Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе \mathbb{N}^2

Дисциплина: Телекоммуникационные технологии **Тема:** Гармоники

Работу выполнил: Ляшенко В.В. Группа: 3530901/80201 Преподаватель:

Богач Н.В.

 ${
m Caнкт-}\Pi{
m erepfypr}$ 2021

Оглавление

1	Сво	ойства преобразовани	я Фурье						2
	1.1	Преобразование Фурье							
	1.2	Свойства							. 4
		1.2.1 Линейность							
		1.2.2 Смещение							
		1.2.3 Изменение масш	птаба						
		1.2.4 Дифференциров	вание						
		1.2.5 Интегрирование	e						
		1.2.6 Свертывание .							
		1.2.7 Произведение .							. (
2	Упр	ражнение 2.1							,
3	Упр	Упражнение 2.2							8
	3.1	Пилообразный сигнал							. 8
	3.2	Спектр пилообразного	сигнала						. (
4	Упр	ражнение 2.3							1
5	Упј	ражнение 2.4							15
	5.1	- Треугольный сигнал .							. 15
	5.2	Объект Spectrum							. 15
	5.3	Изменение компоненты							
6	Упражнение 2.5						1'		
	6.1	Создание функции							. 1'
	6.2	Использование функци							
7	Упр	ражнение 2.6							20
8	8 Выволы						2:		

Список иллюстраций

2.1	Использование интерактивных виджетов IPython	7
3.1	Пилообразный сигнал	Ć
3.2	Спектр пилообразного сигнала	10
3.3	Спектры треугольного и пилообразного сигналов	11
3.4	Спектры прямоугольного и пилообразного сигналов	1.
4.1	Спектр прямоугольного сигнала	13
5.1	Треугольный сигнал	15
5.2	Сравнение сигналов	16
6.1	Спектр прямоугольного сигнала	18
6.2	Сравнение спектров	18
7.1	Спектр пилообразного сигнала	20
7.2		21
7.3	Полученный сигнал	22

Листинги

3.1	Класс пилообразного сигнала	8
3.2	Генерация пилообразного сигнала	8
3.3	Вычисление спектра пилообразного сигнала	9
3.4	Сравнение с треугольным сигналосм	.0
3.5	Сравнение с прямоугольным сигналосм	. 1
4.1	Создание прямоугольного сигнала 1100 Гц	3
4.2	Создание синусоиды 200 Гц	.4
5.1	Создание треугольного сигнала 440 Гц	5
5.2	Вывод нулевой компоненты	5.
5.3	Изменение компоненты	.6
6.1	Функция изменения спектра	7
6.2	Вычисление спектра	7
6.3	Вычисление нового спектра	8
6.4	Воспроизведение сигнала	9
7.1	Создание пилообразного сигнала	20
7.2	Применение функции change_spectrum к сигналу	20
7.3	Получение сигнала	21

Свойства преобразования Фурье

1.1 Преобразование Фурье

Преобразование Фурье – интегральное преобразование, которое является инструментом спектрального анализа непериодических сигналов. Для периодических сигналов используется дискретное преобразование Фурье.

Прямым преобразованием Фурье функции f(t) называется следующая функция (при условии, что интеграл сходится):

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$
 (1.1)

Обратное преобразование в этом случае задается формулой:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$
 (1.2)

1.2 Свойства

1.2.1 Линейность

Преобразование Фурье относится к числу линейных интегральных операций, т.е. спектр суммы сигналов равен сумме спектров этих сигналов.

$$\sum_{i} a_i f_i(t) \Leftrightarrow \sum_{i} a_i F_i(\omega) \tag{1.3}$$

1.2.2 Смещение

При смещении функции по аргументу на t_0 её П Φ умножается на $e^{j\omega t}$.

$$F(\omega) = \int_{-\infty}^{\infty} f(t+t_0)e^{-j\omega t}dt = \int_{-\infty}^{\infty} f(t+t_0)e^{-j\omega(t+t_0)}d(t+t_0)e^{-j\omega(-t_0)} = e^{j\omega t_0}S(\omega)$$
 (1.4)

1.2.3 Изменение масштаба

Если аргумент t функции f(t) заменить на at, где a постоянный коэффициент, то $\Pi\Phi$ функции с $F(\omega)$ изменится на $\frac{1}{|a|}F(\frac{\omega}{a})$.

$$F(\omega) = \int_{-\infty}^{\infty} f(at)e^{-j\omega t}dt = \frac{1}{a} \int_{-\infty}^{\infty} f(at)e^{-j\frac{\omega}{a}at}d(at) = \frac{1}{|a|}F(\frac{\omega}{a})$$
 (1.5)

Появление модуля коэффициента a вызвано тем, что при отрицательном значении коэффициента замена переменной приводит к изменению знаков у пределов интегрирования.

Из равенства следует, что сжатие функции f(t) по времени в a приводит к расширению по частоте в a соответствующего $\Pi\Phi$ и наоборот - расширение функции приводит к сжатию $\Pi\Phi$.

1.2.4 Дифференцирование

При дифференцировании функции f(t) её ПФ умножается на $j\omega$. Для доказательства используем определение понятия производной:

$$f(t) = \frac{df}{dt} = \lim \frac{f(t+\varepsilon) - f(t)}{\varepsilon}$$
(1.6)

Применим к этому выражению ПФ:

$$F(\omega) = \int_{-\infty}^{\infty} \lim_{\varepsilon \to 0} \frac{f(t+\varepsilon) - f(t)}{\varepsilon} e^{-j\omega t} dt = \lim_{\varepsilon \to 0} \frac{S(\omega) e^{j\omega\varepsilon} - S(\omega)}{\varepsilon} = S(\omega) \lim_{\varepsilon \to 0} \frac{e^{j\omega\varepsilon} - 1}{\varepsilon} = j\omega S(\omega)$$
(1.7)

При дифференцировании низкие частоты ослабляются, а высокие усиливаются. Фазовый спектр сигнала сдвигается на 90°для положительны частот и на -90°для отрицательных.

1.2.5 Интегрирование

Интегрирование является операцией обратной дифференцированию. Логично предположить, что при интегрировании функции f(t) её ПФ делится на $j\omega$. Но это утверждение справедливо только для сигналов, не имеющих постоянной составляющей.

$$S(0) = \int_{-\infty}^{\infty} f(t)dt = 0 \tag{1.8}$$

В общем случае результат должен содержать дополнительное слагаемое в виде дельтафункции на нулевой частоте.

$$F(\omega) = \frac{S(\omega)}{j\omega} + \pi S(0)\delta(\omega)$$
 (1.9)

При интегрировании исходного сигнала высокие частоты ослабляются, а низкие усиливаются. Фазовый спектр сигнала сдвигается на -90° для положительны частот и на 90° для отрицательных.

1.2.6 Свертывание

ПФ свертки двух функций равно произведению ПФ свертываемых функций.

$$f(t) = \int_{-\infty}^{\infty} s(f')g(t - t')dt'$$
(1.10)

Подвергнем такую конструкцию ПФ.

$$F(\omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} s(f')g(t-t')dt'e^{-j\omega t}dt = \int_{-\infty}^{\infty} s(f')e^{-j\omega t'} \int_{-\infty}^{\infty} g(t-t')e^{-j\omega(t-t')}d(t-t')dt' = S(\omega)G(\omega)$$
(1.11)

1.2.7 Произведение

Спектр произведения является сверткой спектров. Докажем это.

$$f(t) = s(t)g(t) \tag{1.12}$$

Тогда:

$$F(\omega) = \int_{-\infty}^{\infty} s(t)g(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega')e^{j\omega' t}d\omega'\right)g(t)e^{-j\omega t}dt =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega') \int_{-\infty}^{\infty} g(t)e^{-j(\omega-\omega')t}dtd\omega' = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega')G(\omega-\omega')d\omega' \qquad (1.13)$$

Упражнение 2.1

В начале мы должны для Jupyter загрузить chap02.ipynb, прочитать пояснения и запустить примеры.

Все примеры были успешно запущены. В последнем примере при низких значений freq звук похож на гудение, а при высоких - на скрежет. При изменениях параметра framerate звук получался более приглушённым или наоборот более слышимым (Рис.2.1).

Рис. 2.1: Использование интерактивных виджетов IPython

Упражнение 2.2

3.1 Пилообразный сигнал

Hапишем класс SawtoothSignal, расширяющий Sinusoid и предоставляющий evaluate для оценки пилообразного сигнала.

Рис. 3.1: Пилообразный сигнал

3.2 Спектр пилообразного сигнала

```
Теперь вычислим спектр пилообразного сигнала (Рис.3.2).
sawtooth_wave = signal.make_wave(duration=0.5, framerate=40000)
sawtooth_wave.apodize()
spectrum = sawtooth_wave.make_spectrum()
spectrum.plot()
decorate(xlabel='Frequency (Hz)')
```

Листинг 3.3: Вычисление спектра пилообразного сигнала

Рис. 3.2: Спектр пилообразного сигнала

Сравним гармоническую структуру пилообразного сигнала с треугольным и прямоугольным сигналами.

Сначала сравним с треугольным сигналом.

```
from thinkdsp import TriangleSignal

sawtooth_wave.make_spectrum().plot(color='gray')

triangle = TriangleSignal(amp=0.79).make_wave(duration=0.5, framerate=40000)

triangle.make_spectrum().plot()

decorate(xlabel='Frequency (Hz)')

Листинг 3.4: Сравнение с треугольным сигналосм
```


Рис. 3.3: Спектры треугольного и пилообразного сигналов

Из рис.3.3 видно, что пилообразный сигнал снижается медленнее, чем треугольный. Теперь посмотрим на прямоугольный сигнал.

```
from thinkdsp import SquareSignal
```

```
sawtooth_wave.make_spectrum().plot(color='gray')
square = SquareSignal(amp=0.5).make_wave(duration=0.5, framerate=40000)
square.make_spectrum().plot()
decorate(xlabel='Frequency (Hz)')
```

Листинг 3.5: Сравнение с прямоугольным сигналосм

Рис. 3.4: Спектры прямоугольного и пилообразного сигналов

Из рис.3.4 видно, что пилообразный так же, как и прямоугольный, но у пилообразного есть и чётные, и нечётные гармоники.

Упражнение 2.3

Создадим прямоугольный сигнал 1100 Гц и вычислим wave с выборками 10000 кадров в секунду. Затем построим спектр этого сигнала.

```
from thinkdsp import SquareSignal

square_wave = SquareSignal(1100).make_wave(duration=0.5, framerate=10000)
square_wave.make_spectrum().plot()
decorate(xlabel='Frequency (Hz)')
square_wave.make_audio()
```

Листинг 4.1: Создание прямоугольного сигнала 1100 Гц

Рис. 4.1: Спектр прямоугольного сигнала

Из рис.4.1 видно, что основная гармоника находится на частоте 1100 Γ ц и первая на - 3300 Γ ц. Это верно. Но вот вторая гармоника, которая должна быть на 5500 Γ ц, располагается на 4500 Γ ц. Третья гармоника также не на месте. Она должна быть на частоте 7700 Γ ц, но находится на 2400 Γ ц. И т.д.

Таким образом, мы убедились, что гармоники "завернуты" из-за биения.

Воспроизведём полученный сигнал.В получившимся звуке мы можем услышать гармоники биения. Основной тон, который мы воспринимаем, является гармоникой биения на частоте 200 Гц.

Для того, чтобы в этом убедиться, сравним с с синусоидой 200 Гц.

from thinkdsp import SinSignal

SinSignal(200).make_wave(duration=0.5, framerate=10000).make_audio()

Листинг 4.2: Создание синусоиды 200 Гц

Упражнение 2.4

5.1 Треугольный сигнал

Проведём следующий эксперемент. Возьмём треугольный сигнал с частотой 440 Гц и wave длительностью 0,01 секунд. Выведем этот сигнал (Рис.5.1).

```
triangle_wave = TriangleSignal(440).make_wave(duration=0.01)
triangle_wave.plot()
decorate(xlabel='Time (s)')
```

Листинг 5.1: Создание треугольного сигнала 440 Гц

Рис. 5.1: Треугольный сигнал

5.2 Объект Spectrum

```
Создадим объект Spectrum и распечатаем Spectrum.hs[0]. spectrum = triangle_wave.make_spectrum()
```

spectrum.hs[0]

Листинг 5.2: Вывод нулевой компоненты

В результате мы получаем (1.0436096431476471e-14+0j). Это значение соответствует частотной компоненте: его размах пропорционален амплитуде соответствующей компоненты, а угол в степени числа e – это фаза.

5.3 Изменение компоненты

```
Vcтановим Spectrum.hs[0] = 100.
triangle_wave.plot(color='gray')
spectrum.hs[0] = 100
spectrum.make_wave().plot()
decorate(xlabel='Time (s)')
```

Листинг 5.3: Изменение компоненты

Рис. 5.2: Сравнение сигналов

Как можно видеть на рис.5.2 сигнал сместился вверх.

Упражнение 2.5

6.1 Создание функции

Напишем функцию, принимающую **Spectrum** как параметр и изменяющую его делением каждого элемента **hs** на соответствующую частоту **fs**.

```
def change_spectrum(spectrum):
    spectrum.hs[1:] /= spectrum.fs[1:]
    spectrum.hs[0] = 0

Листинг 6.1: Функция изменения спектра
```

6.2 Использование функции

Проверим эту функцию, используя прямоугольный сигнал. Для этого вычислим **Spectrum** и распечатаем его (Рис.6.1).

```
wave = SquareSignal(freq=440).make_wave(duration=0.5)
spectrum = wave.make_spectrum()
spectrum.plot()
wave.make_audio()
```

Листинг 6.2: Вычисление спектра

Рис. 6.1: Спектр прямоугольного сигнала

Изменим Spectrum, используя нашу функцию, и распечатаем его (Рис.6.2).

```
spectrum.plot(color='gray')
change_spectrum(spectrum)
spectrum.scale(440)
spectrum.plot()
decorate(xlabel='Frequency (Hz)')
```

Листинг 6.3: Вычисление нового спектра

Рис. 6.2: Сравнение спектров

Используем Spectrum.make_wave, чтобы сделать wave из измененного Spectrum и послушаем его.

spectrum.make_wave().make_audio()

Листинг 6.4: Воспроизведение сигнала

Получившийся сигнал стал более приглушённый.

Упражнение 2.6

Составим сигнал, который будет состоять из чётных и нечётных гармоник, спадающих пропорционально $1/f^2$. Возьмём пилообразный сигнал, в котором есть все необходимые нам гармоники. Его гармоники спадают пропорционально 1/f (Puc.7.1).

```
signal = SawtoothSignal(500)
wave = signal.make_wave(duration=0.5, framerate=40000)
spectrum = wave.make_spectrum()
spectrum.plot()
decorate(xlabel='Frequency (Hz)')
wave.make_audio()
```

Листинг 7.1: Создание пилообразного сигнала

Рис. 7.1: Спектр пилообразного сигнала

Теперь используем функцию для изменения спектра, написанную в Упражнении 2.6. Если мы применим эту функцию, то мы можем заставить гармоники спадать как $1/f^2$ (Puc.7.2).

```
spectrum.plot(color='gray')
```

```
change_spectrum(spectrum)
spectrum.scale(500)
spectrum.plot()
decorate(xlabel='Frequency (Hz)')
```

Листинг 7.2: Применение функции change_spectrum к сигналу

Рис. 7.2: Спектр полученного сигнала

Полученный сигнал похож на синусоиду (Рис.7.3).

```
wave = spectrum.make_wave()
wave.segment(duration=0.01).plot()
decorate(xlabel='Time (s)')
```

Листинг 7.3: Получение сигнала

Рис. 7.3: Полученный сигнал

Выводы

В результате выполнения данной работы мы познакомились некоторыми видами сигналов: треугольным, пилообразным и прямоугольным. Мы получили навыки работы с ними. Также мы изучили биение — эффект, приводящий к наложению различных непрерывных сигналов при их дискретизации.

Литература

- [1] Фильтрация измерительных сигналов / В.С.Гутников. – СПб.:Изд-во Энергоатомиздат, 1990.-192 с.
- [2] Цифровая обработка сигналов / А.С.Сергиенко.
– СПб.:Питер, 2003.-603 с.