

M. Sc. Bionics Engineering

ADVANCED MATERIALS FOR BIONICS

LECTURE 4: MECHANICAL PROPERTIES

Prof. Francesco Greco

AY 2024-25

L4 - 07.10.2024

QUESTIONS

- When a material is exposed to mechanical forces, what parameters are used to express force magnitude and degree of deformation?
- What is the distinction between elastic and plastic deformations?
- How are the following mechanical characteristics of materials measured?

Stiffness

Strength

Ductility

Hardness

- What parameters are used to quantify these properties?
- How the different classes of materials are deformed? How this is connected with their bonding/internal structure?

Francesco Greco Advanced Materials for Bionics

4.1

INTRO AND DEFINITIONS

MECHANICAL TESTS

familiar with this?

STRESS-STRAIN TESTING

Typical tensile test machine

Fig. 6.3, Callister & Rethwisch 10e.

Typical tensile specimen (e.g. metal)

standard «dogbone» specimen

Fig. 6.2, Callister & Rethwisch 10e.

also rectangular section

Francesco Greco Advanced Materials for Bionics

STRESS/STRAIN CONCEPTS

3 principal ways in which a load may be applied

Francesco Greco

Advanced Materials for Bionics

STRESS/STRAIN CONCEPTS

another type (connected to shear)

TORSION

Francesco Greco

TENSION/COMPRESSION

$$\sigma = \frac{F}{A_0}$$

conventionally: in compression $F < 0 \rightarrow \sigma < 0$

ENGINEERING STRESS

• Tensile stress, σ:

$$\sigma = \frac{F}{A_o}$$
original cross-sectional

area before loading

• Shear stress, τ:

Units for stress: $MPa = 10^6 Pa = 10^6 N/m^2$

ENGINEERING STRAIN

• Tensile strain (ε_{z}):

$$\varepsilon_z = \frac{l - l_0}{l_0} = \frac{\Delta l}{l_0}$$

• Shear strain (γ):

$$\varepsilon_X = \frac{d - d_0}{d_0} =$$

$$\gamma = \frac{\Delta x}{y} = \tan \theta$$

dimensionless

4.2

STRESS-STRAIN BEHAVIOUR: ELASTIC DEFORMATIONS

LINEAR ELASTIC PROPERTIES

- Elastic deformation is nonpermanent and reversible!
 - generally valid at small deformations
 - linear stress-strain curve
- Modulus of Elasticity, E: (Young's modulus)
- Hooke's Law:

$$\sigma = E\varepsilon$$

Units:

E:
$$[Pa] = [N m^{-2}]$$

E – Comparison of Material Types

Based on data in Table B.2, Callister & Rethwisch 10e.

Composite data based on reinforced epoxy with 60 vol% of aligned fibers: carbon (CFRE) aramid (AFRE) glass (GFRE)

Francesco Greco

E – Comparison of Material Types

http://www-materials.eng.cam.ac.uk/

Francesco Greco

Advanced Materials for Bionics

RANGE OF E AND BIONICS

Young's moduli of a range of biological and electronic materials.

Excitable Tissues & Organs

Materials and microfabrication processes for next-generation brain-machine devices C. Bettinger et al. 2016 – SPIE NEWS

Francesco Greco **Advanced Materials for Bionics**

NON-LINEAR ELASTIC DEFORMATION

- non linear
- fully reversible

ELASTIC DEFORMATION

Metals

- elastic deformation is nonpermanent and reversible
- small variations of interatomic distances
- E measures the resistance against separation

Francesco Greco

Influence of Bonding Forces

Elastic modulus depends on interatomic bonding forces

Fig. 6.7, Callister & Rethwisch 10e.

Influence of Temperature on E

Adapted from K. M. Ralls, T. H. Courtney, and J. Wulff, *Introduction to Materials Science and Engineering*. Copyright © 1976 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

OTHER ELASTIC PROPERTIES

 Elastic Shear modulus, G:

$$\tau = G\gamma$$

 Elastic Bulk modulus, K:

$$P = - \frac{K}{V_0} \frac{\Delta V}{V_0}$$

RECAP: Young's Modulus

YOUTUBE VIDEO – The efficient engineer Channel "Understanding Young's modulus" (06:42)

https://youtu.be/DLE-ieOVFjl

Poisson's ratio

deformation in directions perpendicular to the specific direction of loading

• Poisson's ratio, v:

$$v = -\frac{\varepsilon_{trans}}{\varepsilon_{axial}} = -\frac{\varepsilon_x}{\varepsilon_z}$$

metals: $v \approx 0.33$

ceramics: $v \approx 0.25$

polymers: $v \approx 0.40$

rubber: $v \approx 0.50$

Units:

v: dimensionless

$$\varepsilon_z = \frac{l - l_0}{l_0} = \frac{\Delta l}{l_0} > 0$$

$$\varepsilon_x = \frac{w - w_0}{w_0} = \frac{\Delta w}{w_0} < 0$$

Poisson's ratio:

$$\nu = -\frac{\varepsilon_x}{\varepsilon_z}$$

For most metals, ceramics and polymers:

$$0.15 < v \le 0.50$$

Poisson's ratio

isotropic materials:

$$E = 2G(1 + \nu)$$

$$E = 3K(1 - 2\nu)$$

for most metals G = 0.4E if the value of one modulus is known, ν may be approximately estimated

anisotropic materials: elastic behavior (E) varies with crystallographic direction

characterized only by the specification of several elastic constants, depending on characteristics of the crystal structure

RECAP: Poisson's ratio

YOUTUBE VIDEO – The efficient engineer Channel "Understanding Poisson's ratio" (09:46)

https://youtu.be/tuOlM3P7ygA

NEGATIVE POISSON'S RATIO- AUXETIC MATERIALS

auxetic materials: ν < 0 expand along transversal direction during tensile extension

blood vessel stents based on auxetic structures https://lgg.epfl.ch/

SEMINAR TOPIC

AUXETIC Materials & Structures in BIOMEDICINE

Francesco Greco Advanced Materials for Bionics

Poisson's ratio

G. N. Greaves Royal Soc. J. Hist Sci. 67,1,37-58, DOI: (10.1098/rsnr.2012.0021)

Francesco Greco

Advanced Materials for Bionics

4.3

STRESS-STRAIN BEHAVIOUR:

PLASTIC DEFORMATIONS, TENSILE PROPERTIES

Francesco Greco

PLASTIC DEFORMATION

Metals

- only partial recovery (elastic)
- plastic deformation is permanent and non-reversible

NB!

in crystalline solids: dislocations

in amorphous solids: viscous flux (more in following lectures)

Francesco Greco Advanced Materials for Bionics

PLASTIC DEFORMATION

• Stress-strain plot for simple tension test:

Adapted from Fig. 6.10 (a), Callister & Rethwisch 10e.

Elastic

Elastic, Plastic

YIELD STRENGTH

P: proportionality limit

Some steels

Strain

-0.002

Francesco Greco

Advanced Materials for Bionics

YIELD STRENGTH - COMPARISON OF MATERIAL TYPES

VMSE: VIRTUAL TENSILE TESTING

Wiley - VMSE TENSILE TESTING

Francesco Greco Advanced Materials for Bionics

Tensile Strength

• Tensile strength (TS) (it. "resistenza a trazione") = max. stress on engineering stress-strain curve.

engineering strain

Metals: Maximum on stress-strain curve appears at the onset of necking

Francesco Greco **Advanced Materials for Bionics**

Tensile Strength: Comparison of Material

Room temperature values

Based on data in Table B4, Callister & Rethwisch 10e.

a = annealed

hr = hot rolled

ag = aged

cd = cold drawn

cw = cold worked

qt = quenched & tempered

AFRE, GFRE, & CFRE = aramid, glass, & carbon fiber-reinforced epoxy

composites, with 60 vol%

fibers.

Advanced Materials for Bionics

DUCTILITY

- Ductility = amount of plastic deformation at failure
- Ductility, as percent elongation
- Ductility, as percent reduction in area

$$\%EL = \frac{l_f - l_0}{l_0} \times 100$$

$$%RA = \frac{A_0 - A_f}{A_0} \times 100$$

RESILIENCE

Resilience—ability to absorb energy during elastic deformation, energy recovered when load released

Modulus of resilience, U_r

 U_r = Area under stress-strain curve to yielding

$$U_{r} = \int_{0}^{\varepsilon_{y}} \sigma d\varepsilon$$

assuming a linear stress-strain curve simplifies to

$$U_r \cong \frac{1}{2}\sigma_y \varepsilon_y = \frac{\sigma_y^2}{2E}$$

resilient materials: high σ_y , low E alloys for springs!

TOUGHNESS

- Toughness (it.: tenacità) of a material is expressed in several contexts amount of energy absorbed before fracture
- Approximate by area under the stress-strain curve— [J/m³]

tensile stress, σ

Brittle fracture: small toughness

Ductile fracture: large toughness

Advanced Materials for Bionics

TRUE STRESS & STRAIN

- after point M (TS) the curve decreases
- the material is weaker?

influence of necking

Strain

TRUE STRESS & STRAIN

True stress

$$\sigma_T = \frac{F}{A_i}$$

True strain

$$\varepsilon_T = \ln \binom{l_i}{l_0}$$

Strain

 A_i = instantaneous cross-sectional area

if no change in volume

$$A_i l_i = A_0 l_0$$

Conversion Equations: valid only to the onset of necking

$$S_T = S(1 + e)$$

$$e_T = \ln(1 + e)$$

Adapted from Fig. 6.16, Callister & Rethwisch 10e.

Francesco Greco

ELASTIC STRAIN RECOVERY

Advanced Materials for Bionics

ELASTIC STRAIN RECOVERY

RECAP: STRENGTH, DUCTILITY, TOUGHNESS

(07:19)

YOUTUBE VIDEO – The efficient engineer Channel "Understanding Materials' strength, ductility, toughness"

https://youtu.be/WSRqJdT2COE

HARDNESS

- Measure of resistance to surface plastic deformation dent or scratch.
- Large hardness means:
 high resistance to deformation from compressive loads
 better wear properties.

SUMMARY

- Applied mechanical force—normalized to stress
- Degree of deformation—normalized to strain
- Elastic deformation:
 - —non-permanent; occurs at low levels of stress
 - —stress-strain behavior is linear
- Plastic deformation
 - —permanent; occurs at higher levels of stress
 - ---stress-strain behavior is nonlinear

SUMMARY

- Stiffness—a material's resistance to elastic deformation
 —elastic (or Young's) modulus
- Strength—a material's resistance to plastic deformation
 —yield and tensile strengths
- Ductility—amount of plastic deformation at failure
 —percents elongation, reduction in area
- Hardness—resistance to localized surface deformation
 & compressive stresses
 - —Rockwell, Brinell hardnesses

SUMMARY L4

L4.1 • Stress/Strain: Intro and Definitions

L4.2 • Elastic deformations

L4.3 • Plastic Deformations, Tensile Properties

Francesco Greco

ADDITIONAL RESOURCES, READINGS

YOUTUBE VIDEOS:

• The Efficient Engineer Channel – <u>PLAYLIST «Understanding Materials properties»</u>

3 Episodes

- Young's Modulus
- Strength, Ductility, Toughness
- Poisson's ratio
- Real Engineering Channel- Ep. <u>Material Properties</u>, Ep. <u>Aluminium</u>, Ep. <u>Titanium</u>

READINGS:

Callister Rethwisch – Chapter 6

PLUS:

• <u>Greaves G. Neville</u> 2013 Poisson's ratio over two centuries: challenging hypotheses *Notes Rec.***67**37–58 http://doi.org/10.1098/rsnr.2012.0021

ADDITIONAL SLIDES: HARDNESS

MEASUREMENT OF HARDNESS

Rockwell Hardness - HR

INDENTERS: ASTM E18, diamond spheroconical or tungsten carbide balls

MEASUREMENT OF HARDNESS

Rockwell Hardness - HR

Francesco Greco

Advanced Materials for Bionics

MEASUREMENT OF HARDNESS

Rockwell Hardness - HR

• Several scales—combination of load magnitude, indenter size

	Indenters	Loads
Rockwell and superficial Rockwell	$\begin{cases} \text{Diamond} \\ \text{cone:} \\ \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2} \text{- in.} \\ \text{diameter} \end{cases}$	$ \begin{array}{c} 60 \text{ kg} \\ 100 \text{ kg} \\ 150 \text{ kg} \end{array} $ Rockwell $ \begin{array}{c} 15 \text{ kg} \end{array} $
	steel spheres	30 kg Superficial Rockwell 45 kg

- Examples:
 - Rockwell A Scale 60 kg load/diamond indenter
 - Superficial Rockwell 15T Scale 15 kg load/ 1/16 in. indenter
- Rockwell hardness designation: (hardness reading) HR
- Examples: 57 HRA; 63 HR15T
- Hardness range for each scale: 0–130 HR; useful range: 20–100 HR

ROCKWELL HARDNESS SCALES

Table 6.6a Rockwell Hardness Scales

Scale Symbol	Indenter	Major Load (kg)
A	Diamond	60
В	$\frac{1}{16}$ -in. ball	100
С	Diamond	150
D	Diamond	100
Е	$\frac{1}{8}$ -in. ball	100
F	$\frac{1}{16}$ -in. ball	60
G	$\frac{1}{16}$ -in. ball	150
Н	$\frac{1}{8}$ -in. ball	60
K	$\frac{1}{8}$ -in. ball	150

Table 6.6b Superficial Rockwell Hardness Scales

Scale Symbol	Indenter	Major Load (kg)
15N	Diamond	15
30N	Diamond	30
45N	Diamond	45
15T	$\frac{1}{16}$ -in. ball	15
30T	$\frac{1}{16}$ -in. ball	30
45T	$\frac{1}{16}$ -in. ball	45
15W	$\frac{1}{8}$ -in. ball	15
30W	$\frac{1}{8}$ -in. ball	30
45W	$\frac{1}{8}$ -in. ball	45

MEASUREMENT OF HARDNESS Brinell Hardness

Single scale

Brinell hardness designation: (hardness reading) HB

10-mm sphere of steel or tungsten carbide

$$HB = \frac{2P}{\pi D[D - \sqrt{D^2 - d^2}]}$$

- -P = load(kg)
- 500 kg ≤ P ≤ 3000 kg (500 kg increments)
- Relationships—Brinell hardness & tensile strength
 - $TS (MPa) = 3.45 \times HB$

COMPARISON OF VARIOUS HARDNESS SCALES

Adapted with permission from ASM International, ASM Handbook: Mechanical Testing and Evaluation, Vol. 8, 2000, pg. 936.)