NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

Module: MA1508E Linear Algebra for Engineering

Year/Semester: 2018-2019 (Semester 2)

Tutorial: 5

- 1. Let $u_1 = (1, 2, -1)$, $u_2 = (6, 4, 2)$, $u_3 = (9, 2, 7)$, $u_4 = (4, -1, 8)$, $u_5 = (1, 2, 3)$.
 - (a) Is u_3 a linear combination of u_1 and u_2 ? Is span $\{u_1, u_2\}$ = span $\{u_1, u_2, u_3\}$? Is either span $\{u_1, u_2\}$ or span $\{u_1, u_2, u_3\}$ equals to \mathbb{R}^3 ?
 - (b) Is u_4 a linear combination of u_1, u_2 and u_3 ? Is span $\{u_1, u_2, u_3\} = \text{span}\{u_1, u_2, u_3, u_4\}$? Is span $\{u_1, u_2, u_3, u_4\} = \mathbb{R}^3$?
 - (c) Is u_5 a linear combination of u_1, u_2, u_3 and u_4 ? Is span $\{u_1, u_2, u_3, u_4\} = \text{span}\{u_1, u_2, u_3, u_4, u_5\}$? Is span $\{u_1, u_2, u_3, u_4, u_5\} = \mathbb{R}^3$?
 - (a) $\begin{pmatrix} 1 & 6 & 9 \\ 2 & 4 & 2 \\ -1 & 2 & 7 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ So $\boldsymbol{u_3}$ is a linear combination of $\boldsymbol{u_1}$ and $\boldsymbol{u_2}$. Yes, span $\{\boldsymbol{u_1}, \boldsymbol{u_2}\} = \operatorname{span}\{\boldsymbol{u_1}, \boldsymbol{u_2}, \boldsymbol{u_3}\} \neq \mathbb{R}^3$ since two vectors are not enough to span \mathbb{R}^3 .
 - (b) $\begin{pmatrix} 1 & 6 & 9 & | & 4 \\ 2 & 4 & 2 & | & -1 \\ -1 & 2 & 7 & | & 8 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -3 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{pmatrix}$ So $\boldsymbol{u_4}$ is not a linear combination of $\boldsymbol{u_1}, \boldsymbol{u_2}$ and $\boldsymbol{u_3}$. No, $\{\boldsymbol{u_1}, \boldsymbol{u_2}, \boldsymbol{u_3} \text{ is not equal to span}\{\boldsymbol{u_1}, \boldsymbol{u_2}, \boldsymbol{u_3}, \boldsymbol{u_4}\}$, which is equal to \mathbb{R}^3 .
 - (c) Since u_1, u_2, u_3, u_4 spans \mathbb{R}^3 , we know for sure that u_5 is a linear combination of u_1, u_2, u_3, u_4 and the span of $\{u_1, u_2, u_3, u_4, u_5\}$ and $\{u_1, u_2, u_3, u_4\}$ are both equal to \mathbb{R}^3 .
- 2. For each of the following matrices A, express the solution space of Ax = 0 as a linear span. Give a geometrical interpretation of the solution space (in other words, describe the geometrical object represented by the linear span).

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{pmatrix}$$
 (b) $\mathbf{A} = \begin{pmatrix} 1 & -2 & 3 \\ -3 & 7 & -8 \\ -2 & 4 & 6 \end{pmatrix}$

(c)
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 3 \\ -3 & 7 & -8 \\ 4 & 1 & 2 \end{pmatrix}$$
 (d) $\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

- (a) The solution space is $S = \{(x, y, z) \mid x 2y + 3z = 0\}$. Solving x 2y + 3z = 0, we have $S = \text{span}\{(2, 1, 0), (-3, 0, 1)\}$, which is a plane (with equation x 2y + 3z = 0) in \mathbb{R}^3 .
- (b) The solution space is $S = \{(0,0,0)\}$, which is span $\{0\}$. This is the zero space, which is the origin in \mathbb{R}^3 .
- (c) A general solution for the linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ is $x_1 = -\frac{7t}{9}$, $x_2 = \frac{10t}{9}$, $x_3 = t$, where $t \in \mathbb{R}$. Thus $S = \text{span}\{(-7, 10, 9)\}$, which is a straight line in \mathbb{R}^3 passing through the origin and the point (-7, 10, 9).
- (d) The solution space is $\{(x, y, z) \mid x, y, z \in \mathbb{R}\}$, which is the entire Euclidean space \mathbb{R}^3 .
- 3. Let $V = \{(x, y, z) \mid 2x y + 3z = 0\}$ be a subset of \mathbb{R}^3 .
 - (a) Is V a subspace of \mathbb{R}^3 ? If so, describe the subspace geometrically.
 - (b) Let $S = \{(1, -1, -1), (1, 2, 0)\}$. Show that span(S) = V.
 - (c) Let $\mathbf{u} = (0, 3, a)$, where a is a real number. Suppose $T = S \cup \{\mathbf{u}\}$. Find all values of a such that
 - (i) $\operatorname{span}(T) = \mathbb{R}^3$.
 - (ii) $\operatorname{span}(T) = V$.
 - (a) Yes, V is a subspace of \mathbb{R}^3 since it is the solution space of a homogeneous linear system. It is a plane in \mathbb{R}^3 that contains the origin.
 - (b) As long as we have two vectors that belongs to V and are not multiples of each other, these two vectors will span V. Indeed, we check that both (1, -1, -1) and (1, 2, 0) both satisfy the equation 2x y + 3z = 0, so $\operatorname{span}(S) = V$.
 - (c) (i) We require \boldsymbol{u} **NOT** to be a linear combination of (1, -1, -1) and (1, 2, 0).

$$\begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 3 \\ -1 & 0 & a \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 3 \\ 0 & 0 & a-1 \end{pmatrix}$$

So span $(T) = \mathbb{R}^3$ if and only if $a \neq 1$.

- (ii) It follows from the previous part that span(T) = V if and only if a = 1.
- 4. Let $\mathbf{u_1} = (2,0,2,-4)$, $\mathbf{u_2} = (1,0,2,5)$, $\mathbf{u_3} = (0,3,6,9)$, $\mathbf{u_4} = (1,1,2,-1)$, $\mathbf{v_1} = (-1,2,1,0)$, $\mathbf{v_2} = (3,1,4,0)$, $\mathbf{v_3} = (0,1,1,3)$, $\mathbf{v_4} = (-4,3,-1,6)$. Determine if the following are true.
 - (a) $\operatorname{span}\{u_1, u_2, u_3, u_4\} \subseteq \operatorname{span}\{v_1, v_2, v_3, v_4\}.$
 - (b) $\operatorname{span}\{v_1, v_2, v_3, v_4\} \subseteq \operatorname{span}\{u_1, u_2, u_3, u_4\}.$
 - (c) span $\{u_1, u_2, u_3, u_4\} = \mathbb{R}^4$.
 - (d) span $\{v_1, v_2, v_3, v_4\} = \mathbb{R}^4$.

(a)
$$\begin{pmatrix} -1 & 3 & 0 & -4 & 1 \\ 2 & 1 & 1 & 3 & 0 \\ 1 & 4 & 1 & -1 & 2 \\ 0 & 0 & 3 & 6 & 5 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} -1 & 3 & 0 & -4 & 1 \\ 0 & 7 & 1 & -5 & 2 \\ 0 & 0 & 3 & 6 & 5 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Since $u_2 \notin \text{span}\{v_1, v_2, v_3, v_4\}$, $\text{span}\{u_1, u_2, u_3, u_4\} \not\subseteq \text{span}\{v_1, v_2, v_3, v_4\}$.

(b)
$$\begin{pmatrix} 2 & 1 & 0 & 1 & | & -1 & | & 3 & | & 0 & | & -4 \\ 0 & 0 & 3 & 1 & | & 2 & | & 1 & | & 1 & | & 3 \\ 2 & 2 & 6 & 2 & | & 1 & | & 4 & | & 1 & | & -1 \\ -4 & 5 & 9 & -1 & | & 0 & | & 0 & | & 3 & | & 6 \end{pmatrix}$$
 Gaussian Ga

The systems are consistent and thus span $\{v_1, v_2, v_3, v_4\} \subseteq \text{span}\{u_1, u_2, u_3, u_4\}$.

- (c) span $\{u_1, u_2, u_3, u_4\} = \mathbb{R}^4$.
- (d) span $\{v_1, v_2, v_3, v_4\} \neq \mathbb{R}^4$.
- 5. For each of the following subsets S of \mathbb{R}^n determine if S is a subspace of \mathbb{R}^3 (or \mathbb{R}^4) and for those which are, write S as a linear span.
 - (a) $S = \{(a, b, c) \mid abc = 0\}.$
 - (b) $S = \{(x, y, z) \mid 4y = z\}.$
 - (c) $S = \{(a, b, c) \mid a \le b \le c\}$
 - (d) $S = \{(w, x, y, z) \mid 2x + 3y z = 0 \text{ and } x + 2y z = 0\}.$
 - (e) $S = \{ \mathbf{A}\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^3 \}$ where $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}$ (here \mathbf{u} is written as a column vector).
 - (f) $S = \{ \boldsymbol{u} \in \mathbb{R}^4 \mid \boldsymbol{A}\boldsymbol{u} = \boldsymbol{u} \}$ where $\begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ (here \boldsymbol{u} is written as a column vector).
 - (a) S is not a subspace since (1,0,0) and (0,1,1) belongs to S but (1,0,0) + (0,1,1) = (1,1,1) does not.
 - (b) S is a subspace of \mathbb{R}^3 since it is the solution space of the homogeneous linear system 4y z = 0. Solving 4y z = 0, we have $S = \text{span}\{(1,0,0),(0,1,4)\}$.
 - (c) S is not a subspace of \mathbb{R}^3 since (1,2,3) belongs to S but -(1,2,3)=(-1,-2,-3) does not.
 - (d) S is a subspace of \mathbb{R}^4 since it is the solution space of the homogeneous linear system

$$\begin{cases} 2x + 3y - z = 0 \\ x + 2y - z = 0 \end{cases}$$

Solving the system, we have the general solution w=t, x=-s, y=s, z=s where $t,s\in\mathbb{R}$. Thus, $S=\mathrm{span}\{(1,0,0,0),(0,-1,1,1)\}.$

- (e) Note that S is a subset of \mathbb{R}^2 in this case. For each $\boldsymbol{u}=(x,y,z)^T\in\mathbb{R}^3$, $\boldsymbol{A}\boldsymbol{u}=x\begin{pmatrix}1\\0\end{pmatrix}+y\begin{pmatrix}2\\1\end{pmatrix}+z\begin{pmatrix}3\\1\end{pmatrix}$. Thus $S=\mathrm{span}\{(1,0)^T,(2,1)^T,(3,1)^T\}$, which is a subspace of \mathbb{R}^2 . (In fact, $S=\mathbb{R}^2$.)
- (f) Note that S is a subset of \mathbb{R}^4 and $\mathbf{u} \in S$ if and only if $\mathbf{A}\mathbf{u} = \mathbf{u} \Leftrightarrow (\mathbf{A} \mathbf{I})\mathbf{u} = \mathbf{0}$. So S is the solution space of the homogeneous linear system with coefficient matrix $(\mathbf{A} \mathbf{I})$ and thus it is a subspace. Solving $(\mathbf{A} \mathbf{I})\mathbf{u} = \mathbf{0}$, we have a general solution $x_1 = s$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$ where $s \in \mathbb{R}$. So $S = \text{span}\{(1, 0, 0, 0)\}$.
- 6. Determine which of the following statements are true. Justify your answer.
 - (a) If u is a nonzero vector in \mathbb{R}^1 , then span $\{u\} = \mathbb{R}^1$.
 - (b) If u, v are nonzero vectors in \mathbb{R}^2 such that $u \neq v$, then span $\{u, v\} = \mathbb{R}^2$.
 - (c) If S_1 and S_2 are finite subsets of \mathbb{R}^n , then $\operatorname{span}(S_1 \cap S_2) = \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$.
 - (d) If S_1 and S_2 are finite subsets of \mathbb{R}^n , then $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) \cup \operatorname{span}(S_2)$.
 - (a) True, since span $\{u\} = \{cu \mid c \in \mathbb{R}\}$ which is the set of all real numbers.
 - (b) False, since \boldsymbol{u} and \boldsymbol{v} may be scalar multiples of each other. For example $\boldsymbol{u}=(1,0),\,\boldsymbol{v}=(2,0),$ then $\operatorname{span}\{\boldsymbol{u},\boldsymbol{v}\}=\operatorname{span}\{\boldsymbol{u}\}\neq\mathbb{R}^2.$
 - (c) False. For example, if $S_1 = \{(1,0)\}$, $S_2 = \{(2,0)\}$, then $S_1 \cap S_2 = \emptyset$ and $\operatorname{span}(S_1 \cap S_2) = \{\mathbf{0}\}$. On the other hand $\operatorname{span}(S_1) \cap \operatorname{span}(S_2) = \operatorname{span}\{(1,0)\}$.
 - (d) False. For example, if $S_1 = \{(1,0)\}$ and $S_2 = \{(0,1)\}$, then span $(S_1 \cup S_2) = \mathbb{R}^2$. On the other hand span $(S_1) \cup \text{span}(S_2)$ is the union of the x and y-axes in \mathbb{R}^2 which is not a subspace of \mathbb{R}^2 .