Laboratorio #9 – Template Matching

M.C. Fernando Hermosillo Reynoso fhermosillo@up.edu.mx

Universidad Panamericana

Sesión #9

28 de Enero del 2020

- Repositorio GitHub del curso: <u>UP_DSP24</u>
 - Documentos
 - Ejemplos
 - Notas rápidas
 - Laboratorios

Prelab

La Función de Correlación Cruzada

- La correlación es una herramienta matemática que permite comparar dos señales y asignar un grado de similitud entre ellas
- En el caso discreto 2D, se calcula $Y(n,m) = X(n,m) \otimes H(n,m)$

$$=\sum_{p=-\infty}^{\infty}\sum_{q=-\infty}^{\infty}X(p+n,q+m)H(p,q)$$

Los pasos consiste en dejar fija a una de las dos señales a correlacionar y variar la otra a lo largo de los ejes horizontal y vertical, multiplicando y sumando aquellos elementos que se traslapan

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1

= 6

Template Matching

Problema: Localizar un objeto de interés sobre un imagen I(n,m), dado una imagen de referencia T(n,m)

Template Matching busca la mejor coincidencia mediante la minimización del error cuadrático medio

$$E(n,m) = \sum_{p=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} ||I(p,q) - T(n+p,m+q)||^{2}$$

Esto equivale a maximizar el área de correlación

Template Matching

Problema: Localizar un objeto de interés sobre un imagen I(n,m), dado una imagen de referencia T(n,m)

Template Matching busca la mejor coincidencia mediante la minimización del error cuadrático medio

Esto equivale a maximizar el área de correlación

$$I(n,m) \longrightarrow T(-n,-m)$$
 Picos de Correlación

Template Matching

MaxPooling2D

El último paso de Template Matching es encontrar los máximos de correlación, siendo estos sensibles a pequeñas variaciones en la función de correlación

Una técnica muy empleada es aplicar un filtrado llamado **Maxpooling**

Maxpooling: Un kernel de maxpooling de KxK busca el valor máximo entre los pixeles ubicados en la mascará de KxK pixeles

Algoritmo

Corr2D:

Entrada: $I \in \mathbb{R}^{H \times W}$, $T \in \mathbb{R}^{P \times Q}$

Salida: $\mathbf{R} \in \mathbb{R}^{H \times W}$

- 1. R = zeros(H,W)
- 2. PARA p = 1 HASTA H-P
- 3. PARA q = 1 HASTA W-Q
- 4. R(p,q) = corrcoef(I(p:p+P-1,q:q+Q-1), T)
- 5. END
- 6. END

Corrcoef(A,B)=
$$\frac{\sum_{m}\sum_{n}(A_{mn}-\overline{A})(B_{mn}-\overline{B})}{\sqrt{\left(\sum_{m}\sum_{n}(A_{mn}-\overline{A})^{2}\right)\left(\sum_{m}\sum_{n}(B_{mn}-\overline{B})^{2}\right)}}$$

Algoritmo

TemplateMatching:

```
Entrada: I \in \mathbb{R}^{H \times W}, T \in \mathbb{R}^{P \times Q}, Threshold
Salida: J \in \mathbb{R}^{H \times W}
1. I = rgb2gray(I);
2. T = rgb2gray(T);
3. R = Corr2D(I,T);
4. [x,y] = BuscarMaximos(R, Threshold);
5. DibujarRectangulos(R,x,y,P,Q);
```

- Las coordenadas x,y son vectores y contienen las posiciones de columna y fila respectivamente de la coincidencia
- Threshold es un umbral definido por el usuario que establece el valor mínimo de correlación para definir una detección

Implementación Eficiente por medio de la DFT2D

$$H\left(e^{j\omega_{x}},e^{j\omega_{y}}\right) = \frac{1}{\left|S\left(e^{j\omega_{x}},e^{j\omega_{y}}\right)\right| T\left(e^{j\omega_{x}},e^{j\omega_{y}}\right)}$$

Laboratorio 9. Template Matching

Esquema General

Coins Found: 17

Actividad #1: Implementar la Función de Correlación 2D

- Bajo el lenguaje programación de se preferencia implemente la función de cálculo de correlación para imágenes
 - Corr2D
 - TemplateMatching

Actividad #0: Configuración del Proyecto

- 1. A modo demostración deberá de realizar la detección de uno o más objetos en una imagen
- 2. Utilice los códigos proporcionados en el repositorio de <u>Github</u>