

Data-driven Outcomes for Shelter Animals

Chloe, YeeCheng, Olivia

Problem & Data sets

Problem: 7.6 million animals enter US shelters annually.

Our solution

- Realise adoption trends (EDA)
- Predict shelter animal outcomes (ML)
- Recommend popular pet names (demonstration)

Conclusions

- Allocate care efficiently
- Tailor adoption strategies to communities

Data sets

- Austin
- Indiana
- California

Data Science Tools

RStudio	Data visualization
Python	 Data cleaning Machine Learning Name Recommendation System

Data Cleaning

- Feature selection: Importance score
- **Merging**: Income and outcome tables (Austin), matching columns with other data sets
- **Discard**: California dataset

Exploratory Data Analysis

Packages: tidyverse, dplyr, tidyr, plotly (interactiveness), ggplot2.

Heatmap:

Visually Top 3 Unique Combinations

Stray & Adoption:

Least costly
Without health and trauma issues

• Owner surrender & Adoption:

Ready for adoption Established satisfactory conditions

• Stray & Return to owner:

Lost pets categorized as stray

Owners hopeful towards finding them

Time-series stacked bar graph:

- Minimal (5~10%) fluctuations over months
- Higher adoption rates: July and August
 - School holidays/summer vacation (US)
 - "Kitten/Puppy season": Warmer weathers for mating & high influx of youngsters

Comparative box plot:

Shorter duration:

Transfer, RTO, relocate, euthanasia, disposal, died

Animals easily sorted and left shelter

• Longer duration:

Stolen, missing, lost

- Takes time to identify pets and their owners
 Adoption
 - Adoption depends on people's varied preferences

Pre-processing - Feature Engineering

Technique	Feature
Label Encoding	Name
1-Indexed Numerical Mapping	Animal Type, Outcome, Sex, Intake and Outcome Type
One hot Encoding	Breed, colour
Numerical	Age
Pandas DateFrame, Radian Conversion	Date

Animal_ID	Colour
A1229291	Black/White
A7868294	Yellow Black
A8343929	White

Animal_ID	Colour_Black	Colour_White	Colour_Yellow
A1229291	1	1	0
A7868294	1	0	1
A8343929	0	1	0

Shelter Outcome Predictions via ML

1. Principle Component Analysis (PCA)

- 124,914 rows & 9 features reducing dimensionality,
 retain 95% variance
- PCA applied to every ML model, compared with non-PCA
- Avoid overfitting on training data

2. Repeated 5-fold Cross Validation (CV)

- Evaluate model's ability to generalise to unseen data
- Splits training data into 5
 parts, CV repeated 10
 times
- Bar plots comparing 5
 <u>evaluative metrics</u> across
 models

3. Testing & Evaluating

ML models:

- Logistics Regression
- k-Nearest Neighbour
 Random Forrest
- Support Vector Machine
 XGBoost
- Neural Network

Evaluative metrics:

Accuracy, precision, recall,
 F1 score, log loss

ML Models

1. Logistics Regression:

Sigmoid function:
 Probability of
 prediction class [0,1]

4. XGBoost:

- Sequentially builds models
- Each model corrects previous errors

2. **kNN**:

- Predicting based on "nearest" data points
- Euclidean distance

$$|X - Y| = \sqrt{\sum_{i=1}^{i=n} (\mathbf{x}_i - \mathbf{y}_i)^2}$$

3. Random Forest:

- Ensemble method
- Multiple decision trees (randomly selected data samples and features)
- Trees vote on the final prediction

5. **SVM**:

- Supervised learning algorithm
- Finds optimal hyperplane separating different classes in feature space
- Maximize margin between the classes, ensuring best separation

6. Neural Network:

- Interconnected layers of nodes (neurons)
- Each node processes input data, passes data to the next layer

Repeated 5-fold CV Bar Plots - F1 Score

Highest F1 Score - XGBoost performs the best on positive and

negative classes.

PCA only reduces running time for linear models, but minimal improvement to accuracies.

Repeated 5-fold CV Bar Plots - Log Loss

Highest Log Loss -

In high-dimensional spaces, similar distances blur important features.

PCA distorts distances.

Evaluating ML performance on test data

Model	Scores				
Model	Accuracy	Precision	Recall	F1_Score	Log_loss
RF	0.8145	0.8057	0.8327	0.8143	0.8700
RF PCA	0.4892	0.5449	0.4903	0.5114	3.896
LR	0.7890	0.7532	0.7952	0.7601	0.6920
LR PCA	0.7258	0.6318	0.7560	0.6636	0.8708
XGB	0.8446	0.8273	0.8467	0.8352	0.5406
XGB PCA	0.2500	0.2614	0.2680	0.2138	4.950
KNN	0.7342	0.7198	0.7400	0.7261	3.927
KNN PCA	0.7342	0.7198	0.7400	0.7261	3.927
SVM	0.2209	0.4667	0.2296	0.2493	1.491
SVM PCA	0.6519	0.6385	0.7976	0.7091	1.078
NN	0.7714	0.7869	0.7886	0.7757	0.7509

A Look into XGBoost

pets with

Many incorrect predictions for pets with health issues.

Conclusions

1. Allocate care more efficiently

2. Tailor adoption strategies to communities

Insight	Solution	Effect	
Low adoption rate, poor ML predictions for pets with health issues	 Boost health to satisfactory level for adoption Euthanisation 	 Increase chances for adoption Reduce shelter time Make space for more pet intake 	
Highest adoption rates in July and August	 Advertise adoption in other months Increase pet intake during July and August 	 Adopters have diverse choice 	
Longer shelter time for missing and lost pets	 Conduct surveys for community's pets 	 Easier location of missing and lost pets Reduce shelter time 	

Recommendation System

Motivation

- Pet names duplication
- Recommends uniquely tailored pet names

Recommendation System

Implementation Methods

kNN Distance Types

- Euclidean
- Manhattan
- Chebyshev
- Hamming
- Canberra
- Braycurtis

TF-IDF Encoding

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

 $tf_{x,y}$ = frequency of x in y df_x = number of documents containing x N = total number of documents

TF-IDF balances word frequency in a document with how rare the word is across the dataset to represent its importance.

Recommendation System

Demonstration

Features:

Animal Type: Dog

• Breed: Labrador Retriever/Pit Bull

• Sex: Spayed Female

• Colour: Black/White

• Age: 3

Give her a name!

Now let's use OptiPaw's recommendation system...

Image retrieved from https://www.reddit.com/r/labrador/comments/1akghug/lifespan_of_lab_mixes/#lightbox

Thank you!