

Shuffling: What it is and why it's important

Big Data Analysis with Scala and Spark

Heather Miller

Think again what happens when you have to do a groupBy or a groupByKey. Remember our data is distributed! **Did you notice anything odd?**

Think again what happens when you have to do a groupBy or a groupByKey. Remember our data is distributed! **Did you notice anything odd?**

```
val pairs = sc.parallelize(List((1, "one"), (2, "two"), (3, "three")))
pairs.groupByKey()
// res2: org.apache.spark.rdd.RDD[(Int, Iterable[String])]
// = ShuffledRDD[16] at groupByKey at <console>:37
```

Think again what happens when you have to do a groupBy or a groupByKey. Remember our data is distributed! **Did you notice anything odd?**

```
val pairs = sc.parallelize(List((1, "one"), (2, "two"), (3, "three")))
pairs.groupByKey()
// res2: org.apache.spark.rdd.RDD[(Int, Iterable[String])]
// = ShuffledRDD[16] at groupByKey at <console>:37
```

We typically have to move data from one node to another to be "grouped with" its key. Doing this is called "shuffling".

Think again what happens when you have to do a groupBy or a groupByKey. Remember our data is distributed! **Did you notice anything odd?**

```
val pairs = sc.parallelize(List((1, "one"), (2, "two"), (3, "three")))
pairs.groupByKey()
// res2: org.apache.spark.rdd.RDD[(Int, Iterable[String])]
// = ShuffledRDD[16] at groupByKey at <console>:37
```

We typically have to move data from one node to another to be "grouped with" its key. Doing this is called "shuffling".

Shuffles Happen

Shuffles can be an enormous hit to because it means that Spark must send data from one node to another. Why? **Latency!**

Let's start with an example. Given:

```
case class CFFPurchase(customerId: Int, destination: String, price: Double)
```

Assume we have an RDD of the purchases that users of the Swiss train company's, the CFF's, mobile app have made in the past month.

```
val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)
```

```
val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)
val purchasesPerMonth = ...
```

```
val purchasesRdd: RDD[CFFPurchase] = sc.textFile(...)

val purchasesPerMonth =
  purchasesRdd.map(p => (p.customerId, p.price)) // Pair RDD
```

Let's start with an example dataset:

What might the cluster look like with this data distributed over it?

What might the cluster look like with this data distributed over it? Starting with purchasesRdd:

```
CFFPurchase(100, "Geneva", 22.25)
CFFPurchase(100, "Lucerne", 31.60)
```

```
CFFPurchase(100, "Fribourg", 12.40)
CFFPurchase(200, "St. Gallen", 8.20)
```

```
CFFPurchase(300, "Zurich", 42.10)
CFFPurchase(300, "Basel", 16.20)
```


Goal: calculate how many trips, and how much money was spent by each individual customer over the course of the month.

Note: groupByKey results in one key-value pair per key. And this single key-value pair cannot span across multiple worker nodes.

Reminder: Latency Matters (Humanized)

Shared Memory

Seconds

L1 cache reference......0.5s

L2 cache reference......7s

Mutex lock/unlock......25s

Minutes

Main memory reference....1m 40s

Distributed

Days

Roundtrip within same datacenter.....5.8 days

Years

Send packet CA->Netherlands->CA....4.8 years

We don't want to be sending all of our data over the network if it's not absolutely required. Too much network communication kills performance.

Can we do a better job?

Perhaps we don't need to send all pairs over the network.

Can we do a better job?

Perhaps we don't need to send all pairs over the network.

Perhaps we can reduce before we shuffle. This could greatly reduce the amount of data we have to send over the network.

We can use reduceByKey.

Conceptually, reduceByKey can be thought of as a combination of first doing groupByKey and then reduce-ing on all the values grouped per key. It's more efficient though, than using each separately. We'll see how in the following example.

Signature:

```
def reduceByKey(func: (V, V) => V): RDD[(K, V)]
```

Goal: calculate how many trips, and how much money was spent by each individual customer over the course of the month.

What function do we pass to reduceByKey in order to get a result that looks like: (customerId, (numTrips, totalSpent)) returned?

What are the benefits of this approach?

What are the benefits of this approach?

By reducing the dataset first, the amount of data sent over the network during the shuffle is greatly reduced.

This can result in non-trival gains in performance!

What are the benefits of this approach?

By reducing the dataset first, the amount of data sent over the network during the shuffle is greatly reduced.

This can result in non-trival gains in performance!

Let's benchmark on a real cluster.

groupByKey and reduceByKey Running Times

Shuffling

Recall our example using groupByKey:

Shuffling

Recall our example using groupByKey:

Grouping all values of key-value pairs with the same key requires collecting all key-value pairs with the same key on the same machine.

But how does Spark know which key to put on which machine?

Shuffling

Recall our example using groupByKey:

Grouping all values of key-value pairs with the same key requires collecting all key-value pairs with the same key on the same machine.

But how does Spark know which key to put on which machine?

▶ By default, Spark uses *hash partitioning* to determine which key-value pair should be sent to which machine.

Partitioning

Big Data Analysis with Scala and Spark

Heather Miller

"Partitioning"?

In the last session, we were looking at an example involving groupByKey, before we discovered that this operation causes data to be *shuffled* over the network.

Grouping all values of key-value pairs with the same key requires collecting all key-value pairs with the same key on the same machine.

We concluded the last session asking ourselves,

But how does Spark know which key to put on which machine?

Before we try to optimize that example any further, let's first take a quick detour into what partitioning is...

Partitions

The data within an RDD is split into several partitions.

Properties of partitions:

- Partitions never span multiple machines, i.e., tuples in the same partition are guaranteed to be on the same machine.
- ► Each machine in the cluster contains one or more partitions.
- ► The number of partitions to use is configurable. By default, it equals the *total number of cores on all executor nodes*.

Two kinds of partitioning available in Spark:

- Hash partitioning
- Range partitioning

Customizing a partitioning is only possible on Pair RDDs.

Hash partitioning

Back to our example. Given a Pair RDD that should be grouped:

Hash partitioning

Back to our example. Given a Pair RDD that should be grouped:

groupByKey first computes per tuple (k, v) its partition p:

```
p = k.hashCode() % numPartitions
```

Then, all tuples in the same partition p are sent to the machine hosting p.

Intuition: hash partitioning attempts to spread data evenly across partitions based on the key.

Range partitioning

Pair RDDs may contain keys that have an ordering defined.

Examples: Int, Char, String, ...

For such RDDs, range partitioning may be more efficient.

Using a range partitioner, keys are partitioned according to:

- 1. an ordering for keys
- 2. a set of sorted ranges of keys

Property: tuples with keys in the same range appear on the same machine.

Hash Partitioning: Example

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a desired number of partitions of 4.

Hash Partitioning: Example

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a desired number of partitions of 4.

Furthermore, suppose that hashCode() is the identity (n.hashCode() == n).

Hash Partitioning: Example

Consider a Pair RDD, with keys [8, 96, 240, 400, 401, 800], and a desired number of partitions of 4.

Furthermore, suppose that hashCode() is the identity (n.hashCode() == n).

In this case, hash partitioning distributes the keys as follows among the partitions:

partition 0: [8, 96, 240, 400, 800]

P=K904

- partition 1: [401]
- partition 2: []
- partition 3: []

The result is a very unbalanced distribution which hurts performance.

Range Partitioning: Example

Using range partitioning the distribution can be improved significantly:

- Assumptions: (a) keys non-negative, (b) 800 is biggest key in the RDD.
- Set of ranges: [1, 200], [201, 400], [401, 600], [601, 800]

Range Partitioning: Example

Using range partitioning the distribution can be improved significantly:

- Assumptions: (a) keys non-negative, (b) 800 is biggest key in the RDD.
- Set of ranges: [1, 200], [201, 400], [401, 600], [601, 800]

In this case, range partitioning distributes the keys as follows among the partitions:

- partition 0: [8, 96]
- partition 1: [240, 400]
- partition 2: [401]
- partition 3: [800]

The resulting partitioning is much more balanced.

Partitioning Data

How do we set a partitioning for our data?

Partitioning Data

How do we set a partitioning for our data?

There are two ways to create RDDs with specific partitionings:

- 1. Call partitionBy on an RDD, providing an explicit Partitioner.
- 2. Using transformations that return RDDs with specific partitioners.

Invoking partitionBy creates an RDD with a specified partitioner.

Invoking partitionBy creates an RDD with a specified partitioner.

Example:

```
val pairs = purchasesRdd.map(p => (p.customerId, p.price))
```

Invoking partitionBy creates an RDD with a specified partitioner.

Example:

```
val pairs = purchasesRdd.map(p => (p.customerId, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)
val partitioned = pairs.partitionBy(tunedPartitioner).persist()
```

Invoking partitionBy creates an RDD with a specified partitioner.

Example:

```
val pairs = purchasesRdd.map(p => (p.customerId, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)
val partitioned = pairs.partitionBy(tunedPartitioner).persist()
```

Creating a RangePartitioner requires:

- 1. Specifying the desired number of partitions.
- 2. Providing a Pair RDD with *ordered keys*. This RDD is *sampled* to create a suitable set of *sorted ranges*.

Invoking partitionBy creates an RDD with a specified partitioner.

Example:

```
val pairs = purchasesRdd.map(p => (p.customerId, p.price))

val tunedPartitioner = new RangePartitioner(8, pairs)
val partitioned = pairs.partitionBy(tunedPartitioner).persist()

Creating a RangePartitioner requires:
```

- 1. Specifying the desired number of partitions.
- 2. Providing a Pair RDD with *ordered keys*. This RDD is *sampled* to create a suitable set of *sorted ranges*.

Important: the result of partitionBy should be persisted. Otherwise, the partitioning is repeatedly applied (involving shuffling!) each time the partitioned RDD is used.

Partitioner from parent RDD:

Pair RDDs that are the result of a transformation on a *partitioned* Pair RDD typically is configured to use the hash partitioner that was used to construct it.

Automatically-set partitioners:

Some operations on RDDs automatically result in an RDD with a known partitioner – for when it makes sense.

For example, by default, when using sortByKey, a RangePartitioner is used. Further, the default partitioner when using groupByKey, is a HashPartitioner, as we saw earlier.

Operations on Pair RDDs that hold to (and propagate) a partitioner:

- cogroup
- groupWith
- join
- ► leftOuterJoin
- rightOuterJoin
- groupByKey
- reduceByKey

- ► foldByKey
- combineByKey
- partitionBy
- sort
- mapValues (if parent has a partitioner)
- flatMapValues (if parent has a partitioner)
- filter (if parent has a partitioner)

All other operations will produce a result without a partitioner.

...All other operations will produce a result without a partitioner.

Why?

...All other operations will produce a result without a partitioner.

Why?

Consider the map transformation. Given that we have a hash partitioned Pair RDD, why would it make sense for map to lose the partitioner in its result RDD?

...All other operations will produce a result without a partitioner.

Why?

Consider the map transformation. Given that we have a hash partitioned Pair RDD, why would it make sense for map to lose the partitioner in its result RDD?

Because it's possible for map to change the key . E.g.,:

...All other operations will produce a result without a partitioner.

Why?

Consider the map transformation. Given that we have a hash partitioned Pair RDD, why would it make sense for map to lose the partitioner in its result RDD?

Because it's possible for map to change the key . E.g.,:

In this case, if the map transformation preserved the partitioner in the result RDD, it no longer make sense, as now the keys are all different.

Hence mapValues. It enables us to still do map transformations without changing the keys, thereby preserving the partitioner.

Optimizing with Partitioners

Big Data Analysis with Scala and Spark

Heather Miller

Optimizing with Partitioners

We saw in the last session that Spark makes a few kinds of partitioners available out-of-the-box to users:

- hash partitioners and
- range partitioners.

We also learned what kinds of operations may introduce new partitioners, or which may discard custom partitioners.

However, we haven't covered *why* someone would want to repartition their data.

Optimizing with Partitioners

We saw in the last session that Spark makes a few kinds of partitioners available out-of-the-box to users:

- hash partitioners and
- range partitioners.

We also learned what kinds of operations may introduce new partitioners, or which may discard custom partitioners.

However, we haven't covered *why* someone would want to repartition their data.

Partitioning can bring substantial performance gains, especially in the face of shuffles.

Using range partitioners we can optimize our earlier use of reduceByKey so that it does not involve any shuffling over the network at all!

Using range partitioners we can optimize our earlier use of reduceByKey so that it does not involve any shuffling over the network at all!

```
val pairs = purchasesRdd.map(p => (p.customerId, p.price))
val tunedPartitioner = new RangePartitioner(8, pairs)
val partitioned = pairs.partitionBy(tunedPartitioner)
                         .persist()
val purchasesPerCust =
  partitioned.map(p \Rightarrow (p._1, (1, p._2)))
val purchasesPerMonth = purchasesPerCust
      .reduceByKey((v1, v2) \Rightarrow (v1._1 + v2._1, v1._2 + v2._2))
      .collect()
```

On the range partitioned data:

On the range partitioned data:

From pages 61-64 of the Learning Spark book

Consider an application that keeps a large table of user information in memory:

▶ userData - **BIG**, containing (UserID, UserInfo) pairs, where UserInfo contains a list of topics the user is subscribed to.

The application periodically combines this **big** table with a smaller file representing events that happened in the past five minutes.

events – small, containing (UserID, LinkInfo) pairs for users who have clicked a link on a website in those five minutes:

For example, we may wish to count how many users visited a link that was not to one of their subscribed topics. We can perform this combination with Spark's join operation, which can be used to group the UserInfo and LinkInfo pairs for each UserID by key.

From pages 61-64 of the Learning Spark book

```
val sc = new SparkContext(...)
val userData = sc.sequenceFile[UserID, UserInfo]("hdfs://...").persist()
def processNewLogs(logFileName: String) {
  val events = sc.sequenceFile[UserID, LinkInfo](logFileName)
  val joined = userData.join(events) //RDD of (UserID, (UserInfo, LinkInfo))
  val offTopicVisits = joined.filter {
    case (userId, (userInfo, linkInfo)) => // Expand the tuple
      !userInfo.topics.contains(linkInfo.topic)
  }.count()
  println("Number of visits to non-subscribed topics: " + offTopicVisits)
Is this OK?
```

From pages 61-64 of the Learning Spark book

It will be very inefficient!

Why? The join operation, called each time processNewLogs is invoked, does not know anything about how the keys are partitioned in the datasets.

By default, this operation will hash all the keys of both datasets, sending elements with the same key hash across the network to the same machine, and then join together the elements with the same key on that machine. **Even though userData doesn't change!**

Fixing this is easy. Just use partitionBy on the **big** userData RDD at the start of the program!

Partitioning Data: partitionBy, Another Example

Fixing this is easy. Just use partitionBy on the **big** userData RDD at the start of the program!

Therefore, userData becomes:

Since we called partitionBy when building userData, Spark will now know that it is hash-partitioned, and calls to join on it will take advantage of this information.

In particular, when we call userData.join(events), Spark will shuffle only the events RDD, sending events with each particular UserID to the machine that contains the corresponding hash partition of userData.

Partitioning Data: partitionBy, Another Example

Or, shown visually:

Now that userData is pre-partitioned, Spark will shuffle only the events RDD, sending events with each particular UserID to the machine that contains the corresponding hash partition of userData.

Recall our example using groupByKey:

Recall our example using groupByKey:

Grouping all values of key-value pairs with the same key requires collecting all key-value pairs with the same key on the same machine.

Recall our example using groupByKey:

Grouping all values of key-value pairs with the same key requires collecting all key-value pairs with the same key on the same machine.

Grouping is done using a hash partitioner with default parameters.

Recall our example using groupByKey:

Grouping all values of key-value pairs with the same key requires collecting all key-value pairs with the same key on the same machine.

Grouping is done using a hash partitioner with default parameters.

The result RDD, purchasesPerCust, is configured to use the hash partitioner that was used to construct it.

How do I know a shuffle will occur?

Rule of thumb: a shuffle *can* occur when the resulting RDD depends on other elements from the same RDD or another RDD.

How do I know a shuffle will occur?

Rule of thumb: a shuffle *can* occur when the resulting RDD depends on other elements from the same RDD or another RDD.

Note: sometimes one can be clever and avoid much or all network communication while still using an operation like join via smart partitioning

How do I know a shuffle will occur?

You can also figure out whether a shuffle has been planned/executed via:

1. The return type of certain transformations, e.g.,

```
org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[366]
```

2. Using function toDebugString to see its execution plan:

Operations that might cause a shuffle

- cogroup
- groupWith
- join
- ► leftOuterJoin
- rightOuterJoin
- groupByKey
- reduceByKey
- combineByKey
- distinct
- intersection
- repartition
- coalesce

Avoiding a Network Shuffle By Partitioning

There are a few ways to use operations that *might* cause a shuffle and to still avoid much or all network shuffling.

Can you think of an example?

Avoiding a Network Shuffle By Partitioning

There are a few ways to use operations that *might* cause a shuffle and to still avoid much or all network shuffling.

Can you think of an example?

2 Examples:

- 1. reduceByKey running on a pre-partitioned RDD will cause the values to be computed *locally*, requiring only the final reduced value has to be sent from the worker to the driver.
- 2. join called on two RDDs that are pre-partitioned with the same partitioner and cached on the same machine will cause the join to be computed *locally*, with no shuffling across the network.

Shuffles Happen: Key Takeaways

How your data is organized on the cluster, and what operations you're doing with it matters!

We've seen speedups of 10x on small examples just by trying to ensure that data is not transmitted over the network to other machines.

This can hugely affect your day job if you're trying to run a job that should run in 4 hours, but due to a missed opportunity to partition data or optimize away a shuffle, it could take **40 hours** instead.

Wide vs Narrow Dependencies

Big Data Analysis with Scala and Spark

Heather Miller

Not All Transformations are Created Equal

Some transformations significantly more expensive (latency) than others

E.g., requiring lots of data to be transferred over the network, sometimes unnecessarily.

Not All Transformations are Created Equal

Some transformations significantly more expensive (latency) than others

E.g., requiring lots of data to be transferred over the network, sometimes unnecessarily.

In the past sessions:

we learned that shuffling sometimes happens on some transformations.

In this session:

- we'll look at how RDDs are represented.
- we'll dive into how and when Spark decides it must shuffle data.
- we'll see how these dependencies make fault tolerance possible.

Lineages

Computations on RDDs are represented as a **lineage graph**; a Directed Acyclic Graph (DAG) representing the computations done on the RDD.

Lineages

Computations on RDDs are represented as a **lineage graph**; a Directed Acyclic Graph (DAG) representing the computations done on the RDD.

Example:

Lineages

Computations on RDDs are represented as a **lineage graph**; a Directed Acyclic Graph (DAG) representing the computations done on the RDD.

Example:

Spark represents RDDs in terms of these lineage graphs/DAGs *In fact, this is the representation/DAG is what Spark analyzes to do optimizations.*

RDDs are made up of 2 important parts.

(but are made up of 4 parts in total)

RDDs are made up of 2 important parts.

(but are made up of 4 parts in total)

RDDs are represented as:

Partitions. Atomic pieces of the dataset.
 One or many per compute node.

RDDs are made up of 2 important parts.

(but are made up of 4 parts in total)

- Partitions. Atomic pieces of the dataset.
 One or many per compute node.
- Dependencies. Models relationship between this RDD and its partitions with the RDD(s) it was derived from.

RDDs are made up of 2 important parts.

(but are made up of 4 parts in total)

- Partitions. Atomic pieces of the dataset.
 One or many per compute node.
- Dependencies. Models relationship between this RDD and its partitions with the RDD(s) it was derived from.

RDDs are made up of 2 important parts.

(but are made up of 4 parts in total)

- Partitions. Atomic pieces of the dataset.
 One or many per compute node.
- Dependencies. Models relationship between this RDD and its partitions with the RDD(s) it was derived from.
- A function for computing the dataset based on its parent RDDs.
- Metadata about its partitioning scheme and data placement.

RDD Dependencies and Shuffles

Previously, we arrived at the following rule of thumb for trying to determine when a shuffle might occur:

Rule of thumb: a shuffle *can* occur when the resulting RDD depends on other elements from the same RDD or another RDD.

RDD Dependencies and Shuffles

Previously, we arrived at the following rule of thumb for trying to determine when a shuffle might occur:

Rule of thumb: a shuffle *can* occur when the resulting RDD depends on other elements from the same RDD or another RDD.

In fact, RDD dependencies encode when data must move across the network.

RDD Dependencies and Shuffles

Previously, we arrived at the following rule of thumb for trying to determine when a shuffle might occur:

Rule of thumb: a shuffle *can* occur when the resulting RDD depends on other elements from the same RDD or another RDD.

In fact, RDD dependencies encode when data must move across the network.

Transformations cause shuffles. Transformations can have two kinds of dependencies:

- 1. Narrow Dependencies
- 2. Wide Dependencies

Narrow Dependencies vs Wide Dependences

Narrow Dependencies

Each partition of the parent RDD is used by at most one partition of the child RDD.

Wide Dependencies

Each partition of the parent RDD may be depended on by **multiple** child partitions.

Narrow Dependencies vs Wide Dependences

Narrow Dependencies

Each partition of the parent RDD is used by at most one partition of the child RDD.

Fast! No shuffle necessary. Optimizations like pipelining possible.

Wide Dependencies

Each partition of the parent RDD may be depended on by **multiple** child partitions.

Slow! Requires all or some data to be shuffled over the network.

Narrow dependencies:

Narrow dependencies:

Narrow dependencies:

Narrow dependencies:

Narrow dependencies:

Each partition of the parent RDD is used by at most one partition of the child RDD.

Wide dependencies:

Each partition of the parent RDD may be depended on by multiple child partitions.

Narrow dependencies:

Each partition of the parent RDD is used by at most one partition of the child RDD.

Wide dependencies:

Each partition of the parent RDD may be depended on by multiple child partitions.

Narrow dependencies:

Each partition of the parent RDD is used by at most one partition of the child RDD.

Wide dependencies:

Each partition of the parent RDD may be depended on by multiple child partitions.

join
with
inputs not
co-partitioned

Narrow dependencies:

Each partition of the parent RDD is used by at most one partition of the child RDD.

Wide dependencies:

Each partition of the parent RDD may be depended on by multiple child partitions.

join
with
inputs not
co-partitioned

Let's visualize an example program and its dependencies.

Let's visualize an example program and its dependencies.

Conceptually assuming the DAG:

Let's visualize an example program and its dependencies.

Conceptually assuming the DAG:

What do the dependencies look like?

Which dependencies are wide, and which are narrow?

Let's visualize an example program and its dependencies.

Let's visualize an example program and its dependencies.

Which dependencies are wide, and which are narrow?

Let's visualize an example program and its dependencies.

Let's visualize an example program and its dependencies.

Wide transformations: groupBy, join

Let's visualize an example program and its dependencies.

Wide transformations: groupBy, join

Narrow transformations: map, union, join

Let's visualize an example program and its dependencies.

Wide transformations: groupBy, join

Narrow transformations: map, union, join

Let's visualize an example program and its dependencies.

Since **G** would be derived from **B**, which itself is derived from a **groupBy** and a shuffle on **A**, you could imagine that we will have already co-partitioned and cached **B** in memory following the call to **groupBy**.

Part of this join is thus a narrow transformation.

Which transformations have which kind of dependency?

Transformations with narrow dependencies:

```
map
mapValues
flatMap
filter
mapPartitions
mapPartitionsWithIndex
```

Transformations with wide dependencies:

(might cause a shuffle)

cogroup

groupWith

join

leftOuterJoin

rightOuterJoin

groupByKey

reduceByKey

combineByKey

distinct

intersection

repartition

coalesce

How can I find out?

dependencies method on RDDs.

dependencies returns a sequence of Dependency objects, which are actually the dependencies used by Spark's scheduler to know how this RDD depends on other RDDs.

The sorts of dependency objects the dependencies method may return include:

Narrow dependency objects:

- OneToOneDependency
- PruneDependency
- RangeDependency

Wide dependency objects:

ShuffleDependency

How can I find out?

dependencies method on RDDs.

dependencies returns a sequence of Dependency objects, which are actually the dependencies used by Spark's scheduler to know how this RDD depends on other RDDs.

How can I find out?

toDebugString method on RDDs.

toDebugString prints out a visualization of the RDD's lineage, and other information pertinent to scheduling. For example, indentations in the output separate groups of narrow transformations that may be pipelined together with wide transformations that require shuffles. These groupings are called *stages*.

Lineages and Fault Tolerance

Lineages graphs are the key to fault tolerance in Spark.

Lineages and Fault Tolerance

Lineages graphs are the key to fault tolerance in Spark.

Ideas from functional programming enable fault tolerance in Spark:

- RDDs are immutable.
- ► We use higher-order functions like map, flatMap, filter to do functional transformations on this immutable data.
- ► A function for computing the dataset based on its parent RDDs also is part of an RDD's representation.

Lineages and Fault Tolerance

Lineages graphs are the key to fault tolerance in Spark.

Ideas from functional programming enable fault tolerance in Spark:

- RDDs are immutable.
- ► We use higher-order functions like map, flatMap, filter to do functional transformations on this immutable data.
- ► A function for computing the dataset based on its parent RDDs also is part of an RDD's representation.

Along with keeping track of dependency information between partitions as well, this allows us to:

in-memory fault tolerant!

Funt toleration of the data

Recover from failures by recomputing lost partitions from lineage graphs.

Lineages graphs are the key to fault tolerance in Spark.

Let's assume one of our partitions from our previous example fails.

,

Lineages graphs are the key to fault tolerance in Spark.

Lineages graphs are the key to fault tolerance in Spark.

Lineages graphs are the key to fault tolerance in Spark.

Lineages graphs are the key to fault tolerance in Spark.

Lineages graphs are the key to fault tolerance in Spark.

Lineages graphs are the key to fault tolerance in Spark.

Recomputing missing partitions fast for narrow dependencies. But slow for wide dependencies!

Lineages graphs are the key to fault tolerance in Spark.

Recomputing missing partitions fast for narrow dependencies. But slow for wide dependencies!

