

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Campus Campo Mourão

Departamento Acadêmico de Matemática - DAMAT

Geometria Analítica e Álgebra Linear

Notas de Aula

Prof $^{\underline{a}}$ Dra. Érika Patrícia Dantas de Oliveira Guazzi Campo Mourão - PR ${}^{\underline{0}}$ Período de 2021

Sumário

4	\mathbf{Apl}	icaçõe	s de Vetores: Retas e Planos 10	6	
	4.1	Equações Vetoriais, Paramétricas e Simétricas de Retas			
		4.1.1	Reta definida por dois pontos	0	
		4.1.2	Condição para que três pontos estejam em linha reta	1	
		4.1.3	Equações Reduzidas da Reta	2	
		4.1.4	Retas Horizontais e Retas Verticais	4	
	4.2	Ângul	o entre Duas Retas	.5	
		4.2.1	Condição de Paralelismo de Duas Retas	6	
		4.2.2	Condição de Ortogonalidade de Duas Retas	9	
		4.2.3	Posições Relativas de Duas Retas	2C	
		\mathbf{C}	ondição de Coplanaridade de Duas Retas	2C	
	4.3	Equaç	ões Gerais, Vetoriais e Paramétricas de Planos	:2	
		4.3.1	Equação Ponto-Normal e Geral do Plano	:4	
		4.3.2	Determinação de um Plano	:5	
		4.3.3	Planos Paralelos aos Eixos e aos Planos Coordenados	8	
		4.3.4	Equação Vetorial e Equações Paramétricas do Plano	0	
	4.4	Ângul	o entre Dois Planos	13	
		4.4.1	Interseção de Dois Planos	5	
	4.5	Distâr	ncias	5	
		4.5.1	Distância entre Dois Pontos	5	
		4.5.2	Distância de Um Ponto a Uma Reta	6	
		4.5.3	Distância entre Duas Retas	7	

Referências Bibliográficas						
4.6	Exercí	cios sobre Retas, Planos e Distâncias	142			
	4.5.6	Distância de uma Reta a um Plano	141			
	4.5.5	Distância entre Dois Planos	140			
	4.5.4	Distância de um Ponto a um Plano	139			

Capítulo 4

Aplicações de Vetores: Retas e

Planos

Neste capítulo faremos uso da teoria de vetores e produto de vetores, apresentados no capítulo anterior, para exibirmos as equações que descrevem analiticamente as retas e os planos. Desta maneira, usaremos expressões analíticas na resolução de problemas geométricos como o estudo do ângulo, da distância, das posições e das interseções entre retas e/ou planos.

4.1 Equações Vetoriais, Paramétricas e Simétricas de Retas

Para identificarmos geometricamente uma reta r, basta conhecermos um ponto A desta reta e sua direção.

Dessa forma, uma reta em \mathbb{R}^2 ou \mathbb{R}^3 pode ser determinada de modo único especificando um ponto P_0 na reta e um vetor não-nulo v que é paralelo à reta.

Assim, se P é qualquer ponto da reta que passa pelo ponto P_0 e que é paralela a v, então o vetor $P-P_0$ é paralelo a v, de modo que

$$P - P_0 = tv$$

para algum escalar t.

Definição 1. A equação

$$P = P_0 + tv$$

é dita equação vetorial da reta pelo ponto $P_0(x_0, y_0)$ que é paralela ao vetor v = (a, b) onde v é dito um vetor diretor e t um parâmetro tal que $-\infty < t < \infty$.

Notação:
$$r: P = P_0 + tv \text{ ou } r: (x, y) = (x_0, y_0) + t(a, b), t \in \mathbb{R}$$

Observação 4.1.1. É fácil verificar que a cada valor de t na equação vetorial da reta corresponde um ponto particular P da reta r. Quando t varia de $-\infty$ a $+\infty$, o ponto P descreve a reta r. O número t é dito **parâmetro**.

Exemplo 4.1.1. Determinar a equação vetorial da reta r que passa pelo ponto $P_0(3,0)$ e tem a direção do vetor v = (2,2).

Solução: Link da solução.

Observação 4.1.2. Quando a reta passa pela origem obtemos r: P = tv, com $-\infty < t < +\infty$.

A equação vetorial da reta pode ser reescrita, igualando as componentes correspondentes, ou seja, na forma paramétrica.

Definição 2. Dado $(x,y) = (x_0,y_0) + t(a,b)$ a equação vetorial da reta pelo ponto $P_0(x_0,y_0)$ e paralela ao vetor v=(a,b), definimos as equações paramétricas da reta por

$$r: \begin{cases} x = x_0 + a \cdot t \\ y = y_0 + b \cdot t \end{cases}, \quad -\infty < t < \infty.$$

Exemplo 4.1.2. Encontre as equações paramétricas da reta em \mathbb{R}^2 que passa pela origem e que é paralela ao vetor v = (-2,3).

Solução: Link da solução.

Observação 4.1.3. *No* \mathbb{R}^3 , *obtemos:*

- 1. $(x, y, z) = (x_0, y_0, z_0) + t(a, b, c)$ é a equação vetorial da reta pelo ponto $P_0(x_0, y_0, z_0)$ e paralela ao vetor v = (a, b, c).
- 2. $r: \begin{cases} x = x_0 + a \cdot t \\ y = y_0 + b \cdot t \end{cases}$ são as equações paramétricas da reta dada acima. $z = z_0 + c \cdot t$

Exemplo 4.1.3. Encontre uma equação vetorial e as equações paramétricas da reta em \mathbb{R}^3 que passa pelo ponto $P_0(1,2,-3)$ e é paralela ao vetor v=(4,5,-1). Solução: Link da solução.

Exercício 4.1.1. Determinar a equação vetorial da retar que passa pelo ponto $P_0(3, 0, -5)$ e tem a direção do vetor v = (2, 2, -1).

Definição 3. Dados $P_0(x_0, y_0, z_0)$ um ponto em \mathbb{R}^3 e v = (a, b, c) um vetor, definimos as equações simétricas da reta que passa pelo ponto P_0 e tem a direção do vetor v por

$$r: \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}.$$

Exemplo 4.1.4. Determine as equações simétricas da reta que passa pelo ponto $P_0(3,0,-5)$ e tem a direção do vetor v = (2,2,-1).

Solução: Link da solução.

Exercício 4.1.2. Determine as equações da reta r que passa pelo ponto $P_0(3,0,-5)$ e tem a direção do vetor v = (2,2,-1).

Pergunta: O ponto $P(7, 4, -7) \in r$?

4.1.1 Reta definida por dois pontos

Definição 4. Sejam P_0 e P_1 pontos distintos em \mathbb{R}^2 ou \mathbb{R}^3 , definimos a equação vetorial da reta que passa pelos dois pontos P_0 e P_1 e, que é paralela ao vetor $v = \overrightarrow{P_0P_1}$ por

$$P = P_0 + t \cdot \overrightarrow{P_0 P_1}, \qquad -\infty < t < \infty$$

Exemplo 4.1.5. Encontre as equações paramétricas da reta em \mathbb{R}^2 que passa pelos pontos $P_0(0,7)$ e $P_1(5,0)$.

Solução: Link da solução.

Exemplo 4.1.6. A reta r, determinada pelos pontos A(1, -2, -3) e B(3, 1, -4), tem a direção do vetor $\vec{v} = \overrightarrow{AB} = (2, 3, -1)$ e as equações paramétricas

$$r: \begin{cases} x = 1 + 2t \\ y = -2 + 3t \\ z = -3 - t \end{cases}$$

representam a reta r, passando pelo ponto A, com direção do vetor $\vec{v} = \overrightarrow{AB}$; analogamente, as equações paramétricas

$$r: \begin{cases} x = 3 + 2t \\ y = 1 + 3t \\ z = -4 - t \end{cases}$$

ainda representam a mesma reta r, passando pelo ponto B, com a direção do vetor $\vec{v} = \overrightarrow{AB}$.

Observação 4.1.4. Se o vetor v é um vetor diretor da reta r, qualquer vetor αv , $\alpha \neq 0$, também o é.

4.1.2 Condição para que três pontos estejam em linha reta

A condição para que três pontos $A_1(x_1,y_1,z_1)$, $A_2(x_2,y_2,z_2)$ e $A_3(x_3,y_3,z_3)$ estejam em linha reta é que os vetores $\overrightarrow{A_1A_2}$ e $\overrightarrow{A_1A_3}$ sejam colineares, isto é:

$$\overrightarrow{A_1 A_2} = k \overrightarrow{A_1 A_3},$$

para algum $k \in \mathbb{R}$. Em outras palavras,

$$\frac{x_2 - x_1}{x_3 - x_1} = \frac{y_2 - y_1}{y_3 - y_1} = \frac{z_2 - z_1}{z_3 - z_1}$$

Exemplo 4.1.7. Os pontos $A_1(5,2,-6)$, $A_2(-1,-4,-3)$ e $A_3(7,4,-7)$ estão em linha reta?

Solução: Link da solução.

4.1.3 Equações Reduzidas da Reta

Para as equações simétricas da reta

$$r: \frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$

pode-se dar outra forma, isolando as variáveis y e z e expressando-as em função de x.

Assim, comparando dois a dois os termos da igualdade, temos:

Assim, comparando dois a dois os termos da iguada a
$$\frac{y-y_1}{b} = \frac{x-x_1}{a}$$
 $\left| \frac{z-z_1}{c} = \frac{x-x_1}{a} \right|$ $\left| z-z_1 = \frac{c}{a}(x-x_1) \right|$ $\left| z-z_1 = \frac{c}{a}(x-x_1) \right|$ $\left| z-z_1 = \frac{c}{a}x - \frac{c}{a}x_1 \right|$ $\left| z-z_1 = \frac{c}{a}x - \frac{c}{a}x_1 \right|$ $\left| z-z_1 = \frac{c}{a}x - \frac{c}{a}x_1 \right|$ fazendo $\left| \frac{b}{a} = m \right|$ $\left| \frac{c}{a} = p \right|$ $\left| \frac{c}{a} = p \right|$

segue que:

$$r: \begin{cases} y = mx + n \\ z = px + q \end{cases}$$

são as equações reduzidas da reta r.

Exemplo 4.1.8. Estabeleça as equações reduzidas da reta r que passa pelo ponto A(2, 1, -3) e B(4, 0, -2).

Solução: Link da solução.

Observação 4.1.5.

1. Nas equações reduzidas:

$$r: \begin{cases} y = mx + n \\ z = px + q, \end{cases}$$

a variável x figura como variável independente. Se expressarmos as equações de forma que a variável independente seja y ou z, ainda assim as equações são chamadas de equações reduzidas. Por exemplo, as equações reduzidas da reta do exemplo anterior também podem ser expressas por:

$$r: \begin{cases} x = 4 - 2y \\ z = -y - 2 \end{cases}$$

ou

$$r: \begin{cases} x = 2z + 8 \\ y = -z - 2 \end{cases}$$

Coeficiente Angular e Coeficiente Linear

Seja a reta r que passa pelos pontos $A = (x_0, y_0)$ e $B = (x_1, y_1)$, veja a Figura abaixo.

O ângulo α , formado pela reta e pelo eixo das abcissas no sentido positivo, denominase inclinação da reta. Recorda-se das aulas de trigonometria que o coeficiente angular é o valor da tangente dessa inclinação, ou seja,

$$a = \frac{\Delta y}{\Delta x} = \tan(\alpha).$$

Por outro lado, o coeficiente linear é a ordenada do ponto em que a reta intercepta o eixo y, ou seja, tomando x = 0 na equação y = ax + b obtemos y = b. Isso significa que a reta passa pelo ponto (0, b).

4.1.4 Retas Horizontais e Retas Verticais

Consideremos uma reta r dada pela equação reduzida y = ax + b.

Se a reta r for horizontal, veja a Figura abaixo à esquerda, então temos que sua inclinação é nula. Logo, seu coeficiente angular é zero. Consequentemente a equação da reta se reduz a y=b.

Observação 4.1.6. Toda equação da forma y = constante é a equação de uma reta horizontal.

Se a reta r for vertical, veja a Figura acima à direita, então temos que sua inclinação é de 90°. Logo, seu coeficiente angular não existe ($\sharp \tan(90^\circ)$). Consequentemente a equação da reta se reduz a x =constante.

Observação 4.1.7. Toda equação da forma x = constante é a equação de uma reta vertical.

4.2 Ângulo entre Duas Retas

Definição 5. Sejam as retas r_1 , que passa pelo ponto $P_1(x_1, y_1, z_1)$ e tem a direção de um vetor $v_1 = (a_1, b_1, c_1)$, e r_2 , que passa pelo ponto $P_2(x_2, y_2, z_2)$ e tem a direção de um vetor $v_2 = (a_2, b_2, c_2)$. Chama-se ângulo entre duas retas $\mathbf{r_1}$ e $\mathbf{r_2}$ o menor ângulo formado entre um vetor diretor de r_1 e um vetor diretor de r_2 . Sendo θ este ângulo, têm-se

$$\cos(\theta) = \frac{|v_1 \cdot v_2|}{\|v_1\| \|v_2\|}$$

$$com \ 0 \le \theta \le \frac{\pi}{2}.$$

Exemplo 4.2.1. Calcular o ângulo entre as retas r_1 : $\begin{cases} x = 3+t \\ y = t \\ z = -1-2t \end{cases}$

$$r_2: \frac{x+2}{-2} = \frac{y-3}{1} = \frac{z}{1}.$$

Solução: Link da solução.

4.2.1 Condição de Paralelismo de Duas Retas

A condição de paralelismo das retas r e s é a mesma dos vetores $u=(a_1,b_1,c_1)$ e $v=(a_2,b_2,c_2)$, que definem as direções dessas retas.

Em outras palavras, duas retas r e s são paralelas se, e somente se, seus vetores diretores $u = (a_1, b_1, c_1)$ e $v = (a_2, b_2, c_2)$, respectivamente, são paralelos.

$$r//s \iff u = kv \iff \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}.$$

Notação: r//s.

Exemplo 4.2.2. Considere as retas r: (x,y,z) = (-3,4,2) + t(8,-6,2) e s: (x,y,z) = (-1,2,-3) + t(-4,3,-1). A reta r \acute{e} paralela a reta s? Solução: Link da solução.

Exercício 4.2.1. Verifique que a reta r_1 , que passa pelos pontos $A_1(-3,4,2)$ e $B_1(5,-2,4)$, e a reta r_2 , que passa pelos pontos $A_2(-1,2,-3)$ e $B_2(-5,5,-4)$, são paralelas.

Observação 4.2.1. Se as retas r_1 e r_2 forem expressas, respectivamente, pelas equações reduzidas:

$$r_1: \left\{ \begin{array}{lcl} y & = & m_1x + n_1 \\ z & = & p_1x + q_1 \end{array} \right. \quad e \quad r_2: \left\{ \begin{array}{lcl} y & = & m_2x + n_2 \\ z & = & p_2x + q_2 \end{array} \right.$$

cujas direções são dadas, respectivamentes, pelos vetores $v_1 = (1, m_1, p_1)$ e $v_2 = (1, m_2, p_2)$, a condição de paralelismo permite escrever:

$$\frac{1}{1} = \frac{m_1}{m_2} = \frac{p_1}{p_2} \iff m_1 = m_2, \ p_1 = p_2$$

Exemplo 4.2.3. As retas
$$r_1$$
:
$$\begin{cases} y = 2x - 3 \\ z = -4x + 5 \end{cases}$$
 $e \quad r_2$:
$$\begin{cases} y = 2x + 1 \\ z = -4x \end{cases}$$
 são paralelas. Justifique.

Solução: Link da solução.

Retas Paralelas aos Planos e aos Eixos Coordenados

Até agora apresentamos as possíveis equações de uma reta, considerando um ponto $A(x_1,y_1,z_1) \in r$ e o vetor diretor $\vec{v}=(a,b,c)$, cujas componentes são diferentes de zero. Entretanto uma ou duas destas componentes podem ser nulas. Assim, temos dois casos:

1° Apenas uma das componentes de \vec{v} é nula

Neste caso, o vetor \vec{v} é ortogonal a um dos eixos coordenados e, portanto, a reta r é paralela ao plano dos outros eixos.

(a) Se a = 0, $\vec{v} = (0, b, c) \perp Ox$ \therefore r // yOz (r pertence a um plano paralelo a yOz).

$$r: \begin{cases} x = x_1 \\ \frac{y - y_1}{b} = \frac{z - z_1}{c} \end{cases}$$

(b) Se $b=0, \ \vec{v}=(a,0,c) \perp Oy$:. r // xOz (r pertence a um plano paralelo a xOz).

$$r: \left\{ \begin{array}{rcl} y & = & y_1 \\ \frac{x-x_1}{a} & = & \frac{z-z_1}{c} \end{array} \right.$$

(c) Se c = 0, $\vec{v} = (a, b, 0) \perp Oz$: r // xOy (r pertence a um plano paralelo a xOy).

$$r: \begin{cases} z = z_1 \\ \frac{x - x_1}{a} = \frac{y - y_1}{b} \end{cases}$$

Observação 4.2.2. Tente visualizar geometricamente cada um desses casos, se necessário, utilize o link https://www.geogebra.org/m/Qdwfjkj4.

2° Duas das componentes de \vec{v} são nulas

Neste caso o vetor \vec{v} tem a direção dos vetores $\vec{i}=(1,0,0)$ ou $\vec{j}=(0,1,0)$ ou $\vec{k}=(0,0,1)$ e , portanto a reta r é paralela ao eixo que tem a direção de \vec{i} ou de \vec{j} ou de \vec{k} . Assim:

(a) Se
$$a = b = 0$$
, $\vec{v} = (0, 0, c) / / \vec{k}$: $r / / Oz$.

$$r: \begin{cases} x = x_1 \\ y = y_1 \\ z = z_1 + ct \end{cases}$$

Costuma-se dizer, simplesmente, que as equações da reta r são:

$$r: \left\{ \begin{array}{lcl} x & = & x_1 \\ y & = & y_1 \end{array} \right.$$
, subentendendo-se z variável.

(b) Se
$$a = c = 0, v = (0, b, 0) / / \vec{j}$$
 : $r / / Oy$.

$$r: \begin{cases} x = x_1 \\ y = y_1 + bt \text{ ou simplesmente, } r: \begin{cases} x = x_1 \\ z = z_1 \end{cases} \text{ subentendendo-se } y \text{ variável.}$$

(c) Se
$$b = c = 0$$
, $\vec{v} = (a, 0, 0) / / \vec{i}$: $r / / Ox$.

$$r: \begin{cases} x = x_1 + at \\ y = y_1 & \text{ou simplesmente, } r: \begin{cases} y = y_1 \\ z = z_1 \end{cases} \text{ subentendendo-se } x \text{ variável.}$$

Observação 4.2.3. Novamente tente visualizar geometricamente cada um desses casos, se necessário, utilize o link https://www.geogebra.org/m/Qdwfjkj4.

Os eixos 0x, Oy e Oz são retas particulares.

O eixo Ox é uma reta que passa pela origem O(0,0,0) e tem a direção do vetor $\vec{i}=(1,0,0)$. Logo, suas equações são $\begin{cases} y=0\\ z=0 \end{cases}$.

De forma análoga, as equações do eixo Oy são $\left\{ \begin{array}{ll} x & = & 0 \\ z & = & 0 \end{array} \right. .$

E as equações do eixo Oz são $\begin{cases} x = 0 \\ y = 0 \end{cases}.$

4.2.2 Condição de Ortogonalidade de Duas Retas

A condição de ortogonalidade das retas r e s é a mesma dos vetores $u=(a_1,b_1,c_1)$ e $v=(a_2,b_2,c_2)$ que definem as direções dessas retas, isto é, duas retas r e s são ortogonais se seus vetores diretores $u=(a_1,b_1,c_1)$ e $v=(a_2,b_2,c_2)$, respectivamente, são ortogonais, ou seja,

$$u \cdot v = 0.$$

Em outras palavras,

$$a_1 a_2 + b_1 b_2 + c_1 c_2 = 0.$$

Exemplo 4.2.4. As retas $r: \begin{cases} y = 3 \\ \frac{x-3}{8} = \frac{z+1}{-6} \end{cases}$ es: $\frac{x}{3} = \frac{y+1}{5} = \frac{z-3}{4}$ são ortogonais?

Solução: Link da solução.

4.2.3 Posições Relativas de Duas Retas

Duas retas r_1 e r_2 no espaço, \mathbb{R}^3 , podem ser:

- (I) coplanares: situada no mesmo plano.
- (II) reversas: $r_1 \cap r_2 = \emptyset$ (não situadas num mesmo plano).

Condição de Coplanaridade de Duas Retas

A reta r_1 , que passa por um ponto $P_1(x_1, y_1, z_1)$ e tem a direção do vetor $u = (a_1, b_1, c_1)$, e a reta r_2 , que passa pelo ponto $P_2(x_2, y_2, z_2)$ e tem a direção de um vetor $v = (a_2, b_2, c_2)$, são coplanares se os vetores u, v e $\overrightarrow{P_1P_2}$ forem coplanares, isto é, se for nulo o produto misto

$$u \cdot (v \times \overrightarrow{P_1P_2}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \end{vmatrix} = 0.$$

Além disso, dentre as retas coplanares, podemos classificá-las como retas:

(a) paralelas: $r_1 \cap r_2 = \emptyset$

Para tanto, basta verificarmos que os vetores diretores são paralelos, ou seja:

$$u//v \Leftrightarrow u = kv$$

O caso de serem r_1 e r_2 coincidentes pode ser considerado como um caso particular de paralelismo.

(b) concorrentes: $r_1 \cap r_2 = \{P\}$ (P é o ponto de interseção das duas retas);

Assim, diante do exposto e da condição de coplanaridade, podemos sintetizar:

- 1. Se r_1 e r_2 forem paralelas, serão coplanares, ou seja, $u \cdot (v \times \overrightarrow{P_1P_2}) = 0$.
- 2. Se r_1 e r_2 não forem paralelas, a igualdade $u \cdot (v \times \overrightarrow{P_1P_2}) = 0$ exprime a condição de concorrência dessas retas.
- 3. Se $u \cdot (v \times \overrightarrow{P_1P_2}) \neq 0$ as retas são reversas.

Exemplo 4.2.5. Estude a posição relativa das retas $r_1: \frac{x-2}{2} = \frac{y}{3} = \frac{z-5}{4}$ e

$$r_2: \begin{cases} x = 5+t \\ y = 2-t \\ z = 7-2t \end{cases}$$

Solução: Link da solução.

Exercício 4.2.2. Estudar as posições relativas das retas:

a)
$$r_1: \begin{cases} y = 2x - 3 \\ z = -x \end{cases}$$
 $e \ r_2: \begin{cases} x = 1 - 3t \\ y = 6 - 6t \\ z = 3t \end{cases}$

b)
$$r_1: \frac{x}{2} = \frac{y-1}{-1} = z \ e \ r_2: \begin{cases} x = 2-4t \\ y = 2t \\ z = 1-2t \end{cases}$$

c)
$$r_1: \begin{cases} y = 3 \\ z = 2x \end{cases}$$
 $e \ r_2: x = y = z$

d)
$$r_1: \begin{cases} y = -3x + 2 \\ z = 3x - 1 \end{cases}$$
 $e \ r_2: \begin{cases} x = -t \\ y = 1 + 2t \\ z = -2t \end{cases}$

Observação 4.2.4. Para um auxílio na visualização das retas, e consequentemente das posições relativas calculadas no exercício acima, acesse o link https://www.geogebra.org/m/RqkquH6P

4.3 Equações Gerais, Vetoriais e Paramétricas de Planos

Da mesma maneira que apresentamos um tratamento geométrico e algébrico para as retas, apresentaremos a seguir as possíveis equações que descrevem um plano e auxiliam na resolução de problemas geométricos, como cálculo de distância, ângulo e interseções.

Um plano Π , em \mathbb{R}^3 , pode ser determinado de modo único especificando um ponto P_0 no plano e um vetor não-nulo $\overrightarrow{\eta}$ que é perpendicular ao plano, onde $\overrightarrow{\eta}$ é dito vetor normal ao plano.

Se P é um ponto qualquer deste plano, então o vetor $\overrightarrow{P_0P}$ é ortogonal a $\overrightarrow{\eta}$, ou seja,

$$\overrightarrow{\eta} \cdot \overrightarrow{P_0P} = 0.$$

E reciprocamente, qualquer ponto P que satisfaz esta equação está neste plano.

4.3.1 Equação Ponto-Normal e Geral do Plano

Definição 6. A equação do plano Π que passa por P_0 com normal $\overrightarrow{\eta}$ é dada por

$$\overrightarrow{\eta} \cdot \overrightarrow{P_0P} = 0$$

e é dita equação ponto-normal.

Observação 4.3.1. Em termos de componentes temos P(x, y, z), $P_0(x_0, y_0, z_0)$ e $\overrightarrow{\eta}$ segue que:

$$(a, b, c) \cdot (x - x_0, y - y_0, z - z_0) = 0.$$

Exemplo 4.3.1. Determine a equação ponto-normal do plano que passa pelo ponto (3, -1, 7) e tem normal $\overrightarrow{\eta} = (4, 2, -5)$.

Solução: Link da solução.

Definição 7. A equação ax + by + cz + d = 0 é dita a equação geral de um plano, onde a, b e c não todos nulos.

Exemplo 4.3.2. Determine a equação geral do plano que passa pelo ponto (3, -1, 7) e tem normal $\overrightarrow{\eta} = (4, 2, -5)$.

Solução: Link da solução.

Observação 4.3.2.

1. É importante observar que os três coeficientes a, b e c da equação geral ax + by + cz + d = 0 representam as componentes de um vetor normal ao plano.

Exemplo 4.3.3. Se um plano Π é dado por Π : 3x + 2y - 4z + 5 = 0, um de seus vetores normais é $\vec{\eta} = (3, 2, -4)$. Este mesmo vetor $\vec{\eta}$ é também normal a qualquer plano paralelo a Π .

2. Assim, todos os infinitos planos paralelos a Π : ax + by + cz + d = 0 têm equação geral do tipo Π₁ : ax + by + cz + d₁ = 0, na qual d₁ é o elemento que diferencia um plano de outro. O valor de d está identificado quando se conhece um ponto do plano.

Exemplo 4.3.4. Escrever a equação geral do plano Π que passa pelo ponto A(3,1,-4) e é paralelo ao plano $\Pi_1: 2x-3y+z-6=0$. Solução: Link da solução.

Exemplo 4.3.5. Determinar a equação geral do plano que passa pelo ponto A(2,1,-2) e é perpendicular à reta $r: \begin{cases} x = -4 + 3t \\ y = 1 + 2t \end{cases}$. Solução: Link da solução.

4.3.2 Determinação de um Plano

Recordamos que um plano é determinado por um dos seus pontos e por um vetor normal a ele. Existem outras formas de determinação de um plano nas quais estes dois elementos (ponto e vetor normal) ficam bem evidentes. Algumas destas formas serão apresentadas a seguir.

1. $A \in \Pi$ e $\vec{v_1}$ e $\vec{v_2}$ são vetores não colineares paralelos a Π .

2. $A, B \in \pi$ e \vec{v} é paralelo a Π e não colinear a \overrightarrow{AB} .

3. $A,\; B \in C \; \in \; \Pi$ e não estão em linha reta.

4. Π contém duas retas r_1 e r_2 concorrentes.

5. Π contém duas retas r_1 e r_2 paralelas.

6. Π contém uma reta r e um ponto $B \notin r$.

Exemplo 4.3.6. Determine a equação geral do plano que passa pelo ponto A(1, -3, 4) e é paralelo aos vetores u = (3, 1, -2) e v = (1, -1, 1).

Solução: Link da solução.

Observação 4.3.3. Utilizamos, no exemplo dado acima, para determinar a equação geral do plano, um vetor normal $\vec{\eta}$ obtido através do produto vetorial de dois vetores-base desse plano. Vamos mostrar, retomando o exemplo dado, um outro modo de se obter a equação geral do plano.

Nesse problema, o plano passa pelo ponto A(1, -3, 4) e é paralelo aos vetores u = (3, 1, -2) e v = (1, -1, 1).

Notemos que se P(x,y,z) é um ponto qualquer do plano, os vetores \overrightarrow{AP} , u e v são coplanares e, portanto, o produto misto deles é nulo, isto é: $\overrightarrow{AP} \cdot (u \times v) = 0$.

Assim, obtemos a equação geral do plano desenvolvendo o determinante:

$$\begin{vmatrix} x-1 & y+3 & z-4 \\ 3 & 1 & -2 \\ 1 & -1 & 1 \end{vmatrix} = 0 \implies \pi : x+5y+4z-2=0.$$

Exercício 4.3.1. Estabeleça a equação geral do plano determinado pelos pontos A(2,1,-1), B(0,-1,1) e C(1,2,1).

4.3.3 Planos Paralelos aos Eixos e aos Planos Coordenados

Dado um plano Π, cuja equação geral é dada por

$$\Pi : ax + by + cz + d = 0$$

onde $\overrightarrow{\eta}=(a,b,c)$ é um vetor normal a Π e a,b e c não são todos nulos.

Nesta subseção exibimos os casos particulares quando uma ou duas componentes de $\overrightarrow{\eta}$ são nulas ou quando d=0.

Observação 4.3.4. Para um auxílio na visualização dos casos particulares, que são apresentados abaixo, acesse o link https://www.geogebra.org/m/VXMuWTtE

Planos que passam pela origem

Se o plano ax + by + cz + d = 0 passa pela origem obtemos que d = 0. Logo, a equação

$$ax + by + cz = 0$$

representa a equação de um plano que passa pela origem.

Planos Paralelos aos Eixos Coordenados

Se apenas uma da componentes do vetor normal $\overrightarrow{\eta}=(a,b,c)$ é nula, então o vetor é ortogonal a um dos eixos coordenados. Portanto, o plano Π é paralelo ao mesmo eixo.

(I) Se a=0 obtemos $\overrightarrow{\eta}=(0,b,c)\perp Ox$, logo $\Pi//Ox$ e a equação geral dos planos paralelos ao eixo Ox são da forma

$$by + cz + d = 0.$$

(II) Se b=0 obtemos $\overrightarrow{\eta}=(a,0,c)\perp Oy$, logo $\Pi//Oy$ e a equação geral dos planos paralelos ao eixo Oy são da forma

$$ax + cz + d = 0.$$

(III) Se c=0 obtemos $\overrightarrow{\eta}=(a,b,0)\perp Oz$, logo $\Pi//Oz$ e a equação geral dos planos paralelos ao eixo Oz são da forma

$$ax + by + d = 0.$$

Observação 4.3.5.

- 1. A variável ausente na equação indica que o plano é paralelo ao eixo desta variável.
- 2. A equação ax + by + d = 0 representa um plano paralelo ao eixo Oz no espaço \mathbb{R}^3 . Entretanto, esta mesma equação, interpretada no plano \mathbb{R}^2 , representa uma reta.

Planos Paralelos aos Planos Coordenados

Se duas das componentes do vetor normal $\overrightarrow{\eta}=(a,b,c)$ são nulas, então o vetor $\overrightarrow{\eta}$ é colinear a um dos vetores \overrightarrow{i} ou \overrightarrow{j} ou \overrightarrow{k} . Portanto, o plano Π é paralelo ao plano dos outros dois vetores.

(I) Se a=b=0 obtemos $\overrightarrow{\eta}=(0,0,c)=c(0,0,1)=c\overrightarrow{k}$, logo $\Pi\parallel xOy$ e a equação geral dos planos paralelos ao plano xOy é da forma

$$z = k$$
.

(II) Se a=c=0 obtemos $\overrightarrow{\eta}=(0,b,0)=b(0,1,0)=\overrightarrow{j}$, logo $\Pi\parallel xOz$ e a equação geral dos planos paralelos ao plano xOz é da forma

$$y = k$$
.

(III) Se b=c=0 obtemos $\overrightarrow{\eta}=(a,0,0)=a(1,0,0)=a\overrightarrow{i}$, logo $\Pi\parallel yOz$ e a equação geral dos planos paralelos ao plano yOz é da forma

$$x = k$$
.

Observação 4.3.6. Os planos coordenados são planos particulares destes e suas equação são:

plano xOy tem a equação da forma z = 0;

plano xOz tem a equação da forma y = 0;

plano yOz tem a equação da forma x = 0.

4.3.4 Equação Vetorial e Equações Paramétricas do Plano

Embora as equações ponto-normais de plano sejam úteis, existem muitas aplicações nas quais é preferível ter equações vetoriais ou paramétricas de um plano.

Observação 4.3.7. Recorde que um plano Π pode ser determinado de modo único especificando um ponto P_0 em Π e dois vetores não nulos v_1 e v_2 que são paralelos a Π e não são múltiplos escalares um do outro.

Se P é um ponto qualquer do plano Π e se v_1 e v_2 estão posicionados com seus pontos iniciais em P_0 , então tomando multiplos escalares convenientes de v_1 e v_2 , podemos criar um paralelogramo com lados adjacentes t_1v_1 e t_2v_2 no qual $\overrightarrow{P_0P}$ é a diagonal dada pela soma $\overrightarrow{P_0P} = t_1v_1 + t_2v_2$.

Por fim, note que à medida que as variáveis t_1 e t_2 , que são parâmetros, variam de $-\infty$ a ∞ , o ponto P nessa fórmula varre todo o plano Π .

Definição 8. A equação $P = P_0 + t_1v_1 + t_2v_2$ $(-\infty < t_1 < \infty \ e \ -\infty < t_2 < \infty)$ é dita uma equação vetorial do plano pelo ponto P_0 que é paralelo a v_1 e v_2 .

Notação: $\Pi: P = P_0 + t_1v_1 + t_2v_2$

Observação 4.3.8. Em termos de componentes

$$\Pi: (x, y, z) = (x_0, y_0, z_0) + t_1(a_1, b_1, c_1) + t_2(a_2, b_2, c_2)$$

Definição 9. Dado $\Pi: (x,y,z) = (x_0,y_0,z_0) + t_1(a_1,b_1,c_1) + t_2(a_2,b_2,c_2)$ a equação vetorial do plano pelo ponto $P_0(x_0,y_0,z_0)$ que é paralelo a $v_1 = (a_1,b_1,c_1)$ e $v_2 = (a_2,b_2,c_2)$, definimos as equações paramétricas do plano por:

$$\Pi: \begin{cases} x = x_0 + a_1t_1 + a_2t_2 \\ y = y_0 + b_1t_1 + b_2t_2 \\ z = z_0 + c_1t_1 + c_2t_2 \end{cases}, \quad -\infty < t_1 < \infty \text{ e } -\infty < t_2 < \infty.$$

Exemplo 4.3.7. Encontre uma equação vetorial e as equações paramétricas do plano Π que passa pela origem de \mathbb{R}^3 e é paralelo aos vetores $v_1 = (1, -2, 3)$ e $v_2 = (4, 0, 5)$. Depois determine 3 pontos no plano obtido.

Solução: Link da solução.

Exemplo 4.3.8. Encontre uma equação vetorial do plano Π , cujas equações paramétricas

$$s\tilde{a}o \ \Pi : \left\{ \begin{array}{l} x = 4 + 5t_1 - t_2 \\ y = 2 - t_1 + 8t_2 \\ z = t_1 + t_2 \end{array} \right.$$

Solução: A partir das equações paramétricas do plano Π obtemos $P_0 = (4, 2, 0) \in \Pi$ e, $v_1 = (5, -1, 1)$ e $v_2 = (-1, 8, 1)$ vetores paralelos ao plano Π .

Logo, a equação vetorial do plano Π é dada por

$$\Pi: (x, y, z) = (4, 2, 0) + t_1(5, -1, 1) + t_2(-1, 8, 1), \quad t_1, t_2 \in \mathbb{R}.$$

Exemplo 4.3.9. Encontre as equações paramétricas do plano $\Pi: x-y+2z=5$.

<u>Solução:</u> Note que o plano Π é dado pela equação geral, ou seja, temos uma equação com três variáveis.

Assim, podemos isolar umas das variáveis, por exemplo, ao isolarmos a variável x, obtemos x = y - 2z + 5.

Como a variável x é dependente de duas variáveis, podemos tomar $t_1 = y$ e $t_2 = z$. Consequentemente, obtemos que as equações paramétricas do plano Π são dadas por

$$\Pi : \begin{cases} x = 5 + t_1 - 2t_2 \\ y = t_1 \\ z = t_2 \end{cases} \quad t_1, \ t_2 \in \mathbb{R}.$$

Exercício 4.3.2. Encontre as equações paramétricas do plano que passa A(2,1,3) e é paralelo aos vetores u = (-3, -3, 1) e v = (2, 1, -2).

Exercício 4.3.3. Determinar as equações paramétricas do plano determinado pelos pontos A(5,7,-2), B(8,2,-3) e C(1,2,4).

4.4 Ângulo entre Dois Planos

Definição 10. Sejam os planos $\Pi_1 : a_1x + b_1y + c_1z + d_1 = 0$ e $\Pi_2 : a_2x + b_2y + c_2z + d_2 = 0$, com vetores normais $\vec{\eta}_1 = (a_1, b_1, c_1)$ e $\vec{\eta}_2 = (a_2, b_2, c_2)$, respectivamente.

Chama-se **ângulo** de dois planos Π_1 : $a_1x + b_1y + c_1z + d_1 = 0$ e Π_2 : $a_2x + b_2y + c_2z + d_2 = 0$ o menor ângulo que o vetor normal $\overrightarrow{\eta_1} = (a_1, b_1, c_1)$ de Π_1 forma com o vetor normal $\overrightarrow{\eta_2} = (a_2, b_2, c_2)$ de Π_2 . Sendo θ este ângulo, tem-se:

$$\cos \theta = \frac{|\vec{\eta_1} \cdot \vec{\eta_2}|}{||\vec{\eta_1}||.||\vec{\eta_2}||}$$

 $com \ 0 \le \theta \le \frac{\Pi}{2}.$

Condição de Paralelismo e Perpendicularismo de Dois Planos

Sejam Π_1 e Π_2 planos com $\overrightarrow{\eta_1} = (a_1, b_1, c_1)$ e $\overrightarrow{\eta_2} = (a_2, b_2, c_2)$ vetores normais, respectivamente.

1. $\Pi_1//\Pi_2$, se $\vec{\eta}_1//\vec{\eta}_2$. Isto é, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.

Se além dessas igualdades tivermos $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{d_1}{d_2}$ os planos são coincidentes.

2. $\Pi_1 \perp \Pi_2$, se $\vec{\eta}_1 \perp \vec{\eta}_2$. Isto é, se $\vec{\eta}_1 \cdot \vec{\eta}_2 = a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$.

Observação 4.4.1. As condições de paralelismo e perpendicularismo de dois planos são as mesmas de seus respectivos vetores normais.

Exemplo 4.4.1. Determinar o ângulo entre os planos $\Pi_1: 2x - 3y + 5z - 8 = 0$ e

 $\Pi_2: 3x + 2y + 5z - 4 = 0.$

Solução: Link da solução.

4.4.1 Interseção de Dois Planos

A interseção de dois planos não paralelos é uma reta r. E mais, recorde que uma reta está determinada quando se conhece dois de seus pontos ou um ponto e seu vetor diretor. E, assim um ponto pertence à reta interseção se suas coordenadas satisfazem simultaneamente as equações dos dois planos.

Exemplo 4.4.2. Determine a intersecção dos planos não paralelos $\Pi_1: 5x-2y+z+7=0$ $e \ \Pi_2: 3x-3y+z+4=0.$

Solução: Link da solução.

4.5 Distâncias

Nesta seção estudamos as distâncias entre pontos, entre pontos e retas, entre pontos e planos, entre retas, entre retas e planos e, finalmente entre planos.

4.5.1 Distância entre Dois Pontos

Definição 11. A distância entre dois pontos $P_1(x_1, y_1, z_1)$ e $P_2(x_2, y_2, z_2)$ é dada por

$$d(P_1, P_2) = \|\overrightarrow{P_1P_2}\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Exemplo 4.5.1. Dado $P_1(1,2)$ e $P_2(3,2)$, calcule $d(P_1, P_2)$.

Solução: Link da solução.

Exercício 4.5.1. Dado $P_1(7,3,4)$ e $P_2(1,0,6)$, calcule $d(P_1,P_2)$.

4.5.2 Distância de Um Ponto a Uma Reta

Seja r uma reta definida por um ponto $P_1(x_1, y_1, z_1)$ e pelo vetor diretor $\vec{v} = (a, b, c)$ e seja $P_0(x_0, y_0, z_0)$ um ponto qualquer do espaço. Os vetores v e $\overrightarrow{P_1P_0}$ determinam um paralelogramo cuja altura corresponde distância d de P_0 a r.

Assim, temos a seguinte definição.

Definição 12. A distância entre o ponto $P_0(x_0, y_0, z_0)$ e a reta r dada por $r: P = P_1 + tv = (x_1, y_1, z_1) + t(a, b, c)$ é

$$d(P_0, r) = \frac{\|v \times \overrightarrow{P_1 P_0}\|}{\|v\|}.$$

Exemplo 4.5.2. Calcular a distância do ponto $P_0(2,0,7)$ à reta $r: \frac{x}{2} = \frac{y-2}{2} = \frac{z+3}{1}$. Solução: Link da solução.

4.5.3 Distância entre Duas Retas

Considere as retas $r: P = P_0 + tu$ e $s: P = P_1 + tv$.

1. Se r e s são **retas concorrentes**, a distância d entre r e s é nula, ou seja,

$$d(r,s) = 0$$

2. Se r e s são **retas paralelas**, a distância d entre r e s é a distância de um ponto qualquer P_0 de uma de uma delas à outra, isto é:

$$d(r,s) = d(P_0,s), P_0 \in r$$

ou

$$d(r,s) = d(P_0,r), P_0 \in s$$

Assim, a distância entre duas retas paralelas se reduz ao cálculo da distância de um ponto à uma reta, ou seja, $d(P_0, r) = \frac{\|v \times \overline{P_1 P_0}\|}{\|v\|}$.

3. Se r e s são **retas reversas** com vetores diretores u e v, respectivamente, e com $P_1 \in r_1$ e $P_2 \in r_2$, temos que os vetores u, v e $\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$ determinam um paralelepípedo, cuja base é definida pelos vetores u e v e a altura corresponde à distância d entre as retas r e s, pois a reta s é paralela ao plano da base do paralelepípedo, uma vez que sua direção é a do vetor v.

Assim,

Volume do Paralelepípedo = $\|u \times v\| \cdot d = |u \cdot (v \times \overrightarrow{P_1P_2})|$,

e consequentemente obtemos

$$d = \frac{|(u \cdot (v \times \overrightarrow{P_1P_2}))|}{\|u \times v\|}.$$

Portanto,

$$d(r,s) = \frac{|(u \cdot (v \times \overrightarrow{P_1P_2}))|}{\|u \times v\|}$$

Exemplo 4.5.3. Calcular a distância entre as retas r: $\begin{cases} y = 1 \\ x+2 = \frac{z-4}{-2} \end{cases} es: \begin{cases} x=3 \\ y=2t-1 \\ z=-t+3 \end{cases}$ Solução: Link da solução.

Exercício 4.5.2. Calcular a distância entre as retas r: $\begin{cases} y = -2x + 3 \\ z = 2x \end{cases} es: \begin{cases} x = -1 - 2t \\ y = 1 + 4t \\ z = -3 - 4t \end{cases}$

4.5.4 Distância de um Ponto a um Plano

Seja um ponto $P_0(x_0, y_0, z_0)$ e um plano $\Pi: ax + by + cz + d = 0$. Seja A o pé da perpendicular conduzida por P_0 sobre o plano Π e P(x, y, z) um ponto qualquer desse plano.

O vetor $\vec{\eta}=(a,b,c)$ é normal ao plano Π e, por conseguinte, o vetor $\overrightarrow{AP_0}$ tem a mesma direção de $\vec{\eta}$.

A distância d do ponto P_0 ao plano Π é:

$$d(P_0, \Pi) = ||\overrightarrow{AP_0}||$$

Observando que o vetor $\overrightarrow{AP_0}$ é a projeção do vetor $\overrightarrow{PP_0}$ na direção de $\overrightarrow{\eta}$, temos:

$$d(P_0, \Pi) = ||\overrightarrow{AP_0}|| = \left|\overrightarrow{PP_0} \cdot \frac{\overrightarrow{\eta}}{||\overrightarrow{\eta}||}\right|$$

Mas, $\overrightarrow{PP_0} = (x_0 - x, y_0 - y, z_0 - z)$

е

$$\frac{\vec{\eta}}{||\vec{\eta}||} = \frac{(a, b, c)}{\sqrt{a^2 + b^2 + c^2}}.$$

Logo,

$$d(P_0, \Pi) = \left| (x_0 - x, y_0 - y, z_0 - z) \cdot \frac{(a, b, c)}{\sqrt{a^2 + b^2 + c^2}} \right|$$

$$d(P_0, \Pi) = \frac{|a(x_0 - x) + b(y_0 - y) + c(z_0 - z)|}{\sqrt{a^2 + b^2 + c^2}}$$

$$d(P_0, \Pi) = \frac{|ax_0 - ax + by_0 - by + cz_0 - cz|}{\sqrt{a^2 + b^2 + c^2}}$$

Em virtude de $P \in \Pi$ temos:

$$d = -ax - by - cz$$

portanto,

$$d(P_0, \Pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Definição 13. A distância entre um ponto $P_0(x_0, y_0, z_0)$ e um plano Π : ax+by+cz+d=0 é dada por

$$d(P_0, \Pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Exemplo 4.5.4. Determinar a distância do ponto $P_0(-4,2,5)$ ao plano $\Pi: 2x + y + 2z + 8 = 0$.

Solução: Pela definição, obtemos

$$d(P_0, \Pi) = \frac{|2 \cdot (-4) + 1 \cdot 2 + 2 \cdot 5 + 8|}{\sqrt{2^2 + 1^2 + 2^2}} = \frac{|12|}{\sqrt{9}} = 4.$$

Portanto, $d(P_0, \Pi) = 4$.

4.5.5 Distância entre Dois Planos

A distância entre dois planos é definida somente para planos paralelos.

Definição 14. Dados dois planos Π_1 : $a_1x+b_1y+c_1z+d_1=0$ e Π_2 : $a_2x+b_2y+c_2z+d_2=0$, paralelos, a distância entre eles é dada por

$$d(\Pi_1, \Pi_2) = d(P_1, \Pi_2), P_1 \in \Pi_1$$

ou

$$d(\Pi_1, \Pi_2) = d(P_2, \Pi_1), P_2 \in \Pi_2.$$

Exemplo 4.5.5. Dados os planos paralelos Π_1 : 2x - 2y + z - 5 = 0 e $\Pi_2: 4x - 4y + 2z + 14 = 0$ verifique que $d(\Pi_1, \Pi_2) = 4$. Solução: Link da solução.

4.5.6 Distância de uma Reta a um Plano

A distância de uma reta a um plano é definida somente quando a reta é paralela ao plano, ou seja, o vetor diretor de r é paralelo ao plano Π .

Definição 15. A distância de uma reta $r: P = P_0 + tv$ a um plano $\Pi: ax + by + cz + d = 0$ é dada por

$$d(r,\Pi) = d(P_0,\Pi), P_0 \in r.$$

Observação 4.5.1.
$$d(P_0, \Pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$
.

Exemplo 4.5.6. Estude a distância da reta $r: \begin{cases} x=3 \\ y=4 \end{cases}$ ao planos $xOz \ e \ yOz$. Solução: Link da solução.

4.6 Exercícios sobre Retas, Planos e Distâncias

Exercício 4.6.1. Esboce a reta cuja equação vetorial é dada por:

(a)
$$(x,y) = t(2,3)$$
 (b) $(x,y) = (1,1) + t(1,-1)$.

Exercício 4.6.2. Encontre equações vetoriais e paramétricas da reta determinada pelos pontos dados:

(a)
$$(1,2)$$
 $e(-5,6)$ (b) $(1,2,3)$ $e(-1,-2,-3)$.

Exercício 4.6.3. Determine equações vetoriais e paramétricas da reta que é paralela a u e passa pelo ponto P. Use a equação vetorial para encontrar dois pontos da reta distintos de P_0 .

(a)
$$u = (1,2) e P_0(1,1)$$
 (b) $u = (1,-1,1) e P_0(2,0,3)$.

Exercício 4.6.4. Determine a equação ponto-normal do plano que passa por P e tem $normal \overrightarrow{\eta}$.

(a)
$$\overrightarrow{\eta} = (3, 2, 1) \ e \ P(-1, -1, -1)$$
 (b) $\overrightarrow{\eta} = (1, 1, 4) \ e \ P(3, 5, -2)$

Exercício 4.6.5. (a) Encontre a equação vetorial da reta cujas equações paramétricas

$$s\tilde{a}o \begin{cases} x = 2 + 4t \\ y = -1 + t \\ z = t \end{cases}$$

- (b) Encontre a equação vetorial do plano cujas equações paramétricas são $\begin{cases} x = 1 + 2t_1 + t_2 \\ y = -2 t_1 + 5t_2 \\ z = 4t_1 t_2 \end{cases}$
- (c) Encontre equações paramétricas do plano 3x + 4y 2z = 4.

Exercício 4.6.6. Um plano pode ser determinado de modo único especificando três pontos $n\tilde{a}o$ colineares. Se P_0 , P_1 e P_2 s $\tilde{a}o$ tr $\hat{e}s$ pontos $n\tilde{a}o$ -colineares, ent $\tilde{a}o$ os vetores $v_1 = \overrightarrow{P_0P_1}$ $e\ v_2 = \overrightarrow{P_0P_2}\ s\~ao\ paralelos\ aos\ planos\ de\ modo\ que\ uma\ equaç\~ao\ vetorial\ do\ plano\ \'e$

$$P = P_0 + t_1 v_1 + t_2 v_2$$

Use este resultado para encontrar a equação vetorial e as equações paramétricas do plano que passa pelos pontos:

(a)
$$P(2, -4, 5), Q(-1, 4, -3), R(1, 10, -7)$$
 (b) $P(1, 2, 4), Q(1, -1, 6), R(1, 4, 8)$.

(b)
$$P(1,2,4), Q(1,-1,6), R(1,4,8)$$
.

Exercício 4.6.7. Encontre equações paramétricas do plano que é paralelo ao plano 3x +2y-z=1 e passa pelo ponto P(1,1,1).

Exercício 4.6.8. Quais dos seguintes planos são paralelos ao plano 3x + y - 2z = 5, se houver algum?

(a)
$$x + y - z = 3$$
 (b) $3x + y - 2z = 0$.

(b)
$$3x + y - 2z = 0$$
.

Exercício 4.6.9. Encontre equações paramétricas da reta que é perpendicular ao plano x + y + z = 0 e passa pelo ponto P(2, 0, 1).

Exercício 4.6.10. Determine as equações paramétricas do plano que passa pelo ponto

$$P(-2,1,7) \ e \ \acute{e} \ perpendicular \ \grave{a} \ reta \ de \ equações \ paramétricas \left\{ \begin{array}{l} x=4+2t \\ \\ y=-2+3t \\ \\ z=-5t \end{array} \right.$$

Exercício 4.6.11. Os planos abaixo são paralelos?

(a)
$$\pi_1: 3x - y + z - 4 = 0, \ \pi_2: x + 2z = -1;$$

(b)
$$\pi_1 : x - 2y + 3z = 4$$
, $\pi_2 : -2x + 5y + 4z = -1$.

Exercício 4.6.12. Determine equações paramétricas da reta de intersecção dos planos dados, se houver intersecção.

(a)
$$7x-2y+3z = -2 \ e -3x+y+2z+5 = 0;$$
 (b) $2x+3y-5z = 0 \ e \ 4x+6y-10z = 8.$

Exercício 4.6.13. Verifique se os pontos P(5, -5, 6) e Q(4, -1, 12) pertencem a reta

$$r: \frac{x-3}{-1} = \frac{y+1}{2} = \frac{z-2}{-2}.$$

Exercício 4.6.14. Determine um ponto e um vetor diretor em cada uma das seguintes retas:

$$(a) \begin{cases} \frac{x+1}{3} = \frac{z-3}{4} \\ y = 1 \end{cases}$$

$$(b) \begin{cases} x = 2y \\ z = 3 \end{cases}$$

$$(c) \begin{cases} x = 2t \\ y = -1 \\ z = 2 - t \end{cases}$$

Exercício 4.6.15. Determinar o ângulo entre as seguintes retas:

(a)
$$r: \begin{cases} x = -2 - 2t \\ y = 2t \end{cases} e S: \frac{x}{4} = \frac{y+6}{2} = \frac{z-1}{2}$$
(b) $r: \frac{x-4}{2} = \frac{y}{-1} = \frac{z+1}{-2} e s: \begin{cases} x = 1 \\ \frac{y+1}{4} = \frac{z-2}{3} \end{cases}$

(b)
$$r: \frac{x-4}{2} = \frac{y}{-1} = \frac{z+1}{-2} es: \begin{cases} x=1 \\ \frac{y+1}{4} = \frac{z-2}{3} \end{cases}$$

(c)
$$r: \begin{cases} y = -2x - 1 \\ z = x + 2 \end{cases}$$
 $e \ s : x = 2; \frac{y}{3} = \frac{z+1}{-3}.$

Exercício 4.6.16. Determine a equação geral do plano paralelo ao plano $\Pi: 2x-3y$ z + 5 = 0 e que contém o ponto A(4, -1, 2).

Exercício 4.6.17. Mostrar que o ponto $P_1(2,2,3)$ é equidistante dos pontos $P_2(1,4,-2)$ $e P_3(3,7,5).$

Exercício 4.6.18. Calcule a distância do ponto P(1,2,3) à reta $r: \left\{ \begin{array}{l} x=1-2t \\ y=2t \\ z=2-t \end{array} \right.$

Exercício 4.6.19. Seja o triângulo ABC de vértices A(-3,1,4), B(-4,-1,0) e C(-4,3,5). Calcule a medida da altura relativa ao lado BC.

Exercício 4.6.20. Calcular a distância entre as retas r e s nos seguintes casos:

(a)
$$r:$$

$$\begin{cases} x=0 \\ y=z \end{cases} es:$$

$$\begin{cases} y=3 \\ z=2x \end{cases}$$
 (b) $r:$
$$\begin{cases} x=1-t \\ y=2+3t \quad es: eixo \ dos \ x. \end{cases}$$

$$z=-t$$
 (c) $r:$ $x=y=z-2$ $es:$
$$\begin{cases} y=x+1 \\ z=x-3 \end{cases}$$
.

Exercício 4.6.21. Determinar a distância do ponto P(2, -1, 2) a cada um dos planos:

(a)
$$\Pi : 2x - 2y - z + 3 = 0$$
 (b) $\Pi : 2x + y = 3$.

Exercício 4.6.22. Achar a distância da origem a cada um dos planos:

(a)
$$\Pi: 2x - 4y + 20 = 0$$

 (b) $\Pi: \begin{cases} x = 2 - h + 2t \\ y = 1 + 3h - t \end{cases}$
 $z = -t$

Exercício 4.6.23. Escrever as equações dos planos paralelos ao plano $\Pi: 3x-2y-6z-5=0$ que distam 3 unidades da origem.

Exercício 4.6.24. Calcule a distância entre os planos paralelos:

(a)
$$\Pi_1: 2x + 2y + 2z - 5 = 0$$
 e $\pi_2: x + y + z - 3 = 0$

(b)
$$\Pi_1: x-2z+1=0$$
 e $\pi_2: 3x-6z-8=0$.

146

Exercício 4.6.25. Calcule a distância entre as retas: $r: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z}{2}$ e $s: \frac{x+2}{1} = \frac{y-1}{2} = \frac{z-2}{3}$.

Exercício 4.6.26. Calcule a distância do ponto P(1,0,2) ao plano x+y-z=0.

Exercício 4.6.27. Seja a reta r que passa pelos pontos A(1,0,1) e B(0,1,1). Calcule a distância do ponto C(2,1,2) à reta r.

Exercício 4.6.28. Seja α o plano que passa pela origem e é perpendicular à reta que une os pontos A(1,0,0) e B(0,1,0). Determine a distância do ponto C(0,0,1) ao plano α .

Referências Bibliográficas

- [1] ANTON, Howard; BUSBY, Robert C. Álgebra linear contemporânea. Porto Alegre: Bookman, 2006.
- [2] BIANCHINI, Waldecir. Planos. Disponível em: https://www.geogebra.org/m/VXMuWTtE
- [3] BOYER, Carl B.; MERZBACH, Uta C. *História da matemática*. Editora Blucher, 2012.
- [4] CAMARGO, Ivan de; BOULOS, Paulo. Geometria analítica: um tratamento vetorial. 3ª edição rev e ampl. São Paulo: Prentice Hall, 2005.
- [5] CASSOL, Henrique L. G. Equações Paramétricas da reta. Disponível em: https://www.geogebra.org/m/RqkquH6P
- [6] LEMKE, Raiane. Retas no \mathbb{R}^3 : Parametrização e gráfico de retas no \mathbb{R}^3 . Disponível em: https://www.geogebra.org/m/Qdwfjkj4
- [7] LEON, Steven J. Álgebra Linear com Aplicações . Rio de Janeiro: LTC, 2013.
- [8] LIMA, Elon Lages. Álgebra linear. Rio de Janeiro: IMPA, 2006.
- [9] LIMA, Elon Lages. Geometria Analítica e Álgebra linear. Rio de Janeiro: IMPA, 2015.
- [10] MARCONDES, C. A.; GENTIL, N.; GRECO, S. E. Matemática, Série Novo Ensino Médio. volume único. São Paulo: Editora Ática.
- [11] STEINBRUCH, Alfredo; WINTERLE, Paulo. Álgebra linear. São Paulo: McGraw-Hill, 1987.

[12] STEINBRUCH, Alfredo; WINTERLE, Paulo. Geometria Analítica. São Paulo: McGraw-Hill, 1987.

Neste arquivo contém as referências para a disciplina de Geometria Analítica e Álgebra Linear. Ressalto ainda a disponibilidade online de diversas outras referências via Bibliotec-UTFPR pelo link http://www.utfpr.edu.br/biblioteca/bibliotec.