Exercise 1

a) For input logic low, $V_I = 0$ $V < V_{TN}$. Thus the inverter is in cutoff. $\therefore P_{low} = 0$ W Thus, average power, $P_{avg} = \frac{P_{high} + P_{low}}{2} = \frac{P_{high}}{2} \rightarrow P_{high} = 2P_{avg}$ For input logic high, $V_I = 6$ $V > V_{TN}$. Assuming triode mode operation,

$$K_n[2(V_{GS}-V_{TN})V_{DS}-V_{DS}^2] = \frac{V_{DD}-V_{DS}}{R_D} \rightarrow 0.2[2(6-0.3)V_{DS}-V_{DS}^2] = \frac{6-V_{DS}}{R_D}$$

Also,
$$P_{high} = (V_{DD} - 0) \times I_{DS} = (6 - 0) \times \frac{6 - V_{DS}}{R_D} = 2 \times 1.1654 = 2.3308$$

$$\rightarrow \frac{6-V_{DS}}{R_D} = \frac{2.3308}{6} = 0.388$$

$$0.2[11.4 \times V_{DS} - V_{DS}^2] = 0.777 \rightarrow V_{DS} = 11.56 \, V, 0.173 \, V$$

Now, $11.56 > V_{DD}$, hence not acceptable. $\therefore V_{DS} = 0.173 V$

$$\therefore R_D = \frac{6 - V_{DS}}{0.388} = 15 \Omega$$

b) For maximum power dissipation, the drain current must be maximum. The drain current has the highest value when $V_{GS}=V_{DD}=6\ V$

From (a), we found, for $V_I = V_{GS} = 6 V$, $V_{DS} = 0.173 V$

$$\therefore I_{DS_{max}} = \frac{6 - 0.173}{15} = 0.388 A$$

c) At the transition point, $V_{DS} = V_{GS} - V_{TN} = V_{GS} - 0.3 \& I_{DS} = I_{DS_{sat}} = K_n [V_{GS} - V_{TN}]^2$ However, $I_{DS} = \frac{V_{DD} - V_{DS}}{R_D}$

Thus,
$$\frac{6-V_{DS}}{15} = 0.2V_{DS}^2 \rightarrow V_{DS} = 1.26 V, -1.59 V$$

 V_{DS} cannot be lower than V_S . Thus, $V_{DS} = 1.26 V$

: Transition point,
$$V_I = V_{GS} = V_{DS} + V_{TN} = 1.26 + 0.3 = 1.56 V$$

d)
$$P_{transition} = (V_{DD} - 0) \times I_{DS_{transition}} = (6 - 0) \times \frac{6 - V_{DS_{transition}}}{R_D} = (6 - 0) \times \frac{6 - 1.26}{15}$$

= 1.896 W

e) Assuming triode mode operation,

$$\frac{V_{DD} - V_{DS}}{R_D} = K_n [2(V_{GS} - V_{TN})V_{DS} - V_{DS}^2] \rightarrow \frac{6 - 4.2}{15} = 0.2[2(V_{GS} - 0.3)4.2 - 4.2^2]$$

$$\rightarrow V_{GS} = 2.47 \text{ V}$$

Now,
$$V_{ov} = V_{GS} - V_{TN} = 2.47 - 0.3 = 2.17 < 4.2$$

Thus, our assumption of triode mode is not satisfied, and the assumption was wrong. Again, assuming saturation mode,

$$\frac{6-4.2}{15} = 0.2(V_{GS} - 0.3)^2 \rightarrow V_{GS} = 1.07 V$$

Now,
$$V_{ov} = 1.07 - 0.3 = 0.77 < 4.2$$

Thus, our assumption of saturation mode is correct. Also, the determined input voltage is higher than the threshold voltage, and thus is valid. $\therefore V_I = V_{GS} = 1.07 \ V$

Exercise 2

a) Case (0,1):

Assuming triode mode operation for NMOS B, since NMOS A will be cutoff, KCL at common drain, $I_R = I_{D_A} + I_{D_B} \rightarrow \frac{V_{DD} - V_{DS}}{R} = 0 + K_{n_B} [2(V_{GS} - V_{TN_B})V_{DS} - V_{DS}^2]$ $\rightarrow \frac{5 - V_{DS}}{20} = 0.5[2(5 - 0.3)V_{DS} - V_{DS}^2] \rightarrow V_{DS} = 0.052 \ V, 9.45 \ V$ Since, $9.45 \ V > V_{DD}, V_{DS} = 0.052 \ V$

Verification of assumption: $V_{DS} = 0.052 < (V_{GS} - V_{TN_B}) = (5 - 0.3) = 4.7$

Case (1,0):

Assuming triode mode operation for NMOS A, since NMOS B will be cutoff, KCL at common drain, $I_R = I_{D_A} + I_{D_B} \rightarrow \frac{V_{DD} - V_{DS}}{R} = K_{n_A} [2(V_{GS} - V_{TN_A})V_{DS} - V_{DS}^2] + 0$ $\rightarrow \frac{5 - V_{DS}}{20} = 0.4[2(5 - 0.25)V_{DS} - V_{DS}^2] \rightarrow V_{DS} = 0.063 \ V, 9.56 \ V$ Since, $9.56 \ V > V_{DD}, V_{DS} = 0.063 \ V$

Verification of assumption: $V_{DS} = 0.063 < (V_{GS} - V_{TNA}) = (5 - 0.25) = 4.75$

Case (1,1):

Assuming triode mode operation for both the NMOS,

$$\begin{split} I_{R} &= I_{D_{A}} + I_{D_{B}} \\ &\to \frac{5 - V_{DS}}{20} = K_{n_{A}} \Big[2 \big(5 - V_{TN_{A}} \big) V_{DS} - V_{DS}^{2} \Big] + K_{n_{B}} \big[2 \big(5 - V_{TN_{B}} \big) V_{DS} - V_{DS}^{2} \big] \\ &\to \frac{5 - V_{DS}}{20} = 0.4 \big[2 \big(5 - 0.25 \big) V_{DS} - V_{DS}^{2} \big] + 0.5 \big[2 \big(5 - 0.3 \big) V_{DS} - V_{DS}^{2} \big] \\ &\to V_{DS} = 9.47 \ V, 0.029 \ V \end{split}$$

Since, $9.47 > V_{DD}$, $V_{DS} = 0.029 V$

Verification of assumption:
$$V_{DS} = 0.029 < (5 - V_{TN_A}) = (5 - 0.25) = 4.75$$
 $V_{DS} < (5 - V_{TN_B}) = (5 - 0.3) = 4.7$

 \therefore Low output threshold, $V_{OL} = \max(0.052, 0.063, 0.029) = 0.063 V$

b) Case(0,0): Both NMOS are off. Thus, $I_R = I_{D_A} + I_{D_B} = 0 + 0 = 0$

Case	$I_R = \frac{5 - V_{DS}}{20} (A)$	$P = (V_{DD} - 0) \times I_R(W)$
0,0	0	0
O,1	0.2474	1.237
1,0	0.2469	1.234
1,1	0.2486	1.243

Total 3.714

$$\therefore P_{avg} = \frac{3.714}{4} = 0.9285 W$$

c)
$$I_R = I_{D_A} + I_{D_B} \rightarrow \frac{5 - V_{DS}}{20} = K_{n_A} [2(5 - V_{TN_A})V_{DS} - V_{DS}^2] + K'_{n_B} [2(5 - V_{TN_B})V_{DS} - V_{DS}^2]$$

 $\rightarrow \frac{5 - V_{DS}}{20} = 2 \times 0.4[2(5 - 0.25)V_{DS} - V_{DS}^2] \rightarrow V_{DS} = 0.033 \, V, 9.53 \, V (not \, valid)$

[As both the drain currents are equal]

Exercise 3

- a) Y=A+B
- b) Case (0,0):

Both NMOS A & B are in cutoff. NMOS Y on.

Since, the gate current is always zero, current through the 25 Ω on the left will be zero. Thus, input to NMOS Y for this case is equal to source voltage.

Assuming triode mode operation for NMOS Y,

$$I_{25 \Omega} = \frac{5 - V_Y}{25} = K_{N_Y} \left[2 \left(V_{GS} - V_{TN_Y} \right) V_Y - V_Y^2 \right] \rightarrow \frac{5 - V_Y}{25} = 0.5 \left[2(5 - 0.3) V_Y - V_Y^2 \right]$$

 $\rightarrow V_Y = 0.044 \ V, 9.44 \ V \ (not \ valid)$

Verification of assumption: $V_Y = 0.044 < V_{GS} - V_{TN} = 5 - 0.3 = 4.7$ Case (0,1)|(1,0):

Since, all the MOSFET parameters for the three NMOS are same, Case (0,1) & Case (1,0) will have similar results. Let's consider (0,1). NMOS A is in cutoff & NMOS B is on. Output of the NOR portion is low. Let's assume triode mode operation for NMOS B. Since again no gate current flows to NMOS Y,

$$\begin{split} I_{25\Omega} &= \frac{5 - V_{DS_B}}{25} = K_{N_B} \big[2 \big(V_{GS} - V_{TN_B} \big) V_{DS_B} - V_{DS_B}^2 \big] = 0.5 [2(5 - 0.3) V_{DS_B} - V_{DS_B}^2] \\ &\to V_{DS_B} = 0.044 \, V, 9.44 \, V \, (not \, valid) \end{split}$$

Verification of assumption: $V_{DS_B} = 0.044 < V_{GS} - V_{TN} = 5 - 0.3 = 4.7$

Now, this is the input voltage to NMOS Y. Here, $V_{DS_B}=0.044<0.3=V_{TN_Y}$. Thus, NMOS Y will be in cutoff mode. $\therefore V_Y=5~V$

Case (1,1):

NMOS A & B both on. Assuming triode mode operation for both,

$$I_{25\,\Omega} = \frac{5 - V_{DS}}{25} = 2 \times 0.5[2(5 - 0.3)V_{DS} - V_{DS}^2] \rightarrow V_{DS} = 0.022\,V, 9.42\,V \;(not\;valid)$$

Verification of assumption: $V_{DS} = 0.022 < 5 - 0.3 = 4.7$

Now, this is the input voltage to NMOS Y. Here, $V_{DS}=0.022<0.3=V_{TN_Y}$. Thus,

NMOS Y will be in cutoff mode. $\therefore V_Y = 5 V$

Cas	V_{DS} of NOR gate	V_Y	$I_{25 \Omega}$ of NOR gate	$I_{25 \Omega}$ of NOT gate	P
е					
0,0	5	0.044	0	0.198	(5 - 0)
					$\times 0.198$
					= 0.99 W
0,1	0.044	5	0.198	0	(5-0)
					× 0.198
					= 0.99 W
1,0	0.044	5	0.198	0	(5-0)
					$\times 0.198$
					= 0.99 W
1,1	0.022	5	0.199	0	(5 - 0)
					× 0.199
					= 0.995 V

$$\therefore P_{max} = 0.995 W$$

c)
$$V_{OH} = \min(5, 5, 5) = 5V$$