XAAS: ACCELERATION AS A SERVICE TO ENABLE PRODUCTIVE HIGH-PERFORMANCE CLOUD COMPUTING

Panelists:

- Dan Ernst (NVIDIA)
- Ian Foster (Argonne National Laboratory)
- Torsten Hoefler (ETH Zurich)
- Thomas C. Schulthess (CSCS)

Moderated by Marcin Copik (ETH Zurich)

What is Axeleration as a Service?

Paper

Theme Article: Converged Computing: A Best-of-Both Worlds of HPC and Cloud

XaaS: Acceleration as a Service to Enable Productive High-Performance Cloud Computing

Torsten Hoefler, ETH Zurich & Swiss National Supercomputing Centre (CSCS), Switzerland

Marcin Copik, ETH Zurich, Switzerland

Pete Beckman, Argonne National Laboratory, USA

Andrew Jones, Microsoft, United Kingdom

lan Foster, Argonne National Laboratory, USA

Manish Parashar, Utah University, USA

Daniel Reed, Utah University, USA

Matthias Troyer, Microsoft, USA

Thomas Schulthess, Swiss National Supercomputing Centre (CSCS), Switzerland

Dan Ernst, NVIDIA, USA

Jack Dongarra, University of Tennessee, USA

Performance Portable Containers

Virtual Machines

Compiled Source Code / Applications

supercomputing

Performance Portable Containers

Virtual Machines

Compiled Source Code / Applications

supercomputing

Portable XaaS Containers

Performance Portable Containers

Three Building Blocks of XaaS

Portable XaaS Containers

Three Building Blocks of XaaS

Portable XaaS Containers

High-Performance I/O

- Data storage managed by system provider
- Communication between XaaS containers
- Specialization to network fabric

Three Building Blocks of XaaS

Portable XaaS Containers

High-Performance I/O

- Data storage managed by system provider
- Communication between XaaS containers
- Specialization to network fabric

Scheduling & Invocations

- Flexible scheduling to reduce wait times
- Balance between batch and interactive workloads
- High-level control plane API, e.g., REST

Market / Policy-Specific (e.g., public vs. private)

Standard Portable Container API (e.g., OCI)

Market / Policy-Specific (e.g., public vs. private)

Base Operating System Layer (e.g., Ubuntu/Debian/... - POSIX)

Generic Container (e.g., docker)

Market / Policy-Specific (e.g., public vs. private)

Standard Portable Container API (e.g., OCI)

Commercial Cloud Providers

HPC Service Providers

XaaS Accelerated Compute, Communication, I/O libraries, and APIs

System-Specific (e.g., HPE, Intel)

Base Operating System Layer (e.g., Ubuntu/Debian/... - POSIX)

Generic Container (e.g., docker)

ALCF Argonne

Market / Policy-Specific (e.g., public vs. private)

Standard Portable Container API (e.g., OCI)

HPC Service Providers

AWS **aws**

XaaS System Architecture

XaaS Accelerated Compute, Communication, I/O libraries, and APIs

System-Specific (e.g., HPE, Intel)

Generic Containers (e.g., docker)

Maintained by Provider

Base Operating System Layer (e.g., Ubuntu/Debian/... - POSIX)

ALCF Argonne

Standard Portable Container API (e.g., OCI)

Market / Policy-Specific (e.g., public vs. private)

Commercial Cloud Providers

Azure 🔔

Domain-Specific (e.g., Climate)

vstem-Snecific

Generic Containers

System-Specific (e.g., HPE, Intel)

Generic Containers (e.g., docker)

Maintained by Maintained by Community Provider

XaaS Accelerated Compute, Communication, I/O libraries, and APIs

Base Operating System Layer (e.g., Ubuntu/Debian/... - POSIX)

Standard Portable Container API (e.g., OCI)

Market / Policy-Specific (e.g., public vs. private)

Commercial Cloud Providers

HPC Service Providers

Full Build & Specialization

Full Build & Specialization

Flexible Library Hooks

Full Build & Specialization

Flexible Library Hooks

Full Build & Specialization

Flexible Library Hooks

Full Build & Specialization

Flexible Library Hooks

Cloud Productivity

Cloud Productivity

Performance Portability

Cloud Productivity

Performance Portability

Unified Interface

Cloud Productivity

Performance Portability

Unified Interface

Flexible Scheduling

Dan Ernst NVIDIA

Torsten Hoefler ETH Zurich

lan Foster
Argonne National Laboratory

Thomas Schulthess
Swiss National Supercomputing
Centre (CSCS)

Marcin Copik ETH Zurich

Q&A

