1 Canoe Supplement

Figure 1: Illustration of shunting procedure. This technique for moving upwind involves turning the canoe at a right angle from the prevailing wind, manually lifting the tack out of its fore socket, and carefully walking it to the other end of the canoe to insert in an equivalent socket in the aft, reversing the direction of sailing.

Figure 2: Tongan dugout with outrigger. Two booms and indirect U-shaped stanchions connect main hull to outrigger float. Low freeboard (distance between waterline and gunwale) and lack of washstrakes (added planks along sides to keep the sea out) make this canoe more vulnerable to swamping compared to that in Figure 3. *Photo by A.V. Bell.*

2 Model Selection Methods

The deviance information criterion is

$$DIC = -2\overline{\log(\mathcal{L}(\widehat{\theta}))} + 2p_D$$

where $\overline{\log(\mathcal{L}(\widehat{\theta}))}$ is the average deviance over 100,000 simulations using WinBUGS and p_D is the effective number of parameters. The relative distances, rather than absolute magnitudes, of the DIC scores of the models are the basis for comparing them, and so it is common to report each models Δ DIC relative to the top model (with the lowest DIC score). Among all R models used in the model comparison, DIC weights are calculating for model i with associated Δ DIC d_i via

$$w_i = \frac{\exp(-0.5d_i)}{\sum_{r=1}^{R} exp(-0.5d_r)}$$

Rather than report the parameter estimates from a particular model, we can use the DIC weights and parameter estimates of all models to create model-weighted estimates (Burnham and Anderson, 2002). Specifically, the vector of model-weighted estimates across a set of R models is given by

$$\widehat{\overline{\theta}} = \sum_{i=1}^{R} w_i \widehat{\theta}_i$$

Figure 3: Micronesian outrigger. Photo by Kathryn Demps.

where θ_i is the estimate of parameter θ for model i, w_i is the DIC weight for model i, and $\widehat{\theta}$ is the model-averaged estimate of θ . Model-weighted variance is calculated in a similar way, save for an additional term to account for the uncertainty among models (Burham and Anderson, 2002), yielding

$$\widehat{var}(\widehat{\overline{\theta}}) = \left[\sum_{i=1}^{R} w_i \sqrt{\widehat{var}(\widehat{\theta}_i|g_i) + (\widehat{\theta}_i - \widehat{\overline{\theta}})^2} \right]^2$$

3 Data Reprocessing

Our dataset classified 65 distinct canoe traits based on descriptions in Haddon and Hornell's *Canoes of Oceania*. Beginning with Rogers and Ehrlich's (2008) 134-trait dataset, we excluded or merged traits which were most likely to be affected by recording biases, practical dependencies and coding errors.

For example, although encyclopedic in their treatment, Haddon and Hornell employ an inconsistent use of certain terms, such as *sennit* and *coir*, whose distinctiveness is critical to traits coded as OAH12, OAH13 and DAH11. In such cases, traits were merged to eliminate the potential for artificial distinction.

Additionally, since many of the descriptions in *Canoes of Oceania* were culled by Haddon and Hornell from a hodgepodge of accounts by European explorers, missionaries, merchants, and scholars over a period of several hundred years, the potential for simple omission of a canoe trait actually present on an island group is considerable. That Fijian double canoes ranged from 25 to 72 feet in length, 97 to 120 feet in length, but not in-between suggests the presence of a ethnographic sampling bias, rather than some actual design preference or constraint.

In some cases, the supplementary table in Rogers and Ehrlich (2008) is clearly missing data; use of Hawaiian canoes for fishing was coded as "absent" (OCP2, DCP2), even though both double-hull and outrigger canoes had fishing-pole rests (OAF1, DAF1). Similarly, though outrigger canoes were common in both the Australs and Tonga, traits OAO1 ("Outrigger present on port side") and OAO2 ("Outrigger present on starboard side") are both coded as "absent" for these archipelagos, a logical impossibility. Coding the orientation of the outrigger floats is particularly problematic because Polynesian canoes were often designed to sail with either end facing forward and have no permanent starboard and port, rendering such traits essentially meaningless. To circumvent this problem, we excluded traits likely to be missing data points or whose presence in the island group was ambiguous among the primary sources.

Furthermore, several traits were excluded because of likely influence of practical interdependencies, invisible to covariance screening tests because of potentially large sampling biases and the confused nomenclature in *Canoes of Oceania*. For example, "mast stepped forward" and "Oceanic Lateen sail present" are treated in the original dataset as independent traits, despite the fact that the former is a necessary component of the latter [2]. Doran's survey of Austronesian canoe designs synthesizes a variety of reports by Haddon and Hornell into distributional maps, and also provides the basis for our data on the distribution of shunting and the use of the primitive crane sprit.

Finally, we compacted equivalent double-hull traits and outrigger traits, on the premise that any discrepancies between the two categories represent noise rather than useful information. Considering the regularity by which outrigger and double-hulled canoes were converted from one to the other in Polynesia, the notion that traits on one canoe type should be distinct from traits on the other does not appear tenable.

4 Model Specification and Estimation

We introduce some notation to describe trait distributions and our models. Let $i \in \{1, 2, ..., 11\}$ index island group and $t \in \{1, 2, ..., 65\}$ index canoe traits. Then binary variable $x_{t,i} \in \{0, 1\}$ describes the presence or absence of trait t on island group i for the 65×11 matrix of island traits X.

Using the currently understood colonization sequence (see Figure 1 of the main text), let C_i be the set of island groups within the region that colonized island group i, and $|C_i|$ be the number of island groups in C_i . Now, the frequency of trait t in the colonizing region C_i of island group i is $y_{t,i} = \left(\sum_{j \in C_i} x_{t,j}\right)/|C_i|$. Now let S_i be the set of island groups within the sphere of influence of island group i, based on the zones of interaction compiled by Weisler (1998), and $|S_i|$ be the number of island groups in S_i . Then the frequency of trait t in the sphere of influence S_i of island group i is $m_{t,i} = \left(\sum_{j \in S_i} x_{t,j}\right)/|S_i|$. Because data sources

Model name	$\operatorname{Logit} Pr(x_{t,i} = 1) =$
Null models	
N1: Weighted coinflip	α
N2: Base	$lpha_t$
Inheritance	
C1: Past	$\alpha_t + \beta_1 y_{t,i}$
C2: Past & Sphere Present	$\alpha_t + \beta_1 y_{t,i} + \beta_2 p_{t,i}$
Ecology	
E1: Island area	$\alpha_t + \beta a_i$
E2: Reef high & low & Atoll	$\alpha_t + \kappa_1 r_{h,i} + \kappa_2 r_{l,i} + \kappa_3 r_{a,i}$
Inheritance & Ecology	
CE1: Past & Area	$\alpha_t + \gamma y_{t,i} + \beta a_i$
CE6: Past & Sphere Present & Area & Island type	$\alpha_t + \gamma y_{t,i} + \lambda p_{t,i} + \beta a_i + \kappa_1 r_{h,i} + \kappa_2 r_{l,i} + \kappa_3 r_{a,i}$

Table 1: Representative models of those considered in this analysis. The average island size in the focal archipelago (a_i) , and "Island Type" represents "Reef high" $(r_{h,i})$, "Reef low" $(r_{l,i})$, or "Atoll" $(r_{a,i})$.

are not properly collected statistical samples in any sense, we should consider that the presence of a trait in a region is more diagnostic for cultural transmission than its observed frequency (as recorded in Haddon and Hornell (1936)). Hence, for interaction spheres, we also consider sphere presence/absence models using $p_{t,i} = 1$ if $m_{t,i} > 0$, and 0 otherwise.

Since the goal is to predict $x_{t,i} \in \{0,1\}$, the general form of the model for trait t is

Logit
$$Pr(x_{t,i} = 1) = \alpha_t + BZ_i$$

, where Z_i is a vector of ecological and cultural inheritance covariates for island i and B is a vector of coefficients. Table 1 shows examples of null (N) models, cultural inheritance (C) models, ecological (E) models, and the cultural inheritance-ecological (CE) models.

Using a Gibbs sampler implemented in the software R and Winbugs, we estimate posterior distributions and the Deviance Information Criterion (DIC). For each run of the Gibbs sampler we perform 100,000 interations with a burn-in of 50,000 interations. Starting values for continuous parameters were randomly drawn from a Gaussian distribution with mean zero and variance 1, and binary parameters randomly drawn from a Binomial distribution with the probability of a success (drawing a value of one) equal to one-half.

Box 1. Description of Bayesian Statistical terms used in the text

Bayesian statistics: A branch of statistics that focuses on estimating the probability density function of unknown parameters using a prior distribution, the observations, and Bayes' theorem. In this way, assertions about unknown parameters are not expressed by attempting to cover true values with confidence intervals; instead, the emphasis is on making probabilistic statements using distributions [4].

Credible intervals: The 100(1-a)% credible interval gives the region of the parameter space in which the probability of covering parameters Θ is equal to (1-a). Unlike the frequentist confidence interval, there is no presumption of a true parameter value to estimate. We report 95% credible intervals in Table 3. [4].

Deviance Information Criteria (DIC): A value used to compare model performance with other competing models. The relative value compared to other models, not the actual number, is used to compare the performance of the model. It is a Bayesian analog to Akaike Information Criteria (AIC) which is more commonly known in model selection.

Gibbs sampler: A sampling algorithm that is an example of Markov Chain Monte Carlo methods used to estimate an integral that cannot be solved analytically. Most posterior distributions cannot be solved analytically, therefore this and similar methods are essential for parameter estimation.

Posterior distribution: A probability density function of posterior probabilities used to estimate the unknown parameters and their credible intervals. Posterior probabilities are conditional probabilities with the Bayesian prior, the likelihood, and a normalizing constant as key components. Most often these can only be estimated using Markov Chain Monte Carlo methods.

Markov Chain Monte Carlo: Because the posterior density function for unknown parameters usually cannot be solved analytically, this stochastic numerical method is used to provide an estimate of the posterior distribution.

Bayesian priors: also known as prior density functions, are propositions or statements concerning the values of unknown parameters before estimation. These are expressed as probability density functions such as the Normal (Gaussian) distribution, or commonly the Beta distribution. The prior and the likelihood of the data given a model are key components of the posterior distribution.

Models	DIC	Δ DIC	w
mPast2ReefHighLowAtoll	944.75	0	0.67
mPast2AreaReefHighLowAtoll	946.56	1.81	0.27
mPast2SpherePresentAreaReefHighLowAtoll	950.43	5.68	0.04
mPast2Area	953.01	8.26	0.01
mReefHighLowAtoll	954.64	9.89	< 0.01
mReefHighAtoll	955.35	10.6	< 0.01
mPast 2 Sphere Mean Area Reef High Low Atoll	956.23	11.48	< 0.01
mBase	957.57	12.82	< 0.01
mPast2SphereMeanArea	958.33	13.58	< 0.01
mPast2	958.46	13.71	< 0.01
mArea	959.5	14.75	< 0.01
mSphereMean	959.78	15.03	< 0.01
mSpherePresent	960.57	15.82	< 0.01
mAreaReefHighAtoll	960.81	16.06	< 0.01
mAreaReefHighLowAtoll	963.3	18.55	< 0.01
mPast2SpherePresentArea	965.16	20.41	< 0.01
mPastReefHighLowAtoll	969.62	24.87	< 0.01
mP ast Sphere Mean Area Reef High Low Atoll	971.35	26.6	< 0.01
mP ast Sphere Present Area Reef High Low Atoll	978.44	33.69	< 0.01
mPastAreaReefHighLowAtoll	981.08	36.33	< 0.01
mCoinFlip	989.51	44.76	< 0.01
mPastSphereMeanArea	1022.93	78.18	< 0.01
mPastSpherePresent	1027.01	82.26	< 0.01
mPastSpherePresentArea	1033.41	88.66	< 0.01
mPastSphereMean	1037.35	92.6	< 0.01
mPastArea	1047.06	102.31	< 0.01
mPast	1048.18	103.43	< 0.01

Table 2: Model rankings for all canoe traits. Δ DIC is the difference between a model's DIC score and the top model's, and DIC weights (w) quantify the relative performance among models. The best-performing null model is highlighted in bold; models with higher rankings (lower DIC scores) are plausibly better at explaining the data than the null model.

Models	DIC	Δ DIC	w
mSpherePresent	55.69	0.00	0.13
mPastSpherePresent	56.11	0.42	0.11
mBase	56.98	1.29	0.07
mReefHighAtoll	57.17	1.48	0.06
mArea	57.25	1.56	0.06
mPastArea	57.63	1.94	0.05
mPast	57.71	2.02	0.05
mPastSpherePresentArea	57.73	2.04	0.05
mSphereMean	57.87	2.18	0.04
mPast2Area	57.93	2.24	0.04
mPastSphereMean	58.25	2.56	0.04
mAreaReefHighAtoll	58.35	2.66	0.03
mPast2SpherePresentArea	58.39	2.69	0.03
mPast2	58.41	2.72	0.03
mPastSpherePresentAreaReefHighLowAtoll	58.80	3.11	0.03
mReefHighLowAtoll	58.90	3.20	0.03
mPastSphereMeanArea	59.19	3.50	0.02
mPast2ReefHighLowAtoll	59.31	3.62	0.02
mPast2SphereMeanArea	59.68	3.99	0.02
mPastReefHighLowAtoll	59.81	4.12	0.02
mAreaReefHighLowAtoll	59.97	4.28	0.02
mPastAreaReefHighLowAtoll	60.70	5.01	0.01
mPast2AreaReefHighLowAtoll	60.94	5.25	0.01
mPast2SpherePresentAreaReefHighLowAtoll	61.40	5.71	0.01
mPastSphere Mean Area Reef High Low Atoll	61.65	5.96	0.01
mCoinFlip	62.08	6.39	0.01
mPast2Sphere Mean Area Reef High Low Atoll	63.06	7.37	< 0.01

Table 3: Model rankings for decorative canoe traits.

Models	DIC	Δ DIC	w
mPastSphereMean	115.62	0.00	0.11
mSpherePresent	115.62	0.00	0.11
mPast	115.89	0.27	0.10
mPastSpherePresent	116.16	0.54	0.09
mPastArea	116.34	0.72	0.08
mPast2	116.58	0.96	0.07
mPastSpherePresentArea	117.37	1.75	0.05
mAreaReefHighAtoll	117.37	1.75	0.05
mPast2Area	117.51	1.89	0.04
mReefHighAtoll	117.64	2.02	0.04
mPastReefHighLowAtoll	118.00	2.38	0.03
mPast2SpherePresentArea	118.10	2.49	0.03
mPastSphereMeanArea	118.40	2.78	0.03
mSphereMean	118.79	3.17	0.02
mBase	118.90	3.28	0.02
mPast2SphereMeanArea	119.09	3.47	0.02
mArea	119.12	3.50	0.02
mAreaReefHighLowAtoll	119.40	3.78	0.02
mReefHighLowAtoll	119.92	4.30	0.01
mPast2ReefHighLowAtoll	119.94	4.32	0.01
mPast2AreaReefHighLowAtoll	120.29	4.67	0.01
mPast2SpherePresentAreaReefHighLowAtoll	120.45	4.84	0.01
mPastSpherePresentAreaReefHighLowAtoll	121.10	5.48	0.01
mPastSphere Mean Area Reef High Low Atoll	121.28	5.66	0.01
mPastAreaReefHighLowAtoll	122.00	6.38	< 0.01
mPast2Sphere Mean Area Reef High Low Atoll	122.70	7.08	< 0.01
mCoinFlip	123.30	7.68	< 0.01

Table 4: Model rankings for double-hull canoe traits.

Models	DIC	Δ DIC	w
mPastAreaReefHighLowAtoll	269.13	0.00	0.41
mPastSphereMeanArea	270.84	1.70	0.18
mPastSphere Mean Area Reef High Low Atoll	271.47	2.34	0.13
mPastSpherePresentAreaReefHighLowAtoll	273.32	4.19	0.05
mPastSphereMean	273.86	4.72	0.04
mPastReefHighLowAtoll	274.13	4.99	0.03
mPastArea	274.52	5.39	0.03
mPast2Area	274.87	5.73	0.02
mPast2SphereMeanArea	275.09	5.95	0.02
mPast2	275.26	6.12	0.02
mPast2SpherePresentArea	276.52	7.38	0.01
mBase	276.95	7.82	0.01
mPast2ReefHighLowAtoll	277.11	7.98	0.01
mArea	277.37	8.23	0.01
mPast2AreaReefHighLowAtoll	277.50	8.37	0.01
mPastSpherePresentArea	278.12	8.99	< 0.01
mSphereMean	278.16	9.02	< 0.01
mSpherePresent	278.90	9.77	< 0.01
mPastSpherePresent	279.27	10.14	< 0.01
mPast2SpherePresentAreaReefHighLowAtoll	279.86	10.73	< 0.01
mPast	280.17	11.04	< 0.01
mReefHighAtoll	280.22	11.08	< 0.01
mPast2Sphere Mean Area Reef High Low Atoll	280.32	11.19	< 0.01
mAreaReefHighAtoll	280.89	11.76	< 0.01
mReefHighLowAtoll	281.34	12.21	< 0.01
mAreaReefHighLowAtoll	282.17	13.04	< 0.01
mCoinFlip	284.42	15.28	< 0.01

Table 5: Model rankings for hull traits.

Models	DIC	Δ DIC	w
mPast2ReefHighLowAtoll	232.36	0.00	0.42
mPast2Sphere Mean Area Reef High Low Atoll	233.33	0.98	0.26
mReefHighLowAtoll	236.03	3.67	0.07
mAreaReef High Low Atoll	236.35	3.99	0.06
mPast2AreaReefHighLowAtoll	236.86	4.50	0.04
mPast2SpherePresentAreaReefHighLowAtoll	237.61	5.26	0.03
mPastSpherePresentArea	238.24	5.88	0.02
mPastSphere Mean Area Reef High Low Atoll	239.11	6.76	0.01
mPast2SphereMeanArea	239.79	7.43	0.01
mSphereMean	240.07	7.71	0.01
mPastSphereMeanArea	240.07	7.72	0.01
mPast2	240.09	7.73	0.01
mBase	240.15	7.79	0.01
mReefHighAtoll	240.26	7.90	0.01
mAreaReefHighAtoll	240.53	8.18	0.01
mPast2SpherePresentArea	241.20	8.84	0.01
mArea	241.28	8.93	< 0.01
mSpherePresent	241.88	9.53	< 0.01
mPastReefHighLowAtoll	243.08	10.72	< 0.01
mPast2Area	244.03	11.68	< 0.01
mPastArea	244.84	12.48	< 0.01
mPastSpherePresentAreaReefHighLowAtoll	245.01	12.65	< 0.01
mPastAreaReefHighLowAtoll	245.28	12.93	< 0.01
mCoinFlip	245.81	13.45	< 0.01
mPastSphereMean	246.74	14.38	< 0.01
mPast	248.77	16.41	< 0.01
mPastSpherePresent	249.22	16.87	< 0.01

Table 6: Model rankings for outrigger canoe traits.

Models	DIC	Δ DIC	w
mPastSphereMean	123.91	0.00	0.32
mPast2SphereMeanArea	126.26	2.35	0.10
mPastSphereMeanArea	126.64	2.73	0.08
mPastSpherePresentArea	126.90	2.99	0.07
mPastSphere Mean Area Reef High Low Atoll	127.20	3.29	0.06
mPast	127.59	3.68	0.05
mPastSpherePresent	127.98	4.07	0.04
mSphereMean	128.37	4.45	0.03
mPastArea	128.60	4.69	0.03
mArea	129.01	5.09	0.03
mPast2SpherePresentArea	129.03	5.12	0.02
mBase	129.18	5.27	0.02
mPast 2 Sphere Mean Area Reef High Low Atoll	129.20	5.28	0.02
mPast2	129.53	5.61	0.02
mPast2Area	129.67	5.76	0.02
mP ast Sphere Present Area Reef High Low Atoll	130.96	7.05	0.01
mReefHighAtoll	131.00	7.09	0.01
mReefHighLowAtoll	131.16	7.25	0.01
mSpherePresent	131.32	7.41	0.01
mAreaReefHighAtoll	131.49	7.58	0.01
mPast2SpherePresentAreaReefHighLowAtoll	131.79	7.88	0.01
mPastAreaReefHighLowAtoll	131.81	7.89	0.01
mAreaReefHighLowAtoll	131.93	8.02	0.01
mPastReefHighLowAtoll	132.17	8.26	0.01
mPast2ReefHighLowAtoll	132.57	8.66	0.00
mPast2AreaReefHighLowAtoll	133.86	9.95	0.00
mCoinFlip	135.62	11.71	0.00

Table 7: Model rankings for all paddle traits.

Models	DIC	Δ DIC	w
mPastAreaReefHighLowAtoll	132.27	0.00	0.18
mPastArea	132.31	0.04	0.18
mPastSphereMeanArea	133.16	0.89	0.11
mPastSpherePresentArea	133.40	1.13	0.10
mPast2	134.39	2.12	0.06
mPast	134.49	2.22	0.06
mPast2Area	135.10	2.83	0.04
mPastSpherePresentAreaReefHighLowAtoll	135.53	3.26	0.04
mPast2SpherePresentArea	135.71	3.44	0.03
mPast2SphereMeanArea	135.74	3.47	0.03
mPastSphereMean	135.77	3.50	0.03
mPastSpherePresent	136.56	4.29	0.02
mBase	136.66	4.38	0.02
mPastSphere Mean Area Reef High Low Atoll	136.79	4.52	0.02
mArea	136.94	4.66	0.02
mSphereMean	137.94	5.67	0.01
mReefHighAtoll	138.80	6.53	0.01
mPast2AreaReefHighLowAtoll	138.81	6.53	0.01
mPastReefHighLowAtoll	138.82	6.55	0.01
mSpherePresent	138.97	6.70	0.01
mCoinFlip	139.31	7.03	0.01
mPast2ReefHighLowAtoll	139.81	7.54	< 0.01
mAreaReefHighAtoll	140.05	7.77	< 0.01
mPast2Sphere Mean Area Reef High Low Atoll	141.02	8.75	< 0.01
mAreaReefHighLowAtoll	141.29	9.02	< 0.01
mReefHighLowAtoll	141.30	9.03	< 0.01
mPast2SpherePresentAreaReefHighLowAtoll	142.46	10.18	< 0.01

Table 8: Model rankings for sail and rigging traits.

References

- [1] Rogers, D. and Ehrlich, P. R. *Proceedings of the National Academy of Sciences of the United States of America* **105**, 3416-3420 (2008).
- [2] Doran, E. B. Wangka: Austronesian canoe origins. Texas A&M University Press, College Station, 1st edition, (1981).
- [3] Haddon, A. C. and Hornell, J. Canoes of Oceania. Bernice P. Bishop Museum, Honolulu, (1936).
- [4] Gill, J. Bayesian Methods: A Social and Behavioral Sciences Approach. Chapman & Hall/CRC, 2nd edition, (2008).