CS4487 Lecture 2.1: Naive Bayes and Linear Discriminant Analysis

Dr. Kede Ma

Department of Computer Science City University of Hong Kong

Slides template by courtesy of Benjamin M. Marlin

The Classification Task

Definition: The Classification Task

Given a feature vector $\mathbf{x} \in \mathbb{R}^N$ that describes an object that belongs to one of C classes from the set \mathcal{Y} , predict which class the object belongs to

Definition: Classifier Learning

Given a data set of example pairs $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)}), i = 1, \dots, M\}$ where $\mathbf{x}^{(i)} \in \mathbb{R}^N$ is a feature vector and $y^{(i)} \in \mathcal{Y} = \{1, \dots, C\}$ is a class label, learn a function $f : \mathbb{R}^N \mapsto \mathcal{Y}$ that accurately predicts the class label y for any feature vector \mathbf{x}

Classification Error and Accuracy

Definition: Classification Error Rate

Given a data set of example pairs $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)}), i = 1, \dots, M\}$ and a function $f: \mathbb{R}^N \mapsto \mathcal{Y}$, the classification error rate of f on \mathcal{D} is:

$$\operatorname{Err}(f, \mathcal{D}) = \frac{1}{M} \sum_{i=1}^{M} \mathbb{I}[y^{(i)} \neq f(\mathbf{x}^{(i)})]$$

The Bayes Optimal Classifier

■ The Bayes optimal classifier uses the classification function:

$$f_{B}(\mathbf{x}) = \underset{c \in \{1, \dots, C\}}{\operatorname{arg max}} p(y = c | \mathbf{x})$$

$$= \underset{c \in \{1, \dots, C\}}{\operatorname{arg max}} p(\mathbf{x} | y = c) p(y = c)$$

$$= \underset{c \in \{1, \dots, C\}}{\operatorname{arg max}} \log p(\mathbf{x} | y = c) + \log p(y = c)$$

■ The Bayes optimal classifier is the best classifier among all possible classifiers. However, it is not useful due to the difficulty of estimating $p(\mathbf{x}|y=c)$ in practice

Naive Bayes

- How to deal with multiple features? E.g., $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$
- Naive Bayes assumption
 - The naive Bayes classifier approximates the Bayes optimal classifier using a simple form for the functions $p(\mathbf{x}|y=c)$
 - This form assumes that all of the feature dimensions are statistically independent given the value of the class variable:
 - E.g., for 2 dimensions, $p(x_1, x_2|y) = p(x_1|y)p(x_2|y)$
 - Accumulates evidence from each feature dimension:
 - $E.g., \log p(x_1, x_2|y) = \log p(x_1|y) + \log p(x_2|y)$
 - Allows us to model each dimension of the observation with a simple univariate distribution
- The general form for the classification function is:

$$f_{\text{NB}}(\mathbf{x}) = \underset{c \in \{1, \dots, C\}}{\arg \max} p(y = c) \prod_{j=1}^{N} p(x_j | y = c)$$

■ We will consider the 2-dimensional iris data shown in the beginning of the lecture

• We will select 50% of the data for training, and 50% for testing

- Learn Gaussian Naive Bayes model
 - Treat each dimension as an independent Gaussian and fit the Gaussian parameters with MLE
- View 2d class conditionals:

$$p(x_1, x_2|y = c) = p(x_1|y = c)p(x_2|y = c)$$

■ View the posterior $p(y = c | \mathbf{x}) = p(y = c | x_1, x_2)$

Geometric Interpretation

■ What is the geometry of the decision boundary?

$$f_{NB}(\mathbf{x}) = \underset{c \in \{1,2\}}{\arg \max} p(y = c) \prod_{j=1}^{2} p(x_{j}|y = c)$$

$$= \underset{c \in \{1,2\}}{\arg \max} \log p(y = c) + \sum_{j=1}^{2} \log p(x_{j}|y = c)$$

$$= \underset{c \in \{1,2\}}{\arg \max} \log p(y = c) + \sum_{j=1}^{2} \left(-\frac{1}{2} \log(2\pi\sigma_{j|c}^{2}) - \frac{(x_{j} - \mu_{j|c})^{2}}{2\sigma_{j|c}^{2}} \right)$$

Geometric Interpretation

■ The decision boundary consists of the set of points (x_1, x_2) where

$$\log p(y=1) + \sum_{j=1}^{2} \log p(x_j|y=1) = \log p(y=2) + \sum_{j=1}^{2} \log p(x_j|y=2):$$

$$\log p(y=1) + \sum_{j=1}^{2} \left(-\frac{1}{2} \log(2\pi\sigma_{j|1}^{2}) - \frac{1}{2\sigma_{j|1}^{2}} (x_{j} - \mu_{j|1})^{2} \right)$$
$$-\log p(y=2) - \sum_{j=1}^{2} \left(-\frac{1}{2} \log(2\pi\sigma_{j|2}^{2}) - \frac{1}{2\sigma_{j|2}^{2}} (x_{j} - \mu_{j|2})^{2} \right) = 0$$

■ It's not hard to see that the decision boundary is a quadratic function of (x_1, x_2) with the form: $\sum_{j=1}^{2} (a_j x_j^2 + b_j x_j) + c = 0$

Naive Bayes Model For Boolean Vectors

- Model each feature independently
 - Absence/presence of a feature x_i in an input example
 - Bernoulli distribution
 - Present: $p(x_i = 1|y = c) = \varphi_{i|c}$
 - Absent: $p(x_j = 0|y = c) = 1 \varphi_{j|c}$
 - MLE paramters: $\varphi_{j|c} = M_{j|c}/M_c$
 - $M_{j|c}$ is the number of training examples in Class c that contain feature x_i
 - \blacksquare M_c is the number of training examples in Class c
- Class-conditional distribution
 - $p(x_1,...,x_N|y=c) = \prod_{i=1}^N p(x_i|y=c)$
 - $\log p(x_1, \dots, x_N | y = c) = \sum_{j=1}^N \log p(x_j | y = c)$
- For an input example \mathbf{x} , the log-probabilities of features present given y = c adds

Smoothing

- Some features may not be present in any training examples for a given class
 - $M_{j|c} = 0$ and thus $\varphi_{j|c} = 0$
 - I.e., examples in the class **definitely** will not contain the feature
 - Can be a problem since we simply may not have seen an example with that feature due to the limited size of the training set
- Smoothed MLE
 - Add a smoothing parameter α , i.e., adding a "virtual" count
 - Parameter: $\varphi_{j|c} = (M_{j|c} + \alpha)/(M_c + 2\alpha)$
 - If $\alpha = 1$, this is called **Laplace smoothing**
- In general, regularizing or smoothing of the estimate helps to prevent overfitting of the parameters

Multinomial Naive Bayes

- What if x_j has a finite set of categories, i.e., $x_j \in \mathcal{X}_j = \{1, \dots, |\mathcal{X}_j|\}$, instead of only two states of absence and presence with $x_j \in \{1, 2\}$
 - Use a categorical (or called multinomial) distribution as class conditional

$$\underline{p}(x_j = x | y = c) = \varphi_{x,j|c}$$

- MLE paramters: $\varphi_{x,j|c} = M_{x,j|c}/M_c$
 - $M_{x,j|c}$ is the number of training examples in Class c with feature $x_j = x$
 - M_c is the number of training examples in Class c

Linear Discriminant Analysis

- Linear Discriminant Analysis (LDA) is a classification technique due to Fisher that dates back to the 1930's
- It can be interpreted as a different approximation to the Bayes optimal classifier for real-valued data
- Instead of a product of independent Gaussians in Naive Bayes, LDA assumes $p(\mathbf{x}|y=c) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_c, \boldsymbol{\Sigma})$, *i.e.*, multivariate normal with a shared covariance matrix

$$p(\mathbf{x}|y=c) = \frac{1}{\left|(2\pi)^N \mathbf{\Sigma}\right|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_c)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_c)\right)$$

The classification function is

$$f_{\text{LDA}}(\mathbf{x}) = \underset{c \in \{1, \dots, C\}}{\arg \max} p(y = c) p(\mathbf{x}|y = c)$$

Learning for LDA

- As with naive Bayes, LDA parameters are learned using MLE, which reduces to using sample estimates
- Class probabilities: $p(y=c) = \frac{1}{M} \sum_{i=1}^{M} \mathbb{I}[y^{(i)} = c] = \frac{M_c}{M}$
- Class means: $\mu_c = \frac{\sum_{i=1}^M \mathbb{I}[y^{(i)} = c]\mathbf{x}^{(i)}}{\sum_{i=1}^M \mathbb{I}[y^{(i)} = c]} = \frac{\sum_{i=1}^{M_c} \mathbf{x}^{(i)}}{M_c}$, where $\mathbf{x}^{(i)}$ belongs to Class c
- Shared covariance: $\Sigma = \frac{1}{M} \sum_{i=1}^{M} (\mathbf{x}^{(i)} \boldsymbol{\mu}_{y^{(i)}}) (\mathbf{x}^{(i)} \boldsymbol{\mu}_{y^{(i)}})^T$

- View 2d class conditionals:
 - $p(x_1, x_2|y=c) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_c, \boldsymbol{\Sigma})$

■ View the posterior

Geometric Interpretation

- What is the geometry of the decision boundary for LDA?
- The decision boundary consists of the set of points \mathbf{x} where:

$$\log p(y = 1) - \frac{1}{2} \log |(2\pi)^2 \mathbf{\Sigma}| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_1)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_1)$$
$$-\log p(y = 2) + \frac{1}{2} \log |(2\pi)^2 \mathbf{\Sigma}| + \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_2)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_2) = 0$$

We can cancel a large number of terms because of the common covariance matrix and obtain the following result:

$$\log \frac{p(y=1)}{p(y=2)} - \frac{1}{2} \boldsymbol{\mu}_1^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2} \boldsymbol{\mu}_2^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2 + (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1} \mathbf{x} = 0$$

 \blacksquare This shows that the decision boundary is actually linear in \mathbf{x}

NB Versus LDA

- Storage: NB requires $\mathcal{O}(N)$ parameters, whereas LDA requires $\mathcal{O}(N^2)$ parameters
- Speed: The quadratic dependence on N makes LDA slower than NB during learning and classification
- Interpretability: Both models have good interpretability since the parameters of $p(\mathbf{x}|y=c)$ correspond to class conditional averages
- Data: LDA will generally need more data than NB since it needs to estimate the $O(N^2)$ parameters in the shared covariance matrix

Summary

- Generative classification model
 - Estimate probability distributions of features from each class
 - Given feature, predict class with the largest posterior probability
- Advantages:
 - Works with small amount of data
 - Works with multiple classes
- Disadvantages:
 - Accuracy depends on selecting an appropriate probability distribution
 - If the probability distribution doesn't model the data well, then accuracy might be bad