

Niepubliczne Liceum Ogólnokształcące nr 81 SGH TEST EGZAMINACYJNY – 2023

Zadania egzaminacyjne – MATEMATYKA – grupa B	kod ucznia
	Punkty: / 20

Zadanie 1 (1 pkt)

Liczba $3^6 \cdot 27^{12} \cdot 81^{25}$ jest równa

A)
$$3^{143}$$

C)
$$3^{71}$$

D)
$$9^{71}$$

Zadanie 2 (1 pkt)

Dane są liczby: 3321, 1764, 6114, 2936, 1452, 1627.

Wśród danych liczb są dokładnie A/B liczby podzielne przez 3.

A) trzy

B) cztery

Wśród danych liczb są dokładnie C/D liczby podzielne przez 4.

C) dwie

D) trzy

Zadanie 3 (1 pkt)

Dane są cztery liczby x, y, t, u zapisane za pomocą wyrażeń arytmetycznych:

$$x = \frac{1}{\frac{1}{36} + \frac{1}{24}}$$
 $y = \frac{1}{\frac{1}{18} + \frac{1}{5}}$ $t = \frac{3}{5} + \frac{2}{3}$ $u = \frac{1}{0,2 + 0,3}$

Która z tych liczb jest najmniejsza?

A)
$$x$$

Zadanie 4 (1 pkt)

Dane są liczby x i y spełniające warunki: x < 0 i x + y < 0. Wybierz \mathbf{P} , jeśli zdanie jest prawdziwe, lub \mathbf{F} – jeśli jest fałszywe.

Liczba y musi być ujemna	P	F
Liczby x i y mogą być równe	P	F

Zadanie 5 (1 pkt)

Liczba 1300 jest zaokrągleniem do rzędu setek różnych liczb naturalnych. Ile jest wszystkich liczb naturalnych różnych od 1300, które mają takie zaokrąglenie?

Zadanie 6 (1 pkt)

Dane są trzy liczby

$$a = (2\sqrt[3]{2})^3$$
, $b = \sqrt{18} \cdot \sqrt{8}$, $c = \sqrt[3]{108} : \sqrt[3]{4}$

Która nierówność jest prawdziwa?

A)
$$a < c < b$$
 B) $b < a < c$ C) $c < b < a$ D) $c < a < b$

B)
$$b < a < a$$

C)
$$c < b < a$$

D)
$$c < a < b$$

Zadanie 7 (1 pkt)

Jeden bok kwadratu o polu P zmniejszono o 30% a drugi zwiększono o 30%. Pole powstałego w ten sposób prostokąta jest równe

Zadanie 8 (1 pkt)

Na diagramie przedstawiono wyniki ankiety, w której uczniowie pewnej szkoły odpowiadali na pytanie "Jakie jest twoje ulubione zwierzę domowe?". Każdy ankietowany uczeń podawał tylko jedno zwierzę. Chomik był ulubieńcem 16 uczniów.

Które z podanych zdań jest fałszywe?

- A) Pies był ulubieńcem 45% uczniów biorących udział w ankiecie.
- B) Królika wskazało 4 razy mniej uczniów niż chomika.
- C) Kota wskazało 24 ankietowanych uczniów.
- D) W ankiecie wzięło udział 80 uczniów

BRUDNOPIS

Zadanie 9 (1 pkt)

Dany jest wzór opisujący pole trójkąta $ABC: P = \frac{abc}{4R}$, gdzie a, b, c są długościami boków tego trójkata, a R jest promieniem okręgu przechodzącego przez punkty A, B i C. Promień R można wyrazić wzorem A/B.

A)
$$R = \frac{abc}{4P}$$

A)
$$R = \frac{abc}{4P}$$
 B) $R = \frac{P \cdot abc}{4}$

Długość boku c trójkąta ABC można wyrazić wzorem C/D.

C)
$$c = \frac{P}{4abR}$$
 D) $c = \frac{4P \cdot R}{ab}$

D)
$$c = \frac{4P \cdot R}{ab}$$

Zadanie 10 (1 pkt)

Zmieszano 100 litrów mleka 2% i 25 litrów mleka 4%. Otrzymano mleko, które ma w sobie p% tłuszczu. Wynika stąd, że

A)
$$p = 3$$

A)
$$p = 3$$
 B) $p = 2,4$ C) $p = 2,5$ D) $p = 3,2$

C)
$$p = 2.5$$

D)
$$p = 3.2$$

Zadanie 11 *(1 pkt)*

Iloczyn $(a + 1)^5 \cdot (a + 1)^5$ jest równy

A)
$$(a+1)^{25}$$
 B) $(a+1)^{10}$ C) $2(a+1)^5$ D) $(2a+1)^5$

B)
$$(a+1)^{10}$$

C)
$$2(a + 1)$$

D)
$$(2a + 1)^5$$

Zadanie 12 (1 pkt)

Do pudełka włożono 48 kul w różnych kolorach. Prawdopodobieństwo wylosowania kuli czerwonej jest równe $\frac{1}{6}$, a prawdopodobieństwo wylosowania kuli żółtej jest równe $\frac{1}{2}$. Wybierz \mathbf{P} , jeśli zdanie jest prawdziwe, lub \mathbf{F} – jeśli jest fałszywe.

W pudełku jest trzy więcej kul czerwonych niż żółtych.	P	F
W pudełku może być 16 kul zielonych.	P	F

Zadanie 13 (1 pkt)

W pewnej loterii wśród 150 losów co szósty był wygrywający, a pozostałe losy były puste. Wyciągnięto 30 losów i żaden z nich nie był wygrywający. Na loterię przygotowano A/B losów wygrywających.

Wyciągnięto jeszcze jeden los. Prawdopodobieństwo tego, że będzie to los wygrywający, wynosi C/D.

C)
$$\frac{25}{120}$$

D)
$$\frac{25}{125}$$

DDIIDMODIC	
BRUDNOPIS	

Zadanie 14 *(1 pkt)*

Do dwóch koszy wrzucono piłki szare i czarne. Na diagramie przedstawiono liczbę piłek każdego koloru w I i w II koszu.

Czy wylosowanie piłki czarnej z kosza II jest bardziej prawdopodobne niż wylosowanie piłki czarnej z kosza I? Wybierz odpowiedź **T** albo **N** i jej uzasadnienie spośród A, B albo C.

Tak	Nie

Ponieważ

A.	w koszu II jest więcej piłek czarnych niż w koszu I.	
В.	stosunek liczby piłek czarnych do liczby wszystkich piłek jest taki sam w obu koszach.	
C.	C. w koszu II jest o 3 piłki czarne więcej niż w koszu I, ale szarych – tylko o 2 więcej.	

Zadanie 15 *(1 pkt)*

Okrąg wpisany w czworokąt *ABCD* ma środek *S* i jest styczny do boków *BC* i *CD* odpowiednio w punktach *M* i *N*. Kąt *BCD* ma miarę 58° (rysunek).

Kąt MSN ma miarę

A) 122°

B) 32°

C) 212°

D) 116°

Zadanie 16 *(1 pkt)*

Dany jest trójkat prostokatny ABC o przyprostokatnych długości 15 cm i 20 cm. Przeciwprostokątna trójkąta DEF podobnego do trójkąta ABC w skali 2:1 ma długość

A) 25 cm

B) 30 *cm*

C) 40 *cm*

D) 50 *cm*

Zadanie 17 *(1 pkt)*

Dany jest trójkat równoboczny ABC o boku długości 10 cm. W tym trójkacie poprowadzono wysokość CD. Obwód trójkata ADC jest równy

A) $10\sqrt{3} \ cm$ B) $20\sqrt{3} \ cm$ C) $(5 + 5\sqrt{3})0 \ cm$ D) $(15 + 5\sqrt{3}) \ cm$

Zadanie 18 *(1 pkt)*

Punkt A = (-3, 4) jest początkiem odcinka AB, gdzie S = (2, -2) jest jego środkiem. Punkt B, który jest końcem tego odcinka ma współrzędne

A) (7,-8) B) (-1,2) C) $(\frac{1}{2},1)$ D) (5,-6)

Zadanie 19 *(1 pkt)*

Dwa sześciany – jeden o krawędzi 2 i drugi o krawędzi 3 – pocięto na sześciany o krawędzi 1. Z otrzymanych sześcianów zbudowano prostopadłościan. Żadna ściana tego prostopadłościanu nie jest kwadratem. Pole powierzchni zbudowanego prostopadłościanu jest równe

A) 35

B) 47

C) 94

D) 142

Zadanie 20 *(1 pkt)*

Zaznacz zdanie fałszywe.

- A) Liczba krawędzi każdego ostrosłupa jest liczba parzystą.
- B) Liczba krawędzi każdego graniastosłupa dzieli się przez 3.
- C) Liczba krawędzi każdego ostrosłupa dzieli się przez 3.
- D) Liczba wierzchołków każdego graniastosłupa jest liczbą parzystą.

BRUDNOPIS
