The Algebra and Dissection of Types

github.com/ryanorendorff/algebra_lambdaconf2016

Ryan Orendorff^{1,2} May 2016

¹Department of Bioengineering University of California, Berkeley University of California, San Francisco

²Innolitics LLC Medical Imaging Software Consultants

Table of Contents

Overview of Algebra

Algebraic Data Structures

Zippers

Derivatives

Dissection

The Reals

A familiar set of symbols is the reals (\mathbb{R}). With the reals we can define an operation + that combines two reals together.

$$+ :: \mathbb{R} \to \mathbb{R} \to \mathbb{R}$$

We note that this function + is *closed* over the set \mathbb{R} ; applying + to two reals gives something in the same set (another real).

We denote this algebra with the following notation for some set \mathcal{S} and some operation Op.

$$(\mathcal{S}, \mathit{Op})$$

3

Algebraic Structures

Often sets and associated operators have a common thread. For example, for $(\mathbb{R},+)$ and (\mathbb{B},\vee)

The operator return an element in the same set.

$$+ :: \mathbb{R} \to \mathbb{R} \to \mathbb{R}$$

$$\vee :: \mathbb{B} \to \mathbb{B} \to \mathbb{B}$$

• The operator is associative.

$$a + (b + c) = (a + b) + c$$
$$a \lor (b \lor c) = (a \lor b) \lor c$$

• There exists an $e \in \mathcal{S}$ such that $e \times a = a \times e = a$.

$$a + 0 = 0 + a = a$$

 $a \lor False = False \lor a = a$

These types of algebraic structures are monoids.

Table of Contents

Overview of Algebra

Algebraic Data Structures

Zippers

Derivatives

Dissection

Algebraic Data Types

In this talk we are going to focus on only algebraic data types (ADTs)¹. For example, we can define a type that holds multiple values for one constructor

$$data Doubled b = Doubled b b$$

and we can use multiple constructors for a type.

$$data \ Cards = Hearts \mid Diamonds \mid Clubs \mid Spades$$

Let's look at each of these cases in turn.

¹we are actually going to further restrict to regular data types

Products

We can define a product type as follows, where we hold onto two values.

data
$$Product \ a \ b = Product \ a \ b$$

Which is equivalent to a pair tuple.

Product
$$a \ b \cong (a, b) = (,) \ a \ b$$

We can write the same thing in a slightly different way.

data
$$a \times b = a \hat{\times} b$$

7

The One

Now let's do a little trick. Let's define the following data type.

$$\mathbf{data}\ 1 = \hat{1}$$

We can only construct this value in one way. How many ways are there to construct this?

$$1 \times a$$

Well 1 only has one value $(\hat{1})$, so we can think of the following relation to hold².

$$1 \times a \cong a \cong a \times 1$$

 $^{^{2}(\}cong)$ is usually read as "equal up to isomorphism"

Product is a monoid!

Remember that a monoid has to follow the following rules.

• The operator return an element in the same set³.

$$a \times b :: * \rightarrow * \rightarrow *$$

The operator is associative.

$$a \times (b \times c) \cong (a \times b) \times c$$

• There exists an $e \in \mathcal{S}$ such that $e \cdot a = a \cdot e = a$.

$$a \times 1 \cong 1 \times a \cong a$$

³The star * represents a kind.

Sums

We can define a sum type as follows, where we hold onto either one value or a different value.

Which is equivalent to this.

$$Sum \ a \ b \cong a \mid b$$

We can write the same thing in a slightly different way.

$$\mathbf{data}\ a + b = L\ a \mid R\ b$$

Zero is rather empty

Now let's do a little trick. Let's define the following data type.

How do we construct a value of this type? We can't! We could never call the following function.

$$uncallable :: 0 \rightarrow a$$

 $uncallable \ x = x \text{ `seq' error ":-("}$

In which case, we expect the following.

$$a+0 \cong 0+a \cong a$$

Sum is a monoid!

Remember that a monoid has to follow the following rules.

• The operator return an element in the same set⁴.

$$a + b :: * \rightarrow * \rightarrow *$$

The operator is associative.

$$a + (b+c) \cong (a+b) + c$$

• There exists an $e \in \mathcal{S}$ such that $e \cdot a = a \cdot e = a$.

$$a+0 \cong 0+a \cong a$$

⁴The star * represents a kind.

Constant and Identity Types

We are also going to define the following data types.

A constant type, which represents something like ${\it Nil}$ or 5.

$$\mathbf{data}\;K\;x=\hat{K}\quad\text{-- constant}$$

An identity type.

$$\mathbf{data}\; Id\; x = \hat{Id}\; x \quad \text{-- element}$$

Semirings

A semiring is defined by the following set of rules.

- (+,0) is a commutative monoid.
- \bullet (\times , 1) is a monoid.
- \times distributes over +: $a \times (b+c) = a \times b + a \times c$ and $(b+c) \times a = b \times a + c \times a$.
- 0 is an annihilator for \times : $a \times 0 = 0 \times a = 0$.

ADTs form a semiring!

Star (or Closed) Semiring

A star semiring or closed semiring has the additional unary operator -*, defined as

$$a^* = 1 + aa^* = 1 + a^*a$$

Intuitively, $a^* = 1 + a + a^2 + a^3 + \dots^5$ What would this look like for types?

For lists, we can have lists of no length or one length or ...

data List
$$a = [] | a | (a, a) | (a, a, a) | ...$$

ADTs can be described as a closed semiring.

⁵This intuition is not correct for all closed semirings

Table of Contents

Overview of Algebra

Algebraic Data Structures

Zippers

Derivatives

Dissection

Zippers are great for constant (locally) updating structures

Zippers are a convenient way of traversing a structure, keeping track of where you are.

Zippers are also sometimes known as a "one hole context"

$$\mathbf{data} \; \mathit{List} = [\,] \mid a : (\mathit{List} \; a)$$

$$\mathbf{data}\ \mathit{Zipper}\ a = \mathit{Zipper}\ [\,a\,]\ [\,a\,]$$

Zippers allow for constant time local updates to a data structure.

Zippers are used in extensively in XMonad.

Table of Contents

Overview of Algebra

Algebraic Data Structures

Zippers

Derivatives

Dissection

Derivatives can also lead to a one hole context

The derivative of a type is often known as a "one hole context". We can think of this as marking where we are in a data structure.

Derivative of a Constant

We know from calculus a few derivative rules. The basics are that the derivative of a constant is zero.

$$\partial K = 0$$

How does this look for a value of type K?

$$\partial Nil = 0$$

A value has no context; it is the only thing in town!

Derivative of a variable

The derivative of variable by itself is 1.

$$\partial Id = 1$$

How does this look for a value of type Id?

$$\partial(\hat{Id}\ x) = ()$$

Derivative of a Product

The derivative of a product is described by the product rule⁶.

$$\partial(f\times g)=\partial f\times g+f\times \partial g$$

If we take the algebraic form of $x \times x$.

$$\partial(x \times x) = 1 \times x + x \times 1$$

The values can be either $L\left(\hat{1}\hat{\times}x\right)$ or $R\left(x\hat{\times}\hat{1}\right)$

This represents that we can either be in the left side of a product or the right hand side.

⁶or more generally by the Leibniz rule

Derivative of a Sum

The derivative of a sum is defined by the following rule.

$$\partial(f+g) = \partial f + \partial g$$

If we take the algebraic form of x + 1.

$$\partial(x+1) = 1+0$$

Table of Contents

Overview of Algebra

Algebraic Data Structures

Zippers

Derivatives

Dissection

Dissection is a generalization of derivatives

When we calculate the derivative of a type, we don't differentiate the values to the left of the hole from the values to the right.

Take for example a List.

$$\partial List \ a = (List \ a, List \ a)$$
 -- the same as Zipper

But for dissection, we note those values that have already been processed differently from those yet to be seen.

Dissection follows the same rules

Dissection follows the same rules.

What is \angle and \angle ?

∠ labels the values in the type as having been processed,

\(\) labels the values in the type as having yet to be processed.

Dissection of a List

What if we want to dissect a *List*? Remember the derivative.

$$\partial(List\ a) = (List\ a, List\ a)$$

It is the same as Zipper but where we annotate the parts of the list we have already seen $(\angle(List\ a))$ and those we have yet to see $(\angle(List\ a))$.

If we had used the same label in the dissection, we get the derivative.

Summary

What have we learned today?

- How to describe an algebraic structure (S, Op) and monoids.
- How · + · and · × · each form monoids, and together form a closed semiring.
- How to take the derivative of a type, giving a one hole context.
- How to take the dissection of a type, giving a one hole context parameterized with where you have been before.

Table of Contents

Data Types a la Carte

Identity Data Type

We can define an identity data type that only holds a single value.⁷.

$$\operatorname{data} Id_1 x = Id_1 x$$
 -- element

We note that this can be a functor with the following definition.

instance Functor
$$Id_1$$
 where $fmap \ f \ (Id_1 \ x) = Id_1 \ (f \ x)$

⁷All definitions are originally from [?]

Constant Data Type

data
$$K_1 \ a \ x = K_1 \ a$$
 -- constant

This is the same as the const function. $const\ x::b\to a$ is a function that ignores its input.

We note that this can also be a functor.

instance Functor
$$(K_1 \ a)$$
 where fmap $f(K_1 \ a) = K_1 \ a$

Pairs

Data types can be defined by the product of two other types. Often this appears as the following.

$$\mathbf{data} \ Pair \ a \ b = Pair \ a \ b$$

We can write this generically as follows.

data
$$p \times_1 q x = (p x, q x)_1$$
 -- pairing

And again we note that this can be a functor.

instance (Functor p, Functor q)
$$\Rightarrow$$
 Functor $p \times_1 q$ where fmap f $(p,q)_1 = (fmap\ f\ p, fmap\ f\ q)_1$

Sums

We can also construct a data type that chooses between one of two alternates.

data
$$Either\ a\ b = Left\ a\ |\ Right\ b$$

We can write this generically as follows.

data
$$p +_1 q x = L_1 (p x) | R_1 (q x)$$
 -- choice, aka Either

And again we note that this can be a functor.

instance (Functor
$$p$$
, Functor q) \Rightarrow Functor $p +_1 q$ where fmap $f(L_1 p) = L_1$ (fmap $f(p) = L_1$) fmap $f(R_1 q) = R_1$ (fmap $f(q) = R_1$)

If we think hard, we can think of a type that can only be constructed in one manner.⁸

type
$$Unit = ()$$

This can be encoded in our generic patterns using K_1 .

type
$$1_1 = K_1$$
 () $1_v = K_1$ ()

 $^{^{8}\}text{Remember that the only inhabitant of }\mathit{Unit}$ is $\mathit{Unit}.$ We ignore $\bot.$

Zero?

What if I want to define a type that cannot be inhabited at all? I would want something like the following.

$$data 0 = ???$$

Well we can make an uninhabited type in the following way.

data
$$0_1$$

This means we can never call the following function, which is probably a good thing. :-)

Recreating Maybe

Using this construction, we can recreate Maybe

type Maybe
$$a = (1_1 +_1 Id_1) a$$

 $nothing = L_1 (K_1 ())$
 $just x = R_1 (Id_1 x)$

Constructing a value is pretty simple.

$$val = just \ 5 :: Maybe \ Integer$$

And note that Maybe already has a definition of fmap!

$$newVal = fmap (4+) val -- \equiv just 9$$

Back to Monoids

Remember that a monoid (S, Op) has to have a closed, associative binary operator with an identity element.

A *semiring* is when two monoids are defined over the same set, have two different identity elements, and one of the monoids commutes (+). We write this as follows.

$$(S, +, 1, \cdot, 0)$$

Product Types

Remember that the $\cdot \times_1 \cdot$ type is defined as follows.

data
$$p \times_1 q x = (p x, q x)_1$$
 -- pairing

If we define the set of all Haskell types \mathcal{H} , then

List

If we attempt to make a list with this formulation, then we could write the following.

type
$$ListF$$
 $a = 1_1 +_1 K_1$ $a \times_1 Id_1$

We would like a list that contained ListF, but if we try

type
$$List = ListF \ List$$

we get an infinite type. To fix this, we need to "tie the knot".

$$\mathbf{data}\;\mu\;p=\hat{\mu}\;p\;(\mu\;p)$$

And now we can define our list as follows.

type
$$List \ a = \mu (ListF \ a)$$

[] $= \hat{\mu} (L_1 \ 1_v)$
(:) $a \ as = \hat{\mu} (R_1 \ (K_1 \ a \ , Id_1 \ as)_1)$