Resolución numérica de sistemas de ecuaciones lineales

María González Taboada

Departamento de Matemáticas

Marzo de 2006

Esquema:

- Descripción del problema
- 2 Algunas definiciones y propiedades
- 3 Condicionamiento de un sistema de ecuaciones lineales
- 4 Métodos directos
 - Factorización LU
 - Factorización de Cholesky o *LL*^t
 - Factorización QR
 - Cálculo de determinantes
- 5 Métodos iterativos clásicos
 - Método de Jacobi
 - Método de Gauss-Seidel
 - Método de relajación
 - Convergencia de los métodos iterativos
- 6 Referencias

El problema

- Resolver sistemas de ecuaciones lineales con el mismo número de ecuaciones que de incógnitas.
- Dados los números a_{ij} y b_i , para i, j = 1, 2, ..., n, se trata de hallar los números $x_1, x_2, ..., x_n$ que verifican las n ecuaciones lineales siguientes simultáneamente:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

El problema

■ Definimos:

- la matriz de coeficientes: $A = (a_{ij})_{i,j=1}^n$
- el vector del segundo miembro: $\mathbf{b} = (b_i)_{i=1}^n$
- el vector de incógnitas: $\mathbf{x} = (x_i)_{i=1}^n$
- Usando la notación matricial, el sistema se escribe

$$Ax = b$$

Solución algebraica

■ Si conocemos A^{-1} , simplemente hay que hacer

$${\bf x} = A^{-1}{\bf b}$$

- El coste de resolver el sistema en este caso es el de una multiplicación "matriz por vector":
 - n² multiplicaciones
 - n(n-1) sumas
- Si no conocemos la matriz inversa, A⁻¹, desde el punto de vista de los cálculos necesarios, no es eficiente determinarla para resolver el sistema.

Solución numérica

Disponemos de dos tipos de métodos:

Métodos directos:

- Permiten calcular la solución en un número finito de pasos conocido a priori.
- Solo están sujetos a errores de redondeo.

Métodos iterativos:

- Construyen una sucesión que converge a la solución del sistema.
- Además de los errores de redondeo, existe un error de truncamiento.

Algunas definiciones y propiedades

- Autovalores y autovectores
- 2 Norma vectorial
- Normas vectoriales equivalentes
- 4 Norma matricial
- 5 Norma matricial subordinada a una norma vectorial
- 6 Propiedades de las normas matriciales subordinadas
- Sucesiones de vectores y de matrices

■ Dada una matriz $A \in \mathcal{M}_n$, se dice que un número $\lambda \in \mathbb{C}$ es un autovalor o valor propio de la matriz A si existe un vector $x \neq 0$ tal que

$$Ax = \lambda x$$

- Cualquier vector $x \neq 0$ que verifique la relación anterior se llama autovector o vector propio asociado al autovalor λ de la matriz A.
- Si $x \neq 0$ es un autovector asociado a un autovalor λ de la matriz A, α x también lo es, $\forall \alpha \in \mathbb{K}$.

Si λ es un autovalor de la matriz A, el sistema homogéneo

$$(A - \lambda I) x = 0$$

tiene soluciones no triviales.

Por tanto, si λ es un autovalor de la matriz A,

$$p_A(\lambda) := \det(A - \lambda I) = 0$$

- $p_A(\lambda)$ es un polinomio de grado n en λ
- se llama polinomio característico de la matriz A.
- Los autovalores de A son las raíces del polinomio $p_A(\lambda)$.

- Una matriz $A \in \mathcal{M}_n$ tiene exactamente n autovalores, contando multiplicidades.
- Si $\lambda = a + bi$ es un autovalor de A, entonces $\overline{\lambda} = a bi$ también lo es.

Teorema:

N.H. Abel - E. Galois: Los polinomios de grado $n \ge 5$ no pueden resolverse por radicales.

■ Para calcular los autovalores de matrices de orden 5 o superior, es necesario emplear métodos numéricos.

- Si A es una matriz diagonal o triangular, sus autovalores son los elementos de su diagonal principal.
- Si A es una matriz simétrica, sus autovalores son números reales.
- Si A es una matriz ortogonal, todos sus autovalores tienen módulo 1.
- Se llama radio espectral de una matriz A a la cantidad

```
\rho(A) := \max\{|\lambda| : \lambda \in \mathbb{K} \text{ es un autovalor de } A\}
```


Norma vectorial

- Sea V un espacio vectorial sobre un cuerpo \mathbb{K} $(\mathbb{K} = \mathbb{R} \ o \ \mathbb{C}).$
- Una norma sobre V es una aplicación $\|\cdot\|$: $V \to \mathbb{R}$ con las propiedades siguientes:
 - 1) $||v|| \geq 0$, $\forall v \in V$
 - 2) $||v|| = 0 \Leftrightarrow v = 0$
 - 3) $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|, \quad \forall \alpha \in \mathbb{K}, \quad \forall \mathbf{v} \in \mathbf{V}$
 - 4) Desigualdad triangular:

$$||u + v|| \le ||u|| + ||v||, \quad \forall u, v \in V$$

■ El espacio vectorial V dotado de una norma vectorial, $(V, \|\cdot\|)$, se denomina espacio vectorial normado.

Normas vectoriales más utilizadas

- Sea V un espacio vectorial de dimensión n. Dado $v \in V$, denotamos por v_1, v_2, \ldots, v_n sus componentes en la base canónica de V.
- Norma uno:

$$||v||_1 = \sum_{i=1}^n |v_i|$$

Norma euclídea:

$$||v||_2 = \left(\sum_{i=1}^n |v_i|^2\right)^{1/2}$$

Norma del máximo:

$$||v||_{\infty} = \max_{1 \le i \le n} |v_i|$$

Normas vectoriales equivalentes

■ Dos normas $\|\cdot\|$ y $\|\cdot\|$ son equivalentes si existen constantes positivas c y C tales que

$$c||v|| \le |||v||| \le C||v|| \qquad \forall v \in V$$

Todas las normas definidas sobre un espacio de dimensión finita son equivalentes.

Norma matricial

- Sea M_n(K) el espacio vectorial de las matrices cuadradas de orden n con coeficientes en K.
 Si no hay posibilidad de confusión, escribiremos simplemente M_n.
- Una norma matricial sobre \mathcal{M}_n es una aplicación $\|\cdot\| \colon \mathcal{M}_n \to \mathbb{R}$ con las propiedades siguientes:
 - 1) $||A|| \geq 0$, $\forall A \in \mathcal{M}_n$
 - 2) $||A|| = 0 \Leftrightarrow A = O$
 - 3) $\|\alpha A\| = |\alpha| \|A\|, \quad \forall \alpha \in \mathbb{K}, \quad \forall A \in \mathcal{M}_n$
 - 4) $||A + B|| \le ||A|| + ||B||$, $\forall A, B \in \mathcal{M}_n$
 - 5) $||AB|| \le ||A|| ||B||$, $\forall A, B \in \mathcal{M}_n$

Norma matricial subordinada

■ Dada una norma vectorial $\|\cdot\|$ sobre \mathbb{K}^n , la aplicación $\|\cdot\|:\mathcal{M}_n\to\mathbb{R}$ definida por

$$\|A\| = \sup_{\substack{v \in \mathbb{K}^n \\ v \neq 0}} \frac{\|Av\|}{\|v\|} = \sup_{\substack{v \in \mathbb{K}^n \\ \|v\| = 1}} \|Av\| = \sup_{\substack{v \in \mathbb{K}^n \\ \|v\| \leq 1}} \|Av\|$$

es una norma matricial y se llama norma matricial subordinada a la norma vectorial $\|\cdot\|$.

■ Una norma matricial $\|\cdot\|$ es compatible con una norma vectorial $\|\cdot\|$ sobre \mathbb{K}^n si

$$\|Av\| \le \|A\|\|v\| \qquad \forall v \in \mathbb{K}^n$$

Norma matricial subordinada

Si | ⋅ | es una norma matricial subordinada, entonces:

$$||Av|| \le ||A|| ||v|| \quad \forall v \in \mathbb{K}^n$$

Además, existe al menos un vector $u \neq 0$ tal que ||Au|| = ||A|| ||u||.

Alternativamente, la norma matricial subordinada a la norma vectorial || · || puede definirse como:

$$\|A\| = \inf\{\alpha \in \mathbb{R} \colon \|Av\| \le \alpha \|v\| \qquad \forall \ v \in \mathbb{K}^n\}$$

■ En particular, si || · || es una norma matricial subordinada,

$$||I|| = 1$$

Normas matriciales subordinadas más utilizadas

Norma matricial subordinada a la norma uno:

$$||A||_1 = \sup_{\substack{v \in \mathbb{R}^n \\ v \neq 0}} \frac{||Av||_1}{||v||_1} = \max_j \sum_i |a_{ij}|$$

Norma matricial subordinada a la norma del máximo:

$$\|A\|_{\infty} = \sup_{\substack{v \in \mathbb{K}^n \\ v \neq 0}} \frac{\|Av\|_{\infty}}{\|v\|_{\infty}} = \max_{i} \sum_{j} |a_{ij}|$$

Norma matricial subordinada a la norma euclídea:

$$||A||_2 = \sup_{\substack{v \in \mathbb{Z}^0 \\ v \in \mathbb{Z}^0}} \frac{||Av||_2}{||v||_2} = \sqrt{\rho(A^*A)}$$

Propiedades

Si la matriz A es simétrica,

$$\|\mathbf{A}\|_2 = \rho(\mathbf{A})$$

- Si la matriz A es ortogonal, $||A||_2 = 1$.
- Relación entre *radio espectral* y *normas matriciales*:
 - 1 Para cualquier norma matricial $\|\cdot\|$,

$$\rho(A) \leq ||A||$$

2 El radio espectral es el ínfimo de las normas matriciales subordinadas:

$$\rho(\mathbf{A}) = \inf_{\|\cdot\| \text{subordinada}} \|\mathbf{A}\|$$

Un ejemplo de norma matricial no subordinada

■ La aplicación $\|\cdot\|_{E} \colon \mathcal{M}_{n} \to \mathbb{R}$ definida por

$$||A||_E = (\sum_{i,j} |a_{ij}|^2)^{1/2} = (\operatorname{tr} A^* A)^{1/2}$$

es una norma matricial no subordinada para $n \ge 2$, llamada norma de Frobenius.

■ La norma $\|\cdot\|_E$ es fácil de calcular y proporciona una cota superior de la norma euclídea ya que

$$||A||_2 \le ||A||_E \le \sqrt{n}||A||_2 \qquad \forall A \in \mathcal{M}_n$$

Sucesiones de vectores

Sea V un espacio vectorial sobre un cuerpo K. Una sucesión de vectores en V es una aplicación

$$x : \mathbb{N} \to V$$

 $k \mapsto x(k) =: x^{(k)}$

Se denota $(x^{(k)})_{k\in\mathbb{N}}$.

■ Sea $(V, \|\cdot\|)$ un espacio vectorial normado. Se dice que la sucesión $(x^{(k)})_{k\in\mathbb{N}} \subset V$ converge a $x^* \in V$ si

$$\lim_{k\to\infty} x_i^{(k)} = x_i^* \quad \forall i$$

En ese caso, se escribe

$$\lim_{k\to\infty} x^{(k)} = x^*$$

Sucesiones de matrices

■ Una sucesión de matrices en \mathcal{M}_n es una aplicación

$$A : \mathbb{N} \to \mathcal{M}_n$$
 $k \mapsto A(k) =: A^{(k)}$

Se denota $(A^{(k)})_{k \in \mathbb{N}}$.

■ Si $\|\cdot\|$ es una norma matricial, se dice que la sucesión $(A^{(k)})_{k \in \mathbb{N}} \subset \mathcal{M}_n$ converge a la matriz $A^* \in \mathcal{M}_n$ si

$$\lim_{k\to\infty}a_{ij}^{(k)}=a_{ij}^*\quad\forall\,1\leq i,j\leq n$$

En ese caso, se escribe

$$\lim_{k\to\infty}A^{(k)}=A^*$$

Sucesiones de matrices

Lema:

Si $A \in \mathcal{M}_n$, las afirmaciones siguientes son equivalentes:

- $\lim_{k\to\infty}A^{(k)}x=O\quad\forall\,x$
- 3 $\rho(A) < 1$
- 4 Existe alguna norma matricial subordinada | | · | tal que

Condicionamiento de un sistema de ecuaciones lineales

- 1 Ejemplo (R.S. Wilson)
- Perturbación del vector del segundo miembro
- 3 Perturbación de la matriz de coeficientes
- 4 Número de condición
- 5 Resumen de resultados
- 6 Problemas bien y mal condicionados
- 7 Algunas propiedades y consideraciones prácticas

$$\begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

La matriz de coeficientes es simétrica.

Su determinante vale 1.

Su inversa también es simétrica:

$$\begin{pmatrix}
25 & -41 & 10 & -6 \\
-41 & 68 & -17 & 10 \\
10 & -17 & 5 & -3 \\
-6 & 10 & -3 & 2
\end{pmatrix}$$

$$\begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 32,1 \\ 22,9 \\ 33,1 \\ 30,9 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 9,2 \\ -12,6 \\ 4,5 \\ -1,1 \end{pmatrix}$$

- Error relativo en los datos*: 0,0033
- Error relativo en los resultados: 8,1985
- ¡El error relativo se ha multiplicado por más de 2460!
- * Todos los errores han sido calculados en la norma $\|\cdot\|_2$.

$$\begin{pmatrix} 10 & 7 & 8,1 & 7,2 \\ 7,08 & 5,04 & 6 & 5 \\ 8 & 5,98 & 9,89 & 9 \\ 6,99 & 4,99 & 9 & 9,98 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} -81 \\ 137 \\ -34 \\ 22 \end{pmatrix}$$

- Error relativo en los datos: 0,0076
- Error relativo en los resultados: 81,9848
- ¡El error relativo se ha multiplicado por 10758!

- El ejemplo es preocupante:
 El orden de los errores sobre los datos es considerado aceptable en las ciencias experimentales.
- Problema: ¿son fiables los resultados?
- En lo que sigue, *A* es una matriz invertible, y ||·|| es una norma vectorial cualquiera. Denotamos de la misma manera la norma matricial subordinada.

Perturbación del segundo miembro

Consideramos el sistema de ecuaciones lineales

$$Ax = b$$

y el sistema de ecuaciones lineales perturbado

$$A(x + \delta x) = b + \delta b$$

Se tiene que

$$\frac{\|\delta x\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|\delta b\|}{\|b\|}$$

 El error relativo en el resultado está acotado superiormente en función del error relativo en los datos.

Perturbación de la matriz de coeficientes

Comparamos ahora la solución exacta del sistema de ecuaciones

$$Ax = b$$

y la del sistema perturbado (suponemos que admite solución)

$$(A + \delta A)(x + \delta x) = b$$

Se tiene que

$$\frac{\|\delta x\|}{\|x + \delta x\|} \le \|A\| \|A^{-1}\| \frac{\|\delta A\|}{\|A\|}$$

■ El error relativo en el resultado, medido en este caso por $\frac{\|\delta x\|}{\|x+\delta x\|}$, está acotado superiormente en función del error relativo en los datos.

Número de condición

Se llama condicionamiento o número de condición de la matriz A relativo a la norma matricial subordinada || · || al número

$$\operatorname{cond}(A) = \|A\| \|A^{-1}\|$$

También suele denotarse $\chi(A)$ o $\kappa(A)$.

- cond(A) mide la sensibilidad de la solución de un sistema de ecuaciones de matriz A respecto de variaciones en la matriz y el segundo miembro.
- Notación: En la práctica, suelen calcularse los números de condición relativos a las normas matriciales subordinadas a las normas vectoriales $\|\cdot\|_1$, $\|\cdot\|_2$ y $\|\cdot\|_\infty$. Escribiremos

$$cond_p(A) = ||A||_p ||A^{-1}||_p, \qquad p = 1, 2, \infty$$

$$A = \begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix}$$

$$egin{aligned} \operatorname{cond}_2(A) &= rac{\lambda_4}{\lambda_1} pprox 2984 \\ & rac{\|\delta x\|}{\|x\|} pprox 8,1985 \\ \operatorname{cond}_2(A) rac{\|\delta b\|}{\|b\|} pprox 9,9428 \end{aligned}$$

Perturbación del segundo miembro

Teorema:

Sea A una matriz invertible, y sean x y $x + \delta x$ las soluciones de los sistemas de ecuaciones lineales

$$Ax = b$$
$$A(x + \delta x) = b + \delta b$$

Si $b \neq 0$, entonces

$$\frac{\|\delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\delta b\|}{\|b\|}$$

Además, esta cota es óptima: es posible encontrar vectores $b \neq 0$ y $\delta b \neq 0$ para los que se tiene la igualdad.

Perturbación de la matriz de coeficientes

Teorema:

Sea A una matriz invertible, y sean x y $x + \delta x$ las soluciones de los sistemas de ecuaciones lineales

$$Ax = b$$
 $(A + \delta A)(x + \delta x) = b$

Si $b \neq 0$, entonces

$$\frac{\|\delta x\|}{\|x+\delta x\|} \leq \operatorname{cond}(A) \frac{\|\delta A\|}{\|A\|}$$

Además, esta cota es óptima: es posible encontrar un vector $b \neq 0$ y una matriz $\delta A \neq O$ para los que se tiene la igualdad. Además,

$$\frac{\|\delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\delta A\|}{\|A\|} \Big(1 + \mathcal{O}(\|\delta A\|) \Big)$$

Problemas bien y mal condicionados

Definición:

Se dice que un sistema de ecuaciones lineales es bien condicionado si el condicionamiento de su matriz de coeficientes es pequeño.

En caso contrario, se dice que es mal condicionado.

Algunas propiedades y consideraciones prácticas

- 1 cond(A) ≥ 1 Un sistema de ecuaciones lineales es tanto mejor condicionado cuanto más próximo a 1 es el número de condición de su matriz de coeficientes.
- 3 $\operatorname{cond}(\alpha A) = \operatorname{cond}(A), \quad \forall \, \alpha \neq 0$ No se puede mejorar el condicionamiento de un sistema de ecuaciones lineales multiplicando todas las ecuaciones por el mismo escalar.
- 4 Si A es una matriz ortogonal, cond₂(A) = 1. Los sistemas de ecuaciones lineales de matriz ortogonal son muy bien condicionados.

Métodos directos

- Introducción
- 2 Sistemas de matriz diagonal
- Sistemas de matriz triangular inferior
- Sistemas de matriz triangular superior
- Factorización LU
- Factorización de Cholesky o LL^t
- Factorización QR
- 8 Cálculo de determinantes

La mayoría de los métodos directos se basan en el método de Gauss.

Idea: transformar el sistema de ecuaciones lineales original en un sistema de matriz triangular superior con las mismas soluciones.

- Para ello, se realizan tres tipos de operaciones:
 - \blacksquare $E_i \rightarrow \lambda E_i, \lambda \neq 0$
 - \blacksquare $E_i \rightarrow E_i + \lambda E_j, j \neq i$
 - $\blacksquare E_i \leftrightarrow E_j$
- En estos cálculos, solo intervienen los coeficientes a_{ij} y b_i.

Por tanto, es posible reemplazar el sistema de ecuaciones lineales por una matriz que contiene la información necesaria para determinar la solución, la matriz aumentada:

$$[A|b] = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & | & b_2 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & | & b_n \end{pmatrix}$$

El tiempo necesario para realizar los cálculos y el error de redondeo que contienen dependen del número de operaciones que se efectúen (que depende a su vez del orden del sistema).

Por ejemplo, en el método de Gauss se realizan un total de

$$\frac{n^3}{3} + n^2 - \frac{n}{3}$$
 multiplicaciones/divisiones

$$\frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}$$
 sumas/restas

Las diferencias reales en el tiempo de ejecución también dependen de la precisión que usemos.

n	Multiplicaciones/Divisiones	Sumas/Restas
10	430	375
100	343 300	338 250
1000	334 333 000	333 832 500
10000	333 433 330 000	333 383 325 000
100000	333 343 333 300 000	333 338 333 250 000
1000000	333 334 333 333 000 000	333 333 833 332 500 000

Operaciones del método de Gauss

Sistemas de matriz diagonal

Consideramos el sistema de ecuaciones lineales

$$Dx = b$$

donde D es una matriz diagonal.

■ La ecuación i-ésima del sistema es:

$$d_{ii} x_i = b_i \quad \forall i$$

■ Por tanto, si $d_{ii} \neq 0 \ \forall i$, tenemos que

$$x_i = \frac{b_i}{d_{ii}}$$

Sistemas de matriz diagonal

Algoritmo:

```
Para i = 1, ..., n,
hacer x_i = b_i/d_{ii}
Fin
```

Implementación:

- Los elementos diagonales de la matriz D suelen almacenarse en un vector.
- Si se van a resolver muchos sistemas de matriz D, suelen almacenarse los números d_{ii}⁻¹.

■ Número de operaciones:

- n divisiones
- o *n* multiplicaciones si se almacenan los inversos d_{ii}^{-1} .

Consideramos el sistema de ecuaciones lineales

$$Lx = b$$

donde L es una matriz triangular inferior.

■ La ecuación i-ésima del sistema es:

$$I_{i1}x_1 + \ldots + I_{ii-1}x_{i-1} + I_{ii}x_i = b_i$$

■ Por tanto, si $I_{ii} \neq 0 \ \forall i$, tenemos que

$$x_{i} = \frac{b_{i} - l_{i1}x_{1} - \ldots - l_{ii-1}x_{i-1}}{l_{ii}} = \frac{b_{i} - \sum_{j=1}^{i-1} l_{ij}x_{j}}{l_{ij}}$$

Algoritmo (sustitución hacia adelante):

- Si $l_{11} = 0$, parar (no existe solución única)
- 2 Hacer $x_1 = \frac{b_1}{l_{11}}$
- 3 Para i = 2, ..., n,
 - 1 Si $I_{ii} = 0$, parar (no existe solución única)
 - 2 Hacer

$$x_i = \frac{b_i - \sum_{j=1}^{i-1} I_{ij} x_j}{I_{ii}}$$

Implementación:

Los elementos de la submatriz triangular inferior de \boldsymbol{L} se almacenan en un vector, ordenadamente, por filas o por columnas. Puede usarse un vector puntero para señalar la posición en que comienza cada fila o columna.

■ Número de operaciones:

- $\frac{n^2 + n}{2}$ multiplicaciones/divisiones
- $\frac{n^2-n}{2}$ sumas/restas

n	Multip./Divisiones	Sumas/Restas
10	55	45
100	5 050	4 950
1000	500 500	499 500
10000	50 005 000	49 995 000
100000	5 000 050 000	4 999 950 000
1000000	500 000 500 000	499 999 500 000

Operaciones para resolver sistemas de matriz triangular

Consideramos el sistema de ecuaciones lineales

$$U\mathbf{x} = \mathbf{b}$$

donde *U* es una matriz triangular superior.

La ecuación *i*-ésima del sistema es:

$$u_{ii}x_i+u_{ii+1}x_{i+1}+\ldots+u_{in}x_n=b_i$$

■ Por tanto, si $u_{ii} \neq 0 \ \forall i$, tenemos que

$$x_i = \frac{b_i - u_{ii+1}x_{i+1} - \ldots - u_{in}x_n}{u_{ii}} = \frac{b_i - \sum_{j=i+1}^n u_{ij}x_j}{u_{ii}}$$

Algoritmo (sustitución hacia atrás):

- 11 Si $u_{nn} = 0$, parar (no existe solución única)
- 2 Hacer $x_n = \frac{b_n}{u_{nn}}$
- 3 Para i = n 1, ..., 1,
 - 1 Si $u_{ii} = 0$, parar (no existe solución única)
 - 2 Hacer

$$x_i = \frac{b_i - \sum_{j=i+1}^n u_{ij} x_j}{u_{ii}}$$

Implementación:

Los elementos de la submatriz triangular superior de ${\it U}$ se almacenan en un vector, ordenadamente, por filas o por columnas. Puede usarse un vector puntero para señalar la posición en que comienza cada fila o columna.

Número de operaciones: las mismas que requiere el algoritmo de sustitución hacia adelante:

-
$$\frac{n^2 + n}{2}$$
 multiplicaciones/divisiones

-
$$\frac{n^2-n}{2}$$
 sumas/restas

Notación:

Sea *A* una matriz cuadrada de orden *n*.

Para k = 1, ..., n, denotamos

$$A_k = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{pmatrix}$$

Teorema:

Si $\det A_k \neq 0$, para k = 1, ..., n, entonces existen una matriz triangular inferior L y una matriz triangular superior U tales que

$$A = LU$$

- La mayoría de las matrices que se presentan en las aplicaciones admiten factorización LU. Por ejemplo:
 - 1 Las matrices estrictamente diagonal dominantes:
 - 1 Estrictamente diagonal dominante por filas:

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \qquad i=1,\ldots,n$$

2 Estrictamente diagonal dominante por columnas:

$$|a_{ii}| > \sum_{\substack{j=1\\i\neq i}}^n |a_{ji}|$$
 $i=1,\ldots,n$

2 Las matrices simétricas y definidas positivas:

$$A = A^t$$
 $\mathbf{x}^t A \mathbf{x} > 0 \quad \forall \mathbf{x} \neq \mathbf{0}$

- La factorización *LU* de una matriz *A* no es única.
- Habitualmente, se fija

$$I_{ii}=1, \forall i=1,\ldots,n$$

En este caso:

- $U = A^{(n)}$, la matriz triangular superior que se obtiene usando eliminación gaussiana.
- Para i = 2, ..., n y j = 1, ..., i 1,

$$I_{ij} = m_{ij}$$

siendo los m_{ii} los pivotes de la eliminación gaussiana.

Consideremos el sistema de ecuaciones lineales

$$Ax = b$$

donde la matriz A admite la factorización LU.

Entonces:

$$Ax = b \Leftrightarrow LUx = b$$

- Para resolver este sistema usando la factorización LU, hay que hacer:
 - 1 Resolver Ly = b.
 - 2 Resolver $U \mathbf{x} = \mathbf{y}$.

 Supongamos que queremos resolver los sistemas de ecuaciones lineales

$$A \mathbf{x} = \mathbf{b}^{(k)}$$
 $k = 1, ..., K$

- Los pasos a seguir son:
 - Calcular la factorización LU de la matriz A.
 - 2 Para k = 1, ..., K,
 - 1 Resolver $L\mathbf{y}^{(k)} = \mathbf{b}^{(k)}$.
 - Resolver $U \mathbf{x}^{(k)} = \mathbf{y}^{(k)}$.
- Una vez obtenida la factorización, la resolución de cada sistema requiere
 - n² multiplicaciones/divisiones
 - $n^2 n$ sumas/restas

Algoritmo (factorización LU):

Para
$$i = 1, ..., n$$
,

1 Hacer

$$u_{ii} = a_{ii} - \sum_{k=1}^{i-1} I_{ik} u_{ki}$$

- 2 Si $u_{ii} = 0$, parar (factorización imposible).
- 3 Para j = i + 1, ..., n,
 - 1 Hacer

$$u_{ij}=a_{ij}-\sum_{k=1}^{i-1}I_{ik}u_{kj}$$

2 Hacer

$$I_{ji} = \frac{a_{ji} - \sum_{k=1}^{i-1} I_{jk} u_{ki}}{u_{ii}}$$

Implementación (factorización LU):

- Es suficiente usar un array $n \times n$, en el que inicialmente se almacena la matriz A.
- A medida que se va calculando la factorización, almacenamos en el array:
 - la submatriz triangular superior de U
 - la submatriz triangular inferior de L, excepto los 1's de la diagonal principal.
- Implementación (resolución de los sistemas triangulares):
 - El algoritmo de sustitución hacia adelante se simplifica este caso, va que $l_{ii} = 1$.

Observación:

En la práctica, la factorización *LU* solo es útil cuando no se requieren intercambios de filas para controlar el error de redondeo.

Ejercicio:

- 1 Deducir el algoritmo de la factorización LU en el caso en que se fijan los valores $u_{ij} = 1$, para i = 1, ..., n.
- 2 Deducir las fórmulas para obtener la factorización LU de una matriz tridiagonal y determinar el número de operaciones necesarias para obtenerla.

Una matriz cuadrada A de orden n es definida positiva si

$$\mathbf{x}^t A \mathbf{x} > 0 \quad \forall \mathbf{x} \neq \mathbf{0}$$

Si $\det A_k > 0$, para k = 1, ..., n, entonces la matriz A es definida positiva.

Teorema:

Una matriz simétrica A es definida positiva si y solo si puede factorizarse en la forma LL^t, donde L es una matriz triangular inferior con elementos distintos de cero en su diagonal.

■ Si se toman los elementos $l_{ii} > 0$, la factorización es única.

Consideremos el sistema de ecuaciones lineales

$$Ax = b$$

donde la matriz A es simétrica y definida positiva.

Entonces:

$$Ax = b \Leftrightarrow LL^tx = b$$

- Para resolver este sistema usando la factorización LL^t, hay que hacer:
 - 1 Resolver Ly = b.
 - 2 Resolver $L^t \mathbf{x} = \mathbf{y}$.

■ Algoritmo (factorización de Cholesky para calcular L)

- 1 Hacer $I_{11} = \sqrt{a_{11}}$
- 2 Para j = 2, ..., n, hacer $l_{j1} = a_{j1}/l_{11}$
- 3 Para i = 2, ..., n-1,

1 Hacer
$$I_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} I_{ik}^2}$$

2 Para
$$j = i + 1, ..., n$$
,

1 Hacer
$$I_{ji} = \frac{a_{ji} - \sum_{k=1}^{i-1} I_{jk} I_{ik}}{I_{ji}}$$

4 Hacer
$$I_{nn} = \sqrt{a_{nn} - \sum_{k=1}^{n-1} I_{nk}^2}$$

Implementación:

- Solo se almacena la submatriz triangular inferior o superior de la matriz A.
- A medida que se va calculando la factorización, se almacena en el vector la submatriz triangular inferior de L o su traspuesta.

Número de operaciones:

- Para la factorización:
 - $\frac{n^3}{6} + \frac{n^2}{2} \frac{2n}{3}$ multiplicaciones/divisiones
 - $\frac{n^3}{6} \frac{n}{6}$ sumas/restas
 - n raíces cuadradas
- Para la resolución de los sistemas triangulares:
 - $n^2 + n$ multiplicaciones/divisiones
 - $n^2 n$ sumas/restas

Factorización de Cholesky o LLt

n	Multip./Divisiones	Sumas/Restas
10	320	255
100	181 700	176 550
1000	168 167 000	167 665 500
10000	166 816 670 000	166 766 655 000
100000	166 681 666 700 000	166 676 666 550 000
1000000	166 668 166 667 000 000	166 667 666 665 500 000

Operaciones del método de Cholesky (sin contar $\sqrt{\cdot}$)

Una matriz cuadrada Q de orden n es ortogonal si

$$QQ^t = Q^tQ = I_n$$

es decir, si su inversa es su traspuesta.

Teorema:

Sea A una matriz cualquiera.

Entonces existen una matriz ortogonal Q y una matriz triangular superior R tales que

$$A = QR$$

Consideremos el sistema de ecuaciones lineales

$$Ax = b$$

donde A es una matriz cuadrada cualquiera.

Entonces:

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow QR\mathbf{x} = \mathbf{b} \Leftrightarrow R\mathbf{x} = Q^t\mathbf{b}$$

- Para resolver este sistema usando la factorización QR:
 - 1 Calcular Q^t b.
 - 2 Resolver $R \mathbf{x} = Q^t \mathbf{b}$.

- Para obtener la factorización QR de una matriz, usaremos las matrices de Householder.
- Una matriz de Householder es una matriz de la forma

$$H = H(\mathbf{v}) = I_n - \frac{2 \mathbf{v} \mathbf{v}^t}{\mathbf{v}^t \mathbf{v}}$$

donde $\mathbf{v} \neq \mathbf{0}$ es un vector columna.

■ La matriz $H = I_n$ también se considera una matriz de Householder.

Propiedades de las matrices de Householder:

Las matrices de Householder son simétricas y ortogonales.
 Por tanto,

$$H = H^t = H^{-1}$$

2 Dado $\mathbf{a} \in \mathbb{R}^n$, existe una matriz de Householder $H \in \mathcal{M}_n(\mathbb{R})$ tal que

$$H \mathbf{a} = \|\mathbf{a}\|_2 \mathbf{e}_1$$

Si
$$\alpha = \sum_{i=2}^{n} |a_i|$$
 y $\mathbf{v} = \mathbf{a} - \|\mathbf{a}\|_2 \mathbf{e}_1$, entonces,

$$H = \begin{cases} H(\mathbf{v}) & \text{si } \alpha \neq 0 \text{ o si } \alpha = 0 \text{ y } a_1 < 0 \\ I_n & \text{si } \alpha = 0 \text{ y } a_1 > 0 \end{cases}$$

Hemos visto que, usando la factorización QR,

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow R\mathbf{x} = Q^t \mathbf{b}$$

Idea:

Transformar la matriz A en una matriz triangular superior R, usando las matrices de Householder.

Sean A⁽¹⁾ = A y b⁽¹⁾ = b.
Si a⁽¹⁾ es la primera columna de la matriz A, entonces existe una matriz de Householder H⁽¹⁾ tal que

$$H^{(1)}\mathbf{a}^{(1)} = \|\mathbf{a}^{(1)}\|_2 \mathbf{e}_1$$

■ Definimos $A^{(2)} = H^{(1)}A^{(1)}$ y $\mathbf{b}^{(2)} = H^{(1)}\mathbf{b}^{(1)}$. Entonces:

$$A \mathbf{x} = \mathbf{b} \Leftrightarrow A^{(2)} \mathbf{x} = \mathbf{b}^{(2)}$$

Todos los elementos de la primera columna de $A^{(2)}$, excepto el diagonal, son cero.

■ En la etapa k:

$$A \mathbf{x} = \mathbf{b} \Leftrightarrow A^{(k)} \mathbf{x} = \mathbf{b}^{(k)}$$

donde las k-1 primeras columnas de la submatriz estrictamente triangular inferior de $A^{(k)}$ son cero.

Sea $\mathbf{a}^{(k)} = (a_{kk}^{(k)} \dots a_{nk}^{(k)})^t \in \mathbb{R}^{n-k+1}$. Entonces existe $\widetilde{H}^{(k)} \in \mathcal{M}_{n-k+1}$ tal que

$$\widetilde{\textit{H}}^{(k)} \mathbf{a}^{(k)} = \|\mathbf{a}^{(k)}\|_2 \mathbf{e}_1$$

Definimos

$$H^{(k)} = \left(\begin{array}{c|c} I_{k-1} & 0 \\ \hline 0 & \widetilde{H}^{(k)} \end{array}\right)$$

■ Entonces $A^{(k+1)} = H^{(k)}A^{(k)}$ tiene ceros en las k primeras columnas de su submatriz triangular inferior (excepto la diagonal) y

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow A^{(k+1)}\mathbf{x} = \mathbf{b}^{(k+1)}$$
 con $\mathbf{b}^{(k+1)} = H^{(k+1)}\mathbf{b}^{(k)}$

■ Tras n-1 etapas, tenemos

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow A^{(n)}\mathbf{x} = \mathbf{b}^{(n)}$$

donde

■ la matriz

$$A^{(n)} = H^{(n-1)} \dots H^{(2)} H^{(1)} A$$

es triangular superior

$$\mathbf{b}^{(n)} = H^{(n-1)} \dots H^{(2)} H^{(1)} \mathbf{b}$$

Luego

$$R = A^{(n)}$$
 $Q = H^{(1)}H^{(2)}...H^{(n-1)}$

- Sea A una matriz de orden n.
- El cálculo de det(A) mediante el método de los menores requiere $\mathcal{O}(n!)$ operaciones $(+,-,\times,/)$.

Concretamente, se precisan

- $n! \sum_{k=1}^{n-1} \frac{1}{k!}$ multiplicaciones/divisiones
- \blacksquare n! 1 sumas/restas

п	Multip./Divisiones	Sumas/Restas
5	205	119
10	6 199 200	3 628 799
50	$\approx 5,1957409210^{64}$	\approx 3,04140932 10 ⁶⁴
100	$\approx 1,59432285 10^{158}$	$\approx 9,3326215410^{157}$

Operaciones cálculo de determinantes por método menores

Incluso para valores de n relativamente pequeños, la cantidad de cálculos es demasiado grande.

■ Si A es una matriz triangular, entonces

$$\det(A) = a_{11} a_{22} \dots a_{nn} = \prod_{i=1}^{n} a_{ii}$$

- Por otra parte, se tiene que:

 - $2 \det(A) = \det(A^t)$

■ Si A = LU, con $I_{ii} = 1$, $\forall i$, entonces

$$det(A) = det(U)$$

■ Si A = LU, con $u_{ii} = 1$, $\forall i$, entonces

$$det(A) = det(L)$$

 $\blacksquare \text{ Si } A = LL^t,$

$$det(A) = det(L)^2$$

Métodos iterativos clásicos

- 1 Introducción
- Método de Jacobi
- Método de Gauss-Seidel
- 4 Métodos de relajación
- 5 Convergencia de los métodos iterativos

- Los métodos iterativos son, en general, más eficientes que los métodos directos para resolver sistemas de ecuaciones lineales grandes y de matriz hueca. Esto es debido a que se basan en la operación "multiplicación matriz por vector". Por ello, requieren menos memoria. Además, normalmente, son más rápidos.
- Si no se exige mucha precisión, se puede obtener una aproximación aceptable en un número pequeño de iteraciones.
- Son menos sensibles a los errores de redondeo.

- Algunos inconvenientes de los métodos iterativos:
 - No es posible predecir el número de operaciones que se requieren para obtener una aproximación a la solución con cierta precisión.
 - El tiempo de cálculo y la precisión del resultado pueden depender de la elección de ciertos parámetros.
 - Generalmente no se gana tiempo por iteración si la matriz de coeficientes es simétrica. En este caso, un método directo genérico puede reducir el tiempo de cálculo a la mitad.

- Dada una aproximación inicial $\mathbf{x}^{(0)}$, un método iterativo genera una sucesión de aproximaciones $\mathbf{x}^{(k)}$, para $k = 0, 1, 2, \ldots$, que converge a la solución del sistema de ecuaciones.
- Para generar esta sucesión, se repite el mismo esquema de operaciones hasta que:
 - se obtiene una aproximación con una precisión especificada de antemano,
 - o se rebasa un número máximo de iteraciones.

- Hay dos clases de métodos iterativos:
 - Métodos iterativos clásicos, estacionarios o lineales:
 - Pueden usarse para resolver sistemas de matriz no simétrica.
 - Algunos pueden usarse para reducir el número de condición de un sistema.
 - Métodos iterativos no estacionarios o de descenso:
 - Son los más eficientes para resolver sistemas grandes, de matriz simétrica y hueca.

Métodos iterativos lineales

Los métodos iterativos lineales se basan en reescribir el problema:

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow \mathbf{x} = G\mathbf{x} + \mathbf{c}$$

donde $G \in \mathcal{M}_n(\mathbb{R})$ y $\mathbf{c} \in \mathbb{R}^n$.

- Algoritmo:
 - 1 Se parte de una aproximación inicial a la solución, x⁽⁰⁾.
 - 2 Para k=0,1,2,...,

$$\mathbf{x}^{(k+1)} = G\mathbf{x}^{(k)} + \mathbf{c}$$

G: matriz de iteración c: vector de iteración

Métodos iterativos lineales

■ Se dice que el método es consistente si se cumple que:

Si la sucesión $(\mathbf{x}^{(k+1)})_k$ converge a \mathbf{x}^* , entonces \mathbf{x}^* es una solución del sistema de ecuaciones lineales.

- En lo que sigue, suponemos que el método iterativo considerado es consistente.
- Número de operaciones en cada iteración:
 - n² multiplicaciones
 - n² sumas

Criterios de parada

■ Error absoluto en la aproximación:

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\| < \epsilon$$

Error relativo en la aproximación:

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\| < \epsilon \|\mathbf{x}^{(k+1)}\|$$

Error relativo en el residuo:

$$\|\mathbf{r}^{(k)}\| < \epsilon \|\mathbf{b}\|$$

donde $\mathbf{r}^{(k)}$ es el vector residuo:

$$\mathbf{r}^{(k)} := \mathbf{b} - A \mathbf{x}^{(k)}$$

Criterios de parada

- La comprobación del criterio de parada no debe incrementar en exceso el número de operaciones por iteración:
 - Conviene organizar los cálculos de forma adecuada.
- La norma vectorial que se emplea con más frecuencia en la implantación de métodos iterativos lineales es la norma infinito.

Métodos de descomposición

- Los métodos de descomposición son métodos iterativos lineales.
- Se obtienen al descomponer la matriz *A* en la forma:

$$A = M - N$$

donde *M* es una matriz fácil de invertir.

Entonces:

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow M\mathbf{x} = N\mathbf{x} + \mathbf{b} \Leftrightarrow \mathbf{x} = M^{-1}N\mathbf{x} + M^{-1}\mathbf{b}$$

Métodos de descomposición

- El método iterativo asociado consiste en:
 - 1 Se parte de una aproximación inicial a la solución, x⁽⁰⁾.
 - 2 Para k=0,1,2,...,

$$\mathbf{x}^{(k+1)} = G\mathbf{x}^{(k)} + \mathbf{c}$$

donde

$$G = M^{-1}N$$
 $c = M^{-1}b$

- Por construcción, es un método consistente.
- En la práctica, no se calcula M^{-1} , sino que se resuelve

$$M \mathbf{x}^{(k+1)} = N \mathbf{x}^{(k)} + \mathbf{b}$$

Métodos de descomposición

- Los principales métodos de descomposición son:
 - El método de Jacobi
 - El método de Gauss-Seidel
 - Los métodos de relajación
- Para usar estos métodos, se supone que

$$a_{ii} \neq 0$$
 $i = 1, 2, \ldots, n$

El método de Jacobi

K.G.J. Jacobi (1845)

Se basa en la descomposición

$$A = D - (D - A)$$

donde

$$D = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \quad D - A = \begin{bmatrix} 0 & -a_{12} & \dots & -a_{1n} \\ -a_{21} & 0 & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & 0 \end{bmatrix}$$

El método de Jacobi

Método iterativo de Jacobi:

$$D \mathbf{x}^{(k+1)} = (D - A) \mathbf{x}^{(k)} + \mathbf{b}$$

También se llama método de inversión diagonal.

■ Multiplicando por D^{-1} :

$$\mathbf{x}^{(k+1)} = D^{-1}(D-A)\mathbf{x}^{(k)} + D^{-1}\mathbf{b}$$

Por tanto, la matriz del método de Jacobi es:

$$J = D^{-1}(D - A) = I - D^{-1}A$$

El método de Jacobi: formulación eficiente

Se llama formulación eficiente del método de Jacobi a:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + D^{-1}(\mathbf{b} - A\mathbf{x}^{(k)})$$

- En cada iteración, habría que hacer:
 - 1 Calcular $A \mathbf{x}^{(k)}$
 - 2 Calcular el vector residuo $\mathbf{r}^{(k)} = \mathbf{b} A \mathbf{x}^{(k)}$
 - Resolver el sistema $Dz = r^{(k)}$
 - 4 Calcular $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{z}$
- Puede usarse un criterio de parada basado en el residuo sin que suponga cálculos adicionales.

El método de Jacobi: forma en componentes

De la ecuación

$$D \mathbf{x}^{(k+1)} = (D - A) \mathbf{x}^{(k)} + \mathbf{b}$$

deducimos que

$$a_{ii}x_i^{(k+1)} = b_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{ij}x_j^{(k)} \quad i = 1, 2, \dots, n$$

■ Como $a_{ii} \neq 0 \forall i$,

$$x_i^{(k+1)} = \frac{b_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{ij} x_j^{(k)}}{a_{ii}}$$
 $i = 1, 2, ..., n$

El método de Jacobi: forma en componentes

- Las n componentes de $x^{(k+1)}$ pueden calcularse simultáneamente.
- El método también se llama método de los desplazamientos simultáneos.
- En este caso, es menos costoso usar un criterio de parada basado en la aproximación.

El método de Jacobi: pseudocódigo

- Elegir una aproximación inicial, x⁽⁰⁾
- 2 Para k = 0, 1, 2, ..., maxit:
 - 1 Para i = 1, 2, ..., n, calcular

$$b_{i} - \sum_{\substack{j=1 \ j \neq i}}^{n} a_{ij} x_{j}^{(k)}$$
$$x_{i}^{(k+1)} = \frac{a_{ij}}{a_{ij}}$$

2 Criterio de parada. Continuar si es necesario

En el método de Jacobi:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right) \quad i = 1, 2, \dots, n$$

■ En el método de Gauss-Seidel:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right) \quad i = 1, 2, \dots, n$$

C.F. Gauss (1845) K.G.J. Jacobi–L.P. von Seidel (1874)

El método de Gauss-Seidel: pseudocódigo

- Elegir una aproximación inicial, x⁽⁰⁾
- 2 Para k = 0, 1, 2, ..., maxit:
 - 1 Para i = 1, 2, ..., n, calcular

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right) \quad i = 1, 2, \dots, n$$

- 2 Criterio de parada. Continuar si es necesario
- Hacer $\mathbf{x}^{(k+1)} = \mathbf{x}$

- El método de Gauss-Seidel es un método de descomposición:
 - Para $i = 1, 2, \dots, n$, la ecuación

$$x_i^{(k+1)} = \frac{1}{a_{ii}} (b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)})$$

puede escribirse como

$$b_i - \sum_{j=1}^i a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} = 0$$

- Consideramos la descomposición

$$A = L - (L - A)$$

donde

$$L = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \quad L - A = \begin{bmatrix} 0 & -a_{12} & \dots & -a_{1n} \\ 0 & 0 & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

Entonces

$$b_i - \sum_{j=1}^i a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} = 0, \quad i = 1, 2, \dots, n$$

se escribe

$$Lx^{(k+1)} = b + (L - A)x^{(k)}$$

- Multiplicando por L-1,

$$\mathbf{x}^{(k+1)} = L^{-1}(L-A)\mathbf{x}^{(k)} + L^{-1}\mathbf{b}$$

 Por tanto, el método de Gauss-Seidel es un método de descomposición. La matriz de iteración es

$$\mathcal{L}_1 = L^{-1}(L - A) = I - L^{-1}A$$

El método de Gauss-Seidel: formulación eficiente

Se llama formulación eficiente del método de Gauss-Seidel:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + L^{-1}(\mathbf{b} - A\mathbf{x}^{(k)})$$

- En cada iteración, habría que hacer:
 - 1 Calcular $A \mathbf{x}^{(k)}$
 - 2 Calcular el vector residuo $\mathbf{r}^{(k)} = \mathbf{b} A\mathbf{x}^{(k)}$
 - Resolver el sistema $L\mathbf{z} = \mathbf{r}^{(k)}$
 - 4 Calcular $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{z}$

- La convergencia de los métodos de Jacobi y Gauss-Seidel es en general bastante lenta.
- Los métodos de relajación pueden mejorar sustancialmente la convergencia del método de Gauss-Seidel.
- Los métodos de relajación presentan el inconveniente de que la convergencia depende de la elección adecuada de un parámetro.

Consideramos la descomposición de la matriz A:

$$A = D - E - F$$

donde:

$${\cal E} = \left[egin{array}{cccc} 0 & 0 & \dots & 0 \ -a_{21} & 0 & \dots & 0 \ dots & dots & \ddots & dots \ -a_{n1} & -a_{n2} & \dots & 0 \end{array}
ight]$$

$$E = \begin{bmatrix} 0 & 0 & \dots & 0 \\ -a_{21} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & 0 \end{bmatrix} \qquad F = \begin{bmatrix} 0 & -a_{12} & \dots & -a_{1n} \\ 0 & 0 & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

Los métodos de relajación se basan en la descomposición:

$$\omega A = (D - \omega E) - (\omega F + (1 - \omega)D)$$

donde ω se llama parámetro de relajación.

Entonces:

$$\mathbf{x} = (D - \omega E)^{-1} (\omega F + (1 - \omega)D) \mathbf{x} + \omega (D - \omega E)^{-1} \mathbf{b}$$

El método iterativo correspondiente es:

$$\mathbf{x}^{(k+1)} = (D - \omega E)^{-1} (\omega F + (1 - \omega)D) \mathbf{x}^{(k)} + \omega (D - \omega E)^{-1} \mathbf{b}$$

Por tanto, la matriz de iteración es

$$\mathcal{L}_{\omega} = (D - \omega E)^{-1} (\omega F + (1 - \omega)D)$$

- Para $\omega = 1$, se tiene el método de Gauss–Seidel.
- Notamos que:

$$\omega F + (1 - \omega)D = D - \omega(D - F)$$

$$= D - \omega E - \omega(D - E - F)$$

$$= (D - \omega E) - \omega A$$

Entonces

$$\mathcal{L}_{\omega} = I - \omega (D - \omega E)^{-1} A$$

Métodos de relajación: formulación eficiente

■ Formulación eficiente:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \omega (D - \omega E)^{-1} (\mathbf{b} - A \mathbf{x}^{(k)})$$

- En cada iteración, habría que hacer:
 - 1 Calcular $A \mathbf{x}^{(k)}$
 - 2 Calcular el vector residuo $\mathbf{r}^{(k)} = \mathbf{b} A\mathbf{x}^{(k)}$
 - 3 Resolver el sistema $(D \omega E) \mathbf{z} = \mathbf{r}^{(k)}$
 - 4 Calcular $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \omega \mathbf{z}$

Métodos de relajación: forma en componentes

De la ecuación

$$(D - \omega E) \mathbf{x}^{(k+1)} = (\omega F + (1 - \omega)D) \mathbf{x}^{(k)} + \omega \mathbf{b}$$

deducimos que:

$$a_{ii}x_i^{(k+1)} = a_{ii}(1-\omega)x_i^{(k)} + \omega(b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij}x_j^{(k)})$$

■ Como $a_{ii} \neq 0 \ \forall i$,

$$x_i^{(k+1)} = (1-\omega)x_i^{(k)} + \omega \frac{b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k)}}{a_{ii}}$$

Luego

$$x_i^{(k+1)} = (1 - \omega)x_i^{(k)} + \omega x_i^{GS}$$

Convergencia de los métodos lineales

Consideramos el método iterativo lineal:

$$\mathbf{x}^{(k+1)} = G\mathbf{x}^{(k)} + \mathbf{c}$$
 para $k = 0, 1, 2, ...$

donde $\mathbf{x}^{(0)}$ es una aproximación inicial.

Se dice que el método iterativo es convergente si la sucesión generada por el método converge a la solución para cualquier aproximación inicial x⁽⁰⁾.

Acotación del error

Teorema:

Un método iterativo lineal consistente es convergente si, y solo si el radio espectral de la matriz de iteración $\rho(G)$ es menor que uno.

Corolario:

Si $\|G\| < 1$, para cierta norma matricial subordinada, y c es un vector cualquiera, entonces el método iterativo es convergente y se verifican las acotaciones del error:

$$\|\mathbf{x}^{(k)} - \mathbf{x}\| \le \frac{\|G\|^k}{1 - \|G\|} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|$$

Velocidad de convergencia

Se tiene que

$$\|\mathbf{x}^{(k)} - \mathbf{x}\| \approx \rho(G)^k \|\mathbf{x}^{(0)} - \mathbf{x}\|$$

Dados dos métodos iterativos lineales

(1)
$$\mathbf{x}^{(k+1)} = G_1 \mathbf{x}^{(k)} + \mathbf{c}_1$$
 para $k = 1, 2, ...$

(2)
$$\mathbf{x}^{(k+1)} = G_2 \mathbf{x}^{(k)} + \mathbf{c}_2$$
 para $k = 1, 2, ...$

diremos que el método (1) converge más rápido que el método (2) si

$$\rho(G_1) < \rho(G_2) < 1$$

Velocidad de convergencia

Algunos autores (cf. Lascaux-Théodor) definen parámetros para medir la velocidad de convergencia:

Velocidad media de convergencia:

$$v_j(G) = -\log(\|G^j\|)^{1/j}$$

Velocidad asintótica de convergencia:

$$v_{\infty}(G) = -\log \rho(G)$$

Convergencia (Jacobi y Gauss-Seidel)

Teorema:

Si A es estrictamente diagonal dominante, los métodos de Jacobi y Gauss-Seidel son convergentes.

Teorema:

- Si A es simétrica, definida positiva y tridiagonal, entonces los métodos de Jacobi y de Gauss-Seidel son convergentes.
- Además,

$$\rho(\mathcal{L}_1) = \rho(J)^2 < 1$$

Por tanto, el método de Gauss-Seidel converge más rápido que el de Jacobi.

Convergencia (Jacobi y Gauss-Seidel)

Teorema:

(Stein–Rosenberg) Si $a_{ii} > 0 \ \forall i \ y \ a_{ij} \le 0 \ \forall i \ne j$, entonces se cumple una y solo una de las afirmaciones siguientes:

1
$$0 \le \rho(\mathcal{L}_1) < \rho(J) < 1$$

2
$$1 < \rho(J) < \rho(\mathcal{L}_1)$$

3
$$\rho(\mathcal{L}_1) = \rho(J) = 0$$

4
$$\rho(\mathcal{L}_1) = \rho(J) = 1$$

Convergencia (métodos de relajación)

La convergencia de los métodos de relajación depende de la elección del parámetro ω .

Teorema:

(Kahan) El método de relajación solo puede converger si $\omega \in (0,2)$.

Teorema:

(Ostrowski–Reich) Si A es simétrica y definida positiva, el método de relajación es convergente para cualquier elección del parámetro $\omega \in (0,2)$.

Convergencia (método de relajación)

Teorema:

Si A es una matriz simétrica, definida positiva y tridiagonal, entonces la elección óptima del parámetro ω para el método de relajación es

$$\omega = \frac{2}{1 + \sqrt{1 - \rho(J)^2}}$$

Para esta elección del parámetro de relajación, $\rho(\mathcal{L}_{\omega}) = \omega - 1$

Referencias

- 1 R.L. Burden y J.D. Faires, *Análisis Numérico*, Thomson Learning, 7^a edición, 2002.
- P.G. Ciarlet, Introduction à l'analyse numérique matricielle et a l'optimisation, Masson, 1982.
- 3 C. Conde y G. Winter, *Métodos y algoritmos básicos del álgebra numérica*, Reverté, 1990.
- J.F. Epperson, An introduction to numerical methods and analysis, Wiley, 2002.

Referencias más avanzadas

- 1 R. Barrett et al., Templates..., SIAM, 1994 (http://www.netlib.org/templates).
- 2 J.W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
- 3 G.H. Golub & C.F. van Loan, Matrix Computations, 3^a ed., The Johns Hopkins University Press, 1996.
- 4 P. Lascaux & R. Théodor, Analyse numérique matricielle appliquée à l'art de l'ingenieur, Masson, 1993.
- Y. Saad, Iterative Methods for Sparse Linear Systems, 2^a ed., SIAM, 2003 (1^a ed. revisada: http://www-users.cs.umn.edu/ saad/books.html).

