Machine Learning

Theory of Classification and Nonparametric Classifier

Classification

Representing data:

Hypothesis (classifier)

Outline

- What is theoretically the best classifier
 - Probabilistic theory of classification
 - Discrete density estimation and Bayesian theorem
 - Bayesian decision rule for Minimum Error
- Nonparametric Classifier (Instance-based learning)
 - Nonparametric density estimation
 - OK-nearest-neighbor classifier(KNN)
 - Optimality of kNN
 - Problem of kNN

Decision-making as dividing a high-dimensional space

Distributions of samples from normal and abnormal machine

Continuous Distributions

$$p(x) = 1/(b-a)$$
 for $a \le x \le b$
= 0 elsewhere

Normal (Gaussian) Probability Density Function

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

- The distribution is symmetric, and is often illustrated as a bell-shaped curve.
- Two parameters, μ (mean) and σ (standard deviation), determine the location and shape of the distribution.
- The highest point on the normal curve is at the mean, which is also the median and mode.
- The mean can be any numerical value: negative, zero, or positive.

Multivariate Gaussian

$$p(X; \vec{\mu}, \Sigma) = \frac{1}{\left(\sqrt{2\pi}\right)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (X - \vec{\mu})^T \Sigma^{-1} (X - \vec{\mu})\right\}$$

Class-Conditional Probability

Classification-specific Dist.: P(X|Y)

Class prior (i.e., "weight"): P(Y)

The Bayes Rule

What we have just did leads to the following general expression:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

This is Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

The Bayes Decision Rule for Minimum Error

The a posteriori probability of a sample

$$P(Y = i \mid X) = \frac{p(X \mid Y = i)P(Y = i)}{p(X)} = \frac{\pi_i p_i(X)}{\sum_i \pi_i p_i(X)} \equiv q_i(X)$$

Bayes Test:

Likelihood Ratio:

$$\ell(X) =$$

Discriminant function:

$$h(X) =$$

Example of Decision Rules

When each class is a normal ...

• We can write the decision boundary analytically in some cases … homework!!

Bayes Error

- We must calculate the probability of error
 - the probability that a sample is assigned to the wrong class
- Given a datum X, what is the risk?

$$r(X) = \min[q_1(X), q_2(X)]$$

The Bayes error (the expected risk):

$$\begin{array}{lcl} \epsilon & = & E[r(X)] = \int r(x)p(x)dx \\ \\ & = & \int \min[\pi_i p_1(x), \pi_2 p_2(x)]dx \\ \\ & = & \pi_1 \int_{L_1} p_1(x)dx + \pi_2 \int_{L_2} p_2(x)dx \\ \\ & = & \underbrace{\pi_1 \epsilon_1 + \pi_2 \epsilon_2}_{\bullet}, \end{array}$$

More on Bayes Error

- Bayes classifier is the theoretically best classifier that minimizes probability of classification error
- Computing Bayes error is in general a very complex problem. Why?
 - Density estimation:
 - Integrating density function:

$$\epsilon_1 = \int_{\ln(\pi_1/\pi_2)}^{+\infty} p_1(x) dx$$

$$\epsilon_2 = \int_{-\infty}^{\ln(\pi_1/\pi_2)} p_2(x) dx$$
11

Learning Classifier

$$h(X) = -\ln p_1(X) + \ln p_2(X) > \ln \frac{\pi_1}{\pi_2}$$

- Learning strategies
 - Generative Learning
 - Parametric
 - Nonparametric
 - Discriminative Learning
 - Parametric
 - Nonparametric
 - Instance-based Learning (Store all past experience in memory)
 - A special case of nonparametric classifier

Supervised Learning

K-Nearest-Neighbor Classifier:

where the h(X) is represented by all the data, and by an algorithm

Recall: Vector Space Representation

	Doc 1	Doc 2	Doc 3	
Word 1	3	0	0	
Word 2	0	8	1	
Word 3	12	1	10	
	0	1	3	
	0	0	0	

- Normalize to unit length.
- High-dimensional vector space:
 - Terms are axes, 10,000+ dimensions, or even 100,000+
 - Docs are vectors in this space

Classes in a Vector Space

Test Document = ?

Arts

kNN Is Close to Optimal

- Cover and Hart 1967
- Asymptotically, the error rate of 1-nearest-neighbor classification is less than twice the Bayes rate [error rate of classifier knowing model that generated data]
- In particular, asymptotic error rate is 0 if Bayes rate is 0.
- Decision boundary:

Where does kNN come from?

- How to estimation p(X)?
- Nonparametric density estimation
 - OParzen density estimate

E.g. (Kernel density est.):

$$\hat{p}(X) = \frac{1}{N} \sum_{i=1}^{N} \kappa(X - x_i)$$

$$\hat{p}(X) = \frac{1}{N} \frac{k(X)}{V}$$

Where does kNN come from?

- Nonparametric density estimation
 - \bigcirc Parzen density estimate $\hat{p}(X) = \frac{1}{N} \frac{k(X)}{V}$
 - O kNN density estimate $\hat{p}(X) = \frac{1}{N} \frac{(k-1)}{V(X)}$
- Bayes classifier based on kNN density estimator:

$$h(X) = -\ln \frac{p_1(X)}{p_2(X)} = -\ln \frac{(k_1 - 1)N_2V_2(X)}{(k_2 - 1)N_1V_1(X)} < \ln \frac{\pi_1}{\pi_2}$$

O Voting kNN classifier Pick K_1 and K_2 implicitly by picking $K_1+K_2=K$, $V_1=V_2$, $N_1=N_2$

Voting kNN

The procedure

kNN is an instance of Instance-Based Learning

- What makes an Instance-Based Learner?
 - A distance metric
 - How many nearby neighbors to look at?
 - A weighting function (optional)
 - O How to relate to the local points?

Euclidean Distance Metric

$$D(x,x') = \sqrt{\sum_{i} \sigma_{i}^{2} (x_{i} - x_{i}')^{2}}$$
• Or equivalently,

$$D(x,x') = \sqrt{(x-x')^T \Sigma(x-x')}$$

 $D(x,x') = \sqrt{(x-x')^T \Sigma(x-x')}$ Prics: $|x-x'| = \sum_{i=1}^{n} 1$

- Other metrics:
 - \bigcirc L1 norm: $|x-x'| = \sum_{i=1}^{n} |x_i x'|$
 - OL∞ norm: max |x-x'| (elementwise ...)
 - Mahalanobis: where Σ is full, and symmetric
 - Correlation
 - Angle
 - Hamming distance, Manhattan distance

Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in D.
- Testing instance x:
 - Compute similarity between x and all examples in D.
 - Assign x the category of the most similar example in D.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
 - Case-based learning
 - Memory-based learning
 - Lazy learning

Case Study: kNN for Web Classification

- Dataset
 - 20 News Groups (20 classes)
 - Download :(http://people.csail.mit.edu/jrennie/20Newsgroups/)
 - 61,118 words, 18,774 documents
 - Class labels descriptions

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x	rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey	sci.crypt sci.electronics sci.med sci.space
misc.forsale	talk.politics.misc talk.politics.guns talk.politics.mideast	talk.religion.misc alt.atheism soc.religion.christian

Experimental Setup

- Training/Test Sets:
 - ○50%-50% randomly split.
 - 010 runs
 - Oreport average results
- Evaluation Criteria:

$$Accuracy = \frac{\sum_{i \in lest \ sei} I(predict_i == true \ label_i)}{\# \ of \ test \ samples}$$

Results: Binary Classes

Results: Multiple Classes

Is kNN ideal? ... more later

Effect of Parameters

- Sample size
 - The more the better
 - Need efficient search algorithm for NN
- Dimensionality
 - Curse of dimensionality
- Density
 - O How smooth?
- Metric
 - The relative scalings in the distance metric affect region shapes.
- Weight
 - Spurious or less relevant points need to be downweighted

Summary

- Bayes classifier is the best classifier which minimizes the probability of classification error.
- Nonparametric and parametric classifier
- A nonparametric classifier does not rely on any assumption concerning the structure of the underlying density function.
- A classifier becomes the Bayes classifier of the density estimates converge to the true densities
 - when an infinite number of samples are used
 - The resulting error is the *Bayes error*, the smallest achievable error given the underlying distributions.