Overview

- **►**Instruction Codes
- Computer Registers
- Computer Instructions
- Timing and Control
- > Instruction Cycle
- ➤ Memory Reference Instructions
- Input-Output and Interrupt
- Complete Computer Description

Flow Chart (Instruction Cycle)

Determining Type of Instruction

- \triangleright D'7IT3: AR \leftarrow M[AR]
- ➤D'7l'T3:Nothing
- **▶**D7l'T3: Execute a register-reference instr.
- **▶**D7lT3: Execute an input-output instr.

Register Reference Instruction

Register Reference Instructions are identified when

- $D_7 = 1$, I = 0
- Register Ref. Instr. is specified in $b_0 \sim b_{11}$ of IR
- Execution starts with timing signal T₃

$$r = D_7 I'T_3$$
 => Register Reference Instruction $B_i = IR(i)$, $i=0,1,2,...,11$

	r:	SC ← 0
CLA	rB ₁₁ :	AC ← 0
CLE	rB ₁₀ :	E ← 0
CMA	rB ₉ :	AC ← AC'
CME	rB ₈ :	E ← E'
CIR	rB_7 :	$AC \leftarrow shr AC, AC(15) \leftarrow E, E \leftarrow AC(0)$
CIL	rB ₆ :	$AC \leftarrow shl AC, AC(0) \leftarrow E, E \leftarrow AC(15)$
INC	rB ₅ :	AC ← AC + 1
SPA	rB₄:	if (AC(15) = 0) then (PC ← PC+1)
SNA	rB ₃ :	if (AC(15) = 1) then (PC ← PC+1)
SZA	rB ₂ :	if (AC = 0) then (PC ← PC+1)
SZE	rB₁:	if (E = 0) then (PC ← PC+1)
HLT	rB ₀ :	S ← 0 (S is a start-stop flip-flop)