Wednesday 01/22/2025: Proofs

CSCI 246: Discrete Structures

Textbook reference: Sec. 5, Scheinerman

Announcements before today's quiz

- Sheet of paper: Please bring your own sheet of paper to class each
 day for quizzes if possible. However, if you don't have any, you are
 welcome to take a blank sheet of paper from the stack in the front
 of the room.
- Rules for quizzes: For all quizzes in the course, you should use only paper and pencil. Please close your computers and textbooks, and put away your cellphones.

Reading Quiz

Quiz Question

Prove that the sum of two even integers is even. Use the appropriate proof template from the textbook.

Reading Quiz

Quiz Question

Prove that the the sum of two even integers is even. Use the appropriate proof template from the textbook.

Definition 3.1 (**Even**)

An integer is called *even* provided it is divisible by two.

Definition 3.2 (**Divisible**)

Let a and b be integers. We say that a is divisible by b provided there is an integer c such that bc = a. We also say that b divides a, or b is a factor of a, or b is a divisor of a. The notation for this is b|a.

Solution Sketch

Proposition. The sum of two even integers is even.

Annotation	Main Text
Convert Prop. to	We show that if x and y are even integers,
"if-then" form	then $x + y$ is even.
State "if"	Let x and y be even integers
Unravel defs.	Then by Defs. 3.1 and 3.2, there exist inte-
	gers a, b such that $x = 2a$ and $y = 2b$.
*** The glue ***	What goes here?!?!
Unravel defs.	So there is an integer c such that $x + y = 2c$.
State "then"	Hence, $x + y$ is even.

Solution

Proposition. The sum of two even integers is even.

Annotation	Main Text
Convert Prop. to	We show that if x and y are even integers,
"if-then" form	then $x + y$ is even.
State "if"	Let x and y be even integers
Unravel defs.	Then by Defs. 3.1 and 3.2, there exist inte-
	gers a, b such that $x = 2a$ and $y = 2b$.
*** The glue ***	Hence, $x + y = 2a + 2b = 2(a + b)$.
Unravel defs.	So there is an integer $c = a + b$ such that
	x + y = 2c.
State "then"	Hence, $x + y$ is even.

General announcements

- Course repo: Can navigate to syllabus (updated with TA/tutoring hours) and slides (e.g. group exercises with solutions). Both are mutable. Url is in Brightspace if you forget.
- Brightspace email question: Sometimes will send a message (e.g. survey response) in Brightspace email. Is that something you see?
- Roster Logistics: Drew Bolster please come see me after class.
- Friday's problems quiz: Although the group exercises are done
 collaboratively in groups of 3 people, the "problems quizzes": on
 Fridays will be taken by individuals. It will be combined with the
 reading quiz and can be done the same sheet of paper.

Sec 4. Reading Quiz Scores

What to conclude if your score was lower than you wanted?

- Growth mindset: ✓ Abilities are malleable and capable of improvement with effort. (e.g. "I need to change my reading strategy.")
- Fixed mindset: X Abilities are fixed and unchangeable. (e.g. "I'm not smart/a math person/a good test taker.")

Sec. 5 group work!

Students are randomly assigned into groups of 3 on the next slide.

Each group gets $\frac{1}{2}$ of a white board.

If the $\frac{1}{2}$ white board is inconvenient, feel free to write on a window!

- Group 1: bridger.voss,connor.mizner,nolan.scott1
- Group 2: john.fotheringham,william.elder1,justice.mosso
- Group 3: ethan.johnson18,michael.oswald,lynsey.read
- Group 4: aaron.loomis,conner.reed1,luke.donaldson1
- Group 5: griffin.short,joseph.triem,caitlin.hermanson
- Group 6: joseph.mergenthaler,reid.pickert,yebin.wallace
- Group 7: erik.moore3,samuel.rollins,james.brubaker
- Group 8: jacob.shepherd1,connor.graville,connor.yetter
- Group 9: zeke.baumann,ryan.barrett2,jada.zorn
- Group 10: peyton.trigg,jakob.kominsky,jonas.zeiler
- Group 11: jett.girard,jacob.ketola,carver.wambold
- Group 12: emmeri.grooms,nicholas.harrington1,lucas.jones6
- Group 13: blake.leone,tyler.broesel,sarah.periolat
- Group 14: luka.derry,anthony.mann,pendleton.johnston
- Group 15: peter.buckley1,jack.fry,cameron.wittrock
- Group 16: samuel.hemmen,jacob.ruiz1,derek.price4
- Group 17: jeremiah.mackey,matthew.nagel,devon.maurer
- Group 18: micaylyn.parker,samuel.mosier,owen.obrien
- Group 19: mason.barnocky,alexander.goetz,carsten.brooks
- Group 20: adam.wyszynski,timothy.true,joseph.windmann
- Group 21: evan.barth,alexander.knutson,tristan.nogacki
- Group 22: julia.larsen, evan. schoening, colter. huber
- Group 23: delaney.rubb,kaden.price

Group exercises

- 1. Prove that the square of an odd integer is odd.
- 2. Prove that the difference between consecutive perfect squares is odd.
- 3. Let x be an integer. Prove that 0|x if and only if x = 0.
- 4. Prove that an integer is odd if and only if it is the sum of two consecutive integers.

Group exercise #1: Solution

Proposition. The square of an odd integer is odd.

Annotation	Main Text
Convert Prop. to	We show that if x is an odd integer, then x^2
"if-then" form	is odd.
State "if"	Let x be an odd integer.
Unravel defs.	Then by definition of odd, there is an integer
	a such that $x = 2a + 1$.
*** The glue ***	So $x^2 = (2a+1)(2a+1) = 4a^2 + 2a + 1 =$
	$2(2a^2+2a)+1$.
Unravel defs.	So there is an integer b (where $b = 2a^2 + 2a$)
	such that $x^2 = 2b + 1$.
State "then"	Hence, x^2 is odd.

Group exercise #1: Solution

Proposition. The square of an odd integer is odd.

Proof.

Annotation	Main Text
Convert Prop. to	We show that if x is an odd integer, then x^2
"if-then" form	is odd.
State "if"	Let x be an odd integer.
Unravel defs.	Then by definition of odd, there is an integer
	a such that $x = 2a + 1$.
*** The glue ***	So $x^2 = (2a+1)(2a+1) = 4a^2 + 2a + 1 =$
	$2(2a^2+2a)+1$.
Unravel defs.	So there is an integer b (where $b = 2a^2 + 2a$)
	such that $x^2 = 2b + 1$.
State "then"	Hence, x^2 is odd.

Remark. You do not need to provide the annotations or colors in your own proofs. I am using them here in the solution to highlight the formulaic structure of an if-then proof.

Group exercise #2: Solution

Proposition. The difference between consecutive perfect squares is odd.

Annotation	Main Text
Convert Prop. to	We show that if x and y are consecutive per-
"if-then" form	fect squares, then $x - y$ is odd.
State "if"	Let x and y be consecutive perfect squares
Unravel defs.	Then $x = (z + 1)^2$ and $y = z^2$ where z is an
	integer.
*** The glue ***	So $x-y = (z+1)^2 - z^2 = (z^2 + 2z + 1) - z^2 =$
	2z + 1.
Unravel defs.	So there is an integer b (where $b = z$) such
	that $x - y = 2b + 1$.
State "then"	Hence, $x - y$ is odd.

Group exercise #2: Solution

Proposition. The difference between consecutive perfect squares is odd.

Proof.

Annotation	Main Text
Convert Prop. to	We show that if x and y are consecutive per-
"if-then" form	fect squares, then $x - y$ is odd.
State "if"	Let x and y be consecutive perfect squares
Unravel defs.	Then $x = (z + 1)^2$ and $y = z^2$ where z is an
	integer.
*** The glue ***	So $x-y = (z+1)^2 - z^2 = (z^2 + 2z + 1) - z^2 =$
	2z + 1.
Unravel defs.	So there is an integer b (where $b = z$) such
	that $x - y = 2b + 1$.
State "then"	Hence, $x - y$ is odd.

Remark. You do not need to provide the annotations or colors in your own proofs. I am using them here in the solution to highlight the formulaic structure of an if-then proof.

Group exercise #3: Solution

Proposition. Let x be an integer. Prove that 0|x if and only if x = 0.

Proof. We decompose the *if-and-only-if* statement into two *if-then* statements.

(a) We show that if 0|x, then x = 0.

Let x be an integer such that 0|x.

Then by definition of *divisible*, there is an integer a such that $0 \cdot a = x$.

But $0 \cdot a = 0$.

Hence x = 0.

(b) We show that if x = 0, then 0|x.

Let x = 0.

Let a be any integer. (For example, take a = 7.) Then $a \cdot 0 = 0$.

Hence, there is an integer a such that $0 \cdot a = x$.

Hence, 0|x.

Group exercise #3: Solution

Proposition. Let x be an integer. Prove that 0|x if and only if x = 0.

Proof. We decompose the *if-and-only-if* statement into two *if-then* statements.

- (a) We show that if 0|x, then x = 0. Let x be an integer such that 0|x. Then by definition of *divisible*, there is an integer a such that $0 \cdot a = x$. But $0 \cdot a = 0$. Hence x = 0.
- (b) We show that if x=0, then 0|x. Let x=0. Let a be any integer. (For example, take a=7.) Then $a\cdot 0=0$. Hence, there is an integer a such that $0\cdot a=x$. Hence, 0|x.

Remark. An *if-and-only-if* proof consists of two *if-then* proofs. Each uses the same *if-then* template (and same color-scheme) as in Group Exercises #1 and #2. Note that some green rows were skipped (as there was no definition to unravel for x = 0).

Group exercise #4: Solution

Proposition. An integer is odd if and only if it is the sum of two consecutive integers.

Proof. We decompose the *if-and-only-if* statement into two *if-then* statements.

(a) We show that if x is the sum of two consecutive integers, then x is an odd integer.

Let *x* be the sum of two consecutive odd integers.

So there is an integer a such that x = a + (a + 1).

So
$$x = 2a + 1$$

Hence, there is an integer a such that x = 2a + 1.

Hence, x is an odd integer.

(b) We show that if x is an odd integer, then x is the sum of two consecutive integers.

Let x be an odd integer.

Then by definition of *odd*, there is an integer a such that x = 2a + 1.

So we have x = 2a + 1 = a + (a + 1).

Hence *x* is the sum of two consecutive integers.

Group exercise #4: Solution

Proposition. An integer is odd if and only if it is the sum of two consecutive integers.

Proof. We decompose the *if-and-only-if* statement into two *if-then* statements.

(a) We show that if x is the sum of two consecutive integers, then x is an odd integer.

Let x be the sum of two consecutive odd integers.

So there is an integer a such that x = a + (a + 1).

So
$$x = 2a + 1$$

Hence, there is an integer a such that x = 2a + 1.

Hence, x is an odd integer.

(b) We show that if x is an odd integer, then x is the sum of two consecutive integers.

Let x be an odd integer.

Then by definition of *odd*, there is an integer a such that x = 2a + 1.

So we have x = 2a + 1 = a + (a + 1).

Hence *x* is the sum of two consecutive integers.

Remark. An *if-and-only-if* proof consists of two *if-then* proofs. Each uses the same *if-then* template (and same color-scheme) as in Group Exercises #1 and #2.