Шпаргалка по нейронным сетям / Концепции

Cheatsheet (XeLaTeX)

Краткий справочник April 6, 2025

Contents

VI. I	Введение в Нейронные Сети (NN)	:
1.1	VI.А Базовые Структуры: Нейроны и Слои	
1.2	VI.В Функции Активации: Нелинейность и Свойства	
	VI.C Backpropagation: Как Сеть Учится	
1.4	VI.D Оптимизаторы: Обновление Весов	
1.5	VI.Е Стабилизация и Регуляризация Обучения	
1.6	VI.F Специализированные Архитектуры	

1 VI. Введение в Нейронные Сети (NN)

Цель раздела

Понять базовые компоненты нейронных сетей (нейроны, слои, функции активации), основной механизм обучения (Backpropagation) и методы его улучшения (оптимизаторы, регуляризация). Заложить основу для понимания сверточных и рекуррентных сетей.

1.1 VI.А Базовые Структуры: Нейроны и Слои

Искусственный Нейрон: Вычислительный Элемент

Что это: Математическая модель, имитирующая работу биологического нейрона. Как работает:

- 1. Принимает входы (x_i) .
- 2. Умножает каждый вход на его **вес** $(w_i) \rightarrow w_i x_i$.
- 3. Суммирует взвешенные входы $\rightarrow z_{sum} = \sum_i w_i x_i$.
- 4. Добавляет **смещение** (b) $\to z = z_{sum} + b$.
- 5. Пропускает результат z через функцию активации $f(\cdot) \to y = f(z)$ (выход нейрона).

Обучаемые параметры: Веса w_i и смещение b.

Многослойный Перцептрон (MLP): Архитектура

Что это: Классическая нейросеть из нескольких слоев нейронов. Слои:

- **Входной (Input):** Принимает признаки X. Не содержит вычислительных нейронов.
- Скрытые (Hidden): Один или более. Здесь происходит основная обработка, извлечение паттернов.
- Выходной (Output): Формирует результат. Структура зависит от задачи (1 нейрон/линейная для регрессии, 1 нейрон/сигмоида для бинарной

клас., N нейронов/Softmax для многоклассовой)

Связи: Обычно полносвязные (Dense) — каждый нейрон слоя связан с каждым нейроном следующего.

1.2 VI.В Функции Активации: Нелинейность и Свойства

Зачем нужна Нелинейность?

Без нелинейных функций активации в скрытых слоях вся сеть была бы эквивалентна простой линейной модели. Нелинейность позволяет изучать сложные зависимости.

ReLU (Rectified Linear Unit)

$$f(x) = \max(0, x)$$

Свойства: Вычислительно проста. Не насыщается для x > 0 (помогает с затуханием градиента). **Недостаток:** "Умирающие ReLU" (нейрон перестает активироваться и обучаться, если x всегда ≤ 0). Использование: Стандартный выбор для скрытых слоев.

Leaky ReLU

$$f(x) = \begin{cases} x & \text{if } x > 0\\ \alpha x & \text{if } x \le 0 \end{cases} \quad (\alpha \approx 0.01 - 0.2)$$

Свойства: Решает проблему "умирающих ReLU", давая малый ненулевой градиент при x < 0.

ELU (Exponential Linear Unit)

$$f(x) = \begin{cases} x & \text{if } x > 0\\ \alpha(e^x - 1) & \text{if } x < 0 \end{cases} \quad (\alpha > 0)$$

Свойства: Похожа на Leaky ReLU, но использует экспоненту. Может давать лучшие результаты, чем ReLU/Leaky ReLU. Выход для x < 0 отрицательный.

Sigmoid (Сигмоида)

$$f(x) = \frac{1}{1 + e^{-x}}$$

Свойства: Выход [0, 1], удобен для вероятностей. Недостатки: Затухание градиентов. Выход не центрирован около нуля. Использование: Выходной слой бинарной классификации. Редко в скрытых слоях современных сетей.

Tanh (Гиперболический тангенс)

$$f(x) = \tanh(x)$$

Свойства: Выход [-1, 1], центрирован около нуля (лучше Sigmoid для скрытых слоев). **Недостатки:** Затухание градиентов (хотя меньше, чем у Sigmoid). Использование: Иногда в скрытых слоях, часто в RNN/LSTM.

Softmax

$$f(x_i) = \frac{e^{x_i}}{\sum_{i} e^{x_i}}$$

Преобразует вектор логитов в распределение вероятностей (сумма=1). Использование: Только в выходном слое для многоклассовой классификации.

ReLU

Tanh

- Siamoid

Графики популярных функций активации

Функции активации

Проблема Затухания/Взрыва Градиентов

Проблема: При обучении глубоких сетей градиенты могут стать исчезающе малыми (затухание) или аномально большими (взрыв). Последствия: Замедление или остановка обучения (затухание), нестабильность (взрыв). Решения: Выбор активаций (ReLU и др.), правильная инициализация весов, Batch Normalization, обрезание градиентов (для взрыва).

1.3 VI.C Backpropagation: Как Сеть Учится

Backpropagation: Ключевой Алгоритм Обучения

Цель: Эффективно вычислить **градиенты** функции потерь J по всем обучаемым параметрам (w,b). Градиент $\partial J/\partial w$ показывает, как сильно изменение веса wповлияет на итоговую ошибку J.

Этап 1: Прямой Проход (Forward Pass)

Что происходит: Данные X проходят через сеть слой за слоем от входа к выходу. На каждом слое вычисляются взвешенные суммы (z) и активации (a). Получаем итоговые предсказания \hat{y} . **Результат:** Предсказания \hat{y} и значения активаций a на всех слоях (они понадобятся для обратного прохода). **Затем:** Вычисляется функция потерь $J(\hat{y}, y)$, измеряющая ошибку предсказания.

Этап 2: Обратный Проход (Backward Pass)

Что происходит: "Ошибка" J распространяется обратно от выхода ко входу. На каждом слое вычисляются градиенты по параметрам этого слоя и по его входам (активациям предыдущего слоя). Шаги (идем от слоя L к слою 1):

1. Слой L (Выходной):

- Вычисляем $\partial J/\partial a_L$ (как ошибка зависит от выхода сети).
- Вычисляем $\partial J/\partial z_L=(\partial J/\partial a_L)\odot f'_L(z_L)$. (Пояснение: Насколько ошибка зависит от пред-активационного значения z_L ? Зависит от того, как она зависит от a_L и как a_L меняется с z_L (это f'_L). \odot поэлементное умножение.).
- Вычисляем $\partial J/\partial W_L=(\partial J/\partial z_L)\cdot a_{L-1}^T$ и $\partial J/\partial b_L=\sum (\partial J/\partial z_L)$. (Пояснение: Зная, как z_L влияет на ошибку, и зная, как W_L , b_L влияют на z_L (через вход a_{L-1}), находим градиенты для параметров.).

2. Слой l (Скрытый):

- Вычисляем $\partial J/\partial a_l = W_{l+1}^T \cdot (\partial J/\partial z_{l+1})$. (Пояснение: Ошибка "приходит" из следующего слоя l+1. Насколько она зависит от выхода a_l этого слоя? Зависит от того, как ошибка зависит от z_{l+1} и как z_{l+1} зависит от a_l (через веса W_{l+1})).
- Вычисляем $\partial J/\partial z_l=(\partial J/\partial a_l)\odot f_l'(z_l).$ (Аналогично выходному слою).
- Вычисляем $\partial J/\partial W_l=(\partial J/\partial z_l)\cdot a_{l-1}^T$ и $\partial J/\partial b_l=\sum (\partial J/\partial z_l)$. (Аналогично выходному слою).
- 3. Повторение: Шаги для скрытого слоя повторяются до слоя 1.

Результат: Градиенты $\partial J/\partial W_l$ и $\partial J/\partial b_l$ для всех слоев l. **Механизм:** Эффективное применение **цепного правила (chain rule)** дифференцирования.

1.4 VI.D Оптимизаторы: Обновление Весов

Роль Оптимизатора

Использует градиенты, полученные от Backpropagation, для вычисления и применения обновлений к весам ${\bf w}$ и смещениям ${\bf b}$, чтобы минимизировать функцию потерь J.

SGD (Stochastic Gradient Descent)

Идея: Простой шаг в направлении анти-градиента, вычисленного по батчу. **Формула:** $\mathbf{w} := \mathbf{w} - \alpha \cdot \nabla J(\mathbf{w})$. **Параметр:** Learning rate α .

Momentum

Идея: Добавить "инерцию" к SGD. Учитывает предыдущий шаг обновления v. **Формула:** $v_t = \beta v_{t-1} + \alpha \nabla J(\mathbf{w}); \mathbf{w} := \mathbf{w} - v_t$. **Параметры:** α , β (момент, обычно 0.9). **Польза:** Ускоряет сходимость, помогает преодолевать плато.

AdaGrad (Adaptive Gradient)

Идея: Адаптивный learning rate для каждого параметра. Уменьшает шаг для часто обновляемых параметров. **Формула:** Накапливает квадрат градиента $G;\ \Delta w_i\ =\ \frac{\alpha}{\sqrt{G_{ii}+\epsilon}} \nabla J_i(w).$ **Польза:** Хорош для разреженных данных.

Недостаток: Learning rate может слишком быстро затухнуть.

RMSProp

Идея: Исправить проблему AdaGrad с затуханием шага. Использует скользящее среднее квадратов градиентов $E[g^2]$. **Формула:** $E[g^2]_t = \gamma E[g^2]_{t-1} + (1-\gamma)(\nabla J)^2;$ $\Delta w = \frac{\alpha}{\sqrt{E[g^2]_t + \epsilon}} \nabla J(w)$. **Параметры:** α, γ (коэфф. затухания, 0.9).

Adam (Adaptive Moment Estimation)

Идея: Сочетает Momentum (скользящее среднее градиентов m) и RMSProp (скользящее среднее квадратов градиентов v). **Формула:** Использует m и v для вычисления адаптивного шага. Включает коррекцию смещения. **Польза:** Часто эффективен по умолчанию, хорошо работает на широком круге задач. **Параметры:** α , β_1 (0.9), β_2 (0.999).

1.5 VI.E Стабилизация и Регуляризация Обучения

Dropout (Прореживание)

Что это: Метод **регуляризации** для борьбы с переобучением. **Как работает** (на обучении): Случайным образом обнуляет выходы части нейронов слоя с вероятностью p. **Как работает** (на предсказании): Использует все нейроны, но масштабирует их выходы на (1-p). **Эффект:** Заставляет сеть учить более робастные и распределенные представления.

Batch Normalization (BatchNorm)

Что это: Техника для **стабилизации и ускорения** обучения. **Как работает (на обучении):**

- 1. Нормализует входы z слоя по батчу (среднее 0, дисперсия 1).
- 2. Масштабирует и сдвигает результат с помощью обучаемых γ и β .
- 3. Обновляет скользящие средние μ_{run} , σ_{run}^2 .

Как работает (на предсказании): Использует $\mu_{run}, \sigma_{run}^2$ и обученные γ, β . Эффект: Борется с internal covariate shift, позволяет использовать больший learning rate, имеет легкий регуляризующий эффект. Обычно вставляется ∂o функции активации.

1.6 VI.F Специализированные Архитектуры

Зачем нужны специализированные сети?

MLP универсальны, но для данных с внутренней структурой (пространственной или временной) CNN и RNN часто более эффективны.

CNN (Convolutional Neural Networks)

Применение: Изображения, видео, данные с сетчатой структурой. **Ключевые Идеи:**

- **Сверточный слой:** Применяет фильтры (ядра) для обнаружения локальных паттернов (грани, текстуры). Использует локальные связи и разделяемые веса. Выход карты признаков.
- Пулинг слой: Уменьшает пространственный размер карт признаков (Max Pooling, Average Pooling), обеспечивая инвариантность к малым сдвигам.

Архитектура: Чередование [Conv -> Activation -> Pooling]. Затем полносвязные слои для классификации/perpeccuu.

RNN (Recurrent Neural Networks)

Применение: Последовательные данные (текст, временные ряды, речь). Ключевая Идея: Рекуррентная связь позволяет сети иметь "память" (скрытое состояние h_t), передаваемую от шага к шагу. Простая RNN: $h_t=f(W_xhx_t+W_hhh_{t-1}+b_h)$. Веса W разделяемые по времени. Проблема: Затухание/взрыв градиентов на длинных последовательностях (ВРТТ).

LSTM (Long Short-Term Memory) и GRU (Gated Recurrent Unit)

Что это: Продвинутые RNN-ячейки для решения проблемы градиентов. Как работают: Используют гейты (механизмы управления информацией с Sigmoid/Tanh), чтобы контролировать, что запоминать, что забывать, и что передавать дальше. LSTM: Имеет 3 гейта (input, forget, output) и состояние ячейки (cell state). GRU: Упрощенная версия с 2 гейтами (reset, update). Использование: Стандарт де-факто для задач с последовательностями вместо простых RNN.