Generalizing Biomedical Relation Classification with Neural Adversarial Domain Adaptation

Anthony Rios

Ph.D. Candidate
Department of Computer Science
University of Kentucky

Email: anthonymrios@gmail.com

Biomedical Relations: Drug-Drug Interactions

Drug-Drug Interactions

- 1.5 million adverse drug reactions (ADRs) each year (2009)
- 4 billion dollars spent each year to prevent treatable ADRs.

Biomedical Relations

• Drug-Drug Interactions

Protein-Protein Interactions

• Drug-Protein Interactions

Biomedical Relations

• Drug-Drug Interactions

• Protein-Protein Interactions

• Drug-Protein Interactions

Biomedical Relations

• Drug-Drug Interactions

• Protein-Protein Interactions

Drug-Protein Interactions

SELECT DrugA FROM myTable WHERE

 $relation = 'kills_patient'$ **AND**

DrugB = 'warfarin'

DrugA	relation	DrugB
Diflunisal	kills_patient	warfarin
nevirapine	inhibits	warfarin

SELECT DrugA FROM myTable WHERE

relation = 'kills_patient' AND

DrugB = 'warfarin'

DrugA	relation	DrugB
Diflunisal	kills_patient	warfarin
nevirapine	inhibits	warfarin

Research Question: How to collect a comprehensive database (myTable) of biomedical relations?

Read PubMed: 23 Million Indexed Citations

Goal: Extract relations from articles indexed on PubMed.

Biomedical Relation Extraction

Relation Extraction: Relation extraction is the task of automatically extracting structured information from unstructured documents.

Protein-Protein Interaction Example: Human cyclin E, a new cyclin that interacts with two members of the <u>CDC2</u> gene family

Drug-Drug Interaction Example: The invitro interaction between <u>nevirapine</u> and the antithrombotic agent <u>warfarin</u> is complex.

SUBJECT	RELATION	OBJECT		
cyclin E nevirapine	interacts_with interacts_with	CDC2 warfarin		

Challenges

Supervised Machine Learning

Covariate Shift

Domain Adaptation: Domain adaptation arises when the **source** data distribution is **different (but related)** to the **target** data distribution.

$$P(X) \neq P(X')$$
; $P(Y|X) \approx P(Y'|X')$

Unsupervised Domain Adaptation: No labeled target data.

Covariate Shift

CNNs for Relation Extraction

CNNs for Relation Extraction

The invitro interaction between nevirapine and the antithrombotic agent warfarin is complex.

Relation Extraction CNN

CNNs for Relation Extraction

The invitro interaction between nevirapine and the antithrombotic agent warfarin (Anasmol) is complex.

CNNs for Relation Extraction

Distance to E2

Relation Extraction CNN

Max-over-time Pooling

Relation Extraction CNN

Solution

Domain Adaptation

Domain Adaptation: Domain adaptation arises when the **source** data distribution is **different (but related)** to the **target** data distribution.

$$P(X) \neq P(X'); P(Y|X) \approx P(Y'|X')$$

Unsupervised Domain Adaptation: No labeled target data.

Train Model in 2 Stages

Our model uses 2 datasets for training:

- Source Dataset A labeled (maybe biased) dataset.
- Target Dataset An unlabeled dataset that is more represented of the final test examples.

Stage 1: Classification Loss

Binary Cross Entropy:

$$\textit{min}_{\theta_{C},\theta_{M}} \, \mathbb{E}_{(\mathbf{s},y) \sim \mathbf{S}} \big[- \textit{y} \, \textit{log}(\textit{C}(\mathbf{s})) - (1-\textit{y}) \, \textit{log}(1-\textit{C}(\mathbf{s})) \big],$$

Stage 2: Adversarial Domain Adaptation

Stage 2: GAN Loss

$$\begin{aligned} \textit{min}_{\theta_D} \mathbb{E}_{\mathbf{s} \sim \mathbf{S}} \left[- \textit{log}(\textit{D}(\textit{M}_{s}(\mathbf{s}))) \right] - \mathbb{E}_{\mathbf{t} \sim \mathbf{T}} \left[\textit{log}(1 - \textit{D}(\textit{M}_{t}(\mathbf{t}))) \right], \\ \textit{min}_{\theta_{\textit{M}_{t}}} \mathbb{E}_{\mathbf{t} \sim \mathbf{T}} \left[- \textit{log}(\textit{D}(\textit{M}_{t}(\mathbf{t}))) \right] \end{aligned}$$

Stage 2: GAN Loss

$$\begin{aligned} \textit{min}_{\theta_D} \mathbb{E}_{\mathsf{s} \sim \mathsf{S}} \left[- \textit{log}(\textit{D}(\textit{M}_{\mathsf{s}}(\mathsf{s}))) \right] - \mathbb{E}_{\mathsf{t} \sim \mathsf{T}} \left[\textit{log}(1 - \textit{D}(\textit{M}_{t}(\mathsf{t}))) \right], \\ \textit{min}_{\theta_{\textit{M}_{t}}} \mathbb{E}_{\mathsf{t} \sim \mathsf{T}} \left[- \textit{log}(\textit{D}(\textit{M}_{t}(\mathsf{t}))) \right] \end{aligned}$$

Results

Results

Datasets:

- A Protein-Protein Interactions
- B Protein-Protein Interactions
- C Drug-Drug Interactions

	$B \Rightarrow A$	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow B$	$A \Rightarrow C$	$C \Rightarrow A$	AVG
CNN	0.4522	0.3672	0.3975	0.2213	0.1583	0.2793	0.3126
Bi-LSTM	0.4688	0.2959	0.4087	0.1721	0.1858	0.2580	0.2982
CNN RevGrad	0.4731	0.4255	0.4196	0.3611	0.3131	0.3072	0.3833
Bi-LSTM RevGrad	0.4641	0.4011	0.3941	0.3720	0.2772	0.3529	0.3769
Adv-CNN (Ours)	0.4879	0.5413	0.4419	0.4853	0.4596	0.4471	0.4772
Adv-Bi-LSTM (Ours)	0.4851	0.5654	0.4447	0.449	0.4657	0.4344	0.4746

Table: F1-score for all pair wise combinations (source \Rightarrow target) of the three datasets

Relation Extraction

Challenges
CNNs for Relation Extraction

Results

Summary & Future Work

Biomedical Relation Extraction

Relation Extraction: Relation extraction is the task of automatically extracting structured information from unstructured documents.

Protein-Protein Interaction Example: Human cyclin E, a new cyclin that interacts with two members of the <u>CDC2</u> gene family

Drug-Drug Interaction Example: The invitro interaction between <u>nevirapine</u> and the antithrombotic agent <u>warfarin</u> is complex.

E1	E1 Type	Relation	E2	E2 Type
cyclin E nevirapine	Protein Drug	interacts_with interacts_with		Protein Drug

Covariate Shift

Domain Adaptation: Domain adaptation arises when the source data distribution is different (but related) to the target data distribution.

$$P(X) \neq P(X')$$
; $P(Y|X) \approx P(Y'|X')$

Unsupervised Domain Adaptation: No labeled target data.

Future Work: Domain Adaptation

- Simulated data to real data.
- Shift between hospital A and hospital B.
- Multi-source domain adaptation.

Future Work: Domain Adaptation

- Simulated data to real data.
- Shift between hospital A and hospital B.
- Multi-source domain adaptation.

Future Work: Domain Adaptation

- Simulated data to real data.
- Shift between hospital A and hospital B.
- Multi-source domain adaptation.

Other Areas of Research

- Extreme Multi-label Classification (10k+ classes).
- Social Medical Monitoring.

Thank You!

Email: anthonymrios@gmail.com

Code: https://github.com/AnthonyMRios/relation-extraction-rnn

Acknowledgements

