1. Choose the equation of the function graphed below.

A.
$$f(x) = \sqrt{x - 10} + 7$$

B.
$$f(x) = -\sqrt{x - 10} + 7$$

C.
$$f(x) = -\sqrt{x+10} + 7$$

D.
$$f(x) = \sqrt{x+10} + 7$$

- E. None of the above
- 2. Choose the graph of the equation below.

C.

ט

E. None of the above.

3. What is the domain of the function below?

$$f(x) = \sqrt[8]{-4x - 5}$$

A. $(-\infty, a]$, where $a \in [-3.4, -1.1]$

B. $(-\infty, a]$, where $a \in [-1.1, 1.3]$

C. $(-\infty, \infty)$

D. $[a, \infty)$, where $a \in [-3.4, -1]$

E. $[a, \infty)$, where $a \in [-1.2, -0.3]$

4. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{54x^2 + 56} - \sqrt{-111x} = 0$$

A. $x_1 \in [0.68, 1.17]$ and $x_2 \in [0.6, 2.5]$

B. $x \in [-1.4, -1.13]$

C. $x_1 \in [-1.4, -1.13]$ and $x_2 \in [-1.2, -0.7]$

D. All solutions lead to invalid or complex values in the equation.

E. $x \in [-0.96, -0.86]$

5. Choose the equation of the function graphed below.

A.
$$f(x) = \sqrt[3]{x - 10} + 5$$

B.
$$f(x) = -\sqrt[3]{x+10} + 5$$

C.
$$f(x) = \sqrt[3]{x+10} + 5$$

D.
$$f(x) = -\sqrt[3]{x - 10} + 5$$

E. None of the above

6. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-5x+3} - \sqrt{-2x-8} = 0$$

A.
$$x_1 \in [-1.3, 1.9]$$
 and $x_2 \in [2.67, 6.67]$

B. All solutions lead to invalid or complex values in the equation.

C.
$$x \in [-3.5, -0.8]$$

D.
$$x \in [3, 4.1]$$

E.
$$x_1 \in [-5.8, -3.9]$$
 and $x_2 \in [-1.4, 3.6]$

7. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{6x^2 - 16} - \sqrt{4x} = 0$$

A. $x_1 \in [-1.44, -1.16]$ and $x_2 \in [-5, 3]$

B.
$$x \in [-1.44, -1.16]$$

C.
$$x_1 \in [0.82, 1.38]$$
 and $x_2 \in [-5, 3]$

D. All solutions lead to invalid or complex values in the equation.

E.
$$x \in [1.48, 2.32]$$

8. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{7x - 5} - \sqrt{8x + 5} = 0$$

A.
$$x_1 \in [-1.1, -0.15]$$
 and $x_2 \in [-1.29, 1.71]$

B.
$$x_1 \in [-10.3, -9.84]$$
 and $x_2 \in [-1.29, 1.71]$

C.
$$x \in [-10.3, -9.84]$$

D. All solutions lead to invalid or complex values in the equation.

E.
$$x \in [-0.29, 0.45]$$

9. Choose the graph of the equation below.

$$f(x) = \sqrt{x+8} + 6$$

Α.

E. None of the above.

10. What is the domain of the function below?

$$f(x) = \sqrt[4]{7x - 8}$$

- A. $(-\infty, \infty)$
- B. $(-\infty, a]$, where $a \in [1.1, 1.45]$
- C. $[a, \infty)$, where $a \in [1.07, 1.19]$
- D. $[a, \infty)$, where $a \in [0.7, 1.05]$
- E. $(-\infty, a]$, where $a \in [0.37, 1.01]$