Fiscal Policy for Climate Change

François Le Grand, Florian Oswald, Xavier Ragot and Aurélien Saussay

September 21, 2022

Motivation

Figure: Yellow Vests Protest Movement

- ▶ Pigouvian Taxation is widely regarded as first best solution to Climate Change by Economists (Nordhaus (2019)). Debate on **Social Cost of Carbon** (Stern and Stiglitz (2021); Wagner et al. (2021)).
- ▶ However, implementation is constrained by politics (Hassler et al. (2021)).

- ▶ Pigouvian Taxation is widely regarded as first best solution to Climate Change by Economists (Nordhaus (2019)). Debate on **Social Cost of Carbon** (Stern and Stiglitz (2021); Wagner et al. (2021)).
- ► However, implementation is constrained by politics (Hassler et al. (2021)).

Inequality Is a Key Driver of those Politics.

- ▶ Pigouvian Taxation is widely regarded as first best solution to Climate Change by Economists (Nordhaus (2019)). Debate on Social Cost of Carbon (Stern and Stiglitz (2021); Wagner et al. (2021)).
- ▶ However, implementation is constrained by politics (Hassler et al. (2021)).

Inequality Is a Key Driver of those Politics.

Climate change impacts people unequally.

- ▶ Pigouvian Taxation is widely regarded as first best solution to Climate Change by Economists (Nordhaus (2019)). Debate on Social Cost of Carbon (Stern and Stiglitz (2021); Wagner et al. (2021)).
- ▶ However, implementation is constrained by politics (Hassler et al. (2021)).

Inequality Is a Key Driver of those Politics.

- Climate change impacts people unequally.
- Climate change mitigating policies impact people unequally.

- ▶ Pigouvian Taxation is widely regarded as first best solution to Climate Change by Economists (Nordhaus (2019)). Debate on Social Cost of Carbon (Stern and Stiglitz (2021); Wagner et al. (2021)).
- ▶ However, implementation is constrained by politics (Hassler et al. (2021)).

Inequality Is a Key Driver of those Politics.

- Climate change impacts people unequally.
- Climate change mitigating policies impact people unequally.
- We analyse the distributional consequences of those policies.

Contribution

- 1. Develop a macroeconomic heterogeneous-agent framework with environmental externality for analysing climate change mitigation policies.
- 2. We model carbon intensity in entire economy, both production and consumption side.
- 3. Explicitly account for both initial inequality and inequality along the transition.

Relation to Literature

- Nordhaus (2014, 2018) and Golosov et al. (2014): optimal price of carbon.
- Anthoff et al. (2009); Anthoff and Emmerling (2019) consider inequality in IAMs, still using respresentative agent frameworks.
- ▶ Bosetti and Maffezzoli (2013), Fried (2021), Känzig (2022): Heterogeneous-agent frameworks. We add carbon intensity of the final consumption good.
- ▶ Barrage (2020) looks at impact of carbon taxation (particularly on capital) but with representative agent.
- ▶ Douenne et al. (2022) build on Barrage (2020) to examine optimal carbon pricing policy in a heterogeneous agent framework

Outline of Paper

- ▶ We focus on a single country (USA) for now.
- We categorize final good consumption into green and brown according to pollution intensity, produced in different sectors.
- ▶ Production of brown increases the stock of CO₂, increasing temperatures, increasing climate related damages, which destroys output and hence reduces living standards.
- We study taxation on both production and consumption of final goods.

Data

Data: How to define the **Green** and **Brown** goods?

- ▶ Based on their Green House Gase (GHG) intensity: the amount of emissions necessary to the production of one dollar of output
- We rank products by the direct GHG intensity of their production process
 - We only consider domestic U.S. emissions
- ► The top *n* products accounting for **90% of U.S. GHG emissions** form the brown product
- ▶ All other products, accounting for the remaining 10%, form the green product

Data: Exiobase 3

- ➤ To calibrate the **green** and **brown** sectors, we need data at **high sectoral resolution** on:
 - ► GHG intensity of the production process
 - Capital & labor intensity
 - Wage level
- We obtain data from a large Multi-Regional Input-Output (MRIO) database,
 Exiobase
- Exiobase v3 provides hybrid economy-energy-emissions accounts for 43 major economies, across 200 products
 - ► Given its emphasis on environmental impacts, Exiobase's product disaggregation is focused on energy-intensive industries (e.g. energy, chemicals etc.)
 - Exiobase is increasingly used in economic assessments of climate-related themes (see e.g. Shapiro (2021))

Data: Ranking products by carbon intensity

- ▶ We obtain US data for the year 2019, from the by-product symmetric IO version of the dataset
- ► The most carbon-intensive products include:
 - ► Industrial Steam and Heat (70 kgCO_{2,eq} per \$ of output)
 - ► Electricity from coal (13 kgCO_{2,eq}/\$)
 - Paddy rice $(4.8 \text{ kgCO}_{2,eq}/\$)$
 - ightharpoonup Cattle (3.8 kgCO_{2,eq}/\$)
 - Cement (1.4 kgCO_{2 eq}/\$)
- ► The least carbon-intensive products include:
 - ► R&D services (8.3 gCO_{2,eq}/\$)
 - ▶ Wholesale trade $(7.2 \text{ gCO}_{2,eq}/\$)$
 - ► Financial services (7.2 gCO_{2,eq}/\$)
 - Retail trade (1 gCO_{2,eq}/\$)

Data: Definition of the **Green** and **Brown** Products

Brown

Sector

Data: Calibration of the **Green** and **Brown** Sectors

Households' consumption of green and brown goods

- ▶ We obtain detailed data on U.S. households' consumption basket from the Consumer Expenditure Survey for the year 2019
 - ► Each wave consists of around 6,000 households
 - Participant households are surveyed at most 4 quarters consecutively
 - Spending surveyed across 432 expenditure categories (Universal Classification Codes)
- We construct a correspondence between Exiobase 200 products classification and the CEX UCC
 - When a single UCC corresponds to several Exiobase products, we use the output-weighted average carbon intensity of the corresponding Exiobase products
 - Example: electricity is a single expenditure in the CEX, while Exiobase distinguishes the carbon intensity of each production technology
- ► The CEX socio-economic variables allow us to stratify green and brown consumption by expenditure deciles

While Carbon Footprint increases with total expenditure...

... the **brown** Spending Share Decreases!

Model

Model in a nutshell

Standard production heterogeneous-agent model with idiosyncratic productivity risk.

Model specificities:

- Two final consumption goods: brown and green.
- ► The **brown** good production generates CO₂ emissions, whose accumulation hurts productivity.
- A benevolent government has a rich set of fiscal tools (taxes on consumption goods, labor, capital + lump-sum tax) to influence CO₂ emissions.
- ▶ Rich equity-efficiency tradeoff: emissions vs capital level vs inequality.

Model specification highlights

▶ Household CES consumption aggregate $C_{\theta}(c_G, c_B)$:

$$C_{\theta}(c_{G}, c_{B}) = \left(\omega_{\theta} \left(c_{G} - \bar{c}_{G,\theta}\right)^{\alpha_{\theta}} + \left(1 - \omega_{\theta}\right) \left(c_{B} - \bar{c}_{B,\theta}\right)^{\alpha_{\theta}}\right)^{\frac{1}{\alpha_{\theta}}},$$

with subsistence consumption levels $\bar{c}_{s,\theta} > 0$.

Households are credit-constrained

$$egin{aligned} V^{ heta}(a,y) &= \max_{(c_G,c_B,a')} \ U_{ heta}(c_G,c_B) + eta \mathbb{E}_{y'} \left[V^{ heta}\left(a',y'
ight)
ight], \end{aligned}$$
 subject to $a' &= (1+r)a + wy + T - p_G c_G - p_B c_B,$ $a' &\geq \mathbf{0},$ $c_S &> ar{c}_{S,\theta}. \end{aligned}$

Aggregate capital and labor depend on Λ, the stationary distribution over the state space "assets \times income".

$$K = K_B + K_G = \int a'(a,y) \Lambda(da,dy), \quad L = L_B + L_G = \int y \Lambda(da,dy)$$

Model: Production sector (1/3)

2 goods (brown & green) produced in 2 sectors by different representative firm out of capital and labor.

Capital sector:

- perfectly fungible capital (no difference between green or brown investments);
- ▶ a unique firm aggregates sector-specific investments $I_{G,t}$ and $I_{B,t}$ with a CES "capital" production function into aggregate investment I_t as:

$$I_t := \left(\omega_{G,K} I_{G,t}^{\alpha_K} + \omega_{B,K} I_{B,t}^{\alpha_K}\right)^{\frac{1}{\alpha_K}};$$

Model in details: Production sector (2/3)

Production functions.

- ▶ In each sector: Cobb-Douglas production function. Capital and labor fully mobile between sectors.
- ▶ Sector-specific productivity A_s , capital share α_s and capital depreciation δ_s .
- Sector-s firm's objective = sets capital and labor rented at prices $\tilde{w}_{s,t}$ and r_t to maximize profit:

$$\max_{(K_{s,t},L_{s,t})_{t\geq 0}} \ \tilde{p}_{s,t} A_{s,t} K_{s,t-1}^{\alpha_s} L_{s,t}^{1-\alpha_s} - \delta_s K_{s,t-1} - \tilde{w}_{s,t} L_{s,t} - \tilde{r}_t K_{s,t-1}$$

Before-tax factor prices:

$$\tilde{r}_t = \alpha_s \tilde{p}_{s,t} A_{s,t} K_{s,t-1}^{\alpha_s-1} L_{s,t}^{1-\alpha_s} - \delta \text{ and } \tilde{w}_{s,t} = (1-\alpha_s) \tilde{p}_{s,t} A_{s,t} K_{s,t-1}^{\alpha_s} L_{s,t}^{-\alpha_s}.$$

Model: Production sector (3/3)

Pollution.

- ▶ CO₂ atmospheric emissions generated as an externality by the brown sector only.
- \triangleright Emission intensity is m and CO_2 stock depletes at natural rate d_m .
- ▶ Atmospheric CO_2 stock S_t dynamics:

$$S_t = mY_{B,t-1} + S_{t-1}(1-d_m).$$

CO₂ stock damages sector productivity:

$$A_{s,t} := A_{0,s}A_t(1 - D_s(S_t)),$$

where A_t is the common productivity growth, $A_{0,s}$ a sector scaling factor.

 \triangleright D_s : damage function à la Golosov et al. (2014):

$$D_s(S_t) := 1 - e^{-\gamma_s(S_t - \overline{S})},$$

where $\gamma_s>0$ is sector scaling parameter and $\overline{S}>0$ is pre-industrial CO₂ concentration.

Model: Government

Government. No public spending. Taxes on consumption, labor, capital, as well as a lump-sum transfer.

- ▶ Sector-specific consumption tax $\tau_{s,t}^c$. Post-tax prices: $p_{s,t} = (1 + \tau_{s,t}^c)\tilde{p}_{s,t}$.
- ▶ Sector-specific labor tax $\tau_{s,t}^w$. Because of labor mobility, unique post-tax wage w_t :

$$w_t = (1 - \tau_{B,t}^w) \tilde{w}_{B,t} = (1 - \tau_{G,t}^w) \tilde{w}_{G,t}.$$

- ▶ Capital tax τ_t^K and post-tax rate: $r_t = (1 \tau_t^K)\tilde{r}_t$.
- Government budget constraint:

$$T_{t} \leq \tau_{t}^{K} \tilde{r}_{t} (K_{B,t-1} + K_{G,t-1}) + (\tau_{B,t}^{w} L_{B,t} + \tau_{G,t}^{w} L_{G,t}) \tilde{w}_{t} + \tilde{p}_{G,t} \tau_{G,t}^{c} C_{G,t} + \tilde{p}_{B,t} \tau_{B,t}^{c} C_{B,t}.$$

Lump-sum transfer financed out of capital, labor and consumption tax government incomes.

Model: Households (1/4)

Unit mass of households facing productivity risk y. Each household supplies inelastically one unit of labor.

- ightharpoonup Ex-ante heterogeneity of households. Type heta affecting preferences.
- ► Time-additive utility function with discount factor $\beta \in (0,1)$. Period utility function depending on brown and green goods consumption:

$$U_{ heta}(c_G,c_B) = \left\{egin{array}{l} rac{C_{ heta}(c_G,c_B)^{1-\sigma}-1}{1-\sigma} ext{ if } \sigma
eq 1, \ \log(C_{ heta}(c_G,c_B)) ext{ otherwise.} \end{array}
ight.$$

with:

- $ightharpoonup 1/\sigma$ intertemporal elasticity of substitution,
- $ightharpoonup C_{\theta}(c_G, c_B)$ consumption aggregate.

Model in details: Households (2/4)

CES consumption aggregate $C_{\theta}(c_G, c_B)$:

$$\mathcal{C}_{ heta}(c_G,c_B) = \left(\omega_{ heta}\left(c_G - ar{c}_{G, heta}
ight)^{lpha_{ heta}} + (1-\omega_{ heta})\left(c_B - ar{c}_{B, heta}
ight)^{lpha_{ heta}},$$

with:

- lacktriangle share parameter $\omega_{ heta} \in [0,1]$,
- elasticity of substitution $(1 \alpha_{\theta})^{-1}$ $(\alpha_{\theta} \in [0, 1))$,
- ▶ subsistence consumption levels $\bar{c}_{s,\theta} \geq 0$.

Back

Model in details: Households (3/4)

Households' program in recursive form:

$$egin{aligned} V^{ heta}(a,y) &= \max_{(c_G,c_B,a')} \ U_{ heta}(c_G,c_B) + eta \mathbb{E}_{y'} \left[V^{ heta}\left(a',y'
ight)
ight], \ & ext{subject to } a' &= (1+r)a + wy + T - p_G c_G - p_B c_B, \ a' &\geq 0, \ c_s &> ar{c}_{s, heta}. \end{aligned}$$

with:

- $V^{\theta}(a, y)$ value function of type θ , beginning-of-period wealth a, and income y;
- $ightharpoonup \mathbb{E}_{y'}$ expectation over future income realizations;
- household budget constraint featuring post-tax prices;
- credit-constraint and feasibility constraint.

Model in details: Households (4/4)

Households' FOCs (assuming that green good consumption is never constrained):

► Euler equation:

$$(c_G - \bar{c}_{G,\theta})^{-\sigma} = \beta \mathbb{E}\left[(1 + r')(c'_G - \bar{c}_{G,\theta})^{-\sigma}\right]$$
, for unconstrained household, $a' = 0$, for constrained household.

Consumption tradeoff:

$$c_B - \bar{c}_{B,\theta} = \left(rac{p_B\omega_{G,\theta}}{p_G\omega_{B,\theta}}
ight)^{rac{1}{lpha_{ heta}-1}} \left(c_G - \bar{c}_{G,\theta}
ight), ext{ for unconstrained brown good consumption,}$$
 $c_B = \bar{c}_{B,\theta} ext{ otherwise.}$

Parameterization: Households

Parameter	Description	Value
r	Interest rate	0.028
W	Wage	0.37
σ	Utility Function Curvature	2.0
\bar{c}	Brown Minimal Consumption	0.02
ho	Income Shock Persistence	0.96
ϵ	Income Shock Std. Dev.	0.1
$\omega_{oldsymbol{G}, heta}$	Green Consumption Utility Weight	0.97
$\omega_{B, heta}$	Brown Consumption Utility Weight	0.03
$lpha_{ heta}$	CES Substitution Parameter	-0.04
p_G	Post-tax Price of Green Good	1.0
p_B	Post-tax Price of Brown Good	1.0
$ au_G^c$	Tax on Green Consumption	0.0
$ au_G^c \ au_B^c$	Tax on Brown Consumption	0.0
T	Government Transfer	0.0

Parameterization: Firms and Climate

	Production	
$\alpha_{\it G}$	Capital Share Green	0.3
$\alpha_{\mathcal{B}}$	Capital Share Brown	0.3
δ	Captial Depreciation	0.1
α_{K}	Elast. Subst. Capital	-0.4
	Climate Module	
γ_{S}	Damage Function Parameter	5.3 <i>e</i> -5
$rac{\gamma_{\mathcal{S}}}{ar{\mathcal{S}}}$	Pre-industrial CO2 stock	0.0
S_0	Current CO2 Stock	8.45 <i>e</i> 11
δ_{m}	Emissions Decay Parameter	0.0006
m	Emissions Intensity	1.63863

Calibration

- ► We target spending share in **brown** good by decile of the US <u>expenditure</u> distribution.
- We are planning to add estimates about demand elasticity for brown goods (e.g. from gasoline demand literature).
- ▶ Most other parameters set following the literature (in particular: damage function)
- ▶ We optimize a quadratic moment function measuring the distance between model and data moments standard SMM.

Model Fit

Partial Equilibrium Experiments

Increase p_b by 1 percent

Elasticity of $c_{\it g}$

Elasticity of c_b

-0.04

-0.395

Increase p_b by 1 percent

Decrease p_g by 1 percent

Elasticity of c_a

Elasticity of c_h

1.01

0.015

Decrease p_g by 1 percent

Decrease wage w by 10 percent Elasticity of c_a

-1.04

Elasticity of $c_{\boldsymbol{b}}$

-0.413

Decrease wage w by 10 percent

Expenditure Decile

Importance of \bar{c} : Cannot fit decreasing spending shares without it! Elasticity of c_a Elasticity of c_h -0.586Expenditure Share of c_h Elasticity of c_{i} 0.12 Baseline -50 Share of Brown 0.10 -55 0.08 -60 -65 0.06 **-**70 0.04 10 9 10

Expenditure Decile

Expenditure Decile

Focus: Fiscal Policy Compatible with Net Neutral by 2050

Towards the next version...

- We want $mY_{B,2050} = S_{2050}(1 d_m)$.
- ► At least 2 complementary strategies:
 - 1. Reduce Brown Production (and Consumption) $Y_{B,2050}$ via aggressive taxation (τ_c^b) . Or:
 - 2. Improve technology s.t. brown production becomes greener: Abatement!

Focus: Fiscal Policy Compatible with Net Neutral by 2050

Towards the next version...

- ▶ We want $mY_{B,2050} = S_{2050}(1 d_m)$.
- ► At least 2 complementary strategies:
 - 1. Reduce Brown Production (and Consumption) $Y_{B,2050}$ via aggressive taxation (τ_c^b) . Or:
 - 2. Improve technology s.t. brown production becomes greener: Abatement!
 - \rightarrow Or of course: both.
- ▶ Emphasize role of government in greening brown via $m_t(G_t, S_t)$. Costly investment technology.
- ▶ Want: Pareto Efficiency Frontier plotting welfare in (τ_c^b, G) -space.

Next Version

Next Version

Next Version

Conclusion Preview of New Version

- Most of the literature has focused so far on compensating the regressivity of carbon pricing through direct transfers
- ➤ Yet policymakers also contemplate investing in the energy transition directly: how to model this?
- 2-Sector Model: Energy and Final Good

Household Budget Constraint

OLD:
$$a' = (1+r)a + wy + T - p_G c_G - p_B c_B$$
 (1)

NEW:
$$a' = (1 + r)a + wy + T - \tilde{p}_f c_f - (\tilde{p}_e + (1 - \mu_h)\varphi_h \tau_h)c_e,$$
 (2)

Conclusion Preview of New Version

- Damages impact output in both sectors
- ► Households: consume bundle of final and energy good, with some required energy. HH-specific abatement cost curve.
- Government provides direct transfer and invests in HH abatement technology.
- Policy Tools: Emissions tax, direct transfers, investment in HH abatement.

References I

- **Anthoff, David and Johannes Emmerling**, "Inequality and the social cost of carbon," *Journal of the Association of Environmental and Resource Economists*, 2019, 6 (2), 243–273.
- _ , Cameron Hepburn, and Richard SJ Tol, "Equity weighting and the marginal damage costs of climate change," *Ecological Economics*, 2009, *68* (3), 836–849.
- Barrage, Lint, "Optimal dynamic carbon taxes in a climate–economy model with distortionary fiscal policy," *The Review of Economic Studies*, 2020, 87 (1), 1–39.
- **Bosetti, Valentina and Marco Maffezzoli**, "Taxing carbon under market incompleteness," 2013.
- **Douenne, Thomas, Albert Jan Hummel, and Marcelo Pedroni**, "Optimal Fiscal Policy in a Second-Best Climate Economy Model with Heterogeneous Agents," *Available at SSRN 4018468*, 2022.
- **Fried, Stephie**, "Seawalls and stilts: A quantitative macro study of climate adaptation," *The Review of Economic Studies*, 2021.

References II

- Golosov, Mikhail, John Hassler, Per Krusell, and Aleh Tsyvinski, "Optimal taxes on fossil fuel in general equilibrium," *Econometrica*, 2014, 82 (1), 41–88.
- **Hassler, John, Per Krusell, and Conny Olovsson**, "Presidential Address 2020: Suboptimal Climate Policy," *Journal of the European Economic Association*, 2021, 19 (6), 2895–2928.
- **Känzig, Diego**, "The unequal economic consequences of carbon pricing," Technical Report, Working paper 2022.
- **Nordhaus, William**, "Estimates of the social cost of carbon: concepts and results from the DICE-2013R model and alternative approaches," *Journal of the Association of Environmental and Resource Economists*, 2014, 1 (1/2), 273–312.
- _ , "Evolution of modeling of the economics of global warming: changes in the DICE model, 1992–2017," *Climatic change*, 2018, *148* (4), 623–640.
- _ , "Climate change: The ultimate challenge for economics," *American Economic Review*, 2019, *109* (6), 1991–2014.

References III

- **Shapiro, Joseph S**, "The environmental bias of trade policy," *The Quarterly Journal of Economics*, 2021, 136 (2), 831–886.
- **Stern, Nicholas and Joseph E Stiglitz**, "The social cost of carbon, risk, distribution, market failures: An alternative approach," Technical Report, National Bureau of Economic Research 2021.
- Wagner, Gernot, David Anthoff, Maureen Cropper, Simon Dietz, Kenneth T Gillingham, Ben Groom, J Paul Kelleher, Frances C Moore, and James H Stock, "Eight priorities for calculating the social cost of carbon," 2021.