

Geschichte der KI

Cartoon-Geschichte der KI: (a) Tom (symbolische KI) besiegt Jerry (neuronale Netze). (b) Spike (Deep Learning) hält Jerry und schlägt Tom

Kautz, H., 2022

Neuron im Nervensystem

Neuron im Nervensystem: viele Inputs, ein Output.

Threshold: Schwellenwert (m.)

die großen Männer

Frank Rosenblatt (1928-1971): Psychologe

Geoff Hinton (1947-): Psychologe

Bishop, 2006

Nets: www

Logikgatter

<u>Relations</u>

(Map each input to at least one output)

Funktion in der Mathematik: viele Inputs, ein Output.

Baum in Datenstruktur: viele Inputs, ein Output.

- 1. How is information about the physical world sensed, or detected, by the biological system?
- 2. In what form is information stored, or remembered?
- 3. How does information contained in storage, or in memory, influence recognition and behavior?

Rosenblatt, F., 1958

- 1. Wie werden Informationen über die physikalische Welt durch das biologische System wahrgenommen oder erkannt?
- 2. In welcher Form werden Informationen gespeichert bzw. erinnert?
- 3. Wie beeinflussen die gespeicherten oder erinnerten Informationen das Erkennen und Verhalten?

FIG. 1 — Organization of a biological brain. (Red areas indicate active cells, responding to the letter X.)

FIG. 2 - Organization of a perceptron.

Rosenblatt, 1958

$$t = f\left(\sum_{i=1}^{n} w_i x_i + b\right) = f(\mathbf{w}^T \mathbf{x})$$

Dabei ist:

$$\mathbf{W} = [w_1 \ w_2 \dots wn \ b]^T$$

$$X = [x_1 \ x_2 ... \ x_n \ 1]^T$$

$$f(n) = \begin{cases} +1 & \text{if } n \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

ID	Körpergröße (m)	Körpergewicht (kg)
P1	1,1	20
P2	1,6	50
Р3	1,3	39
P4	0,8	18
P5	1,6	55
P6	1,9	80
P7	1,7	75
P8	1,2	55
P9	1,5	60
P10	1,0	22
•••	•••	•••

2D:

- 1. Begrenzungslinie;
- 2. Fähigkeit, den oberen und unteren Bereich zu unterscheiden

ID	Körpergröße (m)	Körpergewicht (kg)	Alter (J)
P1	1,1	20	6
P2	1,6	50	13
Р3	1,3	39	12
P4	0,8	18	5
P5	1,6	55	20
P6	1,9	80	55
P7	1,7	75	65
P8	1,2	55	15
P9	1,5	60	12
P10	1,0	22	9
0 0 0	0 0 0	***	•••

3D:

ID	Körpergröße (m)	Körpergewicht (kg)	Alter (J)	•••
P1	1,1	20	6	•••
P2	1,6	50	13	•••
Р3	1,3	39	12	***
P4	0,8	18	5	•••
P5	1,6	55	20	•••
P6	1,9	80	55	•••
P7	1,7	75	65	•••
P8	1,2	55	15	•••
P9	1,5	60	12	•••
P10	1,0	22	9	
•••	•••	•••	•••	•••

nD:

- 1. Begrenzungshyperfläche (n-1 D);
- 2. Fähigkeit, den oberen und unteren Raum zu unterscheiden

$$w_0 = b$$

Begrenzungsline:

$$a \cdot x + b \cdot y + c = 0 \implies w_1 \cdot x_1 + w_2 \cdot x_2 + b = 0$$

$$t = f\left(\sum_{i=1}^{n} w_i x_i + b\right) = f(\mathbf{w}^T \mathbf{x})$$

$$\sum_{i=1}^{n} w_i x_i + b = 0$$

$$w_0 = b$$

$t = f\left(\sum_{i=1}^{n} w_i x_i + b\right) = f(\mathbf{w}^T \mathbf{x})$

Begrenzungsfläche:

$$a \cdot x + b \cdot y + c \cdot z + d = 0 \Rightarrow w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3 + b = 0$$

$$\sum_{i=1}^{n} w_i x_i + b = 0$$

$$f(n) = \begin{cases} +1 & \text{if } n \ge 0 \\ -1 & \text{ansonsten} \end{cases}$$

$$\sum_{i=1}^{n} w_i x_i + b \ge 0$$

$$t = f\left(\sum_{i=1}^{n} w_i x_i + b\right) = f(\mathbf{w}^T \mathbf{x})$$

$$f(n) = \begin{cases} +1 & \text{if } n \ge 0 \\ -1 & \text{ansonsten} \end{cases}$$

$$\sum_{i=1}^{n} w_i x_i + b \ge 0$$

$$t = f\left(\sum_{i=1}^{n} w_i x_i + b\right) = f(\mathbf{w}^T \mathbf{x})$$

$$f(n) = \begin{cases} +1 & \text{if } n \ge 0 \\ -1 & \text{ansonsten} \end{cases}$$

$$\sum_{i=1}^{n} w_i x_i + b \ge 0$$

$$t = f\left(\sum_{i=1}^{n} w_i x_i + b\right) = f(\mathbf{w}^T \mathbf{x})$$

$$t = f\left(\sum_{i=1}^{n} w_i x_i + b\right) = f(\mathbf{w}^T \mathbf{x})$$

Dabei ist:

$$\mathbf{W} = [w_1 \ w_2 \dots wn \ b]^T$$

$$X = [x_1 \ x_2 \dots xn \ 1]^T$$

$$f(n) = \begin{cases} +1 & \text{if } n \ge 0 \\ -1 & \text{ansonsten} \end{cases}$$

Begrenzungsline:

$$a \cdot x + b \cdot y + c = 0 \implies w_1 \cdot x_1 + w_2 \cdot x_2 + b = 0$$

Begrenzungsfläche:

$$a \cdot x + b \cdot y + c \cdot z + d = 0 \rightarrow w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3 + b = 0$$

Hyperfläche (*n-1*):

$$w_1 \cdot x_1 + w_2 \cdot x_2 + \cdots + w_n \cdot x_n + b = 0$$

Take Home Messages

- Das Perceptron (Feed-Forward-Netz) ist ein einfaches neuronales Netz, das mit solchen künstlichen Neuronen (?) aufgebaut werden kann.
- Perzeptron: Lineare Funktion + Aktivierungsfunktion
- Binäre-Klassifizierung

Nächste Schritte: Perzeptron & KI Winter

Gatter-Typen NOT **AND NAND NOR** OR **XOR XNOR AOI** OAI

