${\bf CS3331-Assignment\ 1} \\ {\bf due\ Oct.\ 14,\ 2014\ (latest\ to\ submit:\ Oct.\ 17)}$

- 1. (20pt) Build DFSMs for the following languages. Explain why your construction is correct.
 - (a) $\{w \in \{a,b\}^* \mid \text{ every } a \text{ in } w \text{ is immediately preceded and followed by } b\}.$

(b) $\{w \in \{a,b\}^* \mid w \text{ does not end in } ba\}.$

(c) $\{w \in \{0,1\}^* \mid \text{ none of the prefixes of } w \text{ ends in } 0\}.$

(d) $\{w \in \{a,b\}^* \mid (\#_a(w) + 2\#_b(w)) \equiv 0 \pmod{5}\}$. $(\#_a(w) \text{ is the number of } a\text{'s in } w)$.

(e) C++ comments: /* ... comment ... */ or // ... comment ... \n.

2. (20pt) Consider the language:

 $L = \{w \in \{a,b,c\}^* \mid \text{ the third from the last character is } b\}$

(a) Build a NDFSM for L.

(b) Transform it into a DFSM.

(c) Build an equivalent regular expression from one of the two FSM above. (*Hint:* It makes a big difference which FSM you choose.)

Solution: Choose the NDFSM. The regular expression is (a+b+c)*b(a+b+c)(a+b+c).

- 3. (15pt) For the following languages L, describe the equivalence classes of \approx_L . If there are finitely many classes, then build a minimal DFSM that accepts L.
 - (a) $L = \{ww^R \mid w \in \{a,b\}^*\}$

Solution: Any $x \neq y$ are not in the same class since adding x^R keeps one in L and not the other one. So, the language is not regular.

(b) $L = \{w \in \{0,1\}^* \mid \#_0(w) \text{ and } \#_1(w) \text{ are both even or both odd}\}$

Solution: It appears there are four classes, corresponding to all four combinations. However, there are only two: one with even length strings, and the other with odd. That's because $\#_0(w)$ and $\#_1(w)$ are both even or both odd iff |w| is even.

- 4. (20pt) Consider the regular expression $\alpha = ((a \cup b)^*a)^*$.
 - (a) Construct a NDFSM that accepts $L(\alpha)$. (You can use Thompson's construction but you don't have to.)

(b) Transform it into a DFSM.

(c) Minimize it.

- 5. (15pt) For each of the following languages L, prove whether L is regular or not:
 - (a) $\{a^i b^j \mid i, j \ge 0 \text{ and } i j = 5\}.$

Solution: The language is not regular. We use pumping theorem to prove it. So, we assume it is regular and consider $w=a^kb^{k-5}$, where k is the constant in the theorem. We have w=xyz, with $|xy|< k,\ y\neq \varepsilon$, and xy^qz in the language for any $q\geq 0$. Since |xy|< k, we must have $y=a^p$, for some p>0, and so $a^{k-p+qp}b^{k-5}$ has to be in the language for any q>0. But for q=0, we have $a^{k-p+qp}b^{k-5}=a^{k-p}b^{k-5}$ which is not in the language. The contradiction obtained shows that the language is not regular.

(b) $\{w = xyzy^R x \mid x, y, z \in \{a, b\}^*\}.$

Solution: The language is actually $\{a,b\}^*$ because you can have $x=y=\varepsilon$. So, it is regular.

6. (10pt) Show that the following problem is decidable: Given $\Sigma = \{a, b\}$ and α a regular expression, does the language defined by α contain all the even length strings in Σ^* ?

Solution: Algorithm to decide:

- 1. Construct a DFSM M_{α} that accepts $L(\alpha)$.
- 2. Construct a DFSM M_{even} that accepts $L_{\text{even}} = \{w \in \Sigma^* \mid |w| \text{ is even}\}.$
- 3. Construct a DFMS M for $L_{\text{even}} L(\alpha)$.
- 4. Return $L(M) \stackrel{?}{=} \emptyset$.

The answer is correct because $L(\alpha)$ contains all strings in L_{even} iff $L(M) = \emptyset$.

Note Submit your solution as a pdf file on owl.uwo.ca.