

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE

ESTRUCTURA DE DATOS

Ing. Mayra Alvarez, MSc. mialvarez2@espe.edu.ec

Lección 2.1.0 : Algoritmos de Ordenación Interna

Definición

- Los elementos numéricos se pueden ordenar en orden ascendente (i<j) entonces (k[i]<=k[j]) o descendiente (i>j) entonces (k[i]>=k[j]) de acuerdo al valor numérico del elemento.
- La eficiencia del algoritmo es el factor que mide la calidad y rendimiento del mismo.
- En el caso de ordenación, los criterios son:
 - 1) Tiempo menor de ejecución en computadora.
 - 2) Menor número de instrucciones.

Definición

- Estos algoritmos trabajan directamente sobre la colección de elementos que se desea ordenar y no requieren almacenar la colección en algún otro lugar, como en un archivo externo.
- La ordenación facilita la búsqueda eficiente, la recuperación y el procesamiento de datos y se dividen en dos grandes grupos:
 - Directos, eficaces en listas pequeñas como Intercambio,
 Selección y Burbuja (simples pero ineficientes).
 - Indirectos, eficaces en listas grandes como Quicksort, ShellSort, ordenación por distribución, RadixSort (extensos).

Lección 2.1.1 : Intercambio Simple y Selección

Método por Intercambio Simple

- El algoritmo se basa en la lectura sucesiva de la lista a ordenar, comparando el elemento inferior de la lista con los restantes y efectuando intercambio de posiciones cuando el orden resultante de la comparación no sea el correcto.
- La complejidad de este algoritmo es de $O(n^2)$, donde n es el número de elementos del arreglo o lista.

Método por Intercambio Simple

1

 Se toma el primer elemento v[0] y lo comparamos el segundo elemento v[1].

 Encaso que v[0] > v[1] se intercambian los elementos.

2

 Se toma el segundo elemento v[0] y lo comparamos el tercero elemento v[2].

Ň

 Encaso que v[0] > v[2] se intercambian los elementos.

5

• Se realiza el mismo proceso con el resto de elementos hasta que el arreglo este ordenado.

Método por Intercambio Simple

En el canal de YouTube de Ingeniería Informática encontramos la descripción del método de Ordenamiento por Intercambio

https://www.youtube.com/watch?v=PBII8oXJBcQ

Método por Intercambio Simple

Pasada 1

El elemento de índice 0 (a[0]) se compara con cada elemento posterior de la lista. Cada comparación comprueba si el elemento siguiente es menor que el elemento de índice 0, en cuyo caso se intercambian.

Método por Intercambio Simple

Pasada 2

El elemento menor ya está en la posición de índice 0, ahora se considera la sublista restante 8, 6, 4. El algoritmo continúa comparando el elemento de índice 1 con los elementos posteriores de índices 2 y 3. Por cada comparación, si el elemento mayor está en el índice 1 se intercambian los elementos.

Método por Intercambio Simple

Pasada 3

Ahora la sublista a considerar es 8, 6 ya que 2, 4 están ordenadas. Una comparación única se produce entre los dos elementos de la sublista.

Método por Intercambio Simple

Algoritmo

```
Algoritmo ordIntercambio(entero[] a)
entero i,j
Para i <- 0 Hasta longitud(a) -1 Hacer
Para j <- i+1 Hasta longitud(a) Hacer
Si a[i] > a[j] Entonces
intercambiar a[i] y a[j]
Fin Si
Fin Para
Fin Para
Fin Algoritmo
```


Método por Selección

- Consiste en ordenar los valores del array de modo que a[0] sea el valor más pequeño, el valor almacenado en a[1] el siguiente más pequeño, y así hasta a[n-1] que ha de contener el elemento mayor.
- La complejidad de este algoritmo es de $O(n^2)$.

Método por Selección

• Busca el mínimo elemento de la lista.

• Intercambiar con el primer elemento.

• Buscar el mínimo del resto de la lista.

 Intercambiar con el segundo y así sucesivamente.

 Los elementos que van quedando ordenados ya no se comparan.

5

Método por Selección

La pasada inicial busca el elemento más pequeño de la lista y se intercambia con a[0], primer elemento de la lista. Después de terminar esta primera pasada, el frente de la lista está ordenado y el resto de la lista a[1], a[2] ... a[n-1] permanece desordenada.

La siguiente pasada busca en esta lista desordenada y selecciona el elemento más pequeño, que se almacena en la posición a[1]. De este modo los elementos a[0] y a[1] están ordenados y la sublista a[2], a[3]...a[n-1] desordenada.

El proceso continúa hasta realizar n-1 pasadas, en ese momento la lista desordenada se reduce a un elemento (el mayor de la lista) y el array completo ha quedado ordenado.

Método por Selección

En el canal de YouTube de Luis Reynoso encontramos la descripción del método de Ordenamiento por Selección (Selection sort)

https://www.youtube.com/watch?v=sQwCdFY7QtU

Método por Selección

Pasada 1: Seleccionar 21 Intercambiar 21 y a [0]

Pasada 2: Seleccionar 36 Intercambiar 36 y a [1]

Método por Selección

Pasada 3: Seleccionar 39 Intercambiar 39 y a [2]

Pasada 4: Seleccionar 51 Intercambiar 51 y a [3]

Array ordenado

Método por Selección

Algoritmo

```
Algoritmo ordSeleccion(entero[] a)
entero i,j,min,aux
Para i <- 0 Hasta longitud(a).... Hacer
min <- i
Para j <- i+1 Hasta longitud(a)... Hacer
Si a[j] < a[min] Entonces
min <- j
Fin Si
Fin Para
intercambiar a[i] y a[min]
Fin Para
Fin Algoritmo
```


Lección 2.1.2 : Burbuja

Método por Burbuja

 En la pasada 1 se comparan elementos adyacentes (a[0],a[1]),(a[1],a[2]),(a[2],a[3]),...(a[n-2],a[n-1])

 Se realizan n – 1 comparaciones, por cada pareja (a[i],a[i+1]), se intercambian los valores si a[i+1] < a[i].

 Al final de la pasada, el elemento mayor de la lista está situado en a[n-1].

 En la pasada 2 se realizan las mismas comparaciones e intercambios, terminando con el elemento de segundo mayor valor en a[n-2].

 El proceso termina con la pasada n – 1, en la que el elemento más pequeño se almacena en a[0].

4

5

En el canal de YouTube de ISC3BITSVA encontramos la descripción del método de Ordenamiento Burbuja

https://www.youtube.com/watch?v=O2K0-9lkbXs

Método por Burbuja

Método por Burbuja

El algoritmo terminará cuando se termine la última pasada (n – 1)

Método por Burbuja

Algoritmo

```
Algoritmo ordBurbuja(entero[] a)
entero aux
Para i <- 0 Hasta longitud(a)-1 Hacer
Para j <- i+1 Hasta longitud(a) Hacer
Si a[j] > a[j+1] Entonces
intercambiar a[j] y a[j+1]
Fin Si
Fin Para
Fin Para
Fin Algoritmo
```


Preguntas?

THANKS!

ESTO HA SIDO TODO MUCHAS GRACIAS POR PRESTAR ATENCIÓN

