Theoretische Informatik und Logik Übungsblatt 3 (SS 2016) Lösungen

Aufgabe 3.1 Drücken Sie folgende Prädikate jeweils als Boolesche Ausdrücke aus oder argumentieren Sie, warum das nicht möglich ist. Verwenden Sie dabei die **offizielle Syntax** für $\mathcal{BA}(\mathcal{D})$, d.h. **keine** der zusätzlichen Notationsvereinbarungen, die auf den Vorlesungsfolien erwähnt werden.

- a) Über $\mathcal{D} = \mathsf{FamX}$: x ist eine Cousine (ersten Grades) von y.
- b) Über $\mathcal{D} = \mathsf{FamX}$: x ist eine Großmutter.
- c) Über $\mathcal{D} = \mathbb{Z}$: Entweder x oder y ist negativ (aber nicht beide zugleich).
- d) Über $\mathcal{D} = \mathbb{N}$: x ist eine ungerade Zahl.
- e) Über $\mathcal{D} = \mathbb{N}$: x ist mindestens doppelt so groß wie y, aber kleiner als 4.
- f) Über $\mathcal{D} = \mathbb{S}$: Wenn x leer ist, dann enthält y höchstens 3 Binärzeichen.

Lösung

- b) Man kann zwar einen Boolschen Ausdruck angeben, der ausdrückt, dass x die Großmutter von y ist; aber um das einstellige Prädikat 'ist eine Großmutter' auszudrücken benötigt man einen Existenzquantor.
- c) $((\underline{(\underline{x},\underline{0})} \vee \underline{(\underline{y},\underline{0})}) \wedge \underline{\neg}(\underline{\underline{(\underline{x},\underline{0})}} \wedge \underline{\underline{(\underline{y},\underline{0})}})$. Achtung: $\underline{\underline{(\underline{x},\underline{y})}},\underline{\underline{0}}$ ist nicht geeigent, da eine der beiden Zahlen $\underline{0}$ sein könnte.
- d) "x ist ungerade" lässt sich in üblicher mathemathischer Notation als $\exists y : x = 2y + 1$ schreiben. Der Existenzquantor ist nicht eliminierbar; daher gibt es keinen entsprechenden Booleschen Ausdruck.
- f) $(\underline{\neg istleer?}(\underline{x}) \underline{\lor istleer?}(pop(pop(pop(y)))))$

Anmerkung: Es gibt natürlich jeweils auch alternative Lösungen.

Aufgabe 3.2 Zeigen Sie durch Induktion, dass $2^{|t|}$ eine obere Schranke für die größte Zahl ist, die durch einen variablenfreien Term t über $\mathbb N$ dargestellt werden kann (|t| bezeichnet die Länge von t). *Hinweis:* Machen Sie den Induktionsanfang und die Induktionsannahme explizit.

Lösung Da t variablenfrei ist und somit von keiner Variablenbelegung abhängig ist, schreiben wir im Folgenden $\mathcal{M}_{\mathcal{T}}(t)$ anstatt $\mathcal{M}_{\mathcal{T}}(I,t)$ für den Wert von t. Wir argumentieren durch Induktion gemäß des Aufbaus von t:

Induktionsanfang. Es gibt zwei Fälle:

- (1) $t = \underline{0}$: |t| = 1 und daher $2^{|t|} = 2^1 = 2 > \mathcal{M}_{\mathcal{T}}(t) = 0$.
- (2) $t = \underline{1}$: |t| = 1 und daher $2^{|t|} = 2^1 = 2 > \mathcal{M}_{\mathcal{T}}(t) = 1$.

Induktionsschritt. Es gibt drei Möglichkeiten: $t = \pm (t_1, t_2)$, $t = \pm (t_1, t_2)$ oder $t = \pm (t_1, t_2)$. Die Induktionsannahme besagt in jedem Fall, dass $\mathcal{M}_{\mathcal{T}}(t_1) \leq 2^{|t_1|}$ und $\mathcal{M}_{\mathcal{T}}(t_2) \leq 2^{|t_2|}$. Entsprechend der Form von t unterscheiden wir folgende Fälle:

- (1) $t = \pm (t_1, t_2)$: Aus der Induktionsannahme folgt, dass $\mathcal{M}_{\mathcal{T}}(t) \leq 2^{|t_1|} + 2^{|t_2|}$ und daher $\mathcal{M}_{\mathcal{T}}(t) \leq 2^{\max(|t_1|,|t_2|)+1}$. Wegen $|t| = |t_1| + |t_2| + 4$ gilt außerdem $2^{\max(|t_1|,|t_2|)+1} \leq 2^{|t|}$.
- (2) $t = \underline{\dot{-}} (t_1, t_2)$: Es gilt $\mathcal{M}_{\mathcal{T}}(t) = \mathcal{M}_{\mathcal{T}}(t_1) \dot{-} \mathcal{M}_{\mathcal{T}}(t_2) \leq \max(\mathcal{M}_{\mathcal{T}}(t_1), \mathcal{M}_{\mathcal{T}}(t_2))$. Daher folgt aus der Induktionsannahme: $\mathcal{M}_{\mathcal{T}}(t) \leq \max(2^{|t_1|}, 2^{|t_2|}) \leq 2^{\max(|t_1|, |t_2|)} \leq 2^{|t|}$.
- (3) $t = \underbrace{*}(t_1, t_2)$: Es gilt $\mathcal{M}_{\mathcal{T}}(t) = \mathcal{M}_{\mathcal{T}}(t_1) \cdot \mathcal{M}_{\mathcal{T}}(t_2) \leq 2^{|t_1|} \cdot 2^{|t_2|}) = 2^{|t_1| + |t_2|}$. Wegen $|t| = |t_1| + |t_2| + 4$ gilt daher auch $\mathcal{M}_{\mathcal{T}}(t) \leq 2^{|t|}$.

Aufgabe 3.3 Untersuchen Sie eine Variante der Programmiersprache $AL(\mathcal{D})$, in der es keine while-Schleife, dafür aber repeat-until-Schleifen gibt. Genauer:

- a) Spezifizieren Sie eine Bedingung (AL4') zur Festlegung der Syntax und eine entsprechende Bedingung (MAL4') zur Festlegung der Semantik der üblichen <u>repeat-until-Schleifenkonstruktion</u>. *Hinweis:* Formulieren Sie die Bedingungen ohne Rückführung auf die <u>while-Schleife!</u>
- b) Überprüfen Sie Ihre Definitionen durch schrittweise Auswertung des Programms repeat $\underline{\mathbf{x}} \leftarrow \underline{\mathbf{x}} + \underline{\mathbf{2}}$ until $\underline{\mathbf{x}} \geq \underline{\mathbf{y}}$ in einem Environment I mit $I(\underline{\mathbf{x}}) = 0$ und $I(\underline{\mathbf{y}}) = 3$ über \mathbb{Z} .

Lösung

a) (AL4') Ist $B \in \mathcal{BA}(\mathcal{D})$ und $\alpha \in AL(\mathcal{D})$, dann ist repeat α until $B \in AL(\mathcal{D})$.

$$(\text{MAL4'}) \ \mathcal{M}_{AL}(I, \underbrace{\text{repeat}} \alpha \, \underline{\text{until}} \, B) = \begin{cases} \mathcal{M}_{AL}(I, \alpha) & \text{für } w = \mathbf{t} \\ \mathcal{M}_{AL}(\mathcal{M}_{AL}(I, \alpha), \underbrace{\text{repeat}} \alpha \, \underline{\text{until}} \, B) & \text{für } w = \mathbf{f} \end{cases}$$
 wobei w eine Abkürzungen für $\mathcal{M}_{\mathcal{BA}}(\mathcal{M}_{AL}(I, \alpha), B)$ ist.

b) Es sei I ein Environment mit $I(\underline{x}) = 0$ und I(y) = 3 über \mathbb{Z} .

$$\begin{split} \mathcal{M}_{AL}(I, \underbrace{\operatorname{repeat}}_{\underline{X}} & \underline{\times} \underline{+} \underline{2} \, \mathrm{until}_{\underline{X}} \, \underline{\times} \underline{y}) \\ & \left[\overline{\mathcal{M}_{\mathcal{BA}}(I', \underline{x} \geq \underline{y})} = [\mathcal{M}_{\mathcal{T}}(I', \underline{x}) > \mathcal{M}_{\mathcal{T}}(I', \underline{y})] = [2 > 3] = \mathbf{f} \right. \\ & \text{wobei } I' = \mathcal{M}_{AL}(I, \underline{x} \underline{\leftarrow} \, \underline{x} + \underline{2}), \text{also} \\ & I'(\underline{x}) = \mathcal{M}_{\mathcal{T}}(I, \underline{x} + \underline{2}) = \mathcal{M}_{\mathcal{T}}(I, \underline{x}) + \mathcal{M}_{\mathcal{T}}(I, \underline{2}) = I(\underline{x}) + 2 = 0 + 2 = 2 \\ & I'(v) = I(v) \text{ für } v \neq \underline{x} \\ & \stackrel{M_{AL}A'}{=} & \mathcal{M}_{AL}(I', \underbrace{\operatorname{repeat}}_{\underline{X}} \, \underline{x} \underline{\leftarrow} \, \underline{x} + \underline{2} \, \underline{\mathrm{until}}_{\underline{X}} \, \underline{x} \underline{>} \underline{y}) \\ & \left[\mathcal{M}_{\mathcal{BA}}(I'', \underline{x} \underline{>} \underline{y}) = [\mathcal{M}_{\mathcal{T}}(I'', \underline{x}) > \mathcal{M}_{\mathcal{T}}(I'', \underline{y})] = [4 > 3] = \mathbf{t} \right. \\ & \text{wobei } I'' = \mathcal{M}_{AL}(I', \underline{x} \underline{\leftarrow} \, \underline{x} + \underline{2}), \text{also} \\ & I''(\underline{x}) = \mathcal{M}_{\mathcal{T}}(I', \underline{x} \underline{+} \underline{2}) = \mathcal{M}_{\mathcal{T}}(I', \underline{x}) + \mathcal{M}_{\mathcal{T}}(I, \underline{2}) = I'(\underline{x}) + 2 = 2 + 2 = 4 \\ & I''(v) = I'(v) \text{ für } v \neq \underline{x} \end{split}$$

Aufgabe 3.4 Formalisieren Sie folgende Sätze als PL-Formeln. Wählen Sie dabei jeweils zunächst eine geeignete Signatur und geben Sie die Kategorie (inklusive Stelligkeit) und die intendierte Bedeutung aller Elemente der Signatur vollständig an.

Hinweis: Gehen Sie davon aus, dass die jeweilige Domäne ausschließlich aus Personen besteht.

- a) Eva ist zweifache Mutter.
- b) Jeder Buchhalter prüft mindestens zwei Angestellte, die ihn nicht kennen.
- c) Leila ist eine Professorin, die alle Studierenden kennt, die sie benotet.
- d) Alle Mütter, aber nicht alle Väter, kennen alle ihre Kinder.

Hinweise: Wenn keine eindeutige Lösung nahe liegt, so diskutieren Sie mögliche Alternativen.

Lösung

```
a) Signatur \langle \{\}, \{e\}, \{m\} \rangle mit folgender intendierter Bedeutung:
      Konstantensymbol:
                     Eva
               . . .
      Funktionssymbol:
                     die Mutter von x (einstellig)
      m(x)
              . . .
    PL-Formel: \exists x \exists y [x \neq y \land e = m(x) \land e = m(y) \land \forall z (e = m(z) \supset (z = x \lor z = y))]
    Erläuterung: Die Relation "ist Mutter von" ist funktional. Daher ist es, wie in der Vorlesung
    besprochen, besser ein entsprechendes Funktionssymbol als ein zweistelliges Prädikatensym-
    bol in die Signatur zu stellen. Da wir hier davon ausgehen, dass nur von Personen die Rede
    ist und Identität durch ein logisches Symbol ausgedrückt wird, benötigen wir kein Prädika-
    tensymbol in der Signatur.
    "ist zweifache Mutter" könnte auch als "hat mindestens zwei Kinder" verstanden werden.
    Unter dieser Voraussetzung ist bereits \exists x \exists y (x \neq y \land e = m(x) \land e = m(y)) eine korrekte
    Formalisierung.
b) Signatur \langle \{B, A, P, K\}, \{\}, \{\} \rangle mit folgender intendierter Bedeutung:
      Prädikatensymbole:
      B(x)
                  \dots x ist Buchhalter (einstellig)
      A(x)
                        x ist Angestellter (einstellig)
                 \dots x prüft y (zweistellig)
      P(x,y)
      K(x,y) ... x kennt y (zweistellig)
    PL-Formel: \forall x[B(x) \supset \exists y \exists z(y \neq z \land A(y) \land A(z) \land P(x,y) \land P(x,z) \land \neg K(y,x) \land \neg K(z,x))]
    oder (z.B.) \forall x \exists y \exists z [B(x) \supset (y \neq z \land A(y) \land A(z) \land P(x,y) \land P(x,z) \land \neg K(y,x) \land \neg K(z,x))]
c) Signatur \langle \{P, S, K, B\}, \{l\}, \{l\} \rangle mit folgender intendierter Bedeutung:
      Prädikatensymbole:
      P(x)
                  \dots x ist Professorin (einstellig)
      S(x)
                  \dots x studiert (einstellig)
                 \dots x kennt y (zweistellig)
      B(x,y) ... x benotet y (zweistellig)
      Konstantensymbol:
                 ... Leila
    PL-Formel: P(l) \wedge \forall x [(S(x) \wedge B(l, x)) \supset K(l, x)]
d) Signatur \langle \{K\}, \{\}, \{m, v\} \rangle mit folgender intendierter Bedeutung:
      Prädikatensymbol:
      K(x,y) ... x kennt y (zweistellig)
      Funktions symbole
      m(x)
                        die Mutter von x (einstellig)
                 . . .
                         der Vater von x (einstellig)
      v(x)
                  . . .
    PL-Formel: \forall x \forall y (x = m(y) \supset K(x, y)) \land \exists x \exists y (x = v(y) \land \neg K(x, y))
    oder äquivalent: \forall x \forall y (x = m(y) \supset K(x,y)) \land \neg \forall x \forall y (x = v(y) \supset K(x,y))
```

Aufgabe 3.5 Beweisen oder widerlegen Sie die Behauptung, dass das Axiom der Transitivität der Theorie der Totalordnungen (Folie 419) von der Menge der anderen drei Axiome (Reflexivität, Antisymmetrie, Totalität) unabhängig ist.

Lösung

Wir zeigen, dass Transitivität unabhängig vom Rest der Axiome ist:

Es ist klar, dass es Totalordnungen gibt, also Modellstrukturen in denen Transitivität (Tr), Reflexivität (R), Totalität (To) und Antisymmetrie (As) gilt. Daher gilt $R, To, As \not\models \neg Tr$. Man nehme z.B. die übliche "kleiner-gleich"-Relation über den ganzen Zahlen. Also $\mathcal{I} = \langle Z, \Phi, \xi \rangle$ über der Signatur $\Sigma_O = \langle \{ \preceq \}, \{ \}, \{ \} \rangle$, wobei $\Phi(\preceq) =$ " \leq ".

Um zu zeigen, dass auch $R, To, As \not\models Tr$ gilt, müssen wir nun noch Interpretation über Σ_O angeben, die eine totale, reflexive und antisymmetrische Relation bestimmt, die nicht transitiv ist. Das geht über einem Gegenstandsbereich mit drei Elementen wie folgt: $\mathcal{I}' = \langle \{a,b,c\}, \Phi, \xi \rangle$ (ξ beliebig), wobei das Prädikat $\Phi(\preceq)$ vom Typ $\{a,b,c\}^2 \to \{\mathbf{t},\mathbf{f}\}$ durch folgende Tafel spezifiziert ist:

$\Phi(\preceq)(x,y)$	y = a	y = b	y = c
x = a	t	\mathbf{t}	\mathbf{f}
x = b	\mathbf{f}	\mathbf{t}	\mathbf{t}
x = c	t	${f f}$	\mathbf{t}

Folgender Graph spezifiziert das selbe Prädikat (zweistellige Relation) $\Phi(\preceq)$ auf alternative Weise:

Man kann das Prädikat $\Phi(\preceq)$ auch durch Auflistung aller Paare von Elementen spezifizieren, auf die sie zutrifft: $\Phi(\preceq) = \{(a,a), (b,b), (c,c), (a,b), (b,c), (c,a)\}.$

Die Relation $\Phi(\preceq)$ ist total, reflexiv und antisymmetrisch, aber nicht transitiv, und damit ein Gegenbeispiel zu $R, To, As \models Tr$.