STAT115: Introduction to Biostatistics

University of Otago Ōtākou Whakaihu Waka

Lecture 3: Statistical Software

- How do we interact with data?
- In the past: pen and paper
- Today we use computers
- This lecture will introduce software for data and statistics

Statistical software

- There are many statistical software packages
 - ▶ R
 - ► SAS
 - Stata
 - SPSS
 - **.**..
- Other software packages are also used
 - Excel
 - Python
 - Julia
 - **▶** ...

R (and Excel)

- We are going to focus on one of these: R
 - ► R has a learning curve
 - Provide support in lectures, tutorials and assignments
- We will also see Excel
 - Excel is used by many researchers to record data
 - ▶ It is also used by many researchers to analyze data
 - Excel has many weaknesses for data handling and statistics
 - Data handling: easy to (unintentionally) change/corrupt data
 - Statistical modelling: has basic functionality
 - Learn how to import data into R

R: NZ on the world stage

- R was developed at the University of Auckland in the early 90s
 - ► Ross Ihaka (Ngati Kahungunu, Rangitane)
 - ► Robert Gentleman
- It is used around the world
- Advantages:
 - ► Freely available
 - External packages that extend base functionality ^a
 - Contributed by researchers around the world
 - New methodology often readily implemented in R

^aWe may see how to install and use packages later

Getting R and RStudio Up and Running

- We will be using RStudio
 - R is the language (command line)
 - Rstudio is an IDE (integrated development environment) for R
 - Provides a more user-friendly experience
- Option 1 (recommended): Download and install R and RStudio on own device
 - ▶ See video on Blackboard information for installation instructions
 - ▶ Difficult/impossible on Chromebook or tablet
- Option 2: Run RStudio using Apps at Otago
 - ► See https://ask.otago.ac.nz/knowledgebase/article/KA-10005663

Important: get R and RStudio working for you as soon as possible

A First Session with R

- Move into Rstudio
- Look at some data
- We will mostly see data in csv (comma separated values) files
 - Comma separated file
 - Tabular (or rectangular) data
 - Opened by spreadsheet (like Excel), but is plain text
 - See video on blackboard for how to obtain a csv from Excel
 - ▶ It is possible to import data directly from Excel
 - It requires installing and loading an additional package
 - Not considered further in this course
 - Some csv datasets can be imported directly from the URL

RStudio: Getting Started

RStudio: Getting Started

Commentary

- Four panes
 - 1. LL: Console pane (where R code is run)
 - Start with this today: get things working initially
 - 2. UL: Editor pane (where we work)
 - Circle back around to how to use editor.
 - This is our primary 'work environment'
 - 3. UR: Environment (etc.) pane (what have we done)
 - 4. LR: Files (etc.) pane (help, plots, packages)

RStudio: Importing Data

General Process

- Download data
 - By default, this will likely be in the computer's Downloads folder
- Convert to CSV format (if required)
 - Maybe use Excel to do this
- Import into R studio
 - ► Can be done in various ways
 - ▶ File > Import Dataset > From text (base)
- View data
 - ► Can look in 'Environment' tab (reopen if necessary)

- Medical researchers constantly searching for better vaccines.
- This example is concerned with vaccine for pertussis (whooping cough)
- Compares antibody response for three different vaccines:
 - ▶ WCV: whole cell pertussis vaccine
 - ► APV: pertussis acellular vaccine
 - DAPV: double dose APV
- n = 91 infants age 17–19 months randomly assigned one of the vaccines
- Response, in $\log(IU/mI)$, measured one month after immunization

Data download

Data import

Data view

RStudio: Next Steps

- So far we can look at data in a 'spreadsheet'
- To do anything more we have to engage with editor
 - ► Command line
 - ► Typing commands to R

RStudio: Workflow

- If we exit out of Rstudio
 - ▶ Lose most of what we have done
 - ► Start again
 - ► Frustrating: assignments and bigger projects
- Solution is to work in the editor
 - ► It can be intimidating at first
 - ► Rstudio itself helps out
 - 'History'

RStudio: Workflow

History

Rstudio: Getting Started with Editor

- Instructions for importing data onto editor (alternative method)
 - 'History' tab shows the R commands for what we have done
 - Put this in the editor window (for when we come back next time)
 - Care is needed with file structures
 - I suggest creating a STAT115 folder
 - Use this as a 'working directory'

Rstudio: Getting Started with Editor

- The working directory is the folder (on your computer) that R uses
- Change the working directory:
 - ▶ Session > Set Working Directory > Choose Directory
 - Equivalent command line expression
- Many of the mistakes we see with 100-level students
 - Asking R to find a file, but you're in the wrong folder
- First ensure in the correct folder
 - ► Then import the data

Initial exploration

- The data has information about two variables
 - Antibody response
 - Vaccine type
- What if we want to select one of these?
 - ▶ Use \$: allows us to access specific variables by name
 - ▶ Use [,1] : allows us to access columns of the data frame by number

```
pertussis$antibody
```

- Assign the new variable to response
 - ▶ Use = or <-
 - ► Use these values later (next slide!)

response = pertussis\$antibody

Example: Some Summaries of Pertussis Vaccine Data

- We can now look at numeric summaries of antibody response, e.g.
 - ► mean: mean(response)
 - median: median(response)
 - standard deviation: sd(response)
- We can also look at graphical summaries of antibody responsee, e.g. histogram

hist(response)

Lecture 3 response Slide 21

RStudio: Help!

- How would we know that in R?
 - ▶ mean: calculate the mean
 - hist: plot a histogram
- There is internal help: probably not the first place to look
- For you in STAT115:
 - Lecture slides
 - Assignments
 - ▶ Tutorials
 - Google: e.g. 'Finding an average in R'
 - ► AI (e.g. chatgpt)¹

¹A word of caution: Al tools are excellent for helping you get started with R. Al tools are not a replacement for thinking, but can be helpful tools for learning.

R Code

• R code will be displayed on lecture slides as follows:

```
mean(response)
## [1] 3.818
```

- These commands can be copied and pasted
 - ▶ Focus on understanding what the R code is doing
 - ► Support for RStudio in tutorials

Summary

- We will be using R/Rstudio in STAT115
- Free, powerful, and widely used
- We saw how:
 - Change our working directory
 - ► Import data
 - ► Subset one variable (antibody response)
 - Summarize that variable
 - Numerically
 - Graphically