Security

- LV 4121 und 4241 -

Moderne Blockchiffren und Schlüsselaustausch

Kapitel 4

Lernziele

• Gegenüberstellung symmetrische und asymmetrische Kryptoverfahren

- Symmetrische Blockverschlüsselung und **DES-Algorithmus**
- Advanced Encryption Standard (AES)
- Betriebsarten für blockorientierte Verschlüsselungsalgorithmen
- Symmetrische Bitstromverschlüsselung (one time pad)
- Grundlegende Aspekte des Schlüssel- und Sicherheitsmanagements
- **DH-Schlüsselaustausch** (gegenseitige Schlüsselabsprache)
- Schlüsselhierarchie und Schlüsselklassen

Überblick Kapitel 4

Kap. 4: Moderne Blockchiffren und Schlüsselaustausch

Teil 1: Symmetrische Blockverschlüsselung

- Schlüsselgesteuerte Transformation
- Gegenüberstellung der Chiffrierverfahren
- Data Encryption Standard (DES-Algorithmus)
- Advanced Encryption Standard (AES-Algorithmus)

Symmetrische vs. asymmetrische Chiffrierverfahren:

Symmetrische Verfahren **Asymmetrische Verfahren** Vorteile: Vorteile: • Sie sind schnell, d. h. sie haben einen hohen • Jeder Teilnehmer muß nur seinen eigenen Datendurchsatz. privaten Schlüssel geheimhalten. • Die Sicherheit ist im wesentlichen durch die Sie bieten elegante Lösungen für die Schlüssellänge festgelegt. Schlüsselverteilung in Netzen. Nachteile: Nachteile: • Jeder Teilnehmer muß sämtliche Schlüssel • Sie sind langsam, d. h. sie haben im allgemeinen einen deutlich geringeren Datenseiner Kommunikationspartner durchsatz als symmetrische Verfahren. geheimhalten. Es gibt wesentlich bessere Attacken als das • Es ist ein komplexeres Schlüsselmanagement erforderlich. Durchprobieren aller Schlüssel.

Transformation und Rekonstruktion:

Verschlüsselung

Transformation der Eingangsblöcke L und R in Ausgangsblöcke L' und R', wobei k ∈ K der Schlüssel ist.

L' = R und $R' = F(R, k) \oplus L$

Entschlüsselung

Rekonstruktion der Eingangsblöcke L und R aus den Ausgangsblöcken L' und R', wobei $k \in K$ der Schlüssel ist.

$$R = L'$$
 und $L = F(L', k) \oplus R'$

- Eines der bedeutesten Hilfsmittel für den Entwurf heutiger Blockchiffren ist das von Horst Feistel entwickelte Konstruktionsprinzip einer Feistel-Chiffre.
- Der wesentliche Aspekt besteht darin, dass eine beliebige Funktion $F: \{0, 1\}^m \times k \rightarrow \{0, 1\}^m$ zum Einsatz kommen kann. Die Funktion F muss nicht einmal umkehrbar sein.
- Soll eine Feistel-Chiffre sowohl zur Ver- als auch Entschlüsselung verwendet werden, so ist es notwendig, die beiden Ausgabeblöcke zu vertauschen (vgl. DES).
- Wendet man das Konstruktionsprinzip wiederholt auf die sich ergebenden Ausgangsblöcke an, so können sichere Verschlüsselungssysteme konstruiert werden.

DES:

- 1974 veröffentlicht
- ANSI-Standard (USA)
- Blocklänge 64 Bit
- Schlüssellänge 56 Bit
- ca. 7,2 · 10¹⁶ Schlüssel
- Anfangspermutation
- Zwei Hälften L und R
- 16 Runden Iteration
- Rundenschlüssel 48 Bit
- Substitution (nichtlinear)
- Transposition
- Ver-/ Entschlüsselung
- Abschlusspermutation

Data Encryption Standard

Verschlüsselungsalgorithmus

Initialpermutation

1. Runde Output: L(1) und R(1)

.

16. Runde
Output: L(16) und R(16)

Preoutput

Abschlusspermutation

DES:

- 16 Teilschlüssel k₁ bis k₁₆ aus 56-Bit-Schlüssel mittels Schlüsselauswahlfunktion
- Algorithmus so ausgelegt, dass er für Ver- und Entschlüsselung identisch ist
- Verschlüsselung k₁, k₂, ..., k₁₆ und Entschlüsselung k₁₆, k₁₅, ..., k₁
- IP⁻¹ zu IP inverse Permutation sind beide <u>ohne</u> Sicherheitsbedeutung
- $IP(X) = (x_{58}, x_{50}, x_{42}, ..., x_{15}, x_7)$
- $IP^{-1}(Y) = (y_{40}, y_8, y_{48}, ..., y_{57}, y_{25})$

Initialpermutation IP

<mark>58</mark>	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	35	47	39	31	23	15	7

heißt:

schreibe 1. Bit an Position 58 und Bit 2 an Position 50.

Abschlusspermutation IP ⁻¹

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

entsprechend:

schreibe 58. Bit an Position 1 bzw. Bit 50 an Position 2 zurück.

Iteration der Verschlüsselung:

Im Anschluss an die **Initialpermutation IP** wird der **Block IP(X)** in einen linken **Block L** und einen rechten **Block R** zerlegt (L II R) = IP(X). Beide Blöcke sind 32 Bit lang. Auf $L = (x_{58}, x_{50}, ..., x_8)$ und $R = (x_{57}, x_{49}, ..., x_7)$ wird folgende Operation angewandt:

Die Funktion $F(R(i-1), k_i)$:

Kern des gesamten Verfahrens $F : \{0, 1\}^{32} \times \{0, 1\}^{48} \rightarrow \{0, 1\}^{32}$.

Input: R(i - 1)

Expansionsabbildung E

i. Rundenschlüssel k

$$A(i - 1) = E(R(i - 1)) \bigoplus k_i$$

:= $(A_1, A_2, ..., A_8)$

Sicherheitsboxen Si

Permutation P

i. Runde

Output: $F(R(i-1), k_i)$

Expansionsabbildung E

32	<mark>1</mark>	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

heißt:

$$R(i-1) = (r_1, r_2, r_3, ..., r_{31}, r_{32}) \Rightarrow B(i-1) = (b_1, b_2, b_3, ..., b_{32}) \Rightarrow E(R(i-1)) = (r_{32}, \frac{r_1}{r_1}, r_2, ..., r_{32}, r_1) P(B(i-1)) = (b_{16}, \frac{b_7}{b_7}, \frac{b_{20}}{b_{20}}, ..., b_{20}) \Rightarrow B(i-1) = (b_{16}, \frac{b_7}{b_7}, \frac{b_{20}}{b_7}, \frac{b_{20}}{b$$

Indextabelle der Permutation P

entsprechend:

$$R(i-1) = (r_1, r_2, r_3, ..., r_{31}, r_{32}) \Rightarrow B(i-1) = (b_1, b_2, b_3, ..., b_{32}) \Rightarrow E(R(i-1)) = (r_{32}, \frac{r_1}{r_1}, r_2, ..., r_{32}, r_1) P(B(i-1)) = (b_{16}, \frac{b_7}{b_7}, \frac{b_{20}}{b_{20}}, ..., b_{25})$$

Die S-Box S1:

- Das Ergebnis der bitweisen XOR-Bildung A bildet den Input für die S-Boxen S1 bis S8, wobei Ai der zu Sj gehörende Input ist.
- Jede S-Box kann vier unterschiedliche Substitutionen realisieren, wobei die einzelnen S-Boxen durch eine 4 x 16-Matrix festgelegt sind.
- Die Zeilen werden mit 0, 1, 2, 3 und die Spalten mit 0, 1, ..., 14, 15 bezeichnet (im Beispiel ist die S-Box S1 widergegeben).

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
																7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

Die S-Box S1:

- Jede Zeile der S-Box Sj stellt eine Substitution $S_{j,k}$: $\{0, 1\}^4 \rightarrow \{0, 1\}^4$ dar, wobei k die Zeilennummer bezeichnet.
- Auf diese Weise k\u00f6nnen mit acht S-Boxen insgesamt 32 verschiedene Substitutionen realisiert werden.
- Ist A_j = (a_{j1}, a_{j2}, a_{j3}, a_{j4}, a_{j5}, a_{j6}) ein 6-Bit-Block.
 Dann bestimmen die Bits a_{j1aj6} als Binärzahl gelesen die Zeilennummer und a_{j2aj3aj4aj5} ebenfalls als Binärzahl aufgefasst die Spaltennummer der S-Box Sj.
- Der zugehörige Matrixeintrag S_{j,aj1aj6} (aj2aj3aj4aj5) legt das Substitutionsergebnis eindeutig fest, wobei jeder Eintrag als Dezimalzahl eine Folge von 4 Bit ergibt (→ Output der S-Box Sj).

S1:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4															
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

S2:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	15															
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

S3:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

S4:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

S5:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	4															
3	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

S6:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
2	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
3	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

S7:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
2	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
3	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12

S8:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	13															
1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
2	7	11	4	1	9	12	4	2	0	6	10	13	15	3	5	8
3	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Die Schlüsselauswahlfunktion:

Gegeben: $K = (k_1, k_2, ..., k_{64})$

Permuted Choice 1 (Schlüsselreduktion und Permutation)

Zirkuläre Linksshifts

Permuted Choice 2

1. Rundenschlüssel (Konkatenation)

:

i. Rundenschlüssel (Konkatenation)

.

16. Rundenschlüssel (Konkatenation)

Die Schlüsselauswahlfunktion:

- Die bei jeder Iteration benutzten Rundenschlüssel ki werden aus dem gegebenen Schlüssel K ermittelt.
- Aus Sicherheitsgründen sollten alle Rundenschlüssel ki verschieden sein (unterschiedliche Teilmengen aus K).
- Gegeben sei der vorgegebene Schlüssel K = (k₁, k₂, ..., k₆₄) mit den
 Paritätsbits k_i an den Stellen i = 8(8)64.
- PC1 entfernt alle Paritätsbits und reduziert den Schlüssel K auf 56 aktive Schlüsselbits, die zudem permutiert werden.
- Der resultierende Wert PC1(**K**) ergibt sich zu (k₅₇, k₄₉, ..., k₁₂, k₄).

Permutation PC1

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	<mark>36</mark>
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

heißt:

PC1(**K**) =
$$(k_{57}, k_{49}, k_{41}, ..., k_{12}, k_4)$$

 $\Rightarrow C_0 = (k_{57}, k_{49}, ..., k_{36})$ und
 $\Rightarrow D_0 = (k_{63}, k_{55}, ..., k_4)$

Permutation PC2

14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

entsprechend:

$$C_1 = (k_{49}, k_{41},..., k_{44}, k_{36}, k_{57}) \text{ und}$$

 $D_1 = (k_{55}, k_{47}, ..., k_{12}, k_{4}, k_{63}) \Rightarrow$
 $k_1 = (k_{10}, k_{51}, ..., k_{13}, k_{62}, k_{55}, k_{31})$

- Der permutierte Wert PC1(K) wird in eine linke Hälfte C₀ = (k₅₇, k₄₉, ..., k₃₆) und eine rechte Hälfte D₀ = (k₆₃, k₅₅, ..., k₄) aufgeteilt.
- Die Vektoren C_i II D_i (Konkatenation) werden für i = 1, 2, ..., 16 rekursiv aus C_{i-1} II D_{i-1} durch zirkuläres Linksshiften LSi der Hälften C_{i-1} und D_{i-1} um eine oder zwei Bitpositionen abgeleitet.
- Die Hälften werden dabei getrennt geshiftet. C₁ = LS1(C₀) bzw.
 D₁ = LS1(D₀) um <u>eine</u> Position zirkulär nach links.

Nummer der Iteration	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Anzahl der Linksshifts	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

- Damit ergeben sich beispielsweise die beiden Hälften:
 C₁ = (k₄₉, k₄₁, ..., k₃₆, k₅₇) und D₁ = (k₅₅, k₄₇, ..., k₄, k₆₃) aufgeteilt.
- PC2 bestimmt schließlich für i = 1, 2, ..., 16 aus den Konkatenationen
 C_iII D_i den Rundenschlüssel k_i.
- Hierzu werden zuerst die Bits von C_i II D_i auf den Positionen 9, 18, 22, 25, 35, 38, 43 und 54 entfernt.
- Die verbleibenden 48 Bits werden abschließend der Permutation PC2 unterworfen.

- Der DES wurde von der Firma IBM entwickelt und auf Empfehlung des National Bureau of Standards, Washington D. C., 1977 genormt.
- Seine offizielle Beschreibung erfährt der DES in FIPS PUB 46 (Federal Information Processing Standards Publication).
- DES wurde explizit in Übereinstimmung mit den Shannonschen Design-Prinzipien bezüglich Konfusion und Diffusion entwickelt.
- Lokale Diffusion und Konfusion wird durch die im hohen Grad nichtlineare Funktion F_i = F(R(i - 1), k_i) innerhalb jeder Runde i erzeugt, wobei die tatsächliche Nichtlinearität in den S-Boxen verankert ist.
- Weitere Diffusion wird durch Transposition bzw. Swapping in zwei Hälften L bzw. R innerhalb jeder Runde (mit Ausnahme der letzten) erzeugt.

Die Substitutionsboxen (S-Boxen) des DES:

- Für jede der vier Kombinationen der beiden Steuerbits CL und CR liefert die S-Box Si eine <u>unterschiedliche</u> Permutation in Abhängigkeit der vier Input-Bits ai2 ai3 ai4 ai5 (4-Tuple).
- In dieser Unterschiedlichkeit ist die Nichtlinearität der S-Boxen und letzten Endes die hohe Sicherheit des DES begründet.

Design-Regeln für die S-Boxen (Empfehlung):

- (1) Für jede Kombination der beiden Steuerbits CL und CR sollten die S-Boxen eine über GF(2) **nichtlineare Transormation** von dem Input-4-Tuple in das Output-4-Tuple darstellen.
- (2) Eine jegliche Änderung der 6 Input-Bits sollte **mindestens zwei** Output-Bits ändern.
- (3) Wenn ein der 6 Input-Bits konstant gehalten wird, dann sollten die sich für die Output-4-Tuples ergebenden 2⁵ = 32 Möglichkeiten eine gute Balance von 0 und 1 erzielen, falls die übrigen 5 Input-Bits variiert werden.

Jedoch sind die tatsächlichen Design-Prinzipien für die S-Boxen des U.S.-Government **nie** veröffentlicht worden (U.S. "classified" information).

Schwache und semi-schwache Schlüssel:

Definition:

K ist ein schwacher (oder sogenannter self-dualer) Schlüssel, wenn:

$$DES_{\mathbf{K}}(.) = DES^{-1}_{\mathbf{K}}(.),$$

- d. h. wenn die Verschlüsselungsfunktion für **K** mit der Entschlüsselungsfunktion übereinstimmt, da in diesem Fall die abgeleiteten Teilschlüssel **k**i nicht alle voneinander verschieden wären.
- DES hat mindestens vier schwache Schlüssel, die es unbedingt zu vermeiden gilt.
- Es ist sehr wahrscheinlich, dass es außer diesen vier Schlüsseln keine weiteren schwache Schlüssel gibt.

Begründung:

```
00000001
               00000001 00000001
                                       00000001
11111110
                                       11111110
               11111110 11111110
11100000
               11100000 11110001
                                       11110001
00011111
               00011111 00001110
                                       00001111
 Byte 1
                          Byte 5
                                        Byte 8
                Byte 4
```

- Aufgrund der Permutation PC1 machen diese 4 Schlüssel C₀ entweder zu (00 ··· 0) oder (11 ··· 1) <u>und</u> C₁ entweder zu (00 ··· 0) oder (11 ··· 1), so dass folgt: k₁ = k₂ = ··· = k₁₆.
- Hieraus folgt (k₁, k₂, ..., k₁₆) = (k₁₆, k₁₅, ..., k₁), so dass
 DES_K(.) = DES⁻¹_K(.).

Schwache und semi-schwache Schlüssel:

Definition:

K ist ein semi-schwacher (oder sogenannter dualer) Schlüssel, wenn:

$$DES_{\mathbf{K}'}(.) = DES^{-1}_{\mathbf{K}}(.),$$

d. h. wenn die Verschlüsselungsfunktion für unterschiedliche Schlüssel **K'** und **K** mit der Entschlüsselungsfunktion übereinstimmt, da in diesem Fall die abgeleiteten Teilschlüssel **k**i nicht alle voneinander verschieden wären.

- DES hat mindestens 12 semi-schwache Schlüssel.
- Semi-schwache Schlüssel erscheinen immer paarweise.
- Es ist sehr wahrscheinlich, dass es außer diesen 12 Schlüsseln keine weiteren semi-schwache Schlüssel gibt.

Begründung:

- Ein Schlüssel K', der C₀ = (1010 ··· 10) <u>und</u> D₀ entweder zu (00 ··· 0) oder (11 ··· 1) oder (1010 ··· 10) oder (0101 ··· 01) liefert, ist dual zum Schlüssel K, der C₀ = (0101 ··· 01) <u>und</u> D₀ entweder zu (00 ··· 0) oder (11 ··· 1) oder (0101 ··· 01) oder (1010 ··· 10) ergibt.
- Eine ähnliche Situation ergibt sich für C₀ = (0101 ··· 01) <u>und</u> D₀ = (1010 ··· 10) oder D₀ = (0101 ··· 01).
- Hieraus resultieren insgesamt 12 unterschiedliche Fälle.
- Die Hauptschwäche des DES (im sogenannten ECB-Mode betrieben) besteht jedoch in der zu kurzen Schlüssellänge von lediglich 56 Bit.

Triple DES mit **doppelter** Länge $K := K_{left} // K_{right}$

Triple DES mit dreifacher Länge $K := K_{left} // K_{center} // K_{right}$

Anforderungen, Funktionalitäten und Designkriterien:

- Im Jahr 1997 vom U.S.-amerikanischen NIST (National Institut of Standards and Technology) als Nachfolger für DES initiiert.
- Der Algorithmus von AES heißt Rijndael und wurde in Belgien von den Kryptologen Joan Daemen und Vincent Rijmen entwickelt.
- AES arbeitet auf einer Blöckgröße von 128 Bit mit Schlüssellängen von 128, 192 und 256 Bit.
- Spezielle Anforderungen an den Standard betrafen die Sicherheit, Einfachheit, Flexibilität, Effizienz und die Implementierung.
- Im Dezember 2001 wurde AES offiziell zum FIPS 197 (Federal Information Processing Standards) erklärt.

Schematischer Ablauf:

AES (Rijndael):

- Symmetrische Blockchiffre
- Blocklänge b (hier: 128 Bit)
- Schlüssellänge k
 (128, 192 oder 256 Bit)
- Variable Rundenzahl r (zwischen 10 und 14)
- Schlüsselexpansion erzeugt r + 1
 Rundenschlüssel K₀, K₁, ..., K_r
- Zwischenergebnisse des Verschlüsselungsprozesses werden
 Zustand Si genannt
- Rundenschlüssel haben gleiche Länge wie der jeweilige Zustand

Zusammenhang zwischen r, b und k:

Rundenzahl r	Blocklänge						
Schlüssellänge	b = 128	b = 192	b = 256				
k = 128	10	12	14				
k = 192	12	12	14				
k = 256	14	14	14				

Zustandsmenge und Schlüssel: Jedes Element am,n bzw. km,n 1 Byte

Zustände bzw. Klartext (b = 128)

a _{0,0}	a _{0,1}	a _{0,2}	a _{0,3}
a _{1,0}	a _{1,1}	a _{1,2}	a 1,3
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}
a _{3,0}	a _{3,1}	a _{3,2}	a _{3,3}

			•	,	
$k_{0,0}$	k _{0,1}	k _{0,2}	k _{0,3}	k _{0,4}	k _{0,5}
$k_{1,0}$	k _{1,1}	k _{1,2}	k _{1,3}	k _{1,4}	k _{1,5}
k _{2,0}	k _{2,1}	k _{2,2}	k _{2,3}	k _{2,4}	k _{2,5}
K 3.0	K _{3 1}	K 3 2	K 3 3	k _{3.4}	K 3 5

Schlüssel (k = 192)

Verschlüsselungsprozedur:

- Vor der ersten und nach jeder Runde i wird der Rundenschlüssel (hier K_i = 128 Bit) XOR-verknüpft mit dem aktuellen Zustand S_i.
- Das Ergebnis dient als Eingabe für die nächste Runde i + 1 bzw. als Chiffretext nach der letzten Runde.
- Jede Runde (mit Ausnahme der letzten) besteht aus den Funktionen:

```
ByteSub → nichtlineare S-Boxen (Substitutionsschritt)

ShiftRow → zyklisches Verschieben der Zustandsmatrix

MixColumn → invertierbare Matrixmultiplikation
```

 Alle vorgenannten Transformationen (außer XOR-Verknüpfung) sind schlüsselunabhängig.

Die ByteSub-Transformation:

- Diese Transformation stellt die nichtlineare S-Box von AES dar.
- Sie wird auf jedes Byte am,n des Zustands angewandt und wird als "table-lookup" implementiert (siehe u. a. Folie Nr. 42).
- Sie entspricht dem Berechnen der multiplikativen Inversen in GF(2⁸)
 bzw. mod m(x) gefolgt von der nachfolgenden affinen Transformation.
- Die einzelnen Multiplikationen und Additionen der Komponenten sind modulo zwei zu berechnen.
- Die Umkehrung von ByteSub erfolgt durch Anwendung der inversen affinen Transformation gefolgt von der multiplikativen Inversen in GF(2⁸).

Die ByteSub-Transformation (Fortsetzung):

→ affinen Transformation (kommt genau 16 mal zur Anwendung!)

y und x jeweils 1 Byte lang!

Mathematische Beschreibung:

$$y = A \cdot x + b$$

 \rightarrow

$$\mathbf{y} - \mathbf{b} = A \cdot \mathbf{x}$$

 $A^{-1}(\mathbf{y} - \mathbf{b}) = \mathbf{x}$

→ Umkehrfunktion

$$x = B \cdot y + c$$

mit

$$B = A^{-1} \pmod{2}$$
 und $c = B \cdot b \pmod{2}$

$$y = A \cdot x + b$$

 $X = X_7 X_6 X_5 X_4 X_3 X_2 X_1 X_0$ ist 8 Bit lang \rightarrow 256 Möglichkeiten

 Jedes Byte x (8 Bit) wird in Hexadezimaldarstellung als

$$\mathbf{x} = \mathbf{xy}_{\text{hex}}$$

geschrieben.

Damit insgesamt 256 Werte

$$y = uv_{hex}$$

die ebenfalls hexadezimal interpretiert werden.

→ S-Box, Substitutionswerte uv_{hex} für das Byte xy_{hex}

Substitutionswerte:

	y															
	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
0	63	7c	77	7 b	f2	6b	6f	с5	30	01	67	2 b	fe	d7	ab	76
1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
2	b7	fd	93	26	36	3f	f7	CC	34	a5	e5	f1	71	d8	31	15
3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
4	09	83	2c	1a	1b	6e	5 a	a0	52	3b	d6	b3	29	e3	2 f	84
5	53	d1	00	ed	20	fc	b1	5 b	6a	cb	be	39	4a	4c	58	cf
6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7 f	50	3c	9f	a8
7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
8	cd	0c	13	ec	5f	97	44	17	с4	a7	7e	3d	64	5 d	19	73
9	60	81	4f	dc	22	2 a	90	88	46	ee	b8	14	de	5e	0b	db
а	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	80
С	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	се	55	28	df
f	8c	a1	89	0d	bf	e6	42	68	41	99	2 d	0f	b0	54	bb	16

X

$$x = B \cdot y + c$$

 $y = y_7 y_6 y_5 y_4 y_3 y_2 y_1 y_0$ ist 8 Bit lang \rightarrow 256 Möglichkeiten

 Jedes Byte y (8 Bit) wird in Hexadezimaldarstellung als

$$y = xy_{hex}$$

geschrieben.

Damit insgesamt 256 Werte

$$\mathbf{x} = \mathbf{u}\mathbf{v}_{hex}$$

die ebenfalls hexadezimal interpretiert werden.

→ Inverse S-Box, Substitutionswerte uv_{hex} für das Byte xy_{hex}

Substitutionswerte:

	y																
		0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
	0	52	09	6a	d5	30	36	a5	38	bf	40	a3	9e	81	f3	d7	fb
	1	7c	e3	39	82	9b	2 f	ff	87	34	8e	43	44	c4	de	e9	cb
	2	54	7 b	94	32	a6	c2	23	3d	ee	4c	95	0 b	42	fa	c3	4e
	3	08	2e	a1	66	28	d9	24	b2	76	5 b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	CC	5 d	65	b6	92
	5	6c	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
\	7	d0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
X	8	3 a	91	11	41	4f	67	dc	ea	97	f2	cf	ce	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
	а	47	f1	1a	71	1d	29	c5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3e	4b	c6	d2	79	20	9a	db	c0	fe	78	cd	5 a	f4
	С	1f	dd	a8	33	88	07	c7	31	b1	12	10	59	27	80	ec	5f
	d	60	51	7f	a9	19	b5	4a	0d	2 d	e5	7a	9f	93	с9	9c	ef
	е	a0	e0	3b	4d	ae	2 a	f5	b0	c8	eb	bb	3c	83	53	99	61
	f	17	2 b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7 d

Die ShiftRow-Transformation:

- Diese Transformation verschiebt die Zeilen 1 bis 3 der Zustandsmatrix zyklisch nach links.
- Die Verschiebung hängt von der Blockgröße b ab.
- Zeile 0 wird nicht verändert.
- Zeile 1 wird im allgemeinen um c₁ Bytes, Zeile 2 und c₂ Bytes und Zeile 3 um c₃ Bytes verschoben.
- Zum Dechiffrieren erhält man die inverse Transformation durch Ausführen der zyklischen Verschiebung nach rechts.

Die ShiftRow-Transformation (Fortsetzung):

	Blocklänge							
Verschiebungen	b = 128	b = 192	b = 256					
C1	1	1	1					
C2	2	2	3					
C3	3	3	4					

<u>hier</u>: Im Falle von **AES** gilt **b** = 128.

Die ShiftRow-Transformation (Fortsetzung):

- Sei s ein state, also nach vorangegangener Substitution ein teiltransformierter Klartext.
- Schreibe s als Zustandsmatrix mit 4 Zeilen und 4 Spalten. Die Matrixeinträge sind jeweils Bytes.
- Verschiebe die letzten drei Zeilen der Zustandsmatrix s zyklisch nach links.

LeftShift(Zeile i) = i für
$$i \in \{0, 1, 2, 3\}$$

 Es ergibt sich eine Abbildung state → state, die bei Anwendung in mehreren Runden für eine hohe Diffusion sorgt.

Die Wirkung der ShiftRow-Transformation:

Die MixColumn-Transformation:

- Diese Transformation wirkt auf verschiedene Spalten k ∈ {0, 1, 2, 3} der Zustandmatrix s und sorgt dort jeweils für eine Vermischung.
- Die Elemente der vier Spaltenvektoren s_k = (s_{0,k}, s_{1,k}, s_{2,k}, s_{3,k}) sind
 1 Byte lang und werden als Hexadezimalzahl (xy)_{hex} interpretiert.
- Ferner werden die Elemente $s_{0,k}$, $s_{1,k}$, ..., $s_{3,k}$ einer jeden Spalte s_k als Koeffizienten eines Polynoms in $GF(2^8)[x] / (x^4 + 1)$ aufgefasst: $s_k(x) = s_{3,k} \cdot x^3 + s_{2,k} \cdot x^2 + s_{1,k} \cdot x + s_{0,k} \in GF(2^8)[x] / (x^4 + 1)$
- Die Transformation MixColumn setzt nun
 - $\mathbf{s_k(x)} \leftarrow (\mathbf{s_k(x)} \bullet a(x)) \bmod (x^4 + 1), \ 0 \le k \le 3,$ wobei $\mathbf{a(x)}$ das feste Polynom $(03) \cdot x^3 + (01) \cdot x^2 + (01) \cdot x + (02)$ ist.

Grundlagen:

 Speziell für den AES wählen wir einen endlichen Körper GF(2⁸) der Charakteristik 2 mit dem zugehörigen Polynom m(x) vom Grad 8.

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

Es ist also:

$$GF(2^8) = \{a(x) \mid a_7 \cdot x^7 + ... + a_1 \cdot x + a_0 \}$$
 für $a_i \in \mathbf{Z}_2 = \{0, 1\}, i = 0, 1, ..., 7\}$

 Die Elemente werden auch als Binärstrings a₇ a₆ ... a₀ (bzw. als Bytes) oder in hexadezimaler Notation xyhex = (xy) geschrieben.

Beispiel:
$$x^7 + x^6 + 1 = 1100\ 0001 = c1_{hex} = (c1)$$

Grundlagen (Fortsetzung):

Die Addition

 in GF(2⁸) erfolgt komponentenweise (XOR) und die Multiplikation

 wird in GF(2⁸) modulo m(x) durchgeführt.

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

Beispiel: $(57) \bullet (83) = 0101\ 0111 \bullet 1000\ 0011 = ?$

also

= (c1)

Die MixColumn-Transformation (Fortsetzung):

Dies kann wiederum als lineare Transformation (→ Matrix-multiplikation s' = A·s) in (GF(2⁸))⁴ über dem Körper GF(2⁸) für k ∈ {0, 1, 2, 3} beschrieben werden:

- Diese Transformation sorgt somit für eine gute Diffusion innerhalb der Spalten von state.
- Auch die MixColumn-Transformation ist invertierbar.

Anmerkung zur Invertierbarkeit:

- AES verwendet Polynome über dem Körper GF(2⁸), aber nur solche der Form a₃·x³ + a₂·x² + a₁·x + a₀ für a_i ∈ GF(2⁸), i = 0, 1, 2, 3.
- Daher müssen Reduktionen modulo einem Polynom über GF(2⁸)
 vom Grad 4 durchgeführt werden. Es wird x⁴ + 1 ∈ GF(2⁸) gewählt.
- Wir bilden also den Ring (und <u>keinen</u> Körper!!!) GF(2⁸)[x] / (x⁴ + 1).
- Somit muss ein Element dieses so gebildeten Rings <u>nicht</u> unbedingt eine **Inverse** besitzen.
- Durch die spezielle Wahl $a(x) = (03) \cdot x^3 + (01) \cdot x^2 + (01) \cdot x + (02)$ existiert jedoch das **Inverse** $a^{-1}(x) = (0b) \cdot x^3 + (0d) \cdot x^2 + (09) \cdot x + (0e)$.

Die Wirkung der MixColumn - Transformation:

Teiltransformierter Klartext 128 Bit

AES-Funktionen Cipher und KeyExpansion:

Der KeyExpansion-Algorithmus:

- Der Chiffrierschlüssel K wird beim AES durch Schlüsselexpansion so aufgeweitet, dass sich r + 1 Teilschlüssel mit je b Bits bilden.
- Bei einer Blocklänge von **b** = 128 Bit und **zwölf Runden** werden somit insgesamt 128 · 13 = 1664 Schlüsselbits generiert.

Der Cipher-Algorithmus:

- Eingabe ist der Klartextblock (128 Bit) und der expandierte Schlüssel (1664 Bit).
- Ausgabe ist nach zwölf Runden der Chiffretextblock (128 Bit).

AES-Dechiffrierfunktion:

Der InvCipher-Algorithmus:

- Die Entschlüsselung des AES wird von der Funktion InvCipher besorgt.
- Man erhält die Dechiffrierfunktion dadurch, dass wir die Reihenfolge der zuvor betrachteten Transformationen umdrehen und dabei – außen für Berechnung der Teilschlüssel – die jeweiligen inversen Transformationen betrachten.
- Des weiteren werden die Teilschlüssel in der umgekehrten Reihenfolge benutzt.
 - Ausgabe ist nach zwölf Runden der Klartextblock (128 Bit).

Grundlegende Konstruktionsprinzipien

(Claude Elwood Shannon, Begründer der Informationstheorie)

Konfusion:

Auflösen von statistischen Strukturen (z. B. Buchstabenhäufigkeiten) eines Klartextes beim Verschlüsseln, d. h. jedes Ciphertextzeichen sollte von möglichst vielen Klartextzeichen abhängig sein.

Diffusion:

Verschleierung des Zusammenhangs zwischen Klartext und Geheimtext, d. h. bei einer Änderung von **einem** Schlüsselbit oder **einem** Klartextbit sollte sich 50 % des Geheimtextes ändern.

Überblick Kapitel 4

Kap. 4: Moderne Blockchiffren und Schlüsselaustausch

Teil 2: Betriebsmodi

- ECB
- CBC
- CFB
- OFB

Betriebsmodus ECB (1)

ECB – Electronic Code Book

Wie bei einem Wörterbuch gibt es zu 2^N möglichen Klartextstrings 2^N Schlüsselstrings und umgekehrt.

Eigenschaften:

- Jeweils ein Block von N Bit wird <u>unabhängig</u> von anderen Blöcken verschlüsselt.
- Reihenfolge kann verändert werden, ohne daß die Entschlüsselung davon beeinflußt wird.
- Gleicher Klartext ergibt gleichen Schlüsseltext (sicherheitskritisch → keine identische Blöcke!).

Fehlerfortpflanzung:

• Bitfehler oder Bitgruppenfehler eines Schlüsseltextblockes verursachen einen fehlerhaften Klartextblock (mindestens 50 % aller Bits im Outputblock betroffen).

Synchronisation:

• Wenn Blockgrenzen während der Übertragung verlorengehen (z. B. Bitschlupf), geht die Synchronisation zwischen Ver- und Entschlüsselung verloren (d. h. alle Folgeblöcke werden nicht mehr korrekt entschlüsselt).

Betriebsmodus ECB (2)

Betriebsmodus CBC (1)

CBC – Cipher Block Chaining

Im Gegensatz zum EBC-Modus erfolgt nun eine Verkettung der Blöcke.

Eigenschaften:

- Verkettung bewirkt, daß der Chiffretext von dem ganzen vorangegangenen Klartext und dem IV abhängt.
- Die Blöcke können daher <u>nicht</u> umgeordnet werden.
- Der IV verhindert, daß gleicher Klartext gleichen Chiffretext ergibt.

Fehlerfortpflanzung:

• Wenn in einem Block des Chiffretextes ein Bit- oder Bitgruppenfehler auftritt, wird die Entschlüsselung des betreffenden und des nachfolgenden Blockes gestört (→ Fehlerfortpflanzung).

Synchronisation:

• Wenn die Bitgrenzen z. B. durch Bitschlupf verlorengehen, geht auch die Synchronisation zwischen Ver- und Entschlüsselung verloren (→ Neuinitialisierung notwendig).

Betriebsmodus CBC (2)

Betriebsmodus CFB (1)

CFB – Cipher FeedBack

Sowohl sender- als auch empfängerseitig arbeitet die Blockverschlüsselung im Verschlüsselungsmodus und erzeugt eine pseudozufällige Bitfolge E, die modulo 2 (XOR) zu den Klartextzeichen bzw. Schlüsseltextzeichen addiert wird (if $j = 1 \Rightarrow$ Bitstromverschlüsselung; if $j = N \Rightarrow$ verkettete Blockverschlüsselung).

Eigenschaften:

- Wenn implementierter Blockalgorithmus BA einen Durchsatz von T Bit/s bietet, so leistet der CFB-Modus effektiv nur noch T * j/N Bit/s (j = Länge der Klartextvariablen).
- Falls gleicher Schlüssel und IV verwendet wird, produziert CFB-Modus bei gleichem Klartext gleichen Chiffretext.

Fehlerfortpflanzung:

• Falls im CFB-Modus eine Chiffretextvariable C gestört wird, so werden solange falsche Klartextzeichen generiert, bis fehlerhafte Bits beim Empfänger herausgefiltert wurden.

Synchronisation:

• Wenn Variablengrenze verloren geht, sind Sender und Empfänger solange außer Synchronisation, bis Blockgrenzen wieder erreicht, d. h. CBF-Modus ist selbstsynchronisierend.

Betriebsmodus CFB (2)

Betriebsmodus OFB (1)

OFB – Output FeedBack

Im Gegensatz zum CFB-Modus werden beim OFB-Modus nicht die Chiffretextvariablen C, sondern der Output der Blockverschlüsselung BA als Input für die nächste Verschlüsselungsoperation zurückgeführt.

Eigenschaften:

- Der erzeugte Schlüsselstrom hängt <u>nicht</u> vom Klartext ab.
- Da keine Verkettung erfolgt, ist der OFB durch spezifische Angriffe gefährdet.
- Gleicher Klartext ergibt gleichen Chiffretext, falls gleicher Schlüssel und IV verwendet wird.

Fehlerfortpflanzung:

- Es gibt keine Fehlerfortpflanzung, solange die Ver- und Entschlüsselung synchron erfolgt.
- Jedes fehlerhafte Bit im Schlüsseltext ergibt ein fehlerhaftes Bit im Klartext.

Synchronisation:

- Der OFB-Modus ist nicht selbstsynchronisierend.
- Tritt z. B. Bitschlupf auf, muß System neu initialisiert werden.

Betriebsmodus OFB (2)

Überblick Kapitel 4

Kap. 4: Moderne Blockchiffren und Schlüsselaustausch

Teil 3: Symmetrische Bitstromverschlüsselung

- XOR-Algorithmus
- One-Time-Pad und perfekte Sicherheit

Vertraulichkeitsschutz

XOR-Algorithmus

Klartext: $a_1, a_2, ..., a_n$

 $a_i, k_i, c_i \in \{0, 1\}$

Schlüssel:

 $k_1, k_2, ..., k_n$

mit

Geheimtext:

 $c_1, c_2, ..., c_n$

i = 1, 2, ..., n

Rechenvorschrift: Binäre Addition modulo 2

$$1 \oplus 1 = 0$$

 $a_i \oplus k_i := c_i$

 $0 \oplus 0 = 0$

 $1 \oplus 0 = 1$

Entschlüsselung:

 $0 \oplus 1 = 1$

 $c_i \oplus k_i := a_i \oplus k_i \oplus k_i$

Eigenschaften:

 $:= a_i \oplus 0$

- alle Folgen der Länge n mit derselben Wahrscheinlichkeit

 $:= a_i$

- ohne Kenntnis von ki läßt sich nicht auf ai schließen
- mit Kenntnis von k_i läßt sich a_i aus c_i rekonstruieren
- gleicher Schlüssel auf beiden Seiten → (geheimer) Schlüsselaustausch notwendig!

Sender

Übertragungsweg

Empfänger

Klartext:

Schlüssel:

0 110 110 011

1 001 010 111

Geheimtext: 1 111 100 100

(unsicher bzw.

ungesichert)

Geheimtext: 1 111 100 100

<u>Geheimtext</u>:

Schlüssel:

1 111 100 100

1 001 010 111

• 56 bit DES-Schlüssel geknackt

- bis zu 7 Milliarden Schlüssel pro Sekunde ausprobiert
- nach etwa 25 % der möglichen 72 Billiarden Schlüssel wurde der richtige gefunden
- gerechnet wurde während der Wartezeiten gewöhnlicher Rechner von tausenden Leuten, die sich nie gesehen haben

• RSA: "sicher" heißt nur "relativ sicher"

- 100 Pentium-Prozessoren mit 100 MHz Taktfrequenz brauchen rund 1 Jahr an Rechenzeit, um einen 428-Bit-RSA-Schlüssel zu knacken
- generell kann kein bekanntes Chiffrierverfahren¹ als (mathe. beweisbar) vollkommen sicher erachtet werden
- Sicherheit abhängig von Rechnerleistung, Wissen, Gelegenheit etc.

¹ Einzige Ausnahme: sog. One-time-pad

- Das One-Time-Pad wurde 1917 von Major J. Mauborgne und G. Vernam von AT&T erfunden.
- Sei A = {0, 1} ein Alphabet und z, r ∈ A.
 Ein Klartextbit z wird mit dem Zufallbit r des Schlüssels chiffriert durch die Vorschrift (Vigenere-Chiffre):

$$z \rightarrow (z + r) \mod 2 = z \times XOR \ r = z \oplus r$$

- Das One-Time-Pad gehört damit eindeutig zur Klasse der **Stromchiffren** (bitweise XOR-Verknüpfung).
- Als eines der wenigen **perfekten** Chiffriersysteme ist es <u>gleichzeitig</u> gemäß der vorangestellten Definition **uneingeschränkt sicher**.

Definition:

Ein Chiffriersystem heißt **perfekt**, wenn bei beliebigem Klartext **M** und beliebigem Chiffretext **C** die a-priori-Wahrscheinlichkeit **P(M)** gleich der bedingten Wahrscheinlichkeit (a-posteriori-Wahrscheinlichkeit) **P(M | C)** ist, d. h.

$$P(M \mid C) = P(M) \Leftrightarrow perfektes Chiffriersystem$$
 (1)

Mit der Definition der bedingten Wahrscheinlichkeit

$$P(M \mid C) = P(M \land C) / P(C)$$
 (2)

folgt aus (1):

$$P(M \land C) = P(M) \cdot P(C) \Leftrightarrow \text{statistisch unabhängig}$$
 (3)
 $sog. Produktregel$

d. h. um **perfekte Sicherheit** zu garantieren, müssen ein beliebiger Klartext **M** und der zugehörige Chiffretext **C statistisch unabhängig** sein.

Sei M die Menge ∀ Klartexte M der Länge n,

C die Menge ∀ Chiffretexte C der Länge n und

K die Menge ∀ Schlüsseltexte **K** der Länge n .

Bei einem One-Time-Pad gilt:

$$\mathbf{m} := |\mathbf{M}| = |\mathbf{C}| = |\mathbf{K}| = 2^{\mathbf{n}},$$
 (4)

denn alle drei Mengen bestehen aus Texten der Länge n über einem vorgegebenen Alphabet $A = \{0, 1\}$.

Für einen beliebig vorgegebenen Klartext M wird jeder Chiffretext C mit der gleichen Wahrscheinlichkeit erzeugt:

$$P(C) = 1 / m = 2^{-n}$$
 (5)

Da es genau m Schlüssel gibt, gibt es auch genau m unterschiedliche Chiffretexte C zu jedem Klartext M, also

$$P(C \mid M) = 1 / m = 2^{-n}$$
 (6)

Wendet man (2) auch auf **P(C | M)** an, so erhält man die sog. **Bayes`sche Formel**:

$$P(M \mid C) \cdot P(C) = P(C \mid M) \cdot P(M) \tag{7}$$

Einsetzen von (5) und (6) in (7) ergibt:

$$P(M \mid C) \cdot 1 / m = 1 / m \cdot P(M)$$

Hieraus folgt:

$$P(M \mid C) = P(M) \Leftrightarrow One-Time-Pad = perfektes Chiffriersystem,$$
 (8)

gleichzeitig uneingeschränkt sicher, da es <u>keine</u> Möglichkeit gibt, aus einem beliebig langen Chiffretext C – ohne Kenntnis des Schlüssels – auf den Klartext M zu schließen!

Überblick Kapitel 4

Kap. 4: Moderne Blockchiffren und Schlüsselaustausch

Teil 4: Schlüsselmanagement

- Der Diffie-Hellman-Schlüsselaustausch
- Schlüsselhierarchie und Schlüsselklassen

Generelle Anforderungen:

- Es muß gewährleistet sein, daß der ausgetauschte Schlüssel nur den befugten Teilnehmern bzw. Prozessen zugänglich ist.
- Die auszutauschenden Schlüssel müssen den befugten Teilnehmern unverändert und fehlerfrei zur Verfügung stehen.
- Bereits benutzte Schlüssel dürfen kein zweites Mal verwendet werden.
- Schlüsselaustauschprotokolle dürfen den Schlüsselaustausch nicht merklich verzögern.
- Der Schlüsselabsprache muß eine Authentifikation der Kommunikationspartner vorausgehen.
- Empfangsbestätigung und Verifikation des abgesprochenen Schlüssels sind in das verwendete Protokoll zu integrieren.

B. Geib

- Der für die Nachrichtenverschlüsselung verwendete Schlüssel (sog. Session Key oder Data Encryption Key DEK) sollte möglichst häufig wechseln, damit keine Analysen oder eingespielte Wiederholungen möglich sind.
- Der zur Verschlüsselung anderer Schlüssel verwendete Schlüssel heißt Master Key oder Key Encryption Key, kurz **KEK**.
- So wird in der Praxis mit dem KEK zunächst ein DEK verschlüsselt, mit dem anschließend der Datentransfer gesichert wird.
- Schließlich ist der Device Key (DK) ein ausgezeichneter, gerätespezifischer KEK, der im Rahmen der Geräteinitialisierung eingebracht oder hardwaremäßig im Gerät gespeichert ist.
- Damit verschiedene Angriffsmöglichkeiten unterbunden werden, ist es sinnvoll, den DEK von beiden Seiten gleichberechtigt zu bestimmen.

KEK und DEK

E = Symmetrisches Verfahren (z. B. DES)

KEK zur Verschlüsselung von Teilschlüsseln

$$N = {n \choose 2} = \frac{n(n-1)}{2} \sim n^2$$

In ihrer bedeutenden Arbeit haben W. Diffie und M. Hellman 1976 u. a. ein asymmetrisches Verfahren zur Schlüsselabsprache vorgestellt.

<u>Vorteil:</u> Wie bei asymmetrischen Verfahren üblich, müssen beide Kommunikationspartner von der Schlüsselvereinbarung über keinen gemeinsamen geheimen Schlüssel verfügen.

Nachteil: In der Schlüsselvereinbarung erfolgt keine Authentifikation, d. h. die Kommunikationspartner wissen <u>nicht</u>, mit **wem** sie den Schlüssel vereinbaren.

(Abhilfe schafft hier der Einsatz von Zertifizierungsinstanzen.)

Übertragungsweg Sender A Empfänger B wählt: $a \in \{0, 1, p-2\}$ unsicher bzw. $b \in \{0, 1, p-2\}$ $(a \rightarrow geheim)$ ungesichert $(b \rightarrow geheim)$ $\beta = g^b \mod p$ $\alpha = g^a \mod p$ berechnet: α -----> austauschen: <---- nach A ----berechnet: $K_B = \alpha^b \mod p$ $K_A = \beta^a \mod p$ $\beta^a \mod p = (g^b)^a \mod p = g^{ba} \mod p = (g^a)^b \mod p = \alpha^b \mod p$ weil: gilt: $K_A = K_B := K$ (geheimer "Session" Key) Sicherheit: - Geheimhaltung von a bzw. b, die jedoch nicht ausgetauscht werden - Lösung des diskreten Log-Problems, um von $\alpha(\beta)$ auf a(b) zu schließen Initialisierung: $p \in P$; öffentlich, beliebig **P** = Primzahlen $2 \le g \le p - 2$; $g \in \mathbb{N}$; öffentlich, Primitivwurzel mod p \mathbb{N} = natürliche Zahlen

Schlüsselklasse	Benennung	Schlüssellänge*)	Lebensdauer*)
1	Session Key DEK	64 Bit	< 1 Tag
2	Master Key KEK	128 Bit	≈ 1 Monat
3	Device Key	128 Bit	≈ 2 Jahre

^{*)} beispielhaft, abhängig vom konkreten Anwendungsfall