APPELLO Ax/202y, Esame di		
COSTRUZIONE DI MOTORI PI	01SRZMT	
Prof. D. Botto, Prof. C. Firrone		
SCRITTO: ORALI:		
Nome	Cognome	Matricola

Tempo a disposizione: 2 ore

IMPORTANTE

Una esposizione chiara si basa su:

- grafici o schizzi dotati di tutte le indicazioni (es. nomi di punti, quote, assi ...) che si ritrovano nelle descrizioni; in casi speciali, come quelli degli ingranaggi, costruzioni accurate eseguite con strumenti adatti sono indispensabili,
- descrizioni sintetiche e chiare in cui l'esaminatore è accompagnato alla comprensione della grafica e trova tutti gli elementi che supportano le conclusioni.

Riportare per esteso e chiaramente i procedimenti che conducono alle risposte è indispensabile per eventuali discussioni con gli esaminatori. In assenza, nessuna discussione sarà, purtroppo, possibile.

Il testo nella pagina che segue è il testo di un esercizio d'esame. Risolvete l'esercizio rispettando i suggerimenti sottoelencati.

- 1. Risolvete l'esercizio solo dopo aver studiato la parte teorica relativa ai cuscinetti.
- 2. Un tempo ragionevole per risolvere questo esercizio è 60 minuti. Non interrompete lo svolgimento dell'esercizio per riprenderlo più tardi ma terminatelo nel tempo auto-assegnato.
- 3. L'esercizio deve essere completo anche nella parte numerica e la sequenza di calcoli che portano alla soluzione deve essere chiara.
- 4. Fate l'esercizio su carta o su un formato elettronico (pdf o simili) che possa essere condiviso con altri studenti del corso.
- 5. Scambiate la vostra soluzione con quella fatta da un altro studente (magari dello stesso gruppo di lavoro delle esercitazioni) e fate le valutazioni incrociate dei rispettivi esercizi (date anche un voto da 1 a 10).
- 6. Darò supporto alla soluzione solo alle coppie di studenti che avranno completato l'esercizio e l'auto valutazione.

Non proseguite oltre se non avete intenzione di completare l'esercizio

Esercizio (12 punti, minimo 6)

Un albero di una gearbox è supportato da due cuscinetti 1 e 2 (a una corona di rulli conici) come schematizzato nella figura a lato. I due cuscinetti non sono precaricati.

Gli appellativi dei due cuscinetti sono:

Cuscinetto 1 \rightarrow 32007 X/Q

Cuscinetto 2 → 32008 X/Q

- Calcolate le reazioni vincolari sui due cuscinetti.
- Identificate sulla figura chi sono il cuscinetto A e il cuscinetto B usando lo schema nella Tabella 3 in allegato.
- Calcolate la durata di base in milioni di giri L₁₀ dei due cuscinetti.

 $\alpha = 30^{\circ}$; d = 2/3 LF = 10 kN

NOTA - Determinazione delle forze assiali Quando su un cuscinetto ad una corona di rulli conici si applica un carico radiale, questo si trasmette da una pista all'altra secondo un certo angolo rispetto all'asse e all'interno del cuscinetto stesso si produce una forza assiale, che deve essere presa in considerazione nel calcolo dei carichi equivalenti.

Le formule necessarie sono riportate nello schema della Tabella 3. Nelle disposizioni illustrate, il cuscinetto A è soggetto a un carico radiale F_{rA} e il cuscinetto B a un carico radiale F_{rB}. I valori dei carichi F_{rA} e F_{rB} si considerano sempre positivi anche quando agiscono in senso opposto a quello indicato nelle figure.

Inoltre sull'albero agisce una forza assiale esterna Ka.

I valori del fattore "Y" e del rapporto "e" sono riportati nelle tabelle dei prodotti in allegato.

Carico dinamico equivalente sul cuscinetto

$$P = F_r$$
 quando $F_a/F_r \le e$
 $P = 0,4 F_r + Y F_a$ quando $F_a/F_r > e$

I valori dei fattori Y ed e sono riportati nelle tabelle dei prodotti.

Carico statico equivalente sul cuscinetto

$$P_0 = 0.5 F_r + Y_0 F_a$$

Quando $P_0 < F_r$, si deve usare $P_0 = F_r$. I valori del fattore Y_0 sono riportati nelle tabelle dei prodotti.

Determinazione delle forze assiali

Quando su un cuscinetto ad una corona di rulli conici si applica un carico radiale, questo si trasmette da una pista all'altra secondo un certo angolo rispetto all'asse e all'interno del cuscinetto stesso si produce una forza assiale, che deve essere presa in considerazione nel calcolo dei carichi equivalenti in sistemi costituiti da due cuscinetti ad una corona e/o da coppie di cuscinetti disposti in tandem.

Le formule necessarie sono riportate nella **tabella 3** per le varie disposizioni e per le varie condizioni di carico. Le formule sono valide solo se i cuscinetti sono registrati l'uno contro l'altro in modo da avere un gioco praticamente nullo, ma senza precarico. Nelle disposizioni illustrate, il cuscinetto A è soggetto a un carico radiale F_{rA} e il cuscinetto B a un carico radiale F_{rB} il valori dei carichi F_{rA} e F_{rB} si considerano sempre positivi anche quando agiscono in senso opposto a quello indicato nelle figure. I carichi radiali agiscono sui centri di pressione dei cuscinetti (ved. dimensione a nelle tabelle dei prodotti).

Inoltre sull'albero (o sull'alloggiamento) agisce una forza assiale esterna K_a . I casi 1c e 2c sono validi anche quando K_a = 0. I valori del fattore Y sono riportati nelle tabelle dei prodotti.

466 **SKF**

Tabella 3

Carico assiale per disposizioni di cuscinetti dotate di due cuscinetti ad una corona di rulli conici e/o cuscinetti appaiati in tandem

Disposizione

Carico

Forze assiali

Ad O

1a)
$$\frac{F_{rA}}{Y_A} \ge \frac{F_{rB}}{Y_B}$$
 $K_a \ge 0$

$$F_{aA} = \frac{0.5 F_{rA}}{Y_A} \qquad F_{aB} = F_{aA} + K_a$$

$$F_{aB} = F_{aA} + K_a$$

1b)
$$\frac{F_{rA}}{Y_A} < \frac{1}{Y_A}$$

$$F_{aB} = F_{aA} + K_a$$

Ad X

1b)
$$\frac{Y_A}{Y_A} < \frac{Y_B}{Y_B}$$

$$K_a \ge 0.5 \left(\frac{F_{rB}}{Y_B} - \frac{F_{rA}}{Y_A} \right)$$

$$\label{eq:fabeta} \text{1c)} \quad \frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B} \qquad \qquad F_{aA} = F_{aB} - K_a \qquad \qquad F_{aB} = \frac{0.5 \; F_{rB}}{Y_B}$$

$$F_{aA} = F_{aB} - K$$

$$F_{aB} = \frac{0.5 F_{rB}}{Y_{p}}$$

$$K_a < 0.5 \ \left(\frac{F_{rB}}{Y_B} - \frac{F_{rA}}{Y_A}\right)$$

Ad O

2a)
$$\frac{F_{rA}}{Y_A} \le \frac{F_{rB}}{Y_B}$$
 $F_{aA} = F_{aB} + K_a$ $F_{aB} = \frac{0.5 F_{rB}}{Y_B}$

$$F_{aA} = F_{aB} + I$$

$$F_{aB} = \frac{0.5 F_{rB}}{V_{-}}$$

2b)
$$\frac{F_{rA}}{Y_A}$$

$$2b) \quad \frac{F_{rA}}{Y_A} > \frac{F_{rB}}{Y_B} \qquad \qquad F_{aA} = F_{aB} + K_a \qquad \qquad F_{aB} = \frac{0.5 \; F_{rB}}{Y_B} \label{eq:fab}$$

Ad X

 $K_a \ge 0.5 \left(\frac{F_{rA}}{Y_A} - \frac{F_{rB}}{Y_B} \right)$

$$2c) \quad \frac{F_{rA}}{Y_A} > \frac{F_{rB}}{Y_B} \qquad \qquad F_{aA} = \frac{0.5 \; F_{rA}}{Y_A} \qquad \qquad F_{aB} = F_{aA} - K_a \label{eq:fab}$$

$$F_{aA} = \frac{0.5 F_{rA}}{Y_A}$$

$$F_{aB} = F_{aA} - K_a$$

$$K_a < 0.5 \ \left(\frac{F_{rA}}{Y_A} - \frac{F_{rB}}{Y_B}\right)$$

Cuscinetti ad una corona di rulli conici metrici d 35 – 40 mm

Dim e	e nsion i	i principali T	Coeff. odinam.	di carico stat.	Carico limite di fatica P _u	Velocità Velocità di refe- renza	à di base Velocità limite	Massa	Appellativo	Serie dimen- sionale ISO 355 (ABMA)
mm			kN		kN	giri/1'		kg	-	-
35	62	18	49	54	5,85	8 500	11 000	0,22	* 32007 X/Q	4CC
	62	18	42,9	49	5,2	8 000	11 000	0,22	32007 J2/Q	-
	72	18,25	51,2	56	6,1	7 000	9 500	0,32	30207 J2/Q	3DB
	72	24,25	66	78	8,5	7 000	9 500	0,43	32207 J2/Q	3DC
	72	28	84,2	106	11,8	6 300	9 500	0,56	33207/Q	2DE
	80	22,75	72,1	73,5	8,3	6 700	9 000	0,52	30307 J2/Q	2FB
	80	22,75	61,6	67	7,8	6 000	8 500	0,52	31307 J2/Q	7FB
	80	32,75	95,2	106	12,2	6 300	9 000	0,73	32307 J2/Q	2FE
	80	32,75	93,5	114	13,2	6 000	8 500	0,80	32307 BJ2/Q	5FE
37	80	32,75	93,5	114	13,2	6 000	8 500	0,85	32307/37 BJ2/Q	-
38	63 63 63 63 68	17 17 17 17 17	36,9 36,9 36,9 36,9 52,8	52 52 52 52 71	5,4 5,4 5,4 5,4 7,65	7 500 7 500 7 500 7 500 7 500 7 000	11 000 11 000 11 000 11 000 9 500	0,20 0,20 0,19 0,19 0,28	JL 69349 A/310/Q JL 69349 X/310/Q JL 69349/310/Q JL 69345 F/310/Q 32008/38 X/Q	(L 69300 (L 69300 (L 69300 –
40	68	19	52,8	71	7,65	7 000	9 500	0,27	32008 X/Q	3CD
	68	19	52,8	71	7,65	7 000	9 500	0,27	32008 XTN9/Q	3CD
	75	26	79,2	104	11,4	6 700	9 000	0,51	33108/Q	2CE
	80	19,75	61,6	68	7,65	6 300	8 500	0,42	30208 J2/Q	3DB
	80	24,75	74,8	86,5	9,8	6 300	8 500	0,53	32208 J2/Q	3DC
	80	32	105	132	15	5 600	8 500	0,77	33208/QCL7C	2DE
	85	33	121	150	17,3	6 000	9 000	0,90	T2EE 040/QVB134	2EE
	90	25,25	85,8	95	10,8	6 000	8 000	0,72	30308 J2/Q	2FB
	90	25,25	85	81,5	9,5	5 600	7 500	0,72	* 31308 J2/QCL7C	7FB
	90	35,25	117	140	16	5 300	8 000	1,00	32308 J2/Q	2FD

472 **5KF**

^{*} Cuscinetto SKF Explorer

Dimensioni					Dim	Dimensioni delle parti che accolgono il cuscinetto									Elementi per il calcolo			
d	d ₁	В	С	r _{1,2} min	r _{3,4} min	a	d _a max	d _b min	D _a min	D _a max	D _b min	C _a mii	C _b n min	r _a max	r _b max	е	Υ	Y ₀
nm							mm									-		
35	49,2 49,5	18 18	14 15	1	1	15 16	41 41	41 41	54 53	56 56	59 59	4	4	1	1	0,46 0,44	1,3 1,35	0,3
	51,8 52,4 53,4	17 23 28	15 19 22	1,5 1,5 1,5	1,5 1,5 1,5	15 17 18	44 43 42	42 42 42	62 61 61	65 65 65	67 67 68	3 3 5	3 5 6	1,5 1,5 1,5	1,5 1,5 1,5	0,37 0,37 0,35	1,6 1,6 1,7	0,9
	54,5 59,6 54,8 59,3	21 21 31 31	18 15 25 25	2 2 2 2	1,5 1,5 1,5 1,5	16 25 20 24	46 45 44 42	44 44 44	70 62 66 61	71 71 71 71	74 76 74 76	3 4 4	4,5 7,5 7,5 7,5	2 2 2 2	1,5 1,5 1,5 1,5	0,31 0,83 0,31 0,54	1,9 0,72 1,9 1,1	1,2 0,4 1,2 0,6
37	54,8	31	25	2	1,5	20	44	44	66	71	74	4	7,5	2	1,5	0,54	1,1	0,6
38	52,2 52,2 52,2 52,2 54,2	17 17 17 19 19	13,5 13,5 13,5 13,5 14,5	1,3 2,3 3,6 3,6 1	1,3 1,3 1,3 1,3	14 14 14 14 15	44 44 44 44	44 47 50 50 44	55 55 55 56 60	56,5 56,5 56,5 56,5 62	60 60 60 65	3 3 3 4	3,5 3,5 3,5 3,5 4,5	1 2 3,5 3,5 1	1 1 1 1	0,43 0,43 0,43 0,43 0,37	1,4 1,4 1,4 1,4 1,6	0,8 0,8 0,8 0,8
40	54,2 54,2 57,5	19 19 26	14,5 14,5 20,5	1 1 1,5	1 1 1,5	15 15 18	46 46 47	46 46 47	60 60 65	62 62 68	65 65 71	4 4 4	4,5 4,5 5,5	1 1 1,5	1 1 1,5	0,37 0,37 0,35	1,6 1,6 1,7	0,9
	57,5 58,4 59,7	18 23 32	16 19 25	1,5 1,5 1,5	1,5 1,5 1,5	16 19 21	49 49 47	47 47 47	69 68 67	73 73 73	74 75 76	3 3 5	3,5 5,5 7	1,5 1,5 1,5	1,5 1,5 1,5	0,37 0,37 0,35	1,6 1,6 1,7	0,0
	61,2 62,5 67,1 62,9	32,5 23 23 33	28 20 17 27	2,5 2 2 2	2 1,5 1,5 1,5	22 19 28 23	48 53 51 51	50 49 49 49	70 77 71 73	75 81 81 81	80 82 86 82	5 3 3	5 5 8 8	2 2 2 2	2 1,5 1,5 1,5	0,35 0,35 0,83 0,35	1,7 1,7 0,72 1,7	0,9 0,9 0,4 0,9

SKF