Estadística la venganza

load("../../Clase Github/Utils4SP/Datasets/S5_Estadistica101_LaVenganza.mat");

Plots exploratorios

```
figure
stackedplot(atmosfera,"XVariable","DateTime")
```


summary(atmosfera)

Variables:

Fecha: 137522×1 cell array of character vectors

Hora: 137522×1 cell array of character vectors

Pres_kpa: 137522×1 double

Values:

Min 77.55 Median 78.06 Max 78.46

Temp_C: 137522×1 double

Values:

Min 13.38 Median 21.01 Max 100 NumMissing 11 Hum_perc: 137522×1 double

Values:

Min 15.27 Median 50.16 Max 99.97 NumMissing 61

DateTime: 137522×1 datetime

Values:

Min 20210518 06:00:03 Median 20210522 05:59:48 Max 20210526 05:59:55

% Exploración de números faltantes

% Todas las lecturas de atmosfera

% Tal que existan NaN's en su campo "Humedad"

% Y que sean todos los campos

atmosfera(ismissing(atmosfera.Hum_perc),:)

ans = 61×6 table

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
1	'210519'	'01:55:14'	77.8600	16.5900	NaN	20210519 0
2	'210523'	'04:27:47'	78.2000	17.2300	NaN	20210523 0
3	'210523'	'05:17:37'	78.2000	17.2000	NaN	20210523 0
4	'210524'	'02:32:46'	78.3800	100	NaN	20210524 0
5	'210524'	'02:32:56'	78.3800	100	NaN	20210524 0
6	'210524'	'02:33:06'	78.3800	100	NaN	20210524 0
7	'210524'	'02:33:11'	78.3800	100	NaN	20210524 0
8	'210524'	'02:33:16'	78.3900	100	NaN	20210524 0
9	'210524'	'02:33:21'	78.3800	100	NaN	20210524 0
10	'210524'	'02:33:26'	78.3800	100	NaN	20210524 0
11	'210524'	'02:33:31'	78.3700	100	NaN	20210524 0
12	'210524'	'02:33:36'	78.3700	100	NaN	20210524 0
13	'210524'	'02:33:41'	78.3600	100	NaN	20210524 0
14	'210524'	'02:33:47'	78.3600	100	NaN	20210524 0
15	'210524'	'02:33:52'	78.3600	100	NaN	20210524 0
16	'210524'	'02:33:57'	78.3600	100	NaN	20210524 0
17	'210524'	'02:34:02'	78.3500	100	NaN	20210524 0
18	'210524'	'02:34:07'	78.3500	100	NaN	20210524 0
19	'210524'	'02:34:12'	78.3500	100	NaN	20210524 0

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
20	'210524'	'02:34:17'	78.3500	100	NaN	20210524 0
21	'210524'	'02:34:22'	78.3500	100	NaN	20210524 0
22	'210524'	'02:34:27'	78.3400	100	NaN	20210524 0
23	'210524'	'02:34:32'	78.3400	100	NaN	20210524 0
24	'210524'	'02:34:37'	78.3400	100	NaN	20210524 0
25	'210524'	'02:34:42'	78.3500	100	NaN	20210524 0
26	'210524'	'02:34:47'	78.3400	100	NaN	20210524 0
27	'210524'	'02:34:52'	78.3400	100	NaN	20210524 0
28	'210524'	'02:34:57'	78.3500	100	NaN	20210524 0
29	'210524'	'02:35:02'	78.3400	100	NaN	20210524 0
30	'210524'	'02:35:07'	78.3400	100	NaN	20210524 0
31	'210524'	'02:35:12'	78.3400	100	NaN	20210524 0
32	'210524'	'02:35:17'	78.3400	100	NaN	20210524 0
33	'210524'	'02:35:22'	78.3400	100	NaN	20210524 0
34	'210524'	'02:35:27'	78.3300	100	NaN	20210524 0
35	'210524'	'02:35:32'	78.3300	100	NaN	20210524 0
36	'210524'	'02:35:37'	78.3300	100	NaN	20210524 0
37	'210524'	'02:35:42'	78.3300	100	NaN	20210524 0
38	'210524'	'02:35:47'	78.3300	100	NaN	20210524 0
39	'210524'	'02:35:52'	78.3200	100	NaN	20210524 0
40	'210524'	'02:35:57'	78.3300	100	NaN	20210524 0
41	'210524'	'02:36:02'	78.3200	100	NaN	20210524 0
42	'210524'	'02:36:07'	78.3200	100	NaN	20210524 0
43	'210524'	'02:36:12'	78.3200	100	NaN	20210524 0
44	'210524'	'02:36:17'	78.3200	100	NaN	20210524 0
45	'210524'	'02:36:22'	78.3200	100	NaN	20210524 0
46	'210524'	'02:36:27'	78.3200	100	NaN	20210524 0
47	'210524'	'02:36:32'	78.3300	100	NaN	20210524 0
48	'210524'	'02:36:37'	78.3100	100	NaN	20210524 0
49	'210524'	'02:36:42'	78.3000	100	NaN	20210524 0
50	'210524'	'02:36:47'	78.3100	100	NaN	20210524 0
51	'210524'	'02:36:53'	78.3100	100	NaN	20210524 0
52	'210524'	'02:36:58'	78.3000	100	NaN	20210524 0

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
53	'210524'	'02:37:03'	78.3100	100	NaN	20210524 0
54	'210524'	'02:37:08'	78.3100	100	NaN	20210524 0
55	'210524'	'02:37:13'	78.3100	100	NaN	20210524 0
56	'210524'	'02:37:18'	78.3200	100	NaN	20210524 0
57	'210524'	'02:37:24'	78.3100	100	NaN	20210524 0
58	'210524'	'02:37:34'	78.3100	100	NaN	20210524 0
59	'210524'	'02:37:39'	78.3200	100	NaN	20210524 0
60	'210524'	'08:33:50'	78.2800	18.3700	NaN	20210524 0
61	'210526'	'01:52:49'	78.4100	18.4400	NaN	20210526 0

- % Exploración de números faltantes
- % Todas las lecturas de atmosfera
- % Tal que existan NaN's en su campo "Temperatura"
- % Y que sean todos los campos
- atmosfera(ismissing(atmosfera.Temp_C),:)

ans = 11×6 table

	Fecha	Hora	Pres_kpa	Temp_C	Hum_perc	DateTime
1	'210518'	'17:59:58'	77.7100	NaN	49.6800	20210518 1
2	'210520'	'09:27:14'	77.9500	NaN	38.9700	20210520 0
3	'210520'	'09:37:27'	77.9500	NaN	39.4700	20210520 0
4	'210520'	'21:22:43'	77.8400	NaN	44.8400	20210520 2
5	'210521'	'20:50:27'	78.0400	NaN	48.0700	20210521 2
6	'210522'	'20:57:34'	78.0700	NaN	51.3400	20210522 2
7	'210522'	'20:57:44'	78.0800	NaN	51.2100	20210522 2
8	'210522'	'20:58:39'	78.0700	NaN	51.2900	20210522 2
9	'210523'	'10:19:08'	78.3200	NaN	53.7100	20210523 1
10	'210523'	'21:44:54'	78.0100	NaN	52.8200	20210523 2
11	'210525'	'18:14:48'	78	NaN	61.0600	20210525 1

- % Exploración de números faltantes
- % Todas las lecturas de atmosfera
- % Tal que existan NaN's en su campo "Temperatura"
- % Y que devuelva DateTime

atmosfera(ismissing(atmosfera.Temp_C),["DateTime","Hum_perc"])

ans = 11×2 table

	DateTime	Hum_perc
1	20210518 1	49.6800
2	20210520 0	38.9700

	DateTime	Hum_perc
3	20210520 0	39.4700
4	20210520 2	44.8400
5	20210521 2	48.0700
6	20210522 2	51.3400
7	20210522 2	51.2100
8	20210522 2	51.2900
9	20210523 1	53.7100
10	20210523 2	52.8200
11	20210525 1	61.0600

```
% Quitar NaN's
atmosfera_clean=rmmissing(atmosfera);
figure
stackedplot(atmosfera_clean,"XVariable","DateTime")
```


Métricas de tendencia central

```
% Una gráfica con boxplot e histograma
figure
tiledlayout(1,2)
nexttile
boxplot(atmosfera_clean.Hum_perc)
```

```
xlabel("Humedad relativa")
ylabel("%")
nexttile
histogram(atmosfera_clean.Hum_perc,"BinWidth",5,'Normalization',"probability")
xlabel("Humedad relativa [%]")
ylabel("Probabilidad")
```



```
% Serie de tiempo
figure
plot(atmosfera_clean.DateTime,atmosfera_clean.Hum_perc)
ylabel("Humedad relativa [%]")
grid on
grid minor
```



```
% Promedio, mediana y moda
% Promedio
hum_mean=mean(atmosfera_clean.Hum_perc)
```

 $hum_mean = 49.6841$

% Mediana

hum_median=median(atmosfera_clean.Hum_perc)

 $hum_median = 50.1550$

% Moda

hum_mode=mode(atmosfera_clean.Hum_perc)

 $hum_mode = 28.9200$

% Cuantiles

% Primer caurtil

hum_1Q=quantile(atmosfera_clean.Hum_perc,0.25)

 $hum_1Q = 29.8800$

hum_3Q=quantile(atmosfera_clean.Hum_perc,0.75)

 $hum_3Q = 66.9600$

```
% Añadiendo métricas de tendencia central
figure
tiledlayout(1,2)
nexttile
boxplot(atmosfera_clean.Hum_perc)
```

```
xlabel("Humedad relativa")
ylabel("%")
nexttile
histogram(atmosfera_clean.Hum_perc,"BinWidth",5,'Normalization',"probability")
hold on
xline(hum_mean,"--k","Promedio","LabelHorizontalAlignment","left")
xline(hum_median,"--r","Mediana")
xline(hum_mode,"--b","Moda","LabelHorizontalAlignment","left")
xline(hum_1Q,"k","1Q")
xline(hum_3Q,"k","3Q")
hold off
xlabel("Humedad relativa [%]")
ylabel("Probabilidad")
```



```
% Serie de tiempo
figure
plot(atmosfera_clean.DateTime,atmosfera_clean.Hum_perc)
hold on
yline(hum_mean,"--k","Promedio","LabelVerticalAlignment","bottom")
yline(hum_median,"--r","Mediana")
yline(hum_mode,"--b","Moda","LabelVerticalAlignment","bottom")
yline(hum_1Q,"k","1Q")
yline(hum_3Q,"k","3Q")
hold off
ylabel("Humedad relativa [%]")
grid on
grid minor
```


Dispersión

buho_left=buho(:,1);
plot(buho_left)


```
% Una gráfica con boxplot e histograma
figure
tiledlayout(1,2)
nexttile
boxplot(buho_left)
```

Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'ActivePositionProperty' for objects in a TiledChartLayout

```
xlabel("Humedad relativa")
ylabel("V")
nexttile
histogram(buho_left,20,'Normalization',"probability")
xlabel("Audio buho [V]")
ylabel("Probabilidad")
```



```
% Serie de tiempo
figure
plot(buho_left)
ylabel("Audio buho [V]")
grid on
grid minor
```



```
\times 10^4
Ejercicio
 buho_desv=std(buho_left)
 buho desv = 0.2124
 buho_var=var(buho_left)
 buho_var = 0.0451
 buho_mean=mean(buho_left)
 buho_mean = 8.1547e-08
 % Una gráfica con boxplot e histograma
 figure
 tiledlayout(1,2)
 nexttile
 boxplot(buho_left)
 Warning: Unable to set 'Position', 'InnerPosition', 'OuterPosition', or 'ActivePositionProperty' for objects
 in a TiledChartLayout
 xlabel("Humedad relativa")
 ylabel("V")
 nexttile
 histogram(buho_left,20,'Normalization',"probability")
 xlabel("Audio buho [V]")
 ylabel("Probabilidad")
 hold on
 xline(buho_mean,"--k","Promedio")
```

```
xline(buho_mean+buho_desv,"--r","+\sigma 34%")
xline(buho_mean-buho_desv,"--r","-\sigma 34%","LabelHorizontalAlignment","left")
xline(buho_mean+2*buho_desv,"--b","+2\sigma 47.5%")
xline(buho_mean-2*buho_desv,"--b","-2\sigma 47.5%","LabelHorizontalAlignment","left")
hold off
```



```
% Serie de tiempo
figure
plot(buho_left)
hold on
yline(buho_mean,"--k","Promedio")
yline(buho_mean+buho_desv,"--r","+\sigma 34%")
yline(buho_mean-buho_desv,"--r","-\sigma 34%","LabelVerticalAlignment","bottom")
yline(buho_mean+2*buho_desv,"--b","+2\sigma 47.5%")
yline(buho_mean-2*buho_desv,"--b","-2\sigma 47.5%","LabelVerticalAlignment","bottom")
hold off
ylabel("Audio buho [V]")
grid on
grid minor
```


Ajustes

fit_realacion 2 =

p1 =

p2 =

p3 =

gof = struct with fields:

rsquare: 0.7468

sse: 1.4498e+07

Linear model Poly2:

fit_realacion_2(x) = $p1*x^2 + p2*x + p3$ Coefficients (with 95% confidence bounds):

0.088 (0.08654, 0.08946)

-7.097 (-7.169, -7.024) 162.6 (161.8, 163.5)

```
plot(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,".")
xlabel("Temperatura [C]")
ylabel("Humedad [%]")
grid on
[fit_realacion,gof]=fit(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,"poly1")
fit_realacion =
    Linear model Poly1:
    fit_realacion(x) = p1*x + p2
    Coefficients (with 95% confidence bounds):
      p1 =
               -2.772 (-2.781, -2.763)
      p2 =
                113.2 (112.9, 113.4)
gof = struct with fields:
         sse: 1.5967e+07
      rsquare: 0.7212
         dfe: 137448
   adjrsquare: 0.7212
        rmse: 10.7783
[fit_realacion_2,gof]=fit(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,"poly2")
```

dfe: 137447 adjrsquare: 0.7468 rmse: 10.2703

```
figure
plot(atmosfera_clean.Temp_C,atmosfera_clean.Hum_perc,".")
hold on
plot(fit_realacion,'r')
plot(fit_realacion_2,'b')
```



```
hold off
xlabel("Temperatura [C]")
ylabel("Humedad [%]")
legend("Data", "Ajuste de línea", "Ajuste polinomio grado 2")
grid on
```

