# Tesla Service Documentation - Recon via Google Dorking

Category: OSINT / Recon

**Difficulty:** Easy

**Author:** Sebin Mathew **Date:** July 26, 2025

## **Summary**

During a reconnaissance phase using Google Dorking techniques, I discovered an internal Tesla document, including proprietary wiring diagrams and confidential service data, indexed publicly. This information was accessible without authentication and included technical breakdowns labeled as **confidential** or **trade secrets**.

## **Objective**

Identify sensitive PDF documents exposed by misconfigured or publicly accessible Tesla subdomains using Google Dorking.

#### **Tools Used**

- Google Search
- Web Browser (Chrome)
- PDF Viewer
- Screenshot Tool (Snipping tool)

## **Steps**

#### **Step 1: Crafting the Google Dork**

To locate potentially exposed PDF files on Tesla's domain, I used the following search operator:

site:tesla.com filetype:pdf secret or confidential

This query looks for PDF documents hosted on the tesla.com domain that contain the keyword "secret," which is often used in internal, proprietary, or sensitive documentation.

#### **Step 2: Reviewing the Results**

Google returned multiple results, including internal Tesla documents hosted at:

• https://service.tesla.com

Some documents are presumed to contain highly detailed engineering and service data.

#### **Step 3: Accessing the Document**

I accessed a URL without login

The PDF opened without authentication and contained:

- Full internal fuse box layouts
- CAN network maps
- Wire color codes and pinout configurations
- High Voltage Interlock (HVIL) information
- Internal module abbreviations
- Sections marked as "CONFIDENTIAL" and "TRADE SECRET OF TESLA MOTORS"

# **Impact**

These documents expose critical internal systems and wiring designs of Tesla vehicles. Potential risks include:

- Reverse engineering of vehicle architecture
- Exploitation of security flaws in CAN or HVIL systems
- Unauthorized repairs, cloning, or spoofing of Tesla parts

## Recommendation

Tesla should take the following actions:

- Block sensitive paths via robots.txt or HTTP authentication
- Implement proper access controls (IP whitelisting or login gates)
- Audit indexed files using Google Search Console
- Conduct regular OSINT exposure sweeps

# Conclusion

This case highlights how simple dorking techniques can expose sensitive corporate data. By searching with basic filters, I was able to find and access documents that reveal confidential service-level vehicle details.

If this were a bug bounty program, this would likely qualify as a P1 information disclosure issue.



