# Monitorizarea temperaturii corporale și a oxigenării hemoglobinei

1<sup>st</sup> Alexandra Ștefania Avram *Universitatea Transilvania* Facultatea de Inginerie Electrica și Calculatoare Brașov, România stefania.avram@student.unitbv.ro, 0135339 2<sup>nd</sup> Denisa Blăjan
Universitatea Transilvania
Facultatea de Inginerie Electrica și Calculatoare
Brașov, România
denisa.blajan@student.unitbv.ro

Abstract—Acest document prezintă modul de realizare și resursele folosite pentru construirea unui pulsoximetru.

Index Terms—Raspberry PI 4 Model B, Pulsoximetru, Temperatură, LCD

### I. INTRODUCERE

Ideea principală a proiectului este realizarea unui montaj care îndeplinește 2 funcții simple, citirea temperaturii corporale și detecția oxigenării hemoglobinei. Această idee a apărut în urma situației mondiale actuale. Proiectul se va realiza cu ajutorul plăcii de dezvoltare Raspberry PI 4 Model B și a unor senzori de detecție a temperaturii, pulsului și saturației de oxigen din sânge; valorile citite vor fi afișate pe un display LCD. Urmărim trecerea pe o placuță Raspberry Pi Zero W pentru a realiza un montaj mai mic, eventual portabil.

### II. RASPBERRY PI 4 MODEL B

# Descriere

Raspberry Pi 4 Model B este o placă de dezvoltare cu processor quad-core de 1,5 GHz, memorie RAM de 4 GB LPDDR4, rezultând o viteză de lucru destul de mare. La partea de conectivitate, există standardul Bluetooth 5.0, wireless LAN b/g/n/ac și un port gigabit. Placa mai dispune de două porturi microHDMI, de patru porturi USB și de support 4K.



Figure 1. Raspberry Pi 4 Model B

# Specificatii tehnice

| Specificație           | Tip                     |  |
|------------------------|-------------------------|--|
| Procesor               | Broadcom 2711           |  |
| Arhitectură procesor   | Cortex - A72, 64 biți   |  |
| Frecvență procesor     | 1.5 GHz                 |  |
| Memorie RAM            | 4 GB LPDDR4 SDRAM       |  |
| WiFi                   | 2.4 GHz                 |  |
| Bluetooth              | 5.0 BLE                 |  |
| Ethernet               | Gigabit                 |  |
| USB 2.0                | 2                       |  |
| USB 3.0                | 2                       |  |
| Header                 | GPIO cu 40 pini         |  |
| micro HDMI             | 2, suport 4k            |  |
| MIPI DSI               | 1                       |  |
| MIPI CSI               | 1                       |  |
| Output                 | audio stereo            |  |
| Output                 | video composite         |  |
| Multimedia             | H.265 decode (4kp60)    |  |
|                        | H.264 decode (1080p60)  |  |
|                        | H.264 encode (1080p30); |  |
|                        | OpenGL ES 1.1, 2.0, 3.0 |  |
| Slot card MicroSD      | Da                      |  |
| Alimentare USB Type C  | 5V, 3A                  |  |
| Temperatură de operare | 0 - 50 grade Celsius    |  |



Figure 2. Configurație pini

# III. MODUL SENZOR DE TEMPERATURA DS18B20 Caracteristici tehnice

| Specificație      | Tip                    |
|-------------------|------------------------|
| Protocol          | 1-Wire                 |
| Alimentare        | 3V - 5.5V              |
| Interval masurate | -55°C - +125°C         |
| Precizie          | ± 0.5°C: -10°C - +85°C |



Figure 3. DS18B20

# IV. MODUL SENZOR FRECVENȚĂ CARDIACĂ, PULS, OXIMETRU, MAX30100



Figure 4. MAX30100

MAX30100 este o soluție completă de senzor de frecvență cardiacă și puls-oximetru. El combina 2 LED-uri, senzor foto, optică îmbunătățită și un semnal de procesare analog pentru a detecta puls-oximetrul si frecventa cardiacă.

Caracteristici tehnice

| Specificație        | Tip      |
|---------------------|----------|
| Tensiune alimentare | 5.5 V    |
| Tip conexiune       | analogic |
| Tip senzor          | IMU      |

# V. LCD 1602 CU INTERFAȚĂ I2C ȘI BACKLIGHT GALBEN-VERDE

### Caracteristici tehnice

| Specificație                  | Tip         |
|-------------------------------|-------------|
| Tensiunea de intrare          | 4.5V - 5.5V |
| Curent de alimentare          | 1,5mA       |
| Tensiunea de funcționare      | 5V          |
| Lumina de iluminare din spate | 120mA       |
| Intervalul de tensiune        | 4.1V - 4.3V |





Figure 5. LCD

# VI. BILL OF MATERIALS

| Componente                    | Pret[lei] |
|-------------------------------|-----------|
| Kit Raspberry Pi 4 Model B    |           |
| 4GB RAM, Card SD 16 GB        | 499       |
| alimentator                   |           |
| cablu HDNI -miniHDMI, carcasa |           |
| Modul MAX30100                | 29.99     |
| Modul DS18B20                 | 14.40     |
| Breadboard                    | 8.51      |
| LCD                           | 17.99     |
| Fire                          | 5.21      |
| Total                         | 575.1     |

VII. CONCLUZII

Realizarea proiectului nu este foarte grea, dar cu atenție și rabdare o sa se ajungă la forma finală funcțională. Acesta o să măsoare temperatura, pulsul și saturația de oxigen instant, fiind benefic pentru perioada actuală.

# REFERENCES

- [1] https://www.optimusdigital.ro/ro/placi-raspberry-pi/8617-raspberry-pi-4-model-b-4gb-765756931182.html
  Fig 1. Raspberry Pi 4 Model B
- [2] https://www.raspberrypi.org/documentation/usage/gpio/ Fig 2. Configurație pini
- [3] https://cleste.ro/modul-senzor-de-temperaturads18b20.html Fig 3. DS18B20
- [4] https://www.emag.ro/modul-senzor-de-frecventa-cardiaca-puls-oximetru-max30100-ai465/pd/DPRL27MBM/?X-Search-Id=eaadaada8bd6fa5ec81b&X-Product-Id=64974538 &X-Search-Page=1&X-Search-Position=0&X-Section=search &X-MB=0&X-Search-Action=view Fig 4. MAX30100
- [5] https://www.optimusdigital.ro/ro/optoelectronicelcd-uri/62-lcd-1602-cu-interfata-i2c-sibacklight-galben-verde.html
  Fig 5. LCD

# APPENDIX



Figure 6. Schema electrică



Figure 7. Schema electrică



Figure 8. Schema bloc



Figure 9. Flowchart



Figure 10. Conexiuni



Figure 11. Conexiuni