Devoir surveillé n°9 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en classe.

Dans un sac de dés (à six faces), il y a une proportion de $p \in [0,1]$ dés pipés. Chaque dé pipé donne une probabilité de $\frac{1}{2}$ d'obtenir un six.

On pioche un dé, on le lance, et l'on obtient un six : quelle est la probabilité d'avoir tiré un dé pipé?

II. Étude d'un endomorphisme.

On note $E = \mathbb{R}_2[X]$ le \mathbb{R} -espace vectoriel des polynômes à coefficients réels et de degré inférieur ou égal à deux. Pour tout $P \in E$, on note

$$f(P) = (X^2 + X - 2)P' - (2X - 1)P + P(1).$$

- 1) a) Calculer f(1), f(X) et $f(X^2)$.
 - b) Montrer que f est un **endomorphisme** de E.
 - c) Comparer $f(1) + f(X^2)$ et f(X), puis préciser le rang de f. Que peut-on en déduire?
- 2) a) Déterminer une base du noyau Ker(f) et une base de l'image Im(f).
 - b) Montrer que Ker(f) et Im(f) sont des sous-espaces supplémentaires de E.
- 3) Soit la famille $\mathscr{B} = (P_0, P_1, P_2)$ où

$$P_0 = X^2 + X - 2$$
, $P_1 = X^2 - 2X + 1$ et $P_2 = X^2 + 3X + 1$.

- a) Montrer que \mathcal{B} est une base de E.
- b) Calculer les images par f des vecteurs de \mathcal{B} , et exprimer le résultat en fonction des P_i .
- c) Soit $(a_0, a_1, a_2) \in \mathbb{R}^3$, et $Q = a_0 P_0 + a_1 P_1 + a_2 P_2$ un vecteur de E. Calculer f(Q) en fonction de a_0 , a_1 et a_2 .
- d) Soit $Q = 2X^2 + X + 2$: pour tout entier $n \in \mathbb{N}^*$, calculer $f^n(Q)$ et déterminer ses racines.
- e) L'endomorphisme f est-il nilpotent (c'est-à-dire existe-t-il un entier $n \in \mathbb{N}$ tel que $f^n = 0$)?

III. Images et noyaux itérés d'un endomorphisme.

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \neq 0$, soit f un endomorphisme de E. On cherche à démontrer le résultat suivant :

$$\exists \ p \in [1, n], \quad E = \operatorname{Ker} f^p \oplus \operatorname{Im} f^p.$$

- 1) Cas général.
 - a) Montrer que Ker $f^k \subset \text{Ker } f^{k+1}$ pour tout $k \in \mathbb{N}$.
 - b) En déduire que la suite $(\dim \operatorname{Ker} f^p)_{p \in \mathbb{N}}$ est convergente.
 - c) Montrer qu'il existe un plus petit entier naturel k tel que Ker $f^k = \text{Ker } f^{k+1}$. On le notera p. Cet entier p est appelé *l'indice* de f.
 - **d)** Montrer qu'il existe une famille (x_1, \ldots, x_p) telle que pour tout $i \in [1, p]$, $x_i \in \text{Ker } f^i \setminus \text{Ker } f^{i-1}$.
 - e) Montrer que cette famille est libre.
 - f) En déduire que $p \leq n$.
 - g) Montrer par récurrence que Ker $f^k = \text{Ker } f^p$ pour tout $k \in \mathbb{N}$ tel que $k \geqslant p$.
 - h) En déduire que $E = \operatorname{Ker} f^p \oplus \operatorname{Im} f^p$.
- 2) Quelques exemples.
 - a) Calculer l'indice de f si f est nul ou si f est un automorphisme de E.
 - b) Soit $a \in \mathbb{R}$ et soit f_a l'endomorphisme de \mathbb{R}^4 défini par :

$$f_a: \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \longrightarrow \begin{pmatrix} ax + y + az \\ y + az + t \\ x + y + az \\ y \end{pmatrix}.$$

Déterminer pour quelles valeurs de a l'application f_a est bijective, et déterminer l'indice de f_a pour les valeurs de a pour lesquelles f_a n'est pas un automorphisme.

- 3) Contre-exemples. On ne suppose maintenant plus E de dimension finie.
 - a) Existe t-il nécessairement k tel que Im $f^{k+1} = \text{Im } f^k$?
 - b) Existe t-il nécessairement k tel que Ker $f^{k+1} = \text{Ker } f^k$?
 - c) On pose $F=\bigcap_{k\in\mathbb{N}}\operatorname{Im} f^k$ et $G=\bigcup_{k\in\mathbb{N}}\operatorname{Ker} f^k$. Montrer que F et G sont des sous-espaces vectoriels de E.
 - d) A t-on nécessairement $E = F \oplus G$ dans le cas où E est de dimension finie?
 - e) Et dans le cas où E n'est pas de dimension finie?