OPTICAL PICKUP DEVICE AND METHOD FOR ADJUSTING OPTICAL PICKUP DEVICE

Patent number:

JP9231592

Publication date:

1997-09-05

Inventor:

IIZUKA GENICHI

Applicant:

SONY CORP

Classification:

- international:

G11B7/09; G11B7/08

- european:

Application number:

JP19960034096 19960221

Priority number(s):

JP19960034096 19960221

Report a data error bere

Abstract of JP9231592

PROBLEM TO BE SOLVED: To adjust a positional relationship among a light source, a lens bobbin (coil bobbin) and yokes 27a and 27b by easy work in an optical pickup device constituted by arranging optical part items such as a light source and an objective lens driving mechanism on a substrate. SOLUTION: Yokes 27a and 28b are moved in a two-dimensional direction along the upper surface of a substrate and connected to an adjusting plate 54 adjusted in a three-dimensional direction on the substrate via holes 57 and 59 and dowels 63 and 64. A lens bobbin (coil bobbin) is attached to the adjusting plate 54 via a flexible leaf spring. The lens bobbin is adjusted to a proper position against a light source while maintaining its positional relationship with the yokes 27a and 27b.

Data supplied from the esp@cenet database - Worldwide

- (11) Japanese Patent Application Laid- Open No.09-231592
- (43) Publication Date: September 5, 1997
- (21) Application Number: Japanese Patent Application

No.08-34096

- (22) Filing Date: February 21, 1996
- (71) Applicant: 000002185

Sony Corporation

(72) Inventor: Genichi Iizuka

[0002]

[PRIOR ART] Conventionally, an optical recording medium such as an optical disk was proposed, in response to which an optical pickup device for reading an information signal from the optical disk was proposed.

[0006] As an example of the optical pickup device has been proposed a device in which the semiconductor laser element, the optical detector, the beam splitter and the object lens drive mechanism (actuator) are provided on a single substrate and these element and optical parts are covered with a covering member (shell cover) mounted on the substrate.

[0011]

[PROBLEMS TO BE SOLVED BY THE INVENTION] In the mentioned optical pickup device, it is necessary to accurately position and mount the object lens drive mechanism on the substrate based on a position of the semiconductor laser element. [0012] The object lens drive mechanism comprises an adjustment plate 154 provided so as to adjustably move on the substrate 112 and a coil bobbin 126 having a substantially annular shape and supported relative to the adjustment plate 154 via a support block 106e and a plurality of plate springs 124 as shown in Fig. 24. The coil bobbin 126 is provided with drive coils (focus coil and tracking coil), which are would around it. The coil bobbin 126 is further provided with an object lens 120. [0013] The object lens drive mechanism has a pair of yokes 127a and 127b having a substantially horse-shoe shape, base end sides of which are continuously formed. A magnet 128 is mounted on one of the yokes 127a and 127b. Top end sides of the yokes 127a and 127b are advanced into the coil bobbin 126. Predetermined intervals are provided between the top end sides of the yokes 127a and 127b and inner surfaces of the coil bobbin 126. [0014] In the optical pickup device, first, the semiconductor laser element is located and mounted on the substrate. [0015] Next, the object lens drive mechanism supporting the

[0015] Next, the object lens drive mechanism supporting the object lens is disposed on the substrate so that the optical pickup device is allowed to read the information signal from

the optical disk. Then, an RF output value, jitter value, EF balance and the like are detected based on an optical detection output from the optical detector. After that, a position of the object lens drive mechanism relative to the substrate is adjusted and fixed to the substrate so that the RF output value, jitter value, EF balance and the like are in an optimum state, in other words, so that the object lens 120 can be disposed at an optimum position relative to the semiconductor laser element.

[0016] In the case in which the respective yokes 127a and 127b are fixedly mounted on the substrate 112 as shown in Fig. 24, a position of the coil bobbin 126 is adjusted in two-dimensional directions on the substrate 112 indicated by arrows A and B in Fig. 24 or in tilting directions on the substrate 112 indicated by arrows C and D shown in the drawing, which unfavorably narrows intervals between the respective yokes 127a and 127b and inner walls of the coil bobbin 126. When the intervals between the respective yokes 127a and 127b and the inner walls of the coil bobbin 126 are narrowed, a range in which the coil bobbin 126 can move relative to the substrate 112 is accordingly narrowed, which may undermine a normal operation of the optical pickup device.

[0093] Next, assembling and adjustment procedures of the

optical pickup device are described.

[0094] As a first step in assembling the optical pickup device, the laser coupler 3 is fixed with an adhesive and disposed to a predetermined position on the substrate 2, 36.

[0095] Next, the adjustment plate 54 movably supporting the lens bobbin 21 on which the object lens 20 is mounted via the respective plate springs 22, 23, 24 and 25 is disposed on the substrate 2, 36.

[0096] Then, a position of the adjustment plate 54 relative to the substrate 2, 36 is adjusted, and the position of the lens bobbin 21 is thereby adjusted to a predetermined position relative to the semiconductor laser element 10.

[0097] The position of the lens bobbin 21 is adjusted to the predetermined position relative to the semiconductor laser element 10 by reading the information signal recorded on the optical disk 101 and thereby searching a position at which a level of the read signal (RF signal), jitter value and BF balance (a shift amount between an intermediate point of the focus error signal and an optimum state of the jitter in the read signal) can be optimum.

[0098] The adjustment plate 54 is moved and rotated (tilted) in three-dimensional directions on the substrate 2, 36 so that the position thereof is adjusted.

[0099] The adjustment plate 54 is soldered to the print substrate 36 at a rear-end side part 55 thereof by means of a

solder 66 and thereby fixed to the substrate 2, 36 as shown in Fig. 23 in the state in which the position of the lens bobbin 21 is adjusted to the predetermined position relative to the semiconductor laser element 10.

[0100] When the adjustment plate 54 is thus adjusted, the object lens drive mechanism 6 is adjusted so that the object lens 20 is supported at an optimum position based on the position of the semiconductor laser element 10.

[0101] Then, the yokes 27a and 27b are located based on the position of the lens bobbin 21, that is the position of the coil bobbin 26, and accordingly disposed on the substrate 2, 36. [0102] The respective yokes 27a and 27b are, as described earlier, coupled with each other via the movable yoke 60 and disposed on the substrate 2, 36 and can move in two-dimensional directions along an upper surface of the substrate 2, 36. Further, the movable yoke 60 has engaging protrusions (dowel) 63 and 64 serving as connecting members for the position adjustment on the substrate 2, 36 and is coupled with the adjustment plate 54 via the engaging protrusions 63 and 64. [0103] More specifically, the respective yokes 27a and 27b are moved on the substrate 2, 36 in compliance with the components in the two-dimensional directions along the upper surface of the substrate 2, 36 in the movement of the adjustment plate 54 on the substrate 2, 36. Thereby, the location of the yokes 27a and 27b based on the position of the coll bobbin 26 is performed

at same time as the adjustment of the movement adjustment plate 54.

[0104] Then, the respective yokes 27a and 27b are fixed to the substrate 2, 36 in the state in which the positions thereof on the upper surface of the substrate 2, 36 are defined based on the position of the lens bobbin 21 position-adjusted based on the semiconductor laser element 10. The yokes 27a and 27b are fixed to the substrate 2, 36 by engaging screws 65, 65 inserted through screw inserting holes 61 and 62 provided in the movable yoke 60 into screw holes of the substrate 2, 36.

[0105] When the adjustment plate 54 and the movable yoke 60 are adjusted in the foregoing manner, the object lens drive mechanism 6 is adjusted so as to assure sufficient intervals between the yokes 27a and 27b and the coil bobbin 26 in the state in which the yokes 27a and 27b are orthogonally provided on the substrate 2, 36.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-231592

(43)公開日 平成9年(1997)9月5日

(51) Int.Cl.*		識別記号	庁内整理番号	ΤΕΙ		技術表示箇所	
(31) IlleCF		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	以內亞提雷可	L 1			(例200不图7)
G11B	7/09			GIIB	7/09	D	
	7/08				7/08	A	

審査請求 未請求 請求項の数5 OL (全 14 頁)

		Market Av	MARKE MANAGED OF (E 18 B)			
(21) 出顧書号	特額平8 - 34096	(71) 出顧人	000002185			
			ソニー株式会社			
(22) 出廣日	平成8年(1996)2月21日	東京都品川区北島川6丁目7番35号				
		(72) 発明者	飯塚 樹一			
			東京都品川区北品川6丁目7番35号 ソニ			
			一株式会社内			
		(74)代理人	弁理士 小池 晃 (外2名)			

(54) 【発明の名称】 光学ピックアップ装置及び光学ピックアップ装置の調整方法

(57) 【要約】

【課題】 基板上に光原や対物レンズ駆動機構等の光学 部品を配置して構成する光学ビックアップ装置において、容易な作業により、光源、レンズボビン(コイルボビン)及びヨーク27a, 27b間の位置関係の顕整が 行えるようにする。

【解決手段】 ヨーク27a、27bを基板の上面に沿う2次元方向に移動可能としておき、基板上において3次元方向に調整される調整プレート54に対して、穴57、59及びダボ63、64を介して連保させておく。調整プレート54には、可撓性の板パネを介して、レンズボビン(コイルボビン)が取付けられる。レンズボビンは、ヨーク27a、27bとの位置関係を維持したまま、光顔に対する適切な位置に調整される。

I

【特許請求の範囲】

【請求項1】 基板部と、

発光素子及びこの発光素子より発せられた光束を光学記 録媒体上に集光させる対物レンズを有して構成された光 学部と、

上記対物レンズを移動操作可能に支持するレンズボビン とこのレンズボビンを移動操作する磁気回路部とを有し て構成され、上記基板部上に配設された対物レンズ駆動 機構とを備え、

上記磁気回路部を構成するヨークは、上記基板部上に配 10 設され、この基板部の上面部に沿う2次元方向に移動可 能となされ、この基板部上における位置調整を行うため の被結合部を有している光学ピックアップ装置。

【請求項2】 発光素子は、基板部に対して固定して配 設されていることとなされた請求項1記載の光学ピック アップ装置。

【請求項3】 ヨークは、基板部の上面部上における位置を、発光素子を基準として位置調整されたレンズボビンの位置を基準として定められている請求項1記載の光学ビックアップ装置。

【請求項4】 ヨークは、レンズポピンを支持する調整 プレートに対して被連結部において連結されていること となされた請求項3記載の光学ピックアップ装置。

【請求項5】 基板部に対して発光素子を固定して配設 1.

上記発光素子より発せられた光束を光学記録媒体上に集 光させる対物レンズが取付けられたレンズボビンを移動 操作可能に支持する調整プレートを上記基板部上に配散 し、この関整プレートの該基板部に対する位置を調整す ることにより、該レンズボビンの位置を上記発光素子に 30 対する所定位置とし、

上記レンズボビンを移動操作する磁気回路部を構成する ヨークを、上記レンズボビンの位置を基準として位置決 めして上記基板部上に配設する光学ピックアップ装置の 調整方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光ディスクの如き 光学記録媒体に対して情報信号の記録再生を行う光学ピックアップ装置に関する技術分野に属する。

[0002]

【従来の技術】従来、光ディスクの如き光学記録媒体が 提案され、この光ディスクより情報信号の読み取りを行 う光学ピックアップ装置が提案されている。

【0003】この光学ピックアップ装置は、半導体レーザ素子の如き光源と、この光源より発せられる光束を導く複数の光学部品とを有して構成されている。この光源より発せられた光束は、対物レンズにより、上記光ディスクの信号記録層上に集光される。

【0004】そして、上記信号記録層上に集光された光 50 記基板部に対して移動しないように、すなわち、この基

東は、この信号記録層により反射され、上記対物レンズ に戻る。上記対物レンズに戻った光東は、ビームスプリッタにより、上記光源に戻る光路より分割され、フォト ダイオードの如き光検出器により受光される。この光検 出器より出力される光検出出力は、上記光ディスクに記

録された情報信号の読み取り信号となる。 【0005】このような光学ピックアップ装置を有して 構成される光ディスク再生装置においては、上記光ディ

スクが中心部分を保持されて回転操作されるとともに、

の 核光学ピックアップ装置が上記対物レンズを該光ディスクの主面部に対向させた状態に支持される。この光学ピックアップ装置は、上記光ディスクの内外周に亘って移動操作されることにより、この光ディスクの信号記録層の全面に亘って、情報信号の読み取りを行うことができる。

【0006】このような光学ピックアップ装置として、 1枚の基板部上に上記半導体レーザ素子、上記光検出 器、上記ピームスプリッタ及び対物レンズ駆動機構(ア クチュエータ)を配散し、これら素子及び光学部品を該 基板部に取付けられるカバー部材(シェルカバー)によって覆って構成したものが提案されている。

【0007】この光学ピックアップ装置においては、上記半導体レーザ素子より発せられた光束は、上記ピームスプリッタを介して、上記対物レンズ駆動機構により支持された対物レンズに入射されて、上記光ディスクの信号記録層上に集光される。そして、この光末は、上記信号記録層により反射され、上記対物レンズ及び上記ピームスプリッタを介して、上記光検出器により受光される。

30 【0008】上記対物レンズ駆動機構は、上記対物レンズを支持するとともに、この対物レンズを、この対物レンズの光軸方向及びこの光軸方向に直交する方向に移動操作する機構である。この対物レンズ駆動機構は、上記光ディスクに記録された情報信号の読み取り信号に応じて上記対物レンズを移動操作することによって、この対物レンズを該光ディスクの回転に伴う偏心やいわゆる面振れに追従させて移動させ、この対物レンズにより形成される上記光束の集光点が、常に、該光ディスクの信号記録層の表面部の記録トラック上に形成されるようにする。

【0009】このような光学ピックアップ装置においては、上記半導体レーザ素子を、上記基板部上の所定の位置に正確に位置決めして取付ける必要がある。

【0010】そして、このような光学ピックアップ装置においては、上記カバー部材に、上記光ディスク再生装置において支持される被支持部が設けられている。したがって、上記カバー部材は、上記基板部に対して、正確に位置決めされて取付けられる必要がある。また、このカバー部材は、外方側より伝播する振動や衝撃により上記基板部に対して移動しないように、すなわち、この基

板部に対していわゆるガタのない状態に取付けられる必 要がある。

{0011}

【発明が解決しようとする課題】ところで、上述のよう な光学ピックアップ装置においては、上記対物レンズ駆 動機構は、上記基板部上において、上記半導体レーザ素 子の位置を基準として正確に位置決めして取付ける必要 がある。

【0012】上記対物レンズ駆動機構は、図24に示す ように、上記基板部112上を移動調整可能に配設され 10 た調整プレート154と、この調整プレート154に対 して支持プロック106e及び複数の板パネ124を介 して支持された略々環状のコイルボビン126とを有し て構成されている。このコイルボビン126には、駆動 コイル(フォーカスコイル及びトラッキングコイル)が 巻回されている。また、このコイルボビン126には、 対物レンズ120が取付けられている。

【0013】そして、この対物レンズ駆動機構は、互い に基端側同士を連設されて略々馬蹄形をなす一対のヨー ク127a, 127bを有している。これらヨーク12 20 7a, 127bの一方には、マグネット128が取付け られている。これらヨーク127a, 127bは、先端 側を上記コイルボビン126内に進入させている。これ らヨーク127a, 127bの先端側と上記コイルボビ ン126の内面部との間には、所定の空隙部が形成され ている。

【0014】この光学ピックアップ装置においては、ま ず、上記半導体レーザ素子を、上記基板部上に位置決め して取付ける。

【0015】次に、上記基板部上に上記対物レンズを支 30 持している対物レンズ駆動機構を載置し、この光学ピッ クアップ装置を上記光ディスクより情報信号を読み取る 状態として、上記光検出器より出力される光検出出力に 基づき、RF出力値、ジッタ値、EFバランス等を検出 する。そして、RF出力値、ジッタ値、EFバランス等 が最良の状態となるように、すなわち、上記対物レンズ 120が上記半導体レーザ素子に対して最良の位置とな るように、上記対物レンズ駆動機構の上記基板部に対す る位置を調整して、この基板部に対して固定する。

【0016】ここで、図24に示すように、上記各ヨー ク127a, 127bが上記基板部112上に固定して 取付けられている場合においては、図24中矢印A及び 矢印Bで示す該基板部112上の2次元方向、または、 矢印C及び矢印Dで示す該基板部112上での傾き方向 に上記コイルボビン126の位置を調整することによ り、該各ヨーク127a, 127bと該コイルボピン1 26の内壁部との間の間隔が狭くなってしまう。上記各 ヨーク127a, 127bと上記コイルポピン126の 内壁部との間の間隔が狭くなると、このコイルボビン1 26の上記基板部112に対する移動可能範囲が狭めら 50 して配設されていることとしたものである。

れてしまい、光学ピックアップ装置の正常な動作が阻害 される成れがある。

【0017】また、図25に示すように、上記調整プレ ート154と上記各ヨーク127a、127bとを一体 化し、この調整プレート154の位置調整に同期して、 該各ヨーク127a, 127bも上記基板部112上を 移動させることが考えられる。

【0018】ところが、上記コイルボビン126は、上 記板パネ124の捻れ等により、上記鯛整プレート15 4に対して傾いて支持されている場合がある。このよう に、上記コイルボビン126が上記調整プレート154 に対して傾いていると、この調整プレート154に対し て一体的に形成された上記各ヨーク127a, 127b と該コイルポピン126の内壁部との間の間隔は、狭く なる.

【0019】また、上記コイルボビン126が上記墓板 部112に対して傾いていると、図26に示すように、 このコイルボビン126の、下方側、すなわち、上記基 板部112側への移動可能ストロークが減少してしま う。上記コイルボピン126の下方側への移動可能スト ロークは、このコイルポピン126の上記基板部112 への当接により規制されているからである。

【0020】そこで、本発明は、上述の実情に鑑みて提 案されるものであって、対物レンズ駆動機構により支持 される対物レンズを光源に対して所定の位置に調整した ときに、この対物レンズ駆動装置を構成するコイルボビ ンとヨークとの位置関係が良好な状態に維持され、ま た、該コイルボビンの移動可能範囲(ストローク)が充 分に確保されるようになされた光学ピックアップ装置の 提供という課題を解決しようとするものである。

【0021】また、本発明は、上述のような光学ピック アップ装置を製造することができる光学ピックアップ装 置の調整方法の提供という課題を解決しようとするもの である。

[0022]

【課題を解決するための手段】上述の課題を解決するた め、本発明に係る光学ピックアップ装置は、基板部と、 発光索子及びこの発光索子より発せられた光束を光学記 録媒体上に集光させる対物レンズを有して構成された光 学部と、該対物レンズを移動操作可能に支持するレンズ ボビンとこのレンズボビンを移動操作する磁気回路部と を有して構成され該基板部上に配設された対物レンズ駆 動機構とを備え、上記磁気回路部を構成するヨークは、 上記基板部上に配設され、この基板部の上面部に沿う2 次元方向に移動可能となされ、この基板部上における位 置調整を行うための被結合部を有していることとしたも のである。

【0023】また、本発明は、上記光学ピックアップ装 置において、上記発光素子は、上記基板部に対して固定

【0024】さらに、本発明は、上記光学ピックアップ 装置において、上記ヨークは、上記基板部の上面部上に おける位置を、上記発光素子を基準として位置調整され たレンズボビンの位置を基準として定められていること としたものである。

【0025】そして、本発明は、上記光学ピックアップ 装置において、上記ヨークは、上記レンズボビンを支持 する調整プレートに対して被連結部において連結されて いることとしたものである。

【0026】そして、本発明に係る光学ピックアップ装 10 置の調整方法は、基板部に対して発光素子を固定して配 設し、この発光素子より発せられた光束を光学記録媒体 上に集光させる対物レンズが取付けられたレンズボビン を移動操作可能に支持する調整プレートを該基板部上に 配設しこの調整プレートの該基板部に対する位置を調整 することにより該レンズボビンの位置を該発光素子に対 する所定位置とし、該レンズボビンを移動操作する磁気 回路部を構成するヨークを該レンズボビンの位置を基準 として位置決めして該基板部上に配設するものである。 [0027]

【発明の実施の形態】以下、本発明の実施の形態を図面 を参照しながら説明する。

【0028】本発明に係る光学ピックアップ装置は、図 1に示すように、光学記録媒体である光ディスク101 の信号記録層102の表面部上に光束を集光させて照射 し、この光束に反射光束に基づいて、絃光ディスク10 1に記録された情報信号の読み取りを行う装置である。 【0029】この光学ピックアップ装置を有して構成さ れる光ディスク再生装置においては、上記光ディスク1 01が中心部分を保持されて回転操作されるとともに、 該光学ピックアップ装置が上記光束を集光させる対物レ ンズ20を該光ディスク101の主面部に対向させた状 態に支持される。そして、この光学ピックアップ装置 は、上記光ディスク101の内外周に亘って移動操作さ れることにより、この光ディスク101の信号記録層の 全面に且って、情報信号の読み取りを行うことができ

【0030】この光学ピックアップ装置は、1枚の基板 部2、36上に、半導体レーザ素子、光検出器、ビーム スプリッタ及び上記対物レンズ20を支持する対物レン 40 ズ駆動機構6を配散し、これら素子及び光学部品を該基 板部2.36に取付けられるカバー部材であるシェルカ バー30によって覆って構成したものである。

【0031】上記基板部2,36は、第1の基板部であ るベース基板2と、このベース基板2の上面部に取付け られた第2の基板部となるプリント基板36とにより構 成されている。

【0032】上記ベース基板2は、鉄板により形成され ている。また、上記プリント基板36は、種々の絶縁材 料よりなる基材部と、この基材部の主面部上に所定の形 50 り発せられたレーザ光束は、上記ピームスプリッタ面1

状を有して形成された銅箔からなるプリント配線パター ンと、この配線パターンを覆うレジスト膜とを有して構 成されている。

【0033】上記プリント基板36は、図2乃至図5に 示すように、上記ベース基板2の上面部の一部を上方側 に露出させた状態でこのベース基板2の上面部に該ベー ス基板2に沿って取付けられている。このベース基板2 の上方側への露出部は、基準面44となる。

【0034】また、上記プリント基板36は、上記ペー ス基板2の上面部の縁部より外方側に食み出した鍔部分 50を有している。この鋳部分50は、図2及び図3に 示すように、上記ペース基板2に設けられた欠損部3 8,39上を上記プリント基板36が覆うことにより形 成されている。

【0035】なお、上記基準面44と上記鍔部分50と は、図5に示すように、隣接させて設けてもよい(な お、図5中において括弧を付した数字は、寸法の例を示 したものであり、単位はmmである)。

【0036】上記プリント基板36上には、光学部が配 20 設されている。この光学部は、上記プリント基板36上 に固定して配設された発光素子となる半導体レーザ素子 10と、受光素子となる第1及び第2の光検出器(フォ トダイオード) 14a、14bと、該半導体レーザ素子 10より発せられたレーザ光束を上記光ディスク101 の信号記録層102の表面部上に集光させる光学部品と なる対物レンズ20とを有して構成されている。

【0037】上記半導体レーザチップ10及び上記各光 検出器14a, 14bは、図9に示すように、同一の半 導体基材部13上に配設されることにより、レーザカブ ラ (L/C) 3を構成している。すなわち、上記半導体 基材部13上には、ヒートシンク11を介して、上記半 導体レーザ素子10が配設されている。また、上記第1 及び第2の光検出器14a, 14bは、それぞれ複数の 受光面に分割された状態で、上記半導体基材部13上に 形成されている。

【0038】そして、このレーザカプラ3においては、 上記各光検出器14a,14b上に位置して、ビームス プリッタプリズム12が配設されている。このビームス プリッタプリズム12は、上記半導体基材部13の上面 部に対して所定の傾斜角を有する斜面部であるビームス プリッタ面12Rを、上記半導体レーザ素子10側に向

【0039】上記レーザカプラ3は、上記プリント基板 36上に、上記半導体基材部13の上面部を該プリント 基板36の上面部に対して平行として、接着によって固 定される。

【0040】このレーザカプラ3において、上記半導体 レーザ素子10は、上記ピームスプリッタ面12Rに向 けてレーザ光束を発する。この半導体レーザ素子10よ

2Rにより反射され、上記半導体基材部13に対する垂 直上方に射出される。

【0041】上記レーザカプラ3より射出されたレーザ 光束は、このレーザカプラ3の上方側を覆うようして上 紀プリント基板36上に配設された反射ミラー4により 反射されて、このプリント基板36の上面部に平行な方 向に偏向される。そして、このレーザ光束は、上記プリ ント基板36上に上記対物レンズ20の下方に位置して 配設された反射プリズム5により反射され、核プリント 基板36の上面部に対する垂直上方側に偏向される。上 10 記対物レンズ20は、後述する対物レンズ駆動機構6に より、上記プリント基板36の上方側にこのプリント基 板36より離間して支持されている。

【0042】上記反射プリズム5を介して上記対物レン ズ20に入射したレーザ光束は、この対物レンズ20に より、上記光ディスク101の信号記録層102の表面 部上に集光される。

【0043】そして、上記信号記録層102の表面部上 に集光されたレーザ光束は、この信号記録層102によ り反射され、上記対物レンズ20に戻る。上記対物レン 20 ズ20に戻った反射光束は、上記反射プリズム5及び上 記反射ミラー4を介して、上記ピームスプリッタ面12 Rに戻る。

【0044】上記ビームスプリッタ面12Rに戻った反 射光束は、このピームスプリッタ面12Rを透過して上 記ピームスプリッタプリズム12内に入射することによ り、上記半導体レーザ素子10に戻る光路より分割さ れ、上記第1の光検出器14 aにより受光される。ま た、この反射光束は、上記第1の光検出器14 a の表面 部及び上記ビームスプリッタプリズム12の内面部によ 30 り反射されて、上記第2の光検出器14bにも受光され

【0045】上記各光検出器14a,14bより出力さ れる光検出出力に基づいて、上記光ディスク101に記 録された情報信号の読み取り信号(RF信号)、上記対 物レンズ20による上記光束の集光点と上記信号記録層 102の表面部との光軸方向のずれ (フォーカスエラ 一)を示すフォーカスエラー信号(FE信号)、及び、 該集光点と該信号記録層102の表面部に形成された記 録トラックとの光軸及び該記録トラックに直交する方向 のずれ (トラッキングエラー) を示すトラッキングエラ 一信号 (TE信号) が算出される。

【0046】すなわち、上記読み取り信号(RF信号) は、上記各光検出器14a, 14bの各光検出出力の和 として得られる。また、上記フォーカスエラー信号(F E信号) は、上記各光検出器14 a. 14 bの各光検出 出力の差として得られる。

【0047】さらに、上記トラッキングエラー信号(T E信号) は、上記第1の光検出器14aの一側側の受光

a の他側側の受光面からの光検出出力(D)の和と、該 第1の光検出器14 の他側側の受光面からの光検出出 カ(B)及び該第2の光検出器14aの一側側の受光面 からの光検出出力(C)の和との差((A+D)-(B +C)) として得られる。

【0048】なお、上記各光検出器14a、14bにお いて、一側側の受光面と他側側の受光面との分割線は、 図10に示すように、上記光ディスク101における記 録トラックの接線方向Tに対して、45°の角度をなす ようになされている。上記記録トラックは、上記信号記 録層102の表面部上において、上記光ディスク101 の中心部を中心とする略々同心円状をなす螺旋状に形成 されている。

【0049】そして、上記プリント基板36上には、上 記対物レンズ駆動機構6が配設されている。この対物レ ンズ駆動機構6は、図21に示すように、上記対物レン ズ20を移動操作可能に支持するレンズポピン21とこ のレンズボビン21を移動操作する磁気回路部とを有し て構成されている。

【0050】この対物レンズ駆動機構6は、上記対物レ ンズ20を支持するとともに、この対物レンズ20を、 この対物レンズ20の光軸方向及びこの光軸方向に直交 する方向に移動操作する機構である。

【0051】この対物レンズ駆動機構6は、上記フォー カスエラー信号及びトラッキングエラー信号に応じて上 記対物レンズ20を移動操作することによって、この対 物レンズ20を該光ディスク101の回転に伴う偏心や いわゆる面扱れに追従させて移動させ、この対物レンズ 101により形成される上記光束の集光点が、常に、上 記記録トラック上に形成されるようにする。

【0052】この対物レンズ駆動機構6は、上記プリン ト基板36上において移動調整後にこのプリント基板3 6に対して固定される調整プレート54を有して構成さ れている。この調査プレート54上には、支持ブロック 6 e が固定して配設されている。この支持プロック 6 e は、4本の板パネ22, 23, 24, 25を介して、上 記レンズポピン21を支持している。このレンズボビン 21には、上記対物レンズ20が取付けられている。こ のレンズボビン21は、上記各板パネ22, 23, 2 4,25の弾性変位により、上下及び左右方向の2軸方 向に移動可能となされている。

【0053】また、上記レンズボビン21には、上記磁 気回路部を構成するコイルボビン26が取付けられてい る。このコイルボビン26には、フォーカスコイル26 a が外周面部に巻回されるとともに、略々円環状に巻回 された一対のトラッキングコイル26bが取付けられて

【0054】そして、上記プリント基板36上には、上 記調整プレート54に連動して移動調整される可動ヨー 面からの光検出出力(A)及び上記第2の光検出器14 50 ク60が配設されている。この可動ヨーク60は、図2 9

1万至図23に示すように、被結合部となる一対の係合 突起(ダボ)63,64を有しており、これら係合突起 63,64を上記調整プレート54の前端側のアーム部 56,58に設けられた穴59及び長穴57に嵌入係合 させることにより、該調整プレート54の移動調整に連 動して移動調整される。この可動ヨーク60は、上記プ リント基板60の上面部に沿う2次元方向に移動調整される。

【0055】この可動ヨーク60は、上方側に突設され た一対のヨーク27a,27bを有している。これらヨ 10 ント基板36の鍔部分50の下面部に当接される。 ーク27a,27bの一方には、マグネット28が取付 けられている。これらマグネット28及び各ヨーク27 a,27bは、上記可動ヨーク60を介して、磁気回路 を形成している。この磁気回路においては、上記マグネット28と他方のヨーク27aとの間が、磁気ギャップ おとなっている。 42の上面部は、図2及び図3に示すように、上記 「0063】上記プリント基板36の下面部は上記 ス基板2の上面部に沿っているため、これらプリン 板36の下面部及びペース基板2の上面部は、同上に位置している。そして、上記各当接行43、42の上面部は互び

【0056】上記コイルポピン26は、上記レンズポピン21に取付けられることにより、上記フォーカスコイル26aの一部及び上記各トラッキングコイル26bの一部を上記磁気回路の磁気ギャップ内に位置させている。

【0057】すなわち、上記フォーカスコイル26aに上記フォーカスエラー信号に応じた駆動電流が供給されることにより、このフォーカスコイル26aは、上記磁気ギャップ部内の磁束により電磁力を受け、上記レンズボビン21を上記対物レンズ20の光軸方向(上下方向)に移動させる。また、上記トラッキングコイル26bに上記トラッキングエラー信号に応じた駆動電流が供給されることにより、このトラッキングコイル26bは、上記磁気ギャップ部内の磁束により電磁力を受け、上記レンズボビン21を上記対物レンズ20の光軸に直交する方向(左右方向)に移動させる。

【0058】そして、この光学ピックアップ装置においては、上記基板部2,36に対して、上記シェルカバー30が取付けられている。

【0059】このシェルカバー30は、図6乃至図8に示すように、上記基板部2,36上に取付けられることにより上記光学部を覆うことができる形状を有して、PPS樹脂や亜鉛ダイカストの如き寸法精度及び剛性の高い材料により、例えば射出成形の如き手段により形成さ40れている。

【0060】このシェルカバー30は、上記基板部2,36に対向する下面部分に、下方側に向けて突設された第1の当接部である複数の当接杆43,43を有している。また、このシェルカバー30は、側方側部分に、第2の当接部である一対の当接爪42,42を有している。これら当接爪42,42は、上記シェルカバー30の下面部より下方側に向けて突設された支持杆41,41の下端側に、側方に向けて突設されている。

【0061】上記各当接杆43,43の下端部と上記各 50 カパー部材130は、上記引っ掛け爪141の弾性変形

10 当接爪42,42の上面部とは、図8に示すように、互 いに同一平面P上に位置する関係となっている。

【0062】そして、このシェルカバー30が上記基板部2,36に取付けられるとき、上記当接杆43,43の下端部は、図2及び図3に示すように、上記ベース基板2の上面部の上方側への賃出部分である上記基準面44に当接される。また、このシェルカバー30が上記基板部2,36に取付けられるとき、上記各当接爪42,42の上面部は、図2及び図3に示すように、上記プリント基板36の優部分50の下面部に当接される。

【0063】上記プリント基板36の下面部は上記ベース基板2の上面部に沿っているため、これらプリント基板36の下面部及びベース基板2の上面部は、同一平面上に位置している。そして、上記各当接仟43,43の下端部及び上記各当接爪42,42の上面部は互いに同一平面上に位置しているので、該各当接仟43,43の下端部が上記基準面44に当接され該各当接爪42,42の上面部が上記時部分50の下面部に当接されることにより、上記シェルカバー30は、上記基板部2,36に対して、上下方向(すなわち、この基板部2,36に対する接離方向)について、正確に位置決めされる。

【0064】そして、上記シェルカパー30は、図2に示すように、上記基板部2,36に形成されたネジ挿通孔40に下方側より挿通されたネジ37を、下方側に向けて形成されたネジ穴に螺入されることにより、該基板部2,36に対して取付けられる。

【0065】そして、上記シェルカパー30は、上面部に、上記対物レンズ20を上方側に臨ませるための透孔31を有している。

7 【0066】上記シェルカバー30は、成形型を用いた成形により形成する場合において、上記平面Pをパーティングライン(型割部)上に位置する平面であることとして形成することにより、上記各当接杆43,43の下端部及び上記各当接爪42,42の上面部を正確に同一平面上に位置させて形成することができる。

【0067】なお、平板状の部材である基板部にカバー部材を取付けるための構成として、図27に示すように、該カバー部材130の側縁部分に当接杆143及び引っ掛け爪141を一体的に設け、該基板部112の上面部の側縁部近傍に該当接杆143の下端部を当接させるとともに、該引っ掛け爪141を該基板部112の側縁部に引っ掛けるものが考えられる。上記引っ掛け爪141の下端側には、上記当接杆143に向けて爪部142を突設しておく。

【0068】このような構成により上記カバー部材13 0を上記基板部112に取付ける場合には、上記引っ掛け爪141は、該カバー部材130が該基板部112に取付けられるときに、該基板部112の外周繰よりも外側に弾性変形される。したがって、この場合には、上記カバー部材130は、上記カバー部材130は、上記 が可能となる程度の弾性を有する材料により形成されて いる必要がある。

【0069】このような弾性を有する材料、例えば、ABS樹脂の如き合成樹脂材料は、寸法精度が低く、また、熱変形を起こす温度が低いため、上記被支持部が設けられるカバー部材を形成する材料として不適切である。

【0070】上記カバー部材は、寸法精度が高いが弾性を有しないPPS樹脂や亜鉛ダイカストにより形成されているので、上述の如き引っ掛け爪を設ける構成により 10上記基板部に取付けることはできない。

【0071】また、上記基板部112にカバー部材13 0を取付けるための構成としては、図28に示すよう に、該カバー部材130の側縁部分に上下一対の支持片 144,145を設け、該基板部112の側縁部近傍を 該各支持片144,145間に挟むようにしたものが考 えられる。

【0072】このような構成においては、上記基板部1 12の厚さの精度と上記各支持片144,145の位置 及び厚さの精度とに依り、これら基板部112と各支持 20 片144,145との間は、圧入になるか、または、遊 嵌(ガタ)になるかのいずれかであり、上記シェルカバ ー30を上記基板部2,36に取付ける構成として不適 当である。

【0073】そして、上記シェルカバー30は、一側側部分に被支持部である保合構32を有している。この係合構32は、上記シェルカバー30の一側部より側方側に向けて一対の結合片33、34が突設されることにより、これら結合片33、34の間の部分として形成されている。また、このシェルカバー30の他側側部分には、被支持部であるスラストスリーブ部35が形成されている。このスラストスリーブ部35は、直線円柱状の透孔として形成されている。

【0074】上記光ディスク再生装置においては、図1に示すように、上記スラストスリーブ部35に該光ディスク再生装置の支持シャフト104が挿通され、上記係合溝32に該光ディスク再生装置の支持片部103が嵌入係合することにより、この光学ピックアップ装置は、所定の位置に支持される。

【0075】そして、上記プリント基板36は、図4、図18及び図19に示すように、上記ベース基板2の側縁部よりも外方側に突出したショートランド部46を有している。このショートランド部46上には、上記半導体レーザ素子10の電源供給端子(+端子)が接続されたプリント配線パターンに連続する一方のショートランド47と、この一方のショートランド47に近接して、該半導体レーザ素子10の接地端子(グランド(GND)端子)が接続されたブリント配線パターンに連続する他方のショートランド48とが形成されている。

【0076】これら各ショートランド47,48は、こ 50 ィスク再生装置においては、上記屈曲変位部52よりも

12

の光学ピックアップ装置の単体での輸送、搬送中において、半田付け等により、互いに短絡(ショート)される。すなわち、この状態では、上記半導体レーザ素子10の電源供給端子と接地端子とが短絡された状態となっており、この半導体レーザ素子10の静電破壊が防止される。

【0077】そして、この光学ピックアップ装置を使用するとき、すなわち、この光学ピックアップ装置を上記光ディスク再生装置に組み込むときには、図20に示すように、上記ショートランド部46を上記ベース基板2の側縁部に沿って折り取ることにより、上記半導体レーザ素子10の電源供給端子と接地端子との短絡を解除することができる。

【0078】上記プリント基板36は、上記ショートランド部46の折り取りのし易さを考えると、ガラスーエポキシプリント基板が適しており、厚さは0.2mm程度が適当である。

【0079】なお、上記プリント基板36上には、図10及び図17に示すように、上記各信号(RF信号、FE信号、TE信号)の取り出し、上記半導体レーザ素子10への電源供給、及び、上記対物レンズ駆動機構への駆動電流の供給のためのコネクタ53が設けられている。

【0080】そして、この光学ピックアップ装置においては、上記基板部2,36は、図10及び図11に示すように、上記半導体レーザ素子10が配設された位置(すなわち、上記レーザカプラ3が取付けられた位置)と上記対物レンズ駆動機構6が配設された位置との間に位置する屈曲変位部(ベース基板曲げ位置)52においる。

【0081】この光学ピックアップ装置においては、このような上記基板部2,36の屈曲変位によって、上記レーザカプラ3の上記対物レンズ駆動機構6に対する傾きの調整が可能となされている。

【0082】すなわち、図10に示すように、上記屈曲 変位部52と上記レーザカプラ3が取付けられた側の側 縁部までの距離しが10mm乃至11mmであるとすると、図12に示すように、この側縁部を上方側、または、下方側に0.1mm移動するだけ該屈曲変位部52を屈曲させると、

 $\sin^{-1}(0.1/11) = 0.52^{\circ}$

より、該レーザカプラ3を±0.52°に直って傾き調整することができることがわかる。このとき、上記基板部2,36を屈曲させる方向は、EFパランス(上記フォーカスエラー信号の中立点と上記読み取り信号におけるジッタの最良状態とのずれの方向)の極性(+側、-側)に応じて定めておくことができる。

【0083】そして、上記基板部2,36は、上記光ディスク再生装置においては、上記屈曲変位部52よりも

13

上記対物レンズ駆動装置6が配設された側の部分を基準 として、位置決め保持される。すなわち、この基板部 2,36は、上記屈曲変位部52よりも上記対物レンズ 駆動装置6が配設された側の部分において、上記シェル カバー30に対して位置決めされる。したがって、上記 基板部2,36を屈曲させることによる調整は、上記光 ディスク再生装置の基準面に対して上記レーザカプラ3 が傾けられる状態で行われる。

【0084】なお、上記ベース基板2は、鉄板により形 成されることが好ましい。アルミニウム (AL) では屈 10 曲させることにより折れる虞れがあり、亜鉛(Zn)で は屈曲させることによりクリープを生ずる虞れがあり、 また、ステンレス(Sus)では屈曲させてもスプリン グバックにより戻ってしまい高精度の調整ができないた

【0085】なお、この光学ピックアップ装置における 部品精度及びマウント精度の例を、図13万至図16に より、以下に挙げる。

【0086】この光学ピックアップ装置においては、上 シェルカバー30の位置を基準として、±0.3mm以 内を目標としている。また、この光学ピックアップ装置 においては、上記主光線の倒れは、上記シェルカバー3 Oの位置を基準として、±0.5°以内を目標としてい

【0087】そして、上記基板部2、36と上記シェル カバー30との位置ずれは、X軸方向(該基板部2,3 6の上面部及び上記記録トラックに沿う方向)及びY方 向(該基板部2,36の上面部に沿い上記記録トラック に直交する方向) について、それぞれ±0.05mm以 30 は、X方向について、 内である。また、このシェルカバー30の上記基板部 2,36に対する高さ方向のずれは、±0.05mm以 内である。したがって、上記基板部2,36と上記シェ ルカバー30との傾きの誤差は、図13に示すように、 X方向について、

 $\sin^{-1}(0.05/22) = 0.13^{\circ}$ Y方向について、

 $sin^{-1}(0.05/15) = 0.19^{\circ}$

となる。ただし、X方向についての上記基準面44同士*

 $\int ((0.32)^{2} + (0.2)^{2} + (0.1)^{2} + (0.1)^{2} + (0.13)^{2}$ $) = 0.42^{\circ}$

また、上記主光線のY方向についての倒れを計算する

 $\int ((0.17)^2 + (0.2)^2 + (0.1)^2 + (0.1)^2 + (0.19)^2$ $) = 0.35^{\circ}$

そして、上記主光線のX方向についての位置ずれを計算 すると、

> $\sqrt{(0.05)^2+(0.05)^2+(0.1)^2+(0.05)^2+(0.05)^2}$ $)^{2}+(23\times\sin 0.42^{\circ})^{2})=0.21 \text{mm}$

次に、上記主光線のY方向についての位置ずれを計算す ると、

 $\sqrt{(0.05)^2+(0.05)^2+(0.05)^2+(0.05)^2+(2.3\times)^2}$ $\sin 0.35^{\circ})^{2} = 0.17 \text{mm}$

*の関隔が22mmで、Y方向についての上記基準面44 同士の間隔が15mmである場合においてである。

【0088】そして、上記基板部2,36上における上 記対物レンズ駆動機構 6 の位置の基準となる基準穴の位 量ずれの精度は、X方向、Y方向ともに、±0.05m m以内である。また、上記基板部2.36の上面部の平 面度は、図14に示すように、±0.02mm以内であ る。上記対物レンズ20の光軸と上記半導体レーザ索子 10(上記レーザカプラ3)との距離Lを10mmとす ると、この半導体レーザ素子10が取付けられる部分の

 $\sin^{-1}(0.02/10) = 0.10^{\circ}$ Y方向について、

傾きは、X方向について、

 $\sin^{-1}(0.02/10) = 0.10^{\circ}$ となる。

【0089】次に、上記反射ミラー4及び上記反射プリ ズム5の位置精度を考えると、上記基板部2、36に対 する位置ずれが、X方向、Y方向ともに、±0、05m m以内であり、これらの間のスパンの誤差は、±0.1 記対物レンズ20より射出される主光線の位置は、上記 20 mm以内である。上記反射ミラー4の基板部2,36へ の取付け精度は、図15に示すように、±0.2°以内 であり、この反射ミラー4及び上記反射プリズム5間の 平行度は、±0.1°以内である。

> 【0090】そして、上記レーザカプラ3の上記基板部 2, 36に対する位置ずれは、X方向、Y方向ともに、 ・±0.05mm以内である。また、上記レーザカプラ3 の上記基板部2,36に対する浮きは、図16に示すよ うに、±0.01mm以内である。したがって、ディス クレーザカプラ3の上記基板部2,36に対する傾き

 $\sin^{-1}(0.01/1.8) = 0.32^{\circ}$ Y方向について、

 $\sin^{-1}(0.01/3.4) = 0.17^{\circ}$ となる。ただし、X方向についての上記レーザカプラ3・ の長さが1.8mmで、Y方向についての該レーザカブ ラ3の長さが3.4mmである場合においてである。 【0091】ここで、上記主光線のX方向についての倒 れを計算すると、

-8-

となる。この結果により、上記主光線のX方向について の倒れ(0.42°)が、上記目標値の±0.5°に接 近しており、この項目についての不良率の増大が予想さ れる.

【0092】この光学ピックアップ装置においては、上 記基板部2,36の屈曲変位による調整によって、上記 主光線のX方向についての倒れを修正することができ、 不良率の減少を実現できる。

【0093】次に、この光学ピックアップ装置の組立及 び調整の手順について説明する。

【0094】この光学ピックアップ装置を組み立てるに・ は、まず、上記基板部2,36上の所定の位置に、上記 レーザカプラ3を接着により固定して配設する。

【0095】次に、上記対物レンズ20が取付けられた レンズポピン21を上記各板パネ22, 23, 24, 2 5を介して移動操作可能に支持している調整プレート5 4を、上記基板部2,36上に配設する。

【0096】そして、上記網整プレート54の上記基板 部2,36に対する位置を調整することにより、上記レ ンズボビン21の位置を上記半導体レーザ素子10に対 20 する所定位置とする。

【0097】上記レンズポピン21の位置を上記半導体 レーザ素子10に対する所定位置とする調整は、上記光 ディスク101に記録されている情報信号を読み取り、 上記読み取り信号(RF信号)のレベル及びジッタ、E Fパランス(上記フォーカスエラー信号の中立点と上記 読み取り信号におけるジッタの最良状態とのずれの量) とが最良となる位置を探すことにより行う。

【0098】この調整プレート54の位置調整は、上記 基板部2,36上において3次元方向に移動及び回転 (傾き)させることにより行われる。

【0099】上記調整プレート64は、上記レンズボビ ン21の位置が上記半導体レーザ素子10に対する所定 位置となった状態で、図23に示すように、後端側部分 55を上記プリント基板36に対して半田66により半 田付けされることにより、上記基板部2.36に対して 固定される。

【0100】このような上記調整プレート54の調整に より、上記対物レンズ駆動機構6は、上記対物レンズ2 0を上記半導体レーザ素子10の位置を基準とした最良 40 の位置にて支持する状態に調整される。

【0101】そして、上記ヨーク27a, 27bを上記 レンズボビン21の位置、すなわち、上記コイルボビン 26の位置を基準として位置決めし、上記基板部2、3 6上に配設する。

【0102】上記各ヨーク27a, 27bは、上述した ように、上記可動ヨーク60を介して連結されて上記基 板部2,36上に配設され、この基板部2,36の上面 部に沿う2次元方向に移動可能となされている。また、

16

位置調整を行うための被結合部となる係合突起(ダボ) 63, 64を有しており、これら係合突起63, 64を 介して、上記測整プレート54に対して連結されてい

【0103】すなわち、上記各ヨーク27a, 27b は、上記閲整プレート54の上記基板部2,36上にお ける移動の該基板部2、36の上面部に沿う2次元方向 の成分に追従して、この基板部2.36上を移動され る。したがって、これらヨーク27a,27bの上記コ 10 イルボビン26の位置を基準とする位置決めは、上記調 整プレート54の移動調整と同時に行われる。

【0104】そして、上記各ヨーク27a, 27bは、 上記基板部2,36の上面部上における位置を、上記半 導体レーザ素子10を基準として位置調整されたレンズ ボビン21の位置を基準として定められた状態で、該基 板部2,36に対して固定される。これらヨーク27 a, 27bの上記基板部2, 36に対する固定は、上記 可動ヨーク60に設けられたネジ挿通孔61,62に挿 通させたネジ65,65を該基板部2,36のネジ穴に 螺入させることにより行う。

【0105】このような上記調整プレート54及び上記 可動ヨーク60の調整により、上記対物レンズ駆動機構 6は、上記各ヨーク27a, 27bが上記基板部2, 3 6に対して垂直に配設された状態で、かつ、これらョー ク27a、27bと上記コイルボビン26との間の間隔 を充分に確保した状態に調整される。

[0106]

【発明の効果】上述のように、本発明に係る光学ピック アップ装置は、まず、基板部に対して発光素子が固定さ 30 れて配設され、次に、該発光素子より発せられた光束を 光学記録媒体上に集光させる対物レンズが取付けられた レンズボビンを移動操作可能に支持する調整プレートが 上記基板部上に配設され、この調整プレートの該基板部 に対する位置が調整されることにより該レンズボビンの 位置が該発光素子に対する所定位置となされて構成され る。

【0107】また、この光学ピックアップ装置は、上記 レンズポピンを移動操作する磁気回路部を構成するヨー クが、上記レンズボビンの位置を基準として位置決めさ れて上記基板部上に配設されて構成される。

【0108】すなわち、本発明は、対物レンズ駆動機構 により支持される対物レンズを光源に対して所定の位置 に調整したときに、この対物レンズ駆動装置を構成する コイルポピンとヨークとの位置関係が良好な状態に維持 され、また、該コイルボビンの移動可能範囲(ストロー ク)が充分に確保されるようになされた光学ピックアッ ブ装置を提供することができるものである。

【0109】また、本発明は、上述のような光学ピック アップ装置を製造することができる光学ピックアップ装 上記可動ヨーク60は、この基板部2、36上における 50 置の調整方法を提供することができるものである。

17

【図面の簡単な説明】

【図1】本発明に係る光学ピックアップ装置の構成を示 す縦断面図である。

【図2】上記光学ピックアップ装置の抵略的な構成を示 す分解斜視図である。

【図3】上記光学ピックアップ装置におけるシェルカバ 一の基板部への取付け状態の要部を示す要部縦断面図で ある.

【図4】上記光学ピックアップ装置の基板部の構成を示 す平面図である。

【図5】上記光学ピックアップ装置におけるシェルカバ 一の基板部への取付け状態の要部を示す要部斜視図であ

【図6】上記光学ピックアップ装置のシェルカバーの構 成を示す斜視図である。

【図7】上記光学ピックアップ装置のシェルカバーの構 成を示す平面図である。

【図8】上記光学ピックアップ装置のシェルカバーの構 成を示す縦断面図である。

【図9】上記光学ピックアップ装置のレーザカプラの構 20 成を示す斜視図である。

【図10】上記光学ピックアップ装置における光学部品 の位置関係を示す平面図である。

【図11】上記光学ピックアップ装置における光学部品 の位置関係を示す縦断面図である。

【図12】上記光学ピックアップ装置におけるレーザカ プラの位置調整を示す側面図である。

【図13】上記光学ピックアップ装置における基板部に 対するシェルカパーの位置の平面内の誤差を示す平面図

【図14】上記光学ピックアップ装置における基板部に 対するレーザカプラの位置の平面内の誤差を示す平面図 である。

【図15】上記光学ピックアップ装置における光学部品 の位置精度を示す縦断面図である。

【図16】上記光学ピックアップ装置における基板部に 対するレーザカプラの位置の傾きによる誤差を示す平面 図である。

【図17】上記光学ピックアップ装置における光学部品 の配置を示す平面図である。

【図18】上記光学ピックアップ装置における基板部の

形状を示す平面図である。

【図19】上記光学ピックアップ装置における基板部の 形状を示す側面図である。

18

【図20】上記光学ピックアップ装置の基板部のショー トランド部を折曲させた状態を示す側面図である。

【図21】上記光学ピックアップ装置の対物レンズ駆動 機構の構成を示す分解斜視図である。

【図22】上記光学ピックアップ装置の対物レンズ駆動 機構においてコイルボビンの位置を調整する調整機構の 構成を示す分解斜視図である。

【図23】上記光学ピックアップ装置の対物レンズ駆動 機構においてコイルボビンの位置を調整する調整機構の 構成を示す縦断面図である。

【図24】従来の光学ピックアップ装置の対物レンズ駅 動機構においてコイルボビンの位置を調整する調整機構 の構成を破断して示す斜視図である。

【図25】従来の光学ピックアップ装置の対物レンズ駆 動機構においてコイルボビンの位置を調整する調整機構 の構成を示す縦断面図である。

【図26】従来の光学ピックアップ装置の対物レンズ駆 動機構においてコイルボビンの位置を調整する調整機構 の構成を示す正面図である。

【図27】従来の光学ピックアップ装置におけるシェル カバーの基板部への取付け状態の要部を示す要部擬断面 図である。

【図28】従来の光学ピックアップ装置におけるシェル カバーの基板部への取付け状態の要部の他の例を示す要 部縦断面図である。

【符号の説明】

2 ベース基板、3 レーザカプラ(L/C)、4 反 射ミラー、5 反射プリズム、6 対物レンズ駆動機 構、10 半導体レーザ素子、13 半導体基材部、1 4a 第1の光検出器、14b 第2の光検出器、20 対物レンズ、21 レンズボビン、26 コイルボビ ン、27a, 27b ヨーク、28 マグネット、30 シェルカバー、32 係合溝、35 スラストスリー ブ部、36プリント基板、42 当接爪、43 当接 杆、44 基準面、46 ショートランド部、47 一 方のショートランド、48 他方のショートランド、5 0 鍔部、52 ベース基板曲げ位置、54 調整プレー ト、60 可動ヨーク、63,64 係合突起

[図3]

[図11]

【図19】

[图15]

[図16]

X方向角度 ASIN (0, 01/1. 8) = 0,32° Y方向角度 ASIN (0,01/3.4) = 0,17°

[図18]

【図21】

[図22]

[図27]

[図23]

28マグネット

[図24]

[图25]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	D BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
4	BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	□ OTHER•

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.