Web Data Models

Typing: DTD, Schema Silviu Maniu

XML Type Definition Language

- XML type definition language: a way to specify a certain subset of XML document — a type
- specification should be simple: a validator should be built automatically and efficiently

DTD: Syntax

- <!ELEMENT elem_name elem_regexp> an element named elem_name contains elements described by the regular expression elem_regexp
- <!ATTLIST elem_name att_name att_type att_values>
 — the element elem_name has an attribute named
 att_name of type att_type and having possible
 values described by att_values

DTD: Syntax

- regular expressions are formed of *,+,?, sequence
 [,], EMPTY, ANY, #PCDATA (text)
- attribute types are ID (primary key), IDREF (foreign key), CDATA (text), v1 | v2 | , ..., vn (fixed value list)
- attribute values are v (default value), #REQUIRED (mandatory attribute), #IMPLIED (optional attribute), #FIXED v (constant value v)

DTD

```
<!ELEMENT books (book*)>
<!ELEMENT book (publisher,edition, authors)>
<!ATTLIST book title CDATA #REQUIRED>
<!ELEMENT publisher #PCDATA>
<!ELEMENT edition #PCDATA>
<!ELEMENT authors (author+)
<!ELEMENT author (first,last)>
<!ELEMENT first #PCDATA>
<!ELEMENT last #PCDATA>
```

Mixed Content

 Mixed contend described by a repeatable OR group (between |):

```
(#PCDATA | element-name | ... )
```

 #PCDATA must be first followed by 0 or more elements — can be repeated multiple times

DTD: Regular Expressions

most interesting part of DTD — matching regular expressions on the contents

<!ELEMENT person

```
(name, title?, address*, (fax|tel)*,
email*) >
```

DTD: Regular Expressions

 The sequence of children labels has to match its regular expression content model:

Questions to Answer

- 1. What is a regular expression? How can we match a string against it?
- 2. What is a finite-state automaton?
- 3. What is a deterministic regular expression?
- 4. What is an 1-unambiguous regular expression?

Regular Expressions

| | meaning |
|-----------|--|
| a | tag/element a occurs |
| e1, e2 | expression e1 is followed by expression e2 |
| e* | 0 or more occurrences of <i>e</i> |
| e? | optional — 0 or 1 occurrences of <i>e</i> |
| e+ | 1 or more occurrences of e |
| e1 l e2 | e1 or e2 |
| (e) | grouping |

Regular Expressions

- very useful for defining programming language syntax
- in various Unix tools (grep), text editors (vim, emacs, ...)
- classical concept in CS (starting from Kleene, 50s)

- input: RE e, string s; output: does s match e?
- construct a non-deterministic or deterministic
 finite-state automaton (FA)
 e = (ab|b)*a*a

s = abbaaba

- input: RE e, string s; output: does s match e?
- construct a non-deterministic or deterministic automaton

e = (ab|b)*a*a

s = abbaaba

- evaluation on a deterministic FA can be done in linear time (in the size of the string IsI) and in constant space (size of the FA = number of states)
 - how?

- a non-deterministic FA can be transformed to a deterministic FA — but in exponential space; meaning that evaluation is not efficient
- for a deterministic FA one can build a minimal unique equivalent FA — equivalence between FAs is easy to check

DTDs and REs

W3C requires that the RE specified in DTD must be deterministic:

- evaluation is efficient if element-type definitions are deterministic
- resulting automaton = Glushkov automaton
- states = positions of the regular expression (semantic actions); transitions = based on the "follows set"

DTDs and REs

 XML specification: regular expressions are deterministic (1-unambiguos)

 unambiguous = each word (string) is witnessed by at most one sequence of positions of symbols in the expression that matches the word [Brügemann-Klein, Wood 1998]

ambiguous: (a|b)*aa*

equivalent unambiguous: (a|b)*a

DTDs and REs

- Is it enough for expressions to be only unambiguous?
- No = an expression can be unambiguous but the matching decision has to be done by looking at more states in advance

(a|b)*a

 without looking beyond the current symbol = 1unambiguous

Glushkov Automaton

Can we recognize deterministic FAs? [Brügemann-Klein, Wood 1998]

- a regular expression is deterministic iff its Glushkov automaton is deterministic
- the Glushkov automaton can be computed in time quadratic in the size of the regular expression

Glushkov Automaton

- character in RE = state in an automaton + one state of the beginning of the RE
- transitions show which characters can precede each other; incoming labels can only be the labels of the state
- construction is quadratic time O(m²)

Glushkov Automaton

What is the Glushkov automaton for:

 $a(b|c)(b|d)^*$

DTD: Validation Using FA

General algorithm for DTD (top-down):

- 1. for each <!ELEMENT... create its deterministic automaton A
- 2. for each element in document *D*, match the children using its corresponding automaton
- 3. if one does not match = document invalid
- 4. if all match = document valid

DTD: Validation Using FA

Why does this work?

 label-guarded subtree exchange property = trees obtained by exchanging the subtrees rooted at v1 and v2 are in the same languages if v1 and v2 have the same label lab

DTD Validation: Example

```
<a>
  <a>
   <a />
 </a>
  <b>
   <e />
  <f />
   <g />
 </b>
  <C>
   <e />
   <e />
   <e />
   <d />
  </c>
  <h>
  <e />
   <g />
 </b>
  <b>
   <e />
   <f />
  </b>
</a>
```

```
<!ELEMENT a (a,(b|c)*)>
<!ELEMENT b (e, f?, g?)>
<!ELEMENT c (e+, d)>
<!ELEMENT d EMPTY>
<!ELEMENT e EMPTY>
<!ELEMENT f EMPTY>
<!ELEMENT g EMPTY>
```

DTD: Limits

- DTD is compact, easy to understand, easy to validate (with the W3C restrictions...)
- But:
- 1. it is not in XML (dealing with another language)
- 2. no distinguishable types (everything is characters)
- 3. no value constraints (cardinality of sequences)
- 4. no built-in scoping (elements only used in subtrees)

XML Schema

XML Schema

- W3C Standard schema description language that goes beyond the capabilities of the DTD
- XML Schema specifications are XML documents themselves
- XML Schema has built-in data types (based on Java and SQL types)
- control over the values a data type can assume
- users can define their own data types

XML Schema Constructs

declaring an element (by default, can only contain string values)

```
<xsd:element name="author" />
```

bounded occurrences (absence of minOccurs / maxOccurs implies once)

```
<xsd:element name="address" min0ccurs="1"
max0ccurs="unbounded" />
```

types (considered atomic with respect to the schema)

```
<xsd:element name="year" type="xsd:date" />
```

other types: string, boolean, number, float, duration, time, base64binary, AnyURI, ...

XML Schema Constructs

non atomic complex types are built from simple types using type constructors

```
<xsd:complexType name="Persons">
 <xsd:sequence>
  <xsd:element name="person" min0ccurs="0"</pre>
  max0ccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="persons" type="Persons" />
```

XML Schema Constructs

- new complex types can be derived from an existing type (see specification)
- attributes are declared within the element

```
<xsd:element name="book">
  <xsd:attribute name="title" />
  <xsd:attribute name="year" type="xsd:gYear"/
  >
  </xsd:element>
```

XML Schema Example

What is the schema of this XML?

```
<?xml version="1.0" encoding="UTF-8"?>
<books>
  <book id="1" title="Theory of Computation">
    <authors>
      <author>Michael Sipser</author>
    </author>
    <publisher>Cengage Learning</publisher>
    <year>2012</year>
    <edition>3</edition>
  </book>
  <book id="2" title="Artificial Intelligence">
    <authors>
      <author>Peter Norvig</author>
      <author>Stuart Russell</author>
    </authors>
    <publisher>Pearson</publisher>
    <year>2013</year>
    <edition>3</edition>
  </book>
</books>
```

Tree Automata for XML Validation

Validating XML In General

- FA on strings (words) are very good and very efficient for DTDs (and, as we will see, for XPath)
- But what about XML schema? Or any other schema language?
- Is there a formalism / structure that can validate XML in general?

Tree Automata

Two types:

- on ranked trees: each node has a bounded number of children; each XML can be transformed by using the first child - next sibling encoding (more later)
- 2. on unranked trees: no bound on the number of children; better suited (directly) to XML,

Binary Tree Automata

Bottom-up non-deterministic tree automata

A non-deterministic bottom-up tree automata is a 4-tuple $\mathcal{A} = (\Sigma, Q, F, \Delta)$ where

- Σ is an alphabet. We usually distinguish between two disjoint alphabets: a leaf alphabet (Σ_{leaf}) and an internal one ($\Sigma_{internal}$).
- Q is a set of states.
- F is a set of accepting states $F \subseteq Q$.
- ullet Δ is a set of transition rules having one of the forms :

$$I
ightarrow q$$
 when $I \in \Sigma_{leaf}$ $a(q_1,q_2)
ightarrow q$ when $a \in \Sigma_{internal}$

Binary Tree Automata: Semantics

- the semantics of automata A are described in terms of a run
- a run = a mapping from the domain of Q (states)
 such that for each p we have r(p) in Q
- a run is accepting if the state of the root is one of the final states

Automata Example

Let $A = (\{a, I\}, \{q_0, q_1\}, \{q_0\}, \Delta)$ where

$$\Delta = \left\{ egin{array}{ll} a(q_1,q_1) &
ightarrow q_0 \ a(q_0,q_0) &
ightarrow q_1 \ I &
ightarrow q_1 \end{array}
ight.$$

Tree Languages

- The language L(A) is the set of trees accepted by A
- A language accepted by a bottom-up tree automaton is called a regular tree language

Top-Down Tree Automata

Binary top-down tree automata

A non-deterministic top-down tree automata is a 5-tuple

$$\mathcal{A} = (\Sigma, Q, I, F, \Delta)$$
 where

- \bullet Σ is an alphabet.
- Q is a set of states.
- $I \subseteq Q$ is a set of initial states.
- F is a set of accepting states $F \subseteq Q$.
- ullet Δ is a set of transition rules having the form :

$$q \rightarrow a(q_1, q_2)$$
.

where $a \in \Sigma$ and $q, q_1, q_2 \in Q$

Top-DownTree Automata: Semantics

Run

- A run of top-down automaton $A = (\Sigma, Q, I, F, \Delta)$ on a binary tree t is a mapping $r : dom(t) \rightarrow Q$ such that
 - $r(\epsilon) \in I$;
 - for each node p with label a, rule $r(p) \rightarrow a(r(p.0), r(p.1))$ is in Δ .
- A run is accepting if for all leaves p we have $r(p) \in F$.

Deterministic binary top-down automata

We say that a binary tree automaton is (top-down) deterministic **if I is** a singleton and for each $a \in \Sigma$ and $q \in Q$ there is at most one transition rule of the form $q \to a(q_1, q_2)$.

Automata Example

Let $A = (\{a, I\}, \{q_0, q_1\}, \{q_0\}, \{q_1\}, \Delta)$ where

$$\Delta = \left\{ egin{array}{ll} q_0 &
ightarrow a(q_1,q_1) \ q_1 &
ightarrow a(q_0,q_0) \end{array}
ight.$$

Regular Tree Languages

The following statements are equivalent:

- L is a regular tree language
- L is accepted by a non-deterministic bottom-up tree automaton
- L is accepted by a deterministic bottom-up automaton
- L is accepted by a non-deterministic top-down automaton

Regular Tree Languages

Generally, the same results as for regular word/string languages (FA):

- given a tree automaton, one can find an equivalent bottom-up automaton that is deterministic (with exponential blowup)
- regular tree languages are closed under complement, intersection and union

Ranked Tree Automata

- We can represent any unranked tree (XML) by a binary tree where the left child is the first child and the right child is the next sibling
- Called first-child next-sibling encoding (not the only one)

XML — Ranked Tree

Relation Between Ranked and Unranked Tree Automata

- For each unranked tree automaton, there exists a ranked tree automaton accepting the encoding of the XML in first child — next sibling
- For each ranked tree automaton, there exists an unranked tree automaton accepting the unranked tree seconded from first child — next sibling encoding

Unranked Bottom-Up Tree Automata

Non-deterministic bottom-up tree automata

A non-deterministic bottom-up tree automaton is a 4-tuple $\mathcal{A} = (\Sigma, Q, F, \Delta)$ where Σ is an alphabet, Q is a set of states, $F \subseteq Q$ is a set of final states an Δ is a set of transition rules of the form

$$a[E] \rightarrow q$$

where $a \in \Sigma$, E is a regular expression over Q and $q \in Q$

Unranked Bottom-Up Tree Automata: Semantics

Let $\mathcal{A} = (\Sigma, Q, F, \Delta)$ be an unranked tree automata.

- The semantics of A is described in terms of runs
- Given an **unranked tree** t, a run of \mathcal{A} on t is a mapping from dom(t) to Q where, for each position p whose children are at positions $p0, \ldots, p(n-1)$ (with $n \geq 0$), we have r(p) = q if all the following conditions hold:
 - $t(p) = a \in \Sigma$,
 - the mapping r is already defined for the children of p, *i.e.*, $r(p.0) = q_0, \ldots, r(p.(n-1)) = q_{n-1}$ and
 - the word $q_0.q_1...q_{n-1}$ is in L(E).
- A run r is *successful* if $r(\epsilon)$ is a final state.

Automata Example

Let
$$A = (\{a, I\}, \{q_a, q_c, q_I\}, \{q_a\}, \Delta)$$
 where

$$\Delta = \begin{cases} a \left[q_a^*.q_l^*.(q_c \mid \epsilon) \right] & \rightarrow q_a \\ c \left[q_l \right] & \rightarrow q_c \\ l \left[\epsilon \right] & \rightarrow q_l \end{cases}$$
 Special rule for leaves

Schemas and Tree Grammars

 Schemas for XML documents can be formally expressed by Regular Tree Grammars (RTG)

Regular Tree Grammar (RTG)

A regular tree grammar (RTG) is a 4-tuple G = (N, T, S, P), where :

- N is a finite set of non-terminal symbols;
- T is a finite set of terminal symbols;
- S is a set of start symbols, where $S \subseteq N$ and
- P is a finite set of *production rules* of the form $X \to a[R]$, where $X \in N$, $a \in T$, and R is a regular expression over N.

(We say that, for a production rule, X is the left-hand side, aR is the right-hand side, and R is the content model.)

Grammar Example

```
P_1
Dir 	o directory[Person^*]
Person 	o student[DirA \mid DirB])
Person 	o professor[DirB]
DirA 	o direction[Name.Number?.Add?]
DirB 	o direction[Name.Add?.Phone^*]
```

Competing Non-Terminals

Two different non-terminals A and B (of the same grammar G) are said to be competing with each other if:

- a production rule has A in the left-hand side,
- another production rule has B in the left-hand side, and
- these two production rules share the same terminal symbol in the right-hand side.

Same definition for automata — states are competing if they have the same label and different transition rules

Grammar Example

P_1	Δ_1
$ extit{Dir} ightarrow extit{directory[Person}^*]$	$ extit{directory}[q^*_{ extit{person}}] o q_{ extit{dir}}$
$Person ightarrow student[DirA \mid DirB])$	$student[q_{dirA} \mid q_{dirB}] ightarrow q_{person}$
$ extit{Person} ightarrow extit{professor}[extit{DirB}]$	$professor[q_{dirB}] ightarrow q_{person}$
$DirA \rightarrow direction[Name.Number?.Add?]$	$direction[q_{name}.q_{number}?.q_{add}?] ightarrow q_{dirA}$
$DirB \rightarrow direction[Name.Add?.Phone^*]$	$ extit{direction}[q_{ extit{name}}.q_{ extit{add}}?.q_{ extit{phone}}^*] ightarrow q_{ extit{dir}B}$

Local Tree Grammar

- A local tree grammar (LTG) is a regular tree grammar that does not have competing non-terminals
- A local tree language (LTL) is a language that can be generated by at least one LTG

Grammar Example

P_3	Δ_3
$Dir ightarrow directory[Student^*.Professor^*]$	$oxed{ ext{directory}[q^*_{ ext{stud}}.q^*_{ ext{prof}}] o q_{ ext{dir}}}$
$Student \rightarrow student[Name.Number?.Add?]$	$student[q_{name}.q_{number}?.q_{add}?] ightarrow q_{stud}$
$Professor \rightarrow professor[Name.Add?.Phone^*]$	$professor[q_{name}.q_{add}?.q_{phone}^*] ightarrow q_{prof}$

Single-Type Tree Grammar

A single type tree grammar (STTG) is a regular tree grammar, where:

- for each production rule, non terminals in its regular expression do not compete with each other, and
- start symbols do not compete with each other.

A single-type tree language (STTL) is a language that an be generated by at least one STTG.

Grammar Example

P_2	Δ_2
$Dir ightarrow directory[Person^*]$	$directory[q^*_{person}] ightarrow q_{dir}$
Person ightarrow student[DirA])	$student[q_{dirA}] ightarrow q_{person}$
Person o professor[DirB]	$professor[q_{dirB}] ightarrow q_{person}$
$DirA \rightarrow direction[Name.Number?.Add?]$	$direction[q_{name}.q_{number}?.q_{add}?] ightarrow q_{dirA}$
$DirB \rightarrow direction[Name.Add?.Phone^*]$	$direction[q_{name}.q_{add}?.q_{phone}^*] ightarrow q_{dirB}$

Classes of Regular Languages

LTL C STTL C RTL

 LTL and STTL are closed under intersection but not union; RTL closed under union, intersection and difference

XML Schema Languages

Grammar	Schema Language
LTG	DTD
STTG	XML Schema
RTG	RelaxNG

General Validation Algorithm

A run associates to each position **p** in the XML document a set of states in **Q** such that:

- 1. there exists a transition rule to a state in **Q** from a label **a**
- 2. the label at **p** is **a**
- 3. the string of the children labels matches the RE in the transition rule

A run is successful if it contains at least one final state.

Simplified Versions for LTG and STTG

 LTG: the sets of states are always singletons, only one rule for each label

 STTG: the results of a run can consider just a single type for each node of the tree

Validation Example

$$Shop, (\emptyset, \emptyset), q^*_{Customer} q^*_{Invoice} \rightarrow q_{Shop}$$

Customer,
$$(\{q_{idCust}\}, \{q_{idInvoices}\}), q_{Name} \\ \rightarrow q_{Customer} \\ Invoice, (\{q_{invoiceNb}\}, \emptyset), \emptyset \rightarrow q_{Invoice}$$

$$idCust, (\emptyset, \emptyset), q_{data} \rightarrow q_{idCust}$$

 $idInvoices, (\emptyset, \emptyset), q_{data} \rightarrow q_{idInvoices}$
 $Name, (\emptyset, \emptyset), q_{data} \rightarrow q_{Name}$
 $invoiceNb, (\emptyset, \emptyset), q_{data} \rightarrow q_{invoiceNb}$

Slide Credits

- Validation Using Trees: structure&examples from Mirian Hayfield Ferrari
- Figures & examples in slides 8, 12, 13, 24 from C.
 Maneth's course