STICKFORSTATS

Statistical Analysis Platform with Guardian Protection

Ensuring Scientific Integrity Through Automatic Assumption Validation

Vishal Bharti

October 2025

100% Complete

Production Ready

Live Demo Available

The Problem: Statistical Malpractice

Research Reproducibility Crisis

- **70%+** of researchers failed to reproduce others' experiments¹
- **52%** agree there is a significant reproducibility crisis¹
- \sim **50%** cite poor statistical analysis as a major cause 1
- Existing tools allow ANY test on ANY data (no validation)
- Result: False positives, wasted resources, irreproducible science

Real-World Impact:

Researcher runs t-test on severely non-normal data \rightarrow Gets p = 0.03 \rightarrow Publishes \rightarrow

Others cannot replicate → Wasted time, money, careers

Our Solution: The Guardian System

Traditional Tools Upload Data Select ANY Test Run Test **Get Results** (May be invalid X)

```
StickForStats + Guardian
    Upload Data
 Guardian Validates
Valid → Run Test ✓
Violated → BLOCK
 + Show Evidence
 + Alternatives ✓
```

Platform Overview

Tests

26+

Parametric &

Non-parametric

Categories

16/16

100% Complete

Lessons

32

Interactive

Education

Protected

17

Guardian

Components

First platform combining: Analysis + Education + Automatic Validation

Six Statistical Validators

- 1. Normality: Shapiro-Wilk Q-Q plot Histogram
- **2. Variance Homogeneity:** Levene's test Bartlett's test
- **3. Independence:** Autocorrelation Durbin-Watson Runs test
- 4. Outliers: IQR method Z-score Visual identification
- **5. Sample Size:** Power analysis Minimum requirements
- **6. Modality:** Distribution shape Peak detection

Guardian-Protected Statistical Tests (17/22)

Component	Tests & Features	Batch	Status				
BATCH 1: Core Statistical Tests							
1. TTestCalculator	Independent, Paired, One-sample	1	✓				
2. ANOVACalculator	One-way, Two-way, Repeated Measures	1	✓				
3. ChiSquareCalculator	Goodness-of-fit, Independence	1	✓				
4. CorrelationCalculator	Pearson, Spearman, Kendall	1	✓				
5. RegressionCalculator	Linear, Polynomial, Ridge/Lasso, Robust	1	✓				
6. ProportionCalculator	Single proportion, Two proportions	1	✓				
7. NormalityTests	Shapiro-Wilk, Anderson-Darling, K-S	1	✓				
8. OutlierDetection	IQR, Z-score, Modified Z-score	1	✓				
9. VarianceTests	Levene, Bartlett, Brown-Forsythe	1	✓				
10. NonParametricTests	Mann-Whitney, Wilcoxon, Kruskal-Wallis	1	✓				
11 DietributionFitting	Normal Evnonential Weihull etc	1	./				

Guardian Integration Journey

BATCH 1: Core Statistical Tests (13 components)

Coverage: $37.5\% \rightarrow 59.1\%$ (+21.6 percentage points)

BATCH 2: Effect Size & Power Analysis (1 component)

Coverage: **59.1%** \rightarrow **63.6%** (+4.5 percentage points)

BATCH 3: Confidence Interval Calculators (2 components)

Coverage: $63.6\% \rightarrow 72.7\%$ (+9.1 percentage points)

BATCH 4: Advanced Statistical Tests (1 component)

Coverage: $72.7\% \rightarrow 77.3\%$ (+4.6 percentage points)

TOTAL IMPROVEMENT: +39.8 percentage points

From 37.5% (starting) $\rightarrow 77.3\%$ (Phase 1 complete)

Parameter-driven components (no raw data input)

Innovation: "Data vs Parameters" Philosophy

X Traditional Approach: Validate Everything

Existing tools either:

- Do NO validation (SPSS, R, GraphPad)
- Or attempt validation on parameters (ineffective)

✓ Guardian Philosophy: Validate DATA Assumptions

If component accepts RAW DATA → Validate assumptions
If component only accepts PARAMETERS → Skip validation

✓ Guardian Validates:

- Raw sample data → t-test
- Raw data arrays → ANOVA
- X, Y values → Regression
- Sample measurements → CI

Guardian Skips:

- a, power, effect size → Parameters
- Pre-calculated mean, SD → Summary stats
- Visualizations → No test execution
- Design wizards → Configuration tools

Innovation: Selective Validation

INSIGHT: Not all tests in a component need the same validation

Example 1: AdvancedStatisticalTests

- **v t-test:** Validate normality + variance
- **V** ANOVA: Validate normality + homogeneity
- Mann-Whitney: Skip (non-parametric)
- Marchi-Square: Skip (categorical)

4 tests, 2 validated, 2 skipped → Smart validation

Example 2: SampleBasedCalculator

- **Mean (t-interval):** Validate normality
- **Variance interval:** Validate normality
- Proportion interval: Skip (binomial)

6 interval types, only parametric ones validated

Bootstrap Robustness Recognition:

BootstrapCalculator: Check data quality only, block ONLY on CRITICAL violations

Respects bootstrap's inherent robustness to assumption violations

Real Example: Blocking in Action

STEP 1: User uploads cell viability data (n=30)

STEP 2: Guardian Validates

✓ Sample Size OK • ✓ Independence OK • ✗ Normality VIOLATED

STEP 3: Guardian BLOCKS Test

t-test cannot proceed - Normality violated Risk: Inflated error rates, unreliable p-values

STEP 4: Alternatives Provided

✓ Mann-Whitney U test • ✓ Bootstrap CI • ✓ Permutation test

OUTCOME: User selects Mann-Whitney → Valid results ✓

Publication-Ready Validation Reports

Enhanced PDF Reports

Complete validation documentation with visualizations and recommendations

Diagnostic Visualizations

- Q-Q plots for normality assessment
- Histograms with normal overlay
- Box plots for outlier detection
- Group comparison plots
 - Cohen's d with 95% CI
 - Eta-squared (η²)
 - Correlation coefficients (r, r²)
- **Effect Size Analysis** Cramér's V for categorical data

Comprehensive Guidance

- Scientific justification for alternatives
- Exact navigation paths to tests
- APA-style reporting templates
- Golden Ratio confidence scoring ($\phi = 1.618$)

Export Formats

- PDF: Publication-ready reports (150 DPI)
- JSON: Complete validation metadata
- Includes test statistics (W, F, p-values)
- Data summary tables with all metrics

Unique Competitive Advantage

Feature	SPSS	R	GraphPad	StickForStats
Assumption Validation	X	×	X	✓
Auto Test Blocking	X	X	X	✓
Alternative Suggestions	X	X	X	✓
Visual Evidence	X	X	X	✓
Integrated Education	X	X	X	√ (32 lessons)
Cost	\$\$\$	Free	\$\$\$	Free

LIVE DEMONSTRATION

http://localhost:3000

Demo Scenarios:

- 1. Upload Non-Normal Data
 - → Attempt t-test → Guardian BLOCKS
- 2. Select Mann-Whitney U
 - → Guardian validates → Test runs successfully
- 3. Explore Platform
 - → 32 educational lessons → Complete suite

Educational Platform (32 Lessons)

Module	Lessons	Status
PCA	10 lessons (Beginner → Advanced)	✓
Confidence Intervals	8 lessons (Interpretation → Bayesian)	✓
Design of Experiments	8 lessons (Factorial → Taguchi)	✓
Probability Distributions	6 lessons (Discrete → Transformations)	✓
TOTAL VERIFIED	32 lessons	✓

All lessons with MathJax formulas, interactive visualizations

Key Achievements

PLATFORM: 100% Complete

√ 16/16 categories • √ 26+ tests • √ 32 lessons • √ Zero errors

GUARDIAN: Phase 1 Complete (77.3% Coverage)

√ 6 validators • √ 17/22 components • √ Automatic validation • √ <500ms response • √ 4 batches completed
</p>

SCIENTIFIC IMPACT: Transformative

✓ First platform with automatic validation • ✓ Prevents malpractice • ✓ Free & open-source

StickForStats + Guardian: Making inappropriate statistical test selection impossible

Questions & Discussion

Thank you for your attention!

- Technical implementation
- Guardian architecture
- Collaboration opportunities
- Deployment strategy

Discussion Topics: • Future directions

Contact: vishalvikashbharti@gmail.com

Demo: localhost:3000

References & Citations

Reproducibility Crisis & Statistical Malpractice

1. Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. *Nature*, 533(7604), 452-454.

https://doi.org/10.1038/533452a

Survey of 1,500 researchers documenting the reproducibility crisis. Key findings: 70%+ failed to reproduce others' work, 52% acknowledge a crisis exists.

2. Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. *Science*, 349(6251), aac4716.

https://doi.org/10.1126/science.aac4716

Landmark study replicating 100 psychology experiments; only 36% successfully replicated.

3. Ioannidis, J. P. A. (2005). Why most published research findings are false. *PLoS Medicine*, 2(8), e124.

https://doi.org/10.1371/journal.pmed.0020124

Seminal paper explaining how research practices lead to false positive findings.

Statistical Methods & p-Values

4. Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: Context, process, and purpose. *The American Statistician*, 70(2), 129-133.

https://doi.org/10.1080/00031305.2016.1154108

First-ever ASA statement providing 6 principles for proper p-value interpretation.