

1901119 APLICAR BUENAS PRACTICAS PARA PREPARAR, LIMPIAR, REFINAR Y EXPLORAR GRANDES VOLUMENES DE DATOS EN EL SECTOR PRODUCTIVO.

NCL ORGANIZAR LA INFORMACIÓN A GESTIONAR DE ACUERDO CON TÉCNICAS DE ANÁLISIS.

NCL PROCESO DE DATOS DE ACUERDO CON PROCEDIMIENTO TÉCNICO Y METODOLOGÍA ESTADÍSTICA RAP 45 ORGANIZAR LA INFORMACIÓN A GESTIONAR DE ACUERDO CON TÉCNICAS DE ANÁLISIS.

RAP 46 ELABORAR INFORMES UTILIZANDO HERRAMIENTA INFORMÁTICA SELECCIONADA.

RAP 50 RECOLECTAR INFORMACIÓN DE ACUERDO A LAS NECESIDADES DEL CLIENTE.

RAP 51 ORGANIZAR LA MUESTRA DE DATOS DE ACUERDO A LAS METODOLOGÍAS ESTADÍSTICAS.

RAP 52 REALIZAR PROCEDIMIENTOS SOBRE LOS DATOS APLICANDO VARIABLES Y TÉCNICAS ESTADÍSTICAS.

RAP 49 ELABORAR INFORMES SEGÚN LA NECESIDAD DEL CLIENTE

Instructor: José Fernando Galindo Suarez jgalindos@sena.edu.co
CGMLTI 2023

CONTENIDO

- Introducción a NumPy
- Arreglos de NumPy
- Métodos y Operaciones de NumPy
- Indexaciones y Asignaciones en NumPy

FERNANDO GALINDO SUAREZ

LIBRERIA NUMPY

Introducción a NumPy

NumPy es una librería de Python para computación científica., significa Python numérico.

NumPy se integra sin problemas y con rapidez con una amplia variedad de bases de datos.

NumPy está licenciado bajo el formato BSD, lo que permite la reutilización con pocas restricciones.

FERNANDO GALINDO SUAREZ

LIBRERIA NUMPY

Arreglos de NumPy

Los arreglos NumPy son la forma principal de almacenar datos utilizando la biblioteca NumPy. Son similares a las listas normales en Python, pero tienen la ventaja de ser más rápidas y tener más métodos integrados.

Arreglos de NumPy

```
# Start Code Here
 import numpy as np
                      # your own code
 myList 💌
 a=np.array(myList)
                     # your own code
```

```
# Start Code Here import numpy as np myList = [1, 2, 3, 4] a=np.array(myList) print(a)
```

FERNANDO GALINDO SUAREZ

LIBRERIA NUMPY

Arreglos de NumPy

```
# Start Code Here
                      # your own code
 import numpy as np
 a=np.arange(0,5)
                   # your own code
```

Start Code Here import numpy as np a=np.arange(0,5) print(a)

FERNANDO GALINDO SUAREZ

LIBRERIA NUMPY

Arreglos de NumPy

```
# Start Code Here
 import numpy as np
                      # your own code
 a=np.arange(1,11,2)
                     # your own code
```

Start Code Here import numpy as np a=np.arange(1,11,2) print(a)

FERNANDO GALINDO SUARE

LIBRERIA NUMPY

Arreglos de NumPy

```
# Start Code Here
 import numpy as np
                      # your own code
                # your own code
 a=np.zeros(4)
```

Start Code Here import numpy as np a=np.zeros(4) print(a)

Powered by // trinket array([0.0, 0.0, 0.0, 0.0], 'None')

FERNANDO GALINDO SUAREZ

LIBRERIA NUMPY

Arreglos de NumPy

```
# Start Code Here
 import numpy as np
                      # your own code
 a=np.zeros(5,5)
                  # your own code
```

Start Code Here import numpy as np a=np.zeros(5,5) print(a)

Powered by **(2) trinket** array([0.0, 0.0, 0.0, 0.0, 0.0], '5')

Arreglos de NumPy

```
# Start Code Here
                      # your own code
 import numpy as np 🕽
 a=np.linspace(0, 1, 10)
                        # your own code
```

Start Code Here import numpy as np a=np.linspace(0, 1, 10) print(a)

Arreglos de NumPy

```
import numpy as np
a = np.array([0,1,2,3,4,5])
a.shape
a = a.reshape(2,3)

print(a.shape)
print(a)
```

(2, 3) [[0 1 2] [3 4 5]]

```
a= [1, 2, 3, 4]
b=max(a)
c=np.argmax(a)
d=np.argmin(a)
print("El maximo={0} ubicado en la posición {1} y el mínimo en la posición {2}".format(b,c,d))
```

El maximo=4 ubicado en la posición 3 y el mínimo en la posición 0

Arreglos de NumPy

import numpy as np seq1=[2,4,6] seq2=[1,3,5] seq2 + seq1

[1, 3, 5, 2, 4, 6]

import numpy as np seq1=[2,4,6] np.sqrt(seq1) array([1.41421356, 2. , 2.44948974])

import numpy as np
a = np.random.rand(5)*100
print(a)
a = np.round(a, 0)
print(a)

[28.58912223 74.16496013 75.17582412 94.74514706 19.20598032] [29. 74. 75. 95. 19.]

GRACIAS

Línea de atención al ciudadano: 01 8000 910270 Línea de atención al empresario: 01 8000 910682

www.sena.edu.co