Script 3

Lemma 3.4: If \$A\$ is a nonempty, finite subset of a continuum \$C\$, then \$A\$ has a first and last point. We can prove that \$A\$ has a first and last point through induction.

Suppose our base case n=1, then $A = \{a_1\}$ where A is a set with a single element thus that single element is both the first and last element (according to *definition 3.3*). Now for the inductive hypothesis, we can assume when a = k, where k is a positive integer. A has a first element a_i and the last point is a_k such that $a_1 < a_k$. Finally, our inductive step proves our assumption holds for when A contains a_k elements. There are three possible cases :

- 1. $a_{k+1} < a_1 < a_k$
- 2. $a_1 < a_{k+1} < a_k$
- 3. $a_1 < a_k < a_{k+1}$

All these are true for the inductive step and maintain the existence of the first and last element, therefore any finite subset \$A\$ of a continuum \$C\$, it has a first and last point.

Theorem 3.5: Suppose that \$A\$ is a set of \$n\$ distinct points in a continuum \$C\$, or, in other words, \$A \sub C\$ has cardinality \$n\$. Then symbols \$a_1,...a_n\$ may be assigned to each point of \$A\$ so that \$a_1, a_2, <... < a_n, ; ie. ; a_i < a_{i+1} ; for ; 1 \leq i \leq n-1\$. Suppose we have a set \$X\$ with elements \${a_1, a_2, < ... < a_n}\$. We can essentially assign the elements of set \$X\$ to the first point in \$A\$ according to Lemma 3.4 which says that \$A\$ which is a subset of \$C\$ has a first and last point. Thus as we move through set \$X\$, we can assign and remove element \$a_1\$ from set \$A\$ so that each element in \$A\$ will be assigned to symbols \$a_1,...a_n\$ in set \$X\$.

Corollary 3.7: Of three distinct points in a continuum, one must be between the two other. Consider *Theorem 3.5* where we proved each point in a subset of a continuum \$C\$ to a symbol \$a_1, a_2,...,a_n\$ in ascending order. In this case, points assigned to index \$i\$ would be less than points \$i+1\$. MORE

Exercise 3.8: a. We define a relation < on x = m + c for some $c \in N$. Show that, x = m + c for some $c \in N$. Show that, x = m + c for some $c \in N$.

Let us be reminded of Axioms 1-3. Axiom 1. A continuum is a nonempty set C. First, let us identify \Z as a continuum because it's a nonempty (infinite) set of integers. For example, the set Z contains elements such as -1,0,1,2. This means Z fulfills axiom 1.

Axiom 2. A continuum C has an ordering < We can identify m and n as distinct points in Δ and c as a positive integer. For Axiom 2 to prove true, an ordering on the set represented by Δ with elements (m,n) written as m < n must satisfy these conditions according to definition 3.1:

Trichotomy, where for all $m,n \in Z$ one of the following holds: m < n, m = n, $textnormal{or}; m > n$. Because we defined m < n if n = m + c, then trichotomy is satisfied as one of the above held true. This is also because when n=m+c and $c \in n-m$, $m \neq n$ because c would have to equal n holds are not within the set n = m + c.

Transistivity: where for all $m,n,l \in \mathbb{Z}$, if m < n and n < l then m < l. Let's suppose n = m + a, l = n + b, and l = m + c where $a,b,c \in \mathbb{N}$. From this, we can deduce n > m because a = m - n. We can substitute m+a for n to get l = m + a + b. If a,b are both positive integers more than 0, then l must be greater than m which proves that if n > m and l > n, then l > m. Therefore, the transistivity property is true for an ordering l

With both Trichotomy and Transistivty satisfied, we can conclude that the continuum Δ has an ordering <.

Axiom 3. A continuum \$C\$ has no first or last point

This is true, as \Z has no first nor last point. This is because \Z is an infinite set thus there is no $a_1 \in \Z$ and $a_i \in \Z$ and $a_i \in \Z$ where a_i is any element of \Z and $a_i \in \Z$ for all i nor is there any element $a_i \in \Z$ because $A_i \in \Z$ is an infinite set with no first nor last element.

Therefore, \Z with the ordering \$<\$, satisfies axioms 1-3.

b. Show that, for any $p = {\frac{a b}{\ln \mathbb{Q}}}$, there is some $(a_1, b_1) \in \mathbb{Q}$

As we have observed in *Exercise 2.6*: $f(\frac{a_1}{b_1}) = (a,b)$ ~ (a_1, b_1) . Thus, we may find an equivalent fraction for any rational number \$p\$ such that $f(\frac{a_1}{b_1}) = (a,b)$ by their greatest common divisor (GCD). We know based on the equivalence relation established in *Exercise 2.2* that $f(\frac{a_1}{b_1})$ and conversely $f(\frac{a_1}{b_1}) = (a_1, b_1)$. Thus since a_1 0 in a_1 1 and a_2 2 have a_2 3 have a_3 3 and a_4 3 have a_4 4 have a_4 5 have a_4 6 have a_4 7 have a_4 8 have a_4 9 have a_4 9

c. We define a relation < on on

d. Show that \$\mathbb{Q}\$, with the ordering \$< \mathbb{Q}\$, satisfies Axioms 1-3.

Let us be reminded of Axioms 1-3. Axiom 1. A continuum is a nonempty set C. First, let us identify \mathbb{Q} as a continuum because it's a nonempty (infinite) set of rational numbers (fractions). For example, the set \mathbb{Q} contains elements such as $\{(\frac{0.1}{1000}), (\frac{0.1}{1000}), (\frac$

Axiom 2. A continuum \$C\$ has an ordering \$<\$ We can identify \$p\$ and \$q\$ as distinct points in \$\$\mathbb{Q}\$ and define a point \$x \in \mathbb{Q}\$ and let \$(a_3, b_3) in x\$ be such that \$0 < b_3>\$ and let's make \$x\$ so \$q = p + \mathbb{Q} x\$. For Axiom 2 to prove true, an ordering on the set represented by \$\$\mathbb{Q} \times \mathbb{Q}\$ with elements \$p,q\$ written as \$p <\mathbb{Q}\$ q\$ must satisfy these conditions according to definition 3.1:

CONTINUE HERE Trichotomy, where for all $p,q \in \mathbb{Q}$ one of the following holds: $p < \mathbb{Q}$ $q, p = \mathbb{Q}$ q, p

would have to be negative, both of which are not within the set $N\$ thus, n < n is the only case and trichotomy is true in the continuum $Z\$.

Transistivity: where for all $m,n,l \in X$, if m < n and n < l then m < l. Let's suppose n = m + a, l = n + b, and l = m + c where $a,b,c \in N$. From this, we can deduce n > m because a = m - n. We can substitute m+a for n to get l = m + a + b. If a,b are both positive integers more than 0, then l must be greater than m which proves that if n > m and l > n, then l > m. Therefore, the transistivity property is true for an ordering l

With both Trichotomy and Transistivty satisfied, we can conclude that the continuum Δ has an ordering <.

Axiom 3. A continuum \$C\$ has no first or last point

This is true, as \mathbb{Q} has no first nor last point. This is because \mathbb{Q} is a dense infinite set thus there is no $a_1 \in \mathbb{Q}$ and $a_i \in \mathbb{Q}$ where a_i is any element of \mathbb{Q} and $a_i \in \mathbb{Q}$ and $a_i \in \mathbb{Q}$ and $a_i \in \mathbb{Q}$ and $a_i \in \mathbb{Q}$ has no first nor last element.

Therefore, \Z with the ordering \$<\$, satisfies axioms 1-3.

Theorem 3.11: If x is a point of a continuum C, then there exists a region $\$ underlinea? such that $x \in \$.

Let us remember Definition 3.9: If \$a, b \in C\$ and \$a < b\$, then the set of points between \$a\$ and \$b\$ is called a region, denoted by \$\underline{ab}\$\$. Let us mimic this region by creating a subset of \$C\$ called \$A\$ of points between \$a\$ and \$b\$ where \$a\$ is the first point and \$b\$ is the last point. This is possible through Lemma 3.4 which defines the first and last points of subset \$A\$ and Corollary 3.5 which indexes each point point in the subset in ascending order. Because \$A\$ can be arranged in ascending order \$(a_1, a_2, a_3,...a_n)\$ where \$a_1 = a\$ and \$a_n = b\$ where \$n\$ is the cardinality of \$A\$, there must be an \$a_i = x\$ where \$i \in \N\$ and is between \$1\$ and \$n\$. Therefore, \$x\$ must be a point existing within the region \$\underline{ab}\$\$.

Theorem 3.13: If \$p\$ is a limit point of \$A\$ and \$A \sub B\$, then \$p\$ is a limit point of \$B\$.

Let us be reminded of Definition 3.12: a limit point is a point p of continuum C in subset A if every region R containing p has nonempty intersection with $A\setminus A$ which means for every region R with $p \in R$, we have $R \subset A \setminus A$ hackslash p neg empty.

Since p is a limit point of \$A\$, then for all regions \$R\$ containing \$p\$, \$R \cap (A \backslash {p}) \neq \empty\$*. Let \$q \in A\$ be an intersection point with \$R \cap (A \backslash {p}) \neq \empty\$, and since \$A \sub B\$, then \$q \in B\$. Thus, given an \$R\$ containing \$p\$, there is a \$q \in R \cap B \backslash {p}\$.

Lemma: 3.15: If $\ \$ is a region in a continuum C, then, ext $\$ underline{ab} = {x \in C | x < a } \cup {x \in C | b < x}\$

FIX Consider Definition 3.14: If \$\underline{ab}\$ is a region of continuum \$C\$, then \$C \backslash ({a} \cup \underline{ab} \cup {b})\$. is called the exterior of \$\underline{ab}\$ denoted by ext \$\underline{ab}\$\$.

We want to show ext $\$ \underline{ab} = {x \in C | x < a } \cup {x \in C | b < x}\$. We know that:

if \$x \nleq a\$, then \$x \geq a\$ if \$x \ngeq b\$, then \$x \leq b\$

We can formulate the equation: $C\$ \cup \underline{ab} \cup {b}) = {x \in C | x < a} \cup {x \in C | b < x}\$. We can simplify the LHS to $C\$ which equals to the RHS $x \in C$ which equals to the RHS $x \in C$ C\backslash(x \geq a) \cup C\backslash(x \leq b)}\$.

Lemma 3.16: No point in the exterior of a region is a limit point of that region. No point of a region is a limit point of the exterior of that region.

FIX

Proof by contradiction: Consider the set E = ext; \underline{ab}\$ where $E \subset R \neq \mathbb{S}$. Let $e \in E$ where $e \in a$ is a limit point of $\$ underline{ab}\$. If $a \in a$ and $a \in a$ are in the continuum C, then e < a where $a \in a$ is an element such that $a \in a$ because the continuum has no first or last point. Or $a \in a$ such that there is a $a \in a$ where $a \in a$ because the continuum has no first or last point. Because $a \in a$ \underline{ab} \under

Theorem 3.17: If two regions have a point \$x\$ in common, their intersection is the region containing \$x\$.

Be aware of our four cases: a < c < b < d, c < a < b < d, a < c < d < c, c < a < d < b

Because $R\$ encompasses both $\$ and $\$ in (\underline{ab} \cap \underline{cd})\$.

Corollary 3.18: If \$n\$ regions \$R_1,..., R_n\$ have a point \$x\$ in common, then their intersection \$R_1 \cup ... \cap R_n\$ is a region containing \$x\$.

FIX

Proof by induction: If a region \$R\$, \$R_n\$ \$x\$, then the intersection \$R\$

Base case (n=1), R_1 contains x without intersection Inductive hypothesis, we assume n=k, so if $R_1...R_k$ all contains x, then $R_1 \subset R_k$ contains x. Inductive step, we can show it holds for n=k+1. Let $K=R_1 \subset R_n \subset R_n$ based on our hypothesis. We know that K is a region containing x. Thus $R_1 \subset R_2$, $R_k \subset R_{k+1} = K \subset R_{k+1}$. The intersection of 2 regions containing x. By *theorem 3.17 *, we have $K \subset R_{k+1}$ is a region containing x.

Theorem 3.19: Let \$A\$, \$B\$ be subsets of a continuum \$C\$. Then \$p\$ is a limit point of \$A \cup B\$ if, and only if, \$p\$ is a limit point of at least one of \$A\$ or \$B\$.

We can prove this this by contradiction. Let us assume that there exists a \$p\$ which is a limit point of \$A \cup B\$ but not a limit point of either \$A\$ nor \$B\$. This means \$p\$ must satisfy 3 conditions:

\$p\$ is a limit point of \$A \cup B\$: For \$p\$ to be a limit point, it \$p\$ is not a limit point of \$A\$: \$p\$ is not a limit pointoof \$B\$:

Corollary 3.20: Let A_1, \ldots, A_n be n subsets of a continuum C. Then p is a limit point of $A_1 \cup \cdots \cup A_n$ if, and only if, p is a limit point of at least one of the sets A_k .

Theorem 3.21: If \$p\$ and \$q\$ are distinct points of a continuum \$C\$, then there exist disjoint regions \$R\$ and \$S\$ containing \$p\$ and \$q\$, respectively.

Corollary 3.22. A subset of a continuum C consisting of one point has no limit points.

Theorem 3.23: A finite subset \$A\$ of a continuum \$C\$ has no limit points.

Corollary 3.24: If \$A\$ is a finite subset of a continuum \$C\$ and $x \in A$, then there exists a region \$R\$, containing \$x\$, such that \$A \cap R = {x}\$.