

Privacy Preserving Machine Learning

Mohammad Hoseinpour

Supervisor : Prof. Ali Aghagolzadeh

Motivation

- Machine Learning (ML) models can **memorize** training datasets
- Training ML models over private datasets can violate the privacy of individuals
- Training data extraction attacks:
 - Fredrikson et al. (2015), "Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures"

Motivation

- Machine Learning (ML) models can **memorize** training datasets
- Training ML models over private datasets can violate the privacy of individuals
- Membership inference attacks:
 - Shokri et al. (2016), "Membership Inference Attacks Against Machine Learning"

Non-Private Logistic Regression

• The decision boundary of the classifier is sensitive to the individual data points in the training set.

Private Logistic Regression

We apply Gaussian mechanism for privatizing the updating rule of the gradient descent

Empirical Risk:
$$\mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}, (x_i, y_i)) + \lambda R(\mathbf{w})$$

Algorithm 1 Noisy Projected Gradient Descent $(\mathcal{L}, \mathcal{C}, \eta, \sigma)$

Inputs: Set $\mathcal{C} \subseteq \mathbb{R}^d$, noise parameter σ , learning rate η , loss function $\mathcal{L}(\mathbf{w})$.

- 1: $w_0 \leftarrow$ arbitrary point in C;
- 2: **for** t = 1, 2, ..., T **do**
- 3: $g_t \leftarrow \nabla \mathcal{L}(\mathbf{w}_{t-1});$
- 4: $\tilde{g}_t \leftarrow g_t + \mathcal{N}(0, \sigma^2 I_d);$
- 5: $u_t \leftarrow \mathbf{w}_{t-1} \eta \tilde{g}_t$;
- 6: $\mathbf{w}_t \leftarrow \Pi_{\mathcal{C}}(u_t)$;
- 7: end for
- 8: **return** \mathbf{w}_T ;

Perturbed gradient vector due to the additive Gaussian noise

Results

Thank You