ADDITIVE COMBINATORICS COURSE PROBLEMS 3

(1) (a) Let (G, +) be an abelian group and let $A, B \subset G$ be finite sets. Let

$$E(A,B) = \#\{(a,a',b,b') \in A^2 \times B^2 : a+b = a'+b'\}.$$

- Prove that $E(A,B) \geqslant |A|^2 |B|^2 / |A+B|$. (b) Let $A = [N] \cup \{2^N, \dots, 2^{2N}\}$. Show that $E(A,A) \gg |A|^3$ but $|A+A| \gg |A|^2$.
- (2) Let $A \subset G$ be a finite subset of an abelian group (G, +). Assume that

$$E(A,A)\geqslant \frac{|A|^3}{K},$$

for some $K \ge 1$. Combine a form of the Ruzsa triangle inequality with the Balog-Szemerédi–Gowers theorem to deduce that there exists a subset $A' \subset A$ such that $|A'| \gg K^{-O(1)}|A|$ and $|A' + A'| \ll K^{O(1)}|A'|$.

- (3) Let $\varepsilon > 0$ and let A, B be finite sets. Let H = (A, B, E) be a bipartite graph with edge set E between A and B, such that $|E| \ge |A||B|/K$ for some $K \ge 1$.
 - (a) The neighbourhood of $b \in B$ is defined to be $A' = A'(b) = \{a \in A : \{a, b\} \in E\}$. Show that

$$\mathbb{E}_{b \in B}|A'| \geqslant \frac{|A|}{K}.$$

(b) Let S be the set of $(a'_1, a'_2) \in A' \times A'$ such that a'_1 and a'_2 are connected by fewer than $\varepsilon |B|/(2K^2)$ paths of length 2. Show that

$$\mathbb{E}_{b \in B}|S| < \frac{\varepsilon |A|^2}{2K^2}.$$

(c) Deduce that there must exist $b \in B$ such that

$$|A'|^2 - \frac{|S|}{\varepsilon} \geqslant \frac{|A|^2}{2K^2}.$$

(d) Conclude that $|S| \leq \varepsilon |A'|^2$; i.e. all but at most $\varepsilon |A'|^2$ pairs of vertices $a_1', a_2' \in A'$ are joined by at least $\frac{\varepsilon}{2K^2}|B|$ paths of length 2.