Tema 3. Funciones

3.0. Contenido y documentación

- 3.0. Contenido y documentación
- 3.1. Concepto de función
 - 3.1.1. Gráficas
- 3.2. Funciones inyectivas, sobreyectivas y biyectivas
- 3.3. Composición de funciones y función inversa
- 3.4. Comportamiento respecto la unión, la intersección y el complementario
 - 3.4.1. Preimagen de una función
- 3.5. Conjuntos finitos y Principio del Palomar
 - 3.5.1. Principio del Palomar

H3 Funciones.pdf

3.1. Concepto de función

Definición. Dados dos conjunto no vacíos X e Y. Decimos que una **función** de X en Y es una aplicación que asigna a cada elemento de X un elemento de Y.

Notación. f:X o Y

$$x\mapsto f(x)=y$$

Definición. Dada una función $f: X \to Y$. Decimos que X es el **domininio** o conjunto de salida de f. Notación. Dom (f).

Definición. Dada una función $f: X \to Y$. Decimos que Y es el **codominio** o conjunto de llegada de f.

Definición. Dada una función $f:X\to Y$. Definimos el recorrido o **conjunto imagen** de f como el conjunto de elementos de Y que son imagen de algún elemento de X, es decir, los $f(x)\in Y:x\in X$. Notación. $\mathrm{Im}\ (f)=f(X)$.

Algunas observaciones:

- 1. Por definición, el conjunto $Im(f) \subset Y$.
- 2. Se admite que dados $x_1, x_2 \in X$ tal que $x_1 \neq x_2$ y $f(x_1) = f(x_2)$.
- 3. No es posible que $f(x) = y \land f(x) = z \text{ con } y \neq z$.
- 4. Entendemos por función una terna ordenada (f, X, Y).

Ejemplo 1. Dada una función $f:\mathbb{R}\to\mathbb{R}$ tal que $f(x)=2x^2+1$. Podemos determinar que $\mathrm{Dom}\,(f)=\mathbb{R}$ e $\mathrm{Im}\;=[1,\infty)$.

Ejemplo 2. Dada una función $f: \mathbb{R} \to \mathbb{Z}$ tal que $f(x) = \lfloor x \rfloor$ (función parte entera). Podemos determinar que $\mathrm{Dom}\,(f) = \mathbb{R}$ e $\mathrm{Im}\,(f) = \mathbb{Z}$.

3.1.1. Gráficas

Definición. Dada una función $f:X\to Y$. Definimos la **gráfica** de f como el subconjunto de $X\times Y$ formado por los pares ordenados (x,f(x)) con $x\in X$. Notación. $\operatorname{Graf}(f)$.

3.2. Funciones inyectivas, sobreyectivas y biyectivas

Definición. Dada una función $f: X \to Y$. Decimos que f es **inyectiva** si $\forall x_1, x_2 \in X$ tales que $x_1 \neq x_2$, tenemos que $f(x_1) \neq f(x_2)$. Equivalentemente, si $f(x_1) = f(x_2)$, entonces $x_1 = x_2$.

Definición. Dada una función $f: X \to Y$. Decimos que f es **sobeyectiva** si $\forall y \in Y, \exists x \in X$ tal que f(x) = y. Equivalentemente, $\operatorname{Im}(f) = f(X) = Y$.

Nota. Por definición, ${
m Im}\,(f)\subset Y$, luego, basta con ver que $Y\subset {
m Im}\,(f)$.

Definición. Dada una función $f: X \to Y$. Decimos que f es **biyectiva** si es inyectiva y sobreyectiva a la vez.

Ejemplo 3. Dada una función $f:\mathbb{R} \to \mathbb{R}$ tal que $f(x)=x^2-1$. Determinamos sus propiedades:

- Tenemos que f(1)=f(-1)=0, pero $1 \neq -1$. Luego, f no es inyectiva.
- Tenemos que $y=f(x)=x^2-1 \Leftrightarrow x=\sqrt{y+1}$, de forma que y+1<0, f no está definida. Luego, f no es sobreyectiva.
- Como f no es ni inyectiva ni sobreyectiva, f no es biyectiva.

Ejemplo 4. Dada una función $f:(-1,\infty)\to\mathbb{R}$ tal que $f(x)=\dfrac{x}{x+1}$. Determinamos sus propiedades:

- Si $f(x_1)=f(x_2)$, entonces $\dfrac{x_1}{x_1+1}=\dfrac{x_2}{x_2+1}\Leftrightarrow x_1(x_2+1)=x_2(x_1+1)\Leftrightarrow x_1x_2+x_1=x_1x_2+x_2\Leftrightarrow x_1=x_2$. Luego, f es inyectiva.
- $x_1x_2+x_2\Leftrightarrow x_1=x_2$. Luego, f es inyectiva. Tenemos que $y=f(x)=rac{x}{x+1}\Leftrightarrow y(x+1)=x\Leftrightarrow xy+y=x\Leftrightarrow x-xy=y\Leftrightarrow x(1-x)=x$

 $y) = y \Leftrightarrow x = \frac{y}{1-y}$. Sabemos que $\frac{y}{1-y} > -1$, de forma que y < y - 1, lo cual no es posible.

Luego, f no es sobreyectiva.

- Como f es inyectiva pero no sobreyectiva, f no es biyectiva.

3.3. Composición de funciones y función inversa

Definición. Dadas dos funciones $g:U\to X$ y $f:X\to Y$. Definimos la composición de las funciones f y g como la función $h(u)=f(g(u)), \forall u\in U$.

Notación. $f \circ g: U \to Y$.

Nota. En general, $(f \circ g)(x) \neq (g \circ f)(x)$.

Ejemplo 5. Dada dos funciones $f,g:\mathbb{R}\to\mathbb{R}$ tales que $f(x)=x^2$ y g(x)=2x+1. Podemos definir las composiciones:

- $-(f\circ g)(x)=f(g(x))=f(2x+1)=(2x+1)^2.$
- $-(g\circ f)(x)=g(f(x))=g(x^2)=2x^2+1.$

Definición. Definimos la **función identidad** en X como $id_X: X \to X$ tal que $id_X(x) = x, \forall x \in X$.

Definición. Dada una función $f:X\to Y$. Definimos la **función inversa** de f como aquella función $g:Y\to X$ tal que $(g\circ f)=id_X$ y $(f\circ g)=id_Y$. Notación. f^{-1} .

Ejemplo 6. Dada una función $f:\mathbb{R} \to \mathbb{R}$ tal que f(x)=3x+2. La función $g:\mathbb{R} \to \mathbb{R}$ definida como $g(x)=rac{x-2}{3}$ verifica que $(f\circ g)(x)=f(g(x))=f\left(rac{x-2}{3}
ight)=3\left(rac{x-2}{3}
ight)+2=x-2+2=x$, de forma que $(f\circ g)(x)=id_{\mathbb{R}}$. Luego, $f^{-1}=g$.

Proposición. Sea f:X o Y una función. Entonces, f tiene inversa si y solo si f es biyectiva.

```
Demostración. 

\Rightarrow) Suponemos que \exists f^{-1}. 

\cdot Si f(x_1) = f(x_2), entonces f^{-1}(f(x)) = f^{-1}(f(x_2)) \Rightarrow x_1 = x_2. Luego, f es inyectiva. 

\cdot Tenemos que \forall y \in Y, \exists f^{-1}(y) = x \in X, de forma que f(f^{-1}(y)) = f(x) \Leftrightarrow y = f(x) \Leftrightarrow y \in Im(f), por lo que Y \subset Im(f). Luego, f es sobreyectiva. 

Como f es inyectiva y sobreyectiva, f es biyectiva. 

\Leftarrow) Suponemos que f es biyectiva. 

Como f es biyectiva podemos decir que \forall y \in Y, \exists ! x \in X : y = f(x). Definimos una función f : f es decir, f como aquella que asocia a cada elemento f el único elemento de f que llega a él por f0, es decir, f0, f1, f2, f3, f3, f3, f4, f5, f5, f5, f5, f7, f8, f9, f9
```

3.4. Comportamiento respecto la unión, la intersección y el complementario

Dados los conjuntos X, Y, U y V no vacíos y tales que $U,V\subset X$, y la función $f:X\to Y$. Entonces, definimos las siguientes propiedades:

```
1. U\subset V\Rightarrow f(U)\subset f(V).
2. f(U\cup V)=f(U)\cup f(V).
3. f(U\cap V)\subset f(U)\cap f(V), de forma general, f(U)\cap f(V)\not\subset f(U\cap V).
```

Luego, g es la función inversa de f, $g = f^{-1}$. \square

Demostración 1.

```
Si y\in f(U), entonces \exists x\in U: f(x)=y. Como x\in U\subset V, entonces x\in V e y=f(x)\subset f(V) . \Box
```

Demostración 2.

```
Tenemos que y\in f(U\cup V)\Leftrightarrow \exists x\in U\cup V: f(x)=y, de forma que: -x\in U con f(x)=y\Rightarrow y\in f(U) ó -x\in V con f(x)=y\Rightarrow y\in f(V). En cualquier caso, y\in f(U)\cup f(V). \square
```

Demostración 3.

```
Si y\in f(U\cap V), entonces \exists x\in U\cup V: f(x)=y, de forma que: -x\in U con f(x)=y\Rightarrow y\in f(U) y -x\in V con f(x)=y\Rightarrow y\in f(V). Luego, y\in f(U)\cap f(V).
```

3.4.1. Preimagen de una función

Definición. Dada una función $f: X \to Y$ y el conjunto V tal que $V \subset Y$. Definimos la **preimagen** o imagen inversa de V por f como el conjunto de los $x \in X$ tales que $f(x) \in V$.

Notación. $f^{-1}(V)$.

Nota. Tenemos que $f^{-1}(V) \subset X$, y puede ocurrir que $f^{-1}(V) = \emptyset$.

Ejemplo 7. Dada la función $f:\mathbb{R}\to\mathbb{R}$ tal que $f(x)=x^2$. Definimos la preimagen del conjunto $\{0,4\}$ como $f^{-1}(\{0,4\})=\{x\in\mathbb{R}:f(x)\in\{0,4\}\}=\{x\in\mathbb{R}:x^2=0\lor x^2=4\}=\{-2,0,2\}.$

Dada una función f:X o Y y dos subconjuntos $U,V\subset X$. Definimos las siguientes propiedades:

- 1. Si $U \subset V$, entonces $f^{-1}(U) \subset f^{-1}(V)$.
- 2. $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$.
- 3. $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$.
- 4. $f^{-1}(Yackslash V)=Xackslash f^{-1}(V)$, es decir $f^{-1}(V^c)=(f^{-1}(V))^c$.

Demostración 1.

Si $x\in f^{-1}(U)$, entonces $\exists y\in U: y=f(x)$. Como $y\in U\subset V$, entonces $y\in V$ y $x\in f^{-1}(V)$. \Box

Demostración 2.

Si $x \in f^{-1}(U \cup V)$, entonces $\exists y \in U \cup V : y = f(x)$, de forma que:

- $y\in U$ y $x\in f^{-1}(U)$ ó
- $y \in V$ y $x \in f^{-1}(V)$.

En cualquier caso, $x \in f^{-1}(U) \cup f^{-1}(V)$. \square

Demostración 3.

Si $x \in f^{-1}(U \cap V)$, entonces $\exists y \in U \cap V : y = f(x)$, de forma que:

- $y\in U$ y $x\in f^{-1}(U)$, y
- $y \in V$ y $x \in f^{-1}(V)$.

Luego, $x \in f^{-1}(U) \cap f^{-1}(V)$. \square

Demostración 4.

Si $x\in f^{-1}(Y\backslash V)$, entonces $f(x)\in Y\backslash V$, de forma que $f(x)\notin V$ y $x\notin f^{-1}(V)$. Luego, $x\in X\backslash f^{-1}(V)$. \square

3.5. Conjuntos finitos y Principio del Palomar

Definición. Dado un conjunto X no vacío. Decimos que X es **finito** si existe una función biyectiva $f:X \to \{1,2,...,n\}$ para algún $n \in \mathbb{N}$.

Nota. En este caso, diremos que X tiene n elementos o que su cardinal es n, |X|=n.

Algunas observaciones respecto al cardinal de conjuntos finitos:

- 1. Por convenio, se establece que $|\emptyset| = 0$.
- 2. Dada una función $f:X \to Y$ con $|X|=m \land |Y|=n$. Entonces:
 - Si $m < n \Rightarrow f$ no puede ser sobreyectiva.
 - Si $m > n \Rightarrow f$ no puede ser inyectiva (Principio de Palomar).

3.5.1. Principio del Palomar

Principio del Palomar. Si kn+1 palomas comparten n nidos. Entonces, hay, al menos, un nido con k+1 palomas.

Ejemplo 8. Demostramos que entre n+1 enteros arbitrarios existen dos cuya diferencia es divisible por n, es decir, $\exists a,b\in\mathbb{Z}:n|(a-b)$.

Definimos enteros de la forma a=qn+r, con $r\in\{0,1,...,n-1\}$. De forma que, por el Principio del Palomar, teniendo n+1 enteros y tan solo n posibles valores distintos para r, deben existir dos r_i,r_j tales que $r_i=r_j$ para algunos enteros a_i,a_j .

Así, tenemos que $a_i-a_j=q_in+r_i-(q_jn+r_j)=q_in-q_jn+r_i-r_j=n(q_i-q_j)$ que, evidentemente, es divisible por n.

Ejemplo 9. Demostramos que entre 731 personas que acuden a un concierto, hay, al menos, 3 que cumplen años el mismo día.

Descomponemos $731=365\cdot 2+1$. Luego, por el Principio del Palomar, teniendo $365\cdot 2+1$ personas y 365 días en un año, debe haber, al menos, 3 personas que cumplen años el mismo día.