Week I: introduction

our goal:

- get "feel" and terminology
- more depth, detail later in course
- approach:
 - use Internet as example

overview:

- what's the Internet?
- what's a protocol?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- protocol layers, service models

1

Week I: roadmap

- what is the Internet?
- network edge
 - end systems, access networks, physical links
- network core
 - packet switching, network structure
- protocol layers, service models

What's the Internet: a service view

- Infrastructure that provides services to applications:
 - Web, VoIP, email, games, ecommerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

5

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

what's a protocol? a human protocol and a computer network protocol: Excuse me? Yes? What time is it? Get http://moodle.njit.edu file>

Network protocols

- Key elements
 - Syntax
 - · Data formats
 - Semantics
 - Control information
 - Error handling
 - Timing
 - · Speed matching
 - Sequencing
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

- Functions
 - Encapsulation
 - Segmentation and reassembly
 - Connection control
 - Ordered delivery
 - Flow control
 - Error control
 - Addressing
 - Multiplexing
 - Transmission services

Week I: roadmap

- what is the Internet?
- network edge
 - end systems, access networks, physical links
- network core
 - packet switching, network structure
- protocol layers, service models

9

A closer look at network structure:

- * network edge:
 - hosts: clients and servers
 - servers often in data centers
- access networks, physical media: wired, wireless communication links
- network core:
 - interconnected routers
 - network of networks

Access networks and physical media

- Q: How to connect end systems to edge router?
- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

11

Access networks

- * Residential access networks
 - DSL
 - Cable
 - FTTH

Access net: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)</p>
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)</p>

13

Access net: cable network

- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream transmission rate, 2
 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend
 - unlike DSL, which has dedicated access to central office

Access net: Fiber To The Home (FTTH)

- provide a an optical fiber path from the CO directly for each home.
- e.g., FIOS service of Verizon

Enterprise access networks (Ethernet)

- typically used in companies, universities, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- * today, end systems typically connect into Ethernet switch

17

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft)
- 802.11b/g (WiFi): 11,54 Mbps transmission rate

wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between I and I0 Mbps
- 3G, 4G: LTE

Physical media

- physical link: what lies between transmitter & receiver
- bit: propagates between transmitter/receiver pairs
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

19

Physical media: TP and coax

twisted pair (TP):

- two insulated copper wires
 - Category 5: 100 Mbps, IGbps Ethernet
 - Category 6: 10Gbps

coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple channels on cable
 - HFC

Physical media: fiber

fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10' s-100' s Gpbs transmission rate)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

21

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- * terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - IIMbps, 54 Mbps
- wide-area (e.g., cellular)
 - 3G cellular: ~ few Mbps
- satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

Week I: roadmap

- what is the Internet?
- network edge
 - end systems, access networks, physical links
- network core
 - packet switching, network structure
- protocol layers, service models

23

The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - forward packets from one router to the next, across links on path from source to destination
 - each packet transmitted at full link capacity

Host: sends packets of data host sending function: takes application message two packets, breaks into smaller L bits each chunks, known as packets, of length L bits transmits packet into access network at transmission rate R R: link transmission rate host link transmission rate, aka link capacity, aka link bandwidth packet time needed to L (bits) transmission transmit L-bit R (bits/sec) packet into link delay

Internet structure: network of networks

- End systems connect to Internet via access ISPs (Internet Service Providers)
 - Residential, company and university ISPs
- Access ISPs in turn must be interconnected.
 - So that any two hosts can send packets to each other
- Resulting network of networks is very complex
 - Evolution was driven by economics and national policies
- Let's take a stepwise approach to describe current Internet structure

29

Internet structure: network of networks Question: given millions of access ISPs, how to connect them together? ... access net access n

Week I: roadmap

- what is the Internet?
- network edge
 - end systems, access networks, physical links
- network core
 - packet switching, network structure
- protocol layers, service models

39

Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?

Organization of air travel

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

a series of steps

41

Layering of airline functionality

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?

43

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

application
transport
network
link
physical

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - needed?

