Unsupervised Deep Tracking

Vitalii Duma

August 9, 2019

Paper

• Title: Unsupervised Deep Tracking

• Authors: Ning Wang, Yibing Song, Chao Ma, Wengang Zhou, Wei Liu, Houqiang Li1

• Link: https://arxiv.org/pdf/1904.01828.pdf

• Tags: visual tracking, unsupervised learning, deep neural networks

• Year: 2019

Summary

- What
 - They propose unsupervised tracking method based on the Siamese correlation filter backbone
 - They propose multiple-frame validation method and a cost-sensitive loss
 - They show extensive experiments on the standard benchmarks
- How
 - Randomly draw bounding boxes in unlabeled videos to perform forward and backward tracking. Track forward to predict boxes location in the subsequent frame.
 - Perform forward tracking
 - * Given two consecutive frames P_1 and P_2 . Build a Siamese correlation filter network to track the initial bounding box region in frame P_1 .
 - * Build target template using Siamese correlation filter.
 - * Calculate response map of the search path S from frame P_2 .
 - Perform backward tracking
 - * After generating response map R_s from P_2 , they treat S as the template patch, and generate a target template W_S using pseudo Gaussian labels.

- Calculate consistency loss having response map from backward and forward tracking (R_t) . Their loss function:

$$L_{un} = ||R_T - Y_T||_2^2$$

where Y_T is the originaly given label after backward and forward tracking

- They propose next unsupervised learning improvements:
 - * A multiple frames validation approach to alleviate the inaccurate localization issue that is not penalized by loss function.
 - * Cost-sensitive loss.
 - During unsupervised learning, they construct multiple training pairs from the training sequences. They found that few training pairs with extremely high losses prevent the network training from convergence.
 - They introduce A_{motion} weight vector which indicates that the target undergoes a larger movement in this continuous trajectory.
 - * After offline unsupervised learning, they online track the target object following forward tracking as :

$$W_t = (1 - t)W_{t-1} + tW$$

- Training:

- * They choose the widely used ILSVRC 2015 as training data to fairly compare with existing supervised trackers.
- * They do not preprocess any data and simply crop the center patch in each frame.
- * They randomly choose three cropped patches from the continuous 10 frames in a video for training. This is based on the assumption that the center located target objects are unlikely to move out of the cropped region in a short period.

- Results:

* Precision and success plots on the OTB-2015 dataset for recent real-time trackers.

* Precision and success plots on the Temple-Color dataset for recent real-time trackers.

* Comparison with state-of-the-art and baseline trackers on the VOT2016 benchmark. The evaluation metrics include Accuracy, Failures (over 60 sequences), and Expected Average Overlap (EAO).

Trackers	Accuracy (†)	Failures (↓)	EAO (†)	FPS (†)
ECO [7]	0.54	-	0.374	6
C-COT [11]	0.52	51	0.331	0.3
pyMDNet [37]	-	-	0.304	2
SA-Siam [15]	0.53	-	0.291	50
StructSiam [60]	-	-	0.264	45
MemTrack [58]	0.53	-	0.273	50
SiamFC [1]	0.53	99	0.235	86
SCT [5]	0.48	117	0.188	40
DSST [8]	0.53	151	0.181	25
KCF [16]	0.49	122	0.192	170
UDT (Ours)	0.54	102	0.226	70
UDT+ (Ours)	0.53	66	0.301	55

* Limitations:

- · Unsupervised feature representation may lack the objectness information to cope with complex scenarios.
- · Since the approach involves both forward and backward tracking, the computational load is another potential drawback.