

2015—2016 学年第一学期期末考试

考试统一用答题册

考试课程		工科高等代数 A						
班	级	学 号						
姓	名	成						

题号	1	11	111	四	五.	六	七	八	总分
成绩									
阅卷人签字									
校对人签字									

一. 选择题 (每题 2 分, 共 22 分)

- **1.** 设 A 为 $m \times n$ (m > n)矩阵,则秩 R(A) = (m > n)时,方程组 AX = 0 只有零解.
- b. 1:
- c. m;
- d. *n*
- **2.** 设 T 是 R^3 上的线性变换, $T(x_1, x_2, x_3)^T = (x_1 + x_3, x_1, x_3)^T$, 那么 T 在基

 $\{(1,1,0)^T,(1,0,1)^T,(0,0,1)^T\}$ 下的矩阵为 ()

- a. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$; b. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$; c. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$; d. T是可逆的
- **3.** 若 3 阶阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 的行列式|A| = 1, 则 $|\alpha_1, 3\alpha_2, \alpha_3 \alpha_1| = ($)

- a. 2: b. 1: c. 3: d. -1
- **4.** $\{\mathbf{v}_1 = (1,1,1)^T, \mathbf{v}_2 = (1,1,-1)^T, \mathbf{v}_3 = (2,2,-2)^T\}$ 的一个极大无关组为(

- a. v_1 ; b. v_1 , v_2 , v_3 ; c. v_1 , $v_2 \not \equiv v_1$, v_3 ; d. v_2 , v_3
- **5.** 若 A 是 n 阶实方阵,x 是 R^n 中的列向量,则 $x^TA^TAx = ($
- a. 长度|Ax|; b. 正数; c. 长度|x|; d. |Ax|²

- **6.** A 为实 $m \times n$ 矩阵,下列说法正确的是()
- a. 秩 $R(A^TA) = R(A)$; b. A^TA 不对称; c. A^TA 为正定; d. $R(A^T) \neq R(A)$
- 7. 设 $A=A_{m\times n}$ 为 $m\times n$ 矩阵,令 $W = \{x \in R^n \mid Ax = 0\}$,则 $\dim(W) + R(A) = ($).
- a. n-1;
- b. m-n; c. n; d. m
- 8. 设 A, B 分别是 m 阶与 n 阶方阵,则行列式 $\begin{vmatrix} B & 0 \\ C & A \end{vmatrix} = ($
- a. |A||B|;

- b. -|AB|; c. 0; d. $(-1)^{mgn}|A||B|$
- **9.** 实对称阵 A 为正定阵的充分必要条件是(
- a. A 的全体特征根为正数; b. A 可逆; c. |A|为正; d. A 满秩

- **10.** 设 A 为 n 阶正交阵,下列说法正确的是(
- a. $A^{-1} = A^{T}$; b. $A^{T} = A^{*}$ (伴随阵); c. |A| = -1; d. |A| = 1
- 11. 二次型 $f(x_1, x_2, x_3) = (x_1 x_2)^2 + (x_2 x_3)^2$ 是 (
- a. 正定二次型; b. 半正定二次型; c. 负定型; d. 不定型

二. 填空题 (每题 2 分, 共 8 分)

- **1.** 设 *A* 为 3 阶矩阵,则行列式 |-2*A*|+8|*A*| = _____
- **2.** 设 3 阶阵 A 的特征根是 a,b,c ,则 |A|+迹tr(A) =_____
- **3.** 已知 A, aE + A 是正定矩阵,且 A 满足条件 $A^2 + 3A 4E = O$,则实数 a 满足条件 _____
- **4.** 设 E 是 n 阶单位矩阵, $M = \begin{pmatrix} E & C \\ 0 & E \end{pmatrix}$, 则 $M^{-1} =$ _______

三. 判断题 (每题 1 分,共 12 分) (正确的在括号内打"√",错误的在括号内打"X")

- **1.** $\begin{cases} x_1 2x_2 + x_3 = 0 \\ x_1 + x_2 2x_3 = 0 \end{cases}$ 的基础解系为 { (1, 1, 1)^T }. (
- 2. 初等变换不改变矩阵的秩. ()
- **3.** 若 $P^{-1}AP$ 有定义, f(x) 是多项式,则 $f(P^{-1}AP) = P^{-1}f(A)P$. ()
- **4.** n 阶方阵 A 的行列式 $|A|=0 \Leftrightarrow R(A) < n \Leftrightarrow Ax = 0$ 有非零解.()
- **5.** 若方阵 A, B 相似,则 A, B 有相同的特征向量.()
- 6. 正交变换在任意一组基下的矩阵是可逆阵.()
- 7. 若 n 阶方阵 A 有 n 个线性无关的特征向量,则 A 必可对角化.()
- **8.** 设 3 阶可逆阵 A 的特征值是 $\lambda_1, \lambda_2, \lambda_3$,则 A^{-1} 的特征值是 $\lambda_1^{-1}, \lambda_2^{-1}, \lambda_3^{-1}$. ()
- **9.** 若向量 $\alpha_1,\alpha_2,\alpha_3$ 可由 ν_1,ν_2 线性表示,则 $\alpha_1,\alpha_2,\alpha_3$ 一定线性相关.()
- **10.** $\forall A = (\alpha_1, \alpha_2, L, \alpha_n), X = (x_1, x_2, L, x_n)^T \quad \forall AX = x_1\alpha_1 + x_2\alpha_2 + L + x_n\alpha_n.$ ()
- **11.** 若矩阵 $A \neq 0$, $B \neq 0$, 则 $AB \neq 0$.()
- 12. 若 n 元方程组 $A_{m\times n}$ x=0 只有零解,则 $A_{m\times n}$ x=b 必有唯一解.()

四. 计算下列各题 (每题8分,共24分)

1. 给定 R^4 的子空间 W_1 的基 $\{\alpha_1,\alpha_2\}$ 和子空间 W_2 的基 $\{\beta_1,\beta_2\}$,其中

$$\begin{cases} \alpha_1 = (1,1,0,0), & \beta_1 = (1,2,3,4), \\ \alpha_2 = (0,1,1,0), & \beta_2 = (0,1,2,2). \end{cases}$$

- (1) 求W₁+W₂的维数并求出一组基.
- (2) 求 W_1 I W_2 的维数并求出一组基,并将它扩充为 W_1+W_2 的一组基.

2.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, (1) 把 A 分解为列向量与行向量的积,并计算 A^{2013} ;

(2) 求 A 的特征多项式 $|A-\lambda E|$ 与全体特征值; (3) 求 3 个互相正交的特征向量.

3.
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
, (1) 求 A 的特征多项式与特征值; (2) 求 A^{-1} ;

(3) 利用 A^{-1} 求出A的伴随阵 A^* .

五. 求解下列题目 (每题 5 分, 共 10 分)

1. 设 R^4 中列向量 v_1 , v_2 , v_3 , v_4 , v_5 , 矩阵 $A = (v_1, v_2, v_3, v_4, v_5)$, 已知:

求向量组 v₁, v₂, v₃, v₄, v₅ 的一个极大无关组,并用它表示向量 v₅与 v₃.

2. 设 $\alpha_1, \alpha_2, \alpha_3$ 是 4 元非齐次方程组 AX = b 的三个解向量,且秩 $\mathbf{R}(A) = 3$, $\alpha_1 + \alpha_2 = (2, 6, 6, 2)^T, \alpha_2 + \alpha_3 = (2, 4, 4, 2)^T$,分别求 AX = 0 与 AX = b 的通解.

六. (12 分)
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
. (1) 求 A 的特征多项式; (2) 求正交阵 P , 使

 $P^{-1}AP$ 为对角阵; (3) 用正交变换 x = Py 把二次型 $\mathbf{f} = x^T Ax$ 化为标准形.

- 七. 证明题 (每题 6 分, 共 12 分)
- 1. 已知 A + B = AB , 证明: $(A E)^{-1} = (B E)$, 并且 AB = BA .

2. 若 A 是 3 阶正交阵,且 |A| = -1. 证明: -1 是 A 的一个特征值;而且对于列向量 $x \in R^3$, Ax 的长度 |Ax| 满足 |Ax| = |x|, 其中记号 |x| 代表 x 的长度.