

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

PLANO DE ENSINO

DEPARTAMENTO: Ciência da Computação

DISCIPLINA: Complexidade de Algoritmos SIGLA: CAL0001

CARGA HORÁRIA TOTAL: 72 TEORIA: 36 PRÁTICA: 36

CURSO(S): Bacharelado em Ciência da Computação

SEMESTRE/ANO: 2/2016 PRÉ-REQUISITOS: TEG0001

OBJETIVO GERAL DA DISCIPLINA: Analisar a complexidade de tempo e espaço de algoritmos. Identificar o melhor caso, o pior caso e o caso médio de execução de algoritmos. Identificar problemas tratáveis e intratáveis.

EMENTA: Estudo de complexidade via métodos de desenvolvimento de algoritmos. Modelos de computação e ferramentas para notação para análise de algoritmos. Algoritmos iterativos e recursivos. Solubilidade de problemas. Intratabilidade de problemas. Análise da complexidade de algoritmos clássicos na área da computação.

OBJETIVOS ESPECÍFICOS:

Capacitar o aluno a analisar a complexidade de tempo e espaço de algoritmos e ser capaz de identificar problemas considerados intratáveis.

C.H.	CONTEÚDOS PROGRAMATICOS	AVALIAÇÃO
12	Apresentação do planejamento e da ementa da disciplina.	
	Introdução à disciplina.	
	Conceitos Básicos de Complexidade:	
	- Notação O grande	
	- Ordens de complexidade	
	- Análise de complexidade com uma variável	Prova 1
	- Análise de complexidade de tempo de algoritmos recursivos	
	- Somatórios	
	- Complexidade de Espaço	
	- Notação Assintótica	
	- Teorema Mestre	
	Algoritmos Eficientes de Ordenação: Merge Sort, Quick Sort e Heap Sort.	Prova 1
	Algoritmos de Ordenação Lineares: Counting Sort e Bucket Sort.	Trabalho 1
	Análise de Complexidade de Estruturas de Dados Elementares: pilha, fila,	
	lista encadeada e árvore.	Trabalho 2
	Tabelas Hash.	
	Análise de Complexidade com múltiplas variáveis	Prova 1
	Análise de Complexidade de operações elementares com inteiros de 'n' bits	riova i
	Números primos, aritmética modular e algoritmo de criptografia RSA	Prova 2
		Trabalho 3
	Abordagens para Resolução de Problemas:	

- Indução matemática	
- Divisão e conquista	Prova 2
- Algoritmos gulosos	Trabalho 4
- Algoritmos de tentativa e erro	
- Programação dinâmica	
- Algoritmos de aproximação	
Conceitos de Teoria da Computação vinculados com complexidade:	
- Problemas tratáveis e intratáveis;	
- Classes de problemas: P, NP, NP-Completo e NP-Difícil;	
- Redução de problemas;	Prova 2
- Problemas NP-Completos: SAT, 3-CNF-SAT, Clique, Cobertura de	
Vértices, Ciclo Hamiltoniano, Caixeiro Viajante, Subset-Sum	
- Algoritmos pseudo-polinomiais	

METODOLOGIA PROPOSTA:

A disciplina será ministrada através de aula expositivas da teoria e trabalhos práticos, fazendo um paralelo através de discussões em sala com situações e problemas reais.

AVALIAÇÃO:

Do desempenho do aluno:

O desempenho do aluno será avaliado com base no desenvolvimento das seguintes atividades e com os seguintes critérios:

- a) Duas provas escritas (P1 e P2)
- b) Três trabalhos de síntese e implementação de algoritmos (T1, T2, T3)
- c) Um trabalho de implementação de algoritmos para resolução de problemas (T4)

Média = (20*P1 + 20*P2 + 20*T1 + 10*T2 + 20*T3 + 10*T4) / 100

BIBLIOGRAFIA (GERAL) OU DE USO DA DISCIPLINA:

Básica:

Algoritmos. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Cliford Stein. Campus.

Projeto de Algoritmos com Implementações em Pascal e C. Nívio Ziviani. Cengage Learning.

Data structures and Algorithms. Data structures and algorithms. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman. Addison Wesley, 1987.

Complementar:

The Status of the P Versus NP Problem. Lance Fortnow. Communications of the ACM, Vol. 52 No. 9, Pages 78-86.

Algorithms. Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani. McGraw Hill.