Ejercicio 1: Cálculo de la Fuerza Resultante (Segunda Ley de Newton)

Un objeto de masa m kg se mueve con una aceleración de a m/s². Usa la **Segunda Ley de Newton** para calcular la **fuerza resultante** (F = m * a).

Instrucciones:

- 1. Solicita al usuario la cantidad de cálculos a realizar.
- 2. Usa un **ciclo "Para"** para ingresar valores de **masa y aceleración** y calcular la **fuerza** en cada iteración.
- 3. Muestra el resultado de cada cálculo.

Ejercicio 2: Verificación de la Primera Ley de Newton

Si la **fuerza neta (F)** sobre un objeto es **cero**, este permanecerá en reposo o en movimiento uniforme.

Instrucciones:

- 1. Pide al usuario **n** valores de fuerzas netas aplicadas.
- 2. Usa un ciclo "Para" para evaluar si en cada caso la fuerza neta es cero.
- 3. Muestra si el objeto permanece en reposo o en movimiento uniforme.

Ejercicio 3: Cálculo del Peso de un Objeto en Diferentes Planetas

El peso de un objeto depende de la gravedad en cada planeta.

Instrucciones:

- 1. Pide la **masa** del objeto.
- 2. Usa un ciclo "Para" para calcular el peso (P = m * g) en varios planetas con las siguientes gravedades:
 - \circ Tierra (9.8 m/s²)
 - \circ Marte (3.7 m/s²)
 - $_{\circ}$ Júpiter (24.8 m/s²)
 - \circ Luna (1.6 m/s²)

3. Muestra los pesos calculados.

Ejercicio 4: Cálculo de la Fuerza de Fricción

La fuerza de fricción se calcula con la ecuación: $\mathbf{F}_{\mathbf{f}}$ fricción = $\mu * \mathbf{N}$, donde:

- μ es el coeficiente de fricción
- **N** es la normal (N = m * g)

Instrucciones:

- 1. Pide la masa del objeto y el coeficiente de fricción (μ).
- 2. Usa un ciclo "Para" para calcular la fuerza de fricción en distintos valores de masa ingresados por el usuario.
- 3. Muestra los resultados.

Ejercicio 5: Cálculo de la Tensión en una Cuerda

Cuando un objeto cuelga de una cuerda, la tensión en la cuerda se calcula como T = m * g, si no hay aceleración adicional.

Instrucciones:

- 1. Pide al usuario ingresar **n** objetos con sus respectivas masas.
- 2. Usa un ciclo "Para" para calcular la tensión en cada caso.
- 3. Muestra los resultados.

Ejercicio 6: Simulación de un Objeto en un Plano Inclinado

La fuerza paralela a la superficie de un plano inclinado es \mathbf{F} _paralela = $\mathbf{m} * \mathbf{g} * \sin(\theta)$.

Instrucciones:

- 1. Pide la masa del objeto y un rango de ángulos (θ).
- 2. Usa un **ciclo "Para"** para calcular la **fuerza paralela** en distintos ángulos dentro del rango.
- 3. Muestra los resultados.