Systèmes d'Exploitation 1

Série TD N°6 Gestion de la mémoire : Allocation de mémoire non contiguë (2)

Exercice 1: (EXAMEN PRINCIPAL 2009)

Considérons une architecture caractérisée par les hypothèses suivantes :

- Une table de page de taille 128Ko
- Chaque entrée de la table contient une référence vers un cadre de page et un bit de présence/absence.
- La taille d'une page est de 64ko
- La taille de la mémoire physique est de 2Go
- Une adresse virtuelle indexe un octet

Répondez aux questions suivantes en justifiant toujours votre réponse :

1. Combien de cadre de page contient la mémoire physique ?

```
Nb de cadres de pages = taille mem. Physique / taille d'un cadre = 2*2^{30} / 2^6*2^{10} = 2^{15} cadres
```

2. Quelle est la taille en bit d'une entrée de la table de pages ?

```
Taille d'une entrée de la TP = nb de bits pour coder un cadre + 1 bit de présence = 15 + 1 = 16 bits
```

3. Quel est le nombre d'entrées dans la table de pages ?

```
Nb d'entrées dans la TP = Taille de la TP / taille d'une entrée de la TP = 128 \text{ Ko} / 16 = 2^7 * 2^{10} * 2^3 / 2^4 = 2^{16} entrées
```

4. Quelle est la taille de la mémoire virtuelle de cette architecture ?

```
Taille mem virtuelle = nb de pages * taille d'une page
= nb d'entrées de la TP * taille d'un cadre
= 2^{16} * 2^{16} = 2^{32} octets = 4Go
```

5. Quelle est la taille en bit du bus d'adresse de cette architecture ?

```
Taille bus d'adresses = nb de bits nécessaires pour coder la mémoire virtuelle
= 32 bits
```

6. Considérons les deux adresses logiques suivantes exprimées en décimal : 1024 et 65540.

Donner si possible les adresses physiques correspondantes (exprimées en décimal) en vous basant sur les 10 premières entrées de la table de pages données ci-dessous.

N° de page	N° de cadre de page	Bit de présence/absence
0	0	1
1	2	0
2	8	0
3	2050	1
4	21054	1
5	31463	1
6	2187	0
7	260	0
8	1266	0
9	1024	1

@logique = $(n^{\circ}page, offset)$

Exemple1

@logique =
$$1024$$

taille page = 2^{16} = 65536
 n° page = 0
déplacement = 1024

$$\rightarrow$$
 n° cadre = 0

$$\rightarrow$$
 @ physique = $0*65536 + 1024 = 1024$

Exemple2

@logique =
$$65540$$

taille page = 2^{16} = 65536
n°page = 1
déplacement = 4

Pour la page 1, le bit de présence/absence = 0, d'où la page n'est pas chargée en mémoire. On ne peut pas connaître l'adresse physique.

Exercice 2: (EXAMEN DE RATTRAPAGE 2009)

On considère un système utilisant la technique de pagination et ayant les caractéristiques suivantes :

- Une table de page ayant 2¹⁶ entrées
- Chaque entrée de la table de pages est codée sur 16 bits. Une entrée contient un numéro de cadre de page et un bit de présence/absence.
- Le déplacement (offset) est codé sur 16 bits
- Une adresse virtuelle indexe 1 octet
- 1. Quelle est la taille d'une page ?

```
Taille d'une page = 2^{16(offset)} octets = 64 Ko
```

2. Quelle est la taille de la mémoire physique ?

```
Taille mem physique = nb de cadres * taille d'un cadre
= 2^{nb \text{ de bits pour coder un cadre}} * taille d'un cadre
= 2^{15} * 2^{16} = 2^{31} octets = 2^{31}
```

3. Quelle est la taille de la mémoire virtuelle ?

```
Taille mem virtuelle = nb d'entrées TP * taille d'une page
= 2^{16} * 2^{16} octets = 2^{32} octets = 4 Go
```

4. Quelle est la taille (en bit) du bus d'adresse de ce système ?

Taille d'un bus d'adresses = nb de bits pour coder la mémoire virtuelle = 32 bits

5. En considérant les huit premières entrées de la table de page représentée par la figure suivante, donner les adresses logiques correspondantes aux adresses physiques 33792 et 66048.

N° de cadre de page	N° de page	Bit de présence/absence
7	0	0
6	0	0
5	0	1
4	1	1
3	0	0
2	0	0
1	2	1
0	3	1

@physique = (n° cadre, offset)

@ Physique Taille cadreN° de cadredéplacement

Exemple1

@physique = taille cadre = 2^{16} = n° cadre = 0 déplacement =

- \rightarrow n° page = 3
- \rightarrow @ logique = 3*65536 + 33792 = 230400

Exemple2

@physique = taille cadre = 2^{16} = n° cadre = 1 déplacement =

- \rightarrow n° page = 2
- \rightarrow @ logique = 2*65536 + 512 = 131584