YaleNUSCollege

YSC2239 Lecture 19

Regularization

Controlling the *Model Complexity*

Basic Idea

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i))$$

Such that:

 $f_{ heta}$ does not "overfit"

Can we make this more formal?

Basic Idea

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i))$$

 $\frac{\text{Such}}{\text{that:}} \quad \text{Complexity}(f_{\theta} \leq \beta$

How do we define

this?

Regularization Hyperparameter

Idealized Notion of Complexity

Complexity(
$$f_{\theta} \leq \beta$$
)

- Focus on complexity of linear models:
 - Number and kinds of features
- Ideal definition:

$$\mathbf{Complexity}(f_{\theta}) = \sum_{j=1}^{d} \mathbb{I}\left[\theta_{j} \neq 0\right]$$
 Number of non-zero parameters

Why?

Ideal "Regularization"

Find the best value of θ which uses fewer than β features.

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss} \left(y_i, f_{\theta}(x_i) \right)$$
Such that:
$$\frac{\mathbf{Such}}{\mathbf{that:}}$$

$$\mathbf{Complexity}(f_{\theta}) = \sum_{j=1}^{d} \mathbb{I} \left[\theta_j \neq 0 \right] \leq \beta$$

Combinatorial search problem – NP-hard to solve in general.

Ideal for

Feature Selection

but combinatorically difficult to optimize

Encourages sparse solutions

Spreads weight over features, but does not encourage sparsity

Ridge and LASSO Regression

Ridge Regression

"Ridge Regression" is a term for the following specific combination of model, loss, and regularization:

- Model: $\hat{\mathbb{Y}} = \mathbb{X}\hat{\theta}$
- Loss: Squared loss
- Regularization: L2 regularization

The **objective function** we minimize for Ridge Regression is average squared loss, plus an added penalty:

$$\hat{ heta}_{ ext{ridge}} = rg\min_{ heta} rac{1}{n} ||\mathbb{Y} - \mathbb{X} heta||_2^2 + \lambda \sum_{j=1}^d heta_i^2$$

LASSO Regression

"LASSO Regression" is a term for the following specific combination of model, loss, and regularization:

- Model: $\hat{\mathbb{Y}} = \mathbb{X}\hat{\theta}$
- Loss: Squared loss
- Regularization: L1 regularization

The **objective function** we minimize for LASSO Regression is average squared loss, plus an added penalty:

$$\hat{ heta}_{ ext{LASSO}} = rg \min_{ heta} rac{1}{n} ||\mathbb{Y} - \mathbb{X} heta||_2^2 + \lambda \sum_{j=1}^d | heta_i|$$

Summary of Regression Methods

Name	Model	Loss	Reg.	Objective
OLS	$\hat{\mathbb{Y}} = \mathbb{X}\hat{\theta}$	Squared loss	None	$\frac{1}{n} \mathbb{Y}-\mathbb{X}\theta _2^2$
Ridge Regression	$\hat{\mathbb{Y}} = \mathbb{X}\hat{ heta}$	Squared loss	L2	$rac{1}{n} \mathbb{Y}-\mathbb{X} heta _2^2+\lambda\sum_{j=1}^d heta_i^2$
LASSO	$\hat{\mathbb{Y}} = \mathbb{X}\hat{\theta}$	Squared loss	L1	$rac{1}{n} \mathbb{Y}-\mathbb{X} heta _2^2+\lambda\sum_{j=1}^d heta_i $

Hyperparameters vs. Parameters

Parameters are facts about the world that we want to estimate

- Commonly denoted by $p, heta, heta_i$

Statistics are the estimators of the parameters, based on our data

- Commonly denoted by $\hat{p}, \hat{\theta}, \hat{\theta}_i$

Hyperparameters are design *choices* we make in our modeling process that affect our model, but do not directly come from the data

- examples: regularization hyperparameter, degree of polynomial
- Commonly denoted by

Demo