# Stochastik

# Hausaufgabenblatt 10

# Patrick Gustav Blaneck

Letzte Änderung: 13. Dezember 2021

1. In den 30 Museen der Stadt Artima gab es im letzen Monat jeweils *X* Neuerwerbungen pro Museum. Dabei sei folgende Urliste entstanden:

(a) Erstellen Sie eine Tabelle mit der absoluten und relativen Häufigkeit bzw. Summenhäufigkeit der Neuerwerbungen *X* pro Museum.

| Lösung:  |       |       |       |
|----------|-------|-------|-------|
| Es gilt: |       |       |       |
| $x_i$    | $n_i$ | $h_i$ | $H_i$ |
| 1        | 1     | 1/30  | 1/30  |
| 2        | 4     | 2/15  | 1/6   |
| 3        | 7     | 7/30  | 2/5   |
| 4        | 5     | 1/6   | 17/30 |
| 5        | 5     | 1/6   | 11/15 |
| 6        | 3     | 1/10  | 5/6   |
| 7        | 2     | 1/15  | 9/10  |
| 8        | 2     | 1/15  | 29/30 |
| 11       | .   1 | 1/30  | 1     |
|          | •     |       |       |
|          |       |       |       |

# (b) Zeichnen Sie im Anschluss

i. das zugehörige Stabdiagramm



ii. die empirische Verteilungsfunktion.



- (c) Berechnen Sie
  - i. das arithmetische Mittel

Lösung:

Es gilt:

$$\bar{x} = \frac{1}{n} \cdot \sum_{i} x_{i} = \frac{1}{30} \cdot 134 = \frac{67}{15} \approx 4.467$$

ii. den Median

Lösung:

Es gilt:

$$\tilde{x}=x_{1/2}=4$$

## iii. das 10%-Quantil

Lösung:

Es gilt:

$$x_{1/10} = 2$$

iv. obere Quartil

Lösung:

Es gilt:

$$x_{3/4} = 6$$

(d) Berechnen Sie die empirische Varianz und die empirische Standardabweichung.

Lösung:

Es gilt:

$$s^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n-1} \cdot \left(\sum_{i=1}^{n} x_{i}^{2} - n \cdot \bar{x}^{2}\right)$$

$$= \frac{1}{29} \cdot \left(\sum_{i=1}^{30} x_{i}^{2} - 30 \cdot \left(\frac{67}{15}\right)^{2}\right)$$

$$= \frac{1}{29} \cdot \left(\sum_{i=1}^{30} x_{i}^{2} - \frac{8978}{15}\right)$$

$$= \frac{1}{29} \cdot \sum_{i=1}^{30} x_{i}^{2} - \frac{8978}{435}$$

$$= \frac{1}{29} \cdot 740 - \frac{8978}{435}$$

$$= \frac{2122}{435} \approx 4.878$$

Und damit auch:

$$s = \sqrt{s^2} = \sqrt{\frac{2122}{435}} \approx 2.209$$

2. Die nachfolgende Tabelle gibt eine Übersicht über die Anzahl der verkauften Bücher zu unterschiedlichen Preisen in einer Buchhandlung im Laufe eines Tages:

| Buchpreis (in €) | Anzahl der verkauften Bücher |
|------------------|------------------------------|
| [0; 10)          | 5                            |
| [10; 30)         | 15                           |
| [30; 50)         | 20                           |
| [50; 80)         | 12                           |
| [80; 120)        | 8                            |

(a) Berechnen Sie die jeweiligen absoluten und relativen Klassenhäufigkeiten

| Lösung:  |           |       |       |       |                        |  |
|----------|-----------|-------|-------|-------|------------------------|--|
| Es gilt: |           |       |       |       |                        |  |
|          | $I_i$     | $n_i$ | $h_i$ | $H_i$ | $h_i/ I_i $            |  |
|          | [0;10)    | 1     | 1/12  | 1/12  | $1/120 \approx 0.0083$ |  |
|          | [10;30)   | 4     | 1/4   | 1/3   | 1/80 = 0.0125          |  |
|          | [30; 50)  | 7     | 1/3   | 2/3   | $1/60 \approx 0.0167$  |  |
|          | [50; 80)  | 5     | 1/5   | 13/15 | $1/150 \approx 0.0067$ |  |
|          | [80; 120) | 5     | 2/15  | 1     | $1/300 \approx 0.0033$ |  |
|          |           | •     |       |       |                        |  |

(b) Zeichnen Sie das zugehörige Histogramm.



- (c) Bestimmen Sie
  - i. das arithmetische Mittel,

Lösung:

Es gilt:

$$\bar{x} \approx \frac{1}{n} \cdot \sum_{i=1}^{k} n_i \cdot \alpha_i = \sum_{i=1}^{k} h_i \cdot \alpha_i = \frac{5}{12} + 5 + \frac{40}{3} + 13 + \frac{40}{3} = \frac{541}{12} \approx 45.083$$

ii. den Median sowie

Lösung:

Offensichtlich ist die Einfallsklasse gegeben mit

$$I_3 = [30; 50) = [a_3; b_3)$$

Es gilt damit:

$$\tilde{x} = a_3 + \frac{1/2 - H_2}{h_3} \cdot (b_3 - a_3) = 30 + \frac{1/2 - 1/3}{1/3} \cdot (50 - 30) = 40$$

iii. das obere und untere Quartil.

Lösung:

Offensichtlich ist die Einfallsklasse für das untere Quantil gegeben mit

$$I_2 = [10;30) = [a_2;b_2)$$

und die für das obere Quartil mit

$$I_4 = [50; 80) = [a_4; b_4)$$

Es gilt damit:

$$x_{1/4} = a_2 + \frac{1/4 - H_1}{h_2} \cdot (b_2 - a_2) = 10 + \frac{1/4 - 1/12}{1/4} \cdot (30 - 10) = \frac{70}{3}$$

und

$$x_{3/4} = a_4 + \frac{3/4 - H_3}{h_4} \cdot (b_4 - a_4) = 50 + \frac{3/4 - 2/3}{1/5} \cdot (80 - 50) = \frac{130}{2} = 62.5$$

3. In einer (kleinen) Bankfiliale werden die vergebenen Kredite untersucht:

| Kredithöhe (in Tausend €) | Anzahl der Kredite |
|---------------------------|--------------------|
| [0;200)                   | 40                 |
| [200; 300)                | 10                 |
| [300; 500)                | 5                  |
| [500; 1000)               | 2                  |

(a) Erstellen Sie ein Histogramm.



(b) Zeichnen Sie die empirische Verteilungsfunktion.



(c) Bestimmen Sie den Median und das obere Quartil.

### Lösung:

Offensichtlich ist die Einfallsklasse für den Median gegeben mit

$$I_1 = [0;200) = [a_1;b_1)$$

und die für das obere Quantil mit

$$I_2 = [200; 300) = [a_2; b_2)$$

Es gilt damit:

$$\tilde{x} = a_1 + \frac{1/2 - H_0}{h_1} \cdot (b_1 - a_1) = 0 + \frac{1/2}{40/57} \cdot (200 - 0) = \frac{285}{2} = 142.5$$

und

$$x_{3/4} = a_2 + \frac{3/4 - H_1}{h_2} \cdot (b_2 - a_2) = 200 + \frac{3/4 - 40/57}{10/57} \cdot (300 - 200) = \frac{455}{2} = 227.5$$

4. Die Schülerinnen und Schüler wurden vor der Klausur anonym befragt, wie viele Stunden Schlaf sie vor der Klausur gehabt haben:

| Note   | 2 | 4 | 3 | 5 | 6 | 6 | 1 | 2 | 5 | 4 |
|--------|---|---|---|---|---|---|---|---|---|---|
| Schlaf | 9 | 5 | 6 | 5 | 1 | 2 | 9 | 8 | 4 | 7 |

- (a) Berechnen Sie aus den Daten
  - i. die empirische Kovarianz

#### Lösung:

*N* und *S* seien wie offensichtlich definiert. TO DO: Umbenennen in X und Y Es gilt:

$$Cov(X,Y) = s_{XY} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{n-1} \left( \sum_{i=1}^{n} x_i y_i - n \cdot \bar{x} \cdot \bar{y} \right)$$

Wir berechnen zuerst die arithmetischen Mittel von X und Y wie folgt:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{10} \cdot (2+4+3+5+6+6+1+2+5+4) = \frac{19}{5} = 3.8$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{10} \cdot (9 + 5 + 6 + 5 + 1 + 2 + 9 + 8 + 4 + 7) = \frac{28}{5} = 5.6$$

Damit gilt:

$$Cov(X,Y) = s_{xy} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$= \frac{1}{n-1} \left( \sum_{i=1}^{n} x_i y_i - n \cdot \bar{x} \cdot \bar{y} \right)$$

$$= \frac{1}{9} \left( \sum_{i=1}^{n} x_i y_i - 10 \cdot \frac{19}{5} \cdot \frac{28}{5} \right)$$

$$= \frac{1}{9} \left( \sum_{i=1}^{n} x_i y_i - \frac{1064}{5} \right)$$

$$= \frac{1}{9} \sum_{i=1}^{n} x_i y_i - \frac{1064}{45}$$

$$= \frac{1}{9} \cdot 172 - \frac{1064}{45}$$

$$= -\frac{68}{15} \approx -4.53$$

### ii. den empirischen Korrelationskoeffizient

### Lösung:

Es gilt:

$$r_{xy} = \frac{s_{xy}}{s_x \cdot s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Wir berechnen zuerst die empirischen Standardabweichungen  $s_x$  und  $s_y$  von X und Y wie folgt:

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{9} \sum_{i=1}^n \left( x_i - \frac{19}{5} \right)^2 = \frac{46}{15} \implies s_x = \sqrt{\frac{46}{15}} = \frac{\sqrt{690}}{15}$$

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 = \frac{1}{9} \sum_{i=1}^n \left( y_i - \frac{28}{5} \right)^2 = \frac{38}{5} \implies s_y = \sqrt{\frac{38}{5}} = \frac{\sqrt{190}}{5}$$

Damit gilt dann:

$$r_{xy} = \frac{s_{xy}}{s_x \cdot s_y} = \frac{-68/15}{\sqrt{690}/15 \cdot \sqrt{190}/5} = -\frac{34\sqrt{1311}}{1311} \approx -0.93903$$

# 

### iii. die lineare Regression

#### Lösung:

Die Regressionsgerade ist gegeben mit

$$\hat{y}_i = \hat{a} + \hat{b}x$$

Es gilt:

$$\hat{b} = \frac{s_{xy}}{s_x^2} = \frac{-68/15}{46/15} = -\frac{34}{23} \approx -1.478$$

$$\hat{a} = \bar{y} - \hat{b} \cdot \bar{x} = \frac{28}{5} + \frac{34}{23} \cdot \frac{19}{5} = \frac{258}{23} \approx 11.217$$

(b) Erstellen Sie ein Streudiagramm und zeichnen Sie die Regressionsgerade ein.

