Imperium Gordona

SmolPreOI 2024

Dzień 4 – 17 grudnia 2024

W krainie Bajtocji istnieje potężne Imperium Gordona, które rozciąga się wzdłuż osi liczbowej. Stolica Imperium Gordona znajduje się początkowo w punkcie 0. Na linii liczbowej znajduje się również n niezależnych królestw, w punktach $0 < x_1 < x_2 < \cdots < x_n$.

Kod zadania:

Limit pamięci:

imn

128 MiB

Gordon, ambitny władca, pragnie podbić wszystkie królestwa, które jeszcze nie należą do jego masywnego imperium. Aby to osiągnąć, może skorzystać z dwóch rodzajów akcji:

- 1. **Przeniesienie stolicy**: Gordon może przenieść stolicę swojego imperium z obecnej pozycji c_1 do dowolnego podbitego już królestwa w punkcie c_2 , co kosztuje go $|a*(c_1-c_2)|$.
- 2. **Podbój niezależnego królestwa**: Gordon może podbić niezależne królestwo znajdujące się w punkcie c_2 wysyłając wojska z obecnej stolicy w punkcie c_1 . Taki podbój kosztuje go $|b*(c_1 c_2)|$.

Podczas ekspansji terytorialnej, Gordon musi jednak pamiętać o następujących zasadach:

- Gordon nie może podbić królestwa, jeżeli między stolicą jego imperium a zdobywanym królestwem znajduje się inne niezależne królestwo.
- Podbój królestwa nie zmienia położenia stolicy.
- Stolica imperium może znajdować się wyłącznie w punkcie 0 lub w jednym z podbitych królestw $x_1, x_2, x_3, \dots, x_n$.

Twoim zadaniem jest pomóc Gordonowi w znalezieniu najtańszego sposobu na podbicie całej Bajtocji. Wyznacz minimalny koszt podboju wszystkich królestw. Po zakończeniu ekspansji stolica Imperium Gordona może znajdować się w dowolnym punkcie.

Wejście

W pierwszym wierszu wejścia standardowego znajduje się liczba całkowita t ($1 \le t \le 1000$), oznaczająca liczbę przypadków testowych. W kolejnych 2t wierszach znajdują się opisy kolejnych przypadków testowych.

- Pierwszy wiersz każdego przypadku testowego zawiera 3 liczby całkowite n, a, b ($1 \le n \le 2 * 10^5$; $0 \le a$, $b \le 10^5$) o znaczeniu opisanym w treści zadania.
- Drugi wiersz każdego przypadku testowego zawiera n liczb całkowitych x_1, x_2, \ldots, x_n ($1 \le x_1 < x_2 < \cdots < x_n \le 10^8$). Oznaczają one położenia kolejnych królestw na osi liczbowej.

Suma *n* we wszystkich przypadkach testowych nie przekracza $2 * 10^5$.

Wyjście

Na wyjście standardowe powinno zostać wypisane t liczb całkowitych - minimalny koszt podboju wszystkich królestw dla każdego przypadku testowego

Przykłady

Wejście dla testu imp0a:	Wyjście dla testu imp0a:
1	171
5 6 3	
1 5 6 21 30	

Wejście dla testu imp0b:

•••	vvejsere did testa impos.						
1							
5	2	7					
3	5	12	13	21			

Wyjście dla testu imp0	b:
173	

Ocenianie

Podzadanie	Ograniczenia	Limit czasu	Liczba punktów
1	a = 0	1 s	5
2	suma <i>n</i> ze wszystkich przypadków testowych nie przekracza 1000	1 s	25
3	brak dodatkowych ograniczeń	1 s	70

