МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Машинное обучение»

Тема: Ассоциативный анализ

Студентка гр. 8303	Самойлова А.С.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2021

Цель работы

Ознакомиться с методами ассоциативного анализа из библиотеки *MLxtend*.

Ход выполнения работы

Загрузка данных

- 1. Загрузить датасет: https://www.kaggle.com/irfanasrullah/groceries. Данные представлены в виде csv таблицы.
- 2. Создать Python скрипт. Загрузить данные в датафрейм.
- 3. Переформировать данные, удалив все NaN значения.
- 4. Получить список уникальных товаров
- 5. Вывод списка уникальных товаров, а также их количество Количество различных товаров — 169:

```
{'abrasive cleaner', 'soap', 'skin care', 'liver loaf', 'prosecco', 'cream', 'kitchen utensil', 'sugar', 'fruit/ve getable juice', 'packaged fruit/vegetables', 'zwieback', 'male cosmetics', 'flower (seeds)', 'canned vegetables', 'fish', 'ketchup', 'red/blush wine', 'chewing gum', 'decalcifier', 'cream cheese', 'organic products', 'honey', 's oftener', 'brown bread', 'liqueur', 'mayonnaise', 'long life bakery product', 'salty snack', 'pudding powder', 'ma rgarine', 'dessert', 'yogurt', 'herbs', 'curd cheese', 'turkey', 'detergent', 'hard cheese', 'other vegetables', 'brandy', 'ready soups', 'tropical fruit', 'organic sausage', 'baby food', 'baby cosmetics', 'berries', 'pastry', 'hamburger meat', 'pet care', 'salad dressing', 'cereals', 'rubbing alcohol', 'light bulbs', 'toilet cleaner', 'me at', 'misc. beverages', 'rolls/buns', 'mustard', 'pasta', 'bags', 'napkins', 'baking powder', 'syrup', 'dental car e', 'house keeping products', 'Instant food products', 'cooking chocolate', 'spread cheese', 'sauces', 'seas onal products', 'frozen meals', 'roll products', 'cling film/bags', 'chocolate', 'spread cheese', 'sauces', 'seas onal products', 'jam', 'waffles', 'sound storage medium', 'vinegar', 'chicken', 'candy', 'beef', 'whipped/sour cre am', 'onions', 'snack products', 'kitchen towels', 'condensed milk', 'pork', 'cake bar', 'curd', 'canned fruit', 'UHT-milk', 'nuts/prunes', 'tea', 'pickled vegetables', 'oil', 'specialty chocolate', 'potted plants', 'make up re mover', 'salt', 'rum', 'butter', 'candles', 'citrus fruit', 'cookware', 'root vegetables', 'flour', 'popcorn', 'fr ozen chicken', 'specialty fat', 'canned fish', 'domestic eggs', 'bottled water', 'dishes', 'frozen vegetables', 'pre servation products', 'finstant fooffee', 'flower soil/fertilizer', 'newspapers', 'swet spreads', 'ice cream', 'specialty vegetables', 'tidbits', 'ham', 'liquor', 'frozen potats', 'finshed products', 'frozen fish', 'beverages', 'cocoa drinks', 'canned beer', 'potato products', 'butter milk', 'soda', 'pip fruit', 'bottled beer', 'so
```

FPGrowth FPMax

- 1. Данные преобразованы с помощью TransactionEncoder.
- 2. Проведен ассоциативный анализ с использованием алгоритма FPGrowth:

	support	itemsets
0	0.082766	(citrus fruit)
1	0.058566	(margarine)
2	0.139502	(yogurt)
3	0.104931	(tropical fruit)
4	0.058058	(coffee)
58	0.033249	(whole milk, pastry)
59	0.047382	(other vegetables, root vegetables)
60	0.048907	(whole milk, root vegetables)
61	0.030605	(sausage, rolls/buns)
62	0.032232	(whole milk, whipped/sour cream)

63 rows × 2 columns

3. Анализ результатов, поиск минимальной и максимальной поддержки для наборов каждой длины:

Алгоритм находит все возможные наборы, которые удовлетворяют минимальной поддержке. Минимальная и максимальная поддержка для разных наборов:

	min	max
1	0.030402	0.255516
2	0.030097	0.074835

4. Проведен аналогичный анализ FPMax:

Результат работы алгоритма:

	support	itemsets
35	0.098526	(shopping bags)
31	0.080529	(bottled beer)
30	0.079817	(newspapers)
29	0.077682	(canned beer)
49	0.074835	(other vegetables, whole milk)
27	0.072293	(fruit/vegetable juice)
25	0.064870	(brown bread)
24	0.063447	(domestic eggs)
23	0.058973	(frankfurter)
22	0.058566	(margarine)
21	0.058058	(coffee)
20	0.057651	(pork)
48	0.056634	(whole milk, rolls/buns)
43	0.056024	(whole milk, yogurt)
19	0.055414	(butter)
18	0.053279	(curd)
17	0.052466	(beef)
16	0.052364	(napkins)
15	0.049619	(chocolate)
39	0.048907	(whole milk, root vegetables)
14	0.048094	(frozen vegetables)
38	0.047382	(other vegetables, root vegetables)
42	0.043416	(other vegetables, yogurt)
13	0.042908	(chicken)
47	0.042603	(other vegetables, rolls/buns)
37	0.042298	(tropical fruit, whole milk)
12	0.042095	(white bread)

46 0.040061 (sod	a, whole milk)
11 0.039654 (c	ream cheese)
10 0.038434	(waffles)
45 0.038332 (so	da, rolls/buns)
9 0.037824	(salty snack)
8 0.037417 (long life ba	akery product)
7 0.037112	(dessert)
36 0.035892 (other vegetables	, tropical fruit)
40 0.034367 (bottled water	er, whole milk)
41 0.034367 (yogu	urt, rolls/buns)
6 0.033859	(sugar)
5 0.033452	(UHT-milk)
33 0.033249 (whole	e milk, pastry)
3 0.033249	(berries)
4 0.033249 (han	nburger meat)
2 0.032944 (hy	giene articles)
44 0.032740 (other veg	etables, soda)
26 0.032232 (whole milk, whippe	d/sour cream)
1 0.031012	(onions)
34 0.030605 (sausa	ge, rolls/buns)
32 0.030503 (citrus fru	it, whole milk)
0 0.030402 (specia	alty chocolate)
28 0.030097 (pip fru	it, whole milk)

Минимальная и максимальная поддержка для разных наборов:

	min	max
1	0.030402	0.098526
2	0.030097	0.074835

FPMax работает иначе чем FPGrowth, наборы перебираются таким образом, что один набор не может быть частью другого.

5. Сравним результаты работы алгоритмов.

FPMax отбирает наборы максимальной длины, соответствующие указанному уровню поддержки, поднаборы найденных наборов не указываются. *FPGrowth* в свою очередь, перебирает все возможные наборы, которые удовлетворяют уровню указанной минимальной поддержки.

6. Построим гистограммы для каждого из алгоритмов

Гистограмма первых десяти наборов FPGrowth с лучшей поддержкой.

Гистограмма первых десяти наборов FPMax с лучшей поддержкой.

7. Преобразуем данные, чтоб они содержали ограниченный набор товаров.

8. Проведен анализ FPGrowth и FPMax для нового набора данных. Результат работы FPGrowth:

itemsets	support	
(whole milk)	0.182613	1
(rolls/buns)	0.149771	2
(other vegetables)	0.146721	4
(soda)	0.144484	7
(yogurt)	0.116624	0
(shopping bags)	0.093645	11
(bottled water)	0.093238	5
(root vegetables)	0.079715	9
(pastry)	0.075547	8
(whipped/sour cream)	0.063854	12
(bottled beer)	0.062430	3
(other vegetables, whole milk)	0.060702	18
(tropical fruit)	0.055923	6
(yogurt, whole milk)	0.047077	14
(canned beer)	0.046162	10
(rolls/buns, whole milk)	0.045755	16
(whole milk, root vegetables)	0.038129	22
(other vegetables, root vegetables)	0.037011	21
(citrus fruit)	0.036706	13
(other vegetables, yogurt)	0.036706	15
(other vegetables, rolls/buns)	0.035282	17
(rolls/buns, soda)	0.032537	19
(whole milk, soda)	0.030707	20

Результат FPMax:

itemsets	support	
(shopping bags)	0.093645	9
(bottled water)	0.093238	8
(pastry)	0.075547	5
(whipped/sour cream)	0.063854	4
(bottled beer)	0.062430	3
(other vegetables, whole milk)	0.060702	15
(tropical fruit)	0.055923	2
(yogurt, whole milk)	0.047077	11
(canned beer)	0.046162	1
(rolls/buns, whole milk)	0.045755	16
(whole milk, root vegetables)	0.038129	7
(other vegetables, root vegetables)	0.037011	6
(other vegetables, yogurt)	0.036706	10
(citrus fruit)	0.036706	0
(other vegetables, rolls/buns)	0.035282	14
(rolls/buns, soda)	0.032537	13
(whole milk, soda)	0.030707	12

Минимальная и максимальная поддержка для различных наборов . FPGrowth:

	min	max
1	0.036706	0.182613
2	0.030707	0.060702

FPMax:

	min	max
1	0.036706	0.093645
2	0.030707	0.060702

9. Построим график зависимости количества наборов от минимальной поддержки.

Зависимость количества наборов, от минимальной поддержки FPGrowth. Полные данные.

Зависимость количества наборов, от минимальной поддержки FPGrowth. Выборочные данные.

Зависимость количества наборов, от минимальной поддержки FPMax. Полные данные.

Зависимость количества наборов, от минимальной поддержки FPMax. Выборочные данные.

FPGrowth менее чувствителен к ограничению данных.

Ассоциативный анализ

- 1. Сформируем данные так, чтобы размер наборов не был меньше 2.
- 2. Проведем частотный анализ алгоритмом FPGrowth.
- 3. Проведем ассоциативный анализ используя association_rules:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(yogurt)	(whole milk)	0.241240	0.421869	0.110954	0.459933	1.090228	0.009183	1.070481
1	(yogurt)	(other vegetables)	0.241240	0.335079	0.085985	0.356427	1.063713	0.005150	1.033172
2	(tropical fruit)	(yogurt)	0.185864	0.241240	0.057994	0.312026	1.293423	0.013156	1.102890
3	(tropical fruit)	(other vegetables)	0.185864	0.335079	0.071083	0.382449	1.141370	0.008804	1.076706
4	(tropical fruit)	(whole milk)	0.185864	0.421869	0.083770	0.450704	1.068352	0.005359	1.052495
5	(other vegetables)	(whole milk)	0.335079	0.421869	0.148208	0.442308	1.048449	0.006849	1.036649
6	(whole milk)	(other vegetables)	0.421869	0.335079	0.148208	0.351313	1.048449	0.006849	1.025026
7	(rolls/buns)	(whole milk)	0.296214	0.421869	0.112163	0.378654	0.897564	-0.012801	0.930450
8	(bottled water)	(whole milk)	0.185461	0.421869	0.068063	0.366992	0.869921	-0.010177	0.913309
9	(bottled water)	(soda)	0.185461	0.267217	0.057390	0.309446	1.158033	0.007832	1.061153
10	(citrus fruit)	(whole milk)	0.146395	0.421869	0.060411	0.412655	0.978159	-0.001349	0.984313
11	(citrus fruit)	(other vegetables)	0.146395	0.335079	0.057189	0.390646	1.165836	0.008135	1.091192
12	(root vegetables)	(other vegetables)	0.196335	0.335079	0.093838	0.477949	1.426378	0.028050	1.273671
13	(root vegetables)	(whole milk)	0.196335	0.421869	0.096859	0.493333	1.169400	0.014031	1.141049
14	(sausage)	(rolls/buns)	0.167539	0.296214	0.060612	0.361779	1.221342	0.010985	1.102730
15	(sausage)	(whole milk)	0.167539	0.421869	0.059203	0.353365	0.837619	-0.011477	0.894062
16	(sausage)	(other vegetables)	0.167539	0.335079	0.053363	0.318510	0.950552	-0.002776	0.975687
17	(whipped/sour cream)	(whole milk)	0.124245	0.421869	0.063834	0.513776	1.217858	0.011419	1.189023
18	(whipped/sour cream)	(other vegetables)	0.124245	0.335079	0.057189	0.460292	1.373683	0.015557	1.232002
19	(pastry)	(whole milk)	0.150624	0.421869	0.065848	0.437166	1.036260	0.002304	1.027179

Рассмотрим столбцы полученного датафрейма:

- Antecedent товар-причина
- Consequent товар-следствие
- A support (antecedent support) вероятность появления товара antecedent в транзакции
- C support (consequent support) вероятность появления товара consequent в транзакции
- Support шанс появления обоих товаров antecedent и consequent в транзакции

- Conf (confidence) вероятность появления товара consequent в транзакциях, в которых есть antecedent.
- Lift показывает отношение совместной вероятности antecedent и consequent к ожидаемой совместной вероятности, если бы они были статистически независимы.
- Leverage показывает разницу между наблюдаемой вероятностью появления antecedent и consequent и ожидаемой независимой вероятностью.
- Conviction показывает ожидаемую ошибку. То есть как часто встречается antecedent там, где consequent отсутствует.
- 4. Определить на основе какой метрики ведется расчет.
 По умолчанию расчет проходит по метре confidence. То есть все наборы подбираются по уровню

- 5. Произведен расчет по каждой метрики так, чтоб выводилось не менее 10 правил.
- 6. Посчитаны математическое ожидание, медиана и СКО для каждой метрики:

	count	mean	std	median
support	52.0	0.074685	0.022549	0.066955
confidence	52.0	0.289579	0.103683	0.264439
lift	52.0	1.042997	0.183264	1.056081
leverage	12.0	0.015533	0.006063	0.013594
conviction	52.0	1.017200	0.083993	1.022851

7. Построим граф для анализа по метрике confidence с минимальным значением 0.4:

Первым выводом из графика можно сделать то, что товар «whole milk» является консеквентом для остальных товаров, чаще всего «whole milk» берется вместе с овощами. Также можно заметить, что «root vegetables» и «whipped/sour cream» берутся вместе с «other vegetables», из чего можно сделать вывод, что отделы с молочной продукцией и овощами стоит разместить рядом друг с другом.

Значение confidence для каждой пары примерно одинаково.

8. Так же подобные данные можно визуализировать с помощью окрашенных цветом матриц смежности или инцидентности.

Вывод

В ходе лабораторной работы были изучены алгоритм частотного анализа *FP-Growth* и *FPMax* из библиотеки *MLxtend*.

FPGrowth также как и Apriori позволяет выделить наиболее частые наборы в выборках данных. FPMax преследует несколько иную цель, задачей алгоритма является выделение наборов наибольшей длины, исключая при этом возможные подмножества.

Проведено исследование алгоритмов на тестовых данных. Для проведения частотного анализа данные были предварительно обработаны функцией *Transactio-nEncoer*.

С помощью функции association_rules был проведен ассоциативный анализ данных, выделены ассоциативные правила между различными товарами.

Построен граф, визуализирующий найденные ассоциативные правила.