Clase XI: Programación Lineal Métodos Computacionales

Métodos Computacionales

Clase XI: Programación Lineal

Programación Lineal

Programación lineal

- Un problema de programación lineal consta en maximizar (o minimizar) una función objetivo $f(x_1, x_2, ..., x_n): \mathbb{R}^n \to \mathbb{R}$, sujeto a un sistema lineal de inecuaciones en las variables $x_1, x_2, ..., x_n$
- Típicamente el sistema tiene muchas variables libres y se requiere encontrar, dentro del conjunto de soluciones, la que maximice (o minimice) la función objetivo $f(\mathbf{x})$

- La compañía PastoPronto combina dos tipos de mezclas de semillas de pasto, EverGreen y QuickGreen:
 - Cada bolsa de <u>EverGreen</u> contiene 3 kilos de semillas de festuca,
 I kilo de semillas de centeno y I kilo de semillas de pasto azul.
 - Cada bolsa de <u>QuickGreen</u> contiene **2 kilo**s de semillas de festuca, **2 kilos** de semillas de centeno y **I kilo** de semillas de pasto azul.

- La compañía tiene 1,200 kilos de semillas de festuca, 800 kilos de semillas de centeno y 450 kilos de semillas de pasto azul disponibles para poner en sus mezclas.
- La empresa obtiene una ganancia de \$2 por cada bolsa de EverGreen y \$3 por cada bolsa de QuickGreen que produce.

Objetivo: plantear el problema matemático para determinar el número de bolsas de cada mezcla que debe hacer *PastoPronto* para maximizar su ganancia.

Paso I: Identificar y plantear la función objetivo:

- Paso I: Identificar y plantear la función objetivo:
 - En el enunciado, "maximizar la ganancia" identifica el objetivo del problema.

- Paso I: Identificar y plantear la función objetivo:
 - En el enunciado, "maximizar la ganancia" identifica el objetivo del problema.

 x_1 : cant. de bolsas de EverGreen

 x_2 : cant. de bolsas de QuickGreen

- Paso I: Identificar y plantear la función objetivo:
 - En el enunciado, "maximizar la ganancia" identifica el objetivo del problema:

 x_1 : cant. de bolsas de EverGreen

 x_2 : cant. de bolsas de QuickGreen

- Queremos maximizar la ganancia, que viene dada por la función:

$$2x_1 + 3x_2 \leftarrow$$
 función objetivo

- Paso 2: Plantear las restricciones como inecuaciones
 - Las restricciones en este problema son los ingredientes que tienen una cantidad limitada.

- Paso 2: Plantear las restricciones como inecuaciones
 - Las restricciones en este problema son los ingredientes que tienen una cantidad limitada.

Festuca:

- -Cantidad total: 1200 kilos
- -Consumo en EverGreen: 3 kilos por bolsa
- -Consumo en QuickGreen: 2 kilos por bolsa

- Paso 2: Plantear las restricciones como inecuaciones
 - Las restricciones en este problema son los ingredientes que tienen una cantidad limitada.

Festuca:

- -Cantidad total: 1200 kilos
- -Consumo en EverGreen: 3 kilos por bolsa
- -Consumo en QuickGreen: 2 kilos por bolsa

$$3x_1 + 2x_2 \le 1,200$$
 restricción Festuca

- Paso 2: Plantear las restricciones como inecuaciones
 - Las restricciones en este problema son los ingredientes que tienen una cantidad limitada.

Centeno:

- -Cantidad total: 800 kilos
- -Consumo en EverGreen: I kilo por bolsa
- -Consumo en QuickGreen: 2 kilos por bolsa

$$x_1 + 2x_2 < 800$$
 — restricción Centeno

- Paso 2: Plantear las restricciones como inecuaciones
 - Las restricciones en este problema son los ingredientes que tienen una cantidad limitada.

Pasto azul:

- -Cantidad total: 450 kilos
- -Consumo en EverGreen: I kilo por bolsa
- -Consumo en QuickGreen: I kilo por bolsa

$$x_1 + x_2 < 450$$
 restricción Pasto azul

■ Paso 3: Buscar otras restricciones adicionales

- Paso 3: Buscar otras restricciones adicionales
 - La cantidad a producir de *EverGreen* y *QuickGreen* tienen que ser positivas:

$$\begin{array}{c} x_1 \geq 0 \\ x_2 \geq 0 \end{array}$$
 —restricciones adicionales

■ Problema:

Maximizar
$$2x_1 + 3x_2$$
 (función objetivo)
sujeto a $3x_1 + 2x_2 \le 1,200$ (festuca)
 $x_1 + 2x_2 \le 800$ (centeno)
 $x_1 + x_2 \le 450$ (pasto azul)
con $x_1 > 0, x_2 > 0$.

Programación lineal: Ejercicio

- YPF tiene dos refinerías que producen tres grados de nafta sin plomo:
 - Cada día, la refinería de Plaza Huincul produce 12000 litros de grado regular, 4000 litros de premium y 1000 litros de súper, a un costo de \$3500.
 - Cada día, la refinería de La Plata produce 4000 litros de regular, 4000 litros de premium y 5000 litros de súper, a un costo de \$3000.

Programación lineal: Ejercicio

Se recibe un pedido de 48000 litros de regular, 32000 litros de premium y 20000 litros de súper.

Objetivo: Plantear el problema matemático para determinar el número de días que debe operar cada refinería para surtir el pedido al menor costo.

Programación lineal: Ejercicio

■ Problema:

```
Minimizar 3,500x_1 + 3,000x_2 (función objetivo) sujeto a 12,000x_1 + 4,000x_2 \ge 48,000 (regular) 4,000x_1 + 4,000x_2 \ge 32,000 (premium) 1.000x_1 + 5.000x_2 \ge 20.000 (super) con x_1 \ge 0, x_2 \ge 0.
```

Dados los vectores **b**, **c**, y la matriz A: $\mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$ en \mathbb{R}^m , $\mathbf{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$ en \mathbb{R}^n , $A = [a_{ij}]$ de $m \times n$ Encontrar un vector **x**: $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ en \mathbb{R}^n

que maximice:
$$f(x_1,...,x_n) = c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

sujeto a:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$$

y:
$$x_i > 0 \text{ for } j = 1, \dots, n$$

En forma matricial:

$$\text{Maximizar } f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} \tag{1}$$

sujeto a las restricciones
$$A\mathbf{x} \leq \mathbf{b}$$
 (2)

$$y \mathbf{x} > \mathbf{0} \tag{3}$$

En forma matricial:

Maximizar
$$f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$$
 (1)
sujeto a las restricciones $A\mathbf{x} \leq \mathbf{b}$ (2)
 $\mathbf{v} \mathbf{x} > \mathbf{0}$ (3)

Cualquier vector \mathbf{x} que satisfaga (2) y (3) se llama **solución factible** y el conjunto de todas las soluciones factibles, denotado por \mathcal{F} se llama el **conjunto factible**.

En forma matricial:

$$\text{Maximizar } f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} \tag{1}$$

sujeto a las restricciones $A\mathbf{x} \leq \mathbf{b}$ (2)

$$y \mathbf{x} > \mathbf{0} \tag{3}$$

Un vector $\bar{\mathbf{x}}$ en \mathcal{F} es una solución óptima si:

$$f(\overline{\mathbf{x}}) = \max_{\mathbf{x} \in \mathcal{F}} f(\mathbf{x})$$

Problema Canónico: Minimización

- El problema canónico se enuncia como una maximización.
- Para resolver min $h(\mathbf{x})$, simplemente maximizamos $-h(\mathbf{x})$.

Problema Canónico: Minimización

- El problema canónico se enuncia como una maximización.
- Para resolver min $h(\mathbf{x})$, simplemente maximizamos $-h(\mathbf{x})$.
- Las restricciones del tipo:

$$a_{i1}x_1 + \cdots + a_{in}x_n > b_i$$

se reemplazan por:

$$-a_{i1}x_1 - \cdots - a_{in}x_n \leq -b_i$$

Problema Canónico: Restricciones de Igualdad

- Pueden existir restricciones de igualdad que no están explícitamente contempladas en el problema canónico.
- Cualquier igualdad del tipo:

$$a_{i1}x_1 + \cdots + a_{in}x_n = b_i$$

se puede reemplazar por dos desigualdades:

$$a_{i1}x_1 + \dots + a_{in}x_n \le b_i$$
$$-a_{i1}x_1 - \dots - a_{in}x_n \le -b_i$$

- En un problema canónico de programación lineal dos cosas pueden resultar en no encontrar una solución:
 - Problemas infactibles: Las restricciones son inconsistentes y ${\mathcal F}$ es el conjunto vacío.
 - Problemas no acotados: La función objetivo $f(\mathbf{x})$ toma valores arbitrariamente grandes en \mathcal{F} y el máximo no existe.

Considerar el problema:

$$egin{array}{ll} ext{Maximizar} & 5x \ ext{sujeto a} & x \leq 3 \ & -x \leq -4 \ & x \geq 0 \ \end{array}$$

Considerar el problema:

$$egin{array}{ll} ext{Maximizar} & 5x \ ext{sujeto a} & x \leq 3 \ & -x \leq -4 \ & x \geq 0 \ \end{array}$$

El problema es infactible ya que no existe un x tal que $x \le 3$ y $x \ge 4$.

Considerar el problema:

$$\begin{array}{ll} \text{Maximizar} & 5x \\ \text{sujeto a} & -x \leq 3 \\ & x \geq 0 \end{array}$$

Considerar el problema:

$$egin{array}{ll} ext{Maximizar} & 5x \ ext{sujeto a} & -x \leq 3 \ & x \geq 0 \ \end{array}$$

El problema es **no acotado** ya que 5x puede ser arbitrariamente grande con la restricción $x \ge 0$ ($y \ge -3$)

Método de Resolución (Gráfico)

Teorema

- Si el conjunto factible \mathcal{F} es no vacío y la función objetivo tiene cota superior en \mathcal{F} , entonces el problema canónico de programación lineal tiene **al menos una solución óptima**.
- Además, al menos una de las soluciones óptimas es un **punto** extremo de \mathcal{F} .

Ejemplo de Resolución

Problema:

$$f(x_1,x_2)=2x_1+3x_2$$
 sujeto a $x_1\leq 30$ $x_2\leq 20$ $x_1+2x_2\leq 54$ $con\ x_1\geq 0, x_2\geq 0.$

Ejemplo de Resolución

Problema:

(x_1, x_2)	$2x_1 + 3x_2$
(0, 0)	0
(30, 0)	60
(30, 12)	96 ←
(14, 20)	88
(0, 20)	60

Problema:

Maximizar sujeto a

con
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$
.

$$egin{aligned} f\left(x_1,x_2,x_3
ight) &= 2x_1 + 3x_2 + 4x_3 \ x_1 + x_2 + x_3 &\leq 50 \ x_1 + 2x_2 + 4x_3 &\leq 80 \end{aligned}$$

Restricciones:

$$x_1 + x_2 + x_3 \le 50$$

$$x_1 + 2x_2 + 4x_3 \le 80$$

Restricciones:

El conjunto factible \mathcal{F} está definido por los vértices A, B, C, D, E, y 0

Resolvemos B y E:

$$egin{cases} x_1+x_2+x_3=50 \ x_1+2x_2+4x_3=80 \ x_2=0 \end{cases} \Rightarrow egin{cases} x_1+x_2=50 \ x_1+2x_2=80 \end{cases} \Rightarrow B=(20,30,0)$$

$$egin{cases} x_1+x_2+x_3=50 \ x_1+2x_2+4x_3=80 \ x_2=0 \end{cases} \Rightarrow egin{cases} x_1+x_3=50 \ x_1+4x_3=80 \end{cases} \Rightarrow E=(40,0,10)$$

Evaluamos el objetivo en puntos extremos:

$$f(x_1, x_2, x_3) = 2x_1 + 3x_2 + 4x_3$$

$$egin{aligned} f\left(\mathbf{0}
ight) &= 0 & f\left(C
ight) = 120 \ f\left(A
ight) &= 100 & f\left(D
ight) = 80 \ f\left(B
ight) &= 130 & f\left(E
ight) = 120 \end{aligned}$$

Encontramos el máximo:

$$f(x_1, x_2, x_3) = 2x_1 + 3x_2 + 4x_3$$

$$egin{aligned} f\left(\mathbf{0}
ight) &= 0 & f\left(C
ight) = 120 \ &f\left(A
ight) = 100 & f\left(D
ight) = 80 \ &f\left(E
ight) = 120 \end{aligned}$$

Método Simplex

- Una empresa de ventas minoristas tiene dos almacenes y cuatro comercios.
- Se vende un modelo particular de jacuzzi en los cuatro comercios, y cada uno ha realizado un pedido a la sede de la empresa para un cierto número de estos jacuzzis.
- La sede determina que los almacenes tienen suficientes jacuzzis y pueden enviarlos de inmediato.

- Las distancias desde los almacenes hasta los comercios varían, y el costo de transportar un jacuzzi depende de la distancia.
- El problema consiste en decidir un cronograma de envío que minimice el costo total de envío.

- Definimos x_{ij} como el número de unidades (jacuzzis) que se envían desde el almacén i a la tienda j.
- Sean a_1 y a_2 los números de unidades disponibles en los almacenes I y 2, y sean r_1 , ..., r_4 los números de unidades solicitadas por las diferentes tiendas.

Entonces los X_{ij} deben cumplir las siguientes ecuaciones:

$$egin{aligned} x_{11} + x_{12} + x_{13} + x_{14} & \leq a_1 \ x_{21} + x_{22} + x_{23} + x_{24} & \leq a_2 \end{aligned}$$

Entonces los X_{ij} deben cumplir las siguientes ecuaciones:

$$egin{aligned} x_{11} + x_{12} + x_{13} + x_{14} & \leq a_1 \ x_{21} + x_{22} + x_{23} + x_{24} & \leq a_2 \ x_{11} + x_{21} & = r_1 \ x_{12} + x_{22} & = r_2 \ x_{13} + x_{23} & = r_3 \ x_{14} + x_{24} & = r_4 \end{aligned}$$

Entonces los X_{ij} deben cumplir las siguientes ecuaciones:

$$egin{aligned} x_{11} + x_{12} + x_{13} + x_{14} & \leq a_1 \ x_{21} + x_{22} + x_{23} + x_{24} & \leq a_2 \ x_{11} + x_{21} & = r_1 \ x_{12} + x_{22} & = r_2 \ x_{13} + x_{23} & = r_3 \ x_{14} + x_{24} & = r_4 \ x_{ij} & \geq 0 ext{ para } i = 1, 2 ext{ y } j = 1, \ldots, 4 \end{aligned}$$

El objetivo es minimizar la función:

$$c_{11}x_{11} + c_{12}x_{12} + c_{13}x_{13} + c_{14}x_{14} + c_{21}x_{21} + c_{22}x_{22} + c_{23}x_{23} + c_{24}x_{24}$$

donde c_{ij} es el costo de trasladar una unidad de mercadería desde el almacén i, hasta el comercio j.

Idea general del método Simplex

- 1. **Seleccionar un punto** extremo \mathbf{x} del conjunto factible \mathcal{F} .
- 2. Considerar todos los bordes de \mathcal{F} que se unen en \mathbf{x} . Si la función objetivo f no crece al moverse a lo largo de ninguno de estos bordes, entonces \mathbf{x} es una solución óptima.
- 3. Si f crece al moverse a lo largo de uno o más de los bordes, entonces seguir **el camino que ofrece el mayor aumento** y elegir el punto extremo de \mathcal{F} en el extremo opuesto.
- 4. Repetir el proceso (desde el paso 2).

- Dado que el valor de f aumenta en cada paso, el camino no pasará dos veces por el mismo punto extremo.
- Como hay un número finito de puntos extremos, este proceso llegará a una solución óptima (si existe) en un número finito de pasos.

Si el problema es no acotado, eventualmente el camino alcanzará un borde infinito en el paso 3 a lo largo del cual f crece sin límites.

■ El método simplex comienza transformando cada inecuación en una ecuación:

■ El método simplex comienza transformando cada inecuación en una ecuación:

$$5x_1 + 7x_2 \le 80 \longrightarrow 5x_1 + 7x_2 + x_3 = 80$$

El método simplex comienza transformando cada inecuación en una ecuación:

$$5x_1 + 7x_2 \le 80 \longrightarrow 5x_1 + 7x_2 + x_3 = 80$$

Variable "de holgura"

$$2x_1 + 3x_2 + 4x_3 \le 60 \ 3x_1 + x_2 + 5x_3 \le 46 \ x_1 + 2x_2 + x_3 \le 50$$

$$2x_1 + 3x_2 + 4x_3 \le 60$$
 $2x_1 + 3x_2 + 4x_3 + x_4 = 60$
 $3x_1 + x_2 + 5x_3 \le 46$ $3x_1 + x_2 + 5x_3 + x_5 = 46$
 $x_1 + 2x_2 + x_3 \le 50$ $x_1 + 2x_2 + x_3 + x_6 = 50$

$$2x_1 + 3x_2 + 4x_3 \le 60$$
 $2x_1 + 3x_2 + 4x_3 + x_4 = 60$
 $3x_1 + x_2 + 5x_3 \le 46$ $3x_1 + x_2 + 5x_3 + x_5 = 46$
 $x_1 + 2x_2 + x_3 \le 50$ $x_1 + 2x_2 + x_3 + x_6 = 50$

Solución:
$$x_1=x_2=x_3=0, \quad x_4=60, \quad x_5=46, \quad \text{y} \quad x_6=50$$

■ Dado un sistema de inecuaciones $A\mathbf{x} \leq \mathbf{b}$, A de $m \times n$, la adición de m variables de holgura produce un sistema lineal de m ecuaciones y n+m variables.

- Dado un sistema de inecuaciones $A\mathbf{x} \leq \mathbf{b}$, A de $m \times n$, la adición de m variables de holgura produce un sistema lineal de m ecuaciones y n+m variables.
- Una solución a este sistema se llama solución básica si, a lo sumo, m variables son distintas de 0.

- Dado un sistema de inecuaciones $A\mathbf{x} \leq \mathbf{b}$, A de $m \times n$, la adición de m variables de holgura produce un sistema lineal de m ecuaciones y n+m variables.
- Una solución a este sistema se llama solución básica si, a lo sumo, m variables son distintas de 0.
- Si además, cada variable toma un valor no negativo, se llama solución básica factible.

- Dado un sistema de inecuaciones $A\mathbf{x} \leq \mathbf{b}$, A de $m \times n$, la adición de m variables de holgura produce un sistema lineal de m ecuaciones y n+m variables.
- Una solución a este sistema se llama solución básica si, a lo sumo, m variables son distintas de 0.
- Si además, cada variable toma un valor no negativo, se llama solución básica factible → puntos extremos!

$$2x_1 + 3x_2 + 4x_3 \le 60$$
 $2x_1 + 3x_2 + 4x_3 + x_4 = 60$
 $3x_1 + x_2 + 5x_3 \le 46$ $3x_1 + x_2 + 5x_3 + x_5 = 46$
 $x_1 + 2x_2 + x_3 \le 50$ $x_1 + 2x_2 + x_3 + x_6 = 50$

Solución:
$$x_1 = x_2 = x_3 = 0$$
, $x_4 = 60$, $x_5 = 46$, y $x_6 = 50$

$$2x_1 + 3x_2 + 4x_3 \le 60$$
 $2x_1 + 3x_2 + 4x_3 + x_4 = 60$
 $3x_1 + x_2 + 5x_3 \le 46$ $3x_1 + x_2 + 5x_3 + x_5 = 46$
 $x_1 + 2x_2 + x_3 \le 50$ $x_1 + 2x_2 + x_3 + x_6 = 50$

Solución básica factible:
$$x_1 = x_2 = x_3 = 0$$
, $x_4 = 60$, $x_5 = 46$, y $x_6 = 50$

Terminología

Es habitual referirse a las variables no nulas $(x_4, x_5 y x_6)$ en el sistema anterior como variables básicas (cada una tiene un coeficiente de 1 y aparecen en solo una ecuación).

Terminología

- Es habitual referirse a las variables no nulas $(x_4, x_5 y x_6)$ en el sistema anterior como variables básicas (cada una tiene un coeficiente de 1 y aparecen en solo una ecuación).
- En el ejemplo, diríamos que las variables básicas "están" en la solución y que las variables x_1 , x_2 y x_3 están "fuera" de la solución.

Terminología

- Es habitual referirse a las variables no nulas $(x_4, x_5 y x_6)$ en el sistema anterior como variables básicas (cada una tiene un coeficiente de 1 y aparecen en solo una ecuación).
- En el ejemplo, diríamos que las variables básicas "están" en la solución y que las variables x_1 , x_2 y x_3 están "fuera" de la solución.
- En un problema de programación lineal, esta solución probablemente no sería óptima ya que solo las variables de holgura son distintas de cero.

Pivoteo de variables

- Un procedimiento estándar en el método simplex es cambiar el papel que juega una variable en una solución.
- Ejemplo: introducir x_2 en la solución del sistema:

$$2x_1 + 3x_2 + 4x_3 + x_4 = 60$$

 $3x_1 + x_2 + 5x_3 + x_5 = 46$
 $x_1 + 2x_2 + x_3 + x_6 = 50$

$$x_1 = x_2 = x_3 = 0$$
, $x_4 = 60$, $x_5 = 46$, $y = x_6 = 50$

Pivoteo de variables

■ En general, para introducir la variable x_k en la solución usando la ecuación p, pivotando en la entrada $a_{nk}x_k$ de un sistema:

```
egin{aligned} a_{11}x_1 + \cdots + a_{1k}x_k + \cdots + a_{1n}x_n &= b_1 \ dots \ a_{i1}x_1 + \cdots + a_{ik}x_k + \cdots + a_{in}x_n &= b_i \ dots \ a_{m1}x_1 + \cdots + a_{mk}x_k + \cdots + a_{mn}x_n &= b_n \end{aligned}
```

- El coeficiente a_{pk} de X_k tiene que ser positivo.
- El cociente b_p / a_{pk} tiene que ser el más chico entre los cocientes b_i/a_{ik} (siempre que $a_{ik}>0$)

Pivoteo de variables

Determinar qué ecuación usar como pivote para que X_2 aparezca en la solución:

$$2x_1 + 3x_2 + 4x_3 + x_4 = 60$$

 $3x_1 + x_2 + 5x_3 + x_5 = 46$
 $x_1 + 2x_2 + x_3 + x_6 = 50$

$$x_1 = x_2 = x_3 = 0$$
, $x_4 = 60$, $x_5 = 46$, $y = x_6 = 50$

- Determinar qué ecuación usar como pivote para que X_2 aparezca en la solución:
 - Los a_{nk} son todos positivos.
 - Computamos los cocientes b_p / a_{pk} :

$$\frac{b_1}{a_{12}} = \frac{60}{3} = 20, \quad \frac{b_2}{a_{22}} = 46, \quad \text{y} \quad \frac{b_3}{a_{32}} = \frac{50}{2} = 25$$

- Determinar qué ecuación usar como pivote para que X_2 aparezca en la solución:
 - Los a_{pk} son todos positivos.
 - Computamos los cocientes b_p / a_{pk} :

$$rac{b_1}{a_{12}} = rac{60}{3} = 20, \quad rac{b_2}{a_{22}} = 46, \quad ext{y} \quad rac{b_3}{a_{32}} = rac{50}{2} = 25$$

Pivotamos en la primera ecuación

- Determinar qué ecuación usar como pivote para que X_2 aparezca en la solución:
 - Construimos el nuevo sistema mediante operaciones elementales entre filas.

$$egin{array}{ll} rac{2}{3}x_1 + x_2 + rac{4}{3}x_3 + rac{1}{3}x_4 &= 20 \ rac{7}{3}x_1 + rac{11}{3}x_3 - rac{1}{3}x_4 + x_5 &= 26 \ -rac{1}{3}x_1 - rac{5}{3}x_3 - rac{2}{3}x_4 + x_6 &= 10 \end{array}$$

- Determinar qué ecuación usar como pivote para que x_2 aparezca en la solución:
 - Construimos el nuevo sistema mediante operaciones elementales entre filas.

$$egin{array}{ll} rac{2}{3}x_1 + x_2 + rac{4}{3}x_3 + rac{1}{3}x_4 &= 20 \ rac{7}{3}x_1 + rac{11}{3}x_3 - rac{1}{3}x_4 + x_5 &= 26 \ -rac{1}{3}x_1 - rac{5}{3}x_3 - rac{2}{3}x_4 + x_6 &= 10 \end{array}$$

En general es más cómodo trabajar en notación matricial:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ 2 & \boxed{3} & 4 & 1 & 0 & 0 & 60 \\ 3 & 1 & 5 & 0 & 1 & 0 & 46 \\ 1 & 2 & 1 & 0 & 0 & 1 & 50 \end{bmatrix}$$

$$x_1=x_2=x_3=0, \quad x_4=60, \quad x_5=46, \quad ext{y} \quad x_6=50$$

En general es más cómodo trabajar en notación matricial:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ \frac{2}{3} & 1 & \frac{4}{3} & \frac{1}{3} & 0 & 0 & 20 \\ \frac{7}{3} & 0 & \frac{11}{3} & -\frac{1}{3} & 1 & 0 & 26 \\ -\frac{1}{3} & 0 & -\frac{5}{3} & -\frac{2}{3} & 0 & 1 & 10 \end{bmatrix}$$

$$x_1=x_3=x_4=0,\quad x_2=20,\quad x_5=26,\quad x_6=10$$

Problema:

$$egin{array}{ll} ext{Maximizar} & 25x_1 + 33x_2 + 18x_3 \ ext{sujeto a} & 2x_1 + 3x_2 + 4x_3 \leq 60 \ & 3x_1 + x_2 + 5x_3 \leq 46 \ & x_1 + 2x_2 + x_3 \leq 50 \ ext{con } x_j \geq 0 & ext{para } j = 1, \ldots, 3. \end{array}$$

- 1. Convertir las desigualdades en igualdades usando variables de holgura.
- 2. Convertir la función objetivo en una ecuación, usando una nueva variable *M*.

■ El problema original se transforma en encontrar una solución al siguiente sistema de ecuaciones, con $x_j \ge 0$ y para la cual M tiene el mayor valor posible:

$$2x_1 + 3x_2 + 4x_3 + x_4 = 60 \ 3x_1 + x_2 + 5x_3 + x_5 = 46 \ x_1 + 2x_2 + x_3 + x_6 = 50 \ -25x_1 - 33x_2 - 18x_3 + M = 0$$

■ Tabla Simplex inicial:

$_{-}$ x_1	x_2	x_3	x_4	χ_5	x_6	M	_
2	3	4	1	0	0	0	60
3	1	5	0	1	0	0	46
1	2	4 5 1	0	0	1	0	50
-25	-33	-18	0	0	0	1	0

■ Tabla Simplex inicial:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & M \\ 2 & 3 & 4 & 1 & 0 & 0 & 0 & 60 \\ 3 & 1 & 5 & 0 & 1 & 0 & 0 & 46 \\ 1 & 2 & 1 & 0 & 0 & 1 & 0 & 50 \\ \hline -25 & -33 & -18 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$x_1 = x_2 = x_3 = 0, \quad x_4 = 60, \quad x_5 = 46, \quad x_6 = 50, \quad M = 0$$

Incorporamos x_2 a la solución (pivoteo de variables):

			x_3					
Γ	2	3	4	1	0	0	0	60
	3	1	5	0	1	0	0	46
	1	2	4 5 1	0	0	1	0	50
			-18					

Clase XI: Programación Lineal Métodos Computacionales

Método Simplex: ejemplo

Resultado tras pivoteo de x_2 :

$$x_1=x_3=x_4=0,\quad x_2=20,\quad x_5=26,\quad x_6=10,\quad M=660$$
 Solución básica factible, pero... óptima?

Incorporamos x_1 a la solución (pivoteo de variables):

\mathcal{X}_1	x_2	x_3	x_4	χ_5	x_6	M	_
$\frac{2}{3}$	1	$\frac{4}{3}$	$\frac{1}{3}$	0	0	0	$\begin{bmatrix} 20 \end{bmatrix}$
$\frac{7}{3}$	0	$\frac{11}{3}$	$-\frac{1}{3}$	1	0	0	26
$-\frac{1}{3}$	0	$-\frac{5}{3}$	$-\frac{2}{3}$	0	1	0	10
$\overline{-3}$	0	26	11	0	0	1	660

Clase XI: Programación Lineal Métodos Computacionales

Método Simplex: ejemplo

Resultado tras pivoteo de X_1 :

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & M \\ 0 & 1 & \frac{2}{7} & \frac{3}{7} & -\frac{2}{7} & 0 & 0 & \frac{88}{7} \\ 1 & 0 & \frac{11}{7} & -\frac{1}{7} & \frac{3}{7} & 0 & 0 & \frac{78}{7} \\ 0 & 0 & -\frac{8}{7} & -\frac{5}{7} & \frac{1}{7} & 1 & 0 & \frac{96}{7} \\ 0 & 0 & \frac{215}{7} & \frac{74}{7} & \frac{9}{7} & 0 & 1 & \frac{4854}{7} \end{bmatrix}$$

$$x_3=x_4=x_5=0, \quad x_1=rac{78}{7}, \quad x_2=rac{88}{7}, \quad x_6=rac{96}{7}, \quad M=rac{4854}{7}$$

Resultado tras pivoteo de X_1 :

$$x_3=x_4=x_5=0,\quad x_1=rac{78}{7},\quad x_2=rac{88}{7},\quad x_6=rac{96}{7},\quad M=rac{4854}{7}$$

M no puede seguir creciendo: $M=rac{4854}{7}-rac{215}{7}x_3-rac{74}{7}x_4-rac{9}{7}x_5$

Clase XI: Programación Lineal Métodos Computacionales

Método Simplex: ejemplo

Resultado tras pivoteo de X_1 :

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & M \\ 0 & 1 & \frac{2}{7} & \frac{3}{7} & -\frac{2}{7} & 0 & 0 & \frac{88}{7} \\ 1 & 0 & \frac{11}{7} & -\frac{1}{7} & \frac{3}{7} & 0 & 0 & \frac{78}{7} \\ 0 & 0 & -\frac{8}{7} & -\frac{5}{7} & \frac{1}{7} & 1 & 0 & \frac{96}{7} \\ 0 & 0 & \frac{215}{7} & \frac{74}{7} & \frac{9}{7} & 0 & 1 & \frac{4854}{7} \end{bmatrix}$$

$$x_1 = \frac{78}{7}, x_2 = \frac{88}{7}, x_3 = 0$$

Algoritmo Simplex (problema canónico y **b** positivo)

- I. Transformar las inecuaciones en ecuaciones con variables de holgura. Igualar el objetivo a M y despejar: -(función objetivo) + M = 0.
- 2. Preparar la tabla simplex inicial. Las variables de holgura (y M) nos proveen la primera solución factible.
- 3. Verificar la última fila: si todas las entradas a la izquierda de la línea vertical son positivas, entonces la solución es óptima. Sino, elegir la variable \boldsymbol{x}_k con el coeficiente negativo más grande.

Algoritmo Simplex (problema canónico y **b** positivo)

- 4. Incorporar la variable x_k en la solución. Para eso pivotamos sobre la entrada positiva a_{pk} para la cual la proporción no negativa b_i/a_{ik} es la más pequeña. La nueva solución básica factible tiene un valor más de M.
- 5. Repetimos el proceso (desde el paso 3) hasta que todas las entradas en la última fila sean no negativas.

¿Puede fallar?

- **En el paso 4**, puede haber una entrada negativa en la última fila de la columna x_k , pero ninguna entrada positiva a_{ik} (para usar de pivote).
- En ese caso, no va a ser posible incorporar a x_k a la solución. La función objetivo no está correctamente restringida y **no existe** una solución óptima.

¿Puede fallar?

- **En el paso 4**, además, el cociente más pequeño b_i/a_{ik} puede ocurrir en más de una fila simultáneamente.
- Si esto pasa, la próxima tabla va a tener al menos una variable básica igual a 0, y el valor de M en las tablas siguientes puede llegar a permanecer constante.
- Teóricamente es posible (pero improbable) que ocurra una secuencia infinita de pivotes y no conduzca a una solución óptima (cycling).

Otros casos

- Hasta ahora nos concentramos en problemas de maximización y cuyo vector b tenía todas entradas positivas.
 - ¿Qué pasa si el problema es de minimización?
 - ¿Qué pasa si b tiene entradas 0 o negativas?

Vector **b** con entradas 0

Si b tiene entradas 0, existe la posibilidad de caer en cycling y no encontrar una solución óptima, pero es raro que suceda en la práctica.

$$con x_1 \geq 0, x_2 \geq 0.$$

$$egin{aligned} x_1 + 2x_2 \ x_1 + x_2 &\geq 14 \ x_1 - x_2 &\leq 2 \end{aligned}$$

- Si b tiene entradas negativas, se nos dificulta encontrar una solución básica factible para iniciar el algoritmo.
- Una opción consiste en multiplicar la desigualdad por -1:

$$x_1 - 3x_2 + 2x_3 \le -4 \rightarrow -x_1 + 3x_2 - 2x_3 \ge 4$$

Pero invierte la desigualdad!

Reescribir inecuación

equivalente pero con ≤

Vector **b** con entradas negativas

Ejemplo:

Minimizar sujeto a

$$con x_1 \geq 0, x_2 \geq 0.$$

92

$$\frac{\text{Maximizar}}{\text{sujeto a}}$$

$$con x_1 \geq 0, x_2 \geq 0.$$

$$egin{array}{c} -x_1-2x_2 \ \hline -x_1-x_2 \leq -14 \ \hline x_1-x_2 \leq 2 \end{array}$$

$$egin{aligned} -x_1-x_2+x_3&=-14\ x_1-x_2+x_4&=2\ x_1+2x_2+M&=0 \end{aligned}$$

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & M \\ -1 & -1 & 1 & 0 & 0 & -14 \\ 1 & -1 & 0 & 1 & 0 & 2 \\ \hline 1 & 2 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$x_1 = x_2 = 0, \quad x_3 = -14, \quad x_4 = 2, \quad M = 0$$

Buscamos otra entrada negativa en la misma fila:

	x_1	x_2	χ_3	χ_4	M	
Γ	<u>-1</u>	<u>-1</u>	1	0	0	-14
	1	-1	0	1	0	$\begin{bmatrix} -14 \\ 2 \end{bmatrix}$
	1	2	0	0	1	0

Si elegimos x_2 , pivotamos usando la entrada a_{i2} con el cociente b_1 / a_{i2} mas chico (no negativo):

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & M \\ -1 & -1 & 1 & 0 & 0 & -14 \\ 1 & -1 & 0 & 1 & 0 & 2 \\ \hline 1 & 2 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Ahora cada entrada en b es positiva (excepto la última), pero ya podemos comenzar a ejecutar Simplex:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & M \\ 1 & 1 & -1 & 0 & 0 & 14 \\ 2 & 0 & -1 & 1 & 0 & 16 \\ -1 & 0 & 2 & 0 & 1 & -28 \end{bmatrix}$$

Completando el algoritmo, llegamos a:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & M \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 6 \\ 1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 8 \\ \hline 0 & 0 & \frac{3}{2} & \frac{1}{2} & 1 & -20 \end{bmatrix}$$

■ Completando el algoritmo, llegamos a:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & M \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 6 \\ 1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 8 \\ \hline 0 & 0 & \frac{3}{2} & \frac{1}{2} & 1 & -20 \end{bmatrix}$$

Solución: el máximo valor posible de $-x_1-2x_2$ es -20, cuando $x_1 = 8$ y $x_2 = 6$, entonces el **mínimo valor** de x_1+2x_2 es 20.

 $con x_1 \geq 0, x_2 \geq 0.$

Resolver:

Minimizar
$$5x_1+3x_2$$
 $4x_1+x_2\geq 12$ $x_1+2x_2\geq 10$ $x_1+4x_2\geq 16$

Revertimos las 3 inecuaciones:

$$-4x_1 - x_2 \le -12$$
, $-x_1 - 2x_2 \le -10$, $-x_1 - 4x_2 \le -16$

Construimos la tabla simplex inicial:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & M \\ -4 & -1 & 1 & 0 & 0 & 0 & -12 \\ -1 & -2 & 0 & 1 & 0 & 0 & -10 \\ -1 & -4 & 0 & 0 & 1 & 0 & -16 \\ \hline 5 & 3 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Construimos la tabla simplex inicial:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & M \\ -4 & -1 & 1 & 0 & 0 & 0 & -12 \\ -1 & -2 & 0 & 1 & 0 & 0 & -10 \\ -1 & -4 & 0 & 0 & 1 & 0 & -16 \\ \hline 5 & 3 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
No deben ser negativas.

Construimos la tabla simplex inicial:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & M \\ -4 & -1 & 1 & 0 & 0 & 0 & -12 \\ -1 & -2 & 0 & 1 & 0 & 0 & -10 \\ \hline -1 & -4 & 0 & 0 & 1 & 0 & -16 \\ \hline 5 & 3 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
 Elegimos el pivot con mayor ratio b_i/a_{ij}

Luego de este pivot de pre-procesamiento de la tabla, podemos comenzar con el algoritmo tal y como lo vimos:

x_1	x_2	x_3	x_4	x_5	M		
$\lceil 0 \rceil$	15		0	-4	0	52	
0	2	0	1	-1	0	6	
1	4	0	0		0	16	
0	-17	0	0	5	1	-80	