5. Espacio afín y espacio proyectivo

- 5.1 Siguin ABCD els vèrtexs d'un paral.lelogram del pla afí immers dins el projectiu. Trobeu l'equació de la recta de l'infinit en la referència projectiva $\{A, B, C; D\}$.
- 5.2 Sigui $O_1O_2O_3$ un triangle del pla afí immers en \mathbb{P}^2 . Es considera a \mathbb{P}^2 la referència donada per aquest triangle i el seu baricentre com a punt unitat.
 - (i) Demostreu que l'equació de la recta de l'infinit és $x_0 + x_1 + x_2 = 0$.
 - (ii) Demostreu que les coordenades baricèntriques d'un punt $P\in\mathbb{A}^2$ respecte del sistema de referència baricèntric $\{O_1,O_2,O_3\}$ són

$$\left(\frac{x_0}{x_0 + x_1 + x_2}, \frac{x_1}{x_0 + x_1 + x_2}, \frac{x_2}{x_0 + x_1 + x_2}\right)$$

on $(x_0:x_1:x_2)$ són les coordenades homogènies de P respecte de la referència projectiva considerada abans.

- 5.3 Siguin $p_1, p_2, p_3, p_4 \in \mathbb{A}^1$ i en la immersió $\mathbb{A}^1 \hookrightarrow \mathbb{P}^1$ anomenem p_{∞} al punt de l'infinit de la recta \mathbb{A}^1 . Proveu:
 - (i) $(p_1, p_2, p_3) = (p_1, p_2, p_3, p_\infty).$
 - (ii) $(p_1, p_2, p_3, p_4) = (p_1, p_2, p_3) : (p_1, p_2, p_4)$.
 - (iii) Si p és el punt mig de p_1 i p_2 , proveu que $(p_1, p_2, p, p_\infty) = -1$.
- 5.4 Proveu el *Teorema de Thales*: la raó simple de tres punts alineats es conserva per projecció paral.lela. Digueu si es conserva també per projecció no paral.lela.
- 5.5 Sea f una afinidad de un plano afín A y sea $\hat{f}:\hat{A}\to\hat{A}$ su completación proyectiva. Demostrar que \hat{f} es una homología general (resp. especial) de \hat{A} con eje la recta del infinito \hat{A}_{∞} ssi f es una homotecia (resp. una traslación) de A. Describir el centro de la homología en cada caso.
- 5.6 Considerem en \mathbb{A}^2 immers dins de \mathbb{P}^2 un triangle ABC i un punt P exterior al triangle. Considerem les projectivitats que deixen fix el punt i invariant el triangle. Demostreu que totes elles són afinitats si i només si P és el baricentre del triangle.
- 5.7 (i) Es considera una homografia φ de \mathbb{P}^1 no involutiva i amb dos punts fixos P,Q. Demostreu que existeix una única involució σ que commuta amb φ .
 - (ii) Si $\mathbb{P}^1 = \overline{\mathbb{A}^1}$ i P és el punt impropi, proveu que σ és una afinitat i classifiqueu-la.