머신러닝

Week-06. 모델 성능 향상

Jungwon Seo, 2021-Spring

목차

- 1. 머신러닝 파이프라인 구축 시 주의 할 점
- 2. 영혼까지 끌어올려 성능 올리기

1. 머신러닝 파이프라인을 만들때 주의 할점

데이터 분리 단계

정보 누설

- 정보누설이란, 모델 구축 과정에서 검증/테스트 데이터의 정보가 이미 반영되어 있는 경우
 - 낙관적인 결과를 만들 수 있다.
 - 정보누설을 피하기 위해서는 전처리에 앞서 데이터 분리과정을 미리 진행을 하여야 한다.
 - 그 후에, 전처리와 (스케일링, 인코딩) 등을 훈련 데이터 셋에 대해서만 진행 한다.

```
scaled_cancer_data = MinMaxScaler().fit_transform(cancer.data)

X_train, X_test, y_train, y_test = train_test_split(
scaled_cancer_data, cancer.target, random_state=0)

svm = SVC(gamma='auto')
svm.fit(X_train, y_train)
print("테스트 점수: {:.2f}".format(svm.score(X_test, y_test)))

테스트 점수: 0.96
```

테스트 점수: 0.95

데이터 분리 단계

교차 검증에서의 정보누설

교차 검증에서도 훈련 폴드와 검증 폴드를 고립 시킨 상태에서 훈련 폴드만을 기반으로 스케일러나 인코더를 생성해야함

2. 영혼까지 끌어 올려 성능 올리기

성능 올리기 데이터 관점 - 인코딩

- 데이터 인코딩 및 Binning
- 범주형 데이터 인코딩
 - Long Tail 분포의 데이터의 경우
 - One-hot 인코딩의 경우 전체 특성 값들의 빈도수를 확인 한 후에 상위 N개 + 기타 형태로 재구성 해에 인코딩
- 연속형 데이터 Binning
 - 연속형 데이터를 특정 구간으로 나누어서 범주형 데이터로 변경
 - 아웃라이어에 의한 영향 최소화
 - 예) 재산을 0원부터 100억까지 연속형 데이터로 가져가지않고, [0~5천만원], [5천만원~1억], [1억~10억], [10억 이상]

데이터 관점 - 스케일링

- 특성 Scaling
- 서로 다른 특성간의 단위 차이가 너무 심할 경우 일부 모델에서는 변수의 영향이 제대로 반 영되지 않음
 - 재산 특성: 0원에서 100,000,000까지
 차량 보유 수: 0대에서 4대까지
 - 직관적으로 봤을 때 차량 1대가 더 많은 건 엄청난 차이지만, 재산 기준으로 보면 1원과 크게 다르지 않음
 - MinMax 스케일링 적용
 - 재산: 0원, 50만원, 100만원, 1천만원, 1억 => [0.0, 0.005, 0.01, 0.1, 1.0]
 - 차량: 0대, 1대, 2대, 3대, 4대 => [0.0, 0.25, 0.5, 0.75, 1.0]
 - KNN 알고리즘을 생각해보자!

데이터 관점

- 클래스 불균형 (Class Imbalance) 데이터
 - 클래스 불균형 데이터의 경우 샘플링을 다르게 하여 데이터를 재 구성 할 수 있습니다.
 - 이때 단순히 샘플링만 다르게 하면 효과가 없고, 앙상블을 적용해야 효과가 있습니다.

모델 관점: 앙상블

- 앙상블
 - 서로다른 환경 (데이터 분포, 전처리, 모델) 를 구성하여 학습된 모델의 조합으로 일반화된 최종 모델을 생성
- Hard Voting: Majority Voting
 - 다수결의 원칙에 따라 최종 클래스를 결정
- Soft Voting: Probability Voting
 - 각각의 모델에서 나온 확률값의 평균으로 최종 클래스를 결정
- Weighted Voting
 - 특정 모델에 가중치를 주어서 최종 클래스를 결정

모델 관점: 앙상블

Hard Voting

Soft Voting

Weighted Voting

E.O.D