La fonction zêta de Riemann

Amaury Martiny

23 mai 2019

Résumé

This is the paper's abstract ...

Table des matières

1	Inti	roduction	2	
	1.1	Un peu d'histoire	2	
	1.2	Notations	2	
	1.3	Tchebychev et ses fonctions	2	
2	Pré	requis	3	
	2.1	Méthodes d'analyse réelle	3	
		2.1.1 Formule d'Euler-Maclaurin	3	
	2.2		3	
		2.2.1 La fonction Γ	3	
3	La fonction ζ de Riemann 4			
	3.1	Lien avec les nombres premiers	4	
	3.2	Quelques propriétés de ζ	4	
		3.2.1 Dérivées de la fonction ζ	6	
		3.2.2 Expression intégrale	6	
	3.3		6	
		3.3.1 Par la formule d'Euler-Maclaurin	7	
		3.3.2 Par le contour de Hankel	8	
4	Le 1	théorème des nombres premiers	9	

Introduction

1.1 Un peu d'histoire

1.2 Notations

somme de p = somme sur nombres premiers

1.3 Tchebychev et ses fonctions

Nous introduisons ici la fonction ζ de Riemann, ainsi que les fonctions de Tchebychev, car elles vont nous suivre dans toute la suite de ce rapport.

Définition 1.3.1 (Fonctions de Tchebychev). Pour $x \in \mathbb{R}$,

$$\theta(x) = \sum_{p \le x} \log p$$

Prérequis

2.1 Méthodes d'analyse réelle

2.1.1 Formule d'Euler-Maclaurin

Théorème 2.1.1. Pour tout entier $k \geq 0$ et toute fonction f de classe C^r sur $[a,b],\ a,b \in \mathbb{Z},\ on\ a$

$$\sum_{n=a}^{b} f(n) = \int_{a}^{b} f(t)dt + \frac{f(a) + f(b)}{2} + \sum_{k=2}^{r} \frac{b_{k}}{k!} (f^{(k-1)}(b) - f^{(k-1)(a)}) + \frac{(-1)^{r+1}}{r!} \int_{a}^{b} B_{r}(t) f^{(r)}(t)dt$$

Les b_n sont les nombres de Bernoulli, et les B_n sont les polynômes de Bernoulli, définis sur [0,1] par la récurrence classique, et ensuite prolongés par 1-périodicité.

2.2 Méthodes d'analyse complexe

2.2.1 La fonction Γ

La fonction ζ de Riemann

3.1 Lien avec les nombres premiers

La fonction que nous appelons aujourd'hui fonction ζ de Riemann a en réalité été introduite par Euler au XVIIIème siècle. Il a défini, pour tout $x\in\mathbb{R}, x>1$, la fonction

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$$

La somme de droite est clairement convergente, donc $\zeta(x)$ est bien défini. Euler démontra par la suite le résultat suivant, qui définit un lien entre les nombres premiers et l'analyse.

Théorème 3.1.1 (Produit eulérien).

$$\zeta(x) = \prod_{p} \frac{1}{1 - p^{-x}} \quad (\sigma > 1)$$

 $D\'{e}monstration.$

A ce stade, nous commençons à nous convaincre du rôle important de la fonction ζ dans l'étude des nombres premiers. Une analyse plus approfondie de cette fonction va nous aider grandement, c'est ce que nous allons faire tout de suite.

3.2 Quelques propriétés de ζ

Avant d'étudier ses propriétés, commençons par définir officiellement ζ . L'idée de Riemann, dans son TODO, a été de partir de la définition d'Euler, et de considérer ζ comme fonction d'une variable complexe :

Définition 3.2.1 (Fonction ζ de Riemann). On définit, pour tout s complexe tel que $\sigma > 1$,

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Proposition 3.2.2. Pour $\sigma > 1$, la série $\zeta(s)$ est absolument convergente.

Démonstration. C'est évident car $\left|\frac{1}{n^s}\right| = \frac{1}{n^{\sigma}}$, qui est le terme général d'une série convergente.

Cette proposition montre que la fonction ζ est bien définie sur le demi-plan $\sigma>1.$

Cela va sans dire, mais cela ira encore mieux en le disant :

Théorème 3.2.3 (Produit eulérien, variable complexe).

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}} \quad (\sigma > 1)$$

 $D\acute{e}monstration.$ La démonstration est exactement la même que dans le cas réel : voir la proposition 3.1.1.

Il en découle immédiatement cette 1ère propriété intéressante :

Proposition 3.2.4.

$$\zeta(s) \neq 0 \quad (\sigma > 1)$$

 $D\acute{e}monstration.$ Soit p premier fixé. L'inégalité triangulaire donne $|1-p^{-s}| \le 1+p^{-\sigma}.$ Par conséquent,

$$\log(|1 - p^{-s}|) \le \log(1 + p^{-\sigma}) \le p^{-\sigma}$$

où les inégalités sont données respectivement par la croissance et par la concavité du logarithme.

Ceci entraı̂ne la convergence de la série $\sum_p \log(|1-p^{-s}|)$, pour tout s avec $\sigma>1$. Notons L_s sa limite :

$$\log\left(\prod_{p}|1-p^{-s}|\right) = L_s,$$

et ainsi

$$\left| \prod_{p} \frac{1}{1 - p^{-s}} \right| = e^{-L_s} > 0,$$

Le terme de gauche est exactement $|\zeta(s)|$ par le produit eulérien du théorème 3.2.3.

3.2.1 Dérivées de la fonction (

Proposition 3.2.5. ζ est holomorphe sur le demi-plan $\sigma > 1$.

Démonstration. Soit K un compact du demi-plan $\sigma > 1$, alors K est inclus dans un $\{s \in \mathbb{C} \mid \sigma \geq a\}$ pour un certain réel a > 1. Mais alors en définissant $f_n : s \mapsto 1/n^s$, la fonction f_n est holomorphe sur $\sigma > 1$, et $||f_n||_{\infty} \leq 1/n^a$ sur K, qui est le terme général d'une série convergente.

La série de fonctions $\sum f_n$ converge vers ζ , normalement (donc uniformément) sur K. Par suite ζ est holomorphe sur le demi-plan $\sigma > 1$.

Proposition 3.2.6.

$$\zeta^{(k)}(s) = (-1)^k \sum_{n=2}^{\infty} \frac{(\log n)^k}{n^s}$$

Démonstration. TODO

3.2.2 Expression intégrale

Proposition 3.2.7. *Pour tout complexe* $\sigma > 1$,

$$\Gamma(s)\zeta(s) = \int_0^\infty \frac{t^{s-1}}{e^t - 1} dt$$

Démonstration. On part de la formule TODO

$$\Gamma(s)n^{-s} = \int_0^\infty t^{s-1} e^{-nt} dt \quad (\sigma > 0)$$

En sommant pour $n \ge 1$, il vient pour $\sigma > 1$

$$\Gamma(s)\zeta(s) = \sum_{n=1}^{\infty} \int_0^{\infty} t^{s-1} e^{-nt} dt = \int_0^{\infty} \frac{t^{s-1}}{e^t - 1} dt$$

Or la série numérique $\sum \int_0^\infty |t^{s-1}| \mathrm{e}^{-nt} \mathrm{d}t = \sum \int_0^\infty t^{\sigma-1} \mathrm{e}^{-nt} \mathrm{d}t$ converge, donc l'interversion somme/intégrale est justifiée.

3.3 Prolongement à $\mathbb{C}\setminus\{1\}$

Théorème 3.3.1. La fonction ζ admet un unique prolongement en une fonction méromorphe sur \mathbb{C} ayant un unique pôle en s=1 de résidu 1.

Une fois ce théorème démontré, nous allons noter ζ cet unique prolongement. Nous allons donner plusieurs démonstrations de ce théorème.

3.3.1 Par la formule d'Euler-Maclaurin

Démonstration. Fixons s tel que $\sigma > 1$, et appliquons la formule d'Euler-Maclaurin 2.1.1 à l'ordre $r \geq 1$ sur l'intervalle [1,N] à la fonction $f:t\mapsto t^{-s}$, de classe C^{∞} sur [1,N]:

$$\sum_{n=1}^{N} n^{-s} = \frac{1 - N^{1-s}}{s - 1} + \frac{1 + N^{-s}}{2} + \sum_{k=2}^{r} B_k \frac{s(s+1)...(s+k-2)}{k!} (1 - N^{-s-k+1}) - R_{r,N}(s)$$

où l'on a défini le reste $R_{r,N}(s)$ par

$$R_{r,N}(s) = \frac{s(s+1)...(s+r-1)}{r!} \int_{1}^{N} B_r(t)t^{-s-r} dt$$

Comme les B_r sont périodiques et polynomiaux sur [0,1[, ils sont bornés. Le terme à l'intérieur de l'intégrale de $R_{r,N}(s)$ est donc $O(t^{-s-r})$, qui intégrable sur $[1,+\infty]$. En faisant tender N vers l'infini, on obtient alors

$$\zeta(s) = \frac{1}{s-1} + F_r(s)$$

où l'on a noté

$$F_r(s) = \frac{1}{2} + \sum_{k=2}^r B_k \frac{s(s+1)...(s+k-2)}{k!} - \frac{s(s+1)...(s+r-1)}{r!} \int_1^\infty B_r(t) t^{-s-r} dt.$$

Montrons que F_r est holomorphe sur $\Omega_r = \{s \in \mathbb{C} \mid \sigma > 1 - r\}$. Il suffit que montrer que G_r l'est, où

$$G_r(s) = \int_1^\infty B_r(t)t^{-s-r}\mathrm{d}t.$$

On remarque que, à t fixé, la fonction à l'intérieur $s \mapsto B_r(t)t^{-s-r}$ l'est. Soit K un compact de Ω_r , on peut fixer un $\delta > 0$ tel que $K \subset \{s \in \mathbb{C} \mid \sigma > 1 - r + \delta\}$. Sur ce compact,

$$\sup_{s \in K} \left| \frac{B_r(t)}{t^{s+r}} \right| = O\left(\frac{1}{t^{1+\delta}}\right)$$

ce qui assure, par régularité des intégrales à paramètre, que G_r , et par suite F_r est holomorphe sur Ω_r .

On peut ainsi définir une fonction entière F par

$$F(s) = F_r(s)$$
 si $s \in \Omega_r$.

F est bien définie car si $1 \le q \le r$, $F_q(s) = F_r(s) = \zeta(s) - \frac{1}{s-1}$, donc F_q et F_r sont holomorphes et coincident sur Ω_q connexe.

On obtient finalement que $s\mapsto \frac{1}{s-1}+F(s)$ est une fonction méromorphe avec un unique pôle simple en 1 de résidu 1 qui prolonge la fonction ζ de Riemann. L'unicité est triviale par prolongement analytique. \square

3.3.2 Par le contour de Hankel

Le théorème des nombres premiers