Chapter T6

Systems of Ordinary Differential Equations

T6.1. Linear Systems of Two Equations

T6.1.1. Systems of First-Order Equations

1.
$$x'_t = ax + by$$
, $y'_t = cx + dy$.

System of two constant-coefficient first-order linear homogeneous differential equations.

Let us write out the characteristic equation

$$\lambda^2 - (a+d)\lambda + ad - bc = 0 \tag{1}$$

and find its discriminant

$$D = (a - d)^2 + 4bc. (2)$$

1°. Case $ad - bc \neq 0$. The origin of coordinates x = y = 0 is the only one stationary point; it is

a node if
$$D = 0$$
;
a node if $D > 0$ and $ad - bc > 0$;
a saddle if $D > 0$ and $ad - bc < 0$;
a focus if $D < 0$ and $a + d \neq 0$;
a center if $D < 0$ and $a + d = 0$.

1.1. Suppose D > 0. The characteristic equation (1) has two distinct real roots, λ_1 and λ_2 . The general solution of the original system of differential equations is expressed as

$$x = C_1 b e^{\lambda_1 t} + C_2 b e^{\lambda_2 t},$$

$$y = C_1 (\lambda_1 - a) e^{\lambda_1 t} + C_2 (\lambda_2 - a) e^{\lambda_2 t},$$

where C_1 and C_2 are arbitrary constants.

1.2. Suppose D < 0. The characteristic equation (1) has two complex conjugate roots, $\lambda_{1,2} = \sigma$ $i\beta$. The general solution of the original system of differential equations is given by

$$x = be^{\sigma t} [C_1 \sin(\beta t) + C_2 \cos(\beta t)],$$

$$y = e^{\sigma t} \{ [(\sigma - a)C_1 - \beta C_2] \sin(\beta t) + [\beta C_1 + (\sigma - a)C_2 \cos(\beta t)],$$

where C_1 and C_2 are arbitrary constants.

1.3. Suppose D = 0 and $a \ne d$. The characteristic equation (1) has two equal real roots, $\lambda_1 = \lambda_2$. The general solution of the original system of differential equations is

$$x = 2b\left(C_1 + \frac{C_2}{a - d} + C_2 t\right) \exp\left(\frac{a + d}{2}t\right),$$

$$y = \left[(d - a)C_1 + C_2 + (d - a)C_2 t\right] \exp\left(\frac{a + d}{2}t\right),$$

where C_1 and C_2 are arbitrary constants. On substituting (2) into (1) and integrating, one arrives at the general solution of the original system in the form

$$x = C_3 t + t \int \frac{u(t)}{t^2} dt$$
, $y = C_4 t + t \int \frac{v(t)}{t^2} dt$,

where C_3 and C_4 are arbitrary constants.

6.
$$x''_{tt} = f(t)(a_1x + b_1y), \quad y''_{tt} = f(t)(a_2x + b_2y).$$

Let k_1 and k_2 be roots of the quadratic equation

$$k^2 - (a_1 + b_2)k + a_1b_2 - a_2b_1 = 0.$$

Then, on multiplying the equations of the system by appropriate constants and on adding them together, one can rewrite the system in the form of two independent equations:

$$z_1'' = k_1 f(t) z_1, \quad z_1 = a_2 x + (k_1 - a_1) y;$$

 $z_2'' = k_2 f(t) z_2, \quad z_2 = a_2 x + (k_2 - a_1) y.$

Here, a prime stands for a derivative with respect to t.

7.
$$x_{tt}'' = f(t)(a_1x_t' + b_1y_t'), \quad y_{tt}'' = f(t)(a_2x_t' + b_2y_t').$$

Let k_1 and k_2 be roots of the quadratic equation

$$k^2 - (a_1 + b_2)k + a_1b_2 - a_2b_1 = 0.$$

Then, on multiplying the equations of the system by appropriate constants and on adding them together, one can reduce the system to two independent equations:

$$z_1'' = k_1 f(t) z_1', \quad z_1 = a_2 x + (k_1 - a_1) y;$$

 $z_2'' = k_2 f(t) z_2', \quad z_2 = a_2 x + (k_2 - a_1) y.$

Integrating these equations and returning to the original variables, one arrives at a linear algebraic system for the unknowns x and y:

$$a_2x + (k_1 - a_1)y = C_1 \int \exp[k_1 F(t)] dt + C_2,$$

$$a_2x + (k_2 - a_1)y = C_3 \int \exp[k_2 F(t)] dt + C_4,$$

where C_1, \ldots, C_4 are arbitrary constants and $F(t) = \int f(t) dt$.

8.
$$x''_{tt} = af(t)(ty'_t - y), \quad y''_{tt} = bf(t)(tx'_t - x).$$

The transformation

$$u = tx_t - x, \qquad v = ty_t' - y \tag{1}$$

leads to a system of first-order equations:

$$u'_t = at f(t)v, \quad v'_t = bt f(t)u.$$