Algebra univers. 47 (2002) 65-68 0002-5240/02/010065 - 04 \$1.50 + 0.20/0© Birkhäuser Verlag, Basel, 2002

Algebra Universalis

pages 65-68

Well-foundedness conditions connected with left-distributivity

RICHARD LAVER AND JOHN A. MOODY

ABSTRACT. We state a problem about free left-distributive algebras. If u and w are members of such an algebra write $u <_L w$ if $w = (((uu_0)u_1)...)u_n$ for some u_0, \cdots, u_n . A conjecture about left-division in such algebras is given; it entails a normal form and that for every w the set of left divisors of w is well-ordered under $<_L$.

Let \mathcal{A}_k be the free left-distributive algebra on k-many generators, where k is a cardinal and the left-distributive law is the law a(bc) = (ab)(ac). The purpose of this paper is the describe a conjecture connected with left division in A_k , and some propositions related to it. This problem is one of a number of well-foundedness questions about free left-distributive algebras. Here are some basic facts (see [4] and [8], section 2 for respectively an account and a summary).

Fix a set S of cardinality k and let T be the set of S-terms in the language of one binary operation. For $\tau_0, \tau_1 \in T$, τ_1 is the result of a forward transformation on τ_0 if and only if τ_1 can be obtained from τ_0 by replacing a subterm of the form a(bc) by (ab)(ac). Then $A_k = T/\equiv$, where $\tau \equiv \sigma$ iff σ can be obtained from τ by a sequence of forward transformations and/or their inverses. Write $[\tau]$ for the equivalence class of τ . Let $\tau_0 \to \tau_1$ mean that τ_1 is obtainable from τ_0 by a sequence of forward transformations. Then A_k is confluent [1], that is, if $\tau_0 \equiv \tau_1$ then there's a τ such that $\tau_0 \to \tau$ and $\tau_1 \to \tau$. For $a, b \in \mathcal{A}_k$, write $a \mid b$ iff for some c, ac = b. Write $a <_L b$ if a is an iterated left divisor of b; $b = ((aa_0)a_1)...)a_n$ for some $n \geq 0$. Then $<_L$ is a partial ordering: transitivity is immediate, and irreflexivity $(a \not \downarrow_L a)$, first shown in [6] as a corollary to a large cardinal axiom of set theory, was then shown in [3] without it—see [5] for a shorter proof of irreflexivity. And on $\mathcal{A} = \mathcal{A}_1$, $<_L$ is a linear ordering (modulo irreflexivity this was shown in different ways in [3] and [6]). On A_k (k > 1), $<_L$ is not linear, but any linear ordering of S naturally induces a linear ordering of A_k which extends $<_L$ [2]. Finally, A_k satisfies left cancellation. For k=1 this follows from the linearity of $<_L$ and the fact that

Presented by R. W. Quackenbush.

Received March 25, 2001; accepted in final form April 10, 2001.

 $2000\ Mathematics\ Subject\ Classification{:}20F36,\ 20N02.$

Key words and phrases: Left-distributivity, braid groups.

The work of the first author was supported by NSF Grant DMS 9972257.

Algebra Universalis

pages 65-68

 $<_L$ is preserved under left translations, and for k>1 it is derivable from the k=1case and confluence.

Example The linear order $<_L$ on \mathcal{A} is not a well-order. Let w be any member of \mathcal{A} of the form r(st). Then

$$w = [((rs)r))(rs)][((rs)r)t]$$

and we have

$$((rs)r)(rs) <_L w.$$

The left hand side is of the same form, yielding an infinite descending sequence under $<_L$.

Definitions.

- (1) For $w \in \mathcal{A}_k$, $D_w = \{u \in \mathcal{A}_k : u \mid w\}$.
- (2) For $\langle a, b \rangle$, $\langle c, d \rangle \in \mathcal{A}_k \times \mathcal{A}_k$, $\langle c, d \rangle$ is an *LD-transformation* of $\langle a, b \rangle$ (and $\langle a, b \rangle$ is an *LD-inverse* of $\langle c, d \rangle$ if and only if for some r and s, b = rs, c = ar, and d = as (so ab = cd).
- (3) A $\tau \in T$ is in reduced normal form just in case for every subterm $\sigma \gamma$ of τ , $D_{[\sigma]} \cap D_{[\gamma]} = \emptyset.$

In (2), $\langle u, v \rangle$ may have more than one LD transformation and LD inverse. These operations are more general than the forward transformations and their inverses at the term level: for example $\langle ab, (ac)d \rangle$ is an LD inverse of $\langle a(bc), (ab)d \rangle$, but the term $(\alpha\beta)((\alpha\gamma)\delta)$ is not obtainable from $(\alpha(\beta\gamma))((\alpha\beta)\delta)$ by the inverse of a forward transformation.

Conjecture.

- (i) If $u, v, r, s \in A_k$, uv = rs, $u \neq r$, then for one of u and r (say, u) there is a finite iteration of LD-transformations which takes $\langle u, v \rangle$ to $\langle r, s \rangle$.
- (ii) If $\langle r, s \rangle \in \mathcal{A}_k \times \mathcal{A}_k$ then any sequence $\langle r_0, s_0 \rangle, \ldots, \langle r_i, s_i \rangle, \ldots$ with $\langle r_0, s_0 \rangle =$ $\langle r, s \rangle$, such that each $\langle r_{n+1}, s_{n+1} \rangle$ an LD-inverse of $\langle r_n, s_n \rangle$, is finite.
- (iii) If $w \in \mathcal{A}_k$ there is a unique term τ in reduced normal form with $[\tau] = w$.

Theorems on the existence of other normal forms have been proved in [6,7] and in [4].

Proposition 1. (a) Conjecture (i) implies that for each $w \in A_k$, D_w is linearly ordered by $<_L$.

(b) If Conjectures (i) and (ii) hold then for each $w \in A_k$, D_w is well ordered $by <_L$.

Proof. (a) Irreflexivity and transitivity follow from those properties of A_k . And if uv = rs = w with $u \neq r$, there is by (i) a sequence of LD-transformations taking, say, $\langle u, v \rangle$ to $\langle r, s \rangle$, which would witness $u <_L r$.

Page 67 Sheet 3 of 4

(b) Suppose there is an infinite sequence $u_0 >_L u_1 > \cdots >_L u_n >_L \cdots$ of members of D_w . Writing $u_n v_n = w$, there is by (i) a sequence of LD-inverse operations which take $\langle u_n, v_n \rangle$ to $\langle u_{n+1}, v_{n+1} \rangle$, for each n. This infinite iteration of LD-inverses contradicts (ii).

We briefly consider some other hypotheses about \mathcal{A}_k and their connections with one another. Some statements are explicitly mentioned because they have a plausibility argument, namely they have been proved to be true in \mathcal{A} (see remarks at the end).

Proposition 2. Suppose the following condition holds:

(*) For all $a, b, c \in A_k$, if $a \mid b$ and $a \mid bc$ then $a \mid c$.

Then, for any $\langle u, v \rangle$, $\langle r, s \rangle \in \mathcal{A}_k \times \mathcal{A}_k$ there is a finite sequence of LD transformations which takes $\langle u, v \rangle$ to $\langle r, s \rangle$ if and only if uv = rs and there is a sequence $u_i(0 \le i \le n)$, with $u_0 = u$, $u_i \mid u_{i+1}(i < n)$, and $u_n = r$, such that each $u_i \mid rs$.

Proof. For the right to left direction, write $rs = u_i t_i$, $u_{i+1} = u_i q_i$. Since $u_i \mid u_{i+1}$ and $u_i \mid u_{i+1} t_{i+1}$, $u_i s_i = t_{i+1}$ for some s_i , by (*). Then $\langle u_{i+1}, t_{i+1} \rangle = \langle u_i s_i, u_i q_i \rangle$ has an LD-inverse $\langle u_i, q_i s_i \rangle$, and $q_i s_i = t_i$ by left cancellation. Also by left cancellation $t_0 = v$ and $t_n = s$. This gives a sequence of LD inverses taking $\langle r, s \rangle$ to $\langle u, v \rangle$.

Proposition 3. Conjecture (i) implies that the reduced normal form of a $w \in A_k$ is unique if it exists.

Lemma 1. Assume (i). Then if $u, v, r, s \in A_k$, uv = rs, and $D_u \cap D_v = D_r \cap D_s = \emptyset$, then u = r and v = s.

Proof. Let w = uv = rs. It suffices by left cancellation to show u = r. Suppose $u \neq r$. Then by (i), for one of u and r, say r, we have that $\langle r, s \rangle$ is in the range of an LD-transformation. Thus $D_r \cap D_s \neq \emptyset$, a contradiction.

To show uniqueness of reduced normal forms, we show by induction on length τ ($\tau \in T$), that if $\tau \equiv \sigma$ and τ , σ are in reduced normal form, then $\tau = \sigma$. We are done if either $[\tau]$ or $[\sigma]$ is a generator, so assume $\tau = \tau_0 \tau_1$, $\sigma = \sigma_0 \sigma_1$. By the normal form, $D_{[\tau_0]} \cap D_{[\tau_1]} = D_{[\sigma_0]} \cap D_{[\sigma_1]} = \emptyset$. By the lemma then, $[\tau_0] = [\sigma_0]$ and $[\tau_1] = [\sigma_1]$. Since τ_0 , τ_1 have smaller length than τ and the τ_i 's and σ_i 's are in reduced normal form, $\tau_i = \sigma_i$ holds by induction. Thus $\tau = \sigma$, proving Proposition 3.

Assuming the conjecture, part (iii) is expressible as follows. For every $w \in \mathcal{A}_k$, let T_w be the \mathcal{A}_k -labelled tree, with root node labelled by w, such that nodes which are labelled by generators are terminal, and every node labelled by a nongenerator v has two immediate successors which are labelled by the elements r and s such that rs = v and r is the $<_L$ -least member of D_v . Then for each w, T_w is finite.

Algebra Universalis

A number of the above statements are known in the one-generator case (results of the first author). Namely, if $w \in \mathcal{A}$, then Conjecture (i) is true for w. It follows that the conclusion of Lemma 1 is true for A, and that the reduced normal form of a member of \mathcal{A} is unique if it exists. Also, (*) is true for \mathcal{A} . Conjectures (ii) and (iii) are open for A.

A number of theorems about free left distributive algebras have related versions about the braid groups, and vice-versa (see [3] and [4], also see [8], Section 3 for facts about braids which are related to the question of well ordering of D_w under $<_L$).

References

- [1] P. Dehornoy, Free distributive groupoids, Journ. Pure and Applied Algebra 61 (1989),
- [2] P. Dehornoy, A canonical ordering for free LD systems, Proc. Amer. Math Soc. 122 (1994), 31 - 37.
- [3] P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math Soc. 345 (1994), 115-151.
- P. Dehornoy, Braids and self-distributivity, Progress in Mathematics 192, Birkhauser, 2000.
- [5] D. Larue, On braid words and irreflexivity, Algebra Universalis 31 (1994), 104–112.
- [6] R. Laver, The left-distributive law and the freeness of an algebra of elementary embeddings, Advances in Mathematics 91 (1992), 209-231.
- [7] R. Laver, A division algorithm for the free left-distributive algebra, Oikkonen et al., eds., Logic Colloquium '90, Springer-Verlag Lecture Notes in Logic 2, 1993, pp. 155–162.
- [8] R. Laver, Braid group actions on left-distributive structures and well-orderings in the braid groups, Jour. Pure and Applied Algebra 108 (1996), 81-98.

RICHARD LAVER

University of Colorado, Boulder, Colorado

John A. Moody

University of Warwick, Warwick, UK

