Introduction

This is a rule-based expert system shell. It can be used for diagnostics among other things.

It was a university project done by Osama Bodiaf (@OsamaBodiaf), for a sixth semester's Al class.

Components

The software consists of three main components:

Knowledge Base

This provides storage for the hypotheses, facts, and rules used by the Inference Engine.

• Inference Engine

This is the brain of the software, it makes use of the information available in the Knowledge Base via a forward-chaining algorithm to learn new facts, negate or verify existing hypotheses, and through a backward-chaining algorithm to query the truthness of a particular statement.

Graphical User Interface

This is the interface through which the user interacts with the software, it contains a built-in text editor for altering the Knowledge Base, plus ways to invoke the Inference Engine with or without arguments, and display the results.

Knowledge Base

 Hypotheses and Facts are referred to as Atoms, and each one of them is expected in one of the following formats:

```
<key>
<key>: <statement>
<key>: <statement>. <truth value>
```

- Each < key > should be unique.
- If <statement> is not provided, <key> will be used as <statement> too, internally.
- Using a short indicative <key>, along with an explicit descriptive <statement>, makes the user experience much simpler when providing goals to query, or to learn until achieved.
- <truth value> is not case-sensitive.
- If <truth value> is provided, and its lowercase transformation equals false, faux, f, no, non, n, or 0 then it is considered False; Any other value is considered True.
- If <truth value> is not provided, it is considered True.
- <key> refers to: the <statement> and its corresponding <truth value>, as a couple.
- Examples:
 - o WH
 - Weather is hot
 - WH: Weather is hot. True
 - # The three examples above are equivalent.
 - o B: Busy
 - o GB: Go to beach
 - o D: Al is dull. 0
 - # The example above is equivalent to: "D: It is false that Al is dull".
 - PF: Programming is fun!. Ce n'est pas vrai?
- Rules are expected in the following format:

if <antecedent> then <consequent>

- <antecedent> is a valid logical expression of <key>s separated by one of the three main <logical operator>s.
- Supported < logical operator>s are: and, or, and not.
- <consequent> should be a <key> optionally preceded by not.
- Examples:
 - if Weather is hot and not B then GB
 - o if PF then D
 - if not B and not D then not PF
 - # There are many ways to provide information to the Knowledge Base!
- Comments are possible: each line starting with # is ignored; This is useful when wanting to exclude an Atom or Rule from consideration without actually deleting it.
- Extra white-space is ignored.

Inference Engine

- Forward-chaining algorithm is irrevocable, uses a depth-first search strategy, and favors rules with most premises in selection.
- Backward-chaining algorithm is attemptive, uses a depth-first search strategy, and favors rules filtered first in selection.
- Some decisions are logged, to provide step-by-step explanation about reasoning, when needed.
- The Inference Engine may alter the visual representation of the information included within the Knowledge Base, without modifying its essence.

Graphical User Interface

- The built-in text editor makes it possible to view and directly alter the Knowledge Base, with options to cancel or save the changes.
- The Learn frame provides a way to invoke the Inference Engine, in order to learn as many facts as possible, or until a goal is reached.
- The Query frame can be used to invoke the Inference Engine, for an attempt to deduce the truthness of a given key's statement.
- The GUI also contains frames to show or request additional information, prompt user action, and to provide explanation depending on the situation.