Indestructible remarkable cardinals

Victoria Gitman

 $\label{localization} vgitman @nylogic.org \\ http://boolesrings.org/victoriagitman$

5th European Set Theory Conference August 28, 2015 This is joint work with Yong Cheng (Wuhan University).

The origin of remarkable cardinals

Definition: A cardinal κ is remarkable if in every $\operatorname{Coll}(\omega, <\kappa)$ -extension V[G], for every regular $\lambda > \kappa$, there an embedding $j: H_{\bar{\lambda}} \to H_{\lambda}$, for some V-regular $\bar{\lambda} < \kappa$, with $\operatorname{cp}(j) = \bar{\kappa}$ and $j(\bar{\kappa}) = \kappa$.

Theorem: (Schindler, '00) The following are equiconsistent.

- ullet The theory of $L(\mathbb{R})$ cannot be changed by proper forcing.
- There exists a remarkable cardinal.

A generic version of supercompactness

Theorem: (Magidor, '71) A cardinal κ is supercompact if and only if for every regular $\lambda > \kappa$, there is an embedding $j: H_{\bar{\lambda}} \to H_{\lambda}$, for some regular $\bar{\lambda} < \kappa$, with $\operatorname{cp}(j) = \bar{\kappa}$ and $j(\bar{\kappa}) = \kappa$.

Absoluteness lemma for countable embeddings: (Folklore) If M is countable and there is an embedding $j:M\to N$, then every transitive model $W\models \mathrm{ZFC}^-$ such that $M,N\in W$ and M is countable in W has an embedding $j^*:M\to N$. If $\mathrm{cp}(j)=\bar{\kappa}$ and $j(\bar{\kappa})=\kappa$, we can arrange the same to be true for j^* . We can also arrange for j and j^* to agree on finitely many values.

Proof:

- Construct the tree T of finite partial embeddings from M to N.
- T has a branch if and only if there is an embedding from M to N.
- The tree T is in W.
- The tree T is ill-founded in V and hence also in W. \square

A generic version of supercompactness (continued)

Observation: A cardinal κ is remarkable if and only if for every regular $\lambda > \kappa$, there is a set-forcing extension V[H] in which there is an embedding $j: H_{\bar{\lambda}} \to H_{\lambda}$, for some V-regular $\bar{\lambda} < \kappa$, with $\operatorname{cp}(j) = \bar{\kappa}$ and $j(\bar{\kappa}) = \kappa$.

Proof: Suppose $j: H_{\bar{\lambda}} \to H_{\lambda}$ exists in V[H].

- Let $G \subseteq \operatorname{Coll}(\omega, <\kappa)$ be V[H]-generic.
- $H_{\bar{\lambda}}$ is countable in $V[G] \subseteq V[H][G]$.
- $j^*: H_{\bar{\lambda}} \to H_{\lambda}$ exists in V[G] (by the absoluteness lemma).
- Every $\operatorname{Coll}(\omega, <\kappa)$ -extension has some $j: H_{\overline{\lambda}} \to H_{\lambda}$ (since $\operatorname{Coll}(\omega, <\kappa)$ is weakly homogeneous). \square

Other characterizations of remarkable cardinals

Definition: In a $\operatorname{Coll}(\omega, <\kappa)$ -extension V[G], an embedding $j: H_{\bar{\lambda}} \to H_{\lambda}$ is $(\bar{\mu}, \bar{\lambda}, \mu, \lambda)$ -remarkable if

- $\bar{\lambda}$, λ are V-regular,
- $\operatorname{cp}(j) = \bar{\mu} \text{ and } j(\bar{\mu}) = \mu.$

Note: A cardinal κ is remarkable if in every $\operatorname{Coll}(\omega, <\kappa)$ -extension V[G], for every regular $\lambda > \kappa$, there is a $(\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)$ -remarkable embedding.

Lemma: If κ is remarkable, then in every $\operatorname{Coll}(\omega, <\kappa)$ -extension V[G], for every regular $\lambda > \kappa$ and $a \in H_{\lambda}$, there is a $(\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)$ -remarkable $j : H_{\bar{\lambda}} \to H_{\lambda}$ with $a \in \operatorname{ran}(j)$. In particular, there are such j with $\operatorname{cp}(j)$ arbitrarily high in κ .

Lemma: In a $\operatorname{Coll}(\omega, <\kappa)$ -extension V[G], if $j: H_{\bar{\lambda}} \to H_{\lambda}$ is $(\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)$ -remarkable, then it lifts to

$$j: H_{\bar{\lambda}}[G_{\bar{\kappa}}] \to H_{\lambda}[G]$$

(where $G_{\bar{\kappa}}$ is the restriction of G to $Coll(\omega, <\bar{\kappa})$).

Other characterizations of remarkable cardinals (continued)

Theorem: (Schindler, '00) A cardinal κ is remarkable if and only if for every regular $\lambda > \kappa$, there are countable transitive models M and N with embeddings

- $\pi: M \to H_{\lambda}$ with $\pi(\bar{\kappa}) = \kappa$,
- $\sigma: M \to N$ such that
 - ightharpoonup cp $(\sigma) = \bar{\kappa}$,
 - ▶ ORD^{M} is regular in N and $M = H_{ORD^{M}}^{N}$,
 - $ightharpoonup \sigma(\bar{\kappa}) > \mathrm{ORD}^M$.

Remarkable cardinals in the hierarchy

Theorem: (Schindler, '00) Strong cardinals are remarkable.

Proof: Suppose κ is strong.

- Fix a regular $\lambda > \kappa$ and $j: V \to M^*$ with $cp(j) = \kappa$, $j(\kappa) > \lambda$, and $H_{\lambda} \subseteq M^*$.
- $j: H_{\lambda} \to H_{j(\lambda)}^{M^*}$ and $H_{\lambda} \subseteq H_{j(\lambda)}^{M^*}$.
- Take countable $\langle X, Y, h, \in \rangle \prec \langle H_{j(\lambda)}^{M^*}, H_{\lambda}, j, \in \rangle$.
- Let $\rho: X \to N$ be the collapse map. Then $\rho \upharpoonright Y: Y \to M$ is the collapse of Y.
- Define $\pi: \rho^{-1}: M \to H_{\lambda}$ and $\sigma = \rho \circ h \circ \rho^{-1}: M \to N$. \square

Observation: Measurable cardinals are not necessarily remarkable.

Proof: Remarkable cardinals are totally indescribable and a measurable cardinal is Σ_1^2 -describable. \square

Theorem: Remarkable cardinals are downward absolute to *L*.

Proof: In a $\operatorname{Coll}(\omega, <\kappa)$ -extension V[G], suppose $j: H_{\bar{\lambda}} \to H_{\lambda}$ is $(\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)$ -remarkable.

- $j: L_{\bar{\lambda}} \to L_{\lambda}$ in V[G].
- $j^*: L_{\bar{\lambda}} \to L_{\lambda}$ exists in L[G] since $L_{\bar{\lambda}}$ is countable in L[G] (by the absoluteness lemma). \square

Remarkable cardinals in the hierarchy (continued)

Definition: A weak κ -model (for a cardinal κ) is a transitive $M \models \mathrm{ZFC}^-$ of size κ and height above κ .

Suppose M is a weak κ -model.

Observation: TFAE.

- There exists $j: M \to N$ with $cp(j) = \kappa$.
- There exists an M-ultrafilter U with a well-founded ultrapower.
 - ▶ *U* is an *M*-ultrafilter if $\langle M, \in, U \rangle \models U$ is a normal ultrafilter.
 - $U = \{ A \in M \mid \kappa \in j(A) \}.$

Example: A cardinal κ is weakly compact if and only if $2^{<\kappa}=\kappa$ and every $A\subseteq \kappa$ is contained in a weak κ -model M for which there exists an M-ultrafilter on κ with a well-founded ultrapower.

Definition: An *M*-ultrafilter *U* is weakly amenable if for every $X \in M$ with $|X|^M \le \kappa$, $X \cap U \in M$.

- U is partially internal to M.
- It is needed to iterate the ultrapower construction.

Remarkable cardinals in the hierarchy (continued)

Definition: (G., '07) A cardinal κ is α -iterable ($1 \le \alpha \le \omega_1$) if every $A \subseteq \kappa$ is contained in a weak κ -model M for which there exists a weakly amenable M-ultrafilter on κ with α -many well-founded iterated ultrapowers.

Theorem: (G., '07) A 1-iterable cardinal is a stationary limit of completely ineffable cardinals.

Theorem: (G., Welch, '08) An ω -Erdős cardinal implies for every $n \in \omega$, the consistency of a proper class of n-iterable cardinals.

Theorem: (G., Welch, '08)

- A remarkable cardinal is 1-iterable and a stationary limit of 1-iterable cardinals.
- If κ is 2-iterable, then there is a proper class of remarkable cardinals in V_{κ} .

Laver-like functions

Suppose κ is a large cardinal characterized by the existence of some type of elementary embeddings j.

A Laver-like function $\ell : \kappa \to V_{\kappa}$ is a guessing function with the property that for every set a, there is some j of the type characterizing the cardinal such that $j(\ell)(\kappa) = a$.

- (supercompact) For every $a \in H_{\theta}$, there is a θ -supercompactness embedding $j: V \to M$ with $\operatorname{cp}(j) = \kappa$ and $j(\ell)(\kappa) = a$.
- (strong) For every $a \in V_{\theta}$, there is a θ -strongness embedding $j : V \to M$ with $\operatorname{cp}(j) = \kappa$ and $j(\ell)(\kappa) = a$.
- (extendible) For every $\alpha > \kappa$ and $a \in V_{\alpha}$, there is $j : V_{\alpha} \to V_{\beta}$ with $\operatorname{cp}(j) = \kappa$ and $j(\ell)(\kappa) = a$.
- (strongly unfoldable) For every $a \in V_{\theta}$, for every $A \subseteq \kappa$, there is a θ -strong unfoldability embedding $j: M \to N$ ($V_{\theta} \subseteq N$) with $A \in M$ and $j(\ell)(\kappa) = a$.

Additional assumptions:

- dom(ℓ) is contained in the inaccessible cardinals,
- ℓ " $\xi \subseteq V_{\xi}$.

Laver-like functions (continued)

The existence of Laver-like functions can be forced for most large cardinals, but few have them outright.

Theorem:

- (Laver, '78) Every supercompact cardinal has a Laver function.
- (Gitik, Shelah, '89) Every strong cardinal has a strong Laver function.
- (Corazza, '00) Every extendible cardinal has an extendible Laver function.
- (Džamonja, Hamkins, '06) Not every strongly unfoldable cardinal has a strongly unfoldable Layer function.

Laver-like functions play an important role in indestructibility arguments.

12 / 26

Remarkable Laver functions

Definition: (Cheng, G., '14) A function $\ell : \kappa \to V_{\kappa}$ is a remarkable Laver function if for every regular $\lambda > \kappa$ and $a \in \mathcal{H}_{\lambda}$, every $\operatorname{Coll}(\omega, <\kappa)$ -forcing extension V[G] has a $(\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)$ -remarkable $j : \mathcal{H}_{\bar{\lambda}} \to \mathcal{H}_{\lambda}$ such that

- $\ell \upharpoonright \bar{\kappa} + 1 \in H_{\bar{\lambda}}$,
- $\bar{\kappa} \in \mathsf{dom}(\ell)$,
- $j(\ell(\bar{\kappa})) = j(\ell \upharpoonright \bar{\kappa} + 1)(\kappa) = a$.

Additional assumptions:

- $j(\ell \upharpoonright \bar{\kappa}) = \ell$,
- $dom(\ell)$ is contained in the inaccessibles,
- ℓ " $\xi \subseteq V_{\varepsilon}$.

Remarkable Laver functions (continued)

Suppose κ is remarkable and V[G] is a $Coll(\omega, <\kappa)$ -extension.

Definition: In V[G], suppose $\ell : \xi \to V_{\kappa}$ ($\xi \le \kappa$). Say that x is λ -anticipated by ℓ (for λ regular) if

- $x \in H_{\lambda}$,
- there is a $(\bar{\xi}, \bar{\lambda}, \xi, \lambda)$ -remarkable lift $h: H_{\bar{\lambda}}[G_{\bar{\xi}}] \to H_{\lambda}[G_{\xi}]$ with $h(\ell \upharpoonright \bar{\xi} + 1)(\xi) = x$.

Lemma: In V[G], if $\ell : \xi \to V_{\kappa}$ ($\xi < \kappa$) and there is λ for which some x is not λ -anticipated by ℓ , then the least such $\lambda < \kappa$.

Definition: Fix a well-ordering W of V_{κ} of order-type κ . In V[G], define $\ell : \kappa \to V_{\kappa}$ inductively as follows. Suppose $\ell \upharpoonright \xi$ has been defined.

- Suppose there is λ such that some x is not λ -anticipated by $\ell \upharpoonright \xi$.
 - ▶ Let λ' be least such.
 - ▶ Let a be W-least set that is not λ' -anticipated by $\ell \upharpoonright \xi$.

Set $\ell(\xi) = a$.

• Otherwise, $\ell(\xi)$ is undefined.

Remarkable Laver functions exist

Lemma: The definition of ℓ is independent of the $\operatorname{Coll}(\omega, <\kappa)$ -extension V[G] and $\ell \in V$.

Proof: $Coll(\omega, <\kappa)$ is weakly homogeneous. \square

Theorem (Cheng, G., '14) If κ is remarkable, then there is a remarkable Laver function (with all additional properties).

Proof: In a $\operatorname{Coll}(\omega, <\kappa)$ -extension V[G], suppose λ is least such that some a is not λ -anticipated by ℓ .

- Fix $H_{\tau}[G]$ that is large enough to see this.
- Fix a $(\bar{\kappa}, \bar{\tau}, \kappa, \tau)$ -remarkable lift $j: H_{\bar{\tau}}[G_{\bar{\kappa}}] \to H_{\tau}[G]$ and $j(\bar{\lambda}) = \lambda$.
- $j(\ell \upharpoonright \bar{\kappa}) = \ell$ (follows from $W \in ran(j)$).
- By elementarity, $H_{\bar{\tau}}[G_{\bar{\kappa}}]$ satisfies that $\bar{\lambda}$ is least such that some x is not $\bar{\lambda}$ -anticipated by $\ell \upharpoonright \bar{\kappa}$ and it is correct by absoluteness lemma.
- It follows that $\ell \upharpoonright \bar{\kappa} + 1 \in H_{\bar{\tau}}[G_{\bar{\kappa}}]$ and $\ell(\bar{\kappa})$ is not $\bar{\lambda}$ -anticipated by $\ell \upharpoonright \bar{\kappa}$.
- By elementarity, $j(\ell \upharpoonright \bar{\kappa} + 1)(\kappa) = y$ is not λ -anticipated by ℓ .
- But y is anticipated by $j' = j \upharpoonright H_{\bar{\lambda}}[G_{\bar{\kappa}}]$ and $j' \in H_{\tau}[G]$. $\to \leftarrow \square$

Remarkable Laver functions in indestructibility arguments

Lemma: Suppose κ is remarkable and ℓ is a remarkable Laver function. In a $\operatorname{Coll}(\omega, <\kappa)$ -extension V[G], for every regular $\lambda > \kappa$ and $a \in H_{\lambda}$, there is a $(\bar{\kappa}, \bar{\lambda}, \kappa, \lambda)$ -remarkable $j: H_{\bar{\lambda}} \to H_{\lambda}$ such that

- \bullet $(\bar{\kappa}, \bar{\lambda}] \cap \mathsf{dom}(\ell) = \emptyset$,
- $\ell(\bar{\kappa}) = \langle \bar{a}, \bar{x} \rangle$, where $j(\bar{a}) = a$.

Proof: Let $j(\ell)(\kappa) = \langle a, \lambda + 1 \rangle$ and $j(\bar{a}) = a$.

- $\ell(\bar{\kappa}) \notin V_{\bar{\lambda}}$.
- ℓ " $\xi \subseteq V_{\xi}$. \square

Demonstrating indestructibility of remarkable cardinals

Suppose κ is remarkable and V[G] is an extension by a forcing notion \mathbb{P} .

Indestructibility strategy:

Fix $\pi: M \to H_{\lambda}$ $(\pi(\bar{\kappa}) = \kappa)$ and $\sigma: M \to N$ such that

- $cp(\sigma) = \bar{\kappa}$,
- ORD^M is regular in N and $M = H^N_{ORD^M}$,
- $\sigma(\bar{\kappa}) > \mathrm{ORD}^M$.

Lift

- $\pi: M[\bar{G}] \to H_{\lambda}[G]$,
- $\sigma: M[\bar{G}] \to N[H]$,
- preserve that ORD^M is regular in N[H] and $M[\bar{G}] = H_{ORD^M}^{N[H]}$.

Theorem: (Lifting Criterion) Suppose $j:M\to N$ is an embedding of ZFC^- models having generic extensions M[G] and N[H] by forcing notions $\mathbb P$ and $j(\mathbb P)$ respectively. The embedding j lifts to $j:M[G]\to N[H]$ if and only if j " $G\subseteq H$.

Choosing a good pair π and σ

Suppose κ is remarkable and $\lambda > \kappa$ is regular.

Fix $\delta > \lambda$ and $\rho : M' \to H_{\delta}$ with M' countable, $\rho(\kappa') = \kappa$, $\rho(\lambda') = \lambda$, $\rho(\ell') = \ell$.

- Fix an M'-generic $g \subseteq \operatorname{Coll}(\omega, \langle \kappa' \rangle^{M'})$.
- In M'[g], choose a $(\bar{\kappa}, \bar{\lambda}, \kappa', \lambda')$ -remarkable $j: H^{M'}_{\bar{\lambda}} \to H^{M'}_{\lambda'}$ such that $(\bar{\kappa}, \bar{\lambda}) \cap \text{dom}(\ell') = \emptyset$.
- Let $\sigma: H_{\bar{\lambda}}^{M'} \to N$ with $N = \{\sigma(f)(a) \mid a \in [V_{\kappa'} \cup \{\kappa'\}]^{<\omega}, f \in H_{\bar{\lambda}}^{M'}\}.$
- Let $M = H_{\bar{\lambda}}^{M'}$, $\sigma : M \to N$ and $\pi = \rho \circ j : M \to H_{\lambda}$.

Indestructibility by $Add(\kappa, \theta)$

Theorem: (Cheng, G., '14) A remarkable cardinal κ can be made indestructible by $Add(\kappa, \theta)$ for every θ .

Proof:

- \mathbb{P}_{κ} is the κ -length Easton support iteration which forces with $\mathrm{Add}(\xi,\mu)^{V^{\mathbb{P}_{\xi}}}$ at stage ξ whenever $\ell(\xi) = \langle \mu, x \rangle$ for some x.
- Suppose κ is not remarkable in a $\mathbb{P}_{\kappa} * \mathrm{Add}(\kappa, \theta)$ -extension.
- There is a regular $\lambda > \kappa$ and $q \in \mathbb{P}_{\kappa} * \mathrm{Add}(\kappa, \theta)$ such that

 $q \Vdash$ "there are no desired embeddings π and σ for H_{λ} ".

- Fix a good pair $\pi: M \to H_{\lambda}$ and $\sigma: M \to N$ with

 - $\blacktriangleright (\bar{\kappa}, \mathrm{ORD}^M] \cap \mathsf{dom}(\ell') = \emptyset \text{ and } \bar{\ell}(\bar{\kappa}) = \langle \bar{\theta}, \mathsf{x} \rangle.$
- Fix a V-generic $G * g \subseteq \mathbb{P}_{\kappa} * \mathrm{Add}(\kappa, \theta)$ such that
 - $ightharpoonup q \in G * g$,
 - G * g is π " M-generic ($\mathbb{P}_{\kappa} * \mathrm{Add}(\kappa, \theta)$ is countably closed),
- Let $\bar{G} * \bar{g} = \pi^{-1}(G * g)$.

Indestructibility by $Add(\kappa, \theta)$ (continued)

Lift π **to** $M[\bar{G}][\bar{g}]$:

- $\bullet \pi " \bar{G} * \bar{g} \subseteq G * g.$
- Lift π to $\pi: M[\bar{G}][\bar{g}] \to H_{\lambda}[G][g]$ by the lifting criterion.

Lift σ **to** $M[\bar{G}]$:

- Need an *N*-generic $G' \subseteq \overline{\mathbb{P}}_{\kappa'}$ with σ " $\overline{G} = \overline{G} \subseteq G'$.
- Factor $\bar{\mathbb{P}}_{\kappa'} = \bar{\mathbb{P}}_{\bar{\kappa}} * \mathrm{Add}(\bar{\kappa}, \bar{\theta}) * \dot{\mathbb{P}}_{\mathsf{tail}}$.
- Choose a $N[\bar{G}][\bar{g}]$ -generic $G_{tail} \subseteq \mathbb{P}_{tail}$ ($N[\bar{G}][\bar{g}]$ is countable) and let $G' = \bar{G} * \bar{g} * G_{tail}$.
- Lift σ to $\sigma: M[\bar{G}] \to N[G']$ by the lifting criterion.

Lift σ **to** $M[\bar{G}][\bar{g}]$:

• Need an N[G']-generic $g' \subseteq \operatorname{Add}(\kappa', \theta')^{N[G']}$ with $\sigma " \bar{g} \subseteq g'$.

 σ " \bar{g}

Indestructibility by $Add(\kappa, \theta)$ (continued)

- Choose any N[G']-generic $g' \subseteq Add(\kappa', \theta')^{N[G']}$ and use the Surgery Method.
- For $p \in Add(\kappa', \theta')^{N[G']}$, let p^* be the result of altering p to agree with σ " \bar{g} .
- Theorem (Woodin):
 - ▶ Each $p^* \in Add(\kappa', \theta')^{N[G']}$.
 - $g^* = \{p^* \mid p \in g'\}$ is N[G']-generic for $Add(\kappa', \theta')^{N[G']}$.
 - ▶ Proof needs (1) $\bar{g} \in N[G']$ and (2) $N = \{\sigma(f)(a) \mid a \in [V_{\kappa'} \cup \{\kappa'\}]^{<\omega}, f \in M\}$.
- Lift σ to $\sigma: M[\bar{G}][\bar{g}] \to N[G'][g^*]$ by the lifting criterion.
- There is no forcing in $\bar{\mathbb{P}}_{\kappa'}$ in $(\bar{\kappa}, \mathrm{ORD}^M]$ and $\bar{\mathbb{P}}_{\kappa'}$ is progressively more closed.
 - ▶ ORD^M is regular in $N[G'][g^*]$,
 - $\blacktriangleright \ M[\bar{G}][\bar{g}] = H_{\mathrm{ORD}^{M}}^{N[G'][g^*]}.$

Thus, V[G][g] has σ and π as desired, but $g \in G * g$ forces otherwise. $\rightarrow \leftarrow \square$

Indestructibility by $<\kappa$ -closed $\le\kappa$ -distributive forcing

Theorem: (Cheng, G., '14) A remarkable cardinal κ can be made indestructible all κ -closed κ -distributive forcing.

Proof:

- \mathbb{P}_{κ} is the κ -length Easton support iteration which forces with $\dot{\mathbb{Q}}_{\xi}$ at stage ξ whenever $\ell(\xi) = \langle \dot{\mathbb{Q}}_{\xi}, x \rangle$, where $\dot{\mathbb{Q}}_{\xi}$ is a \mathbb{P}_{ξ} -name for a $\langle \xi$ -closed $\langle \xi \rangle$ -distributive poset in $V^{\mathbb{P}_{\xi}}$ and X is some set.
- Suppose κ is not remarkable in a $\mathbb{P}_{\kappa} * \dot{\mathbb{Q}}$ -extension, where $\dot{\mathbb{Q}}$ is a \mathbb{P}_{κ} -name for a $<\kappa$ -closed $\leq \kappa$ -distributive poset.
- ullet There is a regular $\lambda>\kappa$ and $q\in\mathbb{P}_\kappa*\dot{\mathbb{Q}}$ such that

 $q \Vdash$ "there are no desired embeddings π and σ for H_{λ} ".

- Fix a good pair $\pi: M \to H_{\lambda}$ and $\sigma: M \to N$ with

 - $(\bar{\kappa}, ORD^M] \cap dom(\ell') = \emptyset$ and $\bar{\ell}(\bar{\kappa}) = \langle \dot{\mathbb{Q}}_{\bar{\kappa}}, x \rangle$.
- Fix a V-generic $G * g \subseteq \mathbb{P}_{\kappa} * \dot{\mathbb{Q}}$ such that
 - $\triangleright a \in G * g$.
 - G * g is π " M-generic ($\mathbb{P}_{\kappa} * \dot{\mathbb{Q}}$ is countably closed),
- Let $\bar{G} * \bar{g} = \pi^{-1}(G * g)$.

Indestructibility by $<\kappa$ -closed $\le \kappa$ -distributive forcing (continued)

Lift π **to** $M[\bar{G}][\bar{g}]$:

- π " $\bar{G} * \bar{g} \subseteq G * g$.
- Lift π to $\pi: M[\bar{G}][\bar{g}] \to H_{\lambda}[G][g]$ by the lifting criterion.

Lift σ **to** $M[\bar{G}]$:

- Need an N-generic $G' \subseteq \overline{\mathbb{P}}_{\kappa'}$ with σ " $\overline{G} = \overline{G} \subseteq G'$.
- Factor $\bar{\mathbb{P}}_{\kappa'} = \bar{\mathbb{P}}_{\bar{\kappa}} * \dot{\mathbb{Q}}_{\bar{\kappa}} * \dot{\mathbb{P}}_{\mathsf{tail}}$.
- Choose a $N[\bar{G}][\bar{g}]$ -generic $G_{tail} \subseteq \mathbb{P}_{tail}$ ($N[\bar{G}][\bar{g}]$ is countable) and let $G' = \bar{G} * \bar{g} * G_{tail}$.
- Lift σ to $\sigma: M[\bar{G}] \to N[G']$ by the lifting criterion.

Indestructibility by $<\kappa$ -closed $\le \kappa$ -distributive forcing (continued)

Lift σ **to** $M[\bar{G}][\bar{g}]$:

- Need an N[G']-generic $g' \subseteq (\dot{\mathbb{Q}}_{\kappa'})_{G'} = \mathbb{Q}_{\kappa'}$ with $\sigma " \bar{g} \subseteq g'$.
- $g' = \langle \sigma " \bar{g} \rangle$ is the filter generated by $\sigma " \bar{g}$.
- Clearly g' is σ " $M[\bar{G}]$ -generic.
- Indeed, g' is N[G']-generic.
 - $N = \{ \sigma(f)(a) \mid a \in [V_{\kappa'} \cup \{\kappa'\}]^{<\omega}, f \in M \}.$
 - ▶ $\mathbb{Q}_{\kappa'}$ is $\leq \kappa$ -distributive in N[G'].
- Lift σ to $\sigma: M[\bar{G}][\bar{g}] \to N[G'][g']$ by the lifting criterion.
- There is no forcing in $\bar{\mathbb{P}}_{\kappa'}$ in $(\bar{\kappa}, \mathrm{ORD}^M]$ and $\bar{\mathbb{P}}_{\kappa'}$ is progressively more closed.
 - ▶ ORD^M is regular in N[G'][g'],
 - $\blacktriangleright M[\bar{G}][\bar{g}] = H_{\mathrm{ORD}^{M}}^{N[G'][g']}.$

Thus, V[G][g] has σ and π as desired, but $g \in G * g$ forces otherwise. $\rightarrow \leftarrow \square$

Indestructible remarkable cardinals

Theorem: (Cheng, G., '14) A remarkable κ can be made indestructible by all $<\kappa$ -closed $\le \kappa$ -distributive forcing and all two-step iterations $\mathrm{Add}(\kappa,\theta)*\dot{\mathbb{R}}$, where $\dot{\mathbb{R}}$ is forced to be $<\kappa$ -closed and $\le \kappa$ -distributive.

Proof: \mathbb{P}_{κ} is the κ -length Easton-support iteration which forces with $\dot{\mathbb{Q}}_{\xi}$ at stage ξ whenever $\ell(\xi) = \langle \dot{\mathbb{Q}}_{\xi}, x \rangle$ for some set x, where $\dot{\mathbb{Q}}_{\xi}$ is a \mathbb{P}_{ξ} -name for either

- a $<\xi$ -closed $\le \xi$ -distributive forcing, or
- $\mathrm{Add}(\xi,\mu)^{V_{\mathbb{P}_{\xi}}} * \dot{\mathbb{R}}$, where $\dot{\mathbb{R}}$ is forced to be $<\xi$ -closed and $\leq \xi$ -distributive. \square

Applications

Theorem: Any consistent continuum pattern on the regular cardinals can be realized above a remarkable cardinal.

Theorem: It is consistent that κ is remarkable, but not weakly compact in HOD.

Thank you!

