Algorithmisches Beweisen LAB

Konstruierte Instanzen

Luc Spachmann

FSU Jena

20.06.2024

Pidgeonhole Principle

- PHP_nⁿ⁺¹ hat Variablen $x_{i,j}, i \in [n+1], j \in [n]$
- $x_{i,j}$ gibt an, ob Taube i in Loch j sitzt
- Klauseln:

$$\bigvee_{j \in [n]} x_{i,j}$$
 für alle $i \in [n+1]$

und

$$\neg x_{i_1,j} \lor \neg x_{i_2,j}$$

für alle paarweise verschiedenen $i_1, i_2 \in [n+1]$ und alle $j \in [n]$.

Pebbling Formeln auf pyramidalen Graphen

Pebbling Formeln auf pyramidalen Graphen

- Betrachten nur n mit $n = \frac{k(k+1)}{2}$
- Sonst aufrunden
- Variablen: $x_{v,c}$ für alle $v \in V, c \in \{B, W\}$
- Klauseln:

$$x_{v,B} \lor x_{v,W}$$

$$\neg x_{u,a} \lor \neg x_{w,b} \lor x_{v,B} \lor x_{v,W}$$

$$\neg x_{v,B}, \neg x_{v,W}$$

für alle Quellknoten v (a-e in Bsp) für alle $v \in V, a, b \in \{B, W\},$ u, w sind Vorgänger von v für Zielknoten v (q in Bsp)

Aufgabe

- Implementierung eines Tools zur Erzeugung dieser Formeln
- Kommandozeilenparameter: Größe n, ggf. Outputpfad