POWERED BY Dialog

Reflected light scanner with electrically programmable breadth of scan - uses linear combination of periodic LED control voltage with output of photodetector circuit for range indication

Patent Assignee: LEUZE ELECTRONIC GMBH & CO

Inventors: BAUDER F; MANNER J

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
EP 546323	A1	19930616	EP 92119000	A	19921106	199324	В
DE 4140614	A1	19930617	DE 4140614	Ā	19911210	199325	
DE 4140614	C2	19940310	DE 4140614	A	19911210	199409	
EP 546323	B1	19970108	EP 92119000	A	19921106	199707	
DE 59207847	G	19970220	DE 507847	A	19921106	199713	
			EP 92119000	A	19921106		

Priority Applications (Number Kind Date): DE 4140614 A (19911210) **Cited Patents:** 01 journal ref.; DE 3627972; JP 1259313; WO 8911710

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes				
EP 546323	A1	G	12	G01S-017/87					
DE 4140614	A1		8	G01D-005/30	Add to patent DE 4040225				
DE 4140614	C2		8	G01D-005/30	Add to patent DE 4040225				
EP 546323	B1	G	10	G01S-017/87					
Designated States (Regional): CH DE FR GB IT LI NL									
DE 59207847	G			G01S-017/87	Based on patent EP 546323				

Abstract:

EP 546323 A

The scanning zone is covered periodically between max. and min. ranges of the object by dynamic energisation of light-emitting diodes (1', 1") for short and long ranges with a periodic control voltage.

When reflection is detected by corresp. photodiodes (2",2') the output of a driver circuit (39) is switched automatically and in combination with the control voltage via a linearising circuit (40) gives a digital and/or analogue reading of distance from the front (7) of the scanner.

ADVANTAGE - The scan breadth can be programmed electrically and the distance of any object presented for display.

Dwg.2/5

DE 4140614 C

Dialog Results Page 2 of 2

The reflection light sensor has a light transmitter and a receiver with associated lenses and a sensing range adjustment arrangement. The sensing stage contains at least two light sensitive elements whose output signals are evaluated in a circuit or amplitude and sign. The transmitter has two sources defining a light centre controllable to enable continuous periodic variation of the sensing range.

The adjustment region (B) is periodically swept from the maximum(Amax) to the minimum (Amin) sensing range or vice-versa.

If there is an object in the sensing region the circuit output is automatically set. The circuit output is combined with the source control voltage via a linearising arrangement for each object to produce a corresp. signal.

ADVANTAGE - Enables programming of sensing range display of each sensed object's distance.

Dwg.1/5

EP 546323 B

Reflected light sensor, in which light emitter and light receiver respectively with emitter front lens and receiver front lens arranged upstream thereof are arranged adjacent to one another and which is provided with a device for the setting of the boundary spacing of an object to be detected from the sensor housing, and has at the light-receiving side light-sensitive elements, the output signals of which act on a differential amplifier, the output signal of which is evaluated with respect to amplitude and sign in an evaluating circuit, wherein the light emitter contains at least two mutually independent light sources, the light receiver comprises at least two separately evacuatable light-sensitive elements and the respective boundary spacing is steplessly settable within a defined detection zone by inverse controlling of the currents of the light sources by means of a control voltage, characterised thereby that the detection zone (B) is cyclically traversed from the maximum distance value (AMAX) to the minimum distance value (AMIN) of conversely by dynamic selective driving of the light sources (1',1") with a periodic control voltage (UST), and in the case of an object (10,10') present and recognised in the thereby defined detection zone the switching output (39') is automatically set and the respective distance value of the object from the front side (7') of the light sensor housing is issued digitally and/or by way of a digital-to-analog converter through linking of the switch output (39') with the control voltage (UST) by way of a linearising arrangement (40).

Dwg.1/5

Derwent World Patents Index © 2004 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 9496215

BUNDESREPUBLIK DEUTSCHLAND

® Patentschrift

® DE 41 40 614 C 2

(5) Int. Cl.5: G 01 D 5/30 G 01 V 9/04

H 03 K 17/78

PATENTAMT

Aktenzeichen:

P 41 40 614.1-52

Anmeldetag:

10. 12. 91 17. 6.93

Offenlegungstag: Veröffentlichungstag

der Patenterteilung: 10. 3.94

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Patentinhaber: Leuze Electronic GmbH + Co, 73277 Owen, DE

 Zusatz zu: P 40 40 225.8

@ Erfinder:

Bauder, Frank, Dipl.-ing. (BA), 7444 Beuren, DE; Manner, Joachim, Bad Ragaz, CH

B Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 40 40 225 A1 DE 38 27 972 A1 DE 91 05 710 U1 US 48 59 922

(A) Reflexionslichttaster

Beschreibung

Dle Erfindung bezieht sich auf einen Reflexionslichttaster gemäß dem Oberbegriff des Anspruchs 1.

Ein derartiger Reflexionslichttaster ist Gegenstand des Hauptpatents...(Patentmeldung P 40 40 225.8-52).

Der Erfindung liegt die Aufgabe zugrunde, einen Reflexionslichttaster nach dem Hauptpatent dahingehend weiter auszubilden, daß die Tastweite elektrisch pro-Reflexionslichttaster zur Anzeige bringbar ist.

Diese Angabe ist erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.

Weiterbildungen und zweckmäßige Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben. Die Erfindung wird im nachstehenden anhand der

Zeichnung erläutert.

Es zeigen

Fig. 1 eine der Fig. 1 des Hauptpatents entsprechende Prinzipskizze des Lichttasters mit den Zentralstrah- 20 len zweier Sendelichtbündel, den Zentralstrahl des Empfangslichtbündels und ein in Einstellbereich befindliches Tastobjekt in zwei unterschiedlichen Positionen auf der Z-Achse,

Fig. 2 ein Blockschaltbild des elektrischen Teils des 25 Reflexionslichttasters mit der zugehörigen Schaltungs-

anordnung,

Fig. 3 eine mit einem Ringzähler und einem Speicher ausgerüstete Schaltungsanordnung zur dynamischen Ansteuerung des Steuerspannungseingangs des Refle- 30 xionslichttasters,

Fig. 4 eine Schaltungsanordnung zur dynamischen Ansteuerung des Steuerspannungseingangs mittels eines Microcontrollers.

Fig. 5 Einen Reflexionslichttaster mit zueinander ge- 35

neigt verlaufenden Lichtzentren.

Von den in Fig. 1 dargestellten beiden Lichtzentren 1' und 1" des Lichtsenders 1 ist das eine Lichtzentrum 1' mit dem Zentralstrahl 11' für den Fernbereich (Ferndistanz) und das andere Lichtzentrum 1" für den Nahbe- 40 reich (Nahdistanz) vorgesehen. Dem Lichtzentrum 1' ist grundsätzlich das lichtempfindliche Element 2' für die Ferndistanz und dem Lichtzentrum 1" grundsätzlich das lichtempfindliche Element 2" für die Nahdistanz zugeordnet. Im Lichttastergehäuse 7 ist die gemeinsame 45 Sendeoptik 5 und die Empfangsoptik 6 angeordnet, wobei die beiden Optiken unter- oder nebeneinander liegen können.

Das vom Lichtzentrum 1' ausgehende, durch den Zentralstrahl 11' veranschaulichte Sendestrahlenbündel 50 wird vom in maximalem Abstand bzw. Entfernungswert Amex (maximale Tastweite) von der Vorderfront des Gehäuses 7'. des Lichttasters 7 befindlichen Tastobjekt 10 diffus gestreut und mittels der Empfangsoptik 6 auf den lichtempfindlichen Elementen 2' und 2" des Lichtemp- 55 fängers 2 bzw. in deren Übergangsbereich abgebildet, wie dies der Empfangs-Zentralstrahl 12 veranschaulicht. Bei in maximaler Tastweite Amax befindlichem Tastobjekt 10 wird nur das Lichtzentrum 1' angesteuert, bei minimaler Tastweite (Entfernungswert) Amin aufweisendem, gestrichelt angedeutetem Tastobjekt 10' ist nur das Lichtzentrum 1" aktiv. Bei maximaler Tastweite Amex entspricht der Abstand zwischen den beiden Zentralstrahlen 11' und 11" auf dem Tastobjekt 10 dem Längenmaß L. Der elektronisch variierbare Einstellbe- 65 reich ist mit B bezeichnet.

Der Schaltausgang des Lichttasters 7 wird aktiviert, wenn bei aktivem Lichtzentrum 1' und inaktivem Licht-

zentrum 1" die Summe der Photostrome des Nah- und Fernelements 2" und 2' kleiner gleich Null ist ($I_{ges} \leq 0$). Dieser Fall tritt ein, wenn die Abbildung des Sendelichtflecks entweder ganz auf dem Nahelement 2" oder ge-5 nau zwischen dem Nahelement 2" und dem Fernelement 2' liegt. Damit sind Tastobjekte 10 erfaßbar, die sich in einem Abstand A kleiner gleich Amex befinden (A $\leq A_{max}$).

Bei inaktivem Lichtzentrum 1' und aktivem Lichtzengrammierbar und der jeweilige Tastobjektabstand vom 10 trum 1" wird der Schaltausgang ebenfalls aktiviert, wenn die Summe der Photoströme der beiden lichtempfindlichen Elemente 2' und 2" kleiner gleich Null wird. Das ist der Fall, wenn die Abbildung des Sendelichtflecks entweder zwischen dem Fernelement 2' und dem 15 Nahelement 2" oder ganz auf dem Nahelement 2" liegt. Tastobjekte 10' werden dann in einem Abstand A ≤ Amin erfaßt.

Sind beide Lichtzentren 1' und 1" bzw. die zugehörigen Sendedioden aktiv, so werden auf dem Tastobjekt 10 zwei Lichtslecke abgebildet, die einen bestimmten Abstand voneinander aufweisen. Ist dieser Abstand relativ groß, so kann auch die Tastweite in einem verhältnismāßig großen Bereich B (B = A_{max}-A_{min}) variiert werden. Durch Wahl des Abstands der beiden Lichtflekke voneinander kann somit der jeweilige Einstellbereich festgelegt werden.

Wie aus dem Blockschaltbild gemäß Fig. 2 ersichtlich ist, wird der Steuerspannungseingang 30 des Reflexionslichttasters 7 mit einer periodischen Sinusspannung Usr dynamisch angesteuert. Die Steuerspannung kann dabei auch sägezahnförmig, dreieckförmig oder ähnlich sein. Durch eine Eingangsschutzbeschaltung 31 wird die nachfolgende Schaltung vor Überspannung, Störspitzen

oder Verpolung geschützt.

Die Steuerspannung UST wird mittels eines Inverters 32 invertiert. Dadurch ist erreicht, daß das Lichtzentrum 1" (Sendediode), das für die kleine Tastweite vorgesehen ist, bei minimaler Eingungsspannung am Inverter 32 (Steuerspannung UST) den maximalen Sendestrom erhält, während das andere Lichtzentrum 1' (Sendediode) für die große Tastweite in diesem Fall sendestromlos

Im umgekehrten Fall erhält das Lichtzentrum 1' für die große Tastweite bei maximaler Eingangsspannung Usr den maximalen Sendestrom, wogegen das Lichtzentrum 1" für die kleine Tastweite sendestromlos

Durch dieses "Überblenden" von einem Lichtzentrum zum anderen wird eine stufenlose Veränderung der Tastweite und eine Tastweitenprogrammierung ermög-

Der Inverter 32 kann dabei als Operationsverstärker ausgebildet sein, der als Subtrahierer geschaltet ist, bei dem alle Widerstände gleich groß gewählt sind. Die Steuerspannung Usr liegt am invertierenden Eingang des Operationsverstärkers. An den nicht invertierenden Eingang des Operationsverstärkers ist eine fest vorgegebene Spannung angelegt. Damit ist die Ausgangsspannung bezogen auf die Eingangsspannung genau invertiert.

Die beiden Treiberstufen 37 und 38 können somit wie vorgesehen angesteuert werden. Das heißt, bei minimaler Eingangsspannung Ust - 0V ist die minimale Tastweite und bei maximaler Steuerspannung Usr, zum Belspiel 5 V, die maximale Tastweite bzw. Reichweite eingestellt. Die maximale Frequenz der Steuerspannung ist kleiner gewählt als die maximale Schaltfrequenz des Reflexionslichttasters. Die Anordnung ist so getroffen,

daß bei unbeschaltetem Steuerspannungseingang eine mittlere Tastweite vorprogrammiert ist.

Zur Vermeidung einer Belastung des die Steuerspannung bei offenem Steuerspannungseingang festlegenden Spannungsteilers der Schutzbeschaltung dienen die beiden Spannungsfolger 33 und 34. Die den Spannungsfolgen 33 und 34 nachgeschalteten Verknüpfungsglieder 35 und 36 dienen zur Verknüpfung des durch den Sendeimpulsgenerator 55 erzeugten Sendetakts mit der analogen Steuerspannung UST (UND-Verknüpfung).

Die LED-Treiberstufen 37 und 38 dienen zur Konstanthaltung des Sendestroms, um auch bei schwankender Betriebsspannung stets die gleiche Lichtleistungsabgabe der Sendedioden mit den Lichtzentren 1' und 1" zu

gewährleisten.

An die empfangsseitige Ausgangstreiberstufe 39 mit dem Schaltausgang 39' ist über einen Verstärker 58 erfindungsgemäß eine Linearisierungsanordnung 40 angeschlossen, an deren Ausgang über einen 8-Bit-Bus 41 sowohl ein Digital/-Analogwandler 42 mit Analogaus- 20 gang 43 als auch eine Ausgangsschutzbeschaltung 44

(Puffer) mit 8-Bit-Digitalausgang 45 liegt.

Die Linearisierungsanordnung 40 ist eingangsseitig über einen 8-Bit-Bus 46 zur Erzeugung von Steuersignalen mit einem Ringzähler 47 elektrisch verbunden, dem 25 ein Taktgeber 48 vorgeschaltet ist. Vom 8-Bit-Bus 46 führt ein weiterer 8-Bit-Bus 46' zu einem Digital/Analogwandler 49. Mit dem Taktgeber 48 wird der Ringzähler 48 angesteuert (Clocksignal), dessen Ausgangssignal über den D/A-Wandler 49 die Sinus- oder sägezahnförmige Steuerspannung Ust generiert und die Adreßinformation für die Linearisierungsanordnung 40 erzeugt.

Die Linearisierungsanordnung 40 kann, wie Fig. 3 zeigt, aus einem lösch- und programmierbaren Leserungstabelle abgelegt ist. Der jeweilige Entfernungswert eines Tastobjekts 10 bzw. die jeweilige Abstandsinformation wird aus dem EPROM 50 ausgelesen, sobald der Schaltausgang 39' des Reflexionslichttasters aktiv wird. Die Information (Datenwert) steht nun di- 40 rekt digital am Ausgang 45 und/oder analog am Ausgang 43 an.

Die Linearisierungsanordnung 40 kann auch, wie aus Fig. 4 ersichtlich ist, durch einen Microcontroller 51 verwirklicht sein, der die Steuerspannung Usr erzeugt, den 45 Schaltausgang 39' des Reflexionslichttasters auswertet, die Linearisierung übernimmt und die Ausgabe der Abstandsinformation am Digital- und/oder Analogausgang

45/43 bewirkt.

Vom Microcontroller 51 wird durch ein entsprechen- 50 des Programm die Funktion eines Ringzählers übernommen. Ein Parallelport gibt den Zählerstand an den D/A-Wandler 49 weiter. Der Ausgang des D/A-Wandlers 49 ist mit dem Steuerspannungseingang 30 UST des Reflexionslichttasters verbunden. Wird ein Tastobjekt 55 10 erfaßt, setzt der Lichttaster den Schaltausgang 39'. In diesem Augenblick übernimmt der Microcontroller 51 den Zählerstand des Ringzählers. Über den Zählerstand sucht dann das Programm aus der im Microcontroller abgelegten Linearisierungstabeile den zugehörigen Ab- 60 standswert aus, der dem Anwender sowohl digital (Digitalausgang 45) als auch analog (Ausgang 43) zur Verfügung steht.

Den empfangsseitigen lichtempfindlichen Elementen 2" (Nahelement) und 2' (Fernelement) mit Strom-Span- 65 nungskonversion durch den Arbeitswiderstand 52 ist ein frequenzselektiver Verstärker 53 nachgeschaltet (siehe Fig. 2), an dessen Ausgang ein Demodulator 54 ange-

schlossen ist, der vom Sendeimpulsoszillator 55 gesteuert ist, welcher die Impulsweite und die Wiederholfrequenz der gesteuerten Strome der Sendedioden mit den Lichtzentren 1' und 1" des Lichtsenders 1 über die UND-Verknüpfung 35, 36 und die LED-Treiber 37, 38 festlegt sowie die digitale Störunterdrückung 56 taktet, die am Ausgang eines eingangsseitig mit dem Demodulator 54 verbundenen Schwellwertverstärkers 57 liegt und dem Ausgangstreiber 39 vorgeschaltet ist.

Die Speisespannung des Lichttasters 7 ist in Fig. 2 mit Un bezeichnet. Durch die dynamische Ansteuerung des Steuerspannungseingangs 30 über den Taktgeber 48 und den Ringzähler 47, der über den D/A Wandler 49 die Steuerspannung Usr generiert, wird die Tastweite vom maximalen Wert Amax bis zum minimalen Wert Amin, der inversen Steuerung der Ströme der Sendedioden mit den Lichtzentren 1' und 1" (Überblendung) zyklisch durchfahren. Der maximalen Steuerspannung UST max (z. B. 5 V) entspricht dabei die maximale Tastweite A_{max} und der minimalen Steuerspannung $U_{ST}=0$ die minimale Tastweite Amin. Grundsätzlich kann der Einstellbereich B auch umgekehrt durchfahren werden, also minimale Tastweite - maximale Tastweite.

Sobald der Lichttaster ein Objekt erkennt, wird der Schaltausgang gesetzt und die Abstandsinformation aus

dem Speicher ausgelesen.

In weiterer Ausgestaltung der Erfindung sind, wie Fig. 5 zeigt, die Längsachsen L₁, Lo der Sendedioden mit den zwei Lichtzentren 1' und 1" unter einem Winkel φ1,2 = (90° ± α) geneigt zueinander angeordnet, wobei die Längsachse Li der einen Sendediode des Lichtzentrums 1" parallel zur optischen Achse der Sendeoptik 5 verläuft. Im Schnittpunkt der beiden Längsachsen Li und L2 ist unter einem geeigneten Winkel γ zur Längsachse speicher 50 (EPROM) bestehen, in dem eine Linearisie- 35 Lt der Sendediode des Lichtzentrums 1" bzw. zur optischen Achse der Sendeoptik 5 geneigt ein teildurchlässiger Spiegel 59 angeordnet.

> Damit ergibt sich wegen spiegelnder Reflexion zwischen dem Sendelichtstrahl der Sendediode mit dem Lichtzentrum 1" und demjenigen der Sendediode des Lichtzentrums 1' ein Winkel α, der ein Maß für den Abstand der beiden Lichtflecke und damit für den Einstellbereich der Tastweite darstellt. Durch Variation des Winkels a können somit unterschiedliche Tastweiten

vorgegeben werden.

Bei positivem Winkel a ergibt sich für die maximale Tastweite $A_{max} = A + X_{(+\alpha)}$ Die minimale Tastweite ist in diesem Fall A. Bei negativem Winkel V8,1 beträgt die maximale Tastweite A, die minimale Tastweite $A - X_{(-\alpha)}$. Die Anzahl der Sendedioden kann grundsätzlich beliebig erhöht werden.

Patentansprüche

1. Reflexionslichttaster, bei dem Lichtsender und Lichtempfänger mit jeweils vorgeordneter Sendeund Empfangsfrontlinse benachbart zueinander angeordnet sind und der mit einer Einrichtung zum Einstellen der Tastweite eines Tastobjektes vom Tastergehäuse innerhalb eines durch einen maximalen Entfernungswert und einen minimalen Entfernungswert definierten Einstellbereichs versehen ist, innerhalb der das Tastobjekt nachweisbar ist, und die lichtempfangsseitig wenigstens zwei lichtempfindliche Elemente aufweist, deren Ausgangssignale in einer Auswerteschaltung bezüglich Amplitude und Vorzeichen bewertet werden, wobei der Lichtsender wenigstens zwei derart aussteuerbare,

je ein Lichtzentrum definierende Lichtquellen enthält, daß die jeweilige Tastweite durch inverse Steuerung der Ströme der Lichtquellen über eine an einer Steuerleitung anliegende Steuerspannung stufenlos einstellbar ist, so daß bei einem Mindestwert der Steuerspannung die eine Lichtquelle maximalen Strom führt und die andere Lichtquelle stromlos ist und bei einem Maximalwert der Steuerspannung die Lichtquelle stromlos ist und die andere Lichtquelle mit maximalem Strom beauf- 10 schlagt ist, und wobei ferner die Steuerspannung derart periodisch ist, daß der maximale Entfernungswert, der der maximal einstellbaren Tastweite entspricht, zyklisch durchfahren wird, nach Patent ... (Patentanmeldung P 40 40 225.8-52) da- 15 durch gekennzelchnet, daß der Einstellbereich (B) der Tastweite zyklisch vom maximalen Entfernungswert (Amax) bis zum minimalen Entfernungswert (Amin) oder umgekehrt durchfahren wird und bei im Einstellbereich (B) vorhandenem Tastobjekt 20 (10, 10') der Schaltausgang (39') selbsttätig gesetzt und durch Verknüpfung des Schaltausgangs (39') mit der Steuerspannung (UST) über eine Linearisierungsanordnung (40) der jeweilige Tastobjektabstand digital und/oder über einen Digital-Analog- 25 wandler ausgegeben wird. Reflexionslichttaster nach Anspruch 1, dadurch gekennzeichnet, daß die Linearisierungsanordnung als lösch- und programmierbarer Lesespeicher (50) mit einer in diesem gespeicherten Linearisierungs- 30 tabelle ausgebildet ist und der Tastobiektabstand bei aktiviertem Schaltausgang (39') aus dem Lese-

speicher (50) ausiesbar ist.

3. Reflexionslichttaster nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die periodische Steuerspannung (Usr) durch einen taktgesteuerten Ringzähler (47) und über einen diesem nachgeschalteten Digital/Analogwandler (40) generiert

wird.

 Reflexionslichttaster nach Anspruch 3, dadurch gekennzeichnet, daß der Ringzähler (47) die Adreßinformation für den Lesespeicher (50) festlegt.

5. Reflexionslichttaster nach Anspruch 1, dadurch gekennzeichnet, daß die Steuerspannung (Usr) mittels eines Mikrocontrollers (51) erzeugt wird, der die Linearisierung der Tastobjektabstände übernimmt, den Schaltausgang (39') auswertet und den Tastobjektabstand analog oder digital ausgibt.

6. Reflexionslichttaster nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er mit zwei Sendedioden in den zwei Lichtzentren versehen ist, wobei die Längsachse L_1 der einen Sendediode mit dem Lichtzentrum (1") parallel zur optischen Achse der Sendefrontlinse (5) verläuft und sich die Längsachse L_2 der Sendediode mit dem 55 anderen Lichtzentrum (1") um einen Winkel $\varphi=(90\pm\alpha)$ hierzu geneigt erstreckt und daß im Schnittpunkt der belden Längsachsen unter einem geeigneten Winkel γ zur optischen Achse der Sendefrontlinse (5) geneigt ein teildurchlässiger Spiegel (58) angeordnet ist.

7. Reffexionslichttaster nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die maximale Frequenz der Steuerspannung Usr kleiner gewählt ist als die maximale Schaltfrequenz des Reflexionslichttasters.

 Reflexionslichttaster nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei unbeschaltetem Steuerspannungseingung (30) eine mittlere Tastweite vorprogrammiert ist.

Hierzu 4 Seite(n) Zeichnungen

Nummer:

DE 41 40 614 C2

Int. Cl.5:

G 01 D 5/30

Veröffentlichungstag: 10. März 1994

Nummer:

DE 41 40 614 C2

Int. Cl.5:

Veröffentlichungstag: 10. März 1994

G 01 D 5/30

Fig. 3

Fig.

Nummer:

DE 41 40 814 C2

Int. Cl.5:

G 01 D 5/30

Veröffentlichungstag: 10. März 1994

FIG. 5