Math 8100 Assignment 7 & 8

Due date: Wednesday 3rd of November 2010

- 1. Let (X, \mathcal{M}, μ) be a measure space. Prove the following properties of $L^{\infty} = L^{\infty}(X, \mathcal{M}, \mu)$.
 - (a) If f and g are measurable functions on X, then $||fg||_1 \le ||f||_1 ||g||_{\infty}$.
 - (b) $\|\cdot\|_{\infty}$ is a norm on L^{∞} .
 - (c) L^{∞} is a Banach space.
 - (d) $||f_n f||_{\infty} \to 0$ iff there exists $E \in \mathcal{M}$ such that $\mu(E^c) = 0$ and $f_n \to f$ uniformly on E.
 - (e) The simple functions are dense in L^{∞} .
- 2. Let $a = \{a_j\}_{j=-\infty}^{\infty}$ be a sequence of complex numbers, and let

$$||a||_p = \left(\sum_{j=-\infty}^{\infty} |a_j|^p\right)^{1/p}$$
 if $0 and $||a||_{\infty} = \sup_j |a_j|$ if $p = \infty$.$

Then, for 0 we define

$$\ell^p(\mathbb{Z}) = \{ a = \{ a_j \}_{j \in \mathbb{Z}} : ||a||_p < \infty \}.$$

Prove that if $0 , then <math>\ell^p(\mathbb{Z}) \subseteq \ell^q(\mathbb{Z})$ and $||a||_q \le ||a||_p$. [Hint: Consider $q = \infty$ first.]

3. Let f and g be two non-negative Lebesgue measurable functions on $[0, \infty)$. Suppose that

$$A := \int_0^\infty f(y) \, y^{-1/2} dy < \infty$$
 and $B := \left(\int_0^\infty |g(y)|^2 dy \right)^{1/2} < \infty$

Prove that

$$\int_0^\infty \left(\int_0^x f(y) \, dy \right) \frac{g(x)}{x} \, dx \le AB$$

4. Let (X, \mathcal{M}, μ) be a measure space and $0 . Prove that if <math>L^q(X) \subseteq L^p(X)$, then X does not contain sets of arbitrarily large finite measure.

Note that in the case of Lebesgue measure this conclusion is equivalent to $m(X) < \infty$.

- 5. Suppose that $0 < p_0 < p_1 \le \infty$. Find examples of functions f on $(0, \infty)$, such that $f \in L^p$ iff
 - (a) p_0
 - (b) $p_0 \le p \le p_1$
 - (c) $p = p_0$ [Hint: Consider functions of the form $f(x) = x^{-a} |\log x|^b$]
- 6. (a) Let

$$F(x) = \left(\frac{\sin \pi x}{\pi x}\right)^2$$
 and $G(x) = \begin{cases} 1 - |x| & \text{if } |x| \le 1\\ 0 & \text{otherwise} \end{cases}$

- i. Show that $\widehat{G}(\xi) = F(\xi)$.

 [Hint: It may help to write $\widehat{G}(\xi) = H(\xi) + H(-\xi)$ where $H(\xi) = e^{2\pi i \xi} \int_0^1 y e^{-2\pi i y \xi} dy$]
- ii. What is the Fourier transform of the function F? Be sure to explain your answer.

1

(b) Give an example (no proof required) of a function $g \notin L^1(\mathbb{R})$, but yet is the Fourier transform of an L^1 function.

7. Show that for each $\varepsilon > 0$ the function $F(\xi) = (1 + |\xi|^2)^{-\varepsilon}$ is the Fourier transform of an $L^1(\mathbb{R}^n)$ function.

[Hint: With $K_{\delta}(x) = \delta^{-n/2}e^{-\pi|x|^2/\delta}$ consider $f(x) = \int_0^{\infty} K_{\delta}(x)e^{-\pi\delta}\delta^{\varepsilon-1} d\delta$. Use Fubini/Tonelli to prove that $f \in L^1(\mathbb{R}^n)$, and

$$\widehat{f}(\xi) = \int_0^\infty e^{-\pi\delta|\xi|^2} e^{-\pi\delta} \delta^{\varepsilon - 1} d\delta.$$

Show that $\widehat{f}(\xi) = \pi^{-\varepsilon} \Gamma(\varepsilon) F(\xi)$, where $\Gamma(s)$ is the gamma function defined by $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$.

8. (Hilbert's Inequality) Let

$$Tf(x) = \int_0^\infty \frac{f(y)}{x+y} \, dy$$

(a) Show that Tf satisfies the norm inequality

$$\left(\int_0^\infty |Tf(x)|^p dx\right)^{1/p} \le C_p \left(\int_0^\infty |f(x)|^p dx\right)^{1/p}$$

for 1 , with

$$C_p = \int_0^\infty \frac{1}{x^{1/p}(x+1)} \, dx.$$

(b) Show, without using complex analysis, that

$$C_p \le \frac{p^2}{p-1}.$$

Remark: It is a standard exercise in contour integration to show that in fact $C_p = \pi/\sin(\pi/p)$.

Challenge Problem VII & VIII

Hand these in to me at some point in the semester

- VII. (A Generalized Hölder's Inequality) Suppose that $1 \le p_j \le \infty$ and $\sum_{j=1}^n 1/p_j = 1/r \le 1$. If $f_j \in L^{p_j}$ for $j = 1, \ldots, n$, then $\prod_{j=1}^n f_j \in L^r$ and $\|\prod_{j=1}^n f_j\|_r \le \prod_{j=1}^n \|f_j\|_{p_j}$.
- VIII. (Young's Inequality) Suppose $1 \le p, q, r \le \infty$ with $p^{-1} + q^{-1} = r^{-1} + 1$. Prove that if $f \in L^p$ and $g \in L^q$, then $f * g \in L^r$ and

$$||f * g||_r \le ||f||_p ||g||_q$$

[Hint: Use the above exercise to show that

$$|f * g(x)|^r \le ||f||_p^{r-p} ||g||_q^{r-q} \int |f(y)|^p |g(x-y)|^q dy.$$