Tailoring Differentially Private Bayesian Inference to Distance Between Distributions

Mark Bun[†], Gian Pietro Farina*, Marco Gaboardi*, Jiawen Liu*

†Princeton University, *University at Buffalo, SUNY

Objectives

- 1. Designing a differentially private Bayesian inference mechanism.
- 2. Measuring accuracy with a metric over distributions (Hellinger distance (\mathcal{H}) , f-divergence, etc.).

Bayesian inference (BI) (A Beta-Binomial model example):

- Prior on θ : beta $(\alpha, \beta), \alpha, \beta \in \mathbb{R}^+$, observed data set $\mathbf{x} = (x_1, \dots x_n) \in \{0, 1\}^n, n \in \mathbb{N}$.
- Likelihood function: $\mathbb{L}_{\mathsf{x}|\theta} = \theta^{\Delta\alpha} (1-\theta)^{n-\Delta\alpha}$, where $\Delta\alpha = \sum_{i=1}^{n} x_i$;
- Posterior distribution over theta: $\mathbb{P}_{\theta|x} = \text{beta}(\alpha + \Delta \alpha, \beta + n \Delta \alpha)$.

Differentially Private Bayesian Inference and Motivations

Releasing a differentially private posterior $beta(\tilde{\alpha}, \tilde{\beta}) = (\alpha + \widetilde{\Delta \alpha}, \beta + n - \widetilde{\Delta \alpha})$.

- 1. Baseline approach is Laplace mechanism (LapMech) with sensitivity proportional to ℓ_1 norm. But this sensitivity grows linear with the dimension, also we measure results by a different metric. Motivated by this, we calibrate the noise w.r.t sensitivity of the accuracy metric (\mathcal{H}) .
- 2. Maximum sensitivity of \mathcal{H} over **beta** distributions achieves at edges as in Fig. 1. But it's very low when move away from edge. Motivated by this, we apply smooth sensitivity in mechanism to improve accuracy.

Figure 1: Sensitivities of \mathcal{H} over **beta**

Smoothed Hellinger Distance Based Exponential Mechanism

We define the mechanism $\mathcal{M}^B_{\mathcal{H}}$ which produces an element r in $\mathcal{R}_{\mathsf{post}}$ with probability:

$$\mathbb{P}_{r \sim \mathcal{M}_{\mathcal{H}}^{B}} = \frac{\exp\left(\frac{-\epsilon \cdot \mathcal{H}(\mathsf{BI}(\mathsf{x}), r)}{2 \cdot S(\mathsf{x})}\right)}{\sum_{r \in \mathcal{R}_{\mathsf{post}}} \exp\left(\frac{-\epsilon \cdot \mathcal{H}(\mathsf{BI}(\mathsf{x}), r)}{2 \cdot S(\mathsf{x})}\right)}$$

given in input an observations **x**, parameters $\epsilon > 0$ and $\delta > 0$, where:

- \mathcal{R}_{post} , the candidates set defined as $\{beta(\alpha', \beta') \mid \alpha' = \alpha + \Delta \alpha, \beta' = \beta + n \Delta \alpha\}$, given the prior distribution $\beta_{prior} = beta(\alpha, \beta)$ and observed data set size n.
- $-\mathcal{H}(BI(x), r)$ denotes the scoring function based on the Hellinger distance.
- S(x), the smooth sensitivity[1]: $S(x) = \max_{x' \in \{0,1\}^n} \{LS(x') \cdot e^{-\gamma \cdot d(x,x')}\}$, where:
- \triangleright d: Hamming distance between two data sets,
- $ho \gamma = \ln(1 \frac{\epsilon}{2\ln(\frac{\delta}{2(n+1)})})$ to ensure the (ϵ, δ) -differentially private.

Preliminary Experimental Results

Experiments are on three mechanisms and plotted as follows:

- Green: Baseline approach. (noises being postprocessed to floor value)
- \mathbf{Red} : LapMech with sensitivity $\mathbf{1}$ in 2 dimensions and $\mathbf{2}$ in higher dimensions, since it's equivalent to histogram problem (posteriors of adjacent data sets differ only in two dimensions).
- Blue: $\mathcal{M}_{\mathcal{H}}^{B}$.

Fig. 2 and Fig. 3(a) give us the average and 4-quantile of Hellinger distance between the sampled results and true posterior, by sampling for 10k times under each data size or prior configuration.

- (a) 2 dimensions, data size \in [100, 500]
- (b) 3 dimensions, data size \in [100, 500]
- (c) 4 dimensions, data size \in [100, 600]

Figure 2: Average accuracy by increasing data set size

Fig. 3(b) and 3(c) give us the discrete probabilities. On the x-axis: the distance of a potential output r from the true answer and on y-axis the probability of r being output by the mechanisms.

- (a) 2 dimensions with data size 100
- (b) 2 dimensions with data size **600**

Figure 3: 4-quantile and discrete probability plots

(c) 3 dimensions with data size **600**

Experiments above are with unit prior beta(1,1), beta(1,1,1) and beta(1,1,1,1) (except Fig. 3(a)), balanced datasets, $\epsilon=1.0$ and $\delta=10^{-8}$.

Conclusion

- The smoothed Hellinger distance based exponential mechanism outperforms asymptotically the baseline approach when the latter uses a sensitivity proportional to dimensionality.
- Under the same data set size, $\mathcal{M}^B_{\mathcal{H}}$ can outperform LapMech by increasing the prior.

References

[1] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private data analysis. In *Proceedings of the thirty-ninth annual ACM symposium on Theory of computing*, pages 75–84. ACM, 2007.