The Application of Data Structure in Deep Neural Network

Anonymous Author(s)

Affiliation Address email

Abstract

- This paper presents a new approach to tackle the ConnectX. Our approach achieved in the Kaggle ConnectX Challenge.
- 3 1 Introduction
- 4 2 Related Work
- 5 2.1 Q-Learning

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha \cdot \left(r_t + \gamma \cdot \arg\max_{a} Q(s_{t+1}, a)\right)$$
(1)

- 6 Where Q is the function $Q: S \times A \to R$, r_t is the reward received when moving from the state s_t to
- 7 the state s_{t+1} , α is the learning rate $(0 < \alpha < 1)$, γ is the discount factor $(0 \le \gamma \le 1)$.
- 8 2.2 Deep Q-Learning (DQN)
- 9 3 Methods
- 10 4 Experiments
- 11 5 Results

We

Method	Score
random select	446.3
heuristic select	600.0
Q-Learning	
Deep Q-Learning	

Table 1: Methods comparison