Report on the FCC and IC Testing of the ABS Protection GmbH Avalance Airbag Electronic. Model: ABS P.ride In accordance with FCC 47 CFR Part 15C and ISED RSS-247 and ISED RSS-GEN

Prepared for: ABS Protection GmbH

Gundelindenstraße 2 80805 München / Munich

Germany

FCC ID: XVQABSPR001 IC: 8702B-ABSPR001

COMMERCIAL-IN-CONFIDENCE

Date: 2019-02-25

Document Number: TR-18306-23821-01 | Issue: 02

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Martin Steindl	2020-02-25	Skinell Martin SIGN-ID 332464
Authorised Signatory	Matthias Stumpe	2020-02-25	SIGN-ID 332490

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C and ISED RSS-247 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE	SIGNATURE
Testing	Martin Steindl		2020-02-25	Skincll Martin
Laboratory Accreditation DAkkS Reg. No. D-PL-113 DAkkS Reg. No. D-PL-113		Laboratory recognition Registration No. BNetzA-CAB-16	ISED test site 5/21-15 3050A-2	e registration

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C:2019, ISED RSS-247 Issue 2 (2017-02) and ISED RSS-GEN Issue 5, Amendment 1 (2019-03)

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service.

ACCREDITATION

Our BNetzA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our BNetzA Accreditation. Results of tests not covered by our BNetzA Accreditation Schedule are marked NBA (Not BNetzA Accredited).

HRB 85742 VAT ID No. DE129484267 Information pursuant to Section 2(1) DL-InfoV (Germany) at www.tuev-sued.com/imprint Dr. Peter Havel (CEO) Dr. Jens Butenandt Holger Lindner Fax: +49 (0) 9421 55 22-99 www.tuev-sued.de

Äußere Frühlingstraße 45 94315 Straubing Germany

Product Service

Contents

1	Report Summary	2
1.1	Report Modification Record	
1.2	Introduction	
1.3 1.4	Brief Summary of Results	
1. 4 1.5	EUT Modification Record Test Location	
1.5 1.6	Measurement procedures	
2	Test Details	10
2.1	AC Power Line Conducted Emissions	10
2.2	Maximum Conducted Output Power	13
2.3	Frequency Hopping Systems - Average Time of Occupancy	15
2.4	Frequency Hopping Systems - Channel Separation	
2.5	Frequency Hopping Systems - Number of Hopping Channels	
2.6	Frequency Hopping Systems - 20 dB Bandwidth, 99% Bandwidth	
2.7	Authorised Band Edges	
2.8	Restricted Band Edges	
2.9	Spurious Radiated Emissions	
2.10	SAR Evaluation – Excemption Limits	31
3	Measurement Uncertainty	34
Annex A	Plots taken during tests	36 pages
Annex B	Test setup photos	8 pages

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	2018-04-15
2	Added FCC-ID and IC-ID, changed ISED to ISED. Changed applicant from "ABS Peter Aschauer GmbH" to ABS Protection GmbH" Corrected plots for channel separation	2020-02-25
	Added plots for 99 % bandwidth and RF exposure Extracted plots and photos in to two separate annexes.	

Table 1

1.2 Introduction

Applicant ABS Protection GmbH Manufacturer ABS Protection GmbH

Model Number(s) ABS P.ride

Serial Number(s) 310-801p10-4 BLE, 310-801p10-4 FW490 and 310-

801p10-4 FW491

Hardware Version(s) N/A
Software Version(s) N/A
Number of Samples Tested 2

Test Specification/Issue/Date FCC 47 CFR Part 15C:2019, ISED RSS-247 Issue 2 (2017-

02 and ISED RSS-GEN Issue 5, Amendment 1 (2019-03)

Test Plan/Issue/Date ---

Order Number 2017-12-08

Date

Date of Receipt of EUT

Start of Test 2018-01-30
Finish of Test 2018-04-10
Name of Engineer(s) Martin Steindl

Related Document(s) ANSI C63.10 (2013)

KDB 662911 D01 v02r02

COMMERCIAL-IN-CONFIDENCE

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C and ISED RSS-247 and ISED RSS-GEN is shown below.

Section	Specification Clause	Test Description	Result	Comments/Base Standard			
Configurati	Configuration and Mode: Stand alone Transmitting continuously						
2.1	15.207, N/A and 8.8	AC Power Line Conducted Emissions	Pass	ANSI C63.10 (2013)			
2.2	15.247 (b), 5.4 and 6.12	Maximum Conducted Output Power	Pass	ANSI C63.10 (2013) KDB 662911 D01 v02r02			
2.3	15.247 (a)(1) and 5.1	Frequency Hopping Systems - Average Time of Occupancy	Pass	ANSI C63.10 (2013)			
2.4	15.247 (a)(1) and 5.1	Frequency Hopping Systems - Channel Separation	Pass	ANSI C63.10 (2013)			
2.5	15.247 (a)(1) and 5.1	Frequency Hopping Systems - Number of Hopping Channels	Pass	ANSI C63.10 (2013)			
2.6	15.247 (a)(1) and 5.1	Frequency Hopping Systems - 20 dB Bandwidth, 99 % bandwidth	Pass	ANSI C63.10 (2013)			
2.7	15.247 (d), 5.5 and N/A	Authorised Band Edges	Pass	ANSI C63.10 (2013)			
2.8	15.205 N/A and 8.10	Restricted Band Edges	Pass	ANSI C63.10 (2013)			
2.9	15.247 (d), 15.205, 5.5 and 6.13	Spurious Radiated Emissions	Pass	ANSI C63.10 (2013)			

Table 2

COMMERCIAL-IN-CONFIDENCE Page 3 of 36

1.4 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fit- ted
Serial Number: 310-801p10-4 FW490			
0	As supplied by the customer	Not Applicable	Not Applicable
Serial Number: 310-801p10-4 FW491			
0	As supplied by the customer	Not Applicable	Not Applicable

Table 3

1.5 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing Test Laboratory.

Test Name	Name of Engineer(s)
Configuration and Mode: Stand alone Transmitting co	ontinuously
AC Power Line Conducted Emissions	Martin Steindl
Maximum Conducted Output Power	Martin Steindl
Frequency Hopping Systems - Average Time of Occupancy	Martin Steindl
Frequency Hopping Systems - Channel Separation	Martin Steindl
Frequency Hopping Systems - Number of Hopping Channels	Martin Steindl
Frequency Hopping Systems - 20 dB Bandwidth	Martin Steindl
Authorised Band Edges	Martin Steindl
Restricted Band Edges	Martin Steindl
Spurious Radiated Emissions	Martin Steindl

Table 4

Office Address:

Äußere Frühlingstraße 45 94315 Straubing Germany

1.6 Measurement procedures

1.6.1 Conducted AC powerline emissions

Conducted emission tests in the frequency range 150 kHz to 30 MHz are performed using Line Impedance Stabilization Networks (LISNs). To simplify testing with quasi-peak and average detector the following procedure is used:

First the whole spectrum of emission caused by the equipment under test (EUT) is recorded with detector set to peak using CISPR bandwidth of 10 kHz. After that all emission levels having less margin than 10 dB to or exceeding the average limit are retested with detector set to quasi-peak.

If average limit is kept with quasi-peak levels no additional scan with average detector is necessary. In cases of emission levels between quasi-peak and average limit an additional scan with detector set to average is performed.

According to ANSI C63.10, section 6.2.5, testing of intentional radiators with detachable antenna shall be performed using a suitable dummy load connected to the antenna output terminals. Otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended.

Testing with dummy load may be necessary to distinguish (unintentional) conducted emissions on the supply lines from (intentional) emissions radiated by the antenna and coupling directly to supply lines and/or LISN. Usage of dummy load has to be stated in the appropriate test record(s) and notes should be added to clarify the test setup.

1.6.2 Radiated emissions 9 kHz - 30 MHz

Radiated emission in the frequency range 9 kHz to 30 MHz is measured using an active loop antenna. First the whole spectrum of emission caused by the equipment is recorded at a distance of 3 meters in a fully or semi anechoic room with the detector of the spectrum analyzer or EMI receiver set to peak. This configuration is also used for recording the spectrum of intentional radiators.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

If worst case emission of the EUT cannot be recorded with EUT in standard position and loop antenna in vertical polarization the EUT (or the radiating part of the EUT) is rotated by 90 degrees instead of changing the loop antenna to horizontal polarization. This procedure is selected to minimize the influence of the environment (e.g. effects caused by the floor especially with longer distances).

Final measurement is performed at a test distance D of 30 meters using an open field test site. In case the regulation requires testing at other distances, the result is extrapolated by either making measurements at an additional distance D of 10 meters to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). In cases of very low emissions measurements are performed at shorter distances and results are extrapolated to the required distance. The provisions of CFR 47 Part 15 sections 15.31(d) and (f)(2) apply. According to CFR 47 Part 15 section 15.209(d) final measurement is performed with detector function set to quasi-peak except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where, for non-pulsed operation, average detector is employed.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

1.6.3 Radiated emissions on alternative test site 30 MHz to 1 GHz

Alternate test site (semi anechoic room)

Radiated emission in the frequency range 30 MHz to 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4 respectively ANSI C63.10 for alternative test sites. A linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used. The measurement bandwidth of the test receiver is set to 120 kHz with quasi-peak detector selected.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are tested in the position producing the highest emission relative to the limit as verified by prescans in fully anechoic room.

If no prescan in a fully anechoic room is used first a peak scan is performed in four positions to get the whole spectrum of emission caused by EUT with the measuring antenna raised and lowered from 1 to 4 m to find table position, antenna height and antenna polarization for the maximum emission levels.

Data reduction is applied to these results to select those levels having less margin than 10 dB to or exceeding the limit using subranges and limited number of maximums. Further maximization is following. With detector of the test receiver set to quasi-peak final measurements are performed immediately after fre-

vvitn detector of the test receiver set to quasi-peak final measurements are performed immediately after frequency zoom (for drifting disturbances) and maximum adjustment.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

In cases where prescans in a fully anechoic room are taken (e. g. if EUT is operating for a short time only or battery is discharged quickly) final measurements with quasi-peak detector are performed manually at frequencies indicated by prescan with EUT rotating all around and receiving antenna raising and lowering within 1 meter to 4 meters to find the maximum levels of emission.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For measuring emissions of intentional radiators and receivers a test distance D of 3 meters is selected. Testing of unintentional radiators is performed at a distance of 10 meters. If limits specified for 3 meters shall

Product Service

be used for measurements performed at 10 meters distance the limits are calculated according to CFR 47 Part 15 section 15.31(d) and (f)(1) using an inverse linear-distance extrapolation factor of 20 dB/decade.

1.6.4 Radiated emissions in fully anechoic room (above 1 GHz

Fully or semi anechoic room

Radiated emission in fully or semi anechoic room is measured in the frequency range from 1 GHz to the maximum frequency as specified in CFR 47 Part 15 section 15.33. According to ANSI C63.10 for tests above 1 GHz the table height is 1.5 m.

Measurements are made in both the horizontal and vertical planes of polarization using a test receiver with the detector function set to peak and average and resolution set to 1 MHz (above 1 GHz).

All tests below 13 GHz are performed at a test distance D of 3 meters. For higher frequencies the test distance may be reduced (e.g. to 1 meter) due to the sensitivity of the measuring instrument(s) and the test results are calculated according to CFR 47 Part 15 section 15.31(f)(1) using an extrapolation factor of 20 dB/decade. If required, preamplifiers are used for the whole frequency range. Special care is taken to avoid overload, using appropriate attenuators and filters, if necessary.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

During testing the EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

2 Test Details

2.1 AC Power Line Conducted Emissions

2.1.1 Specification Reference

FCC 47 CFR Part 15C, §15.207 ISED RSS-GEN, Clause 8.8

2.1.2 Equipment Under Test and Modification State

ABS P.ride, S/N: 310-801p10-4 FW491 - Modification State 0

2.1.3 Date of Test

2018-02-16

2.1.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.2.

2.1.5 Environmental Conditions

Ambient Temperature 22.0 °C Relative Humidity 29.0 %

2.1.6 Test Results

Stand alone Transmitting continuously

For plots see Annex A.1

Applied supply Voltage: 120 V Applied supply frequency: 60 Hz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Corr. (dB)
0.269250	36.36		61.14	24.78	1000.0	9.000	0.0
0.411000	33.65		57.63	23.98	1000.0	9.000	0.0
0.548250	32.85		56.00	23.15	1000.0	9.000	0.0
0.982500	30.37		56.00	25.63	1000.0	9.000	0.0
12.000750	38.72		60.00	21.28	1000.0	9.000	0.1
12.000750		21.33	50.00	28.67	1000.0	9.000	0.1
24.009000	15.85		60.00	44.15	1000.0	9.000	0.3
24.011250		7.18	50.00	42.82	1000.0	9.000	0.3

Table 5 - Live Line Emissions Results

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Corr. (dB)
0.269250	38.98		61.14	22.16	1000.0	9.000	0.0
0.404250	37.00		57.77	20.77	1000.0	9.000	0.0
0.982500	35.52		56.00	20.48	1000.0	9.000	0.0
3.999750		29.16	46.00	16.84	1000.0	9.000	0.3
3.999750	45.05		56.00	10.95	1000.0	9.000	0.3
20.006250		14.13	50.00	35.87	1000.0	9.000	0.2
20.008500	39.65		60.00	20.35	1000.0	9.000	0.2

Table 6 - Neutral Line Emissions Results

FCC 47 CFR Part 15, Limit Clause 15.207 and ISED RSS-GEN, Limit Clause 8.8

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-Peak	Average	
0.15 to 0.5	66 to 56*	56 to 46*	
0.5 to 5	56	46	
5 to 30	60	50	

Table 7

2.1.7 Test Location and Test Equipment Used

This test was carried out in Shielded room - cabin no. 9.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
ESU8	Rohde & Schwarz	100232	19904	12	2018-12
ESH3-Z5	Rohde & Schwarz	862770/021	108920	36	2020-06

Table 8

^{*}Decreases with the logarithm of the frequency.

2.2 Maximum Conducted Output Power

2.2.1 Specification Reference

FCC 47 CFR Part 15C, §15.247 (b) ISED RSS-247, Clause 5.4 and ISED RSS-GEN, Clause 6.12

2.2.2 Equipment Under Test and Modification State

ABS P.ride, S/N: 310-801p10-4 FW490 - Modification State 0

2.2.3 Date of Test

2018-01-31

2.2.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.9.1.1. as equivalent radiated power.

2.2.5 Environmental Conditions

Ambient Temperature 23.0 °C Relative Humidity 32.0 %

2.2.6 Test Results

Stand alone Transmitting continuously

For plots see Annex A.2

Frequency (MHz)	dBm (e.i.r.p.)	mW (e.i.r.p.)
902.5	4.3	2.7
915.0	3.9	2.4
927.5	3.0	2.0

Table 9

FCC 47 CFR Part 15, Limit Clause 15.247 (b)(3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

ISED RSS-247, Limit Clause 5.4 (d)

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e) of the specification.

2.2.7 Test Location and Test Equipment Used

This test was carried out in Fully anechoic room - cabin no. 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
FSP30	Rohde & Schwarz	100063	19533	12	2018-08
VULB9162	Schwarzbeck	1962-048	19669	36	2020-10

Table 10

2.3 Frequency Hopping Systems - Average Time of Occupancy

2.3.1 Specification Reference

FCC 47 CFR Part 15C, §15.247 (a)(1) and ISED RSS-247, Clause 5.1

2.3.2 Equipment Under Test and Modification State

ABS P.ride, S/N: 310-801p10-4 FW491 - Modification State 0

2.3.3 Date of Test

2018-03-07

2.3.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 7.8.4.

2.3.5 Environmental Conditions

Ambient Temperature 22.0 - 960.0 °C Relative Humidity 25.0 - 26.0 %

2.3.6 Test Results

Stand alone Transmitting continuously

See Annex A.3 for plots

Frequency (MHz)	Dwell Time (ms)	Number of Transmissions	Average Occupancy Time (ms)
902.5	22980 ms	1	10.4 ms
915.0	23040 ms	1	10.6 ms
927.5	23040 ms	1	10.4 ms

Table 11

FCC 47 CFR Part 15, Limit Clause (a)(1)(i)

For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

ISED RSS-247, Limit Clause 5.1 (c)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period.

2.3.7 Test Location and Test Equipment Used

This test was carried out in Fully anechoic room - cabin no. 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
FSP30	Rohde & Schwarz	100063	19533	12	2018-08
VULB9162	Schwarzbeck	1962-048	19669	36	2020-10

Table 12

2.4 Frequency Hopping Systems - Channel Separation

2.4.1 Specification Reference

FCC 47 CFR Part 15C, §15.247 (a)(1) and ISED RSS-247, Clause 5.1 and

2.4.2 Equipment Under Test and Modification State

ABS P.ride, S/N: 310-801p10-4 FW490 - Modification State 0

2.4.3 Date of Test

2018-04-10

2.4.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 7.8.2.

2.4.5 Environmental Conditions

Ambient Temperature 21.0 °C Relative Humidity 26.0 %

2.4.6 Test Results

Stand alone Transmitting continuously

For plots see Annex A.4

Frequency (MHz)	Channel Separation (kHz)
902.5	508.0
915.0	500.0
927.5	500.0

Table 13

FCC 47 CFR Part 15, Limit Clause 15.247 (a)(1)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

ISED RSS-247, Limit Clause 5.1 (c)

For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.

2.4.7 Test Location and Test Equipment Used

This test was carried out in Semi anechoic room - cabin no. 8.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
FSP30	Rohde & Schwarz	100063	19533	12	2018-08
VULB9162	Schwarzbeck	1962-048	19669	36	2020-10

Table 14

2.5 Frequency Hopping Systems - Number of Hopping Channels

2.5.1 Specification Reference

FCC 47 CFR Part 15C, §15.247 (a)(1) and ISED RSS-247, Clause 5.1 and

2.5.2 Equipment Under Test and Modification State

ABS P.ride, S/N: 310-801p10-4 FW491 - Modification State 0

2.5.3 Date of Test

2018-03-07

2.5.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 7.8.3.

2.5.5 Environmental Conditions

Ambient Temperature 22.0 °C Relative Humidity 26.0 %

2.5.6 Test Results

Stand alone Transmitting continuously

Number of Hopping Channels: 51

For plots please refer to Annex A.5

FCC 47 CFR Part 15, Limit Clause 15.247 (a)(1)(i) and ISED RSS-247, Limit Clause 5.1 (3)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.

If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies.

2.5.7 Test Location and Test Equipment Used

This test was carried out in Fully anechoic room - cabin no. 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
FSP30	Rohde & Schwarz	100063	19533	12	2018-08
VULB9162	Schwarzbeck	1962-048	19669	36	2020-10

Table 15

2.6 Frequency Hopping Systems - 20 dB Bandwidth, 99% Bandwidth

2.6.1 Specification Reference

FCC 47 CFR Part 15C, §15.247 (a)(1) ISED RSS-247, Clause 5.1 and ISED RSS-GEN, Clause 6.7

2.6.2 Equipment Under Test and Modification State

ABS P.ride, S/N: 310-801p10-4 FW490 - Modification State 0

2.6.3 Date of Test

2018-03-07

2.6.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.9.1.

2.6.5 Environmental Conditions

Ambient Temperature 23.0 °C Relative Humidity 26.0 %

2.6.6 Test Results

Stand alone Transmitting continuously

For plots please refer to Annex A.6

Frequency (MHz)	20 dB-Bandwidth (kHz)	99 %-Bandwidth (kHz)
902.5	226.0	324.0
915.0	200.0	324.0
927.5	228.0	320.0

Table 16

FCC 47 CFR Part 15, Limit Clause 15.247 (a)(1)(i) and ISED RSS-247, Limit Clause 5.1 (3)

The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.

2.6.7 Test Location and Test Equipment Used

This test was carried out in Fully anechoic room - cabin no. 2 and Semi anechoic room - cabin no. 8.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
FSP30	Rohde & Schwarz	100063	19533	12	2018-08
VULB9162	Schwarzbeck	1962-048	19669	36	2020-10

Table 17

2.7 Authorised Band Edges

2.7.1 Specification Reference

FCC 47 CFR Part 15C, §15.247 (d) ISED RSS-247, Clause 5.5

2.7.2 Equipment Under Test and Modification State

ABS P.ride, S/N: 310-801p10-4 FW490 - Modification State 0

2.7.3 Date of Test

2018-03-07

2.7.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.10.4.

2.7.5 Environmental Conditions

Ambient Temperature 23.0 °C Relative Humidity 26.0 %

2.7.6 Test Results

Stand alone Transmitting continuously

For plots please refer to Annex A.7

Frequency (MHz)	Measured Frequency (MHz)	Peak Level (dBµV/m)
902.5 MHz	902	-32.4
927.5	928	-31.7

Table 18

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

20 dB below the fundamental measured in a 100 kHz bandwidth using a peak detector. If the transmitter complies with the conducted power limits, based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB below the fundamental instead of 20 dB.

ISED RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

2.7.7 Test Location and Test Equipment Used

This test was carried out in Fully anechoic room - cabin no. 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
FSP30	Rohde & Schwarz	100063	19533	12	2018-08
VULB9162	Schwarzbeck	1962-048	19669	36	2020-10

Table 19

2.8 Restricted Band Edges

2.8.1 Specification Reference

FCC 47 CFR Part 15C, §15.205, and ISED RSS-GEN, Clause 8.10

2.8.2 Equipment Under Test and Modification State

ABS P.ride, S/N: 310-801p10-4 FW490 - Modification State 0

2.8.3 Date of Test

2018-03-07

2.8.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 6.10.5.

Plots for average measurements were taken in accordance with ANSI C63.10 clause 4.1.4.2.3. These are shown for information purposes and were used to determine the worst case measurement point. Final average measurements were then taken in accordance with ANSI C63.10 clause 4.1.4.2.2. to obtain the measurement result recorded in the test results tables.

The following conversion can be applied to convert from $dB\mu V/m$ to $\mu V/m$: Field Strength in $\mu V/m = 10^{\circ}$ (Field Strength in $dB\mu V/m / 20$).

Environmental Conditions
Ambient Temperature 23.0 °C
Relative Humidity 26.0 %

2.8.5 Test Results

Stand alone Transmitting continuously

See plots in Annex A.8 for details

FCC 47 CFR Part 15, Limit Clause 15.209

Frequency (MHz)	Field Strength (µV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

Table 20

ISED RSS-GEN, Limit Clause 8.9

Frequency (MHz)	Field Strength (µV/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960*	500

Table 21

*Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

2.8.6 Test Location and Test Equipment Used

This test was carried out in Fully anechoic room - cabin no. 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
FSP30	Rohde & Schwarz	100063	19533	12	2018-08
VULB9162	Schwarzbeck	1962-048	19669	36	2020-10

Table 22

2.9 Spurious Radiated Emissions

2.9.1 Specification Reference

FCC 47 CFR Part 15C, §15.247 (d), §15.205, ISED RSS-247, Clause 5.5 and ISED RSS-GEN, Clause 6.13

2.9.2 Equipment Under Test and Modification State

ABS P.ride, S/N: 310-801p10-4 FW490 - Modification State 0

2.9.3 Date of Test

2018-01-30 to 2018-03-12

2.9.4 Test Method

Testing was performed in accordance with ANSI C63.10-2013 clause 6.3, 6.5 and 6.6.

Plots for average measurements were taken in accordance with ANSI C63.10-2013 clause 4.1.4.2.3 to characterize the EUT. Where emissions were detected, final average measurements were taken in accordance with ANSI C63.10-2013 clause 4.1.4.2.2.

The plots shown are the characterization of the EUT. The limits on the plots represent the most stringent case for restricted bands, (54/74 dBuV/m) when compared to 20 dBc outside restricted bands. The limits shown have been used as a threshold to determine where further measurements are necessary. Where results are within 10 dB of the limits shown on the plots, further investigation was carried out and reported in results tables.

The following conversion can be applied to convert from $dB\mu V/m$ to $\mu V/m$: Field Strength in $\mu V/m = 10^{\circ}$ (Field Strength in $dB\mu V/m / 20$).

2.9.5 Environmental Conditions

Ambient Temperature 21.0 °C Relative Humidity 26.0 %

2.9.6 Test Results

Stand alone Transmitting continuously

Testing was performed on the modulation and packet type which resulted in the highest conducted output power. The Modulation/Packet type was.

- 902.5 MHz - 30 MHz to 10 GHz Emissions Results

Frequency	Antenna	Detector	Final	Limit	Margin
	Polariza-		Value		
(MHz)	tion		(dBµV/m)	(dBµV/m)	(dB)
92.295	horizontal	Quasi-Peak	35.3	78.8	43.6
96.000	vertical	Quasi-Peak Quasi-Peak	40.5	78.8	38.3
		•			
720.510	vertical	Quasi-Peak	56.5	78.8	22.4
772.500	vertical	Quasi-Peak	52.2	78.8	26.6
902.500	vertical	Quasi-Peak	98.8		
1032.500	horizontal	Peak	33.8	54.0	20.2
1084.500	vertical	Peak	28.2	54.0	25.8
1805.000	horizontal	Peak	54.1	78.8	24.7
2480.000	horizontal	Peak	30.0	78.8	48.8
2707.500	horizontal	Peak	52.3	54.0	1.7
2708.000	horizontal	Peak	47.0	54.0	7.0
3610.000	horizontal	Peak	44.4	54.0	9.6
3610.500	horizontal	Peak	35.9	54.0	18.1
4512.500	vertical	Peak	41.6	54.0	12.4
4513.000	horizontal	Peak	39.0	54.0	15.0
5415.000	vertical	Peak	38.6	54.0	15.4
6317.500	vertical	Peak	37.1	78.8	41.7
6318.000	vertical	Peak	32.7	78.8	46.1
7220.000	horizontal	Peak	40.8	78.8	38.0
8123.000	vertical	Peak	39.2	63.5	24.3
9025.000	vertical	Peak	42.3	63.5	21.2

See Annex A.9.1 for plots

- 915 MHz - 9 kHz to 10 GHz Emissions Results

Frequency	Antenna Polariza- tion	Detector	Final Value	Limit	Margin
(MHz)			(dBµV/m)	(dBµV/m)	(dB)
87.990	vertical	Quasi-Peak	36.4	83.4	47.0
96.000	vertical	Quasi-Peak	40.3	83.4	43.1
732.990	horizontal	Quasi-Peak	59.5	83.4	24.0
785.010	vertical	Quasi-Peak	49.6	83.4	33.8
915.000	horizontal	Quasi-Peak	103.4		
1019.000	horizontal	Peak	12.2	54.0	41.8
1045.000	vertical	Peak	13.0	54.0	41.0
1097.000	horizontal	Peak	11.2	54.0	42.8
1830.500	horizontal	Peak	38.1	83.4	45.3
2745.500	horizontal	Peak	41.3	54.0	12.7
3660.000	horizontal	Peak	32.5	54.0	21.5
4575.000	horizontal	Peak	27.9	54.0	26.1
8234.500	vertical	Peak	42.3	63.5	21.2
9150.500	vertical	Peak	44.6	63.5	18.9

See Annex A.9.2 for plots

- 927.5 MHz -30 MHz to 10 GHz Emissions Results

Frequency	Antenna Polariza-	Detector	Final Value	Limit	Margin
	tion				
(MHz)			(dBµV/m)	(dBµV/m)	(dB)
87.990	horizontal	Quasi-Peak	35.3	84.1	48.8
92.045	vertical	Quasi-Peak	37.3	84.1	46.8
96.000	horizontal	Quasi-Peak	39.6	84.1	44.5
182.010	horizontal	Quasi-Peak	42.7	84.1	41.5
745.500	horizontal	Quasi-Peak	55.0	84.1	29.1
797.490	vertical	Quasi-Peak	48.6	84.1	35.6
899.505	vertical	Quasi-Peak	38.2	84.1	45.9
919.500	horizontal	Quasi-Peak	51.9	84.1	32.2
923.490	horizontal	Quasi-Peak	56.7	84.1	27.5
927.500	vertical	Quasi-Peak	104.1		
931.500	vertical	Quasi-Peak	53.9	84.1	30.3
935.495	horizontal	Quasi-Peak	51.0	84.1	33.1
943.530	horizontal	Quasi-Peak	44.0	84.1	40.2
1005.000	horizontal	Peak	11.9	54.0	42.1
1005.500	horizontal	Peak	10.3	54.0	43.7
1006.000	vertical	Peak	7.5	54.0	46.5
1855.500	horizontal	Peak	41.6	84.1	42.5
2783.000	horizontal	Peak	40.1	54.0	13.9
3710.000	vertical	Peak	29.7	54.0	24.3
4637.500	horizontal	Peak	26.0	54.0	28.0
5565.000	horizontal	Peak	24.9	84.1	59.2
5565.500	vertical	Peak	25.4	84.1	58.7
6493.000	vertical	Peak	39.9	84.1	44.2
7220.200	horizontal	Peak	36.6	84.1	47.5
8347.500	horizontal	Peak	44.5	63.5	19.0
9275.000	vertical	Peak	43.9	84.1	40.2

See Annex A.9.3 for plots

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

ISED RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

2.9.7 Test Location and Test Equipment Used

This test was carried out in Semi anechoic room - cabin no. 8.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
ESW26	Rohde & Schwarz	101315	28268	12	2018-06
HFH2-Z2	Rohde & Schwarz	882964/0001	18876	24	2018-07
VULB9163	Schwarzbeck	VULB9163-408	19918	24	2019-07
HF907	Rohde & Schwarz	100154	19933	24	2019-06

Table 23

2.10 SAR Evaluation – Excemption Limits

2.10.1 Specification Reference

KDB 447498 D01 V06, section 4.3.1 ISED RSS-102 Issue 5, section 2.5.1

2.10.2 Equipment Under Test and Modification State

ABS P.ride, S/N: 310-801p10-4 FW490 - Modification State 0

2.10.3 Date of Test

2018-01-30 to 2018-03-12

2.10.4 Test Method

Test results are based on radiated emission test. For details on tests please refer to section 2.9 of this test report.

2.10.5 Environmental Conditions

Ambient Temperature 21.0 °C Relative Humidity 26.0 %

2.10.6 Test Results

$$EIRP = \frac{(E \cdot D)^2}{30}$$

Frequency f: 927.5 MHz = 1 GHz

Maximum radiated emission E: $104.1 \text{ dB}\mu\text{V/m} = 160.325 \text{ mV/m}$

Test distance D: 3 m

EIRP: $95.2 \, \mu W = 1 \, \text{mW}$

Separation distance d: ≤ 5 mm
SAR test exclusion threshold: 0.2
Limit acc. to section 4.3.1 a) 3.5

KDB 447498 D01 V06, section 4.3.1

Unless specially required by the published RF exposure KDB procedures, standalone 1 g head or body and 10 g extremity SAR evaluation for general population conditions, be measurement or numerical simulation, is not required, when the corresponding SAR Test Exclusion Threshold condition(s), listed below, is (are) satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The minimum test separation distance defined in 4.1 f) is determined by the smallest distance from the antenna and radiating structures or outer surface of the device, according to the host form factor, exposure conditions and platform requirement, to any part of the body or extremity of a user or bystander. To qualify for SAR test exclusion, the test separation distance applied must be fully explained and justified, typically in the SAR measurement or SAR analysis report, by the operating configurations and exposure conditions of the transmitter and applicable host platform requirements, according to the required published RF exposure KDB procedures. When no other RF exposure testing or reporting are required, a statement of justification and compliance must be included in the equipment approval, in lieu of the SAR report, to qualify for SAR test exclusion. When required, the device specific conditions described in the other published RF exposure KDB procedures must be satisfied before applying these SAR test exclusion provisions; for example, handheld PTT two-way radios, handsets, laptops and tablets, etc.

- a) For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1 g and 10 g SAR test exclusion thresholds are determined by the following: $\frac{P}{d}\sqrt{f} \leq 3.0$ for 1 g SAR, and \leq 7.5 for 10 g extremity SAR, where
 - f is the RF channel transmit frequency in GHz
 - P is the power of the RF channel, including tune-up tolerance in mW, rounded to the nearest mW before calculation
 - d is the min. test separation distance in mm, rounded to the nearest mm before calculation
 - The test result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- b) For 100 MHz to 6 GHz and test separation distances > 50 mm: not applicable.
- c) For frequencies below 100 MHz: not applicable.

ISED RSS-102 Issue 5, section 2.5.1

$$EIRP = \frac{(E \cdot D)^2}{30}$$

Frequency f: 927.5 MHz

Maximum radiated emission E: $104.1 \text{ dB}\mu\text{V/m} = 160.325 \text{ mV/m}$

Test distance D: 3 m EIRP: 95.2 μ W Separation distance d: ≤ 5 mm Limit acc. ISED RSS-102: < 16.13 mW

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in the table.

For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in the table are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in the table are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in the table, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt from the SAR evaluation.

Frequency (MHz)	Exemption limits (mW) ¹ at separation distance of									
	≤5 mm	10 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm	45 mm	≥50 mm
0										
≤300 ²	71	101	132	162	193	223	254	284	315	345
450	52	70	88	106	123	141	159	177	195	213
835	17	30	42	55	67	80	92	105	117	130
1900	7	10	18	34	60	99	153	225	316	431
2450	4	7	15	30	52	83	123	173	235	309
3500	2	6	16	32	55	86	124	170	225	290
5800	1	6	15	27	41	56	71	85	97	106

¹ The excemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separaton distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from alinear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from athird order polynomial fit.

² Transmitters operating between 3 kHz and 10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in IC RSS-102, issue 5, section 4.

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Radio Testing			
Test Name	kp	Expanded Uncertainty	Note
Occupied Bandwidth	2.0	±1.14 %	2
RF-Frequency error	1.96	±1 · 10-7	7
RF-Power, conducted carrier	2	±0.079 dB	2
RF-Power uncertainty for given BER	1.96	+0.94 dB / -1.05	7
RF power, conducted, spurious emissions	1.96	+1.4 dB / -1.6 dB	7
RF power, radiated			
25 MHz – 4 GHz	1.96	+3.6 dB / -5.2 dB	8
1 GHz – 18 GHz	1.96	+3.8 dB / -5.6 dB	8
18 GHz – 26.5 GHz	1.96	+3.4 dB / -4.5 dB	8
40 GHz – 170 GHz	1.96	+4.2 dB / -7.1 dB	8
Spectral Power Density, conducted	2.0	±0.53 dB	2
Maximum frequency deviation			
300 Hz – 6 kHz	2	±2,89 %	2
6 kHz – 25 kHz	2	±0.2 dB	2
Maximum frequency deviation for FM	2	±2,89 %	2
Adjacent channel power 25 MHz – 1 GHz	2	±2.31 %	2
Temperature	2	±0.39 K	4
(Relative) Humidity	2	±2.28 %	2
DC- and low frequency AC voltage			
DC voltage	2	±0.01 %	2
AC voltage up to 1 kHz	2	±1.2 %	2
Time	2	±0.6 %	2

Table 24

Radio Interference Emission Testing						
Test Name	kp	Expanded Uncertainty	Note			
Conducted Voltage Emission						
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB	1			
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB	1			
100 kHz to 200 MHz (50Ω/5μH AMN)	2	± 3.6 dB	1			
Discontinuous Conducted Emission						
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB	1			
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB	1			
Conducted Current Emission						
9 kHz to 200 MHz	2	± 3.5 dB	1			
Magnetic Fieldstrength						
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB	1			
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB	1			
Radiated Emission						
Test distance 1 m (ALSE)						
9 kHz to 150 kHz	2	± 4.6 dB	1			
150 kHz to 30 MHz	2	± 4.1 dB	1			
30 MHz to 200 MHz	2	± 5.2 dB	1			
200 MHz to 2 GHz	2	± 4.4 dB	1			
2 GHz to 3 GHz	2	± 4.6 dB	1			
Test distance 3 m						
30 MHz to 300 MHz	2	± 4.9 dB	1			
300 MHz to 1 GHz	2	± 5.0 dB	1			
1 GHz to 6 GHz	2	± 4.6 dB	1			
Test distance 10 m						
30 MHz to 300 MHz	2	± 4.9 dB	1			
300 MHz to 1 GHz	2	± 4.9 dB	1			
Radio Interference Power						
30 MHz to 300 MHz	2	± 3.5 dB	1			
Harmonic Current Emissions			4			
Voltage Changes, Voltage Fluctuations and Flicker			4			

Table 25

Immunity Testing					
Test Name	kp	Expanded Uncertainty	Note		
Electrostatic Discharges			4		
Radiated RF-Field					
Pre-calibrated field level	2	+32.2 / -24.3 %	5		
Dynamic feedback field level	2.05	+21.2 / -17.5 %	3		
Electrical Fast Transients (EFT) / Bursts			4		
Surges			4		
Conducted Disturbances, induced by RF-Fields					
via CDN	2	+15.1 / -13.1 %	6		
via EM clamp	2	+42.6 / -29.9 %	6		
via current clamp	2	+43.9 / -30.5 %	6		
Power Frequency Magnetic Field	2	+20.7 / -17.1 %	2		
Pulse Magnetic Field			4		
Voltage Dips, Short Interruptions and Voltage Variations			4		
Oscillatory Waves			4		
Conducted Low Frequency Disturbances					
Voltage setting	2	± 0.9 %	2		
Frequency setting	2	± 0.1 %	2		

Table 26

Note 1:

The expanded uncertainty reported according to CISPR 16-4-2:2003-11 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45% Note 2:

Electrical Transient Transmission in Road Vehicles

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45% Note 3:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of kp = 2.05, providing a level of confidence of p = 95.45% Note 4:

It has been demonstrated that the used test equipment meets the specified requirements in the standard with at least a 95%confidence.

Note 5:

The expanded uncertainty reported according to IEC 61000-4-3 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45% Note 6:

The expanded uncertainty reported according to IEC 61000-4-6 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%

The expanded uncertainty reported according ETSI TR 100 028 V1.4.1 (all parts) to is based on a standard uncertainty multiplied by a coverage factor of kp = 1.96, providing a level of confidence of p = 95.45% Note 8:

The expanded uncertainty reported according to ETSI TR 102 273 V1.2.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of kp = 1.96, providing a level of confidence of kp = 95.45%