

제출일	2023, 06, 16	전공	컴퓨터학과
과목	컴퓨터구조	학번	2023320046
담당교수	김영근	이름	정승우
제출일	2023, 06, 16	전공	컴퓨터학과
과목	컴퓨터구조	학번	2019320076
담당교수	김영근	이름	한건희

Contents

- #1 Analyze given multi-cycle ARM processor source code
- #2 Analyze Signal unit
- #3 Draw block diagram of multi-cycle ARM processor
- #4 Explain How the Test program works on the given processor

#1 Analyze given multi-cycle ARM processor source code

Sub-modules.

1. signextmux

- A. This module takes a 24-bit immediate value and a 2-bit select signal, and produces a 32-bit extended immediate value. The select signal determines whether the immediate value is sign-extended or zero-extended. And depending on the select signal, different bits of 'extVal' are assigned values from the 'in' input or constant values.
- B. Inputs:
 - i. [23:0] in: Input data to be extended and multiplexed.
 - ii. [1:0] select: Select input to determine the operation
- C. Outputs:
 - i. [31:0] extVal: Extended and multiplexed output value.

2. register-1bit

- A. This module implements a 1-bit register. In the rising edge of the clock or reset signal, the output is updated. Reset signal makes the regout to be zero, and if write signal is set, the regin updates the regout.
- B. Inputs:
 - i. regin: Input value to be stored in the register.

- ii. clk: Clock signal.
- iii. write: Write control signal.
- iv. reset: Reset control signal.

C. Outputs:

i. regout: Output value stored in the register.

3. register

- A. This module implements a 32-bit register. In the rising edge of the clock, the output is updated. Reset signal makes the regout to be zero, and if write signal is set, the regin updates the regout.
- B. Inputs:
 - i. [31:0] regin: Input value to be stored in the register.
 - ii. clk: Clock signal.
 - iii. write: Write control signal.
 - iv. reset: Reset control signal.

C. Outputs:

i. [31:0] regout: Output value stored in the register.

4. decoder_4to16

- A. This module takes a 4-bit input and produces a 16-bit output. It uses a case statement to assign the correct value to 'out' based on the input 'in'.
- B. Inputs:
 - i. [3:0] in: The input value to be decoded.

C. Outputs:

i. [15:0] output: A 16-bit value that only one bit 1 and the others are 0s.

5. registerfile

A. This module contains 16 instances of the register module, each

representing a single register. And 'reg1' and 'reg2' select the two registers.

B. Inputs:

- i. [3:0] reg1: Selects the first register whose value needs to be read.
- ii. [3:0] reg2: Selects the second register whose value needs to be read.
- iii. [3:0] regdst: Selects the register destination for writing.
- iv. [31:0] regsrc: Determines the source value to be written to the register file.
- v. clk: The clock signal for register operations.
- vi. reset: Signal indicating whether to reset the register file.
- vii. we: It is write enable code indicating whether to update the register file with regsrc.

C. Outputs:

- i. [31:0] out1: The value stored in the first selected register.
- ii. [31:0] out2: The value stored in the second selected register.
- iii. [31:0] pc: The value stored in register 15, which serves as the program counter.

6. signalunit

A. This module represents a control unit that generates control signals based on the current state of the processor.

B. Inputs:

- i. clk: Clock signal for the module.
- ii. reset: Reset signal for the module.
- iii. [11:0] flags: Flags representing the state of the processor.
- iv. zero: Signal indicating whether the result of the previous operation was zero.

C. Outputs:

- i. Mwrite: Signal indicating whether to enable memory write operation.
- ii. IRwrite: Signal indicating whether to enable instruction register write

operation.

- iii. Mread: Signal indicating whether to enable memory read operation.
- iv. regwrite: Signal indicating whether to enable register write operation.
- v. [1:0] regdst: Selects the destination register for writing.
- vi. [1:0] regsrc: Selects the source register for reading.
- vii. [1:0] ALUsrcA: Selects the source for operand A in the ALU operation.
- viii. [1:0] ALUsrcB: Selects the source for operand B in the ALU operation.
- ix. [3:0] ALUop: Represents the ALU operation to be performed.
- x. NZCVwrite: Signal indicating whether to enable flags (NZCV) write operation.
- xi. [1:0] immsrc: Selects the source for immediate value in the instruction.
- xii. regbdst: Signal indicating whether the destination of the branch is a register.

7. ALUopdecoder

- A. This module decodes the instruction opcode (instop) to determine the ALU operation (aluop) to be performed.
- B. Inputs:
 - i. [3:0] instop: The instruction opcode for decoding the ALU operation.

C. Outputs:

 [2:0] aluop: The decoded ALU operation based on the instruction opcode. It selects the appropriate logic or arithmetic operation in the ALU32bit module.

8. ALU32bit

- A. This module represents a 32-bit Arithmetic Logic Unit (ALU) that performs arithmetic and logical operations on two 32-bit inputs.
- B. Inputs:
 - i. [31:0] inpa: Input operand A for the ALU operation.

- ii. [31:0] inpb: Input operand B for the ALU operation.
- iii. cin: Carry-in signal for arithmetic operations.
- iv. [2:0] aluop: Determines the ALU operation to be performed.

C. Outputs:

- i. [31:0] result: The result of the ALU operation.
- ii. negative: Signal indicating whether the result is negative.
- iii. zero: Signal indicating whether the result is zero.
- iv. cout: Carry-out signal for arithmetic operations.
- v. overflow: Signal indicating whether overflow occurred during the operation.

'armreduced' module

Inputs:

- clk: Clock signal used for synchronous operations.
- reset: Reset signal that initializes the processor.
- inst: Input instruction to be executed.
- nIRQ: Input signal indicating whether an interrupt request is received.

outputs:

- pc: Program counter, representing the current instruction address.
- be: Output indicating which bytes of a word should be enabled during a memory access.
- memaddr: Memory address for memory operations.
- memwrite: Signal indicating a memory write operation.
- memread: Signal indicating a memory read operation.
- writedata: Data to be written to memory.
- readdata: Data read from memory.

Internal signals and registers

- IRwrite: Signal indicating whether the instruction register (IR) should be written.
- regwrite: Signal indicating whether a register write operation should be performed.
- NZCVwrite: Signal indicating whether the flags register should be written.
- regdst: Destination register for register write operations.
- regsrc: Source register for register write operations.
- ALUsrcA: ALU source selection for operand A.
- ◆ ALUsrcB: ALU source selection for operand B.
- ◆ ALUop: ALU operation to be performed.
- instop: Decoded ALU operation based on the instruction.
- regBdst: Destination register for the second source operand of ALU operations.
- imm: Immediate value extracted from the instruction.

Instances of the above submodules

MDR: This submodule is an instance of the register module. It stores the data read from memory (readdata) and provides it as an output (mdr) when required.

ALUoutRegister: This submodule is another instance of the register module. It stores the result of the ALU operation (ALUresult) and provides it as an output (ALUout) when needed.

A_Register and B_Register: These submodules are instances of the register module. They store the values of registers A and B, respectively, and provide them as outputs (A and B) for subsequent operations.

InstructionRegister: This submodule is also an instance of the register module. It stores the instruction (inst) and provides it as an output (instructions) for decoding and execution.

Z and C registers: These submodules are instances of the register_1bit module. They store the values of the zero flag (z) and the carry flag (c), respectively, and provide them as outputs for the NZCV register.

SignalControl: This submodule is responsible for controlling the signals that control the behavior of the ARM processor. It takes inputs from the instruction (instructions), zero flag (z), and other control signals, and generates outputs that control the behavior of other submodules.

RegisterFile: This submodule is an instance of the registerfile module. It serves as the register file for the ARM processor, storing and providing the values of registers based on the control signals (reg1, reg2, regdst, regsrc).

Immidiate: This submodule is an instance of the signextmux module. It handles sign extension and selection of immediate values (instructions[23:0]) based on the control signal (immsrc), providing the extended immediate value (imm) as an output.

ALUopDecoder: This submodule decodes the instruction operation (instop) and provides the corresponding ALU operation (ALUop) as an output.

ALU: This submodule is an instance of the ALU32bit module. It performs the arithmetic and logical operations specified by the ALUop control signal on the inputs (ALUnum1, ALUnum2) and provides the result (ALUresult) and other flags (ALUflags) as outputs.

Operation process of the 'armreduced' module

1. Instruction Fetch:

The 'InstructionRegister' submodule receives the 'inst' input signal, which represents the fetched instruction.

The instruction is stored in the 'InstructionRegister' and is output as 'instructions'.

2. Register Fetch:

The 'SignalControl' submodule takes the 'instructions' signal as input and generates various control signals required for instruction execution.

Control signals include 'IRwrite' for writing to the instruction register, 'memwrite' for enabling memory write, 'memread' for enabling memory read, 'regwrite' for enabling register write, 'regdst' for selecting the destination register, 'regsrc' for selecting the source register, 'ALUsrcA' for selecting the first ALU operand, 'ALUsrcB' for selecting the second ALU operand, 'ALUop' for selecting the ALU operation, 'NZCVwrite' for writing the condition flags, 'immsrc' for selecting the source of immediate value, and 'regBdst' for selecting the second source register.

The 'RegisterFile' submodule takes the control signals and other inputs to perform register file operations. It reads the values from the specified source registers and outputs them as 'readA' and 'readB'. It also selects the destination register based on the 'regdst' signal and outputs it as 'RFdst'. The values to be written to the register file are selected based on the 'regsrc' signal and output as 'RFsrc'. The 'RegisterFile' module also contains the program counter (PC) register, which is output as 'pc'.

3. Execution

The 'ALUopDecoder' submodule takes the 'instop' signal from the control unit and decodes appropriate ALU operation, which output The 'ALU32bit' submodule performs arithmetic and logical operations based on the selected ALU operation, operands, and control signals. It takes the first operand from 'ALUnum1' based on the 'ALUsrcA' signal and the second 'ALUnum2' based 'ALUsrcB' operand from οn the signal. The ALU32bit module performs the ALU operation and outputs the result as 'ALUresult'. It also generates the necessary condition flags, including 'negative', 'zero', 'carry', and 'overflow', which are output as 'ALUflags'.

4. Memory:

The 'memaddr' output from the 'armreduced' module is the memory address to be accessed.

The 'memwrite' and 'memread' signals determine whether a memory write or read operation should be performed. 'writedata' signal contains the data to be written memory. The 'MDR' submodule acts as a memory data register and stores the data read from memory, which is output as 'mdr'.

5. Write Back:

The result of the previous stage, ALUresult, is written back to the destination register specified in the instruction. The result is stored in the appropriate register in the Register File. Additionally, the flags register (NZCV) is updated based on the ALU operation.

#2 Analyze Signal unit

Signalunit module is used in ARMCPU.v file, and its inputs and outputs are these :

Input:

Variables Size (bit) Description

clk, reset	1bit	Clock & Reset signals
zero	1bit	Condition Flag : Zero
flags	12bit	Top 12 bits of instructions
		to make control signals

Output:

Variables	Size (bit)	Description
Mwrite	1	Write Enable signal of
		Memory
IRwrite	1	Write Enable signal of
		Instruction Register
Mread	1	Read Enable signal of
		Memory
regwrite	1	Write Enable signal of
		Registers
Regdst	2	Register destination of
		Regiter Writing operation
		00 : Rd(2 nd operand)
		01 : R15 – PC
		10 : R14 – LR
Regsrc	2	Value of Register Writing
		operation
		00 : MDR
		01 : ALUOUT
		10 : ALUresult
		11 : B (second operand of
		ALU)
ALUsrcA	2	Source of Register A (first
		operand of ALU)
		00 : PC
		01 : A
		10 : zero
ALUsrcB	2	Source of Register B
		(second operand of ALU)
		00:+4
		01:+8
		10 : imm
		11 : B shift shmt
ALUop	4	The operation of ALU
		0000 : and
		0001 : xor
		0010 : sub
		0100 : add
		0101 : adc

İ	
	0110 : sbc
	1010 : sub
	1100 : or
	1101 : add
1	Write Enable signal of
	NZCV flags
2	Source of Immediate Value
	00 : 8_signext
	01 : 12_zeroext
	10 : 24_signext
1	Select Signal of regBread
	MUX
	0 : inst[3:0]
	1 : inst[15:12]
	2

In signalunit module, the wire s is 2nd dimensional array.

For each row, the signals are saved as a array of 0s and 1s.

The wire total contains the total steps to execute the instruction, and the wire step contains the current step for current clk cycle.

oneAdder Step module adds 1 to current step value, and stops when step == total.

Since, for every instructions, the operation for first and second step is same, the s[0] and s[1] value is assigned regardless of the flags. (upper 12 bits of instructions)

st	Mw	IRw	Mr	reg	reg	regsr	ALU	ALU	AL	NZCV	im	reg
е	rite	rite	ead	writ	dst	С	srcA	srcB	Uo	write	msr	bdst
р				е					р		С	
0	0	1	1	1	01	10	00	01	010	0	XX	Х
					R1	ALUr	PC	+8	0			
					5 -	esult			add			
					PC							
1	0	0	0	0	XX	XX	00	00	001	0	XX	Х
							PC	+4	0			
									sub			

The signalcontrol bringSignal module derives the signals by decoding the upper 12 bits

of instructions. Its inputs and outputs are these:

Input:

Variables	Size (bit)	Description				
zero	1bit	Condition Flag : Zero				
flags	12bit	Top 12 bits of instructions				
		to make control signals				

Output:

Variables	Size (bit)	Description			
total	3	Total steps required to			
		execute the instruction.			
s2	20	s[2] value			
s3	20	s[3] value			
s4	20	s[4] value			

In signalcontrol module, the value of the first if statement is :

 $flags[11]\&flags[10]\&flags[9])||(flags[8]^zero)$

The first operand of or operator detects whether flags[11:9] == 3b'111, which refers Always condition code 1110 (we can ignore 1111 condition code since it is not an usual case). The second operand of or operator detects two possible cases :

If zero value is 1, the flags[8] should be 0.

If zero value is 0, the flags[8] should be 1.

If the if statement is not taken, the module generates the signals for recovery instruction.

The rest of bringsignal will be decoded in my python code.

 $(https://github.com/we4t/COSE222_CA/blob/main/2nd_Project/TermProject_Multicycle/controlsig_analyze.py)\\$

```
return [
"STR",
4,
"0110110000181000xx*,
"0000xxx000000180xx*,
"0001018101" + flag5 - flag3 + "001" + flag6,
"10000xxxxxxxxxxxxxxxx*,
]
                   flag5 = "11" if flags[6] == "1" else "10"
# decode immediate / register offest
flag3 = "0100" if flags[8] == "1" else "0010"
# decode whether offset is added from base (U flage = "01")
                 4,
"011101100001010000xx",
"0000xxxx000000100xx",
"0001010111" + flag5 + flags_str + "000",
"00010001xxxxxxxxxxxxxx",
```

For every instructions, the following S value is written like below:

(There might be some differences between immediate offset, register offset for STR / LDR instructions, and Data processing immediate shift and Data processing immediate for ALU operations. For STR / LDR instructions, the signals are generated based on register offset. For Data processing instructions, the signals are generated based on Data processing immediate. (no shift) The difference is noted in python code above, and the flags value for generating the signals are written also)

В	М	IR	Mr	reg	regdst	regsrc	AL	AL	ALU	NZC	immsr	regbdst
	wri	wri	ea	writ	regust	regare	Usr	Usr	ор	Vwri	С	reguast
	te	te	d	е			cA	сВ	i i	te		
0	0	1	1	1	01 R15 -	10	00	01	010	0	XX	х
					PC	ALUre	PC	+8	0			
						sult			add			
1	0	0	0	0	xx	XX	00	00	001	0	XX	х
							PC	+4	0			
									sub			
2	0	0	0	1	01 R15 -	10	00	10	010	0	10	0 Rm (third
					PC	ALUre	PC	im	0		24_sig	Operand)
						sult		m	add		next	
3	Х	Х	х	Х	XX	XX	XX	XX	XXXX	Х	xx	Х
4	х	х	х	х	XX	XX	xx	XX	XXXX	х	xx	х
BL	М	IR	Mr	reg	regdst	regsrc	AL	AL	ALU	NZC	immsr	regbdst
	wri	wri	ea	writ			Usr	Usr	ор	Vwri	С	
	te	te	d	е			cA	сВ		te		
0	0	1	1	1	01 R15 -	10	00	01	010	0	XX	х
					PC	ALUre	PC	+8	0			
						sult			add			
1	0	0	0	0	XX	xx	00	00	001	0	xx	х
							PC	+4	0			
									sub			
2	0	0	0	1	10 R14 -	01	00	10	010	0	10	0 Rm (third
					LR	ALUO	PC	im	0		24_sig	Operand)
						UT		m	add		next	
3	0	0	0	1	01 R15 -	01	XX	XX	XXXX	0	XX	х
					PC	ALUO						
4	.,		,,	.,	101	UT		201	10001	.,	101	.,
4	х	Х	Х	х	XX	XX	XX	XX	XXXX	х	XX	Х
STR	М	IR	Mr	reg	regdst	regsrc	AL	AL	ALU	NZC	immsr	regbdst
	wri	wri	ea	writ			Usr	Usr	ор	Vwri	С	
	te	te	d	е			cA	cB		te		
0	0	1	1	1	01 R15 -	10	00	01	010	0	XX	х
					PC	ALUre	PC	+8	0			
						sult			add			
1	0	0	0	0	XX	xx	00	00	001	0	XX	х
							PC	+4	0			
<u> </u>				1	04 545	04	0.6	10	sub		04	1 5:
2	0	0	0	1	01 R15 -	01	01	10	010	0	01	1 Rd
					PC	ALUO UT	Α	im	0		12_zer	(second
3	1	0	0	0	xx	XX	xx	m xx	add xxxx	0	oext xx	Operand) x
4	x	х										x
4	X	*	Х	х	XX	XX	XX	XX	XXXX	х	XX	^

												1
LDR	М	IR	Mr	reg	regdst	regsrc	AL	AL	ALU	NZC	immsr	regbdst
	wri	wri	ea	writ			Usr	Usr	ор	Vwri	С	
	te	te	d	е			cA	сВ		te		
0	0	1	1	1	01 R15 -	10	00	01	010	0	XX	х
	0	_	_	_	PC	ALUre	PC	+8	0	"	**	^
					FC		FC	70	-			
						sult			add			
1	0	0	0	0	XX	XX	00	00	001	0	XX	х
							PC	+4	0			
									sub			
2	0	0	0	1	01 R15 -	01	01	10	010	0	01	0 Rm (third
_	0			_	PC	ALUO			0	"		
					PC		Α	im	-		12_zer	Operand)
						UT		m	add		oext	
3	0	0	1	0	XX	XX	XX	XX	XXXX	0	xx	х
		_										
4	0	0	0	1	00	00	XX	XX	XXXX	0	XX	x
					Rd(2nd	MDR						
					Operand)							
CM	M	IR	Mr	reg	regdst	regsrc	AL	AL	ALU	NZC	immsr	regbdst
Р	wri	wri	ea	writ	J		Usr	Usr	ор	Vwri	С	
•			d				cA	сВ	Op		Č	
	te	te		е						te		
0	0	1	1	1	01 R15 -	10	00	01	010	0	XX	х
			Ī	1	PC	ALUre	PC	+8	0			
			Ī	1		sult			add			
1	0	0	0	0	XX	XX	00	00	001	0	xx	х
		ľ		ľ	^^	, AA	PC	+4	0	١	^^	^
			Ī	1			۲	74	-			
									sub			
2	0	0	0	1	01 R15 -	01	01	10	001	1	00	0 Rm (third
					PC	ALUO	Α	im	0		8_sign	Operand)
						UT		m	sub		ext	,
3	Х	х	· ·	Х	V/V		V/V					· ·
3	×	Α	Х	Α	XX	XX	XX	XX	XXXX	х	XX	x
4	Х	Х	х	х	xx	XX	xx	xx	xxxx	х	XX	х
•	^	^	^	^	700	, AA	λλ.	, AA	70000	^	7.7.	^
MO	M	IR	Mr	reg	regdst	regsrc	AL	AL	ALU	NZC	immsr	regbdst
V	wri	wri	ea	writ			Usr	Usr	ор	Vwri	С	
	te	te	d	е			cA	сВ		te		
0	0	1	1	1	01 R15 -	10		01	010	0	VV	v
U	U	1	1	1			00		010	U	XX	x
					PC	ALUre	PC	+8	0			
						sult			add			
1	0	0	0	0	XX	XX	00	00	001	0	xx	x
							PC	+4	0			
									_			
									cuh			
2	•				04 045	0.1	40	40	sub			0.5 (11:1
	0	0	0	1	01 R15 -	01	10	10	010	0	00	0 Rm (third
-	0	0	0	1	01 R15 - PC	ALUO	10 zer	10 im		0	00 8_sign	0 Rm (third Operand)
	0	0	0	1		ALUO	zer		010 0	0		
					PC	ALUO UT	zer o	im m	010 0 add		8_sign ext	Operand)
3	0	0	0	1	PC 00	ALUO UT 01	zer	im	010 0	0	8_sign	
					PC 00 Rd(2nd	ALUO UT 01 ALUO	zer o	im m	010 0 add		8_sign ext	Operand)
3	0	0	0	1	PC 00 Rd(2nd Operand)	ALUO UT 01 ALUO UT	zer o xx	im m xx	010 0 add xxxx	0	8_sign ext xx	Operand)
					PC 00 Rd(2nd	ALUO UT 01 ALUO	zer o	im m	010 0 add		8_sign ext	Operand)
3	0	0	0	1	PC 00 Rd(2nd Operand)	ALUO UT 01 ALUO UT	zer o xx	im m xx	010 0 add xxxx	0	8_sign ext xx	Operand)
3	0	0	0	1	PC 00 Rd(2nd Operand)	ALUO UT 01 ALUO UT	zer o xx	im m xx	010 0 add xxxx	0	8_sign ext xx	Operand)
3	0 x	0 x	0 x	1 x	PC OO Rd(2nd Operand) xx	ALUO UT 01 ALUO UT XX	zer o xx	im m xx	010 0 add xxxx	0 x	8_sign ext xx	Operand) x x
3	0 x	0 x	0 x	1 x reg	PC 00 Rd(2nd Operand)	ALUO UT 01 ALUO UT	zer o xx xx	im m xx	010 0 add xxxx xxxx	0 x	8_sign ext xx xx immsr	Operand)
3	0 x M wri	0 x IR wri	0 x Mr ea	1 x reg writ	PC OO Rd(2nd Operand) xx	ALUO UT 01 ALUO UT XX	zer o xx xx AL Usr	xx xx AL Usr	010 0 add xxxx	0 x NZC Vwri	8_sign ext xx	Operand) x x
3	0 x M write	0 x IR write	0 x Mr ea d	x reg writ e	PC 00 Rd(2nd Operand) xx regdst	ALUO UT 01 ALUO UT xx	zer o xx xx AL Usr cA	im m xx xx AL Usr cB	010 0 add xxxx xxxx	0 x NZC Vwri te	8_sign ext xx xx immsr	Operand) x x
3	0 x M wri	0 x IR wri	0 x Mr ea	1 x reg writ	PC OO Rd(2nd Operand) xx	ALUO UT 01 ALUO UT XX	zer o xx xx AL Usr	xx xx AL Usr	010 0 add xxxx xxxx	0 x NZC Vwri	8_sign ext xx xx immsr	Operand) x x
3 4 ALU	0 x M write	0 x IR write	0 x Mr ea d	x reg writ e	PC 00 Rd(2nd Operand) xx regdst	ALUO UT 01 ALUO UT xx	zer o xx xx AL Usr cA	im m xx xx AL Usr cB	010 0 add xxxx xxxx	0 x NZC Vwri te	8_sign ext xx xx immsr c	Operand) x x regbdst
3 4 ALU	0 x M write	0 x IR write	0 x Mr ea d	x reg writ e	PC 00 Rd(2nd Operand) xx regdst 01 R15 -	ALUO UT 01 ALUO UT xx regsrc 10 ALUre	zer o xx xx AL Usr cA	im m xx xx xx AL Usr cB 01	O10 O add xxxx xxxx ALU op O10 O	0 x NZC Vwri te	8_sign ext xx xx immsr c	Operand) x x regbdst
3 4 ALU	0 x M write 0	O X IR write 1	0 x Mr ea d	reg writ e	PC 00 Rd(2nd Operand) xx regdst 01 R15 - PC	ALUO UT 01 ALUO UT xx regsrc 10 ALUre sult	xx xx AL Usr cA OO PC	xx xx AL Usr cB 01 +8	O10 O add xxxx xxxx ALU op O10 O add	NZC Vwri te	8_sign ext xx xx immsr c	x x regbdst x
3 4 ALU	0 x M write	0 x IR write	0 x Mr ea d	x reg writ e	PC 00 Rd(2nd Operand) xx regdst 01 R15 -	ALUO UT 01 ALUO UT xx regsrc 10 ALUre	zer o xx xx xx AL Usr cA 00 PC	im m xx xx xx AL Usr cB 01 +8	O10 O add xxxx xxxx ALU op O10 O add O01	0 x NZC Vwri te	8_sign ext xx xx immsr c	Operand) x x regbdst
3 4 ALU	0 x M write 0	O X IR write 1	0 x Mr ea d	reg writ e	PC 00 Rd(2nd Operand) xx regdst 01 R15 - PC	ALUO UT 01 ALUO UT xx regsrc 10 ALUre sult	xx xx AL Usr cA OO PC	xx xx AL Usr cB 01 +8	O10 O add xxxx XXXX ALU op O10 O add O01 O	NZC Vwri te	8_sign ext xx xx immsr c	x x regbdst x
3 4 ALU	0 x M write 0	O X IR write 1	0 x Mr ea d	reg writ e	PC 00 Rd(2nd Operand) xx regdst 01 R15 - PC	ALUO UT 01 ALUO UT xx regsrc 10 ALUre sult	zer o xx xx xx AL Usr cA 00 PC	im m xx xx xx AL Usr cB 01 +8	O10 O add xxxx xxxx ALU op O10 O add O01	NZC Vwri te	8_sign ext xx xx immsr c	x x regbdst x
3 4 ALU 0	0 x M write 0	O X IR write 1	O x Mr ea d 1	reg writ e 1	PC 00 Rd(2nd Operand) xx regdst 01 R15 - PC xx	ALUO UT 01 ALUO UT xx regsrc 10 ALUre sult	xx xx AL Usr cA 00 PC	xx xx AL Usr cB 01 +8 00 +4	O10 O add xxxx XXXX ALU op O10 O add O01 O sub	NZC Vwri te 0	8_sign ext xx xx immsr c	x x regbdst x
3 4 ALU	O x M write O	O X IR write 1	0 x Mr ea d	reg writ e	PC O0 Rd(2nd Operand) xx regdst O1 R15 - PC xx	ALUO UT 01 ALUO UT xx regsrc 10 ALUre sult xx	xx xx AL Usr cA 00 PC 01	im m xx xx	O10 O add xxxx XXXX ALU op O10 O add O01 O sub	NZC Vwri te	8_sign ext xx xx immsr c xx	x x regbdst x 0 Rm (third
3 4 ALU 0	O x M write O	O X IR write 1	O x Mr ea d 1	reg writ e 1	PC 00 Rd(2nd Operand) xx regdst 01 R15 - PC xx	ALUO UT 01 ALUO UT xx regsrc 10 ALUre sult xx	xx xx AL Usr cA 00 PC	im m xx xx xx AL Usr cB 01 +8 00 +4 10 im	010 0 add xxxx xxxx xxxx xxxx ALU op 010 0 add 001 0 sub 110 1	NZC Vwri te 0	8_sign ext xx xx immsr c xx xx	x x regbdst x
3 4 ALU 0 1	O x M write O O	O X IR write 1	O x Mr ea d 1	reg writ e 1	PC OO Rd(2nd Operand) xx regdst O1 R15 - PC xx O1 R15 - PC	ALUO UT 01 ALUO UT xx regsrc 10 ALUre sult xx 01 ALUO UT	xx xx AL Usr cA 00 PC 01 A	im m	O10 O add xxxx XXXX ALU Op O10 O add O01 O sub 110 1 add	NZC Vwrite 0	8_sign ext xx xx immsr c xx xx xx	x x regbdst x 0 Rm (third Operand)
3 ALU 0	O x M write O	O X IR write 1	O x Mr ea d 1	reg writ e 1	PC OO Rd(2nd Operand) xx regdst O1 R15 - PC xx O1 R15 - PC O0	ALUO UT 01 ALUO UT xx regsrc 10 ALUre sult xx 01 ALUO UT 01	xx xx AL Usr cA 00 PC 01	im m xx xx xx AL Usr cB 01 +8 00 +4 10 im	010 0 add xxxx xxxx xxxx xxxx ALU op 010 0 add 001 0 sub 110 1	NZC Vwri te 0	8_sign ext xx xx immsr c xx xx	x x regbdst x 0 Rm (third
3 ALU 0 1	O x M write O O	O X IR write 1	O x Mr ea d 1	reg writ e 1	PC OO Rd(2nd Operand) xx regdst O1 R15 - PC xx O1 R15 - PC	ALUO UT 01 ALUO UT xx regsrc 10 ALUre sult xx 01 ALUO UT	xx xx AL Usr cA 00 PC 01 A	im m	O10 O add xxxx XXXX ALU Op O10 O add O01 O sub 110 1 add	NZC Vwrite 0	8_sign ext xx xx immsr c xx xx xx	x x regbdst x 0 Rm (third Operand)
3 ALU 0 1	O x M write O O	O X IR write 1	O x Mr ea d 1	reg writ e 1	PC OO Rd(2nd Operand) xx regdst O1 R15 - PC xx O1 R15 - PC OO Rd(2nd	ALUO UT 01 ALUO UT xx regsrc 10 ALUre sult xx 01 ALUO UT 01 ALUO	xx xx AL Usr cA 00 PC 01 A	im m	O10 O add xxxx XXXX ALU Op O10 O add O01 O sub 110 1 add	NZC Vwrite 0	8_sign ext xx xx immsr c xx xx xx	x x regbdst x 0 Rm (third Operand)
3 ALU 0 1	O x M write O O	O X IR write 1	O x Mr ea d 1	reg writ e 1	PC OO Rd(2nd Operand) xx regdst O1 R15 - PC xx O1 R15 - PC O0	ALUO UT 01 ALUO UT xx regsrc 10 ALUre sult xx 01 ALUO UT 01	xx xx AL Usr cA 00 PC 01 A	im m	O10 O add xxxx XXXX ALU Op O10 O add O01 O sub 110 1 add	NZC Vwrite 0	8_sign ext xx xx immsr c xx xx xx	x x regbdst x 0 Rm (third Operand)

Rec	М	IR	Mr	reg	regdst	regsrc	AL	AL	ALU	NZC	immsr	regbdst
ove	wri	wri	ea	writ			Usr	Usr	ор	Vwri	С	
ry	te	te	d	e			cA	сВ		te		
0	0	1	1	1	01 R15 -	10	00	01	010	0	XX	х
					PC	ALUre	PC	+8	0			
						sult			add			
1	0	0	0	0	xx	XX	00	00	001	0	xx	х
							PC	+4	0			
									sub			
2	0	0	0	1	01 R15 -	01	XX	xx	XXXX	0	XX	х
					PC	ALUO						
						UT						
3	Х	Х	Х	х	xx	XX	XX	XX	XXXX	Х	XX	х
—												
4	Х	Х	Х	Х	XX	XX	XX	XX	XXXX	Х	XX	Х

#3 Draw block diagram of multi-cycle ARM processor

#4 Explain How the Test program works on the given processor

1. MOV r1, #0 | E3A01000:

cond: always

funct3: Data processing immediate

opcode : MOV Move

Rd := shifter_operand (no first operand)

s: 0

Rn: 0

Rd: 1

rotate: 0

imm8: 0

M	Mw	IRw	Mr	reg	regd	regsr	ALU	ALU	AL	NZC	imm	regb
0	rite	rite	ea	writ	st	С	srcA	srcB	Uo	Vwrit	src	dst
V			d	е					р	е		
0	0	1	1	1	01	10	00	01	01	0	XX	Х
					R15	ALUr	PC	+8	00			
					- PC	esult			ad			
									d			
1	0	0	0	0	XX	XX	00	00	00	0	XX	Х
							PC	+4	10			
									sub			

2	0	0	0	1	01	01	10	10	01	0	00	0
					R15	ALU	zero	im	00		8_si	Rm
					- PC	OUT		m	ad		gnex	(thir
									d		t	d
												Oper
												and)
3	0	0	0	1	00	01	XX	XX	XXX	0	XX	X
					Rd(2	ALU			Х			
					nd	OUT						
					Oper							

Initial pc : x

- 1) PC = PC + 8 = x + 8
- 2) ALUresult = PC 4 = x + 4
- 3) PC = ALUout = previous ALUresult = x + 4

 $ALUresult = (8bit_sign-extension)(imm32) = 1$

4) R[Rd] = ALUout = previous ALUresult = 1

2. ADD r1, r1, #1 | E2811001:

Binay code: 1110 001 0100 0 0001 0001 0000 00000001

cond : always

funct3: Data processing immediate

opcode: ADD Add

Rd := Rn + shifter_operan

s: 0

Rn: 1

Rd: 1

rotate: 0

imm8: 1

	Ī	ı	ı	1	1	ı	1	1	1		1	
Α	Mw	IRw	Mr	reg	regd	regsr	ALU	ALU	AL	NZC	imm	regb
L	rite	rite	ea	writ	st	С	srcA	srcB	Uo	Vwrit	src	dst
U			d	е					р	е		
0	0	1	1	1	01	10	00	01	01	0	XX	Х
					R15	ALUr	PC	+8	00			
					- PC	esult			ad			
									d			
1	0	0	0	0	XX	XX	00	00	00	0	XX	Х
							PC	+4	10			
									sub			
2	0	0	0	1	01	01	01	10	11	0	00	0
					R15	ALU	Α	im	01		8_si	Rm
					- PC	OUT		m	ad		gnex	(thir
									d		t	d
												Oper
												and)
3	0	0	0	1	00	01	XX	XX	XXX	0	XX	Х
					Rd(2	ALU			Х			
					nd	OUT						
					Oper							
					and)							

Initial pc : x

1)
$$PC = PC + 8 = x + 4$$

2) ALUResult = PC -
$$4 = x + 4$$

3)
$$PC = ALUOut = PC - 4 = x + 4$$

$$ALUResult = A + imm$$

4)
$$R[Rd] = ALUOUT = A+imm$$

3. LDR r1, [r0, #0xC] | 0C1090E5:

Binary code: 1110 010 11001 0000 0001 000000001100

cond: always

funct3: Load/store immediate offset

pubwl: 11001

pubwl: Load Instruction

Rn: 0

Rd: 1

imm12: 12

L	Mw	IRw	Mr	reg	regd	regsr	ALU	ALU	AL	NZC	imms	regb
D	rite	rite	ea	writ	st	С	srcA	srcB	Uo	Vwrit	rc	dst
R			d	е					р	е		
0	0	1	1	1	01	10	00	01	01	0	XX	Х
					R15	ALUr	PC	+8	00			
					- PC	esult			ad			
									d			
1	0	0	0	0	XX	XX	00	00	00	0	XX	Х
							PC	+4	10			
									su			
									b			
2	0	0	0	1	01	01	01	10	01	0	01	0
					R15	ALU	Α	im	00		12_ze	Rm
					- PC	OUT		m	ad		roext	(thir
									d			d
												Oper
												and)
3	0	0	1	0	XX	XX	XX	XX	XXX	0	XX	Χ
									X			
4	0	0	0	1	00	00	XX	XX	XXX	0	XX	Х
					Rd(2	MDR			Х			
					nd							
					Oper							
					and)							

Initial PC : x

1)
$$PC = PC + 8 = x + 8$$

2) ALUresult = PC - 4 = x + 4

3)
$$PC = ALUOut = PC-4 = x + 4$$

- 4) Mdr = MEM[ALUOut]
- 5) R[Rd] = MDR

4. BEQ reset

Binary code: 0000 101 00000 xxx...

cond: EQ (zero flag == 1)

If current zero flag is zero, the if statement in signalcontrol module will taken and generate the branch instruction control signals. Else if current zero flag is not zero, the if statement in signalcontrol module will not taken and generate the recovery instruction control signals

For Branch Instructions:

В	Mw	IRw	Mr	reg	reg	regsr	ALU	ALU	AL	NZCV	imms	regb
	rite	rite	ea	writ	dst	С	srcA	srcB	Uo	write	rc	dst
			d	е					р			
0	0	1	1	1	01	10	00	01	010	0	XX	X
					R1	ALUr	PC	+8	0			
					5 -	esult			ad			
					PC				d			
1	0	0	0	0	XX	XX	00	00	001	0	XX	Х
							PC	+4	0			
									sub			
2	0	0	0	1	01	10	00	10	010	0	10	0 Rm
					R1	ALUr	PC	imm	0		24_si	(thir
					5 -	esult			ad		gnext	d
					PC				d			Oper
												and)

Initial PC : x

1)
$$PC = ALUresult = PC + 8 = x + 8$$

2) ALUresult =
$$PC - 4 = x + 4$$

For Recovery Instructions:

Reco	Mw	IRw	Mr	reg	reg	regsr	ALU	ALU	AL	NZCV	im	reg
very	rite	rite	ea	writ	dst	С	srcA	srcB	Uo	write	msr	bds
			d	е					р		С	t
0	0	1	1	1	01	10	00	01	010	0	XX	Х
					R1	ALUr	PC	+8	0			
					5 -	esult			ad			
					PC				d			
1	0	0	0	0	XX	XX	00	00	001	0	XX	Х
							PC	+4	0			
									sub			
2	0	0	0	1	01	01	XX	XX	XXX	0	XX	X
					R1	ALU			Х			
					5 -	OUT						
					PC							

1)
$$PC = ALUresult = PC + 8 = x + 8$$

2) ALUresult =
$$PC - 4 = x + 4$$

3)
$$PC = ALUOUT = x + 4$$
 (next instruction)