K-THEORY OF THE LEAF SPACE OF FOLIATIONS FORMED BY THE GENERIC K-ORBITS OF SOME INDECOMPOSABLE MD_5 -GROUPS

Le Anh Vu* and Duong Quang Hoa**
Department of Mathematics and Informatics
University of Pedagogy, Ho Chi Minh City, Vietnam
E-mail: (*) vula@math.hcmup.edu.vn

(**) duongquanghoabt@yahoo.com.vn

Abstract

The paper is a continuation of the authors' work [18]. In [18], we consider foliations formed by the maximal dimensional K-orbits (MD_5 -foliations) of connected MD_5 -groups such that their Lie algebras have 4-dimensional commutative derived ideals and give a topological classification of the considered foliations. In this paper, we study K-theory of the leaf space of some of these MD_5 -foliations and characterize the Connes' C*-algebras of the considered foliations by the method of K-functors.

INTRODUCTION

In the decades 1970s – 1980s, works of D.N. Diep [4], J. Rosenberg [10], G. G. Kasparov [7], V. M. Son and H. H. Viet [12],... have seen that K-functors are well adapted to characterize a large class of group C*-algebras. Kirillov's method of orbits allows to find out the class of Lie groups MD, for which the group C*-algebras can be characterized by means of suitable K-functors (see [5]). In terms of D. N. Diep, an MD-group of dimension n (for short, an MD_n -group) is an n-dimensional solvable real Lie group whose orbits in the co-adjoint representation (i.e., the K- representation) are the orbits of zero or maximal dimension. The Lie algebra of an MD_n -group is called an MD_n -algebra (see [5, Section 4.1]).

In 1982, studying foliated manifolds, A. Connes [3] introduced the notion of C*-algebra associated to a measured foliation. In the case of Reeb foliations (see A. M. Torpe [14]), the method of K-functors has been proved to be very effective in describing the structure of Connes' C*-algebras. For every MD-group G, the family of K-orbits of maximal dimension forms a measured foliation in terms of Connes [3]. This foliation is called MD-foliation associated to G.

 $^{{}^{0}}$ Key words: Lie group, Lie algebra, MD_5 -group, MD_5 -algebra, K-orbit, Foliation, Measured foliation, C*-algebra, Connes' C*-algebra associated to a measured foliation.

²⁰⁰⁰AMS Mathematics Subject Classification: Primary 22E45, Secondary 46E25, 20C20.

Combining methods of Kirillov (see [8, Section 15]) and Connes (see[3, Section 2, 5]), the first author had studied MD_4 -foliations associated with all indecomposable connected MD_4 -groups and characterized Connes' C*-algebras of these foliations in [16]. Recently, Vu and Shum [17] have classified, up to isomorphism, all the MD_5 -algebras having commutative derived ideals.

In [18], we have given a topological classification of MD_5 -foliations associated to the indecomposable connected and simply connected MD_5 -groups, such that MD_5 -algebras of them have 4-dimensional commutative derived ideals. There are exactly 3 topological types of the considered MD_5 -foliations, denoted by $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$. All MD_5 -foliations of type \mathcal{F}_1 are the trivial fibrations with connected fibre on 3-dimensional sphere S^3 , so Connes' C*-algebras of them are isomorphic to the C*-algebra $C(S^3) \otimes \mathcal{K}$ following [3, Section 5], where \mathcal{K} denotes the C*-algebra of compact operators on an (infinite dimensional separable) Hilbert space.

The purpose of this paper is to study K-theory of the leaf space and to characterize the structure of Connes' C*-algebras $C^*(V, \mathcal{F})$ of all MD_5 -foliations (V, \mathcal{F}) of type \mathcal{F}_2 by the method of K-functors. Namely, we will express $C^*(V, \mathcal{F})$ by two repeated extensions of the form

$$0 \longrightarrow C_0(X_1) \otimes \mathcal{K} \longrightarrow C^*(V, \mathcal{F}) \longrightarrow B_1 \longrightarrow 0,$$

$$0 \longrightarrow C_0(X_2) \otimes \mathcal{K} \longrightarrow B_1 \longrightarrow C_0(Y_2) \otimes \mathcal{K} \longrightarrow 0,$$

then we will compute the invariant system of $C^*(V, \mathcal{F})$ with respect to these extensions. If the given C*-algebras are isomorphic to the reduced crossed products of the form $C_0(V) \rtimes H$, where H is a Lie group, we can use the Thom-Connes isomorphism to compute the connecting map δ_0, δ_1 .

In another paper, we will study the similar problem for all MD_5 -foliations of type \mathcal{F}_3 .

1 THE MD_5 -FOLIATIONS OF TYPE \mathcal{F}_2

Originally, we will recall geometry of K-orbit of MD_5 -groups which associate with MD_5 -foliations of type \mathcal{F}_2 (see [18]).

In this section, G will be always an connected and simply connected MD_5 -group such that its Lie algebras \mathcal{G} is an indecomposable MD_5 -algebra generated by $\{X_1, X_2, X_3, X_4, X_5\}$ with $\mathcal{G}^1 := [\mathcal{G}, \mathcal{G}] = \mathbb{R}.X_2 \oplus \mathbb{R}.X_3 \oplus \mathbb{R}.X_4 \oplus \mathbb{R}.X_5 \cong \mathbb{R}^4$, $ad_{X_1} \in End(\mathcal{G}) \equiv Mat_4(\mathbb{R})$. Namely, \mathcal{G} will be one of the following Lie algebras which are studied in [17] and [18].

1. $\mathcal{G}_{5,4,11(\lambda_1,\lambda_1,\varphi)}$

$$ad_{X_1} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 & 0 \\ \sin \varphi & \cos \varphi & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & \lambda_2 \end{bmatrix}; \lambda_1, \lambda_2 \in \mathbb{R} \setminus \{0\}, \lambda_1 \neq \lambda_2, \varphi \in (0, \pi).$$

2. $\mathcal{G}_{5,4,12(\lambda,\varphi)}$

$$ad_{X_1} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 & 0 \\ \sin \varphi & \cos \varphi & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{bmatrix}; \lambda \in \mathbb{R} \setminus \{0\}, \varphi \in (0, \pi).$$

3. $\mathcal{G}_{5,4,13(\lambda,\varphi)}$

$$ad_{X_1} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 & 0 \\ \sin \varphi & \cos \varphi & 0 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}; \lambda \in \mathbb{R} \setminus \{0\}, \varphi \in (0, \pi).$$

The connected and simply connected Lie groups corresponding to these algebras are denoted by $G_{5,4,11}$ $(\lambda_1,\lambda_1,\varphi)$, $G_{5,4,12}(\lambda,\varphi)$, $G_{5,4,13}(\lambda,\varphi)$. All of these Lie groups are MD_5 -groups (see [17]) and G is one of them. We now recall the geometric description of the K-orbits of G in the dual space \mathcal{G}^* of \mathcal{G} . Let $\{X_1^*, X_2^*, X_3^*, X_4^*, X_5^*\}$ be the basis in \mathcal{G}^* dual to the basis $\{X_1, X_2, X_3, X_4, X_5\}$ in \mathcal{G} . Denote by Ω_F the K-orbit of G including $F = (\alpha, \beta + i\gamma, \delta, \sigma)$ in $\mathcal{G}^* \cong \mathbb{R}^5$.

- If $\beta + i\gamma = \delta = \sigma = 0$ then $\Omega_F = \{F\}$ (the 0-dimensional orbit).
- If $|\beta + i\gamma|^2 + \delta^2 + \sigma^2 \neq 0$ then Ω_F is the 2-dimensional orbit as follows

$$\Omega_{F} = \begin{cases} \left\{ \left(x, (\beta + i\gamma) . e^{\left(a.e^{-i\varphi} \right)}, \delta.e^{a\lambda_{1}}, \sigma.e^{a\lambda_{2}} \right), \ x, a \in \mathbb{R} \right\} \\ \text{when } G = G_{5,4,11(\lambda_{1},\lambda_{2},\varphi)}, \ \lambda_{1}, \lambda_{2} \in \mathbb{R}^{*}, \ \varphi \in (0;\pi) . \end{cases} \\ \left\{ \left(x, (\beta + i\gamma) . e^{\left(a.e^{-i\varphi} \right)}, \delta.e^{a\lambda}, \sigma.e^{a\lambda} \right), \ x, a \in \mathbb{R} \right\} \\ \text{when } G = G_{5,4,12(\lambda,\varphi)}, \ \lambda \in \mathbb{R}^{*}, \ \varphi \in (0;\pi) . \end{cases} \\ \left\{ \left(x, (\beta + i\gamma) . e^{\left(a.e^{-i\varphi} \right)}, \delta.e^{a\lambda}, \delta.ae^{a\lambda} + \sigma.e^{a\lambda} \right), \ x, a \in \mathbb{R} \right\} \\ \text{when } G = G_{5,4,13(\lambda,\varphi)}, \ \lambda \in \mathbb{R}^{*}, \ \varphi \in (0;\pi) . \end{cases}$$

In [18], we have shown that, the family \mathcal{F} of maximal-dimensional K-orbits of G forms measured foliation in terms of Connes on the open submanifold

$$V = \{(x, y, z, t, s) \in G^* : y^2 + z^2 + t^2 + s^2 \neq 0\} \cong \mathbb{R} \times (\mathbb{R}^4)^* (\subset \mathcal{G}^* \equiv \mathbb{R}^5)$$

Furthermore, all foliations $(V, \mathcal{F}_{4,11(\lambda_1,\lambda_2,\varphi)}), (V, \mathcal{F}_{4,12(\lambda,\varphi)}), (V, \mathcal{F}_{4,13(\lambda,\varphi)})$ are topologically equivalent to each other $(\lambda_1, \lambda_2, \lambda \in \mathbb{R} \setminus \{0\}, \varphi \in (0; \pi))$. Thus, we need only choose a envoy among them to describe the structure of the C*-algebra. In this case, we choose the foliation $(V, \mathcal{F}_{4,12(1,\frac{\pi}{2})})$.

In [18], we have described the foliation $\left(V, \mathcal{F}_{4,12\left(1,\frac{\pi}{2}\right)}\right)$ by a suitable action of \mathbb{R}^2 . Namely, we have the following proposition.

PROPOSITION 1. The foliation $\left(V, \mathcal{F}_{4,12\left(1,\frac{\pi}{2}\right)}\right)$ can be given by an action of the commutative Lie group \mathbb{R}^2 on the manifold V.

Proof. One needs only to verify that the following action λ of \mathbb{R}^2 on V gives the foliation $\left(V, \mathcal{F}_{4,12\left(1,\frac{\pi}{2}\right)}\right)$

$$\lambda: \mathbb{R}^2 \times V \to V$$

$$((r,a),(x,y+iz,t,s)) \mapsto (x+r,(y+iz).e^{-ia},t.e^a,s.e^a)$$

where $(r,a) \in \mathbb{R}^2$, $(x,y+iz,t,s) \in V \cong \mathbb{R} \times (\mathbb{C} \times \mathbb{R}^2)^* \cong \mathbb{R} \times (\mathbb{R}^4)^*$. Hereafter, for simplicity of notation, we write (V,\mathcal{F}) instead of $\left(V,\mathcal{F}_{4,12\left(1,\frac{\pi}{2}\right)}\right)$.

It is easy to see that the graph of (V, \mathcal{F}) is indentical with $V \times \mathbb{R}^2$, so by [3, Section 5], it follows from Proposition 1 that:

COROLLARY 1 (analytical description of $C^*(V, \mathcal{F})$). The Connes C^* -algebra $C^*(V, \mathcal{F})$ can be analytically described the reduced crossed of $C_0(V)$ by \mathbb{R}^2 as follows

$$C^*(V, \mathcal{F}) \cong C_0(V) \rtimes_{\lambda} \mathbb{R}^2.$$

2 $C^*(V, \mathcal{F})$ AS TWO REPEATED EXTENSIONS

2.1. Let V_1 , W_1 , V_2 , W_2 be the following submanifolds of V

$$V_1 = \{(x, y, z, t, s) \in V : s \neq 0\} \cong \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^*,$$

$$W_1 = V \setminus V_1 = \{(x, y, z, t, s) \in V : s = 0\} \cong \mathbb{R} \times (\mathbb{R}^3)^* \times \{0\} \cong \mathbb{R} \times (\mathbb{R}^3)^*,$$

$$V_2 = \{(x, y, z, t, 0) \in W_1 : t \neq 0\} \cong \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^*,$$

$$W_2 = W_1 \setminus V_2 = \{(x, y, z, t, 0) \in W_1 : t = 0\} \cong \mathbb{R} \times (\mathbb{R}^2)^*$$
.

It is easy to see that the action λ in Proposition 1 preserves the subsets V_1, W_1, V_2, W_2 . Let i_1, i_2, μ_1, μ_2 be the inclusions and the restrictions

$$i_1: C_0(V_1) \to C_0(V), \quad i_2: C_0(V_2) \to C_0(W_1), \mu_1: C_0(V) \to C_0(W_1), \quad \mu_2: C_0(W_1) \to C_0(W_2)$$

where each function of $C_0(V_1)$ (resp. $C_0(V_2)$) is extented to the one of $C_0(V)$ (resp. $C_0(W_1)$) by taking the value of zero outside V_1 (resp. V_2).

It is known a fact that i_1, i_2, μ_1, μ_2 are λ -equivariant and the following sequences are equivariantly exact:

$$(2.1.1) 0 \longrightarrow C_0(V_1) \xrightarrow{i_1} C_0(V) \xrightarrow{\mu_1} C_0(W_1) \longrightarrow 0$$

$$(2.1.2) 0 \longrightarrow C_0(V_2) \xrightarrow{i_2} C_0(W_1) \xrightarrow{\mu_2} C_0(W_2) \longrightarrow 0.$$

2.2. Now we denote by (V_1, \mathcal{F}_1) , (W_1, \mathcal{F}_1) , (V_2, \mathcal{F}_2) , (W_2, \mathcal{F}_2) the foliations-restrictions of (V, \mathcal{F}) on V_1, W_1, V_2, W_2 respectively.

THEOREM 1. $C^*(V, \mathcal{F})$ admits the following canonical repeated extensions

$$(\gamma_1) \qquad 0 \longrightarrow J_1 \xrightarrow{\widehat{i_1}} C^*(V, F) \xrightarrow{\widehat{\mu_1}} B_1 \longrightarrow 0 ,$$

$$(\gamma_2) \qquad 0 \longrightarrow J_2 \xrightarrow{\widehat{i_2}} B_1 \xrightarrow{\widehat{\mu_2}} B_2 \longrightarrow 0 ,$$

where

$$J_{1} = C^{*} (V_{1}, \mathcal{F}_{1}) \cong C_{0} (V_{1}) \rtimes_{\lambda} \mathbb{R}^{2} \cong C_{0} (\mathbb{R}^{3} \cup \mathbb{R}^{3}) \otimes K,$$

$$J_{2} = C^{*} (V_{2}, \mathcal{F}_{2}) \cong C_{0} (V_{2}) \rtimes_{\lambda} \mathbb{R}^{2} \cong C_{0} (\mathbb{R}^{2} \cup \mathbb{R}^{2}) \otimes K,$$

$$B_{2} = C^{*} (W_{2}, \mathcal{F}_{2}) \cong C_{0} (W_{2}) \rtimes_{\lambda} \mathbb{R}^{2} \cong C_{0} (\mathbb{R}_{+}) \otimes K,$$

$$B_{1} = C^{*} (W_{1}, \mathcal{F}_{1}) \cong C_{0} (W_{1}) \rtimes_{\lambda} \mathbb{R}^{2}, \text{ and the homomorphismes } \widehat{i_{1}}, \widehat{i_{2}}, \widehat{\mu_{1}}, \widehat{\mu_{2}} \text{ are defined by }$$

$$\left(\widehat{i_{k}} f\right) (r, s) = i_{k} f(r, s), \quad k = 1, 2$$

$$\left(\widehat{\mu_{k}} f\right) (r, s) = \mu_{k} f(r, s), \quad k = 1, 2$$

Proof. We note that the graph of (V_1, \mathcal{F}_1) is indentical with $V_1 \times \mathbb{R}^2$, so by [3, section 5], $J_1 = C^*(V_1, \mathcal{F}_1) \cong C_0(V_1) \rtimes_{\lambda} \mathbb{R}^2$. Similarly, we have

$$B_1 \cong C_0(W_1) \rtimes_{\lambda} \mathbb{R}^2$$

$$J_2 \cong C_0(V_2) \rtimes_{\lambda} \mathbb{R}^2$$
,

$$B_2 \cong C_0(W_2) \rtimes_{\lambda} \mathbb{R}^2$$

From the equivariantly exact sequences in 2.1 and by [2, Lemma 1.1] we obtain the repeated extensions (γ_1) and (γ_2) .

Furthermore, the foliation (V_1, \mathcal{F}_1) can be derived from the submersion

$$p_1: V_1 \approx \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^* \to \mathbb{R}^3 \cup \mathbb{R}^3$$

 $p_1(x, y, z, t, s) = (y, z, t, \text{sign} s).$

Hence, by a result of [3, p.562], we get $J_1 \cong C_0(\mathbb{R}^3 \cup \mathbb{R}^3) \otimes K$. The same argument shows that

$$J_2 \cong C_0\left(\mathbb{R}^2 \cup \mathbb{R}^2\right) \otimes K, \ B_2 \cong C_0\left(\mathbb{R}_+\right) \otimes K.$$

3 COMPUTING THE INVARIANT SYSTEM OF $C^*(V, \mathcal{F})$

DEFINITION. The set of elements $\{\gamma_1, \gamma_2\}$ corresponding to the repeated extensions (γ_1) , (γ_2) in the Kasparov groups Ext (B_i, J_i) , i = 1, 2 is called the system of invariants of $C^*(V, \mathcal{F})$ and denoted by Index $C^*(V, \mathcal{F})$.

REMARK. Index $C^*(V, \mathcal{F})$ determines the so-called stable type of $C^*(V, \mathcal{F})$ in the set of all repeated extensions

$$0 \longrightarrow J_1 \longrightarrow E \longrightarrow B_1 \longrightarrow 0,$$

$$0 \longrightarrow J_2 \longrightarrow B_1 \longrightarrow B_2 \longrightarrow 0.$$

The main result of the paper is the following.

THEOREM 2. Index
$$C^*(V, \mathcal{F}) = \{\gamma_1, \gamma_2\}$$
, where $\gamma_1 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ in the group $Ext(B_1, J_1) = Hom(\mathbb{Z}^2, \mathbb{Z}^2)$; $\gamma_2 = (1, 1)$ in the group $Ext(B_2, J_2) = Hom(\mathbb{Z}, \mathbb{Z}^2)$.

To prove this theorem, we need some lemmas as follows.

LEMMA 1. Set
$$I_2 = C_0(\mathbb{R}^2 \times \mathbb{R}^*)$$
 and $A_2 = C_0((\mathbb{R}^2)^*)$
The following diagram is commutative

where β_1 is the isomorphism defined in [13, Theorem 9.7] or in [2, corollary VI.3], $j \in \mathbb{Z}/2\mathbb{Z}$. Proof. Let

$$k_2: I_2 = C_0\left(\mathbb{R}^2 \times \mathbb{R}^*\right) \to C_0\left(\left(\mathbb{R}^3\right)^*\right)$$

 $v_2: C_0\left(\left(\mathbb{R}^3\right)^*\right) \to A_2 = C_0\left(\left(\mathbb{R}^2\right)^*\right)$

be the inclusion and restriction defined similarly as in 2.1.

One gets the exact sequence

$$0 \longrightarrow I_2 \xrightarrow{k_2} C_0((\mathbb{R}^3)^*) \xrightarrow{v_2} A_2 \longrightarrow 0$$

Note that

$$C_0(V_2) \cong C_0(\mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^*) \cong C_0(\mathbb{R}) \otimes I_2,$$

$$C_0(W_2) \cong C_0(\mathbb{R} \times (\mathbb{R}^2)^*) \cong C_0(\mathbb{R}) \otimes A_2,$$

$$C_0(W_1) \cong C_0(\mathbb{R} \times (\mathbb{R}^3)^*) \cong C_0(\mathbb{R}) \otimes C_0(\mathbb{R}^3)^*$$
.

The extension (2.1.2) thus can be identified to the following one

$$0 \longrightarrow C_0(\mathbb{R}) \otimes I_2 \xrightarrow{id \otimes k_2} C_0(\mathbb{R}) \otimes C_0(\mathbb{R}^3)^* \xrightarrow{id \otimes v_2} C_0(\mathbb{R}) \otimes A_2 \longrightarrow 0.$$

Now, using [13, Theorem 9.7; Corollary 9.8] we obtain the assertion of Lemma 1. \Box

LEMMA 2. Set
$$I_1 = C_0(\mathbb{R}^2 \times \mathbb{R}^*)$$
 and $A_1 = C(S^2)$

The following diagram is commutative

where β_2 is the Bott isomorphism, $j \in \mathbb{Z}/2\mathbb{Z}$.

Proof. The proof is similar to that of lemma 1, by using the exact sequence (2.1.1) and diffeomorphisms: $V \cong \mathbb{R} \times (\mathbb{R}^4)^* \cong \mathbb{R} \times \mathbb{R}_+ \times S^3$, $W_1 \cong \mathbb{R} \times (\mathbb{R}^3)^* \cong \mathbb{R} \times \mathbb{R}_+ \times S^2$.

Before computing the K-groups, we need the following notations. Let $u: \mathbb{R} \to S^1$ be the map

$$u(z) = e^{2\pi i \left(z/\sqrt{1+z^2}\right)}, \ z \in \mathbb{R}$$

Denote by u_+ (resp. u_-) the restriction of u on \mathbb{R}_+ (resp. \mathbb{R}_-). Note that the class $[u_+]$ (resp. $[u_-]$) is the canonical generator of K_1 (C_0 (\mathbb{R}_+)) $\cong \mathbb{Z}$ (resp. K_1 (C_0 (\mathbb{R}_-)) $\cong \mathbb{Z}$). Let us consider the matrix valued function $p: (\mathbb{R}^2)^* \cong S^1 \times \mathbb{R}_+ \to M_2$ (\mathbb{C}) (resp. $\overline{p}: S^2 \cong D/S^1 \to M_2$ (\mathbb{C})) defined by:

$$p(x;y)(resp. \ \overline{p}(x,y)) = \frac{1}{2} \begin{pmatrix} 1 - \cos \pi \sqrt{x^2 + y^2} & \frac{x+iy}{\sqrt{x^2 + y^2}} \sin \pi \sqrt{x^2 + y^2} \\ \frac{x-iy}{\sqrt{x^2 + y^2}} \sin \pi \sqrt{x^2 + y^2} & 1 + \cos \pi \sqrt{x^2 + y^2} \end{pmatrix}.$$

Then p (resp. \overline{p}) is an idempotent of rank 1 for each $(x;y) \in (\mathbb{R}^2)^*$ (resp. $(x;y) \in D/S^1$). Let $[b] \in K_0(C_0(\mathbb{R}^2))$ be the Bott element, [1] be the generator of $K_0(C(S^1)) \cong \mathbb{Z}$.

LEMMA 3 (See [15, p.234]).

- (i) $K_0(B_1) \cong \mathbb{Z}^2$, $K_1(B_1) = 0$,
- (ii) $K_0(J_2) \cong \mathbb{Z}^2$ is generated by $\varphi_0\beta_1([b] \boxtimes [u_+])$ and $\varphi_0\beta_1([b] \boxtimes [u_-])$; $K_1(J_2) = 0$,
- (iii) $K_0(B_2) \cong \mathbb{Z}$ is generated by $\varphi_0\beta_1([1]\boxtimes[u_+])$; $K_1(B_2) \cong \mathbb{Z}$ is generated by $\varphi_1\beta_1([p]-[\varepsilon_1])$, where $\varphi_j, j \in \mathbb{Z}/2\mathbb{Z}$, is the Thom-Connes isomorphism (see[2]), β_1 is the isomorphism in Lemma 1, ε_1 is the constant matrix $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and \boxtimes is the external tensor product (see, for example, [2, VI.2]).

LEMMA 4.

(i)
$$K_0(C^*(V,\mathcal{F})) \cong \mathbb{Z}, K_1(C^*(V,\mathcal{F})) \cong \mathbb{Z},$$

(ii) $K_0(J_1) = 0$; $K_1(J_1) \cong \mathbb{Z}^2$ is generated by $\varphi_1\beta_2([b] \boxtimes [u_+])$ and $\varphi_1\beta_2([b] \boxtimes [u_-])$,

(iii) $K_1(B_1) = 0$; $K_0(B_1) \cong \mathbb{Z}^2$ is generated by $\varphi_0\beta_2[\bar{1}]$ and $\varphi_0\beta_2([\bar{p}] - [\varepsilon_1])$, where $\bar{1}$ is unit element in $C(S^2)$, φ_0 is the Thom-Connes isomorphism, β_2 is the Bott isomorphism.

Proof.

- (i) $K_i(C^*(V,\mathcal{F})) \cong K_i(C(S^3)) \cong \mathbb{Z}, i = 0, 1.$
- (ii) The proof is similar to (ii) of lemma 3.
- (iii) By [9, p.206], we have

$$K_0(C(S^2)) = \mathbb{Z}[\overline{1}] + \mathbb{Z}[q], \text{ where } q \in P_2(C(S^2)).$$

Otherwise, in [9, p.48,53,56]; [13, p.162], one has shown that the map

$$dim: K_0(C(S^2)) \to \mathbb{Z}$$

is a surjective group homomorphism which satisfied dim $[\bar{1}] = 1$, ker $(\dim) = \mathbb{Z}$ and non-zero element $q \in P_2(C(S^2))$ in the kernel of the map dim has the form $[q] = [\bar{p}] - [\varepsilon_1]$. Hence, the result is derived straight away because β_2 and φ_1 are isomorphisms.

Proof of theorem 2

1. Computation of (γ_1) . Recall that the extension (γ_1) in theorem 1 gives rise to a six-term exact sequence

$$0 = K_0(J_1) \longrightarrow K_0(C^*(V, F)) \longrightarrow K_0(B_1)$$

$$\downarrow^{\delta_1} \qquad \qquad \downarrow^{\delta_0}$$

$$0 = K_1(B_1) \longleftarrow K_1(C^*(V, F)) \longleftarrow K_1(J_1)$$

By [11, Theorem 4.14], the isomorphisms

$$\operatorname{Ext}(B_1, J_1) \cong \operatorname{Hom}((K_0(B_1), K_1(J_1)) \cong \operatorname{Hom}(\mathbb{Z}^2, \mathbb{Z}^2)$$

associates the invariant $\gamma_1 \in \text{Ext}(B_1, J_1)$ to the connecting map $\delta_0 : K_0(B_1) \to K_1(J_1)$. Since the Thom-Connes isomorphism commutes with K-theoretical exact sequence (see[14, Lemma 3.4.3]), we have the following commutative diagram $(j \in \mathbb{Z}/2\mathbb{Z})$:

In view of Lemma 2, the following diagram is commutative

$$\cdots \longrightarrow K_{j}(C_{0}(V_{1})) \longrightarrow K_{1}(C_{0}(V)) \longrightarrow K_{j}(C_{0}(W_{1})) \longrightarrow K_{j+1}(C_{1}(V_{1})) \longrightarrow \cdots$$

$$\uparrow^{\beta_{2}} \qquad \uparrow^{\beta_{2}} \qquad \uparrow^{\beta_{2}} \qquad \uparrow^{\beta_{2}}$$

$$\cdots \longrightarrow K_{j}(I_{1}) \longrightarrow K_{j}(C(S^{3})) \longrightarrow K_{j}(A_{1}) \longrightarrow K_{j+1}(I_{1}) \longrightarrow \cdots$$

Consequently, instead of computing $\delta_0: K_0(B_1) \to K_1(J_1)$, it is sufficient to compute $\delta_0: K_0(A_1) \to K_1(I_1)$. Thus, by the proof of Lemma 4, we have to define $\delta_0([\bar{p}]-[\varepsilon_1]) = \delta_0([\bar{p}])$ (because $\delta_0([\varepsilon_1]) = (0;0)$ and $\delta_0([\bar{1}]) = (0;0)$). By the usual definition (see[13, p.170]), for $[\bar{p}] \in K_0(A_1)$, $\delta_0([\bar{p}]) = [e^{2\pi i \bar{p}}] \in K_1(I_1)$ where \tilde{p} is a preimage of \bar{p} in (a matrix algebra over) $C(S^3)$, i.e. $v_1\tilde{p} = \bar{p}$.

We can choose $\tilde{p}(x,y,z) = \frac{z}{\sqrt{1+z^2}}\bar{p}(x,y), \ (x,y,z) \in S^3.$

Let \tilde{p}_+ (resp. \tilde{p}_-) be the restriction of \tilde{p} on $\mathbb{R}^2 \times \mathbb{R}_+$ (resp. $\mathbb{R}^2 \times \mathbb{R}_-$). Then we have $\delta_0([\bar{p}]) = [e^{2\pi i \tilde{p}}] = [e^{2\pi i \tilde{p}_+}] + [e^{2\pi i \tilde{p}_-}] \in K_1(C_0(\mathbb{R}^2) \otimes C_0(\mathbb{R}_+)) \oplus K_1(C_0(\mathbb{R}^2) \otimes C_0(\mathbb{R}_+)) = K_1(I_1)$

By [13, Section 4], for each function $f: \mathbb{R}_{\pm} \to Q_n \widetilde{C_0(\mathbb{R}^2)}$ such that $\lim_{x \to \pm 0} f(t) = \lim_{x \to \pm \infty} f(t)$, where $Q_n \widetilde{C_0(\mathbb{R}^2)} = \left\{ a \in M_n \widetilde{C_0(\mathbb{R}^2)}, e^{2\pi i a} = Id \right\}$, the class $[f] \in K_1 \left(C_0(\mathbb{R}^2) \otimes C_0(\mathbb{R}_{\pm}) \right)$ can be determined by $[f] = W_f \cdot [b] \boxtimes [u_{\pm}]$, where $W_f = \frac{1}{2\pi i} \int_{\mathbb{R}_{\pm}} Tr \left(f'(z) f^{-1}(z) \right) dz$ is the winding number of f.

By simple computation, we get $\delta_0([p]) = [b] \boxtimes [u_+] + [b] \boxtimes [u_-]$. Thus $\gamma_1 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^2, \mathbb{Z}^2)$.

2. Computation of (γ_2) . The extension (γ_2) gives rise to a six-term exact sequence

$$K_0(J_2) \longrightarrow K_0(B_1) \longrightarrow K_0(B_2)$$

$$\uparrow^{\delta_1} \qquad \qquad \downarrow^{\delta_0}$$
 $K_1(B_2) \longleftarrow K_1(B_1) \longleftarrow K_1(J_2) = 0$

By [11, Theorem 4.14], $\gamma_2 = \delta_1 \in \text{Hom}(K_1(B_2), K_0(J_2)) = \text{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}^2)$. Similarly to part 1, taking account of Lemma 1 and 3, we have the following commutative diagram $(j \in \mathbb{Z}/2\mathbb{Z})$

Thus we can compute $\delta_0: K_0(A_2) \to K_1(I_2)$ instead of $\delta_1: K_1(B_2) \to K_0(J_2)$. By the proof of Lemma 3, we have to define $\delta_0([p] - [\epsilon_1]) = \delta_0([p])$ (because $\delta_0([\epsilon_1]) = (0,0)$). The same argument as above, we get $\delta_0([p]) = [b] \boxtimes [u_+] + [b] \boxtimes [u_-]$. Thus $\gamma_2 = (1,1) \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}^2) \cong \mathbb{Z}^2$. The proof is completed.

REFERENCES

- 1. BROWN, L. G.; DOUGLAS, R. G.; FILLMORE, P. A., Extension of C*-algebra and K-homology, Ann. of Math, 105(1977), 265 324.
- 2. CONNES, A., An Analogue of the Thom Isomorphism for Crossed Products of a C*-algebra by an Action of \mathbb{R} , Adv. In Math., 39(1981), 31 55.
- 3. CONNES, A., A Survey of Foliations and Operator Algebras, Proc. Sympos. Pure Mathematics, 38(1982), 521 628.
- 4. DIEP, D. N., Structure of the group C*-algebra of the group of affine transformations of the line (Russian), Funktsional. Anal. I Prilozhen, 9(1975), 63 64.
- 5. DIEP, D. N., Method of Noncommutative Geometry for Group C*-algebras. Reseach Notes in Mathematics Series, Vol.416. Cambridge: Chapman and Hall-CRC Press, 1999.
- 6. KAROUBI, M., K-theory: An introduction, Grund. der Math. Wiss. NO 226, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
- 7. KASPAROV, G. G., The operator K-functor and extensions of C*-algebras, Math. USSR Izvestija, 16 (1981), No 3, 513 572.
- 8. KIRILLOV, A. A., Elements of the Theory of Representations, Springer Verlag, Berlin Heidenberg New York, (1976).
- 9. RORDAM, M., LARSEN, F., LAUSTSEN, N., An Introduction to K-Theory for C*-Algebras, Cambridge University Press, United Kingdom, (2000).
- 10. ROSENBERG, J., The C*-algebras of some real p-adic solvable groups, Pacific J. Math, 65 (1976), No 1, 175 192.
- 11. ROSENBERG, J., Homological invariants of extension of C*-algebras, Proc. Sympos. Pure Math., 38(1982), AMS Providence R.I., 35 75.
- 12. SON, V. M.; VIET, H. H., Sur la structure des C*-algebres dune classe de groupes de Lie, J. Operator Theory, 11 (1984), 77 90.
- 13. TAYLOR, J. L., "Banach Algebras and Topology", in Algebras in Analysis, pp. 118-186, Academic Press, New York, (1975).
- 14. TORPE, A. M., K-theory for the Leaf Space of Foliations by Reeb Component, J. Func. Anal., 61 (1985), 15-71.
- 15. VU, L. A., "On the structure of the C^* -Algebra of the Foliation formed by the Orbits of maximal dimendion of the Real Diamond Group", Journal of Operator theory, pp. 227238 (1990).

- 16. VU, L. A., The foliation formed by the K orbits of Maximal Dimension of the MD4-group, PhD Thesis, Ha Noi (1990) (in Vietnamese).
- 17. VU, L. A.; SHUM, K. P., Classification of 5-dimensional MD-algebra having commutative derived ideals, Advances in Algebra and Combinatorics, Singapore: World Scientific, 2008, 353-371.
- 18. VU, L. A.; HOA, D. Q., The topology of foliations formed by the generic K-orbits of a subclass of the indecomposable MD5-groups, Science in China, series A: Mathemmatics, Volume 52- Number 2, February 2009, 351-360.