Experimental Validation

Dataset and Model Details

Task	Dataset	# of Labels	Input Size	Model Architecture
Hand-written Digit Recognition	MNIST	10	$28\times28\times1$	2 Conv + 2 Dense
Traffic Sign Recognition	GTSRB	43	$32\times32\times3$	6 Conv + 2 Dense
Face Recognition	YouTube Face	1,283	55 × 47 × 3	4 Conv + 1 Merge + 1 Dense
Face Recognition (w/ Transfer Learning)	PubFig	65	224 × 224 × 3	13 Conv + 3 Dense
Face Recognition (Trojan Attack)	VGG Face	2,622	224 × 224 × 3	13 Conv + 3 Dense

Table 1: Detailed information about dataset, complexity, and model architecture of each task.

Performance of Backdoor Injection Attacks

Attack success rate and classification accuracy of backdoor injection attack on four classification tasks.

Performance of Backdoor Injection Attacks

Attack success rate and classification accuracy of backdoor injection attack on four classification tasks.

□□Infected Model Attack Success Rate □□Clean Model Classification Accuracy □□Infected Model Classification Accuracy

Backdoor Detection Performance

• Detection success rate: High anomaly index observed for infected models.

Backdoor Detection Performance

- Detection success rate: High anomaly index observed for infected models.
- L1 norm of the trigger: Optimized triggers exhibit low L1 norm, highlighting sparsity in their patterns.

Backdoor Detection Performance

- Detection success rate: High anomaly index observed for infected models.
- L1 norm of the trigger: Optimized triggers exhibit low L1 norm, highlighting sparsity in their patterns.

(a) Anomaly measurement of infected and clean model

(b) L1 norm of triggers for infected and uninfected labels

Figure 1: Comparison of trigger visualizations.

End-to-End Effectiveness

Original Trigger Reversed Trigger $(m \cdot \Delta)$ (L1 norm = 16)(L1 norm = 14.71)

(a) MNIST

(b) GTSRB

Reversed Trigger (m) (L1 norm = 311.24)

(c) YouTube Face

(d) PubFig

(e) Trojan Square

(L1 norm = 3,481)

(f) Trojan Watermark

- End-to-End Effectiveness
- Visual Similarity

Original Trigger Reversed Trigger $(m \cdot \Delta)$ (L1 norm = 16)(L1 norm = 14.71)

(c) YouTube Face

(b) GTSRB

Original Trigger Reversed Trigger (m) (L1 norm = 3,481)(L1 norm = 311.24)

Original Trigger

(L1 norm = 3.598)

(f) Trojan Watermark

(d) PubFig

(e) Trojan Square

- End-to-End Effectiveness
- Visual Similarity
- Compactness of the Trigger

Original Trigger Reversed Trigger $(m \cdot \Delta)$ (L1 norm = 16)(L1 norm = 14.71)

(a) MNIST

(b) GTSRB

Original Trigger Reversed Trigger (m) (L1 norm = 3,481)(L1 norm = 311.24)

(c) YouTube Face

(L1 norm = 3.598)

(d) PubFig

(e) Trojan Square

(f) Trojan Watermark

- End-to-End Effectiveness
- Visual Similarity
- Compactness of the Trigger
- Model Behavior

Original Trigger Reversed Trigger (m · A (L1 norm = 14.71)(L1 norm = 16)

(a) MNIST

(b) GTSRB

(c) YouTube Face

(d) PubFig

(e) Trojan Square

(f) Trojan Watermark

Mitigation Techniques

Mitigation Procedure

Mitigation Procedure

Trigger Generation

Using Trigger Model

Mitigation Procedure

Trigger Generation

Using Trigger Model

ROC Curve: Final Visualization

Figure 3: Final: ROC Curve Comparison with Thresholds.

Patching DNNs via Neuron Pruning (Graphical View)

Patching DNNs via Neuron Pruning (After Removal)

Step 1: Prune backdoor-related neurons using reversed trigger

Step 1: Prune backdoor-related neurons using reversed trigger

+

Step 2: Prioritize neurons with largest activation gaps

Step 1: Prune backdoor-related neurons using reversed trigger

 $\overline{}$

Step 2: Prioritize neurons with largest activation gaps

 $\overline{\mathbf{A}}$

Step 3: Minimize impact on classification accuracy

Step 1: Prune backdoor-related neurons using reversed trigger

Step 2: Prioritize neurons with largest activation gaps

Step 3: Minimize impact on classification accuracy

Step 4: Attack success rate drops to nearly 0% with 30% pruning

Step 1: Prune backdoor-related neurons using reversed trigger

Step 2: Prioritize neurons with largest activation gaps

Step 3: Minimize impact on classification accuracy

Step 4: Attack success rate drops to nearly 0% with 30% pruning

Step 5: Redundancy in DNNs requires pruning ¿1% of neurons

Step 1: Prune backdoor-related neurons using reversed trigger

Step 2: Prioritize neurons with largest activation gaps

Step 3: Minimize impact on classification accuracy

Step 4: Attack success rate drops to nearly 0% with 30% pruning

Step 5: Redundancy in DNNs requires pruning ¿1% of neurons

Step 6: YouTube Face shows higher classification accuracy drop

Neuron Pruning for Deep Neural Network (DNN) Patching.

(a) False negative rate of proactive adversarial image detection when achieving different false positive rates.

Neuron Pruning for Deep Neural Network (DNN) Patching.

(a) False negative rate of proactive adversarial image detection when achieving different false positive rates.

(b) Classification accuracy and attack success rate when pruning trigger-related neurons in GTSRB (traffic sign recognition w/ 43 labels).

Neuron Pruning for Deep Neural Network (DNN) Patching.

(a) False negative rate of proactive adversarial image detection when achieving different false positive rates.

(b) Classification accuracy and attack success rate when pruning trigger-related neurons in GTSRB (traffic sign recognition w/ 43 labels).

(c) Classification accuracy and attack success rate when pruning trigger-related neurons in Trojan Square (face recognition w/ 2,622 labels).

Figure 5: Trigger Unlearning graphical visualization

Unlearn trigger via training

Classification Accuracy After Patching

Attack Success Rate After Patching

