Indian Institute of Information Technology Allahabad Linear Algebra (LAL) ${\bf Quiz} \ {\bf 2}$

Program: B.Tech. 1st Semester

Duration: **25 Minutes**Date: March 04, 2022

Full Marks: 20
Time: : 10 AM- 10:25 AM

1. Let A be a 3×3 matrix such that rank(A - I) = 1 and rank(A - 2I) = 2. Then

- (a) A has three distinct eigenvalues.
- (b) The determinant of A is 2.
- (c) The rank of A is 3.
- (d) The trace of A is 4.

Solution: (b), (c), (d)

- 2. Let $A \in M_n(\mathbb{R})$ be a non-zero matrix such that $A^k = 0$ for some $k \in \mathbb{N}$. Then
 - (a) rank(A) is at most (n-1).
 - (b) the minimal polynomial of A is x.
 - (c) A has only one eigenvalue with multiplicity n.
 - (d) A is similar to a diagonal matrix.

Solution: (a), (c)

- 3. Let A be an $n \times n$ matrix over \mathbb{C} such that every non-zero vector of \mathbb{C}^n is an eigenvector of A. Then which of the following is(are) correct.
 - (a) All the eigenvalues of A are same.
 - (b) A need not be diagonalizable.
 - (c) If $\lambda(\neq 0)$ is a non-zero eigenvalue of A then rank(A) = n.
 - (d) If λ is an eigenvalue of A, then the minimal polynomial of A is $(x \lambda)^n$.

Solution: (a), (c),

- 4. Which of the following can be the minimal polynomial of a diagonalizable matrix?
 - (a) $3x^2 + 5x + 6$.
 - (b) $x^3 + 3x^2 + 2x$.
 - (c) $x^2 + 8x + 16$.
 - (d) $x^3 6x^2 + 11x 6$.

Solution: (b), (d).

5. Let λ be an eigenvalue of a matrix A. Then which of the following will be (possible) eigenvalues of B^T and B^{-1} , where $B = A^2 + 2A + I$, respectively?

(a) $\lambda^2 + 2\lambda + 1$ and $\lambda^{-2} + 2\lambda^{-1} + 1$.

- (b) $\lambda^2 + 1 \text{ and } \lambda^{-2} + 1.$
- (c) $\lambda^2 + 2\lambda + 1$ and $(\lambda^2 + 2\lambda + 1)^{-1}$.
- (d) $\lambda^2 + 1$ and $(\lambda + 2\lambda + 1)^{-1}$.

Solution: (c).

6. If $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and matrix $B = 10A^4 - 8A^2 + 2I_2$ then which of the following is/are **false**?

- (a) Trace(B) > det(B).
- (b) $\operatorname{Trace}(B) = \det(B)$
- (c) B is diagonalizable.
- (d) B is invertible.

Solution: (a),(b)

7. If $X_n = \{x \in \mathbb{R} \mid x = \text{trace}(A), A \in M_n(\mathbb{R}), A^2 = I_n\}$, then which of the following is/are true?

- (a) $1 \in X_{10}$
- (b) $1 \notin X_{20}$
- (c) $0 \in X_{73}$
- (d) $0 \notin X_{1001}$

Solution: (b),(d)

8. If A is a 2×2 matrix over \mathbb{C} with $\det(A + I) = 1 + \det(A)$, then which of the following is/are true?

- (a) trace(A) = 0.
- (b) A = 0.
- (c) A is non singular
- (d) $det(A) = -\lambda^2$, where λ is an eigenvalue of A.

Solution: (a),(d)

9. Let $A, B \in M_n(\mathbb{R})$. Suppose λ is an eigenvalue of A and μ is an eigenvalue of B. Then

- (a) $\lambda \mu$ is an eigenvalue of AB.
- (b) $\lambda + \mu$ is an eigenvalue of A + B.
- (c) If zero is an eigenvalue of B, then zero is an eigenvalue of AB.
- (d) If eigenvalues of A and B are non-zero, then eigenvalues of AB are non-zero.

Solution: (c), (d)

10. Let $A \in M_{m \times n}(\mathbb{R})$ and m < n. Then

- (a) $A^TX = 0$ has a non-zero solution.
- (b) If AX = b is solvable for every $b \in \mathbb{R}^n$, then $A^TX = b$ is also solvable for every $b \in \mathbb{R}^m$.
- (c) $A^T A X = 0$ has a non-zero solution.
- (d) AX = 0 has a non-zero solution.

Solution: (c), (d)