

HEMN451 – Medical Pattern Recognition

Submitted by: Ala'a Osama Ahmed - 1170185

Amira Mahmoud Farid - 1170498

Code Description

Online Training

- 1. Returns weights, number of weight updates, number of epochs
- 2. Create random weights ranging from -1 to 1
- 3. Initialize the variables
- 4. Loop from 1 to length of x
- 5. Check if y[m] dot product with x[m] is less than or equal to 0
- 6. W and delta are updated within each point
- 7. The delta will be delta y[m]*x[m]
- 8. The weight will be w = w delta / len(x)
- 9. Append to the w_steps and increment the number of updates
- 10. Increment the number of epochs
- 11. Append to deltas norm(delta,1)
- 12. Return outputs

ONLINE TRAINING

```
Input: (\mathbf{X}_{m}, y_{m}), m = 1, 2, ..., N

Set \mathbf{W} = [0, 0, ..., 0]^{T}

Repeat

\mathbf{delta} = [0, 0, ..., 0]^{T}

for m = 1 to N do

if y_{m}\mathbf{W}.\mathbf{X}_{m} < = 0

\mathbf{delta} = \mathbf{delta} - y_{m}\mathbf{X}_{m}

\mathbf{W} = \mathbf{W} - \mathbf{delta} / N

Until ||\mathbf{delta}|| < \epsilon
```

Batch Perceptron

- 1. Returns weights, number of weight updates, number of epochs
- 2. Create random weights ranging from -1 to 1
- 3. Initialize the variables
- 4. Loop from 1 to length of x
- 5. Check if y[m] dot product with x[m] is less than or equal to 0
- 6. Delta is updated within each point
- 7. The delta will be delta y[m]*x[m]
- 8. After looping through all points
- 9. The weight will be w = w delta / len(x)
- 10. Append to the w_steps and increment the number of updates
- 11. Increment the number of epochs
- 12. Append to deltas norm(delta,1)
- 13. Return outputs

```
Given: training examples (\mathbf{x}_m, y_m), m = 1,...,n

Let \mathbf{w} \leftarrow (0,0,0,...,0)

do

delta \leftarrow (0,0,0,...,0)
for m = 1 to n do
u_m \leftarrow \mathbf{w} \cdot \mathbf{x}_m
if y_m \cdot u_m \leq 0
delta \leftarrow delta - y_m \cdot x_m
delta \leftarrow delta / n
\mathbf{w} \leftarrow \mathbf{w} - \lambda delta
until |delta| < \varepsilon
```

Output

weight	weight updates	epochs
Problem 1 ONLINE-Bias: [-0.375 30.5]	208	58
Problem 1 BATCH-Bias: [-2.875 364.25]	1828	1828
Problem 4 ONLINE-Bias: [31.875 132.875	0.375] 4	3
Problem 4 BATCH-Bias: [63.75 64.75 -126.5	0.2 5] 6	6

Delta comparison between generated data without bias

Online Training Model Visualization

Batch Preceptron Model Visualization

Accuracy

weight	weight updates	epochs
ONLINE 75%: [2.71556496 -0.26634462]	24	2
Batch 75%: [1.22732111 0.63038481]		
Accuracy of Online Training 0.42857142857142855		
Accuracy of Batch Perceptron 0.42857142857142855		