ΗΥ360: Αρχεία και Βάσεις Δεδομένων

Διδάσκων: Πλεξουσάκης Δημήτρης

Φροντιστήριο Σχεσιακή Άλγεβρα Δημητράκη Κατερίνα

Αντιστοίχιση

Μοντέλο Οντοτήτων – Σχέσεων

Σχεσιακό μοντέλο

Σχεσιακό μοντέλο

Head(Customer) = {ID, name} ή Customer(ID, name)

Μετατροπή

Μοντέλο Οντοτήτων σχέσεων – Σχεσιακό Μοντέλο

Customer

ID	Name	
1928	Γιώργος	
2328	Μαρία	
2391	Μηνάς	

ID	Pid	Date
1928	001	01/02/12
2328	002	04/02/12
2391	003	01/02/12
2391	001	01/02/12

Product

Pid	Price	
001	10	
002	2	
003	4	

Σχεσιακή Άλγεβρα

Εισαγωγή

- Σύνολο τελεστών που εφαρμόζονται σε μία ή περισσότερες σχέσεις
- Όλες οι πράξεις της σχεσιακής άλγεβρας επιστρέφουν μία σχέση

• Τελεστές

- Τελεστές από τη θεωρία συνόλων
 - Ένωση (Union): U
 - Toμή (Intersect): ∩
 - Αφαίρεση (Difference): -
 - Καρτεσιανό γινόμενο (Cartesian product): ×
- Τελεστές από τη σχεσιακή άλγεβρα
 - Προβολή (Projection): π
 - Επιλογή (Selection): σ
 - Σύζευξη (Join): ⋈
 - Διαίρεση (Division): ÷

Τελεστές Θεωρίας Συνόλων (1/3)

- Θεωρούμε τις σχέσεις ως σύνολα πλειάδων
- Εφαρμόζονται μόνο σε σχέσεις οι οποίες είναι συμβατές
 (compatible) δηλαδή έχουν το ίδιο σχήμα
 - Έστω R και S δύο σχέσεις, είναι συμβατές αν Head(R) = Head(S)

• Από αυτόν τον περιορισμό εξαιρείται το καρτεσιανό γινόμενο

Τελεστές Θεωρίας Συνόλων (2/3)

- · Ένωση (RUS)
 - Cont(RUS) = $\{t \mid t \in Cont(R) \text{ or } t \in Cont(S)\}$
- Τομή (R∩S)
 - Cont(R \cap S) = {t | t \in Cont(R) and t \in Cont(S)}
- Αφαίρεση (R-S)
 - Cont(R-S) = $\{t \mid t \in Cont(R) \text{ and } t \notin Cont(S)\}$
 - Η σχέση που προκύπτει έχει το ίδιο σχήμα με τις σχέσεις που συμμετείχαν στην αντίστοιχη πράξη
 - Σε περίπτωση που υπάρχουν πλειάδες που επαναλαμβάνονται (π.χ. στην ένωση) κρατάμε μόνο μία πλειάδα

Τελεστές Θεωρίας Συνόλων (3/3)

- Για την **ένωση** και την **τομή** ισχύει:
 - Αντιμεταθετική ιδιότητα
 - RUS = SUR $\kappa \alpha \iota R \cap S = S \cap R$
 - Προσεταιριστική ιδιότητα
 - RU(SUT) = (RUS)UT
 - $-R \cap (S \cap T) = (R \cap S) \cap T$
- ΠΡΟΣΟΧΗ: για την αφαίρεση δεν ισχύει η αντιμεταθετική ιδιότητα
 - $R S \neq S R$

Ένωση

παραδείγματα

Customer1

ID Name

ID	Name	
1928	Γιώργος	
2328	Μαρία	

Customer2

ID	Name
2328	Μαρία
2568	Γιάννης

Customer1\U Customer2

ID \	Name
1928	Γιώργος
2328	Μαρία
2568	Γιάννης

Τομή παραδείγματα

Customer1

ID	Name	
1928	Γιώργος	
2328	Μαρία	

Customer2

ID	Name
2328	Μαρία
2568	Γιάννης

Customer1 ∩ **Customer2**

ID	Name
2328	Μαρία

Αφαίρεση

παραδείγματα

Customer1

Customer2

	ID	Name	
*	1928	Γιώργος	
*	2328	Μαρία	
4	2391	Μηνάς	

ID	Name	
1928	Γιώργος	
2328	Μαρία	
2392	Κατερίνα	

Customer1 - Customer2

ID	Name
2391	Μηνάς

Customer2 - Customer1

ID	Name
2392	Κατερίνα

Τελεστές Θεωρίας Συνόλων (συνέχεια)

- Καρτεσιανό γινόμενο (R x S)
 - Ορίζεται μία νέα σχέση με σχήμα
 - Head(R x S) = {R.A₁, R.A₂, R.A₃, ... S.B₁, S.B₂, S.B₃, ...}
 - Το περιεχόμενο της είναι όλες οι πιθανές συσχετίσεις πλειάδων των R και S
 - Av $r \in R$ και $s \in S$ τότε η ένωση («concatenation») $r \mid \mid s$ των r και s είναι μια πλειάδα της $R \times S$

Καρτεσιανό γινόμενο

παραδείγματα

R

ID	Name	ID	Name
1928	Γιώργος	1928	Γιώργος
2391	Μηνάς	2328	Μαρία

RxS

R.ID	R.Name	S.ID	S.Name
1928	Γιώργος	1928	Γιώργος
1928	Γιώργος	2328	Μαρία
2391	Μηνάς	1928	Γιώργος
2391	Μηνάς	2328	Μαρία

Πρόσθετοι τελεστές

- Ανάθεση (R := S)
 - Ορίζεται μία νέα σχέση R με σχήμα
 - Head(R) = $\{B_1, B_2, ..., B_n\}$
 - domain(A_i) = domain(B_i) (A_i : γνωρίσματα της σχέσης S)
 - Το περιεχόμενο της R είναι ακριβώς το περιεχόμενο της S
- Μετονομασία (ρ_{a/b}(R))
 - Το αποτέλεσμα είναι η ίδια σχέση R
 με τη διαφορά ότι το γνώρισμα b σε όλες τις πλειάδες
 μετονομάζεται σε a

Τελεστές Σχεσιακής Άλγεβρας - Προβολή -

- Έστω μία σχέση R, με σχήμα Head(R) = {A₁, A₂, ... A_n}
- Η προβολή π Ai1, Ai2, ... Aik (R) {Ai1, Ai2, ... Aik} C {A1, A2, ... An}
 - Ορίζει μία νέα σχέση Τ με σχήμα Head(T) = {Ai1, Ai2, ... Aik} όπου
 - Όταν το σύνολο των γνωρισμάτων **δεν** περιέχει το **κλειδί** της σχέσης
 - Πιθανόν να προκύπτουν ίδιες πλειάδες κρατάμε μία από αυτές

• Ιδιότητες

- $\pi<\lambda i \sigma \tau \alpha 1>(\pi<\lambda i \sigma \tau \alpha 2>(R)) = \pi<\lambda i \sigma \tau \alpha 1>(R) \alpha v<\lambda i \sigma \tau \alpha 1>\underline{C}<\lambda i \sigma \tau \alpha 2>$
- δεν είναι αντιμεταθετική
 - $\pi_{<\lambda i \sigma \tau \alpha 1>} (\pi_{<\lambda i \sigma \tau \alpha 2>} (R)) = \pi_{<\lambda i \sigma \tau \alpha 1>} (R)$
 - $\pi_{\langle \lambda i \sigma \tau \alpha 2 \rangle} (\pi_{\langle \lambda i \sigma \tau \alpha 1 \rangle} (R)) = \pi_{\langle \lambda i \sigma \tau \alpha 2 \rangle} (R)$

Προβολή

παραδείγματα

Customer

ID	Name	Age	City
1928	Γιώργος	25	Ηράκλειο
2328	Μαρία	23	Χανιά
2391	Μηνάς	25	Ρέθυμνο

π_{Age} (Customer)

Age
25
23

$\pi_{\text{Name,Age}}$ (Customer)

Name	Age
Γιώργος	25
Μαρία	23
Μηνάς	25

Τελεστές Σχεσιακής Άλγεβρας - Επιλογή -

- Έστω μία σχέση R, με σχήμα Head(R) = {A₁, A₂, ... A_n}
- Η επιλογή σ c (R) (C: συνθήκη επιλογής)
 - Ορίζει μία νέα σχέση T με σχήμα Head(T) = {A1, A2, ... An} που περιέχει όσες πλειάδες ικανοποιούν τη συνθήκη C
 - Η συνθήκη C είναι της μορφής

```
    Ai θ Aj
    Ai θ σταθερά
    (Ai,j : γνωρίσματα σχέσης)
    (θ ∈ {<, >, <=, >= , =, ≠})
```

- Αν C, C' είναι συνθήκες ,τότε C ΛC', C VC', ¬ C είναι συνθήκη
- $\sigma_{C1} (\sigma_{C2} (\sigma_{C3} (R))) = \sigma_{C1 \wedge C2 \wedge C3} (R)$
- . Ιδιότητα
 - Αντιμεταθετική σ_{C1} (σ_{C2} (R)) = σ_{C2} (σ_{C1} (R))

Επιλογή παραδείγματα

Customer

	ID	Name	Age	City	
	1928	Γιώργος	25	Ηράκλειο	
	2328	Μαρία	23	Χανιά	
107	2391	Μηνάς	25	Ρέθυμνο	

$\sigma_{\text{ID}>2000}$ (Customer)

ID	Name	Age	City
2328	Μαρία	23	Χανιά
2391	Μηνάς	25	Ρέθυμνο

$\pi_{ID}(\sigma_{ID>2000}(Customer))$

ID		
2328		
2391		

Τελεστές Σχεσιακής Άλγεβρας - Φυσική Σύζευξη -

Έστω δύο συνθήκες R και S, με σχήμα

- **B**₁, **B**₂, ... **B**_k κοινά γνωρίσματα των **R** και **S**
- Η σύζευξη R ⋈ S
 - Ορίζει μία νέα σχέση Τ με σχήμα Head(T) = {A1, ... An, B1,... Bk, C1, ... Cm}
 - μ ία πλειάδα $t \in T$ αν και μόνον αν υπάρχουν πλειάδες $r \in R$, $s \in S$
 - t(Ai) = r(Ai) i = 1, ..., n
 - t(Bj) = r(Bj) = s(Bj) j = 1, ..., k
 - t(Cz) = s(Cz) z = 1, ..., m
- Αν δεν υπάρχουν κοινά γνωρίσματα ισοδυναμεί με R x S
- Αν οι σχέσεις ειναι συμβατές τότε ισοδυναμεί με R ∩ S

Σύζευξη

παράδειγμα 1

Order

cid	pid
01	p_02
01	p_03
02	p_02
01	p_05

Product

pid	Name	
p_01	Chocolate	
p_02	Refreshment	
p_03	Biscuits	

Order \bowtie **Product**

cid	pid	Name
01	p_02	Refreshment
01	p_03	Biscuits
02	p_02	Refreshment

Σύζευξη

παράδειγμα 2

Order Product

cid	pid	quantity	
01	p_01	5	$\bigg \longrightarrow$
01	p_03	10	7
02	p_02	8	
01	p_05	6	

	pid	quantity	Name
	p_01	30	Chocolate
7	p_02	8	Milk
7	p_03	10	Biscuits

Order \bowtie **Product**

cid	pid	Name	quantity
01	p_03	Biscuits	10
02	p_02	Milk	8

Σύζευξη

παράδειγμα2 (συνέχεια)

Order

cid	pid	quantity
01	p_01	5
01	p_03	10
02	p_02	8
01	p_05	6

	Produc	t	
	pid	quantity	Name
>	p_01	30	Chocolate
7	p_02	8	Milk
7	p_03	10	Biscuits

Order $\bowtie \pi_{cid, Name}$ (Product)

cid	pid	Name	quantity
01	p_01	Chocolate	5
01	p_03	Biscuits	10
02	p_02	Milk	8

Τελεστές Σχεσιακής Άλγεβρας - άλλα είδη σύζευξης -

- θ-σύζευξη R ⋈θ S (όπου θ η συνθήκη σύζευξης)
 - Ισοδυναμεί με σ θ (R x S)
 - Αν θ : R.B1 = S.B1 Λ ... Λ R.Bk = S.Bk τότε έχουμε φυσική σύζευξη
 - B1, B2, ... Bk κοινά γνωρίσματα στην R και S
- Εξωτερική σύζευξη R ⋈₀ S
 - Λειτουργεί όπως η φυσική σύζευξη, συνδυάζει και τα γνωρίσματα που δεν ταιριάζουν (και από τις δύο σχέσεις) εισάγωντας την τιμή null στα γνωρίσματα για τα οποία δεν ξέρουμε τιμή
- Αριστερή εξωτερική σύζευξη R ⋈ιο S
 - Όμοια με την εξωτερική σύζευξη, συνδυάζονται τα γνωρίσματα που δεν ταιριάζουν μόνο από την αριστερή σχέση R
- Δεξιά εξωτερική σύζευξη R ⋈ S
 - Όμοια με την εξωτερική σύζευξη, συνδυάζονται τα γνωρίσματα που δεν ταιριάζουν μόνο από την δεξιά σχέση \$

ϑ-σύζευξη

παράδειγμα

Order

cid	pid	qty
01	p_02	10
02	p_03	8

Product

pid	Name	quantity
p_01	Α	30
p_02	В	12

Order x **Product**

cid	O.pid	qty	P.pid	Name	quantity
01	p_02	10	p_01	Α	30
01	p_02	10	p_02	В	12
02	p_03	8	p_01	Α	30
02	p_03	8	p_02	В	12

π cid (σ qty < quantity ($O \times P$)) $\dot{\eta}$ π cid ($O \bowtie$ qty < quantity P)

cid
01
02

ϑ-σύζευξη

παράδειγμα (συνέχεια)

Order

cid	pid	qty
01	p_02	10
02	p_03	8

Product

pid	Name	quantity
p_01	А	30
p_02	В	12

$$\pi$$
 cid, Name (σ 0.pid = P.pid (σ 0)) η

Order x **Product**

cid	O.pid	qty	P.pid	Name	quantity
01	p_02	10	p_01	Α	30
01	p_02	10	p_02	В	12
02	p_03	8	p_01	Α	30
02	p_03	8	p_02	В	12

cid	Name
01	В

Εξωτερική σύζευξη

παράδειγμα

Order

cid	pid	qty
01	p_02	10
02	p_03	8

Product

pid	Name	quantity	
p_01	А	30	
p_02	В	12	

Order ⋈₀ **Product**

cid	pid	qty	Name	quantity
01	p_02	10	В	12
02	p_03	8	Null	Null
Null	p_01	Null	А	30

Αριστερή εξωτερική σύζευξη

παράδειγμα

Order

cid	pid	qty
01	p_02	10
02	p_03	8

Product

pid	Name	quantity
p_01	А	30
p_02	В	12

Order ⋈LO Product

cid	pid	qty	Name	quantity
01	p_02	10	В	12
02	p_03	8	Null	Null

Δεξιά εξωτερική σύζευξη

παράδειγμα

Order

cid	pid	qty
01	p_02	10
02	p_03	8

Product

pid	Name	quantity
p_01	А	30
p_02	В	12

Order ⋈RO **Product**

cid	pid	qty	Name	quantity
01	p_02	10	В	12
Null	p_01	Null	А	30

Άσκηση 1

• Θεωρείστε το ακόλουθο σχεσιακό σχήμα:

```
PRODUCT ( pid ,stock , supplier )
CLIENT ( cid ,name ,address ,city )
ORDER( orderno , date ,quantity, pid, cid )
```

Βρείτε τους αριθμούς των παραγγελιών για τα προϊόντα που παραγγέλνονται σε ποσότητα μικρότερη του 100 και από πελάτες που βρίσκονται στην Αθήνα

$$RESULT \leftarrow \pi_{orderno} \left(\left(\sigma_{quantity} <_{100}(ORDER) \right) \bowtie \left(\sigma_{city} = \text{``Athens''}(CLIENT) \right) \right)$$

$$\dot{\Pi}$$

$$RESULT \leftarrow \pi_{orderno} \left(\sigma_{quantity} <_{100 \land city} = \text{``Athens''}(ORDER \bowtie CLIENT) \right)$$

 Βρείτε τα ονόματα και τις διευθύνσεις των πελατών οι οποίοι δίνουν παραγγελία για προϊόντα για τα οποία δεν υπάρχει stock

$$\pi_{name,address}\left(CLIENT\bowtie\pi_{cid}\left(ORDER\bowtie\left(\pi_{pid}(\sigma_{stock=0}(PRODUCT))\right)\right)\right)$$

 Βρείτε τις πόλεις στις οποίες μένουν πελάτες οι οποίοι δεν δίνουν καμιά παραγγελία για προϊόντα που προμηθεύει ο "AB"

$$\pi_{city} \left(\textit{CLIENT} \bowtie \left(\pi_{cid}(\textit{CLIENT}) - \pi_{cid} \left(\textit{ORDER} \bowtie \left(\pi_{pid} \left(\sigma_{supplier = "AB"}(\textit{PRODUCT}) \right) \right) \right) \right) \right) \right)$$

 Βρείτε τα ζεύγη πελατών προμηθευτών τα οποία είναι τέτοια ώστε ο προμηθευτής να μην προμηθεύει κανένα προϊόν που παραγγέλνει ο πελάτης

```
RESULT \leftarrow \pi_{cid,supplier}(CLIENT \times PRODUCT)
- \pi_{cid,supplier}(PRODUCT \bowtie ORDER))
```

Άσκηση 2

• Θεωρείστε το ακόλουθο σχεσιακό σχήμα:

```
SHOP (id ,name ,address ,manager )

PRODUCT (pname ,company ,pcity )

SUPPLIER (sid ,sname ,scity )

BUYING (id ,sid ) (καταστήματα αγοράζουν από προμηθευτές)

SUPPLYING (sid ,pname ) (έμποροι προμηθεύουν προϊόντα)
```

 Βρείτε τα καταστήματα που αγοράζουν από τον προμηθευτή με όνομα Α

```
RESULT \leftarrow \pi_{id,name} \left( SHOP \bowtie \left( BUYING \bowtie \sigma_{sname="A"}(SUPPLIER) \right) \right)
```

Βρείτε τα καταστήματα τα οποία είτε έχουν manager τον 'Β' είτε αγοράζουν από προμηθευτές που έχουν αυτό το όνομα

$$\begin{split} \mathit{MANAGER_B} &\leftarrow \pi_{id} \left(\ \sigma_{manager = "B"}(\mathit{SHOP}) \right) \\ BUYING_B &\leftarrow \pi_{id} \big(\ \mathit{SHOP} \bowtie (\sigma_{sname = "B"}(\mathit{SUPPLIER}) \bowtie \mathit{BUYING}) \big) \\ \\ \mathit{RESULT} &\leftarrow \mathit{MANAGER_B} \cup \mathit{BUYING_B} \end{split}$$

ή αν θέλουμε *αποκλειστικά είτε το ένα είτε το άλλο* αλλά όχι και τα δύο:

 $RESULT \leftarrow (MANAGER_B \cup BUYING_B - MANAGER_B \cap BUYING_B)$

 Βρείτε τα καταστήματα τα οποία έχουν manager τονΒ και δεν αγοράζουν από κάποιο προμηθευτή με όνομα Γ

```
MANAGER\_B \leftarrow \sigma_{manager="B"}(SHOP)
BUYING\_\Gamma \leftarrow \pi_{id,name,address,manager}(SHOP)
\bowtie (\sigma_{sname="\Gamma''}(SUPPLIER) \bowtie BUYING))
RESULT \leftarrow MANAGER_B - BUYING\_\Gamma
```

Βρείτε τα ονόματα των εμπόρων και τα ονόματα των προϊόντων που προμηθεύουν και έχουν προέλευση το Ηράκλειο, είτε προμηθεύουν τέτοια προϊόντα είτε όχι

$$RESULT \leftarrow \pi_{sname,pname} \left(SUPPLIER \bowtie_{LO} \left(SUPPLYING \right. \right. \\ \bowtie \sigma_{pcity="H\rho\'{\alpha}\kappa\lambda\varepsilon\iotao"}(PRODUCT) \right) \right)$$

Άσκηση 3

• Θεωρείστε το ακόλουθο σχεσιακό σχήμα:

```
HOTEL (Name, City, Chain, Country, Class, MinRate, MaxRate)
TRAVELER (TID, Name, City)
BOOKING (BookingID, TID, HotelName, City, ArrDate, DepDate, Rate)
```

 Βρείτε όλες τις κρατήσεις που κάνουν ταξιδιώτες από το Ηράκλειο σε ξενοδοχεία της αλυσίδας "Holiday Inn"

$$\begin{split} & \leftarrow \pi_{\textit{BookingID}} \left(\pi_{\textit{Name,City}} \left(\sigma_{\textit{Chain} = "Holiday Inn"}(\textit{HOTEL}) \right) \bowtie_{\textit{Hotel,Name} = \textit{Booking,HotelName}} \; \textit{BOOKING} \\ & \bowtie \pi_{\textit{TID}} \left(\sigma_{\textit{City} = "H\rho \acute{\alpha} \kappa \lambda \varepsilon \iota o"}(\textit{TRAVELER}) \right) \right) \end{split}$$

 Βρείτε τα ονόματα των ταξιδιωτών που κλείνουν δωμάτια σε ξενοδοχεία με τη φθηνότερη διαθέσιμη τιμή

$$\leftarrow \pi_{Name} \left(TRAVELER \right.$$

$$\bowtie \pi_{TID} \left(\sigma_{Rate=MinRate} \left(HOTEL \bowtie_{Hotel.Name=Booking.HotelName} BOOKING \right) \right) \right)$$

$$\land Hotel.City=Booking.City$$

 Βρείτε τα ονόματα εκείνων των ταξιδιωτών που κλείνουν δωμάτια μόνο σε ξενοδοχεία του Καναδά

$$BOOKINGS_CANADA$$

$$\coloneqq \left(BOOKING\right)$$

$$\bowtie \left(\rho_{HotelName/Name}\left(\pi_{Name,City}\left(\sigma_{Country="Canada"}(HOTEL)\right)\right)\right)$$

$$RESULT \leftarrow \pi_{Name}\left(\left(\pi_{TID}(BOOKINGS_CANADA\right)\right)$$

$$-\pi_{TID}(BOOKING-BOOKINGS_CANADA)) \bowtie TRAVELER$$

• Βρείτε την πόλη με το ακριβότερο ξενοδοχείο

```
\begin{split} \textit{HOTEL2} &\coloneqq \textit{HOTEL} \\ \textit{RESULT} \\ &\leftarrow \pi_{\textit{HOTEL.City}} \left( \pi_{\textit{HOTEL.Name,HOTEL.City}}(\textit{HOTEL}) \\ &- \pi_{\textit{HOTEL.Name,HOTEL.City}}(\sigma_{\textit{HOTEL.MaxRate} < \textit{HOTEL2}}, \textit{MaxRate} (\textit{HOTEL} \times \textit{HOTEL2}) \right) \end{split}
```