FOUNDATIONS OF HIGHER MATHEMATICS HOMEWORK 3

Chapter 1

Problem 63

Let A be an even integer and B be an odd integer. Prove that A + B is odd and AB is even.

Proof. If A is even and B is odd, then there exists integers k, n, such that A = 2q and B = 2k + 1. It follows that,

$$A + B = 2q + (2k + 1)$$
$$= (2q + 2k) + 1$$

Thus, since $2q + 2k \in \mathbb{Z}$, A + B is odd. Similarly for AB,

$$AB = 2q(2k+1)$$
$$= 4qk + 2q$$
$$= 2(2qk + q)$$

it follows that since 2qk + q is an integer, AB is even.

Problem 66

Let x be a real number. Prove x = -1 if and only if $x^3 + x^2 + x + 1 = 0$

Proof. (\rightarrow) Assume x = -1. Then

$$x^{3} + x^{2} + x + 1 = 0$$
$$(-1)^{3} + (-1)^{2} + (-1) + 1 = 0$$
$$-1 + 1 - 1 + 1 = 0$$
$$0 = 0$$

Thus, x = -1 implies $x^3 + x^2 + x + 1 = 0$.

Proof. (\leftarrow) Assume $x^3 + x^2 + x + 1 = 0$. Then

$$x^{3} + x^{2} + x + 1 = 0$$
$$(x^{3} + x^{2}) + (x + 1) = 0$$
$$x^{2}(x + 1) + (x + 1) = 0$$
$$(x + 1)(x^{2} + 1) = 0$$

Since $x \in \mathbb{R}$ the only solution is x = -1. Therefore, $x^3 + x^2 + x + 1 = 0$ implies x = -1.

Proving both directions, we can conclude that x = -1 if and only if $x^3 + x^2 + x + 1 = 0$

Problem 70

Let n be an integer such that n^2 is even. Prove that n^2 is divisible by 4.

Proof. Assume n^2 is even. Then by theorem 1.12 in the book, n is even. Since n is even, there exists a k such that, n = 2k. It follows that,

$$n^{2} = 2k \times 2k$$
$$= 4k^{2}$$
$$= 4(k^{2})$$

Since k^2 is an integer, 4 divides n^2 .

Problem 72

The student was

Problem 75

Prove, by contradiction, that the sum of two even integers is even.

Proof. (Contradiction): Assume the sum of two even integers is odd. Then there exist integers k, q such that, 2k + 2q = 2(k + q). This is a contradiction, since we said the sum was odd, so therefore the sum of two even integers is even.

Chapter 2

Problem 24

Prove that $A \cap B = A$ if and only if $A \subseteq B$.

Proof. (\rightarrow) Assume $A \cap B = A$. Then $A \subseteq A \cap B$. If we take an arbitrary element x of A, then x is in A and B. It follows that every element in A is also in B. Thus, $A \subseteq B$. Therefore, $A \cap B = A$ implies $A \subseteq B$.

Proof. (\leftarrow) Assume $A \subseteq B$. Suppose x is an arbitrary element of A. Then x is in B. So if x is in A and x is in B, then for all x that are in A and B, x is in A. Thus, $A \cap B \subseteq A$. Similarly, $A \subseteq A \cap B$ which implies that $A \cap B = A$. Therefore, $A \subseteq B$ implies $A \cap B = A$.

Therefore, $A \cap B = A$ if and only if $A \subseteq B$

Problem 29a

 $\varnothing \cap A = \varnothing$ and $\varnothing \cup A = A$

Proof. $(\varnothing \cap A = \varnothing)$ Assume an arbitrary x in \varnothing and A. There are no elements that are in \varnothing and A so it is (vacuously) true that $x \in \varnothing$. The statement $\varnothing \subseteq \varnothing \cap A$ follows directly from the fact the empty set is a subset of every set. Therefore $\varnothing \cap A = \varnothing$.

Proof. $(\varnothing \cup A = A)$ Assume x is in \varnothing or A. If x in A, $A \subseteq A$ from proposition 2.2 in the book. If x in A, $\varnothing \subseteq A$ since \varnothing is a subset of every set. Also, if x in A, then x in A or \varnothing . Thus, $\varnothing \cup A \subseteq A$ and $A \subseteq \varnothing \cup A$.

Problem 29c

 $A \subseteq A \cup B$

Proof. Assume x is an element of A. Then x is in A or x is in B. Therefore, $A \subseteq A \cup B$.

Problem 29d

 $A \cup B = B \cup A$ and $A \cap B = B \cap A$

Proof.
$$(A \cup B = B \cup A)$$

Suppose x is and element of $A \cup B$. Then x is in A or x is in B. Thus x is in B or x is in A. Hence, $A \cup B \subseteq B \cup A$ and similarly $B \cup A \subseteq A \cup B$. Therefore, $A \cup B = B \cup A$.

Proof.
$$(A \cap B = B \cap A)$$

The proof is the same as above, replacing the words or for and.

Problem 30

Counterexample: $P = \emptyset, Q = \emptyset, R = \{1\}$

$$\begin{split} (P \cap Q) \cup R &= P \cap (Q \cup R) \\ (\varnothing \cap \varnothing) \cup \{1\} &= \varnothing \cap (\varnothing \cup \{1\}) \\ \varnothing \cup \{1\} &= \varnothing \cap \{1\} \\ \{1\} \neq \varnothing \end{split}$$

Problem 31

The student's proof was **wrong.** The mistake he or she made was in the step, $x \in A$ and $x \notin B$ or $x \notin C$. The statement should look like, $x \in A$ and $x \notin B$ and $x \notin C$.