## 差分——(1)—维差分



努力的老周 2020-02-09 21:38:12 ② 4964 🏫 收藏 2

版权

分类专栏: OI #差分 文章标签: 差分 一维差分

差分,是一种和前缀和相对的策略。

## 差分概念

对于一个数列  $a_i$ ,我们需要维护的数据是"相邻两个数之差"。这种策略是,令 $p_i = \triangle a_i = a_i - a_{i-1}$ ,即相邻两数的差。我们称数列  $p_i$  为数列  $a_i$  的差分数列。

## 应用

它可以维护多次对序列的一个区间加上一个数,并在最后询问某一位的数或是多次询问某一位的数。 譬如使  $[\mathbf{l},\mathbf{r}]$  每个数加上一个  $\mathbf{k}$ ,就是  $p_l \leftarrow p_l + k, p_{r+1} \leftarrow p_{r+1} - k$ ,最后做一遍前缀和。

就是对这个差分数列  $p_i$  做一遍前缀和就得到了原来的数列  $a_i$  , 即  $a_i$  相当于 p[1, i] 这个前缀和。

#### 证明如下:

$$\begin{split} &\sum_{i=1}^n a[i] = a[1] + a[2] + a[3] + \ldots + a[n] \\ &= (p[1]) + (p[1] + p[2]) + (p[1] + p[2] + p[3]) + \ldots + (p[1] + p[2] + p[3] + \ldots + p[n]) \\ &= n * p[1] + (n-1) * p[2] + (n-2) * p[3] + \ldots + 2 * p[n-1] + 1 * p[n] \\ &= n * (p[1] + p[2] + \ldots p[n]) - (0 * p[1] + 1 * p[2] + \ldots (n-1) * p(n)) \end{split}$$

这样,我们可以发现一个规律,即第二个多项式的系数为 i-1。我们用  $P2^{[i]}$  来维护这个数组、那么  $p_2[i] = (i-1)*p[i]$ . 并且在修改时候维护  $p_2[i]$  数组,即

$$p[l] + (l-1)*s, p[r+1] - (r+1-l)*s$$
只后便有了公式  $\sum_{i=1}^n a[i] = n*\sum_{i=1}^n p[i] - \sum_{i=1}^n p_2[i]$ 

### 举例

目前  $a = \{1, 2, 3, 3, 3, 3\}$  则对应的差分数列  $p = \{1, 1, 1, 0, 0, 0\}$ 

给 [3, 5] 加上首项为2、公差为 1 的等差数列,及  $\{2,3,4\}_{\circ}$  那么原数列变为  $a=\{1,2,5,6,7,3\}$ 对差分数列变为  $p = \{1, 1, 3, 1, 1, -4\}$ 

说明 a 区间加等差,相当于 p 区间加常数、端点单点修改。也就是区间加自然是给 P[l+1,r] 加上 d。

# 模板题

### 题目链接

我的OJ, http://47.110.135.197/problem.php?id=5226。

## 题目描述

输入一个长度为 n 的整数序列。

接下来输入 m 个操作,每个操作包含三个整数 l, r, c,表示将序列中 [l, r]之间的每个数加上 c。 请你输出进行完所有操作后的序列。

### 输入

第一行包含两个整数 n 和 m。

第二行包含 n 个整数,表示整数序列。

接下来 m 行, 每行包含三个整数 I, r, c, 表示一个操作。

### 输出

共一行,包含 n 个整数,表示最终序列。

点赞Mark关注该博主, 随时了解TA的最新博文 🔍



## 样例输入

```
1 6 3
2 1 2 2 1 2 1
3 1 3 1
4 3 5 1
5 1 6 1
```

### 样例输出

3 4 5 3 4 2

## 分析

这是一个一维差分的模板题。

## 数据分析

下面我们根据样例输入来分析一下, 样例输出是如何得到的。

初始状态的差分数组 diff 为 1 1 0 -1 1 -1。注意第一个下标为 1。

第一次操作为 1 3 1,那么就是 diff[1] = diff[1]+1,diff[4] = diff[4]-1,得到差分数组 diff 变为 2 1 0 -2 1 -1。

第二次操作为 3 5 1, 那么就是 diff[3] = diff[3]+1, diff[6] = diff[6]-1, 得到差分数组 diff 变为 2 1 1 -2 1 -2。

第三次操作为 1 6 1, 那么就是 diff[1] = diff[1]+1, diff[7] = diff[7]-1, 得到差分数组 diff 变为 3 1 1 -2 1 **-2 -1** °

因此, 最终的原始数组如下:

```
a[1] = diff[0] + diff[1] = 3
a[2] = diff[0] + diff[1] + diff[2] = 4
a[3] = diff[0] + diff[1] + diff[2] + diff[3] = 5
a[4] = diff[0] + diff[1] + diff[2] + diff[3] + diff[4] = 3
a[5] = diff[0] + diff[1] + diff[2] + diff[3] + diff[4] + diff[5] = 4
a[6] = diff[0] + diff[1] + diff[2] + diff[3] + diff[4] + diff[5] + diff[6] = 2
```

### 数据范围

从题目中知道, n 的最大值为 100000, 因此我们定义数组为 100004。

数组的每个数范围为 [-1000, 1000], c的范围为 [-1000, 1000], 操作数 m 最大值为 100000。因此我 们可以计算出, 经过 m 次操作后, 最大的数据为 1000+1000\*100000 = 10^8+1000, 在 int 的表示范 围内。同理最小的数据将是 -1000+(-1000\*100000)=-10^8-1000, 也在 int 的表示范围内。

## AC代码

```
#include <bits/stdc++.h>
   using namespace std;
3
4
   const int MAXN = 1e5+6;
   int data[MAXN] = {};
   int diff[MAXN] = {};
   int main() {
8
9
       int n,m;
       scanf("%d%d", &n, &m);
10
11
```

点赞Mark关注该博主, 随时了解TA的最新博文 🕟



```
12
        int i;<sub>13</sub>
                  for (i=1; i<=n; i++) {
 14
           scanf("%d", &data[i]);
           diff[i] = data[i] - data[i-1];
 15
 16
 17
 18
       for (i=0; i< m; i++) {
 19
           int l, r, c;
 20
           scanf("%d%d%d", &l, &r, &c);
 21
           diff[l] += c;
 22
           diff[r+1] -= c;
 23
 24
 25
        //输出
 26
        int ans=diff[0];
        for (i=1; i<=n; i++) {
 27
           ans += diff[i];
 28
           printf("%d ", ans);
 29
 30
        printf("\n");
 31
 32
 33
        return 0;
 34 }
     — (2) 二维差分
                                                     努力中的老周的专栏 ① 2054
前面部分我们介绍了一维差分,https://blog.csdn.net/justidle/article/details/103761632。下面我们扩展一下,来介...
一维前缀和、二维前缀和与一维差分、二维差分
                                                     前缀和 1.—维前缀和 引入:有一串长度为n的数列a1,a2,a3......an,再给出m个询问,每次询问给出L,R两个数,...
                                                                  评论
     优质评论可以帮助作者获得更高权重
                                                             (1)
前缀和、二维前缀和与差分的小总结
                                                         Zookkk的博客 ① 1万+
在了解二维前缀和之前,我们首先需要了解一下什么是前缀和。如果我给你一串长度为n的数列a1,a2,a3......an,再...
差分:一维差分,二维差分,树上差分
                                                    zhaochuanfei666的博客 0 24
一<mark>维差分 差分</mark>概念 对于一个数列 a_{i}, 我们需要维护的数据是"相邻两个数之差"。这种策略是,令pi=ai-ai-<mark>1</mark>p_i ...
排列计算(一维差分)模板_paranoidZ的博客
                                                                    10-29
先讲一下一维差分:原数组为a[],设差分数组为d[],用于解决对区间的操作问题。原数组记录每个点被访问的次数,开...
差分模板总结---一维差分和二维差分 老男孩的粉丝团
1、一维差分 基本原理:(b∏是a∏的差分数组,a∏数组是b数组的一维前缀和 void insert(int l,int r) ...
前缀和、差分
                                                      gg 43721152的博客 ① 58
文章目录—维前缀和二维前缀和—维差分 —维前缀和 前缀和是—项很重要的预处理,可以大大降低算法的复杂度…
三种差分格式解对流方程.docx
对于一维对流方程,列出了三种常见差分格式(FTFS、FTBS、FTCS)的求解过程,利用matlab进行求解并得出...
一维差分——【POJ - 3263】Tallest Cow_A half moon的...
差分的对象为牛的高度,多次对区间里牛的高度进行减(加同理)同一个数,差分只是每次在操作后在端点出改变了,差...
一维差分(附模板题) Running Snail
给区间[I, r]中的每个数a[]加上c:B[I] += c, B[r + 1] -= c(结合下方例题理解) 题目 传送门:797. 差分 输入一个长度为n...
一维差分
                                                     m0 46370829的博客 ① 135
大雪菜的课(笔记) 基础算法 (二) 3.差分 (1).一维差分 模板(一维差分 —— 模板题 AcWing 797. 差分) //设a[n],...
前缀和与差分
                                                      sd2207SUN的博客 ① 1806
概念 公式与推导 啥是前缀和?? 前缀和是一个数组的某项下标之前的所有数组元素的和。 通俗的讲,数组中以...
```

BAT新风向标:程序员有福利了! (速点,免费送)

人工智能已成为新时代的风向标, 如果你是对人工智能感兴趣的

CSDN学院 o 点赞Mark关注该博主,随时了解TA的最新博文 🔕



一维差分有一个n长度的歌单,某聚聚每轮听歌听到k处(含k)结束,现给出m个k,表示听了m轮,问每首歌听...

©2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页

关于我们 招贤纳士 广告服务 开发助手 ☎ 400-660-0108 ☑ kefu@csdn.net ⑤ 在线客服 工作时间 8:30-22:00 公安备案号11010502030143 京ICP备19004658号 京网文〔2020〕1039-165号 经营性网站备案信息 北京互联网违法和不良信息举报中心 网络110报警服务 中国互联网举报中心 家长监护 Chrome商店下载 ©1999-2020北京创新乐知网络技术有限公司 版权与免责声明 版权申诉



早点睡啊 C++的高精度加法





努力的老周:几个问题: 1. 你的s1. sz.







点赞Mark关注该博主,随时了解TA的最新博文 🕟





澳门大学博士申请相关总结 努力的老周: 不确定。只能说概率会高很

### 最新文章

AtCoder题解 —— AtCoder Beginner

Contest 186 — A - Brick

AtCoder题解 —— AtCoder Beginner

Contest 186 - B - Blocks on Grid

AtCoder题解 —— AtCoder Beginner

Contest 186 — D - Sum of difference — 前缀和

#### 2020

12月 11月 10月 09月 14篇 42篇 22篇 29篇 08月 06月 05月 04月 17篇 21篇 9篇 27篇 03月 02月 01月

70篇 66篇 16篇

2019年 107篇 2008年 1篇

2007年 8管

### 目录

### 差分概念

### 应用

举例

### 模板题

题目链接

题目描述

输入

输出

样例输入

样例输出

### 分析

数据分析

数据范围

AC代码

点赞Mark关注该博主, 随时了解TA的最新博文 😢









