Topic: Intersecting chords

Question: Using the lengths of chord segments in the circle, find x.

Answer choices:

A 2.4

B 4.6

C 5

D 6

Solution: A

The products of the chord segments are equal.

$$10 \cdot x = 4 \cdot 6$$

$$10x = 24$$

$$x = 2.4$$

Topic: Intersecting chords

Question: Using the lengths of chord segments in the circle, find x.

Answer choices:

A 2

B 3

C 4

D 5

Solution: A

The products of the chord segments are equal.

$$3x \cdot 3x = 2 \cdot 18$$

$$9x^2 = 36$$

$$x^2 = 4$$

$$x = 2$$

Topic: Intersecting chords

Question: Using the lengths of chord segments in the circle, find x.

Answer choices:

A 1

B 2

C 3

D 4

Solution: D

The products of the chord segments are equal.

$$x(x+3) = 4 \cdot 7$$

$$x^2 + 3x = 28$$

$$x^2 + 3x - 28 = 0$$

$$(x+7)(x-4) = 0$$

$$x + 7 = 0$$
 or $x - 4 = 0$

$$x = -7 \text{ or } x = 4$$

Rule out the negative value.

$$x = 4$$