PHY453: Computational Physics | Assignment 4

Anantha Rao | Reg no 20181044

27 Sept 2021

1 Results of the 3D Ising Model Simulation

3D Ising Model Simulation Results

Figure 1: Results obtained after averaging over 10⁶ iterations at each temperature

Q1: The value of $\chi(L)$ at T=4.5d0 for different values of L are approximately:

$\chi(L)$ value
924.25
1839.48
3248.93

Q2: The value of C_v at the peak position for L=8 is ≈ 926.57

Q3: The value of C_v at the peak position for L=9 is ≈ 1423.36

Q4: At temperature 3.8, the value for magnetization per spin for L=7 is ≈ 0.814506 units.

Q5: Using the Principe of detailed balance we find that the number of particles jumping per second from E_{10} to E_5 is 10 per second.

Q6: Please check figure 3

Figure 2: Working out the Transition probability using Principle of Detailed Balance

2 Binder's Cumulant

From the numerical data, the three Binder parameter curves intersect around $T \approx 4.50$. This implies that the actual transition temperature is around 4.5 k_BT units which is very close to the value of 4.51 discussed in the lecture.

3 Fortran Code

20181044 2

Figure 3: Determination of the Critical Temperature using Binders Cumulant (Here $T_c\approx 4.5$)

20181044 3

Figure 4: Fortran Code for the 3D Ising model simulation 20181044