Visualización de datos en R: una aproximación a través del paquete ggplot2

https://ggplot2.tidyverse.org/

grammar of graphics:

ggplot2 package downloads

DATA

ggplot(data)

date	name [‡]	descr	day	month [‡]	year [‡]	rank [‡]	downloads
23/04/2024	ggplot2	Create Elegant Data Visualisations Using the Grammar of Gr	23	04	2024	1	156190079
17/01/2025	rlang	Functions for Base Types and Core R and 'Tidyverse' Features	17	01	2025	2	145302572
30/03/2022	magrittr	A Forward-Pipe Operator for R	30	03	2022	3	132429652
17/11/2023	dplyr	A Grammar of Data Manipulation	17	11	2023	4	119650576
01/12/2023	vctrs	Vector Helpers	01	12	2023	5	106564551
21/06/2024	cli	Helpers for Developing Command Line Interfaces	21	06	2024	6	104741711
20/03/2023	tibble	Simple Data Frames	20	03	2023	7	100443243
20/09/2024	jsonlite	A Simple and Robust JSON Parser and Generator for R	20	09	2024	8	98416548
11/10/2022	devtools	Tools to Make Developing R Packages Easier	11	10	2022	9	95171788
12/01/2025	Rcpp	Seamless R and C++ Integration	12	01	2025	10	94816376
07/11/2023	lifecycle	Manage the Life Cycle of your Package Functions	07	11	2023	11	94810927
07/01/2025	pillar	Coloured Formatting for Columns	07	01	2025	12	94210318
30/09/2024	glue	Interpreted String Literals	30	09	2024	13	93054391
11/09/2024	ragg	Graphic Devices Based on AGG	11	09	2024	14	90538667
20/01/2025	textshaping	Bindings to the 'HarfBuzz' and 'Fribidi' Libraries for Text Sha	20	01	2025	15	87906117
14/11/2023	stringr	Simple, Consistent Wrappers for Common String Operations	14	11	2023	16	84672109
06/05/2024	stringi	Fast and Portable Character String Processing Facilities	06	05	2024	17	79777043
22/02/2023	tidvverse	Fasily Install and Load the 'Tidwerse'	22	02	2023	18	79112925

MAPPING

¿eje x? ¿eje y? Otras variables…

ggplot(data, mapping = aes(x = year, y = downloads))+ geom_point()

date [‡]	name [‡]	descr	day [‡]	month [‡]	year [‡]	rank [‡]	downloads
23/04/2024	ggplot2	Create Elegant Data Visualisations Using the Grammar of Gr	23	04	2024	1	156190079
17/01/2025	rlang	Functions for Base Types and Core R and 'Tidyverse' Features	17	01	2025	2	145302572
30/03/2022	magrittr	A Forward-Pipe Operator for R	30	03	2022	3	132429652
17/11/2023	dplyr	A Grammar of Data Manipulation	17	11	2023	4	119650576
01/12/2023	vctrs	Vector Helpers	01	12	2023	5	106564551
21/06/2024	cli	Helpers for Developing Command Line Interfaces	21	06	2024	6	104741711

MAPPING


```
ggplot(data)+
geom_point(aes(month, downloads) , colour="blue")
```

```
ggplot(data)+
geom_point(aes(month, downloads, colour=year))
```

STATISTICS

SCALES

ggplot(data)+
geom_point(aes(date, log10(downloads), colour=year))

+ scale_colour_brewer(palette)

+ scale_size_area()

GEOMETRIES

geom_point() & geom_line()

geom_histogram()

geom_bar()

stat_density_2d ()

geom_violin()

geom_spatvect()

GEOMETRIES

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms—visual marks that represent data points.

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations.

Complete the template below to build a graph.

ggplot (data = <DATA>) + <GEOM_FUNCTION> (mapping = aes(<MAPF

stat = <STAT>, position = <POSITION>) +

<COORDINATE FUNCTION> +

<FACET_FUNCTION>)+ <SCALE_FUNCTION> +

<THEME_FUNCTION>

ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot that you finish by adding layers to. Add one geom function per layer.

last_plot() Returns the last plot.

ggsave("plot.png", width = 5, height = 5) Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

Aes Common aesthetic values. color and fill - string ("red", "#RRGGBB")

linetype - integer or string (0 = "blank", 1 = "solid", 2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash" 6 = "twodash")

size - integer (in mm for size of points and text)

linewidth - integer (in mm for widths of lines)

0 1 2 3 4 5 6 7 8 9 10 11 12 shape - integer/shape name or a single character ("a") 13 14 15 16 17 18 19 20 21 22 23 24 25 8⊠□0△**00000**

Geoms

Use a geom function to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

GRAPHICAL PRIMITIVES

a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat))</p>

a + geom_blank() and a + expand_limits() Ensure limits include values across all plots.

xend = long + 1), curvature = 1) - x, xend, y, yend, alpha, angle, color, curvature, linetype, size

a + geom_polygon(aes(alpha = 50)) - x, y, alpha, color, fill, group, subgroup, linetype, size

a + geom_ribbon(aes(ymin = unemploy - 900, ymax = unemploy + 900)) - x, ymax, ymin, alpha, color, fill, group, linetype, size

LINE SEGMENTS

common aesthetics: x, y, alpha, color, linetype, size

defaults

supplied

b + geom_abline(aes(intercept = 0, slope = 1)) b + geom_hline(aes(yintercept = lat))

b + geom_vline(aes(xintercept = long))

b + geom_segment(aes(vend = lat + 1, xend = long + 1)) b + geom_spoke(aes(angle = 1:1155, radius = 1))

ONE VARIABLE continuous

c + geom_dotplot()

x, y, alpha, color, fill

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin") x, y, alpha, color, fill, linetype, size

c + geom_density(kernel = "gaussian") x, y, alpha, color, fill, group, linetype, size, weight

c + geom_freqpoly()

x, y, alpha, color, group, linetype, size c + geom_histogram(binwidth = 5)

x, y, alpha, color, fill, linetype, size, weight

c2 + geom_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight

discrete

d <- ggplot(mpg, aes(fl))

d + geom_bar() x, alpha, color, fill, linetype, size, weight

TWO VARIABLES

both continuous

e <- ggplot(mpg, aes(cty, hwy))

e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1) - x, y, label, alpha, angle, color. family, fontface, hjust, lineheight, size, vjust

e + geom_point() x, y, alpha, color, fill, shape, size, stroke

e + geom_quantile() x, y, alpha, color, group, linetype, size, weight

e + geom_smooth(method = lm) x, y, alpha, color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

x, y, alpha, color, fill, group, linetype, size

x, y, lower, middle, upper, ymax, ymin, alpha,

color, fill, group, linetype, shape, size, weight

f + geom_dotplot(binaxis = "y", stackdir = "center")

x, y, alpha, color, fill, group, linetype, size, weight

one discrete, one continuous

f + geom_boxplot()

x, y, alpha, color, fill, group

g <- ggplot(diamonds, aes(cut, color))

f + geom_violin(scale = "area")

f <- ggplot(mpg, aes(class, hwy))

f + geom_col()

continuous bivariate distribution h <- ggplot(diamonds, aes(carat, price))

 $h + geom_bin2d(binwidth = c(0.25, 500))$ x, y, alpha, color, fill, linetype, size, weight

h + geom_density_2d() x, y, alpha, color, group, linetype, size

h + geom_hex() c, y, alpha, color, fill, size

continuous function

i <- ggplot(economics, aes(date, unemploy))

i + geom_area() x, y, alpha, color, fill, linetype, size

i + geom_line() x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv") x, y, alpha, color, group, linetype, size

visualizing error

df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2) j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))

j + geom_crossbar(fatten = 2) - x, y, ymax, ymin, alpha, color, fill, group, linetype, size

j + geom_errorbar() - x, ymax, ymin, alpha, color, group, linetype, size, width Also geom_errorbarh().

j + geom_linerange() x, ymin, ymax, alpha, color, group, linetype, size

j + geom_pointrange() - x, y, ymin, ymax, alpha, color, fill, group, linetype, shape, size

Draw the appropriate geometric object depending on the simple features present in the data. aes() arguments: map_id, alpha, color, fill, linetype, linewidth.

nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"))

geom_sf(aes(fill = AREA))

ggplot(nc) +

THREE VARIABLES

g + geom_count()

both discrete

seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)); l <- ggplot(seals, aes(long, lat))

I + geom_contour(aes(z = z)) x, y, z, alpha, color, group, linetype, size, weight

x, y, alpha, color, fill, shape, size, stroke

e + geom_jitter(height = 2, width = 2)

x, y, alpha, color, fill, shape, size

l + geom_raster(aes(fill = z), hjust = 0.5, vjust = 0.5, interpolate = FALSE) x, y, alpha, fill

l + geom_tile(aes(fill = z)) x, y, alpha, color, fill, linetype, size, width

CC BY SA Posit Software, PBC • info@posit.co • posit.co • Learn more at ggplot2.tidyverse.org • HTML cheatsheets at pos.it/cheatsheets • ggplot2 3.5.1 • Updated: 2024-05

FACETS

ggplot(data, mapping)+ geom_point()+

facet_wrap(~var1)

facet_grid(var1~var2)

COORDINATES

ggplot(data, mapping)+ geom_bar(fill)+

+ coords_trans(ylim = c(0, 800))

+ coord_polar()

THEME

+labs(title, x, y)

+labs(...) + theme(...)

package age (days old)