PHYSICS X0323: Scientific Analysis & Modeling - Fall 2024 by:Anahid Vicente

1: An electron is found to be in the spin state (in the z-basis):

- (a) (5 points) Determine the possible values of A such as that the state is normalized.
- (b) (5 points) Find the expectation values of the operators, text $\langle S_x \rangle$, $\langle S_y \rangle$, $\langle S_z \rangle$, and $\langle \vec{S}^2 \rangle$.

$$\chi = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}$$

The Matrix representation in the z-basis for the components of electron spin operators are given by:

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

2. The average electrostatic field in the earth's atmosphere in fair weather is approximately given:

$$\mathbf{E} = E_0 \left(A e^{-\alpha z} + B e^{-\beta z} \right) \hat{z}$$

Where A, B, α , β are positive constants and z is the height above the (locally flat) earth surface.

- (a) (5 points) Find the average charge density in the atmosphere as a function of height
- (b) (5 points) Find the electric potential as a function height above the earth
- 3. The following questions refer to stars in the Table below.

Note: There may be multiple answers.

Name	Mass	Luminosity	Lifetime	Temperature	Radius
β Cyg.	1.3 <i>M</i> _⊙	3.5 L _☉			
α Cen.	$1.0~M_{\odot}$				$1R_{\odot}$
η Car.	60.M⊙	60.M	8.0×10^{5}	20,000 K	
ε Eri.	6.0 <i>M</i> ⊙				
δ Scu.	2.0 <i>M</i> ⊙		5.0×10^{8}		2 R _☉
γ Del.	0.7 <i>M</i> ⊙		$4.5 \times 10^{1}0$	5000 K	

- (a) (4 points) Which of these stars will produce a planetary nebula?
- (b) (4 points) Elements heavier than Carbon will be produced in which stars?

Latex Example