Machine Learning

Phân loại

- Supervised learning
- Unsupervised learning
- Re-inforcement learning

Bài toán nhận dạng ảnh

Supervised Learning

Al label

Một cách khác để label cho ảnh

Bài toán nhận dạng khuôn mặt

Face Recognition

Text/Barcode detection

Text/Barcode Detection

Bài toán nhận dạng chữ viết tay

Demo Data

Nắng Ba Đình mùa thụ Chám vàng trên lăng Bác Vẫn trong vát bầu trời Ngày tuyên ngôn Đôc lập Áng mây nào sà thấp Crồn vầng đá hoa cương Nguyễn Phan Hách

Real Data

Bài toán dịch ảnh realtime

Translation

Nhận dạng cử chỉ

Gesture Recognition

Fundamentals

Minimize the deviations between prediction and real labels

Prediction Function

$$\hat{y} = h_{\theta}(x) = 0.95$$

Real Label

$$y = 1$$

Fundamentals

Minimize the deviations between prediction and real labels

$$\hat{y} = 0.95$$
 $min(y, \hat{y})$ $y = 1$ Minimize Loss function

Deep Learning

Câu hỏi đặt ra là:

Vậy cần bao nhiều lớp cho đủ trong mô hình này?

Inception Net (Google)

Bài toán face generation

Face Generation

https://www.youtube.com/watch?v=kSLJriaOumA

Style combination

Combine two pictures into one

https://github.com/NVIDIA/FastPhotoStyle

Image Translation

https://www.youtube.com/watch?v=9reHvktowLY

Tạo ảnh từ nét vẽ cho trước

Model: crabchair

start drawing crabchair.

Học tăng cường

Alpha Zero

OpenAl

CNN (Convolutional Neural Networks)

- Why are CNNs needed?
 - NNs chưa đáp ứng tốt với dữ liệu ảnh:
 - Cụ thể để phân loại ảnh màu 64 x 64
 - Input size cho NNs cần 64 x 64 x 3 = 12 288
 - Do đó chúng ta cần 12288 weights cho lớp input layer của NNs. Như vậy đối với ảnh 640 x 480 ta cần đến 921 600 weights. Nếu thêm hidden layer cho mạng NNs thì ta thấy việc tăng lên nhanh chóng các weights như vậy sẽ dẫn đến việc training dữ liệu sẽ tốn rất nhiều thời gian.

CNNs

Introducing CNNs

Why of 3D layers?

- Cho phép chúng ta dùng Convolutions để học các đặc trưng ảnh
- Chúng ta dùng ít weight hơn nhiều so với NNs => Thời gian training cũng nhanh hơn.

CNN's use a 3D Volume Arrangement for it's

¥

Neurons

- Because our input data is an image, we can constrain or design our Neural Network to better suit this type of data
- Thus, we arrange our layers in 3 Dimensions. Why 3?
- Because of image data consists of:
 - Height
 - 2. Width
 - Depth (RGB) our colors components

CNNs Layers

- Input
- Convolution Layer
- ReLU Layer
- Pool Layer
- Fully Connected Layer