ES: RISPOSTA IMPULSIVA RC (E SUA TRASFORTATA, CIOÉ FUNZIONE DI TRASFERIMENTO)

$$Y_{\Delta}(k) = \begin{cases} 0 & , t < 0 \\ \frac{1}{\Delta}(1-e^{-t/Rc}) & , 0 < t < \Delta \end{cases}$$

$$\int_{\Delta}^{C} (1-e^{-t/Rc}) e^{-t/L} dc + \int_{Rc}^{C} (1-e^{-t/Rc}) e^{-t/L} dc + \int_{Rc}^{C} (1-e^{-t/Rc}) e^{-t/L} dc + \int_{Rc}^{C} (1-e^{-t/Rc}) e^{-t/Rc} dc + \int_{Rc}^{C} (1-e^{-t/R$$

OSSERVAZIONE FISICA: INIZIALHENTE LA CORRENTE FLUISE VERSO IL CUNDENSATORE, POI TORNA INDIETRO

A QUESTO PUNTO SI PUS CALCOLARE F[Mt] PER OTTENBRE LA FUNE, TRASF \rightarrow RICOPDANDO ES. 4 IN CUI $\chi(t) = Al$ PER $t \ge 0$ CON TRASFORMATA $\chi(w) = Ato$ 1+3wto

$$H(w) = \frac{1}{1 + 3wRc}$$

ESSENDO UNA FUNZIONE COMPLESSA, OCCORRE GRAFICARME MODULO E FASE. A

TALE SCOPO SI UTILIZZANO LE CARATTE RISTICHE DI AMPIEZZA E FASE, CHE

SONO SAMPLICAMENTE MODULO E FASE DELLA FUNZIONE (FASE È UNA CUMENZA $T(w) = |H(w)| = \frac{1}{\sqrt{1+u^2 R^2 c^2}} |I(w)| = \frac{1}{|w|} |I(w)| = \frac{$

. overlay (wrc) =
$$\frac{n}{4}$$
 se $w = \frac{1}{Rc}$

1/RC