Traces via Strategies

(Games via Coalgebra)

Ben Plummer, Corina Cîrstea

April, 2024

Outline

- Games
- ▶ Traces
- ► Representing games coalgebraically
- Strategies
- ► Traces via strategies

Model the possible actions of the controller and the environment as a game.

- Model the possible actions of the controller and the environment as a game.
- We have specification (as a logical formula).

- Model the possible actions of the controller and the environment as a game.
- We have specification (as a logical formula).
- Synthesis question: is there are a controller strategy which every play satisfies the specification?

- Model the possible actions of the controller and the environment as a game.
- We have specification (as a logical formula).
- Synthesis question: is there are a controller strategy which every play satisfies the specification?
- Example "every request is served" (a liveness property)

► Bipartite game graph

- ► Bipartite game graph
- ▶ Observation after environment transition

- Bipartite game graph
- ▶ Observation after environment transition

- ► Bipartite game graph
- Observation after environment transition

► A play is a sequence of states and observations, arising from controller and environment moves, ending in a terminating observation.

- ► Bipartite game graph
- Observation after environment transition

► A play is a sequence of states and observations, arising from controller and environment moves, ending in a terminating observation. e.g. $x_0y_1a_1x_1y_2b_2$

- Bipartite game graph
- Observation after environment transition

- ► A play is a sequence of states and observations, arising from controller and environment moves, ending in a terminating observation. e.g. x₀y₁a₁x₁y₂b₂
- ► A strategy is a partial function which extends partial plays, it must be defined over all partial plays which conform to it.

(Finite) Traces for labelled transition systems

- ▶ A trace is a sequence of observations from a process.

(Finite) Traces for labelled transition systems

- A *trace* is a sequence of observations from a process.
- ▶ A labelled transition system with termination is a function:

$$c: X \to P(B + A \times X)$$

- A trace is a sequence of observations from a process.
- ▶ A labelled transition system with termination is a function:

$$c: X \to P(B + A \times X)$$

▶ A *trace* starting at a state $x_0 \in X$ is a sequence

$$a_1a_2,\ldots a_nb\in A^*B$$

(Finite) Traces for labelled transition systems

- A *trace* is a sequence of observations from a process.
- ▶ A labelled transition system with termination is a function:

$$c: X \to P(B + A \times X)$$

▶ A *trace* starting at a state $x_0 \in X$ is a sequence

$$a_1a_2,\ldots a_nb\in A^*B$$

such that there is an execution

$$x_0a_1x_1a_2\ldots a_nx_nb\in (XA)^*XB$$

(Finite) Traces for labelled transition systems

- ► A *trace* is a sequence of observations from a process.
- A labelled transition system with termination is a function:

$$c: X \to P(B + A \times X)$$

▶ A *trace* starting at a state $x_0 \in X$ is a sequence

$$a_1a_2,\ldots a_nb\in A^*B$$

such that there is an execution

$$x_0a_1x_1a_2\ldots a_nx_nb\in (XA)^*XB$$

with the property

$$\forall i < n : (a_{i+1}, x_{i+1}) \in c(x_i) \text{ and } b \in c(x_n)$$

- ► A *trace* is a sequence of observations from a process.
- ► A labelled transition system with termination is a relation:

$$R \subseteq X \times (B + A \times X)$$

▶ A *trace* starting at a state $x_0 \in X$ is a sequence

$$a_1a_2,\ldots a_nb\in A^*B$$

such that there is an execution

$$x_0a_1x_1a_2\ldots a_nx_nb\in (XA)^*XB$$

defined by the property

$$\forall i < n : R(x_i, (a_{i+1}, x_{i+1})) \text{ and } R(x_n, b)$$

- A trace is a sequence of observations from a process.
- ► A labelled transition system with termination is a relation:

$$R \subseteq X \times (B + A \times X)$$

 \blacktriangleright A trace starting at a state $x_0 \in X$ is a sequence

$$a_1a_2,\ldots a_nb\in A^*B$$

such that there is an execution

$$x_0a_1x_1a_2\dots a_nx_nb\in (XA)^*XB$$

defined by the property

$$\forall i < n : R(x_i, (a_{i+1}, x_{i+1})) \text{ and } R(x_n, b)$$

P is a monad with $KI(P) \cong ReI$

Traces, coalgebraically

 A^*B is the *initial algebra* for the functor B + A(-): **Set** \rightarrow **Set**

Traces, coalgebraically

 A^*B is the *initial algebra* for the functor B + A(-): **Set** \rightarrow **Set**

Set
$$A^*B$$
 $B \rightarrow B + AB \longrightarrow B + AB + AAB \longrightarrow \cdots$

General categorical machinery allows us to lift this chain to the category of relations, and reverse the arrows¹:

¹With various assumptions, which we will come back to later

Traces, coalgebraically

 A^*B is the *initial algebra* for the functor B + A(-): **Set** \rightarrow **Set**

Set
$$B \longrightarrow B + AB \longrightarrow B + AB + AAB \longrightarrow \cdots$$

General categorical machinery allows us to lift this chain to the category of relations, and reverse the arrows¹:

Thus A^*B is a *final coalgebra* in the category of relations!

¹With various assumptions, which we will come back to later coinductive finite traces [HJS07], limit-colimit coincidence [SP82]

Traces by coinduction

For every LTS $c: X \to P(B + A \times X)$, there is a *unique coalgebra* morphism into A^*B .

Rel
$$X - \cdots \rightarrow A^*B$$

$$\downarrow c \qquad \qquad \downarrow \wr$$

$$B + A \times X - \cdots \rightarrow B + A \times A^*B$$

This dashed morphism in **Rel** is a function $X \to P(A^*B)$ which assigns each state to it's set of traces!

▶ We have been using a functor $H := B + A \times (-)$

- ▶ We have been using a functor $H := B + A \times (-)$
- ▶ With a PH-coalgebra $c: X \rightarrow PHX$

- ▶ We have been using a functor $H := B + A \times (-)$
- ▶ With a PH-coalgebra $c: X \rightarrow PHX$
- Now use a modified version $H_X := X \times (B + A \times (-))$

- ▶ We have been using a functor $H := B + A \times (-)$
- ▶ With a PH-coalgebra $c: X \rightarrow PHX$
- Now use a modified version $H_X := X \times (B + A \times (-))$
- ▶ With $c^*: X \to PH_X(X)$ defined as the composite

$$(X \xrightarrow{\langle \mathrm{id}, c \rangle} X \times P(B + A \times X) \xrightarrow{\mathrm{stl}} P(X \times (B + A \times X))$$
$$x \mapsto \{(x, u) \mid u \in c(x)\}$$

Introduction

- ▶ We have been using a functor $H := B + A \times (-)$
- ▶ With a *PH*-coalgebra $c: X \rightarrow PHX$
- Now use a modified version $H_X := X \times (B + A \times (-))$
- \blacktriangleright With $c^*: X \to PH_X(X)$ defined as the composite

$$(X \xrightarrow{\langle \mathrm{id}, c \rangle} X \times P(B + A \times X) \xrightarrow{\mathrm{stl}} P(X \times (B + A \times X))$$
$$x \mapsto \{(x, u) \mid u \in c(x)\}$$

With the same apparatus as before, we can obtain an execution map $exec_c: X \to P((XA)^*XB)$

- ▶ We have been using a functor $H := B + A \times (-)$
- ▶ With a PH-coalgebra $c: X \rightarrow PHX$
- Now use a modified version $H_X := X \times (B + A \times (-))$
- ▶ With $c^*: X \to PH_X(X)$ defined as the composite

$$(X \xrightarrow{\langle \mathrm{id}, c \rangle} X \times P(B + A \times X) \xrightarrow{\mathrm{stl}} P(X \times (B + A \times X))$$
$$x \mapsto \{(x, u) \mid u \in c(x)\}$$

- With the same apparatus as before, we can obtain an execution map $\operatorname{exec}_c: X \to P((XA)^*XB)$
- ▶ And it follows from a general coalgebraic result that:

Introduction

- ▶ We have been using a functor $H := B + A \times (-)$
- ▶ With a PH-coalgebra $c: X \rightarrow PHX$
- ▶ Now use a modified version $H_X := X \times (B + A \times (-))$
- ▶ With $c^*: X \to PH_X(X)$ defined as the composite

$$(X \xrightarrow{\langle \operatorname{id}, c \rangle} X \times P(B + A \times X) \xrightarrow{\operatorname{stl}} P(X \times (B + A \times X))$$
$$x \mapsto \{(x, u) \mid u \in c(x)\}$$

- With the same apparatus as before, we can obtain an execution map $\operatorname{exec}_c: X \to P((XA)^*XB)$
- ▶ And it follows from a general coalgebraic result that:

Recap

Because the monad P has lots of nice properties, we automatically get trace/execution maps:

$$X \xrightarrow{\text{exec}_c} (XA)^*XB \xrightarrow{f_{\pi_2}} A^*B$$

$$\text{Rel}$$

Games

Recall:

How do we turn this into a function $X \to M(HX)$? i.e. Which monad M do we choose?

Finding the monad

Let $A, B, C, D, E \subseteq X$

 $\{\{\{A,B\},\{C,D\}\},\{\{E\}\}\}\mapsto \{A\cup C,A\cup D,B\cup C,B\cup D,E\}$

Let $A, B, C, D, E \subseteq X$

$$\{\{\{A,B\},\{C,D\}\},\{\{E\}\}\}\mapsto\{A\cup C,A\cup D,B\cup C,B\cup D,E\}$$

$$\Upsilon \in PPPP(X) \mapsto \{\bigcup Im(f) \mid \exists v \in \Upsilon, f : v \stackrel{*}{\rightarrow} PP(X)\}$$

where $f: v \xrightarrow{*} PP(X)$ is a choice function: $\forall \mathcal{U} \in v : \mathcal{U} \in f(\mathcal{U})$.

Failure of associativity

Failure of associativity

Two solutions:

Use multiplicities for the environment

- Use multiplicities for the environment
- Modify our strategy picking procedure to include "convex choices"

- Use multiplicities for the environment
- Modify our strategy picking procedure to include "convex choices"
- ▶ Both of these can be phrased in terms of monad *distributive* laws

- Use multiplicities for the environment
- Modify our strategy picking procedure to include "convex choices"
- Both of these can be phrased in terms of monad distributive laws
- ▶ Given two monads (S, μ^T, η^T) and (T, μ^T, η^T) , a distributive law $\delta: TS \to ST$ is a natural transformation satisfying some coherence conditions involving μ^T , μ^S , η^T , η^S .

- Use multiplicities for the environment
- Modify our strategy picking procedure to include "convex choices"
- Both of these can be phrased in terms of monad distributive laws
- ▶ Given two monads (S, μ^T, η^T) and (T, μ^T, η^T) , a distributive law $\delta : TS \to ST$ is a natural transformation satisfying some coherence conditions involving $\mu^T, \mu^S, \eta^T, \eta^S$.
- ▶ A weak distributive law $\delta : TS \to ST$ only satisfies the diagrams involving μ^T, μ^S, η^S .

$$\delta(\{U_i\}_{i\in I}) = \{\bigcup_{i\in I} V_i \mid V_i \subseteq^+ U_i \text{ for all } i\in I\}$$

$$\delta(\{U_i\}_{i\in I}) = \{\bigcup_{i\in I} V_i \mid V_i \subseteq^+ U_i \text{ for all } i\in I\}$$

$$\delta(\{U_i\}_{i\in I}) = \{\bigcup_{i\in I} V_i \mid V_i \subseteq^+ U_i \text{ for all } i\in I\}$$

$$\delta(\{U_i\}_{i\in I}) = \{\bigcup_{i\in I} V_i \mid V_i \subseteq^+ U_i \text{ for all } i\in I\}$$

$$\delta(\{U_i\}_{i\in I}) = \{\bigcup_{i\in I} V_i \mid V_i \subseteq^+ U_i \text{ for all } i\in I\}$$

$$\delta(\{U_i\}_{i\in I}) = \{\bigcup_{i\in I} V_i \mid V_i \subseteq^+ U_i \text{ for all } i\in I\}$$

$$\delta(\{U_i\}_{i\in I}) = \{\bigcup_{i\in I} V_i \mid V_i \subseteq^+ U_i \text{ for all } i\in I\}$$

$$\delta(\{U_i\}_{i\in I}) = \{\bigcup_{i\in I} V_i \mid V_i \subseteq^+ U_i \text{ for all } i\in I\}$$

$$\delta(\{U_i\}_{i\in I}) = \{\bigcup_{i\in I} V_i \mid V_i \subseteq^+ U_i \text{ for all } i\in I\}$$

$$\delta(\{U_i\}_{i\in I}) = \{\bigcup_{i\in I} V_i \mid V_i \subseteq^+ U_i \text{ for all } i\in I\}$$

Trace semantics

▶ We can build a monad

$$\widetilde{PP}(X)=\{\mathcal{U}\subseteq X\mid \mathcal{U} \text{ is closed under arbitrary union}\}$$

$$\eta(x)=\{\{x\}\}\qquad \mu \text{ uses } \delta$$

Trace semantics

We can build a monad

$$\widetilde{PP}(X) = \{\mathcal{U} \subseteq X \mid \mathcal{U} \text{ is closed under arbitrary union}\}$$

$$\eta(x) = \{\{x\}\} \qquad \mu \text{ uses } \delta$$

► Recall: General categorical machinery allows us to lift this chain to the category of relations, and reverse the arrows:

with various assumptions on \widetilde{PP}

- ► The Kleisli category is not ω-cpo enriched.

- ▶ The Kleisli category is not ω-cpo enriched.
- ▶ Composition in the Kleisli category is not left-strict.

- ▶ The Kleisli category is not ω-cpo enriched.
- ► Composition in the Kleisli category is not left-strict.
- ▶ The monad is not commutative.

- ▶ The Kleisli category is not ω-cpo enriched.
 - Restrict the inner powerset to finite.
- ► Composition in the Kleisli category is not left-strict.
- ▶ The monad is not commutative.

- ▶ The Kleisli category is not ω -cpo enriched.
 - ► Restrict the inner powerset to finite.
- Composition in the Kleisli category is not left-strict.
 - Restrict the inner powerset to non-empty.
- ▶ The monad is not commutative.

- ▶ The Kleisli category is not ω -cpo enriched.
 - Restrict the inner powerset to finite.
- Composition in the Kleisli category is not left-strict.
 - Restrict the inner powerset to non-empty.
- ▶ The monad is not commutative.
 - Only consider linear functors (rather than polynomial)

- ▶ The Kleisli category is not ω-cpo enriched.
 - Restrict the inner powerset to finite.
- Composition in the Kleisli category is not left-strict.
 - Restrict the inner powerset to non-empty.
- ▶ The monad is not commutative.
 - Only consider linear functors (rather than polynomial)
- ▶ Let *Q* be the finite non-empty powerset monad.

- ▶ The Kleisli category is not ω-cpo enriched.
 - ▶ Restrict the inner powerset to finite.
- ► Composition in the Kleisli category is not left-strict.
 - Restrict the inner powerset to non-empty.
- ▶ The monad is not commutative.
 - Only consider linear functors (rather than polynomial)
- Let Q be the finite non-empty powerset monad.

$$Q(X) = \{U \subseteq_{\omega}^{+} X\}$$

- ▶ The Kleisli category is not ω-cpo enriched.
 - Restrict the inner powerset to finite.
- ► Composition in the Kleisli category is not left-strict.
 - Restrict the inner powerset to non-empty.
- ▶ The monad is not commutative.
 - Only consider linear functors (rather than polynomial)
- ▶ Let *Q* be the finite non-empty powerset monad.

$$Q(X) = \{U \subseteq_{\omega}^{+} X\}$$

$$\widetilde{PQ}(X) = \{ \mathcal{U} \subseteq Q(X) \mid \mathcal{U} \text{ is closed under binary union} \}$$

- ▶ The Kleisli category is not ω-cpo enriched.
 - Restrict the inner powerset to finite.
- ► Composition in the Kleisli category is not left-strict.
 - Restrict the inner powerset to non-empty.
- The monad is not commutative.
 - Only consider linear functors (rather than polynomial)
- Let Q be the finite non-empty powerset monad.

$$Q(X) = \{U \subseteq_{\omega}^{+} X\}$$

$$\widetilde{PQ}(X) = \{ \mathcal{U} \subseteq Q(X) \mid \mathcal{U} \text{ is closed under binary union} \}$$

$$\delta: QP \to PQ$$

$$\delta(\{U_1, \dots, U_n\}) := \{V_1 \cup \dots \cup V_n \mid V_i \subset_{i}^+ U\}$$

Traces and Executions

 A^*B is the final B + A(-)-coalgebra in $KI(\widetilde{PQ})$.

$$\begin{array}{c|c} \mathbf{KI}(\widetilde{PQ}) \\ B \longleftarrow B + AB \longleftarrow B + AB + AAB \longleftarrow \cdots \end{array}$$

Traces and Executions

 A^*B is the final B + A(-)-coalgebra in KI(PQ).

$$\begin{array}{c|c}
KI(\widetilde{PQ}) & & & & & & & & & \\
B & \longleftarrow & B + AB & \longleftarrow & B + AB + AAB & \longleftarrow & \cdots
\end{array}$$

Thus we have trace and execution maps by coinduction:

$$X \xrightarrow{\operatorname{tr}_{c}} A^{*}B$$

$$\downarrow^{c} \downarrow^{\zeta}$$

$$B + A \times X \xrightarrow{B+A \times \operatorname{tr}_{c}} B + A \times A^{*}B$$

$$\operatorname{tr}_{c} : X \to \widetilde{PQ}(A^{*}B)$$

Traces and Executions

 A^*B is the final B + A(-)-coalgebra in $KI(\widetilde{PQ})$.

$$\begin{array}{c|c}
KI(\widetilde{PQ}) & & & & & & \\
B & \longleftarrow & B + AB & \longleftarrow & B + AB + AAB & \longleftarrow & \cdots
\end{array}$$

Thus we have trace and execution maps by coinduction:

$$X \xrightarrow{\text{exec}_c} (XA)^*XB$$

$$\downarrow^{c^*} \qquad \qquad \downarrow^{\zeta} \downarrow^{\zeta}$$

$$X \times (B + A \times X) \xrightarrow{B + A \times \text{exec}_c} X \times (B + A \times (XA)^*XB)$$

$$\text{exec}_c : X \to \widetilde{PQ}((XA)^*XB)$$

(Theorem sketch) for all $U \subseteq (XA)^*XB$: $U \in \text{exec}_c(x) \implies \text{there is a strategy which enforces } U$ $U \in \text{exec}_c(x) \Longleftarrow^* \text{ there is a strategy which enforces } U$ *almost

where $\overline{H}: \mathbf{KI}(\widetilde{PQ}) \to \mathbf{KI}(\widetilde{PQ})$ is the lifting of $X \times (B + A \times (-))$

Traces via strategies

where $\overline{H}: \mathbf{KI}(\widetilde{PQ}) \to \mathbf{KI}(\widetilde{PQ})$ is the lifting of $X \times (B + A \times (-))$

Traces via strategies

where $\overline{H}: \mathbf{KI}(\widetilde{PQ}) \to \mathbf{KI}(\widetilde{PQ})$ is the lifting of $X \times (B + A \times (-))$

where $\overline{H}: \mathbf{KI}(\widetilde{PQ}) \to \mathbf{KI}(\widetilde{PQ})$ is the lifting of $X \times (B + A \times (-))$

where $\overline{H}: \mathbf{KI}(\widetilde{PQ}) \to \mathbf{KI}(\widetilde{PQ})$ is the lifting of $X \times (B + A \times (-))$

where $\overline{H}: \mathbf{KI}(\widetilde{PQ}) \to \mathbf{KI}(\widetilde{PQ})$ is the lifting of $X \times (B + A \times (-))$

where $\overline{H}: \mathbf{KI}(\widetilde{PQ}) \to \mathbf{KI}(\widetilde{PQ})$ is the lifting of $X \times (B + A \times (-))$

 $ightharpoonup \sigma_0: 1 \to Q(X)$ will pick an initial state

- $ightharpoonup \sigma_0: 1 o Q(X)$ will pick an initial state
- $ightharpoonup \sigma_{n+1}: \operatorname{Im}(\sigma_n) \to QH^{n+1}(X)$ extends an *n*-length play

- $ightharpoonup \sigma_0: 1 o Q(X)$ will pick an initial state
- $lackbox{} \sigma_{n+1}: \operatorname{Im}(\sigma_n) o QH^{n+1}(X)$ extends an *n*-length play

Introduction

- $ightharpoonup \sigma_0: 1 o Q(X)$ will pick an initial state
- $ightharpoonup \sigma_{n+1}: \operatorname{Im}(\sigma_n) \to QH^{n+1}(X)$ extends an *n*-length play

(left) σ extends partial plays, (right) we choose a successor in c:

Introduction

- $ightharpoonup \sigma_0: 1 o Q(X)$ will pick an initial state
- $ightharpoonup \sigma_{n+1}: \operatorname{Im}(\sigma_n) \to QH^{n+1}(X)$ extends an *n*-length play

$$\begin{array}{c|c} \textbf{KI}(Q) & X & \widehat{H}(X) & \widehat{H^2}(X) & \cdots \\ \hline & \sigma_0 & \uparrow & \sigma_1 & \uparrow & \sigma_2 & \uparrow & \sigma_3 \\ \hline & 1 & -----> & \text{Im}(\sigma_0) & -----> & \text{Im}(\sigma_1) & -----> & \text{Im}(\sigma_2) & -----> & \cdots \end{array}$$

(left) σ extends partial plays, (right) we choose a successor in c:

The *n*-depth plays comes from composition:

$$\mathsf{play}_n^\sigma = (1 \dashrightarrow \mathsf{Im}(\sigma_0) \dashrightarrow \cdots \dashrightarrow \mathsf{Im}(\sigma_n) \rightarrowtail H^n(X))$$

Play outcomes

To define the play outcome, first lift a strategy into $KI(\widetilde{PQ})$

$$\eta^P \circ \sigma_n : \operatorname{Im}(\sigma_n) o \widetilde{PQ}H^{n+1}(X)$$

Then we can reuse that $(XA)^*XB$ is the limit of the final sequence:

Games

Main theorem

Theorem

$$\operatorname{exec}_c(x) = \bigcup_{\sigma \text{ starts in } x} \operatorname{play}_c^{\sigma}$$

Lemma

$$c_n^*(x) = \{ \mathsf{play}_n^\sigma \mid \sigma \mathsf{ starts in } x \}$$

▶ What do we gain from doing this coalgebraically?

Main theorem

Theorem
$$\operatorname{exec}_c(x) = \bigcup_{\sigma \text{ starts in } x} \operatorname{play}_c^{\sigma}$$

Lemma

$$c_n^*(x) = \{\mathsf{play}_n^\sigma \mid \sigma \mathsf{ starts in } x\}$$

▶ What do we gain from doing this coalgebraically?

Main theorem

Games

Theorem

$$\operatorname{exec}_{c}(x) = \bigcup_{\sigma \text{ starts in } x} \operatorname{play}_{c}^{\sigma}$$

Lemma

$$c_n^*(x) = \{ \mathsf{play}_n^\sigma \mid \sigma \mathsf{ starts in } x \}$$

- ▶ What do we gain from doing this coalgebraically?
 - ▶ Replace *Q* with the finite distribution monad *D*!

Traces in games

Main theorem

Games

Theorem $exec_c(x) = \begin{bmatrix} \end{bmatrix}$

$$c_n^*(x) = \{ play_n^{\sigma} \mid \sigma \text{ starts in } x \}$$

 σ starts in x

▶ What do we gain from doing this coalgebraically?

 play_c^{σ}

- ▶ Replace *Q* with the finite distribution monad *D*!
- ► Generic coinductive algorithms for strategy synthesis.

Conclusion

- ► Towards strategy synthesis...
 - Product construction?
 - ► General theorem about memoryless strategies?
 - ▶ Infinite traces, continuous probability monads?
- ► An axiomatic presentation.
- Simple stochastic games?

Bibliography I

- Filippo Bonchi and Alessio Santamaria, *Convexity via Weak Distributive Laws*, Logical Methods in Computer Science **Volume 18, Issue 4** (2022), 8389, arXiv:2108.10718 [cs, math].
- Richard Garner, *The Vietoris Monad and Weak Distributive Laws*, Applied Categorical Structures **28** (2020), no. 2, 339–354 (en).
- Alexandre Goy, On the compositionality of monads via weak distributive laws, phdthesis, Université Paris-Saclay, October 2021.
- lchiro Hasuo, Bart Jacobs, and Ana Sokolova, *Generic trace semantics via coinduction*, Logical Methods in Computer Science **Volume 3, Issue 4** (2007).

Bibliography II

- Bartek Klin and Julian Salamanca, *Iterated covariant powerset is not a monad*, Electronic Notes in Theoretical Computer Science **341** (2018), 261–276, Proceedings of the Thirty-Fourth Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIV).
- Benjamin Plummer and Cîrstea Corina, *Traces via strategies in two-player games*, Unpublished manuscript, 2025, Submitted to Mathematical Foundations of Programming Semantics, under review.
- M. B. Smyth and G. D. Plotkin, *The category-theoretic solution of recursive domain equations*, SIAM Journal on Computing **11** (1982), no. 4, 761–783.