README.md 2024-04-05

Running Colabfold on the FASRC cluster.

• Colabfold is a port of Alphafold2 that is much faster than the standard Alphafold and does not need large databases protein sequences. It is available as a google colab notebook which uses hardware provided by Google.

- The free version of Colabfold has limits on computing time, RAM, and length of protein sequence to be predicted.
- Localcolabfold is a flavor of colabfold that you can install locally on your own computer or on a high performance super computer such as FASRC's Cannon cluster.

Using the localcolabfold on the cluster has following advantages.

- Localcolabfold runs the calculations on the GPU (provided by the cluster), however we do not need to download large databases.
- All the files are generated on the cluster in your desired folder of choice. No need to download results from a website.
- No need to keep a web browser tab active unlike in case of a job running on the public colabfold server. Job will run in the cluster and the results are available indefinitely.

Some caveats

- A gpu node is essential. However, colabfold uses only one gpu at a time. Multiple gpu usage is not supported.
- It is unclear how much RAM or how many cores are needed for a colabfold job to run successfully. A colabfold test job for BmGr9 (~450 aa) in tetramer mode with 8 CPUs and 4 GB RAM per CPU finished successfully in about 100 minutes.
- It is a good idea to request 12 hours of runtime and 8 CPUs while submitting a colabfold job. The cluster queue is relatively free, and the job starts running within 10 to 30 minutes.

Installation

Login to Cannon using terminal on Mac, or Powershell on Windows. Use the following command.

ssh user-name@login.rc.fas.harvard.edu

• Let's open a tmux session using the command.

tmux

- We are going to use conda/mamba to install localcolabfold in a fresh new environment. If you do not have conda/mamba already setup on the RC cluster, you can do so either by using Miniconda (for conda) or Miniforge (for mamba). I recommend using Miniforge instead of Miniconda.
- After you have successfully set up mamba/conda, upload the file install_localcolabfold.sh to your home folder on Cannon or copy its content to a new file with the same name on the cluster. Make the file executable running the following command.

README.md 2024-04-05

```
chmod +x install_localcolabfold.sh
```

• Run the installation script using the following command.

```
./install_localcolabfold.sh | tee install_localcolabfold.sh
```

- After this script has run successfully, we are ready to test our installation.
- Let's start an interactive session to use a GPU node on the cluster.

```
salloc -p gpu_test -t 0-02:00 -c 4 --mem-per-cpu=4G --gres=gpu:1
```

Now that we are on a GPU node. Let's first activate the localcolabfold environment.

```
conda activate localcolabfold
```

Additionally, we need to also load the GNU C++ compiler.

```
module load gcc
```

• Now we are ready to run colabfold. Let's try predicting the structure of mouse CDH23 EC1-EC2. The sequence is included in the provided FASTA file CDH23.fasta.

```
mkdir CDH23-prediction
```

```
colabfold_batch --amber --templates --num-recycle 5 --use-gpu-relax --
rank iptm --model-type auto CDH23.fasta ./CDH23-prediction
```

- Now we will predict the structure of the extended handshake complex between mouse CDH23 EC1-EC2 and mouse PCDH15 EC1-EC2. But this time we will submit it as a job on the cluster. But first, let's look the file CDH23-PCDH15.fasta which contains the sequences.
- Notice how there are two sequences separated by a colon (When you want to predict a multimer, just concatenate the sequences one after another and separate them by colons. But make sure that the FASTA file has only one header.
- Upload the provided script colabfold-multimer.sh to the cluster.

README.md 2024-04-05

• Open the file on the cluster using vim/nano or your editor of choice. Examine the file. Change the values of the variables such as partitions, time etc if needed.

• Submit the job by running the command:

```
sbatch colabfold-multimer.sh CDH23-PCDH15.fasta
```

• When submitting the job using this script, always use the format

```
sbatch colabfold-multimer.sh <name-of-the-fasta-file>
```

• Similarly, you can submit a regular monomer job using the provided colabfold-monomer.sh script.