UE 6
INITIATION À LA CONNAISSANCE DU
MÉDICAMENT

Pharmacocinétique

Cours N° 4

Dr. F. DESPAS

Pharmacocinétique

- Etude du devenir du Principe Actif (PA) dans l'organisme, depuis son administration jusqu'à son élimination
 - Absorption
 - Distribution
 - Métabolisation
 - Excrétion

Elimination

Phases A, D, M et E coexistent dans le temps

- 1. Définitions
- 2. Métabolisation hépatique
 - a. Réactions de Phase I
 - b. Réaction de Phase II
- 3. Métabolisation dans les autres tissus
- 4. Facteurs modifiant la métabolisation des médicaments
 - a. Facteurs physiologiques
 - b. Facteurs environnementaux
 - c. Facteurs génétiques
 - d. Facteurs physiopathologiques
 - e. Interactions médicamenteuses

1. Définitions

- 2. Métabolisation hépatique
 - a. Réactions de Phase I
 - b. Réaction de Phase II
- 3. Métabolisation dans les autres tissus
- 4. Facteurs modifiant la métabolisation des médicaments
 - a. Facteurs physiologiques
 - b. Facteurs environnementaux
 - c. Facteurs génétiques
 - d. Facteurs physiopathologiques
 - e. Interactions médicamenteuses

1. Définitions

Métabolisation

 Ensemble des réactions enzymatiques de biotransformation modifiant un médicament en un ou plusieurs métabolites

Médicament administré	Forme(s) dans la circulation systémique	Exemples de médicaments
M	M	pénicilline G, lithium
M	$M \rightarrow M_{1,}$	Barbituriques
M	$M \rightarrow M_{1}, M_{2}$	Benzodiazépines
M	$M \rightarrow M_1 \rightarrow M_2$	Clopidogrel (pro-médicament)
M	$\begin{array}{ccc} M \rightarrow M_1 \rightarrow M_2 \\ \rightarrow M_3 \text{ tox} \rightarrow M_4 \end{array}$	paracétamol

forme active forme inactive forme toxique

 Foie est le principal organe permettant la métabolisation des médicaments, mais d'autres tissus sont également impliqués intestin, poumons, rein, SNC, plasma...

- 1. Définitions
- 2. Métabolisation hépatique
 - a. Réactions de Phase I
 - b. Réaction de Phase II
- 3. Métabolisation dans les autres tissus
- 4. Facteurs modifiant la métabolisation des médicaments
 - a. Facteurs physiologiques
 - b. Facteurs environnementaux
 - c. Facteurs génétiques
 - d. Facteurs physiopathologiques
 - e. Interactions médicamenteuses

- Le foie : 3 fonctions
 - Stockage
 - Métabolisme glucidique et lipidique
 - Synthèse
 - Protéines plasmatiques, bile...
 - Epuration (élimination)
 - Métabolisation des xénobiotiques dont médicaments
 - Excrétion par la bile
- Apports sanguin hépatique (≈25% débit cardiaque)
 - Veine porte : 80 à 70%
 - Artères hépatiques : 20 à 30%

- Deux grands types de réactions enzymatiques
 - Réactions de fonctionnalisation : phase I
 - Réactions de conjugaison : phase II

ABC = ATP binding cassette transporters (e.g. P-gp) SLC = Solute Carriers (OATP, OAT, ...)

hydrosolubilité

a. Réaction de Phase I

- Hydroxylation, N-oxydation, S-oxydation
- Catalysées par les cytochromes P450
 - Hémoprotéines comme l'hémoglobine
 - Enzymes du réticulum endoplasmique
 - Pic de 450nm en présence de CO
- Super-famille des Cytochromes P450
 - 17 familles
 - 57 isoenzymes identifiées dans le génome humain

Heme

- CYP450 métabolisation des médicaments
 - 3 isoenzymes métabolisent ≈ 70% médicaments
 - CYP 3A4/5
 - CYP 2D6
 - CYP 2C8/9

- CYP450 métabolisation des médicaments
 - 3 isoenzymes métabolisent ≈ 70% médicaments
 - CYP 3A4/5
 - CYP 2D6
 - CYP 2C8/9

- Etre métabolisé par une seule isoenzyme
- Etre métabolisé par plusieurs isoenzymes
- Etre en compétition avec d'autres PA sur une ou plusieurs isoenzymes
- Modifier l'activité des CYP450
 - Etre inducteur enzymatique (ex. : antiépileptique : phénitoïne)
 - Etre inhibiteur enzymatique (ex. : antifongiques : -azolés)

b. Réaction de Phase II

- Réactions consécutives à la réaction de phase I
- Conjugaison d'une molécule au métabolite oxydé
 - Acide glucuronique : glucuroconjugaison
 - UGT : UDP-glucuronosyltransférase
 - Groupement sulfate : sulfoconjugaison
 - Groupement acétyl : acétylation
 - ...
- Plusieurs conjugaisons pour une même molécule sont possibles
- Permet d'augmenter l'hydrosolubilité du composé
- Certains médicaments sont inhibiteurs de la glucuroconjugaison
 - Ex.: Tacrolimus

- 1. Définitions
- 2. Métabolisation hépatique
 - a. Réactions de Phase I
 - b. Réaction de Phase II
- 3. Métabolisation dans les autres tissus
- 4. Facteurs modifiant la métabolisation des médicaments
 - a. Facteurs physiologiques
 - b. Facteurs environnementaux
 - c. Facteurs génétiques
 - d. Facteurs physiopathologiques
 - e. Interactions médicamenteuses

3. Métabolisation dans les autres tissus

- Dans tous les tissus (y compris le plasma) existe des enzymes hydrolytiques, protéases, peptidases, amidases et estérases...
- Quelques exemples
 - Intestin
 - Entérocyte : présence de CYP3A4
 - Système nerveux central
 - Monoamine oxydase (MAO)
 - Catecholamine O Methyl Transferase (COMT)
 - ...
 - Cœur, vaisseaux
 - Présence de CYP2C et CYP2J

- 1. Définitions
- 2. Métabolisation hépatique
 - a. Réactions de Phase I
 - b. Réaction de Phase II
- 3. Métabolisation dans les autres tissus
- 4. Facteurs modifiant la métabolisation des médicaments
 - a. Facteurs physiologiques
 - b. Facteurs environnementaux
 - c. Facteurs génétiques
 - d. Facteurs physiopathologiques
 - e. Interactions médicamenteuses

4. Facteurs modifiant la métabolisation des médicaments

a. Facteurs physiologiques

- Age
 - Chez fœtus et Nouveau-Né : CYP3A4 non fonctionnel
 - Activité augmente dans 3 à 4ères semaines de vie
 - Déficit fœtal pour certaines isoformes : UGT (ictère physiologique du nouveau-né)

b. Facteurs environnementaux

- Ex d'inducteurs: éthanol, tabac, caféine, viande grillée (charbon de bois), légumes crucifères (ex. brocolis), millepertuis +++
 (plante utilisée comme antidépresseur) ...
- Ex d'inhibiteurs: jus de pamplemousse +++, vin rouge, cresson...

4. Facteurs modifiant la métabolisation des médicaments

c. Facteurs génétiques (études de Pharmacogénétique)

- Gènes codent pour des protéines
- Sujets porteurs d'allèles mutés (Single Nucleotide Polymorphism, SNP)
- CYP3A4/5
 - CYP3A5

- CYP3A5*1

Activité 100%

- CYP3A5*3

Activité 0%

» CYP3A5*1/*1:1,2%

» CYP3A5*1/*3:16,8%

» CYP3A5*3/*3:82,0%

CYP3A4/5

Fréquences sujets Africains

CYP3A5*1/*1:48,4%

CYP3A5*1/*3:45,2%

CYP3A5*3/*3:6,4%

4. Facteurs modifiant la métabolisation des médicaments

d. Facteurs physiopathologiques

- Diminution débit sanguin hépatique (état de choc, insuffisance cardiaque...)
- Altération de l'activité des enzymes hépatiques (hépatites...)
- Ex. : Cirrhose
 - Diminution débit sanguin hépatique
 - Diminution activité enzymatique

e. Interactions médicamenteuses

- Certains médicaments sont inducteurs enzymatiques des CYP450
 - = Diminution concentrations plasmatiques
- Certains médicaments sont inhibiteurs enzymatiques des CYP450
 - = Augmentation concentrations plasmatiques

- Mme Simone M., 74 ans se présente en consultation de cardiologie pour dyspnée d'effort, avec épisode d'une brève perte de connaissance (syncope) au décours d'un effort intense...
- A l'auscultation : souffle éjectionnel (systolique)
- Echodoppler cardiaque = sténose aortique sévère
- Indication de remplacement valvulaire mécanique
- Nécessité traitement anticoagulant à vie
 - Warfarine
 - Index thérapeutique étroit & variabilité Pharmacocinétique interindividuelle
 - Métabolisation par CYP2C9
- Le médecin fait signer à la patiente, un formulaire pour autorisation d'exploration génétique
 - Pourquoi ?

Merci de votre attention