#### МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

# УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П. О. СУХОГО

Машиностроительный факультет

Кафедра «Информатика»

| по пи | СШ | пппии | е «Информационнь | ιο τονμοπο |            |
|-------|----|-------|------------------|------------|------------|
| ОТЧ   | ET | ПО    | ЛАБОРАТОРНОЙ     | РАБОТЕ     | <b>№</b> 2 |

на тему: «Решение ОДУ и систем ОДУ»

Выполнил: студент гр. ТМ-21 Ковтунов Н.Е.

Принял: преподаватель

Т.А. Трохова

| Дата сдачи отчета:     |  |
|------------------------|--|
| Дата допуска к защите: |  |
| Дата защиты:           |  |
|                        |  |

**Цель работы**: Получить навыки решения дифференциальных уравнений различного порядка, а также систем дифференциальных уравнений в системе Mathcad, научиться выполнять графическую интерпретацию полученных результатов.

### Ход выполнения лабораторной работы

## Задание 1.

Решение дифференциальных уравнений первого порядка.

Решить дифференциальное уравнение первого порядка двумя способами — с помощью функции *rkfixed* и с помощью функции *odesolve*, выполнить графическую интерпретацию результатов. Начальное, конечное значения изменения аргумента и количество точек для поиска решения приведены в таблице.

Таблица 1

| $N_{\underline{0}}$ | Вид уравнения                    | Начальные            | Х.,               | $\chi_{\nu}$ | n   |
|---------------------|----------------------------------|----------------------|-------------------|--------------|-----|
|                     |                                  | условия              | $^{\mathcal{N}}H$ | **K          |     |
| 8.                  | $\cos y = y'(x + 2\cos y)\sin y$ | $u(0) - \pi$         | 0                 | 2            | 800 |
|                     |                                  | $y(0) = \frac{1}{4}$ |                   |              |     |

Выполнение задания:

| π                                          |               |       |    | 1                    | 2     |
|--------------------------------------------|---------------|-------|----|----------------------|-------|
| $y := \frac{\pi}{4}$                       | cos(y)        |       | 1  | 0                    | 0.785 |
| $b(x,y) := \left[\frac{1}{(x+2)^n}\right]$ | cos(y))sin(y) |       | 2  | 2.5·10-3             | 0.787 |
|                                            |               |       | 3  | 5·10 <sup>-3</sup>   | 0.789 |
| := rkfixed(y,0,2,800,b)                    |               |       | 4  | 7.5·10 <sup>-3</sup> | 0.791 |
|                                            |               |       | 5  | 0.01                 | 0.792 |
|                                            |               |       | 6  | 0.013                | 0.794 |
|                                            |               |       | 7  | 0.015                | 0.796 |
|                                            | +             | R =   | 8  | 0.018                | 0.798 |
|                                            |               |       | 9  | 0.02                 | 0.799 |
|                                            |               |       | 10 | 0.023                | 0.801 |
|                                            |               |       | 11 | 0.025                | 0.803 |
|                                            | Т             | рафив |    |                      | '     |
| 1.4                                        |               | Рифии |    |                      |       |
|                                            |               |       |    |                      | _     |
|                                            |               |       |    |                      |       |
|                                            |               |       |    |                      |       |
| 1.2                                        |               |       |    |                      |       |
| 1.2                                        |               |       |    |                      |       |
|                                            |               |       |    |                      |       |
|                                            |               |       |    |                      |       |
| <u>R<sup>(2)</sup></u> 1                   |               |       |    |                      |       |
| <u>R</u> 1                                 |               |       |    |                      |       |
|                                            |               |       |    |                      |       |
|                                            |               |       |    |                      |       |
|                                            |               |       |    |                      |       |
| 0.8                                        |               |       |    |                      |       |
|                                            |               |       |    |                      |       |
|                                            |               |       |    |                      |       |
|                                            |               |       |    |                      |       |
|                                            |               |       |    |                      |       |
| 0.6                                        | 5             | 1     |    | 1.5                  |       |

**Задание 2.** Решение систем дифференциальных уравнений

Решить систему дифференциальных уравнений с помощью функции *rkfixed*, выполнить графическую интерпретацию результатов. Количество точек для численного решения равно 1000.

Таблица 2

| №    |                                                                            | Начальные             | Диапазон  |
|------|----------------------------------------------------------------------------|-----------------------|-----------|
| вар. | Вид системы                                                                | условия               | изменения |
|      |                                                                            |                       | аргумента |
| 8    | $\begin{cases} x' = 5x - 3y + 2e^{3t} \\ y' = x + y + 5e^{-t} \end{cases}$ | x(0) = 0,1 $y(0) = 0$ | 0÷0,5     |

# Ход выполнения задания:

$$V_{w} := \begin{pmatrix} 0.1 \\ 0 \end{pmatrix}$$

$$D(t, V) := \begin{pmatrix} 5V_1 - 3V_2 + 2e^{3t} \\ V_1 + V_2 + 5 \cdot e^{-t} \end{pmatrix}$$

R := rkfixed(V, 0, 0.5, 1000, D)

|     |    | 1                    | 2     | 3                      |
|-----|----|----------------------|-------|------------------------|
|     | 1  | 0                    | 0.1   | 0                      |
|     | 2  | 5·10 <sup>-4</sup>   | 0.101 | 2.55·10 <sup>-3</sup>  |
|     | 3  | 1.10-3               | 0.103 | 5.101·10 <sup>-3</sup> |
|     | 4  | 1.5·10 <sup>-3</sup> | 0.104 | 7.653·10 <sup>-3</sup> |
|     | 5  | 2·10-3               | 0.105 | 0.01                   |
|     | 6  | 2.5·10-3             | 0.106 | 0.013                  |
|     | 7  | 3·10 <sup>-3</sup>   | 0.108 | 0.015                  |
| R = | 8  | 3.5·10-3             | 0.109 | 0.018                  |
|     | 9  | 4·10 <sup>-3</sup>   | 0.11  | 0.02                   |
|     | 10 | 4.5·10 <sup>-3</sup> | 0.111 | 0.023                  |
|     | 11 | 5·10 <sup>-3</sup>   | 0.113 | 0.026                  |
|     | 12 | 5.5·10 <sup>-3</sup> | 0.114 | 0.028                  |
|     | 13 | 6.10-3               | 0.115 | 0.031                  |
|     | 14 | 6.5·10-3             | 0.116 | 0.033                  |
|     | 15 | 7·10 <sup>-3</sup>   | 0.118 | 0.036                  |
|     | 16 | 7.5·10 <sup>-3</sup> | 0.119 |                        |



**Задание 3.** Решение дифференциальных уравнений второго порядка

Решить дифференциальное уравнение второго порядка двумя способами — с помощью функции *rkfixed* и с помощью функции *odesolve*. Количество точек для численного решения выбрать самостоятельно. Выполнить графическую интерпретацию и сравнительный анализ результатов.

| №    | Вид системы                                | Начальные                 | Диапазон     |
|------|--------------------------------------------|---------------------------|--------------|
| вар. |                                            | условия                   | изменения    |
|      |                                            |                           | аргумента    |
| 8    | $y'' - 12y' + 36y = 32\cos 2x + 24\sin 2x$ | y(0) = 2                  |              |
|      |                                            | y'(0) = 4                 | $0 \div 0,4$ |
|      |                                            | <i>y</i> ( <i>y</i> ) – 1 |              |

## Ход выполнения задания:

$$\mathbf{x} := \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

$$S_{\hspace{-0.5em}\text{\tiny $M$}} := rkfixed(y,0,0.4,1000,D)$$

|     |    | 1                    | 2     | 3     |
|-----|----|----------------------|-------|-------|
|     | 1  | 0                    | 2     | 4     |
|     | 2  | 4·10 <sup>-4</sup>   | 2.002 | 4.003 |
|     | 3  | 8·10 <sup>-4</sup>   | 2.003 | 4.006 |
|     | 4  | 1.2·10 <sup>-3</sup> | 2.005 | 4.01  |
|     | 5  | 1.6·10 <sup>-3</sup> | 2.006 | 4.013 |
|     | 6  | 2·10 <sup>-3</sup>   | 2.008 | 4.016 |
|     | 7  | 2.4·10 <sup>-3</sup> | 2.01  | 4.019 |
| S = | 8  | 2.8·10-3             | 2.011 | 4.022 |
|     | 9  | 3.2·10 <sup>-3</sup> | 2.013 | 4.026 |
|     | 10 | 3.6·10 <sup>-3</sup> | 2.014 | 4.029 |
|     | 11 | 4·10 <del>-</del> 3· | 2:016 | 4:032 |
|     | 12 | 4.4·10 <sup>-3</sup> | 2.018 | 4.035 |
|     | 13 | 4.8·10 <sup>-3</sup> | 2.019 | 4.038 |
|     | 14 | 5.2·10 <sup>-3</sup> | 2.021 | 4.042 |
|     | 15 | 5.6·10 <sup>-3</sup> | 2.023 | 4.045 |
|     | 16 | 6·10 <sup>-3</sup>   | 2.024 |       |
|     |    |                      |       |       |



# С применением odesolve:

Given

$$\left(\frac{d^2}{dx^2}y(x)\right) = 12\left(\frac{d}{dx}y(x)\right) - 36y(x) + 32 \cdot \cos(2x) + 24 \cdot \sin(2x)$$

y(0) = 2 y'(0) = 4

$$y := odesolve(x, 0.4)$$

+



## Задача 4.

Исследование математической модели груза на жестком стержне

- 1. С использованием СКМ рассчитать значение функций перемещения, скорости и ускорения динамической системы под воздействием начальных значений перемещения и скорости без учета возмущающей силы. Построить графики этих функций.
- 2. Рассчитать значение функции перемещения динамической системы под воздействием возмущающей силы. Построить графики этой функции.

#### Исходными данными для задачи являются:

*m* – масса груза

l — длина стержня

а – расстояние до демпфера

D — диаметр пружины

d – диаметр проволоки пружины

i – число витков пружины

G – модуль упругости

lpha - коэффициент вязкого сопротивления движения демпфера

Таблица 4

| а(м) | 1 (M) | D(мм) | d<br>(MM) | i | т<br>(кг) | α   | φ0   | tк<br>(c) | N<br>варианта |
|------|-------|-------|-----------|---|-----------|-----|------|-----------|---------------|
| 0,22 | 0,55  | 60    | 6         | 6 | 6         | 210 | 0,06 | 1,6       | 2             |

Для всех вариантов заданий G=80\*10\*\*9

#### Описание математической модели



Груз массой m укреплен на абсолютно жестком безынерционном стержне длиной l, который удерживается в равновесии пружиной и демпфером. Демпфер имеет линейную характеристику трения:  $f = \alpha \cdot \dot{x}$ .

В соответствии с принципом Даламбера составим дифференциальное уравнение движения груза, как уравнение равновесия при отклонении стержня на некоторый малый угол ф.

$$mgl \varphi = ml^2 \ddot{\varphi} - ca^2 \varphi - a^2 \alpha \dot{g} = 0$$
  
Обозначив  $2n = a^2 \alpha / (ml^2)$   $p^2 = (ca^2 - mgl) / ml^2$  запишем дифференциальное уравнение в виде  $\ddot{\varphi} + 2n\dot{\varphi} + p^2 \varphi = 0$ 

$$c = Gd^4 / 8D^3i$$
 - жесткость пружины

$$p = \sqrt{(ca^2 - mgl)/ml^2}$$
 -частота собственных колебаний  $n = a^2\alpha/(2ml^2)$  - приведенный коэффициент сопротивления демпфера

 $F(t) = F_0 \sin(wt) - возмущающая сила, действующая на систему. Все параметры функции подобрать самостоятельно.$ 

Выполнение задания:

$$d := 0.006$$

$$G := 80 \cdot 10^9$$

$$\alpha := 210$$

$$\varphi 0 := 0.06$$

$$tk := 1.6$$

$$t := 0..1.6$$

$$\varphi := \begin{pmatrix} 0.06 \\ 0 \end{pmatrix}$$

$$\mathbf{n} := \mathbf{a}^2 \cdot \frac{\alpha}{\left(2 \cdot \mathbf{m} \cdot \mathbf{1}^2\right)}$$

$$\mathbf{c} := \frac{\mathbf{G} \cdot \mathbf{d}^4}{8 \cdot \mathbf{D}^3 \cdot \mathbf{i}}$$

$$p := \sqrt{\frac{\left(c \cdot a^2 - m \cdot g \cdot 1\right)}{m \cdot 1^2}}$$

$$\underset{\text{NW}}{D}\!(t,\phi) := \begin{pmatrix} \phi_2 \\ \\ -2 \cdot \mathbf{n} \cdot \phi_2 - \mathbf{p}^2 \cdot \phi_1 \end{pmatrix}$$

$$S := rkfixed(\varphi, 0, 1.6, 1000, D)$$



.....



$$\mathrm{A} := -2 \!\cdot\! \mathbf{n} \!\cdot\! \mathbf{S}^{\left\langle 3 \right\rangle} - \mathbf{p}^2 \!\cdot\! \mathbf{S}^{\left\langle 2 \right\rangle}$$



Пункт 2.

Рассчитать значение функции перемещения динамической системы под воздействием возмущающей силы. Построить графики этой функции.

F0 и w заданы произвольно



**Вывод:** в ходе выполнения лабораторной работы научился решать системы дифференциальных уравнений и дифференциальные уравнения различного порядка в системе Mathcad.