PORÓWNANIE CHMUR "AWS", "GCP", "AZURE"

1.WSTĘP

Obecnie coraz więcej organizacji z różnych branż korzysta z technologii chmurowych, aby przechowywać dane, wdrażać aplikacje i dostarczać usługi. Trzy najpopularniejsze platformy chmurowe, które zyskały ogromne uznanie wśród przedsiębiorstw, to Amazon Web Services (AWS), Google App Engine i Microsoft Azure. Każda z tych platform oferuje unikalne funkcje, narzędzia i usługi, które mogą zaspokoić różnorodne potrzeby i wymagania biznesowe. Przed wyborem jednej z tych trzech platform chmurowych, ważne jest zrozumienie swoich potrzeb dokładne biznesowych, budżetu, wymagań dotyczących skalowalności i elastyczności, także preferencji dotyczących narzędzi i technologii. Porównanie AWS, Google App Engine i Azure może pomóc w podjęciu decyzji i wybraniu platformy, która najlepiej spełnia oczekiwania danego przedsiębiorstwa.

1.1."AMAZON WEB SERVICE"

Amazon Web Services (AWS) jest powszechnie uznawany za jedną z największych i najbardziej rozbudowanych platform chmurowych na rynku. Oferuje on szeroki zakres usług, takich jak przechowywanie danych (S3), obliczenia w chmurze (EC2), bazy danych (RDS), sieciowanie i wiele innych. AWS posiada ogromną skalowalność i elastyczność, co umożliwia użytkownikom dostosowanie zasobów do ich indywidualnych potrzeb. Ponadto, AWS oferuje również zaawansowane narzędzia do analizy danych, uczenia maszynowego i sztucznej inteligencji, co czyni go popularnym wyborem dla firm z sektora technologicznego i naukowego.

Firmy korzystające z "AWS":

- Netflix
- Facebook
- Moderna
- McDonald's
- Volkswagen Group

Mocne strony "AWS":

- 1. Skalowalność i elastyczność: AWS zapewnia niezwykłą skalowalność, która umożliwia dostosowanie zasobów do dynamicznych potrzeb biznesowych. Można łatwo zwiększać lub zmniejszać moc obliczeniową, przechowywanie danych i inne zasoby w zależności od wymagań. Ta elastyczność pozwala firmom oszczędzać koszty, dostosowywać się do zmieniającego się popytu i szybko reagować na zmiany rynkowe.
- 2. Szeroki zakres usług chmurowych: AWS oferuje ponad 200 usług i funkcji, które mogą być wykorzystane do przechowywania danych, zarządzania bazami danych, wdrażania aplikacji, analizy danych, sztucznej inteligencji, uczenia maszynowego i wielu innych. Bez względu na branżę czy rozmiar organizacji, AWS zapewnia różnorodne narzędzia i rozwiązania, które mogą sprostać różnym potrzebom i wymaganiom biznesowym.
- 3. Bezpieczeństwo i niezawodność: AWS ma bogate doświadczenie w obszarze bezpieczeństwa i zapewniania niezawodności usług chmurowych. Posiada szeroki zakres funkcji i narzędzi związanych z bezpieczeństwem, takich jak kontrole dostępu, szyfrowanie danych, monitorowanie, wykrywanie zagrożeń i ochrona przed atakami DDoS. Ponadto, AWS oferuje wiele stref dostępności i regionów, co zapewnia wysoką dostępność usług i minimalizuje ryzyko awarii.

Słabe strony "AWS":

- 1. Skomplikowana konfiguracja: AWS oferuje szeroki zakres usług i narzędzi, co może sprawić, że konfiguracja i zarządzanie nimi jest skomplikowane dla niektórych użytkowników. Osoby niezaznajomione z platformą mogą potrzebować czasu i wiedzy technicznej, aby prawidłowo skonfigurować i wdrożyć usługi AWS. Może to wymagać zatrudnienia specjalistów lub dodatkowego szkolenia personelu.
- 2. Koszty i model cenowy: AWS oferuje elastyczność skalowania zasobów, ale może to prowadzić do zwiększenia kosztów. Nieprawidłowe skalowanie lub niewłaściwe wykorzystanie usług może prowadzić do nieoczekiwanie wysokich rachunków. Model cenowy AWS jest skomplikowany, a liczne usługi mogą mieć różne stawki opłat. Konieczne jest dokładne zrozumienie struktury cenowej i monitorowanie zużycia, aby uniknąć nieprzewidzianych kosztów.
- 3. Uzależnienie od jednego dostawcy: Korzystając z AWS, organizacja staje się silnie uzależniona od jednego dostawcy chmurowego. Przeniesienie infrastruktury, aplikacji lub danych do innej platformy może być czasochłonne i kosztowne. Istnieje ryzyko "lock-in", czyli utraty elastyczności i możliwości zmiany dostawcy w przyszłości. Warto rozważyć strategię unikania vendor lock-in, taką jak architektura oparta na standardach otwartych i używanie wielu dostawców chmurowych.

1.2. "GOOGLE CLOUDE PLATFORM"

Google App Engine to platforma chmurowa oferowana przez Google, która skupia się głównie na hostowaniu i wdrażaniu aplikacji. Jego głównym celem jest ułatwienie programistom procesu tworzenia, wdrażania i skalowania aplikacji internetowych. Google App Engine

obsługuje wiele języków programowania, takich jak Python, Java, PHP i Go, co daje programistom większą elastyczność. Ponadto, Google oferuje zaawansowane narzędzia do analizy danych i uczenia maszynowego, które można integrować z aplikacjami hostowanymi na platformie.

Firmy korzystające z "GCP":

- PayPal
- Twitter
- P&G
- UPS
- Carrefour

Mocne strony "GCP":

- 1. Skalowalność i elastyczność: Podobnie jak AWS, Google Cloud oferuje wysoką skalowalność i elastyczność, umożliwiając dostosowanie zasobów do zmieniających się potrzeb biznesowych. Platforma ta umożliwia dynamiczne skalowanie mocy obliczeniowej, przechowywanie danych i inne zasoby, co pozwala organizacjom zoptymalizować koszty i efektywnie reagować na zmieniające się warunki rynkowe.
- 2. Zaawansowane narzędzia analizy danych i uczenia maszynowego: Google Cloud oferuje bogaty zestaw narzędzi i usług do analizy danych i uczenia maszynowego. Platforma ta udostępnia usługi takie jak BigQuery, AI Platform, AutoML, TensorFlow, które umożliwiają organizacjom analizę danych, tworzenie modeli predykcyjnych i implementację algorytmów uczenia maszynowego w celu uzyskania wartościowych wskazówek i informacji biznesowych.

3. Integracja z ekosystemem Google: Google Cloud jest blisko zintegrowany z innymi usługami Google, takimi jak Gmail, Google Drive, Google Workspace itp. Ta integracja ułatwia organizacjom korzystanie z pełnego ekosystemu Google i wykorzystywanie synergii między różnymi usługami. Ponadto, Google Cloud oferuje również narzędzia do zarządzania tożsamością, takie jak Cloud Identity, które zapewniają bezpieczny dostęp do usług.

Słabe strony "GCP":

- 1. Mniejsza popularność w porównaniu do AWS: Choć Google Cloud jest jedną z wiodących platform chmurowych, nadal nie cieszy się taką popularnością jak AWS. W rezultacie, ekosystem usług i społeczność użytkowników Google Cloud mogą być nieco mniejsze. Może to wpływać na dostępność zasobów edukacyjnych, wsparcia społecznościowego i gotowych rozwiązań.
- 2. Złożoność konfiguracji i zarządzania: Podobnie jak w przypadku AWS, Google Cloud może być skomplikowany w konfiguracji i zarządzaniu, zwłaszcza dla osób niezaznajomionych z platformą. Wymaga to odpowiedniej wiedzy technicznej i szkolenia personelu, aby prawidłowo skonfigurować i utrzymać środowisko w chmurze Google.
- 3. Ograniczona dostępność niektórych usług w niektórych regionach: Niektóre usługi Google Cloud mogą nie być dostępne w niektórych regionach geograficznych. Może to stanowić wyzwanie dla organizacji o globalnym zasięgu, które wymagają pełnej dostępności usług na całym świecie. Warto sprawdzić dostępność usług w konkretnych regionach przed podjęciem decyzji o wyborze Google Cloud.

1.3. "MICROSOFT AZURE"

Microsoft Azure to platforma chmurowa rozwijana przez Microsoft. Oferuje szeroki zakres usług, takich jak obliczenia, przechowywanie danych, sieciowanie, bazy danych, usługi sztucznej inteligencji i wiele innych. Azure jest znany ze swojej bliskiej integracji z narzędziami i technologiami Microsoft, co czyni go popularnym wyborem dla organizacji, które już korzystają z ekosystemu Microsoft. Platforma ta oferuje również elastyczność skalowania i możliwość tworzenia hybrydowych rozwiązań, które łączą chmurę publiczną z infrastrukturą prywatną.

Firmy korzystające z "MICROSOFT AZURE":

- Adobe
- LinkedIn
- Toyota
- AccuWeather
- FedEx

Mocne strony "MICROSOFT AZURE":

- 1. Integracja z ekosystemem Microsoft: Azure jest ściśle zintegrowany z innymi usługami i narzędziami firmy Microsoft, takimi jak Windows Server, Active Directory, SQL Server itp. Ta integracja ułatwia organizacjom, które już korzystają z produktów i technologii Microsoft, przeniesienie swojej infrastruktury do chmury i korzystanie z pełnego ekosystemu.
- 2. Duży zakres usług chmurowych: Azure oferuje szeroki zakres usług chmurowych, obejmujących m.in. obliczenia, przechowywanie danych, bazy danych, analizę danych, sztuczną inteligencję, IoT

(Internet of Things) i wiele innych. Ta różnorodność usług daje organizacjom możliwość dostosowania swojego środowiska chmurowego do konkretnych potrzeb biznesowych.

3. Bezpieczeństwo i zgodność: Azure ma zaawansowane funkcje związane z bezpieczeństwem i zapewnia zgodność z wieloma standardami i przepisami prawnymi, takimi jak ISO 27001, GDPR czy HIPAA. Platforma ta oferuje narzędzia i funkcje do kontroli dostępu, monitorowania zagrożeń, szyfrowania danych i innych aspektów związanych z bezpieczeństwem.

Słabe strony "MICROSOFT AZURE":

- 1. Złożoność konfiguracji i zarządzania: Podobnie jak w przypadku innych dużych platform chmurowych, konfiguracja i zarządzanie Azure może być skomplikowane, zwłaszcza dla nowych użytkowników. Wymaga to pewnej wiedzy technicznej i zrozumienia różnych usług i funkcji, aby skutecznie korzystać z platformy.
- 2. Opłaty za dodatkowe usługi: Podstawowe usługi w Azure mogą być relatywnie tanie, ale niektóre dodatkowe usługi i funkcje mogą być kosztowne. Nieprawidłowe skonfigurowanie lub nieoptymalne wykorzystanie usług może prowadzić do nieoczekiwanych wydatków. Konieczne jest monitorowanie zużycia i odpowiednie planowanie budżetu, aby uniknąć nieprzewidzianych kosztów.
- 3. Mniejsza popularność w niektórych obszarach: Chociaż Azure jest jedną z wiodących platform chmurowych, w niektórych obszarach może mieć mniejszą popularność niż AWS. To może wpływać na dostępność zasobów, ekosystemu społecznościowego i gotowych rozwiązań w porównaniu do bardziej powszechnie używanych platform.

2.PORÓWNANIE TRZECH CHMUR

2.1.SIEĆ

Sieć "AWS":

- Sieć: AWS posiada rozbudowaną globalną infrastrukturę sieciową, która obejmuje liczne centra danych na całym świecie. Dysponuje ona siecią globalną, która umożliwia szybkie i niezawodne przesyłanie danych między różnymi regionami i strefami dostępności.
- Regiony dostępności: AWS posiada obecnie największą liczbę regionów spośród tych trzech dostawców, oferując ponad 25 regionów na całym świecie. Każdy region składa się z kilku stref dostępności, co zapewnia wysoką dostępność usług.

Sieć "GCP":

- Sieć: Google Cloud również dysponuje globalną siecią, która jest zintegrowana z infrastrukturą Google. Posiada ona liczne centra danych i węzły sieciowe na całym świecie, co zapewnia szybkie i efektywne przesyłanie danych między regionami.
- Regiony dostępności: Google Cloud oferuje obecnie mniej regionów w porównaniu do AWS, ale liczba ta jest ciągle rozwijana. Google Cloud zapewnia dostęp do wielu regionów bo aż 28 na różnych kontynentach, w tym regionów o wysokiej dostępności i wysokich standardach bezpieczeństwa.

Sieć "MICROSOFT AZURE":

- Sieć: Azure również posiada globalną sieć, która jest zintegrowana z infrastrukturą Microsoftu. Centra danych i węzły sieciowe Azure są rozmieszczone na całym świecie, co zapewnia szybkie i niezawodne połączenia sieciowe.
- Regiony dostępności: Azure oferuje szeroki wybór regionów dostępności, obejmujących kilkanaście lokalizacji na różnych kontynentach. Regiony Azure są rozmieszczone strategicznie, aby zapewnić organizacjom możliwość przechowywania danych i uruchamiania usług w bliskiej lokalizacji. W Azure mają też inne nazewnictwo używając stref zamiast regionów, których to mają 18.

	AWS	GCP	MICROSOFT
			AZURE
Regiony	25	28	18
Własna sieć	Tak	Tak	Tak
Prędkość	100 Gbs	100 Gbs	10 Tbs

2.2. Podejście do modeli hybrid i multicloud

AWS:

- Podejście do modeli hybrydowych: AWS oferuje kompleksowe narzędzia i usługi do integracji infrastruktury lokalnej z chmurą. Przez usługi takie jak AWS Outposts i AWS Storage Gateway, organizacje mogą rozszerzać swoje zasoby lokalne do chmury AWS i zarządzać nimi jako jedną jednostkę. Ta integracja umożliwia elastyczność i łatwą migrację aplikacji oraz danych między środowiskami lokalnymi a chmurą AWS.

- Podejście do modeli wielochmurowych: AWS nie oferuje natywnej obsługi dla wielochmury, ale organizacje mogą korzystać z różnych usług AWS dla różnych zastosowań. Przykładowo, można wykorzystać Amazon S3 do przechowywania danych, AWS Lambda do obliczeń serverless, a AWS RDS do zarządzania bazami danych. Ponadto, AWS Marketplace umożliwia integrację z usługami innych dostawców chmur, co daje organizacjom większą elastyczność w wyborze rozwiązań wielochmurowych.

GCP:

- Podejście do modeli hybrydowych: Google Cloud zapewnia narzędzia i usługi do integracji infrastruktury lokalnej z chmurą. Usługa Google Cloud Hybrid Connectivity umożliwia organizacjom łączenie swojej infrastruktury lokalnej z chmurą Google poprzez prywatne połączenia sieciowe. Dodatkowo, narzędzie Google Cloud Apigee umożliwia zarządzanie i kontrolę nad interfejsami API, co ułatwia integrację z systemami lokalnymi.
- Podejście do modeli wielochmurowych: Google Cloud umożliwia organizacjom korzystanie z różnych usług i narzędzi, zarówno z Google Cloud, jak i z innych dostawców chmur, w ramach swojego ekosystemu. Google Cloud Anthos, platforma zarządzania aplikacjami hybrydowymi, umożliwia organizacjom uruchamianie i zarządzanie aplikacjami na różnych platformach chmurowych, w tym na chmurze Google, AWS i Azure. To pozwala na elastyczność i wykorzystanie najlepszych usług dla konkretnych zastosowań.

Microsoft Azure:

- Podejście do modeli hybrydowych: Microsoft Azure jest silnie ukierunkowany na model hybrydowy. Narzędzia i usługi takie jak Azure Stack, Azure Arc i Azure Hybrid Benefit umożliwiają organizacjom budowanie i zarządzanie hybrydowymi środowiskami chmurowymi, które łączą infrastrukturę lokalną z chmurą Azure. To umożliwia konsystentne zarządzanie i wdrażanie aplikacji zarówno lokalnie, jak i w chmurze Azure.
- Podejście do modeli wielochmurowych: Microsoft Azure oferuje obsługę różnych platform chmurowych i narzędzi do zarządzania wielochmurą. Przez Azure Arc, organizacje mogą zarządzać aplikacjami na różnych platformach chmurowych, w tym na chmurze Azure, AWS i Google Cloud. Azure Marketplace zapewnia dostęp do usług i rozwiązań od różnych dostawców, co umożliwia elastyczność i wykorzystanie wielu chmur zgodnie z potrzebami organizacji.

2.3.Bezpieczeństwo

AWS:

- Bezpieczeństwo fizyczne: AWS posiada wysokiej klasy centra danych zabezpieczone przed nieautoryzowanym dostępem, w tym monitoringiem 24/7, systemami kontroli dostępu i zabezpieczeniami przeciwpożarowymi. Zapewniają one fizyczną ochronę danych przechowywanych w chmurze AWS.
- Bezpieczeństwo sieciowe: AWS oferuje różne usługi zabezpieczające sieć, takie jak AWS VPC (Virtual Private Cloud), zapewniające izolację i kontrole dostępu. Ponadto, AWS oferuje usługi takie jak AWS WAF (Web Application Firewall) i AWS Shield, które chronią aplikacje i dane przed atakami sieciowymi.
- Zgodność i audyty: AWS posiada liczne certyfikacje bezpieczeństwa, takie jak ISO 27001, SOC 2, HIPAA, co potwierdza zgodność z różnymi

standardami branżowymi. Ponadto, AWS zapewnia narzędzia do monitorowania i audytowania działań w chmurze, takie jak AWS CloudTrail.

GCP:

- Bezpieczeństwo fizyczne: Google Cloud również posiada zaawansowane centra danych zabezpieczone przed nieautoryzowanym dostępem. Działa tam monitoring 24/7 oraz stosowane są środki zabezpieczeń fizycznych, takie jak kontrola dostępu i zabezpieczenia przeciwpożarowe.
- Bezpieczeństwo sieciowe: Google Cloud oferuje narzędzia takie jak Google Cloud VPC (Virtual Private Cloud) i Cloud Armor, które umożliwiają izolację i kontrolę dostępu do zasobów. Posiada również własne rozwiązania zabezpieczające przed atakami DDoS, takie jak Google Cloud Armor i Google Cloud CDN.
- Zgodność i audyty: Google Cloud posiada szereg certyfikacji bezpieczeństwa, w tym ISO 27001, SOC 2 i HIPAA. Oferuje również narzędzia do monitorowania i audytowania działalności w chmurze, takie jak Google Cloud Audit Logging i Cloud Security Command Center.

Microsoft Azure:

- Bezpieczeństwo fizyczne: Azure ma centra danych, które są zabezpieczone przed nieautoryzowanym dostępem. Posiada kontrolę dostępu, monitoring 24/7 oraz zabezpieczenia przeciwpożarowe, zapewniając fizyczną ochronę danych w chmurze Azure.
- Bezpieczeństwo sieciowe: Azure oferuje usługi takie jak Azure Virtual Network (VNet) i Azure Firewall, które umożliwiają izolację i kontrolę

dostępu do zasobów. Azure DDoS Protection zapewnia ochronę przed atakami DDoS.

- Zgodność i audyty: Azure posiada certyfikacje bezpieczeństwa, takie jak ISO 27001, SOC 2 i HIPAA. Zapewnia narzędzia do monitorowania i audytowania działalności w chmurze, takie jak Azure Monitor i Azure Security Center.

	Amazon Web Services (AWS)	Google Cloud	Microsoft Azure
Certyfikacje	ISO 27001, SOC 2, HIPAA	ISO 27001, SOC 2, HIPAA	ISO 27001, SOC 2, HIPAA
Narzędzia	AWS Identity and Access Management (IAM), AWS CloudTrail, AWS Config, AWS Security Hub	Google Cloud IAM, Google Cloud Security Command Center, Google Cloud Key Management Service (KMS)	Azure Active Directory, Azure Security Center, Azure Key Vault
Zabezpieczenia	Wielopoziomo we zabezpieczenia fizyczne i sieciowe, szyfrowanie danych w spoczynku i w ruchu, zapory sieciowe, zabezpieczenia kontenerów	Wielopoziomo we zabezpieczenia fizyczne i sieciowe, zarządzanie tożsamością i dostępem, zarządzanie kluczami, zabezpieczenia kontenerów	Wielopoziomo we zabezpieczenia fizyczne i sieciowe, zarządzanie tożsamością i dostępem, szyfrowanie danych, zabezpieczenia kontenerów

Audyt i	AWS	Google Cloud	Azure Monitor,
monitorowanie	CloudTrail,	Audit Logging,	Azure Security
	Amazon	Google Cloud	Center, Azure
	GuardDuty,	Security	Sentinel
	Amazon	Command	
	Inspector	Center	

2.4. Moc obliczeniowa

AWS:

- Elastyczność i różnorodność instancji: AWS oferuje szeroki zakres instancji wirtualnych, umożliwiając organizacjom wybór odpowiedniej mocy obliczeniowej zgodnie z ich potrzebami. Mają one różne konfiguracje procesorów, pamięci RAM i dysków, co pozwala na dopasowanie do specyficznych wymagań aplikacji.
- Skalowalność: AWS zapewnia elastyczność skalowania zarówno wertykalnego, jak i horyzontalnego. Można dynamicznie dostosowywać moc obliczeniową w zależności od obciążenia aplikacji, co umożliwia efektywne wykorzystanie zasobów.
- Usługi zarządzania kontenerami: AWS oferuje usługi takie jak Amazon Elastic Container Service (ECS) i Amazon Elastic Kubernetes Service (EKS), które ułatwiają wdrażanie i zarządzanie kontenerami. To umożliwia organizacjom wykorzystywanie mocy obliczeniowej w sposób bardziej elastyczny i skalowalny.

GCP:

- Instancje maszyn wirtualnych: Google Cloud zapewnia różnorodność instancji maszyn wirtualnych, które można dostosować pod względem mocy obliczeniowej. Oferuje elastyczne opcje procesorów, pamięci RAM i dysków, aby sprostać różnym wymaganiom aplikacji.
- Automatyczne skalowanie: Google Cloud oferuje funkcję automatycznego skalowania, która pozwala na dostosowywanie mocy obliczeniowej w zależności od potrzeb aplikacji. Można skonfigurować progi wydajności, które automatycznie dostosują moc obliczeniową w górę lub w dół, aby optymalnie wykorzystać zasoby.
- Google Kubernetes Engine (GKE): GKE to usługa zarządzania kontenerami w Google Cloud. Umożliwia elastyczne wdrażanie i zarządzanie kontenerami, umożliwiając organizacjom wykorzystanie mocy obliczeniowej w sposób skalowalny i efektywny.

Microsoft Azure:

- Instancje maszyn wirtualnych: Azure oferuje różnorodność instancji maszyn wirtualnych, które można dostosować pod względem mocy obliczeniowej. Istnieje szeroki wybór procesorów, pamięci RAM i dysków, co umożliwia dopasowanie do różnych wymagań aplikacji.
- Automatyczne skalowanie: Azure oferuje funkcję automatycznego skalowania, która dostosowuje moc obliczeniową w zależności od obciążenia aplikacji. Można skonfigurować reguły skalowania, aby dynamicznie dostosowywać moc obliczeniową w górę lub w dół.
- Azure Kubernetes Service (AKS): AKS to usługa zarządzania kontenerami w Azure, umożliwiająca organizacjom elastyczne wdrażanie i zarządzanie kontenerami. Zapewnia skalowalność i efektywne wykorzystanie mocy obliczeniowej.

	AWS	Google Cloud	Microsoft Azure
Elastyczność	Szeroki zakres	Różnorodność	Różnorodność
instancji	instancji	instancji	instancji
	wirtualnych	maszyn	maszyn
Skalowalność	Elastyczne	Automatyczne	Automatyczne
	skalowanie	skalowanie	skalowanie
Usługi	Amazon ECS,	Google	Azure
zarządzania	Amazon EKS	Kubernetes	Kubernetes
kontenerami		Engine (GKE)	Service (AKS)

3.PODSUMOWANIE

Porównanie platform chmurowych (AWS, Google Cloud i Microsoft Azure) jest złożonym zadaniem, ponieważ każda z tych platform ma swoje mocne strony i oferuje szeroki zakres usług. Nie da się jednoznacznie określić, która z nich jest lepsza, ponieważ to wszystko zależy od zabotrzebować danej organizacji, chcącej korzystać z usług chmurowych.

	Amazon Web	Google Cloud	Microsoft
	Services (AWS)		Azure
Mocne strony	Duża liczba	analiza danych	obsługa
	usług,	Wsparcie	ekosystemu
	elastyczność	dla modelu	Microsoft
	Innowacyj	hybrydowego	
	ność		
Słabe strony	Skomplikowan	Mniejsza liczba	Może być
	e cenniki	usług	bardziej
			skomplikowane
			w użyciu

5.LITERATURA

- 1. "Porównywanie trzech chmur publicznych" FOTC 2019
- 2. https://aws.amazon.com/what-is-aws/?nc2=h ql le int
- 3. https://azure.microsoft.com/pl-pl
- 4. https://cloud.google.com/gcp