NMAM INSTITUTE OF TECHNOLOGY, NITTE

Off-Campus Centre of Nitte (Deemed to be University) First Semester B.Tech. (CBCS) Degree Examinations

December 2022

EC1002-1 - APPLIED DIGITAL LOGIC DESIGN

Max. Marks: 100

	uration: 3 Hours	DIOTAL LOCAL	Max. Marks: 100
N	ote:	OMP Sh	oot provided Fach
<u>P</u>	art – A: Multiple Choice Questions: Answer all Tuestion carries equal marks	Twenty questions in the OMR Sh	eet provided. Eddi.
qu	uestion carries equal marks.	tions choosing	Two full questions
<u> </u>	art – B: Descriptive Answer type Questions: A	wer Five full questions choosing	7,7,0
110	om Unit – I & Unit – II each and One full question	n from Unit – III.	
	DART A SOUR		20 Marks
	PART - A: MULTIPLE	CHOICE QUESTIONS	
1.	The second of th	gate, what function is produced:	•
	A) XOR C) OR	B) NAND	
2.		D) NOR	
1	OR gate and will form the NOR gate A) OR		
	C) AND	B) NAND	
3.	What are the canonical forms of Boolean e	D) NOT	
(See	A) OR and XOR	B) NOR and XNOR	
44.0	C) MAX and MIN	D) SOP and POS	
4.	The Boolean expression AB+AC'+BC simp	lifies to	
	A) BC+AC'	B) AB+AC'+B	
	C) AB+AC'	D) AB+BC	
5.	The output of the logic circuit given below	represents gate	
	√ 1/√		
	B-TO-TU-G		
	A) OR	B) NOR	
	C) AND	D) NAND	
6.	The output Y of the logic circuit given belo	w is:	
	y () () () ()		
	A) 1	B) 0	
	C)X	D) X'	
7.	The minimum number of NAND gates requ	ired to realise AR+AR'C+ARIO	•
	A) 3	В) 2	IS
	C) 1	D) 0	
8.	are universal logic gates		
7	A) NAND and NOR	B) NOR AND EX-OR	
1	C) AND and NOT		
9.	One operation that is not given by magnitu	de comparator is	
L	A) Equal	B) Less than	
in .	C) Greater than	D) Sum	
10.	Adding 1001 and 0010 gives the output of	AR EARING CO	
1	A) 1011	B) 1111	
Bay ye	C) 1010	D) 0000	
11.	Major difference between half-adders and f	ull-adders is	
	A) Full-adders are made up of two half-adders	B) Full-adders can handle doubl	
The state of	C) Full-adders have carry input capability	D) None of these mandle doubt	e digit number

SEE - December 2022

		FC1002-1 of 0-1 yields	B) Difference = 1, borrow	= 0			
		EC1002-1 2. Binary subtraction of 0-1 yields A) Difference = 0, borrow = 0 A) Difference = 1, borrow = 1		= 1			
	7	2. Binary subtraction A) Difference = 0, borrow = 0 C) Difference = 1, borrow = 1 C) Difference = 1, borrow subtraction operation How many basic binary subtraction operation	ons are possible?				
		C) Difference - the binary subtraction of	B) 4				
	1:	3. How many basis	D) 2				
		A) 1 C) 3 What are the two types of basic adder circuit What are and carry	its?				
		C) 3	B) Half-adder and full-add				
	14	A) Sum and carry A) Sum and carry A) Sum and carry A synchronous	D) One and two's-comple	ment			
		at Acynchiolious and a great for full add	ers?				
	15	A) Sum and carry C) Asynchronous and synchronous Which of the following is correct for full add Which of the following is correct for full add Which of the following is correct for full add Which of the following is correct for full add Which decimal numbers	B) Full adders are used to	make h	alf add	ders	
	10.	A) Full dudo!					
		adding decimal numbers	D) In a parallel full adder,	the first	stage	may h) e
		C) Full adders are littled to	a nait adder			, -	
		there are only two binary digits If A and B are the inputs of a half adder, the	sum is given by				
	16.	If A and B are the inputs of a final					
		A) A AND B	D) A EX-NOR B				
		C) A XOR B The characteristic equation for S-R flip flop i	S				
100	17.	The characteristic equation for 5	B) $\overline{S} + R\overline{Q}$				
		A) S + RQ	D) S + RQ				
		C) S + RQ		_			
1	8.	Which of the following statements are TRUE	regarding sniπ registers	?			
		A) A shift register is a group of flip flops	B) It is not used for data s	torage			
	() It is not used for the data movement	D) Shift register includes s	set of late	ches		
15	9. 7	he group of bits 11001 is serially shifted (rig	ght-most bit first) into a 5	-bit para	allel o	utput	shift
	- r	egister with an initial state 01110. After three	e clock pulses, the regist	er conta	ains	•,	
	A		B) 00001				
	_ C	00101	D) 10101				
20.	TI	e minimum number of flip-flops that can b	e used to construct a mo	dulus-5	coun	ter is	
	\sim	옷병 - 계나 (C= 15개 일어서 1.5 H.) 일본	B) 8 **				
	C)	5 (M) (M) (M) (H) (H) (H) (M) (M) (M)	D) 10				
		PART - B: DESCRIPTIVE	ANSWER QUESTIONS				
		linit_i					
1.	a)	Perform number conversion of the given num	ahoro	Marks	BI.	CO.	PO*
эŝ.		i) 345 ₁₀ = (?) ₂	ibers.				
	J TH	ii) $10110.011_{2}^{2} = (?)_{16}$					
		iii) AB24.C5 ₁₆ = (?) ₁₀					
1	b) -	Implement the given function wait - 1		5	L3	1	1
		Implement the given function using basic gate only. $Y=f(a, b, c) = a+b'+bc$	es, NAND only and NOR				
Ŕ.	c)	Design a combinational aircritic		5	L3	2	1
		Design a combinational circuit having four in output (Y). Indicate logic 1at the output when	puts (a, b, c, d) and one	_		_	•
		output (Y). Indicate logic 1at the output when logic 1, indicate logic 0 when majority of its in	majority of its inputs are				
		logic 1, indicate logic 0 when majority of its in not specified when number of 1's and 0's are	put are logic 0. Output is				
		not specified when number of 1's and 0's, are	equal at the input	•		•	
2.	a)	Design a section	men active input.	6	L3	2	1
14		Design a combinational logic circuit with i output S is high whenever P is zero or whene	nnute P O D				
12-1	b)	output S is high whenever P is zero or whenestate and prove the DeMorgan's laws upleased	Wer O-D-4				
	ALCOHOL: COR.	TIGUE BILL DIAME TO A	VCI CO-R-1	5	L3	2	1
111		State and prove the DeMorgan's laws using the Find the minimal sum expression for the given QM technique. $W=f(a,b,c,d)=\Sigma m(0,1,2,3,6,1)$	ruti table method.	5	L2	1	1
7		QM technique. W= $f(a,b,c,d)$ = $\Sigma m(0,1,2,3,6,0)$	7 20 lean function using				
	a)	Ohtain	7,8,9,14,15)	6	L3	2	1
	-/	Obtain minimal sum expression for the given K -map method.				_	•
		ivernap method.	Boolean functions using				
		i) $P=f(a,b,c,d)=\sum_{i}m(0,1,2,3,8,9)$ ii) $Q=f(a,b,c,d)=\sum_{i}m(0,1,2,3,8,9)$	201119				
		ii) $Q=f(a,b,c,d)=\sum m(0,1,2,3,8,9)$ iii) $R=f(a,b,c,d)=\prod m(1,2,3,6,7,8,9,14,15)$					
		iii) $R = f(a,b,c,d) = \prod_{i=1}^{n} (0,1,2,3,6,7,8,9,14,15)$ $R = f(a,b,c,d) = \prod_{i=1}^{n} (1,2,3,4,9,10) + dc(0,14,15)$					
ħ		(0,14,10)	15).				
				5	L3	2	. 1

	b c)	i) $R = L + R(WR + RB)$ into GOF form, ii) $P = (\overline{w} + x)(y + \overline{z})$ into POS form.	5	L3	1	1
		output indicates logic 1 when the first number exceeds second number.	6	L3	2	1
*	. a) b)	Unit – II Explain the operation of Master Slave JK flip flop with truth table and timing diagram. Write the symbol for the same. Implement Y=f(a,b,c)=∑m(1,4,5,7) using	5	L2	4	1
	c)	i) 8:1 MUX ii) 4:1 MUX using a and b as select lines. Design a combinational logic circuit to compare two 2-bit numbers.	5 6	L3 L3	3	1
5	a)	Implement the given functions using decoder with minimum number of gate inputs. i) F1 = $f(a,b) = \sum m(0,1,3)$ ii) F2 = $f(a,b,c) = \sum m(0,2,3,5,7)$				
		iii) $F3 = f(a,b,c) = \prod M(1,2,3,5,6,7)$.	5	L3	3	1
	b) c)	Explain 4-bit parallel subtractor with necessary block diagram. Explain the working of +ve edge triggered D flip flop with relevant logic diagram, function table and timing diagram.	5 6	L2 L2	4	1
6	b)	Design 8:3 line encoder with relevant truth table, output expressions and draw the logic diagram using basic gates. Convert JK flip to SR and T flip flop. Design a common cathode BCD to seven segment decoder.	5 5 6	L2 L2 L3	3 4 3	1 1
7.		Unit – III Explain the working of 4-bit ripple down counter with relevant diagram and function table. Explain the working of following shift registers with relevant block	8	L2	5	1
		diagram and appropriate examples. i) 4-bit serial in serial out, ii) 4-bit parallel in parallel out, iii) 4-bit serial in parallel out.	8	L2	5	1
		CP and T flip flops.	8	L2	5	1
8. _	a) b)	Design a synchronous counter to count 0-1-4-0077 beginning gating.	8 ome	L3	5	1
BT*	Bloc	positive edge triggered JK flip flops with fill flow of the program Outcome; PO* Program Outc				