

The following pages are titled with respect to the learning objectives that their content relates to.

Learning Objectives

Recognize atomic orbital shapes (s, p and d) and predict their relative energies.

Write electron configurations (full and condensed) and orbital diagrams for s & p-block elements with $Z \le 54$.

Identify paramagnetic and diamagnetic elements from their electron configurations.

Relate electron configurations to periodic trends in atomic/ionic radius, ionization energy, and electron affinity.

Use periodic trends and electronegativity to *predict* the nature of bonding in chemical species.

Draw Lewis structures for atoms, molecules and ions that minimize formal charges and/or follow the octet rule.

Explain how the type of bonding that characterizes a substance affects its physical and chemical properties.

Draw Lewis structures for atoms, molecules and ions that minimize formal charges and/or follow the octet rule.

Identify trends in covalent bond strength.

Recognize atomic orbital shapes (s)

ινιοαιτιcation of Fig 6.18

Recognize atomic orbital shapes (p)

Modification of Fig 6.19

Recognize atomic orbital shapes (d)

Modification of Fig 6.20

Recognize atomic orbital shapes (s, p and d) and predict their relative energies.

Fig 6.22

Write electron configurations (full and condensed) and orbital diagrams for s & p-block elements with $Z \le 54$.

p. 276

Fig 7.6

Fig 7.7	

	Group	1	
	Valence electrons	ns ¹	
0000	2	• Li	

Fig 8.5

Write electron configurations (full and condensed) and orbital diagrams for s & p-block elements with $Z \le 54$.

137.00		0707		7775	He
5	carbon	nitrogen 7	cocyperi	fluorine 9	10
B	C 12,011	N 14.007	0	F 18,998	Ne
aluminium 13	silicon 14	phosphorus 15	suhr 16	dilorino 17	argon 18
ΑÏ	Si	P	S	ČI	Ar
26.962 gallum	28.095 permenium	30.974 arsenic	32,065 selknium	35.453 bromine	39.948 krypton
31	32	33	34	35	36
Ga	Ge	As	Se	Br	Kr
69,723	72.61	74.902	78.96	79,904	83.90
49	50	51	telurum 52	53	xenon 54
In	Sn	Sb	Te	Î	Xe
				_	

	Group	13	14	15	16	17	18
	Valence electrons	ns ² np ¹	ns ² np ²	ns ² np ³	ns ² np ⁴	ns ² np ⁵	ns ² np ⁶
Period	2	• B •	· c ·	• N •	:0.	: F :	Ne:

Identify paramagnetic and diamagnetic elements from their electron configurations.

Relate electron configurations to periodic trends in atomic/ionic radius, ionization energy, and electron affinity.

Electronegativity

Electron Affinity

Ionization Energy

Size

Use periodic trends and electronegativity to *predict* the nature of bonding in chemical species.

Modification of Fig 8.5 and 7.19

Use periodic trends and electronegativity to predict the nature of bonding in chemical species.

A lonic bonding

B Covalent bonding

Fig 8.3

C Metallic bonding

Use periodic trends and electronegativity to *predict* the nature of bonding in chemical species.

Fig 8.26 and 8.27

Draw Lewis structures for *atoms*

	Group	1	2
DOLLA	Valence electrons	ns ¹	ns ²
	2	• Li	•Be•
	3	• Na	•Mg•

13	14	15	16	17	18
ns ² np ¹	ns ² np ²	ns ² np ³	ns ² np ⁴	ns ² np ⁵	ns ² np ⁶
• B •	· c ·	• N •	:0.	: F:	 Ne
	•	•	•	•	••

Draw Lewis structures for atoms, *molecules* that minimize formal charges and/or follow the octet rule.

e.g.'s

 H_2O

 NH_3

 C_3H_8

 HNO_3

	Group	1	2
ро	Valence electrons	ns ¹	ns ²
	2	• Li	•Be•
Period	3	• Na	•Mg•

13	14	15	16	17	18
ns ² np ¹	ns ² np ²	ns²np³	ns²np4	ns ² np ⁵	ns ² np ⁶
• B •	· c ·	. N .	:0.	: F:	:Ne:
• AI •	·Si·	: P •	: s ·	: CI :	: Ar

Draw Lewis structures for atoms, molecules and <u>ions</u> that minimize formal charges and/or follow the octet rule.

e.g.'s H_3O^+ $SCN^ NO_3^-$

	Group	1	2
	Valence electrons	ns ¹	ns ²
po	2	• Li	•Be•
Perio	3	• Na	•Mg•

13	14	15	16	17	18
ns ² np ¹	ns ² np ²	ns²np³	ns ² np ⁴	ns ² np ⁵	ns ² np ⁶
• B •	· c ·	. z .	:0.	: F:	Ne:
• AI •	·Si·	: P ·	: s ·	: CI :	: Ar :

Identify trends in covalent bond strength.