## Problema da tráfego (ou fluxo)

Considere um conjunto de ruas como o da figura 1.

Figure 1: Conjunto de ruas com sentido único.



Na figura 1 o sentido do tránsito dos veículos na rua é indicado pelo sentido da flecha. O número próximo a flecha indica o número de veículos que transita naquela rua em uma hora. O problema do tráfego (de veículos) consiste em determinar o fluxo (de veículos) em todas as ruas. No caso da figura 1 se quer determinar o fluxo  $x_1, x_2, x_3, x_4 \in x_5$ .

Para responder esta questão se assume a seguinte **lei do cruzamento**: O fluxo de veículos que sae do cruzamento é o mesmo que o entra no cruzamento. Para este caso particular:

- Cruzamento 1 ( $C_1$ ): sae  $x_1 + 5$ , entra 30. Logo:  $x_1 + 5 = 30$ .
- Cruzamento 2 ( $C_2$ ): sae  $x_2 + 10$ , entra  $x_1$ . Logo:  $x_2 + 10 = x_1$ .
- Cruzamento 3 ( $C_3$ ): sae  $x_3$ , entra  $x_2 + 5$ . Logo:  $x_3 = x_2 + 5$ .
- Cruzamento 4 ( $C_4$ ): sae  $x_5$ , entra  $x_4 + 10$ . Logo:  $x_5 = x_4 + 10$ .
- Cruzamento 5 ( $C_5$ ): sae  $x_4 + 15$ , entra  $x_3$ . Logo:  $x_4 + 15 = x_3$ .

Ou também:

$$1x_1 + 0x_2 + 0x_3 + 0x_4 + 0x_5 = 25 
-1x_1 + 1x_2 + 0x_3 + 0x_4 + 0x_5 = -10 
-1x_1 + 1x_2 + 0x_3 + 0x_4 + 0x_5 = -5 
0x_1 + 0x_2 + 0x_3 - 1x_4 + 1x_5 = 10 
0x_1 + 0x_2 - 1x_3 + 1x_4 + 0x_5 = -15$$
(1)

Resolver o sistema de equações lineares (1) é responder a questão deste problema.