CS 255, Spring 2014, SJSU

Growth of functions. Asymptotic notation.

Fernando Lobo

1/18

Motivation

- ▶ Have a way of describing the scalability of algorithms.
- ► Example: What happens to execution time when we double the input size?
- ► We're interested in the order of growth for an algorithm's execution time.
- ▶ Use asymptotic notation to describe the order of growth.
 - ightharpoonup O o big oh
 - $\blacktriangleright \ \Omega \to \mathsf{big} \ \mathsf{omega}$
 - $\blacktriangleright \ \Theta \to \mathsf{big} \ \mathsf{theta}$

2/18

O notation

- Let T(n) be a function (ex: time taken by INSERTION-SORT to sort n elements.)
- ▶ We say T(n) = O(f(n)) if for sufficiently large values of n, $T(n) \le c \cdot f(n)$, for some positive constant c
- ightharpoonup '=' sign doesn't mean 'equal', means \in
- ▶ We say T(n) is of order f(n)
- ► The reverse is not true.

O notation

▶ Formally O(f(n)) is a set of functions.

$$O(f(n)) = \{ T(n) : \exists_{c>0} \exists_{n_0>0} \forall_{n>n_0} 0 \le T(n) \le c \cdot f(n) \}$$

▶ f(n) is an <u>asymptotic upper bound</u> for T(n), up to a constant factor.

Example

- $\rightarrow 3n^2 = O(n^2)$
- ▶ Why? Because we can find a constant c>0 and $n_0>0$ such that: $3n^2 \le c \cdot n^2$, $\forall_{n>n_0}$
- For example c = 3, $n_0 = 1$ (could also choose c = 5, $n_0 = 83$)
- ▶ The important thing is to find some \underline{c} and some $\underline{n_0}$.

Another example

- \rightarrow 3 $n^2 = O(n^3)$
- ▶ We can find a c and n_0 such that: $3n^2 \le c \cdot n^3$, $\forall_{n>n_0}$
- ▶ For example: c = 3, $n_0 = 1$

6/18

Another example

- $ightharpoonup 1000n^2 + 1000n = O(n^2)$
- ▶ We must show that $1000n^2 + 1000n \le c \cdot n^2$, for some c > 0, $\forall_{n > n_0}$
- ▶ Ex: c = 1200

$$1000n^{2} + 1000n \le 1200n^{2}$$
$$1000n \le 200n^{2}$$
$$n \ge 5$$

▶ In summary: For c = 1200 and $n_0 > 5$,

$$1000n^2 + 1000n < c \cdot n^2$$

Another example

- ▶ Show that $T_{\text{INSERTION-SORT}}(n) = an^2 + bn + c$ is $O(n^2)$, with a, b, c constants.
- $lacksymbol{\exists}_{k>0} \; \exists_{n_0>0} \; : \; an^2 + bn + c \leq kn^2 \; , \; \forall_{n>n_0}$
- ▶ We only need to observe that for $n \ge 1$: ($\rightsquigarrow 1$ is our n_0)
 - ▶ $bn \le bn^2$
 - $c \le cn^2$
- ► Thus:

$$an^{2} + bn + c \le an^{2} + bn^{2} + cn^{2}$$
$$= (a + b + c)n^{2}$$
$$= kn^{2}$$

$$n_0 = 1, k = (a + b + c)$$

7/18

O notation gives us an upper bound

 $T_{\text{INSERTION-SORT}}(n) = O(n^2)$

▶ and is also $O(n^3)$

▶ and also $O(n^7)$

▶ and also $O(2^n)$

etc.

 Ω notation

asymptotic lower bound

▶ $T(n) = \Omega(f(n))$ if for sufficiently large values of n,

 $T(n) \ge c \cdot f(n)$, for some positive constant c

▶ Formally $\Omega(f(n))$ is also a set of functions:

$$\Omega(f(n)) = \{ T(n) : \exists_{c>0} \exists_{n_0>0} \forall_{n>n_0} 0 \le c \cdot f(n) \le T(n) \}$$

10 / 18

Graphically

Examples

9/18

11 / 18

Examples of functions in $\Omega(n^2)$

 $\rightarrow n^2$

 $\rightarrow n^2 + n$

► $1000n^2 + 1000n$

 $\rightarrow n^3$

▶ 2ⁿ

► asymptotic tight bound

$$\Theta(f(n)) = \{ T(n) : \exists_{c_1 > 0} \exists_{c_2 > 0} \exists_{n_0 > 0} \forall_{n > n_0} : 0 \le c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n) \}$$

▶ T(n) is between $c_1 \cdot f(n)$ and $c_2 \cdot f(n)$, for $n > n_0$.

Graphically

14 / 18

16 / 18

Theorem

$$f(n) = \Theta(g(n))$$

iff:

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

Typical running times

13 / 18

Camanlarita	F
Complexity	Examples
$\Theta(1)$	Hashing
$\Theta(\lg n)$	Binary search, searching in a balanced tree
$\Theta(n)$	Linear search
$\Theta(n \lg n)$	MergeSort, QuickSort, HeapSort
$\Theta(n^2)$	InsertionSort
$\Theta(n^3)$	Traditional algorithm for matrix multiplication
$\Theta(a^n)$, $a>1$	Set partitioning
$\Theta(n!)$	Travelling salesman problem

► Algorithms with polynomial complexity are usually referred as tractable; the others as intractable.

Math review

- ► Exponentials and logarithms occur often in analysis of algorithms.
- Exponentials:

$$ightharpoonup a^m \cdot a^n = a^{m+n}$$

$$(a^m)^n = a^{m \cdot n}$$

$$a^{-1} = 1/a$$

► Logarithms:

$$\rightarrow a = b^{\log_b a}$$

Math review

- ▶ Logarithms grow slower than polynomials.
- ▶ Polynomials grow slower than exponentials.

$$\lim_{n\to\infty}\frac{n^b}{a^n}=0\qquad\forall_{a,b\in\mathbb{R}\ ,\ a>1}$$

► Therefore:

$$n^b = O(a^n) \qquad \forall_{a,b \in \mathbb{R}} , a>1$$

► Examples:

17 / 18

$$1000n^3 = O(2^n)$$
$$1000n^{500} = O(1.000001^n)$$