112-1 Discrete Mathematics Charpter 1-2

姓名:許嘉隆 學號:412770116

2. $m \rightarrow (e \lor p)$, because the statement "p only if q" means the proposition $p \rightarrow q$

8.

- a) $r \land -p$
- b) $(r \land p) \rightarrow q$
- c) $-r \rightarrow -q$
- d) $(-p \lor r) \rightarrow q$
- 12. Let p = "The file system is locked", q = "New messages will be queued", r = "The system is functioning normally", s = "New messages will be sent to the message buffer"

Sentence 5 means the proposition -s, but its value must be True, so the value of s is **False**. Sentence 4 means the proposition $-p \to s$, but its value must be True, so the value of p is **True**. Samely, Sentence 3 means the proposition $-q \to s$, and it implies the value of q is **True**. Sentence 2 means the proposition $-p \leftrightarrow r$, and it implies the value of r is **False**.

Finally, Sentence 1 means the proposition $-p \to q$, and its value is **True** without conflict, so these system specifications are **consistent**.

p	q	r	s
T	T	F	F

- 17. Let P_i , treasure is in Trunk i, i = 1, 2, 3.
 - 1. P_3 2. P_1 3. $-P_3$
 - a) $-P_3 \wedge -P_1 \wedge -(-P_3) \implies False$
 - b) $\begin{array}{l} (P_3 \wedge -P_1 \wedge -(-P_3)) \vee (-P_3 \wedge P_1 \wedge -(-P_3)) \vee (-P_3 \wedge -P_1 \wedge -P_3) \\ = \mathit{True} \vee \mathit{False} \vee \mathit{True} \\ \Longrightarrow \mathit{True} \\ \end{array}$
 - c) $(-P_3 \wedge P_1 \wedge -P_3) \vee (P_3 \wedge -P_1 \wedge -P_3) \vee (P_3 \wedge P_1 \wedge -(-P_3))$ $= True \vee False \vee False \implies True$

d)
$$P_3 \wedge P_1 \wedge P_3 \implies False$$

26. Let
$$K = Knight$$
 (tells truth), $N = Knave$ (tells lie).

A: A = K

B: B = K

Assumption				Conclusion		
	A	В		A	В	
	K	K	=	K K N N	K	
	K	N	=	K	N	
	N	K	=	N	K	
	N	N	=	N	N	

It is possible for either A or B to be either a Knight or a Knave.