Regular Expressions

Regular Expressions

Regular expressions describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language

$$\{a,bc\}^* = \{\varepsilon,a,bc,aa,abc,bca,...\}$$

Recursive Definition

Primitive regular expressions: \emptyset , ε , α

Given regular expressions r_1 and r_2

$$r_{1} + r_{2}$$
 $r_{1} \cdot r_{2}$
 r_{1}
 r_{1}
 r_{1}
 r_{1}

Are regular expressions

$$(a+b\cdot c)^*\cdot (c+\varnothing)$$

Not a regular expression:
$$(a+b+)$$

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

$$L((a+b\cdot c)^*) = \{\varepsilon, a, bc, aa, abc, bca, \ldots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\varepsilon) = \{\varepsilon\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1^*) = (L(r_1))^*$$

$$L((r_1)) = L(r_1)$$

Regular expression: $(a+b) \cdot a^*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\varepsilon,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Regular expression

$$r = (a+b)^*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Regular expression
$$r = (aa)^*(bb)^*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression
$$r = (0+1)^* 00 (0+1)^*$$

$$L(r) = \{ all strings containing substring 00 \}$$

Regular expression
$$r = (1+01)^*(0+\varepsilon)$$

$$L(r) = \{ all strings without substring 00 \}$$

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if
$$L(r_1) = L(r_2)$$

 $L = \{ all strings without substring 00 \}$

$$r_1 = (1+01)^*(0+\varepsilon)$$

$$r_2 = (1^*011^*)^*(0+\varepsilon)+1^*(0+\varepsilon)$$

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent regular expressions

Regular Expressions and Regular Languages

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages

Proof:

Languages
Generated by
Regular Expressions

Regular
Languages

Languages
Generated by
Regular Expressions

Regular Languages

Proof - Part 1

Languages
Generated by
Regular Expressions
Regular Expressions

For any regular expression r the language L(r) is regular

Proof by induction on the size of r

Induction Basis

Primitive Regular Expressions:

 $\mathcal{E},$

 α

Corresponding

NFAs

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = {\varepsilon} = L(\varepsilon)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

Suppose that for regular expressions r_1 and r_2 , $L(r_1)$ and $L(r_2)$ are regular languages

Inductive Step

We will prove:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1^*)$$

$$L((r_1))$$

Are regular Languages

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1^*) = (L(r_1))^*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

$$L(r_1)$$
 and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union $L(r_1) \cup L(r_2)$ Concatenation $L(r_1) L(r_2)$ Star $(L(r_1))^*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1^*) = (L(r_1))^*$$

Are regular languages

$$L((r_1)) = L(r_1)$$
 is trivially a regular language (by induction hypothesis)

Using the regular closure of operations, we can construct recursively the NFA M that accepts L(M) = L(r)

Example: $r = r_1 + r_2$

$$L(M_1) = L(r_1)$$

$$L(M_2) = L(r_2)$$

Proof - Part 2

For any regular language L there is a regular expression r with L(r) = L

We will convert an NFA that accepts L to a regular expression

26

Since L is regular, there is a NFA M that accepts it

$$L(M) = L$$

Take it with a single accept state

From M construct the equivalent Generalized Transition Graph

in which transition labels are regular expressions

Another Example:

Transition labels are regular expressions

Reducing the states:

Transition labels are regular expressions

Resulting Regular Expression:

$$r = (bb^*a)^*bb^*(a+b)b^*$$

$$L(r) = L(M) = L$$

In General

Removing a state: q_{j} q_i qa2-neighbors ae^*d ce^*b ce^*d q_{j} q_i ae^*b

3-neighbors

This can be generalized to arbitrary number of neighbors to q

By repeating the process until two states are left, the resulting graph is

The resulting regular expression:

$$r = r_1^* r_2 (r_4 + r_3 r_1^* r_2)^*$$

 $L(r) = L(M) = L$

End of Proof-Part 2

Standard Representations of Regular Languages

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

(DFA, NFA, or Regular Expression)