Technological Institute of the Philippines

Computer Engineering Department Quezon city Campus

Seatwork 11.1 Exploratory Data Analysis for Machine Learning

Course: CPE 311 Program: BSCpE

Course Title: Computational Thinking with Python Date Performed: April 27, 2024

Section: BSCPE22S3 Date Submitted: April 27, 2024

Student Name: Juliann Vincent B. Quibral Instructor's Name: Engr. Roman Richard

Linear Regression Analysis

1 pip install ucimlrepo

Collecting ucimlrepo
Downloading ucimlrepo-0.0.6-py3-none-any.whl (8.0 kB)
Installing collected packages: ucimlrepo
Successfully installed ucimlrepo-0.0.6

- 1 import pandas as pd
- 2 import numpy as np
- 3 import seaborn as sns
- 4 import matplotlib.pyplot as plt
- 5 from sklearn.model_selection import train_test_split
- 6 from sklearn.linear_model import LinearRegression
- 7 from sklearn.metrics import mean_squared_error, r2_score
- 8 from sklearn.preprocessing import StandardScaler
- 9 from scipy import stats
- 1 from ucimlrepo import fetch_ucirepo

```
7
 3 # fetch dataset
 4 automobile = fetch ucirepo(id=10)
 5
6 # data (as pandas dataframes)
7 X = automobile.data.features
 8 y = automobile.data.targets
 9
10 # metadata
11 print(automobile.metadata)
12
13 # variable information
14 print(automobile.variables)
    {'uci_id': 10, 'name': 'Automobile', 'repository_url': 'https://archive.ics.uci.edu/dataset/10/automobile', 'data_ur'
                                            type demographic \
                      name
                               role
    0
                     price Feature
                                      Continuous
                                                         None
    1
                                      Continuous
               highway-mpg Feature
                                                         None
     2
                  city-mpg Feature
                                      Continuous
                                                        None
     3
                  peak-rpm Feature
                                      Continuous
                                                        None
    4
                horsepower Feature
                                      Continuous
                                                         None
     5
         compression-ratio Feature
                                      Continuous
                                                        None
     6
                                      Continuous
                    stroke Feature
                                                        None
    7
                      bore Feature
                                      Continuous
                                                        None
    8
               fuel-system Feature
                                     Categorical
                                                         None
    9
               engine-size Feature
                                      Continuous
                                                         None
         num-of-cylinders Feature
                                         Integer
    10
                                                         None
    11
               engine-type Feature
                                     Categorical
                                                         None
    12
               curb-weight Feature
                                      Continuous
                                                         None
    13
                    height Feature
                                      Continuous
                                                         None
    14
                     width Feature
                                      Continuous
                                                         None
    15
                    length Feature
                                      Continuous
                                                         None
                wheel-base Feature
    16
                                      Continuous
                                                        None
    17
           engine-location Feature
                                          Binary
                                                         None
    18
              drive-wheels Feature
                                     Categorical
                                                         None
    19
                body-style Feature
                                     Categorical
                                                         None
     20
              num-of-doors Feature
                                         Integer
                                                         None
     21
                                          Binary
                aspiration Feature
                                                         None
     22
                 fuel-type Feature
                                          Binary
                                                         None
     23
                      make
                                     Categorical
                           Feature
                                                         None
     24
        normalized-losses Feature
                                      Continuous
                                                         None
```

25	symboling T	arget	Integer	Noi	ne	
			docen	intion		missing volues
0		ontinuou	uescr s from 5118 to		None	missing_values
1	C		inuous from 16		None	yes no
2			inuous from 13		None	no
3			us from 4150 t		None	
4			nuous from 48		None	yes
5			tinuous from 7		None	yes no
6			us from 2.07 t		None	yes
7			us from 2.54 t		None	yes
8	1bbl, 2bbl, 4bbl				None	yes no
9	1001, 2001, 4001		nuous from 61		None	no
10	eight, five, f				None	no
11	0 -	-	c, ohcf, ohcv,	-	None	no
12			us from 1488 t		None	no
13			us from 47.8 t		None	no
14			us from 60.3 t		None	no
15			from 141.1 to		None	no
16			uous from 86.6		None	no
17				, rear	None	no
18			4wd, fw		None	no
19	hardtop, wagon, s	edan, ha			None	no
20		-		ır, two	None	yes
21			std,	turbo	None	no
22			diese	l, gas	None	no
23	alfa-romero, audi, bm	w, chevr	olet, dodge, h	ond	None	no
24		conti	nuous from 65	to 256	None	yes
25		-3	, -2, -1, 0, 1	., 2, 3	None	no

1 X.dtypes

float64
int64
int64
float64

```
fuel-system
                     object
engine-size
                      int64
num-of-cylinders
                      int64
engine-type
                     object
curb-weight
                      int64
height
                     float64
width
                    float64
length
                    float64
wheel-base
                    float64
engine-location
                     object
drive-wheels
                     object
body-style
                     object
num-of-doors
                     float64
aspiration
                     object
fuel-type
                     object
make
                     object
normalized-losses
                    float64
dtype: object
```

```
1 print(automobile.metadata)
```

```
{'uci_id': 10, 'name': 'Automobile', 'repository_url': '<a href="https://archive.ics.uci.edu/dataset/10/automobile", 'data_url': 'https://archive.ics.uci.edu/dataset/10/automobile', 'data_url': 'https://archive.uci.edu/dataset
```

1 print(automobile.variables)

	name	role	type	demographic
0	price	Feature	Continuous	None
1	highway-mpg	Feature	Continuous	None
2	city-mpg	Feature	Continuous	None
3	peak-rpm	Feature	Continuous	None
4	horsepower	Feature	Continuous	None
5	compression-ratio	Feature	Continuous	None
6	stroke	Feature	Continuous	None
7	bore	Feature	Continuous	None
8	fuel-system	Feature	Categorical	None
9	engine-size	Feature	Continuous	None
10	num-of-cylinders	Feature	Integer	None
11	engine-type	Feature	Categorical	None
12	curb-weight	Feature	Continuous	None

13	height	Feature	Continuous	Nor	ne				
14	width	Feature	Continuous	Nor	ne				
15	length	Feature	Continuous	Nor	ne				
16	wheel-base	Feature	Continuous	Nor	ne				
17	engine-location	ne							
18	drive-wheels	Feature	Categorical	Nor	ne				
19	body-style	Feature	Categorical	Nor	ne				
20	num-of-doors	Feature	Integer	Nor	ne				
21	aspiration	Feature	Binary	Nor	ne				
22	fuel-type	Feature	Binary	Nor	ne				
23	make	Feature	Categorical	Nor	ne				
24	normalized-losses	Feature	Continuous	Nor	ne				
25	symboling	Target	Integer	Nor	ne				
			des	cription	units	missing_values			
0		to 45400	None	yes					
1		None	no						
2		no							
3	continuous from 13 to 49 None no continuous from 4150 to 6600 None yes								
4	continuous from 48 to 288 None yes								
5	continuous from 7 to 23 None no								
6		contin	uous from 2.07	to 4.17	None	yes			
7		contin	uous from 2.54	to 3.94	None	yes			
8	1bbl, 2bbl, 4	bbl, idi,	mfi, mpfi, sp	di, spfi	None	no			
9		con	tinuous from 6	1 to 326	None	no			
10	eight, five	, four, s	ix, three, twe	lve, two	None	no			
11	dohc, d	lohcv, 1,	ohc, ohcf, ohc	v, rotor	None	no			
12		None	no						
13		None	no						
14		no							
15		None	no						
16		None	no						
17		no							
18		None	no						
19	hardtop, wagon	None	no						
20			f	our, two	None	yes			
21			st	d, turbo	None	no			
22			die	sel, gas	None	no			
23	alfa-romero, audi,		_		None	no			
24			tinuous from 6		None	yes			
25			-3, -2, -1, 0,	1, 2, 3	None	no			

```
1 print(automobile.data.columns)
   None
1 from ucimlrepo import fetch ucirepo
3 # Fetch dataset
4 automobile = fetch ucirepo(id=10)
5
6 if automobile is None:
     print("Error: Dataset loading failed.")
8 else:
     print("Dataset loaded successfully.")
   Dataset loaded successfully.
1 if automobile is not None:
     print("Dataset columns:")
2
     print(automobile.data.columns)
3
     print("\nDataset metadata:")
4
5
     print(automobile.metadata)
   Dataset columns:
   None
   Dataset metadata:
   {'uci_id': 10, 'name': 'Automobile', 'repository_url': 'https://archive.ics.uci.edu/dataset/10/automobile', 'data_url':
   <
                                                                                                                         >
```

Load the dataset

```
1 automobile = fetch_ucirepo(id=10)
2 X = automobile.data.features
3 y = automobile.data.target
```

Data Preprocessing/Wraingling

Check for missing values:

```
1 print(X_encoded.isnull().sum())
   price
                             4
   highway-mpg
   city-mpg
                             0
   peak-rpm
   horsepower
   make toyota
                             0
   make volkswagen
                             0
   make volvo
   engine-location front
                             0
   engine-location rear
   Length: 68, dtype: int64
```

Encoding Categorical Variables:

```
1 X_encoded = pd.get_dummies(X, columns=['fuel-system', 'engine-type', 'drive-wheels', 'body-style', 'aspiration', 'fuel-t
2
3 print(X encoded.shape)
4 print(X encoded.dtypes)
   (205, 68)
   price
                             float64
   highway-mpg
                               int64
   city-mpg
                               int64
   peak-rpm
                             float64
   horsepower
                             float64
   make_toyota
                                bool
```

```
make_volkswagen bool
make_volvo bool
engine-location_front bool
engine-location_rear bool
Length: 68, dtype: object
```

Feature Scaling:

```
1 from sklearn.preprocessing import StandardScaler
2
3 scaler = StandardScaler()
4
5 numeric_columns = X_encoded_full.select_dtypes(include=['float64', 'int64']).columns
6 X_scaled = X_encoded_full.copy()
7 X_scaled[numeric_columns] = scaler.fit_transform(X_encoded_full[numeric_columns])

    /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:768: UserWarning: pandas.DataFrame with sparse colu warnings.warn(
    /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:768: UserWarning: pandas.DataFrame with sparse colu warnings.warn(
```

>

Exploratory Data Analysis (EDA):

Descriptive Statistics:

```
1 X.describe()
```

	price	highway- mpg	city-mpg	peak-rpm	horsepower	compression- ratio	stroke	bore	engine- size	cy
count	201.000000	205.000000	205.000000	203.000000	203.000000	205.000000	201.000000	201.000000	205.000000	20
mean	13207.129353	30.751220	25.219512	5125.369458	104.256158	10.142537	3.255423	3.329751	126.907317	4
std	7947.066342	6.886443	6.542142	479.334560	39.714369	3.972040	0.316717	0.273539	41.642693	
min	5118.000000	16.000000	13.000000	4150.000000	48.000000	7.000000	2.070000	2.540000	61.000000	i.
25%	7775.000000	25.000000	19.000000	4800.000000	70.000000	8.600000	3.110000	3.150000	97.000000	4
50%	10295.000000	30.000000	24.000000	5200.000000	95.000000	9.000000	3.290000	3.310000	120.000000	
75%	16500.000000	34.000000	30.000000	5500.000000	116.000000	9.400000	3.410000	3.590000	141.000000	
max	45400.000000	54.000000	49.000000	6600.000000	288.000000	23.000000	4.170000	3.940000	326.000000	1:

Correlation Analysis:

```
1 print(data_combined.dtypes)
2
3 data_numeric = data_combined.select_dtypes(include=['float64', 'int64'])
4
5 correlation_matrix = data_numeric.corr()
6
7 plt.figure(figsize=(12, 10))
8 sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
9 plt.title("Correlation Matrix Heatmap")
10 plt.show()
```

петВиг	T10dl04
width	float64
length	float64
wheel-base	float64
engine-location	object
drive-wheels	object
body-style	object
num-of-doors	float64
aspiration	object
fuel-type	object
make	object
normalized-losses	float64
symboling	int64

dtype: object

Correlation Matrix Heatmap

Simple Linear Regression:

Split Data into Training and Testing Sets:

```
1 from sklearn.model_selection import train_test_split
2
3 X_train, X_test, y_train, y_test = train_test_split(X_encoded, y, test_size=0.2, random_state=42)
```

```
1 from sklearn.linear_model import LinearRegression
2
3 model = LinearRegression()
4
5 model.fit(X_train, y_train)

v LinearRegression
LinearRegression()
```

Fit Linear Regression Model:

```
1 from sklearn.metrics import mean_squared_error, r2_score
2
3 # Make predictions
4 y_pred = model.predict(X_test)
5
6 # Evaluate the model
7 mse = mean_squared_error(y_test, y_pred)
8 r2 = r2_score(y_test, y_pred)
9
10 print(f"Mean Squared Error: {mse}")
11 print(f"R-squared: {r2}")

Mean Squared Error: 0.6859129086119733
R-squared: 0.5320537340191854
```

Logistic Regression Analysis

```
1 import pandas as pd
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 import seaborn as sns
 1 from ucimlrepo import fetch ucirepo
 2
 3 # fetch dataset
 4 wine = fetch ucirepo(id=109)
 5
 6 # data (as pandas dataframes)
 7 X = wine.data.features
 8 y = wine.data.targets
 9
10 # metadata
11 print(wine.metadata)
12
13 # variable information
14 print(wine.variables)
    {'uci id': 109, 'name': 'Wine', 'repository url': 'https://archive.ics.uci.edu/dataset/109/wine', 'data url': 'https://
                                          role
                                                       type demographic \
                                 name
                                        Target Categorical
    0
                                class
                                                                   None
    1
                              Alcohol Feature
                                                Continuous
                                                                   None
                            Malicacid Feature
                                                 Continuous
                                                                   None
     3
                                                 Continuous
                                  Ash Feature
                                                                   None
                    Alcalinity of ash Feature
    4
                                                 Continuous
                                                                   None
     5
                            Magnesium Feature
                                                    Integer
                                                                   None
    6
                        Total phenols Feature
                                                 Continuous
                                                                   None
                           Flavanoids Feature
    7
                                                 Continuous
                                                                   None
    8
                Nonflavanoid phenols Feature
                                                 Continuous
                                                                   None
    9
                      Proanthocyanins Feature
                                                 Continuous
                                                                   None
                      Color intensity Feature
    10
                                                 Continuous
                                                                   None
    11
                                  Hue Feature
                                                 Continuous
                                                                   None
        0D280 0D315 of diluted wines Feature
    12
                                                 Continuous
                                                                   None
    13
                              Proline Feature
                                                    Integer
                                                                   None
        description units missing values
    0
               None None
    1
               None None
                                      no
```

```
2
         None None
                                no
3
         None None
                                no
4
         None None
                                no
5
         None None
                                no
6
         None None
                                no
7
         None None
                                no
8
         None None
                                no
9
         None None
                                no
10
         None None
                                no
11
         None None
                                no
12
          None
               None
                                no
13
         None None
                                no
```

Load the Dataset:

```
1 df = pd.DataFrame(data=X, columns=wine.variables['name'][1:])
2 df['class'] = y
```

Data Inspection:

```
1 print(df.head())
2
3 print(df.describe())
4
5 print(df.info())
```

 \wedge

mean	2.295112	2.029270	0.361854	1.	590899	
std	0.625851	0.998859	0.124453	0.	572359	
min	0.980000	0.340000	0.130000	0.	410000	
25%	1.742500	1.205000	0.270000	1.	250000	
50%	2.355000	2.135000	0.340000	1.	555000	
75%	2.800000	2.875000	0.437500	1.	950000	
max	3.880000	5.080000	0.660000	3.	580000	
name	Color_intensity	Hue	0D280_0D315_of_diluted_wa	ines	Proline	\
count	178.000000	178.000000	178.000	9000	178.000000	
mean	5.058090	0.957449	2.61	1685	746.893258	
std	2.318286	0.228572	0.709	9990	314.907474	
min	1.280000	0.480000	1.270	9000	278.000000	
25%	3.220000	0.782500	1.93	7500	500.500000	
50%	4.690000	0.965000	2.780	9000	673.500000	
75%	6.200000	1.120000	3.170	9000	985.000000	
max	13.000000	1.710000	4.000	9000	1680.000000	

name class count 178.00000

```
10 Hue 178 non-null float64
11 0D280_0D315_of_diluted_wines 178 non-null float64
12 Proline 178 non-null int64
13 class 178 non-null int64
dtypes: float64(11) int64(3)
```

Exploratory Data Analysis (EDA):

numerical feature

```
1 df.hist(bins=20, figsize=(15, 10))
2 plt.show()
```


visualize relationships between features

```
1 sns.pairplot(df, hue='class')
2 plt.show()
```



```
89 40
99 30
90 10
1000
1000
```

```
1 plt.figure(figsize=(12, 8))
2 sns.boxplot(x='class', y='Alcohol', data=df)
3 plt.title('Alcohol Content by Class')
4 plt.show()
```


Data Pre-processing:

```
name
   Alcohol
                                0
   Malicacid
                                0
   Ash
                                0
   Alcalinity_of_ash
                                0
   Magnesium
                                0
   Total_phenols
                                0
   Flavanoids
                                0
   Nonflavanoid phenols
                                0
   Proanthocyanins
                                0
   Color_intensity
                                0
                                0
   Hue
   0D280_0D315_of_diluted_wines
   Proline
                                0
   class
                                0
   dtype: int64
1 scaler = StandardScaler()
2 df_scaled = scaler.fit_transform(df.drop('class', axis=1))
1 from sklearn.preprocessing import LabelEncoder
2
3 le = LabelEncoder()
```