Введение в машинное обучение

Лекция 1

План лекции

- Литература
- Основные понятия
- Схема машинного обучения
- Виды признаков
- Геометрическая интерпретация
- Задачи машинного обучения
- Оценка качества

Литература

- Флах П. Машинное обучение. М: ДМК Пресс, 2015
- Рашка C. Python и машинное обучение. М: ДМК Пресс, 2017
- Элбон К. Машинное обучение с использованием Python. 2019
- Соколов Е. Курс по машинному обучению
 - https://github.com/esokolov/ml-course-hse/tree/master
- Воронцов К. Математические методы обучения по прецедентам
 - www.machinelearning.ru
- Дьяконов А. Машинное обучение и анализ данных
 - https://github.com/Dyakonov/MLDM_BOOK
- Котельников Е., Котельникова А. Введение в машинное обучение и анализ данных. 2023

Литература

- Mitchell T.M. Machine Learning. McGraw-Hill, 1997
- Bishop C.M. Pattern Recognition and Machine Learning.
 Springer, 2006
- James G., Witten D., Hastie T., Tibshirani R., Taylor J.
 An Introduction to Statistical Learning. 2nd ed. Springer, 2023
- Mohri M., Rostamizadeh A., Talwalkar A. Foundations of machine learning. 2nd ed. The MIT Press, 2018
- Forsyth D. Applied Machine Learning. Springer, 2019
- Lindholm A. et al. Machine Learning. A First Course for Engineers and Scientists. Cambridge University Press, 2022
- Murphy K.P. Probabilistic Machine Learning. The MIT Press, 2022

Основные понятия

- Машинное обучение (Machine Learning, ML) научная дисциплина, изучающая методы построения моделей, способных обучаться, и алгоритмов для их построения и обучения
 - Артур Самуэль, 1959 год: Checkers-playing
- A computer program is said to learn from experience E with respect to some classes of task T and performance measure P if its performance can improve with E on T measured by P [Mitchell, 1997, p. 2]

Основные понятия

- Интеллектуальный анализ данных (Data Mining) это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных, доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности
 - Григорий Пятецкий-Шапиро, 1989 год
- Большие данные (Big Data) совокупности данных с возможным экспоненциальным ростом, которые слишком велики, слишком не форматированы или слишком не структурированы для анализа традиционными методами
 - Клиффорд Линч, 2008 год
 - VVV = Volume, Velocity, Variety

Основные понятия

Схема машинного обучения

Термины

- Пространство объектов 🛚
- Целевая переменная y (target)
- Пространство ответов $Y: y \in Y$
- Обучающая выборка (training set):

$$X = \{(\vec{x}_1, y_1), \dots, (\vec{x}_l, y_l)\}$$

- Тестовая (контрольная) выборка (test set)
- Признак (feature):

$$f: \mathbb{X} \to D_f$$

Термины

• Признаковое описание объекта:

$$\vec{x}_i = (x_{i1}, \dots, x_{id})$$

• Матрица «объект-признак»:

$$X \in \mathbb{R}^{l \times d}$$
, $X = \begin{bmatrix} x_{11} & \dots & x_{1d} \\ \dots & \dots & \dots \\ x_{l1} & \dots & x_{ld} \end{bmatrix}$

• Алгоритм или модель:

$$a: \mathbb{X} \to \mathbb{Y}$$

Виды признаков

- Бинарные: $D_f = \{0,1\}$
- Номинальные (категориальные): D_f конечное множество
- Порядковые (ординальные): $D_f {\sf конечное}\ {\sf упорядоченное}\ {\sf множество}$
- Количественные: $D_f = \mathbb{R}$

Схема машинного обучения

Схема процесса анализа данных

Геометрическая интерпретация

- Что является объектом?
- Что является моделью?
- Размерности пространства:
 - 1d: модель = точка / множество точек
 - 2d: модель = прямая / линия (кривая)
 - 3d: модель = плоскость / поверхность
 - >3d: модель = гиперплоскость / гиперповерхность

Задачи машинного обучения

- 1. Обучение с учителем (supervised learning):
- бинарная классификация (binary classification): $\mathbb{Y} = \{0,1\}$
- многоклассовая (multi-class) классификация: $\mathbb{Y} = \{1, \dots, K\}$
- многоклассовая классификация с пересекающимися классами (multi-label classification): $\mathbb{Y} = \{0,1\}^K$
- регрессия (regression): $\mathbb{Y} = \mathbb{R}$
- ранжирование (learning to rank)
- прогнозирование (forecasting)
- самообучение (self-supervised learning)

Задачи машинного обучения

- 2. Обучение без учителя (unsupervised learning):
- кластеризация (clustering)
- визуализация (visualization)
- снижение размерности (dimension reduction)
- 3. Обучение со слабым контролем (weakly supervised learning) неполные, неточные, зашумленные метки
- частичное обучение (semi-supervised learning)
- активное обучение (active learning)

Задачи машинного обучения

- 4. Несбалансированное обучение (imbalanced learning)
- 5. Обучение с переносом (transfer learning)
 - адаптация к предметной области (domain adaptation)
- 6. Обучение с подкреплением (reinforcement learning)
- 7. Федеративное обучение (federated learning)
- 8. Мета-обучение (meta-learning, learning to learn)

Оценка качества

- Функционал качества \rightarrow max
- Функция ошибки / функция потерь (loss) \rightarrow min
- Регрессия: среднеквадратичная ошибка (mean squared error, MSE):

$$Q(a, X) = \frac{1}{l} \sum_{i=1}^{l} (a(\vec{x}_i) - y_i)^2$$

Оценка качества

Функция потерь:

$$L: \mathbb{Y} \times \mathbb{Y} \to \mathbb{R}_+$$

• В случае MSE:

$$L(y, y_{pred}) = (y - y_{pred})^{2}$$

$$Q(a, X) = \frac{1}{l} \sum_{i=1}^{l} L(y, a(\vec{x}_{i}))$$

Оценка качества

- Обычно: фиксация семейства алгоритмов \mathcal{A} и выбор алгоритма $a \in \mathcal{A}$, наилучшего с точки зрения функционала
- Линейные модели:

$$\mathcal{A} = \{a(\vec{x}_i) = w_0 + w_1 x_{i1} + ... + w_d \ x_{id} | w_0, w_1, ..., w_d \in \mathbb{R} \}$$
 где x_{ij} – значение j -го признака i -го объекта

• Лучшая (оптимальная) модель:

$$\frac{1}{l} \sum_{i=1}^{l} \left(w_0 + \sum_{j=1}^{d} w_j x_{ij} - y_i \right)^2 \to \min_{w_0, w_1, \dots, w_d}$$

• Процесс поиска оптимальной модели называется обучением