Heuristic (Informed) Search B

(Where we try to choose smartly)

Russell and Norvig:
Chap. 3, Sect. 3.5 - 3.6

Slides adapted from Jean-Claude Latombe at Stanford University (used with permission)

The heuristic **h** is clearly admissible

If we discard this new node, then the search algorithm expands the goal node next and returns a non-optimal solution

Instead, if we do not discard nodes revisiting states, the search terminates with an optimal solution

But ...

If we do not discard nodes revisiting states, the size of the search tree can be exponential in the number of visited states

- ◆ It is not harmful to discard a node revisiting a state if the cost of the new path to this state is ≥ cost of the previous path
- A* remains optimal, but states can still be re-visited multiple times
 [the size of the search tree can still be exponential in the number of visited states]
- Fortunately, for a large family of admissible heuristics
 consistent heuristics
 there is a much more efficient way to handle revisited states

Consistent Heuristic

A consistent heuristic

A heuristic h is consistent (or monotone) if

1) for each node N and each child N' of N:

$$h(N) \le c(N,N') + h(N')$$

2) for each goal node G: h(G) = 0

(triangle inequality)

▶ Intuition: a consistent heuristics becomes more precise as we get deeper in the search tree

Consistency Violation

If h tells that N is 100 units from the goal, then moving from N along an arc costing 10 units should not lead to a node N' that h estimates to be 10 units away from the goal

Admissibility and Consistency

- A consistent heuristic is also admissible
- An admissible heuristic may not be consistent, but many admissible heuristics are consistent

8-Puzzle

5		8
4	2	1
7	3	6
STA	ATE(N	I)

1	2	3
4	5	6
7	8	
	goal	

- $h_1(N)$ = number of misplaced tiles
- h₂(N) = sum of the (Manhattan) distances of every tile to its goal position are both consistent? (why?)

$$h(N) \le c(N,N') + h(N')$$

Robot Navigation

Cost of one horizontal/vertical step = 1 Cost of one diagonal step = $\sqrt{2}$

$$h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$$
 is consistent
 $h_2(N) = |x_N - x_g| + |y_N - y_g|$ is consistent if moving along diagonals is not allowed, and not consistent otherwise

Result #2

If h is consistent, then whenever A* expands a node, it has already found an optimal path to this node's state

Proof (1/2)

5 N

 \circ N

- Consider a node N and its child N'
- Since h is consistent: h(N) ≤ c(N,N')+h(N')

$$f(N) = g(N) + h(N) \le g(N) + c(N,N') + h(N') = f(N')$$

• So, f is non-decreasing along any path

Proof (2/2)

♦ If a node K is selected for expansion, then any other node N in the frontier verifies $f(N) \ge f(K)$

If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K:

$$f(N') = g(N') + h(N') \ge f(N) \ge f(K) = g(K) + h(K)$$

♦ Then because h(N') = h(K), we must have $g(N') \ge g(K)$

Proof (2/2)

♦ If a node K is selected for expansion, then any other node N in the frontier verifies $f(N) \ge f(K)$

Result #2: If h is consistent, then whenever A* expands a node, it has already found an optimal path to this node's state

If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K:

$$f(N') = g(N') + h(N') \ge f(N) \ge f(K) = g(K) + h(K)$$

♦ Then because h(N') = h(K), we must have $g(N') \ge g(K)$

Implication of Result #2

Revisited States with Consistent Heuristic

- When a node is expanded, store its state into CLOSED
- When a new node N is generated:
 - If STATE(N) is in CLOSED, discard N
 - If there exists a node N' in the frontier such that STATE(N') = STATE(N), discard the node – N or N' – with the largest f (or, equivalently, g)

A* and Consistency

- Is A* with some consistent heuristic all that we need?
- No! There are some very dumb consistent heuristic functions

For example: h ≡ 0

- It is consistent (hence, admissible)!
- ◆ A* with h≡0 is uniform-cost search
- Breadth-first and uniform-cost are particular cases of A*

Heuristic Accuracy

Let h₁ and h₂ be two consistent heuristics such that for all nodes N:

$$h_1(N) \leq h_2(N)$$

h₂ is said to be **dominate** h₁(or be more accurate or informed)

5		8
4	2	1
7	3	6

STATE(N)

8		8		
1	2	3		
4	5	6		
7	8			
×	3	×		

Goal state

- h₁(N) = number of misplacedtiles = 6
- h₂(N) = sum of distances of every tile to its goal position = 13
- h₂ is more accurate than h₁

Result #3

- Let h₂ be more accurate than h₁
- Let A₁* be A* using h₁ and A₂* be A* using h₂
- Whenever a solution exists, all the nodes expanded by A₂* except possibly for some nodes such that f₁(N) = f₂(N) = C* (cost of optimal solution) are also expanded by A₁*

Proof

- C* = h*(initial-node) [cost of optimal solution]
- Every node N such that f(N) < C* is eventually expanded.</p>
 No node N such that f(N) > C* is ever expanded
- Every node N such that $h(N) < C^*-g(N)$ is eventually expanded. So, every node N such that $h_2(N) < C^*-g(N)$ is expanded by A_2^* . Since $h_1(N) \le h_2(N) < C^*-g(N)$, N is also expanded by A_1^*
- If there are several nodes N such that f₁(N) = f₂(N) = C* (such nodes include the optimal goal nodes, if there exists a solution), A₁* and A₂* may or may not expand them in the same order (until one goal node is expanded)

Effective Branching Factor

- It is used as a measure the effectiveness of a heuristic
- Let n be the total number of nodes expanded by A* for a particular problem and d the depth of the solution
- The effective branching factor b* is defined by

$$n = 1 + b^* + (b^*)^2 + ... + (b^*)^d$$

Experimental Results

- ♦ 8-puzzle with:
 - h_1 = number of misplaced tiles
 - h₂ = sum of distances of tiles to their goal positions
- Random generation of many problem instances
- Average effective branching factors (number of expanded nodes):

d	IDS	A ₁ *	A ₂ *
2	2.45	1.79	1.79
6	2.73	1.34	1.30
12	2.78 (3,644,035)	1.42 (227)	1.24 (73)
16		1.45	1.25
20		1.47	1.27
24		1.48 (39,135)	1.26 (1,641)

How to create good heuristics?

- By solving relaxed problems at each node
- In the 8-puzzle, the sum of the distances of each tile to its goal position (h₂) corresponds to solving 8 simple problems:

 d_i is the length of the shortest path to move tile i to its goal position, ignoring the other tiles, e.g., d_5 = 2

$$h_2 = \Sigma_{i=1,...8} d_i$$

It ignores negative interactions among tiles

Can we do better?

For example, we could consider two more complex relaxed problems:

d₁₂₃₄ = length of the shortest path to move tiles 1, 2, 3, and 4 to their goal positions, ignoring the other tiles

1			_			
5		8		1	2	3
4	2	1	-	4	5	6
7	3	6		7	8	
X X X		X X			X X	

 d_{5678}

		1 1			
			1	2	3
4	2	1	 4		
	3				

 7	6		7		
		-		5	6
 5	 8				
 <u> </u>	 1 1	L		-	

- \Rightarrow h = d₁₂₃₄ + d₅₆₇₈ [disjoint pattern heuristic]
- How to compute d₁₂₃₄ and d₅₆₇₈?

Can we do better?

For example, we could consider two more complex relaxed problems:

d₁₂₃₄ = length of the shortest path to move tiles 1, 2, 3, and 4 to their goal positions, ignoring the other tiles

 d_{5678}

1 2 3

5 8

- ► These distances are pre-computed and stored Each requires generating a tree of 3,024 nodes/states (breadth-first search)
- ▶ Several order-of-magnitude speedups for the 15- and 24-puzzle
- \bullet How to compute d_{1234} and d_{5678} ?

Note on

Completeness and Optimality

- A* with a consistent heuristic function has nice properties: completeness, optimality, no need to revisit states
- Theoretical completeness does not mean "practical" completeness if you must wait too long to get a solution (e.g. time limit issue)
- So, if one can't design an accurate consistent heuristic, it may be better to settle for a nonadmissible heuristic that "works well in practice", even through completeness and optimality are no longer guaranteed

Iterative Deepening A* (IDA*)

- Idea: Reduce memory requirement of A* by applying cutoff on values of f
- Consistent heuristic function h
- Algorithm IDA*:
 - Initialize cutoff to f(initial-node)
 - Repeat:
 - Perform depth-first search by expanding all nodes N such that f(N) ≤ cutoff
 - Reset cutoff to smallest value f of nonexpanded (leaf) nodes

8-Puzzle f(N) = g(N) + h(N) with h(N) = number of misplaced tiles

8-Puzzle f(N) = g(N) + h(N) with h(N) = number of misplaced tiles

8-Puzzle f(N) = g(N) + h(N)with h(N) = number of misplaced tiles

8-Puzzle f(N) = g(N) + h(N)with h(N) = number of misplaced tiles

8-Puzzle f(N) = g(N) + h(N) with h(N) = number of misplaced tiles

8-Puzzle f(N) = g(N) + h(N)with h(N) = number of misplaced tiles

8-Puzzle f(N) = g(N) + h(N)with h(N) = number of misplaced tiles

Advantages/Drawbacks of IDA*

- Advantages:
 - Still complete and optimal
 - Requires less memory than A*
 - Avoid the overhead to sort the frontier
- Drawbacks:
 - Can't avoid revisiting states not on the current path
 - Available memory is poorly used
 (→ memory-bounded search)

Local Search

- Light-memory search method
- No search tree; only the current state is represented!
- Only applicable to problems where the path is irrelevant (e.g., 8-queen), unless the path is encoded in the state
- Many similarities with optimization techniques

Steepest Descent

- 1) S ← initial state
- 2) Repeat:
 - a) $S' \leftarrow arg \min_{S' \in SUCCESSORS(S)} \{h(S')\}$
 - b) if GOAL?(S') return S'
 - if h(S') < h(S) then $S \leftarrow S'$ else return failure

Similar to:

- hill climbing with –h
- gradient descent over continuous space

Application: 8-Queen

- 1) Pick an initial state S at random with one queen in each column
- 2) Repeat k times:
 - a) If GOAL?(S) then return S
 - b) Pick an attacked queen Q at random
 - Move Q in its column to minimize the number of attacking queens → new S [min-conflicts heuristic]
- 3) Return failure

Application: 8-Queen

Repeat n times:

1) Pick an initial state S at random with one queen in each column

2) Donost k timos

Why does it work?

 There are many goal states that are well-distributed over the state space

• If no solution has been found after a few steps, it's better to start it all over again. Building a search tree would be much less efficient because of the high branching factor

Running time almost independent of the number of queens

Steepest Descent

- S ← initial state
- 2) Repeat:
 - a) $S' \leftarrow arg min_{S' \in SUCCESSORS(S)} \{h(S')\}$
 - b) if GOAL?(S') return S'
 - if h(S') < h(S) then $S \leftarrow S'$ else return failure

may easily get stuck in local minima

- → Random restart (as in n-queen example)
- → Monte Carlo descent

Monte Carlo Descent

- 1) S ← initial state
- 2) Repeat k times:
 - a) If GOAL?(S) then return S
 - b) S' ← successor of S picked at random
 - c) if $h(S') \le h(S)$ then $S \leftarrow S'$
 - d) else
 - $\Delta h = h(S')-h(S)$
 - with probability ~ exp(-∆h/T), where T is called the "temperature", do: S ← S' [Metropolis criterion]
- 3) Return failure

Simulated annealing lowers T over the k iterations. It starts with a large T and slowly decreases T

"Parallel" Local Search

- They perform several local searches concurrently, but not independently:
 - Beam search
 - Genetic algorithms

When Use Search Techniques?

- The search space is small, and
 - No other technique is available, or
 - Developing a more efficient technique is not worth the effort
- The search space is large, and
 - No other available technique is available, and
 - There exist "good" heuristics