

Welcome to Intro Physics I!

You have successfully found your way to Phys 221!

- Important things to keep in mind:
 - Labs are meeting this week. Make sure you attend!
 - Homework is starting right away. Your first problem is due by midnight on Wednesday
 - Will be submitted through WebWorK
 - Username is the first portion of your email
 - Initial password is your student id number, and then change it!
- To-Do's:
 - Check out the class webpage (WISE and... otherWISE)
 - Take a closer read through my syllabus to understand what you are getting into
 - Consider getting some form of the book (or soon to have)
 - Remember your phone or computer for polling on Wednesday
 - Get crack-a-lacking on the first homework

 What's our vector, Victor?
 August 30, 2021
 Jed Rembold
 1 / 22

Matter

Interactions

Identifying Interactions

Take a few minutes to discuss with your neighbors how you could determine whether a particular object is interacting with another object. Assume that you could ONLY see the object in question, nothing else!

Changes in Motion

- Most interactions can be boiled down to a change in motion
 - Speeding up or slowing down
 - Changing direction
- Many other apparent interactions also boil down to these same interactions on a microscopic level
 - Changes in temperature for example
 - Or changes in shape / volume
- Means we need methods to quantify and describe "motion"

How could you unambiguously describe my position at the front of the room?

Important Concept!

Vectors allow us to unambiguously quantify something's position.

- Unambiguous: Everyone will agree on that object's position
- Quantify: Assign numbers to a certain position
- Graphically they look like arrows

 You have some object you want to describe

- You have some object you want to describe
- You decide the zero point!

- You have some object you want to describe
- You decide the zero point!

- You have some object you want to describe
- You decide the zero point!
- Arrow extends from zero to the object of interest

Here be Zero

- You have some object you want to describe
- You decide the zero point!
- Arrow extends from zero to the object of interest

- You have some object you want to describe
- You decide the zero point!
- Arrow extends from zero to the object of interest
- Can describe other objects with more arrows

- You have some object you want to describe
- You decide the zero point!
- Arrow extends from zero to the object of interest
- Can describe other objects with more arrows

7 / 22

- You have some object you want to describe
- You decide the zero point!
- Arrow extends from zero to the object of interest
- Can describe other objects with more arrows
- Can describe relative positioning with another vector!

7 / 22

- You have some object you want to describe
- You decide the zero point!
- Arrow extends from zero to the object of interest
- Can describe other objects with more arrows
- Can describe relative positioning with another vector!

7 / 22

What's our vector, Victor? August 30, 2021 Jed Rembold

8 / 22

• Draw in perpendicular axes

What's our vector, Victor? August 30, 2021 8 / 22

Quantifying Things

• Draw in perpendicular axes

- Draw in perpendicular axes
- Decide primary unit of measurement (usually meters)

- Draw in perpendicular axes
- Decide primary unit of measurement (usually meters)

- Draw in perpendicular axes
- Decide primary unit of measurement (usually meters)
- Determine how many units it travels in each direction:

Quantifying Things

- Draw in perpendicular axes
- Decide primary unit of measurement (usually meters)
- Determine how many units it travels in each direction:

3 Up and 2 Right

 When we have 3 dimensions, we'll adopt a convention where the z-axis comes out toward us

A Notational Note

- When we have 3 dimensions, we'll adopt a convention where the z-axis comes out toward us
- Vector components describe how far the vector travels in each axis direction

A Notational Note

- When we have 3 dimensions, we'll adopt a convention where the z-axis comes out toward us
- Vector components describe how far the vector travels in each axis direction
- We'll use the notation:

$$\vec{r} = \langle r_x, r_y, r_z \rangle$$

9 / 22

A Notational Note

- When we have 3 dimensions, we'll adopt a convention where the z-axis comes out toward us
- Vector components describe how far the vector travels in each axis direction
- We'll use the notation:

$$\vec{r} = \langle r_{\mathsf{x}}, r_{\mathsf{v}}, r_{\mathsf{z}} \rangle$$

 This notation would describe any vector with those lengths, regardless of where it started!

9 / 22

Understanding Check (Unofficial)

If you have an internet capable device, navigate to rembold-class.ddns.net

Which of the arrows to the right could represent the vector $\langle 2, 2, 0 \rangle$?

Oh the Possibilities!

- As mathematical constructs, there are a host of things we can do with vectors:
 - Multiply or divide by scalars
 - Find the magnitude
 - Find a unit vector
 - Add and subtract vectors
 - Differentiate vectors
 - Take the dot product
 - Take the cross product

Oh the Possibilities!

- As mathematical constructs, there are a host of things we can do with vectors:
 - Multiply or divide by scalars
 - Find the magnitude
 - Find a unit vector
 - Add and subtract vectors
 - Differentiate vectors
 - Take the dot product
 - Take the cross product

Multiplying by Scalars

- Scales the vector by the given scalar
- Does not change the vector direction
- Negative scalars flip the direction
- Multiplies each component

$$2\langle 1, 2, 1\rangle = \langle 2, 4, 2\rangle$$

Magnitude and Direction

- Magnitude
 - How long is your vector?

$$|\vec{\mathbf{w}}| = \sqrt{w_x^2 + w_y^2 + w_z^2}$$

- Magnitude is a scalar (not a vector)
- Note: Magnitude changes when multiplied by a scalar!

Direction

Given by a unit vector (magnitude = 1)

$$\hat{\mathbf{w}} = rac{ec{\mathbf{w}}}{|ec{\mathbf{w}}|}$$

- Unit vectors are indeed vectors (shocking!)
- Direction does not change when multiplied by a scalar

Important Concept!

A vector can be written in full as:

$$\vec{\mathbf{w}} = |\vec{\mathbf{w}}| \cdot \hat{\mathbf{w}}$$

Determine the magnitude and direction of the below vector.

What's our vector, Victor?

Component-wise

Adding triangles, which is the same as just adding the components!

$$\langle 1, 2, 0 \rangle$$

$$+\langle 3,1,0\rangle$$

$$\langle 4, 3, 0 \rangle$$

15 / 22

Name: Jed Rembold

Office: Collins 311 (it's shared)

Office Hours: MW 4:15-5:15pm, TTh 2:00-4:00pm, and open door

Email: jjrembold@willamette.edu

Office Phone: (503)-370-6860

Attendance	Lab	Written HW	Video HW	3 Midterms	Final
5%	15%	15%	10%	30%	25%

Online

- Assigned Mon, Wed
- Due Wed, Fri at midnight
- Completed on WebWorK, no penalty for incorrect answers

Video

- Assigned Fri
- Due Mon at midnight
- < 4 min video to show objective mastery
 - Objective provided
 - You choose/create problem
 - Can be a simple video!
- I'll request permission to post my favorites to the webpage
- One question on each test will pull from those videos

3 Midterms

- First is September 17
- Get a 3x5 inch index card, one side, handwritten
- In class, so 1 hour in length
- Will have about 5 minutes at the start to discuss with peers, but no writing during this time!
- I will give out old tests and other study materials about a week before each exam

Final

- On Friday, December 17
- Comprehensive
- \bullet Can use previous index cards + 1

- All labs mixed between sections
- You need to be at lab to receive lab credit
- Let both me and your lab instructor know if you need to miss:
 - Best to make it up at a different lab that week
 - In the worst case, there is 1 potential day old labs can be made up
- You can not pass the class if you miss more than 4 labs

Computation

- This course introduces computational skills that are often times ignored in other Intro courses
- The bulk of these will happen during lab
- A few homeworks throughout the semester will rely on these skills, and basic versions could show up on tests.
- Don't neglect them! I can't really think of any scientific discipline in this day of age that could not benefit from applying computational methods in certain cases!
- Lab these first few weeks will focus on teaching you the basics so that you can then start applying them to class concepts

Given that

$$\vec{\mathbf{a}} = \langle 1, 3, 5 \rangle, \quad \vec{\mathbf{b}} = \langle 2, 4, 6 \rangle, \quad \vec{\mathbf{c}} = \langle 4, 1, 0 \rangle, \quad \vec{\mathbf{d}} = \langle 2, 4, 0 \rangle$$

can you answer the following?

- 1. What is $5\vec{a} + \vec{b} + \frac{1}{2}\vec{d}$?
- 2. Is $\vec{c} + \vec{d}$ the same as $\vec{d} + \vec{c}$? Can you support your claim graphically?
- 3. Is $\vec{c} \vec{d}$ the same as $\vec{d} \vec{c}$? Can you support your claim graphically?
- 4. What is the magnitude of $\vec{b} \vec{a}$?
- 5. Is $\vec{b} \vec{a}$ a unit vector? If not, what unit vector points in the same direction?