集成学习 (Ensemble Learning)

基础概念

集成学习

集成的效果

	测试例1	测试例2	测试例3	Æ	引试例1	测试例2	测试例3	澳	引试例1	测试例2	测试例3	
h_1	✓	√	×	h_1	√	√	×	h_1	√	×	×	
h_2	×	\checkmark	$\sqrt{}$	h_2	V	√	×	h_2	×	V	×	
h_3	\checkmark	×	√	h_3	\checkmark	√ .	×	h_3	×	×	✓	
集成	. √	√	√	集成	√	. 🗸	×	集成	×	×	×	
	(a) 集成提升性能				(b) 集成不起作用				(c) 集成起负作用			

集成方法

Bagging Stacking Boosting

Bagging (Bootstrap Aggregating)

Bagging

Boosting

Boosting

AdaBoost

D	X1	X2	 Xd	У	D1		D2	D3
(x1,y1)					0.2		0.5	0.28
(x2,y2)					0.2		0.125	0.07
					0.2		0.125	0.07
					0.2		0.125	0.08
(xm,ym)					0.2		0.125	0.5
			$egin{aligned} h_t : & & \ \mathcal{E}_t \end{aligned}$	$= L(D)$ $= E_{x \sim D}$	(D_t) $\left(\frac{1-\varepsilon_t}{\varepsilon_t}\right)$			
			D_{t}	$_{+1}(i) =$	$\frac{D_t(i)}{Z_t} \times \begin{cases} \exp(-\alpha_t), \\ \exp(\alpha_t), \end{cases}$	$h_t(x_i) = y_i$ $h_t(x_i) \neq y_i$		

权重 / 分布 (Optional)

$$\begin{vmatrix} D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \exp(-\alpha_t), & h_t(x_i) = y_i \\ \exp(\alpha_t), & h_t(x_i) \neq y_i \end{cases}$$
$$= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$\begin{aligned} &D_{T+1}(i) \\ &= \frac{1}{m} \frac{\exp(-\alpha_1 y_i h_1(x_i))}{Z_1} \dots \frac{\exp(-\alpha_T y_i h_T(x_i))}{Z_T} \\ &= \frac{\exp(-y_i \sum_{t=1}^{T} \alpha_t h_t(x_i))}{m \prod_{t=1}^{T} Z_t} \end{aligned}$$

$$Z_{t} = \sum_{i=1}^{m} D_{t}(i) \exp(-\alpha_{t} y_{i} h_{t}(x_{i}))$$

损失函数 (Optional)

$$H(x_{i}) \neq y_{i}$$

$$sign\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x_{i})\right) \neq y_{i}$$

$$y_{i} \times sign\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x_{i})\right) \leq 0$$

$$y_{i}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x_{i})\right) \leq 0$$

$$\exp\left(-y_{i}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x_{i})\right)\right) \geq 1$$

求解 alpha (Optional)

$$Z_{t} = \sum_{i=1}^{m} D_{t}(i) \exp(-\alpha_{t} y_{i} h_{t}(x_{i}))$$

$$= E_{x \sim D_{t}} \left[\exp(-\alpha_{t} y_{i} h_{t}(x)) \right]$$

$$= \exp(-\alpha_{t}) P(y_{i} = h_{t}(x)) + \exp(\alpha_{t}) P(y_{i} \neq h_{t}(x))$$

$$= \exp(-\alpha_{t}) (1 - \varepsilon_{t}) + \exp(\alpha_{t}) \varepsilon_{t}$$

$$-\frac{\partial Z_t}{\partial \alpha_t} = 0 \longrightarrow$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

Error Bound (Optional)

$$Z_{t}$$

$$= \exp(-\alpha_{t})(1-\varepsilon_{t}) + \exp(\alpha_{t})\varepsilon_{t}$$

$$= \sqrt{\frac{\varepsilon_{t}}{1-\varepsilon_{t}}}(1-\varepsilon_{t}) + \sqrt{\frac{1-\varepsilon_{t}}{\varepsilon_{t}}}\varepsilon_{t}$$

$$= 2\sqrt{\varepsilon_{t}}(1-\varepsilon_{t})$$

$$\alpha_{t} = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_{t}}{\varepsilon_{t}} \right)$$

$$r_{t} = \sum_{i=1}^{m} D_{t}(i)y_{i}h_{t}(x_{i})$$

$$= E[y_{i}h_{t}(x)]$$

$$= 1 \bullet P(y_{i} = h_{t}(x)) + (-1) \bullet P(y_{i} \neq h_{t}(x))$$

$$= 1 - 2\varepsilon_{t}$$

$$\to \varepsilon_{t} = \frac{1 - r_{t}}{2}$$

$$\left| \frac{1}{m} I\{H(x_i) \neq y_i\} \le \prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} \sqrt{1 - r_t^2} \right|$$

AdaBoost 的优缺点

优点	缺点
容易实现	alpha 是局部最优
不容易出现过拟合	对噪音敏感
参数不多	base model 不能为线性模型
理论基础好	(logistic regression)