Sentiment Analysis on Trip Advisor Hotel Reviews

Done by: Walid El Kassem

1. Collecting data

- The data is taken from **Kaggle** .
- It consists of two columns (Review, Ratings) and 20491 rows

	Review	Rating
0	nice hotel expensive parking got good deal stay hotel anniversary, arrived late evening took adv	4
1	ok nothing special charge diamond member hilton decided chain shot 20th anniversary seattle, sta	2
2	nice rooms not 4* experience hotel monaco seattle good hotel n't 4* level positives large bathro	3
3	unique, great stay, wonderful time hotel monaco, location excellent short stroll main downtown s	5
4	great stay great stay, went seahawk game awesome, downfall view building did n't complain, room	5
	502	
20486	best kept secret 3rd time staying charm, not 5-star ca n't beat, time stayed increased esteem, b	5
20487	great location price view hotel great quick place sights directly street space needle downtown t	4
20488	ok just looks nice modern outside, desk staff n't particularly friendly, corridors dark smelt st	2
20489	hotel theft ruined vacation hotel opened sept 17 2007 guests week, happy stumble scouting hotels	1
20490	people talking, ca n't believe excellent ratings hotel, just n't, yes patricia extremely helpful	2

2. Data Analysis

- no missing entries
- no duplicates
- unbalanced distrubtion of ratings:

Rating	Counts
5	9054
4	6039
3	2184
2	1793
1	1421

3. Create new labels and balance the dataset

• Reduce the number of labels into 3: Positive, Negative & Neutral

Labels > 3 are Positive

Labels = 3 are Neutral

Labels < 3 are Negative

Balanced dataset:

Labels	Counts
Positive	3214
Negative	3214
Neutral	2184

4. Cleaning Data

- Step 1. lower case
- Step 2. remove html and urls
- Step 3. remove emojis
- Step 4. remove non–ascii characters
- Step 5. remove punctuation
- Step 7. remove numbers
- Step 8. remove stopwords
- Step 9. lemmatization with spacy
- Step 10. Stemming with Spacy

Before	After
Perfect !!!	perfect love old hotels my husband children full satisfied

5. Train & Test the Models

• use TF-IDF to convert the reviews into vectors

Create 7 Models & use the **Cross-Validation** technique

Model	Accuracy
1. Decesion Tree Classifier	55.04 %
2. Random Forest Classifier	68.93 %
3. Support Vector Classifier	74.78 %
4. Logistic Regression	74.78%
5. KNeighbors Classifier	57.45 %
6. BernoulliNB	67.77 %
7. Gaussian Naive Bayes	60.27 %

6. Use **Spacy** for word embeddings

• use **Spacy** to convert the reviews into vectors

Create 7 Models:

Model	Accuracy
1. Decesion Tree Classifier	49.61 %
2. Random Forest Classifier	64.86 %
3. Support Vector Classifier	70.47 %
4. Logistic Regression	57.85 %
5. KNeighbors Classifier	72.17 %
6. BernoulliNB	59.48 %
7. Gaussian Naive Bayes	60.10 %

7. Keras (Deep-Learning-Library)

- Universal-Sentence-Encoder-Transformer from Tensorflow (Google)
- 3 layers:

```
1st. 256 neurons
```

2nd. 128 neurons

3rd. 3 neurons

activation function : sigmoid

• Accuracy: 66.80 %

Conclusion

Yes !!!

we can analyse the sentiment of the customers using the Logistic-Regression Model