

MEMS1082

Chapter 6 Digital Circuit 6-2

Logic Gates and Boolean Algebra

- Boolean algebra derives its name from the mathematician George Boole. Symbolic Logic uses values, variables and operations:
 - True is represented by the value 1.
 - False is represented by the value 0.
- Variables are represented by letters and can have one of two values, either 0 or 1. Operations are functions of one or more variables.
 - AND is represented by X·Y
 - OR is represented by X + Y
 - NOT is represented by $\overline{\mathbf{X}}$

Truth Table

◆ Truth tables are a means of representing the results of a logic function using a table. They are constructed by defining all possible combinations of the inputs to a function, and then calculating the output for each combination in turn.

AND

X		Υ	Χ·Υ	
0		0	0	
0		1	0	
1		0	0	
1		1	1	
OR			NOT	
X	Y	X+Y	X	\overline{X}
0	0	0	0	1
0	1	1	1	0
1	0	1		
4	4	4		

X	Y	Z	X·Y+Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Inverted AND

logic

OR logic

Inverted OR logic

NAND gate

OR gate

NOR gate

Gate	Operation	Symbol	Expression	Truth table
Inverter (INV, NOT)	Invert signal (complement)	A - C	$C = \overline{A}$	A C 0 1 1 0
AND gate	AND logic	$A \longrightarrow C$	$C = A \cdot B$	A B C 0 0 0 0 1 0

 $C = \overline{A \cdot B}$

C = A + B

 $C = \overline{A + B}$

Department of Mechanical Engineering

0 0

XOR gate	Exclusive OR logic	$A \longrightarrow C$	$C = A \oplus B$	A B C 0 0 0 0 1 1 1 0 1 1 1 0
Buffer	Increase output signal current	$A \longrightarrow C$	C = A	A C 0 0 1 1

True Tables

Other Examples of truth tables

Α	В	С		X	
0	0	0	整体	0	
0	0	1		1	
0	1	0		1	
0	1	1		0	
1	0	0		0	
1	0	1	ś	0	
1	1	0	į.	0	
1	1	1		1	
(b)					

Α	В	С	D	x
0	0	0	0	
0	0	0		0
0 0 0 0 0 0 1 1 1 1	0	1	0	0
0	0 0	1	1	1
0	1	0 0 1 1 0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	1 0 0 0 0	1	0	0
1	0	1 0 0	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	1 0 1 0 1 0 1 0 1 0 1 0	0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0
1	1	1	1	1
		(c)		

Example truth tables for (a) two-input, (b) three-input, and (c) four-input circuits.

OR operation

OR gate

OR logic

C = A + B

0 0 0 0 1 1

1 1 1

Example of the use of OR gate in alarm system.

OR operation

EXAMPLE

Determine the OR gate output in Figure 3-5. The OR gate inputs A and B are varying according to the timing diagrams shown. For example, A starts out LOW at time t_0 , goes HIGH at t_1 , back LOW at t_3 , and so on.

AND operation

For two input

AND gate A

AND logic

 $C = A \cdot B$

A B C 0 0 0 0 1 0

1 0 0

For three input

Α	В	С	x = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Summary of the AND Operation

- 1. The AND operation is performed exactly like ordinary multiplication of 1s and 0s.
- 2. An output equal to 1 occurs only for the single case where all inputs are 1.
- 3. The output is 0 for any case where one or more inputs are 0.

AND operation: example

Determine the output x from the AND gate in Figure for the given input waveforms.

Determine the output waveform for the AND gate

AND operation: example

Determine the output waveform for the AND gate

Logic circuit with its Boolean expression.

Logic Circuits

Logic circuit whose expression requires parentheses.

Circuits using INVERTERs.

Logic Circuits

Department of Mechanical Engineering

Logic Circuits

Determining output level from circuit diagram.

Implementing Logic Circuits from Boolean expressions

$$y = AC + B\overline{C} + \overline{A}BC$$

NOR Gate

		OR	NOR
A	В	A + B	A+B
0	0	0	1
0	1	1 1	0
1	0	1 [0
1	_ 1	1	0
		(c)	

- (a) NOR symbol; (b) equivalent circuit;
- (c) truth table.

NOR Gate

Determine the waveform at the output of a NOR gate for the input waveforms

The inputs are all LOW, making the output HIGH

Three inputs NOR gate followed by an INVERTER

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$X = \overline{A + B + C} = A + B + C$$

NAND Gate

		,	AND	1 <i>i</i>	NAND
A	В		AB		AB
0	0	# # #	0		1
0	1		0		1
1	0		0		1
1	1		1		0
			(c)		

(a) NAND symbol; (b) equivalent circuit; (c) truth table.

NAND Gate

The inputs are all HIGH, making the output LOW

NOR and NAND Gates: Example

Implement the logic circuit that has the expression $x = AB \cdot (\overline{C} + \overline{D})$ using only NOR and NAND gates.

for
$$A = B = C = 1$$
 and $D = 0$.

$$x = \overline{AB(\overline{C + D})}$$

$$= \overline{1 \cdot 1 \cdot (\overline{1 + 0})}$$

$$= \overline{1 \cdot 1 \cdot (\overline{1})}$$

$$= \overline{1 \cdot 1 \cdot 0}$$

$$= \overline{0} = 1$$

Boolean Algebra

Boolean Algebra Laws and Identities

Fundamental Laws

OR	AND	NOT
A + 0 = A	$A \cdot 0 = 0$	
A + 1 = 1	$A \cdot 1 = A$	—
A + A = A	$A \cdot A = A$	$\overline{A} = A$
$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$	

Commutative Laws

$$A + B = B + A$$
$$A \cdot B = B \cdot A$$

Associative Laws

$$(A+B)+C = A+(B+C)$$
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

Distributive Laws

$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

Boolean Algebra

De Morgan's Laws

$$\overline{A + B + C + \cdots} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \cdots$$
$$\overline{A \cdot B \cdot C \cdot \cdots} = \overline{A} + \overline{B} + \overline{C} + \cdots$$

Other Useful Identities

$$A + (A \cdot B) = A$$

$$A \cdot (A + B) = A$$

$$A + (\overline{A} \cdot B) = A + B$$

$$(A + B) \cdot (A + \overline{B}) = A$$

$$(A + B) \cdot (A + C) = A + (B \cdot C)$$

$$A + B + (A \cdot \overline{B}) = A + B$$

$$(A \cdot B) + (B \cdot C) + (\overline{B} \cdot C) = (A \cdot B) + C$$

$$(A \cdot B) + (A \cdot C) + (\overline{B} \cdot C) = (A \cdot B) + (\overline{B} \cdot C)$$

Boolean Algebra

$$a+(b\cdot c)=(a+b)\cdot(a+c)$$

	Left-	Hand Side		Right-Hand	Side
a b c	b·c	a + (b · c)	(a+b)	(a + c)	$ a+b \cdot a+c $
0 0 0	0	0	0	0	0
0 0 1	0	0	0	1	0
0 1 0	0	0	1	0	0
0 1 1	1	1	1	1	1
1 0 0	0	1	1	1	1
1 0 1	0	1	1	1	1
1 1 0	0	1	1	1	1
1 1 1	1	1	1	1	1

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

			Left-H	Hand Side		Right-Hand	Side
a	b	с	b + c	a · (b + c)	(a · b)	(a·c)	$[a \cdot b] + [a \cdot c]$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Examples using DeMorgan's Law

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$\overline{AB} = \overline{A} + \overline{B}$$

1.
$$z = \overline{A + \overline{B} \cdot C}$$

 $= \overline{A} \cdot (\overline{B} \cdot C)$
 $= \overline{A} \cdot (\overline{B} + \overline{C})$
 $= \overline{A} \cdot (B + \overline{C})$

2.
$$\omega = \overline{(A + BC) \cdot (D + EF)}$$

$$= (\overline{A + BC}) + (\overline{D + EF})$$

$$= (\overline{A} \cdot \overline{BC}) + (\overline{D} \cdot \overline{EF})$$

$$= [\overline{A} \cdot (\overline{B} + \overline{C})] + [\overline{D} \cdot (\overline{E} + \overline{F})]$$

$$= \overline{A} \overline{B} + \overline{A} \overline{C} + \overline{D} \overline{E} + \overline{D} \overline{F}$$

NOR Gate

- (a) Equivalent circuits
- (b) alternative symbol for the NOR function.

NAND Gate

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

- (a) Equivalent circuits
- (b) alternative symbol for the NAND function.

