

Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Sommersemester 2021

Lineare Algebra II

Musterlösung zu Übungsblatt 9

21.06.21

Aufgabe 1 (Eine Bilinearform auf Polynomen)

(10 Punkte)

Es sei $V := \mathbb{R}[X] = LH_{\mathbb{R}}(X^0, X^1, X^2, \ldots)$ der reelle Vektorraum aller Polynome mit reellen Koeffizienten. Auf V definieren wir nun die folgende Bilinearform:

$$\beta: V \times V \longrightarrow \mathbb{R}, \quad \beta(p,q) := \int_{-1}^{1} \frac{t}{2} \cdot p(t) \cdot q(t) \ dt \in \mathbb{R}$$

- a) Es sei $k, \ell \in \mathbb{N}_0$. Berechnen Sie $\beta(X^k, X^\ell)$ in Abhängigkeit von k und ℓ . Hinweis: Es empfiehlt sich eine Fallunterscheidung, ob k kongruent ℓ modulo 2 ist oder nicht.
- b) Für $N \in \mathbb{N}$ sei $U_N \subseteq V$ der Untervektorraum aller Polynome mit Höchstgrad N und $\beta_N : U_N \times U_N \to \mathbb{R}$ die Einschränkung von β auf U_N . Geben Sie eine Basis B_2 von U_2 und eine Basis B_3 von U_3 an und bestimmen Sie dann die Fundamentalmatrizen

$$FM_{B_2}(\beta_2)$$
 und $FM_{B_3}(\beta_3)$.

c) Bestimmen Sie $\ker(\beta_2^{\vee})$ und $\ker(\beta_3^{\vee})$. Untersuchen Sie beide Abbildungen β_2^{\vee} und β_3^{\vee} auf Injektivität und Surjektivität.

Hinweis: Die Notation β^{\vee} für eine Bilinearform β wurde in Lemma 3.1.4 eingeführt.

Lösung zu Aufgabe 1

a)

$$\beta(X^k, X^\ell) = \int_{-1}^1 \frac{t}{2} \cdot t^k \cdot t^\ell dt$$

$$= \frac{1}{2} \int_{-1}^1 t^{k+\ell+1} dt$$

$$= \frac{1}{2} \left[\frac{t^{k+\ell+2}}{k+\ell+2} \right]_{t=-1}^1$$

$$= \frac{1}{2} \cdot \frac{1 - (-1)^{k+\ell+2}}{k+\ell+2}.$$

Falls $k \equiv_2 \ell$ gilt, dann ist $k + \ell + 2$ gerade und wir erhalten:

$$\beta(X^k, X^\ell) = \frac{1}{2} \cdot \frac{1-1}{k+\ell+2} = 0.$$

Falls $k \not\equiv_2 \ell$ gilt, dann ist $k + \ell + 2$ ungerade und wir erhalten stattdessen:

$$\beta(X^k, X^\ell) = \frac{1}{2} \cdot \frac{1 - (-1)}{k + \ell + 2} = \frac{1}{k + \ell + 2}.$$

b) Da es uns freigestellt ist, welche Basis wir verwenden, wählen wir die einfachste Basis, die uns einfällt, nämlich

$$\mathsf{B}_2 := \{X^0, X^1, X^2\} = \{1, X, X^2\}$$

als Basis von U_2 und berechnen mit Proposition 3.1.7 die Einträge der Fundamentalmatrix:

$$\mathrm{FM}_{\mathsf{B}_2}(\beta_2) = \begin{pmatrix} \beta(X^0, X^0) & \beta(X^0, X^1) & \beta(X^0, X^2) \\ \beta(X^1, X^0) & \beta(X^1, X^1) & \beta(X^1, X^2) \\ \beta(X^2, X^0) & \beta(X^2, X^1) & \beta(X^2, X^2) \end{pmatrix}$$

Wenn wir nun die in (a) berechneten Werte einsetzen, erhalten wir:

$$FM_{\mathsf{B}_2}(\beta_2) = \begin{pmatrix} 0 & \frac{1}{3} & 0\\ \frac{1}{3} & 0 & \frac{1}{5}\\ 0 & \frac{1}{5} & 0 \end{pmatrix}.$$

Für den Untervektorraum U_3 benötigen wir einen Basisvektor mehr:

$$\mathsf{B}_3 := \{X^0, X^1, X^2, X^3\}.$$

Analog erhält man die Fundamentalmatrix

$$\mathrm{FM}_{\mathsf{B}_3}(\beta_3) = \begin{pmatrix} \beta(X^0, X^0) & \beta(X^0, X^1) & \beta(X^0, X^2) & \beta(X^0, X^3) \\ \beta(X^1, X^0) & \beta(X^1, X^1) & \beta(X^1, X^2) & \beta(X^1, X^3) \\ \beta(X^2, X^0) & \beta(X^2, X^1) & \beta(X^2, X^2) & \beta(X^2, X^3) \\ \beta(X^3, X^0) & \beta(X^3, X^1) & \beta(X^3, X^2) & \beta(X^3, X^3) \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{3} & 0 & \frac{1}{5} \\ \frac{1}{3} & 0 & \frac{1}{5} & 0 \\ 0 & \frac{1}{5} & 0 & \frac{1}{7} \\ \frac{1}{5} & 0 & \frac{1}{7} & 0 \end{pmatrix}.$$

c) Die Abbildung

$$\beta_3^{\vee}: U_3 \longrightarrow U_3^*$$

hat bezüglich der Basis B_3 im Definitionsbereich und der dazu dualen Basis im Zielbereich die Darstellungsmatrix

$$M_{\mathsf{B}_3^*,\mathsf{B}_3}(\beta_3^\vee) = \mathrm{FM}_{\mathsf{B}_3}(\beta_3) = \begin{pmatrix} 0 & \frac{1}{3} & 0 & \frac{1}{5} \\ \frac{1}{3} & 0 & \frac{1}{5} & 0 \\ 0 & \frac{1}{5} & 0 & \frac{1}{7} \\ \frac{1}{5} & 0 & \frac{1}{7} & 0 \end{pmatrix}.$$

Um den Kern der Abbildung β_3^{\vee} zu bestimmen, verwenden wir den Gauß-Algorithmus auf die Matrix $\mathrm{FM}_{\mathsf{B}_3}(\beta_3)$ an:

0	$\frac{1}{3}$	0	$\frac{1}{5}$	0	· 15
$\frac{1}{3}$	$\begin{array}{c} \frac{1}{3} \\ 0 \\ \frac{1}{5} \\ 0 \end{array}$	$\frac{1}{5}$	$\frac{1}{5}$ 0 $\frac{1}{7}$ 0	0	$ \cdot 15 $
ŏ	$\frac{1}{5}$	ŏ	$\frac{1}{7}$	0	$ \cdot 35 $
$ \begin{array}{c} \frac{1}{3} \\ 0 \\ \frac{1}{5} \end{array} $	ŏ	$ \begin{array}{r} \frac{1}{5} \\ 0 \\ \frac{1}{7} \\ 0 \end{array} $	Ò	0	$ \cdot 35 $
0	5	0	3	0	$ \cdot(-1) $ auf Zeile 3
5	0	3	0	0	$ \cdot(-1) $ auf Zeile 4
0	7	0	5	0	
7	0	5	0	0	
0	5	0	3	0	
5	0	3	0	0	
0	2	0	2	0	$ \cdot $
2	0	2	0	0	$\begin{vmatrix} \cdot \frac{1}{2} \\ \cdot \frac{1}{2} \end{vmatrix}$
0	5	0	3	0	
5	0	3	0	0	
0	1	0	1	0	$ \cdot(-5) $ auf Zeile 1
1	0	1	0	0	$ \cdot(-5) $ auf Zeile 2
0	0	0	-2	0	
0	0	-2	0	0	
0	1	0	1	0	
1	0	1	0	0	
1	0	1	0	0	
0	1	0	1	0	
0	0	-2	0	0	
0	0	0	-2	0	

Die Matrix ist nun in Stufenform und hat offenbar vollen Rang. Das bedeutet, dass der Kern der Abbildung

$$\beta_3^{\vee}: U_3 \to U_3^*$$

nur aus dem 0-Polynom besteht:

$$\ker(\beta_3^{\vee}) = \{0\}.$$

Somit ist β_3^{\vee} eine injektive lineare Abbildung. Da Definitionsbereich und Zielbereich beide die gleiche endliche Dimension haben, folgt damit auch direkt die Surjektivität von β_3^{\vee} .

Alternativ kann man auch zeigen, dass die Determinante der Matrix nicht Null ist und somit auf vollen Rang schließen.

Kommen wir nun zu $\beta_2^\vee:U_2\to U_2^*$. Die Abbildungsmatrix von β_2^\vee bezüglich der richtigen Basen im Definitions- und Zielbereich ist die Fundamentalmatrix

$$FM_{\mathsf{B}_2}(\beta_2) = \begin{pmatrix} 0 & \frac{1}{3} & 0\\ \frac{1}{3} & 0 & \frac{1}{5}\\ 0 & \frac{1}{5} & 0 \end{pmatrix}.$$

Auch hier wollen wir den Gauß-Algorithmus verwenden:

0	$\frac{1}{3}$	0	0	$ \cdot 3 $
$\frac{1}{3}$		$\frac{1}{5}$	0	$ \cdot 15 $
0	$\frac{0}{\frac{1}{5}}$	Ŏ	0	$ \cdot 5 $
0	1	0	0	$ \cdot(-1) $ auf Zeile 3
5	0	3	0	
0	1	0	0	
0	1	0	0	
5	0	3	0	
0	0	0	0	
5	0	3	0	
0	1	0	0	
0	0	0	0	

Die Matrix hat somit Rang 2 und der Kern der Matrix lautet:

$$\ker \mathrm{FM}_{\mathsf{B}_2}(\beta_2) = \mathrm{LH}_{\mathbb{R}} \left(\begin{pmatrix} -3\\0\\5 \end{pmatrix} \right).$$

Daraus folgt, dass auch die lineare Abbildung $\beta_2^{\vee}: U_2 \to U_2^*$ auch Rang 2 hat (also nicht surjektiv ist) und dass gilt:

$$\ker(\beta_2^{\vee}) = LH_{\mathbb{R}} \left(5X^2 - 3 \right).$$

Somit β_2^{\vee} auch nicht injektiv.

Anmerkung:

Man kann – mit etwas mehr Aufwand – zeigen, dass die Abbildung

$$\beta^{\vee}:V\longrightarrow V^*$$
.

die auf dem ganzen (unendlich-dimensionalen) Polynomraum definiert ist, injektiv, aber nicht surjektiv ist.

Injektiv ist die Abbildung, weil $(\beta^{\vee}(p))(Xp) \neq 0$ ist, wenn $p \neq 0$.

Nicht surjektiv ist die Abbildung, weil z.B. die Linearform $\phi \in V^*$ mit der Definition

$$\phi(p) := p(0)$$

nicht im Bild von β^{\vee} ist (oder weil wir in LA1 (ohne Beweis) behauptet haben, dass ein unendlichdimensionaler Vektorraum nie isomorph zu seinem Dualraum ist.

Aufgabe 2 (Eine Äquivalenzrelation)

(10 Punkte)

Es sei \mathbb{K} ein Körper und $n \in \mathbb{N}$. Wir definieren auf der Menge $\mathbb{K}^{n \times n}$ eine Relation \sim wie folgt:

$$A \sim B : \iff \left(\exists S \in \operatorname{GL}(n, \mathbb{K}) : A = S^{\top} B S\right).$$

- a) Zeigen Sie, dass ~ eine Äquivalenzrelation ist. (Äquivalenzrelationen wurden in LA1 definiert.)
- b) Bestimmen Sie die Äquivalenzklasse der Nullmatrix bezüglich ~.

c) Es sei nun $\mathbb{K}=\mathbb{F}_2=\mathbb{Z}/2\mathbb{Z}=\{0,1\}$ und n=2. Zeigen Sie, dass die folgenden Matrizen

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \mathbb{F}_2^{2 \times 2}$$

nicht äquivalent bezüglich \sim sind.

d) Es sei nun $\mathbb{K} = \mathbb{Q}$ und n = 1. Überprüfen Sie, welche der folgenden Zahlen (aufgefasst als rationale (1×1) -Matrizen) äquivalent bezüglich \sim sind:

$$1; \quad 2; \quad 4 \in \mathbb{Q} = \mathbb{Q}^{1 \times 1}.$$

Hinweis: Sie dürfen ohne Beweis verwenden, dass $\sqrt{2}$ irrational ist.

Lösung zu Aufgabe 2

a) Zuerst zeigen wir, das \sim reflexiv ist. Sei dazu $A \in \mathbb{K}^{n \times n}$. Wir setzen $S := \mathbb{1}_n \in GL(n, \mathbb{K})$. Dann gilt

$$A = \mathbb{1}_n^\top A \mathbb{1}_n = S^\top A S.$$

Nun zeigen wir Symmetrie: Nehmen wir an, dass $A, B \in \mathbb{K}^{n \times n}$ gegeben sind mit

$$A = S^{\top}BS$$
,

wobei S eine invertierbare Matrix ist.

Da S invertierbar ist, gilt:

$$SS^{-1} = \mathbb{1}_n.$$

Somit können wir schreiben:

$$B = \left(SS^{-1}\right)^{\top} B \left(SS^{-1}\right) = (S^{-1})^{\top} \underbrace{S^{\top}BS}_{=A} S^{-1} = (S^{-1})^{\top} A S^{-1}.$$

Nun zur Transitivität: Gegeben $A, B, C \in \mathbb{K}^{n \times n}$ mit

$$A = S^{\mathsf{T}}BS$$
 und $B = T^{\mathsf{T}}CT$

mit invertierbaren Matrizen S und T. Dann gilt:

$$A = S^{\top}BS = S^{\top}T^{\top}CTS = (TS)^{\top}C(TS).$$

b) Es sei A eine Matrix mit $A \sim 0$. Dann gibt es ein $S \in GL(n, \mathbb{K})$ mit

$$A = S^{\top} 0 S = 0.$$

Also ist A die Nullmatrix. Da nach Teil (a) die Nullmatrix äquivalent zu sich selbst ist, besteht die Äquivalenzklasse von 0 bezüglich 0 nur aus $\{0\}$.

c) Angenommen, es gibt ein

$$S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{F}_2)$$

mit

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; = S^{\top} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} S.$$

Wir rechnen die Matrix auf der rechten Seite des Gleichheitszeichens aus und zeigen, dass diese nicht gleich der linken Seite sein kann:

$$S^{\top} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} S = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} c & d \\ a & b \end{pmatrix} = \begin{pmatrix} 2ac & ad + bc \\ ad + bc & 2bd \end{pmatrix}$$

Weil in \mathbb{F}_2 gilt, dass 2 = 0 ist, folgt, dass der Eintrag oben links 0 ist und somit nicht gleich 1 sein kann. Das beendet den Beweis.

Anmerkung: Da $\det(S) = ad - bc = ad + bc = 1$ ist, zeigt diese Rechnung auch direkt, dass die einzige Matrix, die bezüglich ~ äquivalent zu $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ist, die Matrix selbst ist. Die Äquivalenzklasse besteht also nur aus einem Element.

Alternativlösung: Man kann auch alle sechs Matrizen S in $GL(2, \mathbb{F}_2)$ durchprobieren, statt eine allgemeine mit variablen a, b, c, d zu betrachten.

d) Sei erst einmal \mathbb{K} ein beliebiger Körper. Da jede Zahl $s \in \mathbb{K} \setminus \{0\}$ invertierbar ist, gilt:

$$GL(1, \mathbb{K}) = \mathbb{K}^{\times} = \mathbb{K} \setminus \{0\}.$$

Für (1×1) -Matrizen hat das Transponieren keine Bedeutung. Außerdem ist Multiplikation von (1×1) -Matrizen mit Einträgen aus \mathbb{K} kommutativ, sodass sich also für $x, y \in \mathbb{K}$ sagen lässt:

$$x \sim y \iff \exists s \in \mathbb{K} \setminus \{0\} : x = sys = s^2 \cdot y.$$

Zwei Zahlen $x, y \in \mathbb{K}$ sind also genau dann äquivalent, wenn es ein $s \in \mathbb{K}$ ungleich 0 gibt, mit $x = s^2 \cdot y$.

Kommen wir nun zum Fall $\mathbb{K} = \mathbb{Q}$.

Nach Aufgabenteil (a) wissen wir, dass jede Zahl zu sich selbst äquivalent ist. Weiterhin gilt:

$$4 \sim 1$$
, weil $4 = 2^2 \cdot 1$.

Es bleibt also nur die Frage, ob 1 auch äquivalent zu 2 ist. Angenommen, es gelte $2 \sim 1$. Dann würde dies bedeuten, dass es ein $s \in \mathbb{Q}$ gibt, mit

$$2 = s^2 \cdot 1$$
.

Also wäre $s = \sqrt{2}$ oder $s = -\sqrt{2}$. Beides ist aber nicht möglich, weil $\sqrt{2}$ irrational ist, aber s und -s rational sind.

Also gilt, dass 1 und 4 in der selben Äquivalenzklasse sind, aber 2 in einer anderen.