Package 'R2ROC'

November 26, 2023

Title AUC Statistics

Version 1.0.1
Description Area under the receiver operating characteristic curves (AUC) statistic for significance test. Variance and covariance of AUC values used to assess the 95% Confidence interval (CI) and p-value of the AUC difference for both nested and non-nested model.
License GPL (>= 3)
<pre>URL https://github.com/mommy003/R2ROC</pre>
Encoding UTF-8
RoxygenNote 7.1.2
Depends R (>= 2.10)
LazyData true
NeedsCompilation no
Author Hong Lee [aut, cph], Moksedul Momin [aut, cre, cph]
Maintainer Moksedul Momin <cvasu.momin@gmail.com></cvasu.momin@gmail.com>
Repository CRAN
Date/Publication 2023-11-26 03:10:02 UTC
R topics documented:
auc_diff
auc_trf
auc_var
dat1
olkin aucl
olkin_auc12
olkin_auc12_1
olkin_auc12_13
olkin_auc12_3
olkin_auc1_2

2 auc_diff

Index 12

auc_diff	auc_diff function	

Description

This function estimates $var(AUC(y\sim x[,v1]) - AUC(y\sim x[,v2]))$ where AUC is the Area Under ROC curve of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 can be multiple values between 1 - M, see Arguments below)

Usage

```
auc_diff(dat, v1, v2, nv, kv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of cbind (y,x)
v1	This can be set as $v1=c(1)$ or $v1=c(1,2)$
v2	This can be set as $v2=c(2)$, $v2=c(3)$, $v2=c(1,3)$ or $v2=c(3,4)$
nv	Sample size
kv	Population prevalence

Value

This function will estimate significant difference between two PRS (either dependent or independent and joint or single). To get the test statistics for the difference between $AUC(y\sim x[,v1])$ and $AUC(y\sim x[,v2])$ (here we define $AUC1=AUC(y\sim x[,v1])$) and $AUC2=AUC(y\sim x[,v2])$)). The outputs are listed as follows.

mean_diff	AUC differences between AUC1 and AUC2	
var	Variances of AUC differences	
upper_diff	Upper value of the differences	
lower_diff	Upper value of the differences	
p	Two tailed P-value for significant difference between AUC1 and AUC2	
p_one_tail	One tailed P-value for significant difference	
heller_p	P-value based on Heller's test for significant difference	
heller_upper_diff		
	Upper limit of 95% CI for the difference basedon Heller's test	
heller_lower_di	lff	
	Lower limit of 95% CI for the difference basedon Heller's test	

auc_diff 3

Examples

```
#To get the test statistics for the difference between AUC(y=x[,1])
#and AUC(y=x[,2])
dat=dat1 #(this example embedded within the package)
nv=length(dat$V1)
kv=sum(dat$V1)/length(dat$V1)# pop. prevalence estimated from data
#R2ROC also allows users to estimate AUC using pre-adjusted phenotype
#In that case, users need to specify kv
#eg. kv=0.10 for dat2 (dat2 embedded within the package)
v1=c(1)
v2=c(2)
output=auc_diff(dat,v1,v2,nv,kv)
#R2ROC output
#output$mean_diff (mean difference of AUC1 and AUC2)
#0.1756046
#output$var (variance of AUC difference)
#9.274356e-05
#output$upper_diff (upper limit of 95% CI for difference)
#0.1944801
#output$lower_diff (lower limit of 95% CI for difference)
#0.1567292
#output$p (two-tailed P-value for the differences is
#significantly different from zero)
#2.747031e-74
#output$p_one_tail (one-tailed P-value for the differences
#is significantly different from zero)
#1.373515e-74
#To get the test statistics for the difference between
\#AUC(y=x[,1]+x[,2]) and AUC(y=x[,2])
dat=dat1 #(this example embedded within the package)
nv=length(dat$V1)
kv=sum(dat$V1)/length(dat$V1)# pop. prevalence estimated from data
#R2ROC also allows users to estimate AUC using pre-adjusted phenotype
#In that case, users need to specify kv
#eg. kv=0.10 for dat2 (dat2 embedded within the package)
v1=c(1,2)
v2=c(2)
output=auc_diff(dat,v1,v2,nv,kv)
#R2ROC output
#output$mean_diff (mean difference of AUC1 and AUC2)
#0.1793682
#output$var (variance of AUC difference)
```

4 auc_trf

```
#0.0001190366
#output$upper_diff (upper limit of 95% CI for difference)
#0.2007526
#output$lower_diff (lower limit of 95% CI for difference)
#0.1579839
#output$p (two-tailed P-value for the differences is
#significantly different from zero)
#9.87014e-61
#output$p_one_tail (one-tailed P-value for the differences
#is significantly different from zero)
#4.93507e-61
#output$heller_p (two-tailed P-value based on Hellers test
#for the differences is significantly different from zero)
#4.2085e-237
#output$heller_upper_diff (upper limit of 95% CI for
#difference based on Hellers test)
#0.2013899
#output$heller_lower_diff (lower limit of 95% CI for
#difference based on Hellers test)
#0.1586212
```

auc_trf

auc_trf function

Description

This function transforms the observed scale predictive ability (R2) and its standard error (SE) to AUC with its SE

Usage

```
auc_trf(R2, se, kv)
```

Arguments

D 2	R2 or coefficient of determination on the observed scale
₩ /	R / or coefficient of determination on the observed scale
114	1\(\frac{1}{2}\) Of COCHICICH Of acternination on the observed scale

se Standard error of R2 kv Population prevalence

auc_var 5

Value

This function will transform the observed R2 and its s.e between to AUC. Output from the command is the lists of outcomes.

auc Transformed AUC se SE of transformed AUC

References

Wray, Naomi R., et al. "The genetic interpretation of area under the ROC curve in genomic profiling." PLoS genetics 6.2 (2010): e1000864.

Lee, Sang Hong, et al. "A better coefficient of determination for genetic profile analysis." Genetic epidemiology 36.3 (2012): 214-224.

Examples

```
#To get the transformed AUC
output=auc_trf(0.04, 0.002, 0.05)
output
#output$auc (transformed AUC)
#0.7522887
#output$se (se of transformed AUC)
#0.005948364
```

auc_var

auc_var function

Description

This function estimates $var(AUC(y\sim x[,v1]))$ where AUC is the Area Under ROC curve of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 indicates the ith column in the x matrix (v1 can be multiple values between 1 - M, see Arguments below)

Usage

```
auc_var(dat, v1, nv, kv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of $cbind(y,x)$
v1	This can be set as $v1=c(1)$, $v1=c(1,2)$ or possibly with more values
nv	Sample size
kv	Population prevalence

6 auc_var

Value

This function will test the null hypothesis for AUC. To get the test statistics for AUC($y\sim x[,v1]$). The outputs are listed as follows.

auc AUC

var Variance of AUC

upper_auc Upper limit of 95% CI for AUC

lower_auc Lower limit of 95% CI for AUC

p two tailed p-value
p_one_tail one tailed p-value

Examples

```
#To get the AUC for AUC(y=x[,1])
dat=dat1 #(this example embedded within the package)
nv=length(dat$V1)
kv=sum(dat$V1)/length(dat$V1)# pop. prevalence estimated from data
#R2ROC also allows users to estimate AUC using pre-adjusted phenotype
#In that case, users need to specify kv
#eg. kv=0.10 for dat2 (dat2 embedded within the package)
v1=c(1)
output=auc_var(dat,v1,nv,kv)
#R2ROC output
#output$auc (AUC)
#0.7390354
#output$var (variance of AUC)
#7.193337e-05
#output$upper_auc (upper limit of 95% CI for AUC)
#0.7556589
#output$lower_auc (lower limit of 95% CI for AUC)
#0.7224119
#output$p
#9.28062e-175 (two tailed P-value for the AUC is significantly
#different from 0.5)
#output$p_one_tail (one tailed P-value for the AUC is significantly
#different from 0.5)
#4.64031e-175
```

dat1 7

dat1

Raw phenotypes and 2 sets of discovery PGSs

Description

A dataset containing raw phenotypes and multiple PGSs estimated two independent discovery population

Usage

dat1

Format

A data frame with 10000 rows and 3 variables:

- V1 Phenotype, raw case-caontrol data
- V2 PGS1, for discovery population 1
- V3 PGS2, for discovery population 2

dat2

Pre-adjusted phenotypes and 2 sets of discovery PGSs

Description

A dataset containing preadjusted phenotypes and multiple PGSs estimated two independent discovery population

Usage

dat2

Format

A data frame with 10000 rows and 3 variables:

- V1 Phenotype, preadjustde case-caontrol data
- **V2** PGS1, for discovery population 1
- V3 PGS2, for discovery population 2

8 olkin_auc12

71.			4
olki	.n_	_auc	:1

olkin_auc1 function

Description

olkin_auc1 function

Usage

```
olkin_auc1(omat, nv, kv)
```

Arguments

omat

3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e. omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nν

Sample size

kν

Population prevalance

Value

This function will be used as source code

olkin_auc12

olkin_auc12 function

Description

olkin_auc12 function

Usage

```
olkin_auc12(omat, nv, kv)
```

Arguments

omat

3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e. omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nν

Sample size

kν

Population prevalance

Value

olkin_auc12_1

olkin	auc12	1
OTENTIL	auciz	- 1

olkin_auc12_1 function

Description

```
olkin_auc12_1 function
```

Usage

```
olkin_auc12_1(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

This function will be used as source code

olkin_auc12_13

olkin_auc12_13 function

Description

```
olkin_auc12_13 function
```

Usage

```
olkin_auc12_13(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

10 olkin_auc12_34

olkin_	auc12	3
OTKTII-	_aucız	

olkin_auc12_3 function

Description

```
olkin_auc12_3 function
```

Usage

```
olkin_auc12_3(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

This function will be used as source code

olkin_auc12_34

olkin_auc12_34 function

Description

```
olkin_auc12_34 function
```

Usage

```
olkin_auc12_34(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

olkin_auc1_2

olkin_auc1_2	olkin_auc1_2 function
--------------	-----------------------

Description

```
olkin_auc1_2 function
```

Usage

```
olkin_auc1_2(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

Index

* AUC	dat2, 7
auc_trf,4	
* R2	olkin_auc1,8
auc_diff, 2	olkin_auc12,8
auc_trf,4	olkin_auc12_1,9
auc_var, 5	olkin_auc12_13,9
* Transformation	olkin_auc12_3, 10
auc_trf,4	olkin_auc12_34, 10
* datasets	olkin_auc1_2, 11
dat1, 7	
dat2, 7	
* information	
<pre>auc_diff, 2</pre>	
auc_var, 5	
* matrix	
<pre>auc_diff, 2</pre>	
auc_var, 5	
* observed	
auc_trf,4	
* of	
auc_trf,4	
* source	
olkin_auc1, 8	
olkin_auc12,8	
olkin_auc12_1,9	
olkin_auc12_13,9	
olkin_auc12_3, 10	
olkin_auc12_34, <u>10</u>	
olkin_auc1_2, 11	
* to	
auc_trf, 4	
* variance	
auc_diff, 2	
auc_var, 5	
auc_diff, 2	
auc_trf, 4	
auc_var, 5	
dat1,7	