딥러닝팀

1팀

김예찬

윤지영

채소연

한지원

홍지우

INDEX

- 1. CNN
- 2. CNN의 발전 과정
- 3. RNN
- 4. RNN 모델의 응용

1

CNN

CNN

CNN이란?

데이터의 공간 정보 보존

CNN

CNN이란?

CNN 모델의 3가지 특별한 층(Layer)

Convolution
Layer

Pooling
Layer

Connected
Layer

CNN

CNN은 공간 정보가 데이터의 값만큼 중요한 정보가 되는 형태의 데이터에 대해 아주 강력

이미지 데이터

Convolution Layer

Filter

- Input에서 자신의 사이즈만큼의 부분과 가중합하는 역할
 - 순회하면서 Input과 가중합

Convolution Layer

Convolution Layer의 연산

$$i_{00} \times w_{11} + i_{10} \times w_{01} + i_{01} \times w_{10} + i_{11} \times w_{00} = c_{00}$$

이론적으로 Convolution 연산은 위 수식과 같은 형태

Convolution Layer

Cross - Correlation

- 위 그림을 180도 뒤집은 형태
- Pytorch나 tensorflow 등에서 이루어짐
- 두 행렬을 곱할 때 같은 위치에 있는 원소끼리 곱하는 것

Convolution Layer

Feature Map : 반환된 결과

Feature Map

Feature Map

하이퍼 파라미터	Pytorch 표현	역할
Input Channel	in_channels	입력 데이터의 채널 개수 지정
Output Channel	out_channels	출력의 채널 개수 지정
필터 사이즈	kernel_size	필터의 크기 지정
Stride	stride	필터의 이동 간격 지정
Padding	padding	입력 데이터 주변에 붙일 padding 의 수 지정

Input Channel

Input Channel

- 몇 개의 channel 이 input 으로 한 번에 들어오는가
 - 대부분의 이미지 데이터의 경우 input channel 이 3

R 채널, G 채널, B 채널 -> (3,28,28)

Output Channel

Output Channel

- 하나의 입력 데이터에 대해 Conv. Layer가 반환하는 channel의 수
 - Feature Map의 channel의 수 = Out channel

Feature Map의 채널이 10개 각 채널의 사이즈가 (32,32)

(10,32,32)

● 필터 사이즈

필터 사이즈란?

: 필터의 크기를 얼마나 크게 설정한 것인가

필터의 크기가 클수록 반환되는 Feature Map의 크기는 작아짐

Stride

Stride란?

: 필터가 이동하는 간격

Stride가 작으면 Feature Map의 크기 커짐

Padding

Padding

회색 칸들에 새로운 값들을 넣어주어 가장자리의 값들도 <mark>필터를 여러 번</mark> 통과할 수 있는 방법

Feature Map의 크기

$$O_n = \frac{I_n + 2P - F}{S} + 1$$

- O_n : 출력의 가로길이
- I_n : 입력의 가로길이
- P: Padding의 크기
- *F*: 필터의 가로 길이
- *S* : Stride

Feature Map의 크기

Feature Map 예시

- I_n : 입력데이터의 사이즈 (3,32,32)
- F: Conv. Layer에 (4,4)필터 10개
- *S* : Stride=2
- P: Padding = 1

$$O_n = \frac{I_n + 2P - F}{S} + 1 = \frac{32 + 2 \times 1 - 4}{2} + 1 = 16$$

Pooling Layer

Pooling Layer란?

: 입력 이미지의 중요한 특징들을 더욱 강조하는 동시에 데이터의 크기를 줄이는 것에 더 중점을 둔 Layer

Convolution Layer

가중치 존재

Pooling Layer

가중치 없음

Pooling Layer

Pooling Layer란?

- 가중치 없음
- 입력의 특징을 가져오면서 크기를 줄임
- Max Pooling, Average Pooling, Min Pooling

Fully Connected Layer

Fully Connected Layer

최종 단계에서 라벨 예측을 진행할 때 사용되는 Layer 벡터로의 변환이 필수적

2

CNN의 발전 과정

• CNN의 발전 과정

Lenet-5, AlexNet, GoogLeNet, VGGNet, ResNet

LeNet-5

LeNet-5란?

- 맨 처음 제안된 CNN 모델
- (1,32,32)의 입력을 Layer들에 통과시켜 0~9까지의 손으로 쓴 숫자를 분류하는 모델

LeNet-5

LeNet-5의 특징

Layer	# filters / neurons	Filter size	Stride	Size of feature map	Activation function
Input	+			32 X 32 X 1	
Conv 1	6	5 * 5	1	28 X 28 X 6	tanh
Avg. pooling 1		2*2	2	14 X 14 X 6	
Conv 2	16	5 * 5	1	10 X 10 X 16	tanh
Avg. pooling 2		2 * 2	2	5 X 5 X 16	
Conv 3	120	5 * 5	1	120	tanh
Fully Connected 1				84	tanh
Fully Connected 2	-			10	Softmax

- 모든 layer의 활성화 함수로 tanh를 사용
- Tanh 함수는 미분값이 0에 수렴

LeNet-5

LeNet-5의 특징

Layer	# filters / neurons	Filter size	Stride	Size of feature map	Activation function
Input	+		-	32 X 32 X 1	
Conv 1	6	5 * 5	1	28 X 28 X 6	tanh
Avg. pooling 1		2*2	2	14 X 14 X 6	
Conv 2	16	5 * 5	1	10 X 10 X 16	tanh
Avg. pooling 2		2 * 2	2	5 X 5 X 16	
Conv 3	120	5 * 5	1	120	tanh
Fully Connected 1				84	tanh
Fully Connected 2				10	Softmax

현재의 CNN에서는 잘 사용하지 않음

AlexNet

AlexNet의 특징

- ILSVRC-2012에서 압도적 1등 차지 오류율이 큰 폭으로 <mark>감소</mark>
- 224 * 224의 컬러 이미지 처리를 위해 병렬 처리

AlexNet

AlexNet의 특징

AlexNet

AlexNet의 특징

- ILSVRC-2012에서 압도적 1등 차지 <mark>오류율</mark>이 큰 폭으로 <mark>감소</mark>

• 배치 정규화

배치 정규화

• 데이터 분석의 전처리 단계에서 시행하는 데이터 Scaling 과정의 Nomalization과 유사 속성별로 scale을 평균과 분산으로 정규화 해주는 과정

● 배치 정규화

배치 정규화

- 배치의 크기에 따라 Iteration의 크기가 결정
- 모집단의 분포와 표본의 분포가 같지 않은 것처럼, 배치마다 데이터의 분포가 달라질 수 있음

Dropout

Dropout

- Batch마다 학습할 때 일정한 비율의 노드를 <mark>버리고</mark> 학습하는 방법
- 여러 모델을 <mark>앙상블</mark> 한 것과 유사한 효과
- 과적합을 <mark>방지</mark>할 수 있는 방법

GoogLeNet

GoogLeNet의 구조와 특징

- 모델의 중간마다 역전파 실행
- Inception 모듈 → AlexNet 파라미터의 1/12로 축소
- FC Layer 사용 X

GoogLeNet

Inception 모듈

: 이미지 데이터의 특성상 가까운 픽셀끼리는 상관성이 높고 먼 픽셀끼리는 상관성이 낮다는 점을 반영

(a) Inception module, naïve version

문제점: 연산 ↑

GoogLeNet

Inception 모듈

: 이미지 데이터의 특성상 가까운 픽셀끼리는 상관성이 높고 먼 픽셀끼리는 상관성이 낮다는 점을 반영

문제점:연산 ↑

- (1,1) Conv.Layer 각 단계에 추가
- Feature Map의 depth ↓(연산 ↓)

VGGNet

VGGNet의 구조와 특징

- 작은 필터 여러 번 사용
- 파라미터 수 감소↓ 비선형성 ↑

2 CNN의 발전 과정

ResNet

ResNet의 구조와 특징

: Residual Learning을 통해 더 깊은 층을 쌓은 모델

$$H(x) =$$

F(x): 이전 layer 결과를 입력으로 사용

+

x: Conv. Layer 이후로 넘겨 그대로 사용

$$\frac{\partial H(x)}{\partial x} = (F(x) + x)' = F'(x) + 1$$

이전에 학습되지 못한 F(x) 최적화

3

RNN

3

RNN (Recurrent Neural Network)

RNN 모델의 형태

RNN

: Sequential Data를 학습할 수 있는 딥러닝 모델

Vanilla RNN

Vanilla RNN의 구조와 특징

Hidden Layer(Memory Cell): 처음부터 마지막 시점 t의 데이터까지 반복해서 사용됨

Vanilla RNN

Vanilla RNN의 구조와 특징

- x_t: 입력
- h_t (Hidden State): Memory Cell 값
 - 각 시점의 입력에 따라 업데이트되며 어떤 데이터를 기억할지 결정

Vanilla RNN

Hidden State

Vanilla RNN의 가중치

$$W_x$$
: $x_t - h_t$

$$W_h$$
: $h_t - h_{t+1}$

$$W_o$$
: $h_t - o_t$

역전파 (Back Propagation)

BPTT (Back Propagation Through Time)

매 시점 gradient 계산 → 첫번째 시점까지 <mark>역전파</mark>

역전파 (Back Propagation)

BPTT (Back Propagation Through Time)

매 시점 gradient 계산 → 첫번째 시점까지 <mark>역전파</mark>

역전파 (Back Propagation)

Truncated BPTT

Sequential Data 구간 분리 → BPTT 진행

LSTM(Long Short-Term Memory)

LSTM이란?

: 사람의 장기 기억과 단기 기억에 착안하여 만들어진 모델

Hidden State 와 Cell State

Forget Gate

: 과거의 정보를 얼마나 잊을지 결정하는 역할

Hidden State 와 Cell State

Forget Gate

이전 시점의 Hidden State 와 현재 시점의 <mark>입력을 가중치와 곱해 시그모이드 함수</mark>에 전달

Hidden State 와 Cell State

Forget Gate

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

- 활성화 함수는 시그모이드 함수
- 출력이 1에 가까울 수록 이전 시점 정보들을 많이 기억함

Hidden State 와 Cell State

Input Gate

: 현재의 정보를 얼마나 기억할지 결정하는 역할

● Hidden State 와 Cell State

Input Gate

이전 시점의 Hidden State 와 현재 시점의 입력을 가중치와 곱해 시그모이드 또는 tanh 함수에 전달

● Hidden State 와 Cell State

Input Gate

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$g_t = \tanh(W_g \cdot [h_{t-1} \cdot x_t] + b_g)$$

- 활성화 함수는 시그모이드, tanh 함수
- 시그모이드: 이전 시점 정보를 <mark>얼마나</mark> Cell State에 전달할 지 결정
- Tanh: 이전 시점 정보들 중 어떤 정보를 Cell State에 전달할 지 결정

Hidden State 와 Cell State

현 시점의 Cell State

: Forget Gate와 Input Gate의 출력을 바탕으로 현 시점의 Cell State 값 결정

- Forget Gate : 얼마나 이전 시점의 정보들을 잊을 것인지 결정
- Input Gate : 현재 시점 중 어떤 정보들을 얼마나 기억할지 결정

Hidden State 와 Cell State

Output Gate

: 현재 시점의 Cell State와 이전 시점의 정보들을 바탕으로 현재 시점의 Hidden State 결정

Hidden State 와 Cell State

Output Gate

현재까지의 정보들 중 어떤 정보를 얼마나 활용할 것인지 결정

Hidden State 와 Cell State

Output Gate

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t \times \tanh(C_t)$$

출력값은 현 시점의 Output이자 다음 시점이 전달 받을 Hidden State

GRU

Output Gate

- LSTM의 원리와 유사함
- LSTM과는 달리 Cell State와 Output Gate가 없음
- Cell State를 제거하여 LSTM에 비해 파라미터 수가 적음

4

RNN 모델의 응용

Seq2Seq

Encoder-Decoder란?

- Encoder: Sequential Data를 입력받아 압축된 하나의 벡터로 만드는 역할
- Decoder : Encoder의 마지막 Hidden State와 입력을 바탕으로 Encoder와 달리 매 시점마다 출력을 내보냄

Attention

Attention이란?

: Encoder-Decoder에서의 병목현상을 해결하기 위해 제안된 아이디어

Attention

Attention의 계산

• Decoder의 각 시점 Hidden State와 Encoder의 모든 시점 Hidden State의 유사도를 구함

$$score(s_t, h_i) = s_t^T h_i$$

$$e^t = [s_t^T h_1, s_t^T h_2, ..., s_t^T h_N]$$

Attention

Attention Distribution 계산

• Attention Score 벡터를 Softmax 함수에 통과시켜 확률값 얻음

$$a^t = softmax(e^t)$$

Attention

Attention Value 계산

• Attention Distribution을 Encoder의 모든 Hidden State와 곱함

$$score(s_t, h_i) = s_t^T h_i$$

$$e^{t} = [s_{t}^{T}h_{1}, s_{t}^{T}h_{2}, ..., s_{t}^{T}h_{N}]$$

Attention

Decoder의 Hidden State와 연결

- Hidden State와 Attention Value를 연결
- tanh 함수를 통과한 벡터가 출력층의 입력이 됨

$$\tilde{s}_t = \tanh(W_c \cdot v_t + b_c)$$

$$o_t = softmax(W_o \cdot \tilde{s}_t + b_o)$$

THANK YOU