LEARNING A NEURAL NET

"Learning" a neural network = determining the parameters of the network (weights and biases) required for it to model a desired function – The network must have sufficient capacity to model the function

- Ideally, we would like to optimize the network to represent the desired function everywhere
- However this requires knowledge of the function everywhere
- Instead, we draw "input-output" training instances from the function and estimate network parameters to "fit" the input-output relation at these instances.

Activation Functions

In a **neural network**, the **activation function** is responsible for transforming the summed weighted input from the node into the **activation** of the node or output for that input.

TYPES -

- Softmax
- ☐ Sigmoid
- □ Tanh
- ☐ ReLU

Softmax -

Other Activation functions -

Before we start let's have a look at a sample data set which will be used to train the neural network-

gender	age	hypertension	does_smoke	stroke
1	3	0	0	0
1	58	1	1	1
0	8	0	0	0
0	70	0	1	1
1	14	0	0	0
0	47	0	0	0
0	52	0	1	1
0	75	0	0	0
0	32	0	1	0