A Sharp Threshold for minimum bounded-depth and bounded-diameter spanning tree and Steiner trees in random networks

Literature survey on random networks

Abhinaba Chakraborty¹, ND Sarath², Subhas C Nandy³

ISI, Kolkata, cs2109@isical.co.in
ISI, Kolkata, cs2120@isical.co.in
ISI, Kolkata

June 26, 2022

Table of Contents

2 MST on Random Graphs

- SHORT TITLE Main Author
- Introduction
- MST on Random Graphs
- Results
- Remarks

3 Results

Introduction

SHORT TITLE

Main Author

Introduction

MST on

Graphs

Results

emarks

Introduction

Background and Motivation

• Given a weighted graph G=(V,E) where edge weights are random and follow some sort of distribution we study minimum spanning tree or Steiner Tree as problem imposes a bound on the diameter or depth from a specific vertex.

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Results

MST on Random Graphs

SHORT TITLE

Main Author

MST on Random Graphs

Lot's of research has been going on to study the properties of MST's on Random Graph. Below two of them are well famous :

- The vertices of Graph G are the points of a **Poisson** point process in euclidean space with the edge weights being their euclidean distance between the points.
- The G is a complete graph with edge weights being i.i.d copies of a random variable. This distribution can be **anything**, maybe an exponential with mean 1 or a uniform number between 0 and 1.

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Results

Main Author - SHORT TITLE

Results

Background

• It can be showed that the expected cost of the minimum tree on the complete graph with edge weights distributed independently and uniformly between 0 and 1 tends to a constant as $n \to \infty$ and the constant is $\zeta(3) = \frac{1}{1^3} + \frac{1}{2^3} + \frac{1}{3^3} + \ldots = 1.202.$ [1].

• It is also shown that distribution of $w[MST(k_n)] \to \mathcal{N}(\zeta(3), \frac{6\zeta(4) - 4\zeta(3)}{n})$ with high probability. [2]

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Result

Background Continued...

• Now in the optimal tree most edge weights are close to 0 [as the weight density function that is 1 at weight 0], $w(MST(k_n)) \rightarrow \zeta(3)$ with high probability.[1, 3].

1

• The diameter of $MST(K_n)$ is $\theta(n^3)$ with high probability and $E(diameter MST(k_n)) = \theta(n^{\frac{1}{3}})$ [4]

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Result

Theorem 1

For the complete graph K_n with EXP(1) edge weights, if $k = \log_2 log(n) + \omega(1)$ where $\omega(1) \to \infty$ then,

 $w[MST_{depth \leq k}(K_n)] \to \zeta(3)$ and $w[MST_{diam \leq 2k}(K_n)] \to \zeta(3)$ in both probability and expectation.

This is tight as in when, $k = log_2 log(n) - \Delta$,

$$w[MST_{depth \leq k}(K_n)] = exp(2^{\Delta+\theta(1)})$$
 and $w[MST_{diam \leq 2k}(K_n)] = exp(2^{\Delta+\theta(1)})$

• There is a sharp cutoff at depth $log_2log(n)\pm\theta(1)$ and diameter $2log_2log(n)\pm\theta(1)$

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Result

Remarks

SHORT TITLE

Main Author

ntroduction

MST on Random Graphs

Results

Remarks

- for a given set T of terminal vertices, $w[MST_{diam\leq 2k}(G,T)]\leq w[MST_{depth(r)\leq k}(G,T)]$
- The theorem also holds for other distributions.

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Results

.

Theorem 2

For any number m of terminal vertices $(2 \le m \le n)$, if $k \ge log_2 log(n) + \omega(n/(mlog(en/m)))$, and the edge weight probability distribution has density 1 at 0, then

$$\frac{w[MST_{depth \le k}(K_n, m)]}{w[MST(K_n, m)]} \to 1 \tag{1}$$

and

$$\frac{w[MST_{diam \le 2k}(K_n, m)]}{w[MST(K_n, m)]} \to 1 \tag{2}$$

in probability and if the expected edge weight cycle is finite, convergence holds in expectation too.

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Results

Theorem 2 Continued

- if m=n, theorem 2 will get the results as the first part of theorem 1
- But for Steiner tree, with general m we don't know if there exists a sharp bound, but if m = theta(n), the sharp cutoff is $log_2 log(n) \pm \theta(1)$

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Results

Romarko

Reamrks: Theorem 2

- if m=n, theorem 2 will get the results as the first part of theorem 1
- But for Steiner tree, with general m we don't know if there exists a sharp bound, but if $m=\theta(n)$, the sharp cutoff is $log_2log(n)\pm\theta(1)$

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Results

Theorem 3

If there are $m=n^{1-o(1)}$ terminal vertices and $2\leq k\leq log_2log(n)-log_2log(en/m)-\omega(1)$ and the edge weight probability distribution has density 1 at 0 then,

$$w[MST_{depth \le k}(K_n, m)] = (1 - 2^{-k} \pm o(1))\sqrt{\frac{8m}{n}}(\frac{\sqrt{2mn}}{2^k})^{\frac{1}{2^k - 1}}$$
(3)

,

$$w[MST_{diam \le 2k}(K_n, m)] = (1 - 2^{-k} \pm o(1))\sqrt{\frac{8m}{n}}(\frac{\sqrt{2mn}}{2^k})^{\frac{1}{2^k - 1}}$$
(4)

and

$$w[MST_{diam \le 2k+1}(K_n, m)] = (1 - 2^{-k} \pm o(1))\sqrt{\frac{8m}{n}}(\frac{\sqrt{mn/2}}{2^k})^{\frac{1}{2^k} - 1}$$
 (5)

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Results

Theorem 3 Continued...

and if the expected edge weight is finite, convergence holds in expectation too.

• The second part of Theorem 1 follows from this Theorem 3 upon specializing to the case m=n and $k=log_2log(n)-\Delta$

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Results

) - ... - ...l. -

References I

- A. Frieze, "On the value of a random minimum spanning tree problem," Discrete Applied Mathematics, vol. 10, no. 1, pp. 47–56, 1985.
- J. Steele, "On frieze's (3) limit for lengths of minimal spanning trees," *Discrete Applied Mathematics*, vol. 18, no. 1, pp. 99–103, 1987.
- A. Frieze and C. McDiarmid, "On random minimum length spanning trees," *Combinatorica*, vol. 9, pp. 363–374, 12 1989.
- L. Addario-Berry, N. Broutin, and B. Reed, "Critical random graphs and the structure of a minimum spanning tree," *Random Structures and Algorithms*, vol. 35, pp. 323 347, 10 2009.

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Results

Acknowledgment

This work is done as mandatory presentation assignment on Graph Algorithms course taken Professor Subhas C. Nandy at ISI, Kolkata.

SHORT TITLE

Main Author

Introduction

MST on Random Graphs

Results