Tone Locator

A tool to detect skin tone from grayscale photos

Breon Haskett, 1,4 David Coomes, 2,4 Elizabeth Pelletier 3,4

1 Department of Sociology, University of Washington | 2 Department of Epidemiology, University of Washington 3 Evans School of Public Policy & Governance, University of Washington | 4 Center for Studies in Demography & Ecology, University of Washington

MOTIVATION

Can we detect skin tone in old, black & white photos?

- Skin complexion is salient in many social processes (Monk, 2021)
- Old and/or scuffed black and white photos don't explicitly display complexion on a color scale, but it's possible that skin tone could be assessed using computer vision
- Research applications include analysis of photos from early 1900s (work in progress by Peter Catron & Breon Haskett)

The Monk skin tone scale (https://skintone.google/)

USE CASES

Tools to support researchers using photos

1: Pre-process an image of a face

- User loads set of photos
- Tool returns images cropped to faces

2: Detect prevalence of Monk scale bins in color image

- User loads set of color photos
- Tool returns dataframe of composition across Monk scale

3: Detect prevalence of Monk scale bins in B&W image

- User loads set of black & white photos
- Tool returns dataframe of estimated composition across color Monk scale

4. Test the effectiveness of different methods of colorizing

- User loads set of true and predicted Monk scale composition values
- Tool returns confusion matrix, overall MSE and MSE by bin

USER STORY A: Peter is a professional !

in the social sciences who wants to derive! ! probabilistic skin tone from old photographs for ! !research. He uses our repository to upload! !images and output a spreadsheet with probable !skin tones for each photo. He will use this as a tool to output a dataframe that is clearly !documented and easy to export, graph, and ! !interpret, but will not adjust the code and would! ! struggle in troubleshooting technical issues.

USER STORY B: Sally is a researcher who is developing her own methods of detecting skin! tone in non-color photos. She uses our two! methods as a starting point to inspire her work. She develops her own methods, and uses our! effectiveness assessment framework to test how! well her methods perform.

TECHNOLOGIES

OpenCV

OpenCV (Open Source Computer Vision Library): Computer vision and machine learning library

Preprocessor: crops images to face, blurs or marks images, converts color to grayscale.

each bin of Monk's scale in image. to detect grayscale Monk's scale.

Colorizer: convoluted neural uses networks to predict colors from grayscale images. Model was trained on one million images, and applied to our photos.

Detection: Detects % of color from Can be applied to grayscale image

DESIGN & COMPONENTS

Comparing two methods for detecting skin tone

PRELIMINARY RESULTS

Method 2 (using the colorizer) performs better

Method 2

- Challenge: for the vast majority of photos, the predominant color is Bin 4. Is this an issue with data set representativeness, or some other problem? What are implications for generalizability?
- CAVEAT: The above results do not yet incorporate the face cropping pre-processing. Full results forthcoming.

NEXT STEPS

- Assess if our metrics are fully capturing the methods' accuracy
- See how various methods of blurring & scuffing affect the accuracy of the methods; consider applying machine learning methods
- Apply methods to research projects!

Method 1

WORKS CITED

Monk, E. P. The Unceasing Significance of Colorism: Skin Tone Stratification in the United States. Daedalus 2021; 150 (2): 76–90.

Zhang, R., Isola, P., & Efros, A.;. Colorful image colorization. In European conference on computer vision (2016, October); (pp. 649-666). Springer, Cham.

Many thanks to Dave Beck and Erin Wilson for support throughout our project!

Partial support for this research came from a Shanahan Endowment Fellowship and a Eunice Kennedy Shriver National Institute of Child Health and Human Development training grant, T32 HD101442, to the Center for Studies in Demography & Ecology at the University of Washington. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.