

Curso Demografía - Licenciatura en Estadística, UDELAR Proyecciones de Población

Daniel Ciganda

28 de Noviembre de 2024

Proyectando Nacimientos - Método Alternativo

En el método presentado antes procedíamos a multiplicar la tasa de fecundidad a edad x por el promedio de años persona vividos en el intervalo. Este procedimiento nos develueve los nacimientos totales de los que luego se derivan los nacimientos femeninos que sobreviven al inicio del intervalo siguiente. En este procedimeinto alternativo se multiplica la población por el promedio de las tasas de fecundidad correspondientes (tomando en cuenta la supervivencia en el primer intervalo de edad).

1

Proyectando Nacimientos - Método Alternativo

Vamos a ilustrar el procedimiento a través de un ejemplo:

- Consideramos a las mujeres de 15 a 19 años al comienzo de la proyección, que tendrán entre 20 y 24 años si sobreviven.
- Durante el intervalo de proyección esta cohorte estará expuesta a las tasas de 15 a 19 años y a las tasas de 20 a 24 años (ponderadas por la probabilidad de sobrevivir a edad 20-24).
- Es decir, las tasas de fecundidad relevantes son, ₅F₁₅ y ₅F₂₀ que se promedian y se multiplican por 5, el ancho del período.
- Los nacimientos resultantes tienen que sobrevivir desde el nacimiento hasta los 4 años, lo que ocurre con una probabilidad 5L₀/5l₀.

Proyectando Nacimientos - Método Alternativo

Calculando los nacimientos totales sin ajuste de supervivencia:

$$_{5}B_{x}[t,t+5] = {}_{5}N_{x}(t) \cdot \frac{5}{2} \left({}_{5}F_{x} + {}_{5}F_{x+5} \cdot \frac{{}_{5}L_{x+5}}{{}_{5}L_{x}} \right)$$

Sumando sobre todos los grupos de edades reproductivas para obtener el total de nacimientos:

$$B[t, t+5] = \sum_{x} {}_{5}B_{x}[t, t+5]$$

Calculando los nacimientos femeninos:

$$B^{F}[t, t+5] = B[t, t+5] \cdot \frac{1}{1 + SRB}$$

Calculando el número de mujeres en el primer grupo de edad (0-4 años) en t+5:

$$_{5}N_{0}(t+5) = B^{F}[t,t+5] \cdot \frac{_{5}L_{0}}{5I_{0}}$$

La matriz de Leslie

Patrick Holt Leslie, nacido en 1900 en Edimburgo.

Se dedicó a la estadística y en 1935 se incorporó a la Bureau of Animal Population.

Realizó la mayor parte de su investigación en roedores.

Leslie aplicó a los datos sobre ratones los métodos desarrollados por Lotka en la demografía de poblaciones humanas.

On the use of matrices in certain population mathematics (1945)

Presenta un modelo para estudiar el crecimiento del número de hembras en una población animal, pero que podía aplicarse a una población de humanos.

Matriz de Leslie

· Idea:

•
$$N_{1,t+1} = F_1 \cdot N_{1,t} + F_2 \cdot N_{2,t} + \dots + F_n \cdot N_{n,t}$$

• $N_{2,t+1} = S_1 \cdot N_{1,t}$
• $N_{3,t+1} = S_2 \cdot N_{2,t}$
• \vdots
• $N_{n,t+1} = S_{n-1} \cdot N_{n-1,t}$

- F_x: tasas de fecundidad por edad.
- S_x : probabilidades de supervivencia en edad x a x + 1.

Matriz de Leslie

En Forma de Matriz:

$$L = \begin{pmatrix} F_1 & F_2 & \cdots & F_{n-1} & F_n \\ S_1 & 0 & \cdots & 0 & 0 \\ 0 & S_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & S_{n-1} & 0 \end{pmatrix}$$

Ecuación de Proyección:

- $\mathbf{N}_{t+1} = L \times \mathbf{N}_t$
- N_t: Población en el tiempo t.

Multiplicación de la Matriz de Leslie y el Vector de Población

$$\begin{pmatrix} F_1 & F_2 & F_3 \\ S_1 & 0 & 0 \\ 0 & S_2 & 0 \end{pmatrix} \times \begin{pmatrix} N_{1,t} \\ N_{2,t} \\ N_{3,t} \end{pmatrix} = \begin{pmatrix} N_{1,t+1} \\ N_{2,t+1} \\ N_{3,t+1} \end{pmatrix}$$

$$\begin{aligned} N_{1,t+1} &= F_1 N_{1,t} + F_2 N_{2,t} + F_3 N_{3,t} \\ N_{2,t+1} &= S_1 N_{1,t} \\ N_{3,t+1} &= S_2 N_{2,t} \end{aligned}$$

Coeficientes de Fecundidad en la Matriz de Leslie

En la matriz de Leslie, los coeficientes de fecundidad en la primera fila se defined como:

$$_{5}F_{x} = \frac{5}{2} \left({_{5}F_{x} + {_{5}F_{x+5}} \cdot \frac{{_{5}L_{x+5}}}{{_{5}L_{x}}}} \right) \cdot \frac{{_{5}L_{0}}}{{_{5}I_{0}}}$$

Estos incluyen las tasas de fecundidad y los ratios de supervivencia, que multiplicados por la población de mujeres en cada grupo de edad y sumados nos dan la población en el primer grupo de edad en el momento t+n.

Proyección de una Población Masculina

Para proyectar la población masculina se procede de igual manera, teniendo en cuenta la supervivencia de los grupos que están con vida en t y los nacimientos masculinos entre t, t+n.

Para los nacimientos masculinos tenemos:

$$B^{M}[t,t+5] = B[t,t+5] \cdot \frac{srb}{1+srb}$$

Aplicación para la población de Suecia en 1993

Age x	$_{5}N_{x}^{M}$ (1993.0)	$_{5}L_{x}^{M}$	$_{5}N_{x}^{M}$ (1998.0)	$_{5}N_{x}^{M}$ (2003.0)
0	310,189	496,754	307,798	293,693
5	261,963	496,297	309,904	307,515
10	252,046	495,989	261,800	309,711
15	274,711	495,113	251,601	261,338
20	296,679	493,460	273,794	250,761
25	333,726	491,475	295,486	272,692
30	296,774	489,325	332,266	294,193
35	299,391	486,487	295,053	330,339
40	314,295	482,392	296,871	292,569
45	338,709	476,532	310,477	293,265
50	256,066	467,568	332,338	304,637
55	208,841	452,941	248,055	321,941
60	199,996	428,556	197,598	234,701
65	197,282	390,707	182,333	180,146
70	184,234	336,027	169,672	156,815
75	133,856	261,507	143,377	132,044
80	86,732	172,333	88,211	94,485
85+	49,095	128,631	58,052	62,512
Sum	4,294,585		4,354,685	4,393,35

Note: This example assumes that mortality and fertility stay constant at their 1993 levels during