TMA4180 Optimisation 1 Spring 2025

Exercise 1

Exercise 1

January 14, 2025

Problem 1.

Assume that $f, g: \mathbb{R}^d \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ are extended real valued functions and denote by $L_f(\alpha)$, $L_g(\alpha)$ for $\alpha \in \overline{\mathbb{R}}$ the level sets of f and g, respectively.

- a) Show that $L_f(\alpha) \subset L_f(\beta)$ whenever $-\infty \le \alpha < \beta \le +\infty$.
- b) Assume that $f(x) \geq g(x)$ for all $x \in \mathbb{R}^d$. Show that $L_f(\alpha) \subset L_g(\alpha)$ for all $\alpha \in \overline{\mathbb{R}}$.
- c) Define $h: \mathbb{R}^d \to \overline{\mathbb{R}}$ by $h(x) := \max\{f(x), g(x)\}$ for $x \in \mathbb{R}^d$. Show that $L_h(\alpha) = L_f(\alpha) \cap L_g(\alpha)$ for all $\alpha \in \overline{\mathbb{R}}$.

Problem 2.

For each of the following functions, check whether it is lower semi-continuous and/or coercive, and whether it admits a global minimum:

- a) $\ell \colon \mathbb{R} \to \mathbb{R}$ defined as $\ell(x) = 5x^{10} + 8x^7 9x^2 + x + c$, where $c \in \mathbb{R}$ is a constant.
- b) $m: \mathbb{R} \to \mathbb{R}$ defined as $m(x) = e^x \frac{1}{1+x^2}$.
- c) $p: \mathbb{R} \to \mathbb{R}$ defined as $p(x) = x^4 20x^3 + \sup_{k \in \mathbb{N}} \sin(k^2 x)$.
- d) $q: \mathbb{R}^2 \to \mathbb{R}$ defined as $q(x) = x_1^2(1+x_2^3) + x_1^2$.

Problem 3.

Find the gradient, Hessian, and local minimizers of the objective function f of the optimization problem $\min_{(x,y)\in\mathbb{R}^2} f(x,y)$, where $f:\mathbb{R}^2\to\mathbb{R}$ is defined as:

- a) $f(x,y) = \frac{x^2}{2} + x \cos y$.
- b) $f(x,y) = 2x^2 4xy + y^4 + 5y^2 10y$.

Problem 4.

Compute the gradient, Hessian and local minimisers of the Rosenbrock function $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$.

TMA4180 Optimisation 1 Spring 2025

Exercise 1

Problem 5.

For a matrix $A \in \mathbb{R}^{d \times d}$, we denote by

$$||A||_F := \left(\sum_{i,j=1}^d a_{ij}^2\right)^{\frac{1}{2}}$$

its Frobenius norm. Show that the optimization problem

$$\min_{\substack{A \in \mathbb{R}^{d \times d} \\ \det A > 0}} \left(\|A\|_F + \frac{1}{\det A} \right)$$

admits a global minimum.