CENG 437 – Software Quality Management - HW4 230201029 - Mehmet Arda Aksoydan

1. Orthogonal Array Method

Variables	Values	
X	True, False	
Υ	0, 3	
Z	P, Q, R	

 $\label{eq:local_local_local_local} Factors = 3(X, Y, Z), \ Levels = 3(Z \ takes \ three \ different \ value), \ Runs = 9$ $L_{Runs}(Levels^{Factors)} = L_{9}(3^{3})$

	Factors			
Runs	1	2	3	
1	1	1	1	
2	1	2	2	
3	1	3	3	
4	2	1	2	
5	2	2	3	
6	2	3	1	
7	3	1	3	
8	3	2	1	
9	3	3	2	

X: 1 = True, 2 = False

Y: 1 = 0, 2 = 3

Z: 1 = P, 2 = Q, 3 = R

Test Case ID	X	Y	Z
TC ₁	True	0	Р
TC_2	True	3	Q
TC ₃	True	3	R
TC_4	False	0	Q
TC ₅	False	3	R
TC_6	False	3	Р
TC ₇	3	0	R
TC ₈	3	3	Р
TC_9	3	3	Q

Test Case ID	X	Υ	Z
TC ₁	True	0	Р
TC_2	True	3	Q
TC ₃	True	3	R
TC_4	False	0	Q
TC ₅	False	3	R
TC_6	False	0	Р
TC ₇	False	0	R
TC ₈	False	3	Р
TC_9	True	0	Q

2. IPO Algorithm

$$X \rightarrow \{ True, False \} Y \rightarrow \{ 0, 3 \} Z \rightarrow \{ P, Q, R \}$$

Step 1 and 2: Create T and Π_3

$$T = (X \times Y) = (True, 0)$$

$$(True, 3)$$

$$(False, 0)$$

$$(False, 3)$$

$$Z \times (X \times Y) = \Pi_3 =$$
 (True, P) (True, Q) (True, R)
(False, P) (False, Q) (False, R)
(0, P) (0, Q) (0, R)
(3, P) (3, Q) (3, R)

Step 3: Add P, Q and R.

$$T = (True, 0, P) \qquad TT_3 = (True, P) \qquad (True, Q) \qquad (True, R)$$

$$(True, 3, Q) \qquad (False, P) \qquad (False, Q) \qquad (False, R)$$

$$(False, 0, R) \qquad (0, P) \qquad (0, Q) \qquad (0, R)$$

$$(False, 3,) \qquad (3, P) \qquad (3, Q) \qquad (3, R)$$

Step 4: Select P for (False, 3).

$$T = (True, 0, P) \qquad T_3 = (True, P) \qquad (True, Q) \qquad (True, R)$$

$$(True, 3, Q) \qquad (False, P) \qquad (False, Q) \qquad (False, R)$$

$$(False, 0, R) \qquad (0, P) \qquad (0, Q) \qquad (0, R)$$

$$(False, 3, P) \qquad (3, P) \qquad (3, Q) \qquad (3, R)$$

Step 5: Combine remained test pairs.

$$T = (True, 0, P) \qquad TT_3 = (True, P) \qquad (True, Q) \qquad (True, R) \\ (True, 3, Q) \qquad (False, P) \qquad (False, Q) \qquad (False, R) \\ (False, 0, R) \qquad (0, P) \qquad (0, Q) \qquad (0, R) \\ (False, 3, P) \qquad (3, P) \qquad (3, Q) \qquad (3, R) \\ (True, 3, R) \qquad (False, 0, Q)$$

_IPO Algorithm supports our results for Orthogonal Array Method since we have created these 6 test cases in our table.