Санкт-Петербургский Национальный Исследовательский Университет ИТМО Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №6

по дисциплине «Информатика»

Вариант: послед.(P3121) * 10 + 11 = 21

Выполнил студент: Фам Данг Чунг Нгиа

Группа: Р3121

Преподаватель: Болдырева Елена Александровна

При n=5 дело обстоит сложнее, так как мы получаем уравнение четвертой степени

 $z^4 + z^3 + z^2 + z + 1 = 0$, (3) имеющее четыре корня $\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4$ (рис. б). Чтобы решить его, разделим сначала уравнение (3) на z^2 . Получим

$$z^2 + \frac{1}{z^2} + z + \frac{1}{x} + 1 = 0$$
, или

$$(z + \frac{1}{z})^2 + (z + \frac{1}{x}) - 1 = 0.$$

Сделаем подстановку $\omega = z + \frac{1}{z}$: $\omega^2 + \omega - 1 = 0$. (4)

Отсюда

$$\omega_{1,2} = \frac{1 \pm \sqrt{5}}{2}.$$

Далее, можно найти и ϵk из уравнений

$$z + \frac{1}{z} = w_1, z + \frac{1}{z} = w_2, (5)$$

но нам это не нужно; для построения достаточно знать, что $2cos\frac{\pi}{5}$ (удвоенная вещественная часть $\epsilon 1$) равно

$$\epsilon_1 + \epsilon_4 = \epsilon_1 + \frac{1}{\epsilon_1} = \omega_1 = \frac{1+\sqrt{5}}{2}.$$

Из того, что ω_1 - квадратичная иррациональность следует, что ϵ_1 и ϵ_4 представляют собой квадратичные иррациональности. Для ϵ_2 и ϵ_3 рассуждаем в точности так же.

и ϵ_3 рассуждаем в точности так же. Итак, для n=5 решение нашей задачи удалось свести к последовательному решению двух квадратных

Рис. б.

уравнений: сначала решается уравнение (4), корнями которого являются суммы $\epsilon_1 + \epsilon_4$ и $\epsilon_2 + \epsilon_3$ симметричных (см. рис. б!) корней уравнения (3), а затем из уравнений (5) находятся и сами корни уравнения(3).

Именно таким путем Гауссу удалось осуществить построение правильного 17-угольника: здесь тоже выделяются группы корней, суммы которых находятся последовательно из квадратных уравнений. Но как искать эти «хорошие» группы? Гаусс находит удивительный путь ответить на этот вопрос...

Построение правильного 17-угольника

30 марта 1796 года наступает для него (Гаусса) день творческого крещения... Гаусс уже занимался с некоторого времени группировкой корней из единицы на основании своей теории «первообразных» корней. И вот однажды утром, проснувшись, он внезапно ясно и отчетливо осознал, что из его теории вытекает построение семнадцатнугольника... Это событие явилось поворотным пунктом жизни Гаусса. Он принимает решение посвятить себя не филологии, а исключительно математике.

 Φ . Клейн

Чтобы выявить найденные Гауссом скрытие «симметрии» в множестве корней 17-й степени из единицы и, пользуясь ими, разбить корни на нужные группы, введем новую нумерацию корней. Будем возводить 3 и последовательные степени 0, 1, 2, ..., и каждый раз брать остаток от деления полученного числа на 17. Избавим читателя от проведения этих выкладок и в таблице приведем окончательные результаты. В первой строке стоят показатели k, а под ними остатки от деления 3^k на 17.

Обратите внимание, что в нижней строке содержатся все числа от 1 до

Рис. 7. Старые номера корней даны черным цветом, новые - красным

16; затем 3^{16} дает остаток 1 и далее остатки периодически повторяются (докажите!)

Закономерность, подмеченная Гауссом, является частным случаем следующей теоремы: длявся кого простого р сущ ествует такое число l, называемое первообра корнем, что сре зным остатков от делен ИЯ нар встречаются все числа 1, 2,, р-1. Этот факт впервые отметил Эйлер (1707-1783), но смог доказать лишь Лежандр (1752-1833); другое доказательство получил Гаусс, но, вероятно, в 1796 году он еше не обладал общей теоремой, а обнаружил приведенный факт эмпирически, проводя вычисления для конкретных чисел. Это очень важное обстоятельство, не учитывать которого, трудно правильно понять природу ранних работ Гаусса.

Присвоим корню ϵ_k , $k-3^l$, новый номер, а именно l, который мы

Таблица

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1