FVI Ecological Score – Implementable Formulas Using Available Data

This guide maps the exact datasets you uploaded to concrete, operational formulas for the Ecological Score. Where a metric requires unavailable attributes (e.g., spatial overlays), I provide a minimal, clearly-labeled manual input that you can fill now and replace later with GIS outputs.

Datasets detected

- global_mining_area_per_country_v1.csv columns: COUNTRY_NAME, ISO3_CODE, AREA, N_FEATURES
- New_Deforestation_Fronts_wgs[1].csv columns: X, Y, Name, Notes, ID_no, Area_ha
- coal-ash-sites_current.xlsx appears to contain reference/metadata; site-level sheet may be missing in this copy
- Global-Coal-Plant-Tracker-January-2025.xlsx sheets: About, Units, Proposal summaries, CO2 parameters (includes Country/Area, Fuel type, Capacity (MW), Net generation (GWh/yr), gCO2/kWh by coal grade, Annual CO2)

Global conventions

- Use a single reference year (e.g., 2023) when combining with time series. Aggregate plant rows to country level where needed.
- Keys: ISO■3 country codes; for GCPT plant data, use Country/Area and sum by country.
- Normalization: for composite scoring later, normalize each submetric to 0–100 (higher = worse) via percentile ranks or min–max and winsorize outliers.

ECOLOGICAL 1 — Land Disturbance Intensity (Mining)

Goal: Quantify land disturbance from coal mining using country mining area and scale by activity.

Datasets & fields

- global_mining_area_per_country_v1.csv → fields: ISO3_CODE, COUNTRY_NAME, AREA (km² or ha; confirm), N_FEATURES (# mining polygons).
- Global-Coal-Plant-Tracker-January-2025.xlsx → sheet 'CO2 parameters': fields: Country/Area, Capacity (MW) and/or Net generation (GWh/year).

Transforms

- Aggregate GCPT plants to country totals: Capacity_GW[c] = Σ Capacity(MW)/1000; Gen_GWh[c] = Σ Net generation (GWh/yr).
- Ensure AREA in common units (convert ha→km² if needed: km² = ha / 100).

Formulas (math)

- LandIntensity_cap[c] = AREA[c] / Capacity_GW[c] (km² per GW)
- LandIntensity_gen[c] = AREA[c] / Gen_GWh[c] (km² per GWh)

Excel-style (conceptual)

= AREA[c] / (SUMIFS(CapacityMW, Country,c)/1000) or = AREA[c] / SUMIFS(NetGenGWh, Country,c)

ECOLOGICAL 2 — Mining Site Density (Pressure Proxy)

Goal: Density of mining features relative to coal activity.

Datasets & fields

- $\bullet \ global_mining_area_per_country_v1.csv \rightarrow N_FEATURES. \\$
- GCPT 'CO2 parameters' → Capacity (MW) or Net generation (GWh/yr).

Formula (math)

• SiteDensity_cap[c] = N_FEATURES[c] / Capacity_GW[c] (sites per GW)

ECOLOGICAL 3 — Deforestation Front Exposure (with minimal manual mapping)

Goal: Exposure of coal activity to active deforestation fronts.

Datasets & fields

- New_Deforestation_Fronts_wgs[1].csv → fields: Name, Area_ha (front polygon areas).
- GCPT 'CO2 parameters' → Country/Area, Capacity (MW) or Net generation (GWh/yr).

Minimal manual input

• Create deforestation_fronts_country.csv with: Name, Country (ISO3). Each front can map to multiple countries if it spans borders.

Transforms

- Join fronts \rightarrow countries; compute FrontArea_byCountry[c] = Σ Area_ha for fronts mapped to c.
- Compute ActivityWeight[c] = Capacity_GW[c] (or Gen_GWh[c]).

Formula (math)

• DeforestExposure[c] = (FrontArea_byCountry[c] / Σ_c FrontArea_byCountry[c]) × (ActivityWeight[c] / Σ_c ActivityWeight[c])

Excel-style (conceptual)

```
= (FrontArea_c/SUM(FrontArea_*)) * (CapacityGW_c/SUM(CapacityGW_*))
```

Note: This yields a 0–1 share. Rescale to 0–100 for scoring. Replace manual mapping later with a GIS overlay of plant/mine buffers with deforestation polygons.

ECOLOGICAL 4 — Coal Ash Residuals Risk (Proxy)

Goal: Relative risk from coal ash ponds/landfills.

Datasets & fields

coal-ash-sites_current.xlsx → if a site sheet exists: fields should include Country/State, Site name, Status/Incidents.

If site sheet not present

• Create coal_ash_sites_by_country.csv: Country (ISO3), Sites_count, Incidents_count.

With GCPT

• Capacity_GW[c] or Gen_GWh[c] as activity denominator.

Formula (math)

```
• AshRisk[c] = ( Sites_count[c] + w_incident × Incidents_count[c] ) / Capacity_GW[c]
```

Where w_incident > 1 (e.g., 5) to up weight incident histories.

ECOLOGICAL 5 — Fuel Ecological Penalty (Grade**■**based Proxy)

Goal: Penalize countries whose coal plants predominantly burn lignite/low■rank coal (associated with higher local pollutants and land footprints).

Datasets & fields

GCPT 'CO2 parameters' → fields: Fuel type, Capacity (MW) or Net generation (GWh/yr).

Transforms

- Define penalty weights: w_lignite=1.2, w_subbit=1.1, w_bituminous=1.0 (tuneable).
- Compute country∎level weighted penalty: FuelPenalty[c] = Σ_i (w_fuel(i) × Activity_i) / Σ_i Activity_i

Formula (math)

• FuelPenalty[c] \in [1.0, 1.2]; map to 0-100 by linear scaling for the composite.

Composite assembly

Normalize each submetric to 0–100 (higher=worse), winsorize outliers, then combine with weights (e.g., Land 30%, Site density 15%, Deforestation 25%, Ash risk 15%, Fuel penalty 15%).

These are fully operational with the files above (plus two tiny manual tables). As you add GIS layers (protected areas, water stress), we can replace proxies with direct measurements.