PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-000462

(43) Date of publication of application: 07.01.2000

(51)Int.Cl.

B01J 20/22 B65D 81/26 // C08L 47/00

(21)Application number: 10-168629

(71)Applicant: MITSUBISHI GAS CHEM CO INC

(22)Date of filing:

16.06.1998

(72)Inventor: TOMITA KAZUYUKI

IWAI TATSUO

HIMESHIMA TOMOHARU WATANABE TETSUSHI

BABA JUNKO

(54) OXYGEN ABSORBENT

(57)Abstract:

PROBLEM TO BE SOLVED: To decrease further the deoxidization time of an oxygen absorbent.

SOLUTION: The deoxidization time is remarkably decreased by mixing at least one kind of salt selected from a group composed of Cu, Fe, Co, Ni, Cr and Mn and at least one kind of salt selected from a group composed of Ca, Pb and Zn with an aliphatic hydrocarbon having an unsaturated group and/or an unsaturated fatty acid compound.

LEGAL STATUS

[Date of request for examination]

20.05.2005

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration] [Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(23

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-462

(P2000-462A)

(43)公開日 平成12年1月7日(2000.1.7)

(51) Int.Cl.7	微別記号	FΙ	テーマコード(参考)
B01J 20/22		B 0 1 J 20/22	A 3E067
B65D 81/26	1	B65D 81/26	R 4G066
// C08L 47/00)	C 0 8 L 47/00	4 J 0 0 2
		審查請求 未請求 請求項の	D数4 OL (全 13 頁)
(21)出願番号	特顯平10-168629	(71)出願人 000004466 三菱瓦斯化学株式	会社
(22) 出願日	平成10年6月16日(1998.6.16)	(72)発明者 冨田 和幸	Lの内 2 丁目 5 番 2 号 音 6 丁目 1 番 1 号 三菱瓦 ほぼ研究所内

(72)発明者 姫嶋 智晴 東京都葛飾区新宿6丁目1番1号 三菱瓦

(72)発明者 岩井 辰雄

斯化学株式会社東京研究所内

斯化学株式会社東京研究所内

東京都葛飾区新宿6丁目1番1号 三菱瓦

最終頁に続く

(54) 【発明の名称】 酸素吸収剤

(57)【要約】

【課題】 酸素吸収剤の脱酸素時間をより一層短縮する。

【解決手段】 本発明は、不飽和基を有した脂肪族炭化水素および/または不飽和脂肪酸化合物に、Cu、Fe、Co、Ni、Cr、Mnからなる群から選ばれる少なくとも1種の塩と、Ca、Pb、Znからなる群から選ばれる少なくとも1種の塩を混合することにより、脱酸素時間の大幅な短縮を実現する。

【特許請求の範囲】

【請求項1】 不飽和基を有した脂肪族炭化水素および /または不飽和脂肪酸化合物及びCu、Fe、Co、N i、Cr、Mnからなる群から選ばれる少なくとも1種 の塩とCa、Pb、Znからなる群から選ばれる少なく とも1種の塩からなることを特徴とする液状物を担体に 担持した酸素吸収剤。

【請求項2】 Cu、Fe、Co、Ni、Cr、Mnか らなる群から選ばれる少なくとも1種の塩/Ca、P b、Znからなる群から選ばれる少なくとも1種の塩の 金属重量比が1/0.01~1/40の範囲であること を特徴とする請求項1記載の酸素吸収剤。

【請求項3】 不飽和基を有した脂肪族炭化水素および /または不飽和脂肪酸化合物が不飽和基を有した液状炭 化水素オリゴマーであることを特徴とする請求項1記載 の酸素吸収剤。

【請求項4】 不飽和基を有した液状炭化水素オリゴマ ーが液状ブタジエンオリゴマーであることを特徴とする 請求項3記載の酸素吸収剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は酸素、無機ガス・有 機ガスならびに水分等の吸収機能を有して、金属部品、 電子部品、電気部品、精密部品、磁気・光学部品、宝飾 品、兵器、航空機類、自動車、ガラス、ゴム製品、写真 フィルム、食品、医薬品、押し花、絵画、古文書、出土 品等の保存に用いられる酸素吸収剤に関する。

[0002]

【従来の技術】酸素吸収剤として金属粉、カテコール、 アスコルビン酸等を主成分としたものが知られている。 しかし、これらの酸素吸収剤は酸素を吸収するのに水分 を必要とするために系内が高湿度であることが要求さ れ、保存対象が限られていた。そのため、酸素吸収にお いて水分を必要としない酸素吸収剤が求められ、特公6 2-60936に不飽和脂肪酸又は不飽和脂肪酸を含む 油脂を被酸化主剤とし触媒として遷移金属を加えた脱酸 素剤が、特開平4-29741に不飽和基を有した脂肪 族炭化水素および/または不飽和脂肪酸化合物を被酸化 主剤とし触媒として遷移金属を加えた酸素吸収剤が開示 されている。これに対し、系内の酸素濃度を、酸素が実 40 質的に無視できる酸素濃度 0. 1%以下に下げるのに要 する脱酸素時間を、より短時間にして効率化する高性能 化が望まれていた。また、このように酸素吸収速度を向 上させることにより、酸素吸収剤の使用量を低減し、酸 素吸収剤のサイズを小さくできるため、昨今の省資源、 省エネルギー化に通じ、その技術の達成が望まれてい た。更に、かかる酸素吸収剤は、少量の酸素を吸収した 後は酸素吸収速度が遅くなり脱酸素時間が大幅に延びて しまうが、製造中に酸素と全く触れさせないようにする

量の酸素吸収剤の封入された袋から必要量取り出した後 に残りを保存しておく場合等においても、酸素と全く触 れさせないようにすることは難しく、酸素と触れさせな いためには窒素等の不活性ガス雰囲気下で取り扱わなけ ればならず、ハンドリングが不便であるといった問題が あった。

2

[0003]

【発明が解決しようとする課題】本発明は、不飽和基を 有した脂肪族炭化水素および/または不飽和脂肪酸化合 物を被酸化主剤として用いる酸素吸収剤の酸素吸収速度 の向上を目的とする。更に、本発明は、製造中および使 用に際し少量の酸素を吸収した場合でも酸素吸収速度が 余り低下しないハンドリングに優れた酸素吸収剤を提供 することを目的とする。

[0004]

【課題を解決するための手段】発明者らは上記の目的を 達するためには被酸化主剤である不飽和基を有した脂肪 族炭化水素および/または不飽和脂肪酸化合物に、非遷 移金属のCa, Pb, Znからなる群から選ばれる少な くとも1種の塩を単独で加えただけでは酸素吸収は全く 促進されないにも関わらず、遷移金属のCu、Fe、C o、Ni、Cr、Mnからなる群から選ばれる少なくと も1種の塩と共に非遷移金属のCa, Pb, Znからな る群から選ばれる少なくとも1種の塩を混合することで 酸素吸収速度が大幅に向上することを見出し本発明を完 成させるに至った。そして驚くべきことに、被酸化主剤 である不飽和基を有した脂肪族炭化水素および/または 不飽和脂肪酸化合物に、遷移金属のCu、Fe、Co、 Ni、Cr、Mnからなる群から選ばれる少なくとも1 種の塩と共に非遷移金属のCa, Pb, Znからなる群 から選ばれる少なくとも1種の塩を混合することで、少 量の酸素を吸収した後の酸素吸収速度の低下を抑制する ことも実現した。

【0005】すなわち、本発明は、不飽和基を有した脂 肪族炭化水素および/または不飽和脂肪酸化合物及びC u、Fe、Co、Ni、Cr、Mnからなる群から選ば れる少なくとも1種の塩とCa、Pb、Znからなる群 から選ばれる少なくとも1種の塩からなることを特徴と する液状物を担体に担持した酸素吸収剤で、Cu、F e、Co、Ni、Cr、Mnからなる群から選ばれる少 なくとも1種の塩/Ca、Pb、Znからなる群から選 ばれる少なくとも1種の塩の金属重量比が1/0.01 ~1/40の範囲で、また、不飽和基を有した脂肪族炭 化水素および/または不飽和脂肪酸化合物が不飽和基を 有した液状炭化水素オリゴマーで、更に不飽和基を有し た液状炭化水素オリゴマーが液状プタジエンオリゴマー である酸素吸収剤である。

[0006]

【発明の実施の形態】本発明に用いられる被酸化主剤で ことは困難であり、また、実際に使用する場合、一定数 50 ある不飽和基を有した脂肪族炭化水素としては、液状プ

タジエンオリゴマー、液状イソプレンオリゴマー、スクアレン、液状アセチレンオリゴマー、液状ペンタジエンオリゴマー、液状オリゴエステルアクリレート、液状ブテンオリゴマー、液状BR、液状SBR、液状NBR、液状クロロプレンオリゴマー、液状サルファイドオリゴマー、液状イソブチレンオリゴマー、液状ブチルゴム、液状シクロペンタジエン系石油樹脂、液状オリゴスチレン、液状ヒドロキシポリオレフィンオリゴマー、液状アルキド樹脂、液状不飽和ポリエステル樹脂、天然ゴム等の液状低・中分子ポリマーが挙げられる。

【0007】不飽和脂肪酸化合物としては、リノール酸、リノレン酸、アラキドン酸、パリナリン酸、ダイマー酸等の不飽和脂肪酸、およびこれらのエステルを含有する油脂や金属塩が挙げられる。また、不飽和脂肪酸として植物油、動物油から得られる脂肪酸、すなわち、アマニ油脂肪酸、大豆油脂肪酸、桐油脂肪酸、糠油脂肪酸、胡麻油脂肪酸、綿実油脂肪酸、菜種油脂肪酸やトール油脂肪酸等も用いられる。中でも、液状ブタジエンオリゴマーが、酸素吸収後の発生ガス量および臭気が少なく好ましい。

【0008】また、これらの不飽和基を有した脂肪族炭 化水素および/または不飽和脂肪酸化合物は必ずしも単 一物質である必要はなく、二種以上の混合物であっても 良いし、共重合していても良い。また、その製造時に混 入してくる溶媒等の少量の不純物は、常識的な範囲で許 容される。また、本発明に用いられる不飽和基を有した 脂肪族炭化水素および/または不飽和脂肪酸化合物は不 飽和基以外の置換基を持っていてもよい。例えば、脂環 族炭化水素基、芳香族炭化水素基、ハロゲン基、ヒドロ キシル基、ヒドロペルオキシ基、エポキシ基、オキソ 基、カルボニル基、ヒドロキシメチル基、エーテル基、 カルボキシル基、エステル基、アシル基、アミノ基、イ ミノ基、ニトリル基、ニトロ基、ニトロソ基、アミド 基、イミド基、シアノ基、イソシアノ基、シアネート 基、イソシアナト基、ジアゾ基、アジド基、ヒドラジノ 基、アソ基、チオ基、チオキソ基、メルカプト基、チオ カルボニル基、スルホニル基、スルフィニル基、スルホ ン基、チオシアナト基、イソチオシアナト基、複素環基 などの官能基により置換されていても良い。

【0009】本発明に用いられるCu、Fe、Co、N i、Cr、Mnからなる群から選ばれる少なくとも1種の塩は、上記の不飽和基を有した脂肪族炭化水素および/または不飽和脂肪酸化合物が酸素により酸化される際に、触媒的に酸化速度を上昇させることにより酸素吸収速度を向上させる。Cu、Fe、Co、Ni、Cr、Mnの塩としては、硫酸塩・塩化物塩・硝酸塩等の無機塩、脂肪酸塩・ナフテン酸塩・ロジン酸塩・アセチルアセトン金属塩等の有機塩、アルキル金属化合物等が例示される。Cu、Fe、Co、Ni、Cr、Mnの塩の中でも、酸素吸収促進性能・安全性を考慮するとFeおよ 50

び/またはMnの塩が好ましい。

【0010】本発明に用いられるCa、Pb、Znから なる群から選ばれる少なくとも1種の塩は、Cu、F e、Co、Ni、Cr、Mnからなる群から選ばれる少 なくとも1種の塩と併用することにより、不飽和基を有 した脂肪族炭化水素および/または不飽和脂肪酸化合物 の酸素吸収速度を更に向上させる。また、Ca、Pb、 Znからなる群から選ばれる少なくとも1種の塩は、C u、Fe、Co、Ni、Cr、Mnからなる群から選ば れる少なくとも1種の塩とは異なり、単独で不飽和基を 有した脂肪族炭化水素および/または不飽和脂肪酸化合 物に混合しても酸素吸収を促進する効果が実質無く助触 媒的な働きをする。Ca、Pb、Znの塩としては、硫 酸塩・塩化物塩・硝酸塩等の無機塩、脂肪酸塩・ナフテ ン酸塩・ロジン酸塩・アセチルアセトン塩等の有機塩、 アルキル化合物等が例示される。Ca、Pb、Znの塩 の中でも、酸素吸収促進性能・安全性を考慮するとZn の無機塩または有機塩が好ましい。

【0011】本発明に用いられる担体物質としては、表面積が大きくCu、Fe、Co、Ni、Cr、Mnからなる群から選ばれる少なくとも1種の塩とCa、Pb、Znからなる群から選ばれる少なくとも1種の塩を含んだ被酸化主剤と酸素との接触面積を広げるものであれば特に限定するものではないが、天然パルプ、合成パルプからなる紙や合成紙、不織布、多孔フィルム、シリカ、アルミナ、マグネシア、チタニア、活性炭、モレキュラーシーブス等の合成ゼオライト、ペーライト、活性白土等の粘土鉱物、ハイドロタルサイト等の層状化合物等が例示される。また、担体物質として、ガス吸収剤または脱湿前に選定されているものを選び、担体にガス吸収能または脱湿能を持たせることも実用的な使用方法である。

【0012】本発明の酸素吸収剤における各成分の割合は、被酸化主剤およびCu、Fe、Co、Ni、Cr、Mnからなる群から選ばれる少なくとも1種の塩とCa、Pb、Znからなる群から選ばれる少なくとも1種の塩の合計100重量部中にCu、Fe、Co、Ni、Cr、Mnからなる群から選ばれる少なくとも1種の金属重量が0.001~2重量部、好ましくは0.005~1重量部、より好ましくは0.01~0.5重量部の範囲であり、担体物質は1~1000重量部の範囲である。また、Cu、Fe、Co、Ni、Cr、Mnからなる群から選ばれる少なくとも1種の塩/Ca、Pb、Znからなる群から選ばれる少なくとも1種の塩/Ca、Pb、Znからなる群から選ばれる少なくとも1種の塩/Ca、Pb、Znからなる群から選ばれる少なくとも1種の塩/Ca、Pb、Znからなる群から選ばれる少なくとも1種の塩/Ca、Pb、Znからなる群から選ばれる少なくとも1種の塩/Ca、Pb、Znからなる群から選ばれる少なくとも1種の塩/Ca、Pb、Znからなる群から選ばれる少なくとも1種の塩の金属重量比は、1/0.01~1/40、好ましくは1/0.05~1/30、より好ましくは1/0.1~1/20の範囲である。

【0013】本発明の酸素吸収剤の使用量としては、少なくとも保存期間中における系内雰囲気を実質的に無酸素状態に保つために必要な量であり、好ましくはその量

の1.1~10倍の量である。ここで実質的に無酸素状 態とは、酸素濃度5%以下、好ましくは1%以下、さら に好ましくは0.1%以下をいう。

【0014】本発明の酸素吸収剤は、ガス吸収剤、脱湿 剤および調湿剤と混合して用いることも可能である。こ れらの単一剤あるいは混合物は適宜、粉体、顆粒、錠剤 やシート状等にして用いられる。酸素吸収剤、ガス吸収 剤、脱湿剤および調湿剤は、被保存物品に直接触れるこ とは好ましくなく、通常は、例えば、紙、不織布または プラスチック等を基材とする通気性包材に包装して包装 10 体として使用される。また酸素吸収剤は、その一部ある いは全部を、ガス吸収剤さらには脱湿剤または調湿剤と 一緒の包装体としても、また各々別の包装体としても良 い。包装体の形態は必ずしも限定されず、目的に応じ て、例えば、小袋、シート、ブリスター包装体等が挙げ られる。包装体の包装材料および構成は特に限定されな い。また防塵対策として、上記包装体を酸素、無機ガ ス、有機ガス及び水分の透過性に支障を来さず、かつ包 装体から発生するダストを外部に放出させない無塵包材 で更に覆い、二重包装体とすることも可能である。しか 20 し包装体自体に防塵対策が施されている場合には、改め て無塵包材で覆う必要はない。

【0015】本発明に用いられるガス吸収剤としては、 主に、酸素以外のガスを吸収するものであって、具体的 には、被酸化主剤である不飽和基を有した液状炭化水素 オリゴマーに脱酸素反応する前に含まれる揮発性の高い 低分子量体あるいは脱酸素反応において生成する水素・ -酸化炭素・二酸化炭素・炭化水素類・アルデヒド類・ ケトン類・カルボン酸類等のガス成分並びに密閉する雰 囲気中にある硫化水素、アンモニア等の腐食性ガス成分 30 等を吸収する物であり、この目的を達成するものであれ ば特に限定するものではない。ガス吸収剤としては、酸 化アルミニウム・モレキュラーシープスに代表される合 成ゼオライト、モルデナイト・エリオナイト等の天然ゼ オライト、パーライト・酸性白土や活性白土等の粘土鉱 物、シリカゲル等の多孔質ガラス、活性炭・活性炭素繊 維・モレキュラーシービングカーボン・骨炭等の活性炭 類、酸化カルシウム・酸化バリウム・酸化マグネシウム 等のアルカリ土類金属の酸化物、水酸化ナトリウム・水 酸化カリウム・消石灰等の水酸化物、珪酸マグネウム、 珪酸アルミニウム、高分子吸着剤、硫酸ナトリウム、炭 酸ナトリウム、炭酸カリウム、ソーダ石灰、アスカライ ト、有機酸塩、有機アミン類等の吸収剤が挙げられる。 また、ガス吸収剤として、被酸化主剤の担体に選定され るものを選び、ガス吸収能を持たせることも実用的な使 用方法であり、この場合には改めてガス吸収剤を加える 必要はない。更にこれらガス吸収剤は必ずしも単一物質 である必要はなく、二種以上の混合物であっても良い。

【0016】本発明では保存する物品に応じて、脱湿剤

を適宜用いることができる。例えば、金属製品の保存の 50

ような湿度を嫌う製品の保存の場合は積極的に脱湿剤を 添加し実質的に除去することが好ましい。本発明に用い られる脱湿剤としては、シリカゲル、酸化アルミニウ ム、モレキュラーシープスに代表される合成ゼオライ ト、モルデナイトやエリオナイト等の天然ゼオライト、 パーライト、酸性白土や活性白土等の粘土鉱物、多孔質 ガラス、珪酸マグネウム、珪酸アルミニウム、高分子吸 着剤、活性炭、活性炭素繊維、モレキュラーシービング カーボン、骨炭、酸化カルシウム、硫酸カルシウム、塩 化カルシウム、臭化カルシウム、酸化バリウム、臭化バ リウム、過塩素酸バリウム、塩化マグネシウム、酸化マ グネシウム、硫酸マグネシウム、過塩素酸マグネシウ ム、硫酸アルミニウム、硫酸ナトリウム、水酸化ナトリ ウム、炭酸ナトリウム、炭酸カリウム、水酸化カリウ ム、塩化亜鉛、臭化亜鉛、過塩素酸リチウム等の一般の 脱湿剤から適宜選ぶことができる。また、脱湿剤とし て、被酸化主剤の担体やガス吸収剤に選定されるものを 選び、脱湿能を持たせることも実用的な使用法であり、 この場合は、改めて脱湿剤を加える必要はない。さらに 脱湿剤は必ずしも単一物質である必要はなく、二種以上 の混合物であっても良い。

【0017】本発明では、紙・木などの相対湿度40~ 60%で保存することがより好ましい物品に対しては、 積極的に調湿剤を添加することができる。本発明に用い られる調湿剤としては、密閉雰囲気の相対湿度を所定の 値に調湿するものであれば特に限定されないが、塩化バ リウム二水塩・酢酸カリウム・酢酸ナトリウム三水塩・ 塩化カルシウム六水塩・硝酸カルシウム四水塩・硫酸カ ルシウム五水塩・三酸化クロム・シュウ酸二水物・リン 酸二分の一水塩・臭化カリウム・フッ化カリウム・硫酸 水素カリウム・ヨウ化カリウム・亜硝酸カリウム・炭酸 カリウム二水塩・過クロム酸カリウム・塩化リチウムー 水塩・酢酸マグネシウム四水塩・硝酸マグネシウム六水 塩・塩化アンモニウム・硫酸アンモニウム・臭化ナトリ ウム・臭化ナトリウム二水塩・臭素酸ナトリウム・塩素 酸ナトリウム・フッ化ナトリウム・ヨウ化ナトリウム・ 亜硝酸ナトリウム・炭酸ナトリウム十水塩・ニクロム酸 ナトリウム二水塩・硫酸ナトリウム十水塩・硝酸鉛・硝 酸亜鉛六水塩・硫酸亜鉛七水塩等の飽和水溶液を綿、紙 または珪藻土等に含浸させたものが挙げられる。また、 水/グリセリン混合溶液を綿、紙または珪藻土等に含浸 させたもの等が挙げられる。また、平衡含水率分の水分 を含んだ紙、綿、皮革、ゴム、木、木炭等も挙げられ る。また更に、保存対象そのものが、紙、綿、皮革、ゴ ム、木、木炭等で調湿機能を持っている場合は、特に調 湿剤を添加する必要はない。

【0018】本発明のガス吸収剤の使用量としては、ガ ス吸収剤の吸収能力により必要な量が変わってくるが、 酸素吸収前に主剤に含まれるガスならびに酸素吸収後発 生したガスを実質的に除去できる量を適宜選ぶ必要があ 7

る。具体的には、被酸化主剤100重量部に対し、1~ 5,000重量部の範囲である。

【0019】本発明では脱湿剤を用いる場合、脱湿剤の使用量としては、少なくともガスバリア性の密閉容器内の空間容積の水分を実質的に取り去った状態にできる量であり、好ましくは、その量の1.1~500倍の範囲であり、ガスバリア性の密閉容器のバリア性能に応じ適宜選ばれる。ここで、水分を実質的に取り去った状態とは、相対湿度10%以下、好ましくは5%以下、さらに好ましくは1%以下をいう。

【0020】本発明において調湿剤を用いる場合、調湿剤の使用量としては、少なくともガスバリア性の密閉容器内の相対湿度を各保存物品に対し所定の値に保つために必要な量であり、好ましくは、その量の1.1~500倍の範囲である。

【0021】本発明のガスバリア性の密閉容器は、目的に応じて、例えば、プラスチックス容器、フィルム袋、金属容器、ガラス容器等で、ガスバリア性の高い容器が望ましい。例えばフィルム袋を例にとると、アルミニウム箔等の金属箔をラミネートしたフィルムや、酸化珪素や酸化アルミニウム等を蒸着したラミネートフィルム等のガスバリア性の高い材質の使用がより好ましい。ガスバリア性密閉容器のガスバリア性としては、25℃、60%RHにおける酸素透気度が10ml/・Day・atm以下であり、かつ、40℃、90%RHにおける水蒸気透過度が1g/・Day以下であることが好ましい。一方、保存物品を密閉保存するに際し、窒素、アルゴン等の乾燥不活性ガスで容器内を置換してもよく、ガス置換は、酸素吸収剤、ガス吸収剤、脱湿剤の使用量の低減につながる。

[0022]

【実施例】以下に本発明の実施例を示し、さらに具体的 に説明する。なお、本発明は、これらの実施例に限定さ れるものではない。

【0023】実施例1

主剤として液状ブタジエンオリゴマー1.10g、Cu、Fe、Co、Ni、Cr、Mn からなる群から選ばれる少なくとも1 種の塩としてナフテン酸Mn 溶液(Mn:6wt%)18.6mg、y にCa、y とy ともy なる群から選ばれる少なくともy 1 種の塩としてナフテ 40

8

ン酸Zn溶液 (Zn:8wt%) 14.0mgを混合し 均一溶液 (Mn:0.1wt%、Zn:0.1wt%) を得る。この均一溶液を天然ゼオライト3. 38gに担 持した脱酸素用組成物を通気性包装材料(紙/開孔ポリ エチレン 内寸45mm×90mm)の小袋に充填した 後、小袋の周囲をヒートシールして脱酸素剤包装体を製 造した。この脱酸素剤包装体を25℃、60%RHの空 気500mlとともにアルミニウム箔ラミネートプラス チックフィルム袋(サイズ220mm×300mm、以 下「A1袋」という)に封入した。この袋を25℃、6 0%RHの雰囲気で保存し、脱酸素時間(系内酸素濃度 が0.1%以下になるまでの時間)を測定した。その結 果を表1に示す。また、これとは別の新たな脱酸素剤包 装体を25℃、60%RHの空気90ml(酸素18m 1) とともにA1袋に封入し、24時間後に系内酸素濃 度が0.1%以下になり、18mlの酸素を吸収したこ とを確認した後、A1袋より取り出した脱酸素剤包装袋 を新たに25℃、60%RHの空気500mlとともに A1袋に直ちに封入し、18m1の酸素を吸収した後の 脱酸素時間を測定した。この結果も表1に示す。

【0024】実施例2

実施例1でナフテン酸Mnにかえてトール油脂肪酸Mnを用いる以外は実施例1と同じにして行った。結果を表1に示す。

【0025】比較例1

実施例1でナフテン酸2n溶液を加えない以外は実施例 1と同じにして行った。結果を表1に示す。

【0026】比較例2

実施例1でナフテン酸Mn溶液を加えない以外は実施例 1と同じにして行った。結果を表1に示す。

【0027】実施例1は2nを加えることにより比較例1に比べて酸素吸収速度は向上し、18mlの酸素吸収後の酸素吸収速度の低下も抑制された。実施例2はナフテン酸Mnをトール油脂肪酸Mnに変えたが、効果は同様であった。また、比較例2では、ナフテン酸Mn溶液を加えずナフテン酸2nを加えただけであるが、酸素吸収は促進されなかった。

[0028]

【表 1】

	実施例1	実施例2	比較例1	比較例2
主剤	液状プタジ エンオリコ・マー	液状プタジ エンオリコ・マー	液状プタジ エンオリコ゚マー	液状プタシ エンオリコ・マー
Cu、Fe Co、Ni Cr、Mn からなる群	ナフテン酸 Mn	トール油 脂肪酸 Mn	ナフテン酸 Mn	なし
Ca、Pb、Zn からなる群	ナフテン酸 Zn	ナフテン酸 Zn	なし	ナフテン酸 Zn
酸素 0.1%に 到達するまで の時間(酸素 18ml吸収前)		10時間	- 18時間	336時間以上
酸素 0.1%に 到達するまで の時間(酸素 18ml吸収後	1014 (E)	16時間	28時間	-

【0029】実施例3

主剤として液状イソプレンオリゴマー1.10g、Cu、Fe、Co、Ni、Cr、Mnからなる群から選ばれる少なくとも1種の塩としてナフテン酸Co溶液(Co:6wt%)18.6mg、更にCa、Pb、Znからなる群から選ばれる少なくとも1種の塩としてナフテン酸Pb溶液(Pb:24wt%)4.7mgを混合し均一溶液(Co:0.1wt%、Pb:0.1wt%)を得る。この混合溶液を用いる以外は実施例1と同様にして行った。結果を表2に示す。

【0030】比較例3

実施例3でナフテン酸Pb溶液を加えない以外は実施例3と同じにして行った。結果を表2に示す。

【0031】比較例4

実施例3でナフテン酸Co溶液を加えない以外は実施例3と同じにして行った。結果を表2に示す。

【0032】実施例4

主剤としてスクアレン1.10g、Cu、Fe、Co、Ni、Cr、Mnからなる群から選ばれる少なくとも1種の塩としてオレイン酸Cu溶液(Cu:8wt%)14.0mg、更にCa、Pb、Znからなる群から選ばれる少なくとも1種の塩としてナフテン酸Ca溶液(Ca:3wt%)37.3mgを混合し均一溶液(Cu:0.1wt%、Ca:0.1wt%)を得る。この混合溶液を用いる以外は実施例1と同様にして行った。結果を表2に示す。

【0033】比較例5

実施例4でナフテン酸Ca溶液を加えない以外は実施例4と同じにして行った。結果を表2に示す。

【0034】比較例6

実施例4でオレイン酸Cu溶液を加えない以外は実施例4と同じにして行った。結果を表2に示す。

[0035]

【表2】

	実施例3	比較例3	比較例4	実施例4	比較別5	比較例6
主剂		液状イソプ レンオタゴマー	液状イソプ レンオタコ゚マー	スクアレン	スクアレン	29765
Cu、Fe Co、Ni Cr、Mn からなる群	ナフテン酸 Co	ナフテン最 Co	なし	オレイン酫 Cu	オレイン酸 Cu	\$ L
Ca、Pb、Zn からなる群	ナフテン酸 Pb	なし	ナフテン酸 Pb	ナフテン酸 Ca	なし	ナフテン酸 Ca
酸素0.1%に 到達するまで の時間(酸素 18mi吸収前)	48時間	72時間	336時間以上	30時間	40時間	336時間以上
騒素0.1%に 到達するまで の時間(酸素 18mi吸収後)	64時間	128時間	_	40時間	72時間	_

【0036】実施例5

主剤として大豆油1.10g、Cu、Fe、Co、Ni、Cr、Mnからなる群から選ばれる少なくとも1種の塩としてナフテン酸Fe溶液(Fe:5wt%)22.4mg、更にCa、Pb、Znからなる群から選ばれる少なくとも1種の塩としてオクチル酸Zn溶液(Zn:8wt%)14.0mgを混合し均一溶液(Fe:0.1wt%、Zn:0.1wt%)を得る。この混合溶液を用いる以外は実施例1と同様にして行った。結果

11

を表3に示す。

【0037】比較例7

実施例5でオクチル酸Zn溶液を加えない以外は実施例 30 5と同じにして行った。結果を表3に示す。

【0038】比較例8

実施例5でナフテン酸Fe溶液を加えない以外は実施例5と同じにして行った。結果を表3に示す。

[0039]

【表3】

	実施例5	比較例7	比較例8
主剤	大豆油	大豆油	大豆油
Cu、Fe Co、Ni Cr、Mn からなる群	ナフテン酸 Fe	ナフテン酸 Fe	なし
Ca、Pb、Zn からなる群	オクチル酸 Zn	なし	オクチル酸 Zn
酸素 0.1%に 到達するまで の時間(酸素 18ml吸収前)	18時間	24時間	336時間 以上
酸素 0.1%に 到達するまで の時間(酸素 18ml吸収後)	22時間	30時間	_

【0040】実施例6

主剤としてトール油脂肪酸1.10g、Cu、Fe、Co、Ni、Cr、Mnからなる群から選ばれる少なくとも1種の塩としてNiアセチルアセトナート(Ni:2 300wt%)56mg、更にCa、Pb、Znからなる群から選ばれる少なくとも1種の塩としてZnアセチルアセトナート(Zn:25wt%)45mgを混合し均一溶液(Ni:1wt%、Zn:1wt%)を得る。この混合溶液を用いる以外は実施例1と同様にして行った。結果を表4に示す。

【0041】比較例9

実施例6でZnアセチルアセトナートを加えない以外は 実施例6と同じにして行った。結果を表4に示す。

【0042】比較例10

実施例6でNiアセチルアセトナートを加えない以外は 実施例6と同じにして行った。結果を表4に示す。

【0043】 実施例7

主剤としてトール油脂肪酸 0.88 gと液状イソプレンオリゴマー(数平均分子量 13,000、粘度 13,000 cP)0.22 g、Cu、Fe、Co、Ni、Cr、Mnからなる群から選ばれる少なくとも1種の塩と

してCrアセチルアセトナート (Cr:15wt%) 75mg、更にCa、Pb、Znからなる群から選ばれる少なくとも1種の塩としてZnアセチルアセトナート (Zn:25wt%) 45mgを混合し均一溶液 (Cr:1wt%、Zn:1wt%) を得る。この混合溶液を用いる以外は実施例1と同様にして行った。結果を表4に示す。

【0044】比較例9

実施例7でZnアセチルアセトナートを加えない以外は 実施例7と同じにして行った。結果を表4に示す。

【0045】実施例6はCa、Pb、Znからなる群から選ばれる少なくとも1種の塩としZnを加えることにより比較例9に比べて酸素吸収速度は向上し、18mlの酸素吸収後の酸素吸収速度の低下も抑制された。また、実施例7もCa、Pb、Znからなる群から選ばれる少なくとも1種の塩としZnを加えることにより比較例10に比べて酸素吸収速度は向上し、18mlの酸素吸収後の酸素吸収速度の低下も抑制された。

[0046]

【表4】

16

	実施例6	比較例9	比較例10	実施例7	比較例11
主剤	}-ル油脂 肪酸	}-ル油脂 防酸	}-ル油脂 肪酸	}−ル油脂 防酸÷液 状イソプレン オリゴマ−	トール油脂 肪酸+液 状イソプレン オリゴマー
Cu、Fe Co、Ni Cr、Mn からなる群	Ni7セチル7 セトナート	Ni7セチル7 セトナート	なし	Cr7tf17 tlt-l	Cr72717 217-1
Ca、Pb、Zn からなる群	Zn7セチル7 セトナート	なし	2n7セテル7 セトナート	2n7t7h7 tłj-ł	なし
登集0.1%に 到達するまで の時間(酸素 18ml吸収削)	36時間	50時間	336時間 以上	32時間	41時間
酸素 0.1%に 到達するまで の時間(酸素 18ml吸収後)	45時间	67時間	-	44時間	59時間

【0047】実施例8~実施例15および比較例12、

比較例13

30

実施例1におけるMnとZnの機度を表5および表6の 滯度

金属機度 $(wt\%) = \pm \pm \times 100$ (被酸化主剤+Cu、Fe、Co、Ni、Cr、Mnからなる群から選ばれる少なくとも1種の塩+Ca、Pb、Znからなる群から選ばれる少なくとも1種の塩)

になるように、ナフテン酸Mnの量とナフテン酸Znの量を変更した以外は実施M1と同じにして行った。結果を表5および表6に示す。

[0048]

40

【表 5】

18

	要集例	異准集	実施例	実施例	実性例	異態例	比较例
	В	9	1	10	11	12	1
主祭		数数プラ ジェンオリ			注伏です ジェンオリ	液状です シエンオリ	
I m	3,5-	3'7-	3'7-	3.5-	-7'נ	3,5-	-5.C
Mn复度 (ナフテン番 Mn)	0. 1 wt%	0. 1 wt%	0. 1 wt%	0. 1 wt%	0. 1 wt%	0. 1 wt%	0. 1 wt%
Zn温度 (ナフテン酸Zn)	0. 01 wt%	0. 05 wt%	0. 1 wt%	0. 5 wt%	1 wt%	2 wt%	なし
Mn/Znの全 員重量比	1/	1/	1/1	1/5	1/10	1/20	_
酸素 0.1 %に到 速するまでの時 間(酸素 18m線 収割)	11515181	10時間	10時間	8時間	7時間	10時間	18時間
酸素 0.1%に到達するまでの時間(酸素 18ml吸収集)	12 A 15 M	16時間	15時間	12時間	10時間	14時間	28時間

17

【0049】 【表6】

20

10

馬夏度 =

被離化主剤+ナフテン酸Mn+ナフテン酸Zn

金属 × 100

30

40

	実施例13	比較例12	実施例14	比較例13
主剤	液状プタジエ ンオリコ゚マー	遊状でタジエ ンオタコ゚マー	液状プタジェ ンオリコマー	液状プラジュ ンオリコ・マー
Min温度 (†7元ン配Mn)	0. 05 wt%	0. 05 wt%	0. 2 wt%	0. 2 wt%
Zn違度 〔ナフテン酸Zn〕	0. 05 wl%	-	0. 2 wt%	-
Mn/Znの金 具重量比	1/1	_	1/1	_
酸素0.1%に到 選するまでの時間(酸素18ml吸 収前)	18時間	24時間	14時間	16時間
酸素 0.1%に到達するまでの時間(酸素 18ml吸収後)	1 77 Mar (c)	30時間	18時間	26時間

金属連度 = 金属 × 100 (wt%) 被酸化主剤+ナフテン酸Mn+ナフテン酸Zn

【0050】実施例15

実施例1の脱酸素剤包装袋の中に、脱湿剤として酸化カルシウム4.0gを加える以外は実施例1と同じにして行った。結果を表7に示す。

【0051】実施例16

実施例1の脱酸素剤包装袋の中に、脱臭剤破砕状活性炭 0.68gを加える以外は実施例1と同じにして行っ た。結果を表7に示す。 30 【0052】実施例17

グリセリン92gに水8gをよく混ぜた混合物を、珪藻 土300gに含浸させ調湿剤を作製した。実施例1の脱 酸素剤包装袋の中に、この調湿剤9.0gを加える以外 は実施例1と同じにして行った。結果を表7に示す。

[0053]

【表7】

	d 45 70 a		- 15 Bi	
	実施例1	実施例15	実施例16	実施例17
主剤	液状プタシ゚エ ンオリコ゚マー	液状プタジェ ンオリコ'マー	液状プタジエ ンオリゴマー	液状プタジエ ンオリコ゚マー
Cu、Fe、Co Ni、Cr、Mn からなる群	ナフテン酸 Mn	ナフテン酸 Mn	ナフテン酸 Mn	ナフテン酸 Mn
Ca、Pb、Zn からなる群	ナフテン酸 Zn	ナフテン酸 Zn	ナフテン酸 Zn	ナフテン酸 Zn
脱酸素用 組成物以外の 同対物質	なし	設 温 剤 (酸 化 カルシウム)	股臭剂 (破砕状 活性炭)	調温剤 (グリセリン +水 /珪藻土)
酸素0.1%に到 達するまでの時 間(酸素18ml吸 収前)	10時間	10時間	10時間	10時間
酸素0.1%に到 建するまでの時間(酸素18ml吸 収後)	16時間	16時間	16時間	16時間

[0054]

を有した脂肪族炭化水素および/または不飽和脂肪酸化 合物に対しCu、Fe、Co、Ni、Cr、Mnからな

る群から選ばれる少なくとも1種の塩と共にCa、P 【発明の効果】本発明では、被酸化主剤である不飽和基 30 b、Znからなる群から選ばれる少なくとも1種の塩を 添加することにより酸素吸収速度が大幅に促進された酸 素吸収用組成物が得られる。

フロントページの続き

(72)発明者 渡辺 哲志

東京都葛飾区新宿6丁目1番1号 三菱瓦

斯化学株式会社東京研究所内

(72)発明者 馬場 純子

東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所内

Fターム(参考) 3E067 AA11 AB01 AB41 AB49 AB81 AB99 EE25

> 4G066 AA05B AA17B AA61C AA70C AB01B AB06B AB07A AB23B BA12 BA13 BA42 CA02 CA37 CA43 EA07 FA03 FA12 FA37

4J002 AC011 AC031 AC071 AC081

ACO91 AFO31 BB171 BB181

BB201 BC031 BL011 BL021

BM001 CE001 CF011 CF211

CF241 CN021 DD068 DD077

DF037 DF038 DG038 DG047

DG058 EE047 EE048 EF046

EF056 EG038 EG047 EG087

EG088