

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1795889 А3

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ
ВЕДОМСТВО СССР
(ГОСПАТЕНТ СССР)

(51) A 61 Н 23/02, 7/00, 15/00

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К ПАТЕНТУ

1

(21) 4915157/14
(22) 12.03.91
(46) 15.02.93. Бюл. № 6
(76) Л.М. Седлов, В.М. Седлов и Ю.А. Стремоуров
(56) Заявка Японии № 60-54066, А 61 Н 23/02, 1989.
Заявка Японии № 56-20020, А 61 Н 7/00, 1981.

2

(54) УСТРОЙСТВО ДЛЯ МАССАЖА

(57) Использование: массаж различных участков тела. Сущность изобретения: устройство состоит из корпуса, панели, опоры с массажными модулями, установленными на упругих элементах, блок питания и управления. 6 э.п. ф-лы, 8 ил.

Изобретение относится к медицине, а именно к устройствам для лечебного и общего профилактического массажа.

Известно массажное устройство, содержащее корпус, в котором через промежуточный элемент установлен массажный узел, выполненный в виде открытой сверху жесткой коробки, заполненной множеством твердых гранул. С внешней стороны стенки коробки прикреплены вибраторы, при включении которых от источника сжатого воздуха осуществляется перемешивание гранул с созданием эффекта псевдокипящего слоя. Гранулы могут перемещиваться и за счет вращения коробки относительно вертикальной оси от электропривода. Предназначенная для массажа часть тела размещается непосредственно в массажном узле, в среде для гранул. Основным недостатком этого устройства являются: слабая управляемость кинематическими и энергетическими характеристиками гранул на поверхности тела пациента из-за высокого коэффициента поглощения энергии в системе (больших диссилиативных потерь); необходимость дезинфекции всего объема гранул после каждого пациента при подготовке к приему следующего.

Наиболее близким по технической сущности и достигаемому эффекту является массажное устройство, содержащее корпус, размещенные на корпусе панель с отверстиями и опора с массажными элементами, блок питания и управления.

Общими признаками прототипа с заявляемым устройством являются:

- корпус массажного устройства;
- панель, размещенная на корпусе;
- присоединительное устройство, связанное с корпусом;
- опора с массажными элементами;
- блок питания и управления.

Недостатком этого устройства является то, что в нем не обеспечивается самоустановка массажных элементов и плотный контакт с телом пациента.

Целью изобретения является повышение эффективности массажа путем обеспечения адаптации и плотного контакта массажных элементов к различным участкам тока пациента и упрощение конструкции.

Указанная цель достигается тем, что массажные элементы выполнены в виде модулей псевдокипящего слоя, модули снабжены втулкой с буртиком, между которым и

(19) SU (11) 1795889 А3

опорой установлен упругий элемент, жесткость которого больше усилия, достаточного для установки модуля заподлицо с панелью.

При этом в одном случае корпус и панель выполнены в виде массажной кушетки, модули сгруппированы попарно в параллельные ряды, симметричные относительно продольной оси кушетки.

В другом случае корпус и панель выполнены в виде подставки для ног с симметрично расположенным над опорной поверхностью выемками по форме, приближающимися к контуру стопы и охватывающими соответствующие ряды модулей.

В третьем случае корпус и панель выполнены в виде кресла, при этом массажный блок в спинке кресла выполнен по варианту массажной кушетки.

В четвертом случае корпус и панель выполнены в виде кресла, при этом массажный блок содержит пару модулей, установленных в сидении кресла друг за другом по оси симметрии кресла.

В пятом случае, решения по варианту 3, 4, 5 объединены в одном общем комплексе.

Кроме того, при всех вариантах блок управления обеспечивает работу модулей последовательно в режиме "бегущего" массажа, например, попарно.

Отличительными признаками изобретения являются:

- выполнение массажного блока в виде набора псевдокипящего слоя;

- установка модулей в рамке на упругих элементах;

- возможность упругого совмещения поверхности активной зоны модулей с поверхностью панели, при котором с учетом деформации активной зоны модулей достигается оптимальность усилия массажа и сохраняется эластичность активной зоны;

а также отличительные признаки реализуемые в вариантах:

- корпус и панель выполнены в виде массажной кушетки, а модули в рамке сгруппированы попарно в параллельные ряды, симметричные относительно продольной оси кушетки;

- корпус и панель выполнены в виде подставки для ног с симметрично расположенным над опорной поверхностью выемками по форме, приближающимися к контуру стопы и охватывающими соответствующие ряды модулей;

- корпус и панель выполнены в виде кресла, при этом массажный блок в спинке кресла выполнен по варианту массажной кушетки;

- корпус и панель выполнены в виде кресла, при этом массажный блок содержит

пару моделей, установленных в сидении кресла друг за другом по оси симметрии кресла;

- объединение вариантов исполнения устройства в виде подставки для ног и объединенного кресла модулями в спинке и сидении кресла;

- блок управления обеспечивает работу модулей последовательно в режиме "бегущая волна" попарно).

Указанные отличительные признаки изобретения обеспечивают положительный эффект следующим образом:

- выполнение массажных элементов в виде модулей псевдокипящего слоя создает возможность управления каждым из них индивидуально по заданному режиму и возможность избирательного массажа тела пациента, как в непрерывном режиме, так и в режиме "бегущая волна";

- установка модулей на упругих элементах создают постоянный контакт между массируемым участком и поверхностью активной зоны каждого модуля и, что особенно важно, обеспечивают независимость нагрузки на модули от массы тела пациента и тем самым предохраняют модули от перегрузки, создавая условия для надежной, длительной работы последних;

- возможность упругого совмещения поверхности активной зоны модулей с поверхностью опорного устройства с учетом величины деформации активной зоны модулей, путем подбора характеристик упругих элементов, позволяют обеспечить оптимальное усилие массажа и сохранить эластичность активной зоны;

- отличительные признаки, реализуемые в вариантах, позволяют оптимально использовать совокупность перечисленных выше признаков с признаками в вариантах, в соответствующих устройствах в виде катушки, подставки для массажа стоп, кресел, выполненных на единой конструктивной основе при обеспечении высоких эксплуатационных качеств и широких функциональных возможностей;

- объединение вариантов исполнения в виде подставки для ног и объединенного кресла модулями в спинке и сидении расширяет функциональные возможности комплекса при экономии площадей;

- последовательно, например, попарное включение модулей блоком управления обеспечивает режим "бегущей волны" без каких-либо кинематических механизмов, что значительно упрощает конструкцию устройства.

На фиг. 1 приведен общий вид устройства; на фиг. 2 - разрез А-А фиг. 1 с модулями

на упругих элементах; на фиг. 3 – вариант в виде массажной кушетки с блоком питания и управления; на фиг. 4 – вариант в виде подставки для ног для массажа стоп; на фиг. 5 – вариант в виде кресла с массажерами в спинке кресла и блоком питания и управления; на фиг. 6 – вариант устройства с массажерами в сидении кресла; на фиг. 7 – объединенный вариант; на фиг. 8 – модуль псевдокипящего слоя с частичным разрезом.

Устройство содержит корпус 1, на котором размещена панель 2, опора 3 с набором массажных модулей 4 псевдокипящего слоя, каждый из которых установлен на упругих элементах 5 и с помощью кабеля 6 соединен с регулируемым блоком питания и управления 7 (фиг. 3). В панели выполнены отверстия 8 по числу модулей с направляющими элементами в виде кольца 9, охватывающего периметр модуля. Головная часть 20 каждого модуля выступает из отверстий 8 на величину активной зоны (фиг. 2) за счет упругих элементов 5. Активная зона – это выступающая головная часть модуля, ограниченная по высоте эластичной мембраной. Упругие элементы, выполненные, например, в виде цилиндрических пружин (оптимальные параметры которых определяются расчетным или опытным путем) одним торцем опираются на основание опоры 3 с фиксацией в канавке 11. На другой торец упругих элементов установлены модули с помощью неподвижно закрепленных на них втулок 12 с буртиком. В качестве упругих элементов могут быть применены, например, и эластичные резиновые опоры и др. В качестве модуля применен, например, массажер, в котором (фиг. 8) основными частями являются привод 13, диск 14 с волнообразной поверхностью и канавкой 15, расположенной вдоль вершины волны 16 эластичная мембрана 17, закрепленная на накидной гайке 18 и шарики 19, помещенные между мембраной и диском.

С учетом специфики массажа корпус и панель в одном варианте (фиг. 3) выполнены, например, в виде массажной кушетки, в которой модули 4 сгруппированы попарно в параллельные ряды, симметричные относительно продольной оси кушетки.

В другом варианте (фиг. 4) корпус и панель выполнены в виде подставки для ног с симметрично расположенными над опорной поверхностью выемками 20 по форме приближающимися к контуру стопы и охватывающими соответствующие ряды модулей.

В третьем варианте (фиг. 5) корпус и панель выполнены в виде кресла, при этом массажный блок в спинке кресла выполнен по варианту массажной кушетки.

5

В четвертом варианте (фиг. 6) корпус и панель выполнены в виде кресла, при этом массажный блок содержит пару модулей, установленных в сидении кресла друг за другом по оси симметрии кресла.

В пятом варианте (фиг. 7) устройство выполнено в виде объединения подставки для ног с объединенными креслом с массажными модулями в спинке и сидении кресла.

Блок питания и управления 7 установлен на отдельной стойке 21 (фиг. 3–7). Блок питания и управления по своему устройству общеизвестен и широко применяется на практике, например, для питания и управления иллюминационными гирляндами и др., поэтому его описание не производится.

Устройство работает следующим образом. В исходном состоянии модули 4 массажного блока выступают из отверстий 8 на высоту активной зоны (фиг. 2). На массажный блок, например, кушетки 1 и панель 2 укладывают пациента. В результате этого каждый из модулей 4, на упругих элементах 5 независимо друг от друга, опустится до совмещения мембранны 17 с панелью кушетки с потенциальной возможностью дальнейшего упругого перемещения, что предохраняет модули от механических и электрических перегрузок. При этом произойдет деформация мягкой части панели кушетки, а также деформация эластичной мембранны. Затем, от блока 7 питания и управления на модули 4 подают напряжение, в результате чего они входят в рабочий режим, что сопровождается псевдокипением мембранны, почти полным восстановлением ранее сформированной ее активной зоны и обеспечением плотного контакта с телом пациента. Одновременно упругие элементы с учетом отмеченных выше обеспечивают оптимальное усилие массажа (предварительно рассчитанное или подобранное опытным путем).

Псевдокипение (подобие кипению) реализуется на поверхности эластичной мембранны следующим образом. При подаче напряжения на приводы 14 модулей в результате вращения дисков 14 возникает интенсивное, хаотическое движение шариков 19 с преимущественной направленностью от диска к поверхности мембранны. Большое число хаотических ударов шариков в единицу времени о поверхность эластичной тонкостенной мембранны и создают эффект псевдокипения, который проявляется на поверхности контакта эластичной мембранны и тела пациента. Эластичность активной зоны обеспечивается обтекаемость неровностей на поверхности; большое количество движения шариков обеспечивает тепло-

вой эффект. Интенсивность массажа (от нежно-бархатного до весьма интенсивного) легко достигается изменением числа оборотов на приводах модулей, работающих, например, от микроэлектродвигателей постоянного тока типа МЭ 327-Б ГОСТ 3040-84.

Аналогично работают устройства выполненные по вариантам в виде подставки для массажа ног, в виде кресла с массажным блоком в спинке кресла и в сидении кресла, а также в объединенном варианте.

Блок питания и управления, выполненный на общеизвестной основе, обеспечивает питание приводов модулей и управление режимами их работы. При этом по мере необходимости с учетом диагноза и особенностей пациента легко реализуются различные режимы работы комплекса, например, непрерывный, когда в течение всего цикла массажа могут работать одновременно все модули, любая их часть, в любой комбинации или бегущий режим, когда модули включаются последовательно один за другим, например, попарно на 5-10 сек, при обработке последней пары, вновь включается первая пара и таким образом, в течение сеанса массажа (сеанс массажа 10-15 мин.) происходит многократное включение каждой из пар. В режиме "бегущая волна" возможно включение и части модулей. Известные блоки питания и управления позволяют включать модули в любой другой последовательности, аналогично включе-

нию иллюминационных гирлянд. Непрерывный режим включения всех модулей одновременно или их части соответственно обеспечивает полный или избирательный

5 массаж. "Бегущая волна" обеспечивает направленность массажа, например, на спине от поясницы к шее или наоборот, это "перемещение" массажа по телу пациента достигается без применения кинематических механизмов, что упрощает конструкцию устройства.

Устройство для массажа, реализованное в вариантах: кушетка, для стопы, кресел, обладает значительной полезностью и может широко использоваться. В варианте кушетка для массажа тяжело больных для профилактики пролежней и т.д. Устройство для стопы, кроме высокоеффективного лечебного массажа, может быть использовано повсеместно на промышленных предприятиях в комнатах физиологической разгрузки для снятия утомленности у работающих стоя (на ногах) в т.ч. работающих на фермах, животноводческих комплексах. Кресло с

20 массажерами в сидении может эффективно использоваться для профилактики застойных явлений в области таза, особенно у рабочих и служащих, работа которых связана с длительным сидением. Объединенный 25 массажный комплекс при экономии производственных площадей позволяет реализовать широкие возможности массажа эластичным псевдокипящим слоем.

35

Ф о р м у л а и з о б р е т е н и я

1. Устройство для массажа, содержащее корпус, на котором установлены панель с отверстиями и опора с массажными элементами, активная часть которых расположена в отверстиях панели, блок питания и управления; отличающееся тем, что, с целью повышения эффективности массажа путем обеспечения адаптации и плотного контакта активной части массажных элементов к различным частям участкам тела пациента и упрощения конструкции, массажные элементы выполнены в виде модулей псевдокипящего слоя, корпус каждого модуля снабжен втулкой с буртиком, между буртиком и опорой размещен упругий элемент, причем жесткость последнего больше усилия, достаточного для установки модуля за под лицо с панелью.

2. Устройство по п. 1, отличающееся тем, что корпус и панель выполнены в виде кушетки, а модули установлены в ряды, параллельные ее продольной оси.

3. Устройство по п. 1, отличающееся тем, что корпус и панель выполнены в виде подставки для ног, причем панель выполнена с двумя выемками, в которых размещены модули.

4. Устройство по п. 1, отличающееся тем, что корпус и панель выполнены в виде кресла, а модули установлены на стыке в ряды, параллельные ее продольной оси.

5. Устройство по п. 1, отличающееся тем, что корпус и панель выполнены в виде кресла, а модели установлены в ряд по оси сидения.

6. Устройство по п. 1, отличающееся тем, что оно выполнено в виде кресла с рядами модулей на спинке, сидении и подставке для ног с выемками, в которых установлены модули.

7. Устройство по пп. 1-6, отличающееся тем, что модули соединены с блоком управления с возможностью обеспечения различных режимов работы, в том числе в режиме "бегущая волна" попарно.

40

45

50

55

1795889

фиг. 1

A-A

фиг. 2

1795889

ФИГ. 3

1795889
изменяется... 40 весьма интенсивно...
привод...

1795889

1795889

Фиг. 4

1795889

фиг. 5

1795889

фиг. 6

1795889

фиг. 7

ФИГ. 8

Редактор В.Трубченко

Составитель В.Собчук
Техред М.Моргентал

Корректор М.Демчик

Заказ 437

Тираж

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101