

Data Science Fundamentals

Data Science Retreat - 2022 Rachel Berryman

Data Science Bootcamp

Data Science Consultant

Energy Analyst

Data Scientist

Data Scientist, Deputy Head of AI CoE

Flia Group

Machine Learning

Machine Learning is an application of artificial intelligence where a computer/machine learns from the past experiences (input data) and makes future predictions.

Example dataset

Example dataset

CRISP-DM

Source:

https://towardsdatascience.com/the-data-science-process-a19eb7ebc41b

THE DATA SCIENCE PROCESS

Collection Cleaning Exploratory Model Building Deployment

Data Engineers

Data Analysts

Machine Learning Engineers

Data Scientists

0. Framing the Problem

0. Framing the Problem

0. Framing the Problem

"Translate" your problem into an ML problem.

- Spam email filter
- Predicting popularity of newly posted youtube video
- Train a robot how to stand on its own
- Identify bias in tweets

THE DATA SCIENCE PROCESS

Collection Cleaning Exploratory Model Building Deployment

Data Engineers

Data Analysts

Machine Learning Engineers

Data Scientists

1. Collecting Data

Have to find the right data for your problem

Both Target & Features

Is your dataset labeled? Do you need labels?

Where will you get data? Is it publicly available?

What form is your data in?

1. Collecting Data

Tabluar data formats:

- Continuous
- Categorical
- Ordinal
- Binary
- Time

1. Collecting Data

Consider when starting your new ML project...

- Do I need to get data from other external sources?
- Do I actually need to use all the data I have?
- Is this data likely to help the model learn?
- Do you have enough data?
- Do you have enough positive labels?

THE DATA SCIENCE PROCESS

Collection Cleaning Exploratory Model Building Deployment

Data Engineers

Data Analysts

Machine Learning Engineers

Data Scientists

2. Cleaning Data

Data Characterization

- Quality: outliers / missing values
- Quantity: rows & columns
- Diversity: does the distribution match the test set
- Cardinality: number of unique values
- Dimensionality
- Sparsity

2. Cleaning Data

Data Characterization

- Stationarity
 - iterating on data
 - new / different / more customers
 - environment (interest rates changing)
 - o model predictions influencing the data (recommendation, fraud)
- Duplicates
- Class imbalance
- Biased sampling

2. Train-test-validation split

Need to hold out the test set right away to prevent data leakage

Best to do this before making any new data/columns

THE DATA SCIENCE PROCESS

Collection Cleaning Exploratory Model Building Deployment

Data Engineers

Data Analysts

Machine Learning Engineers

Data Scientists

Understanding your data and features

Removing Outliers

Uni- and bi-variate analysis

Business understanding

VISUALIZATIONS

Visualization libraries

- Matplotlib
- Seaborn
- plotly

Visualization notebook on getting started

Visualization to always do

- Correlation matrix
- Plot the target

THE DATA SCIENCE PROCESS

Collection Cleaning Exploratory Model Building Deployment

Data Engineers

Data Analysts

Machine Learning Engineers

Data Scientists

4. Model Building

Is your data model ready?

All data must be numeric!

Transforming non-numeric columns into numeric is called **encoding**.

4. Model Building - Data Encoding

Types of encoding:

- One-Hot encoding
- Category encoding
- Ordinal encoding
- Frequency encoding
- Binary encoding
- Mean encoding

4. Model Building - Data Encoding for NLP

- Have to represent words as numbers
 - Tokenization
 - Removing stopwords
 - Lemming/stemming
 - N-grams
 - o NLTK, SpaCy
 - TF-IDF matrix
- Blog on text encoding for real estate price prediction:

https://medium.com/@data4help.contact/nlp-with-real-estate-advertisements-part-1-55200e0cb33c

4. Model Building - Data Encoding for Sound

- Have to represent sound as numbers
 - Fourier transformation
 - Feature extraction
- Blog on sound encoding for predicting car make from engine sounds:

https://medium.com/@data4help.contact/signal-processing-engine-sound-detection-a88a8fa48344

4. Model Building - Algorithm Selection

Source: https://www.kdnuggets.com/2017/06/which-machine-learning-algorithm.html

4. Model Building - Algorithm Selection

What is important for your task and model?

- Accuracy?
- Explainability?
- Speed?

4. Model Building - Algorithm Selection

Lazy Estimator

4

Baseline Model

Further Models

Predict sensible value

Mean/median for regression problems, most common class for classification

Easy-to-implement ML Model

Linear/logistic regression, random forest

Sophisticated Algos

NNs, further feature engineering, hyperparameter tuning

How do you know if your model is "good"?

Hold data out to test on!

To test how well your model is doing, have to use the correct metric for the problem!

Classification:

- Accuracy
- Precision
- Recall
- Confusion Matrix
- F-Score
- ROC-curve

Regression:

- MAE
- MSE
- RMSE
- MAPE
- MASE
- Explained variance (infamous R2)
 - the proportion to which a model accounts for the variation (dispersion) of data
 - scaled
 - 0 = chance, 1 = perfect
 - only compare on the same dataset

Confusion Matrix		Target			
		Positive	Negative		
Model	Positive	а	b	Positive Predictive Value	a/(a+b)
	Negative	С	d	Negative Predictive Value	d/(c+d)
		Sensitivity	Specificity	Accuracy = (a+d)/(a+b+c+d)	
		a/(a+c)	d/(b+d)		

THE DATA SCIENCE PROCESS

Collection Cleaning Exploratory Model Building Deployment

Data Engineers

Data Analysts

Machine Learning Engineers

Data Scientists

5. Model Deployment

Deployment is how you make your model, and its predictions, available.

Batch vs. Realtime predictions

Creating an API endpoint

- Flask
- Python Anywhere
- Heroku

Cloud:

- AWS
- Microsoft Azure

	Pattern 1 (REST API)	Pattern 2 (Shared DB)	Pattern 3 (Streaming)	Pattern 4 (Mobile App)
Training	Batch	Batch	Streaming	Streaming
Prediction	On the fly	Batch	Streaming	On the fly
Prediction result delivery	Via REST API	Through the shared DB	Streaming via Message Queue	Via in-process API on mobile
Latency for prediction	So so	High	Very Low	Low
System Management Difficulty	So so	Easy	Very Hard	So so