Marr Revisited: 2D-3D Model Alignment via Surface Normal Prediction

Aayush Bansal, Carnegie Mellon University
Bryan Russell, Adobe Research
Abhinav Gupta, Carnegie Mellon University
CVPR 2016

Introduction

Introduction

Task: 2D \longrightarrow 2.5D \longrightarrow 3D

- Surface normal (2.5D) from a single 2D image.
- Pose & style of objects from RGB + 2.5D cues.

Input Image

Predicted Surface Normal

CAD Model Library 3D ShapeNets, Wu et al. [CVPR'15]

Aligned CAD Model

Introduction

- Why Marr's framework?
 - Most data for training 3D representations is CAD data (c.f. ShapeNet or ModelNet)
 - Big gap between CAD model renders and real 2D images
 - Marr's 2.5D representation helps to bridge this gap
 - Marr revisited
- Contributions
 - Skip-network architecture for surface normal estimation
 - CNN architecture for CAD retrieval combining image and predicted surface normal

Related work

- 3D scene understanding
 - Recovering the 2.5D
 - Discriminative 3D primitives [Fouhey et al 2013]
 - Convex and concave edges [Fouhey et al 2014]
 - Discriminative learning with hand-crafted features [Ladicky et al 2014]
 - Recovering the 3D volumetric objects
 - Train CNNs to predict object class for CAD model alignment [Gupta et al 2015]
 - Train Siamese network modeling style similarity to retrieve product images having similar style as an object in an input photo [Bell et al 2015]

Skip-network architecture

$2D \rightarrow 2.5D$

Surface Normal Estimation

Non-linear optimization of Hypercolumn features for fine details.

Hypercolumn (Hariharan et al. [CVPR'15]): $\mathbf{h}_{p}(\mathbf{I}) = [\mathbf{c}_{p}^{j1}, \mathbf{c}_{p}^{j2} \dots, \mathbf{c}_{p}^{j\alpha}]$

- During training, N (= 1500) pixels are sampled per image for optimization.
- At test time, entire image is fed-forward. Output from last layer are the predicted surface normal.

Networks for predicting pose and style

$2.5D \longrightarrow 3D$

Pose & Style Estimation

PoseNet: A 36-way pose classification.

StyleNet: Are they similar?

Surface Normal Estimation

Input	Kinect	Ours	Input	Kinect	Ours	Input	Kinect	Ours
								A TOP S
								9-140

Qualitative Comparison

Pose Estimation

Top-5 Retrieved Results Input **Surface Normal** PoseNet FC-7 Z

Pose Estimation

StyleNet PoseNet StyleNet PoseNet

Style Estimation

Input

Surface Normal

Top-5 Retrieved Results

