

CBSE Class 12 Mathematics Chapter-11

Three Dimensional Geometry

- Direction cosines of a line: Direction cosines of a line are the cosines of the angles
 made by the line with the positive direct ions of the coordinate axes.
- If l, m, n are the direct ion cosines of a line, then $1^2 + m^2 + n^2 = 1$
- Direct ion cosines of a line joining two points P(x₁, y₁, z₁) and Q(x₂, y₂, z₂) are

$$\frac{x_2 - x_1}{PQ}$$
, $\frac{y_2 - y_1}{PQ}$, $\frac{z_2 - z_2}{PQ}$

where
$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

- Direction ratios of a line are the numbers which are proportional to the direct ion cosines of a line.
- If l, m, n are the direct ion cosines and a, b, c are the direct ion ratios of a line

Then,
$$1 = \frac{a}{\sqrt{a^2 + b^2 + c^2}}$$
, $m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}$, $n = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$

- Skew lines: Skew lines are lines in space which are neither parallel nor intersecting.
 They lie in different planes.
- Angle between two skew lines: Angle between skew lines is the angle between two
 intersecting lines drawn from any point (preferably through the origin) parallel to
 each of the skew lines.
- If l₁, m₁, n₁ and l₂, m₂, n₂ are the direction cosines of two lines; and θ is the acute angle between the two lines; then,

$$\cos heta = \left|rac{a_1a_2 + b_1b_2 + c_{12}}{\sqrt{a_1^2 + b_1^2 + c_1^2}\sqrt{a_2^2 + b_2^2 + c_2^2}}
ight|$$

• Vector equation of a line that passes through the given point whose position vector is \bar{a} and parallel to a given vector \bar{b} is $\bar{r} = \bar{a} + \lambda \bar{b}$

- Equation of a line through a point (x_1, y_1, z_1) and having direct ion cosines l, m, n is $\frac{x x_1}{1} = \frac{y y_1}{m} = \frac{z z_1}{n}$
- The vector equation of a line which passes through two points whose position vectors are \bar{a} and \bar{b} is $\bar{r} = \bar{a} + \lambda(\bar{b} \bar{a})$
- Cartesian equation of a line that passes through two points (x_1, y_1, z_1) and

$$(x_2, y_2, z_2)$$
 is $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$

• If θ is the acute angle between $\overline{r} = \overline{a_1} + \lambda \overline{b_1}$ and $\overline{r} = \overline{a_2} + \lambda \overline{b_2}$ then,

$$\cos heta = \left| rac{\stackrel{
ightarrow}{oldsymbol{\phi}_1} \stackrel{
ightarrow}{oldsymbol{\phi}_2}}{\left|\stackrel{
ightarrow}{oldsymbol{\phi}_1}
ight| \stackrel{
ightarrow}{oldsymbol{\phi}_2}}
ight|$$

- If $\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$ and $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ are the equations of two lines, then the acute angle between the two lines is given by $\cos \theta = |l_1 l_2 + m_1 m_2 + n_1 n_2|$
- Shortest distance between two skew lines is the line segment perpendicular to both the lines.
- $\bullet \quad \text{Shortest distance between } \overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \text{ and } \overrightarrow{r} = \overrightarrow{a_2} + \lambda \overrightarrow{b_2} \text{ is } \left| \frac{\left(\overrightarrow{b_1} \times \overrightarrow{b_2}\right) \cdot \left(\overrightarrow{a_2} \overrightarrow{a_1}\right)}{|b_1 \times b_2|} \right|$
- Shortest distance between the lines: $\frac{x x_1}{a_1} = \frac{y y_1}{b_1} = \frac{z z_1}{c_1}$ and

$$\frac{x - x_2}{a_1} = \frac{y - y_2}{b_1} = \frac{z - z_2}{c_1}$$
 is

- $\bullet \ \ \text{Distance between parallel lines} \ \ \overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1} \ \ \text{and} \ \ \overrightarrow{r} = \overrightarrow{a_2} + \lambda \overrightarrow{b_2} \ \text{is} \left| \frac{\overrightarrow{b} \times \left(\overrightarrow{a_2} \overrightarrow{a_1}\right)}{|b|} \right|$
- In the vector form, equation of a plane which is at a distance d from the origin, and \hat{n} is the unit vector normal to the plane through the origin is $\hat{r} \cdot \hat{n} = d$
- Equation of a plane which is at a distance of d from the origin and the direction cosines of the normal to the plane as l, m, n is lx + my + nz = d.
- The equation of a plane through a point whose position vector is a and perpendicular to the vector \overrightarrow{N} is $(\overrightarrow{r}-\overrightarrow{a})$. $\overrightarrow{N}=0$.
- Equation of a plane perpendicular to a given line with direction ratios A, B, C and
 passing through a given point (x₁,y₁,z₁) is A(x-x₁)+B(y-y₁)+C(z-z₁) = 0
- Equation of a plane passing through three non collinear points (x_1, y_1, z_1) ,

$$(x_{2}, y_{2}, z_{2})$$
 and (x_{3}, y_{3}, z_{3}) is
$$\begin{vmatrix} x - x_{1} & y - y_{1} & z - z_{1} \\ x_{2} - x_{1} & y_{2} - y_{1} & z_{2} - z_{1} \\ x_{3} - x_{1} & y_{3} - y_{1} & z_{3} - z_{1} \end{vmatrix} = 0$$

- Vector equation of a plane that contains three non collinear points having position vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} is $(\overrightarrow{r} \overrightarrow{a}) \cdot \left[(\overrightarrow{b} \overrightarrow{a}) \times (\overrightarrow{c} \overrightarrow{a}) \right] = 0$.
- Equation of a plane that cuts the coordinates axes at

$$(a, 0, 0), (0, b, 0)$$
 and $(0, 0, c)$ is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

- Vector equation of a plane that passes through the intersection of planes $\overrightarrow{r}.\overrightarrow{n_1}=d_1$ and $\overrightarrow{r}.\overrightarrow{n_2}=d_2$ is $\overrightarrow{r}\left(\overrightarrow{n_1}-\lambda\overrightarrow{n_2}\right)=d_1+\lambda d_2$, where λ is any non-zero constant.
- Cartesian equation of a plane that passes that passes through the intersection of two given planes $A_1x + B_1y + C_1z + D_1 = 0$ and $A_2x + B_2y + C_2z + D_2 = 0$ is $(A_1x + B_1y + C_1z + D_1) + \lambda(A_2x + B_2y + C_2z + D_2 = 0$
- Two lines $\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ are coplanar if $\left(\overrightarrow{a_2} \overrightarrow{a_1}\right) \cdot \left(\overrightarrow{b_1} \times \overrightarrow{b_2}\right) = 0$.
- ullet Two planes $a_1x+b_1y+c_1z+d_1=0$ and $a_2x+b_2y+c_2z+d_2=0$ are

coplanar if
$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

- In the vector form, if $\,\theta\,$ is the angle between the two planes, \overrightarrow{r} , $\overrightarrow{n_1}=d_1$ and \overrightarrow{r} , $\overrightarrow{n_2}=d_2$, then $\theta=\cos^{-1}\left|\frac{\overrightarrow{n_1}.\overrightarrow{n_2}}{\overrightarrow{n_1}|\overrightarrow{n_2}|}\right|$
- The angle ϕ between the line $\overrightarrow{r}=\overrightarrow{a}+\lambda\overrightarrow{b}$ and the plane \overrightarrow{r} , $\widehat{n}=d$ is $\sin\phi=\frac{\overrightarrow{b}.\widehat{n}}{|\overrightarrow{b}||\widehat{n}|}$
- The angle $\,\theta\,$ between the planes $\,A_1x+B_1y+C_1z+D_1=0\,$ and $\,A_2x+B_2y+C_2z+D_2=0\,$ is given by

$$\cos \theta = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$

- The distance of a point whose position vector is \overrightarrow{a} from the plane $\overrightarrow{r}\cdot\widehat{n}=d$ is $\left|d-\overrightarrow{a}\cdot\widehat{n}\right|$.
- The distance from a point (x_1, y_1, z_1) to the plane Ax + By + Cz + D = 0 is

$$\frac{Ax_1 + By_1 + Cz_1 + D}{\sqrt{A^2 + B^2 + C^2}}$$

Equation of any plane that is parallel to a plane that is parallel to a plane Ax + By + Cz
 + D = 0 is Ax + By + Cz + k = 0, where k is a different constant other than D.

