SPRAWOZDANIE

Zajęcia: Uczenie Maszynowe

Prowadzący: prof. dr hab. Vasyl Martsenyuk

Laboratorium Nr 2	Szymon Nycz
Data 09.11.2024	Informatyka
Temat: "Praktyczne Zastosowanie	II stopień, niestacjonarne,
Drzew Decyzyjnych i Metod	1 semestr, gr.1b
Ensemble w Analizie Danych"	
Wariant 11	

1. Polecenie:

Powikłania zawału mięśnia sercowego: https://www.kaggle.com/datasets/rafatashrafjoy/myocardial-infarction-complications

2. Link do repozytorium:

Link: https://github.com/Maciek332/Semestr 1 Nycz/tree/master/UM

3. Opis programu opracowanego

Decyzjonalne drzewo przepływów

► 1: Confus	ion matrix > 2: Ac	curacy statistics		les									
Rows: 61	Columns: 14					Table 🖸	Statistics (1)						
Name	Туре	# Missing valu	# Unique values	Minimum	Maximum	25% Quantile	50% Quantile (75% Quantile	Mean	Mean Absolut	Standard Devi	Sum	10 most com
55	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (61; 100.0%
70	Number (Integ	0	1	0	0	0	0	0	0	0	0	0	0 (61; 100.0%
60	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (61; 100.0%
77	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (61; 100.0%
50	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (61; 100.0%
57	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (61; 100.0%
39	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (61; 100.0%
63	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (61; 100.0%
67	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (61; 100.0%
79	Number (inten	n	1	n	n	n	n	n	n	n	n	n	0.651:100.08

Las losowy

Rows: 54	Columns: 14					Table 🗈	Statistics						
Name	Туре	# Missing valu	# Unique values	Minimum	Maximum	25% Quantile	50% Quantile (75% Quantile	Mean	Mean Absolut	Standard Devi	Sum	10 most com
68	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (54; 100.09
65	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (54; 100.0
71	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (54; 100.0
50	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (54; 100.0
54	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (54; 100.0
63	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (54; 100.0
67	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (54; 100.0
44	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (54; 100.0
59	Number (integ	0	1	0	0	0	0	0	0	0	0	0	0 (54; 100.09
73	Number (integ	n	1	0	n	0	0	0	0	0	0	0	0 (54: 100.0

Boosted trees

► 1: 0	Confus	ion matri:	€ 2: Accur	acy statistics	☐ Flow Variable	rs										
Rows:	58	Columns	: 58					Table 🕒	Statistics 📵							Q
- 1	ŧ	RowID	68 Number (inte ~	60 Number (inte ~	64 Number (inte_ <	70 Number (inte ~	77 Number (inte ~	57 Number (inte_ ~	83 Number (inte_ ~	78 Number (inte ~	59 Number (inte ~	67 Number (inte ~	72 Number (inte_ ~	58 Number (inte_ ~	63 Number (inte ∨	17
1	1	68	0	0	0	0	0	0	0	0	0	0	0	0	0	0
] 2	2	60	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	3	64	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- 4	4	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	77	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. (6	57	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	7	83	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	В	78	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7 9	9	59	0	0	0	0	0	0	0	0	0	0	0	0	0	0

4. Wnioski

KNIME oferuje efektywne i intuicyjne narzędzie do tworzenia modeli klasyfikacyjnych, wykorzystujące graficzne przepływy pracy. Dzięki węzłom KNIME, można łatwo wdrożyć modele takie jak drzewa decyzyjne, Random Forest i boosting, umożliwiając analizę danych bez potrzeby kodowania. Drzewa decyzyjne są prostymi, ale skutecznymi modelami uczenia maszynowego, szczególnie przydatnymi w analizie danych. Metody zbiorcze, takie jak bagging, Random Forest i boosting, zwiększają dokładność i stabilność modeli poprzez łączenie wielu słabszych klasyfikatorów. Random Forest dodatkowo wprowadza element losowości przy wyborze cech.