EXAMEN DE MATEMÁTICAS-1. 1 de JULIO 2015

GRADO INGENIERÍA INFORMÁTICA-UA

SOLUCIÓN LÓGICA

Alumno:						
1a (1,5p)	1b (2,25p)	1c (2,25p)	2 (4p)			
			a)	b)	Total:	

La nota total se obtiene sumando las notas parciales de cada apartado. Se puede usar la hoja de reglas de inferencia.

Fbf: fórmula bien formada.

EJERCICIO 1 [6p] Estudia la validez del razonamiento **R1** usando el método del **contraejemplo** siguiendo los pasos que se indican.

R1: "Si no estudio ni trabajo, soy ni-ni. Para que no sea ni-ni es suficiente que trabaje, y para que me compre un coche es suficiente que no sea ni-ni. Pero no me compro un coche ni soy ni-ni. Por lo tanto, estudio o trabajo".

MC = { tr: trabajo; es: estudio; nini: soy ni-ni; co: me compro coche }

a) [1,5p] Formaliza R1 según MC.

Sol:

Fbf-P1: $\neg es \land \neg tr \rightarrow nini$

Fbf-P2: $tr \rightarrow \neg nini$

Fbf-P3: \neg nini \rightarrow co

Fbf-P4: ¬nini ∧ ¬co

Fbf-Q: $es \lor tr$

b) [2,25p] b.1) Explica qué significa que una fbf admite una interpretación contraejemplo. b.2) ¿Cualquier fbf lógica admite un contraejemplo? ¿Por qué? b.3) Indica si la Fbf-P1 tiene una interpretación de este tipo, y si es el caso escríbela.

Sol:

- b.1) Una fbf admite una interpretación contraejemplo si existe un conjunto de valores de verdad de sus proposiciones atómicas que hacen que la fbf se interprete con valor a falso.
- b.2) Las fbfs que son tautologías no admiten interpretaciones contraejemplos.
- b.3) Un interpretación contraejemplo de Fbf-P1 es I = { es=F, tr=F, nini=F }

EXAMEN DE MATEMÁTICAS-1. 1 de JULIO 2015

GRADO INGENIERÍA INFORMÁTICA-UA

SOLUCIÓN LÓGICA

c) [2,25p] Estudia si existe una interpretación I1 con la que se interpreten todas las fbfs premisas de R1 como verdaderas y la conclusión como falsa. Según el resultado obtenido, explica si se puede afirmar si R1 es correcto o no.

Sol:

Empezamos a obtener los valores de verdad de las proposiciones atómicas de todas las fbfs de R1 comenzando por Fbf-P4 que es una conjunción. Para que Fbf-P4 = $V \Rightarrow \neg nini \land \neg co = V \Rightarrow \neg nini = V$, $\neg co = V$.

A partir de aquí y con estos valores de verdad estudiamos si las demás fbfs pueden ser verdaderas.

Para que la Fbf-P3: \neg nini \rightarrow co = V es necesario que co=V ya que \neg nini= V, pero esto se contradice con el resultado obtenido de co=F en la fbf-P4. Luego no se pueden interpretar todas las fbfs premisas como verdaderas.

Y por lo tanto no se da el caso de que las premisas sean verdaderas y la conclusión falsa.

Por lo tanto el argumento no admite interpretación contraejemplo y esto demuestra que es correcto.

EJERCICIO 2 [4p] Estudia la validez de los siguientes razonamientos obteniendo la conclusión propuesta usando **deducción natural**.

a) -1 A∧¬A∧C	Deducir: B
2 ¬B	supuesto-1
3 A ∧ ¬A	EC, 1
4 B	In (Abs) 2-3, cierre supuesto-1
b) $-1 A \rightarrow B$	
-2 C \rightarrow D	
-3 A ∨ C	Deducir: B ∨ D por reducción al absurdo
4 ¬(B∨ D	supuesto-1
5 ¬B ∧ ¬□	de Morgan, 4
6 ¬D	EC, 5
7 ¬C	MT, 2, 6
8 A	SD, 3, 7
9 B	MP, 1, 8
10 ¬B	EC, 5
11 B ∧ ¬E	IC, 9, 10 cierre supuesto-1
12 B ∨ D	IN, 4-11