D10: Randomness in Computation

The eternal struggle of choosing between control and efficiency

Sec 101: MW 3:00-4:00pm DOW 1018

IA: Eric Khiu

MATH 525 for EECS 376

Announcement

- ► HW 5 due Monday June 24
 - ► Will have problems on cryptography (but not Zero Knowledge proofs)
 - ► Solution will be released 10pm
- Course evaluation due Tuesday June 25
- Cryptography crash course and Final Exam Review
 - ▶ June 24 3pm-4pm DOW1018 Cryptography Crash Course (Eric)
 - ▶ June 24 4pm-5pm DOW1010 Final Exam Review (Junghwan)
- Eric's extra OH on June 25- To be confirmed

Review: NP-Completeness

- ▶ What do we need to show to prove that a language is NP-Complete?
 - ► The language is in NP, by providing an efficient verifier
 - ► The language is NP-hard, by reducing (poly-time reduction) from an NP-hard language

Starter: Matching Pennies

- Consider a game with two players Alice and Bob
- Each player has a penny and choose heads or tails
 - ▶ Alice wins the round if both choose the same outcome
 - ▶ Bob wins the round if both choose different outcome

		Alice	
Bob		Н	Т
	Н	Alice wins	Bob wins
	Т	Bob wins	Alice wins

- ► They will play the game for 10 rounds the final winner is whoever wins the most rounds
- Consider the following algorithms:
 - ► Here, RAND(S) is a function that output a random element in set S

```
ALG1 (roundNum):
    if roundNum is odd then return H
    else return T
```

```
ALG2 (roundNum):

num ← RAND({0,1})

if num is odd then return H

else return T
```

Discuss: If you were Alice, which algorithm would you choose and why?

Unit 4: Randomness in Computation

(b) Randomized algorithm structure

Sec 101: MW 3:00-4:00pm DOW 1018 IA: Eric Khiu

Motivation: Randomness in computation

- ► The algorithms we have seen thus far have been deterministic
 - ► Execute the same steps each time they are run and produce the same result
- ▶ If we use deterministic algorithm in Matching Pennies, the opponent would be able to observe the program's strategy once and defeat it every single time thereafter
 - ▶ How to prevent the opponent from predicting our moves? Make moves randomly!
- ► In this unit, we consider how randomness can be applied to computation
- ► We will start with reviewing/ introducing some tools to analyze randomness

Agenda

- ► Tools for analyzing randomized algorithms
- ► Probability Bounds
 - ► Markov's inequality
 - ► Chernoff bounds
 - ► Union Bounds

Tools for Analyzing Randomness

Warning: Math ahead!

Expected Values

- Let X be a discrete random variable (RV) over the set of events Ω , each with some probability in range [0,1]
- ightharpoonup The **expected value** of X is

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} \omega \cdot \Pr[X = \omega]$$

Example: Consider a fair 6-sided die with RV D being the result of the roll.

$$\Pr[D = 1] = \Pr[D = 2] = \dots = \Pr[D = 6] = \frac{1}{6}$$
$$\mathbb{E}[D] = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + \dots + 6\left(\frac{1}{6}\right) = \frac{7}{2}$$

Linearity of Expectations

- Let X_1 and X_2 be two RVs and $X = c_1X_1 + c_2X_2$, then $\mathbb{E}[X] = c_1\mathbb{E}[X_1] + c_2\mathbb{E}[X_2]$
- More generally, if we have RVs X_1,\ldots,X_n and $X=c_1X_1+\cdots+c_nX_n$, then $\mathbb{E}[X]=c_1\mathbb{E}[X_1]+\cdots+c_n\mathbb{E}[X_n]=\sum_{i=1}^nc_i\mathbb{E}[X_i]$
- **Exercise:** Let X_1 be the result of a fair coin toss where $X_1 = 1$ if heads and $X_1 = 0$ if tails; X_2 be the results of a fair six-sided die roll. What is the expected value of $X = X_1 + X_2$?
 - $ightharpoonup \mathbb{E}[X_1] = 0\left(\frac{1}{2}\right) + 1\left(\frac{1}{2}\right) = \frac{1}{2}, \ \mathbb{E}[X_2] = \frac{7}{2} \text{ from previous}$
 - ▶ By linearity of expectation, $\mathbb{E}[X] = \frac{1}{2} + \frac{7}{2} = 4$

Indicator Random Variable

▶ An indicator RV for an event A is defined as follows:

$$\mathbb{1}_A = [\![A]\!] = \begin{cases} 1 & \text{if } A \text{ happens} \\ 0 & \text{otherwise} \end{cases}$$

Consider an event A that happens with probability Pr[A]. Let X be an indicator random variable for A. What is $\mathbb{E}[X]$?

$$\mathbb{E}[X] = 1 \cdot \Pr[X = 1] + 0 \cdot \Pr[X = 0] = \Pr[A]$$

▶ If X is a discrete RV, it is sometimes useful to write $X = X_1 + \cdots + X_n$ to compute E[X]

Example: Are you a peak?

▶ Take integers 1, ..., n and permutate them randomly as a sequence $a_1, ..., a_n$. We say a_i is a *peak* if it is greater than all previous numbers, i.e., $a_i > a_j$ for all j < i. For example:

$$\underline{2}$$
, 1, $\underline{3}$, $\underline{5}$, 4 \rightarrow three peaks

- Let X be the number of peaks in the sequence. Find $\mathbb{E}[X]$. You may leave your answer as a sum without simplifying it.
 - ▶ Let X_i be an indicator RV such that $X_i = 1$ if a_i is a peak, 0 otherwise
 - ▶ **Obs:** $Pr[X_1 = 1] = 1$ (no previous), $Pr[X_2 = 1] = 1/2$ (either $a_2 > a_1$ or $a_2 < a_1$)
 - ▶ In general, a_i is a peak $\Rightarrow a_i = \max\{a_1, ..., a_i\}$, since all i numbers are distinct and only one max, so $\Pr[X_i = 1] = \Pr[a_i \text{ is } that \text{ max}] = 1/i$
 - ▶ $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = \Pr[X_1 = 1] + \dots + \Pr[X_n = 1] = \sum_{i=1}^n \frac{1}{i}$

Exercise: Increasing Subarray

- Let A be a array of length n of a random permutation of n distinct integer. Compute the <u>expected</u> number of increasing subarrays in A of length k.
 - \blacktriangleright Hint: First define an indicator RV that consider whether a particular subarray of length k is increasing, then determine that probability
 - ▶ Let $X_i = 1$ if A[i, ..., i + k 1] is increasing and 0 otherwise
 - ▶ Since we only consider subarrays of length k, set $X_i = 0$ for i = n k + 2, ..., n
 - For any array of length k, since all k numbers are distinct, we k! permutations, but only one is increasing, so $Pr[X_i = 1] = Pr[A[i, ..., i + k 1] \text{ is } that \text{ increasing permutation}] = 1/k!$
 - $\mathbb{E}[X] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_{n-k+1}] = \sum_{i=1}^{n-k+1} \frac{1}{k!} = \frac{n-k+1}{k!}$

Recap: Approximation Algorithms

- \blacktriangleright We can define how *good* an approximation is in terms of an approximation ratio α
 - \blacktriangleright Let val(y) be a function that maps the output of a function to some value
 - ▶ Let *OPT* be the value of an optimal solution for some search problem
- \blacktriangleright An approximate solution y is said to be an α -approximation if

```
\alpha \cdot OPT \leq val(y) for maximization problem
```

 $val(y) \le \alpha \cdot OPT$ for minimization problem

Discuss: Can we prove that the output of a randomized algorithm is an α -approximation?

- Yes, but only in expectation-sometimes we got unlucky/ lucky and exit the bound!
 - ▶ Use $\mathbb{E}[val(y)]$ instead of val(y)

In an undirected graph, a 3-painting is an assignment of one of three colors to each vertex. (Adjacent vertices do not necessarily need to have different colors). Given a 3-painting of an undirected graph, and edge is called colorful if its endpoints are assigned different colors.

- In an undirected graph, a 3-painting is an assignment of one of three colors to each vertex. (Adjacent vertices do not necessarily need to have different colors). Given a 3-painting of an undirected graph, and edge is called colorful if its endpoints are assigned different colors.
- Consider the following algorithm:

```
PAINTING(G=(V,E)):
    for v in V:
        num ← RAND({1,2,3}) // uniformly choose between {1,2,3} with prob. 1/3 each
        if num = 1 then v.color ← pink
        else if num = 2 then v.color ← blue
        else v.color ← yellow
```

- ► Prove that Painting is 2/3 approximation in expectation.
 - ightharpoonup Hint: First compute E[val(y)], then prove the bound

```
PAINTING(G=(V,E)):
    for v in V:
        num ← RAND({1,2,3}) // uniformly choose between {1,2,3} with prob. 1/3 each
        if num = 1 then v.color ← pink
        else if num = 2 then v.color ← blue
        else v.color ← yellow
```

- ▶ Step 1: Compute $\mathbb{E}[val(y)]$
 - ▶ For each $e \in E$, let X_e be an indicator RV such that $X_e = 1$ if e is colorful and 0 otherwise
 - For each e, there are $3 \cdot 3 = 9$ possible paintings, 3 of them have same colors on both ends (6 of them have different colors), so $\Pr[X_e = 1] = \frac{6}{9} = \frac{2}{3}$
 - ▶ $\mathbb{E}[X] = \sum_{e \in E} \mathbb{E}[X_e] = \sum_{e \in E} \Pr[X_e = 1] = \frac{2}{3} |E|$

```
PAINTING(G=(V,E)):
    for v in V:
        num ← RAND({1,2,3}) // uniformly choose between {1,2,3} with prob. 1/3 each
        if num = 1 then v.color ← pink
        else if num = 2 then v.color ← blue
        else v.color ← yellow
```

► Step 2: Prove bound

- ▶ Now we have $\mathbb{E}[val(y)] = \frac{2}{3}|E|$
- ▶ Let OPT be the optimum number of colorful edges. By definition, $OPT \leq |E|$
- ▶ Therefore, $\mathbb{E}[val(y)] = \frac{2}{3}|E| \ge \frac{2}{3}OPT$, as desired.

TL; DPA

- We reviewed/ introduced tools to analyze randomness: expected values, linearity of expectations, and indicator RV
- It is sometimes useful to express a discrete RV as a sum of indicator RV when computing expectations
- For randomized algorithm, use $\mathbb{E}[val(y)]$ to prove approximation in expectation

Probability Bounds

Warning: Math ahead!

Starter: Search Algo Optimization

- ► Suppose you are optimizing a search algorithm for a large, constantly updating database system. The user can't wait for more than 1 second in general.
- You have the following two options

Option A

- Average search time: 0.05s
- Potentially take more than 2s on a search during high-demand periods

Option B

- Average search time: 0.15s
- Rarely take more than 0.6s on any search even under heady load

Discuss: Which one would you choose and why? What additional information you think will help you make the decision?

- ► Pr[A takes more than 1s] and Pr[B takes more than 1s]
- ▶ Obs: They are both probabilities that the RV deviates from the expectation by some amount

Markov Inequality

- Motivation: Find an upper bound on the probability that a random variable X deviates from its expected value by some amount
- ▶ Markov's Inequality: Let X be a positive RV and a > 0, then

$$\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$$

► Rearranging, we get

$$\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}$$

$$\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$$

$$\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}$$

Example: Hash Table

- Suppose we have a hash table of size n^2 and a hash function h that chooses the mapping address uniformly at random from $0, ..., n^2 1$.
- Let $S = \{s_1, ..., s_n\}$ be the set of inserted elements and X be the RV indicating the number of collisions after performing n insertion.
- ► Find an upper bound on the probability that there is at least one collision $(h(s_i) = h(s_j))$ after inserting n distinct elements. (You may use $\frac{n-1}{2n} < \frac{1}{2}$ for any $n \in \mathbb{N}$)
 - ightharpoonup First, compute $\mathbb{E}[X]$

$$\mathbb{E}[X] = \sum_{\substack{\text{all pairs } (i,j) \\ i \neq j}} \Pr[h(s_i) = h(s_j)] = \sum_{\substack{\text{all pairs } (i,j) \\ i \neq j}} \frac{1}{n^2} = \binom{n}{2} \cdot \frac{1}{n^2} = \frac{n-1}{2n}$$

Using Markov's inequality

$$\Pr[X \ge 1] \le \frac{\mathbb{E}[X]}{1} = \frac{n-1}{2n} < \frac{1}{2}$$

Search Algo Optimization Revisit

Option A

- Average search time: 0.05s
- Potentially take more than 2s on a search during high-demand periods

Option B

- Average search time: 0.15s
- Rarely take more than 0.6s on any search even under heady load
- Let A be the search time using option A and B be the search time using option B. Using Markov's inequality and a = 1, we have

$$Pr[A \ge 1] \le 0.05$$
 and $Pr[B \ge 1] \le 0.15$

Discuss: Does this result change your decision?

- ► The upper bounds of the chance of option A taking at least 1 second is lower than that of option B- maybe A is better?
- ▶ WAIT: We haven't considered the "rarely take more than 0.6s"! Who knows $Pr[B \ge 1]$ is actually 0.0001?
- ► Takeaway: Markov's inequality is a weak bound, but still applicable to many cases

"Reverse" Markov Inequality

- ▶ We can also find the lower bound on the probability that a RV *X* deviates from its expected value by some amount, if we know some upper bound for *X*
- ▶ If X is positive RV that is never larger than B and a < B, then

$$\Pr[X > a] \ge \frac{\mathbb{E}[X] - a}{B - a}$$

- **Example:** Suppose we have a biased coin were Pr[H] = 0.3. Find a lower bound on the probability that there are strictly more than 10 heads after 100 tosses.
 - ► Let X be the number of heads after 100 tosses
 - ▶ We have $\mathbb{E}[X] = 0.3 \cdot 100 = 30$ and B = 100, so

$$\Pr[X > 10] \ge \frac{30 - 10}{100 - 10} = \frac{2}{9}$$

Summary of Probabilities Bounds

Probability Bounds	Constraints
Markov's inequality: $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$	• X is a positive RV
"Reverse" Markov's inequality: $\Pr[X > a] \ge \frac{\mathbb{E}[X] - a}{B - a}$	 X is a positive RV X is upper bounded by some B
Chebyshev's Inequality: $\Pr\left[\left \frac{1}{n}X - \mu\right \ge \varepsilon\right] \le \frac{\sigma}{\varepsilon^2 n}$	• X_i 's i.i.d. s.t. $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma$ • $X = \sum_{i=1}^n X_i$ • Any $\varepsilon > 0$
(Combined) Chernoff-Hoeffding Bound: $\Pr\left[\left \frac{1}{n}X - \mu\right \ge \varepsilon\right] \le 2e^{-2\varepsilon^2 n}$	• X_i 's i.i.d. s.t. $X_i \in [0,1]$ and $\mathbb{E}[X_i] = \mu$ • $X = \sum_{i=1}^n X_i$ • Any $\varepsilon > 0$
Union bounds: $\Pr[A_1 \cup A_2 \cup \dots \cup A_n] \leq \sum_{i=1}^n \Pr[A_i]$	N/A

Law of Large Numbers

▶ Theorem (Informal): If $X_1, X_2, ...$ are independent, identically distributed (i.i.d.) RVs with expectation μ , then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mu$$

Limitation of LLN: LLN says distribution of sum is "concentrated" around its expectation as $n \to \infty$. (However, it doesn't say how quickly it happens or what the distribution looks like.)

Variance

▶ **Definition:** The variance of a RV X is the average squared-distance of X from its mean, i.e., $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$

▶ **Proposition:** Alternate form of variance

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

Properties of Variance

► Scalar Multiplication:

$$Var(cX) = c^{2}Var(X)$$

► Sum of independent RV:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

▶ Warning: This is different from linearity of expectation because the scalar will get squared!

Chebyshev's Inequality

▶ **Theorem:** For any RV X any scalar a > 0

$$\Pr[|X - \mathbb{E}[X]| \ge a] \le \frac{\operatorname{Var}(X)}{a^2}$$

► Exercise: Prove this inequality

Absolute difference from mean

- ► Hint: Square both sides of Markov's Inequality
- ► Chebyshev's + Law of Large Numbers: If $X = X_1 + X_2 + \dots + X_n$ is the sum of n i.i.d. RVs with $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma$ for all $i = 1, \dots, n$, then for any $\varepsilon > 0$

$$\Pr\left[\left|\frac{1}{n}X - \mu\right| \ge \varepsilon\right] \le \frac{\sigma}{\varepsilon^2 n}$$

Summary of Probabilities Bounds

Probability Bounds	Constraints
Markov's inequality: $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$	• X is a positive RV
"Reverse" Markov's inequality: $\Pr[X > a] \ge \frac{\mathbb{E}[X] - a}{B - a}$	 X is a positive RV X is upper bounded by some B
Chebyshev's Inequality: $\Pr\left[\left \frac{1}{n}X - \mu\right \ge \varepsilon\right] \le \frac{\sigma}{\varepsilon^2 n}$	• X_i 's i.i.d. s.t. $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma$ • $X = \sum_{i=1}^n X_i$ • Any $\varepsilon > 0$
(Combined) Chernoff-Hoeffding Bound: $\Pr\left[\left \frac{1}{n}X - \mu\right \ge \varepsilon\right] \le e^{-2\varepsilon^2 n}$	• X_i 's i.i.d. s.t. $X_i \in [0,1]$ and $\mathbb{E}[X_i] = \mu$ • $X = \sum_{i=1}^n X_i$ • Any $\varepsilon > 0$
Union bounds: $\Pr[A_1 \cup A_2 \cup \dots \cup A_n] \leq \sum_{i=1}^n \Pr[A_i]$	N/A

Chernoff-Hoeffding Bounds

▶ Theorem: If $X = X_1 + X_2 + \cdots + X_n$ is the sum of n i.i.d. RVs with each $X_i \in [0,1]$, then, for any $\varepsilon > 0$

Combined Chernoff-Hoeffding:

$$\Pr\left[\left|\frac{1}{n}X - \mathbb{E}[X_i]\right| \ge \varepsilon\right] \le 2e^{-2\varepsilon^2 n}$$

Summary of Probabilities Bounds

Probability Bounds	Constraints	
Markov's inequality: $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$	• X is a positive RV	
"Reverse" Markov's inequality: $\Pr[X > a] \ge \frac{\mathbb{E}[X] - a}{B - a}$	 X is a positive RV X is upper bounded by some B 	
Chebyshev's Inequality: $\Pr\left[\left \frac{1}{n}X - \mu\right \ge \varepsilon\right] \le \frac{\sigma}{\varepsilon^2 n}$	• X_i 's i.i.d. s.t. $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma$ • $X = \sum_{i=1}^n X_i$ • Any $\varepsilon > 0$	
(Combined) Chernoff-Hoeffding Bound: $\Pr\left[\left \frac{1}{n}X - \mu\right \ge \varepsilon\right] \le 2e^{-2\varepsilon^2 n}$	• X_i 's i.i.d. s.t. $X_i \in [0,1]$ and $\mathbb{E}[X_i] = \mu$ • $X = \sum_{i=1}^n X_i$ • Any $\varepsilon > 0$	
Union bounds: $\Pr[A_1 \cup A_2 \cup \dots \cup A_n] \leq \sum_{i=1}^n \Pr[A_i]$	N/A	

Union Bound

- ► The probability of any one of many events occurring is less than the sums of the probabilities of each event
- ▶ Let $A_1, A_2, ..., A_n$ be a set of (possible dependent) events, then

$$\Pr[A_1 \cup A_2 \cup \dots \cup A_n] \le \sum_{i=1}^n \Pr[A_i]$$

$$\Pr[A_1 \cup A_2 \cup \dots \cup A_n] \le \sum_{i=1}^n \Pr[A_i]$$

Union Bound Exercise

- ► In a computer system equipped with 50 processors, each engaged in concurrent multithreading tasks, there exists a probability of 0.001 for an individual processor to experience failure.

 Determine the probability that **at least one** processor encounters failure.
- ▶ Let $X_i = 1$ if the *i*-th processor fails and 0 otherwise, so $Pr[X_i] = 0.001$
- ▶ $Pr[at least one fails] = Pr[X_1 \cup X_2 \cup \cdots \cup X_{50}]$
- ► Apply Union Bound

$$\Pr[X_1 \cup X_2 \cup \dots \cup X_{50}] \le \sum_{i=1}^{50} \Pr[X_i] = 50(0.001) = 0.05$$

Summary of Probabilities Bounds

Probability Bounds	Constraints
Markov's inequality: $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$	• X is a positive RV
"Reverse" Markov's inequality: $\Pr[X > a] \ge \frac{\mathbb{E}[X] - a}{B - a}$	 X is a positive RV X is upper bounded by some B
Chebyshev's Inequality: $\Pr\left[\left \frac{1}{n}X - \mu\right \ge \varepsilon\right] \le \frac{\sigma}{\varepsilon^2 n}$	• X_i 's i.i.d. s.t. $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}(X_i) = \sigma$ • $X = \sum_{i=1}^n X_i$ • Any $\varepsilon > 0$
(Combined) Chernoff-Hoeffding Bound: $\Pr\left[\left \frac{1}{n}X - \mu\right \ge \varepsilon\right] \le 2e^{-2\varepsilon^2 n}$	• X_i 's i.i.d. s.t. $X_i \in [0,1]$ and $\mathbb{E}[X_i] = \mu$ • $X = \sum_{i=1}^n X_i$ • Any $\varepsilon > 0$
Union bounds: $\Pr[A_1 \cup A_2 \cup \dots \cup A_n] \leq \sum_{i=1}^n \Pr[A_i]$	N/A