לוגיקה למדעי המחשב – שיעור 6: המשך הוכחות, איזומורפיזם, תתי מודלים

ס54-4511925 דוד קסלר

חזרה קצרה על השיעור הקודם

צורה פרנקסית נורמלית

- הגדרה: <mark>צורה פרנקסית נורמלית</mark> היא נוסחה שבה כל הכמתים בראש הנוסחה, והקטע שלאחר מכן הוא דיסיונקטיבי נורמל, כלומר דיסיונקציה של קוניוקציה של נוסחאות בסיסיות
 - נוסחה בסיסית נוסחה אטומית או שלילתה
 - דוגמה:
- $\forall x \exists y \forall z (R_1(x,y) \land \neg R_2(F_1(y,z)) \lor (\neg R_1(F_2(x),z) \land \neg R_2(x) \land R_3(z)) \circ$
 - על מנת לעבור לצורה פרנקסית נורמלית:
 - סנעביר את הפסוק לצורה פרנקסית ס
- סאת הפסוק שנשאר נעביר לצורה נורמלית כמו במשפט הצורה הנורמלית של לוגיקה פסוקית

מעבר לצורה פרנקסית

- אלגוריתם להפיכת כל פסוק לפסוק בצורה פרנקסית:
 - סאם נוסחה אטומית אין כמתים
- - $(\varphi o \psi) \equiv (\neg \varphi \lor \psi)$ אם $(\varphi o \psi) = (\neg \psi \lor \psi)$ הוא העלילה ונכניס את השלילה
 - אם ϕ הוא ϕ נחליף אותו באמצעות הנוסחה ϕ אם ϕ אותו באמצעות באמצעות השלילה ($\phi \leftrightarrow \psi$) ϕ את השלילה ($\phi \leftrightarrow \psi$) ϕ את השלילה
 - לאחר שמכיל רק √ ,√ , נרענן את המשתנים כדי שלא יהיה משתנה משותף -בשתי הנוסחאות ואז נעביר את הכמתים שמאלה על פי הנוסחאות שהראנו

תחשיב בשפת היחסים

- בסיס ההוכחה האקסיומות
- סאקסיומות תחשיב הפסוקים

$$\circ \mathsf{Ax1} \colon \big(\alpha \to (\beta \to \alpha)\big)$$

$$\circ \mathsf{Ax2} : \left(\left(\alpha \to (\beta \to \gamma) \right) \to \left((\alpha \to \beta) \to (\alpha \to \gamma) \right) \right)$$

$$\circ$$
Ax3: $((\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha))$

אקסיומת ההצבה - ע $\phi = \varphi[t/x]$, ובתנאי שזו הצבה כשרה סאקסיומת ההצבה -

$$lpha$$
אקסיומת הזזת כמת - $(\forall x(lpha oeta))$ - אקסיומת הזזת כמת - $(\alpha oeta xeta)$

סאקסיומות השיוויון – השיוויון רפלקסיבי, קומוטטיבי וטרנזיטיבי,אקס' החלפה

• כללי היסק

$$\frac{\varphi,(\varphi\to\psi)}{\psi}$$
:MP \circ

$$\frac{\varphi}{\forall x \varphi}$$
:GR כלל ההכללה

הוכחות בשפת היחסים המלאה

- עד עכשיו למדנו את תחשיב הילברט מעל השפה המצומצמת הכוללת את $(\forall, \rightarrow, \neg)$
- כמו בשפת הפסוקים, גם כאן אפשר להגדיר תחשיב עבור השפה המלאה הכוללת את כל הכמתים ($\Xi, V, \Lambda, \leftrightarrow, A, V$)
 - עבור הקשרים הנוספים נוסיף את האקסיומות הנוספות של השפה הפסוקית, $((\alpha \land \beta) \rightarrow \alpha)$
 - עבור הכמת E נוסיף את כלל היצירה והאקסיומה:
 - $\frac{\varphi}{\exists x \varphi}$ בוסף לכלל הכללה בכמת לכל: $\frac{\varphi}{\forall x \varphi}$ נוסיף לכלל הכללה כמת קיים: סנוסף
 - אקסיומת ההצבה בכמת Ξ : האקסיומה: $\pi \varphi \to \varphi[t/x]$, כאשר $\pi \varphi$ קבוע חדש

• קבעו אילו מהפסוקים הבאים אמיתיים לוגית. כתבו סדרת הוכחה או תנו דוגמה נגדית

$$\vdash \forall x P(x) \rightarrow \exists y P(y)$$
 .1

(דדוקציה) 1.
$$\{\forall x P(x)\} \vdash \exists y P(y)$$

(אקס' ההצבה)
$$2. \forall x P(x) \rightarrow P(t)$$

(הנחה) 3.
$$\forall x P(x)$$

(MP2,3) 4.
$$P(t)$$

(כלל הכללה קיים) 5.
$$\exists y P(y)$$

• קבעו אילו מהפסוקים הבאים אמיתיים לוגית. כתבו סדרת הוכחה או תנו דוגמה נגדית

$$\vdash \exists x P(x) \rightarrow (\exists x Q(x) \rightarrow (\exists x (P(x) \rightarrow Q(x))))$$
 .2

(דרוקציה) 1.
$$\{\exists x P(x)\} \vdash (\exists x Q(x) \rightarrow (\exists x (P(x) \rightarrow Q(x))))$$

(דרוקציה) 2.
$$\{\exists x P(x), \exists x Q(x)\} \vdash (\exists x (P(x) \rightarrow Q(x)))$$

(אקס' ההצבה)
$$3.\exists x Q(x) \rightarrow Q(c)$$

(אקס' ההצבה)
$$4.\exists x P(x) \rightarrow P(d)$$

(MP2,3) 5.
$$Q(c)$$
 (Ax. 1) 7. $Q(c) \rightarrow (P(c) \rightarrow Q(c))$

(MP2,4) 6.
$$P(d)$$
 (MP5,6) 8. $(P(c) \rightarrow Q(c))$

(הכללה)
$$9.(P(c) \rightarrow Q(c)) \rightarrow \exists x (P(x) \rightarrow Q(x))$$

(MP8,9)
$$10.\exists x (P(x) \to Q(x))$$

• קבעו אילו מהפסוקים הבאים אמיתיים לוגית. כתבו סדרת הוכחה או תנו דוגמה נגדית

$$\vdash \forall x P(x) \rightarrow \forall y P(y)$$
 .3

(דרוקציה) 1.
$$\{\forall x P(x)\} \vdash \forall y P(y)$$

(אקס' ההצבה)
$$2.\forall x P(x) \rightarrow P(t)$$

(הנחה) 3.
$$\forall x P(x)$$

(MP2,3) 4.
$$P(t)$$

(כלל הכללה לכל)
$$5.\forall y P(y)$$

- קבעו אילו מהפסוקים הבאים אמיתיים לוגית. כתבו סדרת הוכחה או תנו דוגמה נגדית
 - $\vdash \forall y \exists x R(x,y) \rightarrow \exists x \forall y R(x,y)$.4
- היחס: R היום המספרים הטבעיים, כאשר R הוא היחס: y היום אותה שארית בחלוקה לx לכל y קיים מספר x כך של-x ול-x ול-x את אותה שארית בחלוקה לx, אבל לא קיים x כך שלכל המספרים יש את אותה שארית בחלוקה לx כמוהו.
 - $\vdash (\exists x A(x) \land \exists x B(x)) \rightarrow \exists x (A(x) \land B(x))$.5
- מספר x הוא היחס היחס המספרים הטבעיים, A הוא היחס מספר היוגי, ו-B הוא היחס היחס איזוגי.

L בשפה K באפר מודלים K

- קבוצת מודלים Σ גדירה בשפה L אם קיימת קבוצת נוסחאות כך שמתקיים אודלים $K = \{M | M \models \Sigma\}$
- ניתן להגדיר קבוצת נוסחאות כך שכל הנוסחאות נכונות בכל מודל בקבוצה, ועבור כל מודל שאינו בקבוצה קיימת השמה שבה לפחות אחת מהנוסחאות לא נכונה
- י דוגמה: עבור השפה לא קבועים, פונ' ויחסים פרט לשיוויון) נגדיר רבוגה: (1, 1) בתחום שלהם שבתחום שלהם יש רק איבר בודד: (1, 1) בתחום שלהם שבתחום שלהם (1, 1) בלומר, (1, 1

גדירות קבוצת אובייקטים או יחסים במודל

- על השפה לפונקציות, לקבועים לפונה שפה לפונקציות, לקבועים לפונה שפה לפונקציות, לקבועים לפונה שפה בעזרת המטרה להגדיר יחס או קבוצת אובייקטים מהתחום בעזרת נוסחאות.
- s קבועים, c_0,c_1 קבועים, c_0,c_1 קבועים, c_0,c_1 קבועים, c_0,c_1,s,f,g קבועים, c_0,c_1,s,f,g חד מקומית, ו- c_0,c_1,s,f,g פונקציות דו מקומיות. c_0,c_1,s,f,g פונקציית העוקב. הגדר את קבוצת הזוגיים: $\sigma(x)=\exists yf(y,y)=x\circ$

סיום יחידה 6 – תורה, הומומורפיזם, איזומורפיזם

איזומורפיזם בין מודלים

- נגדיר את המושגים הומומורפיזם ואיזומורפיזם כאשר איזומורפיזם הוא מושג חזק יותר מהומומורפיזם
 - הינם M'-ו M' שני מודלים M ו-M' הינם במושג החזק ביותר, איזומורפיזם, אם עבור שפה M' תהיה נכונה גם בM' ולהיפך מודלים איזומורפיים אזי כל נוסחה שנכונה בM תהיה נכונה גם בM'
- $M = <\{1\}> M' = <\{1,2\}>$ ושני מודלים: L = <>, נתונה שפה L = <
 - M'נכונה בM אבל אבל לא נכונה ב $X \forall x \forall y = y$ הנוסחה •

הומומורפיזם

- :H ושני מודלים וא M_2 ו- M_1 ושני מודלים ביות ושני $H:D^{M_1} o D^{M_2}$
 - :נקראת הומומורפיזם אם מתקיים H •

$$H(c^{M_1}) = c^{M_2} \circ$$
 $H(f^{M_1}(a_1, a_2)) = f^{M_2}(H(a_1), H(a_2)) \circ$
 $(a_1, a_2) \in R^{M_1} \Rightarrow (H(a_1), H(a_2)) \in R^{M_2} \circ$

הומומורפיזם - תרגיל

, כאשר f- פונקציה דו מקומית, כאשר L=< c,f> פונקציה דו מקומית, $H_1=< Even$ ונתונים שני המודלים $H_1: N \to Even$: $H_1(x)=2x$ הומומורפיזם?

• נבדוק לפי ההגדרה:

$$H_1(c^M) = H_1(0) = 2 \cdot 0 = 0 = c^{M_1}$$
: עבור הקבוע סעבור הקבוע

:+ סעבור הפונקציה

$$H_1(a+b) = 2(a+b) = 2a + 2b = H_1(a) + H_1(b)$$

:= סעבור היחס

$$a = b \Longrightarrow 2a = 2b \Longrightarrow H_1(a) = H_1(b)$$

סכל התנאים מתקיימים ולכן הומומורפיזם

הומומורפיזם - תרגיל

• נבדוק לפי ההגדרה:

$$H_2(c^M) = H_2(0) = 2 \cdot 0 + 1 = 1 = c^{M_2}$$
: עבור הקבוע :+ פעבור הפונקציה:

 $H_2(a+b) = 2(a+b) + 1 \neq 2a+1+2b+1 = H_2(a) + H_2(b)$ הפונקציה + לא נשמרת ולכן לא הומומורפיזם + לא נשמרת המומורפיזם

הומומורפיזם - תרגיל

נתונים שפה C כאשר C קבוע ו-f פונקציה דו מקומית, ונתונים L=< c,f> שני המודלים $M_3=<\{0,1\},0,+>$ וM=< N,0,+> ונתונה שני המודלים $H_3:N \to \{0,1\}:H_3(x)=0$ פונקציה $H_3:N \to \{0,1\}:H_3(x)=0$

• נבדוק לפי ההגדרה:

$$H_3(c^M) = H_3(0) = 0 = c^{M_3}:c$$
 טעבור הקבוע

:+ סעבור הפונקציה

$$H_3(a+b) = 0 = 0 + 0 = H_3(a) + H_3(b)$$

:= סעבור היחס

$$H_3(a) = H_3(b)$$
 מתקיים a,b כי עבור כל $a = b \Longrightarrow H_3(a) = H_3(b)$ כל התנאים מתקיימים ולכן הומומורפיזם

איזומורפיזם

- :H ושני מודלים וא M_2 -ו ושני מודלים ושני $H:D^{M_1} o D^{M_2}$
 - :נקראת נקראת איזומורפיזם אם מתקיים H •

$$H(c^{M_1})=c^{M_2}\circ$$

$$H(f^{M_1}(a_1,a_2)) = f^{M_2}(H(a_1),H(a_2)) \circ$$
 $(a_1,a_2) \in R^{M_1} \iff (H(a_1),H(a_2)) \in R^{M_2} \circ$
 $(a_1,a_2) \in R^{M_2} \Leftrightarrow (H(a_1),H(a_2)) \in R^{M_2} \circ$
 $(a_1,a_2) \in R^{M_2} \circ R^{M_2} \circ$

• <mark>משפט Scolem Levinhem</mark>: שפת תחשיב היחסים מסוגלת להבחין בין מודלים עד כדי איזומורפיזם

איזומורפיזם – תרגיל 1

נתונה שפה כאשר C כאשר באטר באטר באטר מקומית, ונתון נתונה שפה באטר באטר באטר באטר באטר באטר לונתון M=< N,0,+>

$$H_1: N \to Even: H_1(x) = 2x, M_1 = < Even, 0, +>0$$

 $H_2: N \to Odd: H_2(x) = 2x + 1, M_2 = < Odd, 1, +>0$
 $H_3: N \to \{0,1\}: H_3(x) = 0, M_3 = < \{0,1\}, 0, +>0$

?מי מהפונקציות הנ"ל איזומורפיזם

רכן. על
$$+a \neq b \Longrightarrow 2a \neq 2b \Longrightarrow H_1(a) \neq H_1(b)$$
 הפונ' על הומומורפיזם לא, אפילו לא הומומורפיזם

$$H(1)=H(2)=0$$
 כי מתקיים 1 \neq 2 \Leftrightarrow $H(1)\neq$ $H(2)$ לא

איזומורפיזם – תרגיל 2

- יחס דו מקומי, ונתונים שני המודלים L=<R> כאשר L=<R> יחס דו מקומי, ונתונים שני המודלים M'=<Z, יחס דו M=<N, M=<N, יחס דו מונים $M:N\to Z$: $M:N\to Z$:
 - נבדוק לפי ההגדרה:
- ולכן מקור אינה אין מקור (לכל המס' ב-Zיש מקור המים אין מקור) ולכן איזומורפיזם איזומורפיזם לא איזומורפיזם
 - סנותר לבדוק הומומורפיזם. אין קבועים ופונקציות. נבדוק יחסים:

$$a < b \Rightarrow -a > -b \Longrightarrow H(a) > H(b)$$

$$a = b \Rightarrow -a = -b \Longrightarrow H(a) = H(b)$$

סמכאן, זהו הומומורפיזם

איזומורפיזם – תרגיל 3

- נתונה שפה < c,f> כאשר c קבוע ו-f פונקציה דו מקומית, ונתונים שני המודלים L=< c,f> כאשר C באשר C כאשר C כאשר C באשר C באשר C באשר C ונתונה פונקציה C באשר C ווער באשר C באשר C באשר C ווער פונקציה C באשר C באשר C ווער פיזם שני המודלים C באשר C באשר
 - נבדוק לפי ההגדרה:

מתקבל
$$H(2)=H(0)=1, H(-3)=H(7)=-1$$
 מתקבל למשל: $H(2)=H(0)=H(0)=H(0)=H(0)=H(0)=H(0)$ מתקבל בל למשל: $2\neq 0 \Leftrightarrow H(2)\neq H(0)$

סנותר לבדוק הומומורפיזם

$$H(c^M) = H(0) = -1^0 = 1 = c^{M'}$$

$$H(a+b) = (-1)^{a+b} = (-1)^a \cdot (-1)^b = H(a) \cdot H(b)$$

$$a = b \Rightarrow (-1)^a = (-1)^b \Longrightarrow H(a) = H(b)$$

סמכאן, זהו הומומורפיזם

תורה

- <mark>תורה</mark>: קבוצת פסוקים קונסיסטנטית (שלא ניתן להוכיח בה פסוק ושלילתו)
- $oldsymbol{arphi}$ תורה שלמה: תורה שבה עבור כל פסוק $oldsymbol{arphi}$ ניתן להוכיח את חרה את $oldsymbol{arphi}$
- בתחשיב הפסוקים לתורה שלמה בדיוק מודל אחד. בתחשיב היחסים לתורה שלמה יש מודל אחד עד כדי איזומורפיזם עבור כל עוצמה

האריתמטיקה של פאנו

• דוגמה לתורה: האריתמטיקה של פאנו (Peano) הכוללת את הפסוקים הבאים בשפה הכוללת חיבור, כפל ועוקב:

1.
$$\forall x(\neg s(x) = 0)$$

2.
$$\forall x \forall y [s(x) = s(y) \rightarrow x = y]$$

3.
$$\forall x(x+0) = x$$

4.
$$\forall x \forall y [x + s(y) = s(x + y)]$$

5.
$$\forall x(x \cdot 0) = 0$$

6.
$$\forall x \forall y [x \cdot s(y) = (x \cdot y) + x]$$

:ולכל נוסחה $\phi[x_1,...,x_k,y]$ מוגדרת אקסיומת האינדוקציה

$$0 \forall x_1 \dots \forall x_k \forall y ((\varphi[0/y] \land \forall y (\varphi \rightarrow \varphi[s(y)/y])) \rightarrow \forall y \varphi)$$

תרגיל – תורת הסדר

- M=<<> שפה עם יחס דו מקומי יחיד וL המבנה M=<
 - :נגדיר את תורת הסדר

$$T_{ord} = \{ \forall x \neg (x < x), \forall x \forall y \forall z (((x < y) \land (y < z)) \rightarrow (x < z)) \}$$

- תרגיל: הוכח שהיחס לא קומוטטיבי
- $\vdash \forall x \forall y ((x < y) \rightarrow \neg (y < x))$ פתרון: יש להוכיח •

וזו סתירה לנוסחה 1 (a<a) אבל, מכאן אפשר להוכיח באמצעות נוסחה

תת מודל

- י נתונה שפה L ושני מודלים M_1 ו- M_2 . M_2 הוא תת מודל של M_1 אם הוא נותן את אותו M_1 שפירוש לקבועים, לפונקציות וליחסים, ומתקיים $D^{M_2} \subseteq D^{M_1}$
- : כאשר במודלים: ונתונים מקומי, ונתונים ר c_0, c_1 קבועים באשר באטר באורלים: $L = < c_0, c_1, R >$ דוגמה: תהי

- ויש את אותו פירוש לקבועים וליחס $N \subseteq Q$. כן. אותו $M_2 \subseteq M_3$ הוא תת מודל של $M_2 \subseteq M_3$
- כן. $Q \subseteq R$ ויש את אותו פירוש לקבועים וליחס
 - $?M_3$ הוא תת מודל של M_4
 - לא. היחס מפורש אחרת

תת מודל - המשך

:תהי<> נתונים המודלים L=<>

$$M_1=< R>$$
 , $M_2=< N>$, $M_3=< \{x\in N|x\ is\ even\}>$, $M_4=< \{5,11\}>$ האם M_2 הוא תת מודל של M_1

- $N \subseteq R$.כך.
- $?M_2$ האם מודל M_1 הוא תת M_1
 - ב לא ■

M2 M3 M4 M1

2L = < c > cומה לגבי (2L) ומה לגבי לכל המודלים של תת תחום משותף לכל המודלים אף פעם לא יהיו זרים סאם יש קבועים 2 תתי מודלים אף פעם לא יהיו זרים

תת מודל מינימלי

- נתונה שפה L, מודל M ותת מודלים M_1 , M_2 ... אם ב-L יש לפחות קבוע אחד אזי ניתן להגדיר תת מודל מינימלי, הכולל את החלק המשותף לכל תתי המודלים האפשריים ל M_i
 - תת מודל מינימלי הוא יחיד עד כדי איזומורפיזם
- התחום של תת המודל המינימלי הוא כל שמות העצם חסרי המשתנים, כלומר הסגור של העצמים המפרשים את הקבועים בשפה תחת הפונקציות בשפה
 - עצמו M בקרא מינימלי אם אין לו שום תת מודל פרט לM

תת מודל מינימלי - דוגמה

```
L=< c,f,g> מתונה השפה M=< N,0,+ אלי של M=< N,0,+ המינימלי של המינימלי על המינימלי על המינימלי על M'=<\{0\},0,+ הפעלת הפונקציות על M'=<\{0\},0,+ המינימלי של M'=< N,1,+ המינימלי של M'=< \{x\in N|x>0\},0,+ ביתן לקבל כל מספר גדול מ-0 על ידי הפעלת הפונקציות על קבועים, למשל C=1,f(c,c)=2,f(f(c,c),c)=3 ...
```

נוסחאות קיים / נוסחאות לכל

- נוסחה φ נוסחה פרנקסית: נוסחה מהצורה באורה לאים פרנקסית: נוסחה מהצורה חסרת כמתים
- נוסחה ישית / נוסחת קיים: חיבור נוסחאות קיים פרנקסיות ע"י ⋅ ∃, ∧ , ∨
 - נוסחה φ כאשר $\forall x_1 \dots \forall x_n \varphi$ נוסחה מהצורה פרנקסית: נוסחה מהצורה חסרת כמתים
 - נוסחת לכל / כוללת: חיבור נוסחאות לכל פרנקסיות ע"י ∀, ∧, ∨

נוסחאות קיים ולכל ותתי מודלים

משפט:

שמות עצם, ונוסחאות חסרות כמתים מקבלים את אותו ערך במודל ותת מודל סתהי ϕ נוסחת קיים. אם היא נכונה בתת מודל אזי היא נכונה גם בכל תת מודל שמכיל אותו

תהי ψ נוסחת לכל. אם היא נכונה בתת מודל אזי היא נכונה גם בכל תת מודל שמוכל בו

בציור:

1,2,4 תהיה נכונה במודלים $\exists \varphi \circ$ תהיה נכונה בכל המודלים

31

אר יהי $\phi= \forall x \ (\forall z R(x,z) \to (\exists y R(y,x) \land \neg(x=y)))$ יהי א יהי φ אמיתי גם בכל תת מודל של γ . האם φ אמיתי גם בכל תת מודל של יהי

 $M=<\{1,2,3\},R=\{(1,1),(1,2),(1,3),(2,1)\}>$ לא. נראה דוגמה: נניח ש- $\{1,2,3\},R=\{(1,1),(1,2),(1,3),(2,1)\}>$ מקבל ערך $\{1,2,3\},R=\{(1,1),(1,3)\}>$ מקבל ערך $\{1,2,3\},R=\{(1,1),(1,3)\}>$ הצד הימני. לעומת זאת בתת המודל: $\{1,3\},R=\{(1,1),(1,3)\}>$ ולכן הפסוק כולו מקבל ערך $\{1,3\},R=\{(1,1),(1,3)\}>$ ולכן הפסוק כולו מקבל ערך $\{1,3\},R=\{(1,1),(1,3)\}>$

- ב- העבירו את הפסוק $\varphi= \forall x \ (\forall z R(x,z) \to (\exists y R(y,x) \land \neg(x=y)))$ לפסוק פרנקסי פרנקסי יהי M מודל של φ' . האם φ' אמיתי גם בכל תת מודל של M'. יהי M מודל של φ' .
 - נעביר לצורה פרנקסית נורמלית:

$$\forall x \left(\forall z R(x,z) \to \left(\exists y R(y,x) \land \neg(x=y) \right) \right)$$

$$\equiv \forall x \left(\neg \forall z R(x,z) \lor \left(\exists y R(y,x) \land \neg(x=y) \right) \right)$$

$$\equiv \forall x \left(\exists z \neg R(x,z) \lor \left(\exists y R(y,x) \land \neg(x=y) \right) \right)$$

$$\equiv \forall x \exists z \exists y \left(\neg R(x,z) \lor \left(R(y,x) \land \neg(x=y) \right) \right)$$

• הפסוק המקורי שקול לפסוק החדש ולכן קיים מודל לפסוק שיש לו תת מודל שאינו מודל של הפסוק (הודגם בסעיף הקודם)

- N בתחום $L=<0,1,s,+,\cdot>$ בתחום •
- א- רישמו את הפסוק ϕ שמשמעותו: "לכל מספר a שמחלק בכל "לכל ϕ שמתחלק בכל המספרים "1,2,...,a-1"
 - arphi'ב- היפכו את הפסוק לפסוק פרנקסי נורמלי

$$\forall a \exists b \forall x (\exists t ((x + t = a) \land \neg (t = 0)) \rightarrow \exists r (x \cdot r = b)) \bullet$$

$$\equiv \forall a \exists b \forall x (\neg \exists t ((x+t=a) \land \neg (t=0)) \lor \exists r (x \cdot r=b)) \bullet$$

$$\equiv \forall a \exists b \forall x (\forall t \neg ((x+t=a) \land \neg (t=0)) \lor \exists r (x \cdot r=b))$$

$$\equiv \forall a \exists b \forall x \forall t \exists r (\neg ((x+t=a) \land \neg (t=0)) \lor (x \cdot r=b))$$

- N בתחום $L=<0,1,s,+,\cdot>$ בתחום •
- ג- האם הפסוק ϕ' אמיתי במודל המינימלי? האם הפסוק אמיתי במודל המינימלי?
- המודל המינימלי כולל את הקבועים ואת הסגור של הפעלת הפונקציות על הקבועים. נסתכל על x טבעי ניתן עבור כל מספר x טבעי ניתן עבור כל מספר x טבעי ניתן עבור כל את x פעמים ולקבל אותו, ולכן המודל המינימלי הוא כל קבוצת הטבעיים אולכן הוא שקול למודל המקורי x
 - הפסוק המקורי אמיתי בקבוצת הטבעיים ולכן גם במודל המינימלי הפסוק המקורי אמיתי בקבוצת הטבעיים $b=1\cdot 2\cdot 3\dots \cdot a$
 - הפסוק ϕ' שקול לפסוק המקורי ולכן גם הוא אמיתי במודל המינימלי •

סקולמיזציה של פסוק

- תהליך החלפת פסוק בפסוק כולל בשפה מועשרת, כך שאם לאחד יש מודל גם לשני יש
 - תהליך ההחלפה:
 - סנעביר את הפסוק לצורה פרנקסית נורמלית
 - $arphi \left[c/y
 ight]$ בקבוע בקבוע בחליף את $\exists y arphi$
- בפסוק מהצורה $\forall x_1, ..., \forall x_n \exists y \varphi$ נבחר פונקציה חדשה $\forall x_1, ..., \forall x_n \exists y \varphi$ את עבשם עצם שתלוי ב $x_1, ..., x_n$ שלפניו, כלומר נחליף בפסוק $\forall x_1, ..., \forall x_n \varphi \ [f(x_1, ..., x_n)/y]$
 - סנחזור על שני השלבים האחרונים לכל כמתי קיים מהחוץ פנימה

- נתון הפסוק פסוק כולל ψ כך ש $\varphi= \forall x(R(x) o \forall y ig(T(x,y) o \exists x Q(x)ig))$ מיצאו פסוק כולל לי כך ש ψ ספיק אם"ם ϕ ספיק
 - פתרון:
 - 1. נהפוך לצורה פרנקסית נורמלית:

$$(A \to B) \equiv (\neg A \lor B)$$
 א- נטפל ב- $(A \to B) \equiv (\neg A \lor B)$ השקילות השקילות $\varphi \equiv \forall x (\neg R(x) \lor \forall y (T(x,y) \to \exists x Q(x)))$

 $\equiv \forall x (\neg R(x) \lor \forall y (\neg T(x, y) \lor \exists x Q(x)))$

ב- נרענן משתנים כדי שנוכל להוציא כמתים:

$$\varphi \equiv \forall x (\neg R(x) \lor \forall y (\neg T(x, y) \lor \exists z Q(z)))$$

ג- נוציא את הכמתים החוצה:

$$\varphi \equiv \forall x \forall y \exists z (\neg R(x) \lor \neg T(x, y) \lor Q(z))$$

הגענו לפסוק בצורה פרנקסית נורמלית

- נתון הפסוק פסוק כולל ψ כך ש- $\phi= \forall x(R(x) o \forall y ig(T(x,y) o \exists x Q(x)ig))$ מיצאו פסוק כולל לי כך ש- נתון הפסוק עם"ם ϕ ספיק שם"ם לי ספיק שם"ם לי ספיק
 - פתרון:
 - :z של \exists נבצע סקולמיזציה להוצאת כמת \exists של z:

$$\varphi \equiv \forall x \forall y \exists z (\neg R(x) \lor \neg T(x, y) \lor Q(z))$$

$$\psi \equiv \forall x \forall y (\neg R(x) \lor \neg T(x, y) \lor Q(f(x, y)))$$

- :הערות
- ספיק ϕ ספיק אם"ם ψ ספיק אבל ϕ ספיק אם"ם ספיק \circ
 - הפסוקים אינם באותה שפה, ψ בשפה מועשרת \circ
 - לא יחיד $\psi\circ$

- ספיק ע- ψ כך ש- ψ ספיק פסוק מיצאו פסוק לע כך ש- $\phi= \forall x \exists y R(x,y) \to \forall y \exists x R(x,y)$ אם"ם ϕ ספיק
 - פתרון:
 - 1. נהפוך לצורה פרנקסית נורמלית:

:א- נטפל ב- \leftarrow באמצעות השקילות ($A \rightarrow B$) $\equiv (\neg A \lor B)$ ונכניס את השלילה $\varphi \equiv \neg \forall x \exists y R(x,y) \lor \forall y \exists x R(x,y) \equiv \exists x \forall y \neg R(x,y) \lor \forall y \exists x R(x,y)$

ב- נרענן משתנים כדי שנוכל להוציא כמתים:

 $\varphi \equiv \exists z \forall t \neg R(z, t) \lor \forall y \exists x R(x, y)$

ג- נוציא את הכמתים החוצה:

 $\varphi \equiv \forall y \exists x \exists z \forall t (\neg R(z, t) \lor R(x, y))$

הגענו לפסוק בצורה פרנקסית נורמלית

- ספיק עיש- ψ פיק פסוק פסוק פסוק לע כך ש $\phi= \forall x \exists y R(x,y) \to \forall y \exists x R(x,y)$ פסיק אם"ם ϕ ספיק
 - פתרון:
 - z נבצע סקולמיזציה להוצאת כמת z של z ושל z .2 $\varphi \equiv \forall y \exists x \exists z \forall t (\neg R(z,t) \lor R(x,y))$

$$g(y)$$
ב ב- $g(y)$, ולאחר מכן את ב- $f(y)$, ב- $f(y)$ את $\psi \equiv \forall y \forall t (\neg R(g(y),t) \lor R(f(y),y))$

סיום יחידה 8 – משפט הרברנד ומשפט סקולם

משפט הרברנד

- רלוונטי לשפות עם קבוע אחד לפחות
- c,f(c),fig(g(c)ig), ... מתרכזים בשמות העצם הקבועים שאין בהם משתנים \bullet
 - המודלים של הרברנד מייצגים את כל המודלים המינימליים בשפה
 - סתירה בנוסחת כולל במודל מינימלי ⇒ סתירה בכל המודלים
- יש מודל φ' כך אר שיטת סקולם שהופכת פסוק φ לפסוק שהופכת סקולם של- φ' יש מודל אם"ם ל- φ' יש מודל שודל
- משפט / אלגוריתם הרברנד מאפשר אם כן ליצור פסוק כולל, לבדוק אם הוא מוביל לסתירה במודל מינימלי וכך להוכיח שהפסוק המקורי מוביל לסתירה.

משפט הרברנד

עבור תורה T אוניברסלית עם קבוע אחד לפחות, T ספיקה אם"ם • כאשר T^* הוא קב' כל ההשמות של שמות עצם לתוך משתנים בפסוקים של T

י דוגמאות:

בשפה עם הקבועים a,b והתורה האוניברסלית a,b הבאה: $T = \{ \forall x \forall y R(x,y) \}$ $T = \{ \forall x \forall y R(x,y) \}$ $T^* = \{ R(a,a), R(a,b), R(b,a), R(b,b) \}$ כאם בשפה הייתה גם פונקציה חד מקומית f היינו מקבלים: $T^* = \{ R(a,a), R(a,b), R(b,a), R(b,b), R(f(a),a), R(a,f(a),R(b),f(a)), R(f(b),f(a)), R(f(f(a))), R(f(f(b)), ... \}$

האלגברה של הרברנד

התחום של הרברנד / מרחב הרברנד $-D_H$: מרחב הרברנד אחד לפחות העצם ללא משתנים (הקבועים והפעלת פונקציות עליהם) בשפה עם קבוע אחד לפחות $U = \{a,b\}: \text{ללא הפונקציה: } \{a,b\} : f$ עם הפונקציה $U = \{a,b,f(a),f(b),f(f(a)),f(f(b)) \dots\}: f$

- <mark>המודלים של הרברנד</mark>: כל המודלים עם תחום הרברנד ופירוש כלשהו ליחסים. כל מודל הרברנד הוא מודל מינימלי
- בסיס הרברנד בסיס הרברנד של קבוצת פסוקים זו הקבוצה המתקבלת ע"י בסיס הרברנד של קבוצת פסוקים אברים ממרחב הרברנד לפסוקים מהקבוצה T^st מהשקף הקודם)
- בשאלות נתחיל לרשום את בסיס הרברנד, נראה שמגיעים לסתירה ונעצור

האלגוריתם של הרברנד

- אלגוריתם כריע למחצה, העוצר אם יש סתירה
- -arphi את מודל נבחן את ל-arphiיש מודל נבחן את -arphi.
- 2. נתרגם את הפסוק לפסוק כולל בצורת סקולם (סקולמיזציה)
- .3 נבנה את מרחב הרברנד קבוצת שמות העצם חסרי המשתנים בשפה.
- 4. נבדוק אם יש לו מודל שתחומו הוא מרחב הרבנד וננסה להגיע לסתירה. נבנה את בסיס הרברנד נתחיל עם הקבועים הבסיסיים, ונתחיל להפעיל עליהם את הפונקציות ולהציב בפסוקים עד שנגיע לסתירה.

האלגוריתם של הרברנד – תרגיל

- הוכיחו באמצעות משפט הרברנד שהפסוק הוכיחו באמצעות משפט הרברנד $\phi=\exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)$
 - פתרון:
- $\neg \phi = \neg (\exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y))$:ניקח את השלילה שלו: .1
 - ספיק $-\phi$ שספיק רק אם הפסוק שספיק במצא פסוק כולל
 - א- נהפוך לצורה פרנקסית נורמלית:

```
\neg \varphi = \neg (\exists x \forall y P(x, y) \rightarrow \forall y \exists x P(x, y)) \equiv
\equiv \neg (\neg \exists x \forall y P(x, y) \lor \forall y \exists x P(x, y)) \equiv (\neg \neg \exists x \forall y P(x, y) \land \neg \forall y \exists x P(x, y))
\equiv (\exists x \forall y P(x, y) \land \neg \forall y \exists x P(x, y)) \equiv (\exists x \forall y P(x, y) \land \exists y \forall x \neg P(x, y))
\equiv (\exists x \forall y P(x, y) \land \exists z \forall w \neg P(w, z)) \equiv \exists x \forall y \exists z \forall w (P(x, y) \land \neg P(w, z))
```

האלגוריתם של הרברנד – תרגיל

א- צורה פרנקסית נורמלית:

 $\exists x \forall y \exists z \forall w (P(x, y) \land \neg P(w, z))$

ב- סקולמיזציה:

 $\psi = \forall y \forall w (P(a, y) \land \neg P(w, f(y)))$

- $U = \{a, f(a), f(f(a)), ...\}$ מרחב הרברנד: 3.
- 4. נבנה בסיס הרברנד ע"י הָצבת איברים מתוך מרחב הרברנד במקום המשתנים:

$$H = \{ P(a, a) \land \neg P(a, f(a)), P(a, f(a)) \land \neg P(a, f(f(a))), \dots \}$$

הגענו לסתירה (צד ימין במשוואה הראשונה עם צד שמאל בשניה) ולכן H לא ספיק, הפסוק המקורי טאוטולוגיה

תודה רבה 🏵