

Practica 3.
Análisis estructural. (ANSYS)
Ingeniería en Mecatrónica.
Mtro. Enrique Moran Garabito.
Integrantes:
Chagoya de la Cruz Levi Hazael.
Vázquez Flavio Antonio.
Viorato Arámbula Alexis.

Gómez Carillo Christian Salvador.

¿Qué es un análisis estructural?

Análisis estructural se refiere al uso de las ecuaciones de la resistencia de materiales para encontrar los esfuerzos internos, deformaciones y tensiones que actúan sobre una estructura resistente, como edificaciones o esqueletos resistentes de maquinaria. Igualmente el análisis dinámico estudiaría el comportamiento dinámico de dichas estructuras y la aparición de posibles vibraciones perniciosas para la estructura.

Determinación de esfuerzos.

El tipo de método empleado difiere según la complejidad y estructuras muy sencillas entre los que se encuentran la teoría de vigas de Euler-Bernoulli es el método más simple, es aplicable sólo a barras esbeltas sometidas a flexión y esfuerzos axiales. Naturalmente no todas las estructuras se dejan analizar por este método. Cuando existen elementos estructurales bidimensionales en general deben emplearse métodos basados en resolver ecuaciones diferenciales.

- Métodos programables:
 - Así para determinar esfuerzos sobre marcos o pórticos se usa frecuentemente el método matricial de la rigidez basado en el modelo de barras largas, que modeliza los elementos resistentes como elementos unidimensionales sometidos predominantemente a flexión
 - Cuando se trata de analizar elementos más pequeños o con forma irregular donde pueden producirse concentraciones de tensiones se usan métodos numéricos más complejos como el Método de los elementos finitos.

Determinación de resistencia y rigidez.

Dinámica de Robots.

Reporte de práctica.

A partir de los esfuerzos se pueden calcular directamente los desplazamientos y las tensiones. En el caso del método de los elementos finitos se suele determinar directamente el desplazamiento sin necesidad de calcular los esfuerzos internos. Una estructura correctamente diseñada además de ser funcional y económica debe cumplir obligatoriamente dos criterios razonables de seguridad:

- 1. El criterio de resistencia, consistente en comprobar en que en ninguno de sus puntos el material sobrepasa unas tensiones admisibles máximas.
- 2. El criterio de rigidez, consistente en comprobar que bajo las fuerzas y solicitaciones actuantes los desplazamientos y deformaciones de la estructura no sobrepasan un cierto límite. Dicho límite está relacionado con criterios de funcionalidad, pero también de estabilidad o de aplicabilidad de la teoría de la elasticidad lineal.

Modelos materiales.

Dentro del análisis estructural es importante modelizar el comportamiento de los materiales empleados mediante una ecuación constitutiva adecuada. Los tipos modelos de materiales más frecuentes son:

- Modelo elástico lineal e isótropo, el más usado, ya que el teorema de Rivlin-Ericksen permite establecer que para deformaciones suficientemente pequeñas todo sólido elástico es asintóticamente lineal e isótropo.
- Modelo elástico lineal ortotrópico, constituye una modificación de modelo isótropo para materiales cuya resistencia y comportamiento depende de la dirección, laminados, elementos de madera, etc., requieren modelos ortótropos para ser adecuadamente modelizados.
- Modelos de plasticidad y viscoplasticidad. Los metales a partir de ciertos valores de tensión experimentan deformaciones plásticas irreversibles, así como otras no linealidades. El cálculo plástico a costa de complicar las leyes materiales da una predicción más exacta de las cargas de colapso o fallo de las estructuras, así como un ahorro en material al poder tener en cuenta el rango de trabajo de los materiales en el que estos están experimentando transformaciones irreversibles, pero sin alcanzar las cargas de fallo o colapso.
- Modelos de daño.

Objetivo.

Obtener el análisis estático estructural por medio de ANSYS, el cual nos va a determinar cuál será la fuerza de torque necesaria en cada eje de nuestro brazo robótico cilíndrico. Posteriormente se realizarán los cambios necesarios en la estructura física para así poder instalar los componentes electrónicos (actuadores).

Materiales.

- SolidWorks.
- Ansys.
- Diseño estructural. (CAD)

Procedimiento.

-	. ,	•	1	T	1 .
11	inám	109 /	വല	κ_{Δ}	hote
v	шаш	ıva ı	uC	$\mathbf{I} \mathbf{V} \mathbf{U}$	oous.

Reporte de práctica.

- CAD terminado de la estructura del brazo robótico cilíndrico.
- Exportar CAD como archivo IGS.
- Importar CAD en ANSYS para obtener los parámetros deseados.
- Obtener análisis estático estructural.

Resultados Obtenidos.

Project

First Saved	Friday, May 31, 2019
Last Saved	Friday, May 31, 2019
Product Version	18.1 Release
Save Project Before Solution	No
Save Project After Solution	No

Dinámica de Robots.	Reporte de práctica.
The National Prince and the National Section (National Accession Control Contr	

Contents

- Units
- Model (B4)
 - Geometry
 - Parts
 - o Coordinate Systems
 - Connections
 - Contacts
 - Contact Regions
 - Mesh
 - Static Structural (B5)
 - Analysis Settings
 - Loads
 - Solution (B6)
 - Solution Information
 - Results
- Material Data
 - Structural Steel

Report Not Finalized

Not all objects described below are in a finalized state. As a result, data may be incomplete, obsolete or in error. View first state problem. To finalize this report, edit objects as needed and solve the analyses.

Units

TABLE 1

Unit System	Metric (m, kg, N, s, V, A) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (B4)

Geometry

TABLE 2 Model (B4) > Geometry

Object Name	Geometry			
State	Fully Defined			
Definition				
Source	C:\Users\Alexis Viorato\Documents\ensamblaje 1 robot cilindrico.IGS			
Туре	lges			

Length Unit	Meters			
Element Control	Program Controlled			
Display Style	Body Color			
	Bounding Box			
Length X	0.53317 m			
Length Y	0.51434 m			
Length Z	0.37002 m			
	Properties			
Volume	1.8869e-003 m ³			
Mass	14.813 kg			
Scale Factor Value	1.			
	Statistics			
Bodies	18			
Active Bodies	18			
Nodes	20155			
Elements	5049			
Mesh Metric	None			
West Wette	Basic Geometry Options			
Solid Bodies	Yes			
Surface Bodies	Yes			
Line Bodies	No No			
Parameters	Independent			
Parameter Key	-			
Attributes	ANS;DS No			
Named Selections	No			
	No			
Material Properties				
Llas Associativity	Advanced Geometry Options			
Use Associativity	Yes			
Coordinate Systems	No			
Reader Mode Saves Updated File	No			
Use Instances	Voc			
	Yes			
Smart CAD Update	Yes			
Compare Parts On Update	No			
Attach File Via Temp File	Yes Cil Haaral Alavia Viarratal App Data Haaral Taran			
Temporary Directory	C:\Users\Alexis Viorato\AppData\Local\Temp			
Analysis Type	3-D			
Mixed Import Resolution	None			
Decompose Disjoint Geometry	Yes			
Enclosure and Symmetry	Yes			
Processing				

TABLE 3
Model (B4) > Geometry > Parts

				ioaci (b	7/ 000	ineury -	1 arts				
Object Name	Part 1	Part 2	Part 3	Part 4	Part 5	Part 6	Part 7	Part 8	Part 9	Part 10	Part 11
State		Meshed									
				Gra	phics Pr	operties	S				
Visible					•	Yes					
Transpare						1					
ncy					- ···	•					
					Definit	tion					
Suppresse d						No					
Stiffness Behavior						Flexible	!				
Coordinat e System				С	efault C	Coordina	te Syste	m			
Reference											
Temperat					Ву	Environn	nent				
Behavior						None					
					Mate	rial					
Assignme nt		Structural Steel									
Nonlinear Effects		Yes									
Thermal Strain Effects		Yes									
				E	Boundin	g Box					
Length X	1.e-0	02 m	7.62e- 002 m	1.e- 002 m	0.425 4 m	8.512 3e- 002 m		0.307	785 m		0.177 24 m
Length Y	1.e-0	002 m	7.293 8e- 002 m	1.e- 002 m	0.514 34 m	0.116 25 m		0.276	509 m		0.179 71 m
Length Z	1.e-002 m										
					Proper	ties					
Volume		2e-007 า ³	3.529 5e- 005 m ³	2.748 6e- 005 m³	1.122 6e- 003 m³	3.992 7e- 005 m³		3.1413€	e-005 m³		1.893 9e- 004 m³
Mass		Be-003	0.277 06 kg	0.215 77 kg	8.812 8 kg	0.313 43 kg		0.246	559 kg		1.486 7 kg

Centroid	0.151	0.139				0.149	0.332	0.299	0.316	0.299	0.204
Х	08 m	86 m	0.16904 m		0.169 07 m	96 m	99 m	74 m	37 m	74 m	5 m
Centroid Y	- 9.286 9e- 002 m	- 0.115 21 m	-5.712 n		- 5.706 1e- 002 m	- 9.509 7e- 002 m	- 3.933 9e- 002 m	- 1.988 7e- 003 m	- 2.066 4e- 002 m	- 1.988 7e- 003 m	- 9.681 7e- 002 m
Centroid Z	-0.110)19 m	- 9.154 2e- 002 m	4.980 8e- 002 m	- 0.120 19 m	- 0.110 19 m	0.234	ŀ81 m	0.209 81 m	0.184 81 m	0.209 51 m
Moment of Inertia Ip1	8.9133 kg·		1.519 1e- 004 kg·m²	2.183e -003 kg·m²	4.606 9e- 002 kg·m²	4.507 3e- 005 kg·m²	3	.2581e-(003 kg·n	ı²	2.449 4e- 003 kg·m²
Moment of Inertia Ip2	8.9153e-008 kg·m²		7.964 9e- 005 kg·m²	2.183e -003 kg·m²	0.149 06 kg·m²	3.001 9e- 004 kg·m²	3.2581e-003 kg·m²		1.704 1e- 003 kg·m²		
Moment of Inertia Ip3	7.6146e-008 kg·m²		7.966e -005 kg·m²	2.645 8e- 006 kg·m²	0.194 99 kg·m²	3.400 4e- 004 kg·m²	3.0237e-006 kg·m²		1 ²	3.256 1e- 003 kg·m²	
	Statistics										
Nodes	860		1383	854	1638	492		85	54		4349
Elements	155 164 154				212	54		15	54		2022
Mesh Metric	None										

TABLE 4
Model (B4) > Geometry > Parts

	Widder (B4) > Geometry > 1 ares						
Object Name	Part 12	Part 12 Part 13 Part 14 Part 15 Part 16 Part 17 Part 18					Part 18
State				Meshed			
	Graphics Properties						
Visible				Yes			
Transparency				1			
	Definition						
Suppressed		No					
Stiffness		Flexible					
Behavior		riexible					
Coordinate		Default Coordinate System					
System		Default Coordinate System					
Reference		By Environment					
Temperature	by Liviloillient						
Behavior	None						
			Materia	I			

Assignment		Structural Steel					
Nonlinear Effects	Yes						
Thermal Strain Effects				Yes			
			Bounding B	Вох			
Length X		1.e-002 m		5.4947	e-002 m	9.9884e- 002 m	0.14118 m
Length Y		1.e-002 m		5.9995	e-002 m	9.9768e- 002 m	0.14118 m
Length Z		0.3 m		7.e-0	002 m	1.e-002 m	2.5e-002 m
			Propertie	es			
Volume	2	2.356e-005 m³			4.6849e-005 m³		
Mass		0.18494 kg		0.36776 kg			1.05 kg
Centroid X	0.17109 m	0.13374 m	0.16699 m	0.46231 m	0.17098 m	0.16963 m	0.16935 m
Centroid Y	-2.183e- 002 m	-5.5071e- 002 m	-9.2421e- 002 m	0.10867 m	-0.15061 m	-5.716e- 002 m	-5.7144e- 002 m
Centroid Z	7	7.4808e-002	m	0.209	939 m	0.21981 m	-7.3884e- 002 m
Moment of Inertia Ip1	1.	375e-003 kg	·m²	1.4992e-004 kg·m²			5.5149e- 004 kg·m²
Moment of Inertia Ip2	1.375e-003 kg·m²			1.5988e-004 kg·m²		5.6884e- 004 kg·m²	
Moment of Inertia lp3	2.2678e-006 kg⋅m²			3.0366e-004 kg·m²		1.0024e- 003 kg·m²	
			Statistics	s			
Nodes		796		800			1515
Elements		143			92		812
Mesh Metric				None			

Coordinate Systems

TABLE 5
Model (B4) > Coordinate Systems > Coordinate System

Object Name	Global Coordinate System				
State	Fully Defined				
De	finition				
Туре	Cartesian				
Coordinate System ID	0.				
Origin					
Origin X	0. m				
Origin Y	0. m				

Origin Z	0. m					
Directional Vectors						
X Axis Data	[1. 0. 0.]					
Y Axis Data	[0. 1. 0.]					
Z Axis Data	[0. 0. 1.]					

Connections

TABLE 6
Model (B4) > Connections

Object Name	Connections			
State	Fully Defined			
Auto Detection				
Generate Automatic Connection On Refresh	Yes			
Transparency				
Enabled	Yes			

TABLE 7
Model (B4) > Connections > Contacts

Model (B4) > Connections > Contacts						
Object Name	Contacts					
State	Fully Defined					
Definit	ion					
Connection Type	Contact					
Scop	e					
Scoping Method	Geometry Selection					
Geometry	All Bodies					
Auto Detection						
Tolerance Type	Slider					
Tolerance Slider	0.					
Tolerance Value	2.0702e-003 m					
Use Range	No					
Face/Face	Yes					
Face Overlap Tolerance	Off					
Cylindrical Faces	Include					
Face/Edge	No					
Edge/Edge	No					
Priority	Include All					
Group By	Bodies					
Search Across	Bodies					
Statist	ics					
Connections	35					
Active Connections	35					

TABLE 8
Model (B4) > Connections > Contacts > Contact Regions

	Model (B4) > Connections > Contacts > Contact Regions										
	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta
Object	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct
Name	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio
	n	n 2	n 3	n 4	n 5	n 6	n 7	n 8	n 9	n 10	n 11
State					Fu	lly Defin	ed				
					Scop						
Scoping					•	etry Sel	oction				
Method					Geom	eti y seii	ection				
Contact	1 Face	2 Faces	1 Face	2 Fa	ices	1 Face			2 Faces		
Target	1 Face	2 Faces	1 Face	2 Fa	ices	1 Face			2 Faces		
Contact Bodies	Pai	rt 1	Pai	t 2	Pai	rt 3			Part 4		
Target Bodies	Part 5	Part 6	Part 5	Part 6	Part 4	Part 18	Part 5	Part 6	Part 11	Part 17	Part 18
					Definit	ion					
Туре		Bonded									
Scope		Automatic									
Mode											
Behavior		Program Controlled									
Trim Contact	Program Controlled										
Trim Tolerance		2.0702e-003 m									
Suppresse d						No					
	Advanced										
Formulati	Program Controlled										
on					Progr	am Cont	rollea				
Detection Method					Progr	am Cont	rolled				
Penetratio											
n Tolerance		Program Controlled									
Elastic Slip Tolerance		Program Controlled									
Normal		Program Controlled									
Stiffness Update		Program Controlled									
Stiffness Pinball Region		Program Controlled									
Region											

	Geometric Modification					
Contact						
Geometry	None					
Correction						
Target						
Geometry	None					
Correction						

TABLE 9
Model (B4) > Connections > Contacts > Contact Regions

Model (B4) > Collections > Contacts > Contact Regions											
	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta
Object	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct
Name	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio
	n 12	n 13	n 14	n 15	n 16	n 17	n 18	n 19	n 20	n 21	n 22
State					Fu	lly Defin	ed				
					Scop	е					
Scoping Method					Geom	etry Sel	ection				
Contact	1 Face					2 Fa	ices				
Target	1 Face	6 Faces	2 Fa	ices	6 Faces	2 Fa	ices	6 Faces	2 Fa	ices	6 Faces
Contact Bodies	Part 5	Part 7				Part 8			Part 9		Part 10
Target	Part 6	Part	Part	Part	Part	Part	Part	Part	Part	Part	Part
Bodies	rareo	11	15	16	11	15	16	11	15	16	11
					Definit						
Туре		Bonded									
Scope Mode		Automatic									
Behavior		Program Controlled									
Trim		Program Controlled									
Contact		Program Controlled									
Trim					2.0	702e-00	3 m				
Tolerance											
Suppresse d		No									
					Advan	ced					
Formulati		Program Controlled									
On											
Detection Method		Program Controlled									
Penetratio n Tolerance		Program Controlled									

Elastic Slip	Program Controlled
Tolerance	r rogram controlled
Normal	Program Controlled
Stiffness	Frogram Controlled
Update	Program Controlled
Stiffness	Program Controlled
Pinball	Drogram Controlled
Region	Program Controlled
	Geometric Modification
Contact	
Geometry	None
Correction	
Target	
Geometry	None
Correction	

TABLE 10
Model (B4) > Connections > Contacts > Contact Regions

	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta	Conta
Object	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct	ct
Name	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio	Regio
	n 23	n 24	n 25	n 26	n 27	n 28	n 29	n 30	n 31	n 32	n 33
State					Fu	lly Defin	ed				
					Scop	e					
Scoping Method					Geom	etry Sel	ection				
Contact			2 Faces			1 Face	2 Fa	coc	3	2	3
Contact			2 races			1 race	2 50	ices	Faces	Faces	Faces
Target			2 Faces			1 Face	2 Faces		3	2	3
laiget			Ziaces			TTACE	2 races		Faces	Faces	Faces
Contact Bodies	Part 10 Part 11					Part 12			Part 13		
Target	Part	Part	Part	Part	Part	Part	Par	- 17	Part	Part	Part
Bodies	15	16	12	13	14	16	Pai	ι 1/	18	17	18
	Definition										
Туре						Bonded					
Scope					۸	utomati	ic				
Mode					F	utomati	iC				
Behavior					Progr	am Cont	rolled				
Trim		Day and Controlled									
Contact		Program Controlled									
Trim Tolerance		2.0702e-003 m									
Suppresse d						No					

	Advanced
Formulati on	Program Controlled
Detection Method	Program Controlled
Penetratio n Tolerance	Program Controlled
Elastic Slip Tolerance	Program Controlled
Normal Stiffness	Program Controlled
Update Stiffness	Program Controlled
Pinball Region	Program Controlled
	Geometric Modification
Contact Geometry Correction	None
Target Geometry Correction	None

TABLE 11
Model (B4) > Connections > Contacts > Contact Regions

Model (B4) > Connections > Contacts > Contact Regions							
Object Name	Contact Region 34	Contact Region 35					
State	Fully D	efined					
	Scope						
Scoping Method	Scoping Method Geometry Selection						
Contact	2 Faces	3 Faces					
Target	2 Faces	3 Faces					
Contact Bodies	t 14						
Target Bodies	Part 17	Part 18					
	efinition						
Туре	Bonded						
Scope Mode	Automatic						
Behavior	Program (Controlled					
Trim Contact	Program Controlled						
Trim Tolerance	2.0702e-003 m						
Suppressed	No						
	Advanced						
Formulation	Program (Controlled					
Detection Method	Program (Controlled					

Penetration Tolerance	Program Controlled
Elastic Slip Tolerance	Program Controlled
Normal Stiffness	Program Controlled
Update Stiffness	Program Controlled
Pinball Region	Program Controlled
Geomet	ric Modification
Contact Geometry Correction	None
Target Geometry Correction	None

Mesh

TABLE 12 Model (B4) > Mesh

•	
Object Name	Mesh
State	Solved
Display	
Display Style	Body Color
Defaults	
Physics Preference	Mechanical
Relevance	0
Element Order	Program Controlled
Sizing	
Size Function	Adaptive
Relevance Center	Coarse
Element Size	Default
Initial Size Seed	Assembly
Transition	Fast
Span Angle Center	Coarse
Automatic Mesh Based Defeaturing	On
Defeature Size	Default
Minimum Edge Length	7.8197e-004 m
Quality	
Check Mesh Quality	Yes, Errors
Error Limits	Standard Mechanical
Target Quality	Default (0.050000)
Smoothing	Medium
Mesh Metric	None
Inflation	
Use Automatic Inflation	None
Inflation Option	Smooth Transition
Transition Ratio	0.272
Maximum Layers	5
Growth Rate	1.2

Inflation Algorithm	Pre
View Advanced Options	No
Advanced	
Number of CPUs for Parallel Part Meshing	Program Controlled
Straight Sided Elements	No
Number of Retries	Default (4)
Rigid Body Behavior	Dimensionally Reduced
Mesh Morphing	Disabled
Triangle Surface Mesher	Program Controlled
Topology Checking	No
Pinch Tolerance	Please Define
Generate Pinch on Refresh	No
Statistics	
Nodes	20155
Elements	5049

Static Structural (B5)

TABLE 13 Model (B4) > Analysis

Widdel (b4) > Allalysis			
Object Name	Static Structural (B5)		
State	Solved		
Definition			
Physics Type	Structural		
Analysis Type	Static Structural		
Solver Target	Mechanical APDL		
Options			
Environment Temperature	22. °C		
Generate Input Only	No		

TABLE 14
Model (B4) > Static Structural (B5) > Analysis Settings

Wiodel (D4) > Static Structural (D5) > Arialysis Settings			
Analysis Settings			
Fully Defined			
Step Controls			
1.			
1.			
1. s			
Program Controlled			
Solver Controls			
Program Controlled			
Off			
Program Controlled			

Large Deflection	Off		
Inertia Relief	Off		
Rotordynamics Controls			
Coriolis Effect	Off		
	Restart Controls		
Generate Restart Points	Program Controlled		
Retain Files After Full Solve	No		
Combined Restart Files	Program Controlled		
	Nonlinear Controls		
Newton-Raphson Option	Program Controlled		
Force Convergence	Program Controlled		
Moment Convergence	Program Controlled		
Displacement Convergence	Program Controlled		
Rotation Convergence	Program Controlled		
Line Search	Program Controlled		
Stabilization	Off		
Output Controls			
Stress	Yes		
Strain	Yes		
Nodal Forces	No		
Contact Miscellaneous	No		
General Miscellaneous	No		
Store Results At	All Time Points		
	Analysis Data Management		
Solver Files Directory	C:\Users\Alexis Viorato\Desktop\Análisis_files\dp0\SYS-1\MECH\		
Future Analysis	None		
Scratch Solver Files Directory			
Save MAPDL db	No		
Delete Unneeded Files	Yes		
Nonlinear Solution	No		
Solver Units	Active System		
Solver Unit System	mks		

TABLE 15
Model (B4) > Static Structural (B5) > Loads

IVIO	iei (D4) > Static Sti	detailai (DS) > LOa	<i>_</i>
Object Name	Pressure	Pressure 2	Fixed Support
State	Fully Defined		
	Scope		
Scoping Method	Geometry Selection		
Geometry	1 Face		
Definition			
Туре	Pres	ssure	Fixed Support
Define By	Norn	nal To	

			1	\mathbf{r}	1 .
1	ากจ	mica	de	ĸ	obots.
-	าบเล	ппса	uc	1	ODOLO.

Reporte de práctica.

Applied By	Surface Effect		
Magnitude	100. Pa (ramped) -200. Pa (ramped)		
Suppressed		No	

FIGURE 1
Model (B4) > Static Structural (B5) > Pressure

	Widder (D4) > Static Structural (D3) > Flessure	
To Six we push more the Temper annulation. Number you we hope models, samples to describe a minimate of morbors. Comprision upon of virtuals well-all and describes y administration summation.		\neg

FIGURE 2 Model (B4) > Static Structural (B5) > Pressure 2

Solution (B6)

TABLE 16
Model (B4) > Static Structural (B5) > Solution

aci (b+) > static structur	(20)		
Object Name	Solution (B6)		
State	Solved		
Adaptive Mesh Ref	finement		
Max Refinement Loops	1.		
Refinement Depth	2.		
Information			
Status	Done		
MAPDL Elapsed Time	32. s		
MAPDL Memory Used	162. MB		
MAPDL Result File Size	7.625 MB		
Post Processing			
Beam Section Results	No		

TABLE 17
Model (B4) > Static Structural (B5) > Solution (B6) > Solution Information

Solution Information			
State	Solved		
Object Name	Solution Information		
, , ,	· ,		

Solution Output	Solver Output
Newton-Raphson Residuals	0
Identify Element Violations	0
Update Interval	2.5 s
Display Points	All
FE Connection Vi	sibility
Activate Visibility	Yes
Display	All FE Connectors
Draw Connections Attached To	All Nodes
Line Color	Connection Type
Visible on Results	No
Line Thickness	Single
Display Type	Lines

TABLE 18
Model (B4) > Static Structural (B5) > Solution (B6) > Results

wioder (64) > Static Structural (65) > Solution (66) > Results			
Object Name	Equivalent Stress	Total Deformation	
State	Solved		
	Scope		
Scoping Method	Geometry Selec	ction	
Geometry	All Bodies		
	Definition		
Туре	Equivalent (von-Mises) Stress	Total Deformation	
Ву	Time		
Display Time	Last		
Calculate Time History	Yes		
Identifier			
Suppressed	No		
	Integration Point Results		
Display Option	Averaged		
Average Across Bodies	No		
	Results		
Minimum	1.6537e-003 Pa	0. m	
Maximum	2.2116e+006 Pa	3.3113e-005 m	
Minimum Occurs On	Part 5		
Maximum Occurs On	Part 4	Part 15	
Information			
Time	1. s		
Load Step	1		
Substep	1		
Iteration Number	Iteration Number 1		

FIGURE 3 Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress

TABLE 19 Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress					
Time [s] Minimum [Pa] Maximum [Pa]					
	1.	1.6537e-003	2.2116e+006		

FIGURE 4 Model (B4) > Static Structural (B5) > Solution (B6) > Equivalent Stress > Figure

Dinámica de Robots.	Reporte de práctica.
E se actives to the residence has an important active common active common and what active common process.	
FIGURE 5 Model (B4) > Static Structural (B5) > Solut	ion (B6) > Total Deformation
	(,

	TABLE 20	0	
Model (B4) > Static St			
Time 1.	[s] Minimum [m] 0.	3.3113e-005	
1.			
Model (B4) > Static Struct	FIGURE 6 ural (B5) > Solutio:		eformation > Figure
		(55)	

inámica de Robots.	Reporte de práctica.	
2 Y HOME FROM NO LE THE CHIN, LITTER & THE CHIN, LITTER & CHIN, LITTER		

Structural Steel

TABLE 21
Structural Steel > Constants

Density	7850 kg m^-3
Isotropic Secant Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat	434 J kg^-1 C^-1
Isotropic Thermal Conductivity	60.5 W m^-1 C^-1
Isotropic Resistivity	1.7e-007 ohm m

TABLE 22 Structural Steel > Appearance

Red	Green	Blue
132	139	179

TABLE 23
Structural Steel > Compressive Ultimate Strength

Compressive Ultimate Strength Pa

0

TABLE 24

Structural Steel > Compressive Yield Strength

Compressive Yield Strength Pa 2.5e+008

TABLE 25

Structural Steel > Tensile Yield Strength

Tensile Yield Strength Pa 2.5e+008

TABLE 26

Structural Steel > Tensile Ultimate Strength

Tensile Ultimate Strength Pa 4.6e+008

TABLE 27

Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C
22

TABLE 28
Structural Steel > Alternating Stress Mean Stress

Alternating Stress Pa	Cycles	Mean Stress Pa
3.999e+009	10	0
2.827e+009	20	0
1.896e+009	50	0
1.413e+009	100	0
1.069e+009	200	0
4.41e+008	2000	0
2.62e+008	10000	0
2.14e+008	20000	0
1.38e+008	1.e+005	0
1.14e+008	2.e+005	0
8.62e+007	1.e+006	0

TABLE 29
Structural Steel > Strain-Life Parameters

Dinámica de Robots.

Reporte de práctica.

Strength Coefficient Pa		Ductility Coefficient	•	Cyclic Strength Coefficient Pa	Hardening
9.2e+008	-0.106	0.213	-0.47	1.e+009	0.2

TABLE 30 Structural Steel > Isotropic Elasticity

Temperature C	Young's Modulus Pa	Poisson's Ratio	Bulk Modulus Pa	Shear Modulus Pa
	2.e+011	0.3	1.6667e+011	7.6923e+010

TABLE 31 Structural Steel > Isotropic Relative Permeability

Relative Permeability 10000

Conclusión.