Prediction of the Effect of Single Amino Acid Protein Variants Using Deep Mutational Scanning Data

University of Bologna — Master Thesis in Bioinformatics

Pierotti Saul

Internal Advisor: Prof. Pietro Di Lena

External Advisor: Prof. Arne Elofsson (Stockholm University)

Single Amino Acid Variant

A mutation that replaces exactly one amino acid in a protein

Deep Mutational Scanning

A technique for obtaining fitness information on a large number of mutations

Image sources: restriction_enzyme icon by Simon Dürr; Illumina_miseq icon by DBCLS; modified stem_cell_colony icon by Marcel Tisch. Full credits in appendix.

Predicting the Effect of Mutations

Why is it useful?

- Targeted medical treatments
- ► Protein engineering

Why is it needed?

- Experiments are insufficient
- ► Experiments are expensive

How can it be done?

- ► Machine learning
- ► Statistical models

Image sources: modified patient icon by Marcel Tisch; zincfinger icon by Simon Dürr; paper-chromatography-run icon by Servier; sand-clock icon by Servier; ai icon by Simon Dürr; sigmoid icon by Simon Dürr. Full credits in appendix.

Previous Work in the Field

Image sources: ai icon by Simon Dürr; sigmoid icon by Simon Dürr. Full credits in appendix.

Among these predictors only Envision was trained on deep mutational scanning data

My Approach

Training Data

I borrowed the training dataset of the predictor Envision (Gray et al., 2018)

Experiments Do Not Agree Much with Each Other

Two independent deep mutational scanning experiments on Ubiquitin are present in the training dataset. Their correlation is low.

Interesting Patterns in Mutation Sensitivity

- Polar residues seem more tolerant to mutations than hydrophobic residues
- ► Proline (P) is the most disruptive residue
- ► Tryptophan (W) is hard to replace

Mutation from

Exposure Explains the Mutability of Polar Residues

When filtering by Relative Solvent Accessibility (RSA) apolar residues are not more sensitive to mutations than polar residues

Mutation from

Mutation from

Buried Residues Are More Conserved

Features Used by the Predictors

All the features are derived from the sequences: I did **not** use any structural information

Mutation identity

EVmutation predictions

(Hopf et al., 2017)

NetsurfP-2 predictions

(Klausen et al., 2019)

HMMER emission probabilities

(Eddy, 2011)

trRosetta predicted contacts

(Yang et al., 2020)

Single Protein Models

Naive approach

- A different model trained for each protein
- ► Half of the mutations used for testing and half for cross-validation
- ▶ Too good to be true

Single Protein Models

Naive approach

- ► A different model trained for each protein
- Half of the mutations used for testing and half for cross-validation
- ► Too good to be true

Segregating protein positions

- Same as above but mutations in the same position segregated in the training or testing sets
- ► Performances are more realistic

Leave-One-Protein-Out (LOPO) Models

- Models trained on the whole dataset while leaving one protein out
- For the left-out protein, half of the mutations used for testing and half for validation
- Spearman correlation coefficient used for evaluation

Discussion and Future Directions

What I learned

- ► The testing strategy is crucial
- ▶ Good performances without structural features
- ► Strong variability between datasets
- ► Complex models not necessarily better

Ideas for the future

- ▶ Using residue contacts in a graph convolutional neural network
- Training on more deep mutational scanning studies
- Finding a better normalization strategy

Questions?

Bibliography I

- Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S. & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. *Nature Methods*, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
- Eddy, S. R. (2011). Accelerated profile HMM searches (W. R. Pearson, Ed.). *PLoS Computational Biology*, 7(10), e1002195. https://doi.org/10.1371/journal.pcbi.1002195
- Gray, V. E., Hause, R. J., Luebeck, J., Shendure, J. & Fowler, D. M. (2018).

 Quantitative missense variant effect prediction using large-scale mutagenesis data. *Cell Systems*, 6(1), 116–124.e3. https://doi.org/10.1016/j.cels.2017.11.003
- Hecht, M., Bromberg, Y. & Rost, B. (2015). Better prediction of functional effects for sequence variants. *BMC Genomics*, 16(S8). https://doi.org/10.1186/1471-2164-16-s8-s1
- Hopf, T., Ingraham, J., Poelwijk, F., Schärfe, C., Springer, M., Sander, C. & Marks, D. (2017). Mutation effects predicted from sequence co-variation. *Nature Biotechnology*, 35(2), 128–135. https://doi.org/10.1038/nbt.3769

Bibliography II

- Klausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., Sønderby, C. K., Sommer, M. O. A., Winther, O., Nielsen, M., Petersen, B. & Marcatili, P. (2019). NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins: Structure, Function, and Bioinformatics, 87(6), 520–527. https://doi.org/10.1002/prot.25674
- Riesselman, A. J., Ingraham, J. B. & Marks, D. S. (2018). Deep generative models of genetic variation capture the effects of mutations. *Nature Methods*, 15(10), 816–822. https://doi.org/10.1038/s41592-018-0138-4
- Sim, N.-I., Kumar, P., Hu, J., Henikoff, S., Schneider, G. & Ng, P. C. (2012). SIFT web server: Predicting effects of amino acid substitutions on proteins. *Nucleic Acids Research*, 40(W1), W452–W457. https://doi.org/10.1093/nar/gks539
- Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S. & Baker, D. (2020). Improved protein structure prediction using predicted interresidue orientations. *Proceedings of the National Academy of Sciences*, 117(3), 1496–1503. https://doi.org/10.1073/pnas.1914677117

Images Credits

Illumina_miseq icon by DBCLS https://togotv.dbcls.jp/en/pics.html is licensed under CC-BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/

restriction_enzyme icon by Simon Dürr https://twitter.com/simonduerr is licensed under CC0 https://creativecommons.org/publicdomain/zero/1.0/

zincfinger icon by Simon Dürr https://twitter.com/simonduerr is licensed under CC0 https://creativecommons.org/publicdomain/zero/1.0/

stem_cell_colony icon by Marcel Tisch https://twitter.com/MarcelTisch is licensed under CC0 https://creativecommons.org/publicdomain/zero/1.0/

ai icon by Simon Dürr https://twitter.com/simonduerr is licensed under CC0 https://creativecommons.org/publicdomain/zero/1.0/

sigmoid icon by Simon Dürr https://twitter.com/simonduerr is licensed under CC0 https://creativecommons.org/publicdomain/zero/1.0/

Secondary structure is of limited importance in the discrimination of damaging mutations

The correlation among features follows predictable patterns

EVcouplings mutation frequency

Precision of trRosetta (Yang et al., 2020) in predicting residue contacts

Dataset	Medium-range ($s \geq 12$)			Long-range ($s \geq 24$)		
	Top $L/5$	Top $L/2$	Top L	Top $L/5$	Top $L/2$	Top L
beta-lactamase	1.00	0.92	0.86	0.96	0.93	0.76
WW domain	0.95	0.90	0.83	0.90	0.87	0.75
PSD95pdz3	0.96	0.92	0.80	0.92	0.81	0.70
kka2 1:2	1.00	1.00	0.96	1.00	1.00	0.89
hsp90	1.00	1.00	0.96	1.00	1.00	0.89
Ubiquitin	0.98	0.92	0.82	1.00	0.90	0.70
Pab 1	0.80	0.72	0.67	0.87	0.74	0.60
E1 Ubiquitin	0.82	0.86	0.77	0.91	0.75	0.54
gb1	1.00	0.85	0.46	0.63	0.40	0.22

Quality of the predicted structural features from NetsurfP-2 (Klausen et al., 2019)

Feature	Evaluation metric	Score
Relative solvent accessibility	Pearson r	0.79
Accessible surface area	Pearson r	0.80
Q3 secondary structure	Q_3 accuracy	0.85
Q_8 secondary structure	Q_{8} accuracy	0.72
φ torsion angle	Circular correlation	0.73
ψ torsion angle	Circular correlation	0.87

Relationship between the features used in the models and the fitness scores

Feature	Pearson r	Spearman $ ho$	Kendall τ
PSSM mutation score	-0.29	-0.28	-0.19
Netsurf predicted RSA	0.34	0.37	0.25
Netsurf predicted ASA	0.32	0.35	0.24
Netsurf predicted disorder	0.06	0.18	0.12
EVcouplings epistatic model	0.46	0.50	0.34
EVcouplings independent model	0.44	0.44	0.30
EVcouplings frequency	0.19	0.35	0.24
EVcouplings conservation	-0.32	-0.33	-0.23
Closeness centrality (trRosetta predicted contacts)	-0.16	-0.17	-0.11
Betweenness centrality (trRosetta predicted contacts)	-0.20	-0.29	-0.19
Degree centrality (trRosetta predicted contacts)	-0.12	-0.13	-0.09
Load centrality (trRosetta predicted contacts)	-0.20	-0.29	-0.19
Harmonic centrality (trRosetta predicted contacts)	-0.19	-0.20	-0.14
Clustering coefficient (trRosetta predicted contacts)	0.23	0.25	0.17
			Linear-circular correlation
Netsurf predicted ϕ torsion angle			0.01
Netsurf predicted ψ torsion angle			0.02
	Kruskal-Wallis χ^2		p-value
Wild-type residue	1482.40		< 2.20 · 10 ⁻¹⁶
Mutated residue	708.53		< 2.20 · 10 - 16
Netsurf predicted Q_3 secondary structure	215.33		< 2.20 · 10 - 16
Netsurf predicted Q_8 secondary structure	351.97		< 2.20 · 10 ⁻¹⁶

Feature importances for the gradient boosted tree general models

Feature group

Feature importances for the linear regression general models

Feature group

Validation and testing performances for the single protein models trained with the naive approach

Validation and testing performances for the single protein models trained by segregating protein positions

Comparison of the performances of single protein models and general models

Confidence intervals in prediction performances

Dataset name	Model	95 % C.I. (Pearson)	95 % C.I. (Spearman)
beta-lactamase	Naive	0.89 to 0.91	0.86 to 0.88
beta-lactamase	By position	0.79 to 0.83	0.75 to 0.78
beta-lactamase	LOPO	_	0.68 to 0.72
WW domain	Naive	0.67 to 0.82	0.70 to 0.84
WW domain	By position	0.57 to 0.73	0.52 to 0.72
WW domain	LÓPO	_	0.56 to 0.73
PSD95pdz3	Naive	0.74 to 0.83	0.73 to 0.80
PSD95pdz3	By position	0.55 to 0.67	0.54 to 0.65
PSD95pdz3	LÓPO	_	0.53 to 0.63
kka2 1:2	Naive	0.74 to 0.78	0.72 to 0.76
kka2 1:2	By position	0.65 to 0.69	0.64 to 0.68
kka2 1:2	LÓPO	_	0.60 to 0.64
hsp90	Naive	0.82 to 0.87	0.65 to 0.71
hsp90	By position	0.69 to 0.76	0.50 to 0.57
hsp90	LÓPO	_	0.38 to 0.45
Ubiquitin	Naive	0.75 to 0.83	0.78 to 0.83
Ubiquitin	By position	0.49 to 0.60	0.46 to 0.57
Ubiquitin	LÓPO	_	0.30 to 0.43
Pab 1	Naive	0.80 to 0.87	0.75 to 0.82
Pab1	By position	0.65 to 0.76	0.64 to 0.73
Pab1	LÓPO	_	0.60 to 0.70
E1 Ubiquitin	Naive	0.75 to 0.85	0.65 to 0.75
E1 Ubiquitin	By position	0.59 to 0.72	0.36 to 0.51
E1 Ubiquitin	LOPO	_	0.50 to 0.63
gb1	Naive	0.90 to 0.93	0.88 to 0.92
gb1	By position	0.31 to 0.46	0.29 to 0.45
gb1	LOPO	_	0.32 to 0.47

Statistical significance of performance differences. Starred values are significant with Bonferroni correction.

$$\alpha = \frac{0.05}{27} = 0.00185185$$

Dataset name	Model 1	Model 2	$p ext{-value}$
beta-lactamase	Linear regression	Gradient boosted trees	1 · 10-4 *
beta-lactamase	Linear regression	EVmutation	1 · 10 - 4 *
beta-lactamase	EVmutation	Gradient boosted trees	1 · 10 ⁻⁴ *
WW domain	Linear regression	Gradient boosted trees	1 · 10 - 4 *
WW domain	Linear regression	EVmutation	1 · 10-4 *
WW domain	EVmutation	Gradient boosted trees	1 · 10-4 *
PSD95pdz3	Linear regression	Gradient boosted trees	1 · 10-4 *
PSD95pdz3 PSD95pdz3 kka2 1:2	Linear regression EVmutation Linear regression	EVmutation Gradient boosted trees Gradient boosted trees	1 · 10 ⁻⁴ * 0.51 0.00
kka2 1:2	Linear regression	EVmutation	0.00
kka2 1:2	EVmutation	Gradient boosted trees	1 · 10-4 *
hsp90	Linear regression	Gradient boosted trees	1 · 10-4 *
hsp90 hsp90	Linear regression EVmutation	EVmutation Gradient boosted trees	1 · 10 ⁻⁴ * 0.24

The table continues on the next slide

Statistical significance of performance differences. Starred values are significant with Bonferroni correction.

$$\alpha = \frac{0.05}{27} = 0.00185185$$

The table continues from the previous slide

Dataset name	Model 1	Model 2	$p ext{-value}$
Ubiquitin	Linear regression	Gradient boosted trees	1 · 10-4 *
Ubiquitin	Linear regression	EVmutation	1 · 10-4 *
Ubiquitin	EVmutation	Gradient boosted trees	1 · 10-4 *
Pab1	Linear regression	Gradient boosted trees	1 · 10 - 4 *
Pab1	Linear regression	EVmutation	1 · 10-4 *
Pab1	EVmutation	Gradient boosted trees	1 · 10-4 *
E1 Ubiquitin	Linear regression	Gradient boosted trees	1 · 10-4 *
E1 Ubiquitin	Linear regression	EVmutation	1 · 10 - 4 *
E1 Ubiquitin	EVmutation	Gradient boosted trees	1 · 10-4 *
gb1	Linear regression	Gradient boosted trees	1 · 10-4 *
gb1	Linear regression	EVmutation	1 · 10-4 *
gb1	EVmutation	Gradient boosted trees	1 · 10 ⁻⁴ *