

King Saud University College of Computer and Information Sciences

King	Stand University		-	nputer Science Dep			
		Course Co	ode:	CSC 227			
		Course Ti	itle:	Operating Systems			
		Semester:	:	Spring 2017-2018			
		Type of Exar	mination:	Midterm 2 Ex	kam.		
					Instructions • This even		
Studer	nt Name:			• This exam has 8 pages. • Do not use			
Studer	Student ID:					pencil. • Write clearly and neatly	
Studer	Student Section No.					ary and nearry	
Instruc	ctor Name:						
Tick the Relevant Computer Scien		ience B.Sc. Progr	e B.Sc. Program ABET Student Outcomes		Question No. Relevant Is Hyperlinked	Covering %	
X	a) Apply knowledg computer scien		and mathematic	s appropriate to the			
X	b) Analyze a problem, and identify and define the computing requirements appropriate to its solution			Q.1-Q.2- Q.4	75%		
X	c) Design, implement and evaluate a computer-based system, process, component, or program to meet desired needs;				Q.3	25%	
X	d) Function effective	vely on teams to	accomplish a co	ommon goal;			
Full Mark			Mark	Studer	nt's Mark		

Question No.1	8.0	
Question No.2	4.0	
Question No.3	4.0	
Question No.4	4.0	
Total	20	

Page 1 of 6

Fall	King Sau College of Computer CSC 227: Op al Marks: 25 Time: 7:00pm – 8:30pm (90 minutes 2015-16 Name:	an per s)	d Info	rmation Sciences Systems Midterm Exam I ID#: Date: 20-Oct-2015
<u>• .</u>				
-	tion 1. [6 marks] Select ONLY ONE ANSWER (your answer for question 1-1 to 1-12 in the table	•		·
1	The section that contains the global variables of a process is:		2.	The scheduler that selects which processes should be brought into the ready queue is:
a.	The text section.		a.	The long-term scheduler.
b.	The stack section.		b.	The short-term scheduler.
c.	The heap section.		c.	The medium-term scheduler.
d.	The data section.		d.	The CPU scheduler.
3.	Which of the following is NOT a reason for processes cooperation?		4.	A process that has terminated, but whose parent has not yet called wait(), is known as:
a.	Independency.		a.	Orphan process.

Zombie process.

Terminated process.

c.

Information sharing.

Modularity.

b.

d.	Computation Speedup.		d.	Child process		
•		•				
5.	In cascading termination:		6.	Which of the following queues contains a set of all processes in the system?		
a.	Only children who has exceeded allocated resources are terminated.		a.	Job queue.		
b.	Only children whose assigned task is no longer needed are terminated.		b.	Ready queue.		
c.	All children are terminated.		c.	Device queue.		
d.	Only the last created child is terminated.		d.	Waiting queue.		
7.	An instruction executed atomically means:		8.	One common problem among the methods suggested for critical section problem is:		
a.	It cannot be interrupted during its execution		a.	Continuous waiting		
b.	It can interrupt any other instruction		b.	Busy waiting		
c.	It can be executed in kernel mode		c.	Too difficult to program		
d.	It can enter critical section anytime.		d.	Take long time to execute		
				Page 2 of 6		
		ſ	b.	Enabling interrupts		
9.	A non-preemptive kernel is:]				
a.	Free of critical section	 	c.	Using machine language instructions instead of semaphores		
		$\ \ $	d.	Using set_and_test instruction		

9.	A non-preemptive kerner is.	c.	Using machine language instructions instead
a.	Free of critical section		of semaphores
		d.	Using set_and_test instruction
b.	Free of deadlock		
c.	Free of race conditions in kernel mode		
d.	Free of starvation	13.	Which are possible techniques of handling signals in the context of a multi-threaded process
		a.	The system delivers the signal to the thread to which the signal applies
11.	One solution to critical section problem in uniprocessor machine is:	b.	The system, deliver the signal to every thread in the process
a.	Disabling interrupts	c.	A specific thread is assigned to receive all signals for the process

d.	All th	ne above				b.	W	ith java progr	am for mathe	ematical calcu	lations
						c.	W	ith C progran	n for mathem	atical calculat	ions
15.	Asyn	chronous th	nread cancellat	ion is,		d.	W	With program to create user level passwords			
a.			ynchronization that share data		О						
b.		When one thread runs and the other remains in hot standby mode, in case it is needed.			14.	In a multithreaded process, which of these models result in the minimum use of memory ?			models wi		
c.	Thre	ad is allow	ed to termina	te another		a.	Tv	wo-level mode	el		
d.	A thread remains in waiting mode until the other thread terminates, then it receives it results and				other	b.	Oı	ne-to-one mo	del		
		nues execu		ves it resuits	and	c.	c. Many-to-one model				
						d.	M	any-to-many	model		
10.	A pı	eemptive k	kernel:								
a.	Does not allow preemption of process when running in kernel mode			16.	In deferred thread cancellation, when a thread receives a cancellation request,						
b.	Allo	Allows multiprocessing			a.	It is allowed to wait until the current I/O is finished					
c.	Doe	s not allow	multiprocessii	ng		b.	The thread is allowed	lowed to tern	wed to terminate after it closes all		
d.		ws preemp	otion of process	when running	ng in		the opened files The thread is allowed to terminate itself immediately and close everything at once				
						c.					
12.	A th	read library	y provides the	programmer		d.	re		ellation poin	nue running u t and termin	
a.	Wit	h an API f	or creating an	d managing	threads						
	Γ	1.	2.	3.	4.	5.		6.	7.	8.]
	L							<u> </u>			J
		9.	10.	11.	12.	13.		14.	15.	16.	
								<u> </u>			

Question 2. [4 marks] [CLO 5]

2-a) [1 marks] Fill in the FOUR blanks in the following process state diagram.

Answer:

2-b) [3 marks] Consider the following C program: [CLO ??]

```
1
      #include <stdio.h>
2
      int num;
3
      int main(){
4
            num = 10;
5
            if (fork() > 0) {
6
                  num = num * 2;
7
                  wait(NULL);
8
                  printf ("num= %d\n", num);
9
             } else {
10
                  num = num + 5;
11
                  printf("num= %d\n", num);
12
                  fork();
13
                  num++;
                  printf("num= %d\n", num);
14
15
17
            fork();
18
      }
```

I. [1 mark] How many processes will be created by this program including the parent process?

II. [1 mark] Draw the process tree resulting from this program:

P	
C1 C5	
C4 C2	
C3	
	Page 4 of 6
III. [1 mark] What is the output of this program?	
num= 15 num= 16 num= 16 num= 20	
Question 3. [4 marks] [CLO 7	
3-a) [0.5 marks] What is the critical section problem?	
	shared data
3-b) [1.5 marks] List the requirements that a solution to the critical section problem must satisfied.	sfv.
1) Mutual exclusion. 2) Progress. 3) Bounded waiting.	·-·

A process may never be removed from the semaphore queue in which it is suspended.

Causes: Deadlock, or LIFO semaphore queue where the rate of wait is higher than signal.

Page 5 of 6

Question 4. [4 marks] [CLO 4]

4-a) [2 marks] Let us consider a process composed of the following CPU bursts and IO bursts:

N∘	Activity	Duration (milliseconds)				
		CPU	Waiting I/O	Total		
1	Starting and initialization	5	10	15		
2	Reading Data from a Network	15	20	35		
3	Processing Data	50	0	50		
4	Saving results to a file	25	15	40		
5	Terminating	10	0	10		
	Total execution time	105	45	150		

1- [0.5 mark] If you want to speed-up this process using multi-threading, which task will you select to implement multi-threading? Why?

The task 3, because it is the largest task in terms of CPU activity, and is the one that can give the best time saving.

$$S = 100/150 = 2/3, P = 50/150 = 1/3$$

= ♦

= 150 / 1.2 = 125 ms		

4-b) [1 mark] The threads of a same process share part of the process resources. Which resources are different for each thread:

- Registers
- Stack

4-c) [1 mark] The multi-threading model one-to-one has the advantage of offering a high independence to user threads. What are its disadvantages?

Creating a kernel thread of each user thread takes time

Creating a kernel thread of each user thread uses a lot of memory

Page 6 of 6