# Program Structure and Algorithms

Sid Nath

Lecture 7

# Agenda

- Administrative
  - Midterm next week; All topics from Lec 1 to Lec 7
- Lecture
  - BST
  - Binary heaps and heapsort
- Quiz

#### Midterm Details

- One A4 size cheatsheet, calculator OK; nothing else
- Please focus on all HW and Quiz questions till today
- Five questions
  - Short answer
  - Graph and D/Q algo execution (recursion trees, Master Theorem)
  - Graph algo design
  - D/Q algo design

## Binary Search Tree

BST is a binary tree data structure with the following properties

- Left subtree contains only nodes with key values lesser than the subtree's root's key value
- Right subtree contains only nodes with key values greater than the subtree's root's key value
- Left and right subtree also must each be a BST



#### Create a BST

- {1, 2, 3, 4, 5, 6, 7, 8, 9}
- If inserted in order:  $1+2+3+....+n = n(n+1)/2 = O(n^2)$
- Re-arrange and find median
  - Median, left median, right median
  - -5, 3, 7, 2, 1, 4, 8, 6, 9
  - $O(n \log n)$
- Order of key values is important!
  - Better to keep tree balanced



#### Find in BST

```
def find(root, key):
if root == NULL:
   return NULL
if key < root.key:
   return find(root.left, key)
if key > root.key:
   return find(root.right, key)
return root.key
```

Worst-case running time: O(n)

Tree is lopsided:  $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ 

#### Find in BST

findMin: Find the node with min key value (left-most node)

findMax: Find the node with max key value (right-most node)

Try implementing these!!!



#### Insert in BST



Insertions happen only at leaves Worst-case running time: O(n)

#### Deletion in BST

- Removing an item disrupts the tree structure hard!
- Idea: find the node to be removed, then "fix" the tree so that it is still a BST
- Fixing considerations
  - Node has no children (leaf)
  - Node has one child
  - Node has two children

### Deletion: Leaf Node



#### Deletion: Node w/ One Child



#### Deletion: Node w/ One Child





What can we replace 5 with?

- Idea: Replace the deleted node with a key whose value is guaranteed to be between the two child subtrees
- Option #1: Min node from right subtree (successor) (findMin(root.right))
- Option #2: Max node from left subtree (predecessor) (findMax(root.left))
- Delete the original node containing successor or predecessor

Delete the original node containing successor or predecessor





# Binary Heaps/Priority Queues

- A data structure for storing elements associated with priorities (often called keys)
- Optimized to find the element that currently has the smallest key
- Operations
  - enqueue(k, v): adds element v to the queue with key k
  - isEmpty(): returns whether the PQ is empty
  - dequeue(): removes the element with the least priority from the queue

# PQ Implementation



This tree obeys the heap property:

- Each node's key is less than or equal to all of its descendant's keys
- Also, a complete binary tree, i.e., all levels except the last one is filled in completely

# PQ: Enqueue()







# PQ Efficiency

- Enqueue() and dequeue() operations run in O(h), h is the tree height
- For a perfect binary tree of height h, there are  $1 + 2 + 4 + 8 + ... + 2^h = 2^{h+1} 1$  nodes
- If there are n nodes, the max height is  $n = 2^{h+1} 1 \Rightarrow h = \log_2(n+1) 1$
- Thus,  $h = \Theta(\log n)$ , so enqueue() and dequeue() take  $O(\log n)$
- Most implementations assume one-indexing:
  - Root is at floor(n/2), children are at 2n, 2n+1

## Heapsort

- Input: Unsorted array
- Idea:
  - Build a max-heap from array elements
  - Repeatedly dequeue() from the heap using heapify()
  - Place deleted element in the sorted list
  - Repeat until all elements are placed in sorted order/heap is empty
- Runtime:  $O(n \log n)$  (at most n enqueues and dequeues)
- Space: O(1) vs. O(n) in mergesort

# (Max)Heapify()

- Converts a binary tree into a heap datastructure by using recursion
- Output: Largest among root and children
- Procedure:
  - Get the left and right children of the (subtree's) root
  - If the left child's value is greater than root's value
    - Swap the left and root's values
    - Heapify(left subtree)
  - If the right child's value is greater than the root's value
    - Swap the right and root's values
    - Heapify(right subtree)

# Max Heapify



# Graph Problem #1

There are two types of professional wrestlers: "faces" and "heels". Between any pair of these wrestlers there may or may not be rivalry.

Given names of n wrestlers and a list of r pairs of them who have rivalries, give a linear time algorithm to determine if its possible to designate some wrestlers as faces and some as heels such that each rivalry is between face and heel.

#### Idea

Map problem to a graph, n nodes and r edges

Run BFS on all vertices and label 0, 1 for faces and heels. Check if sum of labels on edge = 1 if face-heels rivalry possible

# Graph Problem #2

You are given a DAG G = (V, E). A Hamiltonian Path visits every vertex in the graph exactly once, starting from a source vertex.

Design an efficient algorithm to determine if a DAG contains a Hamiltonian Path.

#### Idea

Idea 1: Every DAG as a topological ordering that can be found in linear time.

Idea 2: A DAG with Hamiltonian Path will have a unique topological ordering

Topological sort G

Starting from the source vertex, follow all the tree edges. If all vertices are visited, then it is a Hamiltonian Path.

# Lecture 7 summary

Binary trees and BSTs

Binary heaps and heapsort

• Midterm review