

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 08

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Basic Psychological Research and Research Methods

Bayesian warm-up?

cognitive model
statistics
computing

Stan and RStan

cognitive model statistics

Steps of Bayesian Modeling, with Stan

cognitive model

computing

A data story Think about how the data might arise.

It can be descriptive or even causal.

Write a Stan program (*.stan).

Update Educate your model by feeding it the data.

Bayesian Update:

update the prior, in light of data, to produce posterior.

Run Stan using RStan (PyStan, MatlabStan etc.)

Evaluate Compare model with reality.

Revise your model.

Evaluate in RStan and ShinyStan.

McElreath (2016)

Steps of Using Stan

- I. Stan program read into memory
- 2. Source-to-source transformation into C++
- 3. C++ compiled and linked (takes a while)
- 4. Run Stan program
- 5. Posterior analysis / interface


```
data {
  int<lower=0> N;
  int<lower=0,upper=1> y[N];
parameters {
  real<lower=0,upper=1> theta;
model {
  y ~ bernoulli(theta);
```

Stan Language

model blocks

```
data {
//... read in external data...
transformed data {
//... pre-processing of data ...
parameters {
//... parameters to be sampled by HMC ...
transformed parameters {
//... pre-processing of parameters ...
model {
//... statistical/cognitive model ...
generated quantities {
//... post-processing of the model ...
```

cognitive model

statistics

REVISIT BINOMIAL MODEL

Binomial Model

cognitive model

statistics

computing

WLWWLWLW

$$p\left(w\mid N, heta
ight)=\left|egin{array}{c}N\w\end{array}
ight| heta^{w}(1- heta)^{N-w}$$

$w \sim \text{Binomial}(N, \theta)$

reads as:

w is distributed as a binomial distribution, with number of trials N, and success rate ϑ .

Graphical Model Notations

cognitive model

statistics

	continuous	discrete
unobserved	θ	δ
observed	y	N

Binomial Model

WLWWLWLW

$$p\left(w \mid N, heta
ight) = \left|egin{array}{c} N \ w \end{array}
ight| heta^w (1- heta)^{rac{N-w}{w}}$$

 $\theta \sim \text{Uniform}(0, 1)$

 $w \sim \text{Binomial}(N, \theta)$

	continuous	discrete
unobserved	θ	δ
observed	y	N

Binomial Model

statistics computing

WLWWLWLW

$$p\left(w\mid N, heta
ight)=\left|egin{array}{c}N\w\end{array}
ight| heta^{w}(1- heta)^{N-w}$$


```
data
    int<lower=0> w;
    int<lower=0> N;
parameters {
    real<lower=0,upper=1> theta;
model {
    w ~ binomial(N, theta);
```

cognitive model

statistics

computing

Running Binomial Model with Stan

.../BayesCog/02.binomial_globe/_scripts/binomial_globe_main.R

```
> R.version
R version 3.5.1 (2018-07-02)
> stan_version()
[1] "2.18.0"
```

cognitive model

statistics

computing

```
Model Summary
```

```
> print(fit_globe)
Inference for Stan model: binomial_globe_model.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
```

```
      mean
      se_mean
      sd
      2.5%
      25%
      50%
      75%
      97.5%
      n_eff
      Rhat

      theta
      0.64
      0.00
      0.14
      0.35
      0.54
      0.65
      0.74
      0.87
      1278
      1

      lp___
      -7.72
      0.02
      0.69
      -9.77
      -7.89
      -7.46
      -7.27
      -7.21
      1824
      1
```

Samples were drawn using NUTS(diag_e) at Tue Apr 09 12:44:04 2019. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Gelman-Rubin convergence diagnostic (Gelman & Rubin, 1992)

cognitive model

statistics

Diagnostics - density

cognitive model

statistics

Diagnostics

statistics
computing

MCMC

Grid Approximation

Draw a Conclusion?

computing

statistics

- W = 6 out of N = 9
- uncertainty (relative plausibility) of all ϑ values
- the relative plausibility of $\vartheta = 0.64$ is the highest, but it never rules out the possibility of ϑ being other values, e.g., 0.5, 0.75
- \rightarrow when $\vartheta = 0.5$, you may still observe 6W / 9 trials

Is Anything Missing? – NO

statistics

```
data {
    int<lower=0> w;
    int<lower=0> N;
parameters {
    real<lower=0,upper=1> theta;
model {
    w ~ binomial(N, theta);
```

```
data {
    int<lower=0> w;
    int<lower=0> N;
parameters {
    real<lower=0,upper=1> theta;
model {
    w ~ binomial(N, theta);
```