Homogenization

Janna Puderbach

17. Januar 2023

Content

Homogenization

Janna Puderbach

Introduction

Homogenization problem

Two-Scale Convergence

Introduction

Homogenization problem

Two-Scale Convergence

Given a composite material

- $\triangleright \Omega$ domain with scale L
- Π periodic cell with scale /
- $\epsilon = \frac{1}{I} \ll 1$

Janna Puderbach

Introduction

Homogenization

i wo-scale Convergence

Example (Conductivity Problem)

$$-\operatorname{div}(\sigma(x)\nabla u) = g(x),$$

$$u = 0,$$

$$x \in \Omega$$

 $x \in \partial \Omega$

$$\sigma(x) = \begin{cases} \sigma_1, x \in \Omega_1 \\ \sigma_2, x \in \Omega_2 \end{cases}$$

Example (Conductivity Problem)

$$-\operatorname{div}(\sigma(x/\varepsilon)\nabla u_{\varepsilon}) = g(x),$$

$$u_{\varepsilon} = 0,$$

$$x \in \Omega$$
$$x \in \partial \Omega$$

$$\sigma(x) = \begin{cases} \sigma_1, x \in \Omega_1 \\ \sigma_2, x \in \Omega_2 \end{cases}$$

Janna Puderbach

Introduction

problem

Convergence

Introduction

Homogenization problem

wo-Scale onvergence

Ansatz:

$$u_{\varepsilon}(x) = u_0(x, \frac{x}{\varepsilon}) + \varepsilon u_1(x, \frac{x}{\varepsilon}) + \varepsilon^2 u_2(x, \frac{x}{\varepsilon}) + \dots$$

Ansatz:

$$u(x, y) = u_0(x, y) + \varepsilon u_1(x, y) + \varepsilon^2 u_2(x, y) + ...$$

with
$$y = \frac{x}{\varepsilon}$$

Consider x (slow) and y (fast) as independent variables

Homogenization

Janna Puderbach

Introduction

lomogenization roblem

Convergence

Two-scale problem

$$\varepsilon = \frac{I}{L} \ll 1$$

$$\varepsilon \to 0$$

$$-\operatorname{div}(\sigma(x/\varepsilon)\nabla u_{\varepsilon}) = g(x), \qquad x \in \Omega$$
$$u_{\varepsilon} = 0, \qquad \partial \Omega$$

Janna Puderbach

Introduction

Homogenization problem

Two-Scale Convergence

$$-\operatorname{div}(\hat{\sigma}\nabla u_0)=g(x), \qquad x\in\Omega$$
 (1)

$$u_0 = 0,$$
 $x \in \partial \Omega$ (2)

Convergence

$$-\operatorname{div}(\sigma(\frac{x}{\varepsilon})\nabla u_{\varepsilon}) = g(x), \qquad x \in \Omega$$
$$u_{\varepsilon} = 0, \qquad x \in \partial\Omega$$

$$u_{\varepsilon} \rightharpoonup u_0$$
 weakly in $H^1_0(\Omega)$ $\sigma_{\varepsilon} \nabla u_{\varepsilon} \rightharpoonup \hat{\sigma} \nabla u_0$ weakly in $L^2(\Omega)$

Two-Scale Convergence

$$\hat{\sigma}_{i,j} = \frac{1}{|\Pi|} \int_{\Pi} (\sigma(y) (\nabla \chi_i + \boldsymbol{e}_i)) \cdot (\nabla \chi_j + \boldsymbol{e}_j) \, \mathrm{d} \, y$$

wo-Scale onvergence

$-\operatorname{div}\left[\sigma(y)\left[\nabla\chi_i + \boldsymbol{e}_i\right]\right] = 0, \quad y \in \Pi$ (3)

Abbildung: Unit cell

Weak Convergence Two-Scale convergence

$$\lim_{\varepsilon \to 0} \int_{\Omega} u_{\varepsilon}(x) \Psi(x, \frac{x}{\varepsilon}) \, \mathrm{d} \, x = \int_{\Omega} \int_{\Pi} u_{0}(x, y) \Psi(x, y) \, \mathrm{d} \, y \, \mathrm{d} \, x$$