DM 9. Corrigé

Problème 1 : théorème du point fixe de Tarski et théorème de Cantor-Bernstein

 1°) a) Soit A une partie de [a, b].

Si $A = \emptyset$, l'ensemble des majorants de A dans [a, b] est égal à [a, b]. Cet ensemble admet a comme minimum, donc sup A est défini et sup A = a. De même on montre que inf A est défini et que inf A = b.

Supposons maintenant que A est non vide. Alors A est une partie non vide de \mathbb{R} , donc d'après la propriété de la borne supérieure, A possède une borne supérieure dans \mathbb{R} . b majore A, donc $b \ge \sup A$.

Il existe $\alpha \in A$, donc sup $A \ge \alpha \ge a$. Ainsi sup $A \in [a, b]$.

Ceci démontre que sup A est un élément de [a,b] qui majore A et que c'est le plus petit. Ainsi, A possède bien une borne supérieure en tant que partie de l'ensemble ordonné ([a,b],<).

De même, on montre que toute partie A de [a,b] possède une borne inférieure, donc [a,b] est un treillis complet.

b) Soit A une partie de $\mathcal{P}(F)$. Les éléments de A sont donc des parties de F.

Si $A = \emptyset$, l'ensemble des majorants de A est $\mathcal{P}(F)$, donc le minimum de l'ensemble des majorants est \emptyset . Ainsi, sup A existe et sup $A = \emptyset$.

De plus l'ensemble des minorants est aussi $\mathcal{P}(F)$, donc le maximum de l'ensemble des minorants est F. Ainsi, inf A existe et inf A = F.

Supposons maintenant que A est non vide. Posons
$$S = \bigcup_{X \in A} X$$
 et $I = \bigcap_{X \in A} X$.

Pour tout $X \in A$, $I \subset X \subset S$, donc S est un majorant de A et I en est un minorant. Soit S' un majorant de A. Pour tout $X \in A$, $X \subset S'$, donc $S = \bigcup_{X \in A} X \subset S'$. Ainsi S

est le plus petit des majorants.

Soit I' un minorant de A. Pour tout $X \in A$, $I' \subset X$, donc $I' \subset \bigcap_{X \in A} X = I$. Ainsi I est

le plus grand des minorants.

On a montré que A possède une borne supérieure et une borne inférieure, pour toute partie A de $\mathcal{P}(F)$, donc que $(\mathcal{P}(F), \subset)$ est un treillis complet.

c) Soit B une partie quelconque de \mathbb{N} .

 \diamond Notons G le sous-groupe de \mathbb{Z} engendré par B.

D'après le cours, il existe $n \in \mathbb{N}$ tel que $G = n\mathbb{Z}$.

Soit $b \in B$: $b \in B \subset G = n\mathbb{Z}$, donc $n \mid b$. Ainsi n est un minorant de B.

Soit $d \in \mathbb{N}$ un minorant de B. Pour tout $b \in B$, $d \mid b$, donc $b \in d\mathbb{Z}$. Ainsi $d\mathbb{Z}$ est un sous-groupe de \mathbb{Z} qui contient B, donc $d\mathbb{Z} \supset G = n\mathbb{Z}$ ce qui prouve que $d \mid n$. Ainsi n est le plus grand des minorants de B : B possède bien une borne inférieure.

 \diamond Lorsque $B \neq \emptyset$, posons $G' = \bigcap_{b \in B} b\mathbb{Z}$. G' est un sous-groupe de \mathbb{Z} en tant qu'inter-

section de sous-groupes de \mathbb{Z} , donc il existe $m \in \mathbb{N}$ tel que $G' = m\mathbb{Z}$.

Soit $b \in B$. $m \in G' \subset b\mathbb{Z}$, donc $b \mid m$. Ainsi m est un majorant de B.

Soit m' un majorant de B. Pour tout $b \in B$, $b \mid m'$, donc $m' \in b\mathbb{Z}$. Ainsi, $m' \in G' = m\mathbb{Z}$, donc $m \mid m'$. m est donc la borne inférieure de B.

Lorsque $B = \emptyset$, l'ensemble des majorants de B est \mathbb{N} , qui admet 1 comme minimum, car pour tout $n \in \mathbb{N}$, $1 \mid n$, donc 1 est la borne supérieure de \emptyset .

- **2°)** a) Soit $x \in A$. α majore A, donc $x \leq \alpha$, mais f est croissante, donc $f(x) \leq f(\alpha)$. De plus, $x \leq f(x)$ car $x \in A$, donc $x \leq f(\alpha)$. On a bien montré que $f(\alpha)$ est un majorant de A.
- b) Or α est le plus petit des majorants, donc $\alpha \leq f(\alpha)$.

f étant croissante, $f(\alpha) \leq f(f(\alpha))$, donc $f(\alpha) \in A$ puis $f(\alpha) \leq \sup A = \alpha$.

Ainsi, $f(\alpha) = \alpha$, ce qui montre que α est un point fixe de f.

Soit β un second point fixe de f. Alors $\beta \in A$, donc $\beta \leq \alpha$. Ainsi, α est le plus grand point fixe de f.

- c) On définit sur E une relation binaire \geq en convenant que, pour tout $x,y \in E$, $x \geq y \iff y \leq x$. On vérifie que \geq est une relation d'ordre. De plus, si A est une partie de E, on vérifie que la borne supérieure de A pour (E, \leq) est la borne inférieure de A pour (E, \geq) et que la borne inférieure de A pour (E, \leq) est la borne supérieure de A pour (E, \geq) . Ainsi, (E, \geq) est encore un treillis complet, pour laquelle f reste croissante. On peut donc appliquer le résultat précédent à (E, \geq) . Ainsi l'ensemble des points fixes de f possède un maximum pour (E, \geq) , c'est-à-dire un minimum pour (E, \leq) .
- 3°) G est une application de $\mathcal{P}(E)$ dans lui-même.

Soit $A, B \in \mathcal{P}(E)$ telles que $A \subset B$. Alors $f(A) \subset f(B)$, donc $F \setminus f(A) \supset F \setminus f(B)$, puis $g(F \setminus f(A)) \supset g(F \setminus f(B))$ et $G(A) \subset G(B)$. Ceci prouve que G est une application croissante de $(\mathcal{P}(E), \subset)$ dans lui-même, lequel est un treillis complet. On peut donc appliquer le théorème du point fixe de Tarski : il existe $A_0 \subset E$ telle que $G(A_0) = A_0$. On a $E \setminus A_0 = g(F \setminus f(A_0))$. Ainsi, l'application $g' = g|_{F \setminus f(A_0)}^{E \setminus A_0}$ est définie et surjective, or elle est injective en tant que restriction d'une application injective, donc g' est une bijection.

Lorsque $x \in A_0$, posons h(x) = f(x). Lorsque $x \in E \setminus A_0$, posons $f(x) = g'^{-1}(x)$. Montrons que h est une bijection de E dans F.

 $\diamond E = A_0 \sqcup (E \setminus A_0)$, donc h est définie sur E. De plus, si $x \in A_0$, $f(x) \in f(A_0) \subset F$ et si $x \in E \setminus A_0$, $f(x) \in F \setminus f(A_0) \subset F$, donc h est une application de E dans F.

 \diamond Montrons que h est injective. Soit $x, x' \in E$ tels que h(x) = h(x').

Si $x \in A_0$ et $x' \in E \setminus A_0$, alors $h(x) = f(x) \in f(A_0)$ et $h(x) = h(x') \in F \setminus f(A_0)$. C'est impossible donc $x, x' \in A_0$ ou bien $x, x' \in E \setminus A_0$.

Lorsque $x, x' \in A_0$, f(x) = h(x) = h(x') = f(x') et f est injective, donc x = x'.

Lorsque $x, x' \in E \setminus A_0, x = g(h(x)) = g(h(x')) = x'$.

Ceci démontre que h est injective.

 \diamond Montrons que h est surjective. Soit $y \in F$.

Si $y \in f(A_0)$, il existe $x \in A_0$ tel que y = f(x) = h(x).

Sinon, $y \in F \setminus f(A_0)$, donc $y = g'^{-1}(g(y)) = h(g(y))$.

Ceci démontre que h est surjective, donc c'est bien une bijection de E sur F.

Problème 2: triplets pythagoriciens

1°) Soit $M \in C \setminus \{A\}$. Notons (x, y) les coordonnées de M. $x^2 + y^2 = 1$, donc d'après le cours, il existe $\theta \in [-\pi, \pi]$ tel que $x = \cos \theta$ et $y = \sin \theta$.

 $M \neq A$, donc $\theta \in]-\pi,\pi[$.

Ainsi $\frac{\theta}{2} \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, donc on peut poser $t=\tan\frac{\theta}{2}$.

Alors
$$\frac{1-t^2}{1+t^2} = \cos^2 \frac{\theta}{2} (1 - \frac{\sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}}) = \cos \theta$$
 et $\frac{2t}{1+t^2} = (\cos^2 \frac{\theta}{2}) \times 2 \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = \sin \theta$.

Ceci prouve qu'il existe $t \in \mathbb{R}$ tel que $x = \frac{1-t^2}{1+t^2}$ et $y = \frac{2t}{1+t^2}$.

Soit maintenant $t' \in \mathbb{R}$ tel que $x = \frac{1 - t'^2}{1 + t'^2}$ et $y = \frac{2t'}{1 + t'^2}$.

Il existe $\theta' \in]-\pi,\pi[$ tel que $t'=\tan\frac{\theta'}{2},$ car tan est une bijection de $]-\frac{\pi}{2},\frac{\pi}{2}[$ dans \mathbb{R} . Alors d'après le calcul précédent, $x=\cos\theta'=\cos\theta$ et $y=\sin\theta'=\sin\theta,$ donc $\theta\equiv\theta'$ [2 π], puis $t=\tan\frac{\theta}{2}=\tan\frac{\theta'}{2}=t',$ ce qui prouve l'unicité.

2°) Si t est rationnel, \mathbb{Q} étant un corps, $x = \frac{1-t^2}{1+t^2} \in \mathbb{Q}$ et $y = \frac{2t}{1+t^2} \in \mathbb{Q}$.

Réciproquement, supposons que x et y sont rationnels. $M \neq A$, donc $x \neq -1$. On peut donc considérer la quantité $\frac{y}{x+1}$. Mais $x+1 = \frac{1-t^2+1+t^2}{1+t^2} = \frac{2}{1+t^2}$, donc

$$\frac{y}{x+1} = \frac{2t}{1+t^2} \times \frac{1+t^2}{2} = t$$
, donc $t \in \mathbb{Q}$.

3°) a) On a $(\frac{a}{c})^2 + (\frac{b}{c})^2 = 1$, donc le point M de coordonnées $x = \frac{a}{c}$ et $y = \frac{b}{c}$ est un point de C avec $x \neq -1$ car $x \geq 0$, donc $M \in C \setminus \{A\}$. De plus $x, y \in \mathbb{Q}$, donc d'après les questions précédentes, il existe $t \in \mathbb{Q}$ tel que $x = \frac{1-t^2}{1+t^2}$ et $y = \frac{2t}{1+t^2}$.

On peut écrire $t = \frac{u}{v}$ avec $u \in \mathbb{Z}$, $v \in \mathbb{N}^*$ et $u \wedge v = 1$, donc $\frac{a}{c} = \frac{v^2 - u^2}{v^2 + u^2}$ et $\frac{b}{c} = \frac{2uv}{v^2 + u^2}$.

Si $u \leq 0$, alors $\frac{b}{c} \leq 0$ ce qui est faux, donc $u \in \mathbb{N}^*$.

b) Supposons que a et b ne sont pas premiers entre eux. Il existe alors un diviseur premier p commun de a et b. Alors p divise $a^2 + b^2 = c^2$. p intervient donc dans la décomposition de c^2 en facteurs premiers, donc également dans celle de c. Ainsi, p est un diviseur premier commun de a, b et c, ce qui est impossible. Ainsi, $a \wedge b = 1$. De même, on montre que $a \wedge c = b \wedge c = 1$.

Supposons que b est pair. Ainsi, $\frac{\left(\frac{b}{2}\right)}{c} = \frac{uv}{u^2 + v^2}$.

Supposons l'existence d'un diviseur p premier commun de uv et de $u^2 + v^2$.

Alors p divise $-u(uv) + v(u^2 + v^2) = v^3$ et $u(u^2 + v^2) - v(uv) = u^3$, donc p divise $u^3 \wedge v^3$, mais $u \wedge v = 1$, donc d'après le cours, $u^3 \wedge v^3 = 1$. Ainsi p divise 1 ce qui est impossible avec p premier. Ceci démontre $que(uv) \wedge (u^2 + v^2) = 1$, donc $\frac{uv}{u^2 + v^2}$ est

l'écriture irréductible de la fraction $\frac{\left(\frac{b}{2}\right)}{c}$, mais elle est déjà sous forme irréductible car b et c sont premiers entre eux, donc par unicité de la forme irréductible d'une fraction rationnelle, on a $\frac{b}{2} = uv$ et $c = u^2 + v^2$.

De plus,
$$\frac{a}{c} = \frac{v^2 - u^2}{v^2 + u^2}$$
 donc $a = v^2 - u^2$.

 $4^{\circ})$

 \diamond Choisissons $u \in \mathbb{N}^*$ puis un entier v strictement supérieur à u et premier avec u. Posons $a = v^2 - u^2$ et b = 2uv, ou bien a = 2uv et $b = v^2 - u^2$. Posons $c = u^2 + v^2$. Choisissons $d \in \mathbb{N}^*$ et posons A = da, B = db et C = dc.

On vérifie que $(v^2 - u^2)^2 + (2uv)^2 = (u^2 + v^2)^2$, donc $A^2 + B^2 = C^2$. Ainsi, (A, B, C) est un triplet pythagoricien. On vient ainsi de fournir un procédé explicite de construction de triplets pythagoriciens.

♦ Il reste à montrer que ce procédé fournit tous les triplets pythagoriciens.

Supposons que $A, B, C \in \mathbb{N}^*$ avec $A^2 + B^2 = C^2$.

Notons d le PGCD de A, B, C. Il existe $a, b, c \in \mathbb{N}^*$ tels que A = ad, B = bd et C = cd. De plus a, b, c sont premiers entre eux.

Si a est pair, il existe a' tel que a=2a' et $a^2=4a'^2\equiv 0$ [4].

Si a est impair, il existe a' tel que a = 2a' + 1 et $a^2 = 4a'^2 + 4a + 1 \equiv 1$ [4].

Il en est de même pour b, donc si a et b sont tous deux impairs, $c^2 = a^2 + b^2 \equiv 2$ [4], ce qui est impossible. Ainsi, parmi a et b, seul l'un des deux est pair. Par symétrie des rôles joués par a et b, on peut supposer que b est pair.

On peut donc appliquer les questions précédentes : il existe $u, v \in \mathbb{N}^*$ tels que u < v, $u \wedge v = 1$, $a = v^2 - u^2$, b = 2uv et $c = v^2 + u^2$, ce qu'il fallait démontrer.

Problème 3 : parties denses dans \mathbb{R} .

Première partie : préliminaires.

1°)

 $\diamond 1 \Longrightarrow 2$: on suppose la propriété 1.

Soit $x \in I$. Pour tout $n \in \mathbb{N}^*$, en posant $\varepsilon = \frac{1}{n}$, d'après la propriété 1, $]x - \frac{1}{n}, x + \frac{1}{n}[\cap D \neq \emptyset, \text{ donc il existe } a_n \in D \text{ tel que } |x - a_n| \leq \frac{1}{n}, \text{ or } \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0,$

donc d'après le principe des gendarmes, $|x - a_n| \underset{n \to +\infty}{\longrightarrow} 0$, c'est-à-dire que $a_n \underset{n \to +\infty}{\longrightarrow} x$.

 \diamond 2 \Longrightarrow 3 : on suppose la propriété 2.

Soit $x, y \in I$ avec x < y. Posons $z = \frac{x+y}{2}$. $z \in I$, car I est un intervalle, donc d'après la propriété 2, il existe une suite (a_n) d'éléments de D telle que $a_n \xrightarrow[n \to +\infty]{} z$. En particulier,

pour $\varepsilon = \frac{y-x}{4} > 0$, il existe $N \in \mathbb{N}$ tel que $|a_N - z| \le \varepsilon$. Ainsi, $|a_N - \frac{x+y}{2}| < \frac{y-x}{2}$, donc $x < a_N < y \text{ et } a_N \in D.$

 \diamond 3 \Longrightarrow 1 : on suppose la propriété 3.

Soit $x \in I$. Soit $\varepsilon > 0$. I possède une borne inférieure m et une borne supérieure M dans $\mathbb{R} \cup \{+\infty, -\infty\}$. I n'est pas réduit à \emptyset et n'est pas un singleton, donc m < M.

Premier cas: On suppose que m < x < M.

Alors il existe $\varepsilon' > 0$ avec $\varepsilon' < \varepsilon$, tel que $\varepsilon' < x - m$ et $\varepsilon' < M - x$.

Alors $m < x - \varepsilon' < x < x + \varepsilon' < M$, donc $x - \varepsilon', x + \varepsilon' \in I$: d'après la propriété 3, il existe $z \in D$ tel que $x - \varepsilon' < z < x + \varepsilon'$. Par construction, $z \in D \cap]x - \varepsilon, x + \varepsilon[$.

Second cas: On suppose que $m \in \mathbb{R}$ et que x = m.

Il existe $\varepsilon' > 0$ avec $\varepsilon' < \varepsilon$, tel que $x = m < x + \varepsilon' < M$. Alors $x + \frac{\varepsilon'}{2}$ et $x + \varepsilon'$ sont dans I, donc il existe $z \in D$ tel que $x + \frac{\varepsilon'}{2} < z < x + \varepsilon'$. Alors, $z \in D \cap]x - \varepsilon, x + \varepsilon[$. Troisième cas : On suppose que $M \in \mathbb{R}$ et que x = M.

Il existe $\varepsilon' > 0$ avec $\varepsilon' < \varepsilon$, tel que $m < x - \varepsilon' < M = x$. Alors $x - \frac{\varepsilon'}{2}$ et $x - \varepsilon'$ sont dans I, donc il existe $z \in D$ tel que $x - \varepsilon' < z < x - \frac{e'}{2}$. Alors, $z \in D \cap]x - \varepsilon, x + \varepsilon[$.

2°) Soit $x \in I$ et $\varepsilon > 0$. Adaptons la démonstration de la dernière implication.

Premier cas: On suppose que m < x < M.

Alors il existe $\varepsilon' > 0$ avec $\varepsilon' < \varepsilon$, tel que $m < x - \varepsilon' < x < x + \varepsilon' < M$. Soit $n \in \mathbb{N}^*$. On a $m < x + \frac{\varepsilon'}{n+1} < x + \frac{\varepsilon'}{n} < M$ donc d'après la propriété 3, il existe $z_n \in D$ tel que $x + \frac{\varepsilon'}{n+1} < z_n < x + \frac{\varepsilon'}{n}$.

Pour tout $n \in \mathbb{N}^*$, $z_{n+1} < z_n$, donc la famille $(z_n)_{n \in \mathbb{N}^*}$ constitue une infinité d'éléments situés dans $D \cap]x - \varepsilon, x + \varepsilon[$.

Second cas: On suppose que $m \in \mathbb{R}$ et que x = m.

Il existe $\varepsilon' > 0$ avec $\varepsilon' < \varepsilon$, tel que $x = m < x + \varepsilon' < M$. Soit $n \in \mathbb{N}^*$. On a $m < x + \frac{\varepsilon'}{n+1} < x + \frac{\varepsilon'}{n} < M$ donc on peut conclure comme lors du premier cas.

Troisième cas: On suppose que $M \in \mathbb{R}$ et que x = M.

Il existe $\varepsilon' > 0$ avec $\varepsilon' < \varepsilon$, tel que $m < x - \varepsilon' < M = x$.

Soit $n \in \mathbb{N}^*$. On a $m < x - \frac{\varepsilon'}{n} < x - \frac{\varepsilon'}{n+1} < M$ donc d'après la propriété 3, il existe $z_n \in D$ tel que $x - \frac{\varepsilon'}{n} < z_n < x - \frac{\varepsilon'}{n+1}$.

Pour tout $n \in \mathbb{N}^*$, $z_n < z_{n+1}$, donc la famille $(z_n)_{n \in \mathbb{N}^*}$ constitue une infinité d'éléments situés dans $D \cap]x - \varepsilon, x + \varepsilon[$.

3°) Soit $y \in J$. f étant surjective, il existe $x \in I$ tel que y = f(x). D est dense dans I, donc il existe une suite (a_n) d'éléments de D telle que $a_n \xrightarrow[n \to +\infty]{} x$. D'après la continuité de f, $f(a_n) \xrightarrow[n \to +\infty]{} f(x)$, or $(f(a_n))$ est une suite d'éléments de f(D), donc d'après la propriété 2 de la question 1, f(D) est dense dans J.

Seconde partie : densité des sous-groupes de \mathbb{R} .

- **4**°) Il suffit de montrer que $G \cap \mathbb{R}_+^*$ est une partie non vide et minorée de \mathbb{R} . $\Diamond G \cap \mathbb{R}_+^*$ est minorée par 0.
- \diamond $\{0\} \subset G$, car G est un sous-groupe de $(\mathbb{R}, +)$, et $G \neq \{0\}$, donc il existe $x \in G$ tel que $x \neq 0$. G étant un groupe, $\{x, -x\} \subset G$, donc $|x| \in (G \cap \mathbb{R}_+^*)$, ce qui prouve que $G \cap \mathbb{R}_+^* \neq \emptyset$.
- 5°) On suppose que a=0. D'après la propriété 1 de la question 1, Il faut montrer que : $\forall x \in \mathbb{R} \ \forall \varepsilon \in \mathbb{R}_+^* \ G \cap]x \varepsilon, x + \varepsilon [\neq \emptyset]$. Soient $x \in \mathbb{R}$ et $\varepsilon > 0$. ε n'est pas un minorant de $G \cap \mathbb{R}_+^*$, donc il existe $\alpha \in G \cap \mathbb{R}_+^*$ tel que $0 < \alpha < \varepsilon$.

Posons $q = \left\lfloor \frac{x}{\alpha} \right\rfloor$. $q \leq \frac{x}{\alpha} < q+1$, donc $q\alpha \leq x < q\alpha + \alpha$. Ainsi, $x < (q+1)\alpha \leq x + \alpha < x + \varepsilon$, ce qui montre que $(q+1)\alpha \in G \cap]x, x + \varepsilon[$. Ainsi, G est dense dans \mathbb{R} .

6°) a) 2a > a, or, par définition d'une borne inférieure, a est le plus grand des minorants de $(G \cap \mathbb{R}_+^*)$, donc 2a n'est pas un minorant de $G \cap \mathbb{R}_+^*$. Ainsi, il existe $x \in G \cap \mathbb{R}_+^*$ tel que x < 2a. Mais $a \notin G$, donc a < x. Ainsi x n'est pas un minorant de $G \cap \mathbb{R}_+^*$ et il existe $y \in (G \cap \mathbb{R}_+^*)$ tel que a < y < x < 2a.

Alors 0 < x - y < a et $x - y \in G \cap \mathbb{R}_+^*$. C'est impossible d'après la définition de a. Ainsi $a \in G$.

b) On en déduit que $a\mathbb{Z} = Gr(a) \subset G$. Réciproquement, soit $g \in G$. Posons $q = \left\lfloor \frac{g}{a} \right\rfloor$.

 $q \leq \frac{g}{a} < q+1$, donc $qa \leq g < qa+a$ ce qui implique que $0 \leq g-qa < a$. Si $g-qa \neq 0$, alors $g-qa \in G \cap \mathbb{R}_+^*$ et g-qa < a, ce qui est impossible. Ainsi $g=qa \in a\mathbb{Z}$. On a donc montré que $G=a\mathbb{Z}$.

7°) Supposons d'abord que a=0. Alors G est dense dans \mathbb{R} . Soit $x\in\mathbb{R}$ et soit I un intervalle ouvert contenant x. Il existe $\varepsilon>0$ tel que $]x-\varepsilon,x+\varepsilon[\subset I$. D'après la question $2,\]x-\varepsilon,x+\varepsilon[\cap G$ est de cardinal infini, donc $I\cap G$ n'est pas réduit à $\{x\}$. Ainsi aucun point de G n'est isolé, donc G n'est pas discret.

Supposons maintenant que a > 0. Alors $G = a\mathbb{Z}$, donc pour tout $n \in \mathbb{Z}$, dans l'intervalle ouvert $n = \frac{a}{2}$, $na + \frac{a}{2}$, seul na appartient à G, donc G est discret.

En conclusion, G est discret si et seulement si $\inf(G \cap \mathbb{R}_+^*) > 0$. Dans tous les cas, G est ou bien discret, ou bien dense dans \mathbb{R} .

8°) Posons $G = a\mathbb{Z} + b\mathbb{Z}$. D'après le cours, G est le groupe engendré par $\{a, b\}$, donc c'est un sous-groupe de \mathbb{R} .

 \diamond Supposons que $a\mathbb{Z} + b\mathbb{Z}$ n'est pas dense dans \mathbb{R} .

Alors il existe $c \in \mathbb{R}_+^*$ tel que $a\mathbb{Z} + b\mathbb{Z} = c\mathbb{Z}$.

 $a\in(a\mathbb{Z}+b\mathbb{Z})$, donc il existe $p\in\mathbb{Z}$ tel que a=pc. De même, il existe $q\in\mathbb{Z}$ tel que b=qc. Ainsi $\frac{a}{b}=\frac{p}{q}\in\mathbb{Q}$.

 \diamond Réciproquement, supposons que $\frac{a}{b} \in \mathbb{Q}$.

Ainsi, il existe $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tel que $\frac{a}{b} = \frac{p}{q}$.

 $a\mathbb{Z} + b\mathbb{Z} = a\mathbb{Z} + \frac{aq}{p}\mathbb{Z} \subset \frac{a}{p}\mathbb{Z}$, donc $a\mathbb{Z} + b\mathbb{Z}$ n'est pas dense dans \mathbb{R} .

On a donc montré que $a\mathbb{Z} + b\mathbb{Z}$ n'est pas dense dans \mathbb{R} si et seulement si $\frac{a}{b}$ est rationnel, donc par contraposition, $a\mathbb{Z}+b\mathbb{Z}$ est dense dans \mathbb{R} si et seulement si $\frac{a}{b}$ est un irrationnel.

- 9°) On suppose que A est un sous-anneau de \mathbb{R} différent de \mathbb{Z} . En particulier, A est un sous-groupe de \mathbb{R} . Posons $a = \inf(A)$.
- $1 \in A \cap \mathbb{R}_+^*$, donc $a \leq 1$. Si a = 1 alors $A = 1.\mathbb{Z} = \mathbb{Z}$ ce qui est faux, donc a < 1. Supposons que a > 0. A étant un sous-anneau, $a^2 \in A \cap \mathbb{R}_+^*$, donc $a \leq a^2$, puis $1 \leq a$, ce qui est faux. Ainsi a = 0 et A est dense dans \mathbb{R} .
- 10°) a) 2π est irrationnel, donc d'après la question 8, $\mathbb{Z} + 2\pi\mathbb{Z}$ est dense dans \mathbb{R} . L'application cos est une surjection de \mathbb{R} sur [-1,1], donc d'après la question 3, $\cos(\mathbb{Z}+2\pi\mathbb{Z})$ est dense dans [-1,1]. Or cos est 2π -périodique, donc $\cos(\mathbb{Z}+2\pi\mathbb{Z})=\cos(\mathbb{Z})$. De plus cos est paire, donc $\cos(\mathbb{Z})=\cos(\mathbb{N})$. Ainsi $\cos(\mathbb{N}) = \{\cos n/n \in \mathbb{N}\}\$ est dense dans [-1, 1].
- **b)** Soit $\ell \in [-1, 1]$. Soit $\varepsilon > 0$.

D'après la question 2, $|\ell-\varepsilon,\ell+\varepsilon|\cap\{\cos n/n\in\mathbb{N}\}\$ est infini, donc $\{n\in\mathbb{N}/|\cos n-\ell|<\varepsilon\}$ est aussi infini. C'est une partie infinie de N, donc elle n'est pas majorée. Ainsi : $\forall N \in \mathbb{N}, \ \exists n > N, \ |\ell - \cos n| < \varepsilon.$

c) Soit $\ell \in [-1, 1]$. D'après la question précédente, avec $\varepsilon = 1$ et N = 0, il existe un entier $n \ge 0$ tel que $|\ell - \cos n| < 1$. Notons $\varphi(0)$ le minimum de ces entiers.

D'après la question précédente, avec $\varepsilon = \frac{1}{2}$ et $N = \varphi(0) + 1$, il existe un entier $n > \varphi(0)$ tel que $|\ell - \cos n| < \frac{1}{2}$. Notons $\varphi(1)$ le minimum de ces entiers.

Soit $k \in \mathbb{N}^*$. Supposons que nous avons construit $(\varphi(h))_{0 \le h \le k}$ une famille d'entiers telle que, pour tout i, j avec $0 \le i < j \le k, \varphi(i) < \varphi(j)$ et telle que, pour tout

 $h \in \{0,\ldots,k\}, |\ell - \cos \varphi(h)| < 2^{-h}$. Alors, d'après la question précédente, avec $\varepsilon = 2^{-k-1}$ et $N = \varphi(k) + 1$, il existe un entier $n > \varphi(k)$ tel que $|\ell - \cos n| < 2^{-k-1}$. Notons $\varphi(k+1)$ le minimum de ces entiers.

On construit ainsi par récurrence une application φ , de N dans N, strictement croissante, telle que pour tout $n \in \mathbb{N}$, $|\ell - \cos \varphi(n)| < 2^{-n}$. D'après le principe des gendarmes, $\cos \varphi(n) \xrightarrow[n \to +\infty]{} \ell.$