Number Systems

010.133 Digital Computer Concept and Practice Spring 2013

Lecture 02

Number Systems

- A number system is a system of representing numbers
 - A set of basic symbols (called digits or numerals)
 - The ways in which the digits can be combined to represent the numbers
- Represent integers, fractions, or mixed numbers
 - A mixed number = integer part + fraction part
 - The integer part tells you the whole
 - The fraction part is less than one whole
 - A radix point (.) separates the integer part and the fraction part
 - E.g., 3.14159265

Positional Number Systems

- A number is represented by a string of digits
 - The value of each digit in the string is determined by the position it occupies
- A number is represented by a string of digits and each digit position has an associated weight
- Decimal number system
 - Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - The decimal number of the form $d_{p-1}d_{p-2}\cdots d_1d_0.d_{-1}d_{-2}\cdots d_{-n}$ has the value, p-1

$$\sum_{i=-n}^{p} d_i \cdot 10^i$$

- Base (or radix) = 10
- Radix point = decimal point (.)
- The leftmost digit (d_{p-1}) most significant digit (MSD)
- The rightmost digit (d_{-n}) least significant digit (LSD)
- For example, $754.82 = 7 \times 100 + 5 \times 10 + 4 \times 1 + 8 \times 0.1 + 2 \times 0.01$

Base-r Number System

- When we replace the base 10 with some other whole number r, then we have base-r number system
 - r distinct digits
 - The weight in position i is ri
 - The base-r number of the form $x_{p-1}x_{p-2}\cdots x_1x_0.x_{-1}x_{-2}\cdots x_{-n}$ has the value,

$$\sum_{i=-n}^{p-1} x_i \cdot r^i$$

- When r ≤ 10, the first r decimal digits serve as the digits
- When r > 10, the first r 10 uppercase letters of the alphabet in addition to 10 decimal digits

Commonly Used Number Systems

Name	Base	Digits
Binary	2	0, 1
Octal	8	0, 1, 2, 3, 4, 5, 6, 7
Decimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Hexadecimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

• 101

• Base-2: 101₂

• Base-8: 1018

• Base-10: 101₁₀

• Base-16: 101₁₆

Scientific Notation

- A scheme of representing decimal numbers that are very small or vary large
- A number is represented in the form:

$$x \times 10^y$$

- x: coefficient, significand, or mantissa
 - Real number
- y: exponent
 - Integer
- For example,
 - $-320000000 = -32.0 \times 10^7$

Normalized Scientific Notation

- There are many ways to represent a number in scientific notation
- Adopt the convention of making the significand,
 x, always in the range:
 - $1 \le |x| < 10$
 - We can not express zero

Significant Digits

- Those digits whose removal changes the numerical value
- A number's precision or accuracy
 - The number of significant digits it contains
- Leading zeroes
 - Any consecutive zeroes that appear in the leftmost positions of the number's representation
- Trailing zeroes
 - Any consecutive zeroes in the number's representation after which no other digits follow
- Trailing zeroes that appears to the right of a radix point and leading zeroes are insignificant
 - For example, the removal of leading and trailing zeroes in 0003.140010 does not affect the value

Fixed-point and Floating-point Numbers

- Fixed-point numbers
 - Have an implicit radix point at some fixed position
 - For example,
 - Integer: the radix point is immediately to the right of its LSD
 - Fraction: the radix point is immediately to the left of its MSD
- Floating-point numbers
 - Have a radix point that can be placed anywhere relative to their significant digits
 - The position is indicated separately and encoded in representation
 - Scientific notation is closely related to the floatingpoint numbers

© Jaeiin Lee

Binary Number System

- Directly related to the Boolean logic used in the computer
- The computer internally represents numeric data in a binary form
- Binary digits (bits): o or 1
- The general form of a binary number is $b_{p-1}b_{p-2}\cdots b_1b_0.b_{-1}b_{-2}\cdots b_{-n}$
 - Its value is:

$$\sum_{i=-n}^{p-1} b_i \cdot 2^i$$

- Base = 2
- Radix point = binary point (.)
- b_{p-1} : MSB, b_{-n} : LSB
- For example,
 - $10011 = 1 \cdot 2^4 + 1 \cdot 2^1 + 1 \cdot 2^0 = 19$
 - $101.001 = 1 \cdot 2^2 + 1 \cdot 2^0 + 1 \cdot 2^{-3} = 5.125$

Octal Number System

- Is useful for representing multi-bit binary numbers
 - Three bits in a binary number can be uniquely represented with a single octal digit
- For example,
 - 100011001110 = 100 011 001 110 = 43168
 - 10.1011001011 = 010 . 101 100 101 100 = 2.54548

Hexadecimal Number System

- Is also useful for representing multi-bit binary numbers
 - Each group of four bits in a binary number can be uniquely represented by a single hexadecimal digit
- For example,
 - $100011001110 = 1000 1100 1110 = 8CE_{16}$
 - $10.1011001011 = 0010 .1011 0010 1100 = 2.B2C_{16}$

4-bit Binary, Octal, Hexadecimal, and Decimal

Binary	Octal	Hexadecimal	Decimal
0000	00	0	0
0001	01	1	1
0010	02	2	2
0011	03	3	3
0100	04	4	4
0101	05	5	5
0110	06	6	6
0111	07	7	7
1000	10	8	8
1001	11	9	9
1010	12	А	10
1011	13	В	11
1100	14	С	12
1101	15	D	13
1110	16	Е	14
1111	17	F	15

Unsigned and Signed Binary Numbers

- N bits can represent 2ⁿ different binary numbers
 - Fixed precision
- Unsigned numbers
 - To represent only positive values with n-bit binary numbers
- Signed numbers
 - To encode positive numbers and negative numbers in binary
 - Several ways
 - Setting the MSB to 1 and using the remaining bits to represent the value
 - The MSB is referred to as the sign bit
- To keep the computer hardware implementation as simple as possible, almost all today's computers internally use two's complement representation

Decimal to Binary Conversion for Integers

Let N be the decimal number and $b_{n-1}b_{n-2} \cdots b_o$ be the binary number after the conversion.

- 1. Set *i* to 0.
- 2. Divide N by 2 and obtain a quotient and a remainder.
- 3. Set b_i to the remainder and N to the quotient.
- 4. If N is not zero, set i to i+1 and go to step 2.

Converting 108 to binary

\imath	IV	b_i	
0	108/2 = 54	0	(LSB)
1	54/2 = 27	0	
2	27/2 = 13	1	
3	13/2 = 6	1	
4	6/2 = 3	0	
5	3/2 = 1	1	
6	1/2 = 0	1	(MSB)
	1 2 3 4	$ \begin{array}{c cccc} 1 & 54/2 = 27 \\ 2 & 27/2 = 13 \\ 3 & 13/2 = 6 \\ 4 & 6/2 = 3 \\ 5 & 3/2 = 1 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Decimal to Binary Conversion for Fractions

Let N be the decimal fraction and $b_{-1}b_{-2} \cdots b_{-n}$ be the binary number after the conversion.

- 1. Set *i* to 1.
- 2. Multiply *N* by 2 and set *N* to the result.
- 3. If *N* is less than 1, set *b-i* to 0.
- 4. Otherwise, set b-i to 1 and N to N-1.
- 5. If i is less than n, set i to i+1 and go to step 2.

Converting 0.735 to binary

i	N	b_{-i}
1	$0.735 \times 2 = 1.47$	1
2	$0.47 \times 2 = 0.94$	0
3	$0.94 \times 2 = 1.88$	1
4	$0.88 \times 2 = 1.76$	1

Truncation!

Word

- A group of bits that are handled as a unit by the computer
- Word size
 - The number of bits in a word
 - An important characteristic of a computer architecture
 - Determines the range of possible numbers that can be represented
 - For example, 8 bits can represent 256 = 28 distinct numeric values
 - The precision of expressing a numerical quantity

Dyadic Fraction

- A rational number whose denominator is a power of two
 - For example, 1/2 or 3/16 is a dyadic fraction, but not 1/3
 - Dyadic decimal fractions convert to finite binary fractions
 - Represented in full precision if the word size is greater than or equal to the length of the binary representation
- Non-dyadic decimal fractions convert to infinite binary fractions
 - A repeating sequence of the same bit pattern
- Truncation (also known as chopping)
 - The process of discarding any unwanted digits of a number
- Rounding
 - A number is replaced with another number that is as close to the original number as possible

Decimal to Binary Conversion for Mixed Numbers

- Convert the integer part and the fraction part to binary form separately
- Then, combine the results
- For example, a mixed number 108.731₁₀ is converted to 1101100.1011₂

© Jaejin Lee

Decimal to Octal Conversion

Similar to the decimal to binary conversion

i	N	b_i	
0	108/8 = 13	4	(LSB)
1	13/8 = 1	5	
2	1/8 = 0	1	(MSB)

i	N	b_{-i}
1	$0.735 \times 8 = 5.88$	5
2	$0.88 \times 8 = 7.04$	7
3	$0.04 \times 8 = 0.32$	0
4	$0.32 \times 8 = 2.56$	2

Converting 108.731 to an octal number

Decimal to Hexadecimal Conversion

Similar to the decimal to binary conversion

i	N	b_i	
0	108/16 = 6	12(C)	(LSB)
1	6/16 = 0	6	(MSB)

i	N	b_{-i}
1	$0.735 \times 16 = 11.76$	11(<i>B</i>)
2	$0.76 \times 16 = 12.16$	12(C)
3	$0.16 \times 16 = 2.56$	2
4	$0.56 \times 16 = 8.96$	8

Converting 108.731 to a hexadecimal number

Another Way

- Converting a given decimal number to a binary number
- Then, convert the result to an equivalent octal or hexadecimal number
- However, the precision matters

```
108.731_{10} = 001\ 101\ 100\ .\ 101\ 111\ 000\ 010_2
= 154.5702_8
108.731_{10} = 0110\ 1100\ .\ 1011\ 1100\ 0010\ 1000_2
= 6C.BC28_{16}
```


Unsigned Binary Addition

Similar to decimal addition

carry	0	0	0	1	
		1	0	0	1
+		0	1	0	1
	0	1	1	1	0

Overflow

- An overflow occurs when a computation produces a value that falls outside the range of values that can be represented
 - The carry bit from the MSB indicates an overflow occured

carry	1	1	1	1	
		1	0	1	1
+		0	1	1	1
	1	0	0	1	0

Unsigned Binary Subtraction

Similar to decimal subtraction

borrow	0	1	0	0		
		1	0	0	1	
_		0	1	0	1	
	0	0	1	0	0	

Unsigned Binary Multiplication

Similar to decimal multiplication

				1	0	0	1
×				0	1	0	1
				1	0	0	1
			0	0	0	0	
		1	0	0	1		
	0	0	0	0			
	0	1	0	1	1	0	1

Unsigned Binary Division

Similar to decimal Division

				1	1	1	quotient
100	$\overline{)}$	1	1	1	0	1	
		1	0	0			
	-	0	1	1	0	1	
			1	0	0		
	_		0	1	0	1	
				1	0	0	
	-			0	0	1	remainder

One's Complement Representation

- One of the methods to represent a negative number
 - Not popular
- The bitwise inversion (flipping o's for 1's and vice-versa) of a negative number's positive counterpart
 - The one's complement representation of -6 (- 0110) is 1001
- With n bits,
 - The maximum: $2^{n-1} 1$
 - The minimum: $-2^{n-1} 1$

Positive		Negative		
Ones' complement	Decimal	Ones' complement	Decimal	
0000	0	1111	-0	
0001	1	1110	-1	
0010	2	1101	-2	
0011	3	1100	-3	
0100	4	1011	-4	
0101	5	1010	-5	
0110	6	1001	-6	
0111	7	1000	-7	

One's Complement Representation (contd.)

- Two zeroes
 - For example, 0000 and 1111 are the two 4-bit ones' complement representations of zero
- Addition is similar to the unsigned binary addition
 - If there is a carry from the MSB (called an end-around carry), then add the carry back into the resulting sum

Two's Complement Representation

- The most common method of representing signed integers internally in computers
- Simplifies the complexity of the ALU
 - The same circuit that is used to implement arithmetic operations for unsigned numbers
 - The major difference is the interpretation of the result
- With n bits,
 - The maximum: $2^{n-1} 1$
 - The minimum: -2^{n-1}

Positive			
Two's complement	Decimal	Negative	
0000	0	Two's complement	Decimal
0001	1	1111	-1
0010	2	1110	-2
0011	3	1101	-3
0100	4	1100	-4
0101	5	1011	-5
0110	6	1010	-6
0111	7	1001	-7
		1000	-8

Converting to the Two's Complement

- Convert the number to its ones' complement
- Then one is added to the result to produce its two's complement
- Another way of the conversion
 - Flipping all bits but the first least significant 1 and all the trailing os
- For example, the two's complement representation of -6 (-0110) is 1010

Two's Complement Addition and Subtraction

- Two's complement addition is exactly the same as that of unsigned binary numbers
- Subtraction can be handled by converting it to addition:
 - x y = x + (-y)
- Overflow occurs if n+1 bits are required to contain the result from an n-bit addition or subtraction
 - If the sign bits were the same for both numbers and the sign of the result is different to them, an overflow has occurred
 - 1. Perform n-bit unsigned binary addition.
 - 2. If the carry into the MSB is not equal to the carry out of the MSB, an overflow has occurred.

Shift Operations

- Every bit in the operand is moved a given number of positions to a specified direction
 - Shift left: <<
 - Shift right: >>
- Logical shift
 - Moves bits to the left or right
 - The bits that fall off at the end of the word are discarded
 - The vacant positions in the opposite end are filled with os
- Arithmetic shift
 - The left shift is the same as the logical left shift
 - The right shift is different
 - The leftmost bits are filled with the sign bit of the original number

	x >> 3	x << 3
Logical shift	00010011	11101000
Arithmetic shif	11110011	$\mid 11101000 \mid$

The difference between 8-bit logical shift and arithmetic shift for x = 10011101

Multiplication or Division by Powers of Two

- An n-bit logical left shift operation on unsigned integers is equivalent to multiplication by 2ⁿ
 - $00001011_2(13_{10}) << 2_{10} = 13 \times 2^2 = 00101100_2(52_{10})$
- An n-bit logical right shift on unsigned integers is equivalent to division by 2n
 - $00101101_2(53_{10}) >> 2_{10} = 53 \div 2^2 = 00001011_2(13_{10})$
 - We obtain the quotient of the division

Multiplication or Division by Powers of Two (contd.)

 Using arithmetic shifts, we can efficiently perform multiplication or division of signed integers by powers of two

- The floor of an integer x (denoted by [x])
 - The greatest integer less than or equal to x
 - For example, $\lfloor 11/2 \rfloor = 5$ and $\lfloor -3/2 \rfloor = -2$

Multiplication or Division by Powers of Two (contd.)

- An arithmetic shift operation on an integer in two's complement representation takes the floor of the result of multiplication or division
 - $1101_2(-3) << 1 = 1010_2(-6)$
 - $1101_2(-3) >> 1 = 1110_2(-2)$
 - $1101_2(-3) >> 2 = 1111_2(-1)$
 - $1100_2(-4) << 2 = 0000_2(0)$ Overflow
 - 0100_2 (4) << 1 = 1000_2 (-8) Overflow

Note on Arithmetic Right Shifts

- In two's complement representation, an arithmetic right shift is not equivalent to division by a power of two
- An arithmetic right shift on a 4-bit -1 (1111₂),
 - You still get -1 as a result
- For negative values, the ANSI/ISO C99 standard does not specify the definition of the C language's right shift operator
 - The behavior of the right shift operator is dependent on the C compiler

Sign Extension

- When converting an w-bit integer in two's complement representation into the one with w+k bits and the same value
 - Perform sign extension

Decimal	4-bit	8-bit
6	0110	00000110
-6	1010	11111010

