Chapitre 8

Intégrales et primitives

1 Aire sous une courbe

Soit f une fonction **continue et positive** sur un intervalle [a; b] et C_f sa courbe représentative. La **mesure** de l'aire, <u>sous</u> la courbe C_f entre les abscisses a et b est donné par :

 $\mathcal{A} = \int_a^b f(t) dt$, qui est l'aire de la surface en rose.

2 Primitives

Théorème fondamental

Soit une fonction f continue et positive sur un intervalle [a, b].

La fonction F définie par : F(x) = f(t) dt est dérivable sur

$$[a,b]$$
 et $F'=f$

Primitives

- · F est une primitive de f sur un intervalle I si F est dérivable et si $\forall x \in I$, on a : F'(x) = f(x)
- · Si F_0 est une primitive de f sur un intervalle I alors toutes les primitives de f sur I sont de la forme :

$$F(x) = F_0(x) + C$$

où C, est une constante réel.

- · Il existe une unique primitive F de f sur un intervalle I telle que pour les réels x_0 et y_0 , on a : $F'(x_0) = y_0$
- Toute fonction continue sur un intervalle I, admet des primitives.

Si F est une primitive quelconque d'une fonction f continue sur un intervalle I, alors pourtous réels a et b de I on a :

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

3 Calcul de primitives

Fonction	Primitive	Intervalle
f(x)=k	$F(x)=\mathbf{k}x$	R
f(x)=x	$F(x) = \frac{x^2}{2}$	R
$f(x)=x^n$	$F(x) = \frac{x^{n+1}}{n+1}$	R
$f(x) = \frac{1}{x}$	$F(x) = \ln x $	$R_{+}^{*}ou$ R_{-}^{*}
$f(x) = \frac{1}{x}$ $f(x) = \frac{1}{x^n} avec \ n \neq 1$	$F(x) = -\frac{1}{(n-1)x^{n-1}}$	$R_{+}^{*}ou R_{-}^{*}$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$	R_+^*
$f(x)=\sin(x)$	$F(x) = -\cos(x)$	R
f(x) = cos(x)	$F(x) = \sin(x)$	R
$f(x) = \cos(x)$ $f(x) = e^x$	$F(x) = e^x$	R

Recherche d'une primitive

Pour les fonctions usuelles, on utilise directement les formules.

Pour **autres** fonctions, il faut d'abord identifier la forme qui ressemble plus à la fonction. Si on a la forme exacte, on applique la formule correspondante avec assez de subtilité.

Dans **le cas contraire**, on écrit la forme exacte qu'il faudrait pour la fonction f, par une transformation juste de l'expression.

Exemples:

- Soit f définie sur] -2; $+\infty$ [par $f(x) = \frac{1}{(3x+6)^2}$ On pense à la forme $\frac{U'}{U^n}$ avec n=2 dont une primitive est $\frac{-1}{U}$ \Rightarrow On écrit $f(x) = \frac{1}{3} \times \frac{3}{(3x+6)^2}$, une primitive de f est F définie par $F(x) = \frac{1}{3} \times \frac{-1}{3x+6}$
- Soit g définie sur]0; $+\infty$ [par $g(x) = \frac{\ln x}{x}$] \Rightarrow La fonction g est de la forme u'u donc une primitive est $\frac{1}{2} \times u^2$ d'où $G(x) = \frac{1}{2} \times (\ln x)^2$

D'où ce Calcul Intégral

$$\int_{1}^{e} \frac{\ln x}{x} dx = \left[\frac{\ln^{2} x}{2} \right]_{1}^{e} = \frac{\ln^{2} e}{2} - \frac{\ln^{2} 1}{2} = \frac{1}{2}$$

Propriétés de l'intégrale 4

- On a: $\int_a^a f(x)dx = 0$ et $\int_b^a f(x)dx = -\int_a^b f(x)dx$
- $\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$ c'est la **relation de Chasles** $\int_a^b (af(x) + bg(x))dx = a \int_a^b f(x)dx + b \int_a^b f(x)dx$ Linéarité

Sur un intervalle [a; b]

- Si $f(x) \ge 0$ alors $\int_a^b f(x) dx \ge 0$
- Si $f(x) \ge g(x)$ alors $\int_a^b f(x)dx \ge \int_a^b g(x)dx$
- Si $m \le f(x) \le M$ alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$ Ce s'appelle l'inégalité de la Moyenne

Valeur moyenne

Si f est continue sur [a; b], la valeur moyenne μ de f sur [a; b] est égale à $\mu = \frac{1}{h-a} \int_a^b f(x) dx$