

Análisis de Factores

Cristian Guarnizo-Lemus cristianguarnizo@itm.edu.co

Maestria en Automatización y Control Industrial

- 1 Introducción
- Modelo de Factores OrtogonalesCalculo de matriz de pesos
- 3 Seleccionando el numero de factores
- 4 Validación del Análisis de Factores

- 1 Introducción
- Modelo de Factores OrtogonalesCalculo de matriz de pesos
- 3 Seleccionando el numero de factores
- 4 Validación del Análisis de Factores

Institución Universitario

Introducción

- En FA representamos las variables $x_1, x_2, ..., x_p$ como una combinación lineal de unas pocas variables $z_1, z_2, ..., z_m$ (m < p) llamados factores.
- Los factores son variables latentes que generan los x's.
- Si las variables originales x_1, x_2, \dots, x_p están moderadamente correlacionadas, la dimensionalidad básica del sistema es menor que p.
- El objetivo del análisis de factores es reducir la redundancia entre las variables usando un número pequeño de factores.

Introducción

Ejemplo matriz de correlación

$$\mathbf{R} = \begin{bmatrix} 1.00 & .90 & .05 & .05 & .05 \\ .90 & 1.00 & .05 & .05 & .05 \\ .05 & .05 & 1.00 & .90 & .90 \\ .05 & .05 & .90 & 1.00 & .90 \\ .05 & .05 & .90 & .90 & 1.00 \\ \end{bmatrix}$$

Diferencias con PCA

A pesar que PCA es también una técnica de reducción de dimensionalidad, existen 2 diferencias con FA

- Las componentes principales están definidas como una combinación lineal de la variables originales. En FA, las variables originales son expresadas como una combinación lineal de factores.
- En PCA, se explica un gran parte de la varianza total de la variables. En FA, buscamos cuantificar las convarianzas o correlaciones entre las variables.

Diferencias con PCA

A pesar que PCA es también una técnica de reducción de dimensionalidad, existen 2 diferencias con FA

- Las componentes principales están definidas como una combinación lineal de la variables originales. En FA, las variables originales son expresadas como una combinación lineal de factores.
- En PCA, se explica un gran parte de la varianza total de la variables. En FA, buscamos cuantificar las convarianzas o correlaciones entre las variables.

- 2 Modelo de Factores Ortogonales ■ Calculo de matriz de pesos

Factores Ortogonales

Asumimos una muestra aleatoria $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ con media $\boldsymbol{\mu}$ y matriz de covarianza $\boldsymbol{\Sigma}$. Expresamos cada variable como una combinación lineal de factores comunes z_1, z_2, \dots, z_m , acompañadas con un termino de error para la parte de las variables que es única.

$$x_1 - \mu_1 = w_{11}z_1 + w_{12}z_2 + \dots + w_{1m}z_m + \epsilon_1$$

 $x_2 - \mu_2 = w_{21}z_1 + w_{22}z_2 + \dots + w_{2m}z_m + \epsilon_2$
 \vdots
 $x_p - \mu_p = w_{p1}z_1 + w_{p2}z_2 + \dots + w_{pm}z_m + \epsilon_p$
 $\mathbf{x} - \boldsymbol{\mu} = \mathbf{W}\mathbf{z} + \boldsymbol{\epsilon}$

Factores Ortogonales

$$\mathbf{x} - \boldsymbol{\mu} = \mathbf{W}\mathbf{z} + \boldsymbol{\epsilon}$$

Adicionalmente, asumimos

$$\mathbb{E}[\mathbf{z}] = \mathbf{0}, \; \mathsf{cov}(\mathbf{z}) = \mathbf{I}, \; \mathbb{E}[\pmb{\epsilon}] = \mathbf{0},$$

У

Institución Universitaria

$$\mathsf{cov}(oldsymbol{\epsilon}) = oldsymbol{\Psi} = \left[egin{array}{cccc} \psi_1 & 0 & \cdots & 0 \ 0 & \psi_2 & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & \psi_n, \end{array}
ight]$$

y $cov(\mathbf{z}, \boldsymbol{\epsilon}) = \mathbf{0}$. Prácticamente

$$\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{\Psi}), \ \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

Factores Ortogonales

Recordando que

$$\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}, \ \mathbf{y} \ \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Psi}), \ \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

Calculamos el modelo probabilístico de x así

$$\begin{split} \mathbb{E}[\mathbf{x}] &= \mathbb{E}[\mathsf{W}\mathbf{z}] + \mathbb{E}[\boldsymbol{\mu}] + \mathbb{E}[\boldsymbol{\epsilon}], \\ \mathsf{cov}(\mathbf{x}) &= \mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^\top] \\ &= \mathbb{E}[(\mathsf{W}\mathbf{z} + \boldsymbol{\epsilon})(\mathsf{W}\mathbf{z} + \boldsymbol{\epsilon})^\top] \\ &= \mathbb{E}[\mathsf{W}\mathbf{z}\mathbf{z}^\top\mathsf{W}^\top] + \mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^\top] \\ &= \mathsf{W}\mathbb{E}[\mathbf{z}\mathbf{z}^\top]\mathsf{W}^\top + \mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^\top] \\ &= \mathsf{W}\mathbf{i}\mathsf{W}^\top + \boldsymbol{\Psi} \\ \mathbf{\Sigma} &= \mathsf{W}\mathbf{W}^\top + \boldsymbol{\Psi} \end{split}$$

Análisis de términos

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top} + \mathbf{\Psi}), \ \mathbf{y} \ \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Psi}), \ \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

$$\operatorname{\mathsf{cov}}(x_i, x_i) = \mathbf{w}_{i:} \mathbf{w}_{i:}^\top + \psi_i = \sum_{k=1}^m w_{ik}^2 + \psi_i$$

$$\operatorname{cov}(x_i, x_j) = \mathbf{w}_{i:} \mathbf{w}_{j:}^{\top} = \sum_{k=1}^{m} w_{ik} w_{jk}$$

- 2 Modelo de Factores Ortogonales ■ Calculo de matriz de pesos

Calculo de matriz de pesos- EM

No se puede determinar \mathbf{W} de manera cerrada usando máxima verosimilitud. Pero la podemos calcular de manera iterativa empleando el algoritmo EM, del cual obtenemos los siguientes paso

Paso E:

$$\begin{split} \mathbb{E}[\boldsymbol{z}_{n}] &= \boldsymbol{G}\boldsymbol{W}^{\top}\boldsymbol{\Psi}^{-1}(\boldsymbol{x}_{n} - \boldsymbol{\mu}) \\ \mathbb{E}[\boldsymbol{z}_{n}\boldsymbol{z}_{n}^{\top}] &= \boldsymbol{G} + \mathbb{E}[\boldsymbol{z}_{n}]\mathbb{E}[\boldsymbol{z}_{n}]^{\top} \end{split}$$

con
$$\mathbf{G} = (\mathbf{I} + \mathbf{W}^{\mathsf{T}} \mathbf{\Psi}^{-1} \mathbf{W})^{-1}$$
.

■ Paso M:

$$\mathbf{W}^{\text{new}} = \left[\sum_{n=1}^{N} (\mathbf{x}_{n} - \boldsymbol{\mu}) \mathbb{E} \left[\mathbf{z}_{n}\right]^{\top}\right] \left[\sum_{n=1}^{N} \mathbb{E} \left[\mathbf{z}_{n} \mathbf{z}_{n}^{\top}\right]\right]^{-1}$$

$$\mathbf{\Psi}^{\text{new}} = \text{diag} \left\{\mathbf{S} - \mathbf{W}^{\text{new}} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[\mathbf{z}_{n}\right] (\mathbf{x}_{n} - \boldsymbol{\mu})^{\top}\right\}$$

Institución Universitario

Calculo de matriz de pesos-PC

■ De la muestra aleatoria $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ se obtiene la matriz de covarianza muestral \mathbf{S} e intentamos encontrar un estimador de $\hat{\mathbf{W}}$ que aproxime

$$\mathbf{S} \approx \hat{\mathbf{W}}\hat{\mathbf{W}}^\top + \hat{\boldsymbol{\Psi}}.$$

■ En este método, olvidamos $\hat{\Psi}$, entonces $\mathbf{S} = \hat{\mathbf{W}}\hat{\mathbf{W}}^{\top}$. Para factorizar \mathbf{S} empleamos SVD

$$\mathbf{S} = \mathbf{U}\mathbf{D}\mathbf{U}^{\top},$$

donde **U** es una matriz ortogonal construida con los vectores propios normalizados y **D** es una matriz diagonal con valores propios $\lambda_1, \lambda_2, \dots, \lambda_p$ de **S**.

• Se aproxima la matriz $\hat{\mathbf{W}} = \mathbf{U}\mathbf{D}^{1/2}$.

Calculo de matriz de pesos-PC

$$\begin{bmatrix} \hat{w}_{11} & \hat{w}_{12} \\ \hat{w}_{21} & \hat{w}_{22} \\ \hat{w}_{31} & \hat{w}_{32} \\ \hat{w}_{41} & \hat{w}_{42} \\ \hat{w}_{51} & \hat{w}_{52} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \\ u_{31} & u_{32} \\ u_{41} & u_{42} \\ u_{51} & u_{52} \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{bmatrix} = = \begin{bmatrix} \sqrt{\lambda_1} u_{11} & \sqrt{\lambda_2} u_{12} \\ \sqrt{\lambda_1} u_{21} & \sqrt{\lambda_2} u_{22} \\ \sqrt{\lambda_1} u_{31} & \sqrt{\lambda_2} u_{32} \\ \sqrt{\lambda_1} u_{41} & \sqrt{\lambda_2} u_{42} \\ \sqrt{\lambda_1} u_{51} & \sqrt{\lambda_2} u_{52} \end{bmatrix}$$

Calculo de matriz de pesos- PC PF - Ejemplo

Variables	Principal Component Loadings		Principal Factor Loadings		
		<i>Z</i> ₂	<i>Z</i> ₁	<i>Z</i> ₂	Communalities
Kind	.969	231	.981	210	.995
Intelligent	.519	.807	.487	.774	.837
Нарру	.785	587	.771	544	.881
Likeable	.971	210	.982	188	.995
Just Variance	.704	.667	.667	.648	.837
accounted for Proportion	3.263	1.538	3.202	1.395	
of total variance Cumulative	.653	.308	.704	.307	
proportion	.653	.960	.704	1.01	

- Calculo de matriz de pesos
- Seleccionando el numero de factores

Seleccionando el numero de factores

- Seleccione *m* igual al numero de factores necesarios para describir una varianza predeterminada (80%) del total de la varianza tr(**S**).
- Seleccione *m* igual al numero de valores propios mayor que su promedio.
- Usa el test scree o "scree plot" (L curva) basado en el gráfico de los valores propios de S o R. Si la gráfica baja abruptamente, seguida de una linea recta con una pendiente pequeña, seleccione *m* igual al numero de valores propios antes de comenzar la linea recta.
- Pruebe la hipótesis que m es el numero correcto de factores (sobre EM), $H_0: \mathbf{\Sigma} = \mathbf{W}\mathbf{W}^\top + \mathbf{\Psi}$.

$$\left(n - \frac{2p + 4m + 11}{6}\right) \ln \left(\frac{\left|\hat{\mathbf{W}}\hat{\mathbf{W}}^{\top} + \hat{\mathbf{\Psi}}\right|}{|\mathbf{S}|}\right) \sim \chi_{\nu}^{2}, \ \nu = \frac{1}{2}[(p - m)^{2} - p - m].$$

- 1 Introducción
- Modelo de Factores OrtogonalesCalculo de matriz de pesos
- 3 Seleccionando el numero de factores
- 4 Validación del Análisis de Factores

Validación del Análisis de Factores

- Para muchos estadistas, FA es controversial y no pertenece a una técnica multivariada legitima.
- Las razones son: la dificultad para seleccionar *m*, la variedad de métodos para extraer los factores, muchas técnicas rotaciones, y la subjetividada en interpretación.

Referencias

- Alvin C. Rencher. "Methods of Multivariate Analysis", 2002. Capitulo 13.
- C. Bishop. "Pattern Recognition and Machine Learning", 2006. Sección 12.2.4.
- W. K. Härdle and L. Simar. "Applied Multivariate Statistical Analysis", 2019. Capitulo 12.

