Tools & Models for Data Science Outliers

Chris Jermaine & Risa Myers

Rice University

What Are Outliers In Data Science?

- Data points that are unlike the other points, unexpected, or unusual in some way
 - Weather data set: low of -12°C degrees in Houston
 - Blood pressure > 300 mmHg
 - Drug price change from \$13.50/pill to \$750/pill

Outlier Pic: 1

Outlier Pic: 2

Outliers Not Same As Unusual Data

- Low of 12°C degrees in Houston unusual, probably not an outlier
- Low of -12°C in Chicago (a bit) unusual, probably not an outlier
- It's the combination of Houston, -12°C that makes this difficult to believe

Why Look For Outliers?

- Classically, two reasons:
 - 1 Classically, to remove them from data...
 - ...because outliers can hurt learning process

Why Throw Out Data?

- It messes up the model
- Garbage in, garbage out
- Huge impact on least squares
 - Most common loss / error model
 - Outliers have a magnified effect

distance	distance ²
1	1
2	4
-3	9
-4	16
5	25

Is it Really Garbage Data?

- Values that defy natural laws
 - Negative blood pressure values
 - Speed faster than light
- Sometimes it's meaningful
 - Age 0 in an adult ER
 - Value 99 to indicate unknown
- It's a slippery slope

But This Can Be Dangerous

Change your model to include the outlier!

 $^{^{1}}$ Reprinted with permission http://davidmlane.com/ben/cartoons.html

Why Look For Outliers?

- Classically, two reasons:
 - 1 Classically, to remove them from data...
 - ...because outliers can hurt learning process
 - 2 To find them for further examination...
 - ...because outliers might enhance understanding of data
- ? What are some examples of applications where we want to find outliers?

The Data Scientist's Goal

- Find the outliers!
 - Computer security
 - Fraud detection
 - Medical crisis alerts
- ? What if you find 1 MD prescribing lots of opioids. Is it fraud?

The Data Scientist's Goal

- Find the outliers!
 - Computer security
 - Fraud detection
 - Medical crisis alerts
- What if you find 1 MD prescribing lots of opioids. Is it fraud?
 - Or is it a large practice and all the Rx's go under 1 name?

Supervised vs. Unsupervised Learning

- Supervised learning labels are provided
- Unsupervised learning no labels provided

Outlier Detection is an Unsupervised Task

? Why?

Outlier Detection is an Unsupervised Task

- Why?
 - We don't always know what the outliers look like
 - By definition, we don't expect them
 - They are rare
- Supervised learning requires labels

How Do We Define Outliers?

- Two standard definitions:
 - (1) Distance-based
 - (2) Model-based

Distance Based Outlier Detection

- Classical approach
- Most frequently used
- Feasible if we have a high dimensional space, outliers are very far from the other points

Model Based Outlier Detection

- Requires a proper statistical model
- If a data point has a very low probability of occurring, flag that
 - Coin flips:
 - 10 flips: 9 heads
 - ? Is our coin biased?

Model Based Outlier Detection

- Requires a proper statistical model
- If a data point has a very low probability of occurring, flag that
 - Coin flips:
 - 10 flips: 9 heads

$$10 * \frac{1}{2}^9 * (1 - \frac{1}{2}) = 10 * \frac{1}{2}^{10} = 0.00977$$

- 10 * P(heads) * P(Tails)
- Your coin is likely biased

kNN

- k Nearest Neighbors
- Very popular machine learning algorithm
- Relatively simple
 - Look at a data point
 - Consider the *k* closest points to it
 - Make a decision based on that information

Distance-Based Outliers

- Definition: A point is an outlier if it is far from all other points
- Outlier search often defined in terms of kNN:
 - Let $d(x_i)$ be the distance to point x_i 's kthNN in the data set
 - Then, given data set $\langle x_1, x_2, ..., \rangle$, we want to compute the set O of outliers such that...
 - |O| = m the number of points in the set is m
 - and $\forall (x_o \in O, x_i \in \mathbf{X} \mathbf{O}), d(x_o) \geq d(x_i)$
 - That is, for every point x_o in our outlier set
 - and every point x_i **NOT** in our outlier set
 - the outlier distance is further than the non-outlier distance

How to Find Distance-Based Outliers, Conceptually (2NN)?

Pick a Point (2NN)

Compute Distance to All Other Points (2NN)

Find the Distance to the 2nd NN (2NN)

Repeat for All Points

Finding the 2nd NN Distance

Select the Top m "Outlierly" Points

Point	2NN distance
Α	1.02
В	2.94
С	1.77
D	1.30
E	1.33
F	0.98
G	1.02
Н	1.14
I	1.96
J	1.75
K	2.24

- Simple algorithm:
 - O is the set of current Outliers
- Q is the closest distances to the current point init min-priority queue O for $x_1 \in X$:
 init max-priority queue Q for $x_2 \neq x_1 \in X$:
 insert $dist(x_1,x_2)$ into Q if |Q| > k remove max from Q insert x_1 into O with key max(Q)
 if |O| > m remove point with min key from O
- return O
 - \blacksquare *m* is the number of outliers we are looking for
 - \blacksquare *k* is the nearest neighbor we consider
 - Let's walk through an example in detail

- So, this works!
- ? Are there any problems here?

- What are the problems here?
 - m & k are magic/arbitrary numbers
 - Nested loop thru entire database O(N²)
 - Too slow for big data
 - How to address (the computational problem)?

- Better algorithm:
 - O is the set of current Outliers
 - Q is the closest distances to the current point

```
init \min-priority queue O
for x_1 \in X:
  init \max-priority queue Q
for x_2 \neq x_1 \in X:
  insert dist(x_1, x_2) into Q
  if |Q| > k
   remove \max from Q
  if |Q| == k and |O| == m and \max(Q) < \min(O)
   discard x_1; not an outlier
  insert x_1 into O with \max(Q)
  if |O| > m
  remove point with \min \max(Q)
```

return O

- Q & O must be full
- If I find a neighbor who is closer than the current outlier distance, I can't be a top outlier
- So move to the next candidate point

- Why does this help?
 - max(Q) is an upper bound on distance to kth NN
 - So distance to kth NN can't ever be greater
 - If this is not good enough to get point into top m in O
 - Then can discard it early

- Example: O: {(1.33, E), (1.77, C) (1.30, D) }
 - Process F
 - Find 2NN distance(F,A) = 0.98
 - \blacksquare 0.98 < 1.30 so discard F
- Can get a 100x speed up
- But, it's still $O(N^2)$

- Even better:
 - Store X in randomized order
 - That way, won't get unlucky and find all far points first

How to Choose m and k?

- What goes into m?
 - Size of the data set
 - Ability of humans to process / deal with the identified outliers
 - Start small and make m bigger. Stop when nothing "interesting" is added
 - Very application specific
- What goes into k?
 - Size of the data set
 - How far apart are your data? k "smooths" the data.
 - Try \sqrt{N}
 - Determine empirically using your validation set

Model-Based Outliers

- Basic idea:
 - Learn a model for what is "typical"
 - Then outlier is data point with low score according to the model

Example of Model-Based Detection

■ Learn parameters of a Normal distribution by choosing μ, σ^2 to maximize

$$P(x_1, x_2, ..., x_n) = \prod_i (\text{Normal}(x_i | \mu, \sigma^2))$$

- Then choose *m* points with highest Normal($x_i | \mu, \sigma^2$) PDF
- Whichever points are not described well by the model are considered outliers

Most likely data occurs in the middle, points in the tails are less likely

Use Case Real-time Detection

- Write software to sound an alarm
- Use existing dataset to identify a new outlier
- Alarm fatigue (high number of False Positives) can be a huge problem

Use Case Retrospective Analysis

- Find outliers in a big dataset
- Learn a model
- Considering all the points, choose the most "outlierly"
 - Anesthesiologist No. 7²
 - Study to evaluate pre-op condition's (reduced blood flow to the heart) impact on post-op heart attack
 - Local hospital (Texas Heart Institute)
 - One anesthesiologist was afraid of bradycardia
 - Also was the least experienced anesthesiologist
 - Factor of 10 difference

²Slogoff S, Keats AS. Does perioperative myocardial ischemia lead to postoperative myocardial infarction? Anesthesiology. 1985;62(2):107–14.

Wrap up

- What is an outlier?
- 2 Why does it matter?
- 3 Review of detection algorithm using kNN
- ? How can we use what we learned today?

? What do we know now that we didn't know before?