1. (i) Before ligand binding:

Before figure binding.							
О				О			
	О						
		О					
			О				
О				О			

After ligand binding:

О				О		
	О					
			О			
О				О		

Entropy: $S = k_b \ln W, k_b = 1.381 \times 10^{-23} J/K.$

Let subscript 0 represent before ligand binding and subscript 1 represent after ligand binding.

$$W = \frac{\Omega!}{L!(\Omega! - L!)}$$

$$W_0 = \frac{25!}{7!18!} = 480,700$$

$$W_1 = \frac{25!}{6!19!} = 177,100$$

$$S_0 = k_b \ln 480700 = 13.08k_b = 1.806 \times 10^{-22} J/K$$

$$S_1 = k_b \ln 177100 = 12.08k_b = 1.668 \times 10^{-22} J/K$$

(ii) $\Delta S = S_1 - S_0$. Using the S values from part (i),

$$\Delta S = (12.08 - 13.08) \times k_b$$

 $\Delta S \approx k_b = 1.381 \times 10^{-23} J/K$

- (iii) From part (ii), the entropy change is negative which is **unfavourable**. However, ligand binding could still be spontaneous if the entropic loss could be balanced by lower binding energy.
- (iv) Let ε_{sol} , ε_b be the energies of solution and ligand binding, respectively. There are L = 7 ligands available to bind. The partition function weights are:

Before ligand binding case :
$$W_0 e^{-\frac{L\varepsilon_{sol}}{k_b T}} = 480700 e^{-\frac{7\varepsilon_{sol}}{k_b T}}$$

After ligand binding case : $W_1 e^{-\frac{(L-1)\varepsilon_{sol}+\varepsilon_b}{k_b T}} = 177100 e^{-\frac{6\varepsilon_{sol}+\varepsilon_b}{k_b T}}$

Equating the weights and isolating for $\varepsilon_{sol} - \varepsilon_b$,

$$\begin{split} W_0 e^{-\frac{7\varepsilon_{sol}}{k_b T}} = & W_1 e^{-\frac{6\varepsilon_{sol} + \varepsilon_b}{k_b T}} \\ \frac{W_0}{W_1} = & e^{-\frac{(6\varepsilon_{sol} + \varepsilon_b)}{k_b T} - (-\frac{7\varepsilon_{sol}}{k_b T})} \\ \frac{W_0}{W_1} = & e^{\frac{\varepsilon_{sol} - \varepsilon_b}{k_b T}} \\ \varepsilon_{sol} - \varepsilon_b = & k_b T \ln \frac{W_0}{W_1} \\ \varepsilon_{sol} - \varepsilon_b = & k_b T \ln \frac{480700}{177100} \\ \varepsilon_{sol} - \varepsilon_b = & k_b T \end{split}$$

Therefore, ligand binding energy needs to be $1k_bT$ less than solution energy to counter the entropic loss.

2. From Fig. 7.21 in the textbook, $\varepsilon = 2k_bT$ and $\Delta \varepsilon = 0$; $-2k_b$; and $-4k_bT$. The grand partition function is:

$$Z = 1 + 2e^{(-\beta(\varepsilon_T - \mu))} + e^{(-\beta(2\varepsilon_T - 2\mu))} + e^{-\beta\varepsilon}(1 + 2e^{-\beta(\varepsilon_R - \mu)}) + e^{-\beta(2\varepsilon_R - 2\mu)}$$

Rearranging to group terms by ligand molecules bound,

$$Z = [1 + e^{-\beta \varepsilon}] + [2e^{-\beta(\varepsilon_T - \mu)} + 2e^{-\beta(\varepsilon + \varepsilon_R - \mu)}] + [e^{-\beta(2\varepsilon_T - 2\mu)} + e^{-\beta(\varepsilon + 2\varepsilon_R - 2\mu)}]$$
(1)

Writing expressions for p_0 , p_1 and p_2 ,

$$p_0 = \frac{1 + e^{-\beta \varepsilon}}{Z} \tag{2}$$

$$p_1 = \frac{2e^{-\beta(\varepsilon_T - \mu)} + 2e^{-\beta(\varepsilon + \varepsilon_R - \mu)}}{Z} \tag{3}$$

$$p_2 = \frac{e^{-\beta(2\varepsilon_T - 2\mu)} + e^{-\beta(\varepsilon + 2\varepsilon_R - 2\mu)}}{Z} \tag{4}$$

Let $\Delta \varepsilon = \varepsilon_R - \varepsilon_T$, such that $\varepsilon_R = \Delta \varepsilon + \varepsilon_T$. Substituting $\varepsilon_R = \Delta \varepsilon + \varepsilon_T$ into (1),

$$Z = 1 + e^{-\beta\varepsilon} + 2e^{-\beta(\varepsilon_T - \mu)} + 2e^{-\beta(\varepsilon + \Delta\varepsilon + \varepsilon_T - \mu)} + e^{-\beta(2\varepsilon_T - 2\mu)} + e^{-\beta(\varepsilon + 2\Delta\varepsilon + 2\varepsilon_T - 2\mu)}$$
 (5)

Similarly, substituting $\varepsilon_R = \Delta \varepsilon + \varepsilon_T$ into (2)-(4),

$$p_0 = \frac{1 + e^{-\beta \varepsilon}}{Z} \tag{6}$$

$$p_1 = \frac{2e^{-\beta(\varepsilon_T - \mu)} + 2e^{-\beta(\varepsilon + \Delta\varepsilon + \varepsilon_T - \mu)}}{Z}$$
 (7)

$$p_2 = \frac{e^{-\beta(2\varepsilon_T - 2\mu)} + e^{-\beta(\varepsilon + 2\Delta\varepsilon + 2\varepsilon_T - 2\mu)}}{Z}$$
(8)

Let $x = \frac{c}{c_0}e^{-\beta(\varepsilon_t - \mu_0)}$. Rewriting (5)-(8) in terms of x,

$$Z = 1 + e^{-\beta\varepsilon} + 2x(1 + e^{-\beta(\varepsilon + \Delta\varepsilon)}) + x^2(1 + e^{-\beta(\varepsilon + 2\Delta\varepsilon)})$$
(9)

$$p_0 = \frac{1 + e^{-\beta \varepsilon}}{Z} \tag{10}$$

$$p_1 = \frac{2x(1 + e^{-\beta(\varepsilon + \Delta\varepsilon)})}{Z} \tag{11}$$

$$p_2 = \frac{x^2(1 + e^{-\beta(\varepsilon + 2\Delta\varepsilon)})}{Z} \tag{12}$$

By definition, $\beta = \frac{1}{k_b T}$. From the question, $\varepsilon = 2k_b T = 2\beta^{-1}$. Substituting β, ε into (9)-(12),

$$Z = 1 + e^{-2} + 2x(1 + e^{-(2 + \frac{\Delta\varepsilon}{k_b T})}) + x^2(1 + e^{-(2 + \frac{2\Delta\varepsilon}{k_b T})})$$
(13)

$$p_0 = \frac{1 + e^{-2}}{Z} \tag{14}$$

$$p_1 = \frac{2x(1 + e^{-(2 + \frac{\Delta \varepsilon}{k_b T})})}{Z} \tag{15}$$

$$p_2 = \frac{x^2 \left(1 + e^{-(2 + \frac{2\Delta\varepsilon}{k_b T})}\right)}{Z} \tag{16}$$

- 3. (a) This protein has 3 possible open conformations and 1 possible closed conformation. At temperature T:
 - i. The energetic weight for the open conformation is $e^{-\frac{\varepsilon}{k_bT}}$. Since there are 3 open conformations with the same energetic weight, these 3 conformations can be summed up into a total open weight, $3e^{-\frac{\varepsilon}{k_bT}}$
 - ii. The energetic weight for the closed conformation is $e^{-\frac{0}{k_bT}} = 1$. Since there is only one closed conformation, the total closed weight is 1.
 - iii. The partition function is the sum of the two total weights,

$$Z = 1 + 3e^{-\frac{\varepsilon}{k_b T}}$$

Therefore, the probability p_o of finding the protein in an open conformation is:

$$p_0 = \frac{3e^{-\frac{\varepsilon}{k_bT}}}{1 + 3e^{-\frac{\varepsilon}{k_bT}}} = \frac{3e^{-\frac{\varepsilon}{k_bT}}}{Z}$$

The probability p_c of finding the protein in a closed conformation is:

$$p_c = \frac{1}{1 + 3e^{-\frac{\varepsilon}{k_b T}}} = \frac{1}{Z}$$

(b) The behaviour of p_c at very low and very high temperatures can be examined using limits:

$$\lim_{T \to \infty} p_c = \frac{1}{4}$$
$$\lim_{T \to 0} p_c = 1$$

Therefore, at very high temperatures, p_c approaches 0.25 and the protein would be equally likely in any of the 4 conformations. At very low temperatures, p_c approaches 1 and the protein would only be found in the closed state.

(c) The average energy of the molecule at temperature T is:

$$\langle E \rangle = \sum_{i} \varepsilon_{i} p_{i} = \varepsilon p_{o} + 0 p_{c} = \frac{3\varepsilon e^{-\frac{\varepsilon}{k_{b}T}}}{1 + 3e^{-\frac{\varepsilon}{k_{b}T}}} = \frac{3\varepsilon e^{-\frac{\varepsilon}{k_{b}T}}}{Z}$$

4. (a) See figure below.

3D Random Walk Trajectory for $N=1000~\mathrm{Steps}~(\mathrm{Step}~\mathrm{Size}~=1)$

(b) See figure below. Diffusion coefficient is $\frac{1}{6}$ of the slope of the linear fit. Here, the diffusion coefficient is $2.528 \times 10^{-1} pixels^2$ /unit time.

3D Random Walk Trajectory for N = 1000 Steps (Step Size = 50)

(c) See figure below. The diffusion coefficient here is $1.634 \times 10^{-1} pixels^2$ /unit time. It is within the same order of magnitude as in 4(b).

(d) See figure below.

