§1 Lecture 01-15

Assignment 1 due today. Burnside Hall 10th floor mail slot. Basis for a vector space.

Theorem 1.1

If V is a vector space over F, then V has a basis. i.e. $\exists B \subset V$ which is linearly independent and spans V.

Proof. Let B be a maximal linearly independent subset of V. This ensures that is

Example 1.2

V = F[x]. $B = \{1, x, x^2, x^3, \dots\}$. The fact that this is a basis is the statement that every polynomial can be written as a finite combination of powers of x.

 $V = F[[x] = \{\sum_{i=0}^{\infty} a_i x^i, a_i \in F. \text{ Infinite linear combination of powers of } x. \text{ No one } x$ has ever written down a basis for this vector space. Although there muts be one according to the theorem.

Example 1.4

 $V = \mathbb{R}$ as a vector space over the rationals. B is called a Hanel basis. Source of counter examples in measure theory. Gives rise to non measurable set. Pathalogical

Example 1.5

Take
$$V = F^n = \{(a_1, \dots, a_n), a_i \in F\}$$
. You can take
$$B = \{(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, 0, \dots, 0, 1)\} = \{e_1, e_2, \dots, e_n\}$$

The "standard basis". Bases are typically most useful when they are finite.

Definition 1.6 (Finite-dimensional). A vector space which has a finite-basis is said to be finite-dimensional.

§1.1 The Dimension

Theorem 1.7

If V is a finite dimensional vector space, and B_1, B_2 are two bases for V, then the conclusion is that B_1 and B_2 are both finite and have the same cardinality.

Recall 1.8. If B is a basis for V, then V is isomorphic to the space of functions $F_0(B,F) = \{ \text{Space of functions } f: B \to F \text{ such that } f(x) = 0 \ \forall \text{ but finitely many } \}$ $x \in B$.

$$\varphi: F_0(B, F) \to V$$

$$f \mapsto \sum_{x \in B} f(x) \cdot x$$

If $B < \infty$, then $F_0(B, F) = F(B, F) = F^N$, N = B. (i.e., can assume $B = \{1, ..., N\} \rightarrow \{v_1, ..., v_N\}$.

$$\varphi: F^n \to V$$

$$(a_1, \dots, a_n) \mapsto a_1 v_1 + \dots + a_N v_N$$

Reformulation of theorem.

If $F^{n_1}isomorphicF^{n_2}$, then $n_1 = n_2$.

Lemma 1.9

Let v_1, \ldots, v_m be a collection of linearly independent vectors in F^n . Then $m \leq n$.

Proof. If $v_1 = (a_{1_1} \ a_{1_2} \ \dots \ a_{1_n}) \ \dots \ v_m = (a_{m_1} \ a_{m_2} \ \dots \ a_{m_n})$ are linearly independent.

$$x_1v_1 + \cdots + x_mv_m = 0 \Leftrightarrow (x_1, \dots, x_m) = 0$$

Gives rise to homogenous system of linear equations. There are n linearly equation with m unknowns.

The system must have a non-trivial solution if n < m. Since we are told that there is only a trivial solution, it must be that $m \le n$.

Example 1.10

If $F^{n_1}isomorphicF^{n_2}$. Let

$$\varphi: F^{n_1} \to F^{n_2}$$

Let e_1, \ldots, e_{n_1} be the standard basis of F^{n_1} .

 $\varphi(e_1), \ldots, \varphi(e_{n1})$ are linearly independent in $F^{n_2} \Rightarrow n_1 \leq n_2$.

By symmetry
$$n_2 \leq n_1$$

$$\Rightarrow n_1 = n_2$$

Definition 1.11 (Dimension). The dimension of V is the cardinality of a basis for V.

<u>Convention</u>:

$$\dim(V) \in \{0, 1, 2, 3, \dots, \} \cup \{\infty\}.$$

 $\dim(V) = \infty$ if V contains an infinite collection of linearly independent vectors.

§1.2 Completing to a basis

Proposition 1.12

If S_0 is a collection of linearly independent vectors in V, then \exists a basis such that $S \supseteq S_0$.

Proof. Let L be the set of linearly independent subsets of V containing S_0 . iLet B be a maximal element of L.

Example 1.13

Let X be a set.

- 1. $\dim_F F_0(X,F) = X$
- 2. $\dim_F(F^n)=n.$ Dimension is kind of like the logarithm base F of the cardinality.
- 3. $\dim(V_1 \times V_2) = \dim(V_1) + \dim(V_2)$