

Лекция 2 Задачи кластеризации

Николай Анохин

7 марта 2015 г.

План занятия

Задача кластеризации

Смесь нормальных распределений и ЕМ

K-means и его модификации

Задача кластеризации

В задачах кластеризации целевая переменная не задана. Цель – отыскать "скрытую структуру" данных.

Зачем вообще рассматривать задачи без целевой переменной?

- 1. разметка данных дорогое удовольствие
- 2. можно сначала поделить, а потом разметить
- 3. возможность отслеживать эволюционные изменения
- 4. построение признаков
- 5. exploratory data analysis

Программисты python в Twitter

Графо-теоретические методы (источник)

Похожие тематики

Иерархическая кластеризия

Топ 1000 самых посещаемых доменов рунета

T-SNE + DBSCAN

Постановка задачи

Дано. N обучающих D-мерных объектов $\mathbf{x}_i \in \mathcal{X}$, образующих тренировочный набор данных (training data set) X.

Найти. Модель $h^*(\mathbf{x})$ из семейства параметрических функций $H = \{h(\mathbf{x}, \theta): \mathcal{X} \times \Theta \to \mathbb{N}\}$, ставящую в соответствие произвольному $\mathbf{x} \in \mathcal{X}$ один из K кластеров так, чтобы объекты внутри одного кластера были похожи, а объекты из разных кластеров различались.

- Как определить похожесть объектов?
- Как оценить качество модели?
- ▶ Как выбрать K?

Начнем с простого

Данные

Координаты точек попаданий по мишени из гауссовской пушки Задача

Определить, куда смещен прицел

Гаусс, Карл Фридрих (1777-1855)

- ▶ Не открыл распределение Гаусса
- ▶ Открыл все остальное

Многомерное нормальное распределение

$$\mathcal{N}(\mathbf{x}|\mu, \mathbf{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mu)\right\}$$

Параметры

D-мерный вектор средних

 $D \times D$ -мерная матрица ковариации

$$\mu = \int \mathbf{x} p(\mathbf{x}) d\mathbf{x}$$

$$\mathbf{\Sigma} = E[(\mathbf{x} - \mu)(\mathbf{x} - \mu)^T]$$

Формализуем задачу

Имеется набор данных

$$X = \{\mathbf{x}_n \in R^2\}$$

Предположение

$$p(\mathbf{x}_n) \sim \mathcal{N}(\mathbf{x}|\mu, \mathbf{\Sigma}), \quad \mu \in \mathbb{R}^2, \ \mathbf{\Sigma} \in \mathbb{R}^{2 \times 2}$$

Требуется найти вектор средних μ и матрицу ковариации ${f \Sigma}$

Maximum likelihood (!)

Принцип максимального правдоподобия

Пусть дано семейство параметрических моделей $h(\mathbf{x},\theta)$. Выбираем вектор параметров θ , максимизирующий функцию правдоподобия (likelihood) $p(\mathcal{D}|\theta)$, соответствующую рассматриваемому семейству моделей.

Правдоподобие

$$L(X|\mu, \mathbf{\Sigma}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{x_n}|\mu, \mathbf{\Sigma}) \to \max_{\mu, \mathbf{\Sigma}}$$

Решение

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x_n}, \quad \mathbf{\Sigma}_{ML} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x_n} - \mu_{ML}) (\mathbf{x_n} - \mu_{ML})^T$$

Old Faithful data set

D = date of recordings in month (in August)

X = duration of the current eruption in minutes

Y = waiting time until the next eruption in minutes

Смесь нормальных распределений

"Скрытая" K-мерная переменная \mathbf{z} – принадлежность объекта к одному из кластеров

$$p(z_k=1)=\pi_k,\quad z_k\in\{0,1\},\quad \sum_k z_k=1\quad o\quad p(\mathbf{z})=\prod_k \pi_k^{z_k}$$

Распределение \mathbf{x} для каждого из K кластеров

$$p(\mathbf{x}|\mathbf{z_k}) = \mathcal{N}(\mathbf{x}|\mu_k, \mathbf{\Sigma}_k) \quad o \quad p(\mathbf{x}|\mathbf{z}) = \prod_k \mathcal{N}(\mathbf{x}|\mu_k, \mathbf{\Sigma}_k)^{\mathbf{z}_k}$$

Смесь нормальных распределений

$$p(\mathbf{x}) = \sum_{k} \pi_{k} \mathcal{N}(\mathbf{x}|\mu_{k}, \mathbf{\Sigma}_{k})$$

Апостериорная вероятность принадлежности к k кластеру (априорная равна π_k)

$$\gamma(z_k) = p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)} =$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\mu_k, \mathbf{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\mu_j, \mathbf{\Sigma}_j)}$$

Maximum Likelihood

Функция правдоподобия

$$\log(\mathbf{X}|\pi, \mu, \mathbf{\Sigma}) = \sum_{n=1}^{N} \log \sum_{k} \pi_{k} \mathcal{N}(\mathbf{x}_{n}|\mu_{k}, \mathbf{\Sigma}_{k}) \rightarrow \max_{\pi, \mu, \mathbf{\Sigma}}$$

Сложности

- схлопывание компонент
- переименование кластеров
- невозможно оптимизировать аналитически

Дифференцируем функцию правдоподобия

$$N_k = \sum_{n=1}^N \gamma(z_{nk}), \quad \mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$
$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k)^T (\mathbf{x}_n - \mu_k)$$
$$\pi_k = \frac{N_k}{N}$$

Expectation Maximization (!)

E Expectation: при фиксированных μ_k, Σ_k, π_k

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \mu_j, \Sigma_j)}$$

M Maximization: при фиксированных $\gamma(z_{nk})$

$$N_k = \sum_{n=1}^N \gamma(z_{nk}), \quad \mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$
$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T$$
$$\pi_k = \frac{N_k}{N_k}$$

S Остановиться при достижении сходимости

ЕМ-алгоритм

Дано. Известно распределение $P(\mathbf{X},\mathbf{Z}|\theta)$, где \mathbf{x} – наблюдаемые переменные, а \mathbf{z} – скрытые.

Найти. θ , максимизирующее $P(\mathbf{X}|\theta)$.

 E вычислить $P(\mathsf{Z}|\mathsf{X},\theta^{old})$ при фиксированном θ^{old}

 M вычислить $heta^{\mathit{new}} = \operatorname{arg\,max}_{ heta} \mathcal{Q}(heta, heta^{\mathit{old}})$, где

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{old}) = E_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})] = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}))$$

 $\mathit{Улучшение:}$ ввести априорное распределение $\mathit{p}(\theta)$

Различные смеси

$p(\mathbf{x}_i \mathbf{z}_i)$	$p(\mathbf{z}_i)$	Name
MVN	Discrete	Mixture of Gaussians
Prod. Discrete	Discrete	Mixture of multinomials
Prod. Gaussian	Prod. Gaussian	Factor analysis/ probabilistic PCA
Prod. Gaussian	Prod. Laplace	Probabilistic ICA/ sparse coding
Prod. Discrete	Prod. Gaussian	Multinomial PCA
Prod. Discrete	Dirichlet	Latent Dirichlet allocation
Prod. Noisy-OR	Prod. Bernoulli	BN20/ QMR
Prod. Bernoulli	Prod. Bernoulli	Sigmoid belief net

K-means

Пусть $\Sigma_k = \epsilon I$, тогда

$$p(\mathbf{x}|\mu_k, \Sigma_k) = \frac{1}{\sqrt{2\pi\epsilon}} \exp(-\frac{1}{2\epsilon} \|\mathbf{x} - \mu_k\|^2)$$

Рассмотрим стремление $\epsilon o 0$

$$\gamma(\mathbf{z}_{\mathit{nk}}) = \frac{\pi_{\mathit{k}} \exp(-\frac{1}{2\epsilon} \|\mathbf{x}_{\mathit{n}} - \mu_{\mathit{k}}\|^2)}{\sum_{j} \pi_{j} \exp(-\frac{1}{2\epsilon} \|\mathbf{x}_{\mathit{n}} - \mu_{\mathit{j}}\|^2)} \rightarrow \mathit{r}_{\mathit{nk}} = \begin{cases} 1, \text{ для } \mathit{k} = \arg\min_{j} \|\mathbf{x}_{\mathit{n}} - \mu_{\mathit{j}}\|^2\\ 0, \text{ иначе} \end{cases}$$

Функция правдоподобия

$$E_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z}|\mu, \Sigma, \pi)] \rightarrow -\sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mu_k\|^2 + const$$

Вектор средних

$$\mu_k = \frac{\sum_{n} r_{nk} \mathbf{x_n}}{\sum_{n} r_{nk}}$$

K-means

3

5

6

8

9

10

11

12

13

14

```
function kmeans(X, K):
    initialize N # number of objects
    initialize Mu = (mu_1 ... mu_K) # random centroids
    do:
        # E step
        for k in 1..K:
            for x in 1..N:
                compute r_nk # Cluster assignment
        # M step
        for k in 1..K:
            recompute mu_k # Update centroids
    until Mu converged
    J = loss(X, Mu)
    return Mu, J
```

Сложность O(NK)Локальная оптимизация (!)

Задача

Модификации k-means

▶ На каждом шаге работаем с b случайно выбранными объектами из каждого кластера (mini-batch k-means)

► Критерий качества (k-medoids)

$$\tilde{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} d(\mathbf{x}_n, \mu_k)$$

d – функция расстояния, μ_k – один из объектов в кластере

Альтернативные функции расстояния

Def

Функция $d(\mathbf{x}, \mathbf{y}): \mathbf{X} \times \mathbf{X} \to R$ является функцией расстояния, определенной на пространстве \mathbf{X} тогда и только тогда, когда $\forall \mathbf{x} \in \mathbf{X}, \ \forall \mathbf{y} \in \mathbf{X}, \ \forall \mathbf{z} \in \mathbf{X}$ выполнено:

- 1. $d(x, y) \ge 0$
- 2. $d(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y}$
- 3. d(x, y) = d(y, x)
- 4. $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z}) + d(\mathbf{y}, \mathbf{z})$

Расстояния 1

Минковского

$$d_r(\mathbf{x}, \mathbf{y}) = \left[\sum_{j=1}^N |x_j - y_j|^r \right]^{\frac{1}{r}}$$

▶ Евклидово r=2

$$d_E(\mathbf{x},\mathbf{y})=d_2(\mathbf{x},\mathbf{y})$$

▶ Манхэттэн r = 1

$$d_M(\mathbf{x},\mathbf{y})=d_1(\mathbf{x},\mathbf{y})$$

 $r = \infty$

$$d_{\infty}(\mathbf{x},\mathbf{y}) = \max_{j} |x_{j} - y_{j}|$$

Проблема

Функции расстояния чувствительны к преобразоаниям данных

Решение

- ▶ Преобразовать обучающую выборку так, чтобы признаки имели нулевое среднее и единичную дисперсию – инвариантность к растяжению и сдвигу (standartize)
- Преобразовать обучающую выборку так, чтобы оси совпадали с главными компонентами матрицы ковариации – инвариантность относительно поворотов (PCA)

Расстояния 2

Жаккар

$$d_J(\mathsf{x},\mathsf{y}) = 1 - rac{|\mathsf{x} \cap \mathsf{y}|}{|\mathsf{x} \cup \mathsf{y}|}$$

Косинус

$$d_c(\mathbf{x}, \mathbf{y}) = \arccos \frac{\mathbf{x}\mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

- ▶ Хэмминг d_H – количество различных компонент в x и y.

Проклятие размерности

Задача

Даны два случайных вектора ${\bf x}$ и ${\bf y}$ в пространстве размерности D. Как зависит математическое ожидание косинус-расстояния между ${\bf x}$ и ${\bf y}$ от размерности D?

$$d_c(\mathbf{x}, \mathbf{y}) = \arccos \frac{\sum_{j=1}^{D} x_j y_j}{\sum_{j=1}^{D} x_j^2 \sum_{j=1}^{D} y_j^2}$$

Наблюдения:

- числитель стремится к нулю
- знаменатель положительный

Вывод:
$$d_c(\mathbf{x},\mathbf{y}) o \frac{\pi}{2}$$
.

Альтернативные критерии качества

Критерий

$$J = \sum_{k=1}^{K} \sum_{\mathbf{x}_{i} \in C_{k}} \|\mathbf{x}_{i} - \mathbf{m}_{k}\|^{2} =$$

$$= \frac{1}{2} \sum_{k=1}^{K} n_{k} \left[\frac{1}{n_{k}^{2}} \sum_{\mathbf{x}_{i} \in C_{k}} \sum_{\mathbf{x}_{j} \in C_{k}} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} \right] =$$

$$= \frac{1}{2} \sum_{k=1}^{K} n_{k} \left[\frac{1}{n_{k}^{2}} \sum_{\mathbf{x}_{i} \in C_{k}} \sum_{\mathbf{x}_{j} \in C_{k}} s(\mathbf{x}_{i}, \mathbf{x}_{j}) \right] = \frac{1}{2} \sum_{k=1}^{K} n_{k} \overline{s}_{k}$$

Примеры \bar{s}_i

$$\underline{s}_k = \min_{\mathbf{x}_i, \mathbf{x}_j} s(\mathbf{x}_i, \mathbf{x}_j); \quad \overline{s}_k = \max_{\mathbf{x}_i, \mathbf{x}_j} s(\mathbf{x}_i, \mathbf{x}_j)$$

Кластеризация

Идея

Выбрать критерий качества кластеризации J и расстояние между объектами $d(\mathbf{x}_i,\mathbf{x}_j)$ и вычислить разбиение выборки на кластеры, которое которое соответствует оптимальному значению выбранного критерия.

Задача на дом

Рассмотреть смесь из D-мерных распределений Бернулли. В такой смеси $\mathbf{x}-D$ -мерный бинарный вектор, каждый компонент x_i которого подчиняется распределению бернулли с параметром μ_{ki} при заданном векторе μ_k :

$$p(\mathbf{x}|\mu_k) = \prod_{i=1}^{D} \mu_{ki}^{x_i} (1 - \mu_{ki})^{(1-x_i)}$$

Вероятность k-го вектора μ_k равна π_k . Выписать выражения для E и M шагов, при исользовании EM алгоритма для нахождения неизвестных параметров μ_k и π_k .

Вопросы

