

Bookmarks

- Hello! Computer Organization!
- ▶ 基础知识
- ▶ <u>Logisim</u>
- ► <u>Verilog-HDL与</u> <u>ISE</u>
- ► <u>MIPS指令集及</u> <u>汇编语言</u>
- ▶ <u>P0-Logisim简</u> 单部件与状态机
- ▼ <u>P1-Verilog简单</u> 部件与状态机

课下测试

P1-Verilog简单部件与状态机 > 课下测试 > Verilog部件设计(二)

Verilog部件设计(二)

☐ Bookmark this page

2、Verilog 实现 ALU

使用 Verilog 搭建一个 32 位六运算 ALU 并提交。具体模块端口定义如下:

信号名。	方向。	描述。
A [31:0]	I.o	参与 ALU 计算的第一个值。
B[31:0].	le	参与 ALU 计算的第二个值。
ALUOp[2:0]	l _o	ALU 功能的选择信号。
		000: ALU 进行加法运算。
		001: ALU 进行减法运算。
		010: ALU 进行与运算。
		011: ALU 进行或运算。
		100: ALU 进行逻辑右移。
		101: ALU 进行算数右移。
C[31:0]	O _e	ALU 的计算结果。

模块功能定义如下:

序号。	功能名称。	功能描述。
1.	无符号加运算。	C=A+B(A,B 无符号)。
2.	无符号减运算。	C=A-B(A,B 无符号)。
3,	与运算。	C=A&B
4.	或运算。	C=A B _e
5.	逻辑右移。	C=A>>B(A,B 无符号)。
6.	算术右移。	C=A>>>B(A 有符号 B 无符
		号)。

知识补充:

在这里我们首先需要知道逻辑右移和算数右移的区别:

逻辑右移不考虑符号位,右移一位,左边补零即可。

算术右移需要考虑符号位,右移一位,若符号位为 1 ,在左边补 1 ; 否则,补 0 。

例如,8位二进制数10111101分别右移2位。

- 逻辑右移结果为00101111
- 算术右移结果为11101111

要求: 必须严格按照模块的端口定义 文件内模块名: alu Verilog实现ALU 1 point possible (ungraded) 提交入口 Choose Files No file chosen Submit

Discussion

Topic: P1-Verilog简单部件与状态机: Lab0-课下测试 / Verilog部件设计(二)

Show Discussion