Institute for Analysis and Scientific Computing

Lothar Nannen, Michael Neunteufel

Numerik partieller Differentialgleichungen: stationäre Probleme - Übung 4

Übungstermin: 25.11.2020 19. November 2020

Aufgabe 16:

Sei \hat{T} das Referenzdreieck mit den Eckpunkten $V_1 := (0,0), V_2 := (1,0)$ und $V_3 := (0,1)$ und den Randkanten $E_1 := \overline{V_1 V_2}, E_2 := \overline{V_2 V_3}$ und $E_3 := \overline{V_3 V_1}$. Für $p \in \mathbb{N}$ definieren wir die Punkte

$$z_{jk} = \left(\frac{j}{p}, \frac{k}{p}\right) \in \hat{T}, \qquad j = 0, \dots, p - k, \quad k = 0, \dots, p,$$

$$\tag{1}$$

die dazugehörigen Lagrange Basisfunktionen $L_{jk} \in P_p$ mit $L_{jk}(z_{j'k'}) = \delta_{jj'}\delta_{kk'}$ und für Funktionen $u \in C(\hat{T})$ den Interpolationsoperator \hat{I}_p durch

$$\hat{I}_p u := \sum_{k=0}^p \sum_{j=0}^{p-k} u(z_{jk}) L_{jk}.$$
 (2)

- a) Skizzieren Sie für $p=1,\ldots,4$ die Punkte z_{jk} und beweisen Sie, dass $\hat{I}_p u|_{V_j}$ und $\hat{I}_p u|_{E_j}$ für j=1,2,3 und beliebige $p\in\mathbb{N}$ nur von den Werten $u(V_j)$ bzw. $u|_{E_j}$ abhängt.
- b) Konstruieren Sie aus \hat{I}_p einen stetigen Interpolationsoperator $I_{h,p}: H^2(\Omega) \to \mathbb{S}_0^p(\mathcal{T}) := \{v_h \in C(\Omega) : \forall T \in \mathcal{T} \quad v_h|_T \in P_p\}$. Verwenden Sie dazu die Transformationen aus Lemma 3.9 des Vorlesungsskriptes.
- c) Formulieren und beweisen Sie Theorem 3.5 des Vorlesungsskriptes für $I_{h,p}$.

Aufgabe 17:

Sei \mathcal{T} eine reguläre Triangulierung des beschränkten Lipschitz-Gebietes $\Omega \subset \mathbb{R}^2$ und $h \in L^{\infty}(\Omega)$ definiert durch $h|_T = h_T$ für alle $T \in \mathcal{T}$.

a) Zu einer Funktion $v \in H^1(\Omega)$ definieren wir die Funktion $v_T \in \mathbb{S}^0_{-1}(T) := \{v_h \in L^2(\Omega) : \forall T \in T \mid v_h|_T \in P_0\}$ durch $v_T|_T := |T|^{-1} \int_T v \, dx$ für alle $T \in T$. Zeigen Sie, dass

$$||v - v_{\mathcal{T}}||_{L^2(\Omega)} \le C ||h\nabla v||_{L^2(\Omega)}$$

gilt. Die Konstante C > 0 hängt dabei weder von Ω noch von v oder \mathcal{T} ab.

b) Zeigen Sie für $||h||_{L^{\infty}(\Omega)} < 1$ und $p \in \mathbb{N}$

$$||hD^2v_h||_{L^2(\Omega)} \le C ||v_h||_{H^1(\Omega)}, \qquad v_h \in \mathbb{S}_0^p(\mathcal{T}).$$
 (3)

Die Konstante C > 0 hängt dabei nur von $\sigma(\mathcal{T})$ ab.

Aufgabe 18:

Verallgemeinern Sie Theorem 3.5 auf die Triangulierung eines beschränkten Lipschitz-Gebietes $\Omega \in$

 \mathbb{R}^3 mit Tetraedern. Beweisen Sie dazu die Abschätzungen (3.20) und (3.21) für ein nicht-entartetes Tetraeder T. Die Konstante $\sigma(T)$ wird dabei analog zu Aufgabe 11b definiert durch den Quotienten aus dem Durchmesser $h_T := \max\{|x-y| : x,y \in T\}$ von T und dem Radius ρ_T der größten Kugel, welche noch ganz in T liegt, d.h.

$$\rho_T := \sup\{\rho > 0 : \exists x \in T \quad B(x, \rho) \subset T\}. \tag{4}$$

Aufgabe 19:

Für ein beschränktes Lipschitz-Gebiet $\Omega \subset \mathbb{R}^2$ definieren wir den Hilbertraum

$$H(\operatorname{curl},\Omega):=\{\xi\in [L^2(\Omega)]^2\,|\,\operatorname{curl}\xi\in L^2(\Omega)\},\quad (\xi,\zeta)_{H(\operatorname{curl})}:=(\xi,\zeta)_{L^2(\Omega)}+(\operatorname{curl}\xi,\operatorname{curl}\zeta)_{L^2(\Omega)}\,,$$

mit $\operatorname{curl} \xi := \frac{\partial \xi_2}{\partial x} - \frac{\partial \xi_1}{\partial y}$ für $\xi(x,y) = (\xi_1(x,y), \xi_2(x,y))^{\top}$. Weiter sei $X := H_0^1(\Omega) \times H(\operatorname{curl}, \Omega)$ ein Hilbert-Raum wie in Aufgabe 6.

Für ein $c \geq 0$ und $f \in L^2(\Omega)$ sei das folgende Variationsproblem gegeben: Finden Sie $(u, \xi) \in X$ sodass für alle $(v, \zeta) \in X$

$$\int_{\Omega} (\nabla u - \xi) \cdot (\nabla v - \zeta) \, dx + c \int_{\Omega} \xi \cdot \zeta \, dx + \int_{\Omega} \operatorname{curl} \xi \operatorname{curl} \zeta \, dx = \int_{\Omega} f \, v \, dx. \tag{5}$$

- a) Zeigen Sie mit Hilfe des Lemmas von Lax–Milgram, dass für c>0 das Problem eine eindeutige Lösung hat. Verwenden Sie dazu am besten die Young Ungleichung $-ab \geq -\frac{\varepsilon}{2}a^2 \frac{1}{2\varepsilon}b^2$ für geeignete $a,b \in \mathbb{R}$ und $\varepsilon>0$.
- b) Es sei nun c = 0. Zeigen Sie durch geschicktes Wählen von $(u, \xi) \in X$, dass das Problem nicht koerziv ist. *Hinweis*: Was gilt für curl ∇u ?
- c) Begründen Sie mit den Funktionen $\xi_{\varepsilon} \in [H^1(\Omega)]^2$ definiert durch $\xi_{\varepsilon}(x,y) := \left(\sin(\frac{1}{\varepsilon}x),0\right)^T$ mit $\epsilon > 0$, dass das Problem auf dem Produktraum $\hat{X} := H^1_0(\Omega) \times [H^1(\Omega)]^2$ mit c > 0 nicht koerziv und damit nicht wohlgestellt ist.

Aufgabe 20:

a) Es sei $\Omega=(0,1),\ t>0,\ f\in L^2(\Omega),\ \mathrm{und}\ X:=H^1_D(\Omega)\times H^1_D(\Omega)\ \mathrm{mit}\ H^1_D(\Omega):=\{u\in H^1(\Omega)\,|\, u(0)=0\}.$ Das Problem des Timoshenko Balkens lautet: Gesucht ist $(w,\beta)\in X$ sodass für alle $(v,\delta)\in X$

$$\int_{\Omega} \beta' \delta' dx + \frac{1}{t^2} \int_{\Omega} (w' - \beta)(v' - \delta) dx = \int_{\Omega} f v dx.$$
 (6)

Zeigen Sie, dass das Problem eindeutig lösbar ist. Wie verhält sich die Konstante in Cea's Lemma wenn $t \to 0$? *Hinweis*: Verwenden Sie wie in Aufgabe 19 die Young Ungleichung für den gemischten Term sowie die Friedrich Ungleichung.

b) Sei nun $\Omega \subset \mathbb{R}^2$ und $X := H_D^1(\Omega) \times [H_D^1(\Omega)]^2$. Betrachten Sie die Reissner-Mindlin Platte als zweidimensionale Erweiterung des Timoshenko Balkens beschrieben durch das Problem: Gesucht ist $(w, \beta) \in X$ sodass für alle $(v, \delta) \in X$

$$\int_{\Omega} \epsilon(\beta) : \epsilon(\delta) \, dx + \frac{1}{t^2} \int_{\Omega} (\nabla w - \beta) \cdot (\nabla v - \delta) \, dx = \int_{\Omega} f \, v \, dx,\tag{7}$$

wobei $\epsilon(\beta) := 0.5(\nabla \beta + (\nabla \beta)^T)$ der symmetrische Gradient ist sowie $A : B := \sum_{i,j=1}^2 A_{ij}B_{ij}$. Untersuchen Sie mit dem zur Verfügung gestellten Jupyter-File das Konvergenzverhalten für lineare Elemente bei verschiedenen Dickenparametern, $t \in \{1, 0.1, 0.01, 0.001\}$. Was beobachten Sie? Wie ändert sich das Verhalten für quadratische finite Elemente?