INVERTING SCHMITT TRIGGER

Objectives of the Experiment:

- 1. Use of Op-amp for designing circuit with 2 threshold voltages for switching the output voltage.
- 2. Understanding the importance of positive feedback and DC Reference voltage in deciding the threshold voltages.

INVERTING SCHMITT TRIGGER

Design equations:

By super position theorem,

$$V_{TH} = \frac{V_{SAT}R_1}{R_1 + R_2} + \frac{V_{REF}R_2}{R_1 + R_2}$$

$$V_{TH} = +V_{SAT}\beta + V_{REF}(1-\beta)$$

Vout (CH2)
$$V_{TL} = \frac{-V_{SAT}R_1}{R_1 + R_2} + \frac{V_{REF}R_2}{R_1 + R_2}$$

$$V_{TL} = -V_{SAT}\beta + V_{REF}(1-\beta)$$

$$\beta = \frac{R_1}{R_1 + R_2}, \quad (1 - \beta) = \frac{R_2}{R_1 + R_2}$$

Hysteresis voltage = $V_{TH} - V_{TL}$ =

$$V_{Hystereis} = \beta \ 2V_{SAT}$$

$$V_{TH} + V_{TL} = (1 - \beta) 2V_{REF}$$

Procedure for conduction:

- 1. Select the Inverting Schmitt Trigger through Op-amp, applications option.
- 2. Select one of the Inverting Schmitt Trigger option.
- 3. Click on conduction button.
- 4. Take screenshots as required.
- 5. Use cursors to measure the Slew rate.
- 6. Also obtain the Transfer characteristics using ADD XY in VIEW option of Scope.
- 7. Repeat the above steps with different VREF (DC voltage using W2).

Analog Discovery settings:

Wavegen		Scope:			
		Time: Position: 0s Base: 5ms/div			
Wavegen 1	Wavegen 2	Channel 1	Channel 2		
Sine wave	DC: 0, 1,2, -1, -2 V	Offset: 0V	Offset: 0V		
Amplitude: 5V		Range: 1V/div	Range: 1V/div		
Offset: 0V		View-Measurements-Add			
Frequency: 100Hz		Vertical	Vertical C2: Maximum, Minimum		
Duty cycle: 50%		C1: Maximum, Minimum			
		Horizontal:			
		C1: Frequency			

			Calculated		Measured		
Expt.	$R_1(\Omega)$	$R_2(\Omega)$	$V_{REF}(V)$	V_{TH} , (V)	$V_{TL}(V)$	V_{TH} , (V)	$V_{TL}(V)$
INVST 1 1K	1K	1K	0				
			+ve				
			-ve				
INVST 2	1K	10K	0				
			+ve				
			-ve				
INVST 3	10K	1K	0				
			+ve				
			-ve				
INVST 4	10K	10K	0				
			+ve				
			-ve				

Experiment Outcome: After conducting the experiment students are able to

- 1. Understand effect of positive feedback in Op-amp based circuits.
- 2. Know how to switch the output from +VSAT to -VSAT and vice versa.
- 3. Know the role of each component and reference voltage.
- 4. Design the Inverting Schmitt trigger for desired threshold voltages.
- 5. Provide solutions to real time challenges using Inverting Schmitt Trigger.