ESTRUCTURA DE LA MATÈRIA I TERMODINÀMICA

Alfredo Hernández Cavieres 2012-2013

Aquesta obra està subjecta a una llicència de Reconeixement-NoComercial-CompartirIgual 4.0 Internacional de Creative Commons.

Índex 4

Índex

1	Constants i unitats importants	6
\mathbf{E}	estructura de la matèria	8
2	Els inicis de la física quàntica	10
	2.1 Estudis previs	10
	2.2 Max Planck, inici de la física quàntica	11
	2.3 Albert Einstein	11
	2.4 Walther Nernst	11
	2.5 Efecte Compton	11
	2.6 Louis de Broglie	11
	2.7 Dualitat ona-corpuscle	11
3	Física atòmica	12
	3.1 Apartat 1	12
	3.2 Apartat 2	12
	3.3 Apartat 3	12
	3.4 Apartat 4	12
	3.5 Apartat 5	12
4	La taula periòdica	14
	4.1 Principi d'exclusió de Pauli	14
	4.2 Equació de Schrödinger (1926)	14
5	Física nuclear	16
	5.1 Comparació entre física atòmica i física nuclear	16
	5.2 Descripció dels nuclis	16
	5.3 Força hadrònica	17
\mathbf{T}	Permodinàmica	18
6	Tema 1	20
Ü	6.1 Apartat 1	20
	6.2 Apartat 2	20
	6.3 Apartat 3	20
	6.4 Apartat 4	20
	6.5 Apartat 5	20
7	Tema 2	22
	7.1 Apartat 1	22

7.2	Apartat 2																		22
7.3	Apartat 3																		22
7.4	Apartat 4																		22
7.5	Apartat 5																		22

1 Constants I unitats importants

Equivalència Joule-Electronvolt

 $1 \, \text{eV} = 1.602 \times 10^{-19} \, \text{J}$

CONSTANT DELS GASOS IDEALS

 $R = 8.31446\,\mathrm{J\,K^{-1}\,mol^{-1}}$

 $R = 1.98588 / \mathcal{K} / \text{mag}$

 $R = 0.08206 \,\mathrm{atm}\,\mathrm{L}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$

 $R = 8.6173 \times 10^{19} \, \mathrm{eV} \, \mathrm{K}^{-1} \, \mathrm{mol}^{-1}$

CONSTANT DE BOLTZMANN

$$k_B = \frac{R}{N_A} \tag{1.1}$$

 $k_B = 1.3807 \times 10^{-23} \,\mathrm{J\,K^{-1}}$ $k_B = 8.6173 \times 10^{-5} \,\mathrm{eV\,K^{-1}}$

Constant de Planck $(h \mid \hbar)$

$$\hbar = \frac{h}{2\pi} \tag{1.2}$$

 $h = 6.626 \times 10^{-34} \,\mathrm{J\,s}$

 $h = 4.136 \times 10^{-15} \, \mathrm{eV \, s}$

 $\hbar = 1.054 \times 10^{-34} \,\mathrm{J\,s}$

 $\hbar = 6.582 \times 10^{-16} \, \mathrm{eV \, s}$

CONSTANT DE STEFAN-BOLTZMANN

$$\sigma = \frac{\pi^2 k_B^4}{60c^2 \hbar^3} \tag{1.3}$$

 $\sigma = 5.6704 \times 10^{-8} \, \mathrm{J} \, \mathrm{s}^{-1} \, \mathrm{m}^{-2} \, \mathrm{K}^{-4}$

 $\sigma = 3.5392 \times 10^{11} \, \mathrm{eV \, s^{-1} \, m^{-2} \, K^{-4}}$

CONSTANT DE COULOMB

$$k = \frac{1}{4\pi\varepsilon_0}; c_0^2 = \frac{1}{\mu_0\varepsilon_0} \Rightarrow k = \frac{c_0^2\mu_0}{4\pi}$$
 (1.4)

$$k = 8.9876 \times 10^{9} \, \mathrm{J} \, \mathrm{m} \, \mathrm{C}^{-2}$$

$$k = 5.6096 \times 10^{28} \, \mathrm{eV} \, \mathrm{m} \, \mathrm{C}^{-2}$$

Unitats de massa atòmica

$$1 \,\mathrm{u} \equiv \frac{1}{2} M \left({}_{12}^{12} C \right) \tag{1.5}$$

$$1 \mathrm{u} = 1.660 \, 54 \times 10^{-27} \, \mathrm{kg}$$

Massa d'un electró

$$m_e = 9.109 38 \times 10^{-31} \text{ kg}$$

 $m_e = 5.109 99 \times 10^5 \text{ eV/c}^2$
 $m_e = 5.485 79 \times 10^{-4} \text{ u}$

Massa dels protons i els neutrons

$$m_p = 1.007\,825\,\mathrm{u}$$

2 Els inicis de la física quàntica

2.1 Estudis previs

Gustav Kirchhoff, 1859

WIP: GRAFIC BONIC

Figura 2.1: Gràfic il·lustratiu

Joseph von Fraunhofer, 1830

Els seus estudis suposen un gran canvi filosòfic, ja que permeten saber de què estan fetes les estrelles.

WIP: GRAFIC BONIC

Figura 2.2: Gràfic il·lustratiu

James Clerk Maxell, 1865: Teoria electromagnètica de la llum

$$p = \frac{1}{3} \frac{U}{V} \equiv \text{pressi\'o}$$
 (2.1)

STEFAN-BOLTZMANN, 1879

$$q = \frac{\dot{Q}}{A} = \varepsilon \sigma T^4 \tag{2.2}$$

- Stefan arriba a la fórmula experimentalment.
- Boltzmann relaciona l'exponent 4 amb p. $\begin{cases} \text{si } p = \frac{1}{3} \frac{U}{V} \Rightarrow q \approx T^{\alpha+1} \\ q = \frac{U}{V} \frac{c}{4} \end{cases}$

WILHELM WIEN, 1896

WIP: GRAFIC BONIC

Figura 2.3: Gràfic il·lustratiu

- 2.2 Max Planck, inici de la física quàntica
- 2.3 Albert Einstein
- 2.4 Walther Nernst
- 2.5 Efecte Compton
- 2.6 Louis de Broglie

Longitut d'ona de de Broglie, 1923

Hem vist que la llum ona es comporta també com a corpuscle. Podria ser que els corpuscles es comportin també com a ona? De Broglie suposa que sí i proposa:

$$\lambda = \frac{h}{p} = \frac{h}{mv} \tag{2.3}$$

Comprovació experimental amb electrons: Davisson i Germer, 1926

WIP: GRAFIC BONIC

Figura 2.4: Gràfic il·lustratiu

2.7 Dualitat ona-corpuscle

Principi de complementaritat (Bohr, 1926) La llum no és ni ona ni partícula, sinó que es manifesta com a ona o com a partícula.

Conseqüències de la dualitat

3 Física atòmica 12

3 FÍSICA ATÒMICA

- 3.1 Apartat 1
- 3.2 Apartat 2
- 3.3 Apartat 3
- 3.4 Apartat 4
- 3.5 Apartat 5

4 La taula periòdica

Ordenem els elements químics segons el núm. atòmic \Rightarrow posa en manifest una repetició periòdica de les propietats físico-químiques dels elements.

4.1 Principi d'exclusió de Pauli

En un àtom no pot haver dos electrons amb el mateix conjunt de nombres quàntics (n, l, m_z, s) .

WIP: GRAFIC BONIC

Figura 4.1: Gràfic il·lustratiu

Les propietats químiques estan relacionades amb la capa exterior de l'àtom.

4.2 Equació de Schrödinger (1926)

Laplaciana

$$E\Psi(\vec{r}) = \frac{-\hbar^2}{2m} \nabla^2 \Psi(\vec{r}) + V(r)\Psi(\vec{r})$$
(4.1)

COORDENADES ESFÈRIQUES

$$E\Psi = -\frac{\hbar^2}{2m} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r \frac{\partial \Psi}{\partial r} \right) + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial}{\partial \theta} \sin \theta \frac{\partial \Psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Psi}{\partial \varphi^2} \right] - \frac{kZe^2}{r} \Psi$$
(4.2)

$$\Psi(r,\theta,\varphi) = (r)Y_{l,m_z}(\theta,\varphi) \Rightarrow E_{n,l,m_z}$$
(4.3)

5 Física nuclear 16

5 FÍSICA NUCLEAR

5.1 Comparació entre física atòmica i física nuclear

DIFERÈNCIES

- El radi del nucli es unes 10^4 vegades més petit que el radi de l'àtom \Rightarrow Enuclears $\propto 10^8$ Eatòmiques.
- Els protagonistes de la física atòmica són els electrons; els de la física nuclear són els protons i neutrons (1932: descobriment del neutró).
- La força rellevant en la física atòmica és la força electromagnètica; les de la física nuclear són la força hadrònica (nuclear forta) i la força nuclear feble.

Analogies

- Són sistemes típicament quàntics: nivells d'energia i salts entre nivells.
- Protons i neutrons tenen espin ¹/₂ (com els electrons) i satisfan el principi d'exclusió de Pauli.

5.2 Descripció dels nuclis

$$Z \equiv \text{nre. de protons.}$$
 $N \equiv \text{nre. de neutrons.}$
 $A \equiv \text{nre. màssic} = \text{nre. de nucleons.}$
(5.1)

Representació d'un element químic X

$$_{Z}^{A}X \tag{5.2}$$

ISÒTOPS Elements amb mateix Z i diferent N. La majoria d'isòtops d'un element són inestables. (e.g., ${}_{2}^{3}He$ (2p1n); ${}_{2}^{4}He$ (2p2n)).

WIP: GRAFIC BONIC

Figura 5.1: Gràfic il·lustratiu

5.3 Força hadrònica

Recordem que per a dos protons, l'energia potencial electrostàtica (repulsió) val: $U_d = \frac{ke^2}{r}$; $r \downarrow \Rightarrow U_d \uparrow$.

WIP: GRAFIC BONIC

Figura 5.2: Gràfic il·lustratiu

ENERGIA D'ENLLAÇ DELS NUCLIS

- E necessària per descompondre un nucli en els seus components (p i n) per separat.
- La força hadrònica és la mateixa: pp, nn i pn.
- Relacionada amb el defecte de massa dels nuclis. $\Delta m = \sum_i m_i M_{total} = Zmp + Nm_n M_{total}$.

$$E_{enlla\varsigma} = \Delta mc^2$$
 i, en concret, $1 uc^2 = 931.5 \,\text{MeV}$
$$\frac{E_{enlla\varsigma}}{A} = E_{enlla\varsigma} \,\text{per nucle\'o}. \tag{5.3}$$

WIP: GRAFIC BONIC

Figura 5.3: Gràfic il·lustratiu

NIVELLS D'ENERGIA

WIP: GRAFIC BONIC

Figura 5.4: Nivells atòmics d'energia

TERMODINÀMICA

6 Tema 1 20

- 6 Tema 1
- 6.1 Apartat 1
- 6.2 Apartat 2
- 6.3 Apartat 3
- 6.4 Apartat 4
- 6.5 Apartat 5

7 Tema 2 22

- 7 Tema 2
- 7.1 Apartat 1
- 7.2 Apartat 2
- 7.3 Apartat 3
- 7.4 Apartat 4
- 7.5 Apartat 5