Atomic Components

Formal syntax

Let V be a set of variables, X a set of clocks and $\mathcal{E}(V)$ the set of expressions where variables are in V. Variables can be integer or Boolean and expressions can use comparison operators $(<, \leq, >, \geq, =, \neq)$, arithmetics operators (+, -, *, / (euclidean division), %), logical Boolean operators (!, &&, ||), Boolean bitwise operators $(\tilde{\ }, \&, |, \hat{\ })$ and function calls with returned value.

A **clock constraint** over X is a conjunction of atomic constraints of the form $x \sim n$ with $x \in X, \sim \in \{\leq, <, \geq, >\}$ and $n \in \mathbb{N}$.

A guard over $V \cup X$ is a (possibly empty) conjunction of atomic guard of the form c or b or $c \vee b$ with c a clock constraint and $b \in \mathcal{E}(V)$ evaluates to a Boolean value without side effects. We write $\mathcal{G}(V,X)$ to denote the set of guards over $V \cup X$ and $\mathcal{G}(V) = \mathcal{G}(V,\emptyset)$.

An **invariant** over $V \cup X$ is defined as a guard where \sim is restricted to $\{\leq, <\}$. We write $\mathcal{I}(V, X)$ to denote the set of invariants over $V \cup X$.

An **update** on $V \cup X$ is a sequence of assignments of the form x = n or v = e or f(p) with $x \in X, n \in \mathcal{E}(V)$ evaluates to a natural number, $v \in V, e \in \mathcal{E}(V), p$ a list of variables in V and f a function that can assign values to variables in p. We write $\mathcal{F}(V,X)$ to denote the set of updates on $V \cup X$ and $\mathcal{F}(V) = \mathcal{F}(V,\emptyset)$. A **port** is a pair $\langle p, x_p \rangle$, denoted p, where:

- p is an identifier,
- x_p is a set of variables.

An atomic component is a tuple $A = \langle V_A, X_A, P_A, L_A, l_A^0, E_A, I_A \rangle$ where:

- V_A is a finite set of variables with v_0 the initial value of v for each $v \in V_A$,
- X_A is a finite set of clocks,
- P_A is a finite set of ports, each $p \in P_A$ is associated with a set of variables $x_p \subseteq V_A$,
- L_A is a finite set of locations,
- $l_A^0 \in L_A$ is the initial location,
- E_A is a finite set of transitions, each transition is a tuple $\langle l, p, g, f, l', u \rangle$ with $l, l' \in L_A, p \in P_A, f \in \mathcal{F}(V_A, X_A), u \in \{e, l\}$ an urgency (e for eager and l for lazy) and $g \in \mathcal{G}(V_A, X_A)$ if u = l and $g \in \mathcal{G}(V_A)$ otherwise,
- $I_A: L_A \to \mathcal{I}(V_A, X_A)$ is a function that assigns an invariant to each location.

We denote by $\mathcal{T}(A, p) = \{\langle l, p', g, f, l', u \rangle \in E_A \mid p' = p \}$ the set of transitions of p in A.

Semantics

A valuation $v: V \cup X \to \mathcal{D}$ is a function mapping variables in V and clocks in X to their codomain, we denote by \mathcal{D} the union of these codomains. For $\delta \in$

In
$$X$$
 to their codomain, we denote by D the union of these codomains. For $\delta \in \mathbb{R}^+$, $v + \delta$ is defined as $(v + \delta)(x) = \begin{cases} v(x) & \text{if } x \in V \\ v(x) + \delta & \text{if } x \in X \end{cases}$. For $f \in \mathcal{F}(V, X)$, $f(v)$ is the valuation v updated by f .

For two functions $v: X \to Y$ and $v': X' \to Y'$, the substitution function

noted
$$v/v': X \cup X' \to Y \cup Y'$$
 is defined as $(v/v')(x) = \begin{cases} v'(x) & \text{if } x \in X' \\ v(x) & \text{if } x \in X \setminus X' \end{cases}$
For a function $f: X \to Y$ and a set $X' \subseteq X$, the **restriction** of f to X' noted $f|_{Y'}: X' \to Y$ is defined as $f|_{Y'}(x) = f(x)$ for $x \in X'$.

 $f|_{X'}: X' \to Y$ is defined as $f|_{X'}(x) = f(x)$ for $x \in X'$.

For two sets X and Y, the set of all functions $f: X \to Y$ is denoted Y^X .

The semantics of an atomic component A is a LTS $\langle Q_A, q_A^0, \Sigma_A, \rightarrow_A \rangle$ where:

- Q_A is a set of states of the form $\langle l, v \rangle$ with $l \in L_A$ and $v \in \mathcal{D}^{V_A \cup X_A}$ a valuation of variables and clocks of A,
- q_A^0 is the initial state $\langle l^0, v_0 \rangle$ with $v_0(x) = x_0$ for each $x \in V_A$ and $v_0(x) = 0$ for each $x \in X_A$,
- Σ_A is the set of labels of the form d or $\langle p, v_p, u \rangle$ with $d \in \mathbb{R}_{>0}, p \in P_A, v_p \in P_A$ \mathcal{D}^{x_p} a valuation of variables of the port p and $u \in \{e, l\}$ an urgency
- \rightarrow_A is the transition relation defined by the rules:

PORT
$$\frac{\langle l, p, g, f, l', u \rangle \in E_A \qquad v \vDash g \qquad v' = f(v/v_p) \ (1) \qquad v' \vDash I_A(l')}{\langle l, v \rangle \xrightarrow{\langle p, v_p, u \rangle}_A \langle l', v' \rangle}$$

(1) v' is the valuation v updated by v_p then by f

DELAY
$$v' = v + \delta$$

$$\underline{v' \models I_A(l) \qquad \neg (\exists q \in Q_A, \exists p \in P_A, \exists v_p \in \mathcal{D}^{x_p} : \langle l, v \rangle \xrightarrow{\langle p, v_p, e \rangle}_A q) \ (2)}$$

$$\langle l, v \rangle \xrightarrow{\delta}_A \langle l, v' \rangle$$

(2) expresses that there is no port transition from $\langle l, v \rangle$ with an eager urgency

Composite Components

Formal syntax

Let (A_1, \ldots, A_n) be a vector of atomic components and $I \subseteq [1, n]$. A **connector** is a tuple $\gamma = \langle T_{\gamma}, S_{\gamma}, A_{\gamma} \rangle$ where:

• T_{γ} and S_{γ} are two disjoint sets of ports with $T_{\gamma} \cup S_{\gamma} = \{p_i \mid i \in I\}$ and $p_i \in P_{A_i}$ for each $i \in I$, I defines the indices of the atomics components from where the ports of the connector come and there is at most one port per atomic component in the connector,

- $\forall i \in I : (\exists \langle l, p, g, f, l', u \rangle \in \mathcal{T}(A_i, p_i) : u = e) \Rightarrow \forall j \in I \setminus \{i\}, \forall \langle l, p, g, f, l', u \rangle \in \mathcal{T}(A_j, p_j) : g \in \mathcal{G}(V_{A_j})$, i.e. if a port has an eager transition then the transitions of the other ports cannot have clocks in their guard,
- A_{γ} is a set of actions, each action is a tuple $\langle P, g, f \rangle$ with
 - $-P = \{p_j \mid j \in J\} \subseteq T_\gamma \cup S_\gamma \text{ for a } J \subseteq I \text{ where either } P \cap T_\gamma \neq \emptyset \text{ or } P = T_\gamma \cup S_\gamma, T_\gamma \text{ is a set of trigger ports that can initiate an interaction without synchronizing and } S_\gamma \text{ is a set of synchron ports that needs synchronization with other ports to initiate an interaction,}$
 - $-g \in \mathcal{G}(\bigcup_{j \in J} x_{p_j}),$
 - $f \in \mathcal{F}(\bigcup_{j \in J} x_{p_j}).$

We denote by $\mathcal{A}(\gamma) = \{P \mid \langle P, g, f \rangle \in A_{\gamma}\}$ the set of **interactions** of γ .

A **priority** model π is a partial order on a set of connector.

A composite component is tuple $C = \langle (A_1, \dots, A_n), \Gamma_C, \pi_C \rangle, n \in \mathbb{N}$ where:

- (A_1, \ldots, A_n) is a vector of atomic components with the sets in $\{V_{A_i} \mid 1 \leq i \leq n\}$ and $\{X_{A_i} \mid 1 \leq i \leq n\}$ pairwise disjoint,
- Γ_C is a set of connectors on (A_1, \ldots, A_n) ,
- π_C a priority model on Γ_C .

We denote by $\mathcal{B}(C) = \bigcup_{1 \leq i \leq n} P_{A_i} \setminus \bigcup_{\gamma \in \Gamma_C} T_{\gamma} \cup S_{\gamma}$ the set of **internal ports** of C.

Semantics

The semantics of a composite component C is a LTS $\langle Q_C, q_C^0, \Sigma_C, \rightarrow_C \rangle$ where:

- $Q_C = \prod_{1 \le i \le n} Q_{A_i}$,
- $\bullet \ q_C^0 = \langle q_{A_1}^0, \dots, q_{A_n}^0 \rangle,$
- $\Sigma_C = \mathbb{R}_{>0} \cup \left(\bigcup_{\gamma \in \Gamma_C} \mathcal{A}(\gamma) \cup \mathcal{B}(C) \right) \times \{e, l\},$
- \rightarrow_C is defined by the rules:

INTERNAL PORT

$$\frac{i \in [1, n]}{p \in \mathcal{B}(C) \cap P_{A_i} \qquad q_i \xrightarrow{\langle p, v_{\emptyset}, u \rangle}_{A_i} q'_i \qquad \forall j \in [1, n] \setminus \{i\} : q_j = q'_j}{\langle q_1, \dots, q_n \rangle \xrightarrow{\langle p, u \rangle}_{C} \langle q'_1, \dots, q'_n \rangle}$$

where v_{\emptyset} is the empty function to \mathcal{D}

INTERACTION

INTERACTION
$$I \subseteq [1, n] \qquad a = \{p_i \mid i \in I\} \land p_i \in P_{A_i} \quad \exists \gamma \in \Gamma_C : \langle a, g, f \rangle \in A_{\gamma}$$

$$v \models g \qquad \forall i \in I, \exists u_i \in \{e, l\} : q_i \xrightarrow{\langle p_i, v_{p_i}, u_i \rangle} A_i \quad q'_i \land v_{p_i} = f|_{x_{p_i}}(v) \quad (3)$$

$$u = \begin{cases} e & \text{if } \exists i \in I : u_i = e \\ l & \text{otherwise} \end{cases} \quad \forall i \notin I : q_i = q'_i$$

$$\neg (\exists \gamma' \in \Gamma_C, \exists a' \in \mathcal{A}(\gamma'), \exists u \in \{e, l\}, \exists Q \in Q_C : \gamma \prec_{\pi_C} \gamma' \land \langle q_1, \dots, q_n \rangle \xrightarrow{\langle a', u \rangle} C Q) \quad (4)$$

$$\neg (\exists \gamma' \in \Gamma_C, \exists a' \in \mathcal{A}(\gamma'), \exists u \in \{e, l\}, \exists Q \in Q_C : \gamma \prec_{\pi_C} \gamma' \land \langle q_1, \dots, q_n \rangle \xrightarrow{\langle a', u \rangle}_C Q)$$
(4)
$$\neg (\exists a' \in \mathcal{A}(\gamma), \exists u \in \{e, l\}, \exists Q \in Q_C : a \subset a' \land \langle q_1, \dots, q_n \rangle \xrightarrow{\langle a', u \rangle}_C Q)$$
(5)
$$\langle q_1, \dots, q_n \rangle \xrightarrow{\langle a, u \rangle}_C \langle q'_1, \dots, q'_n \rangle$$

where $v = v_I|_{\bigcup_{i \in I} x_{p_i}}$ with v_I defined as $v_I(x) = v_i(x)$ for each $x \in V_{A_i}$ if $i \in I$, it is the valuation of variables of the ports in a

- (3) v_{p_i} is the valuation of variables in p_i updated by f
- (4) and (5) express that there is no interaction with a higher priority or including a from $\langle q_1, \ldots, q_n \rangle$

DELAY

$$\frac{\forall i \in [1, n] : q_i \xrightarrow{\delta}_{A_i} q'_i}{\neg \left(\exists p \in \bigcup_{\gamma \in \Gamma_C} \mathcal{A}(\gamma) \cup \mathcal{B}(C), \exists Q \in Q_C : \langle q_1, \dots, q_n \rangle \xrightarrow{\langle p, e \rangle}_C Q\right) (6)}{\langle q_1, \dots, q_n \rangle \xrightarrow{\delta}_C \langle q'_1, \dots, q'_n \rangle}$$

(6) expresses that there is no internal port or interaction transition from $\langle q_1, \dots q_n \rangle$ with an eager urgency

Differences

- No hierarchy:
 - connectors have no exported port
 - components have no compound component, exported data and exported port
- No guard on priorities and only priorities on connectors:
 - atoms have no priority on ports, export data and merged ports
 - priority rules in components are in the form I < J where I and J are in the form C:* or *:* where C is a connector
- There is no sub-expression in the expressions of the interactions in connectors
- No delayable urgency, invariant from and resume
- Guard and invariant conditions are restricted to the grammar:

$$G ::= c \mid b \mid c \lor b \mid G \land G$$

$$c ::= x \sim n \mid c \wedge c$$

where b is an expression that evaluates to a Boolean value, x is a clock, $n \in \mathbb{N}, \sim \in \{<, \leq, >, \geq\}$ for guards and $\sim \in \{<, \leq\}$ for invariants

- No internal transition
- No if-then-else statement in actions
- Only Boolean and integer variables
- An eager transition has no clock in its guard and transitions in an eager interaction have no clock in their guard