Wiskundige structuren

Opgave 1

a)

Te bewijzen:

$$-(a+b) = (-a) + (-b)$$

Bewijs. Allereerst moeten we bewijzen dat er slechts één $x\in\mathbb{Z}$ zodanig dat $y\in\mathbb{Z}$ geldt x+y=0 Neem $x+y_1=0$ en $x+y_2=0$ dan:

$$y_1 = y_1 + 0$$
 (0 is het neutrale element)
 $= y_1 + (x + y_2)$
 $= (y_1 + x) + y_2$ (\mathbb{Z} is associatief)
 $= 0 + y_2$
 $= y_2$

Dit betekent dus dat elk element een unieke inverse heeft, en dus:

$$a + (-a) + b + (-b) = 0$$

$$a + b + (-a) + (-b) = 0 \quad (\mathbb{Z} \text{ is commutatief})$$

$$(a + b) + (-a) + (-b) = 0$$

$$(a + b) + -(a + b) + (-a) + (-b) = -(a + b) \quad (-(a + b) \text{ is de inverse van } (a + b))$$

$$0 + (-a) + (-b) = -(a + b)$$

$$(-a) + (-b) = -(a + b)$$

Hieruit volgt dus dat:

$$-(a+b) = (-a) + (-b)$$

b)

Te bewijzen:

$$-0 = 0$$

Bewijs. Uit opgave a hebben we bewezen dat elke element een unieke inverse heeft, en dus:

$$-0 = -0 + 0$$
 (\mathbb{Z} heeft 0 als neutrale element)
= $0 + (-0)$ (\mathbb{Z} is commutatief)
= 0

c)

Te bewijzen:

$$(-ab) = (-a)b$$

Bewijs. Veronderstel dat:

$$(-ab)-(-a)b=0$$

 $b(-a+-(-a))=0$
 $b(-a+a)=0$ (De inverse van a is $-a$ en de inverse van $-a$ is a , vanwege uniciteit)
 $b(0)=0$

d)

Opgave 12

MOET P(A) P(OMEGA)

d)