1 Задание 4

1.1 Задача 1

Считаем, количество нулей и единиц в массиве, это можно сделать за O(n) операций. Потом первые к элементов заполняю нулями в массиве, следующие n-k элементов единицами.

1.2 Задача 2

Упорядочим отрезки, пусть n+1 отрезок содержится в n. Тогда нужны интервалы $[l_{\frac{2n}{3}}; l_{\frac{2n}{3}+1})$ и $(r_{\frac{2n}{3}}; r_{\frac{2n}{3}+1}]$. Для этого найдём $\frac{2n}{3}$ и $\frac{2n}{3}+1$ порядковые статистики левых граний и $\frac{2n}{3}$ и $\frac{2n}{3}+1$ порядковые статистики правых границ, они находятся за O(n). Получаем, что алгоритм работате за O(n).

1.3 Задача 3

Пусть T(n) – время работы алгоритма, тогда:

$$T(n) \le T\left(\frac{5n}{7}\right) + T\left(\frac{n}{7}\right) + cn$$

Где $T\left(\frac{n}{7}\right)$ — время нахождение медианы медиан, $T\left(\frac{5n}{7}\right)$ — максимальное время работы поиска k порядковой статистики в одной из двух частей массива (элементов больших медианного элемента и меньших). $\frac{5n}{7}$ — количество элементов меньших, медианного элемента не меньше, чем $\frac{n}{2} \cdot \frac{4}{7}$, больших столько же $\frac{2n}{7}$. Получаем, что количество элементов меньших, чем медианный элемент не меньше, чем $\frac{2n}{7}$, и не больше, чем $\frac{5n}{7}$. Аналогично получаем для элементов больших медианнного значения. Т.к. есть $c \cdot n$, то нижняя оценка, очевидно, это линия. Теперь докажем оценку сверху, пусть есть такое $d:T(n) < d \cdot n$, т.е. T(n) = O(n). База будет выполняться , т.к. при малых k, $T(k) = \Theta(1)$, т.е. можем выбрать достаточное большое d.

$$d \cdot \frac{5n}{7} + d \cdot \frac{n}{7} + c \cdot n \le d \cdot n$$

Получаем:

$$7 \cdot c \le d$$

Возьмёмум $d=8\cdot c$ и это будет верно. Получаем, что $T(n)=\Theta(n)$.

Ответ: $T(n) = \Theta(n)$

1.4 Задача 4

Будем рассматривать две точки, очевидно, что расстояние от любой точки, лежащей на отрезке, который соединяет эти две точки, будет постоянным и минимальным. Значит, нужно найти медиану данного массива, т.е. за O(n).

Корректность: Рассмотрим такую функцию $Sum(s) = |x_1 - s| + ... + |x_{2n+1} - s|$. Существует минимум, т.к. Sum(s) всегда будет неотрицательной. Т.к. количество модулей нечётно, то при любом s наклон прямой не равен нулю, получается, что минимумом может быть только конечное количество точек. Методом пристального взгляда заметим, что медиана данного массива – это экстремум функции. Т.к. до неё коэффициент наклона прямой был всегда отрицательным, а после неё всегда положительный.

Otbet: $\Theta(n)$

1.5 Задача 5

Перепишем это уравнение:

$$M \cdot y - a \cdot x = b$$

Как можем заметить это диофантовое уравнение, которое можно решить с помощью алгоритма Евклида, который работате за $O(n^3)$.

Ответ: Алгоритм Евклида для $M \cdot y - a \cdot x = b - \Theta(n^3)$.

1.6 Задача 6

Перемножьте многочлены: $f(x) = 2x^3 + 3x^2 + 1$ и $g(x) = 2x^2 + x$ с помощью БПФ.

$$f(x) = x \cdot f_1(x^2) + f_2(x^2), f_1(x) = 2x, f_2(x) = 3x + 1$$

$$g(x) = x \cdot g_1(x^2) + g_2(x^2), g_1(x) = 1, g_2(x) = 2x$$

Здесь мы переводим многочлен в точки, перемножаем его и обратно переводим его.

X	$f_1(x)$	$f_2(x)$	f(x)	$g_1(x)$	$g_2(x)$	g(x)	$f(x) \cdot g(x)$
1	2	4	6	1	2	3	18
-1	2	4	2	1	2	1	-2
2	8	13	29	1	8	10	290
-2	8	13	-3	1	8	6	-18
3	18	28	82	1	18	21	1722
-3	18	28	-26	1	18	15	-390

Теперь восстановим коэффициенты многочлена по значения в точках.

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}$$

Я правда не знаю в каком месте это БЫСТРОЕ преобразование Фурье.
$$A(x) = 18 \cdot \frac{(x+1)(x-2)(x+2)(x-3)(x+3)}{(1+1)(1-2)(1+2)(1-3)(1+3)} + 2 \cdot \frac{(x-1)(x-2)(x+2)(x-3)(x+3)}{(-1-1)(-1-2)(-1+2)(-1-3)(-1+3)} \\ + 290 \cdot \frac{(x-1)(x+1)(x+2)(x-3)(x+3)}{(2-1)(2+1)(2+2)(2-3)(2+3)} + (-18) \cdot \frac{(x-1)(x+1)(x-2)(x-3)(x+3)}{(-2-1)(-2+1)(-2-2)(-2-3)(-2+3)} \\ + (1722) \cdot \frac{(x-1)(x+1)(x-2)(x+2)(x+3)}{(3-1)(3+1)(3-2)(3+2)(3+3)} + (-390) \cdot \frac{(x-1)(x+1)(x-2)(x+2)(x-3)}{(-3-1)(-3+1)(-3-2)(-3+2)(-3-3)}$$

МАГИЯ!

$$A(x) = 4x^5 + 8x^4 + 3x^3 + 2x^2 + x$$

Other: $A(x) = 4x^5 + 8x^4 + 3x^3 + 2x^2 + x$

1.7Задача 8

1.7.11.

Заметим, что $\omega = 3$, проверим это с помощью программы, ура у нас получилось.

1.7.2 2.