Problem Set 7

Due: TA Discussion, 18 October 2024.

1 Exercises from class notes

All from "5. Differentiation.pdf".

Exercise 1. TFU: If $f: X \subseteq \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \text{int}(X)$, then f is differentiable at x_0 .

Exercise 3. Prove the Chain Rule: Suppose $f: X \subseteq \mathbb{R} \to \mathbb{R}$ is differentiable at $x_0 \in \operatorname{int}(X)$ and that $g: Y \to \mathbb{R}$, where $f(X) \subseteq Y$, and g is differentiable at $f(x_0)$. Then, $g \circ f$ is differentiable at x_0 and

$$(g \circ f)'(x_0) = (g' \circ f)(x_0) \cdot f'(x_0).$$

Exercise 4. Prove the following: Suppose $f:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$ and f is strictly increasing and differentiable on (a,b). Then,

$$\left(f^{-1}\right)'\left(f\left(x\right)\right) = \frac{1}{f'\left(x\right)} \, \forall x \in (a,b) \, .$$

Exercise 5. Prove the following: Let [a,b] be an a closed and bounded interval in \mathbb{R} and suppose $f:[a,b]\to\mathbb{R}$ is continuous and differentiable on (a,b). If f'(x)=0 for all $x\in(a,b)$, then f is constant.

Exercise 6. Prove the following: Suppose $f:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$, $f\in\mathbb{C}^k$ and that $f'(x_0)=f''(x_0)=\ldots=f^{(k-1)}(x_0)=0$ and $f^{(k)}(x_0)\neq0$. Then, if k is even and $f^{(k)}(x_0)>0$, then f has a local minimum at $f^{(k)}(x_0)=0$ in some neighbourhood of $f^{(k)}(x_0)=0$.

2 Additional Exercises

Theorem 1 (Cauchy-Schwarz Inequality). *For any* \mathbf{x} , $\mathbf{y} \in \mathbb{R}^d$,

$$|\mathbf{x}\cdot\mathbf{y}| \leq \|\mathbf{x}\| \|\mathbf{y}\|.$$

Exercise 1. Prove the Cauchy-Schwarz Inequality.