

MBA em DATA SCIENCE & ARTIFICIAL INTELLIGENCE

APPLIED STATISTICS

profregina.bernal@fiap.com.br
reginabernal@terra.com.br

Dra. Regina Tomie Ivata Bernal Cientista de Dados na área da Saúde

Formação Acadêmica:

Estatístico - UFSCar

Mestre em Saúde Pública – FSP/USP

Doutor em Ciências – Epidemiologia - FSP/USP

Atividades Profissionais:

Professora de pós-graduação na FIAP

Consultora externa da SVS/MS

Cientista de Dados em Saúde

TÍTULO DA APRESENTAÇÃO OU TÍTULO PRINCIPAL DO DOCUMENTO

INFERÊNCIA ESTATÍSTICA

. .

O que são Testes de Hipótese? - Bioestatística #9

https://www.youtube.com/watch?v=FZHqrVyc104

ruído e o uído e o ruído e o ruído e o ruído e o ruído e o ruíd o ruído e o uído e o ruído e o ruído e o ruído e o ruído e o ruíd o ruído e o uído e o ruído e o ruído e o ruído e o ruído e o ruíd o ruído e o uído e o ruído e o ruído e o ruído e o ruído e o ruíd o ruído e o uído e o ruído e o ruído e o ruído e o ruído e o ruíd o ruído e o ruído e o ruído e o insight e o ruído e c uído e o ruído e o ruído e o ruído e o ruído e o ruíd o ruído e o uído e o ruído uído e o ruído e o ruído e o ruído e o ruído e o ruíd o ruído e o uído e o ruído e o ruído e o ruído e o ruído e o ruíd o ruído e o uído e o ruído e o ruído e o ruído e o ruído e o ruíd o ruído e o ruído e o ruído e o ruído e o uído e o ruído e o ruído e o ruído e o ruído e o ruíd o ruído e o uído e o ruído e o ruído e o ruído e o ruído e o ruíd eo ruído e o ruído e o ruído e **o insight** e o ruído e o uído e o ruído e o ruído e o ruído e o ruído e o ruíd o ruído e o uído e o ruído e o ruído e o ruído e o ruído e o ruído

ruído e o ruído e o ruído e o ruído e o ruído e o

Aplicado em Marketing

Planejamento de campanhas

Não poupe. Invista. Abra a sua conta na Rico

Planejamento de campanhas

Origem: Wikipédia, a enciclopédia livre.

Teste A/B é um método de teste de design através do qual comparam-se elementos aleatórios com duas variantes, A e B, em que estes são o controle e o tratamento de uma experiência controlada, com o objetivo de melhorar a percentagem de aprovação. Estas experiências são muito utilizadas em desenvolvimento web e de marketing, e até mesmo em formas tradicionais de publicidade. Teste A/B também se designa por experiência aleatória controlada, experiência online controlada e teste de divisão. Em web design, o teste A/B é utilizado para identificar alterações nas páginas web que podem provocar mudanças positivas ou negativas no interesse dos utilizadores. Como o nome já diz, duas versões são comparadas, as quais são idênticas exceto por uma variante que pode impactar o comportamento do utilizador. A versão A pode ser a versão utilizada atualmente (controle), enquanto a Versão B é a modificada (tratamento). Podem ser vistas melhorias significativas através de testes de elementos como copiar o texto, layouts, imagens e cores, mas nem sempre. Os testes multivariados ou teste de balde são semelhantes ao teste A/B, mas estes testes abordam mais de duas versões diferentes ao mesmo tempo.

Referências

1. ↑ «Split Testing Guide for Online Stores» @. webics.com.au (em inglês). Consultado em 17 de setembro de 2018

Fonte: https://pt.wikipedia.org/wiki/Teste A/B

Origem: Wikipédia, a enciclopédia livre.

Teste de hipóteses, teste estatístico ou teste de significância [1] é um procedimento estatístico que permite tomar uma decisão (aceitar ou rejeitar a hipótese nula H_0) entre duas ou mais hipóteses (hipótese nula H_0 ou hipótese alternativa H_1), utilizando os dados observados de um determinado experimento. [2] Há diversos métodos para realizar o teste de hipóteses, dos quais se destacam o método de Fisher (teste de significância), [3] o método de Neyman-Pearson [4] e o método de Bayes. [5]

Por meio da teoria da probabilidade, é possível inferir sobre quantidades de interesse de uma população a partir de uma amostra observada de um experimento científico. Por exemplo, estimar pontualmente e de forma intervalar um parâmetro de interesse, testar se uma determinada teoria científica deve ser descartada, verificar se um lote de remédios deve ser devolvido por falta de qualidade, entre outros. Por meio do rigor matemático, a inferência estatística pode ser utilizada para auxiliar a tomada de decisões nas mais variadas áreas.^[6]

Os testes de hipóteses são utilizados para determinar quais resultados de um estudo científico podem levar à rejeição da hipótese nula H_0 a um nível de significância pré—estabelecido. O estudo da teoria das probabilidades e a determinação da estatística de teste correta são fundamentais para a coerência de um teste de hipótese. Se as hipóteses do teste de hipóteses não forem assumidas de maneira correta, o resultado será incorreto e a informação será incoerente com a questão do estudo científico. Os tipos conceituais de erro (erro do tipo I) e os limites paramétricos ajudam a distinguir entre a hipótese nula H_0 e a hipótese alternativa H_1 . $^{[7]}$

Fonte: https://pt.wikipedia.org/wiki/Testes de hipóteses

□ · · • •

Aplicado em Pesquisas

Desejando-se conhecer a média de gasto anual com medicamentos na cidade Y, selecionou-se uma amostra aleatória de 100 adultos maiores de 40 anos. Teste a hipótese de que o gasto anual dessa população é inferior ao gasto médio de R\$ 120,00 a.a. com nível de significância de 5%?

Hipótese estatística:

$$H_0$$
: μ = 120

$$H_1: \mu < 120$$

RC R.A.

Critério de decisão:

$$\alpha = 0.05$$

$$z_{0.05} = 1,64$$

Sortear uma amostra aleatória de 100 adultos

Resultados da pesquisa:

			Std.	Std. Error
	N	Mean	Deviation	Mean
gasto	100	95,10	63,333	6,333

	Test Value = 120						
			Sig. (2-	Mean		dence Interval	
	t	df	tailed)	Difference	Lower	Upper	
gasto	-3,932	99	,000	-24,900	-37,47	-12,33	

Ao nível de 5% de significância, há evidências para rejeição de H0. Portanto, o gasto médio anual de medicamentos na população de adultos maiores de 40 anos residentes na cidade Y é inferior a R\$ 120.

Tabela V — Distribuição t de Student Grous de liberdade p/2 0/2 Corpo da tabela dá os valores t_c tais que $P(-t_c < t < t_c) = 1 - p$. Para v > 120, usar a aproximação normal. 1-p -1 1% 0.2% 0.1% 2% 10% 5% 4% 40% 30% 20% p = 90%80% 70% 60% 50% 15,894 318.309 636,619 12.706 31.821 63 657 1,000 1.376 1.963 3.078 6.314 0.510 0.727 0.158 0.325 31.598 1.886 2,920 4,303 4.849 6.965 9.925 22.327 1.061 0.816 1.386 0,289 0.445 0.617 2 0.142 5.841 10.214 12,924 2,353 3.182 3 482 4.541 0.978 1.250 1,638 0.765 3 0.137 0.277 0.424 0.584 7,173 8.610 2.776 1,533 2.998 3.747 4.604 0.941 1.190 2.132 0.134 0.271 0.414 0.569 0.741 5.893 6.869 2.015 2,571 2.756 3.365 4,032 1,156 1.476 0.408 0.559 0.727 0.920 5 0.132 0.267 5,208 5,959 2.447 2.612 3.143 3.707 0.718 0.906 1.134 1.440 1.943 0.404 0.553 0.131 0.265 6 3,499 4.785 5.408 2,517 2.998 0.896 1,119 1,415 1.895 2,365 0.402 0.549 0.711 7 0.130 0.263 3,355 4,501 5.041 1.397 1,860 2,306 2.449 2.896 0.889 1.108 0.399 0.546 0.706 0.130 0,262 4.297 4,781 2,398 2,821 3.250 1,383 1.833 2.262 0,543 0.883 1.100 9 0.129 0,261 0.398 0.703 3.169 4.144 4.587 2.228 2,359 2.764 0,879 1.093 1,372 1.812 0.542 0.700 10 0.129 0.260 0.397 2.718 4.437 1,796 2,328 3,106 3.025 1,088 2,201 0.876 1,363 11 0.129 0.260 0.396 0.540 0.697 3,055 3,930 4,318 2.179 2,303 2,681 1.356 1,782 0,259 0.395 0.539 0.695 0.873 1.083 12 0.128 4.221 2.282 3.012 3.852 1.771 2.160 2.650 0.694 0,870 1.079 1,350 13 0.259 0.394 0.538 0.128 3.787 4.140 2,145 2.264 2.624 2.977 0.868 1.076 1,345 1.761 0.537 0.692 0.128 0.258 0.393 14 3,733 4,073 1,753 2.131 2.248 2,602 2.947 0.866 1.074 1.341 15 0.128 0,258 0.393 0,536 0.691 3,686 4.015 2.235 2,583 2.921 1.071 1,337 1,746 2.120 0.535 0.690 0.865 0.258 0.392 16 0.128 2,224 2.898 3,646 3.965 1.740 2,110 2.567 1.069 1,333 0,392 0.534 0.689 0.863 17 0,128 0.257 3,610 3,922 2,101 2.214 2.552 2,878 1,734 1.067 1.330 18 0.127 0,257 0.392 0.534 0.688 0.862 3,579 2,539 3.883 1,729 2.093 2,205 2.861 1,328 19 0.391 0,533 886.0 0.861 1.066 0.1270.257 3,552 3.850 2,197 2.845 1,325 1,725 2.086 2.528 0.257 0.533 0.687 0.860 1.064 0.391 20 0.127 2.831 3,527 3.819 1,721 2.189 2,518 0.859 1,063 1.323 2.080 0,257 0.391 0.532 0.686 21 0.127 3,505 3,792 2,508 2,819 1,321 1,717 2.074 2.183 0.390 0.686 0.858 1,061 0.256 0,532 22 0.127 1,319 1,714 2.069 2.177 2,500 2.807 3,485 3.768 1.060 0.390 0.685 0.858 23 0.256 0.532 0.127 2,064 2.172 2,492 2,797 3.467 3.745 1,711 1,059 1.318 0,390 0,531 0.685 0.857 24 0.127 0.256 2,485 2.787 3,450 3,725 2.166 1,316 1,708 2.060 0.390 0.684 0,856 1,058 25 0.127 0.256 0.531 2,479 2.779 3,435 3.707 1,315 2.056 2,162 0,856 1,706 0.256 0,390 0.531 0.684 1.058 26 0.127 3,690 2,158 2.473 2,771 3,421 1,314 1.703 2.052 0,389 0.684 0,855 1.057 27 0,127 0.256 0.531 3,408 3,674 2,048 2.154 2,467 2.763 0,855 1,056 1,313 1,701 0,256 0.389 0,530 0.684 28 0.127 3,659 3,396 0.854 1,311 1,699 2.045 2,150 2,462 2.756 0.683 1.055 29 0,127 0.256 0,389 0.530 2,750 3,385 3,646 1,697 2,042 2.147 2,457 0,854 1,055 1.310 0,389 0,683 0.127 0,256 0.530 30 3,591 2,030 2.133 2,438 2.724 3,340 1,306 1,690 0,529 0.682 0.852 1,052 0.388 35 0,126 0.255 3,307 3,551 1,303 2,021 2.123 2.423 2,704 0,851 1,684 0,529 0.681 1.050 40 0.126 0.255 0,388 2,678 3,261 3,496 1,299 2.009 2.109 2.403 0,679 1,047 1.676 50 0,126 0.254 0,387 0.528 0.849 3.232 3,460 2,000 2,390 2.660 1,671 2.099 0.387 0.527 0.679 0.848 1,045 1.296 60 0.126 0.254 2,358 2,617 3,160 3,373 1,658 2.076 0.386 0.526 0.677 0.845 1.041 1,289 1,980 0,126 0.254 120 2,576 3,090 3,291 2,054 2,326 0,842 1,036 1,282 1,645 1,960 0,385 0,524 0.674 0,253 00 0.126

50%

70%

60%

p = 90%

80%

40%

30%

10%

5%

20%

Graus de liberdade

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

35

40

50

60

120

1%

4%

2%

0,2%

0,1%

.

DISTRIBUIÇÃO NORMAL

Tabela III — Distribuição Normal Padrão $Z \sim N(0,1)$ Corpo da tabela dá a probabilidade p, tal que p = P(0 < Z < Z)

P

P(Z>0)=?

										0 Z	Z
parte in- teira e primeira decimal de Z	D	1	2	Segur 3	nda decima	il de Z	6	7	8	9	parte in- teira e primeira decimal de Z
-	p-0										
0.0	00000	00399	00798	01197	01595	01994	02392	02790	03188	03586	0,0
0.1	03983	0.4380	04776	05172	05567	05962	06356	06749	07142	07535	0,1
0.2	07926	08317	08706	09095	09483	09871	10257	10642	11026	11409	0,2
0,3	11791	12172	12552	12930	13307	13683	14058	14431	14803	15173	0,3
0.4	15542	15910	16276	16640	17003	17364	17724	18082	18439	18793	0,4
0.5	19146	19497	19847	20194	20540	20884	21226	21566	21904	22240	0,5
0.6	22575	22907	23237	23565	23891	24215	24537	24857	25175	25490	0,6
0.7	25804	26115	26424	26730	27035	27337	27637	27935	28230	28524	0.7
0.8	28814	29103	29389	29673	29955	30234	30511	30785	31057	31327	0,8
0.9	31594	31859	32121	32381	32639	32894	33147	33398	33646	33891	0,9
1,0	34134	34375	34614	34850	35083	35314	35543	35769	35993	36214	1,0
1.1	36433	36650	36864	37076	37286	37493	37698	37900	38100	38298	1,1
1,2	38493	38686	38877	39065	39251	39435	39617	39796	39973	40147	1,2
1,3	40320	40490	40658	40824	40988	41149	41309	41466	41621	41774	1,3
1.4	41924	42073	42220	42364	42507	42647	42786	42922	43056	43189	1,4
1,5	43319	43448	43574	43699	43822	43943	44062	44179	44295	44408	1,5
1,6	44520	44630	44738	44845	44950	45053	45154	45254	45352	45449	1,6
1.7	45543	45637	45728	45818	45907	45994	46080	46164	46246	46327	1.7
1,8	46407	46485	46562	46638	46712	46784	46856	46926	46995	47062	1,8
1,9	47128	47193	47257	47320	47381	47441	47500	47558	47615	47670	1.9
2.0	47725	47778	47831	47882	47932	47982	48030	48077	48124	48169	2,0
2.1	48214	48257	48300	48341	48382	48422	48461	48500	48537	48574	2,1
2.2	48610	48645	48679	48713	48745	48778	48809	48840	48870	48899	2,2
2,3	48928	48956	48983	49010	49036	49061	49086	49111	49134	491.58	2.3
2,4	49180	49202	49224	49245	49266	49286	49305	49324	49343	49361	2,4
2,5	49379	49396	49413	49430	49445	49461	49477	49492	49506	49520	2,5
2,6	49534	49547	49560	49573	49585	49598	49609	49621	49632	49643	2,6
2,7	49653	49664	49674	49683	49693	49702	49711	49720	49728	49736	2.7
2,8	49744	49752	49760	49767	49774	49781	49788	49795	49801	49807	2,8
2,9	49813	49819	49825	49831	49836	49841	49846	49851	49856	49861	2.9
3,0	49865	49869	49874	49878	49882	49886	49889	49893	49897	49900	3,0
3,1	49903	49906	49910	49913	49916	49918	49921	49924	49926	49929	3,1
3,2	49931	49934	49936	49938	49940	49942	49944	49946	49948	49950	3,2
3,3	49952	49953	49955	49957	49958	49960	49961	49962	49964	49965	3,3
3,4	49966	49968	49969	49970	49971	49972	49973	49974	49975	49976	3,4
3,5	49977	49978	49978	49979	49980	49981	49981	49982	49983	49983	3,5
3,6	49984	49985	49985	49986	49986	49987	49987	49988	49988	49989	3,6
3.7	49989	49990	49990	49990	49991	49991	49992	49992	49992	49992	3,7

+ + .

Aplicado em Modelos de Regressão Linear Faça a previsão das vendas (R\$) mensal no período de 12 meses da empresa XYZ a partir dos dados disponíveis de Vendas (R\$) e Budget Advertising (R\$) da empresa.

Modelo de regressão linear simples

1740202 268929

Y = b0 + b1*X1 (teórico)

12 dez/16 2016

	OLS	Regressi	on Results			
Dep. Variable:		Vendas	R-squared:		0.7	25
Model:		OLS	Adj. R-squared	:	0.7	17
Method:	Least S	quares	F-statistic:		89.	75
Date:			Prob (F-statis	tic):	4.58e-	11
Time:	23	:18:47	Log-Likelihood	: '	-509.	57
No. Observations:			AIC:		102	3.
Df Residuals:		34	BIC:		102	6.
Df Model:		1				
Covariance Type:	non	robust				
	coef	std err	t	P> t	[0.025	0.975]
const	1.061e+06	1.52e+05	6.988	0.000	7.52e+05	1.37e+06
Budget_Advertising	4.9641	0.524	9.473	0.000	3.899	6.029
Omnibus:		1.236	Durbin-Watson:		 0.7	81
Prob(Omnibus):		0.539	Jarque-Bera (J	B):	1.1	.12
Skew:		0.256	Prob(JB):	-	0.5	74
Kurtosis:		2.309	Cond. No.		7.54e+	-05

Faça a previsão das vendas (R\$) mensal no período de 12 meses da empresa XYZ a partir dos dados disponíveis de Vendas (R\$) e Budget Advertising (R\$) da empresa.

Hipótese estatística:

 $H_0: B0 = 0$

 $H_1: B0 \neq 0$

Critério de decisão:

$$n = 36$$

gl = $n - 1$

$$\alpha = 0.05$$

 $t_{0,05} = 2.030$ (Tabela t-Student)

Teste Bilateral

OLS Regression Results Dep. Variable: Vendas R-squared: Model: 015 Adi. R-squared: 0.717 Least Squares F-statistic: Method: 89.75 Date: Mon, 21 Jun 2021 Prob (F-statistic): 4.58e-11 Time: 23:18:47 Log-Likelihood: -509.57 No. Observations: ATC: 1023. Of Residuals: BTC: 1026 Df Model: p-value Intervalo de confianca Covariance Type: P>ItI [0.025 1.061e+06 1.52e+05 0.000 7.52e+05 1.37e + 06Budget Advertising 4.9641 9.473 0.000 3.899 6.029 Omnibus: Durbin-Watson: 0.781 1.236 1.112 Prob(Omnibus): 0.539 Jarque-Bera (JB Skew: 0.256 Prob(JB): 0.574 Kurtosis: Cond. No.

 $t_{observado} = 6.988$

Vendas = b0+ b1*Budget

(modelo ajustado)

Vendas = 1060550 + 4.964 * Budget

Faça a previsão das vendas (R\$) mensal no período de 12 meses da empresa XYZ a partir dos dados disponíveis de Vendas (R\$) e Budget Advertising (R\$) da empresa.

modelo <- lm(Vendas ~ Budget_Advertising)

summary(modelo)

		Vendas	Budget	> summary(m
jan/19	2019	1.512.274	91000	call:
fev/19	2019		154240	lm(formula
mar/19	2019		169702	Residuals: Min
<u>abr</u> /19	2019		185081	-655330 -25
mai/19	2019		199683	Coefficient
jun/19	2019		229192	(Intercept)
jul/19	2019		238403	Budget_Adve
ago/19	2019		247253	Signif. cod
set/19	2019		311114	Residual st
out/19	2019		320442	Multiple R- F-statistic
nov/19	2019		373507	r-scaciscic
dez/19	2019		336157	

Projeção para 2019

Modelo de regressão linear simples

```
modelo)
= Vendas ~ Budget_Advertising)
  10 Median
56271 -30444 234875 743028
ts:
          Estimate Std. Error t value
                                           Pr(>|t|)
       1060550.396 151771.308 6.99 0.000000046312
ertisina
           4.964
                        0.524 9.47 0.000000000046 ***
des: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tandard error: 350000 on 34 degrees of freedom
-squared: 0.725.
                Adjusted R-squared: 0.717
c: 89.7 on 1 and 34 DF, p-value: 0.0000000000458
```

Vendas janeiro/19 = 1060550 + 4.964 * 91000 = 1.512.274

⁻ Teste de Hipóteses

H0: Inocente

Exemplo:

Júri Popular

Réu

Culpado ou

Inocente?

Alpha = 5%

H1: Culpado

Erro de decisão?

Teste de Hipóteses

De acordo com a formulação das hipóteses, os testes podem ser monocaudal ou bicaudal.

- •Monocaudal:
 - H_0 : $\mu = \mu_0$
 - H_1 : $\mu > \mu_0$
 - H_0 : $\mu = \mu_0$
 - H_1 : $\mu < \mu_0$
- Bicaudal
 - H_0 : $\mu = \mu_0$
 - H_1 : $\mu \neq \mu_0$

onde: RA = região de aceitação e RR = região de rejeição

1) A Empresa AAA deseja avaliar o impacto do novo produto no faturamento médio da empresa. Elabore as hipóteses H_0 e H_1 .

H0:

H1:

2) A indústria farmacêutica XYZ tem um medicamento BBB que apresenta um tempo médio de 10min para efeito do remédio. A empresa fez uma alteração na fórmula desse produto e ela deseja avaliar se lança ou não o novo produto no mercado. Elabore as hipóteses H_0 e H_1 .

H0:

H1:

Teste de Hipóteses

□ p-valor

É uma estimativa do nível de significância observada na amostra. Indica a probabilidade de ocorrer valores da estatística mais extremos do que o observado, sob a hipótese H₀ ser verdadeira.

Regra de decisão:

Se p-valor $< \alpha$ então rejeito H_0 , caso contrário não rejeito.

Origem: Wikipédia, a enciclopédia livre.

São fundamentais os seguintes conceitos para um teste de hipóteses:[7]

- Hipótese nula (H₀): é a hipótese assumida como verdadeira para a construção do teste. É a teoria, o efeito ou a alternativa que se está interessado em testar.
- Hipótese alternativa (H_1): é considerada quando a hipótese nula não tem evidência estatística.
- Erro do tipo I (α): é a probabilidade de se rejeitar a hipótese nula quando ela é verdadeira.
- Erro do tipo II: é a probabilidade de se rejeitar a hipótese alternativa quando ela é verdadeira.

	Hipótese nula H_0 é verdadeira	Hipótese nula ${\cal H}_0$ é falsa
Hipótese nula H_0 é rejeitada	Erro do tipo I	Não há erro
Hipótese nula H_0 não é rejeitada	Não há erro	Erro do tipo II

Fonte: https://pt.wikipedia.org/wiki/Testes_de_hipóteses

- ANÁLISE DE ASSOCIAÇÃO

Analisa o comportamento conjunto de duas variáveis qualitativas apresentada em tabela bivariada.

- Teste Qui-Quadrado (Variáveis Qualitativas)
- Correlação de Pearson (Variáveis Quantitativas)

Existe correlação entre o valor do imóvel e a área?

Teste Correlação de Pearson

 H_0 : r = 0 (ausência de correlação)

H₁: r≠0 (presença de correlação)

Erro de decisão: 0,05 ou 5%

CORRELAÇÃO DE PEARSON

Correlação indica a força e a direção do relacionamento linear entre duas variáveis aleatórias. No uso estatístico geral, correlação se refere à medida da relação entre duas variáveis, embora correlação não implique causalidade. Nesse sentido geral, existem vários coeficientes medindo o grau de correlação, adaptados à natureza dos dados.

Vários coeficientes são utilizados para situações diferentes. O mais conhecido é o coeficiente de correlação de Pearson, o qual é obtido dividindo a covariância de duas variáveis pelo produto de seus desvios padrão. Apesar do nome, ela foi apresentada inicialmente por Francis Galton, em meados do século XVII.

Coeficiente de correlação de Pearson, em geral é expresso por (R ou ρ).

. CORRELAÇÃO DE PEARSON

Análise de correlação

•

• • • –

CORRELAÇÃO DE PEARSON

Análise de correlação

Correlação Linear Simples (r de Pearson)

$$\sum_{i=1} (X_i - \bar{X}) * (Y_i - \bar{Y})$$

$$\sqrt{\sum_{i=1}^{N} (X_i - \bar{X})^2 * \sum_{i=1}^{N} (Y_i - \bar{Y})^2}$$

Para avaliar-se a correlação entre variáveis, é importante conhecer a magnitude ou força tanto quanto a significância da correlação.

•

• • • + • 🗆

· • +

Volume de vendas X Número de vendedores

•

• • • + • □

· • +

Volume de vendas X Número de vendedores

imero de vendedores

Associações Espúrias

- Associação entre dois fatores e quando queremos saber se um <u>causa</u> o outro?
- Big data muitos resultados estatisticamente significativos que n\u00e3o fazem sentido causal

variável de confusão quando há muitas variáveis na análise

Uma relação estatística existente entre duas variáveis, mas onde não existe nenhuma relação causa-efeito entre elas. Essa relação estatística pode ocorrer por pura coincidência ou por causa de uma terceira variável.

correlates with

Suicides by hanging, strangulation and suffocation

Correlation: 99.79% (r=0.99789126)

Data sources: U.S. Office of Management and Budget and Centers for Disease Control & Prevention

ANÁLISE DE CORRELAÇÃO DE PEARSON

Exercícios

Bike Sharing

- ANÁLISE DE ASSOCIAÇÃO

Analisa o comportamento conjunto de duas variáveis qualitativas apresentada em tabela bivariada.

Teste Qui-Quadrado (Variáveis Qualitativas)

Correlação de Pearson (Variáveis Quantitativas)

□ • •

Existe associação entre as vendas de produto e região?

Exemplo:

Tabela 1 – Distribuição de vendas segundo produto e região. 2018

		Reg	ião		Tota	
Produto	Х		Y		1018	1 1
_	N	%	N	%	N	%
A	300	15	200	8	500	11
В	800	40	1000	42	1800	41
С	900	45	1200	50	2100	48
Total	2000	100	2400	100	4400	100

Existe associação entre as vendas de produto e região?

Existe associação entre as vendas de produto e região?

•			-	,
		REGIAO		
		X	Y	TOTAL
	A	300	200	500
Produto	В	800	1000	1800
	C	900	1200	2100
		2000	2400	4400

Chi Square for R by C Table

 Chi Square=
 49.12

 Degrees of Freedom=
 2

 p-value=
 <0.0000001</td>

Cochran recommends accepting the chi square if:

- 1. No more than 20% of cells have expected < 5.
- 2. No cell has an expected value < 1.

In this table:

None of 6 cells have expected values \leq 5. No cells have expected values \leq 1.

Using these criteria, this chi square can be accepted.

Expected value = row total*column total/grand total

Rosner, B. Fundamentals of Biostatistics. 5th ed. Duxbury Thompson Learning, 2000; p. 395

Teste de independência qui-quadrado

H₀: independentes

H₁: dependentes

 $\alpha = 5\%$

Conclusão: Rejeito H0, portanto há associação.

Graus de liberdade=

$$\varphi$$
 = graus de liberdade

Existe associação entre as vendas de produto e região?

Exemplo:

Tabela 2 – Distribuição de vendas segundo região e produto. 2018

		Reg	ião		Tota	
Produto	Χ		Υ	-	101	اد
	N	%	Ν	%	N	%
A	300	60	200	40	500	100
В	800	44	1000	56	1800	100
С	900	43	1200	57	2100	100
Total	2000	45	2400	55	4400	100

Fonte:zzzz

Será que uma carta de pré-notificação afeta a taxa de resposta dos médicos participantes da pesquisa?

		Ca	- Total			
Resposta	Sim				Não	
	N	%	N	%	N	%
Sim	2570	51.2	2645	52.6	5215	51.9
Não	2448	48.8	2384	47.4	4832	48.1
Total	5018	100.0	5029	100.0	10047	100.0

Será que uma carta de pré-notificação afeta a taxa de resposta dos médicos participantes da pesquisa?

2 x 2 Table Statistics

Single Table Analysis Carta Sim Nao 2570 2645 Sim 5215 2448 Nao 2384 4832 Resposta 5018 5029 10047

Chi Square and Exact Measures of Association

Test	Value	p-value(1-tail)	p-value(2- tail)
Uncorrected chi square	1.914	0.08332	0.1666
Yates corrected chi square	1.859	0.08644	0.1729
Mantel-Haenszel chi square	1.914	0.08333	0.1667
Fisher exact		'?'(P)	'?'
Mid-P exact		'?'(P)	'?'

All expected values (row total*column total/grand total) are \geq 5 OK to use chi square.

Conclusão: Não rejeito H0, portanto Não há associação.

Teste de independência qui-quadrado

 H_0 : independentes

 H_1 : dependentes

 $\alpha = 5\%$

Graus de liberdade= 1

 ϕ = graus de liberdade

TESTE DE HIPÓTESES NÃO PARAMÉTRICO

Teste Qui-Quadrado (Independência)

Distribuições bivariadas de frequências para variáveis qualitativas são apresentadas em tabelas de contingência, que facilitam a análise estatística da possível relação entre duas características observadas em determinada população. A estatística chamada qui-quadrado sintetiza as diferenças entre as frequências observadas de uma tabela bivariada e as correspondentes frequências esperadas.

Definindo as hipóteses H₀ e H₁

H₀: as variáveis são independentes

 ${\rm H_1}$: as variáveis não são independentes, isto é, apresentam algum grau de associação entre si.

TESTE DE HIPÓTESES NÃO PARAMÉTRICO

VANTAGENS

Não é necessário fazer suposições sobre a distribuição da população da qual tenham sido extraídos os dados para a análise.

Aplicáveis a variáveis não contínuas (variáveis categóricas nominais e ordinais).

Simplicidade do ponto de vista de cálculo.

Aplicabilidade a pequenas amostras. Estudo Piloto (ex: amostras de pessoas portadoras de uma certa doença)

→ As técnicas não-paramétricas são em geral menos eficazes que as paramétricas quando aplicadas a dados onde é possível usar as técnicas paramétricas.

TESTE DE HIPÓTESES NÃO PARAMÉTRICO

A estatística Qui-Quadrado de Pearson é calculada pela expressão

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{k} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

Sob H_0 , tem distribuição Qui-Quadrado, com (r-1)(c-1) graus de liberdade, sendo r o número de linhas e c o número de colunas

Onde: O_{ij} = número de casos observados classificados na linha i da coluna j; E_{ij} = número de casos esperados , sob Ho, na linha i da coluna j;

$$\sum_{i=1}^{r}\sum_{j=1}^{r}$$
 Indica somatório sobre todas as células

Distribuição do Qui-Quadrado - χ_n^2

Os valores tabelados correspondem aos pontos x tais que: $P(\chi_n^2 \le x)$

							$P(\chi_n^2 \le x)$)						
n	0,005	0,01	0,025	0,05	0,1	0,25	0,5	0,75	0,9	0,95	0,975	0,99	0,995	
1	3,93E-05	0,000157	0,000982	0,003932	0,016	0,102	0,455	1,323	2,706	3,841	5,024	6,635	7,879	1
2-	0,010	0,020	0,051	0,103	0,211	0,575	1,306	2,773	1,605	5,001	7,270	2,210	10,507	2
3	0,072	0,115	0,216	0,352	0,584	1,213	2,366	4,108	6,251	7,815	9,348	11,345	12,838	3
4	0,207	0,297	0,484	0,711	1,064	1,923	3,357	5,385	7,779	9,488	11,143	13,277	14,860	4
5	0,412	0,554	0,831	1,145	1,610	2,675	4,351	6,626	9,236	11,070	12,832	15,086	16,750	5
6	0,676	0,872	1,237	1,635	2,204	3,455	5,348	7,841	10,645	12,592	14,449	16,812	18,548	6
7	0,989	1,239	1,690	2,167	2,833	4,255	6,346	9,037	12,017	14,067	16,013	18,475	20,278	7
8	1,344	1,647	2,180	2,733	3,490	5,071	7,344	10,219	13,362	15,507	17,535	20,090	21,955	8
9	1,735	2,088	2,700	3,325	4,168	5,899	8,343	11,389	14,684	16,919	19,023	21,666	23,589	9
10	2,156	2,558	3,247	3,940	4,865	6,737	9,342	12,549	15,987	18,307	20,483	23,209	25,188	10
11	2,603	3,053	3,816	4,575	5,578	7,584	10,341	13,701	17,275	19,675	21,920	24,725	26,757	11
12	3,074	3,571	4,404	5,226	6,304	8,438	11,340	14,845	18,549	21,026	23,337	26,217	28,300	12
13	3,565	4,107	5,009	5,892	7,041	9,299	12,340	15,984	19,812	22,362	24,736	27,688	29,819	13
14	4,075	4,660	5,629	6,571	7,790	10,165	13,339	17,117	21,064	23,685	26,119	29,141	31,319	14
15	4,601	5,229	6,262	7,261	8,547	11,037	14,339	18,245	22,307	24,996	27,488	30,578	32,801	15
16	5,142	5,812	6,908	7,962	9,312	11,912	15,338	19,369	23,542	26,296	28,845	32,000	34,267	16
17	5,697	6,408	7,564	8,672	10,085	12,792	16,338	20,489	24,769	27,587	30,191	33,409	35,718	17
18	6,265	7,015	8,231	9,390	10,865	13,675	17,338	21,605	25,989	28,869	31,526	34,805	37,156	18
19	6,844	7,633	8,907	10,117	11,651	14,562	18,338	22,718	27,204	30,144	32,852	36,191	38,582	19
20	7,434	8,260	9,591	10,851	12,443	15,452	19,337	23,828	28,412	31,410	34,170	37,566	39,997	20
21	8,034	8,897	10,283	11,591	13,240	16,344	20,337	24,935	29,615	32,671	35,479	38,932	41,401	21
22	8,643	9,542	10,982	12,338	14,041	17,240	21,337	26,039	30,813	33,924	36,781	40,289	42,796	22
23	9,260	10,196	11,689	13,091	14,848	18,137	22,337	27,141	32,007	35,172	38,076	41,638	44,181	23
24	9,886	10,856	12,401	13,848	15,659	19,037	23,337	28,241	33,196	36,415	39,364	42,980	45,558	24
25	10,520	11,524	13,120	14,611	16,473	19,939	24,337	29,339	34,382	37,652	40,646	44,314	46,928	25
26	11,160	12,198	13,844	15,379	17,292	20,843	25,336	30,435	35,563	38,885	41,923	45,642	48,290	26
27	11,808	12,878	14,573	16,151	18,114	21,749	26,336	31,528	36,741	40,113	43,195	46,963	49,645	27
28	12,461	13,565	15,308	16,928	18,939	22,657	27,336	32,620	37,916	41,337	44,461	48,278	50,994	28
29	13,121	14,256	16,047	17,708	19,768	23,567	28,336	33,711	39,087	42,557	45,722	49,588	52,335	29
30	13,787	14,953	16,791	18,493	20,599	24,478	29,336	34,800	40,256	43,773	46,979	50,892	53,672	30
40	20,707	22,164	24,433	26,509	29,051	33,660	39,335	45,616	51,805	55,758	59,342	63,691	66,766	40
50	27,991	29,707	32,357	34,764	37,689	42,942	49,335	56,334	63,167	67,505	71,420	76,154	79,490	50
	72.273	411.411.4	#77 #11-Y	********	17 1277			22.0014	-18-486-1	-28 200-4	11-1-17111	1111-1-171	W W-9	

*TESTE DE HIPÓTESES NÃO PARAMÉTRICO

+

Exemplo:

A Associação de Imprensa do Estado de São Paulo fez um levantamento com 1300 leitores, para verificar se a preferência por leitura de um determinado jornal é independente do nível de instrução do indivíduo. Os resultados obtidos foram:

Observado	A	В	С	D	Total
1. Grau	10 _{20%}	8 16	_% 5	10% 27	_{54%} 50
2. Grau	90 20%	162 ₃₆	% 125	28% 73	_{16%} 450
Universitário	200 _{25%}	250 31	_% 220	28% 130	16% 800
Total	300 23%	420 32	350 %	230 27 %	1300 18%

Esperado	Α	В	С	D	Total
1. Grau	12	16	13	9	50
2. Grau	104	145	121	80	450
Universitário	185	258	215	142	800
Total	300	420	350	230	1300

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{k} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

Rejeitamos Ho ao nível de 5%, isto é os dados trazem evidência de uma forte dependência entre o fatores: Grau de escolaridade e preferência de jornal

. . .

*TESTE DE HIPÓTESES NÃO PARAMÉTRICO

+

Exemplo:

Após uma pesquisa de satisfação estamos interessados em verificar se a preferência pela operadora(OP) estava associada com o fator regional.

Estado e Operadora	OP1	OP2	OP3	OP4	Total	
SP	214 33%	237 37%	78 1 :	2 % 119 1	<mark>8%</mark> 648	100%
Sul	51 17%	102 34 %	126 4 3	2 % 22 7	<mark>%</mark> 301	100%
RJ	111 18%	304 51%	139 2	3% ₄₈ 8	<mark>%</mark> 602	100%
Total	³⁷⁶ 24%	643 42 %	343 22	% ¹⁸⁹ 1	2% ¹⁵⁵¹	100%

- → Se tivesse independência todos os estados teriam a mesma distribuição
- → Número esperado em SP: 648*0.24=157; Sul: 301*0.24= 73; RJ: 602*0.24=146;

H₀: São independentes

Graus de liberdade= (I-1)(c-1) = 3*2 = 6

H_a: Não são independentes

α= 5%

α, φ

*TESTE DE HIPÓTESES NÃO PARAMÉTRICO

Estado e Operadora	OP1	OP2	OP3	OP4	Total
SP	214	237	78	119	648
Sul	51	102	126	22	301
RJ	111	304	139	48	602

Valores Observados

GI= 6
α, ; φ

1.551

Estado e Operadora	OP1	Valores Espera OP2	OP3	OP4	Total
SP	157	269	143	79	648
Sul	73	125	67	37	301
RJ	146	250	133	73	602
Total	376	643	343	189	1.551

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{k} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

$$\chi^{2}$$
 obs = (214-157)²/157......(48-73)²/73=173.24

Rejeitamos Ho ao nível de 5%, isto é os dados trazem evidência de uma forte dependência entre o fatores: Operadora de Celular e Região

ANÁLISE DE ASSOCIAÇÃO

Exercícios

Bike Sharing

*OUTROS TESTE DE HIPÓTESES NÃO PARAMÉTRICO

	Teste	
	Spearman	Usado para verificar a associação entre duas variáveis qualitativas ordinais
	Kolmogorov-Smirnov	Comparar duas populações
	Mann-Witney	Comparar duas amostras independentes
	Wilcoxon Signed-Rank	Usado para comparar duas amostras pareadas ou dependentes
	Kruskal-Wallis	Comparar três ou mais grupos
	Sinal	Usado para verificar a associação entre duas variáveis qualitativas ordinais de amostras pareadas

DISTRIBUIÇÃO DE REGRESSÃO LINEAR MULTIPLA

•

O que você achou da aula de hoje?

Pelo aplicativo da FIAP

(Entrar no FIAPP, e no menu clicar em Experience Survey)

A grande finalidade do conhecimento não é conhecer, mas agir.

T. Huxley

OBRIGADO

Copyright © 2024 | Professora Dra. Regina Tomie Ivata Bernal
Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente
proibido sem consentimento formal, por escrito, do professor/autor.

• • • + - +

. . .

• •

.... +

-¦-