Projet 1 - RODD

BATY LÉO, BRUNOD-INDRIGO LUCA

20 janvier 2021

1 Modélisation

On propose le modèle suivant :

$$\begin{aligned} & \min_{x,y} \sum_{i \in N} a_i x_i \\ s.t. \sum_{i \in S_k} x_i \log(1 - p_{ki}) \leq \log(1 - \alpha_k) & \forall k \in C \\ & \sum_{i \in S_k} y_i \log(1 - p_{ki}) \leq \log(1 - \alpha_k) & \forall k \in D \\ & x_i \geq y_i & \forall i \in N \\ & x_j \geq y_i & \forall i \in N \\ & x_i \in \{0,1\} & \forall i \in N \\ & y_i \in \{0,1\} & \forall i \in N \end{aligned}$$

Les variables x_i valent 1 si et seulement si la parcelle i est protégée. Les variables y_i valent 1 si et seulement si la parcelle est une zone centrale. L'ensemble C (resp. D) désigne l'ensemble des espèces communes (resp. en danger). La notation $\delta(i)$ désigne les voisins de la parcelle i, soit les huit cases adjacentes dans le cas présent.

2 Résolution des instances fournies

Le tableau 1 montre les résultats obtenus en appliquant notre programme aux instances proposées par l'énoncé. On constate qu'ils coïncident bien avec les solutions fournies.

Instance	Temps	Nombre de noeuds	Coût	p_1	p_2	p_3	p_4	p_5	p_6
$\alpha = 0.5$	0.14	0	119	0.58	0.52	0.64	0.917056	0.64	0.755
$\alpha_D = 0.9 \; \alpha_C = 0.5$	0.01	0	327	0.915328	0.90784	0.91936	0.9804915712	0.892	0.981478
$\alpha_D = 0.5 \; \alpha_C = 0.9$	0.12	0	130	0.58	0.52	0.64	0.9336448	0.91	0.9118
$\alpha_D = 0.8 \; \alpha_C = 0.6$	0.02	0	211	0.8236	0.808	0.82	0.972130816	0.784	0.8775

Table 1 – Résultats obtenus sur les instances de l'énoncé

3 Comportement du programme linéaire en fonction de la taille de l'instance

Nombre d'espèces	Taille de la grille	Temps de calcul	Nombre de noeuds
10	13	0.18	0
15	16	0.61	0
20	18	0.66	0
25	20	3.97	1084
30	22	3.98	285
40	26	274.77	21369

Table 2 – Performances du programme linéaire sur des instances aléatoires

Le tableau 2 indique les temps de calcul et nombre de noeuds explorés pour la résolution d'instances générées aléatoirement. On peut observer que l'un comme l'autre explosent assez rapidement lorsque la taille de l'instance augmente.

4 Modèle avec contrainte budgétaire

Commençons par remarquer que l'espérance du nombre d'espèces survivantes peut se réécrire comme suit :

$$\mathbb{E}(N^{survivantes}) = \sum_{k \in K} \mathbb{E}(\mathbb{1}_{i \text{ survit}})$$

$$= \sum_{k \in K} \mathbb{P}(i \text{ survit})$$

$$= \sum_{k \in K} (1 - \mathbb{P}(i \text{ ne survit pas}))$$

$$= \sum_{k \in D} (1 - \prod_{i \in N} (1 - p_{ik})^{y_i}) + \sum_{k \in C} (1 - \prod_{i \in N} (1 - p_{ik})^{x_i})$$

D'où le modèle suivant dans lequel on note B le budget :

$$\begin{aligned} & \min_{x,y} \sum_{k \in D} (1 - \prod_{i \in N} (1 - p_{ik})^{y_i}) + \sum_{k \in C} (1 - \prod_{i \in N} (1 - p_{ik})^{x_i}) \\ & s.t. \sum_{i \in N} a_i x_i \leq B \\ & x_i \geq y_i & \forall i \in N \\ & x_j \geq y_i & \forall i \in N \ \forall j \in \delta(i) \\ & x_i \in \{0,1\} & \forall i \in N \\ & y_i \in \{0,1\} & \forall i \in N \end{aligned}$$

Le problème qui se présente ici pour la linéarisation est que le passage au logarithme pour déplacer les variables d'exposant en facteur, qui était possible lorsqu'on avait un produit, ne fonctionne plus avec une somme de produits. Une solution pour contourner ce problème peut être d'avoir recours à une approximation du logarithme par ses tangentes tel que le propose le projet 3.