### Presentación sobre pi usando BEAMER

Serezade gonzález Torres

23 de abril de 2014

Facultad de Matemáticas Universidad de La Laguna

1 Definición del número pi

- 1 Definición del número pi
- 2 Historia del número pi

- 1 Definición del número pi
- 2 Historia del número pi
- 3 La cuadratura del Círculo.
  - Primera Fórmula
  - Segunda Fórmula
  - Tercera Fórmula
  - Cuarta Fórmula
  - Quinta Fórmula

- 1 Definición del número pi
- 2 Historia del número pi
- 3 La cuadratura del Círculo.
  - Primera Fórmula
  - Segunda Fórmula
  - Tercera Fórmula
  - Cuarta Fórmula
  - Quinta Fórmula
- Bibliografía

# Definición del número pi

### Definición

El número pi es un número irracional de infinitos decimales.

# Historia del número pi

#### Definición

• Los antiguos egipcios (hacia 1600 a. de C.) ya sabían que existía una relación entre la longitud de la circunferencia y su diámetro; y entre el área del círculo y el diámetro al cuadrado (seguramente de forma intuitiva). En el Papiro de Rhind puede leerse lo siguiente: "Corta 1/9 del diámetro y construye un cuadrado sobre la longitud restante. Este cuadrado tiene el mismo área que el circulo".

# Historia del número pi

#### Definición

- Los antiguos egipcios (hacia 1600 a. de C.) ya sabían que existía una relación entre la longitud de la circunferencia y su diámetro; y entre el área del círculo y el diámetro al cuadrado (seguramente de forma intuitiva). En el Papiro de Rhind puede leerse lo siguiente: "Corta 1/9 del diámetro y construye un cuadrado sobre la longitud restante. Este cuadrado tiene el mismo área que el circulo".
- En Mesopotamia, más o menos por la misma época, los babilonios utilizaban el valor  $3'125 \ (3+1/8)$  según puede leerse en la Tablilla de Susa.

# Historia del número pi

#### Definición

- Los antiguos egipcios (hacia 1600 a. de C.) ya sabían que existía una relación entre la longitud de la circunferencia y su diámetro; y entre el área del círculo y el diámetro al cuadrado (seguramente de forma intuitiva). En el Papiro de Rhind puede leerse lo siguiente: "Corta 1/9 del diámetro y construye un cuadrado sobre la longitud restante. Este cuadrado tiene el mismo área que el circulo".
- En Mesopotamia, más o menos por la misma época, los babilonios utilizaban el valor  $3'125 \ (3+1/8)$  según puede leerse en la Tablilla de Susa.
- Y aún hoy en día es un tema a tratar.

### Primera fómula

$$x = \frac{a_2x^2 + a_1x + a_0}{1 + 2z^3}, \quad x + y^{2n+2} = \sqrt{b^2 - 4ac}$$

### Segunda fórmula

$$S_n = a_1 + \cdots + a_n = \sum_{i=1}^n a_i$$

### Tercera fórmula

$$\int_{x=0}^{\infty} x e^{-x^2} dx = \frac{1}{2}, \quad e^{i\pi} + 1 = 0$$

### Cuarta fórmula

$$\min_{1 \le x \le 2} \left( x + \frac{1}{x} \right) = 2, \quad \lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x = e^x$$

### Cinco fórmulas

$$||x||_2 = 1, |-7| = 7, m|n, m|n, \langle x, y \rangle, \langle x, y \rangle$$

# Bibliografía



Tutorial de Python. http://docs.python.org/2/tutorial/