Retrieving Data Using the SQL SELECT Statement

Objectives

After completing this lesson, you should be able to do the following:

- List the capabilities of SQL SELECT statements
- Execute a basic SELECT statement

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Capabilities of SQL SELECT Statements

Basic SELECT Statement

```
SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;
```

- SELECT identifies the columns to be displayed.
- FROM identifies the table containing those columns.

Selecting All Columns

SELECT *
FROM departments;

	DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	2 LOCATION_ID
1	10	Administration	200	1700
2	20	Marketing	201	1800
3	50	Shipping	124	1500
4	60	IT	103	1400
5	80	Sales	149	2500
6	90	Executive	100	1700
7	110	Accounting	205	1700
8	190	Contracting	(null)	1700

Selecting Specific Columns

```
SELECT department_id, location_id FROM departments;
```

	A	DEPARTMENT_ID	A	LOCATION_ID
1		10		1700
2		20		1800
3		50		1500
4		60		1400
5		80		2500
6		90		1700
7		110		1700
8		190		1700

Selecting Specific Columns

Schrijf een query die zowel het departementsnummer als de naam van het departement toont.

```
SELECT department_id, department_name
FROM departments;
```

DEPARTMENT_ID	DEPARTMENT_NAME
10	Administration
20	Marketing
50	Shipping
60	IT
80	Sales
90	Executive
110	Accounting
190	Contracting

8 rows selected.

Writing SQL Statements

- SQL statements are not case-sensitive.
- SQL statements can be entered on one or more lines.
- Keywords cannot be abbreviated or split across lines.
- Clauses are usually placed on separate lines.
- Indents are used to enhance readability.
- In SQL Developer, SQL statements can optionally be terminated by a semicolon (;). Semicolons are required when you execute multiple SQL statements.
- In SQL*Plus, you are required to end each SQL statement with a semicolon (;).

Column Heading Defaults

- SQL Developer:
 - Default heading alignment: Left-aligned
 - Default heading display: Uppercase
- SQL*Plus:
 - Character and Date column headings are left-aligned.
 - Number column headings are right-aligned.
 - Default heading display: Uppercase

Column Heading Defaults

Schrijf een query die de familienaam, de datum van indienst treding en het salaris van elke werknemer toont.

```
SELECT last_name, hire_date, salary
FROM employees;
```

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column Aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Arithmetic Expressions

Create expressions with number and date data by using arithmetic operators.

Operator	Description
+	Add
-	Subtract
*	Multiply
/	Divide

Using Arithmetic Operators

```
SELECT last_name, salary, salary + 300
FROM employees;
```

	LAST_NAME	2 SALARY	SALARY+300
1	King	24000	24300
2	Kochhar	17000	17300
3	De Haan	17000	17300
4	Hunold	9000	9300
5	Ernst	6000	6300
6	Lorentz	4200	4500
7	Mourgos	5800	6100
8	Rajs	3500	3800
9	Davies	3100	3400
10	Matos	2600	2900

- - -

Operator Precedence

Schrijf een query die de familienaam, het maandsalaris, alsook het jaarsalaris verhoogd met een eindejaarsbonus van 100€, weergeeft.

	LAST_NAME	B SALARY	2 12*SALARY+100
1	King	24000	288100
2	Kochhar	17000	204100
3 [De Haan	17000	204100

. . .

Operator Precedence

Schrijf een query die de familienaam, het maandsalaris, en het jaarsalaris weergeeft, indien het maandelijks salaris verhoogd wordt met een bonus van 100€.

```
SELECT last_name, salary, 12*(salary+100)
FROM employees;
```


- - -

Defining a Null Value

- Null is a value that is unavailable, unassigned, unknown, or inapplicable.
- Null is not the same as zero or a blank space.

Null Values in Arithmetic Expressions

Schrijf een query die de familienaam, alsook de jaarlijkse commissiebedragen weergeeft.

Arithmetic expressions containing a null value evaluate to null.

SELECT last_name, 12*salary*commission_pct FROM employees;

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Defining a Column Alias

A column alias:

- Renames a column heading
- Is useful with calculations
- Immediately follows the column name (There can also be the optional AS keyword between the column name and alias.)
- Requires double quotation marks if it contains spaces or special characters, or if it is case-sensitive

Using Column Aliases

Lesson Agenda

- Basic SELECT Statement
- Arithmetic Expressions and NULL values in SELECT statement
- Column Aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Concatenation Operator

A concatenation operator:

- Links columns or character strings to other columns
- Is represented by two vertical bars (||)
- Creates a resultant column that is a character expression

```
SELECT last_name||job_id AS "Employees"
FROM employees;
```


- - -

Literal Character Strings

- A literal is a character, a number, or a date that is included in the SELECT statement.
- Date and character literal values must be enclosed within single quotation marks.
- Each character string is output once for each row returned.

Using Literal Character Strings

```
SELECT last_name || is a '||job_id
        AS "Employee Details"
FROM employees;
```


. . .

```
18 Vargas is a ST_CLERK
19 Whalen is a AD_ASST
20 Zlotkey is a SA_MAN
```

Using Literal Character Strings

Schrijf een query die de volgende output toont:

Informatie

King: 1 maand salaris = 24000

Kochlar: 1 maand salaris = 17000

. . .

SELECT last_name || ': 1 maand salaris = ' || salary "Informatie" FROM employees;

ORACLE!

Duplicate Rows

The default display of queries is all rows, including duplicate rows.

Lesson Agenda

- Basic SELECT statement
- Arithmetic expressions and NULL values in the SELECT statement
- Column aliases
- Use of concatenation operator, literal character strings, alternative quote operator, and the DISTINCT keyword
- DESCRIBE command

Displaying the Table Structure

- Use the DESCRIBE command to display the structure of a table.
- Or, select the table in the Connections tree and use the Columns tab to view the table structure.

DESC[RIBE] tablename Connections myconnection

Using the DESCRIBE Command

DESCRIBE employees

DESCRIBE employees		
Name	Null	Туре
EMPLOYEE_ID	NOT NULL	NUMBER(6)
FIRST_NAME		VARCHAR2(20)
LAST_NAME	NOT NULL	VARCHAR2(25)
EMAIL	NOT NULL	VARCHAR2(25)
PHONE_NUMBER		VARCHAR2(20)
HIRE_DATE	NOT NULL	DATE
JOB_ID	NOT NULL	VARCHAR2(10)
SALARY		NUMBER(8,2)
COMMISSION_PCT		NUMBER(2,2)
MANAGER_ID		NUMBER(6)
DEPARTMENT_ID		NUMBER (4)
ll rows selected		

Quiz

Identify the SELECT statements that execute successfully.

```
SELECT first_name, last_name, job_id, salary*12
AS Yearly Sal
FROM
       employees;
SELECT first_name, last_name, job_id, salary*12
 yearly sal
FROM
       employees;
SELECT first_name, last_name, job_id, salary AS
 yearly sal
       employees;
FROM
SELECT first name+last name AS name, job Id,
 salary*12 yearly sal
       employees;
FROM
```

Summary

In this lesson, you should have learned how to:

- Write a SELECT statement that:
 - Returns all rows and columns from a table
 - Returns specified columns from a table
 - Uses column aliases to display more descriptive column headings

```
SELECT *|{[DISTINCT] column/expression [alias],...}
FROM table;
```

Practice 1: Overview

This practice covers the following topics:

- Selecting all data from different tables
- Describing the structure of tables
- Performing arithmetic calculations and specifying column names