In the claims:

(currently amended) An ultrasonic flow sensor, comprising
at least one ultrasonic transducer for transmitting and receiving ultrasonic signals, and

a receiver unit (4) connected to the at least one ultrasonic transducer that detects a predetermined event (N) of an ultrasonic signal as a reception time (t_0), wherein the receiver unit (4) determines a time (t_1) of a characteristic value of the ultrasonic signal as well as a time shift (Δt) of the time (t_1) relative to the reception time (t_0) and

uses the time shift (Δt) to determine a correct time value for the reception time (t_0), wherein the receiver unit (4) determines a chronological position (T_s) of a focal point of either the ultrasonic signal or its envelope curve (6) as the characteristic value wherein $T_s \sim (\sum_{K=1}^n K * A(K)) / \sum_{K=1}^n A(K)$

- 2. (cancelled)
- 3. (cancelled)
- 4. (previously presented) The ultrasonic flow sensor as recited in claim 1, wherein the receiver unit (4) includes a comparator (10) comprising inputs that are respectively supplied with a transducer output signal (5) and a reference

signal (SW), and the receiver unit (4) determines a piece of information about the time (t_1) of the characteristic value from an output signal of the comparator (10).

- 5. (previously presented) The ultrasonic flow sensor as recited in claim 4, wherein the reference signal supplied to the comparator (10) is a threshold (SW) not equal to zero and the output signal of the comparator (10) is a pulse width modulated signal (K1) from which the time (t₁) of the characteristic value is determined.
- 6. (previously presented) The ultrasonic flow sensor as recited in claim 1, wherein the reception time (t_0) is corrected as a function of the time shift (Δt) .
- 7. (currently amended) A method for detection of an ultrasonic signal in an ultrasonic transducer by means of a receiver unit (4), which detects a predetermined event (N) of the ultrasonic signal as a reception time (t_0), wherein the receiver unit (4) determines a time (t_1) of a characteristic value of the ultrasonic signal and determines a time shift (Δt) of the time (t_1) in relation to the reception time (t_0) and uses the time shift (Δt) to determine a correct time value for the reception time (t_0), wherein the receiver unit (4) determines a chronological position of a focal point of the ultrasonic signal or its envelope

curve (6) as a characteristic value, wherein
$$n$$
 $Ts \sim (\sum_{K=1}^{n} K * A (K)) / \sum_{K=1}^{n} A (K)$

- 8. (cancelled)
- 9. (cancelled)