$$F(m) = \min_{0 \le i < m} \{ F(i) + w(i, m) \}$$

$$\min \{ 0 + w(0,1) = 0 + 25 = 25 \}$$

$$F(2) = \min \{ 0 + w(0,2) = 0 + 4 = 4 \\ F(1) + w(1,2) = 25 + 9 = 34 \}$$

$$F(3) = \min \{ 0 + w(0,3) = 0 + 1 = 1 \\ F(1) + w(1,3) = 25 + 4 = 29 \\ F(2) + w(2,3) = 4 + 25 = 29 \}$$

F(1) =

F(i)

w(i,m) Table

i	
	t
	L

					m				
	0	1	2	3	4	5	6	7	8
0	0	25	4	1	4	25	64	121	196
1	-	-	9	4	1	16	49	100	169
2	-	-	-	25	4	1	16	49	100
3	-	-	-	-	9	0	9	36	81
4	-	-	-	_	_	9	0	9	36
5	-	-	-	_	-	-	9	0	9
6	-	-	-	-	-	-	-	9	0
7	_	-	-	-	-	-	-	-	9
8	-	-	-	-	-	-	-	-	-

$$F(m) = \min_{0 \le i < m} \{F(i) + w(i,m)\}$$

w(i,m)

	0	1	2	3	4	5	6	7	8
0		25	4	1	4	25	64	121	196
1	ı	ı	9	4	1	16	49	100	169
2	ı	ı	ı	25	4	1	16	49	100
3	ı	ı	ı	ı	9	0	9	36	81
4	ı	ı	ı	ı	ı	9	0	9	36
5	ı	ı	ı	ı	ı	ı	9	0	9
6	-	-	-	-	-	-	-	9	0
7	-	-	-	-	-	-	-	-	9
8	-	-	-	-	-	-	-	-	-

$$F(m) = \min_{0 \le i < m} \{ F(i) + w(i, m) \}$$

0				(l,	m)	=	Η' ((i)) +	- W((l,	$, m_{,}$)
---	--	--	--	-----	----	---	------	-----	-----	------	-----	-----------	---

0
25
4
1
4
1
4

	0	1	2	3	4	5	6	7	8
0		25	4	1	4	25	64	121	196
1	-	-	9	4	1	16	49	100	169
2	-	-	-	25	4	1	16	49	100
3	-	-	-	-	9	0	9	36	81
4	-	-	-	-	-	9	0	9	36
5	-	-	-	-	-	-	9	0	9
6	-	-	-	-	-	-	-	9	0
7	-	-	-	-	-	-	-	-	9
8	-	-	-	-	-	-	-	-	-

0	1	2	3	4	5	6	7	8
	25	4	1	4	25	64	121	196
		34	29	26	41	64	125	194
			29	8	5	20	53	104
				10	1	10	37	82
					10	1	10	37
						10	1	10
							10	1
								10

- 1. Add F(i) to each cell (i,m) in row i of w → OUT(i,m)
- 2. Compute the column minima of the OUT matrix, such that F(i) ← the minimum of column i

Convexity/Concavity Properties of the tables W and OUT

(1) Monge (concave)

W[b, d] - W[a, d] <= W[b, c] - W[a, c] for all a< b and c< d

Monge (convex)

W[b, d] - W[a, d] > = W[b, c] - W[a, c] for all a< b and c< d

(2) Total Monotonicity (concave)

W[b, c] <= W[a, c] => W[b,d]] <= W[a, d] for all a< b and c< d

Total Monotonicity (convex)

W[b, c] > = W[a, c] => W[b,d]] > = W[a, d]i for all a< b and c< d

					•••				
	J	1	2	3	4	5	6	7	8
0		25	4	1	4	25	64	121	196
1	-	-	9	4	1	16	49	100	169
2	-	-	-	25	4	1	16	49	100
3	-	-	-	-	9	0	9	36	81
4	-	-	-	-	-	9	0	9	36
5	-	-	-	-	-	-	9	0	9
6	-	-	-	-	-	-	-	9	0
7	-	-	-	-	-	-	-	-	9
8	-	-	-	-	_	-	-	-	-

m

W is Monge (concave) and therefore W is Totally Monotone (concave)

W[b, d] - W[a, d] <= W[b, c] - W[a, c] for all a< b and c< d

W[b, c] <= W[a, c] => W[b,d]] <= W[a, d] for all a< b and c< d

0		1	2	3	4	5	6	7	8
	a	the	i	an	d hi	is h	er a	rm	but
	0	1	2	3	4	5	6	7	8
0		25	4	1	4	25	64	121	196
1	_	_	9	4	1	16	49	100	169
2	Γ –	_	_	25	4	1	16	49	100
3	_	_	_	_	9	0	9	36	81
4	-	-	-	_	-	9	0	9	36
5	_	_	_	_	-	-	9	0	9
6	-	_	_	_	_	_	_	9	0
7	_	_	_	_	_	_	_	-	9
8	_	_	_	_	_	_	_	_	_

 $w(i,m) = (\# of characters from i to m - lineopt)^2$

ex:
$$W(0,4) = (8-6)^2 = 4$$
, $W(0,5) = (11-6)^2 = 25$
 $1-4=-3$ $16-25=-9$
 $W(1,4) = (7-6)^2 = 1$, $W(1,5) = (10-6)^2 = 16$

w(i,m) Table

m

	0	1	2	3	4	5	6	7	8
0		25	4	1	4	25	64	121	196
1	-	_	9	4	1	16	49	100	169
2	_	_	_	25	4	1	16	49	100
3	_	_	_	_	9	0	9	36	81
4	_	_	_	_	-	9	0	9	36
5	-	-	-	-	_	-	9	0	9
6	-	-	-	-	-	-	-	9	0
7	_	_	_	_	_	_	_	_	9
8	_	_	_	_	_	_	_	_	_

i

w(i,m) Table

m

	0	1	2	3	4	5	6	7	8
0		25	4	1	4	25	64	121	196
1	-	_	9	4	1	16	49	100	169
2	ı	ı	ı	25	4	1	16	49	100
3	ı	ı	ı	ı	9	0	9	36	81
4	-	-	-	_	_	9	0	9	36
5	-	-	-	-	-	-	9	0	9
6	-	-	-	-	-	-	-	9	0
7	_	_	_	-	-	-	_	-	9
8	_	_	-	-	_	_	_	_	_

i

w(i,m) Table

m

		0	1	2	3	4	5	6	7	8
	0		25	4	1	4	25	64	121	196
	1	-	-	9	4	1	16	49	100	169
	2	-	-	-	25	4	1	16	49	100
	3	-	ı	ı	ı	9	0	9	36	81
i	4	1	ı	ı	ı	_	9	0	9	36
	5	1	ı	ı	-	-	ı	9	0	9
	6	-	1	1	-	-	1	-	9	0
	7	-	_	_	-	-	_	-	-	9
	8	-	-	-	-	-	_	-	-	_

Remember SMAWK?

Can SMAWK be applied to find the column minima of W?

But can SMAWK be applied to computing F(n)?

$$F(m) = \min_{0 \le i < m} \{ F(i) + w(i, m) \}$$

w(i,m)

0
25
4
1
4
1
4

	0	1	2	3	4	5	6	7	8
0		25	4	1	4	25	64	121	196
1	-	-	9	4	1	16	49	100	169
2	-	-	-	25	4	1	16	49	100
3	-	-	-	-	9	0	9	36	81
4	-	-	-	-	-	9	0	9	36
5	-	-	-	-	-	-	9	0	9
6	-	-	-	-	-	-	-	9	0
7	-	-	-	-	-	-	-	-	9
8	-	-	-	-	-	-	-	-	-

SMAWK can not be applied here, since OUT is ONLINE.

The values of row i+1 are not available until F(i) has been computed.

$$OUT(i,m) = F(i) + w(i,m)$$

W is Monge (concave) and therefore OUT is Totally Monotone (concave)

OUT[a, c] > = OUT[b, c] => OUT[a,d]] > = OUT[b, d] for all a< b and c< d

Ol	UT	(i,i)	<i>m</i>)	= .	F(i))+	w((i,m)				
0	1	2	3	4	5	6	7	8				
	25	4	1	4	25	64	121	196				

0
25
4
1
4
1
4
1

	0	1	2	3	4	5	6	7	8
0		25	4	1	4	25	64	121	196
1	-	-	9	4	1	16	49	100	169
2	-	-	-	25	4	1	16	4 9	100
3	-	-	-	-	9	0	9	36	81
4	-	-	-	-	-	9	0	9	36
5	-	-	-	-	-	-	9	0	9
6	-	-	-	-	-	-	-	9	0
7	-	-	-	-	-	-	-	-	9
8	-	-	-	-	-	-	-	-	-

0	1	2	3	4	5	6	7	8
	25	4	1	4	25	64	121	196
		34	29	26	41	64	125	194
			29	8	5	20	53	104
				10	1	10	37	82
					10	1	10	37
						10	1	10
							10	1
								10
								1
				_				

The 1D/1D DP problem:

Definition: The 1D/1D dynamic programming problem is to find the on-line

column minima in an upper triangular matrix

OUT.

OUT(i,m) = F(i) + w(i,m)

The 1D/1D DP problem:

Definition: The 1D/1D dynamic programming problem is to find the on-line

column minima in an upper triangular matrix

OUT.

OUT(i,m) = F(i) + w(i,m)

The 1D/1D DP problem:

```
Procedure 1D/1D

Initialize Queue with row 0

for m = 2 to n

{
  find minimum of column m
  update Queue with row j-1
}
```


Queue:

i=1 : OUT[1,8]

m=1, min in row 1

$$OUT(i,m) = F(i) + w(i,m)$$

Queue:

<u>i=1</u>: OUT[1,8]

i=2 : ??

Where does row 2 intersect with row 1?

Use binary search: intersection found in column 6...

m=2, min in row 1

$$OUT(i,m) = F(i) + w(i,m)$$

Queue:

i=1: OUT[1,5]

i=2 : OUT[6,8]

m=2, min in row 1

$$OUT(i,m) = F(i) + w(i,m)$$

Queue:

<u>i=1</u> : OUT[1,5]

i=2 : OUT[6,8]

i=3:??

Where does row 3 intersect with row 2?

Use binary search: intersection at column 3, even before Row 2 becomes leader!

OUT(i,m) = F(i) + w(i,m)

Queue:

<u>i=1</u> : OUT[1,8]

i=3: ??

Where does row 3 intersect with row 1?

Use binary search: intersection at Column 5...

$$OUT(i,m) = F(i) + w(i,m)$$

Queue:

<u>i=1</u>: OUT[1,4]

i=3: *OUT*[5,8]

m=3, min in row 1

$$OUT(i,m) = F(i) + w(i,m)$$

Time Complexity Analysis

- Each row, for m = 1..n, enters the queue at most once, when its column is reached
- Each row can get removed from the queue at most once.
- Altogether, O(n) rows inserted/removed from the queue.
- Computing the "intersection" between the "leadership intervals" of the new row m versus the last row in the queue takes O(log n) time via binary search.
- For each "intersection" computation, either a row is removed from the queue, or the row comparisons for that iteration stop. Therefore, no more than O(n) "intersection" computations.

Total Time Complexity: $O(n \log n)$