Light Transport Techniques for Tensor Field Visualization Master's Thesis Presentation

Sebastian Bek

Heidelberg University Visual Computing Group (VCG) Supervisors: Prof. Filip Sadlo, Dr. Susanne Krömker

July 24th 2019

Evaluation - Light Transport Gradient - Gyre Field

Gyre test field

b) LTG(0°)

- LTG is detecting ridges for diverging light distributions
- decreased response in gyre centers for circular overlap in difference image

Related Work - Asymmetric Tensor Field Visualization

- dual eigenvectors¹: use complex conjugate eigenvectors as co-visualization for the complex domain along with ordinary eigenvectors to represent the real domain
- pseudo eigenvectors²: extension for dual eigenvectors to a full set or graph
- scalar measures: tensor magnitude³, tensor mode⁴, isotropy index⁵

¹Zheng and Pang "2d asymmetric tensor analysis", 2005

²Laramee et al. "2d asymmetric tensor field topology", 2012

³Lin et al. "Asymmetric tensor field visualization for surfaces". 2011

⁴Palacios et al. "Feature surfaces in symmetric tensor fields based on eigenvalue manifold", 2015

⁵see footnote 12