River Segment YP3_6330_6700: USGS Gage 01671020 vs. VA Hydro Run 11

This river segment follows part of the flow of the North Anna River at Hart Corner near Doswell, VA. Gage 01671020 is located in Hanover County, VA (Lat 37 51'00", Long 77 25'41") approximately 2.1 miles east of Doswell, VA. Drainage area is 462 sq. miles. This gage started taking data in 1979 and has been taking data periodically until now. Diversion at a point 0.8 mi upstream from station since 1973. Maximum discharge, 12,000 ft<U+00B3>/s, from rating curve extended above 10,100 ft<U+00B3>/s. The average daily discharge change between scenario 1 and scenario 2 for the 20 year timespan was 21.0356%, with 58.9% of its rolling three month time spans above 20% difference. The Nash-Sutcliffe Efficiency of the model, calculated between the gage and scenario data, was found to be 0.058.

Table 1: Monthly Low Flows

	VA Hydro: Runid_weighted	VA Hydro: Runid_11_gage_timespan	Pct. Difference
Jan. Low Flow	46.5	53.7	15.5
Feb. Low Flow	53.2	69.5	30.6
Mar. Low Flow	65	145	123
Apr. Low Flow	81	181	123
May Low Flow	134	191	42.5
Jun. Low Flow	190	207	8.95
Jul. Low Flow	110	173	57.3
Aug. Low Flow	78.9	127	61
Sep. Low Flow	67	108	61.2
Oct. Low Flow	49.6	67.2	35.5
Nov. Low Flow	41.3	54	30.8
Dec. Low Flow	43.4	53.2	22.6

Table 2: Monthly Average Flows

	VA Hydro: Runid_weighted	VA Hydro: Runid_11_gage_timespan	Pct. Difference
Overall Mean Flow	309	374	21
Jan. Mean Flow	352	477	35.5
Feb. Mean Flow	399	493	23.6
Mar. Mean Flow	541	619	14.4
Apr. Mean Flow	432	493	14.1
May Mean Flow	422	444	5.21
Jun. Mean Flow	274	276	0.73
Jul. Mean Flow	113	153	35.4
Aug. Mean Flow	87.2	108	23.9
Sep. Mean Flow	203	259	27.6
Oct. Mean Flow	143	243	69.9
Nov. Mean Flow	297	383	29
Dec. Mean Flow	448	548	22.3

Table 3: Monthly High Flows

	VA Hydro: Runid_weighted	VA Hydro: Runid_11_gage_timespan	Pct. Difference
Jan. High Flow	228	603	164
Feb. High Flow	304	540	77.6
Mar. High Flow	742	1340	80.6
Apr. High Flow	907	962	6.06
May High Flow	668	736	10.2
Jun. High Flow	2040	1650	-19.1
Jul. High Flow	1760	1410	-19.9
Aug. High Flow	1010	778	-23
Sep. High Flow	629	383	-39.1
Oct. High Flow	198	237	19.7
Nov. High Flow	104	163	56.7
Dec. High Flow	198	274	38.4

Table 4: Period Low Flows

	VA Hydro: Runid_weighted	VA Hydro: Runid_11_gage_timespan	Pct. Difference
Min. 1 Day Min	7.58	40.6	436
Med. 1 Day Min	34.3	45.5	32.7
Min. 3 Day Min	9.01	40.6	351
Med. 3 Day Min	35.2	45.9	30.4
Min. 7 Day Min	12.7	40.7	220
Med. 7 Day Min	36.2	46.9	29.6
Min. 30 Day Min	17.3	42	143
Med. 30 Day Min	45.7	55.8	22.1
Min. 90 Day Min	30.4	48.2	58.6
Med. 90 Day Min	60.5	96.6	59.7
7Q10	22.6	41.5	83.6
Year of 90-Day Min. Flow	2008	2002	-0.3
Drought Year Mean	201	68.7	-65.8
Mean Baseflow	137	170	24.1

Table 5: Period High Flows

	VA Hydro: Runid_weighted	VA Hydro: Runid_11_gage_timespan	Pct. Difference
Max. 1 Day Max	10700	8660	-19.1
Med. 1 Day Max	4030	3260	-19.1
Max. 3 Day Max	8190	7190	-12.2
Med. 3 Day Max	2990	2770	-7.36
Max. 7 Day Max	4420	4780	8.14
Med. 7 Day Max	2060	2080	0.97
Max. 30 Day Max	1850	2340	26.5
Med. 30 Day Max	915	1040	13.7
Max. 90 Day Max	1110	1380	24.3
Med. 90 Day Max	552	628	13.8

Table 6: Non-Exceedance Flows

	VA Hydro: Runid_weighted	VA Hydro: Runid_11_gage_timespan	Pct. Difference
1% Non-Exceedance	24.7	42.3	71.3
5% Non-Exceedance	36.6	47.1	28.7
50% Non-Exceedance	108	203	88
95% Non-Exceedance	1010	1330	31.7
99% Non-Exceedance	2950	2840	-3.73
Sept. 10% Non-Exceedance	37.2	46.1	23.9

Fig. 1: Hydrograph

Fig. 2: Zoomed Hydrograph

Fig. 3: Flow Exceedance

Fig. 4: Baseflow

Fig. 5: Combined Baseflow

Fig. 6: Largest Difference Period

Fig. 7: Second Largest Difference Period

Fig. 8: Third Largest Difference Period

Fig. 9A: Residuals Plot

Fig. 9B: Area Weighted Residuals Plot

Fig. 10: VA Hydro Scen. 1 Runit Values (Outliers Excluded)

Tab: Annual IQR of Local Runoff Inflows

	IQR of Runit Flows (cfs/sq. mi) [25th, 75th]
1998	0.0547 [0.0335, 0.0882]
1999	0.498 [0.119, 0.617]
2000	0.511 [0.313, 0.824]
2001	0.512 [0.0991, 0.611]
2002	0.276 [0.0926, 0.369]
2003	1.27 [0.66, 1.93]
2004	0.536 [0.474, 1.01]
2005	0.567 [0.241, 0.808]

	IQR of Runit Flows (cfs/sq. mi) [25th, 75th]
2006	0.633 [0.24, 0.873]
2007	0.525 [0.106, 0.631]
2008	$0.503 \ [0.187, \ 0.69]$
2009	$0.739 \ [0.205, \ 0.944]$
2010	0.957 [0.163, 1.12]
2011	0.566 [0.343, 0.909]
2012	$0.455 \ [0.153, \ 0.608]$
2013	0.708 [0.382, 1.09]
2014	0.892 [0.128, 1.02]

Fig. 11: Smallest Difference Period

Fig. 12: Second Smallest Difference Period

Fig. 13: Third Smallest Difference Period

Additional Tables: Land-River Segment Flow Metrics

Tab: Mean Flows by Flow Type: LR-Seg cbp6_N51085_YP3_6330_6700

	Mean Unit Flow (cfs/sq. mi)
SURface Outflow	0.00147
InterFloW Outflow	0.000212
Active GroundWater Outflow	0.000629

Tab: Ratio of Zero-Flow Days by Flow Type: LR-Seg cbp6_N51085_YP3_6330_6700

	Ratio of Days with Zero Flow to Total Days
SURface Outflow	0.701
InterFloW Outflow	0.468
Active GroundWater Outflow	0.326

Tab: IQR for SURface Outflow: LR-Seg cbp6_N51085_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	0 [0, 0]
1999	1.01e-09 [0, 1.01e-09]
2000	3.02e-06 [0, 3.02e-06]
2001	0 [0, 0]
2002	5.64e-09 [0, 5.64e-09]
2003	1.77e-05 [0, 1.77e-05]
2004	5.62e-06 [0, 5.62e-06]
2005	1.66e-08 [0, 1.66e-08]
2006	4.6e-10 [0, 4.6e-10]
2007	0 [0, 0]
2008	8.63e-08 [0, 8.63e-08]
2009	2.38e-06 [0, 2.38e-06]
2010	2.17e-07 [0, 2.17e-07]
2011	8.32e-07 [0, 8.32e-07]
2012	9.22e-08 [0, 9.22e-08]
2013	6.64e-06 [0, 6.64e-06]
2014	5.8e-07 [0, 5.8e-07]

Tab: IQR for InterFloW Outflow: LR-Seg cbp6_N51085_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	1.6e-06 [0, 1.6e-06]
1999	4.03e-05 [0, 4.03e-05]
2000	5.46e-05 [0, 5.46e-05]
2001	1.87e-05 [0, 1.87e-05]
2002	1.81e-05 [0, 1.81e-05]
2003	0.000302 [0, 0.000302]
2004	0.00011 [0, 0.00011]
2005	5.04e-05 [0, 5.04e-05]
2006	5.11e-05 [0, 5.11e-05]
2007	1.64e-05 [0, 1.64e-05]
2008	2.91e-05 [0, 2.91e-05]
2009	5.46e-05 [0, 5.46e-05]
2010	3.15e-05 [0, 3.15e-05]
2011	7.15e-05 [0, 7.15e-05]
2012	2.73e-05 [0, 2.73e-05]
2013	0.000126 [0, 0.000126]
2014	6.18e-05 [0, 6.18e-05]

Tab: IQR for Active GroundWater Outflow: LR-Seg cbp6_N51085_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	0.000162 [0, 0.000162]
1999	0.000827 [0, 0.000827]
2000	0.000945 [0, 0.000945]
2001	$0.000743 \ [0, \ 0.000743]$
2002	$0.000594 \ [0, \ 0.000594]$
2003	0.00175 [0, 0.00175]
2004	$0.00131 \ [0, 0.00131]$
2005	0.000936 [0, 0.000936]
2006	0.00118 [0, 0.00118]
2007	$0.000733 \ [0, \ 0.000733]$
2008	0.000843 [0, 0.000843]
2009	0.00112 [0, 0.00112]
2010	$0.00101 \ [0, 0.00101]$
2011	0.00107 [0, 0.00107]
2012	0.00075 [0, 0.00075]
2013	0.00142 [0, 0.00142]
2014	0.00112 [0, 0.00112]

Tab: Mean Flows by Land Use: LR-Seg cbp6_N51085_YP3_6330_6700

	Mean Unit Flow (cfs/sq. mi)
aop	0.000458
cch	0.00068
cci	0.00129
ccn	0.000695
cfr	0.000392
cir	0.00129
cmo	0.000407
cnr	0.00129
ctg	0.00068
dbl	0.000485
fnp	0.00129
for	0.000393
fsp	0.00129
gom	0.000485
gwm	0.000485
hfr	0.000535
lhy	0.000458
mch	0.00068
mci	0.00129
mcn	0.000695
$_{ m mir}$	0.00129
mnr	0.00129
mtg	0.00068
nch	0.00068
nci	0.00129
nir	0.00129
nnr	0.00129
ntg	0.00068
oac	0.000485
ohy	0.000458
osp	0.000408
pas	0.000458
sch	0.000485
scl	0.000485
sgg	0.000485
sho	0.00129
som	0.000485
soy	0.000485
stb	0.00129
stf	0.00129
swm	0.000485
wfp	0.000393
wto	0.000393

Tab: Ratio of Zero-Flow Days by Land Use: LR-Seg cbp6_N51085_YP3_6330_6700

	Ratio of Days with Zero Flow to Total Days
aop	0.302
cch	0.29
cci	0.911
ccn	0.281
cfr	0.328
cir	0.911
cmo	0.314
cnr	0.911
ctg	0.29
dbl	0.293
fnp	0.908
for	0.33
fsp	0.908
gom	0.293
gwm	0.293
hfr	0.288
lhy	0.302
mch	0.29
mci	0.911
mcn	0.281
\min	0.911
mnr	0.911
mtg	0.29
nch	0.29
nci	0.911
$_{ m nir}$	0.911
nnr	0.911
ntg	0.29
oac	0.293
ohy	0.302
osp	0.317
pas	0.302
sch	0.293
scl	0.293
sgg	0.293
sho	0.911
som	0.293
soy	0.293
stb	0.911
stf	0.911
swm	0.293
wfp	0.33
wto	0.33

Tab: Mean Flows by Flow Type: LR-Seg cbp6_N51033_YP3_6330_6700

	Mean Unit Flow (cfs/sq. mi)
SURface Outflow	0.00152
InterFloW Outflow	0.000255
Active GroundWater Outflow	0.000519

Tab: Ratio of Zero-Flow Days by Flow Type: LR-Seg cbp6_N51033_YP3_6330_6700

	Ratio of Days with Zero Flow to Total Days
SURface Outflow	0.705
InterFloW Outflow	0.486
Active GroundWater Outflow	0.326

Tab: IQR for SURface Outflow: LR-Seg cbp6_N51033_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	0 [0, 0]
1999	1.23e-09 [0, 1.23e-09]
2000	3.21e-06 [0, 3.21e-06]
2001	0 [0, 0]
2002	2.78e-09 [0, 2.78e-09]
2003	4.19e-05 [0, 4.19e-05]
2004	5.81e-06 [0, 5.81e-06]
2005	3.47e-09 [0, 3.47e-09]
2006	1.83e-09 [0, 1.83e-09]
2007	0 [0, 0]
2008	2.52e-08 [0, 2.52e-08]
2009	5.79e-06 [0, 5.79e-06]
2010	6.66e-07 [0, 6.66e-07]
2011	4.37e-06 [0, 4.37e-06]
2012	1.88e-09 [0, 1.88e-09]
2013	5.69e-06 [0, 5.69e-06]
2014	2.69e-07 [0, 2.69e-07]

Tab: IQR for InterFloW Outflow: LR-Seg cbp6_N51033_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	1.3e-06 [0, 1.3e-06]
1999	4.42e-05 [0, $4.42e-05$]
2000	7.65e-05 [0, 7.65e-05]
2001	2.34e-05 [0, 2.34e-05]
2002	2.13e-05 [0, 2.13e-05]
2003	0.000338 [0, 0.000338]
2004	9.2e-05 [0, 9.2e-05]
2005	6.84e-05 [0, $6.84e-05$]
2006	5.57e-05 [0, 5.57e-05]
2007	1.02e-05 [0, 1.02e-05]
2008	4.18e-05 [0, 4.18e-05]
2009	6.89e-05 [0, 6.89e-05]
2010	3.96e-05 [0, 3.96e-05]
2011	9.66e-05 [0, 9.66e-05]
2012	2.91e-05 [0, 2.91e-05]
2013	9.51e-05 $[0, 9.51e-05]$
2014	4.61e-05 [0, 4.61e-05]

Tab: IQR for Active GroundWater Outflow: LR-Seg cbp6_N51033_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	0.000153 [0, 0.000153]
1999	0.000732 [0, 0.000732]
2000	0.000858 [0, 0.000858]
2001	0.000645 [0, 0.000645]
2002	0.000449 [0, 0.000449]
2003	0.00145 [0, 0.00145]
2004	0.00102 [0, 0.00102]
2005	0.000869 [0, 0.000869]
2006	0.000989 [0, 0.000989]
2007	0.000549 [0, 0.000549]
2008	0.000767 [0, 0.000767]
2009	0.000985 [0, 0.000985]
2010	$0.000833 \ [0, \ 0.000833]$
2011	0.00096 [0, 0.00096]
2012	$0.000624 \ [0, \ 0.000624]$
2013	0.00107 [0, 0.00107]
2014	0.000922 [0, 0.000922]

Tab: Mean Flows by Land Use: LR-Seg cbp6_N51033_YP3_6330_6700

	Mean Unit Flow (cfs/sq. mi)
aop	0.000469
cch	0.000689
cci	0.00124
ccn	0.000709
cfr	0.000407
cir	0.00124
cmo	0.000423
cnr	0.00124
ctg	0.000689
dbl	0.000497
fnp	0.00124
for	0.000408
fsp	0.00124
gom	0.000497
gwm	0.000497
hfr	0.000538
lhy	0.000468
mch	0.000689
mci	0.00124
mcn	0.000709
$_{ m mir}$	0.00124
mnr	0.00124
mtg	0.000689
nch	0.000689
nci	0.00124
$_{ m nir}$	0.00124
nnr	0.00124
ntg	0.000689
oac	0.000497
ohy	0.000468
osp	0.000423
pas	0.000468
sch	0.000497
scl	0.000497
sgg	0.000497
sho	0.00124
som	0.000497
soy	0.000497
stb	0.00124
stf	0.00124
swm	0.000497
wfp	0.000408
wto	0.000408

Tab: Ratio of Zero-Flow Days by Land Use: LR-Seg cbp6_N51033_YP3_6330_6700

	Ratio of Days with Zero Flow to Total Days
aop	0.311
cch	0.302
cci	0.91
ccn	0.297
cfr	0.338
cir	0.91
cmo	0.323
cnr	0.91
ctg	0.302
dbl	0.302
fnp	0.91
for	0.341
fsp	0.91
gom	0.302
gwm	0.302
hfr	0.3
lhy	0.315
mch	0.302
mci	0.91
mcn	0.297
\min	0.91
mnr	0.91
mtg	0.302
nch	0.302
nci	0.91
$_{ m nir}$	0.91
nnr	0.91
ntg	0.302
oac	0.302
ohy	0.315
osp	0.324
pas	0.315
sch	0.302
scl	0.302
sgg	0.302
sho	0.91
som	0.302
soy	0.302
stb	0.91
stf	0.91
swm	0.302
wfp	0.341
wto	0.341

Tab: Mean Flows by Flow Type: LR-Seg cbp6_N51109_YP3_6330_6700

	Mean Unit Flow (cfs/sq. mi)
SURface Outflow	0.00166
InterFloW Outflow	0.000243
Active GroundWater Outflow	0.000259

Tab: Ratio of Zero-Flow Days by Flow Type: LR-Seg cbp6_N51109_YP3_6330_6700

	Ratio of Days with Zero Flow to Total Days
SURface Outflow	0.703
InterFloW Outflow	0.521
Active GroundWater Outflow	0.326

Tab: IQR for SURface Outflow: LR-Seg cbp6_N51109_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	0 [0, 0]
1999	1.31e-09 [0, 1.31e-09]
2000	5.55e-06 [0, 5.55e-06]
2001	0 [0, 0]
2002	8.45e-07 [0, 8.45e-07]
2003	0.000498 [0, 0.000498]
2004	3.57e-05 [0, 3.57e-05]
2005	7.52e-06 [0, 7.52e-06]
2006	0 [0, 0]
2007	0 [0, 0]
2008	1.8e-09 [0, 1.8e-09]
2009	2.07e-05 [0, 2.07e-05]
2010	1.91e-06 [0, 1.91e-06]
2011	2.13e-06 [0, 2.13e-06]
2012	4.32e-07 [0, 4.32e-07]
2013	4.55e-05 [0, 4.55e-05]
2014	2.82e-06 [0, 2.82e-06]

Tab: IQR for InterFloW Outflow: LR-Seg cbp6_N51109_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	5.81e-07 [0, 5.81e-07]
1999	4.28e-05 [0, 4.28e-05]
2000	5.74e-05 [0, 5.74e-05]
2001	1.51e-05 [0, 1.51e-05]
2002	2.82e-05 [0, 2.82e-05]
2003	0.000318 [0, 0.000318]
2004	0.000116 [0, 0.000116]
2005	8.76e-05 [0, 8.76e-05]
2006	4.04e-05 [0, 4.04e-05]
2007	1.09e-05 [0, 1.09e-05]
2008	2.66e-05 [0, 2.66e-05]
2009	9.37e-05 [0, 9.37e-05]
2010	3.48e-05 [0, 3.48e-05]
2011	7.17e-05 [0, 7.17e-05]
2012	3.08e-05 [0, 3.08e-05]
2013	0.000128 [0, 0.000128]
2014	5.37e-05 [0, 5.37e-05]

Tab: IQR for Active GroundWater Outflow: LR-Seg cbp6_N51109_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	6.73e-05 [0, 6.73e-05]
1999	0.000376 [0, 0.000376]
2000	$0.000403 \ [0, \ 0.000403]$
2001	$0.000329 \ [0, \ 0.000329]$
2002	$0.000243 \ [0, \ 0.000243]$
2003	0.00079 [0, 0.00079]
2004	$0.000526 \ [0, \ 0.000526]$
2005	0.000469 [0, 0.000469]
2006	0.000461 [0, 0.000461]
2007	0.000282 [0, 0.000282]
2008	0.000314 [0, 0.000314]
2009	0.000465 [0, 0.000465]
2010	0.000409 [0, 0.000409]
2011	0.00045 [0, 0.00045]
2012	0.000304 [0, 0.000304]
2013	0.000562 [0, 0.000562]
2014	0.000472 [0, 0.000472]

Tab: Mean Flows by Land Use: LR-Seg cbp6_N51109_YP3_6330_6700

	Mean Unit Flow (cfs/sq. mi)
aop	0.00043
cch	0.000633
cci	0.0012
ccn	0.000655
cfr	0.000374
cir	0.0012
cmo	0.000388
cnr	0.0012
ctg	0.000633
dbl	0.000462
fnp	0.0012
for	0.000374
fsp	0.0012
gom	0.000462
gwm	0.000462
hfr	0.000486
lhy	0.000429
mch	0.000633
mci	0.0012
mcn	0.000655
$_{ m mir}$	0.0012
mnr	0.0012
mtg	0.000633
nch	0.000633
nci	0.0012
$_{ m nir}$	0.0012
nnr	0.0012
ntg	0.000633
oac	0.000462
ohy	0.000429
osp	0.000388
pas	0.000429
sch	0.000462
scl	0.000462
sgg	0.000462
sho	0.0012
som	0.000462
soy	0.000462
stb	0.0012
stf	0.0012
swm	0.000462
wfp	0.000374
wto	0.000374

Tab: Ratio of Zero-Flow Days by Land Use: LR-Seg cbp6_N51109_YP3_6330_6700

	Ratio of Days with Zero Flow to Total Days
aop	0.325
cch	0.333
cci	0.905
ccn	0.326
cfr	0.351
cir	0.905
cmo	0.335
cnr	0.905
ctg	0.333
$d\overline{bl}$	0.319
fnp	0.905
for	0.357
fsp	0.905
gom	0.319
gwm	0.319
hfr	0.313
lhy	0.324
$\min_{i=1}^{n}$	0.333
mci	0.905
mcn	0.326
$_{ m mir}$	0.905
mnr	0.905
mtg	0.333
nch	0.333
nci	0.905
nir	0.905
nnr	0.905
ntg	0.333
oac	0.319
ohy	0.324
osp	0.336
pas	0.324
sch	0.319
scl	0.319
sgg	0.319
sho	0.905
som	0.319
soy	0.319
stb	0.905
stf	0.905
swm	0.319
wfp	0.357
wto	0.357

Tab: Mean Flows by Flow Type: LR-Seg cbp6_N51177_YP3_6330_6700

	Mean Unit Flow (cfs/sq. mi)
SURface Outflow	0.00162
InterFloW Outflow	0.000252
Active GroundWater Outflow	0.000317

Tab: Ratio of Zero-Flow Days by Flow Type: LR-Seg cbp6_N51177_YP3_6330_6700

	Ratio of Days with Zero Flow to Total Days
SURface Outflow	0.697
InterFloW Outflow	0.53
Active GroundWater Outflow	0.326

Tab: IQR for SURface Outflow: LR-Seg cbp6_N51177_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	0 [0, 0]
1999	2.95e-09 [0, 2.95e-09]
2000	3.46e-06 [0, 3.46e-06]
2001	0 [0, 0]
2002	0 [0, 0]
2003	0.000205 [0, 0.000205]
2004	8.58e-06 [0, 8.58e-06]
2005	6.19e-06 [0, 6.19e-06]
2006	1.14e-09 [0, 1.14e-09]
2007	6.56e-09 [0, 6.56e-09]
2008	7.63e-09 [0, 7.63e-09]
2009	1.11e-05 [0, 1.11e-05]
2010	1.81e-06 [0, 1.81e-06]
2011	6.66e-06 [0, 6.66e-06]
2012	8.05e-07 [0, 8.05e-07]
2013	8.54e-06 [0, 8.54e-06]
2014	1.44e-06 [0, 1.44e-06]

Tab: IQR for InterFloW Outflow: LR-Seg cbp6_N51177_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	1.04e-06 [0, 1.04e-06]
1999	2.83e-05 [0, 2.83e-05]
2000	4.7e-05 [0, 4.7e-05]
2001	1.3e-05 [0, 1.3e-05]
2002	1.95e-05 [0, 1.95e-05]
2003	0.000327 [0, 0.000327]
2004	5.33e-05 [0, 5.33e-05]
2005	6.93e-05 [0, 6.93e-05]
2006	4.19e-05 [0, 4.19e-05]
2007	6.54e-06 [0, 6.54e-06]
2008	3.02e-05 [0, 3.02e-05]
2009	6.67e-05 [0, 6.67e-05]
2010	3.68e-05 [0, 3.68e-05]
2011	8.65e-05 [0, 8.65e-05]
2012	3.26e-05 [0, 3.26e-05]
2013	5.49e-05 [0, 5.49e-05]
2014	4.21e-05 [0, 4.21e-05]

Tab: IQR for Active GroundWater Outflow: LR-Seg cbp6_N51177_YP3_6330_6700

	IQR of Unit Flows (cfs/sq. mi) [25th, 75th]
1998	8.95e-05 [0, 8.95e-05]
1999	0.000444 [0, 0.000444]
2000	0.00056 [0, 0.00056]
2001	0.000398 [0, 0.000398]
2002	0.000279 [0, 0.000279]
2003	0.000927 [0, 0.000927]
2004	0.000562 [0, 0.000562]
2005	$0.000583 \ [0, 0.000583]$
2006	0.000558 [0, 0.000558]
2007	0.000305 [0, 0.000305]
2008	$0.000442 \ [0, \ 0.000442]$
2009	0.000582 [0, 0.000582]
2010	0.000538 [0, 0.000538]
2011	0.000653 [0, 0.000653]
2012	$0.000392 \ [0, \ 0.000392]$
2013	0.000617 [0, 0.000617]
2014	$0.000571 \ [0, \ 0.000571]$

Tab: Mean Flows by Land Use: LR-Seg cbp6_N51177_YP3_6330_6700

	Mean Unit Flow (cfs/sq. mi)
aop	0.000452
cch	0.000655
cci	0.00118
ccn	0.000676
cfr	0.000392
cir	0.00118
cmo	0.00041
cnr	0.00118
ctg	0.000655
dbl	0.000481
fnp	0.00118
for	0.000392
fsp	0.00118
gom	0.000481
gwm	0.000481
hfr	0.000509
lhy	0.000451
mch	0.000655
mci	0.00118
mcn	0.000676
$_{ m mir}$	0.00118
mnr	0.00118
mtg	0.000655
nch	0.000655
nci	0.00118
nir	0.00118
nnr	0.00118
ntg	0.000655
oac	0.000481
ohy	0.000451
osp	0.00041
pas	0.000451
sch	0.000481
scl	0.000481
sgg	0.000481
sho	0.00118
som	0.000481
soy	0.000481
stb	0.00118
stf	0.00118
swm	0.000481
wfp	0.000392
wto	0.000392

Tab: Ratio of Zero-Flow Days by Land Use: LR-Seg cbp6_N51177_YP3_6330_6700

	Ratio of Days with Zero Flow to Total Days
aop	0.327
cch	0.328
cci	0.907
ccn	0.322
cfr	0.36
cir	0.907
cmo	0.341
cnr	0.907
ctg	0.328
$d\widetilde{bl}$	0.321
fnp	0.907
for	0.362
fsp	0.907
gom	0.321
gwm	0.321
hfr	0.313
lhy	0.326
$\min_{i=1}^{n}$	0.328
mci	0.907
mcn	0.322
$_{ m mir}$	0.907
mnr	0.907
mtg	0.328
nch	0.328
nci	0.907
nir	0.907
nnr	0.907
ntg	0.328
oac	0.321
ohy	0.326
osp	0.341
pas	0.326
sch	0.321
scl	0.321
sgg	0.321
sho	0.907
som	0.321
soy	0.321
stb	0.907
stf	0.907
swm	0.321
wfp	0.362
wto	0.362

Additional Figures: Land-River Segment Flow Boxplots

Fig: Annual SURO Flows for LR-seg cbp6_N51085_YP3_6330_6700

