Modul Praktikum Kecerdasan Buatan

Rolly Maulana Awangga 0410118609

Applied Bachelor of Informatics Engineering Program Studi D4 Teknik Informatika

Applied Bachelor Program of Informatics Engineering $Politeknik\ Pos\ Indonesia$ Bandung 2019

'Jika Kamu tidak dapat menahan lelahnya belajar, Maka kamu harus sanggup menahan perihnya Kebodohan.' Imam Syafi'i

Acknowledgements

Pertama-tama kami panjatkan puji dan syukur kepada Allah SWT yang telah memberikan rahmat dan hidayah-Nya sehingga Buku Pedoman Tingkat Akhir ini dapat diselesaikan.

Abstract

Buku Pedoman ini dibuat dengan tujuan memberikan acuan, bagi mahasiswa Tingkat Akhir dan dosen Pembimbing. Pada intinya buku ini menjelaskan secara lengkap tentang Standar pengerjaan Intership dan Tugas Akhir di Program Studi D4 Teknik Informatika, dan juga mengatur mekanisme, teknik penulisan, serta penilaiannya. Dengan demikian diharapkan semua pihak yang terlibat dalam aktivitas Bimbingan Mahasiswa Tingkat Akhir berjalan lancar dan sesuai dengan standar.

Contents

1	Mei	ngenal Kecerdasan Buatan dan Scikit-Learn	1
	1.1	Teori	1
	1.2	Instalasi	2
	1.3	Penanganan Error	2
	1.4	Teori/Mhd Zulfikar Akram Nasution/1164081	2
	1.5	Jesron Marudut Hatuan/1164077	5
		1.5.1 Teori	5
		1.5.2 Instalasi	7
		1.5.2.1 Instalasi Library Scikit dari Anaconda	7
	1.6	Teori/Puad Hamdani/1164084	8
_			
2	Rel	ated Works	16
	2.1	Same Topics	16
		2.1.1 Topic 1	16
		2.1.2 Topic 2	16
	2.2	Same Method	16
		2.2.1 Method 1	16
		2.2.2 Method 2	16
3	Met	thods	17
	3.1	The data	17
	3.2	Method 1	17
	3.3	Method 2	17
4	Exp	periment and Result	18
	4.1	Experiment	18
	4.2	Result	18

5	Conclusion	19
	5.1 Conclusion of Problems	19
	5.2 Conclusion of Method	19
	5.3 Conclusion of Experiment	19
	5.4 Conclusion of Result	19
6	Discussion	20
7	Discussion	21
8	Discussion	22
9	Discussion	23
10	Discussion	24
11	Discussion	25
12	Discussion	26
13	Discussion	27
14	Discussion	28
\mathbf{A}	Form Penilaian Jurnal	29
В	FAQ	32
Bi	bliography	34

List of Figures

1.1	capturing	4
1.2	capturing	4
1.3	capturing	5
1.4	capturing	5
1.5	capturing	5
1.6	Capturing	6
1.7	Applikasi Anaconda	7
1.8	Versi Anaconda	8
1.9	Instalasi	8
1.10	Langkah installasi anaconda	9
1.11	Langkah terakhir	9
1.12	Proses Instalasi	11
1.13	Gabung Conda dan Python	11
1.14	Kompilasi Kode	12
1.15	Variable Digits	12
1.16		12
1.17		13
1.18		13
1.19		14
1.20		14
1.21		15
1.22		15
1.23		15
1.24		15
1.25		15
A.1	Form nilai bagian 1	30
A.2	form nilai bagian 2	31

Mengenal Kecerdasan Buatan dan Scikit-Learn

Buku umum yang digunakan adalah [2] dan untuk sebelum UTS menggunakan buku Python Artificial Intelligence Projects for Beginners[1]. Dengan praktek menggunakan python 3 dan editor anaconda dan library python scikit-learn. Tujuan pembelajaran pada pertemuan pertama antara lain:

- 1. Mengerti definisi kecerdasan buatan, sejarah kecerdasan buatan, perkembangan dan penggunaan di perusahaan
- 2. Memahami cara instalasi dan pemakaian sci-kit learn
- 3. Memahami cara penggunaan variabel explorer di spyder

Tugas dengan cara dikumpulkan dengan pull request ke github dengan menggunakan latex pada repo yang dibuat oleh asisten riset.

1.1 Teori

Praktek teori penunjang yang dikerjakan:

- 1. Buat Resume Definisi, Sejarah dan perkembangan Kecerdasan Buatan, dengan bahasa yang mudah dipahami dan dimengerti. Buatan sendiri bebas plagiat[hari ke 1](10)
- 2. Buat Resume mengenai definisi supervised learning, klasifikasi, regresi dan unsupervised learning. Data set, training set dan testing set.[hari ke 1](10)

1.2 Instalasi

Membuka https://scikit-learn.org/stable/tutorial/basic/tutorial.html. Dengan menggunakan bahasa yang mudah dimengerti dan bebas plagiat. Dan wajib skrinsut dari komputer sendiri.

- 1. Instalasi library scikit dari anaconda, mencoba kompilasi dan uji coba ambil contoh kode dan lihat variabel explorer[hari ke 1](10)
- 2. Mencoba Loading an example dataset, menjelaskan maksud dari tulisan tersebut dan mengartikan per baris[hari ke 1](10)
- 3. Mencoba Learning and predicting, menjelaskan maksud dari tulisan tersebut dan mengartikan per baris[hari ke 2](10)
- 4. mencoba Model persistence, menjelaskan maksud dari tulisan tersebut dan mengartikan per baris[hari ke 2](10)
- 5. Mencoba Conventions, menjelaskan maksud dari tulisan tersebut dan mengartikan per baris[hari ke 2](10)

1.3 Penanganan Error

Dari percobaan yang dilakukan di atas, apabila mendapatkan error maka:

- 1. skrinsut error[hari ke 2](10)
- 2. Tuliskan kode eror dan jenis errornya [hari ke 2](10)
- 3. Solusi pemecahan masalah error tersebut[hari ke 2](10)

iiiiiii HEAD

1.4 Teori/Mhd Zulfikar Akram Nasution/1164081

- 1. Definisi, Sejarah dan Perkembangan Kecerdasan Buatan
 - Definisi

Kecerdasan Buatan adalah kecerdasan yang ditambahkan kepada suatu sistem yang bisa diatur dalam konteks ilmiah yang berhubungan dengan pemanfaatan mesin untuk memecahkan persoalan yang rumit dengan cara yang lebih manusiawi.

• Sejarah dan Perkembangan

Sejarah dan perkembangan kecerdasan buatan terjadi pada musim panas tahun 1956 tercatat adanya seminar mengenai AI di Darmouth College. Seminar pada waktu itu dihadiri oleh sejumlah pakar komputer dan membahas potensi komputer dalam meniru kepandaian manusia. Akan tetapi perkembangan yang sering terjadi semenjak diciptakannya LISP, yaitu bahasa kecerdasan buatan yang dibuat tahun 1960 oleh John McCarthy. Istilah pada kecerdasan buatan atau Artificial Intelligence diambil dari Marvin Minsky dari MIT. Dia menulis karya ilmiah berjudul Step towards Artificial Intelligence, The Institute of radio Engineers Proceedings 49, January 1961.

2. Definisi Supervised Learning, Unsupervised Learning, Klasifikasi, Regresi, Data Set, Training Set dan Testing Set

• Supervised Learning dan Unsupervised Learning

Supervised learning merupakan sebuah pendekatan dimana sudah terdapat data yang dilatih, dan terdapat variable yang ditargetkan sehingga tujuan dari pendekatan ini adalah mengkelompokan suatu data ke data yang sudah ada. Sedangkan unsupervised learning tidak memiliki data latih, sehingga dari data yang ada, kita mengelompokan data tersebut menjadi 2 bagian atau 3 bagian dan seterusnya.

• Klasifikasi

Klasifikasi adalah salah satu topik utama dalam data mining atau machine learning. Klasifikasi yaitu suatu pengelompokan data dimana data yang digunakan tersebut mempunyai kelas label atau target.

• Regresi

Regresi adalah Supervised learning tidak hanya mempelajari classifier, tetapi juga mempelajari fungsi yang dapat memprediksi suatu nilai numerik. Contoh, ketika diberi foto seseorang, kita ingin memprediksi umur, tinggi, dan berat orang yang ada pada foto tersebut.

• Data Set

Data set adalah cabang aplikasi dari Artificial Intelligence/Kecerdasan Buatan yang fokus pada pengembangan sebuah sistem yang mampu belajar sendiri tanpa harus berulang kali di program oleh manusia. • Training Set

Training set yaitu jika pasangan objek, dan kelas yang menunjuk pada objek tersebut adalah suatu contoh yang telah diberi label akan menghasilkan suatu algoritma pembelajaran.

• Testing Set

Testing set digunakan untuk mengukur sejauh mana classifier berhasil melakukan klasifikasi dengan benar.

- 3. Instalasi Scikit-Learn dari Anaconda
 - Pertama install Anaconda di pc masing-masing
 - Kemudian buka cmd untuk menginstall scikit-learn
 - Ketik perintah "conda install scikit-learn" dan pilih "y"

Figure 1.1: capturing

• Lalu ketik "pip install -U scikit-learn" untuk memasukkan anaconda ke python

Figure 1.2: capturing

• Setelah itu, kompilasi kode di dalam python dengan ketik "python", lalu "print('Zulfikar')" maka akan menghasilkan seperti gambar berikut.

```
PS C:\WINDOWS\system32> python
Python 3.6.5 |Anaconda, Inc.| (default, Mar 29 2018, 13:23:52) [MSC v.1900 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> print('Zulfikar')
Zulfikar
```

Figure 1.3: capturing

- 4. Loading an Example Dataset
 - Ketik perintah berikut "from sklearn import datasets" untuk mengimport dataset dari sklearn.

```
C:\Users\user>python
Python 3.6.5 |Anaconda, Inc.| (default, Mar 29 2018, 13:23:52) [MSC v.1900 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from sklearn import datasets
```

Figure 1.4: capturing

 Kemudian ketik perintah berikut untuk membuat variable iris yang berisi datasets.

```
>>> iris = datasets.load_iris()
```

Figure 1.5: capturing

• Lalu ketik perintah berikut untuk membuat variable digits yang berisi datasets, dan juga untuk melihat isi data dari datasets seperti gambar 1.6

======

1.5 Jesron Marudut Hatuan/1164077

1.5.1 Teori

1. Definisi, sejarah, dan perkembangan kecerdasan buatan.

Kecerdasan Buatan (Artificial Intelligence atau AI) dapat didefinisikan sebagai kecerdasan yang ditunjukkan oleh suatu entitas buatan. Sistem seperti ini biasanya dianggap komputer. Kecerdasan diciptakan lalu dimasukkan ke dalam suatu mesin atau komputer supaya dapat melakukan pekerjaan-pekerjan yang dapat dilakukan manusia.

```
>>> digits = datasets.load_digits()
>>> print(digits.data)
[[ 0.  0.  5.  ...  0.  0.  0.]
[ 0.  0.  0.  ...  10.  0.  0.]
[ 0.  0.  0.  ...  16.  9.  0.]
...
[ 0.  0.  1.  ...  6.  0.  0.]
[ 0.  0.  2.  ...  12.  0.  0.]
[ 0.  0.  10.  ...  12.  1.  0.]]
>>>>
```

Figure 1.6: Capturing

Sebenarnya area Kecerdasan Buatan (Artificial Intelligence) atau disingkat dengan AI, dimulai dari munculanya komputer sekitar tahun 1940-an, meskipun sejarah perkembangannya dapat dilacak dari zaman Mesir kuno. Pada akhir tahun 1955, Newell dan Simon mengembangkan The Logic Theorist atau program AI terdahulu. Program ini merepresentasikan masalah sebagai model pohon, lalu penyelesaiannya dengan memilih cabang yang akan menghasilkan kesimpulan terbenar. Program tersebut berdampak besar dan menjadi batu loncatan dalam mengembangkan bidang AI. Pada tahun 1956 John McCarthy dari Massacuhetts Institute of Technology dianggap sebagai bapak AI, menyelenggarakan konferensi untuk menarik para ahli komputer bertemu, dengan nama kegiatan The Dartmouth Summer Research Project On AI. Konferensi Dartmouth saat itu mempertemukan para pendiri dalam AI, dan bertugas untuk meletakkan dasar bagi masa depan pemgembangan dan penelitian AI. John McCarthy disaat itu mengusulkan definisi AI adalah AI merupakan cabang dari ilmu komputer yang berfokus pada pengembangan komputer agar mempunyai kemampuan dan berprilaku seperti manusia.

2. Definisi supervised learning, klasifikasi, regresi, dan unsupervised learning. Data set, training set dan testing set.

Supervised learning merupakan sebuah pendekatan dimana sudah terdapat data yang dilatih, dan terdapat variable yang ditargetkan sehingga tujuan dari pendekatan ini adalah mengkelompokan suatu data ke data yang sudah ada. Sedangkan unsupervised learning tidak memiliki data latih, sehingga dari data yang ada, kita mengelompokan data tersebut menjadi 2 bagian atau 3 bagian dan seterusnya.

Klasifikasi adalah salah satu topik utama dalam data mining atau machine

learning. Klasifikasi yaitu suatu pengelompokan data dimana data yang digunakan tersebut mempunyai kelas label atau target.

Regresi adalah Supervised learning tidak hanya mempelajari classifier, tetapi juga mempelajari fungsi yang dapat memprediksi suatu nilai numerik. Contoh, ketika diberi foto seseorang, kita ingin memprediksi umur, tinggi, dan berat orang yang ada pada foto tersebut.

Data set adalah cabang aplikasi dari Artificial Intelligence/Kecerdasan Buatan yang fokus pada pengembangan sebuah sistem yang mampu belajar sendiri tanpa harus berulang kali di program oleh manusia.

Training set yaitu jika pasangan objek, dan kelas yang menunjuk pada objek tersebut adalah suatu contoh yang telah diberi label akan menghasilkan suatu algoritma pembelajaran.

Testing set digunakan untuk mengukur sejauh mana classifier berhasil melakukan klasifikasi dengan benar[?].

1.5.2 Instalasi

1.5.2.1 Instalasi Library Scikit dari Anaconda

1. Sediakan aplikasi Anaconda terlebih dahulu

Anaconda3-5,2,0-Windows-x86

Figure 1.7: Applikasi Anaconda.

- 2. Setelah di install, masukkan script dibawah ini untuk melihat versi Python dan Anacondanya
- 3. Selanjutnya masukkan perintah 'pip install -U scikit-learn'
- 4. Selanjutnya masukkan perintah 'conda install scikit-learn'
- 5. Selanjutnya masukkan perintah 'python' dan 'print ('jesron')

======

```
C:\WINDOWS\system32>conda --version
conda 4.6.7
C:\WINDOWS\system32>python --version
Python 3.6.5 :: Anaconda, Inc.
C:\WINDOWS\system32>
```

Figure 1.8: Versi Anaconda.

```
C:\WINDOWS\system32\pip install -U scikit-learn
Collecting scikit-learn
Using cached https://files.pythonhosted.org/packages/ee/c8/c89ebdc0d7dbba6e6fd222daabd257da3
c28a967dd7c352d4272b2elcef6/scikit_learn-0.20.2-cp36-cp36m-win32.whl
Requirement not upgraded as not directly required: numpy>=1.8.2 in c:\programdata\anaconda3\li
b\site-packages (from scikit-learn) (1.14.3)
Requirement not upgraded as not directly required: scipy>=0.13.3 in c:\programdata\anaconda3\li
b\site-packages (from scikit-learn) (1.1.0)
distributed 1.21.8 requires msgrack, which is not installed.
Installing collected packages: scikit-learn
Found existing installation: scikit-learn 0.19.1
Uninstalling scikit-learn-0.19.1:
Successfully uninstalled scikit-learn-0.19.1
Successfully installed scikit-learn-0.20.2
You are using pip version 10.0.1, however version 19.0.3 is available.
You should consider upgrading via the 'python -m pip install --upgrade pip' command.
```

Figure 1.9: Instalasi.

1.6 Teori/Puad Hamdani/1164084

1. Definisi, Sejarah dan Perkembangan Kecerdasan Buatan

• Definisi

Kecerdasan buatan adalah ilmu pengetahuan yang berhubungan dengan mesin untuk memecahkan persoalan rumit dengan cara yang mudah, dilakukan dengan mengikuti kecerdasan manusia dan menerapkanya di computer sebagai algoritma

• Sejarah dan Perkembangan

AI (artificial Intelligence) di kenal sekitar tahun 1943 Teori tentang jaringan saraf tiruan (artificial neuron network, ANN) menyatakan bahwa setiap neuron dapat dimisalkan dalam keadaan biner, yaitu ON dan OFF. Dari setiap percobaan, setiap fungsi perhitungan dapat diselesaikan melalui jaringan neuron yang dimodelkan. Pada tahun 1965, Lotfi Zadeh, professor teknik elektro di University of California, memublikasikan konsepnya yang disebut dengan "fuzzy sets". Beliau menjabarkan FL dengan pernyataan

```
C:\WINDOWS\system32>conda install scikit-learn
Solving environment: done

## Package Plan ##

environment location: C:\ProgramData\Anaconda3

added / updated specs:
    - scikit-learn

The following packages will be UPDATED:

conda: 4.5.4-py36_0 --> 4.6.7-py36_0

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
C:\WINDOWS\system32>
```

Figure 1.10: Langkah installasi anaconda.

```
C:\WINDOWS\system32>python
Python 3.6.5 |Anaconda, Inc. | (default, Mar 29 2018, 13:23:52) [MSC v.1900 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> print ('jesron')
jesron
>>>
```

Figure 1.11: Langkah terakhir.

matematis dan visual yang mudah dipahami. Karena kajian ini berkaitan dengan sistem kontrol, konsep tersebut banyak dikembangkan dalam konteks pemrograman komputer hingga saat ini.

- 2. Definisi Supervised Learning, Unsupervised Learning, Klasifikasi, Regresi, Data Set, Training Set dan Testing Set
 - Supervised Learning

Supervised learning adalah pembelajaran yang terawasi dimana jika output yang diharapkan telah diketahui sebelumnya. Biasanya pembelajaran ini dilakukan dengan menggunakan data yang telah ada

• Unsupervised Learning

Unsupervised learning adalah pembelajaran yang tidak terawasi dimana tidak memerlukan target output. Metode ini tidak dapat ditentukan hasil seperti apa yang diharapkan selama proses pembelajaran, Nilai bobot

yang disusun dalam proses range tertentu tergantung pada output yang diberikan.

• Klasifikasi

Klasifikasi adalah Proses pengelompokkan berdasarkan ciri-ciri persamaan dan perbedaan

• Regresi

Regresi adalah metode analisis statistik yang digunakan untuk melihat pengaruh antara dua atau lebih variabel

• Data Set

Data set adalah objek yang merepresentasikan data dan relasinya di memory, Strukturnya hampir mirip dengan data di data base. Data set berisi koleksi dari data table dan data relation

• Training Set

Training set adalah bagian dataset yang kita latih untuk membuat prediksi atau algoritma ML lainnya sesuai tujuannya masing-masing. Kita memberikan petunjuk melalui algoritma agar mesin yang kita latih bisa mencari korelasinya sendiri. Walau demikian proses belajar harusnya proporsional. Layaknya seorang murid yang terlalu diforsir belajar, maka hasilnya pun tidak akan baik. Dalam istilah ML disebut dengan overfitting. Akan lebih mudah memahami konsep overfitting melalui praktek.

• Testing Set

Test set adalah bagian dataset yang kita tes untuk melihat keakuratannya, atau dengan kata lain melihat performanya.

3. Instalasi Scikit-Learn dari Anaconda

- Pertama install Anaconda di pc masing-masing
- Kemudian buka cmd untuk menginstall scikit-learn
- Ketikan "conda install scikit-learn" dan pilih "y"
- ketik "pip install -U scikit-learn" untuk menggabungkan anaconda dan python

```
administrator: Command Prompt
Microsoft Windows [Version 10.0.17134.590]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\WINDOWS\system32>conda install scikit-learn
Solving environment: done

## Package Plan ##

environment location: C:\ProgramData\Anaconda3

added / updated specs:
    - scikit-learn

The following packages will be UPDATED:
    conda: 4.5.4-py36_0 --> 4.6.7-py36_0

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
C:\WINDOWS\system32>
```

Figure 1.12: Proses Instalasi

Figure 1.13: Gabung Conda dan Python

• Setelah itu, kompilasi kode di dalam python dengan ketik "python", lalu "print('puad')" maka akan menghasilkan seperti gambar berikut.

4. Loading an Example Dataset

- Ketik perintah berikut "from sklearn import datasets" untuk mengimport dataset dari sklearn.
- ketik perintah "iris = datasets.load iris" untuk membuat variable iris yang berisi datasets.
- ketik perintah berikut "digits = datasets.load digits" untuk membuat variable digits yang berisi datasets, dan juga "print(digits.data)" untuk melihat isi data dari datasets seperti gambar

```
C:\WINDOWS\system32>python
Python 3.6.5 |Anaconda, Inc.| (default, Mar 29 2018, 13:23:52) [MSC v.1900 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> print('puad')
puad
>>>
```

Figure 1.14: Kompilasi Kode

Figure 1.15: Variable Digits

• kemudian ketik "digits target"

Figure 1.16:

- kemudian ketik "digits.images[0] "
- kemudian ketik "from sklearn import sv
m" dan kemudian clf = svm.SVC(gamma=0.001, C=100.) "
- kemudian ketik "clf.fit(digits.data[:-1], digits.target[:-1]) "
- kemudian ketik "clf.predict(digits.data[-1:])"
- kemudian ketik "from sklearn import svm"
- kemudian ketik "from sklearn import datasets"
- kemudian ketik "clf = svm.SVC(gamma='scale')"
- kemudian ketik "iris = datasets.load(andeskore)iris()"
- kemudian ketik "X, y = iris.data, iris.target"
- kemudian ketik "clf.fit(X, y)"
- kemudian ketik "import pickle"

Figure 1.17:

```
>>> clf = svm.SVC(gamma=0.001, C-100)
>>> clf.fit(digits.data[:-1], digits.target[:-1])
SVC(C-100, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
>>> clf.predict(digits.data[-1:])
array([8])
```

Figure 1.18:

- kemudian ketik "s = pickle.dumps(clf)"
- kemudian ketik "clf2 = pickle.loads(s)"
- kemudian ketik "clf2.predict(X[0:1])"
- kemudian ketik " y[0]"
- kemudian ketik "from joblib import dump, load"
- kemudian ketik "dump(clf, 'filename.joblib')"
- conventions
- ketikan "import numpy as np"
- ketikan "from sklearn import random(andeskor)projection"
- ketikan "rng = np.random.RandomState(0)"
- ketikan "X = rng.rand(10, 2000)"
- ketikan "X = np.array(X, dtype='float32')"
- ketikan "X.dtype"
- ketikan "transformer = random projection.GaussianRandomProjection"
- ketikan "X new = transformer.fit transform(X)"
- ketikan "X new.dtype"
- 5. screenshoot eror
- 6. kode eror "no module named 'joblib'"

Figure 1.19:

Figure 1.20:

7. penanganannya instal joblib dengan mengetikan" conda instal -c anaconda joblib"

 $\ensuremath{\ensuremath}\ensuremath{\ensuremath{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ens$

```
>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict(X[0:1])
array([0])
```

Figure 1.21:

Figure 1.22:

```
>>> from joblib import dump, load
>>> dump(clf, 'filename.joblib')
['filename.joblib']
```

Figure 1.23:

```
>>> import numpy as np
>>> from sklearn import random_projection
>>> rng = np.random.RandomState(0)
>>> X = rng.rand(10, 2000)
>>> X = np.array(X, dtype='float32')
>>> X. dtype
dtype('float32')
>>> transformer = random_projection.GaussianRandomProjection()
>>> X_new.dtype
dtype('float64')
>>> >>> ...
```

Figure 1.24:

```
>>> from joblib import dump, load
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'joblib'
```

Figure 1.25:

Related Works

Your related works, and your purpose and contribution which must be different as below.

2.1 Same Topics

Cite every latest journal with same topic

2.1.1 Topic 1

cite for first topic

2.1.2 Topic 2

if you have two topics you can include here to

2.2 Same Method

write and cite latest journal with same method

2.2.1 Method 1

cite and paraphrase method 1

2.2.2 Method 2

cite and paraphrase method 2 if you have more method please add new subsection.

Methods

3.1 The data

PLease tell where is the data come from, a little brief of company can be put here.

3.2 Method 1

Definition, steps, algoritm or equation of method 1 and how to apply into your data

3.3 Method 2

Definition, steps, algoritm or equation of method 2 and how to apply into your data

Experiment and Result

brief of experiment and result.

4.1 Experiment

Please tell how the experiment conducted from method.

4.2 Result

Please provide the result of experiment

Conclusion

brief of conclusion

5.1 Conclusion of Problems

Tell about solving the problem

5.2 Conclusion of Method

Tell about solving using method

5.3 Conclusion of Experiment

Tell about solving in the experiment

5.4 Conclusion of Result

tell about result for purpose of this research.

Discussion

Appendix A

Form Penilaian Jurnal

gambar A.1 dan A.2 merupakan contoh bagaimana reviewer menilai jurnal kita.

NO	UNSUR	KETERANGAN	MAKS	KETERANGAN
	Chock	Maksimal 12 (dua belas) kata dalam	1121 61645	a. Tidak lugas dan tidak ringkas (0)
1	Keefektifan Judul Artikel	Bahasa Indonesia atau 10 (sepuluh) kata	2	b. Kurang lugas dan kurang ringkas (1)
		dalam Bahasa Inggris		c. Ringkas dan lugas (2)
	Pencantuman Nama Penulis dan Lembaga Penulis	uatan Danasa Inggris	1	a. Tidak lengkap dan tidak konsisten (0)
- 2				b. I
-				b. Lengkap tetapi tidak konsisten (0,5)
-				c. Lengkap dan konsisten (1) a. Tidak dalam Bahasa Indonesia dan
		Dalam Bahasa Indonesia dan Bahasa		a. 11dak dalam Bahasa Indonesia dan Bahasa Inggris (0)
-			l	b. Abstrak kurang jelas dan ringkas,
		Inggris yang baik, jumlah 150-200		atau hanya dalam Bahasa Inggris, atau
3	Abstrak	kata. Isi terdiri dari latar belakang,	2	dalam Bahasa Indonesia saja (1)
-		metode, hasil, dan kesimpulan. Isi		daiam Banasa indonesia saja (1)
		tertuang dengan kalimat yang jelas.		c. Abstrak yang jelas dan ringkas dalam
		,,		Bahasa Indonesia dan Bahasa Inggris (2)
				a. Tidak ada (0)
		Maksimal 5 kata kunci terpenting		 b. Ada tetapi kurang mencerminkan
4	Kata Kunci	dalam paper	1	konsep penting dalam artikel (0,5)
				c. Ada dan mencerminkan konsep
				penting dalam artikel (1)
		Terdiri dari pendahuluan, tinjauan pustaka, metode penelitian, hasil dan		a. Tidak lengkap (0)
5	Sistematika Pembaban		1	 b. Lengkap tetapi tidak sesuai sisetm
1		pembahasan, kesimpulan dan saran,		(0,5)
		daftar pustaka		c. Lengkap dan bersistem (1)
		Pemanfaatan Instrumen Pendukung seperti gambar dan tabel	1	a. Tak termanfaatkan (0)
6	Pemanfaatan Instrumen			b. Kurang informatif atau komplementer
	Pendukung			(0,5)
				c. Informatif dan komplementer (1)
	Cara Pengacuan dan Pengutipan		1	a. Tidak baku (0)
7				b. Kurang baku (0,5)
				c. Baku (1)
		Penyusunan Daftar Pustaka	1	a. Tidak baku (0)
8	Penyusunan Daftar Pustaka			b. Kurang baku (0,5)
_				c. Baku (1)
	Peristilahan dan Kebahasaan			a. Buruk (0)
9			2	b. Baik (1)
				c. Cukup (2)
				a. Tidak ada (0)
	Makna Sumbangan bagi			b. Kurang (1)
10	Kemajuan		4	c. Sedang (2)
	Kemajuan			d. Cukup (3)
				e. Tinggi (4)

Figure A.1: Form nilai bagian 1.

11	Dampak Ilmiah		7	a. Tidak ada (0) b. Kurang (1) c. Sedang (3) d. Cukup (5) e. Besar (7)
12	Nisbah Sumber Acuan Primer berbanding Sumber lainnya	Sumber acuan yang langsung merujuk pada bidang ilmiah tertentu, sesuai topik penelitian dan sudah teruji.	3	a. < 40% (1) b. 40-80% (2) c. > 80% (3)
13	Derajat Kemutakhiran Pustaka Acuan	Derajat Kemutakhiran Pustaka Acuan	3	a. < 40% (1) b. 40-80% (2) c. > 80% (3)
14	Analisis dan Sintesis	Analisis dan Sintesis	4	a. Sedang (2) b. Cukup (3) c. Baik (4)
15	Penyimpulan	Sangat jelas relevasinya dengan latar belakang dan pembahasan, dirumuskan dengan singkat	3	a. Kurang (1) b. Cukup (2) c. Baik (3)
16	Unsur Plagiat		0	a. Tidak mengandung plagiat (0) b. Terdapat bagian-bagian yang merupakan plagiat (-5) c. Keseluruhannya merupakan plagiat (- 20)
	TOTAL			
	Catatan: Nilai minimal untu	ık diterima 25		

Figure A.2: form nilai bagian 2.

Appendix B

FAQ

M : Kalo Intership II atau TA harus buat aplikasi ? D : Ga harus buat aplikasi tapi harus ngoding

M : Pa saya bingung mau ngapain, saya juga bingung mau presentasi apa? D : Makanya baca de, buka jurnal topik 'ganteng' nah kamu baca dulu sehari 5 kali ya, 4 hari udah 20 tuh. Bingung itu tanda kurang wawasan alias kurang baca.

M : Pa saya sudah cari jurnal terindeks scopus tapi ga nemu. D : Kamu punya mata de? coba dicolok dulu. Kamu udah lakuin apa aja? tolong di list laporkan ke grup Tingkat Akhir. Tinggal buka google scholar klik dari tahun 2014, cek nama jurnalnya di scimagojr.com beres.

M : Pa saya belum dapat tempat intership, jadi ga tau mau presentasi apa? D : kamu kok ga nyambung, yang dipresentasikan itu yang kamu baca bukan yang akan kamu lakukan.

M : Pa ini jurnal harus yang terindex scopus ga bisa yang lain ? D : Index scopus menandakan artikel tersebut dalam standar semantik yang mudah dipahami dan dibaca serta bukan artikel asal jadi. Jika diluar scopus biasanya lebih sukar untuk dibaca dan dipahami karena tidak adanya proses review yang baik dan benar terhadap artikel.

M: Pa saya tidak mengerti D: Coba lihat standar alasan

M : Pa saya bingung D : Coba lihat standar alasan

M: Pa saya sibuk D: Mbahmu....

M: Pa saya ganteng D: Ndasmu....

M: Pa saya kece D: wes karepmu lah....

Biasanya anda memiliki alasan tertentu jika menghadapi kendala saat proses bimbingan, disini saya akan melakukan standar alasan agar persepsi yang diterima sama dan tidak salah kaprah. Penggunaan kata alasan tersebut antara lain:

- 1. Tidak Mengerti: anda boleh menggunakan alasan ini jika anda sudah melakukan tahapan membaca dan meresumekan 15 jurnal. Sudah mencoba dan mempraktekkan teorinya dengan mencari di youtube dan google minimal 6 jam sehari selama 3 hari berturut-turut.
- 2. Bingung : anda boleh mengatakan alasan bingung setelah maksimal dalam berusaha menyelesaikan tugas bimbingan dari dosen(sudah dilakukan semua). Anda belum bisa mengatakan alasan bingung jika anda masih belum menyelesaikan tugas bimbingan dan poin nomor 1 diatas. Setelah anda menyelesaikan tugas bimbingan secara maksimal dan tahap 1 poin diatas, tapi anda masih tetap bingung maka anda boleh memakai alasan ini.

Bibliography

- [1] Joshua Eckroth. Python Artificial Intelligence Projects for Beginners: Get up and running with Artificial Intelligence using 8 smart and exciting AI applications. Packt Publishing Ltd, 2018.
- [2] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited,, 2016.