

Optimal In-Place Suffix Sorting

Zhize Li, Jian Li, Hongwei Huo

IIIS, Tsinghua University https://zhizeli.github.io/

October 10th, SPIRE 2018

- Problem Definition
- Related Work
- Our Results
- Our Algorithm
- Conclusion

Problem Definition

Suffix array is a fundamental data structure introduced by Manber and Myers as a **space-saving** alternative to suffix trees in SODA'90.

Problem Definition

Suffix array is a fundamental data structure introduced by Manber and Myers as a **space-saving** alternative to suffix trees in SODA'90.

• Definition:

- Given a string T[0..n-1], each T[i] belongs to an integer alphabet Σ
- Suffix: suf(i) is a substring T[i...n-1] (from index i to the end of T)
- Suffix array SA contains the indices of all sorted suffixes

• Example:

- If T="130" (integer alphabet), then all suffixes are {130, 30, 0}
- suf(2) < suf(0) < suf(1), i.e. 0 < 130 < 30 (in lexicographical order)
- SA=[2,0,1] suf(SA[i]) < suf(SA[j]) for all i < j

Problem Definition

Suffix array is a fundamental data structure introduced by Manber and Myers as a **space-saving** alternative to suffix trees in SODA'90.

• Definition:

- Given a string T[0..n-1], each T[i] belongs to an integer alphabet Σ
- Suffix: suf(i) is a substring T[i...n-1] (from index i to the end of T)
- Suffix array SA contains the indices of all sorted suffixes

• Example:

- If T="130" (integer alphabet), then all suffixes are {130, 30, 0}
- suf(2) < suf(0) < suf(1), i.e. 0 < 130 < 30 (in lexicographical order)
- SA=[2,0,1] suf(SA[i]) < suf(SA[j]) for all i < j

• Problem:

Construct the suffix array SA for a given string T[0...n-1]

- Problem Definition
- Related Work
- Our Results
- Our Algorithm
- Conclusion

- Manber and Myers [MM90] constructed the SA using a doubling technique.
 - beginning characters -> first two characters-> first four characters.... Time: O(nlogn) Space: O(n) workspace

Workspace denotes the total space used by an algorithm except for the input string T and the suffix array SA.

- Manber and Myers [MM90] constructed the SA using a doubling technique.
 - beginning characters -> first two characters-> first four characters.... Time: O(nlogn) Space: O(n) workspace
- In 2003, the first linear time algorithms were obtained by [KSPP03,KS03,KA03] using the divide-and-conquer technique.

Time: T(n)=T(cn)+O(n)=O(n) Space: O(n) workspace

- Manber and Myers [MM90] constructed the SA using a doubling technique.
 - beginning characters -> first two characters-> first four characters.... Time: O(nlogn) Space: O(n) workspace
- In 2003, the first linear time algorithms were obtained by [KSPP03,KS03,KA03] using the divide-and-conquer technique.

Time: T(n)=T(cn)+O(n)=O(n) Space: O(n) workspace

• Bottleneck: space

- Open problem [Franceschini and Muthukrishnan, ICALP'07]:
 - Design in-place (O(1) workspace) and o(nlogn) time algorithms for integer alphabets Σ with $|\Sigma| \le n$.

- Open problem [Franceschini and Muthukrishnan, ICALP'07]:
 - Design in-place (O(1) workspace) and o(nlogn) time algorithms for integer alphabets Σ with $|\Sigma| \le n$.
- Ultimate goal: design *in-place algorithms*, and maintain the optimal O(n) time complexity.

- Open problem [Franceschini and Muthukrishnan, ICALP'07]:
 - Design in-place (O(1) workspace) and o(nlogn) time algorithms for integer alphabets Σ with $|\Sigma| \le n$.
- Ultimate goal: design *in-place algorithms*, and maintain the optimal O(n) time complexity.
- Previous best result [Nong, TOIS'13]:

Time: O(n) Space: $|\Sigma|$ + O(1) workspace

- Open problem [Franceschini and Muthukrishnan, ICALP'07]:
 - Design in-place (O(1) workspace) and o(nlogn) time algorithms for integer alphabets Σ with $|\Sigma| \le n$.
- Ultimate goal: design *in-place algorithms*, and maintain the optimal O(n) time complexity.
- Previous best result [Nong, TOIS'13]:

Time: O(n) Space: $|\Sigma|$ + O(1) workspace

Theorem. Our optimal in-place algorithm takes O(n) time to compute the suffix array even if the string T is read-only and $|\Sigma| = O(n)$.

- Problem Definition
- Related Work
- Our Results
- Our Algorithm
- Conclusion

Our Results

Table 1: Time and workspace of suffix sorting algorithms for integer alphabets Σ

Time	Workspace (words)	Algorithms
$O(n^2)$	O(n)	[SS07]
$O(n\log^2 n)$	O(n)	[Sad98]
$O(n\sqrt{ \Sigma \log(n/ \Sigma)})$	O(n)	[BB05]
$O(n \log n)$	O(n)	[MM90, LS07]
$O(n \log \log n)$	O(n)	[KJP04]
O(n)	O(n)	[KSPP03, KS03, KA03]
$O(n\log\log \Sigma)$	$O(n\log \Sigma /\log n)$	[HSS03]
O(vn)	$O(n/\sqrt{v}) \ v \in [1, \sqrt{n}]$	[KSB06]
O(n)	$n + n/\log n + O(1)$	[NZC09]
$O(n^2 \log n)$	$cn + O(1) \ c < 1$	[MF02, MP06]
$O(n^2 \log n)$	$ \Sigma + O(1)$	[IT99]
$O(n\log \Sigma)$	$ \Sigma + O(1)$	[NZ07]
O(n)	$ \Sigma + O(1)$	[Nong13]
O(n)	O(1)	This paper

- Problem Definition
- Related Work
- Our Results
- Our Algorithm
- Conclusion

- Notations:
 - A suf(i) (T[i..n-1]) is $\textbf{\textit{L-suffix}}$ if suf(i)>suf(i+1)
 - Type of character T[i] is the same as suf(i)
 - LMS-suffix (leftmost S-suffix) if suf(i) is S-type and suf(i-1) is L-type
- Example: T[0..7]="31221120"

• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T₁ from sorted LMS-substrings (simple)

Index () 1	2	3 4	5 6	5 7	SA	Index(LMS)	E E E E E 7 1 4
T 3 1	2	2 1	1 2	2 0	2.	LMS-substring	$\boxed{E\ E\ E\ E\ E\ 7\ \ \textbf{4}\ \ \textbf{1}}$
Type L S	S L	L S	S I	S			
LMS *	<	*		*	3. T_1	LMS-substring	2 1 0 E E 7 4 1

LMS-substrings are {1221, 1120, 0}.

• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T₁ from sorted LMS-substrings (simple)

LMS-substrings are $\{1221, 1120, 0\}$.

3.	T_1 LMS-substr	ring	2 1	0 E	E 7	4	1
	Index	1		4		7	
	LMS-Substring	1221		1120		0	
	Rank (T_1)	2		1		0	

T₁ ("210") shortens T("12211120") by using **one character** to **replace a substring** of T

• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T₁ from sorted LMS-substrings (simple)

Index () 1	2	3 4	5 6	5 7	SA	Index(LMS)	E E E E E 7 1 4
T 3 1	2	2 1	1 2	2 0	2.	LMS-substring	$\boxed{E\ E\ E\ E\ E\ 7\ \ \textbf{4}\ \ \textbf{1}}$
Type L S	S L	L S	S I	S			
LMS *	<	*		*	3. T_1	LMS-substring	2 1 0 E E 7 4 1

LMS-substrings are {1221, 1120, 0}.

• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T₁ from sorted LMS-substrings (simple)
- 4. Sort LMS-suffixes of T by solving T₁ recursively (simple)

• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T₁ from sorted LMS-substrings (simple)
- 4. Sort LMS-suffixes of T by solving T₁ recursively (simple)

LMS-substrings are $\{1221, 1120, 0\}$. T_1 ("210") shortens T("12211120") by using

LMS-Suffixes are {1221120, 1120, 0}. one character to replace a substring of T

A suffix of T₁ corresponds to an LMS-suffix of T

• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T₁ from sorted LMS-substrings (simple)
- 4. Sort LMS-suffixes of T by solving T₁ recursively (simple)

• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T₁ from sorted LMS-substrings (simple)
- 4. Sort LMS-suffixes of T by solving T₁ recursively (simple)
- 5. Induced sort all suffixes from the sorted LMS-suffixes (technical part)

- Induced sorting all suffixes from the sorted LMS-suffixes
 - 1. First induced sort **all L-suffixes** from the sorted LMS-suffixes
 - Divide into two stages

Stage 1: Construct pointer data structure \mathcal{P} & combine interior counter trick to induced sort the first $n_L - c_p$ L-suffixes.

- Induced sorting all suffixes from the sorted LMS-suffixes
 - 1. First induced sort all L-suffixes from the sorted LMS-suffixes
 - Divide into two stages

- Stage 1: Construct pointer data structure \mathcal{P} & combine interior counter trick to induced sort the first $n_L c_p$ L-suffixes.
- Stage 2: Use binary search to extend the interior counter trick to induced sort the last c_p L-suffixes without \mathcal{P} .

Key: without \mathcal{P} , Stage 2 also maintains **linear time** since c_p is small enough (i.e., $c_p \log n = cn$).

- Induced sorting all suffixes from the sorted LMS-suffixes
 - 1. First induced sort **all L-suffixes** from the sorted LMS-suffixes
 - Divide into two stages
 - 2. Then induced sort **all S-suffixes** from the sorted L-suffixes (same as 1)

- Induced sorting all suffixes from the sorted LMS-suffixes
 - 1. First induced sort **all L-suffixes** from the sorted LMS-suffixes
 - Divide into two stages
 - 2. Then induced sort **all S-suffixes** from the sorted L-suffixes (same as 1)
 - 3. Merge the sorted L- and S-suffixes to get the final suffix array

- Problem Definition
- Related Work
- Our Results
- Our Algorithm
- Conclusion

Conclusion

• We propose the *first* in-place suffix sorting algorithm which is *optimal both in time and space*.

Time: O(n) Space: O(1) workspace (in-place)

- Our algorithm solves the open problem posed by Franceschini and Muthukrishnan in ICALP 2007.
 - Desired time and space in their open problem:

Time: o(nlogn) Space: O(1) workspace (in-place)

Thanks!

Zhize Li (IIIS, Tsinghua University) https://zhizeli.github.io/

Our Results

We also give a **simpler** in-place algorithm for the **general alphabet** (**only comparisons between characters are allowed**).

Table 2: Time and workspace of suffix sorting algorithms for general alphabets

Time	Workspace(words)	Algorithms
$O(n \log n)$	O(n)	[MM90, LS07]
$O(vn + n\log n)$	$O(v + n/\sqrt{v}) \ v \in [2, n]$	[BK03]
$O(vn + n\log n)$	$O(n/\sqrt{v}) \ v \in [1, \sqrt{n}]$	[KSB06]
$O(n \log n)$	O(1)	[FM07]
$O(n \log n)$	O(1)	This paper

Clearly, $\Omega(n \log n)$ is a lower bound, as it generalizes comparison-based sorting.