Devoir à la maison n° 04

À rendre le 08 octobre

Dans ce problème, on s'autorisera à utiliser librement le résultat suivant :

Soit g une fonction continue sur un segment $[a,b] \subset \mathbb{R}$. S'il existe $k \in \mathbb{R}$ tel que $\forall t \in [a,b], |g(t)| \leq k$,

alors
$$\left| \int_{a}^{b} g(t) dt \right| \leq k(b-a).$$

On munit le plan P d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, où l'unité est 5 cm. On considère la fonction définie sur $\mathbb{R} \text{ par } f: x \mapsto e^{-x} \cos(x).$

- I) Étudions d'abord quelques propriétés élémentaires de la courbe f.
- 1) Étudier les variations de f sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ et tracer la courbe représentative Γ de f sur cet intervalle. On précisera notamment les coefficients directeurs des tangentes aux points de la courbe d'abscisses $x=-\frac{\pi}{2}, \ x=-\frac{\pi}{4}, \ x=0, \ \text{et} \ x=\frac{\pi}{2}.$
 - 2) Trouver deux réels a et b tels que la fonction F définie sur \mathbb{R} par

$$F: x \mapsto (a\cos(x) + b\sin(x))e^{-x}$$

soit une primitive de f.

- 3) Calculer l'aire délimitée par Γ , les droites d'équations $x=-\frac{\pi}{2}$ et $x=\frac{\pi}{2}$ ainsi que par l'axe des abscisses. On exprimera le résultat en cm².
- II) On se propose maintenant d'étudier l'intersection de la courbe Γ avec la droite Δ d'équation y=x. On dit aussi que l'on recherche les *points fixes* de la fonction f.
 - 1) Existe-t-il des points d'intersection de Γ et de Δ dont l'abscisse appartient à l'intervalle $\left|-\frac{\pi}{2};0\right|$?
 - 2) Soit φ la fonction définie sur $\left[0; \frac{\pi}{2}\right]$ par $\varphi : x \mapsto e^{-x} \cos(x) x$.
 - a) Calculer $\varphi(0)$ et $\varphi\left(\frac{\pi}{2}\right)$.
 - **b)** Étudier les variations de φ .
 - c) En déduire qu'il existe un réel unique α dans $0; \frac{\pi}{2}$ tel que $e^{-\alpha}\cos(\alpha) = \alpha$ (*i.e*, $f(\alpha) = \alpha$).
 - d) On pose $\beta = f(1) = e^{-1}\cos(1)$. Prouver d'abord que $\beta < 1$ puis, en utilisant le sens de variation de f, montrer l'encadrement :

$$\beta < \alpha < 1.$$

- 3) On pose $k = |f'(\beta)|$. On considère la suite (u_n) définie par son premier terme $u_0 = 1$ et par la relation de récurrence : $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n).$
 - a) Montrer par récurrence que, pour tout entier naturel $n, \beta \leq u_n \leq 1$.
 - b) En étudiant le signe de f'' sur l'intervalle $\left[0; \frac{\pi}{2}\right]$, prouver que, pour tout $x \in \left[0; \frac{\pi}{2}\right]$,

$$f'(0) < f'(x) < f'(\frac{\pi}{2}).$$

- c) En déduire que k < 1.
- **d)** Prouver que, pour tout réel x dans $[\beta, 1], |f'(x)| \leq k$.
- e) Montrer que, pour tout entier naturel n, $|u_{n+1} \alpha| \leq k|u_n \alpha|$.
- f) En déduire que la suite (u_n) converge vers α .