Chapter 29 Développements limités

Exercice 1 (29.0)

Déterminer le développement limité à l'ordre 4 en 0 de $x \mapsto \operatorname{sh}(x) - 2\sqrt{1+x}$.

Exercice 2 (29.0)

Déterminer le développement limité à l'ordre 7 en 0 de la fonction arctan.

Exercice 3 (29.0)

Déterminer le développement limité à l'ordre 5 en 0 de la fonction $x \mapsto e^x \sin(x)$.

Exercice 4 (29.0)

Déterminer le développement limité à l'ordre 4 en 0 de la fonction $x \mapsto \ln(\cos(x))$.

Exercice 5 (29.0)

Déterminer le développement limité à l'ordre 4 en 0 de la fonction $x \mapsto \ln \left(\frac{\sin(x)}{x} \right)$.

Exercice 6 (29.0)

Déterminer le développement limité à l'ordre 5 en 0 de la fonction tanh.

Exercice 7 (29.0)

1. Déterminer le développement limité à l'ordre 4, au voisinage de x = 0 de

$$f(x) = \operatorname{sh}(x)\operatorname{ch}(2x)$$
.

2. Déterminer le développement limité à l'ordre 5, au voisinage de x = 0 de

$$f(x) = e^{\sin(2x)}.$$

3. Déterminer le développement limité à l'ordre 4, au voisinage de x = 0 de

$$f(x) = \ln(1 + \sinh x).$$

358

Exercice 8 (29.0)

Donner les développements limités suivants.

1.
$$DL3$$
 en 0 de $f(x) = (\cos x)\sqrt{1+x}$;

2.
$$DL4$$
 en 0 de $f(x) = \ln(1+x)\sqrt{1+x}$;

3.
$$DL3$$
 en 0 de $f(x) = \frac{(1+x)^{1/3}}{1-x}$;

4. *DL*4 en 0 de $f(x) = e^{\cos x}$;

2. $DL4 \text{ en } 0 \text{ de } f(x) = \ln(1+x)\sqrt{1+x}$; 5. $DL3 \text{ en } 0 \text{ de } f(x) = \frac{x}{\ln(1+x)}$;

6. *DL*4 en 0 de $f(x) = \frac{x}{\sin x}$.

Exercice 9 (29.0)

Donner les développements limités suivants.

1.
$$DL3$$
 en 0 de $f(x) = \ln \frac{1+x}{1-x}$.

2.
$$DL3$$
 en 0 de $f(x) = \exp \sqrt{1 + x}$.

3.
$$DL3$$
 en 0 de $f(x) = \ln(2 + \sin x)$.

Exercice 10 (29.0)

Donner les développements limités suivants.

1. $DL4 \text{ en } \pi/3 \text{ de } f(x) = \cos x$;

2. *DL*4 en 1 de $f(x) = e^x$;

3. DL4 en 2 de $f(x) = \frac{1}{x}$;

4. $DL3 \text{ en } \pi/4 \text{ de } f(x) = \tan x$;

5. DL4 en e de $f(x) = \ln x$; 6. DL4 en 1 de $f(x) = \frac{\ln x}{x}$.

Exercice 11 (29.0)

Déterminer un équivalent simple, au voisinage de x = e de $e^x - x^e$.

Exercice 12 (29.0)

Déterminer les développements limités à l'ordre demandé au voisinage des points indiqués.

1. $\frac{1}{1-x^2-x^3}$ (ordre 7 en 0).

2. $\frac{1}{\cos x}$ (ordre 7 en 0).

3. Arccos $\sqrt{\frac{x}{\tan x}}$ (ordre 3 en 0).

4. $\tan x$ (ordre 3 en $\frac{\pi}{4}$).

5. $(\operatorname{ch} x)^{1/x^2}$ (ordre 2 en 0).

6. $\tan^3 x(\cos(x^2) - 1)$ (ordre 8 en 0).

7. $\frac{\ln(1+x)}{x^2}$ (ordre 3 en 1).

8. Arctan($\cos x$) (ordre 5 en 0).

9. Arctan $\sqrt{\frac{x+1}{x+2}}$ (ordre 2 en 0).

10. $\frac{1}{x^2} - \frac{1}{Arcsin^2 x}$ (ordre 5 en 0).

11. $\int_{x}^{x^2} \frac{1}{\sqrt{1+t^4}} dt$ (ordre 10 en 0).

12. $\ln\left(\sum_{k=0}^{99} \frac{x^k}{k!}\right)$ (ordre 100 en 0).

13. $\tan \sqrt[3]{4(\pi^3 + x^3)}$ (ordre 3 en π).

Exercice 13 (29.0)

Calculer les limites suivantes.

1. $\lim_{x\to 0} \frac{\sin 3x}{1-a^{2x}}$;

2. $\lim_{x\to 0} \frac{x - \ln(1+x)}{x^2}$;

 $3. \lim_{x \to 0} \frac{1}{\sin x} - \frac{1}{x} \; ;$

4. $\lim_{x \to a} \frac{x - \arcsin(x)}{x^3}$.

Exercice 14 (29.0)

Pour chacune des fonctions suivantes, donner le développement limité demandé. En déduire l'équation de la tangente à la courbe de f au point d'abscisse 0 ainsi que les positions relatives.

1. DL2 en 0 de $f(x) = e^x - 2\sqrt{1+x}$.

2. DL3 en 0 de $f(x) = \ln(1+x) + e^x$.

3. DL3 en 0 de $f(x) = \ln(1-x) - \cos x$.

4. $DL4 \text{ en } 0 \text{ de } f(x) = e^x \cos(x) + \frac{x^3}{3} - x.$

Exercice 15 (29.0)

Pour $x \in \mathbb{R}^*$, on pose

$$f(x) = \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right).$$

1. Déterminer un développement limité à l'ordre 3 au voisinage de x = 0 de f(x).

2. En déduire le prolongement par continuité de f en zéro. On note encore f ce prolongement.

- **3.** Montrer que f, ainsi prolongée, est dérivable en zéro.
- **4.** Préciser la position de la courbe représentative de f par rapport à sa tangente au point d'abscisse zéro, au voisinage de ce point.

Exercice 16 (29.0)

Déterminer la limite de $\frac{1}{x^2} - \frac{1}{\tan^2(x)}$ quand x tend vers 0.

Exercice 17 (29.0)

Soit f la fonction définie sur]-1,1[par $f(x)=\frac{\sqrt{1+x}}{1-x}.$ Déterminer une équation de la tangente à la courbe représentative de f au point de coordonnées (0,f(0)) puis la position de la courbe par rapport à sa tangente.

Exercice 18 (29.0)

Pour les fonctions suivantes au voisinage du point a indiqué, étudier la possibilité de prolonger par continuité, puis, dans l'affirmative, la dérivabilité et l'existence d'une tangente à la courbe ; enfin préciser le placement local de la courbe par rapport à sa tangente.

- 1. $f: x \mapsto \frac{2x \ln x}{x-1}$ au point a=1.
- 2. $g: x \mapsto \ln(\tan x)$ au point $a = \pi/4$.
- 3. $h: x \mapsto \frac{1}{x(e^x 1)} \frac{1}{x^2} + \frac{1}{2x}$ au point a = 0.

Exercice 19 (29.0)

Soit g la fonction $x \mapsto \frac{\arctan x}{(\sin x)^3} - \frac{1}{x^2}$.

- 1. Donner le domaine de définition de g.
- 2. Montrer qu'elle se prolonge par continuité en 0 en une fonction dérivable.
- 3. Déterminer la tangente en 0 au graphe de cette fonction et la position de ce graphe par rapport à celle-ci.

Exercice 20 (29.0)

Étudier avec soin les branches infinies et leur placement local par rapport aux éventuelles asymptotes.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x + \sqrt{x^2 + 1} .$$

Exercice 21 (29.0)

Soit la fonction f définie par

$$f(x) = \frac{x^3}{x+1} \ln\left(\frac{x+1}{x}\right)$$

Étudier les branches infinies (pour $x \to +\infty$ et $x \to -\infty$) de la courbe de f.

Exercice 22 (29.0)

Étudier la fonction d'une variable réelle définie par la relation

$$f(x) = x + \sqrt{x^2 - 1}$$

en portant une attention particulière aux asymptotes et demi-tangentes.

Exercice 23 (29.0)

Soit λ un réel strictement positif, différent de $\sqrt{2}$, et (f_{λ}) la famille de fonctions définie par

$$f_{\lambda}(x) = \left(x - \frac{1}{\lambda}\right) e^{\lambda/x}.$$

On note C_{λ} sa courbe représentative.

- **1.** Étude de f_1 .
 - (a) Étudier les variations de la fonction f_1 .
 - (b) À l'aide d'un développement limité on dit aussi développement asymptotique —, déterminer sa limite en $+\infty$ et $-\infty$, montrer que sa courbe admet une asymptote oblique que l'on précisera et étudier la position de la courbe par rapport à cette asymptote.
 - (c) Calculer les limites à gauche et à droite de f_1 en 0. La fonction f_1 admet-elle un prolongement par continuité en 0 ? Si oui, ce prolongement est-il dérivable ? Que peut-on en déduire pour la courbe C_1 ?
 - (d) Représenter graphiquement \mathcal{C}_1 et son asymptote oblique.
- 2. Dans cette question, on étudie f_2 . À l'aide d'un développement limité, déterminer sa limite en $+\infty$ et $-\infty$, montrer que la courbe C_2 admet une asymptote oblique que l'on précisera et étudier la position de la courbe par rapport à cette asymptote.
- 3. À l'aide d'un développement limité, étudier les branches infinies de \mathcal{C}_{λ} .

Exercice 24 (29.0)

- 1. Montrer que, pour $\lambda > e$, l'équation $e^x = \lambda x$ a deux solutions dans $]0, +\infty[$. On notera $x(\lambda)$ la plus petite.
- **2.** Se convaincre sur un dessin que $\lim_{\lambda \to +\infty} x(\lambda) = 0$.
- **3.** Montrer que $\lim_{\lambda \to +\infty} x(\lambda) = 0$.
- **4.** Établir successivement les résultats suivants lorsque λ tend vers $+\infty$:

(a)
$$x(\lambda) \sim \frac{1}{\lambda}$$
.

(b)
$$e^{x(\lambda)} = 1 + \frac{1}{\lambda} + o\left(\frac{1}{\lambda}\right)$$
.

(c)
$$x(\lambda) = \frac{1}{\lambda} + \frac{1}{\lambda^2} + o\left(\frac{1}{\lambda^2}\right)$$
.

(d)
$$x(\lambda) = \frac{1}{\lambda} + \frac{1}{\lambda^2} + \frac{3}{2\lambda^3} + o\left(\frac{1}{\lambda^3}\right)$$
.

On a ainsi obtenu un développement asymptotique de $x(\lambda)$ quand λ tend vers $+\infty$.

Exercice 25 (29.0) Applications des développements limités à l'étude de suites Déterminer un équivalent des suites dont le terme général est donné.

1.
$$u_n = (n+1)^{\frac{1}{n+1}} - n^{\frac{1}{n}}$$
.

2.
$$u_n = 2\sqrt{n} - \sqrt{n+1} - \sqrt{n-1}$$
.

3.
$$u_n = \frac{\ln(n+1) - \ln(n)}{\sqrt{n+1} - \sqrt{n}}$$
.