្ត 199 L96

∮D 65 907

UNI CA. SANTA JRUZ

lick Observatory Libra

Purchased from the

hebe Hearst Endowmens Su

a.D. 1892.

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

NUMERICAL TABLES AND CONSTANTS

IN

ELEMENTARY SCIENCE.

PROFESSORS RÜCKER AND THORPE.

NUMERICAL TABLES AND CONSTANTS

IN

- ELEMENTARY SCIENCE.

BY

SYDNEY LUPTON, M.A., F.C.S., F.I.C.

Zondon:

MACMILLAN AND CO.

AND NEW YORK.

1892.

The Right of Translation and Reproduction is Reserved.

RICHARD CLAY AND SONS, LIMITED, LONDON AND BUNGAY.

First Edition 1884; Reprinted 1891.

Q 199 L96

PREFACE.

The following collection of Tables in the more elementary portions of Natural Science is intended to supplement the ordinary text-books, and to assist learners, teachers, and those engaged in Laboratory work. By the use of such a book those learners who depend solely upon oral instruction may be saved the trouble of copying down long lists of figures, and others may frequently find data additional or external to those given in their text-books. To teachers, who have to turn rapidly from one branch of science to another, the tables will, I hope, be convenient in the construction of numerical problems, which so powerfully assist in fixing and rendering clear the ideas gained from lectures or text-books, and will serve to remind them of a forgotten number without an irritating search through bulky manuals. Persons engaged in practical work will find the book useful both as a compendium of numerical facts outside their particular branch of study, and as an aid in working out the results of their own experiments.

In preparing a work, however elementary, of so wide a scope as this, an author must depend much on the kind assistance of those specially cognisant of the various branches of which he treats, and on the labours of previous writers. In the former category my special thanks are due to Professors Reinold and Silvanus Thompson, for valuable assistance in the section on Electricity; to William Ellis, Esq., for some Tables in Terrestrial Magnetism; and to H. J. Chaney, Esq., for much help in the difficult subject of the English and Metric Measures. I am also most grateful to my friend and former colleague, Donald Macalister, Esq., who has kindly read both the MS. and the proof, numerous corrections and suggestions in which are due to his accurate knowledge and sound judgment.

The following list of authorities, to whom I am more particularly indebted, will serve both as an acknowledgment of my obligation, and as a guide to those who desire further information than could be compressed into the limited space at my disposal.

S. L.

Harrow, March 1884.

LIST OF CHIEF AUTHORITIES.

Agenda du Chimiste. Paris. 1882.

Annuaire, publié par le Bureau des Longitudes. Paris. 1883.

Barlow. Tables of Squares, Cubes, Square Roots, Cube Roots, Reciprocals. London. 1875.

R. Biedermann. Chemiker Kalender. Berlin, 1884.

F. W. Clarke. Constants of Nature, I. and Suppl., Specific Gravities, Boiling and Melting points. II., Specific Heats. III., Expansion by Heat. Washington. 1873.

- R. Clausius. Mechanical Theory of Heat. London. 1879.
- Encyclopædia Britannica. Edinburgh. 1875.
- J. D. Everett. Units and Physical Constants. London. 1879.
- A. Geikie. Text-book of Geology. London. 1882.
- M. J. Jamin. Cours de Physique de l'École Polytechnique. Paris. 1863.
- Fleeming Jenkin. Electricity and Magnetism. London. 1873.
- E. Hospitalier. Formulaire Pratique de l'Electricien. Paris. 1883.
- Landolt and Börnstein. (L. and B.) Physikalisch-Chemische Tabellen. Berlin. 1883.
- M. M. Lévy. Sur les Unités Électriques. Paris. 1882.
- The Nautical Almanac. London. 1884.
- S. Newcomb. Popular Astronomy. London. 1883.
- W. J. M. Rankine. Rules and Tables. London. 1876.
- Rees' Cyclopædia. London. 1819.
- S. Thompson. Elementary Lessons in Electricity and Magnetism. London. 1883.
- S. D. Various publications by H. J. Chaney and others, for the Standards Department, (i.) Equivalents of Metric and Imperial Weights and Measures; (ii.) Calculations of Densities and Expansions; (iii.) Annual Reports, chiefly the Appendix to II.; (iv.) Circular on the Standard Wire Gauge.
- H. Watts. A Dictionary of Chemistry. London. 1866.

⁽¹⁾ Barlow. Rankine, p. 42. (2) Rankine, p. 61, Chambers Mathematical Tables, 1881. (3) Rees, Art. Cipher. (4) Hoüel, Tables Numériques, Paris, 1866. (6, 7, 8) Rankine, p. 90. (9, 10, 11, 12) S. D. i. iii.; Rankine, p. 92; Everett, p. xiv. (13) Biedermann, p. 15. (14) Dr. Wm. Smith's Dictionaries,

Biedermann, p. 23; Weighing and Measuring by H. W. Chisholm, (London, 1877) p. 46. (15) Everett, p. 22. (16) S. D. ii. p. 7. (17) S. D. ii. p. 25; Rankine p. 149; Clarke, I. (18) Jackson in Nature, October 18, 1883. (19, 20, 21) Enc. Brit. Art. Elasticity by Sir William Thomson. (22) Rankine, p. 197. (23) Calc. from S. D. iv. (26) S. D. ii.; Ann, p. 673, 696. (27) Ann. p. 696; L. and B. p. 31, 32. Clausius, p. 59, from Regnault. (29) Agenda, p. 20. (30) Jamin, II. p. 416, 423; L. and B. p. 188, 189. (31) Agenda, p. 26. (32) Watts, Supp. p. 672. The expansions calc. by Rossetti. The other two columns are calc, from Kupffer's result that 1 ccm. water at 4°C. weighs 1.0000 13 gm. Everett, p. 30, Förster's results (S. D. ii. p. 13) are nearly identical with those of W. H. Miller, and a little higher than those of Volkmann; L. and B. p. 33. (33) Calc. from Δ mercury 13.596 at 0°C, ef. I. and B. p. 37. (34) Regnault calc. by Clausius, p. 290, cf. Jamin, II. 151; L. and B. p. 18. (35) L. and B. p. 51. Pickering differs somewhat, see "Physical Manipulation," p. 289. (36) Cf. Watts, Art. Hygrometer, by Stanley Jevons. (37) Regnault. (38) J. Clerk Maxwell, Brit. Assoc. Report, 1873. (39) Enc. Brit. Heat, by Sir Wm. Thomson, cf. L. and B. p. 195. (40)Watts, Supp. III. Thermodynamics, by G. C. Forster, for the mechanical equivalent of Heat. (41) The Solar Spectrum, chiefly from Angstrom; the Metals from Agenda, p. 127. (42) Biedermann, p. 62; Agenda, p. 87; Jamin, III. 440. (43) Agenda, p. 88. (45) Jamin II. 576, 580, 581. (47) Deschanel trans. Everett, p. 820. (48) Jamin, II. p. 520. (49) Enc. Brit. Dimensions, by Clerk Maxwell, Lévy, Everett, p. 3. (54) Communicated by Prof. A. W. Reinold. (60) Everett, p. 134; Jenkin, p. 97; Thompson, p. 226. (61) Everett, p. 147. (62) Nature for Feb. 8, 1883. Clerk Maxwell, see "Elementary Electricity," p. 196. (63) Everett, p. 146; S. Thompson, p. 145; Hospitalier, p. 174. (65) Jenkin, p. 249, calc. from Matthiessen, cf. L. and B. p. 231. (These numbers must have their reciprocals multiplied by 95.41 to reduce to B.A. multiplied by 106 units.) (66) L. and B. p. 104; Hospitalier, p. 151. (67) Everett, p. 144. (68) Jenkin, p. 258. (70) Jenkin, p. 176, from

Matthiessen. (71) Everett, p. 151. (74) Everett, p. 123. (75) Brewster's Magnetism, p. 212; Rees, Art. Declination, Dipping (76) Communicated by Wm. Ellis, Esq. (77) Enc. Brit. Art. Meteorology by Balfour Stewart. (78) Communicated by Wm. Ellis, Esq. (79) S. Thompson, p. 115. (80) Cf. Biedermann, p. 72. (81, 82, 83, 84, 85) Calculated from the atomic weights, given by Meyer and Seubert in their Atomgewichte der Elemente, Leipzic, 1883. (86) Biedermann, p. 11; Agenda, p. 44. (87) From J. Kolb. (88) For Ammonia, Carius: for Potassium and Sodium Hydrates and Sodium Chloride, Th. Gerlach; for Alcohol, cf. Storer, Dict. of Solubilities. (89) Angus Smith, "Air and Rain," p. 201, London, 1872. (90-99) Ann. pp. 585-672, chiefly by Berthelot and Thomsen. (100) Chiefly Favre and Silbermann. (102) Geikie, p. 637. (103, 104) Chiefly from Ann. p. 355. (105) Meteorology, by R. Scott, p. 159. (106. 107) Chiefly from Keith Johnston's Physical Atlas, probably derived from Whewell. (108) N. A. p. 472. (109) Those marked O. from N. A. p. 487. (112) Enc. Brit. Art. The Earth, Figure of, by Col. A. R. Clarke; for Faye's slightly different values, cf. Ann. p. 170. (113) Geikie, p. 42. (114) Newcomb, p. 314. (115) Ann. p. 11; Newcomb, p. 44. (116) Newcomb, p. 542; N. A. preface.

The chief additions and alterations are as follows :-

On pp. 94, 95, 96 tables (117) of radii of gyration, (118) osurface tensions from Quincke, *Pogg. Ann.* 1870, exxxix. 1, (119) of some elastic and other constants for quartz fibres from Threlfall and Boys, *Phil. Mag.* June, 1890, and (79) some rough data in electricity have been added.

The redetermination of the weight of a cubic inch of water (Chaney, *Proc. R.S.* June, 1890) has necessitated the recalculation

of (11).

The table of standards of resistance (57) has been altered in accordance with the recently adopted mean values chiefly from Latimer Clark, "Metric Measures."

By the kindness of Mr. Wm. Ellis, F.R.S., more recent and convenient values of the magnetic elements are given: (75) from Brewster and *Ency. Metrop.*, (76) from Rücker and Thorpe (*Phil. Trans.* 1890), (77) from the Greenwich observations, (78) from various sources. Neumayer's maps give additional values.

The results of redeterminations of some atomic weights have been inserted. The values given by Lunge and Isler (J.S.C.I. ix. 501) for the density of dilute hydrogen sulphate have replaced those of Kolb. The thermochemical data have been revised from the resumé given by Berthelot (Ann. du Bur. des Long. 1888), and a table of the heat of formation of some cyanides (99 cont.) has been added.

In the section on physiography data for 1894 have been obtained from the *Nautical Almanae* for that year.

S. L.

Roundhay, Leeds, 1892.

CONTENTS.

NUMBERS AND MEASURES.

1		
1.	Squares, Cubes, Square and Cube Roots, Multiples of π , and Reciprocals from 2 to 99	1
2.	Trigonometrical Ratios	4
3.	Factorials and Powers of 2 from 2 to 12	5
4.	Logarithms of Factorials from 10 to 99	6
5.	Mensuration	7
6.	Measures of Time	8
7.	Measures of Angles	8
8.	Relation between Time and Longitude	8
9.	Measures of Length (English and Metric)	8
10.	Measures of Area (English and Metric)	9
11.	Measures of Volume (English and Metric)	10
12.	Measures of Mass (English and Metric)	11
13.	Less usual Measures	12
14.	Ancient Measures	12
15.	The Acceleration due to Gravity (g)	13
16.	Values of (g) in England compared to its value in Latitude 45°	14
17.	Densities of Mixtures and Native Compounds	14
18.	Comparative Velocities	16
19.	Compressibility of Solids and Liquids	16
20.	Rigidity of Solids	16
21.	Elasticity and Tenacity of Solids	17
22.	Resistance of Solids to Crushing	18
23.	The Standard Wire-gauge	19
24.	Miscellaneous Data	20

TABLE

HEAT.

25.	Conversion of Temperatures	22
26.	Melting Points, Specific Heats, Coefficients of Linear and Cubical Expansion of Solids	23
27.	Boiling Point, Specific Heat, and Coefficients of Cubical	
	Expansion of Liquids	24
28.	Specific Heats of Gases	25
29.	Tensions and Boiling Points of Liquefied Gases	26
30.	Latent Heats of Fusion and Vaporization	26
31.	Logarithms of (1 + '00367 t)	27
32.	Volume and Density of Water	28
33.	Volume and Density of Mercury	29
34.	Tension of Aqueous Vapour	29
35.	Table for the Wet-bulb Hygrometer	30
36.	Mass of Aqueous Vapour, of dry, and of saturated Air .	31
37.	Tension of Mercury Vapour	31
38.	Molecular Data for Gases	32
39.	Thermal Conductivities	32
40.	Miscellaneous Data	32
	LIGHT.	
41.	Wave-lengths of the chief Lines in some Spectra	33
42.	Refractive Indices	34
43.	Rotary Polarisation	34
44.	The Velocity of Light	35
44.	The velocity of hight	00
	SOUND.	
45.	The Velocity of Sound	36
46.	The Diatonic Scale	36
47.	Number of Vibrations in each Note of an Octave	36
48.	Comparison of the Diatonic and Equally Tempered	50
20.	Scales	37

ELECTRICITY.

49. The Dimensions of Units 38 50. The C. G. S. System 38 51. Magnetic Units 39 52. Electrostatic Units 40 53. Electromagnetic Units 40 54. Ratio of the Electrostatic and Electromagnetic Units 41 55. Relation between the Units in each System 41 56. Practical Units 42 57. Practical Standards of Resistance 43 58. The Heating Effects of Currents 44 59. Electrolysis 44 60. Specific Inductive Capacities 45 61. Contact Differences of Potential 45 62. Electromotive Force of Constant Batteries 46 63. Electromotive Force of Common Batteries 46 64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51 72. Thermoelectric Piles 51
51. Magnetic Units 39 52. Electrostatic Units 40 53. Electromagnetic Units 40 54. Ratio of the Electrostatic and Electromagnetic Units 41 55. Relation between the Units in each System 41 56. Practical Units 42 57. Practical Standards of Resistance 43 58. The Heating Effects of Currents 44 59. Electrolysis 44 60. Specific Inductive Capacities 45 61. Contact Differences of Potential 45 62. Electromotive Force of Constant Batteries 46 63. Electromotive Force of Common Batteries 46 64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
52. Electrostatic Units 40 53. Electromagnetic Units 40 54. Ratio of the Electrostatic and Electromagnetic Units 41 55. Relation between the Units in each System 41 56. Practical Units 42 57. Practical Standards of Resistance 43 58. The Heating Effects of Currents 44 59. Electrolysis 44 60. Specific Inductive Capacities 45 61. Contact Differences of Potential 45 62. Electromotive Force of Constant Batteries 46 63. Electromotive Force of Common Batteries 46 64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
53. Electromagnetic Units 40 54. Ratio of the Electrostatic and Electromagnetic Units 41 55. Relation between the Units in each System 41 56. Practical Units 42 57. Practical Standards of Resistance 43 58. The Heating Effects of Currents 44 59. Electrolysis 44 60. Specific Inductive Capacities 45 61. Contact Differences of Potential 45 62. Electromotive Force of Constant Batteries 46 63. Electromotive Force of Common Batteries 46 64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
54. Ratio of the Electrostatic and Electromagnetic Units 41 55. Relation between the Units in each System 41 56. Practical Units 42 57. Practical Standards of Resistance 43 58. The Heating Effects of Currents 44 59. Electrolysis 44 60. Specific Inductive Capacities 45 61. Contact Differences of Potential 45 62. Electromotive Force of Constant Batteries 46 63. Electromotive Force of Common Batteries 46 64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Non-Metals 49 69. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
55. Relation between the Units in each System 41 56. Practical Units 42 57. Practical Standards of Resistance 43 58. The Heating Effects of Currents 44 59. Electrolysis 44 60. Specific Inductive Capacities 45 61. Contact Differences of Potential 45 62. Electromotive Force of Constant Batteries 46 63. Electromotive Force of Common Batteries 46 64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Non-Metals 49 69. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
56. Practical Units 42 57. Practical Standards of Resistance 43 58. The Heating Effects of Currents 44 59. Electrolysis 44 60. Specific Inductive Capacities 45 61. Contact Differences of Potential 45 62. Electromotive Force of Constant Batteries 46 63. Electromotive Force of Common Batteries 46 64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Non-Metals 49 69. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
57. Practical Standards of Resistance 43 58. The Heating Effects of Currents 44 59. Electrolysis
58. The Heating Effects of Currents 44 59. Electrolysis
59. Electrolysis 44 60. Specific Inductive Capacities 45 61. Contact Differences of Potential 45 62. Electromotive Force of Constant Batteries 46 63. Electromotive Force of Common Batteries 46 64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Non-Metals 49 69. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
60. Specific Inductive Capacities
61. Contact Differences of Potential 45 62. Electromotive Force of Constant Batteries 46 63. Electromotive Force of Common Batteries 46 64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Non-Metals 49 69. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
61. Contact Differences of Potential 45 62. Electromotive Force of Constant Batteries 46 63. Electromotive Force of Common Batteries 46 64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Non-Metals 49 69. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
63. Electromotive Force of Common Batteries 46 64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Non-Metals 49 69. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
64. On the Specific Resistance of Substances 47 65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Non-Metals 49 69. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Non-Metals 49 69. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
65. Resistances of Metals and Alloys 48 66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Non-Metals 49 69. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
66. Resistances of Solutions 49 67. Resistances of Telegraph Cables 49 68. Resistances of Non-Metals 49 69. Resistances of Insulators 50 70. Thermoelectric Forces 51 71. Thermoelectric Forces at different Temperatures 51
68. Resistances of Non-Metals
68. Resistances of Non-Metals
70. Thermoelectric Forces
70. Thermoelectric Forces
71. Thermoelectric Forces at different Temperatures 51
73. Morse's Alphabet
74. Intensity of Magnetisation
75. Magnetic Elements at London
76. Magnetic Elements at Towns in Great Britain 53
77. Magnetic Elements at Greenwich 54
78. Magnetic Elements at Places Abroad
79. Rough data in Electricity

102.

103.

104.

105.

CHEMISTRY.

TABLE	· *	PAGI
80.		
	bilities of the chief Elements and Compounds	56
81.	Atomic Weights of Rare Metals	62
82.	Factors for Gravimetric Analysis	68
83.	Factors for Volumetric Analysis	64
84.	Scales of Hardness of Water	65
85.	Multiples of some Atomic and Molecular Weights	65
86.	Comparison of Hydrometer Scales	66
87.	Density and Composition of Acids	67
88.	Density and Composition of Solutions of the Alkalies, Sodium Chloride, and Alcohol	68
89.	Estimation of Carbon Dioxide in Air	69
90.	On the Heat evolved in Chemical and Physical Actions	70
91.	Heat evolved in Allotropic Changes of the Elements .	70
92.	Heat evolved in the Solution of Gases	70
93.	Heat evolved in the Formation of Solid Salts from Solid Basic and Gaseous Acid Oxides	71
94.	Heat evolved in the Formation of Gaseous Compounds from Gaseous Constituents	71
95.	Heat evolved in the Formation of Oxides	72
96.	Heat evolved in the Formation of Chlorides	72
97.	Heat evolved in the Formation of Sulphides	73
98.	Heat evolved in the Formation of Hydrates	74
99.	Heat evolved in the Formation of Non-Metallic Compounds	75
100.	Heat evolved in Combustion	77
101.	Miscellaneous Data	78
	PHYSIOGRAPHY.	

Geological Formations

Velocity and Pressure of the Wind

Lengths of Rivers in Kilometres

Heights and Depths in Metres

79

82

83

83

CONTENTS.	CO	NT	EN	TS.
-----------	----	----	----	-----

TABLE		PAGE
106.	Velocity of the Tide in Water of different Depths	84
107.	Course of the Tide to the English Coasts	84
108.	Establishments of Ports	85
109.	Latitude and Longitude of Towns	86
110.	Distances and Areas on the Surface of the Globe	87
111.	Distances and Areas on Maps	88
112.	Dimensions of the Earth	88
113.	Density of the Earth	89
114.	The Moon	90
115.	The Calendar	90
116.	The Solar System	91
117.	Squares of Radii of Gyration	94
118.	Surface Tensions	95
119.	Elastic Constants of Quartz	96
79	Rough Data in Electricity	96

100

120. Table of Logarithms

NUMERICAL TABLES AND CONSTANTS

IN

ELEMENTARY SCIENCE.

NUMBERS AND MEASURES.

(1) SQUARES, CUBES, SQUARE AND CUBE ROOTS, RECIPROCALS.

n	n^2	n^3	\sqrt{n}	$\sqrt[3]{n}$	$n\pi$	$\frac{1}{n}$
2 3	4	8	1.414	1.260	6.58	50000
3	9	27	1 732	1.442	9.42	33333
4	16	64	2.000	1.587	12.57	25000
5	25	125	2.236	1 710	15.71	20000
6	36	216	2.449	1.817	18.85	16667
7	49	343	2.646	1.913	21.99	14286
8	64	512	2.828	2.000	25.13	12500
9	81	729	3.000	2.080	28.27	11111
10	100	1000	3.162	2.154	31.42	10000
11	121	1331	3.317	2.224	34.56	90909
12	144	1728	3.464	2.289	37.70	83333
13	169	2197	3.606	2.351	40.84	76923
14	196	2744	3.742	2.410	43.98	71429
15	225	3375	3.873	2.466	47.12	66667
16	256	4096	4.000	2.520	50.27	62500
17	289	4913	4.123	2.571	53.41	58824
18	324	5832	4.243	2.621	56.55	55556
19	361	6859	4.359	2.668	59.69	52632
20	400	8000	4.472	2.714	62.83	50000
21	441	9261	4.583	2.759	65.97	47619
22	484	10648	4.690	2.802	69.11	45455
23	529	12167	4.796	2.844	72.26	43478

n	n ²	n ³	\sqrt{n}	$\sqrt[3]{n}$	пπ	$\frac{1}{n}$
24	576	13824	4.899	2.884	75.40	41667
25	625	15625	5.000	2.924	78.54	40000
26	676	17576	5.099	2.962	81.68	38462
27	729	19683	5.196	3.000	84.82	37037
28	784	21952	5.291	3.037	87.96	35714
29	841	24389	5.385	3.072	91.11	34483
30	900	27000	5.477	3.107	94.25	33333
31	961	29791	5.568	3.141	97:39	32258
32	1024	32768	5.657	3.175	100.53	31250
33	1089	35937	5.745	3.208	103.67	30303
34	1156	39304	5.831	3.240	106.81	29412
35	1225	42875	5.916	3.271	109.96	28571
36	1296	46656	6.000	3.302	113.10	27778
37	1369	50653	6.083	3.332	116.24	27027
38	1444	54872	6.164	3.362	119.38	26316
39	1521	59319	6.245	3.391	122.52	25641
40	1600	64000 68921	6.325	3.420	125.66 128.81	25000
41	1681		6.403	3.448		24390
42	1764	74088	6.481	3.476	131.95	23810 23256
43 44	1849 1936	79507 85184	6.633	3·503 3·530	138.23	23230
44	2025	91125	6.708	3.557	141.37	22222
46	2116	97336	6.782	3.583	144.51	21739
47	2209	103823	6.856	3.609	147.65	21277
48	2304	110592	6.928	3.634	150.80	20833
49	2401	117649	7.000	3.659	153.94	20408
50	2500	125000	7.071	3.684	157.08	20000
51	2601	132651	7.141	3.708	160.22	19608
52	2704	140608	7.211	3.733	163:36	19231
53	2809	148877	7.280	3.756	166.50	18868
54	2916	157464	7.348	3.780	169.65	18519
55	3025	166375	7.416	3.803	172.79	18182
56	3136	175616	7.483	3.826	175.93	17857
57	3249	185193	7.550	3.849	179.07	17544
58	3364	195112	7.616	3.871	182.21	17241
59	3481	205379	7.681	3.893	185.35	16949
60	3600	216000	7.746	3.915	188.50	16667
61	3721	226981	7.810	3.936	191.64	16393
62	3844	238328	7.874	3.958	194.78	16129
63	3969	250047	7.937	3.979	197.92	15873
64	4096	262144	8.000	4.000	201.06	15625

n	n^2	n ³	\sqrt{n}	$\sqrt[3]{n}$	пπ	$\frac{1}{n}$
65	4225	274625	8.062	4.021	204.20	15385
66	4356	287496	8.124	4.041	207:34	15152
67	4489	300763	8.185	4.062	210.49	14925
68	4624	314432	8.246	4.082	213.63	14706
69	4761 4900	328509 343000	8·307 8·367	$\frac{4.102}{4.121}$	216·77 219·91	14493
70 71	5041	357911	8.426	4.141	219.91	14286
72	5184	373248	8.485	4.160	225.03	14084 13889
73	5329	389017	8.544	4.179	229.34	13699
74	5476	405224	8.602	4.198	232.48	13514
75	5625	421875	8.660	4.217	235.62	13333
76	5776	438976	8.718	4.236	238.76	13158
77	5929	456533	8.775	4.254	241.90	12987
78	6084	474552	8.832	4.273	245.04	12821
79	6241	493039	8.888	4.291	248.19	12658
80	6400	512000	8.944	4.309	251.33	12500
81	6561	531441	9.000	4.327	254.47	12346
82	6724	551368	9.055	4.344	257.61	12195
83	6889	571787	9.110	4.362	260.75	12048
84	7056	592704	9.165	4.380	263.89	11905
85	7225	614125	9.220	4.397	267.03	11765
86	7396	636056	9.274	4.414	270.18	11628
87	7569	658503	9.327	4.431	273.32	11494
88	7744	681472	9.381	4.448	276.46	11364
89	7921	704969	9.434	4.465	279.60	11236
90	8100	729000	9.487	4.481	282.74	11111
91	8281	753571	9.539	4.498	285.88	10989
92	8464	778688	9.592	4.514	289.03	10870
93	8649	804357	9.644	4.531	292.17	10753
94	8836	830584	9.695	4.547	295.31	10638
95	9025	857375	9.747	4.563	298.45	10526
96	9216	884736	9.798	4.579	301.59	10417
97	9409	912673	9.849	4.595	304.73	10309
98	9604	941192	9.899	4.610	307.88	10204
99	9801	970299	9.950	4.626	311.02	10101
			$\sqrt[3]{100} = $	4.642		

(2) TRIGONOMETRICAL RATIOS.

degs.	sin.	cos.	tan.	cot.	sec.	cosec.	degs.
00	0	1	0	∞	1	8	900
1	.0175	•9999	.0175	57.29	1.000	57:30	89
2	.0349	9994	.0349	28.64	1.001	28.65	88
3.	.0523	9986	.0524	19.08	1.001	19.11	87
4	.0698	9976	.0699	14.30	1.002	14.34	86
5	.0872	9962	.0875	11.43	1.004	11.47	85
6	1045	.9945	.1051	9.514	1.006	9.567	84
7	.1219	9926	·1228	8.144	1.008	8.206	83
8	.1392	.9903	.1405	7.115	1.010	7.185	82
9	1564	•9877	.1584	6.314	1.012	6.392	81
10	.1737	9848	.1763	5.671	1.015	5.759	80
11	.1908	.9816	.1944	5.145	1.019	5.241	79
12	2079	.9782	.2126	4.705	1.022	4.810	78
13	.2250	.9744	2309	4.331	1.026	4.445	77
14	.2419	.9703	·2493	4.011	1.031	4.134	76
15	2588	9659	2680	3.732	1.035	3.864	75
16	2756	.9613	2868	3.487	1.040	3.628	74
17	2924	.9563	3057	3.271	1.046	3.420	73
18	3090	9511	.3249	3.078	1.051	3.236	72
19	3256	.9455	·3443	2.904	1.058	3.072	71
20	3420	9397	*3640	2.747	1.064	2.924	70
21	3584	.9336	.3839	2.605	1.071	2.790	69
22	3746	9272	•4040	2.475	1.079	2.669	68
23	3907	9205	.4245	2.356	1.086	2.559	67
24	4067	.9136	•4452	2.246	1.095	2.459	66
25	4226	9063	•4663	2.145	1.103	2.366	65
26	4384	8988	·4877	2.050	1.113	2.281	64
27	·4540	8910	.5095	1.963	1.122	2.203	63
28	4695	.8830	•5317	1.881	1.133	2.130	62
29	4848	8746	•5543	1.804	1.143	2.063	61
30	•5000	.8660	.5774	1.732	1.155	2.000	60
31	•5150	.8572	.6009	1.664	1.167	1.942	59
32	•5299	8481	.6249	1.600	1.179	1.887	58
33	•5446	8387	6494	1.540	1.192	1.836	57
34	•5592	8290	6745	1.483	1.206	1.788	56
35	5736	8192	.7002	1.428	1.221	1.743	55
36°	.5878	8090	.7265	1.376	1.236	1.701	540
90.	9010	0000	1200	1 5/ 0	1 200	1 /01	0±
degs	cos.	sin.	cot.	tan.	cosec.	sec.	degs

degs.	sin.	cos.	tan.	cot.	sec.	cosec.	degs.
37°	·6018	·7986	.7536	1:327	1·252	1:662	53°
38	·6157	·7880	.7813	1:280	1·269	1:624	52
39	·6293	·7772	.8098	1:235	1·287	1:589	51
40	·6428	·7660	.8391	1:192	1·305	1:556	50
41	·6561	·7547	.8693	1:150	1·325	1:524	49
42	·6691	·7431	.9004	1:111	1·346	1:494	48
43	·6820	·7314	.9325	1:072	1·367	1:466	47
44	·6947	·7193	.9657	1.036	1:390	1·440	46
45°	·7071	·7071	1.0000	1.0000	1:414	1·414	45°
degs.	cos.	sin.	cot.	tan.	cosec.	sec.	degs.

(3) FACTORIALS, AND POWERS OF 2.

n	n!	2^n
2 3	2	4
	6	8
5	24	16
	120	32
6	720	64
7	5 040	128
. 8	40 320	256
9	362 880	512
10	3 628 800	1024
11	39 916 800	2048
12	479 001 600	4096

(4) LOGARITHMS OF FACTORIALS.

n	log n /	n	$\log n!$	n	log n /
10	6.55976303	40	47.91164507	70	100.07840504
11	7.60115572	41	49.52442892	71	101.92966338
12	8.68033696	42	51.14767822	72	103.78699588
13	9.79428032	43	52.78114667	73	105.65031874
14	10.94040835	44	54.42459935	74	107.51955046
15	12.11649961	45	56.07781186	75	109.39461172
16	13.32061959	46	57.74056969	76	111.27542532
17	14.55106852	47	59.41266755	77	113.16191604
18	15.80634102	48	61.09390879	78	115.05401064
19	17.08509462	49	62.78410487	79	116.95163774
20	18.38612462	50	64.48307487	80	118.85472772
21	19.70834391	51	66.19064505	81	120.76321274
22	21.05076659	52	67.90664839	82	122.67702659
23	22.41249443	53	69.63092426	83	124.59610469
24	23.79270567	54	71.36331802	84	126.52038397
25	25.19064568	55	73.10368071	85	128 44980290
26	26.60561903	56	74.85186874	86	130.38430135
27	28.03698279	57	76.60774359	87	132.32382060
28	29.48414082	58	78.37117159	88	134.26830327
29	30.94653882	59	80.14202360	89	136 21769328
30	32.42366007	60	81 92017485	90	138 17193579
31	33.91502177	61	83.70550468	91	140.13097718
32	35.42017175	62	85.49789637	92	142.09476501
33	36.93868569	63	87.29723692	93	144.06324796
34	38.47016460	64	89.10341690	94	146.03637581
35	40.01423265	65	90.91633025	95	148.01409942
36	41.57053515	66	92.73587419	96	149.99637065
37	43.13873687	67	94.56194899	97	151.98314238
38	44.71852047	68	96.39445790	98	153.97436846
39	46.30958508	69	98.23330700	99	155.97000365

(5) MENSURATION.

$\pi = 3.1415926536$	$\frac{1}{\pi} = 0.3183098862$		
$\pi^2 = 9.8696044$	$\sqrt{\pi} = 1.7724539.$		
$\pi^3 = 31.0061763$	$\sqrt[3]{\pi} = 1.4645919$.		

Lengths of Curves.

	Circle, radius r	
2.	Ellipse, axes $2a$ $2b$ (approximate)	$= \pi \sqrt{2(a^2 + b^2)}$
	(a and	b nearly equal).

Plane Areas.

1.	Square, side a	=	a
`2.	Triangle, base c , perpendicular d	=	$\frac{1}{2}$ cd.
3.	Rectangle, sides a b	=	ab.
4.	Circle, radius r	=	πr^2 .
5.	Ellipse, axes $2a$ $2b$	=	πab .

Surfaces.

1.	Cube, edge aS	=	$6a^2$.
	Sphere, radius rS		
	Cylinder, radius r height hS		
	Spherical segment, radius r height hS		
	Cone, slant height l radius r		

Volumes.

	r dumes.
1. 2.	Cube, edge a
3.	Sphere, radius r
4.	Spheroid, radii $a\ b\ b$
5.	Cylinder or prism
6.	Cone or pyramid $\mathcal{V} = \frac{1}{3}$ area of base

× height.

(6) Measures of Time. (Cf. 115)

1 second.

60 secs. = 1 minute.

3600 secs. = 60 mins. = 1 hour.

86400 secs. = 1440 mins. = 24 hrs. = 1 mean solar day.

1 mean solar day = 1.00273791 sidereal days.

1 sidereal day = 86164.1 mean solar seconds.

1 tropical year = 365.24224 mean solar days = 31556929 mean solar seconds.

A mean synodical month is 29.53 mean solar days.

(7) Measures of Angles.

1 second ("). 60'' = 1 minute (').

3600'' = 60' = 1 degree (°).

 $324000'' = 5400' = 90^{\circ} = 1$ right-angle (rt.). $1296000'' = 21600' = 360^{\circ} = 4$ rts. = 1 round.

1 radian = $\frac{180^{\circ}}{\pi}$ = 57.29578° = 3437.747′ = 206264.8″ nearly.

180° = 3·1416? radians. 1° = ·0174533 radian.

A nautical "point" = $11\frac{1}{4}$.

(8) RELATION BETWEEN TIME AND LONGITUDE.

Longitude.	Time.
15"	1 second.
1'	4 seconds.
15'	1 minute.
1°	4 minutes
15°	1 hour.
90°	6 hours.

The local clock at the western station marks an earlier hour than that at the eastern station.

(9) Measures of Length. (Cf. 50)

English.

The YARD is the distance at 62° F. between two marks on a bronze bar deposited with the Board of Trade.

1 inch.

12 inches = 1 foot.

36 inches = 3 feet = 1 YARD.

63360 inches = 5280 feet = 1760 yards = 1 statute mile.
73044 inches = 6087 feet = 2029 yards = 1 152 miles = 1 knot or

geographical mile.

1 furlong = 10 chains = 220 yards = 1102 miles = 1 kind of geographical mile.

Metric.

The METRE is the length at 0° C. of a platinum bar preserved at Paris and known as the Mètre des Archives.

1 millimetre (mm.).

10 mm. = 1 centimetre (cm.). 100 mm. = 10 cm. = 1 decimetre (dm.).

1000 mm. = 100 cm. = 10 dm. = 1 METRE (m). 10 m. = 1 decametre.

100 m. = 10 decametres = 1 hectometre.

1000 m. = 100 decametres = 10 hectometres = 1 kilometre (kilom.)

Conversion Table.

1 m. = 39'37079 inches = 3'280899 feet (Kater 1818). 1 m. = 39.370432 inches = 3.2808693 feet (Clarke 1866).

1 mm. 0.03937 inch. 1 inch0.0254 m. 1 metre......39.371 inches. 1 foot0.3048 m. 1 yard0.9144 m. 1 metre 3.2809 feet. 1 metre 1 0936 yard. 1 mile 1 6093 kilom. 1 knot1 855 kilom. 1 kilom. 0 6214 mile.

(10) MEASURES OF AREA OR SURFACE.

English.

1 square inch.

144 sq. inches = 1 square foot.

1296 sq. inches = 9 sq. feet = 1 square yard.

43560 sq. feet = 4840 sq. yards = 1 acre. 27878400 sq. feet = 3097600 sq. yards = 640 acres = 1 sq. mile. 1 square geographical mile = 1 327 square miles.

Metric.

1 square millimetre (smm.).

100 snm. = 1 square centimetre (scm.). 10000 smm. = 100 scm. = 1 square decimetre (sdm.). 1000000 smm. = 10000 scm. = 100 sdm. = 1 square metre (sm.).

10000 square metres = 100 ares = 1 hectare.

Conversion Table.

1 sq. inch6'451 scm. 1 sq. foot929 scm. 1 sq. yard0'8361 sm. 1 acre4046'7 sm. 1 sq. mile2'59 sq. kiloms.	1 scm

(11) MEASURES OF VOLUME OR CAPACITY.

English.

A Gallon is the volume occupied by 10 lb. of water weighed in air against brass (Δ 8:143) weights at 62° F. and under the barometric pressure of 30 inches.

Under the same conditions a cubic foot of water has been found

(Chaney, 1889) to weigh 62 278601 lb.

```
1 cubic inch.
```

.34 683 cub. inches = 1 pint. 277 463 cub. inches = 8 pts. = 1 Gallon = 0·16057 cub. foot. 1728 cub. inches = 49·823 pts. = 6·22786 gal. = 1 cubic foot. 46656 cub. inches = 1345·2 pts. = 168·152 gal. = 27 cubic feet = 1 cubic yard.

(5,451,776,000 cub yards = 1 cubic mile.)

N.B.—Since one volume of water at 39° F. becomes 1.00112 volumes at 62° F., and seven-eighths of a cubic foot of standard air weigh .0664 lb., a cubic foot of water in vacuo at 39° F. weighs .62.415 lb.

Metric.

A LITRE is the volume occupied by one kilogram (2.20462 lb.) of water in vacuo at 4° C.; it is very nearly a cubic decimetre.

1 cubic centimetre (ccm.).

1000 ccm. = 1 LITRE (cubic decimetre) (l.).
1 000 000 ccm. = 1000 l. = 1 STERE (cubic metre).

Conversion.

1 cub. inch16.383 ccm.	1 ccm0.061 cub. inch.
1 pint 568.23 ccm.	1 litre61 0363 cub. inch.
1 gallon4 54586 l.	1 litre1.76 pint.
1 cub. foot28 311 l.	1 litre0 2201 gallon.
1 cub. yard764 4 l.	1 litre0.035322 cub. ft.
•	1 stere1 308 cub. yards.

(12) MEASURES OF MASS.

English.

A POUND is the mass of a certain piece of platinum deposited with the Board of Trade.

```
1 grain avoirdupois and troy.

437 5 gr. = 1 ounce avoirdupois (oz.)

7000 gr. = 16 oz. = 1 pound avoirdupois (lb.)

784000 gr. = 1792 oz. = 112 lb. = 1 hundredweight (cwt.)

15680000 gr. = 35840 oz. = 2240 lb. = 20 cwt. = 1 ton.

100 lb. = 1 cental.

480 grains = 1 ounce troy.

5760 gr. = 12 oz. troy = 1 pound troy.

1 oz. troy = 1 097 oz. avoirdupois.

1 lb. avoirdupois = 1 215 lb. troy.
```

1 ton of water contains 224 gallons or 35.9 cubic feet.

Metric.

The Kilogram is the mass of a piece of platinum at Paris known as the Kilogramme des Archives.

```
1 milligram (mgm.).
10 mgm. = 1 centigram (cgm.).
100 mgm. = 10 cgm. = 1 decigram (dgm.).
1000 mgm. = 100 cgm. = 10 dgm. = 1 gram (gm.).
1000 gm. = 1 KILOGRAM (kilog.).
1000000 gm. = 1000 kilog. = 1 tonne.
```

Conversion Table.

Miller in 1856 found the Kilogramme des Archives to be equal to 15432'349 grains.

1 grain0.0648			15.432 gr.	
1 oz. avoir28.35	gm.	1 kilog.	2·2046 lb.	
1 oz. troy31.1035	gm.	1 tonne	0.9842 ton.	
1 lb453·593	gm.			
1 cwt 50.8	kilog.			
1 ton1016.05	kilog.			

(13) Less usual Measures.—Equivalents.

English. A fathom ('001 knot)	English. 6.087 ft. 608.7 ft. 6076 ft. 16.5 ft. 172.25 sq. ft. 10890 sq. ft. 8 drachms 8 gallons 27.34 gr. 3.2 gr.	Mctric. 1 '855 m. 185 5 m. 1852 m. 5 '029 m. 25 '29 sm. 1011 7 sm. 28 4 ccm. 36 '35 l. 1 '772 gm. 0 '207 gm.
French. A Paris foot A toise (6 feet) An arpent A livre = 16 onces (1 on. =) 576 grains	1.0658 ft. 6.3945 ft. 4089 sq. yards 1.08 lb.	0·3248 m. 1·949 m. 3419 sm. 0·4895 kilog.
German. A Rhenish foot	1 0298 ft. 1 037 ft. 1 0311 lb.	0·3139 m. 0·3161 m. 0·4677 kilog.
$\begin{array}{c} Russian. \\ \text{A verst} = 500 \text{ sachines} = 1500 \\ \text{archines} & \dots & \\ \text{A funt} = 32 \text{ loth} & \dots & \\ \end{array}$	3500 ft. 0·9026 lb.	1.0668 kilom. 0.4085 kilog.

(14) Ancient Measures.—Approximate Equivalents.

Hebrew, &c.	
Egyptian and Chaldaan cubit	1.502 feet.
Hebrew cubit of the sanctuary	2·125 feet.
Egyptian cubit of Belady and Hebrew Rabbinical cubit (6 cubits = 1 reed)	1.821 feet.
Egyptian royal Artaba	9.44 gallons.
Hebrew Bath or Ephah (= 6 Hins = 100 Omers)	6.468 gallons.
Babylonian silver talent	
Babylonian royal talent	131.4 lbs.
Babylonian commercial talent	65.7 lbs.
Babylonian gold talent	108.27 lbs.
Egyptian, Hebrew, and Olympic monetary talent	93.65 lbs.
Egyptian, Hebrew, and Olympic commercial talent	64.73 lbs.

Greek.

A pous Olympic stadium A metretes A medimnus Persian and Asiatic Greek talent Attic commercial talent Euboic and Attic monetary talent (= 6000 drachmæ)	606.75 feet. 16.46 gallons. 18.61 gallons. 71.65 lbs. 64.65 lbs.
Roman.	

A pes	·97 foot.
A passus (= 5 pedes) (a mile = 1000 passus)	
A jugerum	
An amphora (= 8 congii = 3 modii)	5.725 gallons.
An as or libra (= 12 unciæ)	·7165 lbs.

(15) THE ACCELERATION DUE TO GRAVITY.

The apparent acceleration, or rate of increase of velocity per second, of a body falling freely in vacuo under the action of gravity at any place is denoted by g; which is connected with l, the length of the pendulum beating seconds in vacuo, by the formula $g=\pi^2 l$.

	Latitude.	Value of g in cms.	Value of l in cms.
Equator	0° 0′	978.10	99.103
Latitude 45°	45° 0′	980.61	99.356
Munich	48° 9′	980.88	99.384
Paris	48° 50′	980.94	99.390
Greenwich	$51^{\circ}\ 29'$	981.17	99.413
Göttingen	51° 32′	981.17	99.414
Berlin	52° 30′	981.25	99.422
Dublin	53° 21′	981.32	99.429
Manchester	53° 29′	981.34	99.450
Belfast	54° 36′	981.43	99.440
Edinburgh	55° 57′	981.54	99.451
Aberdeen	57° 9′	981.64	99.461
Pole	90° 0′	983:11	99.610

(16) Various Values of g in Great Britain.

In accurate experiments it is customary to reduce to latitude 45°, where the acceleration due to gravity is taken as having unit value.

Latitude.	Ratio to acceleration at lat. 45°
45°	1.000 0000
50°	1.000 4463
51°	1.000 5343
Standards' Office 51° 29' 53"	1.000 57704
52°	1.000 6217
53°	1.000 7084
54°	1.000 7942
55°	1.000 8790
560	1.000 9627
57°	1.001 0453
58°	1.001 1266

DENSITIES OF MIXTURES AND NATIVE COMPOUNDS.

The density of a solid or liquid is measured by the number of grams in 1 ccm. of it. A cubic foot of water weighs 62:4 lb. For Elements and Artificial Compounds, see 80. Acids, see 87. Alcohol, see 88. Mercury, see 32. Water, see 31.

Agate and Rock crystal Albite	2.6 2.6 0.795 8	Brick	2·1 8·56 8·66
Amber	1.1	Calamine	3.4
Amphibole	2.9-3.4	Celestine	3.9
Anhydrite	2.98	Chalk	2 ?
Anthracite	1.4-1.7	Chestnut-wood	0.535
Apatite	3.3	Chloroform	1.526
Arragonite	2.95	Cinnabar	8.1
Ash-wood	0.753	Clay	1.92
		Coal (bituminous)	1.27 ?
Bamboo	0.4	Coral	2.69
Basalt	2.8	Cork	0.24
Beech-wood	0.698		
Bitumen	0.8-1.3	Diamond	3.5
Blood (human)	1.06	Dolomite	2.9
Box-wood	0.96		
Bone	1.8-2	Ebony	1.19
Brass	8	Elm	0.544

Emerald 2.7	Oak 0.6999
Emery 4	Oil (olive, sperm, colza) 0.915?
Ether $(C_2H_5)_2O$ 0.716	Opal 1·9–2·3
Felspar 2·4-2·6	Pearl 2.7
Fluor spar 3.2	Petroleum 0.84-87
	Pine-wood 0.56
Galena 7.6	Porcelain (China) 2:38
Gatena	
Garnet 3.5-4.2	Porcelain (Berlin) 2·3
Glass (green) 2.64	Porcelain (Sèvres) 2.15
Glass (crown) 2.5	Porphyry 2·6-2·9
Glass (flint) 3-3.6	Pyrites (iron) 5
Glass (Faraday's) 4.36	Pyrolusite 4.9
Glycerin 1.26	Pumice stone 2·2-2·5
	1 diffice stolle 2 2-2 3
Gold alloy, 18 carat14.88	D 1
Gold alloy, mint17.49	Ruby 3.6-4
Granite 2.7	
Graphite 2.2	Sand (dry) 1.42
Gutta percha 0.97	Sea-water 1.026
Gypsum	Selenite 2·3
Gypsum 2 55	
**	Serpentine 2.6
Heavy spar 4.5	Silver (mint 925 fine) .10 38
Hematite 5.07	Slate 2·1–2·8
Horn-silver 5.6	Spermaceti 0.94
Human body (mean) 1.07	Starch 1.53
and souly (mount)	Strontianite 3.6
Isoland span 9:7	
Iceland spar 2.7	Sugar (cane) 1.6
India-rubber 0.99	Suet 0.92
Idocrase 3.4	
Iron (cast) 7.2	Tale 2.5
Iron (wrought) 7.79	Teak (Indian) 0.8
Iron (Wootz) 7.665	Tinstone 6.9
Iron (steel)	Topaz 3.6
	Tourmaline 2:9-3:3
Ivory 1.92	
	Trachite 2.75
Lard 0.94	Turpentine 0.87
Lapis Lazuli 2·4	
Lignum vitæ 1·3	Wax (bees') 0.96
	Willow-wood 0·4
Mahamany 0.56.95	Witherite 4·3
Mahogany 0.56.85	
Malachite 3.9	Wool 1.61
Marble 2·7	
Mica 2·7-3·1	Zinc blende 4.16
Milk (cows') 1.03	ż.
, , , , , , , , , , , , , , , , , , , ,	

(18) COMPARATIVE VELOCITIES IN METRES PER SECOND.

Five kiloms, per hour	1.4	Neptune round sun	5390
Nine knots per hour	4.64	Sun towards Hercules	7642
Ordinary wind	5-6	Jupiter round sun	12924
21 knots per hour	10.82	Mars round sun	23863
A race-horse (.56 mile		Earth round sun	29516
per min.)	15	Venus round sun	34630
Flight of a carrier-		Mercury round sun	47327
pigeon	18	Solar atmosphere or-	
A wave in a tempest	21.8	dinary	30000
An express (60 miles per		Solar atmosphere up to	65000
hour)	26.8	Halley's comet in peri-	
Sensation through		helion	393260
nerves	33	Tempests in solar at-	
A hurricane	40	mosphere	402000
Sound in air at 10° C	337.2	Electricity in a sub-	
A point on the equator	463	marine wire	4000000
A cannon-ball	500	Electricity in an aërial	
Maximum tide-rate		wire	36000000
(North Pacific)	922	Light	300400000
Moon round earth	1012	0	
Sound in water at 8° C.	1435		
A point on equator of		Earthquake concussion	
sun	2028	(July '55)	1368

(19) COMPRESSIBILITY OF SOLIDS AND LIQUIDS.

The coefficient of volume-elasticity is the quotient of the pressure in tonnes (1000000 grams) per square centimetre by the compression, *i.e.* by the ratio of the change in volume to the original volume.

Water	15° C. I	22:63 []	Glass	423
Alcohol	15° C.	11.4	Steel	1876
Ether	14° C.	8.07	Iron	1485
Carbon disulphide	14° C.	16.3	Copper	1717
Mercury	15° C.	552.5	Brass (mean)	1063

(20) RIGIDITY.

The "modulus of rigidity" of a square bar is the amount of tangential stress in tonnes per square centimetre divided by the

deformation which it produces. The deformation is measured by the change (in radians) produced in any one of the four angles of the square bar.

Glass (mean)	150	Copper	456
Glass (flint)	243	Iron (cast)	542
Brass (mean)	350	Iron (wrought)	785
Brass (drawn)	373	Steel	834

(21) ELASTICITY AND TENACITY OF SOLIDS.

"Young's modulus of elasticity" (Y) is the amount of end-pull or end-thrust required to produce any very small elongation or contraction of a bar multiplied by the ratio of its length to the elongation or contraction produced.

The tenacity (T) of a substance (density Δ) is the greatest longi-

tudinal stress which it can bear without tearing asunder.

The quotient of the tenacity by Young's modulus gives the greatest longitudinal elastic extension that the substance can bear.

The stresses are given in tonnes (1 000 000 grams) per square centimetre.

	Δ	Y	Т	$\frac{\mathbf{T}}{\mathbf{Y}}$
Slate		910 1120	·675 ·787 ·021	·00074 ·0007
Glass Deal		562	·661 ·844	-00117
Ash		113 88	1·2 1·05	·0106 ·012
Oak Red pine Leak		103 118 169	1.05 .91 1.05	·0102 ·0077 ·0062
Aluminium bronze Brass (cast)	7.68	645	5·13 1·27	.00198
Brass (wire) Bronze Copper (drawn)	8.933	1001 696 1245	3·43 2·52 4·1	.00344 .00362 .0033
Copper (annealed)	8.936	1052	3.16	.003

-	Δ	Y	Т	$\frac{\mathbf{T}}{Y}$
Gold drawn	18.513	813	{ 2.66 2.84	.0034
Lead (cast)	11.215 11.35 21.275	177 1175 1704	2.72 2.72 3.5	.0012 .0023 .002
Silver (drawn)Zinc (drawn)	10·369 7·008	736 873	2·96 1·58	·0041 ·0018
Iron (cast)		984 1610 2040	2·04 4·22	·00096 ·00126 ·00224
Iron (common wire) Steel (cast)	7·553 7·717	1861 1955	6:51 8:38	·0034 ·0043
Steel (cast forged) Steel (English wire)	7:718 7:727	1881 2049	5·14 9·9 23·62	·005 ·0115
Steel (English pianoforte) Silk thread	1-727	91:39	3.67	.0401

A best hemp rope 1 inch round will carry about 1000 lbs. An iron wire rope an inch round will carry a ton, one two inches round will carry 4 tons. A steel wire rope two inches round will carry 11.2 tons. An Italian tarred hemp rope one inch round will carry 3 of a ton, one two inches round will carry 1.44 tons. N.B.—The tenacity of ropes does not vary exactly as the squares of their radii.

(22) Resistance of Substances to Crushing in Tonnes per Square Centimetre.

Ash '633
Box
Ebony 1:34
Mahogany576
Oak
Teak *844
Aluminium bronze 9.28
Brass (cast)
Iron (mean, cast) 7.87
Iron (wrought) 2.76
Steel (cast) 18.91
Basalt '843

ENTIMETRE.	
Brick (strong red) Brick (fire) Chalk Granite (Mt. Sorrel)	.077 .12 .023 .907 .766
Granite (Argyllshire) Grauwacke Penmaen-	1.188
Limestone (magnesian)	$\left\{ \begin{array}{c} .492 \\ .214 \end{array} \right.$
Marble	·387 ·69 ·83
" Syemite (bit. Sorrer)	30

(23) STANDARD WIRE GAUGE. (Board of Trade)

Number B.W.G.	Diameter in Inches.	Section in Square Inches.	Diameter in Centimetres.	Section in Square Centimetres.
7/0	0.500	0.1963	1.2700	1:2667
7/0 6/0	.464	1691	1.1785	1.0909
5/0	.432	.1466	1.0973	0.9456
4/0	.400	.1257	1.0160	·8107
3/0	.372	.1087	0.9449	.7012
2/0	.348	0.09511	.8839	6136
0	•324	8245	8229	.5319
1	.300	7069	.7620	.4560
2	.276	5983	.7010	*3858
3	.252	4988	.6401	.3218
4	.232	4227	.5893	.2727
5	.212	3530	•5385	.2277
6	.192	2895	•4877	·1868
7	.176	2433	•4470	.1570
8	.160	2010	.4064	·1297
9	.144	1629	*3658	.1051
10	.128	1237	*3251	0.08302
11	·116	1057	.2946	6818
12	.104	0.008495	.2642	5480
13	0.092	6648	2337	4289
14	80	5027	2032	3243
15	72	4071	1829	2627
16	64	3217	1626	2075
17	56	2463	1422	1589
18	48	1810	1219	1167
19	40	1257	1016	0.008107
20	36	1018	0.0914	6566
21	32	0.0003042	813	5188
22	28	6157	711	3972
23	24	4524	610	2922
24	22	3801	559	2452
25	20	3141	508	2027
26	0.018	0.0002545	0.0457	.001641
27	164	2112	4166	1363
28	148	1728	3759	1110
29	136	1453	3454	.0009375
30	124	1208	3150	7791

Number B. W.G.	Diameter in Inches.	Section in Square Inches.	Diameter in Centimetres.	Section in Equare Centimetres
31	0.0116	.0001057	0.02946	0.0006818
32	108	.00009161	2743	5910
33	100	7854	2540	5067
34	0.0092	6648	2337	4289
35	84	5542	2134	3575
36	76	4536	1930	2927
37	68	3632	1727	2343
38	60	2827	1524	1824
39	52	2124	1321	1370
40	48	1810	1219	1167
41	44	1521	1118	.0000982
42	40	1257	1016	811
43	36	1018	0.00914	656
44	32	.00000804	813	519
45	28	616	711	397
46	24	452	610	292
47	20	314	508	203
48	16	201	406	129
49	12	113	305	.0000073
50	10	.000000785	254	50

7/0 means 0000000.

(24) MISCELLANEOUS DATA IN NUMBERS AND MEASURES.

Base of Naperian logarithms (e)	2.718282
Modulus of common logarithms (M)	0.434294
Reciprocal of modulus	2.302585
The "poundal" or British absolute unit of force is the force required to generate per second a velocity	
of 1 ft. per second at Greenwich in oz	0.497
A foot-pound in kilogram-metres	0.138254
An inch-ton in kilogram-metres	25.8
	7.23308
A kilogram-metre in foot-pounds	
A "horse-power" can work per second foot-pounds A "force de cheval" can work per second kilogram-	550
metres	75
A "Watt" can work per second foot-pounds	0.737
A horse-power in forces de cheval	1.01386
	0.98633
A force de cheval in horse-powers	0 30000

Acceleration due to gravity (g) at Greenwich in foot-	90.1009
Length of the pendulum (l) beating seconds at	32.1908
Greenwich in inches	39.139
A cubic foot of water at 39° F. weighs in pounds	62.415
A cubic foot of water at 39° F. weighs in ounces	998.6
Legal mass of a cubic foot of water at 62° F. in lb	62.321
Mass in lb. of a cub. ft. of water at 62° F. calc.	
from Rossetti's results (cf. 32)	$62 \cdot 355$
A cubic inch of water at 62° F. weighs in grains	252.286
A pound of water at 39° F. occupies in cubic feet	.016022
A pound of water at 62° F. occupies in cubic feet	.016057
A ton of sea-water occupies in cubic feet	35
A ccm. of water at 4° C. weighs in grams (Kupffer)	1.000013
Mass of a cubic foot of air at 32° F. in lb	0.080728
Mass of a litre of air at 0° C. in grams	1.2932
A pound of air at 62° F. occupies in cubic feet	13.14
Height of the homogeneous atmosphere in feet	27801
The normal pressure of the air (H) in mm. of mercury	760
The normal pressure of the air (H) in inches of	
mercury	29.922
The normal pressure of the air (H) in kilogs. per scm.	1.0333
The normal pressure of the air (H) in lb. per sq. inch	14.7
Mass of a sovereign ($\frac{1}{12}$ copper) in grains	123.274
A halfpenny one inch in diameter weighs in oz	0.5
A penny 1/3 of an ounce weighs in grams	9.46
Logarithm of Π	0.49715
A radian per second in turns per second	0.159155
A turn per second in radians per second	6.2832

HEAT.

(25) Conversion of Temperatures.

-		- ~				-~		. ~
I	۰F	°C	°F	°C	۰F	°C	°F	•C
ı	-40	- 40	194	90	428	220	662	350
ļ	- 31	- 35	203	95	437	225	671	355
i	- 22	- 30	212	100	446	230	680	360
	-13	- 25	221	105	455	235	689	365
l	- 4	- 20	230	110	464	240	698	370
	5	-15	239	115	473	245	707	375
	14	-10	248	120	482	250	716	380
ı	23	- 5	257	125	491	255	725	385
	32	0	266	130	500	260	734	390
I	41	5	275	135	509	265	743	395
i	50	10	284	140	518	270	752	400
į	59	15	293	145	527	275	761	405
į	68	20	302	150	536	280	770	410
	77	25	311	155	545	285	779	415
	86	30	320	160	554	290	788	420
	95	35	329	165	563	295	797	425
	104	40	338	170	572	300	806	430
	113	45	347	175	581	305	815	435
	122	50	356	180	590	310	824	440
	131	55	365	185	599	315	833	445
	140	60	374	190	608	320	842	450
	149	65	383	195	617	325	851	455
	158	70	392	200	626	330	860	460
	167	75	401	205	635	335	869	465
	176	80	410	210	644	340	878	470
	185	85	419	215	653	345	887	475

°C	°F
1	1·8
2	3·6
3	5·4
4	7·2

°F	°C	°F	°C
1	0:5556	5	2:7778
2	1:1111	6	3:3333
3	1:6667	7	3:8889
4	2.2222	8	4.4444

(26) Melting Point, Specific Heat, Coefficients of Linear and Cubical Expansion of Solids.

11112 0021011		.011 02 201		
	M. p. °C.	Sp. ht.	Linear exp. 0000	Cub. exp.
Aluminium Antimony Arsenic Baily's metal Bismuth	600 ? 440 210	·202 ·0507 ·0814 ·0305	2221 (098 (1129 0559 1774 133	0317
Brick	1015 ?	.0939 ?	1894 055 049	0172 ?
Cadmium	500 1050	*0548 *095	316 1666 77	094 05
Glass	1250	198 ? 0324	089 ? 1415 08685	023 ? 04411
Graphite		\ \cdot \cdot 254 \ \cdot \cdot 467	0786	
Ice Iridium Iron Lead Magnesium	0 1950 1600 335 750	·5 ·0303 ·112 ·0315 ·245	52 0641 1166 28 2694	1585 0355 084
Marble (white)		·21	107 0849	
Mercury (solid)	-39·5 1700	03192 0324 0388		026
Platinum 90°/o, iridium 10°/o S		•19	0857 036 ? 1154 ?	04
Sandstone (red)	1000	.0559	1174 1943 1038	0583
SodiumSteel	95.6	·2934 ·118	(1095	204
Sulphur	1350 114·5 235 450	118 184 0559 0935	1144 6413 209 2976	223 069 089

24 HEAT.

(27) BOILING POINT, SPECIFIC HEAT, AND MEAN COEFFICIENT OF CUBICAL EXPANSION OF SOME LIQUIDS.

	B. p. °C.	Sp. ht.	Coeff. exp.	Between.
Alcohol (amyl)	131.8	.564	.00109	0-124
Alcohol (ethyl)	78 3	.615	.00108	0-50
Alcohol (methyl)	66.3	.613	.001358	0-61
Aniline	183.7		.000915	7-154
Benzene	80.8	•45	.001385	11-81
Bromine	63	.107	.001219	0-59
Calcium chloride(sat.sol.)	179.5			
Chloroform	61.2	.233	.0014	0-63
Carbon disulphide	48	.2206	.001468	-3460
Ether $(C_2H_5)_2O$	35.5	.517	.0021	0-33
Glycerin	290			
Hydrogen acetate	120	.508		
Hydrogen nitrate	86	.445	× '	
Hydrogen chloride (sat.) sol.)	110	.749	.00049	
Hydrogeniodide(sat.sol)	128			
Hydrogen sulphate	326	•33	.000489	0-30
Mercury	350	.0333	.00018	0-100
Nitrobenzene	213	.35	.00089	144-164
Paraffin	370 ?	.683		
Phenol	188		.00084	0-100
Phosphorus	290	.2 ?	.0005	50-60
Sea-water	103.7			
Sulphur	440	.2346		
Sulphur chloride (S ₂ Cl ₂).	136	.2024	.001	0-100
Turpentine	156	.467	.00105	-9-106

(28) Specific Heat of Gases.

The specific heat of a gas is the number of calories (40) required to raise 1 kilog. of it from 0° C. to 1° C. If c_p represent the specific heat at constant pressure, and c_v that at constant volume, $\frac{c_p}{c_v} = 1.421$ for air, 1.41 for gases the molecule of which contains two atoms, 1.26 if the molecule contains three, and 1.66 if the molecule contains only one atom. These numbers are only approximate.

		c_p	co
Air		0.2375	0.1684
Oxygen	O_2	0.2175	0.1551
Nitrogen	N_2	0.2438	0.1727
Hydrogen	H_2	3.409	2.411
Chlorine	Cl_2	0.121	0.0928
Bromine	Br_{2}^{2}	0.0555	0.0429
Nitrous oxide	$N_{o}O$	0.2262	0.181
Nitric oxide	NO	0.2317	0.1652
Carbon monoxide	CO	0.245	0.1736
Carbon dioxide	CO _o	0.2169	0.172
Hydrogen chloride	HCÎ	0.1852	0.1304
Steam	$O_{o}H$	0.4805	0.37
Sulphur dioxide	SŰ,	0.1544	0.123
Hydrogen sulphide	$H_{o}S$	0.2432	0.184
Carbon disulphide	CS_2	0.1569	0.131
Marsh gas	CH_A	0.5929	0.468
Olefiant gas (ethene)	$C_2 \vec{H_4}$	0.4040	0.359
Ammonia	NH_3	0.5084	0.391
Benzene	C_6H_6	0.3754	0.35
Alcohol (methyl)	CH_4O	0.4580	0.395
Alcohol (ethyl)	C_2H_6O	0.4534	0.41
Ether	$C_4^2H_{10}^3O$	0.4797	0.453
Turpentine	$C_{10}^{4}H_{16}^{1}$	0.5061	0.491
•	10 10		
<u> </u>			

(29)TENSION AND BOILING-POINTS OF LIQUEFIED GASES.

	Вр.	Press. at 0° C. in cm.		Вр.	Press. at 0° in cm.
Acetylene Nitrous oxide Carbon dioxide . Hydrogen chlo-	- 87·9° - 78·2°	3640 2742 2691	Chlorine Ammonia Cyanogen Sulphur dioxide	-33.6° -38.5° -20.7° -10°	
ride	- 61.80	1991 821			

Hydrogen at - 140° C. Oxygen at - 140° C. Nitric oxide at - 11° C. 650 atmos. 252 atmos. 104 atmos. Oxygen at - 184° C. under 1 atmos.

Air at - 192° C. ,,

Nitrogen at - 193° C. ,, ,, Carbon monoxide at - 193° C. ,,

(30) LATENT HEATS OF FUSION AND VAPORISATION.

Liquid3.		Vapours.	
Water	79.25	Steam	536
Beeswax	97.22	Methyl alcohol	264
Spermaceti	82.22	Ethyl alcohol	209
Zinc	28.13	Hydrogen formate	168
Silver	21.07	Hydrogen acetate	102
Tin	14 25	Ethyl oxide (Ether)	91
Cadmium	13.55	Carbon disulphide	86.7
Bismuth	12.64	Turpentine	69
Sulphur	9.35	Bromine	45.6
Lead	5.37	Mercury	62
Phosphorus	5.245	Sulphur	362
Mercury	2.83	Chloroform at 100° C	80.7
Grey cast iron	23		• • •
Platinum	27:18		
Sea-water	54		

(31) The Logarithms of 1 + .00367 t.

to-	log.	D	t°	log.	D	t°	log.	D
	1.9493 1.9669 1.9838	18 17 16	45 50 55 60	.0664 .0732 .0799	14 13	205 210 215 220	·2436 ·2481 ·2526 ·2571	9
1 2 3 4 5	.0016 .0032 .0048 .0063 .0079		6 5 70 75 80 85	.0929 .0993 .1056 .1118 .1179	13 12	225 230 235 240 245	·2614 ·2658 ·2701 ·2743 ·2786	9 8
6 7 8 9 10	0095 0110 0126 0141 0156		90 95 100 105 110	1239 1299 1358 1416 1473	12 11	250 255 260 265 270	·2827 ·2869 ·2910 ·2950 ·2991	
11 12 13 14 15 16 17	*0172 *0187 *0202 *0218 *0233 *0248 *0263	16 15	115 120 125 130 135 140 145	1529 1585 1640 1694 1748 1801 1853	11 10	275 280 285 290 295 300 305	*3030 *3070 *3109 *3148 *3186 *3224 *3262	8 7
18 19 20 21 22 23	·0278 ·0293 ·0308 ·0322 ·0337 ·0352		150 155 160 165 170 175	1905 1956 2006 2056 2106 2154		310 315 320 325 330 335	*3299 *3337 *3373 *3410 *3446 *3482	
24 25 30 35 40	0352 0367 0381 0454 0525 0595	15 14	180 185 190 195 200	*2203 *2250 *2250 *2298 *2344 *2391	10 9	340 345 350 440 860 1040	3518 3553 3588 4174 6187 6828	7

(32) VOLUME AND DENSITY OF WATER FROM THE MEAN OF ALL THE BEST EXPERIMENTS.

t° C.	Rossetti. Volume at 4° C. = 1.	True density grams in 1 ccm.	Volume in ccm. of 1 gram.	Förster. Volume at 4° C. = 1.
0	1.000129	•999884	1.000116	
1	1.000072	•999941	1.000059	
2	1.000031	.999982	1.000018	
3	1.000009	1.000004	•999996	
4	1.000000	1.000013	•999987	1.0000000
5	1.000010	1.000003	•999997	83
6	1.000030	•999983	1.000017	312
7	1.000067	999946	1.000054	688
8	1.000114	.999899	1.000101	1205
9	1.000176	999837	1.000163	1860
10	1.000253	999760	1.000240	2650
11	1.000345	999668	1.000332	3575
12	1.000451	999562	1.000438	4630
13	1.000570	999443	1.000557	5806
14	1.000701	999312	1.000688	7110
15	1.000841	999173	1.000828	8533
16	1.000999	999015	1.000986	10075
17	1.001160	998854	1.001147	11731
18	1.001348	998667	1.001335	13499
19	1.001542	998473	1.001529	15375
20	1.001744	998272	1.001731	17355
21	1.001957	998060	1.001944	19438
22	1.002177	997839	1.002164	21623
23	1.002405	997614	1.002392	23901
24	1.002641	997380	1.002628	1.0026274
25	1.002888	997133	1:002875	1 00204,1
26	1.003144	996879	1.003131	
27	1.003408	996616	1.003395	
28	1.003682	996344	1.003669	
29	1.003965	996064	1.003952	
30	1.004253	995778	1.004240	
40	1.00770	99236	1.007682	
50	1.01195	98821	1.011928	
60	1.01691	98339	1.016906	
70	1.02256	97795	1.022542	
80	1.02887	97195	1.028856	
90	1.03567	96557	1.035662	
100	1.04312	95866	1.043117	

(33) VOLUME AND DENSITY OF MERCURY.

t° C.	Volume of mercury at 0° C. = 1.	Density or grams in 1 ccm.	Ccm. occupied by 1 gram.	Diff.
0	1.000000	13.596	.073551	13
4	1.000716	13.586	.073605	
5	1.000896	13.584	.073617	
10	1.001792	13.572	.073681	
15	1.002691	13.559	.073752	
20	1.003590	13.547	.073817	
30	1.005393	13.523	.073953	
40	1.007201	13.499	.074085	
50	1.009013	13.474	.074217	
60	1.010831	13.450	.074349	
70	1.012655	13.426	.074482	
80	1.014482	13.401	.074621	
90	1.016315	13.377	.074755	
100	1.018153	13.353	.074890	

(34) TENSION OF AQUEOUS VAPOUR IN MM. OF MERCURY.

to C.		to C.		to C.	mm.	to C.	Atmos.
-10	2.08	16	13.54	90	525.39	100	1.0
- 9	2.26	17	14.42	95	633.69	110	1.4
-8	2.46	18	15.36	99	733.21	120	1.96
-7	2.67	19	16.35	99.1	735.85	130	2.67
-6	2.89	20	17:39	99.2	738.50	140	3.57
- 5	3.13	21	18.50	99.3	741.16	150	4.7
- 4	3.39	22	19.66	99.4	743.83	160	6.1
- 3	3.66	23	20.89	99.5	746.50	170	7.8
-2	3.96	24	22.18	99.6	749.18	180	9.9
-1	4.27	25	23.55	99.7	751.87	190	12.4
0	4.60	26	24.99	99.8	754.57	200	15.4
1	4.94	27	26.51	99.9	757.28	210	18.8
$\frac{2}{3}$	5.30	28	28.10	100	760.00	220	22.9
3	5.69	29	29.78	100.1	762.73	230	27.5
4 5	6.10	30	31.55	100.2	765.46		
5	6.53	35	41.83	100.3	768.20		
6	7.00	40	54.91	100.4	771.95		
7	7.49	45	71.39	100.5	773.71		
8	8.02	50	91.98	100.6	776.48		
9	8.57	55	117.48	100.7	779.26		
10	9.17	60	148.79	100.8	782.04		
11	9.79	65	186.94	100.9	784.83		
12	10.46	70	233.08	101	787.59		
13	11.16	75	288.50	105	906.41		
14	11.91	80	354.62	110	1075.37		
15	12.70	85	433.00				
				1	1	, ,	1

80 HEAT.

(35) THE WET-BULB HYGROMETER.

The tension of aqueous vapour in mm. of mercury corresponding to the reading t^o C. of the dry-bulb thermometer for the differences in temperatures between the dry and wet-bulb thermometers given in the upper line.

¢° C.	0	1	2	3	4	5	6	7	8	9	10	11
0	4.6	3.7	2.9	2.1	1.3							
1	4.9	4 0	3.2	2.4	1.6	0.8						
2	5.3	4.4	3.4	2.7	1.9	1.0						
2 3 4 5	5.7	4.7	3.7	2.8	2.2	1.3						
4	6.1	5.1	4.1	3.2	2.4	1.6	0.8					
5	6.5	5.2	4.2	3.2	2.6	1.8	1.0					
6	7.0	5.9	4.9	3.9	2.9	2.0	1.1					
7	7.5	6.4	2.3	4.3	3.3	2.3	1.4	0.4				
8	8.0	6.9	5.8	4.7	3.7	2.7	1.7	0.8				
9	8.6	7.4	6.3	5.2	4.1	3.1	21	1:1	0.5			
10	9.2	8.0	6.8	5.7	4.6	3.2	2.5	1.5	0.5			
11	9.8	8.6	7.4	6.5	5.1	4.0	2.9	1.9	0.9			
12	10.5	9.2	8.0	6.8	5.6	4.5	3.4	2.3	1.3			
13	11.2	9.8	8.6	7'3	6.2	5.0	3.9	2.8	1.7			
14	11.9	10.6	9.2	8.0	6.7	5.6	4.4	3.3	2.2	1.1		
15	12.7	11.3	9.9	8.6	7.4	6.1	2.0	3.8	2.7	1.6	0.5	
16	13.5	12.1	10.7	9.3	8.0	6.8	5.2	4.3	3.5	2.1	1.0	
17	14.4	13.0		10.1	8.7	7.4	6.5	4.9	3.7	26	1.2	0.
18	15.4			10.9	9.5	8.1	6.8	5.5	4.3	3.1	2.0	0.
19	16.4	14.7	13.2	11.7	10.3	8.9	7.5	6.2	4.9	3.7	2.5	1.
20	17.4	15.7	14.1	12.6	11.1	9.7	8.3	6.9	5.6	4.3	3.1	1.
21		16.8		13.2	12.0	10.2	9.0	7.6	6.3	2.0	3.7	2.
22	19.7	17.9		14.5		11.4	9.9	8.4	7.0	5.7	4.4	3.
23		19.0		15.6		12.3	10.8	9.2	7.8	6.4	5.1	3.
24	22.2	20.3			14.9		11.7	10.1	8.7	7.2	5.8	4
25	23.6	21.6			16.0		12.7	11.1	9.5	8.0	6.6	5.
26	25.0	22.9			17.2		13.7	12.1	10.5	8.9	7.4	6.
27	26.5	24.9	22.3.			16.6	14.8		11.4	9.8	8.3	6
28	28.1	25.9	23.7	21.7		17.6	16.0	14.2	12.5	10.8	9.2	7.
29	29.8	27.5		23.1		19.1	17.2	15.3	13.6	11.9	10.2	8.
30	31.6	29.2	26.9	24.6	22.5	20.5	18.5	10.0	14.7	13.0	11.2	9.

(36) Mass of Aqueous Vapour, Air, and Saturated Air.

	Grams in	one cubic	m.		Grains in	one cubic	foot.
°C.	Aq. vap. own pres.	Dry air 1 atmos.	Sat. air 1 atmos.	°F.	Aq. vap. own pres.	Dry air 1 atmos.	Sat. air 1 atmos.
0	4·8	1293·2	1293·2	32	2·1	565·1	565·1
5	6·9	1269·5	1265·9	41	3·0	554·9	553·3
10	9·4	1247·1	1241·7	50	4·1	545·1	542·7
15	12·8	1225·1	1217·9	59	5·6	535·5	532·3
20	17·2	1204·4	1193·6	68	7·5	526·4	521·7
25	22·9	1184·3	1169·6	77	10·0	517·6	511·2
30	30·0	1164·6	1144·9	86	13·1	509·0	500·4
35	39·4	1145·6	1120.0	95	17·2	500·7	489·5
40	50·6	1127·3		104	22·1	492·7	477·8

(37) TENSION OF MERCURY-VAPOUR.

t° C.	mm.	t' C.	mm.
100	0.75	220	34.70
110	1.07	230	45.35
120	1.53	240	58.82
130	2.18	250	75.75
140	3.06	260	96.73
150	4.27	270	123.01
160	5.90	280	155.17
170	8.09	290	194.46
180	11.00	300	242.15
190	14.84	310	299.69
200	19.90	320	368.73
210	26.35	320	450.91

(38) MOLECULAR DATA FOR GASES.

	Hydrogen.	Oxygen.	Carbon monoxide.	Carbon dioxide.
Mass of the molecule if $H_2 = 2$ Velocity (square root of mean square) in metres	2	32	28	44
per second at 0° C	1859	465	497	396
Mean path in tenth-metres	965	560	482	379
Collisions per second in				
millions	17750	7646	9489	9720
Diameter in tenth-metres	5.8	7.6	8.3	9.3
Mass (in 10^{-25} of a gram).	46	736	644	1012

(39) THERMAL CONDUCTIVITIES.

The number of gram-degrees of heat which pass in a second through a plate of the substance 1 cm. square and 1 cm. thick, the opposite faces being kept at temperatures differing by 1° C.

Copper	0.96	Water	.002
Iron		Fir across fibres	.00026
Air)		Fir along fibres	.00047
Oxygen (.000049	Oak across fibres	.00059
Nitrogen	000049	Cork	.000029
Carbon monoxide)		Writing-paper sized	.00019
Carbon dioxide	.000038	Grey paper unsized	·000094
Hydrogen	.00034	Calico (new)	.000139
Strata (rough general)		Carded wool	.000122
Sandstone		Cotton wool	.000111
Sand	.0026	Eider down	·000108

(40) MISCELLANEOUS DATA IN HEAT.

A calorie (kilog. water through 1° C.) in lbs. heated	
through 1° F	3.968
A British unit of heat in calories	0.252
Mechanical equivalent of British unit of heat in	
foot-lbs	775.47
Mechanical equivalent of a calorie in kilog, metres	425.454
Mechanical equivalent of a water-gram-degree in ergs	4.175×10^{7}
Mass of 1 ccm. of aqueous vapour at 0° C. and 760	
mm. in grams	.000806

Coefficient of expansion of air (volume constant) Coefficient of expansion of air (pressure constant)	$\frac{1}{273}$ $\frac{11}{3000}$
Coefficient of expansion of mercury (0° - 100°)	$\frac{1}{5550}$ 0001802
Coefficient of apparent expansion of mercury in glass	$\frac{1}{6480}$

LIGHT.

(41) Wave lengths of the chief lines in the spectra of the sun and of the mere volatile metals in ten-millionths of a mm, or 10^{-10} m.

THE SOLAR SPECTRUM.

THE SOLAR STECTIC.			
Limit of heat spectrum	19400	Calcium	6202
Pod	7230	••	6181
Red	6470		5543
Orange	5850		5517
Yellow	5750	Cæsium	6219
Green	4920		C007
Blue	4550		4597
Indigo	4240		4560
Violet	3970	T., 35	
Limit of ultra-violet sp. U.	2948	Indium	4511
AtmosphericA.	7604	. 00	4101
AtmosphericB.	6867	Lithium	6705
HydrogenC.	6562		6102
and the second s	5895	Magnesium	5183
SodiumD	5889		-5172
E.	5269		5167
Magnesium b_1	5183	(with metal)	4483
HydrogenF.	4861	Potassium	7680
,,	4340	1 Ottacsium	4045
IronG.	4307	Rubidium	
Hydrogenh.	4101	Kundanim	7800
CalciumH.	3967		6297
,, (H ₂) or K.	3933		4216
IronL.	3819		4202
11011	5515	Sodium	5895
			5889
Barium	5535	Strentium	6627
Darum	6031		6364
	5866		6058
	5492		6031
	3492		4607
Hudnogen houses	E400	Thalliam	5349
Hydrogen borate	9480.	111111111111111111111111111111111111111	5680
		1	

(42) REFRACTIVE INDICES CHIEFLY FOR THE MEAN D LINE.

Solids.	1	Nitrobenzene 1.54
Lead chromate	2.5?	Benzene 1.49
Diamond	2.42	Glycerin 1.47
Phosphorus	2.22	Turpentine 1.46
Native sulphur	2.04	Chloroform 1.44
Lead borate	1.86	Sulphuric acid 1.42
Ruby	1.71	Alcohol (amy.) 1.4
Iceland spar (ord.)	1.658	Alcohol (ethyl) 1.36
,, ,, (ext.)	1.486	Ether (ethyl) 1.35
Topaz	1.61	Water 1:33
Flint glass	1.6	Alcohol (methyl) 1.33
Emerald	1.58	
Quartz (ord.)	1.544	Gases and Vapours (white light).
,, (ext.)	1.553	Air 1 000294
Rock salt	1.54	Oxygen 1.000272
Resin	1.54	Hydrogen 1.000138
Citric acid	1.53	Nitrogen 1 0003
Canada balsam	1.53	Chlorine 1.000772
Felspar	1.52	Nitrous oxide 1.000503
Potassium nitrate	1.52	Nitric oxide 1.000303
Potassium sulphate	1.21	Hydrogen chloride 1.000449
Ferrous sulphate	1.5	Carbon monoxide 1.000340
Crown glass	1.5	Carbon dioxide 1.000449
Magnesium sulphate	1.49	Cyanogen 1.000834
Fluor spar	1.43	Marsh gas 1 000443
Ice	1:31	Olefiant gas 1.000678
		Ammonia 1.000285
Liquids.		Carbonyl chloride 1.001159
Phosphorus	2.075	Hydrogen sulphide 1.000644
Carbon disulphide	1.63	Sulphur dioxide 1 000665
Oil of bitter almonds	1.6	Sulphur 1.001629
Oil of cassia	1.58	Phospherus 1.001364
Aniline	1.57	Arsenic 1.001114
Phenol	1.55	Mercury 1.000556

(43) ROTATORY POLARISATION.

The amount of rotation very nearly varies inversely as the square

of the wave-length of the light used.

In the case of the solution of an active substance in an inactive liquid the "specific rotation for light" of wave-length x.

 $[\alpha]_x = \frac{\alpha}{lw} \times v$ where α is the observed angle, v the volume of

35

the solution, l the length of the solution in decimetres, and w the mass of the active substance. (+) right-handed and (-) left-handed rotation. The rotation required to reproduce the sensitive tints.t., which is the peculiar grey given when the yellow is absorbed from white light, is equal to that of the mean yellow.

Rock crystal 1 mm.			Milk sugars.t.	+	59•
D	±	21.69°	ManniteD	_	0.150
Rock crystal, sensi-			Camphor in alcohol		
tive tint	\pm	240.5			47.40
Cinnabar, 2 mmB	±	52°	DextrinD	+	138·7°
Strychnine sulphate			TurpentineD	_	43.50
+ 13 aq. 1 mm. B	-	90	Tartaric acidD		
Sodium chlorate 2.25			Ammonium tartrate		
mm	土	8.20	D	+	290
Potassium thiosul-			Egg albuminD	_	35.20
phite, 1 ram	Ψ	8.830	Amyl alcoholD	_	4.380
Cane sugars.t.	+	73.80	Quinine sulphate (red)		
Levuloses.t.	_	106°	Strychnine (red)	_	132°
Glucoses.t.	+	56°	, ,		

(44) THE VELOCITY OF LIGHT IN METRES PER SECOND.

Römer (1676), eclipses of Jupiter's satellites	310 000 000
By aberration of the fixed stars (20.445")	308 300 000
Fizeau, (telescopes and toothed wheel)	315 000 000
Foucault (1862), (revolving mirror in air)	298 000 000
Cornu (1873) in air	298 400 000
,, (1873) in vacuo	298 500 000
,, (1874) in air	299 740 000
,, (1574) in vacuo	300 400 000
Michelson (1879) in air	299 740 000
,, (1879) in vacuo	299 820 000

Hence the velocity of light in vacuo most probably is 3.004×10^5 kilom, or 186000 miles per second. The denser the medium through which the light is passing the less is the velocity. If μ be the absolute refractive index of light of a given refrangibility in any $\frac{300400000}{10000000}$

medium, the velocity is 300400000 metres per second.

SOUND.

(45) Velocity of Sound in Metres per Second.

In air at to C. 332 4 + 6t metres = 1093 feet?

In Gases at 0° C.

Hydrogen 1269
Oxygen 317
Carbon monoxide 337
Carbon dioxide 362

In Gold 1998
Silver 2664
Platinum 2664
Platinum 2664
Oxygen 369

2664 Carbon dioxide 362 Zinc 3230 Oak Nitrous oxide..... 262 3330 Ethylene..... 314 Copper 3730 Brass 3397 In Liquids. Flint Glass 3996 Water at 8° C. 1435 Glass 4995 Absolute alcohol 1160 Iron 5028 Ether 1160 Steel 5028 Fir 4163 In Solids. to 5661 Aspen 13325080

(46) THE DIATONIC SCALE.

Proportional number of vibrations	Fund.	Second.	Third.	Fourth.	Fifth.	Sixth.	Seventh.	Octave.
of	C	D	Е	F	G	A	В	C.
Upper note		9	5	4	3	A 5	15.	. 2
Lower note	1	8	4	3	2	3	. 8	1
Intervals		8	5	3	3 2	5 .	15	1 1

(47) THE NUMBER OF COMPLETE VIBRATIONS FOR EACH NOTE OF THE MIDDLE OCTAVE OF AN ORDINARY PIANO.

(48) COMPARISON OF THE DIATONIC AND EQUALLY TEMPERED SCALES,

The octave is divided into six hundred equal intervals, and the columns on the right give the numbers of such intervals by which the several notes in each scale are higher than the fundamental note.

Diatonic. Intervals.		Diat.	Temp	
Do	1	Unison	0	0
#	81	Comma	11	11
Do	$\frac{25}{24}$	Semitone	35	3 50
Reb	$\frac{27}{25}$	Minor second	67	1 30
Re	9 8	Major second	102	100
Re	75	Augmented second	137	150
Mi	6 5	Minor third	158	130
Mi	5	Major third	193	200
Fab	32	Minor fourth	214	1 200
Mi	125	Augmented third	228	250
Fa	4/3	Perfect fourth	249	1 250
Fa#	25 18	Augmented fourth (tritone)	284	300
Solb	36	Minor fifth	316	1
Sol	3 2	Major fifth (perfect)	351	350
Sol#	25	Augmented fifth	386	1 100
Lab	8 5	Minor sixth	407	400
La	5 3	Major sixth	442	450
La	125	Augmented sixth	478) =00
Sib	9 5	Minor seventh	509	500
Si	15	Major seventh	544	} 550
Dob_1	48	Minor octave	565	350
Si#	1 2 5 6 4	Augmented seventh	579	600
$D_{0_1}^{\eta}$	2	Octave	600	1 000

ELECTRICITY.

(49) The Dimensions of Units.

If any physical quantity Q be measured in terms of a length L, an interval of time T, and a mass M, so that

$$Q = L^{\alpha} T^{\beta} M^{\gamma}$$

the quantity Q is said to be of the dimension a in length, B in

time, and γ in mass.

The velocity (v) of a moving body is measured by the linear space passed over in the unit of time. Acceleration or velocity-increment (a) is measured by the increase or decrease in the velocity of the moving body during the unit of time. Force (F), anything which changes or tends to change the motion of a body, is measured by the mass moved multiplied by the acceleration produced. Work (W) is measured by the force multiplied by the distance through which it acts. The energy of a system is measured by the work which it can do, hence energy also is measured by force multiplied by distance. The power (P) of a motor is measured by the rate at which it works, that is by the work done in the unit of time.

Geometry.

Dimensions.

Length	L	L^1
Surface	$S = L^2$	L^{2}
Volume	$V = L^2$	L^3
	Kinematics.	
Time	T	T^1
Velocity	$=rac{L}{T}$	L^1T-1
Acceleration	$a = \frac{v}{T}$	L^1T^{-2}
	Kinetics.	
Mass	M	M^1
Momentum	Mv	$L^{1}M'T^{-1}$
Force	F = aM	$L^{1}M'T^{-2}$
Work and Energy	$IV = LF = \frac{1}{2}Mv^2$	$L^{3}MT^{-2}$
Power	$P = \frac{W}{T}$	$L^2M-1T-3$
Density	$\frac{M}{V}$	$L^{-3}M$

(50) THE C.G.S. SYSTEM. (Cf. 9.)

To obtain uniformity of measures it is convenient to adopt:

The CENTIMETRE as the unit of length.

The GRAM as the unit of mass.

The mean solar SECOND as the unit of time.

Measures expressed on this system are denoted by C.G.S. The unit of velocity is one centimetre per second. The unit of acceleration is that in which unit velocity (one centimetre per second) is

added (algebraically) per second.

The unit of force, called the DYNE, is the force which acting on a gram for a second produces in it a velocity of a centimetre per second. Since a body after falling from rest for a second at Greenwich has a velocity of 981 cms. per second, a dyne is at of the weight of a gram at Greenwich, or 1000 dynes are about the weight of 1.019

The unit of work, called the ERG, is the amount of work done by a dyne in acting through one centimetre. Energy is measured by the work which it can do, and is therefore also expressed in ergs.

(For the unit of power called the Watt cf. 58.)

Since very large and very small quantities have to be expressed by means of the same unit, it is convenient to use the prefix megaor megal- to express a million times the unit (x 106), and the prefix micro- to express a millionth part of the unit ($\times 10^{-6}$).

Thus a megadyne means 1,000,000 dynes (rather more than the weight of a kilogram, and a megalerg means 1,000,000 ergs (rather

more than '01 kilogram-metre).

(51) MAGNETIC UNITS.

The unit magnetic pole is one of such a strength that it repels an equal pole at the distance of one centimetre with the force of one dyne.

Unit difference of magnetic potential exists between two points when an erg of work must be expended to bring a unit N-seeking pole from the one point to the other against the magnetic forces.

A field of unit intensity is one which acts on a unit N-seeking

pole with the force of one dyne.

Magnetic density is measured by the number of unit poles the

magnetism per unit of surface is equivalent to.

The moment of a magnet is nearly the product of the strength of either of its poles by the distance between them. The intensity of magnetisation of a uniformly magnetised body is the quotient of its moment by its volume.

Strength of pole	$p = (\text{force} \times \text{distance}^2)\frac{1}{2}$	Dimensions. $L^{\frac{3}{2}}M^{\frac{1}{2}}T^{-1}$
Potential	U = WOIR . BUILDING OF POIC	$L^{\frac{1}{2}}M^{\frac{1}{2}}T^{-1}$
Intensity of field		$L^{-\frac{1}{2}}M^{\frac{1}{2}}T^{-1}$
Magnetic moment	$lp = length \times strength of pole$	$L^{\frac{5}{2}}M^{\frac{1}{2}}T^{-1}$
Intensity of a magnetisation	$j = \text{moment} \div \text{volume}$	$L^{-\frac{1}{2}}M^{\frac{1}{2}}T^{-1}$

(52) Electrostatic Units.

The C.G.S. electrostatic unit of quantity or charge is that quantity of electricity (q) which would repel an equal quantity at the distance of one centimetre in air with the force of one dyne. By

Coulomb's law $F = \frac{q \times q}{L^2}$.

The unit of current (i) is the current in which the unit of quantity passes in a second.

Unit difference of potential (v) exists between two points when the expenditure of an erg of work is required to bring a unit of + electricity from one point to the other against the electric forces.

A conductor has unit capacity (c) when unit charge raises it to unit potential (e.g. an isolated sphere of 1 cm. radius has unit

capacity).

The surface density of a conductor at any point is measured by the number of units of electricity, supposed to be uniformly dis-

tributed, per square centimetre of its surface.

The resistance of a conductor (r) is measured by the difference of potential at its extremities divided by the current produced in it thereby. The resistance of a conductor is also measured by the time required for the passage of a unit of electricity through it, when unit difference of potential is maintained between its ends.

The specific inductive capacity (k) of a dielectric is measured by the ratio of the capacity of a condenser made of it to that of an

air condenser of equal size.

		Dimensions.
Quantity	$q = (force \times distance^2)^{\frac{1}{2}}$	$L^{\frac{3}{2}}M^{\frac{1}{2}}T^{-1}$
Current	$i = \text{quantity} \div \text{time}$	$L^{\frac{3}{2}}M^{\frac{1}{2}}T^{-2}$
Potential	$v = \text{work} \div \text{quantity}$	$L^{\frac{1}{2}}M^{\frac{1}{2}}T^{-1}$
Resistance	$r = \text{potential} \div \text{current}$	$L^{-1}T$
Capacity	$c = \text{quantity} \div \text{potential}$	L'
Sp. ind. capacity	$k = \text{capacity} \div \text{another capacity}$	A number

(53) ELECTROMAGNETIC UNITS.

The C.G.S. unit of current (I) is that current which when passed through a circuit a centimetre long bent into the arc of a circle one centimetre in radius (subtending a radian at the centre) produces a magnetic field of unit-intensity at the centre.

The C.G.S. unit of quantity (Q) is the quantity of electricity which when passed through a circuit in a second produces a unit-

current.

The C.G.S. unit of electromotive force (E) or potential exists between two points when one erg of work is expended in bringing a + unit of electricity from one point to the other against the electromotive force.

The C.G.S. unit of capacity (C) is the capacity of a condenser which when charged with one C.G.S. unit of quantity is raised to

unit potential.

The C.G.S. unit of resistance is the resistance of a conductor such that unit difference of potential between its two extremities causes a unit-current to flow through it.

		Dimensions.
Current	$I = \text{intensity of field} \times \text{length}$	$L^{\frac{1}{2}}M^{\frac{1}{2}}T^{-1}$
Quantity	$Q = \text{current} \times \text{time}$	$L^{\frac{1}{2}}M^{\frac{1}{2}}$
Licetromotive force t	E = work ÷ quantity	$L^{\frac{3}{2}}M^{\frac{1}{2}}T^{-2}$
Resistance	$R = $ electromotive force \div	$L^1 T^{-1}$
Capacity	$C = \text{quantity} \div \text{potential}$	$L^{-1}T^2$

(54) RATIO OF THE ELECTROSTATIC AND ELECTROMAGNETIC UNITS.

If the dimensions of the electrostatic units be divided by those of the electromagnetic units, the ratio is found to be expressed by a velocity, that is to say by a length divided by a time, by the reciprocal, by the square, or by the square of the reciprocal of this velocity.

itio.
$=\omega$.
$=\frac{1}{-}$.
$=\omega^{?}$.
$=\frac{1}{\omega^2}$

This velocity $\frac{L}{T} = \omega$ is found to be 2.9857×10^{10} cms. per second, which is nearly equal to the velocity of light, and about 30 times the velocity representing the ohm (see next page).

(55) RELATIONS BETWEEN THE UNITS IN EACH SYSTEM.

For Electrostatics :-

force = $\frac{q \times q}{L^2}$ which gives q if the unit of force and the distance between the quantities of electricity be given;

q = it which gives i if the unit of time be given; energy = $q \times v$ which gives v if the unit of energy be given;

 $i = \frac{v}{r}$ which gives r;

q = vc which gives c.

For Electromagnetics :-

 $I = H \times \frac{a \tan a}{2\pi}$ which gives I if the intensity of the magnetic field (H) and length of the radius (a) of the circular current and its angle (a) at the centre be given;

Q = It which gives Q, if the unit of time be given; energy $= Q \times E$ which gives E if the unit of energy be given;

 $I = \frac{E}{R}$ which gives R;

Q = EC which gives C.

(56) PRACTICAL UNITS.

Since the C.G.S. electromagnetic units are found to be inconveniently large or small, multiples and submultiples of them are used in practical work.

The practical unit of current, called the AMPÈRE, is 10 of the C.G.S. unit, and is the current produced by the electromotive force

of a volt acting through an ohm.

The COULOMB is the quantity of electricity which flows per second in a current of one ampère; it is 10 of the C.G.S. unit of

quantity.

The FARAD is the capacity of a condenser which when charged with one coulomb has a potential of one volt. It is 10 -9 C.G.S. unit of capacity. In practice the microfarad (10-15 C.G.S. unit of capacity) is generally used.

The VOLT is the electromotive force required to produce a current of one ampère in a circuit the resistance of which is one ohm. It is 108 C.G.S. units of potential. A Daniell cell has an electromotive

force of rather more than one volt.

The practical unit of resistance, the OHM, is 109 C.G.S. units of resistance. It is nearly represented by a standard platinum-silver wire prepared by a Committee of the British Association and known as the B.A. unit of resistance.

Current	ampère	10-10	G.S.	units.
Quantity	coulomb	10-1	,,	,,
Capacity	farad	10-9	,,	,,
Electromotive force	volt	108	,,	,,
Resistance	ohm	109	,,	,,

Another way of regarding the practical units is to consider them as derived from subsidiary units of length, mass, and time. The unit of length (λ) is taken as a quarter of the terrestrial meridian or about 10^9 cms. The unit of mass (μ) is taken as $\frac{1}{10^{11}}$ gram or 10^{-11} of the C.G.S. unit of mass. The unit of time τ is still taken as the second.

Hence the corresponding practical unit of force would be $\lambda\mu\tau^2$ dynes or $\frac{1}{100}$ dyne, and the practical unit of work would be $\lambda^2\mu\tau^{-2}$

ergs or 107 ergs.

(57) PRACTICAL STANDARDS OF RESISTANCE.

By Ohm's Law the current is equal to the electromotive forcemaintaining it divided by all the resistance in the circuit

$$I = \frac{E}{R}$$
.

Of these three quantities the easiest to measure is the resistance, and hence on the standard of resistance all the other practical units

depend.

The Electrical Congress at Paris in 1884 defined the legal ohm to be the resistance of a column of mercury at 0° C. 11 s. mm. in section and 106 cm. long. It is rather less than 10° C.G.S. units or an earth quadrant (10° cm.) per second. Siemens had previously proposed the use of a similar column of mercury 100 cm. long.

The B.A. unit of resistance is only equal to 0.98655×10^9 C.G.S. units.

1	$C.G.S. \times 10^9$	Ohm.	B.A. unit.	Siemens.
\dot{C} .G.S. $\times 10^9$	1.0000	1.0028	1.0136	1.0630
Ohm.	.9972	1.0000	1.0108	1.0600
B.A. unit.	.9866	.9893	1.0000	1.0487
Siemens,	.9407	•9434	.9536	1.0000

The volt varies with the value of the ohm assumed, but the ampere remains 10-1 C.G.S.

(58) THE HEATING EFFECTS OF CURRENTS.

According to Joule's law:—the number of calories (gram-degrees) of heat developed in a circuit is equal to the square of the current multiplied by the time and by the resistance of the circuit, and divided by the mechanical equivalent of the unit of heat, all in C.G.S. units.

$$H = \frac{I^2Rt}{J}$$
 (where $J = 4.2 \times 10^7$ ergs).

But if I be expressed in ampères and R in ohms, this value

must be multiplied by $10^{-2} \times 10^9$ or 10^7 .

Hence a current of one ampère in working through one volt develops in the circuit an amount of energy called a JOULE, the heating effect of which is equivalent to 0.2406 calorie.

It is frequently convenient to express the rate at which a current of one ampère when acting through one volt does work by means

of the "watt."

A wart then is the rate at which work is done by a current of one ampère working through one volt; it is equivalent to 10 meg-ergs or $\frac{1}{746}$ (= '00134) horse power or '7373 foot-pound per second; or to $\frac{1}{736}$ (= '00136) of a cheval-vapeur or '109 kilogrammetre per second.

(59) Electrolysis. (Cf. 80.)

The amount of a radicle (ion) liberated by a current is proportional to the strength of the current; and the mass of it in grams is equal to the product of the strength of the current in ampères, its duration in seconds, the chemical equivalent of the radicle set free, and lastly, of the mass of hydrogen set free by one coulomb of electricity.

According to F. Kohlrausch a coulomb of electricity sets free 0011363 gm. of silver, which is equivalent to $\frac{0011363}{107.66}$ =

0.00001055 gm. of hydrogen.

Mascart finds that a coulomb of electricity sets free 0.000010415

gm. of hydrogen.

According to Gray a coulomb of electricity deposits 000331 gm. of copper, which is equivalent to $\frac{000331}{31.59} = 000010478$ gm. of hydrogen.

Hence 1 coulomb of electricity sets free very nearly 0000105 gm. of hydrogen; 0000105 \times 108, or 001134 gm. silver; 0000105 \times $\frac{16}{2}$, or 000084 gm. oxygen; 0000105 \times $\frac{98}{2}$, or 00005145 gm.

hydrogen sulphate.

(60) SPECIFIC INDUCTIVE CAPACITIES.

	· · · · · · · · · · · · · · · · · · ·
Air 1	Ebonite 2.284
Vacuum 0.9994	Glass 3·258—1·9
Hydrogen0 9997	India rubber 2.8—2.22
Carbon dioxide 1.0008	Gutta percha 4.2-2.462
Ethene 1.0007	Chatterton's com-
Sulphur dioxide 1.0037	pound 2.5474
1	Hooper's composition 3.1
Benzene 2·199	Smith's gutta percha 3.59-3.4
Carbon disulphide 1.81	Mica 5
Petroleum 2.07—2.03	
Turpentine 2.16	Paraffin (solid) 1.9936
•	Resin 1.77
	Shellac 2.74—1.95
	Sulphur 2.58—1.93
	Tar 1.8
	Yellow wax 1.86
·	1

(61) CONTACT DIFFERENCES OF POTENTIAL IN VOLTS.

In air at about 18° C.

:	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tim.	Zinc.	Amal. zinc.	Brass.
Carbon	0 -	.37	.485	.858	.113	.795	1.096	1.208	*414
Copper	- '37	0	.146	.542	- '238	•456	.75	.894	087
Iron	- '485	- 146	0	.401	369	·31 3	.6.	.744	064
Lead	- ·858	- '542	- '401	0	- '771	099	.21	.357	472
Platinum	- '113	•238	.369	.771	.0.	.69	.981	1:125	
Tin	- '795	- '456	313	.099	- '69	0	.281		- :372
Zinc	-1.096	75	6	- '21	'981	281	0.	.144	675
Amal. zinc	-1.028				-1.125				822
Brass	- '414	087	.064	.472	- '287	.372	.679	*822	0

(62) ELECTI	ROM	OTIVE	Fo	RCE OF	CONSTAN	т Ватте	RIES IN T	olts.
Daniell I. Daniell II.	ng B	H ₂ SO ₄	+	4H,0	CuSO ₄	strong	Copper	11.079
Daniell II.	z	H2SO4	+	12H ₂ O	CuSO4	}	Copper	0 978
Daniell III.	18	H ₂ SO ₄	+	$12H_{2}O$	$Cu2NO_3$	solution	Copper	1.000
Bunsen J.	õõ	H.SO.	+	12H.O	HN	0.	Carbon	1.964
Bunsen II.	<u>ي</u>	H ₂ SO ₄	+	12H,0	HNO_3 (Δ 1·38)	Carbon	1.888
Grove	Ā	H.SO.	+	4H,0	ĤN	10,	Platinum	1.956

A constant Daniell element consisting of an amalgamated zinc plate in a saturated solution of zinc sulphate, and a copper plate in a semi-saturated solution of copper sulphate gives an E.M.F. of 1.07 volt.

```
ELECTROMOTIVE FORCE OF COMMON BATTERIES.
    (63)
                                           Volts.
Volta (zinc, acid, copper) (Baille) ...... 1.048
Smee (zinc, acid, platinised silver) ...... 0.47-0.65?
Maiche (zinc in mercury, acid, salt solution, platinised
Kohlrausch) 1.13.
Grove (zinc, acid, hydrogen nitrate, platinum) (L. Clark) 1.97
Grove (zinc, acid, hydrogen nitrate, platinum) (Kohl-
Bunsen (zinc, acid, hydrogen nitrate, carbon) ........ 1.75-1.964
Latimer Clark (mercury, mercurous sulphate, zinc) .. 1.435
Leclanché (zinc, ammonium chloride, carbon, man-
and silver chloride) ...... 1.03-1.059
Marié-Davy (zinc, acid, carbon and mercuric sulphate) 1.52
         (zinc, acid, mercurous sulphate, carbon)... 1 2
Varieties of Grove's Cell (Poggendorff).
Hydrogen sulphate $\Delta$ 1.136, hydrogen nitrate fuming. 1.955
              Δ 1·136,
                                   Δ 1.33.. 1.809
   ,,
                                   Δ 1.33.. 1.73
               \Delta 1.060,
               \Delta 1.060,
                                   Δ 1.19., 1.631
                        ,,
                               ,,
```

Δ 1·33.. 1·673 Δ 1·33.. 1·905

Zinc sulphate solution,

Sodium chloride solution,

(64) THE SPECIFIC RESISTANCE OF SUBSTANCES.

The specific resistance of a substance is the resistance between the opposite faces of a cube of it at 0° C. which measures 1 cm. each way.

The conductivity of a substance is the reciprocal of its resistance. The resistance of a metal at any temperature to C. may be cal-

culated from its resistance at 0° C. by the formula

$$R_t = R_0(1 + at \pm bt^2)$$
 where

	a		b
For most pure metals	.003 824	+	·000 001 26
,, mercury	.000 748 5	_	.000 000 398
,, German-silver	*000 443 3	+	·000 000 152
,, platinum-silver	.000 31		
gold-silver	·000 7	-	*000 000 062

The resistance of a platinum wire at T^{o} on the absolute scale is given by the formula

$$R = R_0 \{ 0.039369 \ T^{\frac{1}{2}} + 0.00216407 \ T + 0.2413 \}.$$

The resistances of commercial metals are usually much higher than those of pure metals.

If the resistance of pure copper at 0° C. be taken as 1, the resistance at any temperature t° C. is

to C.	R_t	to C.	Rt	to C.	Rt
0 1	1.00000 1.00381 1.00756	11 12 13	1:04199 1:04599 1:04990	21 22 23	1:08164 1:08553 1:08954
2 3 4 5	1.01135 1.01515 1.01896	14 15 16	1.05406 1.05774 1.06168	25 24 25 26	1:09356 1:09763 1:10161
6 7 8	1.02280 1.02663 1.03048	17 18 19	1.06563 1.06959 1.07356	27 28 29	1·10567 1·10972 1·11382
9	1:03435 1:03822	20	1.07742	30	1.11782

(65) RESISTANCES OF PURE METALS AND ALLOYS.

Specific resistances of metals at 0° C. in microhms (really B.A. units \times 10⁻⁶) and conductivity in "micromhos."

Silver annealed	R in mms×10 ⁻⁶ 1.521 1.609 1.642 2.154 2.946 5.69	377 377 388 365 365	Conduct. 1/R -657 -621 -609 -464 -339
Silver, hard drawn, \$\triangle 10.5\$ Copper, hard drawn, \$\triangle 3.95\$ Gold, hard drawn, \$\triangle 19.27\$ Aluminium, annealed Zinc, pressed	1 609 1 642 2 154 2 946	*377 *388 *365 *365	·621 ·609 ·464
Tin, pressed 1 Lead, pressed; Δ 11·391 1 Antimony, pressed 3 Mercury, liquid, Δ 13·596 9 Bismuth 10 Cadmium 10 Calcium 11 Lithium Magnesium Potassium 5 Sodium 5 Strontium 1 Thallium 1 Brass Alloy, gold 2 pts. and silver 1 pt. 1 Δ 15·218 3 German silver 2	9·158 9·827 12·6 13·36 19·847 35·9 44·34 08·6 6·8 3·6 8· 3·1 7·2 2·1 18·3 5·8 10·99 21·17	·365 ·63 ·63 ·365 ·387 ·389 ·072 ·4	176 109 102 079 075 050 028 010 009
Alloy, silver 2 pts. and platinum 1 pt	24.66	·031	*041

(66) Specific Resistance of Liquids in B.A. Units.

(66) SPECIFIC RESISTANCE OF LIQUIDS IN D.A. UNITS.
The resistance usually decreases rapidly as the temperature rises. Water at '75° C. ,, at 4° C. ,, at 10° Ayrton and Perry
(Kohlrausch)
"" "" "" ($16^{\circ}/_{\circ}$ salt) ", $30 \cdot 0$ ($28^{\circ}/_{\circ}$ salt) ", $23 \cdot 4$ ", $23 \cdot 4$ ", " ", ", at 10° C. (saturated) (Ewing) $29 \cdot 3$ Solution of zinc sulphate at 18° C. ($25^{\circ}/_{\circ}$ salt) (Kohlrausch) $21 \cdot 1$ ", ", at 14° C. (saturated) (Blavier) $21 \cdot 5$ ", at 24° C. " 17 8 Hydrogen chloride ($20^{\circ}/_{\circ}$ salt $\Delta 1 \cdot 1$) at 18° C. (Kohlrausch) $1 \cdot 34$ Ammonium chloride ($25^{\circ}/_{\circ}$ salt $\Delta 1 \cdot 107$) ", $2 \cdot 53$ Calcium chloride ($25^{\circ}/_{\circ}$ salt $\Delta 1 \cdot 123$) (Kohlrausch) $5 \cdot 73$ Magnesium chloride ($20^{\circ}/_{\circ}$ salt $\Delta 1 \cdot 176$) " $7 \cdot 28$ Sodium chloride ($20^{\circ}/_{\circ}$ salt $\Delta 1 \cdot 176$) " $5 \cdot 2$ ", ", ($26 \cdot 4^{\circ}/_{\circ}$ salt $\Delta 1 \cdot 12$) ", $4 \cdot 73$ ", solution saturated at 13° C 5 $\cdot 3$ Zinc chloride ($30^{\circ}/_{\circ}$ salt $\Delta 1 \cdot 3$) (Long) 11 $\cdot 0$
(67) RESISTANCES OF TELEGRAPH CABLES PER NAUTICAL MILE IN B.A. UNITS. Red Sea cable at 24° C
(68) Specific Resistances of Non-Metals in B.A. Units. Selenium (crystallised) at 100° C

Graphite	at 22° C.	(I.) (Ma	tthiessen)		0.00238
,,	,,	(11.)	,,		0 00378
Bunsen's	,,	(111.)	,,		
Bunsen's	battery e	oke at 26°	C. ,,		
Gas coke	at 25° C.		,,		0.00428
Gas coke	at 0° C.	(Siemens)			0 00792
AT D	711	` c	AL . 1:00	t	

N.B.—The resistance of the different varieties of carbon varies very much, it decreases about $\sqrt[3]{100}$ for every 1° C. through which the sample is heated between 0° C. and 100° C. It also decreases as the pressure increases.

Hooper's composition at 0° C.....

,,

(63) Specific Resistance of Insulators in B.A. Units × 106 (MEGOHMS NEARLY).

(MEGOHMS NEARLY).	
Ice at - 12·4° C. (Ayrton and Perry)	240 284
Glass (soda-lime \triangle 2.54) at 20° C. (Foussereau)	9.1×10^{7}
at 61.2° C	$7.05 \times 12^{\circ}$
Glass (crystal \triangle 2.94) below 40° C. ,,	00
,, at 46° C. ,,	6.182×10^9
,, at 105° C. ,,	1.16×10^{7}
Glass (Bohemian), resistance 10 to 15 times that of	
common glass at the same temperature (Fousserau)	
Glass (white French) at 200° C. (Beetz)	104:3
at 250° (1	0.33
(graph hottle) at 200° C	31.1
	0.128
(heaver lead) at 200° C	323.8
- 4 950° C	0.846
,, at 350° C. ,,	
Glass at 200° C.) (22.7
Glass at 200° C. ,, at 250° C. ,, at 300° C. (from J. Clerk Maxwell)	1.39
,, at 300° C. ((Holli J. Clerk Maxwell))	0.148
,, at 400° C.)	0.0735
Mica at 20° C. (Ayrton and Perry)	8.4×10^7
Shellac at 28° C. ,,	9×10^{9}
Paruffin at 46° C, ,,	3.4×10^{10}
Ebonite at 46° C.	2.8×16^{10}
Gutta Percha at 0° C.	7×10^{9}
ot 94° C /I C Marwell)	3.53×10^{8}
(Latimar Clark)	4.5×10^{8}
minimum (F Ionlain)	2.5×10^7
marimum	5×10^8
);),), IIIdA:IIIUIII ,,	0 / 10

covering of 2nd Atlantic cable

" (II.)(Persian Gulf cable)

at 24° C. (I.)

 3.42×10^{3} 3.2×10^{10}

 1.5×10^{10}

 7.5×10^{9}

(70) Table of Thermo-Electric Forces in Microvolts for a difference of 1° C. at about 20° C., Lead being one element.

222222			
Bismuth pressed coml	+97	Antimony pressed	- 2.8
Bismuth pressed pure	89	Silver pure hard	- 3
Bismuth crystal axial	65	Zinc pressed pure	- 3.7
Bismuth cryst. equatorial	45	Copper electrolytic	- 3.8
Cobalt	22	Antimony pressed coml.	- 6
German silver	11.75	Arsenic	-13.56
Mercury	.418	Iron wire soft	-17.5
Lead		Antimony axial	-22.6
Tin			-264
Copper coml	- 1	Red phosphorus	-29.7
Platinum			-502
Gold	- 1.2	Selenium	- 807

(71) Table of Thermo-Electric Values in Microvolts referred to Lead as Zero. [The Lower limit of Temperature is - 18°C., the upper limit is 416°C., except for Cadmium 258°, Zinc 373°C., German Silver 175°. A Grove's Cell is Assumed to have the Electromotive Force 1 97 Volts.]

Iron $-17.34 + 0.0487t$	
Steel 11:39 + 0328t	Silver 2·14 - ·015t
Alloy, platinum	Gold 2.830102t
85, nickel 15 5.44 + 011t	Copper 1.360095t
Soft Platinum + '61 + '011t	Lead 0
Hard platinum. $-2.6 + .0075t$	Tin + '43 - '0055t
Alloy, platinum	Aluminium + '77 - '0039t
95, iridium 5 6.22 + .0055t	Palladium + $6.25 + 0.0359t$
Alloy, platinum	Nickel to 175° C. $+22.04 + 0512t$
85, iridium 15 5.77	Nickel 250° to
Magnesium $2.24 + .0095t$	310° C +84·49 - ·241t
German silver + 12 07 + 0512t	Nickel from 340°
Cadmium 2.660429t	C + 3·07 + ·0512t

(72) Thermo-Electric Piles.

A bismuth-copper element with one junction at 0° C. and the other at 100° C. gives an E.M.F. of 005476 volt.

20 elements of Noé's form (German silver and an alloy of zinc and

20 elements of Noé's form (German silver and an alloy of zinc and antimony) joined up in series have a resistance of 0.5 B.A. unit, and an E.M.F of 1.25 volt.

6000 Clamond's elements (iron and an alloy of bismuth and antimony) heated by a coke fire, with a resistance of 15.5 B.A. units, give an E.M.F. of 109 volts.

E 2

(73) Тие Мо	RSE ALPHABET.
A	S
Ä = =====	Т ——
B	U
C — — — —	Ü
Ch	V
D — — —	W
E -	X
É	Y
F	z — — – –
G — — –	Understood
H	
I	0 — — — —
J	1
Ķ —— —	2
L	3
M —	4
N — -	5
<u></u> — — —	6
Ö — — — —	7
_	8
Q — — — — — — — — — — — — — — — — — — —	9 ————
Full stop — — —	
Semicolon —— —	
Comma — — —	
Repeat (?)	
Hyphen —	
Apostrophe -	·
(74) Intensity	OF MAGNETISATION.
(12)	C.G.S. units.
Maximum for iron and steel at 1	2° C. (Rowland)1390
-ioleol	,, 494

(75) MAGNETIC ELEMENTS AT LONDON.

Year.	Declination.	Inclination.	Year.	Declination.	Inclination
1576	ıı̂ 15 E.	71 50 N.	1791	23 36 W.	71 24 N.
1580	11 17		1793	23 49	
1600		72 0	1795	23 57	71 11
1613		72 30	1797		70 59
1622	5 56		1798		70 55
1634	4 6 E.		1800	24 4	70 €5
1660	0 0		1801		70 36
1665	1 22 W.	-	1803		70.32
1670	2 6		1805	24 9	70 21
1672	2 30		1806	24 8	
1676		73 30	1809	24 11	
1692	6 0		1813	24 20	
1700	9 40		1814	24 16	
1720	13 0	74 42	1815	21 27	
1740	16 10		1816	24 17	
1745	17 0		1818		70 34
1747	17 30		1820	24 11	
1748	17 48		1821		70 3
1760	. 19 30		1823	24 10	
1773	21 9	72 19	1828		69 47
1775	21 43	72 31	1830		69 38
1778	22 11		1831	24 0	
1780		72 8	1841	23 16	
1786	23 17	72 8	1845	23 0	$68\ 57$
1790	23 39 W.	71 53 N.	1850	22 25 W.	68 47 N.

(76) Magnetic Elements at Towns in Great Britain for the Year 1890.

Places.	Declination.	Inclination.	Horizontal force in C.G.S. measur		
London Bristol Manchester Dublin Newcastle Edinburgh	17 30 W, 18 40 19 0 21 15 19 5 20 15 W.	67 25 N. 67 45 68 55 69 20 69 45 70 30 N.	182 180 173 171 167		
Annual variation	- 7'	$-1\frac{1}{2}'$	+ '0002		

(77) Magnetic Elements at Royal Observatory, Greenwich, for the Years 1851—1890.

Year.	Declination.	Inclination.	Horizontal force in C.G.S. measure.
1051	22 18 W.	00 10 N	.1520
1851		68 40 N.	1729
1852	22 18	68 43	1730
1853	22 10	68 45	1733
1854	22 1	68 48	1734
1855	21 48	68 45	1741
1856	21 43	68 43	1744
1857	21 35	63 31	1754
1858	21 30	68 28	1747
1859	21 23	68 27	1746
18€0	21 14	68 30	:1782
1861	21 5	68 20	·1757
1862	20 53	68 10	·1761
1863	20 46	68 7	.1763
1864		68 4	.1765
1865	20 34	68 3	.1765
1866	20 28	68 1	.1771
1867	20 20	67 57	.1776
1868	20 13	67 56	1777
1869	20 4	67 55	·1780
1870	19 53	$67\ 52$	1782
1871	19 42	67 50	.1785
1872	19 37	67 48	·1787
1873	19 33	67 46	1791
1874	19 29	67 44	1795
1875	19 21	67 42	.1795
1876	19 8	67 41	.1797
1877	18 57	57 40	1799
1878	18 49	67 38	.1801
1879	18 41	67 37	.1803
1880	18 33	67 36	.1804
1881	18 27	67 35	1805
1882	18 22	67 34	.1804
1883	18 15	67 32	·1810
1884	18 8	67 30	1812
1885	18 2	67 28	.1816
1886	17 55	67 27	·1816
1887	17 49	67 26	·1818
1888	17 40	67 25	1820
1889	17 35	67 24	1821
1890	17 29	67 23	1823

(78) Magnetic Elements at Places Abroad for the Year 1885.

	1 EAR	. 1889.	
Places.	Declination.	Inclination.	Horizontal force in C.G.S. measure.
Aden	3 50 W.	5 N.	*345
	13 30 E.	61 S.	*270
Batavia	2 10 E.	28 S.	·375
	11 40 W.	66 15 N.	·185
Bombay	1 10 E.	20 N.	*375
Cape Town	30 15 W.	56 0 S.	*199
Hobarton	9 30 E.	71 40 S.	*200
Honolulu	9 0 E.	40 N.	·305
Ilong Kong	0 45 E.	32 30 N.	·360
Kerguelen Island	35 W.	71 S.	·165
Lisbon	19 0 W.	60 0 N.	·225
Malta	10 0 W.	51 N.	*265
	10 30 W.	55 S.	*240
	8 0 E.	67 5 S.	*235
Mexico	7 30 E.	44 N.	341
New York	7 0 W.	72 30 N.	185
North Cape	2 W.	77 N.	·120
Pernambuco	13 30 W.	11 N.	·280
Paris Quebcc	16 7 W. 17 30 W. 7 20 E.	65 17 N. 77 N. 16 N.	194 140 338
Quito	11 0 W.	57 30 N.	·230
	25 0 W.	25 S.	·248
St. Petersburg S. Francisco	0 40 W.	71 0 N.	·165
	16 40 E.	62 N.	·255
Sydney	9 30 E.	62 30 S.	*268
Tokio	4 0 W.	49 N.	*300
Valparaiso	15 0 E.	33 S.	*280
Vienna	9 30 W.	63 25 N.	206

In the columns Declination in the foregoing tables, the letter W indicates that the north end of the needle deviates to the west, and the letter E that it deviates to the east. In the columns Inclination the letter N indicates that the north end of the needly dips, and the letter S that the south end of the needle dips. The values given in the tables are the result of direct observation. If the vertical magnetic force (V) or the total magnetic force (T) sho l l be required, they may be calculated, remembering that, calling $Inclination = \delta$, $V = H \times tan \delta$, and $T = H \times sec \delta$.

CHEMISTRY.

(80) ATOMIC AND MOLECULAR WEIGHTS, DENSITIES, AND SOLUBILITIES OF ELEMENTS AND COMPOUNDS.

N.B.—The names of gaseous compounds are printed in italics, their densities are taken as the number of grams in one normal litre, and their solubilities as the number of ccm. of gas dissolved by 100 grams of water. The atomic weights in brackets are those given by Meyer and Seubert. v.s. means very soluble, dec. means decomposed, comb. means combines with the water.

	Molecular and at. weights.	% of elcinent	Δ .	100 t disso	ter elve.
ALUMINIUM. Al(27.04)	27		2.7	0	
,, oxide Al ₂ O ₃	102	52.9	4	0	
,, oxide Al ₂ O ₃ , chloride Al ₂ Cl ₆	267	20.2	*	70	v.s.
,, sulphate Al ₂ 3SO ₄ 18H ₂ O.	666	8.1	1.7	100	1130
Alum (potassium) $Al_2K_24SO_4$.	000	0.		100	1100
24H ₂ O	948	5.7	1.73	12	358
Alum (ammonium) Al ₂ (NH ₄) ₂		• •	1 10	1-	000
4SO ₄ . 24H ₂ O	906	6.0	1.63	9.4	422
Clay Al ₂ 3SiO ₃		19.15		0	122
Cryolite Na ₃ Ål ₂ F ₁₂	420	12.86		0	
Felspar K ₂ Al ₂ Si ₆ O ₁₀	460	11.7	7.3	0	
Ammonia NH ₃ (17:01)	17		.761	72700	
,, chloride NH ₄ Cl	53.5	33.6	1.5	37	100
,, sulphate $(NH_4)_2SO_4$	132	27.3	1.77	70	100
$,,$ nitrate $(NH_4)NO_3$	80	22.5	1.71	200?	100
,, sesquicarbonate 2(NII ₄) ₂					
CO ₃ .CO ₂	236	30.5		27	100
Antimony Sb (119.6)	120		6.7		
,, trioxide Sb ₂ O ₃		83.3	5.6	0	
,, pentoxide Sb ₂ O ₅	320	75	4	0	
" trichloride SbCl ₃			2.67	dec.	
,, sulphide Sb ₂ S ₃	336	71.4	4.6	0	
,, potassio-tartarate					
$K_2Sb_2O_22C_4H_4O_6$. H_2O		36.1	2.6	7	57
Arsenic As(74.9)	75		5.7	0	
		1		1	

	Molecular and t. weights. 9, of element.		Δ	100 grms. water dissolve.	
•	at.	ele,		15° C.	100° C.
Arsenic—continued.					
" trioxide As ₂ O ₃	198	75.75	3.7	1.2	11
" pentoxide As ₂ O ₅	230	65.2	4	150?	
,, trisulphide As ₂ S ₃	246	61	35	0	
BARIUM Ba(136.86)			3.75	1	
oxide BaO	153	39.5	4.7	dec.	
,, hydrate BaH ₂ O ₂ 8H ₂ O	315	43.5	1.66	5	50
", dioxide BaO ₂ "	169	81	5	0	
,, carbonate BaCO ₃	197	69.5	4.3	ő	
,, chloride BaCl ₂ 2H ₂ O		56.1	3	40	72
" nitrate Ba2N Ö ₃		52.5	3.2	8	35
" sulphate BaSO ₄		58.8	4.5	0	
Візмитн Ві (207 5)			9.8	0	
,, trioxide Bi ₂ O ₃		89.7	8.2	l o	
Boron B(10.9)			2.7 ?	sol.	
,, trioxide B ₂ O ₃	70	31.4	1.8	3	21
,, trichloride BCl ₂		9.4	1.35	dec.	
Bromine Br (79.76)	80	0 1	3	3	3
CADMIUM Cd (111·7)			8.67	0	
,, bromide CdBr ₂ 4H ₂ O		32.6	4.8	v.s.	
" sulphide Cd S		77.8	4.8	0	
		40	10	"	v.s.
,, surphate Cd SO ₄ 4H ₂ O CALCIUM Ca (39.91)	40	10	1.58	95	V.S.
:1- C-O	56	71.4	3.2	comb.	
1 1 4 0 11 0		54-1	2.08	0.18	0.1
	100	40	2.7-2.9	0 10	0.1
ablamida CaCl CII O		18.2	1.6	400	650
A J. C. E.	78	51.3	3.2	0	050
	310	38.7	3.18	0]
and better O.CO. OIT O	179	23.26	2.33	0025	1
Bleaching powder CaOCl ₂		31.5	2 55	} _	1
Carbon C (11.97)	127	31.9	1.8	dec?	
:1 00	28	10.00		0	1
,, monoxide CO	44	42.86	1.25	2.4	
,, dioxide CO ₂	76	27.3	1.98	100	
,, disulphide CS ₂	110.5	15.8	1.28	0	
Chloroform CHCl ₃			1.5	0	ł
Chlorine Cl (35·37)		46.2	2·33 3·18	450	
Chromium Cr (52·45)	99.9		1	237	ĺ
OHILOMIUM CI (02 40)	52		6.5		1

	Molecular and t. weichts.	and weichts. °/o of element.		100 g wa disse	ter
	Mola at. w	o/ elei		15° C.	100° C.
CHROMIUM -continued.					
,, oxide Cr ₂ O ₃	152	34.2	5.2	0	
,, trioxide CrO3		52	2.08	v.s.	
Chromyl chloride CrO ₂ Cl ₂	155	33.55	1.7	dec.	
Chrome alum Cr ₂ K ₂ 4SO ₄ 24H ₂ O.	998	10.4	1.83	20	50
,, ironstone Cr ₂ FeO ₄	224	46.4	4.5	0	
COBALT Co (58.6)	59		8.9		
", chloride CoCl ₂ 6H ₂ O		24.8	1.84	v.s.	
,, nitrate Co2NO ₃ 6H ₂ O		20.3	1.83	v.s.	
Copper Cu (63.18)	63.3		8.95.	0	
" oxide CuO	79.3	79.8	6.4	0	
,, chloride CuCl ₂ 2H ₂ O	170.3	37.2	2.5	CO	V.S.
,, hydride Cu ₂ H ₂	128.6	49.2		0	
,, sulphate CuSO ₄ 5H ₂ O	249.3	25.4	2.3	63	203
" sulphide CuS	95.3	66.4	4.2	0	
FLUORINE F (19.06)					
GOLD Au (196.8)			19.3	0	
,, oxide Au ₂ O ₃	441.2	88.9		0	
" trichloride AuCl ₃		64.7		65	v.s.
Hydrogen H	1		.0596	2	
,, acetate HC ₂ H ₃ O ₂	60	6.67	1 03	co	
,, chloride HCl	36.5	27	1.64	46400	
" cyanide HCN	27	3.7	.7	co	
,, fluoride HF	20	5	.988	co	
,, nitrate HNO ₃	63	1.59	1.5	co	
,, oxide H ₂ O	18	11.1	91674		
,, dioxide H ₂ O ₂		5.9	1.5	co	
,, oxalate $H_2C_2O_4$ 2 H_2O		4.8	1.64	11.5	00
., metaphosphate HPO ₃	80	1.25		co	
,, orthophosphate H ₃ PO ₄	98	3.1	1.9	co	
,, sulphate H ₂ SO ₄		2	1.85	co	
,, sulphide H_2S		5.9	1.52	323	
IODINE I (126.54)			5	.023	
Iron Fe (55.88)	56		7.76	0	
,, oxide Fe ₂ O ₃		70	5.25	0	
,, oxide (black) Fe ₃ () ₄	232	72.4	5.4	0	
,, carbonate FeCO ₃	116	48.3	3.85	0	-
,, carbonate reco ₃					
, chloride Fe ₂ Cl ₆	325	34·45 20·15	2·8 1·97	v.s. 70	v.s.

	Molecular and at. weights.	°/o of element.	.Δ	100 g wa disso	ter
T					
IRON—continued.	00	00.0	4.0		
,, sulphide FeS		63.6	4.8	0	
LEAD Pb (206.39)		00.0	11.4	slight	
owide (red) Ph O	223	92.8	9.3	singint 0	
,, diorida PhO	000	90·7 86·6	9.5	0	
,, dioxide PbO ₂	270	54.6	2.24	46	71
acabanata Ph('()	267	77.5	6.46	0	11
ablavida PhCl	278		5.8	0.6	5
,, chromate PbCrO ₄		74.48	5.65	0 0	9
		64.1		50	140
,, nitrate Pb2NO ₃		62.55	4.6	11	140
,, sulphate PbSO ₄		68.3	6.4	0	
,, sulphide PbS		86.6	7.58		
LITHIUM Li (7.01)			.59	dec.	
MAGNESIUM Mg (23.94)(24.2)	24	00	1.7	0	1
,, oxide MgO	40	60	3.2	slight	
,, carbonate MgCO ₃	84	28.57	3.06	1.50	007
,, chloride MgCl ₂ 6H ₂ O		11.8	1.56	150	367
,, sulphate MgSO ₄ 7H ₂ O		9.76	1.75	104	500
,, ammonio-phosphate Mg					
NH ₄ PO ₄ 6H ₂ O	245	9.8	7.4	0	
MANGANESE Mn (54.8)			7.4		1 1
,, dioxide MnO ₂		63.2	4.94	0	
,, chloride MnCl ₂ 4H ₂ O		27.8	2.0	150	650
,, sulphate MnSO ₄ 5H ₂ O.		22.8	2	123	93?
MERCURY Hg (199.8)			13.6	0	
,, oxide HgO		92.6	11.3	0	
,, chloride Hg ₂ Cl ₂		84.9	7.18	0	1
,, chloride HgCl ₂	271	73.8	5.42	6.6	54
,, cyanide HgC ₂ N ₂	252	79.4	4	12	53
,, sulphate HgSO ₄	. 296	67.57	6.47	dec.	
,, sulphide HgS	232	36 2	8.2	0	
NICKEL Ni (58.6)	. 59		8.57	0	
NICKEL Ni (58.6), sulphate NiSO ₄ 7H ₂ O	. 281	21	1.88	107	
Nitrogen N (14.01)	. 11		1.256	15.	
,, monoxide N ₂ O	. 44	63.6	1.97	73	
,, dioxide NO		46.66	1.34	27.5	
,, tetroxide NO2		30.4	2.06	dec.	
Oxygen O (15.96)			1.43	3	
			1		

PALLADIUM Pd (106;3)		Moleculur and t. weights.	°/o of lement.	Δ	100 g .wa disso	ter
Phosphorus P (30:96) 31 1:84 0 comb.		Mol at. w	o/ ele		15° C	100° C.
$\begin{array}{c} ", trioxide P_2Q_3i$	PALLADIUM Pd (106:3)	106		12.1	0	
$\begin{array}{c} ", pentoxide$	PHOSPHORUS P (30:96)	31		1.84	0	
$\begin{array}{c} ", pentoxide$,, trioxide P ₂ Q ₃ I	110	56.36		comb.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,, pentoxide	142		2.4	comb.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,, trichloride PCl ₃	137.5	22.54	1.6	dec.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	" pentachloride PCl ₅	208.5	14.86		dec.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,, oxychloride POCl3	153.5	20.2	1.7	dec.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PLATINUM Pt (194.3)	194.9		21.5	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	" tetrachloride PtCl ₄	306.9	57.85		V.S.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,, potassiochloride PtK ₂ Cl	485.9	40.1	3.59	slight	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,, ammoniochloride P	ı				
,, hydrate IIKO 56 69 6 2 2 200 33 5 5 52 3 1 99 33 5 5 52 3 1 99 33 5 5 52 3 1 99 33 5 5 52 3 1 99 33 5 5 52 3 3 06 140 20 5 52 5 3 3 06 140 20 5 52 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(NH ₄) ₂ Cl ₆	. 443.9	43.9	3	slight	
,, chloride KCl. 74.5 52.3 1.99 83 5.5 ,, bronnide KBr 119 32.8 2.7 60 10 ,, iodide KI 166 23.5 3.06 140 20 ,, carbonate K ₂ CO ₃ 138 56.5 2 91 15 ,, and hydrogen carbonate 100 39 2.2 28.6 10 KHCO ₃ 194 40.2 2.68 48 8 ,, dichromate K ₂ Cr ₂ O ₇ 294 26.5 2.6 10 10 ,, dichromate K ₂ Cr ₂ O ₇ 294 26.5 2.6 10 10 ,, dichromate K ₂ Cr ₂ O ₇ 294 26.5 2.6 10 10 ,, ferricyanide K ₆ Fe ₂ C ₁₂ N ₁₂ 53.8 2.3 6 6 ,, ferricyanide K ₆ Fe ₂ C ₁₂ N ₁₂ 83.5 ,, ferrocyanide K ₈ Fe ₂ C ₁₂ N ₁₂ 88.4 37 1.83 30 9 ,, nitrate KNO ₂ 101 39 2.07 28 23 ,, nitrate KNO ₂ 85 45.9 ,, permanganate K ₂ Mn ₂ O ₈ 316 24.7 2.71 6.2 ,, sulphate K ₂ SO ₄ 174 44.8 2.7 10 5 ,, disulphate K ₂ SO ₄ 174 44.8 2.7 10 5 ,, hydrogen sulphat KHSO ₄ 136 28.7 2.3 34 1.8 SELENIUM Se (78.87) 79 SILVER Ag (107.66) 108 ,, exide Ag ₂ O 223 93.1 7.14 ,, nitrate AgNO ₃ 170 63.5 4.36 230 111				0.88	comb.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,, hydrate HKO	. 56	69.6	2.	200	
,, iodide KI			52.3	1.99	33	58
,, carbonate K ₂ CO ₃ 138 56·5 2 2 91 15 ,, and hydrogen carbonate K ₂ CTO ₄ 194 40·2 2·68 48 8 ,, dichromate K ₂ Cr ₂ O ₇ 294 26·5 2·6 10 16 ,, chlorate KClO ₃ 122·5 31·8 2·3 6 6 ,, ferricyanide K ₆ Fe ₂ C ₁₂ N ₁₂ 6658 35·6 1·8 40 8 ,, ferrocyanide K ₈ Fe ₂ C ₁₂ N ₁₂ 688 37 1·83 30 9 ,, nitrate KNO ₃ 101 39 2·07 28 ,, nitrate KNO ₃ 101 39 2·07 28 ,, permanganate K ₂ Mn ₂ O ₈ 316 24·7 2·71 6·2 ,, sulphate K ₂ SO ₄ 174 44·8 2·7 10 5 ,, nitrate KNO ₄ 174 44·8 2·7 10 5 ,, nitrate KNO ₄ 174 44·8 2·7 10 5 ,, hydrogen sulphat KHSO ₄ 136 28·7 2·3 34 18 SELENIUM Se (78·87) 79 SILVER Ag (107·66) 108 ,, exide Ag ₂ O 232 93·1 7·14 ,, nitrate AgNO ₃ 170 68·5 4·36 230 111	heamida K Pn	. 119	32.8	2.7	60	101
,, carbonate K ₂ CO ₃			23.5	3.06	140	200
, and hydrogen carbonate 100 39 2·2 28·6 10 10 10 10 10 10 10 10 10 10 10 10 10	,, cyanide KCN	. 65	60	1.5	v.s.	122
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			56.5	2	91	154
$\begin{array}{c} \text{,,, chromate $K_2 \text{Cr} O_4$}, & 194 & 40\cdot 2 \\ \text{,, dichromate $K_2 \text{Cr} 2 O_7$}, & 294 & 26\cdot 5 \\ \text{,, chlorate $K \text{Cl} O_3$}, & 294 & 26\cdot 5 \\ \text{,, ferricyanide $K_6 \text{Fe}_2 \text{C}_{12} \text{N}_{12}$} & 658 & 35\cdot 6 \\ \text{,, ferricyanide $K_8 \text{Fe}_2 \text{C}_{12} \text{N}_{12}$} & 658 & 35\cdot 6 \\ \text{,, ferrocyanide $K_8 \text{Fe}_2 \text{C}_{12} \text{N}_{12}$} & 6H_2 \text{O}. & 884 & 37 \\ \text{,, nitrate $K \text{NO}_3$}, & 101 & 39 & 2\cdot 07 & 28 \\ \text{,, nitrate $K \text{NO}_3$}, & 101 & 39 & 2\cdot 07 & 28 \\ \text{,, nitrate $K \text{NO}_2$}, & 85 & 45\cdot 9 \\ \text{,, permanganate $K_2 \text{Mn}_2 \text{O}_8$} & 316 & 24\cdot 7 & 2\cdot 71 & 6\cdot 2 \\ \text{,, sulphate $K_2 \text{SO}_4$}, & 174 & 44\cdot 8 & 2\cdot 7 & 10 & 25 \\ \text{,, hydrogen} & & & & & & & & & & & & & & & & & & &$,, and hydrogen carbonat	100	39	2.2	28.6	100
$\begin{array}{c} \text{,,, dichromate $\bar{K}_2Cr_2O_7$, } & 294 & 26 \cdot 5 \\ \text{,, chlorate $KClO_3$, } & 122 \cdot 5 \cdot 31 \cdot 8 \\ \text{,, ferricyanide $K_6Fe_2C_{12}N_{12}$} & 35 \cdot 6 \\ \text{,, ferricyanide $K_8Fe_2C_{12}N_{12}$} & 35 \cdot 6 \\ \text{,, ferricyanide $K_8Fe_2C_{12}N_{12}$} & 35 \cdot 6 \\ \text{,, nitrate KNO_3, } & 101 & 39 \\ \text{,, nitrate KNO_2, } & 884 & 37 \\ \text{,, nitrite KNO_2, } & 101 & 39 \\ \text{,, permanganate $K_2Mn_2O_8$} & 316 & 24 \cdot 7 \\ \text{,, sulphate K_2SO_4, } & 174 & 44 \cdot 8 & 2 \cdot 7 \\ \text{,, odsulphate K_2SO_4, } & 174 & 44 \cdot 8 & 2 \cdot 7 \\ \text{,, hydrogen } & \text{sulphat.} \\ \text{KHSO_4$, } & 136 & 28 \cdot 7 & 2 \cdot 16 \\ \text{SELENIUM Se} & (78 \cdot 87), & 79 \\ \text{SILVER Ag} & (107 \cdot 66), & 108 \\ \text{,, exide Ag_2O, } & 232 & 93 \cdot 1 \\ \text{,, nitrate $AgNO_3$, } & 170 & 68 \cdot 5 & 4 \cdot 36 \\ \end{array}$	chromate K.CrO	. 194	40.2	2.68	48	82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dichromata I Cn O		1		11	100
$\begin{array}{c} \text{", ferricyanide } K_6Fe_2C_{12}N_{12} \\ \text{ ferrocyanide } K_8Fe_2C_{12}N_{12} \\ \\ \\ \\ \\ \\ \text{ ferrocyanide } K_8Fe_2C_{12}N_{12} \\ \\$	oblovete KOIO				6	60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ferricvanide K.Fe.C.N.	658		11	40	83
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ferrocvanide K. Fe. C. N.	2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6H ₂ O	.1884	37	1.83	30	91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,, nitrate KNO2	. 101	39	2.07	28	235
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	nitrita VNO	. 85	45.9		v.s.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	permanganate KoMnoOo	316	24.7	2.71	6.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sulphate K ₂ SO ₄	. 174	44.8	2.7	10	26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,, disulphate K ₂ S ₂ O ₇	. 254	30.7	2.3	34	147
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	" hydrogen sulphat		1			
SELENIUM Se (78-87)	KHSO ₄	. 136	28.7	2.16	16	1
SILVER Ag (107.66)	SELENIUM Se (78.87)	. 79		4.3	0	
,, cxi·le Ag ₂ O	SILVER Ag (107.66)	. 108		10.57	0	
,, nitrate AgNO ₃			93.1	7.14		
	nituata AmMO		63.5	4.36	230	1111
,, chloride AgCl	ablanida A aCl		75.27	5.55	11 -	

	Molecular and t. weights.	"/o of lement.	Δ	100 gr wat disso	er
,	at. w	elen		15° C.	100° C.
SILICON Si (28.0) (28.33)	28		2.6	0	
diamida Cit)		46.7	2.3	0 3	
A. Amarah lamida SiOl		16.5	1.5	dec.	
totma flatomida Si F		26.9	4.66	dec.	
Sodium Na (22.995)	23	-	0.97	dec.	
hardnote UNeO	40	57.5	2.1	60	210
horoto No B O 10H O		12.05	1.7	6	200
corporate Na CO	106	43.4	2.04	16	48
combonata (anyot) No (O	100	10 1	201		10
10H ₂ O	286	16.1	1.45	63	420
and hydrogen carbonatel	200	101	1 10	00	120
,, and hydrogen carbonate NaHCO ₃	84	27.4	2.2	9	dec.
chloride NaCl		39.32	2.1	35.7	39.6
,, chioride NaCi	85	27.06	2.24	85	178
,, nitrate NaNO ₃	00.	2. 00	2 24	00	110
	358	12.85	1.58	16	00
12H ₂ O ,, silicate Na ₂ SiO ₃		37.7	1 00	slow.y	l
,, silicate Na ₂ SiO ₃	200	14.3	1.5	40	242
,, sulphate Na ₂ SO ₄ 10H ₂ O ,, sulphite Na ₂ SO ₃ 7H ₂ O	050	18.55	13	25	100
,, suiphite Na ₂ SO ₃ /H ₂ O	252	10 00		43	100
,, hydrogen sulphite Na	101	22.1			
HSO ₃	104	22.1		v.s.	
,, thiosulphate Na ₂ S ₂ O ₃	240	10.55	1.7	100	
5H ₂ O	248	18.55	11	102	00
STRONTIUM Sr (87.3)	87.6	04.55	2.54	dec.	
,, oxide SrO	103.6	84.99		dec.	17.77
,, hydrate SrH ₂ O ₂ 8H ₂ O	265.6	33	1.9	2	41.7
,, carbonate SrCO ₃	147 6	59.3	3.8	0	1
,, chloride SrCl ₂ 6H ₂ O	266.6	32.85		83	170
,, nitrate Sr 2NO ₃	211.6	41.4	2.8	67	106
,, sulphate SrSO ₄		47.7	3.9	0	1
SULPHUR S (31.98)		-	2.07	0	1
,, dioxide SO ₂		50	2.87	4728	1
,, trioxide SO ₃		40	1.97 ?	dec.	1
,, chloride S ₂ Cl ₂		47.4	1.68	dec.	
,, sulphurylchloride SO ₂ Cl	$_{2} 135$	23.7	1.7	dec.	
TELLURIUM Te, (127:7, 126:3)	128	3	6.4	0	
TIN Sn (117.35) (119)			7.3	0	
,, monoxide SnO		88.1	6.1	0	
,, dioxide SnO ₂	. 150	78.66	6.95	0	

	lecular and weights.	% of element.	Δ	Δ	100 g wa disse	ter
	Molecu and at, weigh	elei		15° C	100° C	
Tin—continued.	-25	52.45	2.76	270	8	
,, tetrachloride SnCl4	260	45.4	2.36	sol.	~	
ZINC Zn (64.88) oxide ZnO		80.4	7·2 5·6	0		
,, carbonate ZnCO3	125	52	4.4	0 1		
" chloride Zr.Cl ₂		47.8	2.75	360	v.s.	
" sulphate ZnSO ₄ 7H ₂ O .		22.6	2	135	654	
" sulphide ZnS	97	67.1	4.1	0		

(81) Atomic Weights of the Rare Metals. (Meyer and Seubert.)

Beryllium	Be	9.08	Rubidium	Rb	85.2
Cæsium	Cs	132.7	Ruthenium	Ru	101.4
Cerium	Ce	139.9	Samarium	Sa	120.5 ?
Decipium	De	159 ?	Scandium	Sc	43.97
Didymium			Tantalum	Ta	182
Erbium	E	166	l'erbium	Tb	113 ?
Gallium	Ga	69.9	Thallium	Tl	203.7
Indium	In	113.4	Thorium	Th	231.96
Iridium	Ir	192.5	Thulium	Tm	170.7
Lanthanum	La	138.2	Titanium	Ti	48
Molybdenum	Mo	95.8	Tungsten	W	183.6
Mosandrium	Ms	139.5 ?	Uranium	U	239.8
Niobium (Cb.)	Nb	93.7	Vanadium	V	51.1
Norwegium			Ytterbium	Yb	172.6
Osmium	0s	190.3	Yttrium	Y	89.9
Rhodium	Rh	102.7	Zirconium	Zr	90.4

(82) FACTORS FOR GRAVIMETRIC ANALYSIS.

Logarithms of the ratios of the molecular and atomic weights of substances required to those of substances weighed.

Weighed.	Required.	Log.	Weighed.	Required.	Log.
Al_2O_3	Al ₂	1·72461	HgS	Hg	1·93552
$_{ m AgBr}$	Br	1.62897		K	T·71983
AgCl	Ag	1.87663	K.SO.	K_2	1.65218
0	CĬ	$\bar{1}$:39321	K ₂ SiF ₆	K.	1.54918
	HC1	1.40531	2 0	6F	1.71502
ΛgCN	CN	$\bar{1}.28870$		Si	$ \bar{1} \cdot 10391 $
\mathbf{AgI}	I	$\bar{1}$ 73264	MgO	Mg	1.77815
$\Lambda s_2 S_3$	2As	1.78503	Mg ₂ P ₂ O ₇	2Mg	1.33474
2 3	3S	1.59152	02 2 1	$2PO_4$	1.93243
	3H ₂ S	1.61787		$2H_{2}PO_{4}$	$ \overline{1}.94596 $
$BaCO_3$	Ba T	1.84246	MgSO ₄	Mg	1.30081
3	CO ₂	Ī·34854	Mn ₃ O ₄	$3 \dot{M} n$	1.85751
BaSO₄	Ba *	1.76952	MnS *	Mn	T 80036
•	S	Ī·13812	NaCl	Na	1.59546
	SO ₄	1.61470	Na,CO3	2Na	T·63801
	$H_2 \tilde{S}O_4$	$\bar{1}.62367$		2Na	1.51096
$BaSiF_6$	Ba	$\bar{1}.69035$	NiŌ	Ni	1.89539
Bi ₂ O ₃	2Bi	1.95258	PtK ₂ Cl ₆	2K	1.20706
CO_2	C	1.43573		N_2	1.15900
CaĈO ₃	Ca	1.60212	Pt(NH ₄) ₂ Cl ₆	$(NH_{o})_{o}$	2.88578
·	CO ₂	1.64430		N_2	2.80152
${^{\mathrm{CaF}_2}_{\mathrm{2}}}$	F ₂	1.68889	PbCrO ₄	Pb	1.80592
$CaSO_4$	Ca	1.46840	-	Cr	1.21098
CdS	Cd	Ī·89065		CrO_3	1.49266
Co_3O_4	3Co	1.86546	PbS	Pb	1.93744
Cr_2O_3	Cr ₂	1.83671	PbSO ₄	Pb	$ \bar{1}.83438 $
CuO	Cu	1.90218		Si	1.66959
Cu_2S_2	2Cu	Ī·82213		2Sb	1.85353
$\mathrm{Fe_2O_3}$	2Fe	1.84515	SnO_{o}	Sn	$ \bar{1}.89551 $
H_2O	2H	1.04673	$SrSO_4$	Sr	1.67827
_	0	1.94873	(UO) ₄ P ₂ O ₇	$2PO_4$	1.19986
$\mathrm{Hg_2Cl_2}$	2Hg	1.92921	ZnO	Zn	[1.90448]
$_{ m HgO}$	Hg	1.96662	ZnS	Zn	1.82597
		1			
T 0/					. 1 1 .

Log. $^{\circ}/_{\circ}$ of required subst. = log. mass of subst. weighed + tabular log. of required substance + 2 - log. mass of substance taken.

(83) Factors for Volumetric Analysis.

Molecular and atomic weights with their logarithms.

Symbol.	Molec. w.	Log.	Symbol.	Molec. w.	Log.
$\begin{array}{c} {\rm Ag} \\ {\rm As_2O_3} \\ {\rm H_3N} \\ {\rm HCl} \\ {\rm HNO_3} \\ {\rm H_2C_2O_4} \\ {\rm H_2SO_4} \\ {\rm I} \end{array}$	107.66 197.68 17.01 36.37 62.89 89.78 97.82 123.54	2·03205 2·29596 1·23070 1·56074 1·79858 1·95318 1·99043 2·10223	$\begin{array}{c} K_2Mn_2O_8 \\ K_2Cr_2O_7 \\ MnO_2 \\ Na_2CO_3 \\ NaHO \\ NaCl \\ NaCl \\ Na_2S_2O_3 \\ SnCl_2 \end{array}$	315·34 294·68 86·72 85·84 39 955 58·365 157·83 188·09	2·49878 2·46935 1·93812 1·93369 1·60157 1·76615 2·19819 2·27437

Logarithms of the ratios of the combining proportions of volumetric reagents and of substances with which they react.

Substance used.	Reacts, &c., with.	Log.	Substance used.	Reacts, &c., with.	Log.
$egin{array}{c} Ag \\ As_2O_3 \end{array}$	Cl C ₂ N ₂ 4Cl	1·51659 1·68362 1·85474	$\begin{array}{c} \hline \\ \mathrm{C_2H_2O_4} \\ \mathrm{K_2Mn_2O_8} \end{array}$	Na ₂ CO ₃ K ₂ CO ₃ 5O avail.	T 98051 -18642 T-40322
$\begin{array}{c} \operatorname{BaCl_2} \\ \operatorname{2CO_2} \\ \operatorname{H_2SO_4} \end{array}$	$3H_{2}S$ $4I$ $H_{2}SO_{4}$ MnO_{2} $2NH_{3}$	1·71238 1·40833 1·67112 1·99472 1·54130	$ m K_2Cr_2O_7$	$\begin{array}{l} 10 \mathrm{Fe} \\ 5 \mathrm{C_2H_2O_4} \\ 5 \mathrm{C_2H_2O_4} \\ 10 \mathrm{H_2O_3} \\ 3 \mathrm{C_3C_2O_3} \\ 3 \mathrm{C_3C_2O_3} \\ \end{array}$	$\frac{1}{1}$.06693
	$2 NO_{3}^{\circ}$) 2NaHO $Na_{2}CO_{3}$ 2KHO $K_{2}CO_{3}$	10222 $\overline{1} \cdot 91217$ $\overline{1} \cdot 94326$ 05871 14917	$egin{array}{c} { m NaCl} \\ { m 2Na}_2 { m S}_2 { m O}_3 \end{array}$	6Fe 2Pb Ag 2 I MnO ₂	.05606 .14637 .26590 1.90404 1.43890
$C_2H_2O_4$	$Na_2 \ 2NH_3$	1·67223 1·57855		$\mathrm{Fe_2}$	1.54907

Log. mass subst. required = log. number of ccm. taken + log. mass reagent in 1 ccm. + tabular log.

(84) THE "HARDNESS" OF WATER.

On Clark's scale each degree of hardness corresponds to one grain of calcium carbonate in a gallon (70,000 grains) of water.

On the scale used by Professor Frankland and in France, one degree of hardness corresponds to one part of calcium carbonate in 100,000 parts of water.

On the scale used in Germany, one degree of hardness corresponds to one part of calcium oxide in 100,000 of water.

Clark.	French.	German
1	1.43	0.8
0.7	1.	0.56
1.25	1.79	1.

Each part of calcium carbonate in solution occasions a waste of from 8-12 times its weight of the best hard soap.

(85) MULTIPLES OF SOME ATOMIC AND MOLECULAR WEIGHTS.

	1	2	3	4	5	ò	7	8	9 =
O HO H ₂ O CI Br I N NH ₂ NO ₂ NO ₃	15:96 16:96 17:96 35:37 79:76 126:54 14:01 16:01 45:93 61:89 11:97	31·92 33·92 35·92 70·74 159·52 232·08 28·02 32·02 91·86 123·78 23·94	47.88 50.88 53.88 106.11 239.28 379.62 42.03 48.03 137.79 185.67 35.91	63·84 67·84 71·84 141·48 319·04 506·16 56·04 64·04 183·72 247·56 47·88	79·8 84·8 89·8 176·85 398·8 632·7 70·05 80·05 229·65 309·45 59·85	95.76 101.76 107.76 212.22 478.56 759.45 84.06 96.06 275.58 371.34 71.82	98·07 112·07 321·51 433·23 83·79	127.68 135.68 143.68 282.96 638.08 1012.32 112.08 128.08 367.44 495.12 95.76	143·64 152·64 161·64 318·33 717·84 1138·86 126·09 144·09 413·37 557·01 107·73
CO_2 CN P SO_4 SiO_2 Al_2O_3	43.89 25.98 30.96 95.82 59.92	87·78 51·96 61·92 191·64 119·84	131·67 77·94	175.56 103.92 123.84 382.28 237.68	219·45 129·9 154·8 479·1 299·6	263·34 155·88 185·76 574·92 359·52		351·12 207·84 247·68 766·56 479·36 815·68	395.01 233.82 278.64 862.38 539.28

(86) COMPARISON OF HYDROMETER SCALES.

If r be the reading of the instrument and Δ the density of the liquid

Baumé (liquids heavier than water).
$$\Delta = \frac{144}{144 - r}$$
,, (liquids lighter than water). $\Delta = \frac{144}{144 + r}$

Cartier.
$$\Delta = \frac{136 \cdot 8}{126 \cdot 1 + r}$$
. Twaddle. $\Delta = \frac{\frac{r}{2} + 100}{100}$. Beck. $\Delta = \frac{170}{170 \pm r}$. Balling. $\Delta = \frac{200}{200 \pm r}$. Brix. $\Delta = \frac{400}{400 \pm r}$.

o Baumé and over proof.	Δ of dil. spirit.	Δ corresp. to Baune.	o Eaumé and over procf.	Δ of dil. spirit.	Δ corresp. to Baumé.	o Baumé.	\$\texts\$ corresp. to \(\text{Baumé.} \)
0	0.92	1.000	23	·8897	1.185	46	1.456
1	.9189	1.007	21	*8883	1.195	47	1.470
		1.014	25	.8869	1.205	48	1.485
3	.9163	1.020	23	.8854	1.215	49	1.500
		1.028	27	.8840	1.225	50	1.515
5	•9137	1.035	28	.8825	1.235	51	1.531
6 7	1	1.041	29	.8811	1.245	52	1.546
7		1.049	30	.8797	1.256	53	1.562
8	.91	1.057	31	.8783	1.267	54	1.578
9		1.064	32	.8769	1.278	55	1.596
10	.9075	1.072	33		1.289	56	1.615
11		1.080	34		1.300	57	1.634
12	.9049	1.088	35	.8723	1.312	58	1.653
13		1.096	36		1.324	59	1.671
14		1.104	37		1.337	60	1.690
15	.9008	1.113	38	*8678	1.349	61	1.709
16		1.121	39		1.361	62	1.729
17		1.130	40	*8646	1.375	63	1.750
18	.8966	1.138	41	1	1.388	64	1.771
19		1.147	42	8615	1.401	65	1.793
20	1	1.157	43		1.414	66	1.815
21	1.	1.166	44	1	1.428	67	1.839
22		1.176	45	*8566	1.442	68	1.864

(87) Density and Composition of Acids at 15° C. (cf. 86).

Grams h	ydrogen in	sulphate	Grams hyd. nitrate in			Grams hyd. chloride in			
Δ	100 gm.	100 cem.	Δ.	100 gm.	100 ccm.	Δ.	1∩0gm.	100 ccm	
1 ·8385 1 ·839 1 ·840 1 ·840 1 ·840 1 ·830 1 ·82 1 ·81 1 ·80 1 ·70 1 ·65 1 ·60 1 ·50 1 ·45 1 ·40 1 ·30 1	99·95 99·70 99·20 97·70 95·60 92·10 90·05 88·30 86·90 81·56 77·17 2·82 68·51 64·26 59·70 35·03 50·11 44·82 39·19 33·43 27·32 20·91 14·35 12·99 11·60 10·19 8·77 7·37 5·96 4·49 3·03	183.8 183.4 182.5 179.9 175.9 168.5 168.5 168.5 156.4 142.7 131.2 109.6 99.6 99.6 89.6 79.8 70.2 60.5 51.0 41.8 32.8 23.9 15.8 14.2 12.5 10.9 9.3 7.7 6.2 4.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1	1·530 1·529 1·514 1·506 1·494 1·486 1·482 1·423 1·429 1·419 1·381 1·372 1·353 1·383 1·323 1·298 1·274 1·237 1·211 1·172 1·167 1·1065 1·067 1·045	99·84 99·52 95·27 93·01 89·56 87·45 86·17 80·96 71·24 69·20 65·07 61·21 59·59 56·10 52·33 37·95 47·18 43·53 33·86 28·00 25·71 17·47 11·41 7·72	152·75 152·2 144·2 139·1 133·8 129·9 127·7 118·4 106·4 103·7 101·8 98·2 91·1 84·5 81·8 75·9 69·6 67·5 61·2 55·5 46·9 41·0 32·8 29·8 19·3 12·2 8·1	1·212 1·210 1·205 1·199 1·195 1·190 1·185 1·180 1·171 1·166 1·161 1·157 1·152 1·143 1·125 1·116 1·108 1·100 1·091 1·091 1·095 1·067 1·067 1·066 1·052 1·044 1·036 1·022	42·9 42·4 41·2 39·8 39·0 37·9 36·8 35·7 33·9 33·0 32·0 230·2 28·4 26·6 24·8 23·1 21·5 19·9 18·1 16·5 15·0 10·4 8·9 7·3 5·5	52·0 51·3 49·6 47·6 45·0 43·6 42·1 40·8 39·7 38·5 37·2 36·1 34·8 32·5 28·8 21·9 11·9 11·6 11·6 9·3 7·6 6·6 4·6	

(88) Density and Composition of Solutions of Alkalies, Alcohol, and Salt (${\it f.}$ 86).

						1			
Potas	sium hyd	rate in	Sodi	um hydr	ate in	Alcohol in			
Δ.	100 gm	100 ccm.	Δ.	100 gm.	100 ccm	Sp. Gr. at 15° C.	100 gm.	100 ccm.	
1.790	70	125:30	1.748	70	122:36	.7947	100	79.47	
1.729	65	112.38	1.695	65	110.18	.8093	95	76.88	
1.667	60	100.02	1.643	60	98.58	.8232	90	74.09	
1.604	55	88.22	1.591	55	87.51	.8363	85	71.08	
1.539	50	76.95	1.540	50	77.00	*8488	80	67.90	
1.475	45	66.38	1.488	45	66.96	.8610	75	64.58	
1.412	40	56.44	1.437	40	57.48	.8729	. 70	61.10	
1.349	35	47.21	1.384	35	48.44	.8847	65	57.51	
1.288	30	38.64	1.332	30	39.96	.8963	60	53.78	
1.230	25	30.75	1.279	25	31.97	.9077	55	49.92	
1.177	20	23.50	1.225	20	24.50	·9188	50	45.94	
1.128	15	16.86	1.170	15	17.55	·9200*	49.24	45.30	
1.083	10	10.77	1.115	10	11.15	.9296	45	41.83	
1.041	5	5.18	1.059	5	5.29	.9398	40	37.59	
						.9493	35	33.23	
						9578	30	28.73	
Amm	onia at 1	4° C. in	Sodi	um Chlo	ride in	9650	25	24.12	
	1100	1700		1100	1100	9718	20	19.44	
Δ.	100 gm.	100 ccm.	Δ.	100 gm.	100 ccm.	9775	15	14.66	
1						.9840	10	9.84	
.0044	0.0	01.04	1.004	20.4	97.0	9912	5	4.96	
*8844	36	31.84	1.204	26.4	31.8			1	
*8885	34	30.21	1.192	25	29.8				
*8929	32	28.57	1.176	23	27.1	Тоо	btain %.	alcohol	
.8976	30	26.93	1.159	21	24.3		me mult		
9026	28	25.27	1.143	19	21.7		rs in t		
9078	$\frac{26}{24}$	23.60	1.127	17 15	19.2	column	by 1.25	83.	
.9133	24	21.92		13	16.7				
.9191	22 20		1.096	11	11.9	* "	proof sp	irit.''	
9251	18	18.50 16.77	1.081	9	9.6				
9314	16	14.91	1.051	7	7.4	(Water	at 15° C	= 1.	
9380	14	13.23	1.036	5	5.2				
9520	12	13.23	1.022	3	3.1				
9520	10	9.59	1.007	1	1.0				
9595	10	9 39	1 007	1	1 10				
			1	·	·	11			

(89) Estimation of Carbon Dioxide in Air.

Half an ounce (14.2 ccm.) of lime-water containing '0195 gm. of lime gives no precipitate when shaken in a bottle of the following sizes the air in which contains the corresponding percentage by volume of carbon dioxide.

Size of bottle in ounces avoirdupois.	Size of bottle in ccm.	Volume of air in ccm.	Carbon dioxide in the air °/, by volume.
20.63	584	570	•03
15.60	443	429	.04
12.58	356	342	.05
10.57	299	285	.06
9.13	259	245	.07
8.05	228	214	.08
7.21	204	190	.09
6.54	185	171	.10
6.00	170	156	·11
5.23	157	143	.12
5.15	146	132	.13
4.82	137	123	.14
4.53	128	114	.15
3.52	100	86	.20
2.92	83	69	.25
2.51	71	57	.30
2.01	57	43	.40
1.71	48	34	.50
1.51	43	29	.60
1.36	39	25	.70
1.25	36	22	.80
1.17	33	19	.90
1.10	31	17	1.00

The air of a room should give no precipitate when a $10\frac{1}{2}$ oz. bottle full is shaken with half an ounce of clear lime-water.

(90) HEAT EVOLVED OR ABSORBED IN CHEMICAL AND PHYSICAL ACTIONS.

The symbols in the following tables express the atomic weights of the elements taken in grams, and the heat evolved or absorbed (-) is expressed in "large" calories (kilogram-degrees). Aq means that an indefinite quantity of water is present, s that the substance is solid, liquid, and g gaseous.

(91) Allotropic Changes of the Elements (see 90).

Oxygen into ozone, $3O_2 = 2O_3$	_	29.6
Common into insoluble sulphur S. at 18° C		0
Amorphous insoluble sulphur into amorphous soluble		0.08
Amorphous soluble sulphur into octohedral Sa	-	0.08
Plastic into octohedral sulphur $S_r = S_a$		0.4
Prismatic into octohedral sulphur $S_{\beta} = S_{a}$		0.08
Vitreous into metallic selenium Se.		5.6
White into red crystallised phosphorus P		19.2
White into red amorphous phosphorus P. at 9° C		20.7
Wood charcoal into diamond C		3
Amorphous into crystallised silicon Si		8 1
Gold ppd. from bromide into condition of that ppd. fr.		
chloride Au		3.2
Iron at 700° C.		0.28
Iron at 1000° C.		0.34
Iron at 1000 C	-	0.34

(92) Heat of Solution in Water of 22 3 litres of Gases (see 90).

·			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	8·3 17·4 20 19·4 4·75 8·8 13 8	Hydrogen Nitrate HNO ₃ Sulphur dioxide SO ₂ , trioxide SO ₃ Chlorine monoxide Cl ₂ O Boron trichloride BCl ₃ Silicon tetrafluoride SiF ₄ Boron trifluoride BF ₃ . Carbon dioxide CO ₂ Hydrogen cyanide HCN	7·7 24·6 9·4 70·3 22·3

(93)	FORMATION OF	SOLID S	SALTS	FROM	THE	SOLID	Basic	AND
(00)	GAS	EOUS ACI	D OXI	DES (S	ee 90).		

(94) FORMATION OF A GASEOUS COMPOUND BY THE UNION OF GASEOUS CONSTITUENTS (see 90).

Hydrogen chloride H + Cl		22
,, bromide H + Br		13.5
, iodide H + I	_	0.8
,, sulphide H ₂ + S		7.2
Steam H ₂ + 0		59
Ammonia 3H + N		12.2
Nitrous oxide $N_2 + 0$	-	20.6
Nitric oxide N + O		21.6
Nitrogen trioxide N ₂ + O ₃		22.2
tetroxide N + O_2		2.6
,, pentoxide $N_2 + O_5$		1.2
Hydrogen nitrate H + N + O ₃		34.4
Chlorine monoxide Cl ₂ + 0	-	15.2
Sulphur chloride S ₂ + Cl ₂		16.2
Sulphur dioxide S + O ₂		71.6
Sulphur trioxide S + O ₃		.96.4
$SO_2 + 0$		24.8
Sulphuryl dichloride SO ₂ + Cl ₂		13.2
Carbon dioxide $CO + O$		68.2
Carbonyl dichloride CO + Cl ₂		18.8
,, sulphide CO + S	-	3.6
Hydrogen cyanide CN + H		7.8
Benzene 3C ₂ H ₂		171

Ammonium chloride NH3 + HCl	42.5
,, bromide NH ₃ + HBr	45.6
,, iodide NH ₃ + HI	44.2
,, cyanide NH ₃ + HCN	20.5
,, sulphide NH ₃ + H ₂ S	23 41·9
,, nitrate $NH_3 + HNO_3$	41 9

(95) FORMATION OF SOLID, LIQUID, AND GASEOUS OXIDES FROM SUBSTANCES TAKEN IN THEIR ORDINARY CONDITION AT 15° C (see 90).

Alumina $(Al_2 + 30 + 3H_20)s$	391.6
Antimony tetroxide (Sb ₂ + 40)s	248.6
Arsenic trioxide $(As_2 + 30)s$	154.6
Barium dioxide (BaO + O)s	12.1
Bismuth trioxide (Bi ₂ + 30)s	137.8
Boron trioxide $(B_3 + 30)s$	313.6
Cadmium oxide (Cd + O + Aq)3	66.4
Carbon monoxide (C + O)g	28.8
Carbon dioxide (C + O_2) g	97.6
Chromium trioxide ($Cr_2O_2 + O_2)s$	6.2
Cobaltous oxide (Co + O + Aq)s	64
Cuprous oxide (Cu ₂ + O)s.	42
Cuprous oxide (Cu ₂ + O)s. Cupric oxide (Cu + O)s.	38.4
Auric oxide $(Au_2 + 30 + Aq)s$.	-11.2
Indine pentovide (I. + 5())e	45.6
Farric avide (Fe. + 30 + Ag)s	191.2
Ferric oxide (Fe ₂ + 30 + Aq)s Water (H ₂ + O)l	69
Lead Monovide (Ph + O)e	51
Lead Monoxide (Pb + O)s Lime (Ca + O)s	132
Calcium hydrate $(Ca + O + H_2O)s$.	147
Magnesia (Mg + O + H_2O)s	149.8
Mercurous oxide $(Hg_2 + O)s$	42.2
Marauria arida (Hg. 1 O) aridan	31
Dhamhama mantarida (D. 150)	363.8
Mercuric oxide (Hg $+$ O) yellow. Phosphorus pentoxide (P ₂ $+$ 50)s Platinic oxide (Pt $+$ O ₂)s. Potassium hydrate (K ₂ $+$ O $+$ H ₂ O)s.	15
Printing oxide (Ft + U ₂)s	139.6
Potassium nydrate $(\mathbf{K}_2 + \mathbf{U} + \mathbf{H}_2\mathbf{U})s$	7
Silver oxide $(Ag_2 + O)s$ Silicon dioxide $(Si + O_2)s$	•
Silicon dioxide (S1 + O_2)s	219.2
Sodium hydrate (2Na + 0 + H ₂ 0)s	135.6
Strontium hydrate (Sr + O + H_2O)s	148.6
Sulphur trioxide (S + 30)s	103.6
Stannous oxide $(Sn + O + Aq)s$	69.8
Stannic oxide (Sn + O ₂ + Aq)s	135.8
Zinc oxide (Zn + O)s	86.4

(93) FORMATION OF CHLORIDES THE ELEMENTS BEING TAKEN IN THEIR ORDINARY CONDITION AT 15°C. (see 90).

Aluminium ch!oride	(Al ₂ +	Cl ₆)3	 321.6
Arsenic trichloride	(As + ($\operatorname{Cl}_3)\widetilde{l}$	 69.4

Antimony trichloride (Sb + Cl ₃)3	91.4
Calcium chloride (Ca + Cl ₂)3	170.2
Cuprous chloride (Cu ₂ + Cl ₂)s	71.2
Cupric chloride (Cu + Cl ₂)s	51.6
Auric chloride (Au + Cl ₃)s	22.8
Hydrogen chloride (H + Cl) d	36.3
Ferrous chloride (Fe + Cl ₂)s	82
Ferric chloride (Fe ₂ + 6Cl)s	192
Lead chloride (Pb + Cl ₂)s	85.2
Magnesium chloride (Mg + Cl ₂)s	151
Manganous chloride (Mn + Cl ₂)s	112
Mercurous chloride (Hg ₂ + Cl ₂)s	81.8
Mercuric chloride (Hg + Cl ₂)s	62.8
Phosphorus trichloride (P + Cl ₃)l	75.8
Phosphorus pentachloride (P + Cl ₅)s	107.8
Potassium chloride (K + Čl)s.	105
Silver chloride (Ag + Cl)s	29.2
Silicon tetrachloride (Si + Cl ₄)l	157.6
Sodium chloride (Na + Cl)s	97:3
Strontium chloride (Sr + Cl ₂)s	184.6
Stannous chloride (Sn + Cl ₂)s	80.4
Stannia ablanida (Sp. + Ol.)	129.2
Stannic chloride (Sn + Cl ₄)l	
Zinc chloride (Zn + Cl ₂)s	97.2

(97) Formation of Sulphides from Solid Sulphur (Calc.), those of the Heavy Metals Precipitated, and of the Light Metals Crystallised. To pass to Gaseous Sulphur add 1.3 (see 90).

Aluminium sulphide (Al ₂ + S ₃)s	124.4
Cadmium sulphide (Cd + S)s.	34
Calcium sulphide (Ca + S)s.	92
Cobalt sulphide (Co + S)s	21.8
Cuprous sulphide (Cu ₂ + S)3	20.2
Cupric sulphide (Cu + S)s	10.2
Ferrous sulphide (Fe + S)s.	23.8
Lead sulphide (Pb + S)s	17.8
Magnesium sulphide (Mg + S)s	79.6
Manganese sulphide (Mu + S)s	45.2
Mercuric sulphide (Hg + S)s	19.8
Nickel sulphide (Ni + S)s	19.4
Potassium sulphide $(K_2 + S)s$	102.2
Silver sulphide (Ag ₂ + S)s	3

Sodium sulphide (Na ₂ + S)s. Strontium sulphide (Sr + S)s. Zinc sulphide (Zn + S)s.	88.4 95.2 43
(98) FORMATION OF HYDRATES FROM LIQUID WATER (sce	90).
Hydrogen nitrate (HNO ₃ l + H ₂ O)	10.6
$,, , (HNO_3l + nH_2O)$	14.4
,, sulphate $(SO_3s + H_2O)s$	21.5
$H_{9}SO_{4} + H_{9}O_{1}U_{1}U_{2}U_{2}U_{3}U_{4}U_{4}U_{5}U_{5}U_{5}U_{5}U_{5}U_{5}U_{5}U_{5$	6.2
$H_{0}SO_{4} + nH_{0}O)l$	17
,, iodate $(I_2O_5s + H_2O)s$	3
,, phosphate $(P_2O_5s + 3H_2O)s$	33.8
,, arsenate $(As_2O_5s + 3H_2O)s$.	6.8
,, borate (B ₂ O ₃ + 3H ₂ O)s	16.8
Potassium hydrate (K ₂ O + H ₂ O)s	42.4
$(KHO + nH_2O)l.$	12.5
Sodium hydrate (Na ₂ O + H ₂ O)s	35.6
$N_{1} = N_{1} + N_{2} + N_{3} + N_{4} + N_{5} + N_{5$	9.8
Barium hydrate (BaO + H ₂ O)s	17.6
,, dioxide (BaO ₂ + H_2 Ó)s	2·8 10·2
,, hydrate (BaH ₂ O ₂ + n H ₂ O) l	17.2
Strontium hydrate (SrO + H ₂ O)s, (SrH ₂ O ₂ + 9H ₂ O)s	18.2
,, ,, $(SrH_2O_2 + 9H_2O)s$	15.1
Lead hydrate (PbO + H ₂ O)s	2.4
Potassium sulphate ($K_2SO_4 + H_2O$)s	10
Ammonia (NH ₃ $g + \text{H}_2\text{O}$) l	7.6
$N_{3}^{13}g + n_{2}^{12}O)l$	8.8
Hydrogen chloride ($HClg + 2H_2O$) l	11.6
,, (HCl $g + 6.5\tilde{H}_2O$) l	16.5
", ", $(HClg + nH_2O)l$	17.4
,, bromide (HBrg + $2H_2^2O$) l	14.2
,, (HBrg + n H ₂ O) l	20
,, iodide ($\dot{H}Ig + 3H_2O$) \ddot{l}	15.6
,, (HIg + $nH_2^{\circ}O$) l	19.5
-	

n is any large number of molecules so that the solution is dilute.

(99) Heat of Formation of the Chief Non-Metallic Compounds, the Components being taken in their Ordinary Condition at 15° C. (see 90).

Hydrides.	Gaseous.	Liquid.	Solid.	Dissolved.
$ \begin{array}{c} \text{Hydrogen chloride } (\text{H}+\text{Cl}) \\ \text{,,,} \text{bromide } (\text{H}+\text{Br}) \\ \text{,,,} \text{iodide } (\text{H}+\text{I}) \\ \text{,,,} \text{oxide } (\text{H}_2+\text{O}) \\ \text{,,,} \text{dioxide } (\text{H}_20+\text{O}) \\ \text{,,,} \text{sulphide } (\text{H}_2+\text{S}) \\ \text{,,,} \text{intride } (\text{H}_3+\text{N}) \\ \text{Hydroxylamine } (\text{H}_3+\text{N}) \\ \text{Hydrogen phosphide } (\text{H}_3+\text{P}) \\ \text{,,,} \text{arsenide } (\text{H}_3+\text{As}) \\ \text{A cetylene } (\text{C}_2(\text{cryst.})+\text{H}_2) \\ \text{Ethylene } (\text{C}_2(\text{cryst.})+\text{H}_4) \\ \text{Marsh gas } (\text{C}(\text{cryst.})+\text{H}_4) \\ \text{Hydrogen silicide } (\text{H}_4+\text{Si}) \\ \end{array} $	22 9·5 - 6·2 58·2 4·6 12·2 11·6 - 36·7 - 61 - 15·4 18·5 32·9	69	70.4	39·3 29·5 13·2 - 21·6 9·2 21 19
Cyanides.				
Cyanogen (C ₂ + N ₂) Hydrogen cyanide (Cy + H) Cyanogen chloride (Cy + Cl)	- 74·5 7·8 1·6	13·5 9·9		- 67·8 13·1
Potassium cyanide (K+Cy) Silver cyanide (Ag+Cy)			67.6 3.6	64.7
Mercuric cyanide (Hg+Cy ₂)			23·8 72	20·8 69·7
(K+Cy+S) Potassium silver cyanide			87.8	81.7
(AgCy+KCy) Potassium ferrocyanide			11.2	
(Fe + K_4 + Cy_6) Potassium ferricyanide			365.2	370.6
$(Fe + K_6 + Cy_6)$			557.4	528.6

Oxides and Hydrates.	Gas.	Liq.	Sol.	Dis.
Arsenic trioxide (As ₂ +O ₃)			154.6	147
,, pentoxide $(As_0 + O_5)$			219.4	225.4
Boron trioxide $(B_2 + O_3)$.]		312.6	319.8
Bromine monoxide (Br_2+0)				-12.4
Hydrogen bromate $(H_2O + Br_2 + O_5)$				-49.6
Carbon monoxide (C cryst. + 0)	25.8	-		
// 1.01	1 00 0			
Carbon dioxide (C cryst. +O ₂)	94		100	99.6
$,,,,,$ (C amorph. $+ O_0$)	97		103	102.6
Carbon oxysulphide (C cryst. $+ O + S$)	19.6			
,, $(Ca. + O + S)$	22.6			
(CO+S)	- 6.2			
Carbon disulphide (C cryst. $+S_2$)	- 21.1			
$,, (Ca. + S_2)$	- 18.1			
Chlorine monoxide (Cl ₂ +0)	- 15.2			- 5.8
Hydrogen chlorate (Cl2+O5+H2O)				- 24
,, perchlorate $(Cl_2 + O_7 + H_2O)$		-30.8		9.8
Iodine monoxide (I ₂ +O)				-10.4
,, pentoxide $(I_2 + O_5)$			45.6	
Hydrogen iodate $(I_2 + O_5 + H_2O)$			48.6	
,, periodate $(I_2 + O_7 + H_2O)$				27
Nitrogen monoxide (N ₂ + 0)	- 20.6	-16.2		~,
,, dioxide (N ₂ +O ₂)	- 43.2			
,, trioxide $(N_2 + O_3)$	- 22.2			- 8.4
,, tetroxide $(\tilde{N}_2 + \tilde{O}_4)$	- 5.2	3.4		
,, pentoxide $(N_2 + O_5)$		3.6		28.6
Hydrogen nitrate $(N_2 + O_5 + H_2O)$	- 0.2	14.2		28.6
Nitrogen sulphide (N ₂ +S ₂)			-64.6	20 0
Phosphorus pentoxide $(P_2 + O_5)$			363.8	405.4
Hydrogen phosphate $(P_2 + O_5 + 3H_2O)$		395	400	405.4
,, phosphite $(P_2 + O_3 + 3H_2O)$		244.2	250.2	
,, hypophosphite($P_2 + O_2 + 3H_2O$)		70	74.8	74.4
Selenium dioxide (Se + O ₂)			57.6	
Selenium dioxide (Se + O_2)				77.2
Silicon dioxide (Si amorp. + O ₂)			219.2	207.4
$,,$ $,$ (Si cryst. + O_2)			211.1	
,, sulphide (Si amorp. $+$ S ₂)			40	
Sulphur dioxide $(S + O_2)$	69.2			76.8
Sulphur trioxide $(S + O_3)$	91.8		103.6	

$\begin{array}{c} \text{", thiosulphate } (S_2 + O_2 + H_2 O) \dots \\ \text{", dithionate } (S_2 + O_5 + H_2 O) \dots \\ \text{", tetrathionate } (S_4 + O_5 + H_2 O) \dots \\ \text{", sulphate } (SO_2 + O + H_2 O) \dots \\ \text{", sulphate } (SO_2 + O + H_2 O) \dots \\ \text{", (S + O_3 + H_2 O)} \dots \\ \text{", (S + O_3 + H_2 O)} \dots \\ \text{", tellurate } (Te + O_3 + H_2 O) \dots \\ \text{"} \text{", tellurate } (Te + O_3 + H_2 O) \dots \\ \text{Chlorides, &c.} \\ \\ \text{Sulphur dichloride } (SO_2 + Cl_2) \dots \\ \text{Sulphuryl dichloride } (SO_2 + Cl_2) \dots \\ \text{", pentachloride } (P + Cl_3) \dots \\ \text{", pentachloride } (P + SCl) \dots \\ \text{", pentachloride } (P + Cl_3 + O) \dots \\ \text{", (PCl}_3 + Cl_2) \dots \\ \text{", Silicon tetrachloride } (Siam. + Cl_4) \dots \\ \text{Silicon tetrachloride } (Siam. + Cl_4) \dots \\ Si$	Oxides and Hydrates.	Gas.	Liq.	Sol.	Dis.
	Hydrogen hyposulphite $(S_2 + O_2 + 2H_2O)$. ,, thiosulphate $(S_2 + O_2 + H_2O)$,, dithionate $(S_2 + O_5 + H_2O)$,, tetrathionate $(S_4 + O_5 + H_2O)$,, sulphate $(SO_2 + O_3 + H_2O)$,, $(S + O_3 + H_2O)$,, $(S + O_3 + H_2O)$		54·4 124		$\begin{array}{c} 141 \\ 210 \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorides, &c.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			17.6		
,, pentachloride (P+5Cl) (PCl ₃ +Cl ₂) Phosphoryl chloride (P+Cl ₃ +O) (PCl ₃ +O) (PCl ₃ +O) (PCl ₃ +O) 142·4 66·6 157·6 Carbonyl chloride (C cryst. + O + Cl ₂) 44·6			75.8		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,, pentachloride (P+5Cl)	000	,,,,	107.8	
Silicon tetrachloride (Si am. $+$ Cl ₄) 151·3 157·6 Carbonyl chloride (C cryst. $+$ O $+$ Cl ₂) 44·6	Phosphoryl chloride $(P + Cl_3 + O)$				
Carbonyl chloride (C cryst. + O + Cl ₂) 44.6	,, (PCl ₃ +0)	151.0			
District of the property of th	Carbonyl chloride (C cryst $+ O + C$)				=
rnosphorus pentapromide (P+5 Brat 0°C) 63	Phosphorus pentabromide (P + 5Brat 0°C)			63	
Phosphorus triodide (P + I ₃ at 0° C)				10.5	

(100) HEAT EVOLVED IN CALORIES (GRAM-DEGREES) ON BURNING 1 GRAM OF :—

Hydrogen to water at 0° C	34462
,, to steam	28780
,, to steam	8080
,, ,, to carbon monoxide	2400
graphite (natural)	7797
Gas-coke.	8047
Coke	7100 - 6860
Graphite from cast-iron	7762
Diamond	7770
Wood (with 20 °/o water)	

Wood air-dried	2900
,, dried at 120° C	3600
Coal	8300 - 6400
Anthracite	8000
Air-dried peat.	3600
Petroleum	11400
Turpentine	10662
Methyl-Alcohol	5307
Ethyl-alcohol	7184
Amyl-alcohol	8959
Ethyl-ether	9028
Carbon monoxide	2403
Carbon monoxide and hydrogen (equal volumes)	4198
Methane	13063
Ethene	11858
Coal-gas	10600
Benzene vapour	9915
Glycerin C ₃ H ₈ O ₃	5133
Palmitic acid C ₁₆ H ₃₂ O ₂	9317
Stearic acid C ₁₈ H ₃₆ O ₂	9717

(101) MISCELLANEOUS DATA IN CHEMISTRY.

Mass of a litre of normal hydrogen in grams (crith) 0.089	
aubic foot of normal hydrogen in the '005	59
	JJ
,, ,, litre of normal air in grams 1.293	2
cubic foot of normal air in lbs	
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	. –
22.32 litres of normal air in grams 28.872	
,, 22 92 littles of normal art in grams 20 0/2	
77.7 1 17. 0.17 1 1 1 1.14 0	
Volume in litres of the molecular weight of a gas in	
grams 22·32	
Volume of 1 lb. of air at 62° F. in cubic feet 13.141	
Percentage of oxygen in air by volume 20.99	
carbon dioxide in air by volume 0.04	

PHYSIOGRAPHY.

(102) Geological Formations.

The greatest thickness generally in Britain is given in feet, and a few of the characteristic fossils are mentioned.

PRIMARY OR PALÆOZOIC ROCKS.

1. ARCHÆAN OR PRECAMBRIAN.

Laurentian (30,000). Eozoon Canadense? Huronian (10,000 to 20,000 in Canada).

 CAMBRIAN containing Protospongia, Annelides, Trilobites, and Brachiopods.

Lower Harlech and Longmynd. Palwopyge Ramsayi. (10,000). Menevian. Theca.

Upper (Lingula flags. Lingulella Davisii, Crustacca. (6,000). (Tremadoc Slates. Encrinites, A star-fish.

3. SILURIAN, TRANSITION OR GREYWACKE containing fucoid plants, graptolites, corals, Placoid fish, Crustaceans.

Lower (13,500).

Arenig.
Llandeilo.
Caradoc.
Bala.
Lower Llandovery.
Upper (50,000).

Upper (50,000).

Arenig.
Llandeilo.
(Caradoc.
Pentamerus.
Ventamerus.
Ventamerus.
Ludlow. Onchus ? Palæchinus, Pterygotus.

4. DEVONIAN AND OLD RED SANDSTONE (10,000). Fish, Insects.

Lower. Cryptogams.
Middle. Goniaities, Bryozoa. E E Ferns, Lycopods.
Upper.
These beds are probably marine.

5. Carboniferous Series.

Yellow Sandstone.
Mountain Limestone.
Millstone grit (5,000).
Coal measures with Gannister, Shale, {
 (12,000) Ferns, Lepidodendron, Cypris, Calamites, Lycopodiaceæ, Labyrinthodonts.

6. Permian or Dyas (3,500) last Lepidodendra, Calamarics, and Sigillarioids. Amphibians abundant.

Magnesian Limestone, &c. | Proterosaurus, Branchio-Red conglomerates and sandstones. | saurus, Lepidotosaurus.

SECONDARY OR MESOZOIC ROCKS.

Triassic (5,200). Ferns, Equiseta, Conifers, Cycads, Ammonites, Labyrinthodonts.

Bunter.
Muschelkalk.
Keuper.

Rock-calt, Microlestes antiquus—the first mammal,
a Crocodile, a Land-lizard.
Rhætic.

 JURASSIC OR OOLITIC, Reptiles abundant, Coral, Cycads abundant, Conifers.

Lower Lias. (1,500) Ammonites, Belcmnites, Nautili. Middle Lias. (1,500) Ammonites, Belcmnites, Nautili. Ichthyosaurus, Plesiosaurus, Megalosaurus, Atlantosaurus, Pterodactyl. Lower Oolite (Bathonian 780). Gasteropods numerous. Seaurchins, Araucarites, Teleosaurus, Marsupials, Ramphorhynchus, Ceteosaurus,
Archæopteryx.

Upper Oolite (Portlandian 1,380). Terebratula, Lingula, Turtles,
Ammonites, and Belemnites abundant.

3. CRETACEOUS. Dicotyledonous Plants, Sponges, Reptiles, Foraminifera, Toothed Birds.

Neocomian (1,800 Wealden and Lower Greensand). Insects, Crozodilia, Mammals, Iguanodon, Zamias, Meyeria.
Gault (a stiff blue sandy or calcareous clay, 200).
Cenomanian, (350 Upper Greensand). Coniferous trees.
Turonian (250 without flints).
Senonian (850 with flints).
Danian (wanting in England).
Senonian (South flints).
Conidater, Micraster, Mosasurus, Several Turtles.

Ammonites and Belemnites cause.

TERTIARY OR CAINOZOIC ROCKS.

1. EOCENE (London, Paris, and Hampshire Basins, 1,900). Lower Eocene (Thanet, Woolwich, Reading beds, London clay, Lower Bagshot sand). Sharks, Arctocyon primævus, Lithornis, Halvyornis, Hyracotherium, Palæophis Typhæus, Conifers, Figs, Junipers, Citrons.

Middle Eocene (Bagshot and Bracklesham beds). Turtles, Sharks, Marine shells, Palwotherium, Ptcrodon, Cwnopithecus.

Upper Eccene (Barton clay, Upper Bagshot sand). Molluscs, Fish, a Crocodile, Anchitherium, Hyopotamus, Opossums, Cynodon, Echippus, Deinoceras.

2. OLIGOCENE (Hemstead, Headon, Bovey Tracey beds). Oaks, Willows, Vines, Anoplotherium, Parroquets, Flamingoes, Ibises, Pelicans, Cranes, Eagles, Grouse.

G

- 3. MIOCENE (wanting in England). Sequoia, Myrtus, Acacia, Betula, Mastodon, Deinotherium, Rhinoceros, Dricroceras, Machairodus, Hyænarctos, Anthropoid Apes, Palæocastor.
- 4. PLIOCENE (Coralline, Red, Norwich Crag, 180). Salt-beds in Poland. Many modern trees, e.g. walnut, maple, birch, hickory. Hipparion, Elephas meridionalis, Tapirus priscus, Sus antiquus, Hyana antiqua, Equus plicidens, Felis pardoides, Cervus, Castor.
- 5. PLEISTOCENE (Diluvium, Glacial action, Cave deposits). Many ancient animals, e.g. Machairodus latidens, Elephas antiquus, and primigenius, Lagomys spelæus, Cave-bear, Cave-lion, Cave-hyæno, Canadian and Irish Elk and Mammoth are gradually replaced by modern forms, e.g. Lion, Grizzly and Polar Bears, Wild Boar, Wolf, Fox, Glutton, Reindeer, Roe-deer, Red-deer, Beaver, Urus, Ibex, Musk-sheep. Man was contemporaneous with most of these animals.
- 6. PREHISTORIC AND RECENT PERIOD. Divided into periods by the material chiefly used for implements and weapons:—
 - (a). Palæolithic age (rough chipped stone implements).
 - (β). Neolithic age (smooth rubbed stone implements).
- $(\gamma).$ Bronze age (copper, and copper tin zinc and lead implements). (Homer).
 - (δ). Iron age.

(103) LENGTHS OF RIVERS IN KILOMETRES. (Cf. 9.)

Mississippi	7200 6500?	Rio de la Plata Volga	4000 3600
		Danube	
Jenissei	5500	Thames	346
Vang-tse-kiang	5200	Severn	322

(104) HEIGHTS AND DEPTHS IN METRES. (Cf. 9.)

Mt. Everest (Nepaul)	8840	Ben Nevis	1331
Dapsang (Asia)	8621	Snowdon	1094
Kantchin Djinga	8582	Lake Palte	4114
Aconcagua (Chili)	6834	Lake Titicaca	3808
Chimborazo	6530	Lake Baikal	469
Kilima Ndjaro (Africa)	5705	Great Pyramid	142
Elbrouz (Persia)	5647	RoseBridgeMine(Wigan) -	- 745
Popocatapetl	5410	Dead Sea (surface)	- 396
Mt. Brown (N. America).	4876	Caspian Sea (bottom)	- 914
Mt. Blanc	4810	Ocean (mean depth)	- 900 ?
Oroya Railway, highest	4768	Atlantic (greatest depth) -	- 7086
Mauna Loa (Hawaii)	4135	Pacific (greatest depth)	- 8321

(105) VELOCITY AND PRESSURE OF THE WIND.

Desc. No.	Des^riptive name.	Miles per hour.	Lbs. per sq. foot about.
0	Calm	3	.08
1	Light air	8	•6 ·
2	Light breeze	13	1.5
$\frac{2}{3}$	Gentle breeze	18	2.9
	Moderate breeze	23	47
4 5	Fresh breeze	28	6.9
6	Strong breeze	34	10.2
7	Moderate gale		14.2
8	Fresh gale	48	20.3
9	Strong gale	56	27.8
10	Whole gale	65	37.5
11	Storm	75	49.9
12	Hurricane	90	71.8

(106) VELOCITY OF THE TIDE IN MILES PER HOUR (V) IN WATER & FATHOMS DEEP.

	v	x	v	x	V
1	8	50	57	100	80
10	25	60	63	200	114
20	36	70	65	400	160
30	44	80	73	1000	250
40	51	90	77	4000	500

(107) Course of the Tide to the English Coasts.

A high tide leaving the Cape of Good Hope about 1 passes up the Atlantic, reaches the Equator at 6, the Tropic of Cancer at 9, the Azores at 12; it stretches from C. Finisterre to Iceland about 3, and is 1° of lat. S.W. of the Land's End about 4. The Northern portion sweeps round the I. of Lewis at 7, and the Orkneys at 3, at 11 it reaches Peterhead and Egersund in Norway, at 12.30 Aberdeen and the Naze, at 2 Edinburgh, at 4 Flambro' Head, at 7 Boston, and at 8 30 Great Yarmouth. A second portion passes up St. George's Channel reaching St. David's Head at 6, the Isle of Man at 10, Belfast and Port Patrick at 11. The Southern portion passes up the English Channel reaching Falmouth and Morlaix at 5, Portland Bill and Cape la Hague at 7, the Isle of Wight and Barfleur at 8, Deal and Calais at 11, Ramsgate and Dunkirk at 12, London Bridge at 2.15, Yarmouth at 3, and the coast of Jutland at 1.

The highest tide is the third tide or some 36 hours after new and

full moon.

(108) Time of High Water on the Full and Change of the Moon or Establishments of the Following Ports.

N.B.—The "tide interval" between any two places being always approximately the same, if the time of high tide at any port mentioned be known on any day that at any other port may be calculated.

	1		
42 2		m.	C
Aberdeen	1		Gravesend
Aberystwith		31	Grimsby
Achill-Beg	-	14	Harwich
Agnes, St., Scilly Isles.	4	30	Hastings
Alderney	6		Helgoland
Antwerp	4	25	Holyhead
Ayr Point, Isle of Man	11	7	Horn Point, J
Bantry Bay	3	47	Land's End
Beachy Head	11	20	Lerwick
Belfast	10	43	Lewis Island
Berwick	2	18	Liverpool
Bordeaux	6	50	London Bridg
Boulogne	11	25	Milford Have
Brest	3	47	Needles Point
Brighton	11	15	Newcastle
Bristol	7	13	Nore Light
Calais	11	49	Pentland Firt
Cantyre (Mull of)	10	35	Rathlin Islan
Cherbourg	7	49	Scarborough
Cowes, West	10	45	Shannon Mou
Deal		15	Southampton
Dover		12	Swansea Bay
Dublin Bar	11	12	Whitby
Falmouth		57	Wick
Flambro' Head		30	Wisbeach
Flushing		54	Wranger Oog
Gibraltar		20	Yarmouth Ro
Glasgow Port			Youghal
Gravelines		0	Toughai
Gravennes	12	U	J

that at any other port	may be
	h. m.
Gravesend	1 10
Grimsby	5 36
Harwich	0 6
	10 53
Hastings	11 33
Holyhead	10 11
Horn Point, Jutland	1.44
Land's End	4 30
Lerwick	10 30
Lewis Island	$6 \cdot 11$
Liverpool	11 - 23
London Bridge	1 58
Milford Haven	5 56
Needles Point	9.46
Newcastle	4 23
Nore Light	0 30
Pentland Firth	$11 \cdot 0$
Rathlin Island	7.56
Scarborough	$4 \cdot 11$
Shannon Mouth	4 0
Southampton	10.30
Swansea Bay	6 10
Whitby	3.45
Wick	$11\ 22$
Wisheach	7:30
Wranger Oog, Friesland	12 0
Yarmouth Roads	. 9-15
Youghal	. 5 14
-	

(109) LATITUDE AND LONGITUDE OF TOWNS (cf. 8, 110).

N.B .- O stands for an observatory.

	Latitude.				Lo	ngi	tud	e.		
			In	Αι	ıgle.			In '	Time	·
							н.	M.	s.	
Adelaide O	34° 55′	33.8" S.	138°	35'	20''	E.	9	14	21.3	E
Antipodes Isle	49" 25"	S.	179°	30'	E.		11	58		E
Athens O	37° 58′	20" N.	23°	43'	56''	E.	1	34	55.7	E
Berlin O	52° 30′	16·7" N	13°	23'	43"	E.	0	53	34.9	E
Bonn O	50° 43′	45" N.	7°	5'	49"	E.	0	28	23.9	E
Calcutta	22° 34′	45" N.	88°	27'	56"	E.	5	53	52	E
Cambridge O	52° 12′	51.6" N.	0°	5'	41"	E	0	0	22.8	E
C. of Good Hope O	33° 56′	3.5" S.	18°	28'	45"	E.	1	13	55	E
Dublin O	53° 23′	13" N.	6°	20'	30"	W.	0	25	22	W
Edinburgh O	55° 57′	23·2" N.			53"		0	12	43.6	W
Glasgow O	55° 52′	42.8" N.	4°	17'	39"	W.	0	17	10.6	W
Greenwich O	51° 28′	38·4" N.	0°	0'	0"		0	0	0	
Lisbon, Royal O	38° 42′	31.3" N.	9°	11'	10"	W.	0	36	44.7	W
Madras O	13° 4′	8·1" N	80°	14'	51"	E.	5	20	59.4	E
Melbourne O	37° 49′	53·4" S.	144°	58'	42''	E.	9	39	54.8	E
Moscow O	55° 45′	19·8" N.		34'	15''	E.	2	30	17	E
Oxford, Radeliffe O.	51° 45′	36" N.	1°	15'	39''	W.	0	5	2.6	W
Paris Ó	48° 50'	13" N.	2°	20'	14"	E.	0	9	20.9	E
Pekin	39° 54′	47" N.	116°	24'	45"	E.	7	45	39	E
Quebec O			71°	12'	15"	W.	4	44	49	W
Rio de Janeiro O			43°	10'	21"	W.	2	52	41.4	W
Rome O	41° 53′	52.2" N.	12°	28'	40"	E.	0	49	54.7	F
San Francisco	37° 48′	5" N.	122°	24'	W.		8	9	36	F
St. Petersburg O	59° 56′	29.7" N.	30°	18'	22''	E.	2	1	13.5	E
Santiago de Chile O.	33° 26′	42" S.	70°	40'	36''	W.	4	42	42.4	W
Sydney O	33° 51′	41.1 S.	151°	11'	49"	E.	10		47.3	
Vienna, Old O	48° 12′	35.5" N.	16°	22'	49"	E.	1	5	31.3	E
Washington Naval O.	38° 53′	38.8" N.	77°	3'	1"	W.	5		12.1	
Wellington	41° S.		174°	30'	E.		11	38		F
York	200 57/	4 5" NT	1°	6'		W.	0		24	W

(110) DISTANCES AND AREAS ON THE SURFACE OF THE GLOBE.

The areas are the number of millions of square feet in a quadrilateral the sides of which cover 1' of Longitude by 1' of Latitude (F. 112).

	tude.	Latitude.		Area in 1 000 000 sq. ft.
Feet to 1'.	Miles to 1°.	Feet to 1'.	Miles to 1°.	
6086	69.15	6045	68.69	36.78
5994	68.11	6047	68.70	36.24
5721	65.01	6053	68.77	34.62
5275	59.94	6061	68.88	31.97
4669	53.05	6071	69.00	28.35
4311	48.99	6076	69.05	26.19
3920	44.54	6081	69.10	23.84
3051	34.66	6091	69.21	18.58
2088	23.73	6100	69.32	12.74
1060	12.05	6105	69.38	6.47
0	0	6107	69.39	0
	6086 5994 5721 5275 4669 4311 3920 3051 2088 1060	6086 69·15 5994 68·11 5721 65·01 5275 59·94 4669 53·05 4311 48·99 3920 44·54 3051 34·66 2088 23·73 1060 12·05	6086 69·15 6045 5994 68·11 6047 5721 65·01 6053 5275 59·94 6061 4669 53·05 6071 4311 48·99 6076 3920 44·54 6081 3051 34·66 6091 2088 23·73 6100 1060 12·05 6105	5994 68·11 6047 68·70 5721 65·01 6053 68·77 5275 59·94 6061 68·88 4669 53·05 6071 69·00 4311 48·99 6076 69·05 3920 44·54 6081 69·10 3051 34·66 6091 69·21 2088 23·73 6100 69·32 1060 12·05 6105 69·38

(111) DISTANCES AND AREAS ON MERCATOR'S AND GALLE'S PROJECTIONS.

On Mercator's projection 1' of Longitude is everywhere 8086 feet, and on Galle's projection 1' of Longitude is everywhere 4311 feet, In each case the Latitude is altered in proportion to the change in the Longitude. The areas are the number of millions of square feet in a quadrilateral the sides of which cover 1' of Longitude by 1' of Latitude. Ratio of area on the map to the true area.

At° Lat.	Mercator.			Galle,			
	Feet in 1' Lat.	Area.	Ratio.	Feet in 1' Lat.	Area.	Ratio.	
0	6045	36.78	1	4283	18:46	.502	
10	6138	37.36	1.03	4349	18.75	.52	
20	6438	39.17	1.13	4560	19.66	.57	
30	6993	42.56	1.33	4955	21.36	.67	
40	7913	48.17	1.70	5606	24.17	.85	
45	8575	52.19	1.99	6076	26.19	1.00	
50	9440	57.45	2.41	6688	28.83	1.21	
60	12150	73.95	3.98	8609	37.11	1.99	
70	17780	108.20	8.49	12590	54.30	4.26	
80	35060	213.37	32.98	24829	107.04	16.54	
90	∞	∞	∞	∞	00	00	

(112) DIMENSIONS OF THE EARTH (cf. 9).

If the earth be considered as an ellipsoid, the longer equatorial diameter (2a) passes through the meridian 15° 34′ E., and the shorter equatorial diameter (2b) passes through the meridian 105° 34′ E.

Longer equatorial semi-diameter (a) Shorter equatorial semi-diameter (b) Polar semi-diameter (c)	20 926 350 ft.	6 378 294 m.
Shorter equatorial semi-diameter (b)	20 919 972 ft.	6 376 350 4 m.
Polar semi-diameter (c)	20 853 429 ft.	6 356 068 ·1 m.

The length of the quadrant passing through Paris is 10 001 472.5 m, and that of the minimum quadrant (105° 34′ E.) is 10 000 024.5 m. A geographical mile or knot, which is the distance on the equator subtended by 1′ of longitude, is 6087 feet, 1.153 statute mile, or 1855.3 metres.

If the earth be considered as an oblate spheroid:—

Equatorial semi-diameter (a)
20 926 062 ft. | 3963·3 miles. | 6 378 206·4 m.

Polar semi-diameter (c) 20 855 121 ft. | 3949.79 miles | 6 356 503.8 m.

$$a-c = 13.51$$
 miles. $\frac{a-c}{a} = \frac{1}{295} = 0.00339$

If the earth be considered as a sphere the radius is 3959 miles on 6 371 300 metres, and the number of miles subtending 1° of longitude at any latitude is 69.09 × cosine latitude.

Surface of the earth 197 000 000? square miles (about 4 is land

and 3 ocean).

Volume of the earth 260 000 000 000 ? cubic miles. Density of the earth 5.6 ? times that of water.

Mass of the earth 6×10^{21} ? tons.

(113) MEAN DENSITY OF THE EARTH.

From experiments with the

Plumb-line at Schiehallien (Maskelyne and Playfair)	4.713
,, at Arthur's Seat (James)	5:316
Pendulum at Mont Cenis (Carlini and Giulio)	4.95
., at Harton coal-pit (Airv)	6.565
Torsion-balance (Cavendish 1798)	5.48
,, ,, (Reich 1838)	5.49
,, ,, (Baily 1843)	5.66
,, ,, (Cornu and Baille 1372)	5.5 - 5.56
Horizontal pendulum (Wibring 1887)	5.6

(114) THE MOON.

The horizontal parallax of the moon is $57' \cdot 2'7''$; her greatest distance from the earth is 259,600 miles, and her least distance 221,000 miles. The eccentricity of her orbit is 0.055.

The mean distance of the moon is about 60.3 radii of the earth, or 240,000 miles. The inclination of the plane of the moon's orbit to the ecliptic is about 5° 8′ 42″.

The moon is very nearly spherical, with a radius of 1,080 miles; her volume is $5 \cdot 2765 \times 10^9$ cubic miles, or about $\frac{1}{50}$ of the volume of the earth; her mass is about $\frac{1}{80}$ of the mass of the earth, hence the acceleration of gravity at her surface would be about 5 4 feet per second per second. The density of the moon is about 3 · 5, or rather more than half that of the earth.

(115) THE CALENDAR (cf. C).

The tropical year is 365 days 5 hours 43 minutes 46 seconds, or 365 2422 mean solar days.

The solar cycle is 28 Julian years, after which period the same day of the week falls on the same day of the solar month (1894 is the 27th).

The Sothic period was 1460 (more nearly 1500) years.

The cycle of the Roman Indiction was 15 years (1894 is the 7th.

A sidereal month or complete circuit of the moon in the heavens is 27.3217 days.

A lunar month (lunation) is 29.5306 days.

An anomalistic month (perigee to perigee) is 27:5446 days.

A tropical month (vernal equinox to vernal equinox) is 27.3216 days.

A nodical month (node to node of the same kind) is 27.2122 days.

The Saros, or cycle of the conjunction of the sun and moon in nearly the same place on the ecliptic (223 lunations), is 6585 3212 days, or 18 years and 10 or 11 days.

The Lunar or Metonic cycle after which new moons fall on the same days of the year (235 lunations) is 6939 6876 days or nearly 19 years. In 1894 the Golden Number is XIV.

The Julian period, after which the solar and lunar cycles and the Roman Indiction recur, is $(28 \times 19 \times 15)$ 7980 years, of which the first was 4713 B.C. (1894 is the 6607th).

YEARS OF THE JULIAN PERIOD.

Tear 1 c	of the	Jewish Era (Oct. 7th)
,,	,,	1st Olympiad (July 1st)
,,	,,	Foundation of Rome
,,	,,	Egyptian Era (Feb. 26th)
,,	,,	Christian Era.
,,	,,	Hegira (July 16th)
,,	,,	French Republic (Sept. 22nd)

January 1st, 1894, is the 2,412,830th day of the Julian Period.

(116) ELEMENTS OF THE SOLAR SYSTEM.

The Constant of Aberration is 20".4451.

The mean obliquity of the Ecliptic is 23° 27′ 10″ 89 on Jan. 1st, 1894, and the mean annual diminution is 0″ 476.

The Equatorial Horizontal Parallax of the Sun at the Earth's

mean distance is 8".848.

North declination of a Ursa Minoris (Pole Star) for Jan. 1st, 1894, is 88° 44′ 55″ 3 with an increase of nearly 16″ 5 per annum. Hence the Pole star is about 1° 15′ from the celestial pole.

Solar radiation falling on the top of our atmosphere 25 calories

per sq. m. or 9 21 British units per sq. foot per minute.

(116) Elements of the Solar System—continued.

	Distance	Distance from Sun.	Periodic Time	Periodic	Inclination of	Equat. semi-
	Earth = 1.	Earth = 1. 1 000 000 miles	in Days.	in Years.	Orbit.	of Earth from Sun.
Sun						16' 1".82
Mercury	0.3871	35.75	26.28	0.24	0	3".34
	0.7233	66.75	224.70	19.0	23,	8".305
Earth	1.0000	92.33	365.26	1.00	0	
Mars	1.5237	141	86.989	1.88	1° 51′ 2″	5".22
Jupiter	5.2028	480	4332.6	11.86	18,	98".19
Saturn	9.5389	881	10759.2	29.46	29,	83".31
Uranus	19.1834	1771	30688.4	84.02	46,	37".2
Neptune	30.0544	2775	60181.1	164.78	47,	33″.6

(116) FLEMENTS OF THE SOLAR SYSTEM—continued.

- P	Mean diameter	Volume.	Mass.	Density.	Gravity	Time of
#	miles				Equator.	TVOER GIOIL.
8	30000	1 280 000	10000000	0.52	27.72	25 days?
	2992	0.02	67	1.21	7.	24 hours.
Venus	2660	26.0	23.2	0.85	ŵ	23h. 21m.
	7918	1.00	9.08	1.00	1.0	23h. 56m.
	4211	0.15	3.4	0.73	4.	24h. 37m.
	36000	1279	9542.	0.54	5.6	9h. 55m.
Safurn	00202	719	2856	0.13	6.	10h. 14m.
	33500	69	417	0.5	92.	
	30000	555	208	0.3	1.14	

(117) SQUARES OF RADII OF GYRATION K.2

Rod perpendicular axis through end	$a^{2}/3$
Rod perpendicular axis through middle	$a^{2}\!/\!12$
Circular wire about a diameter	
Circular wire \(\pm \) axis through centre \(\ldots \)	$a^2/2$ a^2
Triangular plate about side c	$(a \sin ABC)^2/6$
Triangular plate \(\perp \) axis through c	
Triangular plate 1 axis through centre of	71 - 71
gravity	$(a^2+b^2+c^2)/36$
Rectangular plate about median paral'el	, , , , , , , , , , , , , , , , , , ,
to <i>b</i>	$a^2/12$
Rectangular plate \(\pm\) axis through angle	$(a^2+b^2)/3$
Rectangular plate _ axis through c of G	$(a^2+b^2)/12$
Circular plate about a diameter	$\alpha^{2}/4$
Circular plate about a tangent	$5a^{2}/4$
Circular plate \(\perp \) axis through centre	$a^2/2$
Elliptic plate about b axis	$a^2/4$
Annulus about a diameter	$(a^2 + b^2/4)$
Annulus 1 axis through centre	$(a^2 + b^2/2)$
Cube about an edge	$2a^2/3$
Cube about a diagonal	$a^{2}/6$
Cylinder about the central axis (a)	$b^{2}/2$
Cylinder \(\perp \) axis at end	$a^2/3 + b^2/4$
Cylinder \(\pm \) axis through middle	$a^2/12 + b^2/4$
Right cone about axis (a)	36 /10
Right cone \(\perp \) axis through vertex	$3(4a^2+b^2)/20$
Sphere about a diameter	$2a^{\circ}/5$
Spheroid about b axis	$2a^{\circ}/5$
Ellipsoid about c axis	$(a^2+b^2)/5$
Thin spherical shell about diameter	$2a^{2}/3$
Spherical shell about diameter	$2(a^5-b^5)/5(a^3-b^3)$

(118) Surface Tension at 20° C. in C.G.S. Units.

		Te	Tension of Surface.	.00.	Angle o	Angle of Contact with glass.	h glass.
	1	Air.	Water.	Mercury.	Air.	Water.	Mercury.
Water		81		418	25° 32′	11 or 5 statements seems to one or other statements	26° 8′
Mercury	13.54	540	418		51° 8′	26°8′)
Carbon disulphide	1.2687	32.1	41.75	372.5	32° 16'	13° 8′	
Chloroform	1.4878	30.6	29.2	399			
Alcohol	9064.	25.5		399	25, 12,		
Olive oil	.9136	6.98	20.26	335	21° 50'	0/1	470 97
l'urpentine	2888.	29.7	11.55	250.5	37° 44'	37° 44′	47.05
Petroleum	2262.	31.7	27.8	2,44	.76° 20′	42° 46'	
Sol. hyd. chloride	1.1	70.1		377			
Sol. sod. thiosulphate	1.1248	2.22		442.5	23° 20′		10° 49′

Surface Tension of olive oil and alcohol 12.2; and aqueous alcohol A 9231 (25.5 at the free surface) 6.8, angle of contact 87° 48′. The true instantaneous surface tonsion must not be confounded with that observed by slow methods due to dirt.

(119) ELASTIC CONSTANTS OF QUARTZ FIBRES.

A fibre '01 cm. in diameter will allow of a twist of 1 turn for each 3 cm. of length and carry from 600 to 860 grams. :—

Simple rigidity, $n = 2.8815 \times 10^{\circ}$ C.G.S.

Young's modulus, $\mu = 5.1785 \times 10^{\prime\prime}$ C.G.S.

Bulk modulus, $K = 1.435 \times 10''$ C.G.S.

Coefficient of linear expansion, '0000017.

Refractive index for sodium light, 1.4587.

Temperature coefficient for n, '00013.

(79) ROUGH DATA IN ELECTRICITY.

Amperes of	current	in a telegraph on land	.003
,,	,,	an incandescent lamp	·5—1
,,	,,	an are lamp	5-400
Difference in	volts	giving 30 cm. spark in air	90000
,,	,,	dangerous to life	1000
,,	,,	in incandescent lamp	50100
Candles per	horse-j	power in incandescent lamp	100—230
,,	,,	arc lamp	400-1000
		16-candle lamp (Munich)	60-80
,, ,,	,	20-candle lamp (Perry)	75
Efficiency of	transf	ormers	·955—·97
Mechanical	efficien	cy of Munich railway	•32 ·

INDEX.

The numerals refer to the pages.

Aberration, constant of, 91
Absolute temperatures, 22
units, 38
Acceleration due to gravity, 13
Alcohol, density of dilute, 66, 68
Analysis, factors for, 63, 64
Angles, functions of, 4
measures of, 8
Aqueous vapour, tension of, 29
Area, measures of, 9
Area, mensuration of, 7
Atmosphere, pressure of the, 21
Atomic weights, common, 56

rare, 62

Boiling points, 24

Calendar, 90

multiples of, 65

B. A., unit of resistance, 42, 43 Barometer, standard height of, 21 Batteries, E. M. F. of, 46

Capacity specific inductive, 40 Carbon dioxide in air, 69, 78 C. G. S. system of units, 38 Chemical action, heat of, 70—77 Circu'ar polarisation, 34 Combustion, heat of, 77 Composition of air, 78 Compressibility, 16 Concert pitch, 36 Conductivity for electricity, 48 heat, 32 Cosecants, Cosines, Cotangents, 4 Crith, 78 Crushing, resistance to, 18

Cube, Cube roots, 1 Currents, heating effects of, 44

Day, length of the, 8
Declination, magnetic, 53—55
Density of acids, 67
alcohol and alkalies, 68
art. compounds, 56
nat. comp. mixtures, 14
earth, 89
elements, 56
sodium chloride sol. 68
Diatonic scale, 36
Dimensions of earth, 88
of units, 38
Dip, angle of, 53—55
Distances and areas on globe, 87
on maps, 88
Dyne, 39

Earth, density of the, 89
dimensions of, 83
distances on, 87
dist. from sun, 92
Elasticity, modulus of, 17
Electrolysis, 44
E. M. F. of batteries, 46
Equivalent mech. of heat, 32
Erg, 39
Expansion of liquids, 24
of solids, 23

Factorials, 5 logs. of, 6 Factors for analysis, 63, 64 Fusion, points of, 23 Gases, expansion of, 33
logs. of (1 + '00367t), 27
mass of, 56
molecular data for, 32
refractive indices of, 34
specific heats of, 25
Geological formations, 79
Gravity, values in England, 14
abroad, 13

Hardness, scales of of water, 65
Heat, mech. equivalent of, 32
latent, 26
of chemical action, 70—77
of combustion, 77
specific, 23—25
unit of, 32
Heating effects of currents, 44
Heights and depths, 83
High water, times of, 85
Horse power, 20
Hydrometer scales, 66

Hygrometer wet-bulb table, 30

Joule, a. 44 Joule's equivalent, 32 Julian period, the, 91

Latent heats, 26
Latitude and long, of towns, 86
length of 1' and 1° of, 87
Length, measures of, 8
Lengths of curves, 7
Light, velocity of, 35
Logarithms, 100
of factorials, 6
of (1 + 00367t) 27
Longitude and time, 8
length of 1' and 1° of, 87

Magnetic chart of England, front. Magnetisation, intensity of, 52 Magnetism terrestrial, 53—55 Measures, ancient, 12 English and metric, 8—11

less usual, 12
Melting points, 23
Mensuration, 7
Mercury, tension of vapour of, 29
Volume and density of, 29
Molecular weights, 56
multiples of some, 65
Moon, dimensions of the, 90
Morse's alphabet, 52

Ohm, the, 43

m, its powers, &c. 7
multiples of, 1
Pendulum, length of the, 13
Pole star, declination of the, 91
Potential diff. of, on contact, 45

Quartz, elasticity of, 96

Radian, 8
Radii of gyration, 94
Reciprocals, 1
Refractive indices, 34
Resistance, B. A. unit of, 43
of cables, 49
insulators, 50
liquids, 49
metals, 48
non-metals, 49
Siemens' unit of, 43
specific, 47
Rigidity, 16
Rivers, lengths of, 82
Ropes, strength of, 18
Rotary polarisation, 34

Secants, Sines, 4 Solar system, the, 90—93 Solubilities, 56 Spectra, 33 Specific heats, 23—25 Squares, Square roots, 1 Strata, succession of the, 79 Strata, 91 materials, 17, 18 Surface tension, 95 Surface tension, 95

Tangents, 4
Tenacity, 17
Tension of aqueous vapour, 29
mercury vapour, 31
Thermo-electricity, 51
Thermometers, comparison of, 22
Tides, 84, 85
Time, 8
Towns, latitude and longitude of, 86

Units and angles, and time, C. G. 8. 38 dimensions of, 38 electro-magnetic, 40 electrostatic, 40 English and metric, 8—11 magnet, 39 practical electrical, 42 relation of electrical, 41

Vapour, aqueous mass of, 31 tension of, 29 mercurial tension of, 31 of liq. gases, tension of, 26

INDEX.

Velocities, comparative, 16 Velocity of the tide, 84 Vibrations, no. of in notes, 36 Volume, measures of, 10 Volumes, mensuration of, 7

Water, mass of vapour of, 31 tension of vapour of, 29 Water, volume and density of, 28 Wave-lengths of light, 33 Wind, pressure and velocity, 83 Wire gauge, 19 Work, measures of, 20, 38

Year, length of the, 8, 90 Young's modulus, 17 RICHARD CLAY AND SONS, LIMITED, LONDON AND BUNGAY.

	0	
55 56 57 58 59	7404 7482 7559 7634 7709	74
60 61 62 63 64	7782 7853 7924 7993 8062	7: 7: 7: 8: 8:
65 66 67 68 69		8: 8: 8: 8: 8:
70 71 72 73 74	8451 8513 8573 8633 8692	8
75 76 77 78 79	8751 8808 8865 8921 8976	
80 81 82 83 84	9031 9085 9138 9191 9243	9 9 9 9
85 86 87 88 89	9294 9345 9395 9445 9494	0000000
90 91 92 93 94	9542 9590 9638 9685 9731	ξ
95 96 97	9777 9823 9868	4

UNIVERSITY OF CALIFORNIA, SANTA CRUZ THE UNIVERSITY LIBRARY

This book is due on the last DATE stamped below.

3 2106 00227 9443

Ш

