Resumo dos testes de Hipóteses

Estatística Aplicada

Resumo dos métodos para teste de hipóteses para média

São possíveis 3 casos de hipóteses para testes para média:

• Caso 1:

 $H_0: \mu \leq a$

 $H_A: \mu > a$

• Caso 2:

 $H_0: \mu \geq b$

 $H_A: \mu < b$

• Caso 3:

 $H_0: \mu = c$

 $H_A: \mu \neq c$

Etapas de um teste de hipóteses:

- 1. Estabelecer as hipóteses nula H_0 e alternativa H_A .
- 2. Determinar a estatística de teste e sua distribuição amostral.
- 3. Calcular a região crítica com base em um valor de α .
- Caso 1: RC= $\{\bar{x}_{obs} > \bar{X}_{crit}\}$ com $\bar{X}_{crit} = t_{[(1-\alpha),(n-1)]}\sqrt{\frac{s^2}{n}} + \mu_0$
- Caso 2: RC= $\{\bar{x}_{obs} < \bar{X}_{crit}\}$ com $\bar{X}_{crit} = t_{[\alpha,(n-1)]}\sqrt{\frac{s^2}{n}} + \mu_0$
- Caso 3: RC= $\{\bar{x}_{obs} < \bar{X}_{crit1} \text{ ou } \bar{x}_{obs} > \bar{X}_{crit2}\}$ com $\bar{X}_{crit1} = t_{\left[\frac{\alpha}{2},(n-1)\right]} \sqrt{\frac{s^2}{n}} + \mu_0$ e $\bar{X}_{crit2} = t_{\left[(1-\frac{\alpha}{2}),(n-1)\right]} \sqrt{\frac{s^2}{n}} + \mu_0$
- 3. Calcular o p-valor com base nos resultados amostrais.
- Caso 1: $pvalor = P(\bar{X} \ge \bar{x}_{obs}) = P\left(t_{(n-1)} \ge \frac{(\bar{x}_{obs} a)}{\sqrt{\frac{s^2}{n}}}\right)$
- Caso 2: $pvalor = P(\bar{X} \leq \bar{x}_{obs}) = P\left(t_{(n-1)} \leq \frac{(\bar{x}_{obs} b)}{\sqrt{\frac{s^2}{2}}}\right)$
- Caso 3: $pvalor = 2P(\bar{X} \ge \bar{x}_{obs}) = 2P\left(t_{(n-1)} \ge \frac{(\bar{x}_{obs} c)}{\sqrt{\frac{s^2}{n}}}\right)$ se $\bar{x}_{obs} > c$ ou $pvalor = 2P(\bar{X} \le \bar{x}_{obs}) = 2P\left(t_{(n-1)} \le \frac{(\bar{x}_{obs} c)}{\sqrt{\frac{s^2}{n}}}\right)$ se $\bar{x}_{obs} \le c$
- 4. Concluir o teste considerando os resultados da amostra e o valor de α .

• Caso 1:

 $H_0: \mu \leq a$

 $H_A: \mu > a$

• Caso 2:

 $H_0: \mu \geq b$

 $H_A: \mu < b$

• Caso 3:

 $H_0: \mu = c$

 $H_A: \mu \neq c$

• Caso 1:
$$\beta(\mu_{alt}) = P(\bar{X} \le \bar{x}_{crit} | \mu = \mu_{alt}) = P\left(T_{(n-1) \le \frac{\bar{x}_{crit} - \mu_{alt}}{\sqrt{\frac{s^2}{n}}}}\right)$$

• Caso 2: $\beta(\mu_{alt}) = P(\bar{X} \ge \bar{x}_{crit} | \mu = \mu_{alt}) = P\left(T_{(n-1) \le \frac{\bar{x}_{crit} - \mu_{alt}}{\sqrt{\frac{s^2}{n}}}}\right)$

• Caso 2:
$$\beta(\mu_{alt}) = P(\bar{X} \ge \bar{x}_{crit} | \mu = \mu_{alt}) = P\left(T_{(n-1) \le \frac{\bar{x}_{crit} - \mu_{alt}}{\sqrt{\frac{s^2}{n}}}}\right)$$

Caso 3

•
$$\beta(\mu_{alt}) = P(\bar{X} \ge \bar{x}_{crit}) = P\left(t_{(n-1)} \ge \frac{(\bar{x}_{crit} - \mu_{alt})}{\sqrt{\frac{s^2}{n}}}\right)$$
 se $\mu_{alt} < c$

•
$$\beta(\mu_{alt}) = P(\bar{X} \le \bar{x}_{crit}) = P\left(t_{(n-1)} \le \frac{(\bar{x}_{crit} - \mu_{alt})}{\sqrt{\frac{s^2}{n}}}\right)$$
 se $\mu_{alt} \ge c$

Resumo dos métodos para teste de hipóteses para proporção populacional

São possíveis 3 casos de hipóteses para testes para proporção:

• Caso 1:

$$H_0: \pi \leq a$$

$$H_A: \pi > a$$

• Caso 2:

$$H_0: \pi \geq b$$

$$H_A: \pi < b$$

$$H_0: \pi = c$$

$$H_A: \pi \neq c$$

Etapas de um teste de hipóteses:

- 1. Estabelecer as hipóteses nula H_0 e alternativa H_A .
- 2. Determinar a estatística de teste e sua distribuição amostral.
- 3. Calcular a região crítica com base em um valor de α .

• Caso 1: RC=
$$\{\hat{\pi}_{obs} > \hat{\pi}_{crit}\}$$
 com $\hat{\pi}_{crit} = z_{(1-\alpha)} \sqrt{\frac{a(1-a)}{n}} + \mu_0$

• Caso 2: RC=
$$\{\hat{\pi}_{obs} < \hat{\pi}_{crit}\}\ \text{com}\ \hat{\pi}_{crit} = z_{\alpha} \sqrt{\frac{b(1-b)}{n}} + \mu_0$$

• Caso 3: RC=
$$\{\hat{\pi}_{obs} < \hat{\pi}_{crit1} \text{ ou } \hat{\pi}_{obs} > \hat{\pi}_{crit2}\}\ \text{com } \hat{\pi}_{crit1} = z_{\frac{\alpha}{2}} \sqrt{\frac{c(1-c)}{n}} + \mu_0 \text{ e } \hat{\pi}_{crit2} = z_{(1-\frac{\alpha}{2})} \sqrt{\frac{c(1-c)}{n}} + \mu_0$$

3. Calcular o p-valor com base nos resultados amostrais.

• Caso 1:
$$pvalor = P(\hat{\pi} \ge \hat{\pi}_{obs}) = P\left(Z \ge \frac{(\hat{\pi}_{obs} - a)}{\sqrt{\frac{a(1-a)}{n}}}\right)$$

• Caso 2: $pvalor = P(\hat{\pi} \le \hat{\pi}_{obs}) = P\left(Z \le \frac{(\hat{\pi}_{obs} - b)}{\sqrt{\frac{b(1-b)}{n}}}\right)$

• Caso 2:
$$pvalor = P(\hat{\pi} \le \hat{\pi}_{obs}) = P\left(Z \le \frac{(\hat{\pi}_{obs} - b)}{\sqrt{\frac{b(1-b)}{n}}}\right)$$

• Caso 3:
$$pvalor = 2P(\hat{\pi} \ge \hat{\pi}_{obs}) = 2P\left(Z \ge \frac{(\hat{\pi}_{obs} - c)}{\sqrt{\frac{c(1-c)}{n}}}\right)$$
 se $\hat{\pi}_{obs} > c$ ou $pvalor = 2P(\hat{\pi} \le \hat{\pi}_{obs}) = 2P\left(Z \le \frac{(\hat{\pi}_{obs} - c)}{\sqrt{\frac{c(1-c)}{n}}}\right)$ se $\hat{\pi}_{obs} \le c$

4. Concluir o teste considerando os resultados da amostra e o valor de α .

• Caso 1:

$$H_0: \pi \leq a$$

$$H_A: \pi > a$$

• Caso 2:

$$H_0: \pi \geq b$$

$$H_A: \pi < b$$

• Caso 3:

$$H_0: \pi = c$$

$$H_A: \pi \neq c$$

• Caso 1:
$$\beta(\pi_{alt}) = P(\hat{\pi} \le \hat{\pi}_{crit} | \pi = \pi_{alt}) = P\left(Z \le \frac{\hat{\pi}_{crit} - \pi_{alt}}{\sqrt{\frac{\pi_{alt}(1 - \pi_{alt})}{n}}}\right)$$

• Caso 2:
$$\beta(\pi_{alt}) = P(\hat{\pi} \ge \hat{\pi}_{crit} | \pi = \pi_{alt}) = P\left(Z \le \frac{\hat{\pi}_{crit} - \pi_{alt}}{\sqrt{\frac{\pi_{alt}(1 - \pi_{alt})}{n}}}\right)$$

Caso 3

•
$$\beta(\pi_{alt}) = P(\hat{\pi} \ge \hat{\pi}_{crit}) = P\left(Z \ge \frac{(\hat{\pi}_{crit} - \pi_{alt})}{\sqrt{\frac{\pi_{alt}(1 - \pi_{alt})}{n}}}\right)$$
 se $\mu_{alt} < c$

•
$$\beta(\pi_{alt}) = P(\hat{\pi} \le \hat{\pi}_{crit}) = P\left(Z \le \frac{(\hat{\pi}_{crit} - \pi_{alt})}{\sqrt{\frac{\pi_{alt}(1 - \pi_{alt})}{n}}}\right)$$
 se $\mu_{alt} \ge c$

Resumo dos métodos para teste de hipóteses para comparação de médias com amostras pareadas

São possíveis 3 casos de hipóteses para testes para comparação de médias: Vamos considerar que serão calculadas as diferenças elemento a elemento na forma $D_i=(A_i-B_i)$ e serão utilizados \bar{d} no lugar de \bar{x} e s_d^2 no lugar de s_d^2

• Caso 1:

 $H_0: \mu_a \leq \mu_b$ reescrita para $H_0: \mu_d \leq 0$

 $H_A: \mu_a > \mu_b$ reescrita para $H_A: \mu_d > 0$

• Caso 2:

 $H_0: \mu_a \geq \mu_b$ reescrita para $H_0: \mu_d \geq 0$

 $H_A: \mu_a < \mu_b$ reescrita para $H_A: \mu_d < 0$

• Caso 3:

 $H_0: \mu_a = \mu_b$ reescrita para $H_0: \mu_d = 0$

 $H_A: \mu_a \neq \mu_b$ reescrita para $H_A: \mu_d \neq 0$

Etapas de um teste de hipóteses:

- 1. Estabelecer as hipóteses nula H_0 e alternativa H_A .
- 2. Determinar a estatística de teste e sua distribuição amostral.
- 3. Calcular a região crítica com base em um valor de α .

• Caso 1: RC=
$$\{\bar{x}_{obs} > \bar{X}_{crit}\}\ \text{com}\ \bar{X}_{crit} = t_{[(1-\alpha),(n-1)]}\sqrt{\frac{s^2}{n}} + \mu_0$$

• Caso 2: RC=
$$\{\bar{x}_{obs} < \bar{X}_{crit}\}\ \text{com } \bar{X}_{crit} = t_{[\alpha,(n-1)]}\sqrt{\frac{s^2}{n}} + \mu_0$$

• Caso 3: RC=
$$\{\bar{x}_{obs} < \bar{X}_{crit1} \text{ ou } \bar{x}_{obs} > \bar{X}_{crit2}\}$$
 com $\bar{X}_{crit1} = t_{\left[\frac{\alpha}{2},(n-1)\right]} \sqrt{\frac{s^2}{n}} + \mu_0$ e $\bar{X}_{crit2} = t_{\left[(1-\frac{\alpha}{2}),(n-1)\right]} \sqrt{\frac{s^2}{n}} + \mu_0$

3. Calcular o p-valor com base nos resultados amostrais.

• Caso 1:
$$pvalor = P(\bar{X} \ge \bar{x}_{obs}) = P\left(t_{(n-1)} \ge \frac{(\bar{x}_{obs} - a)}{\sqrt{\frac{s^2}{n}}}\right)$$

• Caso 2:
$$pvalor = P(\bar{X} \leq \bar{x}_{obs}) = P\left(t_{(n-1)} \leq \frac{(\bar{x}_{obs} - b)}{\sqrt{\frac{s^2}{2}}}\right)$$

• Caso 3:
$$pvalor = 2P(\bar{X} \ge \bar{x}_{obs}) = 2P\left(t_{(n-1)} \ge \frac{(\bar{x}_{obs} - c)}{\sqrt{\frac{s^2}{n}}}\right)$$
 se $\bar{x}_{obs} > c$ ou $pvalor = 2P(\bar{X} \le \bar{x}_{obs}) = 2P\left(t_{(n-1)} \le \frac{(\bar{x}_{obs} - c)}{\sqrt{\frac{s^2}{n}}}\right)$ se $\bar{x}_{obs} \le c$

4. Concluir o teste considerando os resultados da amostra e o valor de α .

• Caso 1:

 $H_0: \mu_a \leq \mu_b$ reescrita para $H_0: \mu_d \leq 0$

 $H_A: \mu_a > \mu_b$ reescrita para $H_A: \mu_d > 0$

• Caso 2:

 $H_0: \mu_a \geq \mu_b$ reescrita para $H_0: \mu_d \geq 0$

 $H_A: \mu_a < \mu_b$ reescrita para $H_A: \mu_d < 0$

• Caso 3:

 $H_0: \mu_a = \mu_b$ reescrita para $H_0: \mu_d = 0$

 $H_A: \mu_a \neq \mu_b$ reescrita para $H_A: \mu_d \neq 0$

• Caso 1:
$$\beta(\mu_{alt}) = P(\bar{X} \leq \bar{x}_{crit} | \mu = \mu_{alt}) = P\left(T_{(n-1) \leq \frac{\bar{x}_{crit} - \mu_{alt}}{\sqrt{\frac{s^2}{n}}}}\right)$$

• Caso 2: $\beta(\mu_{alt}) = P(\bar{X} \geq \bar{x}_{crit} | \mu = \mu_{alt}) = P\left(T_{(n-1) \leq \frac{\bar{x}_{crit} - \mu_{alt}}{\sqrt{\frac{s^2}{n}}}}\right)$

• Caso 2:
$$\beta(\mu_{alt}) = P(\bar{X} \ge \bar{x}_{crit} | \mu = \mu_{alt}) = P\left(T_{(n-1) \le \frac{\bar{x}_{crit} - \mu_{alt}}{\sqrt{\frac{s^2}{n}}}}\right)$$

${\rm Caso}\ 3$

•
$$\beta(\mu_{alt}) = P(\bar{X} \ge \bar{x}_{crit}) = P\left(t_{(n-1)} \ge \frac{(\bar{x}_{crit} - \mu_{alt})}{\sqrt{\frac{s^2}{n}}}\right)$$
 se $\mu_{alt} < c$

•
$$\beta(\mu_{alt}) = P(\bar{X} \le \bar{x}_{crit}) = P\left(t_{(n-1)} \le \frac{(\bar{x}_{crit} - \mu_{alt})}{\sqrt{\frac{s^2}{n}}}\right)$$
 se $\mu_{alt} \ge c$

Resumo dos métodos para teste de hipóteses para comparação de médias com amostras independentes

São possíveis 3 casos de hipóteses para testes para comparação de médias: Vamos considerar que serão calculadas a diferença na forma $\bar{D}=(\bar{A}-\bar{B})$

• Caso 1:

 $H_0: \mu_a \leq \mu_b$ reescrita para $H_0: \mu_d \leq 0$

 $H_A: \mu_a > \mu_b$ reescrita para $H_A: \mu_d > 0$

• Caso 2:

 $H_0: \mu_a \geq \mu_b$ reescrita para $H_0: \mu_d \geq 0$

 $H_A: \mu_a < \mu_b$ reescrita para $H_A: \mu_d < 0$

• Caso 3:

 $H_0: \mu_a = \mu_b$ reescrita para $H_0: \mu_d = 0$

 $H_A: \mu_a \neq \mu_b$ reescrita para $H_A: \mu_d \neq 0$

Etapas de um teste de hipóteses:

- 1. Estabelecer as hipóteses nula H_0 e alternativa H_A .
- 2. Determinar a estatística de teste e sua distribuição amostral.
- 3. Calcular a região crítica com base em um valor de α .

• Caso 1: RC=
$$\{\bar{d}_{obs} > \bar{d}_{crit}\}$$
 com $\bar{d}_{crit} = t_{[(1-\alpha),(n-1)]} \sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}} + 0$

• Caso 2: RC=
$$\{\bar{d}_{obs} < \bar{d}_{crit}\}\ \text{com}\ \bar{d}_{crit} = t_{[\alpha,(n-1)]}\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}} + 0$$

• Caso 3: RC=
$$\{\bar{d}_{obs} < \bar{d}_{crit1} \text{ ou } \bar{d}_{obs} > \bar{D}_{crit2}\}\$$
 com $\bar{X}_{crit1} = t_{\left[\frac{\alpha}{2},(n-1)\right]}\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}} + 0$ e $\bar{D}_{crit2} = t_{\left[\left(1-\frac{\alpha}{2}\right),(n-1)\right]}\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}} + 0$

3. Calcular o p-valor com base nos resultados amostrais.

• Caso 1:
$$pvalor = P(\bar{D} \ge \bar{d}_{obs}) = P\left(t_{(n-1)} \ge \frac{(\bar{d}_{obs} - 0)}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}\right)$$

• Caso 2:
$$pvalor = P(\bar{D} \le \bar{d}_{obs}) = P\left(t_{(n-1)} \le \frac{(\bar{d}_{obs} - 0)}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}\right)$$

• Caso 3:
$$pvalor = 2P(\bar{D} \ge \bar{d}_{obs}) = 2P\left(t_{(n-1)} \ge \frac{(\bar{d}_{obs} - 0)}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}\right)$$
 se $\bar{d}_{obs} > 0$ ou $pvalor = 2P(\bar{D} \le \bar{d}_{obs}) = 2P(\bar{D} \le \bar{d}_{obs}) = 2P(\bar{D} \le \bar{d}_{obs})$

$$2P\left(t_{(n-1)} \le \frac{(\bar{d}_{obs} - 0)}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}\right) \text{ se } \bar{d}_{obs} \le 0$$

4. Concluir o teste considerando os resultados da amostra e o valor de α .

• Caso 1:

 $H_0: \mu_a \leq \mu_b$ reescrita para $H_0: \mu_d \leq 0$

 $H_A: \mu_a > \mu_b$ reescrita para $H_A: \mu_d > 0$

• Caso 2:

 $H_0: \mu_a \geq \mu_b$ reescrita para $H_0: \mu_d \geq 0$

 $H_A: \mu_a < \mu_b$ reescrita para $H_A: \mu_d < 0$

• Caso 3:

 $H_0: \mu_a = \mu_b$ reescrita para $H_0: \mu_d = 0$

 $H_A: \mu_a \neq \mu_b$ reescrita para $H_A: \mu_d \neq 0$

• Caso 1:
$$\beta(\mu_{alt}) = P(\bar{D} \leq \bar{d}_{crit}|\mu = \mu_{alt}) = P\left(T_{(n-1)} \leq \frac{\bar{d}_{crit} - \mu_{alt}}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}\right)$$

• Caso 2:
$$\beta(\mu_{alt}) = P(\bar{D} \ge \bar{d}_{crit}|\mu = \mu_{alt}) = P\left(T_{(n-1)} \le \frac{\bar{d}_{crit} - \mu_{alt}}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}\right)$$

Caso 3

•
$$\beta(\mu_{alt}) = P(\bar{D} \ge \bar{d}_{crit}) = P\left(t_{(n-1)} \ge \frac{(\bar{d}_{crit} - \mu_{alt})}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}\right) \text{ se } \mu_{alt} < 0$$

•
$$\beta(\mu_{alt}) = P(\bar{D} \le \bar{d}_{crit}) = P\left(t_{(n-1)} \le \frac{(\bar{d}_{crit} - \mu_{alt})}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}\right) \text{ se } \mu_{alt} \ge 0$$