Homework Assignment

Class:	CS202	Semester:	Fall 2019
Assignment type:	Homework assignment	Due date:	11/23/2019
Assignment topic:	Single linked list	Assignment	8a
Delivery:	WebCampus – cpp files and txt file	no.	oa

Goal

Practice the use of linked lists

General remarks

- Keep all your testing code in submitted cpp files
- For all the problems, ensure/add the proper memory allocation/deallocation (all instructions about memory are not necessarily mentioned in the instruction).
- For all the problems, please use **valgrind** tool to confirm the proper memory management. Use the command:

```
valgrind --tool=memcheck --leak-check=yes --show-reachable=yes --num-callers=20 --track-fds=yes ./01.o
```

where O1.o is the name of tested binary file

Problem I. Linked Lists (20p)

Write a program managing linked lists. Use single-linked list, forward-created. Each node describes a record info for a car.

Node:

```
int id
string make
int price
int year
Car *next // link to the next element
```

In main () function, write a menu with the following options:

- add car add new node to the end of the list. Automatically assign new id.
 remove car remove node, prompt for id of the car to remove
- 5. exit
 - Maintain a variable, where you store id numbers, so each newly added car will automatically receive new sequential id that was not assigned to any car before.
 - Write the list of cars during each loop execution.
 - Provide proper deletion of the memory (both when option 2 is used and when option 5 is used)

Sample output/operation

CAR MANAGEMENT

Car List:

Options:

1. Add car

2. Remove car

5. Exit
Enter: 1

Enter make: Ford Enter price: 5000 Enter year: 2011

CAR MANAGEMENT

Car List:

100 Ford 5000 2011

Options:

1. Add car

2. Remove car

5. Exit

Enter: 1

Enter make: GMC Enter price: 4500 Enter year: 2010 CAR MANAGEMENT

Car List:

100 Ford 5000 2011 101 GMC 4500 2010

Options:

1. Add car

2. Remove car

5. Exit
Enter: 1

Enter make: Toyota Enter price: 7000 Enter year: 2013

CAR MANAGEMENT

Car List:

 100
 Ford
 5000
 2011

 101
 GMC
 4500
 2010

 102
 Toyota
 7000
 2013

Options:

1. Add car

2. Remove car

5. Exit
Enter: 2

Enter id of car to remove: 101

$UNLV \ \ \textbf{University of Nevada}, \textbf{Las Vegas}$

CAR MANAGEMENT

Car List:

100 Ford 5000 2011 102 Toyota 7000 2013

Options:

1. Add car

2. Remove car

5. Exit
Enter: 5

Submission:

Include the following elements in your submission: (rid = your rebel id)

Problem	Element	File
Problem I	Code of your program (for problem 1)	rid_1.cpp file
	Summary of the submission	
	Summary: 1 cpp file, submit them to the WebCampus. Remember	
	about proper names of the files!	