Exploring the system

Jeff & Nico

November 2024

Contents

Discussion	1
Scenarios	2
No competition	2
No approximation	:
High a_i/m_i & No competition	:

Discussion

$$H_i^0 \left(\frac{g_i}{m_i} - 1 \right) - S\mu \, \bar{H} = (1 - \mu) H_i$$

$$H_i^0 \left(\frac{g_i}{m_i} - 1 \right) = (1 + S\mu - \mu) \, \bar{H}$$

$$(1 - \mu) H_i = H_i^0 \left(\frac{g_i}{m_i} - 1 \right) - \frac{\mu}{1 + S\mu - 1} \sum_i H_j^0 \left(\frac{g_j}{m_j} - 1 \right)$$

Plugging in g_i on both sides and knowing that NPP = $\sum_i g_i H_i$. We get:

$$(1 - \mu) \text{ NPP} = \sum_{i} \left[m_i H_i^0 \left(\frac{g_i^2}{m_i^2} - \frac{g_i}{m_i} \right) \right] - \frac{\mu}{1 + S\mu - 1} \sum_{i,j} \left[m_i H_i^0 \left(\frac{g_i g_j}{m_i m_j} - \frac{g_i}{m_i} \right) \frac{H_i^0}{H_j^0} \right]$$

Define:

$$(*) = m_i H_i^0 \left(\frac{g_i^2}{m_i^2} - \frac{g_i}{m_i} \right)$$

$$(1 - \mu) \text{ NPP} = \left(1 - \frac{\mu}{1 + S\mu - 1} \right) \sum_i (*) - \frac{\mu}{1 + S\mu - 1} \sum_{i,j} m_i H_i^0 \left(\frac{g_i g_j}{m_i m_j} - \frac{g_i}{m_i} \right) \frac{H_j^0}{H_i^0}$$

Or what is the same:

$$(1 - \mu) \text{ NPP} = \left(1 - \frac{\mu}{1 + S\mu - 1}\right) \sum_{i} (*) - \frac{\mu}{1 + S\mu - 1} g_i H_i^0 \sum_{i,j} \left(\frac{g_j}{m_j} - 1\right) \frac{H_j^0}{H_i^0}$$

Scenarios

No competition

$$NPP = \sum_{i} m_i H_i^0 \left(\frac{g_i^2}{m_i^2} - \frac{g_i}{m_i} \right)$$

$$NPP = \sum_{i} \left(\frac{H_i^0 g_i^2}{m_i} - H_i^0 g_i \right)$$

Since $\sum_{i} p_{i} = 1$ and $NPP_{i} = p_{i}NPP$:

$$NPP_{i} = \frac{H_{i}^{0}g_{i}^{2}}{m_{i}} - H_{i}^{0}g_{i} = H_{i}^{0} \left(\frac{g_{i}^{2}}{m_{i}} - g_{i}\right)$$

Rearranging into a quadratic equation:

$$H_i^0 \left(\frac{g_i^2}{m_i} - g_i - \frac{\text{NPP}_i}{H_i^0} \right) = 0.$$

$$H_i^0 \left(g_i^2 - m_i g_i - m_i \frac{\text{NPP}_i}{H_i^0} \right) = 0.$$

Since $H_i^0 \neq 0$:

$$g_i^2 - m_i g_i - m_i \frac{\text{NPP}_i}{H_i^0} = 0.$$

Since $g_i > 0$, we select the positive root:

$$g_i = \frac{m_i + \sqrt{m_i^2 + \frac{4m_i \, \text{NPP}_i}{H_i^0}}}{2}$$

To express as $\frac{g_i}{m_i}$. IMPORTANT! Factor out m_i^2 from the square root

$$g_i = \frac{m_i + m_i \sqrt{1 + \frac{4 \, \mathrm{NPP}_i}{m_i H_i^0}}}{2} \label{eq:gi}$$

Hence, since NPP $_i = p_i$ NPP & $m_i H_i^0 = F_i$:

$$\frac{g_i}{m_i} = \frac{1 + \sqrt{1 + \frac{4p_i \text{NPP}}{F_i}}}{2}$$

If we assume that $4p_i {\rm NPP} \gg 1$ and then, the condition for $\frac{g_i}{m_i} > 1$ is:

$$p_i \, \text{NPP} > \frac{F_i}{4}$$

No approximation But if we don't make the assumption $4p_i \text{NPP} \gg 1$, then for $\frac{g_i}{m_i} \leq 1$:

$$\frac{1 + \sqrt{1 + \frac{4p_i \text{NPP}}{F_i}}}{2} \le 1$$

Which leads to:

$$\frac{4p_i \, \text{NPP}}{F_i} \le 0$$

But given that $p_i \ge 0$ and NPP ≥ 0 and $F_i \ge 0$, it's mathematically impossible that $\frac{g_i}{m_i} \le 1$.

High g_i/m_i & No competition

For simplification, we focus on the case where $g_i \gg m_i$.

$$(1 - \mu) \text{ NPP} = \left(1 - \frac{\mu}{1 + S\mu - 1}\right) \sum_{i} m_i H_i^0 \left(\frac{g_i^2}{m_i^2}\right) - \frac{\mu}{1 + S\mu - 1} \sum_{i,j} m_i H_i^0 \left(\frac{g_i g_j}{m_i m_j}\right) \frac{H_j^0}{H_i^0}$$

If no competition $(\mu = 0)$, we have:

$$NPP = \sum_{i} m_{i} H_{i}^{0} \left(\frac{g_{i}^{2}}{m_{i}^{2}} \right)$$

Since $\sum_{i} p_{i} = 1$ and $NPP_{i} = p_{i}NPP$:

$$NPP_{i} = m_{i}H_{i}^{0} \left(\frac{g_{i}^{2}}{m_{i}^{2}}\right)$$

$$\frac{g_{i}}{m_{i}} = \sqrt{\frac{NPP_{i}}{m_{i}H_{i}^{0}}} = \sqrt{\frac{NPP_{i}}{F_{i}}}$$

$$\frac{g_{i}}{m_{i}} = \sqrt{\frac{p_{i}NPP}{F_{i}}}$$

Thus, the condition is $p_i \text{NPP} > F_i$ where $F_i = m_i H_i^0$