

# PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification 6:                                                                                                                                                                                                                                                                                                                      |               | (11) International Publication Number: WO 95/24268                                                                |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| B01J 31/02, 31/14                                                                                                                                                                                                                                                                                                                                                | A1            | (43) International Publication Date: 14 September 1995 (14.09.95)                                                 |  |  |  |  |  |
| 21) International Application Number: PCT/US95/02603 22) International Filing Date: 3 March 1995 (03.03.95)                                                                                                                                                                                                                                                      |               | (81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). |  |  |  |  |  |
| (30) Priority Data:<br>08/209,669 10 March 1994 (10.03.94)                                                                                                                                                                                                                                                                                                       | τ             | Published With international search report.                                                                       |  |  |  |  |  |
| (71) Applicant: NORTHWESTERN UNIVERSITY [US/<br>Clark Street, Evanston, IL 60208 (US).                                                                                                                                                                                                                                                                           | US]; 6        | 33                                                                                                                |  |  |  |  |  |
| (72) Inventors: MARKS, Tobin, J.; 2300 Central Park<br>Evanston, II. 60201 (US). JA, Li; Apartment 3<br>North Sheridan Road, Chicago, II. 60626 (US).<br>Ximmin; Apatment 703, 800 Hinman Avenue, Eva<br>60202 (US).                                                                                                                                             | 13, 71<br>YAN | 20<br>G,                                                                                                          |  |  |  |  |  |
| (74) Agent: FENNELLY, Richard, P.; Akzo Nobel Inc., stone Avenue, Dobbs Ferry, NY 10522 (US).                                                                                                                                                                                                                                                                    | 7 Livin       | g-                                                                                                                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
| (54) Title: METALLOCENE CATALYST CONTAINING                                                                                                                                                                                                                                                                                                                      | G BUL         | KY ORGANIC GROUP                                                                                                  |  |  |  |  |  |
| (57) Abstract                                                                                                                                                                                                                                                                                                                                                    |               |                                                                                                                   |  |  |  |  |  |
| An ionic metallocene catalyst for olefin polymerisation which comprises: (1) a cyclopentadienyl-type llgand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising borno substituted with halogenated, such as terta fluoro, aryl substitution, such as para-sily i-burlydimethyl. |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                   |  |  |  |  |  |

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT | Austria                  | GB | United Kingdom               | MR | Mauritania               |
|----|--------------------------|----|------------------------------|----|--------------------------|
| AU | Australia                | GE | Georgia                      | MW | Malawi                   |
| BB | Barbados                 | GN | Guinea                       | NE | Niger                    |
| BE | Belgium                  | GR | Greece                       | NL | Netherlands              |
| BF | Burkina Faso             | HU | Hungary                      | NO | Norway                   |
| BG | Bulgaria                 | IE | Ireland                      | NZ | New Zealand              |
| BJ | Benin                    | IT | Italy                        | PL | Poland                   |
| BR | Brazil                   | JP | Japan                        | PT | Portugal                 |
| BY | Belarus                  | KE | Kenya                        | RO | Romania                  |
| CA | Canada                   | KG | Kyrgystan                    | RU | Russian Federation       |
| CF | Central African Republic | KP | Democratic People's Republic | SD | Sudan                    |
| CG | Congo                    |    | of Korea                     | SE | Sweden                   |
| CH | Switzerland              | KR | Republic of Korea            | SI | Slovenia                 |
| CI | Côte d'Ivoire            | KZ | Kazakhstan                   | SK | Slovakia                 |
| CM | Cameroon                 | LI | Liechtenstein                | SN | Senegal                  |
| CN | China                    | LK | Sri Lanka                    | TD | Chad                     |
| CS | Czechoslovakia           | LU | Luxembourg                   | TG | Togo                     |
| CZ | Czech Republic           | LV | Latvia                       | TJ | Tajikistan               |
| DE | Germany                  | MC | Monaco                       | TT | Trinidad and Tobago      |
| DK | Denmark                  | MD | Republic of Moldova          | UA | Ukraine                  |
| ES | Spain                    | MG | Madagascar                   | US | United States of America |
| FI | Finland                  | ML | Mali                         | UZ | Uzbekistan               |
| FR | France                   | MN | Mongolia                     | VN | Viet Nam                 |
| GA | Gabon                    |    |                              |    |                          |

- 1 -

#### METALLOCENE CATALYST CONTAINING BULKY ORGANIC GROUP

This invention was made with Government support under Contract No. 86ER 13511 awarded by the Department of Energy. The Government has certain rights in this invention.

#### BACKGROUND OF THE INVENTION

5

10

15

20

25

30

Metallocene cationic salts of the general type  $\operatorname{Cp}_2MR^+X$  (Cp being a cyclopentadienyl-type ligand; M being a Group IVB metal such as titanium, zirconium, or hafnium, R being alkyl, aryl or hydride; and X being a weakly coordinating anion form the basis for a large family of active, efficient and selective olefin polymerization catalysts. The performance of these systems is exceedingly sensitive to the nature of X with X being, preferably, RMAO (MAO being methylaluminoxane), RB( $C_0F_3$ ), and B( $C_0F_3$ ), While B( $C_0F_3$ ), appears to give the most active catalysts, such catalysts suffer from insolubility and thermal instability.

U.S. Patent No. 5,153,157 to G. G. Hlatky et al. discloses catalyst systems in which the anion is said to be bulky, labile and non-coordinateable with the Group IV metallocene containing component. Despite a rather generalized disclosure of possible substitution possibilities on the aromatic hydrocarbon groups of the anion, this patent only exemplifies the use of tetraphenyl borate and tetrapentafluorophenyl borate species without any suggestion that the presence of certain types of substitution on these structures would yield systems having enhanced solubility and thermal stability characteristics. There is, furthermore, no enabling description as to how such enhanced systems might be made.

- 2 -

#### DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

The present invention relates to a modification of the aforementioned type of catalyst systems by providing a weakly coordinating anion comprising boron substituted with halogenated aryl substituents containing silylalkyl substitution. The presence of silylalkyl substitution on the aryl moiety, preferably in the para-position increases the solubility and thermal stability of the resulting metallogene salts.

It is within the contemplation of the present invention that a variety of general boron-containing structures can be employed in accordance with the present invention. For example, boron tetraaryl structures in which the four arvl groups are phenyl containing four fluorine substituents and a bulky "R" group in the ortho, meta or para-position to increase the solubility and thermal stability of the catalyst system are contemplated herein. Representative R groups include C1 to C20 alkyl or C, to Cm alkyl-substituted group 14 metalloids (e.g., silicon, germanium, or tin). Also contemplated are analogous boron species where the aryl moiety can comprise a biphenylene structure in which the phenyl ring closest to the boron atom contains four fluorine substituents with the more remote phenyl ring containing four fluorine substituents and the type of R group defined above. If desired, the biphenylene configuration of the aryl substituents can be reconfigured to a naphthyl configuration with the same type of R group being used to improve the solubility and thermal stability of the catalyst that results as compared to one not containing the bulky R substituent.

The silylalkyl substitution, which represents a preferred embodiment herein, is of the structure

- 3 -

with R' being the same or different and being selected from straight and branched alkyl, preferably lower alkyl of from one to four carbon atoms. Representative alkyl groups include methyl, ethyl and t-butyl. A particularly preferred silyl substituent comprises one t-butyl and two methyl groups in aryl substituents also containing four fluorine atoms. The thermal stability for such a system is significant since it has been found stable with no significant thermal decomposition to 100°C over a period of hours. In contrast, the known system

5

10

15

20

25

30

35

## Cp2"ZrCH3+B(C6F4)4,

Cp" being 1,2-dimethylcyclopentadienyl) is only stable below 0°C for significant periods of time.

The general type of procedure for making the desired metallocene catalyst of the present invention can be practiced by using the general type of procedure disclosed in Examples 1-4, below, which depict the synthesis of a particularly preferred embodiment of the invention.

Initially, a precursor for the anion can be formed, for example, by reaction of a halogenated benzene analog of the ultimately desired, non-silyl substituted structure, a suitable metallating agent, such as an alkyl lithium reagent, and a silylalkyl trifluoromethane sulfonate. The resulting reaction forms the desired silylalkyl-substituted halogenated benzene precursor for the subsequent step in which such a precursor is reacted with a suitable metallating agent, such as an alkyllithium reagent, and boron trihalide to form a lithium and borate-containing salt species which is in turn reacted with triphenylmethyl chloride to form the triphenyl carbenium precursor. This resulting precursor can be reacted with a selected bis(cyclopentadienyl) zirconocene reagent to form the ultimately desired catalyst salt.

If desired, the catalyst salt can be generated insitu by mixing the desired metallocene (e.g., Cp<sub>2</sub>Zr(CH<sub>3</sub>)<sub>2</sub>)

- 4 -

and boron-containing reagent (e.g.,  $B(R)_3$ , where R is preferably a silyl-substituted tetrafluorophenyl group) just prior to polymerization.

The Examples which follow set forth certain embodiments of the present invention.

5

10

15

20

25

## EXAMPLE 1

Synthesis of 1-(Dimethy1-t-Buty1sily1)-2,3,5,6-Tetrafluorobenzene (C,HF,TBS; TBS = t-buty1, dimethy1sily1)

The compound, 1-bromo-2,3,5,6-tetrafluorobenzene, Combre (14.8 q, 64.6 mmol) was dissolved in diethyl ether (200 ml) in a 500 ml flask and was cooled down to -78°C. Butyllithium (40 ml, 1.6 M in hexanes) was then added to the flask dropwise while the solution was being stirred vigorously. After it had been stirred for one hour, tbutyldimethylsilyl trifluoromethane sulfonate (17.0 g, 64.6 mmol) was injected via a syringe. The reaction mixture was allowed to slowly warm up to room temperature over a period of eight hours, and the resulting suspension was filtered. After the solvent was removed from the filtrate at 25°C under reduced pressure, the nonvolatile residue was distilled and a colorless liquid product was collected (45°C/0.8 mm Hg). Yield, 80%, 1H NMR(CCl<sub>2</sub>D<sub>2</sub>): 8 0.40 (t, 6H), 0.93 (s, 9H), 7.10 (m, 1H); <sup>13</sup>C NMR(CCl<sub>2</sub>D<sub>2</sub>): δ -3.7(t), 18.1(s), 26.5(s), 108.0(t), 144.8(m), 148.1(t), 151.4(t).

PCT/US95/02603

WO 95/24268

5

10

15

20

- 5 -

#### EXAMPLE 2

Synthesis of Bis(Diethyl Ether)Lithium Tetrakis-(4-Dimethyl-t-Butylsilyl-2,3,5,6,-Tetrafluorophenyl) Borate [(Et.O).Lil\*[B(C\_F\_TBS),1]

The compound synthesized in Example 1. namely. 1-(dimethyl-t-butylsilyl)-2,3,5,6-tetrafluorobenzene, (5.4 g. 20.4 mmol) was dissolved in diethyl ether (100 ml) in a 250 ml flask and was cooled down to -78°C. Butyllithium (13 ml. 1.6 M in hexanes) was then added into the flask dropwise while the solution was being stirred vigorously. After it had been stirred for two hours, boron trichloride (4.2 ml, 1.0 M in hexanes) was injected via a syringe. The reaction mixture was allowed to slowly warm up to room temperature over a period of eight hours, and the resulting suspension was filtered. The volume of the solution was reduced to 50 ml and then pentane (130 ml) was layered on top of it. The product was collected as large colorless crystals after pentane was allowed to diffuse into the solution over twenty-four hours, followed by filtration. Yield, 74%. HNMR( $C_6D_6$ ):  $\delta$  0.20 (s, 24H), 0.80 (m, 12H), 0.82 (s, 36H), 3.05 (q, 8H); 19F NMR(C,D,):  $\delta$  -129.4(b), -133.8(b).

- 6 -

#### EXAMPLE 3

Synthesis of Triphenylcarbenium Tetrakis(4-Dimethyl-t-Butylsilyl)-2,3,5,6-Tetrafluorophenyl) Borate [(C,H<sub>0</sub>,C)\*[B(C,FTBS)<sub>4</sub>].

5 The bis(diethyl ether)lithium tetrakis-4-(dimethyl-tbutylsily1)-2,3,5,6,-tetrafluorophenyl) borate synthesized in Example 2 (3.8 g, 3.1 mmol) and triphenylmethyl chloride (0.88 g, 3.1 mmol) were loaded in a 200 ml flask. As pentane (100 ml) was injected into the flask, the reaction mixture turned orange immediately. The slurry 10 was stirred for four hours at room temperature and was then filtered. The orange solid was collected and was placed in another 200 ml flask in which CH2Cl2 (100 ml) was added. The solution was filtered through to remove 15 lithium chloride, and then the volume of the filtrate was reduced to 50 ml. Pentane (100 ml) was added at this point to precipitate an orange solid. The product was washed with pentane (50 ml) again. Yield, 86%, 'H NMR(CCl<sub>2</sub>D<sub>2</sub>):  $\delta$  0.31 (s, 24H), 0.88 (s, 36H), 7.64 (d, 6H), 7.85 (t, 6H), 8.25 (t, 3H);  $^{19}$ F NMR(CCl<sub>2</sub>D<sub>2</sub>):  $\delta$  -133.0(b), 20 -144.5(b); <sup>13</sup>C NMR(CCl<sub>2</sub>D<sub>2</sub>):  $\delta$  -3.8(s), 17.8(s), 26.4(s), 108.4(s), 131.0(s), 140.2(s), 143.0(s), 144.0(s), 147.4(m), 149.6(m), 211.3(s). Anal. Calcd.: C, 61.55; H. 5.78; N, 0.00. Found: C, 61.83; H, 5.61; N, 0.00.

- 7 -

#### EXAMPLE 4

Synthesis of Bis(1,2-Dimethylcyclopentadienyl) Methyl Zirconium (I) Tetrakis(4-Dimethyl-t-Butylsilyl-2,3,5,6-Tetrafluorophenyl) Borate [Cp",2TCH,]†][B(CeF,TBS),4] (Cp"=1,2-dimethylcyclopentadienyl)

5

10

15

20

25

30

The triphenylcarbenium tetrakis (4-dimethyl-tbutylsily1)-t-butyl-2,3,5,6-tetrafluorophenyl] borate synthesized in Example 3 (390 mg, 0.30 mmol) and bis(1,2dimethylcyclopentadiene) zirconocene dimethyl (100 mg, 0.32 mmol) were loaded in a 25 ml flask. Toluene (15 ml) was vacuum-transferred into the flask at -78°C. The mixture was then warmed up to room temperature and was stirred for one hour. The resulting pale yellow solution was filtered and the volume of the solution was reduced to 5 ml. Then, pentane (15 ml) was vacuum-transferred into the flask to precipitate the product. The pale yellow product was collected after filtration. Yield, 75%. One thing that is worth mentioning is the outstanding thermal stability of this type of compounds with the anion applied in this patent among all those with other anions. compound was stable at 100°C for a minimum of two hours and no decomposition was observed by NMR. H NMR(C<sub>2</sub>D<sub>4</sub>): δ 0.21 (s. 24H), 0.34 (s. 3H), 0.83 (s. 36H), 1.37 (s. 6H), 1.61 (s, 6H), 5.00 (b, 2H), 5.69 (b, 2H), 5.97 (t, 2H); 19F NMR(C<sub>6</sub>D<sub>6</sub>) at 60°C:  $\delta = 129.6(b)$ , -131.0(b); <sup>13</sup>C NMR(C<sub>6</sub>D<sub>6</sub>):  $\delta = 3.9(s)$ , 12.5(s), 17.7(s), 26.4(s), 45.9(s), 108.1(s), 110.1(m), 111.8(s), 119.8(s), 133.5(b), 147.7(m), 150.9(m). Anal. Calcd.: C, 55.78: H. 6.02: N. 0.00. Found: C. 55.56; H. 6.01: N. 0.00.

- 8 -EXAMPLE 5

#### Polymerization of ethylene

5

10

15

25

30

Bis(1,2-dimethylcyclopentadienyl) methyl zirconium (I) tetrakis[(4-dimethyl-t-butylsilyl-2,3,5,6tetrafluorophenyl) borate synthesized in Example 4 (15 mg) was dissolved in toluene (3 ml) in a gas-tight vial in the glove-box. In the meantime, toluene (50 ml) was loaded in a 100 ml flask in the glove-box. The flask was then connected to a vacuum-line and was presaturated with 1.0 atmosphere of ethylene. With ethylene continuing bubbling and the toluene being stirred vigorously, two-thirds of the aforementioned solution of the catalyst was injected into the flask. The reaction could not be stirred in ten seconds due to the production of a large amount of polyethylene. It was quenched by methanol. A yield amount of 0.23 g of polyethylene was obtained. The polymer was collected by filtration and was dried under high vacuum.

#### EXAMPLE 6

# 20 Polymerization of propylene

Bis(1,2-dimethylcyclopentadieny1) methyl zirconium (I) tetrakis[(4-dimethyl-t-butylsily1)-2,3,5,6-tetrafluorophenyl] borate synthesized in Example 4 (15 mg) was loaded in a 100 ml flask in the glove-box. Toluene (50 ml) was vacuum-transferred into the above flask and the solution was exposed to one atmosphere propylene at the room temperature while being stirred vigorously. After being stirred for one-half hour, the reaction was quenched by methanol. A yield of 6.5 g of polypropylene was obtained.

- 9 -

The foregoing Examples, which are presented herein for illustrative purposes only, should not be construed in a limiting sense for that reason. The scope of protection sought is set forth in the claims which follow.

- 10 -

#### We Claim:

5

10

20

25

30

- 1. An ionic metallocene catalyst for olefin polymerization which comprises: (1) a cyclopentadienyltype ligand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising boron substituted with halogenated aryl substituents containing a bulky organic substituent to improve the solubility and thermal stability of the catalyst as compared to a catalyst containing tetrakis(pentafluorophenyl)boron as the anion.
- A catalyst as claimed in Claim 1 wherein the aryl substituent in the anion (2) is selected from the group consisting of a phenyl, biphenyl, and naphthyl configuration.
- 15 3. A catalyst as claimed in Claim 1 wherein the bulky organic substituent is selected from the group consisting of unsubstituted or substituted  $C_1$  to  $C_{20}$  alkyland  $C_1$  to  $C_{20}$  alkyl-substituted group 14 metalloids.
  - A catalyst as claimed in Claim 1 wherein the bulky organic substituent is an alkyl substituted silyl atom.
    - A catalyst as claimed in Claim 1 wherein the substitution on the halogenated aryl substituents is silyl t-butyldimethyl.
  - A catalyst as claimed in Claim 5 wherein the substitution is para- on the halogenated aryl substituents.
    - A catalyst as claimed in Claim 1 wherein the aryl substituents in the anion (2) contain four fluoro substituents.

- 11 -

- 8. A catalyst as claimed in Claim 5 wherein the aryl substituents in the anion (2) contain four fluoro substituents.
- A catalyst as claimed in Claim 6 wherein the aryl substituents in the anion (2) contain four fluoro substituents.

# INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (second sheet)(July 1992)\*

International application No. PCT/US95/02603

| A. CLASSIFICATION OF SUBJECT MATTER IPC(6): B013 13/02, 31/14 US CL: 520/103, 117, 154 According to International Patent Classification (IPC) or to both national classification and IPC |                                                                                                                                      |              |             |                                                                                |                                                                                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| B. FIELDS SEARCHED                                                                                                                                                                       |                                                                                                                                      |              |             |                                                                                |                                                                                     |  |  |  |
| Minimum d                                                                                                                                                                                | ocumentation searched (classification system followe                                                                                 | d by classi  | fication s  | symbols)                                                                       |                                                                                     |  |  |  |
| U.S. :                                                                                                                                                                                   | 502/103, 117, 154                                                                                                                    |              |             |                                                                                |                                                                                     |  |  |  |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched                                                            |                                                                                                                                      |              |             |                                                                                |                                                                                     |  |  |  |
| Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)                                                             |                                                                                                                                      |              |             |                                                                                |                                                                                     |  |  |  |
| C. DOC                                                                                                                                                                                   | CUMENTS CONSIDERED TO BE RELEVANT                                                                                                    |              |             |                                                                                |                                                                                     |  |  |  |
| Category*                                                                                                                                                                                | Citation of document, with indication, where a                                                                                       | ppropriate,  | of the re   | elevant passages                                                               | Relevant to claim No.                                                               |  |  |  |
| X,P                                                                                                                                                                                      | US, A, 5,387,568 (EWEN ET AL.)                                                                                                       | 1-4,7        |             |                                                                                |                                                                                     |  |  |  |
|                                                                                                                                                                                          | see column 5, lines 20-55; column 4, lines 63-65                                                                                     |              |             |                                                                                |                                                                                     |  |  |  |
| Y,P                                                                                                                                                                                      |                                                                                                                                      |              |             |                                                                                | 5,6,8,9                                                                             |  |  |  |
| ×                                                                                                                                                                                        | US, A, 5,153,157 (HLATKY ET A                                                                                                        | 1-4          |             |                                                                                |                                                                                     |  |  |  |
|                                                                                                                                                                                          | see column 4, line 58 to column                                                                                                      |              |             |                                                                                | es                                                                                  |  |  |  |
| Y                                                                                                                                                                                        | 45-68; column 9, lines 3-15; colu                                                                                                    | mn 13,       | lines       | 10-15.                                                                         | 5,6,8,9                                                                             |  |  |  |
|                                                                                                                                                                                          |                                                                                                                                      |              |             |                                                                                |                                                                                     |  |  |  |
| Furt                                                                                                                                                                                     | ner documents are listed in the continuation of Box C                                                                                | :. 🔲         | See pa      | tent family anne                                                               | х.                                                                                  |  |  |  |
|                                                                                                                                                                                          | ecial categories of cited documents:<br>cument defining the general state of the art which is not considered                         | т-           | date and no | nent published after to<br>at an conflict with the s<br>r theory underlying to | ne international filing date or priority<br>application but cited to understand the |  |  |  |
| to                                                                                                                                                                                       | be of particular relevance                                                                                                           | •x•          | document    | of particular relevan                                                          | ce: the claimed invention cannot be                                                 |  |  |  |
| .r. qo                                                                                                                                                                                   | rlier document published on or after the international filing date<br>cument which may throw doubts on priority claim(s) or which is |              | considered  | novel or cannot be or<br>ocument is taken alo                                  | ensidered to involve an inventive step                                              |  |  |  |
| cit<br>sp                                                                                                                                                                                | ed to establish the publication date of another citation or other<br>ecial reason (as specified)                                     | •ү•          | considered  | to involve an invi                                                             | ee; the claimed invention cannot be<br>entive step when the document is             |  |  |  |
| .O. qo                                                                                                                                                                                   | cument referring to an oral disclosure, use, exhibition or other                                                                     |              | combined 1  | with one or more other<br>ous to a person skille                               | er such documents, such combination                                                 |  |  |  |
| *P* do                                                                                                                                                                                   | current published prior to the international filing date but later than<br>priority date claimed                                     | .w.          | document o  | member of the same p                                                           | estent family                                                                       |  |  |  |
|                                                                                                                                                                                          | actual completion of the international search                                                                                        | Date of r    | nailing o   | the internationa                                                               |                                                                                     |  |  |  |
| 28 MAR                                                                                                                                                                                   | CH 1995                                                                                                                              |              |             | 05 MA                                                                          | Y 1995                                                                              |  |  |  |
| Box PCT                                                                                                                                                                                  | mailing address of the ISA/US<br>oner of Patents and Trademarks<br>n, D.C. 20231                                                     | <i>y</i> • • | RON GIE     | SSON 2                                                                         | ligh                                                                                |  |  |  |
| Facsimile N                                                                                                                                                                              | lo. (703) 305-3230 /                                                                                                                 | Telephon     | e No.       | (703) 308-0661                                                                 |                                                                                     |  |  |  |