

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «<u>ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»</u>
КАФЕДРА «<u>КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)»</u>
НАПРАВЛЕНИЕ ПОДГОТОВКИ «<u>09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ</u>»

Отчет

по лабораторной работе № 1

Название:	Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью			
Дисциплина:	Архитектура ЭВМ			
Студент	<u>ИУ7-45Б</u> (Группа)	(Подпись, дата)	M. A. Семенчук (И. О. Фамилия)	
Преподав		(116,411103, 41110)	<u>А. Ю. Попов</u>	
		(Подпись, дата)	(И. О. Фамилия)	

Оглавление

Цель работы	3
Исследование работы асинхронного RS-триггера с инверсными входами в статическом режиме	3
Задание	3
Схема	3
Таблица переходов	4
Исследование работы синхронного RS-триггера в статическом режиме	4
Задание	4
Схема	4
Таблица переходов	5
Исследование работы синхронного D-триггера в статическом режиме	5
Задание	5
Схема	5
Таблица переходов	6
Исследование схемы синхронного D-триггера с динамическим управлением записью в статическом режиме	
Задание	6
Схема	6
Таблица переходов	7
Исследование схемы синхронного DV-триггера с динамическим управлением записью в динамическом режиме	7
Задание	
Схема	7
Временная диаграмма	8
Объяснение работы	8
Исследование работы DV-триггера, включенного по схеме TV-триггера	8
Задание	8
Схема	
Временная диаграмма	9
Объяснение работы	9
Контрольные вопросы	10

Цель работы

Изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

Исследование работы асинхронного RS-триггера с инверсными входами в статическом режиме

Задание

- собрать схему RS-триггера на ЛЭ И-НЕ;
- к выходам Q и \overline{Q} триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах \overline{S} и \overline{R} триггера, составить таблицу переходов.

Cxema Q S NAND2 Q LR NAND2 LR NAND2

Файл: ASYNC-RS-NAND.ms14

Таблица переходов

S	R	Q_{t}	Q_{t+1}	$\overline{Q_{t+1}}$
0	0	0	X	X
0	0	1	X	X
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

Исследование работы синхронного RS-триггера в статическом режиме

Задание

- собрать схему RS-триггера на ЛЭ И-НЕ;
- к выходам Q и \overline{Q} триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах S, R и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору S, R и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени t_n), затем при C=1 (момент времени t_{n+1}) определяется Q_{n+1} и снова при C=0 переход в режим хранения.

Схема

Файл: SYNC-RS-NAND.ms14

Таблица переходов

S	R	Q_t	С	Q_{t+1}	$\overline{\mathbb{Q}_{t+1}}$
*	*	0	0	0	1
*	0	1	0	1	0
0	0	0	1	X	X
0	0	1	1	X	X
0	1	0	1	1	0
0	1	1	1	1	0
1	0	0	1	0	1
1	0	1	1	0	1
1	1	0	1	0	1
1	1	1	1	1	0

Исследование работы синхронного D-триггера в статическом режиме

Задание

- собрать схему D-триггера на ЛЭ И-НЕ; в приложении «Multisim» можно использовать микросхему D-триггера;
- к выходам Q и \overline{Q} триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору D и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени t_n), затем при C=1 (момент времени t_{n+1}) определяется Q_{n+1} и снова при C=0 происходит переход в режим хранения.

Схема

Файл: STATIC-DV.ms14

Таблица переходов

С	D	Q _t	Q_{t+1}	$\overline{\mathbb{Q}_{t+1}}$
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

Исследование схемы синхронного D-триггера с динамическим управлением записью в статическом режиме

Задание

- к выходам Q и \overline{Q} триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста следует отметить реакцию триггера на изменения сигнала D при C=0 и при C=1, а также способность триггера принимать сигнал D только по перепаду 0/1 сигнала C.

Файл: DYNAMIC-D.ms14

Таблица переходов

C_t	C_{t+1}	D	Q_t	$\overline{Q_{t+1}}$
0	0	*	0	0
0	0	*	1	1
0	1	0	*	0
0	1	1	*	1
1	0	*	0	0
1	0	*	1	1
1	1	*	0	0
1	1	*	1	1

Исследование схемы синхронного DV-триггера с динамическим управлением записью в динамическом режиме

Задание

- построить схему синхронного DV-триггера на основе синхронного D-триггера и мультиплексора MS 2-1 (выход MS 2-1 соединить с D-входом триггера, вход 0 MS 2-1 соединить с выходом Q триггера. Тогда вход 1 MS 2-1 будет D-входом, адресный вход A MS 2-1 входом V синхронного DV-триггера), вход С D-триггера входом С DV триггера;
- подать сигнал генератора на вход счетчика и на С-вход DV-триггера;
- подать на входы D и V триггера сигналы с выходов 2-го и 3-го разрядов счетчика;
- снять временные диаграммы синхронного DV-триггера;
- объяснить работу синхронного DV-триггера по временным диаграммам.

Схема

Файл: SYNC-DV.ms14

Временная диаграмма

Объяснение работы

Триггер переходит в новое состояние, переданное на вход D, только при V=1 и изменения сигнала на входе C синхронизации c 0 на 1 (по прямому фронту), в остальных случаях DV-триггер находится в состоянии хранения.

Исследование работы DV-триггера, включенного по схеме TV-триггера

Задание

- на вход D подать сигнал \overline{Q} , на вход C подать сигналы генератора, а на вход V с выхода 3-го разряда счетчика;
- снять временные диаграммы Т-триггера;
- объяснить работу синхронного Т-триггера по временным диаграммам.

Схема

Файл: STATIC-TV.ms14

Временная диаграмма

Объяснение работы

Синхронный Т-триггер изменяет свое состояние на противоположное сигналом С при подаче на вход Т единичного сигнала.

Контрольные вопросы

- 1. **Триггер** запоминающий элемент с двумя устойчивыми состояниями, которые кодируются цифрами 0 и 1.
- 2. Структурная схема триггера состоит из схемы управления (СУ) и запоминающей ячейки (ЗЯ).
- 3. Триггеры классифицируют по следующим основным признакам:
 - по способу организации логических связей (RS, D, T, JK, DV, и т.д.)
 - по способу записи (асинхронные, синхронные)
 - управление записью (статическое, динамическое)
 - по способу передачи информации со входов на выход (одноступенчатые, двухступенчатые)
- 4. Функциональное назначение входов триггера следующее:
 - S (set) установка
 - R (reset) сброс, очистка
 - С (clock) синхронизация
 - D (data/delay) данные
 - V (valve) разрешение
 - T (toggle) переключатель
 - J (jerk) внезапное включение
 - K (kill) внезапное отключение
- 5. **Асинхронный триггер** это триггер, у которого переход из одного состояния в другое происходит при изменении информационных сигналов и не связан с тактовыми сигналами.

Синхронный триггер реагирует на информационные сигналы только при наличие разрешающего сигнала на специальном управляющем входе C, называемом входом синхронизации.

- 6. **Таблица переходов** отображает зависимость выходных сигналов триггера в следующий момент времени от входных сигналов и состояния триггера в предыдущий момент времени.
- 7. Асинхронный RS-триггер:
 - устанавливается в состояние 1 при поступлении сигнала на вход S

- устанавливается в состояние 0 при поступлении сигнала на вход R
- сохраняет предыдущее состояния при отсутствии сигналов на своих входах
- одновременная подача сигналов на оба входа R и S является запрещенной комбинацией

8. Синхронный RS-триггер:

- сохраняет предыдущее состояние при отсутствии сигнала на тактовом входе С
- работает как асинхронный RS-триггер при поступлении сигнала на тактовый вход С