Теплопроводность, конвекция, излучение. Вариант 1

- 1. Основным способом теплопередачи, на котором основано водяное отопление, является:
 - а) теплопроводность;
 - б) конвекция;
 - в) излучение;
 - г) излучение и конвекция;
 - д) теплопроводность и излучение.
- 2. Камень подбросили вверх. Максимального изменения внутренняя энергия камня достигнет в момент:
 - а) бросания камня;
 - б) достижения камнем максимальной высоты;
 - в) достижения камнем половины максимальной высоты;
 - г) достижения камнем поверхности Земли;
 - д) внутренняя энергия изменяться не будет.
- 3. Из трех пластин одинаковых размеров лучшим теплоизолятором является пластина..., затем ..., затем...
 - а) ... стеклянная, ... пенопластовая, ... железная;
 - б) ... пенопластовая, ...железная, ... стеклянная;
 - в) ... пенопластовая, ... стеклянная, ... железная;
 - г) ... железная, ... стеклянная, ... пенопластовая;
 - д) ... стеклянная, ... железная, ... пенопластовая.
- 4. Из трех кубиков красного, черного, белого цвета, имеющих одинаковую температуру, наиболее сильно излучает кубик ... цвета.
 - а) красного;
 - б) черного;
 - в) белого;
 - г) черного и красного;
 - д) все кубики излучают одинаково.
- 5. Время нагревания до кипения одинакового объема воды в стакане (рис.1) будет ..., чем в стакане 2, т.к. в нем затруднена ...
 - а) больше, ... теплопроводность;
 - б) больше, ... конвекция;
 - в) больше, ... излучения;
 - г) меньше, ... конвекция;
 - д) меньше, ... излучения.

Вариант 2

- 1. Основным способом теплопередачи, посредством которого происходит нагревание воды по всему объему кастрюли на газовой плите, является:
 - а) теплопроводность;

- б) конвекция;
- в) излучение;
- г) теплопроводность и излучение;
- д) теплопроводность и конвекция.

2. Чтобы внутренняя энергия газа в цилиндре с поршнем уменьшилась, необходимо:

- а) незначительно сжать газ при постоянной температуре;
- б) незначительно расширить газ при постоянной температуре;
- в) нагреть газ при постоянном объеме:
- г) охладить газ при постоянном объеме;
- д) незначительно сжать газ и увеличить температуру.

3. Нагревание воды в электрочайнике происходит путем:

- а) излучение;
- б) теплопроводности;
- в) конвекции и теплопроводности;
- г) теплопроводность и излучение;
- д) излучение и конвекция.

4. Причиной того, что зажженная в космическом корабле свеча быстро гаснет, является:

- а) отсутствие в окружающей среде теплопроводности;
- б) отсутствие излучения;
- в) отсутствие конвекции;
- г) уменьшение силы земного притяжения;
- д) отсутствие в окружающей среде излучения и конвекции.

5. Чайник с горячей водой передает энергию стакану (рис.2) в основном путем ..., а подставке – путем ...

- а) ... конвекции, ... теплопроводности;
- б) ... излучению, ... конвекции;
- в) ... теплопроводности, ... конвекции;
- г) ... излучения, ... теплопроводности;
- д) ... конвекции, ... излучения.

Вариант 3

1. Основным способом теплопередачи, благодаря которому можно согреться у костра, является:

- а) теплопроводность:
- б) конвекция;
- в) излучение;
- г) излучение и конвекция;
- д) теплопроводность и излучение.

2. Теплопередачу путем конвекции невозможно осуществить в:

а) твердых телах;

б) жидкостях; в) газах; г) жидкостях и газах; д) твердых телах и жидкостях. 3. Из двух металлических вилок, имеющих одинаковую комнатную температуру, на ощупь более холодной кажется та, вещество которой: а) больше излучает; б) меньше излучает; в) имеет большую теплопроводность; г) имеет меньшую теплопроводность; д) имеет большую теплопроводность и меньшее излучение. 4. Если пружину растянуть, то ее внутренняя энергия ... за счет... энергии частиц. а) ... уменьшится ... кинетической...; б) ... увеличится ... потенциальной...; в) ... увеличится ... кинетической...; г) ... уменьшится ... потенциальной ...; д) ... уменьшится ... полной 5. Из трех отличающихся только цветом кофейников белом, желтом и синим кофе остынет раньше в ... и позже в ... а) ... белом ... синим; б) ... синем ... белом; в) ... желтом ... синем; г) ... белом ... желтом; д) ... желтом ... синем. Вариант 4 1. Основным способом теплопередачи, благодаря которому нагреваются нижние слои атмосферы, является: а) теплопроводность; б) конвекция; в) излучение; г) теплопроводность и конвекция; д) теплопроводность и излучение. 2. Давление воздуха в кабине космического корабля равно давлению в квартире. Тем не менее, из всех видов теплопередачи, возможных в квартире в кабине корабля можно осуществить преимущественно: а) теплопроводность и конвекцию; б) теплопроводность и излучение; в) излучение и конвекцию; г) конвекция и излучение; д) ни один из видов не возможен.

3. Из трех пластин одинаковых размеров худшим теплоизолятором является пластина ...,

затем ..., затем....

а) ... стеклянная, ... пенопласт, ... железная;

- б) ... пенопласт, ... железная, ... стеклянная;
- в) ... пенопласт, ... стеклянная, ... железная;
- г) ... железная, ... стеклянная, ... пенопласт;
- д) ... стеклянная, ...пенопласт, ... железная.
- 4. Тело в определенных условиях может иметь ... механическую и ... внутреннюю энергию:
- а) ... равную нулю ... больше нуля;
- б) ... равную нулю ... равную нулю;
- в) ... больше нуля ... равную нулю;
- г) ... больше нуля ... меньше нуля;
- д) ... равную нулю ... меньше нуля.
- 5. Два стальных цилиндра 1 и 2 и шар 3 (рис. 1), нагретые до температуры $t=100^{0}\mathrm{C}$, находятся на деревянной подставке. Если массы всех тел одинаковы, то позже всех остынет:
- а) цилиндр 1;
- б) цилиндр 2;
- в) все тела остынут одновременно;
- г) шар 3;
- д) цилиндр 1 и шар 3.

Теплоемкость. Плавление. Кристаллизация. Удельная теплота сгорания. Удельная теплоемкость.

1	Конвекция	т это
Ι.	. конвекция	я — это

- 2. При сгорании топлива массой т = 20 кг выделилось теплоты Q = 166 МДж. Определите вид топлива.
 - а) бурый уголь;
 - б) сухие дрова;
 - в) древесный уголь;
 - г) порох;
 - д) генераторный газ.
- 3. Какое количество теплоты необходимо, чтобы нагреть воду температурой $20^{0}\mathrm{C}$ до кипения массой 10 кг.
 - а) 3360 Дж;
 - б) 3360 кДж;
 - в) 336 кДж;
 - г) 3360 МДж;
 - д) 33,6 кДж.
- 4. На охлаждение меди до $8^{0}\mathrm{C}$ массой 7 кг затрачено такое же количество теплоты, как и для нагревания олова массой 8 кг от 15^{0} С до 80^{0} С. Определите начальную температуру

(Удельная теплоемкость меди $C_{\rm M} = 380 \frac{\mathcal{Д} \mathcal{H} c}{\kappa c^0 C}$;

удельная теплоемкость олова $C_0 = 250 \frac{\mu \mathcal{H}}{\kappa_2^0 C}$).

- a) -41^{0} C;
- б) 40° С;
- в) 0⁰C; г) 40⁰C;
- π) 41 0 С.
- 5. Для получения воды при температуре $t_1 = 55^0 \mathrm{C}$ в кипяток массой m = 8,0 кг влили холодную воду при температуре $t_2 = 12^0 \mathrm{C}$. Определите объем влитой холодной воды.

(Плотность воды $1 \cdot 10^3 \frac{\kappa z}{M^3}$; удельная теплоемкость воды $C_B = 4, 2 \cdot 10^3 \frac{\cancel{\square} \cancel{\cancel{\square}} \cancel{\cancel{\square}}}{\kappa z.^0 C}$).

- 1. Теплопередача это ...
- $O=4.6\cdot10^7$ Дж 2. Определите, какую массу керосина нужно сжечь, чтобы получить теплоты.

 - а) $0.107 \cdot 10^6 \, \text{Дж};$ б) $0.107 \cdot 10^7 \, \text{Дж};$
 - в) 1,07 · 10⁶ Дж; г) 1,07 · 10⁷ Дж;

 - д) теплота выделяться не будет.
- 3. На сколько градусов Δt нагреется вода массой m=350 г, если она получит количество теплоты Q = 58.8 кДж:
 - a) 0.04° C:
 - б) $0,4^{0}$ С;
 - $^{\circ}$ $^{\circ}$
 - г) 16,8⁰C;
 - л) 168⁰C.
- 4. На нагревания кирпича массой $m_1 = 4.0$ кг от 300К до 363К затрачено такое же количество теплоты, как и для нагревания $m_2 = 3000$ г воды на $\Delta T = 288$ К. Определите удельную теплоемкость С1 кирпича.

(Удельная теплоемкость воды $C_B = 4.2 \cdot 10^3 \frac{\cancel{Дж}}{\kappa z^0 C}$).

- б) $0.75\kappa \varepsilon / \mathcal{I} \mathcal{H} c^0 C$;
- B) $1,33 \cdot 10^3 \frac{\cancel{\perp} \cancel{36}}{\kappa \varepsilon^0 C}$;
- Γ) $750 \frac{\kappa z}{\pi \kappa^0 C}$;
- д) $750 \frac{\cancel{\cancel{1}}\cancel{\cancel{3}\cancel{6}}}{\cancel{\cancel{6}\cancel{6}}}$.
- 5. В сосуде находится $m_1=200$ г воды при температуре $t_1=0^0$ С. Какой будет температура смеси t, если в сосуд ввести $m_2=25$ г водяного пара при $t_2=100^{0}$ С?

(Удельная теплота парообразования воды $L=22,6\cdot 10^5 \frac{\cancel{Дж}}{\cancel{\kappa}^2}$, удельная теплоемкость воды C_B=4,2·10³ $\frac{\cancel{\square}\cancel{m}}{\cancel{m}^{2} \cancel{0}\cancel{C}}$).

2.	Определите,	какую	массу	природного	газа	нужно	сжечь	для	получения	Q=532500	Дж
теп.	10ТЫ.										

- а) 15000 кг;
- б) 1500 кг;
- в) 150 кг;
- г) 0,15 кг;
- д) 0,015 кг.
- 3. В сосуд налили вещество массой m=15 кг и охладили его на Δt =20 0 C, при этом выделилось количество теплоты Q=75 кДж. Какое вещество находится в сосуде.
 - а) олово;
 - б) железо;
 - в) гелий;
 - г) чугун;
 - д) медь.
 - 4. На сколько градусов Δt нагреется $m_1=350$ г воды, если она получит всю теплоту, выделившуюся при охлаждении $m_2=2,0$ кг меди от $t_1=120^0$ С до $t_2=20^0$ С?

(Удельная теплоемкость воды $C_B = 4.2 \cdot 10^3 \frac{\mathcal{Д} ж}{\kappa z.^0 C}$,

удельная теплоемкость меди $C_{\rm M} = 3.8 \cdot 10^2 \, \frac{\ensuremath{D} \ensuremath{\mathcal{H}}}{\kappa \ensuremath{\mathcal{E}}^{\rm o} C}$).

- a) 19·10⁻³ °C;
- б) 52·10^{-3 0}С;
- $^{\circ}$ 19 $^{\circ}$ C;
- г) 52⁰С;
- д) 520⁰C.
- 5. Какое количество теплоты Q необходимо, чтобы нагреть до кипения $V_1 = 10$ л воды, находящейся в алюминиевом баке при температуре 20^{0} C? Масса бака $m_2 = 2.0$ кг (Удельная теплоемкость воды $C_B = 4.2 \cdot 10^{3 \text{Дж}}/_{\text{кг C}}$, плотность воды $\rho = 1 \cdot 10^{3}$ кг/м 3 , удельная теплоемкость алюминия $\frac{\text{Дж}}{\text{Кг.}^{0} C}$).

- 1. Излучение это ...
- 2. Какое количество теплоты выделится при плавлении меди массой $m=3\ \kappa r$:
 - а) 0,7 кДж;
 - б) 0,7 Дж;
 - в) 6,3 Дж;
 - г) 630 Дж;

- д) 630 кДж.
- 3. Цинковый шар нагрели до температуры $t = 70^{0} \, \mathrm{C}$ и положили на лед. Какое количество теплоты выделится при остывании шара до температуры льда. Масса шара 2 кг:
 - а) 0,56 Дж;
 - б) 56 Дж;
 - в) 56000 Дж;
 - г) 56 кДж;
 - д) 56000 кДж.
- 4. На охлаждение чугуна от 23^{0} С до 18^{0} С массой 6 кг затрачено такое же количество теплоты, как и для нагревания свинца массой 5 кг до температуры 15^{0} С. Определите начальную температуру свинца?

(Удельная теплоемкость свинца
$$C_c = 120 \frac{\ensuremath{\mathcal{L}} \ensuremath{\mathcal{K}} \ensuremath{\mathcal{C}}^{\ensuremath{\text{c}}}}{\kappa \ensuremath{\mathcal{E}}^{\ensuremath{\text{c}}} C}$$
 ,

удельная теплоемкость чугуна $C_{\text{ч}} = 550 \frac{\text{Дж}}{\kappa e^0 C}$).

- a) -12.5° C;
- $\vec{0}$ 0^{0} C;
- в) 12,5^оС;
- г) 15⁰С;
- $_{\rm J})~20^{0}{\rm C}.$
- 5. Сколько льда m_1 при температуре $t=-20^{0}\mathrm{C}$ можно расплавить стоградусным водяным паром, масса которого $m_2=1$ кг?

(Удельная теплоемкость воды $C_B = 4.2 \cdot 10^3 \, \mathcal{J}_{\mathcal{M}}/\kappa^0 C$, удельная теплота плавления льда $\lambda = 3.33 \cdot 10^5 \, \mathcal{J}_{\mathcal{M}}/\kappa^0 C$, удельная теплота парообразования воды $L = 22.6 \cdot 10^5 \, \mathcal{J}_{\mathcal{M}}/\kappa^2$).

Испарение жидкостей. Насыщенный пар. Влажность. Кипение. Удельная теплота парообразования.

- 1. Процесс перехода вещества из жидкого в газообразное состояние называется...
 - а) парообразование;
 - б) испарение;
 - в) кипение;
 - г) конденсацией;
 - д) плавление.
- 2. Если вода в сосуде, из которого откачали воздух, кипит, то ее температура
 - a) равна 100⁰ С;
 - б) больше 100^{0} C;
 - в) меньше 100⁰C;
 - г) не зависит от давления воздуха в сосуде;
 - д) вода кипеть не будет.
- 3. Если плотность пара равна плотности насыщенного пара при данной температуре, то его влажность равна...
 - a) 20 %;
 - б) 40%;
 - в) 50 %;
 - Γ) 75 %;
 - д) 100 %.
- 4. Когда жидкость кипит, пар внутри пузырьков находящихся у поверхности жидкости, является ..., а его давление ...
 - а) насыщенным, ... меньше внешнего давления;
 - б) ненасыщенным, ... равно внешнему давлению;
 - в) насыщенным, ... не меньше внешнего давления;
 - г) ненасыщенным, ... равно внешнему давлению;
 - д) насыщенным, ... равно внешнему давлению.
- 5. Если удельная теплота парообразование ацетона $L=5,2\cdot10^5$ Дж/кг, то это значит, что:
 - а) данная масса ацетона поглощает $Q = 5,2 \cdot 10^5 Дж$ теплоты при переходе в пар при температуре кипения;

- б) внутренняя энергия ацетона в газообразном состоянии при температуре кипения увеличилось на $\Delta U = 5,2 \cdot 10^5 \, \text{Дж}$ по сравнению с жидким состоянием при этой же температуре.
- в) данная масса ацетона при переходе из газообразного в жидкое состояние при температуре кипения выделяет $Q = 5.2 \cdot 10^5 \text{Дж}$ теплоты;
- г) внутренняя энергия массы m=1,0кг ацетона при переходе его из жидкого состояния в газообразное при температуре кипения увеличилась на $\Delta U = 5,2 \cdot 10^5 \text{Дж}$;
- д) внутренняя энергия массы m=1,0 кг ацетона в газообразном состоянии при температуре кипения увеличилась на $\Delta U = 5,2 \cdot 10^5 Дж$ по сравнению с жидким состоянием при этой же температуре.

1.	Переход	вещества	из газообі	разного	состояния	в жидкое	называется

- а) парообразование;
- б) кипение;
- в) испарение;
- г) конденсацией;
- д) кристаллизация.

2. Если внешнее давление увеличивается, то температура кипения жидкости...

- а) увеличивается;
- б) уменьшается;
- в) постоянная;
- г) сначала уменьшается, потом постоянная;
- д) сначала увеличивается, потом постоянная.

3. Если пар насыщенный, то его влажность равна:

- a) 0%;
- б) 40 %;
- в) 50 %;
- r) 75 %;
- л) 100 %.

4. Закончите фразу: «Удельная теплота парообразования – физическая величина ...»

- а) которая прямо пропорциональна количеству поглощенной теплоты и обратно пропорциональная массе испарившейся жидкости;
- б) равная количеству теплоты, необходимому для превращения в пар данной массы жидкости;
- в) численно равная количеству теплоты, поглощенному 1 кг жидкости при превращении ее в пар при температуре кипения;
- г) численно равная количеству теплоты, выделившемуся при конденсации данной массы пара при температуре кипения;
- д) равная количеству теплоты, необходимую для превращения в жидкость данной массы пара.

5. Чтобы вы хорошо себя чувствовали, в классе должна быть влажность воздуха φ =50%. Если при данной влажности воздух содержит m=10г воды в V=1,0 м³, то масса воды в V=1,0 м³ воздуха при влажности φ 0=100% должна быть равна...

- a) 5 Γ;
- б) 10 г;
- в) 15 г;
- г) 20 г;
- д) 25 г.

1. Парообразование, идущее со свободной поверхности жидкости

называется
а) горение;
б) испарение;
в) кипение;
г) конденсацией;
д) плавление.
2. При постоянном увеличении внешнего давления, давление пара в
пузырьках кипящей жидкости будет
а) постоянным;
б) увеличиваться;
в) уменьшаться;
г) зависит от рода жидкости;
д) увеличиваться затем уменьшаться.
3. В процессе кипения воды и спирта процентное содержание воды в смеси будет
а) постоянным;
б) уменьшаться;
в) увеличиваться;
г) сначала постоянным, а затем уменьшаться;
д) сначала постоянным, а затем увеличиваться.
4. Если удельная теплота парообразования воды $L=2,26~M$ Дж/кг, то этой теплоты хватит на плавление льда, взятого при $t=-20^{0}$ С, массой
a) 5,4 кг;
б) 60 кг;
в) 7,6 кг;
r) 8,2 kr;
д) 9,4 кг.
5. Если в мензурку с водой объемом $V = 120$ мл при температуре $t_1 = 10^{9}$ С впустить m
5,0 г водяного пара при температуре $t_2 = 100^{0} \mathrm{C}$, то максимальная температура воды может иметь значение
a) 35°C;
а) 33 С, б) 40°С;
b) 45°С;
в) 43 С, г) 50 ⁰ С;
д) 55 ⁰ C.
д) 33 С.

- 1. Процесс парообразования, идущий по всему объему жидкости называется:
 - а) горение;
 - б) испарение;
 - в) кипение;
 - г) конденсацией;

- д) плавление.
- 2. Если пар насыщенный, то его плотность и давление с течением времени
 - а) убывает;
 - б) возрастает;
 - в) постоянны;
 - г) плотность может возрастать, а давление падать;
 - д) плотность может убывать, а давление оставаться постоянным.
- 3. Водяной пар в закрытом сосуде с водой может стать насыщенным, если:
 - а) нагреть сосуд;
 - б) охладить сосуд;
 - в) откачивать из сосуда пар;
 - г) увеличивать объем пара;
 - д) уменьшать объем пара.
- 4. Температура кипения смеси вода спирт при нормальном атмосферном давлении будет...
 - a) равна 100°С;
 - б) равна 78⁰С;
 - в) меньше 78°C;
 - Γ) больше 78^{0} С, но меньше 100^{0} С;
 - д) больше 100° С.
- 5. В классной комнате объемом $V = 150 \text{ m}^3$ относительная влажность воздуха $\varphi = 50\%$. Если насыщенный воздух при данной температуре должен содержать m = 20 г воды в объеме $V = 1.0 \text{ m}^3$, то масса воды в классной комнате равна...
 - а) 1.5 кг;
 - б) 2,0 кг;
 - в) 2,5 кг;
 - г) 3,0 кг;
 - д) 3,5кг.

Тепловые двигатели. Коэффициент полезного действия. Двигатель внутреннего сгорания. Паровая турбина.

1. Единица измерения работы в системе СИ:

- а) МДж;
- б) Дж;
- в) кг;
- r) A;
- д) Дж/кг.

2. У паровозов среднее значение КПД было примерно:

- a) 2%;
- б) 4%;
- в) 6%;
- г) 8%;
- д) 10%.

3. Если произведенная работа ..., то коэффициент полезного действия...

- а) уменьшается, ... уменьшается;
- б) уменьшается, ... увеличивается;
- в) увеличивается, ... уменьшается;
- г) постоянна, ... увеличивается;
- д) постоянна, ... уменьшается.

4. Тепловой двигатель превращает...

- а) тепловую энергию в электрическую;
- б) тепловую энергию в механическую;
- в) электрическую энергию в механическую;
- г) электрическую энергию в тепловую;

д) механическую энергию в тепловую.
5. Поезд развивает мощность 3000 МВт при КПД двигателя 43%. Если скорость поезда V $110~\rm{km/q}$, то расход топлива на $S=20~\rm{km}$ составляет ($q=42~\rm{MДж/kf}$).
a) 10 kr;
б) 20 кг;
в) 30 кг;
г) 40 кг;
д) 50 кг.
Вариант 2
1 E-ways was a superant CH and was a superant CH.
1. Единица измерения в системе СИ количества теплоты: а) МДж;
б) Дж;
в) кг;
г) А;
д) Дж/кг
2. Смесь из бензина и воздуха готовиться в
а) генераторе;
б) турбине;
в) карбюраторе;
г) цилиндре;
д) клапанах.
3. Вычислите КПД двигателя, если при энергопотреблении в 0,80 МДж
полезная работа составляет 0,20 МДж.
a) 15%;
б) 25%; в) 35%;
в) 33%, г) 45%;
д) 55%.
4. КПД дизельного двигателя трактора «Беларусь МТЗ-80» составляет 30%. За 30 мину
работы в цилиндрах сгорело 9,0 кг дизельного топлива.
Вычислите мощность двигателя.
а) 0,063 кВт;
б) 33 кВт;
в) 63 КВт;
г) 70 кВт;
д) 73 кВт.
5. Судно мощностью 2000 МВт израсходует бензина массой 40 кг при скорости V=80 км/ч
Найдите КПД двигателя, если судно пройдет путь S=25 км.
a) 30 %;

б) 34 %; в) 40 %; г) 44 %; д) 50 %.
Вариант 3
1. КПД тепловых двигателей выражается в а) Дж; б) %; в) Вт; г) л; д) °C.
 2. В цилиндре третьем тактом является а) всасывание; б) рабочий ход; в) сжатие; г) выпуск; д) выхлоп.
3. Если коэффициент полезного действия постоянный, то произведенная работа может, а количество теплоты полученное рабочим телом а) уменьшаться, увеличиваться; б) уменьшаться, оставаться постоянным; в) увеличиваться, увеличиваться; г) оставаться постоянным, уменьшаться; д) увеличиваться, оставаться постоянным.
4. Какую полезную работу может выполнить двигатель с КПД 40 %, если в его цилиндрах сгорит 5,0 кг дизельного топлива (удельная теплота сгорания дизельного топлива равна 42 МДж/кг). а) 56 МДж;
б) 62 МДж; в) 73 МДж; г) 84 МДж; д) 90 МДж.
 5. Судно на подводных крыльях развивает мощность P = 1500 кВт при КПД двигателя η = 30 %. Если скорость судна V = 72 км/ч, то расход бензина на S = 10 км пути равен а) 50 кг; б) 54 кг; в) 56 кг; г) 60 кг; д) 62 кг.

- 1. Удельная теплота парообразования находится по формуле:
 - a) Q = Lm;
 - $\mathsf{G)} \ \mathsf{Q} = \frac{L}{m};$
 - B) L = Qm;
 - r) $L = \frac{Q}{m}$;
 - д) L = $\frac{m}{O}$
- 2. В паровой турбине нет...
 - а) сопла;
 - б) рабочего колеса;
 - в) лопаток;
 - г) цилиндра;
 - д) колеса.
- 3. Из четырех значений КПД, представленных ниже, двигателю внутреннего сгорания вероятнее всего соответствует значение КПД:
 - 1) $\eta = 90 \%$;
- 2) n = 84 %;
- 3) $\eta = 68 \%$; 4) $\eta = 50 \%$; 5) $\eta = 34 \%$.

- a) 1;
- б) 2;
- в) 3;
- r) 4;
- д) 5.
- 4. Сколько энергии выделится при сгорании топлива в двигатели ВАЗ 2121 за 1 с, если мощность двигателя 59 кВт, а его КПД 20%?
 - а) 37 кДж;
 - б) 98 кДж;
 - в) 173 кДж;
 - г) 254 кДж;
 - д) 295 кДж.
- 5. Какой мошностью обладает двигатель, если машина проедет путь 100 км со скоростью 120 км/ч. КПД двигателя 25 %, масса дизельного горючего m = 40 KG.
 - a) 54 MBT;
 - б) 104 МВт;
 - в) 204 MBт;
 - г) 404 MBт;
 - д) 504 МВт.

1. Удельная теплота сгорания в системе СИ измеряется:

a)
$$\frac{Bm}{\kappa \varepsilon^0 C}$$
; б) $\frac{Bm}{\varepsilon^0 C}$; в) $\frac{\mathcal{J}\mathcal{H}}{\kappa \varepsilon^0 C}$; г) $\frac{\mathcal{J}\mathcal{H}\cdot K}{\kappa \varepsilon}$; д) $\frac{\mathcal{J}\mathcal{H}\cdot \kappa \varepsilon}{0}$.

2. Какое количество теплоты поглощается при нагревании стальной детали

массой 1500 г от 373 К до 150 $^{\circ}$ С ? (Удельная теплоемкость стали 460 $\frac{\mathcal{Д} \mathcal{H}}{\kappa z^{\circ} C}$).

- а) 34,5 Дж;
- б) 54,6 Дж;
- в) 90,4 Дж;
- г) 34,5 кДж;
- д) 54,6 кДж.

3. Рассчитайте КПД двигателя если известно, что его мощность равна 5 кВт, а теплота полученная за 2 ч равна 35 кДж.

- a) 7%;
- б) 15%;
- в) 20 %;
- r) 29 %;
- д) 34%.

ſ
ная

г) в первом останется постоянной, а во втором понизится; д) в первом понизится, а во втором останется постоянной.

4. При полном сгорании в печи некоторой массы древесины и торфа выделилось 105,9 МДж
теплоты. Какая масса древесины сгорела, если известно, что она была в 3 раза больше массы
торфа?
а) 1 кг;
б) 2 кг;
в) 3 кг;
г) 4 кг;
д) 5 кг
5 C
5. Судно развивает мощность $ ho$ = 1500 кВт при КПД двигателя η = 30 %.
Если скорость судна $V=72~{ m km/4}$, то расход бензина на $S=10~{ m km}$ пути
равен
a) 50 кг;
б) 54 кг;
в) 56 кг;
r) 60 кг;
д) 62 кг
Вариант 3
Daphani 5
1. Удельная теплота сгорания в системе СИ измеряется в
а) Дж \cdot кг; б) $Bm \cdot$ кг; в) $\frac{\mathcal{L} \mathcal{H}}{\kappa z}$; г) $\frac{Bm}{\kappa z}$; д) $\frac{\kappa z}{\mathcal{L} \mathcal{H}}$.
κ 2 κ 2 μ 2 μ 3 μ 5 μ 6 μ 7 μ 7 μ 8 μ 9
2. Найдите удельную теплоемкость чугуна, если при остывании чугунной
детали массой 20 кг от $130^{0}\mathrm{C}$ до 353 К выделяется 0,550 МДж теплоты.
3) 123 $\frac{\mathcal{L}\mathcal{H}}{\mathcal{H}}$: 6) 330 $\frac{\mathcal{L}\mathcal{H}}{\mathcal{H}}$: 7) 550 $\frac{\mathcal{L}\mathcal{H}}{\mathcal{H}}$: 7) 600 $\frac{\mathcal{L}\mathcal{H}}{\mathcal{H}}$: 7) 780 $\frac{\mathcal{L}\mathcal{H}}{\mathcal{H}}$
a) $123 \frac{\cancel{\cancel{H}}\cancel{\cancel{m}}}{\cancel{\cancel{\kappa}}\cancel{\cancel{\varepsilon}}^0 C}$; 6) $330 \frac{\cancel{\cancel{H}}\cancel{\cancel{m}}}{\cancel{\cancel{\kappa}}\cancel{\cancel{\varepsilon}}^0 C}$; B) $550 \frac{\cancel{\cancel{H}}\cancel{\cancel{m}}}{\cancel{\cancel{\kappa}}\cancel{\cancel{\varepsilon}}^0 C}$; Γ) $600 \frac{\cancel{\cancel{H}}\cancel{\cancel{m}}}{\cancel{\cancel{\kappa}}\cancel{\cancel{\varepsilon}}^0 C}$; Π) $780 \frac{\cancel{\cancel{H}}\cancel{\cancel{m}}}{\cancel{\cancel{\kappa}}\cancel{\cancel{\varepsilon}}^0 C}$.
3. Рассчитайте КПД двигателя который совершает работу равную 150 МДж.
MД $arkappa$
Масса бензина равна 5 кг. (Удельная теплота сгорания бензина 46 $\frac{M \cancel{\square} \cancel{\varkappa}}{\cancel{\kappa}^2}$).
a) 35 %; б) 45 %; в) 55 %; г) 65 %; д) 75 %.
a) 35 %, 0) 45 %, B) 35 %, 1) 05 %, Д) 75 %.
4. На нагревание кирпича массой m_1 =4,0кг от 300 К до 90^{0} С затрачено такое
же количество T теплоты, как и для нагревания T
Определите удельную теплоемкость кирпича. (Удельная теплоемкость воды равна 420
Пом
$\frac{\mathcal{A}\mathcal{B}c}{\kappa \varepsilon^{0}C}$).
$\kappa e^{0}C$
$_{\sim 7.5}$ \mathcal{A} \mathscr{H}
a) $0.75 \frac{\cancel{\square}\cancel{36}}{\kappa \varepsilon^0 C}$;
б) $0.75 \frac{\kappa z}{Z \mathcal{K}^0 C}$;
$\mathcal{J}\mathcal{K}^{\circ}C$
\mathcal{L}_{2} \mathcal{L}_{3} \mathcal{L}_{3}
в) $1{,}33\cdot10^3 \frac{\mathcal{Д}\mathcal{H}}{\kappa z^0 C}$;
AC C

г)
$$750\frac{\kappa^2}{\mathcal{J}\mathcal{K}^0C}$$
;

д) $750\frac{\mathcal{J}\mathcal{H}}{\kappa \varepsilon^0C}$.

Свинцовая пуля летящая со скоростью 600 м/сек, попадает в глыбу льда, имеющую температуру 0^0 C, и застревает в ней. Какая масса льда расплавилась, если на плавления ушло 60 % механической энергии пули? Температура пули 120^0 C, масса пули 20 г.

(Удельная теплоемкость свинца 120 $\frac{\mathcal{J}\mathcal{H}}{m_0^0 C}$).

- a) 3,4·10 ⁻³ кг;
- б) $5,4\cdot10^{-3}$ кг;

- в) 7,4·10 ⁻³ кг; г) 9,4·10 ⁻³ кг; д) 10,4·10 ⁻³ кг.

1. Коэффициент полезного действия обозначается... a) L; θ ; θ ; θ ; θ ; θ ;

- η .

2. Рассчитайте относительную влажность воздуха, если плотность насыщенного пара 30 м³, а абсолютная влажность воздуха 15 м³. 25 %; б) 35 %; в) 50 %; г) 100%; д) 200%

3. Цинковый и медный шары, одинаковой массы, положили на лед, предварительно нагрев их до одинаковой температуры.

Под каким из шаров растает больше льда? (Удельная теплоемкость цинка $400 \frac{\cancel{\cancel{\cancel{100}}}}{\cancel{\cancel{\cancel{100}}}}$, удельная

теплоемкость меди $380 \frac{\mathcal{L} \mathcal{H}}{\kappa_2^0 C}$).

- а) цинковым;
- б) медным;
- в) под цинковым останется лед, а под медным растает;
- г) под цинковым растает, а под медным останется лед;
- д) растает одинаковое количество льда.
- 4. Нагретую железную болванку массой 2,0 кг поставили на лед, имеющий температуру 10 °C. В результате охлаждения болванки до 0^{0} С под ней расплавилось 150 г льда. До какой температуры была

нагрета болванка? (Удельная теплоемкость льда $2100 \frac{\cancel{\cancel{\mu}}}{\kappa z^0 C}$,

удельная теплоемкость железа 460 $\frac{\mathcal{Д}\mathcal{K}}{\kappa \varepsilon^0 C}$,

удельная теплоемкость плавления льда $333\cdot 10^3 \frac{\cancel{\square}\cancel{mc}}{\cancel{\kappa}\cancel{c}}$). a) 50^0 C; б) 52^0 C; в) 54^0 C; г) 56^0 C; д) 58^0 C.

5. Струя водяного пара с температурой $t_1 = 100^{0}$ С направляется на кусок льда массой $m_1 = 10$ кг, находящейся при температуре плавления. Определите температуру t смеси после того, как лед растает, если масса израсходованного пара $m_2 = 2$ кг.

(Удельная теплоемкость воды 420 $\frac{\cancel{\square}\cancel{ж}}{\cancel{\kappa}\cancel{\varepsilon}^0C}$, удельная теплота плавления льда 333·10³ $\frac{\cancel{\square}\cancel{ж}}{\cancel{\kappa}\cancel{\varepsilon}}$, удельная теплота парообразования воды L=2,26 · $10^6 \ \frac{\cancel{\square} \cancel{ж}}{\emph{к2}}$).

- а) 10^{0} C; б) 20^{0} C; в) 30^{0} C; г) 40^{0} C; д) 50^{0} С.

Литература.

- 1. Исаченкова Л.А. Слесарь И.Э Физика 8 кл. Тесты. Минск «Аверсев», 2005г.
- 2. Слесарь И.Э. Поддубский В.Н. Физика 7-9 кл. Самостоятельные и контрольные работы. - Минск «Аверсев», 2005.
- 3. Исаченкова Л.А., Лещинский Ю.Д., Жолнеревич И.И. Сборник задач по физике, 8 класс. – Минск «Народная асвета», 2006.
- 4. Исаченкова Л.А., Луцевич А.А., Слесарь И.Э. Физика в 8 классе. Минск «Аверсев», 2005.

Ответы.

Теплопроводность, конвекция, излучение.

			z emrempe ee	011001110, 11011	<i>32111</i> , 1121, 11311,	
Номер задание		1	2	3	4	5
Вариант 1	б	_	Γ	В	б	б
Вариант 2	a		Γ	a	В	Γ
Вариант 3	В		a	В	б	б
Вариант 4	a	-	б	В	a	Γ

Теплоемкость, плавление, кристаллизация, удельная теплота сгорания, удельная теплоемкость.

Номер		_			
задание		2		3	4
Вариант 1	б		б		Д
Вариант 2	В		В		Д
Вариант 3	Д		a		Γ
Вариант 4	Д		Γ		a

Испарение жидкостей, насыщенный пар, влажность, кипение, удельная теплота парообразования.

Номер задание	1	2	3		4	5
Вариант 1	a	В	Д	В		Γ
Вариант 2	Γ	a	Д	В		Γ
Вариант 3	б	б	В	б		a
Вариант 4	В	В	Γ	Γ		a

Тепловые двигатели, коэффициент полезного действия, двигатель внутреннего сгорания, паровая турбина.

Номер задание	1	2	3	4	5
Вариант 1	б	б	a	б	В
Вариант 2	б	В	б	В	б
Вариант 3	б	б	В	Γ	б
Вариант 4	Γ	Γ	Д	Д	Д

Итоговая контрольная работа по теме «Тепловые явления».

Номер	11mocou	- Rollin	·porroit	puc	<i>y</i>				20000
задание	1		2		3		4		5
Вариант 1	В	Γ		Γ		В		a	
Вариант 2	В	Γ		a		В		б	
Вариант 3	В	В		Γ		Д		В	
Вариант 4	Д	В		a		Д		Γ	