L	1	١,	١,	1	
Г	1	v	v	Т	

Deadline: 30 Day

Upload the code and the report (pdf) in a rar file

Use

- MLP
- ELM
- AutoEncoder

methods for classification of the data in the below link:

https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification#

Report all the details of your modeling and also Confusion matrix, Accuracy, Precision, Recall and f-measure for the best result. Use 5-fold cross validation and finally report the average values of the mentioned measures.

Compare your results with the results of the published paper (in a table format) .

Method	Value of	Accuracy	Precision	Recall	f-	
	parameters				measure	
Decision tree						From
Random Forest						HW1
XGBoost						
SVM						
MLP						
each architecture in one						
row						
ELM						
each architecture in one						
row						
AutoEncoder						
each architecture in one						
row						