Baseband and Passband Signal and Noise Effects (Lectures 3 & 4)

- 1. Consider a bandpass noise signal having the power spectral density shown below. Draw the power spectral density (PSD) of $n_I(t)$ if the center frequency is chosen as:
 - (a) $f_c = 7 Hz$
 - (b) $f_c = 5 \, Hz$

2. Let

$$f_k(t) \triangleq egin{cases} e^{-rac{t}{k}}, & if \ t > 0, \ 0, & if \ t = 0, \ -e^{-rac{t}{k}}, & if \ t < 0, \end{cases}$$

Find $F_k(f)$, the Fourier transform of $f_k(t)$. Letting $k \to \infty$, find the Fourier transform of function sgn(t), defined as

$$sgn(t) \triangleq \left\{ egin{array}{ll} 1, & if \ t > 0, \ 0, & if \ t = 0, \ -1, & if \ t < 0. \end{array}
ight.$$

Using this, find the Fourier transform of unit step function

$$u(t) \triangleq egin{cases} 1, & if \ t > 0, \ 1/2, & if \ t = 0, \ 0, & if \ t < 0. \end{cases}$$

3. Hilbert transform of a signal g(t) is defined as

$$\widehat{g}(t) = g(t) * \frac{1}{\pi t}$$

Using the result of the previous exercise, find $\hat{G}(f)$, the Fourier transform of $\hat{g}(t)$.

- 4. Prove the following properties of Hilbert transforms:
 - a) If x(t) = x(-t), then $\hat{x}(t) = -\hat{x}(-t)$.
 - b) If x(t) = -x(-t), then $\widehat{x}(t) = \widehat{x}(-t)$.
 - c) If $x(t) = \cos(2\pi f_0 t)$, then $\hat{x}(t) = \sin(2\pi f_0 t)$.
 - d) If $x(t) = \sin(2\pi f_0 t)$, then $\hat{x}(t) = -\cos(2\pi f_0 t)$.
 - e) $\widehat{\widehat{x}}(t) = -x(t)$.
 - f) $\int_{-\infty}^{\infty} x^2(t)dt = \int_{-\infty}^{\infty} \hat{x}^2(t)dt.$
 - g) $\int_{-\infty}^{\infty} x(t)\widehat{x}(t)dt = 0.$