

NTE7482 Integrated Circuit TTL, 2–Bit Binary Full Adder

Description:

The NTE7482 is a 2-bit binary full adder in a 14-Lead DIP type package that performs the addition of two 2-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C2) is obtained from the second bit. Designed for medium-to-high-speed, multiple-bit, parallel-add/serial-carry applications, this circuit utilizes high-speed, high-fan-out transistor-transistor logic (TTL) and is compatible with both DTL an TTL logic families. Th implementation of a single-inversion, high-speed, Darlington-connected serial-carry circuit within each bit minimizes the necessity for extensive "look-ahead" and carry-cascading circuits.

Applications:

- Digital Computer Systems
- Data–Handling Systems
- Control Sytems

Absolute Maximum Ratings: $(T_A = 0^\circ \text{ to } +70^\circ \text{C unless otherwise specified})$	
Supply Voltage (Note 1), V _{CC}	7V
Input Voltage (Note 2), V _{IN}	5.5V
Operating Ambient Temperature Range, T _A	0° to +70°C
Storage Temperature Range, T _{stg}	–65° to +150°C

Note 1. Voltage values are with respect to network GND terminal.

Note 2. Input signals must be zero or positive with respect to network ground terminal.

Recommended Operating Conditions:

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{CC}		4.75	5.0	5.25	V
High–Level Output Current Σ 1 or Σ 2	I _{OH}		_	_	-400	μΑ
C2			_	_	-200	μΑ
Low-Level Output Current Σ1 or Σ2	I _{OL}		_	1	16	mA
C2]		_	_	8	mA
Operating Ambient Temperature	T _A		0	_	70	°C

<u>Electrical Characteristics:</u> (Note 3, Note 4)

Parameter	Symbol	Test Conditions			Тур	Max	Unit
High-Level Input Voltage	V _{IH}			2	_	_	V
Low-Level Input Voltage	V _{IL}			-	_	0.8	V
High-Level Output Voltage Σ 1 or Σ 2	V _{OH}	$V_{CC} = MIN,$ $V_{IH} = 2V,$	$I_{OH} = -400 \mu A$	2.4	3.5	_	V
C2		$V_{IL} = 0.4V$	$I_{OH} = -200 \mu A$	2.4	3.5	_	V
Low-Level Output Voltage Σ1 or Σ2	V _{OL}	$V_{CC} = MIN,$ $V_{IH} = 2V,$	I _{OL} = 16mA	-	0.2	0.4	V
C2		$V_{IL} = 0.4V$	$I_{OL} = 8mA$	-	0.2	0.4	V
Input Current	I _I	$V_{CC} = Max, V_I = 5.5V$			_	1	mA
High-Level Input Current A1, B1, or C0	I _{IH}	$V_{CC} = Max, V_I = 2.4V$			_	160	μΑ
A2 or B2				_	_	40	μΑ
Low-Level Input Current A1, B1, or C0	I _{IL}	$V_{CC} = Max, V_I = 0$.4V	_	_	-6.4	mA
A2 or B2				_	_	-1.6	mA
Short Circuit Output Current $\Sigma 1$ or $\Sigma 2$	Ios	V _{CC} = Max, Note !	5	-18	_	-55	mA
C2				-18	-	-70	mA
Supply Current	I _{CC}	V _{CC} = Max, Note	6	_	35	58	mA

- Note 3. For conditions shown as Min and Max, use the appropriate value specified under recommended operating conditions.
- Note 4. All typical values are at $V_{CC} = 5V$, $T_A = +25$ °C.
- Note 5. Not more than one output should be shorted at a time.
- Note 6. I_{CC} is measured with outputs open, B1 and B2 grounded, and 4.5V applied to A1, A2, and C0.

<u>Switching Characteristics:</u> $(V_{CC} = 5V, T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	From(Input)	To(Output)	Test Conditions	Min	Тур	Max	Unit
Propagation Delay Time	t _{PLH}	C0	∑1	$R_L = 400\Omega$,	_	_	34	ns
	t _{PHL}			C _L = 15pF	_	_	40	ns
Propagation Delay Time	t _{PLH}	B2	∑2		_	_	40	ns
	t _{PHL}				_	_	35	ns
Propagation Delay Time	t _{PLH}	C0	∑2		_	_	38	ns
	t _{PHL}				_	_	42	ns
Propagation Delay Time	t _{PLH}	C0	C2	$R_L = 780\Omega$,	_	12	19	ns
	t _{PHL}			C _L = 15p	_	17	27	ns

Function Table:

	Inp	uts		Outputs					
				Wł	When C0 = L When C0 = H			= H	
A 1	B1	A2	B2	Σ1	Σ2	C2	Σ1	Σ2	C2
L	L	L	L	L	L	L	Н	L	L
Н	L	L	L	Н	L	L	L	Н	L
L	Н	L	L	Н	L	L	L	Н	L
Н	Н	L	L	L	Н	L	Н	Н	L
L	L	Н	L	L	Н	L	Н	Н	L
Н	L	Н	L	Н	Н	L	L	L	Н
L	Н	Н	L	Н	Н	L	L	L	Н
Н	Н	Н	L	L	L	Н	Н	L	Н
L	L	L	Н	L	Н	L	Н	Н	L
Н	L	L	Н	Н	Н	L	L	L	Н
L	Н	L	Н	Н	Н	L	L	L	Н
Н	Н	L	Н	L	L	Н	Н	L	Н
L	L	Н	Н	L	L	Н	Н	L	Н
Н	L	Н	Н	Н	L	Н	L	Н	Н
L	Н	Н	Н	Н	L	Н	L	Н	Н
Н	Н	Н	Н	L	Н	Н	Н	Н	Н

H = High level, L = Low level

