Week 1 – Intro and TF-IDF

EGCO467 Natural Language and Speech Processing

Topics covered (tentative)

- tf-idf
- word embedding
- neural networks / DL
- sentence classification
- language models
- NER/POS
- seq2seq models/attention models
- BERT and transformer models

- question answering models
- machine translation

evaluation

- homework 30%
- project 70%

Natural Language Processing

Levels of NLP

PRAGMATICS (context interpretation)	Common sense processing Knowledge representation		
DISCOURSE (connection of texts)	Discourse parsing Gist detection		
SEMANTICS (meaning)	Word sense disambiguation Semantic role labeling Semantic interpretation		
SYNTAX (grammar)	Phrase chunking Syntactic parsing Sentence segmentation		
MORPHOLOGY (word forms and POS)	Word segmentation POS tagging Named entity recognition		

- Intelligent chatbot
- General-domain question answering
- Automatic summarization
- Information extraction
- Domain-specific question answering
- Natural language generation
- Machine translation
- Grammar checking
- Information retrieval
- Sentiment analysis

Eras of NLP

Symbolic Logic (1949-1989)

- Handcrafted rules and constraints for logical deduction
- Computable knowledge representation
- Theoretical upper bound of language processing

Statistical Methods (1989-2009)

- Learning to generalize from a large dataset
- Explicit features required
- "Every time I fire a linguist, the performance of the speech recognizer goes up." (F. Jelinek, 1985)

Deep Learning (2009-now)

- Extracting features automatically from a very large dataset
- Yielding very high accuracy
- Requiring **powerful** hardware
- Lacking explainability because the models are rather treated as a blackbox

^[1] https://philoslife.wordpress.com/2017/05/22/course-note-symbolic-logic-uses/

^[2] https://online.stanford.edu/courses/hrp259-introduction-probability-and-statistics-epidemiology

Language Models

- Interpreted as a generative model
 - 1. Generate the first word w_1
 - 2. Keep generating the **next word** w_k based on the previous words (a.k.a. **context**) $w_1 \dots w_{k-1}$ until the whole sentence of length N is produced

$$P(w_1 \dots w_N) = p(w_1) \prod_{k=2}^{N} p(w_k | w_1 \dots w_{k-1})$$

n-gram models

 Language models whose context is truncated to at most n-1 previous words

$$P(w_1 \dots w_N) = p(w_1) \prod_{k=2}^N p(w_k|w_{k-n+1} \dots w_{k-1})$$

- Unigram (n=1): $P(w_1 \dots w_N) = \prod_{k=1}^N p(w_k)$
- Bigram (n=2): $P(w_1 ... w_N) = p(w_1) \prod_{k=2}^{n} p(w_k | w_{k-1})$
- Trigram (n=3): $P(w_1 \dots w_N) = p(w_1)p(w_2|w_1) \prod_{k=3} p(w_k|w_{k-2}, w_{k-1})$

Representing Words

Perceptron

Input signals

Output signal

Multi-Layer Perceptron

Deep Neural Network

Learning Representation

Deep neural networks learn hierarchical feature representations

http://www.strong.io/blog/deep-neural-networks-go-to-the-movies

Learning Representation

Workflow for NLP

Libraries

- Python
- Spacy https://spacy.io/
- Gensim https://radimrehurek.com/gensim/
- scikit-learn https://scikit-learn.org/stable/index.html
- Tensorflow/Pytorch
- Huggingface https://huggingface.co/transformers/

TF IDF

(Term frequency inverse document frequency)

TF-IDF

- TF = term frequency
- IDF = inverse document frequency
- TF-IDF = TF x IDF

Salton, Gerard, and Christopher Buckley. "Term-weighting approaches in automatic text retrieval." *Information processing & management* 24.5 (1988): 513-523.

Definition

- document = 1 piece of text *d*
- corpus = set of documents $D = \{d_1, d_2, ...d_N\}$
- term = a word in a document

Example TF

- d₁ = ฉันชอบกินข้าวมันไก่ร้านนี้ -> ฉัน ชอบ กิน ข้าว มัน ไก่ ร้าน นี้
- d₂ = ฉันไม่ชอบหนังเรื่องนี้เลย -> ฉัน ไม่ ชอบ หนัง เรื่อง นี้ เลย

term\document 🔼	tf(t,d1)	tf(t,d2)
ฉัน	1	1
ชอบ	1	1
กิน	1	0
ข้าว	1	0
์ มัน	1	0
ไก่	1	0
ร้าน	1	0
นี้	1	1
ไม่	0	1
หนัง	0	1
เรื่อง	0	1
เลย	0	1

TF has many forms

term\document	tf(t,d1)	tf(t,d2)
ฉัน	1	1
ชอบ	1	1
กิน	1	0
ข้าว	1	0
มัน	1	0
ไก่	1	0
ร้าน	1	0
นี้	1	1
ไม่	0	1
หนัง	0	1
เรื่อง	0	1
เลย	0	1

$$ext{tf}(t,d) = 0.5 + 0.5 \cdot rac{f_{t,d}}{\max\{f_{t',d}: t' \in d\}}$$

Variants of term frequency (tf) weight

weighting scheme	tf weight			
binary	0,1			
raw count	$f_{t,d}$			
term frequency	$\left f_{t,d} \middle/ \sum_{t' \in d} f_{t',d} ight $			
log normalization	$\log(1+f_{t,d})$			
double normalization 0.5	$0.5 + 0.5 \cdot rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$			
double normalization K	$K+(1-K)\frac{f_{t,d}}{\max_{\{t'\in d\}}f_{t',d}}$			

IDF

term\document *	tf(t,d1)	tf(t,d2)	มือยู่ในกี่ document 💌
 ฉัน	1	1	2
ชอบ	1	1	2
กิน	1	0	1
ข้าว	1	0	1
มัน	1	0	1
ไก่	1	0	1
ร้าน	1	0	1
นี้	1	1	2
ไม่	0	1	1
หนัง	0	1	1
เรื่อง	0	1	1
เลย	0	1	1

$$\operatorname{idf}(t,D) = \log rac{N}{|\{d \in D: t \in d\}|}$$

term\document	tf(t,d1)	tf(t,d2)	มือยู่ในกี่ document	¥	idf(t,D)	tf-idf(t,d1,D)	tf-idf(t,d2,D)2
ฉัน	1	1		2	0.0000	0.0000	0.0000
ชอบ	1	1		2	0.0000	0.0000	0.0000
กิน	1	0		1	0.3010	0.3010	0.0000
ข้าว	1	0		1	0.3010	0.3010	0.0000
มัน	1	0		1	0.3010	0.3010	0.0000
ไก่	1	0		1	0.3010	0.3010	0.0000
ร้าน	1	0		1	0.3010	0.3010	0.0000
นี้	1	1		2	0.0000	0.0000	0.0000
ไม่	0	1		1	0.3010	0.0000	0.3010
หนัง	0	1		1	0.3010	0.0000	0.3010
เรื่อง	0	1		1	0.3010	0.0000	0.3010
เลย	0	1		1	0.3010	0.0000	0.3010

$$\operatorname{idf}(t,D) = \overline{ igg| \{d \in D : t \in d\} igg| }$$

IDF also has many forms

Variants of inverse document frequency (idf) weight

weighting scheme	idf weight ($n_t = \{d \in D : t \in d\} $)
unary	1
inverse document frequency	$\log rac{N}{n_t} = -\log rac{n_t}{N}$
inverse document frequency smooth	$\log\!\left(\frac{N}{1+n_t}\right)+1$
inverse document frequency max	$\log\!\left(rac{\max_{\{t'\in d\}}n_{t'}}{1+n_t} ight)$
probabilistic inverse document frequency	$\log rac{N-n_t}{n_t}$

$$\operatorname{idf}(t,D) = \log rac{N}{|\{d \in D: t \in d\}|}$$

Concept of TF-IDF

- TF words that appear a lot in a document is indicative of the topic of that document. E.g. the word "interest rate" in an economic news article.
- IDF words that appear in every documents are not indicative of the topic. E.g. common words such as: "the", "a", "that", "is"
- Therefore, words with high TF-IDF values, are words that appear often in some documents only such as: cabinet (politics) gold (economic).

Exercise

calculate the TF-IDF table (by hand or using Excel)

- d1 = the man went out for a walk
- d2 = the children sat around the fire
- Use the *raw count* form for TF and the *inverse document frequency* form for IDF.

Solution

term	tf(t,d1)	tf(t,d2)	nt	idf	tf-idf(d1)	tf-idf(d2)
the	1	2	2	0	0	0
man	1	0	1	0.30103	0.30103	0
went	1	0	1	0.30103	0.30103	0
out	1	0	1	0.30103	0.30103	0
for	1	0	1	0.30103	0.30103	0
a	1	0	1	0.30103	0.30103	0
walk	1	0	1	0.30103	0.30103	0
children	0	1	1	0.30103	0	0.30103
sat	0	1	1	0.30103	0	0.30103
around	0	1	1	0.30103	0	0.30103
fire	0	1	1	0.30103	0	0.30103

Homework 1

- Write Python function tf_idf(str1, str2)
- Function takes two string. These are the two documents.
- Return the tf-idf table as Numpy array or Pandas DataFrame
- Submit your work as .ipynb file