

CLAIM AMENDMENTS

This listing of claims will replace all prior versions, and listings, of claims in the application.

- 1 1. (Currently Amended) A method for determining the angular orientation of
2 an object comprising:
3 obtaining a plurality of images of the object;
4 assigning values to a plurality of positions in a polar plot using data
5 from the images, wherein the polar plot has having an origin and data from
6 each image being assigned to a corresponding sector of the polar plot; and
7 computing a centroid based on the assigned values wherein an angle of
8 the centroid with respect to the origin indicates the angular orientation of the
9 object.

- 1 2. (Original) The method according to claim 1, wherein said assigning
2 comprises identifying positions in the polar plot that are uniformly spaced,
3 identifying corresponding pixels in the image for the positions in the polar plot
4 and assigning luminance values for the pixels to the positions in the polar plot.

- 1 3. (Original) The method according to claim 2, wherein said assigning further
2 comprises interpolating for positions in the polar plot that are between pixels.

- 1 4. (Original) The method according to claim 1, wherein said assigning results
2 in a non-linear mapping of pixel position to polar position.

- 1 5. (Original) The method according to claim 1, further comprising
2 determining a width of the object by scanning each image.

- 1 6. (Original) The method according to claim 1, further comprising calibrating
2 cameras prior to obtaining the images from the cameras.

- 1 7. (Original) The method according to claim 6, wherein said calibrating
2 comprises obtaining images of a cylindrical object of uniform color.

1 8. (Original) The method according to claim 1, wherein the plurality of
2 images consists of four images taken by each of four cameras and wherein
3 said assigning includes assigning one of the images to each of four quadrants
4 of the polar plot.

1 9. (Original) The method according to claim 1, wherein the plurality of
2 images consists of three images taken by each of three cameras and wherein
3 said assigning includes assigning one of the images to each of three 120
4 degree intervals of the polar plot.

1 10. (Original) The method according to claim 1, the polar plot is divided into
2 sectors with an image of the plurality being obtained for each sector and with
3 all sectors of the polar plot being imaged.

1 11. (Original) The method according to claim 1, wherein said images are
2 obtained from near-infrared light from the object.

1 12. (Original) The method according to claim 1, further comprising
2 determining a location of the object in the field of view of each of a plurality
3 of cameras and when the object is not in the center of the field of view, said
4 assigning is corrected according to its distance from the center.

1 13. (Original) The method according to claim 1, wherein the object is a
2 person's head.

1 14. (Original) The method according to claim 13, further comprising
2 directing the person's voice at a remote location according to the angular
3 orientation of the person's head.

1 15. (Original) The method according to claim 13, further comprising
2 estimating a vertical position of the person's eyes and obtaining luminance
3 values of the images at or below the level of the person's eyes.

1 16. (Original) The method according to claim 15, wherein said estimating
2 comprises scanning the images to locate the top of the person's head and
3 measuring a distance down from the top of the person's head.

1 17. (Original) The method according to claim 15, wherein said estimating
2 comprises scaling the images.

1 18. (Original) The method according to claim 13, further comprising
2 performing a 180 degree correction of angular orientation of the person's
3 head.

1 19. (Original) The method according to claim 13, further comprising
2 displaying images of a remote location for the person.

1 20. (Original) The method according to claim 13, wherein said images are
2 formed by performing difference keying.

1 21. (Original) The method according to claim 20, wherein said images are
2 obtained from near-infrared light from the person's head.

1 22. (Original) The method according to claim 20, wherein said performing
2 difference keying includes subtracting a baseline image of an apparatus from
3 an image obtained with the person's head being located within the apparatus.

1 23. (Original) The method according to claim 22, wherein the apparatus
2 comprises projection screens that substantially surround the person.

1 24. (Currently Amended) The method according to claim 1, wherein the
2 luminance values assigned to the polar plot are luminance values obtained
3 from a band around the object that is one pixel wide.

1 25. (Original) The method according to claim 1, wherein the values assigned
2 to the polar plot are luminance values obtained from a band around the object
3 that is multiple pixels wide.

1 26. (Original) The method according to claim 25, wherein the luminance
2 values assigned to the polar plot represent a vertical average.

1 27. (Original) The method according to claim 25, wherein said assigning
2 further comprises performing bi-linear interpolation for positions in the polar
3 plot that are between pixels.

1 28. (Original) The method according to claim 1, wherein the values assigned
2 to the polar plot represent vertical luminance variance.

1 29. (Original) The method according to claim 1, wherein the values assigned
2 to the polar plot represent vertical frequency content.

1 30. (Currently Amended) A computer-readable medium encoded with
2 ~~program storage device readable by a machine, tangibly embodying~~ a program
3 of instructions executable by ~~the~~a machine to perform method steps for
4 determining the angular orientation of an object, said method steps including
5 obtaining a plurality of images of the object, assigning values to a plurality of
6 positions in a polar plot using data from the images, ~~wherein the polar plot has~~
7 having an origin and data from each image being assigned to a corresponding
8 sector of the polar plot, and computing a centroid based on the assigned values
9 wherein an angle of the centroid with respect to the origin indicates the
10 angular orientation of the object.

1 31. (Original) A system for determining the angular orientation of an object
2 comprising:
3 a plurality of cameras ~~for obtaining~~that obtain a plurality of images of
4 the object; and

5 a computer for assigning that assigns values to a plurality of positions
6 in a polar plot using data from the images, wherein the polar plot has having
7 an origin and data from each image being assigned to a corresponding sector
8 of the polar plot, and the computer for computing computes a centroid based
9 on the assigned values wherein an angle of the centroid with respect to the
10 origin indicates the angular orientation of the object.

1 32. (New) A method for determining the angular orientation of an object
2 comprising:

3 obtaining a plurality of images of the object;
4 assigning values to a plurality of positions in a polar plot using data
5 from the images, the polar plot having an origin and being in a plane that is
6 independent of planes of the images; and
7 computing a centroid based on the assigned values wherein an angle of
8 the centroid with respect to the origin indicates the angular orientation of the
9 object.

1 33. (New) The method according to claim 32, wherein said assigning
2 comprises identifying positions in the polar plot that are uniformly spaced,
3 identifying corresponding pixels in the image for the positions in the polar plot
4 and assigning luminance values for the pixels to the positions in the polar plot.

1 34. (New) The method according to claim 32, wherein said assigning results
2 in a non-linear mapping of pixel position to polar position.

1 35. (New) The method according to claim 32, the polar plot is divided into
2 sectors with an image of the plurality being obtained for each sector and with
3 all sectors of the polar plot being imaged.

1 36. (New) The method according to claim 32, further comprising determining
2 a location of the object in the field of view of each of a plurality of cameras

3 and when the object is not in the center of the field of view, said assigning is
4 corrected according to its distance from the center.

1 37. (New) The method according to claim 32, wherein the object is a
2 person's head.

1 38. (New) The method according to claim 37, further comprising directing
2 the person's voice at a remote location according to the angular orientation of
3 the person's head.

1 39. (New) The method according to claim 32, wherein the values assigned to
2 the polar plot are luminance values obtained from a band around the object
3 that is one pixel wide.

1 40. (New) The method according to claim 32, wherein the values assigned to
2 the polar plot are luminance values obtained from a band around the object
3 that is multiple pixels wide.

1 41. (New) The method according to claim 32, wherein the values assigned to
2 the polar plot represent vertical luminance variance.