Counterfactual Analysis

Our study attempts to estimate the magnitude of effect on CO2 emission using Fermi Estimation, with data from multiple sources. The results and data used are presented in "Weighted CO2 Emissions by Province.xlsx"

Our model estimated $\hat{\beta}=2.0983$. The estimated price elasticity of supply for canola is approximately 2.10. A 1% increase in canola price is expected to cause a 2.1% increase in canola production in the long run. In a time series, this implies:

$$q_{t+1} = q_t * (1 + 2.1\%)$$

In other words, the quantity produced in the next time period is expected to be 2.1% higher than the current period's observation. According to our collected data, the quantity of canola disposition as of 2024-07 is 21325.3 metric tonnes. Thus, the disposition of 2024-12 is predicted to be 21325.3 * 102.1% = 21733.1 metric tonnes, (approx. 24000.7 tons).

According to The Canola Council of Canada, the provincial share of canola production is as follows: Saskatchewan 53%; Alberta 29%; Manitoba 17%. (Baron, 2021)

According to a report by the European Commission (EC), the greenhouse gas emissions from cultivation of canola in Canada, by province, are as follows: (EC, 2016)
(in unit of kilogram CO2-equivalents per dry ton)

А	D	C	U	E	Г	G	п	ı
Table 20:								
		Single	Total emissions					
								eq/MJKg
			Fertilizer	N2O field	Pesticide	Field	(kgCO2eq	CO2
Province	Region	Seeding	Procution	emissions	production	operation	/dry-ton)	FAME
МВ	RU 23	2.4	262.5	523.5	4.2	73.1	865.7	33
МВ	RU 24	2.2	266.5	510.6	3.7	64.9	847.9	33
SK	RU 28	2.5	212.8	499.5	3.8	71.4	790	30
SK	RU 29	2.5	203.1	319.4	3.6	63.4	592	23
SK	RU 30	2.2	190.2	206.5	2.8	55.1	456.8	18
AB	RU 34	2.2	170.4	421.2	3.3	57.7	654.8	25
AB	RU 35	1.9	154.2	338.4	2.6	54.9	552	21
AB	RU 37	2.1	166.6	198.2	2.8	58.3	428	16

Weighted_CO2_Emissions_by_Province.xlsx - Sheet2

Using the data from these two sources, with the predicted domestic production of canola, we are able to calculate:

- Historical share of canola production, for each of the three provinces.
- Estimated canola production, by province
- Estimated CO2 emission from canola production, by province

	<u>U</u>			L		, , , , , , , , , , , , , , , , , , ,
	Predicted	Historical Share of	Estimated	Historical	Estimated	
	Domestic Total	Canola Production	Production of	CO2 Emissions from Canola	CO2 Emission	
	Production of	by Province	canola (tons)	Planting	(kg CO2eq)	Total Estimated
	Canola (tons)			(kg CO2eq/dry-ton)		(kg CO2eq)
Alberta		0.53	12720.371	544.9333333	6931754.17	
Manitoba	24000.7	0.29	6960.203	856.8	5963501.93	15396097.04
Saskatchewan		0.17	4080.119	612.9333333	2500840.939	
Source:	Model prediction	CanolaCouncil	(Calculated)	ECEU	(Calculated)	(Calculated)

Weighted_CO2_Emissions_by_Province.xlsx - Sheet1

The total CO2 estimated is 15396097 kilogram CO2-equivalents, for each 1% increase in the price of canola seeds in Canada.

References

Baron, V. (2021, October 20). The environmental footprint of canola and canola-based products (part 1). Canola Council of Canada.

https://www.canolacouncil.org/research-hub/environmental-footprint-of-canola/

Regional greenhouse gas emissions from cultivation of canola ... (2016).

https://energy.ec.europa.eu/system/files/2017-12/report_on_ghg_emissions_of_cultivation_of_canola_oils_eed_in_canada_0.pdf