Convergence Tests

Thm. (Divergence Test). If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Thm. (p-Series Test). If p > 1, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges. If $p \le 1$, it diverges.

Thm. (Integral Test). Let $f(n) = a_n$ and suppose f is positive, decreasing and continuous for n > M. Then, $\int_M^\infty f(x) dx$ converges if and only if $\sum_{n=M}^\infty a_n$ converges.

Thm. (Geometric Series Test). Let |r| < 1, then

$$\sum_{n=0}^{\infty} cr^n = c + cr + cr^2 + \dots = \frac{c}{1-r}$$

Thm. (Comparison Test). Let a_n and b_n be sequences with $0 < a_n < b_n$ for every n. Then,

- 1. If $\sum a_n$ diverges, then $\sum b_n$ diverges.
- 2. If $\sum b_n$ converges, then $\sum a_n$ converges.

Thm. (Limit Comparison Test). Let $\sum a_n$ and $\sum b_n$ be series with positive terms. Let $\lim \left(\frac{a_n}{b_n}\right) = L$.

- 1. If L=0 and $\sum b_n$ converges, then $\sum a_n$ converges
- 2. If $L = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges
- 3. If L>0 and $L\in\mathbb{R}$, then either both series converge or both series diverge

Thm. (Alternating Series Test). Let $\sum a_n$ be a series which can be written in the form $\sum a_n = \sum (-1)^{n-1}b_n$ for a positive sequence b_n , then the series $\sum a_n$ is convergent if

- 1. $b_{n+1} \le b_n$ for all n (b_n is decreasing)
- 2. $\lim(b_n) = 0$ $(b_n \text{ converges to } 0)$

Thm. (Ratio Test). Suppose $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L$ exists. Then,

- 1. If L < 1, then $\sum a_n$ converges absolutely
- 2. If L > 1, then $\sum a_n$ diverges
- 3. If L=1, the test is inconclusive

Thm. (Root Test). Suppose $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$ exists. Then,

- 1. If L < 1, then $\sum a_n$ converges absolutely
- 2. If L > 1, then $\sum a_n$ diverges
- 3. If L=1, the test is inconclusive