1. (a) Prove that the following languages are not regular by providing a fooling set. You need to provide an infinite set and also prove that it is a valid fooling set for the given language.

```
i. L = \{0^i 1^j 2^k \mid i+j=k+1\}.
   Solution: Let F be the language 0^*.
      Let x and y be arbitrary strings in F.
      Then x = 0^m and y = 0^n for some non-negative integers m \neq n.
      Let w = 1^{k+1-m} 2^k.
      Then xw = 0^m 1^{k+1-m} 2^k \in L, because m + k + 1 - m = k + 1.
      And yw = 0^n \mathbf{1}^{k+1-m} \mathbf{2}^k \notin L, because n+k+1-m \neq k+1.
      Thus, F is a fooling set for L.
      Because F is infinite, L cannot be regular.
```

Solution (concise): For all non-negative integers $m \neq n$, the strings 0^m and 0^n are distinguished by the suffix $1^{k+1-m}2^k$, because $0^m1^{k+1-m}2^k \in L$ but $0^n 1^{k+1-m} 2^k \notin L$. Thus, the language 0^* is an infinite fooling set for L.

ii. Recall that a block in a string is a maximal non-empty substring of indentical symbols. Let L be the set of all strings in $\{0,1\}^*$ that contain two non-empty blocks of 1s of unequal length. For example, L contains the strings 01101111 and 01001011100010 but does not contain the strings 000110011011 and 00000000111.

Solution: Let F be the language $\mathbf{1}^*$. Let x and y be arbitrary strings in F. Then $x = 1^i$ and $y = 1^j$ for some non-negative integers $i \neq i$. Let $w = 01^{i}$.

Then $xw = \mathbf{1}^i \mathbf{0} \mathbf{1}^i \notin L$, because it does not contain two non-empty blocks of 1s of unequal length.

And $yw = 1^{j}01^{i} \in L$, because $i \neq j$, so it contains two non-empty blocks of 1s of unequal length.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (concise): For all non-negative integers $i \neq j$, the strings $\mathbf{1}^i$ and $\mathbf{1}^j$ are distinguished by the suffix 01^i , because $1^i01^i \notin L$ (because it does not contain two non-empty blocks of 1s of unequal length) but $1^{j}01^{i} \in L$ (because $i \neq j$, so it contains two non-empty blocks of 1s of unequal length). Thus, the language 1^* is an infinite fooling set for L.

iii. $L = \{0^{n^3} \mid n \ge 0\}.$

Solution: Let $F = L = \{0^{n^3} \mid n \ge 0\}$. Let x and y be arbitrary strings in F. Then $x = 0^{i^3}$ and $y = 0^{j^3}$ for some non-negative integers $i \ne j$.

Let $w = 0^{3i^2 + 3i + 1}$

Then $xw = 0^{i^3} 0^{3i^2 + 3i + 1} = 0^{i^3 + 3i^2 + 3i + 1} = 0^{(i+1)^3} \in L$.

And $yw = 0^{j^3} 0^{3i^2+3i+1} = 0^{j^3+3i^2+3i+1} \notin L$, because $i \neq j$ and the equation cannot be constructed as a cube function.

Thus, F is a fooling set for L.

Because *F* is infinite, *L* cannot be regular.

Solution (concise): For all non-negative integers $i \neq j$, the strings 0^{i^3} and 0^{j^3} are distinguished by the suffix 0^{3i^2+3i+1} , because $0^{i^3}0^{3i^2+3i+1}=0^{i^3+3i^2+3i+1}=0^{i^3+3i^2+3i+1}=0^{i^3+3i^2+3i+1}=0^{j^3+3i^2+3i+1}\neq L$, because $i\neq j$ and the equation cannot be constructed as a cube function.. Thus, L itself is an infinite fooling set for L.

(b) Suppose L is not regular. Prove that $L \setminus L'$ is not regular for any finite language L'. Give a simple example of a non-regular language L and a regular language L' such that $L \setminus L'$ is regular.

Solution: L' is a regular language, since it is a finite language.

Let $L'' = L' \cap L$. Since L'' is a subset of L', L'' is also finite, which means L'' is also regular. Then $L = (L \setminus L') \cup L''$. Suppose $L \setminus L'$ is regular. This implies $L = (L \setminus L') \cup L''$ is regular, since the union of two regular language is also regular. (Closure property of regular language). This contradicts the fact that L is not regular. Thus, $L \setminus L'$ is not regular.

For example, let $L = \{0^n 1^n \mid n \ge 0\}$ which is not regular and $L' = \{0, 1\}^*$ which is regular. In this case, $L \setminus L' = \emptyset$ is regular.

Rubric: On a scale of 10 points:

- 6 points for (a), 2 points for each subquestion:
 - 1 point for a proper setup: an infinite fooling set, x, y which are arbitrary pairs in the fooling set, z which is arbitrary string, and proving exactly one of $\{xz, yz\}$ is in L. No further points if this part is incorrect.
 - 1 point for correctly proving z distinguishes x, y.
 - -0.5 for each minor error.
- 4 points for (b):
 - 3 points for the proof.
 - 1 points for the example.
 - 0.5 each minor error.
- 2. Describe a context-free grammar for the following languages. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.
 - (a) $\{a^i b^j c^k \mid k = 3(i+j)\}.$

Solution: For every a or b in such a string, we must have a c. We can generate these strings by first adding the a along with the appropriate number of a and then adding the a again with a a a for each.

$$S \to aSccc \mid B$$
 strings of the form $a^i b^j c^k$, s.t. $k = 3(i + j)$

$$B \rightarrow bBccc \mid \varepsilon$$
 strings of the form $b^j c^k$, s.t. $k = 3j$

(b) $\{a^i b^j c^k d^{\ell} \mid i, j, k, \ell \ge 0 \text{ and } i + \ell = j + k\}.$

Solution: Consider following two cases,

- Case 1: $\{a^i b^j c^k d^\ell | i \le j, i + \ell = j + k\}$
- Case 2: $\{a^i b^j c^k d^{\ell} | i > j, i + \ell = j + k\}$

For Case 1. Since the number of a's is at most as the number of b's in the string. Therefore, we can represent the beginning of the string as $a^i b^{i+x}$ (i.e., j=i+x). Since there are ℓ d's, the string must be in the form of $a^i b^{i+x} c^{\ell-x} d^l$ in order to keep the sum of the number of b's and c's to equal $i+\ell$. We can rewrite this as $a^i b^i$ followed by $b^x c^{\ell-x} d^\ell$. The first group can be generated by $A \to aAb \mid \varepsilon$. And the second group can be generated by $X \to bXd \mid C$ together with $C \to cCd \mid \varepsilon$. Putting these together gives us $L \to AX$, which handles Case 1.

For Case 2, we have $\ell < k$, and the solution is similar to Case 1. But now the grouping is the following form $a^ib^{i-x}c^{\ell+x}d^\ell$. This can be regrouped as $a^ib^{i-x}c^x$ and $c^\ell d^\ell$.

$$S \to L \mid M$$
 strings of the form $a^i b^j c^k d^\ell$, s.t. $i + \ell = j + k$
 $L \to AX$ strings of the form $a^i b^j c^k d^\ell$, s.t. $i \le j, i + \ell = j + k$
 $A \to aAb \mid \varepsilon$ strings of the form $a^i b^i$, for some $i \ge 0$
 $X \to bXd \mid C$ strings of the form $b^j c^{k-j} d^k$, for some $j, k \ge 0$
 $C \to cCd \mid \varepsilon$ strings of the form $c^i d^i$, for some $i \ge 0$
 $M \to YC$ strings of the form $a^i b^j c^k d^\ell$, s.t. $i > j, i + \ell = j + k$
 $Y \to aYc \mid A$ strings of the form $a^i b^{i-j} c^j$, for some $i, j \ge 0$

(c) $L = \{0, 1\}^* \setminus \{0^n 1^{2n} \mid n \ge 0\}$. In other words, the complement of the language $\{0^n 1^{2n} \mid n \ge 0\}$.

Solution: We take a similar approach to the third problem of lab 4. We claim that L is the union of the language $L_1 = \{0^m 1^n \mid n \neq 2m, m, n \geq 0\}$ and the language $L_2 = (0+1)^* 10(0+1)^*$. L_1 is contained in L by its definition. L_2 is contained in L because L_2 is the complement of $0^* 1^*$. $0^* 1^*$ is the union of L_1 and $\{0^n 1^{2n} \mid n \geq 0\}$.

On the other hand, $\forall w \in L$ w is either in L_1 or L_2 by the definition of L. If w is of the form 0^m1^n , it must be that $n \neq 2m$, else w would be in $\{0^n1^{2n} \mid n \geq 0\}$, and thus not in L, thus if w is of the form 0^m1^{2n} it is in L_1 . If w is not of the form 0^m1^n , then it must contain a 1 followed by a 0, so it is in L_2 .

$$S \to T \mid X$$
 {0,1}*\{0^n1^{2n} \mid n \ge 0}

$$T \to 0T11 \mid A \mid B \mid C$$
 {0^m1ⁿ \| n \neq 2m, m, n \ge 0}

$$A \to 1 \mid A1$$
 1+

$$B \to 0 \mid B0$$
 0+

$$C \to 1 \mid B1$$
 0*1

$$X \to Z10Z$$
 (0+1)*10(0+1)*

$$Z \to \varepsilon \mid 0Z \mid 1Z$$
 (0+1)*

Rubric: (a) 3 points

- 2 for a correct grammar (This is not the only correct solution)
- · 1 for a clear explanation of the grammar
- if the solution is not understandable and no explanation, give 0.

(b) 4 points

- 1 for correctly identify two cases.
- 2 for a correct grammar. (This is not the only correct solution.)
- 1 for a clear explanation of the grammar.
- if the solution is not understandable and no explanation, give 0.

(c) part

- 2 for a correct grammar. (These are not the only correct solutions.)
- 1 for a clear explanation of the grammar.
- if the solution is not understandable and no explanation, give 0.
- 3. **Solution:** We prove $insert(L_1, L_2)$ is regular by constructing a NFA N such that $L(N) = insert(L_1, L_2)$. Let $M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, s_2, A_2)$ be DFAs recoginizing the languages L_1 and L_2 respectively. The construction idea is that for any input string x, the NFA N will guess where to split the string into x = uvw such that $v \in L_1$ and $uw \in L_2$. Naturally, N will follow the transitions of M_2 when reading u, until the position where it guesses v starts and go to the start state of M_1 from there. Then it follows the transitions of M_1 from s_1 to an accepting state while reading v, from which point it goes back to the state of M_2 where it left and continues to follow transitions of M_2 afterwards as it reads w.

To realize this idea, we will use two copies of M_2 and $|Q_2|$ copies of M_1 . We need two copies of M_2 to distinguish whether the insertion of a string from L_1 has been made. We need $|Q_2|$ copies of M_1 to "remember" the state of M_2 from which we transitioned into M_1 and the state to which we will transition back. Inside each copy of M_1 (respectively M_2), the transition functions are the same as in M_1 (respectively M_2). The copies of M_1 have no transition between each other, neither do the two copies of M_2 . We add epsilon transitions from each state q of the first copy of M_2 to (and only to) the start state of the copy of M_1 associated with q and we add epsilon transitions from every accepting state of that copy of M_1 to the corresponding state q of the second copy of M_2 .

Formally, we define $N = (Q, \Sigma, \delta, s, A)$ such that

$$Q = (Q_1 \times Q_2) \cup (Q_2 \times \{before, after\}),$$

$$s = (s_2, before),$$

$$A = \{(q, after) \mid q \in A_2\},\$$

$$\delta((q,l),a) = \{(\delta_2(q,a),l)\} \quad \forall q \in Q_2, a \in \Sigma, l \in \{before, after\},$$
 (1)

$$\delta((p,q),a) = \{(\delta_1(p,a),q)\} \quad \forall p \in Q_1, q \in Q_2, a \in \Sigma, \tag{2}$$

$$\delta((q, before), \epsilon) = \{(s_1, q)\} \qquad \forall q \in Q_2, \tag{3}$$

$$\delta((p,q),\epsilon) = \{(q,after)\} \quad \forall p \in A_1, q \in Q_2. \tag{4}$$

Rubric: On a scale of 10 pts:

- 5pts for explaining the construction idea:
 - 1pt for using the guessing power (epsilon transitions) of NFA to split the string,
 - 2pts for using two copies of ${\cal M}_2$ to distinguish between "before" and "after" the insertion in the string,
 - 2pts for using copies of ${\cal M}_1$ to remember the state to which the NFA shall go back.
- 5pts for definition of NFA:
 - 1pt for Q,
 - 1pt for s and A,
 - 1pt for transition functions (1) and (2) together,
 - 1pt each for transition functions (3) and (4).