1 Linear Independence and Bases

Basis for Nul A

When a null space contains non-zero vectors, it contains the same amount of vectors as free variables. This set is linearly independent with free variables being the weights, this is a basis for Nul A.

Basis for Col A

Given this matrix in echelon form, we know that each non pivot column is a linear combination of the pivot columns. For example, $\vec{b_2} = 4\vec{b_1}$, $\vec{b_4} = 2\vec{b_1} - \vec{b_3}$

$$A = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Using theorem 5, $\{\vec{b_1}, \vec{b_3}, \vec{b_5}\}$ Span Col A. None of these vectors is a linear combination, so this is our basis.

$$S = \left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix} \right\}$$

S is a basis for A. We've just chosen each column that contains a pivot position.

Theorem 1 The pivot columns of a matrix A form the basis for Col A.

Theorem 2 If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the non-zero rows of B form a basis for both A and B.

Example

$$A = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix} \sim B = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

By the theorem above, the first 3 rows of B form a basis the row space of A.

Basis Summary

- The most efficient way to describe a space.
- Every vector in the set is necessary: adding a vector will make it not linearly independent, and removing a vector will prevent it from describing a space.

2 Linear Transformations

We'll start with a question: What is the matrix A in the matrix equation $A\vec{x} = \vec{b}$ doing?

A linear combination of cols(A) and the values of \vec{x} ?

Let's view A as a transformation that **transforms** a vector \vec{x} to some other vector.

Take a 2×3 matrix A and 3×1 vector \vec{x} . $A\vec{x} = \vec{b}$ is the equation that transforms \vec{x} from 3D to 2D.

We can view solving $A\vec{x} = \vec{b}$ as finding all vectors in \mathbb{R}^3 that are transformed to \mathbb{R}^2 . a tranform is also called

- a function from one set to another
- a mapping between spaces/sets

Definition 1 In general, a transformation T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector $\vec{x} \in \mathbb{R}^n$ a vector $T(\vec{x}) \in \mathbb{R}^m$.

The set \mathbb{R}^n is called the **domain** of T and \mathbb{R}^m is the **codomain**.

Sometimes we'll see the notation

 $T: {\rm I\!R}^n \to {\rm I\!R}^m$

This says that the domain of the transform T is \mathbb{R}^n , and the codomain is \mathbb{R}^m .

The vector $T(\vec{x})$ is called the **image** of \vec{x} . The set of all images is called the **range** of T.

Matrix Transformations

Let $A \in \mathbb{R}^{m \times n}$. The domain of T is \mathbb{R}^n – the number of columns. The codomain of T is \mathbb{R}^m – the number of rows.

$$\vec{x} \mapsto A\vec{x}$$

Example

Let

$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \qquad \vec{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix} \qquad c = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$$

Define a transformation $T: \mathbb{R}^n \to \mathbb{R}^3$ by $T(\vec{x}) = A\vec{x}$ such that

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$$

a) find $T(\vec{u})$, the image of \vec{u} under T.

$$T(\vec{u}) = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ -9 \end{bmatrix}$$

b) Solve $T(\vec{x}) = \vec{b}$ for \vec{x} .

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1.5 \\ 0 & 1 & -0.5 \\ 0 & 0 & 0 \end{bmatrix} \implies \vec{x} = \begin{bmatrix} 1.5 \\ -0.5 \end{bmatrix}$$

Another way to say this is that the image of \vec{x} under T is \vec{b} .

c) Is there more than one \vec{x} whose image under T is \vec{b} ?

There is not more than $1 \ \vec{x}$ whose image under T is \vec{b} . This is asking whether or not $A\vec{x} = \vec{b}$ has a unique solution.

d) Determine if \vec{c} is in the range of T.

It is if it's the image of some $\vec{x} \in \mathbb{R}^n$, or if $\vec{c} = T(\vec{x})$.

The above is analogous to the following question: is the system $A\vec{x} = \vec{c}$ consistent?

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -35 \end{bmatrix}$$

 $0 \neq -35$: \vec{c} is not in the range of T

Projection Matrices

Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. The transform $\vec{x} \mapsto A\vec{x}$ projects 3D points into $x_1 - x_2$ plane. This is not necessarily a transform from \mathbb{R}^3 to \mathbb{R}^2 .

If we set up the transformation,

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

This will project onto the x_1 - x_2 plane, but it will still be in \mathbb{R}^3 .