Michael Zurel

Personal email: mzurel@protonmail.com

UBC email: mzurel@phas.ubc.ca

Website: mzurel.github.io

EDUCATION

PhD (in progress)

Physics (Quantum information and computation)

University of British Columbia September, 2020 – Present

o Supervisor: Dr. Robert Raussendorf

o Affiliations: University of British Columbia (Physics) & Stewart Blusson Quantum Matter Institute

• Expected completion: 2024

 \mathbf{MSc}

University of British Columbia September, 2019 – November, 2020

Physics (Quantum information and computation)

o Supervisor: Dr. Robert Raussendorf

O Thesis: Hidden variable models and classical simulation algorithms for quantum computation with magic states on qubits

 \mathbf{BSc}

University of British Columbia September, 2014 – May, 2019

Combined honours in Physics and Mathematics

o Honours thesis: Contextuality and Simulating Quantum Computation with Magic States

Publications & Preprints

[1] MZ, Cihan Okay, Robert Raussendorf, and Arne Heimendahl. "Hidden Variable Model for Quantum Computation with Magic States on Any Number of Qudits of Any Dimension". 2021. arXiv: 2110.12318.

- [2] Robert Raussendorf, Cihan Okay, MZ, and Polina Feldmann. "The role of cohomology in quantum computation with magic states". 2021. arXiv: 2110.11631.
- [3] Cihan Okay, MZ, and Robert Raussendorf. "On the extremal points of the Λ-polytopes and classical simulation of quantum computation with magic states". In: Quantum Information & Computation 21.13&14 (2021). DOI: 10.26421/QIC21.13-14-2. arXiv: 2104.05822.
- [4] **MZ**. "Hidden variable models and classical simulation algorithms for quantum computation with magic states on qubits". MSc thesis. University of British Columbia, 2020. DOI: 10.14288/1.0394790.
- [5] MZ, Cihan Okay, and Robert Raussendorf. "Hidden Variable Model for Universal Quantum Computation with Magic States on Qubits". In: *Physical Review Letters* 125.26 (2020), p. 260404. DOI: 10.1103/PhysRevLett.125.260404. arXiv: 2004.01992.
- [6] Robert Raussendorf, Juani Bermejo-Vega, Emily Tyhurst, Cihan Okay, and **MZ**. "Phase-space-simulation method for quantum computation with magic states on qubits". In: *Physical Review A* 101.1 (2020), p. 012350. DOI: 10.1103/PhysRevA.101.012350. arXiv: 1905.05374.

For PDFs see mzurel.github.io; for citation data see Google Scholar.

Software

- RandomQM.jl Julia functions for generating random quantum states and random quantum channels
- RandomStabilizers.jl Julia code for generating random stabilizer states and random symplectic group elements based on the "SYMPLECTICImproved" algorithm of J. Math. Phys. **55** 122202 (2014).
- BinarySymplectic.jl Tools for working with symplectic vector spaces and symplectic groups over \mathbb{Z}_2 .
- FiniteSymplectic.jl Tools for working with symplectic modules and symplectic groups over \mathbb{Z}_d .
- NetworkViz Data visualization web app for input-output data, census data, and other socio-economic data in Newfoundland and Labrador.

Code available on GitHub: github.com/mzurel

Theory of Quantum Computation, Communication, and Cryptography (TQC), July 2022 • Hidden Variable Model for Quantum Computation with Magic States on Any Number of Quantum Sion	25 minute talk lits of Any Dimen-
• Theory of Quantum Computation, Communication, and Cryptography (TQC), July 2022 The role of cohomology in quantum computation with magic states	Poster
Quantum Physics and Logic (QPL), June 2022 • Hidden Variable Model for Quantum Computation with Magic States on Any Number of Quantum sion	10 minute talk lits of Any Dimen-
• Bilkent University Math Grad Seminar, June 2022 Polytopes in quantum computation and quantum information	60 minute talk
• Algebraic Structures in Quantum Computation V (ASQC5), June 2022 Hidden variable models for quantum computation with magic states	45 minute talk
• UBC Institute of Applied Mathematics Grad Seminar, June 2022 Polytopes in quantum computation and quantum information	60 minute talk
• Internal talk for QuEra Computing Inc. software/algorithms team, April 2022 Classical simulation of quantum computation with magic states	45 minute talk
Quantum Information Processing (QIP), March 2022 • Hidden Variable Model for Quantum Computation with Magic States on Any Number of Quantum Sion	Poster lits of Any Dimen-
• Theory of Quantum Computation, Communication, and Cryptography (TQC), July 2021 Hidden variable model for universal quantum computation with magic states on qubits	30 minute talk
• Quantum Physics and Logic (QPL), June, 2021 Hidden variable model for universal quantum computation with magic states on qubits	30 minute talk
• Quantum Information Processing (QIP), March, 2021 Hidden variable model for universal quantum computation with magic states on qubits	Poster
• Algebraic Structures in Quantum Computation IV (ASQC4), June, 2020 Hidden variable model for universal quantum computation with magic states on qubits	60 minute talk
• Southwest Quantum Information and Technology (SQuInT), February 2020 • Phase-space-simulation method for quantum computation with magic states on qubits	Poster
• Quantum Physics and Logic (QPL), June 2019 Phase-space-simulation method for quantum computation with magic states on qubits	25 minute talk
For slides, PDFs, videos, etc., see mzurel.github.io/talks	
Workshop organization	
• Algebraic Structures in Quantum Computation V (ASQC5) University of British Columbia, Vancouver, Canada	June, 2022
Awards	
Alexander Graham Bell Canada Graduate Scholarship (NSERC CGS-D)	2021 - 2024
• UBC Four Year Doctoral Fellowship (4YF)	2021-2025
President's Academic Excellence Initiative PhD Award	2020 - 2024
UBC Faculty of Science PhD Tuition Award	2020 - 2024

Peer review

TEACHING EXPERIENCE

•	Teaching assistant:	Introduction to Quantum Mechanics	January,2022-April,2022
•	Teaching assistant:	Electricity and Magnetism	September, 2021 – December, 2021
•	Teaching assistant:	Electricity and Magnetism	September, 2020 – December, 2020
•	Teaching assistant:	Enriched Physics I	September, 2020 – December, 2020
•	Teaching assistant:	Introductory Physics for Engineers II	$January,\ 2020-April,\ 2020$
•	Teaching assistant:	Introductory Physics	September, 2019 – December, 2019

Last updated: July, 2022