Department of Computer Science & Engineering (CSE)

Course Title: Digital Logic Design

Shahriar Rahman Khan

Lecturer

Dept. of CSE, MIST

Course Code: CSE 103

Credit Hr: 3.00

Contact Hr: 3.00

Complements

Complements

- Used in digital computers
 - for simplifying the subtraction and
 - for logical manipulations (is the process of applying logical operations on a sequence of bits to achieve a required result)
- Two types of complements for base-r system
 - the r's complement and
 - the (r-1)'s complement

r's Complement-10's Complement

- For a positive number N in base r with an integer part of n digits, the r's complement of N is defined as
 - rⁿ-N for N≠0 and
 - 0 for N=0
- Example:
 - 10's complement of $(52520)_{10}$ is 10^5 -52520=47480
 - Here, N=52520
 - The number of digits in the number is n=5
 - 10's complement of $(0.3267)_{10}$ is 1-0.3267=0.6733
 - No integer part, so $10^n = 10^0 = 1$
 - 10's complement of $(25.639)_{10}$ is 10^2 -25.639=74.361

r's Complement-2's Complement

- For a positive number N in base r with an integer part of n digits, the r's complement of N is defined as
 - rⁿ-N for N≠0 and
 - 0 for N=0
- Example:
 - 2's complement of $(101100)_2$ is $[(2^6)_{10} (101100)_2] = [(1000000 101100)_2] = (010100)_2$
 - 2's complement of $(0.0110)_2$ is $(1-0.0110)_2=0.1010$

Important Notes

- 10's complement of a decimal number can be formed by
 - leaving all least significant zeros unchanged
 - subtracting the first nonzero least significant digit from 10, and
 - then subtracting all other higher significant digits from 9
- 2's complement can be formed by
 - leaving all least significant zeros and the first nonzero digit unchanged, and
 - then replacing 1's by 0's and 0's by 1's in all other higher significant digits.

(r-1)'s Complement

- For a positive number N in base r with an integer part of n digits and a fraction part of m digits, the (r-1)'s complement of N is defined as
 - $(r^n-r^{-m}-N)$ for $N\neq 0$ and
 - 0 for N=0
- Example:
 - 9's complement of $(52520)_{10}$ is $(10^5-1-52520)=47479$
 - The number of integer digits in the number is n=5
 - No fraction part, so $10^{-m}=10^0=1$
 - 9's complement of $(0.3267)_{10}$ is $(1-10^{-4}-0.3267)=(0.9999-0.3267)=0.6732$
 - No integer part, so $10^n = 10^0 = 1$
 - 9's complement of $(25.639)_{10}$ is $(10^2-10^{-3}-25.639)=(99.999-25.639)=74.360$

1's Complement

- For a positive number N in base r with an integer part of n digits and a fraction part of m digits, the (r-1)'s complement of N is defined as
 - r^n - r^{-m} -N for $N\neq 0$ and
 - 0 for N=0
- Example:
 - 1's complement of $(101100)_2$ is $[(2^6-1)_{10}$ - $(101100)_2]=[(111111-101100)_2]=(010011)_2$
 - 1's complement of $(0.0110)_2$ is $[(1-2^{-4})_{10}$ -0.0110)₂]=[0.1111-0.0110]=0.1001

Important Notes

- 9's complement of a decimal number is formed simply by
 - Subtracting every digit from 9
- 1's complement is even simpler to form
 - The 1's are changed to 0 and the 0's to 1's
- Since (r-1)'s complement is very easily obtained, it is sometimes convenient to use it when the r's complement is desired.
 - r's complement can be obtained from the (r-1)'s complement after the addition of r-m to the least significant digit.
- Example: 2's complement of 10110100 is obtained from the 1's complement 01001011 by adding 1 to give 01001100

Subtraction with r's complement

- Subtraction of two positive numbers (M-N), both of base r, may be done as follows:
- Add the minuend M to the r's complement of the subtrahend N
- Inspect the result obtained in step 1 for an end carry:
 - If an end carry occurs, discard it.
 - If an end carry does not occur, take the r's complement of the number obtained in step 1 and place a negative sign in front

 Using 10's complement, subtract 72532-3250.

$$M=72532$$
 72532 $N=03250$ 10's complement of $N=96750$ End carry 1 69282

Result=69282

 Using 10's complement, subtract 3250-72532.

$$M = 03250$$

03250

$$N = 72532$$

10's complement of N=27468

No carry 30718

• Result=-69282 = -(10)'s complement of 30718)

 Using 2's complement, subtract 1010100-1000100.

$$M=1010100$$
 1010100
 $N=1000100$
2's complement of $N=0111100$
End carry 1 0010000

Result=10000

 Using 2's complement, subtract 1000100-1010100.

$$M = 1000100$$

1000100

$$N = 1010100$$

2's complement of
$$N = 0101100$$

• Result=-10000 = -(2's complement of 1110000)

Subtraction with (r-1)'s complement

- Subtraction of two positive numbers (M-N), both of base r, may be done as follows:
- Add the minuend M to the (r-1)'s complement of the subtrahend N
- Inspect the result obtained in step 1 for an end carry:
 - If an end carry occurs, add 1 to the least significant digit (end-around carry).
 - If an end carry does not occur, take the (r-1)'s complement of the number obtained in step 1 and place a negative sign in front

• Using 9's complement, subtract 72532-3250.

M= 72532 72532
$$N = 03250$$
9's complement of N= 96749
End carry 1 69281
 $+1$
 69282

Result=69282

 Using 9's complement, subtract 3250-72532.

• Result=-69282 = -(10's complement of 30717)

 Using 1's complement, subtract 1010100-1000100.

$$M = 1010100$$

1010100

$$N = 1000100$$

1's complement of N = 0111011

End-around carry

0001111

+1

0010000

• Result=10000

 Using 1's complement, subtract 1000100-1010100.

$$M = 1000100$$
 1000100

N = 1010100

1's complement of N = 0101100

No carry 1101111

• Result=-10000 = -(1)'s complement of 1110000)

Comparison Between 1's and 2's Complement

- 1's complement has the advantage of being easier to implement by digital components since the only thing that must be done is to change 0's into 1's & 1's into 0's.
- 2's complement may be implemented in two ways:
 - by adding 1 to the least significant bit of the 1's complement, and
 - by leaving all leading 0's in the least significant positions and the first 1 unchanged, and only then changing all 1's into 0's & 0's into 1's
- During subtraction of two numbers by complements, the 2's complement is advantageous in that only one arithmetic addition operation is required.
 - 1's complement requires two arithmetic additions when an endaround carry occurs.
- 1's complement has additional disadvantage of processing two arithmetic zeros: one with all 0's and one with all 1's.

