第四章 红外吸收光谱分析

李哲 博士、副教授

药学院332

lizhe5@mail.sysu.edu.cn

分子吸收光谱

紫外和红外吸收光谱

横坐标为波数 (σ/cm⁻¹); 纵坐标为透射比 (T%); 吸收峰为 倒峰。

$$\sigma(cm^{-1}) = \frac{10^4}{\lambda(\mu m)}$$

4. 2产生分子红外吸收的条件

- (1) 红外辐射的能量等于分子振动能级跃迁所需要的能量。
- (2) 分子振动过程中必须伴随偶极矩的变化。

偶极矩µ=q·r

(r:正、负电荷中心间的距离; q:电荷中心所带电量)

 $\Delta \mu > 0$,具有红外活性。H-Cl

 $\Delta \mu = 0$,不具有红外活性。 H_2 , O_2 , N_2

Vibration of a Diatomic Molecule Approximates an Oscillating Spring

多原子分子振动

- 伸缩振动
- ・弯曲振动

Copyright © 1997 Charles B. Abrams

Copyright @ 1997 Charles B. Abrams

多原子分子振动

- 振动自由度是分子基本振动的数目
- 分子的振动自由度=3N-平动自由度-转动自由度

线型分子,振动自由度=3N-5

非线型分子,振动自由度=3N-6

CO₂为线型分子,振动自由度=3×3-3-2=4

H₂O为非线型分子,振动自由度=3×3-6=3

• 振动自由度反映吸收峰数量

吸收峰数

吸收峰数常少于振动自由度数

- 简并:两个基本振动的振动形式不同,但振动频率相同, 只能观测到一个吸收峰。
- 红外非活性振动:不能引起偶极矩变化的振动。

- 强宽峰覆盖相近吸收峰
- 吸收峰弱
- 落在中红外区以外

红外吸收峰

基频峰: ν₀ →ν₁

倍频峰: $v_0 \rightarrow v_2$ 、 v_3 、 v_4

合频峰: 基频峰的和或差处出现的峰

泛频峰:由倍频峰和合频峰组成。

倍频峰是近红外光谱的核心部分

问题

波的高度或面积 (定量)

波峰位置 (定性)

怎样应用光谱?

吸收峰强度

朗伯-比尔定律:

$$A = -lg\frac{I_t}{I_0} = Ig\frac{1}{T} = \varepsilon bc$$

 ε (L • mol⁻¹ • cm⁻¹)

- 100, 非常强峰 (vs)
- 20~100, 强峰 (s)
- 10~20, 中强峰 (m)
- 1~10, 弱峰 (w)
- <1, 非常弱峰 (vw)

红外吸收 ε **远小于**紫外-可见光吸收, 因而灵敏度较低。对于含量很低的组分, 红外光谱法难于检测出来。

影响吸收峰强度的因素

偶极矩变化值的平方 ∝ 红外吸收峰强

• 电负性: 化学键两端连接的原子电负性差别大,则伸缩振动时引起的峰也越强。

$$C-C < C-H$$
, $C-O$; $C=C < C=O$

影响吸收峰强度的因素

• 分子对称性:对称性越高,峰越弱。

• 振动形式: 伸缩振动>面内弯曲振动>面外弯曲振动

问题

波的高度或面积 (定量)

波峰位置 (定性)

怎样应用光谱?

分子振动频率

分子的振动频率 → 分子吸收红外光频率 → 吸收峰位置

胡克定律:

$$\nu = \frac{1}{2\pi} \sqrt{\frac{K}{\mu}} \qquad \overrightarrow{\mathfrak{D}} \quad \sigma = \frac{1}{2\pi C} \sqrt{\frac{K}{\mu}} \qquad \mu = \frac{m_1 \cdot m_2}{m_1 + m_2}$$

K: 双原子形成的化学键力常数

 $m_{1,}$ m_{2} : 为两个原子质量

振动频率与**原子的质量、化学键强度**有关

分子振动频率

$$C-H > C-C > C-O > C-CI > C-Br$$
3000 1200 1100 750 650

• 诱导效应

取代基电负性 → 化学键极化(羰基碳更缺电子) →

力常数增大 → 蓝移

$$R - C - R'$$
 $v_{C=0} \sim 1715 \text{ cm}^{-1}$

$$R \longrightarrow Cl$$

$$V_{C=0} \sim 1800 \text{ cm}^{-1}$$

$$Cl \leftarrow C \rightarrow Cl$$

$$v_{C=0} \sim 1828 \text{ cm}^{-1}$$

• 共轭效应

共轭效应 → 电子云密度降低 → 力常数减小 → 红移

诱导效应和共轭效应同时存在时,吸收峰的位置由占主导作用因 素决定。

$$V_{C=O}/cm^{-1}$$
 1735 $V_{C=O}/cm^{-1}$ 1735 1715 1680

• 空间位阻

空间位阻 → 抑制共轭 → 蓝移

• 环张力效应

• 环张力增加, 环外双键振动频率升高; 环内双键振动频率减低。

・氢键效应

(分子内氢键;分子间氢键):削弱化学键,红移

不同浓度的乙醇四氯化碳溶液之IR图

- 分子间不形成氢键,而只显示游离的-OH 的吸收(3640cm-1)
- 随着溶液中乙醇浓度的增加,二聚体(3515cm⁻¹) 和多聚体 (3350cm⁻¹)的吸收相继出现,并显著增加,
- 当乙醇浓度为1.0mol·L-1时主要是以缔合形式存在。

・其他因素

偶极场效应、振动耦合、费米共振、外部环境等

振动耦合: 当两个振动频率相同或相近的基团相邻并具有一公共原子时,两个键的振动将通过公共原子发生相互作用,产生"微扰"。其结果是使振动频率发生变化,一个向高频移动,另一个向低频移动。

- -CH₃中的C-H伸缩振动偶合: 2870 cm⁻¹, 2960 cm⁻¹
- -CH中无振动偶合: 2890 cm⁻¹

物态效应

气态:分子间相互作用很弱,可观察到振动光谱的精细结构

液态:分子间相互作用较强,导致吸收带频率低移、强度增

加和峰形变宽。

固态:分子间相互作用介于气态与液态之间,红外吸收峰尖锐且丰富。

问题

定性和定量测量光谱的依据

为什么产生紫外-可见吸收光谱?

怎样应用光谱?

红外光谱的发展历史

- 19世纪末-20世纪初,发现了红外吸收与分子结构的联系。
- 三十年代,第一台**棱镜**分光单光束红外光谱仪问世。
- 四十至五十年代,实用的**双光束**自动记录的红外分光光度 计问世。
- 六十年代,用**光栅**代替棱镜作分光器的第二代红外光谱仪 投入了使用
- 七十年代后期,干涉型**傅里叶变换**红外光谱仪(FT-IR)投入了使用,这就是第三代红外分光光度计。
- 七十年代末,激光红外光谱仪、共聚焦显微红外光谱仪。

先经过样品池再分光

- 红外光源能量小,不会引起试样的分解;
- 可以减少来自试样和吸收池的杂散光对检测器的影响

色散型红外光谱仪缺点

- 1) 需采用狭缝,光能量受到限制;
- 2) 扫描速度慢,不适于动态分析及和其它仪器联用;
- 3) 不适于过强或过弱的吸收信号的分析。

傅里叶变换红外光谱仪(FT-IR)

• 没有光学分光元件

- 扫描速度快。可用于测定不稳定物质;跟踪反应历程, 作反应动力学研究,并可与GC、LC联用。
- 分辨率高。分辨率由反射镜的线性移动距离控制。
- 光谱范围宽。可达10-10⁴ cm⁻¹。
- ・样品不受热效应影响

光源:碳棒灯、能斯特灯

样品池:

材 料	透光范围/µm	注 意 事 项
NaCl	0.2-25	易潮解、湿度低于 40%
KBr	0.25-40	易潮解、湿度低于 35%
CaF ₂	0.13-12	不溶于水,用于水溶液
CsBr	0.2-55	易潮解
TlBr + TlI	0.55-40	微溶于水(有毒)

KBr:

- 在中红外区无吸收
- 折射率和大多数有机物折射率相同,散射大大降低。
 散射强度与样品和周围介质折射率差成正比。
- 易吸潮, 在干燥器中保存, 红外灯下操作。

单色器: 光栅、傅里叶变换

检测器: 真空热电偶、测热辐射计

试样的制备

一般要求样品的纯度大于98%,且不含水分,防止干扰样品中羟基峰的观察。

固体试样: 1、压片法 2、糊膏法 3、薄膜法

液体试样: 1、液体池法 2、夹片法及涂片法

固态样品

压片法: 将1-2mg试样与200mg经干燥处理的纯KBr混合,研细,在压片机上压成均匀透明的薄片,即可直接测定。 KBr在整个中红外光区透明,因而被广泛用于压片法中。

固态样品

薄膜法:

将样品溶解在易挥发溶剂中, 滴到盐片上, 待溶 剂完全挥发后即可测量。

液态样品

液膜法: 将1-2滴试样直接滴在两片盐片之间,形成液膜。适用与沸点较高的液体或黏稠的液体。

气态样品

气体样品池窗片利用KBr盐片等。

将样品池抽成真空,冲入纯气体样品或者红外惰性的氮气等稀释。

学习重点

- 红外光谱产生的条件
- 影响吸收峰强度和位置的因素

红外波谱解析

官能团区: (特征频谱区): 4000~1300cm-1

含H单键、双键和三键的伸缩振动.

特点: 吸收峰稀疏、较强, 易辨认

指纹区: 1300~400cm-1,不含氢单键的伸缩振动、各种变形振动

特 点: 吸收峰密集、难辨认→指纹

分子振动频率

$$C-H > C-C > C-O > C-CI > C-Br$$
3000 1200 1100 750 650

红外波谱分区

1.活泼 X—H伸缩振动区(4000~3100 cm⁻¹)

(1) —OH 3650~3200 cm⁻¹ 确定 醇、酚、羧酸

游离-OH: 3650-3580 cm⁻¹; 缔合-OH...X: 3400-3200 cm⁻¹。

-NH伸缩振动 3500-3300 cm⁻¹

• -SH 2600-2500 cm⁻¹

-NH。两个峰; -NH 一个峰; -N 无峰

2.芳环上的=C—H伸缩振动区(~3100-3000 cm⁻¹)

3.其他不饱和C—H伸缩振动区

- \equiv C—H ~3300 cm⁻¹
- __c_H ~2820cm-1, ~2720cm-1 (费米共振)

4.饱和C—H伸缩振动区 (~3000-2800 cm⁻¹)

—CH₃ 2960 cm⁻¹ 反对称伸缩振动

2876 cm⁻¹ 对称伸缩振动

—CH₂— 2930 cm⁻¹ 反对称伸缩振动

2850 cm-1 对称伸缩振动

—C—H 2890 cm⁻¹ 弱吸收

不饱和键伸缩振动区

1.叁键和累积双键伸缩振动区 (~2500-2000 cm⁻¹)

在该区域出现的峰较少

- RC≡CR' (2190 ~ 2260 cm⁻¹) R=R'时,无红外活性
- 累积双键O=C=O (2349 cm⁻¹)

不饱和键伸缩振动区

2.双键伸缩振动区(2000 - 1500 cm⁻¹)

C=O: 1820~1600 cm⁻¹, 碳氧双键的特征峰, 强度大, 峰尖锐。

不饱和键伸缩振动区

(2) C=C, C=N和N=O 1680-1500 cm⁻¹

RC=CR' 1620 ~ 1680 cm⁻¹

强度弱,R=R' (对称)时,无红外活性。

(3) 芳环骨架伸缩振动,一般为1600, 1580, 1500, 1450cm⁻¹

序号	峰位(cm-1)	透过率(%)
1	465	39
2	693	22
3	728	9
4	1027	67
5 &	1456	64
6	1492	30
7	1600	59
8	2911	60
9	3022	43
10	3054	64
11	3079	68

C—H 弯曲振动区

C—H 弯曲振动区 (1500 - 1300 cm⁻¹)

-CH₃ 对称和反对称弯曲振动: 1375cm⁻¹和1450cm⁻¹ 两个吸收峰

-CH₂ 的剪式弯曲振动: 1465 cm⁻¹与-CH₃的反对称弯曲振动 重合。

指 纹 区

指纹区(1300 - 600 cm⁻¹)

1300~900 cm-1—单键伸缩振动区。

900-600 cm-1 C-C 骨架振动,说明双键取代类型等

指 纹 区

C-O 伸缩振动 (1300 - 1000 cm⁻¹)

解谱要点

常用区域特征区和指纹区

- 一般原则
- 1.三要素:峰位、峰强、峰形。
- 2.用一组相关峰确定一个基团
- 3.解析顺序: 先解析特征区, 再解析指纹区。
- 4.基团与特征峰的关系

查询数据库: http://www.organchem.csdb.cn/scdb/default.asp

烷烃类化合物

- 饱和C-H键伸缩振动 3000-2850 cm⁻¹
- 饱和C-H键弯曲振动 1370-1470 cm⁻¹
- 积累亚甲基面内摇摆 ~720 cm-1

炔 烃 化 合 物

- 炔键C-H伸缩振动: 3340-3300 cm⁻¹, 波数高于烯 烃和芳香烃, 峰形尖锐。
- C-C叁键伸缩振动: 2100 cm⁻¹, 峰形尖锐,强度中到弱。干扰少,位置特征。末端炔基该吸收强。分子对称性强时,该吸收较弱。乙炔由于分子对称, 没有C-C叁键伸缩振动吸收。
- 腈类化合物,C-N叁键伸缩振动出现在2300-2220 cm⁻¹,波数比炔烃略高,吸收强度大。

炔烃化合物

芳香和烯烃化合物

- 1. 芳氢伸缩振动, **3100~3000** cm⁻¹
- 2. 芳环骨架伸缩振动,一般为**1600, 1580, 1500, 1450**cm⁻¹
- 3. 芳氢弯曲振动:面外弯曲振动910~665 cm⁻¹(峰与取代基有关)

序号	峰位(cm-1)	透过率(%)
1	465	39
2	693	22
3	728	9
4	1027	67
5	1456	64
6	1492	30
7	1600	59
8	2911	60
9	3022	43
10	3054	64
11	3079	68

醇类化合物

- 羟基O-H伸缩振动 3700-3100 cm⁻¹
- 饱和C-H键伸缩振动 **3000-2850** cm⁻¹
- 饱和C-H键弯曲振动 **1370-1470** cm⁻¹
- C-O键伸缩振动 **1300-1000** cm⁻¹

醚类化合物

1123 cm⁻¹: —C—O—C—反对称伸缩振动

一般情况下,只用IR来判别醚是困难的。因其他一些含氧化合物,如醇、 羧酸、酯类都会在1100~1250cm⁻¹范围有强的吸收

胺类化合物

基团	振动形式	吸收峰位置/cm-1	强度	备 注
R-NH-R'	υΝΗ	3600~3300	m	
	$v_{\text{C-N}}$	脂肪 1250~1020 芳香 1360~1250	m	
	δ _{NH} (面内)	1650~1550	m	伯胺才有此峰
	δ _{NH} (面外)	900~650	m,宽	

胺类化合物

1- 戊胺

~1613cm-1NH₂剪式(弯曲)振动; ~1072cm-1: C-N 伸缩振动

胺类化合物

哌啶

~3276cm-1: N-H 伸缩振动; ~1460cm-1: CH, 剪式振动;

~1115cm-1: C-N 伸缩振动; ~745cm-1: N-H 非平面摇摆振动

羰基化合物

羰基化合物 $v_{C=O}$ 吸收峰(cm⁻¹)(vs),非常明显:

化合物	v _{C=O} (最强)	其它特征频率
脂肪酮	1730~1700	
脂肪醛	1740~1720	2850、2740左右费米共振2个峰
羧酸	1720~1680 (缔合)	υ _{OH} 3200~2500(宽) δ _{OH} ~930(宽)
羧酸盐	1650 ~ 1550	O 1440~1350, 一
酯	1750~1730	1300~1000两个峰 C-O-C的ν _{as} (最强)和ν _s
酸酐	1825 ~ 1815和 1755 ~ 1745	
酰胺	1690 ~ 1650	3500~3050υ _{NH} 双峰,δ _{NH} 1649~1570(叔酰胺无)
酰卤	1819 ~ 1790	

酯类化合物

C-O-C非对称伸缩振动很强,酯最有用的特征吸收, 1210-1160 cm^{-1,}区别酯与其他羰基化合物的主要依据。

~1746cm⁻¹: C=O伸缩振动; ~1246cm⁻¹: C-O-C 非对称伸缩振动,均很强。

酸酐类化合物

C = O伸缩振动: 在1850~ 1780 cm⁻¹ 1790~ 1740 cm⁻¹两处同时出现

C—O—C伸缩振动: 1300~1050 cm⁻¹ (强吸收)。

酰卤类化合物

卤素原子直接与羰基相连,强诱导效应使羰基伸缩振动大大升高。

卤素原子对羰基电子的吸引非常强烈,使羰基的双键性增加,羰基伸缩振动向高频率方向位移。

酰胺类化合物

不同酰胺吸收峰数据

	谱带类型	谱带名称	游离	缔合
	12		3500 cm ⁻¹	3350-3100
14	$v_{(N-H)}$		3400 cm ⁻¹	几个峰
伯	υ _(C=0)	酰胺I谱带	1690 cm ⁻¹	1650 cm ⁻¹
酰胺	δ (N-H) (面内)	酰胺Ⅱ谱带	1600 cm ⁻¹	1640 cm ⁻¹
胺	υ _(C-N)	酰胺Ⅲ谱带	1400 cm ⁻¹	
	δ _(N-H) (面外)	酰胺IV谱带	~700 cm ⁻¹	
			3440 cm ⁻¹	3330 cm ⁻¹
	υ _(N-H)		5440 Cm	3070 cm ⁻¹ δ _(N-H) (面内) 倍频
仲	υ _(C=0)	酰胺I谱带	1680 cm ⁻	1655 cm⁻
酰	δ (N-H) (面内)	酰胺II谱带	1530 cm ⁻	1550 cm ⁻
胺	υ _(C-N)	酰胺III谱带	1260 cm ⁻	1290 cm ⁻
	δ (N-H) (面外)	酰胺IV谱带	~700 cm ⁻¹	
	δ _(OCN)	酰胺V谱带	~ 650 cm ⁻¹	
叔酰	υ _(C=0)		1650 cm ⁻¹	1650 cm ⁻¹
胺	v _(C-N)		1180-1060 cm ⁻¹	

脂肪族、卤化物

<u> </u>								
	C-H bend		C-H str	Σ	Methyl -CH ₂ 2 ν			
CH₂ rock	C-H bend	11	C-H str	Σ	Methylene ≎CH₂			
		00 30	00 40	000 50	00 Methyne 60 3CH	000 cm-1		
C=C CH ₂ twist	trans CH, C=C 5 CH def str wag 1 2v	.0 3	3 C-Hstr ∑		Vinyl 1. C=CH₂	67,µm		
C=C twist	CH wag C=C str _u		C-Hstr Σ		trans-Olefin HC=CH			
C=C :CH twist wag	CH C=C rock str		C-H str Σ		cis-Olefin HC=CH			
C=C=C *CH ₂ bend v	in phase 2 <i>V</i>	out-of-phase CCC str	=CH str Σ		Allene -C=C=CH			
CC≡C CH vbend wag	2υ	C:C v _I str	iCH str Σ	_	Acetylene -C≡CH			
C-F CF _a str	FCH₂wag	2ν			Fluoro -C-F			
CCI₃ ∭C-CI	CICH₂wag	1			Chloro -C-Cl			
v C-Br10	00 BrCH₂wag 20	00 30	00 40	500	0 Bromo 60 -C-Br	000 cm ⁻¹		
C-I 1	0 1CH₂wag 5	.0 3	.3 2	.5	2 lodo 1. -C-I+	67,um 		
SiC	MSi0	_			Siloxane -0-Şi-0-			
	SiCH₂ wag	SiH str		⊛1997 D.W.Vidrine	Silanes ÷SiH			

含氧官能团

C-t	O str	Σ CH _z	O-H str	Σ	Alcohol (unassocia free -OH	ated)
	C-Ostr O-Hbend	Σ	O-H str	Σ	Alcohol (associate	d) 2ν
	C-O str	20			Ethers ЭС+0+С€	
	C=0 str		2ν		Ketones >C=0	
1000	200	00 30	00 <u>2ν</u> 40	00 500	Unsat. Ketones 600 C=C-C=O H	00
V	C=0 str	H-C= spli str Ferr reso	t by ni onance 2 <i>v</i>	Σ	Aldehydes H ^{2C=0}	
OH-O cco oco def sti	OH C:O Str def CH;	OH:	str	Σ_	Carboxylic acids -C00Hdimer(x) 2 <i>v</i>	
0±C±0 rock _v	O=C=O O=C=O symistr assym str		_2v		Carboxylate salts -CO ₂	
	≯C-O´ IC=O str	_	2υ	formate	Esters -C-0-C (Ö	
10	C-O- str asym sym	0 3.	3 2 <u>v</u>	.5 2,	ımo o -C-0-C-	7
0=C-Cl bend	C=0 str ₂	ν	_2ν		Acyl chlorides -CCI Ö	
o:c-ci C-Clstr defv	C-0 C=0 str	2ν Σ	-CH _a str <u>2</u> v	⊛1997 D.W.Vidrine	Chloroformates Cl-C-O- Ö	

含氮官能团

台 炎 后 比 2							
CCN NH wa	C-N str N-H bei	nd cH.	N-H str	Σ	_		
CNC NH wag	C-N str	CH,	N-H str	Σ	2° Amines >NH		
CCN	N-H bei	nd NH Σ	str	Σ	1° Ammonium -NH₃	2ν	
	NH def	NH str v		Σ	2° Ammonium >NH₂⁺		
-0- sti	N= N=O str	Σ	2υ		Nitrite -0-N=0		
∫ °s	-N -NO ₂ -NO ₂ sym asym tr str str				Nitrate -O-NO₂		
	su su	.0 3	.3 	2.5	2 N-Nitroso 1 -N-N0	.67µm	
0	rs) trans cis Nstr (monomer)				C-Nitroso C-NO		
NO _z 10 sym 10 v ^{bend} C-N	00 sym -NO ₂ 20 asym str	00 30	00 4	4000 500 	0 Nitro 61 -NO₂	000 cm-1	
NCO bend	C=0 str		N-H str sym hassym	Σ	Amide C-NH₂ ∑ Ö		
CCN bend CCCi bend bend	CH ₂ wag	CN str			Nitrile -C≡N		
		-N=C str			Isocyanide -N≒C¯		
		-N=C=0 str			Isocyanate -N=C=0		
SCN bend -S=C=		C≡N str			Thiocyanate -S−C≡N		
CN=C ^{N=C=S bend}	CH wag	NCS str			Isothiocyanate -N=C=S		
	٧	N≅N≅C-			Diazo ⊚1997 D.W.Vidrine		

芳香族

未知化合物的推断

• 首先依据谱图推出化合物碳架类型:根据分子式计算**不饱和度** $\Omega = C + 1 - (H - N)/2; \Omega = (2C + 2 - H)/2$ $C_4 H_8 O_2, \Omega = [(4x2 + 2) - 8]/2 = 1$

 分析3300~2800 cm⁻¹区域C-H伸缩振动吸收;以3000 cm-1 为界:高于3000 cm⁻¹为**不饱和碳**C-H伸缩振动吸收,有可能 为烯,炔,芳香化合物,而低于3000 cm⁻¹一般为**饱和**C-H伸缩振动吸收;

- 若在稍高于3000 cm⁻¹有吸收,则应在 2250~1450 cm⁻¹频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:块
 2200~2100 cm⁻¹; 烯 1680~1640 cm⁻¹; 芳环 1600,
 1580, 1500, 1450 cm⁻¹。若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650 cm⁻¹的频区,以确定取代基个数和位置(顺反,邻、间、对);
- 碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团。
- •解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700 cm⁻¹的三个峰,说明**醛基**的存在。

背一些常见常用的健值

X-H: 3100-4000 cm⁻¹

烷烃: C-H伸缩振动(3000-2850 cm⁻¹); C-H弯曲振动(1465-1340

cm⁻¹);

烯烃: 烯烃C-H伸缩(3100~3010 cm⁻¹); C=C伸缩(1675~1640 cm⁻¹

1);

炔烃: 伸缩振动(2250~2100 cm⁻¹) ; 炔烃C-H伸缩振动(3300 cm⁻¹

附近);

芳烃: 芳环上C-H伸缩振动(3100~3000 cm⁻¹); C=C骨架振动

(1600~1450 cm⁻¹);

羰基: 1600-1800 cm⁻¹

碳-氧键: 1000-1300 cm⁻¹

例: 推测 $C_4H_8O_2$ 的结构

例:确定 C₈H₇N 的结构

学习重点

- 各个官能团的特征峰
- 能根据红外光谱推断简单化合物结构