_____ / 12

No aids (calculator, notes, text, etc.) are permitted. Show all work for full credit and box your final answer.

- **1. [4 points]** Convert the following angles to appropriate measure:
 - 1. convert $\frac{7\pi}{20}$ to degrees
 - 2. convert 132° to radians

1.
$$\frac{7\pi}{20}$$
 rad = $\frac{7\pi}{20} \cdot \left(\frac{180}{\pi}\right)^{\circ} = \frac{7 \cdot 180}{20} = 63^{\circ}$

2.
$$132^{\circ} = 132 \cdot \frac{\pi}{180} \text{ rad} = \frac{66\pi}{90} \text{ rad} = \frac{14\pi}{15} \text{ rad}$$

- **2.** [6 points] For the given angle $\theta = \frac{5\pi}{4}$ do the following:
 - a. find the reference angle θ'
 - b. calculate $\sin \theta$, $\cos \theta$
 - c. calculate $\tan \theta'$, $\cot \theta'$

Hint: Sketch the angle θ on the plane.

(b)
$$\sin \Theta = -\frac{\sqrt{2}}{2}$$
, $\cos \Theta = -\frac{\sqrt{2}}{2}$

(c)
$$\tan \theta' = 1$$
, $\cot \theta' = 1$

3. [2 points] Determine the amplitude, period, frequency, and phase shift for the following trigonometric function (Use appropriate notations for all the terminology above).

$$f(x) = -\frac{1}{2}\cos(8x+1)$$

$$a = -\frac{1}{2}$$

$$b = 8$$

Amplitude:
$$\alpha = -\frac{1}{2}$$
, $|\alpha| = \frac{8}{2\pi}$
Frequency: $D = \frac{8}{2\pi} = \frac{8}{2\pi}$

$$a = -\frac{1}{2}$$

$$|a| = \frac{1}{2}$$

$$\rho = \frac{\ell}{2}$$

$$\frac{6}{2\pi} = \frac{8}{2\pi}$$