Mondly

Tomasz Solis

Task & Objective

Goal

Analyze Mondly user data to evaluate the impact of the Smart Recommendation feature and surface actionable insights for product and UX improvement.

Scope:

- Clean and preprocess user data
- Measure feature adoption and user impact (KPIs)
- Identify qualitative pain points and propose targeted recommendations

So what?

Understanding Smart Recommendation's impact helps prioritize engineering and UX resources on features that drive adoption, satisfaction, and retention.

Executive summary

- Adoption: 97% of users tried Smart Recommendation at least once.
- **Impact:** Smart Rec users showed +14% higher usage and longer retention, but uplift was not statistically significant (likely due to small control group).
- Key Pain Points: Feedback clusters highlight repetitive/irrelevant recommendations, interface confusion, and slow performance.
- Action: Focus on Smart Rec personalization, onboarding for older/low-engagement users, and UI/performance fixes.
- **Opportunity:** The biggest gap in daily engagement is in the 30–59 segments—targeted product and UX improvements here could unlock the most significant growth.
- **Limitations:** Most user feedback is repeated, limiting qualitative depth; results are indicative, not conclusive.

Data Engineering

```
BASIC DATA QUALITY REPORT
                                                            Duplicate Checks
                                                            ✓ Duplicated rows: 0
Schema Overview
                                                            ✓ Duplicate user_ids: 0
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries. 0 to 999

✓ Usage Logic Checks

Data columns (total 10 columns):

▼ total_usage = 0 but smart_rec > 0: 0

    Column
                             Non-Null Count Dtype

✓ smart rec usage count > total usage count: 0

                             1000 non-null
    user id
                             1000 non-null
                                                            Date Integrity
    gender
                             1000 non-null
                                            object

√ last login before signup date: 0

                             1000 non-null
    location
                                            object

▼ Future last_login timestamps: 0

    signup_date
                             1000 non-null
                                            datetime64[ns]
    last_login
                             1000 non-null datetime64[ns]
                                                            ■ Outlier Detection
    smart_rec_usage_count
                            1000 non-null int64

✓ Age outliers (<10 or >100): 0

                             1000 non-null
    total_usage_count
                                            int64

✓ Usage outliers (>1000): 0

    user_satisfaction_rating 1000 non-null
                                            int64
    user feedback
                             1000 non-null
                                            object
                                                            Missing Value Summary
dtypes: datetime64[ns](2), int64(5), object(3)
                                                            No missing values detected
memory usage: 78.3+ KB
None
                                                            W Uniformity Check
Data Type Expectations
                                                            All columns have variability
x user_id: int64 (expected: object)

√ age: int64 (expected: int64)

                                                            Feedback Quality

✓ gender: object (expected: object)

▼ Empty feedback entries: 0

signup date: datetime64[ns] (expected: datetime64[ns])
                                                            X Duplicated feedback entries: 990

√ last login: datetime64[ns] (expected: datetime64[ns])

▼ total usage count: int64 (expected: int64)

                                                            No Usage Detection

✓ smart_rec_usage_count: int64 (expected: int64)

✓ Users with no usage: 0

user_feedback: object (expected: object)
                                                            No Smart Recommendation Usage
Mixed data types

✓ Columns with mixed types: 0

                                                            ▲ Users with no smart recommendation usage: 31
```

Dataset:

 1,000 users, demographics, feature usage, satisfaction, free-text feedback.

Cleaning Steps:

 Schema/null/duplicate checks, engineered: tenure, usage per day, churn flag, segments.

Limitation:

 99% feedback text is duplicated—a synthetic data constraint for NLP.

Feature Engineering Summary

Feature Name	Description / Rationale		
user_id	Cast as string to ensure consistent identification.		
age_group	Age segmented into <30, 30-44, 45-59, 60+ for demographic analysis.		
tenure	Days since signup—measures user lifespan/retention.		
smart_rec_per_day	Smart Rec usage normalized by tenure—fair comparison across users.		
total_usage_per_day	Total feature usage per day—controls for account age.		
smart_rec_per_day_group	Bins users by frequency of Smart Rec usage per day (e.g., <0.1, 0.1-0.25,).		
total_usage_per_day_group	Bins users by total usage per day (e.g., <0.1, 0.1-0.25,).		
days_since_last_login	Recency metric to assess churn risk and retention.		
recently_active	Flag for users active in last 30 days—segment for engagement.		
likely_churned	Flag for users inactive >60 days—segment for churn analysis.		
tenure_group	Bins users by total tenure: new (<30d), mid (30–90d, 90–180d), veteran (180+d).		
used_smart_rec	Boolean: Did user ever use Smart Recommendation? (Key for adoption/impact KPIs)		
usage_quartile	Users segmented into quartiles by total usage count (Q1=lowest, Q4=highest)—analyzes engagement spectrum.		
smart_rec_share	% of user's activity that is Smart Rec—measures feature dependency.		

Segment analysis

So what?

 Product and UX teams can focus efforts where the user base is largest and most active—primarily <30 and 60+ users—while not ignoring the specific needs of middle engaged segments.

Segment analysis

Average Usage Intensity per Day by Age Group

Avg. Usage Intensity by Age Group and Usage Quartile

So what?

- While under-30s and 60+ users are highly active, daily usage dips among 30–59 year-olds.
- This usage gap is consistent across all engagement quartiles—suggesting a broad cohort trend, not just a few outliers.
- Opportunity: Tailored UX improvements and re-engagement in these middle-age segments could lift overall activity.

KPI Scorecard

Metric	Value	Status
Smart Rec Adoption Rate	96.9%	
Avg. Smart Rec Share of Usage	54.95%	
Avg Smart Rec Usage (users who used it)	15.32	
Avg. Total Usage (Smart Rec Users)	27.66	
Avg. Total Usage (Non-Users)	24.19	
Avg. Tenure (Smart Rec Users)	87.83	
Avg. Tenure (Non-Users)	81.45	
Smart Rec Users	969	
# Non Smart Rec Users	31	(small sample)

- Adoption is near-universal (97%).
- Smart Rec users show higher usage and retention, but the non-user group is too small for statistical certainty.

So what?

- Adoption of Smart Recommendation is almost universal, providing a strong foundation for analysis.
- While engagement and retention are higher for feature users, the small non-user group means future product decisions should be supported with further experimentation.

Product Impact & Statistical Findings

T-test: t=1.68, p=0.1024 | Cohen's d: 0.34 ♠ Difference is not statistically significant Retention Curve by Smart Rec Usage

- Smart Rec users: +14% usage, longer retention, higher satisfaction.
- Uplift is not statistically significant (p=0.10) due to small non-user group.

So what?

Used Smart Rec

- Early signs are positive:
 - Smart Rec users are more active and engaged.
- However, statistical confidence is limited—directional, not definitive—making experimentation and larger-scale monitoring a priority.

Qualitative Feedback Analysis

Feedback Theme by usage_quartile (% within Theme)

So what?

User feedback pinpoints the most valuable opportunities for product and UX improvement—especially reducing irrelevant recommendations, clarifying the interface, and speeding up feature performance.

Theme 1 - Accuracy/Repetitive

- 1. I like the recommendations, but sometimes they are not accurate.
- 2. The recommendations seem repetitive. I wish there was more variety.
- 3. I don't see much value in the recommendations. They don't match my interests.

Theme 2 - Works Inconsistently

30

25

- 1. The feature is interesting, but it doesn't always work as expected.
- 2. It's a great feature, but it could use some fine-tuning to make it more accurate.

Theme 3 - Helpful but Needs Design

- 1. The recommendations are helpful, but the design could be improved.
- 2. The recommendations are good, but the interface could be more user-friendly.

Theme 4 - Positive/Discovery

- 1. The Smart Recommendation feature has really improved my experience with the app.
- 2. The Smart Recommendation feature is amazing! I've discovered so many new things.

Theme 5 - Slow Performance

1. The feature is helpful, but it takes too long to load.

Segment Insights & UX Risks

Feedback Theme by age_group (% within Theme)

Feedback Theme by tenure group (% within Theme)

- Users 45–59 most likely to complain about rec accuracy; Ul/design pain points span all ages.
- Design issues flagged by longer tenure users (90D+)

So what?

- Segment analysis reveals where specific pain points may be driving disengagement.
- Addressing accuracy and design complaints among middle-aged and longer-tenure users can improve overall retention.

Recommendations & Experiment

- Upgrade personalization algorithm to reduce irrelevant recommendations.
- Prioritize qualitative/user research for the 30–59 segment to uncover and remove barriers to higher daily engagement.
- A/B test onboarding, nudges, and personalization for problematic groups.
- UI and performance improvements.
- A/B/C Experiment: Control: current UI; Variant A: prominent UI + tooltip; Variant B: improved logic + tooltip.
- **KPIs:** Adoption, engagement, satisfaction, retention.

Limitations & Next Steps

• Limitations:

- Feedback duplication; small control group.
- o NLP results are directional, not robust.

Next Steps:

o Improved feedback data, cohort tracking, experiment implementation.

Thank you!

Tomasz Solis