Machine Learning

Andrew Ng

Linear regression with one variable Model representation

Housing Prices (Portland, OR) 500.000 375.000 250.000 Price 125.000 (in dollars) 0 750 1,500 2.250 3.000 0 Size (feet²)

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training set of housing prices (Portland, OR)

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Notation:

```
m = Number of training examples
x's = "input" variable / features
y's = "output" variable / "target" variable
(x, y) = one training example
(x(i), y(i)) = ith training example
```

Machine learning

How do we represent *h* ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Linear regression with one variable

- Linear regression with multiple variables
- Logistic regression
- Neural network
- Deep neural network

•

Linear regression with one variable Cost function

Training set of housing prices (Portland, OR)

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Cost function (squared error function):

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Linear regression with one variable Cost function - intuition I

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_1$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

(function of the parameter θ_1)

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1)$$

(function of the parameter θ_1)

$$J(0.5) = \frac{1}{2m} \begin{bmatrix} \mathbf{x} \\ (0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2 \end{bmatrix}$$

$$J(0.5) \approx 0.68$$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(heta_1)$$

(function of the parameter θ_1)

Linear regression with one variable Cost function - intuition II

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters: θ_0, θ_1

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: minimize $J(\theta_0, \theta_1)$

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$h_{\theta}(x) = 50 + 0.06x$$

$$J(\theta_0,\theta_1)$$

(function of the parameters θ_0, θ_1)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 0.5 700 0.4 600 0.3 Price \$ (in 1000s) 300 400 400 500 500 0.2 0.1 ${\boldsymbol{\theta}}_1$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 $\frac{500}{\theta_0}$ 1000 1500 2000 0

Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 000 00 500 0.2 0.1 ${\theta \atop_{1}}$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis

-0.5 -1000

-500

 $\frac{500}{\theta_0}$

0

1000

1500

2000

0

1000

2000

3000

Size (feet²)

4000

 $J(\theta_0, \theta_1)$ $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 500 0.2 0.1 ${\boldsymbol{\theta}}_1$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 $\frac{500}{\theta_0}$ 1000 1500 2000 0

Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 500 0.2 0.1 ${\theta \atop_{1}}$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 $\frac{500}{\theta_0}$ 1000 1500 2000 0

Size (feet²)

Linear regression with one variable Gradient descent

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some θ_0, θ_1 (say 0, 0)
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$
 } learning rate

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

Linear regression with one variable Gradient descent intuition

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1)$ }

$$\min_{\theta_1} J(\theta_1) \qquad \quad \theta_1 \in \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

Learning rate

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Linear regression with one variable

Gradient descent for linear regression

Gradient descent algorithm

Linear Regression Model

repeat until convergence {
$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$
(for $j = 1$ and $j = 0$)
}

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$= \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$
$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

Gradient descent algorithm

```
 \begin{array}{l} \text{repeat until convergence } \{ \\ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \\ \} \end{array}  update  \theta_0 \text{ and } \theta_1 \\ \text{simultaneously}
```


In linear regression the cost function is always a convex function

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 400 400 500 500 0.2 0.1 ${\boldsymbol{\theta}}_1$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 $\frac{500}{\theta_0}$ 0 1000 1500 2000

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 0.5 700 0.4 600 0.3 Price \$ (in 1000s) 200 \$ (in 1000s) 200 \$ (in 1000s) 500 0.2 0.1 ${\theta \atop_{1}}$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 $\frac{500}{\theta_0}$ 1000 1500 0 2000

 $J(\theta_0, \theta_1)$ $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 200 400 005 005 500 0.2 0.1 ${\theta \atop_{1}}$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 $\frac{500}{\theta_0}$ 1000 1500 0 2000

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 400 000 400 000 500 500 0.2 0.1 ${\theta \atop_{1}}$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 $\frac{500}{\theta_0}$ 1000

1500

2000

 $J(\theta_0, \theta_1)$ $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 000 00 500 0.2 0.1 -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis

-0.5 -1000

-500

 $\frac{500}{\theta_0}$

0

1000

1500

2000

0

1000

2000

3000

Size (feet²)

 $J(\theta_0, \theta_1)$ $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 500 0.2 0.1 ${\theta \atop_{1}}$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000

-500

 $\frac{500}{\theta_0}$

0

1000

1500

 $J(\theta_0, \theta_1)$ $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 500 0.2 0.1 ${\theta \atop_{1}}$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000

-500

 $\frac{500}{\theta_0}$

0

1000

1500

 $J(\theta_0, \theta_1)$ $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 500 0.2 0.1 ${\theta \atop_{1}}$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 $\frac{500}{\theta_0}$ 1000 1500 0 2000

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0, θ_1) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 200 400 005 005 500 0.2 0.1 ${\theta \atop_{1}}$ -0.1 200 -0.2 -0.3 100 Training data -0.4 Current hypothesis 0 -0.5 -1000 1000 2000 3000 4000 -500 $\frac{500}{\theta_0}$ 1000 1500 2000 Size (feet²)

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.