DEWTWO: a transparent PCS with small proofs from falsifiable assumptions

Benedikt Bünz New York University Tushar Mopuri University of Pennsylvania

Alireza Shirzad
University of Pennsylvania

Sriram Sridhar
University of California, Berkeley

1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

• Completeness: If p(z) = y, Verify accepts honestly generated π .

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

- Completeness: If p(z) = y, Verify accepts honestly generated π .
- Knowledge soundness: If $Verify(vk, cm, z, y, \pi) = 1$, we can extract a polynomial p such that cm = Commit(ck, p) and p(z) = y.

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

Efficiency Measures:

- Completeness: If p(z) = y, Verify accepts honestly generated π .
- Knowledge soundness: If $Verify(vk, cm, z, y, \pi) = 1$, we can extract a polynomial p such that cm = Commit(ck, p) and p(z) = y.

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

Efficiency Measures:

• Transparent setup

- Completeness: If p(z) = y, Verify accepts honestly generated π .
- Knowledge soundness: If $Verify(vk, cm, z, y, \pi) = 1$, we can extract a polynomial p such that cm = Commit(ck, p) and p(z) = y.

- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

Efficiency Measures:

Transparent setup

- Completeness: If p(z) = y, Verify accepts honestly generated π .
- Knowledge soundness: If $Verify(vk, cm, z, y, \pi) = 1$, we can extract a polynomial p such that cm = Commit(ck, p) and p(z) = y.

- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

Efficiency Measures:

• Transparent setup

- Completeness: If p(z) = y, Verify accepts honestly generated π .
- Knowledge soundness: If $Verify(vk, cm, z, y, \pi) = 1$, we can extract a polynomial p such that cm = Commit(ck, p) and p(z) = y.

Efficiency Measures:

Transparent setup

4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

- Completeness: If p(z) = y, Verify accepts honestly generated π .
- Knowledge soundness: If Verify(vk, cm, z, y, π) = 1, we can extract a polynomial p such that cm = Commit(ck, p) and p(z) = y.

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

Efficiency Measures:

• Transparent setup

[CHMMVW20]:

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

Efficiency Measures:

• Transparent setup

[CHMMVW20]: $\left(\begin{array}{c} PIOP \\ \end{array}\right) + \left(\begin{array}{c} PCS \\ \end{array}\right) \Longrightarrow \left(\begin{array}{c} SNARK \\ \end{array}\right)$

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

Efficiency Measures:

Transparent setup

[CHMMVW20]: $\left[\begin{array}{ccc} PIOP \end{array}\right] + \left[\begin{array}{ccc} PCS \end{array}\right] \Longrightarrow \left[\begin{array}{ccc} SNARK \end{array}\right]$

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

Efficiency Measures:

- Transparent setup
- (Commit + Open) time

[CHMMVW20]: $\left(\begin{array}{c} PIOP \\ \end{array}\right) + \left(\begin{array}{c} PCS \\ \end{array}\right) \Longrightarrow \left(\begin{array}{c} SNARK \\ \end{array}\right)$

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

Efficiency Measures:

- Transparent setup
- (Commit + Open) time
- Verify time

[CHMMVW20]: $\left(\begin{array}{c} PIOP \end{array}\right) + \left(\begin{array}{c} PCS \end{array}\right) \Longrightarrow \left(\begin{array}{c} SNARK \end{array}\right)$

- 1. Setup $(1^{\lambda}, N) \rightarrow (ck, vk)$.
- 2. Commit(ck, p) \rightarrow cm.
- 3. Open(ck, cm, p, z) $\rightarrow \pi$.
- 4. Verify(vk, cm, z, y, π) \rightarrow {0,1}.

Efficiency Measures:

- Transparent setup
- (Commit + Open) time
- Verify time
- Proof size

[CHMMVW20]: $\left| \begin{array}{c|c} PIOP \end{array} \right| + \left| \begin{array}{c|c} PCS \end{array} \right| \Longrightarrow \left| \begin{array}{c|c} SNARK \end{array} \right|$

Transparent PC schemes

Scheme	Category	Prover time	Verifier time	Proof Size	Falsifiable?	Transparent?
WHIR [ACFY25]	Hash-Based	O(N log(N)) F	O(λ log(N)loglog (N)) F	λ log(N) loglog (N) F 107 KB	Yes	Yes
Bulletproofs [BBBPWM18]	DLOG-Based	O(N) GEC	O(N) GEC	2 log(N) GEC 1.5 KB	Yes	Yes
Dory [Lee21]	DLOG-Based	O(N) G	O(logN) G	6 log(N) G⊤ 37 KB	Yes	Yes
Dew, Behemoth [AGLMS23, SB23]	Groups of unknown order	O(N) Gguo O(N³logN) B	O(logN) F O(1) Gguo	O(1) Gguo 9~12 KB	No	Yes

Transparent PC schemes

Scheme	Category	Prover time	Verifier time	Proof Size	Falsifiable?	Transparent?
WHIR [ACFY25]	Hash-Based	O(N log(N)) F	O(λ log(N)loglog (N)) F	λ log(N) loglog (N) F 107 KB	Yes	Yes
Bulletproofs [BBBPWM18]	DLOG-Based	O(N) GEC	O(N) Gec	2 log(N) G _{EC} 1.5 KB	Yes	Yes
Dory [Lee21]	DLOG-Based	O(N) G	O(logN) G	6 log(N) G _T 37 KB	Yes	Yes
Dew, Behemoth [AGLMS23, SB23]	Groups of unknown order	O(N) Gguo O(N³logN) B	O(logN) F O(1) Gguo	O(1) Gguo 9~12 KB	No	Yes
DewTwo [This work]	Groups of unknown order	O(N) Gguo O(N log ² N) B	O(logN) F O(logN) Gguo	loglog(N) Gguo 4.5 KB	Yes	Yes

Setup

$$(G, (\mathbb{G}, +)) \leftarrow \operatorname{Setup}(1^{\lambda}, N)$$

$$(G, (\mathbb{G}, +)) \leftarrow \text{Setup}(1^{\lambda}, N)$$
 Hard problem: Finding $|\mathbb{G}|$

$$(G, (\mathbb{G}, +)) \leftarrow \text{Setup}(1^{\lambda}, N)$$
 Hard problem: Finding $|\mathbb{G}|$

$$(G, (\mathbb{G}, +)) \leftarrow \text{Setup}(1^{\lambda}, N)$$
 Hard problem: Finding $|\mathbb{G}|$

• Can be used to commit to an *unbounded integer* $v \in \mathbb{Z}$:

 $IntCommit(v) := v \cdot G$

$$(G, (\mathbb{G}, +)) \leftarrow \text{Setup}(1^{\lambda}, N)$$
 Hard problem: Finding $|\mathbb{G}|$

• Can be used to commit to an *unbounded integer* $v \in \mathbb{Z}$:

$$IntCommit(v) := v \cdot G$$

Candidates:

$$(G, (\mathbb{G}, +)) \leftarrow \text{Setup}(1^{\lambda}, N)$$
 Hard problem: Finding $|\mathbb{G}|$

$$IntCommit(v) := v \cdot G$$

- Candidates:
 - 1. RSA groups

$$(G, (\mathbb{G}, +)) \leftarrow \text{Setup}(1^{\lambda}, N)$$
 Hard problem: Finding $|\mathbb{G}|$

$$IntCommit(v) := v \cdot G$$

- Candidates:
 - 1. RSA groups
 - 2. Class groups.

$$(G, (\mathbb{G}, +)) \leftarrow \text{Setup}(1^{\lambda}, N)$$
 Hard problem: Finding $|\mathbb{G}|$

$$IntCommit(v) := v \cdot G$$

- Candidates:
 - 1. RSA groups
 - 2. Class groups.
 - 3. Jacobians of hyperelliptic curves.

$$(G, (\mathbb{G}, +)) \leftarrow \text{Setup}(1^{\lambda}, N)$$
 Hard problem: Finding $|\mathbb{G}|$

$$IntCommit(v) := v \cdot G$$

- Candidates:
 - 1. RSA groups
 - 2. Class groups.
 - 3. Jacobians of hyperelliptic curves.
- Our work: New falsifiable assumption in GUO instead of Generic Group Model.

Commit

Commit: Encode p as an Integer [BFS20]

Commit: Encode p as an Integer [BFS20]

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

Commit: Encode p as an Integer [BFS20]

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

$$\tilde{p}(X) = \tilde{p}_0 \cdot X^0 + \tilde{p}_1 \cdot X^1 + \dots + \tilde{p}_{N-1} \cdot X^{N-1} \in \mathbb{Z}[X]$$

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

$$\tilde{p}(X) = \tilde{p}_0 \cdot X^0 + \tilde{p}_1 \cdot X^1 + \dots + \tilde{p}_{N-1} \cdot X^{N-1} \in \mathbb{Z}[X]$$

$$\in [0, q-1]$$

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

$$\tilde{p}(X) = \tilde{p}_0 \cdot X^0 + \tilde{p}_1 \cdot X^1 + \dots + \tilde{p}_{N-1} \cdot X^{N-1} \in \mathbb{Z}[X]$$

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

$$\tilde{p}(X) = \tilde{p}_0 \cdot X^0 + \tilde{p}_1 \cdot X^1 + \dots + \tilde{p}_{N-1} \cdot X^{N-1} \in \mathbb{Z}[X]$$

Commit(ck, p):

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

$$\tilde{p}(X) = \tilde{p}_0 \cdot X^0 + \tilde{p}_1 \cdot X^1 + \dots + \tilde{p}_{N-1} \cdot X^{N-1} \in \mathbb{Z}[X]$$

Commit(ck, p):

1. Compute $\tilde{p}(X) \in \mathbb{Z}[X]$.

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

$$\tilde{p}(X) = \tilde{p}_0 \cdot X^0 + \tilde{p}_1 \cdot X^1 + \dots + \tilde{p}_{N-1} \cdot X^{N-1} \in \mathbb{Z}[X]$$

Commit(ck, p):

- 1. Compute $\tilde{p}(X) \in \mathbb{Z}[X]$.
- 2. For $\alpha > q$, compute $\tilde{p}(\alpha)$.

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

$$\tilde{p}(X) = \tilde{p}_0 \cdot X^0 + \tilde{p}_1 \cdot X^1 + \dots + \tilde{p}_{N-1} \cdot X^{N-1} \in \mathbb{Z}[X]$$

Commit(ck, p):

- 1. Compute $\tilde{p}(X) \in \mathbb{Z}[X]$.
- 2. For $\alpha > q$, compute $\tilde{p}(\alpha)$.
- 3. Output $\tilde{p}(\alpha) \cdot G$.

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

$$\tilde{p}(X) = \tilde{p}_0 \cdot X^0 + \tilde{p}_1 \cdot X^1 + \dots + \tilde{p}_{N-1} \cdot X^{N-1} \in \mathbb{Z}[X]$$

Commit(ck, p):

- 1. Compute $\tilde{p}(X) \in \mathbb{Z}[X]$.
- 2. For $\alpha > q$, compute $\tilde{p}(\alpha)$.
- 3. Output $\tilde{p}(\alpha) \cdot G$.

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

$$\tilde{p}(X) = \tilde{p}_0 \cdot X^0 + \tilde{p}_1 \cdot X^1 + \dots + \tilde{p}_{N-1} \cdot X^{N-1} \in \mathbb{Z}[X]$$

Commit(ck, p):

- 1. Compute $\tilde{p}(X) \in \mathbb{Z}[X]$.
- 2. For $\alpha > q$, compute $\tilde{p}(\alpha)$.
- 3. Output $\tilde{p}(\alpha) \cdot G$.

$$\tilde{p}(X) = 3 \cdot X^2 + 2 \cdot X + 4 \in \mathbb{Z}[X]$$

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

$$\tilde{p}(X) = \tilde{p}_0 \cdot X^0 + \tilde{p}_1 \cdot X^1 + \dots + \tilde{p}_{N-1} \cdot X^{N-1} \in \mathbb{Z}[X]$$

Commit(ck, p):

- 1. Compute $\tilde{p}(X) \in \mathbb{Z}[X]$.
- 2. For $\alpha > q$, compute $\tilde{p}(\alpha)$.
- 3. Output $\tilde{p}(\alpha) \cdot G$.

$$\tilde{p}(X) = 3 \cdot X^2 + 2 \cdot X + 4 \in \mathbb{Z}[X]$$

$$\tilde{p}(\alpha) = 3 \cdot 10^2 + 2 \cdot 10 + 4$$

$$p(X) = p_0 \cdot X^0 + p_1 \cdot X^1 + \dots + p_{N-1} \cdot X^{N-1} \in \mathbb{F}_q[X]$$

$$\tilde{p}(X) = \tilde{p}_0 \cdot X^0 + \tilde{p}_1 \cdot X^1 + \dots + \tilde{p}_{N-1} \cdot X^{N-1} \in \mathbb{Z}[X]$$

Commit(ck, p):

- 1. Compute $\tilde{p}(X) \in \mathbb{Z}[X]$.
- 2. For $\alpha > q$, compute $\tilde{p}(\alpha)$.
- 3. Output $\tilde{p}(\alpha) \cdot G$.

$$\tilde{p}(X) = 3 \cdot X^2 + 2 \cdot X + 4 \in \mathbb{Z}[X]$$

$$\tilde{p}(\alpha) = 3 \cdot 10^2 + 2 \cdot 10 + 4$$
$$= 324 \in \mathbb{Z}$$

Open and Verify

Given
$$z \leftarrow \mathbb{F}_q$$
, consider $\mathbf{r} := (z^{N-1}, z^{N-2}, \dots, z^1, 1)$.

Given
$$z \overset{\$}{\leftarrow} \mathbb{F}_q$$
, consider $\mathbf{r} := (z^{N-1}, z^{N-2}, \dots, z^1, 1)$.
$$\tilde{p}(\alpha) \cdot \tilde{r}(\alpha) = \left(\tilde{p}_0 + \tilde{p}_1 \alpha + \dots + \tilde{p}_{N-1} \alpha^{N-1}\right) \cdot \left(\tilde{r}_0 + \tilde{r}_1 \alpha + \dots + \tilde{r}_{N-1} \alpha^{N-1}\right)$$

Given
$$z \stackrel{\$}{\leftarrow} \mathbb{F}_q$$
, consider $\mathbf{r} := (z^{N-1}, z^{N-2}, \dots, z^1, 1)$.
$$\tilde{p}(\alpha) \cdot \tilde{r}(\alpha) = \left(\tilde{p}_0 + \tilde{p}_1 \alpha + \dots + \tilde{p}_{N-1} \alpha^{N-1}\right) \cdot \left(\tilde{r}_0 + \tilde{r}_1 \alpha + \dots + \tilde{r}_{N-1} \alpha^{N-1}\right)$$

$$= \left(\tilde{p}_0 \tilde{r}_0\right) \cdot \alpha^0 + \left(\tilde{p}_0 \tilde{r}_1 + \tilde{p}_1 \tilde{r}_0\right) \cdot \alpha^1 + \left(\tilde{p}_0 \tilde{r}_2 + \tilde{p}_1 \tilde{r}_1 + \tilde{p}_2 \tilde{r}_0\right) \cdot \alpha^2 + \dots$$

$$\begin{split} &\text{Given } \boldsymbol{z} \overset{\$}{\leftarrow} \mathbb{F}_{q}, \text{ consider } \boldsymbol{\mathbf{r}} := \ (\boldsymbol{z}^{N-1}, \boldsymbol{z}^{N-2}, \dots, \boldsymbol{z}^{1}, \boldsymbol{1}) \,. \\ &\tilde{p}(\alpha) \cdot \tilde{r}(\alpha) = \left(\tilde{p}_{0} + \tilde{p}_{1}\alpha + \dots + \tilde{p}_{N-1}\alpha^{N-1}\right) \cdot \left(\tilde{r}_{0} + \tilde{r}_{1}\alpha + \dots + \tilde{r}_{N-1}\alpha^{N-1}\right) \\ &= \left(\tilde{p}_{0}\tilde{r}_{0}\right) \cdot \alpha^{0} + \ \left(\tilde{p}_{0}\tilde{r}_{1} + \tilde{p}_{1}\tilde{r}_{0}\right) \cdot \alpha^{1} + \ \left(\tilde{p}_{0}\tilde{r}_{2} + \tilde{p}_{1}\tilde{r}_{1} + \tilde{p}_{2}\tilde{r}_{0}\right) \cdot \alpha^{2} + \dots \\ &= \sum_{i=0}^{N-2} \left(\sum_{j+k=i} \tilde{p}_{j}\tilde{r}_{k}\right) \alpha^{i} + \sum_{j=0}^{N-1} \tilde{p}_{j}\tilde{r}_{N-1-j} \alpha^{N-1} + \sum_{i=N}^{2N-2} \left(\sum_{j+k=i} \tilde{p}_{j}\tilde{r}_{k}\right) \alpha^{i} \end{split}$$

Given
$$z \stackrel{\$}{\leftarrow} \mathbb{F}_q$$
, consider $\mathbf{r} := (z^{N-1}, z^{N-2}, \dots, z^1, 1)$.
$$\tilde{p}(\alpha) \cdot \tilde{r}(\alpha) = (\tilde{p}_0 + \tilde{p}_1 \alpha + \dots + \tilde{p}_{N-1} \alpha^{N-1}) \cdot (\tilde{r}_0 + \tilde{r}_1 \alpha + \dots + \tilde{r}_{N-1} \alpha^{N-1})$$

$$= (\tilde{p}_0 \tilde{r}_0) \cdot \alpha^0 + (\tilde{p}_0 \tilde{r}_1 + \tilde{p}_1 \tilde{r}_0) \cdot \alpha^1 + (\tilde{p}_0 \tilde{r}_2 + \tilde{p}_1 \tilde{r}_1 + \tilde{p}_2 \tilde{r}_0) \cdot \alpha^2 + \dots$$

$$= \sum_{i=0}^{N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i + \sum_{j=0}^{N-1} \tilde{p}_j \tilde{r}_{N-1-j} \alpha^{N-1} + \sum_{i=N}^{2N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i$$

$$:= s + (\tilde{p}_0 \tilde{r}_{N-1} + \tilde{p}_1 \tilde{r}_{N-2} + \dots + \tilde{p}_{N-1} \tilde{r}_0) \cdot \alpha^{N-1} + u \cdot \alpha^N$$

Given
$$z \stackrel{\$}{\leftarrow} \mathbb{F}_q$$
, consider $\mathbf{r} := (z^{N-1}, z^{N-2}, \dots, z^1, 1)$.

$$\tilde{p}(\alpha) \cdot \tilde{r}(\alpha) = (\tilde{p}_0 + \tilde{p}_1 \alpha + \dots + \tilde{p}_{N-1} \alpha^{N-1}) \cdot (\tilde{r}_0 + \tilde{r}_1 \alpha + \dots + \tilde{r}_{N-1} \alpha^{N-1})$$

$$= (\tilde{p}_0 \tilde{r}_0) \cdot \alpha^0 + (\tilde{p}_0 \tilde{r}_1 + \tilde{p}_1 \tilde{r}_0) \cdot \alpha^1 + (\tilde{p}_0 \tilde{r}_2 + \tilde{p}_1 \tilde{r}_1 + \tilde{p}_2 \tilde{r}_0) \cdot \alpha^2 + \dots$$

$$= \sum_{i=0}^{N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i + \sum_{j=0}^{N-1} \tilde{p}_j \tilde{r}_{N-1-j} \alpha^{N-1} + \sum_{i=N}^{2N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i$$

$$\vdots = s + (\tilde{p}_0 \tilde{r}_{N-1} + \tilde{p}_1 \tilde{r}_{N-2} + \dots + \tilde{p}_{N-1} \tilde{r}_0) \cdot \alpha^{N-1} + u \cdot \alpha^N$$

$$t = \langle \tilde{\mathbf{p}}, \tilde{\mathbf{r}} \rangle$$

Given
$$z \stackrel{\$}{\leftarrow} \mathbb{F}_q$$
, consider $\mathbf{r} := (z^{N-1}, z^{N-2}, \dots, z^1, 1)$.

$$\tilde{p}(\alpha) \cdot \tilde{r}(\alpha) = (\tilde{p}_0 + \tilde{p}_1 \alpha + \dots + \tilde{p}_{N-1} \alpha^{N-1}) \cdot (\tilde{r}_0 + \tilde{r}_1 \alpha + \dots + \tilde{r}_{N-1} \alpha^{N-1})$$

$$= (\tilde{p}_0 \tilde{r}_0) \cdot \alpha^0 + (\tilde{p}_0 \tilde{r}_1 + \tilde{p}_1 \tilde{r}_0) \cdot \alpha^1 + (\tilde{p}_0 \tilde{r}_2 + \tilde{p}_1 \tilde{r}_1 + \tilde{p}_2 \tilde{r}_0) \cdot \alpha^2 + \dots$$

$$= \sum_{i=0}^{N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i + \sum_{j=0}^{N-1} \tilde{p}_j \tilde{r}_{N-1-j} \alpha^{N-1} + \sum_{i=N}^{2N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i$$

$$\vdots = s + (\tilde{p}_0 \tilde{r}_{N-1} + \tilde{p}_1 \tilde{r}_{N-2} + \dots + \tilde{p}_{N-1} \tilde{r}_0) \cdot \alpha^{N-1} + u \cdot \alpha^N$$

$$\tilde{p}(\tilde{z})$$

$$\begin{split} & \text{Given } \boldsymbol{z} \overset{\$}{\leftarrow} \mathbb{F}_{q}, \text{ consider } \mathbf{r} := (\boldsymbol{z}^{N-1}, \boldsymbol{z}^{N-2}, \dots, \boldsymbol{z}^{1}, \boldsymbol{1}) \,. \\ & \tilde{p}(\alpha) \cdot \tilde{r}(\alpha) = \left(\tilde{p}_{0} + \tilde{p}_{1}\alpha + \dots + \tilde{p}_{N-1}\alpha^{N-1}\right) \cdot \left(\tilde{r}_{0} + \tilde{r}_{1}\alpha + \dots + \tilde{r}_{N-1}\alpha^{N-1}\right) \\ & = \left(\tilde{p}_{0}\tilde{r}_{0}\right) \cdot \alpha^{0} + \left(\tilde{p}_{0}\tilde{r}_{1} + \tilde{p}_{1}\tilde{r}_{0}\right) \cdot \alpha^{1} + \left(\tilde{p}_{0}\tilde{r}_{2} + \tilde{p}_{1}\tilde{r}_{1} + \tilde{p}_{2}\tilde{r}_{0}\right) \cdot \alpha^{2} + \dots \\ & = \sum_{i=0}^{N-2} \left(\sum_{j+k=i} \tilde{p}_{j}\tilde{r}_{k}\right) \alpha^{i} + \sum_{j=0}^{N-1} \tilde{p}_{j}\tilde{r}_{N-1-j} \alpha^{N-1} + \sum_{i=N}^{2N-2} \left(\sum_{j+k=i} \tilde{p}_{j}\tilde{r}_{k}\right) \alpha^{i} \\ & := s + \left(\tilde{p}_{0}\tilde{r}_{N-1} + \tilde{p}_{1}\tilde{r}_{N-2} + \dots + \tilde{p}_{N-1}\tilde{r}_{0}\right) \cdot \alpha^{N-1} + u \cdot \alpha^{N} \end{split}$$

 $\tilde{p}(\tilde{z}) \mod q = p(z)$

1(

Open(ck, cm, p, z):

Open(ck, cm, p, z):

Open(ck, cm, p, z):

Recall that $cm = \tilde{p}(\alpha) \cdot G$

Open(ck, cm, p, z):

1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.

Verify(vk, cm, z, y, π):

1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.

Open(ck, cm, p, z):

- 1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.
- 2. Output $\pi := (s, t, u)$.

Verify(vk, cm, z, y, π):

1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.

Open(ck, cm, p, z):

- 1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.
- 2. Output $\pi := (s, t, u)$.

- 1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.
- 2. Check that:

Open(ck, cm, p, z):

- 1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.
- 2. Output $\pi := (s, t, u)$.

- 1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.
- 2. Check that:

$$\tilde{r}(\alpha) \cdot \text{cm} = s \cdot G + t \cdot G + \alpha^N \cdot u \cdot G$$

Open(ck, cm, p, z):

- 1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.
- 2. Output $\pi := (s, t, u)$.

- 1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.
- 2. Check that:

$$\tilde{r}(\alpha) \cdot \text{cm} = (s + t + \alpha^N \cdot u) \cdot G$$

Open(ck, cm, p, z):

- 1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.
- 2. Output $\pi := (s, t, u)$.

- 1. Define $\mathbf{r} := (z^{N-1}, z^{N-2}, ..., z^1, 1)$ and compute $\tilde{r}(\alpha)$.
- 2. Check that:

$$(\tilde{r}(\alpha) \cdot \tilde{p}(\alpha)) \cdot G = (s + t + \alpha^N \cdot u) \cdot G$$

• For honest $\tilde{\mathbf{p}}, \tilde{\mathbf{r}} \in [0, q-1]^N$:

• For honest $\tilde{\mathbf{p}}, \tilde{\mathbf{r}} \in [0, q-1]^N$:

$$\tilde{p}(\alpha) \cdot \tilde{r}(\alpha) = \sum_{i=0}^{N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i + \sum_{j=0}^{N-1} \tilde{p}_j \tilde{r}_{N-1-j} \alpha^{N-1} + \sum_{i=N}^{2N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i$$

$$= s + (\tilde{p}_0 \tilde{r}_{N-1} + \tilde{p}_1 \tilde{r}_{N-2} + \dots + \tilde{p}_{N-1} \tilde{r}_0) \cdot \alpha^{N-1} + u \cdot \alpha^N$$

• For honest $\tilde{\mathbf{p}}, \tilde{\mathbf{r}} \in [0, q-1]^N$:

$$\tilde{p}(\alpha) \cdot \tilde{r}(\alpha) = \sum_{i=0}^{N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i + \sum_{j=0}^{N-1} \tilde{p}_j \tilde{r}_{N-1-j} \alpha^{N-1} + \sum_{i=N}^{2N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i$$

$$= s + (\tilde{p}_0 \tilde{r}_{N-1} + \tilde{p}_1 \tilde{r}_{N-2} + \dots + \tilde{p}_{N-1} \tilde{r}_0) \cdot \alpha^{N-1} + u \cdot \alpha^N$$

$$0 \le s \le \alpha^{N-1}$$

$$0 \le t \le N \cdot q^2$$

$$0 \le u \le \alpha^{N-1}$$

• For honest $\tilde{\mathbf{p}}, \tilde{\mathbf{r}} \in [0, q-1]^N$:

$$\tilde{p}(\alpha) \cdot \tilde{r}(\alpha) = \sum_{i=0}^{N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i + \sum_{j=0}^{N-1} \tilde{p}_j \tilde{r}_{N-1-j} \alpha^{N-1} + \sum_{i=N}^{2N-2} \left(\sum_{j+k=i} \tilde{p}_j \tilde{r}_k \right) \alpha^i$$

$$= s + (\tilde{p}_0 \tilde{r}_{N-1} + \tilde{p}_1 \tilde{r}_{N-2} + \dots + \tilde{p}_{N-1} \tilde{r}_0) \cdot \alpha^{N-1} + u \cdot \alpha^N$$

$$0 \le s \le \alpha^{N-1}$$

$$0 \le t \le N \cdot q^2$$

$$0 \le u \le \alpha^{N-1}$$

s, t, u are too large to send in the clear!

Range Proofs

• Can the Prover instead directly send $s \cdot G$, $t \cdot G$, $u \cdot G$?

- Can the Prover instead directly send $s \cdot G$, $t \cdot G$, $u \cdot G$?
- For soundness to hold, the Verifier needs to be convinced that s, t, u satisfy the appropriate bounds.

- Can the Prover instead directly send $s \cdot G$, $t \cdot G$, $u \cdot G$?
- For soundness to hold, the Verifier needs to be convinced that s, t, u satisfy the appropriate bounds.
- Solution: Range Proofs

- Can the Prover instead directly send $s \cdot G$, $t \cdot G$, $u \cdot G$?
- For soundness to hold, the Verifier needs to be convinced that s, t, u satisfy the appropriate bounds.
- Solution: Range Proofs

$$H = t \cdot G$$

- Can the Prover instead directly send $s \cdot G$, $t \cdot G$, $u \cdot G$?
- For soundness to hold, the Verifier needs to be convinced that s, t, u satisfy the appropriate bounds.
- Solution: Range Proofs

$$H = t \cdot G$$

$$t \in [a,b]$$

- Can the Prover instead directly send $s \cdot G$, $t \cdot G$, $u \cdot G$?
- For soundness to hold, the Verifier needs to be convinced that s, t, u satisfy the appropriate bounds.
- Solution: Range Proofs

$$H = t \cdot G$$
$$t \in [a, b]$$

$$t \in [a, b]$$

- Can the Prover instead directly send $s \cdot G$, $t \cdot G$, $u \cdot G$?
- For soundness to hold, the Verifier needs to be convinced that s, t, u satisfy the appropriate bounds.
- Solution: Range Proofs

$$H = t \cdot G$$
$$t \in [a, b]$$

$$t \in [a, b]$$

$$\updownarrow$$

$$(t - a)(b - t) \ge 0$$

$$H = t \cdot G$$

$$H = t \cdot G$$

$$t \ge 0$$

Tool: An efficient PoSE [BBF19] that $H=x^2\cdot G$, with $|\pi|=O(\lambda)$ bits.

Tool: An efficient PoSE [BBF19] that $H = x^2 \cdot G$, with $|\pi| = O(\lambda)$ bits.

• Prior work: Lagrange four square theorem

Tool: An efficient PoSE [BBF19] that $H = x^2 \cdot G$, with $|\pi| = O(\lambda)$ bits.

Prior work: Lagrange four square theorem

$$t \ge 0 \iff \exists [x_i]_{i \in [4]} \text{ s.t. } t = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

Tool: An efficient PoSE [BBF19] that $H = x^2 \cdot G$, with $|\pi| = O(\lambda)$ bits.

• Prior work: Lagrange four square theorem

$$t \ge 0 \iff \exists [x_i]_{i \in [4]} \text{ s.t. } t = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

• For $H = t \cdot G$, Prover sends $\pi := [(H_i := (x_i^2 \cdot G), \pi_i)]_{i \in [4]}$.

Tool: An efficient PoSE [BBF19] that $H = x^2 \cdot G$, with $|\pi| = O(\lambda)$ bits.

Prior work: Lagrange four square theorem

$$t \ge 0 \iff \exists [x_i]_{i \in [4]} \text{ s.t. } t = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

- For $H = t \cdot G$, Prover sends $\pi := [(H_i := (x_i^2 \cdot G), \pi_i)]_{i \in [4]}$.
- Verifier checks that the PoSE proof π_i for H_i is valid, for all $i \in [4]$, and that

Tool: An efficient PoSE [BBF19] that $H = x^2 \cdot G$, with $|\pi| = O(\lambda)$ bits.

Prior work: Lagrange four square theorem

$$t \ge 0 \iff \exists [x_i]_{i \in [4]} \text{ s.t. } t = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

- For $H = t \cdot G$, Prover sends $\pi := [(H_i := (x_i^2 \cdot G), \pi_i)]_{i \in [4]}$.
- Verifier checks that the PoSE proof π_i for H_i is valid, for all $i \in [4]$, and that

$$H = H_1 + H_2 + H_3 + H_4$$

Tool: An efficient PoSE [BBF19] that $H = x^2 \cdot G$, with $|\pi| = O(\lambda)$ bits.

• Prior work: Lagrange four square theorem

$$t \ge 0 \iff \exists [x_i]_{i \in [4]} \text{ s.t. } t = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

- For $H = t \cdot G$, Prover sends $\pi := [(H_i := (x_i^2 \cdot G), \pi_i)]_{i \in [4]}$.
- Verifier checks that the PoSE proof π_i for H_i is valid, for all $i \in [4]$, and that

$$t \cdot G = x_1^2 \cdot G + x_2^2 \cdot G + x_3^2 \cdot G + x_4^2 \cdot G$$

Tool: An efficient PoSE [BBF19] that $H = x^2 \cdot G$, with $|\pi| = O(\lambda)$ bits.

Prior work: Lagrange four square theorem

$$t \ge 0 \iff \exists [x_i]_{i \in [4]} \text{ s.t. } t = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

- For $H=t\cdot G$, Prover sends $\pi:=[(H_i:=(x_i^2\cdot G),\,\pi_i)]_{i\in[4]}$.
- Verifier checks that the PoSE proof π_i for H_i is valid, for that

Takes $O(N^3)$ time!

$$t \cdot G = x_1^2 \cdot G + x_2^2 \cdot G + x_3^2 \cdot G + x_4^2$$

Our new theorem:

Our new theorem:

$$t \ge 0 \iff \exists [x_i]_{i \in [\log N]} \text{ s.t. } t = \sum_{i=1}^{\log N} x_i^2$$

Our new theorem:

$$t \ge 0 \iff \exists [x_i]_{i \in [\log N]} \text{ s.t. } t = \sum_{i=1}^{\log N} x_i^2$$

Takes only $\tilde{O}(N)$ time!

Our new theorem:

$$t \ge 0 \iff \exists [x_i]_{i \in [\log N]} \text{ s.t. } t = \sum_{i=1}^{\log N} x_i^2$$

• But now, sending $\pi = [(H_i := x_i^2 \cdot G, \pi_i)]_{i \in [\log N]}$ requires $O(\log N)$ communication.

Our new theorem:

$$t \ge 0 \iff \exists [x_i]_{i \in [\log N]} \text{ s.t. } t = \sum_{i=1}^{\log N} x_i^2$$

Our new theorem:

$$t \ge 0 \iff \exists [x_i]_{i \in [\log N]} \text{ s.t. } t = \sum_{i=1}^{\log N} x_i^2$$

• Instead, Prover sends a single commitment to all x_i 's:

Our new theorem:

$$t \ge 0 \iff \exists [x_i]_{i \in [\log N]} \text{ s.t. } t = \sum_{i=1}^{\log N} x_i^2$$

• Instead, Prover sends a single commitment to all x_i 's:

$$C = x_1 \cdot G_1 + x_2 \cdot G_2 + \cdots + x_{\log N} \cdot G_{\log N}$$

Our new theorem:

$$t \ge 0 \iff \exists [x_i]_{i \in [\log N]} \text{ s.t. } t = \sum_{i=1}^{\log N} x_i^2$$

• Instead, Prover sends a single commitment to all x_i 's:

$$C = x_1 \cdot G_1 + x_2 \cdot G_2 + \cdots + x_{\log N} \cdot G_{\log N}$$

Our new theorem:

$$t \ge 0 \iff \exists [x_i]_{i \in [\log N]} \text{ s.t. } t = \sum_{i=1}^{\log N} x_i^2$$

• Instead, Prover sends a single commitment to all x_i 's:

$$C = x_1 \cdot G_1 + x_2 \cdot G_2 + \cdots + x_{\log N} \cdot G_{\log N}$$

$$\langle (x_1, ..., x_{\log N}), (x_1, ..., x_{\log N}) \rangle = t$$

Our new theorem:

$$t \ge 0 \iff \exists [x_i]_{i \in [\log N]} \text{ s.t. } t = \sum_{i=1}^{\log N} x_i^2$$

• Instead, Prover sends a single commitment to all x_i 's:

$$C = x_1 \cdot G_1 + x_2 \cdot G_2 + \cdots + x_{\log N} \cdot G_{\log N}$$

$$x_1^2 + \dots + x_{\log N}^2 = t$$

Our new theorem:

$$t \geq 0 \iff \exists [x_i]_{i \in [\log N]} \text{ s.t. } t$$
 Proof size $O(\log \log N)$ • Instead, Prover sends a single commitment to
$$C = x_1 \cdot G_1 + x_2 \cdot G_2 + \cdots + x_{\log N} G_{\log N}$$

$$x_1^2 + \dots + x_{\log N}^2 = t$$

Conclusion

• DewTwo: a transparent multilinear PC scheme with $O(N \log^2 N)$ prover time, $O(\log N)$ verifier time and $O(\log \log N)/4.5$ KB proof size.

- DewTwo: a transparent multilinear PC scheme with $O(N \log^2 N)$ prover time, $O(\log N)$ verifier time and $O(\log \log N)/4.5$ KB proof size.
- Removed dependence on the Generic Group Model.

- DewTwo: a transparent multilinear PC scheme with $O(N \log^2 N)$ prover time, $O(\log N)$ verifier time and $O(\log \log N)/4.5$ KB proof size.
- Removed dependence on the Generic Group Model.

Open Questions:

- DewTwo: a transparent multilinear PC scheme with $O(N \log^2 N)$ prover time, $O(\log N)$ verifier time and $O(\log \log N)/4.5$ KB proof size.
- Removed dependence on the Generic Group Model.

Open Questions:

Improve the prover time to O(N) while maintaining small proofs.

- DewTwo: a transparent multilinear PC scheme with $O(N \log^2 N)$ prover time, $O(\log N)$ verifier time and $O(\log \log N)/4.5$ KB proof size.
- Removed dependence on the Generic Group Model.

Open Questions:

- Improve the prover time to O(N) while maintaining small proofs.
- Construct a plausibly post-quantum secure 'Proof of Squared Exponent'.

- DewTwo: a transparent multilinear PC scheme with $O(N \log^2 N)$ prover time, $O(\log N)$ verifier time and $O(\log \log N)/4.5$ KB proof size.
- Removed dependence on the Generic Group Model.

Open Questions:

- Improve the prover time to O(N) while maintaining small proofs.
- Construct a plausibly post-quantum secure 'Proof of Squared Exponent'.
 - Would imply very efficient post-quantum PCS.

Thank you for listening!

ia.cr/2025/129