### Програмування

ТЕМА 11. МНОЖИНИ

#### Множини

Тип множини використовують у задачах, у яких має значення тільки належність або неналежність елемента деякій множині.

В основному реалізація множин у програмуванні повторює відомі операції та відношення для множин у математиці.

Множини, є такими, що змінюються (mutable).

### Носій типу множина

Множина позначається включенням її елементів у фігурні дужки через кому.

$$\{x_1, ..., x_n\}.$$

Порожня множина позначається set(), щоб уникнути плутанини зі словниками.

Нехай множина M  $\epsilon$  носієм типу елементів t.

Тоді носієм типу множини елементів типу t буде

 $M_s = 2^M -$  множина всіх підмножин множини M.

# Основні операції для множин

| Операція                            | Опис                                               |  |  |  |  |
|-------------------------------------|----------------------------------------------------|--|--|--|--|
| {x <sub>1</sub> ,, x <sub>n</sub> } | Створити множину з елементів $x_1,, x_n$           |  |  |  |  |
| set()                               | Порожня множина                                    |  |  |  |  |
| set(x)                              | Перетворення х у множину (х повинно належати типу, |  |  |  |  |
|                                     | що ітерується)                                     |  |  |  |  |
| a   b                               | Об'єднання множин а U b                            |  |  |  |  |
| a & b                               | Перетин множин а ∩ b                               |  |  |  |  |
| a - b                               | Різниця множин а \ b                               |  |  |  |  |
| a ^ b                               | Симетрична різниця множин а та b                   |  |  |  |  |
| len(a)                              | Довжина а — кількість елементів у множині          |  |  |  |  |
| min(a)                              | Найменший елемент множини а                        |  |  |  |  |
| max(a)                              | Найбільший елемент множини а                       |  |  |  |  |
| a.copy()                            | Повертає копію множини а                           |  |  |  |  |

### Основні відношення для множин

Для множин визначено відношення з Rel = {==, !=, >, <, >=, <=} а також in, not in.

Відношення a == b означає рівність множин.

Відношення а  $!= b \equiv not (a == b)$ .

Відношення a < b означає включення множини а у множину b.

Відношення а <= b означає нестроге включення множини а у множину b.

Відношення  $a > b \equiv b < a$ .

Відношення a >= b = b <= a.

x in a == True, коли х входить у а

x not in a == True, коли x не входить y a

### Основні інструкції для множин

Для множин визначено присвоєння та виведення.

#### a = b, print(a)

Введення не визначено, тому треба вводити множину поелементно.

Визначено також цикл по всіх елементах множини

for x in a:

P

### Приклад

Перевірити, чи складаються 2 рядки s1 та s2 з одних і тих же символів. Тобто, чи справедливе твердження, що кожний символ s1 входить у s2 та кожний символ s2 входить у s1.

# Додаткові операції для множин

| Операція                  | Опис                                 |  |  |  |
|---------------------------|--------------------------------------|--|--|--|
| a.union(b)                | Об'єднання множин а U b, те ж саме,  |  |  |  |
|                           | щойа   b                             |  |  |  |
| a.intersection(b)         | Перетин множин а ∩ b, те ж саме, що  |  |  |  |
|                           | йа& b                                |  |  |  |
| a.difference(b)           | Різниця множин а∖b, те ж саме, що й  |  |  |  |
|                           | a - b                                |  |  |  |
| a.symmetric_difference(b) | Симетрична різниця множин а та b, те |  |  |  |
|                           | ж саме, що й а ^ b                   |  |  |  |

### Додаткові відношення для множин

| Відношення      | Опис                                              |
|-----------------|---------------------------------------------------|
| a.isdisjoint(b) | True, коли перетин а та b – порожня множина, те ж |
|                 | саме, що й а & b == set()                         |
| a.issubset(b)   | Чи є а підмножиною b, те ж саме, що й а <= b      |
| a.issuperset(b) | Чи є b підмножиною а, те ж саме, що й b <= а      |

## Додаткові інструкції для множин

| Інструкція   | Опис                                         |  |  |  |
|--------------|----------------------------------------------|--|--|--|
| a.add(x)     | Додає елемент х до множини а                 |  |  |  |
| a.remove(x)  | Видаляє елемент х з множини а. Якщо елемента |  |  |  |
|              | немає у множині, - дає помилку               |  |  |  |
| a.discard(x) | Видаляє елемент х з множини а, якщо цей      |  |  |  |
|              | елемент є у множині                          |  |  |  |
| a.pop()      | Видаляє довільний елемент з множини а. Якщо  |  |  |  |
|              | множина порожня та в ній немає жодного       |  |  |  |
|              | елемента, - дає помилку                      |  |  |  |
| a.clear()    | Видаляє всі елементи з множини а             |  |  |  |
| a.update(b)  | Оновити а значенням об'єднання а та b. Те ж  |  |  |  |
|              | саме, що й a = a   b                         |  |  |  |

# Додаткові інструкції для множин.2

| Інструкція                       | Опис                                            |  |  |  |
|----------------------------------|-------------------------------------------------|--|--|--|
| a.intersection_update(b)         | Оновити а значенням перетину а та b. Те ж саме, |  |  |  |
|                                  | що й а = а & b                                  |  |  |  |
| a.difference_update(b)           | Оновити а значенням різниці а та b. Те ж саме,  |  |  |  |
|                                  | що й a = a - b                                  |  |  |  |
| a.symmetric_difference_update(b) | Оновити а значенням симетричної різниці а та b. |  |  |  |
|                                  | Те ж саме, що й a = a ^ b                       |  |  |  |

#### Незмінні множини frozenset

У Python окрім звичайних множин є також множини, що не змінюються (immutable), frozenset.

Для створення такої множини треба писати

frozenset(t), де t - вираз типу, що ітерується.

Для frozenset визначено всі ті ж основні операції, відношення та інструкції, що й для звичайних множин set.

Також визначені додаткові операції та відношення, наведені вище.

Не визначені тільки додаткові інструкції.

05.02.2018

frozenset можуть фігурувати у виразах разом із звичайними множинами. При цьому результат виразу буде того типу, до якого належить перший операнд операції (set aбo frozenset).

frozenset використовують тоді, коли множина після створення не змінюється і потрібна більша швидкодія у порівнянні з використанням звичайних множин set.

### Множиноутворення

Множиноутворення (set comprehension) — це вираз, результатом якого є множина.

Множиноутворення схоже на спискоутворення та словникоутворення.

Вираз має такий синтаксис:

#### $\{e(x) \text{ for } x \text{ in } t \text{ if } F\}$

 $\circ$  де e(x) — вираз, t — вираз типу, що ітерується, F — умова.

Python вибирає всі x з t, які задовольняють умову F, додає у множину e(x) та повертає отриману множину.

Якщо умова F відсутня, то іf F опускають.

### Приклад «Тур коня»

«Тур коня». Знайти шлях шахової фігури «кінь» з поля шахової дошки (x,m) на поле (y,k), де x, y - вертикалі (позначаються літерами від а до h), m, k - горизонталі (позначаються цифрами від 1 до 8).

Програма, яку ми розбирали у попередній темі, знаходила шлях коня, але цей шлях був неоптимальний через вибір наступного ходу, починаючи з початку списку ходів.

Побудуємо програму, яка буде знаходити більш оптимальний шлях.

### Приклад «Тур коня».2

На *i*-му кроці будуємо граничну множину полів шахової дошки, яких кінь може досягти з початкової позиції за *i* кроків.

Коли у множину потрапляє кінцеве поле, йде повернення до початкової позиції з побудовою шляху.



| 2 | 3 | 4 | 1 | 2 | 1 | 4 | 3 |
|---|---|---|---|---|---|---|---|
| 3 | 2 | 1 | 2 | 3 | 2 | 1 | 2 |
| 2 | 3 | 2 | 3 | 9 | 3 | 2 | 3 |
| 3 | 2 | 1 | 2 | 3 | 2 | 1 | 2 |
| 2 | 3 | 4 | 1 | 2 | 1 | 4 | 3 |
| 3 | 2 | 3 | 2 | 3 | 2 | 3 | 2 |
| 4 | 3 | 2 | 3 | 2 | 3 | 2 | 3 |
| 3 | 4 | 3 | 4 | 3 | 4 | 3 | 4 |

#### Резюме

#### Ми розглянули:

- 1. Множини: носій, основні операції, відношення та інструкції для множин.
- 2. Додаткові операції, відношення та інструкції для множин.
- 3. Множини, що не змінюються.
- 4. Множиноутворення.

### Де прочитати

- 1. Обвінцев О.В. Інформатика та програмування. Курс на основі Python. Матеріали лекцій. — К., Основа, 2017
- 2. A Byte of Python (Russian) Версия 2.01 Swaroop C H (Translated by Vladimir Smolyar), <a href="http://wombat.org.ua/AByteOfPython/AByteofPythonRussian-2.01.pdf">http://wombat.org.ua/AByteOfPython/AByteofPythonRussian-2.01.pdf</a>
- 3. Марк Лутц, Изучаем Python, 4-е издание, 2010, Символ-Плюс
- 4. Python 3.4.3 documentation
- 5. Бублик В.В., Личман В.В., Обвінцев О.В.. Інформатика та програмування. Електронний конспект лекцій, 2003 р.,
- 6. http://www.python-course.eu/python3 sets frozensets.php