4.20.

El siguiente gráfico representa la resolución gráfica de un problema de PLC. La solución óptima está en el segmento $(1;6) - (2\frac{1}{2};3)$ y da un valor de Z = 16.

Sabiendo que el poliedro de soluciones es el delimitado por los vértices (0;4) – (0;5) – (1;6) – $(2\frac{1}{2};3)$, se pide:

- Determinar el valor del funcional en cada vértice del poliedro.
- Realizar el planteo original del problema.
- Resolverlo mediante el método Simplex indicando, para cada tabla, a qué vértice del dibujo corresponde.

$$Z = a * x1 + b * x2$$

$$16 = a*1 + 6*b$$

$$16 = a*2,5 + 3*b$$

$$a = 4 y b = 2$$

$$4X1 + 10X2 >= 40$$

$$X1 - X2 <= 5$$

$$4X1 + 8X2 <= 32$$

$$Z(MAX) = 4X1 + 2X2$$

Paso a igualdades:

$$4x1 + 10x2 - x3 + Mu = 40$$

 $X1 - x2 + x4 = 5$
 $4x1 + 8x2 + x5 = 32$
 $Z(Max) = 4x1 + 2x2 - M*Mu$

			4	2	0	0	0	-M	
Ck	Xk	Bk	X1	X2	Х3	X4	X5	Mu	Tita
-M	Mu	40	4	10	-1	0	0	1	4
0	X4	5	1	-1	0	1	0	0	-
0	X5	32	4	8	0	0	1	0	4
Z = -40M			-4M-4	-10M -2	М	0	0	0	

Entra X2 y sale X5

			4	2	0	0	0	-M
Ck	Xk	Bk	X1	X2	Х3	X4	X5	Mu
-M	Mu	0	-1	0	-1	0	-5/4	1
0	X4	9	3/2	0	0	1	1/8	0
2	X2	4	1/2	1	0	0	1/8	0
Z = 8			M-3	0	М	0	1/4	0