Arithmetic convolutions

László Tóth (University of Pécs)

I will survey certain properties of the following arithmetic convolutions. Arithmetic and asymptotic properties of related arithmetical functions will also be considered.

• Dirichlet convolution:

(1)
$$(f * g)(n) = \sum_{d|n} f(d)g(n/d),$$

where the sum is over the positive divisors d of n.

• Binomial convolution:

(2)
$$(f \circ g)(n) = \sum_{d|n} \left(\prod_{p} \binom{\nu_p(n)}{\nu_p(d)} \right) f(d)g(n/d),$$

where $n = \prod_p p^{\nu_p(n)}$, $d = \prod_p p^{\nu_p(d)}$ and $\binom{a}{b}$ is the binomial coefficient.

• Unitary convolution:

(3)
$$(f \times g)(n) = \sum_{d||n} f(d)g(n/d),$$

where the sum is over the unitary divisors d of n, i. e., positive divisors d of n such that (d, n/d) = 1.

• A-convolution:

(4)
$$(f *_A g)(n) = \sum_{d \in A(n)} f(d)g(n/d),$$

where A is a mapping from the set $\mathbb{N} := \{1, 2, ...\}$ to the set of subsets of \mathbb{N} such that $A(n) \subseteq D(n)$ for each n, D(n) denoting the set of all (positive) divisors of n.

• Exponential convolution:

(5)
$$(f \odot g)(n) = \sum_{b_1c_1=a_1} \cdots \sum_{b_rc_r=a_r} f(p_1^{b_1} \cdots p_r^{b_r}) g(p_1^{c_1} \cdots p_r^{c_r}),$$

where $n = p_1^{a_1} \cdots p_r^{a_r}$.