

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Ciencias

Plan de estudios de la Licenciatura en Matemáticas Aplicadas

Ecuaciones Diferenciales Parciales I Clave Semestre Créditos Área de Ecuaciones Diferenciales y Dinámica de 0165 10 conocimiento **Sistemas** 7 Campo Etapa Profundización Curso (X) Taller () Lab () Sem () Modalidad Tipo T(X) P() T/P() Obligatorio (X) Optativo () Carácter **Horas** Obligatorio E() Optativo E() Semana Semestre 5 **Teóricas Teóricas** 80 **Prácticas** 0 **Prácticas** 0 Total 5 Total 80

	Seriación
	Ninguna ()
	Obligatoria ()
Asignatura antecedente	
Asignatura subsecuente	
	Indicativa (X)
Asignatura antecedente	Cálculo Diferencial e Integral IV Ecuaciones Diferenciales I.
Asignatura subsecuente	Proyecto II

Objetivo general:

• Introducir al alumno al estudio de las ecuaciones diferenciales parciales y sus aplicaciones, así como familiarizarlo con algunas técnicas de matemáticas aplicadas..

Ír	dice temático

		Horas semestre	
	Tema		
		Teóricas	Prácticas
1	Ecuaciones diferenciales parciales de primer orden.	18	0
2	Ecuaciones diferenciales parciales de segundo orden.	4	0
3	Ecuaciones de tipo hiperbólico.	20	0
4	Ecuaciones de tipo elíptico.	20	0
5	Ecuaciones de tipo parabólico	18	0
6	Ecuaciones diferenciales Parciales no lineales (optativo)		
	Subtotal	80	0
	Total	80	0

	Contenido Temático				
	Tema y subtemas				
1	Ecuaciones diferenciales parciales de primer orden.				
	Problemas que llevan a las ecuaciones diferenciales parciales de primer orden (dinámica de poblaciones con estructura de edades, tráfico en una carretera)				
	1.2 Conceptos y definiciones básicas.				
	1.3 Ecuaciones lineales y casi lineales.				
	1.4 El problema de condiciones iniciales y de frontera.				
	1.5 Método de las características.				
	1.6 Existencia y unicidad de la soluciones.				
	1.7 Ecuaciones no lineales (optativo)				
2	Ecuaciones diferenciales parciales de segundo orden.				
	 2.1 Clasificación de las ecuaciones de segundo orden. 2.2 Reducción de la ecuación de segundo orden con coeficientes constantes a 				
	su forma canónica.				
3	Ecuaciones de tipo hiperbólico.				
	3.1 Problemas que llevan a las ecuaciones de tipo hiperbólico (la cuerda vibrante, líneas de transmisión, olas en aguas poco profundas, ecuaciones de Maxwell, membrana vibrante, propagación de ondas en el espacio)				
	3.2 Ecuación de onda eb una dimensión. Solución por características. Separación de variables. Problemas de Sturm Lioville (optativo). Método de la energía. Unicidad de las soluciones.				
	3.3 Sistemas simétricos hiperbólicos. El método de las características. Unicidad de las soluciones.				
	 3.4 Ecuación de onda en más dimensiones. Ondas planas y esféricas. Problemas de valores iniciales. Promedios esféricos. Método del descenso de Hadamard. Separación de variables. 				
4	Ecuaciones de tipo elíptico.				
	4.1 Problemas que llevan a las ecuaciones de tipo elíptico (configuraciones de				

	1
	equilibrio en membranas oscilantes, potenciales electrostático y
	gravitacional).
	4,2 Ecuación de Laplace y problemas de valores a la frontera.
	Existencia y unicidad.
	4.3 Funciones armónicas y sus propiedades. Principio del máximo. Fórmulas de
	Green. Solución del problema de Dirichlet usando funciones de Green.
	4.4 Método de separación de variables en el disco y el cuadrado.
	4.5 El núcleo de Poisson.
	4.6 Mapeo Conforme.
5	Ecuaciones de tipo parabólico
	4.4 Droblemes que lleven e les sevesienes de tipe perchélies (transmisiée de
	4.1 Problemas que llevan a las ecuaciones de tipo parabólico (transmición de
	calor, difusión molecular, caminatas aleatorias).
	4,2 Problemas con condiciones iniciales y de frontera. (Dirichlet, Neumann y
	Robin).
	4.3 El principio del máximo y la unicidad de las soluciones.
	4.4 Continuidad de las soluciones respecto a condiciones iniciales.
	4.5 Solución del problema de condiciones iniciales para la ecuación de calor en una dimensión.
	4.6 La solución fundamental. Separación de variables. Transformada de Fourier. Soluciones de similaridad.
6	Ecuaciones diferenciales Parciales no lineales (optativo)
	Loudonnes and chaines i arciales in inicales (optative)

Estrategias didácticas		Evaluación del aprendizaje	
Exposición	(X)	Exámenes parciales	(X)
Trabajo en equipo	()	Examen final	(X)
Lecturas	(X)	Trabajos y tareas	(X)
Trabajo de investigación	()	Presentación de tema	(X)
Prácticas (taller o laboratorio)	()	Participación en clase	(X)
Prácticas de campo	()	Asistencia	()
Aprendizaje por proyectos	()	Rúbricas	()
Aprendizaje basado en problemas	()	Portafolios	()
Casos de enseñanza	()	Listas de cotejo	()
Otras (especificar)		Otras (especificar)	

Perfil profesiográfico		
Título o grado	Matemático, físico, actuario o licenciado en Ciencias de la Computación.	
Experiencia docente	Con experiencia docente	
Otra característica	Especialista en el área de la asignatura a juicio del comité de asignación de cursos.	

Bibliografía básica:

• Farlow, S.J.,. *Partial Differential Equations for Scientists and Engineers*, New York: Dover Pub, 1993.

- Greenspan, D., Introduction to Partial Differential Equations, New York: Dover Pub., 1961
- Haberman, R., Mathematical models, New Jersey: Prentice Hall, 1987.
- Haberman, R., Partial Differential Equations, New Jersey, Prentice Hall, 1977.
- Lamb, G.L., Introductory applications of PDE: with enphasis on wavw propagation an diffusion, New York, Wiley-Interscience. 1995.
- Minzoni, A., *Tópicos en ecuaciones diferenciales parciales*, Serie Verde, Comunicaciones Técnicas del IIMAS no. 12. México: UNAM.
- Strauss, W., Partial Differential Equations, New York: John Wiley and Sons, 1992.
- Tijonov, A. y Samarki, A., Ecuaciones de la física Matemática, Moscú: Ed. MIR, 1983.
- Vvedenski, D., Partial Differential Equations with Mathematica, New York: Addison-Wesley, 1993.
- Weinberger, H., A first course in Partial Differential Equations with complex variables and Transform Methods, New York: Dover Pub., 1995.
- Young, E., Partial Differential Equations, Boston: Allyn and Bacon, 1972.
- Zachmanoglu, E.C. y Thoe, W., Introduction to Partial Differential Equations with applications, New York: Dover Pub., 1986.

Bibliografía complementaria:

- * Copson, E.T., Partial Differential Equations, Cambridge, Cambridge Business Research, 1975.
- * Carrier, G. y Pearson, C. *Partial Differential Equations. Theory and Technique*, New York: Academic Press, 1964.
- * Courant, R. y Hilbert, D., *Methods of Mathematical Physics, vol II,* New York: Wiley Interscience Publishers, New York, 1953.
- * Duff-Naylor, *Differential equations and applied mathematics*, New York, John Wiley and Sons, 1966.
- * Epstein, B., Partial Differential Equations: an introdiction, Krieger Pub, 1975.
- * Folland, G., *Introduction to Partial Differential Equations*, Princeton: Princeton University Press, 1995.
- * Gufstafson, K., Introduction to Patial Differential Equations and Hilvert space methods, New York: Dover Pub., 1999.
- * John, F., Partial Differential Equations, New York: Springer Verlag, 1980.
- * Somerfeld, A., *Partial Differential Equations in Physics: Lectures on Theoretical Physiscs,* New York: Academic Press, 1994.