Un example par jour 4.5 nonorientable closed surfaces without boundary $\widetilde{\Sigma}_{l} := \underbrace{\mathbb{RP}^{l} \# \cdots \mathbb{RP}^{l}}_{\mathbb{RP}^{l}}$

Today: X = IRIP2

nonorientable \Rightarrow Scannot be embedded in IR3 embedded in IR4. can't be realized as a Lie group.

universal cover of degree 2 $\pi:S^2 \to IRIP^2$

									_
_	η	,	2	3	4	5	6	n>1	
コーラー	πη(IRIP²)	Z/17/	Z	7	2/2/2	2/2	2/2/	$\pi_n(S^2)$	_
cellular homology $0 \longrightarrow C_1 \longrightarrow C_1 \longrightarrow C_0 \longrightarrow 0$ $Z''_{e^*} \qquad Z''_{e^*} \qquad Z''_{e^0} \qquad e'$									e' (e')
$\stackrel{e}{\longleftarrow} \stackrel{1e}{\longleftarrow} \circ$									
_	n	O	1	2	n>2				
⇒	$H_{\Lambda}(IRIP^{2})$	72	2/12	0		0			

$$0 \leftarrow Hom_{\mathbb{Z}}(C_{1}, \mathbb{Z}) \leftarrow Hom_{\mathbb{Z}}(C_{0}, \mathbb{Z}) \leftarrow 0$$

$$\mathbb{Z}^{||_{2}^{2}} \qquad \mathbb{Z}^{||_{2}^{2}} \qquad \mathbb{Z}^{||_{2}^{2}} \qquad \mathbb{Z}^{||_{2}^{2}}$$

$$2 e^{1^{*}} \leftarrow -1 e^{1^{*}}$$

$$\Rightarrow \frac{n \quad 0 \quad 1 \quad 2 \quad n > 2}{H^{n}(|R|P^{2}) \quad Z \quad 0 \quad Z_{12} \quad 0} \Rightarrow H^{*}(|R|P^{2}) = Z[x]/(2x, x^{2})$$

Let X be a topo space.

Prop. Universal coefficient thm for cohomology (Z-coefficient) natural SES

(unnatural) splits

Prop. Lemma 3.8. Let
$$A$$
 be a K -algebra, and let $(M_i)_{i \in I}$ be a family of A -modules.

There are natural isomorphisms

$$\operatorname{Ext}_A^m\left(\bigoplus_{i\in I}M_i,-\right)\to\prod_{i\in I}\operatorname{Ext}_A^m(M_i,-)$$

$$\operatorname{Ext}_{A}^{m}\left(-, \prod_{i \in I} M_{i}\right) \rightarrow \prod_{i \in I} \operatorname{Ext}_{A}^{m}(-, M_{i})$$

Cov. For Hn(X) is finitely generated for all n, e.p. if X has the homotopy type of a CW-complex with finitely many cells in each degree

we have
$$H_n(X) \stackrel{\text{torsion shift}}{\longleftrightarrow} H^n(X)$$

e.g. $H_n(X) \cong \mathbb{Z}^{bn} \oplus T_n \implies H^n(X) \cong \mathbb{Z}^{bn} \oplus T_{n-1}$

2/12

2/2/2

2/12/

Verify. a = +0 [Hatcher Ex3.8] Example 3.8. The closed nonorientable surface Nof genus g can be treated in similar fashion if we use \mathbb{Z}_2 coefficients. Using the Δ -complex structure shown, the edges a_i give a basis for $H_1(N; \mathbb{Z}_2)$, and the dual basis elements $\alpha_i \in H^1(N; \mathbb{Z}_2)$ can be represented by cocycles with values given by counting intersections with the arcs labeled α_i in the figure. Then

one computes that $\alpha_i \sim \alpha_i$ is the nonzero element of

 $H^2(N; \mathbb{Z}_2) \approx \mathbb{Z}_2$ and $\alpha_i \smile \alpha_j = 0$ for $i \neq j$. In particular, when g = 1 we have $N = \mathbb{R}P^2$, and the cup product of a generator of $H^1(\mathbb{R}P^2; \mathbb{Z}_2)$ with itself is a generator of $H^2(\mathbb{R}P^2; \mathbb{Z}_2)$.

H, (RP2, 7/22)

natural SES
$$0 \longrightarrow H_n(X) \otimes_{\mathbb{Z}} R \xrightarrow{\mu} H_n(X,R) \longrightarrow \text{Tor}_n^{\mathbb{Z}}(H_{n-1}(X),R) \longrightarrow 0$$
(unnatural) splits
$$Tor_n^{\mathbb{Z}}(M,N) = H_n(M \otimes_{\mathbb{Z}} R)$$

$$\Rightarrow$$
 $H_n(X,R) \cong H_n(X) \otimes_{\mathbf{Z}} R \oplus Tor_i(H_{n-i}(X),R)$

E_{X} .	n	0	1	2	N>2
X .	Hn (IRIP')	7/	7/127/	0	0
	Ha (RIP', IR)	IR	0	0	0
	H _h (IRIP2, C)	Э	0	0	0
	H, (IRIP2, 24,221)	74/274	2/2/2	71/27/	0

Remark. S' → RIP' is cover, but Hn(S', IR) & Hn(IRIP', IR), so for every cover we need to recompute its (co) homology group. X: topo space A: PID R: an A-module.

Prop. Universal coefficient thm for homology natural SES:

> U → ExtA (Hn-, (X,A), R) → H'(X,R) → Homy (Hn(X,A),R) → D (unnatural) splits

 $\Rightarrow H^{n}(X,R) \cong Hom_{A}(H_{n}(X,A),R) \oplus E_{Xt_{A}}(H_{n-1}(X,A),R)$

e.p. when A=Z,

 $H^n(X,R) \cong Hom_{\mathbb{Z}}(H_n(X),R) \oplus Ext_{\mathbb{Z}}(H_{n-1}(X),R)$

when A=R is a field,

 $H^{n}(X,R) \cong Hom_{R}(H_{n}(X,R),R)$

Cor. For Hn(X) is finitely generated for all n, e.p. if X has the homotopy type of a CW-complex with finitely many cells in each degree.

we have $H_1(X,F) \cong H^1(X,F)$

Rmk F field,

b; (F) = dime H; (X,F) = dime H; (X,F).

bi(2/22) \$ bi(C) but \$\chi(Z/22) = \chi(C) = V - e + f for surfaces.

Ex compute it twice!

n	0	1	2	N>2
Hn (IRIP')	Z	0	Z/2Z/	0
H"(RIP', IR)	IR	0	0	0
H"(IRIP2, C)	6	0	0	0
H"(IRIP2,74/27/)	71/271	2/12/	2/22/	0

Characteristic class I'm new in this field, so in the beginning we just pick up props special vector bundle of tautological line bundle of on IRIP tangent bundle T(IRIP)=TX and apply them.

e H'(RIP2, Z/22) $\omega(\chi') = 1 + \alpha$ Stiefel-Whitney class

w(Tx) = (1+a)3 = 1+a+a2 ∈ H'(RP2, Z/2Z) = w,2=w=1 ∈ Z/2Z

Prop. for a real v.b. }, § is orientable (w. (§) = 0

 \S is spin $\iff \omega_1(\S) = 0, \omega_2(\S) = 0$

Cor For line bundle, orientable (spin () w(() = 0 () w(() = 1 ← trivial

Cor, 82', TX is not orientable.

Thm (Pontryagin & Thom) fix a cpt smooth mfld M (without boundary), then

Cor. IRP is not a boundary.