ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КИВЕРНЕТИКИ

Усилитель на биполярных транзисторах

Работу выполнили: Державин Андрей Хайдари Фарид Шурыгин Антон группа Б01-909

Долгопрудный, 2021

Содержание

1	Основные формулы	3
2	Нестабилизированный усилитель	3
	2.1	3
	2.2	4
3	Стабилизированный усилитель	4
	3.1	4
	3.2	5
4	Обработка резульатов измерений	6

1 Основные формулы

$$K_u = \frac{U_{\text{bmx}}}{U_{\text{bx}}} \quad K_e = \frac{U_{\text{bmx}}}{\epsilon_{\text{reh}}}$$

$$R_{\scriptscriptstyle \rm BX} = \frac{U_{\scriptscriptstyle \rm BX}}{I_{\scriptscriptstyle \rm BX}} = \frac{U_{\scriptscriptstyle \rm BX}R_{\rm II}}{\epsilon_{\scriptscriptstyle \rm \Gamma eH} - U_{\scriptscriptstyle \rm BX}}$$

Для нижней граничной частоты в случае нестабилизированного усилителя:

$$\omega_{_{\rm H}} = \frac{1}{C_{\rm B}(R_{\rm M}+R_{_{\rm BX}})}$$

В случае стабилизированного усилителя:

$$\omega_{\scriptscriptstyle \rm H} \approx \frac{1}{\left(\frac{R_{\scriptscriptstyle \rm M}^* + h_{11}}{h_{21} + 1} \| R_{\scriptscriptstyle \widehat{\Theta}}\right) \cdot C_{\scriptscriptstyle \widehat{\Theta}}}$$

Для верхней граничной частоты в случае нестабилизированного усилителя:

$$\omega_{_{\rm B}} = \frac{1}{((C_{61\mathfrak{d}} + C) \cdot (R_{\rm M}^* + r_{616}) \| r_{61\mathfrak{d}})}$$

2 Нестабилизированный усилитель

2.1

Берём радиотехнические элементы:

- R_k = 2,4 кОм
- R_b = 540 кОм
- $R_{\text{BX}} = R_k$

Измеряем, получаем:

$$U_{\kappa_{9}} \approx 5 \text{ B}, \ U_{69} \approx 0,64 \text{ B} \Rightarrow$$

$$I_{\rm k}=rac{U_{
m k9}}{R_{
m k}}pprox 2$$
 мА, $I_6=rac{U_{
m bx}-U_{
m 69}}{R_{
m b}}pprox$ 17,3 мкА \Rightarrow

$$h_{21e} \approx 115$$

2.2

Добавлем к уже имеющимся элементам:

- C = 0,47 mkΦ
- $R_{\mu} = R_{k}$

Для определения $f_{_{\rm H}}$ фиксируем уменьшение $U_{_{\rm BMX}}$ в $\sqrt{2}$ раз при переходе из области средних частот ($\approx 1~{\rm к\Gamma LL}$) в область низких частот. По аналогии измеряем $f_{_{\rm B}}$ при переходе из средних в высокие.

Результаты всех расчетов и измерений вносим в таблицу 1.

3 Стабилизированный усилитель

3.1

В данном пункте считаем $h_{21_9} \approx 100.$ Верём радиотехнические элементы:

- $R_k = 2,4$ кОм
- R₁ = 39 кОм
- R₂ = 8,2 кОм

- $R_{\nu} = R_{k}$
- R_Э = 540 Ом

Измеряем относительно земли напряжения, получаем:

$$U_{\rm B} \approx 0,65~{\rm B}~U_{\rm B} \approx 1,15~{\rm B}~U_{\rm K} \approx 5,75~{\rm B}$$

Измеряем оставшиеся величины, заносим в таблицу.

3.2

$$r_{ ext{ iny 9}} = rac{U_{ ext{ iny T}}}{I_{ ext{ iny 9}}} pprox$$
 12 Ом

В случае $C_{\Im} = 0$ выполняется соотношение:

$$K_{u}\approx\frac{R_{k}}{R_{\Theta}+r_{e}}$$

$$h_{11\mathfrak{i}}\approx (h_{21\mathfrak{i}}+1)r_{\mathfrak{i}}\approx 1200$$

$$R_{\rm B} = R_1 || R_2 \approx 6.7 \text{ кОм}$$

$$R_{BX} = R_{B} \| (h_{119} + R_{9}(h_{219} + 1)) \Rightarrow$$

$$R_{\text{bx}} = \frac{R_{\text{B}} \cdot (h_{11\text{-}} + R_{\text{B}}(h_{21\text{-}} + 1)}{R_{\text{B}} + (h_{11\text{-}} + R_{\text{B}}(h_{21\text{-}} + 1)} \approx 6,8 \text{ кОм}$$

Результаты всех расчетов и измерений вносим в таблицу 1.

4 Обработка резульатов измерений

№	U _{вых макс} , В	Ke	Κ _u	$R_{\rm BX}, \kappa { m OM}$	$f_{\scriptscriptstyle \mathrm{H}}, \Gamma$ ц	$f_{\scriptscriptstyle \mathrm{B}}, \mathrm{M}\Gamma$ ц
1.2	7,5	71,43	150	2,4	95	0,98
2.1	5,75	4,42	3,23	6,5	38	1,1
2.2	0,04	4,59	4,75	6,8	107	0,12

Таблица 1