Bases e Representações Numéricas

Tocci; Cap. 2, pag. 15

Um número decimal qualquer é constituído por um polinômio de potências de 10. Por exemplo:

$$376.59 = 3*10^{2} + 7*10^{1} + 6*10^{0} + 5*10^{-1} + 9*10^{-2}$$

Este tipo de representação numérica é conhecida como sistema de numeração decimal, e o número 10 é a base ou a raiz do sistema.

De forma geral, um número N é representado num sistema de base b através do polinômio:

$$N = a_{q-1} * b^{q-1} + \dots + a_0 * b^0 + \dots + a_{-p} * b^{-p},$$

onde $b \in I \land b > 1$,

 $0 \le a \le b-1$,

q e p são o número de dígitos da parte inteira e fracionária da representação, respectivamente.

Chamaremos a_{q-1} de dígito mais significativo de N e a a_{-p} ao dígito menos significativo. Será utilizada a notação $(N)_b$ para indicar que o número está sendo representado na base b. A omissão de b nesta notação significará que está sendo utilizada a base 10.

base	sistema	dígitos
2	binário	0 e 1
8	octal	0,1,2,3,4,5,6 e 7
10	decimal	0,1,2,3,4,5,6,7,8 e 9
16	hexadecimal	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E e F

O sistema binário é largamente utilizado nos computadores pois requer somente dois dígitos distintos, θ e 1, que são representados nos circuitos digitais pela ausência ou a presença de uma voltagem ou de uma corrente elétrica.

Exemplo: representação no sistema binário:

$$(1101.01)_2 = 1*2^3 + 1*2^2 + 0*2^1 + 0*2^{-1} + 1*2^{-2}$$

Conversões entre Bases

Para podermos trabalhar com sistemas de numeração de bases distintas devemos estabelecer os procedimentos de conversão, i.e., como representar $(N)_{bl}$ na base b2. Isto é feito simplesmente reescrevendo a expansão polinomial na base b2:

Ex1:
$$(234)_8 \rightarrow \text{base } 10$$
; $(234)_8 = 2*8^2 + 3*8^1 + 4*8^0 = 2*64 + 3*8 + 4 = 128 + 24 + 4 = 156$

Ex2:
$$(1110.1)_2 \rightarrow \text{base } 10$$
;
 $(1110.1)_2 = 1*2^3 + 1*2^2 + 1*2^1 + 0*2^0 + 0*2^{-1} = 8 + 4 + 2 + 0.5 = 14.5$

Ex3:
$$(EA5)_{16} \rightarrow \text{base } 10$$
; $(EA5)_{16} = E*16^2 + A*16^1 + 5*16^0 = 14*256 + 10*16 + 5 = 3584 + 160 + 5 = 3749$

Ex4: $(123) \rightarrow \text{base } 2$;

Um método bastante direto para obtermos a representação de um número do sistema decimal em outra base é através de divisões sucessivas deste número pela base do sistema de interesse (obs.: deve ser utilizada a aritmética decimal).

Ex5: $(22.56) \rightarrow \text{base } 2$;

Desta vez o número no sistema decimal possui uma componente não inteira, que deve ser multiplicada sucessivamente pela base de interesse retendo-se a parte inteira resultante até se atingir a precisão desejada.

Com a parte inteira procede-se como no Ex4, i.e.,

$$\begin{array}{cccc}
22 \boxed{2} \\
0 & 11 \boxed{2} \\
1 & 5 \boxed{2} \\
1 & 2 \boxed{2} \\
0 & 1 \implies (22) = (10110)_2
\end{array}$$

Portanto, $(22.56) = (22)_2 + (0.56)_2 \approx (10110)_2 + (0.10001111)_2 = (10110.10001111)_2$ obs.: relacionar com a precisão de um conversor A/D

Ex6: $(0.06640625) \rightarrow \text{base } 16$; 0.06640625*16 = 1.0625

Prof. Eric Fagotto

$$0.0625*16 = 1$$

Portanto, $(0.06640625) = (0.11)_{16}$

Ex7: $(111100101101)_2 \rightarrow \text{base } 16$;

Dividindo o número em conjuntos de quatro dígitos podemos facilmente proceder a conversão:

$$(\begin{array}{ccc} 1111 & 0010 & 1101 \\ \hline F & 2 & D \end{array})_2$$

$$\therefore (111100101101)_2 = (F2D)_{16}$$

Acrescentar exercícios para os alunos fazerem durante a aula!

Operações Aritméticas

Para efetuarmos as quatro operações aritméticas básicas em qualquer sistema de numeração, podemos estender diretamente o mecanismo de cálculo empregado para o sistema decimal. Contudo, devemos ficar atentos a representação de cada sistema numérico.

Soma Binária

A tabela básica da soma aritmética binária é a seguinte:

bits [†]	soma	transporte ‡
0 + 0	0	0
0 + 1	1	0
1 + 0	1	0
1 + 1	0	1

[†] binary digit, ‡ carrier

Ex1: $(1001.011)_2 + (1101.101)_2$

A exemplo de como procedemos no sistema decimal vamos alinhar em colunas os dígitos binários:

Transporte
$$\Rightarrow$$
 10011 11
1001.011
+1101.101
10111.000

Subtração Binária

A tabela básica da subtração binária é:

bits	diferença	empréstimo
0 - 0	0	0
0 - 1	1	1
1 - 0	1	0
1 - 1	0	0

Sendo que o "empréstimo" reflete-se sobre o subtraendo da operação.

Ex1: (1101.01)₂ - (110.10)₂

Empréstimo
$$\Rightarrow$$
 1111 1
1101.01
 -0111.10
0101.11

Ex2: (10000)₂ -(1111.1)₂

10000.0 -01111.1 00000.1

Números Binários Negativos

Tocci; Cap. 6; pág. 162

O processo de subtração pode ser evitado empregando-se uma representação para números negativos na forma de complementos.

Sistema Signal-Magnitude

Neste sistema o bit mais significativo (MSB – most significant bit), i.e. aquele mais a direita, representa o sinal do número. Por convenção, quando o MSB é "0", o número é positivo, e quando é "1", ele é negativo.

Ex:

$$(010011)_2 = +19$$

 $(110011)_2 = -19$

Apesar de ser bastante direto, este sistema não é normalmente utilizado devido a complexidade de implementação.

Complemento de Um

O complemento de 1 de um binário é obtido complementando-o bit a bit .

Ex:

$$(010011)_2 = +19$$

 $(101100)_2 = -19$

Complemento de Dois

Para representar um número <u>negativo</u> inteiro em complemento de dois (utilizando-se de N bits):

1. escreva-o em complemento de 1

2. some um ao bit menos significativo

3. despreze, se existir, o bit correspondente a 2^{N+1}

Ex: -17 em complemento de 2.

Primeiramente escrevemos –17 em complemento de 1:

17: $(010001)_2 \rightarrow (101110)_2 = -17$

Logo a representação para -17 em complemento de 2 é (101111)₂

Sendo o número positivo, escreva-o como binário simples, mas lembre-se de garantir que o primeiro bit seja 0, caso contrário o número será interpretado como negativo (além do módulo estar incorreto).

Ex: Representar +7 em complemento de 2. +7: (0111)₂

Note que em representação de 2, $(111)_2$ é -4 + 3 = -1!

Ex3: (proposto) - Obtenha a representação dos números de 4 bits por seu complemento de dois.

N	<i>N</i> [2]	$(N)_{10}$
0000	0000	0
0001	1111	-1
0010	1110	-2
0011	1101	-3
0100	1100	-4
0101	1011	-5
0110	1010	-6
0111	0001	-7
1000	1000	-8
1001	0111	7
1010	0110	6
1011	0101	5
1100	0100	4
1101	0011	3
1110	0010	2
1111	0001	1

Vamos agora utilizar o complemento de dois para efetuar subtrações. Para isso, consideremos um registrador de módulo 64, onde são realizadas as seguintes operações: 12+13, 12-13, -12+13, -12-13. A aritmética é:

+12=001100 +13=001101

+13 =

+1 =

Observe que a operação executada em todos os casos foi a soma, sendo que o resultado deve ser lido somente até o sexto bit, pois estamos trabalhando com módulo 64.

1

-13 =

-25 =

(1)

0

0

0

Multiplicação e Divisão Binária

(1)

A tabela básica para multiplicação binária é:

0

Bits	Produto
0 x 0	0
0 x 1	0
1 x 0	0
1 x 1	1

Ex1:

			1	1	0.	1	0
				1	0.	1	
			1	1	0	1	0
		0	0	0	0	0	
	1	1	0	1	0		
1	0	0	0	0.	0	1	0

Para multiplicarmos números negativos podemos lançar mão de duas opções:

- 1) Multiplicar suas magnitudes e processar o sinal separadamente
- 2) Utilizar a representação em complemento de dois, trabalhando diretamente com o sinal.

Ex2: Multiplicar 2 por –3, fazendo uso da representação N[2] com 4 bits:

			0 1	0 1	1 0	0 1		
			0	0	1	0		
		0	0	0	0			
	0	0	1	0				
0	0	1	0					
0	0	1	1	0	1	0		
1								
"estouro de registro"								

Divisão binária

Ocorre exatamente dentro dos mesmos moldes da divisão decimal.

Multiplicação e Divisão Binária

A tabela básica para multiplicação binária é:

Bits	Produto				
0 x 0	0				
0 x 1	0				
1 x 0	0				
1 x 1	1				

			1	1	0.	1	0
				1	0.	1	
			1	1	0	1	0
		0	0	0	0	0	
	1	1	0	1	0		
1	0	0	0	0.	0	1	0

Para multiplicarmos números negativos podemos lançar mão de duas opções:

- 3) Multiplicar suas magnitudes e processar o sinal separadamente
- 4) Utilizar a representação em complemento de dois, trabalhando diretamente com o sinal.

Ex2: Multiplicar 2 por -3, fazendo uso representação N[2] com 4 bits:

			0	0	1	0			
			1	1	0	1			
			0	0	1	0			
		0	0	0	0				
	0	0	1	0					
0	0	_1	0						
0	0	1) 1	0	1	0			
	1								
"estouro de registro"									

"estouro de registro"

Divisão binária

Ocorre exatamente dentro dos mesmos moldes da divisão decimal.

Referência geral: Introdução à Análise e Síntese de Circuitos Lógicos Ivanil Bonatti e Marcos Madureira Editora da UNICAMP