Математический анализ 1. Лекция 2.13. Зависимость экстремумов от параметров

14 декабря 2023 г.

Зависимость безусловных и условных экстремумов от параметров Простой пример
Теорема об огибающей для безусловных экстремумов Пример
Экономический пример: лемма Хоттелинга
Доказательство теоремы
Контрпример

Теорема об огибающей для условных экстремумов Пример Экономический смысл множителей Лагранжа в задаче на условный экстремум

Зависимость экстремумов от параметров: мотивация

Математические модели, которые рассматриваются в естественных и социальных науках, как правило, содержат некоторый набор параметров. При фиксированном наборе модель превращается в числовую. Числовая модель позволяет вычислить оптимальные (в том или ином смысле) значения интересующих нас величин. Но как они будут меняться при небольших изменениях параметров?

Пример. Дано бюджетное множество B, заданное условиями

$$\begin{cases} p_1 x_1 + \ldots + p_n x_n \leqslant P \\ x_1 \geqslant 0, \ldots, x_n \geqslant 0 \end{cases}$$

и функция полезности $U(x_1,\ldots,x_n)$, заданная на B. "Рациональный" потребитель выбирает набор благ

$$(x_1^0, \dots, x_n^0) \in B,$$

при котором функция полезности принимает максимальное значение U_{\max} на множестве B. Однако и бюджетное ограничение P, и цены p_1,\dots,p_n благ могут измениться. Как тогда изменится максимальное значение функции полезности? Иначе говоря, как себя ведет максимальная полезность U_{\max} как функция переменных-параметров P,p_1,\dots,p_n ?

Простой пример.

Рассмотрим функцию $f(x,\alpha)=-x^2+4x\alpha$. Зафиксируем параметр α , и рассмотрим функцию $\varphi_{\alpha}(x)=f(x,\alpha)$. По x эта функция имеет локальный (и глобальный) максимум $F(\alpha)=4\alpha^2$ в точке $\psi(\alpha)=2\alpha$.

Перейдем к переменной lpha. Изобразим на одном рисунке функцию F(lpha) и функции $heta_x(lpha)=f(x,lpha)=-x^2+4xlpha$, где основной аргумент теперь lpha, а x – параметр, при нескольких значениях x.

Можно заметить, что:

Поскольку

$$\theta_x(\alpha) = f(x, \alpha) \leqslant \max_x f(x, \alpha) = F(\alpha),$$

график функции $F(\alpha)$ расположен не ниже каждого из графиков функций $\theta_x(\alpha)$.

lacktriangle Для $x=\psi(lpha)$ неравенство переходит в равенство:

$$\theta_{\psi(\alpha)}(\alpha) = f(\psi(\alpha), \alpha) = \max_{x} f(x, \alpha) = F(\alpha).$$

При этом для каждого x можно подобрать такое α , что выполнится равенство $x=\psi(\alpha)$ (а именно, $\alpha=\frac{x}{2}$). Поэтому графики функций $F(\alpha)$ и $\theta_x(\alpha)$ пересекаются.

• Из двух предыдущих пунктов следует, что точка пересечения $\alpha_0 = \frac{x}{2}$ графиков функций $F(\alpha)$ и $\theta_x(\alpha)$ есть их точка касания. Иначе говоря, график функции $F(\alpha)$ есть огибающая семейства графиков функций $\theta_x(\alpha)$.

Определение

Кривая γ называется **огибающей** семейства кривых γ_{α} , зависящих от параметра α , если она в каждой своей точке касается хотя бы одной кривой семейства и каждым своим отрезком (участком) касается бесконечного множества этих кривых.

Кроме того, в силу изложенного можно получить формулу для вычисления производной функции $F(\alpha)$ (конечно, она не представляет интереса, когда имеется явное простое выражение для функции $F(\alpha)$). При $x=\psi(\alpha)$ выполнено равенство

$$F'(\alpha) = \frac{d\theta_x(\alpha)}{d\alpha}\Big|_{x=\psi(\alpha)} = f'_{\alpha}(x,\alpha)|_{x=\psi(\alpha)}.$$

Проверим:

$$F'(\alpha) = (4\alpha^2)' = 8\alpha,$$

$$f'_{\alpha}(x,\alpha)|_{x=\psi(\alpha)} = 4x|_{x=\psi(\alpha)=2\alpha} = 8\alpha.$$

Теорема (об огибающей для безусловных экстремумов)

Пусть скалярная функция $f(\mathbf{x}, \boldsymbol{\alpha})$ определена в некоторой окрестности $\mathcal O$ точки $(\mathbf{x}_0, \boldsymbol{\alpha}_0) \in \mathbb R^n \times \mathbb R^d$ и принадлежит классу $C^l(\mathcal O), \ l \geqslant 2$. Пусть также:

- $1. \ f_{\mathbf{x}}'(\mathbf{x}_0, oldsymbol{lpha}_0) = \mathbf{0}$ для градиента f по переменным \mathbf{x} ,
- 2. 2-й дифференциал $\mathbf{h}^T D_{\mathbf{x}\mathbf{x}} f(\mathbf{x}_0, \boldsymbol{\alpha}_0) \mathbf{h}$ по переменным \mathbf{x} есть положительно (отрицательно) определенная квадратичная форма (поэтому функция $\varphi_{\boldsymbol{\alpha}_0}(\mathbf{x}) = f(\mathbf{x}, \boldsymbol{\alpha}_0)$ имеет строгий локальный минимум (соответственно, максимум) в точке \mathbf{x}_0).

Тогда существуют окрестность $\mathcal{U}\subset\mathbb{R}^d$ точки $lpha_0$, окрестность $\mathcal{V}\subset\mathbb{R}^n$ точки \mathbf{x}_0 и вектор-функция

$$oldsymbol{\psi}: \mathcal{U}
ightarrow \mathcal{V}$$

класса $C^{l-1}(\mathcal{U})$ такие, что $\mathcal{U}\times\mathcal{V}\subset\mathcal{O}$, и для каждого $\alpha\in\mathcal{U}$ точка $\psi(\alpha)$ есть единственная в окрестности \mathcal{V} точка локального минимума (соответственно, максимума) по \mathbf{x} функции

$$\varphi_{\alpha}(\mathbf{x}) = f(\mathbf{x}, \alpha).$$

Теорема (продолжение)

При этом при всех $lpha \in \mathcal{U}$ определена функция

$$F(\boldsymbol{\alpha}) = f(\boldsymbol{\psi}(\boldsymbol{\alpha}), \boldsymbol{\alpha}) = \min_{\mathbf{x} \in \mathcal{V}} f(\mathbf{x}, \boldsymbol{\alpha})$$

(соответственно,
$$F(\alpha) = f(\psi(\alpha), \alpha) = \max_{\mathbf{x} \in \mathcal{V}} f(\mathbf{x}, \alpha)),$$

она принадлежит классу $C^{l-1}(\mathcal{U})$ и

$$\nabla F(\alpha) = (f'_{\alpha}(\mathbf{x}, \alpha))|_{\mathbf{x} = \psi(\alpha)}$$

для всех $lpha \in \mathcal{U}$, в частности,

$$\nabla F(\boldsymbol{\alpha}_0) = f_{\boldsymbol{\alpha}}'(\mathbf{x}_0, \boldsymbol{\alpha}_0).$$

Замечание. Важно: эта теорема позволяет вычислять $\nabla F(\alpha_0)$ минуя непосредственное вычисление самой функции $F(\alpha)$.

Пример

Пусть $F(\alpha, \beta)$ – значение строгого локального минимума функции

$$\varphi_{\alpha,\beta}(x,y) = f(x,y,\alpha,\beta) = \beta^2 x^2 + \alpha \beta xy + \alpha y^2 - \alpha x - \beta y$$

по переменным x, y; здесь α, β – параметры.

Найдем частные производные функции F в точке $(\alpha, \beta) = (3, 2)$.

- 1. Проверяем условия применимости теоремы об огибающей для безусловных экстремумов (и корректность задачи), заодно вычисляем точку строгого локального минимума функции $\varphi_{3,2}(x,y)$.
 - 1.1 Находим градиент функции

$$\varphi_{3,2}(x,y) = f(x,y,3,2) = 4x^2 + 6xy + 3y^2 - 3x - 2y$$
:

$$\nabla \varphi_{3,2}(x,y) = f'_{\mathbf{x}}(x,y,3,2) = (8x + 6y - 3, 6x + 6y - 2).$$

1.2 Приравниваем его к нулевому вектору:

$$\begin{cases} 8x + 6y - 3 = 0 \\ 6x + 6y - 2 = 0 \end{cases} \Rightarrow \begin{cases} x = \frac{1}{2} \\ y = -\frac{1}{6}. \end{cases}$$

1.3 Находим второй дифференциал функции $\varphi_{3,2}(x,y) = f(x,y,3,2)$:

$$d^{2}\varphi_{3,2}(x,y) = D_{xx}f(x,y,3,2) = 8dx^{2} + 12dxdy + 6dy^{2}.$$

По критерию Сильвестра это положительно определенная форма (при любых x,y — от них она не зависит). Следовательно, во-первых, найденная точка $\left(\frac{1}{2},-\frac{1}{6}\right)$ есть точка строгого локального минимума функции $\varphi_{3,2}(x,y)$, во-вторых, все условия теоремы об огибающей для безусловных экстремумов выполнены.

2. Применяем теорему:

$$\begin{split} F_{\alpha}'(3,2) &= f_{\alpha}'\left(\frac{1}{2}, -\frac{1}{6}, 3, 2\right) = \\ &= \left. (\beta xy + y^2 - x) \right|_{(x,y,\alpha,\beta) = \left(\frac{1}{2}, -\frac{1}{6}, 3, 2\right)} = -\frac{23}{36}, \\ F_{\beta}'(3,2) &= f_{\beta}'\left(\frac{1}{2}, -\frac{1}{6}, 3, 2\right) = \\ &= \left. (2\beta x^2 + \alpha xy - y) \right|_{(x,y,\alpha,\beta) = \left(\frac{1}{2}, -\frac{1}{6}, 3, 2\right)} = \frac{11}{12}. \end{split}$$

Экономический пример: лемма Хоттелинга

Модель:

- $f(x_1,\ldots,x_n)$ производственная функция, выражающая количество произведенной продукции в зависимости от факторов производства $\mathbf{x}=(x_1,\ldots,x_n)$,
- р цена единицы продукции,
- $T(\mathbf{x}) = (\mathbf{v}, \mathbf{x}) = v_1 x_1 + \ldots + v_n x_n$ функция затрат (издержек).

Все параметры положительные.

Предположения:

 Производство рационально (оптимально), т.е. реализует максимум прибыли

$$\Pi(\mathbf{x}) = pf(\mathbf{x}) - T(\mathbf{x}) = pf(\mathbf{x}) - (\mathbf{v}, \mathbf{x})$$

в естественной области $x_1 \geqslant 0, \ldots, x_n \geqslant 0$.

Максимум прибыли достигается в одной и только одной из внутренних точек \mathbf{x}_0 естественной области; в этой точке условия теоремы об огибающей для функции Π выполнены.

Пусть $\mathbf{x}_0 = \psi(p, \mathbf{v})$. Функцией прибыли называется функция

$$\pi(p, \mathbf{v}) = \Pi(\psi(p, \mathbf{v})) = pf(\psi(p, \mathbf{v})) - (\mathbf{v}, \psi(p, \mathbf{v})).$$

По теореме об огибающей

$$\frac{\partial \pi(p, \mathbf{v})}{\partial p} = (pf(\mathbf{x}) - (\mathbf{v}, \mathbf{x}))'_p \Big|_{\mathbf{x} = \psi(p, \mathbf{v})} = f(\psi(p, \mathbf{v}))$$

или просто

$$\frac{\partial \pi}{\partial p} = f(\mathbf{x}_0),$$

т.е. скорость роста прибыли в зависимости от роста цен примерно пропорциональна объему производства.

Замечание. Лемму Хоттелинга можно вывести непосредственно, без ссылки на теорему об огибающей. Однако такой вывод, по существу лишь воспроизводит доказательство общего случая с небольшими упрощениями.

Доказательство теоремы об огибающей для безусловных экстремумов

Рассмотрим условие

$$f'_{\mathbf{x}}(\mathbf{x}, \boldsymbol{\alpha}) = \mathbf{0}.$$

Задает ли оно локально некоторую гладкую зависимость ${\bf x}$ от ${m lpha}$ в окрестности точки $({\bf x}_0,{m lpha}_0)$?

Поскольку $f_{\mathbf{x}}'(\mathbf{x}_0, \pmb{lpha}_0) = \mathbf{0}$, то для этого достаточно рассмотреть матрицу

$$(f'_{\mathbf{x}}(\mathbf{x}, \boldsymbol{\alpha}))'_{\mathbf{x}}$$

в точке \mathbf{x}_0 : если определитель этой матрицы не равен нулю, то такая зависимость есть по теореме о неявной функции.

Но эта матрица есть ни что иное, как (частичная) матрица Гессе $D_{\mathbf{x}\mathbf{x}}f(\mathbf{x}_0,\pmb{lpha}_0)$ функции f по переменным \mathbf{x} . А значит,

$$\det D_{\mathbf{x}\mathbf{x}} f(\mathbf{x}_0, \boldsymbol{\alpha}_0) \neq 0,$$

поскольку квадратичная форма $\mathbf{h}^T D_{\mathbf{x}\mathbf{x}} f(\mathbf{x}_0, \pmb{lpha}_0) \mathbf{h}$ положительно определена.

Сформулируем более точно то, что нам дает теорема о неявной функции в этом случае: существует окрестность $\mathcal{U} \subset \mathbb{R}^d$ точки α_0 , окрестность $\mathcal{V} \subset \mathbb{R}^n$ точки \mathbf{x}_0 и функция $\psi: \mathcal{U} \to \mathcal{V}$ класса $C^{k-1}(\mathcal{U})$ (гарантированная гладкость понижается на единицу, т.к., вообще говоря, если функция f принадлежит классу C^l , то f' принадлежит классу C^l 0 такие, что $\mathcal{V} \times \mathcal{U} \subset \mathcal{O}$ 1, и для каждого $\alpha \in \mathcal{U}$

$$f'_{\mathbf{x}}(\mathbf{x}, \boldsymbol{\alpha}) = \mathbf{0} \Leftrightarrow \mathbf{x} = \boldsymbol{\psi}(\boldsymbol{\alpha}),$$

т.е. точка ${\bf x}=\psi(\pmb{\alpha})$ есть единственная стационарная точка функции $\varphi_{\pmb{\alpha}}({\bf x})=f({\bf x},\pmb{\alpha}).$

Далее, поскольку миноры матрицы $D_{\mathbf{x}\mathbf{x}}f(\psi(\alpha),\alpha)$ непрерывно зависят от α в некоторой окрестности точки α_0 , то в некоторой окрестности точки α_0 (которую без ограничения общности можно считать той же окрестностью \mathcal{U}) они того же знака, что и соответствующие миноры матрицы $D_{\mathbf{x}\mathbf{x}}f(\psi(\alpha_0),\alpha_0)=D_{\mathbf{x}\mathbf{x}}f(\mathbf{x}_0,\alpha_0)$.

Поэтому квадратичная форма

$$\mathbf{h}^T D_{\mathbf{x}\mathbf{x}} f(\psi(\boldsymbol{\alpha}), \boldsymbol{\alpha}) \mathbf{h}$$

также положительно (соответственно, отрицательно) определенная квадратичная форма, а точка $\psi(\alpha)$ есть точка минимума (соответственно, максимума) функции φ_{α} .

Для вывода формулы для ∇F воспользуемся формулой производной композиции функций:

$$\nabla F(\alpha) = \nabla (f(\psi(\alpha), \alpha)) = f'_{\mathbf{x}}(\psi(\alpha), \alpha) \cdot \psi'(\alpha) + f'_{\alpha}(\psi(\alpha), \alpha) =$$
$$= f'_{\alpha}(\psi(\alpha), \alpha)$$

в силу необходимого условия экстремума, где ψ' – матрица Якоби вектор-функции ψ . Результат доказан.

Замечание

Условие 2 теоремы существенно: одного только существования в точке \mathbf{x}_0 строгого экстремума функции $\varphi_{\mathbf{\alpha}_0}(\mathbf{x})$ не достаточно.

Пример. Рассмотрим функцию

$$f(x,\alpha) = 3x^4 + 4\alpha x^3 - 12\alpha^2 x^2.$$

При $\alpha=0$ функция $\varphi_0(\mathbf{x})=f(x,0)=3x^4$ имеет в точке $x_0=0$ строгий локальный минимум, равный нулю. Но здесь $f''_{xx}(x,0)=3\cdot 4\cdot 3x^2$ обращается в 0 при $x_0=0$. При $\alpha\neq 0$ имеем

$$f_x'(x,\alpha) = 12x(x^2 + \alpha x - 2\alpha^2),$$

и точка $x_0=0$ разделяется на две $x_1(\alpha)=\alpha$ и $x_2(\alpha)=-2\alpha$, со значениями локальных минимумов $-5\alpha^4$ и $-32\alpha^4$ соответственно, а в самой точке $x_0=0$ образуется локальный максимум.

Теорема (об огибающей для условных экстремумов)

Пусть числовая функция $f(\mathbf{x}, \boldsymbol{\alpha})$ и вектор-функция $\mathbf{G}(\mathbf{x}, \boldsymbol{\alpha}) = (G_1(\mathbf{x}, \boldsymbol{\alpha}), G_2(\mathbf{x}, \boldsymbol{\alpha}), \dots, G_k(\mathbf{x}, \boldsymbol{\alpha}))$, где k < n, определены в некоторой окрестности $\mathcal O$ точки $(\mathbf{x}_0, \boldsymbol{\alpha}_0) \in \mathbb R^n \times \mathbb R^d$ и принадлежат классу $C^l(\mathcal O)$, $l \geqslant 2$. Пусть также:

- 1. матрица Якоби $\mathbf{G}'(\mathbf{x}_0, oldsymbol{lpha}_0)$ матрица полного ранга k,
- 2. вектор $(\mathbf{x}_0, \boldsymbol{\lambda}_0)$ с $\boldsymbol{\lambda}_0 = (\lambda_{10}, \dots, \lambda_{k0})$ стационарная точка функции Лагранжа задачи с фиксированным $\boldsymbol{\alpha} = \boldsymbol{\alpha}_0$:

$$L^{(0)}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}, \boldsymbol{\alpha}_0) + \sum_{i=1}^k \lambda_i G_i(\mathbf{x}, \boldsymbol{\alpha}_0),$$

3. пусть $H_{L_0}(\mathbf{x})$ — матрица Гессе функции $L_0(\mathbf{x}) = L^{(0)}(\mathbf{x}, \boldsymbol{\lambda}_0)$, E — подпространство в \mathbb{R}^n , состоящее из множества решений однородной системы линейных уравнений $\mathbf{G}'(\mathbf{x}_0)(\mathbf{h}) = \mathbf{0}$, а $Q(\mathbf{h}) = \mathbf{h}^T H_{L_0}(\mathbf{x}_0) \, \mathbf{h}$ — квадратичная форма на подпространстве векторов $\mathbf{h} \in E$ — положительно (отрицательно) определена (и поэтому функция $\varphi_{\boldsymbol{\alpha}_0}(\mathbf{x}) = f(\mathbf{x}, \boldsymbol{\alpha}_0)$ имеет условный минимум (соответственно, максимум) в точке \mathbf{x}_0 при условии $\mathbf{G}(\mathbf{x}_0, \boldsymbol{\alpha}_0) = \mathbf{0}$).

Теорема (продолжение)

Тогда существуют окрестность $\mathcal{U}\subset\mathbb{R}^d$ точки \pmb{lpha}_0 , окрестность $\mathcal{V}\subset\mathbb{R}^n$ точки \mathbf{x}_0 , окрестность $\mathcal{W}\subset\mathbb{R}^k$ точки $\pmb{\lambda}_0$ и вектор-функции

$$\psi: \mathcal{U} \to \mathcal{V}, \ \chi: \mathcal{U} \to \mathcal{W}$$

класса $C^{l-1}(\mathcal{U})$ такие, что $\mathcal{V}\times\mathcal{U}\subset\mathcal{O}$, и для каждого $\alpha\in\mathcal{U}$ точка $(\psi(\alpha),\chi(\alpha))$ есть единственная в окрестности $\mathcal{V}\times\mathcal{W}$ стационарная точка функции Лагранжа с параметром α :

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha}) = f(\mathbf{x}, \boldsymbol{\alpha}) + \sum_{i=1}^{k} \lambda_i G_i(\mathbf{x}, \boldsymbol{\alpha})$$

и точка $\psi(\alpha)$ есть точка локального условного минимума (соответственно, максимума) функции $\varphi_{\alpha}(\mathbf{x})=f(\mathbf{x},\alpha)$ при условии $\mathbf{G}_{\alpha}(\mathbf{x})=\mathbf{G}(\mathbf{x},\alpha)=\mathbf{0}$.

Теорема

При этом функция

$$F(\boldsymbol{\alpha}) = f(\boldsymbol{\psi}(\boldsymbol{\alpha}), \boldsymbol{\alpha}) = \min_{\mathbf{x} \in \mathcal{V}: \, \mathbf{G}_{\boldsymbol{\alpha}}(\mathbf{x}) = \mathbf{0}} f(\mathbf{x}, \boldsymbol{\alpha})$$

(соответственно
$$F(m{lpha}) = f(m{\psi}(m{lpha}), m{lpha}) = \max_{m{x} \in \mathcal{V}: \, \mathbf{G}_{m{lpha}}(m{x}) = \mathbf{0}} f(m{x}, m{lpha}))$$

принадлежит классу $C^{l-1}(\mathcal{U})$, и имеет градиент

$$\nabla F(\boldsymbol{\alpha}) = (L_{\boldsymbol{\alpha}}'(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha}))\big|_{\mathbf{x} = \boldsymbol{\psi}(\boldsymbol{\alpha}), \boldsymbol{\lambda} = \boldsymbol{\chi}(\boldsymbol{\alpha})}$$

при всех $\alpha \in \mathcal{U}$, в частности,

$$\nabla F(\boldsymbol{\alpha}_0) = \left(L_{\boldsymbol{\alpha}}'(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha}) \right) \big|_{\mathbf{x} = \mathbf{x}_0, \boldsymbol{\lambda} = \boldsymbol{\lambda}_0, \boldsymbol{\alpha} = \boldsymbol{\alpha}_0} = \left(L_{\boldsymbol{\alpha}}'(\mathbf{x}_0, \boldsymbol{\lambda}_0, \boldsymbol{\alpha}) \right) \big|_{\boldsymbol{\alpha} = \boldsymbol{\alpha}_0}.$$

Пример

Решается задача на экстремум функции $\varphi_a(x,y)=f(x,y,a)=x^2+(y-a)^2$ при условии $G_a(x,y)=a^3x+\frac{y}{a}-3a=0$, где a – параметр. Пусть F(a) – значение функции $\varphi_a(x,y)$ в точке условного локального экстремума. Найдем F'(1).

Схема решения

1. Полагаем a=1 и решаем частную задачу на условный экстремум методом Лагранжа

$$\varphi_1(x,y) = x^2 + (y-1)^2 \to \text{extremum}$$
 при условии $G_1(x,y) = x + y - 3 = 0$

Условия применимости: упражнение.

Функция Лагранжа:

$$L(x, y, \lambda) = x^{2} + (y - 1)^{2} + \lambda(x + y - 3)$$

Ищем стационарные точки функции Лагранжа:

$$\begin{cases} L'_x(x, y, \lambda) \equiv 2x + \lambda = 0 \\ L'_y(x, y, \lambda) \equiv 2(y - 1) + \lambda = 0 \\ L'_\lambda(x, y, \lambda) \equiv x + y - 3 = 0. \end{cases}$$

Решение: x = 1, y = 2, $\lambda = -2$.

Функция $L_0(x,y) = x^2 + (y-1)^2 - 2(x+y-3)$. Ее второй дифференциал

$$d^2L_0(x,y) = 2dx^2 + 2dy^2$$

положительно определен при любых dx, dy, в том числе dy = -dx из условия связи, и не зависит от x, y.

Вывод. Точка (1,2) есть точка условного минимума функции $\varphi_1(x,y)=x^2+(y-1)^2$ при условии $G_1(x,y)=x+y-3=0$.

Одновременно проверены условия теоремы о гладкой зависимости условных экстремумов от параметров.

2. Составляем функцию Лагранжа для задачи о нахождении условного экстремума функции

$$arphi_a(x,y) = f(x,y,a) = x^2 + (y-a)^2$$
 при условии $G_a(x,y) = a^3x + \frac{y}{y} - 3a = 0.$

Подставляем в нее найденные значения $x=1,\ y=2,\ \lambda=-2.$ Вычисляем производную по a в точке 1.

Функция Лагранжа:

$$\mathcal{L}_a(x,y,\lambda) = x^2 + (y-a)^2 + \lambda \left(a^3x + \frac{y}{a} - 3a\right)$$

Подстановка:

$$\theta(a) = \mathcal{L}_a(1, 2, -2) = 1 + (2 - a)^2 - 2\left(a^3 + \frac{2}{a} - 3a\right).$$

Производная:

$$\theta'(a) = 2 + 2a - 6a^2 + \frac{4}{a^2} \implies \theta'(1) = 2.$$

Ответ: 2.

Экономический смысл множителей Лагранжа в задаче на условный экстремум

Пусть решается задача нахождения оптимального плана производства, максимизирующего прибыль $f(\mathbf{x})$ при условиях ограниченности ресурсов:

$$\begin{cases} G_1(\mathbf{x}) \leqslant b_1 \\ \dots \\ G_k(\mathbf{x}) \leqslant b_k \\ x_1 \geqslant 0, \dots, x_n \geqslant 0. \end{cases}$$

Пусть для простоты оптимальный план позволяет использовать **все ресурсы полностью**, т.е. ограничения выполнены в форме равенств:

$$\begin{cases} b_1 - G_1(\mathbf{x}) = 0 \\ \dots \\ b_k - G_k(\mathbf{x}) = 0. \end{cases}$$

Пусть \mathbf{x}_0 – оптимальный план. Тогда существует единственный вектор $\boldsymbol{\lambda}_0=(\lambda_{10},\dots,\lambda_{k0})$ такой, что $(\mathbf{x}_0,\boldsymbol{\lambda}_0)$ есть стационарная точка функции Лагранжа

$$L_{\mathbf{0}}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^{k} \lambda_{i} (b_{i} - G_{i}(\mathbf{x})).$$

Сейчас мы проинтерпретируем множители Лагранжа $(\lambda_{10}, \dots, \lambda_{k0})$.

Предположим, что запасы ресурсов увеличены на вектор $\alpha = (\alpha_1, \dots, \alpha_k)$. Новая задача об оптимальном плане выглядит так:

$$f(\mathbf{x}) \to \max$$

при условиях

$$\begin{cases} b_1 + \alpha_1 - G_1(\mathbf{x}) = 0 \\ \dots \\ b_k + \alpha_k - G_k(\mathbf{x}) = 0. \end{cases}$$

Пусть $F(\alpha)$ есть максимальная возможная прибыль. Тогда по теореме об огибающей для условных экстремумов

$$F'(\boldsymbol{\alpha}) = (L_{\boldsymbol{\alpha}}(\mathbf{x}_0, \boldsymbol{\lambda}_0))'_{\boldsymbol{\alpha}},$$

где

$$L_{\alpha}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \sum_{i=1}^{k} \lambda_i (b_i + \alpha_i - G_i(\mathbf{x})).$$

Отсюда при всех $1 \leqslant i \leqslant k$ имеем

$$F'_{\alpha_i}(\mathbf{0}) = \lambda_{i0},$$

поэтому увеличение максимально возможной прибыли таково

$$\Delta F \approx \lambda_{i0} \alpha_i$$

при увеличении запаса i-го ресурса и неизменных запасах остальных ресурсов. Если понимать λ_{i0} как некоторую виртуальную цену единицы i-го ресурса, то приближенное равенство устанавливает важный факт: именно при такой цене лишние затраты будут компенсированы дополнительной прибылью.

Итак, λ_{i0} можно воспринимать как «теневую цену» i-го ресурса.

