Accenture Student Research Project

SMARTPHONE-BASED GAIT RECOGNITION

December 18, 2018

Students:

FÜLÖP Timea, MILLE János, NÉMETH Krisztián-Miklós Information Science III.

Supervisor:

dr. ANTAL Margit

OUTLINE

General Idea

Objectives

Related works

Application

Results

GENERAL IDEA

Approaches

- Camera/Video-based
- Floor-sensor based
- Inertial Sensors based

GENERAL IDEA

Approaches

- Camera/Video-based
- Floor-sensor based
- Inertial Sensors based

Usage

- Healthcare
- Sports
- Security access control system

OBJECTIVES

- Access Control System
 - Feature extraction library
 - Machine learning algorithm
 - Data collection Android application

RELATED WORKS

MARSICO - 2017 (Univ. Sapienza, Rome)

- Dynamic Time Warping
- 8,9% EER (ZJU-GaitAcc)

RELATED WORKS

MARSICO - 2017 (Univ. Sapienza, Rome)

- Dynamic Time Warping
- 8,9% EER (ZJU-GaitAcc)

NGO - 2014 (Osaka Univ.)

- period detection
- accelerometer > gyroscope

RELATED WORKS

MARSICO - 2017 (Univ. Sapienza, Rome)

- Dynamic Time Warping
- 8,9% EER (ZJU-GaitAcc)

NGO - 2014 (Osaka Univ.)

- period detection
- accelerometer > gyroscope

GADALETA - 2018 (Univ. Padova)

- feature extraction
- IDNet dataset

APPLICATION

I. FEATURE EXTRACTION

- minimum points
- mean values
- standard deviations
- mean absolute differences
- zero crossing rates
- histograms

II. MACHINE-LEARNING

- Binary classifier
- Model creation
- Validation

III. ANDROID APPLICATION

- App with friendly UI
- User registration and login
- Raw data collecting
- Model generation
- User validation
- Storing data in Firebase

RESULTS

1. GAIT CHANGES OVER TIME

ML Alg.	Training	Testin g	Prec.	AUC	EER
KNN	S1	S1	0,93	0,96	0,06
KNN	S1	S2	0,80	0,86	0,16
RF	S1	S1	0,94	0,98	0,04
RF	S1	S2	0,71	0,87	0,15

Dataset:

- ZJU-GaitAccel
- 153 users, 2 sessions
 - S1: session1
 - o S2: session2
- Fs = 100 Hz

Binary classifiers:

balanced training data

Validation:

one step cycle

RESULTS

2. STEP CYCLES VS. FIXED-LENGTH FRAMES

Unit	Training	Testing	Prec.	AUC	EER
Cycle	S 1	S1	0.94	0.98	0.04
128 samples	S1	S1	0.94	0.98	0.05
Cycle	S1	S2	0.71	0.87	0.15
128 samples	S1	S2	0.74	0.87	0.16

Random Forest classifier

balanced

Verification - 1 unit:

- one step cycle
- 1 frame (128 samples)

RESULTS

3. REQUIRED NUMBER OF STEP CYCLES FOR VALIDATION

Random Forest Classifier

- balanced training data
- validation: 1 7 step cycles

SUMMARY

- Cross-session evaluation: precision decreases with 10 - 20%
- 2. Using frames ≈ Using step cycles
- Minimum 5 step cycles for reliable result

SUMMARY

- 1. **Cross-session** evaluation: precision decreases with 10 20%
- 2. Using frames ≈ Using step cycles
- 3. Minimum **5 step cycles** for reliable result

- Students' Scientific
 Conference, April 13-14, 2018,
 Târgu Mureş (3rd place)
- SZAMOKT XXVIII., October
 11-14, 2018, Băile Tuşnad,
 Romania, pp. 118-123.

THANK YOU accenture FOR SUPPORT!