Исследование рандомизированных *квази* Монте-Карло алгоритмов

Федорова Надежда Сергеевна, 522-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — д.ф.-м.н. С.М. Ермаков Рецензент — д.ф.-м.н. В.Б. Мелас

Санкт-Петербург 2009г.

Направления исследования

Исследование применения рандомизированного метода *квази* Монте-Карло (РКМК) к ряду задач :

- Вычисление многомерных интегралов.
- Решение систем линейных алгебраических уравнений (СЛАУ).

Решение специальной задачи:

• Использование стохастической аппроксимации в методе Галеркина и распараллеливание метода.

Задача вычисления интеграла. Краткое описание методов Монте-Карло квази Монте-Карло (КМК)

Требуется приближенно вычислить интеграл $J[f] = \int f(x) \mu(dx)$.

• Метод Монте-Карло

Оценка
$$J[f]$$
: $S_N[f] = rac{1}{N} \sum\limits_{j=1}^N f(x_j)$, где $x_j \sim \mu$, независимы.

Ошибка
$$R_N[f] = |J[f] - S_N[f]|, R_N[f] \sim O(N^{-\frac{1}{2}}).$$

• Метод квази Монте-Карло

Отличие от МК: x_i — квазислучайные.

Пример (последовательность точек Холтона):

q — простое число.

$$k = \sum\limits_{j=0}^m a_j(k)q^j$$
, $a_j(k)$ — коэффициенты разложения k в q -ичной системе.

$$k$$
-ое число Холтона по основанию q : $\psi_q(k) = \sum\limits_{i=0}^m rac{a_j(k)}{q^{j+1}}.$

$$d$$
-мерная точка Холтона по осн. $q=(q_1,...,q_d)$: $(\psi_{q_1}(k),...,\psi_{q_d}(k))$,

$$q_1, ..., q_d$$
 — взаимно простые.

Ошибка
$$R_N[f] \sim O(rac{\ln^d N}{N})$$
 (d — кратность интеграла).

Задача вычисления интеграла. Проблемы КМК. РКМК как альтернатива КМК

Проблемы метода КМК

• Проблема оценки погрешности:

Пусть f(X) имеет огр. в смысле Харди-Краузе вариацию V_f , X_1, X_2, \ldots — последовательность квазислуч. точек, тогда справедливо нер-во Коксмы-Хлавки:

$$|R_N[f]| \leq \frac{V_f}{N} \cdot D^*(f),$$
 где $D^*(f) = D^*(f; X_1, ..., X_N) = \sup_{A \in A} \left| N(\frac{\#\{X_i \in A\}}{N} - vol(A)) \right|.$ Вычисление правой части неравенства задача более трудная, чем

вычисление правои части неравенства задача оолее трудная, чем вычисление интеграла.

Проблема коррелированности точек:
 Метод невозможно применять к сложным системам.

PKMK

Рандомизация — случайное отображение квазислучайных точек, также дающее лучший порядок убывания погрешности, чем обычный МК. Примеры работ:

- -«Методы Монте-Карло и Квази Монте-Карло для решения систем линейных алгебраических уравнений» (Рукавишникова А.И., 2008).
- -«On Array-RQMC for Markov Chains: Mapping Alternatives and Convergence Rates» (P. L'Ecuyer, 2008). $(R_N[f] \sim O(N^{-\frac{3}{4}}))$

Задача вычисления интегралов. Оценка погрешности КМК с помощью РКМК

• Выбранный способ рандомизации

$$d$$
-мерн. т. Холтона: $Y_1,...,Y_L,\ Y_i\in R^d$. $\Xi=(\alpha_1,...,\alpha_d)^{\mathrm{T}}$ — р. р. на $[0,1]^d$. Тогда $X_i=\{Y_i+\Xi\},\ i=1,...,L$.

• Оценка погрешности КМК

Пусть точное значение интеграла: $\overline{J}=\int\limits_{[0,1]^d}f(x)dx$.

$$J_q=rac{1}{L}\sum_{m=1}^L f(Y_m)$$
 — оценка \overline{J} методом КМК с т. Холтона по основанию q.

Если имеется N независимых реализаций случайной величины

$$\xi = rac{1}{L} \sum\limits_{k=1}^{L} f(X_k)$$
, то

$$\widehat{J}=rac{1}{N}\sum_{n=1}^{N}\xi_{p}$$
 — вероятностная оц. \overline{J} , полученная с помощью метода РКМК.

$$R_N[f] = |\overline{J} - J_q|$$
 — погрешность метода КМК.

Тогда $a = |\widehat{J} - J_q|$ — оценка для $R_N[f]$.

Задача вычисления интегралов. Оценка погрешности КМК с помощью РКМК. Пример

Пример

- ullet Тестовая функция $f=\exp\{\sum i\cdot x_i\}/(1+\prod\sin x_i/2).$
- ullet Считаем $\int_{[0,1]^d} f(x) dx$, d=3, $q=\{13,17,19\}$.
- Точное значение погрешности 1,048607.

Зависимость оценки погрешности КМК от числа рандомизированных оценок.

Задача вычисления интегралов. Порядок убывания погрешности РКМК. Пример

• РКМК: $R_N[f] \sim O(N^{(-\alpha)})$, где $\alpha = 0,78$ — эмпирическая оценка (подтверждает порядок $O(N^{(-\frac{3}{4})})$).

Зависимость погрешности РКМК от числа рандомизированных оценок.

Задача решения СЛАУ

- Решается методом сеток $\Delta u=0$ при заданных граничных условиях $u|_{\Gamma}$ в гиперкубе $[0,1]^d.$
- ullet Разностные схемы: решение СЛАУ для нахождения $u(x_0)$, $x_0 \in [0,1]^d$.
- ullet Статистический подход: ищем $u(x_0)$ с помощью случайных блужданий по равномерной сетке $S([0,1]^d)$ из x_0 до границы.

Оценка значения функции в точке: $u(x_0) pprox rac{1}{N} \sum_{x_i \in \Gamma} u(x_i)$.

• Организация блуждания: $x_1, x_2...$ — последовательность одномерных точек (МК, КМК, РКМК). d — размерность $\Rightarrow 2d$ — число направлений блуждания. Отрезок [0,1] делится на 2d частей. i-ая точка попадает в одну из частей [0,1], тем самым задавая направление блуждания на i-ой итерации.

Задача решения СЛАУ. Оценка погрешности КМК с помощью РКМК

Пример

- ullet Тестовая функция: $u=1+a\prod\limits_{i=1}^d x_i.$
- ullet Размерность d=10, параметр a=4, область единичный гиперкуб $[0,1]^d$.
- Точное значение погрешности 0,00274201.

• Исследованы оценки РКМК с разными основания т. Холтона, а также оценки МК. Во всех случаях $\sigma > \sigma_a$ (кроме случая q = 5):

Задача решения СЛАУ. Порядок убывания погрешности РКМК

ullet РКМК: $R_N[f] \sim O(N^{(-lpha)})$, где lpha=0,86 — эмпирическая оценка (подтверждает порядок $O(N^{(-\frac{3}{4})})$).

Зависимость погрешности РКМК от числа рандомизированных оценок.

Задача решения СЛАУ.Средняя погрешность по области. Эффект «резонанса»

• Среднее значение погрешности по всему множеству точек сетки (размерность d=3).

$$\Delta_{q;av} = \frac{1}{K} \sum_{x \in S([0,1]^d)} \Delta_q(x), \quad K = \#\{x \in S([0,1]^d)\}$$

Δ_{av}	$\Delta_{3;av}$	$\Delta_{5;av}$	$\Delta_{7;av}$	$\Delta_{19;av}$	$\Delta_{29;av}$
0,1461072	0,369896	0,134548	0,09464	0,118794	0,1313664

- ullet $\Delta_{av} > \Delta_{q;av}$ кроме случая q=3.
- ullet В рассмотренных примерах эффект $\sigma < \sigma_q$ и $\Delta_{av} < \Delta_{q;av}$ наблюдается в случаях, когда d и q не являются взаимнопростыми.
- Пример: d = 5, q = 5.

+ - + - + - + - + -

1-я коорд.

5-я. коорд.

Метод Галеркина. Основные понятия

- Решается д.у. L[y(x)] = f(x), заданы $y(x)|_{\Gamma}$ (L дифференциальный оператор, может содержать частные или полные производные искомой функции).
- ullet Решение ищется в виде $y(x)=y_0(x)+\sum\limits_{k=1}^n a_k y_k(x).$ $\{y_i(x)\}_{i=0}^\infty$ полная ортогональная система функций.

$$y_0(x)|_{\Gamma} = y(x)|_{\Gamma}$$

 $y_i(x)|_{\Gamma} = 0, \quad (0 < i < \infty)$

ullet Требование ортогональности L[y(x)]-f(x) к функциям $y_i(x)$ дает систему

$$\int\limits_a^b [L(y(x))-f(x)]y_k(x)dx=0, \quad 1\leq k\leq n.$$

• Получаем СЛАУ для коэффициентов a_k . Коэффициенты системы неявно выражены через интегралы \Rightarrow с ростом n решение системы становится трудоемким.

Метод Галеркина. Подходы к распараллеливанию

- ullet Область д.у. Ω разделяется на подобласти Ω_i . Ищется приближенное решение для Ω_i «Обмен информацией» между граничащими областями . Минусы подхода: трудоемко и трудно реализуемо.
- Сначала подсчет интегралов, а потом решение полученной системы. Минусы подхода: трудоемко и плохо распараллеливается.
- Стохастическая аппроксимация («Random processes for classical equations of mathematical physics. » Ermakov S.M., Nekrutkin V.V., Sipin A.S., 1989).

AX = B. $\{A_n, B_n\}$ — посл-ть нез оценок $\{A, B\}$, все компоненты A_n и B_n имеют конечные дисперсии. $X_0 \in \mathbb{R}^d$ — константа, и пусть $2\alpha\lambda > 1$ (λ — наим. с.ч. A).

Процедура стохастической аппроксимации:

$$X_{n+1} = X_n + \frac{\alpha}{n} (B_{n+1} - A_{n+1} X_n),$$

Окончательная оценка: $\widehat{X}=rac{1}{m}\sum_{i=1}^{m}\widehat{X_{i}}$, где $\widehat{X_{i}}$ — независимые оценки решения, получаемые с помощью стохастической аппроксимации.

Теорема

B вышеописанных условиях, если элементы A_n и B_n имеют конечные третьи моменты, то распределение случайного вектора $\sqrt{n}(X_n-X^0)$ слабо сходится при $n o \infty$ к нормальному распределению с нулевым средним значением.

Метод Галеркина. Стохастическая аппроксимация. Результаты

Сравнение точных знач. коэфф. решения a_i с их оценками:

i	a_i	$\widehat{a_i}$	σ
1	0.4186	0.4264	0.0149
2	0.2035	0.1664	0.0195
3	-0.0407	-0.0508	0.0107

- ullet Ур-е $y\prime\prime + y\prime = -2x$, n=10, сравнение дисперсий методов МК и РКМК.
 - ullet Оценка интеграла через одно случ. число: $\int f(X) dX pprox f(lpha).$
 - ullet Оценка интеграла через несколько случ. чисел: $\int f(X) dX pprox rac{1}{s} \sum_{i=1}^s f(lpha_i).$

i	$\widehat{a_i}$	$\widehat{a_{i^5}}$	$\widehat{a_{i^{13}}}$	$\widehat{a_{i^{29}}}$
1	0,4306	0,4187	0,4250	0,3918
8	0,0014	0,0109	0,0372	0,0062
i	σ_i	σ_{i^5}	$\sigma_{i^{13}}$	$\sigma_{i^{29}}$
1	0,0120	0,0180	0,0038	0,0145
8	0,0640	0,0764	0,0743	0,0101

Если сравнить дисперсии методов МК и РКМК, то в случае метода Галеркина однозначно нельзя сказать, что какой-то из методов "лучше".

Итоги работы

- В задачах вычисления интеграла и решения СЛАУ на примерах показана эффективность рандомизации для оценки погрешности метода КМК.
- Решение СЛАУ методами РКМК проводилось впервые, все результаты новые. Был обнаружен и объяснен эффект "резонанса".
- ullet Показано, что погрешность метода PKMK $(O(N^{-rac{3}{4}}))$ лучше, чем в методе MK $(O(N^{-rac{1}{2}}))$, что также отмечалось в ряде работ.
- Указано, что для распараллеливания метода Галеркина может быть эффективным использование результатов, связанных со стохастической аппроксимацией.
- В методе Галеркина применение метода РКМК не дало ожидаемых результатов, что свидетельствует об определенных ограничениях в применении метода РКМК.