

15 Jan. 2022

Course Number: EEE F411

Course Name: Internet of Things

Instructor and IC: Dr. Sandeep Kumar

Lab TAs and Instructors: Sree Rama Amrutha Lahari, Ritesh Kumar Singh, Dr Ponnalagu R N,

and Dr. Sandeep Kumar

1. Scope and Objective:

This module is designed to provide students with solid technical knowledge and skills to build Internet of Things (IoT) systems. Internet of things has evolved due to convergence of multiple technologies - embedded systems, sensor technology, real-time data analytics, machine learning etc. Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation), and others all contribute to enabling the IoT. This course comprehensively covers various technologies and tools used for enabling IoT solutions. Knowledge of various topics required for building IoT prototypes like sensors and actuators/ Communications and networking and data management is also imparted in this course. This course would also help the students understand the various IoT security challenges and solution to address them. The course will also give the students exposure to how various real world problems are being solved by IoT based solutions (like in applications for smart city, smart farming etc.). There would also be some hands on sessions where students would learn how to build and program IoT systems and make end-to-end solutions for different applications. Furthermore, assignments and projects in this course would help students build IoT prototypes and apply what they have learnt in the course to solve real world problems.

2. Text Book:

(T1) Internet of Things: Principles and paradigms. R. Buyya, and A.V Dastjerdi (Elsevier), 2016.

3. Reference Books:

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Hyderabad Campus Second Semester 2021-2022

- (R1) "Precision Internet Of Things", by Timothy Chou (Mc Graw Hill), 2017.
- (R2) "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman (CRC Press), 2017.
- (R3) "Internet of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti (Universities Press), 2014.
- (R4) "Internet of Things" by Raj Kamal (Mc Graw Hill), 2017.
- (R5) IEEE and ACM Transactions.

4. Course Plan

Lectures

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
Lecture 1-	Introduction to	Introduction to IoT & Cyber-Physical	Class slides and
Lecture 8	IoT, IoT	Systems, IoT applications - an overview,	notes. (T1: Ch-1, 12,
	Ecosystem,	Different Levels of IoT Applications : Level	R3: Ch-1, R4: Ch-1)
	Architectures,	1 - 6 with examples, IoT Design	
	Resource	Methodology & Life Cycle, Introduction to	
	Management,	IoT Physical End Points & Platforms, IoT	
	and Application	System Design Examples (for applications	
	Levels.	like fitness tracker, smart parking etc.).	
Lecture 9 -	Sensors and	Introduction to sensors for IoT application	Class slides and
Lecture 14	Actuators for IoT	development, Data Acquisition, Signal	notes. (T1: Ch-15,
		Conditioning and Processing, Multi Sensor	R4: Ch-7)
		fusion for IoT, Advanced sensing	
		techniques (e.g. BCI/HCI), Actuators and	
		Controllers for IoT	
Lecture 15-	Programming	Introduction to Arduino microcontroller	Class slides and
Lecture 24	IoT end points	for IoT applications, Programming with	notes + Internet
		Arduino and prototype development (e.g.	resources.
		for smart farming, smart city applications	
		etc.), Introduction to Raspberry Pi,	
		Programming Raspberry Pi (Python),	
		Introduction to Android platform and	
		services, Android App development for IoT Applications	
Lecture 25	Communications	Introduction to IoT Network,	Class slides and
- Lecture	and networking	Communication & Networking	notes. (T1:Ch-3, R3:
31	in IoT	Requirements in IoT, Network Models &	Ch-4, R4: Ch-4)
_	-	Architecture (Client-server, P2P etc.),	, , ,

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Hyderabad Campus

Second Semester 2021-2022

		Wireless sensor networks, Other Ad Hoc networks (MANET, VANET), Common network standards (Bluetooth, NFC, LORA) etc.	
Lecture 32- Lecture 36	Data management in IoT	Data Management for IoT, Advanced optimization for processing sensor data, Machine learning for IoT data analytics, Introduction to IoT Cloud Services, Case studies of Cloud services for IoT and learning how to use them.	Class slides and notes. (T1:Ch-8,9, R3: Ch-10, R4: Ch-5,6)
Lecture 37 - Lecture 38	Security issues in IoT	Cyber-attacks on IoT- Case study, Security solutions for IoT: hardware/software	Class slides and notes. (T1:Ch-10, R4: Ch-10)
Lecture 39 - Lecture 41	Emerging topics in the IoT	Smart-grid, Industrial IoT etc.	Class slides and notes. (T1: Ch-16)

Labs:

Lab for the course would be once in a week for ~ 2 hour of duration. It would consist of the demo sessions where the students will learn how to work with microcontrollers and raspberry pi and learn building IoT applications starting from the scratch. The list of experiments to be conducted along with the schedule and evaluation scheme is as follows:

S.N	Name of Experiment		Evaluation
0.			Method
1	Introduction to Raspberry-pi 3 and Python		Lab record and
	Programming.	'	assignment.
2	Interfacing Raspberry-pi with the smart phone	2 nd	
	for enabling home automation.		
3	Home Security System using Raspberry-pi and		
	PIR Sensor.	3 rd	
4	Remote Data Logging with Raspberry-pi using	4 th	

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Hyderabad Campus Second Semester 2021-2022

	socket programming.	
5	Design of a temperature dependent auto- cooling system using Raspberry-pi.	5 th
6	LED Control and Pi-Camera interfacing with Raspberry-pi.	6 th
7	Introduction to BOLT IoT module and it's interfacing with smart phone.	7 th
8	Home automation using the BOLT IoT module.	8 th
9	Introduction to Arduino microcontroller and its programming.	9 th
10	Interfacing of the sensors and actuators with Arduino.	10 th

Overall Evaluation Scheme:

S. N o	Evaluation Component	Weighta ge	Mark s (out of 300)	Duration	Date and Time	Nature of Compone nt
1	Mid-Semester Test	30 %	90	90 minutes	12/03 9.00am to10.30am	Closed book
2	Quizzes (Surprise/Announc ed) No Makeup for Quiz	5 %	15	15 minutes each	To be announced	Closed book

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Hyderabad Campus

Second Semester 2021-2022

3	Lab Sessions	10 %	30	Each of 2 hours	As per time table	Open book
4	Lab Exam/Quiz	5 %	15	15 to 30 minutes	To be announced	Closed book
5	Assignments/ Project	10 %	30	-	To be announced	Open book
6	Comprehensive Exam	40 %	120	120 minutes	11/05 FN	Closed book
	Total	100 %	300			

Chamber Consultation Hour: To be announced in Class.

Notices: All notices regarding the course will be put up on CMS.

Make-up Policy: No make-up will be provided without prior permission from the Instructor-Incharge (IC).

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

(Dr. Sandeep Kumar)

Instructor-in-charge

