IP Networks Mini-Project Report

Khaliq Aghakarimov, Rahim Sharifov, Sara Shamilova, Sabina Hadjimuradova

May 2019

1 Objective

Objective of this mini project is to install a new network and to minimize the number of entries to be placed in the routing tables to reach newly created network.

2 Exercise 1: Choice of addresses

2.1 Question 1

- From the given figure one can see that 4 subnetworks need to be installed:
 - (a) Subnetwork 1 has 13 hosts and 1 port (indicated by number 5), so 16 IP addresses needed for subnetwork 1 (+2 Network, Broadcast addresses)
 - (b) Subnetwork 2 has 5 hosts and 1 port (indicated by number 6), so 8 IP addresses needed for Subnetwork 2 taking into account Network and Broadcast addresses.
 - (c) Subnetwork 3 has 2 ports (indicated by numbers 1 and 2), so 4 IP addresses needed for Subnetwork 3 for the same reason.
 - (d) Subnetwork 4 also has 2 ports (indicated by numbers 3 and 4), then 4 IP addresses needed for Subnetwork 4 as well.

To sum it up, a block of 16+8+4+4=32 free addresses is needed to create a new set.

• Network address of new network is 193.137.1.0/27. As we only need 32 (32=2**5) free spaces, only 5 bits of host bits will be used. So with the remaining 3 (8-5) bits and 24 network bits the mask is 27.

2.2 Question 2

Subnetwork 3 requires a /30 (255.255.255.252) mask to support 2 hosts (the ends of dedicated link 1). So, network address of Subnetwork 3 is 193.137.1.0/30.

2.3 Question 3

Assigning smallest IP address of Subnetwork 3 to port 1 gives 193.137.1.1. Assigning largest IP address of Subnetwork 3 to port 2 gives 193.137.1.2.

2.4 Question 4

Similarly subnetwork 4 also requires a /30 (255.255.255.252) mask to support 2 hosts (the ends of dedicated link 2). So after assigning first subnetwork. Network address of Subnetwork 4 is 193.137.1.4/30 (since 193.137.1.3 is the Broadcast address for subnetwork 3).

2.5 Question 5

Assigning the smallest and largest IP adressess to port 3 and 4, gives respectively 193.137.1.5 for the port of router "hinge" and 193.137.1.6 for the port of router "arrival".

2.6 Question 6

After assigning addresses for subnetwork 3 and 4, we stopped at the address 193.137.1.7 which is the Broadcast address of subnetwork 4.

- So it means the first available address from now on is 193.137.1.8.
- We decided to start addressing with subnetwork 2, because of the following reason: If we start the assignment with subnetwork 1, then the address range would be 193.137.1.8-193.137.1.23. Since these 2 addresses belong to different subnets, this order is incorrect. We wouldn't have any such kind of problem if we assign first the subnetwork 2.

2.7 Question 7

- After deciding about the order of assigning the addresses for the subnetwork 1 or subnetwork 2, one can get that the subnetwork address for subnetwork 1 is 193.137.1.16.
- After the last assignment the smallest available address is 193.137.1.17 which becomes the address for the port number 5 of the "hinge" router.

2.8 Question 8

- From Question 6, we can say that that subnetwork address for subnetwork 2 is 193.137.1.8. Because we decided to assign addresses firstly for subnetwork 2.
- After the previous assignment the smallest available address is 193.137.1.9, which becomes the address for the port number 6 of the "arrival" router.

2.9 Summary

Below you can see the summary of our choice of addresses:

SubNet Name	Network ID	Mask	IP Range	Usable hosts	Broadcast ID
Subnetwork 3	193.137.1.0	/30	193.137.1.1- 193.137.1.2	2	193.137.1.3
Subnetwork 4	193.137.1.4	/30	193.137.1.5- 193.137.1.6	2	193.137.1.7
Subnetwork 2	193.137.1.8	/29	193.137.1.9- 193.137.1.14	6	193.137.1.15
Subnetwork 1	193.137.1.16	/28	193.137.1.17-193.137.1.30	14	193.137.1.31

3 Exercise 2: Building routing tables

3.1 Question 1

Routing table of a host in Subnetwork 1

Destination	Mask	Gateway
193.137.1.0	/30	charniere
193.137.1.8	/29	charniere
193.137.1.4	/30	charniere
0.0.0.0	/0	-

3.2 Question 2

Routing table of router 'Base'

Destination	Mask	Gateway	Туре
193.137.1.16	/28	charniere	remote
193.137.1.8	/29	charniere	remote
193.137.1.0	/30	-	local
193.137.1.4	/30	charniere	remote
0.0.0.0	/0	-	-

Access to the addresses of IP subnetwork 1 (in order too send test packets, etc) is carried out via port 1 which plays the role of interface in order to perform these processes.

3.3 Question 3

Routing table of router 'Charniere'

Destination	Mask	Gateway	Туре	Interface
193.137.1.16	/28	-	Local	5
193.137.1.8	/29	Arrival	Remote	3
193.137.1.0	/30	-	Local	2
193.137.1.4	/30	-	Local	3
0.0.0.0	/0	-	-	-

3.4 Question 4

Routing table of router 'Arrive'

Destination	Mask	Gateway	Туре	Interface
193.137.1.16	/28	chamiere	Remote	4
193.137.1.8	/29	-	Local	6
193.137.1.0	/30	chamiere	Remote	4
193.137.1.4	/30	-	Local	4
0.0.0.0	/0	-	-	-

3.5 Question 5

- This addressing plan seems to be satisfactory since we were able to minimize the number of entries to placed in the routing tables.
- Since we are adding all subnetworks of our set to our routing table, the new set of 2 subnets just would increase the number of entries in our table by 2.

4 Exercise 3: Simulation

Simulation of newly created network is done using Marionnet software. From the green lights on all our devices we conclude that our network is working correctly.

