Adatbázisok 1. (nappali/esti) Relációs adatmodell

Mi is az az adatmodell?

- Az adatmodell információ vagy adatok leírására szolgáló jelölés.
 A leírás részei:
 - az adatok struktúrája.
 - Az adatokon végezhető műveletek. A DBMS esetében általában kevesebb műveletet hajthatunk végre, mint egy általános célú programnyelv esetében. Itt azonban a kevesebb, több. A műveletek egyedi hatékony megvalósításán túl, több művelet - egy lekérdezés együttes optimalizációja is lehetővé válik.
 - Az adatra vonatkozó megszorítások. Pl. egy személyigazolvány-számhoz nem tartozhat két különböző személy.
 - Legfontosabb adatmodellek: relációs és féligstrukturált (XML).

Példa féligstrukturált adatra (XML)

```
<?xml version="1.0" encoding="UTF-8"?>
<név>Makk 7-es</név>
  <város>Budapest</város>
  <tulaj>Géza</tulaj>
  <telefon>+36-70-123-2345</telefon>
  <telefon>+36-70-123-2346</telefon>
</bár>
<bar><bar>típus="kocsma"></br>
 <név>Lórúgás</név>
 <város>Eger</város>
  <telefon>+36-30-451-1894</telefon>
</bár>
</xml>
```

Relációs adatmodell I.

• A relációs adatmodellben az adatokat kétdimenziós táblákban (relációkban) tároljuk.

Példa a fogalmak illusztrálására

Sör

név	ország
Soproni	Magyar
Kozel	Cseh
Dreher	Német

Bár

név	város	tulaj
Makk 7-es	Budapest	Géza
Lórúgás	Győr	Ica

Felszolgál

sör	bár	ár
Kozel	Makk 7-es	320
Dreher	Makk 7-es	400
Soproni	Lórúgás	280

Relációs adatmodell I.

- A relációs adatmodellben az adatokat kétdimenziós táblákban (relációkban) tároljuk.
- A reláció fejrészében találhatók az attribútumok.
- Minden attribútumhoz hozzátartozik egy értékkészlet.

Példa a fogalmak illusztrálására

Relációs adatmodell I.

- A relációs adatmodellben az adatokat kétdimenziós táblákban (relációkban) tároljuk.
- A reláció fejrészében találhatók az attribútumok.
- Minden attribútumhoz hozzátartozik egy értékkészlet.
- A reláció neve és a <u>reláció-attribútumok halmaza</u> együtt alkotják a <u>relációsémát</u>.
- A reláció attribútumainak sorrendje felcserélhető (nem változtatja meg a relációt)
- A séma egy adatmodellben általánosságban azt adja meg, hogy egy-egy adatelem milyen "formájú" adatokat tárol.

Példa a fogalmak illusztrálására

• Egy reláció sémája, pl.:

Soproni

Lórúgás

280

Relációs adatmodell II.

- Egy-egy reláció soroknak egy halmaza.
- Halmaz: tehát nem számít a sorrend, valamint egy elem csak egyszer szerepelhet.

Példa a fogalmak illusztrálására

• Egy reláció sémája, pl.:

Relációs adatmodell II.

- Egy-egy reláció soroknak egy halmaza.
- Halmaz: tehát nem számít a sorrend, valamint egy elem csak egyszer szerepelhet.
- A reláció sorainak halmazát előfordulásnak nevezzük.
- $\rho \subset X_1 \times ... \times X_n$ esetén az attribútumok értékkészlete adja az X_i alaphalmazokat (1 $\leq i \leq n$), egy-egy előfordulás pedig egy-egy relációnak "feleltethető meg".
- (A $X_1 \times ... \times X_n$ Descartes-szorzatnak az elemeinél az első érték az X_1 alaphalmazból jön, a második X_2 alaphalmazból stb. az összes lehetséges módon.)
- Az attribútumok sorrendje láttuk, hogy nem rögzített a relációsémában. Egy-egy előfordulás ábrázolása esetén viszont rögzítésre kerül.
- A lényeg, hogy a soroknál egy attribútum értékét az attribútum nevével azonosítjuk, és nem pedig azzal, hogy hányadik helyen szerepel a soron belül.

Példa a fogalmak illusztrálására

• Egy reláció sémája, pl.:

Relációs adatmodell III.

- Az adatbázis tulajdonképpen relációk halmaza. A megfelelő relációsémák halmaza adja az adatbázissémát, a hozzá tartozó előfordulások pedig az adatbázis-előfordulást.
- Egy sor elemeit mezőnek (komponens) nevezzük. Minden mező csak atomi értéket vehet fel. Léteznek bonyolultabb adatmodellek is, ahol egy mező értéke lehet halmaz, lista, tömb, rekord, referencia stb.
- Megjegyzés: a gyakorlatban sokszor megengedik a sorok ismétlődését, hiszen az ismétlődések megszüntetése nagyon időigényes.

Példa a fogalmak illusztrálására

• Egy reláció sémája, pl.:

Sör (név, ország). attribútumok

Az adatbázis sémája:

Sör (név, ország), Bár (név, város, tulaj), Felszolgál (sör, bár, ár).

Mire kell odafigyelni?

Mivel attribútumok halmazáról van szó, a Példa 1 és Példa 2 relációk nevüktől eltekintve azonosak.

Példa	1
· CIGG	_

Α	В	С
а	b	С
d	а	а
С	b	d

Példa 2

В	С	A
b	С	а
а	а	d
b	d	С

Mivel sorok halmazáról van szó, a Példa 1 és Példa 3 relációk nevüktől eltekintve azonosak.

Példa 3

Α	В	С
С	b	d
d	а	а
а	b	С

Példa 4

Α	В	С
С	b	d
С	b	d
а	b	С

Ebben a modellben a Példa 4 nem reláció.

Példa megszorításra

- Az attribútumok egy halmaza egy kulcsot alkot egy relációra nézve, ha a reláció bármely előfordulásában nincs két olyan sor, amelyek a kulcs összes attribútumának értékein megegyeznének.
- Ilyen egy attribútumú kulcs például a személyi igazolvány-szám vagy a TAJ szám.
- Megjegyzés: egy kulcs nem feltétlenül egy attribútumból áll. Például a bár táblában valószínűleg az a jó, ha a név és a város együtt alkotják a kulcsot.
- A kulcsot aláhúzás jelöli:

Bár (név, város, tulaj).

Vigyázat!

Ennél a konkrét előfordulásnál választhatnánk a nevet kulcsnak, sok esetben viszont ez nem megfelelő, hiszen több különböző ember is él ugyanazzal a névvel.

név	telefon
Grasshaus Ignác	20-234-4567
Menyhért Lipót	20-564-2345
Bereg Anna	20-345-1231

Feladat

 Hány különböző módon reprezentálható egy reláció-előfordulás (az attribútumok és sorok sorrendjét figyelembe véve), ha az előfordulásnak 4 attribútuma és 5 sora van?

Mit nevezünk algebrának?

- Egy algebra általában műveleteket és atomi operandusokat tartalmaz.
- Az algebra lehetővé teszi kifejezések megfogalmazását az atomi operandusokon és az algebrai kifejezéseken végzett műveletek alkalmazásával kapott relációkon.
- Fontos tehát, hogy minden művelet végeredménye reláció, amelyen további műveletek adhatók meg.
- A relációs algebra atomi operandusai a következők:
 - a relációkhoz reprezentáló változók
 - konstansok, amelyek véges relációt fejeznek ki

Relációs algebra (műveletek) I.

• Projekció (vetítés). Adott relációt vetít le az alsó indexben szereplő attribútumokra. Példa: $\Pi_{A, B}$ (R)

Α	В	С	Α	В
а	b	С	а	b
С	d	е	С	d
g	a	d	g	a

Relációs algebra (műveletek) II.

- Szelekció (kiválasztás). Kiválasztja az argumentumban szereplő reláció azon sorait, amelyek eleget tesznek az alsó indexben szereplő feltételnek.
- R(A₁, ..., A_n) reláció esetén a σ_F kiválasztás F feltétele a következőképpen épül fel:
 - atomi feltétel: $A_i \theta A_i$, $A_i \theta c$, ahol c konstans, $\theta \in \{=, <, >\}$,
 - ha B_1 , B_2 feltételek, akkor $\neg B_1$, $B_1 \land B_2$, $B_1 \lor B_2$ is feltételek.
 - ¬: logikai NEM, ∧: logikai ÉS, ∨: logikai VAGY
- Példa: $\sigma_{A=a \vee C=d}$ (R) (a \neq , \leq , \geq műveleteket ezentúl értelemszerűen használjuk)

Α	В	С	Α	В	С
а	b	С	а	b	С
С	d	е	g	a	d
g	а	d			

Relációs adatmodell (műveletek) III.

 Mivel sorok halmazáról van szó, így értelmezhetők a szokásos halmazműveletek: az unió, a metszet és a különbség. A műveletek alkalmazásának feltétele, hogy az operandusok attribútumai megegyezzenek és azonos sorrendben szerepeljenek. Példa: R – S:

Relációs algebra (műveletek) IV.

 A Descartes-szorzat is értelmezhető. Itt természetesen nem fontos az attribútumok egyenlősége. A két vagy több reláció azonos nevű attribútumait azonban meg kell különböztetni egymástól. Példa: R × S.

Relációs algebra (műveletek) V.

- Egyes esetekben szükség lehet egy adott reláció attribútumainak átnevezésére. A
 p_{S(C, D, E)} (R) az R(A, B, C) reláció helyett veszi az S relációt, melynek sorai
 megegyeznek R soraival, az attribútumai pedig rendre C, D, E.
- Ha az attribútumokat nem szeretnénk átnevezni, csak a relációt, ezt $\rho_S(R)$ -rel jelöljük.

Théta-összekapcsolás I.

- A gyakorlatban szinte kizárólag valamilyen összekapcsolásra visszavezethető műveletet használnak abban az esetben, amikor a lekérdezés megválaszolásához több táblából kell kigyűjteni az adatokat.
- Théta-összekapcsolás: R(A₁,...,A_n), S(B₁,...,B_m) sémájú táblák esetén:
 - $R |X|_{F}S = \sigma_{F} (R \times S)$ teljesül, itt F
 - elemi feltétel Ai ⊖ Bj, Ai ⊖ c, ahol ⊖ ∈ { =,<, >} és c konstans,
 - vagy összetett feltétel, azaz: ha B_1 , B_2 feltétel, akkor $\neg B_1$, $B_1 \land B_2$, $B_1 \lor B_2$ is feltétel.

Théta-összekapcsolás II.

 Egyen-összekapcsolás (equi join): ha a théta-összekapcsolásban a Θ helyén = szerepel.

Természetes összekapcsolás

- Természetes összekapcsolás: $R(A_1,...,A_n)$, $S(B_1,...,B_m)$ sémájú táblák esetén $R \mid X \mid S$ azon sorpárokat tartalmazza R-ből illetve S-ből, amelyek R és S azonos attribútumain megegyeznek.
- A természetes összekapcsolás asszociatív, azaz:
 (R₁ | X | R₂) | X | R₃ = R₁ | X | (R₂ | X | R₃), és kommutatív, azaz :

$$R_1 | X | R_2 = R_2 | X | R_1.$$

A	В	С		В	D	Α	В	С	D
а	b	С	X	b	е	а	b	С	е
d	d	g	^	d	r		d		
е	f	r							

Miért olyan gyakori?

Felszolgál

kocsma	sör
Makk 7-es	Dreher
Lórúgás	Kozel
Lórúgás	Gösser

Látogat

név	kocsma
Péter	Makk 7-es
Feri	Lórúgás

|X|

kocsma	sör	név
Makk 7-es	Dreher	Péter
Lórúgás	Kozel	Feri
Lórúgás	Gösser	Feri

A természetes összekapcsolás kifejezhető a többi alapművelettel:

$$R |X| S \equiv \Pi_L(\sigma_C (R \times S)),$$

itt: C a közös attribútumok egyenlőségét írja elő, L pedig csak egyszer veszi a közös attribútumokat.

• R |X| S ugyanazt jelöli, mint $R \bowtie S$

А В			
a1 b		В	С
al b	X	b	c1
a2 b		h	c2
a3 b		b	CZ

• R |X| S ugyanazt jelöli, mint $R \bowtie S$

Α	В		В	C	l	Α	В	С
a1	b	1371	В	С		a1	b	c1
a2	b	X	b	c1		a1	b	c2
a3	b		b	c2		a2	b	c1
						a2	b	c2
						a3	b	c1
						a3	b	c2

• R |X| S ugyanazt jelöli, mint $R \bowtie S$

Α	В		D		Α	В	С	
a1	b	LVI	В	C	a1	b	c1	
a2	b	X	b	c1	a1	b	c2	
a3	b		b	c2	a2	b	c1	3*2 9
					a2	b	c2	
					a3	b	c1	
					a3	b	c2	

В		D	С
h1		D	
ŊΙ	IXI	h2	c1
h1		DZ.	CI
N I		h2	c2
b1		.5 —	-
	Bb1b1b1	b1 X	b1 X b2 b2

A	В			
a1	b1		В	С
		X	b2	c1
a2	b1		b2	c2
a3	b1			

R

Α	В	С
а	b	С
С	d	е
g	а	d

R				$\sigma_{\!A}$ =	=a V (C=d	R)
	Α	В	С		Α	В	С
	а	b	С		а	b	С
	С	d	e		g	а	d
	g	а	d				

- A műveletek kifejezhetők a többi alapművelettel
- Például:
- Természetes összekapcsolás: R |X| S $\equiv \pi_L(\sigma_C(R \times S))$, itt: C a közös attribútumok egyenlőségét írja elő, L pedig csak egyszer veszi a közös attribútumokat.
- Théta-összekapcsolás: R $|X|_F S = \sigma_F (R \times S)$ teljesül, itt F valamilyen feltétel

• Mivel sorok halmazáról van szó, így értelmezhetők a szokásos halmazműveletek: az unió, a metszet és a különbség. A műveletek alkalmazásának feltétele, hogy az operandusok attribútumai megegyezzenek és azonos sorrendben szerepeljenek.

R $\pi_{A,B,C}(R)$

Α	В	С	D
а	b	С	t
С	d	е	V
g	а	d	u

Α	В	С
а	b	С
С	d	е
g	а	d

Α	В	С
а	b	С
t	u	V
С	d	е
g	a	d

$$\pi_{A,B,C}(R) - S$$

Egy relációkon értelmezett operátor akkor <u>monoton</u>, ha bármelyik argumentumrelációhoz egy újabb sort hozzávéve az eredmény tartalmazza az összes olyan sort, amelyet addig tartalmazott és esetleg újabb sorokat is.

Α	В	С
а	b	С
С	d	е
g	a	d

S

Α	В	C
t	u	V

$$\pi_{A,B,C}(R) - S$$

A	В	С
а	b	С
С	d	е
g	а	d

A	В	С
а	b	С
С	d	е
g	а	d

A	В	С
t	u	V
g	a	d

Α	В	С
а	b	С
С	d	e

R

A	В	С
а	b	С
С	d	е
g	а	d

S

Α	В	С
t	u	٧
g	a	d

 $R \cap S$

A	В	С
g	a	d

S

A	В	С
t	u	V
g	а	d

Relációkra vonatkozó megszorítások

- A megszorításokat kétféleképpen fejezhetjük ki (legyenek R és S relációs algebrai kifejezések):
 - R = Ø, azaz R-nek üresnek kell lennie,
 - R ⊆ S, azaz R eredményének minden sorának benne kell lennie S eredményében.
- A két megszorítás kifejezőerő szempontjából azonos:
 - $R \subseteq S$ így is kifejezhető: $R S \subseteq \emptyset$,
 - míg R = \emptyset , R $\subseteq \emptyset$ alakban is írható.

Hivatkozási épség megszorítás

- Hivatkozási épség megszorítás: ha egy érték megjelenik valahol egy környezetben, akkor ugyanez az érték egy másik, az előzővel összefüggő környezetben is meg kell, hogy jelenjen.
- Példa: a Sör(név, ország), Felszolgál(sör, bár, ár) táblák esetén megköveteljük, hogy csak olyan sörök szerepeljenek a Felszolgál táblában, amelyek a Sör táblában is szerepelnek.
- A megszorítás: $\Pi_{\text{s\"or}}$ (Felszolgál) $\subseteq \Pi_{\text{n\'ev}}$ (S\"or).
- Általában: $\Pi_A(R) \subseteq \Pi_B(S)$.

Kulcs és egyéb megszorítások

• Példa: a Bár(név, város, tulaj) relációban a (név, város) attribútumhalmaz kulcs.

$$\sigma_{B1.\text{n\'ev}=B2.\text{n\'ev} \land B1.\text{v\'aros}=B2.\text{v\'aros} \land B1.\text{tulaj} \neq B2.\text{tulaj}} (B_1 \times B_2) = \emptyset$$

Tegyük fel, hogy csak a budapesti vagy madridi bárokkal szeretnénk foglalkozni.
 Ennek kifejezése:

$$\sigma_{\text{(város} \neq 'Budapest')} \wedge (\text{város} \neq 'Madrid')} (B) = \emptyset.$$