Лекция 07.02.22

Note 1

62fhe59ca984f5h820ad1041f1eh840

$$f(x) = p(x) + o((x - a)^n),$$

$$f(a) = p(a),$$

 $\mathbb R$ называется $\mathbb R^n$ многочленом Тейлора функции f порядка n в точке $a.\mathbb R$

Note 2

738279ec323b45e29a170a4e41b4bce0

Note 3

8f605243b193465799ba06e1576d171

В чём ключевая идея доказательства единственности многочлена Тейлора?

Пусть коэффициент r_m при $(x-a)^m$ — первый ненулевой коэффициент в многочлене p-q. Тогда

$$\frac{p-q}{(x-a)^m} \xrightarrow[x\to a]{} r_m,$$

но при этом

$$\frac{p-q}{(x-a)^m} = o((x-a)^{n-m}) \underset{x \to a}{\longrightarrow} 0 \implies r_m = 0.$$

Note 4

f4110a9b63c640be96d810d835d0d1fd

 $\{\{can}$ Многочлен Тейлора функции f порядка n в точке $a_{\{\}}$ обозначается $\{\{can}T_{a,n}f_{a,n}\}$

«((сз::Формула Тейлора для многочленов))»

Пусть $p-\{\{c2\}\}$ многочлен степени не более $n.\}\}$ Тогда $\{\{c1\}\}$

$$p(x) = \sum_{k=0}^{n} \frac{p^{(k)}(a)}{k!} (x - a)^{k}.$$

Note 6

97c12315facb454e987cb94fae99be75

$$|f(x)|_{x=a} \stackrel{\text{def}}{=} \{\{\text{cal}: f(a).\}\}$$

Note 7

cf7e5ab30b564c139557fd0a940f8204

$$\left. \left((x-a)^k \right)^{(n)} \right|_{x=a} = \left\{ \begin{bmatrix} 0, & n \neq k, \\ n!, & n = k. \end{bmatrix} \right\}$$

Note 8

9b6c61f4867142bea860ca4d00c07174

В чем основная идея доказательства истинности формулы Тейлора для многочленов?

Записать p(x) с неопределенными коэффициентами и вычислить $p^{(k)}(a)$ для $k=0,1,2,\ldots,n$.

Note 9

7597b782ce5f4e92998cc6445ce6f40e

«((сз.: Свойство п раз дифференцируемой функции))»

Пусть {{c2::} $f:D\subset\mathbb{R} o\mathbb{R},a\in D$ и

$$f(a) = f'(a) = \dots = f^{(n)}(a) = 0.$$

 $\{ f(x) = o((x-a)^n), x \to a. \} \}$

«Определение o-малого в терминах ε, δ .»

Пусть $f,g:D\subset\mathbb{R} o\mathbb{R},$ a — предельная точка D. Тогда

$$\begin{split} f(x) &= o(g(x)), \quad x \to a \iff \\ &\iff \\ &\text{for } \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D \cap \dot{V}_\delta(a) \quad |f(x)| \leqslant \varepsilon |g(x)|. \end{split}$$

Note 11

b7ddf1bbcdf84c769dd7b409e5be494d

Какой метод используется в доказательстве свойства n-раз дифференцируемой функции?

Индукция по n.

Note 12

f04179797fd64614827341d42561634

Какова основная идея в доказательстве свойства n-раз дифференцируемой функции (базовый случай)?

Подставить f(a) = f'(a) = 0 в определение дифференцируемости.

Note 13

7a10e93958724ee6b93bc1637a13773f

Каков первый шаг в доказательстве свойства n-раз дифференцируемой функции (индукционный переход)?

Заметить, что из индукционного предположения

$$f'(x) = o((x-a)^n)$$

и расписать это равенство в терминах $\varepsilon, \delta.$

Какие ограничения накладываются на δ в доказательстве свойства n-раз дифференцируемой функции (индукционный переход)?

 $V_{\delta}(a) \cap D$ есть невырожденный промежуток.

Note 15

2506d5781f234e13a94358880699831a

Почему в доказательстве свойства n-раз дифференцируемой функции (индукционный переход) мы можем сказать, что $\exists \delta>0$ такой, что $V_\delta(a)\cap D$ есть невырожденный отрезок?

По определению дифференцируемости функции.

Note 16

3ed2cdbb8b444ce991d587d9ed279ed

В чем ключевая идея доказательства свойства n-раз дифференцируемой функции (индукционный переход)?

Выразить $f(x) = f'(c) \cdot (x-a)$ по симметричной формуле конечных приращений и показать, что $|f'(c)| < \varepsilon |x-a|^n$.

Note 17

a08796d96ad841bd91a8e7daaab1857d

Откуда следует, что $|f'(c)| < \varepsilon |x-a|^n$ в доказательстве свойства n-раз дифференцируемой функции (индукционный переход)?

$$|c-a| < \delta \implies |f'(c)| < \varepsilon |c-a|^n < \varepsilon |x-a|^n$$

Note 18

957fd9747bd84545bd6b1cca723d72ba

Пусть
$$f:D\subset\mathbb{R} o\mathbb{R},a\in D,n\in\mathbb{N}$$
, ((c2): $f(a)=0,$
$$f'(x)=o((x-a)^n),\quad x o a.$$

Тогда
$$f(x) = \{\{c: o((x-a)^{n+1}), x o a.\}\}$$

«{{с3::Формула Тейлора-Пеано}}»

Пусть $\{(c2::f:D\subset R\to\mathbb{R}\ {\tt и}\ f\ n$ раз дифференцируема в точке $a.:\}$ Тогда $\{(c1::]$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o((x-a)^{n}).$$

}

Note 1

bf65c72c3374838aacaa626da8a3a4d

Каков первый шаг в доказательстве истинности формулы Тейлора-Пеано?

Обозначить через p(x) многочлен в формуле:

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}}_{p(x)} + o((x-a)^{n}).$$

Note 2

6f41684761ec41308bf9f95619ec1849

Чему для $k\leqslant n$ равна $p^{(k)}(a)$ в доказательстве истинности формулы Тейлора-Пеано?

$$p^{(k)}(a) = f^{(k)}(a).$$

Note 3

72455c0671414c80aca4c9ef2ba63d44

В чем основная идея доказательства истинности формулы Тейлора-Пеано?

По свойству n раз дифференцируемой функции $f(x)-p(x)=o((x-a)^n).$

Note 4

db6e4a55afed4c5d95a38869cf9d2e00

Что позволяет применить свойство n раз дифференцируемой функции в доказательстве формулы Тейлора-Пеано?

$$\forall k \leqslant n \quad (f(x) - p(x))^{(k)} \Big|_{x=a} = 0$$

$$\text{(c2::}\Delta_{a,b}\text{)}\text{)}\overset{\text{def}}{=}\text{(c1::}\begin{cases} [a,b], & a\leqslant b,\\ [b,a], & a\geqslant b. \end{cases}$$

Note 6

9755fb6343494fa9b0034b4542e518d3

$$\text{Col}([a,b]) \stackrel{ ext{def}}{=} \text{Col}([a,b], \quad a < b, \ (b,a), \quad a > b. \text{Col}([b,a])$$

Note 7

dbb25fcd6e834aa2ae54ec6ddc0c6787

$$\{\text{(c2::}R_{a,n}f\}\} \stackrel{\mathrm{def}}{=} \{\text{(c1::}f - T_{a,n}f\}\}$$

Note 8

0d92b12a18f34554a0251578aa811b7f

««сз::Формула Тейлора-Лагранжа))»

Пусть $f:D\subset\mathbb{R}\to\mathbb{R},\quad a,x\in\mathbb{R},a\neq x,\quad \text{пост} f\in C^n(\Delta_{a,x}),$ $f^{(n)}$ дифференцируема на $\widetilde{\Delta}_{a,x}$. Тогда пайдется $c\in\widetilde{\Delta}_{a,x}$, для которой

$$f(x) = T_{a,n}f(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.$$

}}

Note 9

f9314b4b0e184f52826c8f740c873e21

При n=0 формула Тейлора-Лагранжа эквивалентна (кактеореме Лагранжа).

Note 10

5fe508cfd3c445c4b15093e8d2c8c504

В чем основная идея доказательства истинности формулы Тейлора-Лагранжа?

Вычислить производную функции $F(t) = R_{t,n} f(x)$ и найти точку c по теореме Коши.

Для каких t определяется функция F(t) в доказательстве истинности формулы Тейлора-Лагранжа?

$$t \in \Delta_{a,x}$$
.

Note 12

a4f7e43161cc4c9fb58ac7a250610c50

Для каких t вычисляется F'(t) в доказательстве истинности формулы Тейлора-Лагранжа?

$$t \in \widetilde{\Delta}_{a,x}$$
.

Note 13

73e4df5e1b074010a95ee5dbe045833

К каким функциям применяется теорема Коши в доказательстве истинности формулы Тейлора-Лагранжа?

К
$$F(t)$$
 и $\varphi(t) = (x - t)^{n+1}$.

Note 14

b1d63dae062e4a438ceb891f94a33e96

К каким точкам применяется теорема Коши в доказательстве истинности формулы Тейлора-Лагранжа?

К границам отрезка $\Delta_{a,x}$.

Note 15

b8f3f99b66794d59b6fa546eb06d7fb3

Какое неявное условие позволяет применить теорему коши к функциям F(t) и $\varphi(t)$ с точках a и x?

$$F(x) = 0, \quad \varphi(x) = 0.$$

По формуле Тейлора-Пиано при $x \to 0$

$$\text{(c2::} e^x \text{)} = \text{(c1::} \sum_{k=0}^n \frac{x^k}{k!} + o(x^n). \text{)}$$

Note 17

70a13102af174271b95762b24e6b1169

По формуле Тейлора-Пиано при $x \to 0$

$$\sup_{k=0}^n (-1)^k rac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) .$$

Note 18

0c528f645b0741ef90f268989f7701eb

По формуле Тейлора-Пиано при $x \to 0$

$$\langle \langle (c2::\cos x) \rangle = \langle (c1:::\sum_{k=0}^{n} (-1)^k rac{x^{2k}}{(2k)!} + oig(x^{2n+1}ig) \, . \, | \rangle$$

Note 19

90ff22c33f67493fae3fa800e93905f4

По формуле Тейлора-Пиано при $x \to 0$

$$\lim_{k \to 1} \ln(1+x) = \lim_{k \to 1} (-1)^{k-1} rac{x^k}{k} + o(x^n) \, .$$

Note 20

aaf8ef38d3bb409baf7c7fcc1df14f48

 $\{ (c) \}$ Обобщённый биномиальный коэффициент $\}$ задаётся формулой

$$C_{\alpha}^{k} = \{(\operatorname{cl}: \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!})\}, \quad \alpha \in \{(\operatorname{cl}: \mathbb{R})\}.$$

По формуле Тейлора-Пиано при $x \to 0$

$$\min\{(1+x)^{lpha}\}=\min\sum_{k=0}^{n}C_{lpha}^{k}x^{k}+o(x^{n})$$
 . (1)

Note 22

eb36b5f5a2b04e44b4d5b13d2278ff40

Формулу Тейлора-Пеано для $(1+x)^{\alpha}$ называют (клажением).

Note 23

c766c427b7e44be8a2e40e872ec7dd2b

$$C_{-1}^k = \{ (-1)^k. \}$$

Note 24

82717b22134b4f66b014c17df3ba337c

По формуле Тейлора-Пиано при $x \to 0$

$$\{(c^2:(1+x)^{-1})\} = \{(c^1:\sum_{k=0}^n (-1)^k x^k + o(x^n).)\}$$

Note 25

7d3d35d9fcb344458f0d82ed7b2d940f

Пусть $\{ (case)$ функция f удовлетворяет условиям для разложения по формуле Тейлора-Лагранжа. $\{ (case) \}$

$$\forall t \in \widetilde{\Delta}_{a,x} \quad |f^{(n+1)}(t)| \leqslant M,$$

 $\}\} \ TO \ \{ \{\text{c1::}$

$$|R_{a,n}f(x)| \le \frac{M|x-a|^{n+1}}{(n+1)!}.$$

}}

Семинар 17.02.22

Note 1

05fh49aahf444h3daf73947c33hf8f10

$$\int x^n \; dx = \max \frac{x^{n+1}}{n+1} + C_{\mathrm{H}}, \quad (\max x \neq -1_{\mathrm{H}}).$$

Note 2

3eae90c7fe9944e6a9d07784205f0d1d

$$\int \exp \frac{1}{x} dx = \exp \ln |x| + C dx.$$

Note 3

af533d11b4c2421baaad26c4fca61b2a

$$\int \exp \frac{1}{1-x^2} \mathrm{d} x = \det \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C \mathrm{d} .$$

Note 4

8939b90686dc43ae81c37c01fa728294

$$\int \exp \frac{1}{\sqrt{x^2\pm 1}} \| \ dx = \ker |x+\sqrt{x^2\pm 1}| + C \|.$$

Note 5

709b5fa5f404426ea7b67b17dc16f830

$$\int a^x \, dx = \{ \left| \cos \frac{a^x}{\ln a} + C \right| \right|.$$

Лекция 18.02.22

Note 1

55402bf36144a31b5a60075656b3fb4

Пусть $\{\!(c4): f \in C\langle A,B \rangle \}$ и дифференцируема на (A,B). $\}$ Тогда

• {{c2::}}
$$f \nearrow$$
 Ha $\langle A,B \rangle$ } {{c3::} \iff } {{c1::}} $f'(x) \geqslant 0 \quad \forall x \in (A,B)$.}}

Note 2

h69e8hd92104c0ah3h235de95941521

Каков основной шаг в доказательстве критерия возрастания функции на промежутке (необходимость)?

Показать, что произвольное разностное отношение неотрицательно.

Note 3

7d9850f850c2465aa217f34c4dbd1a66

Каков основной шаг в доказательстве критерия возрастания функции на промежутке (достаточность)?

Выразить для a < b разность f(b) - f(a) через формулу конечных приращений.

Note 4

63e919dff3ba4ea282cb06d25b445300

Пусть (кан $f \in C\langle A,B \rangle$ и дифференцируема на (A,B).)) Тогда

• {{c2::}} // на
$$\langle A,B \rangle$$
}} {{c3::} \Longleftrightarrow } {{c1::}} $f'(x)>0 \quad \forall x\in (A,B).$ }

Note 5

0e1b8bb37eca4c29af2ca084fcedc196

Каков основной шаг в доказательстве достаточного условия строгого возрастания функции на промежутке?

Выразить для a < b разность f(b) - f(a) через формулу конечных приращений.

Пусть $\{ca: f \in C\langle A, B \rangle$ и дифференцируема на (A, B). $\}$ Тогда

• {{c2::}} постоянна на $\langle A,B \rangle$ }} {{c3::}} \iff } {{c1::}} $f'(x)=0 \quad \forall x \in (A,B)$,}

Note 7

b036d705ddbe49b6814f53a6ad2b93f9

Каков основной шаг в доказательстве критерия постоянства функции на промежутке (достаточность)?

Выразить для произвольных a и b разность f(b) - f(a) через формулу конечных приращений.

Note 8

2dfd421d331745a0a8b2da63493d1b4f

Пусть (каз $f,g\in C[A,B)$ и дифференцируемы на (A,B).)) Тогда Если (каз f(A)=g(A) и

$$f'(x) > g'(x) \quad \forall x \in (A, B),$$

}} TO {{c1::

$$f(x) > g(x) \quad \forall x \in (A, B).$$

Note 9

e2c4b9fb4f4147a3bf25e2ab97a3e24f

Пусть (каза $f,g\in C\langle A,B]$ и дифференцируемы на (A,B).); Тогда Если (казаf(B)=g(B) и

$$f'(x) < g'(x) \quad \forall x \in (A, B),$$

}} TO {{c1::

$$f(x) > g(x) \quad \forall x \in \langle A, B \rangle.$$

Note 10

0f2a5e13f0a2495388e631ac0b4776aa

Пусть $f:D\subset\mathbb{R} o\mathbb{R},a\in D.$ Тогда точка a называется (кезточкой максимума функции f,)) если (кезточкой максимума функции f

$$\exists \delta > 0 \quad \forall x \in \dot{V}_{\delta}(a) \cap D \quad f(x) \leqslant f(a).$$

Пусть $f:D\subset\mathbb{R}\to\mathbb{R}, a\in D$. Тогда точка a называется ([c2:: точкой строгого максимума функции f,)] если ([c1::

$$\exists \delta > 0 \quad \forall x \in \dot{V}_{\delta}(a) \cap D \quad f(x) < f(a).$$

Note 12

0c2db077ea274453a5c14d982fe1c571

Пусть $f:D\subset\mathbb{R} o\mathbb{R},a\in D.$ Тогда точка a называется (сезночкой минимума функции f,)) если (сезночкой минимума функции f).

$$\exists \delta > 0 \quad \forall x \in \dot{V}_{\delta}(a) \cap D \quad f(x) \geqslant f(a).$$

Note 13

3bc6223309d34118a582302414c9632e

Пусть $f:D\subset\mathbb{R}\to\mathbb{R}, a\in D.$ Тогда точка a называется (сеточкой строгого минимума функции f,)) если (сеточкой строгого минимума функции f

$$\exists \delta > 0 \quad \forall x \in \dot{V}_{\delta}(a) \cap D \quad f(x) > f(a).$$

Note 14

a1e964e24fc6456ca0a297c008405c34

Если ((с2)-точка a является точкой минимума или максимума функции f_*) то a называется ((с1)-точкой экстремума f_*)

Note 15

98f3cebf02ca464ab3cf9e94355caaa2

«{{сз::Необходимое условие экстремума}}»

Пусть (с2: $f:\langle A,B\rangle\to\mathbb{R}, a\in(A,B), f$ дифференцируема в точке a.)) Тогда (с1: если a является точкой экстремума f, то f'(a)=0.))

Note 16

acfe 3357868e 41809070b 12ea 6034081

Каков основной шаг в доказательстве необходимого условия экстремума?

Применить теорему Ферма к $f|_{[a-\delta,a+\delta]}$ для δ из определения экстремума.

Note 17

96502706cad4449ab9ac44074765a384

Точка a называется (стационарной точкой функции f,)) если (с2::

$$f'(a) = 0.$$

Note 18

99ca6c71ff484416941c4e10086ca6ea

Пусть $f:\langle A,B\rangle \to \mathbb{R}$. Тогда поточка $a\in (A,B)$ называется постической точкой, если поточкой a стационарна для f, либо f не дифференцируема в точке a.

Note 19

40f1ebf761e14f5ba885b2276d64dae

Пусть $f:\langle A,B\rangle \to \mathbb{R}$. Тогда все педаточки экстремума f, принадлежащие (A,B), лежат в пемат в пематожестве её критических точек.

Note 20

e8adcc7d8b474840907e72b38014fcdd

Пусть $f \in C[a,b]$. Тогда

$$\{(a,b]\} = \{(a,b]\}$$

где $C-\{\{c\}\}$ множество критических точек $f.\}\}$

Note 21

909932c22cec4a5fb5d8cfb506e7dbfb

« $\{\text{c4}: Достаточное условие экстремума в терминах } f'\}$)»

Пусть (каза $f:\langle A,B
angle o\mathbb{R},\,a\in(A,B),\,f$ непрерывна в точке a и дифференцируема на $\dot{V}_\delta(a),\,\delta>0$.)) Если (каза

$$\operatorname{sgn} f'(x) = \operatorname{sgn}(a - x) \quad \forall x \in \dot{V}_{\delta}(a),$$

 $\}$ } то {{c2::} a — точка строго максимума f.}

«Достаточное условие экстремума в терминах f'»

Пусть $f:\langle A,B \rangle \to \mathbb{R},\, a\in (A,B),\, f$ непрерывна в точке a и дифференцируема на $\dot{V}_\delta(a),\, \delta>0.$ Если ([c1:

$$\operatorname{sgn} f'(x) = \operatorname{sgn}(x - a) \quad \forall x \in \dot{V}_{\delta}(a),$$

 $\}\}$ то {{c2::}a — точка строго минимума f.}

Лекция 21.02.22

Note 1

4d119e495cf043019ed8ee01f9a7957a

«Поча:Достаточное условие экстремума в терминах f''

Пусть (каза $f:\langle A,B\rangle \to \mathbb{R}, a\in (A,B), f''$ определена в точке a, f'(a)=0.)) Тогда если (каза f''(a)>0,)) то (каза a — точка строгого минимума f.))

Note 2

8b71055f7eb427f8226b47df9ed1e05

«Достаточное условие экстремума в терминах $f^{\prime\prime}$ »

Пусть $f:\langle A,B\rangle \to \mathbb{R}, a\in (A,B), f''$ определена в точке a, f'(a)=0. Тогда если (ст. f''(a)<0,)) то (с2. a — точка строгого максимума f.)

Note 3

5e0ea19ce2b043c693e2cbc7752fcaf1

Каков первый шаг в доказательстве достаточного условия экстремума в терминах f''?

Выразить f(x) - f(a) по формуле Тейлора-Пиано с

$$o((x-a)^2).$$

Note 4

3124302c512c44bfac961f48e231e1c

В чем основная идея доказательства достаточного условия экстремума в терминах f''?

Вынести в формуле Тейлора-Пиано $\frac{f''(a)}{2}(x-a)^2$ за скобки, далее по теореме о стабилизации функции.

«((с5::Связь экстремума со старшими производными))»

Пусть {{c4::} $f:\langle A,B
angle
ightarrow\mathbb{R},a\in(A,B)$,}} {{c3::}

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0,$$

 $f^{(n)}(a) \neq 0.$

 \mathbb{R} Тогда если $\{\{c2::n\}$ нечётно, $\}\}$ то $\{\{c1::f\}$ не имеет экстремума в точке $a.\}\}$

Note 6

b8ec49e21174443588a98b2e5c8cc03

«Связь экстремума со старшими производными»

Пусть $f: \langle A, B \rangle \to \mathbb{R}, a \in (A, B)$,

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0,$$

 $f^{(n)}(a) \neq 0.$

Тогда если $(c^2 n)$ чётно, $(c^2 n)$ четно, $(c^2 n)$ четно достаточное условие аналогично достаточному условию в терминах f''.

Note 7

d2426d6723fd4c20966bd4397dce3eb

«{{сз::Теорема Дарбу}}»

Пусть ((c2): f дифференцируема на $\langle A,B\rangle$, $a,b\in\langle A,B\rangle$,

$$f'(a) < 0, \quad f'(b) > 0.$$

 $\}$ Тогда $\{c:\exists c\in(a,b)\quad f'(c)=0.\}\}$

Note 8

43152412fd6f41e984fc4a4e96521633

В чем основная идея доказательства теоремы Дарбу?

По теореме Вейерштрасса существует точка минимума c, далее по теореме Ферма.

Что позволяет применить теорему Ферма в доказательстве теоремы Дарбу?

c — внутренняя точка отрезка [a, b].

Note 10

d480b573cf054a67a6bf5596881b0afb

Как в доказательстве теорему Дарбу показать, что c не лежит на границе [a,b]?

Расписать f'(a) через правосторонний предел и показать, что a — не локальный минимум. Аналогично для b.

Note 11

bc1402d472ba422ea18b051e2a0615c4

Пусть (сз.: f дифференцируема на $\langle A,B\rangle$.)) Если (с2::

$$f'(x) \neq 0 \quad \forall x \in \langle A, B \rangle,$$

 $\}$ то {{c1::} f строго монотонна на $\langle A,B \rangle$.}

Note 12

e29cdd0f22c346cab64fe288db3fbdb8

В чем основная идея доказательства следствия о монотонности функции с ненулевой производной?

Доказать от противного, что f' не меняет знак на $\langle A, B \rangle$. Далее по достаточному условию строгой монотонности.

Note 13

9fc77ac828a342f885c48ee472c09734

« ([с2::Следствие из теоремы Дарбу о сохранении промежутка. ||»

 $\{\{c\}$ Пусть f дифференцируема на $\langle A,B \rangle$. Тогда $f'(\langle A,B \rangle)$ — промежуток.

В чем основная идея доказательства следствия из теоремы Дарбу о сохранении промежутка?

Показать, что для любых $a,b \in \langle A,B \rangle$

$$[f'(a), f'(b)] \subset f'(\langle A, B \rangle).$$

Note 15

0cd99b9f1fae4d1aadfac35788f440c6

Какое упрощение принимается (для определённости) для точек $a,b \in \langle A,B \rangle$ в доказательстве следствия из теоремы Дарбу о сохранении промежутка?

$$f'(a) \leqslant f'(b)$$
.

Note 16

9ee92cbcb63b46e78fe63b31bbf7f924

Как в доказательстве следствия из теоремы Дарбу о сохранении промежутка показать, что

$$\forall y \in (f'(a), f'(b)) \quad y \in f(\langle A, B \rangle)?$$

Применить теорему Дарбу к функции

$$F(x) = f(x) - y \cdot x$$

в точках a и b.

Note 17

3c1144d31e264164b099479d41f9abe3

«Педа: Следствие из теоремы Дарбу о скачках производной.

 $\{\{c\}$ Пусть f дифференцируема на $\langle A,B \rangle$. Тогда функция f' не имеет скачков на $\langle A,B \rangle$.

В чем основная идея доказательства следствия из теоремы Дарбу о скачках производной? ТООО

Note 19

027449ca442a449786b58ca872e4aff2

 $\{\{c\}: \Phi$ ункция $f: \langle A,B \rangle \to \mathbb{R}\}$ называется $\{\{c\}: B$ ыпуклой на $\langle A,B \rangle$, $\{\}$ если $\{\{c\}: B\}: B$

$$\forall a, b \in \langle A, B \rangle, \lambda \in (0, 1)$$
$$f(\lambda a + (1 - \lambda)b) \leqslant \lambda f(a) + (1 - \lambda)f(b).$$

Note 20

0073407c9c4f473cb4759784548208bd

$$\forall a, b \in \langle A, B \rangle, \lambda \in (0, 1)$$
$$f(\lambda a + (1 - \lambda)b) < \lambda f(a) + (1 - \lambda)f(b).$$

Note 21

a0e64a51b1ac405c9e5806d135c272da

«(ком:Критерий строгой выпуклости f на $\langle A,B
angle$))»

Пусть $f:\langle A,B\rangle \to \mathbb{R}$. Тогда поправносильны следующие утверждения.

- $\{\{c\}: f$ строго выпукла на $\{A,B\}.\}$
- $\{(c, b) \mid a, b, c \in \langle A, B \rangle, a < c < b \}$ справедливо неравенство

$$\frac{f(c) - f(a)}{c - a} < \frac{f(b) - f(c)}{b - c}.$$

«{{с4::Лемма о трёх хордах}}»

Пусть $f:\langle A,B\rangle \to \mathbb{R}$. Тогда подравносильный следующие утверждения.

- $\{\{c1::f$ строго выпукла на $\langle A,B\rangle.\}$
- $\langle a,b,c \in \langle A,B \rangle, a < c < b$ справедливы неравенства

$$\frac{f(c) - f(a)}{c - a} < \frac{f(b) - f(a)}{b - a} < \frac{f(b) - f(c)}{b - c}.$$

22

Лекция 25.02.22

Note 1

0abcc31a29c74496883c555de61b5af7

Пусть {{c3::} $f:\langle A,B\rangle \to \mathbb{R}, a\in\langle A,B\rangle$

$$F(x) := \frac{f(x) - f(a)}{x - a}.$$

Тогда если $\{c2:f$ выпукла на $\langle A,B \rangle$, $\}$ то $\{c1:f\}$

$$F \nearrow$$
 на $\langle A, B \rangle \setminus \{a\}$.

Note 2

6658c8d28bde461584886f85aacf497

Пусть (св.: $f:\langle A,B\rangle \to \mathbb{R}, a\in\langle A,B\rangle$

$$F(x) := \frac{f(x) - f(a)}{x - a}.$$

Тогда если $\{(c) = f$ строго выпукла на $\langle A,B \rangle$, $\}$ то $\{(c) = f\}$

$$F \nearrow \nearrow$$
 на $\langle A, B \rangle \setminus \{a\}$.

Note 3

0bb5876454d448878db0853372d90fe7

Пусть (сз.: f выпукла на $\langle A,B \rangle$,)) ((с2:: $a \in \langle A,B \rangle$.)) Тогда ((с1::

$$\exists f'_{+}(a) \in [-\infty, +\infty).$$

Note 4

960c7add5b8c4ab4b798301f26f12648

Пусть (сз.: f выпукла на $\langle A,B \rangle$,)) ((с2:: $a \in (A,B \rangle$.)) Тогда ((с1::

$$\exists f'_{-}(a) \in (-\infty, +\infty].$$

23

Пусть (свя f выпукла на $\langle A,B \rangle$,)) (свя $a \in (A,B)$.)) Тогда (свя $f'_+(a)$ и $f'_-(a)$ конечны и $f'_-(a) \leqslant f'_+(a)$.)

Note 6

eb64f07db3d3434197d40b0980a78e66

Если функция f выпукла на $\langle A,B \rangle$, то она пепрерывна на (A,B).

Note 7

9f16939e7619449e9fe1d75a7aae2e87

Пусть (сан $f:\langle A,B\rangle \to \mathbb{R},\, a\in\langle A,B\rangle$.)) (сан Прямая y=g(x))) называется (санопорной для функции в точке a,)) если (санона проходит через точку (a,f(a)) и

$$f(x) \geqslant g(x) \quad \forall x \in \langle A, B \rangle.$$

Note 8

7b835ae738654ba5a0921df5133181e7

Пусть $f:\langle A,B\rangle\to\mathbb{R},\ a\in\langle A,B\rangle$. ((с2:Прямая y=g(x))) называется ((с1:Строго опорной для функции в точке a,)) если ((с2:Она проходит через точку (a,f(a)) и

$$f(x) > g(x) \quad \forall x \in \langle A, B \rangle \setminus \{a\}.$$

Note 9

fedf029d618e48ddabe81280b131b72b

Пусть ((e5): $f:\langle A,B\rangle o \mathbb{R}$, f выпукла на $\langle A,B\rangle$, $a\in (A,B)$,)) прямая ℓ задаётся ((e4): уравнением

$$y = f(a) + k(x - a).$$

Тогда прямая ℓ является (савопорной для функции f в точке a) (савтогда и только тогда, когда); (сав $k \in [f'_-(a), f'_+(a)]$.))

Пусть $\{(A,B) \to \mathbb{R}, f \text{ строго выпукла на } \langle A,B \rangle, a \in (A,B),$ прямая ℓ задаётся уравнением

$$y = f(a) + k(x - a).$$

Тогда прямая ℓ является (ст. строго опорной для функции f в точке a) (св. тогда и только тогда, когда) (св.: $k \in [f'_-(a), f'_+(a)]$.

Note 1

acc9492d0h4f4c4a8e6h1688ee26ed5e

В чем геометрический смысл $T_{a,1}f(x)$?

График $T_{a,1}f(x)$ — это касательная к функции f в точке a.

Note 2

570272578ee74dd988ea80f9e95cbc6f

«Связь выпуклости функции с её касательными»

Пусть $\{(c4:f:\langle A,B\rangle\to\mathbb{R},\ f\$ дифференцируема на $(A,B).\}\}$ Тогда $\{(c2:\phi)$ ункция f выпукла на $\langle A,B\rangle\}\}$ $\{(c3:Tогда\ и\ только\ тогда,\}\}$ когда $\{(c1:Torga)\}$

$$\forall a \in (A, B), \quad x \in \langle A, B \rangle$$

 $f(x) \geqslant T_{a,1} f(x).$

Note 3

32700c2a93204435b3f66db20ea03bf7

«Связь выпуклости функции с её касательными»

Пусть $\{(A,B) \to \mathbb{R}, f \}$ дифференцируема на $\{A,B\}$. $\{A,B\}$ Тогда $\{A,B\}$ $\{A,B\}$

$$\forall a \in (A, B), x \in \langle A, B \rangle \setminus \{a\}$$
$$f(x) > T_{a,1}f(x).$$

Note 4

76ff105d143e49dea8fe8db2b74ee9ff

В чем основная идея доказательства теоремы о связи выпуклости функции с её касательными?

f дифференцируема в любой точке $(A,B) \implies$ касательная совпадает с опорной прямой.

Пусть $\{(a,+\infty) \to \mathbb{R}$ имеет при $x \to +\infty$ асимптоту y=kx+b. $\}$ Тогда если $\{(a,+\infty), (a,+\infty), (a,+\infty)$

$$f(x) \geqslant kx + b \quad \forall x \in (A, +\infty).$$

Note 6

e766cccf8cdf4765b58203bef6244390

Пусть $\{(a,+\infty) \to \mathbb{R}$ имеет при $x \to +\infty$ асимптоту y=kx+b. $\}$ Тогда если $\{(a,+\infty),(a,+\infty)\}$ то

$$f(x) > kx + b \quad \forall x \in (A, +\infty).$$

Note 7

94e7cdb6145142c3bb7cc8115035e5ac

«Связь выпуклости функции с f'»

Пусть $\{(A,B),f$ дифференцируема на (A,B). $\{(A,B),(B,B)\}$ погда $\{(A,B),(B,B,B)\}$ погда и только тогда, когда $\{(A,B),(B,B,B)\}$

$$f'\nearrow$$
 на (A,B) .

Note 8

cfdb1a58f41247169b530e3bc3f5b061

«Связь выпуклости функции с f'»

Пусть $\{(ca): f \in C\langle A, B\rangle, f$ дифференцируема на (A,B). $\}$ Тогда $\{(ca): f$ строго выпукла на (A,B) $\}$ $\{(ca): f \in C\langle A,B\rangle\}$ $\{(ca): f \in C\langle A,B\rangle\}$

$$f'\nearrow\nearrow$$
 на (A,B) .

«Связь выпуклости функции с f''»

Пусть $\{(a, b), f\}$ дважды дифференцируема на (A, B). $\|$ Тогда $\{(a, b), f\}$ выпукла на (A, B) $\|$ $\{(a, b), f\}$ полько тогда, когда

$$f''(x) \geqslant 0 \quad \forall x \in (A, B).$$

Note 10

d78c1dfaebde4a2e89fdccfb43309163

«Связь выпуклости функции с f''»

Пусть (с4: $f\in C\langle A,B\rangle$, f дважды дифференцируема на (A,B).)) Тогда (с2: f строго выпукла на (A,B), (с3: если) (с1:

$$f''(x) > 0 \quad \forall x \in (A, B).$$

Note 11

399c82ffb7094f2e8e4a74da8023fc60

Пусть $\{(a, B) \to \mathbb{R}, a \in (A, B).\}$ Точка a называется $\{(a, B), (a, B) \in A, B\}$ точкой перегиба функции $f_{\{(a, B), (B, B), (B, B)\}}$

- $\exists \delta > 0$ такое, что $V_{\delta}(a) \subset (A,B)$ и f имеет разный характер выпуклости на $(a-\delta,a]$ и $[a,a+\delta)$;
- f непрерывна в точке a;
- $\exists f'(a) \in \overline{\mathbb{R}}.$

Note 12

9aa5847a39ac46e8ad8dbee41e14a904

Пусть $f:\langle A,B\rangle \to \mathbb{R}, a\in (A,B)$, f дважды дифференцируема на a. Если (селя является точкой перегиба f,)) то (селя f''(a)=0.)

Является ли нулевая вторая производная достаточным условием перегиба?

Нет, это только необходимое условие.

Note 14

c3615f4ec8d84748bde8c518c9e98375

Пусть (св. $f:\langle A,B\rangle\to\mathbb{R}, a\in(A,B), f$ непрерывна в точке a и имеет в ней производную из $\overline{\mathbb{R}}$.) Тогда если (св. $\exists \delta>0$ такое, что f дважды дифференцируема на $\dot{V}_{\delta}(a)$ и

• либо
$$\operatorname{sgn} f''(x) = \operatorname{sgn}(a-x) \quad \forall x \in \dot{V}_{\delta}(a),$$

• либо
$$\operatorname{sgn} f''(x) = \operatorname{sgn}(x-a) \quad \forall x \in \dot{V}_{\delta}(a),$$
 у то (кезе a — точка перегиба f .)

Note 1

95c692ffa52646cfh2ce013546586hc2

Основная формула метода интегрирования по частям:

$$\int u \, dv = uv - \int v \, du.$$

Note 2

2df459e1699495f980cdddacc633f6f

В чем основная идея доказательства основной формулы интегрирования по частям?

$$(uv)' = u'v + uv' \implies uv = \int vu' dx + \int uv' dx.$$

Note 3

655ebf6da8c1489f84fdaeea82dcc793

$$\int$$
 {{c2:: $\ln x$ }} $dx =$ {{c1:: $x \ln x - x$ }} $+ C$

Note 4

310668af95114f9fbe87673be333fec8

$$\int \exp \frac{1}{\sin x} \operatorname{d} x = \ker \ln \left| \tan \frac{x}{2} \right| \operatorname{d} x + C$$

Note 5

898276fe3ef943c49921748d594000c8

$$\int_{\mathbb{R}^{|x|}} \frac{1}{\cos x} \operatorname{d} x = \operatorname{def} \ln \left| \frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}} \right| \operatorname{d} x + C$$

Лекция 07.03.22

Note 1

8d4e84ad6e1a4cdc91020e2f61878f24

Пусть (каза $f:\langle A,B\rangle \to \mathbb{R}$.) (каза Функции $f:\langle A,B\rangle \to \mathbb{R}$) наызвается (казапервообразной функции f.)) если (казаF дифференцируема на $\langle A,B\rangle$ и

$$F'(x) = f(x) \quad \forall x \in \langle A, B \rangle.$$

Note 2

5/36ab0b/6af/88ab5fa6a2353bd3616

Множество всех первообразных функции f на промежутке $\langle A,B \rangle$ обозначается $\{(A,B), (A,B), (A,B)\}$

Note 3

ec64c5e7734140f888511699374deaec

Пусть (c4-
$$f,F,G:\langle A,B
angle
ightarrow \mathbb{R},F\in\mathscr{P}_f(\langle A,B
angle)$$
.)) Тогда
$$\mathrm{Res}_G\in\mathscr{P}_f(\langle A,B
angle)$$
))(c3-: \iff)(c1-3 $c\in\mathbb{R}$ $G(x)=F(x)+c$.))

Note 4

e9bbf7b29a8d40b48aad130674b03cc9

Пусть
$$f,F,G:\langle A,B\rangle\to\mathbb{R},F\in\mathscr{P}_f(\langle A,B\rangle).$$
 Тогда
$$G\in\mathscr{P}_f(\langle A,B\rangle)\implies \exists c\in\mathbb{R}\quad G(x)=F(x)+c.$$

В чем основная идея доказательства?

$$(F(x)-G(x))'\equiv 0$$
 на $\langle A,B
angle \implies F(x)-G(x)$ постоянна на $\langle A,B
angle .$

Note 5

64bcacf18cb94a4e9b96e551eff15e5b

Пусть
$$f,F,G:\langle A,B\rangle \to \mathbb{R}, F\in \mathscr{P}_f(\langle A,B\rangle)$$
. Тогда
$$G\in \mathscr{P}_f(\langle A,B\rangle) \iff \exists c\in \mathbb{R} \quad G(x)=F(x)+c.$$

В чем основная идея доказательства?

Тривиально следует из определения первообразной.

Note 6

b196b146568446a2b31a62a77bcddd45

Пусть ((c3) $f:\langle A,B \rangle o \mathbb{R}, \quad F \in \mathscr{P}_f(\langle A,B \rangle)$.)) ((c1) Множество функций

$$\{F(x) + c \mid c \in \mathbb{R}\}\$$

 $_{\mathbb{R}}$ называется (кажнеопределённым интегралом f на $\langle A,B
angle$.)

Note 7

98516b869bc740b9bacfcc5244a89cb0

Пусть (63:: $f:\langle A,B\rangle \to \mathbb{R}$.)) (61::Неопределённый интеграл функции f на $\langle A,B\rangle$)) обозначается (62::

$$\int f(x) dx.$$

}}

Note 8

7581f732c1c44de4bc99eae39e01f4ea

Корректна ли запись

$$\int f(x) \, dx = F(x) + C \quad ?$$

Строго говоря нет, поскольку формально интеграл является множеством, а не функцией, но такая запись удобна на практике.

Note 9

ad021cd0f9bd4d9ca316d3574a3b67a4

Пусть $f: \langle A, B \rangle \to \mathbb{R}$ и f имеет первообразную на $\langle A, B \rangle$.

$$\left(\int f(x)\ dx\right)' \stackrel{\text{def}}{=} \{\{\text{clif}(x).\}\}$$

Note 10

a2f17fea47484277b1a9d9349fbea7f

Пусть
$$f,g:\langle A,B\rangle \to \mathbb{R}, \quad F\in \mathscr{P}_f(\langle A,B\rangle), G\in \mathscr{P}_g(\langle A,B\rangle).$$

$$\int f(x)\ dx + \int g(x)\ dx \stackrel{\mathrm{def}}{=} \mathrm{def} \Big\{ F(x) + H(x) + C \mid C\in \mathbb{R} \Big\}.$$

Пусть $f:\langle A,B\rangle \to \mathbb{R}$ и f имеет первообразную на $\langle A,B\rangle$, $\lambda\in\mathbb{R}.$

$$\int f(x) \ dx \stackrel{\text{def}}{=} \{ (\operatorname{cli} \left\{ \lambda f(x) + C \mid C \in \mathbb{R} \right\} . \} \}$$

Note 12

3fb6e723afb54981be16c06cf2bfb210

Из $\{(c)\}$ теоремы Дарбу $\}$ следует, что если $\{(c)\}$ имеет первообразную на промежутке $\langle A,B\rangle$, $\}$ то $\{(c)\}$ не имеет скачков на $\langle A,B\rangle$ $\}$

Note 13

c586c7317d247a3be4f7b50373a0d46

Является ли непрерывность функции f необходимым условием для существования у неё первообразной?

Нет, поскольку f может иметь точки разрыва второго рода.

Note 14

ca1243ec222b4440903a1f5a22a53b1

«Достаточное условие существования первообразной»

 $\{\{c\}\}$ Если f непрерывна на $\langle A,B \rangle$, то f имеет первообразную на $\langle A,B \rangle$.