BMD ENG 301Quantitative Systems Physiology (Nervous System)

Introduction to Sensory Systems

Professor Malcolm A. MacIver

Sensory reception

What is the purpose of sensory reception?

- □To inform us about the environment in which we operate (external & internal)
- □To convert information into a form that the nervous system can interpret
 - ☐Bioelectric signals

Overview of Sensory Systems

Exteroceptive

- Sensory input linked to a network which represents some aspect of the external world
- Interoceptive
 - Sensory input linked to a network that is responsible for representing the physiological condition of the body
- Proprioceptive
 - Sensory input linked to a network that is responsible for representing the position of parts of the body and the strength of effort employed in movement

NEUROSCIENCE 6e, Figure 9.1
© 2018 Oxford University Press

NEUROSCIENCE 6e, Figure 9.1
© 2018 Oxford University Press

(D)

Firing of the nociceptor signals temperatures that can cause tissue damage

NEUROSCIENCE 6e, Figure 4.9 (Part 2)
© 2018 Oxford University Press

NEUROSCIENCE 6e, Figure 2.1 (Part 1)
© 2018 Oxford University Press

When sensory reception is far from the CNS and action potential propagation is required to register a signal there, sensory reception must result in membrane depolarization

Phototransduction Activation

Activation Cascade

R: Rhodopsin

R*: Activated Rhodopsin (Retinal in all trans)

G: Transducin

G*: Activated alpha subunit of Transducin

PDE: cGMP Phosphodiesterase

Adaptation

GC: Guanylyl Cyclase

Overview of Sensory Systems

- Exteroceptive
 - Sensory input linked to a network which represents some aspect of the external world
- Interoceptive
 - Sensory input linked to a network that is responsible for representing the physiological condition of the body
- Proprioceptive
 - Sensory input linked to a network that is responsible for representing the position of parts of the body and the strength of effort employed in movement

Muscle spindle
Changes in muscle
contraction – steady
change and rate of
change

Golgi tendon organ Change in muscle tension (force)

Inner Ear

Hair Cells

Endolymph

Unusually high $[K^+]$ E_K is depolarizing from V_R

Coding in Sensory Systems

- Stimulus intensity
 - Signal strength increases with stimulus strength
- Stimulus modality
 - Labeled lines
- Stimulus position
 - Topographic organization
- Stimulus time-course
 - Modulation of signal over time reflects modulation of stimulus over time

Breaking the neural code

Neural messages are encoded as the rate of action potentials discharged (Adrian)

Do not clutter the brain with what it does not need to know

- 1. Eliminate noise
- 2. Eliminate redundancy
- 3. Concentrate on what has changed
- 4. Encode what is useful

ON X

