$\begin{array}{c} \textbf{Discrete Structures} \\ \textbf{Graph Theory} \end{array}$

Nathan Warner

Computer Science Northern Illinois University August 31, 2023 United States

Contents

1	Graphs	2
2	Subgraphs	3

1 Graphs

Definition 1. A graph G consists of two finite sets: a nonempty set V(G) of vertices and a set E(G) of edges, where each edge is associated with a set consisting of either one or two vertices called its endpoints. Formally, a graph is defined as an ordered pair G = (V, E), where V is the set of vertices and E is the set of edges

$$G = (V, E)$$

$$V = \{v_1, v_2, v_3, ..., v_n\}$$

$$E = \{e_1, e_2, e_3, ..., e_m\}.$$

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5\}.$$

We can also represent the edges by only stating the vertices which connect the edges

Edges	Endpoints
e_1	$\{v_1, v_2\}$
e_2	$\{v_1, v_3\}$
e_3	$\{v_2, v_3\}$
e_4	$\{v_3, v_4\}$
e_5	$\{v_4\}$

2 Subgraphs

Definition 2. Graph H is said to be a subgraph of a graph H iff every vertex in H is also a vertex in G, every edge in H is also an edge in G, and every edge in H has the same endpoints as it has in G.