1) In frequency response, the resonance frequency is basically a measure of of response.
a. Speed
b. Distance
c. Angle
d. Curvature
Answer Explanation
ANSWER: Speed
Explanation:
No explanation is available for this question!
Two explanation is available for any question.
2) If a system is said to have a damping ξ = 0.5532 with the natural frequency ω_n = 2 rad/sec, what will be the value of resonant frequency (ω_r)?
a . 1.2456 rad/s
b. 1.7352 rad/s
c. 2.3421 rad/s
d. 3.66 rad/s
Answer Explanation
ANSWER: 1.2456 rad/s
Explanation:
No explanation is available for this question!
3) If the resonant peak is estimated to be '5', which among the following would be the correct value of damping?
a. $\xi = 0.3$
b. $\xi = 1$
c. $\xi = 3.2$
d. $\xi = 5.55$
Answer Explanation
ANSWER: $\xi = 0.3$
Explanation:
No explanation is available for this question!

4) If the damping of the system becomes equal to zero, which condition of the resonant frequency is likely to occur?
a. $\omega_r = \omega_d$
b. $\omega_r > \omega_n$
c. $\omega_r < \omega_n$
d. $\omega_r = \omega_n$
Answer Explanation
ANSWER: $\omega_r = \omega_n$
Explanation:
No explanation is available for this question!
5) At which condition of 'ξ', resonant peak does not exist and its maximum value is considered to be unity along with zero resonant frequency?
a. 0 < ξ < 0.707
b. $\xi > 0.707$
c. $\xi = 0$
d. $\xi = 1$
Answer Explanation
ANSWER: $\xi > 0.707$
Explanation:
No explanation is available for this question!
6) If 'ξ' approaches to zero, the peak resonance would
a. Also be zero
b. Be unity
c. Tend to infinity
d. Become equal to peak overshoot
Answer Explanation
ANSWER: Tend to infinity
Explanation:
No explanation is available for this question!

a. Replacement of 'j'w' by 's' b. Replacement of 's' by 'w' c. Replacement of 's' by 'jw' d. Replacement of 'w' by 's' Answer Explanation ANSWER: Replacement of 's' by 'jo' Explanation: No explanation is available for this question! 8) Which plots in frequency domain represent the two separate plots of magnitude and phase against frequency in logarithmic value? a. Polar plots b. Bode plots c. Nyquist plots d. All of the above Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
c. Replacement of 's' by 'jw' d. Replacement of 'w' by 's' Answer Explanation ANSWER: Replacement of 's' by 'jo' Explanation: No explanation is available for this question! 8) Which plots in frequency domain represent the two separate plots of magnitude and phase against frequency in logarithmic value? a. Polar plots b. Bode plots c. Nyquist plots d. All of the above Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
d. Replacement of 'w' by 's' Answer Explanation ANSWER: Replacement of 's' by 'jo' Explanation: No explanation is available for this question! 8) Which plots in frequency domain represent the two separate plots of magnitude and phase against frequency in logarithmic value? a. Polar plots b. Bode plots c. Nyquist plots d. All of the above Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
Answer Explanation ANSWER: Replacement of 's' by 'jo' Explanation: No explanation is available for this question! 8) Which plots in frequency domain represent the two separate plots of magnitude and phase against frequency in logarithmic value? a. Polar plots b. Bode plots c. Nyquist plots d. All of the above Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
ANSWER: Replacement of 's' by 'jø' Explanation: No explanation is available for this question! 8) Which plots in frequency domain represent the two separate plots of magnitude and phase against frequency in logarithmic value? a. Polar plots b. Bode plots c. Nyquist plots d. All of the above Answer: Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
Explanation: No explanation is available for this question! 8) Which plots in frequency domain represent the two separate plots of magnitude and phase against frequency in logarithmic value? a. Polar plots b. Bode plots c. Nyquist plots d. All of the above Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
8) Which plots in frequency domain represent the two separate plots of magnitude and phase against frequency in logarithmic value? a. Polar plots b. Bode plots c. Nyquist plots d. All of the above Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
8) Which plots in frequency domain represent the two separate plots of magnitude and phase against frequency in logarithmic value? a. Polar plots b. Bode plots c. Nyquist plots d. All of the above Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
frequency in logarithmic value? a. Polar plots b. Bode plots c. Nyquist plots d. All of the above Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
b. Bode plots c. Nyquist plots d. All of the above Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
b. Bode plots c. Nyquist plots d. All of the above Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
d. All of the above Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
Answer Explanation ANSWER: Bode plots Explanation: No explanation is available for this question!
ANSWER: Bode plots Explanation: No explanation is available for this question!
Explanation: No explanation is available for this question!
No explanation is available for this question!
9) If a linear system is subjected to an input r(t) = Asin(ωt), what output will be generated?
a. $c(t) = B \sin(\omega t + \Phi)$
b. $c(t) = B \cos(\omega t + \Phi)$
c. $c(t) = B tan (\omega t + \Phi)$
d. $c(t) = B \cot (\omega t + \Phi)$
Answer Explanation
ANSWER: $c(t) = B \sin(\omega t + \Phi)$
Explanation:
No explanation is available for this question!
10) The magnitude & phase relationship betweeninput and the steady state output is called as

frequency domain.

- a. Step
- **b.** Ramp
- c. Sinusoidal
- **d.** Parabolic

Answer Explanation

ANSWER: Sinusoidal

Explanation:

No explanation is available for this question!