

गणित विभाग, भारतीय प्रौद्योगिकी संस्थान पटना

DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY PATNA

B.Tech - I, MA-101 Mid Semester Examination September, 2014

Time: 2 Hrs

Max Marks: 30

Attempt all the questions. Write brief and precise solutions to each quest	tion.
 (1) Check whether the following statements are true or false. Give a reasons to support your answer. (a) If x is a positive real number then there exists a natural number that k - 1 ≤ x < k. (b) A convergent sequence of real real valued functions of a reals bounded. (c) A series of functions can be term - by - term integrated if an converges uniformly. (d) If a sequence of functions is monotone and bounded then it complete the integral ∫₀[∞] e^{-x²} is convergent. 	where k such variable is doubt if it
(2) (a) If x is a positive real number then show that there exists a nat ber n such that $\frac{1}{2^n} < x$.	[1× 5] tural num- [3]
(b) Show that $\lim_{n\to\infty} \left(\frac{2}{n!}\right) = 0$. (3) Using Cauchy's criterion, establish the convergence and find the liquence: $x_1 = 1, x_2 = 1 - (1/2), \ldots, x_n = 1 - (1/2), \ldots + (-1)^{n+1}$,	[2] imit of se-
 (4) Using limit comparison test show that the series ∑ 1/n! converges. (5) Suppose that f: ℝ → ℝ is continuous and that f(x) = 0 for ever Show that f(x) = 0 on all of ℝ. (6) Let f: [0, π/2] → ℝ be given by f(x) = sup{x², cosx}. Show that absolute minimum in [0, π/2]. (7) Use mean value theorem to prove sinx - siny ≤ x - y for all x, y (8) Using Taylor's theorem with n = 3, obtain approximation for √1.3. (9) State the two forms of fundamental theorem of Calculus (Riemann, tion). 	$f \text{ has an}$ $[2]$ $f \in \mathbb{R}.$ $[2]$ $[2]$ $[2]$ $[2]$ $[2]$ $[2]$
(10) Determine whether the following integral is convergent $\int_0^1 \frac{e^{-x}}{\sqrt{x}} dx$.	[2]
(11) Find the volume of the solid obtained by rotating about the y-axis t bounded by $y = 2x^2 - x^3$ and x-axis.	[3] he region

[3]