Задание к зачёту

Часть І

Реализовать в виде программы следующий алгоритм.

Варианты.

1. Алгоритм описания многогранника $\mathfrak{X} = \text{conv}\{x^1, \dots, x^M\} \subset \mathbb{R}^3$ в виде полиэдра:

$$\mathfrak{X} = \bigcap_{k=1}^{K} \{ x \in \mathbb{R}^3 \colon (p^k, x) \leqslant a_k \}.$$

2. Алгоритм описания ограниченного полиэдра

$$\mathfrak{X} = \bigcap_{k=1}^{K} \{ x \in \mathbb{R}^3 \colon (p^k, x) \leqslant a_k \} \subset \mathbb{R}^3$$

в виде многогранника $\mathfrak{X} = \operatorname{conv}\{x^1, \dots, x^M\}$.

3. Алгоритм построения множества 0-управляемости $\mathfrak{X}(N)$ за произвольное число шагов $N \in \mathbb{N}$ для заданной системы управления

$$x(k+1) = Ax(k) + u(k),$$

 $x(0) = x_0, \ u(k) \in \mathcal{U} = \text{conv}\{u^1, \dots, u^M\},$
 $x(k), u(k) \in \mathbb{R}^2, \ k \in \mathbb{N} \cup \{0\}.$

- 4. Алгоритм определения принадлежности точки $x \in \mathbb{R}^4$ некоторому многограннику $\mathfrak{X} = \text{conv}\{x^1,\ldots,x^M\} \subset \mathbb{R}^4$.
- 5. Алгоритм последовательной внутренней полиэдральной аппроксимации шара $\mathcal{B}_1(0) \subset \mathbb{R}^3$ последовательностью многогранников $\{\mathcal{X}_k\}_{k=4}^\infty$, где $\mathcal{X}_k = \operatorname{conv}\{x^1,\ldots,x^k\}$, а каждая очередная вершина x^{k+1} определяется из условия:

$$x^{k+1} = \arg\min_{x \in \partial \mathcal{B}_1(0)} \mu(\mathcal{B}_1(0) \setminus \operatorname{conv}\{\mathcal{X}_k \cup x\}).$$

Первоначальное приближение \mathfrak{X}_4 является входным параметром алгоритма.

6. Алгоритм последовательной внешней полиэдральной аппроксимации шара $\mathcal{B}_1(0) \subset \mathbb{R}^3$ последовательностью полиэдров $\{\mathcal{X}_k\}_{k=4}^{\infty}$, где $\mathcal{X}_k = \bigcap_{i=1}^k \{x \in \mathbb{R}^3 \colon (p^i,x) \leqslant 1\}$, а каждая очередная гиперплоскость $\{x \in \mathbb{R}^3 \colon (p^{k+1},x) \leqslant 1\}$ определяется из условия:

$$p^{k+1} = \arg\min_{p \in \partial \mathcal{B}_1(0)} \mu(\mathfrak{X}_k \cap \{x \in \mathbb{R}^3 : (p^{k+1}, x) \leqslant 1\} \setminus \mathcal{B}_1(0)).$$

Первоначальное приближение \mathfrak{X}_4 является входным параметрами алгоритма.

7. Алгоритм последовательной комбинированной полиэдральной аппроксимации шара $\mathfrak{B}_1(0) \subset \mathbb{R}^2$ последовательностью полиэдров $\{\mathfrak{X}_k\}_{k=3}^{\infty}$ и многогранников $\{\mathfrak{Y}_k\}_{k=3}^{\infty}$, где

$$\mathfrak{X}_k = \bigcap_{i=1}^k \{ x \in \mathbb{R}^3 \colon (x^i, x) \leqslant 1 \},$$

$$\mathcal{Y}_k = \operatorname{conv}\{x^1, \dots, x^k\},\$$

а каждая очередная точка x^{k+1} определяется из условия:

$$x^{k+1} = \arg\min_{x \in \partial \mathcal{B}_1(0)} \mu(\mathcal{X}_k \cap \{x \in \mathbb{R}^3 \colon (x^{k+1}, x) \leqslant 1\} \setminus \operatorname{conv}\{\mathcal{Y}_k \cup x\}).$$

Первоначальные приближения $\mathfrak{X}_3, \mathfrak{Y}_3$ являются входными параметрами алгоритма.

8. Алгоритм вычисления N_{min} для заданной системы управления

$$x(k+1) = Ax(k) + u(k),$$

 $x(0) = x_0, \ u(k) \in \mathcal{U} = \text{conv}\{b; -b\},$
 $x(k), u(k) \in \mathbb{R}^2, \ k \in \mathbb{N} \cup \{0\}.$

9. Алгоритм проверки, возможно ли представить заданный многогранник $\mathfrak{X} = \operatorname{conv}\{x^1,\dots,x^M\} \subset \mathbb{R}^3$ в виде алгебраической суммы некоторого многогранника $\mathfrak{Y} = \operatorname{conv}\{y^1,\dots,y^N\} \subset \mathbb{R}^3$ и отрезка $\operatorname{conv}\{b^1,b^2\} \subset \mathbb{R}^3$:

$$\mathfrak{X} = \mathfrak{Y} + \operatorname{conv}\{b^1, b^2\}.$$

- 10. Алгоритм построения $\operatorname{Ext}\operatorname{conv}\{x^1,\ldots,x^M\}\subset\mathbb{R}^3.$
- 11. Алгоритм построения $\operatorname{Ext}(\operatorname{conv}\{x^1,\dots,x^M\}+\operatorname{conv}\{y^1,\dots,y^N\})\subset\mathbb{R}^2.$
- 12. Алгоритм построения множеств $\mathfrak{X}(N-k,k)$ за произвольное число шагов $N\in\mathbb{N}$, для всех $k=\overline{1,N}$ для заданной 2-периодической нестационарной системы управления

$$x(k+1) = A(k)x(k) + u(k),$$

 $x(0) = x_0, \ u(k) \in \mathcal{U} = \text{conv}\{u^1, \dots, u^M\},$
 $x(k), u(k) \in \mathbb{R}^2, \ A(2k) = A_1, \ A(2k+1) = A_2, \ k \in \mathbb{N} \cup \{0\}.$

13. Алгоритм вычисления N_{min} для заданной 2-периодической нестационарной системы управления

$$x(k+1) = A(k)x(k) + u(k),$$

 $x(0) = x_0, \ u(k) \in \mathcal{U} = \text{conv}\{b; -b\},$
 $x(k), u(k) \in \mathbb{R}^2, \ A(2k) = A_1, \ A(2k+1) = A_2, \ k \in \mathbb{N} \cup \{0\}.$

14. Алгоритм построения дискретного аналога линейной непрерывной системы

$$\dot{y}(t) = Ay(t) + v(t),$$

 $y(0) = y_0,$
 $y(t), v(t) \in \mathbb{R}^4, \ t \in [0; +\infty).$

Предполагается, что управление релейно:

$$v(t) = v_k \in \mathcal{V}, \ t \in [k\Delta; (k+1)\Delta), \ k \in \mathbb{N} \cup \{0\}.$$

15. Алгоритм построения дискретного аналога линейной непрерывной системы

$$\dot{y}(t) = Ay(t) + v(t),$$

 $y(0) = y_0,$
 $y(t), v(t) \in \mathbb{R}^4, \ t \in [0; +\infty).$

Предполагается, что управление импульсно:

$$v(t) = v_k \delta(t - k\Delta), \ v_k \in \mathcal{V}, \ t \in [k\Delta; (k+1)\Delta), \ k \in \mathbb{N} \cup \{0\}.$$

Часть II