Рубежный контроль №1

Бахман Александр ИУ5-65Б

Импорт библиотек

```
In [1]:

import pandas as pd

from sklearn.preprocessing import LabelEncoder
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris

В качестве датасета возьмём данные Ирисов Фишера
```

```
In [13]: #Загрузка датасета и преобразование его в Dataframe
iris = load_iris()
data = pd.DataFrame(iris.data,columns=iris.feature_names)
data['target'] = pd.Series(iris.target) #создадим столбец целевой признака
data.head()
```

Out[13]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0

```
In [10]: data.shape

Out[10]: (150, 5)
```

В качестве целевого признака будем использовать признак "target"

float64

float64

float64

int32

sepal length (cm) float64

sepal width (cm)

petal length (cm)

petal width (cm)

dtype: object

target

Out[12]:

```
In [11]:
          #Проверка на наличие пропусков
         data.isnull().sum()
         sepal length (cm)
                               0
Out[11]:
         sepal width (cm)
                               0
         petal length (cm)
                               0
         petal width (cm)
                               0
         target
         dtype: int64
In [12]:
         #Проверка типов
         data.dtypes
```

Парные диаграммы

Построим парные диаграммы, выделив целевой признак

```
In [17]:
                sns.pairplot(data, hue="target")
               <seaborn.axisgrid.PairGrid at 0x19a7695bfa0>
Out[17]:
                sepal length (cm)
                  4.5
                  4.0
              sepal width (cm)
                  3.5
                 3.0
                  2.5
                  2.0
                    7
                    6
                petal length (cm)
                    3
                  2.5
                  2.0
              petal width (cm)
                 1.5
                 1.0
                  0.5
                  0.0
                                                                                                                         8
                             sepal length (cm)
                                                               sepal width (cm)
                                                                                                 petal length (cm)
                                                                                                                                   petal width (cm)
```

Корреляционный анализ

Создадим корреляционную матрицу используя коэффициент Пирсона

```
In [18]: data.corr(method="pearson")
```

Out[18]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	sepal length (cm)	1.000000	-0.117570	0.871754	0.817941	0.782561
	sepal width (cm)	-0.117570	1.000000	-0.428440	-0.366126	-0.426658

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
petal length (cm)	0.871754	-0.428440	1.000000	0.962865	0.949035
petal width (cm)	0.817941	-0.366126	0.962865	1.000000	0.956547
target	0.782561	-0.426658	0.949035	0.956547	1.000000

```
fig, ax = plt.subplots(1,1, figsize=(13,10))
sns.heatmap(data.corr("pearson"), annot=True, fmt=".4f", cmap="YlGnBu")
```

Out[19]: <AxesSubplot:>

На основе корреляционной матрицы можно сделать следующие выводы:

Все признаки сильно коррелируют с целевым признаком Target, кроме признака sepal width. Признаки Petal lenght и Petal width сильно коррелируют между собой. При обучении модели эти признаки брать не стоит. Наилучшим выбором для обучения будет признак sepal width.