STAT Module Procedures

Andrew C. Hawkins

January 10, 2014

Contents

1	Central Tendency	1
	1.1 ARITHMETIC_MEAN	1
	1.2 GEOMETRIC_MEAN	2
	1.3 GENERALIZED_MEAN	2
	1.4 HARMONIC_MEAN	3
	1.5 MEDIAN	3
	1.6 MIDRANGE	3
	1.7 MODE	4
	1.8 QUADRATIC_MEAN	4
	1.9 TRIMEAN	5
	1.10 WEIGHTED_MEAN	5
2	Statistical Dispersion	5
	2.1 IQRANGE	5
	2.2 MEAN_ABSOLUTE_DEVIATION	6
	2.3 MEAN_DIFFERENCE	6
	2.4 MEDIAN_ABSOLUTE_DEVIATION	7
	2.5 RELATIVE_MEAN_DIFFERENCE	7
	2.6 SRANGE	7
	2.7 STANDARD_DEVIATION	8
	2.8 VARIANCE	8
3	Distribution Shape	9
U	3.1 KURTOSIS	9
	3.2 SKEWNESS	-
	0.2 DILWILDD	3
4	Other	9
	4.1 COMBINATION	9
	4.2 FACTORIAL	10
	4.3 PERMUTATION	10

1 Central Tendency

1.1 ARITHMETIC_MEAN

Description:

Returns the arithmetic mean of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = ARITHMETIC_MEAN(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL.
LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

```
PROGRAM test_arithmetic_mean
DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)
PRINT*, ARITHMETIC_MEAN(x, 5)
END PROGRAM
```

1.2 GEOMETRIC_MEAN

Description:

Returns the geometric mean of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = GEOMETRIC_MEAN(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

```
PROGRAM test_geometric_mean

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, GEOMETRIC_MEAN(x, 5)

END PROGRAM
```

1.3 GENERALIZED_MEAN

Description:

Returns the generalized mean of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = GENERALIZED_MEAN(DATASET, LENGTH, POWER)

Arguments:

 $\begin{array}{ll} \textit{DATASET} & \text{Shall be an array of type REAL.} \\ \textit{LENGTH} & \text{Shall be a scalar of type INTEGER.} \\ \textit{POWER} & \text{Shall be a scalar of type INTEGER.} \\ \end{array}$

Return value:

The return value is of type REAL.

```
PROGRAM test_generalized_mean
DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)
PRINT*, GENERALIZED_MEAN(x, 5, 3)
END PROGRAM
```

1.4 HARMONIC_MEAN

Description:

Returns the harmonic mean of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = HARMONIC_MEAN(DATASET, LENGTH)

Arguments:

 $egin{array}{ll} DATASET & Shall be an array of type REAL. \\ LENGTH & Shall be a scalar of type INTEGER. \\ \end{array}$

Return value:

The return value is of type REAL.

Example:

```
PROGRAM test_harmonic_mean

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, HARMONIC_MEAN(x, 5)

END PROGRAM
```

1.5 MEDIAN

Description:

Returns the median of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = MEDIAN(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

```
PROGRAM test_median

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, MEDIAN(x, 5)

END PROGRAM
```

1.6 MIDRANGE

Description:

Returns the midrange of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = MIDRANGE(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

```
PROGRAM test_midrange

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, MIDRANGE(x, 5)

END PROGRAM
```

1.7 MODE

Description:

Returns the mode of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = MODE(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

 $Return\ value:$

The return value is of type REAL.

Example:

```
PROGRAM test_mode

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, MODE(x, 5)

END PROGRAM
```

1.8 QUADRATIC_MEAN

Description:

Returns the quadratic mean of the given data set.

Standard:

Fortran 95 and later Returns the harmonic mean of the given data set.

Class:

Function

Syntax:

```
RESULT = QUADRATIC_MEAN(DATASET, LENGTH)
```

Arguments:

DATASET Shall be an array of type REAL.

LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

```
PROGRAM test_quadratic_mean

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, QUADRATIC_MEAN(x, 5)

END PROGRAM
```

1.9 TRIMEAN

Description:

Returns the trimean of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = TRIMEAN (DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

```
PROGRAM test_trimean

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, TRIMEAN(x, 5)

END PROGRAM
```

1.10 WEIGHTED_MEAN

Description:

Returns the weighted mean of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = WEIGHTED_MEAN(DATASET, WEIGHT, LENGTH)

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

```
PROGRAM test_weighted_mean

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

DOUBLE PRECISION :: w(5) = (/ 1, 4, 3, 1, 2 /)

PRINT*, WEIGHTED_MEAN(x, w, 5)

END PROGRAM
```

2 Statistical Dispersion

2.1 IQRANGE

Description:

Returns the interquartile range of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = IQRANGE(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL.
LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

```
PROGRAM test_iqrange
DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)
PRINT*, IQRANGE(x, 5)
END PROGRAM
```

2.2 MEAN_ABSOLUTE_DEVIATION

Description:

Returns the mean absolute deviation of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = MEAN_ABSOLUTE_DEVIATION(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

```
PROGRAM test_mean_absolute_deviation
DOUBLE PRECISION :: x(5) = (/1,2,3,4,5/)
PRINT*, MEAN_ABSOLUTE_DEVIATION(x,5)
END PROGRAM
```

2.3 MEAN_DIFFERENCE

Description:

Returns the mean difference of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = MEAN_DIFFERENCE(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

```
PROGRAM test_mean_difference
DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)
PRINT*, MEAN_DIFFERENCE(x, 5)
END PROGRAM
```

2.4 MEDIAN_ABSOLUTE_DEVIATION

Description:

Returns the median absolute deviation of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = MEDIAN_ABSOLUTE_DEVIATION(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

PROGRAM test_median_absolute_deviation
DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)
PRINT*, MEDIAN_ABSOLUTE_DEVIATION(x, 5)
END PROGRAM

2.5 RELATIVE_MEAN_DIFFERENCE

Description:

Returns the relative mean difference of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = RELATIVE_MEAN_DIFFERENCE

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

PROGRAM test_relative_mean_difference
DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)
PRINT*, RELATIVE_MEAN_DIFFERENCE(x, 5)
END PROGRAM

2.6 SRANGE

Description:

Returns the range of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = SRANGE(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

```
PROGRAM test_srange

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, SRANGE(x, 5)

END PROGRAM
```

2.7 STANDARD_DEVIATION

Description:

Returns the standard deviation of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

```
RESULT = STANDARD_DEVIATION(DATASET, LENGTH, CORRECTED)
```

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

 $Return\ value:$

The return value is of type REAL.

Example:

```
PROGRAM test_standard_deviation

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, STANDARD_DEVIATION(x, 5)

END PROGRAM
```

2.8 VARIANCE

Description:

Returns the variance of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

```
RESULT = VARIANCE(DATASET, LENGTH, CORRECTED)
```

Arguments:

 $\begin{array}{ll} \textit{DATASET} & \text{Shall be an array of type REAL.} \\ \textit{LENGTH} & \text{Shall be a scalar of type INTEGER.} \end{array}$

Return value:

The return value is of type REAL.

```
PROGRAM test_variance

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, VARIANCE(x, 5)

END PROGRAM
```

3 Distribution Shape

3.1 KURTOSIS

Description:

Returns the kurtosis of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = KURTOSIS(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL.
LENGTH Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

```
PROGRAM test_kurtosis

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, KURTOSIS(x, 5)

END PROGRAM
```

3.2 SKEWNESS

Description:

Returns the skewness of the given data set.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = SKEWNESS(DATASET, LENGTH)

Arguments:

DATASET Shall be an array of type REAL. LENGTH Shall be a scalar of type INTEGER.

 $Return\ value:$

The return value is of type REAL.

Example:

```
PROGRAM test_skewness

DOUBLE PRECISION :: x(5) = (/ 1, 2, 3, 4, 5 /)

PRINT*, SKEWNESS(x, 5)

END PROGRAM
```

4 Other

4.1 COMBINATION

Description:

Returns the combination of K numbers out of N numbers.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = COMBINATION(N, K)

Arguments:

N Shall be a scalar of type INTEGER. K Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

PROGRAM test_combination PRINT*, COMBINATION(10, 5) END PROGRAM

4.2 FACTORIAL

Description:

Returns the factorial of N.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = FACTORIAL(N)

Arguments:

N Shall be a scalar of type INTEGER.

Return value:

The return value is of type ${\tt REAL}.$

Example:

PROGRAM test_factorial PRINT*, FACTORIAL(10) END PROGRAM

4.3 PERMUTATION

Description:

Returns the permutation of K numbers out of N numbers.

Standard:

Fortran 95 and later

Class:

Function

Syntax:

RESULT = PERMUTATION(N, K)

Arguments:

N Shall be a scalar of type INTEGER. K Shall be a scalar of type INTEGER.

Return value:

The return value is of type REAL.

Example:

PROGRAM test_permutation PRINT*, PERMUTATION(10, 5) END PROGRAM