

Roll No:

B.TECH (SEM I) THEORY EXAMINATION 2020-21 ENGINEERING MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Qno.	Question	Marks	СО
a.	Prove that the matrix $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ is unitary.	2	1
	$\sqrt{3} 1 - i -1$		
b.	State Rank-Nullity Theorem.	2	1
c.	State Rolle's Theorem.	2	2
d.	Discuss all the symmetry of the curve $x^2y^2 = x^2 - a^2$	2	2
e.	If $u = f(y - z, z - x, x - y)$, prove that $6u + 6u + 6u = 0$	2	3
f.	If $x = e^{v} sec u$, $y = e^{v} tan u$, then evaluate $^{6}(x,y)$.	2	3
g.	Evaluate $\int_{0}^{1} f^{x_2} e^{y/x} dy dx$.	2	4
h.	Calculate the volume of the solid bounded by the surface $x = 0$, $y = 0$, $x+y+z=1$ and $z=0$.	2	4
i.	Show that the vector $\vec{V} = (x + 3y)\hat{\imath} + (y - 3z)\hat{\jmath} + (x - 2z)\hat{k}$ is solenoidal.	2	5
j.	State Green's theorem.	2	5

SECTION B

2. Attempt any *three* of the following:

Qno.	Question	Marks	СО
a.	2 3 4	10	1
	Find the inverse of the matrix $A = \begin{bmatrix} 4 & 3 & 1 \end{bmatrix}$		
	1 2 4		
b.	If $y = e^{\tan - 1x}$, prove that.	10	2
	$(1+x^2)y_{n+2}+[(2n+2)x-1)y_{n+1}+n(n+1)y_n=0.$		
c.	If $u^3 + v + w = x + y^2 + z^2$,	10	3
	$u + v^3 + w = x^2 + y + z^2,$		
	$\underline{u + v + w^3 = x^2 + y^2 + z}$		
	,Show that:		
	$\frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{1 - 4xy(xy + yz + zx) + 16xyz}{2 - 3(u^2 + v^2 + w^2) + 27u^2v^2w^2}$		
d.	Evaluate by changing the variables, $\iint_R (x+y)^2 dx dy$ where R is the region bounded by the parallelogram $x+y=0$, $x+y=2$, $3x-2y=0$ and $3x-2y=3$.	10	4

Use divergence theorem to evaluate the surface integral $\iint_S (xdydz + ydzdx + zdxdy)$ where S is the portion of the plane x+2y+3z=6 which	uted Pa	age:
lies in the first octant.)	5

Subject Code: KAS103T

Roll No:

SECTION C

3. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	Find non-singular matrices P and Q such that PAQ is normal form.	10	1
	1 1 2		
	[1 2 3]		
	0 1 1		
b.	Find the eigen values and the corresponding eigen vectors of the	10	1
	following matrix.		
	2 0 1		
	A = [0 3 0].		
	1 0 2		

4. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Find the envelope of the family of lines $x + y = 1$, where a and b are	10	2
	connected by the relation $a^n + b^n = c^n$		
b.	If $y = \sin (m \sin^{-1} x)$, find the value of y_n at $x = 0$.	10	2

5. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Divide 24 into three parts such that continued product of first, square of	10	3
	second and cube of third is a maximum.		
b.	If $u = sec^{-1} (^{x}_{3-y3})$, prove that $x^{6u} + y^{6u} = 2 \cot u$.	10	3
	$\overline{x+y}$ $6x$ $6y$		
	Also evaluate $x^{2} {}^{6}_{2u} + 2xy {}^{6}_{2u} + y^{2} {}^{6}_{2u}$.		
	$6x^{2}$ $6x^{6y}$ $6y^{2}$		

6. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	Evaluate the following integral by changing the order of integration	10	4
	$\int_{0}^{\infty} f^{\infty} e^{-y} dy dx$.		
	0 x y		
b.	A triangular thin plate with vertices $(0,0)$, $(2,0)$ and $(2,4)$ has density $\varrho =$	10	4
	1 + x + y. Then find:		
	(i) The mass of the plate.		
	(ii) The position of its centre of gravity G.		

7. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	A fluid motion is given by $\vec{v} = (y\sin z - \sin x)\hat{i} + (x\sin z + 2yz)\hat{j} +$	10	5
	$(xy\cos z + y^2)k^{\Lambda}$. Is the motion irrotational? If so, find the velocity		

		Printed E	ragge:
	potential.		
b.	Verify Stoke's theorem for the function $F = x^2\hat{\imath} + xy^3$ integrated round the square whose sides are $x=0,y=0,x=a,y=a$ in the plane $z=0$.	10	5