Aula 18: Propriedades de Árvores Binárias

- Número de subárvores vazias
- Alturas mínima e máxima de árvores binárias
- Modelo de armazenamento em árvores binárias

Propriedades de Árvores Binárias

- Provas Matemáticas:
- Algumas técnicas:
 - provas construtivas
 - provas por absurdo
 - indução matemática
- O conceito de indução:
 - idéia
 - prova por indução:
 - base de indução
 - hipótese de indução
 - passo de indução

Exemplo de Prova por Indução

- Mostrar que a soma dos n primeiros números naturais, n ≥ 1, é igual a n.(n+1)/2
 - Prova: por indução. S_n = soma dos n primeiros números naturais.
 - Base da indução: $n = 1 \Rightarrow S_1 = 1$. Vale.
 - Hipótese de indução: supor o resultado verdadeiro para n 1.

Então
$$S_{n-1} = (n-1)(n-1+1)/2 = (n-1)n/2$$

Passo da indução: $S_n = S_{n-1} + n$

Aplicar a hipótese de indução:

$$S_n = (n-1)n/2 + n = (n^2 - n + 2n)/2 = n(n+1)/2$$

Árvores Binárias

Lema: uma árvore binária com n > 0 nós possui exatamente n + 1 subárvores vazias.

Exemplo:

$$n = 4$$

5 subárvores vazias

- base da indução: n = 1 (trivial)
- hipótese de indução
- passo de indução:
 - 1. Escolher uma folha v (existe) de T e removê-la;
 - 2. Aplicar hipótese de indução a T-v => T-v possui n subárvores vazias;
 - 3. Logo, T possui n 1 + 2 = n + 1 subárvores vazias. cederj

Exercício

Mostrar que o número de subárvores vazias de uma árvore m-ária com n nós é igual a (m - 1) n + 1

$$(3-1)7+1=15$$

Tempo: 15 minutos

Solução

S_{n, m} = número de subárvores vazias em uma árvore m-ária T com n nós, n > 0 e m ≥ 2.

Provar que $S_{n,m} = (m-1)n+1$

Indução em n:

■Base da indução: n = 1, $S_{1,m} = (m - 1).1 + 1 = m$, vale

Hipótese de indução: o resultado vale para árvores m-árias com n - 1 nós.

Então: $S_{n-1, m} = (m-1)(n-1)+1$

→Passo da indução:

* escolher uma folha v de T e removê-la;

* T-v possui n-1 nós, logo (m-1)(n-1) + 1 subárvores vazias

* por outro lado, $S_{n,m} = S_{n-1,m} + m - 1$

* Logo, $S_{n, m} = (m-1).(n-1) + 1 + m - 1 = (m-1).n + 1$

Numero de Nós x Altura

Questão de interesse: Descrever árvores binárias com nós que possuem:

- altura máxima;
- altura mínima.

Resposta para altura máxima: árvores ziguezague

Numero de Nós x Altura

- Resposta para altura mínima:
- Lema: Seja T uma árvore binária completa com n > 0 nós. Então T possui altura h mínima. Além disso, h = 1 + [log n]
- → Idéia da prova do lema:
 - Seja T' uma árvore binária de altura mínima, com n nós.
 - Se T' é também completa, vale o lema.

- Se T' não é completa,

Numero de Nós x Altura

Resposta para altura mínima (cont.)

Cálculo da altura h de T

Se $h = 1 \Rightarrow n = 1 \Rightarrow vale h = 1 + \lfloor log n \rfloor$

Seja h > 1.

- \blacksquare Se T é cheia então n = 2^h $1 => h = 1 + \lfloor \log n \rfloor$
- $\begin{array}{c}
 h = 1 \\
 n = 1
 \end{array}$

h = 2 n = 3

h = 3

n = 7

Se T não é cheia, seja T" a árvore cheia de altura h" = h - 1. T" possui n" nós, sendo h" = 1 + [log n"]. Como [log n] = 1 + [log n"] e
h = 1 + h",

vale h = $1 + [\log n]$

Exercícios

Provar ou dar contra-exemplo:

Uma árvore binária é completa se e somente se ela possuir altura mínima.

- Tempo: 2 minutos.

Solução

pelo lema

árvore binária completa altura mínima

altura mínima

Contra-exemplo:

Armazenamento de Árvores

Em alocação - seqüencial

- encadeada

Idéia da estrutura:

- cada nó da árvore dá origem a um nó na estrutura
- em cada nó da estrutura, existem 2 ponteiros
 - ponteiro para o filho esquerdo de v
 - ponteiro para o filho direito de v

Observações sobre a Estrutura

- É necessário guardar a localização da raiz da árvore. ponteiro raiz
- Cada nó possui dois ponteiros, esq e dir, que apontam para as raízes de suas subárvores, esquerda e direita, respectivamente.
- Além disso, um campo info contém informações sobre o nó (rótulo, etc.)
- Excetuando-se o campo info, são necessárias 2n+1 posições de memória para o armazenamento da árvore.

Árvores Estáticas

Se não houverem inclusões, nem remoções: esq e dir podem ser implementados como vetores, cada qual com n posições. Exemplo:

esq: $\begin{bmatrix} 2 & 4 & 5 & \lambda & 8 & \lambda & \lambda & \lambda & \lambda \end{bmatrix}$

dir: $\begin{bmatrix} 3 & \lambda & 6 & 7 & 9 & \lambda & \lambda & \lambda \\ \end{bmatrix}$

raiz: 1

Exercício

Determinar as quantidades máxima e mínima de ponteiros vazios (λ) existentes:

1. no campo esq (ou dir)

2. no total dos campos esq e dir

Dado: número de vértices = n

Tempo: 5 minutos

Solução

1. esq

máximo = n

2. esq + dir

mínimo = 1 (a folha)

Há um total de n + 1 campos λ presentes em esq e dir, independente da árvore com n nós.