EXAMEN TERMINAL D'ANALYSE 3 (Session 2)

ECUE 1 : Intégrale, Suites et Séries de fonctions

Duré : 1 h 30 Corrigé

EXERCICE 1.

Étudier la nature des intégrales généralisées

a)
$$\int_0^1 \frac{\ln(x) \ln(1-x)}{1-x} dx$$
 et b) $\int_0^{+\infty} \frac{1}{\sqrt{x}} \cos\left(\frac{1}{\sqrt{x}}\right) dx$.

EXERCICE 2.

Étudier la nature des série numérique

a)
$$\sum_{n=0}^{+\infty} \frac{\cos(1+n^2)}{3+2^n}$$
, b) $\sum_{n=0}^{+\infty} n \left(\ln(n^2+1) - \ln(n^2) \right)$ et c) $\sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n}$

EXERCICE 3.

On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ où $f_n(x)=\sqrt{n}xe^{-nx}$ pour tout $x\in[0,+\infty[$ et $n\in\mathbb{N}$. Montrer la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction nulle sur $[0,+\infty[$.

EXERCICE 4.

On considère la série de fonctions $\sum_{n=1}^{\infty} f_n$ où $f_n(x) = \frac{1}{n^2 + n^3 x^2}$ pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

On note $S = \sum_{n=1}^{\infty} f_n$ la somme de cette série lorsqu'elle existe.

- 1. Montrer que la série $\sum_{n=1}^{\infty} f_n$ est normalement convergente sur \mathbb{R} . En déduire que la somme S est définie et continue sur \mathbb{R} .
- 2. Montrer que la série $\sum_{n=1}^{\infty} f'_n$ converge uniformément sur \mathbb{R} . (f'_n est la dérivée de f_n .)
- 3. En déduire que S est de classe C^1 sur \mathbb{R} et calculer S'(0).