Richard Nakka's Experimental Rocketry Web Site

Potassium Nitrate-Sucrose (KNSU) Propellant Chemistry and Performance Characteristics

Standard Composition (65/35 O/F)

For KNSU propellant, with an oxidizer-fuel (O/F) ratio of 65/35, the theoretical combustion equation is as follows:

$$C_{12}H_{22}O_{11} + 6.288 \text{ KNO}_3 \Rightarrow 3.796 \text{ CO}_2 + 5.205 \text{ CO} + 7.794 \text{ H}_2\text{O} + 3.065 \text{ H}_2 + 3.143 \text{ N}_2 + 2.998 \text{ K}_2\text{CO}_3 + 0.274 \text{ KOH}$$

at a pressure of 68 atmospheres (1000 psi), and where the following compounds are symbolized as:

sucrose	solid	$C_{12}H_{22}O_{11}$
potassium nitrate	solid	KNO ₃
carbon dioxide	gas	CO ₂
carbon monoxide	gas	CO
steam	gas	H ₂ O
hydrogen	gas	H_2
nitrogen	gas	N_2
potassium carbonate	liquid	K ₂ CO ₃
potassium hydroxide	gas	КОН

The mole numbers for each of the products shown above were determined from PROPEP (Propellant Evaluation Program).

Characteristics of KNSU Propellant (65/35 ratio)

	Characteristics of Kryso Tropenant (05/55 faile)							
	<u>Parameter</u>		<u>Units</u>	Note				
	Process method	Cast						
Isp	Specific Impulse, ideal	<u>153.5</u>	sec.	[1]				
Isp	Specific Impulse, delivered (typical)	125-130	sec.	[2]				
C*	Characteristic exhaust velocity, theoretical	<u>3013</u>	ft/s					
То	Combustion temperature, theoretical @1000 psia	1447 (<u>1720</u>)	deg Celsius (K)	[3]				
То	Combustion temperature, measured@1000 psia	1350	deg Celsius	[4]				
	Density, ideal	1.89	gram/cu.cm.					
	Density, as cast (typical)	1.80	gram/cu.cm.	[5]				
X	Mass fraction of condensed-phase products	0.424	_					
k	Ratio of specific heats, mixture	1.133	-	[6]				

M	Effective molecular wt. of exhaust products	<u>42.02</u>	g/mole	[7]
	Burn rate behaviour	de St.Robert		
n	Burn rate pressure exponent, strand	0.319		
n	Burn rate pressure exponent, erosive	0.323		
a	Burnrate constant	0.0665		[8]
ro	Burn rate @ 1 atm.	0.156	in/sec	
r	Burn rate @ 1000 psia	0.602	in/sec	
Tcr	Auto-ignition temperature	<u>> 300</u>	deg. C.	

- [1] At 1000 psi pressure; exit pressure one atmosphere
- [2] Static tests AST-17, AST-18
- [3] PROPEP combustion results
- [4] Measured with type k thermocouple, static test AST-16
- [5] Measured, typical grain
- [6] Mixture(2-phase), at chamber conditions
- [7] System mass divided by number of gas moles
- [8] Use with pressure units of psi. Resulting burn rate is inches per second

<u>Figure 1</u> -- This chart shows the variation of theoretical specific impulse with O/F (oxidizer/fuel) ratio.

<u>Figure 2</u> -- This chart shows the variation of combustion temperature and molecular weight of exhaust products with O/F ratio.

Figure3 -- This chart shows the variation of theoretical specific impulse with chamber pressure.

Last updated March 15, 2023

Index Page