Learning From Experiments With Causal Machine Learning

A case study using metalearners

Francesc Martí Escofet (@fmartiescofet)

Kevin Klein (@kevkle)

We live in a budget-constrained world.

Which students should be coached?

National Study of Learning Mindsets

Before data collection

National Study of Learning Mindsets

Before data collection

Ninth grade

National Study of Learning Mindsets

Before data collection

Ninth grade

Months later

The data, more formally

Every datapoint i corresponds to a student.

Name	Symbol	Definition	
Covariates	X_i	Properties of the student or the student's school	
Treatment assignments	W_i	$\begin{cases} 1 & \text{if received coaching} \\ 0 & \text{if didn't receive coaching} \end{cases}$	
Outcome	Y_i	GPA ($\in \mathbb{R}$) after treatment	

$$\mathcal{D} = \{(X_i, W_i, Y_i)\}$$

The data, the details

- n = 10,391
 - ∘ ~1/3 received coaching
- Originally from National Study of Learning Mindsets
 - Nature, September 2019
- We used an anonymized version from Athey and Wager
 - All continuous features have been transformed to a standard Normal

The data, an excerpt

	schoolid	success_expect	ethnicity	gender	frst_in_family	school_urba
3625	75	5	2	1	1	
3037	5	2	2	1	1	
2574	17	7	4	2	1	
1488	47	6	5	2	1	
3677	74	6	11	2	1	

Loading the data

```
import pandas as pd
df = pd.read_csv("learning_mindset.csv")
categorical_feature_columns = [
    "ethnicity",
    "gender",
    "frst_in_family",
    "school_urbanicity",
    "schoolid",
```

```
for column in categorical_feature_columns:
    df[column] = df[column].astype("category")
```


Why categoricals?

Q Quantco Outcomes

```
ax.hist(df[treatment_column])
```

```
ax.hist(df[W=1][outcome_column], density=True)
ax.hist(df[W=0][outcome_column], density=True)
```


- Remember, our original question was
 - (A) Which students should be coached?
- We'll reduce said question to the following question
 - (B) How much would a student like student i profit from a growth mindset coaching?

• (B) How much would a student like student i profit from a growth mindset coaching?

$$au(X_i) = \mathbb{E}[Y(ext{coaching}) - Y(ext{no coaching})|X = X_i]$$

• (B) How much would a student like student *i* profit from a growth mindset coaching?

$$au(X_i) = \mathbb{E}[\underbrace{Y(ext{coaching}) - Y(ext{no coaching})}_{ ext{treatment effect}}]X = X_i]$$

• (B) How much would a student like student *i* profit from a growth mindset coaching?

$$au(X_i) = \underbrace{\mathbb{E}}_{ ext{average}}[Y(ext{coaching}) - Y(ext{no coaching})|X = X_i]$$

• (B) How much would a student like student i profit from a growth mindset coaching?

$$au(X_i) = \mathbb{E}[Y(ext{coaching}) - Y(ext{no coaching}) | X = X_i]$$

• (B) How much would a student like student i profit from a growth mindset coaching?

formalism: Conditional Average Treatment Effect (CATE)

$$au(X_i) = \mathbb{E}[Y(ext{coaching}) - Y(ext{no coaching})|X = X_i]$$

• (A) Which students should be coached?

formalism: policy

$$\pi(X_i) = egin{cases} 1 & ext{if } \hat{ au}(X_i) \geq c_{budget} \ 0 & ext{otherwise} \end{cases}$$

MetaLearners

- MetaLearners are CATE models
 which rely on typical, arbitrary
 machine learning estimators
 (classifiers or regressors) as
 components.
- Some examples include the S-Learner, T-Learner, F-Learner, X-Learner, R-Learner, M-Learner and DR-Learner.

MetaLearners

- Input
 - $\circ W$: Treatment assignments
 - $\circ X$: Covariates/features
 - \circ Y: Outcomes
- Output
 - $\circ \; \hat{ au}(X)$: CATE estimates

Creating a first MetaLearner

```
from metalearners import RLearner
from lightgbm import LGBMRegressor, LGBMClassifier
```

```
rlearner = RLearner(
    nuisance_model_factory=LGBMRegressor,
    propensity_model_factory=LGBMClassifier,
    treatment_model_factory=LGBMRegressor,
    is_classification=False,
    n_variants=2,
)
```


Creating a first MetaLearner

```
from metalearners import RLearner
from lightgbm import LGBMRegressor, LGBMClassifier

rlearner = RLearner(
   nuisance_model_factory=LGBMRegressor,
   propensity_model_factory=LGBMClassifier,
   treatment_model_factory=LGBMRegressor,
   is_classification=False,
   n_variants=2,
}
```

```
rlearner.fit(
    X=df[feature_columns], y=df[outcome_column], w=df[treatment_column]
)
```


Predicting with a MetaLearner

rlearner.predict(df[feature_columns], is_oos=False)

Hyperparameter optimization

- HPO can have massive impacts on the prediction quality in regular Machine Learning
- According to Machlanski et. al (2023) this also happens in MetaLearners
- Three levels to optimize for:
 - The MetaLearner architecture
 - The model to choose per base estimator
 - The model hyperparameters per base model


```
base_learner_grid = {
    "outcome_model": [LGBMRegressor],
    "propensity_model": [LGBMClassifier],
    "treatment_model": [LGBMRegressor],
}
```

```
param_grid = {
    "outcome_model": {
        "LGBMRegressor": {"n_estimators": [25, 50, 100], "max_depth": [-1, 5]}
    },
    "treatment_model": {
        "LGBMRegressor": {"n_estimators": [5, 20, 50], "max_depth": [-1, 3, 5]}
    },
    "propensity_model": {
        "LGBMClassifier": {"n_estimators": [5, 50], "max_depth": [-1, 3, 5]}
    },
}
```



```
gs = MetaLearnerGridSearch(
    metalearner_factory=RLearner,
    metalearner_params={"is_classification": False, "n_variants": 2},
    base_learner_grid=base_learner_grid,
    param_grid=param_grid,
)
```

```
gs.fit(X_train, y_train, w_train, X_validation, y_validation, w_validation)
```


gs.results_

hyperparameters	time fit	time score	train propensity	train outcome	train r_loss	trea
-1, 25, -1, 5, -1, 5	0.899935	0.304743	-0.631725	-0.817461	0.795676	-1.0
-1, 25, -1, 5, -1, 20	0.965532	0.312325	-0.631725	-0.817461	0.798854	-1.
-1, 25, -1, 5, -1, 50	1.19587	0.365287	-0.631725	-0.817461	0.804784	-1
•••	•••	•••	•••	•••	•••	
5, 25, 3, 5, 3, 20	1.79398	0.108887	-0.630564	-0.818076	0.796231	-1.6
•••	•••	•••	•••	•••	•••	
5, 100, 5, 50, 5,	4 00000	0.400000	0047005	0.00007	0 0400 4 4	4

gs.results_

hyperparameters	time fit	time score	train propensity	train outcome	train r_loss	trea
-1, 25, -1, 5, -1, 5	0.899935	0.304743	-0.631725	-0.817461	0.795676	-1.0
-1, 25, -1, 5, -1, 20	0.965532	0.312325	-0.631725	-0.817461	0.798854	-1.
-1, 25, -1, 5, -1, 50	1.19587	0.365287	-0.631725	-0.817461	0.804784	-1
•••	•••	•••	•••	•••	•••	
5, 25, 3, 5, 3, 20	1.79398	0.108887	-0.630564	-0.818076	0.796231	-1.6
•••	•••	•••	•••	•••	•••	
5, 100, 5, 50, 5,	4.00000	0.400000	0047005	0.00007	0 0400 4 4	4

Predicting with a tuned MetaLearner

tuned_rlearner.predict(df[feature_columns], is_oos=False)

Q quantco SHAP values

```
from shap import TreeExplainer, summary_plot
explainer = learner.explainer()
shap_values = explainer.shap_values(df[feature_columns], TreeExplainer)
summary_plot(shap_values[0], features=df[feature_columns])
```


But now, how are we actually doing?

We can define the policy value as:

$$V(\pi) = \mathbb{E}[Y_i(\pi(X_i))]$$

Using our CATE estimates, we can define a policy that targets the most promising students, specifically, those with the highest CATE estimates.

But now, how are we actually doing?

Making it tangible

quantco

Would you like to work on such topics, too?

Join us!

quantco.com

DEEP LEARNING	
Deep Learning Engineer HYBRID - FULL-TIME EUROPE	APPLY
Research Scientist - Virdx HYBRID - FULL-TIME LONDON, ENGLAND / ZURICH, SWITZERLAND	APPLY
ENGINEERING	
Senior Software Engineer HYBRID - FULL-TIME EUROPE	APPLY
Software Engineer HYBRID – FULL-TIME KARLSRUHE, BADEN-WÜRTTEMBERG	APPLY
Software Engineer HYBRID - FULL-TIME ZURICH, SWITZERLAND	APPLY
Software Engineer HYBRID - FULL-TIME BERLIN, BERLIN	APPLY
Software Engineer HYBRID – FULL-TIME MUNICH, BAVARIA	APPLY
Software Engineering Intern on-site – Intern europe	APPLY

Please leave feedback on GitHub!:)

github.com/QuantCo/metalearners

github.com/kklein/sps24-metalearners

Backup

Data dictionary

Name	Туре	Meaning
ethnicity	categorical	student race/ethnicity
gender	categorical	student-identified gender
success_expect	discrete	self-reported expectations for success in the future
frst_in_family	boolean	first in family to go to college
schoolid	categorical	identifier for each of 76 high schools
school_urbanicity	categorical	school's urbanicity (urban, rural, etc.)
school_mindset	numerical	school's mean mindset

Conventional assumptions for estimating CATEs

- Positivity/overlap
- Conditional ignorability/unconfoundedness
- Stable Unit Treatment Value (SUTVA)

A randomized control trial usually gives us the first two for free.

For more information see e.g. Athey and Imbens, 2016.

Policy value estimation

We estimated policy values via the 'Inverse-Propensity Weighting' estimator:

$$\hat{V}_{IPW}(\pi) = rac{1}{n} \sum_{i=1}^{n} rac{Y_{i} \mathbb{I}[W_{i} = \pi(X_{i})]}{\Pr[W_{i} = \pi(X_{i}) | X_{i}]}$$

For more details, please see Stefan Wager's lecture notes.

Python implementations of MetaLearners

	metalearners	causalml	econml
MetaLearner implementations	✓	✓	✓
Support* for pandas, scipy, polars	✓	X	X
HPO integration	✓	X	X
Concurrency across base models	✓	×	×
>2 treatment variants	✓	✓	X
Classification*	✓	X	✓
Other Causal Inference methods	×	✓	✓