Period 1 n=1Period 2 n=2 $\ell = 1$ Period 3 n=35 6 7 B C N Period 4 n=416 17 18 S CI Ar Period 5 n=5Period 6 n=6 39 40 41 42 43 Y Zr Nb Mo Tc Period 7 $\ell = 3$ n=763 71 72 73 74 75 Eu Lu Hf Ta W Re 103 104 105 106 107 Lr Rf Db Sg Bh

HexaFrame periodic table

108 109 110 111 112 Hs Mt Ds Rg Cn

Pro: Coordinates can determine quantum numbers (QNs) easily

Pro: perform element number accounting easily

	Reflected in Traditional Table	Reflected in HexaFrame Table
Electron filling order of elements e.g. Rb 37 → Sr 38 → Y 39	Yes	Yes
Electron filling order of subshells e.g. $5s \rightarrow 4d \rightarrow 5p \rightarrow 6s$	Less intuitive	Yes
No. of elements of block (s:p:d:f = 1:3:5:7)	Difficult to see	Yes
Number of elements of each period	Less intuitive	Yes e.g. Period 5: (1 + 3 + 5)*2

	Traditional Table	HexaFrame Table
Extend to period 8	Need to find new space for block g	Already have a place for block g

References

- Blog post: The HexaFrame Periodic Table
- Other possible form of periodic table: Wikipedia
- Traditional regtangular periodic table:

