Nicola Seriani

The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy

- We are going to explore how to combine different methods we have learnt to obtain a fast and precise approximation for the exponential e(x)
- We are going to start from the code present in the working directory Taylor0: exp.c and tester.c
- tester.c: it calculates the exponential by a number of methods for a number (to be provided) of random points x between -10.0 and 10.0
- exp.c contains the subroutines to calculate the exponential

- tester.c also calculates execution times for the different methods, and provides an average error with respect to the standard exponential function
- The code in Taylor0 performs a simple Taylor expansion: at what degree?
- The code in Pade0 performs a simple Pade expansion: what order of approximant is used?

- First task: check their performance (execution time and error)
- Second task: reduce the range of testing from [-10,10]
 to [-0.5,0.5]: what has changed? Has the execution
 time improved? And the error?
- Third task: exploit the insight from the second task and modify the Pade` code exploiting the other tricks: see following slide

- Our Pade` approximation works best in a neighbourhood of 0. The strategy is now to exploit this fact to use these approximation only in a range around 0, also when calculating e(x) for x in [-10,10]
- Moreover, we are going to work with integers when possible
- In particular, as an intermediate result we are going to calculate an exponential of 2^y, exploiting the fact that e^x = 2^{log(exp(x))} = 2^{x log(e)}, where log is the logarithm in base 2: log₂(x)

Advanced exercise: workflow to calculate exercise

To calculate ex

- We calculate y = x log₂(e)
- Then we calculate 2^y:
 - Split y in integer part ipart and non-integer part fpart
 - We calculate 2^{ipart} as integer and we use a Pade approximation^a for 2^{fpart} in [-0.5,0.5]
 - 3 $2^y = 2^{ipart} * 2^{ipart}$
- $e^{x} = 2^{y}$
- ^a See next slide for details

Advanced exercise: workflow to calculate exercise

Pade` approximation for 2^{fpart}:
We are going to use the following Pade` approximant:

$$p(x) = a_0 x^5 + a_1 x^3 + a_2 x$$

$$q(x) = x^4 + b_1 x^2 + b_2$$

$$f(x) = 1 + 2 \frac{p(x)}{q(x) - p(x)}$$

where

$$a_0 = 2.30933477057345225087e-2$$

$$a_1 = 2.02020656693165307700e1$$

$$a_2 = 1.51390680115615096133e3$$

$$b_1 = 2.33184211722314911771e2$$

$$b_2 = 4.36821166879210612817e3$$

Advanced exercise:

Which is the fastest method to calculate exp(x)?

Which is the most accurate?