Computer Vision

Lecture 02: Review on deep learning

ImageNet challenge

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

Deep learning

Year 2012: Deep learning achieved the best performance on image classification task.

Year 2015: Surpasses the human performance.

Deep vs. Machine learning

Deep vs. Machine learning

Extract optimal representation via End-to-End learning

- For the machine learning, we need to design dedicated representation by ourselves for each task.
- Deep learning learns intermediate representation automatically for different tasks.

Non-linearity

- Deep learning delivers the capability to achieve the non-linear mappings.
- Most computer vision applications involve data which requires non-linear mappings.

CNNs

RGB image

Any Differentiable Layers

cat

Semantic labels

Differentiable layers

We need to implement three things for an intermediate layer f:

forward rule:
$$y = f(h(I); \theta)$$
 for $g(f(h(I); \theta)) = L$ backward rule: $\frac{dy}{dX}$ for $\frac{dL}{dI} = \frac{dX}{dI} \times \frac{dy}{dX} \times \frac{dL}{dy}$ parameter update rule: $\frac{dy}{d\theta}$ for $\theta^{new} = \theta - \varepsilon \frac{dy}{d\theta} \times \frac{dL}{dy}$

Via chain rule, the entire architecture becomes differentiable, if each layer becomes differentiable.

Gradient descent

$$L(\theta) = g(f(h(I); \theta))$$

$$\theta^{\text{new}} = \theta - \epsilon \frac{\partial}{\partial \theta} L(\theta)$$

 ϵ : Learning rate (small value e.g. 0.1)

CNNs

RGB image

Any Differentiable Layers

cat

Semantic labels

CNNs

1 -1 0

Image (5x5)

1*0+1*0+0*-1 + 2*1+0*-1+0*0 + 0*0+0*1+2*-1

0

Image (5x5)

1*0+0*0+1*-1 + 0*1+0*-1+1*0 + 0*0+2*1+2*-1

Image (5x5)

0*0+1*0+2*-1 + 0*1+1*-1+0*0 + 2*0+2*1+1*-1

Image (5x5)

2*0+0*0+0*-1 + 0*1+0*-1+2*0 + 0*0+0*1+0*-1

Image (5x5)

Ex. Image blurring

→ (K-1) / 2 padding is required to obtain the original size.

Filter kernel (5x5)

Output feature (5x5)

27

Image (5x5)

Filter kernel (3x3)

Image (5x5) Filter kernel (3x3)

Image (5x5) Filter kernel (3x3)

Pooling

max pool with 2x2 filters and stride 2

6	8
3	4

Pooling

Activation layer

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$f(x) = tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 $f(x) = max(0, x)$

$$f(x) = max(0, x)$$

torch.nn.Sigmoid()

torch.nn.Tanh()

torch.nn.ReLU()

Overall CNN architecture

Combination of differentiable layers → **Differentiable architecture!**

Overall CNN architecture

Combination of differentiable layers → Differentiable architecture!

Semantic Segmentation

Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

Semantic Segmentation

Semantic Segmentation

Predictions: H x W

Convolution operation

Transposed convolution operation

Transposed Convolution with 0 padding, stride 1, 2x2 kernel:

Output_size = (input_size-1)*stride - 2*padding + kernel_size + output_padding

Transposed Convolution with 0 padding, stride 2, 2x2 kernel:

Output_size = (input_size-1)*stride - 2*padding + kernel_size + output_padding

Transposed Convolution with 1 padding, stride 2, 2x2 kernel:

Output_size = (input_size-1)*stride - 2*padding + kernel_size + output_padding

Conv. operation

4	5	8	7
1	8	8	8
3	6	6	4
6	5	7	8

4x4 Input 3x3 kernel 2x2 Output

Conv. operation

4x4 Input

1	4	1	0	1	4	3	0	3	3	1	0	0	0	0	0
0	1	4	1	0	1	4	3	0	3	3	1	0	0	0	0
0	0	0	0	1	4	1	0	1	4	3	0	3	3	1	0
0	0	0	0	0	1	4	1	0	1	4	3	0	3	3	1

4x16 Conv. Kernel matrix

5

8

Lecture 2: Review on Deep Learning

16x1 Input

Conv. operation

1	4	1	0	1	4	3	0	3	3	1	0	0	0	0	0
0	1	4	1	0	1	4	3	0	3	3	1	0	0	0	0
0	0	0	0	1	4	1	0	1	4	3	0	3	3	1	0
0	0	0	0	0	1	4	1	0	1	4	3	0	3	3	1

4x16 Conv. Kernel matrix

16x1 Input

8

5

8

6

6

6

5

16x4

Conv. Kernel Matrix

Transposed Conv. operation

4x4 Output

Prof. Seungryul Baek

Achievable by differentiable layers

16x4 Conv. Kernel Matrix

Achievable by differentiable layers

(a) Input context

(b) Human artist

(c) Context Encoder (L2 loss)

(d) Context Encoder (L2 + Adversarial loss)

16x4 Conv. Kernel Matrix

Achievable by differentiable layers

16x4 Conv. Kernel Matrix

Next class...

Review on the PyTorch.

