과제 #1

키(x)에 따른 몸무게(y) 데이터를 바탕으로 선형회귀 모델

2015111576 최유진

남자 여자 평균체중

키와 몸무게 데이터 21개 입력 (여성의 키에 따른 표준 몸무게 데이터 사용)

- 키 데이터
- x_data =
 [150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,169,170, 180]

- 몸무게 데이터
- y_data = [42.5, 43.4, 44.2, 45.1, 45.9, 46.8, 47.6, 48.5, 49.3, 50.2, 51.0, 51.9, 52.7, 53.6, 54.4, 55.3, 56.1, 57.0, 57.8, 58.7, 59.5, 68.0]

여성				신장	남성			
비만	과체증	표준	저제증	신경	저체중	표준	과제중	비만
51.0	46.8	42.5	36.1	150 cm	38.3	45.0	49.5	54.0
52.0	47.7	43.4	36.8	151 cm	39.0	45.9	50.5	55.1
53.0	48.6	44.2	37.6	152 cm	39.8	46.8	51.5	56.2
54.1	49.6	45.1	38.3	153 cm	40.5	47.7	52.5	57.2
55.1	50.5	45.9	39.0	154 cm	41.3	48.6	53.5	58.3
56.1	51.4	46.8	39.7	155 cm	42.1	49.5	54.5	59.4
57.1	52.4	47.6	40.5	156 cm	42.8	50.4	55.4	60.5
58.1	53.3	48.5	41.2	157 cm	43.6	51.3	56.4	61.6
59.2	54.2	49.3	41.9	158 cm	44.4	52.2	57.4	62.6
60.2	55.2	50.2	42.6	159 cm	45.1	53.1	58.4	63.7
61.2	56.1	51.0	43.4	160 cm	45.9	54.0	59.4	64.8
62.2	57.0	51.9	44.1	161 cm	46.7	54.9	60.4	65.9
63.2	58.0	52.7	44.8	162 cm	47.4	55.8	61.4	67.0
64.3	58.9	53.6	45.5	163 cm	48.2	56.7	62.4	68.0
65.3	59.8	54.4	46.2	164 cm	49.0	57.6	63.4	69.1
66.3	60.8	55.3	47.0	165 cm	49.7	58.5	64.4	70.2
67.3	61.7	56.1	47.7	166 cm	50.5	59.4	65.3	71.3
68.3	62.6	57.0	48.4	167 cm	51.3	60.3	66.3	72.4
69.4	63.6	57.8	49.1	168 cm	52.0	61.2	67.3	73.4
70.4	64.5	58.7	49.9	169 cm		62.1	68.3	74.5
71.4	65.5	59.5	50.6	170 cm	53.6	63.0	69.3	75.6
72.4	66.4	60.4	51.3	171 cm	54.3	63.9	70.3	76.7
73.4	67.3	61.2	52.0	172 cm	55.1	64.8	71.3	77.8
74.5	68.3	62.1	52.7	173 cm	55.8	65.7	72.3	78.8
75.5	69.2	62.9	53.5	174 cm	56.6	66.6	73.3	79.9
76.5	70.1	63.8	54.2	175 cm	57.4	67.5	74.3	81.0
77.5	111	64.6		76 cm		68.4	175.0	12.
78.5	(2)	65.5	5 6	17) cm	98.9	9.3	76.2	183
79.6	72.9	668	56.4	178 cm	59.7	70.1	77.2	84.2
80.6	73.9	67.2	57.1	179 cm	60.4	71.1	78.2	85.3
81.6	74.8	68.0	57.8	180 cm	61.2	72.0	79.2	86.4
82.6	75.7	68.9	58.5	181 cm	62.0	72.9	80.2	87.5
83.6	76.7	69.7	59.2	182 cm	62.7	73.8	81.2	88.6
84.7	77.6	70.6	60.0	183 cm	63.5	74.7	82.2	89.6
85.7	78.5	71.4	60.7	184 cm	64.3	75.6	83.2	90.7
86.7	79.5	72.3	61.4	185 cm	65.0	76.5	84.2	91.8
87.7	80.4	73.1	62.1	186 cm	65.8	77.4	85.1	92.9
88.7	81.3	74.0	62.9	187 cm	66.6	78.3	86.1	94.0
89.8	82.3	74.8	63.6	188 cm	67.3	79.2	87.1	95.0
90.8	83.2	75.7	64.3	189 cm	68.1	80.1	88.1	96.1

#1

weight	[-10,10]
bias	[-10,10]
learning rate	0.00003
step range	100

learning rate는

0.1부터 시작하여 차차 줄여 나가다가 0.00003 값에 도달하게 됨

loss가 감소하기는 하나, 17이하로는 감소하지 않음.

```
Tensor("X_27:0", dtype=float32)
Tensor("Y_27:0", dtype=float32)
0 316922.78 [2.2217178] [7.5647945]
  98232.87 [-0.8070133] [7.5459986]
2 30456,312 [0.8790976] [7.556445]
3 9450.954 [-0.0595693] [7.550612]
4 2940.9556 [0.46299165] [7.5538416]
5 923.36993 [0.17207938] [7.5520263]
6 298.0785 [0.33403188] [7.5530195]
7 104.287865 [0.24387215] [7.552449]
8 44.228065 [0.29406467] [7.552749]
9 25.614277 [0.2661223] [7.5525646]
10 19.845476 [0.2816781] [7.55265]
11 18.057596 [0.2730182] [7.552585]
12 17.503492 [0.27783933] [7.5526037]
13 17.331758 [0.27515548] [7.552576]
14 17.278528 [0.2766497] [7.552574]
15 17.262037 [0.275818] [7.552558]
16 17.25692 [0.2762811] [7.55255]
17 17.25533 [0.2760234] [7.552537]
18 17.25483 [0.27616698] [7.5525265]
19 17.254671 [0.27608716] [7.5525146]
20 17.254625 [0.27613172] [7.5525036]
21 17.254608 [0.276107] [7.552492]
22 17.254602 [0.27612087] [7.552481]
23 17.254593 [0.27611324] [7.5524697]
24 17.25459 [0.2761176] [7.552459]
25 17.254583 [0.2761153] [7.5524473]
26 17.254576 [0.27611667] [7.5524364]
27 17.254578 [0.276116] [7.5524254]
28 17.254572 [0.2761165] [7.5524144]
29 17.254564 [0.27611634] [7.5524035]
30 17.25456 [0.27611652] [7.5523925]
31 17.254559 [0.27611655] [7.5523815]
32 17.254555 [0.2761166] [7.5523705]
33 17.254553 [0.27611667] [7.5523596]
34 17.254549 [0.27611676] [7.5523486]
35 17.254543 [0.27611682] [7.5523376]
36 17.25454 [0.2761169] [7.5523267]
37 17.254536 [0.27611697] [7.5523157]
38 17.25453 [0.27611703] [7.5523047]
39 17.254524 [0.27611712] [7.552294]
40 17.254526 [0.27611715] [7.552283]
   17.254515 [0.27611724] [7.552272]
```

```
80 17.254358 [0.2761199] [7.551844]
81 17.254353 [0.27611995] [7.551833]
82 17.254347 [0.27612] [7.551822]
83 17.254341 [0.2761201] [7.551811]
84 17.254341 [0.27612016] [7.5518003]
85 17.254337 [0.27612022] [7.5517893]
86 17.254333 [0.2761203] [7.5517783]
87 17.254326 [0.27612036] [7.5517673]
88 17.254326 [0.27612042] [7.5517564]
89 17.254324 [0.27612048] [7.5517454]
90 17.25432 [0.27612057] [7.5517344]
91 17.254314 [0.27612063] [7.5517235]
92 17.254309 [0.2761207]
93 17.254303 [0.27612078] [7.5517015]
94 17.254301 [0.27612084] [7.5516906]
95 17.254295 [0.2761209] [7.5516796]
96 17.254292 [0.276121] [7.5516686]
97 17.25429 [0.27612102] [7.5516577]
98 17.254286 [0.2761211] [7.5516467]
99 17.254278 [0.27612117] [7.5516357]
=== Test ===
X: 180, Y: [57.253445]
X: 150, Y: [48.96981]
```

#2

weight	[-10,10]		
bias	[-100,100]		
learning rate	0.00003		
step range	100		

• bias의 변화를 주어 loss를 더 줄일 수 있었음.

Tensor("X_28:0", dtype=float32) Tensor("Y_28:0", dtype=float32) 0 378669.28 [-1.3577495] [-71.932915] 1 117357.73 [1.9529951] [-71.912384] 2 36371.832 [0.10988581] [-71.92382] 3 11272.632 [1.1359549] [-71.91746] 4 3493.86 [0.5647368] [-71.921005] 5 1083.0549 [0.8827369] [-71.91904] 6 335.89685 [0.70570457] [-71.920135] 7 104.33696 [0.8042594] [-71.919525] 8 32.57174 [0.7493934] [-71.91987] 9 10.33025 [0.7799377] [-71.91968] 10 3.4371352 [0.7629335] [-71.919785] 11 1.300788 [0.77239984] [-71.91973] 12<mark>-0.63869</mark>584 [0.7671299] [-71.91976] 13 **0.433**49716 [0.7700637] [-71.91975] 14 0.369902 [0.7684305] [-71.91976] 15 <mark>0.350</mark>19246 [0.76933974] [-71.919754] 16 0.3440854 [0.7688335] [-71.91976] 17 0.34219226 [0.7691154] [-71.91976] 18 0.34160468 [0.76895845] [-71.91976] 19 0.341423 [0.7690458] [-71.91976] 20 0.3413647 [0.7689972] [-71.91976] 21 0.34134853 [0.76902425] [-71.91976] 22 0.34134397 [0.76900923] [-71.91976] 23 0.34134147 [0.7690176] [-71.91976] 24 0.34134164 [0.7690129] [-71.91976] 25 0.3413415 [0.7690155] [-71.91976] 26 0.3413408 [0.76901406] [-71.91976] 27 0.34133998 [0.7690149] [-71.91976] 28 0.34134024 [0.7690144] [-71.91976] 29 0.3413401 [0.76901466] [-71.91976] 30 0.3413411 [0.76901454] [-71.91976]

66 0.34134078 L0.7690146J L-71.91976J 67 0.34134078 [0.7690146] [-71.91976] 68 0.34134078 [0.7690146] [-71.91976] 69 0.34134078 [0.7690146] [-71.91976] 70 0.34134078 [0.7690146] [-71.91976] 71 0.34134078 [0.7690146] [-71.91976] 72 0.34134078 [0.7690146] [-71.91976] 73 0.34134078 [0.7690146] [-71.91976] 74 0.34134078 [0.7690146] [-71.91976] 75 0.34134078 [0.7690146] [-71.91976] 76 0.34134078 [0.7690146] [-71.91976] 77 0.34134078 [0.7690146] [-71.91976] 78 0.34134078 [0.7690146] [-71.91976] 79 0.34134078 [0.7690146] [-71.91976] 80 0.34134078 [0.7690146] [-71.91976] 81 0.34134078 [0.7690146] [-71.91976] 82 0.34134078 [0.7690146] [-71.91976] 83 0.34134078 [0.7690146] [-71.91976] 84 0.34134078 [0.7690146] [-71.91976] 85 0.34134078 [0.7690146] [-71.91976] 86 0.34134078 [0.7690146] [-71.91976] 87 0.34134078 [0.7690146] [-71.91976] 88 0.34134078 [0.7690146] [-71.91976] 89 0.34134078 [0.7690146] [-71.91976] 90 0.34134078 [0.7690146] [-71.91976] 91 0.34134078 [0.7690146] [-71.91976] 92 0.34134078 [0.7690146] [-71.91976] 93 0.34134078 [0.7690146] [-71.91976] 94 0.34134078 [0.7690146] [-71.91976] 95 0.34134078 [0.7690146] [-71.91976] 96 0.34134078 [0.7690146] [-71.91976] 97 0.34134078 [0.7690146] [-71.91976] 98 0.34134078 [0.7690146] [-71.91976] 99 0.34134078 [0.7690146] [-71.91976]

=== Test ===

X: 180, Y: [66.50286] X: 150, Y: [43.432426] #3

weight	[-10,10]
bias	[-100,100]
learning rate	0.00003
step range	1000

```
985 U.TU4484U8 [U.894TUZ3] [-9Z.U88ZT]
986 0.10448408 [0.8941023]
987 0.10448408 [0.8941023] [-92.08821]
988 0.10448408 [0.8941023] [-92.08821]
989 0.10448408 [0.8941023] [-92.08821]
990 0.10448408 [0.8941023] [-92.08821]
991 0.10448408 [0.8941023] [-92.08821]
992 0.10448408 [0.8941023] [-92.08821]
993 0.10448408 [0.8941023] [-92.08821]
994 0.10448408 [0.8941023] [-92.08821]
995 0.10448408 [0.8941023] [-92.08821
996 0.10448408 [0.8941023] [-92.08821]
997_0.10448408 [0.8941023] [-92.08821]
998<mark>-0.1044</mark>8408 [0.8941023] [-92.08821]
999 <mark>0.1044</mark>8408 [0.8941023] [-92.08821]
=== Test ===
X: 180, Y: [68.850204]
X: 150, Y: [42,02713]
```

step range를 100 -> 1000으로 증가 시켜 loss를 더욱 줄일 수 있었음.

결과적으로

• 180 – 68.0

에 대하여 예측값 :68.8502

150 – 42.5

에 대하여 예측값: 42.02713

를 도출 할 수 있었음.