Homework 2

Due on 2nd November

Problem 2.24

Consider a simplified learning scenario. Assume that the input dimension is one. Assume that the input variable x is uniformly distributed in the interval [-1,1]. The data set consists of 2 points $\{x_1,x_2\}$ and assume that the target function is $f(x) = x^2$. Thus, the full data set is $\mathcal{D} = \{(x_1,x_1^2),(x_2,x_2^2)\}$. The learning algorithm returns the line fitting these two points as $g(\mathcal{H}$ consists of functions of the form h(x) = ax + b). We are interested in the test performance (E_{out}) of our learning system with respect to the squared error measure, the bias and the variance.

- (a) Give the analytic expression for the average function $\overline{g}(x)$.
- (b) Describe an experiment that you could run to determine (numerically) $\overline{g}(x)$, E_{out} , bias, and var.
- (c) Run your experiment and report the results. Compare E_{out} with bias+var. Provide a plot of your $\overline{g}(x)$ and f(x) (on the same plot).
- (d) Compute analytically what E_{out} , bias, and var should be.