



## **Project 1**

# Information Exposure Maximization

#### **Outline**



Overview

Problem Description

IEM Example

#### **Outline**



Overview

Problem Description

IEM Example

#### **Overview**



Information Exposure Maximization (IEM) is an important algorithmic problem that is proposed to solve the <u>echo chamber effect</u> on social media.



Users tend to gather in groups whose members think alike, and that polarisation is greater when content feeds cannot be easily tweaked.

[M. Cinelli et al. PNAS 2021]

#### **Overview**



Assume that there are two viewpoints in a social network, the IEM problem is **to select two campaigns**, each containing a set of users who hold one of these viewpoints, to maximize the expected number of users that are **either reached by both campaigns** or **remain oblivious to both campaigns**.



#### **Overview**



#### TASK: Two search algorithms to solve the IEM problem

- One heuristic algorithm
- One evolutionary algorithm or one simulated annealing algorithm

#### **Grading Rules**

- Project report
- Code evaluation (15 points)
  - Objective evaluation (2.0 points)
  - Heuristic algorithm (6.5 points)
  - Evolutionary algorithm or simulated annealing algorithm (6.5 points)

#### **Outline**



Overview

Problem Description

IEM Example

## **Assumption**



#### The following information is available

- A social network G = (V, E) with two campaigns
- Two seed sets
  - each support one of the two viewpoints



## **Assumption**



#### The following information is available

- A social network G = (V, E) with two campaigns
- Two seed sets
  - each support one of the two viewpoints



- two viewpoints are propagated independently of each other
- Two functions  $p: E \to [0,1]$ 
  - associate probability  $p_{(u,v)}$  with edge (u,v) capturing the influence u exerts over v



## **Assumption**



#### The following information is available

- A social network G = (V, E) with two campaigns
- Two seed sets
  - each support one of the two viewpoints
- Heterogeneous propagation
  - two viewpoints are propagated independently of each other
- Two functions  $p: E \rightarrow [0,1]$ 
  - associate probability  $p_{(u,v)}$  with edge (u,v) capturing the influence u exerts over v
- A diffusion model
  - describe how influence propagates to a node from its neighbors





The famous Independent Cascade (IC) model is used.

- Each node  $v \in V$  has two possible states, *inactive* and *active* 
  - active: adopts new information being propagated through the network
  - inactive: has not adopted new information yet
    - Ever been attempted to be activated but NOT
    - Never been attempted to be activated
  - Can ONLY switch from inactive to active



The famous Independent Cascade (IC) model is used.

- Each node  $v \in V$  has two possible states, *inactive* and *active* 
  - active: adopts new information being propagated through the network
  - i inactive: has not adopted new information yet
    - Ever been attempted to be activated but NOT
    - Never been attempted to be activated

**Exposed Node Set** 

Can ONLY switch from inactive to active



Information proceeds in discrete time steps, with  $t=0,1,2,\cdots$ 

• Let U be the set of active nodes in time 0

• Let r(U) be the **FINAL** exposed node set



• Seed set  $U = \{1\}$ 

- Time step t = 0
  - Active node set {1}
  - Exposed node set {1}

t=0





• Seed set  $U = \{1\}$ 

- Time step t = 1
  - Active node set  $\{1, 3, 4\}$
  - Exposed node set {1, 2, 3, 4}





t=2

• Seed set  $U = \{1\}$ 

- Time step t = 2
  - Active node set {1, 3, 4, 6}
  - Exposed node set {1, 2, 3, 4, 6, 7}





• Seed set  $U = \{1\}$ 

- Time step t = 2
  - Active node set {1, 3, 4, 6, 7}
  - Exposed node set {1, 2, 3, 4, 6, 7}



## Influence Exposure of Two Campaigns (Case)



- Seed set  $U_1 = \{1\}$ 
  - Exposed node set {1, 2, 3, 4, 6, 7}

- Seed set  $U_2 = \{5\}$ 
  - Exposed node set {5}





## Influence Exposure of Two Campaigns (Case)





- Seed set  $U_1 = \{1\}$ 
  - Exposed node set {1, 2, 3, 4, 6, 7}

- Seed set  $U_2 = \{5\}$ 
  - Exposed node set {5}

NO node can break through the echo chamber in this propagation



#### **Balanced Seed Set**



Campaign  $c_i$ ,  $i \in \{1,2\}$ 

- Seed set  $U_i = I_i \cup S_i$ 
  - Initial seed set  $I_i \subseteq V$ : available
  - Balanced seed set  $S_i \subseteq V$ : to be found

## **Balanced Information Exposure**



The expected number of nodes that are either reached by both campaigns or remain oblivious to both campaigns



Both are **random variables** determined by the stochastic process of the diffusion model and their diffusion probabilities

## **Problem Description**



Given a social network G = (V, E), two initial seed sets  $I_1$  and  $I_2$ , and a budget k.

The IEM is to find two balanced seed sets  $S_1$  and  $S_2$ , where  $|S_1| + |S_2| \le k$ , and

maximize the balanced information exposure, i.e.,

$$\max \Phi(S_1, S_2) = \max \mathbb{E}[|V \setminus (r_1(I_1 \cup S_1) \triangle r_2(I_2 \cup S_2))|]$$

s.t. 
$$|S_1| + |S_2| \le k$$

$$S_1, S_2 \subseteq V$$

#### **Outline**



Overview

Problem Description

IEM Example

## **IEM Example**



#### Campaigns $c_1$ (Red), $c_2$ (blue)

- Initial Seed Set  $I_1 = \{1\}, I_2 = \{9\}$
- Balanced Seed Set:
  - Solution 1:  $S_1 = \{8\}, S_2 = \{2\}$
  - Solution 2:  $S_1 = \{9\}, S_2 = \{1\}$





- Initial Seed Set  $I_1 = \{1\}$
- Balanced Seed Set  $S_1 = \{8\}$ 
  - Exposed Node Set {1, 2, 3, 4, 5, 6, 7, 8}







- Initial Seed Set  $I_2 = \{9\}$
- Balanced Seed Set  $S_2 = \{2\}$ 
  - Exposed Node Set {2, 3, 4, 5, 6, 7, 8, 9}







- Initial Seed Set  $I_1 = \{1\}, I_2 = \{9\}$
- Balanced Seed Set  $S_1 = \{8\}, S_2 = \{2\}$

• 
$$\Phi(S_1, S_2) = |V \setminus (r_1(I_1 \cup S_1) \triangle r_2(I_2 \cup S_2))| = |\{2, 3, 4, 5, 6, 7, 8\}| = 7$$







- Initial Seed Set  $I_1 = \{1\}$
- Balanced Seed Set  $S_1 = \{9\}$
- Case 1: node 8 activate with probability 0.1
  - Exposed Node Set {1, 2, 3, 4, 5, 6, 7, 8, 9}









- Initial Seed Set  $I_1 = \{1\}$
- Balanced Seed Set  $S_1 = \{9\}$
- Case 2: node 8 inactivate with probability 0.9
  - Exposed Node Set {1, 2, 3, 4, 5, 8, 9}









- Initial Seed Set  $I_2 = \{9\}$
- Balanced Seed Set  $S_2 = \{1\}$
- Case 1: node 2 activate with probability 0.1
  - Exposed Node Set {1, 2, 3, 4, 5, 6, 7, 8, 9}









- Initial Seed Set  $I_2 = \{9\}$
- Balanced Seed Set  $S_2 = \{1\}$
- Case 2: node 2 inactivate with probability 0.9
  - Exposed Node Set {1, 2, 5, 6, 7, 8, 9}









- Initial Seed Set  $I_1 = \{1\}, I_2 = \{9\}$
- Balanced Seed Set  $S_1 = \{9\}, S_2 = \{1\}$ 
  - Probability  $p^{(1)} = p_1 \times p_2 = 0.01$
  - $\Phi^{(1)}(S_1, S_2) = |V \setminus (r_1(I_1 \cup S_1) \triangle r_2(I_2 \cup S_2))| = |\{1, 2, 3, 4, 5, 6, 7, 8, 9\}| = 9$







- Initial Seed Set  $I_1 = \{1\}, I_2 = \{9\}$
- Balanced Seed Set  $S_1 = \{9\}, S_2 = \{1\}$ 
  - Probability  $p^{(2)} = p_1 \times p_2 = 0.09$
  - $\Phi^{(2)}(S_1, S_2) = |V \setminus (r_1(I_1 \cup S_1) \triangle r_2(I_2 \cup S_2))| = |\{1, 2, 3, 4, 5, 8, 9\}| = 7$







- Initial Seed Set  $I_1 = \{1\}, I_2 = \{9\}$
- Balanced Seed Set  $S_1 = \{9\}, S_2 = \{1\}$ 
  - Probability  $p^{(3)} = p_1 \times p_2 = 0.09$
  - $\Phi^{(3)}(S_1, S_2) = |V \setminus (r_1(I_1 \cup S_1) \triangle r_2(I_2 \cup S_2))| = |\{1, 2, 5, 6, 7, 8, 9\}| = 7$







- Initial Seed Set  $I_1 = \{1\}, I_2 = \{9\}$
- Balanced Seed Set  $S_1 = \{9\}, S_2 = \{1\}$ 
  - Probability  $p^{(4)} = p_1 \times p_2 = 0.81$
  - $\Phi^{(4)}(S_1, S_2) = |V \setminus (r_1(I_1 \cup S_1) \triangle r_2(I_2 \cup S_2))| = |\{1, 2, 5, 8, 9\}| = 5$







- Initial Seed Set  $I_1 = \{1\}, I_2 = \{9\}$
- Balanced Seed Set  $S_1 = \{9\}, S_2 = \{1\}$

$$\Phi(S_1, S_2) = \mathbb{E}[|V \setminus (r_1(I_1 \cup S_1) \triangle r_2(I_2 \cup S_2))|] = \sum_{i=1}^4 p^{(i)} \times \Phi^{(i)}(S_1, S_2)$$
$$= 0.01 \times 9 + 0.09 \times 7 + 0.09 \times 7 + 0.81 \times 5 = 5.4$$

## **Project1: Information Exposure Maximization**



- Information Exposure Maximization is computationally complex
  - Computing the balanced information exposure for a given solution is NP-hard.
  - Finding an optimal solution of IEM is NP-hard.
- Three tasks
  - An objective estimator
  - Two search algorithms

# Thank you!

For more information, please refer to Project1.PDF