§1 Tutorial 5: Cyclic Groups - 10-04

Theorem 1.1

Every cyclic group is abelian.

Theorem 1.2

Every subgroup of a cyclic group is cyclic.

Let G be a cyclic group and let $a \in G$ be of order n.

Theorem 1.3

$$a^m = e \Leftrightarrow n|m$$

Theorem 1.4

 $b=a^k\in G, ext{ then } |b|=rac{n}{\gcd(n,k)}$ Corollary: In additive notation

- $\mathbb{Z}_n = \langle 1 \rangle$ with |1| = n.
- $k = k \cdot 1$, then $|k| = \frac{n}{\gcd(n,k)}$
 - Generators of \mathbb{Z}_n are the integers k such that $1 \leq k < n$ and $\gcd(k, n) = 1$.

Example 1.5

Subgroups of $(\mathbb{Z}_8, +)$. Observe that 1, 2, 4, 8 divide 8. We have to find $k \in \mathbb{Z}_8$ such that:

- $\gcd(8,k)=1$ {1,3,5,7}. These generate subgroups of order $\frac{8}{\gcd}=8$. There is only one such subgroup of \mathbb{Z}_8 so they must all be the same.
- $\gcd(8,k)=2$ {2,6}. These generate subgroups of order 4: $\{0,2,4,6\}$ A question arises: Do 2 and 6 generate the same subgroup? $\langle 2 \rangle = \{0,2,4,6\}$. $6 \in \langle 2 \rangle$ so $\langle 2 \rangle = \langle 6 \rangle$.
- gcd(8, k) = 4{4}. Generates a group of order 2: $\{0, 4\}$
- gcd(8, k) = 8{0}. Generates a sugroup of order 1: {0}

$$\mathbb{Z}_8 = \langle 1 \rangle = \langle 3 \rangle = \langle 5 \rangle = \langle 7 \rangle$$

$$\langle 4 \rangle \qquad \langle 2 \rangle = \langle 6 \rangle$$

$$| \qquad |$$

$$\{0\} \qquad \{0\}$$

Example 1.6

List all the subgroups of \mathbb{Z}_{10} . Observe that 1, 2, 5, and 10 divide 10. Find $k \in \mathbb{Z}_{10}$ such that:

- gcd(k, 10) = 1. k = 1, 3, 7, 9. $\mathbb{Z}_{10} = \langle 1 \rangle = \langle 3 \rangle = \langle 7 \rangle = \langle 9 \rangle$
- gcd(k, 10) = 2. k = 2, 4, 6, 8. These generate subgroups of order 5. $\langle 2 \rangle = \langle 4 \rangle = \langle 6 \rangle = \langle 8 \rangle = \{0, 2, 4, 6, 8\}$
- gcd(k, 10) = 5. k = 5. $\langle 5 \rangle = \{0, 5\}$.
- gcd(k, 10) = 10. $k = 0. \langle 0 \rangle = \{0\}$

$$\mathbb{Z}_{10} = \langle 1 \rangle = \langle 3 \rangle = \langle 7 \rangle = \langle 9 \rangle$$

$$\langle 5 \rangle \qquad \langle 2 \rangle = \langle 4 \rangle = \langle 6 \rangle = \langle 8 \rangle$$

$$| \qquad \qquad |$$

$$\{0\} \qquad \{0\}$$

Example 1.7

Let G be a group. Assume $a \in G$ such that $a^{24} = e$. What are the possible orders of a?

Recall that when $a^n = e$, the possible orders of a are those which divide n. Possible orders are therefore 1, 2, 3, 4, 6, 8, 12, 24.

$$|a| = n \Rightarrow a^n = e$$
. NOT \Leftarrow

Example 1.8

Let $a, b \in G$. Prove the following statements:

(a) $|a| = |a^{-1}|$

Proof. |a| = n. $|a^{-1}| = m$

$$a^{n} = e$$

$$\Rightarrow (a^{n})^{-1} \cdot a^{n} = (a^{n})^{-1} \cdot e$$

$$\Rightarrow e = (a^{n})^{-1}$$

$$\Rightarrow e = (a^{-1})^{n} \Rightarrow m|n$$

You can show similarly that n|m. By proving that m|n and that n|m, we have proven that n=m.

(b) $\forall g \in G, |a| = |g^{-1}ag|$

Proof. Let $g \in G$, |a| = n, $|g^{-1}ag| = m$. Observe that:

$$(g^{-1}ag)^m = e$$

$$\Rightarrow (g^{-1}ag)(g^{-1}ag)\dots(g^{-1}ag) = e$$

$$\Rightarrow g^{-1}a^mg = e$$

$$\Rightarrow g \cdot g^{-1}a^mg \cdot g^{-1} = g \cdot e \cdot g^{-1}$$

$$\Rightarrow a^m = e$$

Therefore n|m because |a|=n. Similarly m|n. Therefore m=n.

(c) |ab| = |ba|

Proof. By (b), $|ab| = |a^{-1}(ab)a| = |a^{-1}aba| = |ba|$

Exercise 1.9. Show that if G has no proper non-trivial subgroups, then G is a cyclic group of prime orders.

Proof.

- (a) Showing that G is cyclic. Let $g \in G : g \neq e$. $\langle g \rangle$ is a non-trivial subgroup of G because $g \in \langle g \rangle$ and $g \neq e$. By assumption that G has no proper non-trivial subgroups, $\langle g \rangle = G$.
- (b) Showing that G must be of prime order.
 - a) Case where $|G| = \infty$. Let G

Observe that $\langle g^2 \rangle$ is a non-trivial subgroup of G. Observe that $\langle g^2 \rangle \neq G$ because $g \notin \langle g^2 \rangle$. "If the order of a group is infinity, we will always be able to generate non-trivial proper subgroups."

b) Case where $|G| = n < \infty$

Assume that $n = d \cdot m$ for some d, m. Since d|n, then G must have a subgroup H of order d. This would mean that H is non-trivial and $H \neq G$. This is a contradiction $\Rightarrow |G| = p$ for some prime number.

Exercise 1.10. An infinite cyclic group G has exactly 2 generators.

 $G = \langle a \rangle = \langle b \rangle$. This would mean that $a = b^k$ for some k, and that $b = a^l$ for some l.

$$a = b^k = (a^l)^k = a^{lk}$$

$$\Rightarrow a^{-1} \cdot a = a^{-1}a^{lk}$$

$$\Rightarrow e = a^{lk-1}$$

We know that $|a| = \infty$, therefore $lk - 1 = 0 \Rightarrow lk = 1$. This gives two possible cases: l = k = 1 or l = k = -1 because l and k must be integers. Therefore either b = a or $b = a^{-1}$. This means that the only generators of G are a and a^{-1} .