#### **IS-LM** model

Josef Stráský josef.strasky@gmail.com

1st December 2011

# IS-LM continuous model - simplified version (I)

- we assume closed economy
- consumer expenditure is related to disposable income
- investment expenditure is negatively related to the interest rate
- government expenditure is assumed to be exogenous

We therefore postulate simple linear expenditure function:

$$e(t) = a + b(1 - t_1)y(t) - hr(t)$$
 (1)

$$a > 0, 0 < b < 1, 0 < t_1 < 1, h > 0$$
 (2)

e(t) = real expenditure

a = autonomous expenditure

b = marginal propensity to consume

 $t_1 = \tan \tan$ 

y(t) = real income

h = coefficient of investment response to r

r(t) = nominal interest rate



## IS-LM continuous model - simplified version (II)

- the nominal monetary supply is assumed exogenous at  $M_s = M_0$
- price level P is assumed to be constant
- we thus define real money balance (in fact money supply)  $m_0 = \frac{M_0}{P}$ , which is exogenous
- the demand for real money is assumed to be positively related to real income and negatively related to interest rate

We thus define:

$$m^d(t) = ky(t) - ur(t) \tag{3}$$

$$k > 0, \quad u > 0 \tag{4}$$



#### IS-LM continuous model - simplified version (III)

#### We assume:

- Goods market: income adjusts according to the excess demand
- Money market: interest rate adjusts according to excess demand for money

More specifically:

$$\dot{\mathbf{y}}(t) = \alpha(\mathbf{e}(t) - \mathbf{y}(t)) \tag{5}$$

$$\dot{r}(t) = \beta(m^d(t) - m_0) \tag{6}$$

$$\alpha > 0, \quad \beta > 0 \tag{7}$$

Substituting from previous relations (we drop the time variable *t*):

$$\dot{y}(t) = \alpha [b(1-t_1)-1]y - \alpha hr + \alpha a \tag{8}$$

$$\dot{r}(t) = \beta ky - \beta ur - \beta m_0 \tag{9}$$

(10)



## IS-LM continuous model - simplified version (IV)

We can find equilibrium lines by setting simply  $\dot{y} = 0$  and  $\dot{r} = 0$  For  $\dot{y} = 0$  we get **IS curve**:

$$r = \frac{a - [1 - b(1 - t_1)]y}{h} \tag{11}$$

For  $\dot{r} = 0$  we get **LM curve**:

$$r = \frac{-m_0 + ky}{u} \tag{12}$$

By solving these two equations for y and r we get the fixed point  $(y^*, r^*)$ .

# IS-LM continuous model - simplified version (V)

From  $\dot{y} = 0$  equlibrium line we inspect behaviour of y close to this line. For the points to the right of the IS curve holds:

$$r > \frac{a - [1 - b(1 - t_1)]y}{h}$$
 (13)

but from the equation for  $\dot{y}$  it can be easily found out that such r implies  $\dot{y} < 0$ .

Consequently for the points on the left side of IS curve  $\dot{y} > 0$ . Similarly we can investigate behaviour around LM curve.



## IS-LM continuous model - simplified version (V)

Consider now monetary contraction (decrease in value of  $m_0$ ). We can observe (see figure) that economy converges to the new equilibrium. However trajectories ( $T_1$ ,  $T_2$ ,  $T_3$ ) depend on specific values of parameters of model (see numerical example - next slide).



#### IS-LM continuous model - numerical example (I)

$$a = 50, \quad b = 0.75$$
 (14)

$$k = 0.25, \quad m_0 = 8$$
 (15)

For now we leave  $\alpha$  and  $\beta$  unspecified. Thus we get system of two following differential equations:

$$\dot{y} = -0.44\alpha y - 1.53\alpha r + 50\alpha \tag{16}$$

$$\dot{r} = 0.25\beta y - 0.5\beta r - 8\beta \tag{17}$$

We assume that economy is in the equilibrium, thus initial point is equal to equilibrium of this system:

$$y_0 = y^* = 62, \quad r_0 = r^* = 15$$
 (18)

Now let us consider monetary contraction. We thus have new money stock  $m_1 = 5$ . This leads to the new equilibrium point:

$$y_1 = 54, \quad r_1 = 17$$
 (19)

# IS-LM continuous model - numerical example (II)

Now we are interested in different possible trajectories for different parameters  $\alpha$  and  $\beta$ .

$$T_1: \quad \alpha = 0.05$$
 $\beta = 0.8$ 

$$T_2: \quad \alpha = 0.1$$

$$\beta = 0.8$$

$$T_3: \quad \alpha = 0.5$$
  
 $\beta = 0.8$ 

 $T_1$ ,  $T_2$ : the goods market adjusts slowly, gradual decrease in income.  $T_3$ : both market adjust quickly, overshooting of income.

Overshooting in interest rate is always present.





## IS-LM continuous model (I)

#### Expenditure

- we assume closed economy
- consumer expenditure is related to disposable income
- investment expenditure is negatively related to the interest rate
- moreover investment expenditure is positively related to the income
- government expenditure is assumed to be exogenous

#### IS-LM continuous model (II)

We therefore postulate simple linear **expenditure function**:

$$e(t) = a + b(1 - t_1)y(t) - hr(t) + jy(t)$$
(20)

$$a > 0$$
,  $0 < b < 1$ ,  $0 < t_1 < 1$ ,  $h > 0$ ,  $j > 0$  (21)

e(t) = real expenditure

a = autonomous expenditure

b = marginal propensity to consume

 $t_1 = \tan rate$ 

y(t) = real income

h = coefficient of investment response to r

r(t) = nominal interest rate

j = coefficient of investment response to y

#### IS-LM continuous model (III)

- the nominal monetary supply is assumed exogenous at  $M_s = M_0$
- price level P is assumed to be constant
- we thus define real money balance (in fact money supply)  $m_0 = \frac{M_0}{P}$ , which is exogenous
- the demand for real money is assumed to be positively related to real income and negatively related to interest rate

We thus define:

$$m^{d}(t) = ky(t) - ur(t) \tag{22}$$

$$k > 0, \quad u > 0$$
 (23)



#### IS-LM continuous model (IV)

#### We assume:

- Goods market: income adjusts according to the excess demand
- Money market: interest rate adjusts according to excess demand for money

More specifically:

$$\dot{\mathbf{y}}(t) = \alpha(\mathbf{e}(t) - \mathbf{y}(t)) \tag{24}$$

$$\dot{r}(t) = \beta(m^d(t) - m_0) \tag{25}$$

$$\alpha > 0, \quad \beta > 0 \tag{26}$$

Substituting from previous relations (we drop the time variable *t*):

$$\dot{y} = \alpha [b(1 - t_1) + j - 1]y - \alpha hr + \alpha a$$
 (27)

$$\dot{r} = \beta k y - \beta u r - \beta m_0 \tag{28}$$

(29)

## IS-LM continuous model (V)

We can find equilibrium lines by setting simply  $\dot{y} = 0$  and  $\dot{r} = 0$  For  $\dot{y} = 0$  we get **IS curve**:

$$r = \frac{a - [1 - b(1 - t_1) - j]y}{h}$$
 (30)

For  $\dot{r} = 0$  we get **LM curve**:

$$r = \frac{ky - m_0}{u} \tag{31}$$

By solving these two equations for y and r we get the fixed point  $(y^*, r^*)$ .

#### IS-LM continuous model (VI)

Recall IS curve:

$$r = \frac{a - [1 - b(1 - t_1) - j]y}{h}$$
 (32)

The main difference compared to previous simplified version is that IS curve can have also positive slope.

- $b(1 t_1) + j 1 < 0$  → negative slope
- $b(1 t_1) + j 1 > 0 \rightarrow \text{positive slope}$

In the case that IS curve is positively slope it can be either less steep than LM curve or even steeper.

- $b(1-t_1)+j-1<\frac{k}{u}\to IS$  is less steep than LM
- $b(1-t_1)+j-1>\frac{k}{u}\to IS$  is steeper than LM



#### IS-LM continuous model (VII)

Negative slope of IS - the same as in the simplified version

From  $\dot{y} = 0$  equlibrium line we inspect behaviour of y close to the IS line.

Similarly we can investigate behaviour around LM curve from  $\dot{r}=0$ .

Thus we can draw phase diagram including vector forces. It is clear that the system is stable.



## IS-LM continuous model (VII)



# Recall stability

| Matrix and eigenvalues                                                                                                                                              | Type of point            | Type of stability     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|
| $\frac{\operatorname{tr}(\mathbf{A}) < 0, \det(\mathbf{A}) > 0, \operatorname{tr}(\mathbf{A})^2 > 4\det(\mathbf{A})}{r < s < 0}$                                    | Improper node            | Asymptotically stable |
| $\operatorname{tr}(\mathbf{A}) > 0$ , $\operatorname{det}(\mathbf{A}) > 0$ , $\operatorname{tr}(\mathbf{A})^2 > 4\operatorname{det}(\mathbf{A})$<br>r > s > 0       | Improper node            | Unstable              |
| $\det(\mathbf{A}) < 0$<br>r > 0, s < 0  or  r < 0, s > 0                                                                                                            | Saddle point             | Unstable saddle       |
| $tr(\mathbf{A}) < 0$ , $det(\mathbf{A}) > 0$ , $tr(\mathbf{A})^2 = 4det(\mathbf{A})$<br>r = s < 0                                                                   | Star node or proper node | Stable                |
| $tr(\mathbf{A}) > 0$ , $det(\mathbf{A}) > 0$ , $tr(\mathbf{A})^2 = 4det(\mathbf{A})$<br>r = s > 0                                                                   | Star node or proper node | Unstable              |
| $tr(\mathbf{A}) < 0$ , $det(\mathbf{A}) > 0$ , $tr(\mathbf{A})^2 < 4det(\mathbf{A})$<br>$tr(\mathbf{A}) = \alpha + \beta i$ , $s = \alpha - \beta i$ , $\alpha < 0$ | Spiral node              | Asymptotically stable |
| $tr(\mathbf{A}) > 0$ , $det(\mathbf{A}) > 0$ , $tr(\mathbf{A})^2 < 4det(\mathbf{A})$<br>$tr(\mathbf{A}) = \alpha + \beta i$ , $s = \alpha - \beta i$ , $\alpha > 0$ | Spiral node              | Unstable              |
| $\begin{aligned} r &= \alpha + \beta i, s = \alpha - \beta i, \alpha > 0 \\ tr(\mathbf{A}) &= 0, \det(\mathbf{A}) > 0 \\ r &= \beta i, s = -\beta i \end{aligned}$  | Centre                   | Stable                |

See MAXIMA.

