Data Engineering

MG-GY 8441

Distributed File Systems

Market Basket Analysis

Agenda

- Frequent Items
- Association Rules
- Metrics

References

- Han, Kamber, Pei, Data Mining: Concepts and Techniques (Chapter 6.1, 6.2)
- Optional
 - Hand, Mannila, Smyth Principles of Data Mining (Chapter 13)

Example

Example from Marketing

Suppose you are a business analyst within the marketing division of your company.

Your group has been studying customer records to determine patterns in transactions.

You have access to a data warehouse indicating purchases of items from the company inventory over time.

Example

Example

Example from Marketing

You want to determine frequently occurring collections of items

{apples, cherries, bananas}

From the frequently occurring collections of items, you want to find association rules

{bananas, cherries} imply {apples}

These rules could inform discount programs, store layout, catalogue design,...

Terminology

• Support of an itemset: number of transactions containing it,

Supp(bananas, cherries, elderberries) =
$$\sum_{i=1}^{m} M_{i,2} \cdot M_{i,3} \cdot M_{i,5}$$
.

 Confidence of rule a → b: the fraction of times itemset b is purchased when itemset a is purchased.

$$\operatorname{Conf}(a \to b) = \frac{\operatorname{Supp}(a \cup b)}{\operatorname{Supp}(a)} = \frac{\# \operatorname{times} \ a \ \operatorname{and} \ b \ \operatorname{are purchased}}{\# \operatorname{times} \ a \ \operatorname{is purchased}}$$

= $\hat{P}(b|a)$.

• **Itemset**: a subset of items, e.g., (bananas, cherries, elderberries), indexed by $\{2, 3, 5\}$.

Calculating Support

1-itemsets: a b c d e f g supp:
$$25$$
 20 30 45 29 5 17

2-itemsets: $\{a,b\}$ $\{a,c\}$ $\{a,d\}$ $\{a,e\}$... $\{e,g\}$ supp: 7 25 15 23 3

3-itemsets: $\{a,c,d\}$ $\{a,c,e\}$ $\{b,d,g\}$... supp: 15 22 15

4-itemsets: $\{a,c,d,e\}$

supp: 12

If $\operatorname{Supp}(a \cup b) \geq \theta$ then $\operatorname{Supp}(a) \geq \theta$ and $\operatorname{Supp}(b) \geq \theta$.

Calculating Confidence

- For each frequent itemset ℓ :
 - Find all nonempty subsets of ℓ
 - For each subset a, output $a \to \{\ell \setminus a\}$ whenever

$$\frac{\operatorname{Supp}(\ell)}{\operatorname{Supp}(a)} \geq \epsilon$$

Apriori Algorithm

Apriori Algorithm

Apriori Algorithm

Find all pairs of itemsets in L_{k-1} where the first k-2 items are identical.

Union them (lexicographically) to get $C_k^{\text{too big}}$,

e.g.,
$$\{a, b, c, d, e, f\}$$
, $\{a, b, c, d, e, g\} \rightarrow \{a, b, c, d, e, f, g\}$

Prune: $C_k = \{c \in C_k^{\text{too big}}, \text{ all } (k-1)\text{-subsets } c_s \text{ of } c \text{ obey } c_s \in L_{k-1}\}.$

Output: C_k .

Eclat Algorithm

 Items
 TID

 1
 100,300

 2
 200,300,400

 3
 100,200,300

 4
 100

 5
 200,300,400

Item Set	Sup.
{1}	2
{2}	3
{3}	3
{4}	1
{5}	3

Item Set	Sup.
{1}	2
 {2}	3
 {3}	3
{5 }	3

	_
_	2

Item Set	Sup
{1,3}	2
{2,3}	2
{2,5}	3
{3,5}	2

Item Set	Sup.
{1,2}	1
{1,3}	2
{1,5}	1
{2,3}	2
{2,5}	3
{3,5}	2

Item Set	TID
{1,2}	300
{1,3}	100,300
{1,5}	300
{2,3}	200,300
{2,5}	200,300,400
{3,5}	200,300

Item Set	Sup
{1,2,3}	1
{1,3,5}	1
{2,3,5}	200,300

Item Set	Sup
{2,3,5}	200,300

Metrics

$$Lift(a \to b) = \frac{Supp(a \cup b)}{Supp(a) \cdot Supp(b)}$$
$$= \frac{Conf(a \to b)}{Supp(b)}$$

Conviction
$$(a \to b) = \frac{1}{\text{Lift}(a \to \text{not } b)}$$