

1.	(4 points) You are given an LP problem and are also given a feasible solution to it and a feasible solution to its dual. Explain (referring to relevant theorems) why both problems must have optimal solutions.	

2. A colleague hands you the following LP problem

and tells you that they used the simplex method to get to the following dictionary:

$$x_{2} = \frac{20}{3} - 2x_{1} - \frac{4}{3}x_{3} - \frac{4}{3}x_{5} + \frac{1}{3}x_{6}$$

$$x_{4} = \frac{4}{3} + \frac{1}{3}x_{3} + \frac{1}{3}x_{5} - \frac{1}{3}x_{6}$$

$$x_{7} = 1 + 4x_{1} + 6x_{3} + 10x_{5} - 3x_{6}$$

$$z = 52 - 3x_{1} - 6x_{3} - 5x_{5} - x_{6}$$

- (a) (2 points) Find the optimal solution.
- (b) (3 points) Write down the dual of the original problem.

(c) (2 points) Find the optimal solution to the dual problem.

3. (6 points) Use the two-phase simplex method (and Anstee's rule) to solve the following linear programming problem:

Extra work space for Question 3

- 4. (8 points) Check whether each of the following statements is correct or not. Circle True or False, and you do not need to explain your answer. Each correct answer will earn 1 mark.
 - (a) i. **True / False.** If a standard form linear programming problem is feasible but unbounded, then its dual problem is infeasible.
 - ii. **True / False.** Given a linear programming problem, it is possible to have no optimal solution, while there is an optimal solution to its dual problem.
 - iii. **True / False.** There is a linear programming problem for which both primal and dual problems are not feasible simulataneously.
 - iv. True / False. For each vector $\vec{y} \in \mathbb{R}^n$, it holds that $\max_{\vec{x} \in \mathbb{R}^n} [\vec{y} \cdot \vec{x}] = +\infty$.

- (b) (Read carefully.) Suppose that Prof. Anstee is following his rule to perform the simplex method to solve an LP problem. At a certain step he gets a feasible dictionary D_1 , and by continuing iterations ("pivotings"), he gets subsequent dictionaries D_2, D_3, D_4, D_5, D_6 , and D_7 .
 - i. True / False. The dictionaries $D_2, D_3, D_4, D_5, D_6, D_7$ must be feasible.
 - ii. True / False. In some cases, it is possible to have an optimal basic solution to D_1 but, non-optimal basic solution to D_3 .
 - iii. **True** / **False**. If D_7 is identical to D_1 , then this LP problem has no optimal solution.
 - iv. True / False. If D_7 is not identical to D_1 , then the dictionaries D_1 , D_2 , D_3 , D_4 , D_5 , D_6 , and D_7 all have different basic solutions from each other.

5. A colleague hands you the following LP problem

and tells you that they found the following optimal solution.

$$x_1^* = 2$$
 $x_2^* = 0$ $x_3^* = 2$ $z = 8$

(a) (2 points) Check that their solution is feasible.

(b) (6 points) Check that their solution is optimal using complementary slackness.

Extra Page 1

Extra Page 2

Extra Page 3