

Course Overview: AAMAS 2025

Outline

Course organization

- Instructors
- Learning objectives
- Bibliography
- Grading
- Project
- Schedule
- Office hours
- Course planning

Instructors: Campus Alameda

Manuel Cabido Lopes Responsável manuel.lopes@tecnico.ulisboa.pt

Ana Vilaça Carrasco

Miguel Afonso Tomás Faria miguel.faria@tecnico.ulisboa.pt

Rui Filipe Fernandes Prada Responsável rui.prada@tecnico.ulisboa.pt

Diogo Carvalho

Pedro Pinto Santos

Instructors: Campus Oeiras (Taguspark)

Manuel Cabido Lopes Responsável manuel.lopes@tecnico.ulisboa.pt

Jacopo Silvestrin

Rui Filipe Fernandes Prada Responsável rui.prada@tecnico.ulisboa.pt

Learning Objectives

To introduce key concepts, different views, and applications of agent systems

- To present a structured view on agent architectures
 - Perception, decision making, and action

- To map real-world problems into agent-oriented tasks
 - Design reactive, deliberative, and hybrid agents
 - Develop agents with decision-making algorithms
 - Design societies of agents to solve specific problems

Bibliography

Primary

 Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, 1st Ed, Yoav Shoham and Kevin Leyton-Brown, Cambridge University Press, 2009 [S+LB09]

An Introduction to MultiAgent Systems, 2nd Ed,
 Michael Wooldridge, Wiley & Sons Ltd, 2009 [W09]

Bibliography

Secondary

A Concise Introduction to Multiagent Systems and
 Distributed Artificial Intelligence, Nikos Vlassis, Morgan
 & Claypool, 2007 [V07]

 Primer In Game Theory, Robert Gibbons, Pearson Education Limited, 1992

Grading

Exam 50% (minimum **8v**)

Date: Wednesday, 25/06/2025

• Exam Retrial (minimum 8v)

Date: Tuesday, **08/07/2025**

Project 50% (minimum 8v)

Proposal: develop an agent system to answer a complex problem, reimplement a system

Proposal due date: Friday, 09/05/2025

Project due date: Friday, 06/06/2025

Project presentation (in the lab): week of 09/06/2025

Evaluation (including deadlines) is the same for working students: no exceptions!

Deadlines are fixed: no changes are allowed

Project and Tests – Honor Code

- Cheating is not tolerated in this course!
- Projects are to be developed by each group individually
- Exams are to be done by each student individually
- Any cheating will lead to an immediate fail of all students involved

Schedule

Office Hours

- Check the office hours in the course webpage (at Fenix)
- Questions about lectures, projects, lab assignments, etc. → Office hours
- Questions about logistics → e-mail

Planning

Week	Lectures	Book Chapters	Lab	Dates
28 April	Introduction Holiday (Alameda)	Chapter 2 [W09] Chapters 3, 4 & 5 [W09]	(Registration)	
5 May	 Agent Architectures Rational Agents + Normal-form Games 	Chapters 3, 4 & 5 [W09] Chapter 3 [S+LB09]	Proposal / Reactive Agents	Proposal due date
12 May	4. Normal-form Games II and Mixed Strategies5. Coordination Games I	Chapter 3 [S+LB09] Chapter 3 [V07] Chapter 2 [S+LB09] Chapter 4 [V07]	Proposal Presentation	
19 May Dia do Técnico	6. Extensive-form Games I7. Extensive-form Games II	Chapter 5 [S+LB09]	Coordination	
26 May	8. Repeated Games (No tagus começa na semana anterior)9. Multiagent Learning I	Chapters 6, 7, 11 [S+LB09]	Learning Agents	
2 June	10. Multiagent Learning II 11. Bayesian Games and Auctions	Chapters 6, 7, 11 [S+LB09]	Project	Project due date
9 June	Holiday (Tagus) 12. Bayesian Games and Auctions	Chapter 6 [S+LB09]	Project Presentation	

Project

- Implement an agent system
- Run empirical studies
- Deliver
 - The system source code and executable
 - A report about the agents' system and the empirical evaluation
 - A video demonstrating the agents in action
 - 15 minute presentation in the lab

Project

Reimplement an existing system, choose a research paper to reproduce

or

Identify a relevant real-world problem or social context to study

- Specify the problem using a (multi)agent system
 - AA: decision under uncertainty, complex environments, learning
 - MAS: cooperation, negotiation, multiagent learning
- Specify and develop the agent(s) intelligence using reactive, deliberative and adaptive behavior
- Run comprehensive simulations and present empirical results and discussion of agent(s) behavior

Thank You

rui.prada@tecnico.ulisboa.pt