Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/050639

International filing date: 14 February 2005 (14.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 007 680.4

Filing date: 16 February 2004 (16.02.2004)

Date of receipt at the International Bureau: 03 May 2005 (03.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 007 680.4

Anmeldetag:

16. Februar 2004

Anmelder/Inhaber:

Endress + Hauser GmbH + Co KG, 79689 Maul-

burg/DE

Bezeichnung:

Radiometrisches Meßgerät

IPC:

G 01 F, G 01 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 6. April 2005 **Deutsches Patent- und Markenamt** Der Präsident Im Auftrag

Stanschue

Radiometrisches Meßgerät

Die Erfindung betrifft ein radiometrisches Meßgerät. Mittels radiometrischer Meßgeräte sind physikalische Größen, z.B. ein Füllstand oder eine Dichte eines Mediums meßbar.

5

10

15

20

25

30

Radiometrische Meßgeräte werden üblicherweise immer dann eingesetzt, wenn herkömmliche Meßgeräte aufgrund besonders rauer Bedingungen am Meßort nicht einsetzbar sind. Sehr häufig herrschen z.B. am Meßort extrem hohe Temperaturen und Drücke oder es sind chemisch und/oder mechanisch sehr aggressive Umgebungseinflüsse vorhanden, die den Einsatz anderer Meßmethoden unmöglich machen.

In der radiometrischen Messtechnik wird ein radioaktiver Strahler, z.B. ein Co 60 oder Cs 137 Präparat, in einen Strahlenschutzbehälter eingebracht und an einem Meßort, z.B. einem mit einem Füllgut gefüllten Behälter angebracht. Ein solcher Behälter kann z.B. ein Tank, ein Container, ein Rohr, ein Förderband oder eine beliebige andere Behältnisform sein.

Der Strahlenschutzbehälter weist eine Ausnehmung auf, durch die die von dem zur Messung positionierten Strahler ausgesendete Strahlung durch eine Wand des Strahlenschutzbehälters hindurch ausgestrahlt wird.

Üblicherweise wird eine Abstrahlungsrichtung ausgewählt, bei der die Strahlung denjenigen Bereich des Behälters durchdringt, der messtechnisch erfaßt werden soll. Auf der gegenüberliegenden Seite wird die durch eine Füllstandsbzw. Dichteänderung veränderte austretende Strahlungsintensität mit einem Detektor quantitativ erfaßt. Die austretende Strahlungsintensität ist abhängig von der geometrischen Anordnung und der Absorbtion. Letztere ist bei der Füllstandsmessung abhängig von der Menge des Füllguts im Behälter und bei der Dichtemessung von der Dichte des Füllguts. Folglich ist die austretende

Strahlungsintensität ein Maß für den aktuellen Füllstand bzw. die aktuelle Dichte des Füllguts im Behälter.

Als Detektor eignet sich z.B. ein Szintillationsdetektor mit einem Szintillator, z.B. einem Szintillationstab, und einem Photomultiplier. Der Szintillationsstab ist im Prinzip ein Plexiglas-Stab, der optisch sehr rein ist. Unter dem Einfluß von Gammastrahlung werden durch das Szintillationsmaterial Lichtblitze ausgestrahlt. Diese werden durch den Photomultiplier erfaßt und in elektrische Impulse umgesetzt. Eine Impulsrate, mit der die Impulse auftreten ist abhängig von der Strahlungsintensität und somit ein Maß für die zu messende physikalische Größe, z.B. den Füllstand oder die Dichte. Szintillator und Photomultiplier sind üblicherweise in einem Schutzrohr, z.B. aus einem Edelstahl montiert.

Der Detektor weist in der Regel eine Elektronik auf, die ein der Impulsrate entsprechendes Ausgangssignal einer übergeordneten Einheit zur Verfügung stellt. Die Elektronik umfaßt üblicherweise eine Steuerung und einen Zähler. Die elektrischen Impulse werden gezählt und es wird eine Zählrate abgeleitet, anhand derer die zu messende physikalische Größe bestimmbar ist.

Zusätzlich wird vorzugsweise ein Status des Dektors überprüft. Der Status beinhaltet im einfachsten Fall eine Angabe darüber, ob der Detektor einwandfrei arbeitet oder nicht. Entsprechend dem Status wird gegebenenfalls eine Fehlermeldung und/oder ein Alarm ausgelöst.

Zur Übertragung des Ausgangssignals und des Status des Detektors sind in der Regel zwei Leitungen zwischen dem Detektor und der übergeordneten Einheit vorgesehen.

Eine effektive Länge der Detektoren legt den messtechnisch erfaßbaren Bereich des Behälter fest und hängt von der verlangten Meßhöhe und den Montagemöglichkeiten ab. Detektoren sind heute in Längen von ca. 400 mm

20

5

10

25

bis ca. 2000 mm erhältlich. Reicht eine Länge von ca. 2000 mm nicht aus, können an ein radiometrisches Meßgerät zwei oder mehr Detektoren angeschlossen werden.

Dabei weist bei herkömmlichen Meßgeräten jeder Detektor eine eigene Elektronik auf. Zur Übertragung der Ausgangssignale und des Status jedes Detektors werden mindestens zwei Leitungen von jedem Detektor zu der übergeordneten Einheit verlegt. Die Ausgangssignale der einzelnen Detektoren werden in der übergeordneten Einheit zu einem Summensignal zusammengefaßt, das die Gesamtrate der erfaßten Impulse wiederspiegelt.

Bei Verwendung von zwei oder mehr Detektoren steigt der erforderliche technische Aufwand proportional zu der Anzahl der Detektoren. Für jeden Detektor ist eine eigene Elektronik mit einem Zähler und einer Steuerung vorzusehen, der Status jedes Detektors muß einzeln überprüft werden und jeder Detektor ist mittels zweier Leitungen mit der übergeordneten Einheit zu verbinden, die dann den Status jedes Dektektors überprüft und die einzelnen Ausgangssignale zu einem Meßsignal zusammenfaßt.

Jede zusätzliche Leitung erhöht die Kosten. Inbesondere, wenn die Detektoren in explosionsgefährdeten Bereichen eingesetzt werden, sind die Kosten für zusätzliche Leitungen erheblich.

Es ist eine Aufgabe der Erfindung ein radiometrisches Meßgerät mit zwei oder mehr Detektoren anzugeben, das kostengünstig installiert und betrieben werden kann.

Hierzu besteht die Erfindung in einem radiometrisches Meßgerät zur Montage an einem mit einem Füllgut befüllbaren Behälter, mit

- einem radioaktiven Strahler, der im Betrieb radioaktive Strahlung durch den Behälter sendet,
 - mindestens zwei Detektoren,

15

20

- die dazu dienen durch den Behälter hindurchdringende Strahlung aufzunehmen und eine der aufgenommenen Strahlung entsprechende elektrische Impulsrate zu erzeugen,
- Offset-Generatoren, die der Impulsrate jedes
 Detektors einen Status des jeweiligen
 Detektors wiedergebenden Offset überlagern, und
 - einer Sammelleitung,

10

20

25 .

- der jeder Detektor ein der Überlagerung der jeweiligen Impulsrate und des jeweiligen Offsets entsprechendes Ausgangssignal zuführt,
- -- die ein der Überlagerung der Ausgangssignale entsprechendes Summensignal einer übergeordneten Einheit zuführt,
- --- die anhand des Summensignals ein Meßsignal und/oder einen Status des Meßgeräts ableitet.

Weiter besteht die Erfindung in einem radiometrischen Meßgerät zur Montage an einem mit einem Füllgut befüllbaren Behälter, mit

- einem radioaktiven Strahler, der im Betrieb radioaktive Strahlung durch den Behälter sendet,
- mindestens zwei Detektoren,
- -- die dazu dienen durch den Behälter hindurchdringende Strahlung aufzunehmen und eine der aufgenommenen Strahlung entsprechende elektrische Impulsrate zu erzeugen,
- Offset-Generatoren, die der Impulsrate jedes Detektors einen detektor-spezifischen Offset überlagern,
- Abschaltern, die dazu dienen eine Übertragung der Impulsraten und der Offsets zu unterbinden, wenn der Detektor fehlerhaft arbeitet,

- einer Sammelleitung,
- der jeder einwandfrei arbeitende Detektor ein der Überlagerung der jeweiligen Impulsrate und des jeweiligen Offsets entsprechendes Ausgangssignal zuführt,
- -- die ein der Überlagerung der Ausgangssignale entsprechendes Summensignal einer übergeordneten Einheit zuführt,
- --- die anhand des Summensignals ein Meßsignal und/oder einen Status des Meßgeräts ableitet.

Gemäß einer Ausgestaltung der vorgenannten radiometrischen Meßgeräte ist eine Serie von Detektoren vorgesehen, und die Sammelleitung beginnt bei einem ersten Detektor der Serie, führt von dort von einem Detektor zu dem diesem jeweils benachbarten Detektor und von dem letzten Detektor zur übergeordneten Einheit.

Gemäß einer weiteren Ausgestaltung umfaßt jeder Detektor einen Szintillator und einen daran angeschlossenen Photomultiplier.

Gemäß einer Weiterbildung des letztgenannten radiometrisches Meßgeräts senden die Offset-Generatoren über einen Lichtleiter periodisch Referenzlichtblitze durch den Szintillator.

25 Gemäß einer weiteren Ausgestaltung ist die übergeordnete Einheit in dem letzten Detektor der Serie integriert.

Weiter besteht die Erfindung in einem Verfahren zur Messung einer physikalischen Größe mit einem der vorgenannten radiometrischen Meßgeräte, bei dem

 jedem Detektor ein Sollwert für einen Offset zugeordnet wird, den die Offset-Generatoren der

20

30

15

5

Detektoren erzeugen, wenn der Detektor einwandfrei arbeitet, und der größer als eine Summe der für die Detektoren maximal zu erwartenden Impulsraten ist,

- die übergeordnete Einheit anhand des Summensignals eine Gesamtzählrate bestimmt,
- die Differenz von dieser Gesamtzählrate und einer der Summe der Sollwerte der Offsets entsprechenden Zählrate bildet,
- erkennt, daß ein Fehler vorliegt, wenn die Differenz negativ ist, und
- bei positiver Differenz ein Meßsignal ableitet.

5

10

15

20

25

30

Gemäß einer Ausgestaltung des Verfahrens wird bei Vorliegen einer negativen Differenz anhand des Betrages der Differenz bestimmt, welcher der Detektoren fehlerhaft arbeitet.

Weiter besteht die Erfindung in einem radiometrischen Meßgerät zur Montage an einem mit einem Füllgut befüllbaren Behälter, mit

- einem radioaktiven Strahler, der im Betrieb radioaktive Strahlung durch den Behälter sendet,
- einem ersten und einem zweiten Detektor,
- die dazu dienen durch den Behälter hindurchdringende Strahlung aufzunehmen und eine der aufgenommenen Strahlung entsprechende elektrische Impulsrate zu erzeugen,
- einem Offset-Generator, der der Impulsrate des ersten Detektors einen einen Status des ersten Detektors wiedergebenden Offset überlagert, und
- einer im zweiten Detektor integrierten übergeordneten Einheit,
- -- mit der der erste Detektor über eine Verbindungsleitung verbunden ist,

- --- über die der erste Detektor ein der Überlagerung der Impulsrate und des Offsets entsprechendes Ausgangssignal zuführt,
- der die Impulsrate und ein Status des zweiten
 Detektors zugeführt wird, und

5

10

25

30

-- die anhand der eingehenden Signale ein Meßsignal und/oder einen Status des Meßgeräts ableitet.

Weiter besteht die Erfindung in einem radiometrischen Meßgerät zur Montage an einem mit einem Füllgut befüllbaren Behälter, mit

- einem radioaktiven Strahler, der im Betrieb radioaktive Strahlung durch den Behälter sendet,
- einem ersten und einem zweiten Detektor,
- die dazu dienen durch den Behälter
 hindurchdringende Strahlung aufzunehmen und eine der aufgenommenen Strahlung entsprechende elektrische Impulsrate zu erzeugen und ein der Impulsrate entsprechendes Ausgangssignal an eine im zweiten Detektor integrierte übergeordnete Einheit
 zu übertragen,
 - bei dem der Strahler eine Stärke aufweist, bei der für jeden Detektor immer eine Mindestimpulsrate größer Null zu erwarten ist,
 - bei dem in jedem Detektor ein Abschalter vorgesehen, der die Übertragung des Ausgangssignals an die übergeordnete Einheit unterbindet, wenn der Detektor fehlerhaft arbeitet, und
 - bei dem die übergeordnete Einheit anhand der Ausgangssignale ein Meßsignal und/oder einen Status des Meßgeräts ableitet.

Ein Vorteil der Erfindung besteht darin, daß die Detektoren nur durch eine einzige Leitung, die Sammelleitung bzw. die Verbindungsleitung, verbunden sind, über die sowohl die Statusinformation als auch die Meßinformation übertragen wird, indem ein einziges Ausgangssignal erzeugt wird, daß beide Informationen beinhaltet. Dies geschieht, indem der Impulsrate ein statusabhängiger Offset überlagert wird, oder indem der Impulsrate abhängig vom Status ein detektor-spezifischer Offset überlagert wird oder dies nicht geschieht.

Die Erfindung und weitere Vorteile werden nun anhand der Figuren der Zeichnung, in denen sieben Ausführungsbeispiele dargestellt sind, näher erläutert; gleiche Teile sind in den Figuren mit gleichen Bezugszeichen versehen.

15 Fig. 1 zeigt schematisch ein an einem Behälter montiertes radiometrisches Meßgerät mit zwei Detektoren;

Fig. 2 zeigt schematisch den Aufbau eines Detektors;

20

5

Fig. 3 zeigt schematisch eine Überlagerung von Impulsrate und Offset;

25

Fig. 4 zeigt ein der Überlagerung gemäß Fig. 3 entsprechendes Signal;

Fig. 5

zeigt schematisch den Aufbau eines Meßgeräts mit drei Detektoren, bei dem der Impulsrate jedes Detektors ein vom Status des jeweiligen Detektors abhängiger Offset überlagert wird;

30

Fig. 6 zeigt schematisch den Aufbau eines Meßgeräts mit

drei Detektoren, bei dem der Impulsrate jedes Detektors ein detektor-spezifischer Offset überlagert wird;

Fig. 7 zeigt schematisch den Aufbau eines Detektors, bei
dem abhängig vom Status des Detektors ein OffsetGenerator zur Erzeugung eines detektor-spezifischen Offsets oder
ein Abschalter eingesetzt wird;

5

10

15

20

25

30

Fig. 9

Fig. 8 zeigt schematisch den Aufbau eines Meßgeräts mit zwei Detektoren, bei dem mindestens ein Detektor einen Offset-Generator aufweist, der der Impulsrate des Detektors einen vom Status desselben abhängigen Offset überlagert;

zeigt schematisch den Aufbau eines Meßgeräts mit zwei Detektoren, die jeweils einen Abschalter aufweisen, der eine Übertragung der Impulsrate unterdrückt, wenn der jeweilige Detektor nicht einwandfrei arbeitet; und

Fig. 10 zeigt den Aufbau eines Detektors mit einem Offset-Generator der dem Szintillator Referenzlichtblitze zuführt.

In Fig. 1 ist schematisch eine Meßanordnung mit einem radiometrischen Meßgerät dargestellt. Die Meßanordnung umfaßt einen mit einem Füllgut 1 befüllbaren Behälter 3. Das radiometrische Meßgerät ist an dem Behälter 3 montiert und dient der Erfassung einer physikalischen Größe, z.B. eines Füllstandes des Füllgutes 1 in dem Behälter 3 oder einer Dichte des Füllguts 1.

Hierzu weist das radiometrische Meßgerät einen radioaktiven Strahler 5 auf, der im Betrieb radioaktive Strahlung durch den Behälter 3 sendet. Der Strahler 5 besteht z.B. aus einem Strahlenschutzbehälter in den ein radioaktives Präparat, z.B. ein Co 60 oder Cs 137 Präparat, eingebracht ist. Der Strahlenschutzbehälter weist eine Öffnung auf, durch die die Strahlung unter einem Öffnungswinkel α austritt und den Behälter 3 durchstrahlt.

5

10

15

20

25

30

Das Meßgerät umfaßt mindestens einen Detektor D, der dazu dient durch den Behälter 3 hindurchdringende Strahlung aufzunehmen und eine der aufgenommenen Strahlung entsprechende elektrische Impulsrate N zu erzeugen. Je nach Anwendung können dabei mehrer Detektoren D_i hintereinander geschaltet werden, um einen ausreichend großen Bereich, in dem Strahlung aufgenommen werden kann, abzudecken. In dem in Fig. 1 dargestellten Ausführungsbeispiel sind zwei Detektoren, D_1 und D_2 , vorgesehen.

Fig. 2 zeigt einen vereinfachten Aufbau eines Detektors D_i.

Hierbei handelt es sich um einen Szintillationsdetektor mit einem Szintillator 7, hier einem Szintillationstab und einem daran angeschlossenen Photomultiplier 9. Szintillator 7 und Photomultiplier 9 befinden sich in einem in Fig. 1 dargestellten Schutzrohr 11, z.B. aus einem Edelstahl, das an einer dem Strahler 5 gegenüberliegenden Außenwand des Behälters 3 montiert ist. Der Szintillationsstab ist im Prinzip ein Plexiglas-Stab, der optisch sehr rein ist. Auf den Szintillator 7 auftreffende radiometrische Strahlung erzeugt im Szintillationsmaterial Lichtblitze. Diese werden durch den Photomultiplier 9 erfaßt und in elektrische Impulse n umgesetzt.

Jeder Detektor D_i umfaßt eine Elektronik 13, die die vom Photomultiplier 9 erzeugten elektrischen Impulse n aufnimmt und eine der aufgenommenen Strahlung entsprechende Impulsrate N erzeugt.

Die Elektronik 13 umfaßt vorzugsweise einen Zähler 15 und einen daran angeschlossenen Mikrocontroller 17. Der Zähler 15 zählt die eingehenden elektrischen Impulse n und der Mikrocontroller 17 bestimmt anhand der gezählten Impulse n eine Impulsrate N.

5

10

Gemäß einer ersten Ausführungsform weist jeder Detektor D_i zusätzlich einen Offset-Generator 19 auf, der einen einem Status des jeweiligen Detektors D_i entsprechenden Offset O_i erzeugt. Die Offset-Generatoren 19 sind vorzugsweise, wie in Fig. 2 dargestellt in dem Mikrocontroller 17 integriert. Als Offset-Generator 19 eignet sich z.B. ein Impulsgenerator, der elektrische Impulse k mit einer dem Offset O_i entsprechenden Frequenz erzeugt. Der Offset O_i wird der Impulsrate N_i des jeweiligen Detektors D_i überlagert. Fig. 3 zeigt schematisch eine solche Überlagerung. Dabei werden die vom Offset-Generator 19 erzeugten Impulse k den vom Photomultiplier 9 aufgenommenen elektrischen Impulsen n hinzuaddiert. Ein der Überlagerung entspechendes Ausgangssignal ist in Fig. 4 dargestellt. Dort sind die Impulse k des Offset-Generators 19 als Rechteckimpulse dargestellt. Die Impulse n des Photomultipliers 9 sind ebenfalls als Rechteckimpulse dargestellt. Zur Unterscheidung wurde für die Darstellung der Impulse n des Photomultipliers 9 eine gestrichelte Linienführung verwendet.

20

15

Das Ausgangssignal wird im Mikrocontroller 17 generiert und steht über eine Ausgangsstufe 20 des Mikrokontrolers 17 zur Verfügung.

-25

Es ist eine Sammelleitung 21 vorgesehen, der jeder Detektor D_i sein der Überlagerung der jeweiligen Impulsrate N_i und des jeweiligen Offsets O_i entsprechendes Ausgangssignal zuführt.

30

Die Sammelleitung 21 führt von einem Detektor D_i zum nächsten diesem jeweils benachbarten Detektor D_{i+1} . Fig. 5 zeigt ein Ausführungsbeispiel mit einer Serie von drei hintereinander geschalteten Detektoren D_1 , D_2 und D_3 . Die Sammelleitung 21 beginnt bei dem ersten Detektor D_1 der Serie. Sie führt von

jedem Detektor D_i zu dem diesen jeweils benachbarten Detektor D_{i+1} der Serie und endet beim letzten Detektor der Serie. In Fig. 5 ist dies der Detektor D_3 . Vom letzten Detektor D_3 führt sie zu einer übergeordneten Einheit 23.

In der Sammelleitung 21 überlagern sich die Ausgangssignale der einzelnen Detektoren Di zu einem Summensignal S, daß der Summe der einzelnen Ausgangssignale entspricht.

Die übergeordnete Einheit 23 leitet anhand des Summensignals S ein Meßsignal M und/oder einen Status des Meßgeräts ab. Hierzu sind verschiedene Verfahren einsetzbar.

Ein erstes Verfahren wird nachfolgend anhand des in Fig. 5 dargestellten Ausführungsbeispiels näher erläutert. Hierbei wird jedem Detektor D_i ein Sollwert O_{si} für den Offset O_i zugeordnet. Die Sollwerte O_{si} sind so zu wählen, daß sie größer als eine Summe der für die jeweiligen Detektoren D_i zu erwartende maximalen Impulsrate N_i^{max} sind.

 $O_{\text{si}} > \Sigma_{\text{i}} \ N_{\text{i}}^{\,\text{max}}$

 $O_{si} > Z_i N_i$ 20

10

15

25

30

Ist die zu erwartende maximale Impulsrate N_i^{max} jedes Detektors D_i beispielsweise kleiner als 20 Impulse n pro Zeitintervall, so sind die Sollwerte O_{si} bei dem in Fig. 5 dargestellten Ausführungsbeispiel größer als 60 Impulse k pro Zeitintervall zu wählen.

Im einfachsten Fall wird so verfahren, das die Offset-Generatoren 19 der Detektoren D_i einen Offset O_i erzeugen der dem Sollwert O_{si} entspricht, wenn der jeweilige Detektor D_i einwandfrei arbeitet und keinen Offset, bzw. einen Offset von 0 Impulsen k pro Zeitintervall, erzeugen, wenn der Detektor D_i nicht einwandfrei arbeitet.

Die übergeordnete Einheit 23 weist einen Zähler 25 und eine daran angeschlossene Auswerteeinheit 27 auf. Der Zähler 25 zählt die eingehenden Impulse n_i, k_i Es wird anhand des Summensignals eine Gesamtzählrate G bestimmt. Die Gesamtzählrate G ist gleich der Summe der einzelnen Impulsraten N_i der einzelnen Detektoren D_i und der einzelnen Offsets O_i.

Folglich gilt:

$$G = \Sigma_i(N_i + O_i)$$

10

5

In einem nächsten Schritt bildet die Auswerteeinheit 27 der übergeordnete Einheit 23 eine Differenz D von dieser Gesamtzählrate G und einer der Summe der Sollwerte O_{si} der Offsets O_i entsprechenden Zählrate. Hierzu ist an die Auswerteeinheit 27 ein Speicher 28 angebunden, in dem die Sollwerte O_{si} der Offsets O_i abgelegt sind

Es gilt:

$$D = G - \Sigma_i O_{si}$$

20

15

Wenn alle Detektoren einwandfrei arbeiten, ist diese Differenz positiv und gleich der Summe der Impulsraten N, der einzelnen Detektoren D.

25

Arbeitet mindestens ein Detektor D_i nicht einwandfrei ist die Differenz D negativ. Eine negative Differenz D bedeutet, daß ein Fehler vorliegt. Mindestens einer der Detektoren D_i arbeitet nicht einwandfrei.

Die Auswerteeinheit 27 bestimmt, ob die Differenz D positiv oder negativ ist. Sie erkennt, daß ein Fehler vorliegt, wenn die Differenz D negativ ist.

30

Zusätzlich kann, bei vorliegen einer negativen Differenz D, d.h. eines Fehlers, anhand des Betrages D der Differenz D bestimmt werden, welcher der

Detektoren D_i fehlerhaft arbeitet. Dies erleichtert eine an die Fehlererkennung anschließende Fehlersuche sowie die Behebung des Fehlers.

Hierzu werden beispielsweise bei dem anhand von Fig. 5 beschriebenen

Ausführungsbeispiel alle Sollwerte O_{si} der Offsets O_i so gewählt, daß sie voneinander verschieden sind, und die Differenz jeweils zweier Sollwerte O_{si} jeweils größer als die Summe der für die jeweiligen Detektoren D_i zu erwartende maximalen Impulsrate N_i^{max} sind, d.h. es gilt:

.10
$$O_{si} \neq O_{sj}$$
, wenn $i \neq j$;
$$|O_{si} - O_{sj}| > \Sigma_i N_i^{max}$$

$$O_{si} > \Sigma_i N_i^{max}$$
;

20

Gilt, wie oben als Beispiel angegeben N_i^{max} < 20 so kann beispielsweise der Sollwert O_{s1} = 100, der Sollwert O_{s2} = 200 und der Sollwert O_{s3} = 300 gewählt werden.

Arbeitet ein einzelner Detektor D_i nicht einwandfrei so gilt für den Betrag | D| der Differenz D:

$$|D| = |\Sigma_i N_i - O_{si}|$$
 und somit

$$\boldsymbol{O}_{\text{si}}$$
 - $\boldsymbol{\Sigma}_{\text{i}}$ $\boldsymbol{N}_{\text{i}}^{\,\text{max}} < \boldsymbol{|D|} < \boldsymbol{O}_{\text{si.}}$

- Arbeitet Detektor D₁ nicht einwandfrei liegt der Betrag | D| der Differenz D folglich zwischen 40 und 100. Arbeitet Detektor D₂ nicht einwandfrei liegt der Betrag | D| der Differenz D zwischen 140 und 200. Arbeitet Detektor D₃ nicht einwandfrei liegt der Betrag | D| der Differenz D zwischen 240 und 300.
- Anhand des Betrags | D | der Differenz D läßt sich folglich eindeutig bestimmen, welcher Detektor D nicht einwandfrei arbeitet. Die Zuordnung des Betrag | D |

der Differenz D zu dem betroffenen Detektor D, setzt allerdings voraus, daß nur ein einziger Detektor D, nicht einwandfrei arbeitet.

Möchte man auch bei zwei nicht einwandfrei arbeitenden Detektoren D_i und D_j ermitteln, welche Detektoren D_i, D_j dies sind, so muß zusätzlich für die Sollwerte O_{si}, O_{sj} der Offsets O_i, O_j jedes möglicherweise betroffene Detektorpaares D_i, D_j gelten:

Osi + Osi
$$\notin$$
 [Osk - Σ_i N_i^{max}; Osk + Σ_i N_i^{max}]

10

Um bei dem angeführten Beispiel zu bleiben kann beispielsweise der Sollwert O_{s1} für den ersten Detektor D_1 gleich 100, der Sollwert O_{s2} für den zweiten Detektor D_2 gleich 500 und der Sollwert O_{s3} für den dritten Detektor D_3 gleich 1000 gesetzt werden.

15

Arbeitet nur ein Detektor D_i nicht einwandfrei so gilt für den Betrag | D| der Differenz D:

$$|D| = |\Sigma_i N_i - O_{si}|$$
 und somit

20

25

$$O_{si} - \Sigma_i N_i^{max} < |D| < O_{si}$$

Arbeitet Detektor D₁ nicht einwandfrei liegt der Betrag | D| der Differenz D folglich zwischen 40 und 100. Arbeitet Detektoren D₂ nicht einwandfrei liegt der Betrag | D| der Differenz D zwischen 440 und 500. Arbeitet Detektor D₃ nicht einwandfrei liegt der Betrag | D| der Differenz D zwischen 940 und 1000.

Arbeiten die Detektoren D_i und D_j nicht einwandfrei so gilt für den Betrag | D| der Differenz D:

$$| D | = | \Sigma_i N_i - O_{sj} - O_{si} |$$
 und somit

$$O_{si} + O_{si} - \Sigma_i N_i^{max} < |D| < O_{si} + O_{si}$$

5

10

15

20

25

30

Arbeiten die Detektoren D_1 und D_2 nicht einwandfrei liegt der Betrag |D| der Differenz D folglich zwischen 540 und 600. Arbeiten die Detektoren D_1 und D_3 nicht einwandfrei liegt der Betrag |D| der Differenz D zwischen 1040 und 1100. Arbeiten die Detektoren D_2 und D_3 nicht einwandfrei liegt der Betrag |D| der Differenz D zwischen 1440 und 1500.

Arbeitet keiner der Detektoren D₁, D₂ und D₃ einwandfrei liegt der Betrag | D| der Differenz D zwischen 1540 und 1600. Bei dem genannten Ausführungsbeispiel kann folglich anhand des Betrages | D| der Differenz D auch der letztgenannte Fall erkannt werden.

Werden mehr als drei Detektoren eingesetzt, ist das Verfahren entsprechend zu erweitern.

Die übergeordnete Einheit 23 erkennt anhand der Differenz D das Vorliegen eines Fehler und leitet daraus den Status des Meßgeräts ab. Im einfachsten Fall enthält der Status die Information, daß alle Detektoren D_i einwandfrei arbeiten oder mindestens einer dies nicht tut. Zusätzlich kann der Status bei Vorliegen eines Fehlers die Information enthalten, welcher bzw. welche Detektor/en D_i nicht einwandfrei arbeiten.

Bei Vorliegen eines Fehlers erzeugt die übergeordnete Einheit 23 ein den Status wiedergebendes Ausgangssignal, das beispielsweise einer Meßgerätelektronik 29 oder einer Prozeßleitstelle zugeführt wird. Sie kann zusätzlich eine Fehlermeldung abgeben und/oder einen Alarm auslösen.

Liegt kein Fehler vor, so ist die Differenz D positiv. Die übergeordnete Einheit 23 erkennt dies und erzeugt anhand des Summensignals ein Meßsignal M. Im einfachsten Fall entspricht das Meßsignal M der Differenz D. Wenn alle

Detektoren einwandfrei arbeiten, ist diese Differenz positiv und gleich der Summe der einzelnen Impulsraten N_i der einzelnen Detektoren D_i

$$D = G - \Sigma_i O_{si} = \Sigma_i N_i$$

5

Anhand dieses Meßsignals wird die zu messende physikalische Größe, z.B. ein Füllstand oder eine Dichte des Füllguts 1 bestimmt. Dies kann auf herkömmliche Weise entweder mittels einer in der übergeordneten Einheit 23 integrierten Meßgerätelektronik 29 oder in einer entfernt angeordneten Auswerteeinheit 31 geschehen.

10

Arbeiten alle Detektoren D_i einwandfrei kann die übergeordnete Einheit 23 ebenfalls ein den Status wiedergebendes Ausgangssignal abgeben. Hierdurch kann auch das fehlerfreie arbeiten der Detektoren D_i, beispielsweise der Meßgerätelektronik 29, der Auswerteeinheit 31 oder einer anderen Stelle, z.B. einer Prozeßleitstelle, angezeigt werden.

15

Die übergeordnete Einheit 23 kann räumlich in dem jeweils letzten Detektor einer Serie angeordnet sein; sie kann aber auch separat angeordnet sein. Das gleiche gilt für die Meßgerätelektronik 29.

20

25

30

Ein Vorteil der Erfindung besteht darin, daß aufgrund der Überlagerung der Impulsraten N_i und der Offsets O_i und deren Zusammenführung in der Sammelleitung 21 nur eine einzige Verbindungsleitung, nämlich die Sammelleitung 21 benötigt wird, um sowohl die eigentliche Meßinformation als auch die Statusinformation zu übertragen. Dies reduziert den erforderlichen Verdrahtungsaufwand erheblich. Insb. in sicherheitsrelevanten Bereichen, in denen radiometrische Meßgeräte üblicherweise eingesetzt werden, z.B. in Bereichen mit erhöhter Explosionsgefahr, bestehen hohe Sicherheitsanforderungen an Verbindungsleitungen, mit denen in der Regel erhöhte Anschaffungs- und Installationskosten verbunden sind. Diese Kosten werden durch die erfindungsgemäßen radiometrischen Meßgeräte deutlich

reduziert. Die Sammelleitung 21 kann eine sehr einfache Verbindung, z.B. ein Lichtwellenleiter oder eine Kupferleitung sein. Ebenso ist es möglich die Sammelleitung 21 durch eine Funkverbindung zu ersetzen.

Die Übertragung kann auf sehr einfache Weise vorgenommen werden. Insb. wird kein Übertragungsprotokoll benötigt. Die Übertragung der Ausgangssignale der einzelnen Detektoren D_i kann vielmehr bei entsprechender Kalibration über jede Art von Impulsausgang zu einem entsprechenden Impulseingang der übergeordneten Einheit 23 erfolgen.

Fig. 6 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen radiometrischen Meßgeräts. Aufgrund der Übereinstimmung zu dem zuvor beschriebenen Ausführungsbeispiel werden nachfolgend lediglich die bestehenden Unterschiede näher erläutert.

Auch hier sind Detektoren D_i vorgesehen, die dazu dienen durch den Behälter 3 hindurchdringende Strahlung aufzunehmen und eine der aufgenommenen Strahlung entsprechende elektrische Impulsrate N_i zu erzeugen.

Jeder Detektor D_i umfaßt einen Offset-Generator 19, der der Impulsrate N_i des jeweiligen Detektors D_i einen detektor-spezifischen Offset O_{di} überlagert. Im Unterschied zu dem vorangehenden Ausführungsbeispiel sind die Offsets O_{di} detektor-spezifisch und unabhängig vom Status des jeweiligen Detektors D_i.

Jeder Detektor D_i weist einen Abschalter 33 auf, der dazu dient eine Übertragung der Impulsrate N_i und des Offsets O_d zu unterdrücken, wenn der Detektor D_i fehlerhaft arbeitet. Der Abschalter 33 ist beispielsweise ein einfacher Schalter, der die Verbindung des jeweiligen Detektors D_i zur Sammelleitung 21 unterbricht. Der Abschalter 33 kann aber auch in der Ausgangsstufe 20 des Mikrocontrollers 17 integriert sein.

Im Betrieb führt folglich nur jeder einwandfrei arbeitende Detektor D_i ein der Überlagerung der jeweiligen Impulsrate N_i und des jeweiligen Offsets O_{di}

10

15

20

25

entsprechendes Ausgangssignal der Sammelleitung 21 zu. Nicht einwandfrei arbeitende Detektoren D_i geben dagegen kein Ausgangssignal ab.

Die Sammelleitung 21 führt, wie auch bei dem zuvor beschriebenen

Ausführungsbeispiel, ein der Überlagerung der Ausgangssignale
entsprechendes Summensignal der übergeordneten Einheit 23 zu. Diese leitet,
wie bereits im Zusammenhang mit dem vorangegangenen Ausführungsbeispiel
beschrieben, anhand des Summensignals ein Meßsignal und/oder einen Status
des Meßgeräts ab.

Bei entsprechender Wahl der detektor-spezifischen Offsets O_{di} kann hier, genau wie bei dem zuvor beschriebenen Ausführungsbeispiel, erkannt werden, welcher bzw. welche Detektor/en D_i nicht einwandfrei arbeiten. Zusätzlich kann eine Restzählrate R, die gleich der Summe der Zählraten N_i der einwandfrei arbeitenden Detektoren D_i ist, bestimmt werden.

Sie ist gleich der Differenz aus der Gesamtzählrate G und der Summe der Offsets O_{di} der einwandfrei arbeitenden Detektoren D_{l} . Arbeitet beispielsweise der Detektor D_{x} nicht einwandfrei, so gilt:

 $R = G - \Sigma_{i,i\neq x} O_{di}$

10

15

20

25

30

Hieraus können gegebenenfalls hilfreiche Zusatzinformationen abgeleitet werden. Als Beispiel sei hier nur eine Füllstandsmessung mit zwei Detektoren genannt, wie sie in Fig. 1 dargestellt ist. Fällt einer der Detektoren D₁ oder D₂ aus, so kann anhand der Zählrate N₁ des verbleibenden Detektors bestimmt werden, ob sich Füllgut 1 in dem vom verbleibenden Detektor abgedeckten Bereich des Behälters 3 befindet. Diese rudimentäre Füllstandsinformation kann z.B. zur sicherheitsgerichteten Steuerung eines Befüllens oder Entleerens des Behälters 3 herangezogen werden. So kann z.B. ein Überfüllen oder Leerlaufen des Behälters 3 vermieden werden.

Alternativ zu der in Fig. 6 dargestellten Ausführungsform, können die Detektoren D_i auch so aufgebaut sein, daß durch einen Abschalter 35, lediglich die Überlagerung des detektor-spezifischen Offsets O_d unterbunden wird, wenn der jeweilige Detektor D_i nicht einwandfrei arbeitet. Dies ist in Fig. 7 dargestellt. Arbeitet der Detektor D_i nicht einwandfrei, wird die Addition des Offset O_d durch den Abschalter 34 unterbunden. Dies ist in Fig. 7 durch eine Oder-Knüpfung von Offset-Generator 19 und Abschalter 34 dargestellt. Diese Kombination von Offset-Generator 19 und Abschalter 34 bildet im Ergebnis einen Offset-Generator, der einen status-abhängigen Offset abgibt. Mit dem Summensignal wird in diesem Fall genauso verfahren, wie bei dem anhand von Fig. 5 erläuterten Ausführungsbeispiel.

In Fig. 8 ist ein Ausführungsbeispiel dargestellt, bei dem das Meßgerät zwei Detektoren, nämlich einen ersten Detektor D₁ und einen zweiten D₂ aufweist. Das Meßgerät ist an dem mit dem Füllgut 1 befüllbaren Behälter 3 montiert. Der radioaktive Strahler 5 sendet im Betrieb radioaktive Strahlung durch den Behälter 3. Der erste und der zweite Detektor D₁ und D₂, dienen dazu durch den Behälter 3 hindurchdringende Strahlung aufzunehmen und eine der aufgenommenen Strahlung entsprechende elektrische Impulsrate N₁, N₂ zu erzeugen.

Der erste Detektor D_1 weist einen Offset-Generator 19 auf, der der Impulsrate N_1 des ersten Detektors D_1 einen den Status des ersten Detektors D_1 wiedergebenden Offset O_1 überlagert. Dies geschieht beispielsweise genau wie bei dem in Fig. 5 beschriebenen Ausführungsbeispiel.

Es ist auch hier eine übergeordnete Einheit 23 vorgesehen. Sie ist im zweiten Detektor D_2 integriert. Der erste Detektor D_1 ist über eine Verbindungsleitung 37 mit der übergeordneten Einheit 23 verbunden, über die der erste Detektor D_1 ein der Überlagerung der Impulsrate N_1 und des Offsets O_1 entsprechendes Ausgangssignal zuführt. Die Verbindungsleitung 37 ist hierzu an einen ersten Eingang 39 der übergeordneten Einheit 23 angeschlossen.

10

15

5

20

25

Zusätzlich werden der übergeordneten Einheit 23 die Impulsrate N_2 und der Status des zweiten Detektors D_2 zugeführt.

Hierzu kann der zweite Detektor D₂ genau wie der erste Detektor D₁ mit einem Offset-Generator 19 ausgestattet sein, der der Impulsrate N₂ einen den Status des zweiten Detektors D₂ wiedergebenden Offset O₂ überlagert. Ein der Überlagerung entsprechendes Ausgangssignal liegt dann an einem zweiten Eingang 41 der übergeordneten Einheit 23 an.

10

Alternativ kann die übergeordnete Einheit 23 die Statusinformation unmittelbar über einen dritten Eingang 43 erhalten. Der zweite Detektor D_2 braucht bei dieser Ausführungsvariante dann keinen Offset-Generator 19 aufzuweisen. In Fig. 8 ist sowohl der Offset-Generator 19 des zweiten Detektors D_2 als auch der alternativ vorzusehende dritte Eingang 43 dargestellt.

.15

Die übergeordnete Einheit leitet anhand der eingehenden Signale ein Meßsignal und/oder einen Status des Meßgeräts ab.

20

Dies geschieht analog zu den zuvor beschriebenen Ausführungsbeispielen, indem den Offsets O_1 und gegebenenfalls O_2 ein Sollwert O_{s1} , O_{s2} zugewiesen wird, den der jeweilige Offset O_1 , O_2 annimmt, wenn der zugehörige Detektor D_1 , D_2 einwandfrei arbeitet. Arbeitet der Detektor D_1 , D_2 nicht einwandfrei, so wird beispielsweise kein Offset überlagert.

25

30

Da die übergeordnete Einheit 23 in dem zweiten Detektor D_2 integriert ist, können die Informationen der Detektoren D_1 und D_2 über die Eingänge 37, 39 und gegebenenfalls 41 getrennt verarbeitet werden, ohne daß zusätzlich zu der Verbindungsleitung 37 weitere außerhalb der Detektoren verlaufende Leitungen erforderlich sind.

Dies bietet den Vorteil, daß die Sollwerte O_{s1} und gegebenenfalls O_{s2} lediglich größer sein müssen als die maximal für den jeweiligen Detektor D_1 , D_2 zu erwartende Impulsrate N_1^{max} , aber durchaus kleiner als die Summer der maximal zu erwartende Impulsrate $N_1^{max} + N_2^{max}$ sein können. Dies verbessert die Meßgenauigkeit.

Anhand des Ausgangssignals des ersten Detektors D_1 bestimmt die übergeordnete Einheit 23 eine Zählrate Z_1 , die gleich der Summe der Impulsrate N_1 und des Offsets O_1 ist. Anschließend wird die Differenz dieser Zählrate Z_1 und des Sollwerts O_{s1} für den Offset O_1 des ersten Detektors D_1 gebildet. Ist die Differenz positiv, so arbeitet Detektor D_1 einwandfrei und der Betrag der Differenz ist gleich der Impulsrate N_1 des ersten Detektors D_1 . Ist die Differenz negativ, so erkennt die übergeordnete Einheit 23, daß der Detektor D_1 nicht einwandfrei arbeitet.

15

20

5

10

Bei der Ausführungsvariante, bei der der zweite Detektor D_2 ebenfalls mit einem Offset-Generator 19 ausgestattet ist wird hinsichtlich des zweiten Detektors D_2 analog vorgegangen, d.h. die übergeordnete Einheit 23 bestimmt anhand des Ausgangssignals der zweiten Detektors D_2 eine Zählrate Z_2 , die gleich der Summe der Impulsrate N_2 und des Offsets O_2 ist. Anschließend wird die Differenz dieser Zählrate Z_2 und des Sollwerts O_{s2} für den Offset O_2 des zweiten Detektors D_2 gebildet. Ist die Differenz positiv, so arbeitet Detektor D_2 einwandfrei und der Betrag der Differenz ist gleich der Impulsrate N_2 des zweiten Detektors D_2 . Ist die Differenz negativ, so erkennt die übergeordnete Einheit 23, daß der Detektor D_2 nicht einwandfrei arbeitet.

25

30

Bei der alternativen Ausführungsvariante, bei der die Statusinformation separat übertragen wird, erkennt die übergeordnete Einheit 23 anhand des am dritten Eingang 43 anliegenden Signals unmittelbar, ob der zweite Detektor D_2 einwandfrei arbeitet. Weiter bestimmt sie anhand des am zweiten Eingang 41 eingehenden Ausgangssignals des zweiten Detektors D_2 eine Zählrate Z_2 , die gleich der Impulsrate N_2 des zweiten Detektors D_2 ist.

Bei beiden Varianten liegt in der übergeordneten Einheit 23 folglich der Status des ersten und des zweiten Detektors D_1 und D_2 vor.

Arbeiten beide Detektoren D₁, D₂ einwandfrei, liegen in der übergeordneten Einheit 23 die Impulsraten N₁ und N₂ vor. Hieraus wird durch eine einfache Addition der Impulsraten N₁ und N₂ ein Meßsignal abgeleitet, daß der von beiden Detektoren D₁ und D₂ aufgenommenen Strahlung entspricht. Zusätzlich steht über die einzelnen Impulsraten N₁, N₂ die Meßinformation jedes einzelnen Detektors D₁, D₂ zur Verfügung. Arbeitet nur einer der Detektoren D₁ oder D₂ einwandfrei, kann diese Zusatzinformation, wie bereits weiter oben beschrieben, separat genutzt werden.

Fig. 9 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen

Meßgeräts. Der Aufbau entspricht weitestgehend dem in Fig. 8 dargestellten

Ausführungsbeispiel. Deshalb werden nachfolgend lediglich die bestehenden

Unterschiede näher erläutert.

20

25

Bei dem in Fig. 9 dargestellten Ausführungsbeispiel weist der Strahler 5 eine Stärke auf, bei der für jeden Detektor D_1 , D_2 immer eine Mindestimpulsrate N_i^{min} größer Null zu erwarten ist.

Der erste Detektor D₁ ist über die Verbindungsleitung 37 an den ersten Eingang 37 angeschlossen, der zweite Detektor D₂ ist unmittelbar an den zweiten Eingang 41 der im zweiten Detektor D₂ integrierten übergeordneten Einheit 23 angeschlossen. Im Unterschied zu dem in Fig. 8 dargestellten Ausführungsbeispiel sind keine Offset-Generatoren 19 und kein dritter Eingang 43 vorgesehen.

Stattdessen ist in jedem Detektor D_1 , D_2 ein Abschalter 45 vorgesehen, der die Übertragung eines der Impulsrate N_1 bzw. N_2 des jeweiligen Detektors D_1 , D_2

entsprechenden Ausgangssignal an die übergeordnete Einheit unterbindet, wenn der Detektor D_1 , D_2 fehlerhaft arbeitet.

Die der übergeordneten Einheit 23 zugeführten Signale der Detektoren D_1 und D_2 entsprechen somit der Impulsrate N_1 , N_2 der Detektoren D_1 , D_2 , wenn die jeweiligen Detektoren D_1 , D_2 einwandfrei arbeiten.

5

10

15

20

25

30

Die übergeordnete Einheit 23 weist vorzugsweise einen ersten Zähler auf, der die am ersten Eingang 39 eingehenden Impulse n_1 zählt und einen zweiten Zähler, der die am zweiten Eingang 41 eingehenden Impulse n_2 zählt, und bestimmt die Zählraten Z_1 , Z_2 der eingehenden Impulse n_1 , n_2 . Beträgt eine Zählrate Z_1 , Z_2 Null Impulse pro Zeitintervall, so erkennt die übergeordnete Einheit 23, daß der zugehörige Detektor D_1 , D_2 nicht einwandfrei arbeitet. Hieraus wird der Status des Meßgeräts abgeleitet und eine entsprechende Statusinformation zur Verfügung gestellt. Die Statusinformation enthält die Aussage, daß beide Detektoren D_1 und D_2 einwandfrei arbeiten, wenn beide Zählraten Z_1 und Z_2 von Null verschieden sind. Für den Fall, daß eine oder beide Zählraten Z_1 , Z_2 gleich Null sind, enthält sie die Aussage, daß das Meßgerät nicht einwandfrei arbeitet. Zusätzlich kann die Statusinformation Angaben dazu enthalten, welcher bzw. welche Detektor/en D_1 , D_2 nicht einwandfrei arbeiten.

Die Statusinformation wird über einen Ausgang 47 der übergeordneten Einheit 23, der vorzugsweise gleichzeitig der einzige Ausgang des zweiten Detektors D₂ und damit des Meßgeräts ist, bereitgestellt. Anhand der Statusinformation kann beispielsweise ein Alarm ausgelöst werden.

Sind beide Zählraten Z_1 und Z_2 von Null verschieden, arbeiten beide Detektoren D_1 und D_2 einwandfrei und die übergeordnete Einheit 23 leitet ein Meßsignal ab. Dies basiert auf der Summe der Zählraten $Z_1 + Z_2$, die in diesem Fall gleich der Summe der Impulsraten $N_1 + N_2$ der Detektoren D_1 und D_2 ist. Das Meßsignal kann dabei ein Signal sein, daß die Summe der Impulsraten $N_1 + N_2$

wiedergibt Das Meßsignal wird dann beispielsweise einer Meßgerätelektronik 29 oder einer separaten Auswerteeinheit 31 zugeführt, die anhand des Meßsignals die mit dem Meßgerät zu messende Größe, z.B. einen Füllstand oder eine Dichte, bestimmt. Die Meßgerätelektronik 29 ist beispielsweise ebenfalls im zweiten Detektor D₂ angeordnet.

Alternativ kann eine Auswertung und/oder Verarbeitung der Impulsraten N_1 + N_2 , auch in der übergeordneten Einheit 23 vorgenommen werden.

10 Status und/oder Meßsignal stehen über den Ausgang 47 zur Verfügung.

Bei allen erfindungsgemäßen Meßgeräten genügt eine einzige Sammelleitung bzw. eine einzige Verbindungsleitung um sowohl den Status als auch die eigentliche Meßinformation zu übertragen.

15

5

Jeder Detektor D_i kann natürlich nur dann seinen Status an die übergeordnete Einheit 23 übermitteln, wenn der Status zuvor bestimmt worden ist. In der Meßtechnik sind eine Reihe von Verfahren zur Kontrolle und/oder Überwachung der einwandfreien Arbeitsweise von Detektoren bekannt.

20

30

Ein Beispiel hierzu ist die Kontrolle und/oder Überwachung der Energieversorgung der Detektoren oder einzelner Detektorbestandteile.

Weiter ist es bei den beschriebenen Detektoren D_i möglich, die optische Kopplung zwischen dem Szintillator 7 und dem Photomultiplier 11 zu kontrollieren.

Hierzu werden z.B. über einen Lichtleiter 49 kontinuierlich Referenzlichtblitze durch den Szintillator 7 gesendet. Unabhängig davon ob der Szintillator 7 Gammastrahlung ausgesetzt ist oder nicht, müssen aufgrund der Referenzlichtblitze Referenzimpulse am Ausgangs des Photomultipliers 11

vorliegen. Ist dies nicht der Fall, arbeitet der jeweilige Detektor D_i nicht einwandfrei.

Bei den erfindungsgemäßen Meßgeräten, bei denen die Detektoren D_i Offset-Generatoren 19 aufweisen, die der Impulsrate N_i einen vom Status des jeweiligen Detektors D_i abhängigen Offset O_i überlagern, erfolgt die Statusbestimmung vorzugsweise auf die in Fig. 10 dargestellte Weise, indem die Offset-Generatoren 19 der Detektoren D_i über Lichtleiter 49 an den Szintillator 7 angeschlossen sind. Die Offset-Generatoren 19 erzeugen im Betrieb periodisch Referenzlichtblitze I und senden diese durch den Szintillator 7.

Vorzugsweise ist die Frequenz f_i , mit der die Referenzlichtblitze ausgesendet werden, gleich dem eingangs beschriebenen Sollwert O_{si} für den Offset O_i des jeweiligen Detektors D_i . Arbeitet der Detektor D_i einwandfrei steht am Ausgang ein Signal, daß der Summe der Impulsrate N_i und des Sollwerts O_{si} entspricht. Liegt eine Störung vor, werden deutlich weniger Impulse detektiert. Unterschreitet die Impulsrate der detektierten Impulse den Sollwerts O_{si} , führt dies zu einer negativen Differenz D.

20

25

30

15

5

10

Ein Vorteil der Erfindung besteht darin, daß bei allen erfindungsgemäßen radiometrischen Meßgeräten nur eine einzige Verbindung, nämlich die Sammelleitung 21 bzw. die Verbindungsleitung 37 benötigt wird, um sowohl die eigentliche Meßinformation als auch die Statusinformation zu übertragen. Dies reduziert den erforderlichen Verdrahtungsaufwand erheblich. Insb. in sicherheitsrelevanten Bereichen, in denen radiometrische Meßgeräte üblicherweise eingesetzt werden, z.B. in Bereichen mit erhöhter Explosionsgefahr, bestehen hohe Sicherheitsanforderungen an Verbindungsleitungen, mit denen in der Regel erhöhte Anschaffungs- und Installationskosten verbunden sind. Diese Kosten werden durch die erfindungsgemäßen radiometrischen Meßgeräte deutlich reduziert. Dies kann eine sehr einfache Verbindung, z.B. ein Lichtwellenleiter oder eine

Kupferleitung sein. Ebenso ist es möglich die Verbindung als Funkverbindung auszugestalten.

Die Übertragung kann auf sehr einfache Weise vorgenommen werden. Insb.

wird kein Übertragungsprotokoll benötigt. Die Übertragung der
Ausgangssignale der einzelnen Detektoren D_i kann vielmehr bei
entsprechender Kalibration über jede Art von Impulsausgang zu einem
entsprechenden Impulseingang der übergeordneten Einheit 23 erfolgen.

Patentansprüche

 Radiometrisches Meßgerät zur Montage an einem mit einem Füllgut (1) befüllbaren Behälter (3), mit

- einem radioaktiven Strahler (5), der im Betrieb radioaktive Strahlung durch den Behälter (3) sendet,

- mindestens zwei Detektoren (Di),
- -- die dazu dienen durch den Behälter (3) hindurchdringende Strahlung aufzunehmen und eine der aufgenommenen Strahlung entsprechende elektrische Impulsrate (N_i) zu erzeugen,
- Offset-Generatoren (19), die der Impulsrate (N_i) jedes
 Detektors (D_i) einen Status des jeweiligen
 Detektors (D_i) wiedergebenden Offset (O_i) überlagern,

- einer Sammelleitung (21),

- -- der jeder Detektor (D_i) ein der Überlagerung der jeweiligen Impulsrate (N_i) und des jeweiligen Offsets (O_i) entsprechendes Ausgangssignal zuführt,
- -- die ein der Überlagerung der Ausgangssignale entsprechendes Summensignal einer übergeordneten Einheit (23) zuführt,
- --- die anhand des Summensignals ein Meßsignal und/oder einen Status des Meßgeräts ableitet.
- 25 2. Radiometrisches Meßgerät zur Montage an einem mit einem Füllgut (1) befüllbaren Behälter (3), mit
 - einem radioaktiven Strahler (5), der im Betrieb radioaktive Strahlung durch den Behälter (3) sendet,
 - mindestens zwei Detektoren (D_i),
 - die dazu dienen durch den Behälter (3) hindurchdringende Strahlung aufzunehmen und eine der aufgenommenen Strahlung entsprechende

10

5

15

20

elektrische Impulsrate (N_I) zu erzeugen,

- Offset-Generatoren (19), die der Impulsrate (N_i) jedes
 Detektors (D_i) einen detektor-spezifischen Offset (O_{di})
 überlagern,
- Abschaltern (33), die dazu dienen eine Übertragung der Impulsraten (N_i) und der Offsets (O_{di}) zu unterdrücken, wenn der Detektor (D_i) fehlerhaft arbeitet,
- einer Sammelleitung (21),
- der jeder einwandfrei arbeitende Detektor (D_i) ein der Überlagerung der jeweiligen Impulsrate (N_i) und des jeweiligen Offsets (O_{di}) entsprechendes Ausgangssignal zuführt,
- -- die ein der Überlagerung der Ausgangssignale entsprechendes Summensignal einer übergeordneten Einheit (23) zuführt,
- --- die anhand des Summensignals ein Meßsignal und/oder einen Status des Meßgeräts ableitet.
- 3. Radiometrisches Meßgerät nach Anspruch 1 oder 2, bei dem
 - eine Serie von Detektoren (D_I) vorgesehen ist,
 - die Sammelleitung (21) bei einem ersten Detektor der Serie beginnt,
 - von dort von einem Detektor (D_i) zu dem diesem jeweils benachbarten Detektor (D_{i+1}) und von dem letzten Detektor zur übergeordneten Einheit (23) führt.
- 4. Radiometrisches Meßgerät nach Anspruch 1 oder 2, bei dem jeder Detektor (D_i) einen Szintillator (7) und einen daran angeschlossenen Photomultiplier (9) umfaßt.
- 5. Radiometrisches Meßgerät nach Anspruch 4, bei dem

10

5

15

20

25

die Offset-Generatoren (19) über einen Lichtleiter (49) periodisch Referenzlichtblitze durch den Szintillator (7) senden.

- Radiometrisches Meßgerät nach Anspruch 3, bei dem die übergeordnete Einheit (23) in dem letzten Detektor der Serie integriert ist.
 - 7. Verfahren zur Messung einer physikalischen Größe mit einem radiometrischen Meßgerät gemäß einem der vorangegangenen Ansprüche, bei dem
 - jedem Detektor ein Sollwert (O_{si}, O_{di}) für einen Offset zugeordnete wird, den die Offset-Generatoren (19) der Detektoren (D_i) erzeugen, wenn der Detektor (D_i) einwandfrei arbeitet, und der größer als die Summe der für die Detektor (D_i) maximal zu erwartenden Impulsraten (N_i^{max}) ist,
 - die übergeordnete Einheit (23) anhand des Summensignals eine Gesamtzählrate (G) bestimmt,
 - die Differenz (D) von dieser Gesamtzählrate (G) und einer der Summe der Sollwerte (O_{si} , O_{di}) der Offsets entsprechenden Zählrate bildet,
 - erkennt, daß ein Fehler vorliegt, wenn die Differenz (D)
 negativ ist, und
 - bei positiver Differenz (D) ein Meßsignal ableitet.

8. Verfahren zur Messung einer physikalischen Größe nach Anspruch 7, bei dem bei Vorliegen einer negativen Differenz (D) anhand eines mathematischen Verfahrens (z.b. Differenz) bestimmt wird, welcher der Detektoren (D_i) fehlerhaft arbeitet.

10

15

20

25

- 9. Radiometrisches Meßgerät zur Montage an einem mit einem Füllgut (1) befüllbaren Behälter (3), mit
 - einem radioaktiven Strahler (5), der im Betrieb radioaktive Strahlung durch den Behälter (3) sendet,
 - einem ersten und einem zweiten Detektor (D₁, D₂),
 - die dazu dienen durch den Behälter (3)
 hindurchdringende Strahlung aufzunehmen und eine der aufgenommenen Strahlung entsprechende elektrische Impulsrate (N₁, N₂) zu erzeugen,

 einem Offset-Generator (19), der der Impulsrate (N₁) des ersten Detektors (D₁) einen einen Status des ersten Detektors (D₁) wiedergebenden Offset (O₁) überlagert, und

- einer im zweiten Detektor (D₂) integrierten übergeordneten Einheit (23),
- mit der der erste Detektor (D₁) über eine Verbindungsleitung (37) verbunden ist,
- --- über die der erste Detektor (D₁) ein der Überlagerung der Impulsrate (N₁) und des Offsets (O₁) entsprechendes Ausgangssignal zuführt,
- der die Impulsrate (N₂) und ein Status des zweiten
 Detektors (D₂) zugeführt wird, und
- -- die anhand der eingehenden Signale ein Meßsignal und/oder einen Status des Meßgeräts ableitet.
- 10. Radiometrisches Meßgerät zur Montage an einem mit einem Füllgut (1) befüllbaren Behälter (3), mit
 - einem radioaktiven Strahler (5), der im Betrieb
 radioaktive Strahlung durch den Behälter (3) sendet,
 - einem ersten und einem zweiten Detektor (D_1 , D_2),
 - die dazu dienen durch den Behälter (3)
 hindurchdringende Strahlung aufzunehmen und eine der aufgenommenen Strahlung entsprechende

10

5

15

20

30

elektrische Impulsrate (N_1 , N_2) zu erzeugen und ein der Impulsrate (N_1 , N_2) entsprechendes Ausgangssignal an eine übergeordnete Einheit (23) zu übertragen,

- bei dem der Strahler (5) eine Stärke aufweist, bei der für jeden

5 Detektor

- $(D_1,\,D_2)$ immer eine Mindestimpulsrate (N_i^{min}) größer Null zu erwarten ist,
- bei dem in jedem Detektor (D₁, D₂) ein Abschalter (45) vorgesehen ist, der die Übertragung des Ausgangssignals an die übergeordnete Einheit (23) unterbindet, wenn der Detektor (D_i) fehlerhaft arbeitet, und
- bei dem die übergeordnete Einheit (23) anhand der Ausgangssignale ein Meßsignal und/oder einen Status des Meßgeräts ableitet.

10

Zusammenfassung

Radiometrisches Meßgerät

Es ist ein radiometrisches Meßgerät zur Montage an einem mit einem Füllgut

(1) befüllbaren Behälter (3) vorgesehen, das kostengünstig installiert und
betrieben werden kann, mit einem radioaktiven Strahler (5), der im Betrieb
radioaktive Strahlung durch den Behälter (3) sendet, mindestens zwei
Detektoren (D_i), die dazu dienen durch den Behälter (3) hindurchdringende

Strahlung aufzunehmen und eine der aufgenommenen Strahlung
entsprechende elektrische Impulsrate (N_i) zu erzeugen, bei dem die
Detektoren (D_i) durch eine einzige außerhalb der Detektoren (D_i) verlaufende
Leitung miteinander und mit einer übergeordneten Einheit (23) verbunden sind,
über die Impulsraten (N_i) und in Form von Offsets (O_i) der Status der

Detektoren (D_i) übertragen werden.

(Fig. 1)

