SOLUTION BOOK TO INTRODUCTION TO SMOOTH MANIFOLDS BY JOHN M. LEE

SOLUTION BOOK TO INTRODUCTION TO SMOOTH MANIFOLDS BY JOHN M. LEE

Contents

	pter 1. Homotopy and the Fundamental Group \ldots 1	_
1	The Fundamental Group	-
Cha	pter 2. Smooth Maps	2
1	Smooth Functions and Smooth Maps	2
	1.1 Smooth Functions on Manifolds)
Cha	pter 3. Tangent Vectors	Ł
1	Tangent Vectors	Į
	1.1 Tangent Vectors on Manifolds	Ė
Cha	pter 4. Vector Fields	;
	Vector Fields on Manifolds)
Cha	pter 5. Integral Curves and Flows	,
1	Integral Curves	7
Cha	pter 6. The Cotangent Bundle	L
1	Line Integrals	L
	1.1 The Winding Number*	_
Cha	pter 7. Tensors	2
1	Pullbacks of Tensor Fields)
Cha	pter 8. Orientations	;
1)
Anne	endiy Bibliography 14	

Homotopy and the Fundamental Group

1. The Fundamental Group

Exercise 1.1. Let X be a topological space. For any points $p, q \in X$, path homotopy is an equivalence relation on the set of all paths in X from p to q.

Solution 1.1. Let f be a path in X from p to q. Define $H: I \times I \to X$ by H(s,t) := f(s). Clearly H is continuous since f is. Indeed, take $U \subseteq X$ open, then $H^{-1}(U) = f^{-1}(U) \times I$ which is open in the box topology. Now clearly H(s,0) = H(s,1) = f(s) for all $s \in I$ and H(0,t) = f(0) = p, H(1,t) = f(1) = q for all $t \in I$. Hence $f \sim f$. If $f \sim g$ and F is a path homotopy from f to g, then f is a path homotopy from f to f in f in f in f in f in f is a path homotopy from f to f in f

$$H(s,t) := \begin{cases} F(s,2t) & 0 \le t \le \frac{1}{2}, \\ G(s,2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

is a path homotopy from f to h, hence $f \sim g$.

Smooth Maps

1. Smooth Functions and Smooth Maps

1.1. Smooth Functions on Manifolds. We follow the terminology established in [Gri07, p. 515].

Exercise 1.1. Let M be a smooth manifold. $\mathscr{C}^{\infty}(M)$ is an associative and commutative \mathbb{R} -algebra with identity under the usual pointwise defined operations.

Solution 1.1. First we show that $\mathscr{C}^{\infty}(M)$ is a real vector space. Since $\mathscr{C}^{\infty}(M) \subseteq \mathbb{R}^{M}$ it is enough to show that $\mathscr{C}^{\infty}(M)$ is a linear subspace of the real vector space \mathbb{R}^{M} . Clearly, $\mathscr{C}^{\infty}(M) \neq \emptyset$, since $\chi_{M} \in \mathscr{C}^{\infty}(M)$. Indeed, for $p \in M$ we find a chart (U, φ) such that $p \in U$ and the composition $\chi_{M} \circ \varphi^{-1} : \varphi(U) \to \mathbb{R}$ is clearly the function $\chi_{\varphi(U)}$, which is smooth since it is constant. Now let $f, g \in \mathscr{C}^{\infty}(M)$, $\lambda \in \mathbb{R}$ and $p \in M$. By definition, there exist charts (U, φ) , (V, ψ) such that $f \circ \varphi^{-1}$ and $g \circ \psi^{-1}$ are smooth. Now consider the chart $(U \cap V, \varphi)$. Then by

$$(\lambda f + g) \circ \varphi^{-1} = \lambda (f \circ \varphi^{-1}) + (g \circ \varphi^{-1}) = \lambda (f \circ \varphi^{-1}) + ((g \circ \psi^{-1}) \circ (\psi \circ \varphi^{-1}))$$

we have that $\lambda f + g \in \mathscr{C}^{\infty}(M)$. Hence $\mathscr{C}^{\infty}(M)$ is a real vector space. Now define a product map $\cdot : \mathscr{C}^{\infty}(M) \times \mathscr{C}^{\infty}(M) \to \mathscr{C}^{\infty}(M)$ by pointwise multiplication. Indeed, similar to the previous reasoning, by

$$(f\cdot g)\circ\varphi^{-1}=(f\circ\varphi^{-1})\cdot(g\circ\varphi^{-1})=(f\circ\varphi^{-1})\cdot\left((g\circ\psi^{-1})\circ(\psi\circ\varphi^{-1})\right)$$

we have that $f \cdot g$ is smooth. Let $f, g, h \in \mathscr{C}^{\infty}(M)$ and $\lambda \in \mathbb{R}$. Then for $p \in M$

$$((\lambda f + g) \cdot h) (p) = (\lambda f + g)(p)h(p)$$

$$= (\lambda f(p) + g(p)) h(p)$$

$$= \lambda f(p)h(p) + g(p)h(p)$$

$$= \lambda (f \cdot h)(p) + (g \cdot h)(p)$$

$$= (\lambda (f \cdot h)) (p) + (g \cdot h)(p)$$

$$= (\lambda (f \cdot h) + (g \cdot h)) (p)$$

shows that \cdot is bilinear in the first argument. A similar computation shows that \cdot is bilinear. By

$$((f \cdot g) \cdot) (p) = (f \cdot g)(p)h(p)$$
$$= f(p)g(p)h(p)$$
$$= f(p)(g \cdot h)(p)$$
$$= (f \cdot (g \cdot h)) (p)$$

we see that \cdot is associative. Furthermore by

$$(f\cdot g)(p)=f(p)g(p)=g(p)f(p)=(g\cdot f)(p)$$

we see that \cdot is commutative. Finally, the identity element is given by χ_M since

$$(\chi_M \cdot f)(p) = \chi_M(p)f(p) = 1f(p) = f(p).$$

Tangent Vectors

1. Tangent Vectors

1.1. Tangent Vectors on Manifolds.

Exercise 1.1. Let M be a smooth manifold and $p \in M$. The set of all derivations at p, written T_pM , is a real vector space under the usual pointwise defined operations.

Solution 1.1. Clearly $T_pM \subseteq L(\mathscr{C}^{\infty}(M); \mathbb{R})$ and thus it is enough to show that T_pM is a linear subspace of $L(\mathscr{C}^{\infty}(M); \mathbb{R})$ (see [Lee13, p. 626]). We have $T_pM \neq \emptyset$, since $0 \in T_pM$ defined by $f \mapsto 0$. Let $u, v \in T_pM$, $\lambda \in \mathbb{R}$ and $f, g \in \mathscr{C}^{\infty}(M)$. Then by

$$(\lambda u + v)(fg) = \lambda u(fg) + v(fg)$$

$$= f(p) (\lambda u(g) + v(g)) + g(p) (\lambda u(f) + v(f))$$

$$= f(p)(\lambda u + v)(g) + g(p)(\lambda u + v)(f)$$

we have that $\lambda u + v \in T_p M$.

Exercise 1.2. Suppose M is a smooth manifold. Let $p \in M$, $v \in T_pM$ and $f \in \mathscr{C}^{\infty}(M)$. If f is constant, then v(f) = 0.

Solution 1.2. First assume that $f = \chi_M$. Then

$$v(\chi_M) = v(\chi_M \cdot \chi_M) = f(p)v(\chi_M) + f(p)v(\chi_M) = v(\chi_M) + v(\chi_M)$$
 (1)

implies that v(f) = 0. Hence if $f = \lambda \chi_M$ for $\lambda \in \mathbb{R}$, the \mathbb{R} -linearity of v implies that

$$v(f) = v(\lambda \chi_M) = \lambda v(\chi_M) = 0.$$
 (2)

Exercise 1.3 (Properties of Differentials). Let M, N and P be smooth manifolds, let $F: M \to N$ and $G: N \to P$ be smooth maps, and let $p \in M$.

- (a) $dF_p: T_pM \to T_{F(p)}N$ is \mathbb{R} -linear.
- (b) $d(G \circ F)_p = dG_{F(p)} \circ dF_p$.
- (c) $d(id_M)_p = id_{T_pM}$.
- (d) If F is a diffeomorphism, then dF_p is an isomorphism and $(dF_p)^{-1} = d(F^{-1})_{F(p)}$.

Solution 1.3. Let $u, v \in T_pM$, $\lambda \in \mathbb{R}$ and $f \in \mathscr{C}^{\infty}(N)$. Then

$$dF_p(\lambda u + v)(f) = (\lambda u + v)(f \circ F)$$

$$= \lambda u(f \circ F) + v(f \circ F)$$

$$= \lambda dF_p(u)(f) + dF_p(v)(f).$$

This shows part (a). Let $v \in T_pM$ and $f \in \mathscr{C}^{\infty}(P)$. Then

$$d(G \circ F)_p(v)(f) = v (f \circ (G \circ F))$$

$$= v ((f \circ G) \circ F)$$

$$= dF_p(f \circ G)$$

$$= dG_{F(p)} (dF_p(v)) (f)$$

$$= (dG_{F(p)} \circ dF_p) (v)(f).$$

This shows part (b). Part (c) is immediate by

$$d(id_M)_p(v)(f) = v(f \circ id_M) = v(f)$$

for $f \in \mathscr{C}^{\infty}(M)$. Finally, part (b) and (c) yields

$$dF_p \circ d(F^{-1})_{F(p)} = d(F \circ F^{-1})_{F(p)} = d(id_N)_{F(p)} = id_{T_{F(p)}N}$$

and

$$d(F^{-1})_{F(p)} \circ dF_p = d(F^{-1} \circ F)_p = d(id_M)_p = id_{T_pM}$$

which shows that dF_p is bijective with inverse $(dF_p)^{-1} = d(F^{-1})_{F(p)}$ by uniqueness. Since by part (a) dF_p is linear, we have that dF_p is an isomorphism (see [Lee13, p. 622]). This shows part (d).

Vector Fields

1. Vector Fields on Manifolds

Exercise 1.1. Let M be a smooth manifold.

(a) If $X, Y \in \mathfrak{X}(M)$, $f, g \in \mathscr{C}^{\infty}(M)$, then $fX + gY \in \mathfrak{X}(M)$.

Integral Curves and Flows

1. Integral Curves

Definition 1.1. Let (M_1, d_1) and (M_2, d_2) be metric spaces. A mapping $f: M_1 \to M_2$ is said to be **Lipschitz continuous** if there exists $L \in \mathbb{R}_{>0}$ such that for all $x, y \in M_1$

$$d_2(f(x), f(y)) \le Ld_1(x, y) \tag{3}$$

holds. We say that f is **locally Lipschitz continuous** if for every point $x \in M_1$ there exists a neighbourhood on which f is Lipschitz continuous.

Proposition 1.1. Let (M_1, d_1) be a metric space and (M_2, d_2) a complete bounded metric space. For $f, g \in \mathcal{C}(M_1; M_2)$ define

$$d_{\infty}(f,g) := \sup_{x \in M_1} d_2\left(f(x), g(x)\right). \tag{4}$$

Then $(\mathscr{C}(M_1; M_2), d_{\infty})$ is a complete metric space.

Proof. Since M is bounded, there exists $C \in \mathbb{R}_{>0}$ such that $d_2(x,y) \leq R$ for all $x,y \in M_1$. Hence

$$d_{\infty}(f,g) = \sup_{x \in M_1} d_2\left(f(x), g(x)\right) \le R < \infty$$

for all $f,g \in \mathscr{C}(M_1;M_2)$. The metric axioms are easily verified, so we only show the completeness property. Let $(f_{\nu})_{\nu \in \mathbb{N}}$ be a Cauchy sequence in $\mathscr{C}(M_1;M_2)$. Fix $\varepsilon > 0$. Since $(f_{\nu})_{\nu \in \mathbb{N}}$ is a Cauchy sequence, we find $N \in \mathbb{N}$, such that for all $\nu, \mu \geq N$

$$d_{\infty}\left(f_{\nu}, f_{\mu}\right) < \frac{\varepsilon}{2}$$

holds. So for all $y \in M_1$ we have

$$d_2\left(f_{\nu}(y), f_{\mu}(y)\right) \le \sup_{x \in X} d_2\left(f_{\nu}(x), f_{\mu}(x)\right) = d_{\infty}(f_{\nu}, f_{\mu}) < \varepsilon.$$

whenever $\nu, \mu \geq N$. Thus $(f_{\nu}(y))_{\nu \in \mathbb{N}}$ is a Cauchy sequence in M_2 for all $y \in M_1$. Since M_2 is complete

$$f(y) := \lim_{\nu \to \infty} f_{\nu}(y)$$

exists for all $y \in M_1$. Now we show that $f_{\nu} \to f$ with respect to d_{∞} . For all $\nu \geq N$ and $y \in M_1$ we have that

$$d_{2}(f_{\nu}(y), f(y)) = \lim_{\mu \to \infty} d_{2}(f_{\nu}(y), f_{\mu}(y))$$

$$= \lim_{\mu \to \infty} \inf d_{2}(f_{\nu}(y), f_{\mu}(y))$$

$$\leq \lim_{\mu \to \infty} \inf d_{\infty}(f_{\nu}, f_{\mu})$$

$$\leq \frac{\varepsilon}{2}$$

$$\leq \varepsilon$$

Hence

$$d_{\infty}(f_{\nu}, f) < \varepsilon$$

whenever $\nu \geq N$. So $f_{\nu} \to f$ with respect to d_{∞} . Left to show is that $f \in \mathscr{C}(M_1; M_2)$. Fix $x_0 \in M_1$. Since $f_{\nu} \to f$ with respect to d_{∞} , there exists $N \in \mathbb{N}$ such that

$$d_{\infty}(f_{\nu}, f) < \frac{\varepsilon}{3}$$

for all $\nu \geq N$. Fix $\nu_0 \geq N$. Since f_{ν_0} is continuous at x_0 , there exists $\delta > 0$, such that

$$d_2\left(f_{\nu_0}(x_0), f_{\nu_0}(x)\right) < \frac{\varepsilon}{3}$$

whenever $d_1(x_0, x) < \delta$. Hence

$$d_{2}(f(x_{0}), f(x)) = d_{2}(f(x_{0}), f_{\nu_{0}}(x)) + d_{2}(f_{\nu_{0}}(x_{0}), f_{\nu_{0}}(x)) + d_{2}(f_{\nu_{0}}(x), f(x))$$

$$< 2d_{\infty}(f, f_{\nu_{0}}) + \frac{\varepsilon}{3}$$

$$< \varepsilon$$

whenever $d_1(x_0, x) < \delta$. Thus $f \in \mathcal{C}(M_1; M_2)$.

Lemma 1.1 (Integral Formulation of an ODE). Let $n \in \mathbb{Z}$, n > 0, $U \subseteq \mathbb{R}^n$ and $f \in \mathcal{C}(U;\mathbb{R}^n)$. A mapping $y \in \mathcal{C}(J_0;U)$, for some interval J_0 containing t_0 , is a solution of the initial value problem

$$\begin{cases} y'(t) = f(y(t)) \\ y(t_0) = y_0 \end{cases}$$
 (5)

if and only if

$$y(t) = y_0 + \int_{t_0}^t f(y(s)) ds$$
 (6)

holds for all $t \in J_0$.

Proof. Assume that $y \in \mathcal{C}^1(J_0; U)$ solves (5). Then

$$\int_{t_0}^t f(y(s)) ds = \int_{t_0}^t y'(s) ds = y(t) - y(t_0)$$

for all $t \in J_0$ by the corollary to the first fundamental theorem of calculus [Spi94, p. 284].

Conversly assume that

$$y(t) = y_0 + \int_{t_0}^t f(y(s)) ds$$

for all $t \in J_0$. Since $f \circ y \in \mathscr{C}(J_0; \mathbb{R}^n)$, the first fundamental theorem of calculus [Spi94, p. 282] implies y'(t) = f(y(s)) for all $t \in J_0$. Furthermore clearly $y(t_0) = t_0$ and $y \in \mathscr{C}^1(J_0; U)$. Hence y is a solution of (5).

Lemma 1.2 (Contraction Lemma). Let (M,d) be a nonempty complete metric space and T be a contraction. Then there exists a unique fixed point for T.

Theorem 1.1 (Existence of ODE Solutions). Let $n \in \mathbb{Z}$, n > 0, $U \subseteq \mathbb{R}^n$ open, $f \in \mathscr{C}(U; \mathbb{R}^n)$ locally Lipschitz continuous and $(t_0, x_0) \in \mathbb{R} \times U$. Then there exists an open interval $J_0 \subseteq \mathbb{R}$ and an open subset $U_0 \subseteq U$, such that $(t_0, x_0) \in J_0 \times U_0$ and for each $y_0 \in U_0$ a mapping $y \in \mathscr{C}^1(J_0; U)$ satisfying

$$\begin{cases} y'(t) = f(y(t)) \\ y(t_0) = y_0 \end{cases}$$
 (7)

Proof. Since F is locally Lipschitz continuous on U, there exists a neighbourhood V of x_0 , such that f is Lipschitz continuous on V. Since $(U, |\cdot|)$ has the same topology as the subspace $U \subseteq \mathbb{R}^n$ by [Lee11, p. 50], we find $W \subseteq \mathbb{R}^n$ open, such that $V = U \cap W$. But since U is open, so is V open in \mathbb{R}^n . Hence we may assume that f is Lipschitz continuous on U. Let L > 0 denote a Lipschitz constant of f. Now choose r > 0 so, such that $\overline{B}_r(x_0) \subseteq U$. Furthermore let

$$M := \sup_{x \in \overline{B}_r(x_0)} |f(x)| < \infty$$

since $\overline{B}_r(x_0)$ is compact and $\delta, \varepsilon > 0$ such that

$$\delta < \frac{r}{2}$$
 and $\varepsilon < \min\left(\frac{r}{2M}, \frac{1}{L}\right)$.

Define

$$J_0 := (t_0 - \varepsilon, t_0 + \varepsilon) \subseteq \mathbb{R}$$
 and $U_0 := B_{\delta}(x_0) \subseteq U$.

For any $y_0 \in U_0$, let

$$A_{y_0} := \{ y \in \mathscr{C}(J_0; \overline{B}_r(x_0)) : y(t_0) = y_0 \}.$$

Clearly $A_{y_0} \neq \emptyset$ since $y = y_0$ is in A_{y_0} . $\overline{B}_r(x_0)$ is clearly bounded and complete since it is a closed subset of a complete metric space. Thus we can consider the metric space (A_{y_0}, d_{∞}) , where d_{∞} is defined as in proposition 1.1. From the proof of proposition 1.1 we also see that if $(y_{\nu})_{\nu \in \mathbb{N}}$ is a Cauchy sequence in A_{y_0} and $y := \lim_{\nu \to \infty} y_{\nu}$, then $y(t_0) = \lim_{\nu \to \infty} y_{\nu}(t_0) = y_0$. Hence $y \in A_{y_0}$ and so (A_{y_0}, d_{∞}) is complete. For $y \in A_{y_0}$ define for $t \in J_0$

$$T(y)(t) := y_0 + \int_{t_0}^t f(y(s)) ds.$$

Clearly T is continuous and $T(y)(t_0) = y_0$. Furthermore

$$\begin{aligned} \left| T(y)(t) - x_0 \right| &= \left| y_0 + \int_{t_0}^t f\left(y(s)\right) \mathrm{d}s - x_0 \right| \\ &\leq \left| y_0 - x_0 \right| + \int_{t_0}^t \left| f\left(y(s)\right) \right| \mathrm{d}s \\ &< \delta + M \left| t - t_0 \right| \\ &< \delta + M\varepsilon \\ &< r. \end{aligned}$$

for all $t \in J_0$. Hence $T: A_{y_0} \to A_{y_0}$. Furthermore for $y_1, y_2 \in A_{y_0}$ we have that

$$d_{\infty}\left(T(y_1), T(y_2)\right) = \sup_{t \in J_0} \left| \int_{t_0}^t f\left(y_1(s)\right) ds - \int_{t_0}^t f\left(y_2(s)\right) ds \right|$$

$$\leq \sup_{t \in J_0} \int_{t_0}^t \left| f\left(y_1(s)\right) - f\left(y_2(s)\right) \right| ds$$

$$\leq L \sup_{t \in J_0} \int_{t_0}^t \left| y_1(s) - y_2(s) \right| ds$$

$$\leq L \varepsilon d_{\infty}(y_1, y_2).$$

Since $0 < L\varepsilon < 1$, T is a contraction. Hence by the contraction lemma 1.2 there exists a unique fixed point $y \in A_{y_0}$. This y is a solution to the initial value problem by lemma 1.1.

The Cotangent Bundle

1. Line Integrals

1.1. The Winding Number*.

Definition 1.1 (Winding Number). Let $z_0 \in \mathbb{C}$ and $\gamma : [a, b] \to \mathbb{C} \setminus \{z_0\}$ be a piecewise continuously differentiable closed path. Then

$$W(\gamma, z_0) := \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0} \tag{8}$$

is called the **winding number** of γ around z_0 .

Proposition 1.1. Let $z_0 := x_0 + iy_0 \in \mathbb{C}$ and $\gamma : [a,b] \to \mathbb{C} \setminus \{z_0\}$ be a piecewise continuously differentiable closed path. Then

$$W(\gamma, z_0) = \int_{\gamma} \omega \tag{9}$$

where $\omega \in \Omega^1(\mathbb{R}^2 \setminus \{z_0\})$ is given by

$$\omega := \frac{1}{2\pi} \frac{(x - x_0) \, \mathrm{d}y - (y - y_0) \, \mathrm{d}x}{(x - x_0)^2 + (y - y_0)^2}.$$
 (10)

Proof. This immediately follows from

$$\int_{\gamma} \frac{\mathrm{d}z}{z - z_0} = \int_{\gamma} \frac{\mathrm{d}x + i \,\mathrm{d}y}{(x + iy) - (x_0 + iy_0)}
= \int_{\gamma} \frac{\mathrm{d}x + i \,\mathrm{d}y}{(x - x_0) + i(y - y_0)} \frac{(x - x_0) - i(y - y_0)}{(x - x_0) - i(y - y_0)}
= \int_{\gamma} \frac{(x - x_0) \,\mathrm{d}x + ((x - x_0) \,\mathrm{d}y - (y - y_0) \,\mathrm{d}x) + (y - y_0) \,\mathrm{d}y}{(x - x_0)^2 + (y - y_0)^2}
= \int_{\gamma} \frac{(x - x_0) \,\mathrm{d}x + (y - y_0) \,\mathrm{d}y}{(x - x_0)^2 + (y - y_0)^2} + i \int_{\gamma} \frac{(x - x_0) \,\mathrm{d}y - (y - y_0) \,\mathrm{d}x}{(x - x_0)^2 + (y - y_0)^2}
= i \int_{\gamma} \frac{(x - x_0) \,\mathrm{d}y - (y - y_0) \,\mathrm{d}x}{(x - x_0)^2 + (y - y_0)^2}$$

by the fundamental theorem for line integrals [Lee13, p. 291] since

$$d\left(\frac{1}{2}\log\left((x-x_0)^2+(y-y_0)^2\right)\right) = \frac{(x-x_0)\,dx+(y-y_0)\,dy}{(x-x_0)^2+(y-y_0)^2}.$$

Remark 1.1. By proposition 1.1, the definition of the winding number in complex analysis given by definition 1.1 coincides with the one usually given in algebraic topology (see for example [Ful95, pp. 19–20]).

Tensors

1. Pullbacks of Tensor Fields

Exercise 1.1 (Properties of Tensor Pullbacks). Suppose $F: M \to N$ is a smooth mapping and A, B are covariant tensor fields on N. Then

(a)
$$F^*(A \otimes B) = F^*A \otimes F^*B$$
.

Solution 1.1. Let $p \in M$. Then we have

$$(F^*(A \otimes B))_p (v_1, \dots, v_{k+l}) = (A \otimes B)_{F(p)} (dF_p(v_1), \dots, dF_p(v_{k+l}))$$

$$= (A_{F(p)} \otimes B_{F(p)}) (dF_p(v_1), \dots, dF_p(v_{k+l}))$$

$$= A_{F(p)} (dF_p(v_1), \dots, dF_p(v_k)) B_{F(p)} (dF_p(v_{k+1}), \dots, dF_p(v_{k+l}))$$

$$= (F^*A)_p (v_1, \dots, v_k) (F^*B)_p (v_{k+1}, \dots, v_{k+l})$$

$$= (F^*A)_p \otimes (F^*B)_p (v_1, \dots, v_{k+l})$$

$$= (F^*A \otimes F^*B)_p (v_1, \dots, v_{k+l})$$

for all $v_1, \ldots, v_{k+l} \in T_p M$.

Orientations

1. Orientations of Vector Spaces

Exercise 1.1. Let V be a vector space of dimension $n \ge 1$. Define a relation \sim on the set of all ordered bases of V by

$$(v_1, \dots, v_n) \sim (w_1, \dots, w_n) \quad :\Leftrightarrow \quad \det B > 0$$
 (11)

where B denotes the transition matrix defined by $w_j = B_j^i v_i$. Show that \sim is an equivalence relation and that $|X/\sim| = 2$.

Solution 1.1. Clearly $(v_1, \ldots, v_n) \sim (v_1, \ldots, v_n)$ by $v_j = \delta_j^i v_i$. Assume $(v_1, \ldots, v_n) \sim (w_1, \ldots, w_n)$. Thus B defined by $w_j = B_j^i v_i$ has a positive determinant. But then by $\det(B^{-1}) = (\det(B))^{-1}$ also $\det(B^{-1})$ is positive and $v_j = (B^{-1})_j^i w_i$. Hence $(w_1, \ldots, w_n) \sim (v_1, \ldots, v_n)$. Lastly, assume that also $(w_1, \ldots, w_n) \sim (u_1, \ldots, u_n)$. Hence there exists a matrix A such that $u_j = A_j^i w_i$ where $\det(A) > 0$. Thus $u_j = A_j^i w_i = A_j^i (B_i^k v_k) = (A_j^i B_i^k) v_k$ and by $\det(AB) = \det(A) \det(B) > 0$ we get that $(v_1, \ldots, v_n) \sim (u_1, \ldots, u_n)$. Hence \sim is an equivalence relation.

By [Gri07, p. 335] every vector space has a basis. Let us denote it by (v_1, \ldots, v_n) . Therefore

$$(\widetilde{v}_1,\ldots,\widetilde{v}_n):=(-v_1,\ldots,v_n)$$

is also a basis for V simply by considering the transition matrix

$$\widetilde{B} := \begin{pmatrix} -1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$

defined by $v_j = \widetilde{B}_j^i \widetilde{v}_i$. Let (w_1, \dots, w_n) be an ordered basis for V. Let the transition matrix B be defined by $w_j = B_j^i v_i$. If $\det(B) > 0$, we have that

$$(w_1,\ldots,w_n)\sim (v_1,\ldots,v_n).$$

Otherwise, if det(B) < 0

$$w_j = B_j^i v_i = B_j^i \left(\widehat{B}_i^k \widehat{v}_k \right) = \left(B_j^i \widehat{B}_i^k \right) \widehat{v}_k$$

together with $det(B\widehat{B}) = det(B) det(\widehat{B}) > 0$ yields

$$(w_1,\ldots,w_n)\sim (\widetilde{v}_1,\ldots,\widetilde{v}_n).$$

Since $det(B) \neq 0$ by the nonsingularity of B, we have that there are exactly two equivalence classes

$$[(v_1,\ldots,v_n)]_{\sim}$$
 and $[(-v_1,\ldots,v_n)]_{\sim}$.

13

Bibliography

- [Ful95] William Fulton. Algebraic Topology A first Course. Graduate Texts in Mathematics. Springer Science + Business Media, Inc., 1995.
- [Gri07] Pierre Antoine Grillet. Abstract Algebra. Graduate Texts in Mathematics. Springer Science + Business Media, LLC, 2007.
- [Lee11] John M. Lee. *Introduction to Topological Manifolds*. Second Edition. Springer Science+Business Media, 2011.
- [Lee13] John M. Lee. *Introduction to Smooth Manifolds*. Second Edition. Graduate Texts in Mathematics. Springer, 2013.
- [Spi94] Michael Spivak. Calculus. Third Edition. Cambridge University Press, 1994.