DrNAS: Dirichlet Neural Architecture Search

· 作者: Xiangning Chen, Ruochen Wang, Minhao Cheng, et.al.

· 机构: UCLA, DiDi Al Labs

· 会议: ICLR2021

· 地址: https://arxiv.org/abs/2006.10355

· 代码: https://github.com/xiangning-chen/DrNAS

论文主要内容

摘要

本文将NAS建模成一个学习分布的问题,将op连续松弛的权重看作随机变量(服从Dirichlet分布)。这种方式能自然的引入探索、提高泛化能力。其次为了减轻微分NAS的内存开销,本文提出了一个简单的渐进学习策略能够直接在large-scale 任务上搜索。最后在不同数据集、搜索空间下验证DrNAS的有效性。

研究内容

方法

方法

· DARTs:

$$\min_{\theta} \mathcal{L}_{val}(w^*, \theta) \quad \text{s.t. } w^* = \underset{w}{\operatorname{arg\,min}} \mathcal{L}_{train}(w, \theta), \quad \sum_{o=1}^{|\mathcal{O}|} \theta_o^{(i,j)} = 1, \ \forall \ (i,j), \ i < j, \quad (1)$$

- · DARTs那套做法把 heta 看作一个可学习参数,直接对其优化。
 - (**点估计**) 导致在 θ 在验证集上过拟合,引入巨大的泛化误差。
 - 。 直接优化 heta 导致搜索算法开始阶段快速收敛到次优路径,缺乏探索。
- · 由此将DARTs建模成学习一个distribution的问题: θ 是一个**随机变量**,从一个可学习的分布(分布参数 β)中采样得到

$$\min_{\beta} E_{q(\theta|\beta)} \left[\mathcal{L}_{val}(w^*, \theta) \right] + \lambda d(\beta, \hat{\beta}) \text{ s.t. } w^* = \underset{w}{\operatorname{arg \, min}} \ \mathcal{L}_{train}(w, \theta). \tag{2}$$

取 $q(\theta \mid \beta) \sim \mathrm{Dir}(\beta)$ 。 设置Anchor $\hat{\beta} = 1$,避免 β 太小(sparse sample、high variance、unstable)太大(dense sample、low variance、insufficient exploration)。

$$\frac{d\theta_i}{d\beta_j} = -\frac{\frac{\partial F_{Beta}}{\partial \beta_j}(\theta_j | \beta_j, \beta_{tot} - \beta_j)}{f_{Beta}(\theta_j | \beta_j, \beta_{tot} - \beta_j)} \times \left(\frac{\delta_{ij} - \theta_i}{1 - \theta_j}\right) \quad i, j = 1, ..., |\mathcal{O}|, \tag{3}$$

获得最优架构

$$o^{(i,j)} = \arg\max_{o \in \mathcal{O}} E_{q(\theta_o^{(i,j)}|\beta^{(i,j)})} [\theta_o^{(i,j)}]. \tag{4}$$

这个期望就是Dirichlet分布均值: $\frac{eta_o^{(i,j)}}{\sum_{o'}eta_{o'}^{(i,j)}}$

正则性

· DARTs的泛化误差和验证集loss关于架构参数的hessian矩阵特征值高度相关

Hessian矩阵的<mark>特征值</mark>就是形容其在该点附近<mark>特征向量</mark>方向的凹凸性,特征值越大,凸性越强。你可以把函数想想成一个小山坡,陡的那面是特征值大的方向,平缓的是特征值小的方向。

· 优化目标公式(2)等价于公式(5):

$$\min_{\beta} E_{q(\theta|\beta)} \left[\mathcal{L}_{val}(w^*, \theta) \right] \text{ s.t. } w^* = \arg\min_{w} \mathcal{L}_{train}(w, \theta) , \ d(\beta, \hat{\beta}) \le \delta, \tag{5}$$

Proposition 1 Let $d(\beta, \hat{\beta}) = \|\beta - \hat{\beta}\|_2 \le \delta$ and $\hat{\beta} = 1$ in the bi-level formulation (5). Let μ denote the mean under the Laplacian approximation of Dirichlet. If $\nabla^2_{\mu} \tilde{\mathcal{L}}_{val}(w^*, \mu)$ is Positive Semi-definite, the upper-level objective can be approximated bounded by:

$$E_{q(\theta|\beta)}(\mathcal{L}_{val}(w,\theta)) \gtrsim \tilde{\mathcal{L}}_{val}(w^*,\mu) + \frac{1}{2}\left(\frac{1}{1+\delta}\left(1 - \frac{2}{|\mathcal{O}|}\right) + \frac{1}{|\mathcal{O}|}\frac{1}{1+\delta}\right)tr\left(\nabla_{\mu}^2 \tilde{\mathcal{L}}_{val}(w^*,\mu)\right) \quad (6)$$

with:

$$\tilde{\mathcal{L}}_{val}(w^*, \mu) = \mathcal{L}_{val}(w^*, Softmax(\mu)), \ \mu_o = \log \beta_o - \frac{1}{|\mathcal{O}|} \sum_{o'} \log \beta_{o'}, \ o = 1, \dots, |\mathcal{O}|.$$

·公式(6)的hessian矩阵迹就是特征值之和,被验证集loss的期望bound

Figure 4: Trajectory of the Hessian norm on NAS-Bench-201 when searching with CIFAR-10 (best viewed in color).

渐进式架构学习

- · GPU memory会随着DARTs的候选op增加而线性增长。
 - 。常会使用一些proxy task(用更小的数据集、更少的网络层、channel数)
 - PC-DARTs提出partial channel,训练中随机使用1/k channel,剩余channel shotcut。这样会损失信息、带来随机性,直接结合分布学习加大不稳定

CIFAR-10								
K	Test Accuracy	GPU Memory						
	(%)	(MB)						
1	94.36 ± 0.00	2437						
2	93.49 ± 0.28	1583						
4	92.85 ± 0.35	1159						
8	91.06 ± 0.00	949						
Ours	94.36 ± 0.00	949						
CIFAR-100								
	CIFAR-10	JU						
ν	Test Accuracy	GPU Memory						
K								
K 1	Test Accuracy	GPU Memory						
	Test Accuracy (%)	GPU Memory (MB)						
1	Test Accuracy (%) 73.51 ± 0.00	GPU Memory (MB) 2439						
1 2	Test Accuracy (%) 73.51 ± 0.00 68.48 ± 0.41	GPU Memory (MB) 2439 1583						

- · 提出逐渐增加使用channel的比例,同时逐渐剪枝op(根据分布)
- · 每次在一定搜索步后,增加partial channel比例,超网会逐渐变宽。调整卷积权重:

$$g(j) = \begin{cases} j & j \le n \\ \text{random sample from } \{1, 2, \dots, n\} & j > n \end{cases}$$
 (7)

$$\mathbf{U}_{o,i,h,w}^{(l)} = \mathbf{W}_{g(o),g(i),h,w}^{(l)}, \tag{8}$$

·加宽超网后,根据dirichlet分布参数 eta ,剪掉不重要的op,保持GPU memory不变

实验结果

Darts space

CIFAR-10

· CIFAR-10搜索中堆20cell, initial channel=36

Table 2: Comparison with state-of-the-art image classifiers on CIFAR-10.

Architecture	Test Error (%)	Params (M)	Search Cost (GPU days)	Search Method
DenseNet-BC (Huang et al., 2017)*	3.46	25.6	-	manual
NASNet-A (Zoph et al., 2018)	2.65	3.3	2000	RL
AmoebaNet-A (Real et al., 2019)	3.34 ± 0.06	3.2	3150	evolution
AmoebaNet-B (Real et al., 2019)	2.55 ± 0.05	2.8	3150	evolution
PNAS (Liu et al., 2018)*	3.41 ± 0.09	3.2	225	SMBO
ENAS (Pham et al., 2018)	2.89	4.6	0.5	RL
DARTS (1st) (Liu et al., 2019)	3.00 ± 0.14	3.3	0.4	gradient
DARTS (2nd) (Liu et al., 2019)	2.76 ± 0.09	3.3	1.0	gradient
SNAS (moderate) (Xie et al., 2019)	2.85 ± 0.02	2.8	1.5	gradient
GDAS (Dong & Yang, 2019)	2.93	3.4	0.3	gradient
BayesNAS (Zhou et al., 2019)	2.81 ± 0.04	3.4	0.2	gradient
ProxylessNAS (Cai et al., 2019) [†]	2.08	5.7	4.0	gradient
PARSEC (Casale et al., 2019)	2.81 ± 0.03	3.7	1	gradient
P-DARTS (Chen et al., 2019)	2.50	3.4	0.3	gradient
PC-DARTS (Xu et al., 2020)	2.57 ± 0.07	3.6	0.1	gradient
SDARTS-ADV (Chen & Hsieh, 2020)	2.61 ± 0.02	3.3	1.3	gradient
GAEA + PC-DARTS (Li et al., 2020)	2.50 ± 0.06	3.7	0.1	gradient
DrNAS (without progressive learning)	2.54 ± 0.03	4.0	0.4^{\ddagger}	gradient
DrNAS	2.46 ± 0.03	4.1	0.6^{\ddagger}	gradient

^{*} Obtained without cutout augmentation.

Imagenet

· 堆叠14cells, inital channel=48

[†] Obtained on a different space with PyramidNet (Han et al., 2017) as the backbone. ‡ Recorded on a single GTX 1080Ti GPU.

Table 3: Comparison with state-of-the-art image classifiers on ImageNet in the mobile setting

Architecture		Test Error(%)		Search Cost	Search
		top-5	(M)	(GPU days)	Method
Inception-v1 (Szegedy et al., 2015)	30.1	10.1	6.6	-	manual
MobileNet (Howard et al., 2017)	29.4	10.5	4.2	-	manual
ShuffleNet $2 \times (v1)$ (Zhang et al., 2018)	26.4	10.2	~ 5	-	manual
ShuffleNet $2 \times (v2)$ (Ma et al., 2018)	25.1	-	~ 5	-	manual
NASNet-A (Zoph et al., 2018)	26.0	8.4	5.3	2000	RL
AmoebaNet-C (Real et al., 2019)	24.3	7.6	6.4	3150	evolution
PNAS (Liu et al., 2018)	25.8	8.1	5.1	225	SMBO
MnasNet-92 (Tan et al., 2019)	25.2	8.0	4.4	-	RL
DARTS (2nd) (Liu et al., 2019)	26.7	8.7	4.7	1.0	gradient
SNAS (mild) (Xie et al., 2019)	27.3	9.2	4.3	1.5	gradient
GDAS (Dong & Yang, 2019)	26.0	8.5	5.3	0.3	gradient
BayesNAS (Zhou et al., 2019)	26.5	8.9	3.9	0.2	gradient
DSNAS (Hu et al., 2020)†	25.7	8.1	-	-	gradient
ProxylessNAS (GPU) (Cai et al., 2019) [†]	24.9	7.5	7.1	8.3	gradient
PARSEC (Casale et al., 2019)	26.0	8.4	5.6	1	gradient
P-DARTS (CIFAR-10) (Chen et al., 2019)	24.4	7.4	4.9	0.3	gradient
P-DARTS (CIFAR-100) (Chen et al., 2019)	24.7	7.5	5.1	0.3	gradient
PC-DARTS (CIFAR-10) (Xu et al., 2020)	25.1	7.8	5.3	0.1	gradient
PC-DARTS (ImageNet) (Xu et al., 2020)	24.2	7.3	5.3	3.8	gradient
GAEA + PC-DARTS (Li et al., 2020)†	24.0	7.3	5.6	3.8	gradient
DrNAS (without progressive learning) [†]	24.2	7.3	5.2	3.9	gradient
DrNAS [†]	23.7	7.1	5.7	4.6	gradient

 $^{^{\}dagger}$ The architecture is searched on ImageNet, otherwise it is searched on CIFAR-10 or CIFAR-100.

NAS-bench-201

· 4个不同随机种子实验

Table 4: Comparison with state-of-the-art NAS methods on NAS-Bench-201.

Method	CIFAR-10		CIFA	R-100	ImageNet-16-120		
Method	validation	test	validation	test	validation	test	
ResNet (He et al., 2016)	90.83	93.97	70.42	70.86	44.53	43.63	
Random (baseline)	90.93 ± 0.36	93.70 ± 0.36	70.60 ± 1.37	70.65 ± 1.38	42.92 ± 2.00	42.96 ± 2.15	
RSPS (Li & Talwalkar, 2019)	84.16 ± 1.69	87.66 ± 1.69	45.78 ± 6.33	46.60 ± 6.57	31.09 ± 5.65	30.78 ± 6.12	
Reinforce (Zoph et al., 2018)	91.09 ± 0.37	93.85 ± 0.37	70.05 ± 1.67	70.17 ± 1.61	43.04 ± 2.18	43.16 ± 2.28	
ENAS (Pham et al., 2018)	39.77 ± 0.00	54.30 ± 0.00	10.23 ± 0.12	10.62 ± 0.27	16.43 ± 0.00	16.32 ± 0.00	
DARTS (1st) (Liu et al., 2019)	39.77 ± 0.00	54.30 ± 0.00	38.57 ± 0.00	38.97 ± 0.00	18.87 ± 0.00	18.41 ± 0.00	
DARTS (2nd) (Liu et al., 2019)	39.77 ± 0.00	54.30 ± 0.00	38.57 ± 0.00	38.97 ± 0.00	18.87 ± 0.00	18.41 ± 0.00	
GDAS (Dong & Yang, 2019)	90.01 ± 0.46	93.23 ± 0.23	24.05 ± 8.12	24.20 ± 8.08	40.66 ± 0.00	41.02 ± 0.00	
SNAS (Xie et al., 2019)	90.10 ± 1.04	92.77 ± 0.83	69.69 ± 2.39	69.34 ± 1.98	42.84 ± 1.79	43.16 ± 2.64	
DSNAS (Hu et al., 2020)	89.66 ± 0.29	93.08 ± 0.13	30.87 ± 16.40	31.01 ± 16.38	40.61 ± 0.09	41.07 ± 0.09	
PC-DARTS (Xu et al., 2020)	89.96 ± 0.15	93.41 ± 0.30	67.12 ± 0.39	67.48 ± 0.89	40.83 ± 0.08	41.31 ± 0.22	
DrNAS	91.55 ± 0.00	94.36 ± 0.00	73.49 ± 0.00	73.51 ± 0.00	46.37 ± 0.00	46.34 ± 0.00	
optimal	91.61	94.37	73.49	73.51	46.77	47.31	

Exploration and exploitation

Figure 1: Accuracy range (min-max) of the 100 sampled architectures. Note that the solid line is our derived architecture according to the Dirichlet mean as described in Section 2.2.

- · 在搜索过程中每个epoch依照分布采样100个 heta 。再对这100个 heta 分别argmax获得子网
- · 早期采样的架构准确率分布很散,代表探索。
- · 晚期采样的架构准确率范围变窄,代表开发

消融实验

Table 5: Test accuracy of the searched architecture with different λ s on NAS-Bench-201 (CIFAR-10). $\lambda = 1e^{-3}$ is what we used for all of our experiments.

λ	0	$5e^{-4}$	$1e^{-3}$	$5e^{-3}$	$1e^{-2}$	$1e^{-1}$	1
Accuracy	93.78	94.01	94.36	94.36	94.36	93.76	93.76

Figure 5: Trajectory of the Hessian norm under various λ s on NAS-Bench-201 when searching with CIFAR-10 (best viewed in color).