ULB

Symplectic groupoids of elliptic Poisson manifolds

Ralph L. Klaasse

Université Libre de Bruxelles

17th July, 2020 Friday Fish seminar – Online edition ULB

Report on work in progress on:

- ► The geometry of elliptic Poisson manifolds;
- ► Construction of their associated adjoint groupoids, in particular their adjoint symplectic groupoid.

Outline

- 1. Elliptic Poisson manifolds
- 2. Background on symplectic groupoids
- 3. Groupoids for elliptic Poisson manifolds

1. Elliptic Poisson manifolds

Poisson structures of divisor-type Geometry of elliptic Poisson manifolds Blowing-up elliptic Poisson structures

- 2. Background on symplectic groupoids
- 3. Groupoids for elliptic Poisson manifolds

Poisson structures of divisor-type

Definition

A divisor on X is a pair (U, σ) of a line bundle $U \to X$ and a section $\sigma \in \Gamma(U)$ whose zero set $Z_{\sigma} = \sigma^{-1}(0)$ is nowhere dense.

A divisor (U, σ) induces a divisor ideal $I_{\sigma} := \sigma(\Gamma(U^*))$.

Example

- ▶ **Log divisors** where σ has transverse zeroes along a hypersurface Z. Locally $I_Z = \langle z \rangle$;
- ▶ Elliptic divisors where σ vanishes along a codimension-two submanifold D where its normal Hessian $\operatorname{Hess}(\sigma) \in \Gamma(D; \operatorname{Sym}^2 N^*D \otimes U)$ is definite. Locally $I_{|D|} = \langle r^2 \rangle$.

Poisson structures of divisor-type

A Poisson manifold (X^{2n}, π) gives rise to a pair, namely $\operatorname{div}(\pi) := (\wedge^{2n} TX, \wedge^n \pi)$, with ideal $I_{\pi} \subseteq C^{\infty}(X)$.

Definition

A Poisson structure π on X is:

- ▶ **log-Poisson** if $div(\pi)$ is a log divisor;
- **elliptic Poisson** if $div(\pi)$ is an elliptic divisor.

Poisson structures of divisor-type

Definition

A Poisson structure π on X is:

- ▶ **log-Poisson** if $div(\pi)$ is a log divisor;
- elliptic Poisson if $div(\pi)$ is an elliptic divisor.

The first of these: also *b*-Poisson, log-symplectic, *b*-symplectic (**Guillemin–Miranda–Pires** and several others).

The second are due to Cavalcanti-Gualtieri via stable GCS's.

Let (X, π) be elliptic Poisson. Then π is nondegenerate on $X \setminus D$. The degeneracy locus D is Poisson with $\pi_D \in \text{Poiss}(D)$.

To describe π near/on D, we use Lie algebroids.

Given π we get an elliptic ideal I_{π} . This defines the **elliptic** tangent bundle $\mathcal{A}_{|D|} = TX(-\log |D|) \to X$, with

$$\Gamma(\mathcal{A}_{|D|}) \cong \left\{ v \in \Gamma(TX) \, | \, \mathcal{L}_v I_{|D|} \subseteq I_{|D|} \right\}.$$

Locally $\Gamma(\mathcal{A}_{|D|}) = \langle r \partial_r, \partial_\theta, \partial_{x_i} \rangle$ with (r, θ) normal to D.

We can 'lift' the Poisson structure π to $\mathcal{A}_{|D|}$, giving $\pi' \in \Gamma(\wedge^2 \mathcal{A}_{|D|})$ with $[\pi', \pi'] = 0$ and $\rho_{\mathcal{A}_{|D|}}(\pi') = \pi$.

The structure π' is nondegenerate, hence we get an elliptic symplectic form $\omega \in \operatorname{Symp}(\mathcal{A}_{|D|})$ with $\omega = \pi'^{-1}$.

We can study π using ω .

The elliptic tangent bundle has several **residue maps**, which are cochain maps. Assume that D carries a **coorientation** \mathfrak{o}_D .

- ▶ The elliptic residue is $\operatorname{Res}_D : \Omega^{\bullet}(\mathcal{A}_{|D|}) \to \Omega^{\bullet-2}(D)$;
- ▶ The radial residue is $\operatorname{Res}_r : \Omega^{\bullet}(\mathcal{A}_{|D|}) \to \Omega^{\bullet-1}(\operatorname{At}(S^1ND));$
- The θ -residue is $\operatorname{Res}_{\theta} \colon \Omega_0^{\bullet}(\mathcal{A}_{|D|}) \to \Omega^{\bullet-1}(D)$, with $\Omega_0^{\bullet}(\mathcal{A}_{|D|}) := \ker(\operatorname{Res}_D)$.

Locally for $\omega = d \log r \wedge d\theta \wedge \alpha + d \log r \wedge \beta + d\theta \wedge \gamma + \eta$,

- $Res_D(\omega) = i_D^*(\alpha);$
- $Res_{\theta}(\omega) = i_D^*(\gamma).$

Note that $\mathrm{Res}_r \colon \Omega_0^{ullet}(\mathcal{A}_{|D|}) o \Omega^{ullet-1}(D).$

We apply these residue maps to powers of our symplectic form ω .

In particular, $\lambda := \operatorname{Res}_D(\omega) \in \Omega^0(D; \mathbb{R})$ (locally constant).

We say that π is **zero** or **nonzero** elliptic Poisson depending on λ .

Remark

The case $\lambda=0$ corresponds to stable GC geometry.

Using Moser methods we obtain pointwise Darboux models:

Proposition

Let $(X^{2n}, |D|, \pi)$ be elliptic Poisson. Then near $x \in D$ we have

$$\pi = r\partial_r \wedge \partial_{x_1} + \partial_{\theta} \wedge \partial_{x_2} + \pi_0 \text{ if } \lambda = 0;$$

$$\pi = \lambda r \partial_r \wedge \partial_\theta + \pi_0 \text{ if } \lambda \neq 0,$$

where $\lambda = \operatorname{Res}_D(\omega)(p) \in \mathbb{R}$, and π_0 is nondegenerate.

We see π_D has rank 2n-4 if $\lambda=0$, and rank 2n-2 if $\lambda\neq0$.

More globally, ω orients $A_{|D|}$ and hence TX, so X is **oriented**.

We can apply Res_D not just to ω , but to its spinor line $\langle e^{\omega} \rangle$.

This gives:

When $\lambda = 0$, locally $\operatorname{Res}_D(e^{\omega}) = \pm \alpha_1 \wedge \alpha_2 \wedge e^{\beta}$, where $(\alpha_1, \alpha_2) = (\operatorname{Res}_r, \operatorname{Res}_{\theta})(\omega) \in \Omega^1_{\operatorname{cl}}(D)^2$.

In particular (locally)
$$\operatorname{Res}_q(\omega^n) = \pm n(n-1)\alpha_1 \wedge \alpha_2 \wedge \beta^{n-2} \neq 0.$$

Here β is pointwise inverse to π_D , and is **regular of corank** 2. Note that β is not globally closed on D, but $\alpha_1 \wedge \alpha_2 \wedge d\beta = 0$.

▶ When $\lambda \neq 0$, we instead define

$$\omega_D := \frac{1}{2\lambda} \mathrm{Res}_D(\omega^2).$$

After some computing, we see that

$$\operatorname{Res}_D(e^{\omega}) = \lambda e^{\omega_D} \neq 0.$$

Thus ω_D is symplectic and inverse to π_D , and nondegenerate.

Thus:

 \triangleright X is always oriented by π ;

Given a coorientation \mathfrak{o}_D for D:

- ▶ If $\lambda = 0$, then π_D is corank-2 regular (almost 2-cosymplectic);
- If $\lambda \neq 0$, then π_D is nondegenerate.

When there is no coorientation, things are more involved.

There is also a semi-global normal form.

- Moser methods provide uniqueness;
- ► Need to build the models (c.f. Witte).

Again assume a coorientation \mathfrak{o}_D is given. Then (using $I_{|D|}$) there is a unique compatible complex structure on $p \colon ND \to D$.

Choose a complex connection ∇ on ND with curvature K. Then can construct elliptic one-forms $\rho, \Theta \in \Omega^1(ND; \mathcal{A}'_{|D|})$ with $d\rho = -\mathrm{Re}(p^*K)$ and $d\Theta = -\mathrm{Im}(p^*K)$.

Theorem (Witte)

Let $(X, D, \mathfrak{o}_D, \pi)$ be a cooriented elliptic Poisson manifold. Then given ∇ there exists a tubular neighbourhood φ of D on which:

- If $\lambda=0$, then $\omega\cong\rho\wedge p^*(\alpha_1)+\Theta\wedge p^*(\alpha_2)+p^*(\omega_D)$, where
 - $(\alpha_1, \alpha_2) = (\operatorname{Res}_r(\omega), \operatorname{Res}_{\theta}(\omega));$
- ▶ If $\lambda \neq 0$, then $\omega \cong \lambda \rho \wedge \Theta + p^*(\omega_D)$ with ω_D from before.

More can be said about choices et cetera.

Using this normal form, similar to the log-Poisson case:

Proposition

Let $(X, D, \mathfrak{o}_D, \pi)$ be a cooriented zero elliptic Poisson manifold. Then π can be perturbed slightly so that it is **proper**, i.e. the induced corank-2 Poisson structure π_D on D has compact leaves.

In this case $p_{(\alpha_1,\alpha_2)}\colon D\to T^2$ is a fibration.

Blowing-up elliptic Poisson structures

We can **blow-up** elliptic Poisson structures to be log-Poisson. Given an elliptic pair $(X, I_{|D|})$, by doing real blow-up we get

$$p: (\widetilde{X}, Z) \to (X, D),$$

with $\widetilde{X} = \mathrm{Bl}_D(X)$ and $Z = S^1 ND = \partial \widetilde{X}$.

Proposition (c.f. Cavalcanti-Gualtieri, Kirchhoff-Lukat)

Let $(X, I_{|D|})$ be an elliptic pair with blow-up $p: (\widetilde{X}, Z) \to (X, D)$. Then p induces a Lie algebroid morphism $(\varphi, p): \mathcal{A}_Z \to \mathcal{A}_{|D|}$ with $\varphi \equiv dp$ on sections, which is a fiberwise isomorphism. Moreover, we have $\operatorname{Res}_Z \circ \varphi^* = p^* \circ \operatorname{Res}_r$ on $\Omega_0^{\bullet}(X; \mathcal{A}_{|D|})$.

Here $A_Z = T\widetilde{X}(-\log Z)$ is the log-tangent bundle.

Blowing-up elliptic Poisson structures

Next, for elliptic Poisson manifolds we get (c.f. Polishchuk):

Proposition

Let (X, D, π) be an elliptic Poisson manifold with blow-up $p: (\widetilde{X}, Z) \to (X, D)$. Then (\widetilde{X}, Z) admits a unique log-Poisson structure $\widetilde{\pi}$ such that p is a Poisson map: $p_*(\widetilde{\pi}) = \pi$.

When $\lambda = 0$:

Note that if π is proper, then so will be $\widetilde{\pi}$, with $\alpha = \operatorname{Res}_{Z}(\widetilde{\omega})$ satisfying $\alpha = p|_{D}^{*}(\alpha_{1})$ for $\alpha_{1} = \operatorname{Res}_{r}(\omega)$, giving $p_{\alpha} \colon Z \to S^{1}$.

Blowing-up elliptic Poisson structures

Summarizing, the blow-up procedure gives:

$$(T\widetilde{X}(-\log Z), \widetilde{\omega}^{-1}) \longrightarrow (T\widetilde{X}, \widetilde{\pi})$$

$$\varphi \downarrow \qquad \qquad T_{p} \downarrow$$

$$(TX(-\log |D|), \omega^{-1}) \longrightarrow (TX, \pi)$$

1. Elliptic Poisson manifolds

Outline

- 1. Elliptic Poisson manifolds
- 2. Background on symplectic groupoids
 Symplectic groupoids
 Elementary modification and blow-ups
- 3. Groupoids for elliptic Poisson manifolds

Symplectic groupoids

We denote groupoids by $\mathcal{G} \rightrightarrows X$ and structure maps:

$$\mathcal{G}^{(2)} \xrightarrow{m} \mathcal{G} \xleftarrow{\operatorname{id}} X$$

A Poisson groupoid carries a multiplicative Poisson structure $\pi_{\mathcal{G}}$, i.e. $\operatorname{Graph}(m)$ is coisotropic in $(\mathcal{G} \times \mathcal{G} \times \mathcal{G}, \pi_{\mathcal{G}} \oplus \pi_{\mathcal{G}} \oplus -\pi_{\mathcal{G}})$.

Symplectic groupoids

A Poisson groupoid is **symplectic** if $\pi_{\mathcal{G}}$ is nondegenerate.

A Lie groupoid $\mathcal{G} \rightrightarrows X$ has a Lie algebroid $\operatorname{Lie}(\mathcal{G}) \to X$, which it integrates. Not all Lie algebroids are integrable.

A Poisson manifold (X,π) has a Lie algebroid $T_\pi^*X \to X$. If it is integrable, its ssc integration is symplectic. Not all integrations need to be symplectic.

The ssc integration $\mathcal{G}(\mathcal{A})$ of a Lie algebroid \mathcal{A} , also called its **Weinstein groupoid**, can be seen as the largest integration.

The smallest integration is $\mathrm{Adj}(\mathcal{A})$, the **adjoint groupoid**, if it exists.

Given any integration $\mathcal G$ of $\mathcal A$, there are groupoid morphisms

$$\mathcal{G}(\mathcal{A}) \to \mathcal{G} \to \mathrm{Adj}(\mathcal{A}).$$

Debord showed the adjoint groupoid exists if \mathcal{A} is almost-injective, i.e. if its anchor is injective on sections.

Androulidakis–Zambon define a Poisson manifold (X,π) to be almost-regular if $\mathcal{F}_{\pi}:=\pi^{\sharp}(\Gamma(T^*X))\subseteq\Gamma(TX)$ is projective.

This is precisely the case where its holonomy groupoid $\mathcal{H}(\mathcal{F}_{\pi})$ is smooth, and thus when it admits a smooth adjoint integration. They also show it is a Poisson groupoid.

Any generically nondegenerate Poisson structure is almost-regular.

So, log- and elliptic Poisson manifolds have adjoint integrations.

Androulidakis–Zambon also show that if π is generically nondegenerate, then the adjoint groupoid for T_{π}^*X is symplectic.

That means that all of its integrations will be symplectic.

Instead of T_{π}^*X , we will integrate \mathcal{R}_{π} with $\Gamma(\mathcal{R}_{\pi})\cong\mathcal{F}_{\pi}$ (they are isomorphic in our cases).

For (X, π) elliptic Poisson, there is a sequence

$$T_{\pi}^*X \to \mathcal{R}_{\pi} \to TX(-\log|D|) \to TX.$$

For $(\widetilde{X},\widetilde{\pi})$ log-Poisson, we also have

$$T_{\widetilde{\pi}}^*\widetilde{X} \to \mathcal{R}_{\widetilde{\pi}} \to T\widetilde{X}(-\log Z) \to T\widetilde{X}.$$

We first recall how to construct groupoids for log-Poisson.

Example

The pair groupoid $\operatorname{Pair}(X) = X \times X \rightrightarrows X$, $\operatorname{Lie}(\operatorname{Pair}(X)) = TX$.

Example

Given a fibration $f: X \to X'$, there is the **relative pair groupoid**

$$\operatorname{Pair}_f(X) = X \times_f X = \{(x,y) \in \operatorname{Pair}(X) \,|\, f(x) = f(y)\} \subseteq \operatorname{Pair}(X).$$

with $\operatorname{Lie}(\operatorname{Pair}_f(X)) = \ker Tf$.

Let $(A, B) \to (X, Z)$ be a Lie algebroid pair.

Definition (Gualtieri-Li)

The **lower elem. modif.** is $[A:B] \rightarrow X$ with

$$\Gamma([A:B]) \cong \{ v \in \Gamma(A) \mid v \mid_{Z} \in \Gamma(B) \}.$$

There is also **upper elem. modif.** $\{A:B\}$ using a Lie algebroid copair, and $[A:B]^* \cong \{A^*:B^*\}$ and $\{A:B\}^* \cong [A^*:B^*]$.

There are natural morphisms $[A:B] \to A$ and $A \to \{A:B\}$.

There is a blow-up groupoid $[\mathcal{G}:\mathcal{H}]$ given a closed Lie groupoid pair.

Theorem (Gualtieri-Li)

Let $((\mathcal{G}, \pi_{\mathcal{G}}), (\mathcal{H}, \pi_{\mathcal{H}})) \rightrightarrows (X, Z)$ be a closed Poisson groupoid pair with $\operatorname{Lie}(\mathcal{G}, \pi_{\mathcal{G}}) = (\mathcal{A}, \mathcal{A}^*)$ and $\operatorname{Lie}(\mathcal{H}, \pi_{\mathcal{H}}) = (\mathcal{B}, \mathcal{B}^*)$. If the induced transverse Poisson structure on $N^*\mathcal{H}$ is degenerate, then $[\mathcal{G}:\mathcal{H}]$ inherits a multiplicative Poisson structure $\widetilde{\pi}_{\mathcal{G}}$ via blow-up and there is an induced surjective comorphism $\mathcal{A}^*|_{Z} \to \mathcal{B}^*$ such that

$$\operatorname{Lie}([\mathcal{G}:\mathcal{H}],\widetilde{\pi}_{\mathcal{G}}) = ([\mathcal{A}:\mathcal{B}], \{\mathcal{A}^*:\mathcal{B}^*\}).$$

In particular, in general $\operatorname{Lie}([\mathcal{G}:\mathcal{H}])=[\mathcal{A}:\mathcal{B}]$, and $[\mathcal{G}:\mathcal{H}]^c$ is adjoint if \mathcal{G} was adjoint, where $\mathcal{G}^c\subseteq\mathcal{G}$ is largest s-connected wide Lie subgroupoid by taking conn. components of identity in each s-fiber.

Theorem (Gualtieri-Li)

Let $(\widetilde{X},\widetilde{\pi})$ be proper log-Poisson with $p_{\alpha}\colon Z\to S^1$. Then:

- ▶ The log pair groupoid $\operatorname{Pair}(\widetilde{X}, Z) := [\operatorname{Pair}(\widetilde{X}) : \operatorname{Pair}^{c}(Z)]^{c}$ is the adjoint Poisson groupoid integrating $T\widetilde{X}(-\log Z)$, and carries a canonical log-Poisson structure $\widetilde{\sigma}$;
- ► The log-Poisson groupoid $\operatorname{Pair}_{\pi}(\widetilde{X}, Z) := [\operatorname{Pair}(\widetilde{X}) : \operatorname{Pair}_{p_{\alpha}}^{c}(Z)]$ is the adjoint symplectic groupoid (with $\widetilde{\tau}$) integrating the Poisson algebroid $T_{\widetilde{\pi}}^{\widetilde{\chi}}\widetilde{X} \cong \mathcal{R}_{\widetilde{\pi}} = [T\widetilde{X} : \ker\langle\alpha\rangle].$

The following natural groupoid morphisms are Poisson:

$$(\operatorname{Pair}_{\widetilde{\pi}}(\widetilde{X}, Z), \widetilde{\tau}) \to (\operatorname{Pair}(\widetilde{X}, Z), \widetilde{\sigma}) \to (\operatorname{Pair}(\widetilde{X}), \widetilde{\pi} \oplus -\widetilde{\pi}).$$

Summarizing, we get for (\widetilde{X}, Z) proper log-Poisson with α :

$$(\operatorname{Pair}_{\widetilde{\pi}}(\widetilde{X}, Z), \widetilde{\tau}) \longrightarrow (\operatorname{Pair}(\widetilde{X}, Z), \widetilde{\sigma}) \longrightarrow (\operatorname{Pair}(\widetilde{X}), \widetilde{\pi} \oplus -\widetilde{\pi})$$

$$\text{Lie} \downarrow \downarrow$$

$$[T\widetilde{X}: \ker\langle\alpha\rangle] \longrightarrow ([T\widetilde{X}: TZ], \widetilde{\omega}^{-1}) \longrightarrow (T\widetilde{X}, \widetilde{\pi})$$

Outline

- 1. Elliptic Poisson manifolds
- 2. Background on symplectic groupoids
- 3. Groupoids for elliptic Poisson manifolds

Quotients over varying base The elliptic pair groupoid Zero elliptic Poisson manifolds Nonzero elliptic Poisson manifolds

Groupoids for elliptic Poisson manifolds

Consider the situation $p: (\widetilde{X}, Z, \widetilde{\pi}) \to (X, D, \pi)$.

The plan is to:

- Blow-up the elliptic Poisson structure (done);
- Construct groupoids over (\widetilde{X}, Z) via Gualtieri–Li;
- Quotient these along p to groupoids over (X, D).

Quotients over varying base

Mackenzie defines the notion of a (smooth) congruence, as a pair $(S,R)\subseteq (\mathcal{G}\times\mathcal{G},X\times X)$ satisfying certain conditions.

Theorem (Mackenzie)

There is a one-to-one correspondence between smooth congruences and Lie groupoid fibrations $(F, f): (\mathcal{G}, X) \to (\mathcal{G}', X')$ where $\mathcal{G}' = \mathcal{G}/S$ and X' = X/R.

But, p is not a surjective submersion: congruences are not smooth.

However, $p|_{\widetilde{X}\setminus Z}$ and $p|_Z\colon Z o D$ are.

Quotients over varying base

Can take a disjoint union of two **minimal** smooth congruences over saturated neighbourhoods!

Theorem

Let $p: (X, Z) \to (X, D)$ be the blow-up of an elliptic pair. Let $\widetilde{\mathcal{G}} \rightrightarrows \widetilde{X}$ be a Lie groupoid for which Z is $\widetilde{\mathcal{G}}$ -invariant, and let $(S_Z, R_Z) \subseteq (\operatorname{Pair}(\widetilde{\mathcal{G}}_Z), \operatorname{Pair}(Z))$ be a minimal smooth congruence on the restriction $\widetilde{\mathcal{G}}_Z \rightrightarrows Z$ subordinate to $p|_Z \colon Z \to D$. Then:

- ▶ There exists a congruence $(S, R) \subseteq (\operatorname{Pair}(\widetilde{\mathcal{G}}), \operatorname{Pair}(\widetilde{X}))$ on $\widetilde{\mathcal{G}}$ subordinate to p which restricts to (S_Z, R_Z) over Z, and is smooth and minimal over $\widetilde{X} \setminus Z$;
- ▶ The quotient groupoid $\mathcal{G} := \widetilde{\mathcal{G}}/S \rightrightarrows X$ is smooth and has a Lie groupoid morphism $(P,p) : (\widetilde{\mathcal{G}},\widetilde{X}) \to (\mathcal{G},X)$, which is a Lie groupoid isomorphism over $\widetilde{X} \setminus Z$.

The elliptic pair groupoid

Consider $p \colon (\widetilde{X}, Z, \widetilde{\pi}) \to (X, D, \pi)$ with coorientation \mathfrak{o}_D . Then $Z = S^1 ND$ becomes a principal U(1)-bundle $p|_D \colon Z \to D$.

Theorem

The minimal quotient $\operatorname{Pair}(X,|D|) := \operatorname{Pair}(\widetilde{X},Z)/p \rightrightarrows X$ is the adjoint groupoid for $TX(-\log|D|)$.

The elliptic pair groupoid

Need to also quotient the log-Poisson structure $\widetilde{\sigma}$ on $\operatorname{Pair}(\widetilde{X}, Z)$.

Zero elliptic Poisson manifolds

Consider $p: (\widetilde{X}, Z, \widetilde{\pi}) \to (X, D, \pi)$ with coorientation \mathfrak{o}_D , assume $\lambda = 0$, proper, with $(\alpha_1, \alpha_2) = (\operatorname{Res}_r, \operatorname{Res}_\theta)(\omega)$ and $\alpha = p^*(\alpha_1)$.

Theorem?

The adjoint symplectic groupoid integrating $T_\pi^*X\cong \mathcal{R}_\pi$ is given by

$$\operatorname{Pair}_{\pi}(X, |D|) := [\operatorname{Pair}(\widetilde{X}) : \operatorname{Pair}_{p_{(\alpha_1, \alpha_2)} \circ p}(Z)]/p \rightrightarrows X.$$

Further, the natural groupoid morphisms $\operatorname{Pair}_{\pi}(X,|D|) \to \operatorname{Pair}(X,|D|) \to \operatorname{Pair}(X)$ are Poisson.

Zero elliptic Poisson manifolds

The aim is thus to get the following picture:

$$([\operatorname{Pair}(\widetilde{X}):\operatorname{Pair}_{(\alpha,\beta)\circ p}(Z)],\Omega) \to (\operatorname{Pair}_{\widetilde{\pi}}(\widetilde{X},Z),\widetilde{\tau}) \longrightarrow (\operatorname{Pair}(\widetilde{X},Z),\widetilde{\sigma}) \longrightarrow (\operatorname{Pair}(\widetilde{X}),\widetilde{\pi} \oplus -\widetilde{\pi})$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Nonzero elliptic Poisson manifolds

Consider $p:(X,Z,\widetilde{\pi})\to (X,D,\pi)$ with coorientation \mathfrak{o}_D , assume $\lambda = 0$ with nondegenerate Poisson structure π_D .

Theorem?

The adjoint symplectic groupoid integrating $T_{\pi}^*X\cong \mathcal{R}_{\pi}$ is given by

$$\operatorname{Pair}_{\pi}(X,|D|) := \boxed{???}/p \Rightarrow X.$$

Further, the natural groupoid morphisms $\operatorname{Pair}_{\pi}(X,|D|) \to \operatorname{Pair}(X,|D|) \to \operatorname{Pair}(X)$ are Poisson.

Nonzero elliptic Poisson manifolds

Again we aim for the following picture:

$$(\overbrace{\stackrel{???}{???}}, \Omega) \longrightarrow (\operatorname{Pair}_{\widetilde{\pi}}(\widetilde{X}, Z), \widetilde{\tau}) \longrightarrow (\operatorname{Pair}(\widetilde{X}, Z), \widetilde{\sigma}) \longrightarrow (\operatorname{Pair}(\widetilde{X}), \widetilde{\pi} \oplus -\widetilde{\pi})$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow \qquad$$

Questions

- ► Construction of adjoint symp. groupoid for nonzero elliptic.
- Quotient procedure for Poisson/pre-symplectic groupoids?
- ► Can we perform blow-up using elliptic ideals, not using (\widetilde{X}, Z) ?

Thanks for your attention.

