## Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 80%. We keep your highest score.

Next item →

1/1 point

1/1 point

1/1 point

1. As we have seen in the lecture videos, the dot product of vectors has a lot of applications. Here, you will

We have seen that the size of a vector with two components is calculated using Pythagoras' the example the following diagram shows how we calculate the size of the orange vector  $\mathbf{r} = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$ :



In fact, this definition can be extended to any number of dimensions; the size of a vector is the square root of

the sum of the squares of its components. Using this information, what is the size of the vector  $\mathbf{s}=$ 

- $\bigcirc$   $|\mathbf{s}| = 10$
- $\bigcirc$   $|\mathbf{s}| = \sqrt{10}$
- (a)  $|\mathbf{s}| = \sqrt{30}$
- $\bigcirc$   $|\mathbf{s}| = 30$



⊙ correct
 The size of the vector is the square root of the sum of the squares of the components.

- 2. Remember the definition of the dot product from the videos. For two n component vectors,  ${f a}\cdot{f b}=a_1b_1+a_2b_2+\cdots+a_nb_n.$

What is the dot product of the vectors  ${f r}$  =

- $\bigcirc \ \mathbf{r} \cdot \mathbf{s} = 1$

⊙ Correct The dot product of two vectors is the total of the component-wise products.

3. The lectures introduced the idea of projecting one vector onto another. The following diagram shows the projection of  ${f s}$  onto  ${f r}$  when the vectors are in two dimensions:



Remember that the scalar projection is the  $\it size$  of the green vector. If the angle between  $\bf s$  and  $\bf r$  is greater than  $\pi/2$ , the projection will also have a minus sign.

We can do projection in any number of dimensions. Consider two vectors with three components,  $\mathbf{r}=\begin{bmatrix}3\\-4\\0\end{bmatrix}$  and  $\mathbf{s}=\begin{bmatrix}10\\5\\-6\end{bmatrix}$ .

$$\mathbf{r} = \begin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix}$$
 and  $\mathbf{s} = \begin{bmatrix} 10 \\ 5 \\ -6 \end{bmatrix}$ 

What is the scalar projection of  ${f s}$  onto  ${f r}$ ?

- ② 2
- $\bigcirc$   $-\frac{1}{2}$
- $\bigcirc$  -2
- $O_{\frac{1}{2}}$

The scalar projection of of  $\mathbf{s}$  onto  $\mathbf{r}$  can be calculated with the formula  $\frac{\mathbf{s} \cdot \mathbf{r}}{|\mathbf{r}|}$ 



Let 
$$\mathbf{r}=\begin{bmatrix}3\\-4\\0\end{bmatrix}$$
 and let  $\mathbf{s}=\begin{bmatrix}10\\5\\-6\end{bmatrix}$ .

What is the vector projection of  ${\bf s}$  onto  ${\bf r}?$ 

- $-20 \\ 0$
- 0
- 0
- $\bigodot$  Correct The vector projection of s onto r can be calculated with the formula  $\frac{s_T}{r_T}r$  .

Which is larger,  $|\mathbf{a}+\mathbf{b}|$  or  $|\mathbf{a}|+|\mathbf{b}|$ ?

- $\bigcirc |\mathbf{a} + \mathbf{b}| > |\mathbf{a}| + |\mathbf{b}|$
- $\bigcirc |\mathbf{a} + \mathbf{b}| = |\mathbf{a}| + |\mathbf{b}|$

- 6. Which of the following statements about dot products are correct?

The vector projection of **s** onto **r** is equal to the scalar projection of **s** onto **r** multiplied by a vector of unit length that points in the same direction as  $\boldsymbol{r}.$ 

- $\bigodot$  Correct The vector projection is equal to the scalar projection multiplied by  $\frac{r}{|r|}.$
- $\hfill \Box$  The scalar projection of s onto r is always the same as the scalar projection of r onto s .  $\label{eq:continuous} \hfill \hfill The order of vectors in the dot product is important, so that <math>{f s}\cdot{f r} 
  eq {f r}\cdot{f s}.$
- We can find the angle between two vectors using the dot product.
- $\odot$  Correct We saw in the lectures that  ${f r}\cdot{f s}=|{f r}||{f s}|\cos heta$ , where heta is the angle between the vectors. This can
- The size of a vector is equal to the square root of the dot product of the vector with itself.
- $\odot$  Correct We saw in the video lectures that  $|{f r}|=\sqrt{{f r}\cdot{f r}}.$

1/1 point

1/1 point