CSE 551 Foundations of Algorithms
Sample Quiz
Closed Books, Closed Notes
Time: 1 hour
Each question carries 20 pts.

Problem 1: Algorithm A_1 takes $10^{-4} \times 2^n$ seconds to solve a problem instance of size n and Algorithm A_2 takes $10^{-2} \times n^3$ seconds to do the same on a particular machine.

- (i) What is the size of the largest problem instance A_1 will be able solve in one year?
- (ii) What is the size of the largest problem instance A_1 will be able solve in one year on a machine one hundred times as fast?
- (iii) What is the size of the largest problem instance A_2 will be able solve in one year?
- (iv) What is the size of the largest problem instance A_2 will be able solve in one year on a machine one hundred times as fast?
- (v) Which algorithm will produce results faster, in case we are trying to solve problem instances of size less than 20?

Problem 2: Solve the following recurrence relation to find its asymptotic upper and lower bounds.

(i) T(n) = 2T(n/2) + n for n > 2, and (T(2) = 1, for simplicity you may assume $n = 2^k$ Show all your work.

Problem 3: Let f(n) and g(n) be asymptotically positive functions. Prove of disprove the following conjectures:

- (i) 3^n is not $O(2^n)$.
- (ii) $log 3^n$ is $O(log 2^n)$.
- (iii) n^n is not O(n!)
- (iv) For $\alpha > 1$, $n^{\alpha log n}$ is not $O(n^{log n})$
- (v) For $\alpha > 1$, $\log n^{\alpha \log n}$ is $O(\log n^{\log n})$

Problem 4: Given a set of numbers $(a_1,...,a_n)$ develop an algorithm to find the largest and the second largest number in the set with at most $n + log \ n - 2$ comparisons. Analyze your algorithm to prove that the algorithm never requires more than $n + log \ n - 2$ comparisons. For simplicity, you may assume that n is a power of 2.