```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score,classification_report
from \ sklearn.preprocessing \ import \ StandardScaler
from sklearn.ensemble import RandomForestClassifier
from \ sklearn.model\_selection \ import \ cross\_val\_score, \ KFold, \ GridSearchCV
from sklearn.feature_selection import SelectKBest, chi2
#step1 =load model
#step2=missing values handleing
\#step3=divide in z and y (indepent and dependent values)
#step4=train-test split
#step5=standardscaling xtrain and xtest
data=pd.read_csv('heart_disease.csv')
```

data

	id	age	sex	dataset	ср	trestbps	chol	fbs	restecg	thal
0	1	63	Male	Cleveland	typical angina	145.0	233.0	True	lv hypertrophy	150
1	2	67	Male	Cleveland	asymptomatic	160.0	286.0	False	lv hypertrophy	108
2	3	67	Male	Cleveland	asymptomatic	120.0	229.0	False	lv hypertrophy	129
3	4	37	Male	Cleveland	non-anginal	130.0	250.0	False	normal	187
4	5	41	Female	Cleveland	atypical angina	130.0	204.0	False	lv hypertrophy	172
915	916	54	Female	VA Long Beach	asymptomatic	127.0	333.0	True	st-t abnormality	154
916	917	62	Male	VA Long Beach	typical angina	NaN	139.0	False	st-t abnormality	Na
917	918	55	Male	VA Long Beach	asymptomatic	122.0	223.0	True	st-t abnormality	100
918	919	58	Male	VA Long Beach	asymptomatic	NaN	385.0	True	lv hypertrophy	Na
919	920	62	Male	VA Long Beach	atypical angina	120.0	254.0	False	lv hypertrophy	93
920 rc	x awn	16 col	ıımns							•

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 920 entries, 0 to 919
Data columns (total 16 columns):
    Column
              Non-Null Count Dtype
___
0 id
              920 non-null
                             int64
              920 non-null
                             int64
1
    age
              920 non-null
                             object
    sex
              920 non-null
3
    dataset
                             object
              920 non-null
4
                             object
    СD
5
    trestbps 861 non-null
                             float64
              890 non-null
                             float64
6
    chol
              830 non-null
    fbs
                             object
8
    restecg
              918 non-null
                             object
9
    thalch
              865 non-null
                             float64
10 exang
              865 non-null
                             object
11 oldpeak
              858 non-null
                             float64
12
              611 non-null
    slope
                             object
              309 non-null
                             float64
13 ca
14 thal
              434 non-null
                             obiect
              920 non-null
15 num
                             int64
dtypes: float64(5), int64(3), object(8)
memory usage: 115.1+ KB
```

```
data_isnull = data.isnull()
print(data_isnull.sum())
     age
                    0
                    0
     sex
     dataset
                    0
                    0
     ср
     .
trestbps
                   59
30
     chol
                   90
     fbs
     restecg
                   2
     thalch
                   55
     exang
oldpeak
                   55
                   62
     slope
                  309
                  611
     ca
     thal
                  486
     num
                    0
     dtype: int64
print(data.shape)
     (920, 16)
data.dropna(inplace=True)
```

print(data.isnull().sum()) print(data.shape)

> id age sex 0 0 dataset 0 0 ср trestbps chol 0 fbs restecg thalch 0 exang oldpeak slope 0 0 ca thal 0 num 6 dtype: int64 (299, 16)

	id	age	sex	dataset	ср	trestbps	chol	fbs	restecg	thal
0	1	63	Male	Cleveland	typical angina	145.0	233.0	True	lv hypertrophy	150
1	2	67	Male	Cleveland	asymptomatic	160.0	286.0	False	lv hypertrophy	108
2	3	67	Male	Cleveland	asymptomatic	120.0	229.0	False	lv hypertrophy	129
3	4	37	Male	Cleveland	non-anginal	130.0	250.0	False	normal	187
4	5	41	Female	Cleveland	atypical angina	130.0	204.0	False	lv hypertrophy	172
299	300	68	Male	Cleveland	asymptomatic	144.0	193.0	True	normal	141
300	301	57	Male	Cleveland	asymptomatic	130.0	131.0	False	normal	115
301	302	57	Female	Cleveland	atypical angina	130.0	236.0	False	lv hypertrophy	174
508	509	47	Male	Hungary	asymptomatic	150.0	226.0	False	normal	98
748	749	56	Male	VA Long Beach	asymptomatic	120.0	100.0	False	normal	120
299 rc	ws ×	16 col	umns							•

```
convert={"sex":{"Female":0,"Male":1}}
data=data.replace(convert)
```

data

	id	age	sex	dataset	ср	trestbps	chol	fbs	restecg	thalch
0	1	63	1	Cleveland	typical angina	145.0	233.0	True	lv hypertrophy	150.0
1	2	67	1	Cleveland	asymptomatic	160.0	286.0	False	lv hypertrophy	108.0
2	3	67	1	Cleveland	asymptomatic	120.0	229.0	False	lv hypertrophy	129.0
3	4	37	1	Cleveland	non-anginal	130.0	250.0	False	normal	187.0
4	5	41	0	Cleveland	atypical angina	130.0	204.0	False	lv hypertrophy	172.0
					•••					
299	300	68	1	Cleveland	asymptomatic	144.0	193.0	True	normal	141.0
300	301	57	1	Cleveland	asymptomatic	130.0	131.0	False	normal	115.0
301	302	57	0	Cleveland	atypical angina	130.0	236.0	False	lv hypertrophy	174.0
508	509	47	1	Hungary	asymptomatic	150.0	226.0	False	normal	98.0
748	749	56	1	VA Long Beach	asymptomatic	120.0	100.0	False	normal	120.0
299 rc	× awo	16 col	umns							>

```
from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
```

```
data["sex"]=encoder.fit_transform(data["sex"])
play_te=dict(zip(encoder.transform(encoder.classes_),encoder.classes_))
```

play_te
{0: 0, 1: 1}

	id	age	sex	dataset	ср	trestbps	chol	fbs	restecg	thalch
0	1	63	1	Cleveland	typical angina	145.0	233.0	True	lv hypertrophy	150.0
1	2	67	1	Cleveland	asymptomatic	160.0	286.0	False	lv hypertrophy	108.0
2	3	67	1	Cleveland	asymptomatic	120.0	229.0	False	lv hypertrophy	129.0
3	4	37	1	Cleveland	non-anginal	130.0	250.0	False	normal	187.0
4	5	41	0	Cleveland	atypical angina	130.0	204.0	False	lv hypertrophy	172.0
299	300	68	1	Cleveland	asymptomatic	144.0	193.0	True	normal	141.0
300	301	57	1	Cleveland	asymptomatic	130.0	131.0	False	normal	115.0
301	302	57	0	Cleveland	atypical angina	130.0	236.0	False	lv hypertrophy	174.0
508	509	47	1	Hungary	asymptomatic	150.0	226.0	False	normal	98.0
748	749	56	1	VA Long Beach	asymptomatic	120.0	100.0	False	normal	120.0
99 ro	ws ×	16 col	ıımns)

data["dataset"]=encoder.fit_transform(data["dataset"]) $\verb|play_te=dict(zip(encoder.transform(encoder.classes_)),encoder.classes_))|$ play_te

{0: 'Cleveland', 1: 'Hungary', 2: 'VA Long Beach'}

	id	age	sex	dataset	ср	trestbps	chol	fbs	restecg	thalch	•
0	1	63	1	0	typical angina	145.0	233.0	True	lv hypertrophy	150.0	
1	2	67	1	0	asymptomatic	160.0	286.0	False	lv hypertrophy	108.0	
2	3	67	1	0	asymptomatic	120.0	229.0	False	lv hypertrophy	129.0	
3	4	37	1	0	non-anginal	130.0	250.0	False	normal	187.0	
4	5	41	0	0	atypical angina	130.0	204.0	False	lv hypertrophy	172.0	
299	300	68	1	0	asymptomatic	144.0	193.0	True	normal	141.0	
300	301	57	1	0	asymptomatic	130.0	131.0	False	normal	115.0	
4										1	•

```
data["id"]=encoder.fit_transform(data["id"])
play_te=dict(zip(encoder.transform(encoder.classes_),encoder.classes_))
play_te
```

```
{0: 1,
```

^{1: 2,}

^{2: 3,} 3: 4,

^{4: 5,}

^{5: 6,}

^{6: 7,} 7: 8,

^{8: 9,}

^{9: 10,}

^{10: 11,}

^{11: 12,}

^{12: 13,}

^{13: 14,} 14: 15,

^{15: 16,}

```
16: 17,
      17: 18,
     18: 19,
      19: 20,
      20: 21,
      21: 22,
      22: 23,
      23: 24,
      24: 25,
      25: 26,
      26: 27,
      27: 28,
      28: 29,
      29: 30,
      30: 31,
      31: 32,
      32: 33,
      33: 34,
      34: 35,
      35: 36,
      36: 37,
      37: 38,
      38: 39,
      39: 40,
      40: 41,
      41: 42,
      42: 43,
      43: 44,
      44: 45,
      45: 46,
      46: 47,
      47: 48,
     48: 49,
      49: 50,
     50: 51,
      51: 52,
      52: 53,
      53: 54,
      54: 55,
      55: 56,
data["cp"]=encoder.fit_transform(data["cp"])
\verb|play_te=dict(zip(encoder.transform(encoder.classes_),encoder.classes_))| \\
play_te
     {0: 'asymptomatic',
     1: 'atypical angina',
      2: 'non-anginal',
      3: 'typical angina'}
data["trestbps"]=encoder.fit_transform(data["trestbps"])
play_te=dict(zip(encoder.transform(encoder.classes_),encoder.classes_))
play_te
     {0: 94.0,
      1: 100.0,
      2: 101.0,
      3: 102.0,
      4: 104.0,
      5: 105.0,
      6: 106.0,
      7: 108.0,
      8: 110.0.
      9: 112.0,
      10: 114.0,
      11: 115.0,
      12: 117.0,
      13: 118.0,
      14: 120.0,
      15: 122.0,
      16: 123.0,
      17: 124.0,
      18: 125.0,
      19: 126.0,
      20: 128.0.
      21: 129.0.
      22: 130.0,
      23: 132.0,
      24: 134.0,
      25: 135.0,
      26: 136.0,
      27: 138.0,
      28: 140.0,
      29: 142.0,
      30: 144.0,
      31: 145.0.
      32: 146.0,
```

```
33: 148.0,
      34: 150.0,
      35: 152.0,
      36: 154.0,
      37: 155.0,
      38: 156.0,
      39: 158.0,
      40: 160.0,
      41: 164.0,
      42: 165.0,
      43: 170.0,
      44: 172.0
      45: 174.0,
      46: 178.0,
      47: 180.0,
      48: 192.0.
      49: 200.0}
data["chol"]=encoder.fit_transform(data["chol"])
play_te=dict(zip(encoder.transform(encoder.classes_),encoder.classes_))
play_te
      95: 265.0,
      96: 266.0,
      97: 267.0,
      98: 268.0,
      99: 269.0,
      100: 270.0
      101: 271.0,
      102: 273.0,
      103: 274.0,
      104: 275.0.
      105: 276.0,
      106: 277.0,
      107: 278.0,
      108: 281.0,
      109: 282.0,
      110: 283.0,
      111: 284.0,
      112: 286.0,
      113: 288.0,
      114: 289.0,
      115: 290.0.
      116: 293.0,
      117: 294.0,
      118: 295.0,
      119: 298.0,
      120: 299.0,
      121: 300.0,
      122: 302.0,
      123: 303.0,
      124: 304.0,
      125: 305.0,
      126: 306.0,
      127: 307.0,
      128: 308.0,
      129: 309.0,
      130: 311.0,
      131: 313.0,
      132: 315.0.
      133: 318.0,
      134: 319.0,
      135: 321.0,
      136: 322.0,
      137: 325.0,
      138: 326.0,
      139: 327.0,
      140: 330.0,
      141: 335.0,
      142: 340.0,
      143: 341.0,
144: 342.0,
      145: 353.0,
      146: 354.0,
      147: 360.0,
      148: 394.0,
      149: 407.0,
      150: 409.0,
      151: 417.0,
      152: 564.0}
data["fbs"]=encoder.fit_transform(data["fbs"])
\verb|play_te=dict(zip(encoder.transform(encoder.classes_)),encoder.classes_)||
play_te
     {0: False, 1: True}
```

	id	age	sex	dataset	ср	trestbps	chol	fbs	restecg	thalch	exang	oldpeak
0	0	63	1	0	3	31	65	1	0	150.0	False	2.3
1	1	67	1	0	0	40	112	0	0	108.0	True	1.5
2	2	67	1	0	0	14	61	0	0	129.0	True	2.6
3	3	37	1	0	2	22	81	0	1	187.0	False	3.5
4	4	41	0	0	1	22	36	0	0	172.0	False	1.4
299	294	68	1	0	0	30	27	1	1	141.0	False	3.4
300	295	57	1	0	0	22	2	0	1	115.0	True	1.2
301	296	57	0	0	1	22	68	0	0	174.0	False	0.0
4												•

```
data["thalch"]=encoder.fit_transform(data["thalch"])
play_te=dict(zip(encoder.transform(encoder.classes_),encoder.classes_))
play_te
```

```
34: 133.0,
35: 134.0,
36: 136.0,
37: 137.0,
38: 138.0,
39: 139.0,
40: 140.0,
41: 141.0,
42: 142.0,
43: 143.0,
44: 144.0,
45: 145.0,
46: 146.0,
47: 147.0,
48: 148.0,
49: 149.0,
```

```
٥4: ١٥٥.٥,
      85: 187.0,
      86: 188.0,
      87: 190.0.
      88: 192.0,
      89: 194.0,
      90: 195.0,
      91: 202.0}
data["exang"]=encoder.fit_transform(data["exang"])
\verb|play_te=dict(zip(encoder.transform(encoder.classes_)),encoder.classes_))| \\
play_te
     {0: False, 1: True}
data["oldpeak"]=encoder.fit_transform(data["oldpeak"])
play_te=dict(zip(encoder.transform(encoder.classes_),encoder.classes_))
play_te
     {0: 0.0,
      1: 0.1,
      2: 0.2,
      3: 0.3,
      4: 0.4,
      5: 0.5,
      6: 0.6,
      7: 0.7,
      8: 0.8,
      9: 0.9,
      10: 1.0,
      11: 1.1,
      12: 1.2,
      13: 1.3,
      14: 1.4,
      15: 1.5,
      16: 1.6,
      17: 1.8,
      18: 1.9,
      19: 2.0,
      20: 2.1,
      21: 2.2,
      22: 2.3,
      23: 2.4,
      24: 2.5,
      25: 2.6,
      26: 2.8,
      27: 2.9,
      28: 3.0,
      29: 3.1,
      30: 3.2,
      31: 3.4,
      32: 3.5,
      33: 3.6,
      34: 3.8,
      35: 4.0,
      36: 4.2,
      37: 4.4,
      38: 5.6.
      39: 6.2}
data["slope"]=encoder.fit_transform(data["slope"])
play_te=dict(zip(encoder.transform(encoder.classes_),encoder.classes_))
play_te
     {0: 'downsloping', 1: 'flat', 2: 'upsloping'}
data["ca"]=encoder.fit_transform(data["ca"])
play_te=dict(zip(encoder.transform(encoder.classes_),encoder.classes_))
play_te
     {0: 0.0, 1: 1.0, 2: 2.0, 3: 3.0}
data
```

https://colab.research.google.com/drive/1zSw386Yoh5dP8yMU0HvZ5quyRvkGvN9r#scrollTo=UwvS0NXMSiE2&printMode=true

```
id age sex dataset cp trestbps chol fbs restecg thalch exang oldpeak
        0
           63
                          0
                                      31
                                            65
                                                           0
                                                                                22
                          0
                             0
                                      40
                                           112
                                                          0
                                                                                15
  1
        1
           67
                 1
                                                  0
                                                                 11
                                                                         1
  2
        2
           67
                          0
                             0
                                      14
                                            61
                                                  0
                                                          0
                                                                 30
                                                                         1
                                                                                25
  3
        3
           37
                 1
                          0
                             2
                                      22
                                            81
                                                  0
                                                          1
                                                                 85
                                                                         0
                                                                                32
        4
           41
                 0
                          0
                                      22
                                            36
                                                  0
                                                          0
                                                                 72
                                                                         0
                                                                                 14
                             1
                                       ...
                                                                 ...
 299 294
           68
                 1
                          0 0
                                      30
                                            27
                                                  1
                                                          1
                                                                 41
                                                                         0
                                                                                31
                                             2
                                                                 17
 300 295
           57
                          0
                              0
                                      22
                                                  0
                                                          1
                                                                         1
                                                                                12
                 1
                          0
                                                          0
                                                                 74
                                                                         0
                                                                                 0
 301 296
           57
                 0
                             1
                                      22
                                            68
                                                  0
4
```

data["num"]=encoder.fit_transform(data["num"])
play_te=dict(zip(encoder.transform(encoder.classes_)),encoder.classes_))
play_te

{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}

									1 t	o 100 of	299 en	tries Filt	er 🔲	?
index	id	age	sex	dataset	ср	trestbps	chol	fbs			exang	oldpeak		ca
0	0	63	1	0	3	31	65	1	0	50	0	22	0	0
1	1	67	1	0	0	40	112	0	0	11	1	15	1	3
3	3	67 37	1	0	0	14 22	61 81	0	0	30 85	1	25 32	0	0
4	4	41	0	0	1	22	36	0	0	72	0	14	2	0
5	5	56	1	0	1	14	68	0	1	77	0	8	2	0
6	6	62	0	0	0	28	98	0	0	60	0	33	0	2
7	7	57	0	0	0	14	146	0	1	63	1	6	2	0
9	8	63 53	1	0	0	22	84 35	0	0	47 55	0	14 29	1 0	1
10	10	57	1	0	0	28	26	0	1	48	0	4	1	0
11	11	56	0	0	1	28	117	0	0	53	0	13	1	0
12	12	56	1	0	2	22	86	1	0	42	1	6	1	1
13	13	44	1	0	1	14	93	0	1	73	0	0	2	0
14 15	14 15	52 57	1	0	2	44 34	32 10	0	1	62 74	0	5 16	2	0
16	16	48	1	0	1	8	61	0	1	68	0	10	0	0
17	17	54	1	0	0	28	70	0	1	60	0	12	2	0
18	18	48	0	0	2	22	104	0	1	39	0	2	2	0
19	19	49	1	0	1	22	96	0	1	71	0	6	2	0
20	20	64	1	0	3	8	43	0	0	44	1	17	1	0
21	21	58 58	1	0	1	34 14	110	0	0	62 60	0	10 17	1	0
23	23	58	1	0	2	23	56	0	0	73	0	30	2	2
24	24	60	1	0	0	22	38	0	0	33	1	23	1	2
25	25	50	0	0	2	14	51	0	1	58	0	16	1	0
26	26	58	0	0	2	14	142	0	1	72	0	0	2	0
27 28	27 28	66 43	1	0	0	34	58 78	0	1	16 71	0	25 15	0	0
29	29	40	1	0	0	8	9	0	0	16	1	19	1	0
30	30	69	0	0	3	28	70	0	1	51	0	17	2	2
31	31	60	1	0	0	12	62	1	1	60	1	14	2	2
32	32	64	1	0	2	28	141	0	1	58	0	0	2	0
33	33	59	1	0	0	25	66	0	1	61	0	5	1	0
34 35	34	44	1	0	0	22 28	65 58	0	1	78 77	1	4	2	0
36	36	43	1	0	0	14	16	0	0	21	1	24	1	0
37	37	57	1	0	0	34	105	0	0	14	1	6	1	1
38	38	55	1	0	0	23	145	0	1	33	1	12	1	1
39	39	61	1	0	2	34	74	1	1	37	1	10	1	0
40 41	40	65 40	0	0	3	34 28	57 32	0	0	16 77	0	10 14	1 2	0
42	42	71	0	0	1	40	122	0	1	62	0	4	2	2
43	43	59	1	0	2	34	44	1	1	57	0	16	2	0
44	44	61	0	0	0	22	140	0	0	69	0	0	2	0
45	45	58	1	0	2	9	62	0	0	65	0	24	1	1
46	46	51	1	0	2	8	14	0	1	24	0	6	2	0
47 48	47 48	50 65	0	0	2	34 28	74 151	0	0	29 57	0	25 8	1 2	0
49	49	53	1	0	2	22	30	1	0	52	0	12	0	0
50	50	41	0	0	1	5	31	0	1	68	0	0	2	1
51	51	65	1	0	0	14	16	0	1	40	0	4	2	0
52	52	44	1	0	0	9	115	0	0	53	0	0	2	1
53 54	53 54	60	1	0	0	22	51 83	0	0	86 44	0	14	2	0
55	55	54	1	0	0	17	96	0	0	12	1	21	1	1
56	56	50	1	0	2	28	65	0	1	63	0	6	1	1
57	57	41	1	0	0	8	12	0	0	58	0	0	2	0
58	58	54	1	0	2	18	102	0	0	52	0	5	0	1
59	59	51	1	0	3	18	45	0	0	26	1	14	2	1
60	60	51 46	0	0	2	22 29	125 16	0	1 0	42 60	1	12 14	0	0
62	62	58	1	0	0	20	48	0	0	32	1	21	1	3
63	63	54	0	0	2	25	124	1	1	70	0	0	2	0
64	64	54	1	0	0	14	25	0	1	15	0	14	1	1
65	65	60	1	0	0	31	109	0	0	42	1	26	1	2
66	66	60	1	0	2	28	22	0	0	55 65	0	28	1	0
67 68	67 68	54 59	1	0	0	34 43	138	0	0	65 40	0	16 31	0	0
69	69	46	1	0	2	34	63	0	1	47	0	33	1	0
70	70	O.F.	^	^	_	27	00	^	4	40	^	0	^	^

```
heart.ipynb - Colaboratory
   /U /U
                U
                        U
                                                           40
                                                                          Ö
          co
                           4
                                   31
                                        99
                                             U
   71 71
           67
                1
                        0
                           0
                                   18
                                        84
                                             1
                                                     1
                                                           63
                                                                  0
                                                                           2
                                                                                    2
   72 72
           62
                1
                        0
                           0
                                   14
                                        97
                                             0
                                                     1
                                                            7
                                                                  1
                                                                          17
                                                                                 1
                                                                                    2
   73 73
           65
                        0
                           0
                                    8
                                        79
                                             0
                                                     0
                                                           58
                                                                  0
                                                                           6
                                                                                 2
                                                                                    2
                        0
                                                           76
                                                                                 2
                                                                                    1
   74 74
           44
                           0
                                    8
                                        30
                                             0
                                                     0
                                                                  0
                                                                           0
   75 75
                        0
                           2
                                   40 147
                                                                                 2
                                                                                    0
          65
                0
                                             0
                                                     0
                                                           51
                                                                  0
                                                                          8
   76 76
          60
                                   18
                                        88
                                                                                    1
   77 77
                        0
                           2
                                   28 128
                                                           42
                                                                          15
                                                                                 2
                                                                                    1
   78 78
          48
                1
                        0
                           1
                                   22
                                        76
                                             0
                                                     0
                                                           79
                                                                  0
                                                                          2
                                                                                 1
                                                                                    0
   79 79
           58
                        0
                           0
                                   34
                                       100
                                             0
                                                     0
                                                           13
                                                                  1
                                                                           8
                                                                                 2
                                                                                    0
                                    4
   80 80
          45
                        0
                           0
                                        40
                                             0
                                                     0
                                                           48
                                                                  1
                                                                          28
                                                                                 1
                                                                                    0
      81
                        0
                           0
                                   22
                                        94
                                             0
                                                     0
                                                           43
                                                                  0
                                                                           4
                                                                                    0
   81
          53
                0
                                                                                 1
   82 82
          39
                1
                        0
                           2
                                   28
                                       135
                                             0
                                                     0
                                                           81
                                                                  0
                                                                           0
                                                                                 2
                                                                                    0
   83
      83
           68
                        0
                           2
                                   47
                                       103
                                                     0
                                                           50
                                                                          16
                                                                                 1
                                                                                    0
   84 84
           52
                        0
                                   14
                                       137
                                             0
                                                           72
                                                                  0
                                                                           2
                                                                                 2
                                                                                    0
   85 85
          44
                        0
                           2
                                   28
                                        67
                                             0
                                                     0
                                                           79
                                                                  0
                                                                           0
                                                                                 2
                                                                                    0
   86 86
          47
                           2
                                   27
                                        87
                                                                           0
                                                                                 2
                                                                                    0
                        0
                                             0
                                                     0
                                                           56
                                                                  0
                                                                                 2
   88 87
          53
                0
                        0
                           0
                                   27
                                        66
                                             0
                                                     0
                                                           60
                                                                  0
                                                                           0
                                                                                    0
                                        86
   89 88
                                   22
                                       122
   90 89
           66
                                   14
   91 90
           62
                0
                        0
                           0
                                   40
                                        7
                                             0
                                                     0
                                                           45
                                                                  0
                                                                          39
                                                                                 0
                                                                                    3
   92 91
           62
                        0
                           2
                                   22
                                        63
                                             0
                                                     1
                                                           46
                                                                  0
                                                                          17
                                                                                 1
                                                                                    3
                                    7
   93 92
           44
                0
                        0
                           2
                                         3
                                             0
                                                     1
                                                           75
                                                                  0
                                                                          6
                                                                                 1
                                                                                    0
   94 93
           63
                0
                        0
                           2
                                        82
                                             0
                                                     0
                                                           72
                                                                  0
                                                                          0
                                                                                 2
                                                                                    0
                                   25
   95
      94
                        0
                           0
                                   20
                                        85
                                             0
                                                           61
                                                                           0
                                                                                 2
                                                                                    1
           52
                1
   96
      95
                        0
                           0
                                    8
                                        70
                                             0
                                                     0
                                                           42
                                                                          12
                                                                                 1
                                                                                    1
           59
   97 96
           60
                0
                        0
                           0
                                   34
                                        88
                                             0
                                                     0
                                                           57
                                                                  0
                                                                          25
                                                                                 1
                                                                                    2
   98 97
           52
                1
                        0
                           1
                                   24
                                        34
                                             0
                                                     1
                                                           58
                                                                  0
                                                                          8
                                                                                 2
                                                                                    1
                                                                                 2
   99 98
          48
                        0
                           0
                                        54
                                             0
                                                           84
                                                                  0
                                                                           0
                                                                                    0
                                   15
                                                     0
  100 99
          45
                        0
                           0
                                   11
                                        90
                                             0
                                                     0
                                                           83
                                                                  0
                                                                           0
                                                                                 2
                                                                                    0
                                                                                     •
Show 100 ➤ per page
                                                                           1
                                                                                2
ıl.
```

x=data.drop('num',axis=1) y=data['num'] model=DecisionTreeClassifier() model.fit(x,y) ▼ DecisionTreeClassifier DecisionTreeClassifier() # Access the tree attributes tree_=model.tree_ root_node =0 # as root node with index will be 0 feature_names = x.columns # to get the feature indecx of the root node' root_feature_index = tree_.feature[root_node] # to get feature name from the original value root_feature_name=feature_names[root_feature_index] print("Index is", root_feature_index) print("Feature Name is",root_feature_name) print("Root Node Impurity is ",tree_.impurity[root_node]) Index is 4 Feature Name is cp Root Node Impurity is 0.6492768537264684 # visualize decision trees from sklearn import tree import matplotlib.pyplot as plt plt.figure(figsize=(36,12)) tree.plot_tree(model,feature_names=x.columns,filled=True,rounded=True) plt.show()