Une condition suffisante pour être L^p

Soit (X, \mathcal{A}, μ) un espace mesuré. On suppose μ σ -finie. Soit $1 < p, q < +\infty$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. Soit $f : X \to \mathbb{R}$ mesurable telle que pour tout $g \in L^q$ on ait f g intégrable. Alors $f \in L^p$.

Démonstration. Le résultat est intéressant car il ne demande pas qu'il existe C>0 telle que pour tout $g\in \mathrm{L}^q$, $|\int_X fg\,\mathrm{d}\mu|\leq C\|g\|_{\mathrm{L}^q}$, c'est-à-dire la continuité de la forme linéaire $T_f:g\mapsto \int_X fg\,\mathrm{d}\mu$ sur L^q , ce qui par le théorème de représentation de Riesz (cf. remarque ci-dessous), donnerait bien la conclusion. Montrons en fait que cette continuité a bien lieu avec notre hypothèse.

Comme L^q est un espace de Banach, on dispose du théorème du graphe fermé. Supposons donc que (g_n) converge vers 0 dans L^q et que $(T_f(g_n))$ converge. Comme (g_n) converge vers 0 dans L^q alors par une réciproque partielle au théorème de convergence dominée de Lebesgue (voir par exemple le théorème IV.9 de $[\ref{q}]$), on peut extraire de (g_n) une sous suite, $(g_{\varphi(n)})$ qui converge presque partout vers 0 et telle qu'il existe $h\in L^q$ avec $|g_{\varphi(n)}|\le h$ pour tout $n\in \mathbb{N}$ et presque tout $x\in X$, et donc $|fg_{\varphi(n)}|\le fh$ qui est intégrable par notre hypothèse. Par convergence dominée, on a alors $T_f(g_{\varphi(n)}) \underset{n\to +\infty}{\longrightarrow} 0$. Mais comme la suite $(T_f(g_n))$ est supposée convergente, alors par unicité sa limite est 0. Par le théorème du graphe fermé, T_f est une forme linéaire continue sur L^q .

REMARQUE. Il est vrai dans tout espace mesuré que le dual de L^p est isométriquement isomorphe à L^q (voir [?]) donc il existe $F \in L^p$ telle que $\int_X Fg \, d\mu = \int_X fg \, d\mu$ pour tout $g \in L^q$. Cependant, pour en déduire que f = F presque partout il faut supposer μ σ -finie.

En effet, supposons que F et f ne sont pas égales presque partout. Alors il existe $0<\varepsilon<1$ tel que $|F-f|>\varepsilon$ sur un $E\subset X$ avec $\varepsilon<\mu(E)<1$ (c'est pour cette dernière inégalité qu'on utilise le fait que μ est σ -finie). Posons alors $g=\frac{|F-f|}{F-f}\mathbf{1}_E\in L^q$. On a alors $0=\int (F-f)g=\int |F-f|>\varepsilon^2$ ce qui est absurde.