

A SURVEY ON EXPERT FINDING TECHNIQUES

AGENDA

- Hauptkomponenten
- Ressourcenauswahl
- Modelle
 - GENERATIVE PROBABLISTIC MODELS
 - VOTING MODELS
 - NETWORK-BASED-MODELS
- TEST DATA COLLECTIONS

KOMPONENTEN

• Es gibt drei **Hauptkomponenten** die in einem Experten-Retrieval-Model berücksichtigt werden müssen:

Kandidat

Dokument

Topic

RESSOURCENAUSWAHL

- Ressourcenquellen für Daten in aktuellen Expertensuchsystemen
 - Metadatenbanken (Kontaktdaten, professionelle Fähigkeiten)
 - Daten müssen manuell eingetragen und geupdatet werden
 - Teuer/ Arbeitsaufwendig
 - Dokument-Collections (Publikationen, E-Mails, Webseiten)
 - Kandidaten können automatisch extrahiert werden
 - Empfehlungsnetzwerke
 - Experten können durch Verweise oder Empfehlungen gefunden werden

EXPERT FINDING

GENERATIVE PROBABLISTIC MODELS

- candidate generation models
 - Berechnen den Score eines Kandidaten anhand der Nennung in relevanten Dokumenten.
 - Zwei Stufen Model
 - Die Query wird nur in der Dokumentenauswahl berücksichtigt
 - p(ca|q)

- topic generation models:
 - Berechnen den Score eines Kandidaten anhand der Kandidaten Repräsentation
 - Kandidat-Term-Index oder Kandidat-Dokument Assoziation
 - $p(ca|q)=rac{p(q|ca)p(ca)}{p(q)}$

GENERATIVE PROBABLISTIC MODELS

Candidate Generation Models

Stufe I

- Welche Dokumente sind für eine Query relevant?
- Berechnung durch ein Language Model (Tf-Idf, bm25).

Stufe 2

- Wie oft wird ein in den Dokumenten genannt?
- Berechnung durch die Experten Frequenz (bereinigt und geglättet).

GENERATIVE PROBABLISTIC MODELS

Topic Generation Models

Candidate model

- Kandidaten werden durch einen Term Index aus den ihnen zugeordneten Dokumenten repräsentiert.
- Kandidaten Score wird berechnet aus der den Query Termen und ihrem Kandidaten Index.
- Benötigt Kandidaten Index

Document model

- Mit der Query werden die relevanten Dokumente ermittelt.
- Aus den relevanten Dokumenten werden die assoziierten Kandidaten ermittelt.
- Benötigt document-candidate associations

VOTING MODELS

- Voting Models aggregieren votes aus einem Dokumenten Ranking nach Kandidaten.
- Dies basiert auf der document-candidate association.
- Voting Models bevorzugen Kandidaten die mit vielen Dokumenten assoziiert sind.
 - Daher sollten die Dokumente gewichtet werden.
- Voting Models sind den topic generation models sehr ähnlich.

NETWORK-BASED-MODELS

Netzwerkbasierte Modelle beziehen sich auf User-Netzwerke dies können unter anderem E-Mail Statistiken,
Foreneinträge oder Ähnliches sein.

Ein Beispiel:

- Campbell u.a verwendete E-Mail-Statistiken als Repositorium von Kompetenznachweisen.
- Die Idee dahinter ist: Dass Menschen intuitiv via E-Mail über ihren Fachbereich kommunizieren.
- Je mehr E-Mails über ein bestimmtes Fachgebiet gesendet oder empfangen werden, desto höher ist die Wahrscheinlichkeit, dass die entsprechende Person Expertise in diesem aufweist.
- Durch dieses Verfahren lassen sich genauere Vorhersagen als bei traditionellen Content-Based-algorithmen treffen, jedoch ist der Recall dieser Methode geringer durch die limitierten Ressourcen (E-mails)

NETWORK-BASED-MODELS

- Es gibt zwei Optionen zur Konstruktion von Grafen für Netzwerkbasierte Modelle:
 - I) Dokumente und Kandidaten werden als Knoten betrachtet, die Assoziationen zwischen ihnen als Kanten
 - 2) Nur die Kandidaten werden als Knoten betrachtet und die Beziehungen zwischen ihnen als Kanten

ca = Kandidatend = Dokument

NETWORK-BASED-MODELS

- Algorithmen die in Network-based-models häufige Anwendung finden:
 - HITS
 - PageRank
- Experten Netzwerke weisen die selben Strukturen wie das Web auf.
 - Kandidaten oder Dokumente können als Webseite angesehen werden
 - Die Kandidaten Dokument Assoziation und die Kandidaten Kandidaten Assoziation k\u00f6nnen als Hyperlinks betrachtet werden

NETWORK-BASED-MODELS

- Vorteile:
 - Versteckte Informationen ("hidden information") können durch Netzwerk basierte Modelle extrahiert werden

TEST DATA COLLECTIONS

- UvT
 - Informationen von der Tilburg University.
 - Angestellte haben ihre Expertise selbst hinzugefügt. Das Themengebiet ist daher breit gefächert.
- DBLP
 - Informationen aus dem Bereich Informatik
 - Journal Artikel, Konferenzberichte
- CiteSeer
 - Informationen aus dem Bereich Informatik
 - Artikel Metadata, Hyperlinks zu Homepages