2008年全国统一高考化学试卷(全国卷I)

- 一、第I卷选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.)
- 1. (3分)在溶液中加入足量 Na₂O₂ 后仍能大量共存的离子组是()
 - A. NH_4^+ , Ba^{2+} , $C1^{\square}$, NO_3^{\square}
- B. K^+ , AlO_2^{\Box} , Cl^{\Box} , $SO_4^{2\Box}$
- C. Ca^{2+} , Mg^{2+} , NO_3^{\square} , HCO_3^{\square}
- D. Na⁺, Cl^{\square}, CO₃^{2 \square}, SO₃^{2 \square}
- 2. (3分)下列化合物,按其晶体的熔点由高到低排列正确的是()
 - A. SiO₂, CsCl, CBr₄, CF₄
- B. SiO₂, CsCl, CF₄, CBr₄
- C. CsCl, SiO₂, CBr₄, CF₄
- D. CF₄, CBr₄, CsCl, SiO₂
- 3. (3分)下列各组物质不属于同分异构体的是()
 - A. 2, 2□二甲基丙醇和 2□甲基丁醇
 - B. 邻氯甲苯和对氯甲苯
 - C. 2□甲基丁烷和戊烷
 - D. 甲基丙烯酸和甲酸丙酯
- 4. (3分)下列各组给定原子序数的元素,不能形成原子数之比为1:1稳定化合物的是
- A. 3和17
- B. 1和8
- C. 1和6
- D. 7和12

- 5. (3分)下列叙述中正确的是()
 - A. NH₃、CO、CO₂都是极性分子
 - B. CH₄、CCl₄都是含有极性键的非极性分子
 - C. HF、HCI、HBr、HI 的稳定性依次增强
 - D. CS₂、H₂O、C₂H₂都是直线型分子
- 6. (3 分)已知: $4NH_3$ (g)+ $5O_2$ (g)—4NO(g)+ $6H_2O$ (g), $\triangle H=\Box 1025kJ/mol$,该反应是一个可逆反应,若反应物起始的物质的量相同,下列关于该反应的示意图不正确的是(

- 7. (3 分)已知 HX 的酸性比 HY 弱,在物质的量浓度均为 0.1mol•L□ 的 NaX 和 NaY 混合溶液中,下列排序正确的是()
 - A. c $(OH^{\square}) > c (HX) > c (HY) > c (H^{+})$
 - B. $c (OH^{\square}) > c (X^{\square}) > c (Y^{\square}) > c (H^{+})$
 - C. c $(OH^{\square}) > c (Y^{\square}) > c (X^{\square}) > c (H^{+})$
 - D. c $(OH^{\square}) > c (HY) > c (HX) > c (H^{+})$
- 8. (3 分)电解 100mL 含 c (H^+) =0.3mol/L 的下列溶液,当电路中通过 0.04mol 电子时,理论上析出金属质量最大的是(
 - A. 0.10mol/LAg⁺

B. $0.20 \text{mol} \text{LZn}^{2+}$

C. 0.20mol/LCu²⁺

D. 0.20mol/LPb²⁺

二、解答题(共4小题,满分60分)

- 9. (16 分)实验室可由软锰矿(主要成分为 MnO_2)制备 $KMnO_4$,方法如下:软锰矿与过量固体 KOH 和 $KClO_3$ 在高温下反应,生成锰酸钾(K_2MnO_4)和 KCl;用水溶解,滤去残渣,滤液酸化后, K_2MnO_4 转变为 MnO_2 和 $KMnO_4$;滤去 MnO_2 沉淀,浓缩滤液,结晶得到深紫色的针状 $KMnO_4$. 请回答:
- (1) 软锰矿制备 K_2MnO_4 的化学方程式是_____;
- (3) 若用 2.5g 软锰矿(含 MnO_2 80%)进行上述试验, 计算 $KMnO_4$ 的理论产量;
- (4) $KMnO_4$ 能与热的经硫酸化的 $Na_2C_2O_4$ 反应生成 Mn^{2+} 和 CO_2 ,该反应的化学方程式是_____;
- (5) 上述制得的 $KMnO_4$ 产品 0.165g,恰好与 0.335g 纯 $Na_2C_2O_4$ 反应完全. 计算该 $KMnO_4$ 的纯

度.

10. (15分) V、W、X、Y、Z 是由周期表中 1~20 号部分元素组成的 5 种化合物,其中 V、W、X、Z 均为两种元素组成.上述 5 种化合物涉及的所有元素的原子序数之和等于 35. 它们之间的反应关系如图:

- (1) 5 种化合物分别是 V____、W___、X___、Y___、Z___(填化学式)
- (2) 由上述 5 种化合物中的某 2 种化合物反应可生成一种新化合物,它包含了 5 种化合物中的所有元素,生成该化合物的化学方程式是 ;
- (3) V 的电子式是 .
- 11. (13 分)取化学式为 MZ 的黄色粉末状化合物进行如下实验. 将 MZ 和足量碳粉充分混合, 平铺在反应管 a 中. 在 b 瓶中盛足量澄清石灰水. 按图连接仪器.

- 实验开始时缓缓通入氮气,过一段时间后,加热反应管 a,观察到管内发生剧烈反应,并有熔融物生成.同时,b瓶的溶液中出现白色浑浊.待反应完全后,停止加热,仍继续通氮气,直至反应管冷却.此时,管中的熔融物凝固成银白色金属.根据以上叙述回答问题:
- (1) 元素 Z 是 ;
- (2) 停止加热前是否需要先断开 a 和 b 的连接处? 为什么?
- (3) 反应管 a 中发生的所有反应的化学方程式是
- (4) 本实验的尾气是否需处理? 如需处理, 请回答如何处理; 如不需处理, 请说明理由.
- 12. (16分) A、B、C、D、E、F和G都是有机化合物,它们的关系如图所示:

- (1) 化合物 C 的分子式是 C_7H_8O ,C 遇到 $FeCl_3$ 溶液显紫色,C 与溴水反应生成的一溴代物只有两种,则 C 的结构简式为 ;
- (2) D 为一直链化合物,其相对分子质量比化合物 C 的小 20,它能跟 $NaHCO_3$ 反应放出 CO_2 ,则 D 分子式为_____,D 具有的官能团是_____;
- (3) 反应①的化学方程式是 ;
- (4) 芳香化合物 B 是与 A 具有相同官能团的 A 的同分异构体,通过反应②化合物 B 能生成 E 和 F,F 可能的结构简式是 ;
- (5) E 可能的结构简式是_____.