Optimalizace (B0B33OPT)

3. domácí úloha - Volby 2017

Martin Turyna

1 Úloha

1.1 Formulujte optimalizační problém

Jedná se o úlohu

$$min\{\|(A - 1t^T)X\|^2, X^TX = I\},\$$

kde A je původní zadaná matice, $1t^T$ je matice jejíž sloupce tvoří těžiště bodů a X je ortogonální doplněk báze hledaného podprostoru.

1.2 Vyřešte optimalizační problém

Nejprve tedy spočítáme těžiště bodů matice A

$$t = \frac{\sum_{i=1}^{25} a_i}{25}.$$

Poté odečteme těžiště od každého bodu původní matice, čímž je posuneme do nuly

$$A_0 = A - 1t^T.$$

Nakonec provedeme SVD rozklad

$$A_0 = USV^T$$
.

Tím získáme matici U, jejíž první dva vektory u_1 a u_2 tvoří bází lineárního podprostoru posunutých bodů a jsou příslušné dvěma největším vlastním číslům. Přičtením těžiště body posuneme na afinní podprostor, jež je řešením této úlohy.

Optímální hodnotu poté nalezneme součtem zbylých vlastních čísel z matice S v kvadrátu

$$opt = \sum_{i=3}^{25} \lambda_i^2 \approx 1098$$

kde

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{25}$$

1.3 Graf

Obrázek 1 - Politické spektrum stran rozdělené podle odpovědí na otázky

1.4 Interpretace výsledku

Na výsledném grafu lze v prostoru sledovat rozdílné názory politických stran. Výše máme strany, které směřují spíše levicově, níže zase pravicové strany. Čím větší je vzdálenost dvou stran (bodů), tím více se dané strany v názorech na položené otázky liší.

${f 2}$ Úloha

2.1 Graf

Obrázek 2 - Spektrum otázek v prostoru rozdělené podle nejčastější odpovědi

2.2 Interpretace výsledku

Nyní máme na grafu rozložení bodů interpretovaných podle své nejčastější odpovědi a podle x lze vidět otázky podle počtu odpovědí ANO (žluté nejčastěji ANO, modré nejčastěji NE).

2.3 Ortonormální báze z předchozí úlohy

Není to možné, protože v obou úlohách posouváme o různé těžiště bodů a je tedy u 2. úlohy potřeba provést SVD znovu.