

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL ESCOLA POLITÉCNICA CURSO DE EXTENSÃO EM DATA SCIENCE

Aprendizado de Máquina Supervisionado

Avaliação de Desempenho de Modelos Supervisionados

Prof. Dr. Rodrigo C. Barros

Aula Passada

Comp. da antena

Aula de Hoje

- Protocolos para Avaliação de Desempenho
 - Holdout
 - Random Subsampling
 - Cross-Validation
 - Bootstrap
- Medidas para Avaliação de Classificadores
 - Matriz de Confusão
 - Curvas ROC

Desempenho de Modelos Supervisionados

- Espera-se de um classificador/regressor que ele apresente desempenho adequado para dados não vistos
 - Poder de generalização
- Para estimarmos de maneira correta o desempenho do modelo, precisamos seguir um <u>protocolo bem definido</u>
 - Separar dados cujo atributo alvo é conhecido em dois conjuntos mutuamente exclusivos: treinamento e teste
 - Jamais avaliar o desempenho de um modelo em dados utilizados para seu treinamento, sob pena de <u>superestimar</u> o desempenho do modelo

Protocolos para Avaliação de Desempenho

- Existem diferentes protocolos para realizar a separação dos dados disponíveis em conjuntos de treinamento e teste
 - Holdout
 - Random Subsampling
 - Cross-Validation
 - Leave-one-out
 - Bootstrap

Holdout

- Também conhecido como split-sample
- Técnica mais simples para divisão de dados
- Faz uma única partição (aleatória) da amostra em:
 - Conjunto de treinamento
 - Geralmente 1/2 ou 2/3 dos dados
 - Conjunto paras teste
 - Dados restantes

Atenção: em problemas de classificação, recomenda-se que $p_{tr}(C_j) \approx p_{test}(C_j) \ \forall C_j \in Y \ (holdout \ estratificado)$

Holdout

- Não é recomendado se dados não forem abundantes (ex: milhares de objetos)
- Caso aplicado em pequenos volumes de dados:
 - Poucos objetos são utilizados no treinamento
 - Modelo torna-se sensível à divisão realizada
 - Quanto menor o conjunto de treinamento, maior a variância (instabilidade / sensibilidade) do modelo obtido
 - Quanto menor o conjunto de teste, menos confiável é a estimativa de desempenho preditivo sobre dados não vistos
 - A solução para este cenário é utilizar métodos de re-amostragem

Métodos de Re-Amostragem

- Utilizam várias partições do conjunto original de dados para criar os conjuntos de treinamento e de teste
 - Random subsampling
 - Cross-validation
 - Leave-one-out
 - Bootstrap

Random Subsampling

- Múltiplas execuções de holdout
 - Várias partições (p) de treinamento e teste são escolhidas de maneira aleatória
 - $-X_{tr} \cap X_{test} = \emptyset$
 - Medida de erro é calculada para cada partição
 - Erro de generalização estimado é a média dos erros para as diferentes partições
- Permite uma estimativa de erro mais realista
 - Porém, não há controle do número de vezes que cada objeto é utilizado nos conjuntos de treinamento e teste

Random Subsampling

Exemplo

 Suponha a existência dos seguintes objetos com valores de atributo alvo conhecido

$$X = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(5)}, \mathbf{x}^{(6)}, \mathbf{x}^{(7)}, \mathbf{x}^{(8)}\}$$

• Random subsampling com p=3 e divisão 50%

	Treinamento	Teste	Erro
P_1	$\mathbf{x}^{(2)}, \mathbf{x}^{(4)}, \mathbf{x}^{(6)}, \mathbf{x}^{(7)}$	$\mathbf{x}^{(5)}, \mathbf{x}^{(8)}, \mathbf{x}^{(1)}, \mathbf{x}^{(3)}$	e_1
P_2	$\mathbf{x}^{(5)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(8)}$	$\mathbf{x}^{(1)}, \mathbf{x}^{(7)}, \mathbf{x}^{(6)}, \mathbf{x}^{(2)}$	e_2
P_3	$\mathbf{x}^{(3)}, \mathbf{x}^{(7)}, \mathbf{x}^{(5)}, \mathbf{x}^{(4)}$	$\mathbf{x}^{(2)}, \mathbf{x}^{(8)}, \mathbf{x}^{(1)}, \mathbf{x}^{(6)}$	e_3
	Erro de g	$\underline{e_1 + e_2 + e_3}$	
			p

- Validação cruzada
- Classe de métodos para estimativa da taxa de erro de generalização
 - k-fold cross-validation
 - Cada objeto participa o mesmo número de vezes do treinamento (k-1 vezes)
 - Cada objeto participa o mesmo número de vezes do teste (1 vez)

- O conjunto de dados é dividido em k partições mutuamente exclusivas
 - A cada iteração, k-1 partições são utilizadas para treinar o modelo
 - A partição restante é utilizada para testar o modelo
 - Erro estimado é a média dos erros das partições
 - Exemplo típico: 10-fold cross-validation

• Ex: 5-fold cross-validation

Dados Disponíveis

• Ex: 5-fold cross-validation

Para classificação, recomendado que seja estratificado!

Leave-one-out Cross-Validation

- Leave-one-out (LOO)
 - Caso particular de CV onde k = N
 - Cada iteração utiliza (N-1) objetos para treinar e apenas 1 objeto para teste
 - Assim como em k-fold CV, o erro estimado é dado pela média dos (N) erros de teste
 - Computacionalmente caro!!
 - Geralmente utilizado para pequenos conjuntos de objetos
 - Inviável para grandes conjuntos de dados
 - Gera estimativa de erro não-tendenciosa
 - Média das estimativas tende ao verdadeiro erro de generalização
 - Artigos científicos indicam que 10-fold CV aproxima LOO

- Amostragens de conjuntos de treinamento e teste com mesmo tamanho
- Equivalente a realizar 5 vezes CV de 2 folds variando o gerador de números aleatórios

```
Seja um conjunto de N objetos
Para i=1 até 5
Dividir N aleatoriamente em duas metades
Usar metade 1 para treinamento e metade 2 para teste
Usar metade 2 para treinamento e metade 1 para teste
```

- Executar mais do que 5×
 - Sobreposição dos conjuntos se torna tão grande que dificilmente adiciona nova informação
- Executar menos do que $5 \times$
 - Não haverá objetos suficientes para ajustar uma distribuição e testar hipóteses (menos do que 10 partições)

Bootstrap

- Funciona melhor que cross-validation para conjuntos muito pequenos
- Forma mais simples de *bootstrap*:
 - Em vez de usar sub-conjuntos dos dados, usa subamostras
 - Cada sub-amostra é amostrada com reposição do conjunto total de objetos
 - Cada sub-amostra tem o mesmo número de objetos do conjunto original e é utilizada para treinamento
 - Objetos restantes (não amostrados) são utilizados no teste

Bootstrap

- Se conjunto original tem N objetos
 - Amostra de tamanho N tende a ter ≈ 63,2% dos objetos originais (demais ≈ 36,8% são objetos duplicados)
- Processo é repetido b vezes
 - Resultado final = média dos b experimentos
- Existem diversas variações
 - Por exemplo, .632 bootstrap

.632 Bootstrap

- Existe intersecção entre as b sub-amostras de teste (cada sub-amostra tem $\approx 36.8\%$ dos objetos originais)
- Em vez de utilizar a média do erro nos b experimentos, ponderar o erro por sub-amostra de teste, e_i , juntamente com o erro de treinamento e_t

$$e_{0.632} = \frac{1}{b} \sum_{i=1}^{b} (0.632 \times e_i + 0.368 \times e_t)$$

Estimativa de Erro de Classificação

- Principal objetivo de um modelo supervisionado é prever com sucesso o valor de saída para objetos ainda não vistos
 - Errar o mínimo possível
- Para quantificar o desempenho preditivo (estimado) do modelo criado, existem diversas medidas na literatura
 - Cada medida tem um viés... (Teorema do NFL)
 - Para problemas de <u>regressão</u>:
 - Erro quadrático médio (com ou sem raiz)
 - Erro absoluto médio
 - ...
 - Para problemas de <u>classificação</u>:
 - Acurácia/Erro
 - Matriz de Confusão
 - Curvas PR e ROC
 - Kappa
 - ...

Taxa de Classificação Incorreta

- A medida clássica para estimar a taxa de erro de um classificador é denominada de taxa de classificação incorreta (misclassification rate), ou simplesmente erro de classificação
 - Proporção dos objetos de teste que são classificados incorretamente pelo classificador

$$erro = \frac{\#erros}{N_{teste}}$$

Usualmente é medida de forma indireta através do seu complemento,
 a taxa de classificação correta:

$$acuracia = \frac{\#acertos}{N_{teste}}$$

- Acurácia
- acuracia = (1 erro)

Acurácia

- Do inglês, Accuracy
 - Dá tratamento igual a todas as classes do problema
 - Não é uma medida adequada para medir problemas com classes desbalanceadas
 - A medida privilegia a classe majoritária
 - Na vasta maioria dos problemas desbalanceados, a classe interessante (prioritária) é a classe rara =(
 - Ex: considere um problema de 2 classes
 - Classe 1 = 9990 objetos
 - Classe 2 = 10 objetos
 - Se modelo prevê apenas classe 1, acurácia será de 9990/10000 = 99.9%
 - Note que tal modelo n\u00e3o \u00e9 sequer inteligente!!!

Tipos de Erros

- Em classificação binária, é comum nomear os objetos da classe de maior interesse de positivos (+)
 - Normalmente a classe rara ou minoritária
 - Demais objetos são nomeados negativos (-)
- Em alguns casos, os erros têm igual importância
- Em muitos casos, no entanto, erros têm prioridades distintas (custos!) considerando as possíveis consequências
 - Ex: diagnóstico negativo para indivíduo doente

Tipos de Erros

- Existem dois tipos de erro em classificação binária:
 - Classificar objeto negativo como positivo
 - Falso Positivo (FP), Alarme Falso
 - Erro do Tipo I
 - Ex: paciente diagnosticado como doente, embora esteja saudável
 - Classificar objeto positivo como negativo
 - Falso Negativo (FN)
 - Erro do Tipo II
 - Ex: paciente diagnosticado como saudável, mas está doente

- Também chamada de Tabela de Contingência
 - Permite a extração de diversas medidas de desempenho preditivo
 - Pode ser utilizada para distinguir os tipos de erros
 - Pode ser utilizada para problemas binários ou multi-classe

Classe	Classe Verdadeira		
Prevista	Α	В	С
Α	25	10	0
В	0	40	0
С	5	0	20

- Também chamada de Tabela de Contingência
 - Permite a extração de diversas medidas de desempenho preditivo
 - Pode ser utilizada para distinguir os tipos de erros
 - Pode ser utilizada para problemas binários ou multi-classe

Classe	Classe Verdadeira		
Prevista	Α	В	С
Α	25	10	0
В	0	40	0
С	5	0	20

Diagonal principal: acertos!

- Também chamada de Tabela de Contingência
 - Permite a extração de diversas medidas de desempenho preditivo
 - Pode ser utilizada para distinguir os tipos de erros
 - Pode ser utilizada para problemas binários ou multi-classe

Classe Prevista	Classe Verdadeira		
	Α	В	С
Α	25	10	0
В	0	40	0
С	5	0	20

Valores fora da diagonal principal: erros!

- Também chamada de Tabela de Contingência
 - Permite a extração de diversas medidas de desempenho preditivo
 - Pode ser utilizada para distinguir os tipos de erros
 - Pode ser utilizada para problemas binários ou multi-classe

Classe	Classe Verdadeira		
Prevista	Α	В	С
Α	25	10	0
В	0	40	0
С	5	0	20

Acurácia:
$$\frac{25+40+20}{25+40+20+10+5} = \frac{85}{100} = 0.85 \text{ ou } 85\%$$

Matriz de Confusão Binária

Classe Prevista	Classe Verdadeira	
	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Classe Prevista	Classe Verdadeira	
	Positiva	Negativa
Positiva	VP	FP
Negativa	FN	VN

Matriz de Confusão Binária

Classe Prevista	Classe Verdadeira	
	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Acurácia:

$$\frac{VP + VN}{VP + VN + FP + FN}$$

Erro:
$$\frac{FP + FN}{VP + VN + FP + FN} = (1 - acurácia)$$

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	VP	FP
Negativa	FN	VN

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	VP	FP
Negativa	FN	VN

Exercício

• Avalie os 3 classificadores abaixo:

Classe	Classe Verdadeira	
Prevista	Р	N
Р	25	10
N	45	60

Classe	Classe Verdadeira	
Prevista	Р	N
Р	70	20
N	15	30

Classe	Classe Verdadeira	
Prevista	Р	N
Р	70	95
N	30	5

Classificador 1		
Acurácia =		
Erro =		
TFN =		
TFP =		

Classificador 2		
Acurácia =		
Erro =		
TFN =		
TFP =		

Classificador 3		
Acurácia =		
Erro =		
TFN =		
TFP =		

Classe	Classe Verdadeira	
Prevista	Positiva	Negativa
Positiva	70	40
Negativa	30	60

Classe	Classe Verdadeira							
Prevista	Positiva	Negativa						
Positiva	VP	FP						
Negativa	FN	VN						

Especificidade:
$$\frac{VN}{FP + VN} = (1 - TFP)$$

Classe	Classe Verdadeira				
Prevista	Positiva	Negativa			
Positiva	70	40			
Negativa	30	60			

Classe	Classe Verdadeira						
Prevista	Positiva	Negativa					
Positiva	VP	FP					
Negativa	FN	VN					

Sensibilidade:
$$\frac{VP}{FN + VP} = (1 - TFN)$$

(Recall, Revocação, Benefício)

Classe	Classe Verdadeira				
Prevista	Positiva	Negativa			
Positiva	70	40			
Negativa	30	60			

Classe	Classe Verdadeira			
Prevista	Positiva	Negativa		
Positiva	VP	FP		
Negativa	FN	VN		

Precision x Recall

Precisão: $\frac{VP}{FP + VP}$

O que acontece se um modelo classificar todos exemplos como sendo positivos?

Classe	Classe Verdadeira					
Prevista	Positiva	Negativa				
Positiva	VP	FP				
Negativa	FN	VN				

Revocação: $\frac{VP}{FN + VP}$

Precision x Recall

Precisão: $\frac{VP}{FP + VP}$

O que acontece se um modelo classificar todos exemplos como sendo positivos?

Classe	Classe Verdadeira					
Prevista	Positiva	Negativa				
Positiva	VP	FP				
Negativa	FN	VN				

Revocação: $\frac{VP}{\cancel{FXV} + VP}$ máximo

Precision x Recall

O que acontece se um modelo classificar todos exemplos como sendo positivos?

Classe	Classe Verdadeira					
Prevista	Positiva	Negativa				
Positiva	VP	FP				
Negativa	FN	VN				

Revocação: $\frac{VP}{PN + VP}$ máximo

F-Measure

- Média harmônica de precision e recall
 - Também conhecida como F_1 score ou F-score

$$F_1 = 2 \times \frac{precision \times recall}{precision + recall} = \frac{2}{\frac{1}{precision} + \frac{1}{recall}}$$

Resumo das Medidas Apresentadas

$$Acurácia = \frac{VP + VN}{VP + FP + VN + FN}$$

Especificidade (TVN,
$$1 - TFP$$
) = $\frac{VN}{FP + VN}$

$$\frac{Recall}{\text{(TVP, Sensibilidade,}} = \frac{VP}{FN + VP}$$
Benefício)

$$Precision = \frac{VP}{VP + FP}$$

$$Acur\'{a}cia = \frac{VP + VN}{VP + FP + VN + FN} \qquad \qquad \underbrace{Fro}_{1 - Acur\'{a}cia} = \frac{FP + FN}{VP + FP + VN + FN}$$

(Erro tipo I, Custo)
$$=\frac{FP}{FP+VN}$$

$$\frac{\text{TFN}}{\text{(Erro tipo II,}} = \frac{FN}{FN + VP}$$

$$1 - Recall)$$

$$Precision = \frac{VP}{VP + FP} \qquad F_1 = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$

Gráficos ROC

- Do inglês, Receiver Operating Characteristics
- Medida de desempenho originária da área de processamento de sinais
 - Muito utilizada na área médica (e na biologia em geral)
 - Mostra relação entre custo (TFP, Erro do Tipo I) e benefício (TVP, Recall)
 - Lembre-se que:
 - TFP é a taxa de alarmes falsos (erros na classe negativa, Erro do Tipo I)
 - TVP é a taxa de acertos na classe positiva (1 Erro do Tipo II)

Imagine a existência de três modelos:

Gráficos ROC

Resumindo:

- Classificador ideal mais a noroeste
- Classificadores próximos ao canto inferior esquerdo são conservadores
 - Apenas detectam a classe positiva com forte evidência
 - Portanto, cometem poucos FPs
- Classificadores próximos ao canto superior direito são liberais
 - Detectam a classe positiva com pouca evidência
 - Correm o risco de alta taxa de alarme falso
- Classificadores ao redor da linha central tem comportamento similar ao esperado de classificação aleatória

Gráficos ROC

- Alguns modelos possuem saída discreta
 - Árvores de Decisão, regras, SVMs...
 - Atribuem cada objeto a uma das classes
 - Produzem um único ponto no gráfico ROC
- Outros modelos geram como saída um escore (e.g., probabilidade) associado a cada classe
 - Naïve Bayes, Redes Neurais...
 - Permitem gerar uma curva no gráfico ROC
- Curvas ROC permitem uma melhor comparação de classificadores
 - São insensíveis a mudanças na distribuição das classes no conjunto de teste

- Algoritmos que geram escores:
 - Diferentes valores de limiar para os escores associados à classe positiva podem ser utilizados para gerar um classificador (modelo)
 - Cada valor de limiar gera diferentes valores de TVP e TFP, correspondendo a um ponto distinto no gráfico ROC
 - Ligação (interpolação) dos pontos gera uma curva ROC

- 8 limiares
 utilizados gerando
 8 pontos no
 gráfico ROC
- Os pontos são interpolados para gerar a curva ROC

Objeto	Classe Real	Escore (Classe +)
$\mathbf{x}^{(6)}$	+	0.9
$\mathbf{x}^{(3)}$	+	0.8
$\mathbf{x}^{(2)}$	_	0.7
${\bf x}^{(9)}$	+	0.6
$\mathbf{x}^{(5)}$	+	0.6
$\mathbf{x}^{(1)}$	_	0.5
$\mathbf{x}^{(7)}$	_	0.3
$\mathbf{x}^{(8)}$	_	0.2
$\mathbf{x}^{(4)}$	_	0.2
${\bf x}^{(10)}$	_	0.1

- Ordenar objetos em ordem decrescente de escore para a classe positiva (+)
- 2. Para cada limiar de decisão θ :
 - i. Classificar todos os objetos
 - ii. Calcular VP, VN, FP, FN
 - iii. Calcular TVP e TFP e plotar ponto no gráfico ROC

$$Classe = \begin{cases} escore \ge \theta : + \\ escore < \theta : - \end{cases}$$

Tan et al. 2005

	Class	+	-	+	-	-	-	+	-	+	+	
Thresho	ld≥	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
\rightarrow	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
\longrightarrow	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

- Algoritmos que geram valores discretos:
 - Podem ser modificados para gerar escores
 - Para ADs, pode se utilizar a fração dos objetos de treinamento positivos do nó folha correspondente como escore
 - Para k-NN, pode se utilizar a **fração dos** k **vizinhos** mais próximos que pertencem à classe **positiva** como **escore**
 - Para SVMs, pode se utilizar a distância normalizada do objeto ao hiperplano separador como escore
 - **—** ...
 - Podem ser combinados em comitês
 - Algoritmo é executado sobre amostragens do conjunto de treinamento, gerando múltiplos modelos
 - − Cada modelo prevê uma das duas classes (+ ou −)
 - O escore será a fração dos modelos que previram a classe positiva

- Fornece uma estimativa do desempenho de classificadores
- Valor contínuo no intervalo [0, 1]
 - Quanto maior melhor
 - Adição de áreas de sucessivos trapézios
- É possível provar que a AUC equivale à probabilidade do modelo atribuir um escore $P(+ \mid \mathbf{x})$ maior a um objeto positivo escolhido aleatoriamente do que a um objeto negativo escolhido aleatoriamente

Área Sob Curvas ROC

- Nota 1: um modelo com maior AUC pode apresentar
 AUC pior em trechos da curva...
 - AUC não deve ser vista como critério absoluto
 - Deve ser vista como medida de desempenho auxiliar as demais, com suas vantagens e desvantagens

- Modelos similares em desempenho preditivo
 - M₁é melhor para cenários conservadores
 - M₂ é melhor para cenários liberais

Nota 2:

- Para maior confiabilidade da análise, calcula-se a AUC utilizando-se algum dos procedimentos de avaliação de desempenho vistos anteriormente (e.g., cross-validation) para gerar múltiplas curvas ROC
 - AUC mais confiável é tomada a partir de algum tipo de média das AUCs previamente calculadas, ou a partir de uma curva média
 - A variância das curvas também é um fator a ser analisado

Nota 3:

 Distribuição das classes é dada pela proporção entre os valores da 1ª e 2ª colunas da matriz de confusão

Classe	Classe Verdadeira			
Prevista	Positiva	Negativa		
Positiva	VP	FP		
Negativa	FN	VN		

- Observe que a quantidade de objetos em cada classe não afeta o gráfico ROC
 - TVP e TFP são taxas e calculadas por coluna
 - Objetos da classe negativa n\u00e3o afetam o c\u00e1lculo de TVP assim como objetos da classe positiva n\u00e3o afetam o c\u00e1lculo de TFP
- Logo, gráficos ROC são insensíveis à distribuição das classes
 - Análise robusta ao problema de desbalanceamento!

Nota 4:

- Existem análises ROC para problemas multi-classe (mais do que duas classes), porém são muito mais complexas do que para problemas binários
- Por exemplo, pode-se considerar as relações ROC existentes entre cada par de classes...
- Outra opção é considerar as relações ROC existentes entre cada classe e as demais classes
 - Uma classe é vista como positiva e as demais como negativa

Sugestão de Leituras

- Seções 4.5, 4.6 (Tan et al., 2006)
- Capítulo 9 (Faceli et al., 2011)

Créditos e Referências

Slides adaptados dos originais gentilmente cedidos por:

- André Carvalho (ICMC-USP)
- Ricardo Campello (ICMC-USP)
- Tan, P. N., Steinbach, M., Kumar, V. Introduction to Data Mining. Addison-Wesley, 2005. 769 p.
- Faceli et al. Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina. LTC, 2011. 378 p.