AMERICAN SOCIETY OF CIVIL ENGINEERS.

INSTITUTED 1852.

TRANSACTIONS.

Note.—This Society is not responsible, as a body, for the facts and opinions advanced in .

any of its publications.

365.

(Vol. XVII.-September, 1887.)

THE KENTUCKY AND INDIANA BRIDGE.

By Mace Moulton, M. Am. Soc. C. E. Presented at the Annual Convention, July 1st, 1887.

Believing that the above-named structure is of sufficient magnitude to merit description, and the record of the progress and development of the details of the work of sufficient value to be of interest to the profession, the writer submits the following as a correct and tolerably full account of the construction.

The Directors of the new railroad being built between Louisville and St. Louis, via Evansville and New Albany, Ind., which was nearing completion in January, 1881, had, at an early stage of the enterprise, considered it expedient, and necessary to the interests of the road, to have a new bridge built crossing the Ohio River at Louisville, giving them a shorter and an independent entrance into the city. They therefore obtained charters in Indiana and Kentucky for such a structure, the, former on March 2d, 1875, and the latter on April 1st, 1880.

These gentlemen, with others, formed a stock company, to be known as the Kentucky and Indiana Bridge Company, incorporated under the laws of Kentucky on February 1st, 1881, and of Indiana, March 7th, 1881. The capital stock was, after carefully detailed estimates, placed at \$1 500 000.

The general location of the structure having been determined upon as connecting the lower part of the city of Louisville, known as Portland, and the upper part of the city of New Albany, Ind., the Stockholders and Directors appointed Mr. John MacLeod, M. Am. Soc. C. E., of Louisville, as Chief Engineer, and Mr. C. Shaler Smith, M. Am. Soc. C. E., of St. Louis, as Consulting Engineer.

The preliminary surveys of the river were commenced April 10th, 1881, and finished in about two months. These covered shore lines for two miles, sounding and boring, and current observations at three stages of water. The locations of the usual courses of vessels of different kinds crossing the proposed line were determined with the assistance of the chief falls pilot, in order to accommodate the river interests as much as possible in the disposition of spans and location of piers.

A map embodying all the results of surveys, together with the arragement of spans and elevation of grade finally determined upon, was made and forwarded to the War Department for approval.

From gauge records of the Government canal, as to stages of water for different seasons for several previous years, was plotted a hydrograph, which, together with the results of later observations up to completion of bridge is shown by Plate XV. The map of location sent to Washington is shown by Plate XIV.

The original idea of the bridge comprehended a structure capable of accommodating railway and highway traffic, to compete for the former with the upper bridge built by the Louisville Bridge Company—Mr. Albert Fink, Past President Am. Soc. C. E., Chief Engineer; Louisville Bridge and Iron Company, contractors—now principally owned and operated by the Pennsylvania Railroad; and to supply facilities for the latter which had been but indifferently afforded by the existing ferry.

The site selected is at the narrowest point of the river, and admirably suited to accommodate both cities at its termini, and the railroads expected to run over it.

At this point the difference between extreme low and high water is greater than at any station on the river between Pittsburgh and Paducah, both included.

This difference, according to the data afforded by the great rise of 1832, is 67½ feet, and the Act of Congress providing for the construction of bridges over the Ohio requires that the lowest point of any structure spanning the channels of the river at this point shall be 40 feet above ex-

treme high water, thus necessitating the bottom chord center line to be about one hundred and nine feet above lowest low water.

The river is divided at the line of bridge into two chutes by an island, the Indiana chute being the wide and shallow, or high-water channel, and the Kentucky chute the narrow and deep channel used at low stages of water.

The current in the latter runs at all times with much force, which, together with the fact that very low water forces all traffic through this channel, made it advisable to avoid the use of false-work in erecting the span crossing it.

Close to the Indiana side of the island the bulk of the coal traffic passes, and the lower end of the island is used for a meeting point for the purpose of shifting tows of coal boats.

These facts made a long span necessary at this point, and a system of cantilevers suggested itself as best accommodating the circumstances of the location.

Taking all these governing points into consideration, the arrangement of spans as finally adopted was as shown by Plate XVI. This gives a total length between centers of end piers 2 453 feet. In this length the whole structure between Piers 4 and 9 is a continuous cantilever system 1 843 feet in length, the longest yet constructed, as far as known to the writer.

The design upon which the first estimates were based is shown in skeleton profile in Plate XVI.

The details of the substructure, as specified in contracts, comprehended the excavation of foundations for piers to bed-rock, which consists of limestone overlaid by slate of variable thickness. The stone to be used in the piers to be Bedford collitic limestone, with courses up to 18 feet above low water, 37 inches in thickness; stretchers not over 8 feet 6 inches long by 3 feet wide; and headers not less than 6 feet long by 3 feet wide. Above this level the courses to vary, with minimum thickness of 2 feet 1 inch. The specifications for stone and for setting the same were rigid, insuring first-class work.

The quarries at Bedford are large and well equipped with channeling machines, and could get out the stone for the thick courses at a cost less than for smaller stone. Hence the bids showed that there was no additional cost, incident to the increased size of stone, in obtaining the material, and it was believed that time might be gained in setting

the stone in the wall and an improvement made in the solidity and appearance of the finished work. Piers 1 and 9 were to be of wrought-iron cylinders filled with concrete.

The superstructure was to be in general outline as already mentioned.

The cantilever system to be of steel in the trusses and iron in floor, and the remaining spans entirely of iron. The floor was to be riveted between trusses.

Unit strains in steel as follows:

Estimates were carefully prepared of quantities and work to be done, and on September 16th, 1881, the Stockholders and Directors of the Bridge Company conferred on the President the authority to call for bids on the work.

The successful bidders were as follows:

Foundations: Peter Scully, St. Louis, Mo.

Stone: Hinsdale Doyle Granite Company, Bedford, Ind.

Freight on stone: Louisville, New Albany and Chicago Railway Company.

Laying masonry: McAtee, Flannery & Cassilly, Louisville, Ky. Superstructure: Edge Moor Iron Company, Wilmington, Del.

The estimated cost of bridge, based on these bids, was as follows:

 Pier 1, cylinder pier
 \$12 237 87

 " 9, "
 20 217 23

 Piers 2 to 8 inclusive, masonry piers
 263 113 00

Total substructure \$295 568 10 '' superstructure 719 053 00 Total \$1 014 621 10

Contracts were at once signed with the contractors for the substructure.

Ground was first broken in foundation for Pier 2 October 10th. The excavation was carried to bed-rock and cleared off in three days, the foundation being dry. On October 29th the caisson for Pier 3 was pumped dry and excavation commenced.

Bed-rock was reached at a depth of three feet on November 4th, but the foundation was not completed, as the river began to rise very rapidly, and in a short time the caisson was overflowed and work stopped. On November 9th the first stone was set at Pier 2, but little was done, however, as the rise in the river soon covered the work.

Much valuable time was lost by the masonry contractors through mismanagement, and the plant being put up by them was inadequate to handle the very large stone in the lower courses. Hence the work was partially taken into the hands of the Bridge Company, and finally the contractors gave it up, and the contract was annulled by mutual consent on December 5th.

During the winter and spring nothing of consequence was done in the river. Stone was received from quarries and unloaded.

The first great rise in the river for many years occurred in February, culminating on the 22d at an elevation of 61 feet above low water.

The spring passed and the water did not subside to a point low enough to reclaim the foundations at Piers 2 and 3, and the only activity about the site was the receiving and unloading of stone.

Complications arose when the signing of traffic contracts with the Louisville, Evansville and St. Louis Railway, and the Louisville, New Albany and Chicago Railway was brought up, the directory of these roads having changed during the interval. Negotiations between the Bridge Company and the railroads not progressing satisfactorily, work was entirely suspended May 15th, 1882, and the contractors so notified.

The work thus stopped was left as follows: Foundations 2 and 3 excavated, but lost in high water; a large amount of stone in yards ready for laying; the entire plant of masonry contractors in possession of Bridge Company by purchase; and the sheets of cylinder iron for Piers 1 and 9 on the ground.

Nothing further was done towards construction until October 10th, 1883, when work was recommenced. Foundation for Pier 2 was reclaimed and stone-setting started. A new caisson for Pier 3 was put in place, being sunk as building progressed until bed-rock was reached. The river rose and drove them out just as it was anchored down. Some excavation was done on shore for Pier 1, and some riveting up of sheets of cylinders.

On December 10th, 1883, the contract for foundations and setting stone was let to Messrs. Bruce & Alexander, of Indiana, who immediately took charge of the plant and went on with the excavation at Pier 1, and commenced sinking the cylinders.

Work was continued with varying success until the great rise of the river in February 1884, which reached its height on February 16th, at an elevation of 70.6 feet above low water, or four feet higher than ever before known. No damage was done by the rise at the bridge site.

The water subsided rapidly, and on April 14th excavation was recommenced at Pier 1, and from that time the work was prosecuted vigorously whenever the river permitted, until the last stone was set on the last pier July 6th, 1885. The following is a brief summary of the progress on the various piers in the order of numbers, commencing at the Indiana shore, without reference to their chronological order, the work being necessarily intermittent on any particular pier, inasmuch as it was attempted to bring each in turn above ordinary stage of water as soon as possible after the foundation was obtained, and then proceed to others which were in a less forward state.

Cylinder Piers 1 and 9.—Each pier is composed of two cylinders, 7 feet diameter under coping, with a uniform batter of $\frac{1}{2}$ inch to a foot. The cylinders are formed of wrought-iron sheets $\frac{3}{6}$ and $\frac{1}{2}$ -inch thick.

The lower or cutting edges are made of segmental castings, 9 inches wide at top, and tapered to an edge at bottom. On the circular shelf thus afforded just inside the shell is laid a 13-inch brick wall extending

to the top of cylinder.

The cylinders are completely filled to within 15 inches of the top with hydraulic cement-concrete thoroughly rammed. The proportions of this concrete are, 1 part cement, 2 parts sand, and 6 of broken stone which will pass through a 2½-inch ring. This concrete was put in at Pier 9 with the clam-shell dredge used in excavation, and with funnel-chutes around the edges. Portland cement was used in the concrete for the lower 10 feet of cylinders.

On top of the concrete was set a course of stone projecting two inches out of the cylinders, and on this was set the coping course. By this arrangement no vertical pressure is allowed to come on the wrought-

iron shell.

PIER 1.—Work commenced in earnest December 10th, 1883, and was prosecuted until the 25th, when the cylinders struck rock. They were at that time 13 feet high. Nothing further was done till April 14th, 1884, when an order was issued to take them out and set them closer together to accommodate new design of bridge. After hoisting out the cylinders the slate was excavated until the bed-rock was reached and then they were lowered into place, and on May 1st the first cylinder was leveled and brick-laying and concreting commenced. This was continued until May 29th. Nothing more was done until July 9th, when work was carried on ten days and again stopped.

On August 6th the pier was again taken in hand, and on the 23d concreting was finished and the pier left. The coping was set on

February 23d, 1885, thus finishing the work on Pier 1.

PIER 9.—Excavation began September 22d, 1884. Work on this pier was carried on steadily, with various discouraging mishaps due partly to the nature of the soil through which the cylinders were sunk, and partly to the insufficiency of the contractor's plant. Excavation was done by aid of pumps in the interior of cylinders. When the water could no longer be kept down a clam-shell dredge was used.

The brick-wall linings were built up continuously as the sinking progressed, giving a sufficient load, in addition to the weight of cylinders, to cause them to sink rapidly when excavation progressed

favorably.

The earth around the cylinders was caving in most of the time, due to the running in of the sand on the lower level on the shore side. This caused them to slide and tip slightly, but whenever this occurred it was corrected by jacking the cylinders over during sinking.

was corrected by jacking the cylinders over during sinking.

The cutting edges struck rock May 12th, and after cleaning off the surface the concreting was rapidly pushed and the cylinders filled, and

last stone in coping was set on July 6th, 1885.

RIVER PIERS.—These average 9 feet wide by 36 feet long on top under coping, and 106 to 120 feet high, with a batter all around of one-half inch to the foot.

All these are masonry piers resting on rock. Although without ornamental work of any kind, they present an appearance of solidity which, considering their height, is seldom exceeded.

In obtaining the foundations several methods were pursued. On the Indiana side the surface of the bottom was bare, and the strata of limestone on which it was designed to rest the piers dips downward towards the Kentucky side at an angle of about seven degrees with the

horizontal.

The limestone is overlaid with thin sheets of slate, until Pier 7 is reached, where it runs out. This slate was easily blasted out, and the surface of the limestone immediately under it proved for a thickness of from ½ to 2 inches nearly as hard as flint.

The sand and gravel overlying the slate commenced at Pier 3 with a thin covering, and increased in depth towards Kentucky, until at Pier 8, 15 feet was encountered.

PIER 2.—As already stated, the foundation for this pier was obtained dry at a low stage of water, nothing but a puddle wall being used at any

time in setting the lower courses of stone.

Work on the wall was commenced in earnest May 1st, 1884, and prosecuted vigorously, with few interruptions, until July 11th, when it was ready for coping. The first 40 feet was built with derrick on shore, and then as water rose, use was made of derrick boats for 25 feet more. The remainder was carried on by derrick set on the pier itself, and jacked up as the work progressed.

On July 9th, 1885, the coping course was laid, finishing the pier.

PIER 3.—At this pier the foundation was, as previouly mentioned, nearly finished in 1881, when the rising water filled the caisson.

This caisson was an octagonal box, of 2-inch vertical pine plank thoroughly caulked. Inside rings of 10 by 12-inch timber were placed every four feet in height, braced by oak timber bolted on top horizontally across the corners. The holding-down key-bolts passed through these braces into the rock.

This caisson was entirely lost in the high water of 1882.

A new one was begun October 23d, 1883, in plan also octagonal, of 2-inch plank, but laid flat, with hot pitch between the layers. The lower four feet was of 12-inch-wide plank, next four feet of 10-inch plank, next four feet of 8-inch, and next 6-inch plank, each layer being securely spiked to the one next below. This was jacked down as fast as built, and when finally in place on bottom was bolted securely to rock on outside.

As with the other box, the bottom was no sooner reached and all made secure, than the river rose and drove them out. Nothing more was seen of the caisson until after the great rise of February, 1884. On May 27th it began to show again, and on July 22d the water had subsided enough to work, and pumping was commenced and mud excavated.

The next day the first stone was set in this pier.

This work was carried on about two-thirds of the time until November, when it was stopped a few courses below the coping.

During the first week in June, 1885, the pier was finished by setting the last coping stone June 8th.

PIER 4.—This foundation, commenced June 26th, 1884, was put in

ith a coffer-dam, built as follows:

Two rectangular frames of 12 by 12-inch timber were made, the outside frame about ten feet larger all around than the inside one. These were braced and bolted together in the same horizontal plane. Two other frames were then made, and braced together about four feet apart, of such size that the outside frame was three feet smaller all around than the outside frame of the former pair, and the inside frame three feet larger than the other inside frame.

The last pair was then put in place, ten feet vertically above the first pair and 1½ inch plank sheet piling driven close inside the frames, the space filled with puddle forming a wall ten feet thick at bottom and four

feet thick at top. The whole rested on gravel.

No success in pumping dry was obtained until the inside sheet piles

were driven to rock.

July 1st high water claimed the dam, but on the 15th day of the same month gave it up, and pumping-out commenced, and excavation was completed and first stone set July 19th. Three feet depth of gravel was encountered, and three feet of slate was blasted out before reaching bed-rock.

Masonry was laid continuously, with a few interruptions, during July and August, and again during November and the first half of December, when the pier was nearly completed.

During the first week in April, 1885, this pier was again taken up,

and the last stone set April 9th.

PIER 5.—This foundation was obtained by means of a timber-dam

with puddle outside.

The lower four feet of dam was composed of courses of 12 by 12-inch timbers, securely connected with each other by vertical bolts, and the upper section of six feet in similar courses of 10 by 10-inch timber, all being flush on the outside.

July 18th the box was floated into position. Sheet piling was then put in on outside and driven to rock, and puddle placed all around out-

side of piling. This proved a very satisfactory dam.

August 6th the water rose enough to stop work for ten days, at the

end of which time pumping was commenced.

As above stated, puddle was found necessary, and after putting this around the outside on August 17th, excavation proceeded successfully to completion on August 23d, when the first stone was set.

Eighteen inches of gravel and three feet of slate were encountered

in this foundation.

Stone-setting progressed fairly well, work being carried on about one-half of the time, until November 5th, when it was stopped for the winter.

On March 13th, 1885, work was again commenced, and continued

until April 21st, when the last coping stone was set.

PIER 6.—The foundation for this pier was obtained by the use of an open box framed at site. This was commenced July 31st, 1884, and made 8 feet high, of vertical 1½-inch plank with frames of 12 by 12-inch timber every four feet, to which the planks were spiked and then caulked.

When this was sunk another four-foot section was added, and August 6th work was stopped by the rise of water. During this interval of rest, borings were made to determine how much gravel and rock were

to be encountered. The former proved to be 12 feet in depth and the slate 4 feet.

Excavation commenced August 28th and was prosecuted successfully until September 11th, when it was completed and the first stone set.

Laying stone was pushed vigorously until October 15th, when work was suspended for a month and again prosecuted from November 14th to December 13th. From this time the masonry was carried up in a desultory manner a few days at a time until April 2d, 1885, when the last coping stone was set, completing the pier.

PIER 7.—This foundation was taken in hand by the Bridge Company

to insure its completion during the current season.

Two rows of piles were driven 7 feet apart, and 7 feet center to center in the rows. The inside rectangle thus formed was 20 feet wider and 25 feet longer than the proposed dam to be placed inside.

Between the rows were placed wales 2 to 3 feet apart vertically, 6 by 12-inch timber on outside of the inside rectangle of piles and 6 by 10-

inch on the inside of outside rectangle.

Three-inch oak sheet piling was then driven close to the wale pieces of the inside row 4 feet into the gravel, and 2 inch planks on the outside wales were driven just enough to penetrate the gravel. This, when completed, left a space between sheet piling 4 feet inside all around, which was then filled with puddle.

The caisson was an open box of vertical 2-inch plank spiked on rectangular frames of 12 by 12-inch timbers placed four feet apart. The bottom frame was in two courses of 12-inch and the others single. The box was first built 8 feet high, and as sinking progressed another sec-

tion of 7 feet was added.

The space between puddle walls and caisson was 10 feet wide all around, except at the down stream end, which was made 15 feet.

On August 29th, 1884, soundings having been completed, pile-driving commenced, and on September 19th puddle dam was completed. The next day the caisson was put together in place and excavation commenced and pushed night and day until October 8th, when bed-rock was cleared off.

Considerable time was lost from breakage of pumps, but no further delays of consequence occurred, and the ease with which the foundation was obtained confirmed the judgment used in adopting the method followed for this foundation. About fourteen feet of gravel and sand were excavated, and overlying this was a layer of 4 feet of loose rock which had washed down from work done on canal above in 1869. No slate was found.

Masonry was laid continuously from the time the bed-rock was reached for a month, when work was virtually suspended for the winter, the wall extending above ordinary high water.

On April 14th, 1885, work was again started, and continued until

May 28th, when the last stone was set.

PIER 8.—The foundation for this pier was put in by the Bridge Company for the same reason as in case of Pier 7.

Owing to expected high water a pneumatic caisson was used to ob-

tain this foundation.

Soundings were taken and borings made with a diamond drill during the first of September, 1884. In October guide piles were driven near the site for platforms.

On November 14th the caisson was launched on the Kentucky shore, and on the 16th it was in place. This caisson was built with vertical

sides 3 feet thick, of 12-inch timbers placed lengthwise. The working chamber was 7 feet high from cutting edges to roof. The latter was 5 feet thick in 12-inch layers; lower course lengthwise, next crosswise, the next two diagonal, and the top course lengthwise.

Posts were framed for open section above the roof, but as the stage of the water allowed work to be pushed without interruption, the masonry could be carried up faster than the caisson was sunk, and the

sides were not needed.

On November 20th the bottom floor was knocked out and excavation and stone-setting commenced on the 22d. Sand-blowing was begun and excavation was carried on without serious interruption until rock was struck on the upper end December 4th. The rock was cleared off and the down-stream end of caisson blocked up carefully, and concreting commenced next day.

Laying stone was suspended on the 8th. The filling of the working chamber was completed December 24th, and the air shafts removed and

their places filled.

About fifteen feet of gravel and sand were encountered in this founda-

tion, but no slate.

The work, which had been carried on night and day during the sinking and concreting, was now stopped for two weeks until January 9th, 1885, when masonry was laid for a week, and also a week's work was put in during the early part of February, extreme cold weather preventing continuous stone-setting.

On April 23d this pier was again taken in hand, and work progressed

continuously until June 6th, when the last stone was set.

SUPERSTRUCTURE.

In December, 1883, the final contract for superstructure was executed with Messrs. Charles Macdonald and Edward Hemberle, Members Am. Soc. C. E., on the basis of specifications given in Appendix, and design as shown in skeleton on Plate XVI. The general plans of details were to be furnished from the office of Mr. Hemberle, at Chicago, and the shop work was to be done at the shops of Messrs. Kellogg & Maurice, Members Am. Soc. C. E., at Athens, Pa.

On February 16th, 1885, the writer was directed by the Chief Engineer, Mr. John MacLeod, to assume charge of the work, with general supervision of drawings, bills of material, inspection of material at mills and shops, and of erection, with authority to represent him in all matters of detail.

In accordance with these instructions, the examination of designs was immediately entered upon at Chicago, and all stress sheets and drawings, both general and detail, were thoroughly checked over as regards conformity with specifications and skeleton designs upon which contract was based.

This work was carried on without interruption at Chicago, Buffalo

and Athens until the last pound of material was ordered. No unusual problems presented themselves in course of design, excepting those natural to the system of web members, and the series of cantilever spans continued to such an unusual extent.

Among the noticeable features of design may be mentioned the use of steel pins 9 inches diameter at pier posts, the size of these posts themselves, which are 30 by 36 inches, using 36-inch steel plates 38 feet long, the largest steel plates ever rolled in American mills. Reference to the stress-sheet tables in the Appendix will also show some sizes which are not often encountered in ordinary bridges.

The entire cantilever system is of steel, with the exception of the floor, which is of iron.

The draw-span and the 240-foot span are composite, iron and steel in the trusses, with iron-floor systems. Early in the prosecution of the work, and as soon as Mr. Hemberle had finished the design of the cantilever system, he disposed of his interest in the contract to the Union Bridge Company, and later Mr. Macdonald also conveyed his interest to them, and from that time the entire contract was in their hands.

In placing the orders for the material, much discrimination was necessary to so scatter it that large quantities might be concentrated at shops simultaneously, so that no unnecessary stoppage might occur due to the delays of mills. In obtaining the iron required this was fairly successful, but in case of the steel prompt deliveries were not the rule. The causes which brought this about, however, were more due to want of duplication and the multiplicity of sizes incident to the design than to the mills.

The orders for steel angles, and bars for tension members, were placed with the Cambria Iron Company. Those for steel plates with Messrs. Carnegie Brothers & Co., who obtained their slabs from the Pennsylvania Steel Company, at Steelton, Pa.

The draw-span was sublet to the New Jersey Steel and Iron Company, who bought their steel billets and rolled their own angles, and had the steel plates from Carnegie's.

No steel-shape iron was used in the work.

By reference to the Appendix a complete record of tests made on the steel used in the structure may be seen, together with accompanying notes as to peculiarities observed, and deductions therefrom, made necessary in course of the prosecution of the work. In the shops, construction was carried on as vigorously as shipments of material from the mills would allow, and the first shipment of 175 tons finished iron was made to bridge site in May, 1885.

During May and June false-work material was arriving at the river, and in July and August the false-work for 360-foot span was put in. This false-work was about one hundred feet high, and the water was at a very poor boating stage.

September 2d raising was commenced with iron-floor system. Up to this time 410 tons of iron had arrived.

During September 200 tons of steel for this span was received, and October 7-8th raising of the trusses was commenced.

November 12th pile-driving for false-work of Indiana 260-foot cantilever anchorage span was started, and on November 23d the erection of 360-foot span being completed, the 160-foot cantilever arm toward Kentucky was commenced and removal of false-work begun.

On December 3d 140 feet of cantilever was complete, as likewise was the false-work of 260-foot anchorage span. December 15th raising of Indiana cantilever, next 360-foot span, was commenced, also falsework for Kentucky 260-foot anchorage span. December 26th some missing parts required having arrived, erection of Indiana 260-foot span began.

January, 1885, opened cold, but work was pushed as much as possible, and on the 15th pits for sills of false-work of 240-foot Indiana shore span were started. All work in iron-raising was stopped by running ice, January 7th, on account of inability to transfer material barges. Progress was made, however, on both banks of river. On January 18th an iron-hull tug-boat was secured to handle barges, and work resumed on erection, and the 260-foot span was completed next day. The running out of 160-foot cantilever toward 360-foot span was immediately started, and as soon as its length reached 140 feet the other cantilever was resumed and both pushed out simultaneously.

On February 9th the junction was effected without difficulty, the device for adjustment shown by Plate XVII working very satisfactorily.

The Indiana traveler was removed and sent over to the Kentucky anchorage span, and the other traveler was run back to Kentucky cantilever first completed, to be ready to meet the other arm.

Meantime heavy ice had been running, and from the first had gorged somewhat above the false-work of the 260-foot span, giving much anxiety

lest it should be carried out; and that span having during the early ice stage no counterbalancing cantilever on its end, would, from its design, naturally collapse in event of losing the false-work. Immediate attempts were made to stiffen the trusses for such contingency, but the lower works withstood the jamb, being held down by the weight of ironwork.

As soon as safe, after enough weight of cantilever had been attached to the span, the removal of false-work was commenced at anchorage end. The two upper tiers for about one hundred feet had been sent down, when, January 24th, relieved of its superimposed weight, the lower tier for 100 feet rose with the ice and went out in a body and floated down the river erect as when in place. Finally, after floating in a vertical position about two miles, the mass collapsed into individual bents, in which shape the timber was caught some ten miles below.

This might have proved disastrous for the men, who were all over the work, but the slowness and apparent deliberation attending the movements of the false-work gave time for easy escape, which was effected without casualty.

February 12th, false-work for 240-foot shore-span was begun, and on the 17th erection of Kentucky anchorage-span commenced. The latter was completed on the 26th, and cantilever pointing toward Indiana was entered upon. This work was soon stopped, owing to delay in receipt of two eye-bars, and the other cantilever approaching this was projected out as far as possible, and on March 10th its traveler was removed.

On the same day the false-work for 240-foot span was completed and floor-raising was commenced. On the 19th work was again commenced on cantilever.

Rough and cold weather prevented continuous or effective work during the remainder of the month, and the river rose daily, until, on April 10th, it reached an elevation of 158 feet, or but 13 feet below the highest known high-water mark. On this day was celebrated the driving of the last pin of cantilever system, and next day the 240-foot span was swung. As fast as each span had been erected the wood-work of deck and highway, floors and fences, was commenced and pushed rapidly.

The false-work for draw-span between 260-foot Indiana anchorage-span, and 240-foot shore-span, was put in up and down stream, and was finished April 21. Erection then commenced, and was completed May 22d, and on the 26th the span was swung around into line, for the first

time allowing foot passage from shore to shore. June 8th the laying of railroad iron was commenced and finished on the 14th.

On June 21st the bridge was completed, and next day vehicles passed over for the first time. On July 15th the formal test of the structure was made by running over the spans with as mearly the specified loads as possible to obtain, these loads being so placed as to produce the conditions which the original calculations had shown would give the greatest stresses. Deflections were observed by taking sights with Y-levels placed on the piers on level rods held at critical points. These observations were subsequently compared with levels taken after all loads had been removed, and deflections thus ascertained. A record of results obtained will be presented to the Society in a future communication.

The following table gives results of a series of observations taken on the expansion and contraction of the openings in the slip joints marked b, Plate XVII, due to effect of temperature. The measurements on the iron were taken at point marked x in d all sketch, and for the wood at opening in highway floor just adjacent. The floor is so laid that the sun cannot at any time shine directly on the bottom chord where measurements were taken. A trap-door in the floor was left over every expansion joint to allow examination at any time. The measurements were all carefully taken by same observer, and the same thermometer was used throughout. To obtain the temperature of the iron, the thermometer was laid down, with the bulb resting on the member, out of the sun. The air temperature was also taken under the floor in the shade.

The question of proper amount to allow in slotting stringers and corbels of highway floors, where connected with the iron, was at first a vexátious one, as allowance had to be made for 520 feet. These observations were made by direction of the writer to determine whether the amount allowed was sufficient; and also to learn, if possible, if the

movement of the iron under the wood was perfectly free.

As might be anticipated, the expansion shows itself at the openings in sudden slips, and from the results of observations there is little doubt that considereble bending sidewise sometimes occurs, due to friction somewhere before the movement takes place. As a matter of fact the writer has had the slip take place under the rule, being perfectly perceptible, and to the extent of $\frac{1}{3}$ inch.

The results show quite clearly that, owing to circumstances of position of sun with reference to the two trusses, the one expands more or less than the other, and it is also interesting to calculate the difference in deflection of the trusses under the varying circumstances, as may be easily done from the expansions and contractions, as shown in the table. Of course there are some variations from results to be anticipated, but the state of the weather would govern in some cases, and the unknown friction in some others.

The distance between fixed points is 360 feet plus 480 feet, or 840 feet, and the expansion takes place at both points b, sometimes more in one and sometimes more in the other, so that only the totals give the absolute expansion for the whole distance between fixed points.

Table of Expansions and Contractions Due to Changes in ${\it Temperature}.$

Tiu	ne.	Tru K	168,	Tru In		Tru	188,	Tru	188,	Ter	mp.		tal st uss		tal est	
Day, 1886.	Hour.	Iron.	Wood.	Iron.	Wood.	Iron.	Wood.	Iron.	Wood.	Air.	Iron.	Iron.	Wood.	Iron.	Wood.	Weather.
Aug. 10. 1 Aug. 11. 1 Aug. 12. 1 Aug. 13. 1 Aug. 14. 1 Aug. 16. 1 Aug. 17. Aug. 18. 4 Aug. 19. 1 Aug. 20. 1 Aug. 20. 1 Aug. 21. Aug. 25. 1 Aug. 25. 1 Aug. 27. Aug. 28. 1 Aug. 28. 1 Aug. 27. Aug. 28. 1 Aug. 28. 1 Aug. 27. Aug. 28. 1 Aug. 28. 1 Aug. 27. Sang. 28. 1 Aug. 30. 1 Aug. 31. 1 Sept. 1	8 A.M. 22 M. 5 P.M. 15 P.M. 12 M. 15 P.M. 15 P.M. 15 P.M. 15 P.M. 15 P.M. 16 P.M. 17 P.M. 18 P.M. 18 P.M. 17 P.M. 18 P	DII = 4 73 73 4 73 73 73 73 75 4 73 75 75 4 4 75 4 75	ILLILILI ILL	011 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	08 12 1 1 2 1 1 2 1 1 2 2 1 1 1 1 1 1 1 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 1 2	011 10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5	D. L.	011 1000 000 000 000 000 000 000 000 0	M 10	Deg 84 97 89 22 95 86 1 84 99 91 4 7 8 92 95 8 99 94 7 8 8 99 95 7 8 99 97 8 8 99 97 8 8 99 97 8 8 99 8 9	Deg 75-68-98-88-98-88-98-88-98-88-98-88-98-88-98-88-98-88-98-88-98-88-98-88-8	100 C 200 C	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	In . 10 10 10 10 10 10 10	In. 4 33 4 33 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	Cloudy Clear. Cloudy Fair. Cloudy Fair. Cloudy Grain. Grai
Sept. 3.	12 M. 7.30 A.M. 12 M. 8 A.M. 12 M. 5.30 P.M. 7.30 A.M	4 4 4 4 16 4 3 4 16	111	55000 14-00-00 15 616	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	4.00-10-40 4.00-10-40 4.00-10-40 5.00-10-40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 6 6 6	214 114 22 124 214 214 214 214	72 74 88 79 90 88 65	70 80 72 94 87 59	91 10 91 91 91 91 81 10	33	10 / 11 10 / 10 10 10 10 10 11 10	37 4 18 3 3 4 3 4 3 4 8 4 8 8	***

STRESS SHEET TABLES TO ACCOMPANY STRESS DIAGRAMS PLATE XVIII. -- MATERIAL, STEEL.

160-FOOT CANTILEVER.

Member.	Ma	rk.	Required. section.	Material used.
	-		Sq. Inches	
p chord	\mathbf{U}_{o}	\mathbb{U}_2	68.3	$\frac{2 \text{ bars } 7 \times 1_{16}^{7}}{2} \cdot \frac{1}{7} \times 1_{16}^{7}$.
	$U_{\mathfrak{g}}$	U_4	51.0	2 " 7 × 1 1. 2 " 6 × 2. 2 " 6 × 2 1.
**	U.	U_a	30.0	4 " 6×11.
	Ua	U,	17.25	2 " 6 × 1,7.
	U,	Us	11.8	2 " 5 × 1,3.
tom chord	Lo	L_2	76.0	2:0 × 3. 2:20 × 11.
"	\mathbf{L}_2	\mathbf{L}_4	57.0	4 L's 4 × 4 × 49 lbs. 2 20 × 16. 2 20 × 16.
			1	4 L's 4 × 4 × 49 lbs.
**	L_4	Lo	33.2	2 20 × 1. 4 L's 4 × 4 × 33 lbs.
**	\mathbf{L}_a	\mathbf{L}_{τ}	20.0	2 20 × 16. 4 L's 3 × 3 × 21 lbs.
	L,	$\mathbf{L_s}$		2 12 × 5.
	Ua	M,	21.1	4 L's $2\frac{1}{4} \times 2\frac{1}{4} \times \frac{5}{16}$. 2 bars 7 × $1\frac{1}{4}$.
	M,	L	20.0	2 " 7 × 1,7
***************************************	Ug	Ma	19.0	2 " 6 × 14.
	M2	T 3	17.6	2 " 6 × 11.
*********	U.	L ₄	20.06	2 " 6 × 111.
	M's	L	18.07	2 " 6 × 116.
	Ua	L	12.08	2 " 5 × 13.
***************************************	U ₇	L,	10.1	2 " 41 × 16.
*************	77			4 " 41 × 11.
*******	Us	La	18.8	
	\mathbf{L}_{o}	M,	21.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	\mathbf{M}_{1}	U_2	15.2	4 15 × 16. 4 L's 3 × 3 × 18 lbs. \
*	L_2	\mathbf{M}_3	20.0	2 15 × 1. 4 L's 3 × 3 × 21.5 lbs.
* *************************************	M_3	U_4	15.14	2 15 × 16. 4 L's 3 × 3 × 16.
"	\mathbf{L}_4	M_{δ}	15.7	$2 \frac{14 \times 5}{16}$. $4 \frac{1}{16} \times 2\frac{1}{2} \times 2\frac{1}{2} \times 17.5 \text{ lbs.}$
4	M_5	\mathbf{U}_{6}	11.23	2 14 × 5.
	$\mathbf{L}_{\mathbf{g}}$	\mathbf{U}_{τ}	12.1	4 L's 2½ × 2½ × ½ 2 12 × ½ 2 12 × ½
	\mathbf{L}_{7}	\mathbf{U}_{s}	27.2	4 L's 2½ × 2½ × 15 lbs. 2 15 × ½.
anondone		35	0.0	4 L's 3 × 3 × 30.5.
aspenders	L	M,	6.2	2 bars 3½ × ½.
**	La	Ma	6.2	**
***********	\mathbf{L}_{s}	Ma	6.2	**

360 FOOT SPAN.

Member.	Mark.	Required section	Material used.
op chord	Uo Us	71.93	1 24 × 4. 2 18 × 4. 2 L's 3 × 3 × 4. 2 L's 4 × 4 × 2. 2 has 7 × 14.
	U_2 U_4	66.1	2 bars $7 \times 1\frac{1}{2}$. 2 " $7 \times 1\frac{7}{16}$. Same plates and angles. 2 bars $6 \times 1\frac{1}{16}$. 2 " $6 \times 1\frac{7}{16}$.
	U4 Us	63.32	1 24 × 1 2 18 × 1
66	U _s U _s	62.72	2 L's 3 × 3 × 3. 2 L's 4 × 4 × 41 lbs. 2 bars 6 × 13. 1 24 × 3. 2 18 × 1.
a	Us Us	62.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Bottom chord	L_o L_2	80.3	$2 \text{ L's } 3 \times 3 \times \frac{3}{4}$. $2 \text{ L's } 4 \times 4 \times 36 \text{ lbs.}$ $4 20 \times \frac{3}{4}$.
** *********	L_2 L_4	73.3	4 L's 4 × 4 × 50.7 lbs. 2 20 × 3.
**********	L_4 L_6	68.1	2 20 × 8. 4 L's 4 × 4 × 45.8 lbs.
K *	L_a L_a	66.89	4 20 × 8. 4 L's 4 × 4 × 45.2 lbs.
	Ls Ls	66.64	4 20 × 8. 4 L's 4 × 4 × 42 lbs. 4 20 × 8
Web	$\begin{array}{ccc} U_0 & \mathbf{M} \\ \mathbf{M}_1 & 1_{12} \end{array}$	27 25.6	$\begin{array}{l} 4\ 20\ \times\ 3. \\ L's\ 4\ \times\ 4\ \times\ 42\ lbs. \\ 4\ bars\ 6\ \times\ 1_{1}^{1}, \\ 2\ \ \ \ 5\ \times\ 1_{1}^{1}, \\ 2\ \ \ \ \ 5\ \times\ 1_{1}^{1}, \\ 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
66	$ \begin{array}{ccc} U_2 & M_3 \\ M_3 & L_4 \\ U_4 & M_5 \end{array} $	22.3 21	4 " 5×11. 4 " 5×11.
**		17.64	4 L's 3 × 3 × 26.5 lbs.
** ************************************	M ₅ L ₆	17.0	2 12 × 16.
**	Ua My	14.45	2 12 × 1. 4 L's 24 × 24 × 17 lbs.
**	M ₇ L ₈	14	
	Us Mo	14.7	4 L's 21 × 21 × 4.
·	L ₀ M ₁	33.7	4 L's 4 × 4 × 34.2 lbs.
*	M_1 U_2	28.86	$2 16 \times \frac{1}{2}$. $4 \text{ L's } 4 \times 4 \times 32 \text{ lbs}$.
** **** *******************************	L ₂ M ₃	27.3	$2 15 \times {}^{9}_{16}$. $4 \text{ L's } 3 \times 3 \times 26 \text{ lbs.}$
	M ₃ U ₄	23.1	2 15 × 16.
**	L ₄ M ₅	21.7	$2 15 \times 16$. 4 L's $3 \times 3 \times 21.5$ lbs.
*	M ₅ U ₆	16.7	$\begin{array}{c} 15.3 \times 10.5 \times 10$
*	Lo. My	15.1	2 14 × 18. 4 L's 3 × 3 × 18.
**	M ₇ U ₈	15.8	4 T/9 3 V 3 V 8
Suspenders	$\begin{array}{ccc} \mathbf{L_8} & \mathbf{M_9} \\ \mathbf{L_1} & \mathbf{M_1} \end{array}$	14.1 6.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
45	L ₂ M ₃ Etc.	6.2	2 Dars 3½ × Å.

260-FOOT CANTILEVER.

Member,	Mark.	Required section.	Material used.
Pier post	Lo Uo	Sq. inches	9.94 × 11
*		77.4	4 L's 4 × 6 × 70 lbs.
Top chord	Uo U2	74.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
",	U2 U4	68.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"	U, U ₆	64.1	9 16 × 1
"	Ua Us	61.7	$\begin{array}{c} 2 \text{ L's } 3 \times 3 \times \frac{1}{2}. \\ 2 \text{ L's } 4 \times 4 \times \frac{2}{1}\frac{1}{6}. \\ 1 24 \times \frac{3}{4}. \\ 2 16 \times \frac{3}{6}. \end{array}$
	Ua Ua	70.0	$\begin{array}{c} 1 \ 24 \times 3. \\ 2 \ 16 \times 3. \\ 2 \ 16 \times 3. \\ 2 \ 1's \ 3 \times 3 \times \frac{1}{3}. \\ 2 \ 1's \ 4 \times 4 \times 51 \ 1bs. \\ 1 \ 24 \times 3. \\ 2 \ 16 \times 3. \\ 2 \ 16 \times 3. \\ 2 \ 1's \ 3 \times 3 \times \frac{1}{3}. \\ 2 \ 1's \ 3 \times 3 \times \frac{1}{3}. \\ 2 \ 1's \ 3 \times 3 \times \frac{1}{3}. \end{array}$
	U9 U10	89.2	2 L's 4 × 4 × 38.5 lbs. 1 24 × 1
"	U10 U11	48.75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
··.	U,1 U,2	35,1	1 24 × 16.
Bottom chord	L. L.	81.3	$\begin{array}{c} 2 \ 16 \times 1_{6}, \\ 2 \ L'8 \ 3 \times 3 \times \frac{3}{8}, \\ 2 \ L'8 \ 4 \times 4 \times 1_{6}, \\ 6 \ 20 \times \frac{1}{8}, \\ 4 \ L'8 \ 4 \times 4 \times 53.3 \ lbs. \end{array}$
**	L_2 L_4	75.3	4 L's 4 × 4 × 53.3 lbs. 4 20 × 116. 4 L's 4 × 4 × 50.8.
"	L. L. L.	67.9 63.9	4 20 × §. 4 L's 4 × 4 × 44.8 lbs.
**	L _s L ₉	66.0	2 20 × ½ 4 L's 4 × 4 × 53.5 lbs. 4 20 × ½ 4 L's 4 × 4 × 53 lbs.
	L, L,	53.8	4 L's 4 × 4 × 53 lbs, 2 20 × 13 4 L's 4 × 4 × 53 lbs,
**********	L,0 L,1	44.0	4 L's 4 × 4 × 53 lbs. 2 20 × 1. 4 L's 4 × 4 × 35 lbs.
** *********	$\mathbf{L_{11}} \ \mathbf{L_{12}}$	30.3	2 20 × 13.
	L,2 L,3	23.8	2 20 × 1.
Web	$\begin{array}{cccc} \mathbf{U}_{o} & \mathbf{M}_{1} \\ \mathbf{M}_{1} & \mathbf{L}_{2} \\ \mathbf{U}_{2} & \mathbf{M}_{3} \\ \mathbf{M}_{3} & \mathbf{L}_{4} \\ \mathbf{U}_{4} & \mathbf{M}_{5} \\ \mathbf{M}_{5} & \mathbf{L}_{6} \\ \mathbf{U}_{6} & \mathbf{M}_{7} \\ \mathbf{U}_{8} & \mathbf{L}_{9} \\ \mathbf{U}_{9} & \mathbf{L}_{10} \end{array}$	20.47 18.85 18.02 16.63 15.0 11.9 11.3 8.55 8.93	\$\frac{1}{2} \frac{1}{2} \frac
"	U10 L11	10.64	2 10 × 15. 4 L's 2½ × 2½ × 15. 2 13 × 15.
**	U11 L12	15.54	2 13 × 16. 4 L's 3 × 3 × 18.5 lbs.
"	$\mathbf{U_{12}}\ \mathbf{L_{12}}$	12.33	2 11 × 5 16.
End post	U12 L13	39.1	4 L 8 $2\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{16}$, 1 2 I $\times \frac{1}{3}$, 2 16 $\times \frac{1}{16}$, 2 L's 3 $\times 3 \times \frac{7}{16}$, 2 L's 4 $\times 4 \times 35$, 4 lbs,

260-FOOT CANTILEVEB-(Continued.)

Member.	Mark.	Required section.	Material used.
		Sq. inches.	
Web	Lo M1	22.0	$2 15 \times 3$. $4 \text{ L's } 3 \times 3 \times 27 \text{ lbs.}$
"	M_1 U_2	16.8	2 15 × 1. 4 L's 3 × 3 × 5.
«	L, M,	18.1	2 13 × §. 4 L's 3 × 3 × 22.8 lbs.
***************************************	M_3 U_4	14.8	2 13 × ^a ₁₈ . 4 L's 3 × 3 × 18 lbs.
** ************************************	L ₄ M ₅	15.7	2 12 \times 16. 4 L's 2\(\frac{1}{2}\) \times 2\(\frac{1}{2}\) \times 20.5 lbs.
** ************************************	M ₅ U _a	12.4	2 12 × 5 4 L's 2 × 2 × 2 × 5 4
** ************************************	L ₆ M ₇	11.0	2 11 × 5 4 L's 2½ × 2½ × 5 4
**	M_7 U_8	10.1	2 11 × 16. 4 L's 2} × 2} × 16.
**	L _s U _o	8.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"	L, U,0	9.7	$2 \stackrel{?}{10} \times \stackrel{?}{\stackrel{?}{10}} \times \stackrel{?}{10}$. 4 L's $2 \stackrel{?}{1} \times 2 \stackrel{?}{1} \times \stackrel{?}{10}$.
**	L10 U11	11.0	$2 \frac{10 \times {}^{2} \times {}^{2} \times {}^{2} \times {}^{2} \times {}^{16}}{4 \text{ L's } 2^{\frac{1}{2}} \times 2^{\frac{1}{2}} \times {}^{\frac{6}{16}}}.$
44	$\mathbf{L_{11}}\ \mathbf{U_{12}}$	12.8	2 11 × 16. 4 L's 2½ × 2½ × 16.
Anchor rods	*****	****	4 bars 2-inch square iron.

365-FOOT DRAW SPAN.

Top chord	U.	U.	26.86	2 bars 5 × 13.
	**	**	05 00	2 " 5 × 1 6.
***********	Uo	U_2	25.08	4 " 5 × 1.
** **********	U_2	U.	22.1	2 14 × 76. 4 L's 3 × 3 × 25.3 lbs.
44	U.	Us	25.83	2 14 × ½.
***************************************	04	0 8	20.00	4 L's 3 × 3 × 30 lbs.
** ************************************	Un	Ua	26.03	2 14 × 1.
		- 0		4 L's 3 × 3 × 30 lbs.
**	Ua	U.	21.98	2 14 × 1.
**	Uz	Us	20.07	4 L's 3 × 3 × 25 lbs.
Bottom chord	Lo	Lo	30.0	2 14 × 1
44	Lo	L,	29.1	4 L's 31 × 31 × 1.
				2 14 × 1.
11	L_2	L	22.4	4 L's 3 × 3 × 29.8 lbs.
44	La	L	23.78	2 14 × 1.
				4 L's 3 × 3 × 32.2 lbs.
41	\mathbf{L}_{n}	La	21.68	2 14 × 3. 4 L's 3 × 3 × 28 lbs.
**	L	L,	21.15	4 L's 3 × 3 × 28 lbs.
** **********	L	La	14.26	2 14 × 3.
46	La	Lo	12.91	4 L'8 3 × 3 × 5.
Web	Uo	Lo	37.4	2 18 × ½.
				$4 \text{ L's } 4 \times 4 \times 48.5 \text{ lbs. iron.}$
** *************	Uo	M,	15.67	2 bars 5 × 1,1
** ************************************	M,	L_2	14.85	2 " 4×1.
44	U2	M,	13.70	2 " 5 × 13.
** ************************************	M ₃	L	11.67	2 " 5 × 1,3.
** ************************************	U4	L	7.88	2 " 4×1"
End post	Us	L	26.2	2 14 × 4.
		-		4 L's 3 × 3 × 30.5.
Suspender	Us	La	6.12	2 bars 4 × 1.
*** *		20.	***	2 12 × §.
Web	Lo	M,	16.0	4 L's 2½ × 2½ × 17.7.
44	M,	U ₂	12.32	2 12 × 5.
**	*	30	10 17	4 L's 21 × 21 × 16.
**	La	M_3	13.47	2 11 × 16
**	3.6	***	11 05	4 L's 2½ × 2½ × 16.6 lbs.
** **************	M ₃	U.	11.85	2 11 × 16.
Suspender	L,	M.	6.12	4 L's 2½ × 2½ × 5 2 bars 4 × 1.
				2 0ars 4 × 1.
** ************************************	La	M ₃	6.12	2 . 4 × 1.

240-FOOT SPAN.

Member.	Member. Mark.			Material used.				
Top chord	\mathbf{U}_2	\mathbb{U}_4	Sq. inches. 32.5	1 22 × 3. 2 15 × 3.				
46	U.	U.	40.0	4 L's 4 \times 4 \times 33 lbs. 1 22 \times $\frac{1}{2}$. 2 15 \times $\frac{1}{16}$.				
Bottom chord	$\mathbf{L}_{0} \\ \mathbf{L}_{2} \\ \mathbf{L}_{4}$	$\begin{matrix}\mathbf{L_2}\\\mathbf{L_4}\\\mathbf{L_6}\end{matrix}$	22.54 25.9 34.0	4 L's 4 × 4 × 30.4 lbs. 4 bars 5 × 1½. 4 ' 5 × 1½. 4 ' 5 × 1½. 2 '' 5 × 1.				
End Post	\mathbf{L}_{e}	M ₁	37.7	2 " 5 × 1." 1 22 × 3. 2 15 × 3. 2 L's 4 × 4 × 28.6 lbs.				
	M,	$\mathbf{U}_{\mathbf{a}}$	34.2	2 L s 4 × 4 × 34.2 lbs. 1 22 × 3. 2 15 × 76. 4 L's 4 × 4 × 32 lbs.				
Web	\mathbf{M}_{3}^{2} \mathbf{L}_{1}^{1} \mathbf{L}_{2}^{2}	M ₃ L ₄ M ₁ M ₂ M ₃	11.7 10.0 6.06 6.06 6.06	4 L78 4 X 4 X 32 108. 2 bars $5 \times 1_{16}^{3}$. 2 '' 5×1 . 2 '' $3_{1}^{3} \times 1_{16}^{3}$. 2 '' $3_{1}^{3} \times 1_{16}^{3}$.				

160-FOOT SUSPENDED SPAN.

Cop chord	Us Us	*******	2 14 × 16. 4 L's 2½ × 2½ × 16.
***	U9 U10		2 14 × 1. 4 L's 3 × 3 × 1.
**	U,0 U,1	******	1 20 × 16. 2 14 × 8.
************	$U_{11} \ U_{12}$	*******	4 L's 3 × 3 × 3. 1 20 × 16. 2 14 × 3.
ttom chord	L_8 L_9		4 L's 3 × 3 × 1. 2 12 × 16. 4 L's 3 × 3 × 1.
**	L9 L10		2 12 × 18. 4 L's 3 × 3 × 18.
** *********	L10 L11	*******	2 12 × 76. 4 L's 3 × 3 × 16.
	\mathbf{L}_{11} \mathbf{L}_{12}		4 bars 5 × 14.
b d	L _s U ₉	******	1 18 X 1. 2 14 X 1.
	L ₂ U ₉		4 L's 3 × 3 × 19 lbs. 2 bars 4 × 1 1.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*******	2 " 4 × 116. 2 " 3 × 1.

STMMARY OF ACTUAL COST OF COMPLETED BRIDGE.

Pier No	1, cy	linder pier		\$11 040.27
66	9,	66		19 221.57
Pier	rs No. 2	to 8, inclusive, masonry piers-		
Estima	tes paid	d—stone	\$79 349.54	,
	66	freight on stone	24 602.68	
	66	laying masonry	85 253.21	
	66	and Bridge Company's pay-		
rolls	s, found	dations	53 385.62	
			\$242 591.05	
Bridge	Compa	my's labor and general expense,		
net			22 846.98	
				265 438.03
	Total	substructure		\$295 699.87
	66	superstructure, net		577 200.00
	66	cost (engineering not included)		\$872 899.87
			2	

Total number cubic yards masonry = 16 240.

Total cost of masonry per cubic yard in place, \$11.67.

Shipping weights of superstructure metal as follows, viz.:

	Iron, pounds.	Steel, pounds.
Two cantilevers 260 feet	508 760	898 756
Two cantilever spans 480 and 483 feet	782 822	1 123 222
One supporting span 360 feet	337 783	884 214
Total cantilever system 1 843 feet	1 629 365	2 906 192
One draw span above table	. 354 074	211 663
Turn-table	. 176 625	855
One span 238 feet	256 826	183 746
Cylinder pier bracing and miscellaneous	. 27 880	72 248
Total, not including engine and cast-iron orna		
ments	. 2 444 770	3 374 704

The engineering organization from beginning to the completion of structure was as follows:

Resident Engineers.

PRELIMINARY SURVEYS AND LOCATION.—Mace Moulton, April 10th, 1881, to June 2d, 1881.

Substructure.—Mace Moulton, October 10th, 1881, to May 15th, 1882.

Work suspended.

H. P. McDonald...... October 1st, 1883, to February 1st, 1884.
C. A. Brady...... July 1st, 1884, to June 6th, 1885.

Assistant Engineer.

J. K. Zollinger..... October 10th, 1881, to June 6th, 1885.

SUPERSTRUCTURE.

Chief Assistant Engineer.—Mace Moulton, February 16th, 1885, to July 15th, 1886.

Assistant Engineer on Calculations .- J. W. SCHAUB.

Inspecting Engineers.

MATERIAL.—H. GOLDMARK, Cambria Iron Company and Pennsylvania Steel Company.

" G. W. G. Ferris, Carnegie Brothers & Co.

WORKMANSHIP AND MATERIAL.—W. H. BREITHAUPT, Athens Shop.

"W. R. Webster, New Jersey Steel and
Iron Company's Shop.

Bridge completed July 15th, 1886.

The following illustrations are given herewith.

Plate XIII. The structure completed.

" XIV. Map showing location of bridge.

" XV. Rise and fall of Ohio River at bridge site.

" XVI. Original design by C. Shaler Smith, and final design by Charles Macdonald and Edward Hemberle.

" XVII. Erection devices for joining cantilevers.

" XVIII. Stress diagrams.

" XIX. Cross section of floor.

" XX. Posts made from tension and compression steel.

" XXI. The structure in progress.

APPENDIX.

EXTRACTS FROM SPECIFICATIONS.

GENERAL DESCRIPTION.

The total length of bridge will be 2 453 feet center to center of abutment.

The length of the different spans is given below, commencing at the Kentucky shore.

Center to center of piers.

														260 f	eet
canal														483	66
Sand I	sland													360	66
main r	iver													480	66
66														260	6.6
, total 1	ength													370	4.6
														240	66
	canal Sand I main r	canal Sand Island main river " total length	canal	canal	canal	canal	canal	canalSand Island	canalSand Islandmain river	canalSand Island	canal Sand Island main river " total length	canalSand Island	canal Sand Island main river " total length	canal Sand Island main river total length nore span	canal 483 Sand Island 360 main river 480 " 260 I, total length 370

Total length 2 453 feet.

The structure will be built for a single track railroad, two (2) road-ways not less than ten (10) feet wide in the clear, and two (2) sidewalks each four (4) feet in width in the clear.

The railroad track to be placed in the center between the two trusses; one roadway on the outside of each truss, supported upon projecting brackets; and the sidewalks one on either side of the railroad track and inside the main trusses.

The clear width between trusses shall not be less than twenty-two (22) feet.

There will be substantial wooden hand-rails on the outer line of the roadways, and between the sidewalks and the railroad track, and close wooden partitions eight (8) feet high between the sidewalks and the roadways.

The entire superstructure will be of wrought-iron and steel, with the exception of the roadway and sidewalk floors, and the ties and guardrails for the railroad, which will be of timber, as below indicated. Steel will be used for top and bottom chords, end braces, pins, bearing plates and rollers. Longitudinal stringers to be of Southern pine, 7 by 16 inches, spaced about two feet apart.

Lower floor of roadway to be 3-inch oak.

Upper floor of roadway to be 2-inch spruce.

Floor of sidewalks to be 2-inch Southern pine.

Ties to be white oak.

Guard-rails to be yellow pine.

Cast-iron may be used for the construction of the center circular track, wheels, etc., of the turn-table of the draw.

PROPORTION OF PARTS AND DETAILS OF CONSTRUCTION.

The bridge will be proportioned to carry, in addition to its own weight, the following moving loads, viz.:

For railroad traffic, a train of freight cars weighing 2 240 pounds per foot and drawn by two (2) standard consolidation locomotives weighing 57 tons each; and for the roadway and sidewalk traffic, 1 200 pounds per lineal foot of bridge.

Engine.					TEND	ER.	TRAIN.	
Load, pounds	-16 000	-24 000	-24 000	-16 000	-16 000	-16 000	-16 000	2 240 pounds per toot.
Feet	7.6"	ENGINE.		6" 8	TEN		0'' 8'	TRAIN.
Load, pounds	16 000	-24 000	-24 000 -24 000	-16 000	-16 000	16 000	-16 000	2 240 pounds per foot.
Feet	7'6"	4'6" 4'	6" 4'6" 10	6" 5	0" 5"	6" 5"	0	3. 0.,

This moving load of engines and train of loaded cars being distributed as show in the foregoing diagram, and considered in positions and conditions giving the greatest results.

To provide for the effect of impact, all such parts of the structure as are liable to be subjected to sudden strains or vibrations shall be calculated with additions to the above specified rolling load as follows:

Per	cent.
Floor-beam hangers and riveted connections of string-	
ers and floor beams	100
Floor-beam vertical suspenders over 15 feet long	50
Stringers, floor beams and members subjected to	
counterstrain	25

The maximum and minimum stresses in compression and tension, as found for the before mentioned loads, with a factor of safety of not less than five, are to be used in determining the permissible working stress in each piece of the structure according to Launhardt's formula, as follows:

$$a=u$$
 ($I+rac{ ext{minimum stress in member}}{2 ext{ maximum stress in member}}$)

In the above formula Pounds per square inch. a = permissible stress per square inch for double refined iron in tension (links or rods) 9 000 u = for double refined steel in tension 14 000 u = for rolled iron in tension (plates or shapes) . 8 500 u = for rolled steel in tension 14 000 u = for rolled iron in compression 7 500

The permissible stress per square inch for members in compression is to be reduced in proportion to the ratio of the length to the least radius of gyration of the section, by the following formula:

13 000

u =for rolled steel in compression

For both ends fixed,
$$b=\cfrac{a}{1+\cfrac{\ell^2}{40\ 000\ r^2}}$$
 For one end jointed, $b=\cfrac{a}{1+\cfrac{l^2}{30\ 000\ r^2}}$ For both ends jointed, $b=\cfrac{a}{1+\cfrac{l^2}{20\ 000\ r^2}}$

When a = permissible stress previously found.

b = the allowable working stress per square inch.

l = length of piece in inches center to center of connections.

r = radius of gyration of the section in inches.

To provide for wind strains and vibration, the bottom lateral bracing shall be proportioned to resist a force at right angles to the axis of the bridge equivalent to 450 pounds per foot of span. For top lateral bracing, 150 pounds per foot of span.

The permissible working strains in the lateral bracing as determined by the above assumption, may be 50 per cent. greater than the values determined by the formula for loads as previously given. But in no case shall any lateral or diagonal rod have a less area than three fourths of a square inch.

The unsupported width of any plate subjected to compression shall never exceed thirty times its thickness; nor shall any plate be less than five-sixteenths of an inch thick.

The sections of top chords shall be connected at all abutting joints by splices sufficient to hold them truly in position.

In rolled I beams the compression per square inch in the compression flanges must not exceed 10 000

$$1 + \frac{l^2}{5\ 000\ b^2}$$

In riveted girders,
$$\frac{8000}{1 + \frac{l^2}{5000 \ b^2}}$$

Where l = length of unsupported compressed flange in inches, b = breadth in inches of the compressed flange.

The shearing strain per square inch of I beams and girders must not exceed $8\,000$

 $1 + \frac{d^2}{3\ 000\ t^2}$

Where d = distance between flanges or stiffeners measured on a line inclined 45 degrees, and t = thickness of web in inches.

The shearing strain on wrought-iron pins must not exceed 7 000 pounds per square inch, nor on steel pins 10 000 pounds per square inch.

The strain on extreme fibers caused by bending must not exceed 15 000 pounds per square inch for wrought-iron, nor 20 000 pounds per square inch for steel pins, the forces being considered as applied at center of bearing, each surface. The bearing strain on an area equal to the diameter of the pin multiplied by the thickness of the head must not exceed 12 000 pounds per square inch for wrought-iron, nor 18 000 pounds per square inch for steel pins.

The shearing strain on rivets must not exceed 7 000 pounds per square inch if of wrought-iron, nor 10 000 pounds per square inch if of steel. The bearing strain on the surface of rivets (diameter of rivet multiplied by thickness of plate) must not be more than 10 000 pounds per square inch if of wrought-iron, nor more than 15 000 pounds per square inch if of steel, for all rivets used in bearing and splice plates. For rivets in all other positions a maximum bearing strain of 12 000 pounds per square inch if of wrought-iron, and 18 000 pounds per square inch if of steel, will be allowed. Rivets will not be used where they may be subjected to tensile strain. No allowance will be made for countersunk rivets when countersink is in a plate less than 3 of an inch thick.

The heads of eye-bars must not be inferior in strength to the body of the bar. The form of the head and the mode of manufacture shall be subject to the approval of the engineer.

In compression members the distance from center to center of rivets must not exceed six inches, or sixteen times the thickness of any of the joined plates, and the pitch of rivets for a distance of two diameters from the ends shall be four times the diameters of the rivets; but in no case shall the pitch of the rivets be less than four times the diameters of the rivets.

The sectional area of rivets in one segment, in the distance of two diameters from the end, must not be less than the sectional area of the segment.

Where columns composed of two segments latticed are used, the number of rivets in end tie-plates shall be sufficient to transfer one-half of the strain coming on the column across from one segment to the opposite segment independent of the lattice.

All segments must be of one length, without break, whenever practicable. For trough-shaped columns the number of rivets in lower tie-plate shall be sufficient to transfer one-fourth of the strain coming on the column.

Where lattice-work is used, the angle of the lattice bars with center line of the member shall be about forty-five degrees. The size of the bars shall be proportioned to the width of the members and the strain to which they may be subjected.

The distance between the edge of any piece and center of rivet-hole must never be less than one and one-fourth inches, except in bars less than two and one half inches wide; where practicable it shall be at least two diameters of rivets.

When plates more than twelve inches wide are used in the flanges of riveted girders, an extra line of rivets with a pitch of not less than nine inches shall be driven along each edge to draw the plates together and prevent entrance of water.

All joints in riveted girders, whether in tension or compression, must be fully spliced, as no reliance will be placed on abutting joints. The ends however must be dressed straight and true, so as to leave no open joints. The web of plate girders must be spliced at all joints by a plate on each side of the web.

The diameter of rivets will ordinarily be three-fourths or seveneighths inch.

Floor-beam suspension bars are to be so arranged by means of equalizers, or otherwise, as to secure equal strains on all links supporting the same floor beam.

Rods with screw ends shall be upset at the ends so as to make the diameter at the bottom of the threads one-eighth inch larger than any part of the body of the bar. The nuts must have a true and square bearing on the surface they rest upon, be easily accessible with a wrench for the purpose of adjustment, and be effectively checked after the final adjustment, as also all pin nuts.

There must be a bearing plate or box of approved form under both ends of all spans of sufficient depth to distribute the weight properly on masonry. These plates must be of such dimensions that the greatest pressure upon the masonry will not exceed 200 pounds per square inch.

All deck and through spans, excepting the channel span, must have at one end nests of turned friction rollers of steel running between planed surfaces. The rollers must not have less than three inches diameter, and shall be so proportioned that the pressure in pounds per lineal inch of rollers shall not exceed $\sqrt{-540\ 000\ d}$ (d being the diameter of the rollers in inches).

All spans must be sufficiently anchored to the masonry to resist displacement by the strongest wind specified.

All connections and details of the several parts of the structure shall be of such strength, that upon testing, rupture shall occur in the body of the members rather than in any details or connections.

All surfaces not in contact with other surfaces must be accessible to inspection, cleaning and painting after erection. No closed work will be allowed in the structure.

MATERIALS.

STEEL.—The steel shall be manufactured by the open-hearth process; Bessemer steel will not be accepted. A sample bar three-quarters of an inch in diameter shall be rolled from every melt; if this bar fails to meet the requirements of the laboratory tests the whole charge shall be rejected.

Steel used in compression members, bolsters, bearing plates, pins and rollers shall contain not less than γ^2_{00} nor more than γ^4_{00} of one per cent. of carbon, and less than one-tenth per cent. of phosphorus. A sample test bar three-quarters of an inch in diameter shall bend 180 degrees around its own diameter without sign of crack or flaw. The same bar, tested in a lever machine, shall show an elastic limit of not less than 50 000 pounds and an ultimate strength of not less than 80 000 pounds per square inch; it shall elongate at least 15 per cent. in a length of eight inches before breaking, and shall have a reduced area of 35 per cent. at the point of fracture. It shall be incapable of tempering.

Steel for rivets and eye-bars shall contain not more than $\frac{20}{10}$ of one per cent. of carbon, and less than one-tenth of one per cent. of phosphorus. A sample bar three-quarters of an inch in diameter shall bend 180 degrees and be set back upon itself without showing crack or flaw. When tested in a lever machine it shall have an elastic limit of not less than 40 000 pounds, and an ultimate strength of not less than 70 000 pounds per square inch; it shall elongate at least 18 per cent. in a length of eight inches, and shall show a reduction of at least 42 per cent. at the point of fracture. In full-sized bars this steel shall have an elastic limit of at least 35 000 pounds, and an ultimate strength of at least 65 000 pounds per square inch; it shall elongate at least 10 per cent. before breaking, and for strains less than 30 000 pounds per square inch shall show a modulus of elasticity between 28 000 000 and 30 000 000 pounds.

Facilities for testing the sample bars shall be furnished by the contractor at a point convenient to the steel-works, and tests shall be made at the expense of the contractor, and under the direction of the engineer. All plates for this work of both iron and steel shall be rolled in a universal mill.

Steel for pins shall not be hammered, but rolled between gothic rolls. All rolled beams, channels, bars, angles, plates, etc., must be straight and out of wind. They must be free from flaws, fins, blisters, seams, and cracked edges. Angles and edges must be sharp and well filled out. Flaws, surface imperfections, or irregular shapes will be sufficient ground for the rejection of material.

Specifications for iron and timber are as usual in first-class work.

All specifications for workmanship as usual in first-class work; the holes in riveted steel to be punched $\frac{1}{16}$ inch smaller diameter than nominal diameter of rivet and then reamed, with edges of reamed holes filed to take off burr left by drill.

Note.—The following changes and supplementary requirements were considered best by the writer, and the work was done in accordance therewith.

Compression steel to be used as specified, except for pins—lower limit of carbon fixed at 0.28 per cent.

Tension steel to be used for eye-bars; also for riveted members subject to tension or alternate stresses; also for pins. This grade was not used for rivets; carbon limits changed to vary between 0.18 and 0.28 per cent.

Rivet steel. Carbon not specified. Ultimate strength to vary between 58 000 and 65 000 pounds per square inch with severe bending and quenching tests.

All rivet holes in steel were reamed except those in lacing bars. All plates were either universal mill or groove-rolled plates. No planing of end of plates was required, except where proper finish required it.

The only case of hammering steel plate allowed was that mentioned in "special tests."

Eye-bars were made by upsetting and head finished under the hammer.

Eye-bar heads proportioned in general with 50 per cent. excess material across eye when pin diameter equaled width of bar, the percentage of excess decreasing as the diameter of pin exceeded the width of bar. Steel lateral bar upsets were made with care, providing against sudden changes in shape and sharp corners. Threads were cut with **V** threads, with fillet at bottom.

All reaming and drilling was done with rigidly-fixed vertical drills, and parts riveted up without taking apart.

All ends of members where sheared or punched off for clearance requirements were carefully chipped so as to leave no sharp re-entrant angles.

TESTS ON MATERIAL AND FINISHED PARTS.

The various records of tests made on material and finished parts have been placed by themselves in order to separate the descriptive from the special matter and immediately follow in two classes.

1st. Regular tests made to determine quality, with view to acceptance or rejection of material.

2d. Special tests made for the purpose of determining questions arising during the progress of the work, or with a view to testing the soundness of prevalent theories as applied to the material in hand.

REGULAR TESTS.

As will be seen from specification the quality of the steel was to be determined by the tests on \S " rounds rolled from ingots. No further provision was made therein for future rejection on score of quality, and with this we were obliged to be satisfied with the finished eyebar and angle bars made at Johnstown. However, by courtesy of the Union Bridge Company, extra lengths of angle bars and extra bars of eyebar steel were ordered and test pieces cut therefrom which enabled us to know how the steel was running. All tests given are on steel accepted, except where otherwise noted.

From the start the mills were notified that all finished material must have the original heat number stamped or stenciled on in order that future reference might be made to them. In material rolled at Carnegie's, however, the tests were made on crop ends of finished plates to determine state of the material as regards overheating in furnaces in which slabs were heated for rolling into finished plate. Very few rejections occurred, but the series of tests gave us satisfactory assurance of the excellence of the finished product.

I have collected all tests made on material from each original heat, both 4" round from ingots and finished steel, so that it may be judged how much or how little relation there may be existing between the condition of the two. The tests recorded for plate steel, were made at the Union Iron Mills, Pittsburgh, and the ingot tests at the works of the Penna. Steel Co., at Steelton, and were all made with care.

The work done on the test pieces at Steelton was as follows:—14" square ingot heated and rolled to 7" square; 7" square heated and hammered to 4" square; 4" square heated and rolled to 14" x2" square; this heated again and rolled to 4" round test bar. This bar then tested without machine finish. In all cases where modulus of elasticity is recorded, the elongations by which it was determined were taken by an instrument with an electric contact micrometer reading attachment.

Work done on plate material. Plates $\frac{1}{2}$ " thick and under rolled from slabs made 4"thick x $\frac{1}{2}$ " wider than finished plate. These slabs either hammered or rolled in universal mill from ingots. Plates over $\frac{1}{2}$ " thick same, except that slabs were 5" thick.

Plates over 18" wide made from 20"x20" ingots, and for plates over 20" wide ingots first spread under hammer, and then rolled to required size. Plate test pieces planed from plates—generally 1" wide.

PLATES USED IN TENSION, OR ALTERNATE TENSION AND COMPRESSION, $\frac{1}{2}$ INCH THICK AND UNDER.

		cut	Area of Specimen.	Limit: per Sq.	Dounds per Sq. Inch.	in	of	Ţi.			
		g	cin	Lir	ren	36	n	P ,		1	
100		me	be	0 8	00 g	lon	ctio.	te a		986	Remarks.
188	No.	i.	850	ting.	ate ind h,	ati	nc a,	Non	6	ano	A CONTRACTOR
te,	at	pecin from.	80	a s ou	ou nc	gue.	e du c	ip to	Carbon.	ng.	
Date, 1885.	Heat	00	Ar	Elastic Pounds Inch.	5	Elongation, 8".	Re	Bending and got Notes.	Car	Manganese	
6/11	4528	15×3%	.4821	47.080	72.910	24.0	53.0	180° round 16"			
		$12 \times \frac{7}{16}$ $12 \times \frac{3}{6}$ $12 \times \frac{7}{16}$ $12 \times \frac{7}{16}$ $12 \times \frac{3}{6}$	3312	43,950 50,000	73,530	25.0	55.0				
5/26	6.6	12×7/16	.3913	43.730	73.240	24.0	48.3				
7/29	66	12×3/8	.3805	51.328	75.530	23.8	55.8	From			
4/20	44	34 round		50,066	74.266	24.3	52.9	14"×14" Ingot	.21	.71	
64	66	11	*****	49.040	74.020	25.0	51.9	**	14	**	West wises appealed
			*****	46.130	11.200	~2.1	01.4	No. 1	1		Test piece annealed.
5/	66	66		55,660	78.700	25.0	53.3	907/ 1907/ Ingot	.25		
6.6	64	66		54.270	78.500	25.0	58.2	" No. 1 " No. 2	.22		
62	44	44 .		51.560	74.700	25.7	55.5	44 44	44		
54	44	44		53.490 52.570	76.070	25.5	58.6	" No. 3	.21		
6.6	64	4.6		47 320	72. 180	25.5	55 5	" No. 4	.22		
44	66	64	*** **	46.500 46.370 46.180	72.150	27.2	58.6	" No. 5	5.6		
55	44	44	*****	46.370	73,530	24.0	58.8	" No. 5	.21		
66	5.6	44		47.420 47.960	72.130	27.0	55.5	" No. 6	.21		
5/8	4536	19 > 34	2940	46 170	70,360	26.5	56.5	186° round 147			
66	6.6	64	.3478	45,740	80,790	20.6	49.7	186° round 16"			
6/11	64	12×7/16 18×36 14×5/16	.3654	46.090	11.180	21.3	50.8	1/2"			Clarate an englass
6/12 7/17	6.6	14×5/10	.3187	48.530 43.645	75.458	23.0	55.6	178" " 96"			Slag pits on surface.
4/20	66	94 round		50,570	75.710	25.3	52.7	14"×14" Ingot	.23	.89	
6.6	84	44	*****	51.310 47.530	76,300	25.0	56.6		**	**	Test piece annealed.
							1	No. 1			Test piece annearen.
5/	4536	% round		54.860	78.170	25.1	56.0	20"×20" Ingot	1		
66	44	44	*****	50.750	76.730	25.2	54.1	No. 1			
66	66	66						" No. 8			
44	44	66	*****	49.700	76,220	25 0	54.0	" No. 3			
66	6.6	16		54.100 49.700 48.450 48.780 47.740 47.520	77.280	24.2	56.7	" No. 4	1		
66	66	46		48.780	78.090	25.7	57.3	" No. 5			
64	64	66		47.520	74,490	26.2	54.6		1		
66	66	24		120.00	180,000	Dec 5 * 65	36.4	210. 0	1		
	4586		.4300	51.650	74.120	22.5	53.1	180° round 86"			
6/12	66	18×7/16 18×3/8	.3881	49.860	77.940	18.8	45.5	16 16 36"			
6/25		18×3/	.3596	49.600	75,530	23.0	47.3		1	2	
7/17	166	12×6/16	9012	46 204	21 260	199 8	54 6	. 10	1		
5/5	66	34 round		149.300	75.420	124.2	49.5	14"×14" Ingot	.19	1.01	
			.5057	44.570	74.708	21.0	47.1	180° round 36'			
6/11	66	18×1/2	.5133	50.000	76.000	21.3	38.6	" " 58"			Plate pu'ch'd very hard
5/14	44	34 round	*****	50 600	76 110	25.2	54.0	14"×14" Ingot	.21	.86	
6/11	4599		.3147	47.200	75.850	23.0	51.2	180° round 16"			
6/25	5.6	18×1/2	.5100	44.000	74.800	22.0	48.3	180° round 16'	* .		Plate pu'ch'd very hard
0/13		28×5/16 34 round	. 2590	49.540	69 150	26.7	55.5	14"×14" Ingot	.23	.65	Broke near jaws Fracture irregular.
5/14				46.070	69.030	27.0	55.6	14"×14" Ingot			ii R
	4593		.3175	45, 170	70.000	24.0	59.2	180° round 36"	10	.70	
5/14	66	34 round	*****	47,760	71.580	25 1	43.5	14"×14" Ingot	1.10	0	

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	6/25	4649	7×3/6	.3477	44.400	81.	100	19.5	36.5	178°	rour	id 16"			Broke in flaw.	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	7/17		14×0/16	.3245	47.763	75.	495	$\frac{22.0}{95.0}$	48 8	180°	14//	Ingot	31			
7/27 456 1	0/11		0.0		47 . 840	74.	UKR21	20.5	149.9		~	9.0				
1.		4555	15×7/16	.4382	43.360	71.	800	18.0	44.6	175°	rour	d 3/"	01	01		
1.	5/5		% round	*****	50 750	73	730	24.0 27.7	46.5	14"×	14"	Ingot	.21	.65		
1.	7/29	4557	11×3/6	.3514	51.225	75.	695	21.3	53.9							
1.	8/11	6.6	20×3/8	.3673	42.880	72.	828	21.3	56.3	14//	1 411	Immat	90	00		
1.	5/5		% round		47 180	71	930	24.3	47.6	14"×	14"	Ingot	.20	.00		
1.	7/17	4561	12×7/18	.4078	46.221	70.	978	25.0	55.6	178°	roun	d 34"				
7.77 1646 16 16 16 16 16 16 16 16 16 16 16 16 16	5/5		34 round		51.670	74.	570	25.9	55.6	14"×	14"	Ingot	.22	.65		
7.77 1646 16 16 16 16 16 16 16 16 16 16 16 16 16	7/27	4643	16×16	.4965	45.316	76.	330	23.8	54.3	180°	roun	d 116"				
7.77 1646 16 16 16 16 16 16 16 16 16 16 16 16 16	6/20	8.6	34 round		47,490	73.	170	26.0	52.2	14"×	14"	Ingot	.31	.87		
8/4 4656 24×36 3465 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 34.56 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 390 78.580 24.5 34.4 14"×14" Ingot 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.580 36.0 87.3 8/86 34×36 390 78.580 36.0 87.3 8/86 34.0 11 11 11 11 11 11 11 11 11 11 11 11 11	1.6	66		FOIR	46.150	73.	280	26.0	53.1			**				
8/4 4656 24×36 3465 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 34.56 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 390 78.580 24.5 34.4 14"×14" Ingot 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.580 36.0 87.3 8/86 34×36 390 78.580 36.0 87.3 8/86 34.0 11 11 11 11 11 11 11 11 11 11 11 11 11	6/11	6.6	34 round	.3013	48.010	72.	430	27.0	49.0	14"×	14"	Ingot	.25	.82		
8/4 4656 24×36 3465 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 34.56 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 390 78.580 24.5 34.4 14"×14" Ingot 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.580 36.0 87.3 8/86 34×36 390 78.580 36.0 87.3 8/86 34.0 11 11 11 11 11 11 11 11 11 11 11 11 11	44	44	16		47.010	72.	470	26.3	49.9	- 6	6	**	1			
8/4 4656 24×36 3465 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 34.56 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 390 78.580 24.5 34.4 14"×14" Ingot 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.580 36.0 87.3 8/86 34×36 390 78.580 36.0 87.3 8/86 34.0 11 11 11 11 11 11 11 11 11 11 11 11 11			66		49,220	78.	160	26.2	51.2		6	66				
8/4 4656 24×36 3465 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 34.56 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 390 78.580 24.5 34.4 14"×14" Ingot 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.580 36.0 87.3 8/86 34×36 390 78.580 36.0 87.3 8/86 34.0 11 11 11 11 11 11 11 11 11 11 11 11 11			13×5/	3065	45.695	75.	370	21.3	46.9							
8/4 4656 24×36 3465 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 34.56 34.15 78.58 15.5 33.2 8everal surface flaws. 6/80 34×36 390 78.580 24.5 34.4 14"×14" Ingot 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.770 25.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.780 35.0 41.6 8/86 34×36 390 78.580 36.0 87.3 8/86 34×36 390 78.580 36.0 87.3 8/86 34.0 11 11 11 11 11 11 11 11 11 11 11 11 11		6.0	34 round		46.400	72.	520	26.0	53.8	14"×	14"	Ingot	.20	.73		
1.	0/4														Broke near jame	
1.	8/26	4030	24×36	.3486	54.415	78.	595	15.5	33.2				***		Several surface	flaws.
1.	6/20	44	34 round		51.620	78.	890	24.5	41.4	14"	×14"	Ingot	.19	.82	Test piece muc	h cold
7/37 4716 15 15 × 36 3325 52 5.56 7.9 40 91.2 15 5.3 4 9 46.0 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18	46	44					- 1								rolled.	
5/11	7/27		15×86	9900	47 183	72	695	26 11	87 2							
5/11	8/26	86	24×3%	. 3325	52.540	79.	400	21.2	55.3			-				
12\frac{1}{2}1	6/11		% round		47.720	72.	170	24.9	46.0	14"	×14"	Ingot	.20	.76		
12\frac{1}{2}1	7/17	4678	71/4×86	.3653	45.852	71.	990	23.5	52.8							
12\frac{1}{2}1	+6	66	13×8/18	.2864	48.010	74.	542	22.5	58.6	180°	roun	d 34"	1			
7/27 4726 15×3 ₆ 4922 47. 327 75.594 25.0 57. 4.				3110	48.230	73.	150	23.0	59.0	191	roun	a %"				
7/27 4720	6/20	46	% round	.0000	48.460	73.	100	26.2	54.4				.20	.86		
7/27 4720	44	6.6	**	*****	47,960	73.	520	25.5	54.7							
7/27 4720	6/20	4716	15×1/2	.4925	47.327	75.	594	25.0	57.4 45.6	14//	v 14//	Ingot	94	86		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46		44											.00		
50/8 10×9 3571 39 + 30 + 30 10 25 53 - 4 14 11 11 12 12 13 14 14 11 12 13 14 14 11 15 14 14 11 15 15	7/27	4720	16×3/2	.4885	45.035	71.	955	23.8	51.8							
50/8 10×9 3571 39 + 30 + 30 10 25 53 - 4 14 11 11 12 12 13 14 14 11 12 13 14 14 11 15 14 14 11 15 15			11×°/18	. 3269	46 140	77.	200	23.3	45 1	14//	1411	Ingot	91	66		
50/8 10×9 3571 39 + 30 + 30 10 25 53 - 4 14 11 11 12 12 13 14 14 11 12 13 14 14 11 15 14 14 11 15 15	66		66		46.200	70.	620	25.8	45.9	***		Ingo	.22			
19/8 4743 16×½ 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 935 69 990 24 35 1.5 4000 43 990 490 490 890 490 490 490 490 490 490 490 490 490 4	8/25	4728	16×1/2	1 186.	49, 470	13.	110	23.8	03.3							
9/8 4743 16×3 4000 43 995:69.909 44.351.5 7/81 3/4 round 43.300 69.2909 26.3 52.9	7/99		% round	. 3336	50,000	83.	140	22.5	53.4 49.5	14//	×1411	Ingot	96	75	Cold rolled 1	R-20
9/8 4743 16×3/4 4000 43 931.69.990.24.31.15.7/31 18/3/4 round 43.931.69.990.24.31.15.5 15.5 15.5 15.5 15.5 15.5 15.5 1				1			- 1								190.000.	2-00.
7/31				4000	48.990	77.	010	23.0	44.3		1.6	66				
8/25 4738 16×3/ 3390 47.250 70.855 26.05.2.2 1390 47.250 70.855 26.05.2.2 14.34 90.85 14.34 2.34 35.357 82.75 18.8 16.1 12/9 4866 14×3/ 3718 43.650 74.250 73.58.0 19/22 14/4 4965 223/3/3 36.55 18.05 73.05.5 180° close 13/4 4966 223/3/3 36.56 14.20 82.40 16.5 11/11 3/4 round 11/11 3/4 round 11/13 14/4 4976 20.37 25.05	7/31	4748	3/ round	.4000	43 360	69.	990	24.3 26.3	59 9				21	65		
"			**		44.050	69.	7400	27.3	53.4							
7/30	8/25	4738	16×16	.3930	47.250	70.	865	26.0	52.2							
12/9 4866 14×3/4 3781 32,106 86.840 27.3 [8.6] 180° close 19/28 14×3/4 3781 32,074 280 32.0 55.5 180° close 29/28 14×3/4 4966 22×3/4 3.05574.600 23.3 [53.0] 180° close 47.300 73.590 24.0 46.5 180° close 48.020 73.590 24.0 46.5 180° close 48.020 73.080 24.0 46.5 180° close 57.16	7/30		% round		43 490	68	810	27 8	58.0				.19	.74		
2/4 4976 22\(\sim \)	44		44		45,060	68.	840	27.3	58.6							
2/4 4976 22\(\sim \)	10/99	4866	14×36	.3718	43,690	74.	280	25.0	55.5	18	0°-cl	ose				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9/28			.0101	47.360	73	250	26.3	48.1				.20			
11/13	4.6	66	**													
11/13	12/4	4976	22½×%	.3656	51.420	82.	400	19.4	56.6	180°	roun	d %"				
11/13	66	44		.3781	52.100	80.	000	20.0	51.2	1820	44	7/16/1				
11/13	11/11	- 64	% round	*****	50.770	76.	650	22.5	52.0	14"×	14"	Ingot				
19/14/476 20 \times 7' \ 4 \ 3884 45 .410 76 .000 [21 .0 154 .3 \\ 1		66	46	*****	59,070	70.	560	25.0	50.4				98	99		
5/5	10/14	4776	90 V 7/	2694	AR 410	776	വൈ	91 A	54 9				1	. 66		
5/5	88	6.6	17%×%	.3881	46.120	75.	880	23.0	54.5					-		
10/26/4731 13×54 4553/43 380/71 205/25 656/8	46	0.6	% round		47.750	75.	150	24.8	46.4		****	*****	.22	.76		
10/26/4731 13×54 4553/43 380/71 205/25 656/8	10/24	4868	131/×5/10	.2790	47.135	74	440	23.8	50.8							
10/26/4731 13×54 4553/43 380/71 205/25 656/8	9/28	66	% round		49.330	74.	650	23.8	19.7		****		.21			
7/22 ' 34 round 54. 2007 3, 200 26. 455. 2	10/26				30,000	10 %.	0 1000	MU.U	04.0							
51.840 71.290 26.8 47.0	7/22	9.6	% round	. 2000	54,200	73.	910	26.4	55.2						E-31.160.000.	
		66	66		51.340	71.	290	26.8	47.0				.21	.68		

PLATES USED IN TENSION OR ALTERNATE TENSION AND COM-PRESSION-OVER 1/2 INCH THICK.

Date, 1885.	Heat No.	Specimen cut from	Area of Specimen.	Elastic Limit: Pounds per Sq. Inch.	Ultimate Strength: Pounds per Sq. Inch.	Elongation, 8 in	Reduction of Area, %.	m	Carbon.	Manganese.	Remarks.
7/1 7/3 4/20	4519	20×% 20×¾ 34 round	.4788	43.650 42.280 49.130	73.520 71.336 73.950	21.3 23.8 25.3	46.9 49.3 49.1	180° round 134" 14"×14" Ingot 180° round 134" 180° round 134" 14"×14" Ingot 180° round 134"	.22	.58	
4/21 7/3	4570	20×34	.5625	46.490	70.870	23.3	53.7	180° round 134"			
5/5	66	34 round	.4780	46.280 46.880	70.530 71.130	25.2 24.7	49.1	14"×14" Ingot	.23	.71	
7/1 7/3 5/5	4557	34 round	.4125	43.636 41.510 46.070	78.930 68.660 70.700	18.3 20.8 24.3	42.3 40.8 48.1	180° round 114" 14"×14" Ingot	.20	.66	Broke in scale pits.
7/1	4561	20×34	.4706 .4703	44.470 43.590	71.930 71.630 71.870	21.3 22.5	47.6 48.8 41.8	180° round 11/4"			Broke in scale pits. Showed blow holes.
5/5 8/3	4589	34 round 20×56	.5293	51.670 51.330 44.455	74.570 74.330 72.170	25.9 25.0 23.8	55.6 56.2 46.5	14"×14" Ingot	.22	.65	Punched hard in spots.
5/14	4590	34 round 20×34	.4556	50.250 50.420 43.920	76.350 76.510 76.240	25.8 24.0 25.0	3 43.6 9 41.8 9 47.9	14"×14" Ingot	.27	.78	
6/11	4587	34 round 18×56		45.790 46.070 41.240	69.150 69.030 70.950	26.7 27.0	55.5 55.6 45.7	14"×14" Ingot	.23	.65	
64	4.6	18×9/16	.4950	43.780 41.040 46.400	72.464 75.100 72.320	23.4 22.0 25.5	48.9 0 46.8 2 54.0	180° round 58"			Punched hard in spots.
6/14	4586	18×5%	.6047	50.600 43.000	76.110 78.750	25.0	0 48.5 0 44.0	180° round 9/16"	10	1 01	
8/4	4721	20×5%	.4406	49.530	76.330 66.275	24.1	48.4 8 48.8			***	Broke in surface flaw.
7/29	64 64	at at at	.6076	47.23 46.73 46.03	70.470	26.8	3 47.9 0 45.8	14"/>14" Ingot	90	70	owa.
8/17	4720	20×5%	.6073	45.780	70.370	23.0	0 42.3				When punched showed
6/8	4000	% round	. 1101	46.140	70.800	24.3	3 45.1 8 45.9	14"×14" Ingot	,22	.63	sort spors.
8/3 6/29	44	20×34 34 round	.6497	40.95	74.46	22.	5 41.6	14"×14" Ingot	.20	.81	Broke in surface flaw. bad "" When punched showed soft sputs.
5/29	4718	13×9/16	.548	43.45	68.48	25.8	8 52.4 8 50.6				
	66	20×1% 34 round	.5026	37.80 46.96	0 69.250	24.	5 51.8	14"×14" Ingot	.23	.65	Specimen round. Bad surface flaw. Specimen round. E-29.700.000.
	4732	24×¾ 9×¾	.4858 .6309	3 44.55 9 43.69	71.180 71.280	17.	5 44.9 3 46.0	180° round 14"			Bad surface flaw.
2/25	64	% round	.528	47.58 46.99	0 70.140	0 23.	1 49.8 3 47.5	14"×14" Ingot	.21	.72	Specimen round. E-29,700,000.
7/25		% round	.543	49.76	71.18	25.0	2 46.1	14"×14" Ingot.	.19	.58	Cold rolled specimen. E=29.700.000
	4840	90 > 184	400	30 40	74.05	26.	0 41.5	** **			Specimen turned round
8/20	66	20×15/8 20×13/4	.502	6 43.59	72.12	0.21.	5 50.0	1			openmen curned round
6/11	1 44	194 round		. 48.01	72.43	0.27.	0 49.6	0 14"×14" Ingol	. 25	.82	

PLATES USED IN TENSION OR ALTERNATE TENSION AND COM-PRESSION .- Continued.

Date, 1885.	Heat No.	Specimen cut from.	Area of Specimen,	Elastic Limit: Pounds per Sq. Inch.	Ultimate Strength: Pounds per Sq. Inch.	Elongation, % in 8".	Reduction of Area, %	Bending and Ingot Notes.		Carbon,	Manganese.	Remarks,
6/11		34 round		47.010	72.470					1		
6/20	66	44			78.160 78.160							
	4656	24×34		41,910	72.969	23.8	42.3		ĺ			
6/20	66	34 round	,6318	51 690	71.747	23.8	42.4	14"/ 14"	Ingot	19	Qu)	Cold rolled specimen.
66	66	66		51,230	73.770	25.0	0 41.6	44 744	Ingon		.00	Cold rolled epecimen.
7/29	4645	16×13/16 21×56	.5635	42.462	71.418	26.0	0 45.9					
8/3 8/4	66	21×98 241/6×98			71.693							
6/11	6.	34 round		47.720	72.170	24.9	9 46.0	14"×14"	Ingot	.20	.76	
0.400	4PMQ4	041/11/	4000	47.750	72.680	26.	7 48.8	"				
8/25 9/8	4631	24×11/16 15×34	6046	43 010	69.832	27.	5 56 0	1				
7/22	86	% round		54,200	0.73.910	26.4	4 55.2	14"×14"	Ingot	.20	.68	E-31.160.000
0.00	4000	10.19/	0000	51.340	71.290	26.	8 47.0	14				
8/25	4108	16×0/16	3690	42 824	70.580	25.0	0 52 9					
9/8	66	6.6	.4510	44.094	69.660	24.	5 53.1					
44	64	40			69.710							
7/30	44	16×% % round	.5147		66.92					10	74	
44	44	74 TOUMU		45.060	08.840	27.	3 58.6		*****	.10		
8/25		131/6×5/6	4174	44 68	271.756	23 1	8 47 9				-	
7/22	**	% round		50.070	78.14	24.	9 49.0	14"×14"	Ingot	.25	.75	Cold rolled specimen. E-30,190,000
44	66	6.6		48,990	77.010	23.	0 44.8	64 -				14-30.130.000
9/8	4772	11 1×11/10 814×56 814×76	.5095	38.760	69.27	25.	0 55.8					
44	64	816×96	.6150	41.83	76,993	23.	5 50.8					Specimen turned round
8/6	66	34 round	. 2000	48.98	75.860	22	3 38.5		*****	.20	.85	Specimen turned round
44	66	44		48.83	72.550	24.	0 38.3			1.40	100	
44	66	44		48.630	72.72	23.	0 40.2					
9/8	4774	17×34	596	48.00	78.290	1 98	3 53 6					
8/6	+6	34 round		48.48	75.62	0 24.	5 42.2			.23	.78	
10/4	66	44.48.4	*****	48.29	0.75.59	122.	5 41.1				-	
12/4 9/28	4868		.0100	45.49	73.75	26.	5 58.8			.21		
64	66	% round		49.35	0 74.72	0'25.	0 51.6	5		.21		
10/13			.560	3 42.74	0 75.25	0,23.	8 46.3					
8/10	66	% round		.149.92	0 76.52	0.22.	5 39.2			.24	.84	
	4662				76.56							Specimen turned round
6/20	64	1 % round		46.40	72.59	0 26.	0 53.8	3 14"×14"	Ingot	.20	.73	- The summer summer sound
4.6	44	66		46.40	0 72.32	0 25.	2 54.0	16		1	1	

PLATES USED IN COMPRESSION-1/2 INCH THICK AND UNDER.

Date, 1885.	Heat No.	Specimen cut from.	ea of S	Elastic Limit: Pounds per Sq. Inch.	Ultimate Strength: Pounds per Sq. Inch.	Elongation, % in 8".	Reduction of Area,	Bending and Ingot Notes.		Carbon.	Manganese.	Remarks.
6/12	4336	15×¾	*****	52,200	82.470	17.5	30.3		5/1"			Blow hole in center sur- rounded by granular
4/20 4/28	"A	13¾×¾			1	1	1 1	180° " 175° "				specks.
			•									THE THE STATE OF T
2/	"B	% round	*** **	51.800 48.300	85.570 86.170	18.6	23.9	180° 46	34"	.38	.71	Test by Fairbanks, Phila. (F) Test at Union Iron Mills, Pittsburgh (U) Test at Penna. S. Co.,
2/12	44	44		52.850	85.98	0 22.8	32.7					Mills, Pittsburgh (U)
4/27	4341	14×%	.3148	57.115	92.47	18.5	3 46.5	178° round	3/6"	01	~0	Steelton. (S)
24/	66	% round		52.000	85.65 86.74	0 23.3	3 37.9 9 40.3					(F) (U) (S)
6/12	4342	15×% % round	.3770	52.060 51.91	81.43	0 20.3 4 15.0	5 46.9 6 22.9	178° round 180° round	16"	94	81	Broke in punch marks. (F) (U)
2/12	44	11	0040	53.720	81.20	0 23.	2 34.2			****		(U) (S)
5/8	4348	11×3/16 3/4 round	.3307	56.120	0 83.15 0 85.32	6 20. 8 22.	3 45.7 0 42.6			.31	1.02	(F)
2/ 8/11 4/20	4527	15×%	.382	55.18 49.72 52.86	$0.84.96 \\ 6.86.28 \\ 0.83.64$	0 21. 0 18. 0 21.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14"×14" Ir	ngot		.79	(8)
4/20	4540	13×5/18 16×3⁄2	.3066	53.48 50.81 49.48	083.42 079.26 077.12	0 21. 0 19. 0 22.	8 38.1 0 49.9 0 51.3	14″×14″ Ir	4.6			Specimen annealed.
4/20	16	% round	****	50.89 54.06 53.08	$0.85,14 \\ 0.85,98 \\ 0.85,08$	2 19. 10 23. 10 23.	3 50.8 0 46.4 0 44.5	14"×14" In 180° round 180° round	ngot	.35	.77	
6/19	4532	$\begin{array}{c} 15 \times \frac{3}{4} \\ 8\frac{3}{4} \times \frac{7}{16} \\ 11 \times \frac{7}{16} \\ 9 \times \frac{9}{16} \end{array}$.475	53.53	7 84.95 0 85.58	60 21. 80 20.	5 37.9	180° round	%"			
6/26	5	9×9/16	.523	2 50.36	0 83.33	30 21.	3 44.4	180° round No. 1	%"			
66	44	% round		. 54.00 . 53.07 53.93	$0.85.78 \\ 0.86.30 \\ 0.83.76$	00 21. 00 23. 00 24.	3 44.8 2 44.8 6 56	20"×20" I	ngot No. 2			
4/20	0 "	66		. 54.72 . 53.95	0 83.45	20 24.	0 54.	14"×14" I	ngot	.33	.71	9
4/2	1 4533	15×1/4	.434	49.23	0 82.7 0 77.5 0 83.8	80 19 10 20	8 58. 0 50.	3 180° round	1 16"			. Specimen annealed.
6/1:	2 "	15×34	.489	5 48.12 2 46.30 1 55 91	85.4 0 77.8 6 87.5	40 21. 70 17. 50 20	5 47.1 0 32.1 8 46	3 44 44	3/11		1	Broke in flaw.
4/2	0 66	34 round		. 52.58 . 53.59	0 82.9 25 84.10	80 23 00 22	0 45.	3 14"×14" I	ngot	.3	.8	Specimen annealed.
	5 4539	14×% % round	.381	4 50.00	00 83.0 80 80.8	00 20 30 23	.0 36.	175° round 1 14"×14" I	ngot	.34	1 .7	Specimen annealed. Broke in flaw. Specimen annealed.
6/2	6 4542	14×3/4	.399	51.9 4 47.77 4 50.00	70 81.3 70 81.3	$\begin{array}{c c} 60 & 23 \\ 00 & 18 \\ 20 & 20 \end{array}$.9 48. .8 53. .3 51.	8 180° round	1,34"			
4/2	8 66	34 round		. 55.9	0 86.1	40 22	.3 46.	5 14"×14" I	ngot	.3	8. 1	35

PLATES USED IN COMPRESSION .- Continued.

		cut	Area of Specimen,	Limit: per Sq-	Strength;	ii.	Area.	Ė	1	1	
		1	cin	Lin	ren	28	of A	pu.			
0		len	be	0 %	8 10	, un	n	ie ie		se.	Remarks.
88	No.	, m	90	nd.	nde	atic	tio	S S	i	me	Remarks.
e,	2	from,	8	Founds Founds Inch.	mo no	ngu.	luc	ipi	bol	020	
Date, 1885.	Heat	200	Are	E	Ultimate brounds Inch.	Elongation, 8",	Reduction %.	Bending and got Note-,	Carbon,	Manganese	
/28	4546	34 round		51.060	81 980	934 B	47 61	14" V 14" Tugot	.34	.57	
/11	4547	2014×34	.3645	51.083	79.010	23.8	55.8				Broke in surface flaw
/25 /12 /26	66	20×5/16	.3048	51.900 52.000	75.55	22.5	38.3	180° round 34"			Broke in surface flaw
/28	66	34 round		33.770	180.020	122.0	130.4	14"×14" Ingot	.35	.90	
	4548	20×3/6	.8712	55.400 50.760	80.00	22.0	39.3				
/28	66	34 round		49.300	78.520	23.6	50.2	14"×14" Ingot	.36		
/12 /28	4550	20×5/16 % round	.3409	54.970 50.560	79.35	124.9	3 47.7	14"×14" Ingot	.34	.79	Broke in surface flav
1/98	4559	14×7/						180° round 34"			
3/25	46										
7/3	66	18×7/16	.4409	50.830	81.99	1 23.	3 44.6	180° round 34"			
66	66	14×1/2	4510	53.660 50.000	0.76.39	0 23	3 46.3				
5/5	66	34 round		52.92	80.87 81.38	0 22.	2 45.8	14"×14" Ingot	.36	.70	
3/25	4603	19×1/2 22½×½	.386	48,150	080.29	0 21.	0 56.7				
5/25	66	34 round		56.01	0 81.42 0 81.34	0 23.	6 48.3	14"×14" Ingot	.25	.88	
8/17	4668	16×7/16	.316	1 55.33	0 86.08	8 22.	5 55.4		1		
$\frac{9/8}{6/11}$	66	15×% % round	.298	55.43	0.88.47 $0.88.04$	3 23. 0 21.	5 52.9	14"×14" Ingot	.35	.80	
6/30	64	44		. 54.59	0.88.12	0 22.	2 48.4	44			
66.	4618	21×3/4	.317	2 58.64	0 91,74	0 17.	5 44.4	165° round 3/" 180° round 5/6"			
0.100	66	15×3/6	.337	5 58.66	6 89.90	0 13.	0 47.8	180° round 34"	1		*
6/25	46	% round		. 54.26	0 86.26	0 24	5 48.1	180° round %" 14"×14" Ingot	.33	3	
66	66	66									
6/11	4647	34 round		4 44.41	0182.38	43 (25)	15 1254 4	11 14" × 14" Ingot	.38	.90	3
	66	66	100000	459 42	SE 22 56	NJ 125 E	1141				
6/5	54	44	*****	. 51.82 . 51.74	0 86.0	0 20	7 42				
	4901	14×36 12×36							"	!	
0/25	66	12×¾ 14×¾	.814	9 43.35	0 85.60	0 17	8 52.3	3,			Broke near jaw.
0/2	4600	14×1/2	. 425	9143.90	18 82.0	30 23	.0 51.3	21		1	1
0/9	66	% round	.431	1 49.68	0 83.8	30 22	.4 42.	3	-		
	460		.499	0 50.41	0 82.2 5 82.6	34 22	0.55	8 175° round 56	"	1	
0/2		15×3/2	.34	59 51.46 54.08	50184.8	00 22	.5 52.	0	.3	9.	
10/9	66	% round		. 54.70	00 82.2	60 21	.1 37.	9	.0		
10/1	3 454	11×3/6	.33	55.00 35 49.60	30 84.9 00 80.0	00 20 21	.5 47.	6			1
4/2	0 44	% round		. 54.1	25 81.5 00 84.3	00 53	.0 45	6	.3	2 .6	4
	5 465		.34	22 50.9	06 81.2	40 20	.3 54.	2			
10/1 6/1		3 round	.33	40 51.2	90 81.7 $10 82.1$	$40 18 \\ 80 24$.0 47.	2 14"×14" Ingo	.3	4 .8	35
6/1	6 44	20×7/10		52.0	50 82.6 10 74.2	20 23 60 23	.8 50.	9	1	1	1
66	66	15×16	.43	37 45.4	20 80.8	20 18	.8 53.	5			

PLATES USED IN COMPRESSION-OVER 1/2 INCH THICK.

Date, 1885.	Heat No.	Specimencut from.	Area of Specimen.	Elastic Limit: Pounds per Sq. Inches.	(Illimate Strength: Pounds per sq. Inch.	Elongation, % in 8".	Reduction of Area, %.	Bending and Ingot Notce.	Carbon.	Manganese.	Remarks.
8/11 8/17 4/20	4527	20×% % round	.4495	49.715 52.860 53.480	83,420	22.5 21.3 21.8	41.8 40.3 38.1	14"×14" Ingot	.29		
4/21 5/26 4/28	4543	20×% % round	.4587	47.960 54.125	79.260 75.430 84.500 84.320	24.5 23.0	54.3 45.6	180° round 34" 14"×14" Ingot	.32		Specimen annealed.
5/26 4/28	4538	20×34 % round	.5031	49,000	80,000	21.3	47.1	180° round %"	.32	.95	-,
5/26 4/28	4539	20×% % round	.4471	48,535 51,880 51,910	76.160 80.830 80.660	25.0 23.3 23.9	53.3 48.1 48.1	180° round ¾" 14"×14" Ingot	.34		
8/11 5/26 4/20	4540	20×11/16 20×34 34 round	.5065	46.000 48.616 54.060 53.080	79.064 79.700 85.980 85.080	16.3 22.0 23.0 23.0	22.6 45.8 46.4 44.5	180° round ½" 14"×14" Ingot	.35		Broke in bad surface [flaw.
5/26 4/28	4542	20×11/16 % round	.5425	50.690 55.970	84,516 86,140 86,060	19.5 22.3 23.0	42.3 46.5 45.1	175° round 34" 14"×14" Ingot	.87	.85	
6/12 5/26 4/28	4546	20×9/16 20×11/16 34 round	.5361 .4562 .5192	44.450 50.200 48.151	75.360 79.130 79.160	24.5 22.0 24.3	44.1 42.0 45.1	180° round \$4" 181° round \$4" 180° round \$6" 14"×14" Ingot			
5/26	4547	20×%	.4557	50.800	80.320	24.8	46.2	180° round %"	.34	.77	Plate punched soft in spots.
10/3 4/28	66	20×9/16 20×% % round	.4612	50.070	76.000 80.000 85.620	25.0 22.6	58.3	14"×14" Ingot	.33	.90	
8/11 8/25 8/26	4651	20×% 20×%	.4481 .4278	55.400 49.028 49.674	86.040 85.463 81.346	22.8 20.5 23.8 18.5	47.2 43.8 49.6	14"×14" Ingot			
6/11	4665	% round 20×9/16		52.U50	82.180 82.620 81.425 84.350	1225.8	150.2	**	.34	.85	
8/17	66	20×5/ 20×3/ 20×16/16	.4484	50.235	83.868	18.0	46.4				
6/11	1.6	34 round 20×34		53.730 52.450	85,170 84,740 84,840 79,781	22.5	38.6	14"×14" Ingot	.30	.69	
8/17 8/25 5/25	66	11×% % round	.5319	45.180 41.118 56.010	80.230 82.975 81.420	22.6 22.6 23.6	47.4 48.9 48.3	14"×14" Ingot		.88	
8/25 5/25	4618	20×11/16 34 round	.4556	50.085 54.260	81.340 84.870 86.260 86.740	20.5	49.0	14"×14" Ingot	.33		
8/11 8/17 6/29	4642	20×°/16	.5516	47.135 51.180 50.360	82.218 87.598 80.170	16.8 22.5 25.2	34.9 37 7 51.3	14"×14" Ingot	.34	.91	
	4647	16×56 20×9/16 20×34	.496	48.08	80.100 80.874 84.880	20.0	42.0				
6/11	44	% round	*****	48.810	89.825 82.380 82.500 84.760	20.5	34.4	14"×14" Ingot	.38	.98	3
	4668	20×5%	4500	56.06	86.040	20.7	42.4	**			

		34 round		5.830	88.040	21.9	41.1	14"×14	" Ingot	.35	.80
6/30	4000	11×56	6169	4.590	88.120	22.2	48.1	181° ro	and 1//		
10/9	66	34 round		59,100	83.880	22.4	42.3	101 10			
46	1001	12×56	6000					1000 200	and 7/11		
10/9	42011	34 round	.0200	54.080	82.700	22.6	39.9	160-100	ina %	.32	1
										-	
10/26	4876	22×9/18 34 round	.4931	16,500	81.630	22.0	50.4			90	1
7/28	66	94 round		55.300	80.410	22.0	39.5		*****	16.	

The following tests were made on plates, the steel slabs for which were obtained at Johnstown and plates rolled at Carnegie's.

In these specimen tests and others given later for \$\frac{4}"\$ rounds on ingots cast by Cambria Iron Co., the work done on the test bars was as follows: Ingots generally 18" square. Heated and rolled to 7" square blooms. A piece cut from bloom and heated, then hammered to 3" square billet,—again heated and rolled to \$\frac{4}"\$ round bar and then tested without further work.

In the case of the 36" plates, tests on which immediately follow, the ingots were 28"x12" and broken down and spread into 36\frac{1}{2}"x5" slabs under the hammer.

Considerable difficulty was at first experienced in getting good plates of such unusual size and weight, but extra care in preparation and inspection of the slabs, finally resulted in most satisfactory results.

PLATES USED FOR ALTERNATE TENSION AND COMPRESSION— OVER 1/4 INCH THICK.

						1/2	IN	CH THICK.			
Date, 1885.	Heat No.	Specimen cut from.	Area of Specimen.	Elastic Limit: Pounds per Sq. Inch.	Ultimate Strength: Pounds per Sq. Inch.	Elongation, % in 8".	Reduction of Area, %.	Bending and Ingol Notes.	Carbon.	Manganese.	Remarks.
7/9	6329	36×5% 34 round 36×5%	.4156	50 580 47.180 47.450 49.580	76 516	19.5 21.0 22.1 18.8	30.0 42.0 43.3 41.9		.27	.72	E-28.970.000.
66 65 85	6444	36×56 36 round		48.610 48.960 48.980 49.090 49.050	28, 950	99 1	1492 41	The State of State of State of	.30?	***	E-29.470.000.
16 16	6466	36×56 34 round	.4082	57.200	75.180	20.8	45.2	*************		.52	Specimen very cold rolled.
10/18	6476	36×5% 34 round 36×5%	.4265	49.855 49.210 49.620	75.410 77.490 73.810 74,400 70.990	17.0 21 8 20.3 21 3	27.2 39.4 31.2 55.4	18"×18" Ingot.	.20	.67	E-29.840.000.
9/13	44	34 round		47.420 47.420	74.920 74.920	24.3 25.7	44.1 45.1	18"×18" Ingot.	.20	.83	-30,080,000.
	Pl	LATES	USE	D IN	COM	PR	ESS	ION-OVER	1/2	IN	CH THICK.
Date, 1885.	Heat No.	Specimen cut from.	Area of Specimen.	Elastic Limit: Pounds per Sq. Inch.	Ultimate Strength: Pounds per Sq. Inch.	Elongation, & in 8".	Reduction of Area, %.	Bending and Ingol Notes.	Carbon.	Manganese.	Remarks.
9/9 7/30	6587	36×11/16 34 round	.5985		83.520 85.760 84.650	18.1	37.9		.34	.78	30,030,000,

The following tests are for Cambria steel.

In that rolled by the Cambria Company the work done on angles was as follows: Ingots generally 18" square bloomed down to 7"x7" for angles under 6" x4" and to blooms 7"x8" for 6"x4" and 6"x6" angles.

In angles rolled by the New Jersey Steel and Iron Company, at Trenton, for draw span, the ingots were hammered into billets as follows: 6"x6" and 6"x4" angles—billets 9\frac{1}{2}"x5"; 3\frac{1}{2}"x3\frac{1}{2}" and 3"x3" angles—billets 4\frac{1}{2}"x4"; 2\frac{1}{2}"x2\frac{1}{2}" angles—billets 3\frac{1}{2}" square.

In column headed ingot will be noticed the fact, that some tests were made from 7" square ingots cast for testingots.

This method of ascertaining the quality of whole heat was soon abandoned as unjust, both to the mill and purchaser, inasmuch as the results obtained did not give a fair judgment.

In column headed where tested, the letters have the following significance.

A-tested at shops at Athens.

- " Cambria mill at Johnstown.

T— " shops at Trenton.

P- " Olsen's at Philadelphia.

CAMBRIA STEEL, ROLLED BY CAMBRIA COMPANY—ANGLES USED IN COMPRESSION.

Tate.	Heat No.	Specimen cut from.	Area of Specimen: Sq. Inches.	Elastic Limit: Pounds per Sq. Inch.	Ultimate Strength: Pounds per Sq. Inch.	Elongation, % in 8".	Reduction of Area, %.	Where Tested.	Size Ingot.	Carbon.	Manganese.	Bending and Modulus.	Remarks.
7/21	6034	3×3×5/16			86.200		42.1	A	******			180°rd ¼"	16 silky cup.
6.6	8.6	3×3×%	.325		83.400		43.7	A				180°rd 34"	Full " "
3/	66	34 round			82.560		38.6	C	7" sq.	.35	.52	1	
44		44			83,490		38.8	C					
4/24	44	66			82.520		46.8		18" sq.		***		Flat cup silky
					82.080		46.8	C	"			28.680.000	
	6038	21/2×21/2×3/	.347		79.200		44.1	A	****		***	180°rd ¾"	Full "
3/	66	% round			91.360 82.100		31.7	C	?" sq.	.34	.49		
4/22	1	44			79.320		46.3		18" 80				Regular silky
4/24	66	66	****	40.430	83,000		45.2	C	19. sd	27.0		30.730.000	
64	44	44			81.140		45.7	Č	44			00.130.000	Fine cup "
	61	66			80,680		45.6	č	66			29.610.000	Tarace Cup
7/01	5756	4×4×9/16			75,300		34.7	A		***	***	180°rd 11//	Part cup "
0/24	2000	AVAV-\18	,000	24.400	10.000		92.0	2.2		***	***	100 10 14	trace crystals
7/22		$4 \times 4 \times ^{11}/_{16}$.555	41.100	78.100	24.4	50.3	À				180°rd 14"	Part cup silky
3/	3.8	34 round		49,350	78,320	20.6	34.9	C	7" sq.	.33	.53		
66	66	41		49,350	78.090		39.2		46				
4/23	46	46		48.030	81.600		34.2		18" sq.				1/2 cup silky
1.5	4.6	66			81.180		34.5		66			29,680,000	** ** **
7/21	6007	6×4×1/4	.485	41.600	82,500	23.1	46.9	A	******			********	Part " "
													trace crystals
44	66	44		43,800		22.4	46.2	A	****			********	% cup silky
	1	6×4×9/16	.597		85.600+			A	******		***		Not broken.
3/	66	34 round			85.310			C	7" 8q.	.36	.61		
44	1	44			85.060		35.7	C	64				
4/22	66	66		49.560			45.5		18" eq.			**********	Flat cup silk
	64	66			86.950		45.8		6.6			28,910,000	
5/4				45.420			43.5			***	***	*********	Irreg. silky some crystals
**	44	44					42.3		4.6	***		180° rd 2"	Irreg. silky.
10/22	6563	6×4×70 lbs L	.595	45,500	84.030+	9.	8.4	A		***	***	180° rd 2"	Could no

TESTS OF ANGLES USED IN COMPRESSION .- Continued.

Date.	Heat No.	Specimen cut from.	pecim hes.	Elastic Limit: Pounds per Sq. Inch.	Ultimate Strength: Pounds per Sq. Inch:	Elongation, % in 8".	duction of Area, %.	Where Tested.	Size Ingot.	Carbon,	Manganese.	Bending and Mod- ulus.	Remarks.
7/23	6563	34 round			87.830		39.2	C	18" sq.	.32	.89		lrreg. silky.
46	44		****		88.280		40.6	C	**			29,450,000	
10/22		4×4×53.5lb.L			73.300		53.7	A		90	.71	180° rd 2"	% cup silky. Silky.
7/13	413	% round			78.840	92 6	41.9	C	*****	. 20	-41	29.440.000	Silky.
10/22	6047	4×4×7/16 L	430		87.400		43.5			***	***	180° rd 1"	% cup silky.
3/	66	34 round			85.760		33.8	C	7" sq.	.37	.81	200 246 2	A cup bing.
44	66	6.6		52.320	86.460	19.5	34.0	C	66		1		
4/22	5.6	66			85.550		43.8		18" sq.				Very irreg.
66	66		****	51.780	86.000		42.8		44			31.200.000	Flat cup silky.
		3×3×% L	.378		85.000		31.7		18" sq.				34
7/10		% round		03.510	86.480	19.0	33.8	C	18" sq.	.36	.89	****** * *	Crystalline &
46	66	64		53.740	87.180	21.	33.8	C	66			30,000,000	Crystalline &
10/22	6560	21×21×5/16 L	.323	47.300	81.600		3 43.0					180°rd 36"	16 cup silky.
		- 66	.814	47.400	84.400		36.6					170°rd 1/4"	34 66 66
46	66	21×21×20 lbs	.402	46.000	83.600		3 34.1					170°rd ½" 180°rd ¾" 180°rd ¾"	12 11 11
	1		* 000			22.	5 43.8	A	18" sq.			180°rd %"	Porf onn "
7/22	44	34 round			85.800		8 42.1 0 42.2		18" sq.	.31	.84	31.520.000	Tem. cap
7/21		21×21×6/10 L	908	40 500	84,400		5 40.0						
4/23	44	34 round	. 430	47 870	80.480		0.48.0		18" sq.	28	88	100 14 1	Itag u
44	66	46	1	47.870	80.000		0 47.6		10 24	-	1.00	29.440.000	Perf. " "

CAMBRIA STEEL, ROLLED AT TRENTON-ANGLES USED IN COMPRESSION.

Date, 1885.	Heat No.	Specimen cut from.	Area of Specimen.	Elastic Limit: Pounds per Sq. Inch.	UltimateStrength: Pounds per Sq. Inch.	Elongation, % in 8".	Reduction of Area, S.	Where Tested.	Ingot.	Carbon by Cam- bria.	Manganese.	Remarks.
9/29	6780	3½"L28.9 lbs "" "" "" "" "" "" "" "" "" "" "" "" ""		46.960 47.210 46.160 47.050 49.140 46.020 45.170 46.200 54.060	84,610 83,750 82,770 81,940 85,280 83,390 81,580 80,000 82,500 84,880	19.5 23.5 22.7 18.2 20.0 22.1 18.0 18.7 21.2	40.0 51.7 49.7 82.4 49.4 47.5 44.3 88.1	TTCCTCCTTCC	7" sq. ingot	.33 .30 .32 .30 .31		80% cryst-eq. Silky cupped. faint cryst. angular. angular. cupped. y cup. irregular. E—
9/30 10/26 9/30	6781	2%"L-14.2 lbs % round 3%"L-27 lbs % round	.400	46.860 50.920 51.510 41.250 43.950 49.800	82,830 83,540 82,870 78,500 80,840 80,580 80,360	18.7 21.6 21.8 23.5 21.9 22.1	41.5 44.0 43.8 44.8 44.8	TCC	14" sq. ingot			30,160,000. Silky cupped.
11/28	6788	3"L-25 lbs	.368	46,640	82.870 83.460 83.790	17.7	37.8	PPP				Silky square.

CAMBRIA STEEL, ROLLED AT TRENTON-ANGLES USED IN COMPRESSION ACCEPTED ON INGOT TESTS AND REJECTED ON FINISHED TESTS.

Test Mark.	Heat No.	Material.	Where Tested.	Elastic Limit: Pounds per Sq. Inch.	Ultimate Strength: Pounds per Sq. Inch.	Elongation, % in	Reduction of Area, %.	Carbon by Salom, Phila.	Carbon by Cam- bria.	Remarks as to Fracture.
F	6741	3%" L 40 lbs	T	43.720	77,200	21.8	45.9	.35	.31	Silky cupped.
G	86	16 66	T	43.650	78,500	18.7	41.5	.38	.32	" square.
1	46	66 66	C	42.510	76,150	22.9	49.8		.30	" 100%.
FG1 IX CI 3 3X *	44	44 44	C	42.050	74.330	21.5	42.5	*********		" faintly cryst.
C	66	" 37.8 lbs	T	41.100	70,090	22.5	40.0	.25245	.20	" at 45°.
I	44	" 40 lbs	T	42.880					.384339	Crystalline fine.
3	6.6	" 37.8 lbs	C	42.300				********	.27	Silky partly.
3x	66	44 44	C	44.850					**********	Square-cryst.
	145	" 30 lbs	T	41.260				*********	****** *****	Silky cupped.
1 7 7x	1 "	" 30.5 lbs	T	44.420	75.390	24.2	34.8			
1	46		T	40.080	73.780	22.6	45.1	3131	.30	14 1/ operet 1/
3	45	" 30 lbs		44.090	80,740	21.2	38.5		.42	
8	46	46 44	C	45.570	80.710	22.3	30.0	*******	.36	" % " %.
8x	44	66 66	C	41.880	79,820	20.0	43.2	*********	.00	" ¾ ¾. " 100%.
88	66		C					***** ***	.28	100%.
	44	% round	č	48.560	78.630	21.0	39.9		.20	
H	6740		T		80,000			.34	.30	Silky cupped.
E	0740	355. Tot 9108	T	45,610					.35	" 9/10-angular.
A	66	66 66	Ĉ		79.090			.40	.34	Square crystalline.
Av	44	44 44	č		90.610				.01	" 100s
+	66	3" L 30.5 lbs	Ť	46.630				.4549	.4732465	
4 4x \$	44	0 M 00.0 100	Ĉ	44,200				. 20-, 10	.35	44 44 46
6x	44	44	č	43.750						Silky.
-	6.6	% round	Č	49,720	82.100	21.7	41.0		.34	
	44	41	č	50,880	81 640	21.0	41.0			

CAMBRIA STEEL, ROLLED BY CAMBRIA-ANGLES USED IN TEN-SION, OR ALTERNATE TENSION AND COMPRESSION.

Date.	Heat No.	Specimen cut from.	Area of Specimen: Sq. Inches.	Elastic Limit: Pounds per Sq. Inch.	Ultimate Strength: Pounds per Sq. Inch.	Elongation, % in 8".	Reduction of Area, %.	Where Tested.	Size Ingot.	Carbon.	Manganese.	Bending and Mod- ulus.	Remarks.
7/22	6319	21/2×21/4×3/6	.425	42.800	70.100	21.9	48.2	A				180° round	1/2 cup silky.
5/9	44	34 round		44.970	71.350 71.800	22.5	41.4	C	18" sq.	.20	.83	29.360.000	Irregular silky.
7/21	6332	6×4×69 lbs	.541	36,600	69.600	24.3	50.8	A				180°round	1/2 cup silky.
"	44	64	.546	38.600	69.800	23.1	42.5	A				180° round	
5/26	66	¾ round		46.110 45.740	74.550	22.1	42.5	C	18" sq.	.26	.94		Full cup silky.
7/22	6388	3×3×3⁄6	.343	45.740	73.960	24.1	53.3	C A			***	28.900.000 180°round	
44	64	3×3×5/16	.344	42.400	73,500	22.5	52.0	A				180° round	64
5/28	64	34 round		43.240	71.360	25.4	49.7	C	18" sq.	.23	.73	1/2	46
46	64.	3×3×21.5 lbs	240	43.110	70.920	24.7	50.7	C	"			180°round	Deep cup silky.
-,			.010	1	1			-	10#			1"	16 cup silky.
4/18	66	34 round		45,200	72.700	21.4	140.4	C	18" sq.	.24	.04		Silky.
		21/2×21/2×5/18	.308	45.400		1						180°round	Perf. cup silky.
4/23	44	34 round		44.870	73.460	23.4	45.8	C	18" sq.	.27	.86	28.830.000	1/2 cup silky.
7/22	6272	5×31/4×3/6	.385	42.600	73.000	24.4	51.9	A				180° round	Full cup silky.
4/23	66	34 round		45.560	72.850 72.850	23.5	43.0	C	18" sq.		.64	30.830.000	16 cup silky.
10/22	6571	6×4×69 lbs 21/4×21/4×30	.544	39.900	71.200	25.4	53.1	A				180°round	
66		lbs.	.470	40.200	74.700	25.5	51.7	A				180° round	34 cup silky.
	-	2½×2½×30 lbs.	.465	43.200	75.600	26.4	47.7	A				1% 180°round	
7/27	64	34 round		49.390	76.690	23.8	47.9	C	18" sq.	.24	.94	11/6"	34 cup silky. Irreg. silky.
10/22	6555	4×4×53,5 lbs	.518	50.960 39.000	76.890	23.2	44.9	A				30.860.000 180°round	
44	66	4×4×33.21bs		41,500			1					11/2 180° round	34 cup silky.
7/20	66	¾ round			73.340				18" sq.	90	00	1"	16 cup irreg. Perf. cup silky.
4.6	46	3×3×11/16 L.		47.290	70.580	24.0	49.1	C	10 eq.		.00		Imp. cup silky.
10/44	14	0×0×/16 L.		43.500					******	***		180°round 11⁄2″	16 cup irreg.
			.502	40.100	76.000	23.9	44.4	A			***	180°round	66
5/13	66	34 round	****	45.570	75.310	23.2	38.6	C	18" sq.	.21	.41	28.900.000	Irregular silky.
10/22	6570	3×3×7/16 L.	.406	43.100	74.600	20.1	40.9	A				180°round	
66	66	66	.417	42.200	73.900	23.3	53.9	A				180°round	-
7/30	66	34 round		46.920	71.790	23.1	46.4	C	18" sq.	.22	.63		% cup silky.
10/22	6565	21/2×21/2×4/16		45.750	1	1	1			***	***	30.260.000	
46		21/6×21/6×5/16	.313	43.200	71.200	19.8	52.1	A	******			180°round	14 cup irreg.
			.309	42.900	70.600	25.€	50.0	A				180°round	
7/23	66	34 round	****	46.380 47.080	70.740	27.0	53.5 54.4	C	18" sq.	.18	.90		% cup silky. Deep cup silky. Irregular silky.
	6730	3½" L 40 lbs		41.340	70.940	26.0	47.6	C	1	.29			

CAMBRIA STEEL, ROLLED AT TRENTON—ANGLES USED IN TENSION.

Date, 1885.	Heat No.	Specimen cut from.	Area of Specimen: Sq. Inch: 8.	E'astic Limit: 1bs. per Sq, Inch.	Ultimate Strength: Pounds per Sq. In.	Elongation, % in 8".	Reduction of Area, %.	Tested at.	Size Ingot.	Carbon.	Manganese.	Remarks.
11/14	66				73.630			T				Silky at 45°.
44	46	65 66 66			70.020			T				" cupped.
66	66	" " 25.3	.447		70.800			T			***	" at 45°.
9/15	1	% round	****	45.620	72 550	22.5	51.5	C	14" sq.	000		" irregular.
	44	44 44		47 000	72.550	98.0	59 4	C	Ingot	,28	,55	Silky irregular
				21.000	14,000	20.0	136.4	-		***	***	E-30.600.000.
1/14		3" L-33.2 lbs	,469	43,710	76.870	21.8	41.0	T		1		Silky cupped.
9/29	6.6	% round		48.180	77.530	22.0	45.5	C	7" 89.	1		
65	44	44						-	Ingot	.25	.95	" partial cup.
	-			49.790	77.300	24.2	44 5	C		***		Silky partial cup. E-30.080.000.
1/14	6776	3" L 33.2 lbs	478	49 050	72.800	95 0	46 5	T	1			Silky cap.
9/29		% round			76.830				7" sq.			bitay cap.
~, ~~	1		1				10.10		Ingot	.22	.90	" partial cup.
8.6	.64	6.6		50.470	76.620	25.5	46.5	C	44			Silky partial cup.
	-							-		1		E-30.590.000.
1/14	0760	6"×6"L×56"			70.900			T	******		***	Silky cupped.
66					71.920			T				" 9/10-angular.
66	44	6"×4"L×34"	5.42	40.910	70.300	20.0	20.0	Ť	******			Silky cupped.
9/29	66	34 round			72,750				14" sq.	***	***	
w/ we		74 104114		41.200	**. * 30	40.1	20.0	-	Ingot	21	.59	" cup.
66		5.5		47.160	71.850	24.2	49.5	C				Silky irregular.
						-				1	1	E-30.460.000.
11/14		3" L 28.0 lbs	.507	42,010	71.990	20.8	49.3	T				Silky-% angular.
10/1	**	% round		48.920	72.130	22.1	42.9	C	14" sq.	1	000	
4.6	44	44		10 610	73.710	00 0	41 0	0	Ingot	.18	.83	" irregular. Silk irregular.
				49.010	73.710	23.9	11.9	C	-			E-29.600.000.
1/14	6795	3" L-28 lbs	515	41 300	70.870	18 8	11 6	T				Silky cupped.
10/3	46	% round		50.260	75.510	21 7	35.0	Ĉ	14" eq.		**	omy cuppes.
-	1		1		10,000		1	-	Ingot	.24	1.7:	" irregular.
66	44	44		50.970	75,510	23.8	40.0	C	11		2	ional cupped.
	1				1	1	1		1			E-29.690,000.

In the following tests on rivet steel, the first four were made at mill on 3/4

round, from ingot.

The other tests were made at shop at Athens on the regular rivet bars. The 3" square billets were rolled into rivet material at Pencoyd Mills. All the rivets tested in this lot came from the heats 4635 and 4637, but as rivet bars had no heat numbers stamped on them they could not be identified closely.

PENNA. STEEL CO.'S STEEL, ROLLED AT PENCOYD-STEEL RIVETS.

Date, 1885.	Heat No.	Specimen cut from.	Area of Specimen.	Elastic Limit: Pounds per Sq. Inch.	UltimateStrength: Pounds per Sq. Inch.	Elongation, % in 8".	Reduction of	Bending and Ingolv Notes.	Carbon.	Manganese.	Remarks.
6/5	4635	% round		46.370	61.310	28.5	54.3	18" sq. Ingot.	.10	.40	1/2 cup silky.
46	4637	6.6	505	45.700	61.340	20.7 97 B	100.1	66	.11	.44	64
46	06	6-6	525	48,940	61.650			44	-44	. 29	64
6/24		% round	.594	24.300!	56.230	33.4	64.3				
46		- 11		27.200	59,200	30.0	62.0	A COMPANIES OF THE PARTY OF THE			
6/26	***	34 round	.443	25.300?	59.600	30.0	64.1	Specimen not to	reated		
	****	66	.443	28.200	59.140	31.3	64.1	44 4			
6/27		44		38.500	59.060	28.8	62.9	" reheat	ed the	en air	r cooled.
				34.800	57.900			66 66		66	
6/29		6.6	.443	26.840	55.080			" annea	led.		
	****	4.4		26.500	54,400			46 46			
6/26		66	.438	29.200	73.500	15.6	62.1		l brig		d then
44		4.4	.439	28.000	74.260			ii que	66	66	broke in jaw.
6/27		6.4		45,100	73.100	15.3	59 1	66	44	6.6	orono m jan.
86		66	428	52.050	75,200		63.7	66	44	66	16

BENDING TESTS.

%" round Rods—Cherry red—then quenched in water; nicked and bent broke at 60°; without nicking bent double around %" round, no crack.

%" round Rods—Bright red—then quenched, bent double around \%" round, no crack.

4" round—2 pieces—Bright red—then quenched, bent double around \%" round, no crack.

4" round—2 pieces—Bright red—then air cooled, bent double around \%" round, no crack.

%" round—3 pieces—Bright red—then air cooled, bent double around \%" round, no crack.

When tested with file no perceptible difference detected between quenched and air cooled.

PENNA. STEEL CO.'S STEEL, ROLLED AT PENCOYD—STEEL RIVETS.

Date, 1885.	Heat No.	Specimen cut from.	Area of Specimen.	Elastic Limit: Pounds per Sq. Inch.	Ultimate Strength: Pounds per Sq. Inch.	Elongation, % in 8".	Reduction of Area, %.		Bending and Ingot Notes.	Carbon.	Manganese.	Remarks.
8/6	4767	34 round	.531		60.610	27.5	49.7	1		.09	.35	
16	4769	66	.518	42.380 40.870	60.500	28.3	53.3		a t	00	49	
44	11	44		41.650				1	Ingot tests made at Steelton.	.08	.43	
3/17	4775	46		41.270					pa .	.10	.42	
56	86	**		40.750					88		. 200	
46	4777	44	.497	39.260	60,460	29.3	55.9	11	tests me Steelton.	.09	.35	
4.6	**	4.6	.505	38.970	59,670	27.8	54.9	l i	8 9	1		
16	4779	**	.505	38.910	59.750	30.5	55.2	11	20	.09	.37	
**		44	.497	38.730	59.530	28.8	56.1		06			
**	4782	44	.475	37.780	58.590	28.8	60.1	11	=	.10	.48	
1		**		38.250				1				
/21		36 "		39.000					bar at at			Full cup silky.
**	****	28	.000	38.800	29.90	30.0	00.3		400 00 000	***	****	Full "
44		64	800	35.500	58 400	1 90 .0	1 69 5	1	bacte t	***		24 "
64		64	592	36.300	58 80	29 6	67 9		Rivet bar tests made at Athens.	****		38 "

CAMBRIA STEEL, ROLLED BY CAMBRIA—SPECIMEN TESTS ON EYEBAR STEEL.

41		Edge of bar, 1/8" skin planed off. Between edge and center.
€ 2	1 44 3.	Centre of bar. Edge of bar, 16" skin planed off. Edge of bar, skin left on.

The four tests from Heat No. 6391, marked *, were from same bar as those immediately preceding.

		en cut	Area of Specimen.	iit per	Ultimate Strength per Sq. Inch.	ni %	on of	Ingot and Bending.				
	. 1	=	ods.	ch.	82	on	2 %	g g		986		Modulus and
	No.	pecin from.	95	lo I	Sq	ati	a,	80	ä.	an		Remarks.
9	42	000	80	q.	EL	gu %	der	ot	poq	100	14	
Date.	Heat	25	Are	Ela	D d	Elo 8.	Reduction Area, %.	Ing	Carbon.	Manganese.	Mark.	
7/2	6324	3×34	.622	41.480	75.240 75.160	23.7 26.1	34.7 46.0	18"×18" Ingot			No. 2 No. 1	1/3 Crystalline. Silky.
	66	34 round		47.860	75.910	23.1	43.3	18"×18" Ingot	.20	.66		
Pr /0	6325	41418/	011	47.720	75.700 71.800	22.5	41.4	**	****	****	No. 1	E=30.080.000
6.6	66	4×13/16	.608	40,800	.70,560	23.1	45.6				No. 2	Silky.
5/11	66	34 round	****	47,090	75.500	93 0	20.0		.20	.00	*****	E-30 960 000
7/2	6339	5×31/32			75.200	24.4	47.7	180° round 2"			No. 1	Silky.
44	**				72.900			180° round 2"				
5/16	66	34 round		45.820	73.400	23.4	39.3	18"×18" Ingot	.21	.68		W
7/3		5×13/16	.591	45,330	72.610 79.300	20.9	38.7 22.8	18"×18" Ingot	****		No. 1	E-29.600.00 36 36 Silky. Crystalline.
	6.6	4.6	.591	42,600	79,700	19.6	24.3				No. 2	64
5/16	46	34 round			78.420	22.0	39.3	18"×18" Ingot	.22	.87		
66	6290	6×1	400	49.160	78.850	22.4	37.7	1000 11/11	***		N . 1	E-31.410.000
2/1	00390	6×1	708	36.800	69.780 65.650	195 1	56 1	190, tonng 178,		****	No. 4	Sliky.
	6.6	66	611	38 950	76.760	26.3	52.5				No. 2	66
4/29	66	34 round		48.710	72,700	24.8	45.2	18"×18" Ingot			1210110	
66	64	34 round	****		72.500	25.1	45.2	44		****		E-29,290.000
		7×13/8	.599	39.870	77.950		1	18"×18" Ingot 180° round 1½" 18"×18" Ingot 140°-broke			1	C o m p reser
6.5	66	44			76.200	12.0	11.8	1 150°-broke			No. 2	44
66	66	- 66			69.940	24.4	1 38.6				No. 1	60% Crystalline.
	6391	7×136	.630	36.800	69.290	24.3	44.8	1500 heales		****	No. 3	Foirly siller
4/6	10991	1×198	* 445	141.44	0,76.700	199	140.9	i 150°-broke			No. 3	Early bitay.
4.6	4.6	44	* 445	38.20	0 72.900	22	36.8	3	1		No. 2	34 Crystalline.
64			*.44	38.40	0 72.990	24.	5 36.8	8			No. 2	30% "
6/1	66	34 round			0 77.630	22.	7 42.5	2 18"×18" Ingo	.27	.5	5	TO 00 PEO 000
	6473	1	*****	46.17	0 76.940 0 76.990	21.	43.5	9	96	8/		E-28.750.000.
66	41	**		49 73	0 75.970			8				
7/29	6589	66		47.91	0 73.670	00	0 44 6	O O	100	h Pro	19	
7/3) "	44		48.31	0 74.510	22.	8 46.	4				
6/19	6469		****	. 49.56	0 74.780	20.	9 35.	1 18"×18" Ingo	1 .12	.5	8	73 00 140 000
10.79	6794		*****	. 50.47	0 74.560 0 69.750	20.	4 35.		****			E=29.140.000.
10/0	04.99	1 66			0 69.500	94	8 43	5	. 13	.0		R-29.840.000.
	6790			49.16	0 74 180	22	1 42.	9	2	8 .8	4	201010101
4.6	46	44		. 49.16	0 75,100	24.	5 42.	1 18"×18" Ingo 1 5				E=29.840.000.
6/1	8 6461	66		. 48.67	0 69.420	24.	0 46.	2 18"×18" Ingo	t .2	0 .5	7	
6.6	46	44		. 46.82	0 69.190	25.	9 48.	1 "	1			E-30.750.000.

SPECIMEN TESTS ON EYEBAR STEEL .- Continued.

Date.	Heat No.	Specimen cut from.	Area of Specimen.	Elastic Limit per Sq. inch.	Ultimate Strength per Sq. inch.	Elongation, % in 8."	Reduction of	Ingot and Bending.	Carbon.	Manganese.	Mark.	Modulus and Remarks.
10/22	6589	6×1%	*.499	40,000	78.700	23.8	50.5	60° b'ke				1/2 cup silky
7/29		34 round						18" sq				aillev
7/30	66	46	*****	48,310	74.510	92.4	40.4	66	***	***	99 800 000	46
10/22	2244?	3×3/4	4.668	45,400	74.900	9.5	12.1				20.000.000	Not broken.
44	66	5×11/8	*.499	39.100	74.200 69.600	26.1	52.7	**** **** ****************************	***	***		34 cup silky.
	6570	7×17/16 4×19/16	* 500	38 500	74.700	95 3	56 0	170° rd 2, b'ke		***	*******	62 "
7/3	4.6	34 round		46.920	71.790	23.1	46.4	18" sq	.22	.63		12 "
46	66	16	1	45.750	70.940	24.3	48.5	**			30.260.000	46
7/23		4×13/16 34 round	*.450	40.200 47.980	74,900	25.8	58.9 50.1	170° r'd 2′, b'ke 18″ sq	94	91		Irregular
		1								.02	********	silky.
40.000	16	041.4	1	48.200	74.950	24.5	49.1	************	***	***	29.760.000	
8/8	6617	3×11/4 3/4 round	T.621	47 590	29,600	26.9	39.4	18" sq	00		1	La cun gilky
-												Nearly per- fect cup, silky.
40.000	66	66 0 + + + F 4			72.460	25.5	43.4	44			29.130 000	48
8/1	6597	6×15% 34 round	T.552	39,500	74.300	27.3	37.5	180° r'd 1" b'ke 18" sq	90	***		Lecup silky.
				20.110	10.000							oillese
44	64	4.6	1 27	46.880	71.030	21.1	40.2	Specimen .975)			29,530,000	č.
10/20	?	7×23/16	1.626	34.700	64,900	23.1	37.1	Specimen .975)	<.64	2		on skin
		-										mainder

In the tests for eyebars (table opposite page 128), the full sized bars were ordered to Athens. From each bar a piece 18" long was cut, from which the specimen tests were planed out with location in bar as shown by sketch and marks carried out against the tests.

Then the long bars were cut in two and eyebars made from them for test. In case of $3''x_1^{2''}$ and $4''x_1^{18''}$ bars, this was done with both pieces of bar and in other cases only one eyebar was made from each size. Hence, it will be seen that the chain is complete, viz., $\frac{9}{4}$ round tests of ingots at mill—specimen tests of the finished bar from outside and center of bar and finally the test of the completed eyebar made from same bar.

It is to be noted that the small eyebars tested at Fairbanks & Co. are off from same original bar as those of same size sent to Edge Moor, although the excesses in sectional area of head are different.

Eyebars No. 1 to No. 6 inclusive, were submitted in accordance with the specifications, and were tested at Edge Moor Iron Works. Eyebars No. 1a and No. 2a were experimental bars sent to Fairbanks & Co. for test by Union Bridge Co., having less excess section in the eyes.

Eye bar No. 7 was a regular eyebar, which when inspected, showed presence of a cold shut in neck and was rejected.

Experiment was made at blacksmith forge to eliminate the defect, and the appearance of the bar indicated that the work was successful. To test the method however, the bar was reannealed and sent to the Keystone Bridge Company and broken, with results shown in table. The inspector was given special instructions to note appearance of repaired spot during and after test, but no defect was detected.

Eyebar No. 8 was a steel lateral bar with upsets and an iron sleeve nut. This bar was not made specially for test.

Eyebars No. 9, No. 10 and No. 11 were selected at random and not made for testing.

The specimen tests given in table from heats 6589, 2244 (?) 6570, 6567, 6617, 6597 and (?) and are on steel, made and used for eyebars of which no full size eye bar tests were obtained.

The following tests show the results of imposing an initial strain of 20,000 lbs. per sq. inch on a car load of eyebars in accordance with specifications. The bars were carefully tested in the Keystone machine. This specification was subsequently waived and no more such tests made.

TESTS ON FINISHED EYEBARS.

Vol. xvii. p. 158.

ecks

In er he in-

m

ifi-2a 0.,

ice

apnod and ucvas

his for

17, ye

000 The

						BEF	ORE T	EST.						Sq.	Sq.							AFTER TE	ST.			
1				DIMENSION	8.				SECTI	ONAL A	REA	3.		astic	treng			ELONGAT	ONS.		Repue	TIONS.		FRACTURE.	Modulus	Demos
1885.	No.	No.	-	Length.	Pin-	Pin-			EYE .	Α.		EYE I	3.	it El	ate Sinds	Hole	Hole	Ba	r.	% in	Area of	% of	Distance from back		of Elasticity: Pounds.	Remark Origin Bare
Date,	Test	Heat	Bar.	L.	hole A.	hole B.	Bar.	E.	w.	% Ex-	Ε'.	W'.	g Ex-	Pou	Ultim Por Inc	Α.	В.	Measured Length.	Amount.	Length L.	Fracture Sq. Inch.	Original Area.	of Pin- hole F.	Character of Fracture.		
7/29	1 2 3 4 5 6	6324 6325 6339 6341 6290 6391	3×34 $4 \times 13 / 16$ $5 \times 31 / 32$ $5 \times 13 / 16$ 6×1 7×136	9'-316'' 8'-0'3 ⁷ 16'' 7'-11 ¹¹ /16'' 7'-9 ⁷ /16'' 6'-6 ¹ 6'' 7'-9 ³ /16''	3.52" 5.77 5.77 6.27 7.27	3.52" 5.77 5.77 6.27 7.27	6.00	4.76	3,75 5,07 7,00 9,20 8,77 13,50	41.4 53.3 46.1	$\frac{4.00}{4.96}$	7.00 9.21 8.70	52.5 41.4 53.5 45.0	42,30 38,90 44,40 38,30	0 74.400 0 72.100 0 71.800 0 78.500 0 65.400 0 61.300	0.51 0.58 0.69	$0.38 \\ 0.70 \\ 0.61 \\ 0.54$	No record	1'-314" 0'-11 ⁷ /16" 0'-11 ⁹ /16" 0'-11 ⁷ /16" 0'-3"	13.7 11.5 12.1 12.2 0.4 0.4	1,28 1,89 2,89 3,59	44.6 43.3 41.6 40.1	3'-316" 1'-11" 1'-616" 2'-416.'	lý cup, silky edges. Full cup, silky edges. lý finely crystalline, ½ silky. Silky cup. Eye end opened, coarsely crystalline. No fracture.		9 8
7/27	1a 2a	6324 6325	3×3/ 4×13/16	9/-215/18"											1 66.823 6 64.720			7'-0'' 5'-0''	1'-014'' 0'-718''	14.6 11.8	1.26 1.9	45.2 42.2	2'-116" 1'-936"	Fine silky	28.154.000	
10/17	7	6473	4×15/16	34'-95/16"	4.02	5.02	3.75	3.18	5,45	45.3	3.25	5.44	45.1	35,70	0 63,470	0.56	0,38	50/-0//	2'-25%"	12 4	2.69	28.3	2'-51/9"			** 3 .
1886 2/19	8 9 10	Long end. 6589 6469 6794	$3 \times ^{13}/_{16}$ $5 \times 1^{1}/_{16}$ $5 \times 1^{3}/_{16}$	5'-136'' 24'-256'' 30'-634'' 20'-4''	3,02 5,02 5,52	3.02 4.52 5.52	5.31 5.94	4.43	7.44 9.19	40.1 54.7	4,68	7.44 10.13	40.1 70.5	41.60	00 67,700 00 66,400 00 64,600 00 70,340	0.56	0.47	4'-0" 20'-0" 16'-0"	0'-7¾" 2'-4" 1'-11"	16,1 11,7 11,9	1.27 2.58 3.07	48.0 51.5 48.3	Short end 1'-4\2'' 7'-2\2''	Silky cup, showing one separation		12 =

TESTS ON FINISHED EYEBARS.

		ty:	th:						A	FTER TES	T.	
		Elasticity: per Sq.	Strength: per Sq.			ELONGAT	ons.		Repute	TIONS.		FRACTURE.
E	3.	90	0,00	Hole	Hole	Ba	r.	% in Length	Area of	% of	Distance from back	Character of Develop
	% Ex-	Limit Pound	Ultin	Α.	В.	Measured Length.	Amount.	L.	Fracture Sq. Inch.	Original Area.	of Pin- hole F.	Character of Fracture.
580101	62.3 52.5 41.4 53.5 45.0 37.2	42,30 38,90 44,40 38,30	0 74,400 10 72,100 10 71,800 10 78,500 10 65,400 10 61,300	0.51 0.58 0.69	0.34" 0.38 0.70 0.61 0.54 0.65	No record	1'-314" 0'-11 ⁷ /16" 0'-11 ⁹ /16" 0'-11 ⁷ /16" 0'-3"	12.1	1.28 1.89 2.89 3.59	44.6 43.3 41.6 40.1	3'-318" 1'-11" 1'-616" 2'-412.'	Lé cup, silky edges. Full cup, silky edges. Lé finely crystalline, 24 silky Silky cup. Eye end opened, coarsely crystalline. No fracture.
54	41.3 44.0	36.60 36.49	01 66.82 96 64.72	3 0.52 0 0.62	0.48	7'-0" 5'-0"	1'-014" 0'-718"	14.6 11.8	1.26 1.9	45.9 42.2	2'-116" 1'-938"	Fine silky
4	45.1	35.70	00 63.47	0.56	0.38	50,-0,,	2'-25%"	12 4	2,69	28.3	2'-51/2"	Irregular silky edges
0	92.6	1	00 67.70		0.19		0'-734"	16,1	1.27	48.0	Short end	Suky cup, showing one separation
3 6	40.1 70.5 50.3	40.30	$\begin{array}{c c} 00 & 66.40 \\ 00 & 64.60 \\ 00 & 70.34 \end{array}$	0.0.63	0.47 0.56 0.38		2'-4" 1'-11" 1'-814"	11.7 11.9 10.5	2.58 3.07 5.94	51.5 48.3 9.5	7'-21g'' 7'-101g'' 4'-41g''	Silky cup. Silky center, fine granular edges. Square across, finely granular throughout

	Modulus of Elasticity: Pounds.	Remarks Origin Bars.	al	Remarks on Tested Bars.	Where Tested.
e	28,154,000 30,416,000	Heads planed on sides.	Annealed in open air wood fire.	Opened crack 1/4" deep on end of Eye A. Cold shut in Eye A opened. Fracture started in initial crack on outside. Machine unable to break.	Edge Moor.
	28.236.000	Heads planed.		Heads showed no cold shuts.	Keystone.
ighout.		Heads not planed.	Annealed in fur- nace wood fire.	Screw threads, 21/4" diam., uninjured, sleeve nut easily unscrewed.	14 14 15

INITIAL TESTS OF EYEBARS WITHIN THE ELASTIC LIMIT.

1885.	ſ	bar.	th C to C	Siz. Pi	e of	f bar.	Pounds strain per 8q. in.	Extension in 16'- 8" inches.	as of elas-	Remarks.
.01 Date,	Mark.	Size of bar,	Length pins.	A.	В.	Area of bar.	Pounds 8q. in	Extens 8" in	Modulus ticity.	
10/9	L_1M_1	4×1	20'-4"	31/2	5%	4.00	20,000	.1355	29 520,000 29,347,000	No permanent set.
66	44	**	44	66	44	64	6.6	1366	29.282,000	**
44	4.6	66	6.6	46	6.6	6.6	66		29,133,000	66
10/7	. L3 M3	4×%	16	31/6	434	3.50	54	.1330	30.007.000	**
10/10				66	14	46	44	.1322	30,257,000	4.4
10/10 10/7 10/10	L5 M5	4×%	**	31/2	41/6	3.50	64	.1312	30.490,000	44 .
10/10	20,14				100	86	6.6	.1326	30,167,000	44
66	L ₇ M ₇	66	4.6	6.6	4.6	4.6	6.6	.1390	28.777.000	6.6
10/7	1.6	44	44	54	64	60	**	.1367	29,261,000	66
10/8	L. M.	4×27/32	64	31/2	414	3.37	44		30.327.000	44
66	24	14 44			1.6	64	44		30,417,000	
10/10		**		**	64	44	**	. 1318	30,349,000	Heat No. 6461. Specimen test E=30,750,- [000.
6.6	**	44	44	44	64	64	4.6	.1358	29,456,000	44
10/8 10/10 10/8	Lo Mo	4× 27/32	66	31/2	414	3.37	4.6	.1357	29.478.000	6.6
10/10					14	6.6	44	.1325	30.190.000	44
10/8	L11 M11	4× 27/32	66	316	414	3.37	4 54	.1305	30.651.000	64
44		11, 02	66		6.6	4.6	44		30.167.000	
10/10	L13 M13	4×3%	6.6	31/2	416	3.50	44	.1327	30.143,000	6.6
	-1410	***	66			6.6	66	.1350	29,260,000	4.6
10/7	**	4×7/6 4×27/32	64	4.6	4.6	64	44	.1337	29,917,000	- 44
	44	66.	44	44	66	4.6	44	.1310	30,534,000	64
10/7	L15 M15	4×3/6	6.6	316	434	3.50	66	.1328	30.120.000	66
5 a		4× 27/32	6.6	60	66	3.37	64	. 1350	29.632.000	

SPECIAL TESTS.

TESTS ON FULL SIZE STEEL POSTS.

The following tests were made on posts built from drawings used for members actually in structure.

The "Tension" post was an exact duplicate, as nearly as can be produced in a shop, of four now in the 260 feet anchorage spans, which were proportioned to take alternate tension and compression.

The "Compression" post is the duplicate of the upper section of double length posts used in the Draw span, but, instead of ending at the splice, the latter was put in, and part of lower section extending from splice to center of middle pin was added and the post made flat ended at that end, the half pin hole being omitted.

In the table, the values of modulus of elasticity were computed after receiving the report from Watertown.

POST MADE FROM TENSION STEEL-WEIGHT, 2,062 LBS.

PINS IN HORIZONTAL POSITION.—PLATE XX. Length center to center of pinholes, 276".07. Gauged length along center line of web plate, 150". Test No. 4,217. Sectional Area, 13.16 square inches.

Applied	Loads.	In gan lengt	6	Defletions midd	at		Comp.	
	2	=		1			Jo	
	Sd.	Compression in ".		-		E.		Remarks.
on l	- D	90		Horizontal.			Increment in ".	
Total lbs.	Lbs. per	a.	1	0	Vertical		ă.	
2	-	0	=	8	ž		2	
0	ps	6.5	Set	0	4		in	
E	7	0	00	=	>		I	
15,000	1,140	0		0	0			
20,000	1,520	.0014		0	0	162.860.000	.0014	Initial load.
40,000	3,040	.0095		0	0	48.040.000	.0081	
60,000	4,560	.0180		0	0	38,000,000	.0085	
80,000	6,080	.0263		0	0	34.677.000	.0083	
100,000	7,600		.0005	0	0	33.044.000	.0082	
110,000	8,360	.0389		0	0	32.240.000	.0044	
120,000	9,120	.0427		0	0	32.040.000	.0038	~
130,000	9,880	.0469		.01	0	31.600.000	.0042	
140,000	10,640	.0511	*****	.01	0	31.233.000	.0042	
150,000	11,400	.0554		:02	0	30.867.000	.0043	
160,000	12,160			.02	0	30,605,000	.0042	
170,000	12,920	.0640		.02	.02	30.281.000	.0054	
180,000	13,680	.0684	*****	.02	.02	30.001.000	.0044	
190,000	14,440	.0726	******	.03	.02	29.834.000	.0042	
200,000	15,200	.0770	.0016 Set +	.03	.02	29.612.000	.0044	Permanent movement of eyeb
010 000	47 000					20 404 222		ends, A=.02", B=.001/2".
210,000	15,960	.0812		.04	.03	29,484.000	.0042	
220,000	16,720	.0855	*****	.04	.03	29.337.000	.0043	
230,000	17,480	.0898		.05	.04	29.200.000	.0043	
240,000	18,240	.0941		.05	.04	29.077.000	.0043	35
250,000	19,000	.0984	*****	.05	.04	28.962.000	.0043	Movement of eyebar ends und load, A=.02", B=.0016".
260,000	19,760	.1025		.05	.04	28.929.000	.0041	1000412 100 4 20 10078
270,000	20,520	.1068		.06	.04	28,822,000	.0043	
280,000	21,280	.1109		.06	.04	28.783.000	.0041	
290,000	22,040	.1153	Outra	.06	.04	28.674.000	.0044	
300,000	22,800	.1195	.0024	.06	.05	28,620,000	0042	
910 000	00 500		Set +	.02	.03	00 040 000	0040	
310,000 320,000	23,560	.1235		.06	.05	28.618.000	.0040	
330,000	24,320 25,080	.1279		.07	.05	28.522.000	.0044	
340,000		.1323		.07	.05	28.436.000	.0044	
350,000	25,840 26,600	.1365		.08	.06	28,398,000	.0042	Canania a coma 3
360,000	27,360	1412		.09	.06	28.258.000		Snapping sound.
370,000	28,120	1500		.09	.06	28.187.000 28.065.000	-0044	
380,000	28,800	1540		.10		27.890.000	.0047	Under load, A03", B001/4".
390,000	29,640	.1549		.12	.06	27.787.000	.0040	Under load, A 00', B0078'.
400,000	30,400	1646	.0044	.13	.07	27.702.000	.0046	
200,000	00,200	.1040	Set +		.06			Permanent movement of eyel
410,000	31,150	1000				97 459 000	.0056	ends, A=02", B=00%".
420,000	31,150	1740		.14	.09	27.453.000 27.383.000	.0036	
430,000	32,670	1748	*****	.15	.09	98 010 000	.0001	
440,000	33,430	.1749		.16	.10	28.019.000	.0001	
450,000	34,190	1004		.18	.10	27.048.000	.0105	Under load, A06", B001/4".
460,000		.1920			.10	26.712.000 26.477.000	.0060	
470,000	35,710	.1980		.25	.12	26.192.000	.0065	
480,000		.2045		.30	.13	25,805,000	.0005	
490,000		.2205		.35	10	25,326,000		
200,000	01,400	. 2000	Set +			20.020.000	.008	Permanent movement of eyel
500,000	37,990							ends, A=.04", B=.00\%".
505,000	96 970			.43	.17			
510,000	39 250			.50	.20			
515,000	20,100			.57	.23			Tildimete strength
513,000	99,130	£		.65	.24		*******	Ultimate strength.
515,000			*****	.70	.20			
010,000				1 00	.33			1
500,000	*******	******	*****	1 50	90			
440,000				$\frac{1.58}{2.50}$.37			

POST MADE FROM COMPRESSION STEEL-WEIGHT, 1,803 LBS

PIN IN VERTICAL POSITION.—PLATE XX.
Length center of pinhole to outside, 286".57.
Gauged length along center line of upper web plate, 150."
Test, No. 4,218. Sectional area, 12.95 square inches.

plied	Loads.	In gar lengt	nged th.	Defle tions midd	a		omb.		
Total 108.	Lbs. per sq.".	Compression in ".	Set in ".	Horizontal.	Vertical.	E.	Increment of Comp	Remarks.	
5,000		0	0	0	0			Initial load.	
000,0	1.540 3.090	.0019		0		121.579.000 45.891.000	. 0082		
),000 1,000	4.630	.0182		0	0	38, 159, 000	.0081		
0,000	6.180	.0263		0	0	35.247.000	.0081		
0,000	7.720	.0343		0	0	33,761,000	.0080		
0,000	8.490 9.270	0419		0	.02	33.691.000 33.186.000			
0,000	10,040	.0458		0	.03	32.882.000			
0,000	10.810	.0500		.01	.03	32.4:0.000			
0,000	11.580 12.360	.0540		.01	.04	32.167.000 31.856.000	.0040	* *	
0.000	13.130	.0623		.01	.04	31.613.000			
0,000	13.900	.0664		.01	.04	31,400,000	.0041	Deflection sets.	
0,000	14.670 15.450	.0705	.0001	.01	.05	31.213.000 31.066.000	.0041	Horizontal Vertical.	
0,000	16.220	.0740	.0001	.01	.05	30,994,000		0 0	
0,000	16.990	.0827		.01	.06	30.817.000	.0042		
0,000	17.760		*****	.01	.06	30.691.000	.0041		
0.000	18.530 19.310			.01	.06	30.544.000 30.458.000	.0042		
0,000	20.080	.0995		.01	.06	30.271.000	.0044		
0.000	20.850	.1033		.01	.06	30.130.000	.0043		
0,000	21.620 22.390	.1080		.01	.06	30.028.000	.0042		
0,000	23,170	.1124	0001	.01	.06	29.880.000 29.781.000		0 .04".	
0.000	23.940 24.710	.1212	.0001	.01	.06	29,629,000	.0045		
0.000	24.710	. 1256	*****	.01	.06	29.277.000	.0054		
0.000	25.480 26.260	1345		.01	.06	29.468.000 29.286.000	.0031		
0.000	27.030	,1390	*****	0		29.169.000	.0045		
0.000	27.800	.1434		0	.04	29.079.000	.0044		
0.000	28.570 29.340	1590		0		28.976.000 28.783.000	.0045		
0.000	30.120	.1575		0		26.686.000			
0.000	30.890	.1622	.0035	0	.03	28.567,000	.0047	0 .03//.	
0.000	31.660 32.430	1074	*****	0		28.370.000 28.216.000	.0052		
0.000	33.210			0		28.176.000			
0.000	33.980 34.750	.1825		0	.05	27,929,000	.0057		
0.000	34.750	.1871	*****	0	.06	27.860.000 27.621.000	.0046		
0.000	35.520 36.290	.1929	******	0		27.423,000	.0058		
0.000	37.070	.2034		0	.04	27.838.000	.0049		
0.000	37.840	.2093	*****	0		27.119.000			
$0.000 \\ 0.000$	38.610 39.380	22149	.0138	.01		26.950.000 26.716.000		0 .01".	
0.000	40.150	.2278		.01	.02	26.438.000	.0067		
0.000	40.930	, 2333		.01	.01	26.316.000	.0055		
$0.000 \\ 0.000$	41.700 42.470	2465		.01	.01	26.172.000 25.843.000	.0057	Snapping sounds.	*
0.000	43.240	.2540		02	.01				
0.000	44.020	.2690		05	01	24,546,000	.0150		
0.000	44.790	.2787		10	02	24,107,000	.0097		
7.000	45.560 46.147	.2915		40	03	23.444.000	.0128	Ultimate strength.	
0.000		******			0				

Post failed by deflection in a plane perpendicular to the plane of the axis of the pin.

The deflection increased gradually until the horizontal movement reached -.85" when the post rapidly deflected to 2.30"; in the meantime the web plates and angles buckled on the concave side at a distance of 8 feet from the pin end.

Pinholes clongated .02"+

Correct, J. E. Howard.

F. H. Parker,

Moles Ordinance Part, H. S. A.

F. H. PARKER, Major Ordinance Dept., U. S. A., Commanding.

SPECIMEN TESTS OF STEEL IN TENSION POST.

Date, 1885.	Heat No.	Specimen cut from.	Area of Specimen.	Elastic Limit: Pounds per Sq. Inch.	Ultimate Strength: Pounds per Sq. Inch.	Elongation, % in 8".	Reduction of Area, %.	Carbon.	Мапдапеве.	Modulus of Elasticity.	Remarks.
12/21	6653	2½×2½×5/ ₁₆ angle	.2943	45.300	78,320	15.8	51.2			28.814.000	Specimen 5/16 thick. Fracture irregular. Silky.
6.6	64	6×1¾ bar	.4465	35.833	71.150	25.0	38.8			27.715.000	Specimen from crop end turned up arround.
	2.5		. 4465	38,475	78.160	23.3	39.8			29,643,000	
9/28	45	a round. Ingot test	.4336	49,360	72,420 72,420	23.8 24.9	44.2 51.1	.18	?	29,290,000	

COMPRESSION POST.

12/21 8/19	6738	$2\frac{1}{2}\frac{\times 2\frac{1}{2}\times \frac{5}{16}}{16}$ angle $\frac{1}{2}$ round. Ingot test	.2895 .4347	46.290 51.760	73.920 83,510	23.3 18.4	57.4 30.5	.34	.68	30.285.000	Fine silky cup. Silky at 45°-crystal
417000	66	66	.4394	51.210	83.730	16.6	26.8			29.840.000	spot.
1886 1/28	4341	11×5/16 pl.	.614	59.900	81.600	6.0	6.2				Machine could not break.
1885 2/9	41	34 round, Ingot test		48.206	84.035	23.2	40.4	.31	.78		
44	4.6	44	*****		85,650	23.3	37.9				Phila. Tested at Carnegie's, Pgh.
2/12	4.6	**		52,000	86.740	21.9	40.3				Tested at Steelton.

The above tests on specimens of steel used in the two posts appear somewhat anomalous, but this may be due to the cases where crop ends only were available for specimens, and to the sometimes imperfect action of the grips of testing machines on very thin specimens. The record is offered, however, as received from inspectors who made all the tests independently of each other.

The following tests were made to ascertain if crucible steel castings had progressed to the point of excellence in small pieces to permit their substitution for difficult and costly forgings.

difficult and costly forgings.

It was suggested to the writer to use them for clevises, and a set of sample clevises were made by the Pittsburgh Steel Casting Co. The results were not encouraging, as shown in table of tests, but it is to be hoped that in the near future, honeycombing may be eliminated by the use of some device to produce artificial pressure enough to force out the imprisoned gases, and small steel castings be produced as perfect as the many large ones daily turned out.

Iron clevises were finally used, tests having been made on samples of the sizes required in the structure, with results as shown.

CAST STEEL CLEVISES MADE BY PITTSBURGH STEEL CASTING CO.

bar, round. y edg-cer. silky.

nom-le for es on s who

or or

re, ial

tes

Note.—Tests made at Athens on old screw action machine, capacity 150,000 lbs., known to be somewhat inaccurate in readings being out of repair.

	Kemarks.	134 1.88 2.58 4.5 3.0 10.600 6.720 6.720 At "x" One clevis broke short off on both wings at x"—no flaws visible before test. Fracture showed honey-combed structure for about one-half area of	23% [1.80] 2.38; [4.3] 3.0 [45, 900 [39, 150] At "yy". One clevis broke across one eye at "yy". One fewis broke across one eye at "yy". One of the system competence test, Sections at fracture honey-combed.	844 156 2.64 3.34 5.45 3.75 46.300 32.500 32.500 At "x" Double fracture in one clevis wing at "x"—on draws wishbe before test. Sections at fracture honey-combed-one fracture honey-combed-one fracture honey-combed-one fracture fracture for one-half area—other for one-data.	Broke in upset on rod taken from old	
Point	of Frac- ture.	** × ×	, A.	H	set	d.
Α,	2 2	At	At	At	a n	Ro
Sh,	ture.	8	150	900	099	900
Inced.	1V	9	8 .	88	86.	13
g St nare	In Clevis Wings, At Frac-	25	906	909	999	900
Squ	uI	9	88	25	35	88
Breaking Strength per Square Inch, developed.	In Rod.	09.0	.90	8.9	98.	.200
Es si		0.	0	6	25	126
che	.egaiW	00	90	00	35	9.
Areas uare In	Ele.	44	च्ये .	5.45	3.73	3.75
Original Sectional Breaking Strength. Areas per Square Inch, developed.	Upset.	12.0	28	20	1.27 1.62 3.75 2.63 46.900 22.660 36.660 Upset	11.27 1.62 3.75 2.68 55, 200 26, 600 55, 200 Rod
rigi n Sc	Rod.	8	65	20	22	27.1
	bost		-	o.	-	=
ses	•	1.5	35	= ==		:
levi	-	oc	9	817	*	:
Dimensions of Clevises, Inches.	Q.	03	×		25	OS.
ons of Inches.	70		%2 %2 %2	No. 375 No. 246		49,6
nsic	- 2	70	24	10	% 4%	14
ime		1		A	13%	74
A	đ	35	25			13
d Upset	Diam. o	1 13%" sq 118/16	2 198" 89 115/16	3 15% 8q 21/16	4 11%" 89 17/16	5 11%" 89 17/16 13% %
		5	5	©₹	17	111
Rod.	To exis	100	80	20	18	" B
Test	No. 01	m	6/		178	75

Rod had clevises at both ends. Rod had clevis at one end and loop at tother—loop $13 \times 1^3 \gamma_6$ on $27 \gamma_6$ pin. Reduction of area in rod at fracture. 48%. Red had clevis at one end and loop at other—loop 1% ×1% on 2'/1s" pin. Reduction of area, 46%. WROUGHT IRON CLEVISES MADE BY COFRODE & SAYLOK. 3.0 51, 400 21, 700 51, 400 Rod 44.800 28.200 44.800 Rod

80

10 ×

CS

25 25

SPECIMEN TESTS OF STEEL PINS ("TENSION" STEEL).

Tests marked Skin were cut as near outside as possible.

Tests marked Center were cut at center.

All specimens turned up round.

91/4 and 71/2" pins forged from 11 inch square and 10 inch square blooms.

All other pins rolled in gothic rolls from 7"×8" blooms.

Those marked * have ingot test shown elsewhere with tension plates.

Steel made by Penna. Steel Co. and pins made at Carnegie's.

Date, 1885.	Heat No.	Size of Pin.	Area of Specimen.	Limit of Elasticity per Sq. Inch.	Ultimate Strength per Sq. Inch.	Elongation in 8"%.	Reduction %.	Where cut from.	Carbon.	Manganese.	Remarks on Fracture.
11/27 8/10	4732* 4778	2¾" round 2¾" round Ingot	.5064	$\frac{41.170}{47.770}$	68.500 71.100 78.220	24.0 22.8	$\frac{46.9}{40.1}$	Skin		58	Fine silky.
11/27	4776* 4780*	3¾" round 5½" round	.5026	38.655 38.756	78.190 69.970 69.730 65.710	17.6 24.5	48.7	Skin Skin (Center)	Same	Pin	Fine silky. Irregular—part silky. Square with granular
66	4868*	**			69,795 65,480			Skin {	Same	Pin	center. Shallow—part silky. Jagged—part silky—center granular.
11/28	4776*	4%" round 6%" round	.5001	39.730	70,130 69,880 66,650	22.0	52.5	Skin Skin (Center)	Same	Pin	Fine silky. Square — granular
**	4772*	6%" round			70.480 67.490			Skin / Center (Same	Pin	throughout. Fine-silky. Irregular — center gran-
11/30	4649*	67%" round	.5089 .5039	39.790 41.035	69,830 67,490	26.9 16.3	58.7 24.7	Skin { Center }	Same	Pin	Shallow—part silky. Irregular — center gran- ular.
**	4644	63%" round			72.540 67.490			Skin { Center }	Same	Pin	Fine silky. Shallow — center pitted and granular.
6/5	6.6	Ingot			74.920 75.280				.20	.76	and granular. Fine silky. At 45° silky.
11/28	4774*	7%" round	.4976	41.920	72,370 67.510	30.3	53.6	Skin Center {	Same	Pin	Fine silky. Edges silky—centergran-
66	4740	9¼" round			71.980 65.470				Same	Pin	ular. Fine silky. Edges silky—center coarsely granular.
8/6	\$1. 15	Ingot			70.320 70.230			********	.20	.58	

SHEARING STEEL PLATES.

The following tests were made to determine, if possible, the damage done to steel plates by shearing the edges, and to ascertain whether planing off ‡" from the sheared edges removes the injury to the plate.

The specimens were prepared as indicated in sketch and table, straightened without hammering and broken in 50,000 lb. Olsen lever machine at Athens.

"It was not possible to note the depth to which the shearing affected the material, by inspection of the edges before breaking, nor by any difference in the fracture after pulling; the fracture was in every case but one, entirely silky. One specimen mainly crystalline, was silky on the sheared side as noted in the table."

Steel made at Penna. Steel Co.'s mills and rolled at Elmira Rolling Mill. Slabs $14\frac{1}{4}$ " x $1\frac{1}{4}$ " and $1\frac{1}{4}$ ". Steel same grade as used in structure, made under same specification.

Sketch.

ure.

r. ular cen-

lar ranrantted

rannter

	1 51					-	FA		Luc	SIX			
	Edon	sheare	1. · n	ot pl	med.		Edge sheared and SIX 1/4" planed off Edge planed 1x						
	. 1			/	arrest.	1							
	Edge	planed	<i>L</i>				Edge						
		e plane	7		1	ed 2x							
	Bagi	2			acy	e pe	4414						
	14"				cut.				¥				
	Edge	planed	t			-	Edg	e pl	ans	ed 3x			
	3 Edg	e plane	d			-	Edg	e p	lan	red			
	Edg	e planed	e				Edg	e p	lur	ed .			
	4 Edge	sheares	Z-in	ut ul	anea	d	Edg	14 51	rea	red and 4x			
	1 2			,			1/40	pla	nuo	SAX			
	4.04	***		- 1-		× -							
	E-2	18"	-			~		-		18"			
	Spec	1 n	in.		j	00	0						
	, di	0	Area of Specimen	it of Ela-tic-	imate Strength: Pounds per Sq. Inch.	in %	2						
	Treatment of imen.	e n	bec	El sq.	s p	longation, 7 Inches.	Area, %.		se.	Remarks on Fracture.			
	aen en.	pecime from.	30	of	te S	ath	an,	ď.	Manganese	Remarks on Fracture.			
	atme	fro	ea o	mit ity I	Found Found Inch.	Inc	Are	arbon	ngu				
73.83	Tr.	00	Ar	Limit of ity pe	5	E	R	Ca	ME				
1	1 - 2 2 2	- 1	20.40		00,000					Not completely broken			
	1 edge sheared, other planed.	S		42.270						Not completely broken.			
	Both edges planed.	60	.3936	41.410	66.060	24.4	49.8			Silky. Broke in lamination.			
	Both edges	√/×5/16" Tension Specimens, 1½"	.3924	41,890	67.670	25.7	54.4			Silky, Sheared at 45°, Broke 4" from grip. Broke 2"			
		Tes								from end.			
	1 edge sheared, other planed.	11/6	.3862	43.240	67,580	16.0	29.4		****	Silky. Broke on sheared edge, first starting to tear			
-		X	9000	44 040	00 000	04.0	10.0			in many places. Silky at 45°.			
X	1 edge sheared. then planed	% al	. 6860	41.210	68.000	24.0	49.0			Silky at 45°.			
	14", other edge planed.	.30											
X	Both edges		.3948	41,600	68.000	23.2	49.8			A little crooked-laminated.			
x	planed. Both edges		.3924	41.910	68,430	23.5	49.1			" " silky irregular.			
v	planed. Same as 1x.			41.290						" " cup-fine.			
61	Ingot test.	34" round	*****	51.670	74.570	25.9	55.6	.22	.65	Silky-part crystal. Break started on sheared edge,			
										broke with more span than			
	Treatment same		4383	47.450	74.370	19.1	36.2			5/16" pieces. Silky—concave—10% crystal,			
	as in other specimens of	=		43.240						broke 3" from grip. Ditto.			
3	same marks.	pe X	.4328	42,060	72.650	21.6	49.1	****		Irregular silky-part fine crystal-break started in			
		Ha.								crystal-break started in many points on sheared			
		en:								many points on sheared edge, broke 2" from grip.			
ž		5 1 E		41.070					****	Silky cup-part very fine crystal.			
zi zi		X ⁷ /14" Tension pli pecimens, 1"X ⁷ /1	4288	43.610 44.330 44.800	74.630	23.1	50.8			Irregular cup, dull center, broke 3" from grip.			
3x		pla	.4308	44.800	75.20	20.5	50.2			Ditto.			
ix			.4308	43.64	75.43	22.2	51.9			Irregular cup, fine silky, broke 3" from end-small			
S.	1 edge sheared.		4954	45.370	25 92	192 6	30 0			lamination in center. Very irregular—fine silky.			
1			.400	10.00	10.81	1,00	03.0	1		to J meganar and sudy.			
	%", other edge			1			1.	-	-				
84	Ditto. Ingot test	34" round	.4300	46.29 50.77	75.80	0.19.6	51.5			Irregular—part fine crystal.			
wet.	lyngor rest	a. round	*****	30.77	10.00	0,00.	32.0	1 109	1 .61	1			

1	Treatment same as	Spec	.4697	53,000(?)	74.720	14.1	28.5			At 45° silky—broke from sheared edge—bent in
2	in other specimens	/%" Te	.4637	39.90)	78.350	25.6	57.3			testing. Half cup—silky—regular.
3	with same	683	.4693	39,90) 41,330 47,290	73.550	16.5	50.3			66 66 16
4	marks.	Tension 18, ¾"X	.4812	47,290	75,330	12.5	21.9	****	****	from end with oblique sheared. Silky.
1x		n pla	,4656	41.230	72.600					Irregular cup—silky—trace very fine crystal.
2x		6	.4681	41.600 42.500	70.900	26.0	55.6			Cup silky.
3x 4x			.4696	42.540	71.700	20.8	54.1			Irregular silky.
4796	Ingot test.	34 round		50.770	76.650	22.5	52.0	.24	.77	1.0
1	Treatment same as in other specimens	14"×5/16" Con Specimens, 1	.3968	48.760	75,100	15.5	23.8			Very rough sheared. Silky, irregular bent in testing. Break started on sheared edge.
2	with same	10	.3968	47.370	75,100	23.4	42.9			At 45° silky.
3	marks.	ns c	.3906	48.130	74.900	25.9	44.2			A little crooked-irregular,
4		Compression plate. ns, 11/4"× ⁵ /16".	. 3869	49.740	75,220	13.8	20.4		****	very silky. Very rough sheared. Broke suddenly at 45°—silky. Started breaking at sheared edge.
		16								
1x		. 5	.3906	50.700	75.660	22.5	44.6			Started on planed edge at 45°
2x		ate	.3918	46,960	74.780	23.0	46.1			silky. Piece a little crooked. Part
3x			.3869	48.070	75.230	22.9	44.8			cup silky. Piece quite crooked. At 45°
4x			.3869	48,900	74.630	90.8	40.5			silky. Piece a little crooked. Very
	Tuest tout		.0000						or	irregular silky.
4040	Ingot test.		*****	52,340	81.260	22.3	41.0	.766	.80	
1	Treatment same as in other specimens	Special Specia	.4466	49.490	72.820	11.0	19.4			Sheared very rough—inter- mediate seam—crooked— started in dent on sheared edge. Silky at 45°.
2	with same	me"	.4365	48.570	74.470	21.9	45.1			Silky at 45°.
3 4	marks.	ns,	.4345	48.790	73.880	23.3	50.0			44 44 44
*		$V'' \times ^7/_{16}$ " Compression plate. Specimens, $I'' \times ^7/_{16}$ ".	.4383	51,220	74.600	14.2	20.0		****	Broke in hollow spot on sheared edge—oblique fracture silky.
1x	1	18	.4333	48.250	74,460	25.2	44.9			Irregular silky-broke in
2x		- E	.4354	47.320	73.830	28.5	44.9			punch mark. Part cup—fine silky.
3x		ite.	.4369	48,060	74.150	24.6	42.9			Broke 1" from grip, irreg-
4x			.4358	47.060			1			ular silky. At 45° silky.
-										
S2	one edge sheared and then planed 1/- otheredge		.4330	52,510	78.080	20.5	49.7		****	Irregular cup silky. Began tearing on sheared edge.
S ₄ x	planed. Ditto.		.4330	52.050	78.540	23.5	47.8			Irregular cup silky, bent in
4340	Ingot test.	34 round		52.340	81.260	22.8	41.8	.27	.85	tearing.
1	Treatment same as		.4781							Rough piece with seams % crystalline towards planed
	in other	bed	1000	00.04						8ide.
3 4	specimens with same marks.		.4636 .4649 .4634	41.300	74.120 74.320 74.450	24.8	149.6			Partial cup—part crystalline Flat cup #ilky. Sheared rough with seams broke in seam. Elastic Limit taken with di- viders.
1x 2x		n plat	.4584 .4607	40.790 41.040	74.160 73.150	24.2	50.2 36.0			Silky-regular. " irregular-traces of crystal.
3x		0	.4642	41.170	73.600	25.5	52.6			Cup silky. Half cup silky—broke in
4x			.4601	41.080	74.400	20,4	144.4			man cup suky-proke m

HAMMERING STEEL PLATES.

Plate cut up into parts A, B, C and C'.

- A. Hammered while hot. (Heated between dull red plates.) After hammering and cooling, part up to dotted line was reheated and cooled in ashes between two hot plates.
 - B. Normal plate, not hammered.
- C. Hammered while cold. Part up to dotted line afterward annealed as in case of A.
 - C'. Hammered cold. Not annealed.

Plate originally buckled as indicated in shaded parts. Hammered only enough to straighten out.

1885	Test.		Specimen cut from.	Area of Specimen: Sq. Inches.	Elastic Limit per Sq.Inch: Pounds.	Ultimate Strength per Sq.Inch: lbs.	Elongation in 8", \$	Reduction of Area, %.		Remarks on Fracture
9/18	No.	1	24×36	.358	52.200		22.1	39.9		Slightly laminated.
+4	66	9			55 900	86.300 90.100	22.9 17.8	46.6		Part cup silky.
ka.	4.6	9	14	357	55 900	90.300	17.5	26 4		tare cupeling.
- 46	66	23	44			89.600			Broke near edge of	
**	**	3		64	56,000	88,200	18.1	36.7	44 4.	44 44 44
44	16	4	44	.360		87.000	21.9			Slightly laminated.
* **	**	4	4.6	.361	50,900	86.100	19.8			66 66
66	6.6	5	86	.359	52.900	86.300	16.2	44.0		Part cup silky.
66	64	5	44	.363	55,100	88,100?				44 44
44	64	6	8.6	.364	53.600	85,000	20.6	35.4		Slightly laminated.
**	1.4	6	66	.363	53,700	85,400	21.6	47.6		60 66

Tested at Athens.

Test pieces Nos. 3 and 3+ taken off when plate was in normal condition. Plate then heated to cherry red and bent $\frac{1}{2}$ out of plane. Hammered plate till it was entirely covered with hammer marks. Test pieces Nos. 2 and 2+ then cut off. Plate then annealed by placing between two other plates, $\frac{1}{4}$ thick, heated to dull red. All covered with ashes and cinder and left over night to cool. Test pieces Nos. 1 and 1+ then cut off.

1885.	Mosh	Main.	Specimen cut from	Area of Specimen: Sq. Inches.	Elastic Limit per Sq.Inch: Pounds.	Ultimate Strength per Sq. Inch: Pounds.	Elongation in 8", g.	Reduction of	Remarks on Fracture.
9/26	No.	3	30×56	.457	45.700	71.500	18.1	42.0	Broke at surface. Slag pit section measurement necessarily inaccurate.
41	2.6	3+	44	.433	48.000	72.100	18.1	38.0	Badly pitted on one side. Calipered as near an average as possible.
- 66	66	2	6.6	389	37 600	20, 200	99 5	52.7	Pitted surface planed of.
44	64	24	64	389	37.500			47.8	
4.	144	1	64		36.100				
44	**	1+	66	.389	35.500	65.900	19.6	46.0	44

Tested at Athens.

The foregoing tests were made at Athens and were occasioned by an accident. A long plate 26"x§" had come in from mill with several buckled spots in it, and the men in the yard took it to the platen and hammered them out without the fact being noticed.

On observing the hammer marks on the plate afterwards, when being bolted up in its proper member, the writer had the member laid aside, hammering cold being distinctly specified against.

The urgent need of completion of the member in question, and impossibility of replacing the plate under three to four weeks, and thus delaying the erection of the bridge that long, made it a serious affair if the plate must be rejected.

To decide the matter, the tests recorded above were made and as a result the plate allowed to go into the member, which was a chord section strained in compression.

The writer desires at this time to acknowledge, with due appreciation, the hearty co-operation of the Union Bridge Co., in his endeavors to make such tests as were necessary to arrive at true conclusions in all cases of doubt, and trusts that the results have proved as satisfactory to them as to himself.

Also to record his satisfaction at the care and painstaking efforts of the several inspecting engineers engaged with him in the work to obtain proper material and workmanship, and in carrying on the special tests.

PLATE XIII.
TRANS, AM. SOC. CIV. ENG'RS.
VOL. XVII, NO. 365,
MOULTON ON
KENTUCKY AND INDIANA BRIDGE.

PLATE XV
TRANS. AM. SOC.CIV. ENGRS.
VOL. XVII Nº 365.
MOU LTON ON THE
KENTUCKY & INDIANA BRIDGE.

Kentucky ana Indiana Bridge, FINAL DESIGN OF MESSAS. C. MACDONALD - and E. HEMBER (BUILT.) ORIGINAL DESIGN; C. SHALEA SMITH, C.E. On Which Estimates were Based.

PLATE XVII TRANS . AM. SOC.CIV. ENGRS. VOL.XVII Nº 365. MOULTON ON THE KENTUCKY & INDIANA BRIDGE.

All loads and n

Stress Diagram Kentucky a Indiana Bridge

All loads and resulting stresses given in tons of 2000 lbs. All material steel unless otherwise marked. In spans where iron is used, iron marked I, and steel S.

Live Load for all spans.

on Highway, a uniform of 0.6 tons per lin.ft. of bridge. on Railway, a train load of 1.12 tons per lin.ft. of truck with two excesses of 29.2 tons each coft. apart. Unaterial steel unless otherwise marked. In spans where iron is used, iron marked I, and steel S. PLATE XVIII TRANS . AM. SOC. CIV. ENGRS. VOL.XVII Nº 365.
MOULTON ON THE
KENTUCKY & INDIANA BRIDGE. SQUARE 260'-0" CANTILEVER 240'-0" 365 GRAW SPANT 6-17'0' 19'4" 19'4" + * 20'0" * 20'0" * 20'0" * 20'0" * 20'0" * 20'0" * 20'0" * 20'0" * 20'0" * Data for Loads ASSUMED DEAD LOADS TOP CHORD

on Highway, a uniform of 0.6 tons per lin.ft. of bridge. on Railway, a train load of 1.12 tons per lin.ft. of truck with two excesses of 29.2 tons each coft apart.

vam Kentucky 🚾 Indiana Bridge

PLATE XX
TRANS. AM. SOC.CIV. ENGRS.
VOL.XVII Nº 365.
MOULTON ON THE
KENTUCKY & INDIANA BRIDGE.

PLATE XXI
TRANS. AHI. SOC. CIV. ENG'RS.,
VOL XVII, NO. 365.,
MOULTON ON
KENTUCKY AND INDIANA BRIDGE.

