Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчет по лабораторной работе 9 по дисциплине «Математическая статистика»

> Выполнил студент: Файзрахманов А. Р. группа: 5030102/90201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Содержание

1	Введение	3
2	Теория	3
	2.1 Представление данных	3
	2.2 Предварительная обработка данных	4
	2.3 Коэффициент Жаккара	4
3	Реализация	4
4	Результаты	4
5	Обсуждение	10
Л	итература	10

Список иллюстраций

1	Схема установки для исследования фотоэлектрических характеристик	3
2	Результаты измерений величины токов	4
3	Интервальное представление данных для выборки 1	5
4	Интервальное представление данных для выборки 2	5
5	Линейная модель дрейфа данных из выборки 1	5
6	Линейная модель дрейфа данных из выборки 2	6
7	Гистограмма значений множителей коррекции w из выборки $1. \dots \dots \dots$	6
8	Гистограмма значений множителей коррекции w из выборки 2	6
9	Скорректированная модель данных из выборки 1	7
10	Линейная модель дрейфа данных из выборки 1	7
11	Линейная модель дрейфа данных из выборки 2	7
12	Гистограмма значений множителей коррекции w из выборки $1. \dots \dots$	8
13	Гистограмма значений множителей коррекции w из выборки $2. \dots \dots$	8
14	Скорректированная модель данных из выборки 1	8
15	Скорректированная модель данных из выборки 2	9
16	Гистограмма скорректированной модели данных из выборки 1	9
17	Гистограмма скорректированной модели данных из выборки 2	9
18	Зависимость коэффициента Жаккара от R_{21}	10
19	Гистограмма объединенной выборки при R_{21}	10

1 Введение

Постановка задачи. Исследование из области солнечной энергетики[1]. На Рис. 11 показана схема установки для исследования фотоэлектрических характеристик.

Рис. 1: Схема установки для исследования фотоэлектрических характеристик.

Калибровка датчика $\Phi\Pi1$ производится по этилону $\Phi\Pi2$. Зависимость между квантовыми эффективностямдатчиков предполагается постоянной для каждой пары наборов измерений (1)

$$QE_{\Phi\Pi 2} = \frac{I_{\Phi\Pi 2}}{I_{\Phi\Pi 1}} \cdot QE_{\Phi\Pi 1}. \tag{1}$$

 $QE_{\Phi\Pi1,2}$ - квантовыми эффективностями эталонного и исследуемого датчика, $I_{\Phi\Pi1,2}$ - измеренные токи.

Исходные данные. Имеется 2 выборки данных с интервальной неопределенностью. Одна из них относится к эталонному датчику ФП2. Другая выборка соответствует исследуемому датчику ФП1. Данные представлены в виду двух текстовых файлов с числом отсчетов 50-200.

Названия файлов имеют формат:

FN1 = ' Канал 1_700 $nm_0.03.csv'$,

FN2 = ' Канал 2_700 $nm_0.03.csv'$.

Здесь 700 и 0.03 указывают на условия проведения измерений.

2 Теория

Некоторые сведения по анализу данных с интервальной неопределенностью [2], [3].

2.1 Представление данных

В первую очередь представим данные таким образом, чтобы применить понятия данных с интервальной неопределенностью.

Один из распространенных способов получения интервальных результатов в первичных измерениях - это «обинтерваливание» точечных значений, когда к точечному базовому значению \mathring{x} , которое считывается по показаниям измерительного прибора, прибавляется интервал погрешности ϵ :

$$x = \mathring{x} + \epsilon \tag{2}$$

Интервал погрешности зададим как

$$\epsilon = [-\epsilon, \epsilon].$$

В конкретных измерениях примем $\epsilon = 10^{-4}$ мВ.

Согласно терминологии интервального анализа, рассматриваемая выборка - это вектор интервалов, или интервальный вектор $x = (x_1, x_2, ..., x_n)$.

Информационным множеством в случае оценивания единичной физической величины по выборке интервальных данных будет тукжу интервал, который называют инфармационным интервалом. Неформально говоря, это интервал, содержащий знаения оцениваемой величины, которые «совместны» с измерениями выборки («согласубтся» с данными этих измерений).

2.2 Предварительная обработка данных

Зададимся линейной моделью дрейфа.

$$I_{\Phi\Pi} = A + B \cdot n, n = 1, 2, ..., N.$$
 (3)

Поставим и решим задачу линейного программирования по методике и средствами [5], найдем A, B и вектор w множителей коррекции данных.

Также построим «спрямленные» данные выборки, вычтя из исходных данных «дрейфовую» компоненту.

$$I_{\Phi\Pi}^c = I_{\Phi\Pi} - B \cdot n, n = 1, 2, ..., N.$$
 (4)

2.3 Коэффициент Жаккара

По мере развития интервального анализа, были введены различные определения и конструкции оценки меры совместности интервальных объектов. Вместе с тем, в практике обработки данных часто необходимо оперировать с относительными величинами. Рассмотрим коэффициент Жаккара совместности интервалов.

$$JK(x) = \frac{wid(\bigwedge x_i)}{wid(\bigvee x_i)}$$
 (5)

В выражении используется ширина интервала, а вместо операций пересечения и объединения множеств — операции взятия минимума и максимума по включению двух величин в полной интервальной арифметике (Каухера).

3 Реализация

Лабораторная работа выполнена на языке программирования Python с помощью библиотек numpy, matplotlib, scipy, statsmodels. Отчет написан в среде разработки $TexWorks\ c$ помощью pdfLaTeX

4 Результаты

Рис. 2: Результаты измерений величины токов.

Рис. 3: Интервальное представление данных для выборки 1.

Рис. 4: Интервальное представление данных для выборки 2.

Рис. 5: Линейная модель дрейфа данных из выборки 1.

Рис. 6: Линейная модель дрейфа данных из выборки 2.

Рис. 7: Гистограмма значений множителей коррекции w из выборки 1.

Рис. 8: Гистограмма значений множителей коррекции w из выборки 2.

Рис. 9: Скорректированная модель данных из выборки 1.

Рис. 10: Линейная модель дрейфа данных из выборки 1.

Рис. 11: Линейная модель дрейфа данных из выборки 2.

Рис. 12: Гистограмма значений множителей коррекции w из выборки 1.

Рис. 13: Гистограмма значений множителей коррекции w из выборки 2.

Рис. 14: Скорректированная модель данных из выборки 1.

Рис. 15: Скорректированная модель данных из выборки 2.

Рис. 16: Гистограмма скорректированной модели данных из выборки 1.

Рис. 17: Гистограмма скорректированной модели данных из выборки 2.

Рис. 18: Зависимость коэффициента Жаккара от R_{21}

Рис. 19: Гистограмма объединенной выборки при R_{21}

5 Обсуждение

Как видно из гистограмм значений множителей коррекции w, половина массива данных не требует коррекции. Этот факт свидетельствует в пользу того, что линейная модель дрейфа данныз является разумным приближением. Из гистограммы объедененной модели видно, что она имеет характерные черты, как гистограммы скорректированной модели данных выборки 1, так и гистограммы скорректированной модели 2.

Литература'

- [1] М.З. Шварц. Данные технологических испытаний оборудования для калибровки фотоприемников солнечного излучения. 2022
- [2] А.Н. Баженов, С.И. Жилин, С.И. Кумков, С.П. Шарый. Обработка и анализ данных с интервальной неопределенностью. 2022
- [3] А.Н. Баженов. Введение в анализ данных с интервальной неопределенностью. 2022
- [4] Коэффициент Жаккара https://en.wikipedia.org/wiki/Jaccard_index Jaccard P. Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines // Bull. Soc. Vaudoise sci. Natur. 1901. V. 37. Bd. 140. S. 241-272.

[5] С.И. Жилин. Примеры анализа интервальныз данных в Octave https://github.com/szhilin/octave-interval-examples