

div(v) = (+ 1 + 1 + 1 + 2) . (P,0,0) (de - da) dA = (-a, P, 0) = = [-ax'(+) + Py'(+) dt Theorem = (P,Q), (y',x') dt are-length = [v. (y'(+)=-x'(+)] i('(+)) ds Point! Greens Theorem can be recest using Divergence -These two ways of recasting Greats Theorem lead to two seperate generalizations O Stokes's Theorem Divergence Theorem \$16.6 Para metric Surfaces (Not on Exam 3) Def: A parametric surface 13 a function S(U,U) = (X(U,U), Y(U,U), Z(U,U)) For some domain in R2

Ex Let f(t) be a single variable function. The surface of revolution obtained by revoluting f(t) about the x-axis is parameter, test by f(t) = (x, f(t)) = (x, f(t)) = (x) = (