Question 2

Note:

According to https://scikit-learn.org/stable/modules/linear_model.html), Ridge and LASSO Logistic Regression minimize the following objective functions respectively.

$$\min_{w,c} rac{1}{2} w^T w + C \sum_{i=1}^n \log(\exp(-y_i(X_i^T w + c)) + 1).$$

$$\min_{w,c} \|w\|_1 + C \sum_{i=1}^n \log(\exp(-y_i(X_i^Tw + c)) + 1).$$

Tuning parameter C describes the inverse of regularization strength.

(a) Logistic Regression Model

Coefficients and confusion matrix for the test set are shown as follows.

Mean accuracy on test set is 0.9911504424778761

Coefficients are

```
[[ -4.63795182 15.51467914 -39.76227664 -27.97597849 72.39664305 15.30168863 2.73402449 -13.49102549 26.58767053 22.79400755 -1.58036096]]
```

Confusion matrix on test set is

```
[[103 1]
[ 0 9]]
```

(b) Ridge Logistic Regression Model

Optimal tuning parameter, optimal coefficients and the confusion matrix for the test set are shown as follows.

(c) LASSO Logistic Regression Model

Optimal tuning parameter, optimal coefficients and the confusion matrix for the test set are shown as follows.

```
Mean accuracy on test set is 0.9911504424778761

Optimal Coefficients are

[[-0.39758761 0.74330282 -2.53531895 -2.08584311 5.00152154 0.61646927 0.05863434 -0.51958877 1.8041549 1.83936585 0. ]]

Optimal tuning parameter is 2.782559402207126

Confusion matrix on test set is

[[103 1] [ 0 9]]
```

(d) Adaptive LASSO Logistic Regression Model

Optimal tuning parameter, optimal coefficients and the confusion matrix for the test set are shown as follows.

```
Mean accuracy on test set is 0.9823008849557522
Optimal Coefficients are
.0-]]
                         -1.2638265 -1.23438995 3.00867754 0.22642313
                0.
   0.
              -0.
                           0.85101359 0.97340566 -0.
                                                              ]]
Optimal tuning parameter is 0.3593813663804626
Confusion matrix on test set is
[[103
        11
 [ 1
        8]]
         import sklearn.linear model as 1m
In [42]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         from sklearn.linear_model import LogisticRegression
         from sklearn.preprocessing import StandardScaler
         from sklearn.metrics import confusion matrix
         from sklearn.linear model import LogisticRegressionCV
```

```
In [100]: #logistic regression
          data = pd.read csv('Question2-3.csv').to numpy()
          X train = data[:250,:11]
          X test = data[250:,:11]
          y_train = data[:250,11]
          y test = data[250:,11]
          scaler = StandardScaler()
          X train = scaler.fit transform(X train)
          X test = scaler.transform(X test)
          clf = LogisticRegression(penalty='none').fit(X train, y train)
          y pred = clf.predict(X test)
          print(f'Mean accuracy on test set is {clf.score(X test,y test)}\n')
          print(f'Coefficients are \n\n{clf.coef }\n')
          print(f'Confusion matrix on test set is \n\n{confusion matrix(y test,
          y pred)}')
          Mean accuracy on test set is 0.9911504424778761
          Coefficients are
          [[-4.63795182 	 15.51467914 	 -39.76227664 	 -27.97597849 	 72.39664305]
             15.30168863
                           2.73402449 -13.49102549 26.58767053 22.79400755
             -1.58036096]]
```

Confusion matrix on test set is

[[103

[0

1]

9]]

```
data = pd.read csv('Question2-3.csv').to numpy()
X train = data[:250,:11]
X test = data[250:,:11]
y train = data[:250,11]
y test = data[250:,11]
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
clf = LogisticRegressionCV(penalty='12',cv=5).fit(X train, y train)
y pred = clf.predict(X test)
print(f'Mean accuracy on test set is {clf.score(X test,y test)}\n')
print(f'Optimal Coefficients are \n\n{clf.coef }\n')
print(f'Optimal tuning parameter is {clf.C [0]}\n')
print(f'Confusion matrix on test set is \n\n{confusion matrix(y test,
y pred)}')
Mean accuracy on test set is 0.9911504424778761
Optimal Coefficients are
[-0.44177597 \quad 0.52264659 \quad -2.01860673 \quad -1.83188506 \quad 3.18919965 \quad 1.138
29431
   0.23507703 - 0.63224381 \quad 1.43045919 \quad 1.73830259 - 0.1576090711
Optimal tuning parameter is 2.782559402207126
Confusion matrix on test set is
[[103
        1]
        911
 0
```

In [108]: #Ridge logistic regression

```
In [109]: #Lasso logistic regression
          data = pd.read csv('Question2-3.csv').to numpy()
          X train = data[:250,:11]
          X test = data[250:,:11]
          y train = data[:250,11]
          y test = data[250:,11]
          scaler = StandardScaler()
          X train = scaler.fit transform(X train)
          X test = scaler.transform(X test)
          clf = LogisticRegressionCV(penalty='l1',solver='liblinear',cv=5).fit(X
           _train, y_train)
          y pred = clf.predict(X test)
          print(f'Mean accuracy on test set is {clf.score(X test,y test)}\n')
          print(f'Optimal Coefficients are \n\n{clf.coef }\n')
          print(f'Optimal tuning parameter is {clf.C [0]}\n')
          print(f'Confusion matrix on test set is \n\n{confusion matrix(y test,
          y pred) \ \ \ \)
          Mean accuracy on test set is 0.9911504424778761
          Optimal Coefficients are
          [-0.39758761 \quad 0.74330282 \quad -2.53531895 \quad -2.08584311 \quad 5.00152154 \quad 0.616
          46927
              0.05863434 - 0.51958877 1.8041549
                                                   1.83936585 0.
                                                                           ]]
          Optimal tuning parameter is 2.782559402207126
          Confusion matrix on test set is
          [[103
                   11
           0 ]
                   911
```

```
#adaptive lasso logistic regression
data = pd.read csv('Question2-3.csv').to numpy()
X train = data[:250,:11]
X test = data[250:,:11]
y train = data[:250,11]
y test = data[250:,11]
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
qamma=1
ridge betas = LogisticRegressionCV(penalty='12',cv=5).fit(X train, y t
rain).coef
w ridge = ridge betas**-gamma
X ridge = X train/w ridge
X ridge test = X test/w ridge
clf = LogisticRegressionCV(penalty='l1',solver='liblinear',cv=5).fit(X
ridge, y train)
op coef = clf.coef /w ridge
op c = clf.C[0]
y pred = clf.predict(X ridge test)
print(f'Mean accuracy on test set is {clf.score(X ridge test,y test)}\
n')
print(f'Optimal Coefficients are \n\n{op coef}\n')
print(f'Optimal tuning parameter is {op c}\n')
print(f'Confusion matrix on test set is \n\n{confusion matrix(y test,
y pred)}')
Mean accuracy on test set is 0.9823008849557522
Optimal Coefficients are
                          -1.2638265 -1.23438995 3.00867754 0.226
[[-0.
               0.
42313
   0.
              -0.
                           0.85101359 0.97340566 -0.
                                                              ]]
Optimal tuning parameter is 0.3593813663804626
Confusion matrix on test set is
[[103
        11
        811
 [ 1
```

In [110]:

In []:	
---------	--