HKDSE MATH M2 2019

1. HKDSE Math M2 2019 Q1

Let
$$f(x) = \frac{10x}{7+3x^2}$$
. Prove that $f(1+h) - f(1) = \frac{4h-3h^2}{10+6h+3h^2}$. Hence, find $f'(1)$ from first principles. (4 marks)

2. HKDSE Math M2 2019 Q2

Let
$$P(x) = \begin{vmatrix} x + \lambda & 1 & 2 \\ 0 & (x + \lambda)^2 & 3 \\ 4 & 5 & (x + \lambda)^3 \end{vmatrix}$$
, where $\lambda \in \mathbb{R}$. It is given that the coefficient of x^3 in the expansion of $P(x)$ is 160. Find

- (a) λ ,
- (b) P'(0).

(5 marks)

3. HKDSE Math M2 2019 Q3

A researcher performs an experiment to study the rate of change of the volume of liquid X in a vessel. The experiment lasts for 24 hours. At the start of the experiment, the vessel contains 580cm^3 of liquid X. The researcher finds that during the experiment, $\frac{dV}{dt} = -2t$, where $V \text{cm}^3$ is the volume of liquid X in the vessel and t is the number of hours elapsed since the start of the experiment.

- (a) The researcher claims that the vessel contains some liquid X at the end of the experiment. Is the claim correct? Explain your answer.
- (b) It is given that $V = h^2 + 24h$, where h cm is the depth of liquid X in the vessel. Find the value of $\frac{dh}{dt}$ when t = 18.

(6 marks)

4. HKDSE Math M2 2019 Q4

Define $g(x) = \frac{\ln x}{\sqrt{x}}$ for all $x \in (0,99)$. Denote the graph of y = g(x) by G.

- (a) Prove that G has only one maximum point.
- (b) Let R be the region bounded by G, the x-axis and the vertical line passing through the maximum point of G. Find the volume of the solid of revolution generated by revolving R about the x-axis.

1

(6 marks)

5. HKDSE Math M2 2019 Q5

(a) Using mathematical induction, prove that $\sum_{k=n}^{2n} \frac{1}{k(k+1)} = \frac{(n+1)}{n(2n+1)}$ for all positive integers n.

(b) Using (a), evaluate
$$\sum_{k=50}^{200} \frac{1}{k(k+1)}$$
.

(7 marks)

6. HKDSE Math M2 2019 Q6

Consider the system of linear equations in real variables x, y, z

(E):
$$\begin{cases} x - 2y - 2z = \beta \\ 5x + \alpha y + \alpha z = 5\beta, \text{ where } \alpha, \beta \in \mathbb{R}. \\ 7x + (\alpha - 3)y + (2\alpha + 1)z = 8\beta \end{cases}$$

- (a) Assume that (E) has a unique solution
 - (i) Find the range of values of α .
 - (ii) Express y in terms of α and β .
- (b) Assume that $\alpha = -4$. If (E) is inconsistent, find the range of values of β .

(7 marks)

7. HKDSE Math M2 2019 Q7

- (a) Using integration by parts, find $\int e^x \sin \pi x \, dx$.
- (b) Using integration by substitution, evaluate $\int_0^3 e^{3-x} \sin \pi x \, dx$.

(7 marks)

8. HKDSE Math M2 2019 Q8

Let h(x) be a continuous function defined on \mathbb{R}^+ , where \mathbb{R}^+ is the set of positive real numbers. It is given that $h'(x) = \frac{2x^2 - 7x + 8}{x}$ for all x > 0.

- (a) Is h(x) an increasing function? Explain your answer.
- (b) Denote the curve y = h(x) by H. It is given that H passes through the point (1,3). Find
 - (i) the equation of H,
 - (ii) the point(s) of inflexion of H.

(8 marks)

9. HKDSE Math M2 2019 Q9

Consider the curve $\Gamma : y = \frac{1}{3}\sqrt{12 - x^2}$, where $0 < x < 2\sqrt{3}$. Denote the tangent of Γ at x = 3 by L.

(a) Find the equation of L. (3 marks)

- (b) Let C be the curve $y = \sqrt{4 x^2}$, where 0 < x < 2. It is given that L is a tangent to C. Find
 - (i) the point(s) of contact of L and C;
 - (ii) the point(s) of intersection of C and Γ ;
 - (iii) the area of region bounded by L, C and Γ .
 - (9 marks)

10. HKDSE Math M2 2019 Q10

(a) Let
$$0 \le x \le \frac{\pi}{4}$$
. Prove that $\frac{1}{2 + \cos 2x} = \frac{\sec^2 x}{2 + \sec^2 x}$.

(b) Evaluate
$$\int_0^{\frac{\pi}{4}} \frac{1}{2 + \cos 2x} \, dx.$$
 (3 marks)

- (c) Let f(x) be a continuous function defined on \mathbb{R} such that f(-x) = -f(x) for all $x \in \mathbb{R}$. Prove that $\int_{-a}^{a} f(x) \ln(1 + e^{x}) dx = \int_{0}^{a} x f(x) dx$ for any $a \in \mathbb{R}$. (4 marks)
- (d) Evaluate $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sin 2x}{(2 + \cos 2x)^2} \ln(1 + e^x) dx$. (5 marks)

11. HKDSE Math M2 2019 Q11

Let $M = \begin{pmatrix} 2 & 7 \\ -1 & -6 \end{pmatrix}$. Denote the 2×2 identity matrix by I.

- (a) Find a pair of real numbers a and b such that $M^2 = aM + bI$. (3 marks)
- (b) Prove that $6M^n = (1 (-5)^n)M + (5 + (-5)^n)I$ for all positive integers n. (4 marks)
- (c) Does there exist a pair of 2×2 real matrices A and B such that $(M^n)^{-1} = A + \frac{1}{(-5)^n}B$ for all positive integers n? Explain your answer. (5 marks)

12. HKDSE Math M2 2019 Q12

Let $\overrightarrow{OA} = \mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$, $\overrightarrow{OB} = -5\mathbf{i} - 4\mathbf{j} + 8\mathbf{k}$ and $\overrightarrow{OC} = -5\mathbf{i} - 12\mathbf{j} + t\mathbf{k}$, where O is the origin and t is a constant. It is given that $|\overrightarrow{AC}| = |\overrightarrow{BC}|$.

- (a) Find *t*. (3 marks)
- (b) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.
 (2 marks)
- (c) Find the volume of the pyramid *OABC*. (2 marks)

- (d) Denote the plane which contains A, B and C by Π . It is given that P, Q and R are points lying on Π such that $\overrightarrow{OP} = p\mathbf{i}$, $\overrightarrow{OQ} = q\mathbf{j}$ and $\overrightarrow{OQ} = r\mathbf{k}$. Let D be the projection of O on Π .
 - (i) Prove that $pqr \neq 0$.
 - (ii) Find \overrightarrow{OD} .
 - (ii) Let E be a point such that $\overrightarrow{OE} = \frac{1}{p}\mathbf{i} + \frac{1}{q}\mathbf{j} + \frac{1}{r}\mathbf{k}$. Describe the geometric relationship between D, E and O. Explain your answer.

(6 marks)