

Contents

Chapter 1	Page 2

Chapter 1

Theorem 1.0.1 Matrisen som projekterar på \vec{v}

För att slippa hålla på med beräkningar med bråktal för att hitta matrisen som beskriver projektionen på vektorn \vec{v} , så kan man använda formeln nedan:

$$A = \frac{1}{\vec{v} \cdot \vec{v}} \vec{v} \cdot \vec{v}^T$$

Därmed projektionen av vektorn \vec{x} på vektorn \vec{v} beskrivs av matrismultiplikationen $proj_{\vec{v}}\vec{x} = A\vec{x}$

Theorem 1.0.2 Matrisen som projekterar på vektorrummet V

Om vektorummet definieras som V := col(A), då beskrivs matrisen som projekterar på vektorrummet V på följande sättet:

$$P = A(A^T A)^{-1} A^T$$

Alltså för att projektera givna vektor
n \vec{x} på vektorummet V, så använder man följande matrismultiplikation
 $P\vec{x}$. **Notera** att det är exakt samma metod som används för minstakvadratmetoden. Projektionen av en vektor på en vektorummet ger den bästa approximationen av givna vektor
n på vektorrummet.

Theorem 1.0.3 Ortogonala komplementet till delrummet $V \in \mathbb{R}^n$

Om man vill hitta ortogonala komplementet (också delrum) till delrummet V med villkorn att V inte spannar hela \mathbb{R}^n , så använder man formeln nedan. **Observera** att V := col(A)

$$V^{\perp} = ker(A^T) = null(A^T)$$

Varför: En ortogonal komplement V^{\perp} till delrummet V innebär att $\forall \vec{v} \in V^{\perp}$, $\forall \vec{u} \in V \implies v \cdot u = 0$. Om A beskrivs som $\begin{bmatrix} w_1 & \dots & w_k \end{bmatrix}$ så kommer A^T beskrivas på sättet nedan.

$$A^T = \begin{bmatrix} w_1 \\ \vdots \\ w_k \end{bmatrix}$$

Om man multiplicerar A^T med en vektor \vec{x} och försöker bestämma noll-rummet så bestämmer vi per definition ortogonala komponentet, alltså rummet där varje vektor $\vec{x} \in \mathbb{R}^n$ ger 0 med skalärprodukten av varje vektor som spannar V, ($w_1, \dots w_k$) som det kan ses nedan.

$$null(A^T\vec{x}) = ker(A^T\vec{x}) := \begin{bmatrix} w_1 \cdot \vec{x} \\ \vdots \\ w_k \cdot \vec{x} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Theorem 1.0.4 En vektor \vec{x} kan skrivas som projektionen på en vektorrum + projektionens ortogonala komplement

För att kunna bevisa $1.0.2~\mathrm{så}$ brukar man använda denna sats som beskrivs nedan.

$$\vec{x} = proj_W \vec{x} + proj_{W^{\perp}} \vec{x}$$

$$proj_{W^{\perp}}\vec{x} = \vec{x} - proj_{W}\vec{x}$$