2014—2015 学年第一学期 《高等数学 (2-1)》期末考试 A 卷 (工 科 类)

各章所占分值如下:

第一章	函数与极限	16 %;
第二章	一元函数的导数与微分	16 %;
第三章	微分中值定理与导数的应用	14 %;
第四章	不定积分	15 %;
第五章	定积分及其应用	26%.
第六章	常微分方程	13%.

一. (共3小题,每小题4分,共计12 分)判断下列命题是否正确?在

题后的括号内打"√"或"×",如果正确,请给出证明,如果不正确请举一个反例进行说明 .

本题满分 12 分		
本		
题		
得		
分		

- 1. 极限 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在. ()
- 2. 若曲线 y = f(x) 在 $(x_0, f(x_0))$ 点处存在切线,则 f(x) 在 x_0 点必可导.
- 3. 设函数 f(x) 在[a,b]上连续且下凸,在(a,b)内二阶可导,则 $\forall x \in (a,b)$ 有 f''(x) > 0.
- 二. (共3小题,每小题6分,共计18分)

1.	求极限 $\lim_{n\to\infty} (\frac{1}{\sqrt[n]{n}} - 1) \cdot \sin(n!)$	
----	--	--

本题满分 18 分		
本		
题		
得		
分		

2. 求极限
$$\lim_{x \to +\infty} \frac{\int_0^x (1+t^4) e^{t-x} dt}{x^4}$$
.

3. 求极限
$$\lim_{n\to\infty} \left(\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \dots + \frac{n}{n^2+n^2}\right)$$
.

三. (共3小题,每小题6分,共计18分)

1. 求函数
$$f(x) = \frac{1 + e^{\frac{1}{x}}}{1 + 2e^{\frac{1}{x}}}$$
 的间断点并判断其类型.

本题满分 18 分		
本	,,,,,,,,	
题		
得		
分		

3. 设方程
$$\begin{cases} x = \ln(\sin t) \\ y = \cos t + t \sin t \end{cases}$$
 确定 $y > x$ 的函数,求 $\frac{dy}{dx} = \frac{d^2y}{dx^2}$.

四. (共3小题,每小题6分,共计18分)

1.	求不定积分	$e^{x^2+\ln x}$	dx.
----	-------	-----------------	-----

本题满分18分		
本		
题		
得		
分		

2. 求不定积分 $\int x \cos^2 x \, dx$.

3. 设f(x)在[-1,1]上连续,求定积分 $\int_{-1}^{1} \{ [f(x) + f(-x)] \sin x + \sqrt{1-x^2} \} dx$.

五. (本题 8 分) 设由曲线 $y = \ln x$ 与直线 x - ey = 0 及 x 轴 所围平面图形为 D

- (1) 求D的面积S; (4分)
- (2) 求D绕直线x=e旋转所得旋转体的体积V.(4分)

本题满分8分		
本		
题		
得		
分		

六. (共2小题,每小题6分,共计12分)

1. 设有半径为R的半球形蓄水池中已盛满水(水的密度为 ρ), 求将池中水全部抽出所做的功.

本题满分 12 分		
本		
题		
得		
分		

2. 设有质量为m 的降落伞以初速度 v_0 开始降落,若空气的阻力与速度成正比(比例系数为k > 0),求降落伞下降的速度与时间的函数关系.

七. (本题 6 分) 求微分方程 $y'' - 5y' + 6y = 6x^2 - 10x + 2$ 的通解.

本题满分6分		
本		
题		
得		
分		

八. (本题 8 分) 设 L 是一条平面曲线,其上任意一点 (x,y) (x>0) 到坐标原点的距离恒等于该点处的切线在 y 轴上的截距且 L 经过点 $(\frac{1}{2},0)$.

本题满分8分	
本	
题	
得	
分	

- (1) 试求曲线L的方程;
- (2) 求L位于第一象限的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.