Homework 6: Oriented Surfaces

1. The standard symplectic form on the 2-sphere is the standard area form: If we think of S^2 as the unit sphere in 3-space

$$S^2 = \{u \in \mathbb{R}^3 \text{ such that } |u| = 1\}$$
 ,

then the induced area form is given by

$$\omega_u(v, w) = \langle u, v \times w \rangle$$

where $u\in S^2$, $v,w\in T_uS^2$ are vectors in \mathbb{R}^3 , \times is the exterior product, and $\langle\cdot,\cdot\rangle$ is the standard inner product. With this form, the total area of S^2 is 4π .

Consider cylindrical polar coordinates (θ,z) on S^2 away from its poles, where $0\leq \theta<2\pi$ and $-1\leq z\leq 1$.

Show that, in these coordinates,

$$\omega = d\theta \wedge dz$$
.

2. Prove the Darboux theorem in the 2-dimensional case, using the fact that every nonvanishing 1-form on a surface can be written locally as $f\,dg$ for suitable functions f,g.

Hint: $\omega = df \wedge dq$ is nondegenerate \iff (f, q) is a local diffeomorphism.

- Any oriented 2-dimensional manifold with an area form is a symplectic manifold.
 - (a) Show that convex combinations of two area forms ω_0, ω_1 that induce the same orientation are symplectic.

This is wrong in dimension 4: find two symplectic forms on the vector space \mathbb{R}^4 that induce the same orientation, yet some convex combination of which is degenerate. Find a path of symplectic forms that connect them.

(b) Suppose that we have two area forms ω_0, ω_1 on a compact 2-dimensional manifold M representing the same de Rham cohomology class, i.e., $[\omega_0] = [\omega_1] \in H^2_{\mathrm{deRham}}(M)$.

Prove that there is a 1-parameter family of diffeomorphisms $\varphi_t: M \to M$ such that $\varphi_1^*\omega_0 = \omega_1$, $\varphi_0 = \mathrm{id}$, and $\varphi_t^*\omega_0$ is symplectic for all $t \in [0,1]$.

Hint: Exercise (a) and the Moser trick.

Such a 1-parameter family φ_t is called a *strong isotopy* between ω_0 and ω_1 . In this language, this exercise shows that, up to strong isotopy, there is a unique symplectic representative in each non-zero 2-cohomology class of M.