TRAIN OCCUPANCY PREDICTION

dieter.dewitte@ugent.be

Lyon, February 6, 2018

TUESDAY MORNING PROGRAM

- 9:30 Intro / iRail / Data Prep & EDA
- 9:50 Setup
- 10:00 Hands-on: Exploratory Data Analysis
- 11:00 Recap & Break
- 11:10 Machine Learning Quick Overview
- 11:30 Hands-on: Building your first model(s)
- 12:00 Recap & Tuning
- 12:05 Final sprint: Who can build the best model?
- 12:30 Lunch Break

BIG DATA INTRODUCTION

1,600+ READS ON Scribd

13,000+HOURS

Google

Google Search

1,700+ Firefox DOWNLOADS

12,000+

Craigslist Ads

NÉW ADS POSTED ON craigslist

695,000+ facebook STATUS UPDATES

WALL

510,040 COMMENTS

skype

370,000+ MINUTES VOICE CALLS ON

100 +NEW Linked in ACCOUNTS

associated content ARTICLE IS PUBLISHED

WORLD'S LARGEST COMMUNITY CREATED CONTENT!!

in

98,000+ TWEETS

in

S

USER BEHAVIOR = BIG DATA

USERS THEMSELVES ARE DATA SOURCES...

DEVICES PUSH DATA GENERATION

IN CASE YOU AREN'T CONVINCED YET...

INDUSTRY 4.0

Scale of Industrial Internet

Social media versus electric generating power source

2012 Twitter Usage

Gas Turbine Compressor Blade Monitoring potential*

VS.

Data volume potential is 7x greater from a gas turbine than current Twitter usage

NOT JUST 'MY DATA IS BIGGER THAN

YOURS'...

Sewers: Minkinson Global Institute, Twitter, Cisco, Gartner, EWC, SAS, IBM, MEPTEC, GAS

TRAIN OCCUPANCY PREDICTION

SPITSGIDS

A crowd-funded project in 2016 led by iRail and TreinTramBus

— Question:

"How can we avoid busy trains?"

- Idea: Motivate people to take another train by informing them about train occupancy beforehand.
- Solution: Add a module to iRail to measure train occupancy

YOUR MISSION: BUILD A WINNING MODEL

DATA PREPARATION & EXPLORATORY DATA ANALYSIS

THE DATA SCIENCE PROCESS (ITERATION)

UNDERSTANDING THE DATA DOMAIN (1)

— What is contained in the Query Logs?

16

<u>UNDERSTANDING THE DATA DOMAIN (2)</u>

— What 'features' can we extract from the query time?

— What does the Vehicle ID say?

To: Eupen

03/02/2018

- Vehicle Types: L, IC, P,... (IC = InterCity)
- 500 Train Series (Oostende -> Eupen)

IC 507

- 7: is the sequence number $(7:32 \rightarrow 10:43)$
- Seq nr. +25: Eupen -> Oostende!

From: Oostende

DATA PREPARATION: WHY & HOW?

- Machine Learning Algorithms require:
 - A dense dataset in m x n matrix form X
 - m Rows = data objects
 - n Columns = different attributes
 - Column values = <u>numerical</u> (!)
 - Supervised ML algorithms require a label vector Y
- How to?
 - How to make the data tabular?
 - Preprocessing of non-tabular data formats, (ex.: JSON)
 - Make all attribute values numerical?
 - Categorical Data Transformation
 - Label Encoding: {Yes, No} → {0,1}
 - One-Hot-Encoding $\{\text{Single, Married, Divorced}\} => \{[1,0,0],[0,1,0],[0,0,1]\}$
 - Improve matrix quality
 - Missing data imputation: NaN => average or drop
 - Removing near-duplicate data: averaging
 - Numerical Scaling to improve learning algorithm performance: {125k, 100k, 75k} => {1, 0,8, 0,6} (min-max scaling)
 - Are columns independent? Can we remove some?

Objects

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Attributes

UNDERSTANDING THE DATA WITH EDA

- Do we really need a Machine learning algorithm!?
 - "Seeing is understanding"
 - Humans are quite capable of performing visual pattern recognition!
- Methods for Exploratory Data Analysis:
 - Summary Statistics: mean, median, range, variance,...
 - Visualization: histograms, boxplots, scatter plots, correlation plots

HANDS-ON: SETUP & EDA

SETUP YOUR LOCAL (BIG DATA) ENVIRONMENT

- 1. ssh-client (<u>www.putty.org</u>)
- 2. Connect to imec cloud
 - Per 2 you'll get Ubuntu VM
 - Pre-installed with docker
 - Connect via putty to <IP, pwd>
- 3. We'll use a docker image:
 - https://github.com/jupyter/docker-stacks
 - Learn more about docker:
 - https://github.com/wsargent/docker-cheat-sheet
- 4. All course material on Github: drdwitte / lyon
 - Lyon_Installation.docx
 - Download/Upload data from Kaggle site
 - Notebooks are numbered *.ipynb files
 - NOTE: This slide deck is also in the GitHub Repo
 - Have a look at the pandas cheat sheet

EDA: RECAP

MACHINE LEARNING: QUICK OVERVIEW

BATTLE OF THE BUZZWORDS

SO WHAT IS MACHINE LEARNING?

Definition: (Arthur Samuel, 1959)

ML is a field of computer science that gives computers the ability to <u>learn</u> without being explicitly programmed

LEARNING ALGORITHMS

Supervised Learning

(= learning from labeled examples)

cat

WHAT IS LEARNING?

- Parameters of a machine learning algorithm are often found my minimizing a cost function
 - This minimization process = learning process
 - Minimization often via gradient descent

- Example Univariate Linear Regression:

 - Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$ Cost function $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) y^{(i)})^2$
 - Gradient Descent
 - Stepwise procedure to find minimum of J

SUPERVISED LEARNING

Regression

- Y is continuous

Classification

- Y is categorical
- Ex.: predicting housing prices Ex.: tumor is benign/malignant

UNSUPERVISED LEARNING

Clustering

- Distance metric d
- Cluster:
 - p, q in same cluster d(p,q) small
 - p, q different cluster d(p,q) large
 Projection:

Dimensionality Reduction

- Curse of dimensionality:
 - in high dimensional spaces almost all p,q are at the same d
- - on a lower dimension with minimal information loss

Which of these Machine Learning types do we need for occupancy prediction?

CLASSIFICATION ZOO: LOGISTIC REGRESSION

– Find the parameters w which...

$$\hat{y} = \text{sign}(\mathbf{w}^{\top}\mathbf{x})$$

- ... separates 2 classes

- Returns class probabilities: $P[y=1 \mid x] = sigmoid(\mathbf{w}^{\top}\mathbf{x})$

ZOO: SVM

- Support Vector Machine
 - is a learning algorithm that tries to find the optimal decision boundary
- Optimal:
 - maximize the width of the 'gutter' b (support vectors)
- Distance = kernel(x,y)
 - Often Gaussian, but kernels for many cases exist:
 - String kernels
 - Graph kernels
 - ...

ZOO: INSTANCE-BASED LEARNING

 Classify by memorizing training data and use k most 'similar' items to vote on class label (k nearest neighbours)

— "If it walks like a duck, quacks like a duck, then it's probably a duck"

- Drawback:
 - Curse of dimensionality
 - Many distances to calculate!

ZOO: DECISION TREES

- Greedy (top-down) algorithm that tries to split the data based on an attribute test in order to optimize a purity criterion
- Impurity:
 - Gini index
 - Entropy
 - misclassification error

- ++White box model!
- -- Overfitting issues

There could be more than one tree that fits the same data!

ZOO: ENSEMBLE METHODS – RANDOM FOREST

- Decision Trees are sensitive to overfitting (greedy strategy)
- What about training multiple trees?
 - Each tree has
 - a subset of the data
 - a sub selection of the features
- Idea
 - Suppose we have 25 independent trees with error rate 0.35
 - Esemble error rate: $\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$

NAIVE BAYES

— Which class C has the highest probability for a record with features A1,... An?

— How to estimate P(C | A1, A2,... An)?

Bayes Theorem!

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Naïve? P(A1, A2,...An | C) = P(A1 | C) * P(A2 | C) * ...

BUILD YOUR FIRST MODEL(S)

Have a look at sklearn cheat sheet

RECAP & TUNING

DIAGNOSTIC I: BIAS VS VARIANCE

 Learning curves shows the evolution of the train and test error as a function of training set size

BIAS: model is too simple

VARIANCE: model is overfitting => bigger m or less features

DIAGNOSTIC II: MODEL CONVERGENCE

Plot the cost function
 as a function of the
 number of iterations
 of the learning
 algorithm

DIAGNOSTIC III: ABLATIVE ANALYSIS

For complex ML pipelines with many sub-components we may want to investigate how much does each part add to the overall performance?

 Ablative analysis: remove one component at a time and measure effect on system accuracy

DIAGNOSTIC IV: CONFUSION MATRIX

Comparing predictions to actual class labels

- Where did my algorithm get confused?
 - ⇒ improvement!
- Figure on the right:
 - Jazz is hard to identify
 - Rock and blues are ofte mixed up

FINAL SPRINT