Assignment 1

1 The Airline Question (40 points)

1.

Let X_i equal 1 if customer i arrives and 0 if the customer does not arrive. Then X_i are i.i.d. bernoulli with bias p = 0.95. We can explicitly compute the probability that the flight is overbooked. This happens with probability,

$$\mathbb{P}(X_1 = X_2 = \dots = X_{100} = 1) = \prod_{i=1}^{100} \mathbb{P}(X_i = 1) = p^{100} = 0.00592052922$$

Where we have used independence.

2.

a)

Let $Y = \sum_{i=1}^{10000} X_i$ denote the amount of show-ups for the 10000 flight reservations, and $Y' = \sum_{i=1}^{100} X_i'$ denote the number of show-ups for the 100 person flight. Consider the events, A: in the 10000 sample everyone shows up independently with probability p, and we observe 95% show-ups and B: Everybody shows up for the 99-seat flight. A and B are independent, and can be written as $\mathbb{P}(A) = \mathbb{P}(Y = 9500)$ and $\mathbb{P}(B) = \mathbb{P}(Y' = 100)$. We want to bound the probability of observing, A and B simoultaneosly. Assume that p is known. Notice that $Y \sim Bin(10000, p)$ and $Y' \sim Bin(100, p)$. By independence we have that

$$\mathbb{P}(A \cap B) = \mathbb{P}(Y = 9500)\mathbb{P}(Y' = 100) = \begin{pmatrix} 10000 \\ 9500 \end{pmatrix} p^{9500} (1-p)^{500} p^{100} = \begin{pmatrix} 10000 \\ 9500 \end{pmatrix} p^{9600} (1-p)^{500}$$

The 'worst case' value for p is the p, that maximizes this probability. Define $f(p) = \log(\mathbb{P}(A \cap B))$. Maximizing this is equivalent to maximizing $\mathbb{P}(A \cap B)$ as the logarithm is monotone, non-decreasing transformation. We have that

$$f'(p) = \frac{9600}{p} - \frac{500}{1-p} = 0 \Leftrightarrow p = \frac{96}{101}$$

And this is indeed a maximum, as

$$f''(p) = -\frac{9600}{p^2} - \frac{500}{(1-p)^2} < 0$$

We therefore have the worst case p being $p^* = \frac{96}{101}$. Let $\mathbb{P}_{p^*}(\cdot)$ denote the probability measure that p^* induces on Y and Y'. We can now bound $\mathbb{P}(A \cap B)$ by using independence and by using the fact that probabilities are bounded by 1,

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \le \max_{p} \mathbb{P}(A)\mathbb{P}(B) \le \mathbb{P}_{p^*}(Y' = 100) = \left(\frac{96}{101}\right)^{100} = 0.006237$$

Which is the desired bound.

b)

Assume that we have sampled 10100 passengers. That is, reusing the same notation as in the previous exercises, we have the sample $X = \{X_i : i \in \{1, \dots, 10100\}\}$. Let $(Z_i)_{i \in \{1, \dots, 100\}}$ be sampled without replacement, but uniformly from X. That is, Z_i represents the event, that passenger i shows up for the 99 seat flight. We are interested in bounding the probability

$$\mathbb{P}(A) = \mathbb{P}(\sum_{i=1}^{100} Z_i \text{ and } \sum_{i=100}^{10100} X_i = 9600)$$

By the definition of conditional expectation,

$$\mathbb{P}\left(\sum_{i=1}^{100} Z_i \quad \text{and} \quad \sum_{i=100}^{10100} X_i = 9600\right) = \mathbb{P}\left(\sum_{i=1}^{100} Z_i = 100 \quad \middle| \quad \sum_{i=1}^{10100} X_i = 9600\right) \mathbb{P}\left(\sum_{i=1}^{10100} X_i = 9600\right)$$

Again, using the fact that probabilities are less than 1,

$$\mathbb{P}(A) \le \mathbb{P}\left(\sum_{i=1}^{100} Z_i = 100 \mid \sum_{i=1}^{10100} X_i = 9600\right)$$

We can actually compute this probability explicitly, by a combinatorial argument. Without loss of generality, assume that the passengers arrive (or does not arrive) to the flight according to their index. That is Z_i represents (in sequence) the i'th passenger arriving or not arriving. Notice that for $\sum_{i=1}^{100} Z_i = 100$, we have to have all $Z_i = 1$ for all i. When we have that $\sum_{i=1}^{10100} X_i = 9600$, we have that the probability that $Z_1 = 1$ is $\frac{9600}{10100}$. Since we are sampling without replacement, this means that the probability for $Z_2 = 1$ is $\frac{9599}{10099}$, and so on. This gives us the that,

$$\mathbb{P}\left(\sum_{i=1}^{100} Z_i = 100 \mid \sum_{i=1}^{10100} X_i = 9600\right) = \prod_{i=0}^{99} \frac{9600 - i}{10100 - i} = 0.006078897097$$

Which gives us a bound of around 0.00608.

2 The Growth Function (10 points)

1.

There are 2^n ways to label n points as either 0 or 1. Therefore $m_{\mathcal{H}}(n) \leq 2^n$. When $|\mathcal{H}| = M$, there are at most M different labellings of n points. Therefore $m_{\mathcal{H}}(n) \leq M$. All in all we have that

$$m_{\mathcal{H}}(n) \leq \min\{2^n, M\}$$

2.

Assume $|\mathcal{H}| = 2$. We have that $m_{\mathcal{H}}(n) \leq 2$ per 1. Consider the case where we have one data point, and 2 distinct prediction rules for labelling that point as either -1 or 1. Let h_- be the prediction rule that always assigns -1 and h_+ the prediction rule that always assigns 1. This produces two dichotomies, and hence $m_{\mathcal{H}}(n) \geq 2$. We conclude that $m_{\mathcal{H}}(n) = 2$.

3.

 $m_{\mathcal{H}}(n)$ is the maximal number of dichotomies \mathcal{H} can generate on n arbitrary datapoints binarily. Now consider the set of points $X = \{x_1, x_2, \cdots, x_n\}$ and the set of points $X' = \{x_{n+1}, x_{n+2}, \cdots, x_{2n}\}$. Now consider that if we pick a labelling pattern produced by \mathcal{H} on X, then we have up to $m_{\mathcal{H}}(n)$ possibilities to pair this labelling with from the set of labelling patterns produced by \mathcal{H} on X'. Note that there can be less, if some labellings exclude each other - e.g. points lying on the same side of a linear seperator getting different labels. This applies to all labelling paterns produced by \mathcal{H} on X, of which there are at most $m_{\mathcal{H}}(n)$. That is, the number of ways to label 2n points, must be less than the ways of combining labellings from two sets of all possible labellings of n points. All this says, is that

$$m_{\mathcal{H}}(2n) \leq m_{\mathcal{H}}(n)^2$$

Which is what we wanted to show.

KKT Conditions (20 points)

(a)

We can rewrite P in standard form as

$$\min \sum_{i=1}^{d} x_i \log \frac{x_i}{a_i}$$
s.t.
$$1 - \sum_{i=1}^{d} x_i \le 0$$

$$-x_i \le 0, \quad \forall i = 1, \dots, d$$

$$x_i - 1 \le 0, \quad \forall i = 1, \dots, d$$

(b)

We are optimizing over the set $[0,1]^d$ which is clearly convex. We have that sums of convex functions are convex. This follows easily from the definition of convexity. The objective function $f(x) = \sum_{i=1}^d x_i \log \frac{x_i}{a_i}$, is a sum of convex functions, $f_i(x_i) = x_i \log \frac{x_i}{a_i}$. We obtain the convexity of f_i by noting that $f_i''(x_i) = \frac{1}{x_i} > 0$, when $x_i \in [0, 1]$.

The inequality constraints involve affine functions, such that these are also convex. All in all we conclude that P is a convex problem.

(c)

We write down the Lagrangian

$$\mathcal{L}(x,\lambda,\mu,\gamma) = \sum_{i=1}^{d} x_i \log \frac{x_i}{a_i} - \sum_{i=1}^{d} \lambda_i x_i + \sum_{i=1}^{d} \mu_i (x_i - 1) + \gamma (1 - \sum_{i=1}^{d} x_i)$$

(d)

We write down the KKT conditions. We first have stationarity, for x_i we have that

$$\frac{\partial \mathcal{L}}{\partial x_i} = \log \frac{x_i}{a_i} + 1 - \lambda_i + \mu_i - \gamma$$

Setting this equal to 0 yields that for x_i^* we have that

$$x_i^*(\lambda, \mu, \gamma) = a_i \exp(\lambda_i + \gamma - \mu_i - 1), \quad \forall i = 1, \dots, d$$

For primal feasibility we have that

$$1 - \sum_{i=1}^{d} x_i^* \le 0$$

$$-x_i^* \le 0, \quad \forall i = 1, \dots, d$$

$$x_i^* - 1 \le 0, \quad \forall i = 1, \dots, d$$

For dual feasibility we have that $\lambda, \mu, \gamma \geq 0$, where there inequality means coordinatewise greater than 0.

For complementary slackness we have that

$$\gamma(1 - \sum_{i=1}^{d} x_i^*) = 0$$

$$-\lambda_i x_i^* = 0, \quad \forall i = 1, \dots, d$$

$$\mu_i (x_i^* - 1) = 0, \quad \forall i = 1, \dots, d$$

(e)

The dual function is given by $D(\lambda, \mu, \gamma) = \min_x L(x, \lambda, \mu, \gamma) = L(x^*(\lambda, \mu, \gamma), \lambda, \mu, \gamma)$. Per (d) we can thus write

$$D(\lambda, \mu, \gamma) = L\left(\left[a_i \exp(\lambda_i + \gamma - \mu_i - 1)\right]_{i=1,\dots,d}, \lambda, \mu, \gamma\right)$$

Gradient Descent (30 Points)

(a)

f takes values from \mathbb{R}^2 , which is convex. Notice that f is a sum of two convex functions when $\gamma > 0$, as the second derivative of $(x_1 + 1)^2$ w.r.t. x_1 is 2 > 0, and the second derivative of γx_2^2 w.r.t. x_2 is $2\gamma > 0$. This shows that P_1 is convex. Notice also that as we are dealing with a sum of two quadratic functions, $f \ge 0$, and we easily see that f(x) = 0 iff $x^* = (-1,0)$. We plot the convergence error curves below, when $\gamma = 2$. For the implementation we declare convergence of the algorithm, when the distance between x_t and x_{t-1} is less than 0.00000001 in the Euclidean norm. We use the point $x_0 = (-10, 10)$ for initialisation

- (a) Convergence error curve for $||x_t-x^*||_2$
- (b) Convergence error curve for $|f f^*|$

Figure 1: Plots of convergence error curves when $\gamma = 2$

We do the same for $\gamma = 10$.

- (a) Convergence error curve for $||x_t x^*||_2$
- (b) Convergence error curve for $|f f^*|$. Notice y-axis scaled by 10^10

Figure 2: Plots of convergence error curves when $\gamma = 10$

(b)

f is once again defined on the convex set \mathbb{R}^2 . To show the convexity of f, a lemma is helpful, to avoid doing too many computations.

Lemma: Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be convex and $g: \mathbb{R} \longrightarrow \mathbb{R}$ be convex and non-decreasing, then g composed with f is convex.

Proof: By the convexity of f and using the fact that g is non-decreasing,

$$g(f(\lambda x) + f((1 - \lambda)y)) \le g(\lambda f(x) + (1 - \lambda)f(y))$$

And by the convexity of g,

$$g(\lambda(f(x) + (1 - \lambda)f(y))) \le \lambda f(g(x)) + (1 - \lambda)f(g(y))$$

Which is what we wanted to show. Now notice that the exponential function is convex, $(e^x)'' = e^x > 0$. Thus $\exp(\sum_{i=1}^n x_i a_i + b)$ is convex, as $\sum_{i=1}^n x_i a_i + b$ is affine, and hence convex. Since f is a sum of exponential functions composed with affine functions, f is convex, and P_2 is a convex problem.

Below we plot convergence error curves for gradient descent. We are a bit careful when choosing our initialisation, as the gradients can get very large and hence numerically unstable when dealing with exponential functions. By looking at f we see that the gradient will probably be relatively small when $x_0 = (0,0)$, and therefore use this for our initialisation. We plot on a semi-log scale.

Figure 3: Plots of convergence error curves for f in (b)