TEOREMES SOBRE FUNCIONS CONTÍNUES I DERIVABLES MATEMÀTIQUES 2N BATXILLERAT

Carles Alcaide

Curs 2022-2023

ÍNDEX

1	Teorema del valor mig generalitzat - Cauchy	2
2	Teorema del valor mig (TVM) - Lagrange	4
3	Teorema de Rolle	(
4	Teorema de Bolzano	

TEOREMA DEL VALOR MIG GENERALITZAT - CAUCHY

Definició

Siguin f(x) i g(x) funcions contínues en un interval tancat [a,b] i derivables en un obert (a,b), llavors existeix un valor $c \in (a,b)$ amb $g(a) \neq g(b)$ i $g'(c) \neq 0$ tal que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Exemple

Veieu si es pot aplicar el teorema de Cauchy en l'interval [1,4] a les funcions

$$f(x) = x^2 - 2x + 3$$

i

$$g(x) = x^3 - 7x^2 + 20x - 5$$

TEOREMA DEL VALOR MIG GENERALITZAT - CAUCHY

Solució:

Les funcions f(x) i g(x) són derivables i contínues a tot \mathbb{R} per ser polinomis. A més es compleix que $g(1) \neq g(4)$ per tant es compleixen les condicions del teorema.

$$\frac{f(4) - f(1)}{g(4) - g(1)} = \frac{f'(c)}{g'(c)}$$

$$\frac{11-2}{27-9} = \frac{2c-2}{3c^2-14c+20}$$
$$c^2-6c+8=0$$

d'on

$$c = 2 \in (1,4)$$
 $c = 4 \in (1,4)$

i finalment,

$$g'(2) \neq 0$$

TEOREMA DEL VALOR MIG (TVM) - LAGRANGE

Definició

Sigui f(x) contínua en un interval tancat [a,b] i derivable en un obert (a,b), llavors existeix un $c \in (a,b)$ amb $a \neq b$ tal que

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Exemple

Es pot aplicar el teorema de Lagrange a la funció $f(x) = x^3$ en l'interval [-1,2]?

TEOREMA DEL VALOR MIG (TVM) - LAGRANGE

Solució:

La funció f(x) és contínua i derivable en tot $\mathbb R$ per ser un polinomi, llavors podem aplicar el teorema per obtenir

$$\frac{8 - (-1)}{2 - (-1)} = f'(c)$$

d'on

$$f'(c) = 3 \Longrightarrow 3c^2 = 3 \Longrightarrow c = \pm 1$$

el valor c = 1 és el predit pel teorema.

TEOREMA DE ROLLE

Definició

Sigui f(x) contínua en un interval tancat [a,b] i derivable en un obert (a,b) amb f(a)=f(b) lavors existeix un $c\in(a,b)$ amb $a\neq b$ tal que

$$f'(c) = 0$$

Exemple

Es pot apliar el teorema de Rolle a la funció $f(x) = \ln(5 - x^2)$ en l'interval [-2, 2]?

TEOREMA DE ROLLE

Solució:

La funció f(x) és contínua i derivable en l'interval considerat (cal comprovar-ho prèviament), i és f(-2) = f(2), llavors podem aplicar el teorema per obtenir

$$\frac{-2c}{f - c^2} = 0$$

d'on

$$c=0\in(-2,2)$$

TEOREMA DE BOLZANO

Definició

Sigui f(x) contínua en un interval tancat [a,b], llavors, si $f(a) \cdot f(b) < 0$ existeix un $c \in (a,b)$ tal que f(c) = 0

Exemple

Demostreu que l'equació sin(x) + 2x = 1 té almenys una solució real.

TEOREMA DE BOLZANO

Solució:

Definim la funció F(x) $\sin(x) + 2x - 1$, que és contínua, per ser suma de funcions contínues. Podem observar que F(0) = -1 < 0 i $F(\pi) = 2\pi - 1 > 0$ tal que existeix F(c) = 0, que és equivalent a dir que l'equació original té almenys una solució real.