◇上下文无关语言的性质与运算

- ♦ 针对上下文无关语言的 Pumping 引理
- ◇有关上下文无关语言的几个判定性质
- ◇关于上下文无关语言的封闭运算

- ◇上下文无关语言应满足的一个必要条件
- ◇可用于判定某些语言不是上下文无关语言

◆上下文无关语言的 "Pumping"特性

"pumping"特性: 先讨论不包含 ε 的非空上下文无关
 语言 L, 并设 CFG G=(V, T, P, S)为满足 CNF的文法.

设 |V|=m,以及 $n=2^m$. 对于任一长度不小于 n 的字符串 z,即 $|z|\ge n$,考察关于 z 的分析树 S. 由于文法满足 CNF,该分析树为二叉树,其叶结点的个数为 |z|. 如右下图所示.

容易证明,/z/≤2h-1,这里 h 为树 S 的高度.

设从根结点 S 开始的一条最长路径标记为 $A_0A_1A_2...A_ka$.

由于 $|z| \ge n = 2^m$,所以该分析树的高度至少为m+1. 因而, $k \ge m$.

但/V/=m,因此 A_{k-m} , A_{k-m+1} , ... , A_{k-1} , A_k 中必有重复的非终结符. 假设 $A_i=A_i$,其中 $k-m \le i < j \le k$.

FL&A

针对上下文无关语言的Pumping引理

◆上下文无关语言的 "Pumping"特性

- "pumping"特性(续前页)

这样,z的分析树可示意如右图。可以将z划分为z=uvwxy。w由根为 A_i 的子树产生,vwx由根为 A_i 的子树产生。由于没有unit产生式,所以 $vx\neq\epsilon$ 。又因为根为 A_i 的子树高

度不超过 m+1,所以 vwx 的长度不超过 $2^m=n$,即 $|vwx| \le n$.

现在,可以对 v和 x进行 pumped,左下图是i=0,2的情形。

"pumping"特性 对任意的i≥0, uviwxiy∈L.

- ◆ Pumping Lemma for Context-free Languages 设 L 是上下文无关语言,则存在正常数 n,使得任一长度不小于n 的字符串 $z \in L$, $|z| \ge n$,都可以分成5部分,即 z = uvwxy,满足下列条件:
 - 1. *VX≠ε*.
 - 2. $|vwx| \le n$.
 - 3. 对任何 k≥0, 都有 uv^kwx^ky ∈ L.
 - ◆ 证明 若 L-{ ε } 为 Φ , 结论自然成立. 否则,设 CFG G=(V, T, P, S) 为 L-{ ε } 的一个满足 CNF 的文法,只要取 $n=2^{|V|}$ 即可.

- ◆ Pumping 引理的一个应用
 - 用于证明某个语言 L 不是上下文无关语言

Pumping 引理的条件可形式表示为:

 $\exists n \, \forall z \exists u \exists v \exists w \exists x \exists y \, \forall k (z \in L \land |z| \ge n > 0 \rightarrow z = uvwxy \land vx \neq \varepsilon \land |vwx| \le n \land (k \ge 0 \rightarrow uv^k wx^k y \in L))$

该命题的否定形式为:

 $\forall n \exists z \forall u \forall v \forall w \forall x \forall y \exists k(z \in L \land |z| \geq n > 0 \land (z = uvwxy) \land vx \neq \varepsilon \land |vwx| \leq n \rightarrow k \geq 0 \land uv^k wx^k y \notin L))$

- ◆ Pumping 引理的一个应用
 - 用于证明某个语言 L 不是上下文无关语言 (接上页)
 - 证明步骤
 - 1. 考虑任意的 n>0.
 - 2. 找到一个满足以下条件的串 $z \in L$ (长度至少为n).
 - **3.** 任选满足*z*=*uvwxy* ∧*vx≠ε* ∧/*vwx*/ ≤ *n* 的 *u,v,w,x,y.*
 - 4. 找到一个 k ≥ 0, 使 uv^kwx^ky ∉ L.

- ◆ Pumping 引理的一个应用
 - 用于证明某个语言 L 不是上下文无关语言 (接上页)
- 令 举例 证明语言 $L_{012} = \{0^k 1^k 2^k | k \ge 1\}$ 不是上下文无关语言

证明 对任意n>0,取 $z=0^n1^n2^n$. 任选满足条件 $z=uvwxy \wedge vx\neq\varepsilon \wedge |vwx| \leq n$ 的 u,v,w,x,y 若取 k=0,则有 $uv^kwx^ky=uwy \notin L_{012}$.

FL&A

针对上下文无关语言的Pumping引理

- ♦ Pumping 引理不是上下文无关语言的充分条件
 - 反例 a, b, c, d 串构成的语言 $L = \{a^i b^j c^k d^j \mid i, j, k, l \geq 0, \stackrel{\text{if}}{=} k \neq 0 \text{ on } j = k \neq l \}$

- ◆有关几个转换问题的复杂度(选讲)
- ◇判定上下文无关语言是否为空
- ◇判定上下文无关语言中是否包含特定的字符串
- ◆有关上下文无关语言的几个不可判定问题(选讲)

◆有关 CFG和 PDA的几个转换问题的复杂度

- CFG 变换为符合 Chomsky 范式
 - 消去无用符号 计算可达符号和生成符号集合为 O(n²) 复杂度,但若采用适当的数据结构(见 7.4.3节),复 杂度可降为 O(n). 消去无用符号不增加文法的长度.
 - 消去 ε 产生式 复杂度为 O(2ⁿ), 结果文法的长度为 O(2ⁿ). 如果用级连方法改造产生式,则复杂度可降为 O(n).
 - 消去单元产生式 计算单元偶对和消去单元产生式,复杂度为 O(n²), 结果文法的长度为 O(n²).
 - 用非终结符替换终结符以及打破长度大于 2 的右部 复杂度 O(n), 结果文法的长度为 O(n).

◆有关 CFG和 PDA的几个转换问题的复杂度

- 两种接受方式的 PDA 之间相互转换
 - 终态接受方式转化为空栈接受方式 线性复杂度
 - 空栈接受方式转化为终态接受方式 线性复杂度
- CFG与 PDA 之间相互转换
 - · CFG转化为空栈接受方式的PDA 线性复杂度
 - ·空栈接受方式的 PDA 转化为 CFG 指数复杂度,但可以对转移函数做适当的变换,得到 O(n³) 的复杂度

- ◇判定上下文无关语言是否为空
 - 以上下文无关文法表示上下文无关语言
 - 判定算法 可由如下步骤判定上下文无关文法表示的语言是否为空:
 - 1. 计算所有生成符号的集合:
 - 2. 判定文法的开始符号是否生成符号;若是,则该文法表示的上下文无关语言非空;否则,该语言为空。
 - 算法复杂度 计算生成符号集合为 O(n²) 复杂度, 但若采用适当的数据结构,复杂度可降为 O(n).

◆判定上下文无关语言中是否包含特定的字符串

- 以上下文无关文法表示上下文无关语言
 - 判定算法 可由如下步骤判定上下文无关文法表示的语言是否包含某一字符串 w:
 - 1. 将该文法变换为符合 Chomsky 范式:
 - 2. 采用 CYK 算法判定该文法所产生的语言是 否包含字符串 W.
 - 算法复杂度 CYK 算法由 J.Cocke, D.Younger 和T.Kasami 分别独立提出,基于动态规划 (dynamic programming) 的思想.设 | w | = n,则该算法复杂度为 O(n³).

♦ CYK 算法

- 基本思想 设 G = (V,T,P,S) 为满足 CNF 的 CFG, w=a₁a₂...an∈T*; 采用动态规划的思想迭代计算满足下列条件的 X_{ii} (1 \leq i \leq j \leq n):

 - $\begin{array}{ll} (1) \ X_{ij} \subseteq V; \\ (2) \ A \in X_{ij} & iff \ A \stackrel{*}{\rightleftharpoons} a_i a_{i+1} ... a_j; \end{array}$

这样, $w \in L(G)$ iff $S \in X_{1n}$.

- 迭代计算X;;
 - (1) j=i. 如果 "A→a;"∈P ,则 A∈X;;
 - (2) j>i. A∈X_{ii} 当且仅当存在 k: i≤k<j, 可以找到 B∈X_{ik}和 C∈X_{(k+1)i},使得 " $A \rightarrow BC$ " ∈ P. 见右边示意图.
- 复杂度 设 |w|=n ,则该迭代过程的 复杂度为 O(n³)

♦ CYK 算法

- 填表迭代过程 上述计算X_{jj}的迭代过程,可采用填 表的方法来实施,如下图所示。

◆有关上下文无关语言的几个不可判定问题

- 1. 给定上下文无关文法是否无二义的? (定理9.20)
- 2. 给定上下文无关语言是否固有二义的?
- 3. 两个上下文无关语言相交是否为空?
- 4. 两个上下文无关语言是否相等?
- 5. 给定上下文无关语言是否等于 Σ*?其中, Σ 为该语言的字母表.

- ◆ 关于上下文无关语言的几个主要的封闭运算
 - 替换(substitution)
 - 并 (union)
 - 反向 (reversal)
 - 闭包(星闭包和正闭包) (closure(*), and closure (+))
 - 连接(concatenation)
 - 同态(homomorphism)
 - 反同态 (inverse homomorphism)
 - 与正规语言的交(intersection with a regular language)

圆消華大学

◇上下文无关语言的替换

- 记号 设 Σ 为字母表,L 为语言的集合. 映射 $s: \Sigma \to L$ 称 为 Σ 上的一个替换,对 $a \in \Sigma$,s(a) 为某一语言 $L_a \in L$; 替换的概念可以扩充,设 $w = a_1 a_2 ... a_n \in \Sigma^*$,定义

 $s(w) = s(a_1 a_2 ... a_n) = s(a_1) s(a_2) ... s(a_n);$

进一步,设L为∑上的语言,定义

 $s(L) = \bigcup_{w \in L} s(w).$

- 结论 若L为 Σ 上的上下文无关语言,s为 Σ 上的一个替换,并且对任何 $a \in \Sigma$,s(a) 均为上下文无关语言,则 s(L) 也为上下文无关语言。

- 证明思路 参见右图所示的分析树,w=a₁a₂...a_n对应的分析树中每个叶结点 a 可替换为语言 s(a) 中任何串的分析树.

◇上下文无关语言的替换

```
-举例 设 \Sigma = \{0,1\},替换 s 为
         s(0) = \{a^n b^n \mid n \ge 1\}, \quad s(1) = \{aa, bb\}
设w=01,则s(w)=s(0)s(1)=
                             \{a^nb^n aa \mid n\geq 1\} \cup \{a^nb^{n+2} \mid n\geq 1\}
设 L= L(O*) ,则
        s(L) = (s(0))^* = \{a^n b^n \mid n \ge 1\}^*
               = \{a^{n1}b^{n1} a^{n2}b^{n2} \dots a^{nk}b^{nk} | k \ge 0 \land n \ge 1\}
                   (1 \leq i \leq k).
```


◇上下文无关语言的并

- 结论 若 L 和 M 为 CFL,则 L∪M 也是 CFL。
- 证明 设替换 s 为: s(0) = L, s(1) = M, 则
 s({0,1}) = L ∪ M.
 由于{0,1}, L和 M皆为 CFL, 所以 L∪M为 CFL.

- ◆上下文无关语言的闭包(星闭包和正闭包)
 - 结论 若 L 为 CFL , 则 L* 和 L+ 也是 CFL .
 - 证明 设替换 s 为: s(1) = L, 则
 s({1}*) = L*, s({1}+) = L+.

由于L, {1}*和 {1}+ 皆为 CFL, 所以, L*和 L+为 CFL.

◇上下文无关语言的连接

- 结论 若 L 和 M 为 CFL , 则 LM 也是 CFL .
- 证明 设替换 s 为: s(0) = L , s(1) = M , 则 $s({01}) = LM$.

由于{01}, L和M皆为CFL, 所以, LM为CFL.

◇上下文无关语言的同态

- 记号 设映射 $h: \Sigma \to T^*$,则对 $w=a_1a_2...a_n \in \Sigma^*$,定义 $h(w) = h(a_1) h(a_2) ... h(a_n)$, 称为串 w的一个同态;对语言 $L \subseteq \Sigma^*$,定义 L 的同态 $h(L) = \{ h(w) \mid w \in L \}$
- 结论 若 L 为 CFL, h: Σ → T*, 则 h(L) 也是 CFL.
- 证明 设替换 s 为:对任何a∈ Σ , s(a) = {h(a)}, 则 s(L) = h(L).
 - 由于{h(a)} 和 L 皆为 CFL, 所以, h(L) 为 CFL.

◇上下文无关语言的反向

- 记号 设字符串 $w=a_1a_2...a_n$,则 w 的反向(reversal) $w^R=a_na_{n-1}...a_1$;语言 L 的反向 $L^R=\{w^R\mid w\in L\}$.
- 结论 若 L 为 CFL,则 LR 也是 CFL:

证明思路 设 L=L(G), 其中 CFG G=(V,T,P,S).

构造 GR = (V,T,PR,S),其中

$$P^{R} = \{A \rightarrow \alpha^{R} \mid \text{``}A \rightarrow \alpha\text{''} \in P\},$$

可以证明, $L(G^R)=L^R$. 即证, 对任何 W,

$$S \stackrel{*}{\Longrightarrow} W \quad iff \quad S \stackrel{*}{\Longrightarrow} W^R$$

(归纳于G和GR中推导的长度,留做练习)

◇上下文无关语言的交,补,差

- 结论 若 L 和 M 为 CFL ,但 L∩M 不一定是 CFL .
- 举反例 $L = \{0^n 1^n 2^i \mid n, i > 0\}$ 为 CFL ,它的一个 CFG为 $S \to AB$, $A \to 0A1 \mid 01$, $B \to 2B \mid 2$; $M = \{0^i 1^n 2^n \mid n, i > 0\}$ 为 CFL ,它的一个 CFG为 $S \to AB$, $A \to 0A \mid 0$, $B \to 1B2 \mid 12$; 但 $L \cap M = \{0^n 1^n 2^n \mid n > 0\}$ 不是 CFL .
- 推论 若 L和 M为 CFL,但 \overline{L} 和 L-M 不一定是 CFL. 证明 由于 $L \cap M = \overline{L} \cup \overline{M}$,所以,CFL 的补运算不是封闭的。同样,由于 $\overline{L} = \Sigma^* L$, 所以,CFL 之间的差运算不是封闭的

◇上下文无关语言与正规语言的交

- 结论 若 L 为 CFL , R 为正规语言,则 L∩R 为 CFL .
- 证明思路 设 R = L(A), 其中 DFA $A = (Q_A, \Sigma, \delta_A, q_A, F_A)$; 设 L = L(P), 其中 PDA $P = (Q_P, \Sigma, \Gamma, \delta_P, q_P, Z_0, F_P)$. 构造 PDA $P' = (Q_P \times Q_A, \Sigma, \Gamma, \delta, (q_P, q_A), Z_0, F_P \times F_A)$,

其中 $\delta((q,p), a, X)$ 包含所有 满足如下条件的 $((r,s), \gamma)$:

- (1) $s = \delta'(p, a)$,
- (2) $(r, \gamma) \in \delta(q, a, X)$.

其中 $a \in \Sigma$ 或 $a = \varepsilon$.

可证 $L \cap R = L(P')$.

◇上下文无关语言的反同态

- 记号 设映射 $h: \Sigma \to T^*$, 对语言 $L \subseteq T^*$, 定义 L 的反同态 $h^{-1}(L) = \{ w \mid w \in \Sigma^* \land h(w) \in L \}$.
- 结论 若 $L \subseteq T^* \to CFL$, $h: \Sigma \to T^*$,则 $h^{-1}(L)$ 也是CFL.

证明思路 设 L = L(P), 其中 PDA $P = (Q, T, \Gamma, \delta, q_0, Z_0, F)$.

构造 PDA P'=($\mathbb{Q} \times \{x | x \notin h(a)$ 的后缀, $a \in \Sigma \}$, Σ , Γ , δ' , $(\mathbb{q}_0, \varepsilon)$, \mathbb{Z}_0 , $F \times \{\varepsilon\}$).

对 $a \in \Sigma$, $\delta'((q,\varepsilon), a, X) = \{((q,h(a)),X)\}$. Input a h h 若对 $b \in T$ 或 $b = \varepsilon$, $(p, \gamma) \in \delta(q, b, X)$, 则有 $((p,x), \gamma) \in \delta'((q,bx), \varepsilon, X)$. 可证 $L(P') = h^{-1}(L)$.

课后练习

◇ 必做题:

- Ex.7.2.1(b)
- *!Ex.7.2.1(d)
- *!Ex.7.3.1(b)
- Ex.7.3.2
- Ex.7.3.6
- Ex.7.4.3(c)

◇ 思考题:

• !Ex.7.2.1(f)

That's all for today.

Thank You