Ensemble learning

Victor Kitov v.v.kitov@yandex.ru

Yandex School of Data Analysis

Ensemble learning

Definition 1

Ensemble learning - using multiple machine learning methods for a given problem and integrating their output to obtain final result.

Synonyms: committee-based learning, multiple classifier systems.

Applications:

- supervised methods: regression, classification
- unsupervised methods: clustering

Ensembles use cases

- solving C class classification with many binary classifiers
- underfitting, high model bias
 - existing model hypothesis space is too narrow to explain the true one
 - different oversimplified models have bias in different directions, mutually compensating each other.
- overfitting, high model variance
 - avoid local optima of optimization methods
 - too small dataset to figure out concretely the exact model hypothesis
- when task itself promotes usage of ensembles with features of different nature
 - E.g. computer security:
 - multiple sources of diverse information (password, face detection, fingerprint)
 - different abstraction levels need to be united (current action, behavior pattern during day, week, month)

Table of Contents

- Accuracy improvement demos
 - Accuracy improvement for classification
 - Accuracy improvement for regression
- 2 Stacking
- Sampling ensemble methods

- Accuracy improvement demos
 - Accuracy improvement for classification
 - Accuracy improvement for regression

Classifier 1

Feature 1 5/17

Feature 1 5/17

Classifier 1 and classifier 2 combined using AND rule

Feature 1 5/17

Motivation for ensembles

- Consider M classifiers $f_1(x), ... f_M(x)$, performing binary classification.
- Let probability of mistake be constant $p \in (0, \frac{1}{2})$: $p(f_m(x) = y) = p \forall m$
- Suppose all models make mistakes or correct guesses independently of each other.
- Let F(x) be majority voting combiner.
- Then $p(F(x) \neq y) \rightarrow 0$ as $m \rightarrow \infty$

- Accuracy improvement demos
 - Accuracy improvement for classification
 - Accuracy improvement for regression

Ensemble learning - Victor Kitov

Accuracy improvement demos

Accuracy improvement for regression

Regression: high variance

Ensemble learning - Victor Kitov

Accuracy improvement demos

Accuracy improvement for regression

Regression: high variance

Ensemble learning - Victor Kitov

Accuracy improvement demos Accuracy improvement for regression

Regression: high variance

Ensemble learning - Victor Kitov

Accuracy improvement demos

Accuracy improvement for regression

Regression: high variance

Regression 1 and regression 2 combined using averaging

Table of Contents

- Accuracy improvement demos
- Stacking
- 3 Sampling ensemble methods

Weighted averaging

Consider regression with K predictor models $f_k(x)$, k = 1, 2, ...K. (Alternatively we may consider K discriminant functions in classification)

Weighted averaging combiner

$$f(x) = \sum_{k=1}^{K} w_k f_k(x)$$

Naive fitting

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{N} \mathcal{L}(y_i, \sum_{k=1}^{K} w_k f_k(x_i))$$

will overfit. The mostly overfitted method will get the most weight.

Linear stacking

- Let training set $\{(x_i, y_i), i = 1, 2, ...N\}$ be split into M folds.
- Denote fold(i) to be the fold, containing observation i
- Denote $f_k^{-fold(i)}$ be predictor k trained on all folds, except fold(i).

Definition

Linear stacking is weighted averaging combiner, where weights are found using

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{N} \mathcal{L}(y_i, \sum_{k=1}^{K} w_k f_k^{-fold(i)}(x_i))$$

• For decreased overfitting we may add constraints $\{w_k \geq 0\}_{k=1}^K$ or regularizer $\sum_{k=1}^K \left(w_k - \frac{1}{K}\right)^2$.

General stacking

Definition

Generalized stacking is prediction

$$f(x) = A_{\theta} \left(f_1(x), f_2(x), \dots f_K(x) \right),\,$$

where A is some general form predictor and θ is a vector of parameters, estimated by

$$\widehat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} \mathcal{L}\left(y_i, A_{\theta}\left(f_1^{-fold(i)}(x), f_2^{-fold(i)}(x), \dots f_K^{-fold(i)}(x)\right)\right)$$

- Stacking is the most general approach
- It is a winning strategy in most ML competitions.
- $f_i(x)$ may be:
 - class number (coded using one-hot encoding).
 - vector of class probabilities
 - any initial or generated feature

Table of Contents

- Accuracy improvement demos
- 2 Stacking
- Sampling ensemble methods

Bagging& random subspaces

Bagging:

- random selection of samples (with replacement)¹²
- efficient for methods with high variance w.r.t. X, Y.

Random subspace method:

- random selection of features (without replacement)
- We can apply both methods jointly
- Also we may sample different

¹what is the probability that observation will not belong to bootstrap sample?

² what is the limit of this probability with $N \to \infty$?

Random forests

Input: training dataset $TDS = \{(x_i, y_i), 1 = 1, 2, ...N\}$; the number of trees B and the size of feature subsets m. for b = 1, 2, ...B:

- generate random training dataset TDS^b of size N by sampling (x_i, y_i) pairs from TDS with replacement.
- build a tree using TDS^b training dataset with feature selection for each node from random subset of features of size m (generated individually for each node).

Output: B trees. Classification is done using majority vote and regression using averaging of B outputs.

Comments

- Random forests use random selection on both samples and features
- Step 1) is optional.
- Left out samples may be used for evaluation of model performance.
 - Out-of-bag prediction: assign output to x_i , i = 1, 2, ...N using majority vote (classification) or averaging (regression) among trees with $b \in \{b : (x_i, y_i) \notin T^b\}$
 - Out-of-bag quality lower bound for true model quality.³
- Less interpretable than individual trees
- +: Parallel implementation
- -: different trees are not targeted to correct mistakes of each other

³why *lower* bound?

Comments

- Extra-Random trees-random sampling of (feature, value) pairs
 - more bias and less variance for each tree
 - faster training of each tree
- RandomForest and ExtraRandomTrees do not overfit with increasing B
- Each tree should have high depth
 - otherwise averaging over oversimplified trees will also give oversimplified model!