1. Razmatra se prenos datagrama veličine 3020 B, linkom čiji je MTU veličine 500B. Pretpostavimo da originalni segment ima oznaku (ID) 400. Koliko fragmenata se generiše i koje su njihove karakteristike?

Rešenje:

480B u polju podataka fragmenta

$$N = \frac{3000B}{480B} = 6.25$$

Imaćemo 7 fragmenata, od kojih je 6 veličine 500B (480B u polju podataka + 20B zaglavlja nivoa mreže), a sedmi je veličine 140B (120B u polju podataka + 20B zaglavlja nivoa mreže).

Fragment	Veličina (B)	ID	Offset	flag
1	500B	400	0	1
2	500B	400	60	1
3	500B	400	120	1
4	500B	400	180	1
5	500B	400	240	1
6	500B	400	300	1
7	140B	400	360	0

- 2. U LAN mreži instaliran je NAT ruter, kome ISP dodjeljuje adresu 205.23.16.28. U LAN mreži su primijenjene privatne adrese klase A (10.0.0.0/8).
 - a) Iz kog opsega se mogu dodijeliti adrese računarima u LAN mreži?
 - b) Neka su u LAN mreži aktivna 3 hosta (PC1, PC2 i PC3), i to na PC1 su aktivne dvije TCP konekcije, obje adresirane na port 80 hosta 128.119.40.86, na PC2 jedna konekcija prema hostu 125.38.43.12 na portu 1320, a na PC3 dvije konekcije, i to jedna prema serveru 89.188.33.2 na portu 25, i jednu prema PC1, na portu 2030. Odrediti odgovarajuću NAT tabelu prevođenja.

Rešenje:

- a) Adrese se mogu dodijeliti iz opsega 10.0.0.1-10.255.255.254
- b) Hostovima možemo dodijeliti sledeće adrese:

PC1 - 10.0.0.1

PC2 - 10.0.0.2

PC3 - 10.0.0.3

LAN-WAN prevođenje:

LAN strana				WAN strana			
Izvorišna	Izvorišni	Odredišna	Odredišni	Izvorišna	Izvorišni	Odredišna	Odredišni
IP adresa	port	IP adresa	port	IP adresa	port	IP adresa	port
10.0.0.1	5001	128.119.40.86	80	205.23.16.28	8001	128.119.40.86	80
10.0.0.1	5002	128.119.40.86	80	205.23.16.28	8002	128.119.40.86	80
10.0.0.2	5003	125.38.43.12	1320	205.23.16.28	8003	125.38.43.12	1320
10.0.0.3	5004	89.188.33.2	25	205.23.16.28	8004	89.188.33.2	25

WAN-LAN prevođenje:

WAN strana				LAN strana			
Izvorišna	Izvorišni	Odredišna	Odredišni	Izvorišna	Izvorišni	Odredišna	Odredišni
IP adresa	port	IP adresa	port	IP adresa	port	IP adresa	port
128.119.40.86	80	205.23.16.28	8001	128.119.40.8	80	10.0.0.1	5001
128.119.40.86	80	205.23.16.28	8002	128.119.40.8	80	10.0.0.1	5002
125.38.43.12	1320	205.23.16.28	8003	125.38.43.12	1320	10.0.0.2	5003
89.188.33.2	25	205.23.16.28	8004	89.188.33.2	25	10.0.0.3	5004

3. Neka ISP raspolaze blokom adresa oblika 101.101.128.0/24 i neka želi da kreira 4 podmreže iz ovog opsega adresa, pri čemu svaka podmreza treba da ima isti opseg adresa. Koji su prefiksi (u obliku a.b.c.d/x) za ove četiri podmreže?

101.101.128.0/24

Rešenje:

01100101 01100101 10000000 00000000 (1. podmreža) **01100101 01100101 10000000 01**000000 (2. podmreža) **01100101 01100101 10000000 10**000000 (3. podmreža) **01100101 01100101 10000000 11**000000 (4. podmreža)

101.101.128.0/26 - 1. Podmreža

101.101.128.64/26 – 2. Podmreža

101.101.128.128/26 - 3. Podmreža

101.101.128.192/26 – 4. Podmreža

4. Razmatra se mreža koja povezuje 3 podmreže. Zahtijeva se da svi interfejsi u svim podmrežama imaju prefiks 223.1.17/24. Podmreža 1 treba da podrži do 125 interfejsa, a podmreže 2 i 3 do 60 interfejsa. Dodijeliti adrese mrežama kako bi bili ispunjeni navedeni uslovi.

Rešenie:

Broj bita potrebnih za adresiranja interfejsa u prvoj mreži određujemo na sledeći način:

$$2^n - 2 \ge 125$$
$$2^n \ge 127$$

$$n \ge 7$$

Dakle potrebno nam je minimalno 7 bita.

Broj bita potrebnih za adresiranja interfejsa u drugoj i trećom mreži određujemo na sledeći način:

```
2^n - 2 \ge 60
```

 $2^n \ge 62$

 $n \ge 6$

Za adresiranje interefejsa u drugoj i trećoj podreži potrebno nam je minimalno 6 bita.

223.1.17.0 u binarnom zapisu:

```
      11011111 00000001 00010001 00000000
      (Prva podmreža)

      11011111 00000001 00010001 11000000
      (Druga podmreža)

      11011111 00000001 00010001 11000000
      (Treća podmreža)
```

U decimalnom zapisu:

```
223.1.17.0/25 (Prva podmreža)
223.1.17.128/26 (Druga podmreža)
223.1.17.192/26 (Treća podmreža)
```

5. Razmatra se topologija prikazana na slici. Dodijeliti mrežne adrese svakoj od ovih podmreža uz uslov da sve adrese moraju biti dodijeljene iz opsega 135.82.72/22.

Rešenje:

Potrebno ja adresirati ukupo 8 podmreža:

1) Podmrežu A

$$2^n - 2 \ge 201$$

$$2^{n} \ge 203$$

$$n \ge 8$$

Sa minimalno 8 bita u hostID dijelu adrese

2) Podmrežu B

$$2^n - 2 \ge 301$$

$$2^n \ge 303$$

$$n \ge 9$$

Sa minimalno 9 bita u hostID dijelu adrese

3) Podmrežu C

$$2^n - 2 \ge 101$$

$$2^{n} \ge 103$$

$$n \ge 7$$

Sa minimalno 7 bita u hostID dijelu adrese

4) Podmrežu D

$$2^n - 2 \ge 51$$

$$2^n \ge 53$$

$$n \ge 6$$

Sa minimalno 6 bita u hostID dijelu adrese

5) Podmrežu za link R1-R5

$$2^{n}-2 \ge 2$$

$$2^n \ge 4$$

 $n \ge 2$

Sa minimalno 2 bita u hostID dijelu adrese

- 6) Podmrežu za link R1-R2 sa minimalno 2 bita u hostID dijelu adrese
- 7) Podmrežu za link R1-R4 sa minimalno 2 bita u hostID dijelu adrese
- 8) Podmrežu za link R1-R3 sa minimalno 2 bita u hostID dijelu adrese

135.82.72.0 u binarnom zapisu:

10000111 01010010 0100100 0 00000000	- Podmreža B	135.82.72.0/23
10000111 01010010 01001010 00000000	- Podmreža A	135.82.74.0/24
10000111 01010010 01001011 0 0000000	- Podmreža C	135.82.75.0/25
10000111 01010010 01001011 10 000000	- Podmreža D	135.82.75.128/26
10000111 01010010 01001011 110000 00	- Podmreža R1-R2	135.82.75.192/30
10000111 01010010 01001011 110001 00	- Podmreža R1-R3	135.82.75.196/30
10000111 01010010 01001011 110010 00	- Podmreža R1-R4	135.82.75.200/30
10000111 01010010 01001011 110011 00	- Podmreža R1-R5	135.82.75.204/30

Broadcast adrese podmreža:

10000111 01010010 0100100 1 11111111	- Podmreža B	135.82.73.255
10000111 01010010 01001010 111111111	- Podmreža A	135.82.74.255
10000111 01010010 01001011 0 11111111	 Podmreža C 	135.82.75.127
10000111 01010010 01001011 10 111111	- Podmreža D	135.82.75.191
10000111 01010010 01001011 110000 11	- Podmreža R1-R2	135.82.75.195
10000111 01010010 01001011 110001 11	- Podmreža R1-R3	135.82.75.199
10000111 01010010 01001011 110010 11	- Podmreža R1-R4	135.82.75.203
10000111 01010010 01001011 110011 11	- Podmreža R1-R5	135.82.75.207