Optimal Transport

Theory, Computation and Applications

Wenchong Huang

School of Mathematical Sciences, Zhejiang University.

Dec. 30th, 2024

Overview

Principal concern: the distance between two probability measures.

First introduced in 1781 by Monge.

Relative subjects: probability theory, geometry, graph theory, machine learning...

Applications:

- Image registration and warping;
- Reflector design;
- Retrieving information from shadowgraphy and proton radiography;
- Seismic tomography and reflection seismology.

Some well-known researchers:

- Gasoard Monge (France);
- Leonid Kantorovich (Russia);
- Yann Brenier (France);
- Xianfeng Gu (顾险峰, China);

Fig. 1. Three main scenarios for Kantorovich OT

Fig. 2. Solving maze with OT

Fig. 3. 2D shape interpolation with OT

Fig. 4. Histogram equalization with OT

- 1 Theory
- 2 Computation

The sand-moving problem

A child wants to make a pile of sand in the shape of a castle.

Cost: 1 kcal per shovel and per meter horizontally.

Target: Minimize the total cost.

Fig. 5. The sand-moving problem.

The sand-moving problem

A child wants to make a pile of sand in the shape of a castle.

Cost: 1 kcal per shovel and per meter horizontally.

Target: Minimize the total cost.

Fig. 5. The sand-moving problem.

Let's denote the source shape by f(x) and the target by g(x). The sand-moving problem cound be formulated as: find a **transport mapping** $T:\mathbb{R}\to\mathbb{R}$ to minimize

$$\int_{\mathbb{R}} |T(x) - x| f(x) \ dx,\tag{1}$$

which satisfies

$$\int_{T(U)} g(x) \ dx = \int_{U} f(x) \ dx \text{ for all open interval } U \subset \mathbb{R}. \tag{2}$$

The allocation problem

There are some steel coils to be transported from warehouses to factories. The transport cost is \$1 per coil and per kilometer. How to minimize the total cost?

 $\textbf{Fig. 6.} \ \ \textbf{The allocation problem}.$

The allocation problem

There are some steel coils to be transported from warehouses to factories. The transport cost is \$1 per coil and per kilometer. How to minimize the total cost?

Fig. 6. The allocation problem.

Assume the i-th warehouse has a_i coils and the j-th factory needs b_i coils. And assume the distance between the i-th warehouse and the j-th factory is d_{ij} . The allocation problem could be formulated as: find a **transport matrix** v_{ij} to minimize

$$\sum_{i,j} d_{ij} v_{ij} \tag{3}$$

which satisfies

$$a_i = \sum_j v_{ij}, \quad orall i, \qquad ext{and} \qquad b_j = \sum_i v_{ij}, \quad orall j.$$

The Monge formulation

Denote $\mathcal{M}^1_+(\mathcal{X})$ the set of probability measures on $\mathcal{X}.$

Definition (push-forward)

Suppose $\mu \in \mathcal{M}^1_+(\mathcal{X})$ and a map $T: \mathcal{X} \to \mathcal{Y}$. Say $\nu \in \mathcal{M}^1_+(\mathcal{Y})$ is the push-forward of μ by T if $\int_{\mathcal{X}} h(y) \ d\nu(y) = \int_{\mathcal{X}} h(T(x)) \ d\mu(x), \quad \forall h \in \mathcal{C}(\mathcal{Y}). \tag{5}$

Write $T_{\#}\mu := \nu$.

Example (push-forward of a discrete measure)

Suppose α is a discrete measure

$$\alpha = \sum_{i=1}^{n} a_i \delta_{x_i}.$$

Then the push-forward of α by T is

$$T_{\#}\alpha = \sum_{i=1} a_i \delta_{T(x_i)}.$$

Fig. 7. push-forward of a discrete measure

¹Gaspard Monge. "Mémoire sur la théorie des déblais et des remblais". In: Histoire de l'Adadémie Royale des Sciences (1781).

Denote $\mathcal{M}^1_+(\mathcal{X})$ the set of probability measures on \mathcal{X} .

Definition (push-forward)

Suppose
$$\mu \in \mathcal{M}^1_+(\mathcal{X})$$
 and a map $T: \mathcal{X} \to \mathcal{Y}$. Say $\nu \in \mathcal{M}^1_+(\mathcal{Y})$ is the push-forward of μ by T if
$$\int_{\mathcal{Y}} h(y) \ d\nu(y) = \int_{\mathcal{X}} h(T(x)) \ d\mu(x), \quad \forall h \in \mathcal{C}(\mathcal{Y}). \tag{5}$$

Write $T_{\#}\mu := \nu$.

Example (push-forward of a discrete measure)

Suppose α is a discrete measure

$$\alpha = \sum_{i=1}^{n} a_i \delta_{x_i}.$$

Then the push-forward of α by ${\it T}$ is

$$T_{\#}\alpha = \sum_{i=1} a_i \delta_{T(x_i)}.$$

Fig. 7. push-forward of a discrete measure

Given two probability measures μ on \mathcal{X} and ν on \mathcal{Y} , and a cost function c(x,y). Optimal transport could be generally formulated as the Monge problem:

$$\min_{T} \left\{ \int_{\mathcal{X}} c(x, T(x)) \ d\mu(x) : T_{\#}\mu = \nu \right\}$$
 (6)

The Monge problem between discrete measures is introduced by Monge¹.

¹ Gaspard Monge. "Mémoire sur la théorie des déblais et des remblais". In: Histoire de l'Acadamie Royale des Sciences (1781).

The Kantorovich formulation

Here's another general formulation of $\mathsf{OT},$ we first recall the three main scenarios for $\mathsf{OT}.$

²Leonid Kantorovich. "On the transfer of masses". In: Doklady Akademii Nauk 37.2 (1942).□ ▶ ◀ 🗗 ▶ ◀ 👼 ▶ ◀ 👼 ▶ 🧵 🛫 🖍 🔾 🦠

The Kantorovich formulation

Here's another general formulation of $\mathsf{OT},$ we first recall the three main scenarios for $\mathsf{OT}.$

Given two probability measures μ on $\mathcal X$ and ν on $\mathcal Y$, and a cost function c(x,y). Optimal transport could be generally formulated as the Kantorovich problem²:

$$\mathcal{L}_c(\mu, \nu) = \min_{\pi} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \ d\pi(x, y), \tag{7}$$

where π is a measure on $\mathcal{X} \times \mathcal{Y}$, whose marginals are μ and ν , that is,

$$\mu = \int_{\mathcal{V}} \pi(\cdot, y) \ dy, \qquad \nu = \int_{\mathcal{X}} \pi(x, \cdot) \ dx. \tag{8}$$

²Leonid Kantorovich. "On the transfer of masses". In: Doklady Akademii Nauk 37.2 (1942).□ ▶ ◀ 🗇 ▶ ◀ 🖹 ▶ ◀ 📱 ▶ 🥞 🛩 🔾 🤇

Wasserstein disrtance

Here we suppose $\mathcal{X}=\mathcal{Y}$ and $c(x,y)=d(x,y)^p\ (p>1)$, where d is a distance on $\mathcal{X}.$

³Cédric Villani. Optimal Transport: Old and New. Vol. 338. Springer Verlag, 2009.

Wasserstein disrtance

Here we suppose $\mathcal{X}=\mathcal{Y}$ and $c(x,y)=d(x,y)^p$ (p>1), where d is a distance on \mathcal{X} .

Theorem (Wasserstein distance)

Under the above assumptions, $\mathcal{L}_c(\mu,\nu)^{1/p}$ is a distance on $\mathcal{M}^1_+(\mathcal{X}).$

The distance $\mathcal{W}_p(\mu,\nu):=\mathcal{L}_c(\mu,\nu)^{1/p}$ is called $p ext{-Wasserstein}$ distance.

Wasserstein disrtance

Here we suppose $\mathcal{X} = \mathcal{Y}$ and $c(x,y) = d(x,y)^p \ (p > 1)$, where d is a distance on \mathcal{X} .

Theorem (Wasserstein distance)

Under the above assumptions, $\mathcal{L}_c(\mu,\nu)^{1/p}$ is a distance on $\mathcal{M}^1_+(\mathcal{X})$.

The distance $\mathcal{W}_p(\mu, \nu) := \mathcal{L}_c(\mu, \nu)^{1/p}$ is called p-Wasserstein distance.

Definition (weak convergence)

Suppose $\mathcal X$ is compact. Say $(\mu_k)_{k\geq 1}\subset \mathcal M^1_+(\mathcal X)$ converges weakly to $\mu\in \mathcal M^1_+(\mathcal X)$ if

$$\int_{\mathcal{X}} g \ d\mu_k \to \int_{\mathcal{X}} g \ d\mu, \quad \forall g \in \mathcal{C}(\mathcal{X}). \tag{9}$$

Theorem (Wasserstein distance and weak convergence³)

On a compact domain \mathcal{X} , $(\mu_k)_{k\geq 1}\subset \mathcal{M}^1_+(\mathcal{X})$ converges weakly to $\mu\in \mathcal{M}^1_+(\mathcal{X})$ if and only if $\mathcal{W}_p(\mu_k,\nu)\to 0$.

Equivalence between the Kantorovich and Monge problems

Theorem (Kantorovich dual problem)

The Kantorovich problem can be solved in the dual space by

$$\mathcal{L}_c(\mu,\nu) = \sup_{(f,g) \in \mathcal{R}(c)} \int_{\mathcal{X}} f(x) \ d\mu(x) + \int_{\mathcal{Y}} g(y) \ d\nu(y), \tag{10}$$

where the set of admissible dual potential is

$$\mathcal{R}(c) := \{ (f, g) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y}) : \forall (x, y), f(x) + g(y) \le c(x, y) \}. \tag{11}$$

The pair (f, g) is called Kantorovich potentials.

⁴Yann Brenier. "Polar factorization and monotone rearrangement of vector-valued functions" In: Communications on Pure and Applied Mathematics 44 4 (1991).

Equivalence between the Kantorovich and Monge problems

Theorem (Kantorovich dual problem)

The Kantorovich problem can be solved in the dual space by

$$\mathcal{L}_c(\mu,\nu) = \sup_{(f,g) \in \mathcal{R}(c)} \int_{\mathcal{X}} f(x) \ d\mu(x) + \int_{\mathcal{Y}} g(y) \ d\nu(y), \tag{10}$$

where the set of admissible dual potential is

$$\mathcal{R}(c) := \{ (f, g) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y}) : \forall (x, y), f(x) + g(y) \le c(x, y) \}. \tag{11}$$

The pair (f, g) is called Kantorovich potentials.

Theorem (Brenier⁴)

In the case $\mathcal{X}=\mathcal{Y}=\mathbb{R}^d$ and $c(x,y)=\|x-y\|_2^2$, if at least one of the two input measures (denoted μ) has a density ρ_μ with respect to the Lebesgue measure, then the optimal π in the Kantorovich formulation is unique and is supported on the graph (x,T(x)) of a Monge map $T:\mathbb{R}^d\to\mathbb{R}^d$. This means that $\pi=(\mathrm{Id},T)_\#\mu$, i.e.

$$\int_{\mathcal{X}\times\mathcal{Y}} h(x,y) \ d\pi(x,y) = \int_{\mathcal{X}} h(x,T(x)) \ d\mu(x), \quad \forall h \in \mathcal{C}(\mathcal{X}\times\mathcal{Y}). \tag{12}$$

Furthermore, this map T is uniquely defined as the gradient of a convex function φ , $T(x) = \nabla \varphi(x)$, where φ is the unique (up to an additive constant) convex function such that $(\nabla \varphi)_{\#} \mu = \nu$. This convex function is related to the dual potential f solving (10) as

$$\varphi(x) = \frac{\|x\|_2^2}{2} - f(x). \tag{13}$$

School of Mathematical Sciences. Zheijang University.

⁴Yann Brenier. "Polar factorization and monotone rearrangement of vector-valued functions" In: Communications on Pure and Applied Mathematics 44 4 (1901).

- 1 Theory
- 2 Computation

1-D discrete case

Here $\mathcal{X}=\mathcal{Y}=\mathbb{R}$. Suppose $\alpha=\frac{1}{n}\sum_{i=1}^n\delta_{x_i}$ and $\beta=\frac{1}{n}\sum_{i=1}^n\delta_{y_i}$ where $x_1\leq\cdots\leq x_n$ and $y_1\leq\cdots\leq y_n$.

Fig. 8. 1-D optimal transport in discrete case

Then the $p ext{-}Wasserstein$ distance can be simply computed by

$$W_p(\alpha, \beta)^p = \frac{1}{n} \sum_{i=1}^n |x_i - y_i|^p.$$
 (14)

It's in fact a greedy algorithm.

1-D continuous case

If μ, ν are 1-D measures with densities. Suppose their cummulative distribution functions are \mathcal{C}_μ and \mathcal{C}_ν , respectively. Then the \mathcal{W}_1 distance could be computed by

$$W_1(\mu,\nu) = \int_{\mathbb{R}} |\mathcal{C}_{\mu}(x) - \mathcal{C}_{\nu}(x)| \ dx = \int_{\mathbb{R}} \left| \int_{-\infty}^x d(\mu - \nu) \right| \ dx. \tag{15}$$

And the Monge map is then defined by

$$T = \mathcal{C}_{\nu}^{-1} \circ \mathcal{C}_{\mu}. \tag{16}$$

Fig. 9. Computation of OT and displacement interpolation between two 1-D measures.

1-D Gaussian

If $\mu = \mathcal{N}(m_1, \sigma_1^2), \nu = \mathcal{N}(m_2, \sigma_2^2)$ are 1-D Gaussians. Then the \mathcal{W}_2 distance can be directly computed by

$$W_2(\mu,\nu) = \sqrt{|m_1 - m_2|^2 + |\sigma_1 - \sigma_2|^2},$$
(17)

which is thus the Euclidean distance on the 2-D plane plotting the mean and the standard deviation of a Gaussian $\mathcal{N}(m, \sigma)$.

Fig. 10. Computation of displacement interpolation between two 1-D Gaussians.

Learn more in [Takatsu, 2011]⁵.

⁵ Asuka Takatsu. "Wasserstein geometry of Gaussian measures". In: Osaka Journal of Mathematics 487 (2011) 🖹 🕨 🔻 🗏

Discretization

Suppose μ is a measure with density ρ , supported on [0,1]. Let

$$\tilde{\mu} = \sum_{i=0}^{N} u_i \delta_{x_i},\tag{18}$$

where

$$u_i = \frac{\rho(x_i)}{N+1}, \quad x_i = \frac{i}{N}, \quad i = 0, ..., N.$$
 (19)

We call $\tilde{\mu}$ the discretization of μ .

Discretization

Suppose μ is a measure with density ρ , supported on [0,1]. Let

$$\tilde{\mu} = \sum_{i=0}^{N} u_i \delta_{x_i},\tag{18}$$

where

$$u_i = \frac{\rho(x_i)}{N+1}, \quad x_i = \frac{i}{N}, \quad i = 0, ..., N.$$
 (19)

We call $\tilde{\mu}$ the discretization of μ .

Let $\tilde{\nu}=\sum_{i=0}^M v_i\delta_{y_i}$ and $(C)_{ij}$ be the cost matrix. The Kantorovich problem then becomes

$$L_{C}(\mathbf{u}, \mathbf{v}) := \min_{\mathbf{P} \in U(\mathbf{u}, \mathbf{v})} \langle \mathbf{P}, \mathbf{C} \rangle := \min_{\mathbf{P} \in U(\mathbf{u}, \mathbf{v})} \sum_{i,j} \mathbf{P}_{ij} C_{ij}, \tag{20}$$

where

$$U(\mathbf{u}, \mathbf{v}) := \left\{ \mathbf{P} \middle| \sum_{j} \mathbf{P}_{ij} = u_i, \forall i, \text{ and } \sum_{i} \mathbf{P}_{ij} = v_j, \forall j \right\}.$$
 (21)

Entropy regularization

Define the entropy

$$H(\mathbf{P}) := -\sum_{i,j} \mathbf{P}_{ij}(\log(\mathbf{P}_{ij}) - 1).$$
 (22)

Then the regularized Kantorovich problem⁶ is defined by

$$L_{C}^{\varepsilon}(\mathbf{u}, \mathbf{v}) := \min_{\mathbf{P} \in U(\mathbf{u}, \mathbf{v})} \langle \mathbf{P}, \mathbf{C} \rangle - \varepsilon H(\mathbf{P}).$$
(23)

It can be shown that $L_{\mathbf{C}}^{\varepsilon}(\mathbf{u}, \mathbf{v}) = L_{\mathbf{C}}(\mathbf{u}, \mathbf{v}) + O(\varepsilon)$.

Fig. 11. Graphs of optimal **P**s when choose different ε . Set $C_{ij} = |x_i - x_j|^2$.

⁶ Alan G. Wilson. "The use of entropy maximizing models, in the theory of trip distribution, mode split and route split". In: Journal of 4 D F 4 P F 4 P F 4 P F Transport Economics and Policy (1969), pp. 108-126.

Sinkhorn iteration

Let $K_{ij} = e^{-\frac{C_{ij}}{\varepsilon}}$. Sinkhorn iteration writes

$$\mathbf{a}^{(l+1)} \leftarrow \frac{\mathbf{u}}{\mathbf{K}\mathbf{b}^{(l)}}, \quad \text{and} \quad \mathbf{b}^{(l+1)} \leftarrow \frac{\mathbf{v}}{\mathbf{K}^T\mathbf{a}^{(l+1)}}, \quad \text{for } l = 0, 1, \dots$$
 (24)

which starts with an arbitary $oldsymbol{b}^{(0)}.$ The transport matrix $oldsymbol{P}$ can be rebuilt by

$$\mathbf{P}^{(l)} = \operatorname{diag}\left(\mathbf{b}^{(l)}\right) \cdot \mathbf{K} \cdot \operatorname{diag}\left(\mathbf{a}^{(l)}\right). \tag{25}$$

The convergence is proved by $Sinkhorn^7$. And Altschuler et al 8 give an analysis of the computational complexity.

Fig. 12. Graphs of $P^{(l)}$. Set $C_{ij} = |x_i - x_j|^2$ and $\varepsilon = 10^{-3}$.

⁸ Jason Altschuler, Jonathan Weed, and Philippe Rigollet. "Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration". In: Advances in Neural Information Processing Systems (2017).

⁷Richard Sinkhorn. "A relationship between arbitrary positive matrices and doubly stochastic matrices". In: *Annals of Mathematical Statististics* 35 (1964).

Thank You