Ultra low power integer-N ADPLL

Master's thesis project - meeting 7

Cole Nielsen
Department of Electronic Systems, NTNU
28 February 2020 (calendar week 9)

Overview

For this week...

- PLL floorplan
- (2) Loop filter V2
 - Area/pin location aligned with floor plan.
 - Simplified DSP operation.
 - Changeable filter coefficients.
- (3) Spur estimate.

PLL Floorplan

Loop filter

- Full PLL floorplan necessary to make reasonable placement of pins and to constrain size of loop filter.
- Total area = 0.0064 mm² (80 μ m x 80 μ m)
 - Active area = 0.00515 mm² (minus DECAP)
- Loop filter architecture simplified to reduce area into 30 μ m x 50 μ m.
- 10b CDAC utilizing minimum 1μm x 1μm APMOM caps.
 - Between 1.96-4.72 fF per unit cap (2-4.8 pF total), depending how many metal layers used.
 - Depends on arangement, however should fit in A_VDD either 25 μm x 50 μm or perhaps 30 μm x 50 μm.
- Include dedicated decap for analog to help with noise??
 25 μm x 50 μm will yield ca. 30 pF.
- Seperate power for analog/digital
 - Possibly 0.5 for digital and 0.8 for analog?
 Higher supply is better for supply rejection with VCO...

Renewed area comparison.

5nm FinFET state of art

 Sythesized PLL in TSMC 5nm FinFET [3] that has been fabricated, published in SSCL (2020). Area is 0.0036 mm², or 50 μm x 72 μm.

MDLL State of art

- Figure from 2019 JSSC paper [2] on a MDLL. Area is 0.0056 mm² in 28nm technology.
- FOM_r here is with normalization to a 200 MHz reference oscillator.
- This work uses higher power (1.45 mW), and higher reference (200 MHz), which perhaps explains better FOM.

Verdict: Competitive in area with state of art (not revolutionary though).

New loop filter.

PI-only with changeable filter coefficients.

- Original architecture with 2 feedforward/2 feedback filter coefficients becomes large (ca. $60 \mu m \times 60 \mu m$).
 - Implemented fixed pole at zero, and one each of tunable pole/zeros.
 - With N bit word size, requires 4x NxN array multiplier.
- Solution: reduce to only two feedforward programmable filter coefficients. This is a classical PI-controller.
 - Stability is straightforward, PLL dynamics simpler to model.
 - Uncompensated zero results in inherent peaking of phase noise spectrum.
- Also implemented: On-the-fly changeable filter coefficients to allow for gear switching of the PLL.

New loop filter.

PI-only with changeable filter coefficients.

 Current filter optimization yields the following minimum resolution requirements:

Mode	Sign	Integer	Fractional	Sum
Counter	1	4	5	10
BBPD	1	4	11	16

- Selection of the input word size xin has been made to equal the counter resolution (8 bit). Accounting for a sign bit this equates to 7 integer bits.
- Also implemented: On-the-fly changeable decimal location to allow for gear switching of the PLL.

New loop filter.

New split architecture.

- Now use split datapath for counter and BBPD modes.
- Reducing to only two feed forward coefficients allows for removal multipliers for BBPD use.
 - Now implemented with muxes.
 - Lower power/complexity, can use larger word for filter coefficients (24 bit) with little penalty, ie. adder complexity is \$\mathcal{O}(n \log n)\$, vs \$\mathcal{O}(n^2)\$ for multipliers.

Resolution/phase quantization effects

- Output of BBPD is quantized ± 1. With PI loop filter architecture, there are only 4 possible values that the output w can increment by:
 \[\begin{align*}
 b & & b & b \\ & & b & \end{align*}
 \, \begin{align*}
 & & b & b & b \\ & & & b & \end{align*}
 \, \begin{align*}
 & & b & b & b \\ & & & & \end{align*}
 \]
- In steady state, with the BBPD outputting a worst case sequence of +1/-1/+1/-1..., the output will toggle between $\lfloor b_0 b_1 \rfloor$ and $\lfloor -b_0 + b_1 \rfloor$.
 - Current optimization yields $b_0 = 8.899856$, $b_1 = -8.301153$
 - Thus output w will increment by +17, -18, +17, -18 ...
 - Essentially output will make large-ish jumps in frequency every reference cycle

Worst case estimate (for spurs)

- Worst case input sequence results in square wave frequency modulation, which in the phase domain creates a cyclostationary triangle wave with period f_{ref}/2. This creates SPURS at f_{ref}/2.
- In general, $f_{ref} >> K_{DCO}|b_0-b_1|$ (frequency deviation), so spurs are not generated at the deviation frequencies.
- With 1 LSB deviation per ref. cycle, a -62 dBc spur (SSB) is expected f_{ref}/2.
 - Under my current b₀, b₁, this spur will be -37 dBc.

Total phase noise estimate from resolution jitter.

- Cyclostationary (+1, -1, +1, -1, ...):
 - Under my system parameters, the total phase noise power from resolution effects is -34 dBc, essentially all of which is in the first spur at f_{ref}/2.

$$\Delta \Phi = \frac{2\pi |b_0 - b_1| K_{DCO}}{f_{ref}} \tag{1}$$

$$\sigma_{\Phi rj} = \frac{\pi |b_0 - b_1| K_{DCO}}{\sqrt{3} f_{ref}} \tag{2}$$

— **General note**: the phase noise from this source must << than target SNR for PLL application. Can use these relations to find limits for maximum K_{DCO} before resolution jitter is dominant.

Total phase noise estimate from resolution jitter.

Average case:

- · All transitions equally likely out of BBPD.
- Under my system parameters, the total phase noise power from resolution effects is -29.4 dBc (simulated).
- Phase noise is bimodal. The total RMS phase noise power is approximately equal to the absolute value of the distribution means.

$$\mu = \pm \frac{\pi |b_0 - b_1| K_{DCO}}{f_{rot}}, \qquad \sigma_{\Phi r j} \approx |\mu|$$
(3)

BBPD Gain.

Additional nonlinearity to an already nonlinear thing...

- Found an interesting dissertation on BBPD PLLs [3], which shows that the linearized BBPD gain model I have been using $(K_{BBPD} = 2/\sqrt{2\pi}\sigma_{\Phi_D})$ is not totally correct.
 - Due to BBPF-PLL resolution jitter, varies depending if resolution jitter or if random noise is the dominant component.
- Need to account for this in my filter optimization code...
- An approximation, with random/uncorrelated noise with $\sigma_{\Phi uc}$, and resolution jitter $\sigma_{\Phi rj}$ (based on variable substitution of [3]'s theory):

$$K_{BBPD} = rac{1}{\sqrt{2\pi}\sigma_{\Phi uc}} \left[1 + e^{-rac{1}{2} \left(rac{\sigma_{\Phi fj}}{\sigma_{\Phi uc}}
ight)^2}
ight]$$
 (4)

$$\sigma_{\Phi rj} \approx \frac{\pi |b_0 - b_1| K_{DCO}}{f_{ref}} \tag{5}$$

 Currently, I should be well into the random noise dominated regime.

Figure 4.5: Plot of K_{bpd} versus σ_{tjr} (gaussian jitter, NjK_T normalized to 1): K_{bpd} computed with a 101 states Markov Chain (thick solid), K_{bpd} approximated with a 3 states Markov Chain (thick dashed), asymptote $K_{bpd} = 1/(\sqrt{2\pi}\sigma_{t_{jr}})$ (thin solid), asymptote $K_{bpd} = 2/(\sqrt{2\pi}\sigma_{t_{jr}})$ (thin dashed).

Filter optimization

Need to add

- Modeling of BBPD jitter (extracted from circuit simulation).
- (2) Account for noise from limit cycle/phase resolution effects.
 - Adjust K_{BBPD} accordingly
- (3) Aliasing/folding of high frequency phase noise into bandwidth of t_{ref} due to sampled nature
 - Impossible to avoid...

Can maybe get better correlation between filter optimization results and discrete time simulation.

Synthesis/place and route

Loop filter layout.

First iteration at loop filter layout... still need to extract the circuit/LVS etc...

Architecture

Block Diagram

Power Targets (revised)

(Divider not necessary)

DCO	Phase detector	Digital (LF)	Other	SUM
50 μ W	10 μW	10 μW	0 ≤ 5 μW	\leq 70 $\frac{100}{\mu}$ μ W

Specification

System Performance Targets

Parameter	Value	Unit	Notes
Frequency	2.4-2.4835	GHz	2.4G ISM Band
Ref. frequency	16	MHz	Yields 6 channels
Power	\leq 70 $\frac{75}{\mu}$ μ W	μW	Minimize!
FSK BER	≤ 1e-2		GFSK* with f_{dev} = \pm 250 KHz
CNR	> 20	dBc	Yields -235 dB FOM _{jitter} ideally
Initial Lock Time	≤ 10	μs	Upon cold start
Re-lock Time	≤ 5	μs	Coming out of standby, $f_{error} < 1 \text{ MHz}$
Lock ∆f tolerance	100	kHz	
FOM _{jitter}	≤ -230	dB	For state of art in size/power
Area	< 0.01	mm ²	

^{*} Using BT=0.3, 1 MSymbols/s, 4 demodulated symbols averaged per bit to yield 250 kbps.

Specification

Component-level specs

Parameter	Value	Unit
Counter range	256 steps	coverage of 150-155
Divider ratio	150-155	(For non-counter based)
TDC resolution	≥ 155	steps/reference cycle
DCO gain K _{DCO}	10 ⁴	Hz/LSB
DCO tuning range	10	MHz
DCO DAC resolution	10	bit
DCO Phase noise	< -80	dBc/Hz @ $\Delta f = 10^6$ Hz, $f_c = 2.448$ GHz
DCO Power	≤ 50	μW
Digital filter word resolution	≤ 16	bits (power grows as $\mathcal{O}(n^2)$)
BB-PD jitter	≤ 12	ps _{rms}

Time plan (pt. 1)

Week #	Dates	Tasks	Outcomes
4	20.1 - 26.1	Finalize high level modeling	Component level specification
5	27.1 - 2.2	Establish test bench in Virtuoso	With ideal PLL implementation
6	3.2 - 9.2	Schem. design: phase detector	TDC - flash and counter based
7	10.2 - 16.2	Schem. design: phase detector	Bang-bang phase detector
8	17.2 - 23.2	RTL, synthesis, place&route	Digital loop filter
9	24.2 - 1.3	RTL, synthesis, place&route	Digital loop filter
10	2.3 - 8.3	Schem. design: oscillator	Ring DCO
11	9.3 - 15.3	Layout: oscillator	
12	16.3 - 22.3	CDAC	Schem+layout
13	23.3 - 29.3	Calibration	RTL/schem. for calibration
14	30.3 - 5.4	Flex week - schem. design	Finalize schematic level design
15	6.4 - 12.4	Easter	-
16	13.4 - 19.4	Layout	Phase detector
17	20.4 - 26.4	Layout	Oscillator

Legend: Done Current Revised

Time plan (pt. 2)

Week #	Dates	Tasks	Outcomes
18	27.4 - 3.5	Layout	Divider/calibration
19	4.5 - 10.5	Layout	Finalization/system integration
20	11.5 - 17.5	Flex week (layout) OR yield improvement	Depending on progress
21	18.5 - 24.5	Report writing	
22	25.5 - 31.5	Report writing	
23	1.6 - 7.6	Report writing	Deadline 8.6

Legend: Done Current Revised

References

- [1] Liu, B., Li, Z., Fu, X., Shirane, A., Kurosu, H., Nakane, Y., Masaki, S., Okada, K., Zhang, Y., Qiu, J., Huang, H., Sun, Z., Xu, D., Zhang, H., Wang, Y. and Pang, J. (2020). A Fully-Synthesizable Fractional-N Injection-Locked PLL for Digital Clocking with Triangle/Sawtooth Spread-Spectrum Modulation Capability in 5 nm CMOS. IEEE Solid-State Circuits Letters, pp.1-1.
- [2] Yang, S., Yin, J., Mak, P. and Martins, R. (2019). A 0.0056-mm2 -249-dB-FoM All-Digital MDLL Using a Block-Sharing Offset-Free Frequency-Tracking Loop and Dual Multiplexed-Ring VCOs. IEEE Journal of Solid-State Circuits, 54(1), pp.88-98.
- [3] N. Da Dalt, "Linearized analysis of a digital bang-bang PLL and its validity limits applied to jitter transfer and jitter generation", IEEE Trans. Circuits Syst. I, vol. 55, pp. 3663-3675, Dec. 2008.