TD 5

GROUPES ET ANNEAUX

Exercice 1. Soit $G=(\mathbb{Z}/20\mathbb{Z})^{\times}$ le groupe des éléments inversibles de $\mathbb{Z}/20\mathbb{Z}$.

- (a) Lister tous les éléments de G.
- (b) Pour tout $a \in G$, décrire le sous-groupe $\langle a \rangle$ engendré par a.
- (c) Le groupe G, est-il cyclique?
- (d) Peut-on trouver deux éléments $a,b\in G$ tels que $G=\langle a,b\rangle:=\{a^nb^m:n,m\in\mathbb{Z}\}$?
- (e) Lister tous les sous-groupes de G.
- (f) Soit $H = \langle 3 \rangle$. Décrire G/H.

Exercice 2. Montrer que si G est un groupe non abélien alors G n'est pas cyclique.

Exercice 3.

- (a) Déterminer tous les sous-groupes de $\mathbb{Z}/12\mathbb{Z}$. Lesquels sont cycliques?
- (b) Soit $n \in \mathbb{Z}_{>0}$.
 - (b1) Montrer que tout sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ est cyclique.
 - (b2) Montrer que pour tout diviseur d de n il existe un unique sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ d'ordre d et en déterminer un générateur.
- (c) Soit $G = \langle g \rangle$ un groupe cyclique d'ordre n.
 - c1) Montrer que tout sous-groupe de G est cyclique.
 - (c2) Montrer que pour tout diviseur d de n il existe un unique sous-groupe de G d'ordre d.

Exercice 4. Soit $z_1, z_2 \in \mathbb{C}$. On définit l'opération $z_1 \otimes z_2 = z_1 z_2 + \Im(z_1)\Im(z_2)$ où $\Im(z)$ désigne la partie imaginaire de z.

- (a) Montrer que $(\mathbb{C}, +, \otimes)$ est un anneau (préciser les neutres des deux opérations).
- (b) Montrer que les éléments inversibles (pour \otimes) de $(\mathbb{C}, +, \otimes)$ sont les éléments de partie réelle non nulle, et exprimer l'inverse d'un élément z = a + ib où $a, b \in \mathbb{R}$ et $i^2 = -1$.

Exercice 5.

- (a) Montrer que pour tout $m \in \mathbb{Z}$ et $n \in \mathbb{Z}_{>0}$, $m \cdot \mathbb{Z}/n\mathbb{Z}$ est un idéal de $\mathbb{Z}/n\mathbb{Z}$.
- (b) Décrire $4 \cdot \mathbb{Z}/12\mathbb{Z}$, puis $5 \cdot \mathbb{Z}/12\mathbb{Z}$.
- (c) Démontrer que pour tout $m \in \mathbb{Z}$ et $n \in \mathbb{Z}_{>0}$, $m \cdot \mathbb{Z}/n\mathbb{Z} = d \cdot \mathbb{Z}/n\mathbb{Z}$ où $d = \operatorname{PGCD}(m, n)$.
- (d) Décrire, pour $m \in \mathbb{Z}$ et $n \in \mathbb{Z}_{>0}$, le quotient $(\mathbb{Z}/n\mathbb{Z})/(m \cdot \mathbb{Z}/n\mathbb{Z})$.