Práctico 9

Base y dimensión.

- 1. En los siguientes casos, hallar una base y la dimensión del subespacio S del espacio vectorial V.
 - a) $V = \mathbb{R}^3$, $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y z = 0\}$.
 - b) $V = \mathbb{R}_3[x], S = \{ p \in \mathbb{R}_3[x] \colon p(2) = 0 \}.$
 - c) $V = \mathcal{M}(\mathbb{R})_{3\times 3}$, $S = \{A \in \mathcal{M}_{3\times 3} : A \text{ es simétrica}\}$.
 - *d*) $V = \mathcal{M}(\mathbb{R})_{2x2}$, $S = \{A \in \mathcal{M}_{2x2} : \text{tr}(A) = 0\}$.
- 2. En cada parte, el conjunto *S* es un conjunto generador del espacio vectorial *V*. Encontrar una base que sea un subconjunto de *S*.
 - a) $V = \mathbb{R}^3$, $S = \{(1, -1, 2), (4, -3, 7), (2, 0, 5), (1, 2, 6)\}.$

$$b) \ \ V = \mathcal{M}_{2\times 2} \ S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}.$$

- 3. Sea S un subconjunto LI de V. Agregar vectores a S hasta conformar una base de V.
 - a) $V = \mathbb{R}^4$, $S = \{(1, 0, 2, 2), (1, 1, 0, 0)\}.$
 - b) $V = \mathbb{R}_3[x]$, $S = \{1 x + x^2, x x^2\}$.
- 4. En cada ítem probar que \mathcal{B} es una base del espacio V, y hallar las coordenadas del vector v en la base \mathcal{B} .
 - a) $\mathcal{B} = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}, V = \mathbb{R}^3, y v = (1, 2, 3).$

b)
$$\mathcal{B} = \left\{ \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ 2 & 2 \end{pmatrix} \right\}, V = \mathcal{M}_{2x2} \text{ y } v = \begin{pmatrix} 1 & 3 \\ -4 & 6 \end{pmatrix}.$$

5. Discutir según $\alpha \in \mathbb{R}$ si el conjunto $\mathcal{A} = \{p_1, p_2, p_3\}$ es una base de $\mathbb{R}_2[t]$ donde

$$p_1(t) = 1 + t$$
, $p_2(t) = 1 + \alpha t + t^2$, $p_3(t) = 1 + t^2$.

- 6. **Rango.** En este ejercicio se vincula el rango de una matriz con la dimensión de cierto espacio asociado a ella. En cada parte se brinda una $A \in \mathcal{M}_{m \times n}$ y se debe calcular:
 - \blacksquare rango(A)
 - La dimensión del espacio Ker $A = \{X \in \mathcal{M}_{n \times 1} : AX = 0\}.$
 - Verificar que $\dim(\operatorname{Ker} A) + \operatorname{rango}(A) = n$.

a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 b) $A = \begin{pmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & 2 & 3 & -4 & 8 \\ 1 & 2 & 0 & 2 & 8 \\ 2 & 4 & -3 & 10 & 9 \\ 3 & 6 & 0 & 6 & 9 \end{pmatrix}$.

- 7. En cada caso se debe hallar bases de los subespacios S_1 , S_2 , $S_1 + S_2$ y $S_1 \cap S_2$. En función de ello deducir cuándo la suma es directa.
 - a) $S_1 = \{(x, y, z) \in \mathbb{R}^3 : x = z\} \text{ y } S_2 = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}.$
 - b) $S_1 = \{ p \in \mathbb{R}_2[x] : p(x) = ax^2, \text{ con } a \in \mathbb{R} \}$ y $S_2 = \{ p \in \mathbb{R}_2[x] : p(x) = cx^2 + bx + c, \text{ con } b, c \in \mathbb{R} \}.$

- 8. Sea $\mathcal{B}_1 = \{(1, -2, 1, 1), (3, 0, 2, -2), (0, 4, -1, 1)\}$ base de S_1 y $\mathcal{B}_2 = \{(0, 4, -1, 1), (5, 0, 3, -1)\}$ base de S_2 .
 - *a*) Probar que $\mathcal{B}_1 \cup \mathcal{B}_2$ es una base de \mathbb{R}^4 .
 - b) \S Se cumple que $\mathbb{R}^4 = S_1 \oplus S_2$?
- 9. Sea V un espacio vectorial de dimensión finita y S_1 , S_2 dos subespacios de V.
 - a) Probar que $V = S_1 \oplus S_2$ si y sólo si $V = S_1 + S_2$ y $S_1 \cap S_2 = \{0_V\}$.
 - b) Si $V = S_1 \oplus S_2$, probar que $dim(S_1) + dim(S_2) = dim(V)$.
 - c) Si $dim(S_1) + dim(S_2) = dim(V)$, ξ se cumple que $V = S_1 \oplus S_2$?. Demostrar o dar un contraejemplo.
- 10. Sea V un espacio vectorial de dimensión finita, \mathcal{B}_1 base del subespacio S_1 y \mathcal{B}_2 base de S_2 .
 - *a*) Si $V = S_1 \oplus S_2$, probar que $\mathcal{B}_1 \cup \mathcal{B}_2$ es una base de V. ¿Vale el recíproco del resultado anterior?
 - b) Si $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, ¿se cumple que $S_1 \cap S_2 = \{0_V\}$? Demostrar o dar un contraejemplo.
 - c) Si $\mathcal{B}_1 \cup \mathcal{B}_2$ es una base de V y $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, probar que $V = S_1 \oplus S_2$.