Pregunta 1: modelo de Romer

$$\frac{9 \times i(f)}{3} = \Gamma(f) \cdot \times \times i(f) - bi(f) = 0 \rightarrow \times i(f) = \begin{bmatrix} \propto \Gamma(f)_{1-\alpha} \\ bi(f) \end{bmatrix}$$

b.
$$\max \pi_i(t) = (p_i(t) + s) x_i(t) - x_i(t) sa. x_i(t) = \left[\frac{p_i(t)}{\alpha L(t)^{1-\alpha}}\right]$$

$$\max \quad (pi(t) + s) \left[\frac{pi(t)}{\kappa L(t)^{1-\kappa}} \right] - \left[\frac{pi(t)}{\kappa L(t)^{1-\kappa}} \right]$$

$$\left(\begin{array}{c} \frac{d}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{d}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{d+1} \right) pi(t) \xrightarrow{1/4-1} \frac{1/4-1}{d-1} = 0$$

$$\left(\begin{array}{c} \frac{1}{$$

$$\alpha \operatorname{pi(t)}^{1/\alpha-1} - (1-s) \operatorname{pi(t)}^{\frac{2-\alpha}{\alpha-1}} = 0$$

$$\alpha \operatorname{pi(t)}^{1/\alpha-1} = (1-s) \operatorname{pi(t)}^{2-\alpha/\alpha-1}$$

$$\alpha = (1-s) \operatorname{pi(t)}^{1-\alpha/\alpha-1}$$

$$\alpha = \frac{(1-5)}{pi(t)} \rightarrow pi(t) = \frac{(1-5)}{\alpha}$$

$$\pi_{i}(\mathfrak{t}) = \left[\left(\frac{1-s}{\alpha} \right) + s - 1 \right] \left(1-s \right)^{1/d-1} \alpha^{2/1-\alpha} \left(\mathfrak{t} \right)$$

$$= \left[\frac{(1-5)}{6} - (1-5) \right] \left(n \right)$$

$$= (1-d/d) (1-5) \cdot d \cdot d \cdot L(t)$$

C.
$$A(t) = \lambda R(t)$$
 , $\lambda > 0$ y $R(t)$: Cambidad del bien final utilizado en investigación libre entrada en el sector, y es perfectamente competitivo

Sabernou que para que haya inversión en I+D, VP. utilidad esperada ≥ costos I+D, por libre entrada: VP ut. esperada = costos de I+D

VP. Utilidad esperada de Inventir en I+D = valor de cl vaniedad · nº de nuevas vaniedades : V(t) A(t) = V(t) \(R(t) \) Costos are invertir en I+D = comtidad de bien final utilizado en I+D = R(x)

$$VP \text{ de una innovación en } t \text{ es: } V(t) = \int_{t}^{\infty} \pi(\tau) e^{-r(\tau-t)} d\tau \Rightarrow V(t) = \pi \int_{t}^{\infty} \frac{e^{-r\tau}}{e^{-rt}} d\tau = \frac{\pi}{e^{-rt}} \int_{t}^{\infty} e^{-r\tau} d\tau = \frac{\pi}{e^{-rt}} \left(-\frac{e^{-r\tau}}{r} \right) = \frac{\pi}{e^{-r\tau}} \left(-\frac{e^{-r\tau}}{r} \right)$$

$$V(\xi) = \pi/r$$

d. Saberner que:
$$V(t) = 1/\lambda$$
 y que $V(t) = \frac{\pi}{r}$

$$\frac{\pi}{\Gamma} = \frac{1}{\lambda} \rightarrow \Gamma = \lambda \pi \Rightarrow \Gamma = \lambda \begin{pmatrix} 1 - d/d \end{pmatrix} \begin{pmatrix} 1 - d/d \end{pmatrix} \begin{pmatrix} 1 - 2/1 - d/d \end{pmatrix}$$

$$X(\xi) = \int_{0}^{1} x \, dx = \left[x \cdot \xi \right] = A(\xi) x \Rightarrow X(\xi) = A(\xi) x / (\chi(\xi)) \Rightarrow X(\xi) = A(\xi) x$$

$$X(\xi) = \int_{0}^{1} x \, dx = \left[x \cdot \xi \right] = A(\xi) x \Rightarrow X(\xi) = A(\xi) x / (\chi(\xi)) \Rightarrow X(\xi) = A(\xi) x$$

$$X(\xi) = \frac{A(\xi) x}{A(\xi) x}$$

$$X(\xi) = \frac{A(\xi) x}{A(\xi) x}$$

$$\Lambda(f) = \Gamma_{I-\alpha} X_{\alpha} V(f)$$

$$PiB(t) = Y(t) - X(t) \Rightarrow PiB(t) = A(t) \left[L^{1-\alpha} \times^{\alpha} - X \right] / PiB(t) \Rightarrow PiB(t) = A(t)$$

$$= L^{1-\alpha} \times^{\alpha} A(t) - A(t) \times PiB(t) = A(t) \left[L^{1-\alpha} \times^{\alpha} - X \right] / PiB(t) \Rightarrow PiB(t) = A(t)$$

$$= A(t) \left[L^{1-\alpha} \times^{\alpha} - X \right]$$

$$= A(t) \left[L^{1-\alpha} \times^{\alpha} - X \right] / PiB(t) \Rightarrow PiB(t) = A(t)$$

$$= A(t) \left[L^{1-\alpha} \times^{\alpha} - X \right] / PiB(t) \Rightarrow PiB(t) = A(t)$$

$$= A(t) \left[L^{1-\alpha} \times^{\alpha} - X \right] / PiB(t) \Rightarrow PiB(t) = A(t)$$

Ahora sabemer que
$$\frac{\dot{P}B}{\dot{Q}B} = \frac{\ddot{Q}}{\dot{Q}B} = \frac{\ddot{X}}{\dot{X}} = \frac{\ddot{A}}{\dot{A}}$$

Sabernor que :
$$A(t) = \lambda R(t)$$
 / $A(t) \Rightarrow En el BbP : AA = cle : Ry A crecen a igual taba $\Rightarrow \frac{R(t)}{R(t)} = \frac{A(t)}{A(t)}$

A(t) $A(t)$ $A(t)$$

Si PiB(t) =
$$A(t) [\Gamma_{l-\alpha} \times_{\alpha} - X] = C(t) + \frac{\lambda}{A(t)} / \cdot \lambda$$

 $A(t) [\Gamma_{l-\alpha} \times_{\alpha} - X] = C(t) + \frac{\lambda}{A(t)} / \cdot \lambda$

$$\lambda A(t) [L^{1-\alpha} x^{\alpha} - x] = \lambda C(t) + \mathring{A}(t)$$

Tenemos finalmente que:
$$\frac{PiB}{PiB} = \frac{\dot{C}}{C} = \frac{\ddot{Y}}{Y} = \frac{\ddot{X}}{X} = \frac{\ddot{R}}{R} = \frac{\mathring{A}}{A}$$

Solvemen que
$$C|C = \frac{r-\rho}{\theta} = \frac{\lambda(1-\alpha/\alpha)(1-s)^{\alpha/\alpha-1}}{\theta} \frac{2^{2/1-\alpha}-\rho}{\rho} = \frac{\rho i B}{\rho i B}$$

f.		sul	osic	lio	a.	a	dda	1. p	or I	oiene	ו מל	nter	m e	dios	i y	SI	ubsi	dio	a	ı.	+ D		an	nbes	va	um	ien!	row	ı g	pu	es	au	vw 6	uta	JL.	π, σ	jue								
		ω	977	vbo	nd	m	0.	ral	66	me	μü	<i>2</i> 90.	du	ال	s pon	ro Ou	1Cho	rex	'n	nter	me	die	ńν.	Por	lo !	tant	no,	au	mer	uta	થ	val	or (de V	ii w	νονι	منن	ones	Ú	r(f)					
		ч	e,	o V	10.CL	Q)	wL :	se i	NNO	ove	m	ώs	y Y	ray	a °	maų	JOT (nu	imi(swla																									
		J				ľ						'	U	J																															
P	rea	un	ta	2		M	bd	elo		sc	hu	mp	et	eri	an	0																													
	•																																												
·í	ndi	٥١	de		alia	hot	1 :	u	(1)	=	Δ(τ)) x (t)«		1	1(F)	_ ^	ilt). v	j(τ)		١.		γ _K H	к (т)																				
								er er					İ		·			,						JIC	., (.,																				
		Ī											0 .	chie		,																													
1	Tat	ωų	lub	rev	n	0	cau	FICA	COLOS	ושי	1 1	nan	iof a	LCIUI	u :	L																													
		D .			+								\																																
a	•	Den	nef	icie	rs 1	rota	alev	50	M	Π:	= A	1-0	<u>')</u> (ω∟	χ	d	ond	L	Wι	= 1	JLIA	ce	m	WL -	30	uan	ior (de	rabo	ų a d	orey.	ኅነዕ	cal	ifico	dev.										
		٠	be	nef	icío	5 11	nnov	ació	in :	1:	ПΔ	= K	π																																
			be	nef	icios	in	Nove	ación	1 2	:	TT ₂	= (1	- K)	π																															
																																				,	+								
b.	D	eno	ota	.Me	v i)or	V	1 a	۱ ۱	ıalo	, (te	un	al	uvo	nda	nò	હ	O	nar	au	rwe	euto	. લ	íno	dice	de	ca	lida	λđ	dı	ca	lido	ad	dL	7,	42J	a	γ,	72	,				
	3	e	сw	mpl	e lo	1 5	igui	enk	: e	cuc	rció	n:																																	
		٧,	=	π	3 d	τ	+	(1-	۲d	(J	1 -	λΔ١	110	(sk	٧,	-	→	Des	pej	ume	ns V	1 <u>1</u> e	. IM	pone	me	و د	μe	dτ	> c	,															
												no ,						١	11	(1 -	(1	- 1	dτ)(1	- λ	14 H	ηdτ	:)) :		T1 0	lτ														
				TI4 d	npo npo	ite e	y.			λqF	_								V1	(1	- (1 -	λ۸	H1d	τ-	rd.	τ +	λ۱	На	rdt	2))	= T	T1 d	τ											
																								H1 d																					
																								TT1																					
		li	m	V			0		. (JS O	m	or	Lı	Нο	b(ł)	2)								+rd			H1 r	dτ	2																
		d	τ -	,0		1	0				-,,,		Ī	,,,	P'''																														
		0	in	,		_				Π	1				=		١.	ΙTα																											
		d	てつ	0	0.7		$\overline{\lambda}$	1 H1	+1	r -	<u>2</u> λ	1 H1	rd	t°		7	ηН	1 +	٦																										
	U -																																												
	FIO	.cer	AN G	> (nrg	3 0	mo	iloge	0 1	pow	λ \	12																																	
	١.					,			1				. \					٠.		.,			-																						
									t)(- ۹.	Λ21	H2 0	(T)	V2			r	dr dr	M ⇒o	V2	=	_	T U -	2 2 + 1	-																				
	V	ι -					TT ₂		λ . ι	J. r	d T	2											1211:	211																					
				1211	200	, , ,	0.0	<u>'</u>	/\21	121	αı																																		
	Lib	ie	m	hra	da	'n	n pli	ca	qυ	Q		V4)	1	= .	Aω	Н		y	Va	λ2	=	Αω	н	O	n	ωн	=	Wн	l A																
	ωι	1 (es e	el n	ncin	no	pan	a o	um)	pey	inn	ovac	dore	עני	<i>:</i> .	V	۱λ۹	-	V2	λ2																									
	De	a)	y	b)	S	ab	em	.ev	gı	w	7	T1 =	K٦	Ī,	π	_ =	(1-	K)-	π,	V۸	= _	Π1		V2	=	$\overline{\Pi}_2$																			
									ľ												F-4	- M	H٩		٢	+ λ2	H2			ഗ്ര	we	el	lac	lo	izgu	uero	ok	cal	COT	n H	۱,	ч	u 1	la da	,
		2.	.	V	۸ λ	۱ =	· Vz	λ2					U	san	Mo	Q.	ue	Н	=	H1 +	H2	_	H2	= H	l – F	14			7							con						_			
																													/		gui														
				۲	+ λη	H4		L	+)	12 H	2				Γ 1	< λ1 - λ11	11	1	Γ+.	٨2(١	- H ₄))	-		_					_	1														
7			• • •								.1.																																		
	W)(. (ωp	e 00	Ola	d	JL (crec	นท	иe	uro	,																																	
	-, .		_	۲۸.		1,	ol .	_	,	ا ا	- (-	iv .	ot																																
	rly) =	E	(Ya	72)L	-	E ((71-i) W I	: L Y 11 I	2 ^j) 1 e ⁽⁷²	-i) y	2H27	ر اندر خ																														
												e' (γ2-																																	
								- (ะ ''		1	. 10			Ľ																														

d.

$$E(\dot{y}) = \frac{\partial E(\dot{y})}{\partial \tau} = \left[(\gamma_1 - i) \Lambda_1 H_1 + (\gamma_2 - i) \lambda_2 H_2 \right] L^{\alpha} e^{\left[(\gamma_1 - i) \Lambda_1 H_1 + (\gamma_2 - i) \lambda_2 H_2 \right] \tau}$$

$$g = \underbrace{E(\dot{y})}_{E(\dot{y})} = \underbrace{\left[(\gamma_1 - i) \Lambda_1 H_1 + (\gamma_2 - i) \lambda_2 H_2 \right] L^{\alpha}}_{E(\dot{y}_1 - i) \Lambda_1 H_1 + (\gamma_2 - i) \Lambda_2 H_2 \right] \tau}_{E(\dot{y}_1 - i) \Lambda_1 H_1 + (\gamma_2 - i) \Lambda_2 H_2 \right] \tau}$$

= (ya-1) AAH1 + (y2-1) A2H2

$$\frac{\partial g}{\partial H_0} = (\gamma_1 - 1) \lambda_1 - (\gamma_2 - 1) \lambda_2 \implies \text{ex carciente en } H_1 \text{ si } (\gamma_1 - 1) \lambda_1 > (\gamma_2 - 1) \lambda_2$$

$$\text{ex decretiente en } H_1 \text{ si } (\gamma_1 - 1) \lambda_1 < (\gamma_2 - 1) \lambda_2$$

$$\text{ex lineal en } H_1 \text{ si } (\gamma_1 - 1) \lambda_1 = (\gamma_2 - 1) \lambda_2$$

g se maximiza si
$$H_1 = H$$
 pana $(\gamma_1 - 1)\lambda_1 > (\gamma_2 - 1)\lambda_2$
si $H_2 = H$ pana $(\gamma_1 - 1)\lambda_1 < (\gamma_2 - 1)\lambda_2$
no depende de la distribución de recursos si $(\gamma_1 - 1)\lambda_1 = (\gamma_2 - 1)\lambda_2$

e. Si Hu y H2 son positivos, la economía crece muy lento. Se debe al supvesto que los trabajadores calificados solo panticipam eu I+D, por lo que, el efecto de business-stealing no afecta la axignación óptima de trabajo calificado. Los spillovers intertemporales existen dentro de cada tipo de I+D y entre aixitintos tipos de actividades de investigación. En el óptimo social, los parámetros K y 1-K ya no están presentes, 91-1 y 92-1 toman sus lugares. Ya que, el plannez toma en consideración no solo los beneficios sino que todo el excedente cuado por la innovación

Pregunta ayudantía

- 1. La visión neoclásica del crecimiento se basa en que los países alcanzan convergencia condicional. En este sentido, Filipinas y EEUU tienen la misma tasa de crecimiento tecnológico, pero distinto PIB per cápita de EE. Ji están a la misma distaucia de su EE, crecerán a la misma velocidad con distinto nivel de ingreso per cápita.
- 2. Romer desestimó la explicación neoclásica puesto que los parámetros estructurales debían ser muy distintos. Por ejemplo, la taxa de ahorro de FEUU es 30 veces mayor que la de Filipinas
- 3. Es maleria que no vieron