Rapport TP1 de Métaheuristiques en optimisation

Edorh François, Guison Vianney February 14, 2018

Contents

1 M	éthodes implémentées	2
1.1	Crossovers	2
	1.1.1 Binaires	2
	1.1.2 À valeurs réelles	2
	1.1.3 Au choix	2
1.2	Mutations	3
	1.2.1 Binaires	3
	1.2.2 À valeurs réelles	3
1.3	Sélections	3
1.4	Stratégie "Steady State"	3
1.5	Critères d'arrêt	3

1 Méthodes implémentées

1.1 Crossovers

1.1.1 Binaires

Les méthodes de crossovers sur valeurs binaires suivant ont été implémentés :

- single-point crossover
- multi-point crossover, avec un paramètre de contrôle N compris entre 1 et L - 1 (L étant la longeur du chromosome)
- uniform crossover, avec deux variantes:
 - Utiliser un paramètre P représentant une probabilité constante
 - Utiliser deux paramètres de contrôle P et T, où la probabilité d'une pair (a, b) est donnée par P(T(a), T(b)).

1.1.2 À valeurs réelles

Les méthodes de crossovers sur valeurs réelles suivant ont été implémentés :

- whole arithmetic crossover
- local arithmetic crossover
- blend crossover (ou $BLX \alpha$), avec un paramètre de contrôle α (valeur par défaut de 0.5)
- simulated binary crossover, avec un paramètre de contrôle N >= 0.

1.1.3 Au choix

one BitAdaptation
(F0, F1), F0 and F1 as crossover functions TODO : Complete

- 1.2 Mutations
- 1.2.1 Binaires
- 1.2.2 À valeurs réelles
- 1.3 Sélections
- 1.4 Stratégie "Steady State"
- 1.5 Critères d'arrêt