RWorksheet_Basa#3b

Jared J Basa

2024-12-17

- 1. Create a data frame using the table below.
- a. Write the codes.

7

##		Respondents	Sex	Fathers_Occupation	Persons at Home	Siblings at School
##	1	1	2	1	5	6
##		2	2	3	7	4
##	3	3	1	3	3	4
##	4	4	2	3	8	1
##	5	5	2	1	5	2
##	6	6	2	2	9	1
##	7	7	2	3	6	5
##	8	8	2	1	7	3
##	9	9	2	1	8	1
##	10	10	2	1	4	2
##	11	11	1	3	7	3
##	12	12	2	2	5	2
##		13	2	1	4	5
##		14	2	3	7	5
##		15	2	3	8	2
##		16	2	1	8	1
##		17	2	3	3	2
##		18	2	1	11	5
##		19	1	2	7	3
##	20	20	2	1	6	2
##		Type_of_House				
##			1			
##		2				
## ##			3			
##			1			
			1			
##	Ö		3			

```
## 8
                    1
## 9
                    2
## 10
                    3
                    2
## 11
## 12
                    3
                    2
## 13
                    2
## 14
## 15
                    3
## 16
                    3
                    3
## 17
## 18
                    3
                    3
## 19
                    2
## 20
```

b. Describe the data. Get the structure or the summary of the data

```
str(Table)
```

```
'data.frame':
                   20 obs. of
                               6 variables:
##
   $ Respondents
                        : int
                              1 2 3 4 5 6 7 8 9 10 ...
##
   $ Sex
                              2 2 1 2 2 2 2 2 2 2 . . .
                        : num
  $ Fathers_Occupation: num
                              1 3 3 3 1 2 3 1 1 1 ...
  $ Persons_at_Home
                              5738596784...
                        : num
   $ Siblings_at_School: num
                              6 4 4 1 2 1 5 3 1 2 ...
   $ Type_of_House
                        : num
                              1 2 3 1 1 3 3 1 2 3 ...
summary(Table)
```

```
##
     Respondents
                         Sex
                                    Fathers_Occupation Persons_at_Home
##
   Min.
          : 1.00
                    Min.
                            :1.00
                                   Min.
                                           :1.00
                                                       Min.
                                                              : 3.0
##
   1st Qu.: 5.75
                    1st Qu.:2.00
                                   1st Qu.:1.00
                                                       1st Qu.: 5.0
##
  Median :10.50
                    Median:2.00
                                   Median:2.00
                                                       Median: 7.0
```

Mean :10.50 Mean :2.00 Median :2.00 Median : 7.0 ## Mean :10.50 Mean :1.85 Mean :1.95 Mean : 6.4 ## 3rd Qu.:15.25 3rd Qu.:2.00 3rd Qu.:3.00 3rd Qu.: 8.0

Max. :20.00 Max. :2.00 Max.
Siblings_at_School Type_of_House

:1.00 ## Min. Min. :1.0 ## 1st Qu.:2.00 1st Qu.:2.0 ## Median :2.50 Median:2.5 Mean :2.95 Mean :2.3 ## 3rd Qu.:4.25 3rd Qu.:3.0 ## Max. :6.00 Max. :3.0

c. Is the mean number of siblings attending is 5?

```
meanSiblings_at_School <- mean(Table$Siblings_at_School)
meanSiblings_at_School</pre>
```

:3.00

Max.

:11.0

```
## [1] 2.95
```

no

d. Extract the 1st two rows and then all the columns using the subsetting functions. Write the codes and its output.

```
subsetRespondents <- subset(Table, Respondents <= 2)
subsetRespondents</pre>
```

Respondents Sex Fathers_Occupation Persons_at_Home Siblings_at_School

```
## 1
                    2
                                         1
                                                                               6
                1
## 2
                2
                    2
     Type_of_House
##
## 1
## 2
  e. Extract 3rd and 5th row with 2nd and 4th column. Write the codes and its result.
rowCols <- Table[c(3, 5), c("Sex", "Persons_at_Home")]</pre>
rowCols
##
     Sex Persons_at_Home
## 3
       1
## 5
       2
                         5
  f. Select the variable types of houses then store the vector that results as types_houses. Write the codes.
Type_of_House <- Table$Type_of_House</pre>
Type_of_House
## [1] 1 2 3 1 1 3 3 1 2 3 2 3 2 2 3 3 3 3 3 2
  g. Select only all Males respondent that their father occupation was farmer. Write the codes and its
maleFarmers <- Table[Table$Sex == 1 & Table$Fathers_Occupation == 1,]
maleFarmers
## [1] Respondents
                            Sex
                                                Fathers_Occupation Persons_at_Home
## [5] Siblings_at_School Type_of_House
## <0 rows> (or 0-length row.names)
  h. Select only all females respondent that have greater than or equal to 5 number of siblings attending
     school. Write the codes and its outputs.
femaleMoreSiblings <- Table[Table$Sex == 2 & Table$Siblings_at_Schools >= 5, ]
femaleMoreSiblings
## [1] Respondents
                            Sex
                                                Fathers Occupation Persons at Home
## [5] Siblings_at_School Type_of_House
## <0 rows> (or 0-length row.names)
  2. Write a R program to create an empty data frame. Using the following codes:
df = data.frame(Ints=integer(),
Doubles=double(), Characters=character(),
Logicals=logical(),
Factors=factor(),
stringsAsFactors=FALSE)
print("Structure of the empty dataframe:")
## [1] "Structure of the empty dataframe:"
print(str(df))
## 'data.frame':
                     0 obs. of 5 variables:
    $ Ints
                 : int
    $ Doubles
                 : num
## $ Characters: chr
```

```
## $ Logicals : logi
## $ Factors : Factor w/ 0 levels:
## NULL
```

a. Describe the results. The output shows data frame is empty and shows structure and types of columns that was defined.