```
In [55]: 1 import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
```

PCA ¶

```
In [56]:
           1
              def pca(n,x):
                  x_{mean} = np.mean(x,axis=0)
           2
           3
                  x_std = np.std(x,axis=0)
           4
           5
                  x standardized = (x-x mean)/x std
           6
           7
                  cov_mat = np.cov(x_standardized,rowvar=False)
           8
                  _,eigen_vectors = np.linalg.eigh(cov_mat)
           9
          10
                  eigenvector_subset = eigen_vectors[:,:-n-1:-1]
          11
          12
                  return x standardized @ eigenvector subset
```

Original Dataset

Iris Dataset contains 4 features column to determine the species Name shape of the Iris Data: (150, 5)

	sepal length	sepal width	petal length	petal width	target
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

Implementation of PCA

```
In [58]: 1 x = data.iloc[:,:-1].values
2 y = data.iloc[:,-1].values

In [59]: 1 reduced_data = pca(2,x)
2 pca_data = pd.DataFrame(reduced_data,columns = ["PC1","PC2"])
3 pca_data["Target"] = data["target"]
4 print("After Feature Dimensional Reduction from 4 Feature column Reduced int display(pca_data)
```

After Feature Dimensional Reduction from 4 Feature column Reduced into 2 pc

	PC1	PC2	Target
0	2.264542	0.505704	setosa
1	2.086426	-0.655405	setosa
2	2.367950	-0.318477	setosa
3	2.304197	-0.575368	setosa
4	2.388777	0.674767	setosa
145	-1.870522	0.382822	virginica
146	-1.558492	-0.905314	virginica
147	-1.520845	0.266795	virginica
148	-1.376391	1.016362	virginica
149	-0.959299	-0.022284	virginica

150 rows × 3 columns

Visualizing the Principal components of the reduced Iris dataset

```
In [60]:
              plt.title('2 components PCA in Iris Dataset')
              plt.xlabel('Principal Components 1')
              plt.ylabel('Principal Component 2')
           3
           4
              targets = np.unique(y)
           5
           6
              for target in targets:
           7
                  idxs = y == target
                  plt.scatter(reduced_data[idxs,0],reduced_data[idxs,1],s=25,label=target)
           8
           9
              plt.legend()
              plt.grid()
          10
              plt.show()
          11
```

