voting kernels

Jeff Chen 7/15/2019

Table 1: Table continues below

Kernel	Formula
Biweight	For $ d < m$, kernel weight is $d(1 - \frac{d^2}{m^2})^2$. Otherwise, 0 when
	$ d > m$. The value $m = d$ for the k^{th} neighbor.
Rectangular	$Pr(Y = j) = \frac{1}{k} \sum_{i=1}^{k} I(y_i = c)$
Inverse	$Pr(Y = j) = \frac{1}{k} \sum_{i=1}^{k} I(y_i = c)$ $Pr(Y = j) = \sum_{i=1}^{k} w(d)(y_i = j) \text{ where } w(d) = \frac{1}{d_i \sum_{i=1}^{k} (\frac{1}{d_i})}$
Gaussian	$a_i \succeq_{i=1} \ a_i '$

Interpretation

Calculate the proportion of j based on k nearest neighbors. This is the same of simple arithmetic mean.

Calculate the weighted proportion of j based on the inverse distance to k nearest neighbors.