R be on For eings

ightarrow π_{\star} R is a graded commutative ring But Tx is a very rende invariant

If R in our Ess ving, there is a good throng of R-modules Mod(R) = soluble, symmetric monoridal model/ ∞ -rategory

Def: $Pic(R) = group of iso classes of R-modules which are <math>\otimes$ -invertible $= \begin{cases} M \in Mod(R) \text{ such that} \\ \exists N : M \otimes_R N \cong R \end{cases}$

Ex: G finite β -group, k-field of change β a stable module category. St Mod $(G) \cong \text{Mod}(k^{+G})$ Picard group = "endo trivial module" - only depends on E_2 structure

Def: A sfull subcakgory $\ell' \subseteq \ell'$ is thick, 1) ℓ' is a strangulated subcategory 2) ℓ' is closed under setrects, i.e. $\times \circ y \in \ell' \Rightarrow \times, y \in \ell'$

"finitely generaled" modules Q. What are thick subcodegories of $Mod^{\omega}(R)$?

Th"- (Hopkins-Neeman)

Id R be a ducrete commutative, noetherian ring - I a dijection $\left\{\begin{array}{ll} \text{thick subcot} \right\} \longleftrightarrow \left\{\begin{array}{ll} \text{Subsets of spec } R \\ \text{of } \operatorname{Mod}^{\mathsf{U}}(R) \end{array}\right\} \longleftrightarrow \left\{\begin{array}{ll} \text{subsets of spec } R \end{array}\right\}$

g R=Z, given a set S of frime numbers, $C_s \subseteq Mod^{\omega}(Z)$ consists of objects such that $\pi_*(M)$ is S. Lousion.

The For Sop other thick subcats are shatified (?) by (MFG)(p).

If Me Mod (R), TIVM is a graded TIXR module

Given M,N \in Mod(R), \exists SS such that Ext $\pi_{\star R}(\pi_{\star}M,\pi_{\star}N) \Rightarrow \pi_{\star -s}(\text{Hom}(M,N))$

Suppose Π_*R has finite homological climension this is finite at E_2 . g: R=KU $\Pi_*KU=$ caurant series wery ferfect KU module $M\cong \oplus$ copies KU, KU fi , ΣKU , Σ KU/p:

The Assume R is even periodic $\pi_1R=0$, π_2R is a unit. π_0R is regular Noetherian.

1) (Backer-Robber) Pic (R) \simeq Pic algebraic $(\pi_0R) \times \mathbb{Z}_2$ and \mathbb{Z}_2 because ΣR is

also invertible but not detected by algebr

2) The thick subcategory of Mod (R) are

stratified by Spec ToR

<⇒ { subsets of Spec ToR closed under Specializations

But 15 tmf is not reg northerian as a lot of stable stems he in it-

R classical commutative ring, R' a faithfully flat R-algebra. Th' (Grothendied) Mod R \cong { R'-moduk + descent docta

 $M \rightarrow M \otimes R'$, $R \rightarrow R' \rightarrow R' \otimes R'$

Form a cosimplicial R-algebra, cobor comben $R \rightarrow R' \Longrightarrow R' \otimes R' \Longrightarrow R' \otimes R \otimes R' \Longrightarrow \cdots$

Descent dates of R-modules of descent dates is Tot (Mod , = Mod R'OR)

R is limit of the above complex. Descent theory says that same holds if we replace rings by their category of modules.

Def $^{\wedge}$ R is can for eing and R' is an Eo-module if 1) $\pi_{\circ}R \longrightarrow \pi_{\circ}R'$ is faithfully flat 2) $\pi_{*}R \overset{\otimes}{\longrightarrow} \pi_{\circ}R' \overset{\simeq}{\longrightarrow} \pi_{*}R'$

The (durie) In this case \exists is natural equivalence $\operatorname{Mod}(R) \cong \operatorname{Tot}(\operatorname{Mod}(R'^{\infty}))^{\operatorname{To}R} = \operatorname{Jocal} \operatorname{data}$

T. (Taithfully flat algebra) map injectively into T. R.

Let R-R' be a map of E- rings Def" of is descendable if the thick & liokal R'generates in Mod (R) is all of Mod (R).

 $R \xrightarrow{f_1} R'$ is descontable if $\exists N \in \mathbb{Z}_{>0}$ such that if $M_1 \xrightarrow{f_1} M_2 \longrightarrow \cdots \xrightarrow{f_N} M_N$ in mod R with $f_1 \otimes R' = 0 \implies f_N \cdot \cdots \cdot f_1 = 0$ in Mod (R)

Thi (M): Conclusion of f.f. descent holds for a descendable data.

eg: $L_nS^o \rightarrow E_n$ is descendable. • G-finite group $k^{BG} \rightarrow T K^{BA}$ • As G eternentary abelian p subgroups of GTHF $\left[\frac{1}{n}\right]$, $\frac{1}{n \in \mathbb{Z}}$ TMF(n), if $n \ge 3$, TMF(n) is even periodic with regular \mathbb{T}_0 . This is "Jalois" extension with group $Gl_2(\mathbb{Z}/n)$ and descendable.

Cor: Mod TMF $\left[\frac{1}{N}\right] \simeq Mod \left(TMF(N)\right)$

The Mick subcategories of Mod (TMF) are shatified by Mell.

The in Pic (TMF) \simeq Z/576 closed under specialization

2) Pic (Tmf) \simeq Z \oplus Z/24