Started on	Monday, 15 April 2024, 10:46 AM
	Finished
	Monday, 15 April 2024, 11:51 AM
	1 hour 5 mins
	5.00 out of 5.00 (100%)
Grade	3.00 out of 3.00 (100%)
Question 1 Correct Mark 1.00 out of 1.00	Procedures in the txt file
Let's consider the following execution timing diagram of a sequential application in which only the second execution burst can be parallelized (decomposed into parallel tasks): Parallelizable code region 2	
The correct answer	is: 0.8
_	
Question 2	
Correct	
Mark 1.00 out of 1.00	
Which would be the <i>speed-up</i> that could be achieved using infinite processors $(S_{p\to\infty})$, assuming that the parallelizable region can be ideally decomposed into infinite tasks)? (Truncate your result to at most two decimal places and use a point as the decimal mark) Answer: 5	
The correct answer is: 5	

Question 3 Correct Mark 1.00 out of 1.00	
Mark 1.00 out of 1.00	
Given the following execution timing diagram of an application composed of two parallel regions executed on 4 processors region ₁ region ₂ CPU ₀ 5 5 2 4 1	
CPU ₁ 5 4 CPU ₂ 3 4 CPU ₃ 3 4 where the numbers in the boxes are the execution times of the different application tasks.	
Which speed-up is achieved in the execution with 4 processors (S_4)? Hint: We have seen two ways to compute the speed-up. However, Amdhal's law assumes parallel regions can be perfectly parallelized. (Truncate your result to at most two decimal places and use a point as the decimal mark)	
Answer: 2.35 ✓	
$S_4=T_1/T_4$ Amdhal's law assumes parallel regions can be perfectly parallelized. In this case, it cannot be used because the first parallel region is not perfectly parallelized. The correct answer is: 2.35	
Question 4 Correct Mark 1.00 out of 1.00	
Which is the <i>parallel fraction</i> (ϕ) of the application? (Truncate your result to at most two decimal places and use a point as the decimal mark) Note that we cannot use Amdhal Law in this case because the first parallel region cannot be perfectly parallelized.	
Answer: 0.8 ✓	
The correct answer is: 0.8	
Question 5 Correct Mark 1.00 out of 1.00	
Which would be the <i>speed-up</i> that could be achieved using infinite processors ($S_{p-\infty}$), assuming that both parallel regions could be perfectly parallelized?	
(Truncate your result to at most two decimal places and use a point as the decimal mark)	
Answer: 5 ✓	
$S_{p-\infty} = 1/(1-\phi)$.	

The correct answer is: 5