

Preliminary

The test consists of 10 questions with answers (5 points max)

You have 1 attempt.

Any new attempt gives you 0,5-point penalty.

In the case of anonymous answer (like «Name -1, HDU ID -1») ALL students will receive 0,5-point penalty for each case.

All questions are in this presentation. Form with answers can be filled here:

https://forms.yandex.ru/u/67cdd0b0eb61469181a62610/

Consider the follows mechanical system:

 T_M – the torque of the motor

 ω_M – the velocity of the motor

 N_1 – number of teeth of the first gear

 N_2 – number of teeth of the second gear

D_c – diameter of the cylinder

m_c – mass of the cylinder

m₁ – mass of the load

v_L – speed of the load

$$N_1 = 5$$

$$N_2 = 15$$

$$D_c = 0.2 \, m$$

$$m_c = 50 \, kg$$

$$v_L = 0.25 \, m \, / \, s$$

$$m_L = 200 \ kg$$

Find the equivalent inertia of the mass m_i converted to the motor side

a)
$$J_{Le} \approx 2 kg \cdot m^2$$

b)
$$J_{Le} \approx 0.67 \ kg \cdot m$$

b)
$$J_{Le} \approx 0.67 \ kg \cdot m^2$$
 c) $J_{Le} \approx 0.28 \ kg \cdot m^2$

d)
$$J_{Le} \approx 18 kg \cdot m^2$$

e)
$$J_{Le} \approx 0.22 \, kg \cdot m^2$$

Consider the follows mechanical system:

T_M – the torque of the motor

 ω_M – the velocity of the motor

N₁ – number of teeth of the first gear

N₂ – number of teeth of the second gear

D_c – diameter of the cylinder

m_c – mass of the cylinder

m₁ – mass of the load

v_L – speed of the load

$$N_1 = 15$$

$$N_2 = 60$$

 $D_{c} = 0.3 \, m$

 $m_c = 20 kg$

 $v_I = 0.4 \, m / s$

 $m_L = 150 \, kg$

Find the torque of the motor that is needed to lift the load of mass m with the speed v

a) $T_M \approx 220.7 \ Nm$

b) $T_M \approx 13.8 \, Nm$

c) $T_M \approx 1.4 Nm$

d) $T_M \approx 55.2 Nm$

e) $T_M \approx 3.4 Nm$

Consider the follows mechanical system:

 T_M – the torque of the motor ω_M – the velocity of the motor N_1 – number of teeth of the first gear N_2 – number of teeth of the second gear D_c – diameter of the cylinder m_c – mass of the cylinder m_L – mass of the load

$$N_1 = 10$$
 $N_2 = 50$
 $D_c = 0.4 m$
 $m_c = 25 kg$
 $v_L = 0.5 m/s$
 $m_L = 300 kg$
 $motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $m_L = motor$
 $motor$
 $m_L = motor$
 $m_L = moto$

Find the full inertia of the load converted to motor side (assume the inertia of motor's shaft and inertias of gears are equal to zero)

a) $J_a \approx 0.02 kg \cdot m^2$

v₁ – speed of the load

- b) $J_e \approx 0.48 kg \cdot m^2$
- c) $J_a \approx 0.5 kg \cdot m^2$

- d) $J_a \approx 12.02 \, kg \cdot m^2$
- e) $J_a \approx 0.98 kg \cdot m^2$

Consider the follows mechanical system:

 T_M – the torque of the motor

 ω_M – the velocity of the motor

N₁ – number of teeth of the first gear

N₂ – number of teeth of the second gear

D_c – diameter of the cylinder

m_c – mass of the cylinder

m₁ – mass of the load

v_I – speed of the load

How will change the power of the motor if the number of teeth of the second gear (N_2) increases twice but speed of the load (v_1) will stay the same?

a) increases twice

- b) decreases twice
- c) increases 4 times

- d) decreases 4 times
- e) doesn't change
- f) not enough data to answer

Consider the follows mechanical system:

Choose the right differential equation for m₂

a)
$$m_2\ddot{y} = k_2(y-x) + b(\dot{y}-\dot{x})$$
 b) $m_2\ddot{y} = -k_1(u-x) - b(\dot{y}-\dot{x})$ c) $m_2\ddot{y} = -k_2(y-x) - b(\dot{y}-\dot{x}) + u$

d)
$$m_2\ddot{y} = -k_2(y-x) - b(\dot{y}-\dot{x})$$
 e) $m_2\ddot{y} = -k_2(y-x)$ f) $m_2\ddot{y} = k_1(u-x)$

Consider the follows mechanical system:

Choose the right differential equation for J₂

a)
$$J_{2} \frac{d\omega_{2}}{dt} = T_{s12} + b_{12} (\omega_{1} - \omega_{2}) - b_{12} (\omega_{1} - \omega_{2}) - b_{12} (\omega_{1} - \omega_{2}) - c_{s23} - b_{23} (\omega_{2} - \omega_{3}) - T_{L2},$$
 b)
$$J_{2} \frac{d\omega_{2}}{dt} = T_{s12} - b_{12} (\omega_{1} - \omega_{2}) - c_{12} (\omega_{1} - \omega_{2}) - c$$

d)
$$J_{2} \frac{d\omega_{2}}{dt} = -T_{s12} + b_{12} (\omega_{1} - \omega_{2}) + e$$

$$+T_{s23} - b_{23} (\omega_{2} - \omega_{3}) - T_{L2},$$

$$J_{2} \frac{d\omega_{2}}{dt} = T_{s12} + b_{12} (\omega_{1} + \omega_{2}) - f$$

$$-T_{s23} - b_{23} (\omega_{2} + \omega_{3}) - T_{L2},$$

$$f) (J_{2} + J_{3}) \frac{d\omega_{2}}{dt} = T_{s12} + b_{12} (\omega_{1} - \omega_{2}) - f$$

$$-T_{s23} - b_{23} (\omega_{2} - \omega_{3}) - T_{L2},$$

Consider the mechanical system, that is described by the follows differential equations:

$$\begin{cases} 0.05 \frac{d\omega_{1}}{dt} = T_{M} - T_{S12} - 2(\omega_{1} - \omega_{2}) - 3, \\ \frac{dT_{s12}}{dt} = 500(\omega_{1} - \omega_{2}) \\ 0.2 \frac{d\omega_{2}}{dt} = T_{s12} + 2(\omega_{1} - \omega_{2}) - 1. \end{cases}$$

Calculate the resonant frequency of the mechanical system

a) 111.8 rad/s

b) 55.9 rad/s

c) 17.8 rad/s

d) 4.5 rad/s

e) 223.6 rad/s

Consider the mechanical system, that is described by the follows differential equations:

$$\begin{cases} J_{1} \frac{d\omega_{1}}{dt} = T_{M} - T_{S12} - b_{12} (\omega_{1} - \omega_{2}) - T_{L1}, \\ \frac{dT_{s12}}{dt} = K_{12} (\omega_{1} - \omega_{2}) \\ J_{2} \frac{d\omega_{2}}{dt} = T_{s12} + b_{12} (\omega_{1} - \omega_{2}) - T_{L2}. \end{cases}$$

How will resonant frequency change if load torque T₁₂ increases twice

a) increases twice

- b) decreases twice
- c) increases 4 times

- d) decreases 4 times
- e) doesn't change
- f) not enough data to answer

How many differential equations of the first order we need to describe the dynamic behavior of the velocities of the follows mechanical system:

a) 5

b) 7

c) 9

d) 3

e) 1

Consider the follows mechanical system:

How will change the resonant frequency of the system if K₁₂ decreases twice

a) increases twice

- b) decreases twice
- c) doesn't change
- d) decreases $\sqrt{2}$ times e) increases $\sqrt{2}$ times
- f) not enough data to answer

THANK YOU FOR YOUR TIME!

ITSMOre than a UNIVERSITY