

Hadar Tal

Winter 2024

Contents

1	Mat	thematical Background	1
	1.1	Multivariable Calculus	1
	1.2	Taylor series	3
	1.3	Important Inequalities	3
		1.3.1 $1 + x \le e^x$	3

iv CONTENTS

Chapter 1

Mathematical Background

1.1 Multivariable Calculus

Definition 1.1.1. Diffrentiability, single variable

Let $f:(a,b)\to\mathbb{R}$ be a function. We say that f is differentiable at $x_0\in(a,b)$ if

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \tag{1.1}$$

exists. If f is differentiable at x_0 , then $f'(x_0)$ is the derivative of f at x_0 .

Definition 1.1.2. Diffrentiability, single variable (alternative)

Let $f:(a,b)\to\mathbb{R}$ be a function. We say that f is differentiable at $x_0\in(a,b)$ if there exists a number m such that:

$$f(x_0 + h) = f(x_0) + m \cdot h + E(h) \text{ where } \lim_{h \to 0} \frac{E(h)}{h} = 0$$
 (1.2)

If f is differentiable at x_0 , then $f'(x_0) = m$ is the derivative of f at x_0 .

Definition 1.1.3. Diffrentiability, multivariable

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. We say that f is differentiable at x_0 if there exists a vector $m \in \mathbb{R}^n$ such that:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - m \cdot h}{||h||} = 0 \tag{1.3}$$

If f is differentiable at x_0 , then m is the gradient of f at x_0 , denoted $\nabla f(x_0)$.

Suppose the $S \subseteq \mathbb{R}^n$ and $f: S \to \mathbb{R}$ is a function.

Definition 1.1.4. Limit, multivariate function

We say that the limit of f at x_0 is L if for all $\epsilon > 0$, there exists $\delta > 0$ such that for all x such that $||x - x_0|| < \delta$, we have $|f(x) - L| < \epsilon$.

Definition 1.1.5. Diffrentiability, multivariable (alternative)

We say that f is differentiable at x_0 if there exists a vector $m \in \mathbb{R}^n$ such that:

$$f(x_0 + h) = f(x_0) + m^T \cdot h + E(h) \text{ where } \lim_{h \to 0} \frac{E(h)}{||h||} = 0$$
 (1.4)

If f is differentiable at x_0 , then m is the gradient of f at x_0 , denoted $\nabla f(x_0)$.

Definition 1.1.6. Partial Derivative

The partial derivative of f with respect to the i-th variable at x is:

$$\frac{\partial f}{\partial x_i}(x) = \lim_{h \to 0} \frac{f(x + h \cdot e_i) - f(x)}{h} \tag{1.5}$$

where e_i is the i-th standard basis vector.

Theorem 1.1.1. (Diffrentiability vs. Partial Derivatives)

If f is differentiable at x, then all partial derivatives of f exist at x and:

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)$$
 (1.6)

- If any partial derivative of f does not exist at x, then f is not differentiable at x.
- If all partial derivatives of f exist at x, then f may still not be differentiable at x and the vector $m = \nabla f(x)$ is the only possible vector that satisfies the definition of differentiability.

Definition 1.1.7. Continuously Differentiable

We say that f is continuously differentiable or of class C^1 if all partial derivatives of f exist and are continuous at every point in S.

Theorem 1.1.2. If f is continuously differentiable, then f is differentiable.

Definition 1.1.8. The directional derivative

For a given $x \in S$ and a unit vector $u \in \mathbb{R}^n$, the directional derivative of f at x in the direction of u is:

$$\partial_u f(x) = \lim_{h \to 0} \frac{f(x + h \cdot u) - f(x)}{h} \tag{1.7}$$

Equivalently, $\partial_u f(x) = g'(0)$ where $g(h) = f(x + h \cdot u)$.

Theorem 1.1.3. If f is differentiable at x, then for all $u \in \mathbb{R}^n$, the directional derivative of f at x in the direction of u exists and is given by:

$$\partial_u f(x) = \nabla f(x) \cdot u \tag{1.8}$$

Theorem 1.1.4. Fermat's Theorem

If f is differentiable at x and x is a local minimum of f, then $\nabla f(x) = 0$.

Theorem 1.1.5. Suppose that $f: S \to \mathbb{R}$ is differentiable at x. Then $\nabla f(x)$ is orthogonal to the level set of f that passes through x.

Theorem 1.1.6. The mean value theorem

If $f: S \to \mathbb{R}$ is differentiable on the open interval between a and b, then there exists $c \in [a,b]$ such that:

$$f(b) - f(a) = \nabla f(c) \cdot (b - a) \tag{1.9}$$

where $[a, b] = a + t(b - a)|t \in [0, 1]$.

1.2. TAYLOR SERIES 3

Definition 1.1.9. Second-order partial derivatives

Suppose that f is a C^1 function. If the partial derivatives of f are differentiable, then the second-order partial derivatives of f are:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) \tag{1.10}$$

Equivalently, $\frac{\partial^2 f}{\partial i \partial j} = \partial_j \partial_j f$. If i = j we denote $\frac{\partial^2 f}{\partial x_i^2}$ or $(\partial_i^2 f)$

Definition 1.1.10. The C^2 class

We say that f is of class C^2 if all second-order partial derivatives of f exist and are continuous.

Theorem 1.1.7. Clairaut's Theorem If f is of class C^2 , then $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$.

Definition 1.1.11. Hessian Matrix

The Hessian matrix of f at x is the matrix of second-order partial derivatives of f at x:

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

$$(1.11)$$

Corollary. The interpretation of the Hessian matrix

Let $u \in \mathbb{R}^n$ be a unit vector. then

$$\partial_{uu}^2 f(x) = \sum_{i,j=1}^n \partial_{ij} f(x) u_i u_j = u^T \nabla^2 f(x) u$$
(1.12)

1.2 Taylor series

Definition 1.2.1. Taylor Series

Let $f : \mathbb{R} \to \mathbb{R}$ be a function that is k times differentiable at x_0 . Then the Taylor series of f at x_0 is given by:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k + R_k(x)$$
 (1.13)

where $R_k(x) = \frac{f^{(k+1)}(c)}{(k+1)!}(x-x_0)^{k+1}$ for some c between x and x_0 .

Definition 1.2.2. Taylor Series for Multivariable Functions (k=2)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function that is C^2 at x_0 . Then for any h such that $x_0 + h \in S$, there exists $\theta \in [0, 1]$ such that:

$$f(x_0 + h) = f(x_0) + \nabla f(x_0) \cdot h + \frac{1}{2} h^T \nabla^2 f(x_0 + \theta h) h$$
 (1.14)

1.3 Important Inequalities

1.3.1 $1 + x \le e^x$