1. Фреймворк

В качестве рабочих фреймворков выбарны PyTroch и PyTorch Lightning. В качестве модели детекора используется FASTERRCNN_RESNET50_FPN из torchvision.models.detection.

2-4. Датасет, предобработка данных и детекция до обучения модели

В данном проекте модель детекор обучается распознавать шахматные фигур. Датасет выбран с платформы Kaggle. Его можно найти по ссылке: https://www.kaggle.com/datasets/josephnelson/chess-piece-images-and-bounding-boxes

Класс CPPDataset реализован в файле dataset.py. Для предобработки изображений использутся функция transform_image(), которая конвертирвует изображение в тензор со значениями в интервале [0, 1].

Ниже представлены результаты работы детектора до обучения. Не трудно обратить внимание на отсутствие предсказанных боксов. Детектор был специально настроен на высокий порог уверенности в предсказании равный 0.3, чтобы избежать избыточного количества предсказанных боксов. Необученная модель чаще всего не может преодолеть этого порог.

```
from main import *
```

```
untrained_model = FasterRCNN()
test_dataset = CPDDataset(TEST_DIR, CLASSES_DICT)
random_indices = np.random.randint(0, high=len(test_dataset), size=2)
images = [test_dataset[i][0] for i in random_indices]
predictions = untrained_model(images)
show_images(images, annotations=predictions,
classes dict=CLASSES DICT)
```


5. Обучение модели

Для обучения модели использовался фреймворк PyTorch Lightning - https://www.pytorchlightning.ai/

Класс модели реализован в файле model.py. Веса обученной модели можно найти в папке lighnting_logs. Стоит отметить, что датасет довольно маленький - 279 изображений, разбитые на train, validation и test в соотношении 70%:20%:10%. Детектор имеет высоский шанс его запомнить и переобучиться при избыточном количестве эпох. Чтобы избежать этого, проводились эксперименты с различными количествами эпох, и было выбрано значение MAX_EPOCHS = 15, при котором достигается оптимальное качестве модели.

6. Измерение качества работы модели

Для измерения качества работы модели использовалась метрики:

- 1) Average Precision (для различных порогов IoU: 0.5, 0.75, 0.95)
- 2) mean Average Precision (mAP@[.5:.95])
- 3) Accuracy (для оценки точности предсказания класса объекта)
- 4) Redundancy

Redundancy - метрика автора проекта. Она вычисляется по формуле NUM_PREDICTED_BOXES/NUM_GROUND_TRUTH_BOXES и показывает сколько в среднем предсказанных боксов приходится на один настоящий. Метрика была введена, так как модель генерировала избыточное количество боксов. Реализацию метрик можно найти в файле metrics.py.

Для отображения графиков изменения значений метрик и лосса в процессе обучения используется TensorBoard. Вся информация доступна по ссылке https://tensorboard.dev/experiment/Cje3f6dORye2b4X9vmYjFw/#scalars

Ниже представлены визуальные примеры детекции на тестовом датасете.

```
model =
FasterRCNN.load_from_checkpoint('lightning_logs/version_0/checkpoints/
epoch=14-step=765.ckpt')
test_dataset = CPDDataset(TEST_DIR, CLASSES_DICT)
random_indices = np.random.randint(0, high=len(test_dataset), size=2)
images = [test_dataset[i][0] for i in random_indices]
predictions = model(images)
show_images(images, annotations=predictions,
classes_dict=CLASSES_DICT)
```


df_classes, df_all = evaluate_model(model, test_dataset)

Значения метрик качества на тестовом датасете усредненно по всем классам.

display(df_all)

AP50 AP75 AP95 mAP accuracy redundancy 0 0.972441 0.952756 0.023622 0.76378 0.885305 1.098425

Значения метрик качества на тестовом датасете в разрезе класса.

display(df_classes)

class	AP50	AP75	AP95	mAP	accuracy
redundancy					
<pre>0 black-queen</pre>	0.00000	0.000000	0.00000	0.00000	1.000000
0.000000					
<pre>1 black-knight</pre>	0.941176	0.941176	0.00000	0.705882	0.772727
1.294118					
<pre>2 white-queen</pre>	0.900000	0.800000	0.000000	0.660000	0.714286
1.400000					
3 white-bishop	0.933333	0.933333	0.000000	0.740000	0.750000
1.333333	0.016667	0.016667	0 000000	0 750000	0 057140
4 white-king	0.916667	0.916667	0.083333	0.750000	0.857143
1.166667	0.016667	0.016667	0 000000	0 700000	1 000000
5 black-king	0.916667	0.916667	0.000000	0.700000	1.000000
1.000000	0.944444	0.944444	0.000000	0.744444	0.782609
6 white-knight 1.277778	0.944444	0.944444	0.00000	0.744444	0.762009
7 black-bishop	0.933333	0.933333	0.000000	0.686667	1.000000
1.000000	0.93333	0.93333	0.00000	0.000007	1.000000
8 white-rook	0.928571	0.928571	0.000000	0.742857	0.823529
1.214286	0.320371	0.320371	0.00000	0.742037	0.023323
9 black-rook	0.944444	0.888889	0.000000	0.750000	0.850000
1.111111	01311111	0100000	0.00000	01750000	0.05000
10 black-pawn	0.983333	0.983333	0.000000	0.785000	0.967742
1.033333	0.00000	0.00000	0.00000	01705000	0.00,,
11 white-pawn	0.982456	0.929825	0.017544	0.750877	0.950000
- Is server					

1.052632 12 background 1.000000 1.000000 1.000000 1.000000 0.000000

7. Возможные пути применения модели.

При незначительных доработках и обучении на датасете бОльшего размера модель сможет с высокой точностью определять положение и классы фигур на доске. Основной путь применения модели - использование ее для преобразовния данных из формата изображение/видео (при доработке) к текстовому формату, например xml, в котором их можно будет свободно хранить и использовать. Это может быть полезно для организаций, проводящих шахматные турниры, для автоматизации сбора данных о партиях и улучшении их качества.

Данные о сыгранных партиях и данные об игре в прямом эфире ценнейший ресурс в шахматном мире, применений которому множество: разбор партий, распознавание некорректных ходов в процессе игры, анализ игровой позиции в прямом эфире, использование данных для обучения игровых нейросетей и многое другое.