TD1 - Rappels d'intégration et théorie de la mesure

Exercice 1. Soit (E, \mathcal{A}, μ) un espace mesuré et A_1, \ldots, A_n des ensembles mesurables de mesure finie.

(a) Montrer que

$$\mu\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mu(A_{i}) - \sum_{1 \le i_{1} \le i_{2} \le n} \mu(A_{i_{1}} \cap A_{i_{2}}) + \dots + (-1)^{n-1} \mu(A_{1} \cap \dots \cap A_{n})$$

(b) Montrer que

$$\mu\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} \mu(A_{i}) - \sum_{1 \leq i_{1} < i_{2} \leq n} \mu(A_{i_{1}} \cap A_{i_{2}}).$$

Sauriez-vous généraliser cette inégalité?

(c) On range n chapeaux au hasard dans n boîtes. A chaque boîte correspond un et un seul chapeau. Calculer la probabilité qu'aucun chapeau ne soit dans la bonne boîte. Quelle est la limite de cette probabilité quand $n \to \infty$?

Exercice 2. Sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ on considère une mesure μ diffuse i.e. $\mu(\{x\}) = 0$ pour tout $x \in \mathbb{R}$. Soit $\varphi \in \mathcal{L}_1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$.

(a) Montrer que la fonction

$$F(x) = \int_{-\infty}^{x} \varphi(u)\mu(du)$$

est continue sur \mathbb{R} . Que se passe-t-il si μ n'est pas diffuse?

(b) On pose $\psi(x) = x\varphi(x)$ et on suppose $\psi \in \mathcal{L}_1(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$. Montrer que

$$G(x) = \int_{\mathbb{R}} (x - u)_{+} \varphi(u) \, \mu(du)$$

est de classe \mathcal{C}^1 sur \mathbb{R} et calculer sa dérivée.

Exercice 3. Soit $\varphi \in \mathcal{L}_1(\mathbb{R}, \mathcal{B}(\mathbb{R}), dx)$ où dx désigne la mesure de Lebesgue. Soit h une fonction continue bornée de \mathbb{R} dans \mathbb{R} .

(a) Montrer que la fonction

$$h * \varphi(x) = \int_{\mathbb{R}} h(x - u)\varphi(u) du$$

est continue et bornée sur \mathbb{R} .

(b) On suppose maintenant h également dérivable à dérivée bornée. Montrer que $h*\varphi$ est de classe \mathcal{C}^1 et calculer sa dérivée.

Exercice 4. Soit (E, \mathcal{A}, μ) un espace mesuré et $f: E \to \mathbb{R}$ mesurable. On note

$$||f||_p = \left(\int_{\mathbb{R}} |f|^p d\mu\right)^{1/p}$$

pour tout $p \in [1, \infty)$ et

$$||f||_{\infty} = \inf \{ C \ge 0, |f| \le C \quad \mu \text{ p.p.} \},$$

en autorisant les valeurs infinies.

- (a) On suppose μ finie. Montrer que $||f||_p \to ||f||_\infty$ quand $p \to \infty$ dans $\mathbb{R} \cup \{\infty\}$. Que se passe-t-il quand μ est infinie?
- (b) On fixe $p \in [1, \infty]$ et on considère $f, g, \in \mathcal{L}_p(E, \mathcal{A}, \mu)$ à valeurs réelles. Montrer que $f + g \in \mathcal{L}_p(E, \mathcal{A}, \mu)$ et que

$$||f+g||_p \le ||f||_p + ||g||_p.$$

Exercice 5. (a) Soit $p_1, \ldots, p_n > 0$ tels que $p_1 + \cdots + p_n = 1$. Montrer que

$$\prod_{i=1}^{n} x_i^{p_i} \le \sum_{i=1}^{n} p_i x_i$$

pour tous $x_1, \ldots, x_n > 0$.

(b) Soit (E, \mathcal{A}, μ) un espace mesuré et $f_1, \ldots, f_n : E \to \mathbb{R}$ mesurables positives. Soit Soit $\rho_1, \ldots, \rho_n > 0$ tels que $1/\rho_1 + \cdots + 1/\rho_n = 1$. Montrer à l'aide de la question précédente que

$$||f_1 \dots f_n||_1 \leq \prod_{i=1}^n ||f_i||_{\rho_i}.$$