

planetmath.org

Math for the people, by the people.

Jacobi's theorem

Canonical name JacobisTheorem
Date of creation 2013-03-22 13:33:06
Last modified on 2013-03-22 13:33:06

Owner Koro (127) Last modified by Koro (127)

Numerical id 13

Author Koro (127) Entry type Theorem Classification msc 15-00 **Jacobi's Theorem** Any skew-symmetric matrix of odd order has determinant equal to 0.

Proof. Suppose A is an $n \times n$ square matrix. For the determinant, we then have $\det A = \det A^T$, and $\det(-A) = (-1)^n \det A$. Thus, since n is odd, and $A^T = -A$, we have $\det A = -\det A$, and the theorem follows. \square

0.0.1 Remarks

- 1. According to [?], this theorem was given by Carl Gustav Jacobi (1804-1851) [?] in 1827.
- 2. The 2×2 matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ shows that Jacobi's theorem does not hold for 2×2 matrices. The determinant of the $2n \times 2n$ block matrix with these 2×2 matrices on the diagonal equals $(-1)^n$. Thus Jacobi's theorem does not hold for matrices of even order.
- 3. For n=3, any antisymmetric matrix A can be written as

$$A = \begin{pmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{pmatrix}$$

for some real v_1, v_2, v_3 , which can be written as a vector $v = (v_1, v_2, v_3)$. Then A is the matrix representing the mapping $u \mapsto v \times u$, that is, the cross product with respect to v. Since $Av = v \times v = 0$, we have $\det A = 0$.

References

- [1] H. Eves, Elementary Matrix Theory, Dover publications, 1980.
- [2] The MacTutor History of Mathematics archive, http://www-gap.dcs.st-and.ac.uk/ history/Mathematicians/Jacobi.htmlCarl Gustav Jacob Jacobi