

EE 6340/3801 Wireless Communications

Modulation

Mohammed Zafar Ali Khan zafar@ee.iith.ac.in

Lecture 6 Outline

- Announcements
- Last few Lecture
 - Wireless Channel
- Todays lecture
 - Modulation
 - · Linear Modulation I
 - Complex Signal Representation
 - Pulse Shaping
 - Linear Modulation II
 - Non-linear Modulation
 - FDMA

MODULATION: DEFINITION

- What is modulation?
 - The process of modifying a carrier signal (usually a sinusoid) in accordance with an information-bearing signal (modulating signal), such that the modified carrier signal (modulated signal) can be used to convey information.
 - Carrier signal:

$$c(t) = A_c \sin(2\pi f_c t + \theta)$$

- Three parameters: amplitude, frequency, phase
- One or all of them can be modified to carry information.
 - E.g. the amplitude is modified to carry information m(t)

$$s(t) = m(t)A_c \sin(2\pi f_c t + \theta)$$

4

MODULATION: DEFINITION

- What is modulation? (cont'd)
 - Modulating signal m(t)
 - · Original electrical information-bearing signal
 - E.g. electrical waveform representing voice, ASCII, digital video, etc.
 - · Usually at low frequency
 - · Also called baseband signal
 - Carrier signal c(t)
 - High frequency sinusoid to carry the information.
 - Modulated signal s(t)
 - · Carrier signal modified by modulating signal
 - At the output of the modulator.
 - · Also called bandpass signal, or RF signal

MODULATION: WHY?

· Why modulation?

- Shift the frequency of the message signal to the pre-allocated channel.
 - For example:
 - speech signal: $300 \sim 3100 \text{ Hz}$ m(t)
 - Shift the signal to the allocated frequency range: 900MHz c(t)
- Transfer the message into a form more suitable for wireless transmission.
 - · Limited bandwidth
 - Make better use of the limited spectrum
 - High frequency signals are more suitable for wireless transmission.
- Enables multiple access
 - Signals from different users can be shifted to different frequencies.
 - Modulation allows the simultaneous transmission of multiple users.

6

MODULATION: TERMS

Demodulation

- Recover the original message signal m(t) from the modulated signal s(t).

Modulator

Device used to perform modulation

Demodulator

- Device used to perform demodulation.

r(t): modulated signal impaired by fading and noise.

MODULATION: CLASSIFICATIONS

- Linear modulation v.s. non-linear modulation
- · Analog modulation v.s. Digital modulation
- Amplitude modulation v.s. Angle modulation

8

MODULATION: LINEAR V.S. NON-LINEAR

• Principle of superposition

$$m_i(t)$$
 Modulator $S_i(t)$

- If input is $m_1(t) + m_2(t)$, then output is $s_1(t) + s_2(t)$
- If input is $a \cdot m_1(t)$, then output is $a \cdot s_1(t)$
- If the input-output of the modulator satisfies principle of superposition, then the modulator is called linear modulator.

- E.g.
$$s(t) = m(t)A_c \sin(2\pi f_c t + \theta)$$

• If the principle of superposition is not satisfied, the modulator is non-linear modulator.

MODULATION: ANALOG V.S. DIGITAL

· Analog modulation

- -m(t) is an analog signal
 - m(t) is a continuous function of time t.
 - m(t) can take infinite number of values
- Analog modulation is also called continuous-wave (CW) modulation.
- AM radio, FM radio, first generation cell phone system

· Digital modulation

- -m(t) is a digital signal
 - Take finite number of values
 - E.g. {-1, 1}, {-2, -1, 1, 2}, ...
- 2nd generation cell phone system
- Digital modulation systems have become more and more popular.

10

MODULATION: AMPLITUDE V.S. ANGLE

Amplitude modulation

- The amplitude of the carrier, A_c , is modified by the message signal m(t).

Angle modulation

- The angle of the carrier is modified by the message signal m(t).

$$\psi(t) = 2\pi f_c t + \theta$$

- Frequency modulation: frequency is modified by m(t).
- Phase modulation: phase is modified by m(t)

- Modulation
- Linear Modulation Techniques I
- Complex Signal Representation
- Pulse Shaping
- Linear Modulation Techniques II
- Non-linear modulation
- FDMA

12

LINEAR MODULATION: AM

- Amplitude modulation (AM)
 - The term, AM, is usually used when m(t) is analog

- Spectrum of AM
 - $m(t) \rightarrow M(f)$
 - $-A_c \cos(2\pi f_c t) \rightarrow \frac{A_c}{2} \left[\delta(f f_c) + \delta(f + f_c) \right]$
 - $\qquad s(t) \implies S(f) = ?$

LINEAR MODULATION: AM

• Spectrum of AM

- Center frequency shifted from 0 to f_c
- The bandwidth is doubled from W to 2W

14

LINEAR MODULATION: AM

- Bandwidth
 - Baseband bandwidth (bandwidth of baseband signal): from 0 to W
 - Passband bandwidth (bandwidth of modulated signal): from Fc-W to Fc+W.
 - · Passband bandwidth is twice of baseband bandwidth.
- · How do we define bandwidth?
 - There are many different definitions of bandwidth
 - B': half power bandwidth (3dB bandwidth).
 - B": null-to-null bandwidth
 - B": absolute bandwidth
 - FCC definition: bandwidth contains 99% of signal power

power spectrum

LINEAR MODULATION: BPSK

Binary phase shift keying (BPSK) → Digital modulation

$$s(t) = \begin{cases} A_c \cos(2\pi f_c t) & \text{for binary 1} \\ A_c \cos(2\pi f_c t + \pi) & \text{for binary 0} \end{cases}$$

- Or alternatively

$$s(t) = \begin{cases} A_c \cos(2\pi f_c t) & \text{for binary 1} \\ -A_c \cos(2\pi f_c t) & \text{for binary 0} \end{cases}$$

Also called binary amplitude shift keying (BASK)

LINEAR MODULATION: BPSK

$$b_k = \begin{cases} 1 & 0 \le t \le T \\ -1 & o.w. \end{cases}$$

Ts: symbol period. (The time duration to carry one symbol) • usually inverse proportional to signal BW

18

17

LINEAR MODULATION: MASK

- M-ary amplitude shift keying (MASK)
 - The information can take $M = 2^n$ values

$$m(t) = \sum_{k=1}^{\infty} m_k p(t - kT_s)$$

$$m_k = \{s_1, s_2, \dots, s_M\}$$

$$p(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & o.w. \end{cases}$$

$$m_k = \{s_1, s_2, \cdots, s_M\}$$

$$p(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & o.w. \end{cases}$$

• E.g. 4-ary amplitude shift keying (4ASK)

$$m_k = \{-3, -1, 1, 3\}$$

LINEAR MODULATION: MASK

- Each symbol can take M values
 - \rightarrow Each symbol can represent $n = \log_2 M$ bits of information.
- E.g.
 - 4ASK → M = 4 → 2 bits/sym
 - 8ASK → M = 8 → 3 bits/sym
 - 16ASK → M = 16 → 4 bits/sym
- Symbol rate (baud) Rs:
 - # of modulation symbols/second
 - Generally, signal bandwidth is proportional to symbol rate!
- Bit rate Rb:
 - Bits/second
- $R_b = R_s \times (\# \text{ of bits/sym})$

LINEAR MODULATION: MASK

- M-ary modulation
 - At the same symbol rate, (or fixed bandwidth)
 - Larger $M \rightarrow$ more bits/symbol \rightarrow larger bit rate
 - M-ary modulation is good for band-limited system
 - In wireless systems, spectrum is precious
 - M-ary modulation is widely used in wireless systems!
 - Typical values used in wireless system: M = 2, 4, 8, 16
- Why don't we use a very large M?
 - If M → infinity, then analog signal
 - At the same SNR
 - Larger M → signals are more closed to each other → it's harder to distinguish between all signals at receiver due to noise → probability of error becomes larger!

22

LINEAR MODULATION: QPSK

- Quadrature phase shift keying (QPSK)
 - Combination of two BPSK streams
 - Quadrature: orthogonal (two carriers that are 90 degree apart)

11

LINEAR MODULATION: QPSK

- Demodulator
 - How could these two signals not interfere with each other?

$$s(t)\cos(2\pi f_c t) = A_c m_1(t)\cos^2(2\pi f_c t) + A_c m_2(t)\sin(2\pi f_c t)\cos(2\pi f_c t)$$

$$= \frac{A_c}{2}m_1(t) + \frac{A_c}{2}m_1(t)\cos(4\pi f_c t) + \frac{A_c}{2}m_2(t)\sin(4\pi f_c t)$$

After low pass filter: $\frac{A_c}{2}m_1(t)$

24

LINEAR MODULATION: QPSK

- · At each symbol period, two bits of information are transmitted
 - 2 bits/symbol
 - Inphase signal $s_I(t) = A_c m_1(t) \cos(2\pi f_c t)$ has the same bandwidth as BPSK
 - Quadrature signal $s_Q(t) = A_c m_1(t) \sin(2\pi f_c t)$ has the same bandwidth as BPSK
 - The sum $s(t) = s_I(t) + s_Q(t)$ has the same bandwidth as BPSK
 - Sum in time domain
 sum in frequency domain bandwidth unchanged.
 - The same bandwidth as BPSK, but twice the bit rate of BPSK!
 - No interference between quadrature and inphase
 - Inphase has the same error performance as BPSK
 - · Quadrature has the same error performance as BPSK
 - QPSK has the same error performance of BPSK!

One of the rare occasions that increase bit rate without sacrificing error performance!

- Modulation
- Linear Modulation Techniques I
- Complex Signal Representation
- Pulse Shaping
- Linear Modulation Techniques II
- Non-linear modulation
- FDMA

26

COMPLEX REPRESENTATION

· Band-pass signal

$$s(t) = s_I(t)\cos(2\pi f_c t) - s_Q(t)\sin(2\pi f_c t)$$

• Complex base-band signal (also called the complex envelope of the signal)

$$\widetilde{s}(t) = s_{I}(t) + js_{Q}(t)$$

· Relationship between complex baseband and band-pass

$$s(t) = \operatorname{Re}\left\{ \tilde{s}(t) \exp(j2\pi f_c t) \right\}$$

COMPLEX REPRESENTATION

- Modulation can be decomposed into two steps:
 - 1. complex baseband modulation, 2. frequency upconversion
 - The complex representation completely preserves the information of the modulating signal except the carrier frequency
 - It's suffice for us to examine baseband modulation only!

$$s(t) = \operatorname{Re}\left\{ \tilde{s}(t) \exp(j2\pi f_c t) \right\}$$

Baseband Frequency upconversion

Modulation

28

COMPLEX REPRESENTATION: BASEBAND MODULATION

BPSK

$$s_I(t) \in \{-1,1\} \qquad \qquad s_{\mathcal{Q}}(t) = 0$$

$$\widetilde{s}(t) \in \{-1,1\} \qquad \qquad (M=2)$$

• QPSK

$$S_{I}(t) \in \{-1,1\}$$
 $S_{Q}(t) \in \{-1,1\}$ $\widetilde{S}(t) \in \{-1-j,-1+j,1-j,1+j\}$ $(M = 4)$

Modulation

COMPLEX REPRESENTATION: CONSTELLATION

- **Modulation Constellation**
 - The collection of all modulation symbols in their complex representation. E_s : the energy of one symbol

QPSK

$$\widetilde{s}(t) \in \left\{ \begin{aligned} \sqrt{E_s} & \exp(j\frac{\pi}{4}), \sqrt{E_s} & \exp(j\frac{3\pi}{4}), \\ \sqrt{E_s} & \exp(j\frac{5\pi}{4}), \sqrt{E_s} & \exp(j\frac{7\pi}{4}) \end{aligned} \right\}$$

30

COMPLEX REPRESENTATION

• Baseband modulation examples

0010110111

BPSK:

QPSK:

COMPLEX REPRESENTATION: SYMBOL ENERGY

- Symbol energy Es
 - If modulation symbol is

$$\widetilde{s}(t) = \sqrt{E_s} \exp[j\theta(t)]$$

- The energy of one symbol is E_s .
 - Proof:
- Bit energy Eb
 - The energy of one bit
 - # of bits per symbol: $\log_2 M$

$$E_b = E_s / \log_2 M$$

32

COMPLEX REPRESENTATION

· Signals pass through channel with flat fading and AWGN

h

$$\widetilde{h}(t) = h_I(t) + jh_Q(t)$$
 : time-varying flat fading

$$\widetilde{n}(t) = n_{I}(t) + j n_{Q}(t)$$
 : AWGN

Both the inphase component and quadrature component are going to be distorted.