Grafo orientato aciclico (directed acyclic graph: DAG)

Ordinamento topologico: definizione

- \triangleright Sia G = (V, E) un grafo orientato e aciclico (non pesato)
- racktriangleright Ordinare i nodi di G in modo tale che se $(u,v)\in E$ allora u compare prima di v nell'ordinamento

Ordinamento topologico (topological sort): esempio

STESURA MONDDIMENSIONALE CON ARCHI SOLO IN AVANTI socks undershort pants shoes watch shirt belt tie jacket | MPOSSIBILE | | CON CICLI

Ordinamento topologico

TOPOLOGICAL-SORT(G)

- call DFS(G) to compute finishing times $\nu.f$ for each vertex ν
- as each vertex is finished, insert it onto the front of a linked list
 - 3 **return** the linked list of vertices

ORDINAMENTO DECRESCENTE FINE VISITA

Grafo di partenza

Componenti fortemente connesse (strongly connected components) Lora e es components) Lora e es components) Lora e es components)

O,BBIETTIVO: Trovare Famiglie di Componenti Fortemento Connessi

Componenti fortemente connesse

DFS: tempi di inizio e fine visita

Grafo trasposto MATWCE ADIACENZA TRASPOSTA

DFS del grafo trasposto partendo dai nodi in ordine decrescente di fine visita: componenti connesse

Insiemi di nodi massimali: definizione

- $hightharpoonup \operatorname{Sia} G = (V, E)$ un grafo orientato (non pesato)
- \triangleright Un insieme $S \subseteq V$ è massimale rispetto a una data proprietà P se la proprietà vale per S ma non vale più se aggiungiamo qualsiasi altro nodo a S
- \triangleright Sia P la seguente proprietà di $S \subseteq V$: per ogni coppia di nodi (u,v) appartenenti a S esiste una coppia di cammini $u \leadsto v \in v \leadsto u$ in G.

Problema delle componenti fortemente connesse: definizione

- $\,dash$ Input: un grafo orientato $\,G=(\,V,\,E)\,$
- $hd \triangleright \mathsf{Output}$: una partizione di V in insiemi massimali rispetto alla proprietà P (componenti fortemente connesse)
- ▷ Si noti che la soluzione è unica

DFS modificata

SCC-DFS(G)

1 for each vertex $u \in G.V$

 $u.visited = { t FALSE}$

 $u.\pi = \text{NIL}$

4

GROINATI

for each vertex $u \in G$. V sorted by decreasing finishing times time=02

if u.visited == FALSE

9

DFS-SINGLE-COMPONENT(G, u)

Componenti fortemente connesse

Strongly-Connected-Components (G)

- DFS(G) // compute for each node u its finishing time u.end $G^T = \text{Transpose}(G)$ (G)
- $SCC-DFS(G^T)$
- 4 return components computed by SCC-DFS at step 3

