HONGYI CHEN

(412)636-7171**■**hchen657@gatech.edu

EDUCATION

Georgia Institute of Technology
Atlanta, GA

M.S in Computer Science; GPA: 4.0 / 4.0 May 2023

Carnegie Mellon University Pittsburgh, PA

M.S in Electrical and Computer Engineering; GPA: 3.72 / 4.0 May 2021

Peking UniversityBeijing, China

B.A in Economics; GPA: 3.60 / 4.0 Jun 2019

Beijing University of Chemical Technology Beijing, China

B.S in Mathematics and Applied Mathematics; GPA: 3.92 / 4.0 Jul 2018

PUBLICATIONS

- 1. **H. Chen**, S. Feng, P. Vela, C. Liu. "Safe Hierarchical Navigation Framework in Cluttered Dynamic Uncertain Environments." Plan to submit to Conference on Decision and Control, 2022.
- 2. R. Xu, **H. Chen**, Y. Lin, P. Vela. "SGL: Symbolic Goal Learning for Human Instruction Following in Robot Manipulation." Submitted to RA-L, 2022.
- 3. **H. Chen**, C. Liu. "Safe and Sample efficient Reinforcement Learning for Clustered Dynamic Uncertain Environments." IEEE Control System Letters, 2021: Volume 6, 1928 1933.
- 4. **H. Chen**, F. Zhang, B. Tang, Q. Yin and X. Sun. "Slim and Efficient Neural Network Design for Resource Constrained SAR Target Recognition." Remote Sensing, 2018: Volum 10, Issue 10.

ACADEMIC PROJECTS

Robot Manipulation Based on Human Instruction with Ambiguous Requests

Atlanta, USA

Georgia Institute of Technology

May 2021 - Sep 2021

- Adopted mask R-CNN as perception module to detect objects' category with segmentation masks as initial state
- Employed Planning Domain Definition Language (PDDL) planner to generate sequence of primitive actions and sent to robots to perform in AI2THOR

Safe Reinforcement Learning in Cluttered Dynamic Environment

Pittsburgh, USA

Carnegie Mellon University

May 2021 - Sep 2021

- Implemented DDPG and TD3 reinforcement learning (RL) algorithms to control autonomous vehicle
- Adopted Safe Set Algorithm (SSA) to monitor and modify the RL action to guarantee safety and improve sample efficiency during the agent learning process

GPU-Optimized Search for Gravitational Waves (GW)

Beijing, China

Tsinghua University

June 2018 - Sep 2018

- Accelerated online-searching pipeline for GW from binary coalescences, allowing low-latency GW signal detection
- > Parallelized the linear recurrence and optimized inefficient memory access in filtering process to achieve 10x speedup
- > Proposed a comprehensive methodology to solve low-latency requiring big data analysis including three pillars: parallel algorithms, hardware devices, and implementation optimization

Deep Neural Network Compression

Beijing, China

Beijing University of Chemical Technology

Feb 2018 - May 2018

- Designed and implemented slimmed convolutional neural network (CNN) in resource-constrained platforms
- Achieved 40x compression in CNN model for synthetic aperture radar target recognition, maintaining its 98.5% accuracy
- > Proposed efficient algorithm to compute the pruned CNN, improving speed by 2-4 times

PROFESSIONAL EXPERIENCE

Perception and Path Planning for Autonomous Vehicles

Pittsburgh, USA

Carnegie Mellon University

May 2020 - Aug 2020

- Implemented path planning, from high level behavior planning to low level RRT path generation and collision checking
- > Implemented vehicle coordination at intersection based on vehicle to vehicle (V2V) communication and distributed voting
- ➤ Adopted IMU and GPS sensor fusion algorithm for localization and improved the accuracy by 90% when compared to GPS-based kalman filter localization in Carla
- Adopted YOLOv3 network to detect road lanes and implemented pure-pursuit control based on the middle road line