Appendix B Supporting Material: Additional Statistics of the Empirical Analysis

This section provides supplementary information on the data used in the empirical analysis. It discusses statistics and estimation results. The data used is harmonized cross-country micro-level income data from the Luxembourg Income Study (LIS). Because our focus is on changes in MPS, MIS, and other statistics over time, we only use those countries that report income data for all waves at least between the 2nd (around 1985) and the 9th wave (around 2014). These are 16 high- and middle-income countries.

Table S-1 shows the countries and years used in our analysis. The number of observation years ranges between 8 (Denmark, Finland) and 26 (Germany). But thanks to the wave availability restriction imposed, they all span the period from the 1980s to the 2010s, allowing us to analyze the development over these decades.

Table S-2 to Table S-17 show MPS, MIS = L(MPS) and the Gini coefficient computed for all available years per country. We do this both for total household income and disposable household income. In both cases, equivalized income is used, hence, we divide household income by the square root of the number of household members.

Following the literature, we also weight observations by the number of household members times household weights. There are a couple of countries which show marked increases in both MPS and the Gini coefficient, such as Germany, the US, and Australia. But in some other countries, such as Norway, Denmark, and Canada, MPS increased even though the Gini coefficient stayed relatively constant. In the Netherlands, MPS even decreased, a development that is not visible based on the Gini coefficient. MIS does not show pronounced changes over time in many countries. If MPS rises and MIS stays constant, such as in the US, Germany, and Finland, there are more households below the mean but their share of total income has not increased, indicating that they are relatively worse off. The tables show that the Gini coefficient based on disposable income is typically considerably lower than based on total household income, as the state redistributes from the top to the bottom. As discussed in the article, the differences between total and disposable income are only marginal for MPS, because middle-class households around the mean are often not affected as strongly by redistribution.

Table S-18 provides the growth rate of mean income g_{μ} , the growth rate of mean income for all individuals below the mean, $g_{sub\mu}$, as well as distributional metrics between the first and last available year. We can see that the group-specific mean income of individuals below national mean increased more than national mean income for both gross and disposable incomes in three countries (Denmark, Mexico, and Poland), while both MIS and MPS increased in Denmark and Poland, and decreased in Mexico. So individuals below mean income were relatively better off in the three countries because their MIS increased more than MPS did. But in the other 13 countries MPS always increased more than MIS did, making individuals at the middle and the bottom of the distribution worse off.

Table S-19 is based on the summary statistics of the 5-percentile income shares of each country. We find that the largest variation always happened to the top 5% income share, and the second largest happened to either the bottom or the second-highest (top 19th) 5% income share. We also look at the summary statistics of the interval percentiles between MIS and the bottom 6 decile income shares including MIS itself, and find that the largest variation happened to either MIS or the interval percentile between MIS and the bottom 60% income share. The second largest variation happened to the interval percentiles between MIS and either the bottom 5% income share or the bottom 50% income share.

The following three tables provide robustness checks to the panel data analysis in the paper. Table S-20 reruns the panel regressions of changes in MPS and MIS on mean income growth, both contemporaneously and with a lag. The lag is statistically

insignificant in most specification, yielding no evidence for a delayed impact of growth on MPS and MIS. The main coefficients tend to change very little with the inclusion of the lags.

Table S-21 and Table S-22 rerun the panel regressions including a country group dummy. It is remarkable that the country group dummies capture a lot of variation otherwise contained in the country fixed effects, hinting to the importance of regulatory, welfare and labor market regimes that distinguish the country groups.

While the paper used MPS and MIS as the dependent variables, Table S-23 considers the impact of mean income changes on the Gini coefficient, the skewness and the Pietra index instead. Most of the results are insignificant when the Gini coefficient and the skewness are used. The Pietra index shows similar reactions as MPS and MIS, which makes sense as they are components of the Pietra index.

S-24 to Table S-27 show how well the development of MPS based on disposable income can be approximated by eight different parametric forms. For each country and year, 5-percentile income shares are used (5\%, 10\%, 15\%...), mimicking the grouped-data available in many cross-country data sets. The eight parametric LCs from Table 2 in the paper (Lognormal, Chotikapanich, Pareto, Rohde, Weibull, Wang/Smyth, Villaseñor/Arnold and Kakwani) are fitted to these 20 data points. Based on their mean squared error minimizing parameter(s), these forms imply a particular MPS value, which one can compute with the formulas from Table 3 in the paper. Here we present the MPSimplied by all the parametric forms, together with the empirical MPS, highlighting in bold which form comes closest to the empirical value. We can see that there is a lot of heterogeneity between the parametric functions in terms of their ability to capture the empirical MPS. The Pareto LC typically implies MPS values which are too high, while the Lognormal-implied ones often lie below the empirical values. Many of the other forms come quite close and in particular the Rohde and Wang/Smyth LCs perform best in capturing the evolution of MPS in many countries. As described in the article, the Kakwani LC clearly dominates the other forms in terms of fit at the 20 percentile points, but we see a different picture when it comes to representing MPS. Researchers choosing parametric LCs should take care.

Table S-1: Available LIS Microdata Across Countries and Years

Year	AU	CA	DE	DK	ES	FI	IL	IT	LU	MX	NL	NO	PL	TW	UK	US
1978			X													
1979							X					X			X	X
1980	37	**	37		X									**		
1981	X	X	X											X		
1982			3.7								3.7					
1983			X							37	X					
1984	37		X		37				37	X						
1985	X				X		37	37	X			37	37	37	37	37
1986		37	37	37		3.7	X	X			37	X	X	X	X	X
1987		X	X	X		X		X			X					
1988	v		37					37		37						
1989	X		X		X			X		X	v					
1990		X	X		Λ	X		X	X		X	X		X	v	X
1991		Λ	Λ	v		Λ	v	Λ	Λ	X		Λ	v	Λ	X	Λ
1992 1993				X			X	X		Λ	X		X			
1993 1994		X	X					Λ	X	X	Λ				X	X
1994 1995	X	Λ	X	X	X	X		X	Λ	Λ		X	X	X	X	Λ
1996	Λ		Λ	Λ	Λ	Λ		Λ		X		Λ	Λ	Λ	Λ	
1990 1997		X					X		X	Λ				X		X
1998		X	X				Λ	X	Λ	X				Λ		Λ
1999		Λ	Λ					Λ		Λ	X		X		X	
2000		X	X	X	X	X		X	X	X	11	X	11	X	71	X
2001	X	11	X	71	71	21		X	11	71		71		71		11
2002	21		X					71		X						
2003	X		X							21						
2004	X	X	X	X	X	X		X	X	X	X	X	X		X	X
2005	11		X	11			X		11	11		11		X	11	11
2006			X											11		
2007		X	X	X	X	X	X		X		X	X	X	X	X	X
2008	X		X					X		X						
2009			X													
2010	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
2011			X													
2012			X				X			X						
2013		X	X	X	X	X			X		X	X	X	X	X	X
2014	X		X				X	X								
2015			X													
2016							X						X	X		X

Notes: The table shows the years for which country microdata is available in the LIS database and has been used for the empirical analysis.

Table S-2: Statistics for Australia (AU)

	To	otal Incor	ne	Disposable Income			
Year	MPS	MIS	Gini	MPS	MIS	Gini	
1981	0.5952	0.3564	0.3266	0.5835	0.3782	0.2807	
1985	0.6045	0.3557	0.3464	0.5811	0.3714	0.2915	
1989	0.6159	0.3560	0.3534	0.5992	0.3769	0.3025	
1995	0.6342	0.3577	0.3539	0.6163	0.3768	0.3043	
2001	0.6399	0.3588	0.3636	0.6241	0.3800	0.3141	
2003	0.6439	0.3651	0.3592	0.6307	0.3888	0.3099	
2004	0.6398	0.3711	0.3574	0.6325	0.3971	0.3131	
2008	0.6649	0.3817	0.3788	0.6540	0.4052	0.3332	
2010	0.7176	0.4111	0.3696	0.7100	0.4351	0.3307	
2014	0.6878	0.3908	0.3899	0.6676	0.4086	0.3385	

Table S-3: Statistics for Canada (CA)

	To	otal Incor	ne	Disposable Income			
Year	MPS	MIS	Gini	MPS	MIS	Gini	
1981	0.6257	0.3855	0.3119	0.6159	0.3996	0.2831	
1987	0.6665	0.4116	0.3175	0.6571	0.4306	0.2821	
1991	0.6553	0.4009	0.3218	0.6450	0.4232	0.2806	
1994	0.6392	0.3870	0.3269	0.6285	0.4108	0.2836	
1997	0.6468	0.3851	0.3331	0.6368	0.4085	0.2912	
1998	0.6557	0.3813	0.3566	0.6418	0.4015	0.3109	
2000	0.6582	0.3838	0.3593	0.6497	0.4091	0.3160	
2004	0.6430	0.3745	0.3592	0.6370	0.3979	0.3191	
2007	0.6438	0.3788	0.3583	0.6356	0.4012	0.3177	
2010	0.6277	0.3689	0.3579	0.6184	0.3895	0.3173	
2013	0.6283	0.3619	0.3577	0.6248	0.3857	0.3208	

Table S-4: Statistics for Germany (DE)

	Т	otal Incor	me	Disposable Income				
Year	MPS	MIS	Gini	MPS	MIS	Gini		
1978	0.5815	0.3887	0.2918	0.5630	0.3926	0.2635		
1981	0.6018	0.4007	0.2732	0.5985	0.4219	0.2439		
1983	0.5426	0.3623	0.2855	0.5310	0.3696	0.2605		
1984	0.5981	0.3795	0.3052	0.5959	0.4089	0.2540		
1987	0.5941	0.3825	0.3002	0.6004	0.4200	0.2509		
1989	0.6076	0.3924	0.3077	0.6089	0.4248	0.2556		
1991	0.6324	0.3995	0.3106	0.6348	0.4299	0.2670		
1994	0.6227	0.3932	0.3131	0.6303	0.4349	0.2621		
1995	0.6243	0.3914	0.3146	0.6264	0.4326	0.2573		
1998	0.6363	0.4022	0.3117	0.6262	0.4369	0.2530		
2000	0.6311	0.3972	0.3181	0.6196	0.4304	0.2586		
2001	0.5690	0.3565	0.3345	0.5540	0.3824	0.2723		
2002	0.5687	0.3518	0.3317	0.5551	0.3812	0.2703		
2003	0.5738	0.3533	0.3372	0.5550	0.3794	0.2715		
2004	0.5803	0.3600	0.3361	0.5680	0.3902	0.2757		
2005	0.5930	0.3593	0.3504	0.5829	0.3916	0.2930		
2006	0.5926	0.3606	0.3437	0.5837	0.3933	0.2875		
2007	0.6000	0.3634	0.3461	0.5906	0.3963	0.2899		
2008	0.6023	0.3668	0.3441	0.5936	0.3981	0.2891		
2009	0.6553	0.3979	0.3385	0.6481	0.4341	0.2848		
2010	0.6593	0.3976	0.3390	0.6472	0.4269	0.2854		
2011	0.6637	0.4027	0.3422	0.6517	0.4339	0.2861		
2012	0.6609	0.3974	0.3455	0.6542	0.4331	0.2890		
2013	0.6540	0.3923	0.3492	0.6456	0.4265	0.2916		
2014	0.6513	0.3901	0.3441	0.6459	0.4251	0.2894		
2015	0.6434	0.3813	0.3528	0.6340	0.4148	0.2958		

Table S-5: Statistics for Denmark (DK)

	To	otal Incor	ne	Disposable Income			
Year	MPS	MIS	Gini	MPS	MIS	Gini	
1987	0.6091	0.3876	0.2798	0.6292	0.4261	0.2521	
1992	0.6159	0.3884	0.2828	0.6290	0.4347	0.2371	
1995	0.6380	0.4320	0.2621	0.6309	0.4531	0.2207	
2000	0.6382	0.4260	0.2714	0.6258	0.4461	0.2248	
2004	0.6391	0.4256	0.2709	0.6253	0.4421	0.2284	
2007	0.6452	0.4244	0.2829	0.6315	0.4412	0.2391	
2010	0.6602	0.4291	0.2925	0.6460	0.4422	0.2518	
2013	0.6641	0.4368	0.2888	0.6546	0.4550	0.2505	

Table S-6: Statistics for Spain (ES)

	To	otal Incor	ne	Disposable Income			
Year	MPS	MIS	Gini	MPS	MIS	Gini	
1980	0.6315	0.3987	0.3203	0.6315	0.3987	0.3203	
1985	0.6227	0.4030	0.3149	0.6227	0.4030	0.3149	
1990	0.6338	0.4091	0.3040	0.6338	0.4091	0.3040	
1995	0.6376	0.3766	0.3513	0.6376	0.3766	0.3513	
2000	0.6503	0.3958	0.3356	0.6503	0.3958	0.3356	
2004	0.6372	0.3937	0.3177	0.6375	0.3941	0.3162	
2007	0.6476	0.3920	0.3265	0.6319	0.3940	0.3036	
2010	0.6315	0.3626	0.3466	0.6166	0.3649	0.3274	
2013	0.6187	0.3458	0.3771	0.5944	0.3504	0.3405	

 ${\bf Table} \ \ {\bf S-7:} \ \ {\bf Statistics} \ \ {\bf for} \ \ {\bf Finland} \ \ ({\bf FI})$

	To	otal Incor	ne	Disposable Income			
Year	MPS	MIS	Gini	MPS	MIS	Gini	
1987	0.5039	0.3432	0.2591	0.4876	0.3589	0.2069	
1991	0.5421	0.3722	0.2571	0.5266	0.3875	0.2088	
1995	0.5452	0.3700	0.2718	0.5386	0.3988	0.2171	
2000	0.5183	0.3361	0.3034	0.5033	0.3522	0.2558	
2004	0.5826	0.3769	0.3109	0.5703	0.3965	0.2658	
2007	0.5608	0.3608	0.3073	0.5483	0.3770	0.2665	
2010	0.5752	0.3693	0.3043	0.5620	0.3865	0.2632	
2013	0.5578	0.3585	0.3057	0.5429	0.3756	0.2609	

Table S-8: Statistics for Israel (IL)

	To	otal Incor	ne	Disposable Income			
Year	MPS	MIS	Gini	MPS	MIS	Gini	
1979	0.5605	0.3232	0.3585	0.5253	0.3320	0.3038	
1986	0.6062	0.3475	0.3772	0.5629	0.3559	0.3098	
1992	0.6253	0.3654	0.3631	0.5825	0.3702	0.3055	
1997	0.6335	0.3511	0.3971	0.5883	0.3549	0.3371	
2001	0.6339	0.3392	0.4136	0.5823	0.3404	0.3486	
2005	0.6234	0.3278	0.4220	0.5832	0.3274	0.3754	
2007	0.6270	0.3305	0.4170	0.5851	0.3267	0.3677	
2010	0.6278	0.3284	0.4290	0.5864	0.3218	0.3836	
2012	0.6251	0.3340	0.4105	0.5900	0.3306	0.3697	
2014	0.6392	0.3441	0.4015	0.6027	0.3379	0.3586	
2016	0.6275	0.3438	0.3915	0.5854	0.3383	0.3451	

Table S-9: Statistics for Italy (IT)

Year	MPS	MIS	Gini
1986	0.5944	0.3778	0.3093
1987	0.5533	0.3421	0.3327
1989	0.6036	0.3888	0.3033
1991	0.6172	0.4009	0.2910
1993	0.6155	0.3673	0.3406
1995	0.6125	0.3685	0.3369
1998	0.6039	0.3653	0.3422
2000	0.6024	0.3711	0.3291
2004	0.6206	0.3850	0.3339
2008	0.6162	0.3856	0.3219
2010	0.5946	0.3687	0.3196
2014	0.5778	0.3538	0.3204

Notes: The statistics are based on LIS equivalized household income microdata. Equivalized income is obtained by dividing by the square root of household members. Observations are weighted by the number of household members times household weights. The data for Italy does not differentiate between total and disposable income.

Table S-10: Statistics for Luxembourg (LU)

	To	otal Incor	ne	Disposable Income			
Year	MPS	MIS	Gini	MPS	MIS	Gini	
1985	0.5348	0.3825	0.2357	0.5348	0.3825	0.2357	
1991	0.5933	0.4214	0.2388	0.5933	0.4214	0.2388	
1994	0.6045	0.4312	0.2354	0.6045	0.4312	0.2354	
1997	0.5843	0.4045	0.2610	0.5843	0.4045	0.2610	
2000	0.5905	0.4050	0.2621	0.5905	0.4050	0.2621	
2004	0.6204	0.4029	0.3065	0.6129	0.4225	0.2696	
2007	0.6434	0.4112	0.3101	0.6383	0.4321	0.2764	
2010	0.6073	0.3880	0.3047	0.5917	0.3968	0.2702	
2013	0.5824	0.3646	0.3172	0.5670	0.3734	0.2793	

Table S-11: Statistics for Mexico (MX)

Year	MPS	MIS	Gini
1984	0.6347	0.3350	0.4328
1989	0.6672	0.3435	0.4762
1992	0.7334	0.3608	0.5005
1994	0.7401	0.3582	0.5052
1996	0.7139	0.3528	0.4913
1998	0.7042	0.3351	0.5047
2000	0.7208	0.3473	0.4992
2002	0.7087	0.3556	0.4749
2004	0.6479	0.3276	0.4710
2008	0.6640	0.3227	0.4870
2010	0.6791	0.3408	0.4613
2012	0.7026	0.3464	0.4672

Notes: The statistics are based on LIS equivalized household income microdata. Equivalized income is obtained by dividing by the square root of household members. Observations are weighted by the number of household members times household weights. The data for Mexico does not differentiate between total and disposable income.

Table S-12: Statistics for the Netherlands (NL)

	To	otal Incor	ne	Disposable Income			
Year	MPS	MIS	Gini	MPS	MIS	Gini	
1983	0.6219	0.4094	0.2955	0.6127	0.4292	0.2517	
1987	0.6294	0.4211	0.2815	0.6070	0.4338	0.2280	
1990	0.6016	0.3972	0.2869	0.5984	0.4076	0.2633	
1993	0.5804	0.3698	0.2989	0.5556	0.3667	0.2558	
1999	0.5860	0.3927	0.2742	0.5726	0.4117	0.2303	
2004	0.5777	0.3712	0.3068	0.5615	0.3845	0.2636	
2007	0.5618	0.3525	0.3254	0.5688	0.3930	0.2744	
2010	0.5386	0.3444	0.3045	0.5305	0.3671	0.2544	
2013	0.5322	0.3367	0.3150	0.5291	0.3653	0.2615	

Table S-13: Statistics for Norway (NO)

	To	otal Incor	me	Disposable Income			
Year	MPS	MIS	Gini	MPS	MIS	Gini	
1979	0.4837	0.3193	0.2738	0.4789	0.3428	0.2234	
1986	0.5468	0.3680	0.2645	0.5532	0.3950	0.2337	
1991	0.5032	0.3393	0.2714	0.4935	0.3558	0.2315	
1995	0.5498	0.3621	0.2820	0.5505	0.3899	0.2414	
2000	0.5354	0.3552	0.2975	0.5423	0.3841	0.2591	
2004	0.6070	0.4016	0.3110	0.6152	0.4319	0.2816	
2007	0.6532	0.4346	0.2886	0.6403	0.4531	0.2449	
2010	0.6603	0.4373	0.2929	0.6462	0.4547	0.2480	
2013	0.6542	0.4301	0.2951	0.6405	0.4485	0.2500	

Table S-14: Statistics for Poland (PL)

	To	otal Incor	ne	Disposable Income				
Year	MPS	MIS	Gini	MPS	MIS	Gini		
1986	0.6151	0.4096	0.2708	0.6151	0.4096	0.2708		
1992	0.6417	0.4463	0.2621	0.6417	0.4463	0.2621		
1995	0.5773	0.3552	0.3113	0.5853	0.3592	0.3111		
1999	0.5978	0.3909	0.2930	0.6045	0.4003	0.2873		
2004	0.5970	0.3734	0.3210	0.6004	0.3803	0.3156		
2007	0.6377	0.4097	0.3144	0.6387	0.4119	0.3110		
2010	0.6362	0.4091	0.3110	0.6365	0.4097	0.3095		
2013	0.6322	0.3992	0.3169	0.6316	0.3977	0.3159		
2016	0.6426	0.4255	0.2836	0.6426	0.4247	0.2833		

Table S-15: Statistics for Taiwan (TW)

	To	otal Incor	me	Disp	osable In	come
Year	MPS	MIS	Gini	MPS	MIS	Gini
1981	0.6089	0.4196	0.2715	0.6056	0.4193	0.2672
1986	0.6272	0.4320	0.2762	0.6232	0.4317	0.2707
1991	0.6252	0.4256	0.2777	0.6224	0.4267	0.2725
1995	0.6214	0.4156	0.2884	0.6190	0.4162	0.2844
1997	0.6170	0.4106	0.2890	0.6110	0.4062	0.2874
2000	0.6202	0.4117	0.2920	0.6155	0.4094	0.2891
2005	0.6490	0.4218	0.3087	0.6453	0.4212	0.3053
2007	0.6472	0.4229	0.3044	0.6397	0.4148	0.3070
2010	0.6420	0.4159	0.3074	0.6364	0.4054	0.3166
2013	0.6530	0.4285	0.3045	0.6443	0.4187	0.3077
2016	0.6591	0.4345	0.2981	0.6519	0.4244	0.3031

Table S-16: Statistics for the United Kingdom (UK)

	To	otal Incor	ne	Disp	osable In	come
Year	MPS	MIS	Gini	MPS	MIS	Gini
1979	0.6002	0.3789	0.2950	0.6088	0.4075	0.2652
1986	0.6214	0.3645	0.3394	0.6110	0.3828	0.2959
1991	0.6345	0.3574	0.3705	0.6344	0.3825	0.3380
1994	0.6721	0.3819	0.3725	0.6764	0.4104	0.3415
1995	0.6319	0.3489	0.3798	0.6322	0.3756	0.3429
1999	0.6675	0.3779	0.3788	0.6656	0.3948	0.3497
2004	0.6893	0.3990	0.3747	0.6945	0.4229	0.3511
2007	0.6894	0.3958	0.3735	0.6795	0.4158	0.3399
2010	0.6905	0.4029	0.3718	0.6845	0.4286	0.3348
2013	0.6876	0.4040	0.3654	0.6813	0.4261	0.3307

Table S-17: Statistics for the United States (US)

	To	otal Incor	ne	Disp	osable In	come
Year	MPS	MIS	Gini	MPS	MIS	Gini
1979	0.6128	0.3542	0.3538	0.5924	0.3672	0.3089
1986	0.6177	0.3395	0.3836	0.5927	0.3477	0.3391
1991	0.6232	0.3411	0.3871	0.6020	0.3519	0.3449
1994	0.6444	0.3466	0.4138	0.6225	0.3589	0.3692
1997	0.6578	0.3561	0.4174	0.6340	0.3684	0.3717
2000	0.6621	0.3577	0.4201	0.6370	0.3726	0.3693
2004	0.6541	0.3514	0.4173	0.6343	0.3656	0.3727
2007	0.6465	0.3469	0.4153	0.6306	0.3571	0.3767
2010	0.6440	0.3427	0.4159	0.6225	0.3558	0.3690
2013	0.6547	0.3466	0.4244	0.6351	0.3609	0.3791
2016	0.6709	0.3531	0.4309	0.6521	0.3735	0.3825
	0.00-1	0.0 -00	-	0.000	0.000	0.0.0

Table S-18: Growth Rates of Mean Incomes and Distribution Metrics

Country	(Gross in	come da	ta			Di	sposable	income d	lata
	g_{μ}	$g_{sub\mu}$	g_{MPS}	g_{MIS}	g_{Gini}	g_{μ}	$g_{sub\mu}$	g_{MPS}	g_{MIS}	g_{Gini}
DK	0.551	0.566	0.083	0.113	0.031	0.547	0.559	0.039	0.064	-0.006
PL	0.782	0.797	0.102	0.165	-0.098	0.809	0.822	0.089	0.154	-0.098
MX	0.830	0.833	-0.053	-0.034	-0.081	0.830	0.833	-0.053	-0.034	-0.081
FI	0.231	0.226	-0.044	-0.051	-0.017	0.244	0.240	-0.050	-0.056	-0.019
IT	0.074	0.062	-0.074	-0.088	-0.042	0.074	0.062	-0.074	-0.088	-0.042
NL	0.160	0.125	-0.168	-0.216	0.062	0.147	0.134	-0.158	-0.175	0.037
ES	0.333	0.263	-0.030	-0.138	0.158	0.195	0.156	-0.073	-0.125	0.071
LU	0.189	0.159	-0.065	-0.105	0.034	0.155	0.115	-0.081	-0.132	0.035
CA	0.714	0.694	0.004	-0.065	0.128	0.700	0.685	0.014	-0.036	0.118
DE	0.204	0.102	0.096	-0.019	0.173	0.119	0.062	0.112	0.053	0.109
US	0.779	0.758	0.087	-0.003	0.179	0.777	0.758	0.091	0.017	0.192
NO	0.883	0.883	0.261	0.258	0.072	0.883	0.880	0.252	0.236	0.106
TW	0.782	0.772	0.076	0.034	0.089	0.750	0.735	0.071	0.012	0.118
AU	0.825	0.815	0.135	0.088	0.162	0.831	0.821	0.126	0.074	0.171
IL	0.871	0.864	0.107	0.060	0.084	0.889	0.879	0.103	0.019	0.120
UK	0.852	0.841	0.127	0.062	0.193	0.857	0.847	0.106	0.044	0.198

Notes: The growth of a variable is calculated between the first and last year available, where to keep the statistic units comparable, the first year of ES, FI, IT, and LU is 2004, IL 2010, MX 1994, and PL 1995. g_{μ} is the growth rate of national mean income, $g_{sub\mu}$ is the growth rate of mean income for individuals below mean income. The left 5 columns are calculated from gross income data, and the right 5 columns are from disposable income data.

Table S-19: Top 2 Largest Standard Deviations of Interval Income Shares

Country	CA	IL	DE	MX	US	FI	TW	UK	AU	DK	LU	NO	ES	IT	NL	PL
P5	0.001	0.004	0.002	0.003	0.001	0.001	0.003	0.003	0.002	0.003	0.003	0.002	0.003	0.002	0.005	0.006
P95	0.002	0.004	0.002	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003
P100	0.013	0.013	0.010	0.020	0.018	0.016	0.005	0.019	0.016	0.008	0.009	0.019	0.009	0.010	0.013	0.015
MD5	0.013	0.013	0.022	0.012	0.008	0.017	0.008	0.019	0.020	0.008	0.020	0.044	0.017	0.014	0.024	0.021
MD50	0.009	0.013	0.024	0.018	0.016	0.024	0.011	0.024	0.028	0.010	0.021	0.048	0.011	0.012	0.022	0.018
MD60	0.009	0.014	0.024	0.021	0.019	0.026	0.011	0.027	0.030	0.011	0.021	0.049	0.013	0.012	0.022	0.018
MIS	0.013	0.015	0.021	0.012	0.008	0.017	0.008	0.020	0.020	0.009	0.021	0.043	0.019	0.016	0.027	0.025

Notes: P5 is bottom 5% income share, P95 is the 19th percentile (second highest), P100 is the top 5% income share; D50 is the bottom 50% income share and D60 is the bottom 60% income share. MD5=MIS-P5, MD50=MIS-D50, MD60=MIS-D60. The data is for disposable income.

Table S-20: Panel Regressions of Changes in MPS and MIS on Mean Income Growth with Lags

Panel A: Nominal growth		$Dependent\ varie$	able: ΔMPS	
$growth_nom$	0.006	0.006	-0.001	0.006
	(0.011)	(0.006)	(0.014)	(0.006)
ag_growth_nom	-0.001	0.003	-0.001	0.003
	(0.004)	(0.002)	(0.005)	(0.002)
ΔMIS		1.066***		1.066***
		(0.114)		(0.104)
Adjusted R ²	0.0269	0.737	0.106	0.767
Country FE	Yes	Yes	Yes	Yes
Year FE	No	No	Yes	Yes
Time Trend	Yes	Yes	Yes	Yes
Observations	158	158	158	158
Countries	16	16	16	16
Panel B: Real growth		Dependent varie	able: ΔMPS	
$growth_real$	0.111**	0.011	0.151 **	0.036**
,. o a r cas	(0.048)	(0.019)	(0.062)	(0.012)
lag_growth_real	-0.008	-0.003	-0.005 **	-0.007*
ag_growne_read	(0.006)	(0.005)	(0.009)	(0.002)
ΔMIS	(0.000)	1.121***	(0.003)	1.115***
<u></u>		(0.121)		(0.116)
Adjusted R ²	0.0894	0.732	0.173	0.771
Country FE	Yes	Yes	Yes	Yes
Year FE	No	No	Yes	Yes
Γime Trend	Yes	Yes	Yes	Yes
Observations	145	145	145	145
	15	15	15	15
Panel C: Nominal growth		Dependent vari	able: ΔMIS	
	-0.001	Dependent vari	able: ΔMIS -0.007	-0.006
Panel C: Nominal growth_ growth_nom	-0.001 (0.008)	Dependent vari -0.004 (0.004)	able: ΔMIS -0.007 (0.013)	-0.006 (0.006)
Panel C: Nominal growth_	-0.001 (0.008) -0.003	Dependent vari -0.004 (0.004) -0.003	able: ΔMIS -0.007 (0.013) -0.004	-0.006 (0.006) -0.003
Panel C: Nominal growth_ growth_nom lag_growth_nom	-0.001 (0.008)	Dependent vari -0.004 (0.004) -0.003 (0.002)	able: ΔMIS -0.007 (0.013)	-0.006 (0.006) -0.003 (0.003)
Panel C: Nominal growth_ growth_nom lag_growth_nom	-0.001 (0.008) -0.003	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686***	able: ΔMIS -0.007 (0.013) -0.004	-0.006 (0.006) -0.003 (0.003) 0.696***
$Panel\ C:\ Nominal\ growth$ $growth_nom$ ag_growth_nom ΔMPS	-0.001 (0.008) -0.003 (0.004)	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066)	able: ΔMIS -0.007 (0.013) -0.004 (0.006)	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058)
Panel C: Nominal growth $growth_nom$ ag_growth_nom ΔMPS Adjusted \mathbb{R}^2	-0.001 (0.008) -0.003	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686***	able: ΔMIS -0.007 (0.013) -0.004	-0.006 (0.006) -0.003 (0.003) 0.696***
Panel C: Nominal growth $growth_nom$ ag_growth_nom ΔMPS Adjusted \mathbb{R}^2 Country FE	-0.001 (0.008) -0.003 (0.004)	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058)
Panel C: Nominal growth growth_nom ag_growth_nom ΔMPS Adjusted R ² Country FE Year FE	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738	able: ΔMIS -0.007 (0.013) -0.004 (0.006)	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes
Panel C: Nominal growth growth_nom ag_growth_nom \(\Delta MPS \) Adjusted R ² Country FE Year FE Fime Trend	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes
Panel C: Nominal growth growth_nom ag_growth_nom \(\Delta MPS \) Adjusted R ² Country FE Year FE Time Trend Observations	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes
Panel C: Nominal growth growth_nom lag_growth_nom ΔMPS Adjusted R ² Country FE Year FE Γime Trend Observations Countries	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes 158 16	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes Yes
Panel C: Nominal growth growth_nom ag_growth_nom \(\Delta MPS \) Adjusted R ² Country FE Year FE Time Trend Observations Countries Panel D: Real growth	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16 Dependent vari	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes Yes 158 16 able: ΔMIS	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes Yes 158 16
Panel C: Nominal growth growth_nom lag_growth_nom \(\Delta MPS \) Adjusted R ² Country FE Year FE Fime Trend Observations	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158 16	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16 Dependent vari 0.020	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes 158 16 able: ΔMIS 0.103*	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes Yes 158 16
Panel C: Nominal growth growth_nom ag_growth_nom AMPS Adjusted R ² Country FE Year FE Fime Trend Observations Countries Panel D: Real growth growth_real	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158 16	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16 Dependent vari 0.020 (0.020)	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes 158 16 able: ΔMIS 0.103* (0.057)	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes Yes 158 16
Panel C: Nominal growth prowth_nom ag_growth_nom AMPS Adjusted R ² Country FE Year FE Fime Trend Observations Countries Panel D: Real growth prowth_real	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158 16	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16 Dependent vari 0.020 (0.020) 0.000	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes 158 16 able: ΔMIS 0.103* (0.057) 0.002	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes Yes 158 16
Panel C: Nominal growth growth_nom ag_growth_nom AMPS Adjusted R ² Country FE Year FE Fime Trend Observations Countries Panel D: Real growth growth_real	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158 16	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16 Dependent vari 0.020 (0.020) 0.000 (0.004)	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes 158 16 able: ΔMIS 0.103* (0.057)	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes 158 16 0.005 (0.024) 0.005* (0.002)
Panel C: Nominal growth prowth_nom ag_growth_nom AMPS Adjusted R ² Country FE Year FE Fime Trend Observations Countries Panel D: Real growth prowth_real ag_growth_real	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158 16	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16 Dependent vari 0.020 (0.020) 0.000 (0.004) 0.631***	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes 158 16 able: ΔMIS 0.103* (0.057) 0.002	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes Yes 158 16 0.005 (0.024) 0.005* (0.002) 0.650***
Panel C: Nominal growth growth_nom ag_growth_nom \(\Delta MPS \) Adjusted R ² Country FE Year FE Time Trend Observations Countries Panel D: Real growth growth_real ag_growth_real \(\Delta MPS \)	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158 16	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16 Dependent vari 0.020 (0.020) 0.000 (0.004) 0.631*** (0.055)	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes 158 16 able: ΔMIS 0.103* (0.057) 0.002 (0.007)	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes 158 16 0.005 (0.024) 0.005* (0.002) 0.650*** (0.051)
Panel C: Nominal growth growth_nom ag_growth_nom AMPS Adjusted R ² Country FE Year FE Fime Trend Observations Countries Panel D: Real growth growth_real ag_growth_real AMPS Adjusted R ²	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158 16	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16 Dependent vari 0.020 (0.020) 0.000 (0.004) 0.631*** (0.055) 0.728	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes 158 16 able: ΔMIS 0.103* (0.057) 0.002 (0.007)	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes 158 16 0.005 (0.024) 0.005* (0.002) 0.650*** (0.051)
Panel C: Nominal growth prowth_nom ag_growth_nom Adjusted R ² Country FE Year FE Fime Trend Observations Countries Panel D: Real growth prowth_real ag_growth_real AMPS Adjusted R ² Country FE	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158 16 0.090* (0.043) -0.005 (0.005)	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16 Dependent vari 0.020 (0.020) 0.000 (0.004) 0.631*** (0.055) 0.728 Yes	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes 158 16 able: ΔMIS 0.103* (0.057) 0.002 (0.007)	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes 158 16 0.005 (0.024) 0.005* (0.002) 0.650*** (0.051) 0.759 Yes
Panel C: Nominal growth growth_nom lag_growth_nom AMPS Adjusted R ² Country FE Year FE Fime Trend Observations Countries Panel D: Real growth growth_real lag_growth_real AMPS Adjusted R ² Country FE Year FE Year FE	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158 16 0.090* (0.043) -0.005 (0.005)	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16 Dependent vari 0.020 (0.020) 0.000 (0.004) 0.631*** (0.055) 0.728 Yes No	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes 158 16 able: ΔMIS 0.103* (0.057) 0.002 (0.007)	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes 158 16 0.005 (0.024) 0.005* (0.002) 0.650*** (0.051) 0.759 Yes
Panel C: Nominal growth growth_nom ag_growth_nom AMPS Adjusted R ² Country FE Year FE Fime Trend Observations Countries Panel D: Real growth growth_real ag_growth_real AMPS Adjusted R ² Country FE	-0.001 (0.008) -0.003 (0.004) 0.0315 Yes No Yes 158 16 0.090* (0.043) -0.005 (0.005)	Dependent vari -0.004 (0.004) -0.003 (0.002) 0.686*** (0.066) 0.738 Yes No Yes 158 16 Dependent vari 0.020 (0.020) 0.000 (0.004) 0.631*** (0.055) 0.728 Yes	able: ΔMIS -0.007 (0.013) -0.004 (0.006) 0.0973 Yes Yes Yes 158 16 able: ΔMIS 0.103* (0.057) 0.002 (0.007)	-0.006 (0.006) -0.003 (0.003) 0.696*** (0.058) 0.765 Yes Yes 158 16 0.005 (0.024) 0.005* (0.002) 0.650*** (0.051) 0.759 Yes

Notes: Standard errors are in parentheses. Compared to the main regressions in the text, these regressions include the lagged value of mean income growth. Significant at: * p < 0.10, ** p < 0.05, *** p < 0.01.

Table S-21: Panel Regressions of Changes in MPS and MIS on Mean Income Growth with Country Group Dummies (Part 1)

Panel A: Nominal growth		$Dependent\ vari$	able: ΔMPS	
growth_nom	0.007*	0.001	0.003	0.002
	(0.004)	(0.002)	(0.005)	(0.002)
ΔMIS		1.049***		1.052***
		(0.053)		(0.054)
anglo	0.007	0.003	0.006	0.003
	(0.005)	(0.003)	(0.005)	(0.003)
nordic	0.011**	0.001	0.012**	0.001
_	(0.006)	(0.003)	(0.006)	(0.003)
med	-0.000	0.000	0.001	0.000
	(0.005)	(0.003)	(0.005)	(0.003)
Adjusted R ²	0.0434	0.730	0.110	0.721
Country FE	Yes	Yes	Yes	Yes
Year FE	No	No	Yes	Yes
Time Trend	Yes	Yes	Yes	Yes
Observations	159	159	159	159
Countries	16	16	16	16
Panel B: Real growth		$Dependent\ vari$	able: ΔMPS	
$growth_real$	0.085***	0.018	0.114 ***	0.031*
	(0.031)	(0.017)	(0.039)	(0.016)
ΔMIS	,	1.049***	, ,	1.047***
		(0.056)		(0.056)
anglo	0.006	0.003	0.006	0.003
	(0.005)	(0.003)	(0.005)	(0.003)
nordic	0.011*	0.001	0.013**	0.001
	(0.006)	(0.003)	(0.006)	(0.003)
med	0.000	0.000	0.003	0.000
	(0.005)	(0.003)	(0.005)	(0.003)
Adjusted R ²	0.0746	0.734	0.154	0.728
Country FE	Yes	Yes	Yes	Yes
Year FE	No	No	Yes	Yes
Γime Trend	Yes	Yes	Yes	Yes
Observations	148	148	148	148
Countries	15	15	15	15
Panel C: Nominal growth		$Dependent\ vari$	table: ΔMIS	
<u> </u>	0.06***	0.001	0.002	0.000
$growth_nom$	(0.003)	(0.001)	(0.002)	(0.000)
ΔMPS	(0.003)	0.686***	(0.004)	0.678***
1 1/11 D				
anglo	0.003	(0.035) -0.001	0.003	(0.035) -0.001
anglo	(0.003)	(0.001)	(0.003)	(0.001)
nordic	0.0004)	0.002	0.012**	0.002
loruic	(0.005)	(0.002)	(0.005)	(0.002)
mod	(0.005) -0.001	,	(0.005) 0.002	-0.002)
med		-0.000		
A 1:	(0.004)	(0.002)	(0.004)	(0.002)
Adjusted R ²	0.0232	0.724	0.0702	0.719
Country FE	Yes	Yes	Yes	Yes
Year FE	No Vas	No	Yes	Yes
Time Trend	Yes	Yes	Yes	Yes
Observations	159	159	159	159
Countries	16	16	16	16

Notes: Standard errors are in parentheses. The country groups captured by the dummy are anglo-saxon (AU, CA, UK, US), nordic (DK, FI, NO), mediterranean (ES, IL, IT), and as the reference category the diverse group of remaining countries (DE, LU, MX, NL, PL, TW). Significant at: * p < 0.10, ** p < 0.05, *** p < 0.01.

Table S-22: Panel Regressions of Changes in MPS and MIS on Mean Income Growth with Country Group Dummies (Part 2)

Panel D: Real growth	Dependent variable: ΔMIS							
$growth_real$	0.064**	0.006	0.071*	-0.003				
	(0.025)	(0.014)	(0.032)	(0.013)				
ΔMPS		0.681***		0.676***				
		(0.036)		(0.036)				
anglo	0.003	-0.001	0.004	-0.001				
	(0.004)	(0.002)	(0.004)	(0.002)				
nordic	0.0009**	0.002	0.013**	0.002				
	(0.005)	(0.003)	(0.005)	(0.003)				
med	0.000	0.000	0.004	-0.000				
	(0.004)	(0.002)	(0.004)	(0.002)				
Adjusted R ²	0.0463	0.726	0.0888	0.721				
Country FE	Yes	Yes	Yes	Yes				
Year FE	No	No	Yes	Yes				
Time Trend	Yes	Yes	Yes	Yes				
Observations	148	148	148	148				
Countries	15	15	15	15				

Notes: This table is the continuation of Table S-21.

Table S-23: Panel Regressions of Changes in Measures on Mean Income Growth

Panel A: Nominal Growth, time trend	$Dependent\ variable:$							
	$\Delta Gini$		$\Delta Skew$		$\Delta Pietra$			
$growth_nom$	0.003	0.004	4.328	5.457	0.000	-0.002		
	(0.006)	(0.006)	(4.982)	(5.875)	(0.004)	(0.003)		
ΔMPS		-0.106		-164.464		0.311***		
		(0.070)		(108.702)		(0.078)		
Country FE	Yes	Yes	Yes	Yes	Yes	Yes		
Year FE	No	No	No	No	No	No		
Time Trend	Yes	Yes	Yes	Yes	Yes	Yes		
Observations	159	159	159	159	159	159		
Countries	16	16	16	16	16	16		

Panel B: Nominal Growth, year FE	$Dependent\ variable:$							
	ΔC	Gini	ΔS	Skew	ΔP	ietra		
$growth_nom$	0.005	0.005	7.469	7.818	-0.001	-0.002		
	(0.005)	(0.005)	(5.203)	(5.098)	(0.004)	(0.003)		
ΔMPS		-0.102		-173.592		0.300***		
		(0.074)		(143.024)		(0.073)		
Country FE	Yes	Yes	Yes	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes	Yes	Yes	Yes		
Time Trend	No	No	No	No	No	No		
Observations	159	159	159	159	159	159		
Countries	16	16	16	16	16	16		

Panel C: Real Growth, time trend	$Dependent\ variable:$							
	ΔC	ini	ΔS	Skew	ΔP	ietra		
$growth_real$	-0.029	-0.019	-4.733	13.235	0.017	-0.018		
	(0.029)	(0.028)	(38.882)	(43.006)	(0.017)	(0.016)		
ΔMPS		-0.090		-165.738		0.322***		
		(0.082)		(114.545)		(0.080)		
Country FE	Yes	Yes	Yes	Yes	Yes	Yes		
Year FE	No	No	No	No	No	No		
Time Trend	Yes	Yes	Yes	Yes	Yes	Yes		
Observations	148	148	148	148	148	148		
Countries	15	15	15	15	15	15		

Panel D: Real Growth, year FE	$Dependent\ variable:$						
	ΔG	ini	ΔS	kew	ΔP	lietra	
$growth_real$	-0.039	-0.026	-13.977	11.989	0.037**	-0.007	
	(0.037)	(0.041)	(44.507)	(56.413)	(0.015)	(0.025)	
ΔMPS		-0.089		-178.003		0.302***	
		(0.089)		(167.223)		(0.080)	
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	
Time Trend	No	No	No	No	No	No	
Observation	148	148	148	148	148	148	
Countries	15	15	15	15	15	15	

Notes: Standard errors clustered at the country level are in parentheses. Significant at: * p < 0.10, ** p < 0.05, *** p < 0.01.

Table S-24: Empirical MPS and the MPS Implied by the Parametric Forms (Part 1)

	MPS	Logn	Pareto	Chot.	Rohde	Weib.	Wang/S.	Vi./Arn.	Kakwani
Australia (AU)									
1981	0.5835	0.5506	0.7254	$0.570\overline{5}$	0.6033	$\frac{2}{0.5396}$	0.5738	0.5692	0.5641
1985	0.5811	0.5547	0.7291	0.5733	0.6074	0.5440	0.5848	0.5795	0.5744
1989	0.5992	0.5591	0.7328	0.5762	0.6116	0.5485	0.5936	0.5878	0.5824
1995	0.6163	0.5638	0.7363	0.5793	0.6158	0.5533	0.5907	0.5848	0.5798
2001	0.6241	0.5664	0.7384	0.5809	0.6181	0.5557	0.6014	0.5950	0.5900
2003	0.6307	0.5641	0.7366	0.5794	0.6161	0.5535	0.5967	0.5908	0.5853
2004	0.6325	0.5647	0.7374	0.5796	0.6166	0.5539	0.6110	0.6033	0.5991
2008	0.6540	0.5734	0.7441	0.5848	0.6240	0.5618	0.6312	0.6206	0.6183
2010	0.7100	0.5727	0.7433	0.5845	0.6234	0.5613	0.6228	0.6138	0.6098
2014	0.6676	0.5755	0.7455	0.5860	0.6257	0.5638	0.6301	0.6190	0.6178
'	ļ				nada (CA)				
1981	0.6159	0.5517	0.7265	$0.571\overline{2}$	0.6044	0.5408	0.5744	0.5687	0.5653
1987	0.6571	0.5515	0.7265	0.5709	0.6042	0.5404	0.5846	0.5779	0.5744
1991	0.6450	0.5509	0.7261	0.5705	0.6036	0.5398	0.5872	0.5806	0.5770
1994	0.6285	0.5520	0.7270	0.5714	0.6048	0.5411	0.5861	0.5798	0.5758
1997	0.6368	0.5548	0.7293	0.5733	0.6075	0.5440	0.5851	0.5788	0.5751
1998	0.6418	0.5637	0.7366	0.5790	0.6156	0.5529	0.6016	0.5933	0.5911
2000	0.6497	0.5656	0.7383	0.5801	0.6174	0.5547	0.6150	0.6054	0.6034
2004	0.6370	0.5664	0.7388	0.5806	0.6181	0.5555	0.6139	0.6047	0.6021
2007	0.6356	0.5657	0.7384	0.5801	0.6174	0.5547	0.6205	0.6107	0.6082
2010	0.6184	0.5655	0.7382	0.5800	0.6173	0.5546	0.6160	0.6068	0.6043
2013	0.6248	0.5670	0.7389	0.5812	0.6186	0.5562	0.6033	0.5959	0.5915
'	ı			Ger	rmany (DE	Ξ)			
1978	0.5630	0.5448	0.7215	$0.56\overline{57}$	0.5973	0.5325	0.6226	0.6118	0.6100
1981	0.5985	0.5381	0.7146	0.5607	0.5898	0.5245	0.5958	0.5886	0.5852
1983	0.5310	0.5440	0.7206	0.5651	0.5964	0.5315	0.6159	0.6067	0.6031
1984	0.5959	0.5430	0.7192	0.5646	0.5953	0.5306	0.5857	0.5772	0.5768
1987	0.6004	0.5407	0.7171	0.5628	0.5928	0.5278	0.5913	0.5834	0.5813
1989	0.6089	0.5423	0.7188	0.5639	0.5945	0.5296	0.6029	0.5940	0.5926
1991	0.6348	0.5467	0.7227	0.5674	0.5994	0.5350	0.5962	0.5886	0.5846
1994	0.6303	0.5443	0.7205	0.5655	0.5967	0.5320	0.5994	0.5905	0.5880
1995	0.6264	0.5434	0.7198	0.5649	0.5958	0.5311	0.5951	0.5856	0.5844
1998	0.6262	0.5422	0.7186	0.5639	0.5945	0.5296	0.5977	0.5884	0.5860
2000	0.6196	0.5432	0.7197	0.5647	0.5956	0.5308	0.6021	0.5926	0.5912
2001	0.5540	0.5486	0.7249	0.5685	0.6012	0.5368	0.6223	0.6092	0.6102
2002	0.5551	0.5473	0.7236	0.5676	0.5999	0.5354	0.6111	0.6004	0.6001
2003	0.5550	0.5483	0.7245	0.5683	0.6009	0.5366	0.6121	0.6004	0.6016
2004	0.5680	0.5490	0.7252	0.5688	0.6016	0.5372	0.6194	0.6079	0.6075
2005	0.5829	0.5557	0.7310	0.5734	0.6083	0.5444	0.6317	0.6191	0.6192
2006	0.5837	0.5538	0.7293	0.5721	0.6064	0.5424	0.6258	0.6140	0.6132
2007	0.5906	0.5549	0.7304	0.5728	0.6075	0.5436	0.6301	0.6179	0.6181
2008	0.5936	0.5541	0.7296	0.5723	0.6067	0.5427	0.6264	0.6149	0.6141
2009	0.6481	0.5527	0.7282	0.5715	0.6054	0.5414	0.6139	0.6041	0.6025
2010	0.6472	0.5537	0.7290	0.5723	0.6064	0.5426	0.6104	0.6011	0.5991
2011	0.6517	0.5539	0.7293	0.5723	0.6066	0.5427	0.6190	0.6084	0.6066
2012	0.6542	0.5551	0.7302	0.5731	0.6077	0.5440	0.6155	0.6051	0.6035
2013	0.6456	0.5559	0.7309	0.5736	0.6084	0.5447	0.6207	0.6103	0.6086
2014	0.6459	0.5555	0.7304	0.5735	0.6081	0.5445	0.6087	0.5990	0.5969
2015	0.6340	0.5573	0.7321	0.5746	0.6098	0.5463	0.6178	0.6073	0.6064

Notes: The table report the empirical MPS (based on disposable income), together with the MPS implied by the eight parametric forms discussed in the article. The Lorenz curves are fitted to the 20 percentile data points and the implied MPS are calculated based on the mean-squared-error minimizing parameter(s) for each functional form. Highlighted in bold is the functional form which, out of all uniand multiparametric forms, has an implied MPS that comes closest to the empirical MPS.

Table S-25: Empirical MPS and the MPS Implied by the Parametric Forms (Part 2)

	MPS	Logn	Pareto	Chot.	Rohde	Weib.	Wang/S.	Vi./Arn.	Kakwani	
Denmark (DK)										
1987	0.6292	0.5415	0.7176	$0.563\overline{5}$	$\frac{0.5936}{0.5936}$	0.5290	0.5660	0.5610	0.5607	
1992	0.6292 0.6290	0.5365	0.7170 0.7125	0.5595	0.5879	0.5230 0.5228	0.5573	0.5516	0.5529	
1995	0.6309	0.5303 0.5314	0.7129 0.7072	0.5555	0.5816	0.5159	0.5678	0.5632	0.5616	
2000	0.6258	0.5314 0.5326	0.7012	0.5561	0.5810 0.5831	0.5175	0.5684	0.5641	0.5610	
2004	0.6253	0.5320 0.5339	0.7099	0.5573	0.5848	0.5173 0.5193	0.5676	0.5632	0.5622	
2004 2007	0.6315	0.5353 0.5377	0.7033 0.7141	0.5604	0.5893	0.5133 0.5242	0.5783	0.5032 0.5722	0.5722	
2010	0.6460	0.5377 0.5429	0.7141 0.7192	0.5644	0.5951	0.5242 0.5305	0.5765 0.5866	0.5722 0.5789	0.5722 0.5796	
2013	0.6546	0.5429	0.7132 0.7173	0.5628	0.5931 0.5929	0.5279	0.5800 0.5942	0.5769 0.5867	0.5750 0.5855	
2013	0.0540	0.0400	0.1113		pain (ES)	0.0219	0.5542	0.5601	0.0000	
1980	0.6315	0.5669	0.7392	0.5809	$\frac{pain (E5)}{0.6185}$	0.5559	0.6213	0.6115	0.6077	
1985	0.6227	0.5650	0.7332 0.7381	0.5795	0.6169	0.5539	0.6339	0.6115	0.6193	
1990	0.6338	0.5602	0.7341	0.5766	0.6126	0.5493	0.6172	0.6083	0.6038	
1995	0.6376	0.5833	0.7541 0.7504	0.5700 0.5907	0.6320	0.5493 0.5708	0.6300	0.6199	0.6056	
2000	0.6503	0.5333 0.5743	0.7304 0.7444	0.5855	0.6248	0.5628	0.6238	0.6133 0.6148	0.6104	
2004	0.6375	0.5648	0.7372	0.5799	0.6167	0.5541	0.5991	0.5924	0.5875	
2004	0.6319	0.5619	0.7348	0.5780	0.6140	0.5513	0.5885	0.5816	0.5780	
2010	0.6166	0.5013 0.5728	0.7348 0.7427	0.5750 0.5850	0.6235	0.5618	0.5909	0.5810 0.5837	0.5796	
2013	0.5944	0.5770	0.7458	0.5874	0.6269	0.5655	0.6033	0.5957	0.5911	
2015	0.0344	0.5110	0.1400		inland (FI)		0.0055	0.0001	0.5511	
1987	0.4876	0.5269	0.7018	$0.5510^{\frac{1}{2}}$	0.5756	0.5095	0.5559	0.5520	0.5502	
1991	0.5266	0.5275	0.7026	0.5516	0.5765	0.5104	0.5577	0.5520	0.5514	
1995	0.5386	0.5219	0.7059	0.5516	0.5797	0.5135	0.5906	0.5830	0.5814 0.5815	
2000	0.5033	0.5418	0.7187	0.5634	0.5940	0.5189	0.6166	0.6072	0.6065	
2004	0.5703	0.5453	0.7220	0.5660	0.5977	0.5330	0.6200	0.6100	0.6094	
2007	0.5483	0.5454	0.7219	0.5663	0.5979	0.5333	0.6081	0.5994	0.5983	
2010	0.5620	0.5444	0.7208	0.5655	0.5968	0.5322	0.6041	0.5963	0.5941	
2013	0.5429	0.5437	0.7202	0.5649	0.5960	0.5312	0.6065	0.5982	0.5959	
_010	0.0120	0.010.	0202		srael (IS)	0.0012	0.0000	0.0002	0.0000	
1979	0.5253	0.5604	0.7340	0.5769	0.6128	0.5497	0.6075	0.6019	0.5948	
1986	0.5629	0.5631	0.7361	0.5786	0.6152	0.5523	0.6124	0.6059	0.5987	
1992	0.5825	0.5612	0.7347	0.5774	0.6135	0.5504	0.6124	0.6058	0.5988	
1997	0.5883	0.5747	0.7445	0.5858	0.6251	0.5633	0.6199	0.6124	0.6061	
2001	0.5823	0.5817	0.7493	0.5899	0.6307	0.5695	0.6250	0.6171	0.6112	
2005	0.5832	0.5941	0.7569	0.5969	0.6400	0.5799	0.6272	0.6192	0.6131	
2007	0.5851	0.5900	0.7543	0.5948	0.6370	0.5767	0.6188	0.6122	0.6051	
2010	0.5864	0.5980	0.7593	0.5989	0.6428	0.5830	0.6323	0.6244	0.6179	
2012	0.5900	0.5915	0.7552	0.5956	0.6382	0.5779	0.6186	0.6112	0.6048	
2014	0.6027	0.5874	0.7524	0.5935	0.6350	0.5746	0.6030	0.5961	0.5910	
2016	0.5854	0.5787	0.7467	0.5885	0.6283	0.5671	0.5992	0.5934	$\boldsymbol{0.5872}$	
	1 3.3331	1 3.3.31	5., 10,	3.0003	3.0209	3.00.1	0.0002	0.0001	3.33. 2	

Notes: The table is the continuation of Table S-24.

 $\textbf{Table S-26:} \ \, \textbf{Empirical MPS and the MPS Implied by the Parametric Forms (Part 3)}$

	MPS	Logn	Pareto	Chot.	Rohde	Weib.	Wang/S.	Vi./Arn.	Kakwani	
Italy (IT)										
1986	0.5944	0.5624	0.7358	0.5780^{-2}	0.6145	0.5515	0.6182	0.6101	0.6052	
1987	0.5533	0.5728	0.7433	0.5846	0.6236	0.5615	0.6238	0.6151	0.6089	
1989	0.6036	0.5606	0.7344	0.5769	0.6129	0.5497	0.6178	0.6098	0.6043	
1991	0.6172	0.5549	0.7296	0.5732	0.6075	0.5439	0.6010	0.5945	0.5896	
1993	0.6155	0.5757	0.7452	0.5864	0.6259	0.5641	0.6157	0.6074	0.6030	
1995	0.6125	0.5749	0.7448	0.5859	0.6252	0.5634	0.6170	0.6081	0.6052	
1998	0.6039	0.5767	0.7462	0.5868	0.6266	0.5649	0.6242	0.6137	0.6123	
2000	0.6024	0.5705	0.7419	0.5831	0.6216	0.5593	0.6216	0.6122	0.6093	
2004	0.6206	0.5731	0.7439	0.5845	0.6237	0.5615	0.6343	0.6233	0.6215	
2008	0.6162	0.5676	0.7399	0.5812	0.6191	0.5565	0.6256	0.6162	0.6131	
2010	0.5946	0.5662	0.7385	0.5805	0.6179	0.5553	0.6110	0.6023	0.5993	
2014	0.5778	0.5663	0.7384	0.5807	0.6179	0.5554	0.6032	0.5958	0.5923	
	ļ	I			embourg (I					
1985	0.5348	0.5358	0.7121	$0.5\overline{588}$	0.5872	0.5217	0.5921	0.5857	0.5805	
1991	0.5933	0.5367	0.7132	0.5595	0.5882	0.5228	0.5975	0.5910	0.5867	
1994	0.6045	0.5358	0.7122	0.5588	0.5871	0.5215	0.5974	0.5909	0.5859	
1997	0.5843	0.5441	0.7205	0.5653	0.5966	0.5318	0.6089	0.6007	0.5964	
2000	0.5905	0.5447	0.7211	0.5658	0.5973	0.5325	0.6106	0.6032	0.5975	
2004	0.6129	0.5471	0.7233	0.5675	0.5997	0.5352	0.6124	0.6024	0.5998	
2007	0.6383	0.5498	0.7259	0.5693	0.6024	0.5381	0.6235	0.6129	0.6111	
2010	0.5917	0.5479	0.7238	0.5682	0.6006	0.5362	0.6029	0.5957	0.5911	
2013	0.5670	0.5529	0.7280	0.5718	0.6056	0.5418	0.5988	0.5904	0.5876	
	1	1		M_{c}	exico (MX	.)				
1984	0.6347	0.6287	0.7766	0.6140	0.6633	-0.6055	0.6765	0.6644	0.6573	
1989	0.6672	0.6590	0.7918	0.6273	0.6812	0.6252	0.7154	0.6986	0.6971	
1992	0.7334	0.6784	0.8004	0.6359	0.6919	0.6373	0.7267	0.7103	0.7075	
1994	0.7401	0.6822	0.8019	0.6377	0.6939	0.6397	0.7251	0.7095	0.7055	
1996	0.7139	0.6711	0.7971	0.6328	0.6879	0.6329	0.7199	0.7042	0.7005	
1998	0.7042	0.6798	0.8006	0.6370	0.6925	0.6383	0.7121	0.6971	0.6924	
2000	0.7208	0.6762	0.7991	0.6354	0.6906	0.6361	0.7110	0.6964	0.6913	
2002	0.7087	0.6582	0.7911	0.6273	0.6808	0.6249	0.7031	0.6886	0.6832	
2004	0.6479	0.6550	0.7897	0.6258	0.6789	0.6229	0.7035	0.6885	0.6841	
2008	0.6640	0.6692	0.7960	0.6324	0.6868	0.6318	0.7006	0.6848	0.6820	
2010	0.6791	0.6510	0.7876	0.6244	0.6766	0.6204	0.6859	0.6705	0.6678	
2012	0.7026	0.6564	0.7902	0.6267	0.6797	0.6238	0.6942	0.6783	0.6757	
				Neth	nerlands (1	NL)				
1983	0.6127	0.5404	0.7168	0.5626	0.5925	0.5275	0.5900	0.5815	0.5797	
1987	0.6070	0.5356	0.7119	0.5587	0.5869	0.5214	0.5884	0.5813	0.5778	
1990	0.5984	0.5468	0.7229	0.5673	0.5994	0.5350	0.6001	0.5902	0.5899	
1993	0.5556	0.5439	0.7193	0.5656	0.5963	0.5321	0.5507	0.5441	0.5429	
1999	0.5726	0.5339	0.7101	0.5573	0.5848	0.5192	0.5804	0.5740	0.5710	
2004	0.5615	0.5472	0.7235	0.5676	0.5998	0.5353	0.6075	0.5956	0.5973	
2007	0.5688	0.5501	0.7265	0.5694	0.6027	0.5383	0.6377	0.6240	0.6253	
2010	0.5305	0.5440	0.7205	0.5652	0.5964	0.5317	0.6044	0.5942	0.5931	
2013	0.5291	0.5455	0.7219	0.5663	0.5980	0.5333	0.6094	0.5988	0.5983	
		7.7	, m	. 11 • .1			11 0.04			

Notes: The table is the continuation of Table S-24.

 $\textbf{Table S-27:} \ \, \textbf{Empirical MPS and the MPS Implied by the Parametric Forms (Part 4)}$

	MPS	Logn	Pareto	Chot.	Rohde	Weib.	Wang/C	Vi /Am	Kakwani
	MPS	Logn	Pareto				Wang/S.	Vi./Arn.	Nakwaiii
1070	10.4700	L 0 5220	0.7000		orway (NC	<u></u>	0.5000	0.5574	0.5551
1979	0.4789	0.5330	0.7088	0.5565	0.5836	0.5180	0.5638	0.5574	0.5571
1986	0.5532	0.5346	0.7108	0.5579	0.5857	0.5202	0.5748	0.5684	0.5667
1991	0.4935	0.5337	0.7100	0.5570	0.5845	0.5189	0.5829	0.5757	0.5751
1995	0.5505	0.5368	0.7133	0.5596	0.5882	0.5229	0.5856	0.5782	0.5787
2000	0.5423	0.5429	0.7200	0.5640	0.5950	0.5300	0.6269	0.6125	0.6192
2004	0.6152	0.5506	0.7275	0.5694	0.6031	0.5385	0.6585	0.6364	0.6513
2007	0.6403	0.5378	0.7143	0.5604	0.5894	0.5242	0.5855	0.5769	0.5780
2010	0.6462	0.5393	0.7159	0.5616	0.5911	0.5261	0.5866	0.5773	0.5794
2013	0.6405	0.5398	0.7162	0.5620	0.5917	0.5267	0.5849	0.5762	0.5770
1986	0.6151	0.5471	0.7229	0.5677	$\frac{\text{oland (PL)}}{0.5998}$	$\frac{0}{0.5355}$	0.5885	0.5827	0.5787
1980 1992	0.6417	0.5445	0.7229 0.7210	0.5655	0.5990 0.5970	0.5333 0.5321	0.6166	0.3627 0.6072	0.6037
1992 1995	0.5853	0.5445 0.5670	0.7210 0.7393	0.5809	0.5970 0.6185	0.5521 0.5559	0.6111	0.5983	0.60037
1999	0.6045	0.5565	0.7393 0.7314	0.5740	0.6189	0.5359 0.5454	0.6111	0.5985 0.6036	0.6050
2004	0.6004	0.5694	0.7314 0.7413	0.5740 0.5823	0.6206	0.5454 0.5580	0.6161 0.6288	0.6050 0.6151	0.6050
2004 2007	0.6387	0.5664	0.7413 0.7393	0.5823	0.6200 0.6180	0.5550 0.5551	0.0288 0.6381	0.6131 0.6240	0.6249
2007	0.6365	0.5658	0.7393 0.7387	0.5800	0.6175	0.5546		0.6240 0.6190	0.6249 0.6187
2010 2013	0.6316				0.6175 0.6214	0.5540 0.5590	0.6320 0.6273	0.6190	0.6157
2013 2016	0.6316	0.5704 0.5567	0.7420 0.7315	0.5829 0.5742	0.6214 0.6092	0.5390 0.5457	0.0273 0.6102	0.6134 0.5974	0.5155 0.5991
2010	0.0420	0.5507	0.7515		iwan (TW		0.0102	0.5974	0.5991
1981	0.6056	0.5466	0.7231	$0.567\overline{1}$	$\frac{0.5993}{0.5993}$	$\frac{1}{0.5346}$	0.6252	0.6156	0.6105
1986	0.6232	0.5478	0.7231 0.7243	0.5679	0.6005	0.5340 0.5358	0.6324	0.6218	0.6176
1991	0.6232	0.5484	0.7246	0.5684	0.6003	0.5366	0.6209	0.6120	0.6067
1995	0.6224	0.5484	0.7240 0.7278	0.5004 0.5713	0.6011	0.5300 0.5410	0.6269 0.6144	0.6120 0.6046	0.6012
1997	0.6110	0.5525	0.7273 0.7291	0.5713	0.6066	0.5410 0.5427	0.6144 0.6197	0.6106	0.6012 0.6059
2000	0.6155	0.5545	0.7291 0.7297	0.5723 0.5727	0.6072	0.5427 0.5433	0.6206	0.6100	0.6067
2005	0.6453	0.5610	0.7257 0.7350	0.5721 0.5771	0.6072 0.6133	0.5400	0.6279	0.6176	0.6037
2007	0.6397	0.5618	0.7354	0.5771	0.6140	0.5508	$\begin{array}{c} 0.6213 \\ 0.6246 \end{array}$	0.6148	0.6097
2010	0.6364	0.5656	0.7382	0.5801	0.6174	0.5546	0.6240	0.6110	0.6071
2013	0.6443	0.5619	0.7355	0.5776	0.6141	0.5509	0.6225	0.6117	0.6085
2016	0.6519	0.5601	0.7342	0.5765	0.6125	0.5491	0.6228	0.6128	0.6087
2010	0.0010	0.0001	0.1012		Kingdom		0.0220	0.0120	0.0001
1979	0.6088	0.5459	0.7216	0.5669	0.5985	0.5342	0.5826	0.5773	0.5727
1986	0.6110	0.5611	0.7344	0.5775	0.6134	0.5505	0.5973	0.5899	0.5858
1991	0.6344	0.5762	0.7457	0.5867	0.6264	0.5646	0.6227	0.6147	0.6093
1994	0.6764	0.5794	0.7483	0.5882	0.6289	0.5672	0.6438	0.6333	0.6289
1995	0.6322	0.5796	0.7480	0.5885	0.6290	0.5675	0.6281	0.6189	0.6144
1999	0.6656	0.5850	0.7517	0.5915	0.6332	0.5721	0.6384	0.6274	0.6242
2004	0.6945	0.5841	0.7517	0.5907	0.6325	0.5710	0.6588	0.6452	0.6438
2007	0.6795	0.5779	0.7473	0.5873	0.6276	0.5658	0.6427	0.6307	0.6285
2010	0.6845	0.5756	0.7459	0.5858	0.6258	0.5636	0.6514	0.6381	0.6365
2013	0.6813	0.5738	0.7446	0.5848	0.6243	0.5620	0.6476	0.6356	0.6326
	I	I			ed States (
1979	0.5924	0.5619	0.7349	$0.5\overline{781}$	0.6141	0.5514	0.5861	0.5799	0.5764
1986	0.5927	0.5752	0.7445	0.5864	0.6255	0.5640	0.5960	0.5898	0.5851
1991	0.6020	0.5778	0.7464	0.5878	0.6276	0.5662	0.6052	0.5982	0.5936
1994	0.6225	0.5901	0.7549	0.5944	0.6370	0.5764	0.6348	0.6243	0.6216
1997	0.6340	0.5912	0.7558	0.5949	0.6379	0.5772	0.6425	0.6308	0.6293
2000	0.6370	0.5898	0.7550	0.5940	0.6368	0.5760	0.6437	0.6314	0.6309
2004	0.6343	0.5915	0.7558	0.5951	0.6380	0.5775	0.6374	0.6262	0.6246
2007	0.6306	0.5959	0.7584	0.5976	0.6413	0.5811	0.6371	0.6254	0.6241
2010	0.6225	0.5898	0.7545	0.5944	0.6368	0.5763	0.6280	0.6187	0.6144
2013	0.6351	0.5952	0.7580	0.5972	0.6408	0.5806	0.6394	0.6288	0.6249
2016	0.6521	0.5971	0.7592	0.5982	0.6422	0.5821	0.6443	0.6326	0.6293
	•	7.7	, ED1	. 11	51		11 0.04		

Notes: The table is the continuation of Table S-24.