CSCD 327 Lab 7 (16 points)

- 1. (6 points) A given relation $R=\{A, B, C, D, E\}$ is decomposed into three relations: $R1=\{A, B, C\}, R2=\{B, C, D\}, \text{ and } R3=\{A, C, E\}$
 - a. Based on the given set of FDs $F=\{B\rightarrow E, CE\rightarrow A\}$, is the above decomposition a lossless-join decomposition?

No, because $B \rightarrow E$ is not a key in R1, R2, or R3.

b. Based on the given set of FDs $F=\{AC \rightarrow E, BC \rightarrow D\}$, is the above decomposition a lossless-join decomposition?

With the information above, this is a lossless-join composition since both AC -> E and BC -> D are both keys from R3 and R1 respectively.

- 2. (10 points) A given relation $R=\{A, B, C, D, E\}$, and a given set of FDs $F=\{AB \rightarrow C, DE \rightarrow C, B \rightarrow D\}$.
 - a. Is R in BCNF? If not, do the decomposition accordingly.

```
R1 = \{A, B, C\}

R2 = \{D, E, C\}

R3 = \{B, D\}
```

b. Is your decomposition a lossless-join decomposition? Why?

Yes, since all FD's are keys in all R1, R2, and R3

c. Is your decomposition a dependency-preserving decomposition? Why?

AB -> C not preserved DE -> C not preserved C -> D preserved

d. List all the candidate keys of relation R.

{**C**}

e. Is R in the 3rdNF? Why?

$$(C)^* = (C)$$

 $(AC)^* = A, C, B, D, E$
 $(BC)^* = B, C, A, D, E$
 $(DC)^* = D, C, A, B, E$
 $(EC)^* = E, C, A, B, D$

Yes, because A, B, D, E are prime attributes.