Fisika UMPTN Tahun 2000

UMPTN-00-01

Balok yang beratnya W ditarik sepanjang permukaan mendatar dengan kelajuan konstan v oleh gaya F yang bekerja pada sudut θ terhadap horizontal. Besarnya gaya normal yang bekerja pada balok oleh permukaan adalah

..

A.
$$W + F \cos \theta$$

B.
$$W + F \sin \theta$$

C.
$$W - F \sin \theta$$

D.
$$W - F \cos \theta$$

UMPTN-00-02

Sebuah jembatan melengkung dengan jari-jari kelengkungan R. Titik pusat kelengkungannya ada di bawah jembatan itu. Gaya yang diakibatkan pada jembatan itu oleh sebuah mobil yang bergerak dengan kecepatan v sewaktu berada di puncak jembatan itu, jika g adalah percepatan gravitasi, adalah sebesar ...

A.
$$\frac{W\left(1+\frac{v^2}{R}\right)}{g}$$

B.
$$R\left(1+\frac{v^2}{gR}\right)$$

$$C. \quad \frac{Wv^2}{W + gR}$$

D.
$$\frac{W\left(1-\frac{v^2}{R}\right)}{\sigma}$$

E.
$$R\left(1-\frac{v^2}{gR}\right)$$

UMPTN-00-03

Kedua sumber bunyi pada gambar berikut bergetar secara koheren. Kenyaringan didengar di P bila $r_1 = r_2$. Dengan menaikkan secara perlahan-lahan r_1 , bunyi terlemah ketika $r_1 - r_2$ adalah 20 cm, 60 cm. 100 cm. Jika laju rambat bunyi 340 m s⁻¹, maka besar frekuensi sumber bunyi adalah ... P

A. 136 Hz

B. 425 Hz

C. 680 Hz

D. 850 Hz

E. 1700 Hz

UMPTN-00-04

Mesin Carnot dioperasikan antara 2 reservoir kalor masingmasing suhunya T_1 dan T_2 dengan $T_1 > T_2$. Efisiensi mesin tersebut 40 % dan besarnya $T_2 = 27^{\circ}$ C. Supaya efisien sinya naik 60 %, maka besarnya perubahan T_2 adalah ...

A. 350 K

B. 300 K

C. 350 K

D. 400 K

E. 500 K

UMPTN-00-05

Dua buah sermin datar X dan Y saling berhadapan dan membentuk sudut 60°. Seberkas sinar menuju X dengan sudut datang 60° hingga dipantulkan ke Y. Sinar tersebut meninggalkan Y dengan sudut pantul sebesar ...

A. 0°

B. 30°

C. 45°

D. 60°

E. 90°

UMPTN-00-06

Sebuah partikel yang mempunyai massa 200 miligram dan membawa muatan 2×10^{-8} coulomb ditembakkan tegak lurus dan horizontal pada medan magnet serba sama yang horizontal dengan kecepatan 5×10^4 m s⁻¹. Jika partikel itu tidak berubah arah, maka kerapatan fluks magnetiknya adalah ...

A. 0.2 Wb m^{-2}

B. 0.5 Wb m^{-2}

C. 2 Wb m^{-2}

 $D. \quad 5 \ Wb \ m^{-2}$

E. 10 Wb m^{-2}

UMPTN-00-07

Tongkat konduktor yang panjangnya 1 m berputar dengan kecepatan sudut tetap sebesar 10 rad s $^{-1}$ di dalam daerah bermedan magnet seragam $B=0,1\ T.$ Sumbu putaran tersebut melalui salah satu ujung tongkat dan sejajar arahnya dengan arah garis-garis medan magnet di atas. GGL yang terinduksi antara kedua ujung tongkat dalam V besarnya ...

A. 0,5

B. 1,0

C. 1,6

D. 3,1

E. 6,0

UMPTN-00-08

Gambar di samping menunjukkan diagram fasor suatu rangkaian arus bolak-balik. Jika frekuensi arus bolakbalik tersebut 50 Hz, maka ...

A. hambatannya
$$\frac{120}{\pi}$$
 m Ω

B. induktansinya
$$\frac{240}{\pi}$$
 mH
C. kapasitansinya $\frac{120}{\pi}$ mF

12 N

C. kapasitansinya
$$\frac{120}{\pi}$$
 mF

waktu dari A ke B (
$$\Delta t_{A-B}$$
) = 1,0 s, perbedaan waktu dari A ke D (Δt_{A-D}) = 3,0 s. Maka ...

D

Е

(1)
$$\Delta t_{A-C}$$
 = 2 s

(2)
$$E_{kB} = 200 \text{ J}$$

(3)
$$E_{kD} + E_{pD} = 600 \text{ J}$$

(4) $\Delta t_{C-D} = 1 \text{ s}$

UMPTN-00-09

Sebuah pemanas listrik yang hambatannya 5 Ω menggunakan sumber tegangan 50 V. Pemanas digunakan untuk memanaskan 1 liter air dari 0°C hingga 50°C. Jika 70 % kalor yang dihasilkan pemanas diambil air, maka waktu yang diperlukan adalah ...

UMPTN-00-13

UMPTN-00-12

Dalam proses peluruhan radioaktif berantai sebagai

Sebuah benda dilemparkan

dari permukaan tanah, dan

lintasannya berbentuk para-

bola seperti yang diperlihat

kan di samping dengan data

energi kinetik di A (E_{kA}) =

600 J, energi potensial di B

 $(E_{pB}) = 400 \text{ J}, \text{ perbedaan}$

$$_{b}^{a}A\xrightarrow{peluruhan} \alpha _{d}^{b}B\xrightarrow{peluruhan} \beta _{f}^{e}C$$

(1)
$$e = c + 1$$

(2)
$$d = b - 2$$

(3)
$$a = c - 4$$

(4)
$$f = d + 1$$

UMPTN-00-10

Jari-jari lintasan gerak proton di dalam sebuah sinkrotron proton adalah 120 m. Jika energi proton sebesar 1.6×10^{-9} J, maka induksi medan magnet yang diperlukan besarnya (dalam T) ...

0.28 B.

C. 1,20

D. 1.60

E. 2,50

UMPTN-00-14

Suatu gelombang dinyatakan dengan persamaan:

$$Y = 0.20 \sin 0.40\pi (x - 60t)$$

Bila semua jarak diukur dalam cm dan waktu dalam sekon, maka pernyataan berikut ini yang benar adalah ...

- (1) panjang gelombangnya bernilai 5 cm
- (2) frekuensinya bernilai 12 Hz
- (3) gelombang berjalan dengan kecepatan $60~{\rm cm~s}^{-1}$
- (4) simpangan gelombang o,1 cm pada posisi $x = \frac{35}{12}$ cm

dan saat
$$t = \frac{1}{24}$$
 sekon

UMPTN-00-11

Bagi setiap orang di manapun ia berada di muka bumiini, lintasan semu matahari pada bola langit selalu terletak pada bidang yang tegak lurus bidang horizontal.

SEBAB

Lintasan semu matahari pada bola langit hampir sejajar dengan bidang ekuator.

UMPTN-00-15

Grafik di bawah merupakan data efek foto listrik. Maka:

- (1) energi foto elektron yang terpancar besarnya antara 0
- (2) energi minimel untuk melepaskan elektron 1,6 eV
- (3) panjang gelombang cahaya maksimum yang digunakan sekitar 8×10^{-7} m
- (4) jika intensitas cahaya diperbesar, bentuk grafik tidak berubah