## 9 Théorème de Steinhauß

Leçons 207, 241(, 230, 262)

Ref: [Zuily-Queffélec] Chap XIII Th III.1

On sait qu'une série entière admet au moins un point singulier sur le bord de son disque de convergence. Sinon, tous les points seraient réguliers, et on pourrait alors, par compacité du cercle unité (on se ramène au cas d'une série dont le rayon de convergence est 1), prolonger la fonction en une fonction holomorphe sur le disque ouvert de rayon  $1 + \varepsilon$ . Mais alors, la nouvelle fonction est analytique, et donc holomorphe sur le grand disque, et les deux développements en série entière coïncident, donc les deux séries sont les mêmes (principe des zéros isolés). Donc le rayon de la série entière est d'au moins  $1+\varepsilon$ , ce qui est absurde.

On voudrait maintenant savoir s'il est possible d'avoir "beaucoup" de points singuliers. On dit que le cercle  $\mathbb{S}^1$  est une *coupure* pour la série entière si tous ses points sont singuliers. La série  $\sum_{n>0} z^{2^n}$  par

exemple admet toutes les racines  $2^k$ -ièmes de l'unité comme points singuliers, et donc par densité, le cercle en est une coupure. Le théorème suivant montre que ce cas est tout sauf un cas isolé.

**Théorème 1 (Steinhauß)** Soit  $\sum_{n\geq 0} a_n z^n$  une série entière de rayon de convergence 1, et  $W=(W_n)_{n\geq 0}$ 

une suite de variables aléatoires complexes indépendantes indentiquement réparties selon la loi uniforme sur le cercle  $\mathbb{S}^1$ . Alors, presque sûrement, le cercle est une coupure pour la série  $\sum_{n\geq 0} a_n W_n z^n$ .

 $D\'{e}monstration$ . On note  $A = \left\{ \mathbb{S}^1 \text{ est une coupure pour } \sum_{n \geq 0} a_n W_n z^n \right\}$ . Le but est de montrer que A est un événement de probabilité 1. On note  $\mathbb{D}$  le disque unité ouvert, et

$$\mathbb{S}^1_{\mathbb{Q}} := \left\{ e^{2i\pi\theta}, \ \theta \in \mathbb{Q} \right\},\,$$

qui est dénombrable et dense dans  $\mathbb{S}^1$ .

Étape 1. Exhibition d'un recouvrement dénombrable de  $\overline{A}$ .

On se donne une réalisation  $w=(w_n)_{n\geq 0}$  de la suite W. On suppose que  $z_0\in \mathbb{S}^1$  est un point régulier de la série  $f_w:=\sum_{n\geq 0}a_nw_nz^n$ . Il existe donc un voisinage ouvert de  $z_0$  dans  $\mathbb{C}$  qui ne contient que des

points réguliers pour  $f_w$ ; quitte à le réduire on peut supposer que son intersection avec  $\mathbb{S}^1$  est de la forme

$$I := \left\{ e^{2i\pi\theta}, \ \theta \in (a, b) \right\},\,$$

avec a < b rationnels. On note  $\mathcal{C}$  l'ensemble des arcs de cercles ouverts de  $\mathbb{S}^1$  à extrémités dans  $\mathbb{S}^1_{\mathbb{Q}}$ , et on définit

$$A_I := \{ \text{Tous les points de } I \text{ sont réguliers pour } f_w \}.$$

Alors, d'après ce qui précède,  $\overline{A}$  est l'ensemble des réalisations w de W telles qu'il existe un arc  $I \in \mathcal{C}$ , tel que  $A_I$  est vrai. Ainsi, on doit montrer que  $\bigcup_{I \in \mathcal{C}} A_I$  est un événement de probabilité nulle, et donc, comme  $\mathcal{C}$  est dénombrable, il suffit de montrer que les  $A_I$  sont des événements de probabilité nulle.

Étape 2. Les A<sub>I</sub> sont des événements.

On se donne  $I \in \mathcal{C}$ ,  $z_0 \in I$ , et une réalisation w de W qui est dans  $A_I$ . Par définition de I,  $z_0$  est régulier pour  $f_w$  et il existe donc  $\varepsilon > 0$  tel que  $f_w$  se prolonge de manière holomorphe à  $\mathbb{D} \cup B(z_0, \varepsilon)$ . Ainsi, il existe un réel  $\eta > \frac{1}{2}$  tel que  $f_w$  se prolonge de manière holomorphe à  $B\left(\frac{z_0}{2}, \eta\right)$  (voir figure 9.1), et réciproquement. Ainsi, on a pour tout  $z \in B\left(\frac{z_0}{2}, \eta\right)$ 

$$f_w(z) = \sum_{n>0} \frac{f_w^{(n)}(\frac{z_0}{2})}{n!} (z - \frac{z_0}{2})^n.$$

Donc  $z_0$  est régulier si et seulement si le rayon de convergence de cette série est strictement supérieur à  $\frac{1}{2}$ , c'est-à-dire, d'après le théorème de Cauchy-Hadamard, si et seulement si

$$\overline{\lim_{n \to +\infty}} \left| \frac{f_w^{(n)} \left(\frac{z_0}{2}\right)}{n!} \right|^{\frac{1}{n}} < 2.$$



FIGURE 9.1 – Prolongement de  $f_w$  à un disque sortant de  $\mathbb{D}$ .

On a donc

$$A_{I} = \left\{ w \in (\mathbb{S}^{1})^{\mathbb{N}}, \ \forall z_{0} \in I \ \overline{\lim_{n \to +\infty}} \left| \frac{f_{w}^{(n)} \left(\frac{z_{0}}{2}\right)}{n!} \right|^{\frac{1}{n}} < 2 \right\}$$

$$= \left\{ w \in (\mathbb{S}^{1})^{\mathbb{N}}, \ \forall z_{0} \in I \cap \mathbb{S}_{\mathbb{Q}}^{1} \ \overline{\lim_{n \to +\infty}} \left| \frac{f_{w}^{(n)} \left(\frac{z_{0}}{2}\right)}{n!} \right|^{\frac{1}{n}} < 2 \right\} \quad \text{par densit\'e de } \mathbb{S}_{\mathbb{Q}}^{1}$$

$$A_{I} = \bigcap_{z_{0} \in I \cap \mathbb{S}_{\mathbb{Q}}^{1}} \left\{ w \in (\mathbb{S}^{1})^{\mathbb{N}}, \ \overline{\lim_{n \to +\infty}} \left| \frac{f_{w}^{(n)} \left(\frac{z_{0}}{2}\right)}{n!} \right|^{\frac{1}{n}} < 2 \right\}$$
événement comme image réciproque

événement comme image réciproque d'une limite supérieure de v.a.

Donc  $A_I$  est un événement comme intersection dénombrable d'événements.

Étape 3. Application de la loi de Kolmogorov.

Puisque l'expression  $f_W^{(n)}\left(\frac{z_0}{2}\right)$  ne dépend pas des variables  $W_0,...,W_{n-1}$ , l'événement  $A_I$ , tel qu'il est décomposé à l'étape précédente, appartient à la tribu asymptotique associée aux  $(W_n)_{n\in\mathbb{N}}$ . Or ces variables aléatoires sont indépendantes, donc d'après la loi du 0-1 de Kolmogorov,  $A_I$  est de probabilité 0 ou 1. Il suffit donc d'exclure le cas  $\mathbb{P}(A_I) = 1$ .

On se donne J un second arc de même longueur que I : il existe alors un réel  $\theta$  tel que

$$J = e^{i\theta} I$$
.

On pose alors pour  $n \in \mathbb{N}$ 

$$W_n^{\theta} := W_n e^{-i\theta}$$
.

Puisque le cercle est invariant par rotation et que les  $W_n$  suivent une loi uniforme,  $W_n$  et  $W_n^{\theta}$  sont de même loi. De plus, par construction, I est régulier pour  $f_w$  si et seulement si J l'est pour  $f_{w^{\theta}}$ . On en déduit que  $\mathbb{P}(A_J) = \mathbb{P}(A_I)$ . Supposons par l'absurde qu'un intervalle I soit tel que  $A_I$  est de probabilité

1. Alors il existe un recouvrement de  $\mathbb{S}^1$  par des intervalles  $I_1,..,I_N$  de même longueur que I. Mais alors

$$\mathbb{P}\left(\bigcap_{j=1}^{N} A_{I_j}\right) = 1,$$

et cette intersection est en fait l'événement {Tous les points du cercle sont réguliers}. C'est absurde, puisque l'on sait que cet événement est vide d'après la remarque préliminaire. Donc  $\mathbb{P}(A_I) = 0$ .