Set Theory

Membership of a set : E

Cardinality of a set. 161 the number of elements in S

Symbol	Meaning
N	The set of all natural numbers {0, 1, 2, 3,}*
Z	The set of all integers
Q	The set of all rational numbers
R	The set of all real numbers
C	The set of all complex numbers
\mathbb{Z}^+	The set of all positive integers
Z-	The set of all positive integers $\mathbb{Q}^+, \mathbb{Q}^-, \mathbb{Q}_{\geq m}$, $\mathbb{R}^+, \mathbb{R}^-, \mathbb{R}_{\geq m}$, etc.
$\mathbb{Z}_{\geq 0}$	The set of all non-negative integer are defined similar

*: In this module we define the set $\mathbb N$ to include zero.

Zero is neither positive nor negative.

Set · Roster Notation: Write all of its element between braces. { 1, 2, 3}

Order and duplicates Do NOT MATTER
{9,5,7} = {9,0,5,7}

Set-Builder Notation: $\{x \in U : P(x)\}$ or $\{x \in U \mid P(x)\}$ "The set of all x in U such that P(x)"

Replacement Notation: $\{t(x):x\in A\}$ or $\{t(x)|x\in A\}$ "The set of all t(x) where $x\in A$ "

Subset: A SB iff Yn (nGA =7x 6B)

Proper Subset: A & B => =x (x EA A x & B)

Theorem 6.2.4: An empty set is a subsoit of every set ØSA for all sets A

Sinoleton: A set with exactly one element

Ordered Pair: (20,9). (a,b)= (0,d) => (q=()) (b=1)

Ordered n-tuple: (x1,x2...,xn)

Cartesian Product: AXB = { (a)b): a EA A b EB}

Set equality: A = B => A CB A B CA

A = B => Vx (x CA => x CB)

Let A and B be subset of a universal set U

Unian: AUB = { > CEU: > CEAV x EB}

Intersection: AnB = {x ev : x eAnx EB}

Difference: BIA = { > C GU : > C GB A > C & A }

Complement: A = {xev | x & A}

Intervals of teal numbers: (a,b)= {x &R: a < x < b}
[a,b] = {x &R: a < x < b}

Uiso Ai = Aov Aiv ... VAn , niso Ais Aon Ain... nAn

Disjoint: AnB = \$\phi\$

Mutually disjoint: A: () H; = & whenever i + j

Theorem 4.4.1 The Quatient - Remainder Theorem: Given cary int n and Pos int d, there exist unique int a, and r such that

n= da++ and 0 = r < d

Power Sets: Given a set A, $\mathcal{P}(H)$ is the set of all subsets of A $A=\{x,y\}$ $\mathcal{P}(H)=\{\phi,\{x\},\{y\},\{x,y\}\}$

Theorem 6.3.1: | P(A) | = 2 | A |

Theorem 6.2.1 Inclusion of intersection ANBEA ANBEB

Inclusion of Union AEAUB BEAUB

Transitive Property of Subsets AEBABEC -> AEC

Procedural Version of Set Definition

Let X and Y be subsets of a universal set U and suppose a and b are elements of U.

- 1. $a \in X \cup Y \Leftrightarrow a \in X \lor a \in Y$
- 2. $a \in X \cap Y \Leftrightarrow a \in X \land a \in Y$
- 3. $a \in X Y \Leftrightarrow a \in X \land a \notin Y$
- 4. $a \in \bar{X} \Leftrightarrow a \notin X$
- 5. $(a,b) \in X \times Y \Leftrightarrow a \in X \land b \in Y$

Theorem 6.2.2 Set identities

Let all sets referred to below be subsets of a universal se

1. Commutative Laws: For all sets A and B,

(a) $A \cup B = B \cup A$ and (b) $A \cap B = B \cap A$.

- 2. Associative Laws: For all sets A, B and C, (a) $(A \cup B) \cup C = A \cup (B \cup C)$ and (b) $(A \cap B) \cap C = A$
- 3. Distributive Laws: For all sets A, B and C, (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and (b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 4. Identity Laws: For all sets A, (a) $A \cup \emptyset = A$ and (b) $A \cap U = A$.
- 5. Complement Laws: For all sets A, (a) $A \cup \bar{A} = U$ and (b) $A \cap \bar{A} = \emptyset$.
- 6. Double Complement Law: For all sets A, $\bar{A} = A$.
- 7. Idempotent Laws: For all sets A, (a) $A \cup A = A$ and (b) $A \cap A = A$.
- 8. Universal Bound Laws: For all sets A, (a) $A \cup U = U$ and (b) $A \cap \emptyset = \emptyset$.
- 9. De Morgan's Laws: For all sets A and B, (a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$ and (b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- 10. Absorption Laws: For all sets A and B, (a) $A \cup (A \cap B) = A$ and (b) $A \cap (A \cup B) = A$.
- 11. Complements of U and \emptyset : (a) $\overline{U}=\emptyset$ and (b) $\overline{\emptyset}=U$.
- 12. Set Difference Law: For all sets A and B, $A \setminus B = A \cap \overline{B}$.

To prove set A=B, Show A < B and B < A