B.Tech.-II (CSE)

*Required

Untitled section	
Attempt all questions	
Radius of a graph, denoted by rad(G) is defined by *	1 point
max {e(v): v belongs to V }	
max { d(u,v): u and v belongs to G, u does not equal to v }	
min { d(u,v): u and v belongs toG, u does not equal to v }	
min { e(v): v belongs to V}	
In a complete graph with n vertices there is a total of*	1 point
n(n - 1) edges.	
(1/2)n(n + 1) edges.	
None of the above	
√ (1/2)n(n - 1) edges.	
n(n + 1) edges.	
The 'Subset' relation on a set of sets is *	1 point
An equivalence relation	
A partial ordering	
Transitive and anti symmetric only	
Transitive and symmetric only	

 $\forall x(C(x) \rightarrow F(x))$

 $\exists x (C(x) \land F(x))$

Option 4

Option 1

 $\exists x (C(x) \rightarrow F(x))$

 $\forall x(C(x) \land F(x))$

Option 3

Option 2

If for some positive integer k, degree of vertex deg(v)=k for every vertex v 1 poi of the graph G, then Gis called *		
k-regular graph k graph All of above Empty graph		
Which of the followings is/are a tautolog	yy? * 1 point	
$a \wedge b \longrightarrow b \wedge c$	$a \lor b \longrightarrow b \land c$	
Option 2	Option 1	
$a \lor b \longrightarrow (b \longrightarrow c)$	$a \to b \to (b \to c)$	
Option 3	Option 4	

A graph has an Euler circuit if*	1 point
it is connected and has an even number of edges.	
None of the above	
every vertex has even degree.	
it is connected and every vertex has even degree.	
it is connected and has an even number of vertices.	
*	1 point
The binary relation $S=\emptyset$ (empty set) on a set $A=\{1,2,3\}$ is	
Neither reflexive nor symmetric	
Symmetric and reflexive	
Transitive and symmetric	
Transitive and reflexive	
A graph with 4 vertieces and degree sequence 1, 1, 3, 3 is*	1 point
circuitless	
disconnected graph.	
not possible to draw.	
connected graph	
simple graph	
Back Submit	

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy