Информатика. Системы счисления. 14 Задание ЕГЭ

Системы счисления ($\partial anee\ CC$) — это совокупность правил записи чисел при помощи письменных знаков. Мы с вами пользуемся системой счисления с основанием 10, но существуют и многие другие.

Основание системы счисления – это количество различных знаков или символов, используемых для представления цифр в данной системе.

В информатике самыми распространенными являются двоичная, восьмеричная и шестнадцатеричная.

Для начала научимся переводить из десятичной СС в любую другую. Для этого рассмотрим пример перевода из десятичной в пятеричную числа 223.

Для того, чтобы это сделать, необходимо разделить нацело исходное число на основание той CC, в которую хотим перевести, а также запомнить остаток.

Шаг 1 223 /
$$5 = 44$$
 (ост. 3)

После этого, полученное частное нужно снова поделить на основание СС. Так делим до тех пор, пока частное не станет равно 0.

Шаг 2 44 /
$$5 = 8$$
 (ост. 4)

Шаг 3 8
$$/$$
 5 = 1 (ост. 3)

Шаг 3 1
$$/$$
 5 = 0 (ост. 1)

После этого необходимо собрать наше число. Для этого записываем остатки от деления, начиная с последнего: 1343_5 – число 223 в пятеричной системе счисления.

Теперь необходимо научиться переводить число из любой СС в десятичную.

Чтобы это сделать, нужно умножить значение каждой цифры на основание СС в степени, равной разряду этой цифры (разряды начинаются с нулевого с правой стороны!) и полученные значения сложить.

Например:
$$135_6 = 1 \cdot 6^2 + 3 \cdot 6^1 + 5 \cdot 6^0 = 59_{10}$$

Рассмотрим еще такой пример: необходимо перевести 2^3 в двоичную CC.

$$2^3 = 8$$

Воспользуемся методом, которому уже научились:

$$8 / 2 = 4$$
 (ост. 0)

$$4/2 = 2$$
 (ост. 0)

$$2 / 2 = 1$$
 (ост. 0)

$$1 / 2 = 0$$
 (oct. 1)

Следовательно, $2^3=1000_2$. Заметим, что полученное число выглядит как единица и три нуля и двойка была в третьей степени. Действительно, запись числа N^q в СС с основанием N всегда будет иметь вид $10...0_N$, где количество нулей равно степени q.

$$a^N = \underbrace{10...0_a}_{N}$$

Пришло время разобраться как происходят арифметические операции в других СС. Да собственно так же как и в десятичной, только стоит помнить, что если в десятичной СС самой большой цифрой является 9 (потому что она имеет 10 символов для записи числа), то в других СС это будет самое большое из тех символов, которые можно использовать (например для четверичной это цифра 3).

А теперь на практике: $1010_2 - 1_2 = 1001$

Из этого и из предыдущего вывода следует полезный факт:

$$a^{N} - 1 = \underbrace{(a-1)(a-1)...(a-1)_{a}}_{N}$$

Для вашего удобства приведем еще одно полезное правило:

$$a^{N} - a^{M} = \underbrace{(a-1)(a-1)}_{N-M} \underbrace{0...0_{a}}_{M}$$

Перейдем к практике решения задач 14 из ЕГЭ

Существует два типа задач номер 14. В первом необходимо определить основание системы счисления. Во втором посчитать количество каких-нибудь элементов в записи числа в некоторой СС. Сейчас на примерах разберем как решать такие задачи.

Для начала решим задачу первого типа:

Укажите такое N, при котором равенство $105_N = 150_9$ верно.

Решение:

Переведем обе части равенства в десятичную СС.

$$105_N = 1 \cdot N^2 + 0 \cdot N + 5$$

$$150_9 = 1 \cdot 9^2 + 5 \cdot 9 + 0 = 81 + 45 = 126$$

Прировняем обе части, ведь это все таки равенство:

 $N^2 + 5 = 126$ Это совсем простое квадратное уравнение.

$$N^2 = 121 \Rightarrow N = 11$$

Ответ: 11

Решим задачу второго типа:

Значение арифметического выражения: $64^6 + 4^{12} - 16$ – записали в системе счисления с основанием 4. Сколько цифр 3 содержится в этой записи?

Решение:

Приведем все к виду 4^x : $(4^3)^6 + 4^{12} - 4^2 = 4^{18} + 4^{12} - 4^2$. После этого нужно расставить числа в порядке убывания степеней, в этом примере они уже так стоят.

 4^{18} в четверичной СС записывается как единица и 18 нулей. Прибавим к этому числу 4^{12} , так как это число записывается как единица и 12 нулей, то в итоге мы получим число 10..010..0, где в первом пропуске 5 нулей, а во втором 12.

Полезный факт для самопроверки: количество цифр всегда должно быть равно самой максимальной степени + 1, если при вычитании старший разряд не обратился в θ .

Остается только вычесть 4^2 , для этого мы занимаем у самого маленького не нулевого разряда. Если в десятичной системе счисления мы занимаем 10, то в четверичной – 4. После этого поучится число вида: 10...03...300. Осталось определить, сколько же троек в этом числе, для этого обратимся к самой последней формуле из теории. Таким образом ответом будем 10.

Ответ: 10

Задачи для самостоятельного решения

Задача 1

Укажите сколько всего цифр 3 встречается в записи чисел 13, 17, 19, 23 четверичной системе счисления.

Ответ

3

Решение

Переведем все числа в четверичную СС:

$$13_{10} = 31_4$$

$$17_{10} = 101_4$$

$$19_{10} = 103_4$$

$$23_{10} = 113_4$$

Посчитаем количество цифр 3: их 3.

Укажите сколько всего цифр 4 встречается в записи чисел 23, 24, 25, ..., 37 в семеричной системе счисления.

Ответ

9

Решение

Переведем числа 23 и 37 в семеричную СС:

$$23_{10} = 32_7$$

$$37_{10} = 52_7$$

Между ними располагаются числа $33_7, 34_7, 35_7, 36_7, 40_7, 41_7, 42_7, 43_7, 44_7, 45_7,$

$$46_7, 50_7, 51_7$$

Посчитаем количество цифр 4: их 9.

Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 41, запись которых в системе счисления с основанием 6 начинается на 2?

Ответ

2, 12, 13, 14, 15, 16, 17

Решение

Сначала определим запись числа 41 в шестеричной системе счисления: $41_{10} = 105_6$. Выпишем числа, не большие 41, запись которых в шестеричной системе начинается на 2: 2, 20, 21, 22, 23, 24, 25.

Переведем их в десятичную систему счисления: $2_6=2_{10},\ 20_6=12_{10},\ 21_6=13_{10},\ 22_6=14_{10},\ 23_6=15_{10},\ 24_6=16_{10},\ 25_6=17_{10}.$

Укажите через запятую в порядке возрастания все десятичные числа, не превосходящие 18, запись которых в системе счисления с основанием 4 начинается на 3?

Ответ

3, 12, 13, 14, 15

Решение

Сначала определим запись числа 18 в четверичной системе счисления: $18_{10} = 102$. Выпишем числа, не большие 18, запись которых в четверичной системе начинается на 3: 3, 30, 31, 32, 33.

Переведем их в десятичную систему счисления: $3_4=3_{10},\ 30_4=12_{10},\ 31_4=13_{10},\ 32_6=14_{10},\ 33_4=15_{10}.$

Укажите все через запятую все системы счисления, в которых запись десятичного числа 26 трехзначная.

Ответ

3, 4, 5

Решение

Так как запись должна быть трехзначная, то это значит что квадрат основания системы счисления должен быть меньше или равен числа, а куб строго больше.

Под эти условия подходят троичная, четверичная и пятеричная СС.

$$3^2 = 9 \leqslant 26 < 27 = 3^3$$

$$4^2 = 16 \leqslant 26 < 64 = 4^3$$

$$5^2 = 25 \leqslant 26 < 125 = 5^3$$

Переведем 26 в эти системы счисления, чтобы проверить.

$$26_{10} = 222_3$$

$$26_{10} = 122_4$$

$$26_{10} = 101_5$$

Решите уравнение: $234_x = 163_7$

Ответ

6

Решение

Переведем обе части равенства в десятичную СС.

$$234_x = 2 \cdot x^2 + 3 \cdot x + 4$$

$$163_7 = 1 \cdot 7^2 + 6 \cdot 7 + 3 = 49 + 42 + 3 = 94$$

Приравняем обе части, ведь это все таки равенство:

$$2 \cdot x^2 + 3 \cdot x + 4 = 94$$
 Это совсем простое квадратное уравнение.

$$2 \cdot x^2 + 3 \cdot x = 90 \Rightarrow x = 6$$

Решите уравнение: $414_x = 1231_4$

Ответ

5

Решение

Переведем обе части равенства в десятичную СС.

$$414_x = 4 \cdot x^2 + 1 \cdot x + 4$$

$$1231_4 = 1 \cdot 4^3 + 2 \cdot 4^2 + 3 \cdot 4 + 1 = 64 + 32 + 12 + 1 = 109$$

Приравняем обе части, ведь это все таки равенство:

$$4 \cdot x^2 + 1 \cdot x + 4 = 109$$
 Это совсем простое квадратное уравнение.

$$4 \cdot x^2 + 1 \cdot x = 105 \Rightarrow x = 5$$

Решите уравнение: $217_x = 454_6$

Ответ

9

Решение

Переведем обе части равенства в десятичную СС.

$$217_x = 2 \cdot x^2 + 1 \cdot x + 7$$

$$454_6 = 4 \cdot 6^2 + 5 \cdot 6 + 4 = 144 + 60 + 4 = 178$$

Приравняем обе части, ведь это все таки равенство:

$$2 \cdot x^2 + 1 \cdot x + 7 = 178$$
 Это совсем простое квадратное уравнение.

$$2 \cdot x^2 + 1 \cdot x = 171 \Rightarrow x = 9$$

Запись десятичного числа в системах счисления с основаниями 4 и 5 в обоих случаях имеет последней цифрой 0. Какое минимальное натуральное десятичное число удовлетворяет этому требованию?

Ответ

20

Решение

Если запись числа в системе счисления с основанием N заканчивается на 0, то это число делится на N нацело, поэтому в данной задаче требуется найти наименьшее натуральное число, которое делится одновременно на 4 и на 5, то есть это число 20.

Запись десятичного числа в системах счисления с основаниями 3 и 7 в обоих случаях имеет последней цифрой 0. Какое минимальное натуральное десятичное число удовлетворяет этому требованию?

Ответ

21

Решение

Если запись числа в системе счисления с основанием N заканчивается на 0, то это число делится на N нацело, поэтому в данной задаче требуется найти наименьшее натуральное число, которое делится одновременно на 3 и на 7, то есть это число 21.

Запись десятичного числа в системах счисления с основаниями 4 и 8 в обоих случаях имеет последней цифрой 0. Какое минимальное натуральное десятичное число удовлетворяет этому требованию?

Ответ

8

Решение

Если запись числа в системе счисления с основанием N заканчивается на 0, то это число делится на N нацело, поэтому в данной задаче требуется найти наименьшее натуральное число, которое делится одновременно на 4 и на 8, то есть это число 8.

Укажите наименьшее основание системы счисления, в которой запись числа 43 двузначна.

Ответ

7

Решение

Так как число по условию двухзначное, то достаточно найти первое целое число, квадрат которого больше 43; это – 7, так как:

$$6^2 = 36 < 43 < 49 = 7^2$$

Следовательно, в системе счисления с основанием 6 запись числа 43 будет трёх-значной, а в 7-ой системе счисления – двузначной.

Укажите наименьшее основание системы счисления, в которой запись числа 37 трёхзначная.

Ответ

4

Решение

Так как число по условию трехзначное, то достаточно найти первое целое число, куб которого больше 37; это – 4, так как:

$$3^3 = 27 < 37 < 64 = 4^3$$

Следовательно, в системе счисления с основанием 3 запись числа 37 будет четырёхзначная, а в 4-ой системе счисления – трехзначной.

Значение арифметического выражения: $49^{14} + 7^{11} - 7^5$ – записали в системе счисления с основанием 7. Сколько цифр 0 содержится в этой записи?

Ответ

22

Решение

Приведем все к виду 7^x : $(7^2)^{14} + 7^{11} - 7^5 = 7^{28} + 7^{11} - 7^5$. После этого нужно расставить числа в порядке убывания степеней.

 7^{28} в семеричной СС записывается как единица и 28 нулей. Прибавим к этому числу 7^{11} , так как это число записывается как единица и 11 нулей, то в итоге мы получим число $1\underbrace{0..0}_{16}$ 1 $\underbrace{0..0}_{16}$, где в первом пропуске 16 нулей, а во втором 11.

Вычтем 7^5 , для этого мы занимаем у самого маленького не нулевого разряда. После этого получается число вида: 10...06...600000. Считаем количество нулей: в первом пропуске их 17 и еще в конце 5.

Значение арифметического выражения: $16^{12} + 8^{11} - 4^9 - 2^3$ – записали в системе счисления с основанием 2. Сколько цифр 0 содержится в этой записи?

Ответ

19

Решение

Приведем все к виду 2^x : $(2^4)^{12} + (2^3)^{11} - (2^2)^9 - 2^3 = 2^{48} + 2^{33} - 2^{18} - 2^3$. После этого нужно расставить числа в порядке убывания степеней.

 2^{48} в двоичной СС записывается как единица и 48 нулей. Прибавим к этому числу 2^{33} , так как это число записывается как единица и 33 нуля, то в итоге мы получим число 10...0 1 0...0, где в первом пропуске 14 нулей, а во втором 33.

Вычтем 2^{18} , для этого мы занимаем у самого маленького не нулевого разряда. После этого получается число вида: 10...0 1...1 0...0.

Вычтем 2^3 , для этого мы занимаем у самого маленького не нулевого разряда. После этого получается число вида: $1 \underbrace{0...0}_{1...} \underbrace{1...1}_{1...} 0 \underbrace{1...1}_{1...} 000$.

Считаем количество нулей: в первом пропуске их 15 и еще в середине 1 и в конце 3.

Значение арифметического выражения: $27^9 - 2 \cdot 9^5 - 3^3$ – записали в системе счисления с основанием 3. Сколько цифр 2 содержится в этой записи?

Ответ

23

Решение

Приведем все к виду 3^x : $(3^3)^9 - 2 \cdot (3^2)^5 - 3^3 = 3^{27} - 2 \cdot 3^{10} - 3^3$. После этого нужно расставить числа в порядке убывания степеней.

 3^{27} в троичной СС записывается как единица и 27 нулей.

Вычтем $2 \cdot 3^{10}$, так как это число записывается как двойка и 10 нулей, то в итоге мы получим число 2..210..0, где в первом пропуске 16 двоек, а во втором 10 нулей.

Вычтем 3^3 , для этого мы занимаем у самого маленького не нулевого разряда. После этого получается число вида: 2...202...2000. Считаем количество двоек: в первом пропуске их 16, а во втором 7.

Значение арифметического выражения: $81^{28} + 6 \cdot 9^{17} - 9^9$ – записали в системе счисления с основанием 9. Сколько цифр 8 содержится в этой записи?

Ответ

8

Решение

Приведем все к виду 9^x : $(9^2)^{28} + 6 \cdot 9^{17} - 9^9 = 9^{56} + 6 \cdot 9^{17} - 9^9$. После этого нужно расставить числа в порядке убывания степеней.

 9^{56} в девятеричной СС записывается как единица и 56 нулей. Прибавим к этому числу $6\cdot 9^{17}$, так как это число записывается как шестерка и 17 нулей, то в итоге мы получим число 10..060..0, где в первом пропуске 38 нулей, а во втором 17.

Вычтем 9^9 , для этого мы занимаем у самого маленького не нулевого разряда. После этого получается число вида: 10...058...80...0. Считаем количество восьмерок: их 17-9=8.

Значение арифметического выражения: $125^{21} - 4 \cdot 25^{17} - 2 \cdot 5^{15} - 3 \cdot 5^5$ – записали в системе счисления с основанием 5. Сколько цифр 4 содержится в этой записи?

Ответ

55

Решение

Приведем все к виду 5^x : $(5^3)^{21} - 4 \cdot (5^2)^{17} - 2 \cdot 5^{15} - 3 \cdot 5^5 = 5^{63} - 4 \cdot 5^{34} - 2 \cdot 5^{15} - 3 \cdot 5^5$. После этого нужно расставить числа в порядке убывания степеней.

 5^{63} в пятеричной СС записывается как единица и 63 нуля.

Вычтем $4\cdot 5^{34}$, для этого мы занимаем у самого маленького не нулевого разряда. После этого получается число вида: 4...410...0, где в первом пропуске 28 четверок, а во втором 34 нуля.

Вычтем $2 \cdot 5^{15}$, для этого мы занимаем у самого маленького не нулевого разряда. После этого получается число вида: 4...404...430...0, где в первом пропуске 28 четверок, во втором 18 четверок, а в третьем 15 нулей.

Вычтем $3 \cdot 5^5$, для этого мы занимаем у самого маленького не нулевого разряда. После этого получается число вида: 4...404...424...4200000.

Считаем количество четверок: в первом пропуске их 28, во втором 18 четверок, а в третьем 9. Всего 55.

Дано арифметическое выражение: $6^{23}+6^x-6^3$. Найдите такой x (3 < x < 23), чтобы количество нулей, в записи числа в системе счисления с основанием 6, равнялось 8.

Ответ

18

Решение

При выполнении сложения $6^{23}+6^x$ число в шестеричной СС будет выглядеть как 10...010...0, где в первом пропуске количество нулей равно 23-x-1, а во втором x.

Вычтем 6^3 , так как это число записывается как единица и 3 нуля, то в итоге мы получим число 10...05...5000, где в первом пропуске 23-x нулей.

Так как всего нулей в числе должно быть 8, а 3 уже есть в конце, то получаем, что $23-x=8-3\Longrightarrow x=18$

Дано арифметическое выражение: $9^{30}+9^x-9^6$. Найдите такой x (6 < x < 30), чтобы количество нулей, в записи числа в системе счисления с основанием 9, равнялось 12.

Ответ

24

Решение

При выполнении сложения $9^{30}+9^x$ число в девятиричной СС будет выглядеть как 10...010...0, где в первом пропуске количество нулей равно 30-x-1, а во втором x.

Вычтем 9^6 , так как это число записывается как единица и 6 нуля, то в итоге мы получим число 10...08...8000000, где в первом пропуске 30-x нулей.

Так как всего нулей в числе должно быть 12, а 6 уже есть в конце, то получаем, что $30-x=12-6\Longrightarrow x=24$

Дано арифметическое выражение: $8^{42}+8^x-8^8$. Найдите такой x (8 < x < 43), чтобы количество семерок, в записи числа в системе счисления с основанием 8, равнялось 17.

Ответ

25

Решение

При выполнении сложения $8^{42}+8^x$ число в восьмеричной СС будет выглядеть как 10...010...0, где в первом пропуске количество нулей равно 42-x-1, а во втором x.

Вычтем 8^8 , так как это число записывается как единица и 8 нулей, то в итоге мы получим число 10...07...7000, где во втором пропуске x-8 семерок. Так как всего семерок в числе должно быть 17, то получаем, что $x-8=17 \Longrightarrow x=25$

Дано арифметическое выражение: $9^{58} + 9^x - 9^{16}$. Найдите такой x (16 < x < 58), чтобы количество нулей, в записи числа в системе счисления с основанием 9, равнялось 29.

Ответ

45

Решение

При выполнении сложения $9^{58}+9^x$ число в девятеричной СС будет выглядеть как 10...010...0, где в первом пропуске количество нулей равно 58-x-1, а во втором x.

Вычтем 9^{16} , так как это число записывается как единица и 16 нулей, то в итоге мы получим число 10...08...90...0, где в первом пропуске количество нулей равно 58-x, а во втором 16. Так как всего нулей в числе должно быть 29, то получаем, что $58-x+16=29\Longrightarrow x=45$

Дано арифметическое выражение: $3^{36}+3^x-3^9$. Найдите такой x (9 < x < 36), чтобы количество двоек, в записи числа в системе счисления с основанием 3, равнялось количеству нулей.

Ответ

27

Решение

При выполнении сложения $3^{36}+3^x$ число в троичной СС будет выглядеть как 10...010...0, где в первом пропуске коллчество нулей равно 36-x-1, а во втором x.

Вычтем 3^9 , так как это число записывается как единица и 9 нулей, то в итоге мы получим число 10...02...20...0, где в первом пропуске 36-x нулей, втором пропуске x-9 двоек, в третьем 9 нулей. Следовательно, $36-x+9=x-9\Longrightarrow x=27$

Дано арифметическое выражение: $5^{44} + 5^x - 5^{11}$. Найдите такой x (11 < x < 44), чтобы количество четверок, в записи числа в системе счисления с основанием 5, равнялось количеству нулей.

Ответ

33

Решение

При выполнении сложения $5^{44} + 5^x$ число в пятиричной СС будет выглядеть как 10...010...0, где в первом пропуске количество нулей равно 44-x-1, а во втором x.

Вычтем 5^{11} , так как это число записывается как единица и 11 нулей, то в итоге мы получим число 10...04...40...0, где в первом пропуске 44-x нулей, втором пропуске x-11 четверок, в третьем 11 нулей. Следовательно, $44-x+11=x-11\Longrightarrow x=33$

Дано арифметическое выражение: $7^{28}+7^x-7^8$. Найдите такой x (8 < x < 28), чтобы количество шестерок, в записисчисла в системе счисления с основанием 7, равнялось количеству нулей.

Ответ

22

Решение

При выполнении сложения $7^{28} + 7^x$ число в семеричной СС будет выглядеть как 10...010...0, где в первом пропуске количество нулей равно 28 - x - 1, а во втором x.

Вычтем 7^8 , так как это число записывается как единица и 8 нулей, то в итоге мы получим число 10...06...60...0, где в первом пропуске 28-x нулей, втором пропуске x-8 шестёрок, в третьем 8 нулей. Следовательно, $28-x+8=x-8\Longrightarrow x=22$

Дано арифметическое выражение: $4^{2021} + 4^x - 3 \cdot 4^{523}$. Найдите такой x (523 < x < 2020), чтобы количество троек, в записи числа в системе счисления с основанием 4, равнялось количеству нулей.

Ответ

1534

Решение

При выполнении сложения $4^{2021}+4^x$ число в четверичной СС будет выглядеть как 10...010...0, где в первом пропуске количество нулей равно 2021-x-1, а во втором x.

Вычтем $3\cdot 4^{523}$, так как это число записывается как тройка и 523 нуля, то в итоге мы получим число 10...03...310...0, где в первом пропуске 2021-x нулей, втором пропуске x-523-1 троек, в третьем 523 нуля. Следовательно, $2021-x+523=x-523-1\Longrightarrow x=1534$

Дано арифметическое выражение: $12^{21} + 12^x - 12^4$. Найдите такой x (4 < x < 21), чтобы количество чисел B, в записи числа в системе счисления с основанием 12, было в два раза больше количества нулей.

Ответ

18

Решение

При выполнении сложения $12^{21}+12^x$ число в двенадцатеричной СС будет выглядеть как 10...010...0, где в первом пропуске количество нулей равно 21-x-1, а во втором x.

Вычтем 12^4 , так как это число записывается как единица и 4 нуля, то в итоге мы получим число 10...0B...B0000, где в первом пропуске 21-x нулей, а во втором пропуске x-4 чисел B и в конце еще четыре нуля. Следовательно, $x-4=2(21-x+4)\Longrightarrow x=18$

Дано арифметическое выражение: $15^{54}+15^x-15^{18}$. Найдите такой x (18 < x < 54), чтобы количество чисел E, в записи числа в системе счисления с основанием 15, было в два раза меньше количества нулей.

Ответ

36

Решение

При выполнении сложения $15^{54}+15^x$ число в пятнадцатиричной СС будет выглядеть как 10...010...0, где в первом пропуске количество нулей равно 54-x-1, а во втором x.

Вычтем 15^{18} , так как это число записывается как единица и 18 нулей, то в итоге мы получим число 10...0E...E0...0, где в первом пропуске 54-x нулей, а во втором пропуске x-18 чисел E и в конце еще 18 нулей. Следовательно, $2(x-18)=54-x+18\Longrightarrow x=36$

Дано арифметическое выражение: $13^{40}+13^x-13^{15}$. Найдите такой x (15 < x < 40), чтобы количество чисел C, в записи числа в системе счисления с основанием 13, было в три раза меньше количества нулей.

Ответ

25

Решение

При выполнении сложения $13^{40}+13^x$ число в тринадцатеричной СС будет выглядеть как 10...010...0, где в первом пропуске количество нулей равно 40-x-1, а во втором x.

Вычтем 13^{15} , так как это число записывается как единица и 15 нулей, то в итоге мы получим число 10...0C...C0...0, где в первом пропуске 40-x нулей, а во втором пропуске x-15 чисел C и в конце еще 15 нулей. Следовательно, $3(x-15)=40-x+15\Longrightarrow x=25$

Дано арифметическое выражение: $14^{64} + 14^x - 14^7$. Найдите такой x (7 < x < 64), чтобы количество чисел D, в записи числа в системе счисления с основанием 14, было в три раза больше количества нулей.

Ответ

55

Решение

При выполнении сложения $14^{64}+14^x$ число в 14-ричной СС будет выглядеть как 10...010...0, где в первом пропуске количество нулей равно 64-x-1, а во втором x.

Вычтем 14^7 , так как это число записывается как единица и 7 нулей, то в итоге мы получим число 10...0D...D0...0, где в первом пропуске 64-x нулей, а во втором пропуске x-7 чисел D и в конце еще семь нулей. Следовательно, $x-7=3(64-x+7)\Longrightarrow x=55$