1.4 The Help System: your best friend

The command help shows the format(s) for using a command and directs you to related commands; without any arguments, it gives you a hyperlinked list of topics to find help on; with a topic as an argument, it gives you a list of subtopics.

```
help plot
help qr
help
```

If you want to see all the commands associated with elementary matrix manipulation

```
help matlab/elmat
```

The command doc is like help, except it comes up in a different window, and may include more details

```
help fft
doc fft
```

The command lookfor is used when you do not know what command you want; it does something like a keyword search through the documentation

```
lookfor wavelet
```

Similarly, you can use docsearch

```
docsearch fourier
```

The command which helps you tell which file a particular command refers to, or whether it is built in

```
which abs which hadamard
```

demo gives video guides and example code

demo

1.5 Abort Command: Ctrl + C

If MATLAB is running a program and you want to terminate it, type Ctrl + C.

1.6 Basic Operations

In this section you will learn the basic operations in MATLAB and know how to use MATLAB as a calculator. You can try all examples in the command window.

Here are some standard commands to start a session:

```
clear all % clears all variable definitions
close all % closes all figures
clc % clears the screen
```

1.6.1 Scalar Arithmetics

MATLAB has the basic arithmetics for scalars such as +, -, \star , /, power $\hat{}$.

```
a = 3;
b = 5;
a + b
a - b
a * b
a / b
a ^ b
mod(b,a)
```

Fractional power and square root are also available

```
8<sup>(1/3)</sup> sqrt(9)
```

One may also create complex numbers by taking square root to negative number

```
>> z = 1+sqrt(-1)
z =
1.0000 + 1.0000i
or
>> z = 1 + 1i
z =
1.0000 + 1.0000i
```

Its complex conjugation and absolute value are

```
>> conj(z)

ans =

1.0000 - 1.0000i

>> abs(z)

ans =

1.4142
```

One may verify the famous Euler formula

```
e^{i\pi} = -1
```

```
>> exp(1i*pi)
ans =
-1.0000 + 0.0000i
```

Note that MATLAB has the math constant π built-in, but not for the natural constant e. To obtain the natural constant e, use $\exp(1)$.

```
>> pi
ans =
3.1416
>> exp(1)
ans =
2.7183
```

Although MATLAB stores numerical values of variables with double precision (16 decimal digits), the command window displays numerics result only up to 4 digits. To show more digits in display

```
>> format long
>> pi
ans =
3.141592653589793
>> format short
>> pi
ans =
3.1416
>>
```

Note that this only changes the number of digits that is displayed. It does not change computation accuracy.

Floating point types have special values "inf" (∞) and "NaN" (not-a-number). Try these out

```
0/0
1e999^2
isnan(NaN) % tests if the argument is nan
isinf(Inf)
isfinite(NaN)
isfinite(-Inf)
isfinite(3)
```

1.6.2 Matrix Construction

The square brackets [] concatenate elements within and create a matrix

```
>> v = [1,2,3]

v =

1 2 3

>> A = [1,2,3;4,5,6]

A =

1 2 3

4 5 6
```

The comma "," is used to separate elements that belong in the same row, while the semicolon ";" creates a new row in the array (matrix). It is also common to use the following alternative expressions

```
>> A = [1 2 3; 4 5 6]
A =

1 2 3
4 5 6

>> A = [1 2 3
4 5 6]
A =

1 2 3
4 5 6]
A =

1 2 3
5 6
```

To see the size of a matrix

```
>> size(A)
ans =
2 3
```

or

The function zeros and ones are handy to create all-zero and all-one matrices:

```
>> B = ones(3,3)
B =
     1
           1
     1
           1
               1
\gg C = zeros(5,2)
     0
           0
     0
           0
     0
           0
     0
           0
```

where the integer arguments of zeros and ones are the desired size of the matrix.

Remember how the square brackets [] concatenate elements enclosed and construct a matrix?

```
>> [[A;B],C]
ans =
    1
          2
               3
                     0
                          0
         5
    4
            6
                     0
                          0
    1
          1
               1
                     0
                          0
    1
               1
```

The repmat, replicating and tiling matrices, is a useful function for generating matrices:

```
>> repmat([3,2],4,1)
ans =
3 2
3 2
3 2
3 2
```

The colon ":" is one of the most useful operators in MATLAB. One of its usage is to construct row vectors with regularly spaced values.

Another example:

The spacing does not need to be 1

```
>> u3 = 2 : 0.5 : 4

u3 =

2.0000 2.5000 3.0000 3.5000 4.0000

>> u4 = 5 : -1 : 2

u3 =

5 4 3 2
```

The function "linspace", which generates linearly spaced row vector, has a similar functionality

```
>> x = linspace(2,4,5)
x =
2.0000 2.5000 3.0000 3.5000 4.0000
```

(5 points linearly spaced between 2 and 4).

Other methods for generating matrices:

Summary The basic way to generate matrices is to use the square brackets "[]" operator, in which one uses symbols such as spaces, commas, semicolons or new lines. The colon operator ":" constructs row vectors with equispacing numbers. Functions such as repmat, linspace, zeros, ones, eye, rand, randn, etc. are useful to generate elementary matrices.

1.6.3 Matrix Indexing

Let

One may get the value of a matrix entry by

>>
$$a = A(3,2)$$

 $a = 10$

or set value

>>
$$A(3,2) = -20$$
 $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & -20 & 11 & 12 \end{bmatrix}$

One may get a block from a matrix:

```
>> A([2 3],[2 3 4])
ans =
6 7 8
-20 11 12
```

Equivalent expressions include

```
A( 2:3 , 2:4 )
A( 2:3 , 2:end )
```

In parentheses () (array indexing), "end" indicates last array index. A single colon indicates selecting all indexes

so one may permute columns (or rows) simply by

One may assign values to an entire block of a matrix

```
\gg B = zeros(5,6)
    0
                0
                      0
                                 0
    0
          0
              0
                     0
                           0
                                 0
    0
         0
             0
                    0
                          0
                                 0
    0
         0
               0
                     0
                           0
                                 0
\gg B(2:4,2:5) = A
    0
          0
                0
                      0
                           0
                                 0
    0
          1
                2
                     3
                                 0
                           4
                     7
    0
          5
               6
                           8
                                 0
    0
          9
             -20
                    11
                          12
                                 0
               0
                     0
```

An important concept is that MATLAB uses column major order. That is, if we view the matrix

as a 1D array (vector),

```
9
2
6
-20
3
7
11
4
8
12
```

One may access A by a single index; for example A(4) is 2 in this case. The expression A(4) is known as the *linear indexing*. To convert linear indices to their corresponding rows and columns, use ind2sub:

```
>> [r,c] = ind2sub([3,4],4)
r =
1
c =
```

where [3,4] is the size of A. You may check that A(4) equals to A(1,2). Conversely,

```
>> ind = sub2ind([3,4],1,2)
ind =
4
```

Reshaping is frequently used as well:

```
>> reshape (A, 4, 3)

ans =

1 6 11

5 -20 4

9 3 8

2 7 12
```

which reshapes A to a matrix with size 4×3 so that after postfixed by (:) it recovers A(:). Note that the argument 4 and 3 must multiply to 12, the total number of entries in A. One may replace one of them by "empty matrix" []

and MATLAB will do the calculation the only matching numbers of columns or rows for you. The operators ".'" and "'" are transpose.

```
>> A'
ans =

1     5     9
2     6     -20
3     7     11
```

```
4 8 12

>> A.'

ans =

1 5 9

2 6 -20

3 7 11

4 8 12
```

The "undotted" transpose is the *Hermitian transpose*, which also takes complex conjugation to each elements

Summary With parentheses () postfixing a matrix A one may access the matrix elements using index. In the parentheses, one may use indices which need to be positive integers (1-based indexing); colon ":" and "end" notations are allowed. One may either use *subscript indices* A(r,c) or *linear indices* A(ind), and one may convert the two using the functions sub2ind and ind2sub. Reshaping (reshape) and transposing (.' and ') are handy in indexing as well.

1.6.4 Logical Indexing

The comparison operators > (greater than), == (equal to), $\sim=$ (not equal to), < (less than), >= (greater or equal to), <= (less or equal to), returns logical matrices. A logical matrix contains entry of value true or false, displayed as 1 or 0:

```
\gg A = magic(4)
                    3
     16
             2
                          13
      5
            11
                   10
                           8
      9
            7
                    6
                          12
                   15
      4
            14
                           1
>> A > 9
ans =
      1
             0
                    0
      0
                           0
             1
                    1
      0
                    0
                           1
      0
                           0
             1
                    1
>> A == 10
ans =
      0
             0
                    0
                           0
      0
             0
                    1
                           0
      0
             0
                    0
                           0
             0
                    0
                           0
      0
```

Common boolean operations "and", "or", and "not" for logical matrices are "&", "|" and "~" respectively:

```
>> (A>5) & (A<10)
ans =
                    0
                           0
             0
      0
             0
                    0
                           1
             1
                    1
                           0
                           0
>> (A<=5) | (A>=10)
ans =
      1
             1
                    1
                           1
      1
             1
                    1
                           0
      0
             0
                    0
                           1
             1
                    1
                           1
>> ~ ( (A==4)
ans =
      1
             1
                    1
                           1
      0
             1
                    1
                           1
      1
             1
                    1
                           1
      0
             1
                    1
                           1
```

When the matrix is a scalar (1-by-1), MATLAB will suggest you to replace & with && and | with ||. These non-vectorized "and" and "or" operators for logical scalars are the short circuit. For the case of a||b, it will return true if a is true, without looking at b; for the case of a&&b, it will return false if a is false without evaluating b.

Now let us look at logical indexing. One may access entries of a matrix by "plugging in" a logical matrix of the same size:

```
>> isSmall = A<=5
isSmall =
     0
     1
     0
            0
                          0
            0
     1
                   0
                          1
>> A(isSmall) = 0
A =
                   0
    16
            0
                        13
     0
           11
                  10
                         8
     9
           7
                        12
                  6
     0
           14
                  15
```

Logical indexing can be very handy

```
>> A(A>10) = 10
A =
            0
    10
                   0
                        10
     0
           10
                  10
                         8
     9
            7
                   6
                        10
           10
                  10
```

Note Logical matrices can also be returned by following functions

```
>> true(3,2) ans =
```

```
1
           1
     1
           1
     1
           1
\gg false(2)
ans =
     0
           0
>> isnan([nan,0,1])
ans =
           0
                 0
any and all are useful
    any([1 0 0 0]) % true if any of the vector entries is true or nonzero
    all([1 1 1 1]) % true only if all vector entries are true or nonzero
    all([1 0 0 0]) % this case it returns false
```

1.6.5 Matrix Arithmetics

There is no ambiguity of what A + B means for A and B being matrices of the same size. It adds each counterpart components together. It is also clear that cA for a scalar c and a matrix A is the matrix with each component multiplied by c. In MATLAB these operations are intuitive

```
>> A = [-1, 1, 2; 4, 2, 3]
                   2
    -1
            1
            2
     4
                  3
\gg B = [2,-4,3;1,0,0]
                   3
     2
           -4
     1
            0
>> A + B
ans =
     1
           -3
                   5
            2
                   3
>> A+1
ans =
     0
            2
                   3
     5
            3
                   4
>> A*10
ans =
   -10
           10
                  20
```

However, for matrix-matrix multiplications, there is a distinction between "componentwise multiplication" and "linear-algebraic multiplication". The componentwise multiplication denoted by ".*" views matrices as arrays and take products of numbers in the counterpart entries:

$$C = A \cdot B$$
 means $C_{ij} = A_{ij}B_{ij}$ for each i, j

Linear-algebraic multiplication is denoted by "*"

$$C = A * B$$
 means $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$

where n = (number of columns of A) = (number of rows of B).

There are other operations and functions that other than "multiplications" that take different notations in MATLAB for elementwise operations and linear algebraic operations.

Elementwise arithmetics

Elementwise arithmetics include

```
A + B % plus
A - B % minus
A .* B % times
A ./ B % (right) division (rdivide)
1 ./ B % division by scalar
B .\ A % right-to-left division (ldivide)
A ^ B % power
```

Common functions listed below also operates elementwise (There are still many functions not listed here)

```
sqrt(A) % square root
exp(A) % natural exponential
log(A) % natural logarithm
log10(A) % base 10 logarithm
abs(A) % absolute values
sin(A), cos(A), tan(A), cot(A), sec(A), csc(A) % trigonometric functions
asin(A), acos(A), atan(A), acot(A), asec(A), acsc(A) % inverse trigonometrics
sinh(A), cosh(A), tanh(A), coth(A), sech(A), csch(A) % hyperbolic functions
asinh(A), acosh(A), atanh(A), acoth(A), asech(A), acsch(A) % inverse hyperbolics
```

Linear algebraic arithmetics

In the following, A and B are matrices, b is a column vector, and c is a scalar.

```
A * B % matrix times (mtimes)

A / c, c \ A % divide by scalar (mrdivide, mldivide)

A \ b % solves the linear system Ax = b (mldivide)

b'/A % solves x'A = b', that is A'x = b

A^2 % this case is the same as A*A (mpower)
```

For square matrix A, the matrix exponential is defined to be

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k.$$

To evaluate matrix exponential in MATLAB

```
expm(A) % matrix exponential
```

A square root of a matrix A is a matrix B (may not be unique or even exist for general square matrix A) so that $B^2 = A$:

```
sqrtm(A) % matrix square root
```

Example 1.5. If I is the 3×3 identity matrix

```
>> I = eye(3)
I =
1 0 0
0 1 0
0 0 1
```

what are exp(I) and expm(I)?

Solution.

$$\exp(\mathbf{I}) = \begin{bmatrix} e & 1 & 1 \\ 1 & e & 1 \\ 1 & 1 & e \end{bmatrix}, \quad \exp(\mathbf{I}) = \begin{bmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{bmatrix}.$$

1.6.6 Strings

Strings are just arrays of character (char) values in MATLAB.

```
>> 'hello world'
ans =
hello world
>> ['h','e','llo w','orld']
ans =
hello world
```

Characters are essentially integers

```
>> char(77)
ans =
M
```

```
>> double('s')
ans =
   115
>> double('7')
ans =
    55
To convert a string that represents a number to a number
>> str2double('123')
ans =
   123
To convert a number to a string displaying that number
\gg S = num2str(123)
S =
123
"disp(S)" displays a string S:
>> a = 123
a =
   123
>> disp(['My favorite number is ',num2str(a)])
My favorite number is 123
"disp" also displays numbers or other values
\gg disp(3)
     3
   A C-compatible expression
>> fprintf('integer: %d, double: %f, string: %s \n',1234,0.999, 'Hello World.')
integer: 1234, double: 0.999000, string: Hello World.
>> S = sprintf('integer: %d, double: %f, string: %s n',1234,0.999, 'Hello World.')
S =
integer: 1234, double: 0.999000, string: Hello World.
   To test equality of two strings, use strcmp instead of ==
    strcmp('aaa','bbbb')
    strcmp('aaa', 'aaa')
```

1.6.7 Loops and Controls

We learn four commands here: for, while, if and switch. The basic form of "for loops" in MATLAB takes

```
for i=1:10
  disp(i);
```

Here i is the *index* or *iterator*, "1:10" is the *value array*, and everything between for and end are program statements that will be executed repeatedly for i iterating through each value in the value array.

"If control" in MATLAB

end

```
if (1 > 0)
          disp(' 1 is greater than 0');
else
          disp('this will never happen in this case')
end

and while loops:

a = 1;
while a < 100
     disp(a);
     a = a*2; %MATLAB still doesnt't have *= and similar operators
end</pre>
The expression after while (here "a<100") or if is a logical scalar.
```

The expression after while (here "a<100") or if is a logical scalar or a real numerics. The statements between while and end will be repeatedly executed until that expression is false or 0. "break" and "continue" can terminate loops:

```
% break and continue
a = 0;
while (1)
    a = a + 7;
    disp(a)
    if mod(a,5) == 0
        break; %breaks the loop
    end
end

for i=1:100
    if i > 10
        continue; %skips the rest of the loop
    end
    disp(i)
end
```

The "switch/case" switches among cases based on expression

```
a = 'str';
switch a % <-- a scalar or a string
   case 1,
        disp('one');
   case 2,
        disp('two');
   case 'str',
        disp(a);
   otherwise,
        disp('other');
end</pre>
```