Lecture content

- Examples of Continuous Time (CT) signals
 - The exponential
 - The sinusoidal

• Manipulations of CT signals

The exponential

$$x(t) = e^{-at}, t \ge 0.$$

If a is positive x(t) decays exponentially.

If a is negative x(t) grows exponentially.

If
$$a = 0$$
, $x(t) = u(t)$.

The Exponential

At what time will x(t) = 0? Mathematically this happens when $t = \infty$. In practice we often consider x(t) = 0 if its magnitude is less than 1% of its peak magnitude.

• At
$$t = t + \tau$$
, $\frac{e^{-a(t+\tau)}}{e^{-at}} = e^{-a\tau} = e^{-1} = 0.37$ (37% of its original value).
• At $t = t + 5\tau$, $\frac{e^{-a(t+5\tau)}}{e^{-at}} = e^{-a5\tau} = e^{-5} = 0.007$ (0.7% of its original value).

• At
$$t = t + 5\tau$$
, $\frac{e^{-a(t+5\tau)}}{e^{-at}} = e^{-a5\tau} = e^{-5} = 0.007$ (0.7% of its original value).

Thus, we often consider e^{-at} to reach zero after 5τ .

If $a = -j\omega_o$ (purely imaginary) $x(t) = e^{j\omega_o t}$ then is periodic.

Periodic signals with frequencies equal to integer multiples of ω_0 are known as harmonics.

The sinusoidal

A sinusoidal signal is given by

$$v(t) = V \sin(\omega_o t) = V \cos(\omega_o t - \frac{\pi}{2}) \qquad T = \frac{1}{f_o} = \frac{2\pi}{\omega_o}$$

Euler's relation $e^{j\omega_o t} = \cos \omega_o t + j \sin \omega_o t$

$$\sin(\omega_{o}t) = \frac{e^{j\omega_{o}t} - e^{-j\omega_{o}t}}{2j}$$

$$\cos(\omega_{o}t) = \frac{e^{j\omega_{o}t} + e^{-j\omega_{o}t}}{2}$$

Sketch the magnitude of $y(t) = e^{j2t} + e^{jt}$

Manipulations of CT signals

Manipulations of CT signals

Time scaling: y(t) = x(At)y(t) is a time-compressed (speed up, if A > 1) or a time-expanded (slowed down, if A < 1) version of x(t).

Manipulations of CT signals

Sinusoidal signals: Addition

Sinusoidal signals: Addition

Sinusoidal signals: Multiplication

Sinusoidal signals multiplied by an exponential are usually known as damped sinusoids