

MKJ IT Learnings

The Corporate & Online Training Company www.mkj-it-learnings.com

RDBMS

Storing Data into Database

Created By: Ashish Bansal

Session Outline

- 1. DDL (Data Definition Language) Commands
- 2. DML (Data Manipulation Language) Commands
- 3. Select Operations.
- 4. Inbuild Functions.
- 5. Stored Procedures
- 6. Triggers
- 7. PL-SQL

Relational Database

- Data stored in rows and columns
- Values are atomic
- Columns are undistinguished and having unique names.
- Data is in sequence.
- Support SQL for quiring data.
- Focused on Normalization
 (normalization is the process to store the data to avoid duplication and redundancy).
 - To minimize duplication of data.
 - To minimize or avoid data modification issues.

First Normal Form

First normal form focus on primary key

- 1. Each set of column must have unique value.
- 2. Each row should have a primary key .

Student Name	Course	Age
Ramesh	Java, Salesforce	24
Rakesh	Excel	26
Lokesh	Spring Cloud	31

Student Name	Course	Age
Ramesh	Java	24
Ramesh	Salesforce	24
Rakesh	Excel	26
Lokesh	Spring Cloud	31

Second Normal Form-

- 1. Table should be in 1NF.
- 2. There should not be any partial dependency on Primary key.

Student Name	Age
Ramesh	24
Rakesh	26
Lokesh	31

Student Name	Course
Ramesh	Java
Rakesh	Excel
Lokesh	Spring Cloud
Ramesh	Salesforce

Creation of Table

Create table is the command which includes, information of attributes along with data type and constraints.

Constraints

- 1) Primary Key
- 2) Not Null
- 3) Unique
- 4) Foreign Key
- 5) Check Constraints. (used for better data validation purpose)
- 6) Default
- 7) Index

Syntax of Creation of Table

```
CREATE TABLE table_name (
    column1 datatype constraint,
    column2 datatype constraint,
    column3 datatype constraint,
    ....
);
```

Creation of Table

```
create table Instructor(
        instructorCode int Primary Key,
        name varchar(20) not null,
        salary int not null,
        jobStartYear int not null
                                                                 1. createtable.txt
                              Create Table InstructorInfo(
                              recordld int primary key,
                              instructorCode int references Instructor(instructorCode),
                              address varchar(100),
                              email varchar(30),
                              phone number(10),
                              firstLanguage varchar(20),
                              secondLanguage Varchar(20)
```

Continue...

```
Create Table InstructorInfo(
create table Courses(
 CourseName varchar(30) Primary Key,
                                       Ν
                                                         M
 Category varchar(30) not null,
 Duration int default 30,
 TestInclude int default 4
                                                            Created in Last Step
                create table InstructorCourseInfo(
                  icInfoID int primary key,
                  CourseName varchar(30) references Courses(courseName),
                  instructorCode int references Instructor(instructorCode)
```

Alter Table and Drop Table

ALTER TABLE "table_name"
ADD "column_name" "Data Type";

CURD Operations

```
INSERT INTO "table_name" ("column1", "column2", ...) VALUES ("value1", "value2", ...);
```

```
UPDATE "table_name"
SET "column_1" = [new value]
WHERE "condition";
```

Select statements

```
DELETE from "table_name" WHERE "condition";
```

Insert Query

select * from Instructor;

Results Explain Describe Saved SQL History

INSTRUCTORCODE	NAME	SALARY	JOBSTARTYEAR
731	Ashish	2000	2007
781	Kirti	2000	2005
784	Jatin	2000	2006
165	Aida	2000	2017

select COURSENAME, CATEGORY from Courses;

Results Explain Describe Saved SQL His

COURSENAME	CATEGORY
Java	Technical
Machine Learning	Data Science
EXCEL	Management
Power BI	Management
Learn Arabic	Language
learn English	Language
Spring Framework	Technical
ORM Framework	Technical
SalesForce	Technical

2. InsertScript.txt

select * from INSTRUCTORCOURSEINFO;

Results Explain Describe Saved SQL History

ICINFOID	COURSENAME	INSTRUCTORCODE
11	Java	731
12	Java	781
13	Java	784
14	Spring Framework	731
15	ORM Framework	731
17	SalesForce	731
16	EXCEL	731
18	ORM Framework	784
19	EXCEL	784
20	Learn Arabic	165
More than 10	rows available. Increase ro	ows selector to view more rows.

10 rows returned in 0.04 seconds Download

Update Query

update instructor set jobstartyear = 2010 where instructorcode = 165;


```
select * from instructor where INSTRUCTORCODE = 165;

update instructor set jobstartyear = 2010 where instructorcode = 165;

Results Explain Describe Saved SQL History

INSTRUCTORCODE NAME SALARY JOBSTARTYEAR

165 Aida 2000 2010
```

Select Statements

- 1) Where
- 2) In
- 3) Not In
- 4) Between
- 5) AND & OR
- 6) LIKE
- 7) ORDER BY
- 8) GROUP BY
- 9) HAVING
- 10) UNIQUE

SQL Functions

- 1) Average
- 2) Count
- 3) MAX
- 4) MIN
- 5) SUM
- 6) ROUND

Select Statements - Group By

select * from instructorcourseinfo;

EXCEL

Learn Arabic

19

Results Explain Describe Saved SQL History

ICINFOIDCOURSENAMEINSTRUCTORCODE11Java73112Java78113Java784

 13
 Java
 784

 14
 Spring Framework
 731

 15
 ORM Framework
 731

 17
 SalesForce
 731

 16
 EXCEL
 731

 18
 ORM Framework
 784

784

165

More than 10 rows available. Increase rows selector to view r

Objective: To find how many courses handled by trainer number 731

select count(*),instructorcode from instructorcourseinfo
where instructorcode = 731
group by instructorcode;

Results Explain Describe Saved SQL History

COUNT(*) INSTRUCTORCODE
5 731

Select Statements – Group By Continue...

Objective: How many courses handled by trainers

select count(*),instructorcode from instructorcourseinfo
group by instructorcode;

Results Explain Describe Saved SQL History

COUNT(*)	INSTRUCTORCODE
3	784
2	781
5	731
2	165

Self Work : Change column name count(*) to Number_Of_Courses

Hint: learn 'as' constraint

Joins

A relational database consists of multiple related tables linking together using common columns, which are known as foreign key columns. Because of this, data in each table is incomplete from the business perspective.

To get complete information, we have to query data from both **Instructor & Course** tables.

A join is a method of linking data between one or more tables based on values of the common column between the tables.

Terminology

What is Left and Right Table?

- ✓ Left Table : The Table which used to make select statement.
- ✓ Right Table :- The Table which used for joining left table

Where to Use Inner Join

It produces the data set that includes rows from the left join which have matching rows from the right tables

Select * from Employee
Inner Join EmployeeDetails ON
Employee.empID = EmployeeDetails.empID

Inner Join

Left Join

- Return all records from the left table, even if there are no records matches in the right table.
- For unmatched values in the right tables null is displayed.

Left Join

SQL Full Join

SQL Full Join (Union Clause in MYSQL)

Cross Join

- Every record of left table associate with right table
- No need of any common column between tables.

Cross Join

Stored Procedure

RDBMS databases has **the feature called stored procedure**, which is a set of SQL statements which can perform repetitive task. The stored procedure can be called using applications like **Java** ... or other stored procedures.

Stored procedure limits the user's direct access to data tables. It gives an interface and secure mechanism to manipulate data. With stored procedures, the repetition of code is avoided and the code block can be called whenever necessary. It allows variable declaration, parameter passing; return multiple values, flow statements.

Stored procedures are created using CREATE PROCEDURE

Stored Procedure- Creation & Calling

```
CREATE DEFINER=`root`@`localhost` PROCEDURE `getInstructorsCourses`()
         BEGIN
         select i.instructorId as id, i.instructorName as Instructor, i.country, i.emailId, c.courseName as course, c.fees
         from mkj.instructor as i
         inner join mkj.course c on c.instructorId = i.instructorId;
         END
  ▶ ■ technologytrainerinfo
                                                                                                         🗲 🖅 🔯 🔘 I 😘 I 🖾 🚳
                                                                                                                                               Limit to 1
                                                                         technologytrainerinfo
                                                                                                         call mkj.getInstructorsCourses();
▼ 5tored Procedures
                   Create Stored Procedure...
                                                                 ▼ 등 Stored Procedures
     ∆ getIns
                                                                      A getInstr
  Tunctions
                   Refresh All
                                                                                      Copy to Clipboard
                                                                   Functions

■ sys

                                                                                     Send to SQL Editor
                                                                                                                      Name (short)
                                                                                                                      Name (long)
                                                                                     Create Stored Procedure...
                                                                                     Alter Stored Procedure...
                                                                                                                      Create Statement
                                                                                                                      Procedure Call
                                                                                      Drop Stored Procedure...
                                                                                                                 tructor
                                                                                                                           country
                                                                                                                                    emailId
                                                                                      Refresh All
                                                                                                                          India
```

PL-SQL

- PI SQL is the blocked programming language for Database.
- Program units can be named or unnamed blocks.
- Unnamed blocks are known to be as anonymous blocks because its not going to be saved in the database.
 So it will never have name.
- We typically use such blocks whenever we need to perform one time activity.

```
BEGIN

DBMS_OUTPUT.put_line('Hello PL-SQL');

END;

Results Explain Describe Saved SQL History
```

- ➤ BEGIN and END are the starting and ending of the block.
 - DBMS_OUTPUT is used to render output either on console or file system.

Hello PL-SQL

PL-SQL Continue...

```
DECLARE
  name varchar(20) := 'Ramesh';
  salary int := 10000;
  tax int;

BEGIN
   DBMS_OUTPUT.put_line('Username :- '||name||' Information');
  DBMS_OUTPUT.put_line('===========');
  tax := salary * 0.10;
  DBMS_OUTPUT.put_line('Salary:- '||salary||' and 10% tax is '||tax);
  END;
```

Results Explain Describe Saved SQL History

- Declare section is used to declare and initialize variables.
 All variables consider as local scope.
- > Assignment operator is

Concatenation operator is

PL-SQL Data Types

Basic Data Types		
Varchar2	Variable length character, max size 4000 & min size should be 1.	
Number(p,s)	P stands for precision and s stands for scale. The precision p can range from 1 to 38, and scale can have range from 84 to 127.	
Long	Character data variable upto 2GB.	
DATE	Valid date	
Many mara data typa	and out data types are available. Like Integer which is a out type of Number data type	

Many more data type and sub data types are available, like Integer which is a sub type of Number data type, which takes only whole number.

PL-SQL Type conversion

Type Conversion

If we want to convert the values to the different data type, we should use type conversion functions.

to_char(value,[format_mask])	 Use to convert number or date to String. Format_mask is optional use to provide format to the String
To_number(String , [format_mask])	 Use to convert String to number and format_mask is optional, which is use to provide formatting
To_date(String,[format_mask])	 Use to convert String to date and format_mask is optional, which is use to provide formatted date.

PL-SQL

```
DECLARE
   num_var1 number(4,2) := 88.9;
   num_var2 number(4,2) := 88.5648;
   num_var3 number(4,0) := 1234.12;
   date_var_DATE := TO_DATE('5/5/2015','dd/mm/yyyy');
   str_var_varchar2(5) := '55';
BEGIN
   DBMS_OUTPUT.PUT_LINE('88.9 = '||num_var1);
   DBMS_OUTPUT.PUT_LINE('88.5648 = '||num_var2);
   DBMS_OUTPUT.PUT_LINE('1234.12 = '||num_var3);
   DBMS_OUTPUT.PUT_LINE('05/05/2015 = '||date_var);
   DBMS_OUTPUT.PUT_LINE(To_NUMBER(str_var)+1);
END;
```

Results Explain Describe Saved SQL History

```
88.9 = 88.9

88.5648 = 88.56

1234.12 = 1234

05/05/2015 = 05/05/2015

56

Statement processed.
```

- Assigning any number more than 4 digits leads compile time error.
- Assigning date in different format leads compile time error.

PL-SQL %TYPE & %ROWTYPE

- %TYPE used to assign datatype of a column.
- %ROWTYPE used to assigned entire row to the variable so that further value can be accessed easily.

```
DECLARE
 instructor name instructor.NAME%TYPE;
 instructor code instructor.INSTRUCTORCODE%TYPE;
 instructor year instructor.JOBSTARTYEAR%TYPE;
BEGIN
 select name, instructorcode, jobstartyear
 into instructor_name,instructor_code,instructor year
 from instructor
 where instructorcode=731;
 DBMS OUTPUT.PUT LINE(instructor code ||' -- '||instructor_name||' -- '||instructor_year );
END;
Results Explain Describe Saved SQL History
731 -- Ashish -- 2007
Statement processed.
0.00 seconds
```


PL-SQL Control Statements

IF < Condition>

THEN

statements statements

ELSE

statements statements

END IF;

Note:

The **PLSQL EXTRACT function** is used for extracting a specific value such as year, month, day or hour from a date

Syntax:

EXTRACT (field from source)

PL-SQL for loop

- 1. PL/SQL support two versions of for loop
 - a) numeric and
 - b) cursor FOR loop
- 2. The numeric for loop iterates across defined range.
- 3. While the cursor for loop iterates over returned select statements.

Syntax:

```
For i IN x..y
LOOP
statements
END LOOP;
```

```
For i IN (select statement)
LOOP

statements
END LOOP;
```

```
BEGIN
         Numeric For Loop =======
 FOR i TN 1..3
 1.00P
   DBMS OUTPUT.PUT LINE(i);
 END LOOP;
 -- ===== CURSOR BASED FOR LOOP =======
 DBMS_OUTPUT.PUT_LINE(' -----');
 FOR i IN (SELECT * FROM Instructor)
 LOOP
   DBMS OUTPUT.PUT LINE(i.name);
 END LOOP;
END;
Results Explain Describe Saved SQL
                                     Histo
Ashish
Kirti
Jatin
Aida
```

PL-SQL - Procedures

- 1. Stored Procedures are created to perform one or more DML operations on Database.
- 2. It is nothing but the group of SQL statements that accepts some input in the form of parameters and performs some task and may or may not returns a value.
- 3. Both function as well as stored procedure have a **unique named block** of code which is compiled and stored in the database.
- 4. The most important part is parameters. Parameters are used to pass values to the Procedure. There are 3 different types of parameters, they are as follows:
 - IN
 - OUT
 - IN OUT

IN	IN mode refers to READ ONLY mode which is used for a variable by which it will accept the value from the user. It is the default parameter mode.
OUT	OUT mode refers to WRITE ONLY mode which is used for a variable that will return the value to the user.
IN OUT	IN OUT mode refers to READ AND WRITE mode which is used for a variable that will either accept a value from the user or it will return the value to the user.

MKJ IT Learnings Training for professionals

Enhance Your Technical Skills and Become Future Ready

