Отчёт по лабораторной работе №4

Дисциплина: Моделирование сетей передачи данных

Боровиков Даниил Александрович НПИбд-01-22

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы	8
4	Выводы	41
Список литературы		42

Список иллюстраций

3.1	mininet	8
3.2	Создание простейшей топологии	g
3.3	Отображение информации их сетевых интерфейсов и IP-адресов	10
3.4	Проверка подключения между хостами h1 и h2	11
3.5	Добавление задержки в 100 мс к выходному интерфейсу на хосте h1	11
3.6	Проверка	12
3.7	Добавление задержки в 100 мс к выходному интерфейсу на хосте h2	12
3.8	Проверка	13
3.9	Изменение задержки со 100 мс до 50 мс	13
3.10	Проверка	14
	Восстановление конфигураций по умолчанию	14
	Добавление на узле h1 задержки в 100 мс со случайным отклоне-	
	нием 10 мс	14
3.13	Проверка	15
3.14	Восстановление конфигурации интерфейса по умолчанию	15
	Проверка	16
	Восстановление конфигурации интерфейса по умолчанию	16
3.17	Настройка нормального распределения задержки на узле h1 в эму-	
	лируемой сети	16
3.18	Проверка	17
3.19	Восстановление конфигурации интерфейса по умолчанию	17
3.20	Завершение работы mininet в интерактивном режиме	18
3.21	Обновление репозиториев программного обеспечения на втртуаль-	
	ной машине	18
3.22	Установка пакета geeqie	19
3.23	Создание нового каталога	19
3.24	Создание каталога simple-delay	19
3.25	Создание скрипта lab_netem_i.py для эксперимента	20
3.26	Создание файла ping_plot	20
3.27	Создание скрипта ping_plot для визуализации результатов экспери-	
	мента	21
3.28	Настройка прав доступа к файлу скрипта	21
3.29	Создание файла Makefile	21
3.30	Добавления скрипта в Makefile для управления процессом прове-	
	дения эксперимента	22
3 31	Выполнение эксперимента	23

3.32 Просмотр графика	24
3.33 Удаление первой строчки из файла ping.dat	25
3.34 Повторное построение графика	25
3.35 Просмотр графика	26
3.36 Разработка скрипта для вычисления на основе данных файла	
ping.dat минимального, среднего, максимального и стандартного	
отклонения времени приёма-передачи	27
3.37 Добавление правила запуска скрипта в Makefil	27
3.38 Проверка	28
3.39 Воспроизводимый эксперимент по изменению задержки	29
3.40 Воспроизводимый эксперимент по изменению задержки	30
3.41 Просмотр графика	31
3.42 Воспроизводимый эксперимент по изменению джиттера	32
3.43 Воспроизводимый эксперимент по изменению джиттера	33
3.44 Просмотр графика	34
3.45 Воспроизводимый эксперимент по изменению значения корреляции	
для джиттера и задержки	35
3.46 Воспроизводимый эксперимент по изменению значения корреляции	
для джиттера и задержки	36
3.47 Просмотр графика	37
3.48 Воспроизводимый эксперимент по изменению распределения вре-	
мени задержки в эмулируемой глобальной сети	38
3.49 Воспроизводимый эксперимент по изменению распределения вре-	
мени задержки в эмулируемой глобальной сети	39
3.50 Просмотр графика	40
	-

Список таблиц

1 Цель работы

Основной целью работы является знакомство с NETEM [1]. — инструментом для тестирования производительности приложений в виртуальной сети, а также получение навыков проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.

2 Задание

- 1. Задайте простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8.
- 2. Проведите интерактивные эксперименты по добавлению/изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети.
- 3. Реализуйте воспроизводимый эксперимент по заданию значения задержки в эмулируемой глобальной сети. Постройте график.
- 4. Самостоятельно реализуйте воспроизводимые эксперименты по изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети. Постройте графики.

3 Выполнение лабораторной работы

В виртуальной машине mininet исправим права запуска X-соединения (рис. 3.1):

```
mininet@mininet-vm:~$ xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 69fa6826576af937fcefe92dc91d92ad
mininet@mininet-vm:~$ sudo -i
root@mininet-vm:~# xauth add mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 69fa6826576af937fc
efe92dc91d92ad
root@mininet-vm:~# xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 69fa6826576af937fcefe92dc91d92ad
root@mininet-vm:~# logout
mininet@mininet-vm:~$
```

Рис. 3.1: Исправление прав запуска X-соединения в виртуальной машине mininet

Зададим простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8 (рис. 3.2):

Рис. 3.2: Создание простейшей топологии

На хостах h1 и h2 введём команду ifconfig, чтобы отобразить информацию, относящуюся к их сетевым интерфейсам и назначенным им IP-адресам. В дальнейшем при работе с NETEM и командой tc будут использоваться интерфейсы h1-eth0 и h2-eth0 (рис. 3.3):

Рис. 3.3: Отображение информации их сетевых интерфейсов и IP-адресов

Проверим подключение между хостами h1 и h2 с помощью команды ping с параметром -с 6 (рис. 3.4):

```
X "host: h1"@mininet-vm
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp seq=1 ttl=64 time=1.44 ms
64 bytes from 10.0.0.2: icmp seq=2 ttl=64 time=0.087 ms
64 bytes from 10.0.0.2: icmp seq=3 ttl=64 time=0.074 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.036 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.065 ms
64 bytes from 10.0.0.2: icmp seq=6 ttl=64 time=0.085 ms
--- 10.0.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5106ms
rtt min/avg/max/mdev = 0.036/0.298/1.443/0.512 ms
root@mininet-vm:/home/mininet#
Thost: h2"@mininet-vm
                                                                         root@mininet-vm:/home/mininet# ping -c 6 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp seq=1 ttl=64 time=3.84 ms
64 bytes from 10.0.0.1: icmp seq=2 ttl=64 time=0.184 ms
64 bytes from 10.0.0.1: icmp seq=3 ttl=64 time=0.066 ms
64 bytes from 10.0.0.1: icmp seq=4 ttl=64 time=0.066 ms
64 bytes from 10.0.0.1: icmp_seq=5 ttl=64 time=0.088 ms
64 bytes from 10.0.0.1: icmp_seq=6 ttl=64 time=0.076 ms
--- 10.0.0.1 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5106ms
rtt min/avg/max/mdev = 0.066/0.720/3.842/1.396 ms
root@mininet-vm:/home/mininet#
```

Рис. 3.4: Проверка подключения между хостами h1 и h2

На хосте h1 добавим задержку в 100 мс к выходному интерфейсу (рис. 3.5):

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev hl-eth0 root netem delay 1
00ms
root@mininet-vm:/home/mininet#
```

Рис. 3.5: Добавление задержки в 100 мс к выходному интерфейсу на хосте h1

Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с хоста h1 (рис. 3.6):

```
X "host: h1"@mininet-vm
6 packets transmitted, 6 received, 0% packet loss, time 5106ms
rtt min/avg/max/mdev = 0.036/0.298/1.443/0.512 ms
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 1
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=103 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp seq=5 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms
--- 10.0.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5012ms
rtt min/avg/max/mdev = 100.356/101.261/103.498/1.067 ms
root@mininet-vm:/home/mininet# ■
```

Рис. 3.6: Проверка

Для эмуляции глобальной сети с двунаправленной задержкой необходимо к соответствующему интерфейсу на хосте h2 также добавить задержку в 100 миллисекунд (рис. 3.7):

Рис. 3.7: Добавление задержки в 100 мс к выходному интерфейсу на хосте h2

Проверим, что соединение между хостом h1 и хостом h2 имеет RTT в 200 мс (100 мс от хоста h1 к хосту h2 и 100 мс от хоста h2 к хосту h1), повторив команду ping с параметром -с 6 на терминале хоста h1 (рис. 3.8):

```
X "host: h1"@mininet-vm
                                                                                     X
--- 10.0.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5012ms
rtt min/avg/max/mdev = 100.356/101.261/103.498/1.067 ms
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=202 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=203 ms
64 bytes from 10.0.0.2: icmp seq=3 ttl=64 time=202 ms
64 bytes from 10.0.0.2: icmp seq=4 ttl=64 time=203 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=202 ms
64 bytes from 10.0.0.2: icmp seq=6 ttl=64 time=201 ms
--- 10.0.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5012ms rtt min/avg/max/mdev = 200.830/202.079/202.631/0.607 ms
root@mininet-vm:/home/mininet#
```

Рис. 3.8: Проверка

Изменим задержку со 100 мс до 50 мс для отправителя h1 и для получателя h2 (рис. 3.9):

Рис. 3.9: Изменение задержки со 100 мс до 50 мс

Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с терминала хоста h1 (рис. 3.10):

```
Thost: h1"@mininet-vm

root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=104 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=103 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=101 ms

64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms

--- 10.0.0.2 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 5010ms

rtt min/avg/max/mdev = 101.057/101.998/103.870/1.134 ms

root@mininet-vm:/home/mininet# ■
```

Рис. 3.10: Проверка

Восстановим конфигурацию по умолчанию, удалив все правила, применённые к сетевому планировщику соответствующего интерфейса (рис. 3.11):

Рис. 3.11: Восстановление конфигураций по умолчанию

Добавим на узле h1 задержку в 100 мс со случайным отклонением 10 мс (рис. 3.12):

Рис. 3.12: Добавление на узле h1 задержки в 100 мс со случайным отклонением 10 мс

Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс со случайным отклонением ±10 мс, используя в терминале хоста h1 команду ping с параметром -с 6 (рис. 3.13):

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=94.1 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=106 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=104 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=106 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=90.6 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=106 ms

--- 10.0.0.2 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 5010ms

rtt min/avg/max/mdev = 90.624/101.082/106.163/6.272 ms

root@mininet-vm:/home/mininet# ■
```

Рис. 3.13: Проверка

Восстановим конфигурацию интерфейса по умолчанию на узле h1 (рис. 3.14):

Рис. 3.14: Восстановление конфигурации интерфейса по умолчанию

Добавим на интерфейсе хоста h1 задержку в 100 мс с вариацией ±10 мс и значением корреляции в 25%. Убедимся, что все пакеты, покидающие устройство h1 на интерфейсе h1- eth0, будут иметь время задержки 100 мс со случайным отклонением ±10 мс, при этом время передачи следующего пакета зависит от предыдущего значения на 25%. Используем для этого в терминале хоста h1 команду ping с параметром -с 20 (рис. 3.15):

```
🏋 "host: h1"@mininet-vm
                                                                              ×
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 1
00ms 10ms 25%
root@mininet-vm:/home/mininet# ping -c 20 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=95.2 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=92.0 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=107 ms
64 bytes from 10.0.0.2: icmp seq=5 ttl=64 time=105 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=92.9 ms
64 bytes from 10.0.0.2: icmp seq=7 ttl=64 time=106 ms
64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=103 ms
64 bytes from 10.0.0.2: icmp_seq=9 ttl=64 time=110 ms
64 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=110 ms
64 bytes from 10.0.0.2: icmp_seq=11 ttl=64 time=93.9 ms
64 bytes from 10.0.0.2: icmp seq=12 ttl=64 time=98.3 ms
64 bytes from 10.0.0.2: icmp seq=13 ttl=64 time=98.6 ms
64 bytes from 10.0.0.2: icmp seq=14 ttl=64 time=111 ms
64 bytes from 10.0.0.2: icmp seq=15 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp seq=16 ttl=64 time=104 ms
64 bytes from 10.0.0.2: icmp_seq=17 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp_seq=18 ttl=64 time=107 ms
64 bytes from 10.0.0.2: icmp_seq=19 ttl=64 time=103 ms
64 bytes from 10.0.0.2: icmp_seq=20 ttl=64 time=108 ms
--- 10.0.0.2 ping statistics ---
20 packets transmitted, 20 received, 0% packet loss, time 19040ms
rtt min/avg/max/mdev = 91.957/102.411/111.445/5.769 ms
root@mininet-vm:/home/mininet#
```

Рис. 3.15: Проверка

Восстановим конфигурацию интерфейса по умолчанию на узле h1 (рис. 3.16):

```
root@mininet-vm:/home/mininet# sudo tc qdisc del dev h1-eth0 root netem root@mininet-vm:/home/mininet#
```

Рис. 3.16: Восстановление конфигурации интерфейса по умолчанию

Зададим нормальное распределение задержки на узле h1 в эмулируемой сети (рис. 3.17):

Рис. 3.17: Настройка нормального распределения задержки на узле h1 в эмулируемой сети

Убедимся, что все пакеты, покидающие хост h1 на интерфейсе h1-eth0, будут иметь время задержки, которое распределено в диапазоне 100 мс ±20 мс. Используем для этого команду ping на терминале хоста h1 с параметром -с 10 (рис. 3.18):

```
X "host: h1"@mininet-vm
root@mininet-vm:/home/mininet# ping -c 10 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=93.0 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=115 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=122 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=104 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=119 ms
64 bytes from 10.0.0.2: icmp seq=6 ttl=64 time=131 ms
64 bytes from 10.0.0.2: icmp seq=7 ttl=64 time=125 ms
64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=104 ms
64 bytes from 10.0.0.2: icmp_seq=9 ttl=64 time=103 ms
64 bytes from 10.0.0.2: icmp seq=10 ttl=64 time=94.1 ms
--- 10.0.0.2 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9018ms
rtt min/avg/max/mdev = 92.999/111.138/131.046/12.598 ms
root@mininet-vm:/home/mininet#
```

Рис. 3.18: Проверка

Восстановим конфигурацию интерфейса по умолчанию на узле h1 (рис. 3.19):

```
Thost: h1"@mininet-vm
Toot@mininet-vm:/home/mininet# sudo tc qdisc del dev h1-eth0 root netem
root@mininet-vm:/home/mininet#
root@mininet-vm:/home/mininet#
Toot@mininet-vm:/home/mininet#
```

Рис. 3.19: Восстановление конфигурации интерфейса по умолчанию

Завершим работу mininet в интерактивном режиме (рис. 3.20):

```
c0
*** Starting 1 switches
s1 ...
*** Starting CLI:
mininet> exit

*** Stopping 1 controllers
c0
*** Stopping 8 terms

*** Stopping 2 links
...

*** Stopping 1 switches
s1

*** Stopping 1 switches
s1

*** Stopping 2 hosts
h1 h2
*** Done
completed in 1233.687 seconds
mininet@mininet-vm:~$
```

Рис. 3.20: Завершение работы mininet в интерактивном режиме

Обновим репозитории программного обеспечения на виртуальной машине (рис. 3.21):

```
mininet@mininet-vm:~

s1
*** Stopping 2 hosts
h1 h2
*** Done
completed in 1233.687 seconds
mininet@mininet-vm:~$ sudo apt-get update
Get:1 http://security.ubuntu.com/ubuntu focal-security InRelease [128 kB]
Hit:2 http://us.archive.ubuntu.com/ubuntu focal InRelease
Get:1 http://us.archive.ubuntu.com/ubuntu focal-updates InRelease [128 kB]
Get:4 http://us.archive.ubuntu.com/ubuntu focal-updates InRelease [128 kB]
Get:5 http://us.archive.ubuntu.com/ubuntu focal-backports InRelease [128 kB]
Get:6 http://us.archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages [3,955 kB]
Get:6 http://us.archive.ubuntu.com/ubuntu focal-updates/main i386 Packages [1,114 kB]
Fetched 5,452 kB in 4s (1,354 kB/s)
Reading package lists... Done
mininet@mininet-vm:~$
```

Рис. 3.21: Обновление репозиториев программного обеспечения на втртуальной машине

Установим пакет geeqie для просмотра файлов png (рис. 3.22):

```
invoke-rc.d: initscript gdm3, action "reload" failed.

Setting up libclutter-gst-3.0-0.41 am64 (3.0.27-1) ...

Setting up ubuntu-docs (20.04.3) ...

Setting up network-manager-gnome (1.8.24-1ubuntu3) ...

Setting up gnome-user-docs (3.36.24git20200704-0ubuntu0.1) ...

Setting up gstreamerl.0-clutter-3.0:am64 (3.0.27-1) ...

Setting up libcheese8:am64 (3.34.0-1ubuntu1) ...

Setting up libcheese9:am64 (3.34.0-1ubuntu1) ...

Setting up aptdaemon (1.1.1+bzr982-0ubuntu32.3) ...

Setting up python3-aptdaemon (1.1.1+bzr982-0ubuntu32.3) ...

Setting up python3-aptdaemon (1.1.1+bzr982-0ubuntu32.3) ...

Setting up python3-aptdaemon (1.1.1+bzr982-0ubuntu32.3) ...

Setting up gnome-control-center (1:3.36.5-0ubuntu4.1) ...

Processing triggers for mime-support (3.64ubuntu4) ...

Processing triggers for libgtk-3-0:am646 (3.24.20-0ubuntu4) ...

Processing triggers for libcbin (2.31-0ubuntu9) ...

Processing triggers for systemd (245.4-4ubuntu9) ...

Processing triggers for man-db (2.9.1-1) ...

Processing triggers for sman-db (2.9.1-1) ...

Processing triggers for sman-db (2.9.1-1) ...

Processing triggers for sman-db (2.9.1-1) ...

Processing triggers for sman-base (1.29.1) ...

Setting up gmd-data (2.0.11) ...

Setting up gdobook-xm1 (4.5-9) ...

Setting up docbook-xm1 (4.5-9) ...

Processing triggers for sgml-base (1.29.1) ...

Setting up docbook-xm2 (4.5-9 ...

Processing triggers for sgml-base (1.29.1) ...

Setting up docbook-xm1 (4.5-9) ...

Processing triggers for sgml-base (1.29.1) ...

Setting up docbook-xm2 (4.5-9 ...

Processing triggers for sgml-base (1.29.1) ...

Setting up docbook-xm1 (4.5-9) ...

Processing triggers for sgml-base (1.29.1) ...

Betting trigge
```

Рис. 3.22: Установка пакета деедіе

Для каждого воспроизводимого эксперимента expname создадим свой каталог, в котором будут размещаться файлы эксперимента (рис. 3.23):

```
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_i/expname
mininet@mininet-vm:~$
```

Рис. 3.23: Создание нового каталога

В виртуальной среде mininet в своём рабочем каталоге с проектами создадим каталог simple-delay и перейдём в него (рис. 3.24):

```
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_i/expname
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_i/simple-delay
mininet@mininet-vm:~$ cd ~/work/lab_netem_i/simple-delay
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ touch lab_netem_i.py
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ nano lab_netem_i.py
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ nano lab_netem_i.py
```

Рис. 3.24: Создание каталога simple-delay

Создадим скрипт для эксперимента lab netem i.py (рис. 3.25):

Рис. 3.25: Создание скрипта lab_netem_i.py для эксперимента

Создадим файл ping plot (рис. 3.26):

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ touch ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ ls
lab_netem_i.py ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ nano ping_plot |
```

Рис. 3.26: Создание файла ping plot

Затем создадим скрипт для визуализации ping_plot результатов эксперимента (рис. 3.27):

```
GNU nano 4.8 ping_plot

#!/usr/bin/gnuplot --persist

set terminal png crop
set output 'ping.png'
set xlabel "Sequence number"
set ylabel "Delay (ms)"
set grid
plot "ping.dat" with lines
```

Рис. 3.27: Создание скрипта ping_plot для визуализации результатов эксперимента

Зададим права доступа к файлу скрипта (рис. 3.28):

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ chmod +x ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ |
```

Рис. 3.28: Настройка прав доступа к файлу скрипта

Создадим файла Makefile (рис. 3.29):

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ touch Makefile mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ nano Makefile
```

Рис. 3.29: Создание файла Makefile

Внутри файла Makefile поместим скрипт для управления процессом проведения эксперимента (рис. 3.30):

```
-vm:~/work/lab_netem_i/simple-delay$ make
sudo python lab_netem_i.py
*** Adding controller
*** Adding hosts
*** Adding switch
*** Creating links
*** Starting network
*** Configuring hosts
h1 h2
*** Starting controller
с0
*** Starting 1 switches
s1 ...
*** Waiting for switches to connect
s1
*** Set delay
*** h1 : ('tc qdisc add dev h1-eth0 root netem delay 100ms',)
*** h2 : ('tc qdisc add dev h2-eth0 root netem delay 100ms',)
*** Ping
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
c0
*** Stopping 2 links
..
*** Stopping 1 switches
*** Stopping 2 hosts
h1 h2
*** Done
sudo chown mininet:mininet ping.dat
./ping_plot
 nininet@mininet-vm:~/work/lab_netem_i/simple-delay$|
```

Рис. 3.30: Добавления скрипта в Makefile для управления процессом проведения эксперимента

Выполним эксперимент (рис. 3.31):

Рис. 3.31: Выполнение эксперимента

Просмотрим построенный в результате выполнения скриптов график (рис. 3.32):

Рис. 3.32: Просмотр графика

Из файла ping.dat удалим первую строку и заново построим график (рис. 3.33 - рис. 3.34):

Рис. 3.33: Удаление первой строчки из файла ping.dat

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make ping.png
./ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 3.34: Повторное построение графика

Просмотрим заново построенный график (рис. 3.35):

Рис. 3.35: Просмотр графика

Разработаем скрипт для вычисления на основе данных файла ping.dat минимального, среднего, максимального и стандартного отклонения времени приёмапередачи. Также добавим правило запуска скрипта в Makefile (рис. 3.36 - рис. 3.38):

```
GNU nano 4.8

GNU nano 4.8

Makefile
all: ping.dat ping.png

ping.dat:
    sudo python lab_netem_i.py
    sudo chown mininet:mininet ping.dat

ping.png: ping.dat
    ./ping_plot

stats: ping.dat
    python rtt.py

clean:
    -rm -f *.dat *.png
```

Рис. 3.36: Разработка скрипта для вычисления на основе данных файла ping.dat минимального, среднего, максимального и стандартного отклонения времени приёма-передачи

```
mininet@mininet-vm: ~/work, ×
 GNU nano 4.8
                                                       rtt.py
                                                                                                     Modi
def calc_stat(data):
     times = [float(line.split()[1]) for line in data if line.strip()]
     if not times:
         raise ValueError("No valid times found in data")
    min_time = min(times)
    max_time = max(times)
     avg_time = sum(times) / len(times)
    variance = sum((x - avg_time) ** 2 for x in times) / len(times)
     std_dev = variance ** 0.5
    return min_time, avg_time, max_time, std_dev
def read_file():
    with open('ping.dat', 'r') as file:
    data = file.readlines()
         min_time, avg_time, max_time, std_dev = calc_stat(data)
         print("Min time: %.2f ms" % min_time)
print("Avg time: %.2f ms" % avg_time)
print("Max time: %.2f ms" % max_time)
print("Std dev: %.2f ms" % std_dev)
if __name__ == "__main__":
    read_file()
```

Рис. 3.37: Добавление правила запуска скрипта в Makefil

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make stats
python rtt.py
Min time: 200.00 ms
Avg time: 201.55 ms
Max time: 203.00 ms
Std dev: 0.69 ms
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 3.38: Проверка

Очистим каталог от результатов проведения экспериментов.

Самостоятельно реализуем воспроизводимые эксперименты по изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети. Построим графики. Вычислим минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая (рис. 3.39 - рис. 3.50):

```
mininet@mininet-vm: ~/work, ×
 GNU nano 4.8
                                                                                                            Modified
                                                     lab_netem_i.py
#!/usr/bin/env python
from mininet.net import Mininet
from mininet.node import Controller from mininet.cli import CLI
from mininet.log import setLogLevel, info
import time
def emptyNet():
          "Create an empty network and add nodes to it."
          net = Mininet( controller=Controller, waitConnected=True )
          info( '*** Adding controller\n' )
net.addController( 'c0' )
          info( '*** Adding hosts\n' )
h1 = net.addHost( 'h1', ip='10.0.0.1' )
h2 = net.addHost( 'h2', ip='10.0.0.2' )
          info( '*** Adding switch\n' )
s1 = net.addSwitch( 's1' )
          info( '*** Creating links\n' )
net.addLink( h1, s1 )
net.addLink( h2, s1 )
          info( '*** Starting network\n')
          net.start()
          info( '*** Set delay\n')
         h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 50ms' ) h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 50ms' )
          time.sleep(10) # Wait 10 seconds
          info( '*** Ping\n')
          h1.cmdPrint( 'ping -c 100', h2.IP(), '| grep "time=" | awk \'{print $5, $7}\' | se
          info( '*** Stopping network' )
          net.stop()
```

Рис. 3.39: Воспроизводимый эксперимент по изменению задержки

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make
sudo python lab_netem_i.py
*** Adding controller
*** Adding hosts
*** Adding switch
*** Creating links
*** Starting network
*** Configuring hosts
h1 h2
*** Starting controller
c0
*** Starting 1 switches
s1 ..
*** Waiting for switches to connect
s1
*** Set delay
*** h1 : ('tc qdisc add dev h1-eth0 root netem delay 50ms',)
*** h2 : ('tc qdisc add dev h2-eth0 root netem delay 50ms',)
*** Ping
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
c0
*** Stopping 2 links
*** Stopping 1 switches
s1
*** Stopping 2 hosts
h1 h2
*** Done
sudo chown mininet:mininet ping.dat
./ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make stats
python rtt.py
Min time: 100.00 ms
Avg time: 102.42 ms
Max time: 208.00 ms
Std dev: 10.63 ms
                                                                                                            25 октября 2025 г.
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ |
```

Рис. 3.40: Воспроизводимый эксперимент по изменению задержки

Рис. 3.41: Просмотр графика

```
mininet@mininet-vm: ~/work, ×
 GNU nano 4.8
                                                                                                         Modified
                                                    lab_netem_i.py
#!/usr/bin/env python
from mininet.net import Mininet
from mininet.node import Controller from mininet.cli import CLI
from mininet.log import setLogLevel, info
import time
def emptyNet():
          "Create an empty network and add nodes to it."
          net = Mininet( controller=Controller, waitConnected=True )
          info( '*** Adding controller\n' )
          net.addController( 'c0' )
          info( '*** Adding hosts\n' )
h1 = net.addHost( 'h1', ip='10.0.0.1' )
h2 = net.addHost( 'h2', ip='10.0.0.2' )
          info( '*** Adding switch\n' )
s1 = net.addSwitch( 's1' )
          info( '*** Creating links\n' )
net.addLink( h1, s1 )
net.addLink( h2, s1 )
          info( '*** Starting network\n')
          net.start()
          info( '*** Set delay\n')
          h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 100ms 10ms' )
h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 100ms' )
          time.sleep(10) # Wait 10 seconds
          info( '*** Ping\n')
          h1.cmdPrint( 'ping -c 100', h2.IP(), '| grep "time=" | awk \'{print $5, $7}\' | se
          info( '*** Stopping network' )
          net.stop()
```

Рис. 3.42: Воспроизводимый эксперимент по изменению джиттера

```
sudo python lab_netem_i.py
'*** Adding controller
*** Adding hosts

*** Adding switch

*** Creating links
*** Starting network
*** Configuring hosts
h1 h2
*** Starting controller
с0
*** Starting 1 switches
s1 .
*** Waiting for switches to connect
s1
*** Set delay
*** h1 : ('tc qdisc add dev h1-eth0 root netem delay 100ms 10ms',)
*** h2 : ('tc qdisc add dev h2-eth0 root netem delay 100ms',)
*** Ping
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/time=//g\' -e \'s/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
с0
*** Stopping 2 links
*** Stopping 1 switches
s1
*** Stopping 2 hosts
h1 h2
*** Done
sudo chown mininet:mininet ping.dat
./ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make stats
python rtt.py
Min time: 192.00 ms
Avg time: 203.69 ms
Max time: 407.00 ms
Std dev: 21.23 ms
                                                                                                 25 октября 2025 г.
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ |
                                                                                                 Сб 18:57 (Местное время)
```

Рис. 3.43: Воспроизводимый эксперимент по изменению джиттера

Рис. 3.44: Просмотр графика

```
X
 mininet@mininet-vm: ~/work, ×
                                                  lab_netem_i.py
 GNU nano 4.8
                                                                                                      Modified
 #!/usr/bin/env python
from mininet.net import Mininet
from mininet.node import Controller
from mininet.cli import CLI
from mininet.log import setLogLevel, info
import time
def emptyNet():
          "Create an empty network and add nodes to it."
          net = Mininet( controller=Controller, waitConnected=True )
          info( '*** Adding controller\n' )
          net.addController( 'c0' )
          info( '*** Adding hosts\n' )
h1 = net.addHost( 'h1', ip='10.0.0.1' )
h2 = net.addHost( 'h2', ip='10.0.0.2' )
          info( '*** Adding switch\n' )
          s1 = net.addSwitch( 's1' )
          info( '*** Creating links\n' )
net.addLink( h1, s1 )
          net.addLink( h2, s1 )
          info( '*** Starting network\n')
          net.start()
          info( '*** Set delay\n')
h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 25%|' )
h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 100ms' )
          time.sleep(10) # Wait 10 seconds
          info( '*** Ping\n')
          h1.cmdPrint( 'ping -c 100', h2.IP(), '| grep "time=" | awk \'{print $5, $7}\' | se
          info( '*** Stopping network' )
          net.stop()
```

Рис. 3.45: Воспроизводимый эксперимент по изменению значения корреляции для джиттера и задержки

```
k/lab_netem_i/simple-delay$ make
sudo python lab_netem_i.py
*** Adding controller
*** Adding hosts
*** Adding switch

*** Creating links

*** Starting network

*** Configuring hosts
 h1 h2
 *** Starting controller
 *** Starting 1 switches
s1 ...
*** Waiting for switches to connect
s1
*** Set delay

*** h1 : ('tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 25%',)

*** h2 : ('tc qdisc add dev h2-eth0 root netem delay 100ms',)
*** Ping
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/time=//g\' -e \
's/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
 *** Stopping 2 links
 *** Stopping 1 switches
s1
 *** Stopping 2 hosts
h1 h2
 *** Done
sudo chown mininet:mininet ping.dat
 mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make stats
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make stats
python rtt.py
Traceback (most recent call last):
   File "rtt.py", line 25, in <module>
        read_file()
   File "rtt.py", line 17, in read_file
        min_time, avg_time, max_time, std_dev = calc_stat(data)
   File "rtt.py", line 2, in calc_stat
        times = [float(line.split()[1]) for line in data if line.strip()]
   File "rtt.py", line 2, in listcomp>
        times = [float(line.split()[1]) for line in data if line.strip()]
IndexError: list index out of range
make: *** [Makefile:10: stats] Error 1
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ nano ping.dat
 mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ nano ping.dat
Use "fg" to return to nano.
 [1]+ Stopped
                                                                 nano ping.dat
 maininet@mininet-vm:~/work/lab_netem_i/simple-delay$ nano ping.dat
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ nano ping.dat
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make stats
python rtt.py
Min time: 192.00 ms
Avg time: 201.54 ms
Max time: 212.00 ms
Std dev: 5.64 ms
                                                                                                                                                                                Состояние батареи: осталось 95% заряд
```

Рис. 3.46: Воспроизводимый эксперимент по изменению значения корреляции для джиттера и задержки

Рис. 3.47: Просмотр графика

```
#!/usr/bin/env python

from mininet.net import Mininet
from mininet.node import Controller
from mininet.cli import CLI
from mininet.log import setLogLevel, info
import time

def emptyNet():

    "Create an empty network and add nodes to it."
    net = Mininet( controller=Controller, waitConnected=True )

    info( '*** Adding controller\n' )
    net.addController( 'c0' )

    info( '*** Adding hosts\n' )
    h1 = net.addHost( 'h1', ip='10.0.0.1' )
    h2 = net.addHost( 'h1', ip='10.0.0.2' )

    info( '*** Adding switch\n' )
    s1 = net.addSwitch( 's1' )

    info( '*** Creating links\n' )
    net.addLink( h1, s1 )
    net.addLink( h2, s1 )

    info( '*** Starting network\n')
    net.start()

    info( '*** Starting network\n')
    h1.cndPpint( 'tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 25% distribution normal' )
    time sleep(10) * Wait 10 second#
```

Рис. 3.48: Воспроизводимый эксперимент по изменению распределения времени задержки в эмулируемой глобальной сети

```
vm:~/work/lab_netem_i/simple-delay$ make clean
rm -f *.dat *.png
                            vm:~/work/lab_netem_i/simple-delay$ make
mininet@mininet-vm:~/work/

sudo python lab_netem_i.py

*** Adding controller

*** Adding hosts

*** Adding switch

*** Creating links

*** Starting network

*** Configuring hosts

h1 h2
h1 h2
*** Starting controller
c0
*** Starting 1 switches
s1 ...
*** Waiting for switches to connect
*** Set delay

*** h1 : ('tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 25% distribution normal',)

*** h2 : ('tc qdisc add dev h2-eth0 root netem delay 100ms',)
*** Ping
*** PING
*** h1 : ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/time=//g\' -e \
's/icmp_seq=//g\' > ping.dat')
*** Stopping network*** Stopping 1 controllers
c0
*** Stopping 2 links
*** Stopping 1 switches
s1
*** Stopping 2 hosts
h1 h2
*** Done
sudo chown mininet:mininet ping.dat
./ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ nano ping.dat
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ make stats
python rtt.py
Min time: 178.00 ms
Avg time: 201.71 ms
Max time: 225.00 ms
Std dev: 10.81 ms
  nininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 3.49: Воспроизводимый эксперимент по изменению распределения времени задержки в эмулируемой глобальной сети

Рис. 3.50: Просмотр графика

4 Выводы

В ходе выполнения лабораторной работы мы познакомились с NETEM — инструментом для тестирования производительности приложений в виртуальной сети, а также получение навыков проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.

Список литературы

1. NETEM [Электронный ресурс]. URL: https://habr.com/ru/articles/949088/.