

A/LNMIIT/B.Tech/C/IC/2017-18/ODD/MTH102/MT

The LNM Institute of Information Technology, Jaipur Mathematics-I Mid Term

Duration: 30 mins.

Max.Marks: 10

PART-A

	Submit Part-A within 30 minutes of commencement of examination.
Nam	e: Roll No.: Tutorial Section:
wro	TE: Encircle the most appropriate answer. There is a negative marking of 0.25 mark for each answer. Each question carries 1 mark. Overwriting and cutting shall be treated as a wrong wer and hence there shall be negative marking for these as well.
1.	Let (x_n) be a sequence such that the subsequences (x_{2n}) and (x_{2n+1}) converges to the same limit l . Then the sequence (x_n)
2.	(a) is not bounded. (b) \checkmark converges to l . (c) converges to l only if $l=0$. (d) may not converge to l . The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} 0, & x \in \mathbb{Q} \\ x, & x \notin \mathbb{Q}. \end{cases}$ is continuous on
	(a) \mathbb{R} . (b) \mathbb{Q} . (c) $\sqrt{\{0\}}$. (d) the set of irrational numbers. Let (x_n) be a sequence of real numbers. Then consider the statements $(p)(x_n)$ is convergent. $(q)(x_n)$ is convergent.
4.	Then (a) $\checkmark(p) \Rightarrow (q)$. (b) $(q) \Rightarrow (p)$. (c) $(p) \Longleftrightarrow (q)$ (d) None of the above. Let
	$f(x) = \begin{cases} x x , & x \neq 0 \\ 0, & x = 0. \end{cases}.$
5.	Then (a) f is discontinuous at $x=0$. (b) f is not differentiable at $x=0$. (c) \checkmark f' is not continuous at $x=0$. (d) f' is continuous at $x=0$. For a continuous function $f:[0,1)\to[0,\infty)$ consider the following statements: (i) $f([0,1))$ must be an interval. (ii) $f([0,1))$ must be a bounded subset of \mathbb{R} .
6	Then $(a)\checkmark(i)$ is true, (ii) is false. (b) (i) is false, (ii) is true. (c) (i) , (ii) are true. (d) (i) , (ii) are false.
	Let (x_n) be a bounded above sequence of real numbers. Then (x_n) is convergent if it (a) is bounded below. (b) \checkmark is increasing. (c) is decreasing. (d) has a convergent subsequence.
7.	The series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges
	(a) for all $x \in \mathbb{R}$. (b) \checkmark only for all $x \in [-1,1)$. (c) only for all $x \in (-1,1)$ (d) only at $x = 0$. Suppose $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function such that $ f(x) - f(y) \le 5 x - y $ for all $x, y \in \mathbb{R}$. Then f is (a) \checkmark continuous. (b) bounded. (c) increasing. (d) differentiable.
	The equation $x^2 - \cos x = 0$ has (a) no real roots. (b) exactly one real root. (c) \checkmark exactly two real roots. (d) infinitely many real roots. Let (a_n) and (b_n) be two sequences of real numbers such that $\lim_{n\to\infty} a_n = 1$ and $\lim_{n\to\infty} b_n = -1$. Then the sequence (c_n) where $c_n = a_{2n} + b_{2n+1}$ $n \in \mathbb{N}$,
	(a) converges to 1. (b) \checkmark converges to 0. (c) converges to 2. (d) does not converge.