FORMULÁRIO PROBABILIDADE E ESTATÍSTICA

Navegação rápida por fórmulas

Índice geral: Página 2 Índice de fórmulas: Página 3

Clique-se diretamente na fórmula desejada para navegar até lá

Autor: Vicente Duarte

 \mathbf{Data} : 6 de julho de 2025

Índice Geral

Conteúdo

1	Conceitos básicos de probabilidade		3	
	1.1	Experiência aleatória. Espaço de resultados e acontecimentos	3	
	1.2	Noção de probabilidade. Probabilidade condicionada e lei da probabilidade		
			3	
	1.3		S	
	1.4	Acontecimentos independentes	4	
2	Var	iáveis aleatórias discretas e contínuas	5	
_	2.1	Definição de variável aleatória. Função de distribuição. Função de massa	_	
		de probabilidade e função de densidade de probabilidade	٦	
	2.2	- · · · · · · · · · · · · · · · · · · ·	5	
	2.3		6	
3	Par	es aleatórios	7	
•	3.1	Distribuição conjunta, marginais e condicionais	7	
	3.2	Independência		
	3.3	1	7	
4	Combinações lineares e teorema do limite central			
	4.1	-	S	
	4.2		S	
5	Esti	Estimação pontual		
	5.1	Estatísticas e estimadores	(
	5.2	Método da máxima verosimilhança	C	
6	Esti	Estimação intervalar		
	6.1	Intervalos de confiança para o valor esperado, variância conhecida 1	1	
	6.2	Intervalos de confiança para o valor esperado, variância desconhecida $\ .\ .\ .\ 1$	1	
	6.3	Intervalo de confiança para a variância	1	
	6.4	Intervalo de confiança para probabilidade de sucesso	1	
7	Tes	Testes de hipóteses		
	7.1	Testes para o valor esperado, variância conhecida	2	
	7.2	Testes para o valor esperado, variância desconhecida	2	
	7.3	Testes para a variância	2	
	7.4	Testes para probabilidade de sucesso		
	7.5	Teste de ajustamento do qui-quadrado	3	
8	Intr	odução à regressão linear simples 14	4	
	8.1	Modelo de regressão linear simples	4	
	8.2	Intervalos de confiança e testes para os parâmetros		
	8.3	Coeficiente de determinação	-	

Índice de Fórmulas

Clique na fórmula desejada para navegar diretamente:

PROBABILIDADE BÁSICA

- Fórmula 1: Acontecimentos mutuamente exclusivos
- Fórmula 2: União de três acontecimentos
- Fórmula 3: Inclusão-exclusão para n acontecimentos
- Fórmula 4: Teorema de Bayes
- Fórmula 5: Independência de acontecimentos

VARIÁVEIS ALEATÓRIAS

- Fórmula 6: Valor esperado (discretas)
- Fórmula 7: Valor esperado (contínuas)
- Fórmula 8: Variância
- Fórmula 9: Propriedade da esperança
- Fórmula 10: Propriedade da variância
- Fórmula 11: Quantis
- Fórmula 12: Falta de memória (geométrica)
- Fórmula 13: Falta de memória (exponencial)
- Fórmula 14: Soma de binomiais
- Fórmula 15: Soma de Poisson
- Fórmula 16: Combinação linear de normais

PARES ALEATÓRIOS

- Fórmula 17: Função de distribuição acumulada
- Fórmula 18: Independência (discreto)
- Fórmula 19: Independência (contínuo)
- Fórmula 20: Covariância
- Fórmula 21: Correlação

TEOREMA LIMITE CENTRAL

- Fórmula 22: TLC (soma)
- Fórmula 22a: TLC (média)

ESTIMAÇÃO

- Fórmula 23: Máxima verosimilhança
- Fórmula 24: IC média (variância conhecida)
- Fórmula 25: IC média (t-Student)
- Fórmula 26: IC média (amostra grande)
- Fórmula 27: IC variância
- Fórmula 28: IC proporção

TESTES DE HIPÓTESES

- Fórmula 29: Teste média (variância conhecida)
- Fórmula 30: Teste média (variância desconhecida)
- Fórmula 31: Teste variância
- Fórmula 32: Teste proporção
- Fórmula 33: Teste qui-quadrado

REGRESSÃO LINEAR

- Fórmula 34: Estimador inclinação
- Fórmula 35: Estimador ordenada origem
- Fórmula 36: Inferência sobre β_0
- Fórmula 37: Inferência sobre β_1
- Fórmula 38: Inferência sobre $\beta_0 + \beta_1 x_0$
- Fórmula 39: Teste valor esperado resposta
- Fórmula 40: Coeficiente determinação R^2

1 Conceitos básicos de probabilidade

- 1.1 Experiência aleatória. Espaço de resultados e acontecimentos
- 1.2 Noção de probabilidade. Probabilidade condicionada e lei da probabilidade total

Acontecimentos mutuamente exclusivos

Dois acontecimentos são mutuamente exclusivos se não podem ocorrer simultaneamente:

$$A \cap B = \emptyset \quad \Rightarrow \quad P(A \cap B) = 0$$
 (Fórmula 1)

Probabilidade da união de três acontecimentos

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(A \cap B) - P(A \cap C) - P(B \cap C)$$
 (Fórmula 2)
$$+P(A \cap B \cap C)$$

Fórmula da inclusão-exclusão para n acontecimentos

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} P(A_1 \cap \dots \cap A_n)$$
(Fórmula 3)

1.3 Teorema de Bayes

O Teorema de Bayes permite calcular a probabilidade a posteriori de um acontecimento A_i dado que ocorreu um acontecimento B.

Teorema de Bayes

$$P(A_i \mid B) = \frac{P(B \mid A_i)P(A_i)}{\sum\limits_{j=1}^{n} P(B \mid A_j)P(A_j)}$$
 (Fórmula 4)

Onde:

- A_1, \ldots, A_n formam uma partição do espaço amostral
- B é um acontecimento tal que P(B) > 0
- $P(A_i)$ é a probabilidade a priori de A_i
- $P(B \mid A_i)$ é a verosimilhança de B dado A_i
- $P(A_i \mid B)$ é a probabilidade a posteriori de A_i dado B

1.4 Acontecimentos independentes

Independência de acontecimentos

Dois acontecimentos A e B são independentes se e só se:

$$P(A \cap B) = P(A) \cdot P(B)$$

 $(F\acute{o}rmula\ 5)$

2 Variáveis aleatórias discretas e contínuas

- 2.1 Definição de variável aleatória. Função de distribuição. Função de massa de probabilidade e função de densidade de probabilidade
- 2.2 Valor esperado, moda, variância e quantis

Valor esperado para variáveis discretas

$$E(X) = \sum_{x} x P(X = x)$$
 (Fórmula 6)

Valor esperado para variáveis contínuas

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$$
 (Fórmula 7)

Variância

$$Var(X) = E[(X - E(X))^2] = E(X^2) - [E(X)]^2$$
 (Fórmula 8)

Propriedades da esperança e variância

Esperança:

$$E(aX + bY) = aE(X) + bE(Y)$$
 (Fórmula 9)

Variância:

$$Var(aX + bY) = a^{2} Var(X) + b^{2} Var(Y) + 2ab Cov(X, Y)$$
 (Fórmula 10)

Quantis

Mediana: valor m tal que $P(X \le m) \ge 0.5$ e $P(X \ge m) \ge 0.5$ Quantil de ordem q (0 < q < 1):

$$x_q = F_X^{-1}(q)$$
 onde $F_X(x_q) = q$ (Fórmula 11)

2.3 Distribuições de probabilidade mais utilizadas na modelação de dados

Propriedade de falta de memória - Distribuição geométrica

Para uma sequência de ensaios de Bernoulli:

$$P(X > m + n \mid X > m) = P(X > n)$$
 (Fórmula 12)

Interpretação: A probabilidade de esperar mais n tentativas, dado que já se esperou m, é independente do número de tentativas já realizadas.

Propriedade de falta de memória - Distribuição exponencial

Se $T \sim \text{Exp}(\lambda)$ representa o tempo até à ocorrência de um evento:

$$P(T > t + s \mid T > s) = P(T > t)$$
 (Fórmula 13)

Nota: A distribuição exponencial é a única distribuição contínua com propriedade de falta de memória.

Soma de variáveis binomiais independentes

Se $X_i \sim \text{Bin}(n_i, p)$ são independentes, então:

$$X = \sum_{i=1}^{k} X_i \sim \text{Bin}\left(\sum_{i=1}^{k} n_i, p\right)$$
 (Fórmula 14)

Condição: Todas as variáveis devem ter o mesmo parâmetro p.

Soma de variáveis de Poisson independentes

Se $X_i \sim \text{Poisson}(\lambda_i)$ são independentes, então:

$$X = \sum_{i=1}^{k} X_i \sim \text{Poisson}\left(\sum_{i=1}^{k} \lambda_i\right)$$
 (Fórmula 15)

Combinação linear de variáveis normais independentes

Se $X_i \sim N(\mu_i, \sigma_i^2)$ são independentes e a_i são constantes reais:

$$X = \sum_{i=1}^{k} a_i X_i \sim N\left(\sum_{i=1}^{k} a_i \mu_i, \sum_{i=1}^{k} a_i^2 \sigma_i^2\right)$$
 (Fórmula 16)

3 Pares aleatórios

3.1 Distribuição conjunta, marginais e condicionais

Função de distribuição acumulada (FDA)

Para uma variável aleatória contínua X:

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$$
 (Fórmula 17)

3.2 Independência

Independência - Caso discreto

X e Y são independentes se, para todos os valores possíveis x e y:

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$
 (Fórmula 18)

Independência - Caso contínuo

X e Y são independentes se, para todos os valores x e y:

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$
 (Fórmula 19)

3.3 Covariância e correlação

Covariância

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)$$
 (Fórmula 20)

Correlação

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$$
 (Fórmula 21)

Interpretação da correlação:

- \bullet Corr(X,Y)=0: Ausência de correlação linear (não implica independência)
- Corr(X, Y) > 0: Associação linear positiva
- Corr(X,Y) < 0: Associação linear negativa
- |Corr(X,Y)| = 1: Correlação linear perfeita
- $|\operatorname{Corr}(X,Y)| \approx 0.24$: Correlação linear fraca

Exemplos de interpretação:

- Se $Corr(X,Y) \neq 0$: Uma vez que $Corr(X,Y) \neq 0$, concluímos que X e Y são variáveis aleatórias dependentes. [É sabido que: caso X e Y sejam v.a. independentes, então Corr(X,Y) = 0.]
- Se $\operatorname{Corr}(X,Y) < 0$: Dado que $\operatorname{Corr}(X,Y) < 0$, podemos adiantar que X e Y tenderão a variar em sentidos opostos relativamente aos respetivos valores esperados.
- Se $|\operatorname{Corr}(X,Y)| \approx 0.24$: Como $|\operatorname{Corr}(X,Y)| \approx 0.24$ dista bastante de 1, podemos afirmar que as v.a. estão fracamente correlacionadas. [Importa notar que o coeficiente de correlação quantifica a associação linear entre as v.a. X e Y, logo não captura uma eventual relação não linear entre estas duas v.a.]

4 Combinações lineares e teorema do limite central

4.1 Combinações lineares de variáveis aleatórias

4.2 Distribuição assintótica da soma e da média

Teorema do Limite Central (TLC)

Seja X_1, X_2, \ldots, X_n uma amostra i.i.d. com média μ e variância σ^2 . Para n suficientemente grande $(n \ge 30)$:

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \stackrel{a}{\sim} N(0, 1) \quad \text{onde } S_n = X_1 + \dots + X_n$$
 (Fórmula 22)

Equivalentemente, para a média amostral:

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{a}{\sim} N(0, 1)$$
 onde $\overline{X} = \frac{S_n}{n}$ (Fórmula 22a)

Quando usar o TLC:

- Distribuição original desconhecida ou não-normal: O TLC permite usar a aproximação normal para a soma ou média amostral, desde que $n \ge 30$.
- Distribuição original normal: A soma ou média amostral tem distribuição exatamente normal para qualquer n (não é necessário recorrer ao TLC).
- Aplicação prática: Permite calcular probabilidades e construir intervalos de confiança quando a distribuição populacional é desconhecida.

Notas importantes:

- Válido independentemente da distribuição original das X_i
- A convergência é mais rápida se a distribuição original for simétrica
- Para n < 30, só se pode usar se a população for aproximadamente normal

5 Estimação pontual

5.1 Estatísticas e estimadores

5.2 Método da máxima verosimilhança

Função de máxima verosimilhança

Para uma amostra X_1, \ldots, X_n com função de densidade $f_X(x)$ dependente do parâmetro μ :

Função de verosimilhança:

$$L(\mu \mid \underline{x}) = \prod_{i=1}^{n} f_X(x_i)$$
 (Fórmula 23)

Função log-verosimilhança:

$$\ell(\mu \mid \underline{x}) = \ln L(\mu \mid \underline{x}) = \sum_{i=1}^{n} \ln f_X(x_i)$$

Estimador de máxima verosimilhança:

$$\hat{\mu}: \left\{ \begin{array}{l} \frac{\partial \ln L(\mu \mid \underline{x})}{\partial \mu} \bigg|_{\mu = \hat{\mu}} = 0 & \text{(ponto estacionário)} \\ \frac{\partial^2 \ln L(\mu \mid \underline{x})}{\partial \mu^2} \bigg|_{\mu = \hat{\mu}} < 0 & \text{(ponto de máximo)} \end{array} \right.$$

6 Estimação intervalar

6.1 Intervalos de confiança para o valor esperado, variância conhecida

IC para média - Variância conhecida

Para população normal ou amostra grande (TLC):

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$
 (Fórmula 24)

6.2 Intervalos de confiança para o valor esperado, variância desconhecida

IC para média - Variância desconhecida (amostra pequena, população normal)

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{(n-1)}$$
 (Fórmula 25)

IC para média - Variância desconhecida (amostra grande)

$$Z = \frac{\overline{X} - \mu}{S/\sqrt{n}} \stackrel{a}{\sim} N(0, 1)$$
 (Fórmula 26)

6.3 Intervalo de confiança para a variância

IC para variância - População normal, média desconhecida

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$$
 (Fórmula 27)

6.4 Intervalo de confiança para probabilidade de sucesso

IC para proporção - População de Bernoulli

Para $X \sim \text{Bernoulli}(p)$ com amostra grande:

$$Z = \frac{\overline{X} - p}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n}}} \sim N(0, 1)$$
 (Fórmula 28)

7 Testes de hipóteses

7.1 Testes para o valor esperado, variância conhecida

Teste para média - Variância conhecida

Para testar $H_0: \mu = \mu_0$:

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$
 (Fórmula 29)

Rejeita-se H_0 se $|Z| > z_{1-\alpha/2}$ (teste bilateral).

Cálculo do valor-p

Definição: Probabilidade, sob H_0 , de obter um valor da estatística tão extremo ou mais extremo que o observado.

- Testes bilaterais: valor-p = $2 \cdot P(Z > |z_{obs}|)$
- Testes unilaterais: valor-p = $P(Z>z_{obs})$ ou $P(Z< z_{obs})$
- \bullet Para estatísticas
t: Substituir Z por te usar distribuição t
- Decisão: Compara-se com α para decidir sobre H_0

7.2 Testes para o valor esperado, variância desconhecida

Teste para média - Variância desconhecida

Para testar $H_0: \mu = \mu_0$ em população normal:

$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t_{(n-1)}$$
 (Fórmula 30)

Rejeita-se H_0 se $|t|>t_{n-1,1-\alpha/2}$. Para n grande, usar aproximação normal.

7.3 Testes para a variância

Teste para variância - População normal

Para testar hipóteses sobre σ^2 com média desconhecida:

$$T = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$$
 (Fórmula 31)

7.4 Testes para probabilidade de sucesso

Teste para proporção - População de Bernoulli

Para testar $H_0: p = p_0$ com amostra grande (n > 30):

$$T = \frac{\overline{X} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \stackrel{a}{\sim}_{H_0} N(0,1)$$
 (Fórmula 32)

7.5 Teste de ajustamento do qui-quadrado

Teste de ajustamento de Pearson

Para hipótese nula simples:

$$T = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} \stackrel{H_0}{\sim} \chi^2_{(k-1)}$$
 (Fórmula 33)

Onde O_i são frequências observadas, E_i são frequências esperadas e k é o número de categorias.

8 Introdução à regressão linear simples

8.1 Modelo de regressão linear simples

Estimadores dos parâmetros de regressão

Inclinação:

$$\hat{\beta}_1 = \frac{\sum x_i Y_i - n\overline{x}\overline{Y}}{\sum x_i^2 - n\overline{x}^2}$$
 (Fórmula 34)

Ordenada na origem:

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \, \overline{x} \tag{F\'ormula 35}$$

8.2 Intervalos de confiança e testes para os parâmetros

Estatísticas para inferência sobre β_0

$$\frac{\hat{\beta}_0 - \beta_0}{\sqrt{\left(\frac{1}{n} + \frac{\overline{x}^2}{\sum x_i^2 - n\overline{x}^2}\right)\hat{\sigma}^2}} \sim t_{(n-2)}$$
 (Fórmula 36)

Estatísticas para inferência sobre β_1

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{\hat{\sigma}^2}{\sum x_i^2 - n\bar{x}^2}}} \sim t_{(n-2)}$$
 (Fórmula 37)

Estatísticas para inferência sobre $\beta_0 + \beta_1 x_0$

$$\frac{(\hat{\beta}_0 + \hat{\beta}_1 x_0) - (\beta_0 + \beta_1 x_0)}{\sqrt{\left(\frac{1}{n} + \frac{(\bar{x} - x_0)^2}{\sum x_i^2 - n\bar{x}^2}\right) \hat{\sigma}^2}} \sim t_{(n-2)}$$
 (Fórmula 38)

Teste para valor esperado da resposta em x_0

Para testar $H_0: E(Y|x_0) = e_0$:

$$T = \frac{\hat{\beta}_0 + \hat{\beta}_1 x_0 - e_0}{\sqrt{\left(\frac{1}{n} + \frac{(\overline{x} - x_0)^2}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}\right) \hat{\sigma}^2}} \sim_{H_0} t_{(n-2)}$$
 (Fórmula 39)

8.3 Coeficiente de determinação

Coeficiente de determinação R^2

Mede a proporção da variabilidade de Y explicada pelo modelo linear:

$$R^{2} = \frac{\left(\sum_{i=1}^{n} x_{i} Y_{i} - n\overline{x} \overline{Y}\right)^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}\right) \left(\sum_{i=1}^{n} Y_{i}^{2} - n\overline{Y}^{2}\right)}$$
(Fórmula 40)

Interpretação geral:

- $R^2 \approx 0$: Modelo não explica a variabilidade de Y
- $R^2 \approx 1$: Modelo explica quase toda a variabilidade de Y
- $0 < R^2 < 1$: Proporção da variância explicada pelo modelo

Exemplo de interpretação:

- Se $R^2 = 0.34$: Cerca de 34% da variação total da variável resposta Y é explicada pela variável x, através do modelo de regressão linear simples ajustado. Podemos concluir que a reta estimada não se ajusta bem ao conjunto de dados.
- Critério de ajuste: Valores de \mathbb{R}^2 próximos de 0.7 ou superiores indicam um bom ajuste do modelo aos dados.

Formulário completo com 40 fórmulas numeradas (retiradas de exames)

Use-se o índice de fórmulas (página 3) para navegação direta