Data Structures and Algorithms

Analysis of Algorithms I

Parts of this presentation are based on the slides of Prof. David Galles

What is an algorithm?

Algorithm = Computer program?

What is an algorithm?

- Algorithm # Computer program!
- Algorithm is a set of steps for solving a given problem

Algorithm: Selection sort

- Examine all n elements of a list, and find the smallest element
- Move this element to the front of the list
- Examine the remaining (n 1) elements, find the smallest one
- Move this element into the second position in the list
- Repeat until the list is sorted

Algorithm vs Computer Program

- Algorithm is a set of steps for solving a problem
- Computer Program is an implementation of the algorithm
- Different implementations of the same algorithm

Balance Puzzle (9 coins)

- There are 9 coins. 8 are good, one is counterfeit (lighter)
- You have a balance scale, that can compare the weights of two sets of coins
- Can you determine which coin is counterfeit, using the scale only 2 times?

- Weigh Coins 1,2,3 against 4,5,6
- What are the possible outcomes?

- Weigh Coins 1,2,3 against 4,5,6
- What are the possible outcomes?
 - {1,2,3} set is lighter -> counterfeit coin in {1,2,3}
 - {4,5,6} set is lighter -> counterfeit coin in {4,5,6}
 - Two sets have equal weight -> counterfeit coin in {7,8,9}

- Now have a set of 3 coins {A, B, C}
- One is counterfeit
- Weigh A against B. What are the possible outcomes?

- Now have a set of 3 coins {A, B, C}
- One is counterfeit
- Weigh A against B. What are the possible outcomes?
 - A is lighter -> A is a counterfeit coin
 - B is lighter -> B is counterfeit coin
 - A=B -> counterfeit coin is C

Classic Version: 12 coins

- The "classic" version of this problem:
 - 12 coins, 3 weighings,
 - The counterfeit coin could be either heavy or light

Analysis of Algorithms

- Space complexity
 - How much space is required
- Time complexity
 - How much time does it take to run the algorithm
- There is often time-space tradeoff
- We will concentrate on time complexity

Running Time

- Running time depends on the input
- Best case
 - Shortest time that the algorithm will take to run
- Worst case
 - Longest possible time that the algorithm will take to run
- Average case
 - How long, on average, does the algorithm take to run

Best case/Worst case

How long does the following function take to run?

```
boolean find(int list[], int element) {
    for (i=0; i < list.length; i++) {
        if (list[i] == elem)
            return true;
    }
    return false;
}</pre>
```

Best case/Worst case

How long does the following function take to run?

```
boolean find(int list[], int element) {
    for (i=0; i < list.length; i++) {
        if (list[i] == elem)
            return true;
    }
    return false;
}</pre>
```

Depends on where the element is in the list:

Best Case: elem = the first element of the list

Worst Case: elem= the last element or not in the list

Measuring time efficiency

- Experimental approach
 - 1. Implement the algorithm
 - 2. Run the code with input of different sizes
 - 3. Record how long it took
- Bad idea. Why?

Experimental Approach

- Need to implement the algorithm / language dependent implementation
- Can run only on limited set of inputs
- How to compare two algorithms? Hard to guarantee that the same hardware and software will be used

Theoretical Approach

- Based on high-level description of the algorithms (pseudocode)
- Make assumptions about the computer model
- Can compare algorithms independent of the hardware and software environments

Assumptions: Fetching and Storing

- The time required to fetch an operand from memory is a constant, t_{fetch}
- The time required to store a result in memory is a constant, t_{store}
- Ex:
 y = x; // has t_{fetch} + t_{store} running time

Assumptions: Elementary Operations

The time required to perform elementary arithmetic operations is constant

$$a = a + 1$$
; // running time: $2*t_{fetch} + t_{+} + t_{store}$

Can make this assumption because the number of bits used to represent a value is fixed

Assumptions: Methods

- The time required to call a method and to return from a method is constant
- The time required to pass an argument to the method = the time required to store a value in memory

Assumptions: Array Subscripting

- The time to compute the address of the element a[i] is constant. Add time to:
 - compute subscript expression
 - to fetch the element at this address

Running Time

- The number of simple operations required for an input of size n
- Is a function of n

Example

Example: compute the sum of elements of an array

```
computeSum(A, n):
   Input: An array A storing n integers.
   Output: The sum of elements of A.
   sum ← 0 ← simple operation
   for i ← 0 to n-1 do ← n times
      sum ← sum + A[i] ← simple operation
   return sum ← simple operation
```

Running time is a linear function of n

Running Time

- We will concentrate on time complexity for large inputs n
- Example: Algorithms A1 and A2 solve the same problem
 - A1: time complexity is 1000*n
 - A2: time complexity is 2ⁿ
 - Which one is faster?

Running Time

- We will concentrate on time complexity for large inputs n
- Example: Algorithms A1 and A2 solve the same problem
 - A1: time complexity is 1000*n
 - A2: time complexity is 2ⁿ

n	A1	A2
10	10,000	1024
10 ³	10 ⁶	~10 ³⁰⁰

Mathematical Foundations

Review plots of functions, summations

Function growth rate

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/

Logarithm Rules

$$\log(a^*b) = \log(a) + \log(b)$$

$$\log(a/b) = \log(a) - \log(b)$$

$$log(a^b) = b * log(a)$$

Changing the base: $\log_a b = \log_c b / \log_c a$

Exercise

- Which of these two grows faster?
- > n² log n and 2ⁿ (Hint: take the logarithm of both)
- > 10⁵ and 0.01*n
- > 0.1*n³ and 10000*log n
- $> n^{10}$ and 1.01ⁿ