factorMerger Cheat Sheet

Agnieszka Sitko [aut, cre] Przemysław Biecek [aut, ths] University of Warsaw

Basics

The aim of **factorMerger** is to provide set of tools to support results from post hoc comparisons. *Post hoc* testing is an analysis performed after running *ANOVA* to examine differences between group means (of some response numeric variable) for each pair of groups (groups are defined by a factor variable).

This project arose from the need to create a method of post hoc testing which gives the hierarchical interpretation of relations between groups means. Thereby, for a given significance level we may divide groups into nonoverlapping clusters.

1.TODO: here describe more details

Level fusing plot

The top-left plot shows level fusing paths (merging paths). With arguments **family=**, **show=**, **fuse=**, **spacing=**, one can select how to merge factors and what shall be presented on OX/OY axes.

Argument	Summary
panel = "all"	All panels
panel = "left"	Only left two panels
panel = "top"	Only top two panels
<pre>panel = "merging"</pre>	Merging path plot

show = "likelihood" Plot likelihood on OX axis show = "p-value" Plot p-values on OX axis
show = "n value"
snow = "p-value" Plot p-values on OX axis
fuse = "all2all" Compare all pairs of groups
fuse = "nearby" Compare nearby groups
fuse = "cluster" DMR4glm algorithm
spacing = "equidistant" Levels equidistant on OY scale
spacing = "effects" Levels according to their effects
family = "gaussian" For one-dimensional Gaussian
family = "mgaussian" For multi dimensional Gaussian
family = "binomial" For binomial regression
family = "survival" For Cox regression

FactorMerger - set of tools to support results from post hoc testing

Group summaries

The top-right panel shows group characteristics.

Use the parameter **summary=** to select the most suitable presentation.

Argument	Summary
summary = "heatmap"	For mgaussian
<pre>summary = "profile"</pre>	For mgaussian
<pre>summary = "boxplot"</pre>	For gaussian
<pre>summary = "means"</pre>	For gaussian
<pre>summary = "survival"</pre>	For Cox regression
<pre>summary = "proportions"</pre>	For binomial regression

Example

library(factorMerger)
randSample < generateMultivariateSample
 (N = 100, k = 10, d = 3)
fmAll <- mergeFactors
 (randSample\$response,
 randSample\$factor)
print(fmAll)
plotTree(fmAll)</pre>

Optimal model selection

The bottom-left panel shows how the model selection criteria behaves for models on the merging path. Currently only criteria from the class of penalised likelihood are supported.

Set the **criterion=** to one from following

Argument	Criterion
<pre>criterion = "BIC"</pre>	Bayesian Information Criterion
<pre>criterion = "AIC"</pre>	Akaike Information Criterion
<pre>criterion = "GIC"</pre>	Generalized Information Criterion

Model statistics

TODO: Here put the description of model statistics...