## 法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
  - 微信公众号:小象
  - 新浪微博: ChinaHadoop



# 第六章 多元时间序列分析

主讲教师 周仕君

## 本章结构

- □ 平稳时间序列建模
- □ 虚假回归
- □ 单位根检验
- □协整
- □ 误差修正模型



### 6.1 平稳时间序列建模

#### □ ARIMAX模型结构

$$\begin{cases} y_t = \mu + \sum_{k=1}^k \frac{\Theta_i(B)}{\Phi_i(B)} B^{l_i} x_{it} + \varepsilon_t \\ \varepsilon_t = \frac{\Theta(B)}{\Phi(B)} a_t \end{cases}$$

#### 例6.1

□在天然气炉中,输入的是天然气,输出的是 CO<sub>2</sub>, CO<sub>2</sub>的输出浓度与天然气的输入速率有关。 现在以中心化后的天然气输入速率为输入序 列,建立CO<sub>2</sub>的输出百分浓度模型。

## 输入/输出序列时序图

#### □ 输入序列



#### □ 输出序列



# 一元分析

□ 拟合输入序列

$$x_{t} = -0.1228 + \frac{a_{t}}{1 - 1.97607B + 1.37499B^{2} - 0.34336B^{3}}$$

□ 拟合输出序列

$$y_t = 53.90176 + \frac{a_t}{1 - 3.10703B + 1.34005B^2 - 0.21274B^4}$$



# 多元分析

#### □ 协相关图

#### Crosscorrelations

| Lag                                                       | Covariance                                                                                                                                            | Correlation                                                                                           | -1 | 9 | 8 | 7 | 6 | 5 | 4 | 3   | 2                 | 1   | 0                                       | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----|---|---|---|---|---|---|-----|-------------------|-----|-----------------------------------------|-----|---|---|---|---|---|---|---|---|---|
| -10<br>-9<br>-8<br>-7<br>-6<br>-5<br>-4<br>-3<br>-2<br>-1 | 0.0015683<br>0.00013502<br>-0.0060480<br>-0.0017624<br>-0.0080539<br>-0.0000944<br>-0.0012802<br>-0.0031078<br>0.00065212<br>-0.0019166<br>-0.0003673 | 0.02301<br>0.00198<br>08872<br>02585<br>11814<br>00138<br>01878<br>04559<br>0.00957<br>02811<br>00539 | -1 | 9 | 8 | 7 | 6 | 5 | 4 | 3   | 2                 | *** | * * * * * * * * * * * * * * * * * * * * |     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                 | 0.0038939<br>-0.0016971<br>-0.019231<br>-0.022479<br>-0.030909<br>-0.018122<br>-0.011426<br>-0.0017355<br>0.0022590<br>-0.0035152                     | 0.05712<br>02489<br>28210<br>32974<br>45341<br>26583<br>16761<br>02546<br>0.03314<br>05156            |    |   |   |   |   | , |   | *** | ***<br>***<br>*** | *** | * * * * * * * * * * * * * * * * * * * * | * . |   |   |   |   |   |   |   |   |   |

<sup>&</sup>quot;." marks two standard errors



## 拟合回归模型

□ 模型结构

$$y_{t} = \mu + \frac{\theta_{0} - \theta_{1}B - \theta_{2}B^{2}}{1 - \phi_{1}B}B^{3}x_{t} + \varepsilon_{t}$$

□模型口径

$$y_{t} = 53.32256 + \frac{-0.5648 - 0.42573B - 0.29964B^{2}}{1 - 0.60057B}B^{3}x_{t} + \varepsilon_{t}$$



## 拟合残差序列

#### □偏自相关图

#### Partial Autocorrelations

| Lag                                  | Correlation                                                                                         | -1 | 9 | 8 | 7 | 6 | 5 | 4  | 3  | 2 | 1   | 0          | 1   | 2   | 3   | 4  | 5  | 6  | 7  | 8  | 9  | 1 |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------|----|---|---|---|---|---|----|----|---|-----|------------|-----|-----|-----|----|----|----|----|----|----|---|--|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 0.89307<br>-0.43103<br>-0.12987<br>0.02319<br>0.04054<br>-0.02657<br>-0.02496<br>0.01993<br>0.00001 |    |   |   |   |   |   | ** | ** |   | *** | * !<br>* ! | **: | **: | **: | ** | ** | ** | ** | ** | ** |   |  |
| 10                                   | 0.08721                                                                                             | ł  |   |   |   |   |   |    |    |   |     | ł          | **  |     |     |    |    |    |    |    |    |   |  |

#### □ 残差拟合模型

$$\varepsilon_t = \frac{1}{1 - 1.53B + 0.64B^2} a_t$$



# 拟合模型

|      | 模型结构                                                                                                                                                             | 比较                     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 一元模型 | $y_t = 53.9 + \frac{a_t}{1 - 3.1B + 1.3B^2 - 0.2B^4}$                                                                                                            | AIC=196.3<br>SBC=211.1 |
| 多元模型 | $\begin{cases} y_t = 53.26 + \frac{-0.54 - 0.38B - 0.52B^2}{1 - 0.55B} B^3 x_t + \varepsilon_t \\ \varepsilon_t = \frac{1}{1 - 1.53B + 0.64B^2} a_t \end{cases}$ | AIC=8.3<br>SBC=34.0    |

# ARIMAX模型拟合效果图





#### 6.2 虚假回归

- $\square$  假设条件  $H_0: \beta_1 = 0 \leftrightarrow H_1: \beta_1 \neq 0$
- $\square$  检验统计量  $t = \frac{\beta_1}{\sigma_\beta}$
- □ 虚假回归  $\Pr\{|t| \le t_{\alpha/2}(n)|$ 非平稳序列 $\} \ge \alpha$

## 6.3 单位根检验

- □ 定义
  - 通过检验特征根是在单位圆内还是单位圆上( 外),来检验序列的平稳性
- □ 方法
  - DF检验
  - ADF检验
  - PP检验



#### DF检验

- □ 假设条件
  - 原假设:序列非平稳  $H_0: |\phi_1| \ge 1$
  - 备择假设: 序列平稳 H<sub>0</sub>: |φ|<1
- □ 检验统计量

$$\tau = \frac{\left|\hat{\phi}_1\right| - 1}{S(\hat{\phi}_1)}$$



### DF统计量

$$t(\phi_1) = \frac{\hat{\phi}_1 - \phi_1}{S(\hat{\phi}_1)} \xrightarrow{\text{ in } S(\hat{\phi}_1)} N(0,1)$$

$$\tau = \frac{\left|\hat{\phi}_{1}\right| - 1}{S(\hat{\phi}_{1})} \xrightarrow{\text{RR}} \frac{\int_{0}^{1} W(r)dW(r)}{\sqrt{\int_{0}^{1} \left[W(r)\right]^{2} dr}}$$

## DF检验的等价表达

□等价假设

$$H_0$$
:  $\rho = 0 \leftrightarrow H_1$ :  $\rho < 0$   
其中:  $\rho = |\phi_1| - 1$ 

□ 检验统计量

$$\tau = \frac{\hat{\rho}}{S(\hat{\rho})}$$

### DF检验的三种类型

$$\square$$
 第一种类型  $X_t = \phi_1 X_{t-1} + \mathcal{E}_t$ 

□ 第二种类型 
$$X_t = \mu + \phi_1 X_{t-1} + \varepsilon_t$$

$$\square$$
 第三种类型  $X_t = \mu + \beta t + \phi_1 X_{t-1} + \varepsilon_t$ 



#### 例6.2

□对1978年-2002年中国农村居民家庭人均纯收入对数序列{ln x,}和生活消费支出对数序列{ln y,}进行检验

# 例6.2 时序图





# 例6.2 输入序列的DF检验

| 类型            | 延迟阶数 | 模型结构                                                           | τ 检验统<br>计量的值 | $pr < \tau$ |
|---------------|------|----------------------------------------------------------------|---------------|-------------|
| 类型 1:         | 0    | $\ln x_t = \varepsilon_t$                                      | 7.05          | 0.9999      |
| 无均值,无<br>趋势模型 | 1    | $\ln x_t = \frac{\varepsilon_t}{1 - \phi_1 B}$                 | 1.09          | 0.9224      |
| 类型 2:         | 0    | $\ln x_t = \mu + \varepsilon_t$                                | -2.18         | 0.2190      |
| 有均值,无<br>趋势模型 | 1    | $\ln x_t = \mu + \frac{\varepsilon_t}{1 - \phi_1 B}$           | -1.16         | 0.6730      |
| 类型 3:         | 0    | $\ln x_t = \mu + \beta t + \varepsilon_t$                      | -0.7          | 0.9617      |
| 有趋势模<br>型     | 1    | $\ln x_t = \mu + \beta t + \frac{\varepsilon_t}{1 - \phi_1 B}$ | -3.14         | 0.1215      |



# 例6.2 输出序列的DF检验

| 类型            | 延迟阶数 | 模型结构                                                           | τ 检验统<br>计量的值 | $pr < \tau$ |
|---------------|------|----------------------------------------------------------------|---------------|-------------|
| 类型 1:         | 0    | $\ln  y_t = \varepsilon_t$                                     | 6.54          | 0.9999      |
| 无均值,无<br>趋势模型 | 1    | $\ln y_t = \frac{\varepsilon_t}{1 - \phi_1 B}$                 | 1.08          | 0.9217      |
| 类型 2:         | 0    | $\ln y_t = \mu + \varepsilon_t$                                | -2.27         | 0.1887      |
| 有均值,无<br>趋势模型 | 1    | $\ln y_t = \mu + \frac{\varepsilon_t}{1 - \phi_1 B}$           | -1.41         | 0.5598      |
| 类型 3:         | 0    | $\ln y_t = \mu + \beta t + \varepsilon_t$                      | -0.46         | 0.9784      |
| 有趋势模<br>型     | 1    | $\ln y_t = \mu + \beta t + \frac{\varepsilon_t}{1 - \phi_1 B}$ | -3.31         | 0.0892      |



#### ADF检验

□ DF检验只适用于AR(1)过程的平稳性检验。 为了使检验能适用于AR(p)过程的平稳性检验,为了使检验能适用于AR(p)过程的平稳性检验,人们对检验进行了一定的修正,得到增广检验(Augmented Dickey – Fuller),简记为ADF检验

#### ADF检验的原理

□ 若AR(p)序列有单位根存在,则自回归系数 之和恰好等于1

$$\lambda^{p} - \phi_{1}\lambda^{p-1} - \dots - \phi_{p} = 0$$

$$\stackrel{\lambda=1}{\Longrightarrow} 1 - \phi_{1} - \dots - \phi_{p} = 0$$

$$\stackrel{\phi_{1}}{\Longrightarrow} \phi_{1} + \phi_{2} + \dots + \phi_{p} = 1$$

#### ADF检验

□等价假设

$$H_0$$
:  $\rho = 0 \leftrightarrow H_1$ :  $\rho < 0$   
其中:  $\rho = \phi_1 + \phi_2 + \dots + \phi_p - 1$ 

□ 检验统计量

$$\tau = \frac{\hat{\rho}}{S(\hat{\rho})}$$

### ADF检验的三种类型

□ 第三种类型

$$x_{t} = \mu + \beta t + \phi_{1} x_{t-1} + \dots + \phi_{p} x_{t-p} + \varepsilon_{t}$$



#### 例6.2续

□对1978年-2002年中国农村居民家庭人均纯收入对数差分后序列{∇ln x<sub>i</sub>}和生活消费支出对数差分后序列{∇ln y<sub>i</sub>}进行检验

# 例 $6.2 \left\{ \nabla \ln x_{t} \right\}$ 序列的ADF检验

| 类型                                                  | 延迟阶数 | τ 检验统计<br>量的值 | $pr < \tau$ |  |  |
|-----------------------------------------------------|------|---------------|-------------|--|--|
|                                                     | 0    | -1.38         | 0.1498      |  |  |
| <br>    类型 1                                        | 1    | -1.37         | 0.1523      |  |  |
| <u>天</u> 空                                          | 2    | -1.36         | 0.1555      |  |  |
|                                                     | 3    | -1.34         | 0.1606      |  |  |
|                                                     | 0    | -1.92         | 0.3196      |  |  |
| <br><del>                                    </del> | 1    | -2.23         | 0.2033      |  |  |
| 类型 2                                                | 2    | -3.1          | 0.0421      |  |  |
|                                                     | 3    | -1.9          | 0.3278      |  |  |
|                                                     | 0    | -2.08         | 0.5311      |  |  |
| <br>  <del>※</del> 刑 2                              | 1    | -2.41         | 0.3646      |  |  |
| 类型 3<br>                                            | 2    | -3.37         | 0.0820      |  |  |
|                                                     | 3    | -1.99         | 0.5732      |  |  |

# 例6.2 {Vln y<sub>t</sub>}序列的ADF检验

| 类型               | 延迟阶数 | τ 检验统计<br>量的值 | $pr < \tau$ |
|------------------|------|---------------|-------------|
|                  | 0    | -1.27         | 0.1813      |
| <br>    类型 1     | 1    | -1.8          | 0.0688      |
| <u>天</u> 空 I     | 2    | -1.3          | 0.1699      |
|                  | 3    | -1.06         | 0.2514      |
|                  | 0    | -1.89         | 0.3297      |
| <br>    类型 2     | 1    | -3.35         | 0.0246      |
| <del>火</del> 垒 2 | 2    | -2.81         | 0.0737      |
|                  | 3    | -1.72         | 0.4086      |
|                  | 0    | -2.16         | 0.4897      |
| <br>  类型 3       | 1    | -3.62         | 0.0511      |
| <del>大</del> 笠   | 2    | -3.32         | 0.0902      |
|                  | 3    | -2.21         | 0.4613      |



#### PP检验

- □ ADF检验主要适用于方差齐性场合,它对于 异方差序列的平稳性检验效果不佳
- □ Phillips和 Perron于1988年对ADF检验进行了 非参数修正,提出了PP检验统计量。
- □ PP检验统计量适用于异方差场合的平稳性检验, 且服从相应的ADF检验统计量的极限分布



#### PP检验统计量

$$Z(\tau) = \tau(\hat{\sigma}^2 / \hat{\sigma}_{Sl}^2) - (1/2)(\hat{\sigma}_{Sl}^2 - \hat{\sigma}^2)T \sqrt{\hat{\sigma}_{Sl}^2 \sum_{t=2}^{T} (x_{t-1} - \bar{x}_{T-1})^2}$$

#### □ 其中:

(1) 
$$\hat{\sigma}^2 = T^{-1} \sum_{t=1}^{T} \hat{\varepsilon}_t^2$$

(2) 
$$\hat{\sigma}_{Sl}^2 = T^{-1} \sum_{t=1}^T \hat{\varepsilon}_t^2 + 2T^{-1} \sum_{j=1}^l w_j(l) \sum_{t=j+1}^T \hat{\varepsilon}_t \hat{\varepsilon}_{t-j}$$

(3) 
$$\overline{x}_{T-1} = \frac{1}{T-1} \sum_{t=1}^{T-1} x_t$$



#### 例6.2续

□ 对1978年-2002年中国农村居民家庭人均纯收入对数差分后序列 $\{\nabla \ln x_i\}$ 和生活消费支出对数差分后序列 $\{\nabla \ln y_i\}$ 进行PP检验

# 例6.2 $\{\nabla \ln x_t\}$ 序列的pp检验

| 类型                     | 延迟阶数 | τ 检验统计<br>量的值 | $pr < \tau$ |
|------------------------|------|---------------|-------------|
|                        | 0    | -1.38         | 0.1498      |
| <br>  类型 1             | 1    | -1.4          | 0.1447      |
| <u> </u>               | 2    | -1.43         | 0.1381      |
|                        | 3    | -1.39         | 0.1484      |
|                        | 0    | -1.92         | 0.3196      |
| <br>  类型 2             | 1    | -2.05         | 0.2661      |
| <del> </del>           | 2    | -2.16         | 0.2240      |
|                        | 3    | -2.06         | 0.2620      |
|                        | 0    | -2.08         | 0.5311      |
| <br>  <del>※</del> 刑 2 | 1    | -2.22         | 0.4559      |
| 类型 3                   | 2    | -2.34         | 0.3995      |
|                        | 3    | -2.22         | 0.4548      |



# 例6.2 $\{\nabla \ln y_t\}$ 序列的PP检验

| 类型               | 延迟阶数 | τ 检验统计<br>量的值 | $pr < \tau$ |  |  |
|------------------|------|---------------|-------------|--|--|
|                  | 0    | -1.27         | 0.1813      |  |  |
| <br>    类型 1     | 1    | -1.37         | 0.1524      |  |  |
| <u> </u>         | 2    | -1.38         | 0.1513      |  |  |
|                  | 3    | -1.3          | 0.1714      |  |  |
|                  | 0    | -1.89         | 0.3297      |  |  |
| <br>  类型 2       | 1    | -2.17         | 0.2228      |  |  |
| <del>大</del> 空 Z | 2    | -2.2          | 0.2110      |  |  |
|                  | 3    | -2.06         | 0.2603      |  |  |
|                  | 0    | -2.16         | 0.4897      |  |  |
| <br>  类型 3       | 1    | -2.43         | 0.3536      |  |  |
| <del>大</del> 空   | 2    | -2.47         | 0.3397      |  |  |
|                  | 3    | -2.31         | 0.4137      |  |  |



# 例6.2 二阶差分后序列的PP检验

| 94m)                                                | フボトロ V 人 49- | {∇²1          | $\ln x_t$   | $\left\{ \nabla^{2} \ln y_{t} \right\}$ |             |  |  |
|-----------------------------------------------------|--------------|---------------|-------------|-----------------------------------------|-------------|--|--|
| <u>类型</u>                                           | 延迟阶数         | τ 检验统计<br>量的值 | $pr < \tau$ | τ 检验统<br>计量的值                           | $pr < \tau$ |  |  |
|                                                     | 0            | -4.29         | 0.0002      | -3.42                                   | 0.0016      |  |  |
| <del>※</del> ⊞ 1                                    | 1            | -4.29         | 0.0002      | -3.47                                   | 0.0014      |  |  |
| 类型 1                                                | 2            | -4.31         | 0.0002      | -3.44                                   | 0.0015      |  |  |
|                                                     | 3            | -4.27         | 0.0002      | -3.34                                   | 0.0019      |  |  |
|                                                     | 0            | -4.23         | 0.0035      | -3.37                                   | 0.0237      |  |  |
| <br>  类型 2                                          | 1            | -4.23         | 0.0035      | -3.42                                   | 0.0210      |  |  |
| → <del>大</del> 坐 Z                                  | 2            | -4.25         | 0.0033      | -3.39                                   | 0.0224      |  |  |
|                                                     | 3            | -4.21         | 0.0037      | -3.28                                   | 0.0283      |  |  |
|                                                     | 0            | -4.12         | 0.0193      | -3.27                                   | 0.0983      |  |  |
| <br>  <del>                                  </del> | 1            | -4.12         | 0.0194      | -3.33                                   | 0.0881      |  |  |
| 类型 3                                                | 2            | -4.15         | 0.0184      | -3.29                                   | 0.0934      |  |  |
|                                                     | 3            | -4.09         | 0.0205      | -3.17                                   | 0.1158      |  |  |



#### 6.4 协整

- □单整的概念
  - 如果序列平稳,说明序列不存在单位根,这时称序列为零阶单整序列,简记为 $x_t \sim I(0)$
  - 假如原序列一阶差分后平稳,说明序列存在一个单位根,这时称序列为一阶单整序列,简记为 $x_t \sim I(1)$
  - 假如原序列至少需要进行d阶差分才能实现平稳 ,说明原序列存在d个单位根,这时称原序列为 阶单整序列,简记为 x,~ I(d)

### 单整的性质

- $\square$  若 $x_t \sim I(0)$ ,对任意非零实数a,b,有 $a + bx_t \sim I(0)$
- $\square$  若 $x_t \sim I(d)$ ,对任意非零实数a,b,有 $a + bx_t \sim I(d)$
- $\square$  若 $x_t \sim I(0)$ ,  $y_t \sim I(0)$  对任意非零实数a, b, 有  $z_t = ax_t + by_t \sim I(0)$
- $\square$  若 $x_t \sim I(d)$ ,  $y_t \sim I(c)$  对任意非零实数a, b, 有  $z_t = ax_t + by_t \sim I(k) \quad k \leq \max[d,c]$



#### 协整的概念

□ 假定自变量序列为  $\{x_1\},\dots,\{x_k\}$ , 响应变量序列为 $\{y_t\}$ , 构造回归模型

$$y_t = \beta_0 + \sum_{i=1}^k \beta_i x_{it} + \varepsilon_t$$

假定回归残差序列 $\{\mathcal{E}_t\}$ 平稳,我们称响应序列 $\{y_t\}$ 与自变量序列 $\{x_1\},\dots,\{x_k\}$ 之间具有协整关系。



#### 协整检验

- □ 假设条件
  - 原假设:多元非平稳序列之间不存在协整关系 $H_0: \varepsilon_t \sim I(k), k \geq 1$
  - 备择假设:多元非平稳序列之间存在协整关系 $H_1: \varepsilon_{t} \sim I(0)$
- □ 检验步骤
  - 建立响应序列与输入序列之间的回归模型
  - 对回归残差序列进行平稳性检验



#### 例6.2续

□对1978年-2002年中国农村居民家庭人均纯收入对数序列 ln{x<sub>t</sub>}和生活消费支出对数序列 ln{y<sub>t</sub>} 进行EG检验。

### 构造回归模型

- □ 拟合模型
  - 一元线性模型
- □估计方法
  - 最小二乘估计
- □ 拟合模型口径

$$\ln y_t = 0.96832 \ln x_t + \varepsilon_t$$



# 残差序列单位根检验

| 类型   | 延迟阶数 | τ 检验统计<br>量的值 | $pr < \tau$ |
|------|------|---------------|-------------|
| 类型 1 | 0    | -1.33         | 0.1629      |
|      | 1    | -1.69         | 0.0845      |
|      | 2    | -1.93         | 0.0528      |
| 类型 2 | 0    | -1.28         | 0.6222      |
|      | 1    | -1.64         | 0.4455      |
|      | 2    | -1.85         | 0.3484      |

我们可以以91.55%(1-0.0845)的把握断定残差 序列平稳且具有一阶自相关性

$$\varepsilon_{t} = \phi_{1} \varepsilon_{t-1} + \upsilon_{t}$$



## 最终拟合模型

$$\ln y_t = 0.96821 \ln x_t + \frac{v_t}{1 - 0.83713B}$$

$$v_t^{i.i.d} \sim N(0,0.000893)$$

#### 误差修正模型

- □ 误差修正模型 (Error Correction Model) 简 称为ECM, 最初由Hendry和Anderson于1977年提出, 它常常作为协整回归模型的补充模型出现
- □ 协整模型度量序列之间的长期均衡关系,而 ECM模型则解释序列的短期波动关系



#### 短期影响因素分析

- □响应序列的当期波动\\\\y,主要会受到三方面短期波动的影响
  - 输入序列的当期波动  $\nabla x_t$
  - 上一期的误差 ECM<sub>t-1</sub>
  - 纯随机波动  $\varepsilon_t$

$$y_{t} - y_{t-1} = \beta x_{t} - \beta x_{t-1} - \varepsilon_{t-1} + \varepsilon_{t}$$

$$\nabla y_{t} = \beta \nabla x_{t} - ECM_{t-1} + \varepsilon_{t}$$



### 误差修正模型

$$\nabla y_{t} = \beta_{0} \nabla x_{t} + \beta_{1} ECM_{t-1} + \varepsilon_{t}$$



#### 例6.2续

□对1978年-2002年中国农村居民家庭人均纯收入对数序列 ln{x<sub>i</sub>} 和生活消费支出对数序列 ln{y<sub>i</sub>}构造ECM模型

#### 例6.2 构造ECM模型

□拟合长期协整关系

$$\ln y_t = 0.96832 \ln x_t + \varepsilon_t$$

□拟合短期波动(ECM模型)

$$\nabla \ln y_{t} = 0.9579 \nabla \ln x_{t} - 0.1537 ECM_{t-1} + \varepsilon_{t}$$



## 疑问

□问题答疑: <a href="http://www.xxwenda.com/">http://www.xxwenda.com/</a>

■可邀请老师或者其他人回答问题

#### 联系我们

#### 小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop



