HG2002 Semantics and Pragmatics

Formal Semantics

Francis Bond

Division of Linguistics and Multilingual Studies

http://www3.ntu.edu.sg/home/fcbond/bond@ieee.org

Lecture 10 Location:

https://bond-lab.github.io/Semantics-and-Pragmatics/

Creative Commons Attribution License: you are free to share and adapt as long as you give appropriate credit and add no additional restrictions: https://creativecommons.org/licenses/by/4.0/.

Overview

- > Revision: Components
- Quantifiers and Higher Order Logic
- ➤ Modality
- (Dynamic Approaches to Discourse)
- ➤ Next Lecture: Chapter 11 Cognitive Semantics

Revision: Componential Analysis

Break word meaning into its components

- components allow a compact description
- interact with morphology/syntax
- > form part of our cognitive architecture
- > For example:

```
woman[FEMALE][ADULT][HUMAN]spinster[FEMALE][ADULT][HUMAN][UNMARRIED]bachelor[MALE][ADULT][HUMAN][UNMARRIED]wife[FEMALE][ADULT][HUMAN][MARRIED]
```

> We can make things more economical (fewer components):

```
woman
[+FEMALE] [+ADULT] [+HUMAN]
spinster [+FEMALE] [+ADULT] [+HUMAN] [-MARRIED]
bachelor [-FEMALE] [+ADULT] [+HUMAN] [-MARRIED]
wife [+FEMALE] [+ADULT] [+HUMAN] [+MARRIED]
```

Defining Relations using Components

hyponymy: P is a hyponym of Q if all the components of Q are also in P.

```
spinster ⊂ woman; wife ⊂ woman
```

- incompatibility: P is incompatible with Q if they share some components but differ in one or more contrasting components spinster ≠ wife
- Redundancy Rules

> Predicates with argument structure $parent (of y)(x,y) \rightarrow [+PARENT](x,y)$

Katz's Semantic Theory

- > Semantic rules must be recursive to deal with infinite meaning
- Semantic rules interact with syntactic rule to build up meaning compositionally
 - A dictionary pairs lexical items with semantic representations
 - * (semantic markers) are the links that bind lexical items together in lexical relations
 - * [distinguishers] serve to identify this particular lexical item
 - this information is not relevant to syntax
 - projection rules show how meaning is built up
 - * Information is passed up the tree and collected at the top.
 - * Selectional restrictions help to reduce ambiguity and limit the possible readings

Verb Classification

- We can investigate the meaning of a verb by looking at its grammatical behavior
 - (1) Consider the following transitive verbs
 - a. Margaret cut the bread
 - b. Janet broke the vase
 - c. Terry touched the cat
 - d. Carla hit the door
- > These do not all allow the same argument structure alternations

Levin (1993)

Diathesis Alternations

> Causative/inchoative alternation:

Kim <u>broke</u> the window \leftrightarrow The window <u>broke</u> also the window is broken (state)

- ➤ Middle construction alternation:
 Kim cut the bread ↔ The bread cut easily
- ➤ Conative alternation:
 Kim hit the door ↔ Kim hit at the door
- ▶ Body-part possessor ascension alternation:
 Kim cut Sandy's arm ↔ Kim cut Sandy on the arm

Diathesis Alternations and Verb Classes

A verb's (in)compatibility with different alternations is a strong predictor of its lexical semantics:

```
break
                      cut
                            hit
                                 touch
                YES
                    NO
                           NO
                                  NO
     Causative
     Middle
             YES YES NO NO
     Conative NO YES YES NO
     Body-part NO YES YES YES
  break = {break, chip, crack, crash, crush, ...}
  cut = {chip, clip, cut, hack, hew, saw, ...}
  hit = {bang, bash, batter, beat, bump, ...}
   touch = {caress, graze, kiss, lick, nudge, ...}
> break CAUSE, CHANGE
    cut
           CAUSE, CHANGE, CONTACT, MOTION
    hit
           CONTACT, MOTION
    touch
           CONTACT
```

Levin (1993) 9

Cognitive Semantics

- Major semantic components of Motion:
 - * Figure: object moving or located with respect to the ground
 - * **Ground**: reference object
 - * Motion: the presence of movement of location in the event
 - * Path: the course followed or site occupied by the Figure
 - * Manner: the type of motion
 - (2) Kim swam away from the crocodile Figure Manner Path Ground
 - (3) *The banana hung from the tree* Figure Manner Path Ground
- These are lexicalized differently in different languages.

```
Language (Family)

Romance, Semitic, Polynesian, ...

Indo-European (— Romance), Chinese
Navajo, Atsuwegei, ...

Verb Conflation Pattern

Path + fact-of-Motion

Manner/Cause + fact-of-Motion

Figure + fact-of-Motion
```

Jackendoff's Lexical Conceptual Structure

- An attempt to explain how we think
- **➤ Mentalist Postulate**

Meaning in natural language is an information structure that is mentally encoded by human beings

- Universal Semantic Categories
 - * Event
 - * State
 - * Material Thing/Object
 - * Path
 - * Place
 - * Property

Motion as a tree

- (4) Bobby went into the house
- (5) "Bobby traverses a path that terminates at the interior of the house"
- GO Thing Path

 BOBBY TO Place

 IN Thing

 HOUSE

- (7) The car is in the garage
- (8) "The car is in the state located in the interior of the garage"
- State

 BE-LOC Thing Place

 CAR IN Thing

 GARAGE

Things: Boundedness and Internal Structure

> Two components:

Boundedness	Internal Struct.	Type	Example
<u>+b</u>	_i	individuals	a dog/two dogs
+b	+i	groups	a committee
-b	_i	substance s	water
-b	+ i	aggregates	buses, cattle

This can be extended to verb aspect (the verb event is also [\pm b, \pm i]).

sleep [-b], cough [+b], eat [±b]

- (10) Bill ate two hot dogs in two hours.
- (11) *Bill ate hot dogs in two hours.
- (12) *Bill ate two hot dogs for two hours.
- (13) Bill ate hot dogs for two hours.

Conversion: Boundedness and Internal Structure

> Including

 $[+b, -i] \rightarrow [-b, +i]$ brick \rightarrow bricks plural composed of $[-b, +i] \rightarrow [+b, -i]$ bricks \rightarrow house of bricks containing $[-b, -i] \rightarrow [+b, -i]$ coffee \rightarrow a cup of coffee/a coffee

Excluding

element partitive

$$[-b,+i] \rightarrow [+b,-i]$$
 grain of rice $[-b,\pm i] \rightarrow [+b,-i]$ top of the matrix $[+b,-i] \rightarrow [-b,-i]$ There's dog

 $[-b, \pm i] \rightarrow [+b, -i]$ top of the mountain, one of the universal grinder $[+b, -i] \rightarrow [-b, -i]$ There's dog all over the road

Pustejovsky's Generative Lexicon

> Each lexical entry can have:

ARGUMENT STRUCTURE

EVENT STRUCTURE

LEXICAL INHERITANCE STRUCTURE

QUALIA STRUCTURE:

CONSTITUTIVE constituent parts

FORMAL relation to other things

TELIC purpose

AGENTIVE how it is made

- Interpretation is generated by combing word meanings
- Events have complex structure

understand, love, be tall sing, walk, swim open, close, build

Modifier Ambiguity

- (14) Jamie closed the door rudely
- (15) Jamie closed the door in a rude way [with his foot]

$$P [rude(P)]$$
S
$$[act(j, door) \land \neg closed(door)]$$

$$[closed(door)]$$

(16) It was rude of Jamie to close the door

```
 \begin{array}{c|c} & T \ [rude(T)] \\ \hline P & S \\ \hline [act(j, door) \land \neg \ closed(door)] & [closed(door)] \end{array}
```

Qualia Structure

- (17) fast typist
 - a. a typist who is fast [at running]
 - b. a typist who types fast

> typist
$$\begin{bmatrix} ARGSTR & \begin{bmatrix} ARG1 & x:typist \end{bmatrix} \\ QUALIA & \begin{bmatrix} FORMAL & \begin{bmatrix} x & [& c & person &] \end{bmatrix} \end{bmatrix} \end{bmatrix}$$
TELIC
$$\begin{bmatrix} type(e,x) \end{bmatrix}$$

- \rightarrow (17a) *fast* modifies x
- \rightarrow (17b) *fast* modifies e

Summary

- Meaning can be broken up into units smaller than words: components
 - These can be combined to make larger meanings
 - At least some of them influence syntax
 - They may be psychologically real
- Problems with Components of Meaning
 - Primitives are no different from necessary and sufficient conditions
 - it is impossible to agree on the definitions but they allow us to state generalizations better
 - Psycho-linguistic evidence is weak
 - ➤ It is just markerese
 - There is no grounding

Word Meaning: Meaning Postulates

Defining Relations using Logic

> hyponymy

 \rightarrow \forall x(DOG(x) \rightarrow ANIMAL(x))

> antonym

- > $\forall x(DEAD(x) \rightarrow \neg ALIVE(x))$? $\forall x(ALIVE(x) \rightarrow \neg DEAD(x))$
- > converse
 - $ightharpoonup \forall x \forall y (PARENT(x,y) \rightarrow CHILD(y,x))$

> synonym

- $ightharpoonup \forall x((EGGPLANT(x) \rightarrow BRINJAL(x)) \land (BRINJAL(x) \rightarrow EGG-PLANT(x)))$
- $\rightarrow \forall x (EGGPLANT(x) \equiv BRINJAL(x))$

Semantic Relations as Sets ($p \subset q$ and $p \sim q$)

 $p \subset q \; \mathbf{hypernym}$

 $p \sim q \; {
m synonym}$

Logical Connectives as Sets (p and $\neg p$)

p

Logical Connectives as Sets ($p \land q$ and $p \lor q$)

 $p \wedge q$ "and"

Logical Connectives as Sets ($p \oplus q$ and $p \to q$)

 $p \oplus q$ "exclusive or"

$$p o q$$
 "if"

Natural Language Quantifiers and Higher Order Logic

Restricted Quantifiers

- Most students read a book
 - $ightharpoonup \operatorname{Most}(x)(S(x) \wedge R(x))$ most things are students and most things read books
 - Most(x)(S(x) → R(x))
 most things are such that, if they are students, they read books
 but also true for all things that are not students!
- > We need to restrict the quantification
 - \rightarrow (Most x: S(x)) R(x)
- > Sometimes we need to decompose
 - \rightarrow everybody ($\forall x: P(x)$)
 - \rightarrow something $(\exists x: T(x))$

Higher Order Logic

- > First-order logic over individuals
- Second-order logic also quantifies over sets
- > Third-order logic also quantifies over sets of sets
- > Fourth-order logic also quantifies over sets of sets of sets

. . .

Higher Order Logic

- > Recall lan sings
 - $ightharpoonup [S(i)]^{M_1} = 1$ iff $[i]^{M_1} \in [S]^{M_1}$ The sentence is true if and only if the extension of *lan* is part of the set defined by *sings* in the model M_1
 - ightharpoonup Remodel, with sing a property of lan: i(S) $[i(S)]^{M_1} = 1$ iff $[S]^{M_1} \in [i]^{M_1}$ The sentence is true if and only if the denotation of the verb phrase *sings* is part of the extension of *lan* in the model M_1
- > lan is a set of sets of properties: second-order logic

Generalized Quantifiers

- \rightarrow Q(A,B): Q A are B
- > most(A,B) = 1 iff $|A \cap B| > |A B|$
- > all(A,B) = 1 iff A \subseteq B
- > some(A,B) = 1 iff A \cap B $\neq \emptyset$
- > no(A,B) = 1 iff A \cap B = \emptyset
- \triangleright fewer than x(A,B,X) = 1 iff $|A \cap B| < |X|$

Generalized Quantifiers: all, most

all p are q

 $\operatorname{most} p \operatorname{are} q$

Generalized Quantifiers: some, no

some p are q

no p are q

Strong/Weak Quantifiers

- (18) only **weak** quantifiers can occur in existential *there* sentences
 - a. There is a fox in the henhouse
 - b. There are two foxes in the henhouse
 - c. *There is <u>every</u> fox in the henhouse
 - d. *There are both foxes in the henhouse
- symmetrical (cardinal) quantifiers are weak det(A,B) = det(B,A)
 - (19) 3 lecturers are Australian = 3 Australians are lecturers
- asymmetrical (proportional) quantifiers are strong det(A,B) ≠ det(B,A)
 - (20) most lecturers are Australian ≠ most Australians are lecturers

Negative Polarity Items (NPI)

- Some words in English mainly appear in negative environments
 - (21) a. Kim doesn't ever eat dessert
 - b. *Kim does ever eat dessert
 - (22) a. Kim hasn't eaten dessert yet
 - b. *Kim has eaten dessert yet
 - (23) a. Few people have eaten dessert yet
 - b. *Many people have eaten dessert yet
 - (24) a. Rarely does Kim ever eat dessert
 - b. *Often does Kim ever eat dessert
- > Not just negation, but also some quantifiers

Monotonicity

- > Some quantifiers control entailment between sets and subsets
 - > Upward entailment goes from a subset to a set
 - > Downward entailment goes from a set to a subset
 - (25) a. $Kim does \underline{n't}$ eat $dessert \Rightarrow Kim does \underline{n't}$ eat hot dessert
 - b. Kim does<u>n't</u> eat hot dessert
 ⇒ Kim does<u>n't</u> eat dessert
 Downward entailment
 - (26) a. Kim eats some desserts \Rightarrow Kim eats hot desserts
 - b. Kim eats some hot desserts ⇒ Kim eats some desserts

Upward entailment

Negative Polarity Items are licensed by downward entailing expressions

Left and Right Monotonicity

- > The monotonicity may depend on the position
 - (27) a. Every student studies semantics

 ⇒ Every student studies semantics
 - b. Every student studies formal semantics ⇒ Every student studies semantics

Upward entailment (right argument)

- (28) a. Every student studies semantics ⇒ Every linguistics student studies semantics
 - b. Every linguistic student studies semantics

 ⇒ Every student studies semantics

Downward entailment (left argument)

- (29) a. Every student who has ever studied semantics loves it
 - b. *Every student who has studied semantics ever loves it
 - c. Few students who have ever studied semantics dislike it
 - d. Few students who have studied semantics ever dislike it
- Formal models of quantification can be used to make predictions about seemingly unrelated phenomena

In other languages too!

- (30) 我 没有 任何 朋友 wǒ méi-yǒu rènhé péngyǒu I NEG-have any friend "I don't have any friends."
- (31) *我有任何朋友 wǒ yǒu rènhé péngyǒu I have any friend *"I have any friends."

Thanks to Joanna Sio 37

Modality

Modality as a scale of Implicatures

```
(32)
      I know that p
     I am absolutely certain that p
(33)
(34)
     I am almost certain that p
(35)
      I believe that p
      I am pretty certain that p
(36)
(37)
      Possibly p
(38)
      It is very unlikely that p
(39)
     It is almost impossible that p
(40) It is impossible that p
(41) It is not the case that p
(42) I am absolutely certain that not-p
```

Modal Logics

- > Add two modal operators for epistemic modality
 - $\rightarrow \diamond \phi = it is possible that \phi$
 - $ightharpoonup \Box \phi = it is necessary that <math>\phi$
- > Define them in terms of possible worlds
 - $\rightarrow \diamond \phi$: true in at least one world
 - $\rightarrow \Box \phi$: true in all worlds
- > $M = \{W, U, F\}$: the model now has three parts

W set of possible worlds

U domain of individuals (universe)

F denotation assignment function

Deontic Modality

- Add two modal operators for deontic modality
 - ightharpoonup ho = it is permitted that ϕ
 - $ightharpoonup O\phi = it is obligatorily <math>\phi$
- > Define them in terms of possible worlds
 - \triangleright P ϕ : true in at least one legal or morally ideal world
 - \triangleright O ϕ : true in all legal or morally ideal worlds

Dynamic Approaches to Discourse

Anaphora

```
a. R2D2_i mistrusts itself<sub>i</sub>
(43)
       b. M(r,r)
      a. Every robot mistrusts itself
(44)
       b. (\forall x: R(x)) M(x,x)
(45)
       a. Luke bought a robot and it doesn't work
       b. (\exists x: R(x)) B(I,x) \land \neg W(x)
(46)
      a. Every robot went to Naboo. ?It met Jar Jar.
       b. (\forall x: R(x)) W(x,n); M(x,j)
                                                            unbound
       a. A robot went to Naboo. It met Jar Jar.
(47)
       b. (\exists x: R(x)) W(x,n); M(x,j)
                                                                  ???
      indefinite nominals exist beyond the sentence: discourse
      referents
(48)
       a. Luke didn't buy a robot. ?It met Jar Jar.
```

HG2002 (2020) 43

indefinite nominals scope can still be limited

Donkey Sentences

- (49) a. If $R2D2_i$ owns a ship it is rich
 - b. $(\exists x (S(x) \land O(r,x))) \rightarrow R(x)$
- (50) a. If a robot owns a ship it races it
 - b. $*(\exists x \exists y (R(x) \land S(y) \land O(x,y))) \rightarrow R(x,y)$
 - c. $\forall x \forall y ((R(x) \land S(y) \land O(x,y)) \rightarrow R(x,y)$
 - \exists needs to become \forall
- (51) Every farmer who owns a donkey beats it

Discourse Representation Theory

Build up Discourse Representation Structures

(52) a. *Alex met a robot*_i

b. *It*_i smiled

(53) Alex(x) robot(y) met (x,y)

x y u

Alex(x)
robot(y)
met (x,y)
u = y
smiled(u)

Negative Contexts

(54) a. Luke does not own a robot

- > The contained DRS is **subordinate**
 - indefinite NPs in negated subordinate structures are inaccessible
 - > names (constants) are always accessible

Conditionals

(56) a. If Jo owns a robot then they are rich

- > The contained DRS is **subordinate**
 - indefinite NPs in the antecedent are accessible in the consequent

More Conditionals

(58) a. If a Jedi owns a robot then they are rich

- > The contained DRS is **subordinate**
 - indefinite NPs in the antecedent are accessible in the consequent

More Conditionals

(60) a. If a Jedi owns a robot then they race it

- > The contained DRS is **subordinate**
 - indefinite NPs in the antecedent are accessible in the consequent

More Conditionals

(62) a. Every Jedi who owns a robot races it

- > The contained DRS is **subordinate**
 - Universal Quantifiers copy the variable across the conditional

Discourse Representation Theory

- > Explains how reference occurs across clauses and sentences
 - Distinguishes between names and indefinite NPS
 - Distinguishes between positive assertions, negative sentences, conditional sentences, universally quantified sentences
 - Is useful for modeling the incremental update of knowledge in a conversation

Acknowledgments and References

➤ Video Regency Disco from that Mitchel and Webb Look Episode 3.3, which was first broadcast on Thursday 25th June 2009.