# **ORTHOSCOPE: instruction**

This page is an instruction for <u>ORTHOSCOPE</u>.

### Two analyses (mode) of ORTHOSCOPE

Tree search only

CDS

Gene tree

Search & rearrangement

CDS



Gene tree



Rearrange 👉 👉 Species tree

Modeified: 17 Jul. 2018

Rearranged Gene tree Orthogroup (orthologs)

### Query segences: Inoue et al.

Query segeunces from genes with known function

| Actinopterygii | Vertebrata     | Deuterostomia  | Protostomia    |  |
|----------------|----------------|----------------|----------------|--|
| PLCB1*         | ALDH1A         | Bra            | Bra            |  |
| <u>Queries</u> | <b>Queries</b> | <b>Queries</b> | <b>Queries</b> |  |
| <u>Result</u>  | <u>Result</u>  | <u>Result</u>  | <u>Result</u>  |  |

### Query sequences from assemble database\*

- Download *Coregonus lavaretus* TSA file (GFIG00000000.1) form NCBI.
- Translate raw sequences into amino acid and cDNA sequences using <u>TrandDecoder</u>.

./TransDecoder.LongOrfs -t GFIG01.1.fsa nt

3. Make blast databases using <u>BLAST+</u>.

> makeblastdb -in longest orfs.pep -dbtype prot -parse seqids makeblastdb -in longest orfs.cds -dbtype nucl -parse seqids

BLASTP seaech against amino acid database.

blastp -query query.txt -db longest orfs.pep -num alignments 10 evalue 1e-12 -out 010 out.txt

Retrieve blast top hit sequences from cDNA file using seq id.

blastdbcmd -db longest orfs.cds -dbtype nucl -entry batch queryIDs.txt -out 020 out.txt

## Query seqences: example

| P            | Actinopterygii               | Vertebrata                   | Deuterostomia                | Protostomia                  |
|--------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Bra<br>Actin | 3queries.txt<br>4queries.txt | 6queries.txt<br>4querist.txt | 6queries.txt<br>7queries.txt | 3queries.txt<br>9queries.txt |
| MHC          | 4queries.txt                 | 10queries.txt                | 6queries.txt                 | 2queries.txt                 |



Case 1: Query sequence is present in ORTHOSCOPE database



Case 2: Query sequence is not present in ORTHOSCOPE database



### Species tree hypothesis



The tree file can be modifed using <u>TreeGraph2</u>.



# **Sequence collection**

#### BlastP results against D.melanogaster

| Hit sequences                    | E value |
|----------------------------------|---------|
| Drosophila-melanogaster_FBpp01_X | 0.0     |
| Drosophila-melanogaster_FBpp14_X | 1e-7    |
| Drosophila-melanogaster_FBpp34_X | 1e-6    |
| Drosophila-melanogaster_FBpp34_X | 1e-5    |
| Drosophila-melanogaster_FBpp67_X | 1e-4    |
| Drosophila-melanogaster FBpp14 X | 1e-3    |
| Drosophila-melanogaster_FBpp24_X | 1e-2    |
| Drosophila-melanogaster FBpp53 X | 1e-1    |

E-value for reported sequence: 1e-3

Number of hits to report: 5

# Alignment



# Tree search

**Dataset** 



Rearrangement BS value threshold

Rearrangement BS value threshold: 70%



NJ analysis is conducted using the software package <u>Ape</u> in R (cDNA) and <u>FastME</u> (amino acid). Rearrangement analysis is done using a method implemented in <u>NOTUNG</u>.

## Tree estimation using identified orthologs

#### Mac only

1. Select only orthologs and save 010\_candidates\_nucl.txt file



- 2. Decompress 100\_2ndTree.tar.gz file
- 3. cd into 100\_2ndTree file
- 4. Run the pipeline

#### 5. ML tree is saved is 200\_RAxMLtree\_Exc3rd.pdf.



### **Browser**

| Chrome | Firefox | Safari        | IE            |
|--------|---------|---------------|---------------|
| OK     | OK      | 11.0 or later | Not supported |

# History

10 July 2018

Version 1.0.

### Citation

Inoue J. and Satoh N. ORTHOSCOPE: an automatic web tool of analytical pipeline for ortholog identification using a species tree. in prep.

Previous versions

jun.inoueAToist.jp