Modelowanie BPMN

Laboratorium 3

Przekształcenie i optymalizacja procesu

wersja 1.4

przygotował: dr inż. Radosław Adamus Instytut Informatyki Stosowanej PŁ

Historia zmian

Data	Wersja	Autor	Opis zmian
15.03.2013	0.1	Radosław Adamus	Utworzenie dokumentu
17.03.2013	1.0	Radosław Adamus	Pierwsza publiczna wersja dokumentu
18.03.2013	1.1	Radosław Adamus	Drobne poprawki edycyjne
17.10.2013	1.2	Radosław Adamus	Drobne poprawki edycyjne
04.03.2015	1.3	Tomasz Kowalski	Usuniecie zadania o profilu publicznym ePUAP
05.03.2016	1.4	Radosław Adamus	Usunięcie zadania samodzielnego opisu procesu

Spis treści

Cel	3
Jwagi i wskazówki	
Zadania	
1. Wyjątki biznesowe i propagacja wyjątków	
2. Optymalizacja procesu (wykorzystanie zdarzenia eskalacji oraz podprocesów zdarzeniowych	h)
	4
3. Kamień milowy	
4. Proces zakładania konta	
Jżyteczne linki	

Cel

- 1. Zdobycie umiejętności modyfikowania modeli w celu uzyskania określonych cech procesu
- 2. Zapoznanie się z mechanizmami optymalizacji procesu wykorzystujących różne narzędzia BPMN.

Uwagi i wskazówki

- 1. Opis zdarzeń znajduje się w wykładzie BPMN poziom analityczny zdarzenia
- 2. Opis rozdzielania i łączenia przepływów znajduje się w wykładzie *BPMN poziom* analityczny rozdzielanie i łączenie.
- 3. Opis wzorców obsługi wyjątków biznesowych znajduje się w wykładzie *BPMN poziom* analityczny wzorce obsługi wyjątków.

Zadania

1. Wyjątki biznesowe i propagacja wyjątków

Rysunek 1: Proces obsługi zamówienia (plik lab3 exc1.bpmn)

Przekształć model pokazany na rysunku 1 tak, aby:

- 1. Klient mógł anulować zamówienie w dowolnym momencie po jego wprowadzeniu a przed rozpoczęciem procesu dostarczania.
- 2. Brak kredytowania był obsługiwany przez zdarzenie przyłączone typu błąd, które jest propagowane do poziomu nadrzędnego.
- 2. Wiadomość informująca klienta o braku kredytowania wysyłana była z poziomu diagramu globalnego.

2. Optymalizacja procesu (wykorzystanie zdarzenia eskalacji oraz podprocesów zdarzeniowych)

Rysunek 2: Proces przetwarzania zgłoszenia usterki (plik lab3 exc2.bpmn)

- 1. Znajdź i popraw błąd semantyczny na diagramie z rysunku 2.
- 2. Zmodyfikuj diagram w taki sposób, aby równoległa ścieżka oceny wpływu była uruchamiana warunkowo (jeżeli wymagana).
- 2. Rysunek 2 przedstawia przykładowy proces przetwarzania zgłoszenia usterki. Opis podprocesu "Rozwiąż problem" wykorzystuje bramki zrównoleglające do opisania równoległych przepływów procesu związanych z naprawą usterki oraz oceną jej wpływu na działanie systemu. Bieżące rozwiązanie powoduje, że mimo naprawienia problemu, w przypadku potrzeby wykonania pełnego audytu (który może trwać nawet tydzień), główny podproces (*Rozwiąż problem*) musi czekać na jego zakończenie. Analiza biznesowa wykazała, że takie oczekiwanie nie jest uzasadnione żadnym czynnikiem. Co więcej powoduje to opóźnienia procesu związane z późniejszym uruchomieniem procesu rozliczania naprawy.

Zmodyfikuj proces w taki sposób, aby czynność związana z audytem systemu nie powodowała opóźnień w procesie. Jednocześnie, aby podkreślić, że ścieżka oceny wpływu zmiany, jest w sensie biznesowym dodatkowa obsłuż ocenę wpływu zmiany za pomocą podprocesu zdarzeniowego (wyzwalanego adekwatnym zdarzeniem).

3. Kamień milowy

Kamień milowy (łac. milliarium) to znak kamienny, który służył do oznaczania drogi w czasach Imperium Rzymskiego. Rzymianie rozmieszczali kamienie milowe na poboczu dróg co rzymską milę (1478,5 metra). Celem było ułatwienie orientacji w trakcie szybkiego pokonywania odległości. W przenośni pojęcie kamień milowy używane jest do oznaczenia wydarzeń szczególnie ważnych w historii jakiejś społeczności.¹

W dziedzinie zarządzania projektami, kamień milowy to końcowy punkt, który podsumowuje określony zestaw zadań, (lub fazę projektu). Oznacza on jednocześnie pewne istotne, jednorazowe zdarzenie, które można w jednoznaczny sposób określić. Może to być: podpisanie dokumentu,

^{1 &}lt;a href="http://pl.wikipedia.org/wiki/Kamień milowy">http://pl.wikipedia.org/wiki/Kamień milowy

otrzymanie wyniku, ważne spotkanie, zatwierdzenie pracy itp.²

W modelowaniu procesów biznesowych wzorzec "kamienia milowego" odnosi się do synchronizacji wybranych kroków procesu za pomocą stanu pośredniego (nazywanego kamieniem milowym).

Bramki rozdzielające i łączące umożliwiają synchronizację równoległych ścieżek na podstawie zakończenia czynności wykonywanych w ramach przepływów. Problem pojawia się wówczas, gdy synchronizacja powinna bazować na pośrednich zdarzeniach, czy też stanie częściowego zakończenia ścieżki. BPMN nie posiada mechanizmu pozwalającego na synchronizację z pośrednim kamieniem milowym. Popularnym sposobem rozwiązania problemu jest wykorzystanie sygnałów.

Na przykład, do konfiguracji i inicjalizacji nowego konta użytkownika wykorzystywana jest czynność systemu: *Konfiguruj konto* oraz czynność użytkownika *Zaloguj się po raz pierwszy*. Krok pierwszego logowanie nie powinien czekać na pełną konfigurację konta (która, z biznesowego punktu widzenia, trwa długo), musi jednak poczekać do chwili fizycznego założenia konta (rysunek 3).

Rysunek 3: Proces zakładania konta użytkownika (plik lab3 exc3.bpmn)

Zmodyfikuj proces pokazany na rysunku 3 w taki sposób, aby pierwsze logowanie było możliwe po utworzeniu konta. Przyjmij założenie, że symbol podprocesu dla czynności *Konfiguruj konto* nie może być zmieniana (jest to zewnętrznie zarządzana procedura). Możliwa jest jednak modyfikacja ścieżki podprocesu poprzez rozszerzenie o zdarzenia³.

4. Proces zakładania konta

- 1. Opracuj model, który reprezentuje popularny proces zakładania konta użytkownika wykorzystywany w aplikacjach webowych (sklepy internetowe, portale społecznościowe). Do jego elementów należą, m.in. weryfikacja typu CAPTCHA, potwierdzanie adresu email.
- 2. Rozbuduj ten proces poprzez dodanie funkcjonalności wykorzystywanej w systemie aukcyjnym, gdzie do pełnej aktywacji konta, umożliwiającej, oprócz uczestniczenia w licytacjach również wystawianie własnych aukcji, potrzebne jest potwierdzenie adresu korespondencyjnego. Odbywa się to poprzez odebranie przez użytkownika listu tradycyjnego oraz przesłanie potwierdzenia do systemu zawierającego informacje w nim zawarte.

^{2 &}lt;a href="http://pl.wikipedia.org/wiki/Kamień_milowy">http://pl.wikipedia.org/wiki/Kamień_milowy (zarządzanie projektem)

³ Dyskusyjność tego przypadku biznesowego nie jest przedmiotem ćwiczenia :). Celem jest zobrazowanie sytuacji w której potrzebne jest wykorzystanie zdarzenia określonego typu.

Użyteczne linki

- 1. Strona projektu Yaoqiang BPMN Editor: http://bpmn.sourceforge.net/
- 2. Specyfikacja BPMN http://www.omg.org/spec/BPMN/2.0/