plain concepts

DÍA 3: AGENDA

- Hadoop In-Memory: Spark
- Machine Learning
 - Azure ML
 - Spark ML
- · Ejercicio práctico del día

SPARK

HADOOP IN-MEMORY: SPARK

- Spark sobre YARN
- Análisis exploratorio en tiempo real

¿QUÉ ES SPARK?

- Spark es un motor de computación de propósito general que soporta operaciones en memoria
- Con Tez, MR y demás nos basamos en un DAG (Grafo Acíclico Dirigido), trabajando de storage a storage
- Esto es ineficiente en casos en los que necesitamos reutilizar un conjunto de datos (working set)
 - Algoritmos iterativos (machine learning)
 - Análisis exploratorio en tiempo real

¿QUÉ ES SPARK?

- Spark trabaja mediante operaciones sobre datasets distribuidos
- Dataset distribuido (RDD, Resilient Distributed Datasets)
 - Colección de objetos repartidos en un clúster, bien en memoria o en disco
 - Construidos mediante transformaciones paralelas
 - Reconstruidos de forma automática si hay un fallo
- Operaciones
 - Transformaciones (map, filter, group by...)
 - Acciones (count, save...)

ARQUITECTURA SPARK

- Spark está dividido en 3 capas principalmente
- La capa de aplicación que es la que el desarrollador usa en función de sus requisites
- El core de Spark que se encarga de las tareas de ejecución de jobs
- La capa de infraestructura, que depende de cómo ha sido aprovisionado el cluster

FORMAS DE APROVISIONAR UN CLUSTER

- Standalone
- YARN
- Mesos

STANDALONE

- La manera más sencilla de montar un clúster de Spark
- Interesante para entornos de pruebas sencillos o pruebas de concepto
- En este caso, el Cluster Manager de la imagen es la propia instacia de Spark

MESOS

- Mesos modela el cluster como un pool de recursos
- En este caso, el Cluster Manager de la imagen es reemplazado por Mesos
- En teoría, Mesos maneja mejor los recursos ya que cuando va a ejecutar un job, tiene en cuenta otros frameworks corriendo en el cluster.
- Pueden correr diferentes frameworks en el cluster gracias al particionado dinámico de recursos

YARN

- Basicamente, usando YARN
 delega en él la gestión de los recursos
- Esto es, cuando un job de Spark es encolado para su ejecución, será YARN quien se encargue de llevar a cabo la ejecución

YARN Architecture

DIFERENCIAS ENTRE YARN Y MESOS

- Las diferencias están en cómo cada uno planifica y maneja los recursos y prioridades
- Mesos está enfocado a datacenters y YARN fue una iteración lógica de Hadoop
- Mesos VS YARN? Depende de lo que necesites. Uno funciona bien gestionando datacenters (Twitter y Airbnb) y YARN funciona bien planificando y manejando Hadoop Jobs
- · Pueden ser complementarios? Sí, pero hay un coste: particiones estáticas

ARQUITECTURA SPARK (JOBS)

- La arquitectura de procesado distribuida se compone de
 - Un Driver Program
 - Uno o mas Worker Nodes
- El Driver Program utiliza un context de Spark para conectarse al cluster...
- ...y utiliza los Worker Nodes para realizar operaciones sobre los RDDs

QUÉ SON LOS RDD?

- Resilient Distributed Dataset
 - Inmutable
 - Distribuido
 - Evaluados perezosamente
 - Cacheable
- Pueden estar en memoria o en disco

QUÉ SON LOS RDD?

- En realidad, podríamos describir un RDD como una colección de registros de solo lectura y particionada. Los RDD solo pueden ser creados a través de operaciones determinísticas usando datos de una una fuente de datos estable o de otros RDD's
- Surgen como parte de la solución al problema de resolver algoritmos iterativos mediante MapReduce

RDD

RDD Filtrado

DATAFRAMES

- Los DataFrames aparece en la versión 1.3 de Spark
- Introducen el concepto de un esquema que describe a los datos

- Son más eficientes puesto que evitan serializaciones innecesarias y pasan los datos de nodo a nodo
- Son más ligeros en memoria (off-heap)

OPERACIONES

- Transformaciones
 - Crean un nuevo RDD al transformar uno existente
- Acciones
 - Devuelven resultados al Driver Program o a un fichero de salida
- Spark utiliza evaluación perezosa
 - Nada se ejecuta hasta llegar a una acción
 - Los RDDs se recomputan en cada acción

OPERACIONES

- La mayoria de operaciones consisten en pasar una función a una transormación o una acción
- Las funciones pueden ser
 - Declaradas de forma explicita
 - Pasadas inline
 - Python usa la keyword lambda

#Python

- Scala usa la sintaxis =>
- Java usa function classes o lambdas (Java 8)

```
RDD.filter(function)
```

```
def containsMSTag(txt):
    return "#ms" in txt

msTwts = txtRDD.filter(containsMSTag)
```

```
msTwts = txtRDD.filter(lambda txt: "#ms" in txt)

//Scala
msTwts = txtRDD.filter(txt => txt.contains("#ms")
```

TRANSFORMACIONES COMUNES

- filter: Crea un RDD filtrado
- flatMap: Aplica una function a cada elemento, retornando multiples elementos a un nuevo RDD
- map: Aplica una function a cada element, retornan un elemento a un nuevo RDD
- reduceByKey: agrega valores por cada clave en un RDD clave-valor

```
txt = sc.parallelize(["the owl and the
pussycat", "went to sea"])
       {["the owl and the pussycat"], ["went to sea"]}
owlTxt = txt.filter(lambda t: "owl" in t)
             {["the owl and the pussycat"]}
words = owlTxt.flatMap(lambda t: t.split(" "))
       {["the"], ["owl"], ["and"], ["the"], ["pussycat"]}
kv = words.map(lambda key: (key, 1))
   {["the",1], ["owl",1], ["and",1], ["the",1], ["pussycat",1]}
counts = kv.reduceByKey(lambda a, b: a + b)
       {["the",2], ["owl",1], ["and",1], ["pussycat",1]}
```

ACCIONES COMUNES

- reduce: Agrega los elementos de un RDD utilizando una función con dos argumentos
- count: Devuelve el numero de elementos del RDD
- first: Devuelve el primer element del RDD
- collect: Devuelve el RDD como un array
- saveAsTextFile: Almacena el RDD como un fichero de texto en el path proporcionado

```
nums = sc.parallelize([1, 2, 3, 4])
              {[1], [2], [3], [4]}
nums.reduce(lambda x, y: x + y)
                     9
nums.count()
                     4
nums.first()
nums.collect()
                 [1, 2, 3, 4]
nums.saveAsTextFile("/results")
             /results/part-00000
```

DESPLEGANDO JOBS

 Los Jobs se envían al clúster mediante una llamada parametrizada a spark-submit

./bin/spark-submit

--class

org.apache.spark.examples.SparkPi

--master local[8]

/path/to/examples.jar 100

- --class: El punto de entrada de la aplicación(e.g. org.apache.spark.examples.SparkPi)
- --master: La URL del cluster(e.g. spark://23.195.26.187:7077)
- --deploy-mode: Para desplegar el job en los worker nodes (cluster) o desplegarlo de manera local (client)
- --conf: Configuración arbitraria de Spark, el format es clave-valor key=value format. Si contiene espacios el valor, usar comillas ".

 Ejemplo: "key=value foo"
- application-jar: Ruta hacia la aplicación que se va a ejecutar. Esta aplicación debe ser autocontenida, es decir, todas las dependencias deben estar dentro del jar. Esta ruta debe ser visible desde cualquier parte del cluster, como por ejemplo, un ruta a HDFS (hdfs://) que está presente en todos los nodos
- **application-arguments:** En caso de que existan, argumentos que se le pasen al punto de entrada de la aplicación

plain concepts

SPARK

MACHINE LEARNING

MACHINE LEARNING

Algoritmos para detector patrones *interesantes* en los datos.

Inteligentes y completamente automáticos (¡que más quisiéramos!)

MACHINE LEARNING

ESCENARIOS COMUNES

Dominio	Escenarios
Servicios Financieros	Modelado de Riesgos
	Análisis de Amenazas y Detección de Fraude
Media y Entretenimiento	Publicidad dirigida
	Motores de Recomendaciones
Comercio	Análisis de Sentimiento
	Analisis de Transacciones en Punto de Venta
Telecomunicaciones	Análisis de CDRs (Call Detail Records)
Gobierno	Monitorización medioambiental
	Congestión y re-routing de trafico
Sanidad	Investigación (Genomica, Cancer, etc)
	Detección temprana de pandemias
Ingeniería	Mantenimiento Predictivo

ANÁLISIS

GRIPE 2009

Sources: http://www.google.org/flutrends/us. CDC (Livet data from http://gis.cdc.gov/group/flutrends/boord.html, Cook et al. (2011) Assessing Google Flu Trends Performance in the United States during the 2009 influenza Virus A (HINS) Pandemic. PLoS CNE (68): e29820. doi: 10.1371/journal.pore.0023610.

Data as of Jan. 12, 2013. Keith Winstein (keithw@rett.edu)

CORRELACION != CAUSALIDAD

Fuente: http://www.tylervigen.com

VOLVIENDO A ML, ¿LO NECESITAMOS?

¿Tenémos preguntas de negocio para las que no tengamos respuestas? ¿Tenémos los datos para responderlas?

EL PROCESO

LAS PERSONAS INVOLUCRADAS

¿POR DONDE EMPEZAMOS?

EJEMPLO: DETECCION DE FRAUDE

HERRAMIENTAS

"2014 Data Science Salary Survey"
[O'Reilly]

MIS HERRAMIENTAS

Principales

- SQL Server
- Excel + PowerBI
- AzureML
- R (con Rstudio y Revo)
- Hadoop (Hive y Spark)

Secundarias

• Python + Pandas

No, si puedo evitarlo:)

- Mahout
- SAS
- SPSS

CONCEPTOS FUNDAMENTALES

CLASES DE PROBLEMAS DE ML

Clasificación

- · Asignar una categoria
- Ej: Restaurante (Chino | Indio | Italiano | Japo)

Regresión

- · Predicción de un valor real para cada elemento
- Ej: valor de una compra, una temperatura, etc.

Ranking

- Ordenar los elementos de acuerdo a un criterio
- Ej: resultados de una busqueda en la web

Clustering

- Particionado de los elementos en grupos heterogeneos
- Ej: clustering de posts de twitter posts por temática

Reducción de Dimensionalidad

- Transformación de una representación inicial en una representación de menor dimensionalidad
- Ej: preprocesado de imagines, reconocimiento de voz, etc.

SPARK MLIB ALGORITHMS

- Basic stats
 - Summary stats
 - Correlations
 - Stratified sampling
 - Hypothesis testing
 - Random data generation
- Classification
 - Linear models (SVMs, logistic, linear)
 - Naive Bayes
 - Decision trees
 - Ensemble of tres
 - Random forests
 - Gradient-boosted tres
- Simulation
 - Montecarlo

- Collaborative clustering
 - Alternating least squares
- Clustering
 - K-means
 - Gaussian mixture
 - Power iteration clustering
 - Latent Dirichlet allocation
- Dimensionality reduction
 - SVD
 - PCA

TRES TIPOS

Supervisados

- Predicción
- Clasificación
- Regresión

No Supervisados

- Clustering
- Reducción de Dimensionalidad
- Relacion de Atributos / Selección de Atributos

Refuerzo

• Toma de Decisiones

• Ejemplo de análisis de explosiones de alcantarillas

· Cada observación se representa por un vector de características

Modelo de la alcantarilla:

```
      [ 5 3 120 12 1 0 ..... ] -1

      [ 0 0 89 5 1 1 ..... ] 1

      [ 1 0 20 0 0 1 ..... ] -1
```


Features, características o X Etiquetas, labels, Y

(Predictores, covariables, variables independientes)

Dado un conjunto de entrenamiento (x_i, y_i) para i=1...n, queremos crear un modelo de clasificación **f** que pueda predecir una etiqueta **y** para un valor de **x** nuevo

Modelo de la alcantarilla: [1925 15]

[1925]...
[1925]...
[Rechade instalación de eventos ario pasado
[Fechade instalación de eventos ario pasado
[Fechade instalación de eventos ario pasado
] [1925]...

- Binarios
- Multivariados
- Casos de Uso
 - Reconocimiento automatizado de escritura
 - Detección de SPAM
 - Detección de Fraudes
 - Customer Churn (fuga de clientes)
 - Reconocimiento Vocal
 - Reconocimiento de Imagenes
 - Etc.

REGRESIÓN

- Util para predecir valores reales:
 - ¿Cuantas conversions vamos a tener en esta campaña esta semana?
 - ¿Cuantas televisiones venderemos el año que viene?
 - · ¿Cuanto gana esta persona en base a su información demográfica?

· Cada observación se representa por un vector de características

Modelamos una persona así:

Features, características o X Etiquetas, labels, Y

(Predictores, covariables, variables independientes)

· Cada observación se representa por un vector de características

Modelamos una persona así:

f(x) = funcion(Número de clicks en BusinessWeek)

(Overfitting?)

f(x) = function(Número de clicks en BusinessWeek) = 5K*Número de clicks en BusinessWeek + 100K

(Underfitting?)

f(x) = functionpol(Número de clicks en BusinessWeek)

(Perfecta?)

- Salario Estimado
 - f(x) = funcion(número de visitas a sitios de muebles, número de clicks en Businessweek, número de gente distinta a la que se envía emails por día, número de compras por encima de 5K en el ultimo mes, número de visitas a aerolíneas)
- Por Ejemplo: f(x) = 3 * número de visitas a sitios de muebles +10 * número de clicks en Businessweek +100 * número de gente distinta a la que se envía emails por día +2 * número de compras por encima de 5K en el ultimo mes +10 * número de visitas a aerolíneas

OVERFITTING Y UNDERFITTING

OVERFITTING Y UNDERFITTING

OVERFITTING Y UNDERFITTING

- La navaja de Occam:
 - · Los mejores modelos son los más simples que se amolden bien a los datos

CLUSTERING

ARBOLES DE DECISION

Dia	Situación	Temperatura	Humedad	Viento	Partido
	1 Soleado	Calor	Alta	Debil	No
	2 Soleado	Calor	Alta	Fuerte	No
	3 Nublado	Calor	Alta	Debil	Si
	4 Lluvia	Templado	Alta	Debil	Si
	5 Lluvia	Frio	Normal	Debil	Si
	6 Lluvia	Frio	Normal	Fuerte	No
	7 Nublado	Frio	Normal	Fuerte	Si
	8 Soleado	Templado	Alta	Debil	No
	9 Soleado	Frio	Normal	Debil	Si
	10 Lluvia	Templado	Normal	Debil	Si
	11 Soleado	Templado	Normal	Fuerte	Si
	12 Nublado	Templado	Alta	Fuerte	Si
	13 Nublado	Calor	Normal	Debil	Si
	14 Lluvia	Templado	Alta	Fuerte	No

¿Que pasará el día 15?

Llueve, alta temperatura, alta humedad y poco viento.

Dia	Situación	Temperatura	Humedad	Viento	Partido
	1 Soleado	Calor	Alta	Debil	No
	2 Soleado	Calor	Alta	Fuerte	No
	3 Nublado	Calor	Alta	Debil	Si
	4 Lluvia	Templado	Alta	Debil	Si
	5 Lluvia	Frio	Normal	Debil	Si
	6 Lluvia	Frio	Normal	Fuerte	No
	7 Nublado	Frio	Normal	Fuerte	Si
	8 Soleado	Templado	Alta	Debil	No
	9 Soleado	Frio	Normal	Debil	Si
	10 Lluvia	Templado	Normal	Debil	Si
	11 Soleado	Templado	Normal	Fuerte	Si
	12 Nublado	Templado	Alta	Fuerte	Si
	13 Nublado	Calor	Normal	Debil	Si
	14 Lluvia	Templado	Alta	Fuerte	No

Datos de Entrenamiento:14 filas

Dia	Situación	Temperatura	Humedad	Viento	Partido
	1 Soleado	Calor	Alta	Debil	No
	2 Soleado	Calor	Alta	Fuerte	No
	3 Nublado	Calor	Alta	Debil	Si
	4 Lluvia	Templado	Alta	Debil	Si
	5 Lluvia	Frio	Normal	Debil	Si
	6 Lluvia	Frio	Normal	Fuerte	No
	7 Nublado	Frio	Normal	Fuerte	Si
	8 Soleado	Templado	Alta	Debil	No
	9 Soleado	Frio	Normal	Debil	Si
	10 Lluvia	Templado	Normal	Debil	Si
	11 Soleado	Templado	Normal	Fuerte	Si
	12 Nublado	Templado	Alta	Fuerte	Si
	13 Nublado	Calor	Normal	Debil	Si
	14Lluvia	Templado	Alta	Fuerte	No

Datos de Entrenamiento:

9 SI 5 NO

SUPPORT VECTOR MACHINES

CLASIFICACION BINARIA

MARGEN DE CLASIFICACION

ERROR

SVM

- Es básicamente un problema de optimización
- La idea es buscar el plano que divida a las dos clases y al mismo tiempo maximizar la distancia a cada uno de los puntos más cercanos a cada lado del plano
- Si conseguimos el plano perfecto, se le llama "perceptron de estabilidad optima"
- Recordad que se está haciendo una simplificación (2 clases, un plano)
- En realidad nos referimos al plano como hiperplano

VENTAJAS DE SVM

- Maximizando el margen se reduce el overfitting
- Eficiente: O(n3*m)
- Sirve para escenarios lineales y no lineales

AZURE ML

AZUREML

AZUREML

- Objetivo: Reducir la complejidad
- Accesible a través del navegador
- Trabajo colaborativo a través del Azure Workspace
- Workflow visual
- Gran cantidad de algoritmos excelentes de ML
- Extensible gracias al soporte para R

EASY TO USE

POSIBILIDAD DE USAR R

■ Execute R Script

```
R Script
 4 #generate binary variables
 6 is_highAmount = df$transactionAmountUSD > 150
bVars.df = as.data.frame(is_highAmount)
 9 #addresss mismatch flags
10 bVars.df$acct billing address mismatchFlag = as.character(df$pa
11 bVars.df$acct_billing_postalCode_mismatchFlag = as.character(d
12 bVars.df$acct_billing_country_mismatchFlag = as.character(df$pa
13 bVars.df$acct billing name mismatchFlag = as.character(df$paym
15 bVars.df$acct shipping address mismatchFlag = as.character(df$:
16 bVars.df$acct_shipping_postalCode_mismatchFlag = as.character(
17 bVars.df$acct shipping country mismatchFlag = as.character(df$:
19 bVars.df$shipping_billing_address_mismatchFlag = as.character(
20 bVars.df$shipping_billing_postalCode_mismatchFlag = as.characte
21 bVars.df$shipping_billing_country_mismatchFlag = as.character(
23 data.set = bVars.df
Random Seed
R Version
CRAN R 3.1.0
```

TRAINING A MODEL?

- Evaluate
- Initialize Model
- Anomaly Detection
- Classification

- Clustering
- **Regression**
- Score
- → Train

Y COMO USO ESTO EN MI PROYECTO?

· Via REST api, se pueden consumir los servicios de Azure ML

PLANES

Quick Evaluation

Guest Workspace

8-hour trial

No sign-in required.

Enter

- No hassle instant access
- Stock sample datasets
- ML models built in minutes
- Full range of ML algorithms

Most Popular

Free Workspace

\$0/month

Don't already have a Microsoft account? Simply sign up here.

Sign In

- Free access that never expires
- 10 GB storage on us
- R and Python scripts support
- Predictive web services

Enterprise Grade

Standard Workspace

\$9.99/month

Azure subscription required
Other charges may apply. Read more.

Create Workspace

- Full SLA Support
- Bring your own Azure storage
- Parallel graph execution
- Elastic Web Service endpoints

plain concepts

AZURE ML

SPARK ML

SPARK MACHINE LEARNING

WHAT IS SPARKML?

- Es una librería de Machine Learning que viene con Spark
- Viene incluida en la instalación de Spark
- Se puede programar con Scala, Java y Python
- Viene con una serie de algoritmos comunes incluidos:
 - Clasificación, regresión, clustering
 - Filtrado colaborativo, reducción de dimensionalidad

WORKFLOW USUAL

- Paso 1: Carga los datos
- Paso 2: Prepara los datos
- Paso 3: Entrénalos
- Paso 4: Predice

PASO 1: CARGA DE DATOS

 Usando SparkSQL podemos cargar nuestros datos de manera sencilla:

```
df= sqlContext.read
.format("com.databricks.spark.csv")
.option("header","true")
.option("inferSchema","true")
.load("yourFolder/foo.csv")
```


PASO 2: PREPARACIÓN DE LOS DATOS

- En este paso se pueden realizar acciones intermedias para preparar los datos como pueden ser:
 - Conversiones de fechas
 - Convertir cadenas a valores numéricos
 - Concatenar campos
 - Extraer features
 - Etc

PASO 3: ENTRENAR EL MODELO

- La complejidad de este paso fluctuarán en función de lo que se quiera hacer, pero SparkML trae un conjunto de técnicas de ML comunes para trabajas con ellas
- Por ejemplo, para un Decision Tree simplemente hay que llamar a la función *DecisionTreeClassifier* con los parámetros pertinentes.

PASO 4: PREDECIR

- Predecir también bastante sencillo (siempre dependiendo de lo que se quiera hacer)
- Un ejemplo: model.transform(df).select("prediction", "category-index").take(15)

EL CONCEPTO DE PIPELINE

 Los pasos descritos anteriormente han sido implementados en SparkML a través de la abstracción conocida como *Pipeline*

• El pipeline empieza en el paso 1 y acaba en el 3, dejando listo el sistema para hacer predicciones

plain concepts

SPARKML

¿PREGUNTAS?

plain concepts

EJERCICIO PRÁCTICO

INSTALAR ANACONDA

INSTALAR ANACONDA

INSTALAR ANACONDA

Cluster 1			
Parcel Name	Version	Status	Actions
Anaconda	2.5.0	Available Remotely	Download

Cluster 1			
Parcel Name	Version	Status	Actions
Anaconda	2.5.0	Downloaded	Distribute ▼

Cluster 1				
Parcel Name	Version	Status	Actions	
Anaconda	2.5.0	Distributed	Activate ▼	

GRACIAS

plain concepts