Wstęp do Informatyki i Programowania Laboratorium: Lista 2

Jacek Cichoń Przemysław Kobylański

Zadanie 1 (2 pkt)

W Polsce używamy następujących monet i banknotów:

```
monety 1 gr, 2 gr, 5 gr, 10 gr, 20 gr, 50 gr, 1 zł, 2 zł, 5 zł
```

 $\mathbf{banknoty} \ 10 \ z\text{\i}, \ 20 \ z\text{\i}, \ 50 \ z\text{\i}, \ 100 \ z\text{\i}, \ 200 \ z\text{\i}$

Napisz w C program, który czyta kwotę podaną w postaci całkowitej liczby złoty i całkowitej liczby groszy a następnie drukuje w jaki sposób wypłacić ją jak najmniejszą liczbą banknotów i monet.

Przykład

```
$ ./kwota
podaj liczbę złoty: 1765
podaj liczbę groszy: 54
banknoty:
    8 x 200 zł
    1 x 100 zł
    1 x 50 zł
    1 x 10 zł
monety:
    1 x 5 zł
    1 x 50 gr
    2 x 2 gr
```

Zadanie 2 (2 pkt)

Napisz program, który czyta liczbę całkowitą n a następnie wczytuje n liczb rzeczywistych x_1, x_2, \ldots, x_n . Na koniec drukuje średnią arytmetyczną wczytanych wartości rzeczywistych.

Zadanie 3 (3 pkt)

Dla jakich liczb naturalnych n prawdziwa jest nierówność:

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} > 10$$
?

Napisz program w C wyznaczający najmniejszą z takich liczb n.

Zadanie 4 (4 pkt)

Napisz program, który czyta liczbę całkowitą bez znaku (typ unsigned int), oblicza jest jedynek w jej binarnej reprezentacji a na koniec drukuje obliczoną liczbę jedynek.

Przykłady

```
$ ./jedynki
podaj liczbę całkowitą bez znaku: 12
liczba jedynek w binarnej reprezentacji wynosi 2
$ ./jedynki
podaj liczbę całkowitą bez znaku: 32768
liczba jedynek w binarnej reprezentacji wynosi 1
$ ./jedynki
podaj liczbę całkowitą bez znaku: 65535
liczba jedynek w binarnej reprezentacji wynosi 16
```

Zadanie 5 (4 pkt)

Napisz w C program wyznaczający stosunkowo dobre przybliżenie liczby $\sqrt[1000!]{1000!}$ - możesz założyć, że arytmetyka liczb typu double zapewni Ci odpowiednią dokładność.

Zadanie 6 (5 pkt)

Niech $\sigma(n)$ oznacza sumę wszystkich dzielników liczby naturalnej n mniejszych od liczby n (na przykład $\sigma(5)=1$ oraz $\sigma(6)=1+2+3=6$). Liczbę n nazywamy doskonałą jeśli $\sigma(n)=n$. Parę liczb (n,m) nazywamy zaprzyjaźnioną, jeśli $\sigma(n)=m$ oraz $\sigma(m)=n$.

Znajdź wszystkie liczby doskonałe mniejsze od 1000. Wyznacz wszystkie zaprzyjaźnione pary liczb mniejszych niż 1000.

Wskazówka

Obliczone wartości $\sigma(n)$ umieść w tablicy.