OHSU/Portland VAMC Team Participation in the 2010 i2b2/VA Challenge Tasks

Kyle H. Ambert, Aaron M. Cohen, Jianji Yang, Robert Felder, Richard Sproat, Brian Roark, Kristy Hollingshead, Kari Baker

Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University

²Department of Science & Engineering, Oregon Health & Science University

Portland Veterans Administration Medical Center

OHSU/Portland VAMC submissions

• Our team participated in all three challenge tasks

Assertions	Relations	Concepts
X	X	
X	\mathbf{X}	
X	X	X
X	\mathbf{X}	X
X	X	X
X	X	X
X	X	X
X	X	X
	Assertions X X X X X X X X	Assertions X X X X X X X X X X X X X X X X X X

Create a system for labeling concepts expressed in the text of clinical records into one of four categories.

Greate a system for labeling concepts expressed in the text of clinical records into one of four categories.

- The concept tasks participants were unable to join us here. Briefly,
 - We parsed each line with the Charniak parser
 —retuned to perform well on medical tasks,
 using 30 samples of training data.
 - Processing errors occurred, and likely decreased overall task performance.

Create a system that will correctly interpret assertion statements as being present, absent, uncertain, conditional, or not associated with the patient.

Concepts

• For classification, we used LibSVM's 1-against-1 classifier with a linear kernel — other classifiers were tried as well, although none led to greatly-improved performance: other kernels, ECOC, DAG, etc.

Submission 1 Text

Submission 2 Text Metric

Submission 3 Text Metric Dependency

Cross-validation Results

Create a system that will identify concept relations between medical problems, tests, and treatments. Label them into one of nine categories.

Assertions

Relations

Concepts

We picked similar text features for the relations task, as in the assertions task.

concept text
concept tokens
line before/after
concept types
concept assertions

overlapping concepts

Feature Tokenization

We created an expanded set of metric features, for the relations task:

Normalized interconcept distance

Longest/shortest relation token

Longest/shortest relation characters

Normalized dependency distance

Min/Max number of co-occurring relations

Potential co-occurring problem-[problem/treatment/test] relations

Co-occurring problem/treatment/test/all concepts

Line token/character length

Co-occurring assertions of different types

Concept distance to root difference

Concept distance to common ancestor

Assertions

We picked similar text features for the relations task, as in the assertions task. concept text concept tokens line before/after concept types concept assertions overlapping concepts

We only represented dependency features for concepts occurring on the same line.

Concept head, head/word pairs
Stemmed concept head/word pairs
Concept token/head trigram
Concept relation dependency
Concept token/head POS
Concept with overall concept head
Concept head token & POS
Concept overall tail
Concept and overall tail
Concept sentence root token
Concepts' min/max distance to root

Relations

Concepts

We created an expanded set of metric features, for the relations task:

Normalized interconcept distance Longest/shortest relation token

Longest/shortest relation characters

Normalized dependency distance

Min/Max number of co-occurring relations

Potential co-occurring problem-[problem/treatment/test] relations

Co-occurring problem/treatment/test/all concepts

Line token/character length

Co-occurring assertions of different types

Concept distance to root difference

Concept distance to common ancestor

Assertions

We picked similar text features for the relations task, as in the assertions task.

concept text
concept tokens
line before/after
concept types
concept assertions
overlapping concepts

We only represented dependency features for concepts occurring on the same line.

Concept head, head/word pairs
Stemmed concept head/word pairs
Concept token/head trigram
Concept relation dependency
Concept token/head POS
Concept with overall concept head
Concept head token & POS
Concept overall tail
Concept and overall tail
Concept sentence root token
Concept sentence root POS
Concepts' min/max distance to root

There were minor differences on sub-task performance, but, overall, systems did not significantly differ.

Summary & questions

- The OHSU/Portland VAMC team submitted three systems to each task in the *i2b2* 2010 challenge task.
- Our assertions and relations submissions took a machine learning approach to the tasks, utilizing a combination of textual-, dependency parse-, and metric-based features.
- Thanks, Python.

