Insper

Distribuição de Probabilidades do Erro Amostral

Caso Normal

Magalhães e Lima - Seção 7.3 Montgomery e Runger - Seção 7.5

Objetivos de Aprendizagem

Os alunos devem ser capazes de:

- Compreender conceito de Distribuição de Probabilidades do Erro Amostral e suas características;
- Compreender o significado teórico da Margem de Erro;
- Aprender a dimensionar o tamanho de uma amostra, quando o objetivo for o de estimar a média populacional;

Acompanhe, previamente, o PLANO DE AULA no BLACKBOARD!

DISTRIBUIÇÃO DO ERRO AMOSTRAL

Seja $X_1, X_2, ... X_n$ uma amostra aleatória (a.a.) da v.a. X que apresenta valor esperado igual a μ e variância igual a σ^2 .

Ainda, considere,

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Defina e como sendo a diferença entre \bar{X} e o parâmetro μ , isto é,

$$e = \overline{X} - \mu$$
.

A quantidade anterior é chamada de erro amostral da média.

Insper

DISTRIBUIÇÃO DO ERRO AMOSTRAL

Admitindo que X_1 , X_2 , ... X_n seja uma amostra aleatória (a.a.) da v.a. X^n que apresenta valor esperado igual a μ e variância igual a σ^2 , não é difícil provar que

$$E(e) = E(\overline{X} - \mu) = E(\overline{X}) - \mu = \mu - \mu = 0$$

e que

$$Var(e) = Var(\overline{X} - \mu) = Var(\overline{X}) = \frac{\sigma^2}{n}$$

DISTRIBUIÇÃO DO ERRO AMOSTRAL

Se X_1, X_2, \dots, X_n for uma a.a. retirada da v.a.

 $X \sim N(\mu, \sigma^2)$ e, ainda, se *e* for definido como

$$\overline{X} - \mu$$

então

$$\frac{e}{\sigma/\sqrt{n}} \sim N(0,1)$$

Esse resultado segue do fato de que a distribuição de uma combinação linear de v.a. normais independentes também é normal.

DIMENSIONAMENTO DO TAMANHO DA AMOSTRA

Conhecendo o resultado anterior, podemos determinar qual a probabilidade de cometermos erros de determinadas magnitudes, a partir do seguinte resultado:

$$P(|e| < \varepsilon) = \gamma$$

ou,

$$P(-\varepsilon < e < \varepsilon) = \gamma$$

DIMENSIONAMENTO DO TAMANHO DA AMOSTRA

Padronizando o erro amostral da média, vem que:

$$P\left(-\frac{\varepsilon}{\sigma/\sqrt{n}} < \frac{e}{\sigma/\sqrt{n}} < \frac{\varepsilon}{\sigma/\sqrt{n}}\right) = \gamma$$

ou, ainda,

$$P(-z < Z < z) = \gamma$$

DIMENSIONAMENTO DO TAMANHO DA AMOSTRA

Do slide anterior, não é difícil notar que

$$z = \frac{\mathcal{E}}{\sigma / \sqrt{n}}$$

Assim, a margem de erro, ε , fica dada por

$$\varepsilon = z \cdot \frac{\sigma}{\sqrt{n}}$$

E, por conseguinte, não é difícil ver que

$$n = \left(\frac{z \cdot \sigma}{\varepsilon}\right)^2$$

Observação

 γ - coeficiente de confiança;

z - é um valor obtido da distribuição normal padrão.

Exercícios

Exercício 1

Após entrevistar 100 membros de uma categoria profissional, um pesquisador encontrou um salário médio de R\$ 1.582,85. Segundo alguns órgãos governamentais, o verdadeiro desvio padrão dos salários dessa categoria é da ordem de R\$ 256,70. Adotando um coeficiente de confiança de 95%, e assumindo que a variável de interesse tem distribuição normal, qual é a margem de erro desse estudo?

$$\varepsilon = z \cdot \frac{\sigma}{\sqrt{n}} = 1,96 \times \frac{256,70}{\sqrt{100}} = 50,31$$

Insper

Exercício 2

Seja X o salário dos trabalhadores de uma certa região e assuma que X tem distribuição normal. Definamos $e = \overline{X} - \mu$ como sendo o erro amostral da média. Suponha que a variância dos salários dessa região seja 400 reais².

- a) Determine a média e a variância de e.
- b) Que proporção das amostras de tamanho 25 terão erro amostral absoluto maior do que 2 reais? 61,7%
- c) E qual proporção das amostras de tamanho 100? 31,74%
- d) Nesse último caso, qual o valor de d, tal que P(|e| > d) = 0.01? $\cong 5.15$
- e) Qual deve ser o tamanho da amostra para que 95% dos erros amostrais absolutos sejam inferiores a 1 real? $\cong 1.537$ Insper

												111
Segunda decimal de z												
		0	1	2	3	4	5	6	7	8	9	11
		0.5000										1
		0.5398										1
		0.5793										1
		0.6179										
		0.6554										
		0.6915										
		0.7257										
		0.7580										
		0.7881										
N.		0.8159										
2		0.8413										
de		0.8643										
ਰ		0.8849										
decimal		0.9032										
ت:		0.9192 0.9332										
6		0.9332										
a		0.9452 0.9554										
-		0.9554										
primeira		0.9641										
		0.9713										
ā		0.9772										
മ		0.9821										
<u>ত</u>		0.9893										
<u>'</u>		0.993										
inteira		0.9938										
<u>a</u>		0.9953										
arte								0.9971				
ကြ		0.9974										
		0.9981										
		0.9987										
	3.1							0.9992				
		0.9993										
		0.9995										
		0.9997										
		0.9998										
		0.9998										
		0.9999										
	3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	d=
	3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000dns	sper