Sentiment Analysis on Social Media Data Govind Gupta, Harsh Sharma, Kanchan Sagar, Kartikey Raghuvanshi ABSTRACT

In today's digital landscape, social media and online platforms serve as primary channels for expressing opinions and emotions. Understanding these sentiments is crucial for businesses, policymakers, and researchers to analyze public perception and make data-driven decisions. This project focuses on developing an advanced **Sentiment Analysis** system using **Natural Language Processing (NLP)** and **machine learning techniques** to classify sentiments in textual data.

The system leverages both English and Hindi datasets, incorporating diverse sources such as tweets, product reviews, and social media comments. By applying preprocessing techniques—including tokenization, stop word removal, stemming, and lemmatization—the model ensures high-quality text input. Feature extraction methods like TF-IDF (Term Frequency-Inverse Document Frequency) and word embeddings (Word2Vec, GloVe) further enhance data representation.

To achieve accurate sentiment classification, various machine learning algorithms such as Naïve Bayes, Logistic Regression, and Support Vector Machines (SVM) are implemented and evaluated. The performance of these models is measured using accuracy, precision, recall, and F1-score to ensure reliable predictions. Additionally, deep learning techniques using Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks are explored for enhanced sentiment understanding.

The project also introduces sentiment analysis for sarcasm detection in Hindi tweets, addressing challenges in multilingual NLP. The use of real-time data visualization through word clouds and interactive dashboards provides meaningful insights into sentiment trends.

By integrating **machine learning and NLP techniques**, this sentiment analysis system offers a powerful tool for businesses and researchers to monitor public sentiment, improve customer engagement, and drive informed decision-making. The solution provides a scalable, efficient, and multilingual approach to sentiment analysis, advancing the capabilities of natural language understanding in the digital era.

ACKNOWLEDGEMENTS

Success in life is never attained single-handedly. My deepest gratitude goes to my project supervisor, **Mr. Rabi Narayan Panda** for his/ her guidance, help, and encouragement throughout my project work. Their enlightening ideas, comments, and suggestions.

Words are not enough to express my gratitude to Dr. Akash Rajak, Professor and Head, Department of Computer Applications, for his insightful comments and administrative help on various occasions.

Fortunately, I have many understanding friends, who have helped me a lot on many critical conditions.

Finally, my sincere thanks go to my family members and all those who have directly and indirectly provided me with moral support and other kind of help. Without their support, completion of this work would not have been possible in time. They keep my life filled with enjoyment and happiness.

Govind Gupta

Harsh Sharma

Kanchan Sagar

Kartikey Raghuvanshi

TABLE OF CONTENTS

	Declaration	ii		
	Certificate			
	Abstract	iv		
	Acknowledgements	v		
	Table of Contents	vi		
	List of Tables	viii		
	List of Figures	ix		
CHAPTER 1	INTRODUCTION	1-6		
	1.1 Background	1		
	1.2 Need and significance	2		
	1.3 Objective	3		
	1.4 Purpose	3		
	1.5 Intended user	3		
	1.6 Applicability	4		
	1.7 Components	4		
	1.8 Limitations	5		
	1.9 Feasibility study	5		
CHAPTER 2	PROBLEM STATEMENT AND LITERATURE REVIEW	7-8		
	2.1 Problem Statement	7		
	2.2 Literature Review	7		
CHAPTER 3	PROBLEM REQUIREMENT AND ANALYSIS	9-11		
	3.1 Gantt Chart	9		
	3.2 Technology Required	10		
	3.2.1 Programming language	10		
	3.2.2 Libraries and Frameworks	11		
CHAPTER 4	SYSTEM DESIGN	12-16		
	4.1 Data Flow Diagram	12		
	4.2 Use Case Diagram	13		
	4.3 Class Diagram	15		
CHAPTER 5	IMPLEMENTATION AND CODING	17-30		
	5.1 Coding Details	15		
CHAPTER 6	SOFTWARE TESTING			
	6.1 Testing Strategy	31		
	6.1.1 Unit Testing	31		
	6.1.2 Integration Testing	31		

		6.1.3	Performance Testing	31
		6.1.4	End-to-End (E2E) Testing	32
	6.2	Test C	Cases and Outcomes	32
CHAPTER 7	RES	35-38		
	7.1	Project Outcome		35
		7.1.1	Model Implementation	35
		7.1.2	Data Preprocessing	35
		7.1.3	Model Evaluation	35
		7.1.4	Performance Comparison	35
		7.1.5	Research Insights	36
		7.1.6	Future Scope	36
	7.2 Snapshot of Code			36
		7.2.1	Logistic Regression Output	36
		7.2.2	Support Vector Machine (SVM) Output	36
		7.2.3	Naive Bayes Output	37
		7.2.4	BERT Model Output	37
CHAPTER 8	CONCLUSION			39
	8.1	Concl	usion	39
	References			40

LIST OF TABLES

Table No.	Name of Table	Page
2.1	Literature review	7-8
3.1	Gantt chart	9-10
6.1	Test cases with outcome	32-33

LIST OF FIGURES

Figure No.	Name of Figure	Page No.
4.1	DFD level-0 (Logistic Regression)	12
4.2	DFD level-0 (Support Vector Machine)	12
4.3	DFD level-0 (Naïve Bayes)	13
4.4	DFD level-0 (BERT)	13
4.5	Use Case Diagram	15
4.6	Class Diagram	16
7.1	Logistic Regression Output	36
7.2	Support Vector Machine (SVM) Output	37
7.3	Naive Bayes Output	37
7.4	BERT Model Output	38