LES VECTEURS M01

EXERCICE N°1

Sur un quadrillage régulier, on a placé deux points \underbrace{A}_{v} et \underbrace{B}_{v} et représenté deux vecteurs \underbrace{u}_{v} et

Reproduire cette figure et tracer :

- 1) le représentant d'origine A du vecteur \overrightarrow{u}
- 2) le représentant d'origine B du vecteur
- 3) le représentant d'origine A du vecteur \overrightarrow{BA}

EXERCICE N°2

 $M\!N\!PQ$ est un parallélogramme. I est le milieu de $[N\!P]$ et M' est le symétrique de M par rapport à N .

- 1) Donner, en justifiant, tous les vecteurs formés par des points de la figure et égaux au vecteur \overline{MN} .
- 2) En déduire que I est aussi le milieu de [QM'].

EXERCICE N°3

Pour chacune des affirmations suivantes, dire si elle est Vraie (V) ou fausse (F).

- 1) Si E est l'image de B par la translation de vecteur \overrightarrow{AC} , alors $\overrightarrow{EB} = \overrightarrow{AC}$.
- 2) Si $\overrightarrow{DA} = \overrightarrow{RI}$, alors RIAD est un parallélogramme.
- 3) Si MNPQ est un parallélogramme, alors la translation de vecteur \overline{MN} transforme P en Q .
- 4) R et U sont deux points distincts. Si la symétrie de centre O transforme R en T et U en S, alors $RT = \overline{US}$

EXERCICE N°4

Écrire le plus simplement possible.

2)
$$\overrightarrow{AJ} + \overrightarrow{IE}$$

3)
$$\overrightarrow{BC} + \overrightarrow{CB} + \overrightarrow{BC}$$

4)
$$\overrightarrow{GF} + \overrightarrow{CB}$$

$$5) \qquad \overrightarrow{BG} + \overrightarrow{GH}$$

EXERCICE N°5

Écrire le plus simplement possible.

1)
$$\vec{M}B - \vec{M}D$$

$$2) \qquad \overrightarrow{BD} - \overrightarrow{MC} - \overrightarrow{BM} + \overrightarrow{DB}$$

3)
$$\vec{C}B - \vec{C}D - \vec{B}D$$

4)
$$\overrightarrow{M}A + \overrightarrow{E}M - \overrightarrow{C}A - \overrightarrow{E}C$$

5)
$$\overrightarrow{B}D - \overrightarrow{B}A + \overrightarrow{M}A - \overrightarrow{M}D$$

$$6) \qquad -\overrightarrow{A}U + \overrightarrow{S}H - \overrightarrow{S}T + \overrightarrow{M}U$$