CSE578: Computer Vision

Spring'16
Multiple-View Structure Recovery

Anoop M. Namboodiri

Center for Visual Information Technology
IIIT Hyderabad, INDIA

Multiple Views of Points/Objects

- Given projections of a set of 3D points in two or more cameras, get their 3D coordinates.
- Each 3D point is identified in every camera view.
- What else is known? Camera matrices K_i , R_i , t_i ? Only the intrinsic parameters K_i ?

Variations of the Problem

- (Binocular) Stereo: Two cameras with known intrinsic and extrinsic parameters.
- Multiview Stereo: Multiple known cameras
- Structure-from-Motion: Given m cameras and n points and projections x_{ij} of point j in camera i, recover 3D points X_j and camera matrices C_i
 - o Affine SfM: For affine cameras
 - o Projective SfM: For general projective cameras
- Bundle Adjustment: Directly recover $C_{i'}$ X_{j} from x_{ij}

Binocular Stereo and Feature Correspondence

Geometry of Matching

- B: baseline, f: focal length,z: depth, x: image coords
- From similar triangles:

$$\frac{x_1 - x_2}{f} = \frac{B}{z}$$

• Stereo Disparity or Parallax: the "shift" between the left and right images. $\Delta = \frac{Bf}{2}$.

- Farther the point, smaller the disparity and vice versa
- A large baseline can give more reliable estimates of depth. But, matching may become harder
- Basic step: Identify common points in camera views

Identifying Common Points

- Find a world point in 2 or more views
- Appearance is the only clue to identify them
- Individual pixel colours are similar very often. Match is too noisy
- Match a (small) neighbourhood of colours from one image to a similar neighbourhood in others
- Will work if local surface is fronto-parallel and images have similar magnification
- Foreshortening can happen when viewing an oblique surface
- Many ambiguities. We need a lot of help!

Some Examples

Matching Patches

- Compare $m \times m$ patches from two views. Form vectors \mathbf{v} and \mathbf{v}' of length m^2 from them
- Matching scores between patches:
 - Sum of Absolute Difference (SAD): $||\mathbf{v} \mathbf{v}'||_1$
 - Sum of squared difference (SSD): $||\mathbf{v} \mathbf{v}'||_2$
 - Correlation: $\frac{\mathbf{v'}^{\mathbf{T}}\mathbf{v}}{\sqrt{\mathbf{v}^{\mathbf{T}}\mathbf{v}}\sqrt{\mathbf{v'}^{\mathbf{T}}\mathbf{v'}}}$
 - Normalized correlation: $\frac{\bar{\mathbf{v}}^T\bar{\mathbf{v}}'}{\sqrt{\bar{\mathbf{v}}^T\bar{\mathbf{v}}}\sqrt{\bar{\mathbf{v}}'T\bar{\mathbf{v}}'}}$. Range: [-1,1]
 - $\overline{\mathbf{v}}$, $\overline{\mathbf{v}}'$ are vectors with respective patch-mean colour subtracted.
 - Invariant to affine changes in intensity/colour.

Constraints on Matching

- Epipolar: Match lies on the epipolar line of the pixel
- Colour Constancy: The appearance/colour does not change from one view to another
- Uniqueness: A point on left image can match with only one point on the right and vice versa
- Ordering or Monotonicity: If point A is to the left of B in view 1, it will to the left of B in view 2 also. (Violated if great difference in depth exists)
- Continuity: Disparity values vary smoothly (violated at occlusion boundares)

Sparse correspondence: only for good feature points

Dense correspondence: a match for every pixel

Epipolar Geometry

Reduced Search and Rectification

- The search is limited to a line if fundamental matrix known (i.e., weakly calibrated)
- Simplest if left and right cameras have same image plane and pure X-translation between them.
- Fundamental matrix has a simple form. Epipolar constraint reduces to y' = y.
- Matches constrained to lie in the same scan line
- Rectification: A rotation of the camera (to make image planes parallel) and a change in K matrix (focal length, image center).
- Can be represented using a homography H to align one image plane to the other Or, homographies H₁, H₂ to align them to a third plane

Rectification

Rectification: Example

Ordering Constraint

Order of matches from left and right is ordinarily preserved Violation may mean something else.

Various Situations

Image courtesy Marc Pollefeys

Shows the *epipolar line image* or *disparity space image* with different scenarios

Scan-Line to Scan-Line Matching

- Disparity Line Image pits pixels of one row of the left image against the pixels of the matching epipolar line in the other.
- Several matching scenarios:
 - If left pixel (i-1) matches with right pixel (j-1), next pixel i can match pixel j, if the match is good
 - Otherwise, it may continue the match with (j-1) with an occlusion cost (due to left occlusion)
 - Or, (i-1) can match with j with another occlusion cost (due to right occlusion)
- Sub-pixel definitions may be needed when zoom is different

Dynamic Programming Solution

- Cost of matching: C(i-1,j-1)+c(i,j) if pixels match, $C(i-1,j)+C_o$ if left occlusion, and $C(i,j-1)+C_o$ if right occlusion, where C_o is a high occlusion cost
- Select the minimum from those three and declare match or occlusion accordingly
- Can be setup nicely as a dynamic programming solution working in the i, j space, starting with leftmost pixel match
- Cost of matching: $O(N^2)$ where N is the number of pixels in each scanline.

Dynamic Programming Path

- Initialize first row and col to $i * C_o$
- Do for $i \in [0, N-1]$ and $j \in [0, N-1]$: Set C(i,j) to min of $C(i-1,j-1)+c(i,j), C(i-1,j)+C_o, C(i,j-1)+C_o$
- Mark each as M/L/R
- Reconstruct from (N, N), by following the **M** pixels and their connections.

Globally Optimal Solution

- Provides a globally optimal match as opposed to the local matching done by search
- Provides dense correspondence: a match for every pixel
- Works well enough. And is a prototype for many global stereo matching approaches that followed
- Difficulty: assigning a cost for occlusions.
- Difficulty: maintaining consistency across scan lines

We will see another global solution using graphcuts later

Structured Lighting

- Finding correspondences is hard by itself
- Can we help it by projecting patterns onto the world?
 Structured Lights!
- Lightstrip range finders, etc.
- Combination of sinusoids sometimes to get dense matches
- Active vision, as it changes the appearance
- The light projected need not be in the visible spectrum

Xbox Kinect

IR-based range sensor for Xbox

- Aligned depth and RGB images at 640 × 480
- Original goal: Interact with games in full 3D
- Computer vision happy with real-time depth and image
 - Games, HCI, etc
 - Action recognition
 - Image based modelling of dynamic scenes
- Fastest selling electronic appliance ever!!
- Other products that use PrimeSense sensor

