如何做出一份科学的牛排

2024年10月9日

摘要

牛排的烹饪科学不仅仅依赖于简单的高温加热,还涉及复杂的化学反应。本 文详细介绍了牛排风味和口感的形成机制,包括美拉德反应和脂质氧化对牛 排风味的影响。美拉德反应通过氨基酸与还原糖的反应生成多种风味物质, 而脂质氧化则可能引发负面风味的产生。本文还基于数学模型分析了牛排 的口感形成机理,阐述了水分蒸发、脂肪含量、烹饪温度等因素对牛排质地 的影响。通过合理控制这些变量,烹饪者可以制作出既多汁又美味的牛排。

目录

1	Intr	oduction	4
2	牛排	风味形成机理	5
	2.1	美拉德反应 (Maillard Reaction)	5
		2.1.1 简介	5
		2.1.2 还原糖	7
		2.1.3 肽的分子量	7
		2.1.4 反应条件	8
		2.1.5 小结	8
	2.2	脂质氧化 (Lipid Oxidation)	
		2.2.1 脂质氧化 (Lipid Oxidation) (Domínguez et all, 2019)	
		2.2.2 脂肪	9
3	牛排	口感形成机理	10
	3.1	基本定义和假设	10
	3.2	控制定律和方程	11
		3.2.1 质量守恒方程	11
		3.2.2 动量守恒	11
		3.2.3 能量守恒	13
	3.3	边界条件	13
		3.3.1 渗透压为 0	13
		3.3.2 边界热流	13
		3.3.3 边界移动	
	3 /	方程总结表	1/1

4	结语	į.																	19
	3.5	仿真结果		•	•	•	•	•			•			•					16

Introduction

牛排, 听起来简单, 其实是一个能让人立马联想到精致生活的代名词——从手头拮据时超市打折的眼肉, 到豪气冲天时米其林餐厅里那块几乎能买一台 iPhone 的 M10 和牛。吃牛排的方式千差万别, 价格跨度也可以让人瞬间陷入人生哲学的思考: 究竟是什么, 让一块牛肉身价暴涨, 成为食客口中的"艺术品"? 难道其中真的有些只有五星级大厨才能施展的秘技?

好吧,本文并不是要为餐厅加价找借口,而是要从科学的角度解答:牛排烹饪中,是否真有一些高级操作,普通人永远无法企及?或者说,我们这些在家煎牛排的凡人,是否也能在掌握一些化学与物理反应之后,做出不输大厨的顶级美味?

本文将带你走入牛排的科学烹饪世界,深挖那些影响风味和口感的神秘机制。从美拉德反应如何为牛排外层增添一抹诱人棕色,到脂质氧化是否真的就是"牛排的敌人"。而且我们还会讨论一下熟度问题——毕竟,"五分熟"和"全熟"真的只有吃货口中的区别吗?这篇玩笑论文将以轻松的风格,严肃地讨论如何用科学手段,把牛排做得更好吃。最后希望大家在实验结束后,能端上一盘香气四溢的牛排,享受属于自己的"米其林时刻"。

牛排风味形成机理

在肉类处理过程中,复杂的化学反应是风味的主要来源,其中美拉德 反应和脂质氧化尤其重要 (Wang, Ying and Luo, Yani and Cao, Jinxuan, 2023)。美拉德反应不仅产生了香味物质,还为牛排外层提供了诱人的棕色; 脂质氧化则是肉类产生香味的重要途径。

2.1 美拉德反应 (Maillard Reaction)

2.1.1 简介

美拉德反应(下称 MR)发生在中高温(140-180 摄氏度)下,是还原糖中的羰基与氨基酸、多肽以及蛋白质中的氨基发生的非酶促反应,产物称之为 MRP(Maillard Reaction Product)。Song 等人在 2021 年的辣椒粉研究中,证明添加外源美拉德反应底物提供了一种提高烤辣椒粉风味质量的机制 (Yuting Song et all, 2021)。

事实上,MR 根据底物中提供胺基的多肽、反应时的 ph 和反应过程中的温度而产生不同风味的 MRP,包括带有强烈焦糖香气的糠醛、带有烤菠萝香气的 5-甲基同源物、黄油香气的二羰基化合物和烤肉香气的吡嗪等等。因此控制反应底物和反应过程会对食物风味带来显著影响。

图 2.1: 美拉德反应由三个阶段构成: 初级阶段还原糖和氨基酸发生反应, 生成阿马多里 (Amadori) 物质作为风味前体; 中间阶段根据 ph 不同, 风味前体发生分解, 产生主要的风味物质, 同时发生斯特雷克反应 (Strecker), 促进风味物和鲜味产生; 最后进行美拉德褐变反应, 风味物质和氨基化合物进一步反应, 生成棕黑色的高分子聚合物。

2.1.2 还原糖

要控制美拉德风味(下称 MF),就需要控制反应物和反应路径。事实上,虽然还原糖是美拉德反应的关键参与者,但其主要影响反应的速率,不能改变风味特征。

肉类中的还原糖可以影响 MR 的进行程度。例如,在煎制的牛排和烤箱烤制牛排的对比中,煎制牛排还原糖含量更低,而 MRP 含量更高,因而煎牛排的综合评分更高 (Yoo et all,2020)。

另外,还原糖的种类会对 MR 反应效率造成影响,从而影响风味。例如,果糖 MRP 在各项感官评价中都取得较高的分数 (Zhi-Jing Ni et all, 2021)。

图 2.2: G-MRP: 葡萄糖 MRP; F-MRP: 果糖 MRP;R-MRP: 核糖 MRP;X-MRP: 木糖 MRP

2.1.3 肽的分子量

肽是重要的风味前体,其中分子量较小的(1~5kDa)的肽对食品加工有更加显著的影响,因而被称为美拉德肽。在肉类冷藏过程中产生的低分子量肽(<1kDa)能作为风味前体,它们的酰胺原反应活性更高,是生成吡嗪

的主要贡献者;而高分子量肽(>5kDa)会带来苦味,造成不佳的食用体验。 因此可以使用酶解等方法先增加体系中低分子量肽的含量来获得更优化的 味觉体验。

2.1.4 反应条件

MR 中间阶段的反应路径受到 ph 的显著影响,继而对最终的风味产生明显影响。简单来说,高 ph 下更有利于吡嗪的生成,也就意味着烤制、焦糖的风味;而低 ph 下更有利于呋喃的生成,带来坚果风味 (Shereen N et all 2021)。

另外温度对于 MR 的进行影响同样显著。坚果香的呋喃作为糖衍生物,通常在高温处理下产生 (Zhang et all,2020)。另外,温度能够加速蛋白质的水解和避免多肽与糖的交联反应。但过高温度会破坏多肽的酶结合位点,造成无法吸收的类纤维素物质,不利于消化,还有可能产生有毒的丙烯酰胺等物质,危害人体健康。因此将温度控制在合理范围内能最大程度保留食物营养和促成风味物质生成。

2.1.5 小结

美拉德反应的机理研究为我们提高牛排风味提供了思路:增加还原糖含量、增加低分子量多肽以及控制合适的反应条件。仅仅使用肉类自身的核糖、葡萄糖的效果并没有外源性的果糖、木糖有效。而适当的冷藏处理,甚至酶解处理,可以增加低分子量多肽。人为控制 PH 可以改变 MRP 的产生路径,从而改变最终风味,因此使用小苏打、醋等 PH 调整剂有了充分理由。最后,需要将烹饪温度控制在中高温区,最大化风味物产生同时避免丧失营养价值。

2.2 脂质氧化 (Lipid Oxidation)

2.2.1 脂质氧化 (Lipid Oxidation) (Domínguez et all, 2019)

脂质氧化是肉类负面风味的重要来源,能够带来包括油腻感、铁锈味和酸败味道。脂质氧化机理十分复杂,但简单概括为:不饱和脂肪酸在自由基机制下与分子氧发生反应,产生过氧化物。过氧化物本身无色无味,但其不稳定,很快便会分解成烃类、醛类、酮类、醇类、酯类和酸类,这些次级产

物是造成不佳风味的主要原因。其中醛类由于产生量大,气味阈值低而成为 肉类风味的主要影响物质。

脂质氧化同时受到内在因素影响和外在因素影响。内在因素包括肉类本身含有的促氧化剂 (血红蛋白、金属等) 和抗氧化剂 (维生素、多肽等); 而外在因素包括储存条件、加工工艺。由于脂质氧化在光照条件下速度比自氧化速度快得多 (Lorenzo, JM and Domínguez, R and Carballo, J, 2017), 因此在超市中光照展示的肉类往往比在自家冰箱中保存新鲜时间更短。

2.2.2 脂肪

值得注意的是,脂质氧化现象并不能说明脂质在风味中仅有负面贡献。对于没有双键、更不容易发生氧化的饱和脂肪酸,其在烹饪过程中容易分解产生醛、酮等香味物质。另外,脂肪的良好导热能力帮助促进美拉德反应的进行,并且产生湿润多汁的口感,因而对于牛排的整体非常重要。在和牛等昂贵的牛排中,往往存在大理石花纹的肌肉脂肪,能够有效优化牛排风味和口感。

为了实现脂肪的功能,我们可以人为添加饱和脂肪酸到我们的牛排中。 腌制等方法可以使这些脂肪渗入牛排中,起到与大理石花纹同样的功效。

牛排口感形成机理

我们借用 Nelson 等人的数学模型间接研究牛排口感 (Nelson, H. and Deyo, S. and Granzier-Nakajima, S. and Puente, P. and Tully, K. and Webb, J., 2020)。

3.1 基本定义和假设

Nelson 等人将牛排看作 水饱和的多孔聚合物弹性介质 , 其中介质为蛋白质网络, 水则分为游离水和肌肉纤维内的结合水。为了表征液体量, 他们定义了 孔隙率 和 水分含量 。

孔隙率是液体的 体积分数:

$$Por = 1 - \phi(x_0, y_0; t_0) = \lim_{r \to 0} \frac{V_{f, (x - x_0)^2 + (y - y_0)^2 \le r^2}}{\pi r^2}$$

水分含量则是液体的 质量分数:

$$n = \frac{(1 - \phi)\rho_{\rm f}}{(1 - \phi)\rho_{\rm f} + \phi\rho_{\rm s}}$$

他们还假设:

- 牛排很瘦, 脂肪率 <4%;
- 完全被液体浸透;
- 液体密度是常量;

• 蛋白质网络是有序的,只有很少交联。

3.2 控制定律和方程

3.2.1 质量守恒方程

定义流体通量 $\vec{J}=p_f(1-\phi)\vec{\omega}$,其中 $\vec{\omega}$ 表示流体的速度向量, p_f 表示流体压力, ϕ 是孔隙率。

流体质量的变化率可以通过通量的曲面积分来表示:

$$\frac{\partial}{\partial t} \int_{A} (\rho_{\rm f}(1-\phi)) \, dS = -\int_{A} \nabla \cdot (\rho_{\rm f}(1-\phi)\mathbf{w}) \, dS$$

此处,我们将质量表示为体积与密度的乘积。因为体积积分与时间无 关,可以消去积分符号,得到:

$$\frac{\partial}{\partial t}(\rho_f(1-\phi)) + \nabla \cdot (\rho_f(1-\phi)\mathbf{w}) = 0$$

由于假设流体密度是常量,可以直接将其消去。此外,考虑到 Fick 第二定律的扩散项,我们可以得到以下扩展方程:

$$\frac{\partial \phi}{\partial t} = \nabla \cdot ((1 - \phi)\mathbf{w}) + D_w \nabla^2 \phi$$

该方程描述了流体在多孔介质中的质量守恒。

3.2.2 动量守恒

渗透动量守恒项

根据 Darcy 定律,流体的动量守恒可以表达为:

$$\rho_{\rm f}(1-\phi)\mathbf{w} = -\frac{\kappa}{n}\nabla\pi_{\rm sw}$$

其中, κ 为渗透率, η 为流体的粘度, π_{sw} 是渗透压。

变量替代与计算

我们用动态粘度 $\mu(T)$ 代替 η , 粘度的经验公式为:

$$\mu(T) = 2.414 \times 10^{-5} \times 10^{247.8/(T-140)}$$

渗透压 π_{sw} 可以分为混合渗透压 π_{mix} 和网络压力 π_{el} 。根据 Flory-Rehner 理论,混合渗透压的表达式为:

$$\pi_{\text{mix}} = \frac{\partial F_{\text{mix}}}{\partial \phi} = \frac{RT}{V_f} \left[\ln(1 - \phi) + \phi + \chi(T, \phi) \phi^2 \right]$$

网络压力的表达式为:

$$\pi_{\rm el} = \frac{\partial F_{\rm el}}{\partial \phi} = \frac{RT \rho_{\rm s}}{M_{\rm c}} \left[\phi^{1/3} \phi_0^{2/3} - \frac{1}{2} \phi \right]$$

其中, $\chi(T,\phi)$ 是 Flory-Huggins 交联参数, 通过以下方程给出:

$$\chi(T,\phi) = \chi_{\rm p}(T) - (\chi_{\rm p}(T) - \chi_0)(1 - \phi^2)$$

 $\chi_{\rm p}(T)$ 是经验拟合的 sigmoidal 函数, 其形式为:

$$\chi_{\rm p}(T) = \chi_{\rm pn} - \frac{\chi_{\rm pd} - \chi_{\rm pn}}{1 + A \exp(\gamma (T - T_{\rm e}))}$$

渗透率张量

由于模型是各向异性的,渗透率 κ 是一个张量。实验表明,平行于晶粒方向的渗透率比垂直方向的渗透率高 1.16 倍。因此,渗透率张量可以写为:

$$\kappa = \begin{bmatrix} \frac{1}{1.16} & 0\\ 0 & 1 \end{bmatrix} \kappa_{\parallel}$$

剪切动量守恒项

在低速流体中,流体的剪切作用需要考虑。应变率张量 E 定义为:

$$\mathbf{E} = rac{1}{2} \left(
abla \mathbf{w} +
abla \mathbf{w}^T
ight)$$

流体的剪切动量守恒方程为:

$$p_{\text{shear}} = \kappa \nabla \cdot \left((1 - \phi) \frac{\nabla \mathbf{w} + \nabla \mathbf{w}^T}{2} \right)$$

最终的动量守恒方程可以表达为:

$$(1 - \phi)\mathbf{w} = \kappa \nabla \cdot \left((1 - \phi) \frac{\nabla \mathbf{w} + \nabla \mathbf{w}^T}{2} \right) - \frac{\kappa}{\mu} \nabla \pi_{\text{sw}}$$

3.2.3 能量守恒

能量守恒方程采用经典的热传导和热对流公式:

$$(cT)_t + \nabla \cdot (\rho_f c_f \mathbf{w} (1 - \phi) T) = \nabla \cdot (k \nabla T)$$

其中, 热容 c 和导热系数 k 的计算如下:

$$c = \phi \rho_{s} c_{s} + (1 - \phi) \rho_{f} c_{f}$$

$$k = \begin{bmatrix} k_{11} & 0 \\ 0 & k_{22} \end{bmatrix}$$

$$k_{22} = \phi k_{s} + (1 - \phi) k_{f}$$

$$\frac{1}{k_{11}} = \frac{1 - \phi}{k_{f}} + \frac{\phi}{k_{s}}$$

这里, c 和 k 是时间的函数, 取决于 ϕ 。

3.3 边界条件

3.3.1 渗透压为 0

在边界处,假设 $\pi_{sw}=0$,可以通过关系式选出能够使其成立的 ϕ 和 ω 。

3.3.2 边界热流

边界上的热流方程为:

$$-k\frac{\partial T}{\partial n} = h_c(T - T_D) + rj_{\text{evap}}$$

其中,蒸发通量 j_{evap} 由以下公式给出:

$$j_{\text{evap}} = h \left(\sqrt[3]{\left(\frac{D_{\text{a}}}{k_{\text{a}}}\right)^{2} \frac{1}{\rho_{\text{a}} c_{\text{a}}}} \right) \left[\frac{\left(1 - \frac{X_{\text{m}}}{X}\right) p_{\text{sat,0}} \exp\left(17.27 \frac{T - T_{0}}{T - 35.86}\right) M_{\text{f}}}{RT} - c_{0} \right]$$

其中,
$$X = \frac{m_{\mathrm{f}}}{m_{\mathrm{s}}} = \left(\frac{1}{\phi} - 1\right) \frac{\rho_{\mathrm{f}}}{\rho_{\mathrm{s}}}$$
。

3.3.3 边界移动

假定蛋白质纤维的体积保持不变,因此所有的体积变化都来源于流体流动。得到的边界移动方程为:

$$h^2 = v = v_s + v_f = \phi_{init}h_0^2 + (1 - \phi)h^2$$

解这个方程可以得到:

$$h = h_0 \sqrt{\frac{\phi_{\text{init}}}{\phi}}$$

由于各向异性,蛋白质变形导致横纵比 ξ 发生变化。最终横纵比达到 1.25 的实验结果可以通过近似公式表达为:

$$\frac{h_x}{h_y} = \xi := 1 + \frac{0.25}{1 + A \exp(\gamma (T - T_\mathrm{e}))}, \quad h_x h_y = v \label{eq:hx}$$

最终得到边界移动的计算公式:

$$h_x = h_0 \sqrt{\frac{\phi_{\text{init}}\xi}{\phi}}, \quad h_y = h_0 \sqrt{\frac{\phi_{\text{init}}}{\phi\xi}}$$

3.4 方程总结表

方程类型	方程式	描述
流体通量	$\vec{J} = p_f (1 - \phi) \vec{\omega}$	流体通量定义, 3
		为流体速度, p_f 为
		流体压力
质量守恒方程	$\frac{\partial}{\partial t}(\rho_{\rm f}(1-\phi)) + \nabla \cdot (\rho_{\rm f}(1-\phi)\mathbf{w}) = 0$	质量守恒方程,描
		述流体在多孔介质
		中的变化
扩展质量守恒	$\frac{\partial \phi}{\partial t} = \nabla \cdot ((1 - \phi)\mathbf{w}) + D_w \nabla^2 \phi$	考虑扩散的质量守
		恒方程

Darcy 定律	$\rho_{\rm f}(1-\phi)\mathbf{w} = -\frac{\kappa}{n}\nabla\pi_{\rm sw}$	表示动量守恒,基
	η	 于 Darcy 定律
粘度公式	$\mu(T) = 2.414 \times 10^{-5} \times 10^{247.8/(T-140)}$	流体粘度的经验公
		数
混合渗透压	$\pi_{\text{mix}} = \frac{RT}{V_f} \left[\ln(1 - \phi) + \phi + \chi(T, \phi)\phi^2 \right]$	混合渗透压,根据
	.,	Flory-Rehner 理论
网络压力	$\pi_{\rm el} = \frac{RT\rho_{\rm s}}{M_{\rm c}} \left[\phi^{1/3} \phi_0^{2/3} - \frac{1}{2} \phi \right]$	网络压力,根据
		Flory-Rehner 理论
Flory-Huggins 交	$\chi(T,\phi) = \chi_{\rm p}(T) - (\chi_{\rm p}(T) - \chi_0)(1 - \phi^2)$	表示交联参数,基
联参数		于 Flory-Huggins
		理论
剪切动量守恒	$p_{\text{shear}} = \kappa \nabla \cdot \left((1 - \phi) \frac{\nabla \mathbf{w} + \nabla \mathbf{w}^T}{2} \right)$	流体剪切作用的动
	,	量守恒方程
动量守恒方程	$(1 - \phi)\mathbf{w} = \kappa \nabla \cdot \left((1 - \phi) \frac{\nabla \mathbf{w} + \nabla \mathbf{w}^T}{2} \right) -$	完整的动量守恒方
	$\frac{\kappa}{\mu} \nabla \pi_{\mathrm{sw}}$	程
能量守恒	$(cT)_t + \nabla \cdot (\rho_f c_f \mathbf{w} (1 - \phi) T) = \nabla \cdot (k \nabla T)$	能量守恒方程,描
		述热传导与热对流
热容公式	$c = \phi \rho_{\rm s} c_{\rm s} + (1 - \phi) \rho_{\rm f} c_{\rm f}$	热容 c 的计算公式
 导热系数公式	$k = \begin{bmatrix} k_{11} & 0\\ 0 & k_{22} \end{bmatrix}$	$\begin{vmatrix} & & & & & \\ & & & \\$
1 MAXAL	$\begin{bmatrix} n & b \\ 0 & k_{22} \end{bmatrix}$	形式
	$k_{22} = \phi k_{\rm s} + (1 - \phi) k_{\rm f}$	纵向导热系数的计
7	7022	算
	$\frac{1}{k_{11}} = \frac{1-\phi}{k^{\epsilon}} + \frac{\phi}{k_{-}}$	横向导热系数的计
	k_{11} k_{f} k_{s}	算
边界热流	$-k\frac{\partial T}{\partial n} = h_c(T - T_D) + rj_{\text{evap}}$	边界热流方程,描
	on	述热交换和蒸发
蒸发通量公式	j_{evap} =	蒸发通量的计算公
	$h\left(\sqrt[3]{\left(\frac{D_{\rm a}}{k_{\rm a}}\right)^2\frac{1}{\rho_{\rm a}c_{\rm a}}}\right)\left\lceil\frac{\left(1-\frac{X_{\rm m}}{X}\right)p_{\rm sat,0}\exp\left(17.2\frac{1}{RT}\right)}{RT}\right\rceil$	$(\frac{T_0}{T_0})M_{\rm f} - c_0$
	/ '	」 」 边界移动方程,描
以外的例	$h^2 = v_{\rm s} + v_{\rm f} = \phi_{\rm init} h_0^2 + (1 - \phi)h^2$	
		述体积变化

边界变形	$h = h_0 \sqrt{rac{\phi_{ ext{init}}}{\phi}}$	边界变形方程, 描
	•	述各向异性变形

本表总结了本文中的主要方程,涵盖了流体力学、动量守恒、能量守恒 及相关的热传导、渗透压等物理过程的描述。

3.5 仿真结果

图 3.1: 加热时间间隔十分钟得到的曲线族。加热时间越久,整体湿度就越低,温度曲线也更加平滑。

图 3.2: 牛排变形图示。加热时间越长,边缘块收缩越显著。

结语

通过美拉德反应、脂质氧化以及水分蒸发的控制,我们可以最大化牛排 的风味与口感。适当控制烹饪温度和储存条件,并选择高质量脂肪的肉类, 能够让牛排达到理想的风味和口感。