CPSC 486/586: Probabilistic Machine Learning

Out: February 1, 2023

Problem Set 2

Instructor: Andre Wibisono

Due: February 15, 2023

(P1) Consider a Gaussian graphical model on a two-node graph.

This means we have a joint distribution on $(x, y) \in \mathbb{R} \times \mathbb{R}$:

$$\nu(x,y) = \frac{1}{Z} \exp\left(-\frac{\alpha}{2}x^2 - \frac{\alpha}{2}y^2 + \beta xy\right)$$

for some parameters $\alpha > 0$ and $\beta \in \mathbb{R}$. Assume $|\beta| < \alpha$. Here

$$Z = \int_{\mathbb{R} \times \mathbb{R}} \exp\left(-\frac{\alpha}{2} \|x\|^2 - \frac{\alpha}{2} \|y\|^2 + \beta x^{\mathsf{T}} y\right) dx dy$$

is the normalizing constant.

(a) Note that $\nu = \mathcal{N}(\mu, \Sigma)$ is a joint Gaussian distribution on \mathbb{R}^2 . Compute $\mu \in \mathbb{R}^2$ and $\Sigma \in \mathbb{R}^{2 \times 2}$ in terms of α , β . Explain why we need the assumption $|\beta| < \alpha$.

Solution: We can write

$$\nu(x,y) \propto \exp\left(-\frac{\alpha}{2}||x||^2 - \frac{\alpha}{2}||y||^2 + \beta x^\top y\right)$$
$$\propto \exp\left(-\frac{1}{2} \begin{pmatrix} x \\ y \end{pmatrix}^\top \begin{pmatrix} \alpha & -\beta \\ -\beta & \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}\right)$$

This shows that $\nu = \mathcal{N}(\mu, \Sigma)$ is Gaussian with

$$\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

and

$$\Sigma = \begin{pmatrix} \alpha & -\beta \\ -\beta & \alpha \end{pmatrix}^{-1} = \frac{1}{\alpha^2 - \beta^2} \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}$$

The last step above is valid when $\alpha^2 - \beta^2 \neq 0$. If $|\beta| < \alpha$, then $\alpha^2 - \beta^2 > 0$.

(b) Note that the marginal distributions of X, Y are Gaussian:

$$\nu_X = \mathcal{N}(\mu_X, \Sigma_X)$$
$$\nu_Y = \mathcal{N}(\mu_Y, \Sigma_Y).$$

Compute $\mu_X, \mu_Y \in \mathbb{R}$ and $\Sigma_X, \Sigma_Y > 0$ in terms of α, β .

Solution: The X and Y marginals can be obtained from the components of μ, Σ :

$$\mu_X = 0$$

$$\mu_Y = 0$$

$$\Sigma_X = \frac{\alpha}{\alpha^2 - \beta^2}$$

$$\Sigma_Y = \frac{\alpha}{\alpha^2 - \beta^2}$$

(c) We want to approximate ν with an independent Gaussian distribution $\rho = \rho_X \otimes \rho_Y$ (this means $\rho(x,y) = \rho_X(x)\rho_Y(y)$ where $\rho_X = \mathcal{N}(\mu_X, \Sigma_X)$ and $\rho_Y = \mathcal{N}(\mu_Y, \Sigma_Y)$ for some $\mu_X, \mu_Y \in \mathbb{R}$ and $\Sigma_X, \Sigma_Y > 0$; equivalently, $\rho = \rho_X \otimes \rho_Y = \mathcal{N}\left(\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} \Sigma_X & 0 \\ 0 & \Sigma_Y \end{pmatrix}\right)$). We choose the best approximation by minimizing the KL divergence:

$$\rho^* = \arg\min_{\rho = \rho_X \otimes \rho_Y} \mathsf{KL}(\rho \| \nu)$$

where the minimization is over Gaussian distributions ρ_X, ρ_Y on \mathbb{R} . Show that the minimizer $\rho^* = \rho_X^* \otimes \rho_Y^*$ is given by

$$\rho_X^* = \mathcal{N}\left(0, \frac{1}{\alpha}\right)$$
$$\rho_Y^* = \mathcal{N}\left(0, \frac{1}{\alpha}\right).$$

Solution: Note: $H(\rho) = -\mathbb{E}_{\rho}[\log \rho]$ is entropy. We can write:

$$\begin{aligned} \mathsf{KL}(\rho_X \otimes \rho_Y || \nu) &= \mathbb{E}_{\rho_X \otimes \rho_Y} \left[\log \frac{\rho_X(x) \rho_Y(y)}{\nu(x,y)} \right] \\ &= -H(\rho_X) - H(\rho_Y) - \mathbb{E}_{\rho_X \otimes \rho_Y} \left[\log \nu(x,y) \right], \end{aligned}$$

where the above uses the common decomposition of KL divergence into negative entropy and cross entropy. Then,

$$-\mathbb{E}_{\rho_X \otimes \rho_Y} \left[\log \nu(x, y) \right] = \frac{\alpha}{2} \mathbb{E}_{\rho_X} [x^2] + \frac{\alpha}{2} \mathbb{E}_{\rho_Y} [y^2] - \beta \mathbb{E}_{\rho_X} [x] \mathbb{E}_{\rho_Y} [y]$$

$$= \frac{\alpha}{2}(\Sigma_X + \mu_X^2) + \frac{\alpha}{2}(\Sigma_Y + \mu_Y^2) - \beta\mu_X\mu_Y$$

Altogether, we can write the KL divergence as a function of $\mu_X, \mu_Y, \Sigma_X, \Sigma_Y$ (dropping constant terms):

$$\mathcal{F}(\mu_X, \mu_Y, \Sigma_X, \Sigma_Y) = -\frac{1}{2}\log \Sigma_X + \frac{\alpha}{2}\Sigma_X + \frac{\alpha}{2}\mu_X^2 - \beta\mu_X\mu_Y - \frac{1}{2}\log \Sigma_Y + \frac{\alpha}{2}\Sigma_Y + \frac{\alpha}{2}\mu_Y^2$$

and minimize (checking that the function is convex in each variable):

$$\frac{\partial \mathcal{F}}{\partial \Sigma_{X}} = -\frac{1}{2\Sigma_{X}} + \frac{\alpha}{2} = 0 \iff \Sigma_{X} = \frac{1}{\alpha}, \qquad \frac{\partial^{2} \mathcal{F}}{\partial \Sigma_{X}^{2}} = \frac{1}{2\Sigma_{X}^{2}} > 0$$

$$\frac{\partial \mathcal{F}}{\partial \Sigma_{Y}} = -\frac{1}{2\Sigma_{Y}} + \frac{\alpha}{2} = 0 \iff \Sigma_{Y} = \frac{1}{\alpha}, \qquad \text{(same)}$$

$$\nabla_{\mu_{X},\mu_{Y}} \mathcal{F} = \begin{pmatrix} \alpha\mu_{X} - \beta\mu_{Y} \\ \alpha\mu_{Y} - \beta\mu_{X} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \underline{\mu_{X}} = \frac{\beta}{\alpha}\mu_{Y}, \mu_{X} = \frac{\alpha}{\beta}\mu_{Y} \Rightarrow \mu_{X} = \mu_{Y} = 0,$$

$$\nabla_{\mu_{X},\mu_{Y}}^{2} \mathcal{F} = \begin{pmatrix} \alpha & -\beta \\ -\beta & \alpha \end{pmatrix} \succ 0 \text{ if } \alpha^{2} > \beta^{2}$$

Thus we have solved for $\rho_X^* \otimes \rho_Y^*$, with

$$\rho_X^* = \mathcal{N}\left(0, \frac{1}{\alpha}\right)$$
$$\rho_Y^* = \mathcal{N}\left(0, \frac{1}{\alpha}\right)$$

(d) Suppose now we minimize the KL divergence in the opposite order:

$$\tilde{\rho}^* = \arg\min_{\rho = \rho_X \otimes \rho_Y} \mathsf{KL}(\nu \| \rho)$$

where we are minimizing over Gaussian distributions ρ_X, ρ_Y on \mathbb{R} . Show that the minimizer $\tilde{\rho}^* = \tilde{\rho}_X^* \otimes \tilde{\rho}_Y^*$ is given by the marginal distributions:

$$\tilde{\rho}_X^* = \nu_X$$
$$\tilde{\rho}_Y^* = \nu_Y.$$

Solution: As usual, we can write KL divergence as

$$\mathsf{KL}(\nu||\rho_X \otimes \rho_Y) = -H(\nu) + \mathbb{E}_{\nu} \left[-\log \rho_X - \log \rho_Y \right],$$

where the last term is

$$\begin{split} & \mathbb{E}_{\nu} \left[-\log \rho_{X} - \log \rho_{Y} \right] \\ & = \mathbb{E}_{\nu} \left[\frac{1}{2} \log(2\pi \Sigma_{X}) + \frac{(x - \mu_{X})^{2}}{2\Sigma_{X}} + \frac{1}{2} \log(2\pi \Sigma_{Y}) + \frac{(y - \mu_{Y})^{2}}{2\Sigma_{Y}} \right] \\ & = \frac{1}{2} \log(2\pi \Sigma_{X}) + \frac{1}{2} \log(2\pi \Sigma_{Y}) + \frac{1}{2\Sigma_{Y}} \mathbb{E}_{\nu} [(x - \mu_{X})^{2}] + \frac{1}{2\Sigma_{Y}} \mathbb{E}_{\nu} [(y - \mu_{Y})^{2}] \end{split}$$

Working out the two expectation terms:

$$\mathbb{E}_{\nu}[(x-\mu_X)^2] = \mathbb{E}_{\nu}[x^2 - 2x\mu_X + \mu_X^2]$$

$$= \underbrace{\operatorname{Var}_{\nu}(x)}_{=\frac{\alpha}{\alpha^2 - \beta^2}} + \underbrace{\mathbb{E}_{\nu}[x]^2}_{=0} - 2\underbrace{\mathbb{E}_{\nu}[x]}_{=0} \mu_2 + \mu_X^2$$

$$= \frac{\alpha}{\alpha^2 - \beta^2} + \mu_X^2,$$
Similarly,
$$\mathbb{E}_{\nu}[(y-\mu_Y)^2] = \frac{\alpha}{\alpha^2 - \beta^2} + \mu_Y^2$$

Altogether, our objective (in $\mu_X, \mu_Y, \Sigma_X, \Sigma_Y$) is:

$$\mathcal{F}(\mu_X, \mu_Y, \Sigma_X, \Sigma_Y) \propto \frac{1}{2} \log(\Sigma_X) + \frac{\mu_X^2}{2\Sigma_X} + \frac{1}{2\Sigma_X} \left(\frac{\alpha}{\alpha^2 - \beta^2} \right) + \frac{1}{2} \log(\Sigma_Y) + \frac{\mu_Y^2}{2\Sigma_Y} + \frac{1}{2\Sigma_Y} \left(\frac{\alpha}{\alpha^2 - \beta^2} \right)$$

We can consider the problem in the X variables only, since the problem in the Y variables is symmetric. Solving for critical points (first for μ_X):

$$\frac{\partial \mathcal{F}}{\partial \mu_X} = \frac{\mu_X}{\Sigma_X} = 0 \iff \mu_X = 0$$

Plug this into \mathcal{F} ,

$$\mathcal{F}(\mu_X = 0, \Sigma_X) = \frac{1}{2} \log(\Sigma_X) + \frac{1}{2\Sigma_X} \left(\frac{\alpha}{\alpha^2 - \beta^2} \right)$$

$$\frac{\partial \mathcal{F}}{\partial \Sigma_X} = \frac{1}{2\Sigma_X} - \frac{\alpha}{2(\alpha^2 - \beta^2)\Sigma_X^2} = 0 \Rightarrow \Sigma_X = \frac{\alpha}{\alpha^2 - \beta^2}$$

$$\frac{\partial^2 \mathcal{F}}{\partial \Sigma_X^2} = -\frac{1}{2\Sigma_X^2} + \frac{\alpha}{(\alpha^2 - \beta^2)\Sigma_X^3} = \frac{-(\alpha^2 - \beta^2)\Sigma_X + 2\alpha}{2(\alpha^2 - \beta^2)\Sigma_X^3} \ge 0 \iff \Sigma_X \le \frac{2\alpha}{\alpha^2 - \beta^2}$$

The above says we are convex (in Σ_X) in the region $\Sigma_X \leq \frac{2\alpha}{\alpha^2 - \beta^2}$, which our critical point from the first order condition satisfies. There are no other critical points, so this must be the minimizer. Similarly, we should get that

$$\mu_Y = 0, \qquad \Sigma_Y = \frac{\alpha}{\alpha^2 - \beta^2}.$$

Thus, we get

$$\tilde{\rho}_X^* = \mathcal{N}\left(0, \frac{\alpha}{\alpha^2 - \beta^2}\right) = \nu_X$$
$$\tilde{\rho}_Y^* = \mathcal{N}\left(0, \frac{\alpha}{\alpha^2 - \beta^2}\right) = \nu_Y$$

(P2) Let G = (V, E) be a connected, undirected graph on n vertices $V = \{1, ..., n\}$. Consider the Ising model, which models the joint distribution of random variables $X_i \in \{-1, 1\}, i \in V$, as

$$\nu(x_1,\ldots,x_n) = \frac{1}{Z} \exp\left(\beta \sum_{(i,j)\in E} x_i x_j\right)$$

for all $(x_1, \ldots, x_n) \in \{-1, 1\}^n$, for some $\beta \in \mathbb{R}$, where $Z = \sum_{\{-1, 1\}^n} \exp\left(\beta \sum_{(i, j) \in E} x_i x_j\right)$ is the normalization constant. Let $N(i) = \{j \in V : (i, j) \in E\}$ be the set of neighbors of i.

(a) (Gibbs sampling.) For each $i \in V$, show that the conditional distribution of X_i given the other values $X_{\setminus i} = x_{\setminus i} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ is given by:

$$\nu(X_i = 1 \mid X_{\setminus i} = x_{\setminus i}) = \frac{1}{1 + \exp(-2\beta \sum_{j \in N(i)} x_j)}.$$

Solution: By definition, we can compute

$$\nu(X_{i} = 1 \mid X_{\setminus i} = x_{\setminus i}) = \frac{\nu(X_{i} = 1, X_{\setminus i} = x_{\setminus i})}{\nu(X_{\setminus i} = x_{\setminus i})}$$

$$= \frac{\nu(X_{i} = 1, X_{\setminus i} = x_{\setminus i})}{\nu(X_{i} = 1, X_{\setminus i} = x_{\setminus i}) + \nu(X_{i} = -1, X_{\setminus i} = x_{\setminus i})}$$

$$\propto \frac{\exp\left(\beta \sum_{j \in N(i)} x_{j}\right)}{\exp\left(\beta \sum_{j \in N(i)} x_{j}\right) + \exp\left(-\beta \sum_{j \in N(i)} x_{j}\right)}$$

$$= \frac{1}{1 + \exp\left(-2\beta \sum_{j \in N(i)} x_{j}\right)}$$

where the last equality is obtained by dividing the numerator and denominator by $\exp\left(\beta \sum_{j\in N(i)} x_j\right)$.

(b) (Mean field.) Suppose we want to approximate $\nu(x_1,\ldots,x_n)$ by a product distribution $\hat{\nu}(x_1,\ldots,x_n)=\bigotimes_{i\in V}\hat{\nu}_i(x_i)$ where $\hat{\nu}_i$ is a Bernoulli distribution on $\{-1,+1\}$ with parameter $p_i=\hat{\nu}_i(x_i=1)\in[0,1]$. We choose the best approximation by minimizing the KL divergence:

$$\min_{\hat{\nu} = \bigotimes_{i \in V} \hat{\nu}_i} \mathsf{KL}(\hat{\nu} \parallel \nu).$$

Show that the minimizer $\nu_i^* = \text{Ber}(p_i^*)$ is characterized by $p_i^* = \Pr_{\nu_i^*}(x_i = 1)$ which satisfies the fixed point equations:

$$p_i^* = \frac{1}{1 + \exp(-2\beta \sum_{j \in N(i)} (2p_j^* - 1))} \quad \forall i \in V.$$

Solution: Note: $H(\rho) = -\mathbb{E}_{\rho}[\log \rho]$ is entropy.

$$\begin{split} \mathsf{KL}(\hat{\nu} \parallel \nu) &= -H(\hat{\nu}) + \mathbb{E}_{\hat{\nu}} \left[\log(\nu) \right] \\ &= -\sum_{i} H(p_{i}) - \mathbb{E}_{\hat{\nu}} \left[\beta \sum_{(i,j)} x_{i} x_{j} \right] + \mathrm{const.} \\ &= \sum_{i} (p_{i} \log p_{i} + (1 - p_{i}) \log(1 - p_{i})) - \beta \sum_{(i,j)} \mathbb{E}_{\hat{\nu}} [x_{i} x_{j}] \\ &= \sum_{i} (p_{i} \log p_{i} + (1 - p_{i}) \log(1 - p_{i})) - \beta \sum_{(i,j)} (2p_{i} - 1)(2p_{j} - 1) \end{split}$$

Differentiate w.r.t. each p_i :

$$\begin{split} \frac{\partial \mathsf{KL}(\hat{\nu} \parallel \nu)}{\partial p_i} &= p_i \cdot \frac{1}{p_i} + \log p_i + (1 - p_i) \cdot \frac{-1}{1 - p_i} + (-1) \log (1 - p_i) - \beta \sum_{j \in \mathcal{N}(i)} 2(2p_j - 1) \\ &= \log p_i - \log (1 - p_i) - 2\beta \sum_{(i,j)} (2p_j - 1) \end{split}$$

Since $\mathsf{KL}(\hat{\nu} \parallel \nu)$ is convex with respect to each p_i , the optimality condition is $\frac{\partial \mathsf{KL}(\hat{\nu} \parallel \nu)}{\partial p_i} = 0$:

$$\log p_i - \log(1 - p_i) - 2\beta \sum_{(i,j)} (2p_j - 1) = 0 \Rightarrow \log \left(\frac{p_i}{1 - p_i}\right) = 2\beta \sum_{(i,j)} (2p_j - 1)$$

This is the logit function, whose inverse is the sigmoid function. That is, $logit(p) = \sigma^{-1}(p)$ and $\sigma(\alpha) = logit^{-1}(\alpha)$. So to solve for p_i we have

$$p_i = \sigma \left(2\beta \sum_{(i,j)} (2p_j - 1) \right) = \frac{1}{1 + \exp\left(-2\beta \sum_{(i,j)} (2p_j - 1)\right)}.$$

(P3) Let $T: \mathbb{R}^d \to \mathbb{R}^m$ be a given function (the sufficient statistics). For $\theta \in \mathbb{R}^m$, consider the exponential family distribution

$$p_{\theta}(x) = \exp(\langle \theta, T(x) \rangle - A(\theta))$$

where $A(\theta) = \log \int_{\mathbb{R}^d} \exp(\langle \theta, T(x) \rangle) dx$ is the log-partition function, which is a function of the parameter θ with domain $\Theta = \{ \theta \in \mathbb{R}^m \colon A(\theta) < \infty \}$.

(a) Show that the gradient of A with respect to θ gives the expected sufficient statistics: For all $\theta \in \Theta$,

$$\nabla A(\theta) = \mathbb{E}_{p_{\theta}}[T(X)].$$

Solution: You can also refer to the recitation notes from 02/03.

$$\nabla A(\theta) = \nabla \log \left(\int \exp(\theta^{\top} T(x)) dx \right)$$

$$= \frac{\nabla_{\theta} \int \exp(\theta^{\top} T(x)) dx}{\int \exp(\theta^{\top} T(x)) dx}$$

$$= \frac{\int \nabla_{\theta} \exp(\theta^{\top} T(x)) dx}{\int \exp(\theta^{\top} T(x)) dx} \qquad \text{Use DCT}$$

$$= \frac{\int T(x) \exp(\theta^{\top} T(x)) dx}{Z(\theta)} \qquad Z(\theta) = \int \exp(\theta^{\top} T(x)) dx$$

$$= \int T(x) \exp(\theta^{\top} T(x) - A(\theta)) dx \qquad A(\theta) = \log Z(\theta)$$

$$= \mathbb{E}_{p_{\theta}}[T(X)].$$

(b) Show that the Hessian of A with respect to θ gives the covariance matrix of the sufficient statistics: For all $\theta \in \Theta$,

$$\nabla^2 A(\theta) = \mathsf{Cov}_{p_{\theta}}(T(X)).$$

Solution: You can also refer to the recitation notes from 02/03.

$$\nabla^{2}A(\theta) = \nabla_{\theta} \frac{\int T(x) \exp(\theta^{\top}T(x))dx}{Z(\theta)}$$

$$= \frac{\left(\int \nabla_{\theta}T(x) \exp(\theta^{\top}T(x))dx\right) \cdot Z(\theta)}{Z(\theta)^{2}} - \frac{\left(\int T(x) \exp(\theta^{\top}T(x))dx\right) \left(\int \nabla_{\theta} \exp(\theta^{\top}T(x))dx\right)^{\top}}{Z(\theta)^{2}}$$

$$= \frac{\int T(x)T(x)^{\top} \exp(\theta^{\top}T(x))dx}{Z(\theta)} - \frac{\int T(x) \exp(\theta^{\top}T(x))dx}{Z(\theta)} \cdot \frac{\left(\int T(x) \exp(\theta^{\top}T(x))dx\right)^{\top}}{Z(\theta)}$$

$$= \mathbb{E}_{p_{\theta}}[T(X)T(X)^{\top}] - \mathbb{E}_{p_{\theta}}[T(X)]\mathbb{E}_{p_{\theta}}[T(X)]^{\top}$$

$$= \mathsf{Cov}_{p_{\theta}}(T(X))$$

(c) Show that p_{θ} is the maximum entropy distribution given the expected sufficient statistic. Concretely, for any $\theta \in \Theta$, let $\mu(\theta) = \mathbb{E}_{p_{\theta}}[T(X)] \in \mathbb{R}^m$. Show that:

$$p_{\theta} = \arg \max_{p \colon \mathbb{E}_p[T(X)] = \mu(\theta)} H(p)$$

where the maximization is over all probability distributions p(x) on \mathbb{R}^d with $\mathbb{E}_p[T(X)] = \mu(\theta)$. Here $H(p) = -\mathbb{E}_p[\log p]$ is the entropy of distribution p.

(*Hint*: Write down the Langrange multiplier for the constraint $\mathbb{E}_p[T(X)] = \mu(\theta)$.)

Solution: You can also refer to the recitation notes from 02/03. Here is another way to prove it. First, we'll prove a few small facts that we will use for the main proof using Lagrangian duality.

Claim 1 (Space of densities is convex.). Let $\mathcal{P} := \{p(\cdot) : \int p(x)dx = 1, p(x) \geq 0\}$. Then \mathcal{P} is a convex set.

Proof. Let $p, q \in \mathcal{P}$ arbitrary, and let $t \in (0, 1)$. Then

$$\int_{\mathbb{R}^d} tp(x) + (1-t)q(x)dx = t \int p(x)dx + (1-t) \int q(x)dx$$
 Linearity of integral
$$= t + (1-t)$$

$$p, q \in \mathcal{P}$$

$$= 1.$$

Further, since t, 1-t > 0, and $p(x), q(x) \ge 0$ for all x, it also holds that $tp(x) + (1-t)q(x) \ge 0$ for all x. Thus $tp + (1-t)q \in \mathcal{P}$.

Claim 2 (Negative Entropy functional is convex over \mathcal{P}). Let $-H(p) = \int p(x) \log p(x) dx$ for $p \in \mathcal{P}$. This functional -H(p) is convex over \mathcal{P} .

Proof. Pointwise, $u \mapsto u \log u$ is convex. Let $t \in (0,1)$ and $p,q \in \mathcal{P}$. For each x,

$$\underbrace{\left(t\underbrace{p(x)}_{u} + (1-t)\underbrace{q(x)}_{v}\right)}_{tu+(1-t)v} \underbrace{\log(tp(x) + (1-t)q(x))}_{\log(tu+(1-t)v)} \le tp(x)\log p(x) + (1-t)q(x)\log q(x)$$

This holds for all x. Taking integral over x (and using monotonicity of the integral):

$$\mathbb{E}_{tp+(1-t)q}\left[\log(tp+(1-t)q)\right] \le t\mathbb{E}_p[\log p] + (1-t)\mathbb{E}_q[\log q].$$

Claim 3 (Functional derivative of -H(p) with respect to p). The functional derivative of F(p) := -H(p) with respect to p is given by $\frac{\delta F}{\delta p} = 1 + \log p$.

Proof. The functional differential of F in the direction of a function f is:

$$\begin{split} \delta F(p)[f] &= \lim_{h \to 0} \frac{F(p+hf) - F(p)}{h} \\ &= \lim_{h \to 0} \frac{\int (p(x) + hf(x)) \log(p(x) + hf(x)) dx - \int p(x) \log p(x) dx}{h} \\ &= \int \lim_{h \to 0} \left(\frac{(p(x) + hf(x)) \log(p(x) + hf(x)) - p(x) \log p(x)}{h} \right) dx \end{split} \qquad \text{DCT} \\ &= \int (1 + \log p(x)) f(x) dx \qquad \qquad \text{Dir. deriv. pointwise} \end{split}$$

This exists provided that f is a test function which satisfies the conditions needed to use dominated convergence theorem to exchange the limit and integral, for all h small enough. Then the functional derivative is $\frac{\delta F}{\delta p}$ that satisfies:

$$\delta F(p)[f] = \int \frac{\delta F}{\delta p}(x)f(x)dx.$$

We see that $\frac{\delta F}{\delta p}(x) = 1 + \log p(x)$ satisfies this. (Similarly, we can show that if the functional is given by $F(p) = -H(p) - \int \lambda^{\top} T(x) p(x)$, the corresponding functional derivative is $1 + \log p(x) - \lambda^{\top} T(x)$, which will show up later.)

Main proof. Now, we have a convex functional with equality constraint which is linear in p (the expectation over p is a linear functional with respect to p). There exists a p, namely p_{θ} , which satisfies this constraint and with $p_{\theta}(x) > 0$ for all x (Slater's condition) so strong duality should hold. So it suffices to solve the dual problem optimally.

Since maximizing entropy is equivalent to minimizing the negative entropy, we can write the optimization problem as:

$$\min_{p \in \mathcal{P}} \ \mathbb{E}_p[\log p]$$
s.t. $\mathbb{E}_p[T(x)] = \mu(\theta)$.

The Lagrangian for the max entropy problem $(p \in \mathcal{P}, \lambda \in \mathbb{R}^m)$:

$$\mathcal{L}(p,\lambda) = \int p(x) \log p(x) dx - \int \lambda^{\top} T(x) p(x) dx + \lambda^{\top} \mu(\theta)$$
$$= \left(\int (p(x) \log p(x) - \lambda^{\top} T(x) p(x)) dx \right) + \lambda^{\top} \mu(\theta).$$

Using our earlier claim with $F(p) = \int p(x) \log p(x) - \lambda^{\top} T(x) p(x) dx$, we get $\frac{\delta F}{\delta p}(x) = 1 + \log p(x) - \lambda^{\top} T(x)$. We said this functional was convex (the negative entropy part is convex in p and the second term is linear in p), so the minimizing density function should be when $1 + \log p(x) - \lambda^{\top} T(x) = 0 \Rightarrow p(x) \propto \exp(\lambda^{\top} T(x))$. Since it is a density, we have $p(x) = \exp(\lambda^{\top} T(x) - A(\lambda))$. Let's call this p_{λ} .

The dual function for this problem is

$$g(\lambda) = \inf_{p} \mathcal{L}(p, \lambda) = \mathcal{L}(p_{\lambda}, \lambda)$$

$$= \mathbb{E}_{p_{\lambda}}[\log p_{\lambda}] - \lambda^{\top} \mathbb{E}_{p_{\lambda}}[T(x)] + \lambda^{\top} \mu(\theta)$$

$$= \mathbb{E}_{p_{\lambda}}[\lambda^{\top} T(x) - A(\lambda)] - \lambda^{\top} \mathbb{E}_{p_{\lambda}}[T(x)] + \lambda^{\top} \mu(\theta)$$

$$= \lambda^{\top} \mu(\theta) - A(\lambda).$$

The dual problem becomes:

$$\max_{\lambda \in \mathbb{R}^m} \lambda^{\top} \mu(\theta) - A(\lambda).$$

Remember that $A(\lambda)$ is convex in λ , so its negative is concave. The first term is linear in λ . Solve by taking gradient (with respect to λ) equal to 0:

$$\mu(\theta) - \mathbb{E}_{p_{\lambda}}[T(x)] = 0 \Rightarrow \mathbb{E}_{p_{\theta}}[T(x)] = \mathbb{E}_{p_{\lambda}}[T(x)]$$

These are exactly equal if $p_{\lambda} = p_{\theta}$ with $\theta = \lambda$.

We can also check that it is the (unique) minimizer. Suppose there exists another density q such that $\mathbb{E}_q[T(X)] = \mu(\theta)$. Then

$$-H(q) = \int q \log q dx$$

$$= \int q \log \frac{q}{p_{\theta}} dx - \int q \log p_{\theta} dx$$

$$= KL(q||p_{\theta}) - \int q(x) \left(\theta^{\top} T(x) - A(\theta)\right) dx$$

$$= KL(q||p_{\theta}) - \int p_{\theta}(x) \left(\theta^{\top} T(x) - A(\theta)\right) dx \tag{*}$$

$$= KL(q||p_{\theta}) + H(p_{\theta}),$$

where in (*) we used the fact that $\int q(x)T(x)dx = \int p_{\theta}(x)T(x)dx = \mu(\theta)$.

Since $KL(q||p_{\theta}) \geq 0$ is uniquely minimized when $q = p_{\theta}$, the negative entropy is indeed uniquely minimized by p_{θ} , given the constraint.

¹Note: one could set up additional Lagrange multipliers for the constraints needed for p to be in \mathcal{P} , but the $p(x) \geq 0$ constraints will be unnecessary since we always have p(x) > 0 in this form, and due to complementary slackness we can set its multipliers to 0. The remaining multiplier corresponding to the normalization constraint will end up accounting for the $-A(\lambda)$ term.

Note: Finite state space. If we assume that the state space is finite, i.e., $|\mathcal{X}| = n$, then we can give a simpler proof as follows: we can write the negative entropy

$$-H(p) = \sum_{i=1}^{n} p(x_i) \log p(x_i),$$

and solve for the optimal (minimum) p_i for each x_i , using the fact that $u \mapsto u \log u$ is convex. The solution should be each $p_i \propto \exp(\lambda^\top T(x_i))$ and we get $p(x) = \exp(\lambda^\top T(x) - A(\lambda))$. The remaining dual problem should look like the continuous version, as well as the optimality condition.

- (P4) Let $\nu \propto e^{-f}$ be a probability distribution on \mathbb{R}^d where $f \colon \mathbb{R}^d \to \mathbb{R}$ is twice differentiable. Recall the Fisher information of ν is defined as $J(\nu) = \mathbb{E}_{\nu}[\|\nabla f\|^2]$.
 - (a) Show that

$$\mathbb{E}_{\nu}[\nabla f] = 0.$$

Solution: We use integration by parts. Let $Z = \int_{\mathbb{R}^d} e^{-f(x)} dx$, so $\nu(x) = e^{-f(x)}/Z$. For each component $i = 1, \ldots, d$:

$$\mathbb{E}_{\nu}[\nabla f]_{i} = \int_{\mathbb{R}^{d}} \nu(x) \frac{\partial}{\partial x_{i}} f(x) dx$$

$$= \frac{1}{Z} \int_{\mathbb{R}^{d}} e^{-f(x)} \frac{\partial}{\partial x_{i}} f(x) dx$$

$$= \frac{1}{Z} \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} e^{-f(x)} \frac{\partial}{\partial x_{i}} f(x) dx_{i} dx_{\setminus i}$$

$$= \frac{1}{Z} \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} e^{-u} du dx_{\setminus i} \qquad \text{Fubini's, } u = f(x), du = \frac{\partial}{\partial x_{i}} f(x) dx_{i}$$

$$= \frac{1}{Z} \int_{\mathbb{R}^{d-1}} -e^{-f(x)} \Big|_{x_{i}=-\infty}^{x_{i}=+\infty} dx_{\setminus i}$$

$$= \frac{1}{Z} \int_{\mathbb{R}^{d-1}} (0 - 0) dx_{\setminus i} \qquad \lim_{x_{i} \to \pm \infty} e^{-f(x)} = 0$$

$$= 0$$

(b) Show that we can also write the Fisher information as

$$J(\nu) = \mathbb{E}_{\nu}[\Delta f].$$

(Note that Δ is the Laplacian operator: $\Delta f = \text{Tr}(\nabla^2 f)$.)

Solution: Use integration by parts.

$$J(\nu) = \mathbb{E}_{\nu}[\|\nabla f\|^{2}]$$

$$\propto \int_{\mathbb{R}^{d}} \|\nabla f(x)\|^{2} e^{-f(x)} dx$$

$$= \int_{\mathbb{R}^{d}} \langle \nabla f(x), \nabla f(x) \rangle e^{-f(x)} dx$$

$$= \int_{\mathbb{R}^{d}} \sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} f(x) \cdot \frac{\partial}{\partial x_{i}} f(x) e^{-f(x)} dx$$

Consider one of the terms in the summation:

$$\int_{\mathbb{R}^{d}} -\frac{\partial}{\partial x_{i}} f(x) \cdot \underbrace{-\frac{\partial}{\partial x_{i}} f(x) e^{-f(x)}}_{dv} dx$$

$$= \int_{\mathbb{R}^{d-1}} -\frac{\partial}{\partial x_{i}} f(x) e^{-f(x)} \Big|_{x_{i}=-\infty}^{x_{i}=+\infty} + \int_{\mathbb{R}} \frac{\partial^{2}}{\partial x_{i}^{2}} f(x) e^{-f(x)} dx_{i} dx_{\setminus i} \qquad \text{Fubini's, IBP}$$

$$= \int_{\mathbb{R}^{d}} \frac{\partial^{2}}{\partial x_{i}^{2}} f(x) e^{-f(x)} dx \qquad (*)$$

(*) If $\lim_{x_i \to \infty} \frac{\partial}{\partial x_i} f(x) e^{-f(x)} = \lim_{x_i \to -\infty} \frac{\partial}{\partial x_i} f(x) e^{-f(x)} = 0$ or the same finite constant. If we sum over all the terms, we get

$$\int_{\mathbb{R}^d} \left(\sum_{i=1}^d \frac{\partial^2}{\partial x_i^2} f(x) \right) e^{-f(x)} dx = \mathbb{E}_{\nu}[\Delta f]$$

(c) Assume that f is L-smooth $(-LI \leq \nabla^2 f(x) \leq LI$ for all $x \in \mathbb{R}^d$). Show that

$$J(\nu) < dL$$
.

Solution: By the earlier parts, $J(\nu) = \mathbb{E}_{\nu}[\|\nabla f\|^2] = \mathbb{E}_{\nu}[\Delta f].$

Note that $\nabla^2 f(x)$ is a symmetric, real matrix. The spectral theorem says it has real eignevalues. Let $\lambda_1, \ldots, \lambda_d$ be the eigenvalues of $\nabla^2 f(x)$. Since f is L-smooth, we know $|\lambda_i| \leq L$ for $i = 1, \ldots, d$. Then for all $x \in \mathbb{R}^d$,

$$\Delta f(x) = \operatorname{Tr}(\nabla^2 f(x)) = \sum_{i=1}^d \lambda_i \le dL.$$

Therefore,

$$J(\nu) = \mathbb{E}_{\nu}[\Delta f] \le dL.$$

- (P5) Choose a paper related to probabilistic machine learning that you find interesting. (The paper can be from your research, or see recent best papers from NeurIPS, ICLR, ICML, COLT, or https://scorebasedgenerativemodeling.github.io.).
 - (a) Write down what is the question that the paper is trying to answer.
 - (b) Write down what are the main results of the paper. Does it answer the question?
 - (c) Write down a question regarding something that you did not understand from the paper, or which was not addressed. For that question, either: (1) Answer the question by reading more related materials; or (2) Find out that the question has not been answered, in which case it would be an interesting question to study.

Additional questions for 586

(Q1) Let ρ, ν be probability distributions on \mathbb{R}^d with twice-differentiable density functions. Recall the relative Fisher information of ρ with respect to ν is defined by

$$J_{\nu}(\rho) = \mathbb{E}_{\rho} \left[\left\| \nabla \log \frac{\rho}{\nu} \right\|^2 \right].$$

(a) Let $\nu \propto e^{-f}$. Show that we can also write the relative Fisher information as:

$$J_{\nu}(\rho) = J(\rho) + \mathbb{E}_{\rho}[-2\Delta f + \|\nabla f\|^2].$$

Solution: Using integration by parts,

$$J_{\nu}(\rho) = \mathbb{E}_{\rho} \left[\left\| \nabla \log \frac{\rho}{\nu} \right\|^{2} \right]$$

$$= \int_{\mathbb{R}^{d}} \left\| \nabla \log \rho(x) - \nabla \log \nu(x) \right\|^{2} \rho(x) dx$$

$$= \int_{\mathbb{R}^{d}} \left(\left\| \nabla \log \rho(x) \right\|^{2} - 2 \left\langle \nabla \log \rho(x), \nabla \log \nu(x) \right\rangle + \left\| \nabla \log \nu(x) \right\|^{2} \right) \rho(x) dx$$

$$= \underbrace{\mathbb{E}_{\rho} \left[\left\| \nabla \log \rho \right\|^{2} \right]}_{J(\rho)} + \mathbb{E}_{\rho} \left[\left\| \nabla f \right\|^{2} \right] - 2 \int_{\mathbb{R}^{d}} \left\langle \nabla \log \rho(x), \nabla \log \nu(x) \right\rangle \rho(x) dx$$

$$= J(\rho) + \mathbb{E}_{\rho} \left[\left\| \nabla f \right\|^{2} \right] - 2 \int_{\mathbb{R}^{d}} \left\langle \frac{\nabla \rho(x)}{\rho(x)}, -\nabla f(x) \right\rangle \rho(x) dx$$

$$= J(\rho) + \mathbb{E}_{\rho} \left[\left\| \nabla f \right\|^{2} \right] + 2 \int_{\mathbb{R}^{d}} \left\langle \nabla \rho(x), \nabla f(x) \right\rangle dx$$
IBP (from PS1)

$$= J(\rho) + \mathbb{E}_{\rho} \left[\|\nabla f\|^{2} \right] - 2 \int_{\mathbb{R}^{d}} \rho(x) \underbrace{\nabla \cdot (\nabla f(x))}_{\Delta f} dx$$
$$= J(\rho) + \mathbb{E}_{\rho} \left[-2\Delta f + \|\nabla f\|^{2} \right]$$

(b) Compute the relative Fisher information between Gaussian distributions $\rho_1 = \mathcal{N}(\mu_1, \Sigma_1)$ and $\rho_2 = \mathcal{N}(\mu_2, \Sigma_2)$ on \mathbb{R}^d .

Solution: Note that $\log \rho_2 = -\frac{1}{2} ||x - \mu_2||_{\Sigma_2^{-1}}^2$ and

$$\nabla (\log \rho_2) = -\Sigma_2^{-1} (x - \mu_2) \qquad \nabla^2 (\log \rho_2) = -\Sigma_2^{-1}, \qquad \Delta (\log \rho_2) = -\text{Tr}(\Sigma_2^{-1}).$$

The same identities hold for ρ_1 but with μ_1 and Σ_1 . Using the identity from part (a) (and noting that $f = -\log \rho_2$), with the results from P4,

$$\begin{split} J_{\rho_2}(\rho_1) &= -\mathbb{E}_{\rho_1}[\Delta\log\rho_1] + \mathbb{E}_{\rho_1}[2\Delta(\log\rho_2) + \|\nabla\log\rho_2\|^2] \\ &= \mathsf{Tr}(\Sigma_1^{-1}) - 2\mathsf{Tr}(\Sigma_2^{-1}) + \mathbb{E}_{\rho_1}\left[\mathsf{Tr}\left(\Sigma_2^{-1}\underbrace{(x-\mu_2)(x-\mu_2)^\top}\Sigma_2^{-1}\right)\right] \\ &= \mathsf{Tr}(\Sigma_1^{-1}) - 2\mathsf{Tr}(\Sigma_2^{-1}) + \mathbb{E}_{\rho_1}\left[\mathsf{Tr}\left(\Sigma_2^{-1}(x-\mu_1+\mu_1-\mu_2)(x-\mu_1+\mu_1-\mu_2)^\top\Sigma_2^{-1}\right)\right] \\ &= \mathsf{Tr}(\Sigma_1^{-1}) - 2\mathsf{Tr}(\Sigma_2^{-1}) + \mathbb{E}_{\rho_1}\left[\mathsf{Tr}\left(\Sigma_2^{-1}\Sigma_1\Sigma_2^{-1}\right)\right] + \mathbb{E}_{\rho_1}\left[\mathsf{Tr}\left(\Sigma_2^{-1}(\mu_1-\mu_2)(\mu_1-\mu_2)^\top\Sigma_2^{-1}\right)\right] \\ &= \mathsf{Tr}\left(\Sigma_2^{-2}\Sigma_1 - 2\Sigma_2^{-1} + \Sigma_1^{-1}\right) + \|\Sigma_2^{-1}(\mu_1-\mu_2)\|^2. \end{split}$$

The last line used the cyclic property of trace, the fact that the covariance matrix is symmetric $\Sigma_2^{-1} = \Sigma_2^{-\top}$, and the fact that $\text{Tr}(vv^{\top}) = \text{Tr}(v^{\top}v) = ||v||^2$ for a vector v.

- (Q2) Let $\nu \propto e^{-f}$ be a probability distribution on \mathbb{R}^d . Assume $f \colon \mathbb{R}^d \to \mathbb{R}$ is differentiable. Let $C = \mathsf{Cov}_{\nu}(X) \in \mathbb{R}^{d \times d}$ be the covariance matrix of ν .
 - (a) Show that

$$J(\nu) \ge \mathsf{Tr}(C^{-1}).$$

(*Hint:* Consider $J_{\gamma}(\nu)$ where γ is a Gaussian with the same mean and covariance as ν .)

Solution: Let $\mu = \mathbb{E}_{\nu}[X]$. Note $\gamma \propto \exp\left(-\frac{1}{2}\|x - \mu\|_{C^{-1}}^2\right)$, so $\log \gamma = -\frac{1}{2}\|x - \mu\|_{C^{-1}}^2$, and

$$\nabla (\log \gamma) = -C^{-1}(x - \mu), \qquad \nabla^2(\log \gamma) = -C^{-1}, \qquad \Delta (\log \gamma) = -\operatorname{Tr}(C^{-1}).$$

Using the identity from Q1 (and noting that $f = -\log \gamma$),

$$J_{\gamma}(\nu) = J(\nu) + \mathbb{E}_{\gamma} \left[2\Delta \left(\log \gamma \right) + \|\nabla \log \gamma\|^{2} \right]$$

$$= J(\nu) - 2\operatorname{Tr}(C^{-1}) + \mathbb{E}_{\gamma} \left[\operatorname{Tr} \left(C^{-1} \underbrace{(x - \mu)(x - \mu)^{\top}}_{C} C^{-1} \right) \right]$$
$$= J(\nu) - \operatorname{Tr}(C^{-1}).$$

We get the inequality $J(\nu) \geq \text{Tr}(C^{-1})$ by noting that $J_{\gamma}(\nu) \geq 0$.

(b) Show that

$$J(\nu) \ge \frac{d^2}{\operatorname{Var}_{\nu}(X)}.$$

Solution: Let $\lambda_1, \ldots, \lambda_d$ be the eigenvalues of C. Then C^{-1} has eigenvalues $\frac{1}{\lambda_1}, \ldots, \frac{1}{\lambda_d}$. By part (a),

$$J(\nu) \geq \operatorname{Tr}(C^{-1})$$

$$= \sum_{i=1}^{d} \frac{1}{\lambda_i}$$

$$\geq \frac{d^2}{\sum_{i=1}^{d} \lambda_i}$$

$$= \frac{d^2}{\operatorname{Tr}(C)}$$

$$= \frac{d^2}{\operatorname{Var}_{\nu}(X)}.$$
HM-AM Inequality: $\frac{d}{\frac{1}{x_1} + \dots + \frac{1}{x_d}} \leq \frac{x_1 + \dots + x_d}{d}$

(c) Assume f is L-smooth. Conclude that

$$\operatorname{Var}_{\nu}(X) \geq \frac{d}{L}.$$

Solution: Use P4(c), which says that $J(\nu) \leq dL$. Part (b) says that $\operatorname{Var}_{\nu}(X) \geq \frac{d^2}{J(\nu)} \Rightarrow \operatorname{Var}_{\nu}(X) \geq \frac{d^2}{dL} = \frac{d}{L}$.

(Q3) Let ρ_0 be a probability distribution on \mathbb{R}^d . Let $X_0 \sim \rho_0$ and $Z \sim \mathcal{N}(0, I)$ be independent. Let $X_t = X_0 + \sqrt{t}Z \in \mathbb{R}^d$ with density $\rho_t \colon \mathbb{R}^d \to \mathbb{R}$. Recall that ρ_t is given by the convolution:

$$\rho_t = \rho_0 \star \mathcal{N}(0, tI).$$

Concretely, for all $x \in \mathbb{R}^d$, the density value $\rho_t(x)$ is given by the formula:

$$\rho_t(x) = \frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} dx_0.$$

(a) Show that the formula $\rho_t(x)$ above satisfies the heat equation:

$$\frac{\partial \rho_t}{\partial t}(x) = \frac{1}{2} \Delta \rho_t(x).$$

(*Hint:* Compute both sides explicitly and check they are equal.)

Solution: We compute both sides explicitly and verify they are equal.

$$\frac{\partial \rho_t}{\partial t}(x) = \left(\frac{\partial}{\partial t} \frac{1}{(2\pi t)^{\frac{d}{2}}}\right) \left(\int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t}\|x - x_0\|^2} dx_0\right) + \frac{1}{(2\pi t)^{\frac{d}{2}}} \left(\frac{\partial}{\partial t} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t}\|x - x_0\|^2} dx_0\right)$$

Simplify the first term separately,

$$\begin{split} &\left(\frac{\partial}{\partial t} \frac{1}{(2\pi t)^{\frac{d}{2}}}\right) \left(\int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} dx_0\right) \\ &= -\frac{d}{2} (2\pi t)^{-d/2 - 1} \cdot 2\pi \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} dx_0 \\ &= -\frac{d}{2t} \cdot \frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} dx_0 \\ &= -\frac{d}{2t} \cdot \rho_t(x) \end{split}$$

Then the next term,

$$\frac{1}{(2\pi t)^{\frac{d}{2}}} \left(\frac{\partial}{\partial t} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} dx_0 \right)
= \frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \frac{\partial}{\partial t} \left(\rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} \right) dx_0 \qquad \text{DCT}
= \frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} \frac{1}{2t^2} \|x - x_0\|^2 dx_0$$

And altogether, we have

$$\frac{\partial \rho_t}{\partial t}(x) = -\frac{d}{2t} \cdot \rho_t(x) + \frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} \frac{1}{2t^2} \|x - x_0\|^2 dx_0$$

Now calculating the right hand side, first note the gradient (in one component i):

$$\frac{\partial}{\partial x_i} \rho_t(x) = \frac{\partial}{\partial x_i} \left(\frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} dx_0 \right)$$

$$= \frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} \cdot \left(-\frac{1}{t} (x - x_0)_i \right) dx_0 \qquad \text{DCT}$$

Now consider a diagonal element of the Hessian:

$$\begin{split} \frac{\partial^2}{\partial x_i^2} \rho_t(x) &= \frac{\partial}{\partial x_i} \left(\frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} \cdot \left(-\frac{1}{t} (x - x_0)_i \right) dx_0 \right) \\ &= \frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} \cdot \left(-\frac{1}{t} \right) dx_0 \\ &\quad + \frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} \cdot \left(\frac{1}{t^2} (x - x_0)_i^2 \right) dx_0 \\ &= -\frac{1}{t} \rho_t(x) + \frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} \cdot \left(\frac{1}{t^2} (x - x_0)_i^2 \right) dx_0 \end{split}$$

Then we compute the Laplacian by taking the trace of the Hessian:

$$\Delta \rho_t(x) = \sum_{i=1}^d \left(-\frac{1}{t} \rho_t(x) + \frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} \cdot \left(\frac{1}{t^2} (x - x_0)_i^2 \right) dx_0 \right)$$

$$= -\frac{d}{t} \rho_t(x) + \frac{1}{(2\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \rho_0(x_0) e^{-\frac{1}{2t} \|x - x_0\|^2} \cdot \left(\frac{1}{t^2} \|x - x_0\|^2 \right) dx_0.$$

Thus, we get the equality with $\partial \rho_t(x)/\partial t$ by multiplying this expression by 1/2.

(b) Let $f \colon \mathbb{R}^d \to \mathbb{R}$ be convex and twice differentiable. Show that

$$\mathbb{E}[f(X_t)] \ge \mathbb{E}[f(X_0)] \qquad \forall t \ge 0.$$

Solution: We can compute the time derivative:

$$\frac{d}{dt}\mathbb{E}[f(X_t)] = \frac{d}{dt} \int_{\mathbb{R}^d} \rho_t(x)f(x)dx$$

$$= \int_{\mathbb{R}^d} \frac{\partial \rho_t}{\partial t}(x)f(x)dx$$

$$= \int_{\mathbb{R}^d} f(x)\frac{1}{2}\Delta \rho_t(x)dx$$

$$= \frac{1}{2} \int_{\mathbb{R}^d} \Delta f(x)\rho_t(x)dx$$

$$= \frac{1}{2}\mathbb{E}[\Delta f(X_t)].$$
(part (a))

In the above, we have used the integration by parts formula and the identity $\Delta f = \nabla \cdot \nabla f$:

$$\int_{\mathbb{R}^d} f(x) \Delta \rho(x) \, dx = -\int_{\mathbb{R}^d} \langle \nabla f(x), \nabla \rho(x) \rangle dx = \int_{\mathbb{R}^d} \Delta f(x) \rho(x) \, dx.$$

Since f is convex, $\nabla^2 f(x) \succeq 0$, so $\Delta f(x) \geq 0$. Therefore,

$$\frac{d}{dt}\mathbb{E}[f(X_t)] = \frac{1}{2}\mathbb{E}[\Delta f(X_t)] \ge 0.$$

This means $\mathbb{E}[f(X_t)] \geq \mathbb{E}[f(X_0)]$ for all $t \geq 0$.

(Alternatively, we can also use Jensen's inequality by noting that $\mathbb{E}[X_t \mid X_0] = X_0$.)

(c) Let $H(\rho) = -\mathbb{E}_{\rho}[\log \rho]$ be entropy. Show that

$$H(\rho_t) \ge H(\rho_0) \qquad \forall t \ge 0.$$

Solution: We can compute the time derivative of entropy and show it is nonnegative:

$$\frac{\partial}{\partial t} H(\rho_t) = -\frac{\partial}{\partial t} \int_{\mathbb{R}^d} \rho_t(x) \log \rho_t(x) dx$$

$$= -\int_{\mathbb{R}^d} \frac{\partial \rho_t}{\partial t}(x) \left(\log \rho_t(x) + 1\right) dx \qquad \text{DCT}$$

$$= -\int_{\mathbb{R}^d} \frac{1}{2} \Delta \rho_t(x) (\log \rho_t(x) + 1) dx \qquad \text{Part (a)}$$

$$= -\frac{1}{2} \int_{\mathbb{R}^d} \nabla \cdot (\nabla \rho_t(x)) (\log \rho_t(x) + 1) dx$$

$$= \frac{1}{2} \int_{\mathbb{R}^d} \langle \nabla \log \rho_t(x), \nabla \rho_t(x) \rangle dx \qquad \text{IBP}$$

$$= \frac{1}{2} \int_{\mathbb{R}^d} \left\langle \frac{\nabla \rho_t(x)}{\rho_t(x)}, \nabla \rho_t(x) \right\rangle dx$$

$$= \frac{1}{2} \int_{\mathbb{R}^d} \frac{\|\nabla \rho_t(x)\|^2}{\rho_t(x)} dx$$

$$\geq 0.$$

Thus, we have shown that the time derivative of entropy along the heat flow is given by the Fisher information:

$$\frac{\partial}{\partial t}H(\rho_t) = \frac{1}{2}J(\rho_t)$$

where

$$J(\rho_t) = \int_{\mathbb{R}^d} \frac{\|\nabla \rho_t(x)\|^2}{\rho_t(x)} dx = \mathbb{E}_{\rho_t}[\|\nabla \log \rho_t\|^2]$$

is the Fisher information.