

دانشگاه تهران پردیس دانشکدههای فنی دانشکده مهندسی برق و کامپیوتر گروه نرمافزار

کاپو، پلتفرم ساخت و انتقال NFT های دادهای

پایاننامه برای دریافت درجهٔ کارشناسی ارشد در رشتهٔ مهندسی کامپیوتر گرایش نرمافزار

امین بشیری

استاد راهنما

دكتر احسان خامسيناه

دانشگاه تهران پردیس دانشکدههای فنی دانشکده مهندسی برق و کامپیوتر گروه نرم افزار

کاپو، پلتفرم ساخت و انتقال NFT های دادهای

پایاننامه برای دریافت درجهٔ کارشناسی ارشد در رشتهٔ مهندسی کامپیوتر گرایش نرمافزار

امین بشیری

استاد راهنما

دكتر احسان خامس پناه

دانشگاه تهران پردیس دانشکدههای فنی دانشکده مهندسی برق و کامپیوتر

گواهی دفاع از پایاننامه کارشناسی ارشد

هیأت داوران پایاننامهٔ کارشناسی ارشد آقای / خانم امین بشیری به شمارهٔ دانشجویی ۱۹۶۴۲۵ در رشتهٔ مهندسی کامپیوتر - گرایش نرمافزار را در تاریخ با عنوان «کاپو، پلتفرم ساخت و انتقال NFT های دادهای »

به حروف	به عدد	
		با نمرهٔ نهایی
ارزیابی کرد.		و درجهٔ

امضا	دانشگاه یا مؤسسه	مرتبهٔ دانشگاه <i>ی</i>	نام و نام خانوادگی	مشخصات هيأت داوران	نظ
	دانشگاه تهران	استاد	دکتر احسان خامسپناه	استاد راهنما	١
	دانشگاه تهران	دانشيار	دکتر داور داخلی	استاد داور داخلی	۲
	دانشگاه داور خارجی	دانشيار	دکتر داور خارجی	استاد مدعو	٣
	دانشگاه تهران	دانشيار	دكتر نماينده	نمایندهٔ تحصیلات تکمیلی دانشکده	*

نام و نام خانوادگی معاون آموزشی و تحصیلات تکمیلی پردیس دانشکدههای فنی: تاریخ و امضا: نام و نام خانوادگی معاون تحصیلات تکمیلی و پژوهشی دانشکده / گروه: تاریخ و امضا:

تعهدنامهٔ اصالت اثر

باسمه تعالى

اینجانب امین بشیری تأیید می کنم که مطالب مندرج در این پایاننامه حاصل کار پژوهشی اینجانب است و به دستاوردهای پژوهشی دیگران که در این نوشته از آنها استفاده شده است مطابق مقررات ارجاع گردیده است. این پایاننامه قبلاً برای احراز هیچ مدرک همسطح یا بالاتری ارائه نشده است.

نام و نام خانوادگی دانشجو: امین بشیری تاریخ و امضای دانشجو:

چکیده

«اینترنت غیر متمرکز ۱» یا Web۳ به عنوان مهمترین تغییر بعد از به وجود آمدن اینترنت ۲ در نظر گرفته می شود. با به وجود آمدن «رمزارزها ۳» و «الگوریتمهای اجماع ۴» کارآمد، و فراهم شدن زمینه اجرای برنامهها و انجام تراکنش های مالی به صورت غیر متمرکز، عصر اینتزنت غیر متمرکز فرا رسیده است.

در این میان یکی از اصلی ترین مزایای «برنامههای غیرمتمرکز^۵» مالکیت واقعی دارایی است، به این معنی که یک شخص یا یک نهاد نمی تواند دارایی های کس دیگری را مسدود یا مصادره کند. از طرفی مالیکتهای معنوی هم به صورت واضح و شفاف می توانند مشخص شوند. برای مثال یک هنرمند به وضوح صاحب اثرش است و هرچند که دیگر افراد می توانند اثر او را کپی کنند اما همیشه مشخص است که صاحب اصلی اثر کیست.

به این ترتیب «توکنهای تعویض ناپذیر^۶» با قابلیتهای مالکیت بسیار زیادی که فراهم میکنند مورد استقبال فراوان مردم واقع شدند. قابلیتهای مانند ساخت، نگهداری، فروش و انتقال فوق العاده راحت و سریع نیز در این سرعت فراگیری تاثیر بسزایی داشته اند. برای بازاری به این تازگی و وسعت، تکنولوژیها، استانداردها و پلتفرمهای زیادی ساخته شده اند و همچنان نیز در حال توسعه هستند.

در این پروژه سعی بر ساخت پلتفرمی داریم که هر شخص یا شرکتی بتواند با عضویت در آن، به آسانترین روش ممکن توکنهای تعویض ناپذیر بسازد و به دیگران انتقال دهد. کاربردهای این پلتفرم ساده بیشمار است. دارایی هایی مانند بلیت سینما، ژتونهای غذا، وقت گرفتن از دکتر، قراردادها و ... همه می توانند به آسانی در این پلتفرم به توکن تعویض ناپذیر تبدیل شوند، به دیگران انتقال پابند و در بازار خرید و فروش شوند.

اگرچه کاربردهای فراوانی برای این پلفرم می توان در نظر داشت اما همچنان هدف اصلی از انجام این پروژه آشنایی با نحوه ساخت، تست و دیپلوی یک اسمارت کانترکت، ساخت فرانتاند، اتصال آن به اسمارت کانترکت و همچنین شناخت استانداردهای معروف قراردادهای توکنهای تعویض ناپذیر مانند ERC721 و ERC7155

لازم به ذکر است که تمامی کدهای کاپو به صورت متنباز در گیتهاب قابل دسترس برای عموم هستند.

¹Decentralized Web

²Word Wide Web

³CryptoCurrencies

⁴Consensus Algorithms

⁵Dapps

⁶Non-fungible tokens

واژگان کلیدی کاپو، توکن، داده، سالیدیتی، اسمارت کانترکت، قرارداد هوشمند، توکن غیرقابل تعویض، non-fungible ،ERC1155 ،ERC721 ،solidity ،cappu

فهرست مطالب

<i>قدمه و</i> بیان مسئله	فصل ١: مأ
ندمه	۱.۱ مة
رح مسئله و روش انجام آن	۲.۱ ش
لداف كلى تحقيق	۱.۳ اه
۱.۳ گسترش کاربردهای توکنهای تعویض ناپذیر	١.
۲.۳ یادگیری	٠.١
اختار پایاننامه	۴.۱ س
ماهیم اولیه و پیشرزمینه ۵	فصل ۲: ما
لایل و برتریهای متنباز بودن قراردادهای هوشمند	۱.۲ دا
سنایی با مفهوم توکن تعویض ناپذیر	۲.۲ آش
اربردها، حال و آینده	۳.۲ کا
اردادهای هوشمند و استانداردسازی	۴.۲ قر
. ۱.۴ استاندارد ERC20	7
. ۲.۴ استاندارد ERC721	7
۳.۴. استاندارد ERC1155	7
ننایی با ابزارهای توسعه	فصل ۳: آنا
زارهای ساده	
ف بول متامسک	۲.۳ ک

ها و کتابخانه ها	فريمورك	٣.٣
فريمورک Truffle	1.7.7	
کتابخانه OpenZeppelin کتابخانه	۲.۳.۳	
کتابخانه Web3JS کتابخانه	٣.٣.٣	
کال برای توسعه	شبكه لوَ	۴.۳
زی	پیادەسا	فصل ۴:
ئد قرارداد	نوشتن ک	1.4
نیاز مندی های قراردادهوشمند	1.1.4	
ارثبری	7.1.4	
توجه به هزینه تراکنش و نوع توابع	۳.۱.۴	
جزئیا <i>ت فنی</i> پیادهسازی	4.1.4	
ر اجرای تستها	نوشتن و	۲.۴
قرارداد روی شبکه تستی Ropsten	ديپلوي ن	٣.۴
یافتن آدرس یکی از نودهای شبکه برای ارسال تراکنش دیپلوی قرارداد به آن ۲۵	1.7.4	
اضافه شدن اطلاعات شبكه مورد نظر به تنظيمات ترافل	7.7.4	
آماده شدن mnemonics	٣.٣.۴	
استفاده از کیف پول ایجاد شده در تنظیمات ترافل ۲۷	4.4.4	
نصب کیف پول hdwallet	۵.۳.۴	
انتخاب شبکه اضافه شده	۶.۳.۴	
بررسی آدرس کیف پول و موجودی آن	٧.٣.۴	
ديپلوي قراردادهوشمند روي شبكه بلاكچين	۲.۳.۴	
اطمینان از صحت دیپلوی قراردادهوشمند	4.4.4	
رانت، اتصال به قراردادهوشمند و فرآیند دیپلوی	توسعه ف	4.4
نتیجه گیری ۳۳	بحث و	فصل ۵:
٣٣	مقدمه	١.۵

محتوا	۲.۵
۱.۲.۵ جمع بندی	
۲.۲.۵ نوآوری	
۳.۲.۵ پیشنهادها	
۴.۲.۵ محدودیتها	
آشنایی سریع با برخی دستورات لاتک	فصل ۶:
بندها و زیرنویسها	
فرمولهای ریاضی	
۱.۲.۶ یک زیربخش	
۱.۱.۲.۶ یک زیرزیربخش	
نوشتههای فارسی و انگلیسی مخلوط	٣.۶
افزودن تصویر به نوشته	
محیطهای شمارش و نکات	۵.۶
تعریف و قضیه	9.9
چگونگی نوشتن و ارجاع به مراجع	٧.۶
۱: حدول، نمه دار و الگهر بتم در لاتک	·/ •
	•
جدول	
معادلات ریاضی و ماتریسها	٧.٧
الگوريتم	٣.٧
۱.۳.۷ الگوریتم ساده با دستورهای فارسی	
۲.۳.۷ الگوریتم پیچیده و تودرتو با دستورهای فارسی	
۳.۳.۷ الگوریتم با دستورهای لاتین	
کد	
تصوير	۵.٧
ΨΛ	C 1/

41	۷ نحوه قرارگیری اشیای شناور	.٧
۵۱	۸: مراجع، واژهنامه و حاشیهنویسی	پيوست
۵١	١. مراجع و نقل قول ها	.Λ
۵۲	۱.۱.۸ مدیریت مراجع با BibT _E X	
۵۳	۲.۱.۸ سبکهای مورد تأیید دانشگاه تهران	
۵۴	۳.۱.۸ سبکهای فارسی قابل استفاده در زی پرشین	
۵۵	۴.۱.۸ ساختار فایل مراجع	
۵۶	۵.۱.۸ نحوه اجرای BibT _E X	
۵٧	۲ واژهنامهها و فهرست اختصارات	.۸
۵۸	۳ حاشیه نویسی در نسخه پیش نویس	.Λ
اول	بهٔ فارسی به انگلیسی	واژەناە
سوم	•	نمايه

فصل ۱

مقدمه و بیان مسئله

۱.۱ مقدمه

در یک دهه اخیر محبوبیت رمزارزها در میان مردم به شدت افزایش داشته است. رمزارزها توکن هایی تعویض پذیر هستند به این معنی که تفاوتی میان دو توکن یک رمزارز وجود ندارد، مانند پول فیزیکی که ارزش یک هزار تومانی دیگر تفاوتی ندارد.

اما در دنیای واقعی تنها مالکیت پول نیست که اهمیت دارد، بلکه یک فرد میتواند خودرو، خانه، بلیت هواپیما و دیگر دارایی هایی داشته باشد که یکتا هستند و با هیچ دارایی دیگری دقیقا یکسان نیستند. مثلا یک بلیت هواپیما برای تاریخ و ساعتی خاص برای شماره پروازی خاص از یک مبدا مشخص به یک مقصد مشخص است و شماره صندلی یکتایی نیز دارد. پس هیچ دو بلیت هواپیمایی دقیقا یکسان نیستند، بر خلاف دو بیتکوین که کاملا یکسان هستند، ارزش برابری دارند، و تعویض پذیر هستند.

کاربردهای توکنهای تعویض ناپذیر بیشمار است و در حال حاضر فقط قسمت اندکی از کاربردهایی که میتوانند داشته باشند را پاسخ گفتهاند. در این پروژه یک پلتفرم میسازیم که ساخت و انتقال توکنهای تعویض ناپذیر را برای عموم در دسترس تر و آسان تر می کند. همچنین یکی از اهدف انجام این پروژه آشنایی با تکنولوژی ها، استانداردها و فرایندهای توسعه این توکنهاست.

¹Fiat Money

²Platforms

۲.۱ شرح مسئله و روش انجام آن

پروژه تعریف شده توسعه یک پلتفرم برای ساخت "و انتقال توکنهای تعویض ناپذیر به آسان ترین روش ممکن است، به نحوی که برای هر کسی به راحتی در دسترس باشد. نکته ی قابل توجه این است که در مسیر انجام این پروژه با تکنولوژی های موجود در این زمینه، فریمورکها، استانداردها و فرایند تست و دیپلوی آشنا شویم.

برای انجام این مراحل در قدم اول نحوه توسعه اپلیکیشنهای غیر متمرکز و برتریهای نوشتن پروژه به صورت متنباز ذکر می شود، سپس فریمورکها و ابزارهایی که برای ساخت یک اپلیکیشن غیر متمرکز به توسعه دهنده کمک می کنند معرفی می شوند و نحوه استفاده از آنها شرح داده می شود.

سپس فرایند توسعه آغاز می شود، استانداردهای موجود برای نوشتن یک قرارداد برای توکنهای تعویض ناپذیر شرح داده می شود و کاپو تا جای ممکن مطابق آنها توسعه می یابد. برای قرارداد هوشمند نوشته شده تست می نویسیم و آن را روی شبکه تستی † انتشار می دهیم. در گام بعد برای پلتفرم، فرانت اند ساده ای نوشته می شود که با قرارداد هوشمند و همچنین کیف پول دیجیتال کاربر ارتباط برقرار می کند و سپس به کمک صفحات گیت هاب $^{\circ}$ دیپلوی می شود تا در دسترس عموم کاربرها قرار بگیرد.

برای داکرایز 9 کردن تستهای قرارداد هوشمند V یک ایمیج داکر A ترافل 9 نوشته می شود. در قدم بعد هر دو بخش فرانت و قرارداد هوشمند داکرایز می شوند و فرایند اجرای تستهای قرارداد هوشمند و دیپلوی شدن فرانت به صورت خودکار به کمک پایپلاین های گیت هاب پیاده سازی می شود.

٣.١ اهداف كلى تحقيق

اهداف این تحقیق را می توان به دو دسته تقسیم بندی نمود.

 $^{^3}$ Mint

⁴Testnets

⁵Github Pages

⁶Dockerize

⁷Smart Contracts

⁸Docker Images

⁹Truffle

۱.۳.۱ گسترش کاربردهای توکنهای تعویض ناپذیر

این توکنها در همین مدت کوتاهی که به وجود آمدهاند کاربردهای فراوانی را پوشش دادهاند. اما همچنان قسمت بزرگی از این کاربردها صرفا ثبت مالکیت آثار هنری دیجیتال است. درحالی که توکنهای دادهای می توانند وسعت بسیار عظیم تری از کاربردها را پوشش دهند. از کاربردهای روزانه مانند بلیت سینما و هواپیما، تا مالکیت هر نوع دارایی واقعی یا مجازی.

با توجه به نحوه کار اکثر قراردادهای توکنهای تعویض ناپذیر، معمولا فقط مالک قرارداد می تواند توکن ایجاد کند، یا در قرارداد برای ایجاد توکن شرطهایی مانند حداکثر تعداد ممکن گذاشته می شود. این موضوع به این معنی است که اگر شخصی بخواهد خودش توکنهایی ایجاد کند و به دیگران انتقال دهد احتمالا مجبور است که قراردادهوشمند خودش را بنویسد و دیپلوی کند. این فرآیند نیاز به دانش فنی، آشنایی کامل با این زمینه و پرداخت هزینههای دیپلوی قرارداد روی شبکه بلاکچین دارد.

کاپو به هر آدرسی اجازه می دهد که به راحت ترین حالت ممکن و به هر تعداد که مورد نیاز است توکن تعویض ناپذیر روی این قرارداد ایجاد کند. به این ترتیب استفاده از کاپو برای عموم مردم آسان تر، ارزان تر و در دسترس تر است.

۲.۳.۱ یادگیری

هدف دیگر انجام این پروژه یادگیری است. با توجه به رشد سریع و تازگی استفاده از تکنولوژیهای بلاکچین و توکنهای تعویض ناپذیر، با وجود تلاش برای ایجاد منابع یادگیری مناسب همچنان فضاهای خالی، کمبودها و نیازمندیهایی وجود دارد که باید پاسخ گفته شوند. در طی انجام این پروژه با ابزارها، کتابخانهها، فریمورکها و استانداردهای نوشتن قراردادهای هوشمند آشنا میشویم، میآموزیم که هر یک چطور کار میکنند و چگونه می توانند به توسعه دهنده کمک کنند.

۴.۱ ساختار پایاننامه

پس از این مقدمه، در فصل ۲ مفاهیم اولیه توسعه اپلیکیشن بر بستر بلاک چین، کاربردها، مفاهیم و استانداردها توضیح داده می شود. در فصل ۳ ابزارهای توسعه قراردادهای هوشمند معرفی می شوند، مزایا و معایب هر یک بیان می شود و نحوه استفاده از آنها توضیح داده می شود. در فصل ۴ روند پیاده سازی شرح داده می شود. بررسی می شود که در هر مرحله از پیاده سازی چه کارهایی به چه ترتیبی انجام شده است. در فصل پنجم نیز نتایج توضیح داده می شوند و جمع بندی صورت میگیرد.

فصل ۲

مفاهیم اولیه و پیش زمینه

۱.۲ دلایل و برتریهای متنباز بودن قراردادهای هوشمند

دلایل زیادی برای متنباز نوشتن قراردادهای هوشمند وجود دارد، در ادامه تعدادی از این دلایل توضیح داده می شود.

دلیل اول، بلاک چینها محرمانگی اندارند، همه ی نودهای شبکه برای اجرای کد قرارداد هوشمند باید حداقل به بایت کدها و آورداد هوشمند دسترسی داشته باشند و این بایت کدها در کاوشگرهای بلاک چین نیز وجود دارند، همچنین دیکامپایل همچنین دیکامپایل هایی وجود دارند که از بایت کدهای قرارداد هوشمند کد سالیدیتی آن را به دست می آورند. پس در نتیجه تلاش برای مخفی کردن کدهای قرارداد هوشمند بیهوده خواهد بود.

دلیل دوم، اصلی ترین مذیت اپلیکیشنهای غیر متمرکز نسبت به اپلیکیشنهای متمرکز عدم نیاز به اعتماد است، کاربرها می توانند کدهای قرارداد هوشمند را بخوانند و به کد نوشته شده اعتماد کنند، در حالی که اگر کد برنامه برای همه کاربران قابل مشاهده نباشد کاربرها باید به سازندگان آن برنامه اعتماد کنند.

دلیل سوم، دیپلوی کردن قراردادهای هوشمند معمولاآسان نیست وسرعت تغییرات پایین تر از اپلیکیشنهای متمرکز هست، پس امکان این که با پیدا شدن هر مشکل بتوان به سرعت آن را درست کرد کمتر وجود دارد و مسئله امنیت بسیار اهمیت دارد. متن باز نوشتن قرارداد هوشمند باعث می شود چشمهای بیشتری کدهای قرارداد

¹Confidentiality

²bytecodes

³

را بخوانند و مشکلات احتمالی سریعتر مشخص و رفع شوند. تعداد زیادی از این پروژهها از همان روز اول قرارداد هوشمند را به صورت متنباز توسعه می دهند، بعضی نیز ترجیح میدهند که پروژه به مرحلهای از توسعه برسد و سپس آن را متنباز میکنند.

ر این حوضه سرعت پیشرفت و توسعه به دلیل متن باز بودن به شدت بالاست به نحوی که در طی اجرای این پروژه مرج ریکوئستی روی کتابخانه OpenZeppelin زده شد که در همان روز مرج شد. این موضوع علاوه بر این که نشان دهنده سرعت پیشرفت بسیار بالاست، این موضوع را نیز نشان میدهد که در یک جامعه متن باز هر توسعه دهنده می تواند به پیشرفت جامعه به هر شکلی که می تواند کمک کند، اشکالاتی که مشاهده میکند را گزارش دهد یا تصحیح کند.

شکل ۱.۲: در طی انجام پروژه مرج ریکوئستی روی OpenZeppelin باز شد که در همان روز مرج شد.

۲.۲ آشنایی با مفهوم توکن تعویض ناپذیر

شروع رمزارزها با توکنهای تعویض پذیر بود، مفهوم تعویض پذیری به این معنی است که یک توکن با توکن دیگر تفاوتی ندارد و با جابه جا شدن آنها تغییری ایجاد نمی شود. برای مثال یک بیت کوین با یک بیت کوین دیگر هیچ تفاوتی ندارد.

اما توکنهای تعویض نایذیر اینگونه نیستند، هر یک منحصر به فرد است و جابهجا کردن آنها با یکدیگر

تغییر ایجاد میکند، در دنیای واقعی خانه می تواند مثال خوبی از یک دارایی تعویض ناپذیر باشد، هیچ دو خانهای دقیقا شبیه به هم، در یک مکان، در طبقه یکسان و دارای یلاک مشترک نیستند.

پس مثلا به عنوان یک کاربرد، شهرداری می تواند یک قرارداد هوشمند ایجاد کند و به هر خانه یک توکن NFT اختصاص دهد. به این صورت صاحب خانه به جای سند یک توکن NFT دارد که مشخص می کند که دارایی مطعلق به اوست، و فروش خانه به راحتی انتقال آن NFT به شخص دیگری است.

از نظر فنی هر توکن به این صورت یکتاست که یک TokenId یکتا در قراردادش دارد و هر قرارداد هم دارای یک آدرس یکتا در شبکه بلاکچین است. پس ترکیب TokenId و TokenId باعث می شود که هر توکن یکتا باشد.

٣.٢ كاربردها، حال و آينده

کاربرد ها NFT تا به حال در دو دسته خلاصه می شود. دسته اول به عنوان صاحب یک اثر دیجیتال، مانند یک تصویر یا یک موسیقی. دسته دوم به عنوان یک جواز یا بلیت برای ورود به جایی یا دریافت چیزی، برای مثال همایشی برگذار می شود که فقط دارندگان های NFT یک قرارداد هوشمند می توانند به آن وارد شوند.

معروف ترین پلتفرم معاملاتی این توکنها OpenSea است که می توان در آن توکنهای موجود را مشاهده کرد و یک توکن را توسط مزایده خرید یا به فروش گذاشت. OpenSea در حال حاضر از قراردادهای شبکههای اتریوم و سولانا پشتیبانی میکند. دیگر شبکهها نیز معمولا پلتفرمهای خود را دارند، مانند شبکه Atom که در آن از پلتفرم Stargaze برای معامله ها NFT استفاده می شود.

کاربردهای NFT ها در آینده می تواند بسیار وسیع باشد. داراییهای فیزیکی دنیای واقعی، بلیتهای ورود به NFT ها در آینده می تواند بسیار وسیع باشد. داراییهای فیزیکی دنیای و حتی دامنههای به یک مکان یا یک همایش، داراییهای دنیای مجازی مانند یک موسیقی یا آیتمی در یک بازی و حتی دامنههای اینترنتی همه می توانند به NFT تبدیل شوند. مزایای تبدیل این موارد به NFT قابلیت نگهداری آسان تر، قابلیت فروش و انتقال راحت تر، امنیت بیشتر، آزادی در تراکنشها و آشکار بودن مالکیت دارایی بر همگان است.

۴.۲ قراردادهای هوشمند و استانداردسازی

اکثر قراردادهای هوشمند قابلیتهایی مشابه با یکدیگر دارند، برای مثال گروهی از قراردادهای هوشمند توکنهای تعویض ناپذیر. از طرفی اپلیکیشنهایی مانند کیف پولهای دیجیتال، پلتفرمهای معاملاتی و صرافیهای نیاز دارند که بتوانند داراییهای کاربر اعم از توکنهای تعویض پذیر و تعویض ناپذیر را ببینند، به همین دلیل باید نحوه صحبت کردن با قراردادهای هوشمند را بدانند.

برای ساده تر کردن این فرایند و همسانسازی اینترفیس این قراردادهای هوشمند استانداردهایی تعریف شده است که با استفاده از این استانداردها هم فرایند توسعه اسمارت کانترکت آسان تر خواهد شد و هم ارتباط میان قراردادهوشمند و اپلیکیشنهای دیگر مانند کیف پولها، پلتفرمهای معاملاتی و ... آسان تر خواهد شد.

از نمونههای معروف این استانداردها ERC20 برای قراردادهایی با توکنهای تعویض پذیر و ERC721 برای قراردادهایی با توکنهای تعویض پذیر و ERC721 برای قراردادهایی با توکنهای تعویض ناپذیر است. در این پروژه از استاندارد ERC721 استفاده می شود اما در مورد ERC721 هم مطالعه شده و توضیح داده می شود، به طور خلاصه ERC1155 قابلیتهای بیشتری از ERC721 دارد و یک قرارداد با این استاندارد می تواند هم توکنهای تعویض پذیر و هم تعویض ناپذیر داشته باشد.

برای استفاده از این استانداردها از پکیجهای متن بازی استفاده می شود که این استانداردها را پیادهسازی کردهاند و از آنها در قراردادی که نوشته می شود ار شبری می شود، یکی از بهترین پیاده سازی های این استانداردهای توسط اپن زپلین ^۴ انجام شده است که در این پروژه نیز از همین پیاده سازی استفاده می شود.

۱.۴.۲ استاندارد ۲.۴.۲

این استاندارد مناسب توکنهای تعویض پذیر است. اینترفیسی تعریف میکند که نیازهای قراردادهایی با توکنهای تعویض پذیر را برطرف کند و نحوه تعامل برقرار کردن با آنها را یکسان گرداند. در این استاندارد فقط می توان یک نوع توکن تعویض پذیر به تعداد دلخواه داشت. این استاندارد متدهایی برای تعریف حداکثر تعداد توکنهای موجود، گرفتن موجودی یک آدرس، و انتقال توکنها دارد. توضیحات دقیق تر در مورد این استاندارد را می توان در و بسایت اتریوم ۵ یا این زیلین ۶ مشاهده کرد.

⁴OpenZeppelin

 $^{^5}$ https://ethereum.org/en/developers/docs/standards/tokens/erc-20

⁶https://docs.openzeppelin.com/contracts/4.x/api/token/erc20

۲.۴.۲ استاندارد ۲.۴.۲

استفاده از استاندارد ERC721 برای توکنهای تعویض ناپذیر بسیار مرسوم است. در این استاندارد متدها و ایونتهایی برای یکسان سازی اینترفیس قراردادهای دارای توکنهای تعویض ناپذیر تعریف شده است. در این نوع قراردادها میتوان به تعداد دلخواه توکنهای متفاوت با یکدیگر داشت، هر توکن یک آیدی یکتا دارد که میتواند به صورت ترتیبی یا غیر ترتیبی ایجاد شود.

همچنین متدی وجود دارد که میتواند آیدی یک توکن را به آدرسی تبدیل کند که اطلاعات آن توکن در آنجا موجود است. کاربرها میتوانند توکنهایی که دارند را مشاهده کنند، به یکدیگر ارسال کنند یا به آدرس دیگری وکالت بدهند که توکنها را به شخص دیگری ارسال کند.

تنها قابلیتی که به طور مشخص در این قرارداد معین نشده است که چگونه باید انجام شود قابلیت ساخت توکنها را توکنها است. اکثر قراردادهای هوشمندی که توکنهای تعویض ناپذیر دارند به کاربران اجازه ساخت توکنها را نمی دهند و ساخت توکنها فقط به آدرس صاحب قرارداد محدود می شود. اما در کاپو اینگونه نیست و هرکسی می تواند برای خودش توکن بسازد.

اطلاعات دقیق تر در مورد این استاندارد را نیز می توان در و بسایت اتریوم $^{\vee}$ یا اپن زپلین $^{\wedge}$ مشاهده کرد.

۳.۴.۲ استاندارد ۳.۴.۲

تا اینجا با معروف ترین استانداردهای موجود برای قراردادهایی که توکنهای تعویض پذیر یا تعویض ناپذیر دارند آشنا شدیم. اما همچنان نیازمندیهایی وجود دارند که توسط هیچیک از این استانداردها برطرف نمی شوند. نیازمندی هایی مانند:

- داشتن توكن هاي NFT با تعداد محدود به جاي فقط يكي.
 - داشتن همزمان چندين نوع توكن مختلف در يك قرارداد.
- انتقال همزمان چند توكن از انواع مختلف از كاربري به كاربر ديگر.

⁷https://ethereum.org/en/developers/docs/standards/tokens/erc-721

⁸https://docs.openzeppelin.com/contracts/4.x/api/token/erc721

یک مثال از کاربردی که به این قابلیتها نیاز دارد می تواند یک بازی مثل مونو پولی باشد که در آن هر کاربر مقداری پول دارد که در واقع یک توکن تعویض پذیر هست، به عنوان دارایی چند خانه دارد که به عنوان توکنهای تعویض ناپذیری هستند که از هرکدام فقط یکی وجود دارد و ممکن است چند کارت خروج از زندان داشته باشد که یکتا نیستند اما تعداد محدودی در بازی وجود دارد. استاندارد ERC1155 همهی این نیازها را برطرف می کند. همهی این چند نوع توکن می توانند همزمان در یک قرارداد هوشمند وجود داشته باشند.

در این استاندارد متدهایی برای تعریف نوعی توکن با تعداد مشخص وجود دارد. اگر نیاز به توکنی تعویض ناپذیر باشد تعداد آن یک قرارداده می شود. همچنین متدهایی برای ارسال تعداد مشخص از چند نوع توکن مختلف در یک تراکنش، دادن وکالت توکنها به آدرس دیگر و گرفتن موجودی یک آدرس در این استاندارد وجود دارد. اطلاعات دقیق تر در مورد این استاندارد را نیز می توان در و بسایت اتریوم ۹ یا اپن زپلین ۱۰ مشاهده کرد.

⁹https://ethereum.org/en/developers/docs/standards/tokens/erc-1155

 $^{^{10} \}mathtt{https://docs.openzeppelin.com/contracts/4.x/api/token/erc1155}$

فصل ۳

آشنایی با ابزارهای توسعه

در تمام ابزارهای ذکر شده در ادامه این متن حتما باید به ورژن هر کدام دقت شود، ورژنها باید با یکدیگر همخوانی داشته باشند در غیر این صورت مشکلاتی در کامپایل و اجرای برنامه به وجود می آید که به راحتی قابل رفع کردن نیستند. در انجام این پروژه عدم همخوانی ورژنهای مختلف ابزارها با یکدیگر باعث ایجاد مشکلات فراوانی شد، به همین دلیل ورژن مورد نیاز هر ابزار در توضیحات پروژه ذکر شده است.

۱.۳ ابزارهای ساده

• ويرايشگر

برای برنامه نویسی این قرارداد هوشمند از ویرایشگر VSCode با نصب پلاگین مربوط به Solidity استفاده شده است. این پلاگین با یافتن اشتباه ها پیش از کامپایل و راهنمایی در نوشتن کد قرارداد کمک شایانی به افزایش سرعت توسعه می کند.

• ورژنکنترل

این پروژه از روز نخست به صورت متنباز توسعه یافته، برای توسعه یک پروژه به صورت متنباز اولین ابزار مورد نیاز یک برنامه ورژن کنترل است که نسخههای متفاوت و تغییر یافته کدها را به صورت مرتب

¹https://marketplace.visualstudio.com/items?itemName=JuanBlanco.solidity

نگهداری کند. برای این منظور از گیتهاب استفاده شده.

• پکیجهای Node و NPM

از آنجایی که کدهای سالیدیتی در واقع جاوااسکریپت هستند، به ابزارهای توسعه اپلیکیشنهای جاوااسکریپت و برای توسعه سالیدیتی نیاز است. ابزارهایی مانند Node برای کامپایل کردن برنامههای جاوااسکریپت و npm که مدیریت پکیجهای جاوااسکریپتی که نصب می شود را به عهده دارد.

۲.۳ کیف یول متامسک

کیف پول دیجیتال متامسک از پرکاربردترین کیف پولها برای ارتباط برقرار کردن با اپلیکیشنهای غیر متمرکز و Web3 است. کاپو نیز برای امضای تراکنشها و ایجاد ارتباط با شبکه بلاکچین از کیف پول متامسک استفاده می کند. برای انجام صحیح این عملیات کاربر باید از پیش کیف پول متامسک را نصب کرده باشد و سپس با انتخاب گزینه Connect Wallet، کاپو درخواست اتصال به کیف پول و دریافت آدرس کاربر را به متامسک ارسال میکند، متامسک نیز پس از دریافت درخواست کاپو از کاربر اجازه اتصال به اپلیکیشن را میگیرد و در صورت تایید کاربر آدرس کیف پول را به کاپو می دهد.

از این پس هرگاه که کابر بخواهد در کاپو تراکنشی از جمله ساخت توکن جدید یا انتقال یک توکن به آدرس دیگر را انجام دهد کاپو از متامسک درخواست میکند که با کلید خصوصی کاربر آن تراکنش را امضا کند، متامسک از کاربر تایید تراکنش را میگیرد و امضا را انجام میدهد و تراکنش به شبکه بلاکچین ارسال می شود.

٣.٣ فريموركها وكتابخانهها

به دلیل تازگی بحث توسعه اپلیکیشنهای غیر متمرکز ابزارهای کمی در این زمینه وجود دارند و همین ابزارها هم معمولا مشکلاتی دارند و به بلوغ کامل نرسیدهاند. اما با توجه به این که اکثر ابزارها و فریمورکها و کتابخانههای توسعه اپلیکیشنهای غیر متمرکز متنباز هستند، سرعت رشد و تکامل بالایی دارند و به کمک توسعه دهندگان آین

²Private key

³Developers

حوزه، هر روز نسبت به روز گذشته پیشرفت می کنند.

برای توسعه این پروژه از فریمورک Truffle ^۴، کتابخانهی OpenZeppelin ^۵، کتابخانهی Web3JS استفاده شده است. در این قسمت به توضیح هر یک از این موارد پرداخته می شود.

۱.۳.۳ فریمورک Truffle

این فریمورک ابزارهای اولیه برای ساخت، کامپایل، تست، دیپلوی و مایگریشن قراردادهای هوشمند به زبان سالیدیتی را فراهم میکند. پس از نصب این ابزار با اجرای دستور truffle init میتوان یک پروژه جدید ترافل ساخت، همچنین میتوان با استفاده از دستور truffle unbox از یکی از تمپلیتهای آماده ترافل استفاده کرد.

شکل ۱.۳: احرای دستور ۱۰۳ احرای

پس از ساخت پروژه با اجرای دستور truffle develop و یا truffle console میتوان وارد خط فرمان ترافل شد.

دستورات لازم برای اجرای تستها، کامپیایل کردن قراردادهوشمند یا دیپلوی آن روی شبکه مورد نظر از طریق این خط فرمان قابل اجرا هستند. این پلتفرم ابزارهای فراوانی را در اختیار توسعه دهنده قرار میدهد که با تعداد بیشتری از آنها در بخش پیادهسازی و دیپلوی کاپو آشنا میشویم. همچنین از بزرگترین مزایای استفاده از این فریمورک برقراری ارتباط بسیار آسان با ابزارهای دیگر مانند Ganache و Drizzle است.

⁴https://trufflesuite.com

⁵https://openzeppelin.com/contracts

⁶https://github.com/ChainSafe/web3.js

```
→ back git:(main) x truffle develop

Truffle Develop started at http://127.0.0.1:9545/

Accounts:

(0) 0x00eae7f45de5837119f5dd65fe63e58dcf8f7138
(1) 0x09ef5651770dcbb33d926a1b75e10b2944924736
(2) 0x3e6cfcf6153d6dda9e2654af68cfda49981863e9
(3) 0xcefdd7ce63b03aaccacd420828abe96acbe968d7
(4) 0xa84ab5be39670309d305e7aad3bcc347e75e9537
(5) 0x318913b83fe0c2d63ab29bb84e39b6839cd93ef
(6) 0xde2602e64a047482e4660af26c89abb97afe6bdf
(7) 0x4d85fb20085db61ab33e8159bfe88f3e1a7a1279
(8) 0xa031538284a6910cf832e255b2c8103f52a87b13
(9) 0x3973a0026d8e807d0b9b5fb91c35a16ea990063a

Private Keys:
(0) 9453db0e1f3c1034f80a01b335b141e0d519f21aced3dbb7d2da54f37d773a6d
(1) bf85b2b427c669793da84d9e98e78d0fabd8676938d5c87cc01de59d42e235b7
(2) eff37f33a88597e7434be9def2e22594047c678a451a7f9581e8378a839e19c0
(3) fdd92e2593bb15465bb7d6b61b3894c9fe58acfaec60327ec7c1c2f378664dc8
(4) 0c50a6d545d747b33db3744321eea3e212400c4cd9497a0211fe4bd729a90e9f
(2) 28f97ced049599bb234c50438eed6fd2746fc1e2ecf429131c9ad4176c1c05a0ab
(6) e6eb577c2aa69993aeab80ad275c346c6cf9b8506e8ab29cc69234744593a622
(7) 039c1150cf5eb82756329f0c904035cf0017da2a87c4c1d2dd057a39b3f0c452
(3) a78d582b2fada08f58f59588ade3de3e3e8896609fe101e8df85865e464b969f76

Mnemonic: attack left advance palm leader coconut doll enroll gorila outdoor indoor erupt

M Important A: This mnemonic was created for you by Truffle. It is not secure.

Ensure you do not use it on production blockchains, or else you risk losing funds.

truffle(develop)>
```

شکل ۲.۳: اجرای دستور truffle develop

۲.۳.۳ کتابخانه OpenZeppelin

یکی از معروف ترین کتابخانه های قراردادهای هوشمند و استانداردهایشان است. قراردادها و استانداردهای موجود در این کتابخانه کاملا تست شده، داکیومنت شده، ایمن و پایه بسیاری از قراردادهای هوشمند بر بستر بلاکچین هستند. استانداردهای ذکر شده در این متن مانند، ERC1155 ،ERC721 ،ERC20 به همراه تعداد زیادی استانداردهای دیگر در این کتابخانه پیاده سازی شده اند.

در کاپو نیز از استاندارد ERC721 پیادهسازی شده در این کتابخانه استفاده شده است. برای استفاده از میر استفاده از قراردادهای اپنزپلین در قدم اول باید این کتابخانه به کمک دستور openzeppelin/contracts قراردادهای آن ارثبری کرد، در قطعه کد زیر مشاهده می شود که نصب شود. پس از نصب کتابخانه، می توان از قراردادهای آن ارثبری کرد، در قطعه کد زیر مشاهده می شود که کاپو چگونه از قرارداد ERC721 موجود در اپنزپلین و همچنین یک قراردادهوشمند به اسم Helper که در همین پروژه نوشته شده ارثبری کرده است.

```
pragma solidity >=0.4.22 <0.9.0;
import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "./Helper.sol";

contract Cappu is ERC721, Helper {
    constructor() ERC721("Cappu", "CAPU") {}
}</pre>
```

شكل ۳.۳: ارثبري از استاندارد ERC721 پیادهسازی شده توسط OpenZeppelin

۳.۳.۳ کتابخانه Web3JS

تراکنشهای با یک قرارداد هوشمند می تواند به ۲ حالت باشد. در حالت اول فقط اطلاعات شبکه بلاکچین خوانده می شود و حالت^۷ آن تغییری داده نمی شود، متدهای از این جنس از نوع view یا pure هستند. حالت دوم تراکنشهایی هستند که باعث تغییر اطلاعات شبکه بلاکچین می شوند.

فرانت اند یک اپلیکیشن غیر متمرکز برای انجام نوع اول تراکنشهای نهایتا فقط به آدرس کاربر نیاز دارد که اطلاعات مربوط به او را از قرار داد بگیرد. در حالت دوم نیاز است که تراکنشی بر روی شبکه ثبت شود که نیاز مند امضا شدن تراکنش توسط کلید خصوصی کاربر، پرداخت کارمزد تراکنش و ارسال آن به نودهای شبکه است.

کتابخانهی Web3JS به توسعه دهنده کمک میکند که فرانتاند اپلیکیشن را به کیف پول دیجیتال کاربر و شبکه بلاکچین متصل کند. با ایجاد این اتصال آدرس کابر توسط کیف پول دیجیتال در اختیار فرانتاند قرار می گیرد و هرگاه که فرانتاند بخواهد تراکنشی را روی شبکه ارسال کند نیز از کیف پول کاربر می خواهد که با داشتن کلید خصوصی کاربر آن تراکنش را امضا و روی شبکه ارسال کند. طبیعتا کیف پول کاربر برای انجام هر یک از این مراحل از کاربر در خواست تاییدیه می کند.

۴.۳ شبکه لوکال برای توسعه

برای توسعه یک اسمارت کانترکت نیاز است که پس از هر تغییر کامپایل و روی یک شبکه بلاکچین دیپلوی شود، به نحوی که فرانت اند اپلیکیشن و همچنین کیف پول متامسک بتوانند به آن متصل شوند. از شبکه اصلی نمی توان استفاده کرد زیرا هر دیپلوی روی شبکه اصلی هزینه ای خواهد داشت و دیپلوی های پیاپی روی شبکه

⁷State

امکان پذیر نخواهد بود. اگر بخواهیم برای توسعه از شبکه تستی هم استفاده کنیم گرچه هزینهای نخواهد داشت اما بسیار زمانبر خواهد بود، گرچه انجام تراکنشها روی شبکه تستی معمولاً سریعتر از شبکه اصلی انجام می شود اما همچنان توسعه دهنده زمان زیادی را برای هر دیپلوی صرف خواهد کرد.

راه حل این مشکل این است که توسعه دهنده روی ماشین خودش یک شبکه لوکال داشته باشد که بتواند بلافاصله پس از ایجاد یک تغییر روی قراردادهوشمند آن را کامپایل و دیپلوی کند. ترافل باید بتواند به این شبکه لوکال متصل شود و قرارداد را روی آن دیپلوی کند. فرانت اند ومتامسک نیز باید بتوانند به این شبکه متصل شوند که با قراردادهوشمند ارتباط برقرار کنند.

اگرچه ابزارهای زیادی برای ساخت این شبکه لوکال وجود دارند، اما یکی از بهترین و راحت ترین ابزارها برای این منظور برنامهی Ganache هست. این ابزار با توجه به این که متعلق به اکوسیستم Ganache هست به آسانی به آن متصل می شود و با اضافه کردن آدرس آن به شبکه های متامسک، این کیف پول هم به شبکه لوکال متصل می شود. جزئیات ساخت شبکه لوکال و اتصال ترافل و متامسک به آن به ترتیب زیر است.

پس از نصب برنامه Ganache باید یک محیط توسعه Ethereum ساخته شود. برای انجام این کار گزینه New workspace (Ethereum)

شكل ۴.۳: صغحه اول ۴.۳

سپس در صفحه باز شده نام محیط توسعه وارد، فایل truffle-config.js مربوط به پروژه مورد نظر انتخاب و دکمه save workspace زده می شود.

• •	Ganache
WORKSPACE SERVER ACCOUNTS & KEYS CHAIN ADVANCED ABOUT	△ CANCEL SAVE WORKSPACE
WORKSPACE	
WORKSPACE NAME	
Сарри	A friendly name for this workspace.
TRUFFLE PROJECTS	Link Truffle projects to this workspace by adding their truffle-
/Users/AminBSHR/Desktop/Thesis/cappu/back/truffle-config.js	config.js or truffle.js file to this workspace.
	This will show useful contract and event data to better understand what's going on under the hood.
ADD PROJECT REMOVE PROJECT	

شکل ۵.۳: ساخت شبکه جدید در گاناچه

پس از انجام این مراحل محیط توسعه ساخته شده است و می توان جزئیات شبکه لوکال را مشاهده کرد. از آنجایی که در مرحله قبل برای ساخت این محیط توسعه فایل truffle-config.js پروژه انتخاب شد، حال اگر دستورات truffle console یا هر دستور دیگری مانند migrate بدون انتخاب شبکه بلاکچین خاصی اجرا شود به صورت پیش فرض روی این شبکه لوکال انجام می شود.

حال فقط باید متامسک نیز به این شبکه لوکال متصل شود. برای انجام این کار پس از نصب افزونه ی متامسک روی مرورگر کروم، در قسمت تنظیمات $^{\Lambda}$ و سپس شبکه ها P یک شبکه جدید با جزئیات زیر ساخته می شود، همانطور که در تصویر بالا ۶.۳ مشخص است اطلاعات شبکه لوکال در صفحه اصلی Ganache قابل مشاهده هستند.

پس از ذخیره شبکه جدید کافیست که برای توسعه شبکه Ganache انتخاب شود. همچنین باید یکی از آدرسهایی که در صفحه اصلی Ganache نمایش داده می شوند به عنوان کیف پول در متامسک وارد شود. برای انجام این کار علامت کلید کنار یکی از آدرسهای نمایش داده شده در صفحه اصلی Ganache انتخاب می شود و به کمک کلید اختصاصی نمایش داده شده کیف یول در متامسک وارد می شود.

⁸Settings

⁹Networks

شكل ٣.٣: مشاهده جزئيات شبكه ساخته شده

شکل ۷.۳: تنظیمات شبکههای متامسک

فصل ۴

پیادهسازی

۱.۴ نوشتن کد قرارداد

در این بخش به بررسی مراحل و نحوه نوشتن کد قراردادهوشمند پرداخته می شود.

۱.۱.۴ نیازمندیهای قراردادهوشمند

نیاز مندی های اصلی کاپو به ترتیب زیر است.

- هر آدرس در شبکه بتواند یک داده ی متنی را به آسان ترین و کم هزینه ترین روش ممکن به یک توکن NFT تبدیل کند.
 - هر آدرس بتواند توکنهای خود را به اشخاص دیگر انتقال دهد یا در بازارهای معاملات NFT بفروشد.
- در صفحه اول وبسایت تعداد کل توکنهای ساخته شده تا به حال و تعداد کل دارندگان توکن نمایش داده شود.
 - قابلیتهای قراردادهوشمند تست شده باشد.

۲.۱.۴ ارثبری

با توجه به مزایای ذکر شده در مورد استانداردسازی قراردادهای هوشمند، انتخاب درستی است که برای پیادهسازی این کاربری از یکی از استانداردها استفاده شود. ارثبری از استانداردهای یک کتابخانه متنباز مزایای زیر را فراهم میکند.

- به دلیل وجود کدهای پایه به صورت آماده سرعت توسعه پروژه افزایش می یابد.
 - ارتباط دیگر پروژه ها با پروژه کاپو به راحتی انجام می شود.
- امینت قرارداد و درستی آن حداقل در سطوح پایهای تا حد خوبی تضمین شده است.

قراردادهوشمند کاپو از استاندارد ERC۷۲۱ پیادهسازی شده در کتابخانه اپنزپلین ۱ ارثبری میکند که یکی از معروف ترین کتابخانههای پیاده کننده استانداردهای قرارداد هوشمند است.

۳.۱.۴ توجه به هزینه تراکنش و نوع توابع

در نوشتن یک قراردادهوشمند باید به نکات زیر توجه کنیم.

- میزان حافظهای که اشغال میکنیم.
 - حجم بایتکد.
- میزان عملیات هر متد، به خصوص متدهایی که مکررا مورد استفاده کاربر قرار می گیرند.
- نوع هر متد، که مشخص میکند هر متد تا چه حد روی شبکه بلاکچین تغییر ایجاد میکند.

توجه نکردن به هریک از این موضوعات باعث می شود که قراردادهوشمند به اندازه کافی بهینه عمل نکند و کاربر وادار به پرداخت gasfee یا هزینه تراکنش بیشتر شود. یکی از مهمترین نکاتی که برای بهینه تر رفتار کردن قراردادهوشمند باید به آن توجه کنیم نوع هر متد است.

 $^{^{1}\,\}texttt{https://github.com/OpenZeppelin/openzeppelin-contracts}$

اگر متدی از نوع pure تعریف شود به این معنی است که به هیچ اطلاعاتی از شبکه بلاکچین نیاز ندارد و همه کی اطلاعاتی که لازم دارد را در اسکوپ ۲ خودش دارد. اگر متدی از نوع view باشد به این معنی است که به اطلاعاتش روی شبکه بلاکچین نیاز دارد اما فقط می خواهد که آنها را بخواند و نمیخواهد تغییری در آنها ایجاد کند. این دو نوع متد نیازی به پرداخت کارمزد تراکنش توسط کاربر ندارند، اما اگر در تعریف متدی ذکر نشود که یکی از این دو نوع است، اینطور در نظر گرفته می شود که نیاز به بروزرسانی اطلاعاتش در شبکه بلاکچین دارد و از کاربری که آن را فراخوانی کرده است هزینه تراکنش دریافت می شود.

۴.۱.۴ جزئیات فنی پیادهسازی

مینت کردن در این قرارداد به آدرسهای مشخص محدود نیست و همه می توانند توکن بسازند. بسیاری از قراردادها برای صرفه جویی در هزینه تراکنش کاربران اکثر اطلاعات مربوط به توکنها را در قرارداد نگه نمیدارند و فقط دادههای بسیار مهم توکن را در شبکه بلاکچین نگهداری می کنند. از آنجایی که کاپو یک قرارداد همه منظوره است و ممکن است استفادههای فراوانی داشته باشد، تصمیم گیری این مورد به عهده کاربر قرارداد گذاشته می شود.

در کاپو آیدی هر توکن از hash داده های توکن به دست می آید. این نحوه عملکرد چند مذیت ایجاد می کند. به این ترتیب هیچ دو توکنی نمی توانند داده های یکسان داشته باشند، زیرا در این صورت آیدی آن ها باید یکسان باشد و این امکان پذیر نیست زیرا آیدی توکن ها یکتاست. همچنین آیدی توکن ها دیگر ترتیبی نخواهند بود و ترتیب ساخت توکن ها مشخص نخواهد بود.

در یک قرارداد ERCV۲۱ استاندارد فقط آیدی توکنها ذخیره می شود. در کاپو علاوه بر آیدی توکنها یک map از آیدی توکنها به داده ی آنها با نام tokenDatas نیز نگهداری می شود. همچنین در کاپو map دیگری نیز از آدرس به لیست توکنهای آن آدرس با نام ownerTokens نگهداری می شود. متغیر اول کمک می کند که با داشتن آیدی یک توکن به راحتی داده های آن توکن به دست آورده شوند. متغیر دوم نیز کمک می کند که به راحتی بتوان توکنهای یک آدرس را به دست آورد. دومتغیر دیگر با نام های numberOfTokenHolders و می استفاده از قرارداد در صفحه اصلی ایلیکیشن مورد استفاده قرار می گیرند.

²Scope

متد mint به نحوی نوشته شده است که برای عموم قابل استفاده باشد. پس از محاسبه hash داده ی توکن از آن به عنوان آیدی توکن استفاده میکند، توکن را می سازد و متغیرهای tokenDatas و numberOfMintedTokens را بر وزرسانی می کند.

```
function mint(string memory data) public {
    uint256 theHash = uint256(keccak256(abi.encode(data)));
    _safeMint(msg.sender, theHash);
    _tokenDatas[theHash] = data;
    _numberOfMintedTokens++;
}
```

شکل ۱.۴: پیادهسازی تابع mint

متد afterTokenTransfer از استاندارد ERC۷۲۱ به نحوی بازنویسی ^۳ شده است که پس از هر انتقال numberOfMinted و –numberOfTokenHolders و –vownerTokens و ownerTokens و Tokens

```
21
         function _afterTokenTransfer(
22
             address from,
23
             address to,
24
             uint256 tokenId
25
         ) internal virtual override {
             if (from != address(0)) {
                 _ownerTokens[from] = removeItemFromArray(
27
28
                      tokenId,
29
                      _ownerTokens[from]
30
                 );
31
                 if (_ownerTokens[from].length == 0) {
32
                      _numberOfTokenHolders--;
33
34
35
             if (to != address(0)) {
                 _ownerTokens[to].push(tokenId);
36
                 if (_ownerTokens[to].length == 1) {
37
                     _numberOfTokenHolders++;
38
39
40
             }
```

شکل ۲.۴: پیادهسازی تابع ۲.۴

³Overwrite

متد جدیدی با نام getUserTokens نیز نوشته شده است که در استاندارد ERC۷۲۱ به صورت پیش فرض وجود ندارد. این متد با گرفتن یک آدرس و استفاده از ownerTokens و tokenDatas دو خروجی بر می گرداند، لیستی از آیدی توکنهای آدرس و لیستی از داده های توکنهای آدرس.

```
function getUserTokens(address user)

public

view

returns (uint256[] memory, string[] memory)

uint256[] memory tokens = _ownerTokens[user];

string[] memory datas = new string[](tokens.length);

for (uint256 i = 0; i < tokens.length; i++) {
    datas[i] = _tokenDatas[tokens[i]];
}

return (tokens, datas);

}
</pre>
```

شکل ۳.۴: پیادهسازی تابع getUserTokens

همچنین از آنجایی که سالیدیتی به طور پیشفرض امکان حذف یک داده از یک آرایه با داشتن مقدار آن را ندارد، عدم وجود این قابلیت هزینهبر بودن آن است، در سالیدیتی توسعه دهندگان به استفاده از map و دوری از به استفاده از قابلیت هزینهبر بودن آن است، در سالیدیتی توسعه دهندگان به استفاده از ورداد به از ویک قرارداد به از نحوه این تابلیت را ما برای نمایش نحوه ارثبری از دو یا چند قرارداد پدر، برای کاپو یک قرارداد به نام Helper نوشته شد که این قابلیت را فراهم میکند. کاپو علاوه بر ERC721 از قرارداد Helper نیز ارثبری میکند.

۲.۴ نوشتن و اجرای تستها

پیش تر اشاره شد که از مزیتهای ارثبری از کتابخانههای متنباز معروف این است که احتمال وجود خطا و مشکل امنیتی به شدت کمتر میشود. یکی از دلایل این مسئله این است که این کتابخانهها پوشش تستی به شدت بالایی دارند. به همین دلیل می توان تا حدی به عملکرد قرارداد پدر اطمینان خاطر داشت و بیشتر روی تست کردن قابلیتهای اضافه شده در قراردادهوشمند فرزند تمرکز داشت.

در کاپو برای هر عملکرد قرارداد تست نوشته شده است. یکی از ساده ترین تستهای نوشته شده تست فرآیند ساخت یک توکن ساخته می شود و سپس ساخت یک توکن ساخته می شود و سپس

```
contract Helper {
    function removeItemFromArray(
        uint256 valueToFindAndRemove,
        uint256[] memory array
    ) internal pure returns (uint256[] memory) {
        uint256[] memory auxArray = new uint256[](array.length - 1);
        uint8 found = 0;
        for (uint256 i = 0; i < array.length; i++) {
            if (array[i] != valueToFindAndRemove) {
                auxArray[i - found] = array[i];
            } else {
                found = 1;
            }
            if (found == 0) {
                return array;
            }
            return auxArray;
        }
}</pre>
```

شكل ۴.۴: پيادهسازي قرارداد Helper

با فراخوانی متد balanceOf دارایی آدرس سازنده توکن بررسی میشود و انتظار میرود که پس از ساخت یک توکن، دارایی آدرس سازنده توکن یک باشد. این تست را میتوان در تصویر زیر مشاهده کرد.

```
contract("Cappu", (accounts) => {
       it("should mint a token", async () => {
         const cappu = await Cappu.deployed();
         await cappu.mint("Hey there!", { from: accounts[0] });
8
         const balance = await cappu.balanceOf(accounts[0], {
10
           from: accounts[0],
11
         });
12
13
         assert.equal(balance, 1);
14
       });
     });
```

شکل ۵.۴: نمونه یکی از تستهای قرارداد کاپو

پس از نوشته شدن تستها می توان آنها را با اجرای دستور truffle test اجرا کرد. این دستور پس از اجرای تستها نتیجه و زمان اجرای هر تست را به عنوان خروجی نمایش می دهد. نمونه اجرای این دستور را می توان در تصویر زیر مشاهده کرد.

شكل ٤.۴: نمونه خروجي اجراي تستهاي قرارداد

۳.۴ دیپلوی قرارداد روی شبکه تستی Ropsten

تا اینجا قراردادهوشمند نوشته و تست شده است، در این مرحله روی شبکه تستی Ropsten دیپلوی می شود. فرآیند دیپلوی شدن کاپو به کمک فریمورک ترافل قدم به قدم شرح داده می شود.

۱.۳.۴ یافتن آدرس یکی از نودهای شبکه برای ارسال تراکنش دیپلوی قرارداد به آن

آدرس نودهای یک شبکه بلاکچین همه به صورت عمومی در دسترس هستند زیرا نودها باید بتوانند یکدیگر را ببینند. راههای زیادی برای به دست آوردن آدرس یک نود وجود دارد. یکی از آسان ترین راههای به دست آوردن آدرس یک نود وجود دارد. یکی از نودهای شبکه مراجعه به و بسایت ماینر است. برای این پروژه از و بسایت Moralis برای پیدا کردن آدرس نود شبکه استفاده شد.

۲.۳.۴ اضافه شدن اطلاعات شبکه مورد نظر به تنظیمات ترافل

هنگامی که به کمک دستور truffle init یک پروژه ترافل ساخته می شود، فایلی با نام truffle-config.js ساخته می شود. تنظیمات مربوط به ترافل در این فایل نوشته شده است. برای این که ترافل شبکه مورد نظر را

⁴ https://moralis.io

شکل ۷.۴: دریافت آدرس یکی از نودهای شبکه از وبسایت Moralis

بشناسد باید اطلاعات آن شبکه در این فایل نوشته و شبکهی جدیدی تعریف شود. برای تعریف شبکه از آدرسی که در گام قبل به دست آمد استفاده می شود و مانند تصویر زیر شبکهی جدیدی تعریف می شود.

شکل ۸.۴: اضافه کردن شبکه Ropsten به شبکههای ترافل

۳.۳.۴ آماده شدن ۳.۳.۴

برای انجام این پروژه به کمک دستور npm mnemonics یک آدرس تستی ساخته می شود. این دستور، mnemonics متناسب با این آدرس را به عنوان خروجی می دهد. دقت کنید که برای دیپلوی روی شبکه اصلی 0 حتما باید از mnemonics مربوط به یک کیف پول واقعی استفاده شود و اطلاعات ان در اختیار کسی قرار نگیرد.

⁵Mainnets

```
→ cappu git:(main) x npx mnemonics
flavor bleak joy tired bid habit regret prison nasty acoustic amount thought
```

شکل ۹.۴: ایجاد mnemonics تستی

۴.۳.۴ استفاده از کیف یول ایجاد شده در تنظیمات ترافل

ترافل برای این که بتواند از کیف پول برای انجام تراکنش ها استفاده کند باید به mnemonics یا کلید خصوصی آن دسترسی داشته باشد. به این منظور فایلی با نام secrets.json در دایرکتوری اصلی برنامه ساخته می شود و mnemonics کیف پول به شکل زیر در آن قرار داده می شود.

شکل ۱۰.۴: قراردادن mnemonics در فایل ۱۰.۴

سپس در تنظیمات ترافل باید ذکر شود که می تواند آدرس کیف پول را در این آدرس ییدا کند.

```
25 |
26   const mnemonic = require("./secrets.json").mnemonic;
27
```

شكل ۱۱.۴: معرفي فايل secrets.json در تنظيمات ترافل

hdwallet نصب کیف یول ۵.۳.۴

ترافل برای استفاده از mnemonics کیف پول ما نیاز به نصب پکیج مانیاز به نصب پکیج کاربری های یک کیف پول دیجیتال از جمله امضا و ارسال تراکنش بر روی شبکه بلاکچین را در اختیار ترافل کاربری های یک کیف پول دیجیتال از جمله امضا و ارسال تراکنش بر روی شبکه بلاکچین را در اختیار ترافل قرار می دهد. این پکیج با اجرای دستور pm install –save-dev @truffle/hdwallet-provider نصب می شود که از این کیف پول می شود که از این کیف پول استفاده شود.

```
20
21   const HDWalletProvider = require("@truffle/hdwallet-provider");
22
```

شكل ۱۲.۴: استفاده از كيفيول hdwallet در تنظيمات ترافل

۶.۳.۴ انتخاب شبکه اضافه شده

حال هنگام ورود به خط فرمان ترافل مانند تصویر زیر شبکه مورد نظر انتخاب می شود.

```
→ back git:(main) x truffle console --network ropsten
truffle(ropsten)> |
```

شكل ۱۳.۴: ورود به خط فرمان ترافل با انتخاب شبكه Ropsten

۷.۳.۴ بررسی آدرس کیف پول و موجودی آن

برای دیپلوی یک قرارداد هوشمند باید آدرس دیپلوی کننده آن بتواند هزینه تراکنش دیپلوی را پرداخت کند. در صورتی که دیپلوی بر روی یک شبکه تستی انجام میشود باید با استفاده از یک faucet روی شبکه تستی به میزان کافی یول تستی دریافت شود.

برای دریافت آدرسهای کیف پول از دستور زیر در خط فرمان ترافل استفاده می شود.

```
truffle(ropsten)> await web3.eth.getAccounts()
[
    '0xF51f5f41BfA8ADa57a43862cBc18dA4750AecB4c',
    '0x909ebC92395FC4335c35894C7DDc8bfFFDCeEF06',
    '0x48156708DF687C7a8F97C951b5E734E132e891D1',
    '0xF1C6c91D80032528e2C01F73DAd588D11DA0f17d',
    '0xA6f899d10B4E1c1195AFD1C6f29E4e539C828450',
    '0xB63191Dd13637c024C7F1F339F254F0F13d4bB34',
    '0x1699Ba468F7E5af64f510B323537bbcd107373F9',
    '0x6eDd855A6D2d3De5D96749e1bD3E9580c33468E7',
    '0x8A97C0bfC3086DFcd9E1B25D69A1A238A1290BE6',
    '0xc4838dF4d46862d1226BDC409EbE8395cA6fE703']
```

شکل ۱۴.۴: دریافت آدرسهای کیفپول در خط فرمان ترافل

برای دریافت مانده حساب آدرس، دستور زیر در خط فرمان ترافل اجرا میشود.

truffle(ropsten)> await web3.eth.getBalance("0xF51f5f41BfA8ADa57a43862cBc18dA4750AecB4c")
'790887817599784390'
truffle(ropsten)>

شكل ۱۵.۴: دريافت موجودي كيف پول در خط فرمان ترافل

۸.۳.۴ دیپلوی قراردادهوشمند روی شبکه بلاکچین

پس از اطمینان از توانایی پرداخت کارمزد تراکنش با استفاده از دستور migrate در خط فرمان ترافل قراردادهوشمند روی شبکه بلاکچین دییلوی می شود.

۹.۳.۴ اطمینان از صحت دیپلوی قراردادهوشمند

س از اتمام دیپلوی قرارداد هوشمند برای اطمینان از به درستی انجام شدن فرآیند دیپلوی قرارداد، می توان از جستجوگرهای شبکه 8 بلاکچین استفاده کرد. برای مثال قرارداد هوشمند کاپو بر روی شبکه Ropsten دیپلوی شده و شده است، که با رفتن به وبسایت اتراسکن V و قراردادن آن روی شبکه Ropsten می توان قرارداد دیپلوی شده و تراکنش های آن را مشاهده کرد.

۴.۴ توسعه فرانت، اتصال به قراردادهوشمند و فرآیند دیپلوی

برای توسعه فرانتاند اپلیکیشن، React به عنوان فریمورک مورد استفاده انتخاب شد. ترکیب این فریمورک با استفاده از کتابخانه material-ui که کمک می کند در زمان کوتاه بتوان ظاهری زیبا و یکدست در اپلیکیشن ایجاد کرد و کتابخانه Web3JS که فرانتاند را به کیف پول کاربر و شبکه بلاکچین متصل می کند، همهی قابلیتهای مورد نیاز برای توسعه یک فرانتاند زیبا و کارآمد را در اختیار توسعه دهنده قرار می دهد.

⁶Block Explorers

⁷ https://etherscan.io

شکل ۱۶.۴: مشاهده قراداد کاپو در Etherscan روی شبکه

در پوشه اصلی فرانتاند فایلی با عنوان config.js وجود دارد. در این فایل علاوه بر ABI قراردادهوشمند سایر اطلاعات مورد نظر نیز ذخیره می شود. هنگام توسعه باید دقت شود که این فایل به قرارداد روی شبکه لوکال متصل شود.

برای استفاده از Web3JS و اتصال به کیفپول کاربر یک فایل به نام connect.js ساخته شد، تمامی اعمال ارتباطی با کیف پول کاربر به عنوان چند تابع در این فایل جمع آوری شده اند، این فایل به صورت یک آداپتور میان Web3JS و کد کاپو عمل می کند. تمامی قابلیت های مورد نیاز مانند اتصال به کیفپول و ورود $^{\Lambda}$ کاربر، خروج $^{\Phi}$ کاربر، گرفتن آدرس و شبکه ی کیف پول و ... در این فایل انجام می شود.

فرانت اند کاپو پس از تایید کاربر و دریافت آدرس کیف پول او، آن را در sessionStorage ذخیره می کند، از این طریق متوجه می شود که آیا کاربر وارد شده است یا خیر و با چه آدرسی. کاپو پیش از اتصال به کیف پول کاربر چک می کند که کیف پول روی شبکه یکسانی با شبکه فعلی کاپو باشد و در غیر این صورت به کاربر هشدار می دهد. همچنین در فرانت اند کاپو برای داشتن تجربه کاربری بهتر تلاش شده است. نکاتی مانند عدم نمایش قابلیت هایی مانند ساخت و ارسال توکن هنگامی که کیف پول کاربر به اپلیکیشن متصل نیست، جابه جایی آسان میان صفحات به کمک ، responsive طراحی responsive برای رایانه و گوشی موبایل، نمایش ماها و و دمایش ها و و دمایش به کاربر، نمایش المطاق کاربر .

⁸Login

⁹Logout

برای این که کاربرها بتوانند با قراردادهوشمند ارتباط برقرار کنند نیاز است که فرانتاند اپلیکیشن در سروری بارگذاری شود. خوشبختانه گیتهاب قابلیت به نام Github Pages در اختیار کاربرانش قرار می دهد که به کمک آن می توان فرانتاند اپلیکیشن را در آدرسی متناسب با آدرس مخزن کد در گیتهاب بارگذاری کرد و کاربران با رجوع به آن آدرس می توانند فرانتاند اپلیکیشن را ببینند و از آن استفاده کنند.

این قابلیت گیتهاب در واقع به این صورت عمل می کند که یک برنچ به نام gh-pages در gh-pages در واقع به این صورت عمل می کند که یک برنچ به نام gh-pages در و فایلهای پروژه می گیرد و فایلهای پروژه می شود، یک بیلد از پروژه می گیرد و فایلهای خروجی بیلد روی این برنچ پوش می شوند. سپس این فایلها روی آدرسی متناسب با آدرس repository دیپلوی می شوند. برای مثال آدرس ریپازیتوری و فرانت اند اپلیکیشن کاپو به صورت زیر است:

- آدرس ریبازیتوری: https://github.com/bshramin/cappu
 - آدرس فرانت اند: https://bshramin.github.io/cappu

البته ديپلوي شدن فرانت اند روي Github Pages با ايجاد مشكلاتي در routing همراه بود كه رفع شدند.

فصل ۵

بحث و نتیجهگیری

۱.۵ مقدمه

تاكنون شما در پاياننامهاي كه مشغول نوشتن آن هستيد، پاسخ چهار سؤال را دادهايد:

- چرا تحقیق را انجام دادید؟ (مقدمه)
- دیگران در این زمینه چه کارهایی کردهاند و تمایز کار شما با آنها؟ (مرور ادبیات)
 - چگونه تحقیق را انجام دادید؟ (روشها)
 - چه از تحقیق به دست آوردید؟ (یافتهها)

حال زمان آن فرا رسیده که با توجه به تمامی مطالب ذکر شده، در نهایت به سؤال آخر پاسخ دهید:

• چه برداشتی از یافتههای تحقیق کردید؟ (نتیجهگیری)

در واقع در این بخش، هدف، پاسخ به این سوال است که چه برداشتی از یافته ها کردید و این یافته ها چه فایده ای دارند؟

نتیجه گیری مختصری بنویسید. ارائهٔ داده ها، نتایج و یافته ها در فصل چهارم ارائه می شود. در این فصل تفاوت، تضاد یا تطابق بین نتایج تحقیق با نتایج دیگر محققان باید ذکر شود. تفسیر و تحلیل نتایج نباید بر اساس

حدس و گمان باشد، بلکه باید برمبنای نتایج عملی استخراج شده از تحقیق و یا استناد به تحقیقات دیگران باشد. با توجه به حجم و ماهیت تحقیق و با صلاحدید استاد راهنما، این فصل می تواند تحت عنوانی دیگر بیاید یا به دو فصل جداگانه با عناوین مناسب، تفکیک شود. این فصل فقط باید به جمع بندی دست آوردهای فصل های سوم و چهارم محدود و از ذکر موارد جدید در آن خودداری شود. در عنوان این فصل، به جای کلمهٔ «تفسیر» می توان از واژگان «بحث» و «تحلیل» هم استفاده کرد. این فصل شاید مهم ترین فصل پایان نامه باشد.

در این فصل خلاصهای از یافتههای تحقیق جاری ارائه می شود. این فصل می تواند حاوی یک مقدمه، شامل مروری اجمالی بر مراحل انجام تحقیق باشد (حدود یک صفحه). مطالب پاراگرافبندی شود و هر پاراگراف به یک موضوع مستقل اختصاص یابد. فقط به ارائهٔ یافتهها و دست آوردها بسنده شود و از تعمیم بی مورد نتایج خودداری شود. تا حد امکان از ارائهٔ جداول و نمودارها در این فصل اجتناب شود. از ارائهٔ عناوین کلی در حوزه تحقیق و قسمت پیشنهاد تحقیقات آتی خودداری شود و کاملاً در چارچوب و زمینهٔ مربوط به تحقیق جاری باشد. این فصل حدود ۱۵-۱۵ صفحه است.

۲.۵ محتوا

به ترتیب شامل موارد زیر است:

۱.۲.۵ جمعبندی

خلاصهای از تمام یافتهها و دست آوردهای تحقیق جاری است.

۲.۲.۵ نوآوری

این قسمت، نوآوری تحقیق را بر اساس یافته های آن تشریح می کند. که دارای دو بخش اصلی است:

- ۱. نوآوری تئوری، یعنی تمایز تئوریک کار با کارهای محققین قبلی.
- ۲. نوآوری عملی، یعنی توصیههای محقق به صنعت برای بهبود بخشیدن به کارها، بر اساس یافتههای تحقیق.

۳.۲.۵ پیشنهادها

این بخش، عناوین و موضوعات پیشنهادی را برای تحقیقات آتی، بیشتر در زمینهٔ مورد بحث در آینده ارائه می کند.

۴.۲.۵ محدودیتها

در اینجا انواع محدودیتهای تحقیق تشریح می شوند؛ از جمله، محدودیتهایی که کنترل آن از عهده محقق خارج است، مانند انتخاب نوع یافتهها؛ و همچنین دیگر محدودیتهایی که کنترل آن در دست محقق است، مانند موضوع و محل تحقیق و تأثیر این محدودیتها بر یافتههای تحقیق در این قسمت شرح داده می شوند.

فصل ۶

آشنایی سریع با برخی دستورات لاتک

در این فصل ویژگیهای مهم و پرکاربرد زیپرشین و لاتک معرفی میشود. برای راهنمایی بیشتر و به کاربردن ویژگیهای پیشرفته تر به راهنمای زیپرشین و راهنمای لاتک مراجعه کنید. برای آگاهی از دستورات لاتک که این خروجی را تولید کرده اند فایل appendix1.tex را ملاحظه فرمایید. ۱

۱.۶ بندها و زیرنویسها

هر جایی از نوشتهٔ خود، اگر میخواهید به سر سطر بروید و یک بند (پاراگراف) تازه را آغاز کنید، باید یک خط را خالی بگذارید ۲ مانند این:

حالا که یک بند تازه آغاز شده است، یک زیرنویس انگلیسی مینویسیم!

ابیشتر مطالب این بخش از مثال xepersian_example.tex گرفته شدهاند که توسط آقای امیرمسعود پورموسی آماده شده است. آیعنی دوبار باید کلید Enter را بزنید.

³English Footnote!

۲.۶ فرمولهای ریاضی

اینجا هم یک فرمول می آوریم که شماره دارد:

$$A = \frac{c}{d} + \frac{q^{\mathsf{T}}}{\sin(\omega t) + \Omega_{\mathsf{TT}}} \tag{1.9}$$

در لاتک می توان به کمک فرمان {}label به هر فرمول یک نام نسبت داد. در فرمول بالا نام eq:yek را برایش الاتک می توان به کمک فرمان {\ref{eq:yek} به هر فرمول یک نام ما را قادر می کند که بعداً بتوانیم با فرمان {\ref{eq:yek} به آن فرمول با شماره ارجاع دهیم. یعنی بنویسیم فرمول ۱۰.۶. لاتک خودش شمارهٔ این فرمول ها را مدیریت می کند. ۲ این هم یک فرمول که شماره ندارد:

$$A = |\vec{a} \times \vec{b}| + \sum_{n=0}^{\infty} C_{ij}$$

این هم عبارتی ریاضی مانند $\sqrt{a^{\mathsf{Y}} + b^{\mathsf{Y}}}$ که بین متن می آید.

۱.۲.۶ یک زیربخش

این زیربخش ۱.۲.۶ است؛ یعنی یک بخش درون بخش ۲.۶ است.

۱.۱.۲.۶ یک زیرزیربخش

این هم یک زیرزیربخش است. در لاتک می توانید بخشهای تودرتو در نوشته تان تعریف کنید تا ساختار منطقی نوشته را به خوبی نشان دهید. می توانید به این بخشها هم با شماره ارجاع دهید، مثلاً بخش فرمولهای ریاضی شماره اش ۲.۶ است.

^۴یعنی اگر بعداً فرمولی قبل از این فرمول بنویسیم، خودبهخود شمارهٔ این فرمول و شمارهٔ ارجاعها به این فرمول یکی زیاد میشود. دیگر نگران شمارهگذاری فرمولهای خود نباشید!

۳.۶ نوشتههای فارسی و انگلیسی مخلوط

نوشتن یک کلمهٔ انگلیسی بین متن فارسی بدیهی است، مانند Example در این جمله. ^۵ نوشتن یک عبارت چندکلمهای مانند More than one word کمی پیچیده تر است.

اگر ناگهان تصمیم بگیرید که یک بند کاملاً انگلیسی را بنویسید، باید:

This is an English paragraph from left to right. You can write as much as you want in it.

۴.۶ افزودن تصویر به نوشته

پروندهٔ تصویر دلخواه خود را در کنار پروندهٔ tex قرار دهید. سپس به روش زیر تصویر را در نوشتهٔ خود بیاورید:

\includegraphics{YourImageFileName}

به تصویرها هم مانند فرمولها و بخشها می توان با شماره ارجاع داد. مثلاً تصویر ۱.۶ یک شیر علاقه مند به لاتک را در حال دویدن نشان می دهد. برای جزئیات بیشتر دربارهٔ روش گذاشتن تصویرها در نوشته باید راهنماهای لاتک را بخوانید.

شکل ۱.۶: در این تصویر یک شیر علاقهمند به لاتک را در حال دویدن می بینید.

مهرچند بهتر است باز هم آن کلمه را مانند Example در این جمله بنویسید.

به تصویرها هم مانند فرمولها و بخشها میتوان با شماره ارجاع داد. مثلاً تصویر بالا شمارهاش ۱.۶ است. برای جزئیات بیشتر دربارهٔ روش گذاشتن تصویرها در نوشته باید راهنماهای لاتک را بخوانید.

۵.۶ محیطهای شمارش و نکات

برای فهرست کردن چندمورد، اگر ترتیب برایمان مهم نباشد:

- مورد یکم
- مورد دوم
- مورد سوم

و اگر ترتیب برایمان مهم باشد:

- ۱. مورد یکم
- ۲. مورد دوم
- ٣. مورد سوم

مى توان موردهاى تودرتو داشت:

- ۱. مورد ۱
- ۲. مورد ۲
- (آ) مورد ۱ از ۲
- (ب) مورد ۲ از ۲
- (ج) مورد ۳ از ۲
 - ۳. مورد ۳

شمارهگذاری این موردها را هم لاتک انجام میدهد.

۶.۶ تعریف و قضیه

برای ذکر تعریف، قضیه و مثال مثالهای ذیل را ببینید.

تعریف ۱.۶.۶. مجموعه همه ارزیابی های (پیوسته) روی (X, τ) ، دامنه توانی احتمالی X نامیده می شود. قضیه ۲.۶.۶ (باناخ-آلااغلو). اگر V یک همسایگی \circ در فضای برداری تو پولوژیکی X باشد و

$$K = \{ \Lambda \in X^* : |\Lambda x| \leqslant \mathsf{N}; \, \forall x \in V \}, \tag{7.9}$$

آنگاه K، ضعیف*-فشرده است که در آن، X دوگان فضای برداری توپولوژیکی X است به طوری که عناصر آن، تابعی های خطی پیوسته روی X هستند.

تساوی (۲.۶) یکی از مهمترین تساوی ها در آنالیز تابعی است که در ادامه، به وفور از آن استفاده می شود. مثال ۲.۶.۶. برای هر فضای مرتب، گردایه

$$U := \{U \in O : U = \uparrow U\}$$

از مجموعه های بالایی باز، یک توپولوژی تعریف می کند که از توپولوژی اصلی، درشت تر است.

حال تساوي

$$\sum_{n=1}^{+\infty} \mathbf{Y}^n x + \mathbf{V} x = \int_1^n \mathbf{A} n x + \exp\left(\mathbf{Y} n x\right) \tag{\text{$\Upsilon.$9}}$$

را در نظر بگیرید. با مقایسه تساوی (۳.۶) با تساوی (۲.۶) می توان نتیجه گرفت که ...

۷.۶ چگونگی نوشتن و ارجاع به مراجع

در لاتک به راحتی می توان مراجع خود را نوشت و به آنها ارجاع داد. به عنوان مثال برای معرفی کتاب گنزالس [؟] به عنوان یک مرجع می توان آنرا به صورت زیر معرفی نمود: \bibitem{Gonzalez02book}

Gonzalez, R.C., and Woods, R.E. {\em Digital Image Processing}, 3rd ed.. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

در دستورات فوق Gonzalez02book برچسبی است که به این مرجع داده شده است و با استفاده از دستور (cite{Gonzalez02book} می توان به آن ارجاع داد؛ بدون این که شماره اش را در فهرست مراجع مان بدانیم. اگر این اولین مرجع ما باشد در قسمت مراجع به صورت زیر خواهد آمد:

[1] Gonzalez, R.C., and Woods, R.E. *Digital Image Processing*, 3rd ed.. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

این شیوهٔ تعریف مراجع بسیار ابتدایی است و اگر فرمت مراجع، ترتیب یا تعداد آنها را خواسته باشید تغییر دهید، به عنوان مثال ابتدا حرف اول نام نویسنده بیاید و سپس نام خانوادگی، باید همه کارها را به صورت دستی انجام دهید! چون در یک پروژه/پایاننامه/رساله یا مقاله باید کنترل کاملی بر مراجع خود داشته باشید و به راحتی بتوانید قالب مراجع را عوض کنید، بنابراین می بایست از BibTEX استفاده کنید که در پیوست ۸ به آن پرداخته خواهد شد.

فصل ٧

جدول، نمودار و الگوریتم در لاتک

در این بخش نمونه مثالهایی از جدول، شکل، نمودار، الگوریتم و معادلات ریاضی را در لاتک خواهیم دید. دقت کنید که در پایاننامهها و مقالات، باید قاعدهٔ «ارجاع به جلو^۱» رعایت شود؛ یعنی ابتدا در متن به شمارهٔ شکل، جدول یا معادله اشاره شود و بعد از آن (زیر آن) خود شکل، جدول یا معادله رسم شود. (توضیحات بیشتر در قسمت ۷.۷).

١.٧ جدول

دستور اصلی برای رسم جدول در لاتک tabular میباشد که جدول (۱.۷) با استفاده از آن کشیده شده است؛ در tabular عرض جدول برابر با مجموع عرض ستونها و حداکثر مساوی عرض متن است.

جدول ۱.۷: مدلهای تبدیل.

توضيح	تبديل مختصات	درجه آزادی	نام مدل
انتقال دو بعدي	$x' = x + t_x$ $y' = y + t_y$	۲	انتقالى
انتقالى+دوران	$x' = x \cos \theta - y \sin \theta + t_x$ $y' = x \sin \theta + y \cos \theta + t_y$	٣	اقلیدسی

¹Forward Referencing

برای اینکه عرض جدول قابل کنترل باشد، باید از دستورات tabulary ،tabularx یا tabu استفاده کرد که راهنمای آنها در اینترنت وجود دارد. مثلاً جدول ۲.۷ با tabularx رسم شده که عرض جدول در آن ثابت بوده و ستونهای از نوع X عرض خالی جدول را پر میکنند.

	تبديل مختصات	درجه آزادی	نام مدل
اقليدسى+تغيير مقياس	$x' = sx \cos \theta - sy \sin \theta + t_x$ $y' = sx \sin \theta + sy \cos \theta + t_y$	۴	مشابهت
مشابهت+اریبشدگی	$x' = a_{11}x + a_{17}y + t_x$ $y' = a_{71}x + a_{77}y + t_y$	۶	آفين

جدول ۲.۷: مدلهای تبدیل دیگر.

۲.۷ معادلات ریاضی و ماتریسها

تقریباً هر آنچه دانشجویان برای نوشتن فرمولهای ریاضی لازم دارند، در کتاب mathmode آمده است. کافیست در خط فرمان، دستور زیر را وارد کنید:

texdoc mathmode

متن زیر شامل انواعی از اشیاء ریاضی است که با ملاحظه کدش می توانید با دستورات آن آشنا شوید. شناخته شده ترین روش تخمین ماتریس هوموگرافی الگوریتم تبدیل خطی مستقیم (DLT²) است. فرض کنید چهار زوج نقطهٔ متناظر در دو تصویر در دست هستند، $\mathbf{x}_i' + \mathbf{x}_i'$ و تبدیل با رابطهٔ $\mathbf{x}_i' + \mathbf{x}_i'$ نشان داده می شود که در آن:

$$\mathbf{x}_i' = (x_i', y_i', w_i')^\top$$

 $H = \left[egin{array}{cccc} h_{1} & h_{7} & h_{7} \ h_{7} & h_{\Delta} & h_{5} \ h_{V} & h_{\Lambda} & h_{3} \end{array}
ight]$

و

²Direct Linear Transform

رابطه زیر را برای الگوریتم (۱.۷) لازم داریم.

$$\begin{bmatrix} \mathbf{o}^{\top} & -w_{i}'\mathbf{x}_{i}^{\top} & y_{i}'\mathbf{x}_{i}^{\top} \\ w_{i}'\mathbf{x}_{i} & \mathbf{o}^{\top} & -x_{i}'\mathbf{x}_{i}^{\top} \\ -y_{i}'\mathbf{x}_{i}^{\top} & x_{i}'\mathbf{x}_{i}^{\top} & \mathbf{o}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{h}^{\mathsf{Y}} \\ \mathbf{h}^{\mathsf{Y}} \\ \mathbf{h}^{\mathsf{Y}} \end{pmatrix} = \mathbf{o}$$

$$(1.4)$$

٣.٧ الگوريتم

۱.۳.۷ الگوریتم ساده با دستورهای فارسی

با مفروضات فوق، الكوريتم DLT به صورت نشان داده شده در الكوريتم (١.٧) خواهد بود.

الگوريتم ۱.۷ الگوريتم DLT براي تخمين ماتريس هوموگرافي.

 $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ ورودى: $n \geq 4$ زوج نقطهٔ متناظر در دو تصویر $n \geq 4$

 $\mathbf{x}_i' = H\mathbf{x}_i$ ماتریس هوموگرافی H به نحوی که:

۱: برای هر زوج نقطهٔ متناظر $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ ماتریس \mathbf{A}_i را با استفاده از رابطهٔ ۱.۷ محاسبه کنید.

۲: ماتریسهای ۹ ستونی ${f A}_i$ را در قالب یک ماتریس ۹ ${f A}$ ستونی ترکیب کنید.

۳: تجزیهٔ مقادیر منفرد (SVD) ماتریس A را بدست آورید. بردار واحد متناظر با کمترین مقدار منفرد جواب h

۴: ماتریس هوموگرافی H با تغییر شکل h حاصل خواهد شد.

۲.۳.۷ الگوریتم پیچیده و تودرتو با دستورهای فارسی

الگوریتم ۲.۷، یک الگوریتم ترکیبی و تودرتو است که با کمک دستورهای بستهٔ algorithmic نوشته شده ست.

۳.۳.۷ الگوریتم با دستورهای لاتین

الگوريتم ٣.٧ يك الگوريتم با دستورهاي لاتين است.

الگوريتم ۲.۷ الگوريتم اجراي برنامهٔ شبيهسازي

ورودی: زمان t_{max} به عنوان زمان لازم برای انجام شبیه سازی،

ورودی: گراف شبکه برای شبیه سازی،

خروجي: جدول تغييرات گراف از لحظه ٥ تا . ٢

۱: برای تمام لحظات در بازهٔ t_{max} انجام بده

ن برای تمام پیوندها انجام بده

٣: محاسبهٔ ضریب و نرخ انتقال پیوند

۴: محاسبهٔ کیفیت و نرخ یادگیری

۵: پایان حلقهٔ برای

۶: **برای** تمام گرهها انجام بده

٧: محاسبهٔ نرخ انتقال گره

۸: محاسبهٔ وضعیت جدید

۹: پایان حلقهٔ برای

۱۰: اگر تغییرات از مقدار δ کمتر است آنگاه

۱۱: شکستن حلقه $\{ |$ این شرط برای پایان قبل از رسیدن به محدودیت زمانی است، اگر تغییرات کمتر از δ باشد δ

۱۲: وگرنه اگر زمان اجرای برنامه بیش از حد طول کشیده و ۱۰۰ t > 1 آنگاه

۱۳: شكستن حلقه

۱۴: پایان شرط اگر

۱۵: پایان حلقهٔ برای

۱۶: **چاپ کن** زمان اجرای برنامه

۱۷: بازگردان ماتریس تغییرات زمانی

الگوريتم ۳.۷ الگوريتم RANSAC براي تخمين ماتريس هوموگرافي.

Require: $n \ge 4$ putative correspondences, number of estimations, N, distance threshold T_{dist} .

Ensure: Set of inliers and Homography matrix H.

- 1: **for** k = 1 to N **do**
- 2: Randomly choose 4 correspondence,
- 3: Check whether these points are colinear, if so, redo the above step
- 4: Compute the homography H_{curr} by DLT algorithm from the 4 points pairs,
- 5: ...
- 6: end for
- 7: Refinement: re-estimate H from all the inliers using the DLT algorithm.

۴.۷ کد

درج کد به زبانهای مختلف به سادگی امکانپذیر است. برنامه ۱.۷ یک قطعه کد MATLAB را نشان میدهد.

```
% define a continuous function
f = '4*sin(2*pi*t)';
% plot a figure
ezplot(f);
4
```

برنامهٔ ۱.۷: نمونه کد MATLAB

۵.۷ تصویر

نمونهٔ یک تصویر را در فصل قبل دیدیم. دو تصویر شیر کنار هم را نیز در شکل ۱.۷ مشاهده می کنید.

شکل ۱.۷: دو شیر

۶.۷ نمودار

لاتک بسته هایی با قابلیت های زیاد برای رسم انواع مختلف نمودارها دارد. مانند بسته های Tikz و PSTricks. توضيح اينها فراتر از اين ييوست كوچك است. " يك نمودار رسم شده با بسته TikZ در شكل ٢.٧ نشان داده شده

نحوه قرارگیری اشیای شناور ٧.٧

شكلها، جداول و الگوريتمها در لاتك اشياي شناور محسوب ميشوند؛ يعني خود لاتك تصميم ميگيرد آنها را در کجای صفحه ترسیم کند تا زیباتر باشد. اما میتوان به لاتک توصیه کرد که آن را در قسمت خاصی از صفحه رسم كند. براى اينكه قاعدهٔ «ارجاع به جلو» رعايت شود بايد فقط از پرچم [ht] استفاده كرد، كه مى گويد اگر جا شد شکل را دقیقاً در همین مکان و در غیراینصورت در بالای صفحه بعد رسم کن. بنابراین دستورات درج تصویر، جدول و الگوریتم به صورت زیر باید باشند:

\begin{figure/table/algorithm}[ht]

\end{figure/table/algorithm}

۳ مثال هایی از بکارگیری بسته Tikz را می توانید در /nttp://www.texample.net/tikz/examples ببینید. توصیه می شود دانشجویانی که قصد درج اشکالی مانند گراف را در سند خود دارند، مثالهایی از سایت مذکور را ملاحظه فرمایند.

شكل ۲.۷: يك نمودار زيبا با ارقام فارسى و قابليت بزرگنمايي بسيار، بدون از دست دادن كيفيت.

فصل ۸

مراجع، واژهنامه و حاشیهنویسی

۱.۸ مراجع و نقل قولها

منابع پایاننامه، پایه و اساس تحقیق شما به حساب می آیند و ضرورت انجام مطالعه و روشهای به کار رفته در بسیاری از قسمتهای آن، به کمک منابع صورت می گیرد. در استفاده از مراجع علمی در پایاننامه، باید سعی کنید بیشتر از منابع چاپشده و مهم استفاده کنید و ارجاع به دادههای چاپ نشده، خلاصهها و پایاننامهها، سبب بههم خوردگی و کاهش اعتبار قسمت ارجاع منابع می شود. استفاده از منابع و نقل قولهایی به تحقیق شما ارزش می دهند که در راستای هدف تحقیق بوده و به آن اعتبار ببخشند. برخی از دانش جویان تصوّر می کنند که کثرت نقل قولها و ارجاعات زیاد، مهم ترین معیار علمی شدن پایاننامه است؛ حال آنکه استناد به تعداد کثیری از منابع بدون مطالعه دقیق آنها و استفادهٔ مستقیم در پایاننامه، می تواند نشان دهندهٔ عدم احساس امنیت نویسنده باشد!

دو روش برای استفاده از نتایج، جملات، داده ها و روش های دیگران وجود دارد. یکی نقل قول مستقیم و دقیق است و دیگری استفاده غیر مستقیم در متن مقاله، که در ادامه به قواعد این دو نوع نقل قول و ارجاع دهی اشاره می کنیم:

نقل قول مستقیم: نقل قول مستقیم باید دقیق و بدون هیچ تغییری در جملات باشد. بهتر است این گونه نقل قول ها تا حد امکان کوتاه باشد. جملات کوتاه داخل گیومه قرار می گیرند و باید به منبع دقیق آن، طبق روش ارجاع دهی به منابع، اشاره شود. به عنوان مثال در [؟] آمده است که: «با استفاده از فیلد AUTHORFA می توان معادل فارسی نام نویسندگان مقالات لاتین را در متن داشت. معمولاً در اسناد فارسی خواسته می شود که پس از ذکر معادل فارسی نام نویسنده، نام لاتین نویسنده (ها) به عنوان پاورقی درج شود [؟].»

نقل قول غیر مستقیم: نقل قول غیر مستقیم به معنی استفاده از ایده ها، نتایج، روش ها و داده های دیگران در درون متن با روند پایان نامه، ولی به سبک خودتان و متناسب و هماهنگ با روند پایان نامهٔ شماست. در این حالت نیز باید متناسب با شیوهٔ ارجاع دهی به آن استناد شود.

با توجه به وجود سبکهای مختلف ارجاع دهی، باید روش قابل قبول و یکسانی در طول پایان نامه برای اشاره به مراجع در متن و همچنین تهیه فهرست مراجع در انتهای پایان نامه بکار رود. مثلاً برای پایان نامههای مهندسی می توان از سبک ارجاع دهی IEEE یا acm استفاده کرد. طبیعتاً باید تناظر یک به یک بین فهرست مراجع در انتهای گزارش و مراجع مورد استفاده در متن باشد ۲.

برای سهولت مدیریت مراجع پروژه/پایاننامه/رساله ، اکیداً توصیه می شود از یک ابزار «مدیریت منابع» (با خروجی BibT_EX) همچون PrdNote ،Zotero ،Mendeley یا ۱۳۵۲

Bib T_E X مدیریت مراجع با ۱.۱.۸

در بخش ۷.۶ اشاره شد که با دستور bibitem می توان یک مرجع را تعریف نمود و با فرمان cite/به آن ارجاع داد. این روش برای تعداد مراجع زیاد و تغییرات آنها مناسب نیست. برای مدیریت منابع زیاد، سه بستهٔ BibTeX (چدید و منعطف پذیر) روش برای natbib (جدید و منعطف پذیر) و BibLaTeX (جدید و منعطف پذیر) وجود دارند. در ادامه توضیحاتی در مورد مدیریت منابع با BibTeX و BibTeX در زی پرشین خواهیم آورد که همراه با توزیعهای معروف تِک عرضه می شوند ".

یکی از روشهای قدرتمند و انعطاف پذیر برای نوشتن مراجع مقالات و مدیریت مراجع در لاتک، استفاده از BibTeX است. روش کار با بیبتک به این صورت است که مجموعهٔ همهٔ مراجعی را که در پروژه/پایان نامه/رساله استفاده کرده یا خواهیم کرد، در پروندهٔ جداگانهای با پسوند bib نوشته و به آن فایل در سند خودمان به صورت

 $^{^{1} \}verb|http://www.ieee.org/documents/ieeecitationref.pdf|$

البته گاهی ممکن است محقق مرجعی را مورد مطالعه قرار داده لیکن در متن به آن اشاره نکرده باشد؛ برخی معتقدند در این موارد نیز آوردن آن در فهرست مراجع، اشکالی ندارد، به این شرط که از عنوان «فهرست منابع» به جای «فهرست مراجع» استفاده شود. ^۳روش BibLaTeX هنوز برای متون فارسی به درستی ترجمه نشده است.

مناسب لینک می دهیم. کنفرانسها یا مجلههای گوناگون برای نوشتن مراجع، قالبها یا قراردادهای متفاوتی دارند که به آنها استیلهای مراجع گفته می شود. در این حالت به کمک استیلهای بیب تک خواهید توانست تنها با تغییر یک پارامتر در پروندهٔ ورودی خود، مراجع را مطابق قالب موردنظر تنظیم کنید. بیشتر مجلات و کنفرانسهای معتبر یک فایل سبک (BibTex Style) با پسوند bst در وبگاه خود می گذارند که برای همین منظور طراحی شده است.

به جز نوشتن مقالات، این سبکها کمک بسیار خوبی برای تهیهٔ مستندات علمی همچون پایان نامههاست که فرد می تواند هر قسمت از کارش را که نوشت مراجع مربوطه را به بانک مراجع خود اضافه نماید. با داشتن چنین بانکی از مراجع، وی خواهد توانست به راحتی یک یا چند ارجاع به مراجع و یا یک یا چند بخش را حذف یا اضافه نماید؛ مراجع به صورت خودکار مرتب شده و فقط مراجع ارجاع داده شده در قسمت کتابنامه خواهند آمد. قالب مراجع به صورت یکدست مطابق سبک داده شده بوده و نیازی نیست که کاربر درگیر قالبدهی به مراجع باشد.

۲.۱.۸ سبکهای مورد تأیید دانشگاه تهران

طبق «دستورالعمل نگارش و تدوین پایاننامه» دانشگاه تهران در [؟]، ارجاع در متن میتواند مطابق با هر یک از دو الگوی هاروارد یا ونکوور باشد:

سیستم نویسنده-سال (هاروارد): ذکر نام نویسنده و سال نشر در متن. در این الگو مراجع بر اساس حروف الفبا تنظیم می گردند.

سیستم شماره دار (ونکوور): ارجاع به مراجع به کمک شماره در متن. در این الگو شماره هر مرجع به ترتیب ظاهر شدن آن در متن در داخل کروشه قرار میگیرد. فهرست مراجع نیز بر اساس شماره مرجع (نه حروف الفبا) تنظیم میگردد.

در مدیریت منابع با BibTeX، ارجاعها در متن تنها به شکل شماره دار (ونکوور) امکان پذیر است، گرچه فهرست مراجع می تواند با روشهای مختلف مرتب شود. اگر بخواهیم ارجاعها در متن به صورت نویسنده -سال (هاروارد) باشد باید از بستهٔ natbib و استیلهای مختلف آن استفاده کنیم.

هنگام استفاده از روش نویسنده-سال نوع پرانتزگذاری ها در وسط و انتهای جمله با هم فرق خواهد داشت. به مثال زیر مطابق با دستورالعمل [؟] توجه کنید:

⁴Natural Sciences Citations & References

ابتدا [؟] بستهٔ زیپرشین را برای حروف چینی فارسی اختراع کرد. بعدها سبکهای ارجاع دهی فارسی و قالبهای پایان نامه نیز مبتنی بر آن ساخته شد [؟]. ارجاع دهی به مراجع لاتین نیز در زیپرشین امکان پذیر است. مثلاً [؟] یک کتاب انگلیسی است و به راحتی به مقالات انگلیسی نیز می توان ارجاع داد [؟].

در این مثال، ۴ ارجاع در وسط و انتهای جمله به مراجع فارسی و انگلیسی آمده است. وقتی از سیستم نویسنده-سال استفاده میکنید، بهتر است ارجاعهای آخر جمله کلاً داخل پرانتر بیاید؛ بدین منظور باید به جای \cite \cite استفاده کنید. اما در سیستم شماره دار چون تمام ارجاعها داخل کروشه می آیند این امر اهمیت ندارد.

نمی توانید در متن فارسی، اسم لاتین محقق خارجی را بیاورید و برای جلوگیری از ایجاد ابهام، صرفنظر از نام لاتین هم مجاز نیست! توصیه می شود که نام محقق خارجی در متن با حروف فارسی و در پاورقی اسم تمام نویسندگان به صورت انگلیسی آورده شود. نحوهٔ رعایت این نکته را می توانید در کد مثال بالا ببینید.

گرچه در تمپلت ورد [؟]، به صراحت ذکر شده که بهتر است برای پایاننامههای مهندسی از سبک IEEE استفاده شود (که از سیستم ونکوور تبعیت میکند)، اما ترتیب فهرست مراجع در IEEE بر اساس ترتیب ارجاع در متن بوده و مراجع انگلیسی و فارسی از هم تفکیک نمی شوند که متضاد با دستورالعمل [؟] و نیز متضاد عرف اکثر پایاننامههای فارسی است. بنابراین دقیقاً نمی توان سبک خاصی را برای مراجع پایاننامههای دانشگاه تهران اجبار کرد. مهم این است که سبک ارجاع دهی در تمام طول یک کتابچه (مثلاً پایاننامه، مقالات یک مجله یا کل یک کتاب) یکسان باشد. بهتر است بسته به حوزه پایاننامه، در این مورد با استاد راهنمای خود مشورت کنید.

۳.۱.۸ سبکهای فارسی قابل استفاده در زیپرشین

تعدادی از سبکهای فارسی بسته Persian-bib که برای زیپرشین آماده شدهاند، عبارتند از:

• سبکهای شمارهدار:

unsrt-fa.bst این سبک متناظر با unsrt.bst میباشد. مراجع به ترتیب ارجاع در متن ظاهر می شوند. و unsrt-fa.bst این سبک متناظر با plain.bst میباشد. مراجع بر اساس نام خانوادگی نویسندگان، به ترتیب صعودی مرتب می شوند. همچنین ابتدا مراجع فارسی و سپس مراجع انگلیسی خواهند آمد.

۵ برای اطلاع بیشتر به راهنمای بستهٔ Persian-bib مراجعه فرمایید.

acm-fa.bst این سبک متناظر با acm.bst میباشد. شبیه plain-fa.bst است. قالب مراجع کمی متفاوت است. اسامی نویسندگان انگلیسی با حروف بزرگ انگلیسی نمایش داده می شوند. (مراجع مرتب می شوند)

ieeetr-fa.bst این سبک متناظر با ieeetr.bst میباشد. (مراجع مرتب نمی شوند)

• سبکهای نویسنده-سال:

plainnat-fa.bst این سبک متناظر با plainnat.bst میباشد. نیاز به بستهٔ natbib دارد. (مراجع مرتب می شوند)

chicago-fa.bst این سبک متناظر با chicago.bst میباشد. نیاز به بستهٔ natbib دارد. (مراجع مرتب میباشد.)

asa-fa.bst این سبک متناظر با asa.bst میباشد. نیاز به بستهٔ natbib دارد. (مراجع مرتب می شوند)

با استفاده از استیلهای فوق می توانید به انواع مختلفی از مراجع فارسی و لاتین ارجاع دهید. به عنوان مثالهایی از مراجع انگلیسی، مرجع [؟] مقالهٔ یک ژورنال، مرجع [؟] مقالهٔ یک کنفرانس، مرجع [؟] یک کتاب، مرجع [؟] پایان نامهٔ کارشناسی ارشد و مرجع [؟] یک رسالهٔ دکتری می باشد.

همچنین در میان مراجع فارسی، مرجع [؟] مقالهٔ یک مجله، مرجع [؟] مقالهٔ یک کنفرانس، مرجع [؟] یک کتاب ترجمه شده با ذکر مترجمان و ویراستاران، مرجع [؟] پایان نامهٔ کارشناسی ارشد ، مرجع [؟] یک رسالهٔ دکتری و مراجع [؟، ؟] نمونه های متفرقه هستند.

۴.۱.۸ ساختار فایل مراجع

برای استفاده از بیبتک باید مراجع خود را در یک فایل با پسوند bib ذخیره نمایید. یک فایل bib در واقع یک پایگاه داده از مراجع $^{\Lambda}$ شماست که هر مرجع در آن به عنوان یک رکورد از این پایگاه داده با قالبی خاص ذخیره می شود. به هر رکورد یک مدخل $^{\Lambda}$ گفته می شود. یک نمونه مدخل برای معرفی کتاب Digital Image در ادامه آمده است:

@BOOK{Gonzalez02image,

AUTHOR = $\{Gonzalez,, Rafael C. and Woods,, Richard E.\},$

TITLE = {Digital Image Processing},

^۶چون فیلد authorfa برای این مرجع تعریف نشده در سبک نویسنده-سال با حروف لاتین به آن در متن ارجاع می شود که غلط است. ۷همان طور که در بخش ۱.۸ اشاره شد، بهتر است زیاد از پایان نامهها در مراجع استفاده نکنید.

⁸Bibliography Database

⁹Entry

```
PUBLISHER = {Prentice-Hall, Inc.},
YEAR = {2006},
ISBN = {013168728X},
EDITION = {3rd},
ADDRESS = {Upper Saddle River, NJ, USA}
}
```

در مثال فوق، BOOK مشخصهٔ شروع یک مدخل مربوط به یک کتاب و BOOK برچسبی را است که به این مرجع منتسب شده است. این برچسب بایستی یکتا باشد. برای آنکه بتوان برچسب مراجع را به راحتی به خاطر سپرد و حتی الامکان برچسبها متفاوت با هم باشند، معمولاً از قوانین خاصی به این منظور استفاده می شود. یک قانون می تواند فامیل نویسنده اول + دورقم سال نشر + اولین کلمهٔ عنوان اثر باشد. به مرجع پر شده اند. ترتیب فیلدها مهم نیست.

انواع متنوعی از مدخلها برای اقسام مختلف مراجع همچون کتاب، مقالهٔ کنفرانس و مقالهٔ ژورنال وجود دارد که برخی فیلدهای آنها با هم متفاوت است. نام فیلدها بیانگر نوع اطلاعات آن میباشد. مثالهای ذکر شده در فایل MyReferences.bib کمک خوبی برای شما خواهد بود. با استفاده از سبکهای فارسی آماده شده، محتویات هر فیلد می تواند به فارسی نوشته شود؛ ترتیب مراجع و نحوهٔ چینش فیلدهای هر مرجع را سبک مورد استفاده مشخص خواهد کرد.

در فایل MyReferences.bib که همراه با این پروژه /پایاننامه /رساله هست، مثالهای مختلفی از مراجع آمدهاند که برای درج مراجع خود، تنها کافیست مراجعتان را جایگزین موارد مندرج در آن نمایید. برای بسیاری از مقالات لاتین حتی لازم نیست که مدخل مربوط به آنرا خودتان بنویسید. با جستجوی نام مقاله + کلمه bibtex در اینترنت سایتهای بسیاری همچون ACM و ScienceDirect را خواهید یافت که مدخل مربوط به مقاله شما را دارند و کافیست آنرا به انتهای فایل MyReferences.bib اضافه کنید.

۵.۱.۸ نحوه اجرای BibT_EX

پس از قرار دادن مراجع خود، برای ساخت فایل خروجی میتوانید دستور زیر را (در ترمینال یا از طریق Texmaker) احرا کنید: ۱۰

الا latexmkrc باید در کنار main.tex وجود داشته باشد.

latexmk -bibtex -pdf main.tex

ابزار latexmk مراحل مختلف ساخت خروجی لاتک را به طور خودکار و بهینه انجام می دهد و هر بار فقط مراحلی را که لازم باشد تکرار می کند. روش دستی تر این است که یک بار XeLaTeX را روی سند خود اجرا نمایید، سپس bibtex و پس از آن هم ۲ بار XeLaTeX را. در TeXMaker کلید F11 و در TeXWorks هم گزینهٔ BibTeX از منوی BibTeX را روی سند شما اجرا می کنند.

٨. ٢ واژهنامهها و فهرست اختصارات

واژهنامه ۱۱ یا فرهنگ لغات، مجموعه ای از اصطلاحات و تعاریف خاص و فنی است که معمولاً در انتهای یک کتاب می آید. چون پایان نامه خود یک متن تخصصی بلند محسوب می شود، استفاده از فرهنگ لغات در انتهای آن به شدت توصیه می شود، خصوصاً که احتمال استفاده از لغات تخصصی لاتین در آن بالاست. واژه نامه هایی که در انتهای کتاب های انگلیسی می آیند معمولاً تک زبانه هستند و معنی یک اصطلاح تخصصی در آنها، عمدتاً به صورت یک توصیف ۱۲ طولانی آورده می شود. اما چون در متون فارسی، آوردن لغات انگلیسی مجاز نیست و باید معادل فارسی آنها وارد شود، جهت رفع ابهام معمولاً واژه نامهٔ فارسی به انگلیسی (و برعکس) در انتهای کتاب درج شده و توصیف ها در صورت نیاز در متن آورده می شوند.

فهرست اختصارات ۱۳ شامل نمادهای کوتاهی است که اغلب از حروف ابتدایی کلمات یک عبارت طولانی ساخته شدهاند. با اینکه اختصارات با حروف (بزرگ) لاتین نوشته می شوند، اما چون کوتاهند استفاده از آنها در میان متن فارسی مجاز است. با این حال برای رفع ابهام، عرف است که فهرستی از آنها شامل معنی هر نماد، در کنار دیگر فهرستها در ابتدای متن درج شود.

در این قالب پایاننامه، برای ساخت و مدیریت واژهنامه و فهرست اختصارات از بستهٔ پیشرفتهٔ glossaries با موتور واژهنامهسازی xindy استفاده می شود. تنظیمات بهینهٔ این بسته در فایل xindy عبارتند از:

¹¹ Glossary

¹²Description

¹³Acronym

• قبل از درج واژهها در متن، باید مدخل آنها با دستور زیر (ترجیحاً در فایل جدای words.tex) تعریف شود:

{واژه}{واژهها}{Word}{واژهها

• قبل از وارد کردن علائم اختصاری در متن، باید مدخل آنها نیز (ترجیحاً در فایل acronyms.tex) به صورت زیر تعریف شود:

\newacronym{Label}{Acr}{ معنى اختصار }

- جهت درج یک علامت اختصاری یا معادل یک واژه تخصصی، کافی است از دستور {Label} در متن استفاده کنید. دستور {gls{Label} نیز برای آوردن معادل یک لغت در حالت جمع ساخته شده است.
- هنگام اولین استفاده از یک معادل فارسی یا اختصار در متن، معادل انگلیسی یا معنی آن در پاورقی آورده می شود. در صورتی که هر یک از این پیشفرضها را دوست ندارید با ویرایش فایل -glossaries می توانید آن را تغییر دهید.
- در انتهای پایاننامه با دستور printglossary فهرست کلمات استفاده شده به ترتیب الفبای فارسی (واژهنامه فارسی) درج می شود.

به عنوان مثال، با مشاهدهٔ کد این نوشته، نحوهٔ درج معادل فارسی متغیر تصادفی 14 را در متن مشاهده می کنید. در نمایش واژهٔ متغیر تصادفی برای بار دوم، معادل لاتین در پاورقی نمی آید. در مورد درج علائم اختصاری، مثلاً می توان به رابطهٔ F^{15} اشاره کرد.

۳.۸ حاشیه نویسی در نسخه پیش نویس

اصلاح و بازبینی چندین و چندبارهٔ یک پایاننامه یا مقاله، از معمول ترین امور در نگارش آن میباشد. فرض کنید دانشجو پایاننامه یا مقالهٔ خود را (کامل یا ناقص) نوشته و میخواهد نظر استاد راهنما، اعضای آزمایشگاه یا

(N) 15

¹⁴Random Variable

دیگر متخصصین را در مورد آن جویا شود. به جز مشاورهٔ حضوری، تلفنی یا از طریق ایمیل، برای اظهارنظر دقیق بر نوشته، می توان از ابزارهای حاشیه نویسی در فایل PDF یا tex نیز استفاده کرد.

یک راهکار مناسب برای حاشیه نویسی در فایل tex، استفاده از بسته todonotes میباشد که آقای خلیقی به تازگی امکان استفاده از آن را برای فارسی زبانان نیز فراهم آورده اند. بدین منظور، هر جایی که خواستید نکته یا نکاتی را در حاشیه متن یادداشت کنید، کافی است دستور زیر را وارد نمایید:

\todo{NOTE}

مثلاً استاد راهنما می تواند از دانشجو بخواهد که در بخشی توضیح بیشتری دهد. استاد راهنما یا داور حتی می تواند محل پیشنهادی برای درج یک تصویر را نیز به راحتی برای دانشجو مشخص کند. یکی دیگر از امکانات این بسته آن است که می توان فهرست نکات را در ابتدای سند داشت. بسته todonotes امکانات بسیاری دارد که در راهنمای آن معرفی شده است و با اجرای دستور زیر در خط فر مان می توانید آنها را مشاهده کنید:

texdoc todonotes

دقت کنید که توضیحات حاشیهای و فهرست کارهای باقیمانده (نکات)، فقط در نسخه پیش نویس ۱۶ قابل دیدن هستند و در نسخه نهایی، نمایش داده نخواهند شد. برای استفاده از حالت پیش نویس باید گزینه draft به دیدن هستند و در نسخه نهایی، نمایش داده نخواهند شد. برای استفاده از حالت پیش نویس باید گزینه main.tex در ابتدای فایل documentclass اضافه شود. هنگامی که سند شما در حالت پیش نویس باشد:

- ١. هيچ يک از صفحات آغازين پاياننامه، تا فهرست مطالب نمايش داده نمي شود (به جز صفحه اول).
 - ۲. روی صفحه اول عبارت «پیشنویس» به صورت درشت و کمرنگ نمایش داده می شود.
- ۳. فهرست نکات درج شده توسط todo، پس از فهرست اصلی و با عنوان «فهرست کارهای باقیمانده» نمایش داده می شود.
 - ۴. شماره صفحاتی که به هر مرجع ارجاع داده شده است در بخش مراجع نمایش داده می شود 1

هر یک از موارد بالا تا زمانی که نسخه نهایی پروژه/پایاننامه/رساله نیاز نباشد بسیار مورد توجه و مفید واقع میشوند.

¹⁶Draft

۱۷ اعمال گزینهٔ pagebackref برای بستهٔ hyperref.

واژهنامهٔ فارسی به انگلیسی

الف
Acronym اختصار
پ
پیش نو یس
ت
توصیف
•
متغیر تصادفی Random Variable
و
واژهنامه Glossary

نمایه

تابعی خطی پیوسته، ۱۹ دامنه توانی احتمالی، ۱۹ فضای برداری، ۱۹ دوگان، ۱۹ قضیه باناخ-آلااغلو، ۱۹

Abstract

This thesis studies on writing projects, theses and dissertations using tehran-thesis class. It \dots

Keywords Cappu, NFT, smart-contract, solidity, ERC721

University of Tehran
College of Engineering
Faculty of Electrical and
Computer Engineering
Software Department

Cappu, a platform to mint and transfer data NFTs.

A Thesis submitted to the Graduate Studies Office In partial fulfillment of the requirements for The degree of Master of Science in Computer Engineering - Software Engineering

By:

Amin Bashiri

Supervisor:

Prof. Ehsan Khamespanah

June 2022