Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky

Odhad relativní četnosti binomického rozdělení pomocí klasického a bayesovského přístupu v jazyce R

BAKALÁŘSKÁ PRÁCE

Studijní program: [Data Analytics]

Autor: [Bc. Michal Lauer]

Vedoucí práce: [Ing. Ondřej Vilikus, Ph.D.]

Praha, Prosinec 2024

Poděkování				
Děkuji svému vedoucímu za odborné neocenitelnou podporu.	vedení práce a p	orůběžné konzulta	ace a své přítelk	zyni za

Klíčová slova	
Bayesovská statistika, odhad relativní četnosti, jazyk R	
Abstract	
Abstract.	
Keywords	
Bayesian statistics, relative frequency estimation, R language	

Abstrakt

Abstrakt.

Obsah

Ú	\mathbf{vod}		9
1	Sta	istické metody	10
	1.1	Inference	10
		1.1.1 Problematika výběrových šetření	10
	1.2	Frekventistická inference	10
		1.2.1 Testování hypotéz	10
		1.2.2 Metriky při testování hypotéz	10
		1.2.3 Jednovýběrový odhad poměru s velkým vzorkem	10
		1.2.4 Jednovýběrový odhad poměru s malým vzorkem	10
	1.3	Bayesovská inference	11
2	Mo	te Carlo generování	12
	2.1	Vyhodnocení generovaného rozdělení	12
		2.1.1 Vyhodocení hypotéz	12
		2.1.2 Odhad poměru	12
3	Pra	ctické odhady	13
	3.1	Balíčky pro frekventistickou inferenci	13
		3.1.1 Klasické test poměru	13
	3.2	Software pro bayesovskou statistiku	14
		3.2.1 Balíček R2WinBUGS	14
		3.2.2 Balíček jags	18
		3.2.3 stan	22
	3.3	Simulace	22
		3.3.1 Malý vzorek	22
		3.3.2 Velký vzorek	22
		3.3.3 Porovnání výsledků	22
Zá	ivěr		23
	3.4	Jak citovat v textu	23
P	oužit	literatura	24
٨	Rev	psovské modely	26

Seznam obrázků

Seznam tabulek

Seznam zdrojových kódů

A.1	Winbugs.																																							26
-----	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----

Seznam použitých zkratek

 ${f BCC}$ Blind Carbon Copy

CC Carbon Copy

 \mathbf{CERT} Computer Emergency Response

Team

CSS Cascading Styleheets

DOI Digital Object Identifier

HTML Hypertext Markup Language

REST Representational State Transfer

SOAP Simple Object Access Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML eXtended Markup Language

Úvod

Tohle je **úvodní** text.

1. Statistické metody

Krátký úvod do historie, bayes, inferenční bayes (rozdělení) vs. inference (bod) citace Karla

1.1 Inference

proč to používáme, výběr vs. populace, reprezentativnost

1.1.1 Problematika výběrových šetření

reprezentativnost, definice populace, čas sběru, organizace sběru...

1.2 Frekventistická inference

Jak to funguje, jak to spoléhá na sampling distributions

1.2.1 Testování hypotéz

hladina významnosti, úroveň spolehlivosti, Testovací statistika, kritický obor, 1/2 stranný test p-hodnota, interval spolehlivosti

1.2.2 Metriky při testování hypotéz

Chyba I. a II. druhu, síla testu, velikost efektu

1.2.3 Jednovýběrový odhad poměru s velkým vzorkem

použití, předpoklady, poměrový Z test, binomický test, síla testu, velikost efektu

1.2.4 Jednovýběrový odhad poměru s malým vzorkem

Proč jsou důležité speciální metody, nějaké typy (wiki)

1.3 Bayesovská inference

Odvození bayesova vzorce, popis likelihood/aprior/data, druhy aprior/posterior

2. Monte Carlo generování

Halsing, Gibs, HMC

2.1 Vyhodnocení generovaného rozdělení

korelace, ESS, monte carlo error...

2.1.1 Vyhodocení hypotéz

Interval kredibility, ROPE, Bayesův faktor

2.1.2 Odhad poměru

3. Praktické odhady

3.1 Balíčky pro frekventistickou inferenci

3.1.1 Klasické test poměru

```
Test
test
stats::t.test()
test
Jednoduchý T-test
   One Sample t-test
data: x
t = 8.8438, df = 99, p-value = 3.621e-14
alternative hypothesis: true mean is not equal to {\tt 0}
95 percent confidence interval:
0.7158758 1.1300282
sample estimates:
mean of x
0.922952
??
Simulace alfa = chyba 1. druhu
```

Procento falešných zamítnutí h0 se blíží hladine významnosti

3.2 Software pro bayesovskou statistiku

3.2.1 Balíček R2WinBUGS

podporuje WinBUGS, OpenBUGS. Při renderování se otevírá program winbugs. Nefunguje správně initializace chainů. Pro grafy pomocný balíček {mcmcplots}.

Výsledek

For each parameter, n.eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

```
DIC info (using the rule, pD = Dbar-Dhat)
pD = 1.0 and DIC = 15.6
DIC is an estimate of expected predictive error (lower deviance is better).
```

Odhad parametru p.

Posteriorní rozdělení jednotlivých chainů.

Vývoj jednotlivých chainů.

Autokorelace.

3.2.2 Balíček jags

rjags

Tvorba modelu

Adaptační doba, která se volá automaticky.

Burn-in generování, je to pro každý chainu.

Generování vzorků z každého chainu.

Iterations = 1001:6000
Thinning interval = 1
Number of chains = 2
Sample size per chain = 5000

 Empirical mean and standard deviation for each variable, plus standard error of the mean:

Mean SD Naive SE Time-series SE 0.50357 0.15197 0.00152 0.00152

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5% 0.2104 0.3954 0.5061 0.6127 0.7879

Základní plot

N = 5000 Bandwidth = 0.02553

R2jags

Divně spojený bugs and jags.

• Lze komplikovaně nastavit stejný seed

for (i in 1:n.chains) { init.values[[i]] <- inits[[i]] init.values[[i]]. $RNG.name < -RNGnameinit.values[[i]].RNG. <- runif(1, 0, 2^31) }$

(asi by to šlo nastavit seed a pak to generovat setjně pomocí runif i nahoře)

• adapt = burnin nebo adapt = 100

if (n.burnin > 0) { n.adapt <- n.burnin } else { n.adapt <- 100 }

• Lze paralelizovat pomocí jags.parallel

Výsledky jsou pořád ze stejného posteriorního rozdělení a jsou validní, akorát se charakteristiky nerovnají.

Visualizace

Catterplot.

Posteriorní rozdělení.

Trace plot.

Autokorelace.

3.2.3 stan

aplikace, R implementace, výhody/nevýhody, používá hmc

3.3 Simulace

jak budou simulace provedné, jak budou vyhodnocené, nastavení ROPE/alternativ. pro odhad chyb

3.3.1 Malý vzorek

Bayes vs. vybraný vzorec vs. binomic

3.3.2 Velký vzorek

Bayes vs. vybraný vzorec vs. binomic

3.3.3 Porovnání výsledků

Jak testy dopadly

Závěr

Konec práce, závěr.

3.4 Jak citovat v textu

Použitá literatura

- Čermák, R., & Smutný, Z. (2018). A Framework for Cultural Localization of Websites and for Improving Their Commercial Utilization. In *Global Observations of the Influence of Culture on Consumer Buying Behavior* (s. 206–232). IGI Global. https://doi.org/10.4018/978-1-5225-2727-5.ch013
- Hladík, M., & Černý, M. (2018). The Shape of the Optimal Value of a Fuzzy Linear Programming Problem. Fuzzy Logic in Intelligent System Design, 281–286. https://doi.org/10.1007/978-3-319-67137-6_31
- Jašek, P., Vraná, L., Šperková, L., Smutný, Z., & Kobulský, M. (2018). Modeling and Application of Customer Lifetime Value in Online Retail. *Informatics*, 5(1). http://www.mdpi.com/2227-9709/5/1/2/pdf
- Pecáková, I. (2018). Statistika v terénních průzkumech. Professional Publishing.

A. Bayesovské modely

```
model {
    for (i in 1:N) {
        x[i] ~ dbern(p)
    }
    p ~ dbeta(alpha, beta)
}
```

Výpis A.1: Winbugs