Claims

A conductive composition formed of a mixture of liquid silicon rubber and [1] conductive carbon black, wherein a weight ratio between the liquid silicon rubber and the conductive carbon black is 100:1~15. The conductive composition of claim 1, wherein the size of a particle of the [2] conductive carbon black is 20 through 40 nm and the amount of absorption of dibutyl phthalate (DBP) is 300 through 500 ml/100g. A conductive composition formed of a mixture of liquid silicon rubber and [3] graphite powder, wherein a weight ratio between the liquid silicon rubber and the graphite powder is 100:10~150. The conductive composition of claim 3, wherein the size of a particle of the [4] graphite powder is 1 through 10 micrometer and electrical resistance is 0.0005 through 0.08 Ω·cm. The conductive composition of either claim 1 or 3, wherein the thermal [5] expansion coefficient of the liquid silicon rubber is 200×10⁻⁶·K⁻¹ through 300×10. ⁶⋅K⁻¹. The conductive composition of either claim 1 or 3, wherein a diluent is added to [6] make the flow of the conductive composition smooth. The conductive composition of claim 6, wherein the diluent is toluene or xylene. [7] A carbon flexible heating structure formed by molding a conductive composition [8] obtained by mixing liquid silicon rubber and carbon black at a weight rate in a range of 100:1~15 into a particular shape and curing a mixture. A carbon flexible heating structure formed by molding a conductive composition [9] obtained by mixing liquid silicon rubber and graphite powder at a weight rate in a range of 100:10~150 into a particular shape and curing a mixture. The carbon flexible heating structure of either claim 8 or 9, wherein the carbon [10] flexible heating structure has the shape of a mesh, a rod, a plate, a ring, or a bar. The carbon flexible heating structure of either claim 8 or 9, wherein the carbon [11] flexible heating structure is a reinforcing material of a conductive composition filled with short staples. The carbon flexible heating structure of claim 10, wherein the mesh is a fabric [12] made of a woof and a warp and has port portions formed longer than the woof or the warp of the fabric, and the port portions are formed of a conductive metal wire having superior conductivity. The carbon flexible heating structure of claim 12, wherein the port portions are [13] tin-plated copper wires or silver wires. The carbon flexible heating structure of claim 11, wherein the diameter of the [14]

PCT/KR2005/000914

ring, or a bar.

	short staple is 1 through 50 micrometer and the short staple is one of a glass
,	fiber, a carbon fiber, and a graphite fiber.
[15]	The carbon flexible heating structure of either claim 8 or 9, wherein insulation
	coating formed of an insulating mixture obtained by mixing liquid silicon rubbe
	and a diluent and agitating a mixture is provided on a surface of the carbon
	flexible heating structure.
[16]	A method of manufacturing a carbon flexible heating structure, the method
	comprising:
	mixing a conductive composition formed of liquid silicon rubber and a filler;
	agitating a mixture of the liquid silicon rubber and conductive carbon black by
	adding a diluent at a rate of 1~100% with respect to the weight of the liquid
	silicon rubber; and
	molding the mixture into a particular shape and curing the molded mixture.
[17]	The method of claim 16, wherein in the conductive composition the weight rate
	between the liquid silicon rubber and the conductive carbon black is 100:1~15.
[18]	The method of claim 16, wherein in the conductive composition the weight rate
	between the liquid silicon rubber and graphite powder is 100:10~150.
[19]	The method of claim 16, wherein in the molding and curing of the mixture the
	conductive composition is molded by pasting or coating the conductive
	composition on a frame structure having the shape of a mesh, a rod, a plate, a
	ring, or a bar.
[20]	The method of claim 19, wherein in pasting or coating the conductive
	composition on the frame structure the thickness of the paste or coating is 0.05
	through 0.15 mm.
[21]	The method of claim 16, wherein in the molding and curing of the mixture the

conductive composition is molded to have the shape of a mesh, a rod, a plate, a