MEMORY ORGANIZATION

LIJO V. P

ASST. PROFESSOR, SCSE VIT UNIVERSITY, VELLORE

Introduction

- Programmers want very large memory with low latency
- Fast memory technology is more expensive per bit than slower memory
- Solution: organize memory system into a hierarchy
 - Entire addressable memory space available in largest, slowest memory
 - Incrementally smaller and faster memories, each containing a subset of the memory below it, proceed in steps up toward the processor
- Temporal and spatial locality insures that nearly all references can be found in smaller memories
 - Gives the allusion of a large, fast memory being presented to the processor

Memory Hierarchy

(a) Memory hierarchy for server

Memory Performance Gap

Memory organization

Byte Ordering

Ordering of bytes within a multi-byte data item

Types:

- Big-endian
- Little-endian

Byte Storage Methods (Byte Ordering)

- Big-Endian
 - Assigns MSB to least address and LSB to highest address
 - Ex: $0 \times DEADBEEF$

Memory Location	Value
Base Address + 0	DE
Base Address + 1	AD
Base Address + 2	BE
Base Address + 3	EF

Byte Storage Methods contd.,

- Little Endian
 - Assigns MSB to highest address and LSB to least address
 - $Ex: 0 \times DEADBEEF$

Memory Location	Value		
Base Address + 0	EF		
Base Address + 1	BE		
Base Address + 2	AD		
Base Address + 3	DE		

Example

Example: Show the contents of memory at word address 24 if that word holds the number given by 122E 5F01H in both the big-endian and the little-endian schemes?

	Big Endian					Little Endian			
	MSB		>	LSB		MSB		>	LSB
	24	25	26	27		27	26	25	24
Word 24	12	2 E	5F	01	Word 24	12	2E	5F	01

Some points about endian-ness

- Computer systems, in use today are split between those that are big-endian, and those that are little-endian.
- This leads to problems when a big-endian computer wants to transfer data to a little-endian computer.
- Some architectures, for example the PowerPC and ARM, allow the endian-ness of the architecture to be changed programmatically.

References

Text Book

William Stallings "Computer Organization and architecture" Prentice Hall, 8th edition, 2009

Thank You

Conceptual memory cell – static RAM cell

So, Tri-state buffer is in high impedance state and buffers the value

• Buffers would not be required, since the output of each cell is already buffered. They are shown to indicate buffering of the register from the data bus

Α d d e s s n е s R/W Data Lines

128x 8 RAM

Bi-directional 8-bit buffered data bus

References

Text Book

- William Stallings "Computer Organization and architecture" Prentice Hall, 7th edition, 2006
- J. P. Hayes, Computer system architecture, McGraw Hill,2000