Let (X,Y) be a bivariate random vector with joint distribution function H(x,y) and continuous marginal distribution function F(x) and G(y). Its associated copula C is defined by $H(x,y) = C\{F(x),G(y)\}$. Since F and G are continuous, the copula C is unique and we can write $C(u,v) = H(F^{\leftarrow}(u),G^{\leftarrow}(v))$ for $0 \le u,v \le 1$ and where $F^{\leftarrow}(u) = \inf\{v \in \mathbb{R} | F(v) \ge u\}$ and $G^{\leftarrow}(u) = \inf\{v \in \mathbb{R} | G(v) \ge u\}$ are the generalized inverse functions of F and G respectively. At each $t \in \{1,\ldots,T\}$, we suppose that one of both entries may be missing. The observations consist of a sample of independent, identically distributed quadruples

$$(I_t, J_t, I_t X_t, J_t Y_t)$$
 $t \in 1, \ldots, T$

The indicator variables I_t (respectively J_t) is equal to 1 or 0 according to wheter X_t or Y_t is observed or not. We suppose that the indicator functions I_t and J_t are independent. The probability of observing a realisation partially or completely is denoted by $p_X = \mathbb{P}(I_t = 1) > 0$ and $p_Y = \mathbb{P}(J_t = 1) > 0$.

We define:

$$C(u,v) = H(F^{\leftarrow}(u), G^{\leftarrow}(v)) = \varphi(H)(u,v)$$

and,

$$Z_T(u,v) = \sqrt{T} \{ \hat{C}_T(u,v) - C(u,v) \}$$
 (1)

where \hat{H}_T corresponds to the empirical distribution function of the sample $(X_1, Y_1), \ldots, (X_T, Y_T)$

$$\hat{H}_T(u,v) = \frac{\sum_{t=1}^T 1_{\{X_t \le u, Y_t \le v\}} I_t J_t}{\sum_{t=1}^T I_t J_t}$$

We define also the corresponding empirical distribution functions in the case of missing data :

$$\hat{F}_T(u) = \frac{\sum_{t=1}^T 1_{\{X_t \le u\}} I_t}{\sum_{t=1}^T I_t}$$

$$\hat{G}_T(v) = \frac{\sum_{t=1}^T 1_{\{Y_t \le v\}} J_t}{\sum_{t=1}^T J_t}$$

Condition 1. We suppose for all $t \in \{1, ..., T\}$:

$$\mathbb{E}[X_t Y_t I_t J_t] = \mathbb{E}[X_t Y_t] \mathbb{E}[I_t J_t]$$

Furthermore, we suppose that there exist at least one $t \in \{1, ..., T\}$ such that $I_t J_t \neq 0$.

Proposition 1. Under hypothesis 1, \hat{H}_T , \hat{F}_T , \hat{G}_T are consistant estimators of H, F, G.

Démonstration. We check the consistency for \hat{H}_T . By independence, we have

$$\mathbb{E}[T^{-1} \sum_{t=1}^{T} I_t J_t] = T^{-1} \sum_{t=1}^{T} \mathbb{E}[I_t] \mathbb{E}[J_t] = p_X p_Y$$

So, by applying the law of large numbers, we have:

$$T^{-1} \sum_{t=1}^{T} I_t J_t \longrightarrow p_X p_Y \quad a.s. \quad as \quad T \to \infty$$

Then, we now use the first hypothesis to get:

$$T^{-1} \sum_{t=1}^{T} \mathbb{E}[1_{\{X_t \le u, Y_t \le v\}} I_t J_t] = T^{-1} \sum_{t=1}^{T} \mathbb{E}[1_{\{X_t \le u, Y_t \le v\}}] \mathbb{E}[I_t J_t] = H(x, y) p_X p_Y$$

By applying again the law of large numbers, we derive:

$$\sum_{t=1}^{T} 1_{\{X_t \le u, Y_t \le v\}} I_t J_t \longrightarrow H(x, y) p_X p_Y \quad a.s. \quad as \quad T \to \infty$$

We can now apply the continuous mapping theorem to the function $f:(x,y)\mapsto \frac{x}{y}$ which are continuous on $\mathbb{R}_+\times\mathbb{R}_+\setminus 0$ to conclude that:

$$\hat{H}_T(x,y) \longrightarrow H(x,y)$$
 a.s. as $T \to \infty$

Condition 2. 1. The bivariate distribution function H has continuous margins F, G and copula C.

2. The first order partial derivatives $\dot{C}_1(u,v) = \frac{\partial C}{\partial u}(u,v)$ and $\dot{C}_2(u,v) = \frac{\partial C}{\partial v}(u,v)$ exists and is continuous on the set $\{(u,v) \in [0,1]^2, 0 < u, v < 1\}$

Condition 3. There exists $\gamma_t > 0$ and $r_t > 0$ such that $r_t \longrightarrow \infty$ as $t \to \infty$ such that in the space $l^{\infty}(\mathbb{R}^2) \otimes (l^{\infty}(\mathbb{R}), l^{\infty}(\mathbb{R}))$ equipped with the topology of uniform convergence, we have the joint weak convergence

$$(r_t(\hat{H}_T - H); r_t(\hat{F}_t - F), r_t(\hat{G}_t - G)) \rightsquigarrow (\alpha \circ (F, G), \beta_1 \circ F, \beta_2 \circ G)$$

The stochastic processes α and β_j take values in $l^{\infty}([0,1]^2)$ and $l^{\infty}([0,1])$ respectively, and are such that $\alpha \circ F$ and $\beta_j \circ F_j$ have continuous trajectories on $[-\infty,\infty]^2$ and $[-\infty,\infty]$ almost surely.

Theorem 1 (Theorem 2.3 and example 3.5 in [Seg14]). If conditions 2.1 and 2.2 holds, then uniformly in $u \in [0, 1]^2$,

$$r_T\{\hat{C}_T(u,v) - C(u,v)\} = r_T\{\hat{H}_T((F,G)^{\leftarrow}(u,v) - C(u,v)\}$$
(2)

$$-\dot{C}_1(u,v)r_T\{\hat{F}_T(F^{\leftarrow}(u)) - u\}1_{(0,1)}(u) \tag{3}$$

$$-\dot{C}_2(u,v)r_T\{\hat{G}_T(G^{\leftarrow}(v)) - v\}1_{(0,1)}(v) + \circ_{\mathbb{P}}(1)$$
 (4)

as $T \to \infty$. Hence in $l^{\infty}([0,1]^2)$ equipped with the supremum norm, as $T \to \infty$,

$$(r_T\{\hat{C}_T(u,v) - C(u,v)\})_{u,v \in [0,1]^2} \leadsto (\alpha(u,v) - \dot{C}_1(u,v)\beta_1(u) - \dot{C}_2(u,v)\beta_2(v))_{u,v \in [0,1]^2}$$

We denote by $N_C(u, v)$ the process defined on the right-hand side in the weak convergence from above.

Remark 1. If we consider the empiric copula, theorem 1 gives us the weak convergence of this process to a brownian bridge $N_C(u, v)$ defined by, $\forall (u, v) \in [0, 1]$

$$N_C(u,v) = B_C(u,v) - \dot{C}_1(u,v)B_C(u,1) - \dot{C}_2(u,v)B_C(1,v)$$
(5)

where B_C is a brownian bridge in $[0,1]^2$ with covariance function

$$\mathbb{E}[B_C(u,v)B_C(u',v')] = C(u \wedge u', v \wedge v') - C(u,v)C(u',v')$$

for each $0 \le u, v, u', v' \le 1$. This result is well known since 2004 due to [FRW04].

In our specific case with missing data, (ref) shows that $r_T\{\hat{C}_T(u,v)-C(u,v)\}$ is weakly convergent toward $\alpha(u,v)-\dot{C}_1(u,v)\beta_1(u)-\dot{C}_2(u,v)\beta_2(v)$ where $\beta_1(u)=p_X^{-1}\mathbb{G}(1_{X\leq F^{\leftarrow}(u)}-u1_{I=1})$, $\beta_2(v)=p_Y^{-1}\mathbb{G}(1_{Y\leq G^{\leftarrow}(v)}-v1_{J=1})$ and $\alpha(u,v)=(p_Xp_Y)^{-1}\mathbb{G}(1_{X\leq F^{\leftarrow}(u)}1_{Y\leq G^{\leftarrow}(v)}-C(u,v)1_{I=1}1_{J=1})$. Furthermore, by these expressions, we can detail the structure of the covariance matrix between the three processes.

Definition 1. Let $(X_1, Y_1), \ldots, (X_T, Y_T)$ a T bivariate random vectors with unknown margins F and G. A λ -FMadogram is the quantity defined by :

$$\nu(\lambda) = \frac{1}{2} \mathbb{E}[|F^{\lambda}(X) - G^{1-\lambda}(Y)|] \tag{6}$$

We estimative the λ -FMadogram with the following quantity :

$$\hat{\nu}_T(\lambda) = \frac{1}{2\sum_{t=1}^T I_t J_t} \sum_{t=1}^T |\hat{F}_T^{\lambda}(X_t) - \hat{G}_T^{1-\lambda}(Y_t)| I_t J_t$$
 (7)

Proposition 2 (Proposition 3 of [NGCD09]). Suppose that conditions 2 holds and that $\sum_{t=1}^{T} I_t J_t = T$ (no missing data). Let J be a function of bounded variation, continuous from above and with discontinuities of the first kind. Then

$$T^{-1/2} \sum_{t=1}^{T} (J(\hat{F}_T(X_t), \hat{G}_T(Y_t)) - \mathbb{E}[J(F(X), G(Y))])$$

converges in distribution to $\int_{[0,1]} N_C(u,v) dJ(u,v)$ where $N_C(u,v)$ is defined by equation (5) and the integral is well defined as a Lebesgue-Stieltjes integral (see section 5.2 of [Bre20]). The special case, $J(x,y) = \frac{1}{2}|x^{\lambda} - y^{1-\lambda}|$ provide the weak of convergence of the λ -Madogram estimator defined by (7):

$$T^{1/2}\{\hat{\nu}_T(\lambda) - \frac{1}{2}\mathbb{E}[|F^{\lambda}(X) - G^{1-\lambda}(Y)|]\}$$

converge in distribution to $\int_{[0,1]^2} N_C(u,v) dJ(u,v)$ where the latter integral satisfies :

$$\int_{[0,1]^2} f(x,y)dJ(x,y) = \frac{1}{2} \int_0^1 f(0,y^{1/(1-\lambda)})dy + \frac{1}{2} \int_0^1 f(x^{1/\lambda},0)dx - \int_0^1 f(x^{1/\lambda},x^{1/(1-\lambda)})dx$$

for all bounded functions f.

Furthermore, as the limiting process is the linear transformation of a tight gaussian process, we know from [vdVW96] that it is Gaussian. Before going further, we want to detail the structure of the variance of the limiting process. Doing that, we introduce the following lemma:

Lemma 1. Let $(B_C(u,v))_{u,v\in[0,1]^2}$ a brownian bridge with covariance function defined by:

$$\mathbb{E}[B_C(u,v)B_C(u',v')] = C(u \wedge u', v \wedge v') - C(u,v)C(u',v')$$

for each $0 \le u, v, u', v' \le 1$. Let $a, b \in [0, 1]$ fixed, if a = 0 or b = 0, then wet get the following equality:

$$\mathbb{E}\left[\int_0^1 B_C(u, a) du \int_0^1 B_C(b, u) du\right] = 0$$

Démonstration. Without loss of generality, suppose that a=0 and $b \in [0,1]$. Using the linearity of the integral, we obtain:

$$\mathbb{E}\left[\int_{0}^{1} B_{C}(u,0)du \int_{0}^{1} B_{C}(b,u)du\right] = \mathbb{E}\left[\int_{0}^{1} \int_{0}^{1} B_{C}(u,0)B_{C}(b,v)dudv\right]$$
$$= \int_{0}^{1} \int_{0}^{1} \mathbb{E}\left[B_{C}(u,0)B_{C}(b,v)\right]dudv$$

We then use the definition of the covariance function of our Brownian bridge, we have

$$\mathbb{E}[B_C(u,0)B_C(b,v)] = C(u \land v,0) - C(u,0)C(b,v)$$

We recall that, by definition, a copula satisfy C(u,0) = C(0,u) = 0 for every $u \in [0,1]$. Then, the equation below is equal to 0. Our conclusion directly follows.

Using this lemma, we can infer the following proposition:

Proposition 3. Let $N_C(u, v)$ the process defined in equation (5) and $a, b \in [0, 1]$ fixed. If a = 0 or b = 0, then:

$$\mathbb{E}[\int_{0}^{1} N_{C}(u, a) du \int_{0}^{1} N_{C}(b, u) du] = 0$$

With this proposition, we can infer a better form of the variance of our limiting process:

Theorem 2. Let $N_C(u, v)$ the process defined in equation (5) and $J(x, y) = |x^{\lambda} - y^{1-\lambda}|$, then:

$$Var(\int_{[0,1]^2} N_C(u,v)dJ(u,v)) = Var(\int_0^1 N_C(u^{\frac{1}{\lambda}}, u^{\frac{1}{1-\lambda}})du)$$
(8)

Démonstration. Recall that, with J defined as in the statement that:

$$\int_{[0,1]^2} N_C(u,v) dJ(u,v) = \frac{1}{2} \int_0^1 N_C(0,v^{1/(1-\lambda)}) dv + \frac{1}{2} \int_0^1 N_C(u^{1/\lambda},0) du - \int_0^1 N_C(u^{1/\lambda},u^{1/(1-\lambda)}) du$$

Taking the variance and using the proposition 3 gives that only the variance of the third term matters. \Box

Combining theorem 1 and proposition 2 gives the following result:

Proposition 4. Suppose that the assumption of theorem 1 holds. Let J be a function of bounded variation, continuous from above and with discontinuities of the first kind. Then

$$(\sum_{t=1}^{T} I_t J_t)^{-1/2} \sum_{t=1}^{T} (J(\hat{F}_T(X_t), \hat{G}_T(Y_t)) I_t J_t - \mathbb{E}[J(F(X), G(Y))])$$

converges in distribution to $\int_{[0,1]^2} N_C(u,v) dJ(u,v)$ where $N_C(u,v)$ is defined in theorem 1. The special case, $J(x,y) = \frac{1}{2}|x^{\lambda} - y^{1-\lambda}|$ provide the weak of convergence of the λ -Madogram estimator defined by (7):

$$\left(\sum_{t=1}^{T} I_t J_t\right)^{1/2} \{ \hat{\nu}_T(\lambda) - \frac{1}{2} \mathbb{E}[|F^{\lambda}(X) - G^{1-\lambda}(Y)|] \}$$

converge in distribution to $\int_{[0,1]} N_C(u,v) dJ(u,v)$ where the latter integral satisfies :

$$\int_{[0,1]^2} f(x,y) dJ(x,y) = \frac{1}{2} \int_0^1 f(0,y^{1/(1-\lambda)}) dy + \frac{1}{2} \int_0^1 f(x^{1/\lambda},0) dx - \int_0^1 f(x^{1/\lambda},x^{1/(1-\lambda)}) dx$$

for all bounded functions f.

Références

[Bre20] Jean-Christophe Breton. Processus stochastiques, 2020.

[FRW04] Jean-David Fermanian, Dragan Radulović, and Marten Wegkamp. Weak convergence of empirical copula processes. *Bernoulli*, 10(5):847–860, 2004.

[NGCD09] Philippe Naveau, Armelle Guillou, Dan Cooley, and Jean Diebolt. Modeling pairwise dependence of maxima in space. *Biometrika*, 96(1):1–17, 2009.

[Seg14] Johan Segers. Hybrid copula estimators, 2014.

[vdVW96] Aad W. van der Vaart and Jon A. Wellner. Weak Convergence and Empirical Process: With Applications to Statistics. 1996.