# **Automatic Field Boundary Detection**

Automatic field boundary detection using AI





# **Main topics**

| 1 | Crop field detection using graph-based image segmentation and contrastive learning |
|---|------------------------------------------------------------------------------------|
| 2 | Exploring techniques to collect training samples                                   |
| 3 | Exploring deep learning models suitable for this application                       |
| 4 | Exploring segmentation methods                                                     |

### Team:

Eduardo Nascimento

Company Advisor: John Just (Ag & Al expert)

University Advisors: Tiago Almeida (NLP expert), Jurandy Almeida (Image/DL expert)

### 1. Data Processing



### 2. Contrastive Learning Model Training



### 3. Graph-based Segmentation





L12 Hex: 8c48b3c7379d7ff

|                                    |      |      |      |      | LIZI | IEA. OC4 | 0000070 | rourn |      |      |      |      |  |
|------------------------------------|------|------|------|------|------|----------|---------|-------|------|------|------|------|--|
| 20181029T170421                    | 1342 | 1402 | 1594 | 1886 | 2170 | 2198     | 2340    | 2360  | 2610 | 2600 | 3919 | 3305 |  |
| 20190711T165859                    | 660  | 750  | 923  | 1224 | 1423 | 1521     | 1745    | 1770  | 2012 | 2115 | 3367 | 2772 |  |
| 20190328T170201                    | 710  | 797  | 1052 | 1012 | 1357 | 2226     | 2460    | 2618  | 2709 | 3622 | 2846 | 2040 |  |
| 20181029T170421                    | 1342 | 1438 | 1688 | 1960 | 2179 | 2208     | 2357    | 2450  | 2613 | 2600 | 3962 | 3382 |  |
| 20190127T170551                    | 313  | 221  | 213  | 245  | 287  | 283      | 297     | 317   | 360  | 406  | 569  | 414  |  |
| 20190122T170619                    | 624  | 726  | 889  | 1098 | 1220 | 1260     | 1377    | 1534  | 1574 | 1656 | 2757 | 2296 |  |
| 20190731T165859                    | 952  | 1122 | 1450 | 1698 | 2175 | 2802     | 3137    | 3134  | 3427 | 3376 | 4113 | 3153 |  |
| 20181213T170709                    | 330  | 409  | 514  | 688  | 767  | 781      | 932     | 1020  | 1069 | 1186 | 1928 | 1432 |  |
| 20190706T165901                    | 861  | 777  | 1070 | 1130 | 1557 | 1985     | 2353    | 2798  | 2601 | 2604 | 3201 | 2380 |  |
| 20181213T170709                    | 330  | 418  | 494  | 654  | 767  | 781      | 932     | 988   | 1069 | 1186 | 1928 | 1428 |  |
| 20190522T165859                    | 639  | 929  | 1104 | 1042 | 1216 | 2728     | 3606    | 3416  | 3735 | 4203 | 2614 | 1648 |  |
| 20190127T170551                    | 313  | 225  | 211  | 246  | 277  | 267      | 279     | 302   | 329  | 406  | 532  | 398  |  |
| 20190522T165859                    | 660  | 683  | 803  | 606  | 925  | 2699     | 3829    | 3814  | 4082 | 4004 | 2194 | 1141 |  |
| 20190112T170649                    | 431  | 522  | 618  | 785  | 904  | 948      | 1056    | 1202  | 1262 | 1347 | 1827 | 1105 |  |
| 20190701T165859                    | 1203 | 1266 | 1366 | 1454 | 1760 | 2028     | 2241    | 2208  | 2420 | 5352 | 2415 | 1824 |  |
| 20190805T165901<br>20181223T170719 | 1012 | 1106 | 1332 | 1752 | 2013 | 2033     | 2198    | 2236  | 2491 | 2549 | 3969 | 3323 |  |
| 20181223T170719                    | 535  | 653  | 785  | 993  | 1070 | 1133     | 1235    | 1356  | 1447 | 1465 | 2678 | 2429 |  |
| 20190407T165851                    | 740  | 619  | 661  | 473  | 642  | 1352     | 1548    | 1428  | 1561 | 1046 | 689  | 308  |  |
| 20190407T165851                    | 740  | 619  | 661  | 475  | 642  | 1395     | 1579    | 1550  | 1600 | 1046 | 704  | 308  |  |
| 20190427T165901                    | 251  | 244  | 462  | 274  | 643  | 2763     | 3820    | 3814  | 3933 | 3871 | 1704 | 759  |  |
| 20190706T165901                    | 736  | 739  | 890  | 1208 | 1441 | 1449     | 1557    | 1672  | 1947 | 1978 | 3341 | 2615 |  |
| 20190606T165901                    | 691  | 601  | 833  | 644  | 1143 | 3099     | 4059    | 4046  | 4398 | 4220 | 2463 | 1216 |  |
| 20190417T165901                    | 3422 | 1834 | 2180 | 2170 | 3250 | 4310     | 4667    | 3252  | 4850 | 4919 | 4049 | 3186 |  |
| 20190711T165859                    | 782  | 1100 | 1370 | 1690 | 1904 | 2030     | 2358    | 2578  | 2597 | 3621 | 3954 | 3144 |  |
| 20190731T165859                    | 1076 | 1274 | 1522 | 1880 | 2156 | 2467     | 2755    | 2678  | 3055 | 3080 | 3955 | 3209 |  |
| 20190701T165859                    | 1203 | 1268 | 1322 | 1434 | 1754 | 2028     | 2241    | 2194  | 2420 | 5352 | 2396 | 1790 |  |
| 20190427T165901                    | 251  | 240  | 473  | 282  | 656  | 2750     | 3777    | 3774  | 3913 | 3871 | 1717 | 759  |  |
| 20181223T170719                    | 535  | 628  | 747  | 972  | 1070 | 1133     | 1235    | 1298  | 1447 | 1465 | 2630 | 2429 |  |
| 20190606T165901                    | 773  | 624  | 810  | 654  | 939  | 2201     | 2756    | 2420  | 3002 | 3501 | 1900 | 1114 |  |
| 20190711T165859                    | 660  | 763  | 912  | 1206 | 1423 | 1513     | 1745    | 1734  | 2002 | 2115 | 3367 | 2756 |  |
|                                    | 1    | 2    | 3    | 4    | 5    | 6        | 7       | 8     | 9    | 10   | 11   | 12   |  |
|                                    |      |      |      |      |      | Ba       | and     |       |      |      |      |      |  |
|                                    |      |      |      |      |      |          |         |       |      |      |      |      |  |



- TensorFlow tf.data API to manipulate large datasets.
- Selection of number of images per sample.
- Randomized time series sequence in the samples.
- Selection of number of hexes per field.

### 2. Contrastive Learning Model Training



Softmax is going to give us the probability of two hexes or pixels to be part of the same field. These probabilities will further be the value of the edge connecting two nearby nodes in the graph.





### Cosine Similarity Matrix of 10 positive and negative samples

Increase the similarity between samples from the same class while repealing samples from different classes

Cosine similarities calculated in the previous step will feed the edge values of a graph where the nodes are the pixels of the image.



Boundaries can be inferred by connecting the edges with lower probabilities. Edges with low probabilities are edges that connect pixels that are not similar, i.e a field and a non field pixel.





**Connected Components** 



**Connected Components** 

# Crop field detection using graph-based image segmentation and contrastive learning Different methods evaluation



# Exploring different alternatives

Brainstorm of different approaches that can be used to automatically detect field boundaries

# **Dataset**

Different options to be used to create a dataset with training samples

# Field Boundaries created by customers as labels

Evaluation of the quality of boundaries created by customers

1. Size anomalies



### 2. Complexity anomalies



There are different approaches to filter inaccurate field boundaries that could be leveraged to use these boundaries for training.

# **High-Resolution Imagery**

# Options of high-resolution imagery (5x5) pixels representation



# Models

Different options of machine/deep learning models suitable for this application

# **U-NET (Semantic Segmentation)**

Deep learning segmentation originally proposed for medical imaging





# **U-NET** improvements

# ResUNet (2015)

UNet with residual connections



# ResUNet-a (2018)

ResUNet with attention mechanisms



# Fractal ResUNet (2020)

ResUNet with fractal structure incorporated

# **Transfer Learning**



We could reuse training from areas with lots of John Deere machines to train areas with a limited number of John Deere customers.



### **CLIP**

### OpenAI: Contrastive Language-Image Pre-training



Although both models have the same accuracy on the imageNet test set, CLIP's performance is much more representative of how it will fare on datasets that measure accuracy in different, non-imageNet settings. For instance, ObjectNet checks a model's ability to recognize objects in many different poses and with many different backgrounds inside homes while imageNet Rendition and ImageNet Sketch check a model's ability to recognize more abstract depictions of objects.



https://openai.com/blog/clip/

Company Use

# Segmentation

Different techniques to convert the output of the model into shapes of detected fields / boundaries

# **Watershed Segmentation**

Segmentation technique that treats an image as a topographic surface



# Bibliography & Resources

Bibliography documented in different ways to facilitate future research

# **Bibliography documentation**





Taxonomy of the related papers in a vertical timeline colored by approach and research group

