

工艺热风险评价

放热速率、放热量、绝热温升、分解温度

量热仪

量热仪的运行模式

消除温度效应

等温模式 (Isothermal Mode)

反应放热的初步扫描

得到热失控曲线

绝热模式 (Adiabatic Mode)

几种常用的量热设备

RC1e

RC1mx and HFCal

反应量热仪的测量原理

 $q_{rx}+q_c+q_s=(q_{acc}+q_i)+(q_{ex}+q_{fd}+q_{loss}+q_{add})$ 热量输入 热累积 热量输出

反应量热仪的测量原理

 $q_{rx}+q_c+q_s=(q_{acc}+q_i)+(q_{ex}+q_{fd}+q_{loss}+q_{add})$ 热量输入=热累积+热量输出 q_{rr} 为化学反应过程中的放热速率,W q。为校准功率,即校准加热器 (Calibration Heater) 的功率, W q。为搅拌装置导人的热流速率,W q_{acc} 为反应体系的热累积速率,W q_i 为反应釜中插件的热累积速率,W q_{ex} 为通过夹套传递的热流率,W q_{fd} 为半间歇反应物料加入所引起的加料显热,W q_{loss} 为反应釜的釜盖和仪器接续部分等的散热速率,W q_{add} 为自定义的其他一些热量流失速率,W

反应无需回流 q_{add} ,且忽略搅拌 q_s 、反应釜釜盖和仪器连接部分等的散热 q_{add} 时

反应放热速率

$$q_{rx} = (q_{acc} + q_i) + (q_{ex} + q_{fd} - q_c)$$

反应过程总放热

$$Q_r = \int_{t_0}^{t_{end}} q_{rx} dt$$

反应绝热温升

$$\Delta T_{ad,rx} = Q_r / M_r c'_p = \int_{t_0}^{t_{end}} q_{rx} dt / M_r c'_p$$

加速度量热仪 (Adiabatic Rate Calorimeter, ARC)

高性能绝热量热仪 (Phi-tech II)

杜瓦瓶量热仪 (Dewar Calorimeter)

泄放口尺寸测试装置 (Vent Sizing Package, VSP)

反应系统筛选装置 (Reactive System Screening Tool, RSST)

加速度量热仪原理

HWS模式的加速度量热仪获得的典型温度曲线

加热 – 等待 – 搜索 (Heating-Waiting-Seeking, HWS) 模式

- 差热分析 (Differential Thermal Analysis, DTA)
- 差示扫描量热仪 (Differential Scanning Calorimeter, DSC)
- Calvet 量热仪 (Calvet Calorimeter, CC)
- 热反应性监测仪(Thermal Activity Monitor, TAM)

S—样品; R—参比物; O—温控