高等代数 II Advanced Linear Algebra

龚舒凯

中国人民大学

Renmin University of China School of Applied Economics/ School of Statistics shukai_gong@ruc.edu.cn

目录

1	多项	页式	4
	1.1	最大公因式	4
		1.1.1 最大公因式表示定理	4
		1.1.2 最大公因式的判定定理	4
		1.1.3 互素判定	4
		1.1.4 互素性质	4
		1.1.5 带余除法、辗转相除、综合除法	4
	1.2	因式分解定理	5
		1.2.1 因式分解唯一性定理	5
		1.2.2 不可约多项式	5
	1.3	重因式	5
	1.4	多项式函数的根与重根	6
	1.5	多项式根与系数的关系	6
	1.6	有理系数多项式	6
		1.6.1 有理系数多项式因式分解	6
		1.6.2 有理根问题	6
2	线性	生空间 	7
	2.1	常用的基与空间	7
	2.2	基变换与坐标变换	7
		2.2.1 过渡矩阵的求法	7
		2.2.2 坐标变换公式	7
	2.3	子空间	8
		2.3.1 子空间判定准则	8
		2.3.2 一些子空间的标识	8
		2.3.3 子空间的性质	8
	2.4	子空间的运算	8
		2.4.1 子空间的交与和	8
		2.4.2 子空间维数计算	9
	2.5	直和	9
			10
		2.5.2 多个子空间的直和	10
	2.6		11
			11
			11
		2.6.3 同构映射的应用	12

3	线性	上变换	13
	3.1	线性变换的概念	13
	3.2	线性变换的矩阵	14
		3.2.1 对比:线性变换后的坐标与基变换后的坐标	14
		3.2.2 相似矩阵	14
	3.3	特征值与特征向量	14
		3.3.1 特征值、特征向量与特征子空间	14
		3.3.2 特征值、特征向量的求法	15
		3.3.3 特征值、特征向量、特征多项式的性质	15
		3.3.4 Hamilton-Cayley 定理及其应用	16
	3.4	对角化	17
		3.4.1 代数重数与几何重数	17
		3.4.2 对角化的条件	17
	3.5	像空间与核空间	18
		3.5.1 概念	18
		3.5.2 像空间与核空间的性质	18
	3.6	不变子空间:目的是为了准对角化	19
		3.6.1 不变子空间: 化简线性变换的矩阵	20
		3.6.2 线性空间的分解	21
	3.7	Jordan 标准型	21
	3.8	最小多项式	22
		3.8.1 最小多项式的基本性质	22
		3.8.2 最小多项式与 Jordan 标准型的关系	23
1	Fue	clid 空间	24
4		Euclid 空间的定义	24
	4.1	4.1.1 Euclid 空间中向量的长度	24
		4.1.2 Euclid 空间中向量的夹角	24
		4.1.2 Euchd 空间中间重的天用	24 25
		4.1.4 Euclid 空间中的距离	$\frac{25}{25}$
		4.1.5 Euclid 空间中的距离	$\frac{25}{25}$
			26 26
	4.0	y <u> </u>	
	4.2	标准正交基	26
		4.2.1 标准正交基的定义	26 26
		4.2.2 构造标准正交基	26
	4.9	4.2.3 正交矩阵	27
	4.3	Euclid 空间的同构	28
	4.4	正交变换	28

	4.5	Euclid 子空间	29
		4.5.1 Euclid 空间的正交子空间	29
		4.5.2 子空间的正交补	30
	4.6	内射影/正交投影	30
	4.7	实对称矩阵的标准型	31
		4.7.1 实对称矩阵与对称变换	31
		4.7.2 实对称矩阵的正交相似对角化	31
		4.7.3 实二次型的正交替换	32
	4.8	最小二乘法	3
		4.8.1 最小二乘法	34
_	₩ 1 ⇒	4	
5	附录	表: 详细证明	35

1 多项式

1.1 最大公因式

1.1.1 最大公因式表示定理

存在 u(x), v(x) 使得 d(x) = u(x)f(x) + v(x)g(x)

- (题) $f(x), g(x) \neq 0$, 若存在 u(x), v(x) 使得 (f(x), g(x)) = f(x)u(x) + g(x)v(x), 则: (u(x), v(x)) = 1
- (题) 设 (f(x),g(x))=1, $\partial f(x),\partial g(x)$ 均大于 0, 可取 u(x),v(x) 满足 $\partial u<\partial g$, $\partial v<\partial f$ 使得

$$f(x)u(x) + g(x)v(x) = 1$$

且 u(x), v(x) 是唯一的一对多项式。

1.1.2 最大公因式的判定定理

法一: d(x) 是公因式 +d(x) 是最大公因式 (用 $\varphi(x)$ 做)

法二: d(x) 是公因式 + 存在 u(x), v(x) 使得 d(x) = u(x)f(x) + v(x)g(x)

• (题) 对任意 $n \in \mathbf{Z}^+$,有 $(f(x), g(x))^n = (f^n(x), g^n(x))$

1.1.3 互素判定

法一: 存在 u(x), v(x) 使得 1 = u(x)f(x) + v(x)g(x) (充要条件)

法二: 设 (f(x), g(x)) = d(x) 证明 d(x) = 1

• (题) 非零多项式 $f(x), g(x) \in \mathbf{P}[\mathbf{x}]$ 不互素的充分必要条件是: 存在 $u(x), v(x) \neq 0$ 满足 f(x)u(x) = g(x)v(x) 且 $\partial u(x) < \partial g(x)$, $\partial v(x) < \partial f(x)$

1.1.4 互素性质

- 1. 若 (f(x), g(x)) = 1,且 f(x)|g(x)h(x),则 f(x)|h(x)
- 2. 若 f(x)|h(x), g(x)|h(x) 且 (f(x),g(x))=1, 则 f(x)g(x)|h(x)
 - (题) 若 (f(x),g(x))=1,则对任意 $m \in \mathbf{Z}^+$,有 $(f(x^m),g(x^m))=1$
 - (题) 若 (f(x), g(x)) = 1, 则对任意 $m, n \in \mathbb{Z}^+$, 有 $(f^m(x), g^n(x)) = 1$

1.1.5 带余除法、辗转相除、综合除法

- **1. 带余除法的应用**: (1) 求商式和余式 (2) 判断整除
- **2. 辗转相除的应用:** (1) 求最大公因式**(最大公因式是除尽前的上一个余式** $r_s(x)$ **)** (2) 判断互素(辗转相除到最后,最大公因式是不是 1? 是的话就互素)
 - (**题**) $x^m 1$ 和 $x^n 1$ 的最大公因式

3. 综合除法的应用: (1) 用一次多项式去除多项式的商式与余式(2) 多项式按方幂展开(3) 判断根(用 x - a 综合除法最后余数是 0,则 a 是根)(4)

1.2 因式分解定理

1.2.1 因式分解唯一性定理

- 1. 数域 \mathbf{P} 上次数大于 0 的多项式 f(x) 都可以**唯一分解为 \mathbf{P}** 上的一些不可约多项式的乘积。
- 2. 数域 **P** 上次数 ≥ 1 的任一多项式 f(x) 都能有**标准分解式**:

$$f(x) = cp_1^{r_1}(x)p_2^{r_2}(x)...p_s^{r_s}(x), (r_i \ge 1, i = 1, 2, ..., s)$$

• (题) 如果 $f(x), g(x) \in \mathbf{P}[\mathbf{x}]$,则

$$\frac{f(x)g(x)}{(f(x),g(x))} = [f(x),g(x)]$$

• **(题)** g(x)|f(x) 的充分必要条件是 $g^{2}(x)|f^{2}(x)$

1.2.2 不可约多项式

- 1. 不可约多项式 p(x) 与任意多项式的 f(x) 的关系只有两种: p(x)|f(x), 或者 p(x) 与 f(x) 互素。
- 2. 数域 \mathbf{P} 上,若对于任意两个多项式 f(x), g(x) 有 p(x)|f(x)g(x),则一定有 p(x)|f(x) 或 p(x)|g(x) [注]: 一种常见的方法是: 通过 n 次多项式至多有 n 个根,和导出来的多项式有超过 n 个根来推矛盾。
 - (题) 对任意 $f(x), p(x) \in \mathbf{Q}[\mathbf{x}], p(x)$ 在 \mathbf{Q} 上不可约,且 f(x) 与 p(x) 有一个公共复根,则 p(x)|f(x)
 - (题) 数域 \mathbf{P} 上次数大于 0 的多项式 f(x) 是某个不可约多项式 p(x) 的方幂的充分必要条件是: 对于任意 $g(x) \in \mathbf{P}[\mathbf{x}]$,或者 (f(x), g(x)) = 1,或者存在正整数使得 $f(x)|g^m(x)$
 - (题) 设 $a_1, ... a_n$ 为互异的整数,则 $f(x) = \prod_{i=1}^n (x a_i) 1$ 在有理数域上不可约.

1.3 重因式

1.p(x) 是 f(x) 的重因式 $\iff p(x)$ 是 (f(x), f'(x)) 的公因式

- 推论: 找出所有 f(x) 的重因式的方法: $\frac{f(x)}{(f(x), f'(x))} = p_1(x)...p_k(x)$
- 如果成立 $f(x) = \frac{f(x)}{(f(x), f'(x))} \cdot g(x)$,则 g(x) 无重因式
- 2.f(x) 没有重因式 \iff 1 = (f(x), f'(x))
- $3.a \not\in f(x)$ 的 $k \equiv \mathbb{R} \longrightarrow a \not\in f'(x)$ 的 $k-1 \equiv \mathbb{R}$
 - **(题)** 首项系数为 1 的 n 次多项式 f(x) 可以写成 $f(x) = (x a)^n$ 的充分必要条件是 f'(x)|f(x)

1.4 多项式函数的根与重根

- (作业) 设 $a_1,...,a_n$ 是 n 个不同的数,而 $F(x) = (x-a_1)...(x-a_n)$,证明: (1) $\sum_{i=1}^n \frac{F(x)}{(x-a_i)F'(a_i)} = 1$ (2) 任意多项式 f(x) 用 F(x) 所除的余式为 $\sum_{i=1}^n \frac{f(a_i)F(x)}{(x-a_i)F'(a_i)}$
- (作业) 如果 $f(x)|f(x^n)$, 那么 f(x) 的根只能是 0 或者单位根
- (作业) $1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}$ 没有重根
- (作业) 如果 $(x^2+x+1)|f_1(x^3)+xf_2(x^3)$, 那么 $(x-1)|f_1(x),(x-1)|f_2(x)$

1.5 多项式根与系数的关系

设 $x_1,...,x_n$ 是 n 次多项式 $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ 的 n 个根,则根与系数的关系为:

$$\sum_{i} x_{i} = (-1)^{1} \frac{a_{n-1}}{a_{n}}$$
$$\sum_{i < j} x_{i} x_{j} = (-1)^{2} \frac{a_{n-2}}{a_{n}}$$

...

$$\sum_{i_1 < i_2 < \dots < i_{n-1}} x_{i_1} x_{i_2} \dots x_{i_{n-1}} = (-1)^{n-1} \frac{a_1}{a_n}$$
$$x_1 \dots x_n = (-1)^n \frac{a_0}{a_n}$$

1.6 有理系数多项式

1.6.1 有理系数多项式因式分解

- 1. 本原多项式: f(x) 的系数互素
- 2. Gauss 引理: 两个本原多项式的乘积还是本原多项式
- 3. 如果整系数多项式能分解为两个次数较低的**有理系数多项式**的乘积,那么它可以分解为两个次数较低的**整系数多项式**的乘积
- 4. 已知整系数多项式 f(x), g(x) 为整系数多项式,且 g(x) 本原,如果 f(x) = g(x)h(x),则 h(x) 为整系数多项式.
 - (题) 设 f(x) 是整系数多项式,如果 f(1), f(0) 都是奇数,证明 f(x) 没有整数根

1.6.2 有理根问题

- 1.**Eisenstein 判别法**: $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ 是整系数多项式,如果存在素数 p 满足:
 - $p \nmid a_n$
 - $p|a_i \ (i = \mathbf{0}, 1, ..., n-1))$
 - $p^2 \nmid a_0$

则 f(x) 不可约。

1'.**Eisenstein 判别法的变形**: 设 $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$,若 $g(x) = x^n f(\frac{1}{x})$ 不可约,则 f(x) 不可约,只需对 g(x) (即系数恰好颠倒的多项式) 使用 Eisenstein 判别法即可。

2. 设 $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ 是整系数多项式, 而 $\frac{r}{s}$ 是其一个有理根且 r, s 互素, **那么必有** $s|a_n, r|a_0$.

• (**题**) $p_1,...,p_s$ 是 s 个互不相同的素数, $n \in \mathbb{Z}^+$, 则 $\sqrt[n]{p_1p_2...p_s}$ 为无理数。

2 线性空间

2.1 常用的基与空间

- 无限维线性空间:多项式空间 $V = \mathbf{P}[\mathbf{x}]$
- 无限维线性空间: 连续函数空间 V = C[a,b]: 例如
 - (题) $1, \sin x, \sin 2x, ..., \sin nx$ 线性无关(证明: 求两次导)
 - (题) $1, \cos x, \cos 2x, ..., \cos nx$ 线性无关(证明: 求两次导)
 - (**题**) $1, \sin x, \cos x, \sin 2x, \cos 2x, ..., \sin nx, \cos nx$ 线性无关(证明: 求两次导)

(21-22 复旦线代期中) $e^{a_1}x, e^{a_2}x, ..., e^{a_n}x$ 线性无关(证明: Vandermonde 行列式)

• 有限维线性空间: $\mathbb{C}_{\mathbb{C}}$ 、 $\mathbb{C}_{\mathbb{R}}$ 、 \mathbf{P}^n

2.2 基变换与坐标变换

2.2.1 过渡矩阵的求法

n 维向量空间 \mathbf{P}^n 中,设方阵 $B_{n\times n}=\left[\xi_1,\xi_2,...,\xi_n\right]$, $C_{n\times n}=\left[\eta_1,\eta_2,...,\eta_n\right]$,则基 $\xi_1,...,\xi_n$ 到 $\eta_1,...,\eta_n$ 的过渡矩阵 是 $A=B^{-1}C$

具体实践方法是, 排一个矩阵 $\left[\xi_1,\xi_2,...,\xi_n,\eta_1,\eta_2,...,\eta_n\right]$ \Longrightarrow (行变换) \Longrightarrow 消成 $\left[\varepsilon_1,\varepsilon_2,...,\varepsilon_n,\sigma_1,...,\sigma_n\right] = \left[E,B^{-1}C\right]$

2.2.2 坐标变换公式

设 A 为过渡矩阵,如果 $\overline{\mathbf{z}}$ $\left[\varepsilon_{1},...,\varepsilon_{n}\right]$ 到新基 $\left[\varepsilon_{1},...,\varepsilon_{n}\right]$ 的基变换是

$$\left[\varepsilon_{1}^{\prime},...,\varepsilon_{n}^{\prime}\right]=\left[\varepsilon_{1},...,\varepsilon_{n}\right]\cdot A$$

那么老坐标 $\left[x_1,...,x_n\right]^T$ 和新坐标 $\left[y_1,...,y_n\right]^T$ 的关系是:

$$\begin{bmatrix} x_1,...,x_n \end{bmatrix}^T = A \cdot \begin{bmatrix} y_1,...,y_n \end{bmatrix}^T$$
$$\begin{bmatrix} y_1,...,y_n \end{bmatrix}^T = A^{-1} \cdot \begin{bmatrix} x_1,...,x_n \end{bmatrix}^T$$

2.3 子空间

2.3.1 子空间判定准则

- 1. 线性空间 V 要求满足八条法则:交换律、结合律、零元素、负元素、一元素、乘法分配 *2、乘法结合
- 2. 子空间只要求 V 中的加法和数乘运算封闭

2.3.2 一些子空间的标识

- 设 A 是数域 \mathbf{P} 上的 $n \times m$ 矩阵, 其行向量 $\alpha_1, ... \alpha_n$, 列向量 $\beta_1, ..., \beta_m$, 则:
- (1) **行空间**: $\mathcal{R}(A^T) = L(\alpha_1, ...\alpha_n)$
- (2) **列空间**: $\mathcal{R}(A) = L(\beta_1, ...\beta_m)$
- (3) 零化空间: $\mathcal{N}(A) = \{x \in \mathbf{P}^{\mathbf{m}} | Ax = 0\}$

2.3.3 子空间的性质

- $1.W \subset V \Rightarrow \dim W \le \dim V.$
- $2.L(\alpha_1,...,\alpha_s) = L(\beta_1,...,\alpha_t) \iff \beta_1,...,\beta_t = \alpha_1,...,\alpha_s = \alpha_s$
- $3.\dim L(\alpha_1,...,\alpha_s) = r(\alpha_1,...,\alpha_s)$

4. 基扩张定理:

 $W \subset V$, $\alpha_1,...,\alpha_m$ 是 W 的一组基,又设 $e_1,...,e_n$ 是 V 的一组基,则可以从 $e_1,...,e_n$ 中选 n-m 个向量,扩充 到 $\alpha_1,...,\alpha_m$ 从而构成 V 的一组基.

- (推论 1) V 的任意线性无关组都可以扩充为 V 的一组基
- (推论 2) W 的子空间的基可以扩充为 W 的基
- 5. (题) 若 $V_1 \subset V_2$, dim $V_1 = \dim V_2 \neq +\infty$, 则 $V_1 = V_2$
- 6. (**题**) $L(\alpha_1,...,\alpha_s) + L(\beta_1,...,\beta_t) = L(\alpha_1,...,\alpha_s,\beta_1,...,\beta_t)$
- 7. 设 $\alpha_1,...,\alpha_n$ 为 n 维线性空间 V 的一组基,A 为一个 $n\times s$ 矩阵,若 $(\beta_1,...,\beta_s)=(\alpha_1,...,\alpha_n)A$,则 $\dim L(\beta_1,...,\beta_s)=\mathrm{rank}A$

2.4 子空间的运算

2.4.1 子空间的交与和

- 1. 若 $V_i \subset V$,则:
- (1) 子空间的交: $\bigcap_{i=1}^{n} V_i$ 也是子空间

- (2) 子空间的和: $\sum_{i=1}^{n} V_i$ 也是子空间
- (3) $V_1 + V_2$ 是包含 $V_1 \cup V_2$ 的最小子空间
- $2.V_1 \cup V_2$ 不一定是子空间

(反例: $V = \mathbf{R}, V_1 = \{(x, y) | x = 0\}, V_2 = \{(x, y) | y = 0\}, (1, 1) \in V_1 \cup V_2$ 但 $(1, 1) \notin V$)

- 3. 子空间只有交换律和结合律,没有分配律
- 4. 设 V_1, V_2, W 都是 V 的子空间,则:
- (1) 若 $W \subset V_1$, $W \subset V_2$, 则 $W \subset V_1 \cap V_2$
- (2) 若 $W \supset V_1$, $W \supset V_2$, 则 $W \supset V_1 + V_2$

[注]: 怎么验证 $W_1 + W_2 = V$?,通常而言,都是先 $W_1 + W_2 \subset V$,再 $W_1 + W_2 \supset V$

- (题) 数域 \mathbb{F} 上 n 维线性空间 \mathbb{F}^n 的任一子空间 U 都是数域 \mathbb{F} 上你某个齐次线性方程组的解空间
- (题) 设 $V_1, V_2, ..., V_k$ 是线性空间 V 上的真子空间,则 $\bigcup_{i=1}^k V_i \neq V$
- (题) 设 V 为数域 \mathbb{F} 上 n 维线性空间,则 V 的 r 维子空间有无数个 (1 < r < n)
- (题) V_1, V_2 是 V 的两个子空间,则 $V_1 + V_2 = V_1 \cup V_2 \iff V_1 \subset V_2$ 或 $V_1 \supset V_2$

2.4.2 子空间维数计算

- 1. 维数公式: $\dim V_1 + \dim V_2 = \dim(V_1 + V_2) + \dim(V_1 \cap V_2)$
 - (推论) 在 n 维线性空间 V 中, $V_1, V_2 \subset V$, $\dim V_1 + \dim V_2 > n$, 则 $V_1 \cap V_2$ 有非零公共向量
- 2. **水子空间** $V_1 \cap V_2$ **的维数** : 设 V_1 的基为 $\alpha_1, ..., \alpha_s$, V_2 的基为 $\beta_1, ..., \beta_t$, 则 $V_1 \cap V_2$ 的基就是

$$\alpha_1 x_1 + ... + \alpha_s x_s + \beta_1 x_{s+1} + ... + \beta_t x_{s+t} = 0$$

的解空间的基(基础解系)

3. **求子空间** $V_1 + V_2$ **的维数**: 设 V_1 的基为 $\alpha_1, ..., \alpha_s, V_2$ 的基为 $\beta_1, ..., \beta_t$, 则 $V_1 + V_2$ 的基就是 $L(\alpha_1, ..., \alpha_s, \beta_1, ..., \beta_t)$ 的基。把 $\alpha_1, ..., \alpha_s, \beta_1, ..., \beta_t$ **竖过来排成矩阵作初等行变换,他们的极大无关组就是基**。

2.5 直和

- 1. 直和: 和空间 $V_1 + V_2$ 中每一个向量的分解方式**唯一**: 一个来自 V_1 , 一个来自 V_2 。 直和的例子有:
 - (题) V 为全体 n 阶矩阵, V_1 为全体 n 阶对称矩阵, V_2 为全体 n 阶反称矩阵, 则 $V = V_1 \oplus V_2$
 - (题) $A^2 = A$, 则 $P^{n \times n} = \mathcal{N}(A) \oplus \mathcal{R}(A)$
 - (题) $V = \mathbf{P}[x], W_1 = \mathbf{P}, W_2 = \{xf(x)|f(x) \in V\}, \text{ } \emptyset \text{ } V = W_1 \oplus W_2$

- (题)设 $A \in \mathbf{M_n(P)}, f(x), g(x) \in \mathbf{P[x]}, \text{如果} (f_1(x), g(x)) = 1, A = f(M), B = g(M), \text{则} \mathcal{N}(AB) = \mathcal{N}(A) \oplus \mathcal{N}(B)$
- 2. **直和补**: $W \in \mathbb{R}$ 继续性空间 V 的子空间, 那么一定存在 V 的子空间 U 使得 $V = W \oplus U$

[注]: 取 V 的一组基 $\alpha_1,...,\alpha_s$,把它扩成 V 的一组基 $\alpha_1,...,\alpha_s,...,\alpha_n$,那么取 $U=L(\alpha_{m+1},...,\alpha_n)$

[注 2]: 通常选取 $\varepsilon_1,...,\varepsilon_n$ 来扩基。检验扩充后的基是否线性无关的方法是:竖过来排成一个方阵 A,看 $\det A$ 是不 是 $\neq 0$

2.5.1 直和的判定定理

 $1.V_1+V_2$ 是直和 \iff 零元唯一分解,即 $\alpha_1+\alpha_2=0$, $\alpha_1\in V_1$, $\alpha_2\in V_2$ 时必有 $\alpha_1=0,\alpha_2=0$ $2.V_1+V_2$ 是直和 \iff $V_1\cap V_2=0$

- 3. (当子空间是有限维的时候) $V_1 + V_2$ 是直和 \iff dim $V_1 + \dim V_2 = \dim(V_1 + V_2)$
 - 要证 $W = V_1 \oplus V_2$, 需证 (1) $W = V_1 + V_2$ (2) $V_1 + V_2$ 是直和
 - 要证 $V = V_1 \oplus V_2$,需证 (1) $V = V_1 + V_2$ (其实只需证 $V \subset V_1 + V_2$, $V_1 + V_2$ 必是子空间) (2) $V_1 + V_2$ 是直和

2.5.2 多个子空间的直和

- 1. **多个子空间的直和**: 和空间 $V_1 + ... + V_s$ 中每一个向量 α 的分解方式唯一: $\alpha = \alpha_1 + ... + \alpha_s$, 其中 $\alpha_i \in V_i$ $2.V_1 \oplus ... \oplus V_s$ 的充要条件:
 - 零元唯一分解
 - $V_i \cap \sum_{i \neq i} V_j = 0$ (注: 这个条件比两两相交等于 0 强)
 - $\dim(V_1 + ... + V_s) = \dim V_1 + ... + \dim V_s$
 - (复旦高代) $V_1, ..., V_s$ 的一组基可以拼成 V 的一组基

设 $\varepsilon_1,...\varepsilon_n$ 和 $\eta_1,...,\eta_n$ 分别是 V_1,V_2 的一组基,则 $V_1 \oplus V_2 \iff \varepsilon_1,...\varepsilon_n,\eta_1,...,\eta_n$ 线性无关

[注]: 第二条充要条件,不能两两相交的反例: 设 \mathbf{R}^2 上 $V_1 = L[(1,0)]$, $V_2 = L[(0,1)]$, $V_3 = L[(1,1)]$,则 $V_i \cap V_j = 0$ ($i \neq j, i, j = 1, 2, 3$),但 $V_1 + V_2 + V_3$ 不是直和,因为分解不唯一:

$$(x,x) = x(1,0) + x(0,1) + 0(1,1) = 0(1,0) + 0(0,1) + x(1,1)$$

- (题) 如果 $V = V_1 \oplus V_2$, $V_1 = V_{11} \oplus V_{22}$, 则 $V = V_{11} \oplus V_{22} \oplus V_2$
- 3. 设 $\alpha_1, ..., \alpha_n$ 是 n 维线性空间 V 的一组基,那么 $V = L(\alpha_1) \oplus L(\alpha_2) \oplus ... \oplus V(\alpha_n)$

2.6 同构

线性同构的概念与构造 1. 若 V 到 V' 是同构: 一共四件事

- $\sigma: V \longrightarrow V'$ 是一一对应(分别验证单射和满射)
- $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$
- $\sigma(k\alpha) = k\sigma(\alpha)$
- 2. 重要的同构映射:线性空间到坐标的映射

设 V 是数域 \mathbb{F} 上的一个线性空间,则 $V \cong \mathbb{F}^n$,即存在同构线性映射使得

$$\sigma: V \longmapsto \mathbb{F}^n$$

$$\alpha \longmapsto (a_1, ..., a_n)^T$$

其他常见的同构线性映射有:

- 对称方阵与上三角方阵同构
- C_ℝ 与 ℝ² 同构(复数到复平面)
- n 维多项式空间 $\mathbf{P}[\mathbf{x}]_n$ 与 \mathbb{P}^n 同构
- **3. 构造线性空间到坐标映射的一般方法**: 任取 V 的一组基 $\varepsilon_1,...,\varepsilon_n$,则可以找到一个同构线性映射 σ 使得:

$$\sigma: V \longmapsto \mathbb{F}^n$$

$$\alpha = a_1 \varepsilon_1 + \dots + a_n \varepsilon_n \longmapsto (a_1, \dots, a_n)^T$$

2.6.1 同构映射的性质

$$1.\sigma(0) = 0, \sigma(-\alpha) = -\sigma(\alpha)$$

$$2.\sigma(k_1\alpha_1 + \dots + k_n\alpha_n) = k_1\sigma(\alpha_1) + \dots + k_n\sigma(\alpha_n)$$

- 3.V 中 $\alpha_1,...\alpha_n$ 线性相关 (无关) $\iff \sigma(\alpha_1),...,\sigma(\alpha_n)$ 线性相关 (无关)
- $4.V_1$ 是 V 的子空间,则 $\sigma(V_1)$ 是 $\sigma(V)$ 的子空间,且 $\dim V_1 = \dim \sigma(V_1)$
- 5. **同构映射的乘积** $\sigma\tau$ 和**同构映射的逆映射** σ^{-1} 都是同构映射
- 6. 线性空间的同构是等价关系

2.6.2 线性同构判定定理

数域 \mathbb{F} 上有限维线性空间 V_1, V_2 同构 \iff dim $V_1 = \dim V_2$

- 因此有限维线性空间不可能和其真子空间同构
- 但如果条件改为**无限维**线性空间 V,则 V 可能和其真子空间 V' 同构。例如: $V = \mathbf{P}[x]$, $V' = \{xf(x)|f(x) \in V\} \subsetneq V$,但存在线性映射 $\sigma(f(x)) = xf(x)$ 使得 $V' = \sigma(V)$

2.6.3 同构映射的应用

将抽象向量转化为具体坐标解决

- (1) 设 V 中 $\alpha_1,...,\alpha_s$ 在某个基下的坐标为 $\xi_1,...,\xi_s$ (其中 ξ_i 为 n 维向量),则
- $\alpha_1,...,\alpha_s$ 线性相关
- \iff 存在不全为 0 的 k_i 使得 $k_1\alpha_1 + ... + k_s\alpha_s = 0$
- \iff 齐次线性方程组 $x_1\xi_1 + ... + x_s\xi_s = 0$ 有非零解

换言之,向量与其坐标有着相同的线性相关性,我们关心向量的线性相关性,只需要把他们的坐标竖着排成一个方阵 A,然后关心这个方阵是否满秩即可。

3 线性变换

3.1 线性变换的概念

1. 线性变换:

$$A: V \to V$$

满足对任意 $\alpha, \beta \in V$

$$\mathcal{A}(\alpha + \beta) = \mathcal{A}(\alpha) + \mathcal{A}(\beta)$$
$$\mathcal{A}(k\alpha) = k\mathcal{A}(\alpha)$$

几种常见的线性变换有:

• 零变换: $\mathcal{O}(\alpha) = 0$

• 恒等变换: $\mathcal{E}(\alpha) = \alpha$

• 数乘变换: $\mathcal{K}(\alpha) = k\alpha$

• **投影变换**: 设子空间 W 的一组基为 $\varepsilon_1,...,\varepsilon_m$,将其扩充为 V 的一组基 $\varepsilon_1,...,\varepsilon_m,...,\varepsilon_n$,记投影变换为

$$\mathcal{A}(\varepsilon_i) = \begin{cases} \varepsilon_i & 1 \le i \le m \\ 0 & m+1 \le i \le n \end{cases}$$

- **投影**表现为: 对任意 $\alpha \in V$, $\alpha = k_1 \varepsilon_1 + ... + k_n \varepsilon_n$, 那么

$$\mathcal{A}(\alpha) = \mathcal{A}(k_1\varepsilon_1 + \dots + k_n\varepsilon_n) = k_1\mathcal{A}(\varepsilon_1) + \dots + k_n\mathcal{A}(\varepsilon_n) = k_1\varepsilon_1 + \dots + k_m\varepsilon_m$$

相当于把 V 中的向量 α 投影到子空间 W 中

2. 线性变换的性质

- $\mathcal{A}(0) = 0, \mathcal{A}(-\alpha) = -\mathcal{A}(\alpha)$
- $\mathcal{A}(k_1\varepsilon_1 + ... + k_n\varepsilon_n) = k_1\mathcal{A}(\varepsilon_1) + ... + k_n\mathcal{A}(\varepsilon_n)$
- **保线性相关性**: 若 $\varepsilon_1,...,\varepsilon_n$ 线性相关,则 $\mathcal{A}(\varepsilon_1),...,\mathcal{A}(\varepsilon_n)$ 线性相关
- **不保线性无关**: 若 $\varepsilon_1,...,\varepsilon_n$ 线性无关,则 $A(\varepsilon_1),...,A(\varepsilon_n)$ 不一定线性无关

 - 根本原因是: 无法保证 A 是双射
- 设 $\varepsilon_1, ..., \varepsilon_n$ 是一组基,则 $\mathcal{A} = \mathcal{B} \iff \mathcal{A}(\varepsilon_i) = \mathcal{B}(\varepsilon_i)$
- 设 $\varepsilon_1,...,\varepsilon_n$ 是一组基,对**任意一组向量** $\alpha_1,...,\alpha_n$,总存在线性变换 A 使得 $A(\varepsilon_i)=\alpha_i$

3.2 线性变换的矩阵

3.2.1 对比:线性变换后的坐标与基变换后的坐标

设 V 是线性空间, $\epsilon_1, \epsilon_2, ..., \epsilon_n$ 是 V 的一组基,V 的线性变换 A 在这组基下对应的矩阵为 A,V 中向量 α 在这组基下的坐标为 $X = (x_1, x_2, ..., x_n)^T$, $A(\alpha)$ 在这组基下的坐标为 $X' = (x_1, x_2, ..., x_n)^T$

	基变换	线性变换
变换后基	$(\eta_1,,\eta_n)=(arepsilon_1,,arepsilon_n)P$	仍为 $(arepsilon_1,,arepsilon_n)$
变换后向量	$X'=(\eta_1,,\eta_n)egin{pmatrix} x_1' \ \ x_n' \end{pmatrix}$	$m{X'} = \sum_{i=1}^n x_i \mathcal{A}(m{arepsilon_i})$
变换后坐标	$X'=P^{-1}X$	X' = AX

3.2.2 相似矩阵

相似矩阵是矩阵等价的一个特例: 矩阵相似是 $A\sim B\iff \exists P,\ B=P^{-1}AP$,而矩阵等价是 $A\cong B$ $\iff\exists P,Q,\ B=PAQ$,显然,矩阵相似也是等价关系。

1. 过渡矩阵与相似的关系: V 的线性变换 σ 在 $\{e_1,...,e_n\}$ 和 $\{f_1,...,f_n\}$ 下的矩阵分别为 A,B,则 $A\sim B$ 且 $B=P^{-1}AP$,其中 P 是 $\{e_1,...,e_n\}$ 到 $\{f_1,...,f_n\}$ 的过渡矩阵.

2. 相似矩阵的性质:

- 若 $A \sim B$, 则 $\operatorname{rank}(A) = \operatorname{rank}(B)$, $A^T \sim B^T$, $A^{-1} \sim B^{-1}$, |A| = |B|, $A + kE \sim B + kE$
- $B = P^{-1}AP \Rightarrow B^m = P^{-1}A^mP$
- $B = P^{-1}AP \Rightarrow f(B) = P^{-1}f(A)P$

3.3 特征值与特征向量

3.3.1 特征值、特征向量与特征子空间

1. 特征值与特征向量:设 $\lambda \in \mathbb{P}$, 若存在向量 $\xi \in V$, 使得

$$\mathcal{A}(\xi) = \lambda \xi$$

则称 λ 为特征值, ξ 为**线性变换** A **的属于** λ **的**特征向量

由于线性变换 A 在给定基下的矩阵 A 唯一,定义矩阵 A 特征值 λ 和特征向量 xi 满足:

$$\mathbf{A}(\xi) = \lambda \xi$$

- **几何意义**:特征向量 ξ 经过线性变换 A 后仍在同一直线上
- 特征子空间: 对任意特征值 λ ,属于 λ 的特征向量及零向量构成的集合 $V_{\lambda} = \{\xi : A(\xi) = \lambda \xi\}$ 是 V 的一个子空间

3.3.2 特征值、特征向量的求法

1. 计算特征值: 只需计算令特征多项式

$$\left| \lambda \mathbf{E} - \mathbf{A} \right| = 0$$

的**所有** λ 即可(可以有重根),其中A是线性变换A在某组基下的矩阵

2. 计算 A 的特征向量

- 解出所有特征值 $\lambda_i (i = 1, 2, ..., n)$
- 代回方程组得到 $(\lambda_i E A)x = 0$,解出其基础解系 $\eta_{i_1},...,\eta_{i_{r_i}}$
 - 注 1: $\eta_{i_1},...,\eta_{i_r}$ 也就是 V_{λ_i} 的一组基
 - 注 2: 在复数域 ℂ 上讨论时,全部特征根都是存在的
- 得到 V_{λ_i} 的一组基 $\xi_{i_j} = (\varepsilon_1, \varepsilon_2, ..., \varepsilon_n) \eta_{i_j} \ (j = 1, 2, ..., r_i)$
- 线性组合 $k_1\xi_{i_1}+...+k_{i_{r_i}}\xi_{i_{r_i}}$ 就是 $\mathcal A$ 的属于 λ_i 的特征向量

3.3.3 特征值、特征向量、特征多项式的性质

- **1. 计算后的特征值**: 设 λ 是 A 的特征值, ξ 是 A 的特征向量(对矩阵 A 完全同理)
 - kA 的特征值为 $k\alpha$, $A + k\mathcal{E}$ 的特征值为 $\lambda + k$, A^m 的特征值为 λ^m
 - f(A) 的特征值为 $f(\lambda)$, A^{-1} 的特征值为 λ^{-1} , A^* 的特征值为 $\frac{|A|}{\lambda}$, $A^{\mathcal{T}}$ 的特征值为 λ

2. 特征多项式的性质

- $m{A}$ 与 $m{A}^T$ 有相同的特征多项式,即 $|\lambda m{E} m{A}| = |\lambda m{E} m{A}^T|$
- $A \sim B$, 则 A, B 具有相同的特征多项式,进而有相同的特征值
 - 这说明有限维空间上线性变换的特征值 λ ,与所取的基没有关系(因为 A 在不同基下的矩阵式相似的), 这种特征多项式可以记为 $f_A(x)$

- (**逆命题**) 有相同特征值的矩阵不一定是相似的, 反例: 两者特征值均为 1, 但不相似

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, E$$

• 矩阵多项式的部分展开:

$$|\lambda \mathbf{E} - \mathbf{A}| = \lambda^n - (a_{11} + \dots + a_{nn})\lambda^{n-1} + \dots + (-1)^n |A|$$

- $-\operatorname{tr}(\boldsymbol{A}) = \lambda_1 + \dots + \lambda_n$
- $|A| = \lambda_1...\lambda_n$ (A 可逆 \iff 特征值全不为 0)

*3. 迹 (Trace)

- $\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B}), \ \operatorname{tr}(\boldsymbol{k}\boldsymbol{A}) = k\operatorname{tr}(\boldsymbol{A}), \ \operatorname{tr}(\boldsymbol{A}^T) = \operatorname{tr}(\boldsymbol{A})$
- $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, $\operatorname{tr}(ABC) = \operatorname{tr}(BAC) = \operatorname{tr}(CAB)$
- <math><math>A $\sim B$, <math><math><math><math>tr(A) = tr(B)

3.3.4 Hamilton-Cayley 定理及其应用

1.Hamilton-Cayley 定理

记
$$f(\lambda) = |\lambda E - A|$$
, 则 $f(A) = O$

• f(A) = O

2.Hamilton-Cayley 定理的应用

• 求逆矩阵: 若 $f(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + ... + a_1\lambda + a_0$,由 Hamilton-Cayley 定理, $f(\mathbf{A}) = \mathbf{A}^n + a_{n-1}\mathbf{A}^{n-1} + ... + a_1\mathbf{A} + a_0\mathbf{E} = \mathbf{O}$,那么

$$\mathbf{A}^{-1} = \frac{1}{a_0} (A^{n-1} + a_{n-1} \mathbf{A}^{n-2} + \dots + a_1 \mathbf{E})$$

也可以用此方法判断 A 是否可逆(特征多项式是否有常数项)

• **求矩阵方幂**: 设特征多项式 $f(x) = x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$, 要求 x^m , 根据带余除法易知

$$x^{m} = f(x)q(x) + (r_{n-1}x^{n-1} + \dots + r_{1}x + r_{0})$$
(1)

代入 x = A, 再由 f(A) = O 知

$$A^{m} = r_{n-1} \mathbf{A}^{n-1} + \dots + r_{1} \mathbf{A} + r_{0} E \tag{2}$$

情况 1: 若特征值无重根,则把全部的 $\lambda_1,...,\lambda_n$ 带入 (1),从而得到线性方程组

$$\begin{cases} \lambda_1^m = r_{n-1}\lambda_1^{n-1} + \dots + r_1\lambda_1 + r_0 \\ \dots \\ \lambda_n^m = r_{n-1}\lambda_n^{n-1} + \dots + r_1\lambda_n + r_0 \end{cases}$$

把 $(r_0,...,r_{n-1})$ 全部代入回 (2) 即可得到 \mathbf{A}^m 情况 2: 若特征值 λ_i 有 k_i 根,则对

$$\lambda_i^m = r_{n-1}\lambda_i^{n-1} + \dots + r_1\lambda_i + r_0$$

求 k_i 次导,得到 k_i 个方程,由于 $k_1 + ... + k_n = n$,这样还是能得到 n 个 n 元方程组,解出 $(r_0, ..., r_{n-1})$ 全部代入回(2)即可得到 \mathbf{A}^m

3.4 对角化

本节的目标是把复杂的 A 对角化为一个形式更简单的 $\Lambda = \operatorname{diag}\{\lambda_1,...,\lambda_n\}$,这样有利于我们做很多操作,比如: 求矩阵方幂、二次型标准化、主成分分析 (PCA)、解耦等等。

1. 对角化定义:

- 矩阵可对角化: 若 $A \sim \text{diag}$, 则 A 可对角化
- 线性变换可对角化: 若 A 在某组基下的矩阵为 diag, 则 A 可对角化

2. 特征值与特征子空间

设 $\lambda_1,...,\lambda_k$ 是 V 上线性变换 \mathcal{T} 的不同特征值, V_i 是 λ_i 的特征子空间, 则

$$V_1 + \ldots + V_k = V_1 \oplus \ldots \oplus V_k$$

• 属于不同特征值的特征向量线性无关(因为直和)

3.4.1 代数重数与几何重数

- 1. 定义
 - λ_i 的代数重数: λ_i 的重根数;
 - λ_i 的几何重数: $\dim(V_{\lambda_i})$
- 2. 几何重数不超过代数重数: 设 $|\lambda \mathbf{E} \mathbf{A}| = (\lambda \lambda_1)^{r_1}...(\lambda \lambda_s)^{r_s}$, 则 dim $\mathbf{V}_{\lambda_i} \leq r_i, i = 1, 2, ..., s$
 - 直观上, 这告诉我们如果特征值 λ 有 r 重根, 则属于 λ 的线性无关的特征向量不会超过 r 个

3.4.2 对角化的条件

设T有k个特征根,每个特征根的重根数为 s_i

- (1) \mathcal{T} 可对角化 $\iff \mathcal{T}$ 有 n 个线性无关的特征向量 $\iff V = V_{\lambda_1} \oplus ... \oplus V_{\lambda_k}$ $\iff \sum_{i=1}^k \dim(V_{\lambda_i}) = n \iff \operatorname{rank}(\lambda_i \mathbf{E} \mathbf{A}) = n s_i \iff \dim(V_{\lambda_i}) = s_i$ (代数重数 = 几何重数)
- (2) \mathcal{T} 有 n 个不同特征值 ⇒ \mathcal{T} 可对角化

(3) \mathcal{T} 在 $V_{\mathbb{C}}$ 中无重根 ⇒ \mathcal{T} 可对角化

4. 对角化的一般方法

- 求出 A 的全部特征值 $\lambda_1,...,\lambda_k$
- 求出每个特征值对应的特征向量 $\{v_{11},...,v_{1n_1}\},\{v_{21},...,v_{2n_2}\},...,\{v_{k1},...,v_{kn_k}\}$
 - 注 $_1$: **若特征值无重根,则必可对角化** (n 阶矩阵正好解出来 n 个特征值,正好对应 n 个特征向量)
 - 注 2: **若特征值有重根,则若第** r **重特征值有** r **个线性无关特征向量,**(使得 k 个特征值能正好对应 n 个特征向量)则也可对角化
 - 注 3: 否则不可对角化
- 将 λ_i 的特征向量 $\{v_{i1},...,v_{in_i}\}$ 按 i 的顺序排成矩阵 $P=(v_{11},...,v_{1n_1},v_{21},...,v_{2n_2},...,v_{k1},...,v_{kn_k})$,则 $P^{-1}AP=\operatorname{diag}(\lambda_1,\lambda_1,...,\lambda_k,\lambda_k)$ (特征根重复几次就排几次)
 - 这里的矩阵 $P, P^{-1}AP$ 都是 n 阶矩阵

3.5 像空间与核空间

3.5.1 概念

- 1. 像空间: $\operatorname{Im} A = A(V) = \{A\alpha | \alpha \in V\}$
 - A 的秩: dim ImA
- 2. 核空间: $\ker A = A^{-1}(0) = \{ \alpha | \alpha \in V, A(\alpha) = 0 \}$
 - *A* 的零度: dim ker *A*

3.5.2 像空间与核空间的性质

设 φ 是 n 维线性空间的线性变换, $\varepsilon_1,...,\varepsilon_n$ 是一组基, φ 在这组基下的矩阵为 A

- 1. $\operatorname{Im} \varphi = L(\varphi(\varepsilon_1), ..., \varphi(\varepsilon_n))$
- 2. dim Im $\varphi = \text{rank}(\mathbf{A})$ (φ 的秩是 \mathbf{A} 的秩)
- 3. $\dim \operatorname{Im} \varphi + \dim \ker \varphi = \dim V = n$
 - 这还不够说明 $\operatorname{Im}\varphi + \ker \varphi = V$
 - $\operatorname{Im} \varphi \oplus \ker \varphi = V \iff \operatorname{Im} \varphi \cap \ker \varphi = 0$
- 4. φ 是满射 \iff Im $\varphi = V$, φ 是单射 \iff ker $\varphi = \{0\}$, φ 是满射 \iff φ 是单射
- (题) 设 σ 为数域 \mathbb{P} 上 n 维线性空间 V 的线性变换, $f_1(x), f_2(x), ..., f_s(x) \in \mathbf{P}[\mathbf{x}], s \geq 2$,且他们两两互素,令 $f(x) = f_1(x)f_2(x)...f_n(x)$,则

$$\ker(f(\boldsymbol{\sigma})) = \ker(f_1(\boldsymbol{\sigma})) \oplus \ker(f_2(\boldsymbol{\sigma})) \oplus ... \oplus \ker(f_s(\boldsymbol{\sigma}))$$

3.6 不变子空间:目的是为了准对角化

- **1.** σ − **子空间**/ σ **的不变子空间**: σ 是 V 上的线性变换, W 是 V 的子空间且 $\sigma(W) \subset W$
- 2. 不变子空间的性质:
 - 设 $W = L(\varepsilon_1, ..., \varepsilon_n)$,则 $W \in \sigma$ 子空间 $\iff \sigma(\varepsilon_1), \sigma(\varepsilon_2), ..., \sigma(\varepsilon_n) \in W$
 - 两个 σ 子空间的交与和仍是 σ 子空间.

3. 重要的不变子空间

- V 的平凡子空间对任意 σ 都是 σ 子空间
- 任何子空间都是数乘变换 K 的不变子空间
- $Im\sigma$ 与 $ker\sigma$ 都是 σ 的不变子空间.
- $\ddot{\sigma} \sigma \tau = \tau \sigma$, $\mathbf{m} \mathbf{m} \tau$ an $\ker \tau$ and $\mathbf{m} \tau$ on $\mathbf{m} \tau$ and $\mathbf{m} \tau$ and $\mathbf{m} \tau$ on $\mathbf{m$
- $f(x) \in \mathbf{P}[\mathbf{x}]$, 则 $\mathrm{Im} f(\boldsymbol{\sigma})$ 和 $\ker f(\boldsymbol{\sigma})$ 都是 $\boldsymbol{\sigma}$ 的不变子空间 (*)
- 特征子空间 V_{λ_0} 是 σ 的不变子空间
- 由 σ 的特征向量生成的子空间是 σ 的不变子空间
 - 特别地, σ 的一个特征向量 ξ 生成的子空间 $L(\xi)$ 是一个一维 σ 子空间; 而一个一维 σ - 子空间必可看成 σ 的一个特征向量 ξ' 生成的子空间(充要条件)
- **根子空间**: 设 σ 的特征多项式 $f(\lambda)$ 具有分解式

$$f(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} ... (\lambda - \lambda_s)^{r_s}$$

则 $V^{\lambda_i} = \{ \boldsymbol{\xi} \in \boldsymbol{V} | (\boldsymbol{\sigma} - \boldsymbol{\lambda}_i \boldsymbol{\mathcal{E}})^{r_i} \boldsymbol{\xi} = 0 \}$ 为 $\boldsymbol{\sigma}$ 的属于特征值 λ_i 的根子空间

- 根子空间为 σ 的不变子空间
- 记 $f_i(\lambda) = \frac{f(\lambda)}{(\lambda \lambda_i)}$, 则 $\mathrm{Im} f_i(\sigma)$ 为 σ 的不变子空间(来自 *)
- 4. 不变子空间 W 上的线性变换: 把线性空间 V 上的线性变换 σ 看作不变子空间 W 上的线性变换 $\sigma|_W$
 - $\xi \in W \ \mathbb{H}, \ \sigma|_W(\xi) = \sigma(\xi)$
 - $\xi \notin W$ 时, $\sigma|_W$ 无意义(不变子空间上的线性变换必须在不变子空间上起作用)
 - $\sigma|_W(W) \subset W$
 - $\sigma|_{\ker\sigma} = \mathcal{O}$ (任意线性变换在其核上为零变换)
 - $\sigma|_{V_{\lambda_0}} = \lambda \mathcal{E}$ (σ 在其特征子空间上是数乘变换)

3.6.1 不变子空间: 化简线性变换的矩阵

1. 设 σ 是 n 维线性空间 V 的线性变换,W 是 V 的 σ — 子空间, $e_1, e_2, ..., e_k$ 为 W 的一组基,把它扩允为 V 的一组基 $e_1, ..., e_k, e_{k+1}, ..., e_n$; 若 $\sigma|_W$ 在基 $e_1, e_2, ..., e_k$ 下的矩阵为 $A_1 \in P^{k \times k}$,则 σ 在基 $e_1, ..., e_k, e_{k+1}, ..., e_n$ 下的矩阵具有下列形状:

$$egin{pmatrix} A_1 & A_2 \ O & A_3 \end{pmatrix}$$

注:这是因为 W 是 V 的不变子空间,所以 $\sigma(e_1), \sigma(e_2), ..., \sigma(e_k) \in W$,这说明 $\sigma(e_1), \sigma(e_2), ..., \sigma(e_k) \in W$ 均可以被 $e_1, e_2, ..., e_k$ 线性表出:

$$\begin{cases}
\sigma(e_1) = a_{11}e_1 + \dots + a_{k1}e_k \\
\sigma(e_2) = a_{12}e_1 + \dots + a_{k2}e_k \\
\dots \\
\sigma(e_k) = a_{1k}e_1 + \dots + a_{kk}e_k
\end{cases}$$

那么,

$$\sigma(e_1, e_2, ..., e_n) = (e_1, e_2, ..., e_n) \begin{pmatrix} a_{11} & a_{12} & ... & a_{1k} & a_{1,k+1} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2k} & a_{2,k+1} & ... & a_{2n} \\ ... & ... & ... & ... & ... & ... \\ a_{k1} & a_{k2} & ... & a_{kk} & a_{k,k+1} & ... & a_{kn} \\ 0 & 0 & ... & 0 & a_{k+1,k+1} & ... & a_{kn} \\ ... & ... & ... & ... & ... & ... \\ 0 & 0 & ... & 0 & a_{n,k+1} & ... & a_{nn} \end{pmatrix}$$

- 2. (1 的推广) V 的线性变换 σ 在某组基下的矩阵为准对角形 \iff V 可分解为一些 σ 的不变子空间的直和.
 - (⇒) 设 σ 是 n 维线性空间 V 的线性变换, W_i 都是 σ 的不变子空间, $e_{i1}, e_{i2}, ..., e_{in_i}$ 是 W_i 的一组 基,且 $\sigma|_{W_i}$ 在这组基下的矩阵为 A_i , $A_i \in P^{n_i \times n_i}$, i = 1, 2, ..., s, 若 $V = W_1 \oplus W_2 \oplus ... \oplus W_s$, 则 $e_{11}, ..., e_{1n_1}, ..., e_{sn_s}$ 为 V 的一组基,且在这组基下 σ 的矩阵为准对角阵

$$oldsymbol{\Lambda} = egin{pmatrix} oldsymbol{A_1} & & & & \ & oldsymbol{A_2} & & & \ & & oldsymbol{A_2} & & \ & & oldsymbol{\dots} & & \ & & oldsymbol{A_s} \end{pmatrix}$$

• (\Leftarrow) 反之,若 σ 在基 $e_{11}, e_{12}, ..., e_{1n_1}, ..., e_{s1}, e_{s2}, ..., e_{sn_s}$ 下的矩阵为准对角矩阵 Λ ,则由 $e_{i1}, e_{i2}, ..., e_{in_i}$ 生成的子空间 W_i 为 σ 的不变子空间,且 V 具有直和分解:

$$V=W_1\oplus W_2\oplus ...\oplus W_s$$

3.6.2 线性空间的分解

 σ 为 V 上线性变换,则 V 可以分解为其根子空间 $V^{\lambda_i} = \{\xi \mid (A - \lambda_i \mathcal{E})^{r_i} \xi = 0\}$ 的直和

$$V = V^{\lambda_1} \oplus V^{\lambda_2} \oplus ... \oplus V^{\lambda_s}$$

• **推论 1**: $V_{\mathbb{C}}$ 均可以分解为根子空间 V^{λ_i} 的直和

• **推论 2**: $V_{\mathbb{C}}$ 上的线性变换 T 均可以准对角化

• 推论 2': \mathbb{C} 上的 n 阶方阵都可以准对角化

• **推论 3**: 数域 \mathbb{F} 上的 n 维线性空间上的线性变换 \mathcal{T} 可准对角化 \iff 其特征多项式可以分解为一次多项式的 乘积

$$f_{\mathcal{T}}(x) = (x - \lambda_1)^{r_1} ... (x - \lambda_s)^{r_s}, \ r_1 + ... + r_s = n$$

3.7 Jordan 标准型

引言:上节说到,不是所有的n 阶方阵都能对角化(可能凑不出n 个特征向量),但是一定可以准对角化(根子空间直和分解,每个对角块都是根子空间 V^{λ_i} 的矩阵),本节中 Jordan 标准型给出了一个准对角化的方案:让每个准对角块都是 Jordan 块。Jordan 标准型不是中国人民大学高等代数考试的重点,对其结论与性质了解即可。

1.Jordan 块: 其中 $\lambda_0 \in \mathbb{C}$

$$oldsymbol{J(\lambda_0,k)} = egin{pmatrix} \lambda_0 & & & & & & \ 1 & \lambda_0 & & & & & \ & & \ddots & & & \ & & & 1 & \lambda_0 & & \ & & & & 1 & \lambda_0 \end{pmatrix}_{k imes k}$$

2.Jordan 型矩阵: 由若干个 Jordan 块组成的准对角矩阵:

其中 $\lambda_i \in \mathbb{C}$ 且可以部分相同

• 设 A 的 Jordan 标准型为 J, 则如果 J 中 Jordan 块下的 1 没有出现,说明 A 能对角化,否则不行

3.Jordan 标准型结论:

• **结论 1**: 设 A 是 \mathbb{C} 上 n 维线性空间 V 的线性变换,则在 V 中存在一组基,使得 A 在该基下的矩阵为 Jordan 标准型。

而且这个 Jordan 标准型除了 Jordan 块的次序之外由 A 唯一决定,称之为 A 的 Jordan 标准型。

• **结论 2**: $\mathbb{C} \perp n$ 阶矩阵都相似与一个 Jordan 标准型,其中对角线上的元素是 A 的全部特征值。

- 即可以找到一个矩阵 $P=(\varepsilon_{11},\varepsilon_{12},...,\varepsilon_{1k_1},\varepsilon_{21},\varepsilon_{22},...,\varepsilon_{2k_2},...,\varepsilon_{s1},\varepsilon_{s2},...,\varepsilon_{sk_s})$, 使得 $J=P^{-1}AP$
- 结论 3: Jordan 块的块数 = 特征向量的个数
- **结论 4**: 特征值 λ_i 的代数重数 = Jordan 标准型中 λ_i 出现的次数, λ_i 的几何重数 = 含 λ_i 的块数
- * 结论 5: k 阶 Jordan 块的个数为:

$$\operatorname{rank}(\boldsymbol{A}-\boldsymbol{\lambda}\boldsymbol{I})^{k-1}+\operatorname{rank}(\boldsymbol{A}-\boldsymbol{\lambda}\boldsymbol{I})^{k+1}-2\ \operatorname{rank}(\boldsymbol{A}-\boldsymbol{\lambda}\boldsymbol{I})^{k}$$

3.8 最小多项式

(引言: Hamilton-Cayley 告诉我们,能找到 A 的零化多项式(比如特征多项式)使得 f(A) = O,我们关心的是:次数最低的零化多项式和 A 的对角化间的关系。事实上,最小多项式与特征多项式有许多相似的性质。)

1. 最小多项式: f(A) = O, 次数最低, 首 1

3.8.1 最小多项式的基本性质

- *A* 的最小多项式是唯一的
- 设 g(x) 为 A 的最小多项式,则: h(x) 以 A 为根 \iff g(x)|h(x)
- A 的最小多项式是 A 的特征多项式的一个因式
 - -A 是数量矩阵 $kE \iff A$ 的最小多项式为一次多项式
- 相似矩阵具有相同的最小多项式,但具有最小多项式的矩阵未必相似

• 设
$$\pmb{A} = \begin{pmatrix} \pmb{A_1} \\ \pmb{A_2} \\ & \ddots \\ & \pmb{A_s} \end{pmatrix}$$
, $g_1(x), g_2(x), ..., g_s(x)$ 分别为 $\pmb{A_1, A_2, ..., A_s}$ 的最小多项式,则 \pmb{A} 的最小多项式为 $[g_1(x), g_2(x), ..., g_s(x)]$

• k 阶 Jordan 块

$$oldsymbol{J} = egin{pmatrix} \lambda & & & & & & \\ 1 & \lambda & & & & & \\ & 1 & \ddots & & & & \\ & & \ddots & \ddots & & & \\ & & & 1 & \lambda & & \\ & & & & 1 & \lambda & & \end{pmatrix}$$

的最小多项式为 $(x - \lambda)^k$

- (重要定理) A 与对角阵 Λ 相似 \iff A 的最小多项式是数域 $\mathbb F$ 上互素的一次因式的乘积
 - $-A \in \mathbb{C}^{n \times n} \sim \text{diag} \iff A$ 的最小多项式没有重根

3.8.2 最小多项式与 Jordan 标准型的关系

1.Jordan 块最高阶数的确定: 设矩阵 \boldsymbol{A} 的最小多项式是 $m(x) = \prod_{i=1}^s (x - \lambda_i)^{r_i}$, 则 \boldsymbol{A} 的 Jordan 标准型中以 λ_i 为 主对角元的 Jordan 块的最高阶数为 r_i

通过 3.7 Jordan 标准型的结论 2, 3, 4, 5 和 3.8.2 最小多项式与 Jordan 标准型的关系,可以算出低阶矩阵的 Jordan 标准型。

4 Euclid 空间

4.1 Euclid 空间的定义

1. 内积:设 V 是 \mathbb{R} 上的线性空间, $\forall \alpha, \beta, \gamma \in V$, $\forall k \in \mathbb{R}$, 定义一个二元实函数 (α, β) 满足:

• 对称性: $(\alpha, \beta) = (\beta, \alpha)$

• 数乘: $(k\alpha, \beta) = k(\alpha, \beta)$

• 可加性: $(\alpha + \gamma, \beta) = (\alpha, \beta) + (\gamma, \beta)$

• 正定性: $(\alpha, \alpha) \ge 0$, 当且仅当 $\alpha = 0$ 时 $(\alpha, \alpha) = 0$

则称 (α, β) 为 α, β 的内积.

内积的简单性质有:

•
$$(\sum_{i=1}^{s} k_i \boldsymbol{\alpha_i}, \sum_{j=1}^{s} l_j \boldsymbol{\beta_j}) = \sum_{i=1}^{s} \sum_{j=1}^{t} k_i l_j (\boldsymbol{\alpha_i}, \boldsymbol{\beta_j})$$

• $(0,\beta)=0$

2.Euclid 空间: 定义了内积的 \mathbb{R} 上的线性空间 V 为 Euclid 空间.

- Euclid 空间 V 是特殊的线性空间,除向量的线性运算外还有"内积"运算
- $(lpha,eta)\in\mathbb{R}$
- "内积"不仅限于点积,可以是

$$- \ (\alpha, \beta) = \alpha^T A \beta$$

$$- (f(x), g(x)) = \int_a^b f(x)g(x)dx$$

4.1.1 Euclid 空间中向量的长度

1. 模: $\|\alpha\| = \sqrt{(\alpha, \alpha)}$

• α 的单位化: $\frac{1}{\|\alpha\|}\alpha$

4.1.2 Euclid 空间中向量的夹角

1.Cauchy-Buniakowsky 不等式: 对 Euclid 空间 V 中任意两个向量 α , β , 成立

$$|(\alpha,\beta)| \le \|\alpha\| \|\beta\|$$

等号成立条件: α , β 线性相关.

• 三角不等式:

$$\|\alpha_1 + ... + \alpha_s\| \le \|\alpha_1\| + ... + \|\alpha_m\|$$

2. 非零向量间的夹角: 定义 Euclid 空间 V 中任意两非零向量 α , β 的夹角为

$$\langle oldsymbol{lpha}, oldsymbol{eta}
angle = rccos rac{(oldsymbol{lpha}, oldsymbol{eta})}{\|oldsymbol{lpha}\| \|oldsymbol{eta}\|}$$

- $\mathbb{E}\overline{\mathfrak{D}}$: $\alpha\perp\beta\iff (\alpha,\beta)=0\iff \langle\alpha,\beta\rangle=\frac{\pi}{2}\iff \cos\langle\alpha,\beta\rangle=0$
- 0 与任意向量正交
- $\alpha \perp \alpha \iff \alpha = 0$

4.1.3 正交向量的性质

• 正交投影: $\alpha \in V$ 为一固定非零向量, 把 V 中每个向量 ξ 变成它在 α 上的**内射影**是 V 上的一个线性变换

$$\mathcal{P}:V\longmapsto V$$
 $\xi\longmapstorac{(lpha,\xi)}{(lpha,lpha)}lpha$ ξ 在 $lpha$ 上的正交投影为 $rac{(lpha,\xi)}{(lpha,lpha)}lpha$ $(\xi-rac{(lpha,\xi)}{(lpha,lpha)}lpha)oldsymbol{\perp}lpha$

• 勾股定理: 若 Euclid 空间 V 中向量 $\alpha_1,...,\alpha_s$ 两两正交,则

$$\|\alpha_1 + ... + \alpha_s\|^2 = \|\alpha_1\|^2 + ... + \|\alpha_m\|^2$$

4.1.4 Euclid 空间中的距离

1. 距离: $d(\alpha, \beta) = \|\alpha - \beta\|$

•
$$d(\alpha, \beta) = d(\beta, \alpha), d(\alpha, \gamma) \le d(\alpha, \beta) + d(\beta, \gamma)$$

4.1.5 Euclid 空间中内积的矩阵表示

本质上说的是:两个向量用基展开时,两个向量的内积可以用二次型来简化表达设V为 Euclid 空间, $\epsilon_1,...,\epsilon_n$ 为V的一组基,对V中任意两个向量

$$\alpha = \sum_{i=1}^{n} x_i \boldsymbol{\varepsilon}_i, \boldsymbol{\beta} = \sum_{j=1}^{n} y_j \boldsymbol{\varepsilon}_j$$

他们的内积表达为

$$(\boldsymbol{\alpha},\boldsymbol{\beta}) = (\sum_{i=1}^{n} x_i \boldsymbol{\varepsilon}_i \sum_{j=1}^{n} y_j \boldsymbol{\varepsilon}_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j (\boldsymbol{\varepsilon}_i, \boldsymbol{\varepsilon}_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j a_{ij} = \boldsymbol{X}^T \boldsymbol{A} \boldsymbol{Y}$$

其中
$$A$$
 为度量矩阵 $A = \begin{pmatrix} (\varepsilon_1, \varepsilon_1) & (\varepsilon_1, \varepsilon_2) & \dots & (\varepsilon_1, \varepsilon_n) \\ (\varepsilon_2, \varepsilon_1) & (\varepsilon_2, \varepsilon_2) & \dots & (\varepsilon_2, \varepsilon_n) \\ \dots & \dots & \dots & \dots \\ (\varepsilon_n, \varepsilon_1) & (\varepsilon_n, \varepsilon_2) & \dots & (\varepsilon_n, \varepsilon_n) \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$

- $A = A^T$
- Euclid 空间在任意一组基下的度量矩阵 A 是正定矩阵,反之,给定正定矩阵 A 和线性空间 V 的一组基,都可以定义 V 上的内积,使得 V 是 Euclid 空间且在给定的这组基下的度量矩阵为 A
- 基确定下来则度量矩阵确定,同一内积在不同基下的度量矩阵是合同的
- 我们可以选择基为**正交向量组** $\epsilon_1, ..., \epsilon_n$,这样度量矩阵 A 为正对角阵,于是: 实对称矩阵 A 正定 $\iff A$ 与任一正对角阵合同 $\iff A$ 与单位矩阵 E 合同

4.1.6 Euclid 子空间

Euclid 空间的非空子集合,只要对加法和数乘封闭,则为 Euclid 子空间,维数就是线性子空间的维数。

4.2 标准正交基

4.2.1 标准正交基的定义

- 1. 正交向量组: $\alpha_1,...,\alpha_m$ 两两正交
 - 一个向量 $\alpha \neq 0$ 也是正交向量组
 - 正交向量组必线性无关,但线性无关组未必为正交向量组(向量正交是比线性无关更强的条件)
 - n 维 Euclid 空间中正交向量组所含向量个数 $\leq n$
- **2. 正交基**: n 维 Euclid 空间中由 n 个向量构成的正交向量组
- 3. 标准正交组: 都是单位向量的正交向量组
- 4. 标准正交基: 都是单位向量的正交基
 - Euclid 空间中标准正交基总是存在的
 - $\epsilon_1,...,\epsilon_n$ 是标准正交基 \iff 度量矩阵 $A=E_n$
 - $\epsilon_1, ..., \epsilon_n$ 是标准正交基,将 V 中向量表为 $\alpha = x_1 \epsilon_1 + ... + x_n \epsilon_n$,则 $x_i = (\alpha, \epsilon_i)$
 - $\epsilon_1, ..., \epsilon_n$ 是标准正交基, $\alpha = x_1 \epsilon_1 + ... + x_n \epsilon_n$, $\beta = y_1 \epsilon_1 + ... + y_n \epsilon_n$,则 $(\alpha, \beta) = x_1 y_1 + ... + x_n y_n$

4.2.2 构造标准正交基

1.n 维 Euclid 空间中任一个正交向量组都能扩充为一组正交基

2. 通过度量矩阵正交化

- 1. 取 V 中一组基 $\varepsilon_1, ... \varepsilon_n$,则它的度量矩阵 A 是正定的
- 2. 正定矩阵必合同于 E, 那么存在**可逆矩阵** C 使得 $C^TAC = E$

3. 令 $\left(\eta_1 \quad \eta_2 \quad \dots \quad \eta_n\right) = \left(\varepsilon_1 \quad \varepsilon_2 \quad \dots \quad \varepsilon_n\right) C$,则 $\left(\eta_1 \quad \eta_2 \quad \dots \quad \eta_n\right)$ 是标准正交基 (因为这组基的度量矩阵就是 $C^TAC = E \iff$ 是标准正交基)

3.Schmidt 正交化过程

1. **正交化**: 将线性无关的向量组 $\alpha_1,...,\alpha_m$ 化成正交向量组 $\beta_1,...,\beta_m$:

$$\beta_1 = \alpha_1, \quad \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1, \quad \beta_j = \alpha_j - \sum_{i=1}^{j-1} \frac{(\alpha_j, \beta_i)}{(\beta_i, \beta_i)} \beta_i, \ j = 2, 3, ..., m$$

2. **单位化**: 将正交向量组单位化得到标准正交组 $\eta_1,...,\eta_m$

$$\boldsymbol{\eta_i} = \frac{1}{\|\boldsymbol{\beta_i}\|} \boldsymbol{\beta_i}, \ i = 1, 2, ..., m$$

- 4. 若对 n 维 Euclid 空间中任一组基 $\pmb{\varepsilon_1},...,\pmb{\varepsilon_n}$ Schmidt 正交化对应得到 $\pmb{\eta_1},...,\pmb{\eta_n}$,则
 - $L(\varepsilon_1, ..., \varepsilon_i) = L(\eta_1, ..., \eta_i), i = 1, ..., n$
 - 若 $(\eta_1,...,\eta_n)=(\varepsilon_1,...,\varepsilon_n)T$,则 T 为上三角形

4.2.3 正交矩阵

- 1. 正交矩阵 $A \iff A^{-1} = A^T$
- \iff A 的列向量组是 Euclid 空间 \mathbb{R}^n 的标准正交基 \iff $A^TA = E$
- \iff **A** 的行向量组是 Euclid 空间 \mathbb{R}^n 的标准正交基 \iff $AA^T = E$
 - A 为正交矩阵 ⇒ |A| = ±1
 - 若 $\varepsilon_1,...,\varepsilon_n$ 为标准正交基,A 为正交矩阵,若 $(\eta_1,...,\eta_n)=(\varepsilon_1,...,\varepsilon_n)A$,则 $\eta_1,...,\eta_n$ 也是标准正交基
 - A, B 为正交阵 $\Rightarrow AB$ 为正交阵, A^T 为正交阵, A^* 为正交阵
 - $\forall \alpha, \beta \in \mathbb{R}^n$, $(A\alpha, A\beta) = (\alpha, \beta)$, 从而 $\|A\alpha\| = \|\alpha\|$, 夹角 $\langle A\alpha, A\beta \rangle = \langle \alpha, \beta \rangle$
 - 标准正交基之间的过渡矩阵 A 为正交矩阵
 - 正交矩阵的实特征值为 1 或 -1, 复特征值的模为 1
- 2. 寻找一个正交矩阵的方法
 - 将n个标准正交基竖着/横着排成一个矩阵A
 - 求算两个标准正交基之间的过渡矩阵
- **3. 正交矩阵的** QR 分解: 设 $A \in \mathbb{R}^{m \times n}$ 列满秩,则存在一个列正交矩阵 $Q_{m \times n}$ 和一个主对角线上元素都是正的上三角矩阵 $T_{n \times n}$,使得 A = QR,且这样的分解唯一

• 先对 $m{A}$ 的列向量 Schmidt 正交化,得到标准正交基 $m{\eta_1,...\eta_n}$,竖着排成矩阵 $m{Q} = \begin{pmatrix} m{\eta_1} & m{\eta_2} & ... & m{\eta_n} \end{pmatrix}$

• 将
$$A$$
 的列向量表示为 $\eta_1,...,\eta_n$ 的线性组合: $A_i=k_{i1}\eta_1+...+k_{in}\eta_n$,那么 $R=egin{pmatrix} k_{11} & k_{21} & ... & k_{n1} \ k_{12} & k_{22} & ... & k_{n2} \ ... & ... & ... \ k_{1n} & k_{2n} & ... & k_{nn} \end{pmatrix}$

4.3 Euclid 空间的同构

1.Euclid 空间的同构: 存在一个一一对应的 σ :

$$V_{\mathbb{R}} \longmapsto \mathbb{R}^n$$

$$\alpha \longmapsto (x_1, x_2, ..., x_n)^T$$

满足

• $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$

• $\sigma(k\alpha) = k\sigma(\alpha)$

• $(\sigma(\alpha), \sigma(\beta)) = (\alpha, \beta)$

2. 线性空间的同构与 Euclid 空间的同构

• 线性空间中 V 到自身的同构: **所有可逆线性变换**

• Euclid 空间中 V 到自身的同构:不仅要保证可逆线性变换,还要"保内积"⇒ **所有正交变换**

3.Euclid 空间的重要性质:

• 两个有限维 Euclid 空间同构 ⇔ 维数相同

- 无论内积的定义如何, n 维 Euclid 空间都与 \mathbb{R}^n 同构

• 两个同维 Euclid 空间同构的建立:分别找出两个空间的标准正交基,使得基向量——对应

4.4 正交变换

1. 正交变换: Euclid 空间 V 的线性变换 σ 保持向量的内积不变

$$(\sigma(\alpha), \sigma(\beta)) = (\alpha, \beta)$$

2. 正交变换的性质:

σ 是正交变换

 $\iff \|\sigma(\alpha)\| = \|\alpha\|$

 \iff 若 $\varepsilon_1,...,\varepsilon_n$ 是 V 的标准正交基,则 $\sigma(\varepsilon_1),...,\sigma(\varepsilon_n)$ 也是 V 的标准正交基

 $\iff \sigma$ 在任一组标准正交基下的矩阵是正交矩阵

 $\iff \sigma$ 保持向量间距离不变: $\|\sigma(\xi) - \sigma(\eta)\| = \|\xi - \eta\|$

- 正交变换 σ 保持向量夹角不变
- 正交变换 σ 保持正交性不变
- 正交变换的特征值只能是 ±1
- Euclid 空间 V 的正交变换是 V 到自身的同构映射
 - 正交变换的逆变换是正交变换(反身性)
 - 正交变换的乘积是正交变换(传递性)
- 3. 正交变换的分类
 - 第一类正交变换: |A| = 1 (旋转)
 - 第二类正交变换: |A| = -1 (反射)
- 4. 镜面反射:设 Euclid 空间中的一组标准正交基: $\boldsymbol{\epsilon_1,...,\epsilon_n}$,称变换 $\boldsymbol{\sigma(\epsilon_i)} = \begin{cases} -\boldsymbol{\epsilon_i} & i=1 \\ \boldsymbol{\epsilon_i} & i=2,...,n \end{cases}$ 为镜面反射

•
$$\sigma$$
 在基 $\varepsilon_1,...,\varepsilon_n$ 下的矩阵为 $M=\begin{pmatrix} -1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$

- 镜面反射是第二类正交变换, $\sigma^2 = \mathcal{E}, \sigma^{-1} = \sigma$
- 相当于一个向量关于一个超平面反射

4.5 Euclid 子空间

4.5.1 Euclid 空间的正交子空间

- 1. 子空间的正交: $\forall \alpha \in V_1, \beta \in V_2$, 恒有 $(\alpha, \beta) = 0 \iff V_1 \perp V_2$
- 2. 向量与子空间的正交: 给定向量 $\alpha \in V$, 对 $\forall \beta \in V_1$, 恒有 $(\alpha, \beta) = 0 \iff \alpha \bot V_1$
 - 特別地, 若 $\beta \perp \alpha_i$, (i = 1, ..., s), 则 $\beta \perp \sum_{i=1}^s k_i \alpha_i \Rightarrow \beta \perp L(\alpha_1, ..., \alpha_s)$
 - $V_1 \perp V_2 \iff V_1$ 中的每个向量都与 V_2 正交
 - $V_1 \perp V_2 \Rightarrow V_1 \cap V_2 = \{0\}$
 - $\alpha \perp V_1 \perp \alpha \in V_1 \Rightarrow \alpha = 0$
- 3. 正交子空间与直和: 两两正交的子空间的和必是直和,即若 $V_1,...,V_s$ 两两正交,则 $V_1 \oplus ... \oplus V_s$

4.5.2 子空间的正交补

1. 子空间的正交补: 若 Euclid 子空间 V_1, V_2 满足 $V_1 \perp V_2$ 且 $V_1 + V_2 = V$,则称 V_2 为 V_1 的正交补,记作 $V_2 = V_1^{\perp}$. 显然 $V_1^{\perp} = \{\alpha \in V \mid \alpha \perp V_1\}$

- 2. 正交补的性质:
 - n 维 Euclid 空间 V 的每个子空间 W 都有唯一的正交补 W^{\perp}
 - W 的正交补一定是 W 的直和补(但 W 的直和补不一定是 W 的正交补)
- 3. 正交补的计算法则:
 - $(W^{\perp})^{\perp} = W$, $\dim W^{\perp} + \dim W = n$, $W^{\perp} \oplus W = V$
 - $ullet \ (V_1 + V_2)^ot = V_1^ot \cap V_2^ot, \ (V_1 \cap V_2)^ot = V_1^ot + V_2^ot$
- 4. 重要子空间的正交补:对于 $A^{s \times n}$
 - 零空间是行空间的正交补: $\mathcal{N}(A)^{\perp} = \mathcal{R}(A^T)$
 - 左零空间是列空间的正交补: $\mathcal{N}(A^T)^{\perp} = \mathcal{R}(A)$
 - (题) 域 \mathbb{F} 上 n 维线性空间 \mathbb{F}^n 的任一子空间 U 是某个齐次线性方程组的解空间(本质上就是求 U^{\perp})

4.6 内射影/正交投影

- 1. 内射影: 设 W 维 Euclid 空间 V 的子空间,对任意 $\alpha \in V$,可唯一分解为 $\alpha = \alpha_1 + \alpha_2$,其中 $\alpha_1 \in W$, $\alpha_2 \in W^{\perp}$,
 - 正交投影: α_1 为 α 在 W 中的正交投影,记为 $\alpha_1 = \mathcal{P}_W(\alpha) = \hat{\alpha}$
 - 正交分量: α_2 为 α 在 W 的正交分量,换句话说 α_2 为 α 在 W^{\perp} 的正交投影
- 2. 内射影变换 $\mathcal{P}_{\mathbf{W}}$ (即 3.1 线性变换的概念中的投影变换)

$$\mathcal{P}_W: V \longmapsto W$$
 $lpha \longmapsto lpha_1, \; lpha_1 \in W$

3. 正交分解定理: 设 V 是 n 为 Euclid 空间,非零子空间 W 的一组正交基为 $\eta_1,...,\eta_m$,则 $\forall \alpha \in V$, α 在 W 中的正交投影为:

$$\mathcal{P}_{W}(lpha) = rac{(lpha, \eta_{1})}{(\eta_{1}, \eta_{1})} \eta_{1} + rac{(lpha, \eta_{2})}{(\eta_{2}, \eta_{2})} \eta_{2} + ... + rac{(lpha, \eta_{m})}{(\eta_{m}, \eta_{m})} \eta_{m}$$

- 如果 $\eta_1,...,\eta_m$ 为标准正交基,则 $\mathcal{P}_W(\alpha)=(\alpha,\eta_1)\eta_1+(\alpha,\eta_2)\eta_2+...+(\alpha,\eta_m)\eta_m$
- Schmidt 正交化的本质是: 求 α_{i+1} 在 $W=L(\eta_1^*,...,\eta_i^*)$ 上的正交分量:

$$\eta_{i+1}^* = lpha_{i+1} - rac{(lpha_{i+1}, \eta_1^*)}{(\eta_1^*, \eta_1^*)} \eta_1^* - ... - rac{(lpha_{i+1}, \eta_i^*)}{(\eta_i^*, \eta_i^*)} \eta_i^*$$

- 4. 向量到子空间的距离: $\|\delta\| = \|\alpha \mathcal{P}_W(\alpha)\|$ (α 到子空间 W 的最佳逼近)
 - 弱化地, α 到 η 的距离 $\Longleftrightarrow \alpha$ 到 $L(\eta)$: $\|\delta\| = \mathcal{P}_W(\alpha) = \frac{(\alpha, \eta)}{(\eta, \eta)} \eta$

4.7 实对称矩阵的标准型

4.7.1 实对称矩阵与对称变换

- 1. 实对称矩阵 A 的特征值均为实数
- **2.** 对称变换: σ 为 Euclid 空间中的线性变换,且满足对 $\forall \alpha, \beta \in V$, $(\sigma(\alpha), \beta) = (\alpha, \sigma(\beta))$
 - n 维 Euclid 空间 V 的对称变换与 n 阶实对称矩阵在标准正交基下是相互确定的:
 - 实对称矩阵在标准正交基下可确定一个正交变换:设实对称矩阵 $A=A^T$, $\varepsilon_1,...,\varepsilon_n$ 为 V 的一组标准 正交基,定义 V 的线性变换 σ :

$$\sigma(\varepsilon_1,...,\varepsilon_n)=(\varepsilon_1,...,\varepsilon_n)A$$

则 σ 即为 V 的对称变换

- 对称变换在标准正交基下的矩阵为实对称矩阵: 设 σ 为 n 维 Euclid 空间上的对称变换, $\varepsilon_1,...,\varepsilon_n$ 为一组标准正交基, $A=(a_{ij})\in\mathbb{R}^{n\times n}$ 为 σ 在这组基下的矩阵,则 $A=A^T$
- $\mathbf{3.A} = \mathbf{A}^T$, 定义 n 维 Euclid 空间 \mathbb{R}^n 上的线性变换 σ :

$$\sigma(X) = AX$$

则对任意 $X,Y \in \mathbb{R}^n$, $(\sigma(X),Y) = (X,\sigma(Y))$

- 4. 记 σ 为 Euclid 空间的对称变换,则若 V_1 是 σ 子空间,那么 V_1^\perp 也是 σ 子空间
- 5. 实对称矩阵属于不同特征值的特征向量是正交的: 设 λ, μ 是实对称矩阵 A 的两个不同特征值, ξ, ζ 分别是 A 的属于 λ, μ 的特征向量($A\xi = \lambda \xi$, $A\zeta = \mu \zeta$),则 $\xi^T \zeta = 0$

4.7.2 实对称矩阵的正交相似对角化

回顾二次型:二次型的矩阵 A 是对称的。之前将二次型转换为规范形的方法是配方,但通过实对称矩阵的正交相似对角化,我们能更方便的将二次型转换为规范形

- 1. 对 $A = A^T$, 总有正交矩阵 Q, 使得 $Q^TAQ = Q^{-1}AQ = \text{diag}\{\lambda_1,...,\lambda_n\}$
- 2. 正交相似对角化的步骤: 设 $A = A^T$
 - 求出 A 所有的特征值: $\lambda_1,...,\lambda_s$ (特征值重数之和为 n)
 - 对每个 λ_i 解齐次线性方程组 ($\lambda_i E A$)X = 0,求出其一个基础解系 $\xi_{i1}, ..., \xi_{in_i}$ ($n_i = \dim V_{\lambda_i}$)
 - 对 $\xi_{i1},...,\xi_{in_i}$ Schmidt 正交化得到 $\eta_{i1},...,\eta_{in_i}$ ⇒ 这是 V_{λ_i} 的一组标准正交基
 - $\eta_{11},...,\eta_{1n_1},...,\eta_{s1},...,\eta_{sn_s}$ 就是 \mathbb{R}^n 的一组标准正交基,竖着排成 Q 即得到正交矩阵 Q

注意事项

- 1. 使得 $Q^T A Q = \operatorname{diag}\{\lambda_1, ..., \lambda_n\}$ 的正交矩阵 Q 不唯一
 - 可进一步要求 |Q| = 1: 如果 |Q| = -1,取正交矩阵 $S = \text{diag}\{-1, 1, ..., 1\}$,则 Q' = QS 也为正交矩阵,且 |Q'| = |Q||S| = 1,且 $(Q')^T A(Q') = S^T (Q^T A Q) S = \text{diag}\{\lambda_1, ..., \lambda_n\}$
- 2. 可以通过 $A = A^T$ 的特征值刻画其正定性 (因为正交相似的矩阵是合同的): 不妨设 $\lambda_1 \geq ... \geq \lambda_n$
 - A (\pm) 正定 $\iff \lambda_n > 0 (\geq 0)$
 - A (半) 负定 $\iff \lambda_1 < 0 (\leq 0)$
 - $A \wedge \mathbb{R} \iff \lambda_1 > 0, \lambda_n < 0$
- 3. $\pmb{A} = \pmb{A^T}$ 的正、负惯性指数 = 正、负特征值的个数(重根按重数计算), $n \mathrm{rank}(\pmb{A})$ 是 0 为 \pmb{A} 特征值的重数 (回顾:实对称矩阵都合同于 $\begin{pmatrix} \pmb{E_p} \\ & -\pmb{E_{r-p}} \end{pmatrix}$,其中 p 为正惯性系数, $r = \mathrm{rank}(\pmb{A})$,r p 为负惯性系数)

4.7.3 实二次型的正交替换

从平面/空间解析几何的视角, \mathbb{R}^2 上有心二次曲线或 \mathbb{R}^3 上有心二次曲面通过坐标变换可以旋转为标准型(例如椭圆 $C: a^2x^2+b^2y^2=1$),而且坐标变换的矩阵是正交矩阵(例如 $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$),推广到 \mathbb{R}^n 上,任意 n 元实二次型可通过正交线性替换替换为标准型。

1. 正定的相关性质

• 对任意 n 维向量 X, $X^TAX > 0 \iff A$ 正定 $\iff A$ 的正惯性指数为 $n \iff A$ 合同于正定矩阵 $\iff A$ 合同于 $E \iff$ 存在可逆矩阵 C 使得 $A = C^TC \iff A$ 的顺序主子式 $|P_k|$ 全大于 $0 \iff A$ 的主子式全大于 0.

(注:最后一个充要条件的充分性,设 A_k 为正定矩阵 A 的主子式,只需要取 $X = (a_{i_1i_1},0,...,a_{i_2i_2},...,a_{i_ki_k}) \neq 0$,那么 $X^TAX = X_k^TAX_k > 0$,因此 A_k 正定,进而 $|A_k| > 0$ 。必要性是显然的,因为主子式大于 0 必然顺序主子式也都大于 0)

- 对任意 n 维向量 X, $X^TAX < 0 \iff A$ 负定 $\iff A$ 的负惯性指数为 $n \iff A$ 合同于负定矩阵 $\iff A$ 合同于 $-E \iff$ 存在可逆矩阵 C 使得 $A = -C^TC \iff A$ 的顺序主子式 $|-P_k| = (-1)^k |P_k|$ 全大于 $0 \iff -A$ 的主子式全大于 0.
- 对任意 n 维向量 X, $X^TAX \ge 0 \iff A$ 半正定 $\iff A$ 的正惯性指数 $p = r \iff A$ 合同于半正定矩阵 $\iff A$ 合同于 $\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} \iff$ 存在矩阵 C 使得 $A = C^T \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} C \iff A$ 的主子式全大于等于 0.

(注 1: 这里"A 的顺序主子式 $|P_k|$ 全大于等于 0 是不对的!)

(注 2:这里不要求
$$C$$
 是可逆矩阵,取 $C = \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} C_1$,则 $A = C^T C$)

- 对任意 n 维向量 X, $X^TAX \le 0 \iff A$ 半负定 $\iff A$ 的负惯性指数 $r-p=r \iff A$ 的正惯性指数 p=1 $0 \iff A$ 合同于半负定矩阵 $\iff A$ 合同于 $\begin{bmatrix} -E_r & 0 \\ 0 & 0 \end{bmatrix} \iff$ 存在矩阵 C 使得 $A = C^T \begin{bmatrix} -E_r & 0 \\ 0 & 0 \end{bmatrix} C \iff$ -A 的主子式全大于等于 0.
- 若 A 正定,则 kA,A^{-1},A^* 均正定
 - A 为任意 n 阶实可逆矩阵,则 A^TA 必正定
 - A 为任意 $m \times n$ 阶实矩阵,则 $A^T A$ 正定 $\iff A$ 列满秩 (r(A) = n)
 - A 为任意 $m \times n$ 阶实矩阵,则 AA^T 正定 \iff A 行满秩 (r(A) = m)
- 正定矩阵的介值性:

设 X^TAX 为一实二次型. 已知有 n 维实向量 X_1, X_2 , 使得 $X_1^TAX_1 > 0, X_2^TAX_2 < 0$, 则必存在 n 维 实向量 $X_0 \neq 0$ 使得 $X_0^T A X_0 = 0$

(提示:通过非退化线性变化 X = CY 化为规范形后,由条件知正惯性系数 p > 0, 负惯性系数 r - p > 0, 取 向量 $Y = (y_1, ..., y_{n+1}, ..., y_n) = (1, ..., 1, ..., 0)$, 那么取 $X_0 = CY$)

• 设 A 是实对称矩阵,则当 t 充分大时, tE + A 是正定矩阵.

(注: 因为
$$t$$
E + **A** 的第 k 个顺序主子式为 $\begin{vmatrix} t + a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & t + a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & t + a_{nn} \end{vmatrix}$, 行列式最高次数为 t^n ,显然当 t 充分大时 t^n 占主导,那么顺序主子式大于 0 ,那么 t **E** + **A** 正定)

- •(上一结论的推论)设 A 是实对称矩阵,则存在一正实数 c 使得对任意向量 X 都有 $|X^TAX| \le cX^TX$. (注: 当 c 充分大时, cE + A 和 cE - A 都是正定矩阵)
- A, B 正定,则 $\begin{pmatrix} A & O \\ O & B \end{pmatrix}$ 也正定
- 2. 正交线性替换: 线性替换 X = CY 中, C 为正交矩阵
- 3. 任一 n 元实二次型 $f(x_1,...,x_n)=\boldsymbol{X^TAX}=\sum_{i=1}^n\sum_{j=1}^na_{ij}x_ix_j$,都能通过正交线性替换 $\boldsymbol{X}=\boldsymbol{CY}$ 变成标准形 $\lambda_1 y_1^2 + ... + \lambda_n y_n^2$, 其中 $\lambda_1, ..., \lambda_n$ 为 **A** 的全部特征值

4.8 最小二乘法

4.8.1 最小二乘法

- 1. 最小二乘问题: 求 $\min_{x\in\mathbb{R}^n}\|Ax-b\|_2$, 其中 $b\in\mathbb{R}^n, b\notin\mathcal{R}(A)$
 - 写成求和形式就是: 记 $A = (a_{ij}), b = (b_1, ...b_n)^T$, 求使得

$$\min \sum_{i=1}^{n} (a_{i1}x_1 + \dots + a_{in}x_n - b_i)^2$$

的最小二乘解 $\mathbf{x} = (\hat{x}_1, \hat{x}_2, ..., \hat{x}_n)$

- 最小二乘解的推导见附录 4.7.2 最小二乘法
- **2. 正规方程组**: $A^TAX = A^Tb$, 正规方程组的解就是最小二乘解

5 附录:详细证明

2.3.3 子空间的性质

7. 设 $\alpha_1,...,\alpha_n$ 为 n 维线性空间 V 的一组基,A 为一个 $n\times s$ 矩阵,若 $(\beta_1,...,\beta_s)=(\alpha_1,...,\alpha_n)A$,则 $\dim L(\beta_1,...,\beta_s)=$ rank A

证: 设 $A = (\eta_1, ..., \eta_s)$,则 $(\beta_1, ..., \beta_s) = (\alpha_1, ..., \alpha_n)(\eta_1, ..., \eta_s)$,设 rankA,且 A 的列向量的极大无关组为 $\eta_{i_1}, ..., \eta_{i_r}$,则若

$$\begin{aligned} k_1\beta_{i_1}+\ldots+k_r\beta_{i_r} &= \begin{bmatrix} \beta_{i_1},\ldots,\beta_{i_r} \end{bmatrix} \begin{bmatrix} k_1\\\ldots\\k_r \end{bmatrix} = \begin{bmatrix} \alpha_1,\ldots,\alpha_n \end{bmatrix} \begin{bmatrix} \eta_{i_1},\ldots,\eta_{i_r} \end{bmatrix} \begin{bmatrix} k_1\\\ldots\\k_r \end{bmatrix} \\ &= \begin{bmatrix} \alpha_1,\ldots,\alpha_n \end{bmatrix} \begin{bmatrix} k_1\eta_{i_1}+\ldots+k_r\eta_{i_r} \end{bmatrix} = 0 \end{aligned}$$

由于 $\alpha_1, ...\alpha_n$ 为一组基, 因此只能

$$k_1 \eta_{i_1} + \dots + k_r \eta_{i_r} = 0$$

又由 A 的列向量的极大无关组为 $\eta_{i_1},...,\eta_{i_r}$, 因此

$$k_1 = \dots = k_r = 0$$

这说明 $\beta_{i_1},...,\beta_{i_r}$ 线性无关,类似地,从 $\beta_1,...\beta_s$ 中任取 β_j ,那么由(其中 $k_1,...k_{r+1}$ 不全为 0),

$$k_1\eta_{i_1} + \dots + k_r\eta_{i_r} + k_{r+1}\eta_i = 0$$

可以推出

$$k_1\beta_{i_1} + \dots + k_r\beta_{i_r} + k_{r+1}\beta_i = 0$$

这说明 $\beta_{i_1},...,\beta_{i_r},\beta_j$ 线性相关,进而 dim $L(\beta_1,...,\beta_s) = \operatorname{rank}(\beta_1,...,\beta_s) = r$

3.4.1 代数重数和几何重数

2. 几何重数不超过代数重数: 设 $|\lambda E - A| = (\lambda - \lambda_1)^{r_1}...(\lambda - \lambda_s)^{r_s}$, 则 dim $V_{\lambda_i} \le r_i, i = 1, 2, ..., s$ 证: 设 A 的特征值 λ_i 的特征子空间 W_i 维数为 r,其一组基为 $e_1, ..., e_r$,将其扩充为 V 的一组基 $e_1, ..., e_r$ $f_1, ..., f_n$,令

$$P = (e_1, ..., e_r, f_1, ..., f_{n-r})$$

显然 P^{-1} 可逆,且

$$egin{aligned} P^{-1}AP &= P^{-1}(Ae_1,...,Ae_r,Af_1,...,Af_{n-r}) \ &= (\lambda_1 P^{-1}e_1,...,\lambda_r P^{-1}e_r,P^{-1}Af_1,...,P^{-1}Af_{n-r}) \end{aligned}$$

又因为

$$E = P^{-1}P = (P^{-1}e_1, ..., P^{-1}e_r)$$

因此

$$\varepsilon_1 = P^{-1}e_1, \dots, \varepsilon_r = P^{-1}e_r$$

进而

$$egin{aligned} oldsymbol{P^{-1}AP} &= (\lambda_1 oldsymbol{arepsilon}_1,...,\lambda_r oldsymbol{arepsilon}_r, oldsymbol{P^{-1}Af_1},...,oldsymbol{P^{-1}Af_{n-r}}) \ &= egin{pmatrix} \lambda_i E_r & B \ O & C \end{pmatrix} \end{aligned}$$

又因为相似矩阵有相同的矩阵多项式, 因此

$$|\lambda E - A| = |\lambda E - \begin{pmatrix} \lambda_i E_r & B \\ O & C \end{pmatrix}|$$

$$= \begin{vmatrix} \lambda E_r - \lambda_i E_r & -B \\ O & \lambda E_{n-r} - C \end{vmatrix} = |\lambda - \lambda_i|^r |\lambda E_{n-r} - C|$$

令 $|\lambda E - A| = 0$,解得的 λ 的重根数至少有 r 个(除了来自于 $|\lambda - \lambda_i|$,可能 $|\lambda E_{n-r} - C|$ 里面也有根),因此 $r \le r_i$,即 $\dim V_{\lambda_i} \le r_i$

3.6.2 线性空间的分解

A 为 V 上线性变换, A 的特征多项式 $f(\lambda)$ 具有分解式

$$f(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} ... (\lambda - \lambda_s)^{r_s}$$

证明: V 可以分解为其根子空间 $V^{\lambda_i} = \{ \boldsymbol{\xi} \mid (\mathcal{A} - \lambda_i \mathcal{E})^{r_i} \boldsymbol{\xi} = 0 \}$ 的直和

证: 令

$$f_i(\lambda) = \frac{f(\lambda)}{(\lambda - \lambda_i)^{r_i}} = (\lambda - \lambda_1)^{r_1} ... (\lambda - \lambda_{i-1})^{r_{i-1}} (\lambda - \lambda_{i+1})^{r_{i+1}} ... (\lambda - \lambda_s)^{r_s}$$

记 $W_i = \text{Im} f_i(A)$,则由之前结论可知 W_i 是 A— 子空间. 下面证明三件事:

- 1. $V = W_1 + W_2 + ... + W_s$
- 2. $V^{\lambda_1} \oplus V^{\lambda_2} \oplus ... \oplus V^{\lambda_s}$
- 3. $V^{\lambda_i} = W_i$

对于 1, 因为

$$(f_1(\lambda), f_2(\lambda), ..., f_s(\lambda)) = 1$$

那么存在多项式 $u_1(\lambda), u_2(\lambda), ..., u_s(\lambda)$ 使得

$$u_1(\lambda)f_1(\lambda) + u_2(\lambda)f_2(\lambda) + \dots + u_s(\lambda)f_s(\lambda) = 1$$

那么

$$u_1(\mathcal{A})f_1(\mathcal{A}) + u_2(\mathcal{A})f_2(\mathcal{A}) + \dots + u_s(\mathcal{A})f_s(\mathcal{A}) = \mathcal{E}$$

对任意 $\alpha \in V$,有

$$\alpha = \mathcal{E}(\alpha)$$

$$= (u_1(\mathcal{A})f_1(\mathcal{A}) + u_2(\mathcal{A})f_2(\mathcal{A}) + \dots + u_s(\mathcal{A})f_s(\mathcal{A}))(\alpha)$$

$$= u_1(\mathcal{A})f_1(\mathcal{A})(\alpha) + u_2(\mathcal{A})f_2(\mathcal{A})(\alpha) + \dots + u_s(\mathcal{A})f_s(\mathcal{A})(\alpha)$$

$$= f_1(\mathcal{A})(u_1(\mathcal{A})(\alpha)) + f_2(\mathcal{A})(u_2(\mathcal{A})(\alpha)) + \dots + f_s(\mathcal{A})(u_s(\mathcal{A})(\alpha))$$

由于 $f_i(\mathcal{A})(u_i(\mathcal{A})(\boldsymbol{\alpha})) \in \operatorname{Im} f_i(\mathcal{A}) = W_i$, 因此 $V \subset W_1 + ... + W_s$, 进而 $V = W_1 + ... + W_s$

对于 2, 通过零元唯一分解来证明:

设

$$\beta_1 + \dots + \beta_s = 0 \tag{3}$$

其中 β_i 满足 $(A - \lambda_i \mathcal{E})^{r_i}(\beta_i) = 0$,要证明 $\beta_i = 0$

等式 (3) 成立时,显然有 $(\lambda - \lambda_j)^{r_j} | f_i(\lambda), i \neq j$,因此存在 $h(\lambda)$ 使得 $f_i(\lambda) = h(\lambda)(\lambda - \lambda_j)^{r_j}$,于是

$$f_i(\mathcal{A}) = h(\mathcal{A})(\lambda - \lambda_i)^{r_j}$$

那么

$$f_i(\mathcal{A})(\boldsymbol{\beta_j}) = h(\mathcal{A})(\lambda - \lambda_j)^{r_j}(\boldsymbol{\beta_j}) = h(\mathcal{A})(\mathbf{0}) = \mathbf{0}, \ i \neq j$$

再对(3)两边取A,再利用以上结果可以得到

$$f_i(\mathcal{A})(\beta_1) + \dots + f_i(\mathcal{A})(\beta_i) + \dots + f_i(\mathcal{A})(\beta_s) = f_i(\mathcal{A})(\beta_i) = \mathbf{0}$$

又因为 $(f_i(\lambda), (\lambda - \lambda_i)^{r_i}) = 1$, 因此存在多项式 $u(\lambda), v(\lambda)$ 使得

$$u(\lambda)f_i(\lambda) + v(\lambda)(\lambda - \lambda_i)^{r_i} = 1$$

$$\Rightarrow u(A)f_i(A) + v(A)(A - \lambda_i \mathcal{E})^{r_i} = \mathcal{E}$$

由此,

$$\beta = \mathcal{E}(\beta) = (u(\mathcal{A})f_i(\mathcal{A}) + v(\mathcal{A})(\mathcal{A} - \lambda_i \mathcal{E})^{r_i}(\beta_i)$$

$$= u(\mathcal{A})[f_i(\mathcal{A})\beta_i] + v(\mathcal{A})[(\mathcal{A} - \lambda_i \mathcal{E})^{r_i}\beta_i]$$

$$= u(\mathcal{A})(\mathbf{0}) + v(\mathcal{A})(\mathbf{0}) = \mathbf{0}$$

对于 3, 首先 $\alpha \in W_i$, 存在 $\beta \in V$, 使得 $f_i(A)(\beta) = \alpha$, 那么 $(A - \lambda_i \mathcal{E})^{r_i}(\alpha) = (A - \lambda_i \mathcal{E})^{r_i} f_i(A)(\beta) = f(A)\beta$,

由 Hamiliton-Cayley 定理, $f(A) = \mathbf{0}$,因此 $(A - \lambda_i \mathcal{E})^{r_i}(\alpha) = \mathbf{0}$,进而 $\alpha \in V^{\lambda_i}$,得到 $W_i \subset V^{\lambda_i}$ 再任取 $\alpha \in V^{\lambda_i}$,设

$$\alpha = \alpha_1 + \dots + \alpha_s, \ \alpha_i \in W_i \tag{4}$$

即 $\alpha_1 + \alpha_2 + \ldots + (\alpha_i - \alpha) + \ldots + \alpha_s = 0$, 令 $\beta_j = \alpha_j (j \neq i)$, $\beta_i = \alpha_i - \alpha$, 那么 (4) 化为

$$\beta_1 + \dots + \beta_i + \dots + \beta_s = 0 \tag{5}$$

由于 $\alpha_j \in W_j \subset V^{\lambda_j}$ (j=1,2,...,s),所以 $\beta_j \in V^{\lambda_j}$ 且 $\beta_i = \alpha_i - \alpha \in V^{\lambda_i}$ 由第二部分证明已知 $V^{\lambda_1} \oplus V^{\lambda_2} \oplus ... \oplus V^{\lambda_s}$,因此(5)的零元分解式唯一,进而 $\beta_j = 0$,j=1,2,...,s,进而 $\alpha = \alpha_i \in W_i$,因此 $V^{\lambda_i} \subset W_i$,综合两点知 $V^{\lambda_i} = W_i$

最后,综合三部分证明, $V = V^{\lambda_1} \oplus ... \oplus V^{\lambda_s}$ 得证

4.7.2 最小二乘法

求 $\min_{x\in\mathbb{R}^n}\|Ax-b\|_2$,其中 $b\in\mathbb{R}^n,b\notin\mathcal{R}(A)$ 解:等价于最小化

$$\|Ax - b\|_2^2 = (Ax - b)^T (Ax - b)$$

= $x^T A^T Ax - b^T Ax - x^T A^T b + b^T b$

求导得到

$$\frac{\partial \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}}{\partial \mathbf{x}} = 2\mathbf{A}^{T}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{T}\mathbf{b} = 0$$

即得到正规方程组

$$A^T A x = A^T b$$

若 $A^T A$ 满秩,则立刻可解出最小二乘解 $x = (A^T A)^{-1} A^T b$