Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir

DPP: 7

Thermodynamics & Thermochemistry

- **Q1** In which reaction ΔS is positive:
 - (A) $H_2O_{(\ell)} o H_2O_{(s)}$
 - (B) $3\mathrm{O}_{2(\mathrm{~g})} o 2\mathrm{O}_{3(\mathrm{~g})}$
 - (C) $\mathrm{H}_2\mathrm{O}_{(\ell)} o \mathrm{H}_2\mathrm{O}_{(\mathrm{g})}$
 - (D) $N_{2(\ g)} + 3H_{2(\ g)} o 2NH_{3(\ g)}$
- Q2 When the egg is hard boiled, there is-
 - (A) Increase in disorder
 - (B) Decrease in disorder
 - (C) No change in disorder
 - (D) ΔG is negative
- Q3 If S° for H_2 , Cl_2 and HCl are 0.13, 0.22 and $0.19 \ kJ \ K^{-1} \ mol^{-1}$ respectively. The total change in standard entropy for the reaction $H_2 + Cl_2 \longrightarrow 2HCl$ is:
 - (A) $30 \text{ JK}^{-1} \text{ mol}^{-1}$
 - (B) $40~{
 m JK}^{-1}~{
 m mol}^{-1}$
 - (C) $60 \text{ JK}^{-1} \text{ mol}^{-1}$
 - (D) $20 \ \mathrm{JK^{-1} \ mol^{-1}}$
- Q4 The enthalpy of vaporization for water is $186.5 {\rm kJ~mol}^{-1}$, the entropy of its vaporization will be:
 - (A) $0.5 {\rm KJK^{-1}~mol^{-1}}$
 - (B) $1.0 {\rm KJK^{-1}~mol^{-1}}$
 - (C) $1.5 \text{KJK}^{-1} \text{ mol}^{-1}$
 - (D) $2.0 {\rm KJK^{-1}~mol^{-1}}$
- Q5 The enthalpy of vaporization of per mole of ethanol (b.p. $=79.5^{\circ}\mathrm{C}$ and $\Delta\mathrm{S}=109.8\mathrm{JK}^{-1}~\mathrm{mol}^{-1}$) is:
 - (A) $27.35 \mathrm{KJ/mol}$

- (B) $32.19 \mathrm{KJ/mol}$
- (C) $38.70 \mathrm{KJ/mol}$
- (D) $42.37 \mathrm{KJ/mol}$
- $\bf Q6$ Ammonium chloride when dissolved in water leads to cooling sensation. The dissolution of $NH_4\ Cl$ at constant temperature is accompanied by :
 - (A) Increase in entropy.
 - (B) Decrease in entropy
 - (C) No change in entropy
 - (D) No change in enthalpy
- Q7 The spontaneous nature of a reaction is impossible if:
 - (A) $\Delta \mathrm{H}$ is $+\mathrm{ve}, \Delta \mathrm{S}$ is also $+\mathrm{ve}$
 - (B) ΔH is $-ve; \Delta S$ is also -ve
 - (C) ΔH is -ve; ΔS is +ve
 - (D) $\Delta \mathrm{H}\,\mathrm{is}+\mathrm{ve};\Delta \mathrm{S}\,\mathrm{is}-\mathrm{ve}$
- Q8 Which of the following is true for the reaction $H_2O(\ell) \rightleftharpoons H_2O(g)$ at $100^{\circ}C$ and 1 atmosphere
 - (A) $\Delta S=0$
 - (B) $\Delta H = 0$
 - (C) $\Delta \mathrm{H} = \Delta \mathrm{E}$
 - (D) $\Delta \mathrm{H} = \mathrm{T} \Delta \mathrm{S}$
- **Q9** Determine the entropy change for the reaction given below:
 - $2H_{2(~g)}+O_{2(~g)}\longrightarrow 2H_2O_{(\ell)} \text{ at } 300~K.$ If standard entropies of $H_{2(~g)},O_2(~g)$ and $H_2O_{(\ell)}$ are 126.6,201.20 and

- $68.0~\mathrm{J~K^{-1}~mol^{-1}}$ respectively.
- (A) $-218.4~\mathrm{J~K^{-1}~mol^{-1}}$
- (B) $-318.4~J~K^{-1}~mol^{-1}$
- (C) $-520.2~\mathrm{J~K}^{-1}~\mathrm{mol}^{-1}$
- (D) $-128.6 \text{ J K}^{-1} \text{ mol}^{-1}$
- $\mbox{\bf Q10}~$ Calculate the entropy change in melting of one gm ice at $0^{\circ}C$ if latent heat of ice is 80cal/g -
 - (A) $80 \,\mathrm{CalK}^{-1}$
 - (B) $20 \text{ Cal}\text{K}^{-1}$
 - (C) $4.4~\mathrm{CalK}^{-1}$
 - (D) $0.3~\mathrm{CalK}^{-1}$
- Q11 Standard state means-
 - (A) $25^{\circ}\mathrm{C}$ and $70~\mathrm{mmHg}$
 - (B) $298~\mathrm{K}$ and $760~\mathrm{cmHg}$
 - (C) $273~\mathrm{K}$ and $1~\mathrm{atm}$
 - (D) $298~\mathrm{K}$ and one atm
- Q12 If $900\ J/g$ of heat is exchanged at boiling point of water, then what is increase in entropy?
 - (A) 43.4 J/Kmole
 - (B) $87.2~\mathrm{J/K}$ mole
 - (C) $900 \mathrm{\ J/Kmole}$
 - (D) Zero

Answer Key

Q1	(C)	Q7	(D)
Q2	(A)	Q7 Q8 Q9 Q10 Q11 Q12	(D)
Q3	(A)	Q9	(B)
Q4	(A)	Q10	(D)
Q5	(C)	Q11	(D)
Q6	(A)	Q12	(A)

Master NCERT with PW Books APP