Modify the Neural Network Model

```
import tensorflow as tf
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Dense, Flatten, Embedding, Dropout
import matplotlib.pyplot as plt
import pandas as pd
```

Load the IMDB Dataset

This dataset contains movie reviews labeled as positive or negative.

```
max_features = 10000
maxlen = 500
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = pad_sequences(x_train, maxlen=maxlen)
x_test = pad_sequences(x_test, maxlen=maxlen)
```

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-data:17464789/17464789

15 Ous/step

Model configurations

This function allows flexibility in adjusting hidden units, activation functions, loss functions, and dropout.

```
def create_model(hidden_units=64, activation='relu', loss='binary_crossentropy',
    model = tf.keras.Sequential([
        Embedding(input_dim=max_features, output_dim=128),
        Flatten(),
        Dense(hidden_units, activation=activation)
])
if dropout_rate:
    model.add(Dropout(dropout_rate))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss=loss, metrics=['accuracy'])
return model
```

Model variations

Experimenting with different hidden layers, activations, losses, and units.

Compile models where needed

Some models require explicit compilation after creation.

```
models["Three Hidden Layers"].compile(optimizer='adam', loss='binary_crossentropy
```

Train and evaluate models

Training each model for 5 epochs and evaluating on the test set.

```
def train_and_evaluate(model):
    model.fit(x_train, y_train, epochs=5, batch_size=32, validation_split=0.2, ve
    val_accuracy = model.evaluate(x_test, y_test, verbose=0)[1]
    test_accuracy = model.evaluate(x_test, y_test, verbose=0)[1]
    return val_accuracy, test_accuracy
```

Evaluate all models and collect results

Storing validation and test accuracies for comparison.

```
results = {name: train_and_evaluate(model) for name, model in models.items()}
```

Summarize results in a DataFrame

Creating a table for clear presentation of model performances.

Visualize the results

Bar chart comparing validation and test accuracies for each model.

```
plt.figure(figsize=(10, 6))
plt.barh(summary['Model'], summary['Validation Accuracy'], color='skyblue', label:
plt.barh(summary['Model'], summary['Test Accuracy'], color='orange', alpha=0.6, laplt.xlabel('Accuracy')
plt.xlabel('Accuracy')
plt.title('Model Performance on IMDB Dataset')
plt.legend()
plt.show()
```


Display summary

\rightarrow		Model	Validation Accuracy	Test Accuracy
	0	One Hidden Layer (64 units)	0.86048	0.86048
	1	Three Hidden Layers	0.84764	0.84764
	2	Tanh Activation + MSE Loss	0.82756	0.82756
	3	Dropout Regularization	0.85856	0.85856
	4	Fewer Units (32)	0.86032	0.86032
	5	More Units (128)	0.86524	0.86524

Insights on Model Performance

- The model with Dropout Regularization performed well, indicating reduced overfitting.
- Increasing hidden units to 128 slightly improved accuracy compared to 32 units, showing the importance of capacity.
- Models using tanh activation and MSE loss showed lower accuracy, suggesting they are less effective for binary classification

IMDB Sentiment Analysis Model Performance Analysis

Model Variations and Results

Our experiments tested several architectural and hyperparameter variations on the IMDB sentiment analysis task, with the following key findings:

Model Architecture Impact

1. Layer Depth:

- o Single hidden layer (64 units) achieved 86.048% accuracy
- Three hidden layers performed slightly worse at 84.764%
- This suggests that for this particular task, deeper architectures don't necessarily improve performance
- The simpler architecture may be sufficient for capturing the necessary sentiment patterns

2. Hidden Unit Variations:

32 units: 86.032% accuracy

64 units: 86.048% accuracy

128 units: 86.524% accuracy

- The trend shows a slight improvement with increased units
- o The marginal gains diminish as we add more units
- The 128-unit model performed best overall, suggesting this capacity level is optimal for the task

Training Optimizations

1. Activation and Loss Function:

- The tanh activation with MSE loss performed notably worse (82.756%)
- This validates modern best practices of using ReLU and binary cross-entropy for binary classification tasks
- The significant performance drop (≈4% decrease) demonstrates the importance of appropriate activation/loss function selection

2. Regularization Impact:

- o Dropout regularization (85.856%) performed nearly as well as the best model
- The small gap between validation and test accuracy suggests effective prevention of overfitting
- o This indicates that dropout is a valuable addition to the model architecture

Key Takeaways

1. Model Complexity vs. Performance:

- Simpler architectures performed surprisingly well
- o Adding more layers didn't improve performance
- This suggests the sentiment classification task may not require deep architectural complexity

2. **Optimal Configuration**:

- Best performance: 128 units with ReLU activation and binary cross-entropy loss
- Dropout provides good regularization without significant performance penalty
- o The modern standard of ReLU activation significantly outperforms traditional tanh

3. Practical Implications:

o For similar text classification tasks, starting with a single hidden layer and ReLU

- activation is recommended
- Increasing model width (units) is more beneficial than increasing depth (layers)
- o Dropout should be considered as a standard addition to prevent overfitting

Future Recommendations

- 1. Consider experimenting with:
 - Different dropout rates to find optimal regularization
 - Embedding layer dimensionality
 - Additional regularization techniques (L1/L2)
 - o Different optimizers beyond Adam
- 2. Performance improvements might be achieved through:
 - Text preprocessing optimizations
 - Longer training periods
 - · Learning rate scheduling
 - Ensemble methods combining multiple model variants

Double-click (or enter) to edit