Лабораторная работа № 6

Модель хищник-жертва

Городянский Федор Николаевич

Содержание

Цель работы		4
Задание		5
Выполнение лабораторной работы		6
Математическая модель	•	6
Реализация модели в xcos		6
Реализация модели с помощью блока Modelica в xcos		11
Реализация модели в OpenModelica	•	14
Выводы		18

Список иллюстраций

0.1	Задать переменные окружения в хсоз	7
0.2	Модель хищник-жертва в xcos	7
0.3	Задать начальное значение в блоке интегрирования для х	8
0.4	Задать начальное значение в блоке интегрирования для у	9
0.5	Задать конечное время интегрирования в хсоз	9
0.6	Решение модели хищник жертва при $a=2, b=1, c=$	
	$0.3, d = 1, x(0) = 2, y(9) = 1 \dots \dots \dots \dots$	10
0.7	Фазовый портрет модели хищник жертва при $a=2,b=$	
	1, $c = 0.3$, $d = 1$, $x(0) = 2$, $y(9) = 1 \dots \dots \dots$	11
0.8	Модель хищник-жертва в хсоѕ с применением блока	
	Modelica	12
0.9	Ввод значений входных параметров блока Modelica для	
	модели	13
0.10	Ввод функции блока Modelica для модели	14
0.11	Модель в OpenModelica	15
0.12	Параметры моделирования в OpenModelica	16
0.13	Решение модели хищник жертва при $a=2, b=1, c=$	
	0.3, d = 1, x(0) = 2, y(9) = 1. OpenModelica	16
0.14	Фазовый портрет модели хищник жертва при $a=2$, $b=$	
	1, $c = 0.3$, $d = 1$, $x(0) = 2$, $y(9) = 1$. OpenModelica	17

Цель работы

Исследование модели хищник–жертва с помощью хсоз и OpenModelica.

Задание

- Реализовать классическую систему хищник-жертва
 - B XCOS
 - в xcos с помощью блока Modelica
 - в OpenModelica

Выполнение лабораторной работы

Математическая модель

$$\begin{cases} \frac{dx}{dt} = ax(t) - bx(t)y(t) \\ \frac{dy}{dt} = -cy(t) + dx(t)y(t) \end{cases}$$

В этой модели x – число жертв, y - число хищников. Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, c - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников. Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Реализация модели в хсоз

Зафиксируем начальные параметры в меню *Моделирование, Задать переменные окружения*, а затем построим модель при помощи блоков моделирования(рис. [-@fig:001], [-@fig:002]).

Рис. 0.1: Задать переменные окружения в хсоѕ

Рис. 0.2: Модель хищник-жертва в хсоѕ

Для реализации модели (6.1) в дополнение к блокам CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION, PROD_f потребуется блок CSCOPXY — регистрирующее устройство для построения фазового портрета.

Первое уравнение модели задано верхним блоком интегрирования, блоком произведения и блоками задания коэффициентов а и b.

Второе уравнение модели задано нижним блоком интегрирования и блоками задания коэффициентов с и d.

Для суммирования слагаемых правых частей уравнений используем блоки суммирования с соответствующими знаками перед коэффициентами. Выходы блоков суммирования соединяем с входами блоков интегрирования. Выходы блоков интегрирования соединяем с мультиплексором, который в свою очередь позволяет вывести на один график сразу обе кривые: динамику численности жертв и динамику численности хищников.

Зафиксируем начальные значения(рис. [-@fig:003], [-@fig:004]).

Рис. 0.3: Задать начальное значение в блоке интегрирования для х

Рис. 0.4: Задать начальное значение в блоке интегрирования для у

Также зададим время интегрирования равное 30(рис. [-@fig:005]).

Рис. 0.5: Задать конечное время интегрирования в хсоѕ

В результате получим решение системы хищник-жертва и фазовый

портрет(рис. [-@fig:006], [-@fig:007]).

Рис. 0.6: Решение модели хищник жертва при $a=2,\,b=1,\,c=0.3,$ d=1,x(0)=2,y(9)=1

Рис. 0.7: Фазовый портрет модели хищник жертва при $a=2,\,b=1,$ $c=0.3,\,d=1,\,x(0)=2,\,y(9)=1$

Реализация модели с помощью блока Modelica в xcos

Для реализации модели с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f, MUX и CSCOPXY требуются блоки CONST_m – задаёт константу; MBLOCK(Modelica generic) – блок реализации кода на языке Modelica(рис. [-@fig:008]).

Рис. 0.8: Модель хищник-жертва в хсоз с применением блока Modelica

Задаём значения переменных β и ν . Параметры блока Modelica переменные на входе ("а", "b", "c", "d") и выходе ("х", "у") блока заданы как внешние ("E").Затем прописываем дифференциальное уравнение(рис. [-@fig:009], [-@fig:010]).

Рис. 0.9: Ввод значений входных параметров блока Modelica для модели

Рис. 0.10: Ввод функции блока Modelica для модели

Результаты моделирования совпадают с рис. [~@fig:006] и рис. [~@fig:007].

Реализация модели в OpenModelica

Реализуем модель в OpenModelica. Для этого создадим файл модели, пропишем там параметры и начальные условие, а также дифференциальное уравнение(рис. [-@fig:011]).

```
Modelica
🖶 🎿 뒬 🚺 🛮 Доступный на запись
                          Model Вид Текст lab6_om /home/openmo
      model lab6 om
      parameter Real a = 2;
      parameter Real b = 1;
      parameter Real c = 0.3;
     parameter Real d = 1;
      parameter Real x0 = 2;
  8
     parameter Real y0 = 1;
 10
      Real x(start=x0);
      Real y(start=y0);
 11
 12
 13
      equation
 14
        der(x)=a*x-b*x*y;
 15
        der(y)=c*x*y-d*y;
 16
 17
    end lab6_om;
```

Рис. 0.11: Модель в OpenModelica

Затем укажем параметры моделирование, время также поставим равным 30(рис. [-@fig:012]).

Рис. 0.12: Параметры моделирования в OpenModelica

В результате получим график аналогичный графикам в xcos(рис. [-@fig:013], [~@fig:014]).

Рис. 0.13: Решение модели хищник жертва при $a=2,\,b=1,\,c=0.3,$ d=1,x(0)=2,y(9)=1. OpenModelica

Рис. 0.14: Фазовый портрет модели хищник жертва при $a=2,\,b=1$, $c=0.3,\,d=1,\,x(0)=2$, \$y(9) = 1. OpenModelica

Выводы

В результате выполнения работы была исследована модель хищникжертва при помощи xcos и OpenModelica.