

JORNADA INTERNACIONAL: RETOS DE LOS DRENAJES PLUVIALES URBANOS DEL PERU

Proyecto Drenaje Pluvial en Chiclayo

Juntos proyectando una ciudad sostenible y sin inundaciones

TYPSA

ÍNDICE

- 1 EL FENÓMENO DEL NIÑO. LAS PROBLEMÁTICAS PARTICULARES DE LA CIUDAD DE CHICLAYO
- 2 COMPONENTES DEL DRENAJE URBANO
- 3 LAS PARTES INTERESADAS (STAKEHOLDERS) EN CHICLAYO
- 4 DESCRIPCIÓN DE LAS SOLUCIONES PROPUESTAS EN CHICLAYO
- 5 APOYOS DE TYPSA A LAS ADMINISTRACIONES PARA LA MITIGACIÓN DEL FENÓMENO DEL NIÑO 2023-2024

El fenómeno del Niño. Las problemáticas particulares de la ciudad de Chiclayo

Las inundaciones en Chiclayo por el fenómeno del Niño son cíclicas y parece ser que su frecuencia está empezando a aumentar.

Chiclayo es una ciudad situada en una zona entre deltaica y lagunar, por lo tanto, las pendientes de sus calles son muy bajas (0,1 %).

El drenaje existente (mayoritariamente agrícola) está situado en el exterior de la zona urbana lo que contribuye a la desconexión entre el área a drenar y el medio receptor, que en nuestro caso debería ser el mar.

Información general del proyecto

Los *servicios* serán desarrollados en toda la cuenca urbana de la ciudad de Chiclayo como unidad territorial que comprende los Distritos de Chiclayo, Jose Leonardo Ortiz, La Victoria y Pimentel, la población afectada y directamente beneficiada con el proyecto se estima en <u>399,238 habitantes.</u>

Red de drenaje territorial

La duración es un factor agravante en el impacto generado por las inundaciones. En el evento del Yaku las aguas estuvieron en algunos puntos más de dos semanas.

Calle de Chiclayo totalmente inundada luego de las fluvias del 14-15 de febrero 1998 y el colapso del sistema de alcantarillado de la ciudad. Se observa la abertura que abrió en una casa el forrente de apria y describie.

https://www.tiempo.com/ram/1631/el-evento-el-nio-oscilacion-sur-1997-1998-su-impacto-en-el-departamento-de-lambayeque-peru-2/

Chiclayo al borde de la emergencia sanitaria por inundaciones

Alcalde de la ciudad estima que existen 149 puntos críticos donde los aniegos se han mezclado con aguas

https://elcomercio.pe/sociedad/lambayeque/chiclayo-al-borde-emergencia-sanitaria-inundaciones-noticia-1966003/?foto=6

PERÚ :

Lambayeque en alerta: lluvias torrenciales, desbordes de ríos e inundaciones por el ciclón Yacu

Tres fallecidos, cinco desaparecidos y mil familias perjudicadas han dejado las fuertes precipitaciones en la región. Ciudadanos aseguran que no han recibido ningún tipo de ayuda pese al daño que han sufrido sus viviendas

https://www.infobae.com/peru/2023/03/10/lambayeque-en-alerta-lluvias-torrenciales-desbordes-derios-e-inundaciones-por-el-ciclon-yacu/

Objetivos drenaje pluvial urbano

- Evitar al máximo los daños provocados por las precipitaciones (lluvias) a personas, propiedades e infraestructuras de la ciudad.
- Garantizar el normal funcionamiento de la ciudad o su recuperación en un plazo de tiempo razonable.

TIPOLOGÍA DE REDES DE DRENAJE PLUVIAL

Componentes del drenaje urbano

Metas Físicas del proyecto

Ítem	Descripción
I. MEDIDAS ESTI	RUCTURALES
1.1	ADECUADA Y SUFICIENTE INFRAESTRUCTURA DE RECOLECCIÓN DE LAS AGUAS PLUVIALES EN EL ÁMBITO URBANO.
1.2	INFRAESTRUCTURA DE ALMACENAMIENTO Y REGULACIÓN DE LAS AGUAS PLUVIALES EN EL ÁMBITO URBANO.
1.3	INFRAESTRUCTURA DE TRANSPORTE DE AGUAS PLUVIALES URBANAS.
1.4	ESTRUCTURA DE EVACUACIÓN DE LAS AGUAS PLUVIALES.
II. MEDIDAS N	IO ESTRUCTURALES
2.1	PRESENCIA DE UNIDAD ORGÁNICA COMPETENTE PARA LA O&M DEL SISTEMA DE DRENAJE PLUVIAL URBANO.
2.2	PRESENCIA DE PERSONAL CON CAPACIDADES PARA BRINDAR EL SERVICIO DE DRENAJE PLUVIAL URBANO.
2.3	EXISTENCIA DE INSTRUMENTOS DE GESTIÓN PARA EL SERVICIO DE DRENAJE PLUVIAL URBANO.
2.4	POBLACIÓN SENSIBILIZADA EN GESTIÓN DEL RIESGO DE INUNDACIÓN PLUVIAL

Elementos del sistema

Ítem	Descripción
I. MEDIDAS ESTR	UCTURALES
1.1	ADECUADA Y SUFICIENTE INFRAESTRUCTURA DE RECOLECCIÓN DE LAS AGUAS PLUVIALES EN EL ÁMBITO URBANO.
	SUMIDEROS – REJILLAS TRANSVERSALES – CANALETAS - CUNETAS
1.2	INFRAESTRUCTURA DE ALMACENAMIENTO Y REGULACIÓN DE LAS AGUAS PLUVIALES EN EL ÁMBITO URBANO.
	TANQUES DE RETENCIÓN AGUAS PLUVIALES Y SUDS :CUNETAS VERDES, PARQUES FILTRANTES, ETC.
1.3	INFRAESTRUCTURA DE TRANSPORTE DE AGUAS PLUVIALES URBANAS.
	COLECTORES, SUBCOLECTORES, CAMARAS DE INSPECCIÓN/BUZONES,
1.4	ESTRUCTURA DE EVACUACIÓN DE LAS AGUAS PLUVIALES.
	ADECUACIÓN DE DRENES Y CONSTRUCCIÓN DE ESTACIONES DE BOMBEO

Arquitectura del sistema y organización del servicio

II. MEDIDAS NO I	ESTRUCTURALES
	PRESENCIA DE UNIDAD ORGÁNICA COMPETENTE PARA LA O&M DEL SISTEMA DE DRENAJE PLUVIAL URBANO.
2.1	IMPLEMENTACIÓN DE LA UNIDAD ORGANICA DENTRO DE LAS ADMINISTRACIONES. ADQUISICIÓN DE EQUIPAMIENTO PARA EL MANTENIMIENTO, MATERIAL INFORMÁTICO Y MOBILIARIO – (LA SEDE DEBE CEDERLA LA MUNICIPALIDAD PROVINCIAL)
2.2	PRESENCIA DE PERSONAL CON CAPACIDADES PARA BRINDAR EL SERVICIO DE DRENAJE PLUVIAL URBANO. CAPACITACIONES ESPECÍFICAS PARA QUE EL PERSONAL PUEDA HACER LA O & M
2.3	EXISTENCIA DE INSTRUMENTOS DE GESTIÓN PARA EL SERVICIO DE DRENAJE PLUVIAL URBANO. ELABORACIÓN DEL PLAN DE O&M DEL SISTEMA DE DRENAJE PLUVIAL, OTROS PLANES AUXILIARES
2.4	POBLACIÓN SENSIBILIZADA EN GESTIÓN DEL RIESGO DE INUNDACIÓN PLUVIAL

El servicio podría organizarse como servicio público, constituir una empresa mixta o realizar una concesión a una empresa especializada durante una serie de años para permitir la adquisición de un grupo de persona con experiencia en este sistema el cual es muy novedoso en el Perú.

Premisas del diseño

- COMBINACIÓN DE LOS DIFERENTES ELEMENTOS SIGUIENDO LA NORMATIVA PERUANA CE.040 Y QUE COMPONEN EL DRENAJE URBANO DE UNA CIUDAD MODERNA:
 - ELEMENTOS DE CAPTACIÓN (SUMIDEROS)
 - ELEMENTOS DE TRANSPORTE (COLECTORES)
 - ELEMENTOS DE ALMACENAMIENTO: (TRAPs)
 Y COMPLEMENTARIOS (SUDS)
 - ELEMENTOS DE DESCARGA (DRENES, EBAPS)

Las partes interesadas (Stakeholders) en Chiclayo

La complejidad de un diseño en una ciudad consolidada

Para el éxito del proyecto en todas sus fases se ha de mantener una estrecha relación con la población, grupos de interés y organizaciones de la sociedad civil del área de intervención, motivo por el cual se desarrolló un plan de Gestión Social para dar a conocer los avances del proyecto, y recoger sus principales inquietudes y expectativas respecto al diseño. Así mismo, hay reuniones periódicas con las entidades públicas y la sociedad civil a fin de escuchar sus recomendaciones técnicas que permitan hacer de este proyecto una suma de propuestas reales, viables sostenibles para la población beneficiaria.

Presentación en las instalaciones del GORE ante Stakeholder, agosto 2023

Las opiniones sobre el proyecto: es vital hacerlo urgentemente. ¿Cómo? Opiniones diversas, divergentes, distópicas.

Hay una opinión generalizada sobre la urgencia del proyecto, sin embargo, esta alineación es más compleja al considerar los diferentes intereses de instituciones y organismos. El rol de TYPSA es aportar datos técnicos y fehacientes de todas sus propuestas, apoyándose en su expertise y en las experiencias de otros países con más experiencia en el drenaje urbano.

El gerente del Proyecto, Jorge Velásquez y Jefe de Diseño Rafael Lopez en una reunión con la Comisión de Grandes Proyectos del Colegio de Ingenieros de Lambayeque para dar a conocer los avances de los estudios del Drenaje Pluvial de Chiclayo en topografía y geotecnia. El colegiado brindó algunas recomendaciones, aunque no todas pueden tenerse en cuenta. Estas reuniones se desarrollan periódicamente.

SOCIALIZACIÓN

Campañas de socialización del proyecto, presencia en prensa con artículos explicando el proyecto de forma sencilla, pero rigurosa.

Ejemplo de socialización compartida e informada. Los especialistas del área social de TYPSA y la Autoridad para la Reconstrucción con Cambios desarrollaron reuniones de socialización en el Pueblo Joven II Sector de Urrunaga y el P. J Carlos Estein del distrito de José Leonardo Ortíz, donde se dio a conocer los avances del proyecto de Diseño de Drenaje Pluvial de Chiclayo.

TYPSA

Descripción de las soluciones propuestas en Chiclayo

El proceso seguido para la redacción de los expedientes que desarrollan el Perfil declarado viable ha comportado el seguimiento de una metodología llamada RIBA (acrónimo del Real Institute Britanic Architecture) que ha implicado una serie de fases. La primera fase ha sido la RIBA 3, que contempla un Análisis Multicriterio para elegir la alternativa técnica óptima, tomando como base inicial, pero no limitativa, el Perfil. Dicho MCA se complementa con estudios de precios unitarios, CAPEX, OPEX y SCBA, actualmente en redacción.

ALTERNATIVA 3: Resumen general

OBJETIVO GLOBAL:

Minimizar coste energético operacional y coste de mantenimiento

- ✓ Maximizar conducción por gravedad o superficial
- ✓ Minimizar TRAPs y EBAPs
- ✓ Conducciónes con diámetros ligeramente mayores y más profundas.
- ✓ Maximizar SUDS (infraestructura verde)

* Los TRAPS en general tendrán bombeos de pequeño tamaño 100-200 l/s, mientras las EBAPs representan bombeos de mucha más capacidad **750-1500** l/s

DESCRIPCIÓN	ELEMENTOS	ALTERNATIV A 03
Infraestructura de Conducción	Colectores/Subcolectores Conexiones	257 km 135 km
Conducción	Colectores tipo (Box)	6 km
	Mejora de drenes	55 km
	Buzones	4577 und
Infraestructura de Regulación	Tanques de Retención	9 unidades
Infraestructura de Impulsión	Estaciones de Bombeo	4 unidades*
Infraestructura	Parques con SUDS	84 unidades
	Cuneta verde (bermas)	7.08 Km

Colectores y Subcolectores

Los colectores de la ciudad estarán diseñados para TR= 10 años y se comprobará que una lluvia de 25 años no produce inundaciones más allá de los 15 centímetros.

Los colectores son conducciones normalmente circulares que están entre 800 y 2500 mm de diámetro.

Los subcolectores son conducciones circulares entre 450-600 mm que son las conducciones más pequeñas, salvo las tuberías que unen los sumideros con los buzones.

Modelizaciones realizadas con modelos acoplados 1D-2D

Tanques de retención y Estaciones de bombeo

*Tanques de retencion							
Alternativa Zona		Codigo	Tipo	Volumen (m³)			
	1	TR-11	VI	10800			
	1	TR-13	III	9600			
	2	TR-50	V	2800			
	2	TR-200	V	2800			
3	3	TR-62	 *	1800			
	3	TR-63	**	7680			
	3	TR-78	V	2800			
	3	TR-79	\ *	3600			
	3	TR-201	 *	1800			
			TOTAL Volumen	43680			
			#TRAPS	9			

*Estaciones de bombeo										
	ALTERNATIVA 3									
	CODIGO	ZONA	VOLUME N (m3)	TIPO	BOMBA S (und)	CAUDAL UNITARIO (I/s)	CAUDAL TOTAL (I/s)	BOMBAS STAND BY (und)	CAUDAL STAND BY (I/s)	
	EBAP-01	Zona 1	1800	 *	5	250	1250	1	250	
	EBAP-02	Zona 2	2400	1	2	250	500	1	250	
	EBAP-03	Zona 2	2400	- 1	3	250	750	1	250	
	EBAP-07	Zona 4	3600	V*	6	250	1500	1	250	
					Total Cau	ıdal (I/s)	4000			

TANQUES DE RETENCIÓN DE AGUAS PLUVIALES

- Estructuras enterradas, ubicadas en puntos bajos de la red, tendrá una forma rectangular en planta con calados medios que van de 3,5 4,5 m.
- Estructuras que dan facilidad a la adaptación de diferentes volúmenes y permite el uso de sistemas constructivos con menores afectaciones a elementos existentes.

Tanques de retención, alzado y planta

ESTACIONES DE BOMBEO

Mejora hidráulica de drenes, 55 km.

CARACTERISTICAS DE LOS DRENES PROYECTADOS

		Progr					Carac	teristicas ge		
		Inicio	Fin			L : Longitud (m)	B: Base (m)	Z: Talud	H: Altura promedio (m)	S: Pendiente
1	3000	0+000	0+580	Rectangular	Concreto armado	580	6.50	0.00	4.50	0.20
2	3000	0+580	7+000	Trapezoidal	Geocelda	6,420	3.00	1.00	5.15	0.10
3	3000	7+000	8+000	Trapezoidal	Geocelda	1,000	3.00	1.25	3.80	0.10
4	3000	8+000	9+500	Trapezoidal	Geocelda	1,500	3.00	1.50	3.20	0.20
5	3000	9+500	10+000	Trapezoidal	Geocelda	500	5.50	1.00	3.00	0.30
6	3000	10+000	13+075	Trapezoidal	Geocelda	3,075	5.50	1.00	3.20	0.10
7	3000	13+075	13+123	Trapezoidal	Enrocado	48	5.50	1.00	3.50	0.05
8	3100	0+000	2+900	Trapezoidal	Geocelda	2,900	2.00	1.00	4.30	0.15
9	3100	2+900	5+500	Trapezoidal	Geocelda	2,600	3.00	1.00	3.70	0.20
10	3100	5+500	7+500	Trapezoidal	Geocelda	2,000	3.50	1.00	3.50	0.15
11	3100	7+500	10+163	Trapezoidal	Geocelda	2,663	4.00	1.00	3.00	0.10
12	3110	0+000	0+476	Trapezoidal	Geocelda	476	2.00	1.00	3.50	0.10
13	3200	0+000	1+500	Trapezoidal	Geocelda	1,500	2.50	1.00	4.20	0.15
14	3200	1+500	3+259	Trapezoidal	Geocelda	1,759	3.00	1.00	3.50	0.15
15	3400	0+000	4+285	Trapezoidal	Geocelda	4,285	3.00	1.00	5.00	0.10
16	3700	0+000	2+959	Trapezoidal	Geocelda	2,959	3.00	1.00	3.00	0.30
17	3700	2+800	2+959	Rectangular	Concreto armado	159	6.50	0.00	4.00	0.30
18	4000	0+000	1+000	Trapezoidal	Geocelda	1,000	2.50	1.00	4.15	0.40
19	4000	1+000	2+000	Trapezoidal	Geocelda	1,000	4.00	1.00	5.00	0.15
20	4000	2+000	10+000	Trapezoidal	Geocelda	8,000	5.00	1.00	4.80	0.15
21	4000	10+000	14+125	Trapezoidal	Geocelda	4,125	6.00	1.00	3.50	0.12
22	4000	14+125	14+200	Trapezoidal	Enrocado	75	6.00	1.00	3.50	0.12
23	4100	0+000	1+722	Trapezoidal	Geocelda	1,722	4.50	1.00	3.45	0.30
24	4300	0+000	0+500	Trapezoidal	Geocelda	500	3.50	1.00	3.00	0.20
25	4300	0+500	3+000	Trapezoidal	Geocelda	2,500	4.00	1.00	4.10	0.20
26	4300	3+000	4+140	Trapezoidal	Geocelda	1,140	4.50	1.00	4.47	0.10
27	4400	0+000	0+580	Trapezoidal	Geocelda	580	3.00	1.00	4.25	0.25
28	4400	0+580	1+265	Trapezoidal	Geocelda	685	4.50	1.00	4.65	0.10

SUDS, Sistemas Urbanos de Drenaje Sostenible

*SUDS					
Tipología SUDS		Alternativa N°3			
Tipologia 3003		Cantidad	Área (m2)	Volumen (m3)	
	Zona 1	5	8451	6220	
	Zona 2	5	14558	11861	
Cuenca seca de drenaje extendido (CSDE)	Zona 3	3	6150	4472	
	Zona 4	4	5644	4258	
	Total	17	34803	26811	
	Zona 1	26	10969	7020	
Jardín inundable (zonas de bio-retención)	Zona 2	18	6227	3985	
Saram mandable (20nds de 510-retención)	Zona 3	20	4794	3068	
	Zona 4	3	1052	673	
	Total	67	23042	14746	
Total		84	57845	41557	

*SUDS					
Tipología SUDS	Av. Principal	Cuneta verde alternativa 3	Zona	Longitud (m)	Volumen (m3)
Cuneta verde (berma)	Mariano Cornejo	CV-06-Z01	1	1080.4	929
Cuneta verde (berma)	Sáenz Peña	CV-05-Z01	1	921	473
Cuneta verde (berma)	La despensa	CV-01-Z01	1	1083.7	381
Cuneta verde (berma)	Av. Francisco Bolognesi	CV-12-Z03	3	1406.9	2177
Cuneta verde (berma)	Francisco Bolognesi	CV-13-Z03	3	433.6	221
Cuneta verde (berma)	Libertad	CV-09-Z03	3	512	330
Cuneta verde (berma)	Pedro Cieza de León	CV-11-Z03	3	273.9	356
Cuneta verde (berma)	Prolong Cieza de León	CV-10-Z03	3	316.6	47
Cuneta verde (berma)	Av. Colectora	CV-04-Z03	3	1059	912
			Total	7080	5827

Apoyos de TYPSA a las administraciones para la mitigación del fenómeno del Niño 2023-2024

Reunión con el COED para informar de los resultados de las simulaciones que permiten estimar los volúmenes de los aniegos en función de la lluvia caída, lo que permitiría focalizar los esfuerzos en los puntos más críticos y dimensionar los medios de mitigación.

Reunión con el gobernador y su equipo de técnicos para intercambiar información sobre futuros proyectos de urbanización y evaluar el drenaje que deberían incorporar esos proyectos locales.

Rafael Lopez Manzano

Jefe de diseño del Proyecto Drenaje de Chiclayo

Ingeniero Caminos, Canales y Puertos. Especialista en todo tipo de obras hidráulicas ha sido durante más de 7 años el Director de la División de Obras Hidráulicas en la sede central de la empresa TYPSA, teniendo una amplia experiencia tanto en diseño como supervisión de obras hidráulicas.

Director Regional de la delegación de TYPSA Perú

transportes

edificios y ciudades

medio ambiente

ayuda al desarrollo

