Part I

Sampling and Bandwidth

What is the relationship between B, f_c , f_{samp} , R_{s} , T_{s} , and T_{samp} ?

- Define the baseband bandwidth B [Hz] of $V(f) = \mathcal{F}\{v(t)\}$ to be the lowest frequency f > 0, where |V(f)| = 0 (L₅).
- The passband bandwidth is then 2B [Hz] (L₅).
- The symbol rate is always $R_{\rm s}=1/T_{\rm s}$ [symbols/s], where $T_{\rm s}$ [s] is the time between symbols (or samples at the MF output) (L₂).
- The received signal should be sampled every T_{samp} [s] with sampling frequency $f_{\mathrm{samp}} = 1/T_{\mathrm{samp}} > 2(f_c + B)$ [Hz], where f_c [Hz] is the carrier frequency (The Sampling Theorem in L₁).
- For Nyquist pulses (L₂ and L₄):

$$V_{\rm N}(f) = \sum_{n=-\infty}^{\infty} V\left(f - \frac{n}{T_{\rm s}}\right) = T_{\rm s}v(0)$$

• For T_s -orthogonal pulses (L₄):

$$V_{\rm O}(f) = \sum_{n=-\infty}^{\infty} \left| V\left(f - \frac{n}{T_{\rm s}} \right) \right|^2 = T_{\rm s} E_v$$

Rect and Sinc Pulses $(L_2, L_4, and L_5)$

$$\text{Rect: } v(t) = \begin{cases} 1 & \text{if } |t| \leq G \\ 0 & \text{otherwise} \end{cases}$$

Rect:
$$V(f) = \operatorname{sinc}(2Gf) = \frac{\sin(\pi 2Gf)}{\pi 2Gf}$$

Sinc:
$$v(t) = \operatorname{sinc}(t/G) = \frac{\sin(\pi t/G)}{\pi t/G}$$

Sinc:
$$V(f) = \begin{cases} 1 & \text{if } |f| \le 1/(2G) \\ 0 & \text{otherwise} \end{cases}$$

where $B = \frac{1}{2G}$ and G is just a parameter.

RC and RRC Pulses (L_2 and L_4)

$$\begin{aligned} & \text{RC: } v(t) = \text{sinc } (t/G) \frac{\cos(\alpha \pi t/G)}{1 - (2\alpha t/G)^2} \\ & \text{RC: } V(f) = \begin{cases} 1 & \text{if } |f| \leq \frac{1-\alpha}{2G} \\ \cos^2\left(\frac{\pi G}{2\alpha}\left(|f| - \frac{1-\alpha}{2G}\right)\right) & \text{if } \frac{1-\alpha}{2G} < |f| < \frac{1+\alpha}{2G} \\ 0 & \text{otherwise} \end{cases} \\ & \text{RRC: } v(t) = \frac{\sin\left(\pi(1-\alpha)t/G\right) + (4\alpha t/G)\cos\left(\pi(1+\alpha)t/G\right)}{\sqrt{G}(\pi t/G)(1-(4\alpha t/G)^2)} \\ & \text{RRC: } V(f) = \begin{cases} 1 & \text{if } |f| \leq \frac{1-\alpha}{2G} \\ \cos\left(\frac{\pi G}{2\alpha}\left(|f| - \frac{1-\alpha}{2G}\right)\right) & \text{if } \frac{1-\alpha}{2G} < |f| < \frac{1+\alpha}{2G} \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

where $B=(1+\alpha)\frac{1}{2G}>\frac{1}{2G}$ and G is just a parameter.

Examples of Pulses

Examples of Pulses

Summary and Conclusions

Pulse	Nyquist	$T_{ m s}$ -orthogonal	В
Rect	$T_{\rm s} > G$	$T_{\rm s} \ge 2G$	1/(2G)
Sinc	$T_{\rm s} = kG$	$T_{\rm s} = kG$	1/(2G)
RC	$T_{\rm s} = kG$	-	$(1+\alpha)/(2G)$
RRC	1	$T_{\rm s} = kG$	$(1+\alpha)/(2G)$

where k = 1, 2, 3, ...