Diferenças entre os manuais de construção:

Manual de Construção do Pitaco (Arduino Nano)

- Utiliza Arduino modelo Nano R3;
- Este Arduino custa cerca de R\$25,00;
- Este manual utiliza soldas para fixar os cabos.

Manual de Construção do Pitaco (Arduino Uno)

- Utiliza Arduino modelo Uno R3;
- Este Arduino custa cerca de R\$ 55,00;
- Este manual n\u00e3o utiliza soldas, apenas cola quente para fixar os cabos.

Manual de Construção do Pitaco (Arduino Uno)

Materiais

- 20 centímetros de Tubo PVC (20mm) (Tigre*)
- 1 Luva de redução 32mm x 20 mm (Tigre*)
- 1 Cap PVC 20 mm (Tigre*)
- 1 Metro de Mangueira/Tubo cirúrgica (5mm)
- 1 Sensor de pressão MPX5010DP
- 1 Arduino Uno R3 com cabo USB apropriado
- 1 Barra de conexão fêmea de 6 pinos e 2.54mm
- 5 Jumpers macho x macho
- 1 Saboneteira fechada
- 20 Canudinhos de 8cm de largura e 5mm de diâmetro
- 1 Filtro bacteriológico 28mm Sibelmed
- Bastões de cola quente

Ferramentas

- Ferro de solda, ou furadeira;
- Régua;
- Marcador ou Caneta;
- Pistola de cola quente;
- Faca.

Avisos

- 1. Faça o procedimento de montagem em local aberto. A fumaça proveniente da queima de PVC é **tóxica**;
- 2. Cuidado ao manipular o ferro de solda. Podem facilmente causar queimaduras de segundo grau ou pior;

^{*} Foi sugerida a marca Tigre, pois as medidas universais da marca se encaixam mais perfeitamente com os filtros bacteriológicos.

3. Em caso de acidente envolvendo queimaduras, procure lavar o local atingido com água corrente em temperatura ambiente, de preferência por tempo suficiente até que a área queimada seja resfriada. Procure o auxílio de um profissional de saúde no posto de atendimento mais próximo do local do acidente, para que sejam tomadas as providências necessárias. Se não houver Posto de Saúde nas proximidades, deve-se acionar os serviços de socorro do SAMU e do Corpo de Bombeiros ou procurar uma Emergência hospitalar. Os contatos para ligação gratuita são: Samu 192 e Bombeiros 193.

Fonte: Simpósio Brasileiro de Queimaduras. Acesso em 30 de setembro de 2019. http://sbqueimaduras.org.br/queimaduras-conceito-e-causas/primeiros-socorros-e-cuidados/

Manual de Construção

- Baixe e instale o programa Arduino no computador, este programa consegue enviar o código do Pitaco para sua placa Arduino Uno; (https://www.arduino.cc/en/Main/Software)
- 2. Plugue o Arduino no computador e carregue o código dentro do jogo I Blue It (local: C:\Udesc\Blue\DeviceCodes\Pitaco\arduino-pitaco\arduino-pitaco.ino), para dentro de sua placa Arduino, observe Figura 1;
- 3. Agora observe a montagem da **Figura 2**; Pinos Arduino: *A2*, *GND* e *5V*
- 4. Cole os jumpers com cola quente no Arduino e depois na barra de conexão fêmea de 6 pinos para evitar deslocamentos e mal contato, utilize a **Figura 3** como referência (evite passar cola em qualquer parte metálica):
- 5. Fure o PVC com o ferro de solda (ou furadeira se preferir) para fazer dois buracos de 0,5 cm para colocar o tubo cirúrgico, distanciados conforme a **Figura 4**;
- 6. Limpe o tubo de PVC e remova os pedaços que foram queimados com o auxílio da faca;
- 7. Faça dois furos na frente da saboneteira (0,5 cm), com 1 cm de distância entre os buracos e um furo do outro lado de 1,2 cm x 1,2 cm conforme **Figura 5**;
- 8. Encaixe o sensor no buraco feito, para que fique com os pinos para fora da saboneteira, conforme **Figura 6**;
- Encaixe a barra de conexão fêmea de 6 pinos no sensor MPX5010DP, o primeiro pino em contato com o chanfro do pino do sensor, e coloque o Arduino dentro da saboneteira, conforme Figura 7;
- 10. Irão sobrar 3 pinos, estes não são utilizados pelo sensor MPX5010DP;
- 11. Encaixe o cabo USB do Arduino no buraco de 1,2 cm x 1,2 cm da saboneteira e conecte-o ao Arduino conforme **Figura 8**;
- 12. Coloque os 20 canudinhos (ou menos, caso não couber) no tubo de PVC e os posicione entre os buracos feitos anteriormente, **Figura 9**;
- 13. Encaixe as duas mangueiras no tubo de PVC e nos plugs do sensor, conforme **Figura 10**;
- 14. Encaixe a luva de redução no PVC, do lado da mangueira que está ligada ao plug de pressão do sensor, também conforme a **Figura 10**;
- 15. Faça um furo no Cap de PVC de 0,5 cm, ou do diâmetro que o fisioterapeuta considerar mais apropriado, **Figura 11**;
- 16. Insira o Cap de PVC na ponta do Pitaco (o uso do Cap é opcional e serve para gerar resistência para os exercícios), **Figura 12**.
- 17. Seu Pitaco está pronto (ver Figura 13).

Figura 1:

```
Arquivo Editar Sketch Ferramentas Ajuda
    * Pitaco Serial Connection - MPX5010DP
#define SAMPLESIZE 100
#define MOVING_AVERAGE true
#define DEBUG false
bool isCalibrated = false;
float calibrationValue = 0.0;
void Calibrate()
{
#if MOVING_AVERAGE
  for(int i = 0; i < SAMPLESIZE ;i++)</pre>
    //band-aid fix: this will force the sensor to populate the moving average array be
    ReadSensor();
  calibrationValue = ReadSensor();
  float sum = 0.0;
  for (i = 0; i < SAMPLESIZE; i++)</pre>
    sum += voutToPa(digitalToVout(analogRead(A2)));
  calibrationValue = sum / SAMPLESIZE;
#endif
<
```

Figura 2

Figura 3:

Figura 4:

Figura 5:

Figura 6:

Figura 7:

Figura 8:

Figura 9:

Figura 10:

Figura 11

Figura 12

Figura 13

