Data Structures and Algorithms Spring 2024 — Problem Sets

by Nikolai Kudasov

February 26, 2024

Week 6. Problem set

- 1. Consider a modification of the randomized Quick-Sort algorithm [Cormen, §7.3] that stops recursion when the size of subarray becomes less than or equal to k ($k \le n$). For arrays of size $\le k$, the modified algorithm performs Bubble-Sort. Answer the following questions about the modified algorithm:
 - (a) What is the worst case time complexity in terms of n and k?
 - (b) What is the best case time complexity in terms of n and k?
 - (c) What is the average 1 case time complexity in terms of n and k?

The answer should be given using Θ -notation.

Provide a **brief** justification for each case (1–2 sentences).

2. Apply Counting-Sort to the following input array where each column corresponds to one item with its numeric key and single-character satellite data:

2	8	2	6	7	6	3	4	1	6	2	0
D	Т	О	G	A	R	N	G	R	E	I	U

You **must** demonstrate the final state of the auxiliary arrays used in the algorithm, as well as the output of the array.

References

[Cormen] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. *Introduction to Algorithms, Fourth Edition*. The MIT Press 2022

¹assuming all elements in the input array are distinct and any initial order in the array is equally likely