Where is it

Jack Dean, Charles Dotson, Rodrigo Petricioli

A case study using real world data to formulate optimized dedication, immunization, and other bond portfolios.

CONTENTS

Contents

1	Term Structure	3
	1.1 Deriving Term Structure	3
	1.1.1 Data and Transformations	3
	1.1.2 Bootstrapping	
2	Data	7
3	Dedication Portfolio 1	L 1
	3.1 Prompt	11
	3.2 Code	11
	3.3 Cost and Composition	
4	Sensitivity Analysis 1	L 4
	4.1 Shadow Prices	14
	4.2 Term Structures (Actual vs Implied)	15
	4.3 Implied Rates	16
5	Immunization Portfolio 1	L 7
	5.1 Mathematical Formulation	18
	5.2 Code	18

1 Term Structure

Determine the current term structure of treasury rates (see textbook Section 3.4 or other resources that you can find), and find the present value, duration, and convexity of the stream of liabilities. Please explain the main steps followed in your calculations. Use real world data.

1.1 Deriving Term Structure

In this section, we describe our derivation of the term structure of interest rates. Specifically, we outline our data gathering and transformation techniques and then move to explaining bootstrapping.

1.1.1 Data and Transformations

We begin by pulling current US Treasury issued Bonds and Notes from The Wall Street Journal. We transform this data so we can understand each bonds market. Specifically, we create a bid and ask price for each bond called 'px_bid' or 'px_ask'. We also take the maturity of the bond less today's date to get a time to maturity field called 'ttm'. This time to maturity is a float datatype which represents the years to maturity according to an actual/365 day calendar, the standard calendar of US Treasury Bonds. For sake of simplicity, we use this calendar for the notes as well despite these operating on a 30/360 calendar. Having completed these transformations, we can move to bootstrapping the curve.

1.1.2 Bootstrapping

Bootstrapping is a technique used to find continuous annualized interest rates across all time to maturities. Due to the nature of fixed income securities paying intermediate coupons, bootstrapping is necessary to value a cashflow from one specific point in time to any other. To better understand this, consider the following example.

Example

Let the current market only consist of 2 risk-free bonds that were issued today:

^{* 1-}year zero-coupon bond trading at 99c on the dollar

* 2-year 1.5% annual coupon bond trading at par To bootstrap the curve, we start with the 1-year zero.

$$99 = 100\exp\{-r\} \implies r = -\log(0.99) \approx 0.01$$

We then use this rate in our calculation with the coupon bond to find the 2-year rate.

$$100 = 1.5\exp\{-0.01(1)\} + 101.5\exp\{-2r\} \implies r \approx 0.0145$$

In this example, we have found the term structure to be given by:

Time to Maturity	Rate
1	1.00%
2	1.45%

So, doing this over all cashflows of all bonds in our data will allow us to derive a term structure across all maturities. This derived term structure will drive our analysis.

NOTE: For sake of simplicity, we round all time to maturity to the nearest hundredth of a year. From a bond trading perspective, this is essentially every 2.5 trading days representing 1 time period. We do this for simplicity in later sections as not all dates marry exactly together. In the event that a particular liability does not have a term structure rate associated with it, we use the closest prior known date. Additionally, in the event there are multiple calculated yields for a particular time to maturity, we take the arithmetic average of them for that time.

```
[7]:

Bootstrap yield curve

---

begins with zero-coupon bonds to payout (ttm < 0.5 yrs) & calculates yield

moves to coupon bonds and uses calculated yields to bootstrap further

sorts all bonds into data frame indexed by ttm (by 100th of a year)

NOTE: Averages yields for the same time period

NOTE: assumes yield of period prior if yield for desired period does not exist

'''

mats = []
```

```
round_to = 2
for bond_tenor in term_structure_df[term_structure_df['ttm'] <= 0.5].index:</pre>
    bond = term_structure_df.loc[bond_tenor]
    cpn = bond['COUPON']/2
   ttm = bond['ttm']
   px = bond['px_ask']
   mats.append([np.round(ttm,round_to),np.log((100 + cpn) / bond['px_ask']) / bond['ttm']])
rates = pd.DataFrame(mats, columns=['ttm','rate']).set_index('ttm').groupby('ttm').mean()
'''longer term rates'''
for bond_tenor in term_structure_df[term_structure_df['ttm']>=0.5].index:
    bond = term_structure_df.loc[bond_tenor]
   px = bond['px ask']
   ttm = bond['ttm']
   cpn = bond['COUPON']/2
   pmts = int(np.ceil(ttm * 2))
    cfs = [cpn if i+1<pmts else 100 + cpn for i in range(pmts)]</pre>
    cfs_idx = [np.round(ttm-i*0.5, round_to) for i in reversed(range(pmts))]
   known_rates = [rates[:cfs_idx[i]].iloc[-1,0] for i in range(pmts-1)]
    val = px - sum([cpn * np.exp((-1) * known_rates[i] * cfs_idx[i]) for i in range(pmts-1)])
   yld = (-1) * (np.log(val / (100+cpn)) / cfs_idx[pmts-1])
    add_df = pd.DataFrame([np.round(ttm, round_to), yld], index=['ttm','rate']).transpose().
 ⇔set_index('ttm')
    rates = pd.concat([rates,add_df],ignore_index=False)
    rates = rates.groupby('ttm').mean()
```

[8]: <matplotlib.legend.Legend at 0x26114fbff40>


```
</center>
'''.format(npv,dur/npv,con/npv))
```

[10]: The Net Present Value of the Liabilities is \$117.66 MM

The Macauley Duration of the Liability stream is 3.83 years

The Convexity of the Liability stream is 23.31

2 Data

Identify at least 30 fixed-income assets that are suitable to construct a dedicated bond portfolio for the municipality liabilities that you have been given. Use assets that are considered risk-free; for example, US government non-callable treasury bonds, treasury bills, or treasury notes. Display in an appropriate table the main characteristics of the bonds you choose. Namely, prices, coupon rates, maturity dates, face value).

```
[14]: # Hide
md('''
{}
'''.format(almost_dis.to_markdown(colalign = alignment))
)
```

[14]:

Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield
T 1.750 05/15/22	100.01	- 1.9931	T 1.625 04/30/23	99.19	2.056	T 2.625 04/15/25	99.164	2.799	T 5.250 11/15/28	113.192	2.935
T 2.125	100.012	-	T 2.750	100.206	2.061	T 0.375	93.04	2.815	T 1.500	91.112	2.964
05/15/22		2.5447	04/30/23			04/30/25			11/30/28		
T 0.000	99.352	0.657	T 0.125	98.03	2.066	T 2.875	100.066	2.8	T 1.375	90.194	2.946
05/17/22			05/15/23			04/30/25			12/31/28		
$T^{'}0.000$	99.34	0.669	$T^{'}1.750$	99.22	2.068	$T^{'}2.125$	98.016	2.806	$T^{'}1.750$	92.234	2.951
05/19/22			05/15/23			05/15/25			01/31/29		
$T^{'}0.000$	99.32	0.69	$\stackrel{'}{{ m T}} 0.125$	97.306	2.115	$T^{'}2.750$	99.282	2.791	$T^{'}2.625$	98.01	2.948
05/24/22			05/31/23			05/15/25			02/15/29		
$T^{'}0.000$	99.322	0.687	$T^{'}1.625$	99.156	2.12	$T^{'}0.250$	92.186	2.811	$T^{'}5.250$	114.03	2.933
05/26/22			05/31/23			05/31/25			02/15/29		
$\stackrel{.}{\mathrm{T}}\ 0.125$	99.312	0.6946	$T^{'}2.750$	100.204	2.124	$\stackrel{.}{\mathrm{T}}2.875$	100.066	2.802	$\stackrel{.}{\mathrm{T}}1.875$	93.152	2.942
05/31/22			05/31/23			05/31/25			02/28/29		
T 1.750	100.014	0.608	T 0.250	97.316	2.136	T = 0.250	92.116	2.819	T 2.375	96.14	2.951
05/31/22			06/15/23			06/30/25			03/31/29		
T 1.875	100.016	0.544	T 0.125	97.23	2.19	T 2.750	99.266	2.805	T 2.875	99.172	2.949
05/31/22			06/30/23			06/30/25			04/30/29		
T 0.000	99.307	0.702	T 1.375	99.034	2.181	T 0.250	92.046	2.826	T 2.375	96.134	2.945
05/31/22			06/30/23			07/31/25			05/15/29		
T 0.000	99.327	0.682	T 2.625	100.156	2.178	T 2.875	100.06	2.813	T 1.625	91.192	2.918
06/02/22			06/30/23			07/31/25			08/15/29		
T 0.000	99.352	0.657	T 0.125	97.19	2.227	T 2.000	97.136	2.833	T 6.125	120.284	2.908
06/07/22			07/15/23			08/15/25			08/15/29		
T 0.000	99.347	0.662	T 0.125	97.144	2.271	T 6.875	112.206	2.778	T 1.750	92.076	2.909
06/09/22			07/31/23			08/15/25			11/15/29		
T 0.000	99.35	0.659	T 1.250	98.262	2.243	T 0.250	91.29	2.844	T 1.500	90.076	2.915
06/14/22			07/31/23			08/31/25			02/15/30		
T 1.750	100.03	0.608	T 2.750	100.19	2.248	T 2.750	99.23	2.839	T 0.625	83.23	2.923
06/15/22			07/31/23			08/31/25			05/15/30		
T 0.000	99.372	0.637	T 0.125	97.114	2.277	T 0.250	91.224	2.846	T 6.250	123.232	2.904
06/16/22			08/15/23			09/30/25			05/15/30		
T 0.000	99.342	0.667	T 2.500	100.094	2.257	T 3.000	100.166	2.836	T 0.625	83.09	2.92
06/21/22	00.00	0.700	08/15/23	104.000	0.00	09/30/25	01.10	0.05	08/15/30	04.004	0.001
T 0.000	99.307	0.703	T 6.250	104.296	2.23	T 0.250	91.16	2.85	T 0.875	84.224	2.921
06/23/22	00.075	0.796	08/15/23	07.000	0.044	10/31/25	100 150	0.040	11/15/30	00.070	0.010
T 0.000	99.275	0.736	T 0.125	97.062	2.344	T 3.000	100.156	2.849	T 1.125	86.076	2.918
06/28/22 T 0.125	00.004	0.755	08/31/23 T 1.375	98.26	0.010	10/31/25 T 2.250	00.004	2.85	02/15/31 T 5.375	110.050	0.002
	99.294	0.755		98.20	2.313		98.004	2.80		118.256	2.923
06/30/22 T 1.750	100.04	0.74	08/31/23 T 2.750	100 170	0.91	11/15/25 T 0.375	91.224	0.055	02/15/31 T 1.625	00.05	2.925
	100.04	0.74	08/31/23	100.176	2.31		91.224	2.855		89.25	2.925
06/30/22 T 2.125	100.052	0.700	T 0.125	97.04	9 99	11/30/25 T 2.875	100.026	2 840	05/15/31 T 1.250	96 169	2.025
$\frac{1}{06/30/22}$	100.002	0.199	0.125 $09/15/23$	31.04	2.33	$\frac{1}{2.875}$ $\frac{2.875}{11/30/25}$	100.026	2.049	08/15/31	86.162	2.925
T 0.000	99.275	0.736	T 0.250	97.056	2.347	T 0.375	91.166	2.853	T 1.375	87.046	2.935
06/30/22	33.210	0.130	0.230 $09/30/23$	31.000	4.041	$\frac{1}{12/31/25}$	91.100	۵.005	$\frac{1}{1.575}$ $\frac{11}{15}$	31.040	۷.900
T 0.000	99.26	0.751	T 1.375	98.222	2.345	T 2.625	99.09	2.835	T 1.875	91.02	2.936
07/05/22	<i>33.</i> ∠0	0.101	09/30/23	30.444	2.040	$\frac{1}{2.025}$ $\frac{2.025}{12/31/25}$	33.03	۵.050	02/15/32	J1.U4	2.330
01/00/22			03/30/23			12/31/20			04/10/04		

Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield
T 0.000	99.235	0.777	T 2.875	100.23	2.339	T 0.375	91.094	2.864	T 2.875	99.176	2.927
07/07/22 T 0.000	99.237	0.774	09/30/23 T 0.125	96.276	2.389	01/31/26 T 2.625	99.062	2.855	05/15/32 T 4.500	118.09	2.88
07/12/22	33.231	0.114	10.123 $10/15/23$	90.210	2.309	01/31/26	99.002	2.000	02/15/36	110.03	2.00
T 0.000	99.222	0.789	T 0.375	97.032	2.412	T 1.625	95.194	2.867	T 4.750	121.096	2.957
07/14/22			10/31/23			02/15/26			02/15/37		
T 1.750	100.052	0.756	T 1.625	98.286	2.399	T 6.000	111.052	2.84	T 5.000	124.052	2.989
07/15/22	00.04		10/31/23	100.01	0.440	02/15/26	04.40		05/15/37	440.00	0.040
$\begin{array}{c} T \ 0.000 \\ 07/21/22 \end{array}$	99.21	0.802	T 2.875 $10/31/23$	100.21	2.413	T 0.500 02/28/26	91.18	2.865	T 4.375 02/15/38	116.29	3.018
T 0.000	99.205	0.807	T 0.250	96.262	2.425	T 2.500	98.232	2.856	T 4.500	118.154	3 033
07/28/22	00.200	0.001	11/15/23	00.202	2.120	02/28/26	00.202	2.000	05/15/38	110.101	0.000
$T^{'}0.125$	99.27	0.871	T 2.750	100.156	2.413	$T^{'}0.750$	92.092	2.867	T 3.500	105.026	3.108
07/31/22			11/15/23			03/31/26			02/15/39		
T 1.875	100.064	0.902	T 0.500	97.01	2.475	T 2.250	97.24	2.867	T 4.250	115.006	3.106
07/31/22 T 2.000	100.079	0.015	11/30/23 T 2.125	00.170	9 491	03/31/26	02.042	2 060	05/15/39	110 104	9 114
07/31/22	100.072	0.915	$\frac{1}{2.125}$ $\frac{2.125}{11/30/23}$	99.172	2.431	T 0.750 04/30/26	92.042	2.868	$T 4.500 \\ 08/15/39$	118.124	5.114
T 0.000	99.085	0.93	T 2.875	100.202	2.454	T 2.375	98.062	2.861	T 4.375	116.14	3.146
08/04/22			11/30/23			04/30/26			11/15/39		
T 0.000	99.055	0.96	T 0.125	96.126	2.46	T 1.625	95.094	2.879	T 4.625	120.014	3.143
08/11/22	100.04	0.000	12/15/23	0= 0=	0 500	05/15/26	01.000	2.004	02/15/40	5 0.10	0.000
T 1.500	100.04	0.999	T 0.750 $12/31/23$	97.07	2.508	$\begin{array}{c} T \ 0.750 \\ 05/31/26 \end{array}$	91.292	2.884	T 1.125 05/15/40	70.18	3.309
08/15/22 T 1.625	100.05	0.999	T 2.250	99.202	2.481	T 2.125	97.05	2.875	T 4.375	116.1	3.178
08/15/22	100.00	0.333	12/31/23	33.202	2.401	05/31/26	31.00	2.010	05/15/40	110.1	5.110
T 7.250	101.184	0.942	T 2.625	100.08	2.466	T 0.875	92.074	2.886	T 1.125	70.03	3.324
08/15/22			12/31/23			06/30/26			08/15/40		
T 0.000	99.01	1.006	T 0.125	96.046	2.5	T 1.875	96.052	2.868	T 3.875	108.282	3.227
08/18/22	00.01	1 007	01/15/24	07.070	0.540	06/30/26	01.004	0.001	08/15/40	79.000	0.000
$\begin{array}{c} T \ 0.000 \\ 08/25/22 \end{array}$	99.01	1.007	$T 0.875 \\ 01/31/24$	97.072	2.542	T 0.625 07/31/26	91.024	2.891	T 1.375 $11/15/40$	73.066	3.326
T 0.125	99.234	1.042	T 2.500	99.302	2.532	T 1.875	96.024	2.87	T 4.250	113.294	3.243
08/31/22	00.201	1.012	01/31/24	00.002	2.002	07/31/26	00.021	2.0.	11/15/40	110.201	3. 2 13
T 1.625	100.052	1.057	T = 0.125	95.286	2.534	T 1.500	94.144	2.896	T 1.875	79.282	3.325
08/31/22			02/15/24			08/15/26			02/15/41		
T 1.875	100.076	1.037	T 2.750	100.112	2.542	T 6.750	115.122	2.878	T 4.750	121.106	3.225
08/31/22 T 0.000	98.957	1.06	02/15/24 T 1.500	98.056	2.546	08/15/26 T 0.750	91.134	2.89	02/15/41 T 2.250	84.262	3.335
09/01/22	30.331	1.00	02/29/24	30.000	2.040	08/31/26	31.154	2.03	05/15/41	04.202	5.555
T 0.000	98.912	1.106	$T^{'}2.125$	99.092	2.533	T 1.375	93.302	2.885	T 4.375	115.164	3.272
09/08/22			02/29/24			08/31/26			05/15/41		
T 1.500	100.03	1.214	T 2.375	99.232	2.531	T 0.875	91.246	2.89	T 1.750	77.146	3.348
09/15/22	00.0	1 10	02/29/24	05 000	0.550	09/30/26	04.000	0.004	08/15/41	100 144	2.004
T 0.000 $09/15/22$	98.9	1.12	$T 0.250 \\ 03/15/24$	95.286	2.556	T 1.625 $09/30/26$	94.262	2.894	$T 3.750 \\ 08/15/41$	106.144	3.294
T 0.000	98.885	1.135	T 2.125	99.07	2.554	T 1.125	92.21	2.893	T 3.125	97.11	3.311
09/22/22			03/31/24			10/31/26			11/15/41		
T 0.000	98.887	1.133	T 2.250	99.13	2.576	T 1.625	94.234	2.893	T 2.000	80.292	3.34
09/29/22			03/31/24			10/31/26			11/30/41		
T 0.125	99.184	1.258	T 0.375	95.286	2.584	T 2.000	96.07	2.903	T 2.375	86.136	3.316
09/30/22 T 1.750	100.056	1 266	04/15/24 T 2.000	98.286	2.581	11/15/26 T 6.500	115.034	2 803	02/15/42 T 3.125	97.094	3.312
09/30/22	100.000	1.200	04/30/24	30.200	2.001	11/15/26	110.034	2.033	02/15/42	31.034	5.512
T 1.875	100.074	1.244	T 2.250	99.12	2.579	T 1.250	93.032	2.882	T 3.000	95.104	3.322
09/30/22			04/30/24			11/30/26			05/15/42		
T 0.000	98.845	1.176	T 2.500	99.27	2.582	T 1.625	94.222	2.879	T 2.750	91.074	3.349
10/06/22	00 757	1 000	04/30/24	05 144	0.001	11/30/26	00.204	9 000	08/15/42	01 000	9.950
T 0.000 $10/13/22$	98.757	1.266	T 0.250 05/15/24	95.144	2.601	T 1.250 $12/31/26$	92.304	2.889	$T 2.750 \\ 11/15/42$	91.022	3.356
T 1.375	100.004	1.336	T 2.500	99.25	2.613	T 1.750	95.034	2.887	T 3.125	96.232	3.345
10/15/22			05/15/24			12/31/26			02/15/43		
T 0.000	98.732	1.292	T = 2.000	98.264	2.593	$T^{'}1.500$	93.292	2.891	T 2.875	92.264	3.354
10/20/22	00.711		05/31/24			01/31/27			05/15/43	40.	
T 0.000	98.697	1.329	T 0.250	95.066	2.628	T 2.250	97.042	2.9	T 3.625	104.124	3.335
10/27/22			06/15/24			02/15/27			08/15/43		

Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield
T 0.125	99.14	1.365	T 1.750	98.06	2.632	T 6.625	116.114		T 3.750	106.112	
10/31/22	001		06/30/24			02/15/27			11/15/43		0.00-
T 1.875	100.072	1.375	T 2.000	98.214	2.647	T 1.125	92.052	2.888	T 3.625	104.09	3.346
10/31/22 T 2.000	100.09	1.379	06/30/24 T 0.375	95.064	2.669	02/28/27 T 1.875	95.172	2.878	02/15/44 T 3.375	100.094	3.356
10/31/22	100.05	1.010	07/15/24	50.004	2.003	02/28/27	50.112	2.010	05/15/44	100.034	0.000
T = 0.000	98.675	1.352	T 1.750	98.014	2.665	T = 0.625	89.244	2.891	T 3.125	96.11	3.359
11/03/22 T 0.000	98.605	1.424	07/31/24 T 2.125	98.264	2.674	03/31/27 T 2.500	98.09	2.88	08/15/44 T 3.000	94.084	3.366
10.000 $11/10/22$	90.000	1.424	07/31/24	30.204	2.014	03/31/27	90.09	2.00	11/15/44	34.004	5.500
$\stackrel{'}{\mathrm{T}}1.625$	100.022	1.483	$\stackrel{.}{\mathrm{T}}0.375$	94.31	2.693	$\stackrel{.}{\mathrm{T}}0.500$	89.002	2.897	$T^{'}2.500$	86.084	3.369
11/15/22	102 020	1.946	08/15/24	00.000	0.700	04/30/27	00.100	0.001	02/15/45	04.004	2.250
T 7.625 $11/15/22$	103.032	1.540	T 2.375 08/15/24	99.092	2.702	T 2.750 $04/30/27$	99.126	2.881	T 3.000 05/15/45	94.094	3.358
T 0.125	99.08	1.522	T 1.250	96.25	2.708	T 2.375	97.164	2.913	T 2.875	92.116	3.35
11/30/22	100 001		08/31/24	00.040	. =	05/15/27	00.04	2.01.0	08/15/45	 .	
T 2.000 $11/30/22$	100.084	1.505	T 1.875 08/31/24	98.042	2.721	T 0.500 05/31/27	88.24	2.916	T 3.000 11/15/45	94.174	3.337
T 0.000	98.64	1.389	T 0.375	94.224	2.735	T 0.500	88.184	2.916	T 2.500	86.076	3.344
12/01/22			09/15/24			06/30/27			02/15/46		
T 1.625	100.012	1.557	T 1.500 $09/30/24$	97.07	2.717	T 0.375 07/31/27	87.274	2.903	T 2.500 05/15/46	86.074	3.338
12/15/22 T 0.000	98.515	1.52	T 2.125	98.21	2.713	T 2.250	96.24	2.922	T 2.250	82.016	3.335
12/29/22			09/30/24			08/15/27			08/15/46		
T 0.137	99.016	1.653	T 0.625	95.034	2.723	T 6.375	116.224	2.92	T 2.875	92.234	3.31
12/31/22 T 2.125	100.09	1.669	10/15/24 T 1.500	97.02	2.745	08/15/27 T 0.500	88.06	2.926	11/15/46 T 3.000	94.266	3.307
12/31/22	100.00	1.000	10/31/24	01.02	2.710	08/31/27	00.00	2.020	02/15/47	01.200	0.001
T 1.500	99.274	1.712	T 2.250	98.274	2.733	T = 0.500	87.262	2.932	T 3.000	94.282	3.302
01/15/23 T 0.000	98.452	1.586	10/31/24 T 0.750	95.054	2.752	10/31/27 T 2.250	96.186	2.927	05/15/47 T 2.750	90.276	3.285
01/26/23	30.402	1.000	11/15/24	30.004	2.102	11/15/27	30.100	2.321	08/15/47	30.210	5.205
T 0.125	98.27	1.771	T 2.250	98.244	2.765	T 6.125	116.04	2.928	T 2.750	90.302	3.277
01/31/23 T 1.750	100	1.749	11/15/24 T 7.500	111.176	2 695	11/15/27 T 0.625	88.082	2.937	11/15/47 T 3.000	95.21	3.25
01/31/23	100	1.749	$\frac{1}{11/15/24}$	111.170	2.000	$\frac{1}{11/30/27}$	00.002	2.931	02/15/48	90.21	ა.∠ა
T 2.375	100.142	1.739	T 1.500	96.292	2.766	T = 0.625	88.02	2.944	$T^{'}3.125$	98.04	3.232
01/31/23	00.00	1.795	11/30/24 T 2.125	00 140	0.700	12/31/27	00 100	0.040	05/15/48	05 040	2 0 4 1
T 1.375 $02/15/23$	99.22	1.795	$\frac{1}{11/30/24}$	98.142	2.763	T 0.750 $01/31/28$	88.166	2.949	T 3.000 08/15/48	95.242	3.241
T 2.000	100.05	1.788	T 1.000	95.204	2.758	$T^{'}2.750$	99.004	2.937	T 3.375	103.004	3.205
02/15/23	104.006	1.700	12/15/24	07.194	0.775	02/15/28	00.196	0.004	11/15/48	06.140	9.100
T 7.125 $02/15/23$	104.006	1.708	T 1.750 $12/31/24$	97.134	2.775	T 1.125 $02/29/28$	90.136	2.934	T 3.000 02/15/49	96.142	3.199
T 0.000	98.332	1.713	T 2.250	98.22	2.771	T 1.250	90.284	2.95	T 2.875	94.084	3.194
02/23/23			12/31/24			03/31/28			05/15/49		
T 0.125 02/28/23	98.206	1.855	T 1.125 $01/15/25$	95.25	2.777	T 1.250 $04/30/28$	90.24	2.955	T 2.250 08/15/49	82.304	3.191
T 1.500	99.232	1.849	T 1.375	96.114	2.779	T 2.875	99.192	2.948	T 2.375	85.126	3.175
02/28/23			01/31/25			05/15/28			11/15/49		
T 2.625 02/28/23	100.192	1.853	$T 2.500 \\ 01/31/25$	99.09	2.776	T 1.250 05/31/28	90.2	2.956	T 2.000 02/15/50	78.066	3.189
T 0.500	98.276	1.879	T 1.500	96.184	2.798	T 1.250	90.146	2.965	T 1.250	64.106	3.184
03/15/23			02/15/25			06/30/28			05/15/50		
T 0.000	98.282	1.772	T 2.000	97.296	2.786	T 1.000	88.296	2.965	T 1.375	66.176	3.177
03/23/23 T 0.125	98.134	1.954	02/15/25 T 7.625	112.286	2.725	07/31/28 T 2.875	99.162	2.961	08/15/50 T 1.625	71.07	3.166
03/31/23			02/15/25	-		08/15/28			11/15/50		
T 1.500	99.19	1.97	T 1.125	95.186	2.779	T 5.500	114.156	2.944	T 1.875	75.31	3.152
03/31/23 T 2.500	100.146	1.964	02/28/25 T 2.750	99.286	2.787	08/15/28 T 1.125	89.164	2.964	02/15/51 T 2.375	85.156	3.141
03/31/23	100.140	1.501	02/28/25	55.250		08/31/28	CU.1UI	2.501	05/15/51	55.150	J.1 f1
T = 0.250	98.13	2.016	T 1.750	97.052	2.798	T 1.250	90.026	2.968	T 2.000	78.106	3.137
04/15/23 T 0.000	98.127	1.933	03/15/25 T 0.500	93.222	2.798	09/30/28 T 1.375	90.226	2.966	08/15/51 T 1.875	76.014	3.124
04/20/23	00.121	1.000	03/31/25	55.222	2.100	10/31/28	50.220	2.000	11/15/51	10.014	J.127

Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield	Bond	Price	Yield
T 0.125 04/30/23	98.056	2.057	T 2.625 03/31/25	99.176	2.787	T 3.125 11/15/28	100.312	2.959	$\begin{array}{c} { m T \ 2.250} \\ { m 02/15/52} \end{array}$	83.134	3.108

3 Dedication Portfolio

3.1 Prompt

Formulate a linear programming model to find the lowest cost bond dedicated portfolio that covers the stream of liabilities. To eliminate the possibility of any interest risk, assume that a 0% reinvestment rate on cash balances carried out from one date to the next. Assume no short selling of bonds is allowed. What is the cost of your portfolio? How does this cost compares with the NPV of the liabilities? What is the composition of the portfolio?

$$\min \quad z_0 + \sum_{i=1}^N P_i x_i$$

$$\text{s.t.} \quad \sum_{i=1,\dots,\ n:\ M_i>t-1} C_i x_i + \sum_{i=1,\dots,\ n:\ M_i=t} 100 x_i + (1+r_f) z_{t-1} - z_t = L_t \quad \text{ for } \mathbf{t} \in \{1,\dots,16\}$$

where,

 P_i : Price of the bond i = 1, ..., N

 x_i : the amount purchased of bond $i=1,\ldots,N$

 z_t : Excess cashflows after Liability as been paid for period $t=1,\ldots,16$

 C_i : The coupon payment from bond $i=1,\ldots,N$

 L_t : Liability in period t = 1, ..., 16

 M_i : The maturity year of bondi = 1, ..., N

 r_f : the risk free rate that will be used as the carrying interest for our last period surplus

In a dedication protfolio we are "cash matching". By this we mean to match the sum total of Cash Flows from our pruchased fixed income assets for every and all period Liabilties. We must state that we are not allowed to take a short position in any stock therefore, we are trying minimize the cost of the purchases portfolio to meet our liabilities. We have a surplus term that will account for our excess cash flows after liabilties paid for a certain period. These funds may be used for a period in which the inflow from the bonds is not enough to cover liabilties.

NOTE: The objective of this problem does have the risk-free rate as 0% on assumption. Thus the interest earned term is just $(1 + r_f)z_{t-1} = z_{t-1}$

3.2 Code

```
[15]:
    Data Manipulation
    '''
    term_by_maturity = term_structure_df.set_index('MATURITY')
    possibilities = term_by_maturity.drop(
        index=[i for i in term_by_maturity.index.to_list() if i > data_prompt.index.to_list()[-1]],
```

```
columns=['BID', 'ASKED', 'ASKED YIELD']
'''List of bond maturities less than liability maturity'''
date_lists_to_change_to_periods = [
    [i for i in possibilities.index.to_list() if i <= t]
   for t in data_prompt.index.tolist()
'''Removing the duplicates from each one'''
for i in reversed(range(1,len(date_lists_to_change_to_periods))):
    for j in range(0,len(date_lists_to_change_to_periods[i-1])):
        date_lists_to_change_to_periods[i].remove(date_lists_to_change_to_periods[i-1][j])
for i in range(0,len(date_lists_to_change_to_periods)):
   possibilities.loc[date_lists_to_change_to_periods[i],'period'] = i+1
possibilities['face'] = 100
possibilities['bond#'] = range(1,len(possibilities)+1)
possibilities = possibilities.set_index('bond#')
'''for labeling later'''
dec var names = possibilities['ref data']
```

```
[17]: '''Solving for the dedicated portfolio'''
      # Making variable list of strings
      periods = [i for i in range(0,len(cf_matrix[0])+1)]
      # Dictionary of period constraints
      period_dict = {}
      for i in range(0,len(cf_matrix[0])):
          period_dict['Period {}'.format(i+1)] = dict(zip(dec_var_names,[cf_matrix[j][i] for j in_u

¬range(0,len(cf_matrix))]))
      objective = dict(zip(dec_var_names, prices))
      # Decision Vars
      quantity = LpVariable.dict('', dec_var_names, lowBound=0)
      excess = LpVariable.dict('ExcessCF', periods, lowBound=0)
      # Intializing the Problem
      dedication_1 = LpProblem('Dedicated', LpMinimize)
      # Objective function
      dedication_1 += excess[0]+lpSum([objective[i]*quantity[i] for i in dec_var_names])
      # Constraints
```

[17]: 1

3.3 Cost and Composition

```
[18]: '''
     Print Solution to dedication_1 portfolio
      111
     Print Solution to dedication_1 portfolio with dedication_1ing Limit
     ded_df = pd.DataFrame(
         [v.varValue for v in dedication_1.variables() if v.varValue != 0],
         index=[str(v.name[1:9].replace('_', '') + v.name[9:].replace('_', '/'))
             if v.name[0] != 'E'
             else str(r'\$\text{text}\{' + v.name[:-2] + '\}' + v.name[-2:] + '\$') for v in_{L}
      columns=['Quantity']
     mature = ['20'+ i[-2:] + '-'+i[-8:-6] + '-'+i[-5:-3]
         if i[0] != 'E'
         else '2100-01-01'
         for i in ded_df.index.tolist()]
     bond_s_dis = ded_df.reset_index()
     bond_s_dis['m'] = mature
     bond_s_dis.set_index('m', inplace=True)
     bond_s_dis.sort_index(inplace=True)
     bond_s_dis.set_index('index', inplace=True)
     bond_s_dis.index.name = ''
     md('''
     <center> Portfolio Value of ${:.2f} MM </center> <br>
     <center>
     {}
      " format(value(dedication_1.objective), bond_s_dis.to_markdown(colalign =_{\sf U}
```

[18]: Portfolio Value of \$117.77 MM

	Quantity
T 7.250 08/15/22	0.0836671
T 7.125 02/15/23	0.0667
T 6.250 08/15/23	0.0590762
T 2.000 05/31/24	0.0509223
T 1.500 11/30/24	0.0714316
T 7.625 02/15/25	0.0819673
T 6.875 08/15/25	0.0750923
T 0.750 05/31/26	0.107674
T 6.750 08/15/26	0.0780774
T 6.625 02/15/27	0.0507125
T 6.375 08/15/27	0.0423924
T 1.250 05/31/28	0.0637436
T 5.500 08/15/28	0.084142
T 2.875 04/30/29	0.0664559
T 6.125 08/15/29	0.0774112
$T\ 0.625\ 05/15/30$	0.0697819

From our results we can see the prtfolio cost is \$0.1% \$ more than the NPV of the Liabilties. Thus, we will be paying a premium to hold onto the treasuries to meet our liabilties. This premium is \$11MM as the NPV is \$117.66. This is to be expected as we are not actively trading this portfolio and holding all bonds till their maturities.

4 Sensitivity Analysis

Use the linear programming sensitivity analysis information to determine the term structure of interest rates implied by the optimal bond portfolio you found in the previous question. Use a plot to compare these rates with the current term structure of treasury rates you found in the first question.

4.1 Shadow Prices

```
Pull sensitivity analysis
---
https://s3.amazonaws.com/assets.datacamp.com/production/course_8835/slides/
chapter4.pdf
'''

o = [{'name':name, 'shadow price':c.pi} for name, c in dedication_1.constraints.
citems()]
shadow_px = pd.DataFrame(o).set_index(data_prompt.index).drop('name',axis=1)
clean_shadow_px = pd.DataFrame(o).set_index(data_prompt.index.strftime('%m/%d/
c%y')).drop('name',axis=1)
md('''
<center>
```

```
{}
'''.format(clean_shadow_px.to_markdown(colalign = ("right", 'center')))
)
```

[19]:

DateDue	shadow price
12/15/22	0.976444
06/15/23	0.970693
12/15/23	0.952351
06/15/24	0.944203
12/15/24	0.927139
06/15/25	0.906415
12/15/25	0.896101
06/15/26	0.884951
12/15/26	0.870135
06/15/27	0.856877
12/15/27	0.8426
06/15/28	0.834112
12/15/28	0.820296
06/15/29	0.812113
12/15/29	0.795826
06/15/30	0.788304

4.2 Term Structures (Actual vs Implied)

```
[20]: '''
     Presents implied and actual yield curve as a plot
     shadow_ttm = ((shadow_px.index - datetime.datetime.now()) / datetime.
      shadow_factors = shadow_px['shadow price'].to_list()
     implied_rates = [-np.log(shadow_factors[i]) / shadow_ttm[i] for i in__
      →range(len(shadow_ttm))]
     implied_rates_df = pd.DataFrame(
                            data = [shadow_ttm, implied_rates],
                            index=['ttm','implied_rate']
                        )
     implied_rates_df = (implied_rates_df
                            .transpose()
                            .round({'ttm':round_to})
                            .set_index('ttm')
                        )
```

```
plt.plot(rates[0.5:8.5] * 100)
plt.plot(implied_rates_df * 100)
plt.title('Bootstrapped and Implied Yield Curve (rates per annum)')
plt.xlabel('Tenor')
plt.ylabel('Yield in Percentage Points')
plt.legend(['Actual', 'Implied'])
```

[20]: <matplotlib.legend.Legend at 0x261187ddf10>

We can see how the dedication will match the term structure of interest as each can be a function of their cahsflows and if we are essentially investing in the bonds that make up the term structure, will be very close to it but not exactly. We will find the cheapest "path" through the term structure, based on our liabilities.

4.3 Implied Rates

[21]:

ttm	implied_rate
0.58	4.12025
1.08	2.76134
1.58	3.0928
2.08	2.76039
2.58	2.93078
3.08	3.19027
3.58	3.06319
4.08	2.99571
4.58	3.0364
5.08	3.04062
5.58	3.06851
6.08	2.98203
6.58	3.00864
7.08	2.93839
7.58	3.01126
8.08	2.94298

5 Immunization Portfolio

Formulate a linear programming model to find the lowest cost bond immunized portfolio that matches the present value, duration, and convexity of a stream of liabilities. Assume that no short rates are allowed. What is the cost of your portfolio? How much would you save by using this immunization strategy instead of the dedication one? Is your portfolio immunized against non-parallel shifts in the term structure? Explain why or why not.

Now, we will approach this problem from an Immunization perspective. This means that we are going to find a new portfolio of bonds that match the Net Present Value, Duration, and Convexity of the stream of Liabilities required, while still minimizing the cost of the actual portfolio. For the purposes of this portfolio, we will assume that short rates aren't allowed.

To achieve this, we first calculated the NPV, Duration, and Convexity of each of the bonds cash flows'. Then, to be able to match them to the NPV, Duration, and Convexity of the Liabilities (previously calculated), we multiply them by the amount of bonds to be bought, and sum them. This is explicitly stated in the Mathematical Formulation.

5.1 Mathematical Formulation

$$\begin{aligned} & \min & & \sum_{i=1}^{N} P_i x_i \\ & \text{s.t.} & & \sum_{i=1,\dots,n} NPV_i * x_i = NPV_{Liabilities} \\ & & \sum_{i=1,\dots,n} Duration_i * x_i = Duration_{Liabilities} \\ & & \sum_{i=1,\dots,n} Convexity_i * x_i = Convexity_{Liabilities} \\ & & x_i \geq 0 \end{aligned}$$

where,

 x_i : quantity purchased of bond i;

 P_i : ask price of bond i.

5.2 Code

```
[22]: '''
      Aggregates cashflow matrix and ref data for immunization
      Puts cashflow matrix into a dataframe for merging
      merges possible bond ref data with cashflow matrix
      cleans resulting dataframe
      NOTE: MATH NEEDS WORK HERE BUT WE CAN FIGURE OUT
      from here: use ttm and col_num against calculated curve to find appropriate_
       \hookrightarrow measure
              pv\_factor = exp\{-rt\} = exp\{-() * (ttm)\}
      cf_df = pd.DataFrame(cf_matrix, index=dec_var_names)
      cf_df = pd.merge(
                                                                                       #__
       \hookrightarrow Combines possible bonds with cashflow matrix
          left = possibilities,
                                                                                       #__
       ⇔possible bonds - SAME DF AS DEDICATION
          right = cf_df,
                                                                                       #__
       →Cashflow matrix - NP ARRAY FROM DEDICATION AS DF FOR MERGING
          how='inner',
                                                                                       #__
       → Catches any missed bonds on merge
          left_on='ref_data',
          right index=True
                                                                                       #
       →Casflow df indexed by bond name
      cf_df = (cf_df
```

```
.drop(['COUPON','period','face'],axis=1) #__

Drops unnecessary ref data
.set_index('ref_data') #__

Sets index to bond name
.round({'ttm':round_to}) #__

rounds time to maturity to 2 decimal places -- allows use of derived term__
structure (indexed by hundredths)
)
```

```
[23]:

Create Present Value, Duration, and Convexity factors for all possible time

index based on derived rates curve

t = rates.index

r = rates['rate']

npv_factor = np.exp(-r*t)

dur_factor = t*np.exp(-r*(t+1))

con_factor = t*(t+1)*np.exp(-r*(t+2))
```

```
[24]: '''
      Calculates npv, duration, and convexity terms for all bonds consider in problem
      npvs=[]
      durs=[]
      cons=[]
      for bond in cf_df.index:
          bond_df = cf_df.loc[bond]
          bond_ttm = bond_df.loc['ttm']
          bond_cf_stream = bond_df.loc[0:]
          eo_cfs = bond_cf_stream.idxmax()
          cpn_ttm = [(bond_ttm - 0.5*i).round(round_to) for i in range(eo_cfs+1)]
          bond_cf_ttm = pd.Series(data=bond_df.loc[0:eo_cfs].to_list(),__
       →index=reversed(cpn_ttm))
          bond_npv = sum([bond_cf_ttm.loc[i] * npv_factor.loc[:i].iloc[-1] for i in_
       ⇔bond_cf_ttm.index])
          bond_dur = sum([bond_cf_ttm.loc[i] * dur_factor.loc[:i].iloc[-1] for i in_
       →bond_cf_ttm.index])
          bond_con = sum([bond_cf_ttm.loc[i] * con_factor.loc[:i].iloc[-1] for i in_
       ⇒bond cf ttm.index])
          npvs.append(bond_npv)
          durs.append(bond_dur)
          cons.append(bond_con)
```

[25]: 1