LabSO 2018-2019 Laboratorio Sistemi Operativi 1

PROGETTO LabSO 2018-2019 - Revisione I

SISTEMA DI DOMOTICA

Implementare l'emulazione di un sistema di domotica in modo che ogni dispositivo sia rappresentato da un'unica entità (cartella con uno o più file oppure processo con eventuali sottoprocessi: vedere "varianti" in coda). I dispositivi possono essere di due generi e vari tipi e hanno tutti uno "stato", degli "interruttori" a due posizioni (on/off) e un eventuale registro di parametri (se ne possono aggiungere quanti ritenuti utili oltre a quelli indicati di seguito):

• <u>Dispositivi di controllo</u>

(in "scrittura" setta il corrispondente campo in tutti i dispositivi controllati e in lettura ne mostra il valore che deve essere uguale per tutti salvo "override" manuali o inizializzazione - ad esempio se si collegano delle lampadine già attive in stati diversi ad un hub - nel qual caso deve essere indicato che vi è stato un qualche intervento di tale genere, comportamento indicato come "mirroring" di seguito. Stato iniziale dei dispositivi e posizione iniziale degli interruttori possono essere predefiniti o si può fare un metodo di impostazione. Le informazioni specifiche sui dispositivi controllati - ad esempio lo stato - NON possono essere salvate dentro quello di controllo: devono essere recuperate "interrogandoli" singolarmente)

• controller "centralina": gestisce l'intero sistema (è unico e non può essere rimosso)

stato: acceso/spento

interruttori: generale (on/off per accendere spegnere l'intero sistema)

registro: num = numero dispositivi direttamente connessi

Deve aprire una "shell" interattiva in cui si possono eseguire almeno i comandi:

list	elenca tutti i dispositivi (quelli disponibili con un nome, quelli attivi anche con un "id" univoco per ciascuno e inoltre ne riepiloga le caratteristiche)
add <device></device>	aggiunge un <device> al sistema (es. "add bulb") e ne mostra i dettagli</device>
del <id></id>	rimuove il dispositivo <id>: se è di controllo rimuove anche i dispositivi sottostanti</id>
link <id> to <id></id></id>	collega i due dispositivi tra loro (almeno uno dei due dev'essere di controllo: controller, hub o timer)
switch <id> <label> <pos></pos></label></id>	del dispositivo <id> modifica l'interruttore <label> in posizione <pos>, ad esempio:</pos></label></id>

switch 3 open on

imposta per il dispositivo #3 l'interruttore "open" su "on" (ad esempio apre una finestra)

info <id>

mostra i dettagli del dispositivo

hub: permette di collegare più dispositivi dello stesso tipo in parallelo tra loro

stato: "mirroring" dei dispositivi collegati interruttori: "mirroring" dei dispositivi collegati registro: "mirroring" dei dispositivi collegati

 timer: permette di definire una schedulazione (almeno una fascia oraria più eventuali maggiori dettagli come giorni del mese e/o della settimana e/o altro) per comandare un dispositivo collegato

stato: "mirroring" del dispositivo collegato
interruttori: "mirroring" del dispositivo collegato
registro: bogin = ora di attivazione, end = ora di disattivazione

registro: begin = ora di attivazione, end = ora di disattivazione + eventuali extra

Se un dispositivo (di interazione) controllato da un altro (hub o timer) è azionato manualmente questo deve funzionare come "override manuale". Esempi particolari:

- se un timer accende una lampadina l'interruttore di quest'ultima si setta su "on", ma se uno manualmente lo sposta su "off" si deve spegnere (e viceversa).
- se un hub controlla quattro lampadine e lo si accende, queste si attivano tutte: se manualmente se ne spegne una le altre restano accese; interrogando l'hub questo deve indicare di essere "acceso" ma con "override" (cosa che deve essere dedotta dal fatto che c'è incongruenza nei dispositivi controllati)

Dispositivi di interazione

deve essere possibile azionare gli interruttori e impostare eventuali parametri specifici (ad esempio i tempi di attivazione di un timer) al di fuori del controller (ad esempio con un comando ad-hoc direttamente da terminale) per simulare un'azione completamente esterna all'intero sistema (che non passa dalla centralina "controller")

 bulb (lampadina): può essere accesa/spenta e ha un singolo interruttore di comando per il cambio di stato

stato: accesa/spenta

interruttori: accensione (on/off per accendere/spegnere)

registro: time = tempo di utilizzo (accesa)

 window (finestra): può essere aperta/chiusa e ha un pulsante di apertura ed uno di chiusura

stato: aperta/chiusa

interruttori: apertura e chiusura (on/off per aprire/chiudere: tornano subito in "off" dopo

essere stati azionati)

registro: time = tempo di utilizzo (aperta)

 fridge (frigorifero): può essere aperto/chiuso con un pulsante singolo per apertura/chiusura. Si richiude automaticamente dopo un tempo che può essere variato. Una "percentuale di riempimento" indica quanto contenuto c'è all'interno (0%-100%): è possibile togliere o aggiungere contenuto solo "manualmente". Un termostato/termometro permette di gestire e impostare la temperatura interna.

stato: aperto/chiuso

interruttori: apertura/chiusura (on/off per accendere/spegnere), termostato (con valore)

registro: time = tempo di utilizzo (di apertura)

delay = tempo dopo cui si richiude automaticamente

<u>perc</u> = percentuale di riempimento

temp = temperatura interna

Varianti

Sono possibili due implementazioni differenti, una basata principalmente sul file-system, l'altra su processi. In entrambi i casi ci deve essere una gerarchia chiara dei dispositivi.

<u>Variante "file-system"</u>, implementazione su file-system: i singoli dispositivi sono rappresentati da "sottocartelle" dentro una cartella principale, ciascuna con uno o più file di testo per le informazioni specifiche (ad esempio un file per lo stato, uno per il registro, etc. oppure uno unico con tutti i dati). I dispositivi controllati devono essere rappresentati con sottocartelle dentro la cartella di quello di controllo in modo che l'albero di tutte le cartelle rappresenti la gerarchia complessiva.

VOTAZIONE: max. 26

<u>Variante "processi"</u>, <u>implementazione con processi</u>: i singoli dispositivi sono rappresentati da processi (con eventuali sottoprocessi di supporto) figli di un processo principale, ciascuno contenente le informazioni specifiche. I dispositivi controllati devono essere rappresentati come figli del processo di quello di controllo in modo che l'albero di tutti i processi rappresenti la gerarchia complessiva.

VOTAZIONE: max. 30

In caso di modifica della gerarchia (ad esempio perché un dispositivo controllato cambia il suo controllore) si deve ricostruire correttamente l'albero (eventualmente eliminando cartelle/file o processi e ricostruendoli opportunamente): è quindi necessario recuperare le informazioni, eliminare la rappresentazione (cartella+files o processi) e crearne un "duplicato" con i dati corretti.

Le interazioni "esterne" (che simulano ad esempio un soggetto che accende manualmente una lampadina) devono avvenire con una modalità dedicata (sempre da "terminale bash"): per esempio si può realizzare un eseguibile ad-hoc che riceve come parametri le informazioni necessarie all'interazione (che può utilizzare canali e strumenti differenti da guelli usati all'interno del sistema principale).

L'implementazione minima deve comprendere almeno la "centralina" (con la shell interattiva), un dispositivo di controllo e uno di interazione (ad esempio: centralina, timer, lampadina per due possibili collegamenti: centralina->lampadina o centralina->timer->lampadina). È possibile inoltre implementare ulteriori dispositivi oltre a quelli indicati purchè rispecchino le indicazioni generali fornite e siano ben definiti e descritti.

Implementazione

Creare una cartella principale con denominazione tipo "LabSO2018-2019__matricola1__matricola2__...." (con i numeri di matricola dei componenti del gruppo) e all'interno inserire:

- un file README con i nomi completi e i numeri di matricola dei componenti del gruppo oltre ad una sintesi del progetto realizzato con le eventuali peculiarità
- una sottocartella "project" con dentro:
 - un makefile "Makefile" con almeno tre ricette:
 - "help" (default) che mostra brevi info testuali
 - "build" che compila il progetto, la compilazione DEVE avvenire con il tool "gcc" e flag "-std=gnu90" e nessun altro
 - "clean" che rimuove eventuali file temporanei e riporta tutto allo stato iniziale
 - una sotto-sottocartella "src" con tutti i sorgenti COMMENTATI DIFFUSAMENTE

Il progetto DEVE partire se lanciato da "terminale bash" su s.o. Ubuntu 18.x (specificare comunque se funziona anche su altri ambienti, come Ubuntu 14.x o Ubuntu 16.x, o altri testati) entrando nella sottocartella "project" e digitando "make build" e poi eseguendo i file opportuni. Si può interagire unicamente attraverso il "terminale bash", ma è possibile aprirne più di uno (ad esempio per mostrare interazioni combinate).

Si terrà conto anche di eventuali avvisi/errori o artifici sia in fase di compilazione che di esecuzione, della rispondenza ai requisiti, della soluzione adottata in generale e anche della resa d'utilizzo (ad esempio se ci sono dei feedback chiari a terminale).

Si deve usare il linguaggio C "gnu90" e si possono adottare solo le librerie "standard".

Bisogna "iscriversi" (si indicheranno i dettagli dei componenti del gruppo e la variante scelta) ed effettuare la "consegna" utilizzando dei moduli online che saranno comunicati più avanti tramite la bacheca Esse3 e/o via mail.

Salvo indicazioni successive differenti ad oggi (10/04/2019) si prevede che i moduli saranno pubblicati entro il 18/04/2019 e le scadenze sono fissate in:

iscrizione: entro il 25/04/2019 consegna: entro il 19/05/2019

VERIFICARE EVENTUALI NUOVE REVISIONI PER VARIAZIONI O CORREZIONI DI REFUSI CONTROLLARE SEMPRE GLI AVVISI!!!