

## Maths for Computer Science Calculus

Dr Eleni Akrida



# **Fourier Series**

#### **Contents for today's lecture**

Fourier series for piecewise continuous functions



If f(x) is infinitely differentiable, its Taylor series representation centred at  $x_0$  is:

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}$$

and this converges to f(x) on  $(x_0 - r, x_0 + r)$  where r is the radius of convergence.



If f(x) is infinitely differentiable, its Taylor series representation centred at  $x_0$  is:

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}$$

and this converges to f(x) on  $(x_0 - r, x_0 + r)$  where r is the radius of convergence.







If f(x) is infinitely differentiable, its Taylor series representation centred at  $x_0$  is:

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}$$

and this converges to f(x) on  $(x_0 - r, x_0 + r)$  where r is the radius of convergence.



If f(x) is infinitely differentiable, its Taylor series representation centred at  $x_0$  is:

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}$$

and this converges to f(x) on  $(x_0 - r, x_0 + r)$  where r is the radius of convergence.

• There is nothing wrong with our derivation of the Taylor series, but it does require that the derivatives of all orders of f exist at the point  $x = x_0$ .



#### **Taylor series limitations**



In many cases Taylor series is an appropriate representation and there is no need for a different kind of expansion. However, we need to also find ways to deal with functions where another type of series is preferable, easier to derive, or even required.

- It only works for many-times differentiable functions (infinitely differentiable for full Taylor series).
- No luck with functions like:





#### A new series proposal!

- We will propose a new series expansion that uses trigonometric functions (example of a trigonometric series).
- We will show that we can express a function (that satisfies some constraints) as an infinite sum of sines and cosines such that the series converges to the function value at (almost) any point.
  - Where it does not converge exactly, it converges to a "sensible" value.



These series are easy to analyse because trigonometric functions are well-understood, and their derivatives fall into simple patterns.





First note:

$$\int_{-\pi}^{\pi} \cos mx \, dx = \int_{-\pi}^{\pi} \sin nx \, dx = 0, \qquad \forall m, n \in \mathbb{Z}, \qquad m \neq 0,$$







Even if we put a parameter n within the sin function, we are only changing the frequency of the periodic function.

First note:

$$\int_{-\pi}^{\pi} \cos mx \, dx = \int_{-\pi}^{\pi} \sin nx \, dx = 0, \qquad \forall m, n \in \mathbb{Z}, \qquad m \neq 0,$$







First note:

$$\int_{-\pi}^{\pi} \cos mx \, dx = \int_{-\pi}^{\pi} \sin nx \, dx = 0, \qquad \forall m, n \in \mathbb{Z}, \qquad m \neq 0,$$







Even if we put a parameter m within the cos function, we are only changing the frequency of the periodic function.

First note:

$$\int_{-\pi}^{\pi} \cos mx \, dx = \int_{-\pi}^{\pi} \sin nx \, dx = 0, \qquad \forall m, n \in \mathbb{Z}, \qquad m \neq 0,$$





Recall (or look up) the trigonometric identities:

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$





Recall (or look up) the trigonometric identities:

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$



and

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$





Recall (or look up) the trigonometric identities:

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$



and

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

So we get the identity:  $\sin A \cos B = \frac{1}{2}(\sin(A - B) + \sin(A + B))$ 











$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
  
 $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ 



Recall (or look up) the trigonometric identities:

$$\sin A \cos B = \frac{1}{2}(\sin(A - B) + \sin(A + B))$$

$$\sin A \sin B = \frac{1}{2}(\cos(A - B) - \cos(A + B))$$

$$\cos A \cos B = \frac{1}{2}(\cos(A - B) + \cos(A + B))$$

Therefore,

$$\int_{-\pi}^{\pi} \sin nx \cos mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \sin(n - m)x \, dx + \frac{1}{2} \int_{-\pi}^{\pi} \sin(n + m)x \, dx$$
$$= 0, \qquad \forall n, m$$



 $\sin A \cos B = \frac{1}{2}(\sin(A - B) + \sin(A + B))$   $\sin A \sin B = \frac{1}{2}(\cos(A - B) - \cos(A + B))$   $\cos A \cos B = \frac{1}{2}(\cos(A - B) + \cos(A + B))$ 

Similarly:

$$\int_{-\pi}^{\pi} \sin nx \sin mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos((n-m)x) \, dx - \frac{1}{2} \int_{-\pi}^{\pi} \cos((n+m)x) \, dx$$

$$= 0, \quad \forall m \neq \pm n \text{ or } m = n = 0$$

$$= \pi, \qquad \text{if } m = n \neq 0$$

$$= -\pi, \qquad \text{if } m = -n \neq 0$$

and

$$\int_{-\pi}^{\pi} \cos nx \cos mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos((n-m)x) \, dx + \frac{1}{2} \int_{-\pi}^{\pi} \cos((n+m)x) \, dx$$
$$= 0, \qquad \forall m \neq \pm n$$
$$= \pi, \qquad if \ m = \pm n \neq 0$$
$$= 2\pi, \qquad if \ m = n = 0.$$



For a function f(x),  $-\pi < x < \pi$ , we will construct a series for f of the form

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$



For a function f(x),  $-\pi < x < \pi$ , we will construct a series for f of the form

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

Terms of higher and higher frequency



For a function f(x),  $-\pi < x < \pi$ , we will construct a series for f of the form

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

The range  $(-\pi,\pi)$  is no real restriction – we can always scale an arbitrary function f on a range (a,b) by setting

$$f(x) = g\left(\left(x - \frac{b+a}{2}\right)\frac{2\pi}{(b-a)}\right)$$

where g is a function on  $(-\pi,\pi)$ .



For a function f(x),  $-\pi < x < \pi$ , we will construct a series for f of the form

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

The range  $(-\pi,\pi)$  is no real restriction – we can always scale an arbitrary function f on a range [a,b] by setting

$$f(x) = g\left(\left(x - \frac{b+a}{2}\right)\frac{2\pi}{(b-a)}\right)$$

where g is a function on  $(-\pi,\pi)$ .

'Move each point to the left'  $f(x) = g\left(\left(x - \frac{b+a}{2}\right)\frac{2\pi}{(b-a)}\right)$  by  $\frac{b+a}{2}$  and Scale by  $\frac{2\pi}{b-a}$ 



#### Fourier coefficients

Suppose first that such a series exists.

If  $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$ , then integrating over the range  $(-\pi, \pi)$  we get:

$$\int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{\pi} \left( \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx \right) dx$$

$$= \frac{a_0}{2} \int_{-\pi}^{\pi} 1 dx + \sum_{n=1}^{\infty} a_n \int_{-\pi}^{\pi} \cos nx dx + \sum_{n=1}^{\infty} b_n \int_{-\pi}^{\pi} \sin nx dx$$

$$= \pi a_0.$$



#### Fourier coefficients

Suppose still that such a series exists.

If  $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$ , then, multiplying by  $\cos mx$ , m > 0 and integrating over the range  $(-\pi, \pi)$  we get:

$$\int_{-\pi}^{\pi} f(x) \cos mx \, dx = \int_{-\pi}^{\pi} \left( \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx \right) \cos mx \, dx$$

$$= \frac{a_0}{2} \int_{-\pi}^{\pi} \cos mx \, dx + \sum_{n=1}^{\infty} a_n \int_{-\pi}^{\pi} \cos nx \cos mx \, dx + \sum_{n=1}^{\infty} b_n \int_{-\pi}^{\pi} \sin nx \cos mx \, dx$$

$$= \pi a_m.$$
Only one term is non-zero when  $n = m$ 



#### Fourier coefficients

Likewise, still assuming there is a series  $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$ , multiplying by this time by  $\sin mx$  and integrating over the range:

$$\int_{-\pi}^{\pi} f(x) \sin mx \, dx = \int_{-\pi}^{\pi} \left( \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx \right) \sin mx \, dx$$

$$= \frac{a_0}{2} \int_{-\pi}^{\pi} \sin mx \, dx + \sum_{n=1}^{\infty} a_n \int_{-\pi}^{\pi} \cos nx \sin mx \, dx + \sum_{n=1}^{\infty} b_n \int_{-\pi}^{\pi} \sin nx \sin mx \, dx$$

$$= \pi b_m.$$

Only one term, only in this sum, is non-zero, when n=m



#### The Fourier Series

For a function  $f(x) - \pi < x < \pi$ , the Fourier series is

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

where

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx.$$

#### Theorem:

If f is piecewise continuous and  $\int_{-\pi}^{\pi} [f(x)]^2 dx$  exists, then the Fourier series converges.

- For all points x at which f is continuous, the series converges to f(x).
- For points y at which there is a jump discontinuity the series converges to

$$\frac{1}{2} \left( \lim_{x \to y^{-}} f(x) + \lim_{x \to y^{+}} f(x) \right)$$



**Example** y = x

For a function f(x),  $-\pi < x < \pi$ , the Fourier series is

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

where

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx.$$

# See IVIS whiteboard during / after lecture



**Example**  $y = x^2$ 

For a function 
$$f(x)$$
,  $-\pi < x < \pi$ , the Fourier series is 
$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx.$$

### See MS whiteboard during / after lecture



#### **Visualisation**



#### Image from

http://www.jezzamon.com/fourier/

Visit the site (strongly recommended) for some beautiful and interactive examples.



#### What we learnt today

#### Fourier series:

For a function  $f(x) - \pi < x < \pi$ , the Fourier series is

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$
, where  $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$ ,

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx.$$

