

Gameboard Physics Fields Magnetic Fields Essential Pre-Uni Physics H7.1

Essential Pre-Uni Physics H7.1

Complete the questions in the table. Give your answers to 2 significant figures.

Magnetic flux density / ${ m T}$	Area of coil	Angle between plane of coil and magnetic field lines / $^{\circ}$	Number of turns	Magnetic flux linkage / $\operatorname{Wb}\operatorname{turns}$
2.0	$2.0\mathrm{m} imes 1.0\mathrm{m}$	90	40	(a)
0.00232	$5.0\mathrm{cm} imes 5.0\mathrm{cm}$	60	2400	(b)

Gameboard Physics Fields Magnetic Fields Essential Pre-Uni Physics H7.4

Essential Pre-Uni Physics H7.4

_	_			
Part A	Pate	of chang	ge of flux	linkago

Calculate the rate of change in the magnetic flux linkage in a $400\,\mathrm{turn}$ coil of area $3.0\times10^{-4}\,\mathrm{m}^2$ when the magnetic field is reduced from $0.20\,\mathrm{T}$ to zero in $0.40\,\mathrm{s}.$ Assume that the field lines are perpendicular to the plane of the coil.

Part B Induced voltage

What is the voltage induced across the coil? Give your answer to 2 significant figures.

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

<u>Gameboard</u> Physics Fields

Magnetic Fields Essential Pre-Uni Physics H7.5

Essential Pre-Uni Physics H7.5

Complete the questions in the table. Give your answers to 2 significant figures.

Initial flux linkage / Wb turns	Final flux linkage / $\operatorname{Wb} \operatorname{turns}$	Time taken for flux to change / $\ensuremath{\mathrm{s}}$	Voltage induced / V
30	60	0.2	(a)
200	0	(b)	400

Part A Voltage induced

a) What is the induced voltage to 2 significant figures?

Time taken for flux to change Part B

b) What is the time taken for the flux to change to 2 significant figures?

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

Home Gameboard Physics Fields Magnetic Fields Essential Pre-Uni Physics H7.6

Essential Pre-Uni Physics H7.6

Part A	Induced voltage
) A single turn coil of $10\mathrm{cm} imes 5.0\mathrm{cm}$ sits, <u>stationary</u> , in a $21000\mathrm{T}$ magnetic field, at right angles to the plane of the coil. What is the voltage induced across ne ends of the wire?
	Increasing the area) The coil is made using flexible wiring. The coil area is increased steadily to $10\mathrm{cm} imes10\mathrm{cm}$ by stretching it over the course of $0.020\mathrm{s}$. Calculate the voltage induced across the ends of the wire.
Part C	Field parallel to the wires
C) What would the answer to part (b) have been if the magnetic field were parallel to the sides of the coil which were originally $5.0 m cm$ long?

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

Home Gameboard Physics Fields Magnetic Fields Electromagnetic Induction - Moving Wire 21.1

Electromagnetic Induction - Moving Wire 21.1

Figure 1: A wire is moved through the magnetic field. The magnetic field is <u>perpendicular</u> to both the wire and the velocity.

Quantities:

B magnetic flux density (T)

u speed of wire (m s⁻¹)

w distance moved by wire (m)

V induced voltage (V)

L wire length (m)

t time taken (s)

A area swept through (m^2)

q charge of carriers (C)

 F_{B} magnetic force (N)

 F_{E} electric force (N)

E electric field (N ${
m C}^{-1}$)

Equations:

$$A = Lw$$
 $w = ut$ $V = \frac{\mathrm{d}(BA)}{\mathrm{d}t} = \frac{BA}{t}$

$$F_{\mathsf{B}} = q u B \hspace{1cm} F_{\mathsf{E}} = q E \hspace{1cm} E = V/L$$

Use the equations above to write down expressions for:

Part A Area swept out

the area A swept through by the wire using u, Δt and L.

The following symbols may be useful: A, Delta t, L, u

Part B Magnetic flux cut

the magnetic flux BA cut by the wire using u, Δt and L.

The following symbols may be useful: A, B, Delta t, L, $\ensuremath{\text{u}}$

Part C	Rate of flux cutting				
the	the rate of cutting flux $\mathrm{d}(BA)/\mathrm{d}t$.				
The	e following symbols may be useful: A, A, B, B, Derivative(_, t), E, L, V, q, t, u				
Part D	Voltage induced in the wire				
the	e voltage V induced in the wire by Faraday's Law.				
The	e following symbols may be useful: A, B, E, L, V, q, t, u				
Part E	Magnetic force on a charge q inside the wire				
the	e magnetic force on a charge q inside the wire.				
The	e following symbols may be useful: A, B, E, F, L, V, q, t, u				
Part F	Equivalent electric field				
the	e strength of an electric field E along the wire that could produce the same force on the charge.				
The	e following symbols may be useful: A, B, E, L, q, t, u				
Part G	Voltage between wire ends				
the	e voltage V that would exist between the ends of the wire, if that electric field was uniform.				
The	e following symbols may be useful: A, B, E, L, V, q, t, u				

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

Gameboard Physics Fields Magnetic Fields Electromagnetic Induction - Rotating Coil 22.1

Electromagnetic Induction - Rotating Coil 22.1

A generator contains a coil of wire rotating uniformly in a uniform magnetic field.

Quantities:

 ε EMF (V)

 ${\cal N}$ number of turns

 ϕ magnetic flux (Wb)

B flux density (T)

 A_0 coil area (m²)

t time (s)

A component of coil area linking flux (m^2)

 ω angular frequency (rad s⁻¹)

Subscript _{rms} represents root mean square values

 $rac{\mathrm{d}}{\mathrm{d}t}$ means *rate of change of a quantity*

Equations:

$$arepsilon = -Nrac{\mathrm{d}\phi}{\mathrm{d}t} \qquad \quad \phi = BA \qquad \quad A = A_0\cos\omega t$$

$$ho = BA$$

$$A=A_0\cos\omega$$

$$arepsilon_{\sf rms} = \sqrt{\left(arepsilon^2
ight)_{\sf mean}}$$

$$arepsilon_{\mathsf{rms}} = \sqrt{\left(arepsilon^2
ight)_{\mathsf{mean}}} \qquad rac{\mathrm{d}\cos\omega t}{\mathrm{d}t} = -\omega\sin\omega t$$

Use the equations above to derive expressions for:

Magnetic flux Part A

the magnetic flux ϕ in terms of B, A_0 and t.

The following symbols may be useful: A_0, B, cos(), omega, phi, sin(), t, tan()

Part B EMF

the EMF ε in terms of B, A_0 , N, ω and t.

The following symbols may be useful: A_0, B, N, cos(), epsilon, omega, sin(), t, tan()

Maximum EMF Part C

the maximum EMF ε_{max} .

The following symbols may be useful: A_0, B, N, cos(), epsilon_max, omega, sin(), t, tan()

Part D RMS EMF

the root mean squared EMF $\varepsilon_{\rm rms}$ in terms of $\varepsilon_{\rm max}.$

The following symbols may be useful: epsilon_max, epsilon_rms

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

Home Gameboard Physics Fields Magnetic Fields Electromagnetic Induction - Rotating Coil 22.3

Electromagnetic Induction - Rotating Coil 22.3

A $5.00\mathrm{cm}$ long square coil with 10 turns is slowly rotated in a magnetic field of $80.0\mathrm{mT}$ at a rate of $20.0\mathrm{rpm}$ (revolutions per minute). Calculate	
Part A Angular frequency	
Calculate the angular frequency in ${ m rads^{-1}}$.	
Part B EMF induced	
Calculate the magnitude of the EMF induced $1.00\mathrm{s}$ after the EMF was zero.	
Part C Maximum EMF induced	
The magnitude of the maximum EMF induced.	

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

Gameboard Physics Fields Magnetic Fields Essential Pre-Uni Physics H8.9

Essential Pre-Uni Physics H8.9

All transformers are perfectly efficient unless you are told otherwise.

Calculate the current in the load fed by the secondary of a 90% efficient step down transformer where the primary has $50\times$ as many turns as the secondary, and where the primary current is $5.0\,\mathrm{A}$? Give your answer to 3 significant figures.

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}},$ unless stated otherwise.