Particle spectrograph

Wave operator and propagator

ı							
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i \sqrt{2} k (2 k^2 r_5 - t_1)}{(t_1 + 2 k^2 t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$r_1^{\#1} + \alpha \beta$	$r_1^{\#2} + \alpha \beta$	$t_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_{1}} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

_	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

$_{lpha}^{1}f_{1}^{\#2}$	0	0	0	ūkt	0	0	0	
$^2_{lpha}f_{1^-}^{\#1}_{lpha}$	0	0	0	0	0	0	0	
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{z_1}{\sqrt{z}}$	0	0	0	
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ar{u} k t_1$	$\omega_{0}^{\#1}$
$f_{\alpha\beta}^{2} f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	$f_{0}^{#2}$
$\omega_{1}^{\#2}{}_{\!$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	$f_{0}^{\#1}$
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	$\omega_{0}^{\#1}$
	$\int_{1}^{\#1} + \alpha \beta$	$_{1}^{#2}$ $+^{\alpha\beta}$	$_{1}^{*1}$ $+^{\alpha\beta}$	$\omega_{1}^{\#_{1}} +^{lpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} +^{\alpha}$	L

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha \beta \chi}$	0	0	$\frac{2}{t_1}$

0

 $\sqrt{2} kt_1$

0

0

0

0

$\omega_{2}^{\#1}_{+}$ $\beta_{2}^{\#1}_{+}$ $\alpha_{2}^{\#1}_{-}$ $\alpha_{\beta_{2}}$	0	0	$\frac{t_1}{2}$
$f_{2}^{\#1}_{\alpha\beta}$	$-\frac{\bar{i}kt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1}{}_+\alpha\beta$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
•	$\omega_2^{\#1} + \alpha^{eta}$	$f_{2}^{#1} + \alpha \beta$	$\omega_{2^{-}}^{\#1} +^{lphaeta\chi}$

Source constraints/gauge generators			
SO(3) irreps	Multiplicities		
$\tau_{0+}^{\#2} == 0$	1		
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1		
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3		
$\tau_{1}^{\#1\alpha} == 0$	3		
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3		
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} = 0$	5		
Total constraints:	16		

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$