Quentin Creese Jess CS 260

DUE: 03/19/24

Final Exam (Graphs)

Create a design before you start coding that describes or shows how a graph structure could be used to store some kinds of data and attempt to solve some kind of problem

Here is the graph I will be implementing into my code! It can be found at: https://upload.wikimedia.org/wikipedia/commons/5/57/Dijkstra_Animation.gif

(20%) Create some tests (at least mo for each piece of functionality) before you start coding...

- Want to test:
 - I can add vertices to the graph
 - I can display the added vertices and the "neighbors"
 - Show empty neighbors if edges haven't been created
 - I can add edges
 - I can display the added edges and the vertices "neighbors"
 - I can test the shortest path algorithm
 - I can test the minimum spanning tree algorithm

(40%) Implement a graph class with at least (this category effectively combines implementation and specification, partly to emphasize getting the algorithms working!):

- (5%) a function to add a new vertex to the graph (perhaps add vertex(vertex name))

```
void addNode(GraphNode node) {
nodes.push_back(node);
}
```

- (5%) a function to add a new edge between two vertices of the graph (perhaps add_edge(source, destination) or source.add_edge(destination)),

```
edges.push_back(edge);
   nodes[edge.source->name - 'A'].neighbors.push_back(edges.size() - 1);
   nodes[edge.destination->name - 'A'].neighbors.push_back(edges.size() - 1);
void addVertex(char vertexName) {
   GraphNode newNode{vertexName};
   addNode(newNode);
void addEdgeBetweenVertices(char sourceName, char destinationName, int weight) {
   GraphNode* sourceNode = nullptr;
   GraphNode* destinationNode = nullptr;
   // Find source and destination nodes
   for (auto& node : nodes) {
       if (node.name == sourceName)
           sourceNode = &node;
       else if (node.name == destinationName)
           destinationNode = &node;
   if (sourceNode && destinationNode) {
       Edge newEdge{weight, sourceNode, destinationNode};
       addEdge(newEdge);
        std::cerr << "Error: Source or destination node not found." << std::endl;</pre>
```

- (15%) a function for a shortest path algorithm (perhaps shortest_path(source, destination)),

```
//Function to find the shortest path
std::vector<GraphNode*> shortestPath(char sourceName, char destinationName) {
    std::unordered_map<char, int> distance;
    std::unordered_map<char, char> previous;
    std::priority_queue<std::pair<int, char>, std::vector<std::pair<int, char>>, std::greater<std::pair<int, char>>> pq;
    // Initialize distances
    for (auto& node : nodes) {
        distance[node.name] = (node.name == sourceName) ? 0 : INT_MAX;
   pq.push({0, sourceName});
    while (!pq.empty()) {
       char currentName = pq.top().second;
       pq.pop();
        if (currentName == destinationName) {
       for (size_t neighborIndex : nodes[currentName - 'A'].neighbors) {
           const Edge& edge = edges[neighborIndex];
           char neighborName = (edge.source->name == currentName) ? edge.destination->name : edge.source->name;
           int totalDistance = distance[currentName] + edge.weight;
           if (totalDistance < distance[neighborName]) {</pre>
               distance[neighborName] = totalDistance;
               previous[neighborName] = currentName;
               pq.push({totalDistance, neighborName});
    std::vector<GraphNode*> path;
    char currentName = destinationName;
    while (currentName != sourceName) {
       path.push_back(&nodes[currentName - 'A']);
        currentName = previous[currentName];
    path.push_back(&nodes[sourceName - 'A']); // Add source node
    std::reverse(path.begin(), path.end());
    return path;
```

- (15%) a function for a minimum spanning tree algorithm (example min span tree()).

```
std::vector<Edge> minSpanningTree() {
             std::vector<Edge> mst;
             std::unordered_set<char> visitedNodes; // Track visited nodes by their names
             std::priority_queue<std::pair<int, char>>, std::vector<std::pair<int, char>>, std::greater<std::pair<int, char>>> pq;
             visitedNodes.insert(nodes[0].name); // Assume nodes are added in the order of their names
             for (size_t neighborIndex : nodes[0].neighbors) {
                 pq.push({edges[neighborIndex].weight, edges[neighborIndex].destination->name});
             while (!pq.empty()) {
                 char nodeName = pq.top().second;
                 pq.pop();
                 if (visitedNodes.find(nodeName) != visitedNodes.end()) {
                 visitedNodes.insert(nodeName);
                  const Edge* edge = nullptr;
132
                  for (const auto& e : edges) {
                     if (e.source->name == nodeName || e.destination->name == nodeName) {
                         edge = &e;
                 if (edge) {
                     mst.push_back(*edge); // Add edge to the spanning tree
                     for (size_t neighborIndex : nodes[nodeName - 'A'].neighbors) {
                       const Edge& neighborEdge = edges[neighborIndex];
                         char neighborName = (neighborEdge.source->name == nodeName) ? neighborEdge.destination->name : neighborEdge.source->name
                         pq.push({neighborEdge.weight, neighborName});
              return mst;
```

(10%) Analyze the complexity of all of your graph behaviors (effectively a part of our documentation for grading purposes)

Adding a new vertex would be O(1) because adding a new vertex involves appending a new node to the nodes vector. Since adding an element to the end of a vector has constant time complexity, the overall complexity of adding a new vertex is O(1).

Adding edges between vertices would also be O(1) because adding a new edge involves creating a new Edge object and updating the neighbor lists of the source and destination nodes. Since updating a vector has constant time complexity, the overall complexity of adding a new edge is O(1).

Finding the shortest path between two vertices has a complexity of O((V+E) * (log(V))) because the implementation uses Dijkstra's algorithm with a priority queue. In the worst case, all edges and vertices may need to be explored, resulting in O(V+E) iterations of the algorithm. Each iteration involves updating the priority queue, which has a cost of O(log(V)). Therefore, the overall complexity is O((V+E) * log(V)).

Finding the minimum spanning tree has a complexity of O((V + E) * log(V)) because the implementation uses Prim's algorithm with a priority queue. Similar to Dijkstra's algorithm, the worst-case complexity is O((V + E) * log(V)), where V is the number of vertices and E is the number of edges. This complexity arises from the repeated selection of the minimum-weight edge and updating the priority queue.

(10%) Once you have implemented and tested your code, add to the README file what line(s) of code or inputs and outputs show your work meeting each of the above requirements

Output from main.cpp:

```
quentin@Quentins-MacBook-Pro CS260_final % ./main
Graph Structure:
Node A neighbors: (A - B Weight: 7) (A - C Weight: 9) (A - F Weight: 14)
Node B neighbors: (A - B Weight: 7) (B - C Weight: 10) (B - D Weight: 15)
Node C neighbors: (A - C Weight: 9) (B - C Weight: 10) (C - D Weight: 11) (C - E Weight: 2)
Node D neighbors: (B - D Weight: 15) (C - D Weight: 11) (D - E Weight: 6)
Node E neighbors: (C - E Weight: 2) (D - E Weight: 6) (E - F Weight: 9)
Node F neighbors: (A - F Weight: 14) (E - F Weight: 9)
Shortest path from A to E:
A C E
Minimum spanning tree:
A - B (Weight: 7)
A - C (Weight: 9)
C - E (Weight: 2)
B - D (Weight: 15)
A - F (Weight: 14)
```

Output from graph_testing.cpp:

```
quentin@Quentins-MacBook-Pro CS260_final % ./graph_test
 Testing adding vertices to the graph:
 Graph Structure:
 Node A neighbors: No neighbors
 Node B neighbors: No neighbors
 Node C neighbors: No neighbors
 Testing adding edges to the graph:
 Graph Structure:
 Node A neighbors: (A - B Weight: 7) (A - C Weight: 9)
 Node B neighbors: (A - B Weight: 7) (B - C Weight: 10)
 Node C neighbors: (A - C Weight: 9) (B - C Weight: 10)
 Testing finding the shortest path:
 Shortest path from A to E:
 ACE
 Testing finding the minimum spanning tree:
 Minimum spanning tree:
 A - B (Weight: 7)
 A - C (Weight: 9)
 C - E (Weight: 2)
 B - D (Weight: 15)
 A - F (Weight: 14)
```