Haar Wavelets

(actually, Haar-like features)

Use responses of a bank of filters as a descriptor

Haar wavelet responses can be computed with filtering

Haar wavelet responses can be computed **efficiently** (in constant time) with integral images

Integral Image

original image

I(x, y)					
1	5	2			
2	4	1			
2	1	1			

1	6	8	
3	12	15	
5	15	19	

integral image

$$A(x,y) = \sum_{x' \le x, y' \le y} I(x',y')$$

Integral Image

$$A(x, y)$$

1 6 8

3 12 15 integral image

5 15 19

$$A(x,y) = \sum_{x' \le x, y' \le y} I(x',y')$$

Can find the **sum** of any block using **3** operations

$$A(x_1, y_1, x_2, y_2) = A(x_2, y_2) - A(x_1, y_2) - A(x_2, y_1) + A(x_1, y_1)$$

What is the sum of the bottom right 2x2 square?

$$A(x_1, y_1, x_2, y_2) = A(x_2, y_2) - A(x_1, y_2) - A(x_2, y_1) + A(x_1, y_1)$$

I(x, y)			y)	A	(x,	y)	
	1	5	2	1	6	8	
	2	4	1	3	12	15	
	2	1	1	5	15	19	
image			integra	al ir	naç	је	

$$A(1,1,3,3) = A(3,3) - A(1,3) - A(3,1) + A(1,1)$$

= 19 - 8 - 5 + 1
= 7

SURF

('Speeded' Up Robust Features)

Compute Haar wavelet response at each pixel in patch

How would do you compute the filter response?

Filtering using a sliding window can be slow Haar wavelets are just sums over blocks Use integral images for efficiency (6 operations)

SURF

('Speeded' Up Robust Features)

How big is the SURF descriptor?

SURF

('Speeded' Up Robust Features)

How big is the SURF descriptor?

64 dimensions

BRIEF

BRIEF: binary robust independent elementary features, Calonder, V Lepetit, C Strecha, ECCV 2010

Randomly sample pair of pixels a and b. 1 if a > b, else 0. Store binary vector.

Fig. 2. Different approaches to choosing the test locations. All except the righmost one are selected by random sampling. Showing 128 tests in every image.