Review 1

$$p_{\theta}(x) = e^{\eta(\theta)'T(x) - A(\eta(\theta))}h(x) \tag{1.1}$$

$$\theta = \eta$$
 "canonical form" (1.2)

$$A(\eta) = \log \int_X e^{\eta' T(x) - A(\eta)} h(x) d\mu(x) \quad \text{"CGF"}$$
 (1.3)

$$\Xi = \{ \eta : A(\eta) < \infty \}$$
 "natural param. space" (1.4)

If $\eta \in \Xi^{\circ}$, can exchange $\frac{\partial}{\partial \eta} \int_X p_{\eta}(x) d\mu(x) = \int_X \frac{\partial}{\partial \eta} p_{\eta}(x) d\mu(x)$.

2 Sufficiency

Definition 2.1. An *estimator* $\delta(x)$ is a statistic meant of estimate $g(\theta)$.

Definition 2.2. The *Risk* $R(\theta, \delta) = \mathbb{E}_{\theta}[L(\theta, \delta(X))]$.

For squared error loss $(L(\theta, \delta(X)) = (\delta(X) - g(\theta))^2)$, the risk is the mean squared error (MSE).

Say $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$. $T(x) = \sum_{i=1}^n x_i \sim \text{Binom}(n, \theta)$. $\{X_i\}_{i=1}^n$ has more information than T(x); is there any way to justify throwing out this additional information and summarizing the data with T(X)?

Definition 2.3. Let $\mathcal{P} = \{p_{\theta} : \theta \in \Theta\}$ be a model for data X. We say T(X) is *sufficient* for \mathcal{P} if $p_{\theta}(X \mid T(X))$ does not depend on θ .

Equivalently, *T* is sufficient iff $\theta \to T \to X$ is a Markov chain.

Example 2.4. $t \in \{0, ..., n\}$. Then $X \mid T = t$ is uniform on sequences $\{x \in \{0, 1\}^n : \sum_i x_i = t\}$ *t* }.

$$P_{\theta}(X=x) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i} = \theta^{\sum_i x_i} (1-\theta)^{n-\sum_i x_i}$$
 (2.1)

$$P_{\theta}(X = x) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^{\sum_{i} x_i} (1 - \theta)^{n - \sum_{i} x_i}$$

$$P_{\theta}(X = x \mid T = t) = 1_{\sum_{i} x_i = t} \underbrace{\frac{\theta^t (1 - \theta)^{n - t}}{\sum_{x: \sum_{x} i = t} \theta^t (1 - \theta)^{n - t}}} = \underbrace{\frac{1_{\sum_{i} x_i = t}}{\binom{n}{t}}}_{\text{indep of } \theta, \text{ so } T \text{ sufficient}}$$

$$(2.1)$$

Example 2.5. Suppose $\delta(X)$ estimator of θ which is not just a function of T. We could generate $\tilde{X} \mid T(X)$.

Then, $\delta(X)$ and $\delta(X)$ have the same distribution and hence have the same risk.

Therefore, $\delta(X)$ is no better than $\delta(\tilde{X})$, and $\tilde{X} \mid T(X) \to \delta(\tilde{X})$ is an estimator which is only a function of T(X)!

Sufficiency principle: If T(X) is sufficient, then any statistical procedure should depend only on T(X).

Theorem 2.6 (Factorization Theorem). Let $\mathcal{P} = \{p_{\theta} : \theta \in \}$ be a family of densities wrt μ . T is sufficient for $\mathcal{P} \iff \exists$ functions $g_{\theta}, h \geq 0$ such that

$$p_{\theta}(x) = g_{\theta}(T(x))h(x) \quad a.e.x \tag{2.3}$$

Proof. Rigorous proof in Keener 6.4.

"
$$\Rightarrow$$
" Take $g_{\theta}(t) = \int_{T(z)=t} p_{\theta}(z) d\mu(z) = p_{\theta}(T=t)$ Then

$$h(x) = \frac{p_{\theta_0}(x)}{\int_{T(z)=T(x)} p_{\theta_0} p_{\theta_0}(z) d\mu(z)} = \underbrace{p_{\theta_0}(X=x \mid T=T(x))}_{\text{function of } X, \text{ independent of } \theta}$$
(2.4)

Example 2.7 (Exponential Family). $p_{\theta}(x) = \underbrace{e^{\eta(\theta)'T(x)-B(\theta)}}_{g_{\theta}(T(x))} h(x)$

Definition 2.8. $X_{(i)}$ denotes *order statistics*, indexes X_i by ordering i.e. $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$ even if $X_1 > X_2$ etc

Example 2.9 (Non-parametric). $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} p_{\theta}^{(1)}$ on \mathbb{R}

For any model $\mathcal{P} = \{p_{\theta}^{(1)} : \theta \in \Theta\}$

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}^{(1)}(x_i) = \prod_{i=1}^{n} p_{\theta}^{(1)}(X_{(i)})$$
(2.5)

The ordering information has been thrown away; irrelevant for iid samples.

Example 2.10.
$$X_1, ..., X_n \stackrel{\text{iid}}{\sim} U[\theta, \theta + 1].$$

Then $p_{\theta}(x) = \prod_{i=1}^n 1_{\theta \le x_i \le \theta + 1} = 1_{\theta \le x_{(i)} \le x_{(n)} \le \theta + 1}$

3 Minimal sufficiency

Consider coin flips $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$. The following are all sufficient statistics: (a) $T(X) = \sum_i X_i$

- (b) $(X_{(1)}, \dots, X_{(n)})$ (in fact equivalent since supp $X_i = \{0, 1\}$)
- (c) $(X_1,...,X_n) = X$
- (d) $\left(\sum_{i=1}^{n/2} X_i, \sum_{i=n/2+1}^n X_i\right) = S(X)$

Can T(X) be compressed further?

Proposition 3.1. *If* T *is sufficient,* $T = f(S) \implies S$ *is sufficient.*

Proof. $p_{\theta}(X) = g_{\theta}(T(X))h(X) = (g_{\theta} \circ f)(S(X))h(X)$ so taking $g_{\theta} \circ f = \tilde{g}_{\theta}$ in the factorization theorem shows S is sufficient.

Definition 3.2. *T* is minimal sufficient if:

- (i) *T* is sufficient
- (ii) $\forall S$ sufficient, $\exists f$ such that $T \stackrel{\text{a.s.}}{=} f(S)$