```
1) Fibonacci number: +(n) = f(n-1) + f(n-2)
 monmal code: [time = 0(2"); space = 0(n)]
                 int fibo (int n) }
   (necunsive)
                 if (n=1 11 n=2) net n;
                  net fibo (n-1) + fibo (n-2); }
         code (dp): time = 0(n); space = 0(n)
improvise
          int memo [n+5] = 2-1};
           int fibo (int n) {
              if (n==1 11 n==0) net n;
              if (memo[n] ! = -1) net memo[n];
(Top-doun)
               net memo[n] = memo[n-1) + memo(n-2);
space optimized method; time = o(n), space = o(1)
            int fibo (int n) &
               in+ a=0, b=1, i, nes;
               fon (i = 0 \rightarrow n) {
                   nes = a+b;
                   a = b;
                                        visst
                   b = nes; }
             net b; [on net nes;]
```

improvised code (dp): bottom-up, with (loop)

int memo[n+5] int fibo (int n) { $= \{-1\}$; memo[0] = 0; memo[1] = 1; $fon (i = 2 \rightarrow n+1) \{$ memo[i) = memo[i-1] + memo[i-2] memo[i] memo[i] memo[n];

take voight on not

2) 10-1 knapsack problem:

nitems - weight and profit ralue

Goal: max profit
without crossing the limit weight

limitation: - either take on negect - can't take half amt.

Ex: max wt = 5 (\underline{w}), total item, $\underline{n} = 4$

		Market State			1
[100]	20	60	40	value	-> ~al
100	20		·	401814	-> wt
3	2	4	1	weight	
		1	,		

Value table: (size - n*w)

		W=0	1	2	3	4	5
	0	0	0	0	0	0	0
\wedge	1	0	0	0	100	100	100
		0	0	20	100	100	(20
	2		0	20	100	100	190
pto n	3		40	40	100	140	(40
(2)	4		-10				<u> </u>

-> (max)

pottom >UP

Libralting are

vis§t

code.

Explaination step:

Explaination Step.

1)
$$i=1$$
 $W+[1]=3$
 $W=[3]=[4]=4$
 $W=[3]=4$
 $W=[3]=4$

3 > 5 dp (1,5) = mx (0,100+

dp(0,5-3))

6

2)
$$i=2$$
, $w+[2)=2$, $2>1$ $d_{1}(2,\frac{1}{2})=d_{1}(1,1)=0$

2 > 1 $d_{1}(2,\frac{1}{2})=d_{1}(1,1)=0$

2 > 2 $d_{1}(2,2)=m\times(0,20+d_{1}(1,2))$

2 > 3 $d_{1}(2,2)=m\times(0,20+d_{1}(1,2))$

2 > 4 $d_{1}(2,4)=m\times(0,20+d_{1}(1,2))$

2 > 5 $d_{1}(2,4)=m\times(0,20+d_{1}(1,2))$

2 > 6 $d_{1}(2,4)=m\times(0,20+d_{1}(1,2))$

3) $i=3$ $w+[3]=4$

4> 1 $d_{1}(3,1)=d_{1}(2,1)=0$

4> 2 $d_{1}(3,2)=d_{1}(2,2)=20$

4> 3 $d_{1}(3,2)=d_{1}(2,2)=20$

4> 4 $d_{1}(2,2)=m\times(d_{1}(2,2))=100$

4> 4 $d_{1}(2,2)=m\times(d_{1}(2,2))=100$

4> 5 $d_{1}(2,2)=m\times(d_{1}(2,2))=100$

4> 6 $d_{1}(2,2)=m\times(d_{1}(2,2))=100$

1> 1 $d_{1}(4,1)=m\times(d_{1}(2,2))=100$

1> 2 $d_{1}(4,2)=m\times(d_{1}(3,2))=100$

1> 3 $d_{1}(4,2)=m\times(d_{1}(3,2))=100$

1> 4 $d_{1}(4,2)=m\times(d_{1}(3,2))=100$

1> 4 $d_{1}(4,2)=m\times(d_{1}(3,2))=100$

1> 5 $d_{1}(4,2)=m\times(d_{1}(3,2))=100$

1> 6 $d_{1}(4,2)=m\times(d_{1}(3,2))=100$

(Longest Common Subsequence)

A =
$$\{1,2,3,4\}$$
, B = $\{1,2,3\}$
Subsequences: $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{2,3\}$, $\{1,4\}$, $\{2,3\}$, $\{1,2\}$,

* maintain onden / sequence: 21,4,3} -> not AC

Step:
$$lcs(\{1,2,3,4\},\{1,2,3\})$$

= $1 + lcs(\{2,3,4\},\{2,3\})$
= $2 + lcs(\{3,4\},\{3\})$
= $3 + lcs(\{4\},\{3\})$
= $3 + 0 = 3$

length of LCS = 3

上大o Les (AXYT, AYZX) ecs (AXYT, AYZ) Les(AXY, AYZX) Les(Axy, AY2) Les(Axyt, LCS (AX, AYZX) RCS (AXY, AYZ) occurs twice $Hme = o(2^n)$ int les (char z[], char y[], int(m), int(n) { mon mal code: if (m = =0 11 n ==0) net 0; if (x[m] == y[n]) ne+ les(x, y, m-1, n-1); = net max (1cs (x, y, m-1, n), 1cs (x, y, m, n-1));= improvised: (dp) o (mxn) top-down int les (the chan x[], chany[], intm, intn) int dp[m][n] ¿ if (m == 0 11 n == 0) Het 0; $=\{-1\};$ if (dP[m][n] ! =-1) net dp[m][n];

* itenative (bottom -) up)

X: ACADB

Y: CBDA

if chan of cunnent now = column (cun), val [10] [c] = val [n-1] [c-1] +1;

else max (pner now, pner col)

vis@t

