ECE -585 - MICROPROCESSOR SYSTEM DESIGN Project Report-GROUP 10 Simulation of the Scheduler portion of a DDR5 Memory Controller

Team Members:

Gagana Hirenallur Mohan Kumar	Raksha Mairpady
PSU ID: 939272712	PSU ID: 965104471
Mail id: gagana@pdx.edu	Mail id: raksham@pdx.edu
Rahul Jnanesh Gowda	Shashi Kirana Chinchandlahalli Ravanappa
PSU ID:979476354	PSU ID: 910530955
Mail id: rahulj@pdx.edu	Mail id: shashiki@pdx.edu

Objective: Simulation of the scheduler portion of a memory controller capable of serving a 12-core 4.8 GHz processor employing a single 16GB PC5- 38400 DIMM.

DIMM	Specifications	Calculations
Total number of ranks	2 Ranks	
Total number of Channels	2 Channels	
Total Capacity of the DIMM	16GB	
Total Number of x8 DDR5 Chips	8 DDR5 chips	
Total number of output bits per chip	8 bits	
Total number of output bit from DIMM module	64 bits	
Mode of Commands	1N	
DDR5 chip		
Total Capacity of the chip	16Gb	16GB x 8= 128Gb/8= 16Gb
Organization of the chip	2G x 8	16Gb/8= 2G x 8
Page Size	1KB	Given
Burst Length	16	
Total number of bank groups	8	Given
Total number of banks per bankgroups	4	Given

Total number of columns	2^10	Total number of columns = page size /Internal access width
Number of column bit lines	10	
Total number of rows	2^16	Number of rows = total capacity of the chip / Number of columns x total bank groups x total banks per bank groups x internal access width
Number of address bit lines	16	

Address Mapping:

33	17	11 10	9 8 7	6	5 4 3 2	1 0
18	12					
Row (16 bits)	Upper	Bank	Bank	Chan	Lower	Byte
	Column (6	(2bit	Grou	nel	Column	Sele
	bits)	s)	p (3	(1bit)	(4bits)	ct
	,	,	bits)	,	, ,	(2bits
			,)

Methodology: Closed page policy

The closed page policy, without bank-level parallelism, mandates the immediate closure of a page following a read or write operation, coupled with the issuance of a PRE command before the page is closed.

Language used: System Verilog

Tool used: QuestaSim

Test Cases:

- 1. Successfully verified whether the memory schedular is able to read the file and write into the file passed during runtime.
- 2. Confirmed that the memory scheduler loads a single request from the trace file into the queue exclusively at the CPU time corresponding to the request.
- 3. Confirmed that memory controller is not loading the request from trace into queue when the queue is full.
- 4. Verified that memory controller is removing the request from the queue after the timing constraints are satisfied and also does not pop a request from empty queue.

5. Successive read request in the same row of the same bank group, bank but different column address

Input format: 1 6 0 00012050A 2 6 0 00013F50A

For address : 0x 00012050A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	1
Upper column	<mark>20</mark>
Row	4

For address:00013F50A		
Byte select	2	
Lower column	2	
Channel	0	
Bank group	2	
Bank	1	
Upper column	<mark>3f</mark>	
Row	4	

Obtained output:

- 2 0 ACT0 2 1 0004 4 0 ACT1 2 1 0004 82 0 RD0 2 1 202 84 0 RD1 2 1 202 180 0 PRE 2 1 260 0 ACT0 2 1 0004 0 ACT1 2 1 0004 262 340 0 RD0 2 1 3f2 342 0 RD1 2 1 3f2 438 0 PRE 2 1
- 6. Successive read requests in the different rows of the same bank group.

Input format: 38 7 0 00019050A 39 7 0 000E2050A

For address:	
0x00019050A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	1
Upper column	<mark>10</mark>
Row	<mark>6</mark>

For address:0X000E2050A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	1
Upper column	<mark>20</mark>
Row	38

518	0 ACT0 2 1 0006
520	0 ACT1 2 1 0006
598	0 RD0 2 1 102
600	0 RD1 2 1 102
696	0 PRE 2 1
776	0 ACT0 2 1 0038
778	0 ACT1 2 1 0038
856	0 RD0 2 1 202
858	0 RD1 2 1 202
954	0 PRE 2 1

7. Successive read requests to the same bank group, but different banks

Input format: 40 8 0 00012090A 41 8 0 000120D0A

For address	
: 0x 00012090A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank Bank	<mark>2</mark>
Upper column	20
Row	4

For address: 0x000120D0A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
<mark>Bank</mark>	<mark>3</mark>
Upper column	20
Row	4

Obtained output:

1034 0 ACT0 2 2 0004 1036 0 ACT1 2 2 0004 1114 0 RD0 2 2 202 1116 0 RD1 2 2 202 1212 0 PRE 2 2 1292 0 ACT0 2 3 0004 1294 0 ACT1 2 3 0004 1372 0 RD0 2 3 202 0 RD1 2 3 202 1374 0 PRE 23 1470

8. Successive read requests to the different bank groups, but the same bank

Input format: 42 9 0 00010C200 43 9 0 00010C380

For address	_
: 0x 00010C200	
Byte select	0
Lower column	0
Channel	0
Bank group	<mark>4</mark>
Bank	0
Upper column	С
Row	4

For address: 0x00010C380	
Byte select	0
Lower column	0
Channel	0
Bank group	<mark>7</mark>
Bank	0
Upper column	С
Row	4

Obtained output:

9. Read requests to the row of the same bank group and bank, followed by write to the different row of the same bank groups and bank

Input format: 44 4 0 000817084 45 4 1 000C97084

For address	•
: 0x 000817084	
Byte select	0
Lower column	1
Channel	0
Bank group	1
Bank	0
Upper column	17
Row	<mark>20</mark>

For address: 000C97084	
Byte select	0
Lower column	1
Channel	0
Bank group	1
Bank	0
Upper column	17
Row	<mark>32</mark>

2066	0 ACT0 1 0 0020
2068	0 ACT1 1 0 0020
2146	0 RD0 1 0 171
2148	0 RD1 1 0 171
2244	0 PRE 1 0
2324	0 ACT0 1 0 0032
2326	0 ACT1 1 0 0032
2404	0 WR0 1 0 171
2406	0 WR1 1 0 171
2558	0 PRE 1 0

10. Write to a row of the same bank group and bank followed by a request to read in the same row of the same bank and bank group

Input format: 40 4 1 00016A000 41 4 0 00016A000

For address	
: 0x 00016A000	
Byte select	0
Lower column	0
Channel	0
Bank group	0
Bank	0
Upper column	2A
Row	5

Obtained output:

42 0 ACT0 0 0 0005 44 0 ACT1 0 0 0005

122 0 WR0 0 0 2a0 124 0 WR1 0 0 2a0 276 0 PRE 0 0 356 0 ACT0 0 0 0005 358 0 ACT1 0 0 0005 436 0 RD0 0 0 2a0 438 0 RD1 0 0 2a0 534 0 PRE 0 0

11. Write to a row within a specific bank and bank group followed by write to a distinct row within the same bank group and bank.

Input format: 42 5 1 000301210 43 5 1 000FC1210

For address:	
0x 000301210	
Byte select	0
Lower column	4
Channel	0
Bank group	4
Bank	0
Upper column	1
Row	C

For address: 000FC1210	
Byte select	0
Lower column	4
Channel	0
Bank group	4
Bank	0
Upper column	1
Row	<mark>3f</mark>

Obtained output:

12. Write from a row within the same bank group and bank followed by read to distinct bank groups and bank.

Input format: 44 3 1 000510230

45 3 0 000510EB0

For address	-
: 0x 000510230	
Byte select	0
Lower column	С
Channel	0
Bank group	4
Bank	0
Upper column	10
Row	14

For address: 000510EB0	
Byte select	0
Lower column	С
Channel	0
Bank group	5
Bank	3
Upper column	10
Row	14

Obtained output:

13. Write from a row within a bank of a bank group followed by request to write to a distinct row and column within the same bank and bank group.

Input format: 46 5 1 00064049F 47 5 1 0009C2493

For address:	_
0x00064049F	
Byte select	3
Lower column	7
Channel	0
Bank group	1
Bank	1
Upper column	0
Row	19

For address: 0X0009C2493	
Byte select	3
Lower column	4
Channel	0
Bank group	1
Bank	1
Upper column	2
Row	27

1814	0 ACT0 1 1 0019
1816	0 ACT1 1 1 0019
1894	0 WR0 1 1 007
1896	0 WR1 1 1 007
2048	0 PRE 1 1
2128	0 ACT0 1 1 0027
2130	0 ACT1 1 1 0027
2208	0 WR0 1 1 024
2210	0 WR1 1 1 024
2362	0 PRE 1 1

14. Consecutive reads to different banks in the same bank group.

Input format: 48 4 0 00084789A

48 4 0 000847C9A 48 4 0 00084709A

For address:	2
0x00084789A	
Byte select	2
Lower column	6
Channel	0
Bank group	1
Bank	2
Upper column	7
Row	21

For address: 0X000847C9A	
Byte select	2
Lower column	6
Channel	0
Bank group	1
Bank	3
Upper column	7
Row	21

For address: 0X00084709A	
Byte select	2
Lower column	6
Channel	0
Bank group	1
Bank	0
Upper column	7
Row	21

2442	0 ACT0 1 2 0021
2444	0 ACT1 1 2 0021
2522	0 RD0 1 2 076
2524	0 RD1 1 2 076
2620	0 PRE 1 2
2700	0 ACT0 1 3 0021
2702	0 ACT1 1 3 0021
2780	0 RD0 1 3 076
2782	0 RD1 1 3 076
2878	0 PRE 1 3
2958	0 ACT0 1 0 0021
2960	0 ACT1 1 0 0021
3038	0 RD0 1 0 076
3040	0 RD1 1 0 076
3136	0 PRE 1 0

15. Access to same row in same bank and same bank group at the same time. Input format: 1 6 0 00012050A

1 6 0 00013F50A

For address : 0x 00012050A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	1
Upper column	<mark>20</mark>
Row	4

For address:00013F50A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	1
Upper column	<mark>3f</mark>
Row	4

2	0 ACTO 2 1 0004
4	0 ACT1 2 1 0004
82	0 RD0 2 1 202
84	0 RD1 2 1 202
180	0 PRE 2 1
260	0 ACT0 2 1 0004
262	0 ACT1 2 1 0004
340	0 RD0 2 1 3f2
342	0 RD1 2 1 3f2
438	0 PRE 2 1

16. Access to different row in same bank and bank group at the same time.

Input format: 38 7 0 00019050A 38 7 0 000E2050A

For address:	_
0x00019050A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	1
Upper column	10
Row	<mark>6</mark>

For address:0X000E2050A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	1
Upper column	20
Row	<mark>38</mark>

Obtained output:

518	0 ACT0 2 1 0006
520	0 ACT1 2 1 0006
598	0 RD0 2 1 102
600	0 RD1 2 1 102
696	0 PRE 2 1
776	0 ACT0 2 1 0038
778	0 ACT1 2 1 0038
856	0 RD0 2 1 202
858	0 RD1 2 1 202
954	0 PRE 2 1

17. Access to same bank group and same bank at the same time.

Input format: 38 7 0 00015A240

38 7 0 00015A240

For address:	•
0x00015A200	
Byte select	0
Lower column	0
Channel	0
Bank group	4
Bank	0
Upper column	1a
Row	5

For address:0X00015A200	
Byte select	0
Lower column	0
Channel	0
Bank group	4
Bank	0
Upper column	1a
Row	5

Obtained output:

1034	1 ACT0 4 0 0005
1036	1 ACT1 4 0 0005
1114	1 RD0 4 0 1a0
1116	1 RD1 4 0 1a0
1212	1 PRE 4 0
1292	1 ACT0 4 0 0005
1294	1 ACT1 4 0 0005
1372	1 RD0 4 0 1a0
1374	1 RD1 4 0 1a0
1470	1 PRE 4 0

18. Access to different bank groups at the same time.

Input format: 40 8 0 00012090A 40 8 0 000120D0A

For address	-
: 0x 00012090A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	2
Upper column	20
Row	4

For address: 0x000120D0A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	3
Upper column	20
Row	4

1550	0 ACT0 2 2 0004
1552	0 ACT1 2 2 0004
1630	0 RD0 2 2 202
1632	0 RD1 2 2 202
1728	0 PRE 2 2
1808	0 ACT0 2 3 0004
1810	0 ACT1 2 3 0004
1888	0 RD0 2 3 202
1890	0 RD1 2 3 202
1986	0 PRE 2 3

19. Reading the same column at different time.

Input format: 1 6 0 00012050A 2 6 0 00012050A

For address	=
: 0x 00012050A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	1
Upper column	20
Row	4

For	
address:00012050A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	1
Upper column	20
Row	4

2066	0 ACT0 2 1 0004
2068	0 ACT1 2 1 0004
2146	0 RD0 2 1 202
2148	0 RD1 2 1 202
2244	0 PRE 2 1
2324	0 ACT0 2 1 0004
2326	0 ACT1 2 1 0004
2404	0 RD0 2 1 202
2406	0 RD1 2 1 202
2502	0 PRE 2 1

20. Writing to same column at the same time

Input format: 1 6 1 00012050A 1 6 1 00012050A

For address	-
: 0x 00012050A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	1
Upper column	20
Row	4

For	
address:00012050A	
Byte select	2
Lower column	2
Channel	0
Bank group	2
Bank	1
Upper column	20
Row	4

Obtained output:

2582	0 ACT0 2 1 0004
2584	0 ACT1 2 1 0004
2662	0 WR0 2 1 202
2664	0 WR1 2 1 202
2816	0 PRE 2 1
2896	0 ACT0 2 1 0004
2898	0 ACT1 2 1 0004
2976	0 WR0 2 1 202
2978	0 WR1 2 1 202
3130	0 PRE 2 1

21. Prioritizing read over write for different address at the same time.

Input format: 40 4 0 000817084 40 4 1 000C97084

For address	-
: 0x 000817084	
Byte select	0
Lower column	1
Channel	0
Bank group	3
Bank	2
Upper column	17
Row	20

For address: 000C97084	
Byte select	0
Lower column	1
Channel	0
Bank group	1
Bank	0
Upper column	17
Row	32

Obtained output:

3210	0 ACT0 3 2 0020
3212	0 ACT1 3 2 0020
3290	0 RD0 3 2 171
3292	0 RD1 3 2 171
3388	0 PRE 3 2
3468	0 ACT0 1 0 0032
3470	0 ACT1 1 0 0032
3548	0 WR0 1 0 171
3550	0 WR1 1 0 171
3702	0 PRE 1 0

22. Out of bound checking:

Check whether the address, bank group, bank, row, channel, column is within the boundary value specified in the spec.

Take the value of the operations greater than 2 and check whether the condition fails or exceeds the limit specified in the spec. Similarly, testing for bank group, bank, channel, row and column.

Obtained output: Trace file has out of bound values.

23. Testing full and empty conditions of the queue:

i. Check for the condition by giving the values for input CPU clocks less than the DIMM clocks. So, the queue would be empty

- ii. Check for the condition by giving values for input CPU clocks continuously up to a particular range where the frequency of the popping requests will be less than the frequency of the inputs at CPU clock cycles. Hence, Queue would be full.
- iii. Check whether the queue is full by adding and removing the request at the same time.
- iv. Adding and removing the request at the same time when the queue is not full.