

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15050034402

FCC REPORT (BLE)

Applicant: Shenzhen Wanchuangbo Industry Development Co., Ltd.

Address of Applicant: FLOOR 3-4, BUILDING 4, NO.7 LIPU STREET, BANTIAN

AREA, LONGGANG DISTRICT, SHENZHEN CHINA

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: CT8W, CT8X(X=A-Z), 4050, 4050X(X=A-Z), 4025, 4025X(X=A-Z)

Z)

Trade mark: iDeaUSA, VENSTAR

FCC ID: 2AAGR15M-03

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 20 May., 2015

Date of Test: 20 May., 2015 to 08 Jun., 2015

Date of report issued: 11 Jun., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	11 Jun., 2015	Original

Prepared by: Date: 11 Jun., 2015

Report Clerk

Reviewed by: 11 Jun., 2015

Project Engineer

3 Contents

			Page						
1	COV	ER PAGE	1						
2	VER	VERSION							
3		TENTS							
4	TES.	T SUMMARY	4						
5		ERAL INFORMATION							
J									
	5.1	CLIENT INFORMATION							
	5.2	GENERAL DESCRIPTION OF E.U.T.							
	5.3	TEST ENVIRONMENT AND MODE							
	5.4	DESCRIPTION OF SUPPORT UNITS							
	5.5	LABORATORY FACILITY							
	5.6	LABORATORY LOCATION							
	5.7	TEST INSTRUMENTS LIST	8						
6	TES	T RESULTS AND MEASUREMENT DATA	9						
	6.1	ANTENNA REQUIREMENT:	9						
	6.2	CONDUCTED EMISSION	10						
	6.3	CONDUCTED OUTPUT POWER	13						
	6.4	OCCUPY BANDWIDTH	15						
	6.5	POWER SPECTRAL DENSITY	18						
	6.6	BAND EDGE	20						
	6.6.1	Conducted Emission Method	20						
	6.6.2	Radiated Emission Method	22						
	6.7	Spurious Emission	27						
	6.7.1	Conducted Emission Method	27						
	6.7.2	Radiated Emission Method	30						
7	TES	T SETUP PHOTO	35						
8	EUT	CONSTRUCTIONAL DETAILS	36						

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Wanchuangbo Industry Development Co., Ltd.
Address of Applicant:	FLOOR 3-4, BUILDING 4, NO.7 LIPU STREET, BANTIAN AREA, LONGGANG DISTRICT, SHENZHEN CHINA
Manufacturer:	Shenzhen Wanchuangbo Industry Development Co., Ltd.
Address of Manufacturer:	FLOOR 3-4, BUILDING 4, NO.7 LIPU STREET, BANTIAN AREA, LONGGANG DISTRICT, SHENZHEN CHINA

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	CT8W, CT8X(X=A-Z), 4050, 4050X(X=A-Z), 4025, 4025X(X=A-Z)
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.0dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-4200mAh
AC adapter:	Model: AW010WR-0500200UU Input:100-240V AC,50/60Hz 0.4A Output:5V DC MAX 2.0A
Remark	Model No.: CT8W, CT8X(X=A-Z), 4050, 4050X(X=A-Z), 4025, 4025X(X=A-Z) were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being color and label.

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS15050034402

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier HP (10kHz-1.3GHz)		8447D	CCIS0003	04-01-2015	03-31-2016			
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
7	Pre-amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016			
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016			
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			
14	14 Universal radio Communication tester Rhode & Schwarz		CMU200	CCIS0069	03-28-2015	03-28-2016			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016			

Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207								
Test Method:	ANSI C63.4: 2009								
Test Frequency Range:	150 kHz to 30 MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9kHz, VBW=30kHz								
Limit:	Limit (dRu\/)								
	Frequency range (MHz) Quasi-peak Average								
	0.15-0.5	0.15-0.5 66 to 56* 56 to 46*							
	0.5-5	56	46						
	5-30	60	50						
Test procedure	* Decreases with the logarithm 1. The E.U.T and simulators								
	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 								
Test setup:	Refere	ence Plane							
	AUX Equipment Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power						
Test Instruments:									
Test mode:	Refer to section 5.7 for details Refer to section 5.3 for details								
Test results:	Passed	,							
Tost Tosuits.	1 43304								

Measurement Data

Neutral:

Trace: 11

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL Site Condition

EUT Tablet PC : CT8W Model Test Mode : BLE mode
Power Rating : AC120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Garen

Remark

.comarn	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.150	45.95	0.25	10.78	56.98	66.00	-9.02	QP
2	0.162	26.49	0.25	10.77	37.51	55.34	-17.83	Average
3	0.182	45.56	0.25	10.77	56.58	64.42	-7.84	QP
1 2 3 4 5 6 7 8	0.194	24.95	0.25	10.76	35.96	53.84	-17.88	Average
5	0.274	21.14	0.26	10.74	32.14	50.98	-18.84	Average
6	0.286	38.99	0.26	10.74	49.99	60.63	-10.64	QP
7	0.415	32.17	0.26	10.73	43.16	57.55	-14.39	QP
8	0.617	28.02	0.22	10.77	39.01	56.00	-16.99	QP
9	0.630	14.74	0.21	10.77	25.72	46.00	-20.28	Average
10	1.203	26.00	0.24	10.89	37.13	56.00	-18.87	QP
11	1.426	11.77	0.26	10.92	22.95	46.00	-23.05	Average
12	3.140	8.79	0.29	10.91	19.99	46.00	-26.01	Average

Line:

Trace: 9

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE Site Condition

EUT : Tablet PC : CT8W Model Test Mode : BLE mode

Power Rating : AC120/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Garen

Remark

TOMOTH	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu∜	<u>ab</u>	
1	0.150	28.37	0.27	10.78	39.42	56.00	-16.58	Average
2	0.154	49.49	0.27	10.78	60.54	65.78	-5.24	QP
3	0.174	46.57	0.27	10.77	57.61	64.77	-7.16	QP
4	0.274	22.39	0.26	10.74	33.39	50.98	-17.59	Average
2 3 4 5 6 7 8 9	0.276	38.45	0.26	10.74	49.45	60.94	-11.49	QP
6	0.614	30.54	0.25	10.77	41.56	56.00	-14.44	QP
7	0.627	13.54	0.24	10.77	24.55	46.00	-21.45	Average
8	1.262	24.42	0.25	10.90	35.57	56.00	-20.43	QP
9	1.829	23.31	0.26	10.95	34.52	56.00	-21.48	QP
10	6.186	12.00	0.31	10.82	23.13	50.00	-26.87	Average
11	12.318	11.96	0.31	10.92	23.19	50.00	-26.81	Average
12	18.820	12.53	0.34	10.92	23.79	50.00	-26.21	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-5.21		
Middle	-5.27	30.00	Pass
Highest	-5.85		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.72			
Middle	0.73	>500	Pass	
Highest	0.73			

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.04		
Middle	1.04	N/A	N/A
Highest	1.04		

Test plot as follows:

6dB EBW

Date: 4.JUN.2015 21:13:45

Lowest channel

Date: 4.JUN.2015 21:12:14

Middle channel

Date: 4.JUN.2015 21:10:22

Highest channel

99% OBW

Date: 4.JUN.2015 21:18:42

Lowest channel

Date: 4.JUN.2015 21:19:19

Middle channel

Date: 4.JUN.2015 22:02:14

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-5.72		
Middle	-6.06	8.00	Pass
Highest	-6.51		

Test plots as follow:

Date: 4.JUN.2015 21:25:20

Lowest channel

Date: 4.JUN.2015 21:24:54

Middle channel

Date: 4.JUN.2015 21:23:45

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 4.JUN.2015 21:29:26

Lowest channel

Date: 4.JUN.2015 21:30:18

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4: 200						
Test Frequency Range:	2.3GHz to 2.5Gl	Hz					
Test site:	Measurement D						
Receiver setup:	Frequency Above 1GHz	Detector Peak RMS	VBW 3MHz 3MHz	Remark Peak Value Average Value			
Limit:	Freque Above 1	ncy	1MHz Limit (dBuV/ 54.0 74.0	/m @3m) 0	Remark Average Value Peak Value		
Test Procedure:	the ground to determin 2. The EUT w antenna, who tower. 3. The antenn the ground Both horizo make the m 4. For each su case and the meters and to find the r 5. The test-red Specified B 6. If the emiss the limit specified EUT have 10 dB	at a 3 meter can be the position of as set 3 meters which was mount a height is varieted to determine the surement. Uspected emission the antennation the rota table maximum reading and width with a sion level of the ecified, then terminated would be reportant and would be reportant and would the reportant would be reportant and would and would and would and would and would be reportant and would	amber. The toof the highest saway from a ted on the too the too the field from one maximum all polarizations to the too the to	table was rost radiation. The interfer op of a variate meter to for a value of the ons of the autonomous from 0 degreeak Detect old Mode. The was arranged to heights of the edit mode was the stopped avise the emit one by one	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above the field strength. Intenna are set to reged to its worst from 1 meter to 4 the es to 360 degrees. Function and s 10 dB lower than and the peak values ssions that did not the using peak, quasi-ported in a data		
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet PC Condition

EUT : CT8W Model Test mode : BLE-L mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer:

REMARK

THITT									
	Freq		Antenna Factor						
3	MHz	—dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000						100 MT 15 17 17 17 17 17 17 17 17 17 17 17 17 17	The second second second	
2	2390.000	7.39	27.58	5. 67	0.00	40.64	54.00	-13.36	Average

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet PC : CT8W EUT Model Test mode : BLE-L mode Power Rating: AC 120V/ 60Hz Environment: Temp: 25.5°C Huni: 55%

Test Engineer:

REMARK

	2005		Antenna Factor						Remark
2	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000				0.00 0.00				

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Tablet PC : CT8W EUT Model Test mode : BLE-H mode
Power Rating : AC 120V/ 60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK

CHICALO			Antenna Factor				Limit Line		Remark
	MHz	dBu∇		dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								Peak Average

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC Condition

EUT Model : CT8W

Test mode : BLE-H mode
Power Rating : AC 120V/ 60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: REMARK

	3860	Antenna Factor				
2		<u>dB</u> /m				
	2483.500 2483.500					

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2009 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 4.JUN.2015 21:35:13

30MHz~25GHz

Middle channel

Date: 4.JUN.2015 21:32:24

30MHz~25GHz

Highest channel

Date: 4.JUN.2015 21:31:55

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.4:200)9							
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:									
	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Valu								
	Above 1GHz Peak 1MHz 3MHz Peak Va								
	Above 1GHZ RMS 1MHz 3MHz Averag								
Limit:									
	Frequency		Limit (dBuV/m	@3m)	Remark				
	30MHz-88MHz		40.0		Quasi-peak Value				
	88MHz-216MHz		43.5		Quasi-peak Value				
	216MHz-960MH	Z	46.0		Quasi-peak Value				
	960MHz-1GHz		54.0 54.0		Quasi-peak Value				
	Above 1GHz	-	74.0		Average Value Peak Value				
Test Procedure:	the ground to determin 2. The EUT of antenna, we tower. 3. The antenrest the ground Both horizon make the make the make the make the make to find the rest and to find the rest and to find the make the limit specified Bake 10 dBake 10 dB	at a 3 meter e the position was set 3 m hich was mount and ver neasurement. Suspected em the anter the rota table maximum reasurement with the rota table and width with sion level of the cified, then the would be reparation.	the top of a camber. The camber. The of the highesters away funted on the trained from one the maximutical polarizations was turned ding. In Maximum Hore EUT in peresting could be orted. Other did be re-tested.	table was st radiation. From the in op of a variance meter to um value of ions of the EUT was and to height from 0 deg to Peak Dold Mode. The stopped wise the end one by on	le 0.8 meters above rotated 360 degrees				

Below 1GHz

Horizontal:

Site

3m chamber FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Tablet PC Model : CT8W Test mode : BLE Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: REMARK :

	Freq		Intenna Factor				Limit Line		Remark
	MHz	−dBuV	dB/m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	74.919	40.17	7.80	0.82	29.68	19.11	40.00	-20.89	QP
2	79.800	38.63	8.54	0.85	29.64	18.38	40.00	-21.62	QP
2	180.017	42.90	9.68	1.36	28.97	24.97	43.50	-18.53	QP
4	211.527	36.43	10.93	1.44	28.76	20.04	43.50	-23.46	QP
5	286.982	37.37	12.81	1.73	28.47	23.44	46.00	-22.56	QP
6	331.355	37.10	13.79	1.88	28.52	24.25	46.00	-21.75	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT : Tablet PC : CT8W Model Test mode : BLE Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5C

Huni:55%

Test Engineer: REMARK :

	Freq		Antenna Factor						Remark	
_	MHz	dBu∜	<u>dB</u> /π		<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>		-
1	31.955	38.05	12.32	0.45	29.97	20.85	40.00	-19.15	QP	
2	74.919	47.38	7.80	0.82	29.68	26.32	40.00	-13.68	QP	
2 3 4 5	84.405	43.74	10.16	0.88	29.60	25.18	40.00	-14.82	QP	
4	91.175	40.49	12.16	0.92	29.56	24.01	43.50	-19.49	QP	
5	182.559	37.57	9.92	1.36	28.95	19.90	43.50	-23.60	QP	
6	228.490	34.17	11.57	1.52	28.66	18.60	46.00	-27.40	QP	

Above 1GHz

Test channel:			Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.05	31.53	8.90	40.24	45.24	74.00	-28.76	Vertical
4804.00	45.20	31.53	8.90	40.24	45.39	74.00	-28.61	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.24	31.53	8.90	40.24	36.43	54.00	-17.57	Vertical
4804.00	36.37	31.53	8.90	40.24	36.56	54.00	-17.44	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	46.24	31.58	8.98	40.15	46.65	74.00	-27.35	Vertical
4882.00	45.75	31.58	8.98	40.15	46.16	74.00	-27.84	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	37.64	31.58	8.98	40.15	38.05	54.00	-15.95	Vertical
4882.00	36.59	31.58	8.98	40.15	37.00	54.00	-17.00	Horizontal

Т	Test channel:			Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.20	31.69	9.08	40.03	46.94	74.00	-27.06	Vertical
4960.00	45.49	31.69	9.08	40.03	46.23	74.00	-27.77	Horizontal

Т	Test channel:			Highest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	37.34	31.69	9.08	40.03	38.08	54.00	-15.92	Vertical
4960.00	36.63	31.69	9.08	40.03	37.37	54.00	-16.63	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366