

UNITED STATES PATENT AND TRADEMARK OFFICE

THW
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/020,833	12/13/2001	Sophie Vrzic	7000-114	1051
27820	7590	12/23/2005	EXAMINER	
WITHROW & TERRANOVA, P.L.L.C. P.O. BOX 1287 CARY, NC 27512			MEUCCI, MICHAEL D	
		ART UNIT	PAPER NUMBER	2142

DATE MAILED: 12/23/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	10/020,833	VRZIC ET AL.
	Examiner	Art Unit
	Michael D. Meucci	2142

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 11 October 2005.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-28 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-28 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 13 December 2001 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date _____ | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

1. This action is in response to the Request for Continued Examination (RCE) filed 11 October 2005.
2. Claims 1-28 are currently pending in the application.

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

4. Claims 1, 10, 19, and 28 rejected under 35 U.S.C. 103(a) as being unpatentable over Bahl et al. (U.S. 6,795,865 B1) hereinafter referred to as Bahl, in view of Ketcham (U.S. 6,363,429 B1) and Rananand et al. (U.S. 5,935,213) hereinafter referred to as Rananand. Claims 10, 19, and 28 have substantially the same limitations as stated in claim 1 and are rejected under the same rationale.

As per claims 1, 10, 19, and 28, Bahl teaches: a network interface for receiving data from a communication network (lines 42-49 of column 5); a wireless interface for transmitting units of the data to a plurality of access terminals (lines 14-28 of column 1); a control system associated with the network interface and the wireless interface and adapted to generate a prioritization factor for each unit of data, the prioritization factor being controlled in proportion to a required data rate associated with each unit of data (lines 50-63 of column 2 and lines 47-53 of column 1); the prioritization factor being

controlled to achieve an adaptive fairness objective (lines 6-10 of column 1, lines 2-10 of column 2, and lines 11-18 of column 2); and scheduling transmission of each unit of data based on the prioritization factor (line 55 of column 2 through line 3 of column 3).

Bahl does not explicitly teach: storing the data received over the communication network as units corresponding to the plurality of access terminals. However, Ketcham discloses: "In one exemplary preferred embodiment of the present invention, at Step 34 a data buffer is maintained including multiple data structures for multiple data packets that have arrived on a data stream 18 between a source network device 14 and a destination network device 16 on the computer network 12 during a current time interval. An exemplary data structure used in the data buffer for data packets is illustrated in Table 1. However, the present invention is not limited to the data structure illustrated in Table 1, and other data structures with more or fewer data structure fields can also be used in the data buffer for data packets," (lines 8-18 of column 7). It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to store the data received over the communication network as units corresponding to the plurality of access terminals. "The data structure illustrated in Table 1 is stored in the data buffer in a fashion that facilitates both rapid resolution of a calculated data traffic signature to known data traffic signatures as well as rapid cleanup of entries for data streams that have sent no data for significant periods of time (e.g., greater than 1 minute). In one exemplary preferred embodiment of the present invention, the data structures are stored in a circular buffer, with a fixed size related to a maximum packet arrival rate and required arrival time period for a general data stream.

The circular buffer includes a spanning tree to locate the data structures based on source/destination network addresses and/or on source/destination network ports or sockets (see Table 1)," (lines 30-42 of column 7 in Ketcham). It is for this reason that one of ordinary skill in the art at the time of the applicant's invention would have been motivated to store the data received over the communication network as units corresponding to the plurality of access terminals in the system as taught by Bahl.

Bahl also does not explicitly teach: the prioritization factor being controlled to maintain a minimum desired data rate associated with each unit of data. However, Ketcham discloses: "Class-of-service parameters typically include maximum downstream data rates, maximum upstream data rates, upstream channel priority, guaranteed minimum data rates, guaranteed maximum data rate and other parameters," (lines 57-61 of column 1). It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to have the prioritization factor controlled to maintain a minimum desired data rate associated with each unit of data. "There have been attempts to use Class-of-Service ("CoS"), Quality-of-Service ("QoS") or Type-of-Service ("ToS") parameters in routers and switches in computer networks. As is known in the art, a router routes data packets to an appropriate device on a network topology. A switch switches data among multiple channels and/or time slots. A Class-of-Service provides a reliable (i.e., error free, in sequence, with no loss of duplication) transport facility independent of the Quality-of-Service," (lines 49-57 of column 1 in Ketcham). It is for this reason that one of ordinary skill in the art at the time of the applicant's invention would have been motivated to have the prioritization factor

being controlled to maintain a minimum desired data rate associated with each unit of data in the system as taught by Bahl.

Bahl also does not explicitly teach: more emphasis is placed on fairness when many users are close to the required data rate and more emphasis is placed on maximizing throughput when all users are far from the required data rate. However, Rananand discloses: "Other connections may be provided with a minimum service rate, in which case they will be ensured at least a specified minimum rate, but may be transferred faster when there is available transfer bandwidth above that required for the connections for which there is a service rate guarantee," (lines 2-7 of column 5). It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to place more emphasis on fairness when many users are close to the required data rate and more emphasis is placed on maximizing throughput when all users are far from the required data rate. "This service rate may differ as among the various connections, although for various ones of the connections being serviced by a switching node 11(n) the service rate guarantees may be similar or identical," (line 66 of column 4 through line 2 of column 5 in Rananand). It is for this reason that one of ordinary skill in the art at the time of the applicant's invention would have been motivated to place more emphasis on fairness when many users are close to the required data rate and more emphasis is placed on maximizing throughput when all users are far from the required data rate in the system as taught by Bahl.

Art Unit: 2142

5. Claims 8, 17, and 26 rejected under 35 U.S.C. 103(a) as being unpatentable over Bahl, Ketcham, Rananand as applied to claims 1, 10, and 19 respectively.

As per claims 8, 17, and 26, Bahl does not explicitly teach: a plurality of carriers are available to transmit the units of data and the control system is further adapted to generate the prioritization factor for each unit of data for each of the plurality of carriers and schedule the transmission of each unit of data on at least one of the plurality of carriers based on the prioritization factor. However, Ketcham discloses: "In one exemplary preferred embodiment of the present invention, a network device such as a routing/switching device will reserve a data channel or timeslot for data packets in the data stream. Allocating network device resources on a network device to provide a desired priority to data packets in the data stream includes allocating resources to provide a desired processing priority including a Quality-of-Service to data packets in the data stream," (lines 58-65 of column 12).

It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to have a plurality of carriers available to transmit the units of data and the control system is further adapted to generate the prioritization factor for each unit of data for each of the plurality of carriers and schedule the transmission of each unit of data on at least one of the plurality of carriers based on the prioritization factor. "There have been attempts to use Class-of-Service ("CoS"), Quality-of-Service ("QoS") or Type-of-Service ("ToS") parameters in routers and switches in computer networks. As is known in the art, a router routes data packets to an appropriate device on a network topology. A switch switches data among multiple channels and/or time slots. A

Class-of-Service provides a reliable (i.e., error free, in sequence, with no loss of duplication) transport facility independent of the Quality-of-Service. Class-of-service parameters typically include maximum downstream data rates, maximum upstream data rates, upstream channel priority, guaranteed minimum data rates, guaranteed maximum data rate and other parameters," (lines 49-61 of column 1 in Ketcham). It is for this reason that one of ordinary skill in the art at the time of the applicant's invention would have been motivated to have a plurality of carriers available to transmit the units of data and the control system is further adapted to generate the prioritization factor for each unit of data for each of the plurality of carriers and schedule the transmission of each unit of data on at least one of the plurality of carriers based on the prioritization factor in the system as taught by Bahl.

6. Claims 2, 11, and 20 rejected under 35 U.S.C. 103(a) as being unpatentable over Bahl, Ketcham, and Rananand as applied to claims 1, 10, and 19 respectively, further in view of Fawaz et al. (U.S. 6,654,374 B1) hereinafter referred to as Fawaz and Ganz et al. (U.S. 6,049,549) hereinafter referred to as Ganz.

As per claims 2, 11, and 20, Bahl does not explicitly teach: the adaptive fairness objective functions adaptively increase the prioritization factor as an average data rate associated with each unit of data approaches the minimum desired data rate associated with each unit of data. However, Fawaz discloses: "A packet-switched communication network in accordance with the invention provides a guaranteed minimum bandwidth between pairs of Packet Switches by defining Service Level Agreements (SLAs). An

SLA is defined by at least a source identifier, a destination identifier, and a minimum data rate although other information can also be used," (Abstract). Ganz adds: "The invention provides, in general, a media control that supports transmission of data streams with QoS requirements, such as minimum throughput or maximum delay, while adapting to the changing characteristics of the wireless transmission medium. In addition, assignment of limited resources, in particular, the limited communication capacity of the transmission medium, is tightly coupled to the media control approach," (lines 8-15 of column 2); and "The resource manager can also consider other factors such as utility and priorities of communication sessions. The available bandwidth is taken into account to allow a requested data rate to be achieved despite retransmissions necessitated by interference, physical separation, or other error-causing situations," (lines 22-27 of column 2).

It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to have the adaptive fairness objective functions adaptively increase the prioritization factor as an average data rate associated with each unit of data approaches the minimum desired data rate associated with each unit of data. "A scheduler in the node ensures that packets from each SLA are scheduled for transmission at at least the minimum data rate corresponding to the SLA," (lines 41-44 of column 4 in Fawaz) and "The polling manager uses an efficient "just in time" polling of stations based on their allocated bandwidth or communication rates. Stations that do not use their allocated rates are polled less often than those which use their allocation, thereby increasing the total throughput of the system and providing proper quality of

service support for real-time applications. Advantages of the invention include quality of service support which is needed for real-time multimedia applications, responsiveness to time varying communication capacity, resource allocation in accordance with effective bandwidth between pairs of stations, and admission of sessions only if their minimum required data rates are achievable," (lines 27-39 of column 2 in Ganz). It is for this reason that one of ordinary skill in the art at the time of the applicant's invention would have been motivated to have the adaptive fairness objective functions adaptively increase the prioritization factor as an average data rate associated with each unit of data approaches the minimum desired data rate associated with each unit of data in the system as taught by Bahl and Ketcham.

7. Claims 3, 12, and 21 rejected under 35 U.S.C. 103(a) as being unpatentable over Bahl, Ketcham, and Ranananand as applied to claims 1, 10, and 19 respectively, further in view of Liao et al. (U.S. PG Pub. 2004/0136379 A1) hereinafter referred to as Liao.

As per claims 3, 12, and 21, Bahl does not explicitly teach: when there are insufficient resources to maintain the minimum desired data rate associated with each unit of data, the control system is further adapted to control the prioritization factor for each unit of data to reduce the variance in data rates associated with the units of data between different users. However, Liao discloses: "In addition, it can be desirable to adjust the allocations of bandwidth in such a way as to minimize the variance of the adjustment amounts, the sum of the adjustment amounts, and/or the sum of the absolute values of the adjustment amounts," (paragraph [0227] on page 21).

It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention, that when there are insufficient resources to maintain the minimum desired data rate associated with each unit of data, the control system is further adapted to control the prioritization factor for each unit of data to reduce the variance in data rates associated with the units of data between different users.

"Because of the risk of delay or loss of data, customers of the network sometimes seek to protect themselves by entering into "service level agreements" which can include guarantees such as maximum packet loss rate, maximum packet delay, and maximum delay "jitter" (i.e., variance of delay)," (paragraph [0055] on page 4 of Liao). It is for this reason that one of ordinary skill in the art at the time of the applicant's invention would have been motivated to have the control system further adapted to control the prioritization factor for each unit of data to reduce the variance in data rates associated with the units of data between different users when there are insufficient resources to maintain the minimum desired data rate associated with each unit of data in the system as taught by Bahl and Ketcham.

8. Claims 4-5, 13-14, and 22-23 rejected under 35 U.S.C. 103(a) as being unpatentable over Bahl, Ketcham, and Rananand as applied to claims 1, 10, and 19 respectively, further in view of Walton et al. (U.S. 6,493,331 B1) hereinafter referred to as Walton.

a. As per claims 4, 13, and 22, Bahl does not explicitly teach: the adaptive fairness objective is configurable to make overall throughput of the units of data

inversely proportional to fairness between different users. However, Walton discloses: "As an example of a simple ranking scheme, users are given a ranking based on their overall average throughput. In this example, the ranking assigned to the users are inversely proportional to the C/I of the users (i.e., lowest C/I=highest priority), "(lines 28-32 of column 41).

It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to have the adaptive fairness objective configurable to make overall throughput of the units of data inversely proportional to fairness between different users. "In an embodiment, a cell is provided with information descriptive of the interference experienced by each active user in the cell due to transmissions from other cells. When the number of active users exceeds the number of allocated channels, the cell can then select the user with the higher tolerance to interference and place that user in an overlapping (non-orthogonal) channel that provides the best overall C/I for that user," (lines 57-64 of column 40 in Walton) and "The last column is the rank associated with each user in cell 1, where a rank of 1 typically indicates the highest priority. The ranking can be based on a number of ranking schemes, some of which are described below, depending on the overall objectives of the system," (lines 24-28 of column 40 in Walton). It is for this reason that one of ordinary skill in the art at the time of the applicant's invention would have been motivated to have the adaptive fairness objective configurable to make overall throughput of the units of data inversely proportional to fairness between different users in the system as taught by Bahl and Ketcham.

Art Unit: 2142

b. As per claims 5, 14, and 23, Bahl teaches time-sensitive data (lines 30-40 of column 2).

Bahl does not explicitly teach: select ones of the units of data are time-sensitive and associated with a delay bound and the control system is further adapted to control the prioritization factor for each time-sensitive unit of data in inverse proportion to an amount of time prior to the delay bound associated with each time-sensitive unit of data wherein the time-sensitive units of data are given higher priorities as the delay bounds approach. However, Walton discloses: "The type of data to be transmitted may be considered in assigning priority among users. Some data types are time sensitive and require quick attention. Other data types can tolerate longer delay in transmission. Higher priority can be assigned to data that is time critical," (lines 40-44 of column 23), and "As an example of a simple ranking scheme, users are given a ranking based on their overall average throughput. In this example, the ranking assigned to the users are inversely proportional to the C/I of the users (i.e., lowest C/I=highest priority)," (lines 28-32 of column 41). The combination of these two aspects as disclosed by Walton in combination with Bahl and Ketcham clearly embodies the claimed invention.

It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to have select ones of the units of data are time-sensitive and associated with a delay bound and the control system is further adapted to control the prioritization factor for each time-sensitive unit of data in inverse proportion to an amount of time prior to the delay bound associated with each time-sensitive unit of data wherein the time-sensitive units of data are given higher priorities as the delay bounds

approach. "As an example, data being retransmitted can be given higher priority than data transmitted for the first time. The retransmitted data typically corresponds to data previously transmitted and received in error. Since the signal processing at the receiver may be dependent on the data received in error, the retransmitted data can be given higher priority.

The type of data services being provided may be considered in assigning user priority. Higher priority can be assign to premium services (e.g., those charged higher prices). A pricing structure can be established for different data transmission services. Through the pricing structure, the user can determine, individually, the priority and the type of service the user can expect to enjoy," (lines 44-57 of column 23 in Walton). It is for this reason that one of ordinary skill in the art at the time of the applicant's invention would have been motivated to have select ones of the units of data are time-sensitive and associated with a delay bound and the control system is further adapted to control the prioritization factor for each time-sensitive unit of data in inverse proportion to an amount of time prior to the delay bound associated with each time-sensitive unit of data wherein the time-sensitive units of data are given higher priorities as the delay bounds approach in the system as taught by Bahl and Ketcham.

9. Claims 6, 15, and 24 rejected under 35 U.S.C. 103(a) as being unpatentable over Bahl, Ketcham, Rananand, and Walton as applied to claims 5, 14, and 23 respectively.

Bahl teaches: each time-sensitive unit of data is associated with a start time (lines 2-10 of column 2); the start time represents a threshold when the prioritization

factor for the unit of data is adjusted based on the delay bound (lines 30-40 of column 2).

10. Claims 7, 16, and 25 rejected under 35 U.S.C. 103(a) as being unpatentable over Bahl, Ketcham, Rananand, and Walton as applied to claims 5, 14, and 23 respectively, further in view of Kilkki et al. (U.S. 6,421,335 B1) hereinafter referred to as Kilkki.

Bahl does not explicitly teach: the control system is further adapted to adjust the prioritization factor for each time-sensitive unit of data to control the maximum percentage of the units of data that can be dropped prior to transmission. However, Kilkki discloses: "In one embodiment of the invention, the load is determined as the ratio of number N users to the maximum number of users $N_{\text{sub.max}}$ allowed. Thus, $PL_{\text{sub.a}}$ changes over time with a changing number of concurrent users. Where the packet has a priority equal to or greater than $PL_{\text{sub.a}}$, the packet is transmitted. Otherwise it is selectively discarded or suspended for a period of time. Where the packet is suspended, it is suspended until the MBR drops down enough due to the elapsed time (during which the average bit rate goes down), or until the load of the interface decreases. Where a packet's priority is less than $PL_{\text{sub.a}}$, it is typically discarded in time sensitive situations, such voice packets," (lines 12-24 of column 7).

It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to have the control system further adapted to adjust the prioritization factor for each time-sensitive unit of data to control the maximum percentage of the units of data that can be dropped prior to transmission. "Essentially,

with increasing load (N/N.sub.max), the allowed priority level PL.sub.a increases and reduces the number of packets that are allowed to be transmitted. Therefore, users with higher established priorities (i.e., higher NBR or due to moderate transmission rates) have a relatively greater chance of having their data packets transmitted successfully," (lines 25-30 of column 7 in Kilkki). It is for this reason that one of ordinary skill in the art at the time of the applicant's invention would have been motivated to have the control system further adapted to adjust the prioritization factor for each time-sensitive unit of data to control the maximum percentage of the units of data that can be dropped prior to transmission in the system as taught by Bahl, Ketcham, and Walton.

11. Claims 9, 18, and 27 rejected under 35 U.S.C. 103(a) as being unpatentable over Bahl, Ketcham, and Rananand as applied to claims 1, 10, and 27 respectively, in view of Fawaz and Walton.

As per claims 9, 18, and 27, Bahl does not explicitly teach: the adaptive fairness objective functions adaptively increase the prioritization factor as an average data rate associated with each unit of data approaches the minimum desired data rate associated with each unit of data. However, Fawaz discloses: "A packet-switched communication network in accordance with the invention provides a guaranteed minimum bandwidth between pairs of Packet Switches by defining Service Level Agreements (SLAs). An SLA is defined by at least a source identifier, a destination identifier, and a minimum data rate although other information can also be used," (Abstract). Ganz adds: "The invention provides, in general, a media control that supports transmission of data

streams with QoS requirements, such as minimum throughput or maximum delay, while adapting to the changing characteristics of the wireless transmission medium. In addition, assignment of limited resources, in particular, the limited communication capacity of the transmission medium, is tightly coupled to the media control approach," (lines 8-15 of column 2); and "The resource manager can also consider other factors such as utility and priorities of communication sessions. The available bandwidth is taken into account to allow a requested data rate to be achieved despite retransmissions necessitated by interference, physical separation, or other error-causing situations," (lines 22-27 of column 2).

It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to have the adaptive fairness objective functions adaptively increase the prioritization factor as an average data rate associated with each unit of data approaches the minimum desired data rate associated with each unit of data. "A scheduler in the node ensures that packets from each SLA are scheduled for transmission at at least the minimum data rate corresponding to the SLA," (lines 41-44 of column 4 in Fawaz) and "The polling manager uses an efficient "just in time" polling of stations based on their allocated bandwidth or communication rates. Stations that do not use their allocated rates are polled less often than those which use their allocation, thereby increasing the total throughput of the system and providing proper quality of service support for real-time applications. Advantages of the invention include quality of service support which is needed for real-time multimedia applications, responsiveness to time varying communication capacity, resource allocation in accordance with effective

Art Unit: 2142

bandwidth between pairs of stations, and admission of sessions only if their minimum required data rates are achievable," (lines 27-39 of column 2 in Ganz). It is for this reason that one of ordinary skill in the art at the time of the applicant's invention would have been motivated to have the adaptive fairness objective functions adaptively increase the prioritization factor as an average data rate associated with each unit of data approaches the minimum desired data rate associated with each unit of data in the system as taught by Bahl and Ketcham.

Bahl also does not explicitly teach: select ones of the units of data are time-sensitive and associated with a delay bound and the control system is further adapted to control the prioritization factor for each time-sensitive unit of data in inverse proportion to an amount of time prior to the delay bound associated with each time-sensitive unit of data wherein the time-sensitive units of data are given higher priorities as the delay bounds approach. However, Walton discloses: "The type of data to be transmitted may be considered in assigning priority among users. Some data types are time sensitive and require quick attention. Other data types can tolerate longer delay in transmission. Higher priority can be assigned to data that is time critical," (lines 40-44 of column 23), and "As an example of a simple ranking scheme, users are given a ranking based on their overall average throughput. In this example, the ranking assigned to the users are inversely proportional to the C/I of the users (i.e., lowest C/I=highest priority)," (lines 28-32 of column 41). The combination of these two aspects as disclosed by Walton in combination with Bahl and Ketcham clearly embodies the claimed invention.

It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to have select ones of the units of data are time-sensitive and associated with a delay bound and the control system is further adapted to control the prioritization factor for each time-sensitive unit of data in inverse proportion to an amount of time prior to the delay bound associated with each time-sensitive unit of data wherein the time-sensitive units of data are given higher priorities as the delay bounds approach. "As an example, data being retransmitted can be given higher priority than data transmitted for the first time. The retransmitted data typically corresponds to data previously transmitted and received in error. Since the signal processing at the receiver may be dependent on the data received in error, the retransmitted data can be given higher priority.

The type of data services being provided may be considered in assigning user priority. Higher priority can be assign to premium services (e.g., those charged higher prices). A pricing structure can be established for different data transmission services. Through the pricing structure; the user can determine, individually, the priority and the type of service the user can expect to enjoy," (lines 44-57 of column 23 in Walton). It is for this reason that one of ordinary skill in the art at the time of the applicant's invention would have been motivated to have select ones of the units of data are time-sensitive and associated with a delay bound and the control system is further adapted to control the prioritization factor for each time-sensitive unit of data in inverse proportion to an amount of time prior to the delay bound associated with each time-sensitive unit of data

wherein the time-sensitive units of data are given higher priorities as the delay bounds approach in the system as taught by Bahl and Ketcham.

Response to Arguments

12. Applicant's arguments filed 07 September 2005 (entered with RCE on 11 October 2005) have been fully considered but they are moot in view of new grounds of rejection.

13. (A) Regarding claims 1, 10, 19, and 28, the applicant argues that Bahl does not teach that the transmission is scheduled based on the prioritization factor such that more emphasis is placed on fairness when many users are close to the required data rate and more emphasis is placed on maximizing throughput when all users are far from the required data rate. This argument has been addressed above with the addition of Ranananand to the rejection of claims 1, 10, 19, and 28.

14. (B) Regarding claims 2, 11, and 20, the applicant argues that Bahl does not enable the element for which it was cited. This argument has been addressed above with the addition of Ganz to the rejection of claims 2, 9, 11, 18, 20, and 27.

Conclusion

15. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

Nielsen (U.S. 5,826,031) discloses prioritized downloading of embedded web objects.

Nandy et al. (U.S. 6,646,988 B1) discloses allocating excess bandwidth in a differentiated services communication network.

16. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Michael Meucci at (571) 272-3892. The examiner can normally be reached on Monday-Friday from 9:00 AM to 6:00 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Andrew Caldwell, can be reached at (571) 272-3868. The fax phone number for this Group is 571-273-8300.

Communications via Internet e-mail regarding this application, other than those under 35 U.S.C. 132 or which otherwise require a signature, may be used by the applicant and should be addressed to [michael.meucci@uspto.gov].

All Internet e-mail communications will be made of record in the application file. PTO employees do not engage in Internet communications where there exists a possibility that sensitive information could be identified or exchanged unless the record includes a properly signed express waiver of the confidentiality requirements of 35 U.S.C. 122. This is more clearly set forth in the Interim Internet Usage Policy published in the Official Gazette of the Patent and Trademark on February 25, 1997 at 1195 OG 89.

Art Unit: 2142

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Beatriz Prieto
BEATRIZ PRIETO
PRIMARY EXAMINER