Dialectica Petri nets: A linear logic model of reaction Systems

Wilmer Leal Gatas Lab University of Floida (joint work with Elena di Lavore and Valeria De Paiva)

November 9, 2023

Outline

- Motivation
 - Why am I talking about this today?
 - Is this part of categorical chemistry?
 - Why linear logic?
- The paper in one slide!
- ▶ The structure of our category of Petri nets
- Questions for you

Motivation: Why am I talking about this today?

- We are revising and improving an arXived manuscript that want to submit to Fundamenta Informaticae
- Would appreciate your feedback
- ▶ I have specific questions for you

Motivation: Is this part of categorical chemistry?

- Composing reactions to reach a target substance using the network structure
- Looking at chemistry as a grammar of molecular copresheaves
- Dynamics on chemical reaction networks
- Composing small networks into bigger ones preserving algebraic properties of the components: random models of directed hypernetworks.
- Many more!

Categorical chemistry is the study of these structures and their interactions.

Motivation: Why linear logic?

- Chemistry's internal logic:
 - Duplication:

$$A \longrightarrow A + A$$

Deletion:

$$A + A \longrightarrow A$$

are not allowed in chemical reactions.

 Linear logic's emphasis is on resource-boundedness, duality, and interaction.

& additive conjunction

⊕ additive disjunction

⊗ multiplicative conjunction

? controlled access to contraction

! controlled access to weakening

Binary connectives &, \oplus , \otimes and \Re are associative and commutative. They have units: 1 for \otimes , 0 for \oplus , \bot for \Re and \top for &.

Construction of the category Net_L ¹

- ▶ We fix a lineale, that is, a poset version of a symmetric monoidal closed category: $(L, \leq, \circ, e, \dot{-})$
- ▶ We built a Dialectica-type category $M_L(Set)$ of general relations: Objects: (U, X, α) , where U, X are sets and $\alpha: U \times X \to L$ is a function in Set.
- Define on M_L(Set) the linear logic connectives (prove that it has binary products and coproducts, define the tensor product and its adjoint, the internal hom): &, ⊕, ⊗, and [-,-].
- ▶ Define Net_L as the pullback of $M_L(Set)$ with itself in **Cat**: $A = ({}^{\blacktriangleright}\alpha, \alpha^{\blacktriangleright})$ of objects ${}^{\blacktriangleright}\alpha: U \times X \to L$ and $\alpha^{\blacktriangleright}: U \times X \to L$ in L.
- ▶ Show that Net_L inherits the linear logic structure from $M_L(Set)$:

Theorem (Linear logic structure of Net₁)

The category Net_L has products and coproducts and is a symmetric monoidal closed category.

¹di Lavore E, Leal W and De Paiva V (2021). Dialectica Petri nets. ArXiv. (Submitted to *Log Methods Comput Sci*).

What can be modeled using NetL

Networks with diffrent kind of extensions

Weighted arcs:

▶ Inhibitor Arc.

 $2X \rightarrow 1Y$

▶ Inhibitor Arc.

$$2X \rightarrow 1Y$$

2X + nW no reaction if n > 0

▶ Inhibitor Arc.

▶ Inhibitor Arc.

▶ Inhibitor Arc.

Net_L is a model for nets with several kinds of labels

What can be modeled using NetL

- Networks with different kind of extensions
- Build larger networks from smaller ones using linear connectives

Definition 3 The category MSets consists of:

- ▶ Objects are triples (U, X, α) written as $(U \stackrel{\alpha}{\longleftarrow} X)$, where $U \times X \stackrel{\alpha}{\longrightarrow} N$ is a function in Sets, that is a multirelation.
- Morphisms in MSets from an object $U \times X \xrightarrow{\alpha} N$ or $(U \xleftarrow{\alpha} X)$ to an object $V \times Y \xrightarrow{\beta} N$ or $(V \xleftarrow{\beta} Y)$ are pairs of morphisms in Sets, (f,F) where $f: U \to V$ and $F: Y \to X$ are such that

that means that $\forall u \in U, \ \forall y \in Y \ \beta(fu, y) \ge \alpha(u, Fy)$

Examples of morphisms

Figure 1:

Definition 4 Given two objects $U \times X \xrightarrow{\alpha} N$ or $(U \xleftarrow{\alpha} X)$ and $V \times Y \xrightarrow{\beta} N$ or $(V \xleftarrow{\beta} Y)$ in MSets we define $A \otimes B$ their tensor product as the following object:

$$A \otimes B = (U \times V \stackrel{\alpha \otimes \beta}{\longleftarrow} X^V \times Y^U)$$

where the multirelation " $\alpha \otimes \beta$ " is given by $\alpha \otimes \beta(u, v, f, g) = \alpha(u, fv) + \beta(v, gu)$.

Definition 5 Given two objects $U \times X \xrightarrow{\alpha} N$ or $(U \xleftarrow{\alpha} X)$ and $V \times Y \xrightarrow{\beta} N$ or $(V \xleftarrow{\beta} Y)$ in MSets we define [A, B] the internal-hom as the object,

$$[A,B] = (V^U \times X^Y \xleftarrow{\alpha - \beta} U \times Y)$$

the multirelation " $(\alpha \dot{-} \beta)$ " is given by $(\alpha \dot{-} \beta)(f, F, u, y) = -\alpha(u, Fy) + \beta(fu, y)$, where the dotted subtraction is truncated subtraction, that is $-\alpha + \beta = \beta - \alpha$ if $\alpha \leq \beta$ and 0 otherwise.

Proposition 3 The construction above defines a bifunctor $[-,-]: \mathsf{MSets}^\mathsf{op} \times \mathsf{MSets} \to \mathsf{Msets}.$

Theorem 1 The category MSets is a symmetric monoidal closed category with respect to the tensor product \otimes and the internal-hom [-,-] defined above.

Definition 6 An ordered monoid (N, \leq, \circ, e) is a poset (N, \leq) with a given compatible symmetric monoidal structure (N, \circ, e) . The structures are compatible in the sense that, if $a \leq b$, we have $a \circ c \leq b \circ c$, for all c in N.

Definition 7 Suppose (N, \leq, \circ, e) is an ordered monoid and $a, b \in N$. If there exists a largest $x \in N$ such that $a \circ x \leq b$ then this element is denoted as $a \dot{-} b$ and it is called the relative pseudocomplement of a wrt b. A closed posed is an ordered monoid (N, \leq, \circ, e) such that $a \dot{-} b$ exist for all a and b in N.

Proposition 4 A closed poset $(N, \leq, \circ, e, \dot{-})$ has the following properties:

- 1. $a \circ b \leq c$ iff $a \leq b \dot{-} c$
- 2. If $a \le b$, then for any c in N, $c a \le c b$ and $b c \le a c$;
- 3. As 'e' is the identity for ' \circ ' $a \circ e = a \le a$ implies $e \le a a$ for any a in N.

Definition 8 Given two objects $A = (U \stackrel{\alpha}{\longleftarrow} X)$ and

 $B = (V \stackrel{\beta}{\longleftarrow} Y)$ in M_NC we define $A \otimes_M B$ their tensor product as follows:

$$A \otimes_M B = (U \otimes V \xleftarrow{(\alpha \otimes \beta)_M} [V, X] \times [U, Y])$$

The morphism " $(\alpha \otimes \beta)_M$ " intuitively says $(\alpha \otimes \beta)_M(u \otimes v, \langle f, g \rangle) = \alpha(u \otimes fv) \circ \beta(v \otimes gu)$, where \circ is the monoidal structure in $(N, \leq, \circ, e, \dot{-})$.

Proposition 5 The construction above induces a bifunctor,

$$\otimes_M: M_N\mathsf{C} \times M_N\mathsf{C} \to M_N\mathsf{C}$$

covariant in both coordinates, which is a tensor product. The identity I_M is given by ($I \overset{e}{\longleftarrow} 1$), where the morphism $I \otimes 1 \approx 1 \overset{e}{\longrightarrow} N$, just picks up the identity 'e' from the closed poset $(N, \leq, \circ, e, \dot{-})$.

Definition 9 Given two objects $A = (U \stackrel{\alpha}{\longleftarrow} X)$ and $B = (V \stackrel{\beta}{\longleftarrow} Y)$ in M_NC we define $[A, B]_M$ their internal hom as follows:

$$[A,B]_{M} = ([U,V] \times [Y,X]) \xleftarrow{(\alpha - \beta)_{M}} U \otimes Y$$

The morphism " $(\alpha \dot{-} \beta)_M$ " intuitively says $(\alpha \dot{-} \beta)_M (\langle f, F \rangle, u \otimes y) = \alpha(u \otimes Fy) \dot{-} \beta(fu \otimes y)$, where $\dot{-}$ is the 'internal-hom' in N.

Proposition 6 The construction above induces a bifunctor $[-,-]_M$ contravariant in its first coordinate and covariant in its second coordinate.

Since we have the adjunction

$$-\otimes A \dashv [-,A]$$

, we have the following

Theorem 2 The category M_NC is a symmetric monoidal closed category.

Structure of M_NC

Definition 10 Given two objects $A = (U \stackrel{\alpha}{\longleftarrow} X)$ and

 $B = (V \stackrel{\beta}{\longleftarrow} Y)$ in M_NC we define their categorical product as follows:

$$A\&B = (U \times V \xleftarrow{\alpha\&\beta} X + Y)$$

The morphism " $\alpha \& \beta$ " is given intuitively by $\alpha \& \beta(\langle u, v \rangle, \begin{pmatrix} x & 0 \\ y & 1 \end{pmatrix}) = \alpha(u, x) \cdot \beta(v, y)$

Defintion 11 Given two objects $A = (U \stackrel{\alpha}{\longleftarrow} X)$ and $B = (V \stackrel{\beta}{\longleftarrow} Y)$ in M_NC we define their categorical coproduct

$$A \oplus B = (U + V \stackrel{\alpha \oplus \beta}{\longleftarrow} X \times Y)$$

The morphism " $\alpha \oplus \beta$ " is given by $\alpha \oplus \beta(\begin{pmatrix} u & 0 \\ v & 1 \end{pmatrix}, \langle x, y \rangle) = \alpha(u, x) \cdot \beta(v, y)$

Proposition 8 The category M_NC has binary products and coproducts.

Theorem 3 The category M_NC is a categorical model of Instuitionistic Linear Logic

In ILL, we have an operator (a "modality") called !. In a categorical model, this should be a comonad with certain properties. We will now construct this for M_N C, under some assumptions..

Definition 12 For each object U in a cartesian closed category C we have a monad $(()^U, \eta_1, \mu_1)$ in C given by the natural transformation below:

$$X \xrightarrow{\eta_1} X^U \qquad \qquad X^{U \times U} \xrightarrow{\mu_1} X^U$$

Definition 13 The endofunctor $T: M_NC \to M_NC$ takes an object $(U \stackrel{\alpha}{\longleftarrow} X)$ of M_NC to the object $(U \stackrel{T\alpha}{\longleftarrow} X^U)$, where intuitively the object $T\alpha$ is given by $T\alpha(u, f) = \alpha(u, fu)$.

One can verify that this gives a *comonad* on M_NC (We have assumed that C is Cartesian closed!)

For any symmetric monoidal category, we can define the category $\mathsf{Mon}_\mathsf{c}(\mathsf{C})$ of commutative monoids in C , and there's a forgetful functor $U: \mathsf{Mon}_\mathsf{c}(\mathsf{C}) \to \mathsf{C}$.

If this has a left adjoint, we call the monad of this adjunction the free commutative monoids monad, and denote it $(-)^*$.

Think of these as unordered lists

Definition 15 The endofunctor $S: M_NC \to M_NC$ takes an object $(U \stackrel{\alpha}{\longleftarrow} X)$ of M_NC to the object $(U \stackrel{S\alpha}{\longleftarrow} X^*)$, where as intuitively \bar{x} is $\langle x_1, x_2, ..., x_n \rangle$, $S\alpha(u, \bar{x})$, means $\alpha(u, x_1)$ and $\alpha(u, x_2)$ and ... and $\alpha(u, x_n)$.

This is also a comonad.

(We've assumed that the left adjoint exists - i.e that C "has free commutative monoids").

Definition 16 The endofunctor $!: M_NC \to M_NC$ takes an object takes an object $(U \xleftarrow{\alpha} X)$ of M_NC to the object $(U \xleftarrow{!\alpha} X^{*U})$, where intuitively if $\phi: U \to X^*$ and $\phi u = \langle x_1, x_2, ..., x_n \rangle$ then $!\alpha(u, \phi)$ is given by $\alpha(u, x_1)$ and $\alpha(u, x_2)$ and ... and $\alpha(u, x_n)$. In other words, $! = T \circ S$.

To get the comonad structure, we need a natural transformation $! \rightarrow !!$, i.e $TS \rightarrow TSTS$. We can use the comonad structures on S and T to do $TS \rightarrow TTSS$, so we need a natural transformation $TS \rightarrow ST$. (A "distributive law").

There's a distributive law $\lambda: \left((-)^U\right)^* \to \left((-)^*\right)^U$ in C. Intuitively, an element of $(X^U)^*$ is an unordered list of functions $U \to X$. Given such a list f_1, f_2, \ldots , we can construction a function $U \to X^*$ which takes u to $f_1(u), f_2(u), \ldots$

Fact 4 The distributive law λ in C induces a distributive law of comonads Λ in M_NC , given by $\Lambda: TSA \to STA$:

Definition 19 The endofunctor ! in M_NC acts on objects as

$$!(U \stackrel{\alpha}{\longleftarrow} X) = (U \stackrel{!\alpha}{\longleftarrow} (X^*)^U)$$

where the morphism $!\alpha$ is given by composition

$$U \times (X^*)^U) \xrightarrow{\langle \pi, ev \rangle} U \times X^* \xleftarrow{S\alpha} N$$

if $(f,F): A \to B$ is a morphism in M_NC , then !(f,F) is given by

Proposition 9 The comonad '!' in M_NC define above satisfies

$$!(A\&B) \approx !A \otimes !B$$
 and $!1 \approx I$

Theorem 4 The comonad '!' in M_NC satisfies the rules for the modality '!' in linear logic.

Let's take a look at the categorical product

Definition (Product in *L*)

Given two objects $A = ({}^{\backprime}\alpha, \alpha^{\backprime})$ and $B = ({}^{\backprime}\beta, \beta^{\backprime})$ in Net_L , we define their cartesian product A&B as the following object.

$$A\&B = (^{\dagger}\alpha\&^{\dagger}\beta, \alpha^{\dagger}\&\beta^{\dagger})$$

The function $\alpha\&\beta$ is $U\times V\times (X+Y)\xrightarrow{\alpha\times_V\beta\times_U} L$, where U is the function that discards U in .

Net_L is a model for nets with several kinds of labels

