Representação de números decimais

Um sistema em ponto flutuante é definido por uma base β , por uma precisão p e por limitantes m e M para o valor do expoente. Para indicar um determinado sistema em ponto flutuante, escrevemos:

$$F(\beta, p, m, M)$$

Um número qualquer representado nesse sistema F é escrito da seguinte forma:

$$x = \pm 0.d_1 d_2 \dots d_p \times \beta^e$$

onde o expoente e é um inteiro tal que $m \le e \le M$ e $d_1 \ne 0$, pois a representação deve estar sempre normalizada e $d_1, d_2, \ldots, d_p \in \{0, 1, \ldots, \beta - 1\}$

Uma fração decimal (chamada simplesmente de números decimais em alguns contextos) é número racional que pode ser representado com frações cujo denominadores são potências de 10. Por exemplo, os decimais 0.8 e 14.89 representam as frações $\frac{8}{10}$ e $\frac{1489}{100}$.

Esses números decimais podem ser representados como aproximações em sistemas em ponto flutuante com a base diferente da base 10.

O processo de conversão de um número decimal para um número ponto flutuante na base β pode ser realizado da seguinte maneira. Multiplique o número x pela base β . Em seguida, calcule a parte inteira de $\beta*x$ e a parte fracionária de $\beta*x$. Observe que se $\beta*x\geq 1$ então $x\geq \frac{1}{\beta}$. Logo, se a parte inteira de $\beta*x$ representa o primeiro dígito do número ponto flutuante x na base β . Em seguida, x recebe o valor da parte fracionária de $\beta*x$.

Considere que você queira representar número decimal 0.375 em um sistema em ponto flutuante com a base 2.

X	2*x	integerPart(2*x)	FractionalPart(2*x)
0.375	0.75	0	0.75

O primeiro dígito de x no sistema em ponto flutuante é 0.

Continuando o processo:

X	2*x	integerPart(x)	FractionalPart(x)
0.375	0.75	0	0.75
0.75	1.5	1	0.5

O segundo dígito de x no sistema em ponto flutuante é 1.

Continuando o processo:

x	2*x	integerPart(x)	FractionalPart(x)
0.375	0.75	0	0.75
0.75	1.5	1	0.5
0.5	1.0	1	0.0

O terceiro dígito de x no sistema em ponto flutuante é 1.

Logo, o número $(0.375)_{10}$ é representado como $(0.011)_2$. Como o primeiro dígito do sistema em ponto flutuante não pode ser zero, então $(0.011)_2 = 0.11 \times 2^{-1}$.

Observe que esse processo pode continuar indefinidamente. Neste caso, podemos interromper o processo considerando a precisão do nosso sistema em ponto flutuante.

Sua tarefa é dado um número decimal x e um sistema em ponto fluatuante $F(\beta, p, m, M)$, encontre a representação de x no sistema F.

Entrada

A entrada é composta por duas linhas. A primeira linha contém uma fração decimal. A segunda linha é composta por 4 números inteiros representando a base β , a precisão p e os limitantes do expoente m e M.

Saída

A saída é composta por uma string representando os dígitos do sistema em ponto flutuante e um inteiro representando o expoente no sistema em ponto flutuante.

Restrições:

- *M* ≥ 0
- $m \leq 0$
- $\beta > 0$
- $p \ge 0$
- *x* < 0

Entrada

0.1

2 10 -5 5

Saída

0.1100110011 -3

Entrada

0.2 2 10 -5 5

Saída

0.1100110011 -2