

14

ABV- Indian Institute of Information Technology & Management, Gwalior

Semester I (2023-24)

Major

Course Title: Engineering Mathematics-I	
Course Code: ES102	
MM: 60 – 65 Duration: 180 minu	ıtes
Note:	
 All parts of a question should be answered consecutively. The question paper has six questions in two pages. Questions no. 1 b) and 5 b) are open questions, and the marks will be purely based on the justification Mathematical explanations. Question No. 3 c), d), 4 a): Marks are only for the proper justification. Question no. 3 b): you must show that the example is a commutative ring with identity but not a field. 	
 a) Solve the following system using LU-Decomposition 2x₁ + 3x₂ + x₃ = 9; x₁ + 2x₂ + 3x₃ = 6; 3x₁ + x₂ + 2x₃ = 8 b) How can we construct symmetric and skew symmetric matrix from any random matrix c) State Cayley Hamilton Theorem (CHT) d) Verify CHT for the following matrix using CHT and also find its inverse using (7 2 -2) (-6 -1 2) (6 2 -1) 	(2-5) (1)
2. a) Transform the following quadratic for to canonical form $3x_1^2 - 2x_2^2 - x_3^2 - 4x_1x_2 + 12x_2x_3 + 8x_1x_3$ b) Fill in the blanks and prove: The vectors of a matrix form system.	(7) as a unitary (3)
 a) Define Isomorphism between two linear transformation. b) Give an example of a finite commutative ring with identity but not a field and prove your claim. c) Is the vector (0,4,-4,2) in the subspace of R⁴ spanned by the (1,1,1,1), (1,1,1,-1), (1,1,-1,1), (1,-1,1,1)? d) Find out the vector in R⁴ which is not in the subspace spanned by the (1,1,1,1), (1,1,1,-1), (1,1,-1,1), (1,-1,1,1) 	(2.5)

- b) Let F be a subfield of the complex numbers and let T be the function from F^3 to F^3 defined by T(x,y,z)=(x-y+2z,2x+y,-x-2y+2z)
- i) check whether T is a Linear Transformation
- ii) If (a, b, c) is a vector in F^3 , what are the conditions on a, b, c that the vector be in the range of T?
- iii) what are the conditions on a, b, c that the vector (a, b, c) be in the nullspace of T? (2+1.5+1.5)
- 5. a) Find the spanning set for the null space of the matrix

$$\begin{pmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{pmatrix}$$
 (3)

b) Define Vector space, Construct your own example of a Vector space and discuss any one subspace of the identified vector space. (4.5-6.5)

6. a) Find
$$\lim_{(x,y)\to(1,2)}(x^2y^3) - x^3y^2 + 3x + 2y$$
 (2)

- b) Find out $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ for the following function using limiting conditions (limit definition of derivative) $f(x,y) = 17x^2 + 21xy 4y^2 + 13x 23y + 51$ (1.5+1.5)
- c) Find out the absolute maximum and absolute minimum for the following,

$$f(x,y) = x^2 - 2xy + 4y^2 - 4x - 2y + 24$$
, where $0 \le x \le 5$ and $0 \le y \le 3$ (7)

End of Question Paper

Best of Luck