ISyE 6740 – Spring 2022 Project Report

Team Member Names: Prateek Shukla (one member)

Project Title: Hypothesis testing – general association between topics and sentiment in the CNN-Daily mail articles

Problem Statement

There is often speculation among fellow citizens about news media being associated with certain sentiments toward certain topics or sets of topics. These topics could be certain groups of politicians, countries, or national issues such as globalization, climate change, immigration, etc.

This project aims to do the following:

- 1: Label each article with two attributes -
 - A 'Topic' or topics based on what it talks about the most by comparing it with a
 predefined list of topics. This project did not depend on the predefined topic of the
 articles by CNN to be unbiased in this project.
 - A 'Sentiment Label' i.e. Positive, Negative or Neutral based on rule-based sentiment analysis of each article
- 2: Group/Clusters the articles by performing unsupervised spectral clustering based on 'edges' or 'connections' between two articles sharing common topic/s
- 3: Test the hypothesis of an association between clusters of topics and sentiments in the CNN-daily mail articles using the clusters created above and the sentiment label of the clusters. The mismatch rate between the sentiment label of the entire cluster/topic and individual articles will be the key metric to determine if there is indeed an association thus testing the hypothesis.

Data Source

The core data sources for this project will be the following -

1: CNN-DailyMail News Text Summarization dataset on Kaggle: Source -

https://www.kaggle.com/datasets/gowrishankarp/newspaper-text-summarization-cnn-dailymail

This data source consists of over 250k news articles written by journalists at CNN and Dailymail. The data seems to be updated through 2022. This was generated using a web crawler as mentioned on the Kaggle website. Here is a snippet showing a glimpse of the data.

Figure 1- Snippet of Original CNN Dailymail Articles Data

Due to computing time limitations ((realized during the analysis), only 5% of the original dataset was used for the analysis thus totaling 14148 articles.

2: Alternative to 1 (if needed): Source – https://www.kaggle.com/datasets/hadasu92/cnn-articles-after-basic-cleaning

This project did not need to use Data Source 2 as the data in source 1 was sufficient.

3: Sentiment Source -

All of the following data sources could be used as an English sentiment dictionary/lexicon or dataset for words with a sentiment label to generate a sentiment label for the article.

- https://nlp.stanford.edu/sentiment/code.html
- https://www.cs.jhu.edu/~mdredze/datasets/sentiment/
- http://jmcauley.ucsd.edu/data/amazon/

Although, a more structured approach is by using existing widely used lexicon-based python packages such as Textblob, VADER, SentiWordNet, etc. for sentiment analysis. Textblob package was used in this project.

4: List of topics -

The following lists of topics were initially created and planned to be tested in this project although due to computing time limitations (realized during the analysis), only 1 and 2 were finall. Datasets for these lists of topics

1) 15 biggest countries in the world economy-wise - https://www.investopedia.com/insights/worlds-top-economies/

Figure 2- Snippet of Countries Dataset

2) A few famous Politicians in the United States (most of them being future or past presidential candidates)

https://today.yougov.com/ratings/politics/popularity/politicians/all

Figure 3- Snippet of Politicians Dataset

- 3) A few controversial political issues
- 4) 50 states in the US

Methodology

The following major steps will be undertaken to complete the analysis -

- Select a list of topics from the lists of topics mentioned in the 'Data Source' section.
 - As mentioned in the data sources section, two lists of topics were selected. This
 list of topics were created using Excel manually on random basis from the web
 sources and read in the form of pandas series ('countries', 'politicians')using
 pd.read_excel function. Later these series were also converted into 1D arrays
 ('countries_updated', 'politicians_updated')for the purpose of further analysis.
 These
- Read the CNN excel into the form of pandas dataframe and also a numpy matrix for further analysis
- Edit articles dataframe 'data_politicians' and 'data_countries' to include indicator columns for individual topics in each list. Set a minimum threshold on the word count for setting the topic of an article.

	id	article	highlights	Biden	Trump	Sanders	Harris	Pence	Warren	Bloomberg
0	00128f1ba30d5e9e0f17df83285a1bc2072e2f01	A woman has been charged with reckless manslau	Claudia Yanira Hernandez Soriano, 25, and Juan	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	001ee59c375363263821474d40e4386ab91d5145	These days we pick up a packet of frozen prawn	'I'll never eat a king prawn again' says Wicke	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	. 00672d5c2055608b747a90a0f5ae32c5b340173e	By . Rob Waugh . UPDATED: . 04:54 EST, 28 Sept	Unveiling at 10am PST, 6pm GMT .\nInvitation i	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	006bca7d18b3c6889ce567133566d22e491d27c1	Earlier this season I picked Thierry	Sportsmail columnist Martin Keown was	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Figure 4 - snippet showing a first few rows with a few indicator columns for data_politicians

id	article	highlights	United States	China	Japan	Germany	United Kingdom	India	France	Italy	Canada	South Korea	Russia
1bc2072e2f01	A woman has been charged with reckless manslau	Claudia Yanira Hernandez Soriano, 25, and Juan	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
386ab91d5145	These days we pick up a packet of frozen prawn	'I'll never eat a king prawn again' says Wicke	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
32c5b340173e	By . Rob Waugh . UPDATED: . 04:54 EST, 28 Sept	Unveiling at 10am PST, 6pm GMT .\nInvitation i	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
d22e491d27c1	Earlier this season I picked Thierry Henry as	Sportsmail columnist Martin Keown was honoured	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Figure 5 - snippet showing a first few rows with a few indicator columns for data_countries

- Topic Allocation: Review each article i.e. row from the 'data_countries' and 'data politicians' dataframes for topic/s allocation
 - A loop is ran through each article of 'data countries' dataframe identifying the number of occurrences of each topic (by using another nested loop running through 'countries_updated' array) and the value of corresponding indicator variable for the article/row is allocated '1' if the number of occurrences exceed or equal a preset threshold. Similar procedure is performed for the 'data_politicians' dataframe based on 'politicians' array. For countries, the threshold is set to 1 and for politicians, the threshold is set to 2.
 - Regular expressions package 'Re' and function 'findall' is used to identify matches with a 'IGNORECASE' flag to ignore the case while matching.
 - The original dataframes are edited to reflect the updated values of indicator variables. An important observation is that an article could have multiple topics within a list of topics. For example, an article could be related to Joe Biden and Ted Cruz at the same time.

		id	article	highlights	Biden	Trump	Sanders	Harris	Pence	Warren
	905	3616ba0af1c490c8b596424b04bc7745c78ac60c	Vice President Joe Biden has become well known	Vice President Joe Biden was seen getting very	1	NaN	NaN	NaN	NaN	NaN
	1184	45b8e099eebfd8a8c02f6b9a949c5c1ddab3cf69	By . David Martosko, U.s. Political Editor . P	Obama spokesman Jay Carney coyly told reporter	1	NaN	NaN	NaN	NaN	NaN
:	2166	7cd8b95094a2a1ddfb523e9c01ca98112e379ef3	By . Reuters . PUBLISHED: . 18:05 EST, 26 Nove	Two unarmed U.S. B-52 bombers on a training mi	1	NaN	NaN	NaN	NaN	1

Figure 6 - Snippet showing example of Articles with Biden as topic and sometime mutiple topics

	id	article	highlights	United States	China	Japan	Germany	United Kingdom	India	France	Italy	Canada	South Korea
16	015a8c6844420202dafaf8aa88e51f83c2747ab0	England is the only developed country producin	'Deeply worrying' report shows scale of proble	NaN	NaN	1	NaN	NaN	NaN	NaN	NaN	NaN	1
80	05735dc02fed0630b660e140048d25ea556cffea	Way back in the mists of time, when schoolkids	Speculation about what baby boy will be called	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1
308	145568a553d4a49a1084b391a93dc5a7fb6476c2	(CNN) Usain Bolt, the anchor of Jamaican sp	4x100m team of Carter, Frater, Blake and Bolt	1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1	1
348	1675332735a8a6bda427c3dbe5579657861c5f99	(CNN) Poof. Gone. That's what will happen t	Americans are expected to let two vacation	NaN	NaN	1	NaN	NaN	NaN	1	1	1	1

Figure 7- Snippet showing example of Articles with South Korea as topic and sometime mutiple topics

Sentiment Analysis:

- A separate 'articles' dataframe is created from any of the dateframes 'data_countries' or 'data_politicians' containing just 'articles' and 'id' columns. This is to be used for further cleaning and manipulation of article text for sentiment analysis. An important point to note is that the project uses a rule based sentiment analysis approach extracting sentiments from the significant words based on a lexicon since the there is no training articles data with sentiment label available to be able to use a machine learning based approach.
- Data preprocessing for sentiment analysis (Reference - <u>https://www.analyticsvidhya.com/blog/2021/06/rule-based-sentiment-analysis-in-python/?</u>)
 - Text cleaning 'article' column: function 'sub' within 're' package is used to remove all special characters and numericals leaving the alphabets
 - Tokenization of text breaking the text into tokens i.e. smaller pieces at word level using word_tokenize() function within nltk package
 - POS Tagging Parts of speech (POS) tagging is performed to convert each token i.e. word into a tuple of the form (word,tag). The tag represents the context of the word and will be used for Lemmetization step below. NLTK pos_tag function is used for this.

	id	article	cleaned articles	POS tagged
0	00128f1ba30d5e9e0f17df83285a1bc2072e2f01	A woman has been charged with reckless manslau	A woman has been charged with reckless manslau	[(woman, n), (charged, v), (reckless, a), (man
1	001ee59c375363263821474d40e4386ab91d5145	These days we pick up a packet of frozen prawn	These days we pick up a packet of frozen prawn	[(days, n), (pick, v), (packet, n), (frozen, a
2	00672d5c2055608b747a90a0f5ae32c5b340173e	By . Rob Waugh . UPDATED: . 04:54 EST, 28 Sept	By Rob Waugh UPDATED EST September Apple has m	$ [(Rob, n), (Waugh, n), (UPDATED, n),\\ (EST, n),$
3	006bca7d18b3c6889ce567133566d22e491d27c1	Earlier this season I picked Thierry Henry as	Earlier this season I picked Thierry Henry as	[(Earlier, r), (season, n), (picked, v), $(Thie$
4	009e53253b0ba1823c4a08dfd6e4446ca9b02388	(CNN) Big-spending English club Manchester	CNN Big spending English club Manchester City	[(CNN, n), (Big, n), (spending, n), (English,

Figure 8 - A snippet showing cleaned articles and POS tagged columns

- Stopwords Removal Stopwords are words like 'I', 'me', 'was', 'his' that carry very little useful information. This is performed using an if condition to only select words not in stopwords.words('english') list
- Lemmetization The process of lemmetization involves extracting the root words (called Lemmas) from words which will carry lexical meanining or a sentiment. For example, 'glance' from 'glanced'. This is performed on the tuples obtained in the POS tagging step using lemmatize function.

	id	article	cleaned articles	POS tagged	Lemma
0	00128f1ba30d5e9e0f17df83285a1bc2072e2f01	A woman has been charged with reckless manslau	A woman has been charged with reckless manslau	[(woman, n), (charged, v), (reckless, a), (man	woman charge reckless manslaughter boyfriend
1	001ee59c375363263821474d40e4386ab91d5145	These days we pick up a packet of frozen prawn	These days we pick up a packet of frozen prawn	[(days, n), (pick, v), (packet, n), (frozen, a	day pick packet frozen prawn supermarket alm
2	00672d5c2055608b747a90a0f5ae32c5b340173e	By . Rob Waugh . UPDATED: . 04:54 EST, 28 Sept	By Rob Waugh UPDATED EST September Apple has m	[(Rob, n), (Waugh, n), (UPDATED, n), (EST, n),	Rob Waugh UPDATED EST September Apple make I
3	006bca7d18b3c6889ce567133566d22e491d27c1	Earlier this season I picked Thierry Henry as	Earlier this season I picked Thierry Henry as	[(Earlier, r), (season, n), (picked, v), (Thie	Earlier season pick Thierry Henry great ever
4	009e53253b0ba1823c4a08dfd6e4446ca9b02388	(CNN) Big-spending English club Manchester	CNN Big spending English club Manchester City	[(CNN, n), (Big, n), (spending, n), (English,	CNN Big spending English club Manchester Cit

Figure 9 - Snippet showing 'articles' dataframe post lemmetization

Next, TextBlob function within 'textblob' package is used to calculate the 'Polarity' score of each article. If the polarity score is less than 0, the analysis column (which represents sentiment of the articles) is set to 'Negative', 'Positive' in case of score greater than 0 and 'Neutral' in case of score equal to 0. Finally, the 'polarity' and 'analysis' columns are appended into 'data_countries' and 'data_politicians' dataframe with same indices

ırticle	highlights	United States	China	Japan	Germany	United Kingdom	India	France	Italy	Canada	South Korea	Russia	Brazil	Australia	Spain	Mexico	Analysis	Polarity
oman been d with ckless slau	Claudia Yanira Hernandez Soriano, 25, and Juan	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Positive	0.025455
days k up a ket of frozen awn	'I'll never eat a king prawn again' says Wicke	NaN	1	NaN	NaN	NaN	1	1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Negative	-0.005938
. Rob augh . TED: . I EST, Sept	Unveiling at 10am PST, 6pm GMT .\nInvitation i	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Positive	0.109265

Figure 10 - Snippet showing updated data_countries dataframe with polarity and analysis columns

- Spectral Clustering (Reference https://towardsdatascience.com/spectral-clustering-aba2640c0d5b)
 - The project aims to cluster the article based on common topic/s with weightage given to number of common topics between two articles.
 - Rationale behind selecting spectral clustering as the modeling technique -
 - Project aims to test hypothesis of an association between a general clusters/sets of articles with common topics (from a predefined list of topics) AND sentiment for CNN articles. The analysis do not aim to

analyze sentiments around **specific** topics by simple sentiment analysis for each topic as that could be more biased approach.

The general clusters of articles with common topics could be created using an unsupervised learning technique. Since, the articles are connected to each other based on common topic/s with each common topic counted as weight of 1, the project uses these connections/edges to use the articles data as a graph thus needing spectral clustering.

For spectral clustering analysis, each article is considered to be a node. If the topic of two nodes is the same, we consider there to be an edge/relationship between the two nodes/articles. The adjacency matrix A is created using the 'data_politicians_arr' (a matrix created from the data_politicians dataframe) by running three loops through the data as shown below. Same procedure is performed on the data_countries dataframe. An important note – each common topic count as connection between two articles so two articles with 3 common topic will have 3 as values in the adjacency matrix between those two nodes.

```
#spectral analysis for politicians
#creating adjacency matrix
n,m = data_politicians.shape
A = np.empty((n, n))
D = np.empty((n, n))
data_politicians_arr = data_politicians.to_numpy()
for i in range(len(data_politicians_arr)):
    for j in range(len(data_politicians_arr)):
        topic_count = 0
        if i == i:
            continue
        else:
            for k in range(3,m-2):
                if data_politicians_arr[i,k] == 'NaN':
                elif data_politicians_arr[i,k] == data_politicians_arr[j,k]:
                   topic count = topic count + 1
        A[i][j] = topic\_count
```

Figure 11- Snippet showing code to create adjacency matrix for data_countries

- Degree matrix D is created for 'data_politicians' dataframe using the 'data_politicians_arr' matrix i.e. a diagonal matix with diagonal values representing the number of edges/connections for each node/article. Same procedure is performed on the data countries dataframe
- Laplacian matrix L is created \rightarrow L = D A. Same procedure is performed on the data countries dataframe
- First, the project performs spectral clustering assuming a smaller number of clusters k = 4. The Kmeans function within sklearn.cluster package to perform k means clustering on the Laplacian matrix L. The k smallest eigenvalues and corresponding eigenvectors are obtained using the eigh function within linalg library of numpy package. Same procedure is performed on the data_countries dataframe
- The 'labels' array is outputted with cluster labels 0,1,2,and 3 for all the articles/nodes. Same procedure is performed on the data_countries dataframe

- The number of articles within each cluster (in increasing order from 0 to 3) for data_politicians and data_countries respectively is given as follows for reference
 - **1**3576, 177, 173, 222
 - 12990, 528, 139, 491
- Important observation The above numbers shows that there is indeed one much bigger cluster for both the datasets representing a strong connection betw een a big set of articles for both of the datasets.
- The majority sentiment label is calculated for each cluster by observing the senti memt labels of majority number of articles i.e. more than 50%. The sentiment I abels are calculated as 'Postive' or 'Negative' or 'Neutral'. Same procedure is per formed on the data countries dataframe
- The mismatch rate for each cluster is calculated by using the formula -
 - Mismatch rate = (number of mistmatches between the sentiment label of each article and the majority label of the cluster/number of the total articl es in a cluster) * 100. Same procedure is performed on the data_countrie s dataframe
- The output of the majority label and mismatch rate analysis is shown below for k
 4

```
The majority sentiment for cluster 0 is Positive
The mismatch rate for cluster 0 is 21.33176193282263
The majority sentiment for cluster 1 is Positive
The mismatch rate for cluster 1 is 27.683615819209038
The majority sentiment for cluster 2 is Positive
The mismatch rate for cluster 2 is 17.341040462427745
The majority sentiment for cluster 3 is Positive
The mismatch rate for cluster 3 is 20.72072072072
['Positive' 'Positive' 'Positive' 'Positive']
[21.33176193 27.68361582 17.34104046 20.72072072]
```

Figure 12- Majority Sentiment Label and Mismatch Rate Output for Politicians dataset for k = 4

```
The majority sentiment for cluster 0 is Positive
The mismatch rate for cluster 0 is 20.939483707151926
The majority sentiment for cluster 1 is Positive
The mismatch rate for cluster 1 is 21.84873949579832
The majority sentiment for cluster 2 is Positive
The mismatch rate for cluster 2 is 26.36986301369863
The majority sentiment for cluster 3 is Positive
The mismatch rate for cluster 3 is 22.093023255813954
['Positive' 'Positive' 'Positive' 'Positive']
[20.93948371 21.8487395 26.36986301 22.09302326]
```

Figure 13- Majority Sentiment Label and Mismatch Rate Output for Countries dataset for k = 4

- o The same analysis is performed for both data_countries and data_politicians dataframes assuming k=10. This helps to find the effect of diluting the clusters or catching further variance on mismatch rate. The number of articles in each clusters is as follows for politicians and countries respectively
 - **1**3009, 64, 71, 76, 11, 111, 336, 309, 13, 148
 - **1**1815, 357, 292, 86, 446, 128, 332, 335, 267, 90
 - The above number shows that there is still one much bigger cluster and the smaller cluster starts diluting based on the value of k
- The output for k=10 is shown below

```
The majority sentiment for cluster 0 is Positive
The mismatch rate for cluster 0 is 21.308325005765237
The majority sentiment for cluster 1 is Positive
The mismatch rate for cluster 1 is 18.75
The majority sentiment for cluster 2 is Positive
The mismatch rate for cluster 2 is 19.718309859154928
The majority sentiment for cluster 3 is Positive
The mismatch rate for cluster 3 is 22.36842105263158
The majority sentiment for cluster 4 is Positive
The mismatch rate for cluster 4 is 9.090909090909092
The majority sentiment for cluster 5 is Positive
The mismatch rate for cluster 5 is 22.52252252252252
The majority sentiment for cluster 6 is Positive
The mismatch rate for cluster 6 is 25.297619047619047
The majority sentiment for cluster 7 is Positive
The mismatch rate for cluster 7 is 18.446601941747574
The majority sentiment for cluster 8 is Positive
The mismatch rate for cluster 8 is 7.6923076923076925
The majority sentiment for cluster 9 is Positive
The mismatch rate for cluster 9 is 25.0
['Positive' 'Positive' 'Positive' 'Positive' 'Positive' 'Positive'
 'Positive' 'Positive' 'Positive' |
[21.30832501 18.75
                        19.71830986 22.36842105 9.09090909 22.52252252
 25.29761905 18.44660194 7.69230769 25.
                                               ]
```

Figure 14 - Majority Sentiment Label and Mismatch Rate Output for Politicians dataset for k = 10

```
The majority sentiment for cluster 0 is Positive
The mismatch rate for cluster 0 is 20.939483707151926
The majority sentiment for cluster 1 is Positive
The mismatch rate for cluster 1 is 21.84873949579832
The majority sentiment for cluster 2 is Positive
The mismatch rate for cluster 2 is 26.36986301369863
The majority sentiment for cluster 3 is Positive
The mismatch rate for cluster 3 is 22.093023255813954
The majority sentiment for cluster 4 is Positive
The mismatch rate for cluster 4 is 25.336322869955158
The majority sentiment for cluster 5 is Positive
The mismatch rate for cluster 5 is 18.75
The majority sentiment for cluster 6 is Positive
The mismatch rate for cluster 6 is 22.590361445783135
The majority sentiment for cluster 7 is Positive
The mismatch rate for cluster 7 is 25.671641791044774
The majority sentiment for cluster 8 is Positive
The mismatch rate for cluster 8 is 19.475655430711612
The majority sentiment for cluster 9 is Positive
The mismatch rate for cluster 9 is 25.5555555555555554
['Positive' 'Positive' 'Positive' 'Positive' 'Positive' 'Positive'
 'Positive' 'Positive' 'Positive']
[20.93948371 21.8487395 26.36986301 22.09302326 25.33632287 18.75
 22.59036145 25.67164179 19.47565543 25.55555556]
```

Figure 15 - Majority Sentiment Label and Mismatch Rate Output for Countries dataset for k = 10

Evaluation and Final Results

• It is seen from the above analysis that the mismatch rate is on the lower side (<25%) and in some cluster even lower than that. Also, all of the clusters have majority of the articles with positive sentiment. Thus, there seems to be some level of association between a topics and sentiment but it is hard to draw that inference as we do not have any clusters with negative majority sentiment. It could have been easier to test association between topics and sentiment if we could see lower mismatch rate for a

cluster or cluster/s with negative sentiment label. This demands for further investigation based on the entire dataset referring back to using 5% of randomly selected data from original articles dataset.

- Increasing the number of clusters to K = 10 do not change the nature of majority labels for the clusters for both countries and politicians OR mismatch rate much, thus it further strengthens the conclusion above.
- There is future scope for using the entire article dataset (with over 250k articles) and a further extended lists of topics as mentioned above to be able to derive further number of clusters.