Lista 03

Ponteiros

• Atenção:

- 1. Identificadores de variáveis: escolha nomes apropriados;
- 2. Documentação: inclua cabeçalho, comentários e indentação no programa.
- 3. **Arquivo-base:** você deve usar o arquivo-fonte incompleto fornecido junto com a lista. É necessário completar as operações nos lugares indicados e você não deve realizar nenhuma alteração nas partes fornecidas. Inclusive, se houverem comandos de entrada (scanf) e saída (printf) definidos, estes não poderão ser alterados.

• Exercícios:

- 1. Implemente uma calculadora geométrica. As opções que a calculadora deve ter e os detalhes mais relevantes são fornecidos abaixo:
 - 1. **Círculo**: a função recebe o raio r e deve retornar os valores da área (πr^2) e circunferência $(2\pi r)$, passados como parâmetros.
 - 2. **Esfera**: a função recebe o raio r e deve retornar os valores de volume $(\frac{4}{3}\pi r^3)$ e área de superfície $(4\pi r^2)$, passados como parâmetros.
 - 3. **Retângulo**: a função recebe o comprimento c e a largura l e deve retornar os valores de área (lc) e perímetro (2l+2c), passados como parâmetros.
 - 4. **Cubo**: a função recebe a aresta a e deve retornar os valores de volume (a^3) , área de superfície $(6a^2)$ e diagonal $(a\sqrt{3})$, passados como parâmetros.
 - 5. **Cone**: a função recebe o raio r e a altura h e deve retornar os valores de volume $(\pi r^2 \frac{h}{3})$ e área de superfície $(\pi r(r + \sqrt{h^2 + r^2}))$.
 - 6. **Pirâmide**: a função recebe o comprimento c, a largura l e a altura h e deve retornar os valores da superfície lateral $(c\sqrt{(\frac{l}{2})^2 + h^2} + l\sqrt{(\frac{c}{2})^2 + h^2})$ e do volume $(\frac{hlc}{3})$, passados como parâmetros.
 - 0. Sair: finaliza o programa.

Detalhe

(a) As entradas são dadas por números reais positivos.

Complete o arquivo LO3EX01.c

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

Entrada	Saída
1 2	12.57 12.57
2 3	113.09 113.09
3 5 6	30.00 22.00
4 2	8.00 24.00 3.46
5 4 5	83.77 130.73
6 2 3 5	25.74 10.00
0	

Prof. Mario Liziér 1 / 4

2. Faça um programa que troca o valor de três variáveis baseado em uma cadeia de caracteres. O programa deve receber três inteiros (os valores que serão trocados), um número natural $n \leq 20$ indicando o tamanho de uma cadeia de caracteres e a própria cadeia de caracteres. Após realizar todas as trocas, o programa ainda deve informar se os valores armazenados nas variáveis estão ordenados ou não. Para ilustrar como funciona o procedimento de troca baseada na cadeia de caracteres, veja o seguinte exemplo:

Passo	int A	int B	int C	Cadeia de Caracteres
Inicial	1	15	8	ABCA
1	15	1	8	ABCA
2	15	8	1	ABCA
3	1	8	15	AB CA

Dentro do código-fonte base há duas variáveis "ordenado" e "desordenado." Estas variáveis são passadas por ponteiro para a função que realizará as trocas. Ao final das trocas, a função deverá retornar um ponteiro. Se os valores das variáveis estiverem ordenados, ou seja $A \leq B \leq C$, o ponteiro deverá apontar para a variável "ordenado" e o programa imprimirá 1 . Caso contrário, o ponteiro deverá apontar para a variável "desordenado" e o programa imprimirá -1.

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

Entrada	Saída
1 8 3 2 BC	1 3 8 (1)

3. Uma imagem é uma matriz de cores, pode ser representada por um número inteiro. Cada posição da matriz corresponde a um pixel da imagem, sendo que o valor de cada pixel representa a sua cor. Para imagens em escalas de cinza, estes valores variam de 0 (preto) a 255 (branco).

Faça um programa que manipule uma imagem (matriz) quadrada em escala de cinza. A manipulação sobre a matriz deverá ser feita utilizando um ponteiro que apontará para a primeira posição da matriz (já está implementado).

Seu programa deverá primeiramente receber a ordem da matriz (representando a quantidade de pixels na largura e no comprimento da imagem) e seus respectivos valores (cores). Em seguida, a matriz deverá ser exibida. Então, o usuário poderá escolher as seguintes opções:

- (0) Sair: encerra a execução do programa
- (1) Clarear: recebe uma matriz ${\tt A}$ (de mesma dimensão que a matriz inicial ${\tt M})$ e calcula ${\tt M}$ = ${\tt M}$ + ${\tt A}$
- (2) **Escurecer:** recebe uma matriz A (de mesma dimensão que a matriz inicial M) e calcula M = M A
- (3) **Diagonal:** informa se a matriz M é uma matriz diagonal
- (4) **Transpor:** substitui a matriz M por sua transposta (rotaciona a imagem)
- (5) **Binarizar:** aplica a operação de binarização, recebendo um número como parâmetro e fazendo com que todos os campos da matriz maiores ou iguais a este número recebam 255, enquanto os outros campos recebem 0 (a imagem fica em preto e branco)

Prof. Mario Liziér 2 / 4

(6) Maior e Menor: exibe o maior e menor valor da matriz (cor mais clara e mais escura da imagem). Repare que esta função já está implementada: o maior e menor valor devem ser apontados pelos ponteiros globais *maior e *menor

Complete o arquivo LO3EXO3.c

Detalles

- (a) As exibições já estão pré-definidas no código-fonte base fornecido.
- (b) Preste atenção e implemente as funções que estão sem implementação no códigofonte base.
- (c) Como os valores da matriz variam de 0 a 255, qualquer número negativo deve ir para zero e qualquer número maior que 255 deve ir para 255.

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

Entrada	Saída
2	(Dimensões)
1 2	(Matriz)
3 4	
	001 002
	003 004
1	(Opção: Clarear)
1 0	
0 254	
	002 002
	003 255
2	(Opção: Escurecer)
3 0	
0 0	
	000 002
	003 255
3	(Opção: Diagonal)
	NAO
4	(Opção: Transpor)
	000 003
	002 255
5 3	(Opção: Binarizar com parâmetro = 3)
	000 255
	000 255
6	(Opção: Maior e Menor)
	Maior -; 255
	Menor -; 0
0	

Casos de teste

- (a) Leitura da imagem, Clarear e Escurecer
- (b) Caso anterior + Diagonal
- (c) Caso anterior + Transpor
- (d) Caso anterior + Binarizar
- (e) Todas as opções

Prof. Mario Liziér 3 / 4