

# Bauman Moscow State University Th. Computer Science Dept.

## **Finite State Machines and Regular Expressions**



Antonina Nepeivoda a\_nevod@mail.ru

## **Lecture Outline**

- Basic Notions
- Closures and Determinisation
  - $\varepsilon$ -Removal by Closure
  - Subset Construction and Determinisation
- **3** From NFA to Regular Expressions
  - Solving Language Equations
  - State Eliminating Method
- **4** From Regular Expressions to NFA



## Reminder: Neural Networks by McCulloch-Pitts



- — excitatory signal;
- inhibitory signal;

\_\_ an input neuron;

 $\sqrt{k}$  — an inner neuron firing whenever none of the inhibitory signals and at least k of excitatory signals fire.

Naturally imitate: disjunction, conjunction, negation, iteration, concatenation.



## **Regular Expressions by Kleene**

#### **OO** Academic Definition

Given alphabet  $\Sigma$ , a regular expression is either a letter in  $\Sigma$ ,  $\varepsilon$ , or a result of following operations, where  $r_1$ ,  $r_2$  are regular expressions:

- $r_1 \mid r_2$  union (alternation).  $\mathcal{L}(r_1 \mid r_2) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$ ;
- $r_1 r_2$  concatenation (sequencing).  $\mathcal{L}(r_1 r_2) = \{ \omega_1 \omega_2 \mid \omega_1 \in \mathcal{L}(r_1) \& \omega_2 \in \mathcal{L}(r_2) \};$
- $(r_1)^*$  iteration (0 or more concatenations of  $r_1$  with itself);

$$\mathscr{L}((r_1)^*) = \{\varepsilon\} \bigcup_{i=1}^{\infty} \mathscr{L}(r_1).$$

#### Syntactic Sugar

- $r^+$  positive iteration (shortcut for  $r r^*$ );
- r? option (shortcut for  $(r \mid \varepsilon)$ ).



## **Regular Expressions by Kleene**

#### **OO** Academic Definition

Given alphabet  $\Sigma$ , a regular expression is either a letter in  $\Sigma$ ,  $\varepsilon$ , or a result of following operations, where  $r_1$ ,  $r_2$  are regular expressions:

- $r_1 \mid r_2$  union (alternation).  $\mathcal{L}(r_1 \mid r_2) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$ ;
- $r_1 r_2$  concatenation (sequencing).

$$\mathcal{L}(r_1 r_2) = \{ \omega_1 \omega_2 \mid \omega_1 \in \mathcal{L}(r_1) \& \omega_2 \in \mathcal{L}(r_2) \};$$

•  $(r_1)^*$  — iteration (0 or more concatenations of  $r_1$  with itself);

$$\mathscr{L}((r_1)^*) = \{\varepsilon\} \bigcup_{i=1}^{\infty} \mathscr{L}(r_1).$$

Priorities: star > concatenation > union.

$$ab^* \mid c^*d \Leftrightarrow \left(a(b^*)\right) \mid \left((c^*)d\right).$$



## Terminological Clash

#### Academic regexes

- |, ·, \* (sometimes +, ?) operations;
- define regular languages;
- studied in university courses (compilers & formal languages)

#### REGEX (extended regexes)

- lookaheads, backreferences, etc;
- define non-context-free languages;
- used in practice (PCRE2 standart).
- Almost identical names are used for completely different (although related) notions.



#### Occam Razor: Non-Deterministic Finite Automata

Only excitatory signals are left on there, and all inner neurons fire whenever there is at least one input signal.

#### **Definition**

A non-deterministic finite automaton (NFA) is a tuple  $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$ , where:

- *Q state set*;
- $\Sigma$  terminal alphabet;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$  transition rules;
- $q_0 \in Q$  starting state;
- $F \subseteq Q$  final states.

#### Sometimes we use notation:

$$\langle q_1, a, q_2 \rangle \in \delta \Leftrightarrow \langle q_1, a, M \rangle \in \delta \& q_2 \in M.$$

Or, usually, simply:  $q_1 \stackrel{a}{\rightarrow} q_2$ .



## **Asymmetry of NFA Definition**

- Classical works (Kleene, Brzozowski): multiple NFA starting states are allowed.
- Modern formal language theory: the unique starting state in NFA is assumed.
- Equivalent (we can add an unique starting state with  $\varepsilon$ -transitions to the multiple states), but confusing (e.g. in Brzozowski minimisation).



## **Encoding into Grammars**

#### **Observation**

- Transition  $q_1 \xrightarrow{a} q_2$  can be seen as a rewriting rule  $[q_1] \to a[q_2]$ , assuming that  $[q_i]$  are some intermediate constructors, while  $a \in \Sigma$  is a terminal constructor.
- In order to model computation termination, for every final state  $q_F$ , we can add the rewriting rule  $[q_F] \to \varepsilon$ .



We rename the starting nonterminal  $[q_0]$  to S, for uniformity.



#### Sources of Non-Determinism in an NFA

 Transition sets wrt (with respect to) a letter γ ∈ Σ that are not singletons.



•  $\varepsilon$ -transitions (so-called silent actions).





#### Closures

Given  $\omega \in \Sigma^*$ , a  $\omega$ -closure of a state q in NFA  $\mathscr{A}$  is a set of states reachable from q by the action  $\omega$ .

We say that  $\omega$  is in the language of the NFA  $\mathscr{A}$  ( $\omega \in \mathscr{L}(\mathscr{A})$ )  $\Leftrightarrow \omega$ -closure of the starting state of  $\mathscr{A}$  contains a final state.

Special case:  $\varepsilon$ -closures: sets of states reachable via doing nothing.



Given such closures, they can be considered as new «states».



## Simple Example of $\varepsilon$ -Removal

An NFA  $\mathscr{A}$  with the  $\varepsilon$ -closures of its states being highlighted:



The closures are then merged into single states, and given a transition from  $q_i \stackrel{\gamma}{\to} q_j$ , where  $q_i$  belongs to closure  $M(q_i)$ , and  $q_j$  to  $M(q_j)$ , transition  $M(q_i) \stackrel{\gamma}{\to} M(q_j)$  is added.



A closure is marked as a final ⇔ it contains at least one final state.



#### $\varepsilon$ -Closures and Chain Rules

- Any transition  $q_i \xrightarrow{\varepsilon} q_j$  corresponds to a chain rule  $[q_i] \to [q_j]$  in the corresponding grammar G.
- state  $\varepsilon$ -closure is a closure set of the corresponding non-terminal N:  $C(N) = \left\{ N_i \mid \exists N_1', \dots N_k' (N \to N_1' \& \dots \& N_k' \to N_i) \right\}$ I.e.  $\langle N, N_i \rangle$  are pairs in **a transitive closure**  $\to_c^+$  of the relation  $\to_c$ :  $A_i \to_c A_i \Leftrightarrow (A_i \to A_i \in G).$
- Before removing all chain rules, for every  $N' \in C(N)$  and a non-chain rule  $N' \to \Phi$ , we add the transition  $N \to \Phi$  to the set of grammar rules. Exactly as in the  $\varepsilon$ -closure algorithm for NFA.

#### Initial grammar:

$$\begin{array}{cccc} S \rightarrow Q_1 & S \rightarrow Q_3 & Q_1 \rightarrow aQ_2 \\ Q_3 \rightarrow bQ_4 & Q_2 \rightarrow Q_5 & Q_4 \rightarrow Q_5 \\ & Q_5 \rightarrow \varepsilon & \end{array}$$

After removing chain rules:

$$S \to aQ_2 \quad S \to bQ_4$$
$$Q_2 \to \varepsilon \quad Q_4 \to \varepsilon$$

Note: unreachable non-terminals  $Q_1$ ,  $Q_3$ ,  $Q_5$  are deleted from the resulting grammar.

#### $\omega$ -Closures and Subset Construction

The closure sets wrt transitions by non- $\varepsilon$  actions can be also merged in similar sense.

#### **Subset Automaton Construction**

Let an  $\varepsilon$ -free NFA  $\mathscr{A}$  be given. Its **subset automaton**  $D(\mathscr{A})$  can be constructed as follows.

- $q_0$  becomes the starting state  $\{q_0\}$  of  $D(\mathscr{A})$ .
- Given a state M in  $D(\mathscr{A})$  and  $\gamma \in \Sigma$ , construct a closure set  $M_{\gamma} = \{q_i \mid \exists q_j \in M(q_j \xrightarrow{\gamma} q_i)\}$ . If  $M_{\gamma}$  is non-empty and does not yet introduced as a state of  $D(\mathscr{A})$ , add it to set of states of  $D(\mathscr{A})$ .
- The final states of  $D(\mathcal{A})$  are labelled with the sets containing at least one final state of  $\mathcal{A}$ .

In fact, the states of  $D(\mathscr{A})$  are  $\omega$ -closures of  $\mathscr{A}$ -states, where  $\omega \in \Sigma^*$ .

## **Subset Automaton: a Simple Example**

Let us consider the following NFA with  $\gamma$ -closures of its states:



- a-closure of starting state  $\{q_0\}$  is  $\{q_0, q_1\}$ .
- b-closure of starting state  $\{q_0\}$  is the state  $\{q_0\}$  itself.
- a-closure of the state  $\{q_0, q_1\}$  is  $\{q_0, q_1, q_2\}$ .
- b-closure of the state  $\{q_0, q_1\}$  is  $\{q_0, q_2\}$ .
- a-closure of the state  $\{q_0, q_1, q_2\}$  is  $\{q_0, q_1, q_2\}$  itself, while b-closure is the state  $\{q_0, q_2\}$ .
- a-closure of the state  $\{q_0, q_2\}$  is  $\{q_0, q_1\}$ , while b-closure is  $\{q_0\}$ .



## **Subset Automaton: a Simple Example**

Let us consider the following NFA with  $\gamma$ -closures of its states:



Hence, its subset automaton is:





#### **Deterministic Finite Automata**

#### **OO** Definition

A deterministic finite automaton (DFA) is a tuple  $\mathcal{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$ , where:

- Q is a state set,  $\Sigma$  is a terminal alphabet;
- $\delta$  is a transition set  $\langle q_i, \gamma, q_j \rangle$ , where  $q_i, q_j \in \mathcal{Q}, \gamma \in \Sigma$ , and for any  $q_i, \gamma$  there is at most one  $q_j$  such that  $q_i \xrightarrow{\gamma} q_j \in \delta$ ;
- $q_0 \in Q$  is a starting state,  $F \subseteq Q$  is a set of final states.

Language  $\mathcal{L}(\mathcal{A})$  of DFA  $\mathcal{A}$  is a set  $\{\omega \mid \exists q \in F(q_0 \xrightarrow{\omega} q)\}$ , i.e. there exists a final state that is  $\omega$ -closure of  $q_0$ .

By construction, the subset automaton has no non-determinism in the transition set:

- $\varepsilon$ -transitions are eliminated in the preliminary  $\varepsilon$ -free NFA;
- the non-singleton transition sets are processed in the subset construction.



## **Traps and Trims**

• A trap state is a state s.t. any its  $\omega$ -closure is non-final.

#### Trim DFA

- For any  $q_i$ ,  $\gamma$  there is **at most** one  $q_i$  s.t.  $q_i \xrightarrow{\gamma} q_i \in \delta$ ;
- is naturally constructed via subset technique;
- default in RoFL course, useful for most operations.

#### Trim DFA example



#### Complete DFA

- For any  $q_i$ ,  $\gamma$  there is **exactly** one  $q_i$  s.t.  $q_i \xrightarrow{\gamma} q_i \in \delta$ ;
- usually requires introducing **trap** (sink) states;
- useful for constructing complementation.

DFA with the trap state

for 
$$\Sigma = \{a, b\}$$





## **Complementation and Traps**

- By switching finality of all states in DFA  $\mathscr{A}$ , we can construct a DFA  $\mathscr{A}'$  accepting exactly the set of words that are rejected by the initial DFA, i.e.  $\mathscr{L}(\mathscr{A}') = \Sigma^* \setminus \mathscr{L}(\mathscr{A})$ .
- The language complementation requires complete DFA.



 Without a trap state, complementation operation loses words starting with b, or containing either aa or bb.

## **Guessing NFA Language**

Let us look at the complement NFA again:



We have guessed its language given by a regular expression:

$$a(ba)^* | (a|b)^* (aa|bb) (a|b)^* | b(a|b)^*$$

We could use another one, e.g.:

recall that this is the option operator

$$b(a|b)^* \mid a(ba)^* \underbrace{((a|bb)(a|b)^*)}$$
 ?

How can we construct such expressions algorithmically rather than barely guess?

## **One More Encoding: Equations**

Sometimes it is convenient to gather all the right-hand sides of the rules with a same left-hand side together. Then, if we replace  $\rightarrow$  by = sign, we get an equation system determining non-terminal languages:

$$S \rightarrow \mathbf{a}[q_1] \qquad [q_2] \rightarrow \mathbf{a}[q_3] \\ S \rightarrow \mathbf{a}[q_2] \qquad [q_2] \rightarrow \mathbf{b}[q_4] \\ [q_1] \rightarrow \mathbf{a}[q_1] \qquad [q_3] \rightarrow \varepsilon \\ [q_1] \rightarrow \mathbf{a}[q_2] \qquad [q_4] \rightarrow \varepsilon \\ [q_3] = \varepsilon \\ [q_4] = \varepsilon$$

$$S = \mathbf{a}[q_1] \mid \mathbf{a}[q_2] \\ [q_1] = \mathbf{a}[q_1] \mid \mathbf{a}[q_2] \\ [q_2] = \mathbf{a}[q_3] \mid \mathbf{b}[q_4] \\ [q_3] = \varepsilon \\ [q_4] = \varepsilon$$

If there is no rule part  $[q_1] = a[q_1]$ , these languages could be found by exhaustive substitutions of the right-hand sides.

E.g. 
$$\mathcal{L}([q_3]) = \mathcal{L}([q_4]) = \{\varepsilon\}$$
, while  $\mathcal{L}([q_2]) = \{a\mathcal{L}([q_3])\} \cup \{b\mathcal{L}([q_4])\} = \{a, b\}$ .

How to deal with self-referring rules as  $[q_1] = a[q_1]$ ?



#### Arden's Lemma

#### **10** Theorem

If a language  $\mathcal{L}$  satisfies the equation  $\mathcal{L} = \mathcal{L}_1 \mathcal{L} \cup \mathcal{L}_2$ , where  $\varepsilon \notin \mathcal{L}_1$ , then  $\mathcal{L} = \mathcal{L}_1^* \mathcal{L}_2$ .

*Proof:* Let us consider arbitrary  $\omega \in \mathcal{L}$ .

- If  $\omega \in \mathcal{L}_2$ , then the statement trivially holds.
- Otherwise,  $\exists \omega_1 \in \mathcal{L}_1, \omega' \in \mathcal{L}(\omega = \omega_1 \omega')$ . The suffix  $\omega'$  also belongs to  $\mathcal{L}_1\mathcal{L} \cup \mathcal{L}_2$ , and  $|\omega'| < |\omega|$ , since  $\omega_1 \neq \varepsilon$ . Now we can repeat the same reasoning for  $\omega'$ , and due to finiteness of  $|\omega|$  and well-foundedness of  $(\mathbb{N}, <)$  we will eventually get  $\omega' \in \mathcal{L}_2$ .  $\square$

Arden's lemma allows one to solve the equation systems in Gaussian style, via non-terminal elimination + substitution, assuming there are no chain rules in the grammar.



## **Equation Solving Example**

Let us construct the language of the grammar:

$$\begin{split} S \to aT & S \to aS \\ T \to aT & T \to bT & T \to bF & F \to \varepsilon \end{split}$$

First, construct the system and substitute *F*:

$$S = (aS) \mid (aT)$$
$$T = ((a \mid b)T) \mid b(\varepsilon)$$

Solve the second equation:  $T = (a \mid b)^*b$ 

Then substitute the solution:  $S = (aS) \mid (a(a \mid b)^*b)$ .

The resulting language is:  $S = a^*a(a \mid b)^*b$ 

The NFA that corresponds to the grammar is given below:





## **Equation Solving Example**

Let us construct the language of the grammar:

$$\begin{split} S \to aT & S \to aS \\ T \to aT & T \to bT & T \to bF & F \to \varepsilon \end{split}$$

The resulting language is:  $S = a^*a(a \mid b)^*b$ 

The NFA that corresponds to the grammar is given below. After solving T-based equation and substituting F value, in fact we again constructed an NFA, whose transitions are marked with regexes.



If we assume that S is preceded by the "very starting state" S', then  $\mathcal{L}(S)$  can be also considered as a transition in the NFA containing only S' and F states.

## **Finding NFA Language**

The extended NFAs allow one to use transitions marked with regexes.

#### State Exclusion Method

- For the sake of uniformity, we introduce "the very starting state" S, having  $\varepsilon$ -transition to  $q_0$ , and "the very final state" T, having ingoing  $\varepsilon$ -transitions from  $q \in F$ . All the states except S and T are now ordinary.
- In order to exclude the state q s.t.  $q \xrightarrow{\tau} q$ , for all pairs  $q_A, q_B$ , where  $q_A \xrightarrow{\Phi} q$ ,  $q \xrightarrow{\Psi} q_B$ , add the transition  $q_A \xrightarrow{\Phi(\tau)^* \Psi} q_B$ , then we can delete q.
- When only S and T are left, where  $S \xrightarrow{\rho} T$ , the expression  $\rho$  is the regex equivalent to the NFA.



## From NFA to Regex: There and Back Again

- Given an NFA, it can be modified to DFA ⇒ linear-time parsing is straightforward.
- Given a regex, there is no known technique to make it deterministic<sup>1</sup>.

How can we program a conversion of a regular expression to an NFA recognising the same language?

Some regular languages never can be expressed by those, e.g  $\{\omega \mid \omega[|\omega|-2] = a\}_{\omega}$ 

## **Construction-by-Definition: Thompson NFA**

Any regular expression  $\tau$  has a recursive structure. Let us use this structure to model the corresponding NFA.

• 
$$\tau = \gamma, \gamma \in \Sigma \Rightarrow \mathscr{A}(\tau)$$
 is 
$$q_{s}(\tau) \xrightarrow{\tau} q_{r}(\tau)$$
•  $\tau = \tau_{1} \mid \tau_{2} \Rightarrow \mathscr{A}(\tau)$  is 
$$q_{s}(\tau_{1}) \xrightarrow{\varepsilon} q_{s}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{2})$$
•  $\tau = \tau_{1}\tau_{2} \Rightarrow \mathscr{A}(\tau)$  is 
$$q_{s}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{2})$$
•  $\tau = \tau_{1}^{*} \Rightarrow \mathscr{A}(\tau)$  is 
$$q_{s}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau_{1}) \xrightarrow{\varepsilon} q_{r}(\tau$$

