Push Down Automata

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F).$$

- Q: Finite set of states; q_0 is the start state; F is the set of final/accepting states.
- Σ : Alphabet set; Γ : Stack alphabet
- $ightharpoonup Z_0$ is the (only) initial symbol on the stack.
- δ : transition function.

 δ takes as input a state q, an input letter a (or ϵ), and a stack symbol (top of stack) X. $\delta(q,a,X)$ is then a finite subset of $Q \times \Gamma^*$.

 $(p,\gamma)\in \delta(q,a,X)$ denotes that when in state q, reading symbol a (or ϵ), with top of stack being X, the machine's new state is p,X at the top of stack is popped and γ is pushed to the stack. (By convention, if $\gamma=RS$, then S is pushed first, and then R is pushed on the stack).

Instantaneous Descriptions

 (q,w,α) : denotes that current state is q, input left to read is w, and α is on the stack (first symbol of α is top of stack). $(q,aw,X\alpha)\vdash (p,w,\beta\alpha)$, if $(p,\beta)\in \delta(q,a,X)$ (here a can be ϵ). One can similarly define \vdash_P^* (or simply \vdash^* , where P is understood).

- **1.** $I \vdash^{*} I$
- **2.** $I \vdash^* J$ and $J \vdash K$, then $I \vdash^* K$

Language accepted by PDA

Acceptance by final state.

 $\{w \mid (q_0, w, Z_0) \vdash_P^* (q_f, \epsilon, \alpha), \text{ for some } q_f \in F\}.$

Acceptance by empty stack.

 $\{w \mid (q_0, w, Z_0) \vdash_P^* (q, \epsilon, \epsilon), \text{ for some } q \in Q\}.$

From Acceptance using empty stack to Acceptance using Final State

Intuition: Initially put a special symbol onto the stack. If ever see the top of stack as that symbol, then go to final state.

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F).$$

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\}).$$

- 1. $\delta_F(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}.$
- 2. For all $Z \in \Gamma$, $a \in \Sigma \cup \{\epsilon\}$: $\delta_F(p, a, Z)$ contains all (q, γ) which are in $\delta(p, a, Z)$.
- 3. $\delta_F(p, \epsilon, X_0)$ contains (p_f, ϵ) , for all $p \in Q$.

From Acceptance using final state to Acceptance using empty Stack

Place a transition from final state to a special state which empties the stack.

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
.

$$P_E = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_E, p_0, X_0, \{p_f\}).$$

- 1. $\delta_E(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}.$
- 2. $\delta_E(p, a, Z)$ contains all (q, γ) which are in $\delta(p, a, Z)$, for all $Z \in \Gamma$ and $a \in \Sigma \cup \{\epsilon\}$.
- 3. $\delta_E(p, \epsilon, Z)$ contains (p_f, ϵ) , for all $p \in F$, and $Z \in \Gamma \cup \{X_0\}$.
- 4. $\delta_E(p_f, \epsilon, Z)$ contains (p_f, ϵ) , for all $Z \in \Gamma \cup \{X_0\}$.

Equivalence of CFGs and PDAs

First we show how to accept a CFG. We use the accepting by empty stack model. Intuitively, do left-most derivation. Use stack to keep track of "what is left to derive". Each time there is a non-terminal on the top of stack, guess a production to be used and push it on the stack. Terminal symbols can be matched as it is.

Details:

$$G = (V, T, P, S).$$
 Then, construct $PDA = (\{q_0\}, \Sigma, \Gamma, \delta, q_0, S, F),$ where, $\Sigma = T$,
$$\Gamma = V \cup T.$$
 For all $a \in \Sigma$, $\delta(q_0, a, a) = \{(q_0, \epsilon)\}$ For all $A \in V$, $\delta(q_0, \epsilon, A) = \{(q_0, \gamma) : A \rightarrow \gamma \text{ in } P\}.$

Now we show that each language accepted by a PDA (using empty stack) can be accepted by a CFG.

Suppose PDA is $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$.

We define grammar $G = (V, \Sigma, R, S)$ as follows.

$$V = \{S\} \cup \{[qZp] : q, p \in Q, Z \in \Gamma\}.$$

$$S \rightarrow [q_0 Z_0 p]$$
, for each $p \in Q$.

If $\delta(q, a, X)$ contains $(r, Y_1 \dots Y_k)$, then we have productions of the form:

$$[qXr_k] \to a[rY_1r_1][r_1Y_2r_2]\dots[r_{k-1}Y_kr_k],$$

for all $r_1, r_2, \ldots, r_k \in Q$.

Here, if k = 0, then $[qXr] \rightarrow a$ (think of $r = r_0$).

Intuitively, [qXr] generates w iff $(q, w, X) \vdash^* (r, \epsilon, \epsilon)$.

By induction on number of steps of PDA/derivation in the CFG.

Deterministic PDA

- 1. For all $a \in \Sigma \cup \{\epsilon\}, Z \in \Gamma$ and $q \in Q$, there is at most one element in $\delta(q, a, Z)$.
- 2. If $\delta(q, \epsilon, X)$ is non-empty, then $\delta(q, a, X)$ is empty for all $a \in \Sigma$.

Theorem: There exists a language which is accepted by PDA (NPDA) but not by any DPDA.

Deterministic PDA

Theorem: If we consider acceptance by final state, then every regular language can be accepted by a DPDA.

Theorem: If we consider acceptance by empty stack, then $\{a,aa\}$ is not accepted by a DPDA.

Any language accepted by a DPDA accepting by empty stack has prefix property: For every x, y in the language, x is not a prefix of y.