Data Structures and Algorithms

(ESO207)

Lecture 14:

- Algorithm paradigms
- Algorithm paradigm of Divide and Conquer

Algorithm Paradigms

Algorithm Paradigm

Motivation:

- Many problems whose algorithms are based on a <u>common approach</u>.
- A need of a <u>systematic study</u> of such widely used approaches.

Algorithm Paradigms:

- Divide and Conquer
- Greedy Strategy
- Dynamic Programming
- Local Search

Divide and Conquer paradigm for Algorithm Design

Divide and Conquer paradigm An Overview

- 1. Divide the problem instance into two or more instances of the same problem
- 2. Solve each smaller instances <u>recursively</u> (base case suitably defined).
- **3.** Combine the solutions of the smaller instances to get the solution of the original instance.

This is usually the main **nontrivial** step in the design of an algorithm using divide and conquer strategy

Example 1

Sorting

A familiar problem

Merging two sorted arrays:

Given two sorted arrays **A** and **B** storing n elements each, Design an O(n) time algorithm to output a sorted array **C** containing all elements of **A** and **B**.

Example: If $A=\{1,5,17,19\}$ $B=\{4,7,9,13\}$, then output is $C=\{1,4,5,7,9,13,17,19\}$.

Merging two sorted arrays A and B

Pesudo-code for Merging two sorted arrays

```
Merge(A[0..n-1],B[0..m-1], C) // Merging two sorted arrays A and B into array C.
\{i\leftarrow 0; i\leftarrow 0;
                                                          Correctness: homework exercise
  k \leftarrow 0;
  While(i<n and j<m)
        If(A[i] < B[j]) { C[k] \leftarrow A[i]; k++; i++
        Else
                            C[k] \leftarrow B[j]; k++; j++ 
  While(i < n) { C[k] \leftarrow A[i]; k++; i++ }
  While(j < m) { C[k] \leftarrow B[j]; k++; j++ }
  return C;
                                   Time Complexity =
```

O(n+m)

Divide and Conquer based sorting algorithm

```
 \begin{aligned} & \operatorname{MSort}(A,i,j) \text{ // Sorting the subarray A}[i..j]. \\ & \{ & \operatorname{If}( \ \ | \ i < j \ \ ) \\ & \{ & \operatorname{mid} \leftarrow (i+j)/2; \\ & \operatorname{MSort}(A,i,\operatorname{mid}); \\ & \operatorname{MSort}(A,\operatorname{mid}+1,j); \\ & \operatorname{Create temporarily C}[0..j-i] \\ & \operatorname{Merge}(A[i..\operatorname{mid}],A[\operatorname{mid}+1..j],C); \\ & \operatorname{Copy C}[0..j-i] \text{ to A}[i..j] \end{aligned}
```


Divide and Conquer based sorting algorithm

```
MSort(A,i,j) // Sorting the subarray A[i..j]. { If ( i < j ) { mid \leftarrow (i+j)/2; MSort(A,i,mid); \leftarrow T(n/2) MSort(A,mid+1,j); \leftarrow T(n/2) Create temporarily C[0..j-i] Merge(A[i..mid], A[mid+1..j], C); c n Copy C[0..j-i] to A[i..j] }
```

```
Time complexity:

If n = 1,

T(n) = c for some constant c

If n > 1,

T(n) = c n + 2 T(n/2)

= c n + c n + 2^2 T(n/2^2)

= c n + c n + c n + 2^3 T(n/2^3)

= c n + ...(log n terms)...+ c n

= O(n log n)
```

Proof of correctness of Merge-Sort

```
 \begin{aligned} & \operatorname{MSort}(\mathsf{A},i,j) \ // \operatorname{Sorting the subarray A}[i..j]. \\ & \{ & \operatorname{If}(\ i < j \ ) \\ & \{ & \operatorname{mid} \leftarrow (i+j)/2; \\ & \operatorname{MSort}(\mathsf{A},i,\operatorname{mid}); \\ & \operatorname{MSort}(\mathsf{A},\operatorname{mid}+1,j); \\ & \operatorname{Create temporarily C}[0..j-i] \\ & \operatorname{Merge}(\mathsf{A}[i..\operatorname{mid}], \operatorname{A}[\operatorname{mid}+1..j], \operatorname{C}); \\ & \operatorname{Copy} \operatorname{C}[0..j-i] \ \operatorname{to} \operatorname{A}[i..j] \\ & \} \end{aligned}
```

Question: What is to be proved? Answer: MSort(A,i,j) sorts the subarray A[i..j]

Question: How to prove?

Answer:

- By **induction** on the <u>length</u> (j i + 1) of the subarray.
- Use correctness of the algorithm Merge.

Example 2

Faster algorithm for multiplying two integers

Addition is faster than multiplication

Given: any two *n*-bit numbers **X** and **Y**

Question: how many bit-operations are required to compute X+Y?

Answer: O(n)

Question: how many bit-operations are required to compute $X^* 2^n$?

Answer: O(n) [left shift the number **X** by n places, (do it carefully)]

Question: how many bit-operations are required to compute X*Y?

Question: how to express X*Y in terms of multiplication/addition of {A,B,C,D}?

Hint: First Express X and Y in terms of {A,B,C,D}.

$$X = A^* 2^{n/2} + B$$
 and $Y = C^* 2^{n/2} + D$.

Hence ...

$$X*Y = (A*C)*2^n + (A*D + B*C)*2^{n/2} + B*D$$

$$X*Y = (A*C)*2^{n} + (A*D + B*C)*2^{n/2} + B*D$$

Let T(n): time complexity of multiplying X and Y using the above equation.

Observation:
$$A*D + B*C = (A-B)*(D-C) + A*C + B*D$$

Question: How many multiplications do we need <u>now</u> to compute X*Y?

Answer: 3 multiplications:

- A*C
- B*D
- (A-B)*(D-C).

$$X*Y = (A*C)*$$
 $2^{n} + ((A-B)*(D-C) + A*C + B*D) 2^{n/2} + B*D$

Let T(n): time complexity of the new algo for multiplying two n-bit numbers

T(n) = c n + 3 T(n /2) for some constant c
= c n + 3 c
$$\frac{n}{2}$$
 + 3² T(n /2²)
= c n + 3c $\frac{n}{2}$ + 9c $\frac{n}{4}$ + + ... + 3 $\log_2 n$ T(1)
= O($n^{\log_2 3}$) = O($n^{1.58}$)

Conclusion

Theorem: There is a **divide and conquer** based algorithm for multiplying any two n-bit numbers in $O(n^{1.58})$ time (bit operations).

Note:

The fastest algorithm for this problem runs in almost $O(n \log n)$ time.

Example 3

Counting the number of "inversions" in an array

Counting Inversions in an array Problem description

Definition (Inversion): Given an array A of size n, a pair (i,j), $0 \le i < j < n$ is called an inversion if A[i] > A[j].

Example:

Inversions are:

AIM: An efficient algorithm to count the number of inversions in an array **A**.

Counting Inversions in an array Problem familiarization

```
Trivial-algo(A[0..n-1])
\{ count \leftarrow 0; 
  For(j=1 to n-1) do
       For (i=0 \text{ to } j-1)
                                                            Ponder over the divide and
             If (A[i]>A[j]) count \leftarrow count + 1;
                                                            conquer algorithm for this
                                                            problem. We shall discuss it
                                                                 in the next class.
Time complexity: O(n^2)
Question: What can be the max. no. of inversions in an array A?
Answer: \binom{n}{2}, which is O(n^2).
Question: Is the algorithm given above optimal?
Answer: No, our aim is not to report all inversions but to <u>report the count</u>.
```