- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 gennaio 2014

(Cognome)	(Nome)	(Numero di matricola)

 $\mathrm{CODICE} = 620160$

A	В	С	D	\mathbf{E}	
					_

1	
2	0000
3	
4	
5	
6	
7	
8	
9	
10	00000

1. Il limite

$$\lim_{x \to 0^+} \frac{2(e^{x^2} - 1)}{x \log(x)}$$

vale

A: N.E. B: $+\infty$ C: 0 D: -1/2 E: N.A.

2. Dato $x \geq 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 4^n \left(\frac{x}{2x+1} \right)^n$$

converge per

A: $0 \le x \le 1/2$ B: 1 < x C: $0 \le x < 1/2$ D: x > 0 E: N.A.

3. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : e^{x^2} < 2 \}$$

valgono

A:
$$\{-\sqrt{\log(2)}, N.E., \sqrt{\log(2)}, N.E.\}$$
 B: N.A. C: $\{-\infty, N.E., \sqrt{\log(2)}, N.E.\}$ D: $\{0, 0, \sqrt{\log(2)}, 1\}$ E: $\{-\sqrt{\log(2)}, -\sqrt{\log(2)}, \sqrt{\log(2)}, \sqrt{\log(2)}\}$

4. Data $f(x) = (\tan(x))^x$. Allora $f'(\pi/4)$ è uguale a

A: N.A. B: 0 C:
$$-\pi/2$$
 D: $\pi/2$ E: π

5. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A:
$$e^{x^3}$$
 B: $2(e^x - e^{-x})$ C: N.A. D: e^{x^2} E: $\frac{1}{\cos(x)}$

6. Modulo e argomento del numero complesso $z = (1+i)^{-3}$ sono

A:
$$(1/2\sqrt{2}, 3\pi/4)$$
 B: N.A. C: $(\sqrt{2}/4, -3\pi/4)$ D: $(2\sqrt{2}, 3\pi/4)$ E: $(1/2, -3\pi/4)$

7. La retta tangente al grafico di $y(x) = \sin(\pi \log(ex))$ nel punto $x_0 = 1$ vale

A: N.A. B:
$$1 + \pi(x - 1)$$
 C: $\cos(\pi \log(e)(x - 1)$ D: $-\pi x$ E: $-\pi(x - 1)$

8. Dato b<0, la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x)=|x^2-b^3|$ è derivabile per

A:
$$x \in \mathbb{R}$$
 B: $x > 0$ C: $x \neq 0$ D: $x \neq \pm 1$ E: N.A.

9. La funzione $f(x) = \begin{cases} e^{-x} & \text{per } x < 1 \\ & \text{è derivabile per } ax + b & \text{per } x \ge 1 \end{cases}$

A:
$$b = 0$$
 e $a \ge 0$ B: $(a, b) = (0, 1/e)$ C: $(a, b) = (1/e, 0)$ D: $(a, b) = (1/(1 + e), e)$ E: N.A.

10. L'integrale

$$\int_0^{\pi/4} t \, \cos(2t) \, dt$$

vale

A: 0 B: $\pi/4 - 1/2$ C: 1 D: -1/2 E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 gennaio 2014

(Cognome)	(Nome)	(Numero di matricola)

Α	В	С	D	Ε	

1	00000
2	00000
3	0000
4	0000
5	00000
6	00000
7	00000
8	
9	0000
10	0000

1. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : e^{x^2} < 2\}$$

valgono

A:
$$\{-\infty, N.E., \sqrt{\log(2)}, N.E.\}$$
 B: $\{0, 0, \sqrt{\log(2)}, 1\}$ C: N.A. D: $\{-\sqrt{\log(2)}, N.E., \sqrt{\log(2)}, N.E.\}$ E: $\{-\sqrt{\log(2)}, -\sqrt{\log(2)}, \sqrt{\log(2)}, \sqrt{\log(2)}\}$

2. Data $f(x) = (\tan(x))^x$. Allora $f'(\pi/4)$ è uguale a

A:
$$\pi$$
 B: 0 C: $-\pi/2$ D: N.A. E: $\pi/2$

3. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A:
$$\frac{1}{\cos(x)}$$
 B: e^{x^3} C: $2(e^x - e^{-x})$ D: e^{x^2} E: N.A.

4. Dato $x \geq 0,$ la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 4^n \left(\frac{x}{2x+1} \right)^n$$

converge per

A:
$$0 \le x < 1/2$$
 B: $x > 0$ C: $1 < x$ D: $0 \le x \le 1/2$ E: N.A.

5. Dato b < 0, la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x^2 - b^3|$ è derivabile per

A:
$$x \in \mathbb{R}$$
 B: $x \neq \pm 1$ C: $x > 0$ D: N.A. E: $x \neq 0$

6. Modulo e argomento del numero complesso $z=\left(1+i\right)^{-3}$ sono

A:
$$(1/2, -3\pi/4)$$
 B: $(1/2\sqrt{2}, 3\pi/4)$ C: N.A. D: $(\sqrt{2}/4, -3\pi/4)$ E: $(2\sqrt{2}, 3\pi/4)$

7. Il limite

$$\lim_{x \to 0^+} \frac{2(e^{x^2} - 1)}{x \log(x)}$$

vale

A: N.E. B:
$$+\infty$$
 C: 0 D: $-1/2$ E: N.A.

8. L'integrale

$$\int_0^{\pi/4} t \, \cos(2t) \, dt$$

vale

A: 0 B:
$$-1/2$$
 C: $\pi/4 - 1/2$ D: 1 E: N.A.

9. La funzione $f(x) = \begin{cases} e^{-x} & \text{per } x < 1 \\ & \text{è derivabile per } ax + b & \text{per } x \ge 1 \end{cases}$

A:
$$(a,b) = (0,1/e)$$
 B: N.A. C: $(a,b) = (1/(1+e),e)$ D: $(a,b) = (1/e,0)$ E: $b=0$ e $a \ge 0$

10. La retta tangente al grafico di $y(x) = \sin(\pi \log(ex))$ nel punto $x_0 = 1$ vale

A: N.A. B:
$$1 + \pi(x - 1)$$
 C: $-\pi x$ D: $\cos(\pi \log(e)(x - 1)$ E: $-\pi(x - 1)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 gennaio 2014

(Cognome)	(Nome)	(Numero di matricola)

 $\mathrm{CODICE} = 751674$

A	В	С	D	E	

1	00000
2	00000
3	0000
4	00000
5	00000
6	00000
7	00000
8	00000
9	
10	$0\overline{0000}$

1. Data $f(x) = (\tan(x))^x$. Allora $f'(\pi/4)$ è uguale a A: N.A. B: $-\pi/2$ C: 0 D: $\pi/2$ E: π

2. Il limite

$$\lim_{x \to 0^+} \frac{2(e^{x^2} - 1)}{x \log(x)}$$

vale

A: $+\infty$ B: 0 C: -1/2 D: N.A. E: N.E.

3. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 4^n \left(\frac{x}{2x+1} \right)^n$$

converge per

A: N.A. B: $0 \le x \le 1/2$ C: x > 0 D: $0 \le x < 1/2$ E: 1 < x

4. Modulo e argomento del numero complesso $z = (1+i)^{-3}$ sono A: $(\sqrt{2}/4, -3\pi/4)$ B: $(2\sqrt{2}, 3\pi/4)$ C: $(1/2\sqrt{2}, 3\pi/4)$ D: N.A. E: $(1/2, -3\pi/4)$

5. Dato b<0, la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x)=|x^2-b^3|$ è derivabile per A: N.A. B: $x\neq 0$ C: $x\in \mathbb{R}$ D: x>0 E: $x\neq \pm 1$

6. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A: N.A. B: $2(e^x - e^{-x})$ C: $\frac{1}{\cos(x)}$ D: e^{x^2} E: e^{x^3}

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : e^{x^2} < 2\}$$

valgono

A: $\{-\sqrt{\log(2)}, -\sqrt{\log(2)}, \sqrt{\log(2)}, \sqrt{\log(2)}\}$ B: $\{-\sqrt{\log(2)}, N.E., \sqrt{\log(2)}, N.E.\}$ C: $\{0, 0, \sqrt{\log(2)}, 1\}$ D: N.A. E: $\{-\infty, N.E., \sqrt{\log(2)}, N.E.\}$

8. La retta tangente al grafico di $y(x) = \sin(\pi \log(ex))$ nel punto $x_0 = 1$ vale

A: N.A. B: $1 + \pi(x - 1)$ C: $-\pi(x - 1)$ D: $-\pi x$ E: $\cos(\pi \log(e)(x - 1)$

9. L'integrale

$$\int_0^{\pi/4} t \, \cos(2t) \, dt$$

vale

A: 1 B: -1/2 C: $\pi/4 - 1/2$ D: N.A. E: 0

10. La funzione $f(x) = \begin{cases} e^{-x} & \text{per } x < 1 \\ & \text{è derivabile per } ax + b & \text{per } x \ge 1 \end{cases}$

A: (a,b) = (1/(1+e),e) B: (a,b) = (0,1/e) C: b=0 e $a \ge 0$ D: N.A. E: (a,b) = (1/e,0)

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 gennaio 2014

(Cognome)	(Nome)	(Numero di matricola)

 $\mathrm{CODICE} = 201129$

Α	В	С	D	Е	

1	00000
2	00000
3	0000
4	00000
5	00000
6	00000
7	00000
8	00000
9	
10	$0\overline{0000}$

1. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A: e^{x^3} B: $2(e^x - e^{-x})$ C: e^{x^2} D: N.A. E: $\frac{1}{\cos(x)}$

2. Modulo e argomento del numero complesso $z=\left(1+i\right)^{-3}$ sono

A: $(1/2\sqrt{2}, 3\pi/4)$ B: $(2\sqrt{2}, 3\pi/4)$ C: $(1/2, -3\pi/4)$ D: $(\sqrt{2}/4, -3\pi/4)$ E: N.A.

3. Dato $x \geq 0,$ la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 4^n \left(\frac{x}{2x+1} \right)^n$$

converge per

A: 1 < x B: N.A. C: $0 \le x < 1/2$ D: $0 \le x \le 1/2$ E: x > 0

4. La funzione $f(x) = \begin{cases} e^{-x} & \text{per } x < 1 \\ & \text{è derivabile per} \\ ax + b & \text{per } x \ge 1 \end{cases}$

A: b = 0 e $a \ge 0$ B: (a, b) = (1/e, 0) C: (a, b) = (0, 1/e) D: (a, b) = (1/(1 + e), e) E: N.A.

5. Il limite

$$\lim_{x \to 0^+} \frac{2(e^{x^2} - 1)}{x \log(x)}$$

vale

A: N.A. B: N.E. C: -1/2 D: $+\infty$ E: 0

6. Data $f(x) = (\tan(x))^x$. Allora $f'(\pi/4)$ è uguale a

A: π B: N.A. C: 0 D: $\pi/2$ E: $-\pi/2$

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : e^{x^2} < 2\}$$

valgono

A: $\{0, 0, \sqrt{\log(2)}, 1\}$ B: $\{-\infty, N.E., \sqrt{\log(2)}, N.E.\}$ C: $\{-\sqrt{\log(2)}, -\sqrt{\log(2)}, \sqrt{\log(2)}, \sqrt{\log(2)}\}$ D: N.A. E: $\{-\sqrt{\log(2)}, N.E., \sqrt{\log(2)}, N.E.\}$

8. La retta tangente al grafico di $y(x) = \sin(\pi \log(ex))$ nel punto $x_0 = 1$ vale

A: $-\pi(x-1)$ B: $1 + \pi(x-1)$ C: N.A. D: $-\pi x$ E: $\cos(\pi \log(e)(x-1)$

9. Dato b<0, la funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da $f(x)=|x^2-b^3|$ è derivabile per

A: x > 0 B: $x \in \mathbb{R}$ C: N.A. D: $x \neq 0$ E: $x \neq \pm 1$

10. L'integrale

$$\int_0^{\pi/4} t \cos(2t) dt$$

vale

A: N.A. B: 1 C: -1/2 D: 0 E: $\pi/4 - 1/2$

9 gennaio 2014

(Cognome)										_			(N	ome)			_	(N	ume	ro d	i ma	trice	ola)				

A	В	С	D	\mathbf{E}	
		_			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

9 gennaio 2014

			(Co	gnoi	me)						(No	me)			(Nı	ume	ro d	i ma	trico	la)

 $\mathrm{CODICE} = 454868$

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

9 gennaio 2014

(Cognome)										_			(N	ome)			_	(N	ume	ro d	i ma	trice	ola)				

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

9 gennaio 2014

(Cognome)										_			(N	ome)			_	(N	ume	ro d	i ma	trice	ola)				

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 gennaio 2014

Α	В	С	D	Е	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

1. Modulo e argomento del numero complesso $z = (1+i)^{-3}$ sono

A: $(1/2\sqrt{2}, -3\pi/4)$ B: $(1/2\sqrt{2}, 3\pi/4)$ C: $(1/2, -3\pi/4)$ D: $(2\sqrt{2}, 3\pi/4)$ E: N.A.

2. L'integrale

$$\int_0^{\pi/4} t \, \cos(2t) \, dt$$

vale

B: $\pi/4 - 1/2$ C: -1/2 D: 0 E: $\pi/8 - 1/4$ A: N.A.

3. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : e^{x^2} < 2\}$$

valgono

A:
$$\{0, 0, \sqrt{\log(2)}, 1\}$$
 B: $\{-\infty, N.E., \sqrt{\log(2)}, N.E.\}$ C: $\{-\sqrt{\log(2)}, -\sqrt{\log(2)}, \sqrt{\log(2)}, \sqrt{\log$

4. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 4^n \left(\frac{x}{2x+1} \right)^n$$

converge per

A: N.A. B:
$$x > 0$$
 C: $0 \le x < 1/2$ D: $1 < x$ E: $0 \le x \le 1/2$

5. La funzione $f(x) = \begin{cases} e^{-x} & \text{per } x < 1 \\ ax + b & \text{per } x \ge 1 \end{cases}$ è derivabile per

A: b = 0 e $a \ge 0$ B: (a, b) = (0, 1/e) C: N.A. D: (a, b) = (1/(1 + e), e) E: (a, b) = (1/(1 + e), e)(1/e, 0)

6. La retta tangente al grafico di $y(x) = \sin(\pi \log(ex))$ nel punto $x_0 = 1$ vale

B: $\pi(x-1)$ C: $1 + \pi(x-1)$ D: $\cos(\pi \log(e)(x-1)$ E: $-\pi x$

7. Il limite

$$\lim_{x \to 0^+} \frac{e^{x^2} - 1}{2x \log(x)}$$

vale

A: N.E. B:
$$-1/2$$
 C: 0 D: N.A. E: $+\infty$

- 8. Dato b < 0, la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x^2 b^3|$ è derivabile per A: N.A. B: $x \neq \pm 1$ C: $x \in \mathbb{R}$ D: $x \neq 0$ E: x > 0
- 9. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A:
$$2(e^x-e^{-x})$$
 B: $\frac{e^{x^4}}{e^{2\log(2)}}$ C: e^{x^4} D: $\frac{1}{\cos(x)}$ E: N.A.

10. Data $f(x) = (\tan(x))^x$. Allora $f'(\pi/4)$ è uguale a

A: $\pi/2$ B: $-\pi/2$ C: 0 D: π E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 gennaio 2014

(Cognome)	(Nome)	(Numero di matricola)
, <u>-</u> ,	, ,	· ·

CODICE = 054869

1	00000
2	00000
3	
4	
5	
6	
7	00000
8	00000
9	00000
10	

A B C D E

1. Data $f(x) = (\tan(x))^x$. Allora $f'(\pi/4)$ è uguale a A: $-\pi/2$ B: π C: N.A. D: 0 E: $\pi/2$

- 2. La retta tangente al grafico di $y(x) = \sin(\pi \log(ex))$ nel punto $x_0 = 1$ vale A: N.A. B: $\pi(x-1)$ C: $\cos(\pi \log(e)(x-1)$ D: $1 + \pi(x-1)$ E: $-\pi x$
- 3. Modulo e argomento del numero complesso $z = (1+i)^{-3}$ sono A: $(1/2, -3\pi/4)$ B: $(2\sqrt{2}, 3\pi/4)$ C: $(1/2\sqrt{2}, -3\pi/4)$ D: N.A. E: $(1/2\sqrt{2}, 3\pi/4)$
- 4. Dato b<0, la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x)=|x^2-b^3|$ è derivabile per A: $x\neq 0$ B: $x\neq \pm 1$ C: N.A. D: $x\in \mathbb{R}$ E: x>0
- 5. L'integrale

$$\int_0^{\pi/4} t \, \cos(2t) \, dt$$

vale

A: -1/2 B: N.A. C: $\pi/4 - 1/2$ D: 0 E: $\pi/8 - 1/4$

6. Dato $x \geq 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 4^n \left(\frac{x}{2x+1} \right)^n$$

converge per

A: x > 0 B: 1 < x C: N.A. D: $0 \le x < 1/2$ E: $0 \le x \le 1/2$

7. Il limite

$$\lim_{x \to 0^+} \frac{e^{x^2} - 1}{2x \log(x)}$$

vale

A: -1/2 B: N.A. C: 0 D: N.E. E: $+\infty$

8. La funzione $f(x) = \begin{cases} e^{-x} & \text{per } x < 1 \\ & \text{è derivabile per } \\ ax + b & \text{per } x \ge 1 \end{cases}$ A: N.A. B: (a,b) = (1/(1+e), e) C: (a,b) = (1/e, 0) D: (a,b) = (0,1/e) E: b = 0 e $a \ge 0$

9. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : e^{x^2} < 2 \}$$

valgono

A: N.A. B: $\{-\infty, N.E., \sqrt{\log(2)}, N.E.\}$ C: $\{0, 0, \sqrt{\log(2)}, 1\}$ D: $\{-\sqrt{-\log(1/2)}, N.E., \sqrt{-\log(1/2)}, N.E., \sqrt{-\log(1/2)}, N.E.\}$ E: $\{-\sqrt{\log(2)}, -\sqrt{\log(2)}, \sqrt{\log(2)}, \sqrt{\log(2)$

10. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A: $\frac{e^{x^4}}{e^{2\log(2)}}$ B: e^{x^4} C: $\frac{1}{\cos(x)}$ D: $2(e^x - e^{-x})$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 gennaio 2014

(Cognome)	(Nome)	(Numero di matricola)

CODICE = 677345

1 2

3

4

5 6

9

10

A B C D E

1. L'integrale

$$\int_0^{\pi/4} t \, \cos(2t) \, dt$$

vale

A: $\pi/8 - 1/4$ B: -1/2 C: $\pi/4 - 1/2$ D: 0 E: N.A.

- 2. Dato b<0, la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x)=|x^2-b^3|$ è derivabile per A: $x\neq 0$ B: x>0 C: $x\in \mathbb{R}$ D: $x\neq \pm 1$ E: N.A.
- 3. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : e^{x^2} < 2\}$$

valgono

A: N.A. B: $\{-\infty, N.E., \sqrt{\log(2)}, N.E.\}$ C: $\{0, 0, \sqrt{\log(2)}, 1\}$ D: $\{-\sqrt{\log(2)}, -\sqrt{\log(2)}, \sqrt{\log(2)}, \sqrt{\log($

4. La funzione $f(x) = \begin{cases} e^{-x} & \text{per } x < 1 \\ ax + b & \text{per } x \ge 1 \end{cases}$ $A: (a, b) = (1/(1 + a), a) \quad B: (a, b) = (0, 1/a), \quad C: (a, b) = (1/a, 0), \quad D: NA$

A: (a,b) = (1/(1+e), e) B: (a,b) = (0,1/e) C: (a,b) = (1/e,0) D: N.A. E: b=0 e $a \ge 0$

5. Il limite

$$\lim_{x \to 0^+} \frac{e^{x^2} - 1}{2x \log(x)}$$

vale

A: $+\infty$ B: 0 C: N.A. D: -1/2 E: N.E.

6. Data $f(x) = (\tan(x))^x$. Allora $f'(\pi/4)$ è uguale a A: $-\pi/2$ B: π C: 0 D: N.A. E: $\pi/2$

7. Modulo e argomento del numero complesso $z=\left(1+i\right)^{-3}$ sono A: $(1/2\sqrt{2},3\pi/4)$ B: $(1/2\sqrt{2},-3\pi/4)$ C: $(1/2,-3\pi/4)$ D: $(2\sqrt{2},3\pi/4)$ E: N.A

8. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 4^n \left(\frac{x}{2x+1} \right)^n$$

converge per

A: $0 \le x < 1/2$ B: $0 \le x \le 1/2$ C: 1 < x D: N.A. E: x > 0

9. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A: e^{x^4} B: $\frac{e^{x^4}}{e^{2 \log(2)}}$ C: N.A. D: $\frac{1}{\cos(x)}$ E: $2(e^x - e^{-x})$

10. La retta tangente al grafico di $y(x) = \sin(\pi \log(ex))$ nel punto $x_0 = 1$ vale

A: $-\pi x$ B: $\cos(\pi \log(e)(x-1))$ C: $1 + \pi(x-1)$ D: N.A. E: $\pi(x-1)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

9 gennaio 2014

(Cognome)	(Nome)	(Numero di matricola)
(0)	,	,

A	В	С	D	\mathbf{E}	

1	
2	0000
3	
4	
5	
6	
7	
8	
9	
10	$0\overline{0000}$

1. La funzione
$$f(x) = \begin{cases} e^{-x} & \text{per } x < 1 \\ & \text{è derivabile per} \end{cases}$$

$$A: b = 0 \text{ e } a \ge 0 \quad B: (a, b) = (1/(1 + e), e) \quad C: (a, b) = (0, 1/e) \quad D: \text{ N.A.} \quad E: (a, b) = (1/e, 0)$$

2. La retta tangente al grafico di $y(x) = \sin(\pi \log(ex))$ nel punto $x_0 = 1$ vale A: $1 + \pi(x - 1)$ B: $-\pi x$ C: N.A. D: $\pi(x - 1)$ E: $\cos(\pi \log(e)(x - 1)$

3. Data $f(x) = (\tan(x))^x$. Allora $f'(\pi/4)$ è uguale a A: N.A. B: $-\pi/2$ C: π D: $\pi/2$ E: 0

4. Il limite

$$\lim_{x \to 0^+} \frac{e^{x^2} - 1}{2x \log(x)}$$

vale

A: N.A. B: -1/2 C: $+\infty$ D: 0 E: N.E.

5. Dato b<0, la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x)=|x^2-b^3|$ è derivabile per A: $x\neq 0$ B: x>0 C: $x\in \mathbb{R}$ D: $x\neq \pm 1$ E: N.A.

6. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : e^{x^2} < 2 \}$$

valgono

A: $\{-\sqrt{\log(2)}, -\sqrt{\log(2)}, \sqrt{\log(2)}, \sqrt{\log(2)}\}$ B: $\{-\infty, N.E., \sqrt{\log(2)}, N.E.\}$ C: $\{-\sqrt{-\log(1/2)}, N.E., \sqrt{-\log(1/2)}, N.E., \sqrt{\log(2)}, 1\}$ E: N.A.

7. Dato $x \ge 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} 4^n \left(\frac{x}{2x+1} \right)^n$$

converge per

A: x > 0 B: 1 < x C: $0 \le x < 1/2$ D: $0 \le x \le 1/2$ E: N.A.

8. Una soluzione dell'equazione differenziale $y'(x) = x^3 e^{x^4}$ è

A: e^{x^4} B: N.A. C: $2(e^x - e^{-x})$ D: $\frac{1}{\cos(x)}$ E: $\frac{e^{x^4}}{e^{2\log(2)}}$

9. L'integrale

$$\int_0^{\pi/4} t \cos(2t) dt$$

vale

A: $\pi/4 - 1/2$ B: N.A. C: $\pi/8 - 1/4$ D: -1/2 E: 0

10. Modulo e argomento del numero complesso $z = (1+i)^{-3}$ sono

A: $(1/2, -3\pi/4)$ B: $(1/2\sqrt{2}, 3\pi/4)$ C: $(1/2\sqrt{2}, -3\pi/4)$ D: N.A. E: $(2\sqrt{2}, 3\pi/4)$

9 gennaio 2014

(Cognome)								(No	me)			_	(N	ume	ro d	i ma	trice	ola)										

 ${\rm CODICE} = 339372$

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

9 gennaio 2014

(Cognome)											(1	Vom	ne)			_	(N	ume	ro d	i ma	trice	ola)					

 $\mathrm{CODICE} = 054869$

1	
2	$lackbox{0}$
3	
4	
5	
6	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
7	
8	$lackbox{0}$
9	
10	$\bullet \circ \circ \circ \circ$

9 gennaio 2014

(Cognome)									_			(P	Vom	e)			_	(N	ume	ero d	i ma	atric	cola)					

 $\mathrm{CODICE} = 677345$

A B C D E

1	
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

9 gennaio 2014

(Cognome)												(No	ome)			(N	ume	ero d	i ma	atric	ola)						

A	В	С	D	\mathbf{E}	
		_			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

9 gennaio 2014

PARTE B

1. Studiare, al variare del parametro $\alpha \in \mathbb{R}$, il numero delle soluzioni reali dell'equazione

$$x^4 - \alpha x^3 + 1 = 0$$

Soluzione: Il problema si riduce a studiare la funzione

$$f(x) = x^4 - \alpha x^3 + 1$$

nel suo dominio $D = \mathbb{R}$. Osserviamo che

$$\lim_{x \to +\infty} f(x) = +\infty$$

La derivata prima $f'(x)=4x^3-3\alpha\,x^2$, si annulla in $x_0=\frac{3}{4}\alpha$ e dallo studio del segno di f' si deduce che f è decrescente su $(-\infty,\frac{3}{4}\alpha)$ e crescente su $(\frac{3}{4}\alpha,+\infty)$.

Il punto $x_0 = \frac{3}{4}\alpha$ risulta essere un punto di minimo locale con valore uguale a $y_0 = 1 - \frac{27}{256}\alpha^4$. Dall'andamento del grafico di f si deduce che se $y_0 > 0$, cioè se

$$1 - \frac{27}{256}\alpha^4 \quad \Longleftrightarrow \quad -\frac{4}{3^{3/4}} < \alpha < \frac{4}{3^{3/4}}$$

allora f non si annulla mai, se $y_0 = 0$ allora f si annulla in un solo punto, se $y_0 < 0$ allora f si annulla in due punti distinti. Pertanto si ha:

- nessuna soluzione per $\alpha \in (-\frac{4}{3^{3/4}},\frac{4}{3^{3/4}})$
- $\bullet\,$ una soluzione per $\alpha=\frac{4}{3^{3/4}}$
- due soluzioni per $\alpha \in (-\infty, -\frac{4}{3^{3/4}} \cup (\frac{4}{3^{3/4}}, +\infty).$
- 2. Trovare la soluzione del problema di Cauchy

$$\begin{cases} y'''(t) - y'(t) = t - 1 \\ y(0) = 0 \\ y'(0) = a \\ y''(0) = 0 \end{cases}$$

Soluzione: L'equazione caratteristica associata all'equazione, $\lambda^3 - \lambda = 0$, ha radici 0, 1, -1 tutte con molteplicità uguale a 1. La soluzione generale dell'equazione omogenea è dunque

$$y_0(t) = c_1 + c_2 e^t + c_3 e^{-t}$$

Poiché 0 è una soluzione dell'equazione caratteristica, la soluzione particolare va cercata dell'forma

$$y_f(t) = t(bt + c)$$

Sostituendo le derivate opportune di yf1(t) all'equazione data otteniamo che $y_f(t)$ é soluzione se e solo se b=-1/2 e c=1. Dunque la soluzione particolare è $y_f(t)=-\frac{1}{2}t^2+t$. La soluzione generale è dunque

$$y(t) = c_1 + c_2 e^t + c_3 e^{-t} - \frac{1}{2}t^2 + t$$

Imponendo le condizioni iniziali abbiamo il sistema $\begin{cases} c_1+c_2+c_3=0\\ c_2-c_3+1=a \text{ che ha some soluzioni}\\ c_2+c_3-1=0 \end{cases}$

$$c_1 = -1, c_2 = a/2, c_3 = 1 - a/2$$

Sostituendo tali valori nell'integrale generale otteniamo:

$$y(t) = -1 + \frac{a}{2}e^{t} + (1 - \frac{a}{2})e^{-t} - \frac{1}{2}t^{2} + t$$

3. Calcolare

$$\int_{-1/2}^{0} \frac{x}{1 - x^4} \, dx.$$

Soluzione: Dopo aver fattorizzato il denominatore della funzione integranda possiamo porre

$$\frac{x}{1-x^4} = \frac{A}{1-x} + \frac{B}{1+x} + \frac{Cx+D}{1+x^2}$$

con $A,B,C,D\in\mathbb{R}$. Per determinare il valore delle costanti si puó procedere nel seguente modo.

Moltiplicare ambo i membri dell'equazione per il primo denominatore di primo grado che si trova nel membro di destra e far tendere il limite dell'equazione a 1, annullando in questo modo i restanti due addendi.

$$\lim_{x \to 1} \frac{x}{(1+x)(1+x^2)} = \lim_{x \to 1} \left(A + \frac{B(1-x)}{1+x} + \frac{(Cx+D)(1-x)}{1+x^2} \right)$$

Dal calcolo del limite si ottiene A=1/4. Seguiamo lo stesso procedimento per il secondo denominatore di primo grado, si moltiplicano ambo i membri per tale denominatore e si fa tendere il limite dell'equazione a -1, annullando in questo modo i restanti due addendi.

$$\lim_{x \to -1} \frac{x}{(1-x)(1+x^2)} = \lim_{x \to -1} \left(\frac{A(1+x)}{1-x} + B + \frac{(Cx+D)(1+x)}{1+x^2} \right)$$

Dal calcolo del limite si ottiene B=-1/4. Infine per calcolare C e D basta moltiplicare per l'ultimo denominatore e fare tendere il limite a $\pm i$ in modo da annullare i primi due addendi. Si ottiene dunque C=1/2 e D=0.

Si ha pertanto che una primitiva della funzione $f(x) = \frac{x}{1-x^4}$ è

$$G(x) = -\frac{1}{4}\log|x^2 - 1| + \frac{1}{4}\log|x^2 + 1|$$

L'integrale di partenza viene dunque a essere

$$\int_{-1/2}^{0} \frac{x}{1 - x^4} \, dx = G(x) \Big|_{-1/2}^{0} = -\frac{1}{4} \log \frac{5}{3}$$

4. Sia $\{a_n\}$ una successione a termini non-negativi. Dimostrare che se $\sum_n a_n < +\infty$ allora

$$\sum_{n} a_n^2 < +\infty$$

Il risultato è ancora vero se non si richiede che $a_n \geq 0$ per ogni $n \in \mathbb{N}$? Soluzione: Poiché $\sum_n a_n < +\infty$ allora

$$\lim_{n \to \infty} a_n = 0$$

Ne segue che $\exists n_0 \in \mathbb{N}$ tale che $\forall n > n_0$ risulta $a_n < 1$; dunque si ha

$$a_n^2 < a_n$$
 definitivamente.

Da questa disuguaglianza, per il criterio del confronto, poiché $\sum_n a_n$ converge segue che

Se la successione non è a termini non negativi il risultato non è piú vero. Basta considerare la successione $\{a_n\}$ con $a_n=(-1)^n\frac{1}{\sqrt{n}}$. La successione $\frac{1}{\sqrt{n}}$ è a termini non negativi, decrescente e $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$. Per il criterio di Leibniz la serie $\sum_n a_n$ è convergente.

Ma allora $\sum_n a_n^2 = \sum_n \frac{1}{n} = +\infty$.