Network

Taehee Kim

12/6/2020

In this example we use following libraries.

```
library(rtweet)
library(dplyr)
library(plotly)
library(igraph)
library(RColorBrewer)
```

```
# In case you don't have above packages..
install.packages("package.name")
```

The data used in this example collected in following way.

Check collected data.

```
dim(rigged)
```

```
## [1] 59790 90
```

```
head(rigged)[,1:5]
```

```
## # A tibble: 6 × 5
##
     user_id
                          status_id
                                               created_at
                                                                    screen_name
                                                                                  text
     <chr>
                          <chr>
                                               <dttm>
                                                                                  <chr>
## 1 796568442
                          1334929881935712256 2020-12-04 18:37:40 MartinRoyHi... "@re...
## 2 1271322107767480322 1334929876705562626 2020-12-04 18:37:39 anthonygyam... "Mit...
## 3 1221086524000870410 1334929876143525894 2020-12-04 18:37:38 susanlovesb... "Not...
## 4 1221086524000870410 1334928574994898944 2020-12-04 18:32:28 susanlovesb... "Rig...
## 5 1221086524000870410 1334927300039675908 2020-12-04 18:27:24 susanlovesb... "RIG...
## 6 16260533
                          1334929865292861441 2020-12-04 18:37:36 decamom
                                                                                  "Pro...
```

```
min(rigged$created_at)
```

```
## [1] "2020-12-02 23:54:26 UTC"
```

```
max(rigged$created_at)
```

```
## [1] "2020-12-04 18:37:40 UTC"
```

Now let's create a graph object using retweet network.

```
# Create graph object ------
t_rt <- rigged %>%
   filter(is_retweet == 'TRUE') %>%
    select(user_id,retweet_user_id,screen_name, retweet_screen_name, verified, retweet_verified)

t_rt <- as.matrix(t_rt)

# edges
edges <- t_rt[,c(1,2)]
head(edges)</pre>
```

```
# actors
actors <- rbind(t_rt[,c(1,3,5)], t_rt[,c(2,4,6)])
head(actors)</pre>
```

```
## user_id screen_name verified
## [1,] "1271322107767480322" "anthonygyamfi11" "FALSE"
## [2,] "1221086524000870410" "susanlovesbrad2" "FALSE"
## [3,] "1221086524000870410" "susanlovesbrad2" "FALSE"
## [4,] "1221086524000870410" "susanlovesbrad2" "FALSE"
## [5,] "16260533" "decamom" "FALSE"
## [6,] "813898161500528640" "lovescienceart" "FALSE"
```

```
# Check if there are duplicated user ids
table(duplicated(actors[,1]))
##
## FALSE TRUE
## 41132 47372
length(unique(actors[,1]))
## [1] 41132
# Remove duplicated ones
dup <- duplicated(actors[,1])</pre>
actors <- actors[!dup,] # ! is negation.</pre>
# Create a graph object using igraph function
g <- graph from data frame(edges, directed=TRUE, vertices = actors)
# Check graph object
summary(g)
## IGRAPH 8945a35 DN-- 41132 44252 --
## + attr: name (v/c), screen_name (v/c), verified (v/c), degree (v/n),
## | indegree (v/n), color (v/c), color2 (v/c), label_fg (v/c), outdegree
## | (v/n), closeness (v/n), between (v/n)
# Check Edges and nodes
V(g)
## + 41132/41132 vertices, named, from 8945a35:
##
       \hbox{\tt [1]} \ \ 1271322107767480322} \ \ 1221086524000870410 \ \ 16260533
       [4] 813898161500528640 765386574880137216 824705339383840768
##
##
       [7] 477414516
                                312606173
                                                     839540301207318528
      [10] 2169506769
                                821173258842042369 2575780104
##
##
      [13] 859722686
                                1080409535880351744 1371234511
##
      [16] 1140183143468736512 1330005307368501249 1227021286968365057
##
      [19] 1309967277073330176 1165748373476917248 574427567
##
      [22] 1135234412
                                1140962418002190336 570058505
      [25] 843908050847186944 98222944
                                                    1103992284
##
##
      [28] 1260647419
                                521826631
                                                     2229667098
## + ... omitted several vertices
```

E(g)

```
## + 44252/44252 edges from 8945a35 (vertex names):
   [1] 1271322107767480322->32871086
##
## [2] 1221086524000870410->25073877
   [3] 1221086524000870410->25073877
##
##
   [4] 1221086524000870410->25073877
   [5] 16260533
                           ->74303349
##
    [6] 813898161500528640 ->25073877
##
##
   [7] 765386574880137216 ->216776631
##
   [8] 824705339383840768 ->25073877
## [9] 477414516
                          ->216776631
## [10] 312606173
                           ->25073877
## + ... omitted several edges
```

```
head(V(g)$screen_name)
```

```
## [1] "anthonygyamfill" "susanlovesbrad2" "decamom" "lovescienceart"
## [5] "savizzlemynizzl" "ke6byr"
```

```
head(V(g)$verified)
```

```
## [1] "FALSE" "FALSE" "FALSE" "FALSE" "FALSE"
```

Let's check if Donald Trump's node is existed in our network.

```
# Finding Donald Trump
trump_v <- which(V(g)$screen_name == "realDonaldTrump")
trump_v</pre>
```

```
## [1] 40084
```

```
# Trump degree
degree(g, v = trump_v)
```

```
## 25073877
## 19540
```

```
# Trump indegree
degree(g, v = trump_v, mode = "in")
```

```
## 25073877
## 19540
```

```
# Trump outdegree
degree(g, v = trump_v, mode = "out")
```

```
## 25073877
## 0
```

Centrality

Here we calculate three centrality measures: degree, betweenness, closeness. Other centrality can be measured using igraph function. For more detail, check its documentation.

```
# degree
head(degree(g))
```

```
# Let's write the degree as a node attribute:
V(g)$degree <- degree(g)
V(g)$indegree <- degree(g, mode="in") # The same can be done for in-degree (retweet ed by others)
V(g)$outdegree <- degree(g, mode="out") # and out-degree (retweeting other user's p ost)

# Chek top 10 nodes by its degree
V(g)[order(-degree)]$degree[1:10]</pre>
```

```
## [1] 19540 7953 2208 1972 1521 710 503 473 460 338
```

```
V(g)[order(-degree)]$screen_name[1:10]
```

```
## [1] "realDonaldTrump" "BernieSanders" "justinbaragona" "kylegriffin1"
## [5] "MarkFinchem" "tuckahoetommy" "mkraju" "weijia"
## [9] "ericswalwell" "TeaPainUSA"
```

```
# Also check is those accounts are verified one or not
V(g)[order(-degree)][1:10]$verified
   [1] "TRUE"
                                         "FALSE" "FALSE" "TRUE"
                "TRUE"
                         "TRUE"
                                 "TRUE"
                                                                   "TRUE"
                                                                           "TRUE"
## [10] "FALSE"
# Also indegree
V(g)[order(-indegree)][1:10]$screen name
##
    [1] "realDonaldTrump" "BernieSanders"
                                              "justinbaragona"
                                                                "kylegriffin1"
##
    [5] "MarkFinchem"
                           "tuckahoetommy"
                                              "mkraju"
                                                                 "weijia"
                           "TeaPainUSA"
    [9] "ericswalwell"
V(g)[order(-indegree)][1:10]$verified
                         "TRUE"
                                 "TRUE" "FALSE" "FALSE" "TRUE"
                                                                  "TRUE"
    [1] "TRUE"
                "TRUE"
                                                                           "TRUE"
## [10] "FALSE"
# Closeness and Betweenness
# It can take couple of minutes!
V(g)$closeness <- closeness(g, mode = "all") # "all" uses undirected pass.
V(g)$between <- betweenness(g, directed = FALSE)</pre>
# Check top 10 nodes by two centrarity measures
V(g)[order(-closeness)]$screen name[1:10]
##
    [1] "realDonaldTrump" "SmithSeigel"
                                              "sangersprings"
                                                                "SiegelGeorge6"
    [5] "FanFDC"
##
                           "tthornton1969"
                                              "MAGAGirlDiva"
                                                                 "hypnoticOMG"
##
    [9] "bayiskendr"
                           "monty723"
V(g)[order(-between)]$screen_name[1:10]
##
                                              "justinbaragona"
    [1] "realDonaldTrump" "BernieSanders"
                                                                "kylegriffin1"
##
    [5] "SmithSeigel"
                           "MarkFinchem"
                                              "tuckahoetommy"
                                                                 "weijia"
```

Plot graph

[9] "ericswalwell"

##

Lets plot our retweet network. igraph does not plot well when it has more than 1,000 of nodes. So in this example, we plot a small subset of the graph.

"sangersprings"

```
# simple plot
# Set node color
V(g)$color <- rgb(239, 249, 222, maxColorValue = 255) # light green. You can set up
rgb color. rgb(r, g, b, maxColorValue=255, alpha=255). 255 is commonly used scale.
# Get top nodes
top_nodes <- V(g)[order(-degree)][1:500]</pre>
# Create a small graph
small.g <- delete.vertices(g, which(!V(g) %in% top nodes)) # delete nodes if those
are not included in 'top nodes'
# Layout setting. We use Fruchterman Rheingold algorithm for network layout.
lay <- layout with fr(small.g)</pre>
small.g <- simplify(small.g) # Create a simple graph which do not contain loop and
multiple edges.
plot(small.g,
     vertex.label = NA,
     vertex.size = 5,
     edge.arrow.size = 0.1,
     edge.arrow.width = 0.3,
     vertex.color = V(small.g)$color,
     layout = lay)
```



```
# Plot: Set color -----
# add color
# base color2 # light green
V(g)$color2 <- rgb(239, 249, 222, maxColorValue = 255)
# Add red color to @realDonaldTrump and nodes who retweeted realDonaldTrump
ok <- V(g)$screen name == "realDonaldTrump"
V(g)$color2[ok] <- (rgb(255,179,186, maxColorValue = 255)) # red
ok2 <- neighbors(g, ok, mode = "in") # Find nodes who retweeting realDonaldTrump's
tweet
V(g)$color2[ok2] <- (rgb(255,179,186, maxColorValue = 255)) # Assign red color
# Add blue color to @BernieSanders and nodes who retweeted BernieSanders
ok <- V(g)$screen_name == "BernieSanders"</pre>
V(g)$color2[ok] <- rgb(186,225,255, maxColorValue = 255) # blue
ok2 <- neighbors(g, ok, mode = "in")</pre>
V(g)$color2[ok2] <- rgb(186,225,255, maxColorValue = 255)
# check
table(V(g)$color2)
```

```
##
## #BAE1FF #EFF9DE #FFB3BA
## 7953 13878 19301
```

```
# Lets plot again.

top_nodes <- V(g)[order(-degree)][1:500]
small.g <- delete.vertices(g, which(!V(g) %in% top_nodes))
lay <- layout_with_fr(small.g)

small.g <- simplify(small.g)
plot(small.g,
    vertex.size = 5,
    edge.arrow.size = 0.1,
    edge.arrow.width = 0.3,
    vertex.label = NA,
    vertex.color = V(small.g)$color2,
    layout = lay
    )

mtext("Top 500 users by degree", side = 1)</pre>
```


Top 500 users by degree

Clustering

It looks like this network has some clusters. Lets detect clusters using fast greedy algorithm here. Note that it might take couple of minitues to get the results.

```
un_g <- as.undirected(g) # it should be undirected graph
un_g <- simplify(un_g) # remove redundent edges

# Fast greedy algorithm
fg <- cluster_fast_greedy(un_g)</pre>
```

Check how many clusters are detected length(fg)

```
## [1] 793
```

```
# Check sizes of the clusters head(sizes(fg), 30)
```

```
## Community sizes
##
        1
                2
                       3
                                      5
                                             6
                                                     7
                                                            8
                                                                    9
                                                                          10
                                                                                 11
                                                                                                13
                               4
                                                                                         12
##
     2643
            1767
                   7298
                           1027
                                  2790
                                           229
                                                  487
                                                         1076
                                                                 556
                                                                         284
                                                                                181 18205
                                                                                               412
       14
##
              15
                      16
                             17
                                     18
                                            19
                                                   20
                                                           21
                                                                  22
                                                                          23
                                                                                 24
                                                                                         25
                                                                                                26
      229
                                    101
                                                   98
                                                           36
                                                                   32
                                                                          31
                                                                                 29
                                                                                                20
##
             516
                     118
                            302
                                           135
                                                                                         20
##
       27
              28
                      29
                             30
       41
               28
                      29
                             21
##
```

```
# Check modularity
modularity(fg)
```

```
## [1] 0.7026744
```

```
# Check which nodes belongs to which clusters
head(membership(fg))
```

```
## 1271322107767480322 1221086524000870410 16260533 813898161500528640
## 1 1 12 2 12
## 765386574880137216 824705339383840768
## 3 12
```

The algorithm detects about 700 clusters. But lets look into large clusters which consists more than 1000 nodes.

```
# We use community, 1,2,3,4,5,8,12
# check plot
V(g)$label_fg <- NA

for (i in c(1,2,3,4,5,8,12)){
   ok <- membership(fg) == i
# str_i <- as.character(i)
   V(g)$label_fg[ok] <- i
}

table(V(g)$label_fg)</pre>
```

```
##
## 1 12 2 3 4 5 8
## 2643 18205 1767 7298 1027 2790 1076
```

```
# Plot graph with cluster label
top_nodes <- V(g)[order(-degree)][1:300]
small.g <- delete.vertices(g, which(!V(g) %in% top_nodes))
lay <- layout_with_fr(small.g)

small.g <- simplify(small.g)

plot(small.g,
    vertex.size = 5,
    edge.arrow.size = 0.1,
    edge.arrow.width = 0.3,
    vertex.label = V(small.g)$label_fg,
    vertex.label.cex = 0.4,
    vertex.color = V(small.g)$color,
    layout = lay)

mtext("Top 300 verticies by degree", side = 1)</pre>
```


Top 300 verticies by degree

Now I am interested in the discourse of those groups. More concretely, lets look into tweets published by each group members. To do that, lets save user_id of the groups.

```
# Group 1: 12, 2 -> red
# Group 2: 1, 4, 5, 8, 3 -> blue

# Store users id
# red part
ok <- (V(g)$label_fg == "12" | V(g)$label_fg == "2")
red <- V(g)$name[ok]
red <- red[!is.na(red)] # remove NA (those were assigned no label_fg value)
length(red)</pre>
```

```
## [1] 19972
```

```
## ok
## FALSE TRUE
## 19972 14834
```

```
blue <- V(g)$name[ok]
blue <- blue[!is.na(blue)]
length(blue)</pre>
```

```
## [1] 14834
```

Let's save R objects for next part, creating a word cloud using Tweets.

```
save(rigged, g, fg, red, blue, file = "rigged_election.RData")
```

Exercise

- 1. Create a friend network of the candidates who run in BW at German federal election in 2021.
- 1. Create a graph object containing friend network.
- 2. Find out top 10 users by indegree.
- 3. Find out top 10 users by outdegree.
- 4. Plot a friend network.
- 2. Create a **retweet network** using tweets retrieved from search API. You can choose topic as you like. For example, omikuron, lockdown, etc..
- 1. Create a graph object containing retweet network.
- 2. Find out top 10 users by indegree.
- 3. Find out top 10 users by outdegree.
- 4. Plot a friend network.