## 02 - Logic

#### EDA Playground link for 2-bit comparator

| Dec. equivalent | B[1:0] | A[1:0] | B is greater than A | B equals A | B is less than A |
|-----------------|--------|--------|---------------------|------------|------------------|
| 0               | 0 0    | 0 0    | 0                   | 1          | 0                |
| 1               | 0 0    | 0 1    | 0                   | 0          | 1                |
| 2               | 0 0    | 1 0    | 0                   | 0          | 1                |
| 3               | 0 0    | 1 1    | 0                   | 0          | 1                |
| 4               | 0 1    | 0 0    | 1                   | 0          | 0                |
| 5               | 0 1    | 0 1    | 0                   | 1          | 0                |
| 6               | 0 1    | 1 0    | 0                   | 0          | 1                |
| 7               | 0 1    | 1 1    | 0                   | 0          | 1                |
| 8               | 1 0    | 0 0    | 1                   | 0          | 0                |
| 9               | 1 0    | 0 1    | 1                   | 0          | 0                |
| 10              | 1 0    | 1 0    | 0                   | 1          | 0                |
| 11              | 1 0    | 11     | 0                   | 0          | 1                |
| 12              | 1 1    | 0 0    | 1                   | 0          | 0                |
| 13              | 1 1    | 0 1    | 1                   | 0          | 0                |
| 14              | 11     | 1 0    | 1                   | 0          | 0                |
| 15              | 11     | 1 1    | 0                   | 1          | 0                |

equals\_SoP = m0 + m5 + m10 + m15 = (!b1.!b0.!a1.!a0) + (!b1.b0.!a1.a0) + (b1.!b0.a1.!a0) + (b1.b0.a1.a0)

## Karnaugh maps for 2-bit



greater\_50P = 
$$b_n \bar{a}_n + b_o \bar{a}_n \bar{a}_o + b_n b_o \bar{a}_o$$
  
 $leos_PoS = (a_n + a_o) \cdot (\bar{b}_n + \bar{b}_o) \cdot (\bar{b}_n + a_n) \cdot (\bar{b}_o + a_n) \cdot (\bar{b}_n + a_o)$ 

# 4-bit comparator

```
EDA Playground link for 4-bit comparator
                  assert ((s_B_greater_A = '0') and (s_B_equals_A = '1') and (s_B_less_A = '0')) report "Test failed for input combination: 1000, 1000" severity error;
  96
                   s_b <= "1011"; s_a <= "1101"; wait for 100 ns;
assert ((s_B_greater_A = '0') and (s_B_equals_A = '1') and (s_B_less_A = '0'))
report "Test failed for input combination: 1011, 1101" severity error;</pre>
  99
  100
  102
                   -- WRITE OTHER TESTS HERE
 104
  105
                   -- Report a note at the end of stimulus process
  107
                   report "Stimulus process finished" severity note;
 108
                   wait:
             end process p_stimulus;
 109
 110
  111 end architecture testbench;
  112
```

#### VHDL testbench

```
s_b <= "1111"; s_a <= "1111"; wait for 100 ns;
                assert ((s_B_greater_A = '0') and (s_B_equals_A = '1') and (s_B_less_A
= '0'))
       report "Test failed for input combination: 1111, 1111" severity error;
                s_b <= "1100"; s_a <= "1101"; wait for 100 ns;
                assert ((s_B_greater_A = '0') and (s_B_equals_A = '0') and (s_B_less_A
= '1'))
       report "Test failed for input combination: 1100, 1101" severity error;
                s_b <= "0001"; s_a <= "0000"; wait for 100 ns;
                assert ((s_B_greater_A = '1') and (s_B_equals_A = '0') and (s_B_less_A
= '0'))
       report "Test failed for input combination: 0001, 0000" severity error;
                s_b <= "0111"; s_a <= "1101"; wait for 100 ns;</pre>
                assert ((s_B_greater_A = '0') and (s_B_equals_A = '0') and (s_B_less_A
= '1'))
       report "Test failed for input combination: 0111, 1101" severity error;
                s_b <= "1000"; s_a <= "0111"; wait for 100 ns;
                assert ((s_B_greater_A = '1') and (s_B_equals_A = '0') and (s_B_less_A
= '0'))
       report "Test failed for input combination: 1000, 0111" severity error;
                s_b <= "0010"; s_a <= "1100"; wait for 100 ns;
                assert ((s_B_greater_A = '0') and (s_B_equals_A = '0') and (s_B_less_A
= '1'))
       report "Test failed for input combination: 0010, 1100" severity error;
                s_b <= "1000"; s_a <= "1000"; wait for 100 ns;
                assert ((s_B_greater_A = '0') and (s_B_equals_A = '1') and (s_B_less_A
= '0'))
       report "Test failed for input combination: 1000, 1000" severity error;
                s_b <= "1011"; s_a <= "1101"; wait for 100 ns;
                assert ((s_B_greater_A = '0') and (s_B_equals_A = '1') and (s_B_less_A
= '0'))
        report "Test failed for input combination: 1011, 1101" severity error;
        report "Stimulus process finished" severity note;
       wait;
    end process p_stimulus;
```

#### VHDL design

```
architecture Behavioral of comparator_2bit is
begin
```

```
B_greater_A_o <= '1' when (b_i > a_i) else '0';
B_equals_A_o <= '1' when (b_i = a_i) else '0';
B_less_A_o <= '1' when (b_i < a_i) else '0';</pre>
```

end architecture Behavioral;