了解指我们当时没考; 重点、考点指:我们当时考过 红色字体是必须要掌握的时间来不及可以先看

- 1. 测控电路的主要要求:精度高、响应快、可靠性与经济性、转换灵活(填空选择)
- 2. 测控电路的组成 (概念、流程框图等看课件)
- 3. 测量电路的组成 模拟式与数字式 AB 卷
- 4. 开闭环控制流程图 (重点)

_、

- 1. 二极管 三极管原理特性 了解
- 2. 放大电路基本要求(背 全文背诵 必考)
- ① 低噪声;
- ② 低的输入失调电压和输入失调电流以及低的漂移;
- ③ 高共模输入范围和高共模抑制比;
- ④ 一定的放大倍数和稳定的增益;
- ⑤ 线性好;
- ⑥ 输入阻抗应与传感器输出阻抗相匹配;
- ⑦ 足够的带宽和转换速率。

反相电路 同相电路 差动放大 (有能力同学背原理图及特点) 无时间也可以直接记结论

- 3. 高共模抑制比放大电路(必考 全文背诵) CMRR 公式必考 考点可能分散在 AB 卷 推导过程都很重要 电路组成要看懂原理 自动凋零放大电路 各部分组成名称 两个周期调零原理(不懂原理就背)
- 5. 电荷放大电路 原理 公式 不懂原理就背公式 截止频率 Uo 公式等 找到规律 很好记
- 6. 隔离电路好像没考
- 7. 失调电压调整 外部 内部 二选一
- 8. 转换速率 SR=u/t 以及最大变换率 (考了填空或者填空好像)
- 9. 转折频率
- 10. 写出三种噪声类型 答: (热噪声、低频噪声、散弹噪声) 其他略过不考
- 11. 基本加法电路、减法电路要看得出来 背结构组成和计算公式
- 12. 对数指数我记得是没考 了解吧 知道长什么样就可以
- 13. 基本积分运算电路(重点 要考的) 电路结构+公式
- 14. PID 运算电路(重点 要考的 大题!!) 我们当时考了并联 PID 电路公式推导 这个图很复杂很难 看不懂背也要背下来 每一部分原理组成(非常重要)一定要弄明白 (并联简单一点 串联 PID 难一点 求稳的话就都看 明白原理自己会推导最好!)
- 15. 绝对值运算电路 也就是半波整流和全波整理 (重点 考点)
- 16. 峰值、最值、平均值运算电路等了解即可

三、

- 1. 调制信号、解调信号、载波信号、已调信号定义 正弦信号三个特点: 幅值、频率、相位(选择填空)
- 2. 调幅信号原理: 用调制信号 x 去控制高频载波信号的幅值。
- 一般表达式 (考点) Us=(Um+mx)cosωct 下图非常非常重要!!! (考点 重点)

- 3. 传感器调制 应变式传感器输出信号 电桥图及公式 (其余了解可不看)
- 4. 检波电路(半波检波) 也就是第二章的绝对值运算电路 最好明白原理 考点在包络检波!(必考)(半波) 下图的检波周期过程要清楚

为什么要采用相敏检波器电路? 包络检波器存在什么问题? (必考 重点)

答: 包络检测存在的问题:

- 1) 仅对调幅信号进行半波或全波整流,不能鉴别调制信号相位。
- 2) 检波电路本身不能区分不同载波频率的信号,对不同载波频率的信号它都以同样方式整流。

为了使检波电路具有判别信号相位和鉴别频率的能力,需采用相敏检波电路。鉴别相位可判断被测量的变化方向;鉴频能力可提高测控系统的抗扰能力。相敏检波电路还有选频和鉴相特性。

相敏检波会考画波形图(具体我不记得考的哪个了)重点复习下面几张图

选频、鉴相等了解即可

5. 基本调频电路 调频定义: 用调制信号 x 去控制高频载波信号的频率。

一般表达式: $u_s = U_m \cos(\omega_c + mx)t$ 其余了解

6. 调相: 用调制信号 x 去控制高频载波信号的相位。

一般表达式: $u_s = U_m \cos(\omega_c t + mx)$ 其余了解

7. 脉冲调制 了解吧我没印象应该就是没考

四、

- 1. 测量信号=真实信号 + 干扰信号 + 噪声信号
- 2.. 按处理信号形式分:模拟和数字滤波器 按功能分;低通、高通、带通、带阻(重点 考点) 好像要画 注意各节点横坐标代表含义(wp、wr、wc 等含义)

特征频率:通带截止频率、阻带截止频率、转折频率、固有频率

c) 带通

阻尼系数与品质因数 $Q = \frac{1}{\alpha} = \frac{\omega_0}{\Delta \omega}$ 灵敏度: $\frac{y}{x} = \frac{\mathrm{d}y/y}{\mathrm{d}x/x}$ (填空或选择)

群时延函数 $\tau(\omega) = \frac{\mathrm{d}\varphi(\omega)}{\mathrm{d}\omega}$ 下面这个图很重要! 会让画或者解释原理 (考点 重点)

低通、高通、带通、带阻滤波器一般表达形式、固有频率及幅频图(重点复习低通、高通)比较巴特沃斯、切比雪夫、贝塞尔三种滤波器的特点(重点 考点!)

3. 压控电压源型滤波电路 (考点 重点 会变形要注意变通) 推导公式! 压控电压源型滤波电路

传递函数

$$H(s) = \frac{K_f Y_1 Y_2}{(Y_1 + Y_2 + Y_3 + Y_4)Y_5 + [Y_1 + (1 - K_f)Y_3 + Y_4]Y_2}$$

无限增益多路反馈型滤波电路 背低通、高通、带通的公式 其余未考 了解即可

重点在于看懂复杂滤波器滤波器中低通、高通等基本组成部分

六、

- 1. 电子开关包括模拟开关和数字开关
- 2. 二极管与门电路 这里很简单 看明白哪里是高电平 掌握原理 有可能考画波形图
- 3. 采样与保持(重点) 采样定理(同自控 背) 用什么采集: 定时器、开关

保持 在哪里保持: 电容 (选择填空)

采样保持电路的基本组成:

- 1. 模拟开关
- 2. 模拟信号存储电容
- 3. 输入、输出缓冲放大器

工作原理:

控制信号Uc为高电平时, 开关接通,电容充电,对信 号进行采样跟踪;

控制信号Uc为低电平时, 开关断开,输出信号将保持 在开关断开瞬间的输入信号 值。

电容的选择: 电容小: 充电快、放电也快, 不利于保持

电容大: 充电慢、放电也慢, 不利于跟踪

明确定义: 捕捉时间、孔径时间

振铃现象 简答题(重点 考点) 要会解释! 必考

重点看滞回比较电路(电压钳位、正反反馈) 给出一个电路要会求上下限阈值

下图必考! 会变形 要求画出波形图 必拿分

e.g. 在图(a)所示的电路中,已知 R_1 =50k Ω , R_2 =100k Ω ,稳压管的稳定电压± U_Z =±9V,输入电压 u_1 的波形如图(b)所示,试画出 u_0 的波形。

I/V 转换器有考,原理我们之前都学过 记不住可以现场推导 反相+正相— 推导公式可以重点看会 4~20mA 至 0~5V 转换电路 这个会了就都会了

- 4. ADC/DAC 的性能要求:分辨率、量化误差、精度、建立时间、转换误差(填空或者选择)
- 5. 我记得最后一道简答题是 说明双积分型 AD 转换器及逐次逼近型 AD 转换器的原理! (很多人没答上 老师讲的时候好像没说是重点)(考点 重点) 重点复习吧! 看原理会解释

七、

1. (大题) PWM 功率转换电路 (非常重点!!!!!!! 大题) 这个印象最深了 H型双极式可逆 PWM 控制电路(原理 电路图 波形图 全文背诵)

2. H型双极式可逆PWM控制电路

其余不需要多看 如果时间来不及 逆变器也很重要 (我不记得考没考了···)重点复习下图吧 好像考了

V₂ 断 通

其余了解即可

个人经验 我记得当时我把凯哥个人简介都背下来了 不能说一字不差吧 可以说是倒背如流背就完事了! 能理解自然好 但是也需要背 因为题量不小 全都推导的话 可能会时间紧张

一断

结合老师的要求吧 一年前考的了可能会有疏漏 祝大家考试顺利~