

Closure phase interpretation using the pix2pix machine learning algorithm

Abby Morris and Tom Farr

Introduction

- Self-calibration in interferometry uses assumptions which affects the output image
- Chael et al. used a regularized maximum likelihood algorithm to image from closure phases
- We used the pix2pix algorithm developed by Isola et al. to image source structures directly from closure phases
- In this talk we will cover the various architectures used in training, how we simulated large quantities of training data, and some of the key results that were obtained.

Objectives

- To prove machine learning is a viable option for imaging source structures from plots of closure phase.
- To replace the imaging method used by Chael et al. (2018), or to reduce the number of their imaging rounds needed.

Interferometers

$$heta_{
m res} = rac{\lambda}{B_{
m max}}$$
 (1)

$$V(u,v) = \iint I(x,y)e^{-2\pi i(ux+vy)} \,\mathrm{d}x \,\mathrm{d}y \quad (2)$$

$$I_D(x,y) = I(x,y) * \iint S(u,v)e^{-2\pi i(ux+vy)} du dv$$
 (3)

UV plane coverage

UV plane coverage

Closure phase

$$\Phi_{12} = \psi_{12} + e_1 - e_2$$
 (1)

$$C_{123} = \Phi_{12} + \Phi_{23} + \Phi_{31}$$

= $\psi_{12} + \psi_{23} + \psi_{31}$ (2)

Source flux requirements

$$V(u,v) = \iint (\delta(x,y) + \alpha \delta(x - x_0, y))e^{2\pi i(ux + vy)} dx dy \quad (1)$$

$$V_{12} = 1 + \alpha e^{2\pi i(u_2 - u_1)x_0} \tag{2}$$

$$\phi_1 - \psi_{12} = \arcsin\left(\frac{1}{\alpha}\sin\psi_{12}\right) \tag{3}$$

$$C_{123} = \psi_{12} + \psi_{23} + \psi_{31} = \frac{1}{2} (\phi_1 + \phi_2 + \phi_3) = 0$$
 (4)

Machine learning

- Enables the computer to learn from data without explicit programming to do so (Arthur Samuel)
- Uses:
 - Image processing
 - Predictive models
 - Speech recognition
 - Medical diagnostics
 - Product recommendations

Conditional Generative Adversarial Networks (cGANs)

- GANs train a generator (G) against a discriminator (D)
- Loss function automatically altered for each data set
- cGANs have extra information about the images (y) inputted to G and D

pix2pix algorithm

- Created by Isola et al. (2017) using a cGAN.
- The algorithm must also minimise the L1 loss.

Architectures of pix2pix

U-Net architecture

ResNet architecture

Image generation

Pure python: image generation

Pure python: initial machine learning trial

Defining orientation and separation

Python with CASA: image generation

10 arcseconds from centre

510 arcseconds from centre

Python with CASA: image generation

Python with CASA: Parallelisation

- Production time for one image is 90 seconds
- Server has 96 cores
- Predict 10,000 images should take 8 hours
 40 minutes using 35 cores
- Actually took 69 hours and 10 minutes
- CASA has inherent parallelisation

Monitoring loss

Monitoring loss

Failed U-Net training

Sucessful U-Net training

Source separation - Results

ResNet 6 blocks

Real source structure

Source separation - Results

Generator Architecture	Correct Structure (%)	Average number of sources	Average difference in source separation (arcsec)	Average percentage difference in source separation (%)
U-Net 256	83.3	2.27	3.13	16.3
U-Net 128	0	38.93	-	-
ResNet 9 blocks	86.7	1.97	7.75	30.2
ResNet 6 blocks	83.3	2.03	5.07	21.9

Orientation results

Generator architecture	Epochs	Average source number	Proportion with 2 sources (%)	Average source separation (arcsecs)	Average difference in orientation (°)
ResNet 9 blocks	200	2.39	26	29.4	45.6
ResNet 9 blocks	400	7.62	0	-	-
U-Net 256	200	2.08	92	35.9	24.9
U-Net 256	400	2.4	68	35.3	32.2
ResNet 6 blocks	200	1.64	28	36.4	49.8
U-Net 128	200	2.72	32	40.2	50.7

- 70x70 PatchGAN discriminator architecture
- 9,899 training images, 50 test images

Examples of best orientation results

Orientation: Examples of overfitting

U-Net 256, 400 epochs

ResNet 9 blocks, 400 epochs

Errors seen in orientation images

U-Net 256, 200 epochs

U-Net 256, 400 epochs

Flux

Further improvements

- Improve source detection code
- Train to model multiple closure phase variables
- Train using noisier data
- Training with plots produced from different numbers of sources
- Investigate Variational Autoencoders (VAEs)

Conclusion

- Lots of future potential
- Saves computational power
- U-Net for varying parameters
- ResNet for constant parameters
- More work before real data

Any questions?

Special thanks to:

- Dr Neal Jackson
- Dr Philippa Hartley

Python CP generation

The pixel PatchGAN

Loss functions

$$\mathcal{L}_{\text{cGAN}}(G, D) = \mathbb{E}_{x,y}[\log D(x, y)] + \mathbb{E}_{x,z}[\log D(x, G(x, z))]. \tag{1}$$

$$\mathcal{L}_{L1}(G) = \mathbb{E}_{\mathbf{x}, \mathbf{y}, \mathbf{z}}[|x - G(y, z)|] \tag{2}$$

Source separation dataset

UV plane comparison

