Suppose we have a dataset of pictures and we want to cluster them. Which partitioning algorithm seems more appropriate?

- A. k-medoids
- B. k-medians
- C. k-means
- D. none of the above

What will be the color of the middle points after convergence (k=3)?

- A. Green
- B. Yellow
- C. Blue
- D. k-means does not converge

If p and q are density connected, then ...

- A. p is density reachable from q
- B. one of p or q is a core point
- C. one of p or q is a border point
- D. none of the above is necessarily true

In density-based clustering, which points can belong to multiple clusters?

- A. Core points
- B. Border points
- C. Outliers
- D. None

When executing DBSCAN ...

- A. the result is independent on the order of choosing initial core points
- B. each point belongs to the cluster with the closest centroid
- the number of clusters is independent of the model parameters
- D. the iteration stops once found clusters are no more updated with new points

If a classifier has 75% accuracy, it means that ...

- A. It correctly classifies75% of the data items in the training set
- B. It correctly classifies 100% of the data items in the training set but only 75% in the test set
- C. It correctly classifies 75% of the data items in the test set
- D. It correctly classifies75% of the unknown data items

Given the distribution of positive and negative samples for attributes A_1 and A_2 , which is the best attribute for splitting?

A_1	Р	N
а	2	2
b	4	0
A ₂	Р	N
x	3	1
V	3	1

- A. A1
- B. A2
- C. They are the same
- D. There is not enough information to answer the question

When splitting a continuous attribute, its values need to be sorted ...

- A. to avoid overfitting
- B. to prune the data
- C. to define a binary split condition
- D. to accelerate tree induction

The computational cost for constructing a RF with K as compared to constructing K decision trees on the same data

- A. is identical
- B. is on average larger
- C. is on average smaller

