题号	1	П	Ш	四	五	六	七	八	九	+	总分	阅卷人
得分												

得分	阅卷人

.

. . .

. . .

、选择题(每题3分,共15分)

1. 设 $I_1 = \int_0^{\frac{\pi}{4}} x dx$, $I_2 = \int_0^{\frac{\pi}{4}} \sqrt{x} dx$, $I_3 = \int_0^{\frac{\pi}{4}} \sin x dx$, 则 I_1 , I_2 , I_3 的关系是_____. (A) $I_1 > I_2 > I_3$ (B) $I_1 > I_3 > I_2$ (C) $I_3 > I_1 > I_2$ (D) $I_2 > I_1 > I_3$

(A) 1 (B) -1 (C) 0 (D)
$$\frac{1}{2}$$

- (A) $1 + \cos 1 \ln 2 + \ln 3$ (B) $1 \cos 1 + \ln 2 \ln 3$

- (D) $1-\cos 1-\ln 2+\ln 3$
- 4. 设 f(x) 连续,则 $\frac{d}{dx} \int_0^x t f(x^2 t^2) dt = ____.$
- (A) $f(x^2)$. (B) $f(x^2)$. (C) $xf(x^2)$ (D) 0
- 5.已知 $f(x) = x^2 x \int_0^2 f(x) dx + 2 \int_0^1 f(x) dx$, 则 f(x) =_____.
- (A) $x^2 + \frac{4}{3}x \frac{2}{3}$ (B) $x^2 \frac{4}{3}x + \frac{2}{3}$ (C) $x^2 \frac{4}{3}x + 1$ (D) x^2

阅卷人

二、填空题(每题3分,共15分)

_______1. 不定积分
$$\int \frac{x^2+1}{x^4+1} dx = ______.$$

- $2. \int_0^\pi \sqrt{\sin x \sin^3 x} dx = \underline{\qquad}.$
- 3. $\int_{-1}^{1} (|x| + x)e^{-|x|} dx = \underline{\qquad}.$

- 4. 已知 $\int_0^{\ln a} e^x \sqrt{3 2e^x} dx = \frac{1}{3}$, 则 a 的值为_____.
- 5. 设f(x)在 $(-\infty, +\infty)$ 内具有连续的二阶导数,且f(0) = 2, f(2) = 4,f'(2) = 6, $\iint_{0}^{1} x f''(2x) dx =$ _____.

得分	阅卷人

三、计算、证明题(第1题10分,2-11题每题6分,共70分)

1.计算不定积分:

(1)
$$\int \frac{1 + \ln x}{(x \ln x)^2} dx$$
; (2) $\int \frac{x + 1}{x(1 + xe^x)} dx$; (3) $\int \frac{\sin x \cdot \cos^3 x}{1 + \cos^2 x} dx$;

$$(4) \int \frac{x^2 \arctan x}{1 + x^2} dx; \qquad (5) \int \frac{\arctan e^x}{e^x} dx.$$

2.计算不定积分:(1) $\int_0^{\frac{\pi}{2}} \frac{\sin^{10} x - \cos^{10} x}{4 - \sin x - \cos x} dx;$ (2) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^x \sin^4 x}{1 + e^x} dx$

錣

5.设 $f(x) \in C$ ($-\infty$, $+\infty$),且 $F(x) = \int_0^x (2t - x) f(t) dt$ 试证: 若 f(x) 是偶函数,则 F(x) 也是偶函数.

3.求 c 的值,使 $\lim_{x\to\infty} \left(\frac{x+c}{x-c}\right)^x = \int_{-\infty}^c t e^{2t} dt$.

6. 设 s > 0, 求 $I_n = \int_0^{+\infty} e^{-sx} x^n dx \ (n = 1, 2, \cdots).$

4.设函数 g(x) 连续,且 $f(x) = \frac{1}{2} \int_0^x (x-t)^2 g(t) dt$,求 f'(x).

7.求最小的实数C,使得满足 $\int_0^1 |f(x)| dx = 1$ 的连续的函数f(x)都有 $\int_0^1 f(\sqrt{x}) dx \le C.$

級

8. 在抛物线 $y=x^2$ () $(\mathbf{E}x \leq \mathbf{1})$ 找一点P ,使经过P的水平直线与抛物线和直线x=0 , x=1围成的区域的面积最小 .

9. 设可微函数f(x)在x > 0上有定义,其反函数为g(x)且满足 $\int_{1}^{f(x)} g(t) dt = \frac{1}{3} (x^{\frac{3}{2}} - 8), 试求 f(x).$

10. 设 D_1 是由抛物线 $y=2x^2$ 和直线x=a , x=2及y=0所围成的平面区域;

 D_2 是由抛物线 $y = 2x^2$ 及直线y = 0,x = a所围成的平面区域,其中0 < a < 2

(1) 试求 D_1 绕x轴旋转而成的旋转体体积 V_1 ; D_2 绕y轴旋转而成的旋转体体积 V_2 ;

(2) 问当a为何值时, $V_1 + V_2$ 取得最大值? 试求此最大值.

11. 设 $f:[0,1] \to [-a,b]$ 连续,且 $\int_0^1 f^2(x) dx = ab$,证明: $0 \le \frac{\int_0^1 f(x) dx}{b-a} \le \frac{1}{4} (\frac{a+b}{a-b})^2$.

贸

四、附加题(每题4分,共20分)

1. 求不定积分
$$\int \frac{\arcsin\sqrt{x} + \ln x}{\sqrt{x}} dx$$
.

2. 设
$$f(\ln x) = \frac{\ln(1+x)}{x}$$
, 计算 $\int f(x) dx$.

3. 计算不定积分
$$\int \ln(1+\sqrt{\frac{1+x}{x}})dx$$
 $(x>0)$

4. 求圆 $x^2 + (y-5)^2 = 16$ 绕 x 轴旋转所得旋转体的体积.

5. 设
$$f(x) = \ln x - \int_{1}^{e} f(x) dx$$
,证明: $\int_{1}^{e} f(x) dx = \frac{1}{e}$.