

TD 1-2 MODELES DE PREVISION POUR LE DEVELOPPEMENT DE LA HOULE

LA HOULE EN DEVELOPPEMENT

Le développement de la houle (Hm, Tp) pour une distance du fetch X, elle n'est pas limité par la durée du fetch

$$\frac{g H_{m0}}{U_A^2} = 1.6 \ 10^{-3} \left(\frac{g X}{U_A^2}\right)^{0.5}$$

$$\frac{g T_p}{U_A} = 0.28 57 \left(\frac{g X}{U_A^2}\right)^{0.33}$$

$$\frac{g \cdot H_{mo}}{U_A^2} = 6.7 \cdot 10^{-5} \cdot \left(\frac{g \cdot t}{U_A}\right)^{\frac{3}{4}}$$

$$\frac{g \cdot T_p}{U_A} = 3.44 \cdot 10^{-2} \cdot \left(\frac{g \cdot t}{U_A}\right)^{\frac{1}{2}}$$

Le développement de la houle (Hm, Tp) pour une durée donnée t, elle n'est pas limité par la distance du fetch

$$\frac{g t_X}{U_A} = 68.8 \left(\frac{g X}{U_A^2}\right)^{2/3}$$

La relation entre la durée du fetch donnée tx, Et la distance du fetch X

LA HOULE EN DEVELOPPEMENT

Correction du vent atmosphérique mesurée

Le facteur de correction Rt depend de la temperature entre la mer et l'atmosphère

$$U_A = 0.71 \cdot (R_t \cdot U_{10})^{1.23}$$

LA HOULE TOTALEMENT DEVELOPPEMENT

Pour une vitesse donnée du Vent U_A , on définit un état optimal du development de la houle, indépendant des caractéristiques du fech (t, X).

La houle totalement développée associée à cette vitesse du vent est de H_{full}, T_{full}

Les caractéristiques du fetch qui assure ce développement est t_{full} , X_{full} pour que le développement soit

maximal.

 $\frac{g.H_{mofill}}{U_{\perp}^2} = 0.2433 \qquad \frac{g.T_{pfull}}{U_{\perp}} = 8.134$

Pour t > tfull et $X > X_{full}$, la houle ne se développe plus et garde ses caractéritiques d'une Houle Totalement Développée

$$\frac{g \cdot t_{full}}{U_A} = 55841$$

$$\frac{g \cdot X_{full}}{U_A^2} = 23123$$

TD 1 Exercice 3, Partie 2

