北京化工大学 2019——2020 学年第 2 学期 《模拟电子技术》期末考试试卷

	课程值	弋码	Е	Е	Е	2	1	5	0	3	Т	
班级	٤ :		姓名:			学号:				}数:		
	题号	_	二	三	四	Ti.	7	7	七	八	总分	
	得分											
一、	(30分)	填空题	:	•	•	1	,		•			
1. B	JT 是 _		的电流	器件,	FET ;	是		制电流		0		
2、靠	族大电	路负载	开路时	放大倍勢	数 A _{vo} :	=1,输	前出电阻	$\mathbb{E} R_o =$	= 0.2 <i>k</i> Ω	2。输는	出端带负	负载电
阻 R_I	$=3k\Omega$	付,放力	大电路的	的电压堆	曾益 4,	, =		o				
3、在	E上、下	限截止	频率处,	放大	电路的	J电压均	曾益是	中频均	曾益的		倍,	增益
分贝	数比中数	顶增益分) 贝数凋	【小	d	В。						
4、利	急压二极	管工作	在	状	态,发	 完	极管的	发光	亮度与	ĵ	成	正比。
5、B	JT 处于	饱和状态	态,发射	射结和组	集电结	的偏量	置情况:	是			o	
6、_	<u></u>	D MOS 管	育在 v _{GS}	=0时没	没有导	电沟道	Ĉ.					
7、雨		电路的	关系: 第	第二级)	汝大电	」路的_		_是第	一级放	女大电路	各所带的	り负载
电阻	;第一组	及放大申	1路是第	亨二级 放	女大电	路的_		,第	一级放	大电路	各的	是
第二	级放大时	 	言号源内	阻。								
8、I	直耦式电	路一般	应用在		电路口	Þ,为	了减小	直耦	式多级	放大电	 	氵 漂,
第	级是美	关键,该	该级一般	战采用_		_电路						
9、ヌ	寸于射极	耦合差	分式放	大电路	,当温	温度降值	氐时,	相当	于从两	个输入	.端同时	加入
	(正或负)的共	模信号	0								
10、	理想集成	这运放的]开环电	压放大	倍数。	$A_{vo} = $,	输入	电阻1	$R_i = $,斩	
阻 R_o	=	°										

- 11、正弦波振荡电路的起振依靠_______,稳幅依靠_____。
- 12、在桥式整流电容滤波电路中,负载电阻越小,输出电压的均值越 (大、小)。

14、图 1-2 所示场效应管放大电路,静态时, $V_G = _____$,漏极电流 $I_D = _____$; 动态指标输入电阻 $R_i = _____$, 电压增益 $A_v = _____$ 。

二、(16分)单项选择题:

1、在图 2-1 的三个电路图中,哪个图中的集成运放输入端满足"虚短"?(

图 2-1

2、在射极耦合差分式电路中(如图 2-2), 比较公共射极电阻 Re 分别为 10K 和恒流 源两种电路形式(可由开关 K 切换)下的各指标大小。注:恒流源内阻远大于 10K。

对于单端输出的差模电压增益绝对值,10K 电路的值(

)恒流源电路的值;

对于单端输出的共模电压增益绝对值,10K 电路的值(

)恒流源电路的值:

对于单端输出的共模抑制比, 10K 电路的值() 恒流源电路的值;

对于差模输入电阻, 10K 电路的值() 恒流源电路的值;

对于共模输入电阻, 10K 电路的值() 恒流源电路的值。

- (A) 大于
- (B) 小干
- (C) 等干

图 2-2

第 3 页

3、在三极管放大电路的三种组态中,希望电压增益大,可选用()组态;希 望带负载能力强,可选用()组态;希望高频响应好,又有较大的电压增益, 可选用()组态。

(A) 共射或共基

(B) 共集

(C) 共基

- (D) 共射
- 4、单门限电压比较器中的集成运放工作在(),双门限电压比较器中的集成运 放工作在(),模拟信号运算电路中的集成运放工作在()。
 - (A) 开环工作状态
- (B) 负反馈工作状态
- (C) 正反馈工作状态

- (D) 正反馈及负反馈工作状态
- 5、图 2-3 所示电路中,电路处于放大状态。 R_b 单独减小时, V_{CEO} 的值 (), $|A_c|$ 的值(); R_{C} 单独增大时, V_{CEQ} 的值(), $\left|A_{\nu}\right|$ 的值()。
 - (A) 增大 (B) 减小
- (C) 不变

图 2-3

三、(8 分) 两级放大电路如图 3-1 所示, 三极管 T_1 、 T_2 的共射极输入电阻 r_{bel} 、 r_{be2} 、 电流放大倍数 β_1 、 β_2 均为已知,各电容对交流信号可视作短路。请对下面每个问题 选择一个正确答案。

- 1、第一级和第二级放大电路的组态分别是。
 - (A) 共基-共集

(B) 共集-共射

(C) 共基-共射

- (D) 共射-共集
- 2、 T_1 管的射极电流 I_{E1} 表达式是_____。

(A)
$$I_{E1} = \frac{V_{CC} \frac{R_2}{R_1 + R_2} - V_{BE}}{R_3}$$
 (B) $I_{E1} = \frac{V_{CC} \frac{R_2}{R_3 + R_2} - V_{BE}}{R_4}$

(B)
$$I_{E1} = \frac{V_{CC} \frac{R_2}{R_3 + R_2} - V_{BE}}{R_4}$$

(C)
$$I_{E1} = \frac{V_{CC} \frac{R_4}{R_3 + R_4} - V_{BE}}{R_2}$$

(C)
$$I_{E1} = \frac{V_{CC} \frac{R_4}{R_3 + R_4} - V_{BE}}{R_2}$$
 (D) $I_{E1} = \frac{V_{CC} \frac{R_2}{R_1 + R_2} - V_{BE}}{R_4}$

3、第一级放大电路电压增益 4、和第二级放大电路电压增益 4、2的表达式分别 是____。

(A)
$$A_{v1} = \frac{\beta_1(R_3 \| R_5 \| R_6 \| r_{be2})}{r_{be1}}$$

$$A_{v2} = -\frac{\beta_2(R_7 || R_L)}{r_{ha2}};$$

(B)
$$A_{v1} = \frac{\beta_1(R_3 \| R_5 \| R_6 \| r_{be2})}{r_{be1}}$$

$$A_{v2} \approx 1$$
;

(C)
$$A_{v1} = -\frac{\beta_1 (R_3 || R_5 || R_6)}{r_{be1}}$$

$$A_{v2} \approx 1$$
;

(D)
$$A_{v1} = -\frac{\beta_1(R_3 || R_5 || R_6)}{r_{be1}}$$

$$A_{v2} = -\frac{\beta_2(R_7 \| R_L)}{r_{he2}}$$

4、整体两级放大电路的输入电阻 R_i 和输出电阻 R_o 的表达式分别是_____。

$$(A) R_i = R_4 \| r_{be1}$$

$$R_o = \frac{R_3 \| R_5 \| R_6 + r_{be2}}{1 + \beta_2} \| R_7 ;$$

(B)
$$R_i = R_4 \left\| \frac{r_{bel}}{1 + \beta_l} \right\|$$

$$R_o = \frac{R_3 \|R_5 \|R_6 + r_{be2}}{1 + \beta_2} \|R_7 ;$$

(C)
$$R_i = R_4 | (r_{be1} + R_2)$$

$$R_o = R_7$$
;

(D)
$$R_i = R_4 \left\| \frac{r_{bel}}{1 + \beta_l} \right\|$$

图 3-1

四、(8分)在图 4-1 中,为达到下列各个目的,请分别说明应该如何连线、并计算相应负反馈组态所稳定的闭环增益。对下面每个问题选择一个正确答案。

1、减小输入电阻,稳定输出电压。

正确的连线方法是: ____。

- (A) ⑦连⑩, ⑨连③, ⑤连⑥
- (B) ⑧连⑩, ⑨连②, ④连⑥
- (C) ⑧连⑩, ⑨连②, ⑤连⑥
- (D) ⑦连⑩, ⑨连②, ⑤连⑥

相应负反馈组态所稳定的的闭环增益为____。

(A)
$$A_{rf} = -R_f$$

(B)
$$A_{vf} = -\frac{R_f}{R_{h1}}$$

(C)
$$A_{rf} = R_f$$

(D)
$$A_{vf} = \frac{R_f}{R_{b1}}$$

2、从信号源分得的电流减小,稳定输出电流。

正确的连线方法是: ____。

- (A) ⑦连⑩, ⑨连③, ⑤连⑥
- (B) ⑧连⑩, ⑨连③, ④连⑥
- (C) ⑧连⑩, ⑨连②, ⑤连⑥
- (D) ⑦连⑩, ⑨连②, ④连⑥

相应负反馈组态所稳定的的闭环增益为。

(A)
$$A_{if} = -\frac{R_f + R_{e3}}{R_{e3}}$$

(B)
$$A_{gf} = \frac{R_{e3} + R_f + R_{b2}}{R_f R_{b2}}$$

(C)
$$A_{if} = \frac{R_f + R_{e3}}{R_{e3}}$$

(D)
$$A_{\rm gf} = \frac{R_{e3} + R_f + R_{b2}}{R_{e3} R_{b2}}$$

图 4-1

五、 $(8 \, f)$ 在图 5-1 所示电路中,已知 $v_{i1} = 4V$, $v_{i2} = 1V$ 。请回答下列问题: 1、当开关 S 闭合时,分别求解 A、D 和 v_o 的电位。

2、设 t=0 时 S 打开,问经过多长时间 $v_o=0$? (写出分析过程)

图 5-1

六、(8分) 电路如图 6-1 所示,回答以下问题:

- 1、为了输出端产生正弦波振荡,运放 A 的同相端是____(a 或 b)端。
- 2、该电路的振荡频率是 _____(只写出表达式)。
- 3、若 R_t 不慎被断开,输出电压 v_o 的波形是_____。
- 4、若 $V_{CES} = 1V$,最大输出功率 $P_{omax} =$ _____(写出表达式并计算)。

图 6-1

七、 $(12\,
m eta)$ 电路如图 7-1 所示,已知集成运放的最大输出电压幅值为 $\pm 12V$, v_i 的数值在 v_{ol} 的峰峰值之间。

- 1、写出 v_{o3} 的脉冲宽度 T1(正电平持续时间)与 v_i 的关系式_____。
- 2、设 $v_i=3V$,在图 7-2 坐标系中画出 v_{o1} 、 v_{o2} 和 v_{o3} 的波形(波形必须上下画,相位对应),并标出各波形幅值。

图 7-2

第 9 页

八、 $(10 \,
m 分)$ 直流稳压电源电路如图 8-1 所示。若 $V_{P}=24V$,稳压管稳压值 $V_{Z}=5.3V$, 三极管 $V_{BE}=0.7V$, $R_{1}=R_{2}=R_{W}=300\Omega$, $R_{4}=510\Omega$, $R_{L}=150\Omega$, T_{L} 管 C 、 e 间的饱和 压降 $V_{CES}=2V$ 。试计算:

1、Vo的可调范围:

Vomin =	(计算公式)=	(计算值);
V _{omax} =	(计算公式)=	(计算值)。

2、若 Vo=12V, T1 管的额定功耗 PcM=3W, T1 管能否安全工作? 写出分析过程。

0

3、若 R_1 改为 600Ω , 你认为调节 R_w 时能输出的 V_0 最大值是多少?

Vomax = ____(计算公式)= ____(计算值)。

