Übung 1: endlicher deterministischer Automat

1. Gegeben δ mit dem Startzustand s_0 und den Endzustände s_0 und s_1 . Welche Sprache akzeptiert der Automat? δ 0 1

δ	0	1
\rightarrow *s ₀	s_1	S 0
*s ₁	S 2	S ₀
S ₂	S 2	S ₂

Lsg: 00 darf nicht in der Sprache vorkommen.

- 2. Konstruieren Sie einen deterministischen endlichen Automat der folgende Sprachen über dem Alphabet $\Sigma = \{a,b\}$ bzw. $\Sigma = \{0,1,2\}$ akzeptiert:
 - a. $L = (ab)^*$
 - b. L = (0+1+2)(22)*
 - c. L = (2+1)*1(0+2)

Lsg:

a) L=(ab)*

b) L = (0+1+2)(22)*

3. Minimieren Sie den Automaten $A = (\{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}, \{0, 1\}, \delta, s_0, \{s_3\})$ mit δ

δ	0	1
\rightarrow s ₀	s_1	S ₀
S1	S0	S 2
S2	S ₃	s_1
*S3	S 3	S0
S4	S ₃	S ₅
S 5	S6	S4
S 6	S ₅	S ₆
S7	S ₆	S 3

Lsg: Automat

Automat die irrelevanten Zustände entfernen:

Optimierter Automat:

Der optimierte Automat ist mit dem Automaten oben identisch.

4. Minimieren Sie den Automaten $A = (\{s_0, s_1, s_2, s_3, s_4\}, \{0,1\}, \delta, s_0, \{s_4\})$ mit δ

δ	0	1
\rightarrow s ₀	S ₁	S ₂
S1	S4	S2
S ₂	S ₃	S ₂
S3	S4	S0
*S4	S4	S4

Lsg: DEA

optimierter Automat

- 5. Konstruieren Sie einen endlichen Automaten über dem Alphabet $\Sigma = \{0,1,2\}$, der alle Worte akzeptiert,
 - a. die an der letzten Stelle eine 0 oder 1 haben.
 - b. die an der zweitletzten Stelle eine 2 haben.

Lsg a)

Lsg b)

Übung 2: Umwandeln NEA in DEA und ε-NEA in NEA

1. Wandeln Sie den NEA = $(\{s_0, s_1, s_2\}, \{0,1\}, \delta, s_0, \{s_2\})$ in einen äquivalenten DEA um:

δ	0	1
\rightarrow s ₀	$\{s_0,s_1\}$	$\{s_0\}$
S1	$\{s_2\}$	$\{s_1\}$
*S2	Ø	Ø

Lsg: Ableitung und Zuordnung der Zustände

δ	0	1	Neue	0	1
			Zustände		
→ s₀	$\{s_0,s_1\}$	$\{s_0\}$	\rightarrow q $_0$	\mathbf{q}_2	\mathbf{q}_0
$\{s_0,s_1\}$	$\{s_0,s_1,s_2\}$	$\{s_{0},s_{1}\}$	q ₂	q ₁	q 2
*{s ₀ ,s ₁ ,s ₂ }	$\{s_0,s_1,s_2\}$	$\{s_{0},s_{1}\}$	*q1	q ₁	q 2

2. Wandeln Sie den NEA = $(\{s_0,s_1,s_2,s_3\},\{0,1\},\delta,s_0,\{s_3\})$ in einen äquivalenten DEA um:

δ	0	1
→ s₀	$\{s_1\}$	$\{s_2\}$
S ₁	$\{s_1\}$	$\{s_1,s_3\}$
S2	$\{s_2\}$	$\{s_2,s_3\}$
*S3	Ø	Ø

Lsg:

δ	0	1	Neue	0	1
			Zustände		
\rightarrow s ₀	{s ₁ }	{s ₂ }	\rightarrow q $_0$	q ₃	\mathbf{q}_2
S 1	$\{s_1\}$	$\{s_1,s_3\}$	\mathbf{q}_2	\mathbf{q}_2	q ₁
*{s ₁ ,s ₃ }	{s ₁ }	$\{s_1,s_3\}$	*q1	\mathbf{q}_2	q ₁
S2	{s ₂ }	$\{s_2,s_3\}$	q3	q 3	q ₄
*{s ₂ ,s ₃ }	{s ₂ }	$\{s_2,s_3\}$	*q4	q 3	q 4

3. Wandeln Sie den ε -NEA = ($\{s_0,s_1,s_2,s_3\},\{0,1\},\delta,s_0,\{s_3\}$) in einen äquivalenten NEA um:

δ	0	1	3
\rightarrow s ₀	$\{s_3\}$	$\{s_1\}$	$\{s_1\}$
S 1	$\{s_2\}$	Ø	$\{s_0,s_2\}$
S2	{s ₃ }	$\{s_0,s_3\}$	Ø
*S3	Ø	Ø	Ø

Lsg: Umwandeln des ϵ -NEA in einen NEA

δ	ω	0	1
q0	Ø	{q3, q2}	{q1, q3, q0}
q1	Ø	{q2, q3}	{q0, q1, q3}
q2	Ø	{q3}	{q3, q0}
q3	Ø	Ø	Ø

4. Wandeln Sie den ε -NEA = ($\{s_0,s_1,s_2,s_3,s_4\},\{0,1\},\delta,s_0,\{s_4\}$) in einen äquivalenten NEA um:

δ	0	1	ε
\rightarrow s ₀	Ø	Ø	$\{s_1,s_2\}$
S1	{s ₁ }	Ø	{s ₃ }
S2	{s ₁ }	$\{s_0,s_4\}$	Ø
S3	{s ₃ }	{s ₄ }	Ø
*S4	$\{s_2,s_3\}$	Ø	Ø

Lsg: 0 1 δ ε q0 Ø {q1, q3} {q4, q0} 0 q1 {q1, q3} q1 $\{q4\}$ {q0, q4} q2 {q1} Ø q4 q3 {q3} Ø {q4} {q2, q3} q4 Ø Ø

Übung 3: reguläre Ausdrücke

- 1. Schreiben Sie für folgende Sprachen reguläre Ausdrücke:
 - a. Menge der Strings w über dem Alphabet $\Sigma = \{0,1\}$, welche mindestens ein Paar 11 enthalten.
 - b. Alle Strings w über dem Alphabet $\Sigma = \{0,1\}$, deren Anzahl von 0-Ziffern vielfache von 5 sind.
 - c. Menge der Strings w über dem Alphabet $\Sigma = \{0, 1, 2\}$, welche mindestens eine 0 und mindestens eine 1 enthalten.

Lsg:

- a.) R = (0+1)*11(0+1)*
- b.) R = (1*01*01*01*01*0)*1*
- c.) R = (0+1+2)*(0(0+1+2)*1+1(0+1+2)*0)(0+1+2)*
- 2. Geben Sie die Sprache, die von den DEA mit $A = (\{s_0, s_1, s_2, s_3\}, \{0, 1\}, \delta, s_0, \{s_0\})$ akzeptiert wird, als ein regulären Ausdruck an:

δ	0	1
→*s ₀	S 3	s_1
S1	S ₀	S 3
S ₂	S ₂	S ₁
S 3	S ₁	S2

Regulärer Ausdruck

R := ((1+0(0+10*1))(1(0+10*1))*0)*

- 3. Erstellen Sie zu folgenden regulären Ausdrücke jeweils ein NEA, welcher genau diese Sprache akzeptiert:
 - a. 01*
 - b. (0+1)01
 - c. 00(0+1)*
 - d. (0+1)*01(0+1)*

Lsg:

a) 01*

b) (0+1)01

c) 00(0+1)*

d) (0+1)*01(0+1)*

