MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2016/17. Semestre de tardor

PRÀCTICA 7

Exercici 1 [Interpolació polinomial d'una taula de valors per diferències dividides]

(1) Feu una funció de prototipus

que implementi el mètode de les diferències dividides de Newton.

El vector x conté n+1 abscisses diferents x_i , $i=0 \div n$. El vector f conté:

- A l'entrada, n+1 ordenades f_i , $i=0 \div n$.
- A la sortida, les diferències dividides $f[x_0, x_1, \dots, x_i]$, $i = 0 \div n$.

Recordeu que les diferències dividides es poden calcular recurrentment:

- Per a un únic argument, són: $f[x_i] = f_i$, $i = 0 \div n$.
- Les de k+1 arguments es calcuen a partir de les de k arguments:

$$f[x_i, \dots, x_{i+k}] = \frac{f[x_{i+1}, \dots, x_{i+k}] - f[x_i, \dots, x_{i+k-1}]}{x_{i+k} - x_i}, \ \forall i \ge 0, k > 0, i+k \le n.$$

(2) Feu una funció de prototipus

double horner(double z, int n, double *x, double *c)

que implementi el mètode de Horner per a avaluar el polinomi $p(x) = \sum_{i=0}^{n} c_i \prod_{j=0}^{i-1} (x - x_j)$ en el valor x = z. O sigui, cal fer

$$p \leftarrow c_n,$$

 $p \leftarrow p * (z - x_i) + c_i, \forall i = n - 1, n - 2, ..., 1, 0.$

- (3) Feu una funció main que faci el següent:
 - Es llegeixin n > 0 i la taula (x_i, f_i) , $i = 0 \div n$. Cal que $x_0 < x_1 < \ldots < x_n$.
 - Es calculin els coeficients del polinomi interpolador $p \in P_n$ de la taula anterior usant la funció difdiv. Són $c_i = f[x_0, \ldots, x_i]$, $i = 0 \div n$.
 - S'avaluï p(x) en M+1 punts equidistants z_j de l'interval $[x_0, x_n]$ usant la funció horner, i s'escriguin els valors $z_j, p(z_j)$.

(4) Exemple: taules amb alguns temps parcials (segons) en carreres de 100, 200 i 400 metres llisos (corresponen a homes; a la referència podeu trobar dades de dones).

Dibuixeu conjuntament tots els resultats obtinguts usant gnuplot. Useu M = 100.

100 m					
U. Bolt	$2.88 \; s$	$4.64 \mathrm{\ s}$	$6.31 \mathrm{\ s}$	$7.92 \ s$	$9.58 \; s$

200 m	50 m	100 m	150 m	200 m
U. Bolt	$5.60 \; s$	$9.92 \; s$	14.44 s	19.19 s

400 m				
L. Merrit	11.14 s	21.49 s	32.30 s	44.06 s

Referència: Biomechanical Analysis of the Sprint and Hurdles Events at the 2009 IAAF World Championships in Athletics. R.Graubner and E. Nixdorf.

Exercici 2 [Interpolació polinomial d'una funció per diferències dividides]

Feu una variació del programa anterior per tal que interpoli una funció (en lloc d'una taula) en un interval [a, b].

Cal poder decidir entre usar abscisses equidistants

$$x_i = a + ih, i = 0 \div n, h = (b - a)/n;$$

o abscisses de Chebyshev

$$x_{n-i} = a + \frac{b-a}{2} \left(1 + \cos \frac{\pi(2i+1)}{2(n+1)} \right) , i = 0 \div n .$$

Feu-ho per a diversos valors de n, i useu gnuplot per a comparar les gràfiques dels polinomis interpoladors amb la gràfica de la funció.

Exemple clàssic: fenomen de Runge. Funció $f(x) = \frac{1}{1+25x^2}$ en l'interval [-1,+1].