Big Data Analytics - Spring 2015 - Homework #4

In this homework you are asked to write a program which would implement and demonstrate various aspects of optimal linear estimation. The underlying process imitates a simple signal measurement experiment.

- 1 Measurement Simulation.
 - (a) Choose some profile x or generate it randomly.
 - (b) Create a matrix A.
 - (c) Simulate a measurement $y = Ax + \nu$.
- **2** Estimation: Construct an optimal linear estimate \hat{x} and the variance matrix $Var(\hat{x} x)$. Show on the same graph:
 - (a) The original signal x (a curve with components x_i),
 - (b) Its estimate \hat{x} (a curve with components \hat{x}_i),
 - (c) Standard deviations for the estimates $\hat{x}_i = \sqrt{\operatorname{Var}(\hat{x} x)}_{ii}$, can be illustrated by showing the corresponding "corridor" around \hat{x}_i).
- **3** Illustrate estimation (Phase 2) in different settings:
 - (a) Single measurement (y, A, S).
 - i. Transform (y, A, S) to canonical form (T, v).
 - ii. Construct the estimate, based on the canonical information.
 - (b) Single measurement (y, A, S) with a prior information: $x \sim (0, F)$.
 - i. Transform the measurement and the prior information to canonical form.
 - ii. Combine pieces of canonical information.
 - iii. Construct the estimate, based on the combined canonical information.
 - (c) Many measurements (y_j, A_j, S_j) .
 - i. Extract canonical information from each measurement.
 - ii. Combine pieces of canonical information.
 - iii. Construct the estimate, based on the combined canonical information.
 - (d) Many measurements (y_j, A_j, S_j) with a prior information: $x \sim (0, F)$. Same as in item (c).

For more details please see Lecture 8 (8b - starting from 22:20 and 8c - first 11 minutes) and do not hesitate to ask questions.