## Congratulations! You passed!

Grade

received 100%

Latest Submission Grade 100%

To pass 80% or

higher

Go to next item

1. What do you think applying this filter to a grayscale image will do?

1/1 point

$$\begin{bmatrix} 0 & 1 & -1 & 0 \\ 1 & 3 & -3 & -1 \\ 1 & 3 & -3 & -1 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

- Oetect horizontal edges
- Detect 45 degree edges
- Detect image contrast
- Detect vertical edges



✓ Correct

Correct! As you can see the difference between values from the left part and values from the right of this filter is high. When convolving this filter on a grayscale image, the vertical edges will be detected.

| 2. | Suppose your input is a 300 by 300 color (RGB) image, and you are not using a convolutional network. If the first hidden layer has 100 neurons, each one fully connected to the input, how many parameters does this hidden layer have (including the bias parameters)? | 1/1 point |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | 9,000,001                                                                                                                                                                                                                                                               |           |
|    | 27,000,001                                                                                                                                                                                                                                                              |           |
|    | 27,000,100                                                                                                                                                                                                                                                              |           |
|    | 9,000,100                                                                                                                                                                                                                                                               |           |
|    | ∠ <sup>7</sup> Expand                                                                                                                                                                                                                                                   |           |
|    | $\bigcirc$ correct Correct, the number of weights is $300 \times 300 \times 3 \times 100 = 27,000,000$ , when you add the bias terms (one per neuron) you get 27,000,100.                                                                                               |           |
| 2  | Suppose your input is a 256 by 256 grayscale image, and you use a convolutional layer with 128 filters that are                                                                                                                                                         | 1/1       |
| ٥. | each $3 \times 3$ . How many parameters does this hidden layer have (including the bias parameters)?                                                                                                                                                                    | 1/1 point |
|    | O 1152                                                                                                                                                                                                                                                                  |           |
|    | 1280                                                                                                                                                                                                                                                                    |           |
|    | 75497600                                                                                                                                                                                                                                                                |           |
|    |                                                                                                                                                                                                                                                                         |           |
|    | Expand                                                                                                                                                                                                                                                                  |           |
|    | $\bigcirc$ <b>correct</b> Yes, since the input volume has only one channel each filter has $3 \times 3 + 1$ weights including the bias, thus the total is $(3 \times 3 + 1) \times 128$ .                                                                               |           |

| 4. | You have an input volume that is 63x63x16, and convolve it with 32 filters that are each 7x7, using a stride of 2 and no padding. What is the output volume? | 1/1 point |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | 16x16x32                                                                                                                                                     |           |
|    |                                                                                                                                                              |           |
|    | 29x29x32                                                                                                                                                     |           |
|    | 16x16x16                                                                                                                                                     |           |
|    |                                                                                                                                                              |           |
|    | ∠ <sup>7</sup> Expand                                                                                                                                        |           |
|    | $\bigcirc$ Correct Yes, $\frac{63-7+0\times2}{2}+1=29$ and the number of channels should match the number of filters.                                        |           |
|    |                                                                                                                                                              |           |
| 5. | You have an input volume that is 61x61x32, and pad it using "pad=3". What is the dimension of the resulting volume (after padding)?                          | 1/1 point |
|    |                                                                                                                                                              |           |
|    | ○ 61x61x35                                                                                                                                                   |           |
|    | ○ 64x64x32                                                                                                                                                   |           |
|    | ○ 64x64x35                                                                                                                                                   |           |
|    | ∠ <sup>™</sup> Expand                                                                                                                                        |           |

|    | ✓ Correct Yes, if the padding is 3 you add 6 to the height dimension and 6 to the width dimension.                                                                                          |             |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 6. | You have an input volume that is 63x63x16, and convolve it with 32 filters that are each 7x7, and stride of 1. You want to use a "same" convolution. What is the padding?                   | 1 / 1 point |
|    | ○ 1                                                                                                                                                                                         |             |
|    | O 2                                                                                                                                                                                         |             |
|    | 3                                                                                                                                                                                           |             |
|    | O 7                                                                                                                                                                                         |             |
|    | ∠ <sup>N</sup> Expand                                                                                                                                                                       |             |
|    | $\bigcirc$ Correct Correct, you need to satisfy the following equation: $n_H - f + 2 \times p + 1 = n_H$ as you want to keep the dimensions between the input volume and the output volume. |             |

| 7. | You have an input volume that is 32x32x16, and apply max pooling with a stride of 2 and a filter size of 2. What is the output volume? | 1 / 1 point |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    | ○ 32x32x8                                                                                                                              |             |
|    | ○ 15x15x16                                                                                                                             |             |
|    | ○ 16x16x8                                                                                                                              |             |
|    |                                                                                                                                        |             |
|    | ∠ <sup>7</sup> Expand                                                                                                                  |             |
|    | $\bigcirc$ Correct Correct, using the following formula: $n_H^{[l]} = \frac{n_H^{[l-1]} + 2 \times p - f}{s} + 1$                      |             |
|    |                                                                                                                                        |             |
| 8. | Because pooling layers do not have parameters, they do not affect the backpropagation (derivatives) calculation.                       | 1/1 point   |
|    | ○ True                                                                                                                                 |             |
|    | False                                                                                                                                  |             |
|    |                                                                                                                                        |             |



Expand

Great, you got all the right answers.

| convolutional layer making it possible to train a network with smaller training sets. True/False?                                                                                                                |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| convolutional tayer making it possible to train a network with smaller training sets. True/raise:                                                                                                                |  |
| True                                                                                                                                                                                                             |  |
| ○ False                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                  |  |
| Expand                                                                                                                                                                                                           |  |
| Correct Yes, weight sharing reduces significantly the number of parameters in a neural network, and sparsity of connections allows us to use a smaller number of inputs thus reducing even further the number of |  |
| parameters.                                                                                                                                                                                                      |  |