Regression Assignment: V1

Steps: Import all the necessary Libraries

* First 5 Rows of the dataset:

S.no	age	sex	bmi	children	smoker	charges
0	19	female	27.9	0	yes	16884.92
1	18	male	33.77	1	no	1725.552
2	28	male	33	3	no	4449.462
3	33	male	22.705	0	no	21984.47
4	32	male	28.88	0	no	3866.855

1. Identifying the problem statement:

- Stage 1:
 - * We have Input data's are Numbers so Domain will be Machine Learning
- Stage 2:
 - * Supervised Learning- It's a Clear requirement and we have IP/OP data.
- stage 3:
 - * Numerical values (Target features) so we can go with Regression

2. Basic info about the dataSet:

* Total Row: 1388

* Total Columns : 6

- * Dataset contains both numerical and categorical values
- * Column names : AGE, SEX, BMI, CHILDREN, SMOKER, CHARGES(Traget variable)
- * age, children are Integer type.
- * bmi and charges are Float type.
- * sex and smoker are in Object type.
- * There is no null values in the dataset.
- * Requirnment is clear.

3.Preprocessing Method:

Converting categorical variable to continuous numerical variable

After Converting data:

s.no	age	bmi	children	charges	sex_male	smoker_yes
0	19	27.9	0	16884.924	0	1

1	18	33.77	1	1725.5523	1	0
2	28	33	3	4449.462	1	0
3	33	22.705	0	21984.47061	1	0
4	32	28.88	0	3866.8552	1	0

- Separate the data as independent and dependent
- Split the data using train_test_split concept
- If the data is looks too different within the independent variable then go for Scaling concept
- 4. Create different Models to predict the charges and choose the best model with high r2_score value.
- a) Multiple Linear Regression:

Results: **R2_Score = 0.77239**

b) SVM Regression: Default value:

Model 2 - SVR

Model with Different parameters

Best : RBF, C=3000 and R2_Score = 0.84223

```
# SVR R2 Score : Results with all the combinations:
for kernel, C, score in svr_r2score:
    print("Kernel:",kernel,"- C:",C,"- R2 Score",score)
Kernel: linear - C: 10 - R<sup>2</sup> Score 0.4411154085859137
Kernel: linear - C: 100 - R2 Score 0.6205250918367728
Kernel: linear - C: 500 - R2 Score 0.7486844603269274
Kernel: linear - C: 1000 - R2 Score 0.7187303718390283
Kernel: linear - C: 2000 - R2 Score 0.717185774596472
Kernel: linear - C: 3000 - R2 Score 0.7161570985448058
Kernel: rbf - C: 10 - R<sup>2</sup> Score -0.044010385361080706
Kernel: rbf - C: 100 - R<sup>2</sup> Score 0.3229298217686596
Kernel: rbf - C: 500 - R2 Score 0.6597447201916936
Kernel: rbf - C: 1000 - R2 Score 0.7923789012887561
Kernel: rbf - C: 2000 - R2 Score 0.8332041538541531
Kernel: rbf - C: 3000 - R<sup>2</sup> Score 0.8422384746495604
Kernel: poly - C: 10 - R<sup>2</sup> Score 0.024580030588300605
Kernel: poly - C: 100 - R<sup>2</sup> Score 0.5897995020893756
Kernel: poly - C: 500 - R<sup>2</sup> Score 0.8038815140652048
Kernel: poly - C: 1000 - R<sup>2</sup> Score 0.8338303273683121
Kernel: poly - C: 2000 - R<sup>2</sup> Score 0.8403113295667679
Kernel: poly - C: 3000 - R<sup>2</sup> Score 0.8390286005966449
Kernel: sigmoid - C: 10 - R<sup>2</sup> Score 0.022978265830825184
Kernel: sigmoid - C: 100 - R2 Score 0.5099640007962808
Kernel: sigmoid - C: 500 - R2 Score 0.46829640989809973
Kernel: sigmoid - C: 1000 - R<sup>2</sup> Score 0.3012743569891182
Kernel: sigmoid - C: 2000 - R2 Score -0.8798843869243349
Kernel: sigmoid - C: 3000 - R2 Score -2.9047335174024607
                                                 Activate Windows
```

c) Decision Tree Regressor:

With Default Values score:

Model 3 - Decision Tree Regressor

```
[187]:
```

```
from sklearn.tree import DecisionTreeRegressor

DT_model = DecisionTreeRegressor()

DT_model.fit(X_train,y_train)

y_pred = DT_model.predict(X_test)

DT_r2 = r2_score(y_test,y_pred)

DT_r2
```

[187]:

0.7064796314633288

With different parameters:

Model 3 - Decision Tree Regressor

```
from sklearn.tree import DecisionTreeRegressor
criterion1 = ['squared_error','friedman_mse','absolute_error','poisson']
max_ft1 = ['sqrt','log2']
spliter1 = ['best','random']
DT_r2 = []

for cri in criterion1:
    for mx_ft in max_ft1:
        for split in spliter1:
            DT_model = DecisionTreeRegressor(criterion=cri,max_features=mx_ft,splitter=split)
            DT_model.fit(X_train,y_train)
            y_pred = DT_model.predict(X_test)
            dt_r2 = r2_score(y_test,y_pred)
            DT_r2.append((cri,mx_ft,split,dt_r2))
```

```
for criterion,max features,splitter,score in DT r2:
   print("Criterion:",criterion,"max_features:",max_features,"splitter:",splitter,"R2_Score:",score)
Criterion: squared_error max_features: sqrt splitter: best R2_Score: 0.6905149345691342
Criterion: squared_error max_features: sqrt splitter: random R2_Score: 0.6089158084430758
Criterion: squared_error max_features: log2 splitter: best R2_Score: 0.7208084204160041
Criterion: squared_error max_features: log2 splitter: random R2_Score: 0.5885137699183175
Criterion: friedman mse max features: sqrt splitter: best R2 Score: 0.741628247754792
Criterion: friedman_mse max_features: sqrt splitter: random R2_Score: 0.632694706926831
Criterion: friedman mse max features: log2 splitter: best R2 Score: 0.6353895211454534
Criterion: friedman_mse max_features: log2 splitter: random R2_Score: 0.6909830368433382
Criterion: absolute_error max_features: sqrt splitter: best R2_Score: 0.6465435342030181
Criterion: absolute_error max_features: sqrt splitter: random R2_Score: 0.7744421292327105
Criterion: absolute_error max_features: log2 splitter: best R2_Score: 0.712613522330376
Criterion: absolute_error max_features: log2 splitter: random R2_Score: 0.6719344044572477
Criterion: poisson max_features: sqrt splitter: best R2_Score: 0.5326888585822843
Criterion: poisson max_features: sqrt splitter: random R2_Score: 0.6616041177188116
Criterion: poisson max_features: log2 splitter: best R2_Score: 0.5525323495374564
Criterion: poisson max_features: log2 splitter: random R2_Score: 0.6235679214227591
```

After Using diff parameters the best R2 Score is: 0.774421

D) Random Forest Regressor: with Default values

Random_Forest_Regressor

```
from sklearn.ensemble import RandomForestRegressor
rff = RandomForestRegressor()
rff.fit(X_train,y_train)
y_pred = rff.predict(X_test)
randomforest_r2score = r2_score(y_test,y_pred)
randomforest_r2score
[204]:
0.8373310073237741
```

With different parameters:

Random_Forest_Regressor

```
08]: from sklearn.ensemble import RandomForestRegressor
      n_estimators = [50,100,200,250,300,350,400,500]
      criterion2 = ['squared_error', 'friedman_mse', 'poisson']
max_ft2 = ['sqrt', 'log2']
      randomforest_r2score= []
       for estimators in n estimators:
           for crt in criterion2:
                for max_frt in max_ft2:
                     \textit{rff} = RandomForestRegressor(n\_estimators\_estimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimators\_restimat
                    rff.fit(X_train,y_train)
                    y pred = rff.predict(X test)
                     rf_r2score = r2_score(y_test,y_pred)
                    random forest\_r2score.append ((estimators, crt, max\_frt, rf\_r2score))
09]: for n_estimators,criterion,max_features,score in randomforest_r2score:
           print("n estimators:",n estimators,"Criterion:",criterion,"max features:",max features,"R2 Score:",score)
n_estimators: 50 Criterion: squared_error max_features: sqrt R2_Score: 0.8502984279389878
n_estimators: 50 Criterion: squared_error max_features: log2 R2_Score: 0.8502984279389878
n_estimators: 50 Criterion: friedman_mse max_features: sqrt R2_Score: 0.8509127600875582
n_estimators: 50 Criterion: friedman_mse max_features: log2 R2_Score: 0.8509127600875582
n_estimators: 50 Criterion: poisson max_features: sqrt R2_Score: 0.8468833336548729
n_estimators: 50 Criterion: poisson max_features: log2 R2_Score: 0.8468833336548729
n_estimators: 100 Criterion: squared_error max_features: sqrt R2_Score: 0.8492395564499937
n estimators: 100 Criterion: squared error max features: log2 R2 Score: 0.8492395564499937
n_estimators: 100 Criterion: friedman_mse max_features: sqrt R2_Score: 0.8492782583516395
n_estimators: 100 Criterion: friedman_mse max_features: log2 R2_Score: 0.8492782583516395
n_estimators: 100 Criterion: poisson max_features: sqrt R2_Score: 0.8474801406941771
n_estimators: 100 Criterion: poisson max_features: log2 R2_Score: 0.8474801406941771
n_estimators: 200 Criterion: squared_error max_features: sqrt R2_Score: 0.85125883509619
n estimators: 200 Criterion: squared error max features: log2 R2 Score: 0.85125883509619
n_estimators: 200 Criterion: friedman_mse max_features: sqrt R2_Score: 0.8513141835838371
n_estimators: 200 Criterion: friedman_mse max_features: log2 R2_Score: 0.8513141835838371
n estimators: 200 Criterion: poisson max features: sqrt R2 Score: 0.849928342290375
n estimators: 200 Criterion: poisson max features: log2 R2 Score: 0.849928342290375
n estimators: 250 Criterion: squared error max features: sqrt R2 Score: 0.8509722090294829
n estimators: 250 Criterion: squared error max features: log2 R2 Score: 0.8509722090294829
n_estimators: 250 Criterion: friedman_mse max_features: sqrt R2_Score: 0.8510874568342656
n_estimators: 250 Criterion: friedman_mse max_features: log2 R2_Score: 0.8510874568342656
n_estimators: 250 Criterion: poisson max_features: sqrt R2_Score: 0.8500928704645765
n_estimators: 250 Criterion: poisson max_features: log2 R2_Score: 0.8500928704645765
n_estimators: 300 Criterion: squared_error max_features: sqrt R2_Score: 0.8515867676508716
n_estimators: 300 Criterion: squared_error max_features: log2 R2_Score: 0.8515867676508716
n_estimators: 300 Criterion: friedman_mse max_features: sqrt R2_Score: 0.8516592052895238
n_estimators: 300 Criterion: friedman_mse max_features: log2 R2_Score: 0.8516592052895238
n estimators: 300 Criterion: poisson max features: sqrt R2 Score: 0.8509948045947353
n_estimators: 300 Criterion: poisson max_features: log2 R2_Score: 0.8509948045947353
n_estimators: 350 Criterion: squared_error max_features: sqrt R2_Score: 0.8510703568787773
n_estimators: 350 Criterion: squared_error max_features: log2 R2_Score: 0.8510703568787773
n_estimators: 350 Criterion: friedman_mse max_features: sqrt R2_Score: 0.851144935393941
n_estimators: 350 Criterion: friedman_mse max_features: log2 R2_Score: 0.851144935393941
n_estimators: 350 Criterion: poisson max_features: sqrt R2_Score: 0.8502215755711253
n_estimators: 350 Criterion: poisson max_features: log2 R2_Score: 0.8502215755711253
n estimators: 400 Criterion: squared error max features: sqrt R2 Score: 0.8509950319542703
n estimators: 400 Criterion: squared error max features: log2 R2 Score: 0.8509950319542703
n estimators: 400 Criterion: friedman mse max features: sqrt R2 Score: 0.8512436813151877
n_estimators: 400 Criterion: friedman_mse max_features: log2 R2 Score: 0.8512436813151877
n_estimators: 400 Criterion: poisson max_features: sqrt R2_Score: 0.8508266616553146
n_estimators: 400 Criterion: poisson max_features: log2 R2_Score: 0.8508266616553146
n_estimators: 500 Criterion: squared_error max_features: sqrt R2_Score: 0.8515876208578533
```

n_estimators: 500 Criterion: squared_error max_features: log2 R2_Score: 0.8515876208578533 n_estimators: 500 Criterion: friedman_mse max_features: sqrt R2_Score: 0.8515351540982423 n_estimators: 500 Criterion: friedman_mse max_features: log2 R2_Score: 0.8515351540982423

n_estimators: 500 Criterion: poisson max_features: sqrt R2_Score: 0.8518107418752442

Best Param with best R2_Score:

n_estimators: 500 Criterion: poisson max_features: log2

R2_Score: 0.8518107418752442

Conclusion:

Based on the R² Score values from the table, I conclude that the Random Forest Regressor is the best-performing model.

Other models (MLR, SVM, Decision Tree) have lower R² scores compared to Random Forest model.

sl.no	Model_Name	R2_Score		
1	MLR	0.77239		
2	SVM_Regressor	0.84223		
3	Decision Tree	0.77444		
4	Random Forest	0.85181		