Brownian Motion

Problem sheet 3

1. Continuity of paths

(a) Let $(X_t)_{t\geq 0}$ be a stochastic process that satisfies the assumptions of Kolmogorov's continuity criterion:

$$\mathbb{E}|X_t - X_s|^{\alpha} \leqslant C|t - s|^{1+\beta} , \quad \forall t, s \in [0, T] ,$$

for some $\alpha, \beta, T, C > 0$. Prove that the process is continuous in probability (without using Kolmogorov's theorem), namely that

$$\lim_{t \to t_0} \mathbb{P}(|X_t - X_{t_0}| \geqslant \varepsilon) = 0 , \quad \forall t_0 \in (0, T) \text{ and } \varepsilon > 0 .$$

(b) Prove (this time using Kolmogorov's continuity criterion) that sample paths of Brownian motion are almost surely γ -Hölder continuous for any $\gamma \in (0, 1/2)$, namely that:

$$\mathbb{P}\left(\sup_{0 \le s \le t \le T} \frac{|B_t - B_s|}{|t - s|^{\gamma}} < \infty\right) = 1, \quad \forall \gamma \in (0, 1/2).$$

(c) (No points) In the setting of point (a), prove that if $\beta < \alpha$, then

$$\mathbb{P}\left(X_{t}=X_{0},\forall t\geqslant0\right)=1$$
.

2. Geometric Brownian Motion

Let $(B(t):t\geq 0)$ be a standard BM and define $X(t):=e^{B(t)-at}$ for all $t\geq 0$ and $a\in\mathbb{R}$.

- (a) For which $a \in \mathbb{R}$ do we have $X(t) \to 0$ almost surely as $t \to \infty$? For which $a \in \mathbb{R}$ do we have $X(t) \to \infty$ almost surely? Justify your answers.
- (b) For which $a \in \mathbb{R}$ and p > 0 do we have $\mathbb{E}[X(t)^p] \to 0$ as $t \to \infty$? For which $a \in \mathbb{R}$ and p > 0 do we have $\mathbb{E}[X(t)^p] \to \infty$? Justify your answers.
- (c) Fix p = 1, then for which a do we have $\mathbb{E}[X_t] = 1$ for all $t \ge 0$? Let $(\mathcal{F}_t^0)_{t \ge 0}$ be the natural filtration generated by X_t . Can you prove that X_t is a martingale, namely that the following holds true:

$$X_t \in L^1$$
, and $\mathbb{E}[X_t | \mathcal{F}_s^0] = X_s$, $\forall t \geqslant s \geqslant 0$,?

Hint: What can you sat about the limit $\lim_{t\to\infty} \frac{1}{t}B_t$ as $t\to\infty$?

3. Integrated Brownian motion

Let $(B(t): t \ge 0)$ be a standard BM and define $X(t) := \int_0^t B(s) ds$ for all $t \ge 0$.

1

- (a) Prove that $(X(t): t \ge 0)$ is a Gaussian process. Hint: For a fixed realisation $B_t(\omega)$ use the Riemann sum approximation of the time integral and a question from the previous exercise sheet.
- (b) Compute the mean and covariance functions of $(X(t): t \ge 0)$.
- (c) Compute $\mathbb{E}[(X(t) X(s))^2]$, and compare its rate of decay as $t \searrow s$ with that of $\mathbb{E}[(B(t) B(s))^2]$.

4. Tightness and continuity

Suppose that a sequence of probability measures $\{\mathbb{P}_n\}_{n\in\mathbb{N}}$ on C([0,1]) satisfies for some $\alpha,\beta,\gamma,C>0$

$$\sup_{n \in \mathbb{N}} \mathbb{E}_n |\omega_0|^{\zeta} < \infty ,$$

$$\sup_{n \in \mathbb{N}} \mathbb{E}_n |\omega_t - \omega_s|^{\alpha} \leqslant C |t - s|^{1 + \beta} , \qquad \forall t, s \in [0, 1] .$$

Then the sequence of probability measures $\{\mathbb{P}_n\}_{n\in\mathbb{N}}$ is tight.

Hint: Follow the steps of the proof of Komogorov's continuity criterion.

5. Transition kernels

Suppose B is a standard BM on \mathbb{R} . Suppose $x, c \in \mathbb{R}$, $c \neq 0$. Show that the following processes are time-homogeneous Markov and find their transition kernels P(t, x, dy):

(a)
$$X(t) := x + cB(t)$$
; (b) $X(t) := B(t)^2$.