Topology - Homework 11

Question 1.

Consider a Cauchy sequence x_n in \mathbb{R}^{ω} .

$$d^\omega(x,y) = \sup\{rac{d^*(x_i,y_i)}{i}: i\in N\}.$$

For a fix i, we have $d^*(\pi_i((x_i)), \pi_i((y_i))) \leq i \cdot d^{\omega}((x_i), (y_i))$.

Sequence $\{\pi_i((x_i)_n)\}$ is a Cauchy sequence in \mathbb{R} , and it converges to some a_i .

Then we know that $\{\pi_i((x_i)_n)\}$ converge to the point $a=(a_1,a_2,\cdots)$ in R^{ω} .

Hence the metric space $(\mathbb{R}^{\omega}, d^{\omega})$ is complete.

Question 2.

(i)

Assume that there is $\epsilon > 0$ such that for every $x \in X$ the closure of $B_d(x,\epsilon)$ in X is compact.

Consider a Cauchy sequence $\{x_n\}$ in X.

There is some $N \in \mathbb{N}$ such that for all $m, n > N, d(x_m, x_n) < \frac{\epsilon}{2}$.

That is, all points x_n with n > N are all contained in an ϵ -ball.

Since the closure of this ϵ -ball is compact and X is a metric space, the closure of the ϵ -ball is sequentially compact, and the sequence of x_n with n > N is convergent.

Then we know that the sequence $\{x_n\}$ is convergent.

Hence X is complete.

(ii)

The space $\{\frac{1}{n} : n \in \mathbb{N}\}$ is an example.

Obviously it's incomplete, since $0 \notin \{\frac{1}{n} : n \in \mathbb{N}\}$ and 0 is the only limit point of this space.

And this space is compact, so every closed subset of it is also compact.

Hence the closure of every ϵ -ball for every $\frac{1}{n}$ is compact.

Question 3.

$$(i) \Rightarrow (ii)$$

Since (X, d) is complete, every Cauchy sequence in X is convergent.

For every nest sequence $C_1 \supset C_2 \supset \cdots$ of nonempty closed subsets of X with $\lim_{n \to \infty} d(C_n) = 0$, choose x_i s.t. $x_i \in C_i$ and we can obtain a Cauchy sequence $\{x_i\}$.

Assume that $\{x_i\}$ converges to some $x\in X$ and $\lim_{n\to\infty}d(x_n,x)=0$.

There must be $x \in C_n$ for all $n \in \mathbb{N}_+$.

Otherwise, if $x \notin C_k$, since C_k is closed, x is not a limit point of C_i for all i > k. This is contradicted with $\lim_{n\to\infty} d(x_n,x) = 0$.

Then we know that $\bigcap_n C_n \neq \emptyset$.

$$(i) \Leftarrow (ii)$$

Consider a Cauchy sequence $\{x_i\}$ in X.

Since X is a metric space, we can find a nest sequence $C_1 \supset C_2 \supset \cdots$ of nonempty closed subsets of X with $\lim_{n\to\infty} d(C_n) = 0$, s.t. $x_i \in C_i$ for $i \in \mathbb{N}_+$.

Since $\bigcap_n C_n \neq \emptyset$, assume that $x \in \bigcap_n C_n$.

For arbitrary $\epsilon > 0$, we can find some $N \in \mathbb{N}$, s.t. $d(C_n) < \epsilon$ for all n > N.

And $d(x_n, x) < d(C_n) < \epsilon$ since x_n and x are both in C_n .

Then we know that $\{x_i\}$ converges to x in X.

Hence X is complete.

Question 4.

Consider a Cauchy sequence $\{(x_i)_n\}_{n\in\mathbb{N}_+}$ in H.

Since $|x_i - y_i| \leq (\sum_i (x_i, y_i)^2)^{\frac{1}{2}} = d((x_i), (y_i))$, we have $\{x_i^n\}_n$ is also Cauchy.

Since $\{x_i^n\}_n$ is a Cauchy sequence in \mathbb{R} and \mathbb{R} is complete, it is convergent.

Assume that $\{x_i^n\}_n$ converges to a_i .

Then we obtain a point $a = (a_i)$ and $\{(x_i)_n\}$ converges to (a_i) .

Choose arbitrary $\epsilon > 0$, there exists some $N \in \mathbb{N}_+$, s.t. $(\sum_i (a_i - x_i^n)^2)^{\frac{1}{2}} < \epsilon$ for all n > N, and $\sum_i (a_i - x_i^n)^2 < \epsilon^2$ for all n > N. Choose a n > N, and we have following relations.

$$egin{aligned} \sum_i a_i^2 &= \sum_i (a_i - x_i^n + x_i^n)^2 = \sum_i (a_i - x_i^n)^2 + 2 \sum_i (a_i - x_i^n) x_i^n + \sum_i (x_i^n)^2 \ &\leq \sum_i (a_i - x_i^n)^2 + ((\sum_i (a_i - x_i^n)^2)(\sum_i (x_i^n)^2))^{rac{1}{2}} + \sum_i (x_i^n)^2 \ &\leq \epsilon^2 + \epsilon (\sum_i (x_i^n)^2)^{rac{1}{2}} + \sum_i (x_i^n)^2 \end{aligned}$$

Since $(x_i)_n \in H$ we have $\sum_i (x_i^n)^2 < \infty$ and then $\sum_i a_i^2 < \infty$.

Then we know that $(a_i) \in H$ and (H, d) is complete.

Question 5.

Consider a sequence $\{x_n\}$ in \mathbb{Q} .

For a prime number p, consider an integer a and an integer x_1 with $x_1^2 \equiv a \mod p$ and $2x_k \not\equiv 0 \mod p$. Construct $\{x_n\}$ with

$$x_{k+1} = x_k - rac{x_k^2 - a}{2x_k} = rac{x_k^2 + a}{2x_k}$$

Assume that $x_k^2 = a + cp^k$.

$$egin{aligned} x_{k+1}^2 &= \left(rac{x_k^2 + a}{2x_k}
ight)^2 = rac{x_k^4 + 2ax_k^2 + a^2}{4x_k^2} \ &= rac{4a^2 + 4acp^k + c^2p^{2k}}{4a + 4cp^k} = a + rac{c^2p^{2k}}{4a + 4cp^k} \ &= a + c'p^{k+1} \end{aligned}$$

Then we have $x_k^2 \equiv a \mod p^k$ and $x_{k+m} \equiv x_k \mod p^k$.

This means that $\{x_n\}$ is Cauchy since $d(x_{k+m}, x_k) = -p^k$.

But the limit of $\{x_n\}$ is \sqrt{a} .

If a is not perfectly square, then $\{x_n\}$ is not convergent in \mathbb{Q} .

Hence \mathbb{Q} is incomplete.

The completion of (\mathbb{Q}, d) is the space of all roots of polynomials with rational coefficients.