Дискретная математика. Глава 9. Перечисление непомеченных объектов.

А.В.Пастор

Дискретная математика Глава 9. Перечисление непомеченных объектов

А. В. Пастор

29.05.2023

Помеченные и непомеченные объекты

- Во многих комбинаторных задачах ответ и трудность его нахождения существенно зависят от того, рассматриваются ли помеченные или непомеченные объекты.
- Например, сколько существует различных графов на n вершинах? Ответ на этот вопрос зависит от того, какие графы мы будем считать различными.
 - 1. Пусть n вершин занумерованы числами от 1 до n. Тогда у нас есть C_n^2 пар вершин, каждую из которых можно соединить или не соединить ребром. Итого, получаем $2^{C_n^2} = 2^{\frac{n(n-1)}{2}}$ различных графов.
 - Графы, все вершины которых занумерованы натуральными числами от 1 до v(G) называют помеченными, а полученное выше количество графов это число помеченных графов на n вершинах.
 - 2. Совсем другой результат получается, если никаких пометок на вершинах нет и все вершины считаются идентичными.
 - Напомним, что *изоморфизмом* графов G_1 и G_2 называется биекция $\varphi \colon V(G_1) \to V(G_2)$, удовлетворяющая условию $\forall x, y \in V(G_1) \, (xy \in E(G_1) \longleftrightarrow \varphi(x) \varphi(y) \in E(G_2)).$
 - Сами графы G_1 и G_2 в этом случае называют *изоморфными*. Обозначение: $G_1 \cong G_2$.

Дискретная математика. Глава 9. Перечисление непомеченных объектов.

- По сути, если мы стираем пометки на вершинах графа, то мы перестаем различать изоморфные друг другу графы. Тогда возникает вопрос о количестве графов с точностью до изоморфизма.
 - ▶ Легко видеть, что изоморфность двух помеченных графов это отношение эквивалентности. А интересующее нас количество графов с точностью до изоморфизма — это число классов эквивалентности.

Пример

Есть $2^6=64$ помеченных графов на 4 вершинах, но всего 11 попарно неизоморфных графов на 4 вершинах.

Дискретная математика. Глава 9. Перечисление непомеченных объектов.

- Посмотрим на этот вопрос с другой стороны. Сколько есть способов расставить пометки на вершинах данного непомеченного графа?
- Другими словами, сколько помеченных графов входят в данный класс эквивалентности?
 - ► Количество классов эквивалентности было бы легко посчитать, если бы все классы содержали одинаковое число элементов. Однако, это, увы, не так.
 - Например, очевидно, что полный граф является единственным элементом своего класса эквивалентности. Но есть n(n-1)/2 помеченных графов на n вершинах ровно с одним ребром и все они изоморфны.
- Всего есть n! способов расставить пометки на данных n вершинах. Но некоторые из этих способов могут давать один и тот же помеченный граф.
 - ▶ То есть граф может оказаться изоморфен сам себе.

Определение

- Aвтоморфизмом графа G называется изоморфизм из G в G.
- Множество всех автоморфизмов графа G обозначается $\operatorname{Aut}(G)$.

Дискретная математика. Глава 9. Перечисление непомеченных объектов.

Замечание

- Итак, автоморфизм графа это перестановка на множестве его вершин, сохраняющая отношение смежности.
- Пусть вершины графа G занумерованы числами от 1 до n. Тогда $\operatorname{Aut}(G) \subset S_n$.

Утверждение

 $\operatorname{Aut}(G) < S_n$.

Доказательство. Очевидно, что $e \in \operatorname{Aut}(G)$. Далее нужно проверить замкнутость относительно умножения и взятия обратного элемента.

- Пусть $\varphi, \psi \in \operatorname{Aut}(G)$. Поскольку φ и ψ биекции, их композиция также биекция. Далее, для любых $x, y \in V(G)$ имеем $xy \in E(G) \iff \psi(x)\psi(y) \in E(G) \iff \varphi(\psi(x))\varphi(\psi(y)).$
- Пусть $\varphi \in \operatorname{Aut}(G)$. Поскольку φ биекция, сохраняющая отношение смежности, то φ^{-1} — также биекция, сохраняющая отношение смежности

Группа автоморфизмов и её свойства

Определенная выше группа $\mathrm{Aut}(G)$ называется *группой автоморфизмов* графа G.

Утверждение

Определение

- 1. Если $G_1 \cong G_2$, то $\operatorname{Aut}(G_1) \cong \operatorname{Aut}(G_2)$;
- 2. для любого графа G выполнено $\operatorname{Aut}(G) \cong \operatorname{Aut}(\overline{G})$.

Замечание

- То есть группы автоморфизмов изоморфных графов всегда изоморфны.
- Но обратное наверное. Например, легко построить граф, не изоморфный своему дополнению. У этих графов группы автоморфизмов будут изоморфны, а сами графы нет.
- Порядок группы автоморфизмов тесно связан с числом способов расставить пометки на вершинах данного непомеченного графа (или, что тоже самое, с размером класса эквивалентности по отношению изоморфности, содержащего данный помеченный граф).

Глава 9. Перечисление непомеченных объектов.

Дискретная

Группа автоморфизмов и число способов расставить пометки

Лемма

Пусть G — помеченный граф и n=v(G). Тогда существует ровно $\frac{n!}{|\mathrm{Aut}(G)|}$ помеченных графов на том же множестве вершин, изоморфных G.

Доказательство. Не умаляя общности будем считать, что V(G) = [1..n].

- Пусть \mathcal{G}_n множество всех помеченных графов на множестве [1..n].
- Рассмотрим следующее действие группы S_n на множестве \mathcal{G}_n :
 - ▶ для любых $\sigma \in S_n$ и $H \in \mathcal{G}_n$ обозначим через σH граф с $V(\sigma H) = [1..n]$ и $E(\sigma H) = \{\sigma(x)\sigma(y) \mid xy \in E(H)\}.$
- Тогда
 - $ightharpoonup \langle G \rangle$ множество всех графов на множестве [1..n], изоморфных G;
 - $ightharpoonup \operatorname{St}(G) = \operatorname{Aut}(G).$
- Следовательно, по теореме из курса алгебры получаем, что

$$|\langle G \rangle| = \frac{|S_n|}{|\operatorname{St}(G)|} = \frac{n!}{|\operatorname{Aut}(G)|}.$$

Дискретная математика. Глава 9. Перечисление непомеченных объектов.

- Сейчас мы отложим на некоторое время задачу о перечислении непомеченных графов и рассмотрим две более простые задачи о перечислении непомеченных объектов.
 - 1. На окружности расставлены n точек, разбивающие её на равные дуги. Сколькими способами можно раскрасить эти точки в a цветов, если раскраски, отличающиеся друг от друга поворотом окружности, считаются одинаковыми?
 - Как обычно, под раскраской множества M в a цветов мы понимаем отображение $c \colon M \to [1..a]$.
 - Неформальная формулировка: Дана карусель с п одинаковыми кабинками. Сколькими способами можно раскрасить кабинки в а цветов?
 - 2. Тот же вопрос, но одинаковыми считаются раскраски, отличающиеся либо поворотом, либо осевой симметрией.
 - Неформальная формулировка: Дано ожерелье с *п* одинаковыми бусинками. Ожерелье можно как угодно поворачивать и переворачивать. Сколькими способами можно раскрасить бусинки в *а* цветов?

Утверждение

Пусть $p \in \mathbb{P}$. Тогда существует ровно $\frac{a^p-a}{p}+a=\frac{a^p+(p-1)a}{p}$ раскрасок p точек на окружности p а цветов, если раскраски, отличающиеся друг от друга поворотом окружности, считаются одинаковыми.

Доказательство. Занумеруем все точки в порядке обхода по часовой стрелке числами от 0 до p-1.

- Номера точек мы будем рассматривать по модулю р.
 - ▶ То есть можно считать, что мы нумеруем точки элементами кольца $\mathbb{Z}/p\mathbb{Z}$.
- Тогда поворот окружности на угол $\frac{2\pi k}{n}$ переводит точку с номером i в точку номер i+k.
 - ightharpoonup Число k также можно рассматривать как элемент кольца $\mathbb{Z}/p\mathbb{Z}$.
 - ightharpoonup То есть всего получаем p различных поворотов.
- Рассмотрим произвольную раскраску $c\colon \mathbb{Z}/p\mathbb{Z} \to [1..a]$ точек окружности в a цветов.

Дискретная математика. Глава 9. Перечисление непомеченных объектов.

Простой частный случай задачи об ожерелье

- Докажем, что для раскраски c выполнено ровно одно из следующих двух утверждений:
 - либо раскраска не изменяется ни при каком повороте (и тогда цвета всех точек одинаковы);
 - ightharpoonup либо все p возможных поворотов приводят к различным раскраскам.
- ullet Пусть раскраска c не изменилась при повороте на угол $rac{2\pi k}{n}$, где 0 < k < p.
 - ► Тогда $c(0) = c(k) = c(2k) = \ldots = c((p-1)k)$.
 - ightharpoonup Заметим, что $0,k,2k,\ldots,(p-1)k$ это все элементы кольца $\mathbb{Z}/p\mathbb{Z}$.
 - ▶ Следовательно, цвета всех точек при раскраске с одинаковы.
- Всего есть a^p различных раскрасок помеченных точек. Среди них есть a одноцветных. Остальные a^p-a раскрасок разбиваются на $\frac{a^p-a}{p}$ классов эквивалентности, по p раскрасок в каждом.
- Итого, получаем $\frac{a^p-a}{p}+a$ раскрасок с точностью до поворота.

Следствие (Малая теорема Ферма)

Пусть $a \in \mathbb{N}$ и $p \in \mathbb{P}$. Тогда $a^p - a \not\models p$.

Дискретная математика. Глава 9. Перечисление непомеченных объектов.

Классы эквивалентности и действие группы на множестве

- Описанный выше метод трудно применять к общему случаю задачи о раскраске ожерелья (или карусели), поскольку при составном n возможны нетривиальные раскраски, переходящие в себя при повороте на ненулевой угол.
- Поэтому давайте посмотрим на эти задачи с точки зрения теории групп.
- Во всех задачах о перечислении непомеченных объектов мы ищем количество классов эквивалентности, на которые разбивается множество помеченных объектов.
- Классы эквивалентности образуются в результате применения к помеченным объектам некоторых преобразований. Как правило, эти преобразования образуют группу.
 - ▶ В случае задачи о раскраски карусели, преобразование это поворот:
 - ▶ в случае задачи о раскраски ожерелья поворот или осевая симметрия;
 - ▶ в случае задачи о перечислении графов, преобразование это любая перестановка на множестве его вершин.
- В любом из этих случаев, мы имеем дело с действием некоторой группы на множестве помеченных объектов. Интересующие нас классы эквивалентности это орбиты элементов множества при данном действии.

Дискретная математика. Глава 9. Перечисление непомеченных объектов.

Лемма Бернсайда

Определение

Пусть задано действие группы A на множестве X. Тогда для любого $\alpha \in A$

- $\operatorname{Fix}(\alpha) \stackrel{\operatorname{def}}{=} \{x \in X \mid \alpha x = x\}$ множество неподвижных точек элемента α ;
- элементы множества $\mathrm{Fix}(\alpha)$ неподвижные точки элемента α .

Утверждение

$$\sum_{\alpha \in A} |\operatorname{Fix}(\alpha)| = \sum_{x \in X} |\operatorname{St}(x)|.$$

Доказательство. Обе части равны $|\{(\alpha,x)\in A\times X\mid \alpha x=x\}|.$

Теорема (Лемма Бернсайда)

Количество орбит действия группы A на множестве X равно $\frac{1}{|A|}\sum_{\alpha\in A}|\mathrm{Fix}(\alpha)|.$

Доказательство. Присвоим каждому элементу $x \in X$ вес $w(x) \stackrel{\text{def}}{=} \frac{1}{|\langle x \rangle|}$.

• Тогда сумма весов элементов любой орбиты равна 1.

Дискретная математика. Глава 9. Перечисление непомеченных объектов.

Дискретная математика. Глава 9. Перечисление непомеченных объектов.

А.В.Пастор

- Следовательно, сумма весов всех элементов множества X равна количеству орбит (обозначим его N).
- ullet Тогда $N=\sum_{x\in X}rac{1}{|\langle x
 angle|}=\sum_{x\in X}rac{|\mathrm{St}(x)|}{|\langle x
 angle||\mathrm{St}(x)|}=rac{1}{|A|}\sum_{x\in X}|\mathrm{St}(x)|=rac{1}{|A|}\sum_{lpha\in A}|\mathrm{Fix}(lpha)|.$

Замечание

Доказанное выше утверждение обычно называют леммой Бернсайда. Но оно было известно и ранее. Сам William Burnside в своей книге "Theory of Groups of Finite Order" 1897 года называл первооткрывателем этой леммы Фробениуса. Но судя по всему, это утверждение было известно еще раньше.

Пусть $a, n \in \mathbb{N}$. Тогда существует ровно $\frac{1}{n} \sum_{d \mid n} \varphi(\frac{n}{d}) a^d$ раскрасок n точек на окружности B а цветов, если раскраски, отличающиеся друг от друга поворотом окружности, считаются одинаковыми.

Доказательство. Как и ранее, занумеруем точки на окружности элементами кольца $\mathbb{Z}/n\mathbb{Z}$.

- Пусть $X = \{c \mid c \colon \mathbb{Z}/n\mathbb{Z} \to [1..a]\}$ множество всех раскрасок точек в a цветов.
- Повороты окружности можно рассматривать как действие циклической группы C_n порядка n на этом множестве.
 - ▶ Пусть образующая ε группы C_n соответствует повороту на угол $\frac{2\pi}{n}$. ▶ Тогда элемент ε^k соответствует повороту на угол $\frac{2\pi k}{n}$.
- Пусть раскраска c является неподвижной точкой для элемента ε^k .
- Докажем, что раскраска c является d-периодичной, где d = (k, n) (т. е. что $\forall i \ (c(i) = c(i+d))$).

математика. Глава 9. Перечисление непомеченных объектов.

Лискретная

Задача о каруселях: общий случай

- ullet Пусть d=sk+tn линейное представление НОД.
- \bullet Тогда c(i) = c(i+sk) = c(i+sk+tn) = c(i+d).
- Обратно, любая d-периодичная раскраска, очевидно, является неподвижной точкой для элемента ε^k .
- Итак, $\mathrm{Fix}(\varepsilon^k)$ это в точности множество всех d-периодичных раскрасок, где d=(k,n).
- ullet Тогда $|\mathrm{Fix}(arepsilon^k)|=a^d$, поскольку любая d-периодичная раскраска однозначно задается цветами точек $0,1,\ldots,d-1$.
- Следовательно, по лемме Бернсайда, число раскрасок с точностью до поворота равно $\frac{1}{n}\sum_{n=1}^{n-1}a^{(k,n)}$.
- Далее, запишем числа k и n в виде $k=k_1d$ и $n=n_1d$. Тогда $(k_1,n_1)=1$. То есть число k_1 можно выбрать $\varphi(n_1)$ способами. Следовательно, существует ровно $\varphi(\frac{n}{d})$ таких k, что d=(k,n).
- Таким образом, число раскрасок равно $\frac{1}{n}\sum_{n=1}^{n-1}a^{(k,n)}=\frac{1}{n}\sum_{n}\varphi(\frac{n}{d})a^{d}$.

Перечисление непомеченных объектов.

Дискретная математика. Глава 9.

Дискретная

Пусть $a, n \in \mathbb{N}$. Обозначим через B(n, a) количество раскрасок n точек на окружности b а цветов, если раскраски, отличающиеся друг от друга поворотом окружности или осевой симметрией, считаются одинаковыми. Тогда

•
$$B(n,a)=rac{1}{2n}\sum_{d\mid n} \varphi(rac{n}{d})a^d+rac{a^k}{2}$$
, при $n=2k-1$;

•
$$B(n,a)=rac{1}{2n}\sum_{d\mid n}\varphi(rac{n}{d})a^d+rac{a^k(a+1)}{4}$$
, при $n=2k$.

Доказательство. В отличии от предыдущей теоремы, здесь нужно рассматривать на множестве всех раскрасок действие группы D_n .

- ▶ D_n это группа самосовмещений правильного п-угольника или диэдральная группа.
- ▶ В этой группе 2n элементов: n из них соответствуют поворотам, оставшиеся n осевым симметриям.
- ightharpoonup Также эту группу можно представлять себе как группу автоморфизмов цикла на n вершинах.

- Мы уже знаем, что число неподвижных точек поворота на угол $\frac{2\pi k}{n}$ равно $a^{(k,n)}$.
- Посчитаем число неподвижных точек для осевой симметрии. То есть количество раскрасок, симметричных относительно данной оси.
 - ▶ При n=2k-1 любая ось симметрии проходит через одну из отмеченных точек. Остальные 2k-2 точки разбиваются на пары симметричных. Точки в каждой паре должны быть одного цвета. Итого, нам нужно выбрать цвета k точек: по одной точке в каждой паре и точки, лежащей на оси симметрии. Таких раскрасок a^k .
 - ▶ При n=2k оси симметрии бывают двух видов: n/2 осей не проходят через отмеченные точки и n/2 проходят через две отмеченные точки. В первом случае раскраска однозначно задается выбором цветов k точек, а во втором выбором цветов k+1 точки. То есть в первом случае получаем a^k раскрасок, а во втором a^{k+1} .

• Тогда при n = 2k - 1 получаем, что

$$B(n,a) = \frac{1}{2n} \left(\sum_{k=0}^{n-1} a^{(k,n)} + na^k \right) = \frac{1}{2n} \sum_{d|n} \varphi(\frac{n}{d}) a^d + \frac{a^k}{2}.$$

• A при n = 2k получаем

$$B(n,a) = \frac{1}{2n} \left(\sum_{k=0}^{n-1} a^{(k,n)} + \frac{n}{2} a^k + \frac{n}{2} a^{k+1} \right) = \frac{1}{2n} \sum_{d|n} \varphi(\frac{n}{d}) a^d + \frac{a^k(a+1)}{4}.$$

Асимптотика числа графов с точностью до изоморфизма

- Введем следующие обозначения.
 - $ightharpoonup G_n$ число помеченных графов на n вершинах;
 - $ightharpoonup g_n$ число графов на n вершинах с точностью до изоморфизма.
- Мы уже знаем, что $G_n = 2^{\frac{n(n-1)}{2}}$.
- Оказывается, что g_n примерно в n! раз меньше.
 - ▶ Неформально это означает, что почти у всех графов группа автоморфизмов тривиальна (т. е. состоит из единственного элемента: тождественного преобразования).

Теорема

$$g_n \sim \frac{G_n}{n!} = \frac{2^{\frac{n(n-1)}{2}}}{n!}.$$

Доказательство. Пусть G_n — множество всех помеченных графов на множестве вершин V = [1..n].

- Как и ранее, рассмотрим следующее действие группы S_n на множестве \mathcal{G}_n :
 - ▶ для любых $\sigma \in S_n$ и $H \in \mathcal{G}_n$ обозначим через σH граф с $V(\sigma H) = V$ и $E(\sigma H) = \{\sigma(x)\sigma(y) \mid xy \in E(H)\}.$

Глава 9.
Перечисление непомеченных объектов.

Лискретная

Асимптотика числа графов с точностью до изоморфизма • Нам нужно посчитать число неподвижных точек для перестановки $\sigma \in S_n$.

- ullet Для этого рассмотрим множество $V^{(2)}$ двухэлементных подмножеств
- множества V.
 - ▶ Другими словами, $V^{(2)}$ это множество ребер полного графа K_n на множестве вершин V.
- Заметим, что группа S_n действует также и на множестве $V^{(2)}$:

 $\sigma \cdot xv \stackrel{\mathrm{def}}{=} \sigma(x)\sigma(y)$. Тем самым, каждая перестановка $\sigma \in S_n$ индуцирует перестановку $\sigma' \in S(V^{(2)})$, а группа S_n индуцирует подгруппу $S_n^{(2)} < S(V^{(2)})$, состоящую из всех перестановок множества $V^{(2)}$ вида σ' .

- ightharpoonup Группа $S_n^{(2)}$ называется парной группой группы S_n .
- ightharpoonup Фактически, мы построили гомоморфизм групп $S_n o S(V^{(2)})$. Группа $S_n^{(2)}$ — это образ данного гомоморфизма.
- ► Нетрудно проверить, что при n > 2 группы S_n и $S_n^{(2)}$ изоморфны.
- Для перестановки $\sigma \in S_n$ нас будут интересовать циклы соответствующей ей перестановки $\sigma' \in S_n^{(2)}$. Эти циклы мы будем называть рёберными циклами перестановки σ .

Глава 9. объектов.

- Заметим, что граф $G \in \mathcal{G}_n$ является неподвижной точкой для перестановки $\sigma \in \mathcal{S}_n$, если и только если для любого рёберного цикла C перестановки σ либо $C \subset E(G)$, либо $C \cap E(G) = \emptyset$.
- ullet Тем самым, $|\mathrm{Fix}(\sigma)|=2^{q(\sigma)}$, где $q(\sigma)$ число рёберных циклов перестановки σ .
- Тогда по лемме Бернсайда, $g_n = \frac{1}{n!} \sum_{\sigma \in S_n} 2^{q(\sigma)}$.
- Обозначим через $S_{n,k}$ множество перестановок из S_n , имеющих ровно n-k неподвижных точек.
- ullet Пусть $g_n^{(k)} = rac{1}{n!} \sum_{\sigma \in \mathcal{S}_{n,k}} 2^{q(\sigma)}$. Тогда $g_n = \sum_{k=0}^n g_n^{(k)}$.
 - ▶ Очевидно, что $g_n^{(0)} = \frac{1}{n!} 2^{\frac{n(n-1)}{2}}$.
 - ightharpoonup То есть нам нужно доказать, что $g_n \sim g_n^{(0)}$.

Асимптотика числа графов с точностью до изоморфизма

Лемма

Если $\sigma \in S_{n,k}$, то $q(\sigma) \leq C_n^2 + \frac{1}{2}(k - nk + \frac{k^2}{2})$.

Доказательство. Пусть перестановка σ имеет t рёберных циклов длины 1.

- Тогда оставшиеся $\frac{n(n-1)}{2} t$ пар вершин разбиты на рёберные циклы длины хотя бы 2.
- Следовательно, рёберных циклов длины хотя бы 2 не более $\frac{n(n-1)}{4} \frac{t}{2}$.
- Это означает, что $q(\sigma) \leq \frac{n(n-1)}{4} \frac{t}{2} + t = \frac{n(n-1)}{4} + \frac{t}{2}$.
- \bullet Осталось заметить, что рёберными циклами длины 1 перестановки σ могут быть лишь
 - ightharpoonup пары из двух неподвижных точек перестановки σ (их $\frac{(n-k)(n-k-1)}{2}$);
 - ▶ пары вершин, образующих цикл длины 2 перестановки σ (их не более, чем $\frac{k}{2}$).
- Итого, $t \leq \frac{(n-k)(n-k-1)}{2} + \frac{k}{2} = \frac{n^2-2nk+k^2-n+2k}{2} = \frac{n(n-1)}{2} + (k-nk+\frac{k^2}{2}).$
- Таким образом, $q(\sigma) < \frac{n(n-1)}{4} + \frac{t}{2} < \frac{n(n-1)}{2} + \frac{1}{2}(k nk + \frac{k^2}{2})$.

математика. Глава 9. Перечисление непомеченных объектов.

Лискретная

Асимптотика числа графов с точностью до изоморфизма

- Заметим, что $|S_{n,k}| \le C_n^k \cdot k! = \frac{n!}{(n-k)!} \le n^k$.
- $$\begin{split} \bullet \text{ Тогда } g_n^{(k)} & \leq \tfrac{1}{n!} |S_{n,k}| 2^{C_n^2 + \frac{1}{2}(k nk + \frac{k^2}{2})} \leq g_n^{(0)} n^k 2^{\frac{k}{2}(1 n + \frac{k}{2})} \leq \\ & \leq g_n^{(0)} \left(\frac{n}{2^{\frac{1}{2}(n 1 \frac{k}{2})}} \right)^k \leq g_n^{(0)} \left(\frac{n}{2^{\frac{n 2}{4}}} \right)^k = g_n^{(0)} \left(\frac{n\sqrt{2}}{2^{\frac{n}{4}}} \right)^k. \end{split}$$
- ullet Следовательно, $1 \leq rac{g_n}{g_n^{(0)}} \leq \sum\limits_{k=0}^n \left(rac{n\sqrt{2}}{2^{rac{n}{4}}}
 ight)^k \leq rac{1}{1-rac{n\sqrt{2}}{2^{rac{n}{4}}}} \xrightarrow{n o \infty} 1.$
- Тогда по теореме о двух милиционерах $\frac{g_n}{g_n^{(0)}} \xrightarrow[n \to \infty]{} 1$, а это и означает, что

$$g_n \sim g_n^{(0)} = \frac{G_n}{g_n^{-1}} = \frac{2^{\frac{n(n-1)}{2}}}{g_n^{-1}}.$$

Дискретная математика. Глава 9. Перечисление непомеченных объектов.