Week 4

Monday, 28 January 2019 12:29

Effect sizes

- Main statistics in reports
- Communicate significance of the result
- Allow meta-analytic conclusion
- Allow power analysis
- Cohen's d
 - effect size estimator
 - o prefer Hedge's g for sample < 20, unbiased Cohen's d
 - o up to 4% more than actual effect size for population
 - Standardized mean differences
- Pearson's r family
 - o Strength of association
 - % of variance explained
- Cohen's w
 - Association strength for categorical variables
 - Chi-squared test effect size
- Z-score
 - \circ Number of σ above/below mean
- Statistically significant and practically insignificant is possible
- Large effect can also be implausible

Effect size	d	Reference		
Very small	0.01	Sawilowsky, 2009		
Small	0.20	Cohen, 1988		
Medium	0.50	Cohen, 1988		
Large	0.80	Cohen, 1988		
Very large	1.20	Sawilowsky, 2009		
Huge	2.0	Sawilowsky, 2009		

Cohen's d

Mean diff / std dev (compound or from second group)

• Different for within and between designs, factor of sqrt(2 * (1-r))

Correlations r

- Small = 0.1, medium = 0.3, large = 0.5
- Can be converted to Cohen's d

• Hedge's g

•
$$gstar = 1 - \left(\frac{3}{4(n1+n2)-9}\right)d$$

Correct bias for small sample size

Effect size exercise

- Good to keep in mind that the bigger the sample size the more significant difference important to keep in sight effect size
- Probability of superiority is nice way to imagine d effect size in action
 - o $P = CDF\left(\frac{\delta}{\sqrt{(2)}}\right)$ where CDF is the cumulative distribution function of the star distribution, and δ the population Cohen's d
- R² is percentage of variance explained

$$r = \frac{d_s}{\sqrt{d_s^2 + \frac{N^2 - 2N}{n_1 \times n_2}}}$$

- N = n1 + n2, ds is Cohen's d for the sample studied
- η square
 - o part of r family and used for more than two sets of observations
 - Sum to 100% and give percent of total variance accounted for by group members
 - > Hard to compare between studies as total variance differs from each study

