Denoising Dense Representations with Symbols for Robust Zero-Shot Retrieval

Rodrigo Nogueira

Tutorial Timetable

- 1. Part 1: Knowledge Graphs and Entities
 - Welcome & Latent Space Representations (Dietz)
 - 2. Knowledge Graphs and GPT (Bast)
 - 3. Entity Linking (Bast)
- 2. Part 2: Neuro-Symbolic Foundations
 - 1. Ranking Wikipedia Entities / Aspects (Chatterjee)
 - 2. Neural Text Representations and Semantic Annotations (Dietz)
 - 3. Infusion of Symbolic Knowledge into Text Representation (Nie)
- 3. Part 3: Reasoning, Robustness, and Relevance
 - Denoising Dense Representations with Symbols (Nogueira) ← We are here
 - 2. Reasoning about Relevance (Dalton)
 - 3. From PRF to Retrieval Enhanced Generation (Dietz)
- 4. Part 4: Emerging Topics
 - 1. Conclusion and Outlook
 - 2. Panel Discussion

Agenda

- The need for better search engines in the context of LLMs
- 3 ways of using transformers for search:
 - Dense Retrievers
 - Sparse Retrievers
 - Rerankers
 - In-domain vs out-of-domain analysis

Why am I interested in information retrieval?

Automated hypothesis generator using literature-based discovery:

To connect pieces of knowledge previously thought to be unrelated

Example: What are the best drugs for illness A?

Swanson linking

Just ask GPT-4 to generate hypotheses?

Maybe, but it is yet to be shown that this works...

- LLM's can hardly remember facts about specialized domains, let alone connect them

Information given to LLMs needs to be carefully selected

A example from the IIRC dataset:

Wilhelm Müller was born on 7 October 1794 at **Dessau**, the son of a tailor. In 1813-1814 he took part, as a volunteer in the Prussian army, in the national rising against **Napoleon**. He participated in the battles of **Lützen**, **Bautzen**, **Hanau** and **Kulm**. In 1814 he returned to his studies at Berlin. Müller's son, **Friedrich Max Müller**, was an English orientalist who founded the comparative study of religions.

Which battle Wilhelm Müller fought in while in the Prussian army had the most casualties?

Battle of Lützen (1813)

Napoleon lost 19,655 men, while the Prussians lost 8,500 men and the Russians lost 3,500 men $\,$

Battle of Bautzen

Losses on both sides totaled around 20,000.

Battle of Hanau

Overall, 4,500 French soldiers and 9,000 allied soldiers were lost in the battle.

Battle of Kulm

The French lost more than half of the pursuing force of 34,000; The allies lost approximately 13,000 soldiers.

Just train retrievers on more data?

- Many interesting problems do not have labelled datasets
- We need robust zero-shot retrievers!

A Simple Search Engine

Where to use a Pretrained Transformer Model?

How Transformers are used in IR?

Sparse Dense Representations Representations document document Transformer Transformer new symbols dense vector Dense index Inverted Index "apple": [doc32, doc5], "house": [doc85, doc9],

Reranker

Dense representations

Single-vector dense retriever based on BERT

Retrieval: Find the top k most relevant texts to a query

Brute-force search:

We often need to search many (e.g.: millions) of texts

Brute-force won't scale

Multi-vector Dense Retriever: ColBERT

Khattab, Zaharia. ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT. SIGIR 2020.

Sparse representations

Learned Sparse Representations: SparTerm

(b) Importance Predictor

Token-wise Importance Predictor

Passage-wise Importance Distribution(dense)

Token-wise Importance

Distribution

(c) Gating Controller

SPLADE: Learned Sparse Representations

State-of-art retriever on BEIR without a reranker

|embedding| = vocabulary size

log(1 + ReLU(logits) ensures sparsity (i.e., most elements are zeros)

Can be used with existing inverted index infrastructure (e.g., Lucene)

Training loss:

$$\mathcal{L} = \mathcal{L}_{rank-IBN} + \lambda_q \mathcal{L}_{reg}^q + \lambda_d \mathcal{L}_{reg}^d$$

$$\mathcal{L}_{rank-IBN} = -\log \frac{e^{s(q_i, d_i^+)}}{e^{s(q_i, d_i^+)} + e^{s(q_i, d_i^-)} + \sum_j e^{s(q_i, d_{i,j}^-)}}$$

high score for relevant query-doc pairs

$$\ell_{\text{FLOPS}} = \sum_{j \in V} \bar{a}_j^2 = \sum_{j \in V} \left(\frac{1}{N} \sum_{i=1}^N w_j^{(d_i)} \right)^2$$
 ensures low term weights

Formal et al. 2021

Augmenting Sparse Representations with doc2query

Rerankers

monoBERT: BERT as a reranker

We want:

$$s_i = P(Relevant = 1|q, d_i)$$

A binary classifier finetuned on pairs of <query, relevant text> and <query, non-relevant text>

monoT5: T5 as a reranker

Why use a sequence-to-sequence model if we don't need to generate text?

In summary

Sources: Gao et al., "COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List", 2021

Formal et al., "SPLADE: Sparse lexical and expansion model for first stage ranking", 2021

Noqueira et al., "Document expansion by query prediction", 2019

Learned Sparse (e.g., SPLADE)

Which is better in in-domain vs out-of-domain?

What is in-domain vs out-domain?

It is a subjective definition!

In Domain:

 Training and test examples (queries/documents) are from the same domain (e.g., finance)

Out-of-domain:

- Training and test examples (queries/documents) are from different domains (e.g., finance vs biomedicine)

In-domain vs Out-of-domain

No distillation (e.g., Splade v2, ColBERT v2) No IR-specific pretraining (e.g. CoCondenser, Contriever) No larger training dataset (e.g., GTR, E5)

nDCG@10

	nbcd@i0	
Method	In-domain TREC-DL 20	Out-of-domain BEIR
BM25	0.475	0.440
doc2query (sparse)	0.619	0.453
SPLADE (sparse)	0.671	0.458
ANCE (dense)	0.646	0.413
ColBERT (dense multi vector)	0.676	0.453
COIL (dense multi vector)	0.688	0.483
BM25 + monoT5-base (reranker)	0.701	0.490

Source: Lin SC, Lin J., "A Dense Representation Framework for Lexical and Semantic Matching", 2022

Scaling up model size

Conclusions

- Retrieval method: No clear winner if you have lots of query-relevant passages to train on;
- Fine-grained representations (i.e., symbols) are key for OOD effectiveness;
- Rerankers seem to have better OOD effectiveness than dense retrievers