ERDE TR 68

UNLIMITED

ERDE TR 68

28516

52.40

... 721577

MINISTRY OF DEFENCE

EXPLOSIVES RESEARCH AND DEVELOPMENT ESTABLISHMENT

TECHNICAL REPORT No. 68

Relationships between Polyurethane Elastomer Structure and Ageing Properties: Part 4: Effect of Di-isocyanate

B E Brokenbrow
D Sims
J Wright

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Commerce
Springfield VA 22151

WALTHAM ABBEY ESSEX

June 1971

MINISTRY OF DEFENCE

EXPLOSIVES RESEARCH AND DEVELOPMENT ESTABLISHMENT

Technical Report No 68

June 1971

Relationships between Polyurethene Elastomer Structure and Ageing Properties: Part 4: Effect of Di-isocyanate

by

B E Brokenbrow
D Sims
J Wright

SUMMARY

The final report in the present series of investigations describes the effect of varying the di-isocyanate on the ageing properties of polyurethane elastomers.

Polyester and polyether urethane elastomers were prepared with selected di-isocyanates and crosslinked and/or chain extended with either 1,1',1"-trimethylol propone (TMP) or mixtures of TMP and 4,4'-methylene-bis-(2-chloroaniline), MOCA. Elastomers prepared with toluene di-isocyanate (1)1) gave the most satisfactory initial properties and resistance to ageing in dry air at 80°C, water at 22 and 80°C, and STF (petrol) at 65°C.

None of the elastomers prepared from the other di-isocyanates examined including 1,4-naphthalene, 4,4-diphenyl methane, 1,6-hexamethylene, 4,4-methylene bis-cyclohexyl, trimethylhexamethylene, isophorone, and xylene had equally satisfactory all round properties to those based on TDI. Further disadvantages of these di-isocyanates were their extremely high or low reactivities, high cost and limited availability compared to TDI.

The report also summarises the results of previous investigations in the present series.

Further copies of this technical report can be obtained from Defence Research Information Centre, Station Square House, St Mary Cray, Orpington, Kent. BR5 3RE

A. Company	Charles and the control of the contr			MEDICAL ST.
CONT	ents			
			Page No	
1	Introduction		1	
2	Materials and Methods	s of Preparation	2	
3	Experimental		2	
Ļ	Results		5	
4 1		mers for Ageing Trials	5	
4 2 4 3		es	6	
5	Discussion		18	
6	Conclusions		20	
7	Further Work		21	
8	References		22	
	Appendix A: Methods	of Preparation	23	
	of Poly	rethane Elastomers Prepared with	e	
			24 - 25	
	Polyure	thane Elastomers Prepared with		
			26 – 29	
			_	
	CONT! 1 2 3 4 4 2 5 6 7	CONTENTS 1 Introduction 2 Materials and Methods 3 Experimental 4 Results 4 Results 5 Selection of Elaston 6 Visual Assessment 7 Mechanical Properties 7 Discussion 8 References 8 Appendix A: Methods 9 Appendix A: Methods 9 Appendix B: Table 17 of Polyung Different Assessment 1 Table 1 Polyune Different	CONTENTS 1 Introduction 2 Materials and Methods of Preparation 3 Experimental 4 Results 4 1 Selection of Elastomers for Ageing Trials 4 2 Visual Assessment 4 3 Mechanical Properties 5 Discussion 6 Conclusions 7 Further Work 8 References Appendix A: Methods of Preparation	CONTENTS Page No Introduction Materials and Methods of Preparation Experimental Results Visual Assessment Methanical Properties Discussion Conclusions Page No 1 Results 5 Linch Results 6 Conclusions 7 Purther Work 8 References Appendix A: Methods of Preparation 7 Appendix B: Table 12: General Condition and Appearance of Polyurethane Elastomers Prepared with Different Di-isocyanates Selected for Assessment of Ageing Properties Table 13: Mechanical Properties of Polyurethane Elastomers Prepared with Different Di-isocyanates Before and

Reference: WAC/213/09

1 INTRODUCTION

Previous reports^{1,2,1} in the present series of investigations into the relationships between polyurethane chemical structure and ageing properties have described the effects of varying: (i) the degree of crosslinking, (ii) the backbone polyol and (iii) the chemical group structure in elastomers prepared from typical polyester and polyether/toluene di-isocyanate prepolymers crosslinked and/or chain extended with diols, triols and diamines. The effects of using alternative backbone polyols, for example, hydroxyl-terminated polybutadienes, have also been described previously.^{2,4}

These investigations have shown that while unaged polyester urethane elastomers possess superior mechanical properties coupled with rather better resistance to dry air and petroleum (STF) compared with polyether urethanes, the latter have superior hydrolytic stability, but even so polyether urethanes have inferior hydrolytic stability to urethanes prepared from hydroxyl-terminated polybutadienes.

In addition, it has been shown³ that urethane elastomers cured with diamines, for example, 4,4'-methylene-bis-(2-chloroaniline), MOCA, and blends of MOCA with diols and triols such as 1,1',1"-trimethylol propane (TMP) and 1,4-butane diol (BD) possess superior initial mechanical and ageing properties, especially when they are fairly highly crosslinked, compared to elastomers in which diols or triols are the sole curing agents. The high strength of the MOCA cured elastomers is attributed to the stiffness of the aromatic groups of the MOCA and the stronger interchain attraction of the urea groups and the formation of biuret crosslinks compared with urethane groups.

However, there are some doubts as to the desirability of using MOCA or other halogenated aromatic amines as curing agents for polyurethanes because of possible health hazards (see Note in Appendix A). Therefore it is possible that the use of di-isocyanates with more bulky rigid aromatic structures than toluene di-isocyanate (TDI) might produce elastomers with equally good properties, thus allowing all or part of the MOCA curing agent to be replaced with diol/triols.

Similarly, a number of new aliphatic and cycloaliphatic di-isocyanates have recently become available commercially which are claimed to produce elastomers with enhanced stability to hydrolysis and/or photo-oxidative degradation and were considered worthy of assessment.

The object of the present investigation, the last in the present series, was to study the ageing properties of elastomers of typical polyester and polyether prepolymers prepared with various di-isocyanates, crosslinked and/or chain extended with either triols or triol/diamine blends.

2 MATERIALS AND METHODS OF FREPARATION

All the elastomers were prepared using either (i) a commercially supplied polyester, polyethylene adipate Formrez F7-3/ ex-Mitco Chemical Ca (hydroxyl no 59.0, acid no 0.4, H-C 0.2%, average molecular weight 1890) or (ii) a commercially supplied polyether, polyoxybutylene glycol, 'Polymeg' ex-Quaker Oats Co (hydroxyl no 56.7, acid no 0.01, H₂0, 0.1%, average molecular weight 1980). 1.0 mole equivalent reacted with 2.1 moles equivalent of the di-isocymates listed in Tables 1 and 2. The polyester or polyether elastomers were crosslinked and/or chain extended either with (i) 0.66 mole equivalent of TMP or (ii) a mixture of MOCA, 0.5 mole equivalent, and TMP, 0.33 mole equivalent.

The methods of preparation summarised in Table 2 are described in Appendix A.

3 EXPERIMENTAL

British Standard type E dumb-bell test pieces (four per test) were cut from the cast sheets and the width and thickness measured before exposure to the test conditions. Dumb-bells, in sets of four, were suspended in loosely stoppered glass tubes and exposed to some or all of the following environments for 28 days:

Controls Conditioned in air at 20°C

Hot/dry Suspended in air at 80°C

Hot/we', Immersed in boiled out distilled water at 80°C

Cold/wet Immersed in boiled out distilled water at 22°C

*Standard Test Fluid (STF) Immersed in Standard Test Fluid at 65°C

The charged tubes were placed in circulating air ovens in which the temperatures did not vary by more than \pm 0.5°C from the test temperature. After 28 days exposure the tubes and contents were removed from the oven and conditioned at room temperature for 24 hours before testing. After the conditioning period, the groups of four specimens were removed from the tubes, dried from a superficial liquid, and tested for hardness, moduli, extension at break and tensile strength as quickly as possible. Hardness was measured using a micro-indentometer, and the tensile properties were measured by British Standard Methods', on a Hoursfield Tensometer. Unaged control specimens cut from the materials were tested by the same methods, and the results used as 'unaged' reference points.

^{*}Standard Test Fluid (STF) consists of a 70/30 v/v mixture of iso-octane and toluene, and is intended to represent a standard "medium to high aromatics" content petrol.

TABLE 1

SELECTION OF DI-130CYANATES

Code in Text	Chemical Name and Pnysical Properties	Chemical Structure	Molecular Weight	Trade Name and/or Supplier
TDI (100)	Toluene di-isocyanate 100% 2,4 isomer (liquid at room temperature)	OCN CH3 2,4 isomer		Hylene T, DuPont (UK)
TDI (80/20)	Toluene di-isocyanate 80% 2,4 isomer 20% 2,5 isomer (liquid at room temperature)	NCO ACO	174	Hylene TM, DuPont (UK)
rdi (65/35)	Toluene di-isocyanate 65% 2,4 isomer 35% 2,6 isomer (liquid at room temperature)	CH3 2,6 isomer		Hylene TM 65, DuPont (UK)
IQN	1,5-Naphthalene di-isocyanate (solid at room temperature)	OCN CO	210	Desmodur 15, Bayer
MDI	4,4-Diphenyl methane di-isocyanate (solid at room temperature)	OCN CH2 CH2 NCO	250	Desmodur 44, Bayer
MDI (mod)	Probably a 4,4-diphenyl methane di-isocyanate carbodionide eutectic (solid/liquid mixture at room temperature)	as above	288	Isonate 143L, Upjohn
HDI	1,6-Hexamethylene di-isocyanate (liquid at room temperature)	CH2-CH2-CH2 NCO	168	Desmodur H, Bayer
MGI	4,4-Nethylene bis-cyclohexyl di-isocyanate (liquiù at room temperature)	00N-6 6-6 42 6-6 6-NCO	262	Nacconate H12, Allied Chemicals

288 Isonate 143L, Upjohn 168 Desmodur H, Bayer	Desmodur Bayer		262 Nacconate H12, Allied Chemicals	210 Verba Chemie, AG	222 Verba Chemie, AG	1පයි Takenate 500, Takeda, Japan
as above		CH2-CH2-CH2 NCO	0CN-C	CH3 CH3 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH3 CH	H ₃ C NCO	CH2NCO CH2NCO CH2NCO CH2NCO (70%) m- (30%) p-
	Probably a 4,4-diphenyl methane di-isocyanate carbodionide eutectic (solid/liquid mixture at room temperature)	1,6-Hexamethylene di-isocyanate (liquid at room temperature)	4,4-Nethylene bis-cyclohexyl di-isocyanate (1i.quid at room temperature) 98.5% pure	Trimethylhexamethylene di-isocyanate (liquid at room temperature)	Isophorone di-isocyanate (liquid at room temperature)	Xylene di-isocyanate 70/30 mixture of m- and p-xylene di-isocyanate (liquid at room temperature) 99% pure
	MDI (mod)	нот	MCI	TMHDI	IPDI	XDI

CHARACTERISTICS OF POLYURETHANE ELASTOMERS PREPARED WITH VARIOUS DI-ISOCYANATES TABLE 2

	derd.	Prepolymer	0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		Cross Linker/Chain Extender	/Chain Ex	tender	
Code Number	Polyol (1 mole equivalent)	Di-isocyanate (2.1 moles equivalent)	(h)	Conditions (h) (Temp C)	Catalyst	TMP (mole)	TMP (mole)	MOCA (mole)	Characteristics of Cured Elastomer
S 110	Ethylene	TDI 100	3	80~85	Ni 1	•	0.33	05.0	goog
S 110A	adipate	rpi 80/20	~	80-85	=	ı	0.33	0.50	good, slightly yellow
S 111A	wt 1900	TDI 80/20	n	80-85	=	99.0	1	i	good, " "
S 111	(Polyester)	TDI 65/35	8	80-85	=	1	0.33	0.50	good, " "
S 112A		NDI	12	130	*	١	0.33	0.50	poor, very rapid cure, partly gelled
s 112B		NDI	- 0	130	=	99.0	•	1	fair-good, slightly opaque, a few bubbles
S 113A		MDI	-kv	105	Ε		0.33	0.50	fair-poor, very rapid cure
S 113B		MDI	-10	100	=	99*0	1	1	fair, a few bubbles
S 116A		MDI mod	8	105	ŧ	1	0.33	0.50	fair-good, c. few bubbles
S 116B		MDI mod	01	105	τ	99*0	1	ı	good
S 114A		HDÎ	4.	120	Ε	1	0.33	0.50	flexible but lumpy
S 114B		IGI	~	120	£	0.66	l 	•	fair, moderate number of bubbles
S 117A	1	MCI	3	80-85	E	•	0.33	0.50	good
S 117B	,	MCI	3	80-85	E	99.0	1	'	slow cure, thermoplastic
S 132A		IQX	3	80-85	ŧ	ı	0.33	0.50	good, slightly opaque
s 132B		XDI	3	80 –85	ŧ	99.0	1	1	fair-good, rather soft
S 118	Polyoxy-	TDI 100	3	80-85	E	ł	0.33	0.50	good, slightly translucent
s 119	butylene	TDI 80/20	~	80-85	E	t	0.33	0.50	good, " yellow
99 S	av mol	TDI 80/20	~	80-85	:	99.0	ı	1	good
\$ 120	wt 2000 (Polyether)	TDI 63/35	3	80-85	E	1	0.33	0.50	good, slightly yellow
S 121A		IDI	-10	130	E	ı	0.33	0.50	poor, extremely rapid cure
S 121B	1	IDN	12-	130	E	99.0	l 	1	good
1001	<u></u>	sent	۲	405	"		72 0	ח בח	Anim month anna come mel

with the								···					 								,			
COUNTY SECTION OF THE	good	slow cure, thermoplastic	good, slightly opaque	fair-good, rather soft	good, slightly translucent	good, " yellow	good	good, slightly yellow	poor, extremely rapid cure	good	fair, rapid cure, some gel	fair-poor, rivelled surface	fair, rapid cure, ridged surface	poor, slow cure	good, flexible	tacky, slow cure	good, flexible	tacky, slow cure	good, flexible	very slow cure	good, flexible	very slow cure	fair, slightly opaque (crystallino)	soft, very slow cure
والمراجعة والمراجعة والمراجعة	0.50	',	0.50	_	0.50	0.50	ı	0.50	0.50		0.50	1	0.50	ı	0.50	ı	0.50	ı	0.50	ı	0.50	1	0.50	ı
out a subject of the	0-33	1	0.33	_	0.33	0.33	ı	0.33	0.33	ı	0.33	ı	0.33	1	0.53	•	0.33	ſ	0.33	ı	0.33	ı	0.33	,
The state of the s	. 1	99.0	1.	0.66	ŧ	1	99.0	-	-	0.66	1	0.66	ŧ	0.66	ı	0.66	1	99.0	ı	99.0	ı	99.0	ı	99.0
to make the said saids	E	E	E	=	E	Ε	=	E	H	=	E .	u	u	#	0.05% DBTL*	0.05% DBTL*	*JIEG %5c.0	0.05% DBTL*	0.05% DBTL*	0.05% DBTL*	0.05% DBTL*	0.05% DBTL*	Lin	
milities Call Military	80-85	80-85	80-85	80-85	80-85	80-85	80-85	80-85	130	130	105	105	105	105	100	100	100	100	100	100	100	100	80	80
the this orthogogy inco	m	~	n	2	3	8	~	3	12	12	2	7	0	8	2	2	2	2	3	j.	3	3	5	2
Santa Medical Management of the Control	MCI	NCI	XDI	XDI	TDI 100	TDI 80/20	TDI 80/20	TDI 63/35	IQN	NDI	MDI	MDI	MDI mod	MDI mod	HDI	EDI	MCI	MCI	TWEDI	TMHDI	IPDI	IPDI	XDI	XDI
		.	,		Polyoxy-	butylene Flycol	av mol	wt 2000 (Polyether)							;									
	S 117A	- S 117B	S 132A	s 132B	S 118	\$ 119	99 S	s 120	S 121A	S 121B	§ 122A	§ 122B	S 124A	s 124,B	S 123A	S 123B	S 125A	s 125B	s 126	s 126A	S 127	S 127A	S 133A	S 133B
f.														-	_	_				_				

*Catalyst: dibutyl tin dilaurate

4 RESULTS

The methods of processing the various elastomers and their condition are summarised in Table 2.

The visual appearance of the elastomers before and after ageing are recorded in Table 12, Appendix B. The mechanical properties of the elastomers are summarised in Table 13, Appendix B, and the percentage changes in the original mechanical properties of the elastomers after ageing are recorded in Tables 3 - 11.

4 1 Selection of Elastomers for Ageing Trials

The general condition and processing characteristics of polyurethane elastomers prepared from various di-isocyanates are described below.

All three grades of TDI proved to be the most versatile of the di-isocyanates examined producing satisfactory elastomers with both TMP/MOCA and TMP, with good processing, casting and curing characteristics.

On the other hand, elastomers prepared with HDI, MCI, XDI, TMHDI and IPDI were usually more satisfactory when cured with TMP/MCCA mixtures than solely with TMP as the latter produced soft undercured elastomers. However, certain polyester prepolymers, especially those prepared with di-isocyanates of high aromatic content, for example NDI and MDI, were extremely reactive towards TMP/MOCA mixtures and gave high exotherms on addition of the curing agent, producing elastomers often of poor surface appearance containing gel particles or air bubbles. The enhanced reactivity of isocyanates containing aromatic groups over aliphatic isocyanates is probably due to the electron attracting nature of the aromatic groups. These particular prepolymers yielded satisfactory elastomers when cured solely with TMP.

The most promising elastomers listed in Table 2 were selected for ageing trials.

4 2 Visual Assessment

The general condition of the polyurethane elastomers judged by visual and empirical methods of assessment are described below.

4 2 1 Initially (Unaged)

All the elastomers prepared from polyesters were strong and tough; those based on TDI 100 and TDI 80 were almost colourless and transparent while those based on TDI 65 were slightly yellow and translucent. Polyester urethane elastomers based on NDI and MDI were slightly brown, those based on HDI were white and opaque, while those based on MCI and XDI were pale yellow.

Polyether urethanes based on TDI, HDI, TMHDI and IPDI were fairly tough, those based on NDI and MDI appeared to be more flexible, while those based on MDI (mod) and MCI were rather weak.

422 Dry Air $(80^{\circ}C)$

After ageing in dry air for 28 days at 80°C all the polyester urethanes showed some discolouration either becoming more yellow or brown. Elastomers based on TDI and MCI showed the least colour change, while those based on NDI were the most seriously affected.

All the polyester elastomers, apart from those based on HDI and XDI, appeared to show some increase in strength.

All the polyether elastomers, especially those based on NDI, became more discoloured and all the elastomers, with the exception of those based on TDI and MDI (mod), appeared to lose strength.

4 2 3 Water Immersion (22°C)

After 28 days' immersion in water at 22°C, which is admittedly a relatively mild condition, none of the urethane elastomers, except for those based on NDI which were more amber, showed any appreciable change of colour or strength. Similarly, apart from elastomers based on XDI which showed severe stress cracking, none of the elastomers showed any appreciable colour change or loss of strength.

424 Water Immersion (80°C)

Under more severe conditions of immersion in water for 28 days at 80°C all the polyester urethanes were severely degraded; the only materials which were not completely disintegrated and retained any degree of integrity were TMP/MOCA cured polyesters based on TDI and XDI. All the polyether urethane elastomers remained intact. Polyether urethane elastomers based on TDI, NDI, MCI and MDI remained reasonably tough but showed slight or moderate discolouration; those based on TMHDI and IFDI showed virtually no change of colour but were weak. Polyether elastomers based on XDI showed severe stress cracking.

4 2 5 STF (Petrol) Immersion (65°C)

Apart from very slight or slight swelling none of the polyester urethane elastomers appeared to be degraded after 28 days' immersion in STF. On the other hand, the majority of the polyether urethane elastomers were swellen to a slight or moderate degree during immersion in STF and showed apparent losses of strength on recovery. However elastomers based on TMHDI, IPDI and XDI showed severe swelling and loss of strength. None of the elastomers, apart from those based on MDI and NDI showed appreciable colour change.

4 3 Mechanical Properties

431 Unaged

Tables 3 and 4 show that the initial mechanical properties of polyurethane elastomers cured with TMP/MCCA mixtures were generally better than those

TABLE 3

EFFECT OF DI-ISOCYANATE ON PHYSICAL PROPERTIES OF UNAGED FOLYURETHANE ELASTOMERS USING TMP/MOCA CURE

		Poly	Polyester (Ethylene Adipate)	lene Ad	ipate)			Polyethe	Polyether (Polyoxybutylene Glycol)	butyl	ene G	1yco	1.)
Type of Di-isocyanate Code	Code	Tensile Strength	Extension at Break,	Modulu (%)	Modulus at (%)	Herdness, Code		Tensile Strength,	Extension at Break,	Modu (Modulus at (%)		Hardness,
	2	MN/m²		100 200	0 300	co		MN/m²		100 200	200 3	300	DS-
TDI 80/20	110 A	36.0	545	2.4 3.1	1 6.2	85	119	16.9	345	3.0 5.3	5.3	6.6	89
NDI	112 A	18.1	390	3.4 6.	3.4 6.0 13.1	91	121 A	3.9	120	3.5		i	96
MDI	113 A	22.7	7750	2.6 5.	2.6 5.0 10.0	89	122 A	6.1	215	3.8 6.0	0.0		8
IOI	114 £	17.9	067	5.4 5.4	4 7.1	66	123 A	13.6	09†7	8.0	0.8	1.6	65
MDI mod	116 A	26.2	355	3.8 6.	3.8 6.7 16.1	89	i	1	ı	ı	1	ı	ı
MCI	117 A	33.2	550	1.3 2.8	8 6.0	29	125 A	5.0	285	1.0 4.5	100	1	99
XDI	132 A	30.5	550	2.2 3.3	3 5.5	26	133 A	18.8	565	1.3 1.9		3.1	82
TMHDI		1	ì	;	1	ŧ	126 A	5.6	0£7	0.3	0.3 0.8 1.5	ż	57
IPDI		1	ı	1	1	ı	127 A	15.9	544	0.7	0.7 1.8 3.1	Ψ.	779

TABLE 4

ERFECT OF DI-ISOCYANATE ON PHYSICAL PROPERTIES OF UNAGED POLYURETHANE ELASTOMERS USING TMP CURE

SALES AND SALES OF THE SALES OF

		Poly	Polyester (Ethylenc Adipate)	lenc	Adip	ate)			Polyeth	Polyether (Polyoxybutylene Glycol)	butyl	ene (Glyce	(1،
Type of Di-isocyanate Code	Code		Tensile Extension Strength, at Break,	Mod	Modulus at (%)	at	Hardness, Code	Code	Tensile Extension Strength, at Break,	Extersion at Breek,	Modu	Modulus at (%)	at	Hardness,
	0 21	MN/m²	8%	100	00 200	300	2	o to	MN/m ²	<i>6</i> %	100 200	200	300	ĝ
-27 80/20	111 A	6*72	350	1.9	1.9 3.2 7.4	7.4	71	119 A	2.9	180	1.5	1	ı	9/
ION	112 B	16.0	007	7.0	1.3	0.4 1.3 2.8	29	121 B	3.0	120	1.3	•	1	7.7
KDI	113 B	20.9	027	0.8	0.8 2.2 12.8	12.8	69	122 B	4.2	250	0.6 2.0	2.0	ı	29
HOI	114 B	26.1	485	3.8	3.8 4.0	8.1	96	1	1	ı	1	1	i	1
MDI (mod)		1	ı	ı	ı	ı	ı	124 B	3.9	24.5	8	1	ı	82
MCI		ı	ı		1	ı	1	125 B	0.7	280	0.1 0.6	9.0	i	39

EFFECT OF TYPE OF TOLUENE DI-ISOCYANATE ISOMER USING TMP/MOCA CURE

TABLE 5

		Polyes	Polyester (Ethyl	leno Adipate)	dib	ate)			Polyethe	Polyether (Polyoxybutylene Glycol)	butyl	ene	Glyco	1)
Type of Di-isocyanate		Tensile Strength,	Extension at Break,	Mod	Modulus at (%)	at	Hardness, Code	Code	Tensile Extension Strength, at Break,	Extension at Break,	Mod	Modulus at (%)	at	Hardness,
	0 N	MN/m %	8	100	100 200 300	300	200	ON C	MN/m	8%	100	100 200 300	300	2
100% 2,4	110	7.84	515	1.9	3.2	1.9 3.2 6.2	95	118	8.9	235 -	4.4	4.4 7.8	ı	8
80% 2,4 20% 2,6	110 A	36.0	545	2.4	3.1	2.4 3.1 6.4	85	119	16.9	34.5	3.0	3.0 5.3 9.9	9.9	89
65% 2,4 35% 2,6		30.2	067	2.4 3.9 7.2	3.9	7.2	88	120	10.5	225	3.5	3.5 5.6	1	. 89

cured solely with TMP. However, TMP cured polyester urethane elastomers, unlike TMP cured polyether elastomers, generally gave adequate mechanical properties.

The TMP/MCCA cured system gave harder elastomers with higher 100 per cent modulus values with both the polyester and polyether prepolymers.

The ultimate tensile strengths of the polyester urethanes were superior to those of the polyethers although their moduli and hardness were similar.

The tensile properties of the polyesters were generally good, although the TMP cured materials based on NDI and MDI and the TMP/MOCA cured material based on MCI were of lower hardness and lower modulus.

Of the polyethers only the TMP/MOCA cured materials based on TDI, HDI, XDI and IPDI had high ultimate tensile strengths although the IPDI material was rather soft. However, the MDI and NDI based elastomers had good hardness and modulus values, but possessed low extensions at break.

Table 5 compares the physical properties of TMP/MOCA cured polyester and polyether urethanes prepared from the three different TDI isomer mixtures available commercially. There appears to be a general advantage in using the 100% 2,4 isomer but the 80/20, 2,4/2,6 mixed isomers appear to be slightly superior to the 65/35 mixture.

4 3 2 Ageing in Dry Air (80°C)

After ageing in dry air for 28 days at 80°C, Tables 6 and 7 show that while the majority of polyester urethane elastomers show increases in 100 per cent modulus with small changes in hardness, the majority of the polyether urethanes show losses of both 100 per cent modulus and hardness. Other changes in mechanical properties appear to be more dependent on the type of di-isocyanate used rather than on the polyol backbone or method of chemical cure.

With the various TDI isomers the pattern is rather confused. The general trend however is for increases in 100% modulus and loss of hardness with polyester urethanes and for increased extensions at break, losses of 100% modulus and hardness in polyether urethanes.

TMP/MOCA cured polyester and polyether urethanes based on XDI showed considerable losses of tensile strength and extension at break as did TMP/MOCA cured polyether urethanes based on HDI, TMHDI and IPDI. Judged by retention of their original mechanical properties after ageing at 80°C the best elastomers were TMP/MOCA cured polyester urethanes based on TDI and MCI and TMP cured polyester urethanes based on TDI and MDI. TMP cured polyethers based on TDI and MDI (mod) were also quite satisfactory together with TMP/MOCA cured polyether urethanes based on TDI 80/20 and 65/35.

The apparent difficulty in interpreting the effects of heat ageing on polyurethane elastomers is according to Wright³ due to firstly a temporary

TABLE 6

EMPECT OF AGEING IN DRY AIR AT 80°C ON PHYSICAL PROPERTIES OF POLYURETHANG ELASTOMERS PREPARED WITH DIFFERENT DIFFISOCYANATES

TMP/MOCA CURB

		Pol	Polyester (Eth	(Ethylene Adipate)	(te)		Polye	Polyether (Polyoxybutylene Glycol)	xybutylene	Glycol)
Type of	Code	Percentag	Percentage change of original mechanical properties	original m rties	echanical	Code	Percentag	Percentage change of original mechanical properties	ge of original m properties	echanical
	2	Tensile Strength	Extension at Break	Modulus at 100% Extension	Hardness	2	Tensile Strength	Extension at Break	Modulus at 100% Extension	Herdness
TDI 100	110	-32	0	+ 26	L -	118	£9+	64+	- 17	- 7
TDI 80/20	110 A	-34	04+	- 17	+14	119	+ 7	+20	- 13	8
TDI 65/35	111	+ س	+ 7	+ 38	9 -	13	8 +	+45	9	9 -
MCI	117 A	+22	0	: *	+15	125 A	+14	-16	+130	+15
XDI	132 A	89	-21	+309	+	133 A	-92	19	947 -	- 2
IQN	ı	t	1	•	,	121 A	+56	-59	•	-18
HDI	ı	t	•	t	ı	123 A	-76	ω,	- 50	-17
TAKEDI	1	•	•	•	•	126 A	-79	-16	ま・	‡
IPDI	l	•	•	•	1	127 A	-65	0	- 86	

TABLE 7

EFFECT OF AGEING IN DRY AIR AT 80°C ON PHYSICAL FROPERTIES OF FOLYURETHANE ELASTOMERS FREFARED WITH DIFFERENT DI-ISOCYANATES TWP CURE

ſ		T	$\overline{}$		_					
	Glycol)	19 chanical		Hardness		0	0	5		1 0
	xybutylene	ge of original m	Modulus	at 100% Extension	7.7	7	+46	0	1	1 (
	roller (Followybutylene Glycol)	Percentage change of original mechanical	Extension	at Break	+1).	 !	+50	2	1	223
הייונים	в бто з	Percentag	Tensile	Strength	-35		+23	-52	ı	-15
		Code	S No		119 A		121 3	122 B	ı	124 B
ite)		echanical	Hardness		<u>ب</u>	•	<u> </u>	-7	φ	ì
(Ethylene Adipate)		ge of original m properties	Modulus at 100%	Extension	+ 12	000	0004	0	+ 32	ı
Polyester (Eth		rercentage change of original mechanical properties	Extension		٦	1	`	†	-29	,
	Dome	an uan ra r	Tensile Strength		&÷	94+	-	-15	<i>L</i> 9-	1
		Code			111 A	112 B		115 B	114 B	1
		Type of Di-isocyanate			TDI 80/20	NDI	TUT	1016	TOL	MDI mod

fall off in properties due to a general weakening of the physical bonds within the polymer. The second process which occurs is a non-reversible destructive change in the chemical structure and there is little evidence of this occurring below temperatures of 70°C. Not only do some elastomers show a recovery of original properties after removal from the source of heat but others show an improvement in certain physical properties which may be due to the formation of allophanate and/or biuret crosslinks. Deterioration of properties is probably due to the fact that secondary chemical bonds are more easily broken than primary bonds especially at elevated temperatures.

Athey bes shown with a MOCA cure polyoxybutylene glycol urethane that after 15 days at 70°C there was an increase of 100 per cent modulus and tensile strength but a decrease after longer periods of heating. Extension at break increased with time while tear strength decreased. On the other hand, at 100°C while tensile strength and 100 per cent modulus decreased tear strength and extension at break increased.

Polyether ure thanes are probably inherently less stable to higher temperatures than polyester ure thanes due to oxidative cleavage of the ether linkage.

This has been confirmed experimentally by Singh¹⁰ using continuous and intermittent stress relaxation and oven ageing studies at 50 - 150°C using polyethylene adipate and polyoxybutylene glycol/2,4 TDI prepolymers crosslinked with TMP.

The general concensus of opinion is that the maximum continuous working temperature for conventional polyurethane elastomers is 70 - 80°C.

433 Water Immersion (22°C)

The straighter of the straight

After 28 days' immersion in water at 22°C (Table 8) there were few differences between the changes in original mechanical properties of TMP/MOCA cured polyester and polyether urethanes based on TDI 100 and TDI 65/35. Polyester urethane based on XDI was not greatly changed, but the polyether based on the same di-isocyanate suffered severe stress cracking. Even under these mild conditions some of the elastomers showed considerable changes in properties particularly the polyester based on NDI, the TMP/MOCA cured polyethers based on IPDI and the TMP cured polyether based on MDI (mod).

Elastomers showing the best retention of original properties were TMP/MOCA cured polyether urethanes based on HDI and TDI 100; TMP/MOCA cured polyester urethanes based on MCI and XDI and TMP cured polyester urethane based on MDI.

434 Water Immersion (80°C)

The effects of 28 days' immersion in water at 80°C on urethane elastomers also shown in Tables 8 and 9 are more significant than the effects described above. All the polyester urethanes were severely degraded;

TABLE 8

TMP/MOCA CURE

EFFECT OF INMERSION IN ATER AT 22 AND 80°C ON PHYSICAL PROPERTIES OF POLYURETHAND ELASTOMERS PREPARED WITH DIFFERENT DI-ISOCYANATES

e Glycol)	original ties	herdness n	1	-16	i	- 3	N i	-18	•	-17	-61	-63	- 3	940	1 5	-28	0	•
xybutylen	nge of orig properties	Modulus at 100% Extension	- 20	- 61	1	- 19	6	947 -	-	- 20	+ 31	डे '	- 13	- 13	+133	- 94	98 +	
Polyether (Polyoxybutylene Glycol)	Percentage change of mechanical proper	Extersion at Break	+ 2	+ 60	1	+ 72	+ 20	+122	-	+ 16	- 10	9 -	+	+ 26	+	+ 13	- 15	
Polyeth	Perce	Tensile Strength	-17	-33	,	大+	-23	- 6	1	-38	-50	-73	- 2	-51	-25	-77	147	,
	Code	S S O	118	118	ı	119	120	120	1	125 A	133 A	133 A	123 A	123 A	126 A	126 A	127 A	
ate)	original ties	Herdness	8		9 -		2 -		+		-12	!				:		
lene Adipa	ger Per	Modulus at 100% Extension	0	to test	0	t to test	0	to test	8X+	grated	+45	c to test						
Polyester (Ethylene Adipate)	Percentage change mechanical pro	Extension at Break	-3	Too weak	7	Too weak	-5	Too weak	٣	Disintegrated	+5	Too weak						
Polye	Perce	Tonsile Strength	-26	,	-23		†Z-		-16		- 2							
	Code	0 දූ	110	110	110 A	110 A	111	111	117 A	117 A	132 A	132 A						
	25 days' Immersion	in water at (°C)	22	80	22	8	22	80	22	80	22	80	22	80	22	80	22	(
	Type of	Di-isocyanate	TDI 100		TDI 80/20	•	TDI 65/35	•	MCI		XDI		HDI		TOMEDI		IPDI	

TABLE 9

EFFECT OF IMMERSION IN WATER AT 22 AND 80°C ON PHYSICAL FROPERTIES
OF POLYURETHANG ELASTOMERS FREPARED WITH DIFFERENT DI-ISOCYANATES
TWP CURB

		100			Γ <u></u>								· · · ·	
Glycol)	ginal	Herdness		-10	0	-20	- 1	-21	1	ŧ	-21	-35	1	-28
ybutylene	ige of origination	Modulus at 100% Extension		- 77	- 15	- 46	+ 50	- 33		t	+ 25	- 75	•	+100
Polyether (Polyoxybutylene Glycol	Percentage change of original mechanical properties	Extension at Break	1	+195	+ 17	+146	+22+	+ 1,22		1	L4 -	+ 78	1	+ 79
Polyeth	п	Tensile Extension Strength at Break	•	- 39	- 27	+ %	- 55	1 -	1	î	- 72	+ 3	t	+185
	Code	2	119 A	119 A	121 B	121 B	122 B	122 B			124 B	124 B	125 B	125 B
ite)	dnal 1	Hardness	1		-3		7		٣		ı	•	ŧ	ı
lene Adipa	ge of origination	Modulus at 100% Extension		rated	+175	rated	7 -	rated	- 37	rated	1	•	ŧ	1
Polyester (Ethylene Adipate)	Percentage change of original mechanical properties	Extension at Break	1	Disintegrated	+5	Disintegrated	7	Disintegrated	<i>L</i> -	Disintegrated	١	:	•	1
Polye	Perce	Tensile Strength	1		244		- 1		-18		ı	t	ı	ı
	Code	2	111 A	111 A	112 B	112 B	113 B	113 B	114 B	114 B	1	-	-	ı
	28 days! Immersion Code	at (°C)	22	80	20	80	20	80	20	80	20	80	20	80
	Type of	at (°C)	TDI 80/20		ION		IOI		HDI		MDI (mod)		MCI	

TABLE 10

EFFECT OF THMERSION IN PETROL (STF.) AT 65°C ON PHYSICAL PROPERTIES OF POLYURETHANE ELASTOMERS PREPARED WITH DIFFERENT DI-ISOCYANATES

TMP/MOCA CURE

		Pol	Polyester (Eth	(Ethylene Adipate)	te)		Polyet	Polyether (Polyoxybutylene Glycol)	fbutylene G	lycol)
Type of	Code	Per	Percentage chan mechanical	change of original cal properties	inal	Code	Perc	Percentage change of original mechanical properties	ge of origi properties	ายไ
U1-1SOCYBRATE	9 2	Tensile Strength	Extension at Break	Modulus at 100% Extension	Hardness	2	Tensile Strength	Extension at Break	Modulus at 100% Extension	Hardness
TDI 100	110	-31	- 1	+21	-11	118	£4 -	-51	+16	213
TDI 80/20	110 A	-31	7	+20	-10	119	-55	-56	1	∞ •
TDI 65/35	111	-32	6 -	+25	-10	120	-58	-56	+26	71-
MCI	117 A	-45	<i>i</i> 2-	-54	ħ2 -	125 A	-62	04-	-30	† 77=
IOX	132 A	-25	∞ +	-18	6.	133 A	88-	-50	-38	-20
HDI	ı	ı	ı	ı	ı	123 A	-57	-10	-75	09-
TMHDI	ı	ı	ı	•	ı	126 A	-80	-38	- 67	-50
IDI	ı	1	1	•	ı	127 A	-82	-45	-43	2 4-

TABLE 11

EFFECT OF IMMERSION IN PETROL (STF) AT 65°C ON PHYSICAL PROPERTIES OF POLYURETHANE ELASTOMERS PREPARED WITH DIFFERENT DI-ISOCYANATES

TMP CURE

		Pol	Polyester (Eth	(Ethylene Adipate)	te)		Polyet	Polyether (Polyoxybutylene Glycol)	ybutylene G	lycol)
Type of	Code	Per	Percentage chamechanical	entage change of original mechanical properties	inal	Code	Perc	Percentage change of original mechanical properties	ge of origi properties	าลใ
ui-isocyanare	ON C	Tensile Strength	Extension at Break	Modulus at 100% Extension	Hardness	ON CO	Tensile Strength	Extension at Break	Modulus at 100% Extension	Hardness
TDI 80/20	111 A	₩-	-29	- 53	-	A 911	-77	-50	-17	-18
IDN	112 B	84-	-15	+100	9	121 B	-20	-54	•	6
MDI	113 B	-78	15.	- 13	- 16	122 B	-83	1 9 -	ľ	-25
ІОН	114 B	-55	5	∞ •	-36	1	ı	t	ŧ	ı
MDI mod	ı	ı	1	•	1	124 B	-87	24-	-50	-51

TMP/MOCA cured polyester elastomers based on TDI and XDI were intact but too weak to test, while the remainder based on TMP/MOCA cured MC1, XDI and TMP cured NDI, MDI and HDI polyester elastomers disintegrated.

TMP/MOCA cured polyether urethanes based on TDI 100, TDI 80/20, TDI 65/35 and MCI showed reasonable retention of properties. TMP cured polyether urethanes based on TDI 80/20, NDI, MDI and MDI (mod) were also fairly satisfactory but rather soft.

TMP/MOCA cured polyether urethanes based on XDI, HDI, TMHDI and IPDI showed large changes in properties.

4 3 5 Immersion in Petrol (STF) (65°C)

Tables 10 and 11 show that after 28 days' immersion in STF at 65°C polyester urethane elastomers, especially when cured with TMP/MOCA, are less susceptible to attack than polyether urethane elastomers prepared with the same di-isocyanates. Similarly, TMP/MOCA cured polyether urethanes prepared with TDI 80 and HDI were better than TMP cured polyether urethanes based on the same di-isocyanates.

The elastomers showing the best retention of original mechanical properties were TMP/MOCA cured polyester urethanes based on TDI and XDI.

None of the polyether urethanes, apart from TMP/MCCA cured TDT 100 and 80/20 elastomers had satisfactory resistance to STF at 65°C.

5 DISCUSSION

Toluene di-isocyanate (which is chemically one aromatic ring group with a methyl substituent) was the most versatile of all the di-isocyanates examined; all three isomeric forms of this isocyanate produced easily processed polyether or polyester prepolymers capable of being cured with either 1,1',1"-trimethylol propane (TMP) or trimethylol propane/methyl bis-(2-chloroaniline) (MOCA) mixtures. TMI/MOCA cured TDI/polyester urethanc elastomers especially, gave good initial physical properties together with satisfactory resistance to dry air at 80°C, water at 22°C and petrol (STF) at 65° C; but their resistance to water at 80° C was extremely poor. On the other nand, similarly cured polyether/TDI prepolymers produced polyurethane elastomers with satisfactory initial physical properties coupled with satisfactory resistance to dry air at 80°C, water at 22 and 80°C, but with only fair resistance to STF at 65°C. A further advantage of TDI is that it is a readily available liquid of relatively low cost (about 3s 6d per 1b (17.5p)) but having the disadvantages of a high vapour pressure, unpleasant odour and possible toxicity. Adequate precautions and good ventilation are necessary for its use.

None of the other di-isocyanates examined produced elastomers with the all round properties equal to those based on TDI although 1,5-naphthalene di-isocyanate (NDI) and 4,4-diphenyl methane di-isocyanate (MDI), which chemically are large rigid symmetrical structures containing two aromatic

rings, and HDI, an aliphatic di-isocyanate, had the advantage of producing TMP cured polyester urethanes with fairly good all round mechanical properties. NDI and MDI also produced TMP cured polyether urethanes with fairly satisfactory resistance to dry air and water at 22 and 80°C. A disadvantage of both these di-isocyanates is their very high reactivities to MOCA or similar amines and that they produce elastomers which are coloured, especially after ageing. Their high cost (MDI 6s Od per lb (30p), NDI £1 per lb (100p)) and limited availability at present are further disadvantages. Although MDI is a solid of low vapour pressure it has a tendency to unstable due to dimerization on storage. A modified MDI in liquid form was also examined but did not appear to offer any other specific advantages over MDI in polyester or polyether urethanes.

A number of promising TMP/MOCA polyester urethanes were prepared using 4.4°-methylene bis-cyclohexyl di-isocyanate, MCI, a liquid cycloaliphatic di-isocyanate which produced elastomers with good resistance to dry air at 80°C, water (at 22°C only) and STF at 65°C. Particularly disappointing were the performances of liquid di-isocyanates, viz trimethylhexamethylene di-isocyanate, TMHDI, an aliphatic di-isocyanate and isophorone di-isocyanate, IPDI, an aliphatic-cycloaliphatic di-isocyanate, which generally produced soft slow curing elastomers. The main advantage of this type of di-isocyanate, together with HDI, may be in their non-yellowing properties of elastomers exposed to sources of photooxidative degradation. A further liquid di-isocyanate, a mixture of 70 per cent meta- and 30 per cent para-xylene di-isocyanates (XDI) which chemically comprises an aromatic group with an aralkyl substituent and is available in sample quantities from Japan, and which, while proving to be reasonably effective in polyester urethanes, yielded polyether ure thanes which showed severe stress cracking on ageing in water at 22 and 80°C, and STF at 65°C.

Two other di-isocyanates which were also of interest but arrived too late for evaluation in the present investigation were 0-toluidine di-isocyanate (TODI)¹¹ and dianisidine di-isocyanate (DADI), both of which would be expected to behave in a similar manner to NDI and MDI. In addition, a high molecular weight dimer acid derived di-isocyanate (DDI) is at present being examined in conjunction with a TMP/MOCA cured laboratory prepared low molecular weight butadiene/butyraldehyde copolymer.

Summarising the results of the present investigation in conjunction with those of earlier investigations,¹⁻⁴ these confirm that polyurethane elastomers with satisfactory resistence to ageing (for the purpose of this report losses of not more than one-third their initial tensile strengths, extensions at break, 100 per cent moduli and hardnesses after 28 days' exposure to selected environments are considered the criteria of satisfactory resistance to ageing) may be prepared from MOCA or TMP/MOCA cured polyester, polyether or hydroxyl-terminated polybutadiene/toluene di-isocyanate prepolymers; few systems however have been found which satisfy these criterea for all three chosen environments namely hot wet, hot dry and STF.

For example, urethanes prepared with polyethylene adipate or polyethylene/ propylene adipates have produced elastomers with good initial physical properties, for example, tensile strengths of 40 - 50 MM/m² (6000 - 7000 lb/in), extension at break of 400 - 600 per cent, 100 per cent moduli of 2.5 - 4.0 MN/m and nardness values of 80 - 90 BS°. Folyester urethane elastomers have been formulated which show satisfactory ageing properties after ageing in dry air at 80°C, immersion in water at 22°C and petrol at 65°C but no elastomers based on adipate esters have been found to be capable of withstanding water immersion at 80°C. This has confirmed our belief that the ester group in these urethanes is responsible for the poor hydrolytic stability at elevated temperatures. This instability is almost independent of changes in chemical structure, although marginal improvements appear to be achieved by the introduction of biuret crosslinks and aromatic, eg ures groups, which may offer some protection to the ester groups.

The best polyether urethanes produce elastomers which usually have initial properties rather inferior to polyester urethanes, for example ultimate tensile strengths of 20 - 35 MN/m (3000 - 5000 lb/in²) with extensions at break of 350 - 450 per cent; but with 100 per cent moduli of 5 - 6 MN/m² and hardness values of 90 - 99 BS°, ie similar or rather better than those of polyester urethanes. Folyether urethane elastomers have been shown to give satisfactory resistance to ary air at 80°C and are only slightly inferior to polyester urethanes in this respect and fairly good hydrolytic stability at 22 and 80°C. Polyether urethanes while showing moderate resistance to petrol at 65°C, judged by retention of original properties on recovery, were usually swollen while actually immersed in the petrol. Improved resistance to swelling by petrol is achieved, to some extent, by increasing the degree of crosslinking of the elastomer.

Hydroxyl-terminated polybutadiene/TDI prepolymers crosslinked with diols gave urethane elastomers with inferior initial physical properties compared to those based on polyesters and polyethers, having tensile strengths of 7.0 - 11.0 MN/m² (1000 - 1500 lb/in²), extensions at break of 200 - 300 per cent, with 100 per cent moduli of 3.0 - 5.0 MN/m and hardness values of 70 - 85 BS°. The hydrolytic stability of these elastomers at 80°C is outstanding and their resistance to dry air at 80°C is satisfactory; unfortunately the resistance of these elastomers to petrol at 65°C was rather poor.

6 CONCLUSIONS

The results of the present investigation shows that of the di-isocyanates available for use in polyurethanes, clastomers prepared with toluene di-isocyanate show the best all round properties, judged by initial mechanical properties and retention of original properties after ageing in dry air, water and STF (petrol).

For applications where the use of MOCA is restricted, 1,6-hexamethylene di-isocyanate, 4,4-diphenyl methane di-isocyanate and 1,6-naphthalene di-isocyanate are capable of producing satisfactory urethane elastomers when cured with triols.

These results, in conjunction with those of earlier investigations in the present series 1-2 show that polyurethane elastomers with good ageing properties in selected environments may be prepared with polyester or polyether or hydroxyl-terminated polybutadiene/toluene di-isocyanate prepolymers preferably containing an excess of isocyanate, of average molecular weight 2000 - 2500. The polyester and polyether prepolymers are preferably chain extended or crosslinked with MOCA or TMP/MOCA mixtures in less than stoichiometric equivalents to the di-isocyanate, so as to introduce both aromatic urea groups and a moderate degree of biuret crosslinking.

No polyester urethane has been found to be capable of withstanding water at 80°C.

The only polyurethanes to show reasonable retention of properties to all the environments were polyether TDI prepolymers crosslinked with TMP/MOCA giving a calculated molecular weight between crosslinks of less than 2000 or alternatively polyethers chain extended with TDI and crosslinked with less than stoichiometric amounts of MOCA again to give Mc < 2000.

7 FURTHER WORK

Certain further investigations into the ageing properties of polyurethane elastomers are in progress, including the assessment of commercially supplied ϵ -caprolactone polyesters, and hydroxyl-terminated polybutadiene elastomers prepared using more rigid aromatic di-isocyanates and chain extenders. The influence of various additives on the ageing properties of polyurethanes are also being assessed by natural and accelerated weathering trials; the results of these studies will be reported in due course.

8	REFERENCES							
1	Brokenbrow	В	E,	Sims	D,	Wright	J	ERDE TR 39
2	11	11	11	11	11	11	11	ERDE TR 53
3	+1	11	11	17	11	11	11	ERDE TR 54
4	11	11	11	11	**	11	11	ERDE TR 20
5								BS 903 : Part A2 : 1956
6								BS 903 : Part A7 : 1957
7								BS 2751 : 1956
8	Wright P,	Cun	mii	ng A	PC			Solid Polyurethane Elastomers, MacLaren, London, 1969, p 225
9	Athey R J, Keegan J M		i P	into	J G	•		DuPont Bulletin No 7, Oct 1965
10	Singh A, W Mollica J		daa	ein L	,			Rubber Age, 1966, 98 (12), 17, DuPont Information Sheet
11	Rausch K W Sayigh A A		cC1	ellan	•			I & EC Product Research and Dev 1967, 6(I), 12

METHODS OF PREPARATION

PREPOLYMERS

All the elastomers were prepared via prepolymers as follows.

The selected di-isocyanate, 2.1 mole equivalent, was placed into a dried 500 ml glass three-necked flask equipped with thermometer stirrer, nitrogen and vacuum-inlet and heated to 80° C under nitrogen. Melted polyol, 1.0 mole equivalent, previously degassed by heating to $120 - 125^{\circ}$ C for 30 minutes and applying a vacuum of 1 mmHg, was added to the di-isocyanate over a period of 30 minutes. The mixture was heated under nitrogen with continuous stirring at temperatures which varied from 3 hours at $80 - 85^{\circ}$ C for toluene di-isocyanate to $1\frac{1}{2}$ hours at 130° C for naphthalene di-isocyanate; during the last 30 minutes a vacuum of 1 mmHg was applied.

The di-isocyanate prepolymer was transferred to a dried 600 ml beaker and degassed under 1 mmHg vacuum for 10 minutes. Crosslinking or chain extending agents: TMP 0.66 mole equivalent, equal parts of TMP/MOCA* (TMP 0.33 mole equivalent and MOCA 0.50 mole equivalent) (Table 2), were stirred into the prepolymer. The mixture was reheated 60 - 80°C and degassed for 1 - 15 minutes at 1 mmHg.

The reaction products were poured into PTFE coated aluminium trays and cured in an oven for 16 hours at 90° C to produce sheets 220 x 150 mm approximately 25 mm thick.

^{*}Reports¹⁰ on the hazards in the use of MOCA are somewhat conflicting. Briefly MOCA shows the general toxicity characteristics of the halogenated aromatic amines, and when taken into the body may produce cyanosis; although it may cause dermatitis on animals there is no direct evidence of it causing it on humans. On thermal breakdown it gives off an irritating gaseous product. MOCA produces liver cancer when given to rats fed on a protein deficient diet. Recent tests for its carcinogenacity using dogs red 100 mg per day for 14 months gave no bladder tumours. However tests will continue for 4 - 5 years and great caution in its use is advised.

TABLE 12

GENERAL CONDITION AND APPEARANCE OF POLYURETHANE ELASTOMERS PREPARED WITH DIFFERENT DI-ISOCYANATES SELECTED FOR ASSESSMENT OF AGEING PROPERTIES

•						
Code Number	Polyol	Di-isocyanate	Cross Linker/ Chain Extender	Unaged Controls	Dry Air 28 days at 80°C	-
S 110	Polyester (Ethylene adipate)	Toluene 100%, 2,4-	TMP/MOCA	clear transparent, very tough	very slightly more yellow, tough]
S 110A	, ,	Toluene 80% 2,4- 20% 2,6-	TMP/MOCA	clear transparent, tough	slightly more yellow, tough	j
S 111	1	Toluene 65% 2,4- 35% 2,6-	TMP/MOCA	very pale yellow, slightly translu- cent, tough	more yellow, tough	2
S 111A	,	Toluene 65% 2,4- 35% 2,6-	TMP	very pale yellow, slightly translu- cent, flexible	more yellow, flexible	; ; 3
S 112B	;	1,5-Naphthalene	TMP	very pale brown, fairly tough - flexible	more brown, very tough	72 G2
S 113B	'	4,4-Diphenyl methane	TMP	pale bro.m, tough, rigid	slightly more brown, tough]
S 1:14B		1,6-Hexamethylene	TMP	white opaque, tough	little change, less tough	1
S 17A	, 1	Methylene bis- cyclohexyl	TMP/MOCA	very pale yellow, tough	slightly more yellow, very tough]
S 132A	,	Xylene	1MP/MOCA	very pale yellow, translucent, tough	slightly more yellow, wetter	1
S 118	Polyether (Polyoxybutylene glycol)	Toluene 100% 2,4-	TMP/MOCA	very pale yellow, translucent, fairly tough	more yellow, tough	s r

£					
		Water immersion	n 28 days at	STF (Petrol)	28 days at 65°C
ols	Dry Air 28 days at 80°C	22 °C	80°c	Degree (of Swelling
	ů	22*0	80°0	On Removal	On Recovery
rent,	very slightly more yellow, tough	little change	intact but severe discoloration and loss of strength	slight	little change of colour, slight loss of strength
rent,	slightly more yellow, tough	little change	intact but severe discoloration and loss of strength	very slight- slight	little change of colour, slight loss of strength
low, slu-	more yellow, tough	little change, slightly less yellow	intact but severe discoloration and loss of strength	very slight- slight	little change of colour, slight loss of strength
low, slu-	more yellow, flexible	little change, slightly less yellow	catastrophic failure, brown viscous liquid	slight	little change of colour, slight loss of strength
m,	more brown, very tough	slightly more amber, strength unchanged	catastrophic failure, black viscous liquid	very slight	deep amber, moderate loss of strength
ough,	slightly more brown, tough	little change	catastrophic failure, brown viscous liquid	slight	rather more amber, moderate loss of strength
	little change, less tough	little change	catastrophic failure, yellow viscous liquid	slight	little change, moderate loss of strength
low,	slightly more yellow, very tough	little change	severe discolora- tion, opaque mass, no strength	slight	little change of colour, moderate loss of strength
low,	slightly more yellow, wetter	little change	intact but moderate discoloration and considerable loss of strength	moderate	little change of colour, slight loss of strength
low,	more yellow, tough	slightly more yellow, no change in strength		slight- moderate	little change of colour, moderate strength

TABLE 12 (Contd)

				,		—
Code Number	Polyol	Di-isocyanate	Cross Linker/ Chain Extender	Unaged Controls	Dry Air 28 days at 80°C	-
S 119	Polyether (Polyoxybutylene glycol)	Toluene 80% 2,4-20% 2,6-	TMP/MOCA	clear transparent, moderately tough	slightly more yellow, fairly tough	s
S 120		Toluene 65% 2,4- 35% 2,6-	TMP/MOCA	very pale yellow, fair - moderately tough	more yellow, tough	s n
S 121B		1,5-Naphthalene	TMP	brown, flexible	considerably more brown, tough	1
S 122B		4,4-Diphenyl methane	TMP	clear wrinkled, very flexible	more yellow, less tough	1
S 123A		1,6-Hexamethylene	TMP/MOCA	very pale yellow, tough	slightly more yellow, less tough	1
S 124B		Modified 4,4-diphenyl methane	TMP	clear transparent, rather weak	slightly more yellow, little change of strength]
S 125A		Methylene bis- cyclohexyl	TMP/MOCA	very pale yellow, rather weak	little change of colour or strength	1
S 126A		Trimethylhexa- methylene	TMP/MOCA	very pale yellow, translucent, fairly tough and elastic	slightly more yellow, less tough]
S 127A		Isophorone	TMP/MOCA	very pale yellow, tough	slightly more yellow, less tough	1
S 133A		Xylene	TMP/MOCA	pale yellow opaque, tough	considerably more yellow and less tough, severe stress cracking] s

APPENDIX B

	Name and Address of the Owner, where the Owner, which is the Owner,				
		Water immersion	n 28 days at	STF (Petrol)	28 days at 65°c
ontrols	Dry Air 28 days at 80°C	22 °c	80°3	Degree	of Swelling
		22 0	00 0	On Removal	On Recovery
sparent, tough	slightly more yellow, fairly tough	slightly more yellow, no change in strength		sligh t- moderate	little change of colour, moderate loss of strength
yellow, erately	more yellow, tough	slightly more yellow, no change in strength		sligh t- moderate	little change of colour, moderate loss of strength
xi ble	considerably more brown, tough	little change	dark brown, fairly tough	slight	more amber, considerable loss of strength
kled, ble	more yellow, less tough	little change	slightly more yellow, little loss of strength	slight- moderate	slightly more yellow, considerable loss of strength
vellow ,	slightly more yellow, less tough	little change	little change in colour, some loss of strength	moderate	little change of colour, moderate loss of strength
parent,	slightly more yellow, little change of strength	little change	very slightly more brown, little change of strength	sligh t- moderate	very slightly more yellow, considerable loss of strength
ellow,	little change of colour or strength	little change	very slightly more brown, little change of strength	moderate	little change of colour, moderate loss of strength
vellow, th and	slightly more yellow, less tough	little change	little change of colour, rather weak	severe	little change of colour, considerable loss of strength
yellow,	slightly more yellow, less tough	little change	little change of colour, some loss of strength	moderate- severe	little change of colour, considerable loss of strength, more orange
igh	considerably more yellow and less tough, severe stress cracking	less opaque, severe stress cracking	less opaque, severe stress cracking	severe	considerable loss of strength

TABLE 13

MECHANICAL PROPERTIES OF POLYURETHANE ELASTOMERS PREPARED WITH DIFFERENT DI-ISOCYATATES BEFORE AND AFTER AGEING

Key: TS

EB

Tensile strength Extension at break

M₁₀₀, M₂₀₀, M₃₀₀

Moduli at extensions of 100, 200 and 300 per cent

H

Hardness

-

Value not recorded or too low to be accurately recorded

Code			Cmana Tânkan/			ginal F naged C				
Number	Polyol	Di-isocyanate	Cross Linker/ Chain Extender	TS	EB	M ₁₀₀	H ₂₀₀	M ₃₀₀	Н	TS
				MN/m²	%	MN/m²	lil/m²	MI/ms	В з о	MN/m²
S 110	Polyester (Ethylene	TDI 100	TMP/MOCA	48.7	515	1.9	3.2	6.2	85	32.9
S 110A	adipate)	TDI 80/20	TMP/MOCA	36.0	545	2.4	3.1	6.4	85	23.8
S 111		TDI 6.7/35	TMP/MOCA	30.2	490	2.4	3.9	7.2	88	31.2
S 111A		TDI 80/20	TMP	24.9	350	1.9	3 . 2	7.4	71	32,6
S 112A		NDI	TMP/MOCA	18.1	390	3.4	6.0	13.1	91	-
S 112B		NDI	TMP	16.0	400	0.4	1.3	2.8	67	23.4
S 113A		MDI	TMP/MOCA	22.7	420	2.6	5.0	10.0	89	-
S 113B		MDI	TMP	20.9	420	0.8	2.2	12.8	69	17.7
S 114A		HDI	TMP/MOCA	17.9	490	5•4	5•և	7.1	99	-
S 114B		HDI	TMP	26.1	485	3 . 8	4.0	8.1	96	8.6
S 116A		MDI mod	TMP/MOCA	26.2	355	3 .8	6.7	16.7	89	-
S 117A		MCI	TMP/MOCA	33.2	550	1.3	2.8	6.0	67	40.6
S 132A		XDI	TMP/MOCA	30.5	550	2.2	3.3	5•5	97	9.7
S 132B		XDI	TMP	16.6	430	2.2	3.8	9.6	83	-

t the state of the

recorded

Note: $6.9 \text{ kH/m}^2 = 1000 \text{ lb/in}^2$

mersion i t 22 ⁰ C	n Water	
0 1200	M300	Н
m ² MN/m ²	lli/m²	вsо
9 3.1	5.3	78
4 3.25	5.1	80
4 4,3	7.0	82
-	-	-
1 2.2	3.8	65
-	-	_
-	-	-
7 1.5	3.2	66
_	-	-
4 3.2	6.3	83
-	-	-
8 3.0	5.2	68
2 3.9	5.7	85
_	-	-
	/m² Nīv/m² 9 3.1 4 3.25 4 4.3 - 1 2.2 - 7 1.5 - 4 3.2 - 8 3.0	/m² MN/m² MN/m² 9 3.1 5.3 4 3.25 5.1 4 4.3 7.0 - - - 1 2.2 3.8 - - - 7 1.5 3.2 - - - 4 3.2 6.3 - - 8 3.0 5.2

TABLE 13 (Contd)

MECHANICAL PROPERTIES OF POLYURETHANE ELASTOMERS PREPARED WITH DIFFERENT DI-ISOCYANATES BEFORE AND AFTER AGEING

Key: TS

Tensile strength

EB

Extension at break

M₁₀₀, M₂₀₀, M₃₀₀

Moduli at extensions of 100, 200 and 300 per cent

H

Hardness

-

Value not recorded or too low to be accurately recorded

Code			Con Triples			ginal P naged C				
Number	Polyol	Di-isocyanate	Cross Linker/ Chain Extender	TS	EB	M100	M ₂₀₀	M300	Н	TS
				MN/m²	%	MII/m²	MN/m²	MN/m²	B S O	lW/m²
S 118	Polyether	TDI 100	TMP/MOCA	8.9	235	4.4	7.8	-	90	14.9
S 119	(Polyoxybutylene glycol)	TDI 80/20	TMP/MOCA	16.9	345	3.0	5•3	9.9	89	17.8
S 120		TDI 65/35	TMP/MOCA	10.5	2 25	3.5	5.6	1	89	10.7
S 119A		TDI 80/20	TMP	2.9	180	1.5	-	-	76	3.1
S 121A		MDI	TMP/MOCA	3.9	120	3.5	-	-	90	4.9
S 121B		NDI	TMP	3.0	120	1.3	-	-	74	3.7
S 122A		MDI	TMP/MOCA	6.1	215	3.8	6.0		90	-
S 122B		MDI	TMP	4.2	250	0.6	2.0	-	67	2.0
S 123A		HDI	TMP/MOCA	13.6	460	0.8	0.8	1.6	65	3.3
S 124B		MDI mod	TMP	3.,	245	0.8	-	-	82	-
S 125A		MCI	TMP/MOCA	5.0	285	1.0	4.5	-	66	3.3
S 125B		MCI	TMP	0.7	280	0.1	0.6	-	39	-
S 126A		TMHDI	TMP/MOCA	5.6	430	0.3	0.8	1.5	57	1.2
S 127A		IDI	TMP/MOCA	15.9	445	0.7	1.8	3.1	64	5.5
S 133A		XDI	TMP/MOCA	18.8	565	1.3	1.9	3.1	82	1.6

ent

recorded

Note: $6.9 \text{ MN/m}^2 = 1000 \text{ lb/in}^2$

l P	roperti ontrols	es)			28	Days i at 8	n Dry A O ^O C	ir		2	8 Day	s Immer at 2	sion in	Nater	
00	M ₂₀₀	M300	Н	TS	EB	M ₁₀₀	M ₂₀₀	M300	Н	TS	EB	M ₁₀₀	Maco	М300	Н
m ²	MN/m²	MN/m²	B S O	LIN/m²	%	MN/m²	MIV/m²	MN/m²	В s °	MIN/m ²	%	MN/m²	līl/m²	lai/m²	BSO
4	7.8	-	90	14.9	350	3. 8	5.9	11.2	88	7.4	240	3.5	6.4		89
0	5.3	9.9	89	17.8	440	2.1	5.1	6.5	73	_	-	-	-	-	-
5	5.6	-	89	10.7	320	3.3	5.6	_	85	8.1	2 7 0	3. 2	. 5.6		87
5	-	-	76	3.1	215	1.3	2.8	-	72	-	-	-	-	-	-
5	-		90	4.9	85	-	-	-	74	_	-	-	-	-	-
3	-	•••	74	3.7	1 80	-	1.9	-	74	2.2	14C	1.1	-	-	74
4 0 55 5 3 8 8	6.0	-	90	-	-	-	-	-	-	-	-	-		-	-
6	2,0	-	67	2.0	245	0.6	1.3	-	60	. 1.9	190	0.9		-	66
8	0.8	1.6	65	3.3	425	0.4	0.7	1.3	54	10.9	465	0.7	1.2	1.9	63
8	-	-	82	_	-	1	_	-	-	1.1	130	1.0	-	-	65
8	4.5	-	66	3.3	200	-	-		66	4•4	240	1.9	2.8	-	69
1	0.6		39	-	-	-	-	-	_	-	-			-	-
.1 .3 .7	0.8	1.5	57	1.2	360	-	0.2	0.6	32	4.2	485			0.2	41
7	1.8	3.1	64	5.5	445	0.1	0.8	1.8	57	8.5	380	1.3	2.1	3.7	64
3	1.9	3.1	82	1.6	460	0.7	0.8	1.0	76	9•3	510	1.7	2,2	3.1	32

TABLE 13 (Contd)

MECHANICAL PROPERTIES OF POLYURETHALE ELASTOMERS PREPARED WITH DIFFERENT DI-ISOCYAMATES BEFORE AND AFTER AGEING

Key:

TS

Tensile strength

EB

Extension at break

M₁₀₀, M₂₀₀, M₃₀₀

Moduli at extensions of 100, 200 and 300 per cent

Hardness

Value not recorded or too low to be accurately recorded

Code	1		Cross Linker/			ginal F naged C				28
Number	Polyol	Di-isocyanate	Chain Extender	TS	EB	M ₁₀₀	11200	M ₃₀₀	Н	TS
			Į.	MN/m²	%	MN/m^2	MN/m²	MN/m²	В з о	LIN/m²
S 110	Polyester (Ethylene	TDI 100	TMP/MOCA	48.7	515	1.9	3.2	6.2	85	
S 110A	adipate)	TDI 80/20	TMP/MOCA	36.0	545	2.4	3 . 1	6.4	85	
S 111	ı	TDI 65/35	TMP/MOCA	30. 2	490	2.4	3.9	7.2	88	
S 111A	,	TDI 80/20	TMP	24•9	350	1.9	3.2	7.4	71	
S 112A	1	NDI	TMP/MOCA	18.1	390	3.4	6.0	13.1	91	
S 112B		NDI	TMP	16.0	40 0	0.4	1.3	2.8	67	
S 113A	ı	MDI	TMP/MOCA	22.7	420	2.6	5.0	10.0	89	 -
S 113B		MDI	TMP	20.9	420	0.8	2.2	12.8	69	
S 114A	!	HDI	TMP/MOCA	17.9	490	5•4	5•4	7.1	99	
S 114B		HDI	TMP	26.1	485	3. 8	4.0	8.1	96	-
S 116A		MDI mod	TMP/MOCA	26.2	355	3 . 8	6.7	16.7	89	
S 117A	ı	MCI	TMP/MOCA	33.2	550	1.3	2.8	6.0	67	
S 132A		XDI	TMP/MOCA	30.5	550	2.2	3.3	5•5	97	
S 132B	,	XDI -	TMP	16.6	430	2.2	3.8	9.6	83	

per cent

mately recorded

Note: $6.9 \text{ MN/m}^2 = 1000 \text{ lb/in}^2$

Ori (U	ginal P naged C	roperti ontrols	es)		28 Days Immersion in Water at 80°C						28 Days Immersion in STF at 65°C					
В	M ₁₀₀	M200	M ₃₀₀	Н	TS	EB	M ₁₀₀	M ₂₀₀	M300	Н	TS	EB	M ₁₀₀	11200	300	H
(U 8	MN/m^2	MN/m^2	MN/m²	BSO	IIN/m²	5,0	l'IV/m²	IIN/m²	MIV/m²	B S O	MN/m²	50	1.71/m²	lll/m²	lIII/m²	BSO
	1.9	3. 2	6.2	85	Too weak to test						33•7	510	2.3	3.6	ó . 0	76
1 5	2.4	3.1	6.4	85		oo weak	to tes	t	24.9	518	1.9	3.5	7.0	77		
9	2.4	3.9	7. 2	88		oo weak	to tes	t	20.5	445	3.°C	4.4	7.2	79		
0	1.9	3.2	7•4	71		Disinte	grated		4.1	250	0.9	2.7	-	70		
0	3•4	6.0	13.1	91		Disinte	grated		-	-	-	-	-	-		
8	0.4	1.3	2.8	67	Disintegrated						8.3	355	0.8	2.2	4.1	63
9	2.6	5.0	10.0	89	Disintegrated						-	_	-	-	~	
0	0.8	2.2	12.8	69	Disintegrated						4.7	330	0.7	1.7	3. 2	58
0	5•4	5•4	7.1	99	Disintegrated						-	-	-	~	-	-
8 5	3. 8	4.0	8.1	96	Disintegrated						11.8	460	0.5	1.2	2.4	61
5 5	3.8	6.7	16.7	89	Disintegrated						_	-	-	_	-	-
5 0	1.3	2.8	6.0	67	Disintegrated						18.3	535	0.6	1.4	2.4	51
5 0	2.2	3.3	5•5	97	Too weak to test						23.9	595	1.8	2.6	4.2	88
5 0	2.2	3.8	9.6	83	Disintegrated							-	-	-	-	-

TABLE 13 (Contd)

MECHANICAL PROPERTIES OF POLYURETHANE ELASTOMERS PREPARED WITH DIFFERENT DI-ISOCYANATES BEFORE AND AFTER AGEING

Key: TS

Tensile strength

EB

Extension at break

 M_{100} , M_{200} , M_{300}

Moduli at extensions of 100, 200 and 300 per cent

H

Hardness

--

Value not recorded or too low to be accurately recorded

Code			Orana Timbon/		Original Properties (Unaged Controls)						
Number	Polyol	Di-isocyanate	Cross Linker/ Chain Extender	TS	EB	M, 00	M ₂₀₀	M ₃₀₀	Н	TS	
				MN/m²	%	MN/m²	MN/m²	MN/m²	BSO	MN/m²	
S 118	Polyether	TDI 100	TMP/MOCA	8.9	235	4.4	7.8	-	90	6.0	
S 119	(Polyoxybutylene glycol)	TDI 80/20	TMP/MOCA	16.9	345	3.0	5.3	9.9	89	13.7	
S 120]	TDI 65/35	TMP/MOCA	10.5	225	3.5	5.6	-	8 9	9.8	
S 119A		TDI 80/20	TMP	2.9	1 80	1.5	•	-	76	3.9	
S 121A		NDI	TMP/MOCA	3.9	120	3.5	-	-	90	-	
\$ 121B	!	NDI	TMP	3.0	120	1.3	-	-	74	5•7	
S 122A		MDI	TMP/MOCA	6.1	215	3.8	6.0	-	90	9.6	
S 122B	1	MDI	TMP	4.2	250	0.6	2.0		67	3.9	
S 123A	1	HDI	TMP/MOCA	13.6	460	0.8	0.8	1.6	65	6.7	
\$ 124B	!	MDI mod	TMP	3.9	245	3.0		-	82	4.2	
S 125A	1	MCI	TMP/MOCA	5.0	285	1.0	4•5	-	66	3.1	
8 125B		MCI	TMP	0.7	280	0.1	0.6	-	39	2.0	
S 126A		TMHDI	TMP/MOCA	5.6	430	0.3	0,8	1.5	57	1.3	
S 127A		IDI	TMP/MOCA	15.9	445	0.7	1.8	3.1	64	5.5	
S 133A		XDI	TMP/MOCA	18.8	565	1.3	1.9	3.1	82	5.7	

ent.

ely recorded

Note: $6.9 \text{ MN/m}^2 = 1000 \text{ lb/in}^2$

roperti ontrols	es)		2	s Immer at 8	sion in	28 Days Immersion in STF at 65°C								
M ₂₀₀	M ₃₀₀	Н	TS	ŒΒ	М, оо	M ₂₀₀	M300	Н	TS	EB	М ₁₀₀	M ₂₀₀	M300	Н
MN/m²	MN/m²	BSO	MN/m²	%	MN/m²	MN/m²	MN/m²	вѕо	MN/m²	%	MN/m²	MN/m²	MN/m²	BSO
7.8	-	90	6.0	375	1.7	2.6	3.9	76	5.1	115	5.1	-	_	78
5.3	9.9	89	13.7	610	0.7	1.5	2.3	75	3.9	170	2.5	-	_	73
5.6	-	89	9.8	500	1.9	2.7	3.8	73	4.4	100	4.4	-	-	76
	-	76	3.9	310	0.8	1.8	3.2	74	1 .4	80	-	~	-	70
	-	90	-	-	-	-	-	-	-	-	-	-	-	-
-	-	74	5•7	295	0.7	1.9	3.5	59	0.9	55	_	-	٠,-	67
6.0	-	90	9.6	440	2.1	3.2	4.6	79	<u>ب</u>	-	-	-	-	
2.0	-	67	3.9	355	0.4	1.2	2.6	53	0.7	90	5.0		-	-
0.8	1.6	65	6.7	625	0.7	1.2	2.3	35	5.9	415	0.2	0.7	1.6	<30
-	-	82	4.2	435	0.2	0.8	1.2	53	0.5	130	0.4	-	-	4.0
4.5	-	66	3.1	330	0.8	1.5	2.6	55	1.9	170	0.7	-	-	37
0.6	-	39	2.0	500	0.2	0.6	1.2	28	-	-	-	-	-	-
0.8	1.5	57	1.3	485	-	-	0.2	41	1.1	265	0.1	0.6	_	< 30
1.8	3.1	64	5.5	540	0.2	0.4	0.7	41	2.8	245	0.4	1.9	-	34
1.9	3.1	82	5•7	530	0.6	1.3	1.3	30	2.3	280	0.8	1.5		< 30
	M200 MN/m ² 7.8 5.3 5.6 - - 6.0 2.0 0.8 - 4.5 0.6 0.8	MN/m² MN/m² 7.8 - 5.3 9.9 5.6 - 6.0 - 2.0 - 0.8 1.6 4.5 - 0.6 - 0.8 1.5 1.8 3.1	M200 M300 H MN/m² MN/m² BS° 7.8 - 90 5.3 9.9 89 5.6 - 89 - 76 - 90 - 74 6.0 - 90 2.0 - 67 0.8 1.6 65 - 82 4.5 - 66 0.6 - 39 0.8 1.5 57 1.8 3.1 64	M200 M300 H TS MN/m² MN/m² BS° MN/m² 7.8 - 90 6.0 5.3 9.9 89 13.7 5.6 - 89 9.8 - 76 3.9 - 90 - 7.4 5.7 6.0 - 90 9.6 2.0 - 67 3.9 0.8 1.6 65 6.7 - 82 4.2 4.5 - 66 3.1 0.6 - 39 2.0 0.8 1.5 57 1.3 1.8 3.1 64 5.5	M200 M300 H TS EB MN/m² BS° MN/m² % 7.8 - 90 6.0 375 5.3 9.9 89 13.7 010 5.6 - 89 9.8 500 - 76 3.9 310 - - 76 3.9 310 - - 74 5.7 295 6.0 - 90 9.6 440 2.0 - 67 3.9 355 0.8 1.6 65 6.7 625 4.5 - 82 4.2 435 4.5 - 66 3.1 330 0.6 - 39 2.0 500 0.8 1.5 57 1.3 485 1.8 3.1 64 5.5 540	at 8 M200 M300 H TS EB M400 MN/m² MN/m² BS° MN/m² % MN/m² 7.8 - 90 6.0 375 1.7 5.3 9.9 89 13.7 010 0.7 5.6 - 89 9.8 500 1.9 - - 76 3.9 310 0.8 - - 74 5.7 295 0.7 6.0 - 90 9.6 440 2.1 2.0 - 67 3.9 355 0.4 0.8 1.6 65 6.7 625 0.7 - - 82 4.2 435 0.2 4.5 - 66 3.1 330 0.8 0.6 - 39 2.0 500 0.2 0.8 1.5 57 1.3 485 - 1.8 3.1 64 5.5 540 0.2	M200 M300 H TS EB M400 M200 MN/m² MN/m² BS° MN/m² % MN/m² MN/m² 7.8 - 90 6.0 375 1.7 2.6 5.3 9.9 89 13.7 010 0.7 1.5 5.6 - 89 9.8 500 1.9 2.7 - - 76 3.9 310 0.8 1.8 - - 76 3.9 310 0.8 1.8 - - 74 5.7 295 0.7 1.9 6.0 - 90 9.6 440 2.1 3.2 2.0 - 67 3.9 355 0.4 1.2 0.8 1.6 65 6.7 625 0.7 1.2 - - 82 4.2 435 0.2 0.8 4.5 - 66	at 80°C M200 M300 H TS EB M400 M200 M300 M300 MN/m² MN/m² BS° MN/m² % MN/m² MN/m²	M200 M300 H TS EB M400 M200 M300 H MN/m² MN/m² BS° MN/m² % MN/m² MN/m² MN/m² MN/m² H 7.8 - 90 6.0 375 1.7 2.6 3.9 76 5.3 9.9 89 13.7 010 0.7 1.5 2.3 75 5.6 - 89 9.8 500 1.9 2.7 3.8 73 - - 76 3.9 310 0.8 1.8 3.2 74 - - 76 3.9 310 0.8 1.8 3.2 74 - - 70 -	M200 M300 H TS EB M400 M200 M300 H TS MN/m² MN/m² BS° MN/m² % MN/m² MN/m² MN/m² BS° MN/m² 7.8 - 90 6.0 375 1.7 2.6 3.9 76 5.1 5.3 9.9 89 13.7 010 0.7 1.5 2.3 75 3.9 5.6 - 89 9.8 500 1.9 2.7 3.8 73 4.4 - - 76 3.9 310 0.8 1.8 3.2 74 1.4 - - 74 5.7 295 0.7 1.9 3.5 59 0.9 6.0 - 90 9.6 440 2.1 3.2 4.6 79 - 2.0 - 67 3.9 355 0.4 1.2 2.6 53 0.7	at 80°C M200 M300 H TS EB M400 M200 M300 H TS EB MN/m² MN/m² BS° MN/m² % MN/m² MN/m² BS° MN/m² % 7.8 - 90 6.0 375 1.7 2.6 3.9 76 5.1 115 5.3 9.9 89 13.7 610 0.7 1.5 2.3 75 3.9 170 5.6 - 89 9.8 500 1.9 2.7 3.8 73 4.4 100 - - 76 3.9 310 0.8 1.8 3.2 74 1.4 80 - - 70 - <td>at 80°C at 60°C M200 M300 H TS EB M100 M200 M300 H TS EB M400 MN/m² MN/m²</td> <td>at 80°C at 65°C M_{200} M_{300} H TS EB M_{100} M_{200} M_{300} H TS EB M_{100} M_{200} M_{300} H TS EB M_{100} M_{200} MN/m² MN/m² BS° MN/m² MN/m² MN/m² BS° MN/m² MN/m²<td>M200 M300 H TS EB M400 M200 M300 H TS EB M400 M200 M300 H TS EB M400 M300 M300 M TS EB M400 M300 M300 MN/m² EB M400 M300 MN/m² MN/m²</td></td>	at 80°C at 60°C M200 M300 H TS EB M100 M200 M300 H TS EB M400 MN/m² MN/m²	at 80° C at 65° C M_{200} M_{300} H TS EB M_{100} M_{200} M_{300} H TS EB M_{100} M_{200} M_{300} H TS EB M_{100} M_{200} MN/m² MN/m² BS° MN/m² MN/m² MN/m² BS° MN/m² MN/m² <td>M200 M300 H TS EB M400 M200 M300 H TS EB M400 M200 M300 H TS EB M400 M300 M300 M TS EB M400 M300 M300 MN/m² EB M400 M300 MN/m² MN/m²</td>	M200 M300 H TS EB M400 M200 M300 H TS EB M400 M200 M300 H TS EB M400 M300 M300 M TS EB M400 M300 M300 MN/m² EB M400 M300 MN/m² MN/m²