Offshore Wind Farms

Fujin Deng
School of Electrical Engineering
Southeast University
fdeng@seu.edu.cn

Outline

- I. Introduction of Offshore Wind Farms
- **II. Conventional Offshore Wind Farms**
- III. DC grid for offshore wind farms

1.1 Introduction

Why offshore wind power?

- Better wind source
- High wind speed
- Constant wind speed
- More electricity

DC Wind Farm

1.2 Conventional Offshore Wind Farm

Offshore wind farms

- (1) Collection system
- (2) Power transmission system

DC technology advantages

- Reduce cable costs
- No reactive power
- No frequency regulation
- Easy control

1.3 Wind Farm Configuration

Mature AC Technology

- 33 kV collection AC voltage
- 50 Hz transformer at offshore station

50 Hz or others?

Variable-frequency control

- Reduce reactive power loss
- Long distance transmission
- Communications

❖ Typical configuration: PMSG-based Wind Turbine with BTB power converter

Advantage

Disadvantage

- Robust to grid
- Suitable for offshore wind power generation
- Full rated power
- High cost

❖ Typical configuration: DFIG-based Wind Turbine with BTB power converter

Solutions for Grid Disturbance Issue:

- Normal operation:
 - Resistor is bypassed
- Grid disturbance situation:

Resistor is inserted into the grid between the stator and grid

- Normal operation:
 - AC/DC connected to rotor to produce the flux
- Grid disturbance situation:
 - AC/DC connected to rotor to regulate the flux

■ Control of Generator-side Converter

■ Control of Grid-side Converter

Converter unit topology:

Cascaded multilevel converter

Fig. 5. Block diagram of the control strategy for the cascaded multilevel converter.

- Permanent Magnet Synchronous Generator (PMSG)
- Three-phase Diode Rectifier
- Boost Converter
- Voltage Source Converter (VSC)

Conventional Control

- Boost DC/DC Converter → P
- Voltage Source Converter → Udc & Q

Grid Code (Low Voltage)

DC-link voltage ripple

Control for DC-link Ripple Elimination:

- Boost DC/DC Converter → Udc
- Voltage Source Converter → P & Q

Simulation

Condition:

- Wind speed is constant as 11m/s
- PCC voltage dips to 15% of rated value

1.1 1.08 1.06 Mud turbine speed [p.u.] 1.04 1.02 1 0.98 0.96 New control scheme Traditional control scheme 0.94 0.92 0.9 <u>-</u> 26 27 27.4 27.6 27.8 26.2 26.4 26.6 26.8 27.2 Time (s)

Generator electromagnetic torque

Wind turbine speed

■ Wind Turbine in Stand-Along System

■ Selection of Wind Turbine

House power consumption in 2019

Wind power production in 2019

Energy required for ideal energy storage system

Selecting wind turbine size based on

- ✓ Size of energy storage system
- ✓ Cost of WT
- ✓ Cost of ESS

■ Battery Energy Storage System

DC/DC Buck/Boost Converter

Third-order battery mode

Researches

- DC/DC converter
- Control of DC/DC converter
- Cooperation control of Generator-side converter,
 DC/DC converter, grid-side converter
- Lifetime analysis of battery
- Control optimization for battery lifetime

WT configuration 1 (Multiple-windings)

WT configuration 2 (Multiple-windings)

2.6 Wind Farm Configuration

Researches point

- ☐ Topologies of wind farms —— Optimization
- □ Control of wind turbines — Optimization

Main effects:

- Topology affects the wind power capture
- Topology affects the size of cables and power losses in collection system
- Control of wind farm affect the optimal wind power capture
- Control of wind farm affect the power loss

3.1 DC Grid for Offshore Wind Farms

Main researches

3.2 Wind Turbine for DC Grid

1. Wind turbine configuration I

3-L NPC converter
+
DC/DC converter

2. Wind turbine configuration II

Diode rectifier
+
DC/DC converter

3.3 A DC/DC Converter

Isolated full-bridge three-level DC/DC converter

- Isolated DC transformer
- 3-level configuration
- Medium switching frequency

Modulation Strategy

Modulation mode I

Modulation mode II

Full-bridge 3-L inverter

$$S_3 = \overline{S_1}$$
 $S_6 = \overline{S_8}$

$$S_2 = \overline{S_4}$$
 $S_7 = \overline{S_5}$

DC Capacitor Voltage Balancing Control

Wind Turbine Control 1

1. Control of wind turbine configuration I

- (1) Generator-side converter control
 - Optimal power control Pref
 - Reactive current control isd_ref=0

- (2) Grid-side converter control
 - DC-link voltage control Vdc_ref

Control Performance

1. 1st-situation

2. 2nd-situation

Wind Turbine Control 2

2. Control of wind turbine II

- (1) Generator-side converter control
 - Optimal power control Pref

Experiment Test

Dynamic Response

1. Current step up

$i_{ m o}$ $V_{ m c1}$ $V_{ m c2}$ Ch2 100mV M1.00ms Ch3 100mV Ch4 500mA Ω

2. Current step down

3.4 Wind Turbine for DC Grid

WT Configure 1: 1 stage

WT Configure 2: 2 stages

3.5 DC Wind Farm

Configuration 1

Characteristics:

✓ Similar to AC collection system

3.5 DC Wind Farm

Configuration 2

Characteristics:

- ✓ Avoid offshore station
- ✓ Low cost
- ✓ Wind turbines are connected in series
- ✓ Avoid overvoltage of some wind turbine
- ✓ Effect between wind turbines in one cluster
- ✓ Effect among clusters

Conclusions

I. Offshore Wind Farms

- Power converter
- Wind farm configuration

II. DC grid for offshore wind farms

- Power converter
- Wind farm configuration

Thanks!