Concevoir la partie commande des systèmes asservis afin de valider leurs performances

Chapitre 1 - Correction des SLCI

Sciences
Industrielles de
l'Ingénieur

Colle 02

Colle 2

Équipe PT La Martinière

Savoirs et compétences :

On considère un système de fonction de transfert en boucle ouverte G(p) que l'on souhaite réguler à l'aide d'une boucle à retour unitaire : $G(p) = \frac{K}{\left(10p+1\right)^2\left(p+1\right)}$

On souhaite que la boucle de régulation fonctionne selon le cahier des charges suivant :

- marge de phase : $\Delta \varphi \ge 45^\circ$;
- dépassement D% < 10%;
- écart statique $\varepsilon_S < 0.08$;
- temps de montée $t_m < 8$ s.

Question 1 *Quelle est la condition sur K pour obtenir* $\varepsilon_S < 0.08$?

On note t_m le temps de montée du système en BF et $t_m \simeq \frac{3}{\omega_{\rm co}}$ et $\omega_{\rm co}$ est la pulsation de coupure à 0 dB du système en BO.

Question 2 *Quelle est la condition sur K pour obtenir* $t_m < 8s$?

Question 3 *Quel choix faire pour la valeur de K*?

Question 4 Calculer la valeur de la marge de phase obtenue dans ces conditions.

Expérimentalement, on constate que $z_{\rm BF} \simeq \frac{\Delta \varphi^o}{100}$ et on

rappelle que $D\% = e^{\frac{RZ_{BF}}{\sqrt{1 - z_{BF}^2}}}$.

Question 5 Que vaut alors le dépassement D%?

Question 6 À partir de la relation précédente, déterminer la marge de phase qui correspond à un dépassement de 10%.

Avec la valeur de K=16,1, on introduit, en amont de G(p), dans la chaîne directe, un correcteur $C(p)=K_a\frac{1+aTp}{1+Tp}$ à avance de phase destiné à corriger le dépassement et la marge de phase, sans altérer ni la rapidité, ni la précision qui correspondent au cahier des charges.

Question 7 Déterminer alors la fonction de transfert de ce correcteur à avance de phase permettant d'obtenir une marge de phase de 60°.

1

CORRECTION

Q1- Quelle est la condition sur K pour obtenir ε_s < 0,08 ?

 $\text{Comme la FTBO est: } G(p) = \frac{K}{(10\;p+1)^2\,(p+1)} \text{, et que le retour est unitaire, la FTBF s'écrit: }$

$$H(p) = \frac{G(p)}{1 + G(p)} = \frac{K}{(10 p + 1)^2 (p + 1) + K}$$

Par définition l'écart statique s'écrit : $\mathcal{E}_{S} = \lim_{p \to 0^{+}} \{ 1 - H(p) \} = 1 - \frac{K}{1 + K} = \frac{1}{1 + K}$

Pour avoir $\,\epsilon_{\text{S}}\!<\!\text{0,08}\,$ il faut avoir : $\frac{1}{1+K}\!<\!0,08$

Soit K > 11,5

Q2- Quelle est la condition sur K pour obtenir tm < 8s?

Pour avoir tm < 8 s et en considérant la relation approchée $t_m = \frac{3}{\omega_{C0}}$ < 8 s soit ω_{C0} > 0,375 s

Le gain K qui correspond à cette pulsation de coupure à 0 dB est tel que:

$$G(j\omega_{c0}) = \frac{K}{(1 + 100 \ \omega_{c0}^2) \sqrt{1 + \omega_{c0}^2}} = 1$$

Soit K = 16,1

Q3- Déterminer la plus petite valeur de K, permettant d'obtenir à la fois ES < 0,08 et

D'après Q1, pour avoir $\varepsilon_S < 0.08$ il faut K > 11.5 D'après Q2, pour avoir obtenir tm < 8s il faut K > 16.1

La plus petite valeur qui permet de satisfaire aux deux conditions ci-dessus est K > 16,1

Q4- Calculer la valeur de la marge de phase obtenue dans ces conditions. Que vaut alors le dépassement?

La marge de phase obtenue pour cette valeur de K est :

$$\Delta \varphi = \pi - 2 \arctan 10\omega_{\text{C0}} - \arctan 10\omega_{\text{C0}} = 0,16 \text{ rad} = 9^{\circ}$$

La valeur du dépassement en boucle fermée se détermine par les relations :

$$\Delta \varphi^{\circ} \rightarrow z_{BF} \approx \frac{\Delta \varphi^{\circ}}{100} \rightarrow D\% = \exp(-\pi \frac{z_{BF}}{\sqrt{1-z^2}})$$

Soit
$$\Delta \varphi^{\circ} = 9^{\circ} \rightarrow z_{BF} \approx \frac{\Delta \varphi^{\circ}}{100} = 0.09 \rightarrow D\% = \exp(-\pi \frac{0.09}{\sqrt{1 - 0.09^2}}) = 73\%$$

$$\Delta \varphi^{\circ} = 9^{\circ}$$
 et $D\% = 74$

Ces deux valeurs ne sont pas conformes au cahier des charges

Q5- Déterminer la marge de phase qui correspond à un dépassement de 10%.

D% = exp(
$$-\pi \frac{z}{\sqrt{1-z^2}}$$
) = 0,1
 $-\pi \frac{z}{\sqrt{1-z^2}}$ = ln 0,1 = -2.3 $\pi^2 \frac{z^2}{1-z^2}$ = 5.3 $z^2 = \frac{5,3}{5,3+\pi^2}$

Soit
$$z_{BF}$$
 = 0,6 Ainsi : $\Delta \varphi^{\circ} \approx 100 z_{BF} = 60^{\circ}$

Par ailleurs la marge de phase $\Delta \varphi \ge 45^{\circ}$

Ces deux conditions imposent $\Delta \varphi \ge 60^\circ$

Q6-Déterminer alors la fonction de transfert de ce correcteur à avance de phase

Le correcteur à avance de phase $C(p) = \frac{1+aTp}{1+Tp}$ introduit a pour mission de remonter la marge de phase à 60°.

Il faut donc obtenir une remontée de phase de 60- 9 = 51° à la pulsation ω_{c0} = 0,375 rad/s

On
$$\omega_{\rm c0}=\omega_{\rm max}=\frac{1}{T\sqrt{a}}$$
 = 0,375 rad/s et $\varphi_{\rm max}=\arcsin\frac{a-1}{a+1}$ = 51°

Cette dernière condition conduit à : a = 8 La première à T = 0,94 s

$$Ka = \frac{1}{\sqrt{a}}$$