Семинар 6

Общая информация:

- Пусть $X \in \mathrm{M}_n(\mathbb{R})$, тогда определитель X будем обозначать $\det(X)$.
- ullet Пусть $v_1,\ldots,v_n\in\mathbb{R}^n$. Тогда через $(v_1\mid\ldots\mid v_n)$ будем обозначать матрицу из $\mathrm{M}_n(\mathbb{R})$ у которой v_i являются ее столбцами.

Задачи

- 1. Задачник. §9, задача 9.2 (ж, и).
- 2. Задачник. §10, задача 10.5.
- 3. Задачник. §11, задача 11.7.
- 4. Задачник. §12, задача 12.4.
- 5. Пусть $X(t) \in \mathrm{M}_n(\mathbb{R})$ матрица такая, что элементы $x_{ij}(t)$ являются гладкими функциями переменной t, при чем $x_{ij}(0)=0$ и $x'_{ij}(0)=a_{ij}\in\mathbb{R}$. Тогда $\varphi(t)=\det(\mathrm{I}+X(t))$, где I – единичная матрица, является гладкой функцией от t. Докажите, что $\varphi'(0)=\mathrm{tr}(A)$, где $A=(a_{ij})$.
- 6. Пусть $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, найдите определитель матрицы

$$\begin{pmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_n \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-2} & \dots & \lambda_n^{n-1} \end{pmatrix}$$

7. Пусть $x \in \mathbb{R}$, найдите определитель матрицы размера 2n на 2n:

$$\begin{pmatrix} x & & & x \\ & \ddots & & & \ddots \\ & & x & x & & \\ & & x & & \\ & & & x & \\ & & & \ddots & \\ & & & & x \end{pmatrix}$$
 Все пропущенные места заполнены единицами

Например, при n=3 получим

$$\begin{pmatrix} x & 1 & 1 & 1 & 1 & x \\ 1 & x & 1 & 1 & x & 1 \\ 1 & 1 & x & x & 1 & 1 \\ 1 & 1 & 1 & x & 1 & 1 \\ 1 & 1 & 1 & 1 & x & 1 \\ 1 & 1 & 1 & 1 & 1 & x \end{pmatrix}$$

- 8. Пусть $v_1, v_2, v_3 \in \mathbb{R}^2$ такие, что $\det(v_1 \mid v_2) \neq 0$.
 - (a) Покажите, что существует, и найдите такое β , что $u=v_2-\beta v_3$ будет пропорционален v_1 , т.е. $u=\lambda v_1$ для некоторого λ .

1

(b) Найдите коэффициент λ из предыдущего пункта.