I Coloration de graphe par algorithme glouton

Soit G = (V, E) un graphe. Une k-coloration de G est une fonction $c: V \longmapsto \{0, ..., k-1\}$ vérifiant :

$$\forall \{u, v\} \in E, \ c(u) \neq c(v)$$

1. Trouver une 3-coloration du graphe de Petersen :

Solution:

2. Montrer que ce graphe n'est pas 2-coloriable.

Solution: Le graphe de Petersen contient plusieurs cycles de longueur 5. On remarque facilement qu'il n'est pas possible de colorier un tel cycle avec 2 couleurs (ni d'ailleurs n'importe quel cycle de longueur impaire).

On appelle le **nombre chromatique** $\chi(G)$ le plus petit k tel que G soit k-coloriable. Par exemple, le nombre chromatique du graphe de Petersen est 3.

On considère un algorithme glouton de coloriage :

$$C \longleftarrow \emptyset$$

Pour chaque sommet v (dans un ordre quelconque):

Si une couleur de ${\cal C}$ n'est utilisée par aucun voisin de v

Donner à v cette couleur Sinon :

Ajouter une nouvelle couleur à C et l'utiliser pour v

3. Montrer sur un exemple simple que le coloriage obtenu n'est pas forcément optimal.

Solution: Si on colorie un chemin à 4 sommets en commençant par les deux extrêmités, l'algorithme glouton va leur donner la même couleur. Il va ensuite être obligé de donner 2 nouvelles couleurs aux deux autres sommets, ce qui donne 4 couleurs qui n'est pas l'optimum (on peut le colorier avec 2 couleurs).

On souhaite créer un emploi du temps pour une journée : chaque cours possède une heure de début et de fin et doit être assigné à une salle. Il ne peut pas y avoir 2 cours en même temps dans la même salle. L'objectif est de minimiser le nombre de salles à utiliser.

4. Modéliser ce problème sous forme de coloriage de graphe.

Solution : On définit G = (V, E) où

- V est l'ensemble des cours (chaque sommet est un intervalle de temps)
- E représente les chevauchements de cours (deux sommets sont reliés si les intervalles de temps s'intersectent)

Dans l'algorithme glouton précédent, en considère maintenant les sommets par **ordre de début de cours croissant** (on regarde d'abord le cours qui se termine le plus tôt).

5. Appliquer ce nouvel algorithme glouton sur le diagramme de Gantt suivant :

Solution : On trouve qu'un a besoin de 4 salles différentes.

6. Soit k le nombre maximum de cours se déroulant pendant la même heure. Montrer que le nombre chromatique du graphe de la question 4 est au moins k.

Solution : Il faut colorier chacun de ces cours avec une couleur différente.

7. Montrer que l'algorithme glouton donne un coloriage à k couleurs et est donc optimal.

Solution: Supposons par l'absurde que l'algorithme glouton utilise au moins k+1 couleurs et considérons le premier intervalle I pour lequel l'algorithme utilise k+1 couleurs.

Soit i l'heure de début de I. Comme l'algorithme utilise k+1 couleurs pour I, il existe k intervalles déjà coloriés qui intersectent I. De plus ces intervalles commencent avec i car ils ont été considérés avant dans l'algorithme. Donc il y a k+1 intervalles qui contiennent i.

Ceci contredit la définition de k.

8. Est-ce que l'algorithme glouton serait optimal si on triait par ordre de **fin croissant**?

On dit qu'un graphe est **biparti** s'il ne possède pas de cycle de longueur impaire.

9. Montrer qu'un graphe biparti est 2-coloriable en donnant un algorithme pour trouver un 2-coloriage.

Solution : On fait un parcours en largeur depuis un

sommet de départ s quelconque, en donnant la couleur 0 à s, 1 à ses voisins, puis en alternant les couleurs. Par propriété de parcours en largeur, on colorie en 0 tous les sommets à distance paire de s et en 1 tous les sommets à distance impaire. Ainsi, deux sommets u et v coloriés de la même couleur ne peuvent pas être adjacents : sinon, le chemin composé du chemin de s à u, puis de $\{u,v\}$, puis du chemin de v à s serait de longueur impaire.

II Dichotomie 2D

On définit le type de structure suivante :

```
typedef struct coord {
   int i;
   int j;
} coord;
```

On considère une matrice d'entiers m dont les éléments sont triés en colonne de haut en bas et de gauche à droite. Par exemple :

$$\begin{pmatrix} 0 & 4 & 8 & 12 & 16 & 20 \\ 1 & 5 & 9 & 13 & 17 & 21 \\ 2 & 6 & 10 & 14 & 18 & 22 \\ 3 & 7 & 11 & 15 & 19 & 23 \end{pmatrix}$$

- 1. Écrire en C une fonction dicho_matrice(x, m, n, p) qui prend en argument un entier x et une matrice m à n lignes et p colonnes d'entiers triés en colonne de haut en bas et de gauche à droite, et qui renvoie :
 - les coordonnées (i,j) (dans une structure coord) minimales pour l'ordre défini plus haut tel que ${\tt x}$ se trouve en ligne ${\tt i}$ et colonne ${\tt j}$, si l'entier ${\tt x}$ est bien présent dans la matrice ${\tt m}$
 - (-1, -1) si x n'est pas présent dans la matrice m.

Cette fonction devra être de complexité logarithmique en $\max(n, p)$.

2. On suppose maintenant que chaque ligne de m et chaque colonne est rangée par ordre croissant (et non plus de haut en bas et de gauche à droite). Par exemple :

$$\begin{pmatrix}
1 & 2 & 6 & 14 \\
4 & 5 & 7 & 17 \\
6 & 9 & 12 & 22 \\
7 & 11 & 13 & 42
\end{pmatrix}$$

Pour simplifier, on supposera que m est de taille $n \times n$, où n est une puissance de 2. Donner (en français) un algorithme pour savoir si un élément appartient à une telle matrice, en complexité $O(\log(n))$.

III Pavage

On souhaite paver (c'est-à-dire recouvrir sans chevauchements) une grille carré de côté 2^k avec le motif suivant ainsi que ses 3 rotations :

- 1. Montrer que ce problème de pavage n'est pas résoluble.
- 2. On choisit une case quelconque de la grille. Montrer qu'il est possible de paver toute la grille à part cette case. Pour ce faire, on pourra décrire un algorithme (en français) permettant de trouver un tel pavage.

IV Inversions

Étant donné un tableau d'entiers a, on appelle inversion de a tout couple (i,j) tel que i < j et a. (i) > a. (j). Par exemple, [| 4; 1; 3; 2 |] possède 4 inversions : (0,1), (0,2), (0,3) et (2,3). On s'intéresse au calcul du nombre d'inversions de a.

- 1. Donner un algorithme en complexité quadratique pour trouver le nombre d'inversions dans un tableau de taille n.
- Écrire une fonction inversions_sorted telle que, si a1 et a2 sont deux tableaux triés, inversions_sorted a1 a2 renvoie le nombre de couples (i, j) tels que le a.(i) > a.(j).
- 3. Écrire une fonction fusion fusionnant deux tableaux triés en un unique tableau trié.
- 4. En déduire une fonction inversions calculant le nombre d'inversion dans un tableau en $O(\log(n))$, en s'inspirant du tri fusion.