Задание 6

Параллельная сортировка массива слиянием Отчёт

Фролова О.В

1 Постановка задачи

Дан массив A из N целых чисел в случайном порядке. Нужно упорядочить массив A в порядке возрастания. Алгоритм состоит из трёх шагов: разбить массив A на куски (чанки)

- Отсортировать каждый чанк массива (любым алгоритмом сортировки). Чанки следует сортировать параллельно друг относительно друга
- Слить чанки в единый упорядоченный массив, используя параллельный алгоритм слияния
- Задание реализовать параллельную сортировку слиянием с помощью OpenMP tasks (и, возможно, sections)

2 Формат командной строки

./a.out <количество элементов массива> <количество потоков>

3 Результаты выполнения

Был реализован алгоритм сортировки heapsort. Запуск программы производился на Polus N (количество элементов массива) = $2*10^6$

Для каждого увеличения числа нитей считалось ускорение по формуле

$$S_p = \frac{T_1}{T_p},$$

где T_1 - время работы программы на одной нити, а T_p - время работы программы на р нитях.

А эффективность распараллеливания $E = S_p/P$.

Для функции qsort был взят усредненный результат времени выполнения

Число потоков	T (qsort)	T (ParallelMergeSort)	Ускорение программы	Эффективность распараллеливания
1	$0.356097 \; \mathrm{sec}$	0.273455 sec	1.000000	1.000000
2	$0.356097 \; \mathrm{sec}$	0.266851 sec	1.024747	0.512373
4	$0.356097 \; \mathrm{sec}$	0.240884 sec	1.135214	0.283803
8	$0.356097 \; \mathrm{sec}$	0.132284 sec	2.067181	0.258397
16	$0.356097 \; \mathrm{sec}$	0.094129 sec	2.905108	0.143156

4 Графики зависимости

