Big Mart Sales Analysis

Data description

The data is in csv format.In computing, a comma-separated values (CSV) file stores tabular data (numbers and text) in plain text. Each line of the file is a data record. Each record consists of one or more fields, separated by commas.

The data scientists at BigMart have collected 2013 sales data for 1559 products across 10 stores in different cities. Also, certain attributes of each product and store have been defined. The aim is to build a predictive model and find out the sales of each product at a particular store. Using this model, BigMart will try to understand the properties of products and stores which play a key role in increasing sales.

Attributes

- Item_Identifier : Unique product ID
- Item Weight : Weight of product
- Item_Fat_Content : Whether the product is low fat or not
- Item Visibility: % of total display area in store allocated to this product
- Item_Type : Category to which product belongs
- Item MRP: Maximum Retail Price (list price) of product
- Outlet Identifier : Unique store ID
- Outlet_Establishment_Year : Year in which store was established
- Outlet_Size : Size of the store
- Outlet_Location_Type : Type of city in which store is located
- Outlet_Type : Grocery store or some sort of supermarket
- Item_Outlet_Sales : Sales of product in particular store. This is the outcome variable to be predicted.

We import the dataset

```
import pandas as pd

In [1]:

df = pd.read_csv('Downloads//Big_mart.csv')

df.head(10)
```

Fat_ onto		Item_ Visibili ty	Item _Typ e	Item _MR P	Outlet_ Identifi er	Outlet_Estab lishment_Ye ar	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sale s			
	0	FDA15	9.30	Low Fat	0.01604 7	Dairy	249.8 092	OUT049	1999	Medium	Ti e r 1	Super mark et Type 1	3735 .138 0
	1	DRC0 1	5.92 0	Reg ular	0.01927 8	Soft Drinks	48.26 92	OUT018	2009	Medium	Ti e r 3	Super mark et Type 2	443. 4228
	2	FDN15	17.5 00	Low Fat	0.01676 0	Meat	141.6 180	OUT049	1999	Medium	Ti e r 1	Super mark et Type 1	2097 .270 0
	3	FDX07	19.2 00	Reg ular	0.00000	Fruits and Vegetables	182.0 950	OUT010	1998	NaN	Ti e r 3	Groce ry Store	732. 3800

at_C nten t	Item_ Visibili ty	Item _Typ e	Item _MR P	Outlet_ Identifi er	Outlet_Estab lishment_Ye ar	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sale s			
4	NCD1 9	8.93 0	Low Fat	0.00000	Household	53.86 14	OUT013	1987	High	Ti e r 3	Super mark et Type 1	994. 7052
5	FDP36	10.3 95	Reg ular	0.00000	Baking Goods	51.40 08	OUT018	2009	Medium	Ti e r 3	Super mark et Type 2	556. 6088
6	FDO10	13.6 50	Reg ular	0.01274 1	Snack Foods	57.65 88	OUT013	1987	High	Ti e r 3	Super mark et Type 1	343. 5528
7	FDP10	NaN	Low Fat	0.12747 0	Snack Foods	107.7 622	OUT027	1985	Medium	Ti e r 3	Super mark et Type 3	4022 .763 6
8	FDH17	16.2 00	Reg ular	0.01668 7	Frozen Foods	96.97 26	OUT045	2002	NaN	Ti e r 2	Super mark et Type 1	1076 .598 6
9	FDU28	19.2 00	Reg ular	0.09445 0	Frozen Foods	187.8 214	OUT017	2007	NaN	Ti e r 2	Super mark et Type 1	4710 .535 0

We import the dataset

In [1]:

import pandas as pd

In [34]:

df = pd.read_csv('Downloads//Big_mart.csv')
df.head(10)

Out[34]:

	Item_I dentif ier	Item_ Weigh t	Item_Fa t_Conte nt	Item_V isibil ity	Item _Typ e	Ite m_M RP	Outlet_ Identif ier	Outlet_Esta blishment_Y ear	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sa les
0	FDA15	9. 300	Low Fat	0. 01604 7	Dair y	249 . 80 92	OUT049	1999	Mediu m	Tier 1	Super marke t Type1	3735. 13 80
1	DRC01	5. 920	Regular	0. 01927 8	Soft Drin ks	48. 269 2	OUTO18	2009	Mediu m	Tier 3	Super marke t Type2	443. 422 8
2	FDN15	17. 50 0	Low Fat	0. 01676 0	Meat	141 . 61 80	OUT049	1999	Mediu m	Tier 1	Super marke t Type1	2097. 27
3	FDX07	19.20	Regular	0.00000	Frui	182	OUT010	1998	NaN	Tier 3	Groce	732. 380

	Item_I dentif ier	Item_ Weigh t	Item_Fa t_Conte nt	Item_V isibil ity	Item _Typ e	Ite m_M RP	Outlet_ Identif ier	Outlet_Esta blishment_Y ear	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sa les		
		0		0	ts and Vege tabl es	. 09 50					ry Store	0		
4	NCD19	8. 930	Low Fat	0.00000	Hous ehol d	53. 861 4	OUT013	1987	High	Tier 3	Super marke t Type1	994. 705 2		
5	FDP36	10. 39 5	Regular	0. 00000 0	Baki ng Good s	51. 400 8	OUT018	2009	Mediu m	Tier 3	Super marke t Type2	556. 608 8		
6	FD010	13. 65 0	Regular	0. 01274 1	Snac k Food s	57. 658 8	OUT013	1987	High	Tier 3	Super marke t Type1	343. 552 8		
7	FDP10	NaN	Low Fat	0. 12747 0	Snac k Food s	107 . 76 22	OUT027	1985	Mediu m	Tier 3	Super marke t Type3	4022. 76 36		
8	FDH17	16. 20 0	Regular	0. 01668 7	Froz en Food s	96. 972 6	OUT045	2002	NaN	Tier 2	Super marke t Type1	1076. 59 86		
9	FDU28	19. 20 0	Regular	0. 09445 0	Froz en Food s	187 . 82 14	OUTO17	2007	NaN	Tier 2	Super marke t Type1	4710. 53 50		
We	find	there	are mi	ssing v	alues	in t	he data				In	[3]:		
We find there are missing values in the data In [3] df. isnull().sum() Out[3] Item_Identifier														
		int ill h		he miss	ing v	alues	in the	dataset			In	[4]:		

df.mean()

Out[4]:

Item_Weight 12.857645 Item_Visibility 0.066132 Item_MRP 140.992782 Outlet_Establishment_Year 1997.831867 Item_Outlet_Sales 2181.288914 dtype: float64

Here we will fill the missing values of the column Item_Weight by filling the null values with the mean values

In [5]:

df['Item_Weight'] = df['Item_Weight'].fillna(df['Item_Weight'].mean()) df. head (10)

											0ut	[5]:
	Item_I dentif ier	Item_ Weigh t	Item_Fa t_Conte nt	Item_V isibil ity	Item _Typ e	Ite m_M RP	Outlet_ Identif ier	Outlet_Esta blishment_Y ear	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sa les
0	FDA15	9. 300 000	Low Fat	0. 01604 7	Dair y	249 . 80 92	OUT049	1999	Mediu m	Tier 1	Super marke t Type1	3735. 13 80
1	DRC01	5. 920 000	Regular	0. 01927 8	Soft Drin ks	48. 269 2	OUT018	2009	Mediu m	Tier 3	Super marke t Type2	443. 422 8
2	FDN15	17. 50 0000	Low Fat	0. 01676 0	Meat	141 . 61 80	OUT049	1999	Mediu m	Tier 1	Super marke t Type1	2097. 27 00
3	FDX07	19. 20 0000	Regular	0.00000	Frui ts and Vege tabl es	182 . 09 50	OUTO10	1998	NaN	Tier 3	Groce ry Store	732. 380 0
4	NCD19	8. 930 000	Low Fat	0. 00000 0	Hous ehol d	53. 861 4	OUTO13	1987	High	Tier 3	Super marke t Type1	994 . 705 2
5	FDP36	10. 39 5000	Regular	0.00000	Baki ng Good s	51. 400 8	OUT018	2009	Mediu m	Tier 3	Super marke t Type2	556. 608 8
6	FD010	13. 65 0000	Regular	0. 01274 1	Snac k Food s	57. 658 8	OUT013	1987	High	Tier 3	Super marke t Type1	343. 552 8
7	FDP10	12. 85 7645	Low Fat	0. 12747 0	Snac k Food s	107 . 76 22	OUT027	1985	Mediu m	Tier 3	Super marke t Type3	4022. 76 36
8	FDH17	16. 20 0000	Regular	0. 01668 7	Froz en Food s	96. 972 6	OUT045	2002	NaN	Tier 2	Super marke t Type1	1076. 59 86

	Item_I	Item_	Item_Fa	Item_V	Item	Ite	Outlet_	Outlet_Esta	Outle	Outlet_Lo	Outle	Item_Ou
	dentif	Weigh	t_Conte	isibil	_Typ	m_M	Identif	blishment_Y	t_Siz	cation_Ty	t_Typ	tlet_Sa
	ier	t	nt	ity	e	RP	ier	ear	e	pe	e	les
9	FDU28	19. 20 0000	Regular	0. 09445 0	Froz en Food s	187 . 82 14	OUT017	2007	NaN	Tier 2	Super marke t Type1	4710. 53 50

We fill the null values in Outlet_Size by 'missing'

In [6]:

df['Outlet_Size'] = df['Outlet_Size'].fillna('missing')
df.head(10)

Out[6]:

											0 0.	.[-].
	Item_I dentif ier	Item_ Weigh t	Item_Fa t_Conte nt	Item_V isibil ity	Item _Typ e	Ite m_M RP	Outlet_ Identif ier	Outlet_Esta blishment_Y ear	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sa les
0	FDA15	9.300 000	Low Fat	0. 01604 7	Dair y	249 . 80 92	OUT049	1999	Mediu m	Tier 1	Super marke t Type1	3735. 13 80
1	DRC01	5. 920 000	Regular	0. 01927 8	Soft Drin ks	48. 269 2	OUT018	2009	Mediu m	Tier 3	Super marke t Type2	443. 422 8
2	FDN15	17. 50 0000	Low Fat	0. 01676 0	Meat	141 . 61 80	OUT049	1999	Mediu m	Tier 1	Super marke t Type1	2097. 27 00
3	FDX07	19. 20 0000	Regular	0.00000	Frui ts and Vege tabl es	182 . 09 50	OUTO10	1998	missi ng	Tier 3	Groce ry Store	732. 380 0
4	NCD19	8. 930 000	Low Fat	0.00000	Hous ehol d	53. 861 4	OUTO13	1987	High	Tier 3	Super marke t Type1	994. 705 2
5	FDP36	10. 39 5000	Regular	0.00000	Baki ng Good s	51. 400 8	OUTO18	2009	Mediu m	Tier 3	Super marke t Type2	556 . 608 8
6	FD010	13. 65 0000	Regular	0. 01274 1	Snac k Food s	57. 658 8	OUT013	1987	High	Tier 3	Super marke t Type1	343. 552 8
7	FDP10	12. 85 7645	Low Fat	0. 12747 0	Snac k Food s	107 . 76 22	OUT027	1985	Mediu m	Tier 3	Super marke t Type3	4022. 76 36
8	FDH17	16. 20 0000	Regular	0. 01668 7	Froz en Food s	96. 972 6	OUT045	2002	missi ng	Tier 2	Super marke t Type1	1076. 59 86
9	FDU28	19. 20 0000	Regular	0. 09445 0	Froz en Food	187 . 82 14	OUTO17	2007	missi ng	Tier 2	Super marke t	4710. 53 50

Feature Engineering - 1

We perform a small feature engineering for the columns Item_Fat_Content and Item_Visibility

Here we replace the strings having similar meaning such as LF and low fat with Low Fat and reg with Regular

In [7]:
df['Item_Fat_Content'] = df['Item_Fat_Content'].replace({'LF':'Low Fat',
'reg':'Regular','lf':'Low Fat','low fat':'Low Fat'})

df											Out	[7]:
	Item_I dentif ier	Item_ Weigh t	Item_Fa t_Conte nt	Item_V isibil ity	Item _Typ e	Ite m_M RP	Outlet_ Identif ier	Outlet_Esta blishment_Y ear	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sa les
0	FDA15	9. 300 000	Low Fat	0. 0160 47	Dair y	249 . 80 92	OUT049	1999	Mediu m	Tier 1	Super marke t Type1	3735. 13 80
1	DRC01	5. 920 000	Regular	0. 0192 78	Soft Drin ks	48. 269 2	OUTO18	2009	Mediu m	Tier 3	Super marke t Type2	443. 422 8
2	FDN15	17. 50 0000	Low Fat	0. 0167 60	Meat	141 . 61 80	OUT049	1999	Mediu m	Tier 1	Super marke t Type1	2097. 27
3	FDX07	19. 20 0000	Regular	0. 0000 00	Frui ts and Vege tabl es	182 . 09 50	OUTO10	1998	missi ng	Tier 3	Groce ry Store	732. 380 0
4	NCD19	8. 930 000	Low Fat	0.0000 00	Hous ehol d	53. 861 4	OUTO13	1987	High	Tier 3	Super marke t Type1	994 . 705 2
5	FDP36	10. 39 5000	Regular	0.0000	Baki ng Good s	51. 400 8	OUTO18	2009	Mediu m	Tier 3	Super marke t Type2	556 . 608
6	FD010	13. 65 0000	Regular	0. 0127 41	Snac k Food s	57. 658 8	OUTO13	1987	High	Tier 3	Super marke t Type1	343. 552 8
7	FDP10	12. 85 7645	Low Fat	0. 1274 70	Snac k Food s	107 . 76 22	OUTO27	1985	Mediu m	Tier 3	Super marke t Type3	4022. 76 36

	Item_I dentif ier	Item_ Weigh t	Item_Fa t_Conte nt	Item_V isibil ity	Item _Typ e	Ite m_M RP	Outlet_ Identif ier	Outlet_Esta blishment_Y ear	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sa les
8	FDH17	16. 20 0000	Regular	0. 0166 87	Froz en Food s	96. 972 6	OUT045	2002	missi ng	Tier 2	Super marke t Type1	1076. 59 86
9	FDU28	19. 20 0000	Regular	0. 0944 50	Froz en Food s	187 . 82 14	OUT017	2007	missi ng	Tier 2	Super marke t Type1	4710. 53 50
1 0	FDY07	11. 80 0000	Low Fat	0.0000	Frui ts and Vege tabl es	45. 540 2	OUTO49	1999	Mediu m	Tier 1	Super marke t Type1	1516. 02 66
1	FDA03	18. 50 0000	Regular	0. 0454 64	Dair y	144 . 11 02	OUT046	1997	Small	Tier 1	Super marke t Type1	2187. 15 30
1 2	FDX32	15. 10 0000	Regular	0. 1000 14	Frui ts and Vege tabl es	145 . 47 86	OUTO49	1999	Mediu m	Tier 1	Super marke t Type1	1589. 26 46
1 3	FDS46	17. 60 0000	Regular	0. 0472 57	Snac k Food s	119 . 67 82	OUT046	1997	Small	Tier 1	Super marke t Type1	2145. 20 76
1 4	FDF32	16. 35 0000	Low Fat	0. 0680 24	Frui ts and Vege tabl es	196 . 44 26	OUTO13	1987	High	Tier 3	Super marke t Type1	1977. 42 60
1 5	FDP49	9. 000 000	Regular	0.0690 89	Brea kfas t	56. 361 4	OUT046	1997	Small	Tier 1	Super marke t Type1	1547. 31 92
1 6	NCB42	11.80 0000	Low Fat	0. 0085 96	Heal th and Hygi ene	115 . 34 92	OUTO18	2009	Mediu m	Tier 3	Super marke t Type2	1621. 88 88
1 7	FDP49	9. 000 000	Regular	0. 0691 96	Brea kfas t	54. 361 4	OUT049	1999	Mediu m	Tier 1	Super marke t Type1	718. 398 2
1 8	DRI11	12. 85 7645	Low Fat	0. 0342 38	Hard Drin ks	113 . 28 34	OUT027	1985	Mediu m	Tier 3	Super marke t Type3	2303. 66 80
1 9	FDU02	13. 35 0000	Low Fat	0. 1024 92	Dair y	230 . 53 52	OUT035	2004	Small	Tier 2	Super marke t Type1	2748. 42 24
2 0	FDN22	18. 85 0000	Regular	0. 1381 90	Snac k	250 . 87	OUT013	1987	High	Tier 3	Super marke	3775 . 08 60

	Item_I dentif ier	Item_ Weigh t	Item_Fa t_Conte nt	Item_V isibil ity	Item _Typ e	Ite m_M RP	Outlet_ Identif ier	Outlet_Esta blishment_Y ear	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sa les
					Food s	24					t Type1	
2 1	FDW12	12. 85 7645	Regular	0. 0354 00	Baki ng Good s	144 . 54 44	OUT027	1985	Mediu m	Tier 3	Super marke t Type3	4064. 04 32
2 2	NCB30	14. 60 0000	Low Fat	0. 0256 98	Hous ehol d	196 . 50 84	OUT035	2004	Small	Tier 2	Super marke t Type1	1587. 26 72
2 3	FDC37	12. 85 7645	Low Fat	0. 0575 57	Baki ng Good s	107 . 69 38	OUTO19	1985	Small	Tier 1	Groce ry Store	214. 387 6
2 4	FDR28	13. 85 0000	Regular	0. 0258 96	Froz en Food s	165 . 02 10	OUT046	1997	Small	Tier 1	Super marke t Type1	4078. 02 50
2 5	NCD06	13. 00 0000	Low Fat	0. 0998 87	Hous ehol d	45. 906 0	OUTO17	2007	missi ng	Tier 2	Super marke t Type1	838 . 908 0
2 6	FDV10	7. 645 000	Regular	0.0666 93	Snac k Food s	42. 311 2	OUT035	2004	Small	Tier 2	Super marke t Type1	1065. 28 00
2 7	DRJ59	11. 65 0000	Low Fat	0. 0193 56	Hard Drin ks	39. 116 4	OUT013	1987	High	Tier 3	Super marke t Type1	308. 931 2
2 8	FDE51	5. 925 000	Regular	0. 1614 67	Dair y	45. 508 6	OUT010	1998	missi ng	Tier 3	Groce ry Store	178. 434 4
2 9	FDC14	12. 85 7645	Regular	0. 0722 22	Cann ed	43. 645 4	OUT019	1985	Small	Tier 1	Groce ry Store	125 . 836 2
•												
8 4 9 3	FDP21	7. 420 000	Regular	0. 0258 86	Snac k Food s	189 . 18 72	OUT017	2007	missi ng	Tier 2	Super marke t Type1	4727. 18 00
8 4 9 4	NCI54	15. 20 0000	Low Fat	0.0000	Hous ehol d	110 . 49 12	OUTO17	2007	missi ng	Tier 2	Super marke t Type1	1637. 86 80
8 4 9 5	FDE22	9. 695 000	Low Fat	0. 0295 67	Snac k Food s	160 . 49 20	OUT035	2004	Small	Tier 2	Super marke t Type1	4314. 38 40
8 4 9 6	FDJ57	7. 420 000	Regular	0. 0216 96	Seaf ood	185 . 35 82	OUT017	2007	missi ng	Tier 2	Super marke t Type1	3715. 16 40

	Item_I dentif ier	Item_ Weigh t	Item_Fa t_Conte nt	Item_V isibil ity	Item _Typ e	Ite m_M RP	Outlet_ Identif ier	Outlet_Esta blishment_Y ear	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sa les
8 4 9 7	FDT08	13. 65 0000	Low Fat	0. 0492 09	Frui ts and Vege tabl es	150 .00 50	OUTO35	2004	Small	Tier 2	Super marke t Type1	2247. 07 50
8 4 9 8	NCP54	15. 35 0000	Low Fat	0. 0352 93	Hous ehol d	124 . 57 30	OUT018	2009	Mediu m	Tier 3	Super marke t Type2	1601. 24 90
8 4 9 9	NCK53	11.60 0000	Low Fat	0. 0375 74	Heal th and Hygi ene	100 .00 42	OUTO35	2004	Small	Tier 2	Super marke t Type1	2976. 12 60
8 5 0 0	NCQ42	20. 35 0000	Low Fat	0. 0000 00	Hous ehol d	125 . 16 78	OUT017	2007	missi ng	Tier 2	Super marke t Type1	1907. 51 70
8 5 0 1	FDW21	5. 340 000	Regular	0. 0059 98	Snac k Food s	100 . 43 58	OUTO17	2007	missi ng	Tier 2	Super marke t Type1	1508. 03 70
8 5 0 2	NCH43	8. 420 000	Low Fat	0. 0707 12	Hous ehol d	216 . 41 92	OUT045	2002	missi ng	Tier 2	Super marke t Type1	3020. 06 88
8 5 0 3	FDQ44	20. 50 0000	Low Fat	0. 0361	Frui ts and Vege tabl es	120 . 17 56	OUTO35	2004	Small	Tier 2	Super marke t Type1	3392. 91 68
8 5 0 4	NCN18	12. 85 7645	Low Fat	0. 1241 11	Hous ehol d	111 . 75 44	OUT027	1985	Mediu m	Tier 3	Super marke t Type3	4138. 61 28
8 5 0 5	FDB46	10.50 0000	Regular	0. 0941 46	Snac k Food s	210 . 82 44	OUT018	2009	Mediu m	Tier 3	Super marke t Type2	2117. 24 40
8 5 0 6	DRF37	17. 25 0000	Low Fat	0. 0846 76	Soft Drin ks	263 . 19 10	OUT018	2009	Mediu m	Tier 3	Super marke t Type2	3944. 86 50
8 5 0 7	FDN28	5. 880 000	Regular	0. 0302 42	Froz en Food s	101 . 79 90	OUTO35	2004	Small	Tier 2	Super marke t Type1	515. 995 0
8 5 0 8	FDW31	11. 35 0000	Regular	0. 0432 46	Frui ts and Vege tabl es	199 . 47 42	OUTO45	2002	missi ng	Tier 2	Super marke t Type1	2587. 96 46
8 5	FDG45	8. 100 000	Low Fat	0. 2143 06	Frui ts	213 . 99	OUTO10	1998	missi ng	Tier 3	Groce ry	424. 780 4

	Item_I dentif ier	Item_ Weigh t	Item_Fa t_Conte nt	Item_V isibil ity	Item _Typ e	Ite m_M RP	Outlet_ Identif ier	Outlet_Esta blishment_Y ear	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sa les
0 9					and Vege tabl es	02					Store	
8 5 1 0	FDN58	13. 80 0000	Regular	0. 0568 62	Snac k Food s	231 . 59 84	OUT035	2004	Small	Tier 2	Super marke t Type1	7182. 65 04
8 5 1 1	FDF05	17. 50 0000	Low Fat	0. 0269 80	Froz en Food s	262 . 59 10	OUT018	2009	Mediu m	Tier 3	Super marke t Type2	420 7. 85 60
8 5 1 2	FDR26	20.70 0000	Low Fat	0. 0428 01	Dair y	178 . 30 28	OUTO13	1987	High	Tier 3	Super marke t Type1	2479. 43 92
8 5 1 3	FDH31	12. 00 0000	Regular	0. 0204 07	Meat	99. 904 2	OUT035	2004	Small	Tier 2	Super marke t Type1	595. 225 2
8 5 1 4	FDA01	15. 00 0000	Regular	0. 0544 89	Cann ed	57. 590 4	OUT045	2002	missi ng	Tier 2	Super marke t Type1	468. 723 2
8 5 1 5	FDH24	20. 70 0000	Low Fat	0. 0215 18	Baki ng Good s	157 . 52 88	OUT018	2009	Mediu m	Tier 3	Super marke t Type2	1571. 28 80
8 5 1 6	NCJ19	18. 60 0000	Low Fat	0. 1186 61	Othe rs	58. 758 8	OUT018	2009	Mediu m	Tier 3	Super marke t Type2	858. 882 0
8 5 1 7	FDF53	20. 75 0000	Regular	0.0836 07	Froz en Food s	178 . 83 18	OUT046	1997	Small	Tier 1	Super marke t Type1	3608. 63 60
8 5 1 8	FDF22	6. 865 000	Low Fat	0. 0567 83	Snac k Food s	214 . 52 18	OUT013	1987	High	Tier 3	Super marke t Type1	2778. 38 34
8 5 1 9	FDS36	8. 380 000	Regular	0. 0469 82	Baki ng Good s	108 . 15 70	OUT045	2002	missi ng	Tier 2	Super marke t Type1	549. 285 0
8 5 2 0	NCJ29	10. 60 0000	Low Fat	0. 0351 86	Heal th and Hygi ene	85. 122 4	OUTO35	2004	Small	Tier 2	Super marke t Type1	1193. 11 36
8 5 2 1	FDN46	7. 210 000	Regular	0. 1452 21	Snac k Food s	103 . 13 32	OUTO18	2009	Mediu m	Tier 3	Super marke t Type2	1845. 59 76
8 5 2	DRG01	14. 80 0000	Low Fat	0. 0448 78	Soft Drin ks	75. 467 0	OUT046	1997	Small	Tier 1	Super marke t	765. 670 0

Item_I Item Item_Fa Item_V Item Ite Outlet_ Outlet_Esta Outle Outlet_Lo Outle Item_Ou Identif $tlet_Sa$ dentif Weigh t_Conte isibil _Typ m_M $blishment_Y$ t_Siz $cation_Ty$ t_Typ ier nt ity е RP ier ear рe les 2 Type1

$8523 \text{ rows} \times 12 \text{ columns}$

Here we fill the values in Item_Visibility column having 0 with the mean values.

In [8]:

df['Item_Visibility'] = df['Item_Visibility'].replace(0, df['Item_Visibil
ity'].mean())
df.head(10)

Out[8]:

						out[o].						
	Item_I dentif ier	Item_ Weigh t	Item_Fa t_Conte nt	Item_V isibil ity	Item _Typ e	Ite m_M RP	Outlet_ Identif ier	Outlet_Esta blishment_Y ear	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sa les
0	FDA15	9. 300 000	Low Fat	0. 01604 7	Dair y	249 . 80 92	OUT049	1999	Mediu m	Tier 1	Super marke t Type1	3735. 13 80
1	DRC01	5. 920 000	Regular	0. 01927 8	Soft Drin ks	48. 269 2	OUTO18	2009	Mediu m	Tier 3	Super marke t Type2	443. 422 8
2	FDN15	17. 50 0000	Low Fat	0. 01676 0	Meat	141 . 61 80	OUT049	1999	Mediu m	Tier 1	Super marke t Type1	2097. 27 00
3	FDX07	19. 20 0000	Regular	0. 06613	Frui ts and Vege tabl es	182 . 09 50	OUTO10	1998	missi ng	Tier 3	Groce ry Store	732. 380 0
4	NCD19	8. 930 000	Low Fat	0. 06613 2	Hous ehol d	53. 861 4	OUTO13	1987	High	Tier 3	Super marke t Type1	994. 705 2
5	FDP36	10. 39 5000	Regular	0. 06613 2	Baki ng Good s	51. 400 8	OUTO18	2009	Mediu m	Tier 3	Super marke t Type2	556. 608 8
6	FD010	13. 65 0000	Regular	0. 01274 1	Snac k Food s	57. 658 8	OUTO13	1987	High	Tier 3	Super marke t Type1	343. 552 8
7	FDP10	12. 85 7645	Low Fat	0. 12747 0	Snac k Food s	107 . 76 22	OUT027	1985	Mediu m	Tier 3	Super marke t Type3	4022. 76 36
8	FDH17	16. 20 0000	Regular	0. 01668 7	Froz en Food s	96. 972 6	OUT045	2002	missi ng	Tier 2	Super marke t Type1	1076. 59 86

	Item_I	Item_	Item_Fa	Item_V	Item	Ite	Outlet_	Outlet_Esta	Outle	Outlet_Lo	Outle	Item_Ou
	dentif	Weigh	t_Conte	isibil	_Typ	m_M	Identif	blishment_Y	t_Siz	cation_Ty	t_Typ	tlet_Sa
	ier	t	nt	ity	e	RP	ier	ear	e	pe	e	les
9	FDU28	19. 20 0000	Regular	0. 09445 0	Froz en Food s	187 . 82 14	OUT017	2007	missi ng	Tier 2	Super marke t Type1	4710. 53 50

Exploratory Data analysis

Import packages for Visualisation

In [9]:

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Univariate Analysis

Univariate analysis is the simplest form of analyzing data. "Uni" means "one", so in other words your data has only one variable. It doesn't deal with causes or relationships (unlike regression) and it's major purpose is to describe. It takes data, summarizes that data and finds patterns in the data. The key pointers to the Univaraite analysis are to find out the outliers present in the data. We also tend to find the dsitribution of the data on the dataset which can further help us for the Bivaraite/Multivariate analysis.

Outlet_Size - Count plot

- From the plot we can infer that a lot of stores of bigmart have not participated in the survey
- The number of medium sized and small sized stores are high in number
- Stores which are large are very few in number

In [10]:

```
sns.countplot(y="Outlet_Size", data=df)
sns.despine()
```

Item_Fat_Content - Count Plot

- The stores have only 2 categories for the Fat Content.
- Items in the Low Fat category are more in number as comapared to Regular ones.

In [11]:

```
sns. countplot(y = 'Item_Fat_Content', data = df)
sns. despine()
```

Outlet Type - Count PLot

- Number of stores of Supermarket Type1 is high.
- From this plot we infer that the Grocery Store are the 2nd most common type of stores.

• Stores of other types i.e. Supermarket Type2 and Supermarket Type3 are few in number.

```
sns.countplot(y = 'Outlet_Type', data = df)
sns.despine()
```

Outlet Establishment Year - Count Plot

- From the plot we can infer that most no. of Stores were established in the year 1985.
- Every year from 1985-2009 the number of stores established are same except 1985 and 1988.
- Number of stores established in the year 1988 is drastically low.

```
sns.countplot(y = 'Outlet_Establishment_Year', data = df)
sns.despine()
```

Outlet_Location_Type - Count Plot

- Tier 1(most urban) locations have the least number of stores.
- Tier 3 locations have most number of stores.

```
sns.countplot(y = 'Outlet_Location_Type', data = df)
sns.despine()
```

Item Type - Count Plot

- From the plot we can infer that the quantity of seafood item is the least.
- The quantity of 'Fruits and Vegetables' and 'Snack Foods' are very high.
- So we can infer that the items having large qauntites of stock are consumed highly.

```
In [15]:
sns.countplot(y = 'Item_Type', data = df)
sns.despine()
```

Item Visibility - Count plot

- From the plot we can observe that it is left skewed.
- Item visibility from 0.01 to 0.10 is high.

```
plt.hist(x = 'Item_Visibility', data = df, bins = 15)
plt.rc("axes.spines", top=False, right=False)
```

Bivariate Analysis

Bivariate analysis is the simultaneous analysis of two variables (attributes). It explores the concept of relationship between two variables, whether there exists an association and the strength of this association, or whether there are differences between two variables and the significance of these differences.

Co-relation

					In [17]:
df.corr()					
					Out[17]:
	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
Item_Weight	1.000000	-0.017450	0. 024756	-0.008301	0.011550
Item_Visibility	-0.017450	1.000000	-0.005259	-0.078355	-0.134138
Item_MRP	0. 024756	-0.005259	1.000000	0. 005020	0. 567574
Outlet Establishment Year	-0. 008301	-0. 078355	0. 005020	1. 000000	-0. 049135

-0.134138

Co-relation Heatmap

Item_Outlet_Sales

```
plt.figure(figsize = (14, 14))
sns.heatmap(df.corr(), annot=True)
plt.show()
```

0.567574

1.000000

-0.049135

Item_Outlet_Sales vs Item_Visibility

0.011550

We comapre Item_Outlet_Sales and Item_Visibility

- From the plot we can observe a decreasing trend.
- Most number of sample data are present in the visibility range of 0.05 to 0.15

```
sns.regplot(x = 'Item_Outlet_Sales', y = 'Item_Visibility', data = df , x_
jitter=0.2, scatter_kws={'alpha':0.1})
sns.despine()
```

Item_MRP vs Item_outlet_Sales

We compare the Item_MRP with the Item_Outlet_Sales

- From the plot we can infer that there is an increasing trend observed.
- We also can see that high MRP goods have high sales.
- The number of samples for high MRP goods is less in number.

```
sns.regplot(x = 'Item_MRP', y = 'Item_Outlet_Sales', data = df , x_jitter=0.
2, scatter_kws={'alpha':0.1})
```

Multi-Variate Analysis

Multivariate analysis (MVA) is based on the statistical principle of multivariate statistics, which involves observation and analysis of more than one statistical outcome variable at a time.

Item_Outlet_Sales vs Item_MRP in terms of Outlet_Establishment_Year

From the plots below we can infer that most no. of samples are present for establishment year 1985. We
can also observe that items having higher MRP have higher outlet sales.

```
grid = sns.FacetGrid(df, col='Outlet_Establishment_Year', col_wrap = 2)
grid.map(plt.scatter, 'Item_MRP', 'Item_Outlet_Sales', alpha = 0.1)
sns.despine()
```

Feature Engineering - 2

Here we convert the string datatypes of certain columns to numeric ones.

```
from sklearn import preprocessing
le = preprocessing. LabelEncoder()

li = ['Outlet_Type', 'Outlet_Location_Type', 'Outlet_Size', 'Item_Fat_Conte
nt', 'Outlet_Identifier']
for i in li:
    df[i] = le.fit_transform(df[i])

df.head()
```

											Οι	ıt[22]:
	Item_I dentif ier	Item_ Weigh t	Item_Fa t_Conte nt	Item_V isibil ity	Item _Typ e	Ite m_M RP	Outlet_ Identif ier	Outlet_Esta blishment_Y ear	Outle t_Siz e	Outlet_Lo cation_Ty pe	Outle t_Typ e	Item_Ou tlet_Sa les
0	FDA15	9.30	0	0. 01604 7	Dair y	249 . 80 92	9	1999	1	0	1	3735. 13 80
1	DRC01	5. 92	1	0. 01927 8	Soft Drin ks	48. 269 2	3	2009	1	2	2	443. 422 8
2	FDN15	17. 50	0	0. 01676 0	Meat	141 . 61 80	9	1999	1	0	1	2097. 27
3	FDX07	19. 20	1	0. 06613 2	Frui ts	182 . 09	0	1998	3	2	0	732. 380 0

```
Item I Item
                Item Fa
                           Item V
                                     Item
                                            Ite
                                                   Outlet
                                                              Outlet Esta Outle
                                                                                   Outlet Lo
                                                                                               Outle
                                                                                                        Item Ou
                           isibil
                                                   Identif
dentif
        Weigh
                 t Conte
                                     _Typ
                                            m M
                                                              blishment_Y
                                                                          t_Siz
                                                                                   cation_Ty
                                                                                                t_Typ
                                                                                                        tlet Sa
                                             RP
                                                       ier
                                                                                                            les
                                      and
                                             50
                                     Vege
                                     tabl
                                       es
                                     Hous
                          0.06613
                                                                                                        994.705
NCD19
         8 93
                                     eho1
                                            861
```

We create dummy columns for the column Outlet_Identifier and drop the columns which are not required for our training purpose along with the label column for obvious reason

```
In [46]:
dum = pd. get dummies(df['Outlet Identifier'])
df1 = pd. concat([df, dum], axis=1)
label = df1['Item Outlet Sales']
train = dfl.drop(columns=['Item_Identifier', 'Item_Weight', 'Item_Outlet_S
ales', 'Item Type', 'Outlet Establishment Year'])
```

Application of Regression models

Splitting the data for training and testing

```
In [33]:
from sklearn.cross validation import train test split
x_train , x_test , y_train , y_test = train_test_split(train , label , t
est size = 0.40, random state = 101)
```

Linear Regression

Preparing the model and importing necessary packages

```
In [26]:
from sklearn. linear model import LinearRegression
reg = LinearRegression()
Fitting the model
                                                                      In [27]:
reg. fit (x train, y train)
                                                                      Out[27]:
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs= 1, normalize=False)

Here we find the accuracy score of our Linear Regression model

```
In [28]:
reg. score (x test, y test)
                                                              Out[28]:
0.5680699358011244
GradientBoostingRegressor
Preparing the model and importing necessary packages
                                                              In [29]:
from sklearn.ensemble import GradientBoostingRegressor
grad = GradientBoostingRegressor(n estimators = 100)
Fitting the model
                                                              In [30]:
grad. fit (x train, y train)
GradientBoostingRegressor(alpha=0.9, criterion='friedman_
mse', init=None,
               learning_rate=0.1, loss='ls', max_depth=3, m
ax_features=None,
               max_leaf_nodes=None, min_impurity_decrease=0.
Θ,
               min_impurity_split=None, min_samples_leaf=1,
               min_samples_split=2, min_weight_fraction_lea
f=0.0,
               n_estimators=100, presort='auto', random_sta
te=None,
               subsample=1.0, verbose=0, warm_start=False)
Here we find the accuracy score of our GradientBoostingRegressor model
                                                              In [31]:
grad. score (x test, y test)
                                                              Out[31]:
0.6050938021101405
RandomForestRegressor
Preparing the model and importing necessary packages
                                                              In [45]:
from sklearn.ensemble import RandomForestRegressor
ran = RandomForestRegressor(n estimators = 50)
Fitting the model
                                                             In [43]:
```

Here we find the accuracy score of our RandomForestRegressor model

```
ran.score(x_test, y_test)
```

Out[44]:

0.5431214249886573

Conclusion :-

We were given a dataset of Bigmart for predicting it's output sales. We proceed first with handling missing values in the dataset as it may have a effect on our prediction of output sales. Then we perform the first feature engineering for the dataset.

Now we explore the data through visualisations using required packages plotting some graphs and making inferences about our dataset from them.

After the EDA we perform some feature engineering for the second time this time for passing the columns to the models. Now we use some models available in the sklearn module of Python for our prediction of output sales.

The first model we use is Linear Regression

accuracy: 0.56

The Second model we use is GradientBoostingRegressor

accuracy : 0.60

The third model used is RandomForestRegressor

• accuracy: 0.54

From the above three models which have been used for analysis we find that GradientBoostingRegressor is the best among the three. So we can conclude that boosting algorithms are quite good for most of the cases.