Math 295: Homework 9

Carter Rhea

April 3, 2014

- 1. Chapter 5.2 # 3 Which of the functions in exercise 3 of § 5.1 are one-to-one and which are onto?
 - (a) Let $A = \{a, b, c, \}$ and $B = \{a, b\}$, and $\{(a, b), (b, b), (c, a)\}$. f is not one-to-one but it is onto.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by the formula $f(x) = x^2 2x$. f is neither one-to-one or onto.
 - (c) Let $f = \{(x, n) \in \mathbb{R} \times \mathbb{Z} | n \le x < n + 1\}$. f is not one-to-one, but it is onto.
- 2. Chapter 5.2 #6 Let $A = \mathcal{P}(\mathbb{R})$. Define $f : \mathbb{R} \to A$ by the formula $f(x) = \{y \in \mathbb{R} | y^2 < x\}$.
 - (a) Find f(2). $f(2) = (-\sqrt{2}, \sqrt{2})$
 - (b) Is f one-to-one? Is it onto? f is one-to-one, and f is not onto.
- 3. Chapter 5.2 # 8 Suppose $f: A \to B$ and $g: B \to C$.
 - (a) Prove that if $g \circ f$ is onto then g is onto. Proof: Assume $(g \circ f)(x)$ is onto. Thus, by the definition of compisition $(g \circ f)(x) = g(f(x))$. Since, g(f(x)) is onto, for every $c \in C$, there exists and $a \in A$ such that g(f(a)) = c. Since $f: A \to B$, f(a) = b. Thus g(f(a)) = g(b). And therefore for all $c \in C$ there exists at least one $b \in B$ such that g(b) = c. Thus g(x) is onto.
 - (b) Prove that if $g \circ f$ is one-to-one then f is one-to-one. Proof: Assume $(g \circ f)(x)$ is one-to-one. Thus, by the definition of composition, g(f(x)) is one-to-one. Given $a_1, a_2 \in A$, by the definition of one-to-one $(g \circ f)(a_1) = (g \circ f)(a_2)$, which implies $a_1 = a_2$. Also $g(f(a_1)) = g(f(a_2))$ which now implies $f(a_1) = f(a_2)$. Thus, by the definition of one-to-one, f is one-to-one.
- 4. Chapter 5.3 # 2 Let F be the funtion defined in exercise 4(b) of § 5.1. If $X \in B$, what is $F^{-1}(X)$? $F^{-1}(X) = A \setminus X$
- 5. Chapter 5.3 # 6 Let $A = \mathbb{R} \setminus \{2\}$, and let f be the function with domain A defined by the formula

$$f(x) = \frac{3x}{x - 2}$$

(a) Show that f is a one-to-one, onto function from A to B for some set $B \subseteq \mathbb{R}$. What is the set B. One-to-one: According to the definition of f, we have

iff
$$f(a_1)=f(a_2)$$

$$\frac{3a_1}{a_1-2}=\frac{3a_2}{a_2-2}$$
 iff
$$3a_1(a_2-2)=3a_2(a_1-2)$$
 iff
$$3a_1a_2-6a_1=3a_1a_22-6a_2$$
 iff
$$-6a_1=-6a_2$$

iff

$$a_1 = a_2$$

Thus there can be no real numbers a_1 and a_2 for which $f(a_1) = f(a_2)$ and $a_1 \neq a_2$. Thus f is one-to-one.

Onto: Let y be an arbitrary real number. Let $x = \frac{-2x}{3-y}$. Then $g(x) = \frac{3x}{x-2} = \frac{3\frac{-2y}{3-y}}{\frac{-2y}{3-y} - 2} = \frac{\frac{-6y}{3-y}}{\frac{-2y-6+2y}{3-y}} = \frac{\frac{-6y}{3-y}}{\frac{-2y-6+2y}{3-y}} = \frac{\frac{-6y}{3-y}}{\frac{-2y-6+2y}{3-y}} = \frac{-6y}{3-y} = y$. Thus $\forall y \in \mathbb{R} \exists x \in \mathbb{R} (g(x) = y)$. Therefore, f is an arbitrary function. The set $B = \mathbb{R} \setminus \{3\}$.

It has been shown that f is one-to-one and unto from A to B for some set $B \subseteq \mathbb{R}$.

- (b) Find a formula for $f^{-1}(x)$. $f^{-1} = \frac{2x}{x-3}$
- 6. Chapter 5.3 # 13 Suppose $f: A \to B$ and f is onto. Let $R = \{(x,y) \in A \times A | f(x) = f(y)\}$. By exercise 17(a) of \S 5.1, R is an equivalence relation on A.
 - (a) Prove that there is a function $h: A \setminus R \to B$ such that for all $x \in A$, $h([x]_R) = f(x)$. Let $h = \{(X, y) \in A \setminus R \times B | \exists x \in X (f(x) = y)\}$. Pick $[x] \in A \setminus R$. Suppose [a] = [x] which implies aRx, which by the definition of a relation, f(a) = f(x). Then,

$$h([a]) = f(a)$$

and

$$h([x]) = f(x)$$

So, h([a]) = h([x]) Thus, h is a function.

(b) One-to-one: Suppose h([a]) = h([b]). Then f(a) = f(b). So by the definition of R, aRb implies $a \in [b]$. Furthermore, bRa implies $b \in [a]$. Thus based on Lemma (4.6.5), [a] = [b]. Thus h is one-to-one. Onto: Since f is onto, $\forall b \in B \exists a \in A(f(a) = b)$. Since, $A \setminus R = \{[x] \mid x \in A\}, a \in [a] \in A \setminus R$. Thus h([a]) = f(a) = b. Therefore h is onto because we found for any arbitrary $b \in B \exists a \in [a](h([a]) = b)$.