

Universidade Federal de Goiás Escola de Engenharia Elétrica e da Computação Engenharia de Computação

Matriz Curricular: ECOMP-ENG-2014

Plano de Disciplina

Ano 2019 - 1º Semestre

Dados da Disciplina

	Código Disc.	Nome	Carga Horária	
		Nome	Teórica	Prática
	143	SISTEMAS DISTRIBUÍDOS I	48	16

Diego Americo Guedes Prof

Turma A

Ementa

Comunicação e sincronização em sistemas distribuídos. Protocolos. Sistemas operacionais distribuídos e de rede. Comunicação interprocessos. RPC (Remote Procedure Calling). Estudos de casos: modelos de sistemas de arquivos distribuídos. Serviços de nomes. Tempo e coordenação. Replicação. Transações e dados compartilhados. Controle de concorrência. Transações distribuídas. Tolerância a falhas. Tipos e motivação para aplicações distribuídas. Primitivas básicas de programação distribuída: controle de tarefas, comunicação e sincronização. Características básicas das primitivas. Tipos de linguagens e programas. Atividades em laboratório.

Objetivo Geral

Ambientar o aluno nos principais desafios e abordagens para desenvolvimento de sistemas distribuidos.

Objetivos Específicos

Ao final do curso, o aluno devera:

- 1. Saber caracterizar criticamente um sistema distribuido em relacao as propriedades de transparencia, abertura, escalabilidade e flexibilidade, assim como identificar fatores de projeto dos sistemas que influenciam cada uma dessas propriedades.
- 2. Compreender e saber aplicar os modelos de programação de objetos distribuidos e de web services a problemas praticos.
- 3. Compreender os detalhes de funcionamento, projeto e implementação, dos sistemas de objetos distribuidos, servicos web, servicos e paradigmas para comunicacao indireta.
- 4. Compreender em detalhes os problemas de manutencao de estado global e tempo, coordenacao e acordo e gerenciamento de transacoes em sistemas distribuidos. Compreender os principais algoritmos aplicados as solucoes desses problemas.

Relação com Outras Disciplinas

A disciplina e fortemente dependente dos conteudos apresentados na disciplina de Redes de Computadores. Os problemas discutidos da disciplina so podem ser adequadamente compreendidos se feitos a luz da compreensao da complexidade de uma rede de computadores.

Programa

1. Programacao com sockets: Modelo de Comunicacao por Sockets; Sockets TCP; Sockets UDP

- 2. Introducao aos sistemas distribuidos: caracterizacao de de sistemas distribuidos (transparencia, abertura, escalabilidade e outros); modelo de sistema; arquitetura de aplicacoes distribuidas; comunicacao interprocessos.
- 3. Sistemas de Objetos Distribuidos: RPC; modelo de objetos distribuidos (interface X implementacao); invocacao remota de objetos; Java RMI; coleta de lixo em objetos distribuidos; servicos de nome; plataforma de middleware para objetos distribuidos.
- 4. Arquiteturas orientadas a servicos: modelo de arquiteturas orientadas a servicos; Web services; SOAP; WSDL; UDDI
- 5. Comunicacao assincrona: eventos e notificacoes; servicos de comunicacao publish/subscribe.
- 6. Arquiteturas Peer-to-Peer.
- 7. Arquiteturas Avancadas para Aplicacoes Distribuidas: arquiteturas de servidores de aplicacao; estudo de caso de alguns middlewares para computação distribuida

Procedimentos Didáticos

Legend	Descrição	Objetivo			
AEX	Aula teórica	Transmitir conhecimento utilizando quadro ou slides.			
RE	Aula teórica com resolução de exercícios	Desenvolver o raciocínio lógico, criatividade e capacidade de abstração e a capacidade de identificar, analisar e projetar soluções			
TG	Trabalho em grupo	Desenvolver a capacidade de comunicação oral e escrita. Capacidade de trabalhar em grupo.			
AP	Aula prática	Proporcionar ao aluno a aplicação prática do conteúdo ministrado em aula teórica.			
ED	Estudo dirigido	Desenvolver a capacidade analítica, capacidade de síntese, de avaliação crítica e de análise.			
SE	Seminários	Desenvolver o raciocínio lógico, criatividade, capacidade de abstração, capacidade para identificar, analisar, projetar soluções de problemas, a capacidade de comunicação oral e a capacidade de trabalhar em grupo.			
OTR	Outros	Transmitir conhecimento utilizando quadro ou slides.			

Conteúdo Programático / Cronograma

Inicio	Proc. Didático	Tópico	# Aul.
13/03/19	AEX, AP	1. Comunicação Interprocessos e Programação com Sockets + Atividade Supervisionada: participação de atividades, com submissão de respostas via Ambiente Virtual de Aprendizagem.	8
27/03/19	AEX, AP	2. Introdução aos Sistemas Distribuídos + Atividade Supervisionada: participação de atividades, com submissão de respostas via Ambiente Virtual de Aprendizagem.	4
03/04/19	AEX, AP	3. Sistemas de Objetos Distribuídos + Atividade Supervisionada: participação de atividades, com submissão de respostas via Ambiente Virtual de Aprendizagem.	4
10/04/19	AEX, AP	4. Arquiteturas Orientadas a Serviços + Atividade Supervisionada: participação de atividades, com submissão de respostas via Ambiente Virtual de Aprendizagem.	16
17/05/19	AEX, AP	5. Comunicação Assíncrona + Atividade Supervisionada: participação de atividades, com submissão de respostas via Ambiente Virtual de Aprendizagem.	12
12/06/19	AEX, AP	6. Arquiteturas Peer-to-Peer + Atividade Supervisionada: participação de atividades, com submissão de respostas via Ambiente Virtual de Aprendizagem.	12
05/07/19	AEX, AP	7. Arquiteturas Avançadas para Aplicações Distribuídas + Atividade Supervisionada: participação de atividades, com submissão de respostas via Ambiente Virtual de Aprendizagem.	g
		Total	64

Critério de Avaliação

A disciplina será avaliada pela realização de Exercícios Teóricos e Práticos (ETP), Projeto Final (PF) e duas Avaliações (AV1 e PT2). O aproveitamento final de ETP será a média aritmética de todos os exercícios realizados. A nota final (NF) do curso será calculada da seguinte forma:

NF = 0.2*ETP + 0.2*PF + 0.25*AV1 + 0.35*AV2

Antes de avaliar a Nota Final (NF), é avaliado a frequência. Todo aluno abaixo de 75% de presença será considerado reprovado por falta (RF), independente da NF. Caso a condição de presença mínima seja satisfeita (75%), a Nota Final (NF) de aprovação mínima é de 6,0. Todos alunos abaixo desse valor serão considerados Reprovados por Média (RM).

Data da Realização das Provas

AVALIAÇÃO BIMESTRAL - 1º BIMESTRE: 10/05/2018 (sexta-feira). AVALIAÇÃO BIMESTRAL - 2º BIMESTRE: 05/07/2018 (sexta-feira).

Local de Divulgação dos Resultados das Avaliações

Sala de aula na qual são ministradas as aulas da disciplina e/ou Ambiente Virtual de Aprendizagem Moodle do INF - http://ead.inf.ufg.br

Bibliografia Básica

- COULOURIS, G.F., J. Dollimore and T. Kindberg. Distributed Systems: Concepts and Design. 4th edition. Addison Wesley, 2005.
- KUROSE, J.F. & ROSS, K.W., Redes de Computadores e a Internet: Uma abordagem top-down, 3a. Edição, Addison Wesley/Pearson, 2006.
- TANENBAUM, A.S. and STEEN, M. van . Distributed Systems: Principles and Paradigms. Prentice Hall, 2a Edição, 2006.

Bibliografia Complementar

- ANDREWS, Gregory R. Foundations of multithreaded, parallel, and distributed programming Reading (Mass.): Addison-Wesley, 2000. xx, 664 p.il., ISBN 0201357526
- BARBOSA, Valmir C An introduction to distributed algorithms Cambridge, Mass.: MIT Press, c1996. xiii, 365 ISBN 0262024128
- LYNCH, Nancy A Distributed algorithms San Francisco: M. Kaufmann, 1997. xxiii, 872il. (The Morgan Kaufmann series in data management systems) ISBN 1558603484
- KSHEMKALYANI, Ajay D; SINGHAL, Mukesh Distributed computing principles, algorithms, and systems Cambridge; ; New York: Cambridge University Press, 2008. xvii, 736ill. ISBN 9780521876346
- ALEKSY, Markus; KORTHAUS, A; SCHADER, Martin Implementing distributed systems with Java and CORBA Berlin; New York: Springer, 2005. xiii, 343il.24 cm.

Bibliografia Sugerida

- ALEKSY, Markus; KORTHAUS, A; SCHADER, Martin Implementing distributed systems with Java and CORBA Berlin; New York: Springer, 2005. xiii, 343il.24 cm.
- DEITEL, H. M.; DEITEL, P. J. Java Como Programar: 8 ed.

Termo de Entrega	Termo de Aprovação			
Apresentado à Coordenação no dia	Aprovado em Reunião de CD no dia			
Prof(a) Diego Americo Guedes Professor	Prof. Dr. Sérgio Teixeira de Carvalho Diretor do Instituto de Informática			
Termo de Homologação				
Data de Expedição: Goiânia, de de				