Floating-Point numbers

Форма представления действительных чисел

- Числа с плавающей точкой: Floating-Point
- Числа с фиксированной точкой: Fixed-Point

	разм	ер в бай	тах	Приближенный диапазон и			
Тип	x86-32	x86-64	ARM64	точность представления			
float	4	4	4	$10^{\mp 38}$ 7 дес. цифр			
double	8	8	8	$10^{\mp 307}$ 16 дес. цифр			
long double	12	16	8	$10^{\mp 4931}$ 19 дес. цифр			

Представление чисел с плавающей точкой

Структура числа:
$$\pm (d_0 + d_1 \beta^{-1} + d_2 \beta^{-2} + \dots + d_p \beta^{-p}) \times \beta^E$$

- ullet eta основание системы счисления: eta=2 (или eta=10)
- ullet Мантисса: $\pm d_0 \,.\, d_1 d_2 \,...\, d_p$, где $0 \leq d_i \leq eta$, p точность представления
- Порядок (или экспонента) числа: Е

Например для числа 0.1:

$$\beta = 10, p = 3$$
 1.00×10^{-1} $\beta = 2, p = 24$ $1.100110011001100110011001 \times 2^{-4}$

Нормализованные числа

- Для увеличения точности (числа значащих цифр) мантиссу хранят в диапазоне $[1,\beta)$
- Для $\beta=2$ всегда $d_0=1$, поэтому хранится только дробная часть: $d_1d_2\dots d_p$

Особенности работы с FP числами

Сложение и вычитание

• Поглощение значащих цифр малого числа

• Катастрофическая потеря точности при вычитании

точное вычисление: 123457.1467 - 123456.659 = 0.4877

```
β = 10, p = 7(~ float)

123457.1467 = 1.234571467 x 10<sup>5</sup>
123456.659 = 1.234566659 x 10<sup>5</sup>
-----
0.000005 x 10<sup>5</sup> (округление)
```

Умножение и деление

В этих операциях потери точности нет, только ощибка о

В этих операциях потери точности нет, только ошибка округления
точное вычисление: $4734.612 \times 541724.2 = 2564853898.0104$
$\beta = 10, p = 7(\sim float)$
(

25.64854 х 10^8 (округление)

Floating point \neq Real

```
Нарушается ассоциативность: (a+b)+c \neq a+(b+c)
                      123456.7 + 0.08 + 0.03 = 123456.81
 123456.7 = 1.234567 \times 10^{5}
                                        0.08 = 8.000000 \times 10^{-2}
 0.08 = 0.000000 \times 10^{5}
                                           0.03
                                                      = 3.000000 \times 10^{-2}
              1.234567 \times 10^{5}
                                                        1.100000 \times 10^{-1}
              1.234567 \times 10^{5}
                                          123456.7 = 1.234567 \times 10^{5}
                                        0.11 = 0.000001 \times 10^{5}
 0.03 = 0.000000 \times 10^{5}
              1.234567 \times 10^{5}
                                                        1.234568 \times 10^{5}
```

Нарушается распределительный закон:
$$(a+b) \times c \neq a \times c + b \times c$$
 $(123456.7 + 0.08) * 2$ и $246913.4 + 0.16$

Стандарт IEEE 754

Бинарные базовые типы IEEE 754

	Знак	Экспонента*	Дробная часть мантиссы		
binary16	1-bit	5-bits	10-bits		
binary32	1-bit	8-bits	23-bits		
binary64	1-bit	11-bits	52-bits		
binary128	1-bit	15-bits	112-bits		
binary256	1-bit	19-bits	236-bits		

^{*} В экспоненте используется представление целых чисел *excess-K* с $K = 2^{(n-1)} - 1$, где n – число бит в поле экспоненты

Специальные числа в IEEE 754

- **②** Денормализованные числа нули в поле экспоненты и в этом случае считают $d_0 = 0$: $(-1)^s \times 0.d_1d_2 \dots d_{52} \times 2^{-1022}$
- **3** Бесконечность (Inf, ∞) единицы в поле экспоненты и нули в дробной части, существует $+\infty$ и $-\infty$
- NaN (not a number) единицы в поле экспоненты и ненулевая мантисса, знак NaN не имеет значения сравнение с NaN «неупорядоченно»

Операции со специальными числами в IEEE 754

операция			результат
Num	/	$\pm \infty$	0
Num	/	0	$\pm\infty$
± 0	/	± 0	NaN
$\pm \infty$	/	$\pm \infty$	NaN
$\pm \infty$	×	$\pm \infty$	$\pm\infty$
$\pm \infty$	×	± 0	NaN
∞	+	∞	∞
∞	_	∞	NaN
-0	==	+0	True
NaN	comp	Any	False
NaN	!=	Any	True

Rounding modes in IEEE 754

Концепция режима округления

 Способ округления результата вычисления до конечного (или, возможно, бесконечного) числа с плавающей точкой

- Округление к нулю (truncation)
- Округление к $+\infty$ (ceiling)
- Округление к $-\infty$ (floor)
- Округление к ближайшему: возможен конфликт если значение попадает точно посередине между двумя последовательными числами с плавающей точкой

Fused Multiply-Add (FMA) in IEEE 754-2008

• Совмещенная операция умножения со сложением $a+b \times c$: одно округление вместо двух и ускоряет и повышает точность вычислений

Соответствие FP в языках и стандарта IEEE 754

Базовые форматы представлений IEEE 754

Имя	Мантисса	\sim точность $_{10}$	E-min	E-max	\sim E-max $_{10}$	
binary32	23	7.22	-126	+127	38.23	
binary64	52	15.95	-1022	+1023	307.95	
binary128	112	34.02	-16382	+16383	4931.77	
Intel 80x87 "co-processor"						
80-bit	63	19.27	-16382	+16383	4931.77	

X86-32, X86-64 и ARM64

C и C++: float ⇒ binary32
double ⇒ binary64
long double ⇒ 80-bit для X86
⇒ binary64 для ARM64

Python3: float numbers ⇒ binary64

Предельные значения для FP в C и C++

Специальные числа в С и С++

Заголовочные файлы <math.h> для С и <cmath> для С++ (С99, С++11)

• Macro Constants:

```
NAN,INFINITY: NaN и \infty для float HUGE_VAL,HUGE_VALF,HUGE_VALL: \infty для double, float и long double
```

 Функции возвращающие 'quiet NaN' с заданным стрингом double nan(const char* arg)
 float nanf(const char* arg), long double nanl(const char* arg)

```
C++ функции в классе шаблонов std::numeric_limits
cout << numeric_limits<double>::infinity() << endl; // inf
cout << numeric_limits<double>::quiet_NaN() << endl; // nan</pre>
```

```
Операции со специальными числами в С и С++
double one = +1. zero = 0:
double p_inf = one/zero, m_inf = one/-zero, nan = zero/zero;
printf("one/zero=%+f,one/-zero=%+f,zero/zero=%+f\n",
      one/zero.one/-zero.zero/zero):
Result> one/zero=+inf, one/-zero=-inf, zero/zero=-nan
printf("one/+inf=%+f,one/-inf=%+f,inf*zero=%+f\n",
        one/p_inf,one/m_inf,p_inf*zero);
Result> one/+inf=+0.000000, one/-inf=-0.000000, inf*zero=-nan
printf("-inf+inf=%+f,-inf*+inf=%+f,+inf/+inf=%+f\n",
      m_inf+p_inf,m_inf*p_inf,p_inf/p_inf);
Result> -inf+inf=-nan, -inf*+inf=-inf, +inf/+inf=-nan
printf("(\%f==\%f)=\%d\n".zero.-zero.zero==-zero):
Result> (0.000000=-0.000000)=1
printf("(NaN>one)=%d, (NaN<=one)=%d, (NaN==one)=%d (NaN!=one)=%d\n".
      nan>one, nan<=one, nan==one, nan!=one):
Result> (NaN>one)=0, (NaN<=one)=0, (NaN==one)=0 (NaN!=one)=1
```

```
Функции для классификации FP чисел (С99, C++11) fp — анализируемое число int isnan(fp) — возвращает ненулевое значение, если fp = NAN int isinf(fp) — возвращает \pm 1 если fp = \pm INFINITY int isfinite(fp) — ненулевое значение, если fp \neq {NAN; INFINITY} int isnormal(fp) — ненулевое значение, если fp нормализованное число
```

int fpclassify(fp) — классификатор, в зависимости от fp возвращает: FP INFINITY. FP NAN. FP NORMAL. FP SUBNORMAL или FP ZERO

```
Функция для проверки знакового бита int signbit(fp)

—_____ возвращает ненулевое значение если fp отрицательно

printf("signbit(+0.)= %d\n", signbit(+0.)); // 0

printf("signbit(-0.)= %d\n", signbit(-0.)); // 1
```

Резюме

- Любые операции для чисел с плавающей точкой ведут к появлению ошибки округления, и в сложных вычислениях ошибки могут накапливаться
- Числа с плавающей точкой ограничены как в области нуля, так и в области больших чисел
- Вычисления не всегда возвращают числа, имеются специальные «значения» NaN, Inf
- Сравнение чисел с плавающей точкой допускает четыре взаимоисключающих отношения: меньше, равно, больше и неупорядоченно (unordered)

Машинная точность ϵ

 $\underline{\mathsf{Def:}}$ ϵ — наименьшее положительное число такое, что $1+\epsilon \neq 1$

По смыслу, ϵ — максимальная относительная ошибка представления ненулевого вещественного числа $|\frac{Fp(x)-x}{x}|<\epsilon$

```
Простая программа вычисления є

double eps() {
  double one = 1, eps = one;
  do {
    eps /= 2;
  } while( (one + eps) > one );
  return eps*2;
}
```

```
eps(double) = 2.22045e-16 log_2(eps) = -52

eps(float) = 1.19209e-07 log_2(eps) = -23

eps(long double) = 1.0842e-19 log_2(eps) = -63 for X86
```

Сравнение чисел с плавающей точкой

```
Простое сравнение: if( result == expectedResult ) {...}
```

- Поведение нестабильно, зависит от архитектуры и компилятора
- Маловероятно, что сравнение «истинно»

```
double a = 2.34e-2; // floating-point in «scientific notation»
float b = 2.34e-2F; // F for 'float' constant
if ( a==b ) {
  printf("a=%f is equal to b=%f\n",a,b);
} else {
  printf("a=%f is NOT equals b=%f\n",a,b);
}
Result> a=0.023400 is NOT equals b=0.023400
```

Следует избегать сравнения чисел с плавающей точкой с помощью оператора ==

Тестовая программа на сравнение fp-чисел

```
double eps_m = eps(); // machine epsilon
double x = 0., y = 0.;
for(int i = 0; i < 10; i++) {
    x += 0.1;
    if( i%2 ) {
        y += 0.2;
        printf(" %19.17f %19.17f --> %3d %3d %3d\n",
            x,y, (x==y), IsEqualABS(x,y,eps_m), IsEqualREL(x,y,eps_m));
    }
}
```

Output

```
0.200000000000001 0.20000000000001 --> 1 1 1 1 0.40000000000002 0.40000000000002 --> 1 1 1
```

0.59999999999999 0.600000000000000 --> 0 1 1 0.7999999999999 0.80000000000000 --> 0 1 1

Абсолютная разница: cpaвнение c epsilon int IsEqualABS(double x, double y, double epsilon) { return fabs(x-y) < epsilon;

```
Достоинства и недостатки (pro et contra)
```

- о ресу Если пираварон значений у и у и
- pros Если диапазон значений x и y известен и ограничен, то эта проверка очень проста и эффективна
- cons He работает если ε меньше, чем возможная разность |x-y|: например, если epsilon < 0.01, то для float x = 12345.67 нет у «близких» к x

Относительная разница:

$$Rel(x,y) = \left| \frac{x-y}{f(x,y)} \right| < \varepsilon$$
, где $f(x,y) = \begin{cases} \min(|x|,|y|) \text{ или } \max(|x|,|y|) \\ \text{ или } (|x|+|y|)/2 \text{ или } \dots \end{cases}$

```
Функции сравнения для f(x,y) = min(|x|,|y|) int IsEqualREL(double x, double y, double epsilon) { double ax = fabs(x); double ay = fabs(y); return fabs(x-y) < epsilon*((ax<ay) ? ax : ay); }
```

- ullet pros Более общий способ сравнения чисел, работающий вне зависимости от абсолютных значений x,y
- cons Плохо подходит для чисел близких к нулю, например: для x = -1e-9, y = +1e-9 получим $\frac{|x-y|}{min(|x|,|y|)} = 2$ и совсем не работает для x = y = 0)

Алгоритм суммирования Kaxaнa (Kahan)

```
Алгоритм для улучшения точности суммирования
double KahanSum(double V[], int Nv ) {
  double sum = 0;
  double c = 0; // compensation for lost low-order bits
  for ( size_t i = 0; i < Nv; ++i ) {
     double v = V[i] - c;
     double t = sum + v:
     c = (t-sum) - y; // algebraically, c should always be zero
     sum = t:
  return sum;
```

Алгоритм выполняет суммирование с двумя накопителями:
 sum содержит сумму, а с накапливает части не включенные в сумму

Проверка алгоритма суммирования Кахана

- Алгоритм Kahan'а не идеален и плохо работает если элемент больше суммы
- Имеются другие алгоритмы: улучшенный алгоритм Kahan-Babuška (Neumaier), 2Sum (Knut), Fast2Sum (Dekker) . . .
- В python3.12 функция math.fsum() использует улучшенный алгоритм Кахана

Математическая библиотека <math.h>

Соглашения

- функции «с обычными именами» работают с double
- ullet для float и long double используются функции с окончаниями f и 1: $\sin o \sin f$, $\sin f$
- углы задаются в радианах
- используются все соглашения стандарта IEEE 754

В C++ рекомендуется использовать <cmath>

Заголовочные файлы C++ включают перегрузку функций: abs() в C++ «универсальная функция» и для int ... и для double

Константы (double)

M_LN10

```
М_Е Число e М_РІ Число \pi М_2_SQRTРІ 2/\sqrt{\pi} М_LOG2E log_2(e) М_РІ_2 \pi/2 М_SQRT2 \sqrt{2} М_LOG10E log_{10}(e) М_РІ_4 \pi/4 M_SQRT1_2 1/\sqrt{2} M_LN2 ln(2) М_1_РІ 1/\pi
```

```
^{\hbox{\tiny ISS}} В gcc имеется расширение этих констант для long double, к имени надо добавить «l»: M_PI \rightarrow M_PII
```

 $ln(10) \parallel M_2 = PI = 2/\pi$

#define _GNU_SOURCE

```
© Стандарт С99 не требует наличия этих констант в math.h
```

- В gcc, clang они доступны по умолчанию или надо определить:
 - B Microsoft Visual C++ что бы их использовать надо определить:
 - #define _USE_MATH_DEFINES

B C Numerics library можно найти больше информации о функциях математической библиотеки

Функции округления

```
ceil(x) — округление до ближайшего большего целого числа floor(x) — округление до ближайшего меньшего целого числа round(x) — округление до ближайшего целого в сторону от нуля trunc(x) — округление до ближайшего целого в сторону к нулю nearbyint(x) — округление в соответствии с fesetround()
```

```
double x = 3.5:
                                                             3.5 - 3.5
printf("
               %.1f \%.1f \n''.x.-x):
                                                             4.0 - 3.0
                                                     ceil
printf("ceil %.1f
                     %.1f\n'', ceil(x), ceil(-x));
                                                     floor
                                                             3.0 - 4.0
printf("floor
               %.1f
                      %.1f\n",floor(x),floor(-x));
                                                     round
                                                             4.0 - 4.0
printf("round
               %.1f
                      %.1f\n", round(x), round(-x));
                                                             3.0 - 3.0
printf("trunc
                %.1f
                      %.1f\n",trunc(x),trunc(-x));
                                                     trunc
```

Полезные библиотеки и программы

Библиотеки для вычислений с произвольной точностью

- GMP The GNU Multiple Precision Arithmetic Library
 - Целые числа, рациональные числа и числа с плавающей точкой
 - Написана на C, а наиболее «тонкие» места на ассемблере
 - Размер целых чисел практически неограничен: 2³⁷-bit для x86-64
- MPFR Multiple-Precision Floating-point with correct Rounding

Библиотека численных методов GSL — GNU Scientific Library

- Библиотека численных методов, написана на «чистом» С
- Большое число функций, алгоритмов . . .
- Большое количество языков программирования в которых эта библиотека может быть использована

Дополнительные слайды

Maкросы в #include <fenv.h> (С99, C++11)

- Задание окружения (environment) для вычислений с плавающей точкой
- Генерировать исключения в случае:
 divide-by-zero, overflow, underflow, inexact, invalid
- Моды округления: fegetround() и fesetround()

Mode		Test values				
Макрос	Пояснение	+11.5	+12.5	-11.5	-12.5	
FE_TONEAREST	к ближайшему	+12.0	+12.0	-12.0	-12.0	
FE_TOWARDZERO	к нулю	+11.0	+12.0	-11.0	-12.0	
FE_UPWARD	$\kappa + \infty$	+12.0	+13.0	-11.0	-12.0	
FE_DOWNWARD	к −∞	+11.0	+12.0	-12.0	-13.0	

Функции в <math.h>

• В «cppreference» можно найти больше информации.

```
Тригонометрические функции \sin(x), \cos(x), \tan(x) — синус, косинус, тангенс a\sin(x), a\cos(x), a\tan(x) — арксинус, арккосинус, арктангенс a\tan(y) и по знакам y и x определяет квадрант:
```

возвращаемое значение лежит в диапазоне $[-\pi,\pi]$

Показательные и логарифмические функции

```
pow(x,y) — возведения x в степень y: (x^y \equiv e^{y*ln(x)}) sqrt(x), cbrt(x) — корни \sqrt{x} и \sqrt[3]{x} exp(x) — экспонента e^x sinh(x), cosh(x), tanh(x) — гиперболические функции log(x), log10(x), log2(x) — логарифмы: ln(x), lg(x), log_2(x)
```

Другие функции

 $\mathtt{fabs}(\mathtt{x})$ — абсолютная величина: |x|

fmax(a,b) fmin(a,b) — возвращает большее (меньшее) из a,b erf(x) erfc(x) — функции ошибок

tgamma(x) lgamma(x) – гамма-функция и натуральный логарифм от гамма-функции

внимание: gamma(x) == lgamma(x) - устаревшее имя

Комплексные числа <complex.h> (С99)

```
В C11 разрешено отсутствие <complex.h>: __STDC_NO_COMPLEX__
```

- double complex;
- float complex;
- long double complex;

Макросы для комплексного числа: $I \equiv Complex_I \equiv 0+1*i$

- \bullet макрос I предпочтителен, но может вызвать проблемы если уже есть переменная I
- можно отказаться от I и использовать «длинное имя» _Complex_I

```
#include <complex.h>
#undef I
```

🖙 заметьте, что І*І — комплексное число (-1+0*і)

```
Функции (c - double complex)

creal(c), cimag(c), cabs(c), carg(c) - базовые функции:
действительная и мнимая части, абсолютная величина, аргумент

cexp(c), clog(c), csqrt(c), cpow() - показательные и

логарифмические функции

csin(c), ccos(c), ctan(c), casin(c), cacos(c), catan(c) -

тригонометрические функции
```

Пример

```
#include <complex.h> // note: <math.h> will be included
#include <stdio.h>
int main() {
   double complex ca = 1 + I;
   double complex cb = cexp(ca);
   // there is no a specific format specifier for complex_t
   printf("%f + %f*i\n",creal(cb),cimag(cb)); // 1.468694 + 2.287355*i
}
```

IEEE 754 floating-point test

http://www.netlib.org/paranoia/

Программа проверяющая на соответствие стандарту IEEE 754

Fixed point maths library: libfixmath

https://code.google.com/p/libfixmath/

Библиотека для работы с числами с фиксированной точкой