LSF作业管理系统使用方法

上海交通大学高性能计算中心 http://hpc.sjtu.edu.cn

2013年9月9日更新

Contents

1	通过	LSF 查看集群运行状态	2
	1.1	查看 LSF 计算节点列表bhosts	2
	1.2	查看 LSF 队列 bqueues	2
	1.3	查看计算节点负载1sload	3
2	使用	LSF 提交作业 _{bsub}	3
	2.1	手动提交作业	3
	2.2	交互式批量提交	4
	2.3	编写 bsub 脚本提交作业	4
3	其他	作业管理操作	5
	3.1	查看作业状态bjobs	5
	3.2	终止作业bkill	6
	3.3	监视作业输出 _{bpeek}	6
	3.4	作业历史信息bhist	7
4	参老	· · · · · · · · · · · · · · · · · · ·	7

这份文档将指导您通过 LSF 提交和管理作业。文档包含了使用 LSF 提交、查看、删除作业的相关内容。

遵循文档的操作规范和反馈方法,将帮助您顺利完成工作。也欢迎大家对文档内容提出建议,谢谢!

1 通过 LSF 查看集群运行状态

1.1 查看 LSF 计算节点列表bhosts

# bhosts								
HOST_NAME	STATUS	JL/U	XAM	NJOBS	RUN	SSUSP	USUSP	RSV
fat01	ok	-	16	0	0	0	0	0
fat02	ok	-	16	0	0	0	0	0
fat03	ok	-	16	0	0	0	0	0
fat04	ok	-	16	0	0	0	0	0
fat05	ok	-	16	0	0	0	0	0
fat06	ok	-	16	0	0	0	0	0
fat07	ok	-	16	0	0	0	0	0
fat08	ok	-	16	0	0	0	0	0
fat09	ok	-	16	0	0	0	0	0
fat10	ok	-	16	0	0	0	0	0

1.2 查看 LSF 队列 bqueues

查看所有队列的整体信息:

# bqueues										
QUEUE_NAME	PRIO	STATUS	MAX	JL/U	JL/P	JL/H	NJOBS	PEND	RUN	SUSP
cpu	40	Open:Active	-	-	-	-	2072	0	2072	0
fat	40	Open:Active	-	-	-	-	0	0	0	0
gpu	40	Open:Active	-	-	-	-	288	0	288	0
mic	40	Open:Active	-	-	-	-	0	0	0	0
cpu-fat	40	Open:Active	-	-	-	-	16	0	16	0

查看某个队列的信息:

# bqueues fat										
QUEUE_NAME	PRIO	STATUS	MAX	JL/U	JL/P	JL/H	NJOBS	PEND	RUN	SUSP
fat	40	Open:Active	-	-	-	-	0	0	0	0

1.3 查看计算节点负载1sload

查看整体负载:

```
# lsload
HOST_NAME
                status r15s
                              r1m r15m
                                           ut
                                                pg ls
                                                           it
                                                               tmp
                                                                      swp
                                                                            mem
node011
                         0.0
                             0.3
                                    0.4
                                                0.0
                                                      0 49024
                                                               193G
                                                                      62G
                                                                            61G
                                           0%
node039
                    ok
                         0.0
                             0.6
                                   0.5
                                                0.0
                                                      0 49024
                                                               194G
                                                                      62G
                                                                            61G
node041
                        0.0
                             0.0
                                   0.0
                                           0%
                                                0.0
                                                      0 49024
                                                               194G
                                                                      62G
                                                                            61G
node050
                                           0%
                                               0.0
                                                                            60G
                    ok
                        0.0
                             0.0
                                    0.0
                                                      0 49024
                                                               194G
                                                                      62G
node064
                         0.0
                              0.7
                                    0.6
                                                0.0
                                                      0 49024
                                                               194G
                                                                      62G
                                                                            61G
node077
                         0.0
                             0.7
                                    0.5
                                           0%
                                               0.0
                                                      0 49024
                                                              194G
                                                                      62G
                                                                            61G
```

查看某个节点的负载:

```
# lsload node001
HOST_NAME
                status r15s
                               r1m r15m
                                                 pg ls
                                                                             mem
                                           ut
                                                           it
                                                                 tmp
                                                                       swp
node001
                         0.3
                                     0.1
                                                0.0
                                                          332
                                                              152G
                                                                       62G
                                                                             61G
```

2 使用 LSF 提交作业bsub

2.1 手动提交作业

LSF 使用 bsub 提交作业。bsub 命令的格式是:

```
bsub -n Z -q QUEUENAME -i INPUTFILE -o OUTPUTFILE COMMAND
```

其中: z提交作业需要的线程数,-q指定作业提交的队列。如果不添加-q选项,系统将把作业提交到默认的作业队列。INPUTFILE表示程序需要读入的文件

名,outputfile表示输出文件名,作业提交后的输出到标准输出信息将会保存在这个文件中。

对于串行作业, COMMAND可以直接使用您的程序名。例如, 将串行程序mytest的通过 LSF 提交:

```
bsub -n 1 -q q_default -o mytest.out ./mytest
```

对于 MPI 并行作业, COMMAND的格式为-a mpich_gm mpirun.lsf PROG_NAME。例如,将并行程序mytest,通过 LSF 提交,使用 16 个线程运行这个作业:

```
bsub -n 16 -q q_default -o mytest.out -a mpich_gm mpirun.lsf ./mytest
```

2.2 交互式批量提交

使用bsub还可以启动一个交互式的 shell 环境,一次提交多个运行参数相同的并行作业。例如下面的操作:

```
# bsub
bsub> -n 16
bsub> -q q_default
bsub> -o output.txt
bsub> COMMAND1
bsub> COMMAND2
bsub> COMMAND3
```

等价于:

```
bsub -n 16 -q q_default -o output.txt COMMAND1
bsub -n 16 -q q_default -o output.txt COMMAND2
bsub -n 16 -q q_default -o output.txt COMMAND3
```

2.3 编写 bsub 脚本提交作业

```
#BSUB -n 16
#BSUB -q q_default
```

```
#BSUB -o output.txt
-a mpich_gm mpirun.lsf ./mytest
```

bsub还接受来自标准输入的作业说明。因此,我们可以编写 LSF 脚本提交作业。bsub 脚本简单易写,上面一段代码是名为bsub.script的完整例子,将bsub.script通过输入重定向,提交给 LSF:

bsub < bsub.script

这等价于:

bsub -n 16 -q q_default -o output.txt -a mpich_gm mpirun.lsf ./mytest

3 其他作业管理操作

3.1 查看作业状态bjobs

检查已提交的作业的运行状态:

bjobs

以宽格式来显示作业运行状态:

bjobs -w

显示所有作业:

bjobs -a

显示正在运行的作业:

bjobs -r

显示等待运行 (pending) 的作业和等待的原因:

bjobs -p

显示已经挂起 (suspending) 的作业和挂起的原因:

```
bjobs -s
```

显示JOBID这个作业的所有信息:

bjobs -1 JOBID

3.2 终止作业_{bkill}

终止不需要的作业:

bkill

终止JOBID这个作业:

bkill JOBID

直接将作业JOBID从 LSF 中移除,而不等待该作业的进程在操作系统中终结:

bikill JOBID

3.3 监视作业输出bpeek

当作业正在运行时,显示它的标准输出,监视作业运行:

bpeek

查看JOBID的标准输出:

bpeek JOBID

4 参考资料 7

3.4 作业历史信息bhist

显示作业的历史情况:

显示JOBID作业的历史情况:

4 参考资料