Exercise 1

(a)

Situation for l=2 and s=2:

$$Q_{2,2} = \{ [x_1 x_2]^T \in \mathbb{R}^2 \mid |x_i| \le 1 \text{ for all } i = 1, 2 \} = [-1, 1]^2$$

(b)

First, let's calculate the radius of the inner hyperball for any $l \in \mathbb{N}, s \in \mathbb{R}_{>0}$:

The distance from the center of the inner hyperball (equal to the center of the hypercube) to the center of one of the 2^l outter hyperballs (doesn't matter which one) can be calculated the following:

$$d \coloneqq \sqrt{l \cdot \left(\frac{s}{4}\right)^2}$$

Thus, the radius of the inner hyperball is equal to:

$$r \coloneqq d - \frac{s}{4} = \sqrt{l \cdot \left(\frac{s}{4}\right)^2} - \frac{s}{4}$$

Now, we simply must solve the following inequality to find an $l \in \mathbb{N}$ for an arbitrary but fixed $s \in \mathbb{R}_{>0}$ such that $B(Q_{l,s}) \subsetneq Q_{l,s}$:

$$\frac{\frac{s}{2} < r}{\frac{s}{2} < d - \frac{s}{4}}$$

$$\frac{\frac{s}{2} < \sqrt{l \cdot \left(\frac{s}{4}\right)^2} - \frac{s}{4}}{\frac{3 \cdot s}{4} < \sqrt{l} \cdot \frac{s}{4}}$$

$$3 < \sqrt{l}$$

$$l > 9$$

Exercise 2

- (a)
- (b)

Exercise 3

- (a)
- (b)
- (c)
- (d)

Exercise 4

- (a)
- (b)
- (c)
- (d)
- (e)

Exercise 5