Algorithm: QMIX Training

- 1: Initialize: θ and θ^- the parameters of individual and target Q-networks Q_i , ϕ and ϕ^- the parameters of the mixing and target-mixing network m. 2: Initialize replay buffer \mathcal{D} // (episode₁, episode₂,...) 3: while t < T do $current_episode = \{\}$ 4: while \mathbf{o}_t is not done do 5:
- Collect observations $\{o_1^t, \dots, o_n^t\}$ and state \mathbf{s}_t 6:
- for each agent i do 7: 8:
 - With probability ϵ , select random action a_i^t otherwise select $a_i^t = \arg \max_{a_i} Q_i(o_i^t, a_i)$
- end for 10:

9:

- Execute joint action $\mathbf{a}^t = (a_1^t, \dots, a_n^t)$ 11:
- 12:
- Collect r^t , $done^t$, \mathbf{o}^{t+1} , and \mathbf{s}_{t+1} Store $(\mathbf{o}^t, \mathbf{a}^t, r^t, done^t, \mathbf{o}^{t+1})$ in $current_episode$ 13:
- end while 14:
- Store $current_episode$ in the replay buffer \mathcal{D} 15:
- if t is a training step then 16:
- Sample batch of episodes 17:

$$\mathcal{B} = \{ \{ \mathbf{s}^{t,b}, \mathbf{o}^{t,b}, \mathbf{a}^{t,b}, r^{t,b}, done^{t,b}, \mathbf{s'}^{t,b}, \mathbf{o'}^{t,b} \}_{t=1...L^b} \}_{b=1,...,|\mathcal{B}|}$$

Set the targets 18:

$$y^{t,b} = r^{t,b} + \gamma (1 - done^{t,b}) \times \max_{(a_1, \dots, a_n)} m(\mathbf{s'}^{t,b}, Q_1(\mathbf{o}_1^{t,b}, a_1; \theta^-), \dots, Q_n(\mathbf{o}_n^{t,b}, a_n; \theta^-); \phi^-)$$

Perform a gradient descent using: 19:

$$\mathcal{L}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{b} \frac{1}{L^b} \sum_{t} \left(y^{t,b} - Q^{tot}(\mathbf{s}^{t,b}, \mathbf{o}^{t,b}, \mathbf{a}^{t,b}; \theta, \phi) \right)^2$$

- Every C steps, update $\theta^- \leftarrow \theta$, $\phi^- \leftarrow \phi$ 20:
- 21: end if 22: end while