§4. Бесконечно малые и бесконечно большие последовательности и их свойства.

Определение 4.1. Сходящаяся последовательность $\{x_n\}$ называется бесконечно малой, если $\lim_{n\to\infty}x_n=0$.

Например, последовательность $\{q^n\}$, где |q|<1, – бесконечно малая (см. пример 2.1).

Замечание 4.1. Последовательности $\{x_n\}$ и $\{|x_n|\}$ являются бесконечно малыми одновременно.

- **Теорема 4.1** (необходимое и достаточное условие сходимости числовой последовательности). Для того чтобы число a было пределом последовательности $\{x_n\}$ при $n \to \infty$, необходимо и достаточно, чтобы для общего члена этой последовательности x_n выполнялось равенство: $x_n = a + \alpha_n$, где $\alpha_n \to 0$ при $n \to \infty$.
- ► Необходимость. Пусть $\exists \lim_{n\to\infty} x_n = a$ и $\alpha_n = x_n a$. Так как $x_n \to a$ при $n \to \infty$, то по теореме 3.5 $\alpha_n \to 0$ при $n \to \infty$.

Достаточность. Предположим теперь, что выполняется равенство $x_n = a + \alpha_n$, где $\alpha_n \to 0$ при $n \to \infty$. Тогда в силу теоремы 3.5 ∃ $\lim_{n \to \infty} x_n = a$. ◀

Так, $x_n = \frac{2 \cdot 6^n + 3^n}{6^n} \to 2$ при $n \to \infty$, поскольку x_n можно представить в виде: $x_n = 2 + 3^n/6^n = 2 + (1/2)^n$, где $(1/2)^n \to 0$ при $n \to \infty$ (пример 2.1).

Арифметические операции

над бесконечно малыми последовательностями

Теорема 4.2. Сумма и произведение конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Данная теорема является следствием из теоремы 3.5.

- **Теорема 4.3.** Произведение бесконечно малой и ограниченной последовательностей бесконечно малая последовательность.
- ightharpoonup Пусть x_n бесконечно малая последовательность, а y_n ограниченная последовательность. Для второй из них можно найти положительное число Mтакое, что неравенство $|y_n| < M$ будет справедливо для $\forall n \in N$ (определение 1.3). Возьмём произвольное положительное число ϵ . Поскольку $\lim_{n \to \infty} x_n = 0$, то $N(\varepsilon)$ существует натуральное число такое, неравенство ЧТО $\in |x_n - 0| = |x_n| < \frac{\varepsilon}{M}$ выполняется $n > N(\varepsilon)$. Тогда ДЛЯ $|x_n y_n - 0| = |x_n| \cdot |y_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon$, а это, в силу определения предела числовой последовательности (определение 2.1), и $\lim_{n\to\infty} x_n y_n = 0. \blacktriangleleft$

Пример 4.1. Найти $\lim_{n\to\infty} (\sin n^2)/2^n$.

▶ $(\sin n^2)/2^n = (1/2^n)\sin n^2 = (1/2)^n\sin n^2 \to 0$ при $n \to \infty$ в силу теоремы 4.3, ибо $(1/2)^n \to 0$ при $n \to \infty$ (см. пример 2.1), а последовательность $\{\sin n^2\}$ ограничена, поскольку $|\sin n^2| \le 1$ при $\forall n \in \mathbb{N}$. ◀

Определение 4.2. Числовая последовательность $\{x_n\}$ называется бесконечно большой, если для любого M>0 можно найти номер N(M) такой, что при n>N(M) выполняется неравенство $|x_n|>M$.

Обозначение: $\lim_{n\to\infty} x_n = \infty$ или $x_n\to\infty$ при $n\to\infty$.

Замечание 4.2. Бесконечно большая последовательность является расходящейся, ибо она не имеет конечного предела в смысле определения 2.1.

В символической форме определение 4.2 можно записать следующим образом: $\lim_{n\to\infty}x_n=\infty \Leftrightarrow \forall M>0 \ \exists N(M)\in N: \ n>N(M)\Longrightarrow |\ x_n|>M$.

Замечание 4.3. Для бесконечно больших последовательностей рассматриваются два частных случая: $\lim_{n\to\infty} x_n = +\infty$ и $\lim_{n\to\infty} x_n = -\infty$.

Соответствующие им определения в символической форме имеют вид:

$$\lim_{n\to\infty} x_n = +\infty \iff \forall M>0 \ \exists N(M) \in \mathbb{N}: \ n>N(M) \Longrightarrow x_n>M \ ,$$

$$\lim_{n\to\infty} x_n = -\infty \iff \forall M>0 \ \exists N(M) \in \mathbb{N}: \ n>N(M) \Longrightarrow x_n<-M \ .$$

Пример 4.2. Показать, что $\lim_{n\to\infty} n^p = +\infty$ при $\forall p > 0$.

▶ Зададим $\forall M > 0$. Найдём номер N(M) такой, что при n > N(M) выполняется неравенство $n^p > M$. Разрешая это неравенство относительно n, имеем $n > M^{1/p}$, откуда $N(M) = [M^{1/p}]$ — целая часть числа $M^{1/p}$. \blacktriangleleft

Теорема 4.4 (о связи бесконечно малых и бесконечно больших последовательностей). Пусть дана последовательность $\{x_n\}$, причём $x_n \neq 0$ при $\forall n \in \mathbb{N}$. Тогда: 1) если $x_n \to 0$ при $n \to \infty$, то $1/x_n \to \infty$ при $n \to \infty$;

- 2) если $x_n \to \infty$ при $n \to \infty$, то $1/x_n \to 0$ при $n \to \infty$.
- ▶1) Пусть $x_n \to 0$ при $n \to \infty$. Возьмём произвольное положительное число M и рассмотрим число $\varepsilon = 1/M$. Из определения предела числовой последовательности (определение 2.1) следует, что для данного ε можно найти натуральное число $N(\varepsilon) = N(1/M) = N_1(M)$ такое, что для $n > N(\varepsilon)$ будет выполняться неравенство: $|x_n| < \varepsilon = 1/M$, но тогда для значений $n > N_1(M) = N(\varepsilon)$ будет выполняется неравенство $|1/x_n| > 1/\varepsilon = M$, а это означает согласно определению бесконечно большой последовательности (определение 4.2), что $1/x_n \to \infty$ при $n \to \infty$.
- 2) Пусть $x_n \to \infty$ при $n \to \infty$. Возьмём произвольное положительное число ϵ и рассмотрим число $M = 1/\epsilon$. Для выбранного числа M в силу определения бесконечно большой последовательности (определение 4.2)

можно найти число $N(M) = N(1/\epsilon) = N_1(\epsilon)$ такое, что для n > N(M) будет выполняться неравенство: $|x_n| > M = 1/\epsilon$, тогда для значений $n > N_1(\epsilon) = N(M)$ будет выполняется неравенство $|1/x_n| < 1/M = \epsilon$, а это, в соответствии с определением предела числовой последовательности (определение 2.1), и означает, что $1/x_n \to 0$ при $n \to \infty$.

Пример 4.3. Показать, что $\lim_{n\to\infty} 1/n^p = 0$ для $\forall p > 0$.

▶ $\lim_{n\to\infty} n^p = +\infty$ при $\forall p > 0$ (пример 4.2), поэтому в силу теоремы 4.4 $\lim_{n\to\infty} 1/n^p = 0$ для $\forall p > 0$. ◀

Замечание 4.4. Примеры 4.2, 4.3 приводят к следующему обобщению:

$$\lim_{n \to \infty} n^p = \begin{cases} +\infty, \ p > 0, \\ 1, \ p = 0, \\ 0, \ p < 0. \end{cases}$$

Арифметические операции над бесконечно большими последовательностями

Теорема 4.5. Если $x_n \to \pm \infty$, а $y_n \to \pm \infty$ при $n \to \infty$, либо последовательность $\{y_n\}$ ограничена, то и $x_n + y_n \to \pm \infty$ при $n \to \infty$ (везде берётся либо знак «+», либо знак «-»).

Теорема 4.6. Если $x_n\to\infty$, а $y_n\to\infty$ или $y_n\to a\neq 0$ при $n\to\infty$, то и $x_ny_n\to\infty$ при $n\to\infty$.

▶Докажем теорему 4.5 для случая $x_n \to +\infty$ и $y_n \to +\infty$. Выберем произвольное число M>0. Из замечания 4.2 следует, что существуют числа $N_1(M)$ и $N_2(M)$ такие, что для $n>N_1(M)$ верно неравенство $x_n>M/2$, а для $n>N_2(M)$ — неравенство $y_n>M/2$. Пусть $N(M)=\max\{N_1(M), N_2(M)\}$. Тогда для n>N(M) имеем: $x_n+y_n>M$, а это и означает, что $x_n+y_n\to +\infty$ при $n\to +\infty$. Доказательство теоремы 4.6 приведено, например, в [1]. \blacktriangleleft

Пример 4.4. Найти $\lim_{n\to\infty} (n^2 + \sqrt{n})$.

►
$$\lim_{n\to\infty} n^2 = \lim_{n\to\infty} \sqrt{n} = +\infty$$
 (пример 4.2), $\lim_{n\to\infty} (n^2 + \sqrt{n}) = +\infty$ (теорема 4.5). ◀

Замечание 4.4. Арифметические действия с бесконечно малыми и бесконечно большими последовательностями могут привести к случаям, когда неприменимы теоремы 3.5, 4.5 и 4.6. Так, при вычислении $\lim_{n\to\infty}(x_n-y_n)$ неприменима теорема 4.5, если $x_n,y_n\to +\infty,-\infty$. В этом случае говорят, что выражение x_n-y_n приводит к неопределённости вида $\infty-\infty$, а отыскание его предела называют раскрытием неопределённости. Частное $\frac{x_n}{y_n}$ приводит к неопределённости $\frac{\infty}{y_n}$ приводит к неопределённости $\frac{\infty}{y_n}$, если $x_n\to\infty$, $y_n\to\infty$ при $n\to\infty$. В главе 3 будут рассмотрены другие типы

неопределённостей.

В случае неопределённости одно знание пределов последовательностей при $n\to\infty$ не позволяет судить о поведении выражения, составленного из общих членов этих последовательностей, необходимо исследовать само это выражение при $n\to\infty$. Например, $x_n=n\to+\infty$, $y_n=n^2\to+\infty$, $\frac{x_n}{y_n}=\frac{1}{n}\to 0$ при $n\to\infty$, а в случае, если $x_n=n^2\to+\infty$, $y_n=n\to+\infty$, $\frac{x_n}{y_n}=n\to+\infty$ при $n\to\infty$.

Пример 4.5. Найти $\lim_{n\to\infty} \frac{4^n+3}{2^n-1}$.

▶Выражение под знаком предела при $n \to \infty$ – неопределённость $\frac{\infty}{\infty}$. Оба члена дроби под знаком предела поделим на 2^n , получим: $\frac{4^n+3}{2^n-1} = \frac{2^n+3/2^n}{1-1/2^n} = (2^n+3(1/2)^n)\frac{1}{1-(1/2)^n}.$ Так как $\lim_{n\to\infty} (2^n+3(1/2)^n) = +\infty$ (теорема 4.5), а $\lim_{n\to\infty} \frac{1}{1-(1/2)^n} = 1$ (теорема 3.5), то $\lim_{n\to\infty} \frac{4^n+3}{2^n-1} = +\infty$ (теорема 4.6). ◀

Пример 4.6. Найти $\lim_{n\to\infty} (n^2 - \sqrt{n})$.

▶ Выражение под знаком предела при $n \to \infty$ – неопределённость $\infty - \infty$. Имеем: $n^2 - \sqrt{n} = n^2(1 - n^{-3/2})$. Так как $\lim_{n \to \infty} n^2 = +\infty$, $\lim_{n \to \infty} (1 - n^{-3/2}) = 1$ (пример 4.2, пример 4.3 и теорема 3.5), то $\lim_{n \to \infty} (n^2 - \sqrt{n}) = +\infty$ (теорема 4.6). ◀