1 Irrationality of $\sqrt{2}$

Theorem 1. There is no irrational number whose square is 2.

Proof. A rational number is any number that can be expressed in the form p/q, where p and q are integers. We proceed by contradiction and assume that there is a rational number whose square is 2. We also assume that this rational number is completely reduced. Then

$$(q)$$
 = 2
 $p^2 = 2q^2$ So p must be an even number. Let $p = 2r$ with $r \in \mathbb{Z}$
 $(2r)^2 = 2q^2$
 $4r^2 = 2q^2$
 $2r^2 = q^2$ WHAT!? So then q is also even!? But p/q was supposed to be completely reduced!

As we can see, p/q was supposed to be completely reduced, yet we showed that it was not. Therefore, $\sqrt{2}$ cannot be irrational.