Topological K Theory

Labix

August 8, 2024

Abstract

Contents

1	The	K Group of a Space	3
	1.1	Grothendieck Completions	3
	1.2	The K-Group of a Space	3
		Reduced K-Theory	
	1.4	Relative K-Theory	5
	1.5	Functorial Properties of the K Functors	5
	1.6	Fundamental Product Theorem	5
2 Bot		Periodicity	6
	2.1	External Product	6
	2.2	Bott Periodicity Theorem	6

1 The K Group of a Space

1.1 Grothendieck Completions

Definition 1.1.1: Grothendieck Completion

Let A be an Abelian monoid. We say that a group $\mathcal{G}(A)$ together with a monoid homomorphism $i:A\to\mathcal{G}(A)$ is a Grothendieck completion of A if the following universal property is satisfied. If $j:A\to H$ is another monoid homomorphism where H is an abelian group, then there exists a unique group homomorphism $k:\mathcal{G}(A)\to H$ such that the following diagram

$$A \xrightarrow{i} \mathcal{G}(A)$$

$$\downarrow \exists ! k$$

$$H$$

is commutative.

Proposition 1.1.2

Let X be a space. Then $\operatorname{Vect}^{\mathbb{R}}(X)$ and $\operatorname{Vect}^{\mathbb{C}}(X)$ are both abelian monoids with the Whitney sum operator. They are moreover a commutative semiring under then tensor product operator.

1.2 The K-Group of a Space

Theorem 1.2.1

Let X be a compact Hausdorff space. Then for any vector bundle $E \to X$ over $F = \mathbb{R}$ or \mathbb{C} , there exists a vector bundle $\widetilde{E} \to X$ over F such that there is an isomorphism

$$E \oplus \widetilde{E} \cong X \times F^n$$

to the trivial bundle.

Definition 1.2.2: The K-Group of a Space

Let X be a space. Define the real and complex K group of X respectively to be the Grothendieck completion

$$KO(X) = \mathcal{G}(\operatorname{Vect}^{\mathbb{R}}(X))$$
 and $KU(X) = \mathcal{G}(\operatorname{Vect}^{\mathbb{C}}(X))$

Lemma 1.2.3

Let X be a space. Then KO(X) and KU(X) are both commutative rings with identity.

Definition 1.2.4: The K Functor

Define the K functors

$$KO, KU: \mathbf{Top} \to \mathbf{CRing}$$

as follows.

- ullet For each space X, KO(X) is the real K-group of X and KU(X) is the complex K-group of X
- For each map $f: X \to Y$, $KO(f): KO(Y) \to KO(X)$ is the ring homomorphism that sends each isomorphism class of vector bundle $[E] \in KO(Y)$ to the pullback bundle $[f^*(E)] \in KO(X)$. This is similar for $KU(f): KU(Y) \to KU(X)$.

We use $K : \mathbf{Top} \to \mathbf{CRing}$ to mean either the real K groups or the complex K groups when no distinction is needed.

1.3 Reduced K-Theory

Definition 1.3.1: Reduced K-Theory

Let *X* be a space. Define the reduced *K*-theory of *X* to be the kernel

$$\widetilde{KO}(X) = \ker(KO(X) \to KO(*))$$
 and $\widetilde{KU}(X) = \ker(KU(X) \to KU(*))$

Similarly, we use $\widetilde{K}: \mathbf{Top} \to \mathbf{Ab}$ to mean either the reduced real K groups or the reduced complex K groups when no distinction is needed.

The universal property of the kernel turns reduced *K*-theory into a functorial construction.

Definition 1.3.2: Reduced K Functor

Define the *K* functors

$$\widetilde{KO},\widetilde{KU}:\mathbf{Top}\to\mathbf{Ab}$$

as follows.

- For each space X, $\widetilde{KO}(X)$ is the reduced real K-group of X and $\widetilde{KU}(X)$ is the reduced complex K-group of X
- For each map $f: X \to Y$, $\widetilde{KO}(f): \widetilde{KO}(Y) \to \widetilde{KO}(X)$ is the ring homomorphism that sends each isomorphism class of vector bundle $[E] \in \widetilde{KO}(Y)$ to the pullback bundle $[f^*(E)] \in \widetilde{KO}(X)$. This is similar for $\widetilde{KU}(f): \widetilde{KU}(Y) \to \widetilde{KU}(X)$.

Theorem 1.3.3

Let X be a compact Hausdorff space. Then the natural homomorphism $K(X) \to \widetilde{K}(X)$ is surjective with kernel \mathbb{Z} . In particular, this gives an isomorphism

$$K(X) \cong \widetilde{K}(X) \oplus \mathbb{Z}$$

A similar

Definition 1.3.4: Reduced Equivalence

Let X be a space. Let $V \to X$ and $W \to X$ be two vector bundles over X. We say that $V \sim_{\mathrm{red}} W$ if $V \oplus T^m \cong W \oplus T^n$ for some $m, n \in \mathbb{N}$ and T the trivial bundle.

Proposition 1.3.5

Let X be a space. Then $\mathrm{Vect}^{\mathbb{R}}/\sim_{\mathrm{red}}$ and $\mathrm{Vect}^{\mathbb{C}}/\sim_{\mathrm{red}}$ form abelian groups respectively with the Whitney sum operation.

Theorem 1.3.6

Let X be a space. Then there is are natural isomorphisms

$$KO(X)\cong rac{\operatorname{Vect}^{\mathbb{R}}}{\sim_{\operatorname{red}}} \quad ext{ and } \quad KU(X)\cong rac{\operatorname{Vect}^{\mathbb{C}}}{\sim_{\operatorname{red}}}$$

Proposition 1.3.7

Let X be a compact Hausdorff space and let $A \subseteq X$ be a closed subspace. Then the inclusion map $i: A \to X$ and the projection map $q: X \to X/A$ induces an exact sequence

$$\widetilde{K}(X/A) \xrightarrow{q^*} \widetilde{K}(X) \xrightarrow{i^*} \widetilde{K}(A)$$

1.4 Relative K-Theory

Definition 1.4.1

Let X be a space and let $A \subseteq X$ be a closed subspace. Define the relative K theory of the pair (X,A) by

$$K(X, A) = \widetilde{K}(X/A)$$

1.5 Representability of the Reduced K Functor

They key point of being compact Hausdorff is displayed as follows.

Theorem 1.5.1: Stabilization Theorem

Let X be a compact space. Then there is a natural isomorphism

$$\lim_{\mathbb{N}}\operatorname{Vect}_n^{\mathbb{R}}(X)\cong \widetilde{KO}(X)$$

induced by the direct limit of the maps $\operatorname{Vect}_n^{\mathbb{R}}(X)$. Similarly, there is a natural isomorphism

$$\lim_{\mathbb{N}}\operatorname{Vect}_n^{\mathbb{C}}(X)\cong \widetilde{KU}(X)$$

Now $\operatorname{Vect}_n^{\mathbb{R}}(X)$ is representable by O(n). Commuting the direct limit gives the following theorem.

Theorem 152

The real and complex $K: \mathbf{CH} \to \mathbf{CRing}$ functors defined on the full subcategory \mathbf{CH} of compact Hausdorff spaces are representable:

$$KO(-) \cong [-, BO \times \mathbb{Z}]$$
 and $KU(-) \cong [-, BU \times \mathbb{Z}]$

Similarly, the real and complex reduced $\widetilde{K}: \mathbf{CH} \to \mathbf{CRing}$ functors are representable:

$$\widetilde{KO}(-) \cong [-, BO]$$
 and $\widetilde{KU}(-) \cong [-, BU]$

1.6 Functorial Properties of the K Functors

Theorem 1.6.1: Homotopy Invariance

If X and Y are paracompact space such that $f:X\to Y$ is a homotopy equivalence, then there is an isomorphism

$$K(f):K(Y)\stackrel{\cong}{\longrightarrow} K(X)$$

given by the induced map.

Theorem 1.6.2: Long Exact Sequence

Let X be a compact Hausdorff space. Let $A\subseteq X$ be a closed subspace. Then there is a long exact sequence in reduced K-theory:

$$\cdots \longrightarrow \widetilde{KU}(\Sigma(X/A)) \longrightarrow \widetilde{KU}(\Sigma X) \longrightarrow \widetilde{KU}(\Sigma A) \longrightarrow \widetilde{KU}(X/A) \longrightarrow \widetilde{KU}(X) \longrightarrow \widetilde{KU}$$

1.7 Fundamental Product Theorem

- 2 Bott Periodicity
- 2.1 External Product
- 2.2 Bott Periodicity Theorem