Choice Questions

[MHT-CET 2022]

1	Area of the region bounded by the curve $y = x^2 + 2$ and the lines $y = x$; $x = 0$ and $x = 3$				
,	a) $\frac{19}{2}$ sq. units	b)	00 110	c) 15 sq. units	

The area of region bounded by the Y – axis, $y = \cos x$, $y = \sin x$, when $0 \le x \le \frac{\pi}{4}$ is

a) $(\sqrt{2}-1)$ sq. units

b) $2(\sqrt{2}-1)$ sq. units

c) $(\sqrt{2}+1)$ sq. units

d) $\sqrt{2}$ sq. units

The area bounded by the curve $y = -x^2$, x - axis, x = 1 and x = 4 is

a) 10

b) $\frac{21}{2}$

c) 20

d) 21

4. The area of the region bounded by the line 2y + x = 8, X - axis and the lines x = 2 and x = 4 is

a) 5

b) 10

c) 4

- d) 6
- 5. The area (in sq. units) of the region bounded by parabola $y = x^2 + 2$ and the lines y = x + 1, x = 0 and x = 3 is

a) $\frac{17}{2}$

b) $\frac{15}{2}$

c) $\frac{15}{4}$

d) $\frac{21}{2}$

[MHT-CET 2021]

The area (in sq. units) of the region bounded by the parabola $x^2 = y$ and the line y = x is

a) $\frac{1}{2}$

b) $\frac{1}{6}$

c) $\frac{1}{3}$

d) $\frac{5}{6}$

The area of the region bounded by the curve $y^2 = 4x$ and the line y = x is

a) $\frac{8}{3}$

b) $\frac{5}{8}$

c) $\frac{3}{8}$

d) $\frac{3}{5}$

The area (in sq. units) bounded between the curve $x^2 = y$ and the line y = 4x is

a) 32

b) $\frac{8}{3}$

c) $\frac{1}{3}$

d) $\frac{16}{3}$

The area (in sq. units) bounded by the parabola $y^2 = 4ax$ and its latus rectum x = a is

a) $\frac{8}{3}a^2$

b) $\frac{2}{3}a^2$

c) $\frac{4}{3}a^2$

d) $8 a^2$

Area (in sq. units) bounded by the lines y = x, x = -1, x = 2 and the X – axis is

a) $\frac{1}{2}$

b) $\frac{3}{2}$

c) 5 2 d) $\frac{7}{4}$

[MHT-CET 2015] (JEE - 2015)

The area (in sq. units) of the region bounded by the curves $y + 2x^2 = 0$ and $y + 3x^2 = 1$ is

- d) $\frac{3}{4}$

[MHT-CET 2014] (JEE - 2014)

The area (in sq. units) of the region described by $\{(x, y) : y^2 \le 2x \text{ and } y \ge 4x - 1\}$ is

[MHT-CET 2013]

Area bounded by the curve $f(x) = \cos x$ which is bounded by the lines x = 0 and $x = \pi$ is

- a) 4 sq. units
- b) 1 sq. unit
- c) 2 sq. units
- d) 3 sq. units

[MHT-CET 2012]

The area of the region bounded by the curves $(x^2 + y^2 = 8)$ and $y^2 = 2x$ (in sq. units) is

- a) $2\pi + \frac{1}{2}$
- b) $\pi + \frac{1}{3}$ c) $2\pi + \frac{4}{3}$
- d) $\pi + \frac{4}{3}$

The area of the region bounded by the curves $y^2 = 8x$ and y = x in sq. unit is

- a) $\frac{64}{2}$
- b) $\frac{32}{3}$
- c) $\frac{16}{2}$

[MHT-CET 2011]

The area bounded by the parabola $y^2 = x$, straight line y = 4 and Y – axis (in sq. units) is

- c) $7\sqrt{2}$
- d) $8\sqrt{3}$

[MHT-CET 2010]

The area bounded by the curve $y = \sin^2 x$, X - axis and the lines x = 0 and $x = \frac{\pi}{2}$ is

- a) $\frac{\pi}{4}$ sq. units
- b) $\frac{\pi}{8}$ sq. units c) $\frac{\pi}{2}$ sq. units
- d) 1 sq. unit

[MHT-CET 2009]

The area bounded by the curves $y = x^2$ and y = 4x is

a) 12

[MHT-CET 2008]

The area formed by the lines $x^2 - y^2 = 0$ and x + 8 = 0 is 30.

d) 128 sq. units

- a) 16 sq. units
- b) 32 sq. units
- c) 64 sq. units

Application of Definite Integration

The area bounded by the curve y = x |x|, x-axis and the lines x = -1 and x = 1 is c) $\frac{3}{2}$ sq. units d) $\frac{2}{3}$ sq. units 31.

The area bounded by the x-axis and the curve y = x(x-2)(x+1) is

a) $\frac{27}{12}$ sq. units b) $\frac{37}{12}$ sq. units c) $\frac{27}{4}$ sq. units d) $\frac{37}{4}$ sq. units a) 12 sq. units b) 12 sq. units b) $12 \times (0, \infty)$ be a continuous function such that $f(x) = f(1-x), \forall x \in [-1, -2]$. Let $f: [-1, -2] \rightarrow (0, \infty)$ be a continuous function such that $f(x) = f(1-x), \forall x \in [-1, -2]$. 32.

If $R_1 = \int_{-1}^2 x f(x) dx$ and R_2 is the area of the region bounded by y = f(x), x = -1, x = 233. d) $3R_1 = R_2$

the x-axis, then

b) $2R_1 = R_2$

c) $R_1 = 3R_2$

If a curve $y = a\sqrt{x} + bx$ passes through the point (1, 2) and the area bounded by the 34.

curve, line x = 4 and x-axis is 8 sq. units, then

b) a = -3, b = 1 c) a = 3, b = -1 d) a = 3, b = 1The area of the region bounded by the curves $y = e^x$, $y = \log x$ and lines x = 1, x = 2 is 35. --- sq. units

a) $e^2 - e - 1$

c) $e^2 - e - 2 \log 2 - 1$

d) $e^2 - e - 2 \log 2 + 1$

The area of the region bounded by the curve $y = \sqrt{49 - x^2}$ and x-axis is 36.

a) 49π sq. units

b) 98 π sq. units c) $\frac{49\pi}{\lambda}$ sq. units d) $\frac{49\pi}{2}$ sq. units

The area of the smaller part of circle $x^2 + y^2 = a^2$ cut off by the line $y = \frac{a}{\sqrt{2}}$ is 37.

a) $\frac{a^2}{2}(\pi-2)$ sq. units

b) sq. units

c) $\frac{a^2}{4}(\pi-2)$ sq. units

d) $\frac{a^2}{4}(\pi-1)$ sq. units

The area of the region bounded by the parabola $y = x^2$ and the line y = x is b) $\frac{1}{3}$ sq. units c) $\frac{1}{4}$ sq. units d) $\frac{1}{6}$ sq. units

a) $\frac{1}{2}$ sq. units

The area of the region A = $\left\{ (x, y) : \frac{y^2}{2} \le x \le y + 4 \right\}$ is

a) 42 sq. units

40.

b) 36 sq. units

The area of the region enclosed by the curve $f(x) = \max \{ \sin x, \cos x, -x \}$ and the x-axis

c) $2+2\sqrt{2}$ sq. units

b) $4\sqrt{2}$ sq. units

[MHT - CET 2024]

The area in the first quadrant bounded by the curve $y = x^2 + 2$ and the lines y = x + 1,

a) $\frac{1}{3}$ sq. units

CET

2 and

y the

b) $\frac{2}{3}$ sq. units c) $\frac{5}{3}$ sq. units d) $\frac{8}{3}$ sq. units Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines

b) $\frac{\pi}{2}$ sq. units c) $\frac{\pi}{3}$ sq. units d) $\frac{\pi}{4}$ sq. units The area of the region bounded by hyperbola $x^2 - y^2 = 9$, and the latus rectum is

a) $3(\sqrt{2} - \log(\sqrt{2} + 1))$ sq. units

b) $4\left(\sqrt{2}-\log\left(\sqrt{2}+1\right)\right)$ sq. units

c) $9(\sqrt{2} - \log(\sqrt{2} + 1))$ sq. units

d) $18\left(\sqrt{2} - \log\left(\sqrt{2} + 1\right)\right)$ sq. units

44. The area of the region lying in the first quadrant by $y = 4x^2$, y = 2, y = 4, x = 0 is

a) $8+2\sqrt{2}$ sq. units

b) $8-2\sqrt{2}$ sq. units

c) $\frac{8-2\sqrt{2}}{3}$ sq. units

d) $\frac{8-2\sqrt{2}}{4}$ sq. units

The area of the region described by the curves $y^2 = 2x$ and y = 4x - 1 is

a) $\frac{15}{64}$ sq. units b) $\frac{9}{32}$ sq. units c) $\frac{7}{32}$ sq. units d) $\frac{5}{64}$ sq. units

The area bounded by $y = \sqrt{x}$ and the line x = 2y + 3, x-axis in first quadrant is

a) 18 sq. units

b) 9 sq. units

c) $\frac{34}{3}$ sq. units d) $2\sqrt{3}$ sq. units

The area of the region bounded by the curve $x^2 = 4y$ and straight line x = 4y - 2 is

a) $\frac{3}{4}$ sq. units

b) $\frac{5}{4}$ sq. units c) $\frac{7}{8}$ sq. units d) $\frac{9}{8}$ sq. units

The area of the region bounded by y - x = 2 and $x^2 = y$ is

b) $\frac{4}{3}$ sq. units c) $\frac{16}{3}$ sq. units d) $\frac{9}{2}$ sq. units If the area bounded by the curves $ay^2 = x$ and $ax^2 = y$, a > 0 is 1 sq. units, then a =

a) 1

b) $\frac{1}{\sqrt{2}}$

The area bounded by the curves $y = (x-1)^2$, $y = (x+1)^2$ and 4y = 1 is b) $\frac{1}{3}$ sq. units c) $\frac{1}{4}$ sq. units d) $\frac{1}{6}$ sq. units

a) $\frac{1}{2}$ sq. units