12. Общи уравнения на права в равнината

Нека фиксираме афинна координатна система K = Oxy в равнината.

1. Теорема: Всяка права в равнината има спрямо K уравнение от вида Ax + By + C = 0, където $(A,B) \neq (0,0)$ и обратното, всяко уравнение от вида Ax + By + C = 0, $(A,B) \neq (0,0)$, е уравнение спрямо K на някоя права от равнината. \mathcal{A} оказателство:

Нека l е права и т. $P_0(x_0, y_0)$ е точка от нея. Нека векторът $\mathbf{a}(1, 2)$ е колинеарен на l. Точка P(x, y) принадлежи на l, тогава и само тогава, когато $\overline{P_0P}\|a$. Това също може да се запише и по този начин:

$$\left| \begin{array}{cc} x - x_0 & a_1 \\ y - y_0 & a_2 \end{array} \right| = 0,$$

или

$$a_2(x - x_0) - a_1(y - y_0) = 0,$$

$$a_2x - a_1y - a_2x_0 + a_1y_0 = 0.$$

Означаваме с $A = a_2, B = -a_1$ и с $C = -a_2x_0 + a_1y_0$.

Точката $P \in l$, тогава и само тогава, когато Ax + By + C = 0. Освен това $(A, B) \neq (0, 0)$, тъй като векторът **a** е ненулев.

Сега ще докажем и обратната страна.

Нека уравнението Ax + By + C = 0 има решение и нека (x_0, y_0) е едно такова, т.е:

$$Ax_0 + By_0 + C = 0.$$

Нека т.P има за координати (x_0, y_0) . Векторът $\mathbf{a} = (-B, A)$ е ненулев, защото $(A, B) \neq (0, 0)$. Построяваме правата определена от тази точка и векторът \mathbf{a} , т.е:

$$x = x_0 + \lambda(-B),$$

$$y = y_0 + \lambda A.$$

Като изключим λ от тези две уравнения получаваме:

$$\frac{x - x_0}{-B} = \frac{y - y_0}{A}.$$

Следпвателно l има вида:

$$Ax - Ax_0 + By - By_0 = 0.$$

Използвайки, че $C = -Ax_0 - By_0$ получаваме:

$$l: Ax + By + C = 0.$$

- **1.** Дефиниция: Нека l е права. Уравнение на l от вида Ax + By + C = 0, където $(A, B) \neq (0, 0)$, наричаме общо уравнение на правата l спрямо K.
- **1. Твърдение:** Ако правата l е определена от т. $P(x_0, y_0)$ и векторът $\mathbf{a} = (1, 2)$, то l има общо уравнение:

$$l: \left| \begin{array}{cc} x - x_0 & a_1 \\ y - y_0 & a_2 \end{array} \right| = 0.$$

Ако правата l е определена от точките $P_1(x_1,y_1)$ и $P_2(x_2,y_2), P_1 \neq P_2$, то l има общо уравнение

$$l: \left| egin{array}{ccc} x-x_1 & x_2-x_1 \ y-y_1 & y_2-y_1 \end{array}
ight| = 0$$
 или $l: \left| egin{array}{ccc} x & x_1 & x_2 \ y & y_1 & y_2 \ 1 & 1 & 1 \end{array}
ight| = 0.$

Доказателство: Нека т.P(x,y) лежи на правата l. Тогава $\overrightarrow{P_0P}\|\mathbf{a}$. Тогава това условие е еквивалентно на:

$$l: \left| \begin{array}{cc} x - x_0 & a_1 \\ y - y_0 & a_2 \end{array} \right| = 0.$$

. За втората част отново нека т.P(x,y) лежи на правата l. $\overrightarrow{P_1P}(x-x_1,y-y_0)$ и $\overrightarrow{P_1P_2}(x_2-x_1,y_2-y_1)$. Тогава от първата част на твърдението получаваме:

$$l: \left| \begin{array}{ccc} x - x_1 & x_2 - x_1 \\ y - y_1 & y_2 - y_1 \end{array} \right| = 0.$$

- **2. Твърдение:** Нека правата l има уравнение Ax + By + C = 0, $(A, B) \neq (0, 0)$. Тогава:
- 1) Векторът $\mathbf{a}(-B, A)$ е колинеарен с l.
- 2) Векторът $\mathbf{b}(b_1,b_2)$ е колинеарен с l, тогава и само тогава, когато $Ab_1+Bb_2=0$. Доказателството на 1) го показахме в доказателството на Теорема 1.
- 2) Векторът **b** е колинеарен с вектора **a**, следователно

$$\left| egin{array}{cc} b_1 & -B \ b_2 & A \end{array}
ight| = 0$$
 или $Ab_1 + Bb_2 = 0.$

Обратното, от $Ab_1 + Bb_2 = 0$ следва

$$\left|\begin{array}{cc} b_1 & -B \\ b_2 & A \end{array}\right| = 0,$$

т.е. $\mathbf{b} \| \mathbf{a}$ или $\mathbf{b} \| l$.

Отрезово уравнение на права. Нека l е права, която не минава през началот ϑ на координатната система и не е успоредна на координатните оси. Нека l пресича абсицисата в т.A(a,0) и ординатната ос в т. $B(0,b),\ a\neq 0,\ b\neq 0$, тък като $A\neq 0$ и $B\neq 0$. Тогава l има уравнение

$$\frac{x}{a} + \frac{y}{b} = 1.$$

Това уравнение се нарича отрезово уравнение на правата l. Очевидно т.A и т.B удовлетворяват горното уравнение. Общото уравнение на l е

$$\frac{x}{a} + \frac{y}{b} - 1 = 0,$$

което е еквивалентно на отрезовото.