蓝牙控制

一、学习目标

使用yahboomrobotAPP通过蓝牙5.0模块控制小车运动状态

二、硬件连接

蓝牙5.0模块与MSPM0G3507与双路电机驱动板的接线。电机使用的是310电机。

下层驱动板(左前轮、右 前轮)	MSPM0G3507	上层驱动板(左后轮、右 后轮)	MSPM0G3507
AIN1	PA0	AIN1	PB6
AIN2	PA1	AIN2	PB7
BIN1	PA7	BIN1	PA12
BIN2	PB2	BIN2	PA13
		5V	5V
		GND	GND
蓝牙5.0	MSPM0G3507	蓝牙5.0	电机驱动板
TXD	PA11	VCC	5V
		GND	GND

三、程序说明

usart.c

```
void USART_Init(void)
   // SYSCFG初始化
   // SYSCFG initialization
   SYSCFG_DL_init();
   //清除串口中断标志
   //Clear the serial port interrupt flag
    NVIC_ClearPendingIRQ(UART_0_INST_INT_IRQN);
   //使能串口中断
    //Enable serial port interrupt
   NVIC_EnableIRQ(UART_0_INST_INT_IRQN);
}
//串口的中断服务函数
//Serial port interrupt service function
void UART_0_INST_IRQHandler(void)
{
    uint8_t receivedData = 0;
    static uint8_t rec_state = 0;
    //如果产生了串口中断
    //If a serial port interrupt occurs
    switch(DL_UART_getPendingInterrupt(UART_0_INST) )
    {
       case DL_UART_IIDX_RX://如果是接收中断 If it is a receive interrupt
           // 接收发送过来的数据保存 Receive and save the data sent
           receivedData = DL_UART_Main_receiveData(UART_0_INST);
           switch(rec_state)
               case 0:
                   if((receivedData == '$') && (!recv0_flag))
                       rec_state = 1;
                       recv0_length = 0;
                   }
                   else
                   {
                       rec_state = 0;
                   break;
               case 1:
                   if(receivedData == '#')
                       recv0_flag = 1;
                       rec_state = 0;
                   }
                   else
                   {
                       recv0_buff[recv0_length++] = receivedData;
                   }
```

```
break;
}
default://其他的串口中断 Other serial port interrupts
break;
}
}
```

- USART_Init: 系统与串口的初始化函数。
- UART_0_INST_IRQHandler: 串口的接收中断函数,用于接收从蓝牙模块发送来的数据。
- motor.h

```
#define PWMA_IN1(value)
DL_TimerG_setCaptureCompareValue(PWM_0_INST, value, GPIO_PWM_0_C0_IDX);
#define
        PWMA_IN2(value)
DL_TimerG_setCaptureCompareValue(PWM_0_INST, value, GPIO_PWM_0_C1_IDX);
#define PWMB_IN1(value)
DL_TimerG_setCaptureCompareValue(PWM_0_INST,value,GPIO_PWM_0_C2_IDX);
#define PWMB_IN2(value)
DL_TimerG_setCaptureCompareValue(PWM_0_INST,value,GPIO_PWM_0_C3_IDX);
#define PWMC_IN1(value)
DL_TimerG_setCaptureCompareValue(PWM_1_INST, value, GPIO_PWM_1_CO_IDX);
#define PWMC_IN2(value)
DL_TimerG_setCaptureCompareValue(PWM_1_INST, value, GPIO_PWM_1_C1_IDX);
#define PWMD_IN1(value)
DL_TimerG_setCaptureCompareValue(PWM_2_INST, value, GPIO_PWM_2_CO_IDX);
#define PWMD_IN2(value)
DL_TimerG_setCaptureCompareValue(PWM_2_INST,value,GPIO_PWM_2_C1_IDX);
```

定义4个电机的pwm占空比设置函数。

Motor.c

```
void Data_Analyse(void)//解析串口中断串口接收的数据 Parse the data received by the
serial port interrupt
{
       if(recv0_flag == 1)
        {
            switch(recv0_buff[0])
            {
                case '1':
                   printf("Forward!\n");
                   Car_state = 1;
                   break:
                case '2':
                   printf("Backward!\n");
                   Car_state = 2;
                   break;
                case '3':
                   printf("Left!\n");
```

```
Car\_state = 3;
                    break;
                case '4':
                    printf("Right!\n");
                    Car\_state = 4;
                    break;
                case '0':
                    printf("Stop!\n");
                    Car_state = 0;
                    break;
            }
            switch(recv0_buff[2])
            {
                case '1':
                    printf("SpinLeft!\n");
                    Car\_state = 5;
                    break;
                case '2':
                    printf("SpinRight!\n");
                    Car_state = 6;
                    break;
            }
            recv0_flag = 0;
        }
}
void Car_Function(unsigned int Car_state)//控制小车不同状态 Control the car in
different states
    switch(Car_state)
    {
            case 0:
                    printf("Stop\n");
                    Stop();
                    break;
            case 1:
                    printf("Forward\n");
                    Forward(2300);
                    break;
            case 2:
                    printf("Backward\n");
                    Backward(2300);
                    break;
            case 3:
                    printf("Turnleft\n");
                    Turnleft(2500);
                    break;
            case 4:
                    printf("Turnright\n");
                    Turnright(2500);
                    break;
            case 5:
                    printf("SpinLeft\n");
                    SpinLeft(2500);
                    break;
            case 6:
```

- Data_Analyse:解析从串口接收来的数据,根据通信协议返回小车的控制状态值。
- Car_Function:根据小车的控制状态值,驱动四个电机。通过Forward、Backward函数实现前进后退;Turnleft、Turnright函数实现左转右转;SpinLeft、SpinRight函数实现左旋右旋;以及Stop函数停止;可以修改其中的数值改变速度。

如果使用的是本教程提及的电机驱动板与电机,小车的方向运行不对的话,则需要重复检查接线。 如果使用的是非本教程提及的电机驱动板及电机,则需要根据自己的情况自行修改各轮胎的正反 转。

• empty.c

程序运行后会一直处于接收数据的状态,接收数据后会进行处理并控制小车状态。

注:必须将工程源码放在SDK路径下进行编译,

例如路径: D:\TI\M0_SDK\mspm0_sdk_1_30_00_03\1.TB6612

四、实验现象

给MSPM0G3507烧录蓝牙控制程序。按照接线图耐心连接好接线,并认真检查。如果连接线接错轻则小车控制不动,重则烧坏板子。确认无误后,打开上下驱动板开关。打开开关后,打开yahboomrobot APP。选择4wd车型,连接蓝牙后就可以通过APP控制小车前进后退、左转右转、左旋右旋运动。

附录:

APP下载: https://www.yahboom.com/download app

YahboomRobot APP具体操作

通信协议见同文件夹下的亚博智能小程序通讯协议文件。