Transformer

2022-01-30

1		总	1+	ho	4/5
	١.	115.4	141	**	-74

- 1.1.输入
- 1. 2. Encoder
- 1. 3. Decoder

2. 模型须知

- 2. 1. 模型参数
- 2. 2. 输入与输出
- 2. 3. 注意

3. Encoder

- 3. 1. 输入
 - 3. 1. 1. Input Embedding
 - 3. 1. 2. Positional Encoding
 - 3.1.3. 输入整合
- 3. 2. Attention
 - 3. 2. 1. Self-Attention
 - 3. 2. 2. Multi-head Attention
 - 3. 2. 3. add
 - 3. 2. 4. norm
- 3. 3. 线性层
 - 3. 3. 1. Feed Forward
 - 3. 3. 2. add
 - 3. 3. 3. norm
- 3. 4. Encoder block总结

4. Decoder

- 4. 1. 输入
 - 4. 1. 1. Output Embedding
 - 4. 1. 2. Positional Encoding
 - 4.1.3. 输入整合
- 4. 2. Masked Attention
 - 4. 2. 1. Masked Multi-Head Attention
- 4. 3. Multi-Head Attention
- 4. 4. 线性层

5. 结果输出

- 5. 1. Linear
- 5. 2. Softmax
- 5. 3. Loss

6. 预测

7. 参考文档

1. 总体架构

模型分为Encoder和Decoder两个部分,下图为模型的架构图:

下面,以翻译为例,介绍Transformer的工作过程:

1.1. 输入

通过Input Embedding和Positional Encoding,将句子表示为编码,记为X。

1.2. Encoder

对X,经过Encoder处理,得到单词的编码信息矩阵,记作C。该矩阵的维度与输入矩阵X完全一致。

1.3. Decoder

将Encoder输出的编码信息矩阵C传入Decoder中,该矩阵提供Decoder Attention中的K、V。Decoder会根据前i个单词翻译第i+1个单词,翻译时为了防止信息泄漏,需要进行mask操作。

2. 模型须知

2.1. 模型参数

1. batch_size

批量大小

2. src_len

Encoder端句子的最大长度

3. tgt_len

Decoder端句子的最大长度

4. d_model

词的Embedding Size

5. d_k (d_q)

矩阵Q、K的列数

6. d_v

矩阵V的列数

7. d ff

Feed Forward的隐藏层个数

8. src_vocab_size

源端单词个数

9. tgt_vocab_size

目标端单词个数

2.2. 输入与输出

```
1enc_inputdec_output2['我 是 中国人 P', 'S i am chinese P', 'i am chinese P E'],3['我 有 一只 猫' , 'S i have a cat', 'i have a cat E']
```

- enc_input
 encoder input
- dec_input decoder input
- 3. dec_output decoder output,相当于y_true

2.3. 注意

对于变量符号,为了方便起见,有重名的情况。比如在Encoder和Decoder中,Attention都有可能使用Q符号。因此,变量符号需要根据所在章节判断。

3. Encoder

3.1. 输入

3.1.1. Input Embedding

使用word2vec,对X进行词向量编码,得到 X_{word_emb} 。

 X_{word_emb} 的shape为[batch_size, src_len, d_model]。

3.1.2. Positional Encoding

$$PE(pos, 2i) = \sin\left(pos/10000^{2i/d_{
m model}}
ight) \ PE(pos, 2i+1) = \cos\left(pos/10000^{2i/d_{
m model}}
ight) \ \ (5)$$

其中,pos为一句话中某词的位置,取值范围为 $[0, sequence_length)$ i指词向量的维度序号,取值范围为 $[0, embedding_dimension/2)$

因此, Positional Encoding结果的shape为[batch_size, src_len, d_model]。

记Positional Encoding的结果为 $X_{pos_encoding}$,下图为Positional Encoding的示例图:

3.1.3. 输入整合

 ${
m X}={
m X}_{embedding}={
m X}_{word_emb}+{
m X}_{pos_encoding}$ shape为[batch_size, src_len, d_model]。

3.2. Attention

Encoder的Multi-Head Attention由多个Self-Attention组成,Self-Attention接收的是输入(单词的表示向量x组成的矩阵X)或者上一个Encoder block的输出,下面将对Self-Attention进行介绍。

3.2.1. Self-Attention

序列X与自己进行注意力计算,即序列X同时提供 $Q \times K \times V$ 。计算方式如下所示:

$$Q = X W^Q$$
 $K = X W^K$
 $V = X W^V$
其中, W^Q 、 W^K 、 W^V 为可学习的参数矩阵
 Q 的 $shape$ 为 $[batch_size, src_len, d_k]$
 K 的 $shape$ 为 $[batch_size, src_len, d_v]$
 V 的 $shape$ 为 $[batch_size, src_len, d_v]$

整体计算流程如下:

Scaled Dot-Product Attention

Self-Attention 结构

简而言之,已知X和变换矩阵 \mathbf{W}^Q 、 \mathbf{W}^K 、 \mathbf{W}^V ,经过线性变换可得 \mathbf{Q} 、 \mathbf{K} 、 \mathbf{V} ,然后再基于 \mathbf{Q} 、 \mathbf{K} 、 \mathbf{V} ,经过点积计算和softmax计算,得到最终的输出 \mathbf{Z} 。

Q 、 K 、 V生成过程:

得到Q、K、V之后,就可以计算出Self-Attention的输出了。计算公式如下:

Attention
$$(Q, K, V) = \operatorname{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V$$

其中, d_k 是矩阵 Q, K 的列数,即向量维度

最终结果生成过程:

$$\begin{array}{c|c} \mathbf{Q} & \mathbf{K}^\mathsf{T} & \mathbf{V} \\ \hline & \times & & \\ \hline & & & \\ \end{array}$$
 softmax (
$$\begin{array}{c|c} \mathbf{Z} \\ \hline & & \\ \end{array}$$

其中, d_k 为Q、 K矩阵的列数,即向量维度,除以 $\sqrt{d_k}$ 可以起到一定的归一化作用。

需要注意的是,在上述Self-Attention的计算过程中,通常基于mini-batch来进行计算,也就是一次计算多个句子。而一个mini-batch是由多个不等长的句子组成的,我们需要按照mini-batch中最大的句长对剩余的句子进行补齐,比如使用P作为填充字符,这个过程叫做padding。

对 $Q\,K^T$ 的结果进行mask,即将padding位置的结果置为-inf,那么,再进行softmax计算时便不受影响。

3.2.2. Multi-head Attention

多个Self-Attention的组合,即定义多组 $Q \times K \times V$,每个Self-Attention生成一个输出,将多个输出进行Concat操作后,通过一次Linear变换,得到最终输出。

Multi-Head Attention架构图如下:

Multi-Head Attention Linear Concat Scaled Dot-Product Attention V Linear Linear Linear

首先将输入X进行线性变换得到Q、K、V,然后分别传递到 h 个不同的 Self-Attention 中,计算得到 h 个输出矩阵Z。下图是 h=8 时候的情况,此时会得到 8 个输出矩阵Z。

然后,将8个输出矩阵Z进行Concat后得到一个矩阵,再将该矩阵进行线性变换后,得到最终输出。如下图所示:

可以看到 Multi-Head Attention 输出的矩阵Z与其输入的矩阵X的维度是一样的。

3.2.3. add

残差连接。

X = X + Multi-headAttention(Q, K, V)

3.2.4. norm

对X进行Layer Normlization处理,即X = Layer Normalization(X)。

其过程如下图所示,其中,N为batch_size大小,C相当于词的个数,Merged Spatial Dimensions相当于词向量。

3.3. 线性层

3.3.1. Feed Forward

两层的线性变换,第一层使用ReLU作为激活函数,第二层不使用激活函数。对应公式如下:

$$X = Linear(ReLU(Linear(X)))$$
 (8)

线性变换后,再经过残差连接和Layer Norm处理,得到最终的输出,且维度与输入X的维度一致。

3.3.2. add

对线性变化的结果进行残差连接。

X = X + Linear(ReLU(Linear(X)))

3.3.3. norm

对X进行Layer Normlization处理。

X = Layer Normalization(X)

3.4. Encoder block总结

通过上面描述的 Multi-Head Attention,、Feed Forward、 Add & Norm 操作可以构造出一个 Encoder block。Encoder block 接收输入矩阵 $X_{batch_size \times src_len \times d_model}$,并输出一个矩阵 $O_{batch_size \times src_len \times d_model}$ 。通过多个 Encoder block 叠加就可以组成 Encoder。

第一个 Encoder block 的输入为句子单词的表示向量矩阵,后续 Encoder block 的输入是前一个 Encoder block 的输出,最后一个 Encoder block 输出的矩阵就是**编码信息矩阵** C,这一矩阵后续会用到 Decoder 中。

4. Decoder

该结构的主要功能点如下:

- 1. 包含两个Multi-Head Attention
 - 1. Masked Multi-Head Attention
 - 2. Multi-Head Attention: K、V由Encoder的编码信息矩阵C提供,而Q使用Masked Multi-Head Attention的输出进行计算。
- 2. 最后的softmax层计算预测概率

4.1. 输入

目标序列的前序序列,后续简称dec input。

4.1.1. Output Embedding

对 dec_i nput进行word2vec词向量编码,后续简称 $X_dec_{word\ emb}$ 。

4.1.2. Positional Encoding

同Encoder的Positional Encoding,后续简称 $X_{dec}_{pos\ encoding}$ 。

4.1.3. 输入整合

 $X_{dec} = X_{dec} = X_{dec} = X_{dec} + X_{dec} = X_{dec} + X_{dec} = X_{$

4.2. Masked Attention

4.2.1. Masked Multi-Head Attention

对 X_dec ,经过三次线性变换,得到 $Q \setminus K \setminus V$ 。然后进行Self-Attention操作,首先通过 $\frac{Q \times K^T}{\sqrt{d_k}}$ 得到Scaled Scores,Scaled Scores是[tgt_len, tgt_len]的矩阵,接下来,在softmax之前,要对Scaled Scores进行**sequence mask**以及**padding mask**,前者防止信息泄漏,后者消除padding字符的影响。

Masked Multi-Head Attention整体流程图如下:

mask过程如下,在final mask中,数值为1的将被替换为-inf:

sequence mask							padding mask							final mask					
	S	Ι	am	chinese	P			S	Ι	am	chinese	P			S	Ι	am	chinese	P
S	0	1	1	1	1		S	F	F	F	F	T		S	0	1	1	1	1
I		0	1	1	1		I	F	F	F	F	Т		I		0	1	1	1
am			0	1	1	+	am	F	F	F	F	Т		am			0	1	1
chinese				0	1		chinese	F	F	F	F	Т		chinese				0	1
P					0		P	F	F	F	F	Т		P					1

使用final mask矩阵,对scaled scores矩阵进行mask:

scaled scores							final mask						masked scores						
	S	I	am	chinese	P			S	I	am	chinese	P			S	I	am	chinese	P
S	0.6	0. 1	0. 1	0. 1	0. 1		S	0	-inf	-inf	-inf	-inf		S	0.6	-inf	-inf	-inf	-inf
Ι	0.1	0.6	0.1	0. 1	0. 1	_	Ι		0	-inf	-inf	-inf	_	Ι	0.1	0.6	-inf	-inf	-inf
am	0. 2	0. 1	0.3	0. 2	0. 2	_	am			0	-inf	-inf		am	0. 2	0.1	0.3	-inf	-inf
chinese	0.3	0. 1	0. 1	0. 3	0. 2		chinese				0	-inf		chinese	0.3	0. 1	0. 1	0.3	-inf
P	0. 4	0. 2	0. 2	0. 1	0.1		P					-inf		P	0.4	0. 2	0. 2	0. 1	-inf

基于masked scores进行softmax计算,可以将-inf变为0,得到的矩阵即为每个词之间的权重:

								S	I	am	chinese	P
	0. 6	-inf	-inf	-inf	-inf		S	1	0	0	0	0
	0. 1	0. 6	-inf	-inf	-inf		I	0. 38	0. 62	-inf	-inf	-inf
Softmax(0. 2	0. 1	0. 3	-inf	-inf) =	am	0. 33	0. 3	0. 37	-inf	-inf
	0. 3	0. 1	0. 1	0. 3	-inf		chinese	0. 27	0. 23	0. 23	0. 27	-inf
	0. 4	0. 2	0. 2	0. 1	-inf		P	0. 3	0. 24	0. 24	0. 22	-inf

最后,对权重矩阵再进行scale,然后与V相乘得到输出结果。

将输出结果做残差连接及Layer Normlization后,输入到下一步的Multi-Head Attention。

将该步的结果记为X_dec_output

4.3. Multi-Head Attention

Encoder的输出结果(矩阵C)提供K、V,Masked Attention的结果提供Q,再次进行Self-Attention操作。

该步Q的shape为[batch_size, tgt_len, d_k],K的shape为[batch_size, src_len, d_k],那么, $Q \times K^T$ 的shape为[batch_size, tgt_len, src_len],该步骤仅对K进行padding mask,如下图所示:

	我	是	中国人	P
S				///
Ι				///
am				///
chinese				///
P				///

最后一行蓝色部分未进行padding mask,但是对最后一列必须进行padding mask。

4.4. 线性层

Feed Forward、add、norm与前文类似,不再赘述。

最后输出的结果,其shape为[batch_size, tgt_len, d_model],与最初的输入X_dec的shape一致。

5. 结果输出

5.1. Linear

将Decoder的输出,通过Linear操作映射为[batch_size, tgt_len, tgt_vocab_size]的矩阵。

5.2. Softmax

通过Softmax计算出概率,然后

5.3. Loss

使用交叉熵损失函数计算loss。

6. 预测

dec_input的第一个字符为S,然后逐字预测,将概率最大的词加入到dec_input,如果该词是E,则结束。

```
def greedy_decoder(model, enc_input, start_symbol):
1
2
        # 根据enc_input获取enc_outputs
3
        enc_outputs, enc_self_attns = model.encoder(enc_input)
4
        dec_input = torch.zeros(1, 0).type_as(enc_input.data)
5
       terminal = False
6
        next_symbol = start_symbol
7
        while not terminal:
            # 将上一步预测的最大概率的词,作为dec_input
8
     dec_input=torch.cat([dec_input,torch.tensor([[next_symbol]],dtype=enc_input
    .dtype)],-1)
10
            dec_outputs, _, _ = model.decoder(dec_input, enc_input, enc_outputs)
11
            projected = model.projection(dec_outputs)
```

```
prob = projected.squeeze(0).max(dim=-1, keepdim=False)[1]
next_word = prob.data[-1]
next_symbol = next_word
if next_symbol == word2idx["E"]:
terminal = True
return dec_input
```

7. 参考文档

- 1. <u>The Illustrated Transformer Jay Alammar Visualizing machine learning one concept at a time. (jalammar.github.io)</u>
- 2. <u>wmathor/nlp-tutorial: Natural Language Processing Tutorial for Deep Learning Researchers (github.com)</u>
- 3. Transformer详解 mathor (wmathor.com)
- 4. <u>Transformer的PyTorch实现 mathor (wmathor.com)</u>
- 5. <u>In-layer normalization techniques for training very deep neural networks | Al Summer (theaisummer.com)</u>
- 6. Transformer模型详解(图解最完整版) 知乎 (zhihu.com)
- 7. BERT大火却不懂Transformer? 读这一篇就够了 知乎 (zhihu.com)
- 8. Transformer论文逐段精读【论文精读】哔哩哔哩bilibili
- 9. Transformer从零详细解读(可能是你见过最通俗易懂的讲解)哔哩哔哩bilibili
- 10. Transformer代码(源码)从零解读(Pytorch版本) 哔哩哔哩bilibili
- 11. Transformer的PyTorch实现哔哩哔哩bilibili
- 12. <u>从语言模型到Seq2Seq: Transformer如戏,全靠Mask-科学空间|Scientific Spaces</u>