75.12/95.04 ANÁLISIS NUMÉRICO I 95.10 MODELACIÓN NUMÉRICA 95.13 MÉTODOS MATEMÁTICOS Y NUMÉRICOS INTERPOLACIÓN - PARTE 1

Ing. Rodolfo A. Schwarz

Facultad de Ingeniería - Universidad de Buenos Aires

Año 2022

INDICE

- 1 INTRODUCCIÓN
- 2 INTERPOLACIÓN POLINOMIAL
 - Método de Lagrange
 - Método de Newton
 - Método de Lagrange Baricéntrico
 - Trazadores Cúbicos («Splines»)
- 3 BIBLIOGRAFÍA

Supongamos que tenemos esta tabla con datos:

i	x_i	$\mathbf{y_i}$	
0	0,314	0,9511	
1	$0,\!419$	0,9135	
2	0,628	0,8090	
3	1,257	0,3090	

- Esta tabla puede representar los resultados de mediciones o de cálculos.
- Los datos se pueden usar para representar en forma discreta una función.

• Una forma de hacer esto es graficar los datos de a tabla:

Figura: Gráfico con los valores de la tabla

- Con estos datos queremos obtener f(x) para x = 0.500. ¿Qué podemos hacer?
- Una primera aproximación puede ser construir un segmento de recta entre los dos puntos adyacentes al buscado.
- Así, tenemos la siguiente función:

$$f(x) = 0.9135 \frac{x - 0.628}{0.419 - 0.628} + 0.8090 \frac{x - 0.419}{0.628 - 0.419}.$$

• Si hacemos x = 0.500, resulta:

$$f(0,500) = 0.9135 \frac{0.500 - 0.628}{0.419 - 0.628} + 0.8090 \frac{0.500 - 0.419}{0.628 - 0.419}$$
$$\Rightarrow \boxed{f(0,500) = 0.8731}.$$

- Este es una de las formas más usadas para obtener valores intermedios. Es la Interpolación Lineal.
- No siempre los resultados que obtenemos con este método son considerados aceptables.
- Podemos mejorarlos si planteamos esto:

 Hemos generado un Sistema de Ecuaciones Lineales para un modelo de Interpolación Polinomial.

Lo podemos expresar en forma matricial:

$$\underbrace{\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix}}_{\mathbf{A}} \cdot \underbrace{\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}}_{\mathbf{B}}$$

- Resolver este sistema lo podemos hacer con algún método que ya hemos visto.
- Un dato acerca de la matriz A es que se conoce como Matriz de VanderMonde.
- Esta matriz es conocida porque es mal condicionada.

- En lugar de resolver un *SEL*, existe una forma simplificada para obtener el **Polinomio Interpolante**.
- Es el Método de Lagrange Tradicional, más conocido como Método de Lagrange, cuya expresión o fórmula es:

$$\begin{split} L_{k,j}(x) &= \prod_{i=0}^k \frac{x-x_i}{x_j-x_i} \quad \text{para } j=0;1;\ldots;k \quad \text{e} \quad i\neq j, \\ P_{k,j}(x) &= y_j \cdot L_{k,j}(x), \\ P_k(x) &= \sum_{i=0}^k P_{k,i}(x) = \sum_{i=0}^k y_i \cdot L_{k,i}(x), \end{split}$$

donde k es el grado del polinomio y la cantidad de puntos es k+1.

• Con este método se pueden armar polinomios de diferentes grados:

$$P_0(x), P_1(x), P_2(x), \ldots, P_n(x).$$

• Cada polinomio $P_k(x)$ está formado por k+1 polinomios $P_{k,j}(x)$. Así tendremos:

$$P_{1,j}(x) = y_j \cdot L_{1,j}(x)$$
 \Rightarrow $P_1(x) = \sum_{i=0}^{1} P_{1,j}(x)$ (dos polinomios),

$$P_{2,j}(x) = y_j \cdot L_{2,j}(x)$$
 \Rightarrow $P_2(x) = \sum_{j=0}^{2} P_{2,j}(x)$ (tres polinomios),

$$P_{n,j}(x) = y_j \cdot L_{n,j}(x) \quad \Rightarrow \quad P_n(x) = \sum_{i=0}^n P_{n,j}(x) \quad \text{(n+1 polinomios)}.$$

 Si aplicamos estas expresiones para los datos originales tendremos los siguientes polinomios de Lagrange:

$$\begin{split} L_{3;0}(x) &= \frac{(x-0,416) \cdot (x-0,628) \cdot (x-1,257)}{(0,314-0,416) \cdot (0,314-0,628) \cdot (0,314-1,257)}, \\ L_{3;1}(x) &= \frac{(x-0,314) \cdot (x-0,628) \cdot (x-1,257)}{(0,416-0,314) \cdot (0,416-0,628) \cdot (0,416-1,257)}, \\ L_{3;2}(x) &= \frac{(x-0,314) \cdot (x-0,416) \cdot (x-1,257)}{(0,628-0,314) \cdot (0,628-0,416) \cdot (0,628-1,257)}, \\ L_{3;3}(x) &= \frac{(x-0,314) \cdot (x-0,416) \cdot (x-0,628)}{(1,257-0,314) \cdot (1,257-0,416) \cdot (1,257-0,628)}. \end{split}$$

 Si aplicamos estas expresiones para los datos originales tendremos los siguientes polinomios de Lagrange:

$$P_{3;0}(x) = y_0 \cdot L_{3;0}(x) = y_0 \cdot \frac{(x - 0.416) \cdot (x - 0.628) \cdot (x - 1.257)}{(0.314 - 0.416) \cdot (0.314 - 0.628) \cdot (0.314 - 1.257)},$$

$$P_{3;1}(x) = y_1 \cdot L_{3;1}(x) = y_1 \cdot \frac{(x - 0.314) \cdot (x - 0.628) \cdot (x - 1.257)}{(0.416 - 0.314) \cdot (0.416 - 0.628) \cdot (0.416 - 1.257)},$$

$$P_{3;2}(x) = y_2 \cdot L_{3;2}(x) = y_2 \cdot \frac{(x - 0.314) \cdot (x - 0.416) \cdot (x - 1.257)}{(0.628 - 0.314) \cdot (0.628 - 0.416) \cdot (0.628 - 1.257)},$$

$$P_{3;3}(x) = y_3 \cdot L_{3;3}(x) = y_3 \cdot \frac{(x - 0.314) \cdot (x - 0.416) \cdot (x - 0.628)}{(1.257 - 0.314) \cdot (1.257 - 0.416) \cdot (1.257 - 0.628)},$$

$$P_{3}(x) = \sum_{i=1}^{3} P_{3;i}(x) = P_{3;0}(x) + P_{3;1}(x) + P_{3;2}(x) + P_{3;3}(x).$$

 La aproximación inicial es una interpolación por el método de Lagrange tomando sólo dos puntos de los cuatro:

$$P_{1;0}(x) = y_0 \cdot L_{1;0}(x) = 0.9135 \cdot \frac{x - 0.628}{0.419 - 0.628},$$

$$P_{1;1}(x) = y_0 \cdot L_{1;1}(x) = 0.8090 \cdot \frac{x - 0.419}{0.628 - 0.419},$$

$$P_{1}(x) = P_{1;0}(x) + P_{1;1}(x),$$

$$= 0.9135 \cdot \frac{x - 0.628}{0.419 - 0.628} + 0.8090 \cdot \frac{x - 0.419}{0.628 - 0.419},$$

$$P_{1}(0.500) = 0.9135 \cdot \frac{0.500 - 0.628}{0.419 - 0.628} + 0.8090 \cdot \frac{0.500 - 0.419}{0.628 - 0.419},$$

$$P_{1}(0.500) = 0.8731.$$

- El grado del polinomio depende de la cantidad de puntos utilizados. Si k=n usamos todos los puntos (n+1).
- Este método tiene ventajas y desventajas.

Ventajas

- Es sencillo de entender.
- No incide la distribución de los puntos.
- ullet Las operaciones para armar el polinomio no dependen de $f(x_i)$ (o y_i).

Desventajas

- Requiere $O(n^2)$ operaciones para obtener los polinomios.
- Se debe recalcular todo si se agregan datos.
- Es un problema que tiende a ser mal condicionado (e inestable).

Método de Newton

- Existe otro método para para obtener el **Polinomio Interpolante**.
- Es el Método de Newton.
- La expresión general es:

$$P_n(x) = \sum_{i=0}^n F_{i,i} \prod_{j=0}^{i-1} (x - x_j),$$

con

$$F_{i,i} = \frac{F_{i,j-1} - F_{i-1,j-1}}{x_i - x_{i-j}}.$$

Método de Newton

• La expresión matemática para obtener el coeficiente $F_{i,j}$ es:

$$F_{i,j} = f(x_{i-j}, x_{i-j+1}, \dots, x_i) \quad \text{con} \quad j \le i,$$

У

$$f(x_{i-j}, x_{i-j+1}, \dots, x_i) = \frac{f(x_{i-j+1}, x_{i-j+2}, \dots, x_i) - f(x_{i-j}, x_{i-j+1}, \dots, x_{i-1})}{x_i - x_{i-j}}.$$

• Por ejemplo, si i = 2 y j = 1, tenemos:

$$F_{2,1} = f(x_1, x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Método de Newton

Con esto podemos generar la siguiente tabla:

Con esta tabla, el Polinomio Interpolante resulta ser:

$$P_k(x) = f(x_0) + f(x_0, x_1) \cdot (x - x_0) + f(x_0, x_1, x_2) \cdot (x - x_0) \cdot (x - x_1) + \dots,$$

con k, grado del polinomio.

Método de Newton

- Esta forma de generar el polinomio, ordenando los datos en orden creciente de i, se conoce como Método de las Diferencias Divididas Progresivas de Newton.
- La cantidad de términos depende del grado del polinomio, que a su vez depende de la cantidad de puntos.
- Así, si usamos dos puntos, tenemos:

$$P_1(x) = f(x_0) + f(x_0, x_1) \cdot (x - x_0) = y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0),$$

con k=1.

• Con tres puntos:

$$P_2(x) = f(x_0) + f(x_0, x_1) \cdot (x - x_0) + f(x_0, x_1, x_2) \cdot (x - x_0) \cdot (x - x_1),$$

con k = 2.

Método de Newton

• Otra forma de generar la tabla es la siguiente:

	i	$\mathbf{x_i}$	$\mathbf{f}(\mathbf{x_i})$	$\mathbf{f}(\mathbf{x_i},\mathbf{x_{i+1}})$	$f(\mathbf{x_i}, \mathbf{x_{i+1}}, \mathbf{x_{i+2}})$	
7	n	x_n	$f(x_n)$			
n -	- 1	x_{n-1}	$f(x_{n-1})$	$\mathbf{f}(\mathbf{x_{n-1}},\mathbf{x_n})$		
n -	- 2	x_{n-2}	$f(x_{n-2})$	$f(x_{n-2}, x_{n-1})$	$\mathbf{f}(\mathbf{x_{n-2}},\mathbf{x_{n-1}},\mathbf{x_n})$	
n -	- 3	x_{n-3}	$f(x_{n-3})$	$f(x_{n-3}, x_{n-2})$	$f(x_{n-3}, x_{n-2}, x_{n-1})$	

• Con esta tabla, el Polinomio Interpolante resulta ser:

$$P_k(x) = f(x_n) + f(x_{n-1}, x_n) \cdot (x - x_n) + f(x_{n-2}, x_{n-1}, x_n) \cdot (x - x_n) \cdot (x - x_{n-1}) + \dots,$$

con k, grado del polinomio.

Método de Newton

- Esta forma de generar el polinomio, ordenando los datos en orden creciente de i, se conoce como **Método de las Diferencias Divididas Regresivas de Newton**.
- La cantidad de términos depende del grado del polinomio, que a su vez depende de la cantidad de puntos.
- Así, si usamos dos puntos, tenemos:

$$P_1(x) = f(x_n) + f(x_{n-1}, x_n) \cdot (x - x_n) = y_n + \frac{y_n - y_{n-1}}{x_n - x_{n-1}} (x - x_n),$$

con k=1.

Con tres puntos:

$$P_2(x) = f(x_n) + f(x_{n-1}, x_n) \cdot (x - x_n) + f(x_{n-2}, x_{n-1}, x_n) \cdot (x - x_n) \cdot (x - x_{n-1}),$$

con k=2.

Método de Newton

- Nuevamente, el grado del polinomio depende de la cantidad de puntos utilizados.
- Este método tiene ventajas y desventajas.

Ventajas

- Requiere solamente O(n) operaciones para obtener los polinomios.
- ullet Es numéricamente más estable que el **Método de Lagrange** para k relativamente chicos.
- No requiere recalcular todo si se agregan datos en orden.

Desventajas

- Depende de $f(x_i)$.
- Depende del ordenamiento de los datos.
- También tiende a ser mal condicionado.
- \bullet Y si k es muy grande, puede volverse inestable.

Método de Lagrange Baricéntrico

• Supongamos que definimos el polinomio $L_k(x)$ con la siguiente expresión:

$$L_k(x) = \prod_{i=0}^k (x - x_i),$$

donde k es el grado del polinomio.

• Definamos, a continuación, un coeficiente que llamaremos *peso baricéntrico*, que está dado por:

$$w_j = \frac{1}{\prod_{\substack{i=0\\i\neq j}}^k (x_j - x_i)}.$$

Método de Lagrange Baricéntrico

• Para armar el polinomio $L_k, j(x)$ según el **Método de Lagrange** tradicional, debemos hacer:

$$L_{k,j}(x) = L_k(x) \frac{w_j}{x - x_j}.$$

• En consecuencia, el polinomio completo tiene la forma:

$$P_{k,j}(x) = y_j \cdot L_{k,j}(x) \Rightarrow$$

 $P_k(x) = L_k(x) \cdot \sum_{j=0}^k \frac{y_j \cdot w_j}{x - x_j}.$

 Esta forma de obtener el polinomio completo se suele denominar como Método de Lagrange Modificado.

Método de Lagrange Baricéntrico

 La expresión anterior todavía no es la definitiva. Se puede mejorar y conseguir que además sea estable. Supongamos que ahora interpolamos la función constante 1, entonces:

$$1 = \sum_{j=0}^{k} L_{k,j}(x) = L_k(x) \cdot \sum_{j=0}^{k} \frac{w_j}{x - x_j}$$

Dividamos la primera expresión por la última hallada:

$$P_k(x) = \frac{L_k(x) \cdot \sum_{j=0}^k \frac{y_j \cdot w_j}{x - x_j}}{L_k(x) \cdot \sum_{j=0}^k \frac{w_j}{x - x_j}} \Rightarrow \left| P_k(x) = \frac{\sum_{j=0}^k \frac{y_j \cdot w_j}{x - x_j}}{\sum_{j=0}^k \frac{w_j}{x - x_j}} \right|.$$

Esta expresión se conoce como Método de Lagrange Baricéntico.

Método de Lagrange Baricéntrico

 Al igual que el método tradicional, el grado del polinomio depende de la cantidad de puntos utilizados.

Ventajas

- Es sencillo de entender.
- No incide la distribución de los puntos.
- Las operaciones para armar el polinomio no dependen de $f(x_i)$ (o y_i).
- Requiere O(n) operaciones para actualizar los polinomios.
- Es más estable que los otros métodos.
- No se debe recalcular todo si se agregan datos.

Desventajas

- Requiere $O(n^2)$ operaciones para obtener los polinomios.
- Se mantiene la tendencia a ser mal condicionado en polinomios de grado alto.

Fenómeno de Runge

• Supongamos que tenemos esta otra tabla con datos:

i	x_i	y_i	
0	0,000	0,500	
1	1,000	0,933	
2	2,000	0,067	
3	3,000	0,500	
4	4,000	0,933	
5	5,000	0,067	
6	6,000	0,500	
7	7,000	0,933	
8	8,000	0,067	
9	9,000	0,500	
10	10,000	0,933	

Fenómeno de Runge

• Una forma de hacer esto es graficar los datos de a tabla:

Figura: Gráfico con los valores de la tabla.

Fenómeno de Runge

• Si interpolamos mediante el Método de Lagrange obtenemos lo siguiente:

Figura: Interpolación.

Fenómeno de Runge

Podemos suponer una mejor aproximación:

Figura: Interpolación más aproximada (curva azul).

Fenómeno de Runge

- Hay diferencias en los extremos de las curvas interpolantes.
- Esto se conoce como «Fenómeno de Runge».
- Se produce para polinomios de grado alto (n>4; 5) y distribución uniforme $(x_{i+1} x_i = h)$.
- ¿Cómo evitar este fenómeno?
- Analizaremos un tipo de interpolación polinomial que evite esto.

Trazadores Cúbicos («Splines»)

Primero, planteemos un conjunto de polinomios con esta característica:

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

Segundo, deben cumplir lo siguiente:

$$\begin{split} S_j(x_j) &= f(x_j) = y_j &\to & \text{El polinomio } \ll \text{pasa} \gg \text{ por el punto dato}. \\ S_j(x_{j+1}) &= S_{j+1}(x_{j+1}) &\to & \text{Los polinomios son continuos}. \\ S_j'(x_{j+1}) &= S_{j+1}'(x_{j+1}) &\to & \text{Las primeras derivadas son continuas}. \\ S_j''(x_{j+1}) &= S_{j+1}''(x_{j+1}) &\to & \text{Las segundas derivadas son continuas}. \end{split}$$

• Tercero, hay que agregar condiciones en los extremos.

- Dos casos principales:
 - Frontera natural (o libre):

$$S_0''(x_0) = S_n''(x_n) = 0.$$

2 Frontera condicionada (o sujeta):

$$S_0'(x_0) = f'(x_0) = \alpha \quad \land \quad S_n'(x_n) = f'(x_n) = \beta.$$

- Variantes:
 - 1 Derivadas nulas en los extremos:

$$S_0'(x_0) = S_n'(x_n) = 0.$$

② Derivadas segundas no nulas:

$$S_0''(x_0) = f''(x_0) = \gamma \quad \land \quad S_n''(x_n) = f''(x_n) = \delta.$$

Por la continuidad de los polinomios tenemos:

$$S_j(x_{j+1}) = S_{j+1}(x_{j+1}).$$

Entonces:

$$a_j + b_j(x_{j+1} - x_j) + c_j(x_{j+1} - x_j)^2 + d_j(x_{j+1} - x_j)^3 = a_{j+1}.$$

• Si $x_{i+1} - x_i = h_i$, nos queda:

$$a_{j} + b_{j} \cdot h_{j} + c_{j} \cdot h_{j}^{2} + d_{j} \cdot h_{j}^{3} = a_{j+1}.$$

Por la continuidad de la primera derivada de los polinomios tenemos:

$$S'_{j}(x_{j+1}) = S'_{j+1}(x_{j+1}).$$

• Entonces:

$$b_j + 2 \cdot c_j(x_{j+1} - x_j) + 3 \cdot d_j(x_{j+1} - x_j)^2 = a_{j+1}.$$

• Como $x_{j+1} - x_j = h_j$, nos queda:

$$b_j + 2 \cdot c_j \cdot h_j + 3 \cdot d_j \cdot h_j^2 = b_{j+1}.$$

• Finalmente, por la continuidad de la segunda derivadatenemos:

$$S_j''(x_{j+1}) = S_{j+1}''(x_{j+1}).$$

• Entonces:

$$2 \cdot c_j + 6 \cdot d_j(x_{j+1} - x_j) = 2 \cdot c_{j+1} \implies 2 \cdot c_j + 6 \cdot d_j \cdot h_j = 2 \cdot c_{j+1}.$$

• Si despejamos d_i , obtenemos:

$$d_j = \frac{c_{j+1} - c_j}{3 \cdot h_j}$$

Trazadores Cúbicos («Splines»)

• Ahora reemplacemos d_i en las ecuaciones anteriores:

$$a_j + b_j \cdot h_j + c_j \cdot h_j^2 + \frac{c_{j+1} - c_j}{3} \cdot h_j^2 = a_{j+1},$$

 $a_j + b_j \cdot h_j + \frac{2 \cdot c_j + c_{j+1}}{3} \cdot h_j^2 = a_{j+1},$

y

$$b_j + 2 \cdot c_j \cdot h_j + (c_{j+1} - c_j) \cdot h_j = b_{j+1},$$

 $b_j + (c_j + c_{j+1}) \cdot h_j = b_{j+1}.$

• Con la última podemos definir b_j en función de b_{j-1} :

$$b_j = b_{j-1} + (c_{j-1} + c_j) \cdot h_{j-1}.$$

Además tenemos que:

$$b_j = \frac{a_{j+1} - a_j}{h_j} - \frac{2 \cdot c_j + c_{j+1}}{3} \cdot h_j.$$

• Con esta ecuación también podemos definir b_{j-1} :

$$b_{j-1} = \frac{a_j - a_{j-1}}{h_{j-1}} - \frac{2 \cdot c_{j-1} + c_j}{3} \cdot h_{j-1}.$$

• Si igualamos las dos ecuaciones de b_i tenemmos:

$$\frac{a_{j+1} - a_j}{h_j} - \frac{2 \cdot c_j + c_{j+1}}{3} \cdot h_j = b_{j-1} + (c_{j-1} + c_j) \cdot h_{j-1}.$$

• Si despejamos b_{j-1} nos queda:

$$b_{j-1} = \frac{a_{j+1} - a_j}{h_j} - \frac{2 \cdot c_j + c_{j+1}}{3} \cdot h_j - (c_{j-1} + c_j) \cdot h_{j-1}.$$

• Si igualamos las dos ecuaciones de b_j nos queda:

$$\frac{a_j - a_{j-1}}{h_{j-1}} - \frac{2 \cdot c_{j-1} + c_j}{3} \cdot h_{j-1} = \frac{a_{j+1} - a_j}{h_j} - \frac{2 \cdot c_j + c_{j+1}}{3} \cdot h_j - (c_{j-1} + c_j) \cdot h_{j-1}.$$

Si reordenamos la ecuación, nos queda:

$$(c_{j-1}+c_j)\cdot h_{j-1}+\frac{2\cdot c_j+c_{j+1}}{3}\cdot h_j-\frac{2\cdot c_{j-1}+c_j}{3}\cdot h_{j-1}=\frac{a_{j+1}-a_j}{h_j}-\frac{a_j-a_{j-1}}{h_{j-1}}.$$

• Si ahora reagrupamos todo, nos queda:

$$h_{j-1} \cdot c_{j-1} + 2(h_{j-1} + h_j) \cdot c_j + h_j \cdot c_{j+1} = 3\left(\frac{a_{j+1} - a_j}{h_j} - \frac{a_j - a_{j-1}}{h_{j-1}}\right).$$

Por definición tenemos que:

$$a_{j+1} = f(x_{j+1}), \ a_j = f(x_j) \ y \ a_{j-1} = f(x_{j-1}).$$

• Como los valores iniciales son h_0 y c_0 y los finales son h_{n-1} y c_n , podemos generar n-1 ecuaciones lineales:

$$h_0 \cdot c_0 + 2(h_0 + h_1) \cdot c_1 + h_1 \cdot c_2 = 3\left(\frac{a_2 - a_1}{h_1} - \frac{a_1 - a_0}{h_0}\right),$$

$$h_1 \cdot c_1 + 2(h_1 + h_2) \cdot c_2 + h_2 \cdot c_3 = 3\left(\frac{a_3 - a_2}{h_2} - \frac{a_2 - a_1}{h_1}\right),$$

.

$$h_{n-2} \cdot c_{n-2} + 2(h_{n-2} + h_{n-1}) \cdot c_{n-1} + h_{n-1} \cdot c_n = 3\left(\frac{a_n - a_{n-1}}{h_{n-1}} - \frac{a_{n-1} - a_{n-2}}{h_{n-2}}\right).$$

• Tenemos n-1 ecuaciones lineales y n+1 incógnitas $(c_0, c_1, ..., c_n)$.

- Para resolver el sistema, agregamos dos ecuaciones según el caso:
 - 1 Frontera natural:

$$c_0 = 0 \text{ y } c_n = 0,$$

2 Frontera sujeta:

$$2 \cdot h_0 \cdot c_0 + h_0 \cdot c_1 = 3 \left(\frac{a_1 - a_0}{h_0} - f'(x_0) \right),$$

$$h_{n-1} \cdot c_{n-1} + 2 \cdot h_{n-1} \cdot c_n = 3 \left(f'(x_n) - \frac{a_n - a_{n-1}}{h_{n-1}} \right),$$

ullet Con estas dos ecuaciones por caso podemos generar dos *Sistemas de Ecuaciones Lineales* expresadas como: $\mathbf{A} \cdot \mathbf{x} = \mathbf{B}$.

Trazadores Cúbicos («Splines»)

Matriz A para Trazadores Cúbicos con Frontera natural:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & \cdots & \cdots & \cdots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & 0 & \cdots & \cdots & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 0 & h_{n-3} & 2(h_{n-3} + h_{n-2}) & h_{n-2} & 0 \\ \vdots & & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \cdots & \cdots & 0 & 0 & 1 \end{bmatrix}.$$

Trazadores Cúbicos («Splines»)

• Vectores x y B para **Trazadores Cúbicos** con *Frontera natural*:

$$\mathbf{x} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ \vdots \\ c_{n-1} \\ c_n \end{bmatrix} \quad \mathbf{y} \quad \mathbf{B} = \begin{bmatrix} 0 \\ 3\left(\frac{a_2 - a_1}{h_1} - \frac{a_1 - a_0}{h_0}\right) \\ \vdots \\ \vdots \\ 3\left(\frac{a_n - a_{n-1}}{h_{n-1}} - \frac{a_{n-1} - a_{n-2}}{h_{n-2}}\right) \end{bmatrix}.$$

Trazadores Cúbicos («Splines»)

Matriz A para Trazadores Cúbicos con Frontera sujeta:

$$\mathbf{A} = \begin{bmatrix} 2 h_0 & h_0 & 0 & \dots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & \ddots & \dots & 0 \\ 0 & h_1 & 2(h_1 + h_2) & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 2(h_{n-3} + h_{n-2}) & h_{n-2} & 0 \\ \vdots & \ddots & \ddots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \dots & 0 & h_{n-1} & 2 h_{n-1} \end{bmatrix}.$$

Trazadores Cúbicos («Splines»)

Vectores x y B para Trazadores Cúbicos con Frontera sujeta:

$$\mathbf{x} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ \vdots \\ c_{n-1} \\ c_n \end{bmatrix} \quad \mathbf{y} \quad \mathbf{B} = \begin{bmatrix} 3\left(\frac{a_1 - a_0}{h_0} - f'(x_0)\right) \\ 3\left(\frac{a_2 - a_1}{h_1} - \frac{a_1 - a_0}{h_0}\right) \\ \vdots \\ \vdots \\ 3\left(\frac{a_n - a_{n-1}}{h_{n-1}} - \frac{a_{n-1} - a_{n-2}}{h_{n-2}}\right) \\ 3\left(f'(x_n) - \frac{a_n - a_{n-1}}{h_{n-1}}\right) \end{bmatrix}.$$

Trazadores Cúbicos («Splines»)

• Existe otra forma de definir los polinomios $S_j(x)$:

$$S_{j}(x) = \frac{d_{j+1}}{6h_{j}}(x - x_{j})^{3} + \frac{d_{j}}{6h_{j}}(x_{j+1} - x)^{3} + \left(\frac{y_{j}}{h_{j}} - \frac{d_{j}h_{j}}{6}\right)(x_{j+1} - x) + \left(\frac{y_{j+1}}{h_{j}} - \frac{d_{j+1}h_{j}}{6}\right)(x - x_{j}).$$

 Con esta otra forma, y luego de operar algebraicamente con las mismas condiciones impuestas, la ecuación general es:

$$h_{j-1} d_{j-1} + 2 (h_{j-1} + h_j) d_j + h_j d_{j+1} = 6 \left(\frac{y_{j+1} - y_j}{h_j} - \frac{y_j - y_{j-1}}{h_{j-1}} \right),$$

y también se obtienen dos Sistemas de Ecuaciones Lineales: para Frontera natural o libre y para Frontera sujeta.

Bibliografía

🛸 Burden, R. L., Faires, J. D. & Burden, A. M.

Análisis Numérico.

Décima Edición. CENGAGE Learning, 2016.

Cooley, J. W. & Tukey. J. W. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation. American Mathematical Society, 1965.

- Trefethen, L. N. & Berrut, J. P. Barycentric Lagrange Interpolation. 2004.
- Higham, N. J.
 The numerical stability of Barycentric Lagrange Interpolation.
 IMA. 2004.

