

Machine learning: differentiable programming

Why depth?

Intuitions:

- Multiple levels of abstraction
- Multiple steps of computation
- Empirically works well
- Theory is still incomplete

18

Deep learning models

Feedforward neural networks

$$score = \Box + \Box \sigma \left(\Box + \Box \sigma \left(\Box + \Box \sigma \left(\Box + \Box \sigma \right) \right) \right)$$

score = FeedForward(FeedForward($\phi(x)$)) = FeedForward $(\phi(x))$

Representing images

Problems:

- Matrix is huge (depending on resolution of image)
- Does not capture the spatial structure (locality) of images

Convolutional neural networks

[Andrej Karpathy's demo]

Convolutional neural networks

[Andrej Karpathy's demo]

 $\mathsf{AlexNet}(x) = \mathsf{FeedForward}^3(\mathsf{MaxPool}(\mathsf{Conv}^3(\mathsf{MaxPool}(\mathsf{Conv}(\mathsf{MaxPool}(\mathsf{Conv}(x)))))))$

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

1,1	1,0	1,	0	0								
0,,0	1,	1,,0	1	0		1	0	1		4		
0,,1	0,	1,	1	1	\otimes	0	1	0				
0	0	1	1	0		1	0	1				
0	1	1	0	0	filter					feature map		

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

Producing Feature Maps

Original

Sharpen

Edge Detect

"Strong" Edge Detect

Feature Extraction with Convolution

- 1) Apply a set of weights a filter to extract **local features**
 - 2) Use multiple filters to extract different features
 - 3) Spatially share parameters of each filter

CNNs for Classification

- I. Convolution: Apply filters to generate feature maps.
- 2. Non-linearity: Often ReLU.
- 3. Pooling: Downsampling operation on each feature map.

Train model with image data.

Learn weights of filters in convolutional layers.

Pooling

max pool with 2x2 filters and stride 2

```
tf.keras.layers.MaxPool2D(
    pool_size=(2,2),
    strides=2
)
```


- 1) Reduced dimensionality
- 2) Spatial invariance

Representing natural language

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

What causes precipitation to fall? gravity

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail?

graupel

Where do water droplets collide with ice crystals to form precipitation?

within a cloud

CS221

12

Embedding tokens

In meterology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

Meaning of words/tokens depends on context...

Representing sequences

Two implementations:

- Recurrent neural networks
- Transformers

CS221

16

Recurrent neural networks

In meterology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

Recurrent neural networks

Collapsing to a single vector

Example text classification model:

In meterology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

 $score = \mathbf{w} \cdot \mathbf{Collapse}(\mathbf{SequenceModel}^3(\mathbf{EmbedToken}(\mathbf{x})))$

CS221 22

Long-range dependencies

[CLS] What causes precipitation to fall? [SEP] In meterology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

Problem: RNN (and ConvNets) are very local

CS221 2

Attention mechanism

Layer normalization and residual connections

CS221 2

Transformer

TransformerBlock: SequenceModel-

Processes each object x_i in context.

TransformerBlock(x) = AddNorm(FeedForward, AddNorm(Attention, x))

30

BERT

[CLS] What causes precipitation to fall? [SEP] In meterology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

 $BERT(x) = TransformerBlock^{24}(EmbedToken(x))$

Generating tokens

Generating sequences

 $x \\ the \ quick \ brown$ Generate next token in the sequence. Language Model(x) = Generate Token(Collapse(Sequence Model(Embed Token(x))))

Sequence-to-sequence models

Applications:

- Machine translation: sentence to translation
- Document summarization: document to summary
- Semantic parsing: sentence to code

CS221 3

Summary

FeedForward Conv MaxPool EmbedToken SequenceRNN SimpleRNN LSTM Attention AddNorm TransformerBlock BERT Collapse GenerateToken LanguageModel SequenceToSequence

CS221 4