РАЗДЕЛ 6. ДИСКРЕТНАЯ МАТЕМАТИКА

1. Замкнутость класса монотонных функций алгебры логики. Лемма о немонотонной функции.

Понятие функции алгебры логики. Определение монотонной функции алгебры логики. Доказательство замкнутости класса монотонных функций алгебры логики. Формулировка и доказательство леммы о немонотонной функции.

2. Замкнутость класса линейных функций алгебры логики. Лемма о нелинейной функции.

Понятие функции алгебры логики. Определение линейной функции алгебры логики. Доказательство замкнутости класса линейных функций алгебры логики. Формулировка и доказательство леммы о нелинейной функции.

3. Теорема Поста о функциональной полноте алгебры логики.

Понятие полной системы функций. Предполные классы. Формулировка и доказательство критерия Поста о полноте систем функций алгебры логики.

4. Конечная порожденность P_{k} . Теорема Янова о существовании в P_{k} замкнутого класса, не имеющего базиса.

Понятие функций многозначной логики. Понятие базиса в P_k . Доказательство существования конечного базиса в P_k . Формулировка и доказательство теоремы Янова о существовании в P_k замкнутого класса, не имеющего базиса.

5. Теорема Мучника о существовании в $P_{\scriptscriptstyle k}$ замкнутого класса со счетным базисом.

Понятие функций многозначной логики. Понятие базиса в P_{k} . Формулировка и доказательство теоремы Мучника о существовании в P_{k} замкнутого класса, со счетным базисом.

6. Теорема о полноте системы полиномов в $P_{\scriptscriptstyle k}$.

Полиномы в многозначной логике. Формулировка малой теоремы Ферма. Формулировка и доказательство теоремы о полноте системы полиномов в P_{k} .

7. Замкнутость класса ограниченно-детерминированных функций относительно операций суперпозиции и обратной связи. Конечная порожденность этого класса.

Понятие детерминированных и ограниченно-детерминированных функций. Операции суперпозиции и обратной памяти. Доказательство замкнутости класса ограниченно-детерминированных функций относительно операций суперпозиции и обратной связи. Доказательство существования конечной полной системы ограниченно-детерминированных функций.

8. Теорема о преобразовании периодических последовательностей ограниченнодетерминированными функциями.

Понятие конечного автомата. Автомат как преобразователь последовательностей. Формулировка и доказательство теоремы о преобразовании периодических последовательностей ограниченно-детерминированными функциями.

9. Критерий Маркова взаимной однозначности алфавитного кодирования.

Понятие алфавитного кодирования. Свойство взаимной однозначности кодов. Формулировка и доказательство критерий Маркова взаимной однозначности алфавитного кодирования.

10. Теорема Журавлева о дизъюнктивных нормальных формах типа сумма тупиковых.

Дизъюнктивные нормальные формы. Задача минимизации дизъюнктивных нормальных форм. Геометрическая интерпретация задачи минимизации дизъюнктивных нормальных форм. Тупиковые ДНФ. Формулировка и доказательство теоремы Журавлева о дизъюнктивных нормальных формах типа сумма тупиковых.

11. Понятия плоского и планарного графов. Формула Эйлера. Непланарность $\,K_{\scriptscriptstyle 5}\,$ и $\,K_{\scriptscriptstyle 3,3}\,$.

Определение графа. Понятия плоского и планарного графов. Формула Эйлера для плоских графов. Доказательство непланарности графов K_5 и $K_{3,3}$.

12. Оптимальность по порядку метода Шеннона синтеза схем из функциональных элементов.

Понятие схемы из функциональных элементов. Задача синтеза схем из функциональных элементов. Описание метода Шеннона синтеза схем из функциональных элементов и оценка его сложности. Совпадение по порядку оценки Шеннона с мощностной нижней оценкой.

РАЗДЕЛ 7. ТЕОРИЯ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ

13. Моделирование зрительного восприятия. Теорема Козлова об аффинной эквивалентности изображений.

Задача распознавания образов. Моделирование зрительного восприятия. Кодирование изображений. Формулировка и доказательство теоремы Козлова об аффинной эквивалентности изображений.

14. Модель персептрона Розенблатта. Теорема Новикова.

Модель формального нейрона. Простейшая нейронная сеть – персептрон Розенблатта. Формулировка и доказательство теоремы Новикова об обучении персептрона Розенблатта.

15. Теорема Гильберта-Анселя о числе монотонных функций.

Понятие монотонной функции алгебры логики. Формулировка и доказательство леммы Анселя о покрытии булевого куба цепями. Формулировка и доказательство теоремы Гильберта-Анселя о числе монотонных функций.

16. Теорема о полноте исчисления высказываний.

Логика высказываний. Формулы логики высказываний. Исчисление высказываний. Теорема дедукции Эрбрана. Лемма об интерпретациях. Формулировка и доказательство теоремы о полноте исчисления высказываний.

РАЗДЕЛ 8. ДИСКРЕТНАЯ ОПТИМИЗАЦИЯ

17. Алгоритм сортировки QSort. Теорема о среднем времени работы алгоритма.

Задача сортировки. Простейшие алгоритмы сортировки. Алгоритм сортировки QSort. Формулировка и доказательство теоремы о среднем времени работы алгоритма QSort.

18. Алгоритм Дейкстры поиска кратчайшего пути в графе и его сложность.

Понятие пути в графе. Задача поиска кратчайшего пути в графе. Описание алгоритма Дейкстры поиска кратчайшего пути в графе. Обоснование сложности алгоритма Дейкстры.

19. Алгоритм построения минимального остовного дерева и его сложность.

Понятие остовного дерева. Задача построения минимального остовного дерева. Описание алгоритма построения минимального остовного дерева. Обоснование сложности алгоритма построения минимального остовного дерева.

20. Теорема Форда-Фалкерсона о максимальном потоке через сеть.

Потоки в сетях. Задача построения максимального потока. Формулировка и доказательство теоремы Форда-Фалкерсона о максимальном потоке через сеть.

21. Линейное программирование. Симплекс метод.

Задача линейного программирования. Описание симплекс метода решения задачи линейного программирования.

22. Динамическое программирование. Принцип оптимальности. Уравнение Беллмана.

Понятие динамического программирования. Принцип оптимальности. Уравнение Беллмана.

ЛИТЕРАТУРА

РАЗДЕЛ 6. ДИСКРЕТНАЯ МАТЕМАТИКА

- 1. Яблонский С.В. Введение в дискретную математику. М., Наука, 1986 г.
- 2. Кудрявцев В.Б., Алешин С.В., Подколзин А.С. Введение в теорию автоматов. М., Наука, 1985 г.
- 3. Харари Ф. Теория графов. Мир, 1973.
- 4. Кудрявцев В.Б., Гасанов Э.Э., Подколзин А.С. Основы теории интеллектуальных систем. М.: Изд-во МАКС-ПРЕСС, 2016.

РАЗДЕЛ 7. ТЕОРИЯ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ

- 1. Кудрявцев В.Б., Гасанов Э.Э., Подколзин А.С. Основы теории интеллектуальных систем. М.: Изд-во МАКС-ПРЕСС, 2016.
- 2. Кудрявцев В.Б., Гасанов Э.Э., Подколзин А.С. Введение в теорию интеллектуальных систем. М.: Изд-во ф-та ВМиК МГУ, 2006.