- ¹ Chapter 1
- ² The Pella-Tomlinson Model

3 Abstract

Stock assessments often assume a two-parameter functional form (e.g., Beverton-Holt or Ricker) for the expected recruitment produced by a given level of spawning output. ? (?) and others have shown that biological reference points such as $\frac{F^*}{M}$ and $\frac{B^*}{B(0)}$ are largely determined by a single parameter (steepness) when using two-parameter relationships. These functions introduce strong correlations between reference points that are pre-determined by the functional form, rather than a biological characteristic of the stock. Mangel et al. note that use of a three-parameter stock-recruitment relationship allows for independent estimation of these reference points. This research seeks to understand the nature of biases in reference points resulting from fitting a two-parameter functional form when the true relationship follows a three-parameter stock-recruitment relationship. This work demonstrates the useful limits of misspecified two-parameter models, and suggests the mechanisms of model

failure which arise from mapping a three-dimensional parameter space into two dimensions.

16 1 Introduction

The most fundamental model in modern fisheries management is the surplus-production model. These models focus on modeling population growth via nonlinear parametric ordi-18 nary differential equations (ODE). Key management quantities called reference points (RPs) are commonly derived from the ODE equilibrium equations and depend upon the parameter-20 ization of biomass production. Two-parameter forms of the production function have been 21 shown to limit the theoretical domain of RPs (?,?). The limited RP-space of two parameter 22 models are a major source of model misspecification for RPs and thus induce bias in RP 23 estimation. The behavior of RP estimation bias is not well understood and as a result often underappreciated. A metamodeling approach is developed here to describe RP biases and 25 explore mechanisms of model failure under the most common two parameter models. 26 27

Data for a typical surplus-production model comes in the form of an index of abundance through time which is assumed to be proportional to the reproducing biomass for the population of interest. The index is often observed alongside a variety of other known quantities, but at a minimum, each observed index will be observed in the presence of some known catch for the period. Figure (1.1) shows the classic Namibian Hake dataset exemplifying the form.

Figure 1.1: *left*: Arl fidex of abundance data, catch per unit fiffort (CPUE), for Namibian Hake from 1965 to 1987 (?, ?). *right*: The associated catch data for Namibian Hake over the same time period.

Indices are assumed to have multiplicative log-normal errors, and thus the following

observation model arises naturally,

36

40

$$I_t = qB_t e^{\epsilon} \quad \epsilon \sim N(0, \sigma^2). \tag{1.1}$$

Above q is often referred to as the "catchability parameter"; it serves as the proportionality constant mapping between the observed index of abundance and biomass. σ^2 models residual variation. Biologically speaking q and σ^2 are often treated as nuisance parameters with the "biological parameters" entering the model through a process model on biomass.

Biomass is assumed to evolve as an ODE; in this case I focus on the following form

$$\frac{dB}{dt} = P(B(t); \boldsymbol{\theta}) - Z(t)B(t). \tag{1.2}$$

Here biomass is assumed to change in time by two processes, net production of biomass into the population, P(B), and various sources of biomass removal, Z, from the population. Firstly, the population grows through a production function, P(B). Production in this

setting is defined as the net biomass increase due to all reproduction and maturation processes. The production function is assumed to be a parametric (generally non-linear) function

relating the current biomass of the population to an aggregate production of biomass.

Secondly, the population decreases as biomass is removed by various sources that are assumed to remove biomass linearly with biomass. Above, Z(t), is an aggregate rate of removal. When the fishing rate, F(t), is the only source of removal Z(t) = F(t), however often models will also included other linear terms in Z(t). Commonly the rate of "natural mortality", M, is also included as an additional term so that Z(t) = M + F(t).

From a management perspective a major goal of modeling is to accurately infer a quantity known as maximum sustainable yield (MSY). One could maximize simple yield at a particular moment in time (and only for that moment) by fishing all available biomass in that moment. This strategy is penny-wise but pound-foolish (not to mention ecologically devastating) since it doesn't leave biomass in the population to reproduce in the future. We seek to fish in a way that allows (or even encourages) future productivity in the population. This is accomplished by maximizing the equilibrium level of catch over time. Equilibrium yield is considered by replacing the steady state biomass (\bar{B}) in the assumed form for catch, so that $\bar{Y} = F\bar{B}(F)$, where $\bar{Y}(F)$ with respect to where $\bar{Y}(F)$ with respect to F, and F^* is the fishing rate at MSY. Going forward let $\bar{Y}(F)$ decorate any value derived under the condition of MSY.

Fisheries are very often managed based upon reference points which serve as simplified heuristic measures of population behavior. The mathematical form of RPs depends upon the model assumptions through the production function. While a number of different RPs exist which describe the population in different (but related) ways, the most common RPs revolve around the concept of MSY (or robust ways of measuring MSY (?,?,?)). Here the focus is primarily on the RPs $\frac{B^*}{B(0)}$ and F^* ($\frac{F^*}{M}$ when appropriate) for their pervasive use in modern fisheries (?,?).

F* is the afore mentioned fishing rate which results in MSY. $\frac{B^*}{B(0)}$ is the depletion of the stock at MSY. That is to say $\frac{B^*}{B(0)}$ describes the fraction of the unfished population biomass that will remain in the equilibrium at MSY. In general $F^* \in \mathbb{R}^+$ and $\frac{B^*}{B(0)} \in (0,1)$, however under the under the assumption of a two parameter production function production models will be structurally unable to capture the full theoretical range of RPs.

Many of the most commonly used production functions depend only on two parameters. For example, the Schaefer model depends only on the biological parameters r and K, and limits RP inference so that under the Schaefer model $\left(F^*, \frac{B^*}{B(0)}\right) \in (\mathbb{R}^+, \frac{1}{2})$. The two parameter Fox model (?,?) limits $\left(F^*, \frac{B^*}{B(0)}\right) \in (\mathbb{R}^+, \frac{1}{e})$. Similarly the two parameter Cushing (?,?), Beverton-Holt (?,?,BH) and Ricker (?,?) production functions do not model the full theoretical space of RPs (?,?,?).

The bias-variance trade-off (?, ?) makes it clear that the addition of a third parameter in the production function will necessarily reduce estimation bias. However the utility of this bias reduction is still under debate because the particular mechanisms and behavior (direction and magnitude) of these biases for key management quantities are not fully understood or described. ? (?) provides some evidence that estimation of productivity parameters are dependent on biomass contrast as well as model specification. ? (?) comes to similar conclusions via calibration modeling techniques. These studies indicate important factors that contribute to inferential failure. However they do not offer mechanisms of model failure, nor do their experimental designs allow for the control of different types of model

86 misspecification.

In this study I consider the behavior of inference when index data are simulated from
three parameter PT and Schnute production models, but the simulated data are fit using
intentionally misspecified two parameter logistic or BH production models. The work begins
with a derivation of RPs under the three parameter models. A method is then presented
for generating simulation designs based on the parametric form of RPs which serves as a
control on the nature of simulated model misspecification. Finally a Gaussian Process (GP)
metamodel (?, ?) is constructed for exploration and analysis of RP biases.

A key insight of this approach is that bias is considered broadly across RP-space to

A key insight of this approach is that bias is considered broadly across RP-space to uncover patterns and correlations between RPs. The GP metamodel is explicit about tradeoffs between RPs so as to inform the full utility of reducing bias, as well as to suggest mechanisms for understanding what causes bias. Further, the effect of contrast on estimation is considered together with model misspecification.

99 2 Methods

o 2 .1 Pella-Tomlinson Model

The three parameter Pella-Tomlinson (PT) family has a convenient form that includes, among others (?, ?, ?), the logistic production function as a special case. PT production function is parameterized so that $\boldsymbol{\theta} = [r, K, \gamma]$ and the family takes the following form,

$$P_p(B; [r, K, \gamma]) = \frac{rB}{\gamma - 1} \left(1 - \left(\frac{B}{K} \right)^{(\gamma - 1)} \right). \tag{1.3}$$

 γ is a parameter which breaks PT out of the 101 restrictive symmetry of the logistic curve. In gen-102 eral $\gamma \in (1, \infty)$, with the logistic model appear-103 ing in the special case of $\gamma = 2$, and the Fox model appearing as a limiting case as $\gamma \to 1$. The 105 parameter r controls the maximum reproductive 106 rate of the population in the absence of compe-107 tition for resources (i.e. the slope of production 108 function at the origin). K is the so called "carrying capacity" of the population. In this con-110 text the carrying capacity can be formally stated 111 as steady state biomass in the absence of fishing 112 (i.e. B(0) = K). In Figure (3.1) PT recruitment 113 is shown for a range of parameter values so as to demonstrate the various recruitment shapes that 115 can be achieved by PT recruitment. 116

While the form of the PT curve produces some limitations (?, ?), importantly the intro-

duction of a third parameter allows enough flexibility to fully describe the space of reference points used in management. To see this, the reference points are analytically derived for the PT model below.

122 PT Reference Points

With B(t) representing biomass at time t, under PT production, the dynamics of biomass are defined by the following ODE,

$$\frac{dB}{dt} = \frac{rB}{\gamma - 1} \left(1 - \left(\frac{B}{K} \right)^{\gamma - 1} \right) - FB. \tag{1.4}$$

An expression for the equilibrium biomass is attained by setting Eq (1.4) equal to zero, and rearranging the resulting equation to solve for B. Thinking of the result as a function

Figure 1.2: The Pella-Tomlinson production function plotted across a variety of parameter values. The special cases of Logistic production is shown in black, and the left-leaning and right-leaning regimes are shown in blue and red respectively.

of F gives,

$$\bar{B}(F) = K \left(1 - \frac{F(\gamma - 1)}{r} \right)^{\frac{1}{(\gamma - 1)}}.$$
(1.5)

At this point it is convenient to notice that $\bar{B}(0) = K$. The expression for B^* is given by evaluating Eq (1.5) at F^* . To get an expression for F^* , the equilibrium yield is maximized with respect to F,

$$F^* = \operatorname*{argmax}_F F\bar{B}(F). \tag{1.6}$$

In the case of PT production this maximization can be done analytically, by differentiating the equilibrium yield with respect to F as follows,

$$\frac{d\bar{Y}}{dF} = \bar{B}(F) + F\frac{d\bar{B}}{dF} \tag{1.7}$$

$$\frac{d\bar{B}}{dF} = -\frac{K}{r} \left(1 - \frac{F(\gamma - 1)}{r} \right)^{\frac{1}{\gamma - 1} - 1}.$$
(1.8)

Setting Eq (1.7) equal to 0, substituting $\bar{B}(F)$ and $\frac{d\bar{B}}{dF}$ by Equations (1.5) and (1.8) respectively, and solving for F produces the following expression for the fishing rate required to produce MSY,

$$F^* = \frac{r}{\gamma} \tag{1.9}$$

Plugging the above expression for F^* back into Eq (1.5) gives the following expression for biomass at MSY,

$$B^* = K \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}}. (1.10)$$

The above derived expressions for $\bar{B}(0)$, B^* , and F^* can then be used to build a specific analytical form for the biological reference points in terms of only productivity parameters.

$$F^* = \frac{r}{\gamma} \qquad \frac{B^*}{\bar{B}(0)} = \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}} \tag{1.11}$$

128 Simulation

Generating simulated indices of abundance from the PT model requires inverting the relationship between $\left(F^*, \frac{B^*}{B(0)}\right)$, and (r, γ) . It is not generally possible to analytically invert this relationship for many three parameter production functions (?, ?, ?). Most three parameter production functions lead to RPs that require expensive numerical methods to invert; more over the numerical inversion procedure can often be unstable. That said, for the case of PT this relationship is analytically invertible, and leads to the following relationship

$$r = \gamma F^* \qquad \qquad \gamma = \frac{W\left(\frac{B^*}{\overline{B}(0)}\log\left(\frac{B^*}{\overline{B}(0)}\right)\right)}{\log\left(\frac{B^*}{\overline{B}(0)}\right)}. \tag{1.12}$$

Above W is the Lambert product logarithm function. More details about this derivation, and the Lambert product logarithm, are given in Appendix (5).

Using Eq. (1.12) to obtain production parameters, a PT production model can be fully defined for any combination of the RPs F^* and $\frac{B^*}{\overline{B}(0)}$. Since K does not enter the RP calculation its value is fixed arbitrarily at 10000.

Indices of abundance are simulated from the three parameter PT production model broadly over the space of F^* and $\frac{B^*}{\overline{B}(0)}$ via a space filling design as described in Section (0.2). A small amount of residual variation, $\sigma = 0.01$, is added to the simulated index, and these data are then fit with a Schaefer model, at various degrees of misspecification, so as to observe the effect of productivity model misspecification upon RP inference.

139 PT Design

Letting \mathcal{F} and \mathcal{B} be regular grids, of size n=100, on $F^* \in (0.1, 0.7)$ and $\frac{B^*}{B_0} \in (0.2, 0.6)$ respectively, a LHS design of size 100 is collected among the cells produced by $\mathcal{F} \times \mathcal{B}$.

Each of the sampled LHS design locations represent a unique PT model with the sampled RP values. Since the relationship mapping RPs analytically to productivity parameters can be found for the PT model, LHS designs the PT model are computed directly in RP space and Eq. (1.12) is used to map the sampled RP design locations to PT productivity parameters.

2.2 Gaussian Process Metamodel

147

171

172

173

174

175

At its core, a metamodel is simply a model of some mapping of inputs to outputs (the 148 mapping itself is typically defined by a computer model). By modeling the mapping with a 149 statistical model (that explicitly defines the relevant features of the mapping) a metamodel 150 defines a specific ontology for the mapping. By simulating examples of the mapping, the 151 inferential infrastructure of the statistical model is used to empirically learn an effective 152 emulation of the mapping within the ontology defined by the statistical model. The pre-153 dictive infrastructure of the statistical model is then useful as an approximate abstraction 154 of the system itself to better understand the system through further data collection, cheap 155 approximation of the mapping, and/or study of the mapping itself. 156

In this setting, the aim of metamodeling is to study how well RPs are inferred when typical 157 two parameter models of productivity (Logistic and BH) are misspecified for populations 158 that are actually driven by more complicated dynamics. The simulation design, X, provides 159 a sample of different population dynamics that are driven by three parameter production 160 functions broadly in RP space. By simulating index of abundance data from the three 161 parameter model, and fitting those data with the two parameter production model, we 162 observe particular instances of how well RPs are inferred at the given misspecification of the 163 two parameter model relative to the true three parameter production model. By gathering 164 all of the simulated instances of how RPs are inferred (under the two parameter model), 165 we form a set of example mappings to train a metamodel which represents the mapping 166 of true RPs (under the three parameter model) to estimate of RPs under the misspecified 167 two parameter production model. The metamodel is essentially a surrogate for inference 168 under the misspecified two parameter production model that controls for the specific degree 169 of model misspecification. 170

A flexible GP model is assumed for the structure of the metamodel to describe the mapping of RPs under misspecified two parameter models of productivity. A GP is a stochastic process generalizing the multivariate normal distribution to an infinite dimensional analog. GP models are often specified primarily through the choice of a covariance (or correlation) function which defines the relationship between locations in the input space. Typically corre-

lation functions are specified so that points closely related in space result in correlated effects in the model. In this setting the inputs to the GP metamodel are the space of reference points 177 which define the simulated three parameter production models. 178

While index of abundance data are generated from three parameter models, at each design location of the simulation, fitting the restricted two parameter model results in a maximum likelihood estimate (MLE; and associated estimation uncertainty) of each of the productivity parameters (i.e. Schaefer: [log(r), log(K)], BH: $[log(\alpha), log(\beta)]$). To simplify the specification of the metamodel, let y be a vector collecting the fitted MLEs for one of the productivity parameters, and let ω be a vector of estimates of the estimator variances (via the inverted Fisher information) at each y. Each of the fitted productivity parameter estimates are then modeled using independent instances of the following GP metamodel.

$$\mathbf{y} = \beta_0 + \mathbf{X}\boldsymbol{\beta} + \mathbf{v} + \boldsymbol{\epsilon}$$

$$\mathbf{v} \sim N_n(\mathbf{0}, \tau^2 \mathbf{R}_{\ell})$$

$$\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \boldsymbol{\omega}' \mathbf{I})$$
(1.13)

X is the $n \times 2$ LHS design matrix of RPs for each simulated three parameter data 179 generating model as described in Section (0.2). ϵ models independent normally distributed 180 error, which provides an ideal mechanism for propagating uncertainty from inference in 181 the simulation step into the metamodel. By matching each y_i with an observed ω_i variance 182 term, ϵ serves to down weight the influence of each y_i in proportion to the inferred production 183 model sampling distribution uncertainty. This has the effect of smoothing the GP model in a way similar to the nugget effect (?, ?), although the application here models this effect 185 heterogeneously. 186

184

The term, $oldsymbol{v}$, contains spatially correlated GP effects. The correlation matrix, $oldsymbol{R}_{\ell}$ describes how RPs close together in the simulation design are more correlated than those that are far away. This spatial effect is modeled with a squared exponential correlation function,

$$R(\boldsymbol{x}, \tilde{\boldsymbol{x}}) = \exp\left(\sum_{i=1}^{2} \frac{-(x_i - \tilde{x}_i)^2}{2\ell_j^2}\right). \tag{1.14}$$

R has an anisotropic separable form which allows for differing length scales, ℓ_1 and ℓ_2 , 187 in the different RP axes. The flexibility to model correlations separately in the different 188 RP axes is key due to the differences in the extent of the RP domains marginally. The 189 metamodel parameters β_0 , β , τ^2 , ℓ_1 and ℓ_2 are fit via MLE against the observations \mathbf{y} , \mathbf{X} , 190 and ω from simulation fits.

Fitting the metamodel allows for a full predictive description of inference under the 192 misspecified restricted models. Predictive estimates are obtained via kriging (?,?) 193

$$\hat{y}(\mathbf{x}) = \beta_0 + \mathbf{x}\boldsymbol{\beta} + \mathbf{r}(\mathbf{x})'\boldsymbol{R}_{\ell}^{-1} \Big(\mathbf{y} - (\beta_0 + \boldsymbol{X}\boldsymbol{\beta}) \Big)$$
(1.15)

 $\hat{y}(\mathbf{x})$ is the predicted value of the modeled productivity parameter MLE under the two 194 parameter production model, when the index of abundance is generated from the three parameter production model at RP location \mathbf{x} . $\mathbf{r}(\mathbf{x})$ is a vector-valued function of correlation function evaluations for the predictive location x against all observations in X (i.e. $\mathbf{r}(\mathbf{x}) =$ $\boldsymbol{R}(\mathbf{x}, \boldsymbol{x}_i) \ \forall \ \boldsymbol{x}_i \in \boldsymbol{X}).$ 198 While metamodeling occurs on the inferred productivity parameters of the restricted production model, the metamodel can also be used to build estimates of major biological 200 RPs. For the BH model the relevant transformations for relating productivity parameters with RPs are given in Eqs. (2.5, 2.8) with γ fixed to -1; for the Schaefer model $\hat{B}^* = \frac{\hat{K}}{2}$ and $\hat{F}^* = \frac{\hat{r}}{2}$. Applying the metamodel predictive surfaces on the scale of RP estimates allows for 203 the quantification of estimation bias that is induced by fitting a misspecified two parameter 204 production model to indices of abundance generated under three parameter productivity.

2 .3 Catch 206

195

196

199

201

205

It is known that contrast in the observed index and catch time series can effect inference on 207 the productivity parameters (?, ?). In this setting contrast refers to changes in the long term 208 trends of index data. Figure (1.3, right) demonstrates an example of biomass that includes 209 contrast induced by catch. It is not well understood how contrast may factor into inferential 210 failure induced by model misspecification. Thus catch is parameterized so as to allow for a spectrum of possible contrast simulation settings.

Catch is parameterized so that F(t) can be controlled with respect to F^* . Recall that 213 catch is assumed to be proportional to biomass, so that C(t) = F(t)B(t). To control F(t)214 with respect to F^* , C(t) is specified by defining the quantity $\frac{F(t)}{F^*}$ as the relative fishing rate. 215 B(t) is defined by the solution of the ODE, and F^* is defined by the biological parameters 216 of the model. By defining $\frac{F(t)}{F^*}$, catch can then be written as $C(t) = F^*\left(\frac{F(t)}{F^*}\right)B(t)$. Intuitively $\frac{F(t)}{F^*}$ describes the fraction of F^* that F(t) is specified to for the current B(t). 218 When $\frac{F(t)}{F^*} = 1$, F(t) will be held at F^* , and the solution of the ODE brings B(t) into 219 equilibrium at B^* . When $\frac{F(t)}{F^*}$ is held constant in time biomass comes to equilibrium as an 220 exponential decay from K approaching B^* . When $\frac{F(t)}{F^*} < 1$, F(t) is lower than F^* and B(t) is 221 pushed toward $\bar{B} > B^*$. Contrarily, when $\frac{F(t)}{F^*} > 1$, F(t) is higher than F^* and B(t) is pushed 222 toward $\bar{B} < B^*$; the precise values of \bar{B} can be calculated from the steady state biomass 223 equations provided above and depend upon the specific form of the production function. 224

For the simulations presented here, a family of fishing behaviors are considered where the fishing rate accelerates as technology and fishing techniques improve rapidly until management practices are applied, which ultimately brings fishing into equilibrium at F^* . This is parameterized as three distinct phases, over a total of 45 units of time, with each phase lasting 15 time units. The specific form is given below.

$$\frac{F(t)}{F^*} = ae^{bt}\mathbf{1}_{0 \le t < 15} + (d - ct)\mathbf{1}_{15 \le t < 30} + \mathbf{1}_{30 \le t \le 45}$$
(1.16)

The first term of Eq(1.16) is an exponential increase in fishing, the second term is a linear decline in relative fishing as initial management practices are applied, and the third term, $\mathbf{1}_{30 \le t \le 45}$, simply holds the fishing rate at F^* there after. These three phases are controlled by the four parameters a, b, c, and d. By enforcing that the interface of the phases meet at χ_{max} and 1 respectively the relative fishing series is reduced to a two parameter family.

$$a = e^{\log(\chi_{max}) - 15b} \qquad b = \frac{1}{t - 15} \log\left(\frac{\chi_{min}}{\chi_{max}}\right) \tag{1.17}$$

$$c = \frac{\chi_{max} - 1}{15 - 1} \qquad d = 15c + \chi_{max} \tag{1.18}$$

By further specifying $\chi_{max}=1.6^{\chi}$ and $\chi_{min}=0.4^{\chi}$ the two parameters χ_{max} , and χ_{min}

can be reduced to the single parameter χ . The tuning parameter χ then singularly controls contrast that appears in time series data. 227

Figure 1.3: (left) Relative fishing with low, medium, and high contrast. (right) Population biomass and catch at each associated level of contrast.

When $\chi = 0$, the relative fishing rate is a constant at 1 to create a low contrast simulation 228 environment. As χ increases Eq (1.16) induces more and more contrast in the observed index and catch time series until $\chi = 1$ which produces a high contrast simulation environment. Figure (1.3) demonstrates a spectrum of contrast simulation environments as well as the time series data they induce in the solution of the production model ODE. 232

Two Parameter Production Model Inference

220

230

231

233

The simulated mapping results from fitting an intentionally misspecified two parameter pro-234 duction model to index of abundance data that are generated from a more complex three 235 parameter model of productivity. Thus, let I_t be an index of abundance simulated from the 236 three parameter PT or Schnute production models at time $t \in \{1, 2, 3, ..., T\}$. However the 237 fitted model is specified to be intentionally misspecified so that the fitted model is driven by 238 a two parameter Schaefer, or BH production model respectively. 239

The observation model for the fitted model is log-normal such that,

$$I_t|q, \sigma^2, \boldsymbol{\theta} \sim LN(qB_t(\boldsymbol{\theta}), \sigma^2).$$
 (1.19)

 $B_t(\boldsymbol{\theta})$ is defined by the solution of the ODEs defined by the Schaefer, or BH models. For

the Schaefer model $\theta = [r, K]$, and for the BH model $\theta = [\alpha, \beta]$. From the perspective of the fitted model, the observed I_t are assumed independent conditional on q, σ^2 , r, K and the two parameter ODE model for biomass. Thus the log likelihood can be written as

$$\log \mathcal{L}(q, \sigma^2, \boldsymbol{\theta}; I) = -\frac{T}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{t} \log\left(\frac{I_t}{qB_t(\boldsymbol{\theta})}\right)^2.$$
 (1.20)

In this setting, q is fixed at the true value of 0.0005 to focus on the inferential effects of model misspecification on biological parameters. σ^2 and θ are reparameterized to the log scale and fit via MLE. Reparameterizing the parameters to the log scale improves the reliability of optimization, in addition to facilitating the use of Hessian information for estimating MLE standard errors.

Given that the biological parameters enter the likelihood via a nonlinear ODE, and fur-245 ther the parameters themselves are related to each other nonlinearly, the likelihood function 246 can often be difficult to optimize. A hybrid optimization scheme is used to maximize the log likelihood to ensure that a global MLE solution is found. The R package GA (?, ?, ?) is used 248 to run a genetic algorithm to explore parameter space globally. Optimization periodically 249 jumps into the L-BFGS-B local optimizer to refine optima within a local mode. The scheme 250 functions by searching globally, with the genetic algorithm, across many initial values for 251 starting the local gradient-based optimizer. The genetic algorithm serves to iteratively im-252 prove hot starts for the local gradient-based optimizer. Additionally, optimization is only 253 considered to be converged when the optimum results in an invertible Hessian at the found 254 MLE. 255

2.5 Continuous model formulation

240

241

242

243

244

256

An important (and often overlooked) implementation detail is the solution to the ODE which defines the progression of biomass through time. As a statistical model it is of paramount importance that this ODE not only have a solution, but also that the solution be unique. Of primary concern, uniqueness of the ODE solution is necessary for well conditioned inference.

If the form of $\frac{dB}{dt}$ is at least Lipschitz continuous, then the Cauchy-Lipschitz-Picard theorem provides local existence and uniqueness of B(t). Recall from Eq(1.2) that $\frac{dB}{dt}$ is

separated into a term for biomass production, P(B), and a term for removals, Z(t)B(t). For determining Lipschitz continuity of $\frac{dB}{dt}$, the smallest Lipschitz constant of $\frac{dB}{dt}$ will be the sum of the constants for each of the terms P(B) and Z(t)B(t) separately. Typically any choice of P(B) will be continuously differentiable, which implies Lipschitz continuity. At a minimum Z(t) typically contains fishing mortality as a function of time Z(t) to model catch in time as Z(t) = F(t)B(t). Z(t) may or may not contain Z(t)0, but typically Z(t)1 is modeled as stationary in time and does not pose a continuity issue, unlike some potential assumptions for Z(t)1.

In practice C(t) is determined by a series of observed, assumed known, catches. Catch 270 observations are typically observed on a quarterly basis, but in practice may not be complete 271 for every quarter (or year) of the modeled period. It is overwhelmingly common to discretize 272 the ODE in time via Euler's method with integration step sizes to match the observation 273 frequency of the modeled data. This is often computationally convenient when the underlying 274 species dynamics are resonably well behaved, however when the dynamics model is used as a 275 statistical model, with the goal of inferring the behavior of the underlying species dynamics, 276 the regularity of the dynamics are not guaranteed. An implicit assumption of continuity 277 of catch in time provides the necessary regularity for the statistical model. Furthermore 278 a continuous handling of the dynamics provides improved accruacy in evaluating the ODE, 279 particually when inferring productivity parameters which largely control the regularity of 280 the dynamics. 281

While there are many ways to handle catch continuity, here I assume that catches accrue linearly between observed catches. This assumption defines the catch function as a piecewise linear function of time, with the smallest Lipschitz constant for the catch term defined by the steepest time segment of the catch function. This assumption represents one of the simplest ways of handling catch, while retaining Lipschitz continuity overall. Furthermore linearly interpolated catch is adequately parsimonious for the typical handling of catches.

288 Integration and Stiffness

As previously mentioned, the overwhelming majority of implementations of stock assessment models discretized the ODE using Euler's method with the integration step sized fixed so as to match the observation frequency. In this setting we explore model parameterizations that explore the full extent of biologically relevant reference points. This exercise produces some combinations of parameters that result in numerically stiff ODEs.

The concept of stiffness in ODEs is hard to precisely characterize. ? (?, p.2) describe stiffness in the following pragmatic sense, "Stiff equations are problems for which explicit methods don't work". It is hard to make this definition more mathematically precise, but this a consistent issue for models of fast growing species in the low contrast simulation. Euler's method, as often implemented, is particularly poorly suited for these stiff regions of parameter space. In these stiff regions it is necessary to integrate the ODE with an implicit integration method.

Several of the most common implicit methods were tried including the Livermore Solver for ODEs (lsode), and the Variable Coefficient ODE Solver (vode) as implemented in the deSolve package of R (?, ?). The difference between implicit solvers is negligible, while explicit methods result in wildly varying solutions to the ODE in stiff regions of parameter space. Results shown here are computed using the lsode integration since it runs relatively quickly and has a relatively smaller footprint in system memory.

307 Results

$_{308}$ 3.1 PT/Schaefer

op An MSY-Optimal Catch History

When F(t) is held constant at F^* , as it is in the "low contrast" simulation setting, B(t) comes to equilibrium as an exponential decay from K to B^* . Understanding model misspecification bias is simplified in this setting due to the relative simplicity that this induces in B(t). However this simplicity is known to poorly inform estimates of r, and thus F^* , due to the limited range of the production function that is observed (?,?).

Figure (1.4) shows four of the most mis-315 specified example production function fits as 316 compared to the true data generating PT 317 production functions. The rug plots below 318 each set of curves show how the observed 319 biomasses decay exponentially from K to B^* 320 in each case. In particular, notice how ob-321 servations only exist where the PT biomass 322 is greater than B^* . Due to the leaning of 323 the true PT curves, and the symmetry of 324 the logistic parabola, the logistic curve only 325 observes information about its slope at the 326 origin from data observed on the right por-327 tion of the PT curves. The top two panels of 328 Figure (1.4) shows PT data generated such 329 that $\frac{B^*}{\overline{B}(0)} > 0.5$; in these cases PT is steeper 330 to the right of B^* than it is on the left, and so 331 the the logistic curve over-estimates r, and 332 consequently also over-estimates F^* . The 333

Figure 1.4: A comparison of the true PT production function (in black) and the estimated logistic curve (in red) with 95% CI shown. The examples shown represent the four corners of maximum model misspecification in the simulated RP-space. Observed biomasses are plotted in the rug plots below the curves.

bottom two panels of Figure (1.4) show PT data generated with $\frac{B^*}{B(0)} < 0.5$ and where the vice versa phenomena occurs. PT is shallower to the right of B^* than it is on the left

and so the logistic parabola estimate tends to under estimate F^* .

337 Metamodeled Trends

Each point in the space of the RPs F^* and $\frac{B^*}{B(0)}$ uniquely identifies a complete PT model 338 with different combinations of parameters values. Recall that when $\gamma = 2$ for the PT model, 339 the PT curve becomes a parabola and is equivalent to the logistic curve of the Schaefer model. Since the logistic curve is symmetric about B^* , the Schaefer model must fix the 341 value of $\frac{B^*}{\bar{B}(0)}$ at the constant 0.5 for any value of F^* . So the line through RP space defined 342 by $\frac{B^*}{\overline{B}(0)} = 0.5 \ \forall F^*$, defines the subset of RP space where $\gamma = 2$ and where the PT model 343 is equivalent to the Schaefer model. For brevity this subset of RP where $\frac{B^*}{\bar{B}(0)} = 0.5$ will be referred to as the "Schaefer set". Thus simulated data that are generated along the Schaefer 345 set will be the only data that are not misspecified relative to the Schaefer model; as PT data 346 are simulated farther and farther away from this line at $\frac{B^*}{\overline{B}(0)} = 0.5$ model misspecification of 347 the Schaefer model becomes worse and worse. 348

While Figure (1.4) demonstrates a real trend in simulation results, individual simulation 349 runs will at best show jittery trends due to the stochastic nature of statistical inference. The 350 GP process metamodel accounts for this stochasticity to focus analysis on the signal in the 351 simulation results. Recall that metamodeling occurs on the scale of the inferred productivity 352 parameters of the restricted production model, by transforming metamodel predictions via 353 Eq. (1.11), metamodeled predictions are obtained for Schaefer RPs. By further subtracting 354 the true data generating PT RPs from the predicted Schaefer RPs at each point in RP space 355 a pattern of inferential RP bias, induced by model misspecification of the Schaefer model, 356 can be seen. 357

Figure (1.5) shows the pattern of biases the Schaefer model creates when fit to PT data generated at each point of RP space. An equivalent way to think of Figure (1.5) is that since the Schaefer model must estimate RPs in the Schaefer set, the metamodel arrows indicate the mapping that is created by inferring RPs under a misspecified Schaefer model fit to PT data generated at each point over the pictured region.

Since $\frac{B^*}{B_0}$ must be 0.5 under the Schaefer model, biases in the $\frac{B^*}{B_0}$ direction must simply map vertically onto the Schaefer set. Due to this simplified RP geometry under the Schaefer

Figure 1.5: Joint bias direction for $(F^*, \frac{B^*}{B_0})$ estimates under the misspecified Schaefer Model. The intensity of color represents the excess bias relative to the shortest possible mapping. Results in the low contrast setting are shown left, and the high contrast setting is shown right.

model, the degree of bias in $\frac{B^*}{B_0}$ estimation is defined solely by the degree of model misspecification irrespective of F^* . Furthermore, the closest possible point along the Schaefer set that Schaefer model inference could map RPs would be the perfectly vertical mapping. This pattern only contains the strictly necessary bias present in $\frac{B^*}{B_0}$, and zero bias in F^* . Any deviation from this minimal bias pattern is necessarily due to added bias in F^* .

The two simulation settings shown in Figure (1.5) are identical except for the amount of contrast present in the simulated index. The left panel of Figure (1.5) shows RP biases in the low contrast setting, while the right panel shows the high contrast setting. Notice that in the low contrast setting the RP bias pattern is far from the minimum distance mapping, however when contrast is added the mapping becomes much closer to a minimal bias mapping. In the low contrast setting the observed bias is consistent with the pattern and mechanism described in Figure (1.4), where F^* is underestimated for data generated below the Schaefer line and overestimated above the Schaefer set. In the high contrast simulation the mapping is nearly minimal distance with the exception of PT data generated with simultaneously low $\frac{B^*}{B_0}$ and high F^* .

Figure (3.1) demonstrates how bias in F^* estimation decreases as contrast is added to

Bias in Estimated Schaefer FMSY

Figure 1.6: Bias in F^* under the Schaefer model when PT data are generated with increasing contrast so that F^* and $\frac{B^*}{B_0}$ are fixed at 0.699 and 0.201 respectively.

PT data as generated in the low $\frac{B^*}{B_0}$ and high F^* regime. By including additional contrast F^* bias is decreased, however parameterizing contrast so as to fully extinguish F^* bias may require a more complex model of fishing.

384 4 Discussion

395

396

397

Results presented here generally agree with what is known about estimating growth rate 385 parameters (?, ?, ?, ?). These study's appreciate the role of contrast for estimating growth 386 rates, however they struggle to make generally extensible conclusions since they focus only 387 on a handful of stocks that fall short of forming a random sample of the greater population of 388 possible stock behaviors. The LHS design methods presented here are designed specifically 380 to simulate a representative sample of stocks broadly across the space of possible RPs. 390 Furthermore, the simulation design, taken together with the GP metamodel of productivity 391 parmater estimates, allows this study to control the degree of model misspecification and 392 generalize conclusions about the behavior of productivity estimation within the production 393 model setting presented. 394

In the presence of contrast, F^* estimation can enjoy very low bias even for a wide range of poorly specified models; conversely in the absence of contrast F^* estimation can suffer very large bias even for slightly misspecified models. This pattern is particularly true for inference

under the Schaefer model where the geometry of the restricted RP set isolates estimation failure of F^* from $\frac{B^*}{B(0)}$. While contrast has a similar impact on F^* estimation under the BH model, the geometry of the BH RP set correlates estimation bias of F^* and $\frac{B^*}{B(0)}$. The GP metamodeling approach reveals a more general pattern that highly informative data sets (high contrast) produces a nearly minimal distance mapping of RPs onto the constrained RP set.

In all cases when model misspecification is removed, even with weakly informative data,
RP estimation is unbiased and well estimated. Thus contrast alone is not the only factor
leading to inferential failure. Model misspecification is a necessary but not sufficient condition for inducing RP estimation bias. The particular RP bias present depends on the RP
geometry of the fitted model and how that geometry is misspecified relative to the data. The
RP mapping is then oriented to the RP geometry of the fitted model.

While the relative fishing rate parameterized in Section (2.3) captures a usefully broad 410 spectrum of relevant fishing behaviors, it is still limiting in the amount of information that 411 it can induce. Improved methods for quantifying contrast in fisheries data, and/or methods 412 of discovering more informative fishing behavior, could improve this analysis. In the absence 413 of a maximally informative dataset simulation methods will not fully describe how inference 414 fails, but the methods presented here tell the most complete picture yet, with explicit control 415 of the degree model misspecification, contrast, and a simulation design that allows for uniform 416 representative data generation across biologically meaningful stocks. The results presented 417 here suggest the conjecture that under a maximally informative dataset, RP inference with 418 a two parameter production function will be biased in the direction a shortest distance map 419 from the true RPs onto restricted set of RPs under the two parameter model. 420

Given the potential for model misspecification of RPs, a minimal distance mapping of RPs represents a best-case scenario where the total bias of RPs, when measured jointly, is minimized. That said, without recognizing the geometry of how two parameter models of productivity limit RP space this may lead to unintuitive implications in RP estimation. For example, due to the shape of the BH RP set a minimal distance mapping ensures that if there is bias in one of $\frac{B^*}{B_0}$ or F^* , there will necessarily be bias in the other RP. However under the Schaefer model, since the RP set is a constant in $\frac{B^*}{B_0}$, bias in F^* is not adulterated in the same way by bias in $\frac{B^*}{B_0}$ estimation. While models with constant RPs, such as the logistic model $\frac{B^*}{B_0} = \frac{1}{2}$ or the Fox model $\frac{B^*}{B_0} = \frac{1}{e}$, are extremely limited, they can be valuable tools for developing intuition precisely because they isolate RP estimation in their free RPs from the correlated RP biases present in models like the BH or Ricker model.

When one considers the implications of RP bias, overestimation of RPs carries the severe 432 implication of management recommendations potentially leading to overfishing, while un-433 derestimation of RP leads to overly conservative management. In this sense, when the true 434 model is not known, the geometry of the BH set together with the metamodeled bias trends 435 makes the BH model a naturally conservative estimator of RPs for most stocks. For most 436 non-BH populations the BH model is likely to make conservative errors in its estimates of F^* and $\frac{B^*}{B_0}$. The one notable exception to the conservatism of the BH model stands for data 438 generated in the Cushing-like regime of Schnute RPs. In this regime the BH model tends 439 to be fairly unbiased overall, however the bias that is present for these populations tends to 440 be overestimation in both RPs, leading to much more severe management consequences for 441 those populations. 442

The RP bias trends of the Schaefer model demonstrate much less conservatism than the BH overall. For any population with $\frac{B^*}{B_0} < 0.5$, $\frac{B^*}{B_0}$ will be overestimated. When the population comes from the regime where $\frac{B^*}{B_0} > 0.5$, $\frac{B^*}{B_0}$ will be under estimated, but F^* is likely to be overestimated depending on the degree of contrast present in the data. So while the Schaefer model is an intuitive model, it tends to lead to much less conservative RP estimation.

While it is important to recognize these limitations of two parameter models of produc-449 tivity, we should not solely accept conservativism as a rational of choosing a BH model of 450 productivity. Increasing the flexibility of the production function by moving toward three 451 parameter models would release the underlying structural limitations (?, ?) that cause these 452 RP biases in the first place. ? (?) considers a suite of possible three parameter curves which 453 could be used instead of current two parameter curves. For all of their benefits, three pa-454 rameter production functions have their own complicating factors, and the structure present 455 in the Schnute model explored here makes it an intuitive bridge model for developing three 456 parameter models going forward. 457

• show a schnute fit to data? (?, ?) Prior

- summary of σ over RP space comparing between models (PT, Schnute, Schnute DD) to show areas of model breakdown.
- miss-identifying signal for noise.
- It happens more as the dynamics get more complex.
- point to the full age structed models.
- show the constrained BH space over a grid of M, κ , ω , W_{∞}
- Show that the constrained spaces vary only slightly as compared with the consequences of misspecifing the functional form.
- estimating these other quantities (while they can create quite different Biomass series)
 can only do so much to improve (expand) RP inference as compared with correctly
 modeling P.
- mapping distance as a function of contrast at (3.5, 0.5)
- for LHS grid locations show $\frac{B^*}{B_0}$ and F^* biases for grids in $M \in (0, 0.5)$ For sure in High Contrast, maybe also in Low??.

473 5 Appendix: Inverting $\frac{B^*}{\bar{B}(0)}$ and γ for the PT Model

For brevity let $\zeta = \frac{B^*}{\bar{B}(0)}$.

$$\zeta = \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}}$$

$$\zeta = \gamma \zeta^{\gamma}$$

$$\zeta = \gamma e^{\gamma \log(\zeta)}$$

$$\zeta \log(\zeta) = \gamma \log(\zeta) e^{\gamma \log(\zeta)}$$

The Lambert product logarithm, W, is defined as the inverse function of $z = xe^x$ such that x = W(z). Applying this definition allows for the isolation of γ .

$$\gamma \log(\zeta) = W(\zeta \log(\zeta))$$

$$\gamma = \frac{W(\zeta \log(\zeta))}{\log(\zeta)}$$
(1.21)

The Lambert product logarithm is a multivalued function with a branch point at $-\frac{1}{e}$. The principal branch, $W_0(z)$, is defined on $z \in \left(-\frac{1}{e}, \infty\right)$, and the lower branch, $W_{-1}(z)$, is defined on $z \in \left(-\frac{1}{e}, 0\right)$. Taken individually, each respective branch is analytic, but cannot be expressed in terms of elementary functions.

When $\zeta \in \left(0, \frac{1}{e}\right)$ the solution of interest in Eq. (1.12) comes from W_0 . When $\zeta \to \frac{1}{e}$, the Fox Model emerges as $\gamma \to 1$. When $\zeta \in \left(\frac{1}{e}, 1\right)$ the solution of interest comes from W_{-1} . For the use case presented here, Eq. (1.12) is to be interpreted as,

$$\gamma = \begin{cases}
\frac{W_0(\zeta \log(\zeta))}{\log(\zeta)} & \zeta \in (0, \frac{1}{e}) \\
\frac{W_{-1}(\zeta \log(\zeta))}{\log(\zeta)} & \zeta \in (\frac{1}{e}, 1)
\end{cases}$$
(1.22)

Prager 2002, Figure(2).

https://math.stackexchange.com/questions/3004835/is-the-lambert-w-function-analyticif-not-everywhere-then-on-what-set-is-it-ana https://researchportal.bath.ac.uk/en/publications/algebraicproperties-of-the-lambert-w-function-from-a-result-of-r https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf

486 Chapter 2

The Schnute Model

Schnute Model

The Schnute production function is a three parameter generalization of many of the most common two parameter production functions (?, ?, ?). It can be written in the following form, with parameters α , β , and γ ,

$$P_s(B; [\alpha, \beta, \gamma]) = \alpha B (1 - \beta \gamma B)^{\frac{1}{\gamma}}. \tag{2.1}$$

The BH and Logistic production func-489 tions arise when γ is fixed to -1 or 1 respec-490 tively. The Ricker model is a limiting case 491 as $\gamma \to 0$. For $\gamma < -1$ a family of strictly in-492 creasing Cushing-like curves arise, culminat-493 ing in linear production as $\gamma \to -\infty$. These 494 special cases form natural regimes of simi-495 larly behaving production functions as seen 496 in Figure (2.1). 497

The behavior of RP inference under the BH model is of particular interest due to the overwhelming popularity of the BH assumption in fisheries models. Since Schnute production models can represent a quantifiably wide variety of possible productivity behav-

498

499

500

501

502

503

Figure 2.1: The Schnute production function plotted across a variety of parameter values. Regimes of similarly behaving curves are grouped by color.

iors, they present an ideal simulation environment for inquiry of the reliability of inference under the BH assumption.

Under Schnute production, biomass dynamics evolve according to the following ODE,

$$\frac{dB}{dt} = P_s(B;\theta) - (M+F)B. \tag{2.2}$$

This equation largely takes the same form as previously described, except that P_s is the Schnute production function and natural mortality, M, is modeled explicitly here. Natural

mortality models the instantaneous rate of mortality from all causes outside of fishing. Explicitly modeling natural mortality is not only a typical assumption of fisheries models, but is also key to the making RPs well defined over the relevant domain of γ .

The derivation of RPs under Eq. (2.2) follows a similar logic as under the PT model. An expression for equilibrium biomass is attained by setting $\frac{dB}{dt} = 0$ and rearranging the resulting expression to solve for B

$$\bar{B}(F) = \frac{1}{\gamma \beta} \left(1 - \left(\frac{M+F}{\alpha} \right)^{\gamma} \right). \tag{2.3}$$

The above expression quickly yields B_0 , B^* by evaluation at F=0 and F^* respectively,

$$B_0 = \frac{1}{\gamma \beta} \left(1 - \left(\frac{M}{\alpha} \right)^{\gamma} \right) \tag{2.4}$$

$$\frac{B^*}{B_0} = \frac{1 - \left(\frac{M + F^*}{\alpha}\right)^{\gamma}}{1 - \left(\frac{M}{\alpha}\right)^{\gamma}}.$$
 (2.5)

Attaining an expression for F^* requires maximization of equilibrium yield, $\bar{Y} = F\bar{B}(F)$, with respect to F. Analytically maximizing proceeds by differentiating \bar{Y} to produce

$$\frac{d\bar{Y}}{dF} = \bar{B}(F) + F\frac{d\bar{B}}{dF} \tag{2.6}$$

$$\frac{d\bar{B}}{dF} = -\frac{1}{\beta} \left(\frac{\left(\frac{M+F}{\alpha} \right)^{\gamma}}{F+M} \right). \tag{2.7}$$

Setting $\frac{d\bar{Y}}{dF} = 0$, filling in the expressions for $\bar{B}(F)$ and $\frac{d\bar{B}}{dF}$, then rearranging to solve for F^* is less yielding here than it was in the case of the PT model. This procedure falls short of providing an analytical solution for F^* directly in terms of θ , but rather shows that F^* must respect the following expression,

$$0 = \frac{1}{\gamma} - \left(\frac{1}{\gamma} + \frac{F^*}{F^* + M}\right) \left(\frac{F^* + M}{\alpha}\right)^{\gamma}. \tag{2.8}$$

The lack of an analytical solution here is understood. ? (?, pg. 519) specifically points out that F^* cannot be expressed analytically in terms of productivity parameters, but rather gives a partial analytical expression for the inverse relationship. Although parameterized

slightly differently, ? (?) derives expressions for α and β as a function of RPs and γ .

Since RPs are left without a closed form expression, computing RPs from productivity 515 parameters amounts to numerically solving the system formed by collecting the expressions 516 (2.8), (2.4), and (2.5). 517

Simulation 518

523

For the purposed of simulation, it is not necessary to completely know the precise relation-519 ships mapping RPs $\mapsto \theta$ or $\theta \mapsto$ RPs. Simulation only requires enough knowledge of these 520 mappings to gather a list of (α, β, γ) tuples, for data generation under the Schnute model, 521 and the corresponding RPs in some reasonable space-filling design over RP space. 522

Similarly to ? (?), expressions (2.8) and (2.4) are solved for α and β respectively. This leads to the partial mapping $(F^*, B_0) \mapsto (\alpha(\cdot, \gamma), \beta(\cdot, \cdot, \gamma))$ in terms of RPs and γ . By further working with Eq. (2.5), to identify γ , the following system is obtained,

$$\alpha = (M + F^*) \left(1 + \frac{\gamma F^*}{M + F^*} \right)^{1/\gamma}$$

$$\beta = \frac{1}{\gamma B_0} \left(1 - \left(\frac{M}{\alpha} \right)^{\gamma} \right)$$

$$\frac{B^*}{B_0} = \frac{1 - \left(\frac{M + F^*}{\alpha} \right)^{\gamma}}{1 - \left(\frac{M}{\alpha} \right)^{\gamma}}.$$
(2.9)

For a population experiencing natural mortality M, by fixing F^* , B_0 , and $\frac{B^*}{B_0}$ the above system can fully specify α and β for a given γ . Notice for a given γ a cascade of closed 524 form solutions for α and β can be obtained. First $\alpha(\gamma)$ can be computed, and then 525 $\beta(\alpha(\gamma), \gamma)$ can be computed. If $\alpha(\gamma)$ is filled back into the expression for $\frac{B^*}{B_0}$, the system collapses into a single onerous expression for $\frac{B^*}{B_0}(\alpha(\gamma), \gamma)$. For brevity, define the function $\zeta(\gamma) = \frac{B^*}{B_0} (\alpha(\gamma), \gamma, F^*, M)$ based on Eq. (2.5). 528 Inverting $\zeta(\gamma)$ for γ , and computing the cascade of $\alpha(\gamma)$, and then $\beta(\alpha(\gamma), \gamma)$, fully defines 529 the Schnute model for a given $(\frac{F^*}{M}, \frac{B^*}{B_0})$. However inverting ζ accurately is extremely difficult. 530 Inverting ζ analytically is not feasible, and numerical methods for inverting ζ are unstable 531 and can be computationally expensive. Rather than numerically invert precise values of $\zeta(\gamma)$, 532 γ is sampled so that the overall simulation design is space filling as described in Section (0) 533

.2).

Each design location defines a complete Schnute production model with the given RP 535 values. Indices of abundance are simulated from the Schnute model at each design location, 536 a small amount of residual variation, $\sigma = 0.01$, is added to the simulated index, and the data 537 are then fit with a misspecified BH production model. The design at large captures various 538 degrees of model misspecification relative to the BH model, so as to observe the effect of 539 productivity model misspecification upon RP inference. 540

0.2Latin Hypercube Sampling 541

The goal of space filling design in this setting is to extend the notion of the random sample (and its desirable parameter estimation properties) across the simulated RP domain so as 543 to represent the simulated space as well as possible (?,?). The simple random sample is the 544 classical approach to unbiased parameter estimation, however simple randomness is patchy, 545 often sampling some regions of design space quite densely, while leaving other regions of 546 design space empty. Space filling designs aim to preserve (or enhance) parameter estimation properties across the simulated domain (?, ?, ?), while constraining samples to be spaced in 548 some notion of spread over the entire space. Latin hypercube sampling (?, ?, LHS) is among 549 the most foundational of space filling designs used in computer experiments. 550

A LHS of size n, in the 2 dimensional 551 space defined by RPs, distributes samples so as to spread points across a design region in 553 a broadly representative way. A LHS design 554 extends the notion of a univariate random 555 uniform sample across multiple dimensions 556 so that each margin of the design space en-557 joys a uniform distribution. 558

LHS designs achieve this notion of uni-559 formity by first partitioning each dimension 560 of the design space into regular grids of size n. By intersecting the grids of each dimen-

561

 \mathfrak{P} igure 2.2: LHS grids. Intersecting \mathcal{F} and \mathcal{B} produces n^2 cells; a particular cell $\mathcal{F}_i \times \mathcal{B}_j$ is shown in grey. Maybe just show points.

sion, cells are produced that evenly partition

the design space. In two dimensions n^2 cells

are produced, from which a total of n sam-

566 ples are taken. Crucially only one sample is

taken from a given element of each grid in each dimension so as to reduce clumping of the

n samples across the design space.

569 Schnute Design

Due to the lack of an analytical relationship mapping RPs $\mapsto \theta$, analogous to the PT model's

Eq. (1.12), producing a LHS design over Schnute RPs requires a more tactful approach. The

572 structured relationship between the RPs and productivity parameters, described in Section

573 (0.1), allows an approximate LHS to be obtained by a careful navigation of the system of

equations seen in Eq. (2.9).

Under the Schnute model, let $\mathcal F$ and $\mathcal B$

represent regular grids on $\frac{F^*}{M} \in (0.25, 4)$ and

 $\frac{B^*}{B_0} \in (0.15, 0.7)$ respectively which can serve

578 as the scaffolding for computing an approx-

579 imate LHS.

Since it is not practical to invert $\zeta(\gamma)$, a uniform sample in $\frac{B^*}{B_0}$ can be obtained by modeling γ as a random variable, with realization γ^* , and thinking of $\zeta(\gamma)$ as its cumulative distribution function (CDF). The aim is to model γ as an easily sampled random

Given B_0 , M, and F^* :

- 1) Draw $\gamma^* \sim \gamma | F^*, M$.
- 2) Compute $\frac{B^*}{B_0} = \zeta(\gamma^*)$
- 3) Compute $\alpha^* = \alpha(\gamma^*, F^*, M)$
- 4) Compute $\beta^* = \beta(\alpha^*, \gamma^*, M, B_0)$

Figure 2.3: An outline of the sampling procedure for γ given B_0 , M, and F^* .

variable with a CDF that closely approximates ζ , so that $\zeta(\gamma^*) \sim U(\zeta_{min}, 1)$ as closely as possible. There may be many good models for the distribution of γ , but in this setting the following distribution is very effective,

$$\gamma \sim \zeta_{min}\delta(\gamma_{min}) + t(\mu, \sigma, \nu)\mathbf{1}_{\gamma > \gamma_{min}}.$$
 (2.10)

Above, t is the density of the three pa-580 rameter location-scale family Student's t dis-581 tribution with location μ , scale σ , and de-582 grees of freedom ν . $\mathbf{1}_{\gamma>\gamma_{min}}$ is an indica-583 tor function that serves to truncate the Student's t distribution at the lower bound γ_{min} . 585 $\delta(\gamma_{min})$ is the Dirac delta function evaluated 586 at γ_{min} , which is scaled by the known value 587 ζ_{min} ; this places probability mass ζ_{min} at 588 the point γ_{min} . Since sampling from a Student's t distribution is readily doable, sam-590 pling from a truncated Student's t mixture 591 only requires slight modification. 592

Let T be the CDF of the modeled distribution of γ . Since the point $(\gamma_{min}, \zeta_{min})$ is

Figure 2.4: $\zeta(\gamma)$ Plotted for $F^* = 0.1$ and M = 0.2. The point $(\gamma_{min}, \zeta_{min})$ shows the lowest biologically meaningful value of γ ; below which productivity is negative.

known from the dynamics of the Schnute model at a given RP, full specification of Eq. (2.10) only requires determining the values for μ , σ , and ν which make T best approximate $\zeta(\gamma)$. Thus, the values of μ , σ , and ν are chosen by minimizing the L^2 distance between $T(\gamma)$ and $\zeta(\gamma)$.

$$[\hat{\mu}, \hat{\sigma}, \hat{\nu}] = \underset{[\mu, \sigma, \nu]}{\operatorname{arg \, min}} \int_{\Gamma} \left(T(\gamma; \mu, \sigma, \nu) - \zeta(\gamma) \right)^2 d\gamma \tag{2.11}$$

```
The distribution T(\gamma|\hat{\mu}, \hat{\sigma}, \hat{\nu}) is fit for use
593
                                                                     Algorithm 1 LHS of size n on rectangle R.
                                                                       1: procedure LHS_n(R)
     in generating \gamma^* random variates at a spe-
594
                                                                       2:
                                                                               Define n-grids \mathcal{F}, \mathcal{B} \in R
     cific F^* and M. This approximation releases
595
                                                                               for each grid element i do
     the need to invert \zeta w.r.t \gamma by using sam-
                                                                       3:
                                                                                    Draw \frac{F^*}{M} \sim Unif(\mathcal{F}_i)
     ples of \gamma^* values to generate approximatly
                                                                       4:
597
                                                                                    Compute [\hat{\mu}, \hat{\sigma}, \hat{\nu}] given F^* \& M
                                                                       5:
     uniform samples of \zeta(\gamma^*). By sampling ap-
598
                                                                                    while \mathcal{B}_j not sampled do
                                                                       6:
     proximatly uniform \zeta(\gamma^*) random variates in
599
                                                                                         Draw \gamma^* \sim T(\gamma | \hat{\mu}, \hat{\sigma}, \hat{\nu})
                                                                       7:
     this way, and making use of the structure in
600
                                                                                         Compute \zeta^* = \zeta(\gamma^*)
                                                                       8:
     Eq. (2.9), an approximate LHS sample can
601
                                                                                         Compute j such that \zeta^* \in \mathcal{B}_i
                                                                       9:
     be collected via Algorithm (1).
602
          \frac{F^*}{M} is drawn uniformly from \mathcal{F}_i. Con-
                                                                                    end while
                                                                     10:
603
                                                                                    Compute \alpha^* = \alpha(\gamma^*, F^*, M)
     ditioning on the sample of F^*, and M,
                                                                      11:
604
                                                                                    Compute \beta^* = \beta(\alpha^*, \gamma^*, M, B_0)
     T(\gamma|\hat{\mu},\hat{\sigma},\hat{\nu}) is fit and \gamma^* is sampled. \zeta^* is
                                                                     12:
605
                                                                                    Save (\frac{F^*}{M}, \zeta^*) \Leftrightarrow (\alpha^*, \beta^*, \gamma^*) in \mathcal{F}_i \times \mathcal{B}_j
                                                                      13:
     then computed and placed into the appropri-
606
                                                                               end for
                                                                      14:
     ate grid element \mathcal{B}_{j}. Given \gamma^{*}, the cascade
607
                                                                     15: end procedure
     \alpha(\gamma^*), and \beta(\alpha(\gamma^*), \gamma^*), can be computed.
608
     The algorithm continues until all of the de-
600
```

Design Refinement

610

611

620

Since the behavior of RP inference, under misspecified models, will vary in yet-unknown ways, the exact sampling design density may be hard to know a priori. Several factors, including the particular level of observation uncertainty, high variance (i.e. hard to resolve) features of the response surface, or simply "gappy" instantiations of the initial LHS design may necessitate adaptive design refinement, to accurately describe RP biases. Given the temperamental relationship between RPs and productivity parameters in the Schnute model, a recursive refinement algorithm that makes use of the previously described LHS routine, is developed.

sign elements, $(\frac{F^*}{M}, \zeta^*) \Leftrightarrow (\alpha^*, \beta^*, \gamma^*)$, have been computed for all $i \in [1, ..., n]$.

While LHS ensures uniformity in the design margins, and a certain degree of spread, it

is widely recognized that particular LHS instantiations may leave substantive gaps in the simulation design. To correct this, LHS is often paired with design elements of maximin design (?, ?, ?). Maximin designs sample the design space by maximizing the minimum distance between sampled points. This has the advantage of definitionally filling holes in the design, however because no points are ever drawn outside of the design domain, samples tend to clump around edges (particularly corners) of the design domain. Since LHS ensures uniformity in the margins and maximin designs enjoys a certain sense of optimality in how they define and fill gaps (?, ?), the methods are quite complimentary when combined.

Making use of this complimentary relationship, holes in the existing LHS design of RPs are identified based on maximin design principles. New design points are collected based on areas of the RP design space which maximizes the minimum distance between all pairs of points in the current design, based on the following distance function

$$d(\boldsymbol{x}, \boldsymbol{x'}) = \sqrt{(\boldsymbol{x} - \boldsymbol{x'})^T \boldsymbol{D}^{-1}(\boldsymbol{x} - \boldsymbol{x'})}$$

$$\boldsymbol{D} = \operatorname{diag} \left[\left(\max(\mathcal{F}) - \min(\mathcal{F}) \right)^2, \left(\max(\mathcal{B}) - \min(\mathcal{B}) \right)^2 \right].$$
(2.12)

Above, d is a scaled distance function that defines the distance between points in the differing scales of $\frac{B^*}{B_0}$ and $\frac{F^*}{M}$. \mathbf{D} is a diagonal matrix that measures the squared size of the domain in each axis of so as to normalize distances to a common scale.

If X_n is the initial design, computed on R_{full} , let x_a be the augmenting point which maximizes the minimum distance between all of the existing design points,

$$\boldsymbol{x_a} = \underset{\boldsymbol{x'}}{\operatorname{argmax}} \min\{d(\boldsymbol{x_i}, \boldsymbol{x'}) : i = 1, ..., n\}.$$
(2.13)

The point x_a is used as an anchor for augmenting X_n . An additional $LHS_{n'}$ (via Algorithm (1)) is collected, adding n' design points, centered around x_a , to the overall design. The augmenting region, $R_{(x_a,d_a)}$, for collecting $LHS_{n'}$ is defined based on the square centered at x_a with side length $2d_a$, where $d_a = \min\{d(x_i, x_a) : i = 1, ..., n\}$, in the space defined by the metric d.

637

Due to the tendency of maximin sampling to cluster augmenting points on the edges of

the design space, $R_{(x_a,d_a)}$ is truncated by the outer most limits of R_{full} so as to focus design augmentation within the specified domain of the simulation. Furthermore, since the design space has a nonlinear constraint at low values of $\frac{B^*}{B_0}$, the calculation of x_a is further truncated based on a convex hull defined by the existing samples in the overall design.

Design refinement then proceeds as follows. An initial design is computed, $X_n = LHS_n(R_{full})$, based on an overall simulated region of RPs R_{full} . The maximin augmenting point, x_a , is computed at a maximin distance of d_a from the existing samples. An augmenting design $X_{n'} = LHS_{n'}(R_{(x_a,d_a)})$ is collected and added to X_n . Design refinement carries on recursively collecting augmenting designs in this way until the maximin distance falls below the desired level.

648 0.3 Gaussian Process Metamodel

At its core, a metamodel is simply a model of some mapping of inputs to outputs (the 649 mapping itself is typically defined by a computer model). By modeling the mapping with a 650 statistical model (that explicitly defines the relevant features of the mapping) a metamodel 651 defines a specific ontology for the mapping. By simulating examples of the mapping, the 652 inferential infrastructure of the statistical model is used to empirically learn an effective 653 emulation of the mapping within the ontology defined by the statistical model. The pre-654 dictive infrastructure of the statistical model is then useful as an approximate abstraction 655 of the system itself to better understand the system through further data collection, cheap approximation of the mapping, and/or study of the mapping itself. 657

In this setting, the aim of metamodeling is to study how well RPs are inferred when typical 658 two parameter models of productivity (Logistic and BH) are misspecified for populations 659 that are actually driven by more complicated dynamics. The simulation design, X, provides 660 a sample of different population dynamics that are driven by three parameter production 661 functions broadly in RP space. By simulating index of abundance data from the three 662 parameter model, and fitting those data with the two parameter production model, we 663 observe particular instances of how well RPs are inferred at the given misspecification of the 664 two parameter model relative to the true three parameter production model. By gathering 665 all of the simulated instances of how RPs are inferred (under the two parameter model),

we form a set of example mappings to train a metamodel which represents the mapping of true RPs (under the three parameter model) to estimates of RPs under the misspecified two parameter production model. The metamodel is essentially a surrogate for inference under the misspecified two parameter production model that controls for the specific degree of model misspecification.

A flexible GP model is assumed for the structure of the metamodel to describe the map-672 ping of RPs under misspecified two parameter models of productivity. A GP is a stochastic 673 process generalizing the multivariate normal distribution to an infinite dimensional analog. 674 GP models are often specified primarily through the choice of a covariance (or correlation) 675 function which defines the relationship between locations in the input space. Typically corre-676 lation functions are specified so that points closely related in space result in correlated effects 677 in the model. In this setting the inputs to the GP metamodel are the space of reference points 678 which define the simulated three parameter production models. 679

While index of abundance data are generated from three parameter models, at each design location of the simulation, fitting the restricted two parameter model results in a maximum likelihood estimate (MLE; and associated estimation uncertainty) of each of the productivity parameters (i.e. Schaefer:[log(r), log(K)], BH:[$log(\alpha)$, $log(\beta)$]). To simplify the specification of the metamodel, let \mathbf{y} be a vector collecting the fitted MLEs for one of the productivity parameters, and let $\boldsymbol{\omega}$ be a vector of estimates of the estimator variances (via the inverted Fisher information) at each \mathbf{y} . Each of the fitted productivity parameter estimates are then modeled using independent instances of the following GP metamodel.

$$\mathbf{y} = \beta_0 + \mathbf{X}\boldsymbol{\beta} + \mathbf{v} + \boldsymbol{\epsilon}$$

$$\mathbf{v} \sim N_n(\mathbf{0}, \tau^2 \mathbf{R}_{\ell})$$

$$\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \boldsymbol{\omega}' \mathbf{I})$$
(2.14)

X is the $n \ge 2$ LHS design matrix of RPs for each simulated three parameter data generating model as described in Section (0.2). ϵ models independent normally distributed error, which provides an ideal mechanism for propagating uncertainty from inference in the simulation step into the metamodel. By matching each y_i with an observed ω_i variance

680

681

682

term, ϵ serves to down weight the influence of each y_i in proportion to the inferred production model sampling distribution uncertainty. This has the effect of smoothing the GP model in a way similar to the nugget effect (?, ?), although the application here models this effect heterogeneously.

The term, v, contains spatially correlated GP effects. The correlation matrix, R_{ℓ} describes how RPs close together in the simulation design are more correlated than those that are far away. This spatial effect is modeled with a squared exponential correlation function,

$$R(\boldsymbol{x}, \tilde{\boldsymbol{x}}) = \exp\left(\sum_{i=1}^{2} \frac{-(x_i - \tilde{x}_i)^2}{2\ell_j^2}\right). \tag{2.15}$$

R has an anisotropic separable form which allows for differing length scales, ℓ_1 and ℓ_2 , in the different RP axes. The flexibility to model correlations separately in the different RP axes is key due to the differences in the extent of the RP domains marginally. The metamodel parameters β_0 , β , τ^2 , ℓ_1 and ℓ_2 are fit via MLE against the observations \mathbf{y} , \mathbf{X} , and $\boldsymbol{\omega}$ from simulation fits.

Fitting the metamodel allows for a full predictive description of inference under the misspecified restricted models. Predictive estimates are obtained via kriging (?, ?)

$$\hat{y}(\mathbf{x}) = \beta_0 + \mathbf{x}\boldsymbol{\beta} + \mathbf{r}(\mathbf{x})' \mathbf{R}_{\ell}^{-1} \Big(\mathbf{y} - (\beta_0 + \mathbf{X}\boldsymbol{\beta}) \Big)$$
(2.16)

 $\hat{y}(\mathbf{x})$ is the predicted value of the modeled productivity parameter MLE under the two parameter production model, when the index of abundance is generated from the three parameter production model at RP location \mathbf{x} . $\mathbf{r}(\mathbf{x})$ is a vector-valued function of correlation function evaluations for the predictive location \mathbf{x} against all observations in \mathbf{X} (i.e. $\mathbf{r}(\mathbf{x}) =$ $\mathbf{R}(\mathbf{x}, \mathbf{x}_i) \ \forall \ \mathbf{x}_i \in \mathbf{X}$).

While metamodeling occurs on the inferred productivity parameters of the restricted production model, the metamodel can also be used to build estimates of major biological RPs. For the BH model the relevant transformations for relating productivity parameters with RPs are given in Eqs. (2.5, 2.8) with γ fixed to -1; for the Schaefer model $\hat{B}^* = \frac{\hat{K}}{2}$ and $\hat{F}^* = \frac{\hat{r}}{2}$. Applying the metamodel predictive surfaces on the scale of RP estimates allows for

the quantification of estimation bias that is induced by fitting a misspecified two parameter
 production model to indices of abundance generated under three parameter productivity.

707 1 Results

1.1 Schnute/BH

709 Design

Algorithm (1) enforces uniform marginals in $\frac{F^*}{M}$ 710 directly, as well as the adherence of the overall 711 design to latin squares. Figure (2.5) shows a uni-712 form Q-Q plot for sampled ζ , using Algorithm 713 (1), against theoretical uniform quantiles. 714 evidence by the excellent coherence to the the-715 oretical uniform quantiles, the approximation in 716 Section (0.2) for sampling γ (and therefore $\zeta(\gamma)$), 717 is very effective. Furthermore since numerical inversion of $\zeta(\gamma)$ is costly and unreliable, the rel-719 ative speed and accuracy that this approximate 720

Figure 2.5: Uniform Q-Q plot for ζ plotted for $F^* = 0.1$ and M = 0.2.

LHS sampling method provides is pivotal for the rest of the work presented here.

Similarly to the PT model, the three pa-722 rameter Schnute model is uniquely identified 723 by each point in the space of $\frac{F^*}{M}$ and $\frac{B^*}{B_0}$ RPs. 724 As seen in Figure (2.6), Schnute production 725 has different behaviors in different ranges of 726 RPs space, which are entirely defined by the value of γ (shown in Figure (2.1)). When $\gamma \geq 1$ the Schnute model produces a family 729 of Logistic-like curves that are increasingly 730 right leaning as γ increases. For $1 > \gamma \geq 0$, 731 Schnute production takes a family of left 732 leaning Ricker-like curves that all, at least, 733 approach the x-axis. For $0 > \gamma > -1$ there 734 are a family of BH-like curves that do not 735

Figure 2.6: A Schnute RP design. Colors indicate different regimes of Schnute production.

The black curve shows the BH set.

736 approach the x-axis but still have decreas-

ing productivity for large biomass stocks. When γ is exactly -1 Schnute reduces to BH production which has asymptoting production for large biomass. Finally when $-1 > \gamma$ Schnute produces a family of increasing Cushing-like curves that do not asymptote, and produces linear production as $\gamma \to -\infty$.

Modeling index data that are simulated broadly over the theoretical space of RPs with

misspecified BH production greatly limits the range of possible RPs that can be inferred. Under BH production the full theoretical space of RPs are limited to the curve $\frac{B^*}{B_0} = \frac{1}{F^*/M+2}$. Define the "BH set" as the set of RPs defined by this limited space, i.e. the curve $\left\{ \left(\frac{F^*}{M}, \frac{B^*}{B_0} \right) \middle| \frac{B^*}{B_0} = \frac{1}{F^*/M+2} \right\}.$ as seen in the black curve in Figure (2.6). The farther away from this set that Schnute data are simulated, the worse the BH model is misspecified for

748 Metamodeled Trends

those data.

741

747

Unlike the Schaefer model, the BH set is not a constant in $\frac{B^*}{B_0}$. Under the BH model, bias in $\frac{B^*}{B_0}$ is no longer entirely defined by the degree of model misspecification, but rather the structure of BH RPs allows bias in both $\frac{B^*}{B_0}$ and $\frac{F^*}{M}$ to interact as a function of contrast in the data.

High Contrast Figure (2.7) shows metamodeled RP bias surfaces for inference under the BH model in the high contrast setting. The (left) and (bottom) panels focus only on the $\frac{B^*}{B(0)}$ and $\frac{F^*}{M}$ components of bias respectively. In these panels bias is shown as relative bias, similar to a percent error calculation. Where RP represents the true value of the three parameter RP, and \widehat{RP} refers to the metamodel estimate.

Figure (2.7, top-right) combines the components of bias to show the overall mapping of RPs under BH inference in the high contrast simulation setting. Unlike high contrast RP inference under the Schaefer model, the BH model does shows bias in both RPs here. Despite the bias in $\frac{B^*}{B(0)}$ and $\frac{F^*}{M}$ these results are similar to that of the Schaefer model in that the overall mapping of RPs is very nearly a minimal distance mapping onto the constrained set of RPs. The primary difference between Schaefer model and BH RP inference is the geometry of their limited RP spaces. Unlike the Schaefer model the BH set encourages bias

Figure 2.7: Heatplots showing the bias in RP estimation induced by model misspecification of the BH model in the high contrast simulation setting. In all cases the restricted RP-space of the BH set is shown as the black curve. (left) Relative bias in $\frac{B^*}{B(0)}$. (top-right) Bias in RP-space shown directionally. Arrows point from the location where data is generated, toward the location in the BH set where MLE projects estimated RPs. The intensity of color represents the excess bias relative to the shortest possible mapping. (bottom) Relative bias in F^* .

in both RPs for misspecified models even in very well informed setting.

Too Low Contrast Figure (2.8) shows the mapping of RPs in the low contrast simulation setting. Figures (2.8) and (2.7, top-right) share a common scale for the inten-

sity of color to facilitate comparison. In Figure (2.8) notice that the mildly misspecified area around the BH set produces mappings onto the BH set which resemble the minimal distance mapping seen in the high contrast setting. The primary difference in this low contrast setting, is the break point around $\frac{B^*}{B(0)} = 0.4$ above which $\frac{F^*}{M}$ is sharply underestimated.

The region of RPs where the BH model manages to recover the minimal distance mapping may be considered a "safe regime"

of data types that are reasonably well modeled by a BH model. By comparison of Figure (2.8), with Figure (2.6), this safe regime of the BH model occurs for data generated for Cushing-like or BH-like production. While bias of the RPs can still become concerningly large, this region can be considered safe in the sense that even for low contrast data RP estimation under the the BH model recovers the minimal distance mapping.

Outside of this safe regime, RP estima-787 tion breaks from the minimal distance map-788 ping at the interface between BH-Like and 789 Ricker-Like regimes of the Schnute model 790 (again see Figure (2.6)). The Ricker model 791 lies along this regime interface, and repre-792 sents the first model to approach the x-axis for large biomasses as γ increases. 794 markedly unBH-like productivity in the low 795 information simulation setting breaks MLE 796 inference from the minimal distance map-797 ping and instead maps RPs to extremely low 798 values of F^* ; consequently $\frac{B^*}{\overline{B}(0)}$ is estimated

Estimated Yield Curves For Poorly Specified BH

Figure 2.9: Yield curves for data generated with $\frac{F^*}{M} = 3.48$ and $\frac{B^*}{\overline{B}(0)} = 0.48$.

near the limiting value under the BH (i.e.

 $\lim_{F^* \to 0} \frac{1}{F^*/M+2} = 0.5$). Similarly the set of Ricker RPs (as well as the Schaeffer set) include this trivial limiting point in common ($\frac{F^*}{M} = 0$, $\frac{B^*}{B(0)} = 0.5$).

Interestingly, in the high contrast setting this trivial mapping for highly misspecified BH 803 models is not present. This suggests that, under a misspecified BH model, the presence of adequate information in the data to produce reasonable estimates of $\frac{F^*}{M}$, drives $\frac{B^*}{B(0)}$ below 0.5 805 in accordance with $\frac{B^*}{\bar{B}(0)} = \frac{1}{F^*/M+2}$, even when the true $\frac{B^*}{\bar{B}(0)} > 0.5$. This phenomena balances 806 RP estimation within the constrained BH set as mediated by the information content of the 807 data and the degree of model misspecification. When the information content in the data 808 is too small to drive a compromised RP estimate, inference completely disregards accurate 809 estimation of F^* in order to better estimate $\frac{B^*}{\overline{B}(0)}$ by exploiting the common limiting behavior 810 of the BH set and that of Ricker-like and Logistic-like models. 811

⁸¹² 2 Discussion

Results presented here generally agree with what is known about estimating growth rate 813 parameters (?, ?, ?, ?). These study's appreciate the role of contrast for estimating growth 814 rates, however they struggle to make generally extensible conclusions since they focus only 815 on a handful of stocks that fall short of forming a random sample of the greater population of 816 possible stock behaviors. The LHS design methods presented here are designed specifically 817 to simulate a representative sample of stocks broadly across the space of possible RPs. 818 Furthermore, the simulation design, taken together with the GP metamodel of productivity 819 parmater estimates, allows this study to control the degree of model misspecification and 820 generalize conclusions about the behavior of productivity estimation within the production 821 model setting presented. 822

In the presence of contrast, F^* estimation can enjoy very low bias even for a wide range of poorly specified models; conversely in the absence of contrast F^* estimation can suffer very large bias even for slightly misspecified models. This pattern is particularly true for inference under the Schaefer model where the geometry of the restricted RP set isolates estimation failure of F^* from $\frac{B^*}{B(0)}$. While contrast has a similar impact on F^* estimation under the BH model, the geometry of the BH RP set correlates estimation bias of F^* and $\frac{B^*}{B(0)}$. The

GP metamodeling approach reveals a more general pattern that highly informative data sets
(high contrast) produces a nearly minimal distance mapping of RPs onto the constrained
RP set.

In all cases when model misspecification is removed, even with weakly informative data,
RP estimation is unbiased and well estimated. Thus contrast alone is not the only factor
leading to inferential failure. Model misspecification is a necessary but not sufficient condition for inducing RP estimation bias. The particular RP bias present depends on the RP
geometry of the fitted model and how that geometry is misspecified relative to the data. The
RP mapping is then oriented to the RP geometry of the fitted model.

While the relative fishing rate parameterized in Section (2.3) captures a usefully broad 838 spectrum of relevant fishing behaviors, it is still limiting in the amount of information that 839 it can induce. Improved methods for quantifying contrast in fisheries data, and/or methods 840 of discovering more informative fishing behavior, could improve this analysis. In the absence 841 of a maximally informative dataset simulation methods will not fully describe how inference 842 fails, but the methods presented here tell the most complete picture yet, with explicit control 843 of the degree model misspecification, contrast, and a simulation design that allows for uniform 844 representative data generation across biologically meaningful stocks. The results presented 845 here suggest the conjecture that under a maximally informative dataset, RP inference with 846 a two parameter production function will be biased in the direction a shortest distance map 847 from the true RPs onto restricted set of RPs under the two parameter model.

Given the potential for model misspecification of RPs, a minimal distance mapping of 849 RPs represents a best-case scenario where the total bias of RPs, when measured jointly, is 850 minimized. That said, without recognizing the geometry of how two parameter models of 851 productivity limit RP space this may lead to unintuitive implications in RP estimation. For 852 example, due to the shape of the BH RP set a minimal distance mapping ensures that if 853 there is bias in one of $\frac{B^*}{B_0}$ or F^* , there will necessarily be bias in the other RP. However under 854 the Schaefer model, since the RP set is a constant in $\frac{B^*}{B_0}$, bias in F^* is not adulterated in the 855 same way by bias in $\frac{B^*}{B_0}$ estimation. While models with constant RPs, such as the logistic 856 model $\frac{B^*}{B_0} = \frac{1}{2}$ or the Fox model $\frac{B^*}{B_0} = \frac{1}{e}$, are extremely limited, they can be valuable tools for developing intuition precisely because they isolate RP estimation in their free RPs from

the correlated RP biases present in models like the BH or Ricker model.

When one considers the implications of RP bias, overestimation of RPs carries the severe 860 implication of management recommendations potentially leading to overfishing, while un-861 derestimation of RP leads to overly conservative management. In this sense, when the true 862 model is not known, the geometry of the BH set together with the metamodeled bias trends makes the BH model a naturally conservative estimator of RPs for most stocks. For most 864 non-BH populations the BH model is likely to make conservative errors in its estimates of 865 F^* and $\frac{B^*}{B_0}$. The one notable exception to the conservatism of the BH model stands for data 866 generated in the Cushing-like regime of Schnute RPs. In this regime the BH model tends 867 to be fairly unbiased overall, however the bias that is present for these populations tends to 868 be overestimation in both RPs, leading to much more severe management consequences for 869 those populations. 870

The RP bias trends of the Schaefer model demonstrate much less conservatism than the BH overall. For any population with $\frac{B^*}{B_0} < 0.5$, $\frac{B^*}{B_0}$ will be overestimated. When the population comes from the regime where $\frac{B^*}{B_0} > 0.5$, $\frac{B^*}{B_0}$ will be under estimated, but F^* is likely to be overestimated depending on the degree of contrast present in the data. So while the Schaefer model is an intuitive model, it tends to lead to much less conservative RP estimation.

While it is important to recognize these limitations of two parameter models of produc-877 tivity, we should not solely accept conservativism as a rational of choosing a BH model of 878 productivity. Increasing the flexibility of the production function by moving toward three 879 parameter models would release the underlying structural limitations (?, ?) that cause these 880 RP biases in the first place. ? (?) considers a suite of possible three parameter curves which 881 could be used instead of current two parameter curves. For all of their benefits, three pa-882 rameter production functions have their own complicating factors, and the structure present 883 in the Schnute model explored here makes it an intuitive bridge model for developing three 884 parameter models going forward. 885

• show a schnute fit to data? (?, ?) Prior

- summary of σ over RP space comparing between models (PT, Schnute, Schnute DD) to show areas of model breakdown.
 - miss-identifying signal for noise.

- It happens more as the dynamics get more complex.
- point to the full age structed models.
- show the constrained BH space over a grid of M, κ , ω , W_{∞}
- Show that the constrained spaces vary only slightly as compared with the consequences of misspecifing the functional form.
- estimating these other quantities (while they can create quite different Biomass series)
 can only do so much to improve (expand) RP inference as compared with correctly
 modeling P.
- mapping distance as a function of contrast at (3.5, 0.5)
- for LHS grid locations show $\frac{B^*}{B_0}$ and F^* biases for grids in $M \in (0, 0.5)$ For sure in High Contrast, maybe also in Low??.

901 Chapter 3

902 A Delay Differential Model

• Introduction

- piggy back intro off of simpleModel
- problem statement and motivation
- introduce reference point and management decision making
- 907 new dynamics of cohorting.

• Methods

- state and decribe model
- Reference Point Derivation
- layout data generation/space filling problem
- how far to get the math for inputting into CAS
- method of CAS.
- describe and plot ζ .
- constrained BH space (method for visualizing)
- appendix for RP CAS calculation
- Results
- summary of σ over RP space comparing between models (PT, Schnute, Schnute DD) to show areas of model breakdown.
- miss-identifying signal for noise.
- It happens more as the dynamics get more complex.
- point to the full age structed models.
- Show that the constrained spaces vary only slightly as compared with the consequences of misspecifing the functional form.
- ?Discussion?

- summary of σ over RP space comparing between models (PT, Schnute, Schnute DD) to show areas of model breakdown.
- miss-identifying signal for noise.
- It happens more as the dynamics get more complex.
- point to the full age structed models.
- show the constrained BH space over a grid of $M, \kappa, \omega, W_{\infty}$
- Show that the constrained spaces vary only slightly as compared with the consequences of misspecifing the functional form.
- estimating these other quantities (while they can create quite different Biomass series)
 can only do so much to improve (expand) RP inference as compared with correctly
 modeling P.

1 Introduction

- the delay model: ? (?) ? (?) ? (?).
- discrete: ? (?, pg. 334)
- 940 ? (?)
- automatic accounting for cohort cycles

942 2 Methods

³ 2 .1 Delay Differential Model

Age structured fisheries models typically assume 944 ? (?, VB) gorwth in length with age. To model 945 weight the assumption of VB growth in length 946 is composed with a power law relating length to weight, $w = al^b$. Since b is usually ~ 3 this com-948 position of assumed functional forms typically 949 results in a monotonically increasing sigmoidal 950 curve of weight with age. When $b \leq 1$ weight 951 at age takes a VB-like form with b = 1 resulting 952 in an exact correspondence of simulations VB-953 growth in length and weight. 954

The delay model slightly abridges these relationships by directly assuming VB growth in weight as follows,

$$w(a) = w_{\infty}(1 - e^{-\kappa(a - a_0)}).$$
 (3.1)

Figure 3.1: The typical composition of allometric weight (b=3) with VB growth in length, as approximated by VB growth in weight directly.

 κ is a parameter that controls the instantaneous rate of individual growth (in weight) with age. w_{∞} is the maximum weight of individuals in the population, and w(a) is the average

weight of an individual at age a. The parameter a_0 controls the age at which individuals are assummed to have zero weight; by letting $a_0 < 0$ this allows fish of age zero to have positive weight. Rather than taking a sigmoidally increasing function, VB growth directly in weight results in an monotonically inceasing curve that asymptotes with a strictly decreasing growth rate with age. (only a good approximation for older ages where growth begins to decline)

Together with VB growth, the delay model is derived from the assumption that both natural mortality and fishing selectivity are separately proportional to a common heavyside step function with age. That is to say, before a threshold age of selectivity, a_s , the population is assumed not to experience any mortality whatsoever, but all fish older then a_s experience the same rate of natural mortality. Simulaneously all fish older than a_s are equally vulnerable to fishing (i.e. knife edge selectivity at age a_s), although fishing effort may vary from through time.

? (?) shows that within these assumptions the following delay differential system of equations exactly models the population dynamics of the total exploitable biomass B(t) and number of indivuduals N(t) through time.

$$\frac{dB}{dt} = w(a_s)R(B;\theta) + \kappa \left[w_{\infty}N - B\right] - (M+F)B \tag{3.2}$$

$$\frac{dN}{dt} = R(B;\theta) - (M+F)N \tag{3.3}$$

This formulation separates the number of individuals in the population from the biomass 970 of the population. The dynamics of N, as seen in Eq (3.3), are very similar to that of the 971 production models previously presented, however the role of the production function is now 972 filled by a "recruitment" function, R(B), which describes the number of new individuals 973 recruiting into the expoitable population as a function of exploitable biomass. In turn, the 974 biomass dynamics are coupled to the numbers dynamics by the assumption of VB growth 975 with growth parameters appearing in Eq (3.2), converting population numbers into biomass 976 and accounting for the growth of biomass with age. 977

Eq (3.2) of the above model expands the notion of biomass production into the processes of recruitment, individual growth, and maturity. The term $w(a_s)R(B;\theta)$ represents the

biomass of new recruits; with $w(a_s)$ representing the weight of individuals at the age of 980 maturity, a_s , and $R(B;\theta)$ representing the number of new recruits entering the exploitable 981 population at time t. The negative term, (M+F)B, represents all causes of mortality as 982 it is applied to biomass. Finally, the term $\kappa \left[w_{\infty} N - B \right]$ accounts for the net growth of the 983 existing biomass by discounting the limiting maximal individual growth rate by metabolic weight loss proportional to B(t). This term, together with the delay structure in R, provides 985 the major computational savings of the delay differential setting, as compared with full age 986 structured models, by automatically keeping track of changes in the mean size and growth 987 associated with changes in recruitment as cohorts mature into the population. 988

Often a BH functional form is assumed for the stock recruitment relationship, but any adequatly flexible family of functions may model this relationship. For the sake of evaluating the adequacy of assumed BH recruitment the simulation setting below is derived for the delay model under the assumption of the generalized three parameter Schnute recruitment as follows.

$$R(B; [\alpha, \beta, \gamma]') = \alpha B(t - a_s) (1 - \beta \gamma B(t - a_s))^{\frac{1}{\gamma}}$$
(3.4)

The parameters $\boldsymbol{\theta}' = [\alpha, \beta, \gamma]$ function similarly in this setting as previously described in 989 Section (??). That said, since the delay model explicitly parses out growth in it's dynamics, these parameters only describe the net processes of larval production, and maturation into 991 the population, where as the production model used these parameters to also model the net 992 effects of growth on biomass production. The γ parameter generalizes the family to model 993 varying degrees of decreasing recruitment for large biomasses as γ increases. The Schnute 994 function is exactly equivalent to BH recruitment at the special case when $\gamma = -1$, it passes 995 through the Ricker model as $\gamma \to 0$, and Logistic recruitment occurs when $\gamma = 1$. 996

Since the delay model assumes knife edge selectivity, at age a_s , the term $B(t-a_s)$ appears 997 in R. That is to say fish recruiting into the exploitable population are the result of larval production of biomass a_s time units in the past. This is because fishing selectivity is only assumed to occur for fish that are at least a_s time units old and thus fish younger than a_s 1000 are not exploitable. This waiting period requires that new recruits be the result of spawning

998

999

biomass a_s time units in the past. Modeling maturity in this way results in dynamics equations which are a system of delay differential equations as opposed to the simple ODEs that arrise in the production model setting.

~ interpretation of recruitment (larval production, recruitment) [growth external] vs. production (larval production, recruitment, growth)

• general structure: ? (?) ? (?, pg. 334)

• growth: ? (?)

1010

• recruitment: ? (?, ?)

2.2 Reference Points

Deriving reference points for the delay model under Schnute recruitment is conceptually similar to the production model setting. The additional nonlinear VB growth assumptions along side Schnute recruitment quickly make the expressions look somewhat unweildy, although analytical solutions can still be derived for most of the same quantities (although complicated by growth parameters).

Starting from Eqs. (3.2) and (3.3), setting both $\frac{dB}{dt}$ and $\frac{dN}{dt}$ simultaneously equal to zero, and solving for B and N as a function of fishing, gives the equilibrium biomass and numbers equations.

$$\bar{B}(F) = \frac{1}{\beta \gamma} \left(1 - \left(\frac{(F+M)(F+M+\kappa)}{\alpha w(a_s)(F+M+\frac{\kappa w_{\infty}}{w(a_s)})} \right)^{\gamma} \right)$$
(3.5)

$$\bar{N}(F) = \frac{\alpha \bar{B}(F)(1 - \beta \gamma \bar{B}(F))^{1/\gamma}}{F + M}$$
(3.6)

Eq. (3.6) is just $\frac{R(B)}{F+M}$, and is coupled to $\bar{B}(F)$ where most of the dynamics appear. Eq. (3.5) resembles Eq (2.3) from the simple production model setting although the growth parameters κ , w_{∞} and $w(a_s)$, make slight adjustments to the balance of the maximum rate of recruitment and mortality rate to give an expression for equilibrium biomass that accounts for the factors of individual growth.

Expressions for B_0 and B^* are attained by evaluating $\bar{B}(F)$ at F=0 and $F=F^*$ respectively. Calculation of F^* typically involves maximization of equilibrium yield, $\bar{Y}=F\bar{B}(F)$.

While it was not possible to analytically maximize \bar{Y} , stable numerical solutions for calculating F^* were obtained by numerically solving for the roots of the analytical derivative of equilibrium yield with respect to F. Below a greatly simplified expression for $\frac{d\bar{Y}}{dF}$ is shown; the substitution Z=F+M (total mortality rate) has been made to produce a more compact expression.

$$\frac{d\bar{Y}}{dF} = \frac{1}{\beta\gamma} \left[1 - \left(\frac{Z(Z+\kappa)}{\alpha w(a_s)(Z + \frac{\kappa w_\infty}{w(a_s)})} \right)^{\gamma} - \left(\frac{\gamma F}{\alpha w(a_s)} \right) \left(\frac{Z(Z+\kappa)}{\alpha w(a_s)(Z + \frac{\kappa w_\infty}{w(a_s)})} \right)^{\gamma-1} \left(1 + \frac{\left(\frac{\kappa w_\infty}{w(a_s)} \right) \left(\kappa - \frac{\kappa w_\infty}{w(a_s)} \right)}{(Z + \frac{\kappa w_\infty}{w(a_s)})^2} \right) \right]$$
(3.7)

 F^* is calculated as the numerical root, w.r.t. F, of the above expression. The numerical root is calculated using the base R uniroot function which employs a derivative free search given by ? (?).

1031 BH Constraint

In the simple production model the BH con-1032 strained RPs are fixed to $\frac{1}{x+2}$. In the delay 1033 differential modeling setting the constrained 1034 BH RP set is complicated the growth pa-1035 rameters a_s and κ . Under BH recruitment 1036 these parameters of the delay model slightly 1037 influence this relationship as seen in Figure 1038 (3.2). That said, the influence of a_s and κ 1039 on RPs is still largly limited to a confined 1040 region of reference point space which resem-1041 bles the $\frac{1}{x+2}$ form. In fact the confined re-1042 gion of RPs is bounded above by $\frac{1}{x+2}$. In 1043 Figure (3.2) notice that for high values of κ 1044 and small values of a_s (red region) the BH 1045 RP space converges to $\frac{1}{x+2}$ as derived in the 1046

Figure 3.2: The space of BH RPs for the delay model as a function of κ and a_s . The RP space is plotted for 80×80 combinations of $\kappa \in [0.1, 2]$ and $a_s \in [0.1, 10]$. The color drawn is the resulting value of $w(a_s)$ mapped between blue and red. $\frac{1}{x+2}$ is plotted in black for reference.

simple production model setting. The opposite limit with low values of κ and high values a_s

1048 (blue region) depresses RPs away from $\frac{1}{x+2}$.

1049

2.3 Delay Differential Integration

The delay model belongs to a class of differential equations known as delay differential 1050 equations (DDE). The delay arrises from the $B(t-a_s)$ terms found in the recruitment 1051 function. Solving DDEs require special care which depends on the nature of the time delay. 1052 The addition of time-varying delays, many different delays, or very small delays (delays 1053 below the step size of the numerical integrator) results in some of the more challenging 1054 settings for solving DDEs. However with a single stationary model of the age of selectivity, 1055 the delay model in this setting represents one of the most straight forward DDE structures. 1056 The most numerically challenging case presented here arrises in the case of the limiting 1057 production model when $a_s \to 0$ while $\kappa \to \infty$. That said the limiting production model can 1058 be approximated for values of $a_s \approx 0.1$, and it was straightforward to ensure that the step 1059 size of the integrator remained reasonably below 0.1. 1060 The DDE presented here is integrated with the initial values fixed at B_0 and N_0 as given 1061

by Eqs. (3.5) and (3.6) with F=0 at any given configuration of θ and growth parameters. 1062 The system given in Eqs. (3.2) and (3.3) are then solved numerically using the implicit 1063 Livermore Solver (Isode) as implemented in the dede function of the R package deSolve 1064 (?, ?). The dede solver provides many methods for integrating DDEs, but Isode was chosen 1065 because it is an implicit method that runs relatively quickly with a relatively smaller footprint 1066 in system memory as compared with other methods. The radau method was also tried in 1067 more computationally challenging settings with good results (albeit running more slowly 1068 that Isode). Ultimately the simulated parameter space did not produce DDEs that require 1069 the more expensive radau integrator to solve accurately. 1070

2.4 Simulation Design

1071

Similarly as previously described in Section (0 .1) the relationship between RPs $\mapsto \theta$ cannot be fully expressed analytically for the Schnute delay model. However, just as in the production model setting, simulation only requires enough knowledge of these mappings to gather a list of (α, β, γ) tuples and the corresponding RPs in some reasonable space-filling design

1076 over RP space.

1080

In the delay model a partial mapping for $(F^*, B_0) \mapsto (\alpha(\cdot, \gamma), \beta(\cdot, \cdot, \gamma))$ can be derived analytically in terms of RPs and γ . The substitution $Z^* = F^* + M$ is made where F^* and M appear together to produce a more compact expression.

$$\alpha = \left[\left(\frac{Z^*(Z^* + \kappa)}{w(a_s)(Z^* + \frac{\kappa w_{\infty}}{w(a_s)})} \right)^{\gamma} + \left(\frac{\gamma F^*}{w(a_s)} \right) \left(\frac{Z^*(Z^* + \kappa)}{w(a_s)(Z^* + \frac{\kappa w_{\infty}}{w(a_s)})} \right)^{\gamma - 1} \left(1 + \frac{\left(\frac{\kappa w_{\infty}}{w(a_s)} \right) \left(\kappa - \frac{\kappa w_{\infty}}{w(a_s)} \right)}{(Z^* + \frac{\kappa w_{\infty}}{w(a_s)})^2} \right) \right]^{\frac{1}{\gamma}}$$
(3.8)

$$\beta = \frac{1}{\gamma B_0} \left(1 - \left(\frac{M(M + \kappa)}{\alpha w(a_s)(M + \frac{\kappa w_\infty}{w(a_s)})} \right)^{\gamma} \right)$$
(3.9)

Above Eq. (3.8) results from setting Eq. (3.7) equal to zero and solving for α , and Eq. (3.9) results from solving the $\bar{B}(0)$ expression, as derived from Eq. (3.5), for β . The system is completed by further working with the $\frac{\bar{B}(F^*)}{\bar{B}(0)}$ expression, as seen below, to identify γ .

The system formed by collecting Eqs. (3.8), (3.9), and (3.10) can be navigated similarly

$$\frac{B^*}{B_0} = \frac{1 - \left(\frac{(F^* + M)(F^* + M + \kappa)}{\alpha w(a_s)(F^* + M + \frac{\kappa w_{\infty}}{w(a_s)})}\right)^{\gamma}}{1 - \left(\frac{M(M + \kappa)}{\alpha w(a_s)(M + \frac{\kappa w_{\infty}}{w(a_s)})}\right)^{\gamma}}$$
(3.10)

to Eq. (2.9) in the Schnute production model setting. For a population experiencing natural 1081 mortality M, VB growth with paramters κ and w_{∞} , and age of selectivity a_s the above 1082 system can fully specify α and β for a given γ , by fixing F^* , B_0 , and $\frac{B^*}{B_0}$. For a given γ a 1083 cascade of closed form solutions for α and β can be obtained, just as in Section (0.1). First 1084 $\alpha(\gamma)$ can be computed, and then $\beta(\alpha(\gamma), \gamma)$ can be computed. If $\alpha(\gamma)$ is filled back into the 1085 expression for $\frac{B^*}{B_0}$, the system collapses into a single onerous expression for $\frac{B^*}{B_0}(\alpha(\gamma), \gamma)$. For 1086 brevity, define the function $\zeta(\gamma) = \frac{B^*}{B_0}(\alpha(\gamma), \gamma, F^*, M)$ based on Eq. (3.10). 1087 Again rather than inverting $\zeta(\gamma)$ for γ , γ is the sampled so that the overall simulation 1088 design is space filling as described in Section (0.2). Given the sampled γ , the cascade of 1089 $\alpha(\gamma)$, and then $\beta(\alpha(\gamma), \gamma)$, can be computed, and the Schnute delay model is fully defined 1090 by a given $(\frac{F^*}{M}, \frac{B^*}{B_0})$. While conceputally this framing is similar to the Schnute production 1091 model, the analytical expressions are more complex, and numerically trecherous, since growth 1092 parameters appear explicitly here. Other ways of navigating the RPs $\mapsto \theta$ system are possible, 1093

but for the sake of numerical stability this strategy has proven the most reliably accurate by limiting exposure to numerical error propagation.

Each design location defines a complete Schnute delay differential model with the given RP values. Indices of abundance are simulated from the Schnute model at each design location, a small amount of residual variation, $\sigma = 0.01$, is added to the simulated index, and the data are then fit with a misspecified BH model. The design captures various degrees of model misspecification relative to the BH model, so as to observe the effect of recruitment misspecification upon RP inference.

point to catch, and LHS design, and Metamodel.

2.5 Parmeter Estimation

• I use B only here

1102

1103

1116

• quick statement of inference, and reference to previous section

Let I_t , $t \in \{1, 2, 3, ..., T\}$, be a series of indicies of abundance, proportional to biomass, as simulated from the Schnute Delay model. These data are modelled with the following log-normal observation model that has been intentionally constrained to BH recruitment,

$$I_t \sim LN(qB_t(\boldsymbol{\theta}, \boldsymbol{\phi}), \sigma^2).$$
 (3.11)

 $B_t(\boldsymbol{\theta}, \boldsymbol{\phi})$ is the biomass solution of the BH constrained DDE system. The BH constraint isimplemented by fixing $\gamma = -1$ so that $\boldsymbol{\theta}' = [\alpha, \beta, \gamma = -1]$. $\boldsymbol{\phi}$ is a vector of growth and maturity parameters, $\boldsymbol{\phi}' = [\kappa, w_{\infty}, a_0, a_s]$. The nuisance parameter q models the proportionality constant of the index with process biomass, and σ^2 models residual variation of the index.

In this setting, ϕ and q are fixed to focus on the inferential affects of model misspecification on recruitment parameters and RPs. Without an explicite mechanism for the delay model to incorporate age data, under the BH model ϕ is not well informed and would tyically be estimated externally for data limted stocks. Under BH recruitment ϕ can only slightly impact RPs as seen in Figure (3.2).

 σ^2 and θ are reparameterized to the log scale and fit via MLE. Reparameterizing the

parameters to the log scale improves the reliability of optimization, in addition to facilitating the use of Hessian information for estimating MLE standard errors. Given that the 1118 biological parameters enter the likelihood via a nonlinear differential equation, and further 1119 the parameters themselves are related to each other nonlinearly, the likelihood function can 1120 often be difficult to optimize. A hybrid optimization scheme is used to maximize the log 1121 likelihood to ensure that a global MLE solution is found. The R package GA (?, ?, ?) is used 1122 to run a genetic algorithm to explore parameter space globally. Optimization periodically 1123 jumps into the L-BFGS-B local optimizer to refine optima within a local mode. The scheme 1124 functions by searching globally, with the genetic algorithm, across many initial values for 1125 starting the local gradient-based optimizer. The genetic algorithm serves to iteratively im-1126 prove hot starts for the local gradient-based optimizer. Additionally, optimization is only 1127 considered to be converged when the optimum results in an invertible Hessian at the found 1128 MLE. 1129

- fixed M = 0.2, $a_0 = -1$, $w_{\infty} = 1$
- play with κ and age of selectivity a_s

1132 Numbers Indicies

While not utilized here, age structured models may commonly model indicies as proportional to numbers rather than (or simultaiously to) biomass. When solving the DDE, Eq. (3.3) points out that the full DDE solution will expose a numbers solution simultaneously with a biomass solution that may be used for these purposes. These solutions are often quite similar since the main driver of process behavior comes from the form of R which is shared among N and B. However, it is common on the west coast of the US that indicies derived from commercial fisheries are measured as weights while indicies derived from recreational fisheries are often measured as counts. If a numbers index, J_t , is observed alongside the previously mentioned biomass index, the following likelihood component is often added as a conditionally independent component of the likelihood,

$$J_t \sim LN(pN_t(\boldsymbol{\theta}, \boldsymbol{\phi}), \tau^2).$$
 (3.12)

 $N_t(\boldsymbol{\theta}, \boldsymbol{\phi})$ is the numbers solution of the DDE system. $\boldsymbol{\theta}$ and $\boldsymbol{\phi}$ are the productivity and growth parameters shared in common with the biomass component. p and τ^2 are then the analogous proportionality constant and residual variation of the numbers index respectively.

1136 2.6 GP Metamodel

point to catch, and LHS design, and Metamodel.

1138 3 Results

growth shown here.

1150

Figure (3.3) shows three hypothetical 1139 individual-growth/maturity curves that span 1140 a wide range of RPs. As seen in Figure (3.2), 1141 the larger values of $w(a_s)$ correspond to less 1142 dramatic growth with the red curve demon-1143 strating the simle (no growth) production 1144 model limit $(a_s \to 0 \text{ and } \kappa \to \infty)$. The cases 1145 with smaller $w(a_s)$ values (blue and purple 1146 curves) correspond to more dramatic growth 1147 behaviors, with the blue curve where $a_s = 2$ 1148 and $\kappa = 0.1$ representing the most dramatic 1149

Figure 3.3: Three hypothetical individualgrowth curves, showing $w(a_s)$ on each curve.

Figure (3.4) demonstrates a range of biomass dynamics that the Schnute delay model 1151 can display under a spectrum of growth behaviors with fishing held consistent at F_{MSY} . The 1152 three special cases of $\gamma = -1$ (BH), $\gamma \to 0$ (Ricker), and $\gamma = 1$ (Logistic) recruitment are 1153 shown in each of the above shown growth configurations. Notice under the most dramatic 1154 growth $(a_s = 2 \text{ and } \kappa = 0.1)$ setting, biomass of the Logistic model comes into equilibrium 1155 at B_{MSY} as an oscillating curve. This effect occurs here due to the Logistic model's steeply 1156 right leaning yeild curve interacting with the lag in selectivity upon the sudden onset of 1157 fishing; this produces a shock that oscillates over the steepest regions of the yeild curve. One 1158 may also observe these oscillations under the Ricker model by exaggerating the a_s lag as well 1159 as the steepness of the Ricker curve. The BH model may also demonstrate these ocillations, 1160

Figure 3.4: Biomass dynamics of BH (left), Ricker (center), and Logistic (right) delay differential models in the low contrast simulation setting. In all cases $\alpha = 1.2$ and β is chosen so that each model shares the same B_{MSY} within each given γ .

in a heavily lagged setting, by shocking the population over the steepest portion of its yeild curve (a sudden release in fishing applied to a heavily fished population at low equilibrium biomass).

Space of Reference Points

Figure (3.5) shows the range of RPs that can be modeled with each of the BH, Ricker, and Logistic recruitments over the spectrum of individual-growth/maturitymodels simulated here. Notice that the more dramatic the growth, the further the RP curve lies from the simple production model, but each recruitment model reacts differently under each of the given growth parameters. The Ricker and BH RP-spaces are qualitatively similar in shape with more dramatic growth settings decreasing $\frac{B_{MSY}}{B_0}$ relative to the sim-

Figure 3.5: Restricted RP-space under each recruitment models, with each growth curve.

ple production model setting. The Logistic model on the other hand increases $\frac{B_{MSY}}{B_0}$ relative to the simple production model setting as growth parameters become more dramatic. It is also worth noting that the Ricker model's RPs are much less influenced by growth parameters as compared with that of the BH or Logistic model.

3.1 Simple Production Model Limit

Under the delay differential's limiting simple production model ($a_s = 0.1$ and $\kappa = 10$), the expectation is that RP inference should be identical to that of the model seen in Chapter (2). By way of verifying this equivalence, Figure (3.6) demonstrates a virtually identical pattern of RP biases as previously seen in Figures (2.7) and (2.8) (under both of the high and low contrast settings).

Figure 3.6: RP mapping of BH delay model fit to Schnute delay data under the simple (no growth) production model limit. left: High contrast simulation. Right: Low contrast simulation.

Indeed in the high contrast setting, Figure (3.6, left) shows how the BH model induces 1186 the same pattern of bias as seen in Chapter (2). There is bias in both RPs (in accordance 1187 with the $\frac{B^*}{\bar{B}(0)} = \frac{1}{F^*/M+2}$ RP-set) so as to produce a nearly minimal distance mapping of 1188 RPs onto the constrained BH set of RPs. Similarly, in the low contrast setting, Figure (3.6, 1189 right) again shows the same two regions pattern of RP inference. Firstly, there is a region 1190 of relatively small model misspecification where the minimal distance mapping is preserved. 1191 Secondly, as model misspecification becomes greater (around the Ricker set) $\frac{F^*}{M}$ begins to 1192 be sharply underestimated. Above this break point in RP estimation inference appears to 1193 be driven to the trivial RP $\frac{F^*}{M} = 0$, $\frac{B^*}{\bar{B}(0)} = 0.5$) that is shared in common amoung all of the 1194

two-parameter models described here.

These results merely confirm that the theoretical limiting dynamics do indeed replicate expected RP inference patterns as previously observed in Chapter (2).

3.2 Moderate Growth

1198

1206

1207

1208

1209

1210

1211

Moving past verification of the simple production model, other values of a_s and κ provide a probe into the effects individual growth dynamics may have on RP inference. Individual growth is a multifaceted phenomena that is not easily reduced to a single number, but for the purposes of this model $w(a_s)$ serves as a decent proxy for the extent of the model dynamics that are due to individual growth. This follows from the intuition that individuals maturing at a smaller fraction of w_{∞} demonstrate the dynamics of growth during an observable (to the model) phase rather than growth occurring prior to selection.

That said, $w(a_s)$ is not a one-to-one map of κ and a_s . A level curve of $w(a_s; \kappa) = c$ is attained by increasing the value of a_s and decreasing κ corrispondingly, or vice versa. The case where $a_s = 4$ and $\kappa = 0.2$ (resulting in $w(a_s) \approx 0.6$) respresents a plausibly biological example of moderate growth. Similar examples of the $w(a_s) = 0.6$ level curve result in much larger lags (discussed in Section (??)) or larger κ 's which quickly tend toward behaviors previously described in the simple production model setting.

Figure 3.7: RP mapping of BH delay model fit to Schnute delay data under moderate growth ($a_s = 4$ and $\kappa = 0.2$). Left: High contrast simulation. Right: Low contrast simulation.

The RP mappings seen in Figure (3.7) show very similar RP mappings to that of the 1212 simple production model, with the biggest differences occurring around the location of the 1213 break point where the low contrast model begins to dramatically underestimate $\frac{F^*}{M}$. In the 1214 high contrast simulation setting Figure (3.7; left), the RP mappings again demonstrate a 1215 nearly identical minimal distance mapping of RPs onto the constrained BH RP set. In the 1216 low contrast setting Figure (3.7; right) a very similar two regiem pattern of RP inference is 1217 observed, however the location of the break between these regiems appears at lower values 1218 of $\frac{B^*}{\overline{B}(0)}$. In this moderate growth setting the break point occurs around values of $\frac{B^*}{\overline{B}(0)}$ just 1219 below 0.4. as opposed to the simple production model where the break point occurs at $\frac{B^*}{B(0)}$ 1220 just above 0.4. 1221

3.3 Dramatic Growth Dynamics

The dramatic growth setting fixes $a_s = 2$ and $\kappa = 0.1$, to simulate a species that grows quite slowly and yet matures into the reproducing stock at a relatively early age. This combination has the effect of exaggerating the components of the model dynamics which are related to individual growth since individuals recruit at a small size and slowly grow over the extent of the modeled period. Furthremore by analysis of RPs this simulated setting produces that largest deviation of RPs from that of the simple (no growth) production model, as seen in Figure (3.5).

another paragraph

Figure 3.8: RP mapping of BH delay model fit to Schnute delay data under dramatic growth $(a_s = 2 \text{ and } \kappa = 0.1)$. Left: High contrast simulation. Right: Low contrast simulation.

The RP mappings seen in Figure (??) obviously bare a huge resemblance to the previ-1231 ously seen RP mappings. Again the biggest differences in the RP mappings occur around the 1232 location of the break point where the low contrast model begins to dramatically underesti-1233 mate $\frac{F^*}{M}$. In this low contrast setting the break point in RP estimation occurs around values 1234 of $\frac{B^*}{B(0)}$ well below 0.4 with the behaviour extending as far down as $\frac{B^*}{B(0)} = 0.3$. This region 1235 shift occurs well below that of the Ricker set, as initially observed in the production model 1236 setting. This reduced range of acceptible RP inference indicates that under increasingly 1237 dramatic growth the model misspecification issue of the BH model becomes an increasingly 1238 brittle assumption with respect of RPs. 1239

Interestingly this pattern only follows for the low contrast setting. In the high contrast setting inference returns to a pattern resmbleing the minimal distance mapping onto BH RP set. Further pointing to the importance of contrast for informing these models.

- introduce dramatic growth setting.
- extremely similar to the production model limit.
 - contrast is identical

1240

1241

1242

1243

- no contrast demonstrates the same general pattern, execept that the break point moves down so that less model misspecification is tolerated.
- break well below zeta=0.4 as far down as 0.3

1249 3 .4 Clustering?

- validity of clusting method?
- compare clustering thresholds on one figure

3.5 Ocillatory Growth Influence

1253 maybe an appendix

Figure 3.9:

Figure 3.10:

 \bullet Selectivity and Growth cannot account for misspecification of Recruitment.

Figure 3.11:

• Selectivity and Growth are influenced by the propper specification of recruitment.

If properly specified Selectivity and Growth can be estimated, along with all three parameters of the Schnute model.

1258 4 Discussion

1255

1256

1257

1262

1263

1265

1266

- break point decreases with growth
- inference becomes more brittle with more dramtic growth.
- interaction between assumed form of growth and stock recruitment.
 - low-side steepness bias masks ocillatory/shock patterns induced by growth and maturity parameters
- misspecified BH prevents learning growth
 - increasing growth accelerates model misspecification
 - statistical evidence of minimum distance mapping within accepible regiem, although float idea of PT-like pattern as BH set flattens. (explaining perterbations)

5 old ideas

```
• show production model limit (contrast -a_s \to 0 \text{: instant maturity}
-\kappa \to \infty \text{: recruit as an adult ()}
• describe second order shapes of growth/maturity (and cause)
-\text{ weight of recruits} => \text{ scaling biomass } (\mathbf{q}, \, \beta, \, \text{and} \, w_\infty)
1274
-
1275
• describe RP bias
• flat
```

- summary of σ over RP space comparing between models (PT, Schnute, Schnute DD) to show areas of model breakdown.
- miss-identifying signal for noise.
- It happens more as the dynamics get more complex.
- point to the full age structed models.
- show the constrained BH space over a grid of M, κ , ω , W_{∞}
- Show that the constrained spaces vary only slightly as compared with the consequences of misspecifing the functional form.
- estimating these other quantities (while they can create quite different Biomass series)
 can only do so much to improve (expand) RP inference as compared with correctly
 modeling P.
- mapping distance as a function of contrast at (3.5, 0.5)
- for LHS grid locations show $\frac{B^*}{B_0}$ and F^* biases for grids in $M \in (0, 0.5)$ For sure in High Contrast, maybe also in Low??.

Appendix: Inverting $\frac{B^*}{\bar{B}(0)}$ and γ for the PT Model

For brevity let $\zeta = \frac{B^*}{\bar{B}(0)}$.

$$\zeta = \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}}$$

$$\zeta = \gamma \zeta^{\gamma}$$

$$\zeta = \gamma e^{\gamma \log(\zeta)}$$

$$\zeta \log(\zeta) = \gamma \log(\zeta) e^{\gamma \log(\zeta)}$$

The Lambert product logarithm, W, is defined as the inverse function of $z = xe^x$ such that x = W(z). Applying this definition allows for the isolation of γ .

$$\gamma \log(\zeta) = W(\zeta \log(\zeta))$$

$$\gamma = \frac{W(\zeta \log(\zeta))}{\log(\zeta)}$$
(3.13)

The Lambert product logarithm is a multivalued function with a branch point at $-\frac{1}{e}$. The principal branch, $W_0(z)$, is defined on $z \in \left(-\frac{1}{e}, \infty\right)$, and the lower branch, $W_{-1}(z)$, is 1293 defined on $z \in \left(-\frac{1}{e}, 0\right)$. Taken individually, each respective branch is analytic, but cannot 1294 be expressed in terms of elementary functions. 1295 When $\zeta \in (0, \frac{1}{e})$ the solution of interest in Eq. (1.12) comes from W_0 . When $\zeta \to \frac{1}{e}$, the 1296 Fox Model emerges as $\gamma \to 1$. When $\zeta \in \left(\frac{1}{e}, 1\right)$ the solution of interest comes from W_{-1} . For 1297

the use case presented here, Eq. (1.12) is to be interpreted as,

$$\gamma = \begin{cases}
\frac{W_0(\zeta \log(\zeta))}{\log(\zeta)} & \zeta \in (0, \frac{1}{e}) \\
\frac{W_{-1}(\zeta \log(\zeta))}{\log(\zeta)} & \zeta \in (\frac{1}{e}, 1)
\end{cases}$$
(3.14)

Prager 2002, Figure(2). 1299

1292

1298

https://math.stackexchange.com/questions/3004835/is-the-lambert-w-function-analytic-1300 if-not-everywhere-then-on-what-set-is-it-ana https://researchportal.bath.ac.uk/en/publications/algebraic-1301 properties-of-the-lambert-w-function-from-a-result-of-r 1302

https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf

References

1324

1325

1326

1327

76(3), 515–521.

Beverton, R. J., & Holt, S. J. (1957). On the dynamics of exploited fish populations (Vol. 11). 1305 Springer Science & Business Media. 1306 Brent, R. P. (1973). Chapter 4: An Algorithm with Guaranteed Convergence for Finding 1307 a Zero of a Function. In Algorithms for minimization without derivatives. Courier 1308 Corporation. 1309 Conn, P. B., Williams, E. H., & Shertzer, K. W. (2010). When can we reliably estimate 1310 the productivity of fish stocks? Canadian Journal of Fisheries and Aquatic Sciences, 1311 67(3), 511–523. 1312 Cressie, N. (2015). Statistics for spatial data. John Wiley & Sons. 1313 Cushing, D. H. (1971, May). The Dependence of Recruitment on Parent Stock in Different Groups of Fishes. ICES Journal of Marine Science, 33(3), 340–362. Retrieved 2023-1315 06-03, from https://doi.org/10.1093/icesjms/33.3.340 doi: 10.1093/icesjms/ 1316 33.3.340 1317 Deriso, R. B. (1980, February). Harvesting Strategies and Parameter Estimation for an 1318 Age-Structured Model. Canadian Journal of Fisheries and Aquatic Sciences, 37(2), 1319 268-282. Retrieved 2020-05-13, from https://www.nrcresearchpress.com/doi/abs/ 1320 10.1139/f80-034 doi: 10.1139/f80-034 1321 Devon Lin, C., & Tang, B. (2015). Latin Hypercubes and Space-filling Designs. In Handbook 1322 of Design and Analysis of Experiments. 1323

72

ing a generalized delay-difference model. Canadian Journal of Fisheries and Aquatic

Fournier, D. A., & Doonan, I. J. (1987). A length-based stock assessment method utiliz-

Fletcher, R. I. (1978). On the restructuring of the Pella-Tomlinson system. Fish. Bull,

- Sciences, 44(2), 422–437. (Publisher: NRC Research Press Ottawa, Canada)
- Fox Jr., W. W. (1970). An Exponential Surplus-Yield Model for Optimizing
- Exploited Fish Populations. Transactions of the American Fisheries So-
- ciety, 99(1), 80-88. Retrieved 2022-02-17, from https://onlinelibrary
- .wiley.com/doi/abs/10.1577/1548-8659%281970%2999%3C80%3AAESMF0%3E2
- 1333 . 0.C0%3B2 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1577/1548-
- 8659%281970%2999%3C80%3AAESMFO%3E2.0.CO%3B2) doi: 10.1577/
- 1548-8659(1970)99 < 80:AESMFO > 2.0.CO;2
- 1336 Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design, and optimization
- for the applied sciences. Chapman and Hall/CRC.
- Gramacy, R. B., & Lee, H. K. (2012). Cases for the nugget in modeling computer experi-
- ments. Statistics and Computing, 22(3), 713–722. (Publisher: Springer)
- Hilborn, R. (2010). Pretty good yield and exploited fishes. Marine Policy, 34(1), 193–196.
- (Publisher: Elsevier)
- Hilborn, R., & Mangel, M. (1997). The Ecological Detective: Confronting Models with Data.
- Princeton University Press.
- Hilborn, R., & Walters, C. J. (1992). Quantitative Fisheries, Stock Assessment: Choice
- Dynamics, and Uncertainty Chapman and Hall. New York.
- Johnson, M. E., Moore, L. M., & Ylvisaker, D. (1990). Minimax and maximin distance
- designs. Journal of statistical planning and inference, 26(2), 131–148. (Publisher:
- Elsevier)
- 1349 Lee, H.-H., Maunder, M. N., Piner, K. R., & Methot, R. D. (2012, August). Can
- steepness of the stock-recruitment relationship be estimated in fishery stock as-
- sessment models? Fisheries Research, 125-126, 254-261. Retrieved 2022-01-29,
- from https://linkinghub.elsevier.com/retrieve/pii/S0165783612001099 doi:
- 10.1016/j.fishres.2012.03.001
- Magnusson, A., & Hilborn, R. (2007). What makes fisheries data informative? Fish and
- Fisheries, 8(4), 337–358. (Publisher: Wiley Online Library)
- Mangel, M., MacCall, A. D., Brodziak, J., Dick, E., Forrest, R. E., Pourzand, R., & Ralston,
- S. (2013, April). A perspective on steepness, reference points, and stock assessment.

```
Canadian Journal of Fisheries and Aquatic Sciences, 70(6), 930–940. Retrieved 2019-
1358
          07-03, from https://www.nrcresearchpress.com/doi/10.1139/cjfas-2012-0372
1359
          doi: 10.1139/cjfas-2012-0372
1360
    McKay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods
1361
          for selecting values of input variables in the analysis of output from a computer code.
1362
          Technometrics, 42(1), 55–61. (Publisher: Taylor & Francis)
1363
    Morris, M. D., & Mitchell, T. J. (1995, February). Exploratory designs for computa-
1364
          tional experiments. Journal of Statistical Planning and Inference, 43(3), 381–402. Re-
1365
          trieved 2023-05-28, from https://www.sciencedirect.com/science/article/pii/
1366
          037837589400035T doi: 10.1016/0378-3758(94)00035-T
1367
    Punt, A. E., Butterworth, D. S., Moor, C. L. d., Oliveira, J. A. A. D., & Haddon, M. (2016).
1368
          Management strategy evaluation: best practices. Fish and Fisheries, 17(2), 303–334.
1369
          Retrieved 2018-12-13, from https://onlinelibrary.wiley.com/doi/abs/10.1111/
1370
          faf.12104 doi: 10.1111/faf.12104
1371
    Punt, A. E., & Cope, J. M. (2019, September). Extending integrated stock assessment mod-
1372
          els to use non-depensatory three-parameter stock-recruitment relationships. Fisheries
1373
          Research, 217, 46-57. Retrieved 2019-07-19, from http://www.sciencedirect.com/
1374
          science/article/pii/S0165783617301819 doi: 10.1016/j.fishres.2017.07.007
1375
    Ramasubramanian, K., & Singh, A. (2017). Machine learning using R (No. 1). Springer.
1376
    Rankin, P. S., & Lemos, R. T. (2015, October). An alternative surplus production
1377
          model. Ecological Modelling, 313, 109–126. Retrieved 2022-02-11, from https://
1378
          www.sciencedirect.com/science/article/pii/S0304380015002732 doi: 10.1016/
1379
          j.ecolmodel.2015.06.024
1380
    Ricker, W. E. (1954). Stock and recruitment. Journal of the Fisheries Board of Canada,
1381
          11(5), 559–623. (Publisher: NRC Research Press Ottawa, Canada)
1382
    Schnute, J. (1985, March). A General Theory for Analysis of Catch and Effort Data.
1383
          Canadian Journal of Fisheries and Aquatic Sciences, 42(3), 414–429. Retrieved 2020-
1384
          05-13, from https://www.nrcresearchpress.com/doi/abs/10.1139/f85-057
1385
          10.1139/f85-057
1386
```

- Journal of Fisheries and Aquatic Sciences, 44(5), 924–940. (Publisher: NRC Research
- Press Ottawa, Canada)
- Schnute, J. T., & Richards, L. J. (1998, February). Analytical models for fishery reference
- points. Canadian Journal of Fisheries and Aquatic Sciences, 55(2), 515–528. Retrieved
- 2020-01-14, from https://www.nrcresearchpress.com/doi/abs/10.1139/f97-212
- doi: 10.1139/f97-212
- Scrucca, L. (2013, April). GA: A Package for Genetic Algorithms in R. Journal of Sta-
- tistical Software, 53, 1–37. Retrieved 2022-01-17, from https://doi.org/10.18637/
- jss.v053.i04 doi: 10.18637/jss.v053.i04
- Scrucca, L. (2017). On Some Extensions to GA Package: Hybrid Optimisation, Paral-
- lelisation and Islands EvolutionOn some extensions to GA package: hybrid optimi-
- sation, parallelisation and islands evolution. The R Journal, 9(1), 187–206. Re-
- trieved 2022-01-17, from https://journal.r-project.org/archive/2017/RJ-2017
- -008/index.html
- Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010, February). Solving Differential Equations
- in R: Package deSolve. Journal of Statistical Software, 33, 1–25. Retrieved 2023-05-29,
- from https://doi.org/10.18637/jss.v033.i09 doi: 10.18637/jss.v033.i09
- Stein, M. (1987). Large sample properties of simulations using Latin hypercube sampling.
- Technometrics, 29(2), 143–151. (Publisher: Taylor & Francis)
- Von Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth
- laws. II). *Human biology*, 10(2), 181–213. (Publisher: JSTOR)
- Walters, C. J. (2020). The continuous time Schnute-Deriso delay-difference model for
- age-structured population dynamics, with example application to the Peru anchoveta
- 1411 stock.
- Wanner, G., & Hairer, E. (1996). Solving ordinary differential equations II (Vol. 375).
- Springer Berlin Heidelberg.
- Yeakel, J. D., & Mangel, M. (2015, February). A generalized perturbation approach for ex-
- ploring stock recruitment relationships. Theoretical Ecology, 8(1), 1–13. Retrieved
- 2023-06-03, from https://doi.org/10.1007/s12080-014-0230-z doi: 10.1007/
- s12080-014-0230-z