

# Electrónica Aplicada III

Guía de Trabajos Prácticos

Departamento de Ingeniería Electrónica

# \*

# TP N°1:Interpretación de hojas de datos y selección de componentes para su uso en RF

#### Desarrollo

Elaborar un informe que contenga:

- 1. Descripción del funcionamiento en RF, circuitos y ejemplos de aplicación de distintos componentes pasivos, entre ellos:
  - Resistencias, inductores y capacitores
  - Atenuadores, acopladores y circuladores
  - Cuarzo y materiales cerámicos (filtros de 455KHz y de 10,7MHz)
  - Resonadores dieléctricos en  $\lambda/4$
  - Cables de RF (Norma MIL-C-17)
  - Conectores de RF (BNC, TNC, N, SMA, UHF, etc.)
- 2. Breve explicación de los parámetros S.
- 3. Descripción del funcionamiento en RF, circuitos y ejemplos de aplicación de distintos componentes activos, como ser diodos y transistores de RF, tanto de pequeña señal así como los de potencia. Hacer incapié en los siguientes valores de las hojas de datos:
  - Tecnología
  - Ancho de banda y banda de uso
  - Tensión de alimentación
  - Ganancia y figura de ruido Vs. Frecuencia
  - Modelo de análisis
  - Encapsulados
- 4. Comparar los parámetros antes mencionados usando hojas de datos de 3 componentes distintos de las siguientes categorías:
  - a) Transistores RF de pequeña señal.
  - b) Transistores bipolares de potencia de RF para clase C y para banda lateral.
  - c) Transistores MOS de potencia de RF.
- 5. Descripción de los problemas más comunes y prácticas correctas para el diseño de PCB en aplicaciones de RF.

El informe además deberá contener las hojas de datos de los dispositivos seleccionados.

#### Materiales necesarios

Material bibliográfico provisto, manuales de los fabricantes, hojas de datos, etc.

#### Evaluación

- 1. Presentación del informe en formato digital (pdf).
- 2. Coloquio grupal.

# \*

#### TP N°2: Osciladores

#### Desarrollo:

- 1. Diseñar, calcular, simular e implementar un oscilador Hartley que cumpla con las siguientes especificaciones:
  - $f_0 = 10 \text{MHz}$
  - $V_{\rm CC} = 12 \rm V$
  - $R_{\rm L} = 50\Omega$
  - $P_{\rm L} = 5 {\rm mW}$
- 2. Diseñar, simular e implementar\* un oscilador Clapp que cumpla con las siguientes especificaciones:
  - $f_0 = 100 \text{MHz}$
  - $V_{\rm CC} = 12 \rm V$
  - $R_{\rm L} = 50\Omega$
  - $P_{\rm L} = 1 {\rm mW}$
- 3. Medir y graficar la tensión en la carga en función del tiempo.
- 4. Medir la potencia aplicada a la carga.

#### Materiales necesarios:

- Plaqueta impresa de fibra de vidrio doble faz, o del tipo de RF, FR4 o equivalente.
- Transistor sugerido: MPSH10 o BF495
- Diversos componentes pasivos.

#### Evaluación:

- 1. Presentación de resultados.
- 2. Presentación del informe en formato digital (pdf).
- 3. Coloquio grupal.

#### Bibliografía

- [1] Cornelis J. Kikkert. RF Electronics. Design and Simulation. James Cook University, Australia. 2013.
- $[2]\ \ {\rm C.}$  Sayre.  $Complete\ Wireless\ Design.$  McGraw Hill. 2008.
- [3] W. Alan Davis, Krishna Agarwal. Radio Frequency Circuit Design. John Wiley & Sons, Inc. 2001.
- $[4] \quad \text{Andrei Grebennikov. } \textit{RF and Microwave Transistor Oscillator Design.} \ \text{John Wiley \& Sons Ltd. 2007}.$
- $[5] \quad \text{Michal Odyniec. } RF \ and \ Microwave \ oscillator \ Design. \ Artech \ House \ Inc. \ 2002.$

### TP N°3: Mezcladores

#### Desarrollo:

- 1. Diseñar, calcular y simular diferentes mezcladores para ser utilizados en un receptor superheterodino de FM con las siguientes características:
  - $f_{\rm IF} = 10.7 {\rm MHz}$
  - $f_{RF} = 88 108 MHz$ ;  $P_{RF} = -10 dBm$
  - $P_{\text{LO}} = 8 \text{dBm}$
- 2. Simular los siguientes tipos de mezcladores:
  - de terminación única (diodo o transistor),
  - de balance único,
  - de doble balance.
- 3. Realizar las siguentes mediciones para cada caso:
  - Pérdida por conversión
  - Pérdida por compresión
  - Figura de Ruido
  - Aislación
- 4. Enumerar ventajas y desventajas de cada caso.

#### Materiales necesarios:

• Software de simulación

#### Evaluación:

- 1. Presentación de resultados
- 2. Presentación del informe en formato digital (pdf).
- 3. Coloquio grupal.

#### Bibliografía

- [1] W. Alan Davis, Krishna Agarwal. Radio Frequency Circuit Design. John Wiley & Sons, Inc. 2001.
- [2] Cornelis J. Kikkert. RF Electronics. Design and Simulation. James Cook University, Australia. 2013.

# TP $N^{\circ}4$ : Phase Locked Loop.

### Desarrollo:

- 1. Diseñar e implementar una red PLL que multiplique por 10 con las siguientes especificaciones:
  - $f_{in} = 15KHz$  a 25KHz
  - $\zeta = 0.4$
  - $V_{\mathrm{DD}} = 12V$
  - Filtro de lazo RC
- 2. Realizar las siguientes mediciones:
  - a- Rango de sosten y de captura.
  - b- Ganancia de lazo.
  - c- Sobrepasamiento y constantes de tiempo. Gráficos.

#### Materiales necesarios:

- Utilizar CD4046, 54HC4046 o 74HC4046 como PLL y el CD4017 como divisor por
- Para el punto 2c utilizar como entrada de referencia un generador de funciones con capacidad de modulación de FM.

#### Evaluación:

- 1. Presentación del informe en formato digital (pdf).
- 2. Coloquio grupal.

#### Bibliografía

- [1] W. Alan Davis, Krishna Agarwal. Radio Frequency Circuit Design. John Wiley & Sons, Inc. 2001.
- [2] D. Stephens Phase-Locked Loops for Wireless Communications. Kluwer Academic Publishers. 2002.

### TP N°5: Modulación y demodulación

### Desarrollo:

- 1. Diseñar, calcular, simular e implementar un modulador de FM discreto con las siguientes características:
  - BW = 88 108 MHz
  - $V_{\rm CC} = 12 \rm V$
  - $P_{\text{out}} = 1 5 \text{mW}$
  - $R_{\rm L}=50\Omega$
- 2. Diseñar, calcular, simular e implementar un modulador de AM.
- 3. Diseñar, calcular y simular dos (2) moduladores digitales a elección con sus respectivos demoduladores.
- 4. Realizar y graficar las mediciones correspondientes a cada caso.

#### Materiales necesarios:

- Plaqueta impresa de fibra de vidrio doble faz, o del tipo de RF, FR4 o equivalente.
- Diversos componentes activos y pasivos.
- NO UTILIZAR MULTISIM.

#### Evaluación:

- 1. Presentación de resultados.
- 2. Presentación del informe en formato digital (pdf).
- 3. Coloquio grupal.

#### Bibliografía

- [1] W. Alan Davis, Krishna Agarwal; Radio Frequency Circuit Design, 2001 John Wiley & Sons, Inc.
- [2] Paul Tobin; PSpice for Digital Communications Engineering, 2007 by Morgan & Claypool.
- [3] Devendra K. Misra; RF and Microwave Comm Circuits: Analysis and Design, 2001 John Wiley & Sons, Inc.

# \*

#### TP N°6: Adaptación de impedancias

#### Desarrollo:

1. Calcular analíticamente los componentes de las siguientes redes de adaptación de impedancias. Verificar con la Carta de Smith y simulaciones.



- 2. Diseñe en el simulador un circuito para validar o evaluar los parámetros S de un transistor del cual no se conozcan datos.
- 3. Dado el siguiente amplificador calcule las redes de adaptación de impedancias de entrada y salida para un generador con resistencia interna de  $50\Omega$  y una carga del mismo valor buscando una salida de al menos 130mW con una entrada de 2mW. Las impedancias de entrada y salida del transistor son  $Z_{in}=10-j0,794\Omega$  y  $Z_{out}=261-j88\Omega$



4. Suponiendo un aplificador de tres etapas, con entrada y salida de  $50\Omega$  se desea calcular las redes de adaptación de impedancia entre cada etapa como indica el gráfico



#### Materiales necesarios:

1. Software de simulación.

#### Evaluación:

- 1. Presentación del informe en formato digital (pdf).
- 2. Coloquio grupal.

## TP N°7: Amplificador de Potencia

### Desarrollo:

- 1. Diseñar, calcular e implementar un amplificador de gran eficiencia con las siguientes características:
  - $V_{cc} = 12V$
  - $R_L = 50\Omega$
  - $P_{out} = 1W$
  - $P_{in} = 1 5mW$  (salida del modulador de FM del TP5)
- 2. Realizar mediciones de potencia en la carga y ROE

### Materiales necesarios:

- 1. Realizar el circuito en placa doble faz FR4 o similar.
- 2. Para la etapa de salida utilizar preferentemente algunos de los siguientes transistores (ordenados por precio de menor a mayor):
  - 2N3553
  - 2N3866
  - 2N4427
  - MRF237
- 3. Diversos componentes activos y pasivos.

#### Evaluación:

- 1. Presentación del informe en formato digital (pdf).
- 2. Coloquio grupal.

### Bibliografía

- [1] W. Alan Davis, Krishna Agarwal. Radio Frequency Circuit Design. John Wiley & Sons, Inc. 2001.
- [2] G. Gonzalez. Microwave Transistor Amplifiers: Analisys and Design. Prentice Hall. 1996.
- [3] C. Sayre. Complete Wireless Design. McGraw Hill. 2008.