1. In Depth Exploration

Q1. Data type of all columns in the "customers" table.

select

```
column_name, data_type
from `Target`.INFORMATION_SCHEMA.COLUMNS
where table_name = 'customers';
```

Row	column_name ▼	data_type ▼
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

$\ensuremath{\mathsf{Q2}}.$ Get the time range between which the orders were placed.

select

```
min(order_purchase_timestamp) as First_order,
  max(order_purchase_timestamp) as Last_order
from `Target.orders`;
```

Row	First_order ▼	//	Last_order ▼	//
1	2016-09-04 21:15:19 UTC		2018-10-17 17:30:18 UTC	

${\bf Q3.}$ Count the Cities & States of customers who ordered during the given period. ${\bf select}$

```
count(distinct c.customer_city) as City_Count,
  count(distinct c.customer_state) as State_Count
from `Target.customers` c
join `Target.orders` o
on c.customer_id = o.customer_id;
```

Row	City_Count	· /	State_Count	· /
1		4119		27

2. In-depth Exploration

```
Q1. Is there a growing trend in the no. of orders placed over the past years?
with cte1 as
(select
  distinct (year_month),
  count(order_id) as order_count
from (
  select
   *,
    format_date('%Y-%m',order_purchase_timestamp) as year_month
  from `Target.orders`
)
group by 1
order by 1)
select
 year_month,
  order_count,
  lag(order_count) over(order by year_month) as previous_month,
  concat(round(((order_count - lag(order_count) over(order by year_month)) / lag(order_count)
over(order by year_month))*100,2)," ","%") as pct_change
from cte1
order by 1;
```

Row	year_month ▼	order_count ▼	previous_month 🔻	pct_change ▼
1	2016-09	4	null	null
2	2016-10	324	4	8000 %
3	2016-12	1	324	-99.69 %
4	2017-01	800	1	79900 %
5	2017-02	1780	800	122.5 %
6	2017-03	2682	1780	50.67 %
7	2017-04	2404	2682	-10.37 %
8	2017-05	3700	2404	53.91 %

```
Q2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?
select
    distinct (year_month),
    count(order_id) as order_count
from (
    select
    *,
        format_date('%Y-%m',order_purchase_timestamp) as year_month
    from `Target.orders`
)
group by 1
order by 1;
```

Row	/	year_month ▼	order_count ▼
	1	2016-09	4
	2	2016-10	324
	3	2016-12	1
	4	2017-01	800
	5	2017-02	1780
	6	2017-03	2682
	7	2017-04	2404
	8	2017-05	3700

```
Q3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)
-- 0-6 hrs : Dawn
```

```
-- 7-12 hrs: Mornings
-- 13-18 hrs: Afternoon
-- 19-23 hrs: Night
select
case when extract(hour from order_purchase_timestamp) between 0 and 6 then 'Dawn'
when extract(hour from order_purchase_timestamp) between 7 and 12 then 'Mornings'
when extract(hour from order_purchase_timestamp) between 13 and 18 then 'Afternoon'
else 'Night'
end as time_of_day,
count(order_id) as order_count
from `Target.orders`
group by 1
order by 2 desc;
```

Row	time_of_day ▼	order_count ▼
1	Afternoon	38135
2	Night	28331
3	Mornings	27733
4	Dawn	5242

3. Evolution of E-commerce orders in the Brazil region:

Q1. Get the month on month no. of orders placed in each state. select c.customer_state, format_date('%Y-%m',o.order_purchase_timestamp) as year_month, format_date('%B', o.order_purchase_timestamp) AS month_name, count(o.order_id) as order_count from `Target.customers` c inner join `Target.orders` o on c.customer_id = o.customer_id group by 1,2,3

Row	customer_state ▼	year_month ▼	month_name ▼	order_count ▼
1	AC	2017-01	January	2
2	AC	2017-02	February	3
3	AC	2017-03	March	2
4	AC	2017-04	April	5
5	AC	2017-05	May	8
6	AC	2017-06	June	4
7	AC	2017-07	July	5
8	AC	2017-08	August	4

$\ensuremath{\mathsf{Q2}}.$ How are the customers distributed across all the states?

select

order by 1,2

```
c.customer_state as State_Name,
    count(distinct o.order_id) as order_count
from `Target.customers` c
inner join `Target.orders` o
on c.customer_id = o.customer_id
group by 1
order by 2 desc;
```

Row	State_Name ▼	order_count ▼
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140

4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

```
Q1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan
with cte1 as (
 select
    format_date('%Y',o.order_purchase_timestamp) as year,
    format_date('%m',o.order_purchase_timestamp) as month,
    round(sum(p.payment_value),2) as Total_Payment
  from `Target.orders` o
 left join `Target.payments` p
 on o.order_id = p.order_id
 group by 1,2
 order by 1 asc,2 asc
),
cte2 as (
 select
   month,
    sum(case when year = '2017' then Total_Payment else 0 end) as Total_Payment_2017,
    sum(case when year = '2018' then Total_Payment else 0 end) as Total_Payment_2018,
 where month between '01' and '08'
 group by 1
 order by 1
select
 month,
 Total_Payment_2017,
 Total_Payment_2018,
 round(((Total_Payment_2018 - Total_Payment_2017)/(Total_Payment_2017)) * 100,2) as Pct_change
from cte2;
```

Row	month ▼	Total_Payment_2017	Total_Payment_2018	Pct_change ▼
1	01	138488.04	1115004.18	705.13
2	02	291908.01	992463.34	239.99
3	03	449863.6	1159652.12	157.78
4	04	417788.03	1160785.48	177.84
5	05	592918.82	1153982.15	94.63
6	06	511276.38	1023880.5	100.26
7	07	592382.92	1066540.75	80.04
8	08	674396.32	1022425.32	51.61

$\ensuremath{\mathtt{Q2}}\xspace$. Calculate the Total & Average value of order price for each state. $\ensuremath{\mathtt{select}}\xspace$

```
c.customer_state,
  round(sum(p.payment_value),2) as Total_Payment,
  round(avg(p.payment_value),2) as Avg_Payment
from `Target.customers` c
left join `Target.orders` o
on c.customer_id = o.customer_id
left join `Target.payments` p
on o.order_id = p.order_id
group by 1
order by 1;
```

Row	customer_state ▼	Total_Payment ▼	Avg_Payment ▼ //
1	SP	5998226.96	137.5
2	RJ	2144379.69	158.53
3	MG	1872257.26	154.71
4	RS	890898.54	157.18
5	PR	811156.38	154.15
6	SC	623086.43	165.98
7	BA	616645.82	170.82
8	DF	355141.08	161.13
9	GO	350092.31	165.76

${\bf Q3.}$ Calculate the Total & Average value of order freight for each state. ${\bf select}$

```
c.customer_state,
  round(sum(o2.freight_value),2) as Total_Freight,
  round(avg(o2.freight_value),2) as Avg_Freight
from `Target.customers` c
left join `Target.orders` o
on c.customer_id = o.customer_id
left join `Target.order_items` o2
on o.order_id = o2.order_id
group by 1
order by 1;
```

Row	customer_state ▼	Total_Freight ▼	Avg_Freight ▼
1	SP	718723.07	15.15
2	RJ	305589.31	20.96
3	MG	270853.46	20.63
4	RS	135522.74	21.74
5	PR	117851.68	20.53
6	BA	100156.68	26.36
7	SC	89660.26	21.47
8	PE	59449.66	32.92
9	GO	53114.98	22.77

5. Analysis based on sales, freight and delivery time.

```
Q1. Find the no. of days taken to deliver each order from the order's purchase date as delivery
time. Also, calculate the difference (in days) between the estimated & actual delivery date of
an order. Do this in a single query.
with cte as (
select
 order_purchase_timestamp as Order_date,
 order_delivered_customer_date as Delivery_date,
 order_estimated_delivery_date as Estimated_delivery_date,
 date_diff(order_delivered_customer_date, order_purchase_timestamp, Day) as time_to_deliver,
 date_diff(order_estimated_delivery_date, order_delivered_customer_date, Day) as
diff_estimated_delivery
from `Target.orders` o
order by 4 asc, 5 asc
select
 Order_date,
 Delivery_date,
 Estimated_delivery_date,
 time_to_deliver,
 diff_estimated_delivery
from cte
where time_to_deliver is not null
```

Row	Order_date ▼	Delivery_date ▼	Estimated_delivery_date ▼	time_to_deliver ▼	diff_estimated_delive
1	2017-05-15 11:50:53 UTC	2017-05-16 10:21:52 UTC	2017-05-24 00:00:00 UTC	0	7
2	2018-06-18 12:59:42 UTC	2018-06-19 12:43:27 UTC	2018-06-28 00:00:00 UTC	0	8
3	2018-05-18 15:03:19 UTC	2018-05-19 12:28:30 UTC	2018-05-29 00:00:00 UTC	0	9
4	2018-05-14 12:20:06 UTC	2018-05-15 12:17:46 UTC	2018-05-25 00:00:00 UTC	0	9
5	2017-06-19 08:19:45 UTC	2017-06-19 21:07:52 UTC	2017-06-30 00:00:00 UTC	0	10
6	2017-11-16 13:54:08 UTC	2017-11-17 13:49:40 UTC	2017-11-29 00:00:00 UTC	0	11
7	2017-07-04 11:37:47 UTC	2017-07-05 08:09:26 UTC	2017-07-17 00:00:00 UTC	0	11
8	2017-05-31 12:00:35 UTC	2017-06-01 10:28:24 UTC	2017-06-13 00:00:00 UTC	0	11
9	2018-06-28 14:34:48 UTC	2018-06-29 14:12:18 UTC	2018-07-12 00:00:00 UTC	0	12

```
Q2. Find out the top 5 states with the highest & lowest average freight value.
with cte1 as (
  select
    c.customer_state,
    round(avg(o2.freight_value),2) as Avg_Freight,
    dense_rank() over(order by round(avg(o2.freight_value),2) desc) as rnk
  from `Target.customers` c
  left join `Target.orders` o
  on c.customer_id = o.customer_id
  left join `Target.order_items` o2
  on o.order_id = o2.order_id
  group by 1
),
top5 as (
  select
    customer_state,
    Avg_Freight,
    rnk
  from cte1
  where rnk <= 5
),
bottom5 as (
  select
    customer_state,
    Avg_Freight,
    rnk
  from cte1
  order by rnk desc
  {\tt limit} \ {\tt 5}
)
select
  'Top 5' AS Category,
  customer_state,
  Avg_Freight
from top5
union all
select
  'Bottom 5' AS Category,
  customer_state,
  Avg_Freight
from bottom5
order by Category desc, Avg_Freight desc;
                                customer_state ▼
 Row Category ▼
                                                        Avg_Freight ▼
        Top 5
    1
                                RR
                                                                42.98
                                                                42.72
    2
        Top 5
                                PB
    3
        Top 5
                                RO
                                                                41.07
    4
        Top 5
                                AC
                                                                40.07
    5
        Top 5
                                PI
                                                                39.15
                                DF
        Bottom 5
                                                                21.04
    6
    7
        Bottom 5
                                RJ
                                                                20.96
        Bottom 5
                                MG
                                                                20.63
    8
    9
        Bottom 5
                                PR
                                                                20.53
```

SP

15.15

10

Bottom 5

```
Q3. Find out the top 5 states with the highest & lowest average delivery time.
with cte as (
  select
    c.customer_state,
    avg(date_diff(o.order_delivered_customer_date, o.order_purchase_timestamp, Day)) as
time_to_delivery
  from `Target.orders` o
  right join `Target.customers` c
  on o.customer_id = c.customer_id
  where o.order_delivered_customer_date is not null
  group by 1
),
ranked_data as (
  select
    customer_state as state,
    time_to_delivery as avg_delivery_time,
    dense_rank() over(order by time_to_delivery asc) as rnk_asc,
    dense_rank() over(order by time_to_delivery desc) as rnk_desc
  from cte
  )
select
  'Top 5' as category,
  state,
  avg_delivery_time
from ranked_data
where rnk_asc <= 5</pre>
union all
select
  'Bottom 5' as category,
  state,
  avg_delivery_time
from ranked_data
where rnk_desc <= 5
order by category, avg_delivery_time;
                                  state -
 Row
        category ~
                                                            avg_delivery_time >
     1
        Bottom 5
                                  PA
                                                                     23.32
     2
        Bottom 5
                                  AL
                                                                     24.04
     3
        Bottom 5
                                  AM
                                                                     25.99
     4
         Bottom 5
                                  AP
                                                                     26.73
         Bottom 5
                                                                     28.98
     5
                                  RR
        Top 5
                                  SP
     6
                                                                      8.3
     7
         Top 5
                                  PR
                                                                     11.53
     8
         Top 5
                                  MG
                                                                     11.54
     9
         Top 5
                                                                     12.51
```

SC

10

Top 5

14.48

Q4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

```
select
```

```
c.customer_state,
  round(avg(datetime_diff(o.order_estimated_delivery_date, o.order_delivered_customer_date,
Day)),2) as diff_estimated_delivery
from `Target.customers` c
left join `Target.orders` o
on c.customer_id = o.customer_id
where o.order_delivered_customer_date is not null and order_estimated_delivery_date is not null
```

group by 1 order by 2 asc

limit 5

Row	customer_state ▼	diff_estimated_delive
1	AL	7.95
2	MA	8.77
3	SE	9.17
4	ES	9.62
5	BA	9.93

6. Analysis based on the payments:

${\tt Q1.}$ Find the month on month no. of orders placed using different payment types.

select

```
format_date('%B-%Y',o.order_purchase_timestamp) as month_year,
  p.payment_type,
  count(o.order_id) as order_count
from `Target.orders` o
left join `Target.payments` p
on o.order_id = p.order_id
```

group by 1,2 order by 1 asc

Row	month_year ▼	payment_type ▼	order_count ▼
1	April-2017	voucher	202
2	April-2017	credit_card	1846
3	April-2017	UPI	496
4	April-2017	debit_card	27
5	April-2018	credit_card	5455
6	April-2018	UPI	1287
7	April-2018	debit_card	97
8	April-2018	voucher	370

Q2. Find the no. of orders placed on the basis of the payment installments that have been paid. select

```
distinct(p.payment_installments),
  count(o.order_id) as order_count
from `Target.orders` o
left join `Target.payments` p
on o.order_id = p.order_id
where p.payment_installments is not null and p.payment_installments != 0
group by 1
order by 1 asc
```

Row	payment_installment	order_count ▼
1	1	52546
2	2	12413
3	3	10461
4	4	7098
5	5	5239
6	6	3920
7	7	1626
8	8	4268

Insights:

1. <u>Seasonal Payment Trends:</u>

• Certain months show a higher usage of specific payment methods, potentially linked to promotions or customer behavior.

2. <u>Installment Usage:</u>

• Installments are preferred during large purchases, suggesting customer sensitivity to upfront costs.

3. <u>Time Range of Orders:</u>

• The company's operations span a wide time frame, providing a substantial dataset for analyzing seasonal and yearly trends.

4. Geographical Spread:

• The orders come from diverse cities and states, indicating a good reach across the country.

5. <u>Delivery Efficiency:</u>

• Certain states have significantly faster delivery times compared to the estimated delivery date.

6. <u>Challenging States:</u>

• Some states have consistently high delivery times, possibly due to logistical challenges or remote locations.

7. <u>Top States for Fast Delivery:</u>

• Some states have consistently high delivery times, possibly due to logistical challenges or remote locations.

8. Freight Costs:

• Freight costs vary significantly across states, with some states showing much higher average freight charges.

Recommendations:

1. Payment Campaigns:

• Launch targeted campaigns during peak months, offering incentives for specific payment types.

2. <u>Upsell Opportunities:</u>

 Promote high-value products with attractive installment options to increase average order value.

3. Expand Marketing Campaigns:

• Focus marketing efforts during peak ordering times (e.g., afternoon and evening) to boost sales.

4. <u>Target Underrepresented States:</u>

• Identify and target states with low customer activity to improve market penetration.

5. <u>Improve Logistics:</u>

 Focus on states with slower delivery times by optimizing routes, increasing warehouse coverage, or collaborating with local courier services.

6. Reward Fast Deliveries:

• Promote fast delivery states as examples of company reliability in marketing campaigns.

7. <u>Leverage Delivery Success:</u>

• Highlight states with exceptional delivery performance as part of customer testimonials and case studies.

8. Optimize Freight Costs:

• Negotiate better shipping rates with logistics partners for states with high freight costs.