### Tema 4. Optimització No Lineal sense Restriccions

### Grau en Matemàtiques

### Programació Matemàtica

Jordi Castro Javier Heredia Josep Homs

Departament d'Estadística i Investigació Operativa Facultat de Matemàtiques i Estadística Universitat Politècnica de Catalunya Barcelona



(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

1 / 102

### Esquema del tema

- Conceptes bàsics
  - Formulació de problemes d'optimització no lineals
  - Exemples de problemes
  - Conceptes previs
  - Convexitat: funcions, conjunts i problemes convexos
  - Breu ressenya històrica
- Optimització no lineal sense restriccions
  - Condicions d'optimalitate
  - Mètodes basats en exploracions lineals: gradient i Newton
  - Exploració lineal. Convergència global
  - Mètode del gradient. Convergència local
  - Mètode Newton. Convergència local
  - Modificacions al mètode de Newton
- Bibliografia

# Problemes d'optimització no lineal I

• Formulació general de problemes d'ONL:

min 
$$f(x)$$
  
s.a  $x \in \Omega$ 

on  $f: \mathbb{R}^n \to \mathbb{R}$  és la funció objectiu (suposem "suau",  $f \in \mathcal{C}^2$ ) i  $\Omega \subseteq \mathbb{R}^n$  és el conjunt factible.

- Si  $\Omega = \mathbb{R}^n$  tenim un problema sense restriccions.
- Si  $\Omega = \{x : h_i(x) = 0, g_j(x) \leq 0, i = 1, \dots, m, j = 1, \dots, p\}$   $(h_i : \mathbb{R}^n \to \mathbb{R}, i = 1, \dots, m, g_j : \mathbb{R}^n \to \mathbb{R}, j = 1, \dots, p, \text{ suposem també "suaus": } h_i, g_j \in \mathcal{C}^2) \text{ tenim un problema amb restriccions d'igualtat i/o desigualtat.}$

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

4 / 102

Conceptes bàsics

Formulació de problemes d'optimització no lineals

# Problemes d'optimització no lineal II

El problema d'ONL general és:

ONL general és: min 
$$f(x)$$
 s.a  $h(x) = 0$   $[h_i(x) = 0 \quad i = 1, ..., m]$   $g(x) \le 0$   $[g_j(x) \le 0 \quad j = 1, ..., p].$ 

Considerarem problemes de min. Notem que

$$\max f(x) \ x \in \Omega \equiv -\min -f(x) \ x \in \Omega$$

(Clarament:  $f(x^*) \ge f(x) \ \forall x \in \Omega \Longleftrightarrow -f(x^*) \le -f(x) \ \forall x \in \Omega$ ).

### Problemes amb i sense restriccions

- Els mètodes de resolució també es classifiquen en mètodes per a problemes d'ONL amb i sense restriccions.
- És una de les principals diferències amb PLs:
- Els PLs sense restriccions són il.limitats:

$$-\infty = \min \quad \boldsymbol{c}^T \boldsymbol{x}$$
$$+\infty = \max \quad \boldsymbol{c}^T \boldsymbol{x}$$





(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

6 / 102

Conceptes bàsics

Exemples de problemes

# Ajust de funcions per mínims quadrats no lineals

- Ajustos de corbes: usats en Estadística, en enginyeries química, mecànica, etc
- Tenim una sèrie de m observacions  $(x_i, y_i), i = 1, ..., m, x_i \in \mathbb{R}^d$  i  $y_i \in \mathbb{R}^l$ . Per exemple per d = l = 1 podríem tenir



• Volem ajustar una funció  $f(x; \theta) : \mathbb{R}^d \to \mathbb{R}^l$ , depenent d'un vector de paràmetres  $\theta \in \mathbb{R}^n$ . Per exemple,

$$d = l = 1$$
  $n = 3$   $f(x; \theta) = \theta_1 + \sin(x^2/\theta_2) + e^{x/\theta_3}$ .

• Definim els residus  $r_i = f(x_i; \theta) - y_i$ , i = 1, ..., m i formulem

$$\min_{\theta \in \mathbb{R}^n} \sum_{i=1}^m \|r_i\|_2^2 \qquad \Longleftrightarrow \qquad \min_{\theta \in \mathbb{R}^n} \sum_{i=1}^m (f(x_i; \theta) - y_i)^T (f(x_i; \theta) - y_i)$$

• Altres aplicacions dels "mínims quadrats no lineals": Google els usa per obtenir models 3D a partir de fotografies, a Street View per estimar les posicions dels cotxes i satèl·lits a partir d'observacions de sensors, etc. Google usa el paquet Ceres, visiteu <a href="http://ceres-solver.org/">http://ceres-solver.org/</a> per a més informació.

### "Support Vector Machines" (SVM I)

- Donats els m parells  $(x_i, y_i) \in \mathbb{R}^n \times \{+1, -1\}, i = 1, ..., m$  busquem l'hiperplà definit per  $(w, \gamma) \in \mathbb{R}^{n+1}$  amb "marge de separació" màxim entre els hiperplans paral·lels  $w^T x + \gamma \ge +1$  i  $w^T x + \gamma \le -1$ .
- w és él vector normal al pla de separació, γ determina la seva posició respecte l'origen.
- Veiem que el marge de separació entre plans és  $\frac{2}{||w||_2}$ .



(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

9 / 102

Conceptes bàsics

Exemples de problemes

# El marge de separació és $\frac{2}{||w||_2}$ (SVM II)

- Donats dos hiperplans paral·lels  $w^Tx = a$  i  $w^Tx = b$ , i  $x_1$  un punt del primer pla ( $w^Tx_1 = a$ ), el punt més proper a  $x_1$  al segon hiperplà, anomenat  $x_2$ , ( $w^Tx_2 = b$ ) pot ser escrit com  $x_2 = x_1 + \alpha w$ .
- Llavors:

$$x_2 = x_1 + \alpha w$$

$$w^T x_2 = w^T x_1 + \alpha w^T w$$

$$b = a + \alpha ||w||_2^2$$

$$\alpha = \frac{b - a}{||w||_2^2}$$

• El marge de separació és la norma Euclídea de  $\alpha w$ :

$$||\alpha w||_2 = |\alpha| \cdot ||w||_2 = \frac{|b-a|}{||w||_2^2} ||w||_2 = \frac{|b-a|}{||w||_2}$$

• A la SVM,  $a = -\gamma - 1$  i  $b = -\gamma + 1$ , per tant el marge és  $\frac{2}{||w||_2}$ .

### Problema d'optimització quadràtic (SVM III)

- L'objectiu és maximitzar el marge, i a la vegada minimitzar els errors de classificació  $\sum_{i=1}^{m} s_i$ . Aquest dos objectius oposats es ponderen amb el paràmetre  $\nu \in \mathbb{R}$ .
- Maximitzar el marge és equivalent a min ½ | w | 2, que és equivalent a  $\min \frac{1}{2} ||w||_2^2 = \min \frac{1}{2} w^T w.$
- SVM és un problema d'optimització quadràtic en variables  $w, \gamma, s$ :

$$\min_{\substack{(w,\gamma,s) \in \mathbb{R}^{n+1+m} \\ s. \ a}} \frac{1}{2} w^T w + \nu \sum_{i=1}^m s_i \\
s. \ a \ y_i (w^T x_i + \gamma) + s_i \ge 1 \quad i = 1, \dots, m \\
s_i \ge 0 \quad i = 1, \dots, m$$

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

11 / 102

Conceptes bàsics

Exemples de problemes

### Problemes de distàncies: La socorrista i el banyista

• La socorrista i un banyista que s'està ofegant es troben en un pla als punts  $s = (s_1, s_2)$  i  $b = (b_1, b_2), s, b \in \mathbb{R}^2.$ 



La frontera entre la platja i el mar són els punts x : f(x) = 0.

- La socorrista corre per la sorra i neda a unes velocitats  $v_1 m/s$  i  $v_2 m/s$ , respectivament.
- Quin recorregut ha de fer per arribar al banyista en el temps mínim?
- Cal trobar  $x^* \in \mathbb{R}^2$  que proporciona el temps mínim i verifica  $f(x^*) = 0$ :

$$\min_{\substack{x \in \mathbb{R}^2 \\ \text{s. a}}} t_1(x) + t_2(x) \\ \text{s. a} f(x) = 0$$
 on 
$$t_1(x) = \frac{\|x - s\|_2}{v_1} = \frac{\sqrt{\sum_{i=1}^2 (x_i - s_i)^2}}{\frac{v_1}{v_2}} \\ t_2(x) = \frac{\|b - x\|_2}{v_2} = \frac{\sqrt{\sum_{i=1}^2 (b_i - s_i)^2}}{\frac{v_2}{v_2}}.$$

### Problemes de distàncies: L'oleoducte

 Es vol construir un oleoducte per comunicar n pous de petroli de coordenades  $p_i = (x_i, y_i) \in \mathbb{R}^2$ , amb una refineria de coordenades  $r = (x_r, y_r) \in \mathbb{R}^2$ .



Determineu l'oleoducte de longitud mínima.

• La millor solució passa per unir els diferents pous en una subestació  $s=(x_s,y_s)\in\mathbb{R}^2$ . Per trobar la millor situació de *s* formulem el problema sense restriccions:

$$\min_{s \in \mathbb{R}^2} \sum_{i=1}^n \|s - p_i\|_2 + \|r - s\|_2 = \sum_{i=1}^n \sqrt{(x_s - x_i)^2 + (y_s - y_i)^2} + \sqrt{(x_r - x_s)^2 + (y_r - y_s)^2}.$$

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

14 / 102

• I si s ha d'estar a més de d Km. d'un punt  $o = (x_o, y_o)$ ? Cal afegir la restricció

$$\|o-s\|_2^2 \ge d^2 \qquad \Longleftrightarrow \qquad (x_0-x_s)^2+(y_0-y_s)^2 \ge d^2.$$

# Càlcul de centres: el centre de Chebyshev (conjunt convex)

- El centre de Chebyshev d'un conjunt afitat  $C \subseteq \mathbb{R}^n$  és el centre del cercle de major radi que es pot inscriure dintre de C.
- Per a un C qualsevol és un problema difícil de solucionar; considerem el cas C convex.



- C convex definit per  $C = \{x : f_1(x) \le 0, \dots, f_m(x) \le 0\}, f_i(x)$  funcions convexes.
- Formulem el següent problema, en variables  $x \in \mathbb{R}^n$  i  $r \in \mathbb{R}$ :

Aquest problema "binivell" ("max" a restriccions) pot reformular-se com

$$\max_{\substack{x,r,u^i \ i=1,\ldots,m\\ \text{s. a} \quad \max f_i(x+r\ u^i) \leq 0 \quad i=1,\ldots,m\\ \|u^i\|_2 \leq 1 \quad i=1,\ldots,m\\ r > 0}$$

# Càlcul de centres: el centre de Chebyshev (políedre)

• C és ara el políedre definit per  $C = \{x : a_i^T x \le b_i, i = 1, ..., m\}$ ?



Quan C era conjunt convex teníem:

$$\max_{\substack{x,r\\\text{s. a}}} r$$
s. a  $g_i(x,r) \leq 0$   $i=1,\ldots,m$  on  $g_i(x,r) = \max_{\|u\|_2 \leq 1} f_i(x+r|u)$ 

• Ara  $f_i(x) = a_i^T x - b_i$ , i com que  $||u||_2 \le 1$  i  $a_i^T u = ||a_i||_2 ||u||_2 \cos(a_i, u) \le ||a_i||_2$ :

$$g_i(x,r) = \max_{\|u\|_2 \le 1} a_i^T(x+r u) - b_i = a_i^T x - b_i + r \max_{\|u\|_2 \le 1} a_i^T u = a_i^T x - b_i + r \|a_i\|_2.$$

Per tant tenim un problema lineal:

$$\max_{\substack{x,r \ s. \ a. \ a_i^T x + r \|a_i\|_2 \le b_i \ i = 1, ..., m}} r \ge 0$$

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

16 / 102

Conceptes bàsics

Exemples de problemes

# Tomografia computada: reconstrucció d'imatges I

- Tenim un conjunt  $S \in \mathbb{R}^3$  que representa una part del cos humà. El particionem en  $\{1,2,\ldots,n\}$  cel·les o "voxels". Considerem densitat homogènea dintre de cada cel·la.
- Enviem un raig L a través de S (són raigs X)



i recollim les següents dades:

- ► *I(L)*: subconjunt de cel·les travessades per *L*.
- $ightharpoonup a_i(L)$ : longitud del recorregut de L dintre cel·la i.
- $\triangleright$  b(L): atenuació de l'energia de L mesurada al punt de sortida.
- Objectiu: calcular les densitats  $x_i$  a cada cel·la i = 1, ..., n, sabent que verifiquen

$$\sum_{i \in I(L)} a_i(L) x_i = b(L)$$
  
 
$$x_i \ge 0 \quad i = 1, ..., n$$

### Tomografia computada: reconstrucció d'imatges II

• A la pràctica s'emeten diversos raigs  $L_i$ , j = 1, ..., m, de forma que tenim:

$$\sum_{i \in I(L_j)} a_i(L_j) x_i = b(L_j) \quad j = 1, \dots, m$$
  
$$x_i > 0 \quad i = 1, \dots, n.$$

Com que n ≫ m podem tenir moltes solucions; o fins i tot cap solució x ≥ 0 per errors de mesura. Per tant a la pràctica se soluciona:

$$\min f(x) \triangleq \sum_{j=1}^m \left( \sum_{i \in I(L_j)} a_i(L_j) x_i - b(L_j) \right)^2 \quad \text{s. to } x \geq 0.$$

En cas de solucions alternatives, busquem la de mínima densitat:

$$\min f(x) + \delta \sum_{i=1}^{n} x_i$$
 s. to  $x \ge 0$ .

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

18 / 102

Conceptes bàsics

Conceptes previs

### Gradient, Hessiana i Jacobiana

•  $f:D\subseteq\mathbb{R}^n\to I\subseteq\mathbb{R},\,f\in\mathcal{C}^2$ . Vector gradient i matriu Hessiana:

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \qquad \nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix} = \nabla^2 f(x)^T$$

•  $g: D \subseteq \mathbb{R}^n \to I \subseteq \mathbb{R}^m$ ,  $g = (g_1, \dots, g_m)^T$ ,  $g_i \in \mathcal{C}$ . Matriu Jacobiana:

$$\nabla g(x)^T = J(x) = \begin{bmatrix} \nabla g_1(x)^T \\ \vdots \\ \nabla g_m(x)^T \end{bmatrix} = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial g_m}{\partial x_1} & \cdots & \frac{\partial g_m}{\partial x_n} \end{bmatrix}$$

### Gradient, Hessiana i Jacobiana: exemple

• 
$$f(x) = e^{x_1^2 + x_2}$$

$$\nabla f(x) = \begin{bmatrix} 2x_1 e^{x_1^2 + x_2} \\ e^{x_1^2 + x_2} \end{bmatrix}$$

$$\nabla^2 f(x) = \begin{bmatrix} 2e^{x_1^2 + x_2} + 4x_1^2 e^{x_1^2 + x_2} & 2x_1 e^{x_1^2 + x_2} \\ 2x_1 e^{x_1^2 + x_2} & e^{x_1^2 + x_2} \end{bmatrix}$$

$$g(x) = \begin{bmatrix} g_1(x) \\ g_2(x) \end{bmatrix} = \begin{bmatrix} x_1^2 + x_2^2 - 1 \\ 3x_1 + 4x_2 - 5 \end{bmatrix}$$

$$\nabla g(x)^T = J(x) = \begin{bmatrix} \nabla g_1(x)^T \\ \nabla g_2(x)^T \end{bmatrix} = \begin{bmatrix} 2x_1 & 2x_2 \\ 3 & 4 \end{bmatrix}$$

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

21 / 102

Conceptes bàsics

Conceptes previs

### Teorema de Taylor (amb residu,

•  $f: D \subseteq \mathbb{R} \to I \subseteq \mathbb{R}, f \in \mathcal{C}^k, \alpha \in \mathbb{R}.$ 

$$f(x+\alpha) = f(x) + f'(x)\alpha + \frac{f''(x)}{2!}\alpha^2 + \dots + \frac{f^{k}(x)}{k!}\alpha^k + R_k(\alpha) \qquad R_k(\alpha) = o(\alpha^k)$$

$$f(x+\alpha) = f(x) + f'(x)\alpha + \frac{f''(x)}{2!}\alpha^2 + \dots + \frac{f^{k}(z)}{k!}\alpha^k \qquad z = x + \theta\alpha, 0 \le \theta \le 1$$

- $f: D \subseteq \mathbb{R}^n \to I \subseteq \mathbb{R}, f \in C^2, d \in \mathbb{R}^n, \alpha \in \mathbb{R}$ .
  - Polinomi d'ordre 1:

$$f(x + \alpha d) = f(x) + \alpha \nabla f(x)^{T} d + R_{1}(\alpha) \qquad R_{1}(\alpha) = o(\alpha)$$
$$f(x + \alpha d) = f(x) + \alpha \nabla f(z)^{T} d \qquad z = x + \theta \alpha d, 0 \le \theta \le 1$$

Polinomi d'ordre 2:

$$f(x + \alpha d) = f(x) + \alpha \nabla f(x)^T d + \frac{1}{2} \alpha^2 d^T \nabla^2 f(x) d + R_2(\alpha) \qquad R_2(\alpha) = o(\alpha^2)$$
$$f(x + \alpha d) = f(x) + \alpha \nabla f(x)^T d + \frac{1}{2} \alpha^2 d^T \nabla^2 f(z) d \qquad z = x + \theta \alpha d, 0 \le \theta \le 1$$

• Notació: f(t) = o(g(t)) si  $\lim_{t \to 0} \frac{f(t)}{g(t)} = 0$  (f(t) és infinitèssim d'ordre superior).

# Existència d'òptim

### Teorema (Teorema de Weierstrass d'existència d'òptim)

Si  $f: \Omega \to \mathbb{R}$  és contínua i  $\Omega \subseteq \mathbb{R}^n$  és compacte (tancat i afitat)  $\exists x^* \in \Omega : f(x^*) \le f(x) \ \forall x \in \Omega$  (és a dir  $\min_{x \in \Omega} f(x)$  té solució).

Alguns exemples "sense mínim":

- f(x) = 1/x,  $\Omega = \{x \in \mathbb{R} : x \ge 0\}$ : no té mínim  $(f(x) \to 0$  si  $x \to +\infty)$ . Falla que  $\Omega$  no és afitat.
- $f(x) = -x^2$ ,  $\Omega = \{x \in \mathbb{R} : 0 \le x < 1\}$ : no té mínim (però si ínfim, que és -1). Falla que  $\Omega$  no és tancat.
- En el curs ens centrarem en problemes que tenen mínim, i  $\Omega$  sempre serà tancat.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

23 / 102

Conceptes bàsics

Conceptes previs

### Mínim global i local

### Definició

Donat el problema d'optimització

min 
$$f(x)$$
  
s.a  $x \in \Omega$ 

- diem que x\* és mínim (òptim) local si x\* ∈ Ω i hi ha un entorn B de x\* (conjunt obert que conté x\*) tal que f(x\*) ≤ f(x) per a tot x ∈ B ∩ Ω (es diu estricte si f(x\*) < f(x)).</li>
- diem que  $x^*$  és mínim (òptim) global si  $x^* \in \Omega$  i  $f(x^*) \le f(x)$   $\forall x \in \Omega$ .

P.e., 
$$f(x) = \frac{\sin x}{\left(1 + \left(e^{x/10}\right)^2\right)}$$
,  $-6 \le x \le 6$ , té

3 màxims locals i 3 mínims locals, i un d'ells és respectivament màxim i mínim global



## Tipus "exòtic" de mínim local: mínim local aïllat

#### Definició

Diem que  $x^*$  és mínim local aïllat si hi ha un entorn B de  $x^*$  on  $x^*$  és l'únic mínim.

 Els mínims local estrictes no són sempre aïllats. P.e.,

$$f(x) = \begin{cases} x^4 \cos(\frac{1}{x}) + 2x^4 & x \neq 0 \\ 0 & x = 0 \end{cases}$$

té un mínim local estricte a  $x^* = 0$ , però no és mínim aïllat: hi ha molts mínims locals estrictes tan a prop com vulguem de  $x^* = 0$ .



 Però tots els mínims locals aïllats són mínims locals estrictes (es deixa com exercici).

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

25 / 102

Conceptes bàsics

Conceptes previs

### Cerca d'òptims globals

- Sempre es desitja obtenir l'òptim global, però a la pràctica això no és possible
- Els mètodes numèrics de ONL es basen en condicions d'optimalitat locals (són "miops")
- Optimització global: branca de la ONL que cerca òptims globals.
   Actualment no hi ha cap mètode efectiu que garanteixi òptims globals per a qualsevol problema
  - Si existís, s'hauria acabat la dificultat de la PE: sabeu formular x ∈ {0,1} com a restricció no lineal?:
  - $x \in \{0,1\} \Leftrightarrow x(x-1) = 0$
- Però per a un tipus de problemes sí podem garantir òptim globals: problemes convexos.

# Conjunt convex

#### Definició

 $\Omega$  és conjunt convex si per a tot  $x, y \in \Omega$ 

$$\alpha x + (1 - \alpha)y \in \Omega \quad 0 \le \alpha \le 1$$

• Gràficament, això vol dir que el segment  $\overline{xy}$  pertany a  $\Omega$ :



(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

28 / 102

Conceptes bàsics

Convexitat: funcions, conjunts i problemes convexos

### Funció convexa

### Definició

*f* és convexa en  $\Omega \subseteq \mathbb{R}^n$  si per a tot  $x, y \in \Omega$ 

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$
  $0 \le \alpha \le 1$ 

- Si la desigualtat anterior és estricta (per  $x \neq y$ ) f és estrictament convexa.
- Gràficament:



### Caracterització de funcions convexes usant $\nabla f$

### Proposició

 $f \in \mathcal{C}^1$  és convexa en  $\Omega \subseteq \mathbb{R}^n$  convex si i només si

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \quad \forall \ x, y \in \Omega$$

Gràficament:



 Hi ha convexitat estricta si i només si la desigualtat és > per x ≠ y.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

30 / 102

Conceptes bàsics

Convexitat: funcions, conjunts i problemes convexos

### Recordatori: matrius (semi)definides positives

#### Definició

Una matriu simètrica  $H \in \mathbb{R}^{n \times n}$  és semidefinida positiva (definida positiva) si per a tot  $x \in \mathbb{R}^n$ ,  $x \neq 0$ ,  $x^T H x \geq 0$  ( $x^T H x > 0$ ).

- Una matriu és semidefinida positiva (definida positiva) si i només si:
  - ▶ Tots els seus valors propis són  $\geq$  0 (> 0).
  - ► Tots els *menors principals* són ≥ 0 (els *n menors principals dominants* són > 0).
- Exemple:

$$H = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

- Primer menor:  $\Delta_1 = |2| > 0$ . Segon menor:  $\Delta_2 = |H| = 2 1 = 1 > 0$ .
- Calculem valors propis  $|H \lambda I| = 0$ .

$$|H-\lambda I| = \begin{vmatrix} 2-\lambda & 1 \\ 1 & 1-\lambda \end{vmatrix} = (2-\lambda)(1-\lambda)-1 = \lambda^2-3\lambda+1 = 0 \qquad \lambda = \frac{3\pm\sqrt{5}}{2} > 0.$$

### Caracterització de funcions convexes usant $\nabla^2 f$

### Proposició

 $f \in C^2$  és convexa en  $\Omega \subseteq \mathbb{R}^n$  convex i que conté com a mínim un punt interior si i només si  $\nabla^2 f$  és semidefinida positiva en  $\Omega$ .

- Si  $\nabla^2 f > 0$  la convexitat és estricta (condició suficient, no necessària).
- Exemple:  $f(x) = -e^{-(x_1^2 + x_2^2)}$

$$\nabla f(x) = \begin{bmatrix} 2x_1 e^{-(x_1^2 + x_2^2)} \\ 2x_2 e^{-(x_1^2 + x_2^2)} \end{bmatrix} \quad \nabla^2 f(x) = e^{-(x_1^2 + x_2^2)} \begin{bmatrix} 2 - 4x_1^2 & -4x_1x_2 \\ -4x_1x_2 & 2 - 4x_2^2 \end{bmatrix}$$

- $\Delta_2 = e^{-(x_1^2 x_2^2)} (4 8(x_1^2 + x_2^2)).$
- f convexa a  $\Omega^1 = \{x \in \mathbb{R}^2 : |x_1| \le \frac{1}{2}, |x_2| \le \frac{1}{2}\}.$
- f convexa a  $\Omega^2 = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \le \frac{1}{2}\}$
- f no convexa a  $x \in \mathbb{R}^2 \setminus \Omega^2$ .



(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

32 / 102

Conceptes bàsics

Convexitat: funcions, conjunts i problemes convexos

### Caracterització de conjunts convexos I

- En general no és fàcil determinar si un conjunt  $\Omega = \{x : h(x) = 0, g(x) \le 0\}$  és convex.
- Però en alguns casos és possible:

### Proposició

Sigui  $g: D \to \mathbb{R}$  (D convex) una funció convexa. Llavors el conjunt  $S_c = \{x: x \in D, g(x) \le c\}$  és convex per a tot  $c \in \mathbb{R}$ .

### Demostració.

(Es deixa com exercici)

## Caracterització de conjunts convexos II

- Com a conseqüència del resultat anterior el conjunt
   Ω = {x : g<sub>j</sub>(x) ≤ 0, j = 1,...,p} és convex si g<sub>j</sub> són funcions
   convexes, donat que la intersecció de conjunt convexos és un
   conjunt convex (fàcil de provar, es deixa com exercici).
- El conjunt  $\Omega = \{x : h_i(x) = 0, i = 1, ..., m\}$  és convex si  $h_i$  son funcions afins, és a dir,  $h_i(x) = a^T x b$  (fàcil de provar, es deixa com exercici).
- La condició de la proposició anterior és suficient per garantir una regió factible convexa, però no necessària. Se us acut un exemple de regió factible convexa que no garanteix aquesta condició?
  - Per exemple  $\Omega = \{x \in \mathbb{R} : x^2 4 \ge 0, x + 2 \le 0\} = ((-\infty, -2] \cup [2, +\infty)) \cap (-\infty, -2] = (-\infty, -2].$

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

34 / 102

Conceptes bàsics

Convexitat: funcions, conjunts i problemes convexos

### Problema convex i òptims globals I

#### Definició

El problema d'optimització

min 
$$f(x)$$
  
s.a  $x \in \Omega$ 

és convex si f és funció convexa i  $\Omega$  és un conjunt convex

### Proposició

Sigui  $\Omega \subseteq \mathbb{R}^n$  conjunt convex, if  $: \Omega \to \mathbb{R}$  funció convexa. Aleshores un mínim local de f a  $\Omega$  és també mínim global de f a  $\Omega$ . A més si f és estrictament convexa, només hi ha un únic mínim global de f a  $\Omega$ .

# Problema convex i òptims globals II

#### Demostració.

• Part 1. Suposem que x és mínim local de f i hi ha un altre mínim global  $y \neq x$  tal que f(y) < f(x). Com que  $\Omega$  és convex  $\alpha x + (1 - \alpha)y \in \Omega$ ,  $0 \le \alpha \le 1$ . Usant que f és convexa i f(y) < f(x) tenim

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) < f(x)$$

contradint que x és mínim local.

• Part 2. Suposem que x i y ( $x \neq y$ ) són dos mínims globals, f(x) = f(y). El punt  $\alpha x + (1 - \alpha)y \in \Omega$ ,  $0 < \alpha < \text{perquè }\Omega$  és convex, i com que f és estrictament convexa

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y) = f(x) = f(y)$$

contradint que x i y siguin mínims globals.

Els PLs són problemes convexos? Podem garantir que un mínim local d'un PL és mínim global? Què en penseu?

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

36 / 102

Conceptes bàsics

Convexitat: funcions, conjunts i problemes convexos

### Convexitat del conjunt de solucions

### Proposició

Sigui  $\min f(x)$   $x \in \Omega$  problema convex (f convexa i  $\Omega$  convex). Llavors el conjunt de solucions  $\Omega^* \subseteq \Omega$  és convex.

#### Demostració.

(Es deixa com exercici. Podeu usar que  $g(x) \le c$  és conjunt convex si g(x) convexa.)

### Evolució de la ONL I

- Els orígens de la ONL es troben al càlcul de mínims de problemes d'una variable primer, i després al "càlcul de variacions" (CV) dels S. XVIII i XIX. Al CV les variables a optimitzar són funcions (optimització en dimensió infinita), i resol problemes com:
  - Quina és la forma òptima d'un automòbil que minimitza la resistència a l'aire?
  - Quina trajectòria segueix un raig de llum en un medi irregular?
  - ► El problema de la braquistòcrona (Johann Bernoulli, 1696): quina trajectòria ha de seguir una bola per anar d'un punt origen a un destí, si només intervé la força de gravetat i no hi ha fricció? Bernoulli, Newton i Leibniz (entre d'altres) van proposar solucions a aquest problema. Euler i Lagrange van estudiar problemes de CV.
- Es va reprendre més tard l'estudi de l'optimització (en dimensió finita).
- Lagrange va crear el concepte de multiplicador de Lagrange (1778).

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

39 / 102

Conceptes bàsics

Breu ressenya històrica

### Evolució de la ONL II

- Euler i Lagrange només consideraven restriccions d'igualtat.
- Weierstrass va estudiar ONL i transformava  $g(x) \le 0$  en igualtats fent  $g(x) + s^2 = 0$ . Ara no tenim desigualtat, però tenim més variables, la restricció és ara no lineal si g(x) no ho era, i el conjunt factible pot esdevenir no convex. Exemple:  $\Omega = \{x \in \mathbb{R} : -x \le 0\}$  és convex, mentre que  $\Omega' = \{(x,s) \in \mathbb{R}^2 : -x + s^2 = 0\}$  no és convex.
- La gran aportació a les condicions d'optimalitat de problemes amb desigualtats g(x) ≤ 0 són les anomenades condicions necessàries de primer ordre de Karush-Kuhn-Tucker, anomenades KKT. Harold Kuhn i Albert Tucker les publiquen el 1951. Després se sap que William Karush les havia publicat a la seva tesi de Master el 1939 (Univ. of Chicago). A. Tucker i H. Kuhn van ser respectivament director de tesi i company de John Nash a Princeton.
- El desenvolupament de l'Optimització Lineal (simplex, mètodes de punt interior), cas particular de la ONL, és posterior.

### Exemple introductori

- min  $f(x_1, x_2) = x_1^2 + x_2^2$ : el mínim local i global estricte és  $x^* = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ .
- Un altre punt x no és mínim perquè hi ha direccions  $d \in \mathbb{R}^2$  :  $f(x + \alpha d) < f(x)$ ,  $\alpha > 0$ .



- Per exemple, al punt  $x = [1 \ 1]^T$  al llarg de la direcció  $d = [-1 \ -1]^T$  tenim  $f(x + \alpha d) = (1 \alpha)^2 + (1 \alpha)^2 = 2 4\alpha + 2\alpha^2 = f(x) 4\alpha + 2\alpha^2 < 0 \text{ si } \alpha \in (0, 2).$
- Pel Teorema de Taylor

$$f(x + \alpha d) = f(x) + \alpha \nabla f(x)^{\mathsf{T}} d + o(\alpha)$$

veiem que tindrem una direcció  $d : f(x + \alpha d) < f(x)$  si  $\nabla f(x)^T d < 0$ .

• I sempre podem fer  $\nabla f(x)^T d < 0$  escollint per exemple  $d = -\nabla f(x)$ :

$$\nabla f(x)^T d = -\nabla f(x)^T \nabla f(x) = -\|\nabla f(x)\|_2^2 \le 0$$

• La única forma d'evitar  $\nabla f(x)^T d < 0$  és que  $\nabla f(x) = 0$ . Aquesta és la condició necessària d'optimalitat de primer ordre.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

42 / 102

Optimització no lineal sense restriccions

Condicions d'optimalitat

### Condicions necessàries de primer i segon ordre

#### Teorema

Si  $x^*$  és un mínim local de f, i  $f \in C^2$  en un entorn obert de  $x^*$ , llavors

- i)  $\nabla f(x^*) = 0$  (condició de primer ordre).
- ii)  $\nabla^2 f(x^*)$  és semidefinida positiva (condició de segon ordre).

(Demostració a la pissarra.)

• Els punts  $x^* : \nabla f(x^*) = 0$  s'anomenen punts estacionaris.

## Condicions suficients de segon ordre

#### Teorema

Si  $f \in C^2$  en un entorn obert de  $x^*$ ,  $\nabla f(x^*) = 0$  i  $\nabla^2 f(x^*)$  és definida positiva llavors  $x^*$  és mínim local estricte de f.

(Demostració a la pissarra.)

- Les condicions suficients ens garanteix que x\* és mínim local estricte, mentre que les condicions necessàries només consideren mínims locals.
- Són condicions suficients, no necessàries: hi ha mínims locals estrictes que no verifiquen les condicions suficients (com veurem als exemples).

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

44 / 102

Optimització no lineal sense restriccions

Condicions d'optimalitat

### Condicions d'optimalitat en problemes convexos

- Si  $f \in C^1$  és convexa només cal comprovar si el punt és estacionari: si això es verifica el punt és mínim local.
- I no només és mínim local: és també mínim global.
- A diferència de les condicions suficients no cal considerar que  $\nabla^2 f(x^*)$  sigui definida positiva: en ser f convexa n'hi ha prou amb que  $\nabla^2 f(x^*)$  sigui semidefinida positiva.

#### Teorema

Si f és convexa i diferenciable, llavors un punt estacionari  $x^*$   $(\nabla f(x^*) = 0)$  és mínim global de f.

(Demostració a la pissarra.)

### Exemple 1: mínim local estricte

• 
$$f(x) = -e^{-(x_1^2 + x_2^2)}$$

$$\nabla f(x) = \begin{bmatrix} 2x_1 e^{-(x_1^2 + x_2^2)} \\ 2x_2 e^{-(x_1^2 + x_2^2)} \end{bmatrix}$$

$$\nabla^2 f(x) = e^{-(x_1^2 + x_2^2)} \begin{bmatrix} 2 - 4x_1^2 & -4x_1x_2 \\ -4x_1x_2 & 2 - 4x_2^2 \end{bmatrix}$$



- Punts estacionaris:  $\nabla f(x^*) = 0 \Rightarrow x^* = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ .
- $\nabla^2 f(x^*)$  és definida positiva:  $x^*$  és mínim local estricte.

$$\nabla^2 f(x^*) = e^0 \left[ \begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right]$$

• En aquest cas és mínim global també, tot i que f no és convexa.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

46 / 102

Optimització no lineal sense restriccions

Condicions d'optimalitat

### Exemple 2: punt de sella

• 
$$f(x) = x_1^2 - x_2^2 - 4x_1 + 6x_2 - 5$$

$$\nabla f(x) = \left[ \begin{array}{c} 2x_1 - 4 \\ -2x_2 + 6 \end{array} \right]$$

$$\nabla^2 f(x) = \left[ \begin{array}{cc} 2 & 0 \\ 0 & -2 \end{array} \right]$$



- Punts estacionaris:  $\nabla f(x^*) = 0 \Rightarrow x^* = \begin{bmatrix} 2 & 3 \end{bmatrix}^T$ .
- $\nabla^2 f(x^*)$  és indefinida: té valors propis positius i negatius.
- En aquest cas x\* no és mínim: és un punt de sella. Hi ha direccions d a partir de x\* on f augmenta o decreix (com s'observa a la gràfica).

# Exemple 3: punt que satisfà condicions necessàries i no és mínim

•  $f(x) = x_1^2 - x_2^4$ 

$$\nabla f(x) = \left[ \begin{array}{c} 2x_1 \\ -4x_2^3 \end{array} \right]$$

$$\nabla^2 f(x) = \begin{bmatrix} 2 & 0 \\ 0 & -12x_2^2 \end{bmatrix}$$





- $\nabla^2 f(x^*)$  és semidefinida positiva, no definida positiva: no podem assegurar que sigui mínim.
- De fet no és mínim (veure gràfica): al llarg de qualsevol direcció
   d = [0 d<sub>2</sub>]<sup>T</sup> f disminueix:

$$f(x^* + \alpha d) = f([0, \alpha d_2]^T) = -(\alpha d_2)^4 < 0 = f(x^*).$$

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

48 / 102

Optimització no lineal sense restriccions

Condicions d'optimalitat

# Exemple 4: mínim local estricte que no satisfà condicions suficients

• 
$$f(x) = x_1^2 + x_2^4$$

$$\nabla f(x) = \left[ \begin{array}{c} 2x_1 \\ 4x_2^3 \end{array} \right]$$

$$\nabla^2 f(x) = \left[ \begin{array}{cc} 2 & 0 \\ 0 & 12x_2^2 \end{array} \right]$$





- $\nabla^2 f(x^*)$  és semidefinida positiva, no definida positiva: no podem assegurar que sigui mínim.
- Però en aquest cas sí és mínim local (i estricte).
- Per tant hi ha mínims locals estrictes que no satisfan les condicions suficients.

# Per què calen mètodes d'optimització? Tipus de mètodes.

- Per què no solucionar  $\nabla f(x) = 0$  directament?
  - ▶  $\nabla f(x) = 0$  és sovint un sistema d'equacions no lineal: se soluciona numèricament de totes formes.
  - Els punts estacionari no tenen per què ser mínims (màxims, punts de sella...). Els mètodes d'optimització estan dissenyats per anar al mínim.
  - Poden ser més ràpids que solucionar el sistema  $\nabla f(x) = 0$  (fins i tot si és un sistema lineal! per exemple usant gradients conjugats).

#### Tipus de mètodes

- Mètodes d'exploració lineal: primer calculem  $d \in \mathbb{R}^n$ , després  $\alpha \in \mathbb{R}$ , i obtenim  $x^{k+1} = x^k + \alpha d$ .
- Mètodes de regió de garantia: primer fixem  $\Delta \in \mathbb{R}$ , després calculem  $d \in \mathbb{R}^n$  solucionant

$$\min_{d\in\mathbb{R}^n} \quad m_k(d) \ \|d\|_2 < \Delta$$

on  $m_k$  és una aproximació de f a  $x^k$ , i obtenim  $x^{k+1} = x^k + d$ .

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

51 / 102

Optimització no lineal sense restriccions

Mètodes basats en exploracions lineals: gradient i Newton

# Procediment general dels mètodes basats en exploracions lineals

- Els mètodes generen una seqüència de punts  $\{x^k\}_0^{\infty}$  que (sota certes condicions) convergeix a l'òptim.
- L'algorisme general per a  $\min_{x \in \mathbb{R}^n} f(x)$  dels mètodes basats en exploracions lineals és:

```
Algorithm m\`{e}todes basats en exploracions lineals

Punt inicial x^0, k=0

while x^k no és solució do

Calcular direcció de moviment (de descens) d

Calcular longitud de pas \alpha

x^{k+1}=x^k+\alpha d

k:=k+1

end_while

Return: x^*=x^k

End_algorithm
```

Els tres passos clau estan marcats en vermell.

### Direccions de moviment: direccions de descens I

• La direcció d usada per  $x^{k+1} = x^k + \alpha d$  ha de ser de descens: ha de reduir "localment" el valor de f per a  $\alpha$  petita:  $f(x^{k+1}) < f(x^k)$ .

#### Definició

d és direcció de descens de f a  $x^k$  si  $\exists \bar{\alpha} : \forall \alpha \in (0, \bar{\alpha}) \ f(x^k + \alpha d) < f(x^k)$ .

Exemple (ja vist):

$$f(x_1, x_2) = x_1^2 + x_2^2$$
  $x^k = [1 \ 1]^T$   $d = [-1 \ -1]^T$ 

$$f(x^k + \alpha d) = (1 - \alpha)^2 + (1 - \alpha)^2 = 2 - 4\alpha + 2\alpha^2 = f(x^k) + \alpha(2\alpha - 4)$$

Per a  $\alpha \in (0,2)$ ,  $f(x^k + \alpha d) < f(x^k)$  i d és direcció de descens.



(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

53 / 102

Optimització no lineal sense restriccions

Mètodes basats en exploracions lineals: gradient i Newton

### Direccions de moviment: direccions de descens II

Caracterització de direccions de descens:

### Proposició

Si  $\nabla f(x^k)^T d < 0$  llavors d és direcció de descens de f a  $x^k$ .

Quines d són de descens?

Com que  $\|\nabla f(x^k)\| \neq 0$  i  $\|d\| \neq 0$  tenim que

$$\nabla f(x^k)^T d = \|\nabla f(x^k)\| \|d\| \cos(\nabla f(x^k), d) < 0$$
 si  $\cos(\nabla f(x^k), d) < 0$ 

Si l'angle entre  $\nabla f(x^k)$  i d és superior a  $\pi/2$  radians la direcció és de descens.



### La direcció de descens més ràpid (steepest descent)

• La direcció de descens més ràpid de f al punt xk és la solució de

$$\min_{d \in \mathbb{R}^n} \quad \nabla f(x^k)^T d$$
  
s. a  $\|d\|_2 = 1$ .

(S'imposa  $||d||_2 = 1$  perquè sino el problema lineal seria il·limitat.)

• Com que  $||d||_2 = 1$  i  $\cos(t) \ge -1$  calculem el mínim directament:

$$\nabla f(x^k)^T d = \|\nabla f(x^k)\| \|d\| \cos(\nabla f(x^k), d) \ge -\|\nabla f(x^k)\| \Rightarrow d = \frac{-\nabla f(x^k)}{\|\nabla f(x^k)\|}$$

- Usarem  $d = -\nabla f(x^k)$ , que fa un angle de  $\pi$  radians amb  $\nabla f(x^k)$ .
- Iteracions del mètode del gradient o direcció de descens més ràpid:

$$x^{k+1} = x^k - \alpha \nabla f(x^k)$$

Mètode originalment proposat per Cauchy el 1847.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

55 / 102

Optimització no lineal sense restriccions

Mètodes basats en exploracions lineals: gradient i Newton

### Exemple direcció de descens més ràpid I

 Funció de Rosenbrock en R² ("banana function"):

$$f(x) = 10(x_2 - x_1^2)^2 + (1 - x_1)^2$$

$$\nabla f(x) = \begin{bmatrix} -40(x_2 - x_1^2)x_1 - 2(1 - x_1) \\ 20(x_2 - x_1^2) \end{bmatrix}$$

$$\nabla^2 f(x) = \begin{bmatrix} 120x_1^2 - 40x_2 + 2 & -40x_1 \\ -40x_1 & 20 \end{bmatrix}$$



• Mínim local estricte:  $x^* = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ ,  $\nabla f(x^*) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$  i  $\nabla^2 f(x^*) = \begin{bmatrix} 82 & -40 \\ -40 & 20 \end{bmatrix}$  és definida positiva. De fet és el mínim global (encara que f no és convexa).

## Exemple direcció de descens més ràpid II

• En el punt  $x^k = [1/2 \ 1/2]^T$ 

$$f(x^k) = \frac{7}{8}$$
  $\nabla f(x^k) = \begin{bmatrix} -6 \\ 5 \end{bmatrix}$   $\nabla^2 f(x^k) = \begin{bmatrix} 12 & -20 \\ -20 & 20 \end{bmatrix}$ 

- Comprovem condició de descens  $\nabla f(x^k)^T d$  en vàries direccions:
- $d^1 = -\nabla f(x^k) = [6 5]^T$  (descens).
- $d^2 = [1 \ 0]^T$  (descens).
- $d^3 = [0 \ 1]^T$  (ascens).
- $d^4 = [5 \ 6]^T$  (ortogonal a  $\nabla f(x^k)$ ).



(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

57 / 102

Optimització no lineal sense restriccions

Mètodes basats en exploracions lineals: gradient i Newton

### Exemple direcció de descens més ràpid III

•  $\nabla f(x^k)^T d^4 = 0$ : no sabem si és d'ascens o descens. Usant

$$f(x^k + \alpha d^4) = f(x^k) + \alpha \nabla f(x^k)^T d^4 + \frac{1}{2} \alpha^2 (d^4)^T \nabla^2 f(x^k) d^4 + o(\alpha^2)$$

caldria mirar el signe de  $(d^4)^T \nabla^2 f(x^k) d^4$ 

$$[5 \ 6] \left[ \begin{array}{cc} 12 & -20 \\ -20 & 20 \end{array} \right] \left[ \begin{array}{c} 5 \\ 6 \end{array} \right] = [-60 \ 20] \left[ \begin{array}{c} 5 \\ 6 \end{array} \right] = -300 + 120 = -180 < 0.$$

d<sup>4</sup> és direcció de descens.

### Exemple direcció de descens més ràpid IV

• La direcció  $-\nabla f(x^k)$  és de descens només localment. Si  $\alpha \gg 0$  llavors  $f(x^k - \alpha \nabla f(x^k)) > f(x^k)$ :

$$x^{k} - \alpha \nabla f(x^{k}) = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} - \alpha \begin{bmatrix} -6 \\ 5 \end{bmatrix} = \begin{bmatrix} 1/2 + 6\alpha \\ 1/2 - 5\alpha \end{bmatrix}$$
$$g(\alpha) = f(x^{k} - \alpha \nabla f(x^{k})) = 10((1/2 - 5\alpha) - (1/2 + 6\alpha)^{2})^{2} + (1 - (1/2 + 6\alpha))^{2}$$



• Cal fer una exploració lineal per trobar la millor  $\alpha^*$  (una bona  $\alpha$  serà suficient a la pràctica).

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

59 / 102

Optimització no lineal sense restriccions

Mètodes basats en exploracions lineals: gradient i Newton

### Algorisme del mètode del gradient

Algorithm Gradient o "Steepest descent"

Punt inicial  $x^0$ , k = 0while  $x^k$  no és solució do  $d^k = -\nabla f(x^k)$ Calcular  $\alpha^k$  que satisfà condicions d'Armijo-Wolfe  $x^{k+1} = x^k + \alpha^k d^k$  k := k+1end\_while

Return:  $x^* = x^k$ End\_algorithm

(Intenteu programar-ho en Matlab/octave. Useu la funció matlab fminbnd per calcular  $\alpha^k$  per exploració lineal exacta. Proveu-lo amb la funció de Rosenbrock començant, per exemple, des del punt  $x^0 = [-1.2 \ 1]^T$ .)

### La direcció de Newton

S'obté a partir d'aproximació quadràtica de f al punt x<sup>k</sup>:

$$\begin{array}{ll} f(x^k+d) &= f(x^k) + \nabla f(x^k)^T d + \frac{1}{2} d^T \nabla^2 f(x^k) d + R_2(\|d\|) \\ & \text{on} \quad R_2(\|d\|) = o(\|d\|^2) \qquad R_2(\|d\|) = O(\|d\|^3) \end{array}$$

$$f(x^k + d) \approx m_k(d) = f(x^k) + \nabla f(x^k)^T d + \frac{1}{2} d^T \nabla^2 f(x^k) d$$

- Notació: f(t) = O(g(t)) si  $\exists M : |f(t)| \le M|g(t)|$  per a tot  $t \ge t_0$  o  $0 \le t \le t_0$  (f(t) i g(t) són del mateix ordre).
- Escrivim aproximació quadràtica en funció de x:  $d = x x^k$

$$m_k(x) = f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{1}{2} (x - x^k)^T \nabla^2 f(x^k) (x - x^k)$$

• Suposant  $\nabla^2 f(x^k)$  és semidef. pos.  $(m_k(d) \text{ convexa})$  calculem

$$\min_{d \in \mathbb{R}^n} m_k(d) = f(x^k) + \nabla f(x^k)^T d + \frac{1}{2} d^T \nabla^2 f(x^k) d$$

$$0 = \nabla m_k(d) = \nabla f(x^k) + \nabla^2 f(x^k) d$$

$$d = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$$

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

61 / 102

Optimització no lineal sense restriccions

Mètodes basats en exploracions lineals: gradient i Newton

### Exemple mètode de Newton I

 Funció de Rosenbrock en R² ("banana function"):

$$f(x) = 10(x_2 - x_1^2)^2 + (1 - x_1)^2$$

$$\nabla f(x) = \begin{bmatrix} -40(x_2 - x_1^2)x_1 - 2(1 - x_1) \\ 20(x_2 - x_1^2) \end{bmatrix}$$

$$\nabla^2 f(x) = \begin{bmatrix} 120x_1^2 - 40x_2 + 2 & -40x_1 \\ -40x_1 & 20 \end{bmatrix}$$



• Mínim local estricte:  $x^* = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ ,  $\nabla f(x^*) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$  i  $\nabla^2 f(x^*) = \begin{bmatrix} 82 & -40 \\ -40 & 20 \end{bmatrix}$  és definida positiva. De fet és el mínim global (encara que f no és convexa).

# Exemple mètode de Newton II

• Calculem model quadràtic  $m_k(x)$  en  $x^k = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ :

$$x^{k} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad f(x^{k}) = 1 \qquad \nabla f(x^{k}) = \begin{bmatrix} -2 \\ 0 \end{bmatrix} \qquad \nabla^{2} f(x^{k}) = \begin{bmatrix} 2 \\ 20 \end{bmatrix}$$

$$m_{k}(x) = f(x^{k}) + \nabla f(x^{k})^{T} (x - x^{k}) + \frac{1}{2} (x - x^{k})^{T} \nabla^{2} f(x^{k}) (x - x^{k})$$

$$= 1 + [-2 \ 0] \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \frac{1}{2} [x_{1} \ x_{2}] \begin{bmatrix} 2 \\ 20 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$= x_{1}^{2} + 10x_{2}^{2} - 2x_{1} + 1$$

• El mínim de  $m_k(x)$  és  $\begin{bmatrix} 1 & 0 \end{bmatrix}^T$ .

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

63 / 102

Optimització no lineal sense restriccions

Mètodes basats en exploracions lineals: gradient i Newton

### Exemple mètode de Newton III





• La direcció de Newton al punt  $x^k = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$  és  $d = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$ :

$$\nabla^2 f(x^k) d = -\nabla f(x^k) \quad \Leftrightarrow \quad \begin{bmatrix} 2 & \\ & 20 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = -\begin{bmatrix} -2 \\ 0 \end{bmatrix} \quad \Rightarrow \quad d = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• El nou punt és:  $x^{k+1} = x^k + d = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ , que és el mínim de  $m_k(x)$ .

### Exemple mètode de Newton IV



• Calculem model quadràtic  $m_{k+1}(x)$  en  $x^{k+1} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ :

$$x^{k+1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
  $f(x^{k+1}) = 10$   $\nabla f(x^{k+1}) = \begin{bmatrix} 40 \\ -20 \end{bmatrix}$   $\nabla^2 f(x^{k+1}) = \begin{bmatrix} 122 & -40 \\ -40 & 20 \end{bmatrix}$ 

$$m_{k+1}(x) = f(x^{k+1}) + \nabla f(x^{k+1})^T (x - x^{k+1}) + \frac{1}{2} (x - x^{k+1})^T \nabla^2 f(x^{k+1}) (x - x^{k+1})$$

$$= 10 + [40 - 20] \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix} + \frac{1}{2} [x_1 - 1 \ x_2] \begin{bmatrix} 122 & -40 \\ -40 & 20 \end{bmatrix} \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix}$$

$$= 61x_1^2 + 10x_2^2 - 40x_1x_2 - 82x_1 + 20x_2 + 31$$

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

65 / 102

Optimització no lineal sense restriccions

Mètodes basats en exploracions lineals: gradient i Newton

### Exemple mètode de Newton V

• El mínim de  $m_{k+1}(x)$  és [1 1]<sup>T</sup>.





• La direcció de Newton al punt  $x^{k+1} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$  és  $d = -(\nabla^2 f(x^{k+1}))^{-1} \nabla f(x^{k+1})$ :

$$\nabla^2 f(x^{k+1}) d = -\nabla f(x^{k+1}) \Leftrightarrow \begin{bmatrix} 122 & -40 \\ -40 & 20 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = -\begin{bmatrix} 40 \\ -20 \end{bmatrix} \Rightarrow d = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

### Exemple mètode de Newton VI

• El nou punt és:  $x^{k+2} = x^{k+1} + d = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ , que és el mínim de  $m_{k+1}(x)$ , i també la solució de min f(x).



(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

67 / 102

Optimització no lineal sense restriccions

Mètodes basats en exploracions lineals: gradient i Newton

### Algorisme del mètode de Newton

```
Algorithm Mètode de Newton

Punt inicial x^0, k = 0

while x^k no és solució do

d^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)

Calcular \alpha^k que satisfà condicions d'Armijo-Wolfe x^{k+1} = x^k + \alpha^k d^k

k := k+1

end_while

Return: x^* = x^k

End_algorithm
```

(Intenteu programar-ho en Matlab/octave. Useu la funció matlab fminbnd per calcular  $\alpha^k$  per exploració lineal exacta. Proveu-lo amb la funció de Rosenbrock començant, per exemple, des del punt  $x^0 = [-1.2 \ 1]^T$ .)

### Propietats direcció de Newton

• Si  $\nabla^2 f(x^k)$  és def. pos. llavors  $(\nabla^2 f(x^k))^{-1}$  és def. pos. (es deixa com exercici) i  $d = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$  és de descens

$$\nabla f(x^k)^T d = -\nabla f(x^k)^T (\nabla^2 f(x^k))^{-1} \nabla f(x^k) < 0.$$

Fixem-nos que qualsevol  $B_k$  definida positiva garanteix que  $d = -B_k^{-1} \nabla f(x^k)$  és de descens:

- $\triangleright$   $B_k = I$ : direcció de màxim descens.
- ▶  $B_k = \nabla^2 f(x^k)$ : direcció de Newton.
- ▶  $B_k$  aproximació definida positiva de  $\nabla^2 f(x^k)$ : direcció quasi-Newton.
- A diferència del mètode del gradient  $\alpha = 1$  és el pas "natural" a la direcció de Newton. Si es pot, s'usa  $\alpha = 1$ .
- La direcció de Newton no garanteix descens si  $\nabla^2 f(x^k)$  no és definida positiva. Fins i tot pot no existir si  $\nabla^2 f(x^k)$  és singular.
  - Cal usar variants que modifiquen la Hessiana.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

69 / 102

Optimització no lineal sense restriccions

Exploració lineal. Convergència global

### Exploració lineal exacta i inexacta

- Exploració lineal: busquem  $\alpha$  per a  $x^{k+1} = x^k + \alpha d^k$ .
- Idealment exploració lineal exacta, però és computacionalment costosa.

$$\alpha^* = \arg\min_{\alpha>0} g(\alpha) = f(x^k + \alpha d^k)$$

on

$$g'(\alpha) = \frac{d}{d\alpha}f(x^k + \alpha d^k) = \nabla f(x^k + \alpha d^k)^T d^k.$$

És un problema d'optimització d'una variable i una restricció.



• A la pràctica n'hi ha prou amb una  $\alpha$  subòptima que garanteixi que  $\{x^k\}_{k\geq 0}$  convergeix a un punt estacionari: Exploració lineal inexacta.

# Condicions a imposar a $\alpha$ insuficients I

- Quina condició imposem a  $\alpha$  per garantir convergència a  $\nabla f(x^*) = 0$ ? No és suficient imposar  $f(x^k + \alpha d^k) < f(x^k)$ .
- Exemple 1 ( $\|\alpha d^k\|$  llarg, reducció de f petita):
  - $f(x) = x^2$   $x^0 = 2$
  - $d^k = (-1)^{k+1} \qquad \alpha^k = 2 + \frac{3}{2^{k+1}}$
  - Seqüència de punts  $x^{k+1} = x^k + \alpha^k d^k$ :

| k | x <sup>k</sup> | d <sup>k</sup> | $\alpha^k$ |
|---|----------------|----------------|------------|
| 0 | 2              | -1             | 2 + 3/2    |
| 1 | -3/2           | 1              | 2 + 3/4    |
| 2 | 5/4            | <b>-1</b>      | 2 + 3/8    |
| 3 | -9/8           | 1              | 2+3/16     |
| 4 | 17/16          | -1             | 2 + 3/32   |



▶  $\lim_{k\to\infty} f(x^k) = 1 \neq 0$ . No convergeix al punt estacionari.



(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

72 / 102

Optimització no lineal sense restriccions

Exploració lineal. Convergència global

## Condicions a imposar a $\alpha$ insuficients II

• Exemple 2 ( $\|\alpha d^k\|$  massa petit):

$$f(x) = x^2$$
  $x^0 = 2$ 

$$d^k = -1 \alpha^k = \frac{1}{2^{k+1}}$$

Seqüència de punts  $x^{k+1} = x^k + \alpha^k d^k$ :

| k | x <sup>k</sup> | d <sup>k</sup> | $\alpha^{k}$ |
|---|----------------|----------------|--------------|
| 0 | 2              | <b>-1</b>      | 1/2          |
| 1 | 3/2            | <b>-1</b>      | 1/4          |
| 2 | 5/4            | <b>-1</b>      | 1/8          |
| 3 | 9/8            | <b>-1</b>      | 1/16         |
| 4 | 17/16          | <b>-1</b>      | 1/32         |

$$x^k = (1 + \frac{1}{2^k})$$

▶  $\lim_{k\to\infty} f(x^k) = 1 \neq 0$ . No convergeix al punt estacionari.



## Condicions d'Armijo-Wolfe I

Ondició de decrement suficient (per evitar el problema de l'exemple 1). Anomenada condició d'Armijo (1966)



Valor habitual  $c_1 = 10^{-4}$ , que facilita trobar  $\alpha$ .

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

74 / 102

Optimització no lineal sense restriccions

Exploració lineal. Convergència global

### Condicions d'Armijo-Wolfe II

2 Condició de corbatura (per evitar passos petits com a l'exemple 2).

$$g'(\alpha) \geq c_2 g'(0)$$
  $0 < c_1 < c_2 < 1$   $\Leftrightarrow$   $\nabla f(x^k + \alpha d^k)^T d^k \geq c_2 \nabla f(x^k) d^k$   $0 < c_1 < c_2 < 1$ 



Valor habitual  $c_2 = 0.9$ , que evita passos petits i facilita trobar  $\alpha$ .

### Condicions d'Armijo-Wolfe III

• Busquem  $\alpha$  que satisfaci les dues condicions d'Armijo-Wolfe:



• Demostrarem que si les  $\alpha$  satisfan aquestes condicions, i les  $d^k$  també satisfan unes altres condicions, llavors la seqüència de punts  $x^{k+1} = x^k + \alpha^k d^k$  convergirà globalment a un punt estacionari.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

76 / 102

Optimització no lineal sense restriccions

Exploració lineal. Convergència global

### Exploració lineal per retrocès ("backtracking")

- Busquem un  $\alpha^k$  que verifiqui la primera condició de decrement suficient.
- El mètode de backtracking és molt senzill d'implementar:

```
Algorithm exploració lineal per "backtracking" 

Escollir \bar{\alpha} > 0, \rho \in (0,1), c_1 \in (0,1); 

\alpha := \bar{\alpha}; 

while NOT (f(x^k + \alpha d^k) \le f(x^k) + \alpha c_1 \nabla f(x^k) d^k) do 

\alpha := \rho \alpha; 

end_while 

Return: \alpha^k = \alpha; 

End_algorithm
```

- Al mètode de Newton és natural usar  $\bar{\alpha} = 1$ .
- El punt anterior a  $\alpha^k$  és  $\alpha^k/\rho$ , pel que el propi procediment de backtracking evita punts molt propers a 0, garantint-se també la segona condició de Wolfe per a algun  $c_2 < 1$ .

# Convergència global i local

- Els mètodes d'optimització generen seqüències de punts
   x<sup>0</sup>, x<sup>1</sup>,..., x<sup>k</sup>,...
- Un algorisme té convergència global si finalitza en una solució independentment del punt inicial:  $\lim_{k \to \infty} x^k = x^*$  per a tot  $x^0$ .
- La convergència local estudia la velocitat a la que ens atansem al punt
   x\* quan estem a prop d'ell.
- El teorema de Zoutendijk que veurem a continuació tracta la convergència global dels mètodes basats en exploracions lineals.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

78 / 102

Optimització no lineal sense restriccions

Exploració lineal. Convergència global

### Teorema de Zoutendijk

Denotem per  $\theta_k$  l'angle entre la direcció  $d^k$  i la direcció de màxim descens  $-\nabla f(x^k)$ , tal que

$$\cos \theta_k = \frac{-\nabla f(x^k)^T d^k}{\|\nabla f(x^k)\| \|d^k\|}.$$

### Teorema (de Zoutendijk)

Considerem el procediment iteratiu  $x^{k+1} = x^k + \alpha^k d^k$  tal que (1)  $d^k$  és direcció de descens, i (2)  $\alpha^k$  satisfà les condicions d'Armijo-Wolfe. Suposem que (3) f està afitada inferiorment en  $\mathbb{R}^n$  i que (4)  $f \in \mathcal{C}^1$  en un conjunt obert  $\mathcal{N}$  que conté el conjunt de nivell  $\mathcal{L} = \{x : f(x) \le f(x^0)\}$ , on  $x^0$  és el punt inicial d'iteració. També suposem (5) que el gradient  $\nabla f$  és Lipschitz continu en  $\mathcal{N}$ , és a dir, existeix una constant L > 0 tal que

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall \ x, y \in \mathcal{N}.$$

Llavors

$$\sum_{k=0}^{\infty} \cos^2 \theta_k \|\nabla f(x^k)\|^2 < \infty.$$

### Convergència global mètodes d'exploración lineal

La condició de Zoutendijk

$$\sum_{k=0}^{\infty} \cos^2 \theta_k \|\nabla f(x^k)\|^2 < \infty$$

implica

$$\lim_{k o \infty} \cos^2 heta_k \| 
abla f(x^k) \|^2 = 0.$$

• Si  $d^k$  garanteix que  $\theta_k$  (angle entre  $d^k$  i  $-\nabla f(x^k)$ ) és inferior a  $\pi/2$ 

$$\cos \theta_k \ge \delta > 0 \quad \forall k$$

i per tant

$$\lim_{k\to\infty}\|\nabla f(x^k)\|=0.$$

El mètode és globalment convergent a un punt estacionari.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

80 / 102

Optimització no lineal sense restriccions

Exploració lineal. Convergència global

# Convergència global del mètode de màxim descens (o mètode del gradient)

- $d^k = -\nabla f(x^k)$  i per tant  $\theta_k = 0$  i  $\cos \theta_k = 1$ .
- Per tant, si les longituds de pas α<sup>k</sup> verifiquen les condicions d'Armijo-Wolfe, el mètode de màxim descens (o del gradient) té convergència global a un punt estacionari.

### Convergència global del mètode de Newton

- $d^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$ .
- Si  $\nabla^2 f(x^k)$  definida positiva  $d^k$  és de descens.
- Si  $\nabla^2 f(x^k)$  té un nombre de condició uniformement afitat, és a dir,

$$\exists M: \|\nabla^2 f(x^k)\| \|(\nabla^2 f(x^k))^{-1}\| \leq M \quad \forall k$$

(o el que és el mateix,  $\nabla^2 f(x^k)$  no és singular ni propera a ser-ho) llavors es demostra que

$$\cos \theta_k \geq \frac{1}{M}$$

(es deixa com exercici).

• Llavors per la condició de Zoutendijk tenim convergència global (si  $\alpha^k$  verifiquen Armijo-Wolfe).

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

82 / 102

Optimització no lineal sense restriccions

Mètode del gradient. Convergència local

### Convergència local i velocitat de convergència

- Els mètodes d'optimització generen seqüències de punts
   x<sup>0</sup>, x<sup>1</sup>,..., x<sup>k</sup>,...
- La convergència local estudia la velocitat a la que ens atansem al punt x\* quan estem a prop d'ell.
  - ► Convergència lineal (Exemple:  $x^k = 2^{-k}$ )

$$\exists r \in (0,1): \frac{||x^{k+1}-x^*||}{||x^k-x^*||} \leq r \quad \forall k \text{ suficientment gran}$$

► Convergència superlineal (Exemple:  $x^k = k^{-k}$ )

$$\lim_{k \to \infty} \frac{||x^{k+1} - x^*||}{||x^k - x^*||} = 0$$

► Convergència quadràtica (Exemple:  $x^k = 2^{-2^k}$ )

$$\exists M \in \mathbb{R} : \frac{||x^{k+1} - x^*||}{||x^k - x^*||^2} \le M \quad \forall k \text{ suficientment gran}$$

### Exemple de velocitat de convergència



| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                       |     |          |          |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|----------|------------|
| 2 0.250000 0.250000 0.062500<br>3 0.125000 0.037037 0.003906<br>4 0.062500 0.003906 0.000015<br>5 0.031250 0.000320 0.000000<br>6 0.015625 0.000021<br>7 0.007812 0.000001<br>8 0.003906 0.000000<br>9 0.001953<br>10 0.000976<br>11 0.000488<br>12 0.000244<br>13 0.000122 | k   | $2^{-k}$ | $k^{-k}$ | $2^{-2^k}$ |
| 3 0.125000 0.037037 0.003906<br>4 0.062500 0.003906 0.000015<br>5 0.031250 0.000320 0.000000<br>6 0.015625 0.000021<br>7 0.007812 0.000001<br>8 0.003906 0.000000<br>9 0.001953<br>10 0.000976<br>11 0.000488<br>12 0.000244<br>13 0.000122                                 | 1   | 0.500000 | 1.000000 | 0.250000   |
| 4 0.062500 0.003906 0.000015<br>5 0.031250 0.000320 0.000000<br>6 0.015625 0.000021<br>7 0.007812 0.000001<br>8 0.003906 0.000000<br>9 0.001953<br>10 0.000976<br>11 0.000488<br>12 0.000244<br>13 0.000122                                                                 | 2   | 0.250000 | 0.250000 | 0.062500   |
| 5 0.031250 0.000320 0.000000<br>6 0.015625 0.000021<br>7 0.007812 0.000001<br>8 0.003906 0.000000<br>9 0.001953<br>10 0.000976<br>11 0.000488<br>12 0.000244<br>13 0.000122                                                                                                 | 3   | 0.125000 | 0.037037 | 0.003906   |
| 6 0.015625 0.000021<br>7 0.007812 0.000001<br>8 0.003906 0.000000<br>9 0.001953<br>10 0.000976<br>11 0.000488<br>12 0.000244<br>13 0.000122                                                                                                                                 | 4   | 0.062500 | 0.003906 | 0.000015   |
| 7 0.007812 0.000001<br>8 0.003906 0.000000<br>9 0.001953<br>10 0.000976<br>11 0.000488<br>12 0.000244<br>13 0.000122                                                                                                                                                        | 5   | 0.031250 | 0.000320 | 0.000000   |
| 8 0.003906 0.000000<br>9 0.001953<br>10 0.000976<br>11 0.000488<br>12 0.000244<br>13 0.000122                                                                                                                                                                               | 6   | 0.015625 | 0.000021 |            |
| 9 0.001953<br>10 0.000976<br>11 0.000488<br>12 0.000244<br>13 0.000122                                                                                                                                                                                                      | 7   | 0.007812 | 0.000001 |            |
| 10 0.000976<br>11 0.000488<br>12 0.000244<br>13 0.000122                                                                                                                                                                                                                    | 8   | 0.003906 | 0.000000 |            |
| 11                                                                                                                                                                                                                                                                          | 9   | 0.001953 |          |            |
| 12                                                                                                                                                                                                                                                                          | 10  | 0.000976 |          |            |
| 13 0.000122                                                                                                                                                                                                                                                                 | 11  | 0.000488 |          |            |
|                                                                                                                                                                                                                                                                             | 12  | 0.000244 |          |            |
| 14 0.000061                                                                                                                                                                                                                                                                 | 13  | 0.000122 |          |            |
|                                                                                                                                                                                                                                                                             | _14 | 0.000061 |          |            |

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

85 / 102

Optimització no lineal sense restriccions

Mètode del gradient. Convergència local

### Mètode del gradient en funcions quadràtiques

$$f(x) = \frac{1}{2}x^TQx - b^Tx$$
  $\nabla f(x) = Qx - b$   $\nabla^2 f(x) = Q$  simètrica i def. pos. 
$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

ullet Es pot calcular analíticament  $\alpha^k$  per exploració lineal exacta

$$\alpha^k = \arg\min_{\alpha>0} f(x - \alpha \nabla f(x^k)) \quad \Rightarrow \quad \alpha^k = \frac{\nabla f(x^k)^T \nabla f(x^k)}{\nabla f(x^k)^T Q \nabla f(x^k)} > 0.$$

(Es deixa com exercici.)

Si es fa exploració lineal exacta, dues direccions consecutives  $d^k = -(Qx^k - b)$  i  $d^{k+1} = -(Qx^{k+1} - b)$  són ortogonals.



(Es deixa com exercici.)

### Convergència en funcions quadràtiques

- Definim  $||x||_Q^2 = x^T Q x$  (norma ponderada per Q simètrica i definida positiva)
- Q definida positiva  $\Rightarrow$  valors propis  $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

#### **Teorema**

El mètode del màxim descens, (1) amb exploració lineal exacta  $x^k = \arg\min_{\alpha>0} f(x^k + \alpha d^k)$ , (2) aplicat a una funció quadràtica  $f(x) = \frac{1}{2} x^T Q x - b^T x$ , Q simètrica i definida positiva, satisfà

$$\frac{f(x^{k+1}) - f(x^*)}{f(x^k) - f(x^*)} = \frac{\|x^{k+1} - x^*\|_Q^2}{\|x^k - x^*\|_Q^2} \le \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2$$

on  $\lambda_1$  i  $\lambda_n$  són el menor i major valor propi de Q.

(Demostració a [Luenberger, Ye (2008)])

El mètode del gradient té convergència lineal.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

87 / 102

Optimització no lineal sense restriccions

Mètode del gradient. Convergència local

### Exemple convergència en funcions quadràtiques

$$f(x) = \frac{1}{2}x^{T}Qx - b^{T}x$$

$$Q = \begin{bmatrix} 20 & 4 \\ 4 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 24 \\ 5 \end{bmatrix} \quad x^{*} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad Q = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad x^{*} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\lambda_{1} = 0.19224 \quad \lambda_{2} = 20.80776 \quad \left(\frac{\lambda_{2} - \lambda_{1}}{\lambda_{2} + \lambda_{1}}\right)^{2} = 0.96372 \quad \lambda_{1} = 0.38197 \quad \lambda_{2} = 2.61803 \quad \left(\frac{\lambda_{2} - \lambda_{1}}{\lambda_{2} + \lambda_{1}}\right)^{2} = 0.55556$$





Convergència en 118 iteracions,  $\|\nabla f(x^k)\| = 7 \cdot 10^{-5}$ 

Convergència en 32 iteracions,  $\|\nabla f(x^k)\| = 8 \cdot 10^{-6}$ 

# Convergència en funcions no lineals

És pràcticament la mateixa que per al cas quadràtic.

#### Teorema

Suposem que el mètode del màxim descens (1) amb exploració lineal exacta  $x^k = \arg\min_{\alpha>0} f(x^k + \alpha d^k)$ , (2) aplicat a  $f: \mathbb{R}^n \to \mathbb{R}$ , (3) convergeix a un punt  $x^*$  on la Hessiana  $\nabla^2 f(x^*)$  és definida positiva.

Llavors, per a k prou gran

$$\frac{f(x^{k+1}) - f(x^*)}{f(x^k) - f(x^*)} \le r^2 \qquad \text{on} \qquad r \in \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}, 1\right).$$

on  $\lambda_1$  i  $\lambda_n$  són el menor i major valor propi de  $\nabla^2 f(x^*)$ .

(Demostració a [Luenberger, Ye (2008)])

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

89 / 102

Optimització no lineal sense restriccions

Mètode Newton. Convergència local

# Convergència local del mètode de Newton i $\alpha^k$

- A mida que ens apropem a  $x^*$  pot demostrar-se (i s'observa a la pràctica) que la longitud de pas  $\alpha^k = 1$  verificarà les condicions d'Armijo-Wolfe.
- Per tant podem suposar que a prop de l'òptim (o per k suficientment gran) les iteracions del mètode de Newton seran

$$x^{k+1} = x^k + d^k$$
  $d^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k).$ 

### Convergència local del mètode de Newton

#### El mètode de Newton té convergència quadràtica.

#### Teorema

#### Suposem que

- 2  $\nabla^2 f(x)$  és Lipschitz contínua en un entorn  $\mathcal N$  d'una solució  $x^*$ , és a dir,

$$\exists L > 0 : \|\nabla^2 f(x) - \nabla^2 f(y)\| \le L\|x - y\| \quad \forall x, y \in \mathcal{N}.$$

- 3 A la solució  $x^*$  es verifiquen les condicions suficients d'optimalitat ( $\nabla f(x^*) = 0$ ,  $\nabla^2 f(x^*)$  és definida positiva).
- 4 Considerem la iteració  $x^{k+1} = x^k + d^k$ , on  $d^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$  ( $\alpha^k = 1$ ).

#### Llavors

- (i) Si  $x^0$  és prou proper a  $x^*$ , la seqüència  $\{x^k\}$  convergeix a  $x^*$ .
- (ii) La sequència  $\{x^k\}$  convergeix quadràticament.
- (iii) La seqüència  $\{\|\nabla f(x^k)\|\}$  convergeix quadràticament a 0.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

92 / 102

Optimització no lineal sense restriccions

Mètode Newton. Convergència local

### Gradient i Newton amb la funció de Rosenbrock I

- Punt inicial  $x^0 = [-2 \ 1]^T$  per als dos mètodes.
- Resultats amb un codi "acadèmic" (no-comercial) escrit en Matlab.

#### Mètode del màxim descens.

| k   | $f(x^k)$      | $\alpha^k$    | $\ \nabla f(x^k)\ $ |
|-----|---------------|---------------|---------------------|
| 0   | 9.9000000e+01 | 0.0000000e+00 | 2.5321137e+02       |
| 1   | 3.5384414e+00 | 1.2500000e-02 | 2.8051479e+01       |
| 2   | 2.8487298e-01 | 9.9714185e-03 | 8.1723192e+00       |
| 3   | 7.9346618e-02 | 6.2748965e-03 | 2.0643391e-01       |
| 4   | 7.4166874e-02 | 2.3623952e-01 | 1.1643898e+00       |
| :   | 60            | <u>:</u>      | <u>:</u>            |
| 496 | 2.0061607e-04 | 1.8711002e-02 | 1.7328277e-02       |
| 497 | 1.9766057e-04 | 1.9689489e-02 | 1.7644906e-02       |
| 498 | 1.9474726e-04 | 1.8713998e-02 | 1.7074314e-02       |
| 499 | 1.9187636e-04 | 1.9699026e-02 | 1.7389026e-02       |
| 500 | 1.8904649e-04 | 1.8716956e-02 | 1.6823893e-02       |

S'atura per màxim d'iteracions "lluny" de l'òptim ( $x^{500} = [1.0137 \ 1.0279]^T$ ).

### Gradient i Newton amb la funció de Rosenbrock II

#### Mètode de Newton.

| k  | $f(x^k)$      | $\alpha^{k}$  | $\ \nabla f(\mathbf{x}^k)\ $ | definida |
|----|---------------|---------------|------------------------------|----------|
| 0  | 9.9000000e+01 | 0.0000000e+00 | 2.5321137e+02                | +        |
| 1  | 8.7073952e+00 | 1.0000000e+00 | 6.0905697e+00                | +        |
| 2  | 8.5567773e+00 | 2.8000000e-01 | 3.5547527e+01                | +        |
| 3  | 4.0146814e+00 | 1.0000000e+00 | 5.0656188e+00                | +        |
| 4  | 2.9055843e+00 | 2.8000000e-01 | 7.8324868e+00                | +        |
| 5  | 1.7745925e+00 | 1.0000000e+00 | 5.0638727e+00                | +        |
| 6  | 9.5739882e-01 | 1.0000000e+00 | 2.4174271e+00                | +        |
| 7  | 4.9140658e-01 | 1.0000000e+00 | 2.4059962e+00                | +        |
| 8  | 1.8495509e-01 | 1.0000000e+00 | 6.5620535e-01                | +        |
| 9  | 6.7969770e-02 | 1.0000000e+00 | 2.2116522e+00                | +        |
| 10 | 8.8169985e-03 | 1.0000000e+00 | 1.0475959e-01                | +        |
| 11 | 5.6685478e-04 | 1.0000000e+00 | 2.9539216e-01                | +        |
| 12 | 1.1913120e-06 | 1.0000000e+00 | 1.1974893e-03                | +        |
| 13 | 1.4918114e-11 | 1.0000000e+00 | 4.9345722e-05                | +        |
| 14 | 8.8071795e-22 | 1.0000000e+00 | 3.2619050e-11                | +        |

S'atura a l'òptim  $(x^{14} = [1.0 \ 1.0]^T)$  on  $(\|\nabla f(x^k)\| \approx 0)$ .

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

94 / 102

Optimització no lineal sense restriccions

Modificacions al mètode de Newton

### Modificació de la Hessiana

- Si  $\nabla^2 f(x^k)$  no és definida positiva  $d^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$  no té per què ser de descens (ni existir) i no garantiríem les condicions del Teorema de Zoutendijk: no podem garantir convergència global.
- Al mètode de Newton modificat usen  $B_k$  si  $\nabla^2 f(x^k)$  no és prou def. pos.

```
Algorithm Newton modificat

Punt inicial x^0, k = 0

while x^k no és solució do

Factoritzar B_k = \nabla^2 f(x^k) + E_k on

• E_k = 0 si \nabla^2 f(x^k) és prou definida positiva

• sino E_k s'escull de forma que B_k sigui prou definida positiva

Calcular a^k: B_k a^k = -\nabla f(x^k)

Calcular a^k que verifica Armijo-Wolfe

a^{k+1} = a^k + a^k a^k

a^k := a^k + 1

end_while

Return: a^k = a^k

End_algorithm
```

### Convergència global del mètode de Newton modificat

 Igual que al mètode de Newton, si B<sub>k</sub> té un nombre de condició uniformement afitat, és a dir,

$$\exists C: \quad \|B_k\| \ \|B_k^{-1}\| \leq C \quad \forall k$$

(o el que és el mateix,  $B_k$  no és singular ni propera a ser-ho) llavors es demostra que

$$\cos \theta_k \geq \frac{1}{C}$$

i pel Teorema de Zoutendijk

$$\lim_{k\to\infty}\|\nabla f(x^k)\|=0.$$

Llavors el mètode de Newton modificat té convergència global.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

97 / 102

Optimització no lineal sense restriccions

Modificacions al mètode de Newton

### Convergència local del mètode de Newton modificat

- Si {x<sup>k</sup>} → x\* i ∇²f(x\*) és "suficientment definida positiva", de forma que E<sub>k</sub> = 0 a partir de un k' determinat. Llavors Newton modificat es comporta com Newton i
  - el mètode de Newton modificat té convergència local quadràtica.
- Si  $\{x^k\} \to x^*$  i  $\nabla^2 f(x^*)$  no és "suficientment definida positiva" i és gairebé singular,  $E_k \neq 0$  per a tot k, i la velocitat de convergència pot ser només lineal.

### Alguns tipus de modificacions

- Modificació de la descomposició espectral.
  - ▶  $\nabla^2 f(x^k) = V \Lambda V^T$ ,  $V = [v_1 | \dots | v_n]$  matriu de vectors propis,  $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$  matriu de valors propis.
  - ▶ Si  $\nabla^2 f(x^k)$  no és "prou" def. pos., algun  $\lambda_i < \epsilon$  i el modifiquem  $\lambda_i + \delta_i$ :

$$B_k = V(\Lambda + \Delta)V^T = V\Lambda V^T + V\Delta V^T = \nabla^2 f(x^k) + E_k$$

- ▶ Inconvenient: cal fer la descomposició espectral de  $\nabla^2 f(x^k)$  (costós).
- Modificació per addició d'una matriu diagonal
  - ▶  $B_k = \nabla^2 f(x^k) + \tau I$ . Si  $\tau$  "prou" gran llavors  $B_k$  "prou" def. pos.
  - Inconvenient: no sabem el valor de  $\tau$ ; es pot anar modificant iterativament fins que es prova (fent la factorització de Cholesky) que  $B_k$  que és "prou" def. pos. (costós).
- Modificació de la factorització de Cholesky
  - Factorització de Cholesky:  $\nabla^2 f(x^k) = LDL^T$ , on  $D = \text{diag}(d_1, \dots, d_n)$ . Si  $\nabla^2 f(x^k)$  no és "prou" def. pos., algun  $d_i < \epsilon$ .
  - **E**s modifiquen (s'incrementen) els  $d_i < \epsilon$  durant la factorització de Cholesky.
  - Finalment tenim una factorització:  $LDL^T = P\nabla^2 f(x^k)P^T + E_k$ .
  - ► Eficient.

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

99 / 102

Optimització no lineal sense restriccions

Modificacions al mètode de Newton

# Newton vs. Newton modificat: exemple numèric I

Considerem el problema

$$f(x_1,x_2)=x_1\cdot e^{-x_1^2-x_2^2}$$

$$\nabla f(x) = e^{-x_1^2 - x_2^2} \begin{bmatrix} 1 - 2x_1^2 \\ -2x_1x_2 \end{bmatrix}$$



$$\nabla^2 f(x) = e^{-x_1^2 - x_2^2} \begin{bmatrix} -6x_1 + 4x_1^3 & -2x_2 + 4x_1^2 x_2 \\ -2x_2 + 4x_1^2 x_2 & -2x_1 + 4x_1 x_2^2 \end{bmatrix}$$

La solució usant les condicions d'optimalitat:

$$\nabla f(x) = 0 \quad \Rightarrow \quad x^+ = \begin{bmatrix} +\sqrt{\frac{1}{2}} \\ 0 \end{bmatrix} \quad x^- = \begin{bmatrix} -\sqrt{\frac{1}{2}} \\ 0 \end{bmatrix} \quad \nabla^2 f(x^-) = e^{-\frac{1}{2}} \begin{bmatrix} 4\sqrt{\frac{1}{2}} \\ 2\sqrt{\frac{1}{2}} \end{bmatrix}$$

 $\nabla^2 f(x^-)$  és definida positiva i  $x^-$  és mínim. L'altre punt  $x^+$  és un màxim.

# Newton vs. Newton modificat: exemple numèric II

• Considerem el mètode de Newton a partir de  $x^0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ .

$$\nabla f(x^0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \nabla^2 f(x^0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \not\exists \ d^0 : \nabla^2 f(x^0) d^0 = -\nabla f(x^0)$$

La direcció de Newton no està definida. El mètode de Newton aborta, no pot anar a  $x^1$ .

• Considerem el mètode de Newton modificat a partir del mateix  $x^0$ 

Mètode de Newton modificat (modificació *LDL*<sup>T</sup>)

| k  | $f(x^k)$       | $\alpha^k$    | $\ \nabla f(x^k)\ $ | definida |
|----|----------------|---------------|---------------------|----------|
| 0  | 0.0000000e+00  | 0.0000000e+00 | 1.0000000e+00       | S+       |
| 1  | -2.4292358e-02 | 2.1132487e-01 | 9.1176318e-02       | S+       |
| 2  | -4.1752913e-01 | 4.8000000e+00 | 2.0561645e-01       | I        |
| 3  | -4.2885970e-01 | 1.0000000e+00 | 8.7562332e-03       | +        |
| 4  | -4.2888194e-01 | 1.0000000e+00 | 3.0705391e-05       | +        |
| _5 | -4.2888194e-01 | 1.0000000e+00 | 3.8857291e-10       | +        |

S'atura a l'òptim  $(x^5 = [-0.70710678 \quad 0]^T \approx [-\sqrt{\frac{1}{2}} \quad 0]^T)$  on  $(\|\nabla f(x^k)\| \approx 0)$ .

(Jordi Castro, GM - FME - UPC)

Optimització No Lineal sense restriccions

101 / 102

Bibliografia

# Bibliografia

- D.P. Bertsekas, *Nonlinear Programming, 2nd Ed.*, 1999, Athena Scientific, Belmont, USA.
- D.G. Luenberger, Y. Ye., *Linear and Nonlinear Programming, 3rd Ed.*, 2008, Springer, New York, USA.
- J. Nocedal, S.J. Wright, *Numerical Optimization, 2nd Ed.*, 2006, Springer, New York, USA.