블루투스 클래스 2 시리얼 모듈

Parani-BCD210

제품 데이터쉬트

버전 1.0.0 2012/06/19

()

저작권

Copyright 2008~2012, 세나테크놀로지. All rights reserved.

세나테크놀로지는 자사 제품을 예고 없이 변경 및 개선할 수 있는 권리를 가지고 있습니다.

등록상표

Parani™ 는 세나테크놀로지의 등록 상표입니다.

Windows®는 Microsoft Corporation의 등록 상표입니다.

Ethernet®은 XEROX Corporation의 등록 상표입니다.

Bluetooth® Bluetooth SIG (Special Interest Group)의 등록 상표입니다.

사용자 고지

시스템 고장이 심각한 결과를 유발하는 응용 분야인 경우, 백업 시스템이나 안전 장치를 사용하여 심각한 결과로부터 인명 및 재산을 보호하는 것이 필요합니다. 시스템 고장으로 인한 결과에 대한 보호는 사용자 책임입니다.

예방과 안전

제품을 떨어뜨리지 말고 습하거나 먼지가 많은 환경에서 사용하지 마시기 바랍니다. 무리한 힘으로 버튼을 누르거나 제품을 분해하지 마시고 무거운 물건을 제품 위에 올려놓지 마십시오.

기술지원

㈜칩센

경기도 광명시 소하동 1345 광명테크노파크 E동 510호

전화: 1599-6005 팩스: (02)2083-2288

메일: support@chipsen.com

홈페이지: http://www.chipsen.com

목차

1.	개요	4
	1.1 특징	4
	1.2 적용분야	4
	1.3 블럭 다이어그램	5
	1.4 핀 배치도	5
	1.5 핀 설명	6
	1.6 PCB 치수	8
	1.7 권장 랜드 패턴	. 10
	1.8 권장 보드 배치	. 10
2.	전기적 특성	11
	2.1 절대적 한계치	11
	2.2 권장 동작 범위	11
	2.3 전력 소모	11
3.	RF 특성	. 12
	3.1 Basic Data Rate	. 12
	3.1.1 송신부 성능	. 12
	3.1.2 송신부	. 12
	3.1.3 수신부 성능	. 12
	3.2 Enhanced Data Rate	. 13
	3.2.1 송신부 성능	. 13
	3.2.2 수신부 성능	. 14
4.	장비 입출력 설명	. 15
	4.1 UART 인터페이스	. 15
	4.2 USB 인터페이스	. 15
	4.3 I2C 인터페이스	. 16
	4.4 PCM CODEC 인터페이스	. 16
	4.5 I/O 병렬 포트 (I/O Parallel Ports)	. 17
	4.6 리셋 인터페이스 (Reset Interface)	. 17
5.	응용 회로도 (Application Schematic)	. 18
	소프트웨어 스택	
7.	납땜 프로파일 (Solder Profiles)	. 22
8.	패키징 정보	. 23
9.	인증정보	. 24
	9.1 FCC	. 24
	9.2 CE	. 24
	9.3 IC	
	9.4 KC	
	9.5 TELEC	. 25
	9.6.SIG	25

1. 개요

Parani-BCD210은 블루투스 클래스 2 기능을 신속하고 효과적인 비용으로 OEM 제품에 구현하고자 하는 OEM 제조업체들을 위한 블루투스 클래스 2 OEM 모듈입니다. OEM 제조업체는 BCD210을 이용하고 자체적인 안테나 회로를 설계하여 낮은 제품 단가를 달성하면서, 실제 환경에서 성능이 입증된 SPP (Serial Port Profile) 시리얼 포트 프로파일 펌웨어를 추가 비용없이 사용하여 전체 개발 기간을 효과적으로 단축 시킬 수 있습니다.

BCD210은 클래스 2 블루투스 출력을 지원하여 통상적으로 30m ~ 100m의 도달거리를 지원하는 통신환경을 지원합니다. 또한 BCD210은 OEM제품과의 통신을 위하여 UART, USB, I2C, PCM, PIO 통신방식을 지원합니다.

BCD210은 블루투스 v.2.0 스펙을 만족하는 SPP 펌웨어를 기본적으로 내장합니다. 이 SPP펌웨어는 OEM 제조업체가 별도의 변경 없이 실제 사용 환경에서 바로 사용이 가능하여 POS (Point-of-sales), 산업자동화, 원격검침 및 기타 다양한 용도로 바로 사용이 가능합니다. 또는 PC용 블루투스 USB 동글과같이 전체 블루투스 스택이 외부에서 동작하는 사용 용도 또는 OEM 제조업체의 커스텀 펌웨어를 내장시키기위한 용도로 사용자가 요구할 경우 BCD210의 펌웨어는 HCI 블루투스 스택까지만 지원하는 펌웨어를 내장시키는 것 또한 가능합니다.

BCD210은 블루투스 v.2.0+EDR 스펙을 완전히 만족시키도록 설계되어 블루투스 인증을 받았으므로 OEM 제조업체들이 BCD210을 이용하여 제품을 설계하면 추가 인증 비용 및 시간을 절약할수 있습니다. 따라서 BCD210은 보다 저렴한 제조원가가 요구되어지나 동시에 신속한 제품 개발 기간이 필요한 용도에 이상적으로 사용되어질 수 있습니다.

1.1 특징

- 블루투스 클래스 2
- 블루투스 v2.0+EDR 사양 완벽 호환 및 인증
- 최대 출력: +4dBm
- 수신 감도: -84dBm (0.1% BER)
- 크기: DIP 타입 16.8 x 28x 8.0mm (쉴드캔 포함)
- SMD 타입 14.8 x 28 x 3.0mm (쉴드캔 포함)
- 동작 온도 범위: -40°C ~ +85°C
- 다양한 내/외장형 안테나 지원
- 내장형 8Mbit 플래쉬 메모리
- USB, Dual UART, I2C, PCM, PIO 인터페이스
- 802.11 공존
- 실사용 환경에서 검증된 SPP (Serial Port Profile) 펌웨어
- RoHS 인증

1.2 적용분야

- 장거리 고속 데이터 통신
- 컴퓨터/PDA
- 블루투스 USB 동글
- 블루투스 시리얼 동글
- 블루투스 액세스 포인트
- 산업 자동화 장비
- 원격 검침 장비
- POS (Point-of-sales) 장비

1.3 블럭 다이어그램

SENA

Bluetooth Serial Module II Model: Parani-BCD210

1.4 핀 배치도

1.5 핀 설명

Function	Pin Name	Pin Number	Description
HED	USB_DP	11	USB data plus
USB	USB_DN	10	USB data minus
	UART_TXD	8	UART data output
HADT	UART_RXD	7	UART data input
UART	UART_RTS	6	UART request to send active low
	UART_CTS	9	UART clear to send active low
	PCM_OUT	15	Synchronous data output
PCM	PCM_IN	12	Synchronous data input
PCIVI	PCM_SYNC	13	Synchronous data sync
	PCM_CLK	14	Synchronous data clock
	SPI_MISO	20	SPI data output
CDI	SPI_MOSI	23	SPI data input
SPI	SPI_CSB	22	Chip select for SPI, active low
	SPI_CLK	21	SPI clock
	PIO_0	35	Programmable input/output line
	PIO_1	34	Programmable input/output line
	PIO_2	29	Programmable input/output line
	PIO_3	28	Programmable input/output line
	PIO_4	24	Programmable input/output line
DIO	PIO_5	25	Programmable input/output line
PIO	PIO_6	26	Programmable input/output line
	PIO_7	27	Programmable input/output line
	PIO_8	30	Programmable input/output line
	PIO_9	31	Programmable input/output line
	PIO_10	32	Programmable input/output line
	PIO_11	33	Programmable input/output line
AIO	AIO_0	4	Analogue programmable input/output line
AIO	AIO_1	5	Analogue programmable input/output line
Dawar	+3V3	16	Power supply for system, 3.3V
Power	GND	1,2,17,19,36	Ground
Othoro	RESETB	18	Reset, active low, > 5ms to cause a reset
Others	NC	3	NC

Table 1-1 Pin descriptions

F	Din Name	STATE		
Function	Pin Name	Define (SPP)	Direction	Pull-up/down
USB	USB_DP	-	Input	Weak pull-up
	USB_DN	-	Input	Weak pull-up
	UART_TXD	UART_TXD	Output	Tri-stated with weak pull-up
HART	UART_RXD	UART_RXD	Input	Weak pull-down
UART	UART_RTS	UART_RTS	Output	Tri-stated with weak pull-up
	UART_CTS	UART_CTS	Input	Weak pull-down
	PCM_OUT	-	Output	Tri-stated with weak pull-down
DCM	PCM_IN	-	Input	Weak pull-down
PCM	PCM_SYNC	-	Input	Weak pull-down
	PCM_CLK	-	Input	Weak pull-down
	SPI_MISO	-	Output	Tri-stated with weak pull-down
SPI	SPI_MOSI	-	Input	Weak pull-down
SPI	SPI_CSB	-	Input	Weak pull-up
	SPI_CLK	-	Input	Weak pull-down
	PIO_0	-	Input	Weak pull-down
	PIO_1	-	Input	Weak pull-down
	PIO_2	UART_DCD	Output	Weak pull-down
	PIO_3	UART_DTR	Output	Weak pull-down
	PIO_4	UART_DSR	Input	Weak pull-up
PIO	PIO_5	FACTORY_RESET	Input	Weak pull-up
PIO	PIO_6	BT_MODE	Input	Weak pull-up
	PIO_7	F/C_CTRL	Output	Weak pull-up
	PIO_8	-	Input	Weak pull-down
	PIO_9	-	Input	Weak pull-down
	PIO_10	STATUS_LED0	Output	Weak pull-down
	PIO_11	STATUS_LED1	Output	Weak pull-down
AIO	AIO_0	-	Output	Driving low
AIU	AIO_1	-	Output	Driving low
Others	RESETB	RESETB	Input	Weak pull-up

Table 1-2 Pin State on Reset

1.6 PCB 치수

[BCD210DS]

1.7 권장 랜드 패턴

[BCD210DU, DC, DS]

1.8 권장 보드 배치

*BCD210SU, DU, DS has no keep-out area.

2. 전기적 특성

2.1 절대적 한계치

Ratings		Min	Max	Unit
Storage Temperat	ure	-40 +85		°C
Operating Temper	ature	-40	+85	°C
Supply voltage +3V3		-0.4	3.6	V
Other terminal volt	ages	GND - 0.4	VCC + 0.4	V

2.2 권장 동작 범위

Ratings		Min	Тур	Max	Unit
Operating Temperature		-40	25	+85	°C
	+3V3	2.7	3.3	3.6	V
Supply voltage	UART	3.0	3.3	3.6	V
	USB	3.1	3.3	3.6	V
Supply current	+3V3	60	80	100	mA

2.3 전력 소모

Operation Made	Connection	UART Rate	Current	Unit
Operation Mode	Туре	(Kbps)	(Average)	Offic
Power on (Standby)	-	115.2	1.4	mA
Inpuiry Scan	-	115.2	42	mA
Connected (No data)	Slave	115.2	21	mA
Connected (File transfer)	Slave	115.2	29	mA
Connected (No data)	Master	115.2	5	mA
Connected (File transfer)	Master	115.2	28	mA
Sniff Mode	Master	115.2	1.7	mA

3. RF 특성

3.1 Basic Data Rate

3.1.1 송신부 성능

RF Characteristics VCC = 3.3V, 25°C		Min	Тур	Max	Bluetooth Specification	Unit
Output power		0	2	4	≤ 20	dBm
Power Density		0	2	4	≤ 20	dBm
Power Control		3	4	6	2 ≤ step ≤ 8	dB
TX Output Spectr	um-Frequency range	2402	-	2480	2400 ~2483.5	MHz
TX Output Spectr	um-20dB Bandwidth	-	900	-	≤ 1000	kHz
Adiacant	$F = F_0 \pm 2MHz$	-	-	-20	≤ -20	dBm
Adjacent Channel Power	$F = F_0 \pm 3MHz$	-	1	-40	≤ -40	dBm
Chairner Power	$F = F_0 \pm > 3MHz$	-	1	-40	≤ -40	dBm
Modulation	Δ f1 _{avg}	140	165	175	140 ≤ Δ f1 _{avg} ≤ 175	kHz
Modulation Characteristics	$\Delta f2_{avg}$	115	155	1	Δf2 _{avg} ≥ 115	kHz
Characteristics	$\Delta f2_{avg}/\Delta f1_{avg}$		0.95	ı	$(\Delta f1_{avg}/\Delta f2_{avg}) \ge 0.8$	-
Initial Carrier Fred	quency Tolerance	-20	1	20	≤ ±75	kHz
Carrier	Drift rate	-20	-	20	≤ ±20	kHz/50µs
	1 slot Freq Drift	-25	-	25	≤ ±25	kHz
Frequency Drift	5 slot Freq Drift	-40	-	40	≤ ±40	kHz

3.1.2 송신부

RF Characteristics			Turo	Max	Bluetooth	Unit
VCC = 3.3V, 25°C	Min	Тур	IVIAX	Specification	Offic	
Out of house	0.030-1.000GHz	-36	-	-	≤ -36	dBm
Out of band Spurious	1.000-12.75GHz	-30	-	-	≤ -30	dBm
Emissions	1.800-5.100GHz	-47	-	-	≤ -47	dBm
Lilliggions	5.100-5.300GHz	-47	-	-	≤ -47	dBm

3.1.3 수신부 성능

RF Characteristics VCC = 3.3V, 25°C	Min	Тур	Max	Bluetooth Specification	Unit	
Sensitivity - Single	-	-84	-70	≤ -70	dBm	
Sensitivity - Multi s	Sensitivity - Multi slot packets (0.1%)			-70	≤ -70	dBm
C/I performance	co-channel	-	-	-11	≤ -11	dB
at 0.1% BER	$F = F_0 + 1MHz$	-	-	0	≤ 0	kHz
	$F = F_0 - 1MHz$	-	-	0	≤ 0	dB
	$F = F_0 + 2MHz$	-	-	-20	≤ -20	dB
	$F = F_0 - 2MHz$	-	-	-30	≤ -30	dB

	$F = F_0 - 3MHz$	-	-	-40	≤ -40	dB
	$F = F_0 + 5MHz$	-	1	-40	≤ -40	dB
	F = F _{Image}	-	ı	9	≤ -9	dB
Blocking	0.030-2.000GHz	-10	-	-	≥ -10	dBm
performance	2.000-2.400GHz	-27	1	1	≥ -27	dBm
	2.500-3.000GHz		ı	ı	≥ -27	dBm
3.000-12.75GHz		-10	-	-	≥ -10	dBm
Inter-modulation performance		-39	-	-	≥ -39	dBm
Maximum input le	-20	-	-	≥ -20	dBm	

3.2 Enhanced Data Rate

3.2.1 송신부 성능

RF Characteristics			Min	Тур	Max	Bluetooth	Unit
VCC = 3.3V, 25°C			IVIIII	тур	IVIAX	Specification	Offic
Maximum RF	Maximum RF Transmit Power			1	-	-6 to +4	dB
Relative Tran	smit Power		-4	-	1	-4 to +1	dB
Carrier	π/4	ω ₀	-10	-	10	≤ ±10 for all blocks	kHz
Frequency	DQPSK	ω _i	-75	-	75	≤ ±75 for all packets	kHz
Stability		$ \omega_0 + \omega_i $	-75	-	75	≤ ±75 for all blocks	kHz
	8DPSK	ω ₀	-10	-	10	≤ ±10 for all blocks	kHz
		ω _i	-75	-	75	≤ ±75 for all packets	kHz
		$ \omega_0 + \omega_i $	-75	-	75	≤ ±75 for all blocks	kHz
Modulation	π/4	RMS DEVM	-	-	20	≤ 20	%
Accuracy	DQPSK	99% DEVM	-	-	30	≤ 30	%
		Peak DEVM	-	-	35	≤ 35	%
	8DPSK	RMS DEVM	-	-	13	≤ 13	%
		99% DEVM	_	-	20	≤ 20	%
		Peak DEVM	_	-	25	≤ 25	%
EDR Differen	tial Phase E	ncoding	99	-	-	≥ 99	%
In-band	$F \ge F_0 + 3I$	MHz	_	-	-40	≥ -40	dBm
Spurious	$F < F_0 + 3$	MHz	_	-	-40	≥ -40	dBm
Emissions	$F = F_0 - 3I$	MHz	-	-	-40	≥ -40	dBm
(8DPSK)	$F = F_0 - 2I$	MHz	_	-	-20	≥ -20	dBm
	$F = F_0 - 11$	MHz	-	_	-26	≥ -26	dB
	$F = F_0 + 1$	MHz	-	-	-26	≥ -26	dB
	$F = F_0 + 2$	MHz	-		-20	≥ -20	dBm
	$F = F_0 + 3$	MHz	-	-	-40	≥ -40	dBm

3.2.2 수신부 성능

RF Characteri	stics		Min	Тур	Max	Bluetooth	Unit
VCC = 3.3V, 25°C			IVIIII	ТУР	IVIAX	Specification	Offic
Sensitivity		π/4 DQPSK	-	-84	-70	≤ -70	dBm
at 0.01% BER		8DPSK	-	-78	-70	≤ -70	dBm
BER floor perf	ormance		-	-	-60	≤ -60	dBm
C/I Performan	се	π/4 DQPSK	-	-	13	≤ +13	dB
(co-channel at	: 0.1% BER)	8DPSK	-	-	21	≤ +21	dB
C/I	$F = F_0 + 1MHz$	π/4 DQPSK	-	-	0	≤ 0	dB
Performance		8DPSK	-	-	5	≤ +5	dB
(Adjacent	$F = F_0 - 1MHz$	π/4 DQPSK	-	-	0	≤ 0	dB
Channel		8DPSK	-	-	5	≤ +5	dB
Selectivity)	$F = F_0 + 2MHz$	π/4 DQPSK	-	-	-30	≤ -30	dB
		8DPSK	-	-	-25	≤ -25	dB
	$F = F_0 - 2MHz$	π/4 DQPSK	-	-	-20	≤ -20	dB
		8DPSK	-	-	-13	≤ -13	dB
	$F \ge F_0 + 3MHz$	π/4 DQPSK	-	-	-40	≤ -40	dB
		8DPSK	-	-	-33	≤ -33	dB
	$F \le F_0 - 5MHz$	π/4 DQPSK	-	-	-40	≤ -40	dB
		8DPSK	-	-	-33	≤ -33	dB
	F = F _{Image}	π/4 DQPSK	-	-	-7	≤ -7	dB
		8DPSK	-	-	0	≤ 0	dB
Maximum inpu	Maximum input level π/4 DQI		-20	-	-	≥ -20	dBm
at 0.1% BER		8DPSK	-20	-	-	≥ -20	dBm

4. 장비 입출력 설명

4.1 UART 인터페이스

BCD210은 RS232 프로토콜을 이용한 OEM 장비와의 통신을 위하여 TTL 레벨의 UART (Universal Asynchronous Receiver and Transmitter) 인터페이스를 제공합니다. BCD210이 다른 장비에 장착되어질 경우 UART_RX와 UART_TX핀을 통하여 데이터가 송수신됩니다. UART_CTS와 UART_RTS는 하드웨어 플로우 컨트롤을 위하여 사용 되며 active low 방식을 이용합니다. 모든 UART핀들은 CMOS방식을 이용하여 0~3.3V의 전원 레벨이 사용됩니다.

Parameter		Possible Values
Baud Rate	Minimum	1200 baud (2%Error)
	Maximum	3M baud (1%Error)
Flow Control		RTS/CTS or None
Parity		None, Odd or Even
Number of Stop Bits		1 or 2
Bits per Channel		8

표 **4-1 UART** 설정 범위

4.2 USB 인터페이스

BCD210은 장비 인터페이스의 한가지로서 풀 스피드 USB 인터페이스 (12 Mbits/s)를 제공합니다. BCD210의 USB인터페이스를 사용하기 위하여 외부 USB 트랜시버가 필요하지 않습니다. BCD210은 PC 와 같은 USB호스트의 요구에 응답하는 USB 주변기기로 동작합니다. OHCI 및 UHCI의 두 가지 표준을 지원합니다. BCD210은 블루투스 v2.0+EDR USB 표준기기 또는 USB 오디오 장치로서 인식 됩니다. BCD210은 USB 마스터/슬레이브 동작 방식중 USB 슬레이브 방식으로서만 동작합니다.

USB데이터는 USB_DP및 USB_DN핀을 이용하여 인식 됩니다. 이 두 핀은 BCD210의 내부 USB I/O 버 퍼와 연결되어 있어서 낮은 출력 임피던스를 가지고 있습니다. 따라서 USB 케이블의 특성과 적합하도록 조정하기 위해서는 USB_DP/USB_DN핀과 직렬로 저항을 연결하여서 사용하여야 합니다. BCD210은 내부 USB pull-up 저항을 가지고 있습니다. 이 저항은 BCD210이 PC와 같은 마스터에 의하여 인식 되어질 수 있는 경우에 USB_DP 핀을 high로 유지하여 풀스피드(full speed) USB 장비(12Mbits/s)임을 알려줍니다.

USB 내부 풀업(pull-up)은 전류 소스(current source)로서 구현 됐으며, 이는 USB 표준 v1.2의 섹션 7.1.5와 호환됩니다. 이 내부 풀업 저항은 VDD_PADS=3.1V 인 경우 허브/호스트의 풀다운 저항 15KΩ±5% 이 적용될 경우 USB_DP신호를 2.8V이상으로 유지시켜줍니다. 이는 호스트의 테브난 (Thevenin) 저항이 900Ω 또는 그 이상의 효과를 가져옵니다.

4.3 I2C 인터페이스

 I^2C 인터페이스 사용을 원하는 경우 PIO[8:6]를 사용하여 마스터 I^2C 인터페이스를 구축할 수 있습니다. 이 경우 소프트웨어를 이용하여 I^2C 인터페이스가 동작 되므로 dot matrix LCD (*Liquid Crystal Display*), 키보드, 스캐터, EEPROM등 상대적으로 빠른 전송 속도가 요구되어지지 않는 애플리케이션에 적합합니다.

Notes:

PIO 라인은 2.2K Ω 저항을 이용하여 pull-up되어야 합니다.

PIO[7:6]은 UART bypass와 EEPROM에 모두 사용 됩니다. 따라서 EEPROM을 이용하는 장비는 UART bypass 기능을 사용할 수 없습니다.

EEPROM에 연결하여 사용하기 위한 보다 자세한 내용은 CSR의 I²C EEPROM for use with BlueCore 문서를 참조하시기 바랍니다. 이 CSR의 문서에는 현재 지원 가능한 장비들의 목록이 포함되어 있습니다.

4.4 PCM CODEC 인터페이스

PCM (*Pulse Code Modulation*) 은 오디오 신호 (특히 음성신호)를 디지탈화하여 디지털 통신 채널을 이용하여 전송하기 위한 표준 방법입니다. BCD210은 하드웨어적인 PCM 인터페이스를 제공하여, PCM데이터의 연속적인 전송 및 수신을 지원합니다. 따라서 BCD210을 이용하여 무선 헤드셋 장비등을 구성할경우 프로세서 오버헤드를 줄일 수 있습니다. BCD210은 양방향 디지털 오디오 신호가 HCI프로토콜 레이어(HCI protocol layer)를 거치지 않고 베이스밴드 레이어(baseband layer)로 직접 전달되도록 하여 효율적인 통신이 가능합니다.

BCD210의 하드웨어는 SCO연결과 데이터를 주고 받을 수 있습니다. PCM 인터페이스는 최대 3개까지의 SCO연결을 지원합니다. BCD210은 PCM 인터페이스 마스터로 설정되었을 시 128,256, 512 kHz의 클록을 생성할 수 있습니다. PCM인터페이스 슬레이브로서 동작 시 2048kHz의 클록을 입력 받을 수 있습니다. BCD210은 다양한 클록 종류를 지원하며, 이는 Long Frame Sync, Short Frame Sync 및 GCI timing environments를 포함합니다.

BCD210은 아래 PCM 오디오 장비들과 직접 통신이 가능합니다.

- Qualcomm MSM 3000 series and MSM 5000 series CDMA baseband devices
- OKI MSM7705 four channel A-raw and u-law CODEC
- Motorola MC145481 8-bit A-law and u-law CODEC
- Motorola MC145483 13-bit linear CODEC
- STW 5093 and 5094 14-bit linear CODECs
- Motorola SSITM interface

4.5 I/O 병렬 포트 (I/O Parallel Ports)

PIO 라인은 소프트웨어적으로 약하게(weak)또는 강하게(strong) 풀다운 (pull-down) 할 수 있으며 BCD210이 리셋되면 모든 PIO라인은 약하게 풀다운 되는 입력 단으로 설정 됩니다.

PIO 라인의 어떤 것이라도 인터럽트 요청라인 또는 슬립모드에서 깨어나는 (wake-up) 라인으로 사용되도록 설정할 수 있습니다. PIO_6 또는 PIO_2 는 외부 클록 소스를 요청하도록 설정할 수 있습니다. 이는 BCD210이 시스템 ASIC (Application Specific Integrated Circuit)으로 부터 발생 되는 클록을 이용 시유용합니다. PSKEY_CLOCK_REQUEST_ENABLE (0x246)를 이용하여, BCD210이 딥 슬립 (Deep Sleep)모드에 있을 시 PIO_6/PIO_2가 low로 유지되고 클록 신호가 필요 시 high로 유지되도록 설정 할수 있습니다. 이 경우 클록은 PIO_6/PIO_2가 low 에서 high로 바뀌는 시점 (rising edge)에서 4ms이내에 공급이 되어야 합니다.

BCD210은 세 개의 범용 아날로그 인터페이스 핀 AIO_0, AIO_1, AIO_2를 제공합니다. 이 핀들은 내부회로 및 제어용 신호를 액세스하기 위하여 사용됩니다. 이 중 핀 하나는 레퍼런스 전압(on-chip band gap reference voltage)용으로 할당 되어야 하며, 나머지 두 개는 추가 기능을 위하여 사용될 수 있습니다.

4.6 리셋 인터페이스 (Reset Interface)

BCD210은 RESETB 핀, 파워-온-리셋 (power on reset), UART 브레이크 시그널 (UART break character) 또는 소프트웨어 설정 와치독 타이머(software configured watchdog timer)를 통하여 리셋 됩니다.

RESETB 핀은 low일때 활성화되는 신호이며 (active low) 내부적으로 저주파 클록 발생기에 의하여 필터링 됩니다. 리셋은 RESETB가 활성화 된 후 1.5~4ms사이에 수행되며 RESETB 에 5ms이상의 시간 동안 신호가 가해지는 것을 권장합니다.

파워-온-리셋은 VDD_CORE 전압이 통상 1.5V 미만으로 떨어지면 발생하고, VDD_CORE 전압이 통상 1.6V 보다 커지면 해제됩니다.

리셋이 발생하면, 입출력 설정이 가능한 디지털 I/O 핀들은 모두 입력 단으로 초기화 되어지며 출력전용 디지털 I/O핀들은 트라이스테이트(tri-state)로 초기화됩니다. PIO 핀들은 약한 풀다운 (weak pull-down)상태로 초기화됩니다.

5. 응용 회로도 (Application Schematic)

[BT 모듈 인터페이스]

[전원 인터페이스]

[리셋 인터페이스]

[RS232 시리얼 인터페이스]

[USB 인터페이스]

[I²C 인터페이스]

[PCM 인터페이스]

[When TTL level of MICOM is 3.3V]

[When TTL level of MICOM is 5.0V]

[MICOM UART Interface]

6. 소프트웨어 스택

BCD210은 블루투스 v2.0을 만족하는 SPP (Serial Port Profile) 펌웨어가 기본적으로 내장되어 있습니다. 이 SPP 펌웨어는 추가 작업 없이 바로 POS (Point-of-sales), 산업자동화, 원격 검침 및 기타 다양한 실제 현장에 적용 가능하도록 설계, 다년간 운영되어 그 성능 및 안정성이 이미 검증되어 있습니다.

SPP 펌웨어는 AT 명령을 이용하여 설정 및 제어가 가능합니다. 사용자는 HyperTerminal과 같은 터미널 에뮬레이션 프로그램을 이용하여 BCD210을 설정하고 사용자의 기존 시리얼 포트 소프트웨어를 수정하지 않고 블루투스 무선 통신을 적용할 수 있습니다. 또한 기본 AT 명령과 더불어서 다양한 확장 AT 명령어도 제공 됩니다. 또한 AT명령어를 직접 입력하지 않고 PC에서 간편하게 설정 또한 가능하도록 ParaniWizard 및 ParaniWIN 소프트웨어가 제공 됩니다. BCD210에서 AT명령어를 실행시키기 위해서는 BCD210이 사용자가 설계한 보드 또는 이와 상응하는 보드에 장착되어, 시리얼 포트가 연결될 수 있도록 되어있어야 합니다.

BCD210에서 제공하는 SPP펌웨어는 Parani-ESD100V2/110V2에서 제공하는 SPP 펌웨어와 동일합니다. OEM 제품 개발 기간을 단축하거나. BCD210을 적용하기에 앞서서 기능을 테스트해보고 싶은 경우에는 Parani-ESD100V2/110V2 스타터 키트를 구입하여 먼저 적용해보는 것을 권장합니다. 또한 SPP 펌웨어의 기본개념 및 AT명령어를 참조하기 위해서는 Parani-ESD100V2/110V2의 사용자 매뉴얼을 참고하시기바랍니다. Parani-ESD100V2/110V2의 매뉴얼은 아래 세나 기술 지원 홈페이지에서 다운로드 받을 수 있습니다.

http://www.sena.com/support/downloads/.

선택적으로, PC용 블루투스 USB 동글과 같이 전체 블루투스 스택이 외부에서 동작하는 경우 또는 사용자가 직접 개발한 커스텀 펌웨어를 탑재하기 위한 목적으로 HCI스택 까지만 구현되어있는 펌웨어를 BCD210에 탑재하여 출시하는 것도 가능합니다. 커스텀 펌웨어를 탑재하기 위한 자세한 내용은 세나 영업 담당자 또는 기술지원 담당자에게 문의하시기 바랍니다.

그림 6-1 SPP 펌웨어 블루투스 스택

그림 6-2 HCI 펌웨어 블루투스 스택

7. 납땜 프로파일 (Solder Profiles)

납땜 프로파일은 환경에 따라서 매우 다양한 변수들에 의존적입니다. 아래 예시는 납땜 리플로우(solder re-flow)를 위한 한 예를 보여주지만 참고 목적으로만 사용되어야 합니다. 예시에는 다음과 같은 네 가지 영역이 존재합니다:

- 예열 영역 (Preheat Zone) 이 영역에서는 온도를 조절하여 상승시킵니다. 통산 1-2.5°C /s가 적당합니다.
- 평형 영역 (Equilibrium Zone) 이 영역에서는 보드를 일정한 온도로서 유지하며 플럭스를 활성화시킵니다. 이 영역의 유지 시간은 통상적으로 2~3분이지만 플럭스의 기화 상태에 맞게 최적화되어야 하여야 합니다.
- **리플로 영역 (Reflow Zone)** 최고 온도는 융화가 적절하게 이루어지도록 충분히 높아야 하지만, 부품의 변색 또는 손상을 방지하기 위하여 일정 온도를 넘어서는 안됩니다. 또한 납땜 시간이 너무 길어지면 금속간 결정을 유발하여 취약부가 발생됩니다.
- **냉각 영역 (Cooling Zone)** 냉각 속도는 납땜 부를 작게 유지하기 위하여 충분히 빨라야 합니다. 통상적인 냉각 속도는 2-5°C/s 입니다.

그림 7-1 통상적인 무납 리플로 납땜 프로파일

- 이 프로파일의 주요 특성은 아래와 같습니다:
 - 초기 상승 부 = 1-2.5°C/sec to 175°C±25°C equilibrium
 - 평형 유지 시간 = 60 to 180 seconds
 - 램프에서 최고 온도 도달 속도 (245°C) = 최대 3°C/sec
 - 융점 이상 온도 유지 시간 (217°C): 45~90 seconds
 - 부품 절대 최고 리플로 온도: 260°C

BCD210은 위의 프로파일에 견딜 수 있으며, 최대 260°C 리플로 공정을 두 번 견딜 수 있습니다.

8. 패키징 정보

9. 인증정보

9.1 FCC

FCC Rule: Part 15 Subpart C Section 15.247

FCCID: S7AIW03

9.1.1 FCC Compliance Statement

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) This device must accept any interference received,

Including interference that may cause undesired operation

Information to User

This equipment has been tested and found to comply with limits for a Class B digital device, Pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generate, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by on or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver-Connect the equipment into an outlet a circuit different form that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

9.1.2 RF Exposure Statement

The equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This device and its antenna must not be co-located or operation in conjunction with any other antenna or transmitter.

9.1.3 Do not

Any changes or modifications to the equipment not expressly approved by the party responsible for compliance could void user's authority to operate the equipment.

9.2 CE

Certification No: 1177

Declare under our own responsibility that the product

Bluetooth Module
Brand name: SENA

Model No.: Parani-BCD210DU / Parani-BCD210DC / Parani-BCD210DS

Parani-BCD210SU / Parani-BCD210SC

To which this declaration refers conforms with the relevant standards or other standardizing documents

EN 60950-1

ETSI EN 301 489-1 ETSI EN 301 489-17

ETSI EN 300 328

According to the regulations in Directive 1999/5/EC

9.3 IC

Radio Cert. No.: IC: 8154A-IW03

9.4 KC

Type Registration

Certification No: KCC-CRM-SNA-IW03

9.5 TELEC

Technical Regulations for Specified Radio Equipment Article 2, Section 1 (19)

Certification No:

Parani-BCD210DU: 010WWBT0144 Parani-BCD210DC: 010WWBT0146 Parani-BCD210DS: 010WWBT0145

9.6 SIG

QDID: B019536

Model Name: Parani-BCD210

Core Version: 2.0+EDR
Product Type: Component

Declared Specifications: Baseband Conformance, Radio, Service Discovery Protocol,

Logical Link Control and Adaption Protocol, Generic Access Profile, Link Manager, RFCOMM,

Serial Port Profile, Host Controller Interface, Summary ICS, Product Type