Intelixencia Artificial [G4012328]

P3.1. Práctica de Regresión Lineal

Curso 2023 / 2024

3º Grao en Enx. Informática

José María Alonso Moral

Josemaria.alonso.moral@usc.es

https://citius.gal/team/jose-maria-alonso-moral

Escola Técnica Superior de Enxeñaría (ETSE)

Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS)

Universidade de Santiago de Compostela (USC)

- ☐ Aprender la función que mejor represente los datos disponibles
 - > Datos tabulares etiquetados: Entrada versus Salida
 - Validación: Entrenamiento vs Test
- Notación
 - m = número de ejemplos de entrenamiento
 - x = valores de entrada / carácterísticas
 - y = valor de salida / respuesta
 - > (x, y) -par entrada-salida genérico
 - > (xi, yi)-par entrada-salida iésimo
- MIMO: Multiple-inputs, Multiple-outputs
- MISO: Multiple-inputs, Single-output

Función Lineal

$$y=h_{ heta}(x)=(heta_0+ heta_1x)=Ax+B$$

$$\uparrow \qquad \uparrow \qquad \qquad B=y-Ax$$
Valor en el Origen Gradiente $A=(y-B)/x$

- Aprendizaje de la Función Lineal
 - Guiado por una función de coste:
 - Absolute Error

$$h_{\Theta}(x^{(i)}) - y^{(i)}$$

- MEA: Mean Absolute Error
- Square Error

$$\left(h_{\Theta}(x^{(i)})-y^{(i)}\right)^2$$

- RMSE: Root Mean Square Error
- Objetivo de optimización: Minimizar el error

- Aprendizaje de la Función Lineal por Descenso de Gradiente
 - Problema multivariable

$$h_0(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n$$

 $h_0(x) = \theta^T X$

$$J(\Theta_0, \Theta_1, ..., \Theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\Theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_{\theta}(x) - y)^2$$

Aprendizaje Supervisado: Ejemplo

Viviendas

Aprendizaje Supervisado: Ejemplo (Outliers)

Viviendas

https://www.kaggle.com/datasets/crawford/80-cereals

Entradas

- name: Name of cereal
- mfr (Manufacturer of cereal)
 - A = American Home Food Products; G = General Mills; K = Kelloggs; N = Nabisco; P = Post; Q = Quaker Oats; R = Ralston Purina
- type: cold / hot
- calories: calories per serving
- protein: grams of protein
- fat: grams of fat
- sodium: milligrams of sodium
- fiber: grams of dietary fiber
- carbo: grams of complex carbohydrates
- sugars: grams of sugars
- potass: milligrams of potassium
- **vitamins:** vitamins and minerals 0, 25, or 100, indicating the typical percentage of FDA recommended
- **shelf:** display shelf (1, 2, or 3, counting from the floor)
- weight: weight in ounces of one serving
- cups: number of cups in one serving

Salida

rating: a rating of the cereals (Possibly from Consumer Reports?)

Construir un modelo de Regresión Lineal con 2 Entradas como variables predictoras, para predecir lo mejor posible la Salida "rating"

Referencias

- ☐ Kaggle (https://www.kaggle.com/)
- Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", 4th US Ed.
 - https://aima.cs.berkeley.edu/
 - https://github.com/aimacode/aima-python
- Aula Virtual: "Aprendizaxe automática / Fundamentos e Regresión Lineal" (Senén Barro Ameneiro)