Du 14 au 18 janvier

Programme n°13

ELECTROCINETIQUE

EL4 Régime transitoire du second ordre

Cours et exercices

Attention cette année les oscillateurs mécaniques n'ont pas été vus

EL5 Les dipôles linéaires en régime sinusoïdal forcé, impédances complexes

Cours et exercices

Attention cette année les oscillateurs mécaniques n'ont pas été vus

EL6 Fonction de transfert (Cours uniquement)

- Fonction de transfert d'un système linéaire
- Filtres ou quadripôles de transfert
- Fonction de transfert
- Propriétés d'une fonction de transfert
- Les caractéristiques de H(jω) : module et argument
- Réponse fréquentielle d'un filtre
- Définition
- Les caractéristiques $H(\omega)$ et $\varphi(\omega)$
- Diagramme de Bode
- Notion sur les échelles logarithmiques
- Rappels sur les échelles linéaires
- Echelles logarithmiques

TRANSFORMATION CHIMIQUE

C1. Etats physiques et transformations de la matière

Cours et exercices

Annexe : réactions nucléaires

Cours et exercices

C2. Evolution d'un système chimique, équilibre en solution aqueuse

Cours et exercices

CINETIQUE CHIMIQUE

CX1. Généralité sur la cinétique chimique (Cours uniquement)

- Réactions possibles, réactions probables
- Objet de la cinétique chimique
- Vitesse d'une réaction
- · Facteurs de la cinétique des réactions

CX2 Cinétique formelle, réaction et ordre (Cours uniquement)

- Ordre d'une réaction Ordre au cours du temps
 - Exemples
 - Aspect expérimental → Ordre initial
 - → Ordre global, ordre partiel
- Les réactions d'ordre simple L'ordre 0
 - L'ordre 1
 - L'ordre 2
- Etude expérimentale de l'ordre d'une réaction Aspect expérimental
 - La méthode intégrale
 - La méthode différentielle
 - La méthode du temps de demi-réaction
 - Méthode d'Oswald
- Influence de la température

En réacteur fermé de composition uniforme

Vitesses de disparition d'un réactif et de formation d'un produit.

Vitesse de réaction pour une transformation modélisée par une réaction chimique unique. Lois de vitesse : réactions sans ordre, réactions avec ordre simple (0, 1, 2), ordre global, ordre apparent.

Temps de demi-réaction.

Temps de demi-vie d'un nucléide radioactif.

Loi empirique d'Arrhenius ; énergie d'activation.

Déterminer l'influence d'un paramètre sur la vitesse d'une réaction chimique.

Relier la vitesse de réaction à la vitesse de disparition d'un réactif ou de formation d'un produit, quand cela est possible.

Établir une loi de vitesse à partir du suivitemporel d'une grandeur physique.

Exprimer la loi de vitesse si la réaction chimique admet un ordre et déterminer la valeur de la constante cinétique à une température donnée.

Déterminer la vitesse de réaction à différentes dates en utilisant une méthode numérique ou graphique.

Déterminer un ordre de réaction à l'aide de la méthode différentielle ou à l'aide des temps de demi-réaction.

Confirmer la valeur d'un ordre par la méthode intégrale, en se limitant strictement à une décomposition d'ordre 0, 1 ou 2 d'un unique réactif, ou se ramenant à un tel cas par dégénérescence de l'ordre ou conditions initiales stœchiométriques.

Déterminer l'énergie d'activation d'une réaction chimique.

Déterminer la valeur de l'énergie d'activation d'une réaction chimique à partir de valeurs de la constante cinétique à différentes températures.

TP

Etude d'un circuit RCL série en régime transitoire Mesure d'impédances et de déphasages