Lossy Trapdoor Functions

Giacomo Fenzi

ETH Zurich

22 April 2021

Motivation

- ► Trapdoor Functions are basic primitive, but hard to instantiate
- ► CCA Security from factoring and discrete log but not lattices

Results

- Introduce Lossy Trapdoor Functions (LTDFs)
- ▶ Realize LTDFs from factoring, discrete log and lattices
- Show LDTFs imply TDFs
- Black box construction of CCA-secure (witness recovering) cryptosystems, collision-resistant hash functions and oblivious transfer protocols.

Connections

Connections

Notation and Entropy

- \blacktriangleright λ is the security parameter, and we will abbreviate $n(\lambda) = \operatorname{poly}(\lambda)$ as simply n
- $lackbox{ } f(-)$ denotes the function taking $x\mapsto f(x)$
- ▶ Write $H_{\infty}(X)$ for the min-entropy of X. This corresponds to the optimal probability of guessing X.
- ▶ We let $H_{\infty}(X|Y)$ be the average min-entropy of X conditioned on Y. This corresponds to the optimal probability of guessing X knowing Y.
- We use the following lemma, if Y takes at most 2^r values then:

$$\widetilde{H}_{\infty}(X|Y) \ge H_{\infty}(X) - r$$

Trapdoor Functions

Informally, a trapdoor function is family of functions that are hard to invert without access to some additional information called a trapdoor

Definition

A trapdoor function consists of three PPT algorithms $(S, {\cal F}, {\cal F}^{-1})$ such that:

- ► Easy to sample and invert with trapdoor. $S(1^{\lambda}) \to (s,t)$ such that F(s,-) is an injective function on $\{0,1\}^n$ and $F^{-1}(t,-)$ is its inverse
- ▶ Hard to invert without. For any PPT inverter \mathcal{A} we have that $\mathcal{A}(1^{\lambda}, s, F(s, x))$ outputs x with negligible probability.

Example of Trapdoor

RSA Encryption! In trapdoor form:

- ▶ $S(1^{\lambda})$ generates N, e, d as in RSA, set $s \coloneqq (N, e)$ and $t \coloneqq (d)$ and returns (s, t)
- ightharpoonup F(s,x) computes $x^e \mod N$
- $ightharpoonup F^{-1}(t,c)$ computes $c^d \mod N$

Composite Residuosity

- ▶ $S(1^{\lambda})$ generates N=pq as a product of large primes, select g suitably, $s\coloneqq (N,g)$, $t\coloneqq (p,q)$
- ightharpoonup F(s,x) splits $x=m_1+Nm_2$ and returns $g^{m_1}m_2^N \mod N^2$
- $ightharpoonup F^{-1}(t,c)$ decrypts using the factorization to compute Carmichael function

Lossy Trapdoors

Informally, you either get an injective trapdoor or a 'lossy' function, and *cannot tell which is which*

Definition

A (n, k)-lossy trapdoor function consists of three PPT algorithms (S, F, F^{-1}) . We denote $S_{inj}(-) \triangleq S(-, 0)$ and $S_{lossy}(-) \triangleq S(-, 1)$.

- ▶ Outputs of S_{inj} are easy to compute and easy to invert with trapdoor. $S_{inj}(1^{\lambda}) \rightarrow (s,t)$ s.t. that F(s,-), $F^{-1}(t,-)$ are in the trapdoor case
- ▶ Outputs of S_{lossy} are easy to compute. $S_{lossy}(1^{\lambda}) \rightarrow (s, \bot)$ s.t. F(s, -) is a function on $\{0, 1\}^n$ with image size at most 2^{n-k} .
- ► The first outputs of $S_{inj}(1^{\lambda})$ and $S_{lossy}(1^{\lambda})$ are computationally indistinguishable.

Subleties

- The definition really relates to a collection of lossy trapdoor functions.
- ▶ $k \triangleq k(\lambda) = \operatorname{poly}(\lambda) \leq n$ is a parameter that represents how 'lossy' the collection is.
- ▶ We also write $r \triangleq n k = \text{poly}(\lambda)$ as the *residual leakage*.
- ightharpoonup No hardness requirement on inverting outputs of S_{inj}
- Requirements are too strict in lattices, leads to almost-always lossy functions.

All-But-One TDFs

Intuition: Most branches are trapdoors, except one which is lossy. You cannot tell which one it is.

Definition

An (n,k)-ABO TDF is a triple of PPT algorithms S,F,F^{-1} such that:

- $ightharpoonup S(1^{\lambda},b^*)
 ightarrow (s,t)$ as before
- ► For any $b \neq b^*$, F(s,b,-) $F^{-1}(t,b,-)$ are as in the previous definition.
- ▶ $F(s, b^*, -)$ is a lossy function as before
- For any b,b' the first outputs of $S(1^{\lambda},b)$, $S(1^{\lambda},b')$ are computationally indistinguishable.

$ABO \equiv LTDF$

- ► ABOs and LTDFs are equivalent.
- ▶ ABO \implies LTDF. Take ABO on $\{0,1\}$ and evaluate always on one of the branches, but switch lossy branch on generation.
- ▶ LTDF \implies ABO. Generate an ABO on $\{0,1\}$ by having $s=(s_0,s_1)$ where one of the two is lossy, and evaluation by using s_b
- ▶ Finally, we can extend ABOs on $\{0,1\}$ to ABOs on $\{0,1\}^{\ell}$ at the cost of having residual leakage ℓr . The idea is, for lossy branch $b^* \in \{0,1\}^{\ell}$, generate ℓ ABOs each with the i-th having lossy branch b_i^* .