1 Théorie des graphes :

1.1 Définitions

1.1.1 Introduction

Un graphe Γ est un triplet (V, E, γ) où :

- V est un ensemble fini dont les éléments sont appelés sommets;
- E est un ensemble fini dont les éléments sont appelés arrêtes;
- γ est une fonction qui associe à chaque arrête $e \in E$ une paire de sommets $\{x,y\} \in V$.

Qu'on notera plus généralement $\Gamma = (V, E)$

Exemple de graphe.

Soit $\gamma(e) = \{x, y\}$ pour $e \in E, \{x, y\} \in V$. On dit que x et y sont **adjacents** et que e est **incidente** à x et y.

1.1.2 Cas particuliers d'arêtes

On appelle **arêtes multiples** toutes les arêtes incidentes à 2 mêmes points.

Un lacet est une arête incidente à un seul point.

Graphe avec arête multiple et graphe avec lacet.

Un graphe est dit **simple** s'il ne contient pas d'arête multiple ni de lacet.

1.1.3 Degré d'un sommet

Le **degré** d'un sommet $v \in V$ est le nombre d'arêtes incidentes à v (les lacets comptent pours 2 arêtes). On le note : deg(v).

<u>Théorème</u> : Soit $\Gamma = (V, E)$, alors $\sum_{v \in V} deg(v) = 2\#E$. Autrement dit la

somme des degrés de tout les sommets est égale au nombre d'arête $\times 2$. Ce qui implique que la somme des degrés d'un graphe est toujours paire.

7 arêtes 2 sommets (bleu) de degré 4 6 sommets (rouge) de degré 1 $2 \times 4 + 6 \times 1 = 14 = 2 \times$ nombre d'arête totale

1.1.4 Graphe complet

Le graphe complet K_n est le graphe simple à n sommets pour lequel chaque paire de sommet est relié par une et une seule arête. Autrement dit, les sommets sont tous adjacents entre-eux.

1.1.5 Sous-graphes

Un graphe $\Gamma' = (U, F)$ est un sous-graphe de $\Gamma = (V, E)$ si : $U \subseteq \text{et } F \subseteq E$. On notera $\Gamma' \leq \Gamma$

Chemins

1.2.1 Definition

Soit $\Gamma = (V, E)$ et $v, w \in V$, un **chemin** de v à w de longueur n est une séquence alternée de (n+1) sommets $v_0, v_1, ..., v_n$ et de n arêtes $e_1, e_2, ..., e_n$ de la forme : $(v_0, e_1, v_1, e_2, v_2, ..., v_{n-1}, e_n, v_n)$.

Un chemin est **simple** si aucun sommet ne se répète, sauf peut-être celui de départ ou d'arrivée.

 $(v_1, e_1, v_2, e_2, v_4, e_5, v_5)$ est un chemin simple de longueur 3 entre v_1 et v_5

Remarque : Dans un graphe simple on notera juste la suite des sommets (car il existe qu'un seul chemin les reliants). Avec l'exemple ci-dessus : (v_1, v_2, v_4, v_5)

1.2.2 Graphe connexe

Un graphe $\Gamma = (V, E)$ est **connexe** si $\forall x, y \in V : \exists$ un chemin de x à y.

Soit $\Gamma = (V, E)$ un graphe et $x \in V$, la **composante connexe** de Γ contenant x est le sous-graphe Γ' de Γ dont les sommets et les arêtes sont contenues dans un chemin de Γ démarrant en x.

1.2.3 Cycles

Soit $\Gamma = (V, E)$ et $v \in V$, un **cycle** est un chemin allant de v à v. Il est **simple** si on ne passe pas plusieurs fois sur le même sommet (à part v).

1.3 Arbres

1.3.1 Définition

Un **arbre** est un graphe simple, connexe qui ne contient aucun cycle. Ses sommets de degré 1 sont appelés **feuilles**.

Exemple d'arbre (feuilles en rouge).

Si T est un arbre avec $p \geq 2$ sommets, alors T contient au moins 2 feuilles.

<u>Théorème</u>: Soit T un graphe simple à p sommets, alors : T est un arbre $\Leftrightarrow T$ a (p-1) arêtes et aucun cycle $\Leftrightarrow T$ a (p-1) arêtes et est connexe.

1.3.2 Arbre couvrant

Un arbre couvrant dans un graphe Γ est un arbre qui est un sous-arbre de Γ et qui contient tous les sommets de Γ .

Il est utile entre autres pour résoudre le problème du voyageur de commerce.

1.4 Isomorphisme

2 graphes $\Gamma_1 = (V_1, E_1, \gamma_1)$ et $\Gamma_2 = (V_2, E_2, \gamma_2)$ sont **isomorphes** s'il existe une bijection $f: V_1 \to V_2$ et une bijection $g: E_1 \to E_2$ telles que $\forall e \in E_1$, e est incident à $v, w \in V_1$ si et seulement si g(e) est incident à $f(v), f(w) \in V_2$. On note cela : $\Gamma_1 \cong \Gamma_2$.

Autrement dit, les graphes ont le même nombre de sommets et sont connectés de la même façon. Autrement dit, si les deux graphes venaient à être dessinés, alors il n'y aurait qu'à déplacer les sommets de l'un pour obtenir la copie conforme de l'autre.

Exemple de graphes isomorphes.

Pour prouver que 2 graphes sont isomorphe, on montre la bijection de chaque sommet (il doit avoir le même degré dans le graphe isomorphe et être adjacent aux mêmes sommets).

Inversement pour prouver que 2 graphes ne sont pas isomorphe, il nous suffit de trouver un sommet qui n'est pas dans une bijection.

1.5 Graphe Hamiltonien

Un **graphe hamiltonien** est un graphe possédant au moins un cycle passant par tous les sommets une et une seule fois. Ces cycles sont appelés cycles hamiltoniens.

Exemple de graphe hamiltonien et d'un cycle hamiltonien.

Un graphe $\Gamma = (V, E)$ est **biparti** si on peut écrire $V = B \cup W$ avec $B \cap W = \emptyset$ et toute arête de Γ joint un sommet de B à un sommet de W. Avec B et W des sous-ensembles de sommets.

Exemple de graphe biparti.

Si un graphe est biparti, alors tout ses cycles simples sont de longueur paire.

Un graphe biparti avec un nombre impair de sommets n'est pas hamiltonien.

Exemple de graphe biparti non-hamiltonien.

<u>Théorème</u>: Soit Γ un graphe simple avec $p\geq 3$ sommets et $\forall v\in V$: $deg(v)\geq \frac{1}{2}p,$ alors Γ est hamiltonien.

1.6 Illustration - Le code de Gray

Un code de Gray d'ordre n est un arrangement cyclique de 2^n mots binaires de longueur n tel que 2 mots ne différent qu'en une seule position. Par exemple pour n=3:

Comparable aux sommets d'un cube.

1.7 Graphe Eulérien

Un cycle eulérien dans un graphe Γ est un cycle qui contient toutes les arêtes de Γ . Un graphe est eulérien s'il contient un tel cycle.

<u>Proposition</u>: Si un graphe est eulérien, alors tout ses sommets sont de degré pair.

<u>Lemme</u>: Soit Γ un graphe dans lequel chaque sommet est de degré pair, alors l'ensemble E se partitionne ¹ en une union de cycles (arête-)disjoints.

toutes les arêtes se trouvent dans un seul cycle.

<u>Théorème</u>: Soit Γ un graphe connexe. Γ est un graphe eulérien \Leftrightarrow chaque sommet est de degré pair.

1.8 Ordre partiel

Soit P un ensemble. Un **ordre partiel** sur P est une relation sur P (c'est-à-dire un ensemble de couples $(p_1,p_2)\in P\times P)$ notée $p_1\leq p_2$ telle que :

- Réflexivité : $p \leq p$;
- Anti-symétrie : $p \le q$ et $q \le p \Rightarrow p = q$;
- Transitivité : $p \le q$ et $q \le r \Rightarrow p \le r$.

On note (P, \leq) un ensemble partiellement ordonné.

Un ordre partiel (P, \leq) peut se représenter à l'aide d'un graphe. Si l'on place les arêtes entre les différents sommets en respectant les 3 règles d'un ordre partiel et en enlevant les arêtes pouvant être obtenues par transitivité, alors on obtient un **diagramme de Hasse**. C'est à dire le graphe simple $\Gamma = (P, E)$ tel que :

- $-e = \{x, y\} \in E \Leftrightarrow x \le y \text{ et } \exists z | (x \le z) \land (z \le y);$
- Dans sa représentation : si $x \leq y, x$ sera placé plus bas que y.

^{1.} collection de sous-ensembles $C_1, ..., C_n$ de E telle que $E = \bigcup_{i=1}^n C_i$ et $\forall i \neq j, C_i \cap C_j = \emptyset$.

Diagramme de Hasse de l'ensemble des diviseurs de 60, $A = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$, ordonnés par la relation de divisibilité.

Soit (P, \leq) un ordre partiel :

- Une **chaine** dans P est un sous-ensemble C de P tel que : $\forall c_1, c_2 \in C : c_1 \leq c_2 \text{ ou } c_2 \leq c_1.$ (Dans l'exemple ci-dessus : $\{1, 2, 4, 20, 60\}$ en est une (1 divise 2, qui divisent 4, qui divisent 20, qui divisent 60)).
- Une **antichaîne** dans P est un sous-ensemble A de P tel que : $\forall a_1 \neq a_2 \in A : a_1 \nleq a_2$ et $a_2 \nleq a_1$. Autrement dit c'est une partie dont les éléments sont 2 à 2 incomparables. (Dans l'exemple ci-dessus : $\{5,3,2\}$ en est une (5 ne divise pas 3 et 3 ne divise pas 2)).

Théorème (Dilworth) : Soit (P, \leq) un ensemble fini partiellement ordonné. Alors \exists une antichaine A une partition de P par des chaînes $Q = \{C_1, C_2, ..., C_n\}$ tels que #Q = #A. Autrement dit, le théorème de Dilworth établit, pour un ordre fini, l'existence d'une antichaîne A et d'une partition de l'ensemble ordonné en une famille Q de chaînes, telles que A et Q aient même cardinal.

Remarques:

- Q une partition de P et A une antichaîne dans P alors $\#A \leq \#Q$;
- (P, \leq) ordre total. Alors une antichaı̂ne non-vide a exactement 1 élément.

Lien avec les graphes bipartis:

Soit $\Gamma = (V, E)$ un graphe simple; un **couplage** M de Γ est un sousensemble d'arêtes de E qui sont 2 à 2 non-adjacentes. Les sommets incidents aux arêtes de M sont dits couplés. Autrement dit, c'est un ensemble d'arêtes qui n'ont pas de sommets en commun.

Un transversal de Γ est un sous-ensemble T de sommets de V tel que toute arête de E est incidente à au moins 1 sommet de T.

Théorème (König) : Soit $\Gamma=(V=B\ \ \mbox{II}\ \ W^2,E)$ un graphe biparti. Alors la cardinalité maximale d'un couplage de Γ est égale à la cardinalité minimale d'un transversal de Γ .

Soit $\Gamma=(B\amalg W,E)$ un graphe biparti et M un couplage. Un **chemin alterné** est un chemin qui démarre en un sommet de B non-couplé et alterne une arête dans $E\setminus M$ puis une arête dans M et ainsi de suite.

Exemple de chemin alterné

^{2.} $B \cup W = V$ et $B \cap W = \emptyset$.