

Aula de Eletrônica

Resistência Elétrica

Prof. Dr. Ricardo Luiz Barros de Freitas

- Quando se estabelece uma tensão entre os terminais de um condutor, o campo elétrico gerado pela tensão provoca o movimento ordenado dos elétrons livres, ou seja, uma corrente elétrica.
- Esses elétrons, em seu deslocamento, chocam-se com os átomos do condutor, resultando na produção de calor.
- Os átomos de alguns condutores oferecem maior resistência à passagem da corrente que outros e, nesse caso, produz-se mais calor.
- Tal propriedade física dos condutores é chamada de resistência elétrica.

- Em outras palavras, parte da energia fornecida ao fio é transformada em energia elétrica (energia de movimento dos elétrons) e parte, em energia térmica.
- Essa conversão em calor é conhecida como efeito Joule.
- Quanto mais alto o valor da resistência elétrica do condutor, maior a oposição à passagem da corrente e maior a quantidade de calor dissipado.

- A resistência elétrica depende do material, das dimensões do condutor e da temperatura (agitação térmica).
- Sua unidade de medida no SI e o **ohm**, de símbolo Ω .
- Em muitos casos práticos, deseja-se que o valor da resistência seja o menor possível, para reduzir a dissipação de energia
- Por exemplo, nos condutores empregados em redes elétricas, transformadores e motores.
- Em outras aplicações, como nos circuitos eletrônicos, deseja-se limitar a corrente em um valor estipulado.
- Nesse caso, utiliza-se um componente especialmente destinado a esse fim, o resistor.
- Trata-se de um elemento físico cuja caracteristica principal é a resistência elétrica.

- Resistores
- Os resistores podem ser construídos com fio, filme de carbono, filme metálico etc.

- Em outros casos, deseja-se transformar energia elétrica em térmica, como no chuveiro, no forno elétrico e no secador de cabelos.
- Esses elementos também são denominados resistores, mas comercialmente costumam ser chamados de elementos de aquecimento ou de "resistências".
- É comum dizermos que a resistência do chuveiro "queimou", o que pode causar certa confusão, pois a resistência é uma propriedade, e não um dispositivo.

- Outra importante característica de um resistor é a potência máxima dissipada.
- Resistores de carbono e filme metálico são encontrados na faixa de 0,1 a 1 W.
- Resistores de fio estão na faixa de 5 a 100 W
- Resistores de aquecimento para uso residencial se situam entre 1 e 5 kW.

- Algumas aplicações exigem que o valor da resistência do resistor seja variado.
- Em aplicações eletrônicas de baixa potência, elementos que permitem tal variação são encontrados na forma de potenciômetros usados para o controle de volume em sistemas de som antigos, em que o operador tinha acesso a seu eixo.

Resistores

• Ha também os *trimpots,* utilizados para ajustes no circuito eletrônico, não acessíveis ao operador.

Resistores

 Outro dispositivo que possibilita a variação da resistência é o reostato de elevada potência.

Simbologia

 Em qualquer um dos casos descritos, o resistor é representado em um circuito por um dos símbolos gráficos:

• Os potenciômetros e os trimpots são dispositivos de três terminais, dois para o resistor e um para o cursor, e são representados graficamente:

- Código de cores dos resistores
- Os resistores com maiores dimensões têm a indicação da resistência e da potência no próprio corpo (resistores de fio).
- Outros, de menor potência, utilizam apenas um código de cores para indicar seu valor.
- O código de cores consiste em quatro (a), cinco (b) ou seis anéis coloridos impressos no corpo do resistor

• Código de cores dos resistores

Cores	Valor (lº ao 3º anel)	Tolerância (4º ou 5º anel)
Preto	0 (menos Iº anel)	
Marrom	I	1%
Vermelho	2	2%
Laranja	3	
Amarelo	4	
Verde	5	0,5% (apenas 5º anel)
Azul	6	
Roxo/lilás/violeta	7	
Cinza	8	
Branco	9	
Ouro	-I (apenas 3º anel)	5%
Prata	-2 (apenas 3º anel)	10% (não mais fabricado)

- Código de cores dos resistores
- No sistema de quatro anéis, a leitura é dada pela fórmula:
- Leitura = $(A.Bx10^C \pm D) \Omega$
- Em que:
- A é o primeiro anel = primeiro algarismo;
- B o segundo anel = segundo algarismo;
- C o terceiro anel = algarismo multiplicador = número de zeros;
- D quarto anel = tolerância.

Cores	Valor (lº ao 3º anel)	Tolerância (4º ou 5º anel)
Preto	0 (menos Iº anel)	
Marrom	1	1%
Vermelho	2	2%
Laranja	3	
Amarelo	4	
Verde	5	0,5% (apenas 5º anel)
Azul	6	
Roxo/lilás/violeta	7	
Cinza	8	
Branco	9	
Ouro	-I (apenas 3º anel)	5%
Prata	-2 (apenas 3º anel)	10% (não mais fabricado)

- Código de cores dos resistores
- Exemplos:

- Código de cores dos resistores
- Exemplos: Qual é o valor do resistor abaixo?

• A: amarelo = 4.

• B: violeta = 7.

• C: vermelho = 2.

• D: ouro = 5%.

- Assim obtemos:
- $R = 47x10^2 \Omega \pm 5\% = 4700 \Omega \pm 5\% = 4.7 k\Omega \pm 5\%$
- Na pratica, o valor 4,7 k Ω também e grafado como 4k7 Ω .

- Nesse caso, ha uma resistência nominal de $4,7 \text{ k}\Omega$ e tolerância de 5%.
- Cinco por cento de 4,7 kΩ é 4,700x5/100 = 0,235 kΩ.
- Isso indica que o valor real do resistor devera estar na faixa compreendida entre:
- Rmín = $4700 235 = 4465\Omega = 4,465 \text{ k}\Omega$
- Rmáx = $4,7 + 0,235 = 4,935 \text{ k}\Omega$.

- Código de cores dos resistores
- Os dispositivos com tolerância menor ou igual a 1% sao denominados resistores de precisão.
- Eles possuem cinco ou seis faixas.
- Nesse caso, três algarismos significativos (ABC) são utilizados.
- Para o sistema de cinco anéis a leitura e dada pela formula:
- Leitura = (ABC x $10^{D} \pm E$) Ω em que:
 - A e o primeiro anel = primeiro algarismo;
 - B o segundo anel = segundo algarismo;
 - C o terceiro anel = terceiro algarismo;
 - D o quarto anel = algarismo multiplicador = numero de zeros;
 - E o quinto anel = tolerância.

- Código de cores dos resistores
- Exemplos: Qual é o valor do resistor abaixo?
- A: amarelo = 4.
- B: violeta = 7.
- C: preto = 0
- D: preto=0
- D: marrom = 1%.
- Assim obtemos:
- $R = 470 \times 10^{0} \Omega \pm 1\% = 470 \Omega \pm 5\%$

- Nesse caso, ha uma resistência nominal de 470Ω e tolerância de 1%.
- Hum por cento de 470 Ω é 470x1/100 = 4,7 Ω .
- Isso indica que o valor real do resistor devera estar na faixa compreendida entre:
- Rmín = $470 4,7 = 465,3\Omega$
- Rmáx = $470 + 4,7 = 474,7\Omega$.

Lei de Ohm

• A Lei de Ohm estabelece que a diferença de potencial v entre os terminais de um resistor puro é diretamente proporcional à corrente i que nele circula.

• A relação matemática da Lei de Ohm é ilustrada pela equação:

$$v(t) = R.i(t)$$

• Lei de Ohm

• A constante de proporcionalidade é chamada de resistência (R) do resistor e é

expressa em:

$$\left| \frac{Volt}{Ampere} \right| = [Ohm]$$

$$\left[rac{V}{A}
ight] = \left[\Omega
ight]$$

• Da expressão acima, podemos escrever:

$$i(t) = \frac{1}{R} . V(t) = G.v(t)$$
$$G = \frac{1}{R}$$

• G é denominado de condutância, expressa em Mho $(1/\Omega)$ ou Siemens (S).

- Lei de Ohm
- A resistência de valor zero é denominada curto circuito.

• A resistência de valor infinito é denominada circuito aberto.

- Lei de Ohm
- Um resistor dissipa a energia que lhe é entregue na forma de calor.
- A potência instantânea dissipada no resistor num determinado instante de tempo é:

$$p = v(t).i(t) = R.i^{2}(t) = \frac{v^{2}(t)}{R}$$

• Então, a energia dissipada no resistor pode ser expressa por:

$$p = v(t).i(t) = R.i^{2}(t) = \frac{v^{2}(t)}{R}$$

- Resistências em Série
- Para uma associação de n resistências em série:

- podemos escrever: $R_S=R_1+R_2+...+R_n$ $V=V_1+V_2+...+V_n$ $R_S.I=R_1.I+R_2.I+...+R_n.I$
- A corrente I é a mesma que passa por todos os resistores.

- Resistências em Paralelo
- Para uma associação de n resistências em paralelo:

• podemos escrever:

$$I = I_1 + I_2 + \dots + I_n$$

$$\frac{V}{R_p} = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \dots + \frac{V_n}{R_n}$$

$$\frac{1}{R_n} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

- Resistências em Paralelo
- Para uma associação de n resistências em paralelo:

• Para o caso especial de duas resistências, temos:

$$R_{p} = \frac{R_{1}.R_{2}}{R_{1} + R_{2}}$$

• Para o caso especial das resistências serem iguais:

$$R_p = \frac{R}{n}$$

- Resistências em Paralelo
- Para uma associação de n resistências em paralelo:

• Para o caso especial de duas resistências, temos:

$$R_{p} = \frac{R_{1}.R_{2}}{R_{1} + R_{2}}$$

• Para o caso especial das resistências serem iguais:

$$R_p = \frac{R}{n}$$

- Exemplo
- Calcule a resistência equivalente do circuito da figura:

Solução:

$$\frac{1}{R_T} = \frac{1}{60} + \frac{1}{60} + \frac{1}{60} = \frac{3}{60} = \frac{1}{20}$$

$$R_T = 20\Omega$$

• Como as resistências são iguais, também pode ser resolvido assim:

$$R_T = \frac{60}{3} = 20\Omega$$

- Exemplo
- Calcule a resistência equivalente entre os pontos A e B da figura:

- Solução:
- Os resistores R1 e R2 estão em serie:

$$R_x = 10\Omega + 20\Omega = 30\Omega$$

- Solução:
- Os resistores R1 e R2 estão em serie:

$$R_x = 10\Omega + 20\Omega = 30\Omega$$

Agora calculamos o paralelo de duas resistências, R_x e R₃, que por coincidência são iguais:

$$R_T = R_x / / R_3 = \frac{30}{2} = 15\Omega$$

- Exemplo
- Calcule a resistência equivalente entre os pontos A e B da figura:

- Solução:
- Os resistores R1 e R2 estão em paralelo e são duas resistências:

$$R' = R_1 / R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{10x20}{10 + 20} = \frac{200}{30} = 6,67\Omega$$

- Solução:
- Redesenhando o circuito temos que os resistores R' e R₃ estão em séria, assim:

$$R_T = R' + R_3 = 6,67 + 30 = 36,67\Omega$$

- Exemplo
- No circuito da figura, determine R_T, I, U₁, U₂, P_T, P_{R1}, P_{R2}:

- Solução:
- A primeiro passo é calcular a R_T :

$$R_T = R_1 + R_2 = 20 + 30 = 50\Omega$$

- Solução:
- Agora utilizando a Lei de Ohm, calculamos a corrente I:

$$I = \frac{U}{R_T} = \frac{12}{50} = 0,240A = 240mA$$

- Solução:
- Com a corrente I podemos calcular a tensão em cada resistor:

$$U_1 = R_1.I = 20x0, 240 = 4,8V$$

 $U_2 = R_2.I = 30x0, 240 = 7,2V$

- Solução:
- A potência em cada resistor pode ser calculada de várias maneiras:

Assim:

$$P_{R_1} = U_1.I = 4,8x0,240 = 1,15W$$

$$P_{R_2} = U_2.I = 7,2x0,240 = 1,73W$$

$$PT = U.I = 12x0, 240 = 2,88W$$

- Exemplo
- No circuito da figura, determine R_T, I, I₁, I₂, P_T, P_{R1}, P_{R2}:

- Solução:
- Obtêm-se I₁, I₂ pela lei de Ohm com resistências em paralelo:

$$I_1 = \frac{U}{R_1} = \frac{12}{20} = 0,60A$$

$$I_2 = \frac{U}{R_2} = \frac{12}{30} = 0,40A$$

- Solução:
- A corrente total do circuito é a soma das correntes em paralelo:

$$I = I_1 + I_2 = 0,60 + 0,40 = 1A$$

- Solução:
- A resistência total R_⊤ pode ser calculada pela Lei de Ohm:

$$R_T = \frac{U}{I} = \frac{12}{1} = 12\Omega$$

• Ou utilizando associação em paralelos dos resistores:

$$R_T = \frac{20x30}{20+30} = \frac{600}{50} = 12\Omega$$

- Solução:
- Finalmente calcula-se as Potências:

$$P_T = U.I = 12.1 = 12W$$

 $P_{R_1} = U.I_1 = 12x, 60 = 7,20W$
 $P_{R_2} = U.I_2 = 12x, 40 = 4,80W$

• Exemplo:

• Determine a resistência total, as tensões e as correntes indicadas no circuito da figura, bem como as potencias em cada resistência e a potência total fornecida pelo

gerador (fonte):

Solução:

• No ramo pelo qual passa a corrente I₁, associam-se os dois resistores em serie e calcula seu equivalente para redesenhar o circuito:

$$R' = R_1 + R_2 = 20 + 30 = 50\Omega$$

- Solução:
- Assim:

$$R' = R_1 + R_2 = 20 + 30 = 50\Omega$$

- Solução:
- Assim:

$$R' = R_1 + R_2 = 20 + 30 = 50\Omega$$

- Solução:
- Calculamos a resistência total do circuito e o desenhamos outra vez:

$$R_T = R' / / R_3 = \frac{50x60}{50+60} = \frac{3000}{110} = 27,27\Omega$$

- Solução:
- Calculamos a corrente total:

$$I = \frac{U}{R_T} = \frac{12}{27,27} = 0,44A$$

 \rightarrow

- Solução:
- Calculamos a Potência total:

$$P_T = U.I = 12x0, 44 = 5,28W$$

 \rightarrow

- Solução:
- Calculamos as corrente:

$$I_1 = \frac{U}{R'} = \frac{12}{50} = 0,24A$$

$$I_2 = \frac{U}{R_3} = \frac{12}{60} = 0,20A$$

Solução:

• Agora podemos calcular a tensão em cada resistor:

$$U_1 = R_1 x I_1 = 20x0, 24 = 4,8V$$

 $U_2 = R_2 x I_1 = 30x0, 24 = 7,2V$
 $U_3 = R_3 x I_2 = 60x0, 20 = 12V$

• Observe que a soma das tensões onde passa a corrente l₁

- Solução:
- Por fim calculam-se as potências em cada resistor:

$$P_1 = U_1 x I_1 = 4,8x0,24 = 1,152W$$

 $P_2 = U_2 x I_1 = 7,2x0,24 = 1,728W$
 $P_3 = U_3 x I_2 = 12x0,20 = 2,400W$

- Exemplo:
- Determine as correntes I, I₁, I₂ para o circuito da figura:

- Solução:
- Como o fio tem resistencia praticamente nula, a tensao U_{XB} sobre ele e nula.

- Solução:
- Sendo UXB = 0, a corrente I_2 no resistor R_2 também e nula (I_2 = 0).

• Solução:

• Como U_{XB} = 0, o circuito da figura 4.8 pode ser redesenhado conforme mostrado na figura

Solução:

- Chamaremos a corrente que passa pelo circuito de I_{CC} (corrente de curto-circuito)
- A corrente na fonte e calculada pela lei de Ohm:

$$I = I_{cc} = \frac{U}{R_1} = \frac{12}{20} = 0,60A$$