AD-A008 438

THE THERMODYNAMICS OF THORIUM-OXYGEN AND URANIUM-OXYGEN SYSTEMS

Stanley Abramowitz

National Bureau of Standards

Prepared for:

Defense Advanced Research Projects Agency Defense Nuclear Agency

19 February 1975

DISTRIBUTED BY:

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. PEPORT NUMBER	2. GOVT ACCESSION FO.	3. RECIPIENT'S CATALOG NUMBER		
DNA 3546F		AD-A008438		
4. TITLE (and Subtile)		5. TYPE OF REPORT & PERIOD COVERED		
THE THERMODYNAMICS OF THORIUM-OXYG	EN AND	Final Report for Period		
URANIUM-OXYGEN SYSTEMS		14 June 1973-30 June 1974		
		6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(x)		8. CONTRACT OR GRAPIT NUMBER(s)		
Stanley Abramowitz		DNA MIPR 73-829		
Doubled hor call have		DARPA Order No. 1433		
1		Program Code 3650		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
National Bureau of Standards	1	DNA Subtask		
Washington, D.C. 20234	!	M99QANHI002-01		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
Director	(2,22)	19 February 1975		
Defense Advanced Research Projects	Agency (DARPA)	13. NUMBER OF PAGES		
Washington, D.C. 20305				
14. MONITORING AGENCY NAME & ADDRESS(II different	t from Controlling Offic")	15. SECURITY CLASS (of this report)		
Director	UNCLASSIFIED			
Defense Nuclear Agency				
Washington, D.C. 20305	•	154. DECLASSIFICATION DOWNGRADING SCHEDULE		
		<u> </u>		

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report)

18. SUPPLEMENTARY NOTES

This work sponsored by the Defense Advanced Research Projects Agency under DARPA Order No. 1433 and by the Defense Nuclear Agency under Subtask M99QANFT002-01.

19 KEY WORDS (Continue on reverse side if necessary and identify by block number)

Thermody nics Uranium-Oxygen Systems Thorium-Oxygen Systems Physical Chemistry

20 ABSTRACT (Continue on reverse side if necessary and identify by block number)

The calorimetric, spectroscopic, and vapor pressure data for the uraniumoxygen and thorium-oxygen systems have been reviewed. Free energies of formation for the species UO, UO2, ThO, and ThO2 have been chosen. Tables of thermodynamic functions for these species are presented.

> NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE .

UNCLASSIFIED

PRICES SUBJECT TO CHANGE

TABLE OF CONTENTS

Section		Page
1	Thermodynamics of the uranium-oxygen system	3
	References	16
2	Thermodynamics of the thorium-oxygen system	18
	References	28

では、「大きないというでは、「大きないと、「大きないでは、「大きないと、「大きないと、「大きない」と、「大きないでは、「大きない。」と、「大きないでは、「大きない」というできない。「大きない」と、「大きない」」と、「大きない」と、「大きない」と、「大きない」と、「大きない」」」と、「大きない」」と、「大きない」」と、「大きない」」と、「大きない」」と、「大きない」」と、「大きない」」と、「大きない」」」と、「大きない」」と、「大きない」」と、「ちない」」」と、「ちない」」と、「ちない」」と、「ちない」」」と、「ちない」」と、「ちない」」」と、「ちない」」」と、「ちない」」」と、「ちない」」」と、「ちない」」と、「ちない」」と、「ちない」」と、「ちない」」と、「ちない」」と、「ちない」」と、「ない」」と、「ない」」と、「ちない」」と、「ちない」」と、「ちない」」と、「ちない」」」と、「ちない」」と、「ちない」」と、「ちない」」と、「ちない」」」と、「ちない」」」、「ちない」」」、「ちない」」」、「ちない」」」、「ちない」」、「ちない」」、「ちない」」」、「ちない」」、「ちない」」、「ちない」」、「ちない」」」、「ちない、「ちない」」」、「ちない」」、「ちない」」、「ちない」」」、「ちない」」」、「ちない」」、「ちない」」、「ちない」」」、「ちない、「ちない」」」、「ちない」」」、「ちない」」」、「ちない」」、「ちない」」、「ちない」」」、「ちない」」」、「ちない」」」、「ちない」」」、「ちない」」」、「ちない、「ちない」」」、「ちない、「ちない」」」」、「ちない」」」、「ちない、「ちない」」」、「ちない」」」、「ちない、「ちない、「ちない」」」、「ちない、「ちない」」」、「ちない、「ちない、「ちない、「ちない、」」」、「ちない、「ち

LIST OF TABLES

Table																			Payse
ı	Thermodynamic	functions	for	UO(g) -	-	-	-	_	_	.	 -	-	_	-	-	-	_	-	14
2	Thermodynamic	functions	for	UO2(g)-	~	-	-	-	-		 -	-	_	-	-	-	-	_	15
3	Thermodynamic	functions	for	ThO(g)-	-	-	-	_	-	-	 -	-		-	•	-	-	_	25
4	Thermodynamic	functions	for	$ThO_2(g)$	-	-	-	-	-	<u>.</u>	 -	-	-	-	-	_	-	-	2 6
5	Thermodynamic	functions	for	ThO ₂ (g)	-	_	-	-	-	-	 -	-	_	-	-	-	-	-	27

SECTION 1

THERMODYNAMICS OF THE URANIUM-OXYGEN SYSTEM

The vapor above uranium oxide condensed phases includes U, UO, UO₂, and UO₃. The composition of the vapor is strongly dependent upon the O/U ratio. In the three phase system $U(L)/UO_2(s)$ and vapor $(0/U \le 1.7)$ the principal vapor phase species is UO with smaller amounts of U and UO_2 vapors. For UO_2 a congruent evaporation seems to predominate giving mostly UO_2 with about equimolar but much smaller quantities of UO and UO_3 . For hyperstoichiometric urania (0/U > 2) UO_3 and UO_2 are the principal vapor phase species.

Uranium (s)

The vapor pressure of uranium has been studied over a wide temperature range most recently by Ackermann and Rauh (2) and Pattoret,

Drowart and Smoes (2). Ackermann and Rauh have shown that the activity
of the condensed phase varies from 1.0 downward as the electron-gativity
of the dissolved component increases. They give an expression for the
vapor pressure of uranium

log P_U (atm) = (5.71 ± 0.17) - (25,230 ± 370)/T.

This yields a ΔH_s^e $_{298}$ = 126.3 ± 1.0 kcal/mole. Pattoret et al (4) give log P_U (atm) = (5.920 ± 0.135) - (26,210 ± 270)/T and ΔH_s^e $_{298}$ = 129.0 ± 2.0 kcal/mole.

These authors also summarize all the previous work on these systems by their laboratories and others. It is perhaps most significant that the vapor pressures that one will observe in these systems are a strong function of the container material or the dissolved components.

 $vo_2(s)/v(l)$

The partial pressures of the species are determined by mass spectroscopic measurements, while the total pressures have been measured by both effusion and transpiration techniques. The total mass spectroscopic instrument sensitivity to a particular gas phase species has to be known in order to compute the partial pressures

$$Pi = I^{\dagger}_{(i)}T/\sigma_{i}v_{i} = I^{\dagger}_{T/k_{i}}$$

where σ_i and v_i are the cross-section for ionization by electrons v^c are given energy and the detector sensitivity to the species of inherest. Various assumptions have been made concerning these k_i quantities. Ackermann et al (3) in their work on the $U(k)/UC_2(s)$ system used equal sensitivities for U(v), UO(v) and $UO_2(v)$. A recent work by Blackburn and Danielson (4) has advocated values of 0.66, 1.25, and 0.31 for the product of multiplier yield and partial relative ionization cross-section for U, UO and UO_2 using a IO eV ionizing electron beam. (For this energy beam these partial relative ionization cross-sections).

The pressure of tranium species above of U(L), $UO_2(s)$ is given by $\log P_e = (7.25 \pm 0.15) - (27.020 \pm 250)/T$ (for $1580-2400^{\circ}K$) by Ackermann et al (1). Pattoret et al (3) report a pressure of UO given by $\log P = 8.19 - 28,020/T$ in the temperature interval of $1700 - 2150^{\circ}K$.

There is considerable evidence that the system $\mathrm{UO}_2(s)/\mathrm{U}(\ell)$ is far from ideal. Therefore the activities of the condensed phases cannot be assumed to be unity, for the process

$$v_{(\ell)} + v_{2(s)} = 2v_{0} (g)$$
.

Consequently the measurement of thermal functions for this system has to be done using gas phase equilibria where activity coefficients can be assumed to be unity. Ackermann et al (3) measured the gas phase equilibria

$$v_{(g)} + v_{(g)} = 2v_{(g)}$$

and from the known free energy functions of $\mathrm{UO}_2(g)$ (this will be discussed later) and $\mathrm{U}_{(g)}$ and the measured equilibrium constant as a function of temperature.

$$K = P^2 \frac{VO}{V} P P_{VO_2}$$

where, $\log K = (1.268 \pm 0.05) + (2091 \pm 117)/T$ They computed $\triangle G_f^{\circ}$ (UO,g)

$$\Delta G_{f}^{\circ}$$
 (UO,g) = 1/2 ΔG_{f}° (UO₂,g) + 1/2 ΔG_{f}° (U, ε) ·· 1/2 R'T log K = -7,800 - 13.84T.

It should be, of course, noted that this measurement of K required a knowledge of the k_i 's. Ackermann et al (3) assumed that k_i of the various species were equal to each other. Incorporation of Blackburn and Danielson's data (4) for partial relative ionization cross-sections would change the measured equilibrium constant by almost a factor of 1/8. This would have the effect of decreasing the ΔS_f° of UO(g) from 13.84 e.u. to about 11.78 e.u. without affecting the ΔH° term. Other potential sources of error are the ΔG_f° UO₂(g) and ΔG_f° U(g). As will be seen later in this report an uncertainty in the entropy of formation, ΔS_f° UO₂ (g) is not unlikely. This error would contribute an uncertainty of 1.5 e.u. to the ΔS_f° UO(g).

The D_0^{\bullet} computed from the ΔH_f^{\bullet} of UO determined by Ackermann et al. (3) is

$$D_0^{\bullet} = \Delta H_s(U,g) + 1/2 D_0^{\bullet} O_2 - \Delta H_f(UO)$$

= 115.4₃ + 59.0 + 7.8 = 182.2 ± 3 kcal/mole.

(It should of course be noted that a correction for ΔH_8 and $\Delta H_{\tilde{I}}UO$ to 0 K has not been made, however these corrections should go in the same direction and tend to cancel each other). Patteret et al (5) determined a D_0° for UO(g) from the isomolecular exchange reaction

$$UC(g) + Si(g) = U(g) + SiC(g)$$
 $\triangle H$ then $D_0^{\circ}(UO, g) = \triangle H + D_0^{\circ}$ SiO = =-8.6 + 190.4 = 181.8 ± 2.2 kcal/mole

which is in excellent agreement. Unfortunately no relative ionization cross-sections were quoted in this work. Although in a later work (2) the authors give k_1 's of 1.15, 0.80, and 0.55 for U, U0 and U0₂ respectively. These numbers would give an cvalable correction of 0.99 to the equilibrium constants given by Ackermann et al (3).

A computation of $\Delta S_{\mathbf{f}}^{\bullet}$ of UO from spectroscopic data requires a knowledge of the electronic levels of UO. No spectroscopic assignment for the electronic energy, levels of UO is available in the literature. The infrared spectrum of matrix isolated UO has been observed by several workers. Using this vibrational frequency and the estimated bond distance of about 1.75Å one can compute the S_{2000K}° for UO without electronic contribution of 73.4 e.u. From this value and those of liquid uranium and molecular oxygen an entropy of formation of UO (defined by the equation $U(l) + 1/2O_{2} = UO(g)$ (2000K)) of 8.9 e.u. mole⁻¹ is computed. This value is considerably less than the 13.84 e.u. quoted by Ackermann (or for that

uniter the 11.78 obtained by using Blackburn and Danielson's k_1 's). Unfortunately there exists no easy way to remedy this situation without the necessary spectroscopic data. The $\Delta S_f''$ of 13.84 can be rationalized to the observed data of 8.1 e.u. if one has a ground state with a degeneracy of about 13. (The ΔS_f° = 11.78 gives a ground state degeneracy of about 5).

The parcial pressures of the U, U0, U0₂ species above the three phase system $U(L)/U0_{2-x(s)}$ have been given by Ackermann et al (3) as

log
$$P_{U} = (5.21 \pm 0.14) - (25,640 \pm 300)/T$$

log $P_{U0} = (7.11 \pm 0.14) - (26,880 \pm 300)/T$
log $P_{U0} = (7.74 \pm 0.14) - (30,180 \pm 300)/T$.

These equations were derived from their measurements in the temperature range of 1820 - 2490 K assuming equal $\sigma_{i}v_{i}$ for the three species. Pattoret et al (5) have also observed that the $I_{UO}^{+}/I_{UO_{2}}^{+}/I_{UO_{2}}^{+}$ is about 10/1/1 for this system. Pressure ratios of about 10/1/1 are obtained from Ackermann et al whereas ratios of about 12.5/0.87/1.82 and about 7.75/1.52/3.23 are obtained using the $\sigma_{i}v_{i}$ given by Pattoret et al (5) and Blackburn and Danielson (4) respectively. The partial pressures computed using the three sets of $\sigma_{i}v_{i}$ are given in the following table. (The data for P_{e} of Ackermann (3) at 2000 K are used in order to facilitate a direct comparison.)

P_U(atm) P_{UO}(atm) $\frac{P_{UO}(atm)}{4.68 \times 10^{-7}}$ $\frac{P_{UO}(atm)}{4.47 \times 10^{-8}}$ $\frac{P_{U}/P_{UO}/P_{UO}}{1/18.9/1.82}$ PDS (5) 2.13 × 10⁻⁸ 5.79 × 10⁻⁷ 8.13 × 10⁻⁸ 1/27.2/3.82 BD (4) 3.72 × 10⁻⁸ 3.59 × 10⁻⁷ 1.44 × 10⁻⁷ 1/9.65/3.87

It should be noted that the partial pressure ratios are significantly different from the three sets of $\sigma_i\gamma_i$ used.

The measurements of Pattoret et al (5) give a pressure of UO about 2.4 times greater than those of Ackermann et al (3). The σ_i γ_i used by the three workers are given below together with the K computed.

relative
$$\sigma_{i}^{\gamma}{}_{i}$$
 \underline{U} \underline{UO} \underline{UO}_{2} \underline{Ke}

PDS (5) 1.15 0.80 0.55 0.988

ARC (3) 1 1 1 1

BD (4) 0.66 1.29 0.31 0.123

for $U_{(g)} + UO_{2(g)} = 2UO_{(g)}$

$$K_{p}^{\alpha}(T) = \begin{bmatrix} I^{+}_{UO_{2}}/(\sigma\gamma)_{UO_{2}}^{2} \\ I^{+}_{UO_{2}}/(\sigma\gamma)_{UO_{2}}^{2} \end{bmatrix} K_{e}$$

At 2000K the pressures given by Ackermann et al (3) and Pattoret et al (5) are

ARC(3)
$$P_{UO}$$
 = 4.68 x 10⁻⁷
 P_{UO_2} = 4.47 x 10⁻⁸
 P_U = 2.45 x 10⁻⁸
PDS(5) P_{UO} = 1.12 x 10⁻⁶

Stoichiometric UC,

The vapor pressure above stoichiometric UO₂ has been measured by several workers (6-10) using both mass transpiration and effusion techniques. The congruently evaporating compositions of urania have also been systematically measured as a function of temperature by analysis of the residues after appreciable Knudsen effusion loss. These residu s become increasingly hypostoichiometric with temperature varying from UO_{2.000} to UO_{1.940} in the 1940 - 2386 K temperature interval (9). It has also been suggested that a significant partial pressure of UO and UO₃ is present even at lower temperatures, UO₃ becoming predominant to the UO as the temperature increases (9).

The results of some of the more recent experiments are given below. The vapor pressure of the uranium bearing species is represented by the equation

$$\Delta G = -RT \ln P$$

$$(U) = \Delta \dot{H} - T\Delta S$$
or $\log P(atm) = \frac{-\Delta \dot{H}}{R^{*}T} + \frac{\Delta \dot{S}}{R^{*}}$

<u>∆H</u>	<u>ΔS</u>	method	temp. range	ref.	P2200K
137.1	36.4	mass effusion	1600-2200	AGT(6)	2.17×10^{-6}
147.1	42.2	11 11	1920-2220	Ivanov(10)	4.08
147.8	42.0	91 91	2200-2800	Ohse(8)	3.14
141.2	39.4	mass spect.	1890-2420	PDS '67(5)	3.84
143.1	39.4	transpiration	2085-2705	TH (7)	2.49
134.1	34.5	11 11	2000-2940	Alexander (11)	1.66

By observing the equilibrium ion currents for the reaction

$$30_{2}(g) + Si(g) \rightarrow 00(g) + Si0(g)$$
 $\triangle H = 18.6 \text{ csl/mole}$

and from a knowledge of D_0^{\bullet} UO(g) and SiO(g). Pattoret et al (5) computed a D_0^{\bullet} of UO₂ of 353.6 \pm 3.2 kcal/mole,

$$D_0^{\bullet} U_0^{\bullet} = \Delta R + D_0^{\bullet} Si0 + D_0^{\bullet} U_0^{\bullet}$$

= 18.6 + 190.4 + 181.8 = 353.6.

This value is in good agreement with 353.2 (14.9eV) given by Ackermann Gilles and Thorn (6). These workers used the $\mathrm{UO}_2(g)$ equilibria coupled with the data for $\mathrm{UO}_2(g)$ given by Kelley (Bur. Mines Bull. 476, 1909) and estimated thermodynamic data for the vapor. Pattoret et al (5) obtained a value of 352.5 kcal/mole from the $\mathrm{UO}_2(g) = \mathrm{UO}_2(g)$ using

$$\Delta H_{f}^{\circ}$$
 298 $UO_{2}(s) = -259.5 \text{ kcal/mole}$
 ΔH_{s}° 298 $UO_{2} = 125 \text{ kcal/mole}$
then

$$UO_2(s) = UO_2(g)$$
 $\triangle H_f^o = 152.5$
 $D_0^o(UO_2g) = -\triangle H_f(UO_{2,g}) + \triangle H_s U_{(s)} + D_0^o O_2^c$
 $= (259.5 - 152.5) + 129.0 + 117 = 353 \text{ kcal/mole}$
 $UO_2(g) = U(g) + 2O(g) \quad D_0^o UO_2^c$

Therefore since both gas phase equilibria coupled with assumed previously determined dissociation energies agree well with ΔH for $UO_2(s) = UO_2(g)$ coupled with $\Delta H_s U$ and $D_0^{\circ}O_2$ for the determination of $D_0^{\circ}(UO_2)$ one can have a degree of confidence of the thermal functions for UO_2 determined by the congruent vaporization of stoichiometric urania.

It has been noted by Tetenbaum and Munt (7) that the pressures derived from effusion measurements on stoichiometric unamia by Ackermann et al (6) and Ohse (8) are higher at temperatures above 2350C than those obtainable using the transpiration methods. The original proposal by Ackermann et al of a UO₂ dimer is not consistent with the pressure measurements of Tetenbaum and Hunt. Mass spectroscopic measurements have not been successful in finding a UO₂ dimer. Rather the positive curvature in the vapor pressure with temperature above 2350 C is probably caused by a departure from molecular flow in the Knudsen ce.1. Edwards et al (9) have suggested increased pressures of UO₃ in order to reach the proper UO_{2-x} for the higher temperatures. This explanation has also been rejected by Tetenbaum and Hunt since In P vs 1/T is a straight line over the range of 2080-2705 K for various UO_{2-x} specimens.

The free energy of formation, ΔG_f^* $UO_2(g)$ can in principle be derived from the vapor pressure measurements above stoichiometric UO_2 assuming the principal reaction is

 $\label{eq:condition} \begin{array}{lll} \text{UO}_2(s) \to \text{UG}_2(g) & \Delta G_s \text{UO}_2(s) = -R'T \log P. \\ \\ \text{This quantity coupled with } \Delta G_f^\circ \text{UO}_2(s) \text{ then yields } \Delta G_f^\circ \text{UO}_2(g) = \\ \\ \Delta G_f \text{UO}_2(s) + \Delta G_s \text{UO}_2(s). \end{array}$

If one inspects table 3 which gives the $\Delta G_s^\circ = UO_2(s) = \Delta H_{(s)}^\circ - T\Delta S_{(s)}^\circ$ one finds the ΔS terms value from 42.4 to 34.5 cal/mole K. with an average deviation of about 2.4 cal/mole K. The uncertainty in the entropy of this process will be reflected in the computation of ΔS_f° $UO_2(g)$. Using Ackermann et al (6) vapor pressure data one obtains $\Delta S_f^\circ = -4.24$ e.u, the data of Pattoret et al (5) gives $\Delta S_f^\circ = -1.26$

as does the data of Tetenbaum and Hunt (7). Perhaps this latter value is expected to be more reliable since the method of mass transpiration over a long temperature range is in agreement with mass spectroscopic observations over a smaller and to an extent overlapping temperature range.

Using the vibrational assignment for UO_2 given by Gabelnik et al (12) and Abramowitz et al (13) namely $\mathrm{v}_1 = 765.9$, $\mathrm{v}_3 = 776.1$ and $\mathrm{v}_2 = 81~\mathrm{cm}^{-1}$ for a linear UO_2 molecule with a r U-O = 1.75 Å a $\mathrm{S}^\circ_{2000\mathrm{K}}$ = 92.3 cal mole $^{-1}$, $^{-1}$ is computed. Small variations of r will not significantly effect the computed functions. Coupling this with S°_{2000} U(L) = 72.53 and S°_{2000} O₂ = 64.18 one obtains a $\Delta\mathrm{S}_{\mathrm{f}}$ UO₂(g) = -4.41 cal mole $^{-1}\mathrm{K}^{-1}$ in excellent agraement with $\Delta\mathrm{S}^\circ_{\mathrm{f}} = -4.24$ given by Ackermann et al (6) and in good agreement with $\Delta\mathrm{S}^\circ_{\mathrm{f}} = -1.24$ given by Tetenbaum and Hunt (7) and Pattoret et al (5). It should of course be noted that for the purposes of this computation of $\mathrm{S}^\circ_{2000\mathrm{K}}$ of UO_2 a singlet ground state was assumed and any contribution to the entropy from low lying electronic spectra of $\mathrm{UO}_2(\mathrm{g})$ or matrix isolated UO_2 observed and analyzed).

The indication potential of U, WO and W_2 have been measured using the RPD (retarding potential difference) method by Mann (14). He has given values of 6.1, 5.7, and 5.5 eV for the ionization potentials of U, W_2 , respectively. These values which are probably good to about 0.1 eV have been accepted by other workers in the field. These ionization potentials coupled with the ΔW_1 UO and ΔW_2 there can be used to

estimate exothermicities of reactions such as:

Reaction	eV
$U(s) + O_2 + UO_2(g)$	-5.27
$U(s) + \frac{1}{2}O_2 - VO(g)$	-0.34
$U(s) \rightarrow U(g)$	+5.00
U(g) + O ₂ → UO ₂ (g)	-10.27
U(g) + 0 ₂ → U0 ₂ + e	-4.77
$U(g) + \frac{1}{2}O_2 \rightarrow UO(g)$	- 5.34
$U(g) + 0 \rightarrow UO(g)$	-7.90
$U(g) + 0 \rightarrow U0^{+}(g) + e$	-2.20
$U(g) + \frac{1}{2}O_2 \rightarrow UO^+ + \epsilon$	+0.36
$U(g) + o_3 \rightarrow Uo_2 + o$	-(.71
$U(g) + 0_3 \rightarrow U0_2^+ + 0 + e$	1.21
$U(g) + 0_3 \rightarrow U0 + 0_2$	-4-34
$U(g) + 0_3 \rightarrow U0^+ + 0_2$	+1.3/
$U(g) + N_2O \rightarrow UO + N_2$	-4.49
$U(g) + N_2O \rightarrow UO^+ + N_2 + e$	+1.21

The thermodynamic functions for 10 and $100_2(g)$ are given in Tables 1 and 2. These computations are done assuming singlet ground states for both species and no allowance is made for any possible contribution to these functions from any excited electronic states. This was done in this manner since there are no experimental determinations for the electronically excited levels of 100 and 100_2 .

TABLE 1. THERMODYNAMIC FUNCTIONS FOR UO(g)

ne appenytyati	FF 73 A(PF)+37(1153+0 0-035745	-7 57675 1	
T	CP.	H=HC		-((-#0)/*
к	CELIK YOL	CULINOL	CAL OK MOL	COLUMN MOL
••				
200.11	7.57705	2119-57	57 • ? 71 7	50-1626
300	7.58519	2133 - 59	57.31PA	50.2044
40 D	7.91000	5915.33	59.5559	52.2753
50°C	B+2356F	3723-29	61.3646	53-9181
አውሮ ዓመል	6 - 41 637	4556 · 49	62.5532	55-2891
ን ሶር	F . 5 &C 3 &	5.40 69	64+1905	54.4695
PC?	P • 62796	45.44.34	45.3349	57 - 5079 58 - 4354
900	F+69151	7129 • 47	66+357 67+2753	59.27 <i>4</i> 2
1662	F•7391 F•77559	8001+11 8676+92	66 • 11	60 • 0 • 0 1
1100 1200	8 • 5 C · 12	9755+97	6° • 7 49	60.7449
1300	8.52707	10637.6	69 • 5P C 5	61 - 39 78
1 ልሮሮ	P • P 45 69	11521.2	70-2354	42.0059
1500	F.8610E	12404.4	70.6462	62.5752
1 400	2.874	13293.4	71 - 415 5	63+1102
1700	8.8C A0 7	14151-3	71.95/5	63 - 61 49
1500	F.P9441	15070.3	79.065	64.0926
1900	F.900A0	159/2.2	79.9 461	64.546
2665	F.97983	1 AS 50 + F	73 • 4009	64.9775
2166	4.41 433	17742.1	77.9779	65-3691
2200	6.40163	18634.	74.2527	65.7827
2366	c.97777	10504.5	78.6292	66-1596
ን ሶ ር ር	8.93175	2C 21 9 • 4	75.0294	66-5213
Sebu	4.43465	U1313.c	75.3941	44.849
Secu	F • 9 709 5	boot k*t	75.7007	67.0037
27CC	8.9235F	531	76.0591	67.5263
54 6 6	5.92497	23065.3	74.1074	47.F377
2900	8.95013	07800.0	76.7215	68+138 <i>f</i> 68+4298
300C	F.9531	25755.2	77•62:49 77•3155	4F • 7115
31:10	E+95591	9445C.P	77.6029	48.9552
3200	8 • 9 5 9 5 7	27576•5 26472•5	77.8786	69.250 <i>6</i>
3300	F+9611 F+96352	202/6.7	78 - 1 449	40 - 20 E.J.
ን ልዮዮ 35ዮዮ	2.96584	30265.2	75.486	69.7555
3 የርሴ ፣ ኃ/ብ	P+96806	71161-9	76.6586	70.0025
3700	9.97021	200 50 . 5	79.9044	70.2398
3400	5.97228	12955.9	79-1436	70 - 471
3960	5.97429	335 53 - 3	79.3747	70.6943
ACCE	2.97623	3475C.F	79 • 65 39	76.61 40
4) 00	P.97512	351 AF 45	79.FP54	71 - 1 20 5
₹50°	=.97997	36526.4	FC+C419	71.3404
ል ንርሮ	8.98177	37004.5	PC+2532	71.5450
ልልና r	ह∙ वह तुरत	35.3 Vo* B	50 + 4597	71.7455
.ح رر	E. 92524	39241+2	2C+4414	71.9414
2500	c.95195	40139 • €	20 • € 591	72 - 1331
47 0€	8' beekl	41636.4	F1 - C 594	72.3208
#E ul	F. 09002	41937.5	51.2417	72.50 67
49 ° C	P+99125	42534.7	81 • £971	7. •68 49 72 •861 5
5000	8-99343	43735+9	91 - 6097 91 - 78 68	73+86)5
5100	P•995 ~.99 f54	44/35+3 45534+9	51 • 78 6 51 • 9 61 5	73•03 <i>4</i> 0 73•20 <i>4</i> 0
5200	P.995C4	46434.6	60.1308 21.4619	73.3714
5306 5400	F.99957	47374.5	52+3011	73.5354
5 <u>200</u>	9.00105	49234.6	F2 - 46 F2	73.6963
2 Yuli 2 July	9.00253	49134.7	F2.62F4	73.8543
570¢	9.00399	50035-1	52.7577	74.0097
57:14 5666	9.00500	50935+5	R9.9443	74-1623
7966	9.00457	51934.2	F3.09F3	74.3125
÷008	0.00000	52736.9	F3-P497	74.4600

¹ FOR C C +3669 0 0-035765-7 1 C

TABLE 2. THERMODYNAMIC FUNCTIONS FOR $\mathrm{UO}_2(\mathrm{g})$

τ	CF-4837T	TVCOH-H)	s	**
295.15	-55-0126	10.5706	75.5832	CP 12.2794
300	-55.C78	10.5812	AF : 4592	12.2967
ፈሮኖ	-58.1964	11-1133	69.3152	13.0742
5e r	- 4C • 7944	11.5/08	72.25.72	13.5967
የ ፀ?	- 62-8 679	11.9293	74.7479	13.9298
づつて	- 64. 7303	12.2324	76.9627	14.1561
₽C.C	- KK = 300 K	12.4937	75.F FA3	14-3171
ەرد	- 47.5 635	12.6941	Fil.5575	14-4314
1000	- 49.01CA	10.5700	80.00px	14-5158
1100	-70.4646	13.0947	83.4693	14.5709
lout	-71-5817	13-15/4	F 4. 7er 1	14-6295
1300	-72.4 ALA	13-2713	F5.9127	14.4484
1 ቀና ሮ	- 73. 670 7	12.3723	₽ 7 •°°°9	14.7
15ሮቦ 14ጎሮ	-74.5541	13.4/17	FF #C A	16.7256
1700	= 75 • A955	12+5413	£F+9471	14.7467
1500	-76.2259 -77.025	13+4125	£9.5417	14.766
1900	-77.7699	13.4779	90.706	14.779
2500	-75.4755	19.7555 19.7567	91.5054	14.7916
2100	-79.1497	13.6371	92.2446	10.5524
SOUG	-79.7945	13+657	92.9848	14-6117
2300	-80-4125	13.9225	93.676	14.8197
2000	-81.0059	13.9403	94+335 94+9661	14-8245
9500	-81.5764	13.9953	95•571R	14.F33 14.E355
ማ ନር ሮ	-82.194	14.0079	96-1538	
2770	-62. 4559	14.0582	96.7141	1 4.F/; 6 1 4.F47R
აგიი	-53-1677	14.0562	97.2542	14.8517
عمارن	-R3. KA25	14.1129	97.7754	14.5552
2000	-9 6. 1 41 A	14-1377	9F.2791	14.2523
3100	-5 4. KC53	14.161	98.7/67	14.8612
3366	-55.655a	14.1529	99.2362	14.8635
3300	~85• 49°	14.2036	99.4954	14.8662
7 40 0	-85+9143	14.0031	100-139	14.5157
3500	-2 V* 33E0	14.7415	100-57	1 4-5703
3400 3700	-8 6. 7383	14.259	144.389	14.5721
376;	-67-1913	14-2754	101+397	14.2775
3900	-67•5022 -87-6324	14-2914	101.794	10.5752
ፈ ዮርዮ	-97 . 8734 -98 . 934	14-3064	102.18	14-67/0
#1CC	-52.5595	14.3907	102.557	14.2751
4200	-86-9353	14-3343 14-3473	152.924	14-8794
4300	-59.7731	14-3597	103+283 103+633	14.6505
4 ልርብ	-89 - 6033	14.3716	103.633	14-5514
4500	-50.0264	14-3029	104-309	14,6826 14.8835
ሳ // ርር	-90.2427	14.3935	104.636	14.FE44
47CC	-90,450_	1 4. 40 43	104.957	14.9552
₹a L.L.	+90.8557	10.0103	105.27	14.6659
49 C C	-91-157	14.4239	105,577	14.5567
5ece	+91.4665	14.4332	105.878	14.FE73
51ሮሮ	-91.77° a	14.4021	106-173	14.FFF
52ሮሮ	-92+0109	14,4507	106.462	14.9554
5300	-90.05/3	14. 4509	186.745	14-5591
5 400	+92.5564	10.0469	107-004	14.FF97
550p	-92.5000	14.4746	107.297	14.9900
5400 5700	-93.663	14.252	107.565	14- 5907
2000 2000	-93.2304	14.4592	167.629	14.8911
5966	-93.5915 -93.6393	14.2061	100,000	14.5916
4000	~94•093 <u>}</u>	1 4• 502F 1 4• 5093	108.1.12	14.592
	7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	4 MM DE 7/15	10F+59P	14.F924
FESC	MILT	म् य <u>म्</u>	MIL"	
745.4	1	776-1	1	
61	5	e .	÷	

MOLECULAR SEIGHT 270.08 SYMMETRY O YOMENT OF INSCITE 98 TYPE O ENC OF FUN

REFERENCES-SECTION 1

1. R. J. Ackermann, E. G. Rauh, J. Phys. Chem. 73, 769 (1969).

A A A CONTRACTOR OF THE CONTRA

- 2. A. Pattoret, J. Drowart, S. Smoes, Trans. Far. Soc. 65, 98 (1963).
- 3. R. J. Ackermann, E. G. Rauh, M. S. Chandraeltharaiah, J. Phys. Chem. 73, 762 (1969).
- 4. P. E. Blackburn, P. M. Danielson, J. Chem. Phys. 56, 6156 (1972).
- 5. A. Pattoret, J. Drowart, S. Smoes, Proceedings of the Symposium on Thermodynamics of Nuclear Materials (IALA, Vienna, 1968), p. 613.
- R. J. Ackermann, P. W. Gilles, R. J. Thorn, J. Chem. Phys. 25, 1089 (1956).
- 7. M. Tetenbaum, P. D. Hunt, J. Nucl. Materials 34, 86 (1970).
- 8. R. W. Ohse, J. Chem. Phys. 44, 1375 (1966).
- 9. R. K. Edwards, M. S. Chandrasekharaiah, P. M. Danielson, High Temp.Sci.
 1. 98 (1969).
- V. E. Ivanov, A. A. Krugich, V. C. Pavlov, G. P. Kovtun, M. Amonenko, Proceedings of the Symposium on Thermodynamics.of
 Nuclear Materials (IAEA, Vienna) 1962, p. 735.
- 11. C. A. Alexander, J. S. Ogden, G. W. Cunningham, Battelle Memorial Institute (as reported in reference 7).
- S. D. Gabelnik, G. T. Reedy, M. G. Chasanov, J. Chem. Phys. <u>58</u>, 4468 (1973).
- 13. S. Abramowitz, N. Acquista, J. Phys. Chem. 76, 648 (1972).

- 14. S. Abramowitz, N. Acquista, J. Res. Nat. Bur. Standards, 78A, 42 (1974).
- 1). J. B. Mann, J. Chem. Phy. 40, 1632 (1974).

SECTION 2

THERMODYNAMICS OF THE THORIUM-OXYGEN SYSTEM

The thorium-oxygen system has been studied by mass spectroscopic techniques by several workers (1-5). A summary and review of some of the older works not referenced in this report are also available (6). The method used in studying these systems is to measure the vapor pressure of the thorium species effusing from a Knudsen cell by weight gain of a circular disc target. The pressures are measured over $ThO_2(s)$ and the 3 phase system $Th(L)/ThO_2(s)/vapor$, or in the lower temperature regimes $Th(s)/ThO_2(s)/vapor$. Partial pressures of the species are determined mass spectrometrically. This requires assumptions of cross sections and detector sensitivities for the various species.

In the case of vaporization from ThO2(s) two processes are important

(1)
$$ThO_2(s) \rightarrow ThO_2(g)$$

(2)
$$ThO_{2}(s) \rightarrow ThO(g) + O(g)$$
.

The assumptions are made that the mass spectrometric peak intensities of the $ThO^+(g)$ and $ThO_2^+(g)$ ions can be related to pressures and vaporization of reaction (2) is congruent. Thermodynamic functions of ThO(g) and $ThO_2(g)$ can be obtained from a knowledge of $\Delta G_f(T)$ of $ThO_2(s)$. (This assumes that $a_{ThO_2(s)} = 1$).

For a study of either the three phase system $ThO_2(s)/Th(2)$ or the $ThO_2(s)/Th(s)$ for which the principal vaporization can be represented by

$$\frac{1}{2}\text{ThO}_2(s) + \frac{1}{2}\text{Th}(s) \rightarrow \text{ThO}(g)$$

$$\frac{1}{2}$$
ThO₂(s) + $\frac{1}{2}$ Th(L) - ThO(g)

one must know the activity of ThO2(s) and Th(s, 1). It has been shown

that prolonged vaporization of ThO from this system at temperature below 2400K does not appreciably alter the stoichiometry of the ThO₂(s) phase (7). This then allows one to assume unit activity for both Th (s, ℓ) and ThO₂(s). Therefore combining the pressures of ThO obtained and the thermal properties of ThO₂(s) and Th(s, ℓ), allows a determination of ΔG_f^* of ThO(g). Ackermann and Rauh (3) give ΔG_f^* ThO(g) = -16,500-12.15T kcal mol⁻¹ [2400-2800 K]. Hildenbrand and Murad (5) give an expression for $\log_{10} P_{\text{ThO}} = (8.386 \pm 0.164)$ -(30,480 ± 306)/T which is in experimental agreement with the pressures given by Ackermann and Rauh. These values are also in excellent agreement with the pressure of ThO(g) given in reference 1 for 2369K. (The pressure over ThO₂(g)/Th(ℓ) was only given at this temperature for this system by these workers.)

This indicates a $\triangle S_f^{\bullet}$ of ThO(g) of 12.15 entropy units. This value is in agreement with the entropy computed for ThO(g) using the known spectroscopic states and the measured entropy for Th(ℓ).

Estimates of the electronic contributions to S°_{2000K} of ThO have been made in the past by equating this entropy with that of S°_{2000K} of Th(III). This method gives an absolute entropy of 80.5 cal/mole °K compared with an S°_{2000K} of 73.9 cal/mole K using molecular constants of the known electronic states of ThO(g). The latter value in good agreement with a second law treatment of the vaporization data for the ThO₂(s)/Th(s, l) system.

The dissociation energy of ThO may be obtained via several cycles.

Ackermann and Rauh (3) considered the isomolecular exchange

$$TO(g) + Th(g) \rightarrow ThO(g) + Y(g)$$

and from the known thermodynamic functions of YO(g), Th(g) and Y(g) were able to obtain D_0^{\bullet} of ThO. They also obtained D_0^{\bullet} ThO(g) and ΔH_0^{\bullet} of ThO obtained from the study of the reaction

$$\frac{1}{2}\text{Th}(s, L) + \frac{1}{2}\text{ThO}_2$$
 (s) \rightarrow ThO(s), $\triangle \text{Hs}$ Th(s) and $\frac{1}{2}\text{O}_0^*$ of O_2 That the cycle Th(s) $+ \frac{1}{2}\text{O}_2 \rightarrow$ ThO $\triangle \text{H}_0^*$

ThO \rightarrow Th(g) $+ \text{O}(g)$ O_0^* .

The ΔH_0^{\bullet} for $\mathfrak{T}^{\bullet}0(g)$ obtained by the second and third law methods are in rather good agreement. The thermal functions for ThO(g) were generated using the known spectroscopic data for ThO. The values for Th(s, $\boldsymbol{\ell}$) were taken from Rand's evaluation (8) as given by Ackermann and Rauh (3).

Hildbenbrand and Murad (5) also obtained $D_{\mathfrak{I}}^{\bullet}$ of ThO via an isomolecular exchange reaction

ThO(g) + Si(g)
$$\rightarrow$$
 Th(g) + SiO(b)

and a study of the ${\rm Th}(s) + {\rm ThO}_2(s)$ system. The ${\rm D}_0^{\bullet}$ recommend by these two groups are within experimental error. A value of 8.78 \pm 0.13 eV is given in (4) while 9.0 \pm 0.1 eV is recommended in (3). Even this small difference represents to some extent the different choice of thermal functions for ${\rm ThO}_2(s)$ by these two different laboratories.

From a knowledge of ΔG_f^* of ThO₂(s) one can obtain ΔH_f^* (ThO₂,g) since

 $log_{10}P(ThO_2,g) = -35,070/T + 7.96$ over $ThO_2(s)$ and $\triangle G_5^{\circ}$ $ThO_2(s) = -292,600 + 43.66$ T $\triangle G_5^{\circ}$ $ThO_2(g) = -132,100 + 7.23$ T.

From a knowledge of ΔS^{\bullet} for this process coupled with frequencies of $ThO_2(g)$ determined by several workers (assuming a value of v_2), and the ThO_2 angle and bond distances one can compute S^{\bullet} for ThO_2 which can be compared with values obtained experimentally for the $ThO_2(s) \rightarrow ThO_2(g)$ process.

Using the entropy for Th(ℓ ,s) derived from the calorimetric data (12) by Rand (8) and the entropy of molecular oxygen (13), one computes and entropy for ThO₂(g) of S₂₆₀₀ = 92.8 e.u., (since $\Delta G_f(ThO_2,g)$ = -132,100 + 7.23 T for the temperature interval of 2400-2800 K). A computation of the entropy of ThO₂ using either of the recently observed vibrational spectra for the stretching modes of ThO₂ coupled with the molecular geometry determined by isotopic shifts for Th¹⁶O₂ and Th¹⁸O₂ (14,15) yield values of 97.5 eu. for $v_2 = 81$ cm⁻¹ and 96.7 e.u. for $v_2 = 125$ cm⁻¹. The former value was chosen from a determination of 81 cm⁻¹ for the bending mode of UO₂. Linevsky estimated 125 cm⁻¹ for v_2 from a weak combination band observed in the infrared spectrum. Repeated efforts by the author have not yielded an experimental determination of v_2 even though the spectrum could be observed down to about 60 cm⁻¹. In any event this difference (4 to 5 eu) between the calculated entropy and the thermodynamically derived entropy is not easily explainable.

To reduce the calculated entropy by 4 would require a change of the bending frequency to a very high value, hence the derived entropy probably is too low by at least 2 entropy units, or more likely 3 units.

A discrepancy of about 12 kcal/mole exists between the determination of the AHO ThO2(g) using the second and third law methods. There is no apparent problem in any of the experiments used to generate the vapor pressure, heat capacity of the solid phase, and spectroscopic data used for these determinations. Examination of ThO2(s) after prolonged vaporization indicated very little departure from stoichiometry. Therefore assumptions of unit activity seem to be justified. An investigation of the temperature variation in the equilibrium constants of the reactions

$$\frac{1}{2}$$
Th(g) + $\frac{1}{2}$ ThO₂(g) \rightarrow ThO(g)

and

$$ThO_2(g) \rightarrow ThO(g) + O(g)$$

coupled with the known thermodynamic functions for Th(g), ThO(g) and O(g) might be helpful in providing another path to the determination of ΔG_f^{\bullet} (ThO₂,g) from which ΔH_f^{\bullet} could be computed.

The ΔH_f^* , T given by Ackermann and Rauh (1,3) have been reduced to ΔH_f^* using the thermodynamic function for $(G-H_C)/T$ for the species Th(s, L), O_2 and $ThO_2(g)$.

This computation gives

$$\Delta H_{f}$$
0 ThO₂(g) = -105.4 kcal/mole

$$\Delta R_{e}$$
 ThO(g) = -6.15 kcs.1/mole.

This enables an estimate of \mathbb{D}_0^{\bullet} of ThO_2

$$D_0^{\circ} = \Delta H_{s0}^{\circ}$$
 (Th,s) + D_0° (O₂) - ΔH_{f0}° (ThO₂,g) = 142.7 + 118 + 105.4
= 366.1 kcal/mole or 15.9 eV/mole.

The I.P. Th, I.P. ThO, and I.P. ThO₂ have been given as 5.9, 6.1 and 8.7 eV, respectively in (3). These values which have estimated uncertainties of ± 0.2 eV are in agreement with the recent results given by reference 4 of 6.0 and 8.0 \pm 1 eV for ThO and ThO₂ and some yet unpublished results on the optical spectra of Th respectively. (It should of course be noted that thermal population of electronic states may contribute some error to these values.) These ionization potentials coupled with ΔH_f^* of ThO and ThO₂ then can be used to estimate exothermicities of reactions such as:

Reaction	<u>eV</u>
$Th + O \rightarrow ThO^{+} + e$	- 2.9
Th + $0_2 \rightarrow \text{Th}0_2^+ + \text{e}$	-2.1
Th + $0_2 \rightarrow$ Th0 + 0	-3.9
Th + $0_3 \rightarrow$ Th0 + 0_2	-7.4
$Th + O_3 \rightarrow TnO^+ + O_2 + e$	-1. 3
$Th + O_3 \rightarrow ThO_2^+ + O + e$	-0.5

These quantities were calculated using the following energies:

Reaction	<u>eV</u>
Th → Th ⁺ + e	5.9
Th → ThO + e	6.1
$ThO_2 \rightarrow ThO_2^+ + e$	8.7
ThO → Th + O	9.0
ThO ₂ → Th + 20	15.9
$Th(s) + O_2 \rightarrow ThO_2(g)$	- 5
$Th(s) + \frac{1}{2}O_2 \rightarrow ThO$	-0.22
0 ₂ → 20	5.1
0 ₃ - 0 ₂ + 0	1
$Th(s) \rightarrow Th(g)$	ć.2

The thermodynamic functions of ThO and ThO₂ are appended in tables 3, 4, and 5. It should be noted that all twelve known electronic states of ThO have been included in this calculation. The multiplicity of the lowest excited state has been taken as 2 in this computation. Wentink et. al. (11) have suggested that this state might have a degeneracy of $6(^3\Delta)$ from a comparison of the levels of TiO, H_fO and ThO. This suggestion has apparently been accepted in reference 3 and those thermal functions reflect this assignment. This has the effect of increasing the S_{2600}° of ThO(g) by about 1.13 e.u. Tables 4 and 5 give thermodynamic functions for ThO₂, (g) using both vibrational assignments for V_2 of 81 and 125 cm⁻¹ and α = 1.15°, r = 1.75 Å. Small variations of α and r will not significantly effect the computed entropy. The choice of V_2 = 125 cm⁻¹ is probably to be preferred at this point since it reduces the discrepancy between a second and third law treatment of the available data.

TABLE 3. THERMODYNAMIC FUNCTIONS FOR ThO(g)

7	CP	H-H0	5	-(G-HC)/T
κ ^T	CALIK HOL	CAL/MO'L	CAL'X MOL	CALZK MOL
P98-15	7.47295	2101-99	57-3511	50.2775
366	7 - 46 27	5155-55	57-2973	50.3213
AP (I	7.86413	2891 77	59 - 6039	52.377
580	8 - 15(*22	3692+3	61-3913	54-0067
620	8 - 35275	4518 - 62	62.8942	55.3662
760	F-50132	5361-06	64-1955	56.536P
866	E • 6214	6211-34	65-3387	57-567
988	8.73175	7+ 85+02	66.3685	58 • AFF3
1688	8+84455	7363+78	67+2863	59+3225
1100	8.96632	PF 34+24	68 • 1 3 49	60.0056
1566	9.69925	9757.42	68+9267	66 • 76 95
1 360	9.24274	18674.4	69 • 6546	61 - 4435
· APC	9 • 39 457	11686+2	70 - 3 45	62.0549
1500	9-55197	12553+5	70.9985	62+6295
ን ራ ዋና። 1 7ዋዎ	9.71214	13516-7	71 • 6261	63-1721
1872	9.67268 10.6317	14496. 15491.2	72+2137 72+7825	63+6866 64+1763
1900	16.1878	16502+2	73 - 329	64-6437
2868	SPACIN	17528 • 7	73-8555	65-6912
2168	IR . ARR A	18578+1	74.3636	65.5206
8266	10.6322	19626.2	74.8548	65.9338
2366	16.7718	77496+4	75-3365	60.332
2 469	10.9071	2.780.4	75.7916	66.7166
⊉5 99	11+6365	22877.7	76.2397	67.CRP6
8,660	11-1663	23988-	76.6751	67 - 4489
277P	11.2905	25110+8	77.6988	67.79F5
2880	11 - 4113	26246.	77.5115	68 • 138
2986	11.5289	27393 -	77-914	68 - 468 1
3666	11 - 6431	28551 · 6	78 - 38 67	68.7895
3100	11.754	89721.5	78 - 69 63	69.1827
3200 3300	11.8614 11.9651	30962.3 32093.6	79 • 6651 79 • 431.7	69 • 46 K2 69 • 76 63
3400	12.065	32295.2	79 • 7963	69.9976
3500	12.168P	34586.5	86.1414	76.2824
3690	12.2522	35727.2	RC - 4652	70.561
3767	18.339	36956.7	80.822	70,8337
3800	12.421	38194.8	81 - 1521	71.1008
3900	12.4981	39 4 4P + P	81 - 4757	71 - 3627
4690	12.5699	46694.2	81 - 793	71 - 6194
4166	12+6363	41954.5	82 - 10 41	71.8713
4208	12.6973	43221 • 2	82.4893	72-1185
4300	12.7527	44493-7	82 - 7ሮቶ ና	72-3613
4467	12.8686	457 /1 • 5	63.6653	72 • 5997
4570	12-8468	4785AL	83-2905	72-834
46h -	12-8855	4F3 40 • 7	83-5732	73-8643
4766. 4869	12.9187 12.9466	49 6 3 0 + 9 50 9 2 4 + 2	83.8586	73-2968
4936	12.9691	52556.	8 4 - 1 225 8 4 - 3 899	73+5136 73+7327
5000	12.9866	53517.1	84+652	73.9484
5166	12-9991	54817.	84.9092	74-1667
5200	13.0069	561 17-3	85-1616	74-3698
5300	13.0108	57418.2	85+4093	74-5756
5 400	13-0292	58719+1	85+6523	74.7784
5500	13.00.00	66613*8	F5-R909	74-9758
5400	12.9954	6131 7	Partico	75-1751
5768	12+9807	62618 • 6	86+25#B	75-3691
5866	15.9672	63716+1	86.5FF4	75 - 5 6 C 4
'9 የየ	12.9493	65211.8	9173.49	75.74P9
 ተብዮወ	18.9867	66505+6	87.6191	75.9348

MOLECULAR IFICHTE PARACHO MOLECULAR CONSTANTS ARE LISTED AS: E EVELALFAXELFAYELFARFARFARFARFANGLTIPLICITYAVEC

¹ R95.77 2.79 2 .330644 .001302 1.833005-7 1 P
2 R64.1 2.31 0 .326412 .001302 1.833005-7 1 P
2 R64.1 2.31 0 .326412 .00122 1.863005-7 2 5305
3 R46.4 2.4 0 .323044 .001294 1.866005-7 1 10600.8
4 R22.8 2.39 0 .30245 .001294 1.942005-7 2 11129-1
5 R35.1 2.39 0 .32245 .00129 1.931005-7 2 11296.0
6 R39.2 2.5 0 .32155 .0013 1.250005-7 2 15926.2
7 R22.24 2.3 0 .32155 .0013 1.250005-7 2 15926.2
8 R16.2 2.66 0 .312172 .00124 1.933065-7 2 17996
8 R16.2 2.66 0 .31237 .00124 1.93306-7 2 17996
11 R50.57 1.47 0 .32516 .00124 2.400005-7 2 17539-1
12 795.5 1.47 0 .318 .00124 2.400005-7 2 22635-7

TABLE 4. THERMODYNAMIC FUNCTIONS FOR ThO $_2(g)$

- 25

Т	CG-HØ3/T	CH-HODY)	S	CP
298 - 15	-59-1581	9+9545	69-1126	11-3457
300	-59-2197	9.96313	69 - 1 R 2 R	11.3625
400	-62-1467	10.4144	72.563	12-1255
500	-64-5163	10.8108	75+3271	12 • 6309
600	- 66. 5177	11-1436	77-6613	12.962
730	-68 - 2569	11 - 4263	79 • 6772	13-1847
390	-69-7974	11 - 6511	F1-44F5	13-3396
988	-71-1813	11 - 6 452	83+C265	13-4509
1666	- 72 - 438	12+6161	8 4. 4AF 1	13-5331
1100	- 73 - 5895	12+1515	85.741	13+5954
1200	-74.6522	12+2739	86+9261	13-6437
1300	- 75• 439	12.3865	8613.83	13-6817
1.600	- 76 - 56	12.4748	P9 • C 3 4P	13+7123
1500	-77-4236	12+5582	89•9818	13+7371
1626	-78+2365	12+6325	90 - 8 69	13.7576
1760	- 79 • OF 44	12 - 3992	91-7636	13.7747
1880	- 79 - 732	12.7594	92.4914	13.7891
1900	-8F • 4233	12.8139	93-2372	19.8613
2666	-R1-PE19	12-8636	93.9454	13.8118
5160	-81-7106	12.9089	94-6195	13-8208
2266	-82+3121	12.9506	95-2626	13-8287
2366	-62.RBB6	12.9889	95-8775	13-8355
2 46 8	-83-4422	13.6243	96 • 4665	13.8416
2500	-83-9745	13-0571	97-0316	13-8469
8666	-84. AB 12	13-2876	97.574R	13.8517
2766	-84-9517	13+116	98.0977	13-8559
2866	-85-4592	13+1424	98 - 661 6	13-8597
2900	-85+9200	13-1672	99•088 99•5581	13+8631 13+8668
3000	-86.3676	13-1905	100 • 713	13.669
3106	÷86∙€0°5	13•2123 13•2329	100 • 453	13.8715
3266	-87•2203 -87•6278	13.2523	166-86	13.8738
3300 3400	-88-6237	13.2796	101 - 29 4	13.8759
3566	-88 • ACE 6	13-2879	101 • 69 7	13.8778
3680	-88 • 7832	13-3043	102-287	13.8796
3700	-89.1479	13.3199	102 - 468	13.8812
3899	-89 - 5033	13-3347	102+838	13.8827
3966	-89-8499	13+3488	183-199	13-8841
4366	-90-188	13.3622	103+55	13.F854
41 00	-98.5181	13+3749	163.893	13.8866
4200	-90.8406	13+3871	194-228	13.8677
4307	-9 1 • 1557	13+3985	184-554	13.8888
4409	-91-4639	13 - 4699	184.874	13-6697
45@ @	-91.7653	13.4266	105+186	13-8906
4686	-92.0684	13-4368	165-491	13-8915
4788	-92.3494	13-4476	105-79	13.6923
48₽ ₽	+98.4324	13+4501	106.052	15.893
4900	-92.9099	13-4591	106-369	13.8937 13.8944
5000	-93-1819	13-4578	196+65 196+925	13-895
5100	-93.4486	13-4762	167.195	13.8956
5200	-93.7104	13+4842 13-492	107.459	13-8961
53°C	~93·9f73 ~94·3196	13-4995	107.719	13.8956
5 AC (4	~94.4674	13.5667	107.974	13.6971
5.500 5.600	-94-7109	13.5137	168.224	13.6976
5780	-94.95	13-5204	108.47	10+898
5566	-55-1852	13-5269	108 - 712	13-8985
5908	-95.4165	13-5332	108.95	13.8989
4066	-95.444	13 • 5393	109+163	13.8992

FREC 787-2 MULT 1
FREC 735-5 MULT 1
FREC F1 MULT 1
MOLECULAR LEIGHT 264-037
SYMMETRY 2
MOMENTS 24-863 69-708 94-571
FND OF EUN

TABLE 5. THERMODYNAMIC FUNCTIONS FOR $ThO_2(g)$

1	(G-HØ)/Ţ	(H-H0)/1	5	CP
294.15	-5R.4K95	9.77212	68.2677	
389	+54.55	9.78769	68.3377	11.7146
400	-61-0341	10.2765	71-7195	12.1260
5 88	-63.773R	10.6973	74.6711	12.6186
6 PP	-65.7561	11.9074	76.8734	12.0574
700	-67-4815	11.7368	79.0100	13.1786
RAP	-69-2115	11.5773	PA . 5 PRA	17.7760
988	-70.3071	11.7791	82.1662	13.0077
1000	-71-6272	11.9503	A3.5875	13.57
1199 1299	-79.7839	12.7969	80.880)	13.5000
1399	-73-8616	12.2236	P6.465	12.6415
1400	-74.8243 -75.742	12.3342	A7.1545	17.4700
1500	-76.6826	12+4315	PR-1725	12-7107
1600	-77.413	12+5176 12+5944	89.1243	13.7358
1798	-78 · 1786	12.5633	90.0374	13.7564
1800	-7R.9842	12.7254	97.442	13.7736
1944	-79.5030	12.7817	91+6297 92+3755	17.7881
2000	-80.2507	12.8329	93.6936	17.0006
2100	-80 . 878	12.2707	93.7577	17.911
8296	-91.4792	12.9226	90.00	17.000)
8399	-82.0535	12.9621	95.0156	12.225
2400	-82-6959	12.9946	95.5046	13.461
2586	-43-1373	13.0324	96.1697	13.9066
2689	-83-669	13-0630	16.7120	13.2510
2799	-84 - 1 VOV	13-6931	97.2757	17.0555
2999 2999	-94.6193	13.1202	97.7707	11.0501
3807	-95.090}	13-1459	08.3341	13.0607
3199	-85.5262 -85.9584	13-1699	98.4941	17.0650
3269	-86.3716	13.1924	90.1528	13.6606
3366	-86.7865	13•2135 13•2335	00,5011	13.0710
3400	-97.1700	13.2524	103.010	17.0775
3528	-47.5643	13.0720	177.630 168.830	17.6756
3670	-87.0383	13.2971	101.005	17.6776
3744	-88,3006	13.2731	101.606	13.6204
3464	-RR. F57K	13.3183	101.976	17.0000
3900	-89.6637	13.3329	100.337	12.0020
4000	-60.3412	13.306E	100.020	13.0050
4176	-80-6715	13.3598	100.001	13.506
4000	- :3.9533	13-3723	103.366	12.0075
4302 4402	-96.3981	13.3963	193.600	12.0000
4500	~94.6159	13+395B	100.010	13.0004
4699	-90.9171 -91.2119	13.4368	104.300	13.5035
4736	-91.5025	13.0173	174.529	13.4013
4870	+91.7877	13.0270	100.000	13.0001
4920	-92.4645	13.037} 13.0060	105.00	13.5050
5998	-92.3102	. 3 * 9 £ £ 3	105.507	11.0076
5100	-99.5000	13.060	105.700 106.063	13,0000
5224	-90.8663	13.6722	148.333	17.0000
5300	-93-117	13.6939	106.507	13.908
5400	-63.360	13-4470	104.957	13.066
5537	-03-6166	13.405/	107.110	13.677
5623	-03.6506	13.5726	107.360	12.075
5774	-94.2000	13.5005	107.620	12.8979
5873	-06.4339	13.5162	177.05	12.8984
≙ 999 6889	-00.PP.	13.4466	105.507	13.8036
Ordan	-96.7923	13.5989	148.301	13.5001

FPF0 787.9 NULT 1
FRF0 735.5 YULT 1
FPF0 125 MULT 1
MOLECULAP WEIGHT 260.037
SYMYETRY 2
MOMENTS 26.863 69.700 90.571
END OF PUN

REFERENCES-SECTION 2

- R. J. Ackermann, E. G. Rauh, R. J. Thorn, M. C. Cannon, J. Phys. Chem. 67, 762 (1963).
- A. J. Darnell, W. A. McCollum, T. A. Milne, J. Phys. Chem.
 341 (1960).
- 3. R. J. Ackermann, E. G. Rauh, High Temp. Sci. 5, 463 (1973).
- 4. R. J. Ackermann, E. G. Rauh, In Press.
- 5. D. L. Hildenbrand, E. Murad, J. Chem. Phys, In Press.
- 6. R. J. Ackermann, R. J. Thorn, Chapter 2, Progress in Ceramic Science, Pergamon Press, Oxford 1961.
- 7. R. Benz, J. Nuclear Matter 29, 43 (1969).
- 8. M. H. Rand, To be published.
- 9. R. J. Ackermann, E. G. Rauh, J. Chem. Thermo. 4, 521 (1972).
- 10. B. Rosen (ed.) Constantes Selectionees Donees Spectroscopique
 Relatives Aux Molecules Diatomique Pergamon Press, 1970.
- 11. T. Wentink, Jr., R. J. Spindler, Jr., J. Quant. Spect. Radiative Transfer 12, 1569 (1972).
- 12. L. S. Levinson, J. Nucl. Matter 19, 50 (1966).
- 13. JANAF Thermochemical Tables, NSRDS-NBS 37, U. S. Department of Commerce, 1970.
- 14. M. J. Linevsky, N. Acquista, S. Abramowitz, Private Communication.
- S. D. Gabelnik, M. G. Chasahov, G. T. Reedy, J. Chem. Phys. <u>60</u>,
 1167 (1974).