## Các cặp vô cùng bé tương đương thông dụng

| Dạng cơ bản: $x \rightarrow 0$             | Dạng mở rộng: $u \rightarrow 0$ khi $x \rightarrow a$ |
|--------------------------------------------|-------------------------------------------------------|
| $\sin X \sim X$                            | $\sin u \sim u$                                       |
| $\arcsin x \sim x$                         | $\arcsin u \sim u$                                    |
| $\tan x \sim x$                            | $\tan u \sim u$                                       |
| $\arctan x \sim x$                         | $\arctan u \sim u$                                    |
| $\left(1-\cos x\right) \sim \frac{x^2}{2}$ | $(1-\cos u) \sim \frac{u^2}{2}$                       |
| $\ln(1+x) \sim x$                          | $\ln(1+u) \sim u$                                     |
| $(e^x-1)\sim x$                            | $(e^u-1)\sim u$                                       |



| Bai tập ve nha                                                                                                                                                                                               |                                                                                                                                |                                                                                    |                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| $L_1 = \lim_{x \to 0} \frac{x \ln(\cos 3x)}{\arctan(\sin^3 x)}$                                                                                                                                              |                                                                                                                                | $L_2 = \lim_{x \to 0} \frac{\sin x - x}{x \ln(\cos x)}$                            | $L_3 = \lim_{x \to 0^+} \left( \arctan x \right)^{2x - x^2}$                         |  |
| $L_4 = \lim_{x \to 0} \frac{2(\tan x - \sin x) - x^3}{x^5}$                                                                                                                                                  |                                                                                                                                | $L_5 = \lim_{x \to 0} \frac{1}{x} \left( \frac{1}{5x} - \frac{1}{\tan 5x} \right)$ | $L_6 = \lim_{x \to +\infty} \left( x^2 + 3^x \right)^{\frac{4}{x}}$                  |  |
| 1                                                                                                                                                                                                            |                                                                                                                                | $L_8 = \lim_{x \to -\infty} \left( e^{-5x} + \sin 7x \right)^{\frac{2}{x}}$        | $L_9 = \lim_{x \to \frac{\pi}{6}} \left( \frac{6x}{\pi} + \cos 3x \right)^{\tan 3x}$ |  |
| Kết quả: $L_1 = -\frac{9}{2}$ ; $L_2 = 1$ ; $L_3 = 0$ ; $L_4 = \frac{1}{4}$ ; $L_5 = \frac{5}{3}$ ; $L_6 = e^{4 \ln 3} = 3^4 = 81$ ; $L_7 = e^{\ln^2 3}$ ; $L_8 = e^{-10}$ ; $L_9 = e^{\frac{\pi - 2}{\pi}}$ |                                                                                                                                |                                                                                    |                                                                                      |  |
| Kết quả                                                                                                                                                                                                      | Hướng dẫn                                                                                                                      |                                                                                    |                                                                                      |  |
|                                                                                                                                                                                                              | Sử dụng các cặp VCB tương đương sau, khi $u \rightarrow 0$                                                                     |                                                                                    |                                                                                      |  |
| $L_1 = -\frac{9}{2}$                                                                                                                                                                                         | $\ln(1+u) \sim u$ ; arctan $u \sim u$ ; $\sin u \sim u$ ; $(1-\cos u) \sim \frac{u^2}{2}$                                      |                                                                                    |                                                                                      |  |
| $L_2 = \frac{1}{3}$                                                                                                                                                                                          | Sử dụng các cặp VCB tương đương sau, khi $u \rightarrow 0$ : $\ln(1+u) \sim u$ ; $(1-\cos u) \sim \frac{u^2}{2}$               |                                                                                    |                                                                                      |  |
| 3                                                                                                                                                                                                            | Sau đó sử dụng quy tặc Lopitan                                                                                                 |                                                                                    |                                                                                      |  |
|                                                                                                                                                                                                              | Xử lý bằng phương pháp Logarit hóa                                                                                             |                                                                                    |                                                                                      |  |
| $L_3 = 1$                                                                                                                                                                                                    | Sử dụng cặp vô cùng bé $(2x-x^3) \sim 2x$ trước khi biến đổi để Lopitan                                                        |                                                                                    |                                                                                      |  |
| 1                                                                                                                                                                                                            | Sau đó dùng tiếp cặp arctan $x \sim x$                                                                                         |                                                                                    |                                                                                      |  |
| $L_4 = \frac{1}{4}$ $L_5 = \frac{5}{3}$                                                                                                                                                                      | Lopitan 2 lần liên tiếp rồi dừng lại (biểu thức lúc này quá cồng kềnh), tách biểu thức thành tổng của 2 giới hạn đơn giản hơn! |                                                                                    |                                                                                      |  |
| $L_5 = \frac{5}{3}$                                                                                                                                                                                          | Quy đồng mẫu, rồi dùng VCB tương đương trước khi Lopitan                                                                       |                                                                                    |                                                                                      |  |
| $L_6 = 81$                                                                                                                                                                                                   | Logarit hóa, sau đó sử dụng Lopitan                                                                                            |                                                                                    |                                                                                      |  |
| $L_7 = e^{\frac{1}{2}\ln^2 3}$                                                                                                                                                                               | Logarit hóa, Lopitan kết hợp với việc tách thành tích 2 của giới hạn đơn giản                                                  |                                                                                    |                                                                                      |  |
| $L_8 = e^{-10}$                                                                                                                                                                                              | Logarit hóa, Lopitan, sử dụng quy tắc Kẹp                                                                                      |                                                                                    |                                                                                      |  |
| $L_9 = e^{\frac{\pi - 2}{\pi}}$                                                                                                                                                                              | Logarit hóa, dùng cặp $\ln(1+u) \sim u$ , Lopitan                                                                              |                                                                                    |                                                                                      |  |

$$L_{1} = \lim_{x \to 0} \frac{x \ln(\cos 3x)}{\arctan(\sin^{3} x)} = \lim_{x \to 0} \frac{x \ln\left[1 + (\cos 3x - 1)\right]^{(1)}}{\arctan(\sin^{3} x)} = \lim_{x \to 0} \frac{x(\cos 3x - 1)^{(2)}}{\sin^{3} x} = \lim_{x \to 0} \frac{x\left[-\frac{(3x)^{2}}{2}\right]}{x^{3}} = \lim_{x \to 0} \left(-\frac{9}{2}\right) = -\frac{9}{2}$$

$$(1) \begin{cases} \ln(1+u) \sim u \\ \arctan u \sim u \end{cases}; u \to 0; \quad (2) \begin{cases} (1-\cos u) \sim \frac{u^2}{2}; u \to 0 \end{cases}$$

$$L_{2} = \lim_{x \to 0} \frac{\sin x - x}{x \ln(\cos x)} = \lim_{x \to 0} \frac{\sin x - x}{x \ln\left[1 + (\cos x - 1)\right]} = \lim_{x \to 0} \frac{\sin x - x}{x(\cos x - 1)} = \lim_{x \to 0} \frac{\sin x - x}{x} = -2\lim_{x \to 0} \frac{\sin x - x}{x^{3}} = -2\lim_{x \to 0} \frac{\cos x - 1}{3x^{2}} = -2\lim_{x \to 0} \frac{\cos x$$

$$L_3 = \lim_{x \to 0^+} \left(\arctan x\right)^{2x - x^2}$$

Đặt 
$$y = (\arctan x)^{2x-x^2} \Leftrightarrow \ln y = (2x - x^2) \ln (\arctan x)$$

$$\lim_{x \to 0^{+}} \ln y = \lim_{x \to 0^{+}} \left(2x - x^{2}\right) \ln \left(\arctan x\right) = \lim_{x \to 0^{+}} 2x \cdot \ln \left(\arctan x\right) = \lim_{x \to 0^{+}} \frac{2\ln \left(\arctan x\right)}{\frac{1}{x}} = \lim_{x \to 0^{+}} \frac{2\frac{1}{(1+x^{2})\arctan x}}{\frac{1}{x^{2}}} = \lim_{x \to 0^{+}} \frac{-2x^{2}}{(1+x^{2})\arctan x} = \lim_{x \to 0^{+}} \frac{-2x^{2}}{(1+x^{2})\arctan x} = \lim_{x \to 0^{+}} \frac{-2x^{2}}{(1+x^{2})\arctan x} = 0; \quad (1): (2x - x^{2}) \sim 2x; x \to 0 \quad (2): \arctan x \sim x; x \to 0$$

$$L_{3} = e^{\lim_{x \to 0^{+}} \ln y} = e^{0} = 1$$

$$\begin{split} L_4 &= \lim_{x \to 0} \frac{2 \left( \tan x - \sin x \right) - x^3}{x^5} \stackrel{(L)}{=} \lim_{x \to 0} \frac{2 \left( 1 + \tan^2 x \right) - 2 \cos x - 3 x^2}{5 x^4} \stackrel{(L)}{=} \lim_{x \to 0} \frac{4 \tan \left( 1 + \tan^2 x \right) + 2 \sin x - 6 x}{20 x^3} = \\ &= \lim_{x \to 0} \frac{2 \tan^3 x + 2 \tan x + \sin x - 3 x}{10 x^3} \stackrel{(L)}{=} \lim_{x \to 0} \frac{6 \tan^2 x \left( 1 + \tan^2 x \right) + 2 \left( 1 + \tan^2 x \right) + \cos x - 3}{30 x^2} = \\ &= \lim_{x \to 0} \frac{6 \tan^4 x + 8 \tan^2 x + \cos x - 1}{30 x^2} \stackrel{(L)}{=} \lim_{x \to 0} \frac{24 \tan^3 x \left( 1 + \tan^2 x \right) + 16 \tan x \left( 1 + \tan^2 x \right) - \sin x}{60 x} = \\ &= \lim_{x \to 0} \left[ \frac{1}{15} \frac{\tan x}{x} \cdot \tan^2 x \cdot \left( 1 + \tan^2 x \right) + \frac{16}{60} \frac{\tan x}{x} \left( 1 + \tan^2 x \right) - \frac{1}{60} \frac{\sin x}{x} \right] = 0 + \frac{16}{60} - \frac{1}{60} = \frac{1}{4} \end{split}$$

$$L_{5} = \lim_{x \to 0} \frac{1}{x} \left( \frac{1}{5x} - \frac{1}{\tan 5x} \right) = \lim_{x \to 0} \frac{\tan 5x - 5x}{5x^{2} \tan 5x} = \lim_{x \to 0} \frac{\tan 5x - 5x}{5x^{2} \cdot 5x} = \lim_{x \to 0} \frac{\tan 5x - 5x}{25x^{3}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{\tan^{2} 5x}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{1}{15x^{2}} = \lim_{x \to 0} \frac{5\left(1 + \tan^{2} 5x\right) - 5}{75x^{2}} = \lim_{x \to 0} \frac{1}{15x^{2}} = \lim_{x \to$$

Eureka Uni (facebook.com)

Toán cao cấp - Eureka! Uni | Facebook

Eureka! Uni - YouTube

$$L_6 = \lim_{x \to +\infty} \left( x^2 + 3^x \right)^{\frac{4}{x}} : \text{Đặt } y = \left( x^2 + 3^x \right)^{\frac{4}{x}} \iff \ln y = \frac{4 \ln \left( x^2 + 3^x \right)}{x}$$

$$\lim_{x \to +\infty} \ln y = \lim_{x \to +\infty} \frac{4 \ln \left(x^2 + 3^x\right)^{(L)}}{x} = \lim_{x \to +\infty} \frac{4 \left(2x + 3^x \ln 3\right)^{(L)}}{x^2 + 3^x} = \lim_{x \to +\infty} \frac{4 \left(2 + 3^x \ln^2 3\right)^{(L)}}{2x + 3^x \ln 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{2 + 3^x \ln 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{2 + 3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^3 3^{(L)}} = \lim_{x \to +\infty} \frac{4 \cdot 3^x \ln^3 3^{(L)}}{3^x \ln^$$

$$L_6 = \lim_{x \to +\infty} y = e^{4\ln 3} = 81$$

$$L_{7} = \lim_{x \to 0} \left(3^{x} - x \ln 3\right)^{\frac{1}{x^{2}}} : \text{Dặt } y = \left(3^{x} - x \ln 3\right)^{\frac{1}{x^{2}}} \Leftrightarrow \ln y = \frac{\ln \left(3^{x} - x \ln 3\right)}{x^{2}}$$

$$\lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{\ln(3^x - x \ln 3)}{x^2} = \lim_{x \to 0} \frac{\ln[1 + (3^x - x \ln 3 - 1)]}{x^2} = \lim_{x \to 0} \frac{3^x - x \ln 3 - 1}{x^2} = \lim_{x \to 0} \frac{3^x \ln 3 - \ln 3}{2x} = \lim_{x \to 0} \frac{3^x \ln^2 3}{2} = \frac{\ln^2 3}{2}$$

$$L_7 = \lim_{x \to 0} y = e^{\frac{\ln^2 3}{2}};$$
 (\*):  $\ln(1+u) \sim u, u \to 0$ 

$$L_8 = \lim_{x \to -\infty} \left( e^{-5x} + \sin 7x \right)^{\frac{2}{x}} : \text{Đặt } y = \left( e^{-5x} + \sin 7x \right)^{\frac{2}{x}} \iff \ln y = \frac{2 \ln \left( e^{-5x} + \sin 7x \right)}{x}$$

$$\lim_{x \to -\infty} \ln y = \lim_{x \to -\infty} \frac{2 \ln \left( e^{-5x} + \sin 7x \right)^{(L)}}{x} = \lim_{x \to -\infty} \frac{2 \left( -5e^{-5x} + 7\cos 7x \right)}{e^{-5x} + \sin 7x} = \lim_{x \to -\infty} \frac{-10 + 14e^{5x}\cos 7x}{1 + e^{5x}\sin 7x}$$

Ta thấy: 
$$\lim_{x \to -\infty} e^{5x} = 0$$
;  $\left| \sin 7x \right| \le 1$ ;  $\left| \cos 7x \right| \le 1 \Rightarrow \lim_{x \to -\infty} e^{5x} \sin 7x = \lim_{x \to -\infty} e^{5x} \cos 7x = 0 \Rightarrow \lim_{x \to -\infty} \ln y = \frac{-10+0}{1+0} = -10$ 

$$L_8 = \lim_{x \to -\infty} y = e^{-10}$$

$$L_9 = \lim_{x \to \frac{\pi}{6}} \left( \frac{6x}{\pi} + \cos 3x \right)^{\tan 3x} : \text{ Dặt } y = \left( \frac{6x}{\pi} + \cos 3x \right)^{\tan 3x} \Leftrightarrow \ln y = \tan 3x \ln \left( \frac{6x}{\pi} + \cos 3x \right)$$

$$\lim_{x \to \frac{\pi}{6}} \ln y = \lim_{x \to \frac{\pi}{6}} \tan 3x \cdot \ln \left( \frac{6x}{\pi} + \cos 3x \right) = \lim_{x \to \frac{\pi}{6}} \frac{\ln \left[ 1 + \left( \frac{6x}{\pi} + \cos 3x - 1 \right) \right]}{\cot 3x} = \lim_{x \to \frac{\pi}{6}} \frac{\frac{6x}{\pi} + \cos 3x - 1}{\cot 3x} = \lim_{x \to \frac{\pi}{6}} \frac{\frac{6}{\pi} - 3\sin 3x}{-3\left(1 + \cot^2 3x\right)} = 1 - \frac{2}{\pi}$$

$$L_9 = \lim_{x \to \frac{\pi}{L}} y = e^{1 - \frac{2}{\pi}}; \quad (*) \ln(1 + u) \sim u, \ u \to 0$$