B 7 R L 3 A 1 3 B A C 2 0 1 4

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2014

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقنى رياضي

المدة: 04 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (05,5 نقاط)

 $(z-i)(z^2-2\sqrt{3}z+4)=0$ المعادلة: $(z-i)(z^2-2\sqrt{3}z+4)=0$ المعادلة: $(z-i)(z^2-2\sqrt{3}z+4)=0$

 $(O; \vec{u}, \vec{v})$ المستوي المركب منسوب إلى المعلم المتعامد المتجانس (2

 $z_{\,3}=i$ و $z_{\,2}=\sqrt{3}-i$ ، $z_{\,1}=\sqrt{3}+i$ الترتيب المستوي التي لاحقاتها على الترتيب B ، A و B ،

أ) أكتب العدد $\frac{z_1}{z_2}$ على الشكل الأسي.

ب) هل توجد قيم للعدد الطبيعي n يكون من أجلها العدد المركب $\left(\frac{z_1}{z_2}\right)^n$ تخيليا صرفا ؟ برتر إجابتك.

(3 أ) عين العبارة المركبة للتشابه المباشر S الذي مركزه A ويحول B إلى C، محددا نسبته وزاويته.

ب) استنج طبيعة المثلث ABC

(4) أي عين العناصر المميزة لـــ (E) مجموعة النقط M من المستوي ذات اللاحقة z والتي تحقق:

$$|z-z_1|^2+|z-z_3|^2=5$$

 $|z-z_1|=|z-z_3|$ عين (E') مجموعة النقط M من المستوي الذي لاحقتها z حيث (E') مجموعة النقط (E') عين الثاني: (04,5 نقاط)

 $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ الفضاء منسوب إلى المعلم المتعامد المتجانس

و (Δ_2) مستقیمان من الفضاء معرفان بتمثیلیهما الوسیطیین التالیین:

$$(\Delta_2): \begin{cases} x = 1 \\ y = -1 - t' & (t' \in \mathbb{R}) \\ z = 4 + 2t' \end{cases}$$

$$(\Delta_1): \begin{cases} x = 3 + 2t \\ y = -2 - 2t & (t \in \mathbb{R}) \\ z = 1 - t \end{cases}$$

 (Δ_2) و (Δ_1) عين إحداثيات النقطة B تقاطع المستقيمين إحداثيات النقطة (Δ_2)

 (Δ_2) و (Δ_1) عين تمثيلا وسيطيا للمستوي (P) المعين بالمستقيمين عين تمثيلا

(P) أثبت أن النقطة A(6;4;4) لا تتتمي إلى المستوي (2)

(P) بين أن النقطة B هي المسقط العمودي للنقطة A على المستوي (P)

B 7 R 1 4 A 1 4 B A C 2 O 1 4

له. (3) أ) عين معادلة ديكارتية للمستوي (Q) الذي يشمل النقطة A و (5;1;-7) شعاع ناظمي له.

ب) عين إحداثيات
$$C$$
 و D نقطتي تقاطع Q مع كل من Δ_1 و ر Δ_2 على الترتيب.

$$ABCD$$
 عين طبيعة المثلث BCD ، ثم أحسب حجم رباعي الوجوه (4

ACD باستنتج مساحة المثلث (ب

التمرين الثالث: (04 نقاط)

$$f\left(x\right)=x-\ln\left(x-1
ight)$$
 بي الدالة المعرفة على المجال $f\left(x\right)=x-\ln\left(x-1
ight)$ بي الدالة المعرفة على المجال $f\left(x\right)=x$

$$f(x)-x$$
 مدد حسب قیم x ، اشاره ا

$$f$$
 عين اتجاه تغير (2

$$f(x) \in [2;e+1]$$
بين أنه إذا كان $x \in [2;e+1]$ فإن (ب

$$u_{n+1}=u_n-\ln\left(u_n-1
ight)$$
 ، $\mathbb N$ من n من $u_n=e+1$ كما يلي: $u_n=e+1$ كما يلي: $u_n=u_n-\ln\left(u_n-1
ight)$ المنتالية المعرفة على $\mathbb N$ كما يلي: $u_n=u_n-1$ ومن أجل كل u_n من $u_n=u_n-1$

$$u_n \in [2;e+1]$$
 ، \mathbb{N} من n من أجل أنه من أجل أنه من أجل كل n من التراجع أنه من أجل أ

$$(u_n)$$
 أدرس اتجاء تغير المتتالية (2

3) برر تقارب المتتالية
$$(u_n)$$
، ثم أحسب نهايتها -

التمرين الرابع: (06 نقاط)

 $\left(O;\overrightarrow{i},\overrightarrow{j}\right)$ المستوي منسوب إلى المعلم المتعامد المتجانس

$$g(x) = x \ln x + x$$
 إلدالة المعرفة على المجال [3] بين $g(x) = x \ln x + x$ إلدالة المعرفة على المجال

1) أدرس تغيرات الدالة g

]0;3] في
$$\alpha$$
 نقبل حلا وحيدا α في $g(x) = 2$ في أن المعادلة 2

$$g(x)-2$$
 با استتنج إشارة

التمثيل البياني المقابل (
$$C_f$$
) هو للدالة f المعرفة على (II

$$f(x) = |x - 2| \ln x :=]0;3]$$

2 عند
$$f$$
 عند الدالة المتقاق الدالة f عند 2 عند (C_f) عند 1

- 2) أثبت صحة تخمينك.
- f أدرس تغيرات الدالم f

$$h(x) = (2 - \cos x) \ln(\cos x)$$
 كما يلي: $\left[0; \frac{\pi}{2}\right]$ كما يلي $h(x) = (2 - \cos x) \ln(\cos x)$ كما الدالة المعرفة على $h(x) = (2 - \cos x) \ln(\cos x)$

$$h$$
 بيّن أن المستقيم Δ ذو المعادلة $x=rac{\pi}{2}$ مقارب للمنحنى C_h ؛ حيث C_h) هو التمثيل البياني للدالة (1) بيّن أن المستقيم Δ

$$(C_h)$$
 و (Δ) ادرس اتجاه تغیر الداله h ، ثم شکل جدول تغیراتها وارسم

الموضوع الثاني

التمرين الأول: (04,5 نقاط)

 $z_0=1+i$ نعتبر في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس $\left(O;\vec{u},\vec{v}\right)$ النقطة A ذات اللحقة نعتبر في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس O

 \mathbb{R} و $z=z_0+2e^{i\theta}$: مجموعة النقط $M\left(z\right)$ من المستوي حيث $z=z_0+2e^{i\theta}$ و مسح (1) أي عيّن ثم أنشئ (γ) مجموعة النقط (1)

 \mathbb{R}^+ ب) عيّن ثم أنشئ (γ') مجموعة النقط $M\left(z
ight)$ من المستوي حيث: $z=z_0+ke^{i\left(rac{3\pi}{4}
ight)}$ و $z=z_0+ke^{i\left(rac{3\pi}{4}
ight)}$

 (γ') عين إحداثيات نقطة تقاطع (γ) و

 $z_1=z_0+2e^{i\left(rac{3\pi}{4}
ight)}$ ثسمي B النقطة التي لاحقتها z_1 حيث (2

OAB عين الشكل الجبري للعدد المركب $\frac{z_1-z_0}{z_0}$ ، ثم استنتج طبيعة المثلث (أ

 $-rac{\pi}{2}$ ب) عين z_2 لاحقة النقطة C صورة النقطة B بالدوران الذي مركزه A وزاويته z_2

 $\alpha+\beta=\sqrt{2}$ و $\{(A;\alpha),(C;\beta)\}$ و عين العددين الحقيقيين α و β بحيث تكون النقطة α مرجحا للجملة α

 $((1+\sqrt{2})\overline{MA}-\overline{MC}).(\overline{MA}-\overline{MC})=0$ مجموعة النقط M من المستوي حيث: (E) مجموعة النقط E

التمرين الثاني: (04,5 نقاط)

 $\left(O_{j}\vec{i},\vec{j},\vec{k}\right)$ الفضياء منسوب إلى المعلم المتعامد المتجانس

 $C\left(-1;3;4
ight)$ و $B\left(1;3;2
ight)$ ، $A\left(0;-1;1
ight)$ حيث B ، A و C تلاث نقط من الفضاء حيث B ، A

 \widehat{BAC} ، ثم استنج القيمة المدورة إلى الوحدة، بالدرجات، للزاوية أ \widehat{ABAC} ، ثم استنج القيمة المدورة إلى الوحدة، بالدرجات، للزاوية

بين أن النقط C ، B ، A تعين مستويا.

(ABC) بين أن الشعاع (2;-1;2) ناظمي للمستوي (2)

(ABC)ب أكتب معادلة ديكارتية للمستوي

 $x^2 + y^2 + z^2 - 4x + 6y - 2z + 5 = 0$ اليكن (S) سطح الكرة الذي معادلته: (S) ليكن (S)

 Ω و R مركز و نصف قطر (S) احسب R وعيّن احداثيات Ω

(ABC) والموازيين للمستويين (P_1) و (P_1) مماسي سطح الكرة (S) والموازيين للمستوي (4 لكتب معادلة ديكارتية لكل من المستويين (P_1) و (P_1) 0 مماسي سطح الكرة (S)

n و p عددان طبیعیان.

1) أدرس، حسب قيم n، بواقي القسمة الإقليدية على 16 للعدد "5

 $D_p = 5^p$ و $C_n = 16n + 9$ نضبع: (2

 $C_n = D_p$ حيث k عدد طبيعي، فإنه يوجد عدد طبيعي p = 4k + 2 أ) بين أنه إذا كان p = 4k + 2 حيث k عدد طبيعي

p=6 ب) عين n من أجل p=6

$$f(x) = 5^{(4x+2)} - 9$$
 بي: $[0; +\infty[$ المعرفة على المجال $[0; +\infty[$ المجال على الدالة المعرفة على المجال $[0; +\infty[$

f(x) أدرس تغيرات الدالة f، ثم استتنج إشارة

$$u_{n+1} = 5^4 \left(u_n + \frac{9}{16}\right) - \frac{9}{16}$$
 ، N نه n من n من $u_0 = 1$ كما يلي: $1 = 1$ كما يل: $1 = 1$ كما يلي: $1 =$

$$u_n = \frac{5^{(4n+2)} - 9}{16}$$
 ، n عدد طبیعی n ، n غدد أنه من أجل كل عدد طبیعی (أ

ب) برهن أنه من أجل كل عدد طبيعي n، فإن u_n عدد طبيعي.

 (u_n) استنتج اتجاه تغير المنتالية (5

التمرين الرابع: (06 نقاط)

 $f(x)=(x-1)e^x$ بين \mathbb{R} الدالة المعرفة على f

 $\left(O; \widetilde{i}, \widetilde{j}
ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_{f}
ight)$

 $+\infty$ عين نهاية f عند كل من ∞ و ∞

2) أدرس اتجاه تغير الدالة f على \mathbb{R} ثم شكل جدول تغيراتها.

 $1,27 < \alpha < 1,28$ أ) بين أن المعادلة f(x) = f(x) تقبل حلا وحيدا α على \mathbb{R} ، ثم تحقق أن

(
$$T$$
) عند النقطة ذات الفاصلة 1 وحدد وضعية (C_f) عماس المنحنى (C_f) عند النقطة ذات الفاصلة 1 وحدد وضعية (C_f) عند المنحنى (C_f) عند النقطة ذات الفاصلة 1 وحدد وضعية (C_f) مماس المنحنى (C_f) عند النقطة ذات الفاصلة 1 وحدد وضعية (C_f) و (C_f)

 \mathbb{R} عيّن قيم العدد الحقيقي m التي من أجلها تقبل المعادلة $e^m=-1$ عيّن قيم العدد الحقيقي واحدا في $e^x-(m-1)e^m=-1$

بياني $h(x)=(|x|+1)e^{-|x|}$ بياني \mathbb{R} بياني الدالة المعرفة على $h(x)=(|x|+1)e^{-|x|}$ بمثيلها البياني $h(x)=(|x|+1)e^{-|x|}$

أ) بين أن الدالة h زوجية.

 $\left(C_{f}
ight)$ ارسم المنحنى (C_{h}) مستعينا بالمنحنى (ب

و دالة معرفة على \mathbb{R} بي: $g(x) = (ax+b)e^x$ حيث: g(x) = b عددان حقيقيان $g'(x) = f(x) + \mathbb{R}$ من g'(x) = b ، g'(x) = b عين g'(x) = b من g'(x) = b