

Hua-Hsi Tseng

曾華璽

Outline

- □ Introduction to Timer
 - ◆ PIC18F4520 Internal Oscillator
- Timer1
- □ Timer2

Introduction to Timer

Timer1 Timer2

What's Timer?

- □ Timer簡單的說就是一個會持續不斷的計算進入Timer中 Clock數量的模組。
- □ Timer─般有兩種稱呼Timer或Counter。
 - ◆ 輸入的Clock時間未知:僅能得知計數到多少個Clock,稱為Counter。
 - ◆ 輸入的Clock時間已知:可以進一步換算出時間, 稱為Timer。
- □ 8-bit MCU的Timer為遞增型,也就是會固定從"0"開始計數
 - 。模組可以設定計數到多少Clock後要通知CPU。

Interrupt & Timer

- □ 通知: 就是中斷旗標(Interrupt Flag)。當數到設定值時,中斷 旗標會被模組設定為"1",對CPU發出中斷請求 (Interrupt Request)。
 - ◆ 如果此時中斷致能沒開,則必須由程式自行檢查事件是否發生。
 - 如果此時中斷致能有開,就會自動進入中斷服務常式。
- □ 舉例:Timer0的中斷控制在 INTCON register中控制

bit 5

bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed (must be cleared in software)

0 = TMR0 register did not overflow

TMR0IE: TMR0 Overflow Interrupt Enable bit

1 = Enables the TMR0 overflow interrupt

0 = Disables the TMR0 overflow interrupt

PIC18F4520 Timer Module

- □ Timer0:
 - ◆ Timer0 可設定為8-bit 或16-bit 模式
 - ◆ 計時器產生溢位時FFh to 00h (FFFFh to 0000h),即產生中斷
- □ Timer1 and Timer3:
 - ◆ 16-bit 模式的計數器或計時器
 - ◆ 由兩個可讀/寫的8-bit 計數器串聯而成
 - ◆ 預除器有四種選擇:÷1,÷2,÷4, or ÷8
 - ◆ 當計數器或計時器產生溢位時FFFFh to 0000h, 即產生中斷
- Timer2:
 - ◆ 8-bit 模式的計時器,有預除器及後除器之功能
 - ◆ TMR2 會自動加一並與設定的值相比;若相等則送出訊號至後除器或 產生中斷,並自動將自己清除為零,重新計時

PIC18F4520 Internal Oscillator

FIGURE 2-8: PIC18F2420/2520/4420/4520 CLOCK DIAGRAM

PIC18F4520 Internal Oscillator

」程式設定範例:

: CONFIG1H

CONFIG OSC = INTIO67

	R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1
	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0
b	it 7							bit 0

- bit 7 IESO: Internal/External Oscillator Switchover bit
 - 1 = Oscillator Switchover mode enabled
 - 0 = Oscillator Switchover mode disabled
- bit 6 FCMEN: Fail-Safe Clock Monitor Enable bit
 - 1 = Fail-Safe Clock Monitor enabled
 - 0 = Fail-Safe Clock Monitor disabled
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 FOSC3:FOSC0: Oscillator Selection bits
 - 11xx = External RC oscillator, CLKO function on RA6
 - 101x = External RC oscillator, CLKO function on RA6
 - 1001 = Internal oscillator block, CLKO function on RA6, port function on RA7
 - 1000 = Internal oscillator block, port function on RA6 and RA7
 - 0111 = External RC oscillator, port function on RA6
 - 0110 = HS oscillator, PLL enabled (Clock Frequency = 4 x FOSC1)
 - 0101 = EC oscillator, port function on RA6
 - 0100 = EC oscillator, CLKO function on RA6
 - 0011 = External RC oscillator, CLKO function on RA6
 - 0010 = HS oscillator
 - 0001 = XT oscillator
 - 0000 = LP oscillator

PIC18F4520 Internal Oscillator

Default Internal Oscillator Frequency: 1MHz

2-2: OSCCON REGISTER

R/W-0	R/W-1	R/W-0	R/W-0	R ⁽¹⁾	R-0	R/W-0	R/W-0
IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0
bit 7							bit 0

IDLEN: Idle Enable bit

1 = Device enters Idle mode on SLEEP instruction

0 = Device enters Sleep mode on SLEEP instruction

bit 6-4 IRCF2:IRCF0: Internal Oscillator Frequency Select bits

111 = 8 MHz (INTOSC drives clock directly)

110 = 4 MHz

bit 7

101 = 2 MHz

 $100 = 1 \text{ MHz}^{(3)}$

011 = 500 kHz

010 = 250 kHz

001 = 125 kHz

000 = 31 kHz (from either INTOSC/256 or INTRC directly)(2)

bit 3 OSTS: Oscillator Start-up Time-out Status bit (1)

1 = Oscillator start-up time-out timer has expired; primary oscillator is running

0 = Oscillator start-up time-out timer is running; primary oscillator is not ready

bit 2 IOFS: INTOSC Frequency Stable bit

1 = INTOSC frequency is stable

0 = INTOSC frequency is not stable

bit 1-0 SCS1:SCS0: System Clock Select bits

1x = Internal oscillator block

01 = Secondary (Timer1) oscillator

00 = Primary oscillator

Note 1: Reset state depends on state of the IESO configuration bit.

2: Source selected by the INTSRC bit (OSCTUNE<7>), see text.

3: Default output frequency of INTOSC on Reset.

Prescaler & Postscaler

- □ 16-bit Timer計數範圍0~65,535。如果需要的計數值超過時 , 必須透過預除器修正。預除器可以用來擴大計數範圍。
- 舉例:
 - ◆ 如果把預除器設為除8(1:8),則變成Clock每8個才會有一個進入TMRx, 意即TMRx數到1,000時,實際的Clock已經產生了8,000個。

Try it

- 觀察設定CONFIG1H後OSCCON Register的預設值和每個 bit代表的意義與變化
 - CONFIG OSC = INTIO67

Introduction to Timer

Timer1

Timer2

Timer1 Block diagram

FIGURE 12-2: TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

Timer1 Control Register: T1CON

- Time1 Clock Soucre:
 - Internal Clock(FOSC/4)
 - Default frequency: 1MHz/4
- □ T1CKPS1:T1CKPS0
 - Timer1 Input Clock Prescale Select bits
- □ TMR1CS:
 - Time1 Clock Source Select bit
- ⊐ TMR1ON
 - Timer1 On bit

I	R 12-1:	T1CON:	TIMER1 C	ONTROL	REGISTER				
		R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W
		RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR1
		bit 7					,		
	bit 7	RD16 : 16-]						
			_			ne 16-bit oper <u>o 8-bit opera</u>			
	bit 6	T1RUN: T	imer1 Syst	em Clock Sta	atus bit			_	
					Timer1 oscilla				
					another sour			1	
	bit 5-4				ut Clock Pres	cale Select b	its		
			Prescale va Prescale va						
			rescale va						
		00 = 1:1 F	Prescale va	lue					
	bit 3	T10SCEN	l: Timer1 C	scillator Ena	ble bit				
			1 oscillator						
			1 oscillator ator inverte		ck resistor ar	e turned off to	o eliminate r	ower drain	
	bit 2					onization Sele	_	owor aram	
	DIC Z		R1CS = 1:	ornar crook i	input Oynomic	JIIIZUIIOII OOK	JOE DIE		
		1 = Do no	t synchroni	ze external c					
				ernal clock in	put				
		When TMI This bit is		mer1 uses th	ne internal clo	ck when TMF	R1CS = 0.		
	bit 1	TMR1CS:	Timer1 Clo	ock Source S	elect bit			1	
			nal clock froal clock (F	-	T1OSO/T130	CKI (on the ris	sing edge)		
	bit 0	TMR10N:	: Timer1 Or	n bit					
		1 = Enabl	les Timer1						
		0 = Stops	Timer1						

Registers Associated with TIMER1

- □ TMR1L,TMR1H: 目前Timer數到多少的暫存器, FFFFh to 0000h發生overflow時即產生中斷。
- □ PIR1: (TMR1IF) TMR1 Overflow Interrupt Flag bit
- PIE1: (TMR1IE) TMR1 Overflow Interrupt Enable bit
- □ IPR1: (TMR1IP) TMR1 Overflow Interrupt Priority bit

TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP(1)	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
TMR1L	Timer1 Register, Low Byte						50		
TMR1H	TMR1H Timer1 Register, High Byte							50	
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	50

Try it

- □ 開啟Timer1 ON, TMR1IE, TMR1IP並設立中斷點在 interrupt,觀察中斷時是否TMR1IF有立起來
- □ 嘗試若關掉TMR1IE後1.是否會進中斷2.是否flag TMR1IF有 立起來

Introduction to Timer Timer1

Timer2

Timer2 Block diagram

□ Time2 Clock Soucre:

- Internal Clock(FOSC/4)
- Default frequency: 1MHz/4

FIGURE 13-1: TIMER2 BLOCK DIAGRAM

Timer2 Control Register: T2CON

TER 13-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	
bit 7							bit 0	

Unimplemented: Read as '0' bit 7

bit 6-3 T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits

0000 = 1:1 Postscale 0001 = 1:2 Postscale

1111 = 1:16 Postscale

bit 2 TMR2ON: Timer2 On bit

> 1 = Timer2 is on o = Timer2 is off

bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits

oo = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16

Registers Associated with TIMER2

PR2: Timer2 Period Register

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP(1)	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
TMR2	Timer2 Register							50	
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	50
PR2	Timer2 Peri	od Register							50

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: These bits are unimplemented on 28-pin devices; always maintain these bits clear.

How to get 0.5 second

Timer2: postscaler和prescaler都選1:16 (In Internal Clock 1秒=62500/16/16=244)

FOSC選用250kHz/4

(In Internal Clock 1秒=250000/2=125000) Timer1:除頻器若選用1:2

FOSC選用1MHz/4

TMR1 overflow 時 interrupt

TMR1 (TMR1H:TMR1L): 16-bit Register

MPLAB X IDE - Stopwatch

- You can open the Stopwatch from <u>Window>Debugging>Stopwatch</u>
- Stopwath cycle count 只能用simulator來看

```
for(int i=0;i<255;i++){

for(int j=0;j<100;j++);

for(int j=0;j<100;j++);

while(1);
```

```
Target halted. Stopwatch cycle count = 14 (14 \mus)
Target halted. Stopwatch cycle count = 363642 (363.642 ms)
```


Reference

- □ PIC18F4520 datasheet
 - http://ww1.microchip.com/downloads/en/devicedoc/39631a.pd
- Microchip 教材 102ASP Example code
 - http://www.microchip.com.tw/Data_CD/Workshop/8-Bits/102ASP%20PIC18F452.zip
- □ Microchip 2016 Winter Elite 教材
 - http://www.microchip.com.tw/Data_CD/Workshop/Elite/2016% 20Winter%20Elite.zip
- □ Microchip W401 V3 教材
 - http://www.microchip.com.tw/Data_CD/Workshop/8-Bits/W401%20V3.zip