Contents

_	0	\sim	\sim	0	0	0	0	0	\sim	
	\circ	U	\circ	C						

1	Euclidean Space	. 2
	1.a Euclidean Space - Cont.	
	1.b Theorem	
	1.c Theorem - Proof	

1 Euclidean Space

Euclidean Space - Cont.

Definition

For eaach positive integer k, let \mathbb{R}^k be the set of all ordered k —tuples, $\boldsymbol{x}=(x_1,x_2,...,x_k)$, where $x_1,x_2,...,x_k$ are real numbers, called coordinates of \boldsymbol{x} .

• The elements of \mathbb{R}^k is called points, or vectors, especially when k > 1.

If $y = (y_1, y_2, ..., y_k)$ and if α is a real number

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, ..., x_k + y_k)$$
$$\alpha \mathbf{x} = (\alpha x_1, \alpha x_2, ..., x_n)$$

- These two operations satisfy the commutative, associative and distributive laws.
- That makes \mathbb{R}^k into a vector space over real field.
- The zero element of \mathbb{R}^k is the point $\mathbf{0} = (0, 0, ..., 0)$ (origin)

Euclidean Space - Cont. (ii)

Definition (Inner Product)

$$m{x} \cdot m{y} = \sum_{i=1}^k x_i y_i$$

Definition (Norm)

$$|x| = (x \cdot x)^{rac{1}{2}} = \left(\sum_{i=1}^k x_i^2
ight)^{rac{1}{2}}$$

Theorem

Theorem

Suppose $x, y, z \in \mathbb{R}^k$, and α is real. Then

- 1. $|x| \ge 0$
- 2. |x| = 0 if and only if x = 0.
- 3. $|\alpha \boldsymbol{x}| = |\alpha||\boldsymbol{x}|$
- 4. $|x + y| \le |x| + |y|$
- 5. $|x + y| \le |x| + |y|$
- 6. $|x + y| \le |x y| + |y z|$

Theorem - Proof

1. $|x| \ge 0$

Theorem - Proof (ii)

2. |x| = 0 if and only if x = 0

Theorem - Proof (iii)

3.
$$|\alpha x| = |\alpha||x|$$

Theorem - Proof (iv)

4.
$$|x+y| \le |x| + |y|$$

Theorem - Proof (v)

5.
$$|x+y| \le |x| + |y|$$

Theorem - Proof (vi)

6.
$$|x+y| \leq |x-y| + |y-z|$$