THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE

STAT3602 Statistical Inference

Example Class 10 (2020-2021 1st semester)

Problem

1. Given a random sample X_1, \ldots, X_n from the density function

$$f(x|\lambda) = \lambda^{-1}e^{-x/\lambda}, x > 0$$

- (a) Find the UMP size α test of $H_0: \lambda \leq 1$ against $H_1: \lambda > 1$;
- (b) Find the equation for the sample size n required for this test to have power 95% when $\lambda = 2$, illustrating your answer with a sketched graph.
- Let X_1, \ldots, X_n be an independent sample from a normal distribution with mean 0 and variance σ^2
 - (a) Find the UMP test of size α to test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 = \sigma_1^2 > \sigma_0^2$.
 - (b) Find the UMP test of size α to test $H_0: \sigma^2 \leq \sigma_0^2$ against $H_1: \sigma^2 > \sigma_0^2$.
 - (c) Show that the UMPU test of size α to test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$ is in the form $\varphi(\mathbf{X}) = \mathbf{1}\left\{\sum_{i=1}^n X_i^2 \notin [t_1, t_2]\right\}$ with t_1, t_2 satisfying

$$\begin{cases} 1 + \mathbb{P}\left(Y < \frac{t_1}{\sigma_0^2}\right) - \mathbb{P}\left(Y < \frac{t_2}{\sigma_0^2}\right) = \alpha, & \text{where } Y \sim \chi_n^2, \\ \frac{t_1 - t_2}{n\left(\ln t_1 - \ln t_2\right)} = \sigma_0^2. \end{cases}$$

- 3. A local councillor suspects that traffic conditions in his village A have become more hazardous than those of a neighbouring village B. He therefore records the numbers of traffic accidents N_A, N_B which occur in A and B over a fixed period of time respectively. Assuming N_A, N_B are independent Poisson random variables with parameters $\lambda, \beta\lambda$ respectively, the councillor wishes to test $H_0: \beta \geq 1$ against $H_1: \beta < 1$.
 - (a) Derive a form of a UMPU test, of size α , for testing the above hypotheses.
 - (b) What is the outcome of the test when $\alpha = 0.1$, $N_A = 7$, $N_B = 2$?