Chương 6

Tối ưu hóa câu truy vấn Thời lượng: 3 tiết

Nội dung chi tiết

- Giới thiệu
- Bộ biên dịch câu truy vấn (query compiler)
- Phân tích cú pháp
 - Cây phân tích (parse tree)
- Chuyển cây phân tích sang ĐSQH
 - Câu truy vấn đơn giản
 - Câu truy vấn lồng lồng tương quan
- Qui tắc tối ưu cây truy vấn
- Tối ưu hóa câu truy vấn
 - Giải thuật Heuristic
 - Ước lượng chi phí

Giới thiệu

- R(A, B, C)
- S(C, D, E)

SELECT B, D

FROM R, S

WHERE R.A='c' AND S.E=2 AND R.C=S.C

3

Giới thiệu (tt)

• Câu truy vấn được thực hiện như thế nào?

ł	1	Ś

Α	В	С
а	1	10
b	1	10
С	2	10
d	2	10
e	3	10

S

С	D	Е
10	Х	2
20	у	2
30	z	2
40	х	1
50	у	3

Kết quả

	1
В	D
2	Х

Giới thiệu (tt)

- Cách 1
 - Tích cartesian
 - Phép chọn (selection)
 - Phép chiếu (projection)

$$\Pi_{\text{B,D}}\left[\ \sigma_{\text{R.A='c'}\,\wedge\ \text{S.E=2}\,\wedge\ \text{R.C}\,=\,\text{S.C}}\ \text{(RxS)}\right]$$

5

Giới thiệu (tt)

RxS A B C C D E

a 1 10 10 x 2
a 1 10 20 y 2

:
c 2 10 10 x 2
c 2 10 20 y 2
c 2 10 30 z 2

Giới thiệu (tt)

- Cách 2
 - Phép chọn (selection)
 - Phép kết (natural join)
 - Phép chiếu (projection)

$$\Pi_{\mathsf{B},\mathsf{D}}\left[\ \sigma_{\mathsf{R}.\mathsf{A}=\mathsf{`c'}}(\mathsf{R})\bowtie\ \sigma_{\mathsf{S}.\mathsf{E}=2}(\mathsf{S})\right]$$

Giới thiệu (tt)

- Cách 3 sử dụng chỉ mục trên R.A và S.C
 - Tìm các bộ trong R thỏa R.A='c'
 - Với mỗi bộ tìm thấy, tìm tiếp các bộ trong S thỏa R.C=S.C
 - Bổ đi những bộ S.E ≠ 2
 - Kết các bộ phù hợp của R và S
 - Chiếu trên thuộc tính B và D

Giới thiệu (tt) DBMS thực hiện cách nào

Ví dụ 1

- Customer(cusID, cusNm, cusStreet, cusCity)
- Account(accID, cusID, balance)

```
SELECT cusNm
FROM Customer
WHERE cusID IN (
SELECT cusID
FROM Account
WHERE balance > 100)
```


Ví dụ 2

- Customer(cusID, cusNm, cusStreet, cusCity)
- Account(accID, cusID, balance)

SELECT cusNm FROM Customer, Account WHERE Customer.cusID = Account.cusID AND balance = 100

Nhận xét

- Giới hạn
 - GROUP BY
 - HAVING
 - ORDER BY
 - DISTINCT
 - Aggregation function (Max, Min, Count, Sum, Avg)
 - Alias name

19

Tiền xử lý (preprocessing)

- Kiểm tra ngữ nghĩa
 - Quan hệ
 - Thuộc tính
 - Select
 - From
 - Kiểu dữ liệu
 - Where

Biến đổi sang ĐSQH

- Truy vấn đơn
 - Xét câu trúc <SFW>
 - Thay thế <FromList> thành các biến quan hệ
 - Sử dụng phép tích cartesian cho các biến quan hệ
 - Thay thế <Condition> thành phép chọn σ_C
 - Thay thế <SelectList> thành phép chiếu π_L

Xét ví dụ 2

23

Biến đổi sang ĐSQH (tt)

- Truy vấn lồng
 - Tồn tại câu truy vấn con S trong < Condition>
 - Áp dụng qui tắc <SFW> cho truy vấn con
 - Phép chọn 2 biến (two-argument selection)
 - Nút là phép chọn không có tham số
 - Nhánh con trái là biến quan hệ R
 - Nhánh con phải là <condition> áp dụng cho mỗi bộ trong R

Biến đổi sang ĐSQH (tt)

- Truy vấn lồng
 - Biến đổi phép chọn 2 biến
 - Thay thế <Condition> bằng 1 cây có gốc là S
 - Nếu S có các bộ trùng nhau thì phải lược bỏ bớt bộ trùng nhau đi
 - Sử dụng phép δ
 - Thay thế phép chọn 2 biến thành σ_{C}
 - σ_C là kết quả của phép cartesian của R và S

Ví dụ 3

- Customer(cusID, cusNm, cusStreet, cusCity)
- Account(accID, cusID, balance)

```
SELECT c.cusNm
FROM Customer c
WHERE 10000 >= (
SELECT SUM(a.balance)
FROM Account a
WHERE a.cusID=c.cusID)
```


Ví dụ 3 (tt) $\pi_{c.cusNm}$ $\sigma_{10000 \geq SoB}$ c.cusID = a.cusIDCustomer c $\sigma_{a.custID}$ $\sigma_{a.custID}$

Qui tắc: Kết tự nhiên, tích cartesian, hội

$$R \bowtie S = S \bowtie R$$

 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$
 $R \times S = S \times R$
 $(R \times S) \times T = R \times (S \times T)$
 $R \cup S = S \cup R$
 $R \cup (S \cup T) = (R \cup S) \cup T$

Qui tắc: Phép chọn σ

- Cho
 - p là vị từ chỉ có các thuộc tính của R
 - q là vị từ chỉ có các thuộc tính của S
 - m là vị từ có các thuộc tính của R và S

Pushing selections

$$\sigma_{p1vp2}(R) = [\sigma_{p1}(R)] \cup [\sigma_{p2}(R)]$$

Quan hệ R là tập hợp ∪_S là phép hội trên tập hợp

33

Qui tắc: σ, ⋈

$$\sigma_p(R \bowtie S) = [\sigma_p(R)] \bowtie S$$

$$\sigma_q(R \bowtie S) = R \bowtie [\sigma_q(S)]$$

Qui tắc: σ,⋈ (tt)

$$\sigma_{p \wedge q}(R \bowtie S) = [\sigma_p(R)] \bowtie [\sigma_q(S)]$$

$$\sigma_{p\vee q}(R\bowtie S) = [\sigma_p(R)\bowtie S] \cup [R\bowtie \sigma_q(S)]$$

35

Qui tắc: σ , \cup và σ , -

$$\sigma_{c}(R \cup S) = \sigma_{c}(R) \cup \sigma_{c}(S)$$

$$\sigma_c(R-S) = \sigma_c(R) - S = \sigma_c(R) - \sigma_c(S)$$

Qui tắc: Phép chiếu π

- Cho
 - X = tập thuộc tính con của R
 - Y = tập thuộc tính con của R
- Ta có
 - $XY = X \cup Y$

$$\pi_{XY}(R) = \pi_{X}[\pi_{X}(R)]$$

37

Qui tắc: π, ⋈

- Cho
 - X = tập thuộc tính con của R
 - Y = tập thuộc tính con của S
 - Z = tập giao thuộc tính của R và S

Pushing projections

$$\pi_{XY}(R \bowtie S) = \pi_{XY}[\pi_{XZ}(R) \bowtie \pi_{YZ}(S)]$$

Except intersection and difference

Qui tắc: σ, π

- Cho
 - X = tập thuộc tính con của R
 - Z = tập thuộc tính con của R xuất hiện trong vị từ p

$$\pi_{\mathsf{X}}[\sigma_{\mathsf{p}}(\mathsf{R})] = \pi_{\mathsf{X}}\{\sigma_{\mathsf{p}}[\boldsymbol{\mathcal{I}}_{\mathsf{X}}^{\mathsf{X}}(\mathsf{R})]\}$$

39

Qui tắc: σ , π , \bowtie

- Cho
 - X = tập thuộc tính con của R
 - Y = tập thuộc tính con của S
 - Z = tập giao thuộc tính của R và S
 - Z' = Z ∪ {các thuộc tính xuất hiện trong vị từ p}

$$\pi_{XY}[\sigma_p(R\bowtie S)] =$$

$$\pi_{\mathsf{X}\mathsf{Y}}\left\{\sigma_{\mathsf{p}}\left[\pi_{\mathsf{X}\mathsf{Z}'}\left(\mathsf{R}\right)\bowtie\pi_{\mathsf{Y}\mathsf{Z}'}\left(\mathsf{S}\right)\right]\right\}$$

Nhận xét: σ , π

- Ví du
 - R(A, B, C, D, E)
 - X={E}
 - p: A=3 ∧ B='a'

 $\pi_{x} \left[\sigma_{p} \left(R \right) \right]$

 $\pi_{\text{E}}\left\{\sigma_{\text{p}}\left[\pi_{\text{ABE}}(\text{R})\right]\right\}$

Chọn trước tốt hơn???

Chiếu trước tốt hơn???

41

Nhận xét: σ , π (tt)

- Bình thường
 - Chiếu trước
- Nhưng
 - Giả sử A và B được cài đặt chỉ mục (index)
 - Physical query plan dùng chỉ mục để chọn ra những bộ có A=3 và B='a' trước
 - Nếu thực hiện chiếu trước $\pi_{AB}(R)$ thì chỉ mục trên A và B là vô ích
 - Chọn trước
- →Thông thường chọn trước tốt hơn

Qui tắc: ×, ⋈

$$\sigma_{c}(R \bowtie S) = R \bowtie S$$

$$R \times S = \pi_L [\sigma_C (R \times S)]$$

43

Qui tắc: δ

$$\delta(\mathsf{R}\bowtie\mathsf{S}) \ = \ \delta(\mathsf{R})\bowtie\ \delta(\mathsf{S})$$

$$\delta(R \times S) = \delta(R) \times \delta(S)$$

$$\delta[\sigma_{C}(R)] = \sigma_{C}[\delta(R)]$$

$$\delta(R \cap_B S) = \delta(R) \cap_B S = R \cap_B \delta(S)$$
$$= \delta(R) \cap_B \delta(S)$$

Except: \cup_B , $-_B$, π

Qui tắc: γ

- Cho
 - X = tập thuộc tính trong R được gom nhóm
 - Y = X ∪ {một số thuộc tính khác của R}

$$\delta[\gamma_X(R)] \ = \ \gamma_X(R)$$

$$\gamma_X(R) = \gamma_X [\pi_Y(R)]$$

45

Xét ví dụ 2

Tóm tắt: Các quy tắc biến đổi tương đương trong ĐSQH

QT1: Xử lý các toán tử AND trong điều kiện

$$\sigma_{c1ANDc2...ANDcn}(R) \equiv \sigma_{c1}(\sigma_{c2}(...\sigma_{cn}(R))...)$$

NHANVIEN (manv, honv, tennv, ngaysinh, phai, luong, maphong)

Tmaphong = 'KT' AND phai = 'NAM' (NHANVIEN)

omaphong = 'KT'(omphai = 'NAM' (NHANVIEN))

51

Tóm tắt: Các quy tắc biến đổi tương đương

QT2: Thay đổi thứ tự của các phép chọn

$$\sigma_{c1}(\sigma_{c2}(R)) \equiv \sigma_{c2}(\sigma_{c1}(R))$$

NHANVIEN (manv, honv, tennv, ngaysinh, phai, luong, maphong)

omaphong = 'KT'(omphai = 'NAM' (NHANVIEN))

σ_{phai} = 'NAM'(σ_{maphong} = 'KT' (NHANVIEN))

QT3: Xử lý các phép chiếu

$$\pi_{}(\pi_{}(...\pi_{}(R))...) \equiv \pi_{}(R)$$

NHANVIEN (many, honv, tenny, ngaysinh, phai, luong, maphong)

π manv, honv, tennv (π manv, honv, tennv, ngaysinh (NHANVIEN))

=

π many, hony, tenny (NHANVIEN)

53

Tóm tắt: Các quy tắc biến đổi tương đương

QT4: Thay đổi thứ tự các phép chọn và phép chiếu

$$\pi_{A1,A2,\dots,An}(\sigma_c(R)) \equiv \sigma_c(\pi_{A1,A2,\dots,An}(R))$$

Nếu như c ⊂[A1...An]

NHANVIEN (manv, honv, tennv, ngaysinh, phai, luong, maphong)

π manv, honv, tennv, phai (manv, honv, tennv, phai (manv, honv, tennv, phai (manv, honv)

σ_{phai= 'NAM'}(π many, hony, tenny, phai (NHANVIEN))

QT5: Tính giao hoán của phép kết và tích Descartes

$$(R \bowtie_{C} S) = (S \bowtie_{C} R) \qquad (R \times S) = (S \times R)$$

NHANVIEN (manv, honv, tennv, ngaysinh, phai, luong, maphong)
PHONGBAN (maphong, tenphong, maql)

55

Tóm tắt: Các quy tắc biến đổi tương đương

QT6a: Thay đổi thứ tự giữa phép chọn và phép kết

$$\sigma_c(R \bowtie S) \equiv (\sigma_c(R)) \bowtie S$$
Néu như c $\subset R$ (hay c $\subset S$)

NHANVIEN (manv, honv, tennv, ngaysinh, phai, luong, maphong)

PHONGBAN (maphong, tenphong, maql)

QT6b: Phân phối giữa phép chọn và phép kết

$$\sigma_c(R \bowtie S) \equiv (\sigma_{c1}(R)) \bowtie (\sigma_{c2}(S))$$

Nếu c = c1 and c2, $(c1 \in R \text{ và } c2 \in S)$

NHANVIEN (manv, honv, tennv, ngaysinh, phai, luong, maphong)

PHONGBAN (maphong, tenphong, maql)

Ophai= 'NAM' AND tenphong= 'Kế toán' (NHANVIEN PHONGBAN)

(Ophai = 'NAM' (NHANVIEN)) (Otenphong= 'Kế toán' (PHONGBAN))

57

Tóm tắt: Các quy tắc biến đổi tương đương

QT7a: Phân phối giữa phép chiếu và phép kết

$$\prod_{L} (R \bowtie_{C} S) \equiv (\prod_{A_1, A_2, A_3, \dots A_N} (R)) \bowtie_{C} (\prod_{B_1, B_2, B_3, \dots B_M} (S))$$

 $L = \{A_1, \dots, A_N, B_1, \dots, B_M\}; \ R \ (A_1, \dots, A_N); \ S \ (B_1, \dots, B_M) \ \ V \acute{o}i \ c \subset L$

NHANVIEN (manv, honv, tennv, ngaysinh, phai, luong, maphong)

PHONGBAN (maphong, tenphong, maql)

π_{manv,tennv,maphong,tenphong}(NHANVIEN PHONGBAN)

NV.maphong=PB.maphong

 $(\pi_{\text{manv, honv, maphong}}(\text{NHANVIEN})) \bowtie (\pi_{\text{tenphong, maphong}}(\text{PHONGBAN}))$

NV.maphong=PB.maphon

QT7b: Phân phối giữa phép chiếu và phép kết

$$\prod_{L} (R \bowtie_{C} S) = (\prod_{A_{1}, A_{2}, A_{3}, \dots, A_{N+1} A_{N+2} \dots A_{N+K}} (R)) \bowtie_{C} (\prod_{B_{1}, B_{2}, B_{3}, \dots, B_{M} B_{M+1} B_{M+2} \dots B_{M+P}} (S))$$

$$V \circ i c \not\subset L, R(A_{1}, \dots, A_{N}, A_{N+1}, \dots, A_{N+K}) S(B_{1}, \dots, B_{M}, B_{M+1}, \dots, B_{M+P})$$

NHANVIEN (manv, honv, tennv, ngaysinh, phai, luong, maphong)

PHONGBAN (maphong, tenphong, maql)

```
    πmanv, tennv, tenphong (NHANVIEN PHONGBAN)
    NV.maphong=PB.maphong
    (πmanv, tennv, maphong(NHANVIEN)) (πtennv,maphong(PHONGBAN))
    NV.maphong=PB.maphong
```

59

Tóm tắt: Các quy tắc biến đổi tương đương

QT8: Giao hoán của phép hội và phép giao

$$R \cup S \equiv S \cup R$$
$$R \cap S \equiv S \cap R$$

QT9: Kết hợp giữa phép kết, tích Descartes, hội và giao

$$(R \theta S) \theta T = R \theta (S \theta T)$$

Trong đó θ là 1 trong các phép toán \bowtie , \lor , \circ , \circ

61

Tóm tắt: Các quy tắc biến đổi tương đương

QT 10: Phân phối của phép chọn đối với các phép toán

$$\sigma_c(R \theta S) = (\sigma_c(R)) \theta (\sigma_c(S))$$

Nếu θ là 1 trong các phép toán $\alpha, \beta, -1$

QT 11: Phân phối của phép chiếu đối với các phép toán

Nếu θ là 1 trong các phép toán \cap , \cup , -

$$\prod_{L} (R \theta S) = (\prod_{L} (R)) \theta (\prod_{L} (S))$$

63

Tóm tắt: Các quy tắc biến đổi tương đương

QT 12: Chuyển các phép (σ, \times) thành phép kết

$$\sigma_c(R \times S) = R \bowtie_c S$$

Luật De Morgan

c = NOT (c1 AND c2) = NOT (c1) OR NOT (c2)

c = NOT (c1 OR c2) = NOT (c1) AND NOT (c2)

Tối ưu hóa: Giải thuật heuristic

- 1. Áp dụng QT 1, tách các phép chọn liên tiếp thành 1 dãy các phép chọn.
- 2. Áp dụng QT 2,4,6 và 10, để đẩy phép chọn xuống càng sâu càng tốt.
- 3. Áp dụng QT 9 để tái tổ chức cây cú pháp sao cho phép chọn được thực hiện có lợi nhất (chọn ít nhất)→heuristic.
- 4. Phối hợp tích Decartes với các phép chiếu thích hợp theo sau.
- 5. Áp dụng QT 3, 4, 7 và 11 để đẩy phép chiếu xuống càng sâu càng tốt (có thể phát sinh phép chiếu mới).
- 6. Tập trung các phép chọn.
- 7. Áp dụng QT3 để loại những phép chiếu vô ích.

65

Ví dụ: Giải thuật heuristic

Liêt kê ho tên NHANVIEN sinh sau năm 1960 và làm dư án 'ABC'

Ngôn ngữ SQL

SELECT honv, tennv

FROM NHANVIEN NV, DEAN DA, THAMGIA TG

WHERE mada='ABC' AND NV.manv=TG.manv AND

DA.mada=TG.mada AND ngaysinh> '31-12-1960'

Ngôn ngữ ĐSQH

honv, tennv(mada = 'ABC' ngaysinh > '31-12-1960' NV.manv=TG.manv \(DA.mada=TG.mada \)

(NHANVIEN \(DEAN \(THAMGIA) \)

Ước lượng chi phí

- Ước lượng kích thước cây truy vấn
 - Quan hệ
 - Các phép toán
- Ước lượng số lần truy xuất IOs
 - Số blocks được đọc hoặc ghi để thực hiện cây truy vấn

73

Ước lượng kích thước

- Thống kê quan hệ R
 - T(R): số bộ trong R
 - S(R): tổng số byte của 1 bộ trong R
 - B(R): tổng số block chứa tất cả các bộ của R
 - V(R, A): số giá trị khác nhau mà thuộc tính A trong R có thể có

Ví dụ

R	Α	В	С	D
	Х	1	10	а
	Х	1	20	b
	у	1	30	a
	у	1	40	С
	Z	1	50	d

A: chuỗi 20 bytes

B: số nguyên 4 bytes

C: ngày 8 bytes

D: chuỗi 68 bytes

1 block = 1024 bytes (block header: 24 bytes)

$$T(R) = 5$$
$$S(R) = 100$$

$$T(R) = 5$$
 $V(R, A) = 3$ $V(R, B) = 1$
 $S(R) = 100$ $V(R, C) = 5$ $V(R, D) = 4$

$$V(R, B) = 1$$

$$B(R) = 1$$

Uớc lượng: $W = R_1 \times R_2$

$$S(W) = S(T_1) + S(T_2)$$

$$T(W) = T(R_1) \times T(T_2)$$

Uốc lượng: $W = \sigma_{Z = val}(R)$

$$S(W) = S(R)$$

$$T(W) = \frac{T(R)}{V(R, Z)}$$

Số bộ trung bình thỏa điều kiện Z=val

77

Uốc lượng: $W = \sigma_{Z \ge val}(R)$

$$T(W) = ???$$

Cách 1

$$T(W) = \frac{T(R)}{2}$$

• Cách 2

$$T(W) = \frac{T(R)}{3}$$

Ví dụ

- Cho
 - R(A, B, C)
 - T(R) = 10000
 - V(R, A) = 50
- Ước lượng kích thước biểu thức

$$S = \sigma_{A=10 \land B<20}(R)$$

$$T(S) = {T(R) \over V(R, A) \times 3} = {10000 \over 50 \times 3} = 67$$

79

Ví dụ (tt)

• Ước lượng kích thước biểu thức

$$S = \sigma_{A=10 \vee B < 20}(R)$$

- Giả sử
 - n là T(R)
 - m₁ là số bộ thỏa A=10 trong R
 - m₂ là số bộ thỏa B<20 trong R

$$T(S) = n(1 - (1 - \frac{m_1}{n})(1 - \frac{m_2}{n}))$$

Ước lượng: $W = R_1 \bowtie R_2$

- Cho
 - X = tập thuộc tính của R₁
 - Y = tập thuộc tính của R₂
- Xét trường hợp X ∩ Y = ∅

$$T(W) = ?$$

Tương tự $R_1 \times R_2$

81

Ước lượng: $W = R_1 \bowtie R_2$ (tt)

- Xét trường hợp X ∩ Y = A
 - R₁ A B C

- Giả sử
 - $V(R_1, A) \le V(R_2, A)$
 - Mọi giá trị của A trong R₁ thì có trong R₂
 - $V(R_2, A) \le V(R_1, A)$
 - Mọi giá trị của A có trong R₂ thì có trong R₁

Ước lượng: $W = R_1 \bowtie R_2$ (tt)

1 bộ trong R_1 sẽ thỏa với $\frac{T(R_2)}{V(R_2, A)}$ bộ trong R_2

$$T(W) = T(R_1) \times \frac{T(R_2)}{V(R_2, A)}$$

83

Ước lượng: $W = R_1 \bowtie R_2$ (tt)

• $V(R_1, A) \leq V(R_2, A)$

$$T(W) = T(R_1) \times \frac{T(R_2)}{V(R_2, A)}$$

• $V(R_2, A) \le V(R_1, A)$

$$T(W) = T(R_2) \times \frac{T(R_1)}{V(R_1, A)}$$

Tổng quát

$$T(W) = \frac{T(T_1) T(R_2)}{\max\{V(R_1, A), V(R_2, A)\}}$$

Ước lượng: $W = R_1 \bowtie R_2$ (tt)

Xét trường hợp X ∩ Y = A

R₁ A B C

- W(A, B, C, D)
 - Các thuộc tính không tham gia vào phép kết thì số lượng các giá trị vẫn giữ nguyên
 - $V(W, A) = min \{V(R_1, A), V(R_2, A)\}$
 - $V(W, B) = V(R_1, B)$
 - $V(W, C) = V(R_1, C)$
 - V(W, D) = V(R₂, D)

85

Ví dụ

$$Z = R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(C, D)$$

$$R_1$$
 R_2 R_3 $T(R_1) = 1000$ $T(R_2) = 2000$ $T(R_3) = 3000$ $V(R_1, A) = 50$ $V(R_2, B) = 200$ $V(R_3, C) = 90$ $V(R_1, B) = 100$ $V(R_3, C) = 300$ $V(R_3, D) = 500$

Ví dụ (tt)

$$U = R_1(A, B) \bowtie R_2(B, C)$$

$$T(U) = \frac{1000 \times 2000}{200}$$

$$V(U, A) = 50$$

$$V(U, B) = 100$$

$$V(U, C) = 300$$

87

Ví dụ (tt)

$$Z = U \bowtie R_3(C, D)$$

$$T(Z) = \frac{1000 \times 2000 \times 3000}{200 \times 300}$$

$$V(Z, A) = 50$$

$$V(Z, B) = 100$$

$$V(Z, C) = 90$$

$$V(Z, D) = 500$$

Nhận xét

- Phép chiếu
- . Ước lượng chính xác
- Phép tích
- Phép chọn
- Phép kết
- Uớc lượng tương đối hợp lý
 số lượng bộ của các quan hệ tương đối lớn
 giá trị của các thuộc tính phân bố đồng đều
- Phép toán khác
 - Hội
 - Giao
 - Trù
 - Lược bỏ trùng lắp
 - Gom nhóm

Uớc lượng: $W = R_1 \cup R_2$

• R₁ và R₂ là bag

$$T(W) = T(R_1) + T(R_2)$$

• R₁ và R₂ là set

$$T'(W) = T(R_1) + T(R_2)$$

$$\mathsf{T}''(\mathsf{W}) \leq \mathsf{T}(\mathsf{R}_1) \,+\, \mathsf{T}(\mathsf{R}_2)$$

$$\rightarrow T(W) = \frac{T'(W) + T''(W)}{2}$$

Ước lượng: $W = R_1$ ∩ R_2

- Cách 1
- R_1 R_2
- TH1: T'(W)=0
- TH2: T"(W)=T(R₁) hoặc T"(W)=T(R₂)

- $\rightarrow T(W) = \frac{T'(W) + T''(W)}{2}$
- Cách 2
 - Trường hợp đặc biệt của phép kết tự nhiên
 - Chỉ áp dụng cho $\cap_{\mathbb{S}}$

$$T(W) = \frac{T(R_1) T(R_2)}{\max\{V(R_1, Z), V(R_2, Z)\}}$$

91

$U\acute{o}c\ Iu\acute{o}ng:\ W=R_1-R_2$

- TH1: T(W) = T(R₁)
- TH2: $T(W) = T(R_1) T(R_2)$

$$\rightarrow T(W) = T(R_1) - \frac{1}{2}T(R_2)$$

Uớc lượng: $W = \delta(R)$

- TH1: T(W) = 1
 - Nếu trong R không có bộ nào thì T(W)=0
- TH2: T(W) = T(R)
 - $R(a_1, a_2, ..., a_n)$
 - Số bộ phân biệt tối đa của R là tích các V(R, a_i), i=1..n

$$\rightarrow$$
 T(W) = min{ $\frac{1}{2}$ T(R₁), tích các V(R, a_i)}

93

Uόc lượng: $W = \gamma(R)$

- γ_L(R)
 - Số lượng bộ trong W và cũng là số lượng nhóm
- TH1: T(W) = 1
- TH2: T(W) = T(R)
 - R(a₁, a₂, ..., a_n)
 - Số lượng nhóm tối đa là tích các V(R, a_i), i=1..n

$$\rightarrow$$
 T(W) = min{ $\frac{1}{2}$ T(R₁), tích các V(R, a_i)}

Ví dụ 8 R(a, b) T(R)=5000 V(R, a)=50 V(R, b)=100 S(b, c) T(S)=2000 V(S, b)=200 V(S, c)=100

Ví dụ (tt)

- Cộng kích thước sau khi thực hiện các phép toán, ngoại trừ
 - Các nút lá
 - Nút gốc
- (1): 100+50+1000=1150
- (2): 100+1000=1100
- Phép lược bỏ trùng lắp thực hiện sau thì tốt hơn

97

Ước lượng số lần truy xuất lOs

- Các tham số thống kê
 - B(R): tổng số block chứa tất cả các bộ của R
 - f(R): số bộ tối đa trong mỗi block
 - M: số block trống trên bộ nhớ
- Quan tâm
 - Quan hệ R có được gom thành cụm không (clustered)?
 - Thuộc tính trong các phép toán có chỉ mục không (index)?
 - Chỉ mục có gom cụm không (clustering index)?
 - Kết quả cần được sắp thứ tự không?

Clustering

Clustered-file

Clustered relation

Clustering index

99

Ví dụ

- $R_1 \bowtie R_2$
 - $T(R_1) = 10000$
 - $T(R_2) = 5000$
 - $S(R_1) = S(R_2) = 1/10$ block
 - M=101 blocks
- Số block được đọc (bỏ qua việc ghi) để thực hiện phép kết tự nhiên trên là bao nhiêu?

Nhận xét

- Ước lượng số lần truy xuất IOs không là cách tốt nhất
 - Bổ qua chi phí CPU
 - Bổ qua tham số thời gian
 - Xét trường hợp M đủ hoặc thiếu

101

Bài tập

Hãy trình bày tiến trình tối ưu hóa câu truy vấn sau:

SELECT CTPX.MSMH, TENHG,SL

FROM KH, PX, CTPX,MH

WHERE PX.SP = CTPX.SP

AND PX.MSKH = KH.MSKH

AND CTPX.MSMH = MH.MSMH

AND TENKH="Cty ABD"

AND SL > 100