Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних

алгоритмів»

Варіант 27

Биконав студент	П1-15 Паламарчук Олександр Олександрович
_	(шифр, прізвище, ім'я, по батькові)
Перевірив	
1 1	(прізвище, ім'я, по батькові)

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 27

Обчислити значення квадратного кореня із числа a > 0 із заданою точністю \mathcal{E} на основі рекурентного співвідношення:

$$x_{n+1} = \frac{1}{2} \times \left[x_n + \frac{a}{x_n} \right], x_0 = \frac{a}{2}$$

де x_n - попереднє, x_{n+1} - наступне наближення до кореня. Точність обчислення вважається досягнутою, коли $|x_{n+1}-x_n|<10^{-5}$.

◆ Постановка задачі

Вхідним даним є число a > 0. На основі рекурентного співвідношення обчислити корінь із цього числа до заданої точності ϵ . Точність обчислення вважати досягненою коли $|x_{n+1} - x_n| < 10^{-5}$. Вивести отриманий результат.

Побудова математичної моделі

Складемо таблицю змінних.

Змінна	Тип	Призначення
Задане число <i>а</i>	Дійсне	Початкове дане
Поточне значення виразу x	Дійсне	Проміжкове значення
Наступне значення виразу <i>xn_1</i>	Дійсне	Проміжкове значення

Складемо таблицю констант.

Константа	Тип	Призначення
3	Дійсне	Точність обчислення

Складемо таблицю функцій.

Оператор	Назва	Призначення
abs(a)	Абсолютне значення	Модуль числа <i>а</i>

- 1) $\varepsilon = 0.00001$.
- **2)** Нульовий член послідовності знаходимо за формулою: $\mathbf{x} = \mathbf{a}/2$

♦ Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блоксхеми

Крок 1. Визначимо основні дії

Крок 2. Перевіримо a та обчислимо xn_1 з вказаною точністю за допомогою циклічного оператора з передумовою.

◆ Псевдокод алгоритму

Крок 1.

Початок

Введення а.

Перевірка а та обчислення х 1 з вказаною точністю.

Виведення хп 1

Кінець

Крок 2.

Початок

Введення а.

я**кщо** a > 0

T0

$$x = a/2$$

 $xn_1 = 1/2 * (x + a/x).$

повторити

$$x = xn_1.$$
 $xn_1 = 1/2 * (x + a/x).$
поки abs $(xn_1 - x) > E$

все повторити

інакше

все якщо

Виведення хи_1.

Кінець

◆ Блок схема алгоритму

♦ Випробовування алгоритму

Випробовування №1

Блок	Дія
	Початок
1	Введення: <i>a</i> =2.
2	2>0 (true)
3	x = 2/2
4	$xn_1 = 1/2*(1+2/1)$
5	x = 1.5
6	$xn_1 = 1/2*(1.5+2/1.5)$
7	abs(1.4166667 - 1.5)> € (true)
8	<i>x</i> = 1.4166667
9	<i>xn_1</i> = 1/2*(1.4166667+2/1.4166667)
10	abs(1.4142157-1.4166667)> E (true)
11	<i>x</i> = 1.4142157
12	<i>xn_1</i> = 1/2*(1.4142157+2/1.4142157)
13	abs(1.4142135-1.4142157)> E (false)
14	Виведення: хп_1 = 1.4142135
	Кінець

Випробовування №2

Блок	Дія
	Початок
1	Введення: <i>a</i> =5.
2	5>0 (true)
3	x = 5/2
4	$xn_1 = 1/2*(2.5+2/2.5)$
5	x = 2.25
6	$xn_1 = 1/2*(2.25+2/2.25)$

7	abs(2.2361112 - 2.25)> € (true)
8	<i>x</i> = 2.2361112
9	<i>xn_1</i> = 1/2*(2.2361112+2/2.2361112)
10	abs(2.236068-2.2361112)> E (true)
11	x = 2.236068
12	<i>xn_1</i> = 1/2*(2.236068+2/2.236068)
13	abs(2.236068-2.236068)> € (false)
14	Виведення: хn_1 = 2.236068
	Кінець

◆ Висновок

На цій лабораторній роботі було декомпозовано задачу на такі етапи: визначення основних кроків, перевірка a, обчислення xn_1 з вказаною точністю, і виведення результату. Було досліджено подання операторів повторення дій та набуто практичних навичок їх використання під час складання циклічних програмних специфікацій.