3.2.1 (4.7). СДВИГ ФАЗ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

ДОПОЛНИТЕЛЬНОЕ ОПИСАНИЕ – 5 октября 2016 г.

В работе используются: звуковой генератор (ЗГ), двухканальный электронный осциллограф (ЭО), магазин ёмкостей, магазин сопротивлений, эталонная катушка индуктивности, резисторы, мост переменного тока.

Экспериментальная установка. Схема для исследования сдвига фаз между током и напряжением в цепи переменного тока представлена на рис. 3. Эталонная катушка L, магазин емкостей C и магазин сопротивлений R соединены последовательно и через дополнительное сопротивление r подключены к источнику синусоидального напряжения — звуковому генератору.

Рис. 3. Схема установки для исследования сдвига фаз между током и напряжением

Сигнал, пропорциональный току, снимается с сопротивления r, пропорциональный напряжению — с генератора. Оба сигнала подаются на универсальный осциллограф. Этот осциллограф имеет два канала вертикального отклонения, что позволяет одновременно наблюдать на экране два сигнала. В нашей работе это две синусоиды (рис. 3), смещённые друг относительно друга на расстояние x, зависящее от сдвига фаз между током и напряжением в цепи.

Измерение сдвига фаз удобно проводить следующим образом:

- 1) подобрать частоту развёртки, при которой на экране осциллографа укладывается чуть больше половины периода синусоиды;
 - 2) отцентрировать горизонтальную ось;
- 3) измерить расстояние x_0 (рис. 3) между нулевыми значениями одного из сигналов, что соответствует смещению по фазе на π ;
- 4) измерить расстояние x между нулевыми значениями двух синусоид и пересчитать в сдвиг по фазе: $\psi = \pi \cdot x/x_0$.

На рис. 3 синусоиды на экране ЭО сдвинуты по фазе на $\pi/2$.

Рис. 4. Схема установки для исследования фазовращателя

Схема фазовращателя, изображённая на рис. 4, содержит два одинаковых резистора R_1 , смонтированных на отдельной плате, магазин сопротивлений R и магазин емкостей C.

ЗАДАНИЕ

В работе предлагается исследовать зависимости сдвига фаз между током и напряжением от сопротивления в RC- и в RL-цепи; определить добротность колебательного контура, сняв зависимость сдвига фаз от частоты вблизи резонанса; оценить диапазон работы фазовращателя.

I. Подготовка приборов к работе

1. Соберите схему, изображённую на рис. 3. Установите на катушке индуктивности максимальное значение $L=50~{\rm M}\Gamma$ н. Для катушки со значением $L=500~{\rm M}\Gamma$ н рекомендации смотрите на её корпусе.

Для подключения магазина емкостей используйте клеммы «1» и «2′». В этом случае верхним рядом курбелей (ручек) можно менять ёмкость в интервале 0– 1 мк Φ . Показания курбелей суммируются. Установите значение C=0.5 мк Φ .

Для подключения магазина сопротивлений используйте клеммы 1 и 3. При этом работают все декады. Установите R=0.

С помощью множителя частоты 1 и лимба 2 генератора установите рабочую частоту $\nu=1$ к Γ ц; переключатель 4 — нагрузка генератора — поставьте в положение 5 Ом (для L=500 м Γ н нагрузка 600 Ом). Включите генератор. Потенциометр 3 позволяет менять величину выходного напряжения.

Настройте осциллограф согласно техническому описанию, расположенному в конце папки.

- II. Исследование зависимости сдвига фаз между током и напряжением от R в RC-цепи
- 2. В схеме, собранной согласно рис. 3, закоротите катушку, подключив оба провода, идущих к катушке, на одну клемму. Установите C=0,5 мк $\Phi,~\nu=1$ к Γ ц
 - а. Рассчитайте реактивное сопротивление цепи $X_1=1/(\Omega C)$. Циклическая частота $\Omega=2\pi\nu$.
 - б. Увеличивая сопротивление R от нуля до $10\cdot X_1$, проведите измерения сдвига фаз ψ (6–8 значений x/x_0); предварительно подберите шаги ΔR , для которых приращения x будут примерно одинаковы (кнопка «TRIG/ALT» ЭО отжата!). Периодически проверяйте положение нулевой линии синусоиды.
 - III. Исследование зависимости сдвига фаз от R в RL-цепи
- 3. В схеме, собранной согласно рис. 3, закоротите магазин емкостей. Установите $\nu=1~{\rm k}\Gamma$ ц, $L=50~{\rm m}\Gamma$ н (или $L=500~{\rm m}\Gamma$ н).
 - а. Рассчитайте реактивное сопротивление цепи $X_2 = \Omega L$.
 - б. Меняя сопротивление от 0 до $10 \cdot X_2$ (или до $R_{\rm max}$ для L=500 мГн), проведите измерения сдвига фаз ψ для 6–8 значений R.
 - IV. Исследование зависимости сдвига фаз от частоты в RCL-цепи
- 4. В цепи, собранной согласно рис. 3, установите значения $R=0,\,L=50$ мГн,C=0,5 мкФ (или L=500 мГн, C=0,05 мкФ). Рассчитайте резонансную частоту $\nu_0=1/(2\pi\sqrt{LC})$.

- а. Подбирая частоту 3Γ , добейтесь резонанса. При резонансе сдвиг фаз $\psi=0$, и нулевые значения двух синусоид должны совместиться, а при равенстве амплитуд синусоиды полностью совпадают.
- б. Оцените по картине на экране 90 диапазон изменения частоты, в котором сдвиг фаз меняется от $\pi/3$ до $-\pi/3$.
- в. Снимите зависимость сдвига фаз от частоты в этом диапазоне, меняя частоту в обе стороны от резонансного значения.

С изменением частоты меняется расстояние x_0 , которое занимает половина периода синусоиды, поэтому разумно каждый раз фиксировать отношение x/x_0 .

- г. Повторите измерения сдвига фаз для сопротивления $R=100~{\rm Om}.$
- 5. Запишите значения r и R_L активное сопротивление катушки, указанное на её крышке. Проверьте значения r, L и R_L с помощью моста E7-8.

V. Исследование работы фазовращателя

6. Соберите схему по рис. 4. Убедитесь, что выход ЗГ не заземлён. Установите $C=0.5~{\rm mk\Phi},~\nu=1~{\rm k\Gamma}$ ц. Оцените визуально диапазон изменения сдвига фаз при изменении R от 0 до 10 кОм.

Подберите сопротивление R, при котором сдвиг фаз равен $\pi/2$.

Обработка результатов

- 1. Для RC-цепи постройте графики $\psi = f(R_{\Sigma})$ и $\operatorname{ctg} \psi = f(\Omega C R_{\Sigma})$. Здесь R_{Σ} суммарное активное сопротивление цепи: $R_{\Sigma} = R + r$; $r \simeq 10 \text{ Ом}$ сопротивление резистора. С помощью первого графика определите сопротивление R для $\psi = \pi/2$ и сравните с рассчитанным; ко второму добавьте теоретическую зависимость.
- 2. Постройте графики $\psi = f(R_{\Sigma})$ и $\operatorname{ctg} \psi = f(R_{\Sigma}/\Omega L)$ для RL-цепи. Здесь $R_{\Sigma} = R + r + R_L$. С помощью первого графика определите сопротивление R для $\psi = \pi/2$ и сравните с рассчитанным; второй график сравните с теоретическим.
- 3. Постройте на одном листе графики $|\psi|=f(\nu/\nu_0)$ для R=0 и 100 Ом (величину ψ удобно откладывать в долях π). Определите по графикам добротность контура: $Q=\nu_0/(2\Delta\nu)$, где $2\Delta\nu/\nu_0$ ширина графика при сдвиге фаз $\psi=\pi/4$.
- 4. Рассчитайте добротность через параметры контура L, C и R.
- 5. Постройте векторную диаграмму для фазовращателя 1 ; с её помощью рассчитайте сопротивление магазина R_M , при котором сдвиг фаз между входным и выходным напряжениями равен $\pi/2$. Сравните расчёт с экспериментом.
- 6. Сведите результаты эксперимента в таблицу:

			Q	Фазовращ.
$L_{ m \scriptscriptstyle KAT}$	$R_{\rm M}$	R_{Σ}	Peз. кривая $f(LCR)$	$R_{\rm M}(\psi=\pi/2)$
	0			Эксп
	100			Teop

7. Оцените погрешности и сравните результаты.

Исправлено 5-Х-2016 г.

¹ Отложите по горизонтали вектор входного напряжения, укажите на нём точки 1, 2, 3 (см. рис. 4); зная, каков сдвиг фаз между напряжениями U_C и U_R (при едином токе) изобразите траекторию точки 4 при изменении величины R. Отложите вектор 3,4 для сдвига фаз $\psi=\pi/2$ и сравните соответствующие величины U_C и U_R .