CS241 - Arnav Kucheriya - Homework 4

Section 1.5:

Exercise 7, 10, 12, 14: "n Divides 77" - True or False

- 1. **P(11)**
 - True (11 divides 77)
- 2. ∀n P(n)
 - False (Not every number divides 77)
- 3. ∀n ¬P(n)
 - False (Some numbers do divide 77, such as 1, 7, 11, and 77)
- 4. ¬(∀n P(n))
 - True (Since not all numbers divide 77, the negation of the universal quantifier is true)

Exercise 20, 22, 24: " $x^2 \ge x$ " - True or False

- 5. 3x P(x)
 - True (At least one value, such as x = 2, satisfies $x^2 \ge x$)
- 6. ¬(∃x P(x))
 - False (Since at least one x satisfies $x^2 \ge x$, the negation of existential quantifier is false)
- 7. ∃x ¬P(x)
 - True (There exists an x, such as x = 1/2, where $x^2 < x$)

Exercise 25, 29: Rewrite Using Only Negation, Disjunction, and Conjunction

- 8. $\forall x P(x) \rightarrow \neg \exists x \neg P(x)$
 - Equivalent to ¬∃x ¬P(x)
- 9. ∃x ¬P(x)
 - Equivalent to ¬∀x P(x)

Exercise 53, 55, 59: Truth Values

10.
$$\forall x(x^2 > x)$$

- False
- Counterexample: x = 1 violates the statement since $1^2 = 1$ is not greater than 1.

11. $\forall x(x > 1 \rightarrow x^2 > x)$

- True
- For any x > 1, squaring x always results in a larger value.

12. Negation of 53 and 55

- Negation of 53: ∃x(x² ≤ x)
- Negation of 55: ∃x(x > 1 ∧ x² ≤ x)

Section 1.6 Exercises

Exercise 34-38: Negation in Words and Symbols

13. Someone loves everybody.

Negation: No one loves everybody.

Symbolic: $\neg \exists x \ \forall y \ L(x, y) \Leftrightarrow \forall x \ \exists y \ \neg L(x, y)$

14. Everybody loves everybody.

Negation: There is someone who does not love everybody.

Symbolic: $\neg \forall x \ \forall y \ L(x, y) \Leftrightarrow \exists x \ \exists y \ \neg L(x, y)$

15. Somebody loves somebody.

Negation: Nobody loves anybody.

Symbolic: $\neg \exists x \exists y \ L(x, y) \Leftrightarrow \forall x \ \forall y \ \neg L(x, y)$

16. Everybody loves somebody.

Negation: There exists someone who loves nobody.

Symbolic: $\neg \forall x \exists y L(x, y) \Leftrightarrow \exists x \forall y \neg L(x, y)$

Exercise 48-51: Truth Values

17.
$$\forall x \forall y (x^2 < y + 1)$$

- True
- Justification: For any real number x, we can always find y such that x^2 is smaller than y + 1.

18.
$$\forall x \exists y (x^2 < y + 1)$$

- True
- Justification: For each x, we can always find a y such that $x^2 < y + 1$ (for example, $y = x^2$).
- 19. $\exists x \forall y (x^2 < y + 1)$
 - False
 - Counterexample: If we assume x = 0, for every y, it must satisfy $0^2 < y + 1$, which holds, but choosing x very large does not guarantee this holds for all y.
- 20. $\exists x \exists y (x^2 < y + 1)$
 - True
 - Justification: We can find at least one pair (e.g., x = 0, y = 1) where this statement holds.

Exercise 54-57: Truth Values

- 21. $\forall x \forall y (x^2 + y^2 = 9)$
 - False
 - Counterexample: Choosing x = 0, y = 0 leads to $0^2 + 0^2 \neq 9$.
- 22. $\exists x \exists y (x^2 + y^2 = 9)$
 - True
 - Justification: (3,0) or (0,3) satisfies this equation.
- 23. $\exists x \forall y (x^2 + y^2 = 9)$
 - False
 - Counterexample: If x = 0, the equation $y^2 = 9$ must hold for all y, which is not true.
- 24. $\exists x \exists y (x^2 + y^2 = 9)$
 - True
 - Justification: Same reasoning as problem 55.

Exercise 62: Logical Proposition

25.
$$\forall x \forall y ((x < y) \rightarrow (x^2 < y^2))$$

- False
- Counterexample: Consider x = -2 and y = -1. We have -2 < -1, but $(-2)^2 = 4$ is not less than $(-1)^2 = 1$.

Problem 3: Truth Values and Negations

- (a) $\forall x \forall y (x y = 7)$ in \mathbb{Z}
 - In words: "For all integers x and y, x y is always 7."
 - Truth value: False (This is not always true for all x and y.)
 - Negation: ∃x∃y (x y ≠ 7)
 ("There exist some integers x and y such that x y is not 7.")
- (b) $\exists x \exists y (x y = 7) \text{ in } \mathbb{Z}$
 - In words: "There exist integers x and y such that x y = 7."
 - Truth value: True (For example, x = 10 and y = 3 satisfy this equation.)
- (c) $\forall x \exists y (x y = 7) \text{ in } \mathbb{Z}$
 - In words: "For every integer x, there exists an integer y such that x y = 7."
 - **Truth value**: **True** (For every x, choosing y = x 7 makes the equation hold.)
- (d) $\exists x \forall y (x y = 7)$ in \mathbb{Z}
 - In words: "There exists an integer x such that for all y, x y = 7."
 - Truth value: False (If x were fixed, x y = 7 must hold for all y, which is impossible.)
 - Negation: ∀x∃y (x y ≠ 7)
 ("For every integer x, there exists an integer y such that x y is not 7.")
- (e) ∀x∃y (xy = 7) in ℚ
 - In words: "For every rational number x, there exists a rational number y such that xy = 7."
 - **Truth value**: **False** (For x = 0, there is no y such that $0 \cdot y = 7$.)
 - Negation: ∃x∀y (xy ≠ 7)
 ("There exists some x such that for all y, xy is not 7.")
- (f) $\forall x \exists y ((x \neq 0) \rightarrow xy = 7)$ in $\mathbb Q$
 - In words: "For every rational number x, if $x \ne 0$, then there exists a rational number y such that xy = 7."
 - **Truth value**: **True** (For any $x \ne 0$, choosing y = 7/x ensures xy = 7.)
- (g) $\forall x \exists y (xy = 7) \text{ in } \mathbb{Q} \{0\}$

- In words: "For every nonzero rational number x, there exists a rational number y such that xy = 7."
- **Truth value**: **True** (For any $x \ne 0$, choosing y = 7/x satisfies the equation.)

(h) $\forall x \exists y (x > y) in \mathbb{Z}$

- In words: "For every integer x, there exists an integer y such that x > y."
- **Truth value**: **True** (For any integer x, choosing y = x 1 satisfies x > y.)

(i) $\exists y \forall x (x \leq y) \text{ in } \mathbb{Z}$

- In words: "There exists an integer y such that for all integers x, $x \le y$."
- Truth value: False (There is no maximum integer.)
- Negation: ∀y∃x (x > y)
 ("For every integer y, there exists an integer x such that x > y.")

Arnav Kucheriya - Spring 2025 - CS 241