in man	Protein	3	protein sequences
PubMed Health	84	clinical effectiveness, disease and drug reports	Protein Clusters	294	sequence similarity-based protein clusters
			Structure	0	experimentally-determined biomolecular structures
Genomes			- Chemicals		
Assembly	0	genome assembly information	Chemicals		
BioProject	5	biological projects providing data to NCBI	Bio Systems	1	molecular pathways with links to genes, proteins and chemicals
BioSample	3	descriptions of biological source materials	PubChem BioAssay	0	
Clone	0	genomic and cDNA clones	Pubchem BioAssay	U	bioactivity screening studies
dbVar	0	genome structural variation studies	PubChem Compound	0	chemical information with structures, information and links
Epigenomics	0	epigenomic studies and display tools	PubChem Substance	6	deposited substance and chemical information
Genome	6	genome sequencing projects by organism			
GSS	0	genome survey sequences			
Nucleotide	16	DNA and RNA sequences			
Probe	0	sequence-based probes and primers			

Links in NCBI taken from http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/060_010.html

SNP

SRA

Taxonomy

short genetic variations

high-throughput DNA and RNA sequence read archive

taxonomic classification and nomenclature catalog

NCBI Entrez-LinkOut

Ex from NCBI Nucleotide DB

Linkout (External references)

Taxonomy

- Organizational group identification is very important in biology/bioinformatics
- This is how we identify homologs and use this to identify function etc.
- How are the organisms identified?
 - Sequence data (not just this)
 - Mainly morphological studies

Haemophilus influenza Bacterium

Ranks:	higher taxa	genus	species	lower taxa	total
Archaea	<u>174</u>	<u>157</u>	<u>592</u>	0	<u>923</u>
Bacteria	<u>1623</u>	<u>3031</u>	<u>15425</u>	<u>862</u>	<u>20941</u>
Eukaryota	22080	<u>74508</u>	<u>341109</u>	<u>25095</u>	<u>462792</u>
Fungi	<u>1606</u>	<u>5131</u>	33542	<u>1165</u>	41444
<u>Metazoa</u>	<u>15808</u>	<u>51185</u>	<u>171613</u>	<u>12563</u>	<u>251169</u>
Viridiplantae	<u>2952</u>	<u>15180</u>	125741	<u>11072</u>	<u>154945</u>
Viruses	<u>667</u>	<u>495</u>	<u>2371</u>	Q	<u>3533</u>
All taxa	24577	<u>78198</u>	<u>359523</u>	<u>25957</u>	488255

Source NCBI Taxonomy

2016 March

Database that includes 400,000 different Organisms and about >10¹⁸ bases (quintillion)

PubMed

- Biomedical research literature Databasesince 1996
- NCBI (National Center for Biotechnology Information)
 - Belongs to National Library of Medicine (NLM) at the NIH
- Medline the source of PubMed Data
 - Scientific Citations going back to 1960s

PubMed

- 28 M references (as of 08/2018)
 - 24 M (05/2015)

http://www.ncbi.nlm.nih.gov/pubmed

- Includes
 - MEDLINE indexed journals
 - Journals deposited in PMC (archives full-text Journal articles) and/or publishers
 - NCBI Bookshelf
- Well linked to other Entrez Db
- Articles also linked to each other

NCBI Bookshelf

- Biomedical Books collection
 - accessible from Entrez
 - collaboration with publishers and authors
- Before placing books in Book Shelf
 - NCBI converts all book contents to XML
 - figures to GIF and JPEG formats
 - XML files are stored in a DB
 - user requests, XML -> HTML on the fly using Cascading Style Sheets and Extensible Stylesheet Language Transformation (XSLT)

Bookshelf

- Accessbile via Entrez
 - Available from Pubmed
 - well connected

European Database

- EMBnet (European Molecular Biology network)
 - Important nodes of EMBnet: EMBI, European Bioinformatics Institute, MIPS (The Munich Information center for Protein Sequences) etc.
 - EMBL: Collaborative project between GenBank (NCBI, Bethesda and DNA Databank of Japan (DDBJ)-Head-Quarters in Germany
 - EBI (outstation of EMBL, UK): Develops, Distributes EMBL nucleotide's sequences. Collaborates with UniProt for protein DBs- Shares and distributes the data between groups on daily basis.

Ensembl (website 2000)

 Joint effort between EBI, EMBL and Wellcome Trust Sanger Institute (WTSI)

 Goal: annotate the genome, integrate the annotation with other DBs and make it available on the web

Why Genome Browswers?

MLEICLKLVGCKSKKGLSSSSSCYLEEALORPVASDFEPOGLSEAARWNSKENLLAGPSENDPNLFVALY DFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNSLEKHSWYHGPVSRNAAEYL LSSGINGSFLVRESESSPGORSISLRYEGRVYHYRINTASDGKLYVSSESRFNTLAELVHHHSTVADGLI TTLHYPAPKRNKPTVYGVSPNYDKWEMERTDITMKHKLGGGOYGEVYEGVWKKYSLTVAVKTLKEDTMEV EEFLKEAAVMKEIKHPNLVOLLGVCTREPPFYIITEFMTYGNLLDYLRECNROEVNAVVLLYMATOISSA MEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTGDTYTAHAGAKFPIKWTAPESLAYNKFSIKS DVWAFGVLLWEIATYGMSPYPGIDLSOVYELLEKDYRMERPEGCPEKVYELMRACWOWNPSDRPSFAEIH QAFETMFQESSISDEVEKELGKQGVRGAVSTLLQAPELPTKTRTSRRAAEHRDTTDVPEMPHSKGQGESD PLDHEPAVSPLLPRKERGPPEGGLNEDERLLPKDKKTNLFSALIKKKKKTAPTPPKRSSSFREMDGOPER RGAGEEEGRDISNGALAFTPLDTADPAKSPKPSNGAGVPNGALRESGGSGFRSPHLWKKSSTLTSSRLA GEEEGGGSSSKRFLRSCSASCVPHGAKDTEWRSVTLPRDLOSTGROFDSSTFGGHKSEKPALPRKRAGEN RSDOVTRGTVTPPPRLVKKNEEAADEVFKDIMESSPGSSPPNLTPKPLRRQVTVAPASGLPHKELAGKGS ALGTPAAAEPVTPTSKAGSGAPGGTSKGPAEESRVRRHKHSSESPGRDKGKLSRLKPAPPTPPAASAGKA GGKPSOSPSOEAAGEAVLGAKTKATSLVDAVNSDAAKPSOPGEGLKKPVLPATPKPOSAKPSGTPISPAP VPSTLPSASSALAGDOPSSTAFIPLISTRVSLRKTROPPERIASGAITKGVVLDSTEALCLAISRNSEOM ASHSAVLEAGKNLYTFCVSYVDSIQQMRNKFAFREAINKLENNLRELQICPATAGSGPAATQDFSKLLSS

2/6/2020

S. Ravichandran, Ph.D.

Genome Builds or Assembly

- What is a "genome build" for an organism?
 - It refers to the assembly (manual + curated) in which the sequence is collected, arranged and annotated in terms of chromosome
- What is the latest version?
 - GRCh38
- How often a build is released?
 - Once in few years. But patches are released often.

Patches?

 https://www.ncbi.nlm.nih.gov/grc/help/patc hes/

Current version GRCh38.

Assembly

This site provides a data set based on the December 2013 *Homo sapiens* high coverage assembly GRCh38 from the <u>Genome Reference Consortium</u>. This assembly is used by UCSC to create their hg38 database. The data set consists of gene models built from the genewise alignments of the human proteome as well as from alignments of human cDNAs using the cDNA2genome model of exonerate.

This release of the assembly has the following properties:

- contig length total 3.4 Gb.
- chromosome length total 3.1 Gb (excluding haplotypes).
 giga = G = 1000³

It also includes 261 alt loci scaffolds, mainly in the LRC/KIR complex on chromosome 19 (35 alternate sequence representations) and the MHC region on chromosome 6년 (7 alternate sequence representations).

Genome Reference Consortium

Previous version

2009: GRCh37 or hg18 2013: GRCh38 or hg38

Assembly

Assembly

• Reads:

NextGen (HTS) (stored in SRA: Sequence Read Archive)

Contigs:

Whole Genome Sequencing Made up of Reads

Scaffolds:

Consists of Contigs and gaps

Figure from

http://genome.jgi.doe.gov/help/scaffolds.html

GRCh??

- GRCh38 (24 Dec 2013)
 - Mosaic
- GRCh37
 - Build 37 is derived from 13 anonymous people (volunteers from Buffalo, NY)

```
Build# Year NCBI UCSC
35 2004 NCBI35 hg17
36 2006 NCBI36 hg18
37 2009 GRCh37 hg19
38 2013 GRCh38 hg38
```

Which Assembly to use?

http://lh3.github.io/2017/11/13/which-human-reference-genome-to-use

Annotations in Ensembl

- Automatic pipeline (Genome-wide at once)
 - Ab initio
 - Experimental data
 - ESTs, RNAseq, cNDA and sequence DBs along with their alignments from other DBs (NCBI etc.)
- Manual Curation (few species; Gene-by-gene)
 - Havana effort
 - Genome-wide: Human, Rat and Zebra Fish
 - Genes: Chimp, Dog and few others

Assembly Information

Repeats make sequencing difficult

The other important browser

UCSC

- The University of California, Santa Cruz
- http://genome.ucsc.edu

Other data sources

- UCSC Genome browser
- FlyBase (fruit fly genes & genomes)
- WormBase (nematode biology)
- SGD (Saccharomyces (budding Yeast) Genome
- RNA-central (meta database that combines data from different resources)
- TAIR (Arabidopsis (model for higher plant)
- EcoCyc (E.coli genes)

Journal of Nucleic Acid Research (NAR)

Each year publishes about databases. You should check it out.

Sequence IDs

6,274 bp linear mRNA

Accession: NM 002299.2 GI: 32481205

Current status: live

Current status: live				
I	Ш	Version	Gi	Update Date
•		2	32481205	<u>Mar 15, 2015 03:11 PM</u>
	•	2	32481205	Sep 6, 2014 06:40 AM
		2	32481205	May 3, 2014 03:52 PM
		2	32481205	Mar 12, 2014 03:26 PM
		2	32481205	Feb 26, 2014 01:29 AM
		2	32481205	Feb 23, 2014 03:02 PM
		2	32481205	Feb 1, 2014 03:16 PM
		2	32481205	Nov 17, 2013 02:35 PM
	\bigcirc	2	32481205	Nov 3, 2013 02:18 PM
		2	32481205	Oct 27, 2013 02:58 PM
		2	32481205	Sep 14, 2013 02:52 PM
		2	32481205	<u>Jul 29, 2013 12:50 AM</u>
		2	32481205	<u>Jun 24, 2013 12:45 AM</u>
		2	32481205	Sep 6, 2003 06:39 PM
		2	32481205	<u>Jul 9, 2003 10:58 AM</u>
		1	4504966	Apr 7, 2003 11:50 AM
		1	4504966	Nov 5, 2002 10:29 AM
		1	4504966	Aug 27, 2002 03:25 PM
		1	4504966	Oct 31, 2000 06:51 PM
		1	4504966	<u>Jan 6, 2000 11:52 AM</u>
		1	4504966	<u>Mar 24, 1999 05:15 PM</u>

ACCESSION vs ID

ACCESSION (STABLE)

Shared across all three collaborating patners (GenBank, DDBJ and ENA)

LCT:

Accession: NM_002299.2 **GI: 32481205** GI is the sequence Identifier **DO NOT USE**

ANY changes to the sequence will result in a new ID

Only changes to the sequence will result in the integer extension change

NM_002299.1 GI: 4504966 NM_002299.2 GI: 32481205

RefSeq

- Derived and curated database of DNA, RNA, protein sequences
 - "Provide a best representative seq. for each normal (nonmutated) transcript and for each normal protein product" Pevsner Book Quote
 - Annotated, no-redundancy
 - Updated by NCBI not by submitter
 - "REFSEQ PROVIDES ONLY ONE EXAMPLE OF EACH NATURAL MOLECULE"

RefSeq and GenBank

GenBank

RefSeq

Uncurated Curated

Submission by Authors NCBI makes an entry from existing data

Author only can revise NCBI modifies the entry as new data emerge

Multiple records for same loci

Usually single records were made for each

molecule of major organisms

Records might contradict each other Usually one record entry

No limit to species included Limited to model organisms

Exchanged DDBJ & EMBL Not exchanged and exclusive NCBI

Proteins identified and linked Proteins and transcripts identified and linked

Via NCBI Nucleotide databases Via Nucleotide & Protein databases

RefSeq

- Reference Genomic Sequence
 - □ NG_123456
- Chromosome
 - NC_123456 or AC_123456
- Contig Assembly
 - NT_123456
- WGS Supercontig (NW_123456)

RefSeq

- curated
 - mRNA, NM_123456
 - Protein, NP_123456
 - non-coding RNA, NR_123456
- Predicted
 - mRNA, XM_123456
 - protein, XP_123456
 - non-coding RNA, XR_123456
- Will model mRNA (XM) same as (NM)?
 - XM/XP same as NM/NP?

Issue with RefSeq

- RefSeq
 - NM_002299.3 → NP_002290.2
 - If you miss the version and if there is a variation that will be missed as well.
- Locus Refernce Genome (LRG)
 - "Define Genomic sequences as reference standards for genes, representing a standard allele", Pevsner, book reference

Usefullness of LRG

- rs72651646 COLA1A Variant
- GRCh37-17:g.48268823C>T
- GRCh37-17:g.50191462C>T
- LRG
 - Genomic: LRG_1:g.15178G>A
 - Transcript: LRG_1t1:c.2156G>A >
 - Protein: LRG_1p1:p.Gly719Asp

Never Change

Vertebrate Genome Annotation Project (VEGA)

Comparing CCDS set and RefSeq with Ensembl Transcripts

Note the transcript, CCDS2178.1 is displayed in CCDS track.

CCDS: Consensus CoDing Sequence and agreed upon by all the four Genome Groups: Ensembl, Havana, NCBI and UCSC and is also the same as LCT-001 transcript

Communication Problem

Gene

- Approved Name: RB1
- Previous Names; OSR, "osteosarcoma"
- Synonyms/a.k.a: PPP1R130, "preproretinoblastoma-associated protein", protein phosphatase 1", regulatory subunit 130, RB, OSRC, pp110, p105-Rb

Communication Problem

Protein

- Ensembl: RB1-001, RB1-002, RB1-003, RB1-004, RB1-005, RB1-006
- RB1-002 or NST00000267163
- Example

UniProt NCBI TrEMBL Ensembl EnsemblName P06400-1, NP_000312, A0A024RDV3, ENSP00000267163 RB1-002

All mean the same protein 4840 bp and 928 aa

Commonly Used Formats

- VCF, fasta, FastQ (discuss later)
- BED (NextGen Data)
 - Contains experimental information
 - DNA/RNA-seq etc
 - Chromosome
 - Start and end position
 - Plus optional information

BED sample format

```
browser position chr7:127471196-127495720
browser hide all
track name="ItemRGBDemo" description="Item RGB demonstration" visibility=2
itemRgb="On"
chr7 127471196 127472363 Pos1 0 + 127471196 127472363 255,0,0
chr7 127472363 127473530 Pos2 0 + 127472363 127473530 255,0,0
chr7 127473530 127474697 Pos3 0 + 127473530 127474697 255,0,0
chr7 127474697 127475864 Pos4 0 + 127474697 127475864 255,0,0
chr7 127475864 127477031 Neg1 0 - 127475864 127477031 0,0,255
chr7 127477031 127478198 Neg2 0 - 127477031 127478198 0,0,255
chr7 127479365 127480532 Pos5 0 + 127479365 127480532 255,0,0
chr7 127480532 127481699 Neg4 0 - 127480532 127481699 0,0,255
```


From UCSC

Let us explore the Gene

- In-class demonstration
- NCBI and Ensemble
 - Gene: Human Lactase
- Students will attempt the same process using HBB (book example)

NCBI E-Direct

- Most Linux commands were covered in the last class
 - Strongly encourage you to try them on your system
 - Edirect examples from the book
 - Windows users: Use Cygwin
 - Mac Users: Use terminal window

To do

- Self-Quiz
 - In some versions of the book there is a typo in quiz [2-1]
 - last choice label have to be e and not c
- Problems/Computer Lab for this week
 - **–** 2-1, 2-2, 2-4, 2-5
 - Optional: 2-9, 2-10

Thanks

ravichandran@hood.edu