

CORRELAÇÕES ENTRE PARÂMETROS MICROBIOLÓGICOS, FÍSICO-QUÍMICOS E PLUVIOSIDADE NO RIO CAMBORIÚ

Emily Boeno¹; Maria Eduarda Serafini Berlim²; Joeci Ricardo Godoi³; Daniel Shikanai Kerr⁴; Renata Ogusucu⁵

RESUMO

A Bacia Hidrográfica do Rio Camboriú abastece os municípios de Camboriú e Balneário Camboriú, mas a qualidade da sua água é comprometida por diversos fatores como o desmatamento, o despejo de efluentes domésticos e de resíduos de atividades agrícolas e criação de animais. Este trabalho tem como objetivo monitorar parâmetros físico-químicos como turbidez, concentração de nitritos, nitratos, amônia e ortofosfato, e biológicos como a concentração de coliformes termotolerantes e clorofila-a na tentativa de estabelecer correlações entre eles. Até o momento, foram observadas possíveis correlações entre as concentrações de amônia e clorofila e entre o nível do rio e coliformes termotolerantes. Para os demais parâmetros as variações observadas não sugerem correlações, mas as mesmas análises serão repetidas nos próximos meses e espera-se que novas coletas em diferentes condições ambientais e de demanda hídrica permitam uma melhor compreensão da dinâmica do Rio Camboriú.

Palavras-chave: Monitoramento ambiental. Coliformes termotolerantes. Clorofila a. Rio Camboriú.

INTRODUÇÃO

A Bacia Hidrográfica do Rio Camboriú, que atravessa os municípios de Camboriú e Balneário Camboriú, é composta pelo rio principal, denominado Rio Camboriú e seus afluentes (CIRAM, 20??). Segundo o IBGE (2018), a população estimada do município de Balneário Camboriú e Camboriú totalizam 219.566 habitantes. Em Camboriú, conforme dados fornecidos no Caderno Técnico da Revisão do Plano Diretor (PREFEITURA, 2012), ao passarem pela fossa séptica/filtro, os efluentes são levados pela rede de água pluviais e são despejados no manancial, sem tratamento centralizado, diferente do município de Balneário

¹ Aluna do Curso de Controle Ambiental Integrado ao Ensino Médio (CA17) do Instituto Federal Catarinense – *campus* Camboriú, emilyboeno444@gmail.com.

² Aluna do Curso de Controle Ambiental Integrado ao Ensino Médio (CA17) do Instituto Federal Catarinense – *campus* Camboriú, dudaberlim13@gmail.com.

³ Bel. em Ciências Biológicas, Instituto Federal Catarinense – campus Camboriú, joeci.godoi@ifc.edu.br.

⁴ Dr. em Ciências, Instituto Federal Catarinense – campus Camboriú, daniel.kerr@ifc.edu.br.

⁵ Dra. em Ciências, Instituto Federal Catarinense – campus Camboriú, renata.ogusucu@ifc.edu.br.

Camboriú onde é realizado o tratamento dos efluentes conforme a Lei Municipal n°3087/2010.

Um dos impactos referentes à poluição do rio é a eutrofização, um processo causada pelo excesso de nutrientes que resulta no crescimento excessivo de alguns organismo aquáticos (BRAGA, 2005). Segundo BUZELLI (2013), o processo de eutrofização leva ao aumento da concentração de clorofila, que é um pigmento presente nos vegetais e é responsável pela fotossíntese. São conhecidos 4 tipos de clorofila (a, b, c e d), mas por ser predominante em todos os vegetais, a clorofila-a é a indicadora ideal de massa fitoplanctônica (CETESB, 2014).

Águas naturais ao receber efluentes domésticos apresentam nitrogênio amoniacal e nitritos. Durante o ciclo desse nutriente, ocorre a nitrificação, no qual o nitrogênio amoniacal é oxidado e forma nitrito, que pode ser transformado em nitrato por bactérias *Nitrosomonas* e *Nitrobacter*. Outro nutriente presente nos efluentes domésticos que estimula o crescimento das algas é o fósforo, sendo assimilado pelos vegetais na forma de ortofosfato (DELLAGIUSTINA, 2000). Um parâmetro relevante no monitoramento dos mananciais é a turbidez, pois funciona como um indicativo de deposição de resíduos no manancial e assoreamento.

Embora o monitoramento dos parâmetros microbiológicos e físicoquímicos sejam comuns em mananciais utilizados para consumo humano, há
poucos trabalhos na literatura científica com enfoque na região do Vale do Itajaí.
Considerando que as condições climáticas e as atividades econômicas tem grande
influência nesses parâmetros, é interessante realizar a coletas destas informações
na bacia do Rio Camboriú. Nesse contexto, este projeto propõe coletar dados sobre
a concentração de coliformes termotolerantes, clorofila-a, turbidez, no rio Camboriú
e verificar a existência de correlações entre a variação dos parâmetros físicoquímicos com a variação dos parâmetros microbiológicos e também entre a variação
dos parâmetros físico-químicos e microbiológicos com o nível de água do rio.

PROCEDIMENTOS METODOLÓGICOS

1. Coletas

As coletas foram realizadas na Estação de Recalque da Empresa Municipal de Água e Saneamento de Balneário Camboriú (coordenadas 27°01'16.1"S 48°39'42.6"W) entre os meses de abril e junho. A água foi coletada em

frasco âmbar e levada imediatamente ao laboratório para a realização das análises físico-químicas e microbiológicas. Os valores da clorofila-a foram mensurados mensalmente, enquanto os demais quinzenalmente.

2. Análises de parâmetros físico-químicos

Os parâmetros amônia, nitrato, nitrito e ortofosfato foram quantificados utilizando-se o Ecokit (Alfakit), seguindo-se as instruções do fabricante. As análises de turbidez e pH, foram feitas com turbidímetro e peagâmetro, respectivamente.

3. Análises microbiológicas

A estimativa de coliformes termotolerantes presentes nas amostras coletadas foi realizada através da técnica de tubos múltiplos, de acordo com a norma técnica L5406 da Cetesb (CETESB, 2007).

4. Análise de clorofila-a

A quantificação de clorofila-a foi realizada pelo laboratório CLEAn (Univali), seguindo o protocolo descrito por Parsons e Strickland (1963).

5. Nível de água do rio Camboriú

Os valores foram retirados no site do Centro de Informações de Recursos Ambientais e de Hidrometeorologia de Santa Catarina.

RESULTADOS ESPERADOS OU PARCIAIS

A análise dos parâmetros físico-químicos e microbiológicos foram realizadas a partir de seis coletas de água, entre os meses de abril e junho. Os resultados podem ser observados nas tabelas 1 e 2.

Tabela 1. Parâmetros físico-químicos analisados.

Data	Amônia (mg.L ⁻¹)	Nitrato (mg.L ⁻¹)	Nitrito (mg.L ⁻¹)	Ortofosfato (mg.L ⁻¹)	Turbidez (NTU)
03/04/2019	0,607	0,47	0,0984	1	20,21
17/04/2019	0,3035	0,2	0,0328	1	8,52
08/05/2019	1,214	0,4	0,0328	0,75	7,99
22/05/2019	0	0,2	0,0984	1,75	6,95
05/06/2019	0,3035	0	0,0328	0,75	11,36
19/06/2019	0,3035	0,2	0,0984	1	6,78

Fonte: Autoras, 2019.

Tabela 2. Parâmetros microbiológicos analisados.

Data	Clorofila-a (µg/L)	Coliformes termotolerantes (NMP/100 mL)
03/04/2019	1,2	79
17/04/2019	-	13
08/05/2019	2	75
22/05/2019	-	71
05/06/2019	1,1	33
19/06/2019	=	413

Fonte: Autoras, 2019.

Uma possível correlação entre a concentração de amônia e clorofila-a pôde ser observada nestas análises (Figura 1). Conforme os valores da amônia aumentam, os valores de clorofila também aumentam, sugerindo a relação da presença de nitrogênio com a crescimento de algas. Os níveis de nitrito, nitrato e ortofosfato não apresentaram relação direta com a concentração de clorofila-a.

Figura 1- Níveis observados de clorofila-a (μ g/L), amônia (mg.L⁻¹), nitrato (mg.L⁻¹), nitrito (mg.L⁻¹) e ortofostato (mg.L⁻¹) nas coletas realizadas nos meses de abril, maio e junho.

Fonte: Autoras, 2019.

Além disso, foram observadas relações entre os coliformes termotolerantes e o nível do rio (Figura 2). Isso pode indicar que conforme o nível do rio aumenta devido aos períodos de chuva, a concentração de coliformes diminui. Porém, esta tendência poderá ser confirmada a partir de análises realizadas por um período mais longo. Com estas análises iniciais não foi observada relação entre as

concentrações de coliformes e a clorofila-a, além de não haver correspondência entre o nível do rio e a clorofila-a.

Figura 2: Variação da concentração de coliformes termotolerantes (x10 NMP/100 mL), clorofila-a (μg/L) e do nível do rio Camboriú (dm) em coletas realizadas nos meses de abril, maio e junho.

Fonte: Autoras, 2019.

Os demais parâmetros analisados (tabelas 1 e 2) não apresentaram evidências de correlações. Porém, é preciso ressaltar que até o momento o número de coletas foi baixo e neste período houve variação pequena de condições ambientais (chuva e temperatura). Novas coletas em diferentes estações do ano e maior demanda por água, podem permitir o estabelecimento dos parâmetros analisados.

CONSIDERAÇÕES FINAIS

Apesar das relações previamente estabelecidas, presume-se que ao longo do ano as condições ambientais e a demanda por água sejam fatores que irão modificar as características da água, como é o exemplo do turismo em Balneário Camboriú no verão, onde a demanda hídrica e geração de efluentes é maior. Espera-se que os parâmetros analisados possam ao longo do tempo estabelecer relações entre si.

REFERÊNCIAS

BALNEÁRIO CAMBORIÚ. CIRAM. **Bacia Hidrográfica e Estuário.** 2019. Disponível em: http://www.ciram.sc.gov.br/index.php? option=com_content&view=article&id=1908&Itemid=695>. Acesso em: 28 jun. 2019.

BALNEÁRIO CAMBORIÚ (Município). Constituição (2010). Lei nº 3087, de 10 de maio de 2010. **Dispõe sobre a obrigação de Ligação da rede de esgoto doméstico ao sistema de coleta e tratamento de esgoto mantido pelo município e dá outras providências**. Balneário Camboriú, SC, Disponível em:https://cm.jusbrasil.com.br/legislacao/931954/lei-3087-10. Acesso em: 28 jun. 2019.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **População.** 2018. Disponível em: https://cidades.ibge.gov.br/brasil/sc/camboriu/panorama. Acesso em: 28 jun. 2019.

BUZELLI, Giovanna Moreti; CUNHA-SANTINO, Marcela Bianchessi da. Análise e diagnóstico da qualidade da água e estado trófico do reservatório de Barra Bonita, SP.**Rev. Ambient. Água**, Taubaté, v. 8, n. 1, p. 186-205, Apr. 2013. Disponível em:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2013000100014&lng=en&nrm=iso. access on 28 June 2019.

COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO. **L5.306**: Determinação de Clorofila a e Feofitina a: método espectrofotométrico. 3 ed. São Paulo, 2014. 14 p.

DELLAGIUSTÍNA, Antônio. **DETERMINAÇÃO DAS CONCENTRAÇÕES DE NITROGÊNIO E FÓSFORO DISSOLVIDOS EM DIFERENTES LOCAIS DO RIO ITAJAÍ-AÇU.** 2010. 92 f. Dissertação (Mestrado) - Curso de Química, Universidade Federal de Santa Catarina, Florianópolis, 2010. Disponível em:https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/78694/178300.pdf? sequence=1&isAllowed=y>. Acesso em: 28 jun. 2019.

PREFEITURA MUNICIPAL DE CAMBORIÚ. **Plano Diretor de Desenvolvimento Territorial do Município de Camboriú.** Documento técnico, parte 6. Leitura do município 2012. Disponível em:http://www.camboriu.sc.gov.br/extranet/arquivos/plano_diretor/leitura_tecnica_p arte 06 1342620999568.pdf> Acesso em: 03 jul. 2019.