This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLAIM SET AS AMENDED:

1. (Currently Amended) A metal carrier for a catalyst comprising:

a honeycomb structure made of ferritic stainless steel and shaped in a cylindrical form, said honeycomb structure having a plurality of air vents, the air vents being substantially equal in size to each other, the honeycomb structure having alternating waved plates and base plates, the waved plates having <u>first</u> sections that are substantially flat, and each of the base plates having an inner and an outer surface being disposed against the <u>first</u> flat sections of adjoining ones of the waved plates located inwardly and outwardly thereof, respectively, and the waved plates also having second sections extending outwardly from one of the base plates to the base plate immediately adjacent thereto,

wherein the second sections of the waved plates are uninterrupted planar surfaces extending an axial direction from one end of the metal carrier to another, thus forming the air vents as uninterrupted passages from one end of the metal carrier to the other end;

a cylindrical case covering an outer peripheral surface of the honeycomb structure, wherein the cylindrical case is composed of ferritic stainless steel containing Mo, said Mo content in the ferritic stainless steel is in the range of 0.30 wt% \leq Mo \leq 2.50 wt%; and

a catalyst layer being formed on exposed surfaces of said honeycomb structure and on an interior surface of said cylindrical case, and since the material of the case is the same as that of the honeycomb structure, a coefficient of linear expansion of the case is substantially the same as a coefficient of linear expansion of the honeycomb structure, thereby suppressing thermal deformation of the case,

Reply to Office Action of December 5, 2003

Docket No. 0505-0477P Group Art Unit 1764 Page 3 of 15

wherein <u>each of</u> the plurality of air vents existing at an outermost position of the honeycomb structure is formed by cooperation of an entire inner face of the case and a waved plate of the honeycomb structure.

- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Cancelled)
- 5. (Cancelled)
- 6. (Original) The metal carrier for a catalyst according to claim 1, wherein the catalyst layer is a noble metal formed on the honeycomb structure.
- 7. (Original) The metal carrier for a catalyst according to claim 6, wherein the noble metal is platinum.
 - 8. (Currently Amended) A metal carrier for a catalyst comprising:

a honeycomb structure made of ferritic stainless steel and having a catalyst layer formed thereon, said honeycomb structure having a plurality of air vents, the air vents being substantially equal in size to each other, the honeycomb structure having alternating waved plates and base plates, the waved plates having first sections that are substantially flat, and each of the base plates having an inner and an outer surface being disposed against the first flat sections of adjoining ones of the waved plates located inwardly and outwardly thereof, respectively, and the

Reply to Office Action of December 5, 2003

Docket No. 0505-0477P Group Art Unit 1764 Page 4 of 15

waved plates also having second sections extending outwardly from one of the base plates to the

base plate immediately adjacent thereto,

wherein the second sections of the waved plates are uninterrupted planar surfaces

extending an axial direction from one end of the metal carrier to another, thus forming the air

vents as uninterrupted passages from one end of the metal carrier to the other end;

a case covering an outer surface of the honeycomb structure, wherein the case is

composed of ferritic stainless steel containing Mo, said Mo content in the ferritic stainless steel is

in the range of 0.30 wt% \leq Mo \leq 2.50 wt%,

wherein said catalyst layer being formed on exposed surfaces of said honeycomb

structure and on an interior surface of said cylindrical case, and since the material of the case is

the same as that of the honeycomb structure, a coefficient of linear expansion of the case is

substantially the same as a coefficient of linear expansion of the honeycomb structure, thereby

suppressing thermal deformation of the case, and

wherein each of the plurality of air vents existing at an outermost position of the

honeycomb structure is formed by cooperation of an entire inner face of the case and a waved

plate of the honeycomb structure.

9. (Cancelled)

10. (Cancelled)

11. (Cancelled)

12. (Cancelled)

- 13. (Original) The metal carrier for a catalyst according to claim 8, wherein the catalyst layer is a noble metal formed on the honeycomb structure.
- 14. (Original) The metal carrier for a catalyst according to claim 13, wherein the noble metal is platinum.
 - 15. (Currently Amended) A metal carrier for a catalyst comprising:

a honeycomb structure made of ferritic stainless steel, said honeycomb structure having a plurality of air vents which are substantially equal in size to each other, the honeycomb structure having alternating waved plates and base plates, the waved plates having first sections that are substantially flat, and each of the base plates having an inner and an outer surface being disposed against the first flat sections of adjoining ones of the waved plates located inwardly and outwardly thereof, respectively, the waved plates also having second sections extending outwardly from one of the base plates to the base plate immediately adjacent thereto,

wherein the second sections of the waved plates are uninterrupted planar surfaces extending an axial direction from one end of the metal carrier to another, thus forming the air vents as uninterrupted passages from one end of the metal carrier to the other end;

a case covering an outer peripheral surface of the honeycomb structure, wherein the case is composed of ferritic stainless steel containing Mo, said Mo content in the ferritic stainless steel is 1.2 wt%; and

a catalyst layer being formed on exposed surfaces of said honeycomb structure and on an interior surface of said cylindrical case, and since the material of the case is the same as that of the honeycomb structure, a coefficient of linear expansion of the case is substantially the same as a coefficient of linear expansion of the honeycomb structure, thereby suppressing thermal

Group Art Unit 1764 Reply to Office Action of December 5, 2003 Page 6 of 15

Docket No. 0505-0477P

deformation of the case, wherein the plurality of air vents existing at an outermost position of the

honeycomb structure is formed by cooperation of an entire inner face of the case and a waved

plate of the honeycomb structure.

16. (Cancelled)

17. (Cancelled)

(Previously Presented) The metal carrier for a catalyst according to claim 15,

wherein the catalyst layer is a noble metal formed on the honeycomb structure.

(Previously Presented) The metal carrier for a catalyst according to claim 18,

wherein the noble metal is platinum.

(Currently Amended) A metal carrier for a catalyst comprising:

a honeycomb structure made of ferritic stainless steel and having a catalyst layer formed

thereon, said honeycomb structure having a plurality of air vents which are substantially equal in

size to each other, the honeycomb structure having alternating waved plates and base plates, the

waved plates having first sections that are substantially flat, and each of the base plates having an

inner and an outer surface being disposed against the first flat sections of adjoining ones of the

waved plates located inwardly and outwardly thereof, respectively, the waved plates also having

second sections extending outwardly from one of the base plates to the base plate immediately

adjacent thereto,

Reply to Office Action of December 5, 2003

Docket No. 0505-0477P Group Art Unit 1764 Page 7 of 15

wherein the second sections of the waved plates are uninterrupted planar surfaces

extending an axial direction from one end of the metal carrier to another, thus forming air vents

as uninterrupted passages from one end of the metal carrier to the other end;

a case covering an outer surface of the honeycomb structure, wherein the case is

composed of ferritic stainless steel containing Mo, said Mo content in the ferritic stainless steel is

1.20wt%,

wherein said catalyst layer being formed on exposed surfaces of said honeycomb

structure and on an interior surface of said cylindrical case, and since the material of the case is

the same as that of the honeycomb structure, a coefficient of linear expansion of the case is

substantially the same as a coefficient of linear expansion of the honeycomb structure, thereby

suppressing thermal deformation of the case, and

wherein each of the plurality of air vents existing at an outermost position of the honeycomb

structure is formed by cooperation of an entire inner face of the case and a waved plate of the

honeycomb structure.

21. (Cancelled)

22. (Cancelled)

23. (Previously Presented) The metal carrier for a catalyst according to claim 20,

wherein the catalyst layer is a noble metal formed on the honeycomb structure.

24. (Previously Presented) The metal carrier for a catalyst according to claim 23, wherein

the noble metal is platinum.