Facultad de Matemáticas Universidad de La Laguna

Motivación y objetivos

Motivación y objetivos

2 Fundamentos teóricos

2/9

- Motivación y objetivos
- 2 Fundamentos teóricos
- Procedimiento experimental
 - Procedimiento (Parte 1)
 - Procedimiento (Parte 2)
 - Código

11-05-2014

2/9

Equipo 1 G Método de Bisección

- Motivación y objetivos
- 2 Fundamentos teóricos
- 3 Procedimiento experimental
 - Procedimiento (Parte 1)
 - Procedimiento (Parte 2)
 - Código
- 4 Conclusiones

2/9

- Motivación y objetivos
- Pundamentos teóricos
- 3 Procedimiento experimental
 - Procedimiento (Parte 1)
 - Procedimiento (Parte 2)
 - Código
- 4 Conclusiones
- Bibliografía

2/9

Motivación y objetivos

Motivation

Aplicar los conocimientos obtenido en python para resolver una función según el método de la bisección.

Objetivos

Resolver, mediante el método de la bisección (usando python), la función sin(x).

3/9

Explicación

• Se basa en el Teorema del Valor Intermedio (TVI), el cual establece que toda función continua f en un intervalo cerrado [a,b] toma todos los valores que se hallan entre f(a) y f(b).

Explicación

- Se basa en el Teorema del Valor Intermedio (TVI), el cual establece que toda función continua f en un intervalo cerrado [a,b] toma todos los valores que se hallan entre f(a) y f(b).
- Esto es que: todo valor entre f(a) y f(b) es la imagen de al menos un valor en el intervalo [a,b].

Explicación

- Se basa en el Teorema del Valor Intermedio (TVI), el cual establece que toda función continua f en un intervalo cerrado [a,b] toma todos los valores que se hallan entre f(a) y f(b).
- Esto es que: todo valor entre f(a) y f(b) es la imagen de al menos un valor en el intervalo [a,b].
- En caso de que f(a) y f(b) tengan signos opuestos, el valor cero sería un valor intermedio entre f(a) y f(b), por lo que con certeza existe un p en [a,b] que cumple f(p)=0.

Explicación

- Se basa en el Teorema del Valor Intermedio (TVI), el cual establece que toda función continua f en un intervalo cerrado [a,b] toma todos los valores que se hallan entre f(a) y f(b).
- Esto es que: todo valor entre f(a) y f(b) es la imagen de al menos un valor en el intervalo [a,b].
- En caso de que f(a) y f(b) tengan signos opuestos, el valor cero sería un valor intermedio entre f(a) y f(b), por lo que con certeza existe un p en [a,b] que cumple f(p) = 0.
- De esta forma, se asegura la existencia de al menos una solución de la ecuación f(x)=0.

El método de la bisección es un proceso iterativo que sigue los siguientes pasos:

Se "parte" por la mitad el intervalo [a,b]. Por lo que se cogen los valores de los extremos y se dividen por 2.

$$c_1 = \frac{a+b}{2}$$

5 / 9

El método de la bisección es un proceso iterativo que sigue los siguientes pasos:

Se "parte" por la mitad el intervalo [a,b]. Por lo que se cogen los valores de los extremos y se dividen por 2.

$$c_1 = \frac{a+b}{2}$$

Luego hay que mirar los signos de la función en el punto c y comparar con los signos de la función de los extremos.

Si f(a) * f(c) < 0 se sustituye c por b quedandose

$$c_2=\frac{a+c_1}{2}$$

5 / 9

Si f(b) * f(c) < 0 se sustituye c por a quedandose

$$c_2=\frac{c_1+b}{2}$$

Si f(b) * f(c) < 0 se sustituye c por a quedandose

$$c_2=\frac{c_1+b}{2}$$

Este proceso se va haciendo hasta que la función en el punto c_n es igual a 0

4 U P 4 DP P 4 E P 4 E P E *)

Si f(b) * f(c) < 0 se sustituye c por a quedandose

$$c_2=\frac{c_1+b}{2}$$

Este proceso se va haciendo hasta que la función en el punto c_n es igual a 0 Hay que tener en cuenta que este método tiene un error y se puede calcular con:

$$error = \frac{b-a}{2^n}$$

Siendo n las veces que se ha partido.

```
#! encoding: UTF-8
#! /usr/bin/python
import math
Cero=0.00001
def f(x):
 return math.sin(x)
def biseccion(a,b,tol):
 c=float((a+b)/2.0)
 while f(c) != Cero and abs(b-a) > tol:
  if f(a) * f(c) < Cero:
  b = c:
  else:
  a = c:
  c = (a+b)/2.0
 return c
print 'Calcular la raíz de sen de x'
a = float(raw input('Valor a del intervalo: '))
b = float(raw input('Valor b del intervalo: '))
t = 0.000000000000001
r = biseccion(a,b,t)
print "El valor de la raíz de seno de x es: %f"%(r)
```

Conclusiones

Bibliografía

- Método de bisección http://es.wikipedia.org/wiki/Método_de_bisección
- Algoritmo de bisección. (2014) PDFdelaulavirtualdelaasignaturadelnf órmatica
- Algoritmo de bisección. (2014)

 https://www.youtube.com/watch?v = dimOkJ6WZz0

9 / 9