Министерство образования Республики Беларусь

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ЯНКИ КУПАЛЫ»

А.А. Гринь

Задания к практическим и лабораторным занятиям по курсу «Аналитическая геометрия и высшая алгебра»

для студентов специальностей 1-310401 «Физика», 1-310402 «Радиофизика»

УДК 514.7 ББК 22.151.6 Г 85

Рецензенты: канд. физ.-мат. наук, доц. каф. мат. анализа В.А. Пронько; канд. физ.-мат. наук, доц. каф. диф. ур-ний и оптимального управления В.И. Булгаков

Рекомендовано советом математического факультета ГрГУ им. Я. Купалы.

Пособие предназначено для организации практических и лабораторных занятий по курсу «Аналитическая геометрия и высшая алгебра» со студентами, обучающимися по специальностям 1-310401 — Физика и 1-310402 — Радиофизика. По теме каждого практического занятия приводятся контрольные вопросы и задания для решения. Каждое лабораторное задание содержит 30 вариантов. В приложении собраны чертежи поверхностей второго порядка.

Пособие будет полезно студентам и преподавателям.

ISBN

Содержание

Предисловие4
Условные обозначения6
Рабочая программа курса25
Задания к практическим занятиям
Тема 1. Матрицы и операции над ними
Тема 2. Определитель матрицы
Тема 3. Обратная матрица. Ранг матрицы
Тема 4. Системы линейных уравнений
Тема 5. Однородные системы линейных уравнений
Тема 6. Векторы. Метод координат
Тема 7. Скалярное произведение векторов
Тема 8. Векторное и смешанное произведения векторов
Тема 9. Прямая линия на плоскости
Тема 10. Плоскость в пространстве
Тема 11. Прямая линия в пространстве
Тема 12. Кривые второго порядка
Тема 13. Поверхности второго порядка
Тема 14. Комплексные числа
Тема 15. Группа. Кольцо. Поле
Тема 16. Многочлены
Тема 17. Линейные пространства
Тема 18. Линейный оператор
Тема 19. Линейный оператор в евклидовом и унитарном про-
странствах
Тема 20. Квадратичные формы
Тема 21. Приведение уравнений фигур второго порядка к ка
ноническому виду
Тема 22. Жорданова форма матрицы
Задания к лабораторным занятиям
Ответы
Приложение. Чертежи поверхностей второго порядка
Рекомендуемая литература.

Предисловие

Настоящее пособие составлено на основе образовательных стандартов в соответствии с программой курса «Аналитическая геометрия и высшая алгебра» для студентов физико-технических факультетов университетов. Методы аналитической геометрии и высшей алгебры имеют широкое приложение в физике и технике, поэтому глубокое изучение данного курса необходимо не только для формирования математического кругозора и успешного усвоения других математических дисциплин; их знание в комплексе с умением решать геометрические и алгебраические задачи необходимо также для овладения специальными физическими дисциплинами.

В пособии представлены задания к практическим занятиям по 22 темам. По каждой теме сформулированы контрольные вопросы теоретического характера, знание которых необходимо для успешного решения задач. Предлагаются задачи и упражнения для организации аудиторной и самостоятельной работы; первые из них отмечены символом «•», вторые - «о». Предложено также достаточное число задач, которые можно использовать при составлении материалов к контрольным работам, зачетам и экзаменам. Ко всем задачам и упражнениям даны ответы.

В пособии содержатся также задания по всем темам курса к лабораторным работам. Каждое задание представлено в 30 вариантах, что позволяет организовать индивидуальную работу на лабораторных занятиях. Кроме того, в пособие включены рабочая программа курса, систематизированный список рекомендуемой литературы, приведен перечень используемых условных обозначений. В приложении представлены чертежи поверхностей второго порядка. Особенностью пособия является наличие в нем заданий физического содержания, которые могут быть выполнены с привлечением методов аналитической геометрии и высшей алгебры. Их решение будет способствовать уяснению студентами роли математических знаний в познании действительности, выработке навыков их применения к решению задач прикладного характера.

При составлении пособия автором учтен опыт преподавания аналитической геометрии и высшей алгебры студентам физических специальностей Гродненского государственного университета.

Условные обозначения

```
i, j – векторы ортонормированного базиса на плоскости
i, j, k — векторы ортонормированного базиса в пространстве
a \uparrow \uparrow b – векторы a и b сонаправлены
a \uparrow \downarrow b – векторы a и b противоположно направлены
ав - скалярное произведение векторов а и в
a \times b – векторное произведение векторов a и b
abc — смешанное произведение векторов a , b , c
(a \times b) \times c – двойное векторное произведение векторов a, b, c
np^-a – ортогональная проекция вектора a на вектор b
C – множество комплексных чисел
\text{Re } z — действительная часть комплексного числа z
\operatorname{Im} z — мнимая часть комплексного числа z
arg z — аргумент комплексного числа z
A_{m \times n} – матрица, состоящая из m строк и n столбцов
A_{"} – квадратная матрица порядка n
\det A, |A| — определитель матрицы A
rank A — ранг матрицы A
E - единичная матрица
A^T — матрица, транспонированная для матрицы A
A^{-1} — матрица, обратная для матрицы A
J_n(a) – клетка Жордана порядка n с числом a на диагонали
f: X \to Y – отображение f множества X в множество Y
f^* – оператор, сопряженный оператору f
P[x] — множество многочленов от переменной x с коэффи-
циентами из поля (кольца) Р
HOД(f(x), g(x)) — наибольший общий делитель многочле-
HOB f(x) \ \mu \ g(x)
```

 $C_{[a,b]}$ – множество всех непрерывных на отрезке [a,b] функ-

ций

Рабочая программа курса

	Название темы	Количество часов		
№ темы		лекций	ихпрактическ	хлабораторны
1	Матрицы и операции над ними	2	2	
2	Определитель матрицы	2	2	2
3	Обратная матрица. Ранг матрицы	2	2	
4	Системы линейных уравнений	2	1	
5	Однородные системы линейных уравнений	2	1	2
6	Векторы. Метод координат	2	2	
7	Скалярное произведение векторов	2	2	2
8	Векторное и смешанное произведения векторов	2	2	
9	Прямая линия на плоскости	2	2	
10	Плоскость в пространстве	2	2	2
11	Прямая линия в пространстве	2	2	
	Контрольная работа №1		2	
12	Кривые второго порядка	4	2	2
13	Поверхности второго порядка	2	2	
14	Комплексные числа	2	2	
15	Группа. Кольцо. Поле	2	1	2
16	Многочлены	2	1	
17	Линейные пространства	2	2	
18	Линейный оператор	2	2	
19	Линейный оператор в евклидовом и унитарном пространствах	4	2	2
20	Квадратичные формы	2	2	
21	Приведение уравнений фигур второго порядка к каноническому виду	2	2	2
22	Жорданова форма матрицы	2	2	
	Контрольная работа №2		2	
	Итого:			16

Задания к практическим занятиям

Тема 1. Матрицы и операции над ними

- **I.** Контрольные вопросы
- 1. Что называется матрицей?
- 2. Как обозначается элемент матрицы, стоящий на пересечении i -ой строки и j -го столбца?
 - 3. Какая матрица называется квадратной?
 - 4. Что называется порядком квадратной матрицы?
 - 5. Какая матрица называется нулевой?
 - 6. Какая матрица называется диагональной?
 - 7. Какая матрица называется единичной?
 - 8. Какие матрицы называются равными?
 - 9. Что называется произведением матрицы на число?
 - 10. Какая матрица называется противоположной данной?
 - 11. Что называется суммой двух матриц одинаковых размеров?
 - 12. Что называется разностью двух матриц одинаковых размеров?
 - 13. Назовите линейные операции над матрицами.
 - 14. Сформулируйте свойство коммутативности сложения матриц.
 - 15. Сформулируйте свойство ассоциативности сложения матриц.
- 16. Сформулируйте свойство существования нейтрального элемента относительно сложения матриц.
- 17. Сформулируйте свойство обратимости операции сложения матриц.
 - 18. Сформулируйте свойство умножения единицы на матрицу.
- 19. Сформулируйте свойство умножения матрицы на произведение двух чисел.
- 20. Сформулируйте свойство умножения матрицы на число относительно сложения чисел.
- 21. Сформулируйте свойство умножения матрицы на число относительно сложения матриц.
- 22. При каком условии матрицу $M_{_{m \times n}}$ можно умножить на матрицу $B_{_{p \times q}}$?
 - 23. Что называется произведением двух матриц?

- 24. Сформулируйте свойство умножения матрицы на единичную матрицу.
- 25. Сформулируйте свойство умножения матрицы на нулевую матрицу.
 - 26. Сформулируйте свойство ассоциативности умножения матриц.
- 27. Сформулируйте свойство дистрибутивности умножения матриц относительно сложения.
 - 28. Как возвести в натуральную степень квадратную матрицу?
 - 29. Какая матрица называется транспонированной для данной?
- 30. Какая матрица получится, если операцию транспонирования матрицы выполнить последовательно два раза?
- 31. Сформулируйте свойство транспонирования произведения матрицы на число.
 - 32. Сформулируйте свойство транспонирования суммы матриц.
- 33. Сформулируйте свойство транспонирования произведения двух матриц.

II. Задания для решения

1. Даны матрицы:

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 3 & 5 \\ 0 & 7 & -4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ -3 & 1 & 4 \\ 5 & -7 & 4 \end{pmatrix}, C = \begin{pmatrix} 0 & 0 & 0 \\ 2 & -2 & 1 \\ 3 & 4 & 5 \end{pmatrix}.$$

Найти: • a) 2A + 3B - C; ○ б) A - B + 2C.

2. Найти матрицу X, если:

• a)
$$2 \begin{pmatrix} -1 & 3 \\ 2 & 4 \\ 0 & 5 \end{pmatrix} + X = \begin{pmatrix} 1 & -7 \\ 2 & 8 \\ -3 & 9 \end{pmatrix};$$

• 6) $3X + \begin{pmatrix} 4 & -1 \\ 3 & 4 \end{pmatrix} = 2 \begin{pmatrix} -1 & 0 \\ 2 & -4 \end{pmatrix}.$

• 3. Найти матрицу, транспонированную к данной:

a)
$$\begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}$$
; 6) $\begin{pmatrix} 1 & -3 & 5 \\ -2 & 4 & 7 \end{pmatrix}$; B) $\begin{pmatrix} 2 & -5 & 6 \\ 4 & -1 & 0 \\ 6 & 8 & 3 \end{pmatrix}$.

4. Даны матрицы:

$$A = \begin{pmatrix} 0 & -1 & 3 \\ 2 & 1 & -1 \end{pmatrix}, B = \begin{pmatrix} 4 & -6 \\ 2 & 0 \\ -1 & 1 \end{pmatrix}.$$

Найти: • a) $2A - B^T$; ○ б) $2B^T + 3A$.

• 5. Найти матрицу А, если:

$$(2A)^T = \begin{pmatrix} 8 & -1 \\ 4 & 6 \end{pmatrix}.$$

• 6. Найти матрицу В, если:

$$(A+B)^T = \begin{pmatrix} 5 & 4 & 0 \\ -2 & 6 & 8 \\ 4 & 2 & 0 \end{pmatrix}, A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 4 \\ 5 & 0 & 0 \end{pmatrix}.$$

о 7. Найти ВА, если:

$$\left(A^T B^T\right)^T = \begin{pmatrix} 3 & -5 & 0 \\ 2 & 4 & 6 \end{pmatrix}.$$

8. Найти произведения матриц АВ и ВА, если они существуют:

• a)
$$A = \begin{pmatrix} -1 & 2 & 2 & 3 \end{pmatrix}, B^T = \begin{pmatrix} 1 & 0 & -3 & 1 \end{pmatrix};$$

• 6)
$$A = \begin{pmatrix} 5 & -1 & 0 & 2 \\ 3 & 4 & -1 & 0 \\ 3 & 2 & 1 & 5 \end{pmatrix}, B^T = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix};$$

$$\circ \ B) \ A = \begin{pmatrix} 1 & -2 & 5 & 3 \end{pmatrix}, \ B^T = \begin{pmatrix} 2 & 1 & 2 & 1 \\ 3 & 0 & 4 & -5 \end{pmatrix};$$

•
$$\varepsilon$$
) $A = \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$;

•
$$\partial$$
) $A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 9 & -5 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 \\ 5 & 6 \\ 0 & 3 \end{pmatrix};$

• e)
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ -1 & 0 & -2 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & -2 \\ 2 & 0 & -3 \\ 3 & 4 & 5 \end{pmatrix};$$

•
$$\mathcal{H}$$
) $A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$, $B = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$.

9. Вычислить:

• *a*) ABC, где

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 \\ 2 & -2 \\ 5 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 \\ -1 \end{pmatrix};$$

б) ABC, где

$$A = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 1 & 3 \\ 5 & 1 & 1 \\ 0 & 4 & 2 \end{pmatrix}, B = \begin{pmatrix} 3 & 1 \\ -4 & 5 \\ 0 & 2 \end{pmatrix}, C = \begin{pmatrix} -1 & 2 & 7 \\ 4 & 0 & 6 \end{pmatrix};$$

• 6)
$$\begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix}^3$$
; \circ 2) $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}^n$; $\exists \alpha = 0$, $\exists \alpha =$

e)
$$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}^n$$
; ж) $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}^n$.

10. Вычислить AB - BA, если:

• a)
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 1 & 1 \\ -4 & 2 & 0 \\ 1 & 2 & 1 \end{pmatrix}$;

$$\circ \ \textit{6}) \ \ A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ -1 & 2 & 1 \end{pmatrix}, \ B = \begin{pmatrix} -1 & 1 & 2 \\ -1 & 4 & 0 \\ 1 & -1 & 3 \end{pmatrix}.$$

11. Найти матрицы второго порядка, квадраты которых равны единичной матрице.							

Тема 2. Определитель матрицы

I. Контрольные вопросы

- 1. Что называется перестановкой?
- 2. В каком случае пара чисел в перестановке образует инверсию?
- 3. В каком случае перестановка называется четной, а в каком нечетной?
 - 4. Что называется определителем квадратной матрицы?
 - 5. Чему равен определитель транспонированной матрицы?
- 6. Чему равен определитель, у которого все элементы какойлибо строки (столбца) равны нулю?
- 7. Чему равен определитель матрицы, полученной из матрицы A перестановкой двух ее произвольных строк (столбцов)?
- 8. Чему равен определитель, у которого все элементы какойлибо строки (столбца) имеют общий множитель?
- 9. Чему равен определитель, содержащий две пропорциональные строки (столбца)?
- 10. Чему равен определитель, у которого все элементы какой-либо строки (столбца) представлены в виде суммы двух слагаемых?
- 11. Чему равен определитель, у которого какая-либо строка (столбец) является линейной комбинацией других его строк (столбцов)?
- 12. Чему равен определитель матрицы, полученной из матрицы A прибавлением к какой-либо ее строке (столбцу) другой ее строки (столбца), умноженной на произвольное число?
 - 13. Как вычисляется определитель второго порядка?
- 14. Как вычисляется определитель третьего порядка по правилу треугольника?
 - 15. Что называется минором матрицы?
- 16. Что называется минором, дополнительным к минору матрицы?
- 17. Для какой матрицы существует минор, дополнительный к ее минору?
- 18. Что называется алгебраическим дополнением минора (в частности, элемента) матрицы?

- 19. В чем состоит метод вычисления определителя с помощью разложения его по элементам строки (столбца)?
- 20. Опишите метод вычисления определителя с помощью приведения его к треугольному виду.
 - 21. Сформулируйте теорему Лапласа.
- 22. Чему равен определитель произведения двух квадратных матриц?

II. Задания для решения

1. Вычислить определители:

• a)
$$\begin{vmatrix} 2 & -1 \\ 3 & 5 \end{vmatrix}$$
; • 6) $\begin{vmatrix} a & b \\ ka & kb \end{vmatrix}$; • B) $\begin{vmatrix} \sin \alpha & \cos \alpha \\ \sin \beta & \cos \beta \end{vmatrix}$;
• T) $\begin{vmatrix} 1 & \log_b a \\ \log_a b & 1 \end{vmatrix}$; • A) $\begin{vmatrix} 121 & 283 \\ 221 & 183 \end{vmatrix}$; • e) $\begin{vmatrix} a & b & c \\ e & f & g \\ ka & kb & kc \end{vmatrix}$;
• K) $\begin{vmatrix} 1 & 2 & -3 \\ 4 & -5 & 8 \\ 5 & -3 & 5 \end{vmatrix}$; • 3) $\begin{vmatrix} -1 & 5 & 8 \\ 0 & 6 & 9 \\ 1 & 7 & 10 \end{vmatrix}$.

2. Найти $\det A$ и $\det B$, если:

• a)
$$A = \begin{pmatrix} -1 & 3 & 0 \\ 2 & 1 & -1 \\ -3 & 4 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 3 & 3\alpha \\ 2 & 1 & -1 + \alpha \\ -3 & 4 & 1 + 4\alpha \end{pmatrix}$;
• 6) $A = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 3 \\ 4 & 7 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 3 \\ 4 + \alpha & 7 & 1 + 3\alpha \end{pmatrix}$.

3. При каком значении lpha равны нулю следующие определители:

• a)
$$\begin{vmatrix} 3-\alpha & 2 \\ 2 & -\alpha \end{vmatrix}$$
, • 6) $\begin{vmatrix} 1 & 2 & \alpha \\ -1 & 0 & 4 \\ 1 & 2 & -3 \end{vmatrix}$, • B) $\begin{vmatrix} 3-\alpha & 0 & 0 \\ 2 & \alpha & 0 \\ 10 & -5 & 1 \end{vmatrix}$,

•
$$\Gamma$$
) $\begin{vmatrix} 1 & 2 & 5 \\ 0 & 7 & \alpha \\ 0 & 0 & -1 \end{vmatrix}$?

• 4. Определить x из уравнения:

$$\begin{vmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{vmatrix} = 0$$

○ 5. Дана матрица:

$$\begin{pmatrix}
2 & 0 & -1 & 4 & 5 \\
1 & 2 & 3 & 0 & 7 \\
4 & 1 & -4 & 3 & 5 \\
1 & 2 & 5 & -1 & 4 \\
3 & 0 & 7 & 1 & 5
\end{pmatrix}$$

Найти минор, дополнительный к минору M, если элементы минора M расположены во второй, четвертой и пятой строках, первом, третьем и пятом столбцах.

• 6. Дана матрица:

$$\begin{pmatrix}
3 & 4 & -7 & 1 \\
2 & 1 & 5 & 2 \\
3 & -1 & 4 & 6 \\
-7 & 0 & 5 & 1
\end{pmatrix}$$

Найти алгебраическое дополнение: a) минора $\begin{vmatrix} 2 & 5 \\ 3 & 4 \end{vmatrix}$; б) эле-

мента 6; в) элемента 0.

7. Вычислить определители:

• a)
$$\begin{vmatrix} 1 & 17 & 2 & 5 \\ 3 & 7 & -8 & 12 \\ 2 & 34 & 4 & 10 \\ 71 & 8 & 3 & -1 \end{vmatrix}; \bullet 6) \begin{vmatrix} 3 & 1 & -7 & 2 \\ 0 & 0 & 2 & 0 \\ 3 & 1 & -4 & 5 \\ 2 & 3 & 7 & 0 \end{vmatrix};$$

8. Вычислить определители, используя теорему Лапласа:

$$\bullet \text{ a)} \begin{vmatrix} 1 & 0 & 0 & -1 \\ -1 & 3 & 2 & 2 \\ 2 & 0 & 0 & 3 \\ 4 & -2 & 3 & 1 \end{vmatrix}; \circ \bullet \circ \begin{vmatrix} 2 & -1 & 3 & 1 & 1 \\ 4 & 3 & 0 & 0 & 0 \\ 1 & 2 & -1 & 3 & 2 \\ 1 & 2 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 & 0 \end{vmatrix}.$$

9. Пользуясь теоремой Лапласа, вычислить определители, предварительно преобразовав их:

a)
$$\begin{vmatrix} 3 & -5 & 1 & 4 \\ 1 & 3 & 0 & -2 \\ -3 & 5 & 2 & 1 \\ -1 & -3 & 5 & 7 \end{vmatrix}; 6) \begin{vmatrix} 3 & 1 & -1 & 4 & 1 \\ 4 & 1 & -1 & 4 & 6 \\ 6 & -2 & 3 & 6 & 8 \\ 2 & 1 & -1 & 3 & 4 \\ 5 & -2 & 3 & 6 & 1 \end{vmatrix}.$$

10. Числа 185, 518, 851 делятся на 37. Доказать, что определитель $\begin{vmatrix} 1 & 8 & 5 \\ 5 & 1 & 8 \\ 8 & 5 & 1 \end{vmatrix}$ делится на 37.

Тема 3. Обратная матрица. Ранг матрицы

- **I.** Контрольные вопросы
- 1. Какая матрица называется обратной для данной матрицы?
- 2. Какая матрица называется невырожденной, а какая вырожденной?
- 3. Является ли произведение двух невырожденных матриц невырожденной матрицей?
- 4. Сформулируйте необходимое и достаточное условие существования обратной матрицы.
 - 5. Какая матрица является обратной для матрицы A^{-1} ?
- 6. Чему равна обратная матрица для произведения двух невырожденных матриц?
- 7. Чему равна обратная матрица для матрицы, возведенной в натуральную степень?
- 8. Чему равна обратная матрица для транспонированной матрицы?
 - 9. Чему равен определитель обратной матрицы?
- 10. В чем заключается способ нахождения обратной матрицы с помощью алгебраических дополнений?
 - 11. Что называется рангом матрицы?
 - 12. Какие преобразования матрицы являются элементарными?
- 13. Сформулируйте теорему об инвариантности ранга матрицы относительно ее элементарных преобразований.
- 14. В чем заключается способ построения обратной матрицы с помощью элементарных преобразований?
- 15. Какие строки (столбцы) матрицы называются линейно независимыми, а какие линейно зависимыми?
 - 16. Какой минор матрицы называется базисным?
 - 17. Какие строки (столбцы) матрицы называются базисными?
 - 18. Сформулируйте теорему о базисном миноре матрицы.
- 19. Сформулируйте следствие из теоремы о базисном миноре матрицы.
 - 20. Какой минор называется окаймляющим минор матрицы?
- 21. Как вычисляется ранг матрицы с помощью окаймляющих миноров?

II. Задания для решения

• 1. Являются ли взаимно обратными матрицы:

$$A = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
?

2. Пользуясь определением обратной матрицы, найти обратные матрицы для данных матриц:

• a)
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
; • 6) $\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$; • b) $\begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$, r) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

3. Выяснить, при каких значениях λ существует матрица, обратная данной:

$$\bullet \text{ a)} \begin{pmatrix} 2-\lambda & 1 & 1 \\ 1 & 2-\lambda & 1 \\ 1 & 1 & 2-\lambda \end{pmatrix}, \circ 6) \begin{pmatrix} -1 & 2 & \lambda \\ \lambda & 3 & 0 \\ \lambda-1 & 5 & \lambda \end{pmatrix}.$$

4. Найти матрицы, обратные для данных матриц:

• a)
$$\begin{pmatrix} -1 & 2 \\ -3 & 5 \end{pmatrix}$$
, \circ 6) $\begin{pmatrix} 2 & -3 \\ 1 & -4 \end{pmatrix}$, • B) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$,

•
$$\Gamma$$
) $\begin{pmatrix} 3 & 0 & 1 \\ -1 & 2 & 3 \\ 2 & 4 & 1 \end{pmatrix}$, $\circ \pi$) $\begin{pmatrix} -3 & 1 & 9 \\ -5 & -3 & 8 \\ -4 & -1 & 5 \end{pmatrix}$.

$$\mathbf{e}, \begin{pmatrix} 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{6} & 0 & 0 \\ \frac{1}{12} & 0 & 0 & 0 \end{pmatrix}, \mathbf{x}, \begin{pmatrix} 1 & -3 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

5. Вычислить $(AB)^{-1}$ и $(\alpha A)^{-1}$, если:

• а)
$$A^{-1} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$$
; $B^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$, $\alpha = 5$;
• б) $A^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -4 \end{pmatrix}$; $B^{-1} = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 3 & -5 \\ 2 & -2 & 1 \end{pmatrix}$, $\alpha = -3$.
6. Решить матричные уравнения:

6. Решить матричные уравнения:

• a)
$$\begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix} X = \begin{pmatrix} 9 & 10 \\ 1 & -5 \end{pmatrix}; \circ 6) X \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix};$$

• в) $\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} X \begin{pmatrix} 1 & 0 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} -2 & -12 \\ 1 & -4 \end{pmatrix};$

• г) $X \begin{pmatrix} 3 & -5 \\ 9 & -15 \end{pmatrix} = \begin{pmatrix} 9 & -15 \\ 6 & -10 \end{pmatrix};$

п) $X \begin{pmatrix} 1 & 2 & -1 \\ 0 & 4 & -2 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 5 \\ 1 & 14 & -7 \\ 1 & 20 & -12 \end{pmatrix};$

• е) $X \begin{pmatrix} 2 & 3 & 1 \\ 3 & 7 & 2 \\ 5 & 4 & 2 \end{pmatrix} = (10 & 3 & 3); \circ x;) \begin{pmatrix} 5 & -6 & 4 \\ 3 & -3 & 2 \\ 4 & -5 & 2 \end{pmatrix} X = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix};$

1) $X \begin{pmatrix} 1 & -1 & 0 \\ 2 & 4 & -1 \\ 0 & 1 & 2 \end{pmatrix} X + \begin{pmatrix} 1 & 2 \\ -1 & 4 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} -1 & 6 \\ -1 & 2 \\ 5 & 12 \end{pmatrix};$

1) $X \begin{pmatrix} 2 & -1 & 3 \\ 3 & -2 & 1 \\ 5 & -4 & 0 \end{pmatrix} X = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}.$

7. Для каждой матрицы найти ее ранг r и указать один из базисных миноров M:

• a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$
; • 6) $\begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$; • B) $\begin{pmatrix} 1 & 2 \\ -1 & 3 \\ 2 & 5 \end{pmatrix}$; • F) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}$;
• AD) $\begin{pmatrix} -2 & -1 & 3 \\ 4 & 2 & -6 \\ 2 & 1 & -3 \end{pmatrix}$; • e) $\begin{pmatrix} 2 & 1 & -4 \\ 4 & 2 & 0 \\ 1 & -3 & 4 \end{pmatrix}$;
• AD) $\begin{pmatrix} 1 & 3 & 0 & 0 & 0 \\ 2 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 3 \end{pmatrix}$; • 3) $\begin{pmatrix} -1 & 3 & 5 \\ 2 & -6 & 0 \\ 1 & -3 & -5 \end{pmatrix}$;
• AD) $\begin{pmatrix} 1 & -2 & 5 & 4 \\ 2 & -4 & 1 & 7 \\ 3 & -6 & 6 & 11 \end{pmatrix}$; • K) $\begin{pmatrix} 1 & -1 & 2 & 3 & 4 \\ 2 & -2 & 4 & 6 & 3 \\ 0 & 2 & 0 & 0 & -1 \end{pmatrix}$; $\begin{pmatrix} 1 & 2 & -3 & 4 \\ 2 & 4 & -6 & 1 \\ -4 & -8 & 12 & 1 \\ -1 & -2 & 3 & 6 \\ 3 & 6 & -9 & 12 \end{pmatrix}$.

8. Вычислить ранг матриц:

$$\bullet \text{ a)} \begin{pmatrix} -1 & 0 & 2 & 4 \\ 2 & 1 & 3 & -1 \\ 1 & 1 & 5 & 3 \\ -4 & -2 & -6 & 2 \\ 0 & 1 & 7 & 7 \end{pmatrix}; \circ 6) \begin{pmatrix} 1 & 2 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 1 & 2 & -1 & 0 \\ 1 & 3 & 1 & 1 \\ 2 & 5 & 0 & 1 \end{pmatrix};$$

9. Найти ранг матрицы r в зависимости от действительного значения параметра λ :

$$\bullet \text{ a)} \begin{pmatrix} \lambda & 2 & 3 \\ 0 & \lambda - 2 & 4 \\ 0 & 0 & 7 \end{pmatrix}; \circ 6) \begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 3 & \lambda & -1 \end{pmatrix};$$

$$B) \begin{pmatrix} 0 & \lambda + 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \lambda^2 - 4 \end{pmatrix}; \Gamma) \begin{pmatrix} -1 & 2 & 3 & 4 \\ 0 & 1 & \lambda & 2 \\ 1 & -3 & 0 & -6 \\ -2 & 4 & 6 & 8 \end{pmatrix};$$

$$D) \begin{pmatrix} 1 & 2 & -1 & 1 \\ 4 & -1 & 3 & 0 \\ 5 & 1 & \lambda - 1 & 1 \\ 3 & \lambda & 4 & -1 \end{pmatrix}; e) \begin{pmatrix} \lambda & 1 & 1 & 3 & 1 \\ 1 & \lambda & 2 & -4 & 5 \\ \lambda & \lambda & -1 & 7 & -4 \\ 1 & 1 & 0 & 10 & 3 \end{pmatrix}.$$

10. Для каждой пары матриц проверить справедливость неравенства $rank(A+B) \le rankA + rankB$:

o a)
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix}$;

6)
$$A = \begin{pmatrix} -1 & 2 & 3 \\ 1 & 4 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \\ 1 & 0 & 4 \end{pmatrix}$;
B) $A = \begin{pmatrix} 1 & -1 & 4 & 0 \\ 2 & 3 & 1 & -1 \\ 5 & 0 & 1 & 2 \\ 3 & 2 & 5 & -1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 & 0 & 1 \\ 2 & 1 & 1 & -2 \\ 0 & 3 & 1 & 0 \\ -3 & 0 & 0 & 3 \end{pmatrix}$.

Тема 4. Системы линейных уравнений

I. Контрольные вопросы

- 1. Запишите общий вид системы из m линейных уравнений с n неизвестными.
- 2. Запишите матрицу и расширенную матрицу системы из m линейных уравнений с n неизвестными.
- 3. Запишите систему из m линейных уравнений с n неизвестными в матричном виде.
- 4. Что называется решением системы из m линейных уравнений с n неизвестными?
- 5. Что значит решить систему из m линейных уравнений с n неизвестными?
- 6. В каком случае система из m линейных уравнений с n неизвестными называется совместной, а в каком несовместной?
- 7. В каком случае система из m линейных уравнений с n неизвестными называется определенной, а в каком неопределенной?
- 8. Какая система из n линейных уравнений с n неизвестными называется вырожденной, а какая невырожденной?
- 9. Сколько решений имеет невырожденная система линейных уравнений?
- 10. Запишите решение невырожденной системы линейных уравнений с n неизвестными в матричном виде.
 - 11. Сформулируйте теорему Крамера.
- 12. Какие системы линейных уравнений с n неизвестными называются эквивалентными (равносильными)?
- 13. Какие преобразования системы линейных уравнений являются элементарными?
- 14. Сформулируйте критерий совместности системы из m линейных уравнений с n неизвестными (теорема Кронекера-Капелли).
- 15. Что можно сказать о количестве решений системы из m линейных уравнений с n неизвестными в зависимости от соотношения между рангом ее матрицы r и числом n?
- 16. Какие неизвестные неопределенной системы линейных уравнений с n неизвестными называются базисными, а какие свободными?

- 17. Сколько неизвестных неопределенной системы линейных уравнений с n неизвестными ранга r можно выбрать в качестве базисных, а сколько в качестве свободных?
- 18. В чем заключается метод последовательного исключения переменных (метод Гаусса) решения системы из m линейных уравнений с n неизвестными?

II. Задания для решения

1. Решить невырожденные системы линейных уравнений по формулам Крамера:

• a)
$$\begin{cases} x_1 + 2x_2 = 8, \\ 3x_1 + 4x_2 = 18; \end{cases} \circ 6) \begin{cases} 2x_1 - 3x_2 + x_3 = 5, \\ x_1 + 4x_2 - x_3 = -3, \\ 3x_1 + 2x_2 + 3x_3 = 1; \end{cases}$$
• B)
$$\begin{cases} 2x_1 - x_2 + 2x_3 = 1, \\ 3x_1 + 2x_2 - x_3 = 9, \quad \circ \Gamma \end{cases} \begin{cases} 7x_1 - 2x_2 - 3x_3 = -3, \\ x_1 + 5x_2 + x_3 = 14, \\ 3x_1 + 4x_2 + 2x_3 = 10; \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 - x_3 + x_4 = 4, \\ 4x_1 + 3x_2 - x_3 + 2x_4 = 6, \\ 8x_1 + 5x_2 - 3x_3 + 4x_4 = 12, \\ 3x_1 + 3x_2 - 2x_3 + 2x_4 = 6; \end{cases}$$
e)
$$\begin{cases} 2x_1 + 3x_2 + 11x_3 + 5x_4 - 2 = 0, \\ x_1 + x_2 + 5x_3 + 2x_4 - 1 = 0, \\ 2x_1 + x_2 + 3x_3 + 2x_4 + 3 = 0, \\ x_1 + x_2 + 3x_3 + 4x_4 + 3 = 0. \end{cases}$$

2. Решить системы линейных уравнений в матричном виде:

o a)
$$\begin{pmatrix} 1 & -2 & 3 \\ 4 & 9 & 1 \\ 6 & 5 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 17 \\ 16 \end{pmatrix}; \bullet 6) \begin{cases} 3x_1 + x_2 + x_3 = 2, \\ x_1 - 2x_2 + 2x_3 = -1, \\ 4x_1 - 3x_2 - x_3 = 5; \end{cases}$$

B)
$$\begin{cases} -2x_1 + 2x_2 - x_3 = -7, \\ x_1 - 3x_2 + x_3 = 6, \\ 3x_1 + x_2 + 2x_3 = 7; \end{cases} \bullet \Gamma) \begin{cases} x_1 - 2x_2 + x_3 = 0, \\ 2x_1 - x_2 - 1 = 0, \\ 3x_1 + 2x_2 - 2x_3 - 4 = 0. \end{cases}$$

 \circ 3. Решить систему AX = H, если:

$$A^{-1} = \begin{pmatrix} -1 & 2 & 0 \\ 3 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}, \ H = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

 $|x_1 - x_2 + x_3 - 2x_4| = -3;$

- 4. Решить систему EX = H, где E единичная матрица четвертого порядка, $H^T = \begin{pmatrix} 2 & 3 & -1 & 5 \end{pmatrix}$.
- 5. Исследовать системы линейных уравнений на совместность и в случае совместности решить методом Гаусса:

• a)
$$\begin{cases} 2x_1 - x_2 + x_3 = 0, \\ x_1 + 2x_2 + x_3 = 4, & 0 6) \end{cases} \begin{cases} 3x_1 + x_2 - x_3 = 3, \\ x_1 + 2x_2 - x_3 = 2, \\ 4x_1 + 3x_2 - 2x_3 = 4; \end{cases}$$
• B)
$$\begin{cases} 2x_1 + 3x_2 - x_3 = 1, \\ x_1 + 2x_2 + 3x_3 = 2; \end{cases}$$
• F)
$$\begin{cases} x_1 + 3x_2 - x_3 = 3, \\ 2x_1 + x_2 + 2x_3 = 5, \\ x_1 - x_2 + 3x_3 = 3, \\ 3x_1 + 4x_2 - 7x_3 = 0; \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + x_3 = -1, \\ 2x_1 + 3x_2 + 5x_3 = 3, \quad \bullet \text{ e}) \\ 3x_1 + 5x_2 + 6x_3 = 7; \end{cases} \begin{cases} x_1 - 5x_2 + 3x_3 - x_4 = 1, \\ 2x_1 - 10x_2 + 3x_4 = 0, \\ 4x_1 - 20x_2 + 6x_3 + x_4 = 2; \end{cases}$$
• Ж)
$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 = 2, \\ x_1 + 3x_2 + 2x_3 - x_4 = -4, \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 - x_4 = 1, \\ 3x_1 + 2x_2 + x_3 - x_4 = 1, \\ 2x_1 + 3x_2 + x_3 + x_4 = 1, \\ 2x_1 + 2x_2 + 2x_3 - x_4 = 1, \\ 5x_1 + 5x_2 + 2x_3 = 2; \end{cases}$$

$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 = 1, \\ 3x_1 - 2x_2 + 2x_3 - 3x_4 = 2, \\ 5x_1 + x_2 - x_3 + 2x_4 = -1, \\ 2x_1 - x_2 + x_3 - 3x_4 = 4; \end{cases}$$

$$\begin{cases} x_1 + 3x_2 + 5x_3 - 4x_4 = 1, \\ x_1 + 3x_2 + 2x_3 - 2x_4 + x_5 = -1, \\ x_1 - 2x_2 + x_3 - x_4 - x_5 = 3, \\ x_1 - 4x_2 + x_3 + x_4 - x_5 = 3, \\ x_1 + 2x_2 + x_3 - x_4 + x_5 = -1; \end{cases}$$

$$\begin{cases} 2x_1 + x_2 - x_3 - x_4 + x_5 = 1, \\ x_1 - x_2 + x_3 + x_4 - 2x_5 = 0, \\ 3x_1 + 3x_2 - 3x_3 - 3x_4 + 4x_5 = 2, \\ 4 + 5x_3 - 5x_2 - 5x_4 + 7x_5 = 3. \end{cases}$$

• 6. Подобрать параметр λ так, чтобы система $\begin{cases} 2x_1 - 3x_2 + 3x_3 = 5, \\ x_1 + \lambda x_2 - x_3 = 1, \\ 3x_1 - 2x_2 + x_3 = 2 \end{cases}$

имела единственное решение.

 \circ 7. При каком значении параметра λ система

$$\begin{cases} 2x_1 - x_2 + x_3 = \lambda, \\ x_1 + 2x_2 + 3x_3 = 2, \\ 3x_1 - x_2 + 2x_3 = 3 \end{cases}$$

имеет единственное решение?

 \circ 8. При каком значении параметра λ система

$$\begin{cases} 2x_1 + 3x_2 + \lambda x_3 = 1, \\ x_1 + 3x_2 - x_3 = 3, \\ 3x_1 + 2x_2 - 3x_3 = 4 \end{cases}$$

несовместна?

9. Исследовать и решить методом Гаусса системы линейных уравнений в зависимости от значений параметра λ :

10. С помощью законов Кирхгофа найти токи I_1 и I_2 для цепи, схема которой показана на рис.1, если ток I_0 и сопротивления R_1, R_2 заданы.

Рис. 1

11. Используя законы Ома и Кирхгофа, найти токи I_1 , I_2 , I_3 , I_4 , I_5 , I_6 в каждой части цепи, если известны значения сопротивлений R_1,R_2,R_3,R_4,R_5,R_6 и ЭДС источников E_1,E_2,E_3,E_4 (рис. 2).

Рис. 2

Тема 5. Системы линейных однородных уравнений

І. Контрольные вопросы

- 1. Запишите общий вид системы из m линейных однородных уравнений с n неизвестными.
- 2. Запишите систему из m линейных однородных уравнений с n неизвестными в матричном виде.
- 3. Какое решение системы линейных однородных уравнений называется тривиальным (нулевым)?
- 4. Может ли система линейных однородных уравнений быть несовместной?
- 5. Сформулируйте необходимое и достаточное условие существования нетривиального решения системы из m линейных однородных уравнений с n неизвестными.
- 6. Будет ли произвольная линейная комбинация решений системы линейных однородных уравнений ее решением?
- 8. Что называется фундаментальной системой решений системы линейных однородных уравнений?
- 9. Сколько решений содержит фундаментальная система решений системы из m линейных однородных уравнений с n неизвестными, если ее ранг равен r?
- 10. Какая система фундаментальных решений системы из m линейных однородных уравнений с n неизвестными называется нормированной?
- 11. Является ли разность двух произвольных решений системы из m линейных уравнений с n неизвестными решением соответствующей однородной системы?
- 12. Как связаны между собой общее решение системы из m линейных уравнений с n неизвестными и общее решение соответствующей однородной системы?

II. Задания для решения

1. По данным решениям систем линейных однородных уравнений определить число решений, образующих фундаментальные системы:

• a)
$$x_1 = c_1$$
, $x_2 = 5c_1 + c_2$, $x_3 = c_2$, $x_4 = 3c_1 - c_2$, $c_1, c_2 \in R$;

o 6)
$$x_1 = 2c_1 + 3c_2 - c_3$$
, $x_2 = c_1$, $x_3 = c_2$, $x_4 = 2c_1 - c_2 + c_3$, $x_5 = c_3$, $c_1, c_2, c_3 \in R$.

2. По данным решениям систем линейных однородных уравнений найти нормированные фундаментальные системы решений:

$$\bullet \quad \text{a)} \quad x_1 = 2c_1 + 3c_2 \,, \quad x_2 = 3c_1 - c_2 \,, \quad x_3 = c_1 \,, \quad x_4 = c_2 \,,$$

$$c_1, c_2 \in R \,;$$

$$\circ \qquad 6) \qquad x_1 = c_1, \qquad x_2 = 3c_1 - c_3, \qquad x_3 = c_2, \qquad x_4 = c_3,$$

$$x_5 = 2c_1 + 2c_2 - c_3, \ c_1, c_2, c_3 \in R.$$

3. Найти общие решения и фундаментальные системы решений систем линейных однородных уравнений:

ний систем линейных однородных уравнений:

• а)
$$\begin{cases} x_1 - x_2 = 0, \\ 2x_1 - 2x_2 = 0; \end{cases}$$
• б)
$$\begin{cases} x_1 - x_2 + x_3 = 0, \\ 2x_1 + x_2 - x_3 = 0, \end{cases}$$
• в)
$$\begin{cases} x_1 + 2x_2 - x_3 = 0, \\ 3x_1 - x_2 + 2x_3 = 0, \\ 4x_1 + x_2 + 3x_3 = 0; \end{cases}$$
• г)
$$\begin{cases} 3x_1 - x_2 + 2x_3 + x_4 = 0, \\ x_1 + 2x_2 - 4x_3 - 2x_4 = 0; \end{cases}$$
• д)
$$\begin{cases} x_1 + x_2 + 3x_3 - 2x_4 + x_5 = 0, \\ 3x_1 + 2x_2 + 3x_3 - x_4 + 2x_5 = 0; \end{cases}$$
• е)
$$\begin{cases} 2x_1 + x_2 - 4x_3 = 0, \\ 3x_1 + 4x_2 - x_3 = 0, \end{cases}$$
• д)
$$\begin{cases} 0 & 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 3 & 4 & 5 & 37 \end{cases}$$
• е)
$$\begin{cases} 2x_1 + x_2 - 4x_3 = 0, \\ 3x_1 + 4x_2 - x_3 = 0, \end{cases}$$
• д)
$$\begin{cases} 0 & 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 3 & 4 & 5 & 37 \end{cases}$$
• е)
$$\begin{cases} 0 & 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 3 & 4 & 5 & 37 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 2x_3 + 2x_4 = 0, \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0, \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0, \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0; \end{cases}$$

$$\left\{ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0; \right.$$

$$\left\{ x_1 + x_2 + x_3 + x_4 = 0, \\ x_1 + x_2 - x_3 - 2x_4 = 0, \\ x_1 + x_2 - 7x_3 - 11x_4 = 0, \\ x_1 + x_2 - 9x_3 - 14x_4 = 0; \right.$$

$$\left\{ x_1 - x_3 = 0, \\ x_2 - x_4 = 0, \\ -x_1 + x_3 - x_5 = 0, \\ -x_2 + x_4 - x_6 = 0, \\ -x_3 + x_5 = 0, \\ -x_4 + x_6 = 0. \right.$$

- 4. Найти однородную систему линейных уравнений, состоящую из: а) двух уравнений; б) трех уравнений; в) четырех уравнений, для которой система векторов $a_1 = (1,4,-2,2,-1)$, $a_2 = (3,13,-1,2,1)$, $a_3 = (2,7,-8,4,-5)$ является фундаментальной системой решений.
- 5. Можно ли найти систему линейных уравнений, для которой системы векторов $a_1=(2,1,1,2)$, $a_2=(1,1,-2,-2)$, $a_3=(3,4,2,1)$ и $b_1=(1,0,2,-5)$, $b_2=(0,1,8,7)$, $b_3=(4,5,-2,0)$ являются двумя фундаментальными системами решений?

Тема 7. Скалярное произведение векторов

I. Контрольные вопросы

- 1. Что называется скалярным произведением двух векторов?
- 2. Запишите скалярное произведение векторов, используя ортогональную проекцию одного из них на другой.
- 3. Сформулируйте свойство коммутативности скалярного умножения векторов.
- 4. Сформулируйте свойство скалярного умножения векторов относительно скалярного множителя.
- 5. Сформулируйте свойство дистрибутивности скалярного умножения векторов.
 - 6. Что называется скалярным квадратом вектора?
- 7. Как выражается длина вектора через его скалярный квадрат?
- 8. В чем заключается механический смысл скалярного произведения векторов?
- 9. Как выражается скалярное произведение через координаты перемножаемых векторов в прямоугольной декартовой системе координат?
- 10. Как выражается длина вектора через его координаты в прямоугольной декартовой системе координат?
- 11. Как выражается расстояние между двумя точками через их координаты в прямоугольной декартовой системе координат?
- 12. Как выражается косинус угла между ненулевыми векторами через их координаты в прямоугольной декартовой системе координат?
- 13. Сформулируйте необходимое и достаточное условие ортогональности двух ненулевых векторов в инвариантной форме.
- 14. Сформулируйте необходимое и достаточное условие ортогональности двух ненулевых векторов в координатной форме.
 - 15. Что называется направляющими косинусами вектора?

II. Задания для решения

1. Вычислить скалярное произведение векторов ab, если:

○ a)
$$|a| = 8$$
, $|b| = 5$, $(a,b) = 60^{\circ}$; • 6) $|a| = |b| = 1$, $(a,b) = 135^{\circ}$;

$$\circ$$
 B) $|a| = 3$, $|b| = 1$, $a \uparrow \uparrow b$; \bullet Γ) $|a| = 3$, $|b| = 1$, $a \uparrow \downarrow b$.

2. Зная, что $|\vec{a}| = 2$, $|\vec{b}| = 5$, $(\vec{a}, \vec{b}) = 60^{\circ}$, вычислить:

• a)
$$ab$$
; • б) a^2 ; ов) b^2 ; ог) $(a+b)^2$; • д) $(2a-b)(3a+4b)$.

• 3. Показать, что
$$(\vec{a} + \vec{b})^2 + (\vec{a} - \vec{b})^2 = 2(|\vec{a}|^2 + |\vec{b}|^2)$$
 и дать геометрическое истолкование этого равенства.

4. Вычислить длины диагоналей параллелограмма, построенного на векторах a = 2m + n и b = m - 2n, где m и n — единичные векторы, угол между которыми равен 60° .

- 5. Равносильны ли равенства a = b и ac = bc?
- 6. Вычислить:
- а) $(m+n)^2$, если m и n единичные векторы и $(m,n)=30^0$;

б)
$$(a-b)^2$$
, если $|a|=2\sqrt{2}$, $|b|=4$ и $(a,b)=135^0$;

• в)
$$(m+2n)(m-n)$$
, если $m=2a+b$, $n=a-3b$, $|a|=|b|=1$, $(a,b)=\frac{\pi}{3}$;

г) длину вектора
$$2m+n$$
 , если $|m|=\sqrt{2}$, $|n|=2$, $(m,n)=\frac{3\pi}{4}$.

- 7. Найти угол между векторами a и b , если |a| = 2 , |b| = 3 , ab = 3 .
- \circ 8. Найти угол между векторами a=2m+4n и b=m-n , где m и n единичные векторы и $(m,n)=120^{0}$.
- 9. Показать, что векторы m = a(bc) b(ac) и c ортогональны.
 - 10. Найти угол между диагональю куба и его ребром.
 - 11. Вычислить скалярное произведение векторов:
 - a) a = (1,2), b = (3,-4);
 - \circ 6) a = (1,3,-5), b = (5,0,1);

- B) $a = (1, 2\sin 15^{\circ}, \cos 15^{\circ}), b = (0, \sin 15^{\circ}, 2\cos 15^{\circ});$
- $\circ \Gamma$) $a = (\cos 30^{\circ}, 2, \sin 30^{\circ}), b = (\cos 30^{\circ}, -1, 3\sin 30^{\circ}).$
- 12. Найти углы между векторами, заданными прямоугольными декартовыми координатами:
 - a) a = (3,3), b = (3,0);
 - \circ 6) a = (1, -1, -1), b = (2, 0, 2);
 - B) $\vec{p} = (2, \cos 10^{\circ}, -\sin 10^{\circ}), \vec{q} = \left(\frac{\sqrt{2}}{2}, \sin 10^{\circ}, \cos 10^{\circ}\right);$
 - $\circ \Gamma$) $p = (\cos 3^0, \sin 3^0, 0), q = (1, 0, 0).$
 - 13. Найти единичный вектор e:
- а) направление которого совпадает с направлением вектора a = (2,4,-4):
 - \circ б) направленный противоположно вектору a = 2i j + 2k.
- 14. Даны векторы a = 2i + 2j k и b = 12i 4j 3k. Найти длины векторов и косинус угла между ними.
- 15. Три вершины параллелограмма находятся в точках A(1,-2,1), B(2,-2,-1), C(2,0,0). Найти четвертую вершину этого параллелограмма и углы между его диагоналями.
- \circ 16. Даны векторы a=i+j-k и b=2i+3j-k. Найти: длины этих векторов, косинус угла между ними, направляющие косинусы векторов a и b.
- 17. Даны точки A(1,-2,5), B(3,-1,4), C(1,2,2), D(-1,1,3). Показать, что четырехугольник ABCD является параллелограммом, и вычислить его углы.
- 18. Дан треугольник с вершинами в точках A(-1,1,3), $B(3,3,-4),\ C(2,1,-1)$. Найти проекцию вектора \overrightarrow{AB} на вектор \overrightarrow{AC}
- 19. Даны векторы a = 2i j + k, b = i 3j + 6k. Найти $np_a^-(a+b)$.
- 20. Каким должно быть число α , чтобы векторы a = 2i 3j k и $b = \alpha i 2j 4k$ были ортогональны?

- \circ 21. Найти такое число α , чтобы косинус угла между векторами $p=i+2j+\alpha k$ и q=3i+j был равен $\frac{5}{12}$.
- ullet 22. Найти вектор b , коллинеарный вектору a=2i-j+5k и удовлетворяющий условию ab=60 .
- \circ 23. Найти вектор b , ортогональный вектору a=i+2j-k и удовлетворяющий условиям bi=3 , bj=2 .
- 24. Дан вектор a=5i+2j+3k . Найти вектор b , удовлетворяющий условиям bi=2 , bk=-1 , ab=3 .
- 25. Определить работу силы F, $|F| = 15 \, \text{H}$, которая действуя на тело, вызывает его перемещение на 4 м под углом $\frac{\pi}{3}$ к направлению действия силы.
- \circ 26. Под действием силы F=(5,4,3) тело переместилось из начала вектора s=(2,1-2) в его конец. Вычислить работу A силы F и угол Φ между направлениями силы и перемещения.
- 27. Вычислить работу равнодействующей F сил $F_1=(3,-4,5)$, $F_2=(2,1,-4)$, $F_3=(-1,6,2)$, приложенных к материальной точке, которая под их действием перемещается прямолинейно из точки $M_1(4,2,-3)$ в точку $M_2(7,4,1)$.
- 28. Найти равнодействующую пяти компланарных сил, равных по длине и приложенных к одной и той же точке, если углы между каждыми двумя последовательными силами равны 72^0 .
- 29. Сила F=i-8j-7k разложена по трем взаимно перпендикулярным направлениям, одно из которых задано вектором a=2i+2j+k . Найти составляющую силы F в направлении вектора a .

Тема 8. Векторное и смешанное произведения векторов

- **I.** Контрольные вопросы
- 1. Что называется векторным произведением двух векторов?
- 2. В чем заключается геометрический смысл модуля векторного произведения векторов?
- 3. Сформулируйте свойство антикоммутативности векторного произведения векторов.
- 4. Сформулируйте свойство векторного произведения векторов относительно числового множителя.
- 5. Сформулируйте свойство дистрибутивности векторного произведения векторов.
- 6. Сформулируйте необходимое и достаточное условие коллинеарности двух ненулевых векторов в инвариантной форме.
- 7. Поясните основные физические приложения векторного произведения векторов для нахождения:
 - а) момента силы;
 - б) скорости точки вращающегося тела;
 - в) направления распространения электромагнитных волн;
- г) вектора плотности потока энергии электромагнитного поля;
 - д) силы, действующей на проводник с током.
- 8. Как выражается векторное произведение через координаты перемножаемых векторов в прямоугольной декартовой системе координат?
- 9. Что называется двойным векторным произведением трех векторов?
- 10. Что называется смешанным произведением трех векторов?
- 11. В чем заключается геометрический смысл модуля смешанного произведения векторов?
- 12. Изменится ли смешанное произведение векторов, если операции скалярного и векторного умножений в нем поменять местами?
- 13. Изменится ли смешанное произведение векторов, если совершить круговую перестановку его сомножителей?

- 14. Как изменится смешанное произведение векторов, если поменять местами два его множителя?
- 15. Сформулируйте необходимое и достаточное условие компланарности трех ненулевых векторов в инвариантной форме.
- 16. Как выражается смешанное произведение через координаты перемножаемых векторов в прямоугольной декартовой системе координат?

II. Задания для решения

• 1. Найти
$$|a \times b|$$
, если $|a| = 2$, $|b| = 3$, $(a,b) = \frac{\pi}{6}$.

- 2. Вычислить площадь параллелограмма, сторонами которого служат векторы $a=2\vec{m}+3n$, b=m-2n , если |m|=|n|=1 , $(\vec{m},\vec{n})=\frac{\pi}{4}$.
- 3. Вычислить площадь параллелограмма, построенного на векторах a и b , если известно, что |a| = 15, |b| = 8 и ab = 96 .
- \circ 4. Вычислить площадь параллелограмма, построенного на векторах a=2m-3n и b=m+n, если известно, что $|m|=4,\ |n|=3$ и $(m,n)=\frac{\pi}{6}$.
- \circ 5. Какому условию должны удовлетворять векторы a и b , чтобы векторы m = 3a + b и n = a 3b были коллинеарны?
- 6. Вычислить площадь треугольника, построенного на векторах p=a-2b и q=3a+2b, отложенных от одной точки, если |a|=|b|=6, $(a,b)=45^{\circ}$.
- 7. Вычислить площадь параллелограмма, диагоналями которого служат векторы a=3m-n и b=m+5n, если $|m|=2, \ |n|=3$ и $(m,n)=\frac{\pi}{6}$.
 - 8. Найти $a \times b$:
 - a) a = i + 2j, b = 3k;

- б) a = i + 2i 2k, b = 7i + 4i + 6k;
- \circ B) a = (0,1,2), b = (2,0,3).
- 9. Найти синус угла между векторами a и b:
- a) $a = (-2, 2, 1), b = (2, 3, -2); \circ 6$ a = 6j + k, b = i + 3j.
- 10. Вычислить площадь параллелограмма, сторонами которого являются векторы a = 2i + 3j k, b = i j + k.
- 11. Найти длину высоты AD треугольника ABC, если $\overrightarrow{AB} = 2i j + k$, $\overrightarrow{AC} = 3i 4j + k$.
- \circ 12. Дан треугольник с вершинами в точках A(4,2,5), B(0,7,2), C(0,2,7). Вычислить длину его высоты BD.
- \circ 13. Вычислить расстояние между параллельными сторонами параллелограмма $\overrightarrow{AB} = (6,0,2)$ и $\overrightarrow{AC} = (1.5,2,1)$.
- 14. Даны векторы $a=2i+j-k\,,\,b=i-j+3k\,,\,\,c=j+k$. Найти:
- 15. Найти вектор x из системы уравнений xi=3 , $x\times i=-2k$.
- \circ 16. Найти вектор x, зная, что он ортогонален векторам a=(2,3,-1) и b=(1,-1,3) и удовлетворяет уравнению x(2i-3j+4k)=51.
- 17. Вектор x, ортогональный векторам a=(2,3,-1) и b=(1,-1,3) образует с вектором i тупой угол. Зная, что $|x|=\sqrt{138}$, найти координаты вектора x.
- 18. Вычислить координаты вращающего момента \overrightarrow{M} силы F=(3,2,1) , приложенной к точке A(-1,2,4) , относительно начала координат O .
- \circ 19. Сила F=(2,2,9) приложена к точке A(4,2,-3) . Вычислить величину и направляющие косинусы момента \overrightarrow{M} этой силы относительно точки B(2,4,0) .

- 20. К точке A(-1,2,5) приложены силы $F_1=2i-j+5k$, $F_2=3j-4k$, $F_3=i-3j+k$. Найти момент равнодействующей этих сил относительно точки N(1,-1,2) .
- 21. Какова скорость точек земной поверхности на широте Санкт-Петербурга (60°) при суточном вращении Земли?
- 22. Чему равна механическая мощность, развиваемая при перемещении прямолинейного проводника длиной 20 см со скоростью 5 м/сек в однородном магнитном поле с индукцией 0.1 Тл, если угол между направлением движения проводника и направлением магнитных силовых линий 90° , а величина тока в проводнике 50 A?
- 23. Вычислить смешанное произведение abc и указать, какой тройкой (правой или левой) является тройка векторов a,b,c:
 - a) a = i + 2j + k, b = i + 2j k, c = 8i + 6j + 4k;
 - 6) a = i + 2i + 3k, b = 3i + i + 2k, c = 2i + 3i + k;
 - B) a = (1,3,5), b = (2,4,6), c = (8,9,7).
 - 24. Выяснить, компланарны ли векторы a, b, c:
 - a) a = i + 2i k, b = 9i 11i + 13k, c = 2i + 4i 2k;
 - 6) a = (-2, -1, 1), b = (4, -4, 1), c = (4, -6, 2).
- 25. Проверить, лежат ли точки A, B, C, D в одной плоскости, если:
 - o a) A(0,2,-1), B(3,1,1), C(2,-1,0), D(-4,1,2);
 - 6) A(5,5,4), B(3,8,4), C(3,5,10), D(5,8,2).
- 26. Выяснить, при каком значении α компланарны векторы a, b, c, если:
 - a) $a = (\alpha + 1)i + 7j 3k$, $b = i + \alpha j k$, c = 8i + 3j 7k;
 - 6) $a = i + \alpha j + k$, $b = i + (1 + \alpha) j + k$, $c = i + \alpha j k$.
- 27. Вычислить объем параллелепипеда, построенного на векторах $a,\,b,c$, отложенных от некоторой точки:
 - a) a = 8i + 3j 2k, b = 3j k, c = 4i;

- б) a = (5, -3, 2), b = (-6, 3, 4), c = (-8, 6, 5).
- \circ 28. Дана пирамида с вершинами в точках A(3,5,4), B(8,7,4), C(5,10,4), D(4,7,8). Вычислить:
 - а) объем пирамиды;
 - б) длину высоты, опущенной из вершины D на грань ABC.
- 29. Доказать, что объем параллелепипеда, построенного на диагоналях граней данного параллелепипеда, равен удвоенному объему данного параллелепипеда.
- 30. Объем пирамиды с вершинами в точках A(4,1,-2) , B(6,3,7) , C(2,3,1) , D(x,-4,8) равен $51\frac{1}{3}$. Найти x .
- 31. Вычислить объем параллелепипеда, построенного на векторах $a=e_1+2e_2+e_3,\ b=e_1+3e_2,\ c=2e_1-5e_2+e_3,$ где $e_1,\ e_2,e_3$ попарно ортогональные векторы и $|e_1|=1,\ |e_2|=2,$ $|e_3|=5$.
- 32. Вычислить объем параллелепипеда, построенного на векторах $a=3e_1+2e_2$, $b=4e_1-5e_2$, $c=a\times b$, если $|e_1|=2$, $|e_2|=1$, $(e_1,e_2)=\frac{\pi}{6}$.
- 33. Найти вектор c (c|=13), ортогональный векторам a=i+4j, b=i+3k и направленный так, что упорядоченная тройка векторов a, b, c правая.

Тема 9. Прямая линия на плоскости

I. Контрольные вопросы

- 1. Что называется уравнением линии на плоскости в прямоугольной декартовой системе координат?
- 2. Запишите общий вид векторного уравнения линии на плоскости.
 - 3. Какая линия на плоскости называется алгебраической?
 - 4. Что называется порядком алгебраической линии?
- 5. Какой вектор называется направляющим вектором прямой?
 - 6. Какой вектор называется нормальным вектором прямой?
- 7. Перечислите различные способы задания прямой на плоскости.

8. Запишите:

- а) общее уравнение прямой;
- б) уравнение прямой в отрезках;
- в) каноническое уравнение прямой;
- г) уравнение прямой, заданной двумя точками;
- д) уравнение прямой с угловым коэффициентом;
- е) нормальное уравнение прямой;
- ж) векторное уравнение прямой;
- з) скалярные параметрические уравнения прямой.

Укажите геометрический смысл входящих в них букв.

- 9. Как определяется взаимное расположение двух прямых, заданных общими уравнениями?
- 10. По какой формуле можно найти угол между двумя прямыми, заданными уравнениями $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$?
- 11. По какой формуле можно найти угол между двумя прямыми, заданными уравнениями $y=k_1x+b_1$ и $y=k_2x+b_2$?
- 12. Запишите неравенства, задающие полуплоскости, расположенные по разные стороны от прямой Ax + By + C = 0.
 - 13. Что называется пучком прямых?

- 14. Запишите уравнение пучка прямых, проходящих через точку пересечения прямых $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$.
- 15. По какой формуле вычисляется расстояние от точки $M_{_{0}}(x_{_{0}},y_{_{0}})$ до прямой, заданной уравнением Ax+By+C=0 ?
- 16. По какой формуле вычисляется расстояние от точки $M_0(x_0, y_0)$ до прямой, заданной нормальным уравнением $x\cos\alpha + y\sin\alpha + p = 0$?

II. Задания для решения

- 1. Записать уравнение прямой, зная:
- а) ее точку A и направляющий вектор a:
- 1) A(1,-3), a = (-1,0); o 2) A(0,-2), a = (0,-4);
- б) две ее точки A и B:
- 1) A(1,2), B(-3,4); \circ 2) A(-1,0), B(-1,4);
- в) отрезки a и b, отсекаемые ею на осях координат:
- 1) a = -3, b = 4; o 2) a = 1, b = -2;
- г) точку A пересечения ее с осью Oy и угловой коэффициент k :
 - 1) A(0,-4), k=3; \circ 2) A(0,3), $k=\frac{1}{2}$;
 - д) ее точку A и нормальный вектор n:
 - 1) A(1,2), n = (3,-5); \circ 2) A(-1,2), n = (-1,4).
- 2. Определить, при каком значении параметра α прямая $(\alpha^2 9)x + (3\alpha 6)y + (\alpha + 3) = 0$:
 - а) параллельна оси Ox; б) параллельна оси Oy;
 - б) проходит через начало координат;
 - в) совпадает с осью Ox; г) совпадает с осью Oy.
- 3. Прямая задана параметрическими уравнениями x = 1 4t, y = 3 + t. Найти:
 - а) направляющий вектор данной прямой;
- б) координаты точек, параметры которых равны $t_1 = 3, t_2 = -1, t_3 = 0$;

- в) значения параметра точек пересечения прямой с осями координат;
- Γ) среди точек A(-3,4), B(1,1), C(9,1) точки, принадлежащие данной прямой.
- \circ 4. Даны уравнения движения точки M: x=1+8t, y=3-6t. Найти:
 - а) скорость точки M;
- б) точку на плоскости, в которой будет находиться точка M в момент времени t=5;
- в) в какой момент точка M достигнет прямой x = 7 + 10t', y = -11 + 2t'.
- 5. Составить уравнения движения материальной точки M, вышедшей из начала координат и движущейся прямолинейно и равномерно со скоростью, составляющие которой $v_x = 3$ см/с, $v_y = 5$ см/с.
- 6. Найти траекторию движения точки M, движущейся из начального положения $M_0(5,-8)$ прямолинейно и равномерно со скоростью $v=20\,$ см/с в направлении вектора a=(3,4). Вычислить, за какой промежуток времени точка пройдет отрезок своей траектории, заключенной между координатными осями.
- 7. Луч света направлен по прямой x = -4 2t, y = 3 + t. Дойдя до оси Ox, он от нее отражается. Найти точку встречи луча с осью Ox и уравнение отраженного луча.
 - 8. Написать параметрические уравнения прямых:
 - a) y = 2x 3; \circ 6) 5x y = 0; B) 6x + 11y + 9 = 0;
 - \circ г) $\frac{x}{3} \frac{y}{4} = 1$; д) $\frac{x-1}{2} = \frac{y}{3}$; е) 2x 3 = 0; \circ ж) 4y + 5 = 0.
 - 9. Написать общее уравнение прямой:
 - a) x = 1 + t, y = 1 3t; o 6) x = 2, y = 2 + t;
 - B) $2x + \frac{y}{-3} = 1$; r) $\frac{x+3}{-5} = \frac{y+1}{2}$.
- 10. Найти уравнение прямой, проходящей через точку A(1,-2) и точку пересечения прямых 2x+3y-4=0, 3x-5y+13=0.

- 11. Дан треугольник ABC: A(1,1), B(-2,3), C(4,7). Написать уравнения сторон и медиан этого треугольника.
 - 12. Найти угловой коэффициент прямой:
 - a) x = 3 + t, y = 2 t; 6) 3x + 4y + 5 = 0;
 - B) 5y 2 = 0; $\circ \Gamma$) $\frac{x}{3} + \frac{y}{-7} = 1$; π) $\frac{x-1}{2} = \frac{y+3}{-5}$.
 - 13. Найти один из углов между прямыми:
 - a) 2x + 3y 5 = 0 M x 3y 7 = 0;
 - 6) $y = \frac{3}{2}x + 1$ w $y = \frac{1}{5}x 3$;
 - o B) $\begin{cases} x = 4, \\ y = t + 7 \end{cases}$ H $\begin{cases} x = 3t 1, \\ y = \sqrt{3}t + 2; \end{cases}$
 - $\circ \Gamma$) 4x + 10y 3 = 0 $\mu \frac{x}{2} = \frac{y+5}{5}$;
 - д) $y = -\frac{4}{3}x + 2$ и 8x + 6y 9 = 0.
- 14. Найти уравнение прямой, проходящей через точку $M(1,-2\sqrt{3})$ и составляющей угол $\frac{\pi}{3}$ с прямой $x+5\sqrt{3}y-15=0$.
- 15. Написать уравнения катетов прямоугольного равнобедренного треугольника, если известно, что y = 3x + 7 уравнение его гипотенузы, а C(4,1) вершина прямого угла.
- 16. Написать уравнение прямой, проходящей через точку A(0,-2) и образующей с осью Ox угол, в два раза больший угла, который прямая y=x образует с осью Ox.
- 17. Определить, при каком значении параметра α прямые $(\alpha 1)x + 2\alpha y + 5 = 0$ и $\alpha x + 4\alpha y 6 = 0$: а) параллельны; б) совпадают; в) взаимно перпендикулярны.
- 18. Написать уравнение прямой, проходящей через точку A(-1,3) :
 - а) параллельно прямой 4x 5y + 2 = 0;
 - б) перпендикулярно к прямой $\frac{x+1}{3} = \frac{y-2}{-1}$;
 - о в) параллельно биссектрисе второго координатного угла;

- \circ г) перпендикулярно к прямой 3x 2y + 1 = 0.
- 19. Найти длину высоты, проведенной из вершины A треугольника ABC, если: A(4,-3), B(1,1), C(-3,-2).
- 20. Составить уравнение прямой, проходящей через точку A(12,6) так, чтобы площадь треугольника, образованного ею и координатными осями, была равна 150 квадратных единиц.
- 21. Найти проекцию точки A(2,6) на прямую 3x + 4y 5 = 0.
- 22. По какой траектории должна двигаться точка, начальное положение которой $M_0(5,-12)$, чтобы кратчайшим путем дойти до прямой 2x-3y+6=0? В какой точке она достигает этой прямой?
- 23. Установить, какие из следующих пар прямых совпадают, параллельны, пересекаются; в случае пересечения найти общую точку прямых:
 - a) 2x + 3y = 0 W x = 3 + t, y = 2 t:
 - o 6) x + 2y 15 = 0 H x = 5 + 4t, y = -2 2t;
 - B) 3x + 4y 20 = 0 M x = 4 8t, y = 2 + 6t;
 - Γ) x-2y+4=0 $\mu -3x+6y-12=0$;
 - $_{\rm II}$) x-5y=0 и 2x-10y=0:
 - e) 2x+3y-8=0 _M x+y-3=0.
- 24. Найти расстояние между прямыми 12x 5y 26 = 0 и 12x 5y + 13 = 0.
- 25. Найти координаты точки, симметричной точке M(10,10), относительно прямой 3x + 4y 20 = 0.
- \circ 26. Даны уравнения двух сторон параллелограмма x-2y+2=0, 5x+2y+22=0 и точка пересечения его диагоналей M(2,-1). Найти координаты вершин параллелограмма.
- 27. Даны две вершины треугольника A(-6,2), B(2,-2) и точка H(1,2) пересечения его высот. Найти координаты третьей вершины C .
- 28. Найти координаты центра окружности, описанной около треугольника, вершинами которого являются точки A(1,2), B(3,-2), C(5,6).

- 29. Дана прямая 4x + 3y + 1 = 0. Найти уравнение прямой, параллельной данной и удаленной от нее на расстояние, равное трем.
- 30. Написать уравнение прямой, проходящей через точку P(-3,-5), отрезок которой между прямыми 2x+3y-15=0 и 4x-5y-12=0 в точке P делился бы пополам.
- 31. Составить уравнение фигуры, каждая точка которой равноудалена от двух параллельных прямых:
 - o a) 3x y + 7 = 0 M 3x y 3 = 0;
 - 6) x-2y+3=0 y 2x-4y+7=0
- 32. Составить уравнение биссектрисы угла, образованного прямыми x+2y-11=0 и 3x-6y-5=0, которому принадлежит точка A(1,-3).
- 33. Написать уравнение траектории движения точки M(x, y), которая отстоит вдвое дальше от прямой x y = 0, чем от оси Ox.
- 34. Найти траекторию движения точки M(x,y), которая все время от начала координат находится на расстоянии в три раза большем, чем от прямой x+2y=0.
- 35. Даны две смежные вершины квадрата A(0,3) и B(4,0). Составить уравнения его сторон.
- 36. Прямые 3x + 4y 30 = 0 и 3x 4y + 12 = 0 касаются окружности, радиус которой R = 5. Вычислить площадь четырехугольника, образованного этими касательными и радиусами круга, проведенными в точки касания.
- \circ 37. Из точки A(3,1) выходит луч света под углом $\phi = 45^{\circ}$ к оси Ox и отражается от нее. Найти уравнения падающего и отраженного лучей.
- 38. Из точки A(-3,2) выходит луч света под углом 135^0 к оси Ox и отражается от нее. Отраженный луч отражается от оси Oy . Найти уравнения этих трех лучей.
- 39. Луч, сонаправленный с вектором p=(0,1), последовательно отражается от прямых 3x-2y+6=0 и 2x+y+5=0. Найти вектор m, сонаправленный с отраженным лучом.

- 40. Восстановить границы квадратного участка по трем сохранившимся столбикам: одному в центре участка и по одному на двух противоположных границах. На плане средний столбик находится в точке M(5,0), а два боковых соответственно в точках A(4,9) и B(8,5).
- \circ 41. Точка M начинает двигаться равномерно из положения $M_0(7,10)$ в направлении вектора s=(3,4) со скоростью v=0.5 см/с. За сколько времени точка M пройдет путь между прямыми 5x-y-3=0 и 3x-2y=0.
- 42. Точки M и N одновременно начали прямолинейное и равномерное движение. Точка M движется из положения $M_0(-1,2)$ в направлении вектора $s_1=(-3,4)$ со скоростью v=2,5 см/с. Точка N движется из положения $N_0(8,1)$ в направлении вектора $s_2=(12,-5)$. С какой скоростью должна двигаться точка N, чтобы встретиться с точкой M?

Тема 10. Плоскость в пространстве

I. Контрольные вопросы

- 1. Что называется уравнением поверхности в пространстве в прямоугольной декартовой системе координат?
- 2. Запишите общий вид векторного уравнения поверхности в пространстве.
- 3. Какая поверхность в пространстве называется алгебраической?
 - 4. Что называется порядком алгебраической поверхности?
- 5. Какой вектор называется нормальным вектором плоскости?
- 6. Перечислите различные способы задания плоскости в пространстве.

Запишите:

- а) общее уравнение плоскости;
- б) уравнение плоскости в отрезках;
- в) уравнение плоскости, заданной точкой и нормальным вектором;
- г) уравнение плоскости, заданной точкой и двумя неколлинеарными векторами;
 - д) уравнение плоскости, заданной тремя точками;
- е) уравнение плоскости, проходящей через две параллельные прямые;
- ж) уравнение плоскости, проходящей через две пересекающиеся прямые;
 - з) нормальное уравнение плоскости;
 - и) векторно-параметрическое уравнение плоскости;
- к) скалярные параметрические уравнения плоскости.

Укажите геометрический смысл входящих в них букв.

- 8. Как определяется взаимное расположение двух плоскостей, заданных общими уравнениями?
- 9. По какой формуле вычисляется угол между двумя плоскостями, заданными уравнениями $A_1x+B_1y+C_1z+D_1=0$ и $A_2x+B_2y+C_2z+D_2=0$?

- 10. Запишите неравенства, задающие полупространства, расположенные по разные стороны от плоскости Ax + By + Cz + D = 0
 - 11. Что называется пучком плоскостей?
- 12. Запишите уравнение пучка плоскостей, проходящих через прямую пересечения плоскостей $A_1x+B_1y+C_1z+D_1=0$ и $A_2x+B_2y+C_2z+D_2=0$.
 - 13. Что называется связкой плоскостей?
- 14. Запишите уравнение связки плоскостей, проходящих через точку пересечения плоскостей $A_1x+B_1y+C_1z+D_1=0$, $A_2x+B_2y+C_2z+D_2=0 \text{ }_{\mathbf{H}} A_3x+B_3y+C_3z+D_3=0 \text{ }.$
- 15. По какой формуле вычисляется расстояние от точки $M_0(x_0,y_0,z_0)$ до плоскости, заданной уравнением Ax+By+Cz+D=0?
- 16. По какой формуле вычисляется расстояние от точки $M_0(x_0,y_0,z_0)$ до плоскости, заданной уравнением $x\cos\alpha+y\cos\beta+z\cos\gamma+p=0$?

II. Задания для решения

- 1. Записать общее уравнение плоскости, проходящей через:
- а) точку A перпендикулярно к вектору n:
 - 1) A(3,5,-1), n = (13,2,1); o 2) A(0,-4,5), n = (3,-2,4);
- б) точку A параллельно векторам s_1 и s_2 :
 - 1) A(2,-1,3), $s_1 = (2,-1,3)$, $s_2 = (3,0,1)$;
 - \circ 2) A(1,0,-2), $s_1 = (-2,5,4)$, $s_2 = (3,1,7)$;
- в) точки M_1, M_2, M_3 :
 - 1) $M_1(1,3,4)$, $M_2(3,0,2)$, $M_3(2,5,7)$;
 - \circ 2) $M_1(-1,2,5)$, $M_2(3,1,4)$, $M_3(1,1,7)$.
- 2. Вычислить объем тетраэдра, ограниченного координатными плоскостями и плоскостью 3x 5y + 15z 30 = 0.
- 3. Написать общее уравнение плоскости, зная ее параметрические уравнения:
 - a) x = 2 + 3u 4v, y = 4 v, z = 2 + 3u;

- \circ 6) x = u + v, y = u v, z = 5 + 6u 4v.
- 4. Написать параметрические уравнения плоскости, зная ее общее уравнение:
 - a) 3x 6y + z = 0; o 6) 2x y z 3 = 0.
- 5. Составить уравнение плоскости, перпендикулярной к вектору n = (5, -2, 1) и отсекающей на оси Oz отрезок, длина которого равна трем.
- 6. Проверить, лежат ли точки M_1, M_2, M_3, M_4 в одной плоскости, если:
 - a) $M_1(2,-1,3)$, $M_2(1,4,5)$, $M_3(2,0,5)$, $M_4(1,2,3)$;
 - \circ 6) $M_1(1,2,5)$, $M_2(0,0,2)$, $M_3(-2,-4,0)$, $M_4(3,6,2)$.
- 7. Даны вершины тетраэдра A(2,1,0), B(1,3,5), C(6,3,4) и D(0,-7,8). Написать уравнение плоскости, проходящей через ребро AB и середину ребра CD.
 - 8. Найти косинусы углов, образованных двумя плоскостями:
 - a) 2x + y 2z + 6 = 0 M 2x 2y + z + 8 = 0;
 - 0 = 6 = 2x 2y + z + 2 = 0 = 0 = x + y + z 5 = 0;
- B) x=1+u+v, y=2+u, z=3+u-v M x=3+2u', y=2-2u'+4v', z=1+u'+3v'.
- 9. Определить, при каком значении параметра α плоскость $\alpha x + (2\alpha 1)y + z 5 = 0$:
 - а) параллельна плоскости 2x + 3y + z 4 = 0;
 - \circ б) параллельна плоскости y z + 7 = 0;
 - в) параллельна плоскости 2x y + 3z = 0;
 - г) перпендикулярна к плоскости 3x + y z = 0;
 - д) перпендикулярна к плоскости Oxz.
- 10. Установить, какие из следующих пар плоскостей пересекаются, параллельны или совпадают:
 - a) x y + 3z + 1 = 0 H 2x y + 5z 2 = 0;
 - $\circ \circ \circ 2x + y + 2z + 4 = 0$ u + 4x + 2y + 4z + 8 = 0:
 - B) 3x + 2y z + 2 = 0 M 6x + 4y 2z + 1 = 0;
- r) x=1+u+v, y=2+u, z=3+u-v M x=3+2u', y=2-2u'+4v', z=1+u'+3v';

- д) x = u + 2v, y = 1 + v, z = u v и x = 2 + 3u' + v', y = 1 + u' + v', z = 2 2v'.
- 11. Составить уравнение плоскости, проходящей через точку M(1,0,-2) перпендикулярно к плоскостям x-2y+z+5=0 и 2x-y+3z-1=0
- 12. Составить уравнение плоскости, проходящей через точки $M_1(1,2,3)$ и $M_2(2,1,1)$ перпендикулярно к плоскости 3x+4y+z-6=0 .
 - 13. Найти расстояние между плоскостями:
 - a) 2x-3y+6z-21=0 M 4x-6y+12z+35=0:
 - $\circ \circ \circ x 2y + z 1 = 0$ M 2x 4y + 2z 1 = 0
- 14. Две грани куба лежат на параллельных плоскостях 2x-2y+z-1=0 и 2x-2y+z+5=0. Найти объем этого куба.
- 15. Проверить, является ли уравнение плоскости $-\frac{6}{7}x+\frac{3}{7}y-\frac{2}{7}z-5=0$ нормальным. Найти расстояние от этой плоскости до начала координат и до точки $M_{_0}(2,3,-1)$, а также косинус угла между осью Oу и перпендикуляром, проведенным из начала координат на эту плоскость.
- 16. Даны вершина A(1,1,1) параллелепипеда и уравнения плоскостей, в которых лежат его три непараллельные грани: $x+y+2z-1=0,\ 2x+y+3z+2=0,\ x-y-z+3=0$. Написать уравнения плоскостей, в которых лежат три другие грани.
- 17. Доказать, что параллелепипед, три непараллельные грани которого лежат в плоскостях 2x + y 2z + 6 = 0, 2x 2y + z + 8 = 0, x + 2y + 2z + 10 = 0, прямоугольный.
- 18. Составить уравнение плоскости, зная, что точка A(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.
- 19. В пучке, определяемом прямой x+5y+z=0, x-z+4=0, найти плоскость, образующую угол $\frac{\pi}{4}$ с плоскостью x-4y-8z+12=0.

- 20. Составить уравнение плоскости, проходящей через точку пересечения трех плоскостей x+y-z+2=0, 4x-3y+z-1=0, 2x+y-5=0 и а) ось Ox; б) начало координат и точку P(1,3,2); в) параллельно плоскости Oxz.
- 21. Написать уравнения плоскостей, делящих пополам двугранные углы, гранями которых служат плоскости 3x-y+7z-4=0 и 5x+3y-5z+2=0.
- 22. Даны вершины тетраэдра A(0,6,4) , B(3,5,3) , C(-2,11,-5) и D(1,-1,4) . Вычислить длину высоты, проведенной из вершины A к грани BCD .
- \circ 23. Написать уравнения плоскостей, параллельных плоскости 2x-2y-z-6=0 и отстоящих от нее на расстояние d=7.
- 24. Внутри треугольника, отсекаемого на плоскости Oxy плоскостями x+4y+8z+8=0, x-2y+2z+2=0 и 3x+4y+12=0, найти координаты точки, равноудаленной от этих плоскостей.
- 25. Найти координаты центра и радиус шара, вписанного в тетраэдр, ограниченный координатными плоскостями и плоскостью 11x 10y 2z 57 = 0.

Тема 11. Прямая линия в пространстве

I. Контрольные вопросы

- 1. Какой вектор называется направляющим вектором прямой в пространстве?
- 2. Запишите общий вид векторного уравнения линии в пространстве.
- 3. Перечислите различные способы задания прямой в пространстве.

4. Запишите:

- а) общие уравнения прямой;
- б) канонические уравнения прямой;
- в) уравнения прямой, заданной двумя точками;
- г) векторно-параметрическое уравнение прямой;
- д) скалярные параметрические уравнения прямой.

Укажите геометрический смысл входящих в них букв.

- 5. Как определяется взаимное расположение двух прямых, заданных каноническими уравнениями?
 - 6. По какой формуле определяется угол между двумя прямы-

ми, заданными уравнениями
$$\frac{x-x_1}{a_1} = \frac{y-y_1}{a_2} = \frac{z-z_1}{a_3}$$
 и

$$\frac{x - x_2}{b_1} = \frac{y - y_2}{b_2} = \frac{z - z_2}{b_3}$$
?

7. По какой формуле вычисляется расстояние от точки $M_{0}(x_{0}, y_{0}, z_{0})$ _{AO} прямой, заданной уравнениями $\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}$?

8. По какой формуле вычисляется расстояние между двумя параллельными прямыми, заданными уравнениями

$$\frac{x-x_1}{a_1} = \frac{y-y_1}{a_2} = \frac{z-z_1}{a_3} \text{ M} \frac{x-x_2}{b_1} = \frac{y-y_2}{b_2} = \frac{z-z_2}{b_3}?$$

9. По какой формуле вычисляется расстояние между двумя скрещивающимися прямыми, заланными vравнениями $\frac{x - x_1}{a_1} = \frac{y - y_1}{a_2} = \frac{z - z_1}{a_2} \quad \text{if } \frac{x - x_2}{b_1} = \frac{y - y_2}{b_2} = \frac{z - z_2}{b_2} ?$

- 10. Как определяется взаимное расположение прямой и плоскости в пространстве?
 - 11. Что называется углом между прямой и плоскостью?
- 12. По какой формуле вычисляется угол между прямой $\frac{x - x_0}{a} = \frac{y - y_0}{a} = \frac{z - z_0}{a}$ и плоскостью Ax + By + Cz + D = 0?

II. Задания для решения

- 1. Составить параметрические уравнения прямой, проходящей через:
 - а) точку $M_0(2,0,3)$ параллельно вектору a = (3,-2,-2);
 - б) точку A(1,2,3) параллельно оси Ox:
 - в) точки $M_1(1,2,3)$, $M_2(4,4,5)$;
- Γ) точку $M_0(4,-3,2)$ перпендикулярно к плоскости x-3y+2z-5=0:
- д) точку $M_0(5, -3, 9)$ перпендикулярно к векторам $s_1 = (3, -1, 5) \text{ }_{\mathbf{H}} s_2(0, -1, 2).$
 - 2. Записать в каноническом виде уравнения прямых:

• a)
$$\begin{cases} x = 2t + 1, \\ y = t - 3, \\ z = 3t - 5; \end{cases}$$
• b)
$$\begin{cases} x = 5t, \\ y = 1 - 2t, \\ z = 3; \end{cases}$$
• c)
$$\begin{cases} 2x + y + z - 1 = 0, \\ 3x + 2y + z - 2 = 0; \end{cases}$$
• c)
$$\begin{cases} 3x - 2y + 5z - 10 = 0, \\ 2x + y - z = 0. \end{cases}$$

• B)
$$\begin{cases} 2x + y + z - 1 = 0, \\ 3x + 2y + z - 2 = 0; \end{cases} \circ \Gamma \begin{cases} 3x - 2y + 5z - 10 = 0, \\ 2x + y - z = 0. \end{cases}$$

• 3. Установить, какие из точек $M_1(3,4,7)$, $M_2(2,0,4)$, $M_3(0,-5,1)$, $M_4(-1,3,-2)$ принадлежат прямой x=2+t, y = 1 + 3t, z = 5 + 2t.

- 4. Даны вершины треугольника A(3,7,5), B(1,2,3), C(3,0,1). Составить параметрические уравнения его медианы, проведенной из вершины A.
- \circ 5. Даны вершины треугольника A(1,2,-7), B(2,2,-7), C(3,4,-5). Составить параметрические уравнения биссектрисы его внутреннего угла при вершине A.
- 6. Представить каждую из следующих прямых как линию пересечения плоскостей, параллельных осям Ox и Oz:

a)
$$x = 1 + 2t$$
, $y = 2 + 3t$, $z = 3 + 6t$;

6)
$$x = 8 + 3t$$
, $y = -6t$, $z = 1 + 2t$.

7. Составить параметрические уравнения прямых:

• a)
$$\begin{cases} x + y + 2z - 3 = 0, \\ x - y + z - 1 = 0; \end{cases} \circ 6) \begin{cases} x + 2y + 4z - 7 = 0, \\ 2x + y - z - 5 = 0. \end{cases}$$

8. Найти угол между прямыми:

• a)
$$\frac{x-1}{2} = \frac{y-5}{-1} = \frac{z}{1}$$
 $\times \frac{x}{2} = \frac{y}{3} = \frac{z-5}{-1}$;

$$\circ$$
 б) $\frac{x+2}{3} = \frac{y}{4} = \frac{z+1}{0}$ и осью Ox ;

B)
$$\begin{cases} x + 2y + z - 1 = 0, \\ x - 2y + z + 1 = 0 \end{cases} \quad \text{II} \quad \begin{cases} x - y - z - 1 = 0, \\ x - y + 2z + 1 = 0. \end{cases}$$

- 9. Даны вершины треугольника A(1, -2, -4), B(3,1, -3), C(5,1,-7). Составить параметрические уравнения его высоты , проведенной из вершины B к противоположной стороне.
- 10. Доказать, что прямые параллельны, и найти расстояние между ними:
- a) x = 1 2t, y = 3t, z = -2 + t u x = 7 + 4t', y = 5 6t', z = 4 2t';

o 6)
$$x = 2t$$
, $y = 0$, $z = -2t$ M
$$\begin{cases} x + y + z - 3 = 0, \\ x - y + z - 1 = 0; \end{cases}$$

B)
$$\begin{cases} x + y - 3z + 1 = 0, \\ x - y + z + 3 = 0 \end{cases} \quad \text{if } \begin{cases} x + 2y - 5z - 1 = 0, \\ x - 2y + 3z - 9 = 0. \end{cases}$$

11. Доказать совпадение прямых:

a) x = 8 + 3t, y = 7 - 2t, z = 11 + t in x = 5 - 6t', y = 9 + 4t', z = 10 - 2t':

6)
$$\begin{cases} 3x + y - 2z - 6 = 0, \\ 41x - 19y + 52z - 68 = 0 \end{cases} \text{ If } \begin{cases} x - 2y + 5z - 1 = 0, \\ 33x + 4y - 5z - 63 = 0; \end{cases}$$

B)
$$x = -t$$
, $y = -4 - 5t$, $z = 3 + 3t$ H
$$\begin{cases} 4x + y + 3z - 5 = 0, \\ 7x - 2y - z - 5 = 0. \end{cases}$$

12. Доказать, что прямые пересекаются, и найти координаты точек пересечения:

• a) x = -3t, y = 2 + 3t, z = 1 u x = 1 + 5t', y = 1 + 13t', z = 1 + 10t';

o 6)
$$x = -2 + 3t$$
, $y = -1$, $z = 4 - t$ if
$$\begin{cases} 2y - z + 2 = 0, \\ x - 7y + 3z - 17 = 0. \end{cases}$$

13. Доказать, что прямые каждой из указанных пар скрещиваются, и найти расстояние между ними:

• a) 1) x=3+t, y=1-t, z=2+2t M x=-t', y=2+3t', z=3t':

6)
$$\begin{cases} x + 2y - z + 1 = 0, \\ 2x - 3y + z - 4 = 0 \end{cases} \quad \text{if } \begin{cases} x + y + z - 9 = 0, \\ 2x - y - z = 0. \end{cases}$$

14. Найти угол между прямой и плоскостью:

• a)
$$\frac{x-1}{2} = \frac{y+2}{1} = \frac{z}{1}$$
 M $x + 2y - z + 5 = 0$;

o 6)
$$x = 1, y = t - 2, z = y + 5_{\text{H}} x + 2y + z - 1 = 0$$
.

15. Установить, лежит ли прямая в данной плоскости, не имеет с плоскостью общих точек или пересекает в некоторой точке; в последнем случае найти точку пересечения:

• a)
$$x = 2 + 4t$$
, $y = -1 + t$, $z = 2 - t$ M $4x + y - z + 13 = 0$;

$$\circ \circ \circ = 2 - 3t$$
, $y = -1 + t$, $z = -2t$ w $x + y - z + 3 = 0$;

B)
$$x = t$$
, $y = -8 - 4t$, $z = -3 - 3t$ M $x + y - z + 5 = 0$;

r)
$$\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z+2}{5}$$
 M $4x + 3y - z + 3 = 0$;

д)
$$\frac{x-7}{5} = \frac{y-4}{1} = \frac{z-5}{4}$$
 и $3x - y + 2z - 5 = 0$;

e)
$$\frac{x+1}{2} = \frac{y-3}{4} = \frac{z}{5}$$
 M $3x-3y+2z-5=0$.

16. Найти значения параметра α , при котором:

- а) прямая $\frac{x-1}{2} = \frac{y+5}{4} = \frac{z}{-1}$ параллельна плоскости $\alpha x + 2y 6z + 7 = 0$;
- б) прямая $\frac{x-5}{\alpha} = \frac{y+7}{2} = \frac{z-3}{-4}$ перпендикулярна к плоскости 2x + 8y 16z + 7 = 0.
- 17. Дан треугольник с вершинами в точках A(-5,2,1), B(5,6,3), C(1,-2,-3). Составить уравнение плоскости, проходящей через вершину A перпендикулярно к медиане AD этого треугольника.
- 18. Найти проекцию точки A(3,-1,4) на плоскость 2x+y-z+5=0.
- 19. Найти проекцию точки A(2,3,1) на прямую $\frac{x+7}{1} = \frac{y+2}{2} = \frac{z+2}{3}.$
- \circ 20. Точка M(x,y,z) движется прямолинейно и равномерно из начального положения $M_0(28,-30,-27)$ со скоростью $v=12,5\,$ м/с по перпендикуляру, проведенному из точки M_0 к плоскости 15x-16y-12z+26=0. Составить уравнения движения точки M и найти:
- а) координаты точки P пересечения ее траектории с этой плоскостью;
 - б) время, затраченное на движение точки M от $M_{\,0}$ до P ;
 - в) длину отрезка $M_0 P$.
- 21. Найти точку, симметричную точке P(6,-5,5) относительно плоскости 2x-3y+z-4=0 .
- 22. Найти проекцию прямой x=1+2t, y=3+t, z=2+t на плоскость 3x-2y-z+15=0.
 - 23. Написать уравнение плоскости, проходящей через

а) точку
$$M(1,3,5)$$
 и прямую $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{3}$;

б) прямую
$$\frac{x-2}{3} = \frac{y-3}{3} = \frac{z}{1}$$
 параллельно прямой $\frac{x+1}{1} = \frac{y}{1} = \frac{z}{1}$;

- в) параллельные прямые $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z}{1}, \frac{x}{2} = \frac{y-1}{3} = \frac{z+2}{1};$
- г) пересекающиеся прямые $\frac{x-2}{3} = \frac{y-4}{1} = \frac{z-2}{1}$ и $\frac{x+2}{1} = \frac{y-1}{2} = \frac{z}{1}$;
- д) точку M(2,0,-3) параллельно прямым $\frac{x-2}{3} = \frac{y+1}{1} = \frac{z}{1}$ и $\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$;
- e) прямую $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z+2}{1}$ перпендикулярно к плоскости x-y+2z-5=0.
- ullet 24. На прямой $x=2t,\ y=4t,z=3+5t$ найти точку, равноудаленную от точек A(3,1,-2) и B(5,3,-2).
- 25. Найти точку, симметричную точке B(4,3,10) относительно прямой $\frac{x-1}{2} = \frac{y-2}{4} = \frac{z-3}{5}$.
- 26. Написать уравнение общего перпендикуляра к прямым $\frac{x-2}{3} = \frac{y+1}{-2} = \frac{z}{2} \text{ и } x = -1 + 3t \text{ , } y = 2 + 2t \text{ , } z = 1 \text{ .}$
- \circ 27. Плоскость 6x-4y+3z-42=0 является зеркальной. Найти изображение точки (2,4,-5) .
- 28. На плоскость α падает луч, который от нее отражается. Доказать, что:
- а) единичный вектор q отраженного луча может быть найден по формуле q=p-2(np)n, где p единичный вектор

падающего луча, n — единичный вектор нормали к плоскости, направленный от начала координат к плоскости;

б) матрица-столбец Q из координат вектора q может быть найдена по формуле Q = (E-2N)P, где P — матрицастолбец из координат вектора P, а

$$N = \begin{pmatrix} n_x^2 & n_x n_y & n_x n_z \\ n_y n_z & n_y^2 & n_y n_z \\ n_z n_x & n_z n_y & n_z^2 \end{pmatrix}$$

(матрица E-2N называется матрицей отражения падающего луча на плоскость с единичным нормальным вектором $n = (n_x, n_y, n_z)$, направленным из начала координат к плоскости);

в) если луч последовательно отражается от плоскостей $\alpha_1,\alpha_2,\dots,\alpha_k$, то $Q=(E-2N_k)(E-2N_{k-1})\cdots(E-2N_1)P$, где N_1,N_2,\dots,N_k — матрицы отражения лучей, падающих на плоскости $\alpha_1,\alpha_2,\dots,\alpha_k$ соответственно.

Тема 12. Эллипс. Гипербола. Парабола

I. Контрольные вопросы

- 1. Что называется эллипсом? Какие точки называются фокусами эллипса? Слелайте эскиз эллипса.
 - 2. Запишите каноническое уравнение эллипса.
- 3. Для эллипса, заданного каноническим уравнением, укажите:
- а) геометрический смысл входящих в него параметров и связь между ними;
 - б) большую и малую оси;
 - в) вершины и их координаты;
 - г) координаты фокусов;
 - д) оси симметрии и центр симметрии.
 - 4. Что называется эксцентриситетом эллипса?
- 5. По какой формуле вычисляется эксцентриситет эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$?
- 6. Какие значения может принимать эксцентриситет эллипса? Что он характеризует?
 - 7. Что называется фокальными радиусами точки эллипса?
 - 8. По какой формуле вычисляются фокальные радиусы эл-

липса
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
?

- 9. Что называется фокальным параметром эллипса?
- 10. По какой формуле вычисляется фокальный параметр эл-

липса
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
?

- 11. Запишите параметрические уравнения эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 12. Что называется гиперболой? Какие точки называются фокусами гиперболы? Сделайте эскиз гиперболы.
 - 13. Запишите каноническое уравнение гиперболы.
- 14. Для гиперболы, заданной каноническим уравнением, укажите:

- а) геометрический смысл входящих в него параметров и связь между ними;
 - б) действительную и мнимую оси;
 - в) вершины и их координаты;
 - г) координаты фокусов;
 - д) оси симметрии и центр симметрии.
 - 15. Запишите уравнения асимптот гиперболы $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
 - 16. Что называется эксцентриситетом гиперболы?
 - 17. По какой формуле вычисляется эксцентриситет гипербо-

лы
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
?

- 18. Какие значения может принимать эксцентриситет гиперболы?
- 19. Что называется фокальными радиусами точки гиперболы?
- 20. По каким формулам вычисляются фокальные радиусы гиперболы $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$?
 - 21. Что называется фокальным параметром гиперболы?
 - 22. По какой формуле вычисляется фокальный параметр ги-

перболы
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
?

- 23. Какие две гиперболы называются сопряженными?
- 24. Что называется директрисами эллипса?
- 25. Что называется директрисами гиперболы?
- 26. Какими уравнениями задаются директрисы эллипса

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1?$$

- 27. Какими уравнениями задаются директрисы гиперболы $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1?$
 - 28. Сформулируйте основное свойство директрис эллипса.
 - 29. Сформулируйте основное свойство директрис гиперболы.

- 30. Что называется параболой? Какая точка называется фокусом параболы? Какая прямая называется директрисой параболы? Сделайте эскиз параболы?
 - 31. Запишите каноническое уравнение параболы.
- 32. Для параболы, заданной каноническим уравнением, укажите:
- а) геометрический смысл входящего в него (фокального) параметра;
 - б) ось симметрии;
 - в) координаты фокуса;
 - г) вершину и ее координаты;
 - д) директрису и ее уравнение.
 - 33. Что называется фокальным радиусом точки параболы?
- 34. По какой формуле вычисляется фокальный радиус параболы $v^2 = 2 px$?
- 35. Запишите уравнение касательной к эллипсу $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, проходящей через его точку $M_0(x_0, y_0)$.
- 36. Запишите уравнение касательной к гиперболе $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \,,$ проходящей через ее точку $M_{_0}(x_{_0},y_{_0})$.
- 37. Запишите уравнение касательной к параболе $y^2 = 2px$, проходящей через ее точку $\boldsymbol{M}_0(x_0,y_0)$.
 - 38. Запишите полярное уравнение эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 39. Запишите полярное уравнение ветви гиперболы $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \, .$
 - 40. Запишите полярное уравнение параболы $y^2 = 2px$.

II. Задания для решения

1. Как расположены на плоскости точки, координаты которых удовлетворяют условиям:

- 2. Составить уравнение окружности, имеющей центр в точке S(1,-3) и проходящей через точку A(5,-3) .
- 3. Составить уравнение окружности, проходящей через точки:
 - a) A(-1,5), B(7,1), C(2,6); 6) A(-1,5), B(-2,-2), C(1,19).
- 4. Написать уравнения окружностей, проходящих через точку A(1,2) и касающихся двух прямых:
 - a) x y + 3 = 0, x y 1 = 0;
 - \circ 6) x-2y+2=0, 2x+y-2=0.
- 5. Написать уравнения окружностей, касающихся прямых x = 1, y = 1, x y = 1.
- 6. Составить каноническое уравнение эллипса, фокусы которого лежат на оси Ox, если известно, что:
- а) расстояние между фокусами равно 8, малая полуось равна 3;
 - б) большая ось равна 26, эксцентриситет равен $\frac{5}{13}$;
- \circ в) сумма полуосей равна 18, расстояние между фокусами равно 24;
- \circ г) расстояния от одного из фокусов эллипса до концов его большой оси равны 10 и 2.
- 7. Составить каноническое уравнение эллипса, фокусы которого лежат на оси Oy, если известно, что:
- а) расстояние между фокусами равно 6, большая ось равна 12;
 - \circ б) малая полуось равна 6, эксцентриситет равен $\frac{4}{5}$.
 - 8. Найти координаты фокусов и эксцентриситет эллипса:

- a) $4x^2 + y^2 = 4$; 6) $16x^2 + 25y^2 = 400$.
- 9. Составить каноническое уравнение эллипса, проходящего через точки $M_1(3\sqrt{3}/2,-1)$ и $M_2(-1,4\sqrt{2}/2)$, и найти его эксцентриситет.
- 10. На эллипсе $x^2 + 4y^2 = 40$ найти точку, расстояние от которой до большой оси равно 3.
- 11. Найти точки пересечения эллипса $\frac{x^2}{12} + \frac{y^2}{36} = 1$ и прямой x 2y + 9 = 0.
- 12. Составить уравнение эллипса, зная его фокус $F_1(2,0)$, соответствующую директрису x=8 и эксцентриситет $\varepsilon=\frac{1}{2}$. Найти второй фокус и вторую директрису эллипса.
- 13. Составить уравнение эллипса, вершина которого находится в начале координат, ближайший к ней фокус в точке F(2,0), а одна из директрис эллипса пересекает ее фокальную ось в точке N(12,0).
- 14. Составить каноническое уравнение гиперболы, фокусы которой лежат на оси Ox, если известно, что:
- \bullet а) расстояние между фокусами равно 30, расстояние между вершинами равно 24;
- об) действительная ось равна 12, эксцентриситет равен 5/3
- в) мнимая ось равна 2 и гипербола проходит через точку $M(-3, \sqrt{5}/2)$.
- 15. Составить каноническое уравнение гиперболы, фокусы которой лежат на оси Oy, если известно, что:
 - а) мнимая полуось равна 5, эксцентриситет равен 13/12;
- \circ б) действительная полуось равна 4 и гипербола проходит через точку $M(2,4\sqrt{2})$.
- 16. Дана гипербола $9y^2 16x^2 = 144$. Найти координаты фокусов, эксцентриситет и уравнения асимптот.
- 17. Найти уравнение гиперболы, вершины которой находятся в фокусах, а фокусы в вершинах эллипса $6x^2 + 5y^2 = 30$.

- \circ 18. Составить уравнение эллипса, если известно, что он проходит через точку M(6,4), а фокусы его совпадают с фокусами гиперболы $y^2-x^2=8$.
- 19. Составить уравнение гиперболы, асимптоты которой заданы уравнениями $y = \pm x/2$, а расстояние между фокусами равно $4\sqrt{5}$, если фокусы гиперболы лежат на оси: а) Ox; б) Oy.
- 20. Составить каноническое уравнение параболы, если известно, что парабола симметрична относительно оси:
 - a) Ox и проходит через точку M(4, -2);
 - \circ б) *Оу* и проходит через точку M(1,-2);
 - в) Ox и фокус находится в точке (-3,0);
 - \circ г) *Оу* и фокус находится в точке (0,5);
 - д) Ox и проходит через точку M(2, -3).
- 21. Найти координаты фокуса и уравнение директрисы параболы:
 - a) $y^2 = 28x$; \circ 6) $2x^2 + 3y = 0$.
- 22. Найти длину хорды, образованной пересечением параболы $y^2 = 2x$ с прямой 6x y 4 = 0.
- 23. Найти длину хорды, образованной пересечением параболы $x^2=4y$ с прямой, проходящей через фокус данной параболы под углом $\frac{\pi}{6}$ к оси Ox .
- 24. Написать уравнение параболы, проходящей через точки пересечения прямой x-y=0 и кривой $x^2+y^2+8y=0$, если парабола симметрична относительно оси: а) Ox; б) Oy.
- 25. Составить канонические равнения парабол, фокусы которых совпадают с фокусами гиперболы $x^2 y^2 = 8$.
- \circ 26. Найти длину общей хорды параболы $y=2x^2$ и окружности $x^2+y^2=5$.
 - 27. Доказать, что параметрические уравнения:
 - a) $\begin{cases} x = a \cos t, \\ y = b \sin t \end{cases}$ определяют эллипс;

$$\circ$$
 б)
$$\begin{cases} x = a \, cht, \\ y = b \, sht \end{cases}$$
 определяют гиперболу;

$$\circ$$
 в) $\begin{cases} x = \sqrt{t}, \\ y = at \end{cases}$ определяют параболу.

- 28. Составить уравнение эллипса, фокусы которого имеют координаты (1,0) и (0,1), а большая ось равна двум.
- 29. Найти радиус наибольшей окружности, лежащей внутри параболы $y^2 = 2 px$ и касающейся этой параболы в ее вершине.
- 30. Точка M(1,-2) принадлежит гиперболе, фокус которой F(-2,2), а соответствующая директриса задана уравнением 2x-y-1=0. Составить уравнение этой гиперболы.
- 31. Струя воды фонтана, имеющая форму параболы, достигает наибольшей высоты 4 м на расстоянии 0.5 м от вертикали, проходящей через точку O выхода струи. Найти высоту струи над горизонталью Ox на расстоянии 0.75 м от точки O.
- 32. Под острым углом к горизонту брошен камень. Двигаясь по параболе, он падает на расстояние 24 м от начального положения. Вычислить параметр параболы, если наибольшая высота, достигнутая камнем, равна 6 м.
- 33. Доказать, что парабола обладает так называемым оптическим свойством: луч света, выйдя из фокуса и отразившись от параболы, пойдет по прямой, параллельной оси параболы.
- 34. На каком расстоянии от вершины находится фокус параболического рефлектора, диаметр которого 15 см, а глубина 10 см?
- 35. Орбита земного шара представляет собой эллипс с полуосью $a = 150 \cdot 10^6$ км и эксцентриситетом $\epsilon = 0.017$, в фокусе которого находится Солнце. Найти, на сколько минимальное расстояние от Земли до Солнца (в декабре) меньше максимального (в июне).
- 36. Меридиан земного шара является эллипсом, у которого сжатие, т. е. (a-b)/a (a большая полуось, b малая полуось), равно 1/300. Найти его эксцентриситет ϵ .
- 37. В фокусы эллипса, большая ось которого расположена на оси Ox и равна двум, помещены точечные заряды $q_1 = 4$ и

- q_2 = 1. Найти потенциал поля, образованного зарядами q_1 и q_2 в той точке эллипса, абсцисса которой равна -4/3, если эксцентриситет эллипса равен 1/2.
- 38. Однородный стержень AB движется в вертикальной плоскости Oxy так, что его концы скользят по координатным осям. Найти траекторию центра масс стержня.
- 39. Материальная точка M массой m находится на параболе $x^2 = 6y$. На точку M действует сила тяжести $\overrightarrow{H} = 4i$. Найти точку параболы, в которой M находится в равновесии.
- 40. Составить уравнение траектории движения точки M(x, y), если в любой момент времени она остается равноудаленной от точки A(8,4) и оси ординат.
- \circ 41. Записать уравнение траектории движения точки M(x,y), если в любой момент времени она находится в 1.25 раза дальше от точки A(5,0), чем от прямой 5x-16=0.
- 42. Источник короткоинтервального звука находится в неизвестном пункте M. Звук достиг трех наблюдательных пунктов неодновременно: пункта A на t_1c позже, а пункта C на t_2c позже, чем пункта B. Определить местонахождение пункта M, приняв скорость звука равной 330 м/с.
- 43. Цепь подвесного моста имеет форму параболы $y = px^2$. Длина пролета моста 50 м, а прогиб цепи 5 м. Определить величину угла α прогиба в крайней точке моста.
- 44. Установить, какие фигуры заданы уравнениями в полярных координатах:

45. Записать уравнение окружностей: • а) $\rho = 4\cos\varphi$; о б) $\rho = -4\sin\varphi$; в) $\rho = \cos\varphi + \sin\varphi$ в прямоугольной системе координат при условии, что полярная ось совпадает с положительной полуосью Ox, а полюс – с началом координат.

46. Дан эллипс $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Составить его полярное уравне-

ние, считая, что направление полярной оси совпадает с положительным направлением оси абсцисс, а полюс находится: а) в левом фокусе; б) в правом фокусе; в) в центре эллипса.

47. Дана гипербола $\frac{x^2}{25} - \frac{y^2}{16} = 1$. Составить полярное уравне-

ние ее левой (правой) ветви, считая, что направление полярной оси совпадает с положительным направлением оси абсцисс, а полюс находится в: а) левом фокусе; б) правом фокусе.

- 48. Составить полярное уравнение параболы, ось которой служит полярной осью, а полюс находится в: а) вершине параболы; б) фокусе параболы.
- 49. Какие плоские фигуры второй степени задаются уравнениями:

a)
$$x^2 - 5x + 6 = 0$$
;

• 6)
$$9x^2 + 4y^2 - 18x + 16y - 11 = 0$$
;

• B)
$$9x^2 + 4y^2 - 18x + 16y + 25 = 0$$
;

•
$$\Gamma$$
) $9x^2 + 4y^2 - 18x + 16y + 26 = 0$;

$$\circ$$
 д) $x^2 - 4y^2 + 4x + 24y - 36 = 0;$

$$\circ$$
 e) $x^2 - 4y^2 + 4x + 24y - 32 = 0$;

$$\circ$$
 ж) $x^2 - 4y^2 + 4x + 24y - 28 = 0$.

Тема 13. Поверхности второго порядка

- **I.** Контрольные вопросы
- 1. Что называется поверхностью второго порядка?
- 2. Запишите каноническое уравнение эллипсоида.
- 3. Опишите метод исследования поверхностей с помощью сечений.
 - 4. Изобразите эллипсоид и укажите его полуоси и вершины.
 - 5. Какой эллипсоид называется эллипсоидом вращения?
- 6. Запишите каноническое уравнение однополостного гиперболоида.
- 7. Изобразите однополостный гиперболоид и укажите его полуоси и горловой эллипс.
- 8. Какой однополостный гиперболоид называется однополостным гиперболоидом вращения?
- 9. Какие прямые называются прямолинейными образующими однополостного гиперболоида?
- 10. Запишите каноническое уравнение двуполостного гиперболоида.
- 11. Изобразите двуполостный гиперболоид и укажите его вершины.
- 12. Какой двуполостный гиперболоид называется двуполостным гиперболоидом вращения?
- 13. Запишите каноническое уравнение конуса второго порядка.
- 14. Изобразите конус второго порядка и укажите его вершину.
- 15. Запишите каноническое уравнение эллиптического параболоида.
- 16. Изобразите эллиптический параболоид и укажите его вершину.
- 17. Какой эллиптический параболоид называется эллиптическим параболоидом вращения?
- 18. Запишите каноническое уравнение гиперболического параболоида.
 - 19. Изобразите гиперболический параболоид.
 - 20. Что называется цилиндрической поверхностью?

- 21. Запишите каноническое уравнение эллиптического цилиндра.
- 22. Запишите каноническое уравнение гиперболического цилиндра.
- 23. Запишите каноническое уравнение параболического цилиндра.
 - 24. Изобразите эллиптический цилиндр и укажите его ось.
 - 25. Изобразите гиперболический цилиндр.
 - 26. Изобразите параболический цилиндр.
 - 27. Какой цилиндр называется цилиндром вращения?

II. Задания для решения

- 1. Определить вид поверхности и изобразить ее в системе координат Oxyz :
 - a) $3x^2 + y^2 + 2z^2 = 6$; \circ 6) $2x^2 y^2 + z^2 = 4$;
 - B) $x^2 3y^2 z^2 = 9$; $\circ \Gamma$) $x = y^2 + 2z^2$;

 - ж) $x = 2y^2 + (z-1)^2$; \circ 3) $2x^2 y^2 + 3z^2 = 0$;
 - и) $x^2 + y^2 = (z-2)^2$; \circ к) $x^2 + (y-1)^2 + z^2 = 1$;
- 2. Найти проекцию на плоскость: а) Oyz линии пересечения двуполостного гиперболоида $x^2-y^2-z^2=1$ и плоскости x=5; \circ б) Oxy линии пересечения параболоида $z=x^2+y^2$ и плоскости 2x-2y+z=7.
- 3. Доказать, что линия пересечения двух параболических цилиндров $z^2=x$ и $y^2=4-x$ лежит на круговом цилиндре. Найти уравнение этого цилиндра.
 - 4. Выяснить, какие поверхности заданы уравнениями:
 - a) $16(x-1)^2 + 9(y+2)^2 + 36(z-2)^2 = 144$;
 - 6) $x^2 + y^2 + z^2 + 2x 6y + 8z + 10 = 0$;
 - \circ B) $3(x-1)^2 + 9(y-2)^2 4(z+1)^2 36 = 0$;
 - $\circ \Gamma$) $4x^2 + 9y^2 + 36z^2 + 8x + 36y 72z + 40 = 0$;

д)
$$(x-2)^2 + (y+1)^2 - (z-1)^2 = 0$$
;

e)
$$x^2 + y^2 - z^2 - 2x - 4y + 2z + 4 = 0$$
;

ж)
$$x^2 + 2y^2 + 6x - 18y + 8z + 49 = 0$$
;

3)
$$x^2 - 2y^2 + 6x + 4y - 8z + 47 = 0$$
.

5. Найти точки пересечения фигуры второго порядка и прямой:

• a)
$$\frac{x^2}{16} + \frac{y^2}{9} - z^2 = 1$$
, $x = 4 + 4t$, $y = -3$, $z = 1 + t$;

o 6)
$$x^2 - 4y^2 = 4z$$
, $\frac{x-2}{2} = \frac{y}{1} = \frac{z-5}{-2}$.

- 6. Составить уравнение касательной плоскости к сфере $(x+1)^2 + (y-2)^2 + (z+2)^2 = 49$ в точке $M_0(5,5,-4)$.
- 7. Найти уравнение плоскости, пересекающей эллипсоид $x^2 + 2y^2 + 4z^2 = 9$ по эллипсу, центр которого находится в точке C(3,2,1).
- 8. Найти уравнение плоскости, проходящей через точки M(1,1,1) и N(2,0,2) и пересекающей параболоид $x^2-y^2=2z$ по паре прямых.
- 9. Доказать, что линия пересечения параболоида $x^2 + 2y^2 = 4z + 10$ и сферы $x^2 + y^2 + z^2 = 6$ состоит из двух окружностей. Найти точки пересечения этих окружностей и их радиусы.
 - 10. Составить уравнение сферы, проходящей через:
 - а) начало координат и окружность

$$\begin{cases} (x+1)^2 + (y-2)^2 + (z+2)^2 = 49, \\ 2x + 2y - z + 4 = 0; \end{cases}$$

б) окружности

$$\begin{cases} x^2 + y^2 = 9, \\ z = 0 \end{cases} \text{ M} \begin{cases} x^2 + y^2 = 25, \\ z = 2. \end{cases}$$

11. Составить уравнение эллипсоида, оси которого совпадают с осями координат, и проходящего через:

а) эллипс
$$\begin{cases} \frac{x^2}{8} + \frac{y^2}{1} = 1, \\ z = 0 \end{cases}$$
 и точку $M_0(2, 0, 1)$;

б) эллипс
$$\begin{cases} \frac{y^2}{25} + \frac{z^2}{2} = 1, \\ x = 0 \end{cases}$$
 и окружность
$$\begin{cases} x^2 + y^2 = 25, \\ z = 0; \end{cases}$$

- в) три точки A(2,2,4), B(2,-4,-2), C(0,6,0).
- 12. Составить уравнение фигуры, полученной вращением:

а) прямой
$$\begin{cases} z-2=0, \\ y=0 \end{cases}$$
 вокруг оси Ox ;

б) эллипса
$$\begin{cases} \frac{x^2}{4} + \frac{z^2}{9} = 1, \\ y = 0 \end{cases}$$
 вокруг оси Ox ;

в) гиперболы
$$\begin{cases} x^2 - \frac{y^2}{4} = 1, \\ z = 0 \end{cases}$$
 вокруг оси Oy ;

г) параболы
$$\begin{cases} x^2 = -2z, \\ y = 0 \end{cases}$$
 вокруг оси Oz .

13. Составить уравнение цилиндра, если он состоит из прямых, параллельных вектору a=(1,0,1) и проходящих через точки эллипса

$$\begin{cases} 9x^2 + 4y^2 - 18x - 16y - 11 = 0, \\ z = 0. \end{cases}$$

- 14. Написать уравнение конуса, если он состоит из прямых, проходящих через точку S:
 - а) S(1,0,0) и точки окружности $\begin{cases} y^2 + z^2 = 16, \\ x = 0; \end{cases}$
- б) S(1,2,4) и образующих с плоскостью 2x + 2y + z = 0 угол $\varphi = 45^{\circ}$.
 - 15. Написать уравнение кругового конуса, если:

- а) ось Oz является его осью, вершина находится в начале координат, точка $M_0(3, -4, 7)$ лежит на конусе;
- б) ось Oy является его осью, вершина находится в начале координат, а образующие наклонены под углом 60^{0} к оси Oy.
- 16. От скольких параметров зависит множество всех круговых конусов пространства?
- 17. От скольких параметров зависит множество сфер, каждая из которых:
 - а) проходит через данную точку;
 - б) проходит через две данные точки;
 - в) проходит через три данные точки;
 - г) касается данной прямой;
 - д) касается данной плоскости;
 - е) касается данной плоскости и имеет данный радиус;
 - ж) имеет центр на данной плоскости;
 - з) имеет центр на данной окружности;
 - и) проходит через данную окружность?
 - 18. Установить, какие фигуры заданы системами уравнений:

• a)
$$\begin{cases} \frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{36} = 1, \\ 9x - 6y + 2z - 28 = 0; \end{cases}$$
 • 6)
$$\begin{cases} \frac{x^2}{25} + \frac{y^2}{16} - \frac{z^2}{4} = 1, \\ 4x - 5y - 10z - 20 = 0; \end{cases}$$

B)
$$\begin{cases} x^2 + \frac{y^2}{9} = 2z, \\ z - 4 = 0; \end{cases}$$
 r)
$$\begin{cases} x^2 + z^2 = 2y, \\ z + 1 = 0. \end{cases}$$

- 19. Написать уравнение фигуры, отношение расстояний каждой точки которой от точки F(0,0,2) и плоскости z=1 равно $\sqrt{2}$.
- \circ 20. Написать уравнение фигуры, каждая точка которой одинаково удалена от точки F(-a,0,0) и плоскости x=a .
- 21. Написать каноническое уравнение двуполостного гиперболоида, содержащего:

а) точки
$$M_1(3,1,2),\ M_2(2,\sqrt{11},3),\ M_3(6,2,\sqrt{15})$$
 ;

б) гиперболы
$$\begin{cases} \frac{x^2}{4} - \frac{y^2}{9} = -1, \\ z = 0 \end{cases}$$
 и
$$\begin{cases} \frac{y^2}{9} - \frac{z^2}{16} = 1, \\ x = 0. \end{cases}$$

- 22. Доказать, что через точку A(4,3,0), принадлежащую гиперболическому параболоиду $\frac{x^2}{16} \frac{y^2}{9} = 2z$, можно провести две прямые, целиком лежащие на параболоиде. Написать их уравнения.
- \circ 23. Доказать, что через точку A(2,3,-4) однополостного гиперболоида $\frac{x^2}{4} + \frac{y^2}{9} \frac{z^2}{16} = 1$ проходят две прямые, принадлежащие гиперболоиду. Написать их уравнения.
- 24. Составить уравнение фигуры, образованной прямой, которая скользит по прямым $\frac{x-6}{3} = \frac{y}{2} = \frac{z-1}{1}$ и $\frac{x}{3} = \frac{y-8}{2} = \frac{z+4}{-2}$, оставаясь все время параллельной плоскости 2x+3y-5=0.

14. Комплексные числа

- **I.** Контрольные вопросы
- 1. Что называется комплексным числом?
- 2. Запишите комплексное число в алгебраической форме.
- 3. Какие комплексные числа называются сопряженными?
- 4. Как сложить два комплексных числа в алгебраической форме?
- 5. Как умножить два комплексных числа в алгебраической форме?
- 6. Как разделить два комплексных числа в алгебраической форме?
- 7. Какими числами, действительными или комплексными являются сумма и произведение сопряженных комплексных чисел?
- 8. Что называется комплексной плоскостью? Какая ось комплексной плоскости называется действительной, а какая мнимой?
- 9. Дайте геометрическую интерпретацию сумме двух комплексных чисел.
- 10. Дайте геометрическую интерпретацию разности двух комплексных чисел.
- 11. Что называется модулем комплексного числа? Какие значения он может принимать?
- 12. Что называется аргументом комплексного числа? Какие значения он может принимать?
- 13. По какой формуле вычисляется модуль комплексного числа z = x + iy?
- 14. По какой формуле вычисляется аргумент комплексного числа z = x + iy?
- 15. Запишите комплексное число в тригонометрической форме.
 - 16. Запишите комплексное число в показательной форме.
- 17. Как умножить два комплексных числа в тригонометрической форме?
- 18. Как разделить два комплексных числа в тригонометрической форме?
- 19. Как умножить два комплексных числа в показательной форме?

- 20. Как разделить два комплексных числа в показательной форме?
 - 21. Запишите формулу Муавра.
- 22. Как вычислить значения корня n-ой степени из комплексного числа в тригонометрической форме?
- 23. Как располагаются значения корня n-ой степени из комплексного числа на комплексной плоскости?

II. Задания для решения

- 1. Вычислить выражения:
- a) (2+i)(3-i)+(2+3i)(3+4i);
- \circ 6) (2+i)(3+7i)-(1+2i)(5+3i);

• B)
$$\frac{(5+i)(7-6i)}{3+i}$$
; $\circ \Gamma$) $\frac{(1+3i)(8-i)}{(2+i)^2}$;

• д)
$$(3+i)^3 - (3-i)^3$$
; \circ e) $\frac{(1+i)^5}{(1-i)^3}$;

$$\mathfrak{K}\left(-\frac{1}{2}\pm\frac{\sqrt{3}}{2}i\right)^{3}; \ 3) \ \frac{(1+2i)^{2}-(2-i)^{3}}{(1-i)^{3}+(2+i)^{2}}.$$

- 2. Решить уравнение (1+2i)x + (3-5i)y = 1-3i, считая x и y вещественными.
 - 3. Решить системы уравнений:

a)
$$\begin{cases} (3-i)x + (4+2i)y = 2+6i, \\ (4+2i)x - (2+3i)y = 5+4i; \end{cases}$$
, 6)
$$\begin{cases} (2+i)x + (2-i)y = 6, \\ (3+2i)x + (3-2i)y = 8. \end{cases}$$

- 4. Вычислить:
- a) $\sqrt{2i}$; 6) $\sqrt{-8i}$; B) $\sqrt{3-4i}$;
- $\circ \Gamma$) $\sqrt{-15+8i}$; π) $\sqrt{-8-6i}$; π) $\sqrt{-8-6i}$; π
- 5. Решить уравнения:
- o a) $x^2 (3-2i)x + (5-5i) = 0$;
- 6) $(2+i)x^2 (5-i)x + (2-2i) = 0$;
- B) $x^4 3x^2 + 4 = 0$;
- Γ) $x^4 30x^2 + 289 = 0$.
- 6. Решить уравнения и разложить их левые части на множители с вещественными коэффициентами:

a)
$$x^4 + 6x^3 + 9x^2 + 100 = 0$$
; 6) $x^4 + 2x^2 - 24x + 72 = 0$.

7. Изобразить на комплексной плоскости множество точек, соответствующих комплексным числам z, удовлетворяющим условиям:

• a)
$$|z| = 1$$
, • 6) arg $z = \frac{\pi}{3}$; • B) $|z - 1 - i| < 1$;

$$\circ \Gamma$$
) $|z+3+4i| \ge 5$;

3)
$$-1 < \text{Re } iz < 0$$
; \circ H) $|\text{Im } z| = 1$; K) $|\text{Re } z + \text{Im } z| < 1$;

л)
$$|z-1|+|z+1|=3$$
; м) $|z+2|-|z-2|=3$; н) $|z-2|=\text{Re }z+2$.

8. Доказать тождество $|z+w|^2 + |z-w|^2 = 2|z|^2 + 2|w|^2$ и указать его геометрический смысл.

9. Найти min
$$|3 + 2i - z|$$
 при $|z| \le 1$.

10. Найти
$$\max |1 + 4i - z|$$
 при $|z - 10i + 2| \le 1$.

11. Найти тригонометрическую форму числа:

• a) 5;
$$\circ$$
 6) i ; \circ 8) -2 ; \bullet \circ 7) $-3i$;

• д)
$$1+i$$
; • e) $1-i$; \circ ж) $1+i\sqrt{3}$;

$$\circ$$
 3) $-1+i\sqrt{3}$; \circ и) $-1-i\sqrt{3}$; \circ к) $1-i\sqrt{3}$.

12. Вычислить, пользуясь формулой Муавра:

• a)
$$(1+i)^{25}$$
; \circ 6) $(\sqrt{3}+i)^{30}$; B) $(\frac{1+i\sqrt{3}}{1-i})^{20}$;

$$\Gamma\left(1-\frac{\sqrt{3}-i}{2}\right)^{24}; \quad \text{д)} \quad \frac{\left(-1+i\sqrt{3}\right)^{15}}{\left(1-i\right)^{20}}+\frac{\left(-1-i\sqrt{3}\right)^{15}}{\left(1+i\right)^{20}}.$$

13. Решить уравнения:

14. Представить в виде многочленов от $\sin x$ и $\cos x$ функции:

• a)
$$\sin 4x$$
; \circ 6) $\cos 4x$; B) $\sin 5x$; Γ) $\cos 5x$.

15. Выразить через первые степени синуса и косинуса аргументов, кратных x, функции:

• a) $\sin^4 x$; \circ б) $\cos^4 x$; в) $\sin^5 x$; г) $\cos^5 x$. 16. Вычислить

• a)
$$\sqrt[3]{1}$$
; \circ 6) $\sqrt[4]{1}$; • B) $\sqrt[3]{i}$; \circ Γ) $\sqrt[6]{i}$; π) $\sqrt[4]{-4}$;

e)
$$\sqrt[6]{64}$$
; \circ ж) $\sqrt[3]{1+i}$; • 3) $\sqrt[3]{2-2i}$; и) $\sqrt[4]{8\sqrt{3}i-8}$;

к)
$$\sqrt[4]{-\frac{18}{1+i\sqrt{3}}}$$
; л) $\sqrt[4]{\frac{7-2i}{1+i\sqrt{2}} + \frac{4+14i}{\sqrt{2}+2i} - (8-2i)}$.

17. Найти сумму всех корней n-й степени из 1.

Тема 15. Группа. Кольцо. Поле

I. Контрольные вопросы

- 1. Что называется алгебраической операцией на множестве?
- 2. Какая алгебраическая операция называется ассоциативной?
- 3. Какая алгебраическая операция называется коммутативной?
- 4. Какой элемент называется нейтральным относительно алгебраической операции?
- 5. Какой элемент называется симметричным данному элементу?
 - 6. Что называется группой?
 - 7. Какая группа называется коммутативной (или абелевой)?
 - 8. Какая группа называется мультипликативной?
 - 9. Какая группа называется аддитивной?
 - 10. Какая группа называется конечной?
 - 11. Что называется порядком конечной группы?
 - 12. Какая группа называется симметрической?
 - 13. Перечислите простейшие свойства произвольной группы.
 - 14. Что называется подгруппой некоторой группы?
 - 15. Сформулируйте критерий подгруппы.
 - 16. Что называется кольцом?
 - 17. Какое кольцо называется коммутативным?
 - 18. Перечислите простейшие свойства произвольного кольца.
 - 19. Что называется подкольцом кольца?
 - 20. Сформулируйте критерий подкольца.
 - 21. Что называется полем?
 - 22. Перечислите простейшие свойства произвольного поля.
 - 23. Что называется подполем поля?
 - 24. Сформулируйте критерий подполя.
- 25. Является ли множество действительных чисел полем относительно операций сложения и умножения?
- 26. Является ли множество комплексных чисел полем относительно операций сложения и умножения?

II. Задания для решения

- 1. Выяснить, образует ли группу каждое из следующих множеств относительно названной операции, и указать, какие из групп абелевы. Множество:
- 1) целых чисел относительно: а) сложения; б) умножения; в) вычитания;
 - 2) четных чисел относительно сложения;
 - 3) нечетных чисел относительно сложения;
 - 4) рациональных чисел относительно сложения;
- 5) рациональных (действительных) чисел отличных от нуля, относительно умножения;
- \circ 6) положительных рациональных (действительных) чисел относительно умножения;
- 7) рациональных чисел, знаменатели которых степени числа 2 с целыми неотрицательными показателями, относительно сложения:
- 8) поворотов плоскости вокруг фиксированной точки относительно умножения поворотов как отображений;
- \circ 9) многочленов от переменного x с целыми (рациональными, действительными, комплексными) коэффициентами относительно сложения многочленов: а) степени n; б) степени не более n:
- 10) свободных векторов плоскости (пространства) относительно сложения векторов;
- 11) матриц порядка n > 1 с целыми (рациональными, действительными, комплексными) элементами относительно: а) сложения, б) умножения;
- 12) невырожденных матриц порядка n > 1 с целыми (рациональными, действительными, комплексными) элементами относительно: а) сложения, б) умножения;
- \circ 13) матриц порядка n > 1 с целыми (рациональными, действительными, комплексными) элементами относительно умножения и определителями, равными: a) 1; б) \pm 1;
- 14) корней n-й степени из единицы относительно умножения;
 - 15) подстановок чисел 1, 2, ..., n относительно умножения;
- \circ 16) а) четных; б) нечетных подстановок чисел 1,2,...,n относительно умножения;

- 17) параллельных переносов трехмерного пространства, если за произведение переносов принято их последовательное выполнение;
- 18) положительных действительных чисел, если операция определяется так: a) $a*b=a^b$; б) $a*b=a^2b^2$.
- 2. Какие из групп предыдущей задачи являются подгруппами других из этих групп?
- 3. Выяснить, какие из множеств преобразований $f:R\to R$ данного вида являются группами относительно умножения преобразований как отображений, и указать, какие из групп абелевы:
 - a) f(x) = ax + b, $a, b \in R$, $a \ne 0$;
 - 6) $f(x) = x + b, b \in R$;
 - B) f(x) = ax + b, $a, b \in R$, a > 0;
 - $\circ \Gamma$) $f(x) = ax + b, a, b \in R, a < 0$;
 - \circ д) $f(x) = ax + b, a, b \in Q, a \neq 0$;
 - o e) $f(x) = ax + b, a, b \in Q, a > 0$;
 - $f(x) = ax + b, a, b \in \mathbb{Z}, a \neq 0$;
 - 3) $f(x) = 2^k x, k \in \mathbb{Z}$.
- 4. Доказать, что множества матриц являются группами относительно умножения, и указать, какие из групп абелевы:

• a)
$$\begin{cases} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in R, a^2 + b^2 > 0 \end{cases};$$
• 6)
$$\begin{cases} \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \middle| \varphi \in R \end{cases};$$
B)
$$\begin{cases} \begin{pmatrix} \cos \frac{2k\pi}{n} & -\sin \frac{2k\pi}{n} \\ \sin \frac{2k\pi}{n} & \cos \frac{2k\pi}{n} \end{pmatrix} \middle| k = 0, 1, \dots, n - 1 \end{cases};$$

г) множество квадратных матриц порядка n, в каждой строке и в каждом столбце которых один элемент равен единице, а остальные — нулю;

- д) множество всех невырожденных треугольных матриц с лействительными элементами.
- 5. Доказать, что множество всех симметрий данной фигуры является группой относительно умножения симметрий как отображений. Найти группу симметрий: а) правильного треугольника, б) квадрата; в) ромба, не являющегося квадратом; г) прямоугольника, не являющегося квадратом. Составить таблицу Кэли для каждого из случаев.
- 6. Является ли множество $Z_n = \{0,1,\ldots,n-1\}$ группой относительно: а) сложения по модулю n; б) умножения по модулю n?
- 7. Доказать, что множество упорядоченных пар (a,b) рациональных (действительных, комплексных) чисел, где $a \neq 0$, образует группу относительно алгебраической операции, определяемой равенством $(a_1,b_1)(a_2,b_2) = (a_1a_2,a_1b_2+b_1)$.
- 8. В мультипликативной группе $C^* = C \setminus \{0\}$ найти порядок элементов:

• a)
$$z_k = \cos \frac{2\pi k}{150} + i \sin \frac{2\pi k}{150}$$
 при $k = 25, 15, 13$;
• б) $z_k = \cos \frac{2\pi k}{88} + i \sin \frac{2\pi k}{88}$ при $k = 4, 12, 7$.

- 9. Найти порядки всех элементов группы S_3 подстановок третьей степени. Является ли группа S_3 циклической?
- 10. В группе GL(2, C) невырожденных матриц второго порядка найти порядки элементов:

a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
; 6) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$; B) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; Γ) $\begin{pmatrix} i & 0 \\ 0 & -1 \end{pmatrix}$.

11. Выяснить, какие из множеств являются кольцами и какие полями относительно указанных алгебраических операций – сложения и умножения. Для колец с единицей, не являющихся полями, найдите множество всех обратимых элементов. В пунктах 1) – 16) рассматриваются операции сложения и умножения чисел. Множество:

• 1)
$$Z$$
; \circ 2) $mZ = \{mk \mid k \in Z\}$;

• 3) нечетных чисел; • 4)
$$Q$$
;
• 5) $\left\{a+b\sqrt{2} \mid a,b\in Z\right\}$; • 6) $\left\{a+b\sqrt{2} \mid a,b\in Q\right\}$;
• 7) $\left\{a+b\sqrt{3} \mid a,b\in Z\right\}$; 8) $\left\{a+b\sqrt{3} \mid a,b\in 2Z\right\}$;
• 9) $\left\{a+b\sqrt{3} \mid a,b\in Q\right\}$; • 10) $\left\{a+bi \mid a,b\in Z\right\}$;
11) $\left\{a+bi \mid a,b\in 3Z\right\}$; • 12) $\left\{a+bi \mid a,b\in Q\right\}$;
• 13) $\left\{a+b\sqrt{2}i \mid a,b\in Z\right\}$; • 14) $\left\{a+b\sqrt{2}i \mid a,b\in Q\right\}$;
15) $\left\{a+b\sqrt{3}i \mid a,b\in Z\right\}$; 16) $\left\{a+b\sqrt{3}i \mid a,b\in Q\right\}$;

- 17) матриц порядка n>1 с целыми (рациональными, действительными, комплексными) элементами относительно обычных операций сложения и умножения матриц;
- \circ 18) многочленов от переменного x с целыми (рациональными, действительными, комплексными) коэффициентами относительно обычных операций сложения и умножения многочленов:
- 19) свободных векторов пространства относительно обычного сложения и векторного умножения векторов;
- 20) действительных чисел относительно операций сложения и умножения, заданных равенствами a+b=a+b-1, $a\cdot b=a+b-ab$;
- 21) линейных функций, определенных на R, относительно поточечного сложения функций и умножения функций как отображений.
- 12. Какие из колец (полей) предыдущей задачи являются подкольцами (подполями) других из этих колец (полей)?
- 13. Доказать, что каждое из множеств матриц является кольцом относительно обычных операций сложения и умножения матриц. Указать, какие из этих колец коммутативны, какие являются полями. В кольцах с единицей, не являющихся полями, найти все обратимые элементы. В кольцах с делителями нуля найти все делители нуля:

• a)
$$\left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in Z \right\}$$
; \circ 6) $\left\{ \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} \middle| a, b, c \in Q \right\}$;

- в) множество всех диагональных матриц порядка n > 1 с действительными элементами.
- 14. Показать, что пары (a,b) целых чисел с операциями, заданными равенствами

$$(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2),$$

 $(a_1,b_1)(a_2,b_2)=(a_1a_2,b_1b_2),$

образуют кольцо, и найти все делители нуля этого кольца.

15. Доказать, что матрицы

$$O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, S = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, T = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

с элементами из Z_2 образуют поле относительно обычных операций сложения и умножения матриц. Составить таблицы Кэли сложения и умножения элементов этого поля.

Тема 16. Многочлены

- **I.** Контрольные вопросы
- 1. Что называется многочленом над некоторым полем (кольцом)?
 - 2. Какой многочлен называется нулевым?
 - 3. Какие два многочлена называются равными?
 - 4. Что называется суммой двух многочленов?
 - 5. Что называется произведением двух многочленов?
- 6. Перечислите простейшие свойства операций сложения и умножения многочленов.
- 7. Что называется кольцом многочленов над некоторым полем (кольцом)?
- 8. Сформулируйте для многочленов теорему о делении с остатком.
 - 9. В каком случае многочлен делится на другой?
- 10. Перечислите простейшие свойства делимости многочленов.
 - 11. Что называется общим делителем двух многочленов?
 - 12. Какие два многочлена называются взаимно простыми?
- 13. Что называется наибольшим общим делителем двух многочленов?
- 14. Опишите алгоритм Евклида для нахождения наибольшего общего делителя двух многочленов.
- 15. Сформулируйте теорему о разложении наибольшего общего делителя двух многочленов.
- 16. Сформулируйте критерий взаимной простоты двух многочленов.
- 17. Какой многочлен называется неприводимым над полем, а какой приводимым?
- 18. Перечислите основные свойства неприводимых над некоторым полем многочленов.
- 19. Сформулируйте для многочленов аналог основной теоремы арифметики.
 - 20. Что называется каноническим разложением многочлена?
- 21. Как можно найти наибольший общий делитель многочленов, зная их канонические разложения?
 - 22. Что называется корнем многочлена?

- 23. Сформулируйте теорему Безу.
- 24. Опишите схему Горнера.
- 25. Сформулируйте основную теорему алгебры комплексных чисел.
 - 26. Запишите формулы Виета для многочлена.

II. Задания для решения

- 1. В кольце R[x] найти частное q(x) и остаток r(x) при делении:
 - a) $x^4 4x^3 + 5x^2 + x 1$ Ha $x^2 2x 3$;
 - \circ 6) $5x^4 x^2 + 6$ Ha $x^2 + 3x + 2$;
 - B) $2x^2 3x + 1$ Ha $x^3 + 4$.
- 2. При каком условии полином $x^3 + px + q$ делится на полином вида $x^2 + mx 1$?
- 3. Найти в кольце R[x] НОД(f(x) , g(x)) и НОК(f(x) , g(x)), если:
 - a) $f(x) = x^4 + x^3 3x^2 4x 1$, $g(x) = x^3 + x^2 x 1$;
 - •6) $f(x) = x^5 + x^4 x^3 2x 1$, $g(x) = 3x^4 + 2x^3 + x^2 + 2x 2$;
 - \circ B) $f(x) = x^4 + 2x^3 + 2x + 2$, $g(x) = x^3 + 3x + 2$;
 - \circ_{Γ}) $f(x) = x^6 + 2x^4 4x^3 3x^2 + 8x 5$, $g(x) = x^5 + x^2 x + 1$.
- 4. Пользуясь алгоритмом Евклида, найти в кольце Q[x] для f(x) и g(x) такие многочлены p(x) и q(x), чтобы НОД $\big(f(x),\,g(x)\big)=f(x)p(x)+g(x)q(x)$:
 - •a) $f(x) = x^4 + 2x^3 x^2 4x 2$, $g(x) = x^4 + x^3 x^2 2x 2$;
 - of) $f(x) = x^5 + 3x^4 + x^3 + x^2 + 3x + 1$, $g(x) = x^4 + 2x^3 + x + 2$;
 - B) $f(x) = 4x^4 2x^3 16x^2 + 5x + 9$, $g(x) = 2x^3 x^2 5x + 4$.
- 5. Найти в кольце C[x] частное q(x) и остаток r(x) при делении:
 - a) $x^4 2x^3 + 4x^2 6x + 8$ Ha x 1;
 - \circ 6) $2x^5 5x^3 8x$ Ha x + 3;
 - B) $x^3 x^2 x$ Ha x 1 + 2i.
 - 6. Пользуясь схемой Горнера, вычислить $f(\alpha)$, если:

- a) $f(x) = x^4 3x^3 + 6x^2 10x + 16$, $\alpha = 4$;
- \circ 6) $f(x) = 5x^4 7x^3 + 8x^2 3x + 7$, $\alpha = 3$;
- B) $f(x) = x^5 + (1+2i)x^4 (1+3i)x^2 + 7$, $\alpha = -2 i$.
- 7. Пользуясь схемой Горнера, разложить многочлен f(x) по степеням $x \alpha$, если:
 - a) $f(x) = x^4 + 2x^3 3x^2 4x + 1$, $\alpha = -1$;
 - 6) $f(x) = x^5, \alpha = 1;$
 - \circ B) $f(x) = x^4 8x^3 + 24x^2 50x + 90, \alpha = 2;$
 - $f(x) = x^4 + 2ix^3 (1+i)x^2 3x + 7 + i$, $\alpha = -i$;
 - 8. Пользуясь схемой Горнера, разложить по степеням x:
 - a) f(x+3), $f(x) = x^4 x^3 + 1$;
 - o 6) f(x+2), $f(x) = 2x^4 3x^3 + 5x^2 + 6x 1$;
 - B) $f(x) = (x-2)^4 + 4(x-2)^3 + 6(x-2)^2 + 10(x-2) + 20$.
- 9. С помощью схемы Горнера найти показатель кратности корня:
 - a) 2 для многочлена $x^5 5x^4 + 7x^3 2x^2 + 4x 8$;
 - \circ б) -2 для многочлена $x^5 + 7x^4 + 16x^3 + 8x^2 16x 16$;
- 10. Определить коэффициент a так, чтобы многочлен $x^5 ax^2 ax + 1$ имел число -1 корнем не ниже второй кратности.
- 11. Определить a и b так, чтобы многочлен $ax^4 + bx^3 + 1$ делился на $(x-1)^2$ в кольце R[x].
 - 12. Определить a так, чтобы:
- а) один из корней многочлена $x^3 21x + a$ был равен удвоенному другому;
- б) сумма двух корней многочлена $x^3 + 12x^2 + a$ была равна третьему корню.
- в) произведение двух корней многочлена $x^3 20x + a$ было равно третьему корню.
 - 13. Найти наибольший общий делитель полиномов:
 - a) $(x-1)^3(x+2)^2(x-3)(x-4)$ u $(x-1)^2(x+2)(x+5)$;

$$\circ$$
 б) $(x^3-1)(x^2-2x+1)$ и $(x^2-1)^3$.

14. Найти в кольце C[x] НОД (f(x), f'(x)), если f(x) равно:

a)
$$(x-1)(x^2-1)(x^3-1)(x^4-1)$$
; 6) $(x^2-4)^3(x^2+4)^2(x^4-16)$.

15. Разложить многочлены на неприводимые множители над C и R:

16. По данным корням построить многочлен наименьшей степени над C и R:

- а) двукратный корень 1, простые корни i и -1;
- \circ б) трехкратный корень 1-2i;
- в) двукратный корень i и простой корень -1-i.

17. Найти целые корни многочленов:

• a)
$$6x^4 + 19x^3 - 7x^2 - 26x + 12$$
;

$$\circ$$
 6) $2x^5 + 7x^4 + 3x^3 - 11x^2 - 16x - 12;$

B)
$$6x^4 + x^3 + 2x^2 - 4x + 1$$
.

18. Найти рациональные корни многочленов:

a)
$$x^3 - 6x^2 + 15x - 14$$
;

$$\circ$$
 6) $24x^4 - 42x^3 - 77x^2 + 56x + 60;$

B)
$$10x^4 - 13x^3 + 15x^2 - 18x - 24$$
.

19. Пользуясь схемой Горнера, разложить на простейшие дроби:

a)
$$\frac{x^2 + x + 1}{(x+2)^4}$$
; 6) $\frac{x^4 - 2x^2 + 3}{(x+1)^5}$.

Тема 17. Линейные пространства

I. Контрольные вопросы

- 1. Что называется линейным пространством над полем действительных (комплексных) чисел?
 - 2. Перечислите основные свойства линейных пространств.
 - 3. Что называется подпространством линейного пространства?
 - 4. Что называется линейной комбинацией векторов?
- 5. В каком случае система векторов называется линейно независимой, а в каком – линейно зависимой?
 - 6. Что называется размерностью линейного пространства?
 - 7. Что называется базисом линейного пространства?
- 8. Что называется разложением произвольного вектора линейного пространства по базису этого пространства?
 - 9. Что называется координатами вектора в некотором базисе?
- 10. Что можно сказать о координатах нулевого вектора в произвольном базисе?
- 11. Запишите основные свойства линейных операций над векторами, заданными своими координатами в одном и том же базисе.
- 12. Что называется матрицей системы векторов в данном базисе?
- 13. Что называется матрицей перехода от одного базиса к другому?
- 14. Запишите формулы линейного преобразования координат вектора.

II. Задания для решения

- 1. Являются ли действительными линейными пространствами следующие множества чисел с операциями сложения и умножения. Множество:
 - а) N; б) Z; в) Q; г) R; д) C;
 - е) положительных действительных чисел R_{+} ?
- 2. Являются ли действительными линейными пространствами множества векторов, если сложение и умножение их на число определяются правилами векторной алгебры. Множество:

- а) векторов, параллельных заданной прямой V_1 ;
- б) векторов, параллельных заданной плоскости V_2 ;
- в) векторов пространства V_3 .
- 3. Пусть $V = \left\{ (\alpha_1, \alpha_2) \, \middle| \, \alpha_1, \alpha_2 \in R \right\}$. Сложение на V определим равенством $(\alpha_1, \alpha_2) + (\beta_1, \beta_2) = (\alpha_1 + \beta_1, \alpha_2 + \beta_2)$, умножение действительных чисел на элементы из V равенством $\lambda(\alpha_1, \alpha_2) = (\lambda \alpha_1, \alpha_2)$. Является ли V действительным линейным пространством относительно заданных операций?
- \circ 4. Пусть P множество положительных чисел, в котором операция сложения определена равенством x+y=xy, а операция умножения на число $\alpha \in R$ равенством $\alpha = x^{\alpha}$. Является ли P с указанными операциями вещественным линейным пространством?
- 5. Являются ли линейными пространствами над полем R множества матриц с операциями сложения матриц и умножения матриц на элемент поля R (в случае положительного ответа указать размерность пространства и какой-либо базис):
- ullet а) $R_{m imes n}$ множество прямоугольных m imes n матриц с действительными коэффициентами;
- \circ б) $R_{2\times2}$ множество матриц второго порядка с действительными элементами:
- в) $R_{n \times 1}$ множество $(n \times 1)$ матриц с действительными элементами;
- \circ г) $C_{2\times 2}$ множество матриц второго порядка с комплексными элементами:

• д)
$$\left\{ \begin{pmatrix} 0 & \alpha \\ \beta & \gamma \end{pmatrix} \middle| \alpha, \beta, \gamma \in R \right\};$$
 • е) $\left\{ \begin{pmatrix} 1 & \alpha \\ \beta & \gamma \end{pmatrix} \middle| \alpha, \beta, \gamma \in R \right\};$ ож) $\left\{ \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \middle| \alpha, \beta \in R \right\}?$

6. Выяснить, являются ли действительными линейными пространствами относительно операций сложения и умножения на число следующие множества:

- a) множество многочленов степени $\leq n$;
- б) множество многочленов степени n;
- в) множество многочленов f(t), удовлетворяющих условиям: 1) f(0) = 1; 2) f(0) = 0;
- \circ г) $C_{[a,b]}$ множество функций, непрерывных на отрезке [a,b] ;
 - \circ д) множество разрывных функций на отрезке [a,b];
 - \circ е) множество функций, интегрируемых на отрезке [a,b] .
- 7. Доказать, что системы векторов действительного линейного пространства линейно зависимы, и найти их нетривиальную линейную комбинацию, равную 0:
 - a) $a_1 = (1, 2, 5), a_2 = (5, 3, 1), a_3 = (-15, -2, 21);$
 - 6) $f_1(x) = x^2 + 5$, $f_2(x) = x^2 4x + 3$, $f_3(x) = x^2 + 16x + 13$;
 - \circ B) $z_1 = 2 + 5i$, $z_2 = 1 i$, $z_3 = 6 + 29i$;

r)
$$A_1 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 2 & 1 & 5 \\ 2 & 0 & 4 \end{pmatrix}$, $A_3 = \begin{pmatrix} -3 & 6 & -5 \\ -8 & 5 & -11 \end{pmatrix}$;

д)
$$f_1(t) = \sin^2 t$$
, $f_2(t) = \cos^2 t$, $f_3(t) = 1$.

- 8. Доказать, что следующие системы векторов действительных линейных пространств линейно независимы:
 - a) (5,3,1), (1,1,1), (1,4,2);
 - \circ 6) $x^2 4x + 3$, 5x 4, $x^2 + x + 1$;

ob)
$$e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$;

- Γ) 2 + 5i, 1 i.
- 9. Исследовать, являются ли данные векторы действительного линейного пространства функций линейно зависимыми. В случае утвердительного ответа найти их нетривиальную линейную комбинацию, равную 0:
 - a) e^x , e^{2x} , e^{3x} ; 6) 2^x , 3^x , 6^x ;
 - B) $x, x^3, |x^3|$; Γ) arctg x, arcctg x, 1.
- 10. В базисе -1+2i, 2-i действительного линейного пространства C найти координаты вектора -5+4i.

$$\circ$$
 11. В базисе $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ действительного линейного пространства $V = \left\{ \begin{pmatrix} \alpha & \beta \\ -\beta & \gamma \end{pmatrix} \middle| \alpha, \beta, \gamma \in R \right\}$ найти координаты векторов $A = \begin{pmatrix} 3 & 4 \\ -4 & 1 \end{pmatrix}$ и $B = \begin{pmatrix} 2 & 5 \\ -4 & 2 \end{pmatrix}$.

- 12. В базисе 1, $\cos 2x$ действительного линейного пространства $V = \left\{ \alpha + \beta \sin^2 x + \gamma \cos 2x \, \middle| \, \alpha, \beta, \gamma \in R \right\}$ найти координаты векторов $f_1 = \frac{5}{2} + 3 \sin^2 x + \frac{3}{2} \cos 2x$, $f_2 = 2 + \sin^2 x 5 \cos 2x$, $f_3 = 5 + \sin 2x$.
- 13. Проверить, образует ли каждая из следующих систем многочленов базис в пространстве M_4 многочленов над R степени не более четырех, и найти координаты многочлена $f(x) = 1 2x + 3x^2 4x^3 + 5x^4$ в каждом из этих базисов:
 - a) 1, x, x^2 , x^3 , x^4 ;
 - 6) 1-x, x, x^2-x , x^3 , x^4-x ;
 - B) $1-x^4$, $x-x^4$, x^2-x^4 , x^3-x^4 , x^4 .
- 14. Проверить, образует ли каждая из следующих систем строк базис в пространстве R^3 , и найти координаты строки a = (3,7,13) в каждом из этих базисов:
 - a) $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1);$
 - o 6) $a_1 = (1,1,1), a_2 = (1,2,3), a_3 = (1,4,9)$.
- 15. Найти размерность и один из базисов линейного пространства решений системы:

• a)
$$\begin{cases} x_1 + 2x_2 - 3x_3 = 0, \\ 2x_1 - x_2 + x_3 = 0; \end{cases}$$
 6)
$$\begin{cases} 3x_1 - x_2 + x_3 + x_4 - x_5 = 0, \\ x_1 + 3x_2 - 2x_3 + x_4 - x_5 = 0, \\ 4x_1 + 2x_2 - x_3 + 2x_4 - 2x_5 = 0. \end{cases}$$

- 16. Даны векторы $a=e_1+e_2$, $b=2e_1-e_2$, где e_1,e_2 базис. Доказать, что векторы a и b образуют базис. Найти координаты вектора $c=2e_1-4e_2$ в базисе a,b .
- \circ 17. Даны векторы $a=2e_1+3e_2+e_3$, $b=-3e_1+2e_2+4e_3$, $c=e_1-e_2-5e_3$, где e_1,e_2,e_3 базис. Доказать, что векторы a,b,c образуют базис. Найти координаты вектора $d=4e_1+e_2-9e_3$ в базисе a,b,c.
- 18. Найти максимальное число линейно независимых векторов в системе векторов:
- a) $x_1 = (2, -1, 3, 4)$, $x_2 = (1, 5, 1, 3)$, $x_3 = (-1, 0, 2, 5)$, $x_4 = (0, -6, 4, 6)$, $x_5 = (1, 6, -2, 1)$;
- 6) $x_1 = (-1, 2, 0, 7)$, $x_2 = (1, 3, -1, 0)$, $x_3 = (4, 1, 2, 5)$, $x_4 = (4, 6, 1, 12)$, $x_5 = (7, 14, 2, 31)$.
- 19. Найти все значения λ , при которых вектор d является линейной комбинацией векторов a_1, a_2, a_3 , если:
 - a) $a_1 = (2, -1, 3)$, $a_2 = (3, 1, 4)$, $a_3 = (1, -1, 2)$, $d = (8, \lambda, 12)$;
- 6) $a_1 = (3, \lambda, 4)$, $a_2 = (\lambda, 1, 3)$, $a_3 = (0, 5, 1)$, $d = (3 3\lambda, \lambda + 2, -4)$.
 - 20. Найти матрицу перехода от базиса:
- \circ a) i, j, k к базису i, j, -k в трехмерном векторном пространстве;
- \circ б) e_1, e_2, e_3, e_4, e_5 к базису e_2, e_3, e_1, e_5, e_4 в пятимерном векторном пространстве;
- в) a,b к базису a+b,a-b в двумерном векторном пространстве;
- г) $x^2, x, 1$ к базису $(x+1)^2, (x+1), 1$ в пространстве многочленов степени не выше двух.
 - 21. Дана матрица

$$\begin{pmatrix}
2 & -1 & 0 \\
1 & -2 & 1 \\
-1 & 1 & 0
\end{pmatrix}$$

перехода от базиса e_1, e_2, e_3 к базису e_1', e_2', e_3' . Найти координаты вектора: • а) e_2' в базисе e_1, e_2, e_3 ; б) e_3 в базисе e_1', e_2', e_3' .

- 22. Даны два базиса e_1, e_2 и e_1', e_2' . Найти координаты вектора x в базисе e_1, e_2 , если:
 - a) $e'_1 = 2e_1 + 3e_2$, $e'_2 = e_2 e_1$, $x = e'_1 3e'_2$;
 - o 6) $e'_1 = e_2 e_1$, $e'_2 = 3e_2$, $x = 2e'_1 + 4e'_2$.
- 23. Даны два базиса e_1, e_2 и e_1', e_2' . Найти координаты вектора x в базисе e_1', e_2' , если:
 - a) $e'_1 = e_1 + 3e_2$, $e'_2 = e_1 e_2$, $x = 2e_1 5e_2$;
 - o 6) $e'_1 = 2e_1 + 3e_2$, $e'_2 = e_1 + 4e_2$, $x = 5e_1 + 7e_2$.
- 24. Найти матрицу перехода от базиса a_1, a_2 к базису b_1, b_2 по указанным разложениям этих векторов в базисе e_1, e_2 :
 - a) $a_1 = e_1 + 4e_2$, $a_2 = 3e_1 + 5e_2$, $b_1 = 7e_1 + e_2$, $b_2 = e_2$;
 - 6) $a_1 = e_1 e_2$, $a_2 = 2e_1 + 5e_2$, $b_1 = 2e_1 3e_2$, $b_2 = 5e_2 3e_1$.
- 25. Записать матрицу перехода от базиса e_1, e_2, \dots, e_n к базису e'_1, e'_2, \dots, e'_n и найти координаты вектора a в этих базисах, если:
- a) $e_1 = i j$, $e_2 = 2i + j$, $e'_1 = 5i 2j$, $e'_2 = -5i 4j$, a = 10i j;
 - 6) $e_1 = 1 i$, $e_2 = 1 + i$, $e'_1 = 2$, $e'_2 = 2i$, a = 2 + 2i;
- B) $e_1 = (1, 2, 1)$, $e_2 = (2, 3, 3)$, $e_3 = (3, 7, 1)$, $e'_1 = (3, 1, 4)$, $e'_2 = (5, 2, 1)$, $e'_3 = (1, 1, -6)$, a = (9, 4, -1);
- r) $e_1 = 1$, $e_2 = x$, $e_3 = x^2$, $e'_1 = 2$, $e'_2 = x 1$, $e'_3 = (x 1)^2$, $a = 6x^2 4x + 5$;

$$\vec{E}_{1} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad \vec{e}_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \vec{e}_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \vec{e}_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \\
\vec{e}_{1}' = \begin{pmatrix} 2 & 3 \\ -3 & 0 \end{pmatrix}, \quad \vec{e}_{2}' = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \quad \vec{e}_{3}' = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}, \quad \vec{e}_{4}' = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}, \\
\vec{a} = \begin{pmatrix} 2 & 4 \\ 5 & -3 \end{pmatrix}.$$

26. Дополнить до базиса пространства систему векторов, заданных координатами в некотором базисе пространства:

a)
$$a_1 = (1, 2, 1)$$
, $a_2 = (2, 4, 3)$; 6) $a_1 = (2, 3, 1, 1)$, $a_2 = (2, 4, 1, 0)$.

Тема 18. Линейный оператор

I. Контрольные вопросы

- 1. Что называется отображением множества в множество?
- 2. Что называется отображением множества на множество?
- 3. Какое отображение пространства называется тождественным?
- 4. Что называется линейным оператором линейного пространства?
- 5. Что называется матрицей линейного оператора пространства в данном базисе?
- 6. Как связаны координаты вектора и координаты его образа при линейном преобразовании в одном и том же базисе?
- 7. Как связаны матрицы A и B линейного оператора в двух разных базисах?
- 8. Как связаны ранги матриц линейного оператора в двух разных базисах?
 - 9. Что называется ядром линейного оператора?
 - 10. Что называется образом линейного оператора?
 - 11. Что называется рангом линейного оператора?
 - 12. Что называется дефектом линейного оператора?
 - 13. Как связаны ранг и дефект линейного оператора?
- 14. Как определяется сумма двух линейных операторов f и g ?
- 15. Является ли сумма двух линейных операторов линейным оператором?
- 16. Как определяется произведение двух линейных операторов f и g ?
- 17. Является ли произведение двух линейных операторов линейным оператором?
- 18. Как выражается матрица оператора произведения через матрицы перемножаемых операторов?
- 19. Как выражается матрица оператора суммы через матрицы складываемых операторов?
- 20. В каком случае линейный оператор называется невырожденным, а в каком вырожденным?
- 21. Какие линейные операторы называются взаимно обратными?

- 22. В каком случае существует оператор, обратный к данному линейному оператору?
 - 23. Как связаны матрицы взаимно обратных операторов?
- 24. Что называется собственным вектором линейного оператора?
- 25. Что называется собственным значением линейного оператора?
- 26. Запишите характеристическое уравнение линейного оператора, заданного матрицей А?
- 27. Что называется характеристическим числом линейного оператора?
 - 28. Что называется спектром линейного оператора?
- 29. В каком случае спектр линейного оператора называется простым?
- 30. Как найти собственные значения и соответствующие им собственные векторы линейного оператора, если известна его матрица в некотором базисе?
- 31. Сформулируйте простейшие свойства собственных векторов линейного оператора.
- 32. Какой линейный оператор называется диагонализируемым?
- 33. Сформулируйте необходимые и достаточные условия диагонализируемости линейного оператора.

II. Задания для решения

- 1. Проверить, является ли поворот декартовой плоскости на угол α вокруг начала координат линейным оператором пространства свободных векторов плоскости, и найти его матрицу в базисе i, j.
- 2. Может ли линейный оператор перевести пару ненулевых коллинеарных векторов в пару неколлинеарных?
- 3. Является ли линейным каждый из операторов $f: R \to R$, заданный формулой:

 - Γ) $f(\alpha) = \alpha^3$; д) $f(\alpha) = \alpha/5$?
- 4. Выяснить, какие из указанных ниже отображений $f: V_3 \to V_3$, где V_3 пространство свободных векторов, задан-

ных указанными ниже формулами, являются линейными операторами. Найти матрицы линейных операторов в базисе i, j, k:

a) f(x) = 0;

- б) f(x) = 2x;
- в) f(x) = x + i; г) f(x) = (xa)x, a 3аданный вектор;
- д) f(x) = (ab)x, a, b заданные векторы;
- e) $f(x) = x \times a$, a = 2i + j + 3k;
- ж) $f(x) = 2x_1i (x_1 + x_2)j k$; 3) $f(x) = x_1^2i + x_2j + x_3k$;
- и) $f(x) = x_1 i$; к) $f(x) = x_1 i + x_2 j$.

 $(x = x_1 i + x_2 j + x_3 k)$. Пояснить геометрический смысл преобразований, указанных в пунктах и) и к).

- 5. Установить, является ли линейным оператор $f: V_2 \to V_2$, и в случае линейности найти его матрицу в базисе i , j :
 - а) $f(x) = \lambda x$, где λ фиксированное вещественное число;
- б) f(x) вектор, симметричный вектору x относительно оси ординат;
- в) f(x) вектор, симметричный вектору x относительно начала координат;
- г) f(x) = x + a, где a фиксированный вектор этого пространства;
- д) f(x) ортогональная проекция вектора x на биссектрису первого и третьего координатных углов.
- 6. Составить матрицу оператора дифференцирования в пространстве $M_n = \left\{ \alpha_0 + \alpha_1 t + \ldots + \alpha_n t^n \, \middle| \, \alpha_i \in R \right\}$ в базисе $1, t, t^2, \ldots, t^n$.
- 7. Найти матрицу оператора дифференцирования в двумерном линейном пространстве:
 - a) $\{x \sin t + y \cos t \mid x, y \in R\}$ B Gazuce $(\sin t, \cos t)$;
 - б) $\left\{ e^{at} \left(x \sin bt + y \cos bt \right) \middle| x, y \in R \right\}$ в базисе $e^{at} \cos bt$, $e^{at} \sin bt$

8. Является ли линейным оператор $f:R_{n\times n}\to R_{n\times n}$, заданный формулой:

- а) f(A) = E + A, где E единичная матрица порядка n;
- 6) $f(A) = \alpha A \ (\alpha \in R)$;
- B) $f(A) = A^2$; $\Gamma(A) = A^T$;
- д) f(A) = AB, где B фиксированная квадратная матрица порядка n?
- 9. Выяснить, какие из преобразований f трехмерного пространства являются линейными операторами, и найти матрицы линейных операторов в том же базисе, в котором заданы координаты векторов $x = (x_1, x_2, x_3)$ и f(x), если:
 - a) $f(x) = (x_2 + x_3, 2x_1 + x_3, 3x_1 x_2 + x_3)$;
 - 6) $f(x) = (x_1, x_2 + 1, x_3 + 2)$;
 - B) $f(x) = (2x_1 + x_2, x_1 + x_3, x_3^2);$
 - $f(x) = (x_1 x_2 + x_3, x_3, x_2)$.
- 10. Выяснить, существует ли линейный оператор двумерного пространства, переводящий векторы a_1 , a_2 соответственно в векторы b_1 , b_2 , и найти матрицу этого оператора в базисе e_1 , e_2 :
 - a) $a_1 = e_1 + 2e_2$, $a_2 = 3e_1 e_2$, $b_1 = 6e_1 + 9e_2$, $b_2 = 11e_1 8e_2$;
 - 6) $a_1 = e_1 + 2e_2$, $a_2 = 2e_1 + 4e_2$, $b_1 = 2e_1 e_2$, $b_2 = e_1 + e_2$.
- 11. Даны координаты вектора x и матрица A линейного оператора f в базисе e_1, e_2, e_3 . Найти координаты вектора y = f(x) в этом базисе, если:

$$x = (2, -1, 3), A = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 3 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

12. Даны два базиса e_1, e_2, \dots, e_n и e_1', e_2', \dots, e_n' линейного пространства, а также матрица A линейного оператора в первом базисе. Найти матрицу этого оператора во втором базисе, если:

a)
$$A = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$
, $e'_1 = e_1 + e_2$, $e'_2 = e_1 - e_2$;

6)
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 3 & 1 \end{pmatrix}$$
, $e'_1 = e_1 + e_2$, $e'_2 = e_1 + e_3$, $e'_3 = e_2 + e_3$;

B)
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
, $e_1 = e'_1 - e'_2$, $e_2 = e'_2$;

r)
$$A = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$$
, $e_1 = 2e_1' + e_2'$, $e_2 = e_1' - e_2'$.

- 13. В пространстве V_2 дан базис $e_1 = i + j$, $e_2 = i j$. Найти в базисе e_1 , e_2 матрицу:
 - а) оператора симметрии относительно оси Ox;
 - б) оператора симметрии относительно оси Оу;
- в) оператора, ортогонально проектирующего вектор a этого пространства на ось Ox .
- 14. В пространстве V_3 дан базис $e_1=i+j+k$, $e_2=2i-3j+k$, $e_3=-5i+3j-2k$. Найти в этом базисе матрицу оператора, ортогонально проектирующего вектор a этого пространства: а) на плоскость Oxy; б) на ось Ox.
- 15. Для указанных линейных операторов пространства V_3 найти дефект и ранг, а также построить базисы ядра и образа. Каждый оператор описывается своим действием на произвольный вектор $x = (x_1, x_2, x_3)$:
 - a) $f(x) = (x_1 + x_2 + x_3, x_1 + x_2 + x_3, x_1 + x_2 + x_3)$;
 - 6) $f(x) = (2x_1 x_2 x_3, x_1 2x_2 + x_3, x_1 + x_2 2x_3);$
 - B) $f(x) = (-x_1 + x_2 + x_3, x_1 x_2 + x_3, x_1 + x_2 x_3)$.
 - 16. Найти ядро и область значений:
 - а) тождественного оператора;
- б) оператора дифференцирования D в пространстве $M_n = \left\{ \alpha_0 + \alpha_1 t + \ldots + \alpha_n t^n \ \middle| \ \alpha_i \in R \right\};$
- в) линейного оператора f из V_2 , ортогонально проектирующего вектор a этого пространства на ось Ox .

17. Линейный оператор f в базисе e_1 , e_2 имеет матрицу $A = \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}$, а оператор g в базисе $e_1' = 2e_1 - e_2$, $e_2' = e_1 - e_2$ —

матрицу $B = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$. Найти матрицу оператора:

- a) f + g в базисе e_1, e_2 ; б) f + g в базисе e'_1, e'_2 ;
- в) $f \circ g$ в базисе e_1, e_2 ; г) $g \circ f$ в базисе e'_1, e'_2 .
- 18. Дать геометрическую интерпретацию собственного вектора линейного оператора.
- 19. В некотором базисе пространства заданы векторы x_1, x_2 и матрица A оператора f . Пользуясь определением, установить, какие из данных векторов являются собственными векторами оператора f , и найти их собственные значения, если:

a)
$$A = \begin{pmatrix} 2 & 3 \\ 0 & 3 \end{pmatrix}, \ \vec{x}_1 = \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \ \vec{x}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 (пространство V_2);

б)
$$A = \begin{pmatrix} -3 & 11 & 7 \\ 0 & 5 & -4 \\ 0 & 1 & 1 \end{pmatrix}$$
, $\vec{x}_1 = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$, $\vec{x}_2 = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}$. (пространство V_3

20. Найти собственные векторы и собственные значения линейного оператора $f: V_2 \to V_2$, если

- а) f симметрия относительно оси Ox;
- б) f симметрия относительно оси Oy;
- в) f оператор подобия (f(x) = kx);
- г) f оператор, ортогонально проектирующий вектор x на ось Ox .
- 21. Найти матрицу A, если известны ее собственные значения λ_1 , λ_2 и соответствующие им собственные векторы x_1 и x_2 в некотором базисе:

a)
$$\lambda_1 = 3$$
, $\lambda_2 = 1$, $\vec{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{x}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$;

6)
$$\lambda_1 = 1$$
, $\lambda_2 = -5$, $\vec{x}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\vec{x}_1 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

22. Найти собственные значения и собственные векторы линейных операторов, заданных в некотором базисе линейного пространства над полями Q, R и C матрицами:

23. Выяснить, приводится ли в вещественном линейном пространстве матрица к диагональному виду (в случае приводимости записать диагональный вид матрицы с точностью до расположения диагональных элементов):

a)
$$\begin{pmatrix} 3 & 2 \\ 10 & 2 \end{pmatrix}$$
; 6) $\begin{pmatrix} 2 & 5 \\ 0 & 2 \end{pmatrix}$; b) $\begin{pmatrix} 3 & 5 & 1 \\ 0 & 3 & 5 \\ 0 & 0 & 3 \end{pmatrix}$; r) $\begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 2 & -1 & -1 \end{pmatrix}$.

24. Найти матрицу T, диагонализирующую данную матрицу A, и записать соответствующую диагональную матрицу, если:

a)
$$A = \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} -9 & 54 & 36 \\ 0 & 0 & 0 \\ -3 & 18 & 12 \end{pmatrix}$.

- 25. Пусть в плоскости Oxy заданы базисные векторы i, j. Плоскость одинаково растянута в обе стороны от оси Oy (например, плоскость резиновая). Найти в базисе i, j матрицу оператора, описывающего этот процесс.
- 26. Протяженная изотропная среда подвержена деформации, при которой единичный куб с ребрами $e_1=(1,0,0)$, $e_2=(0,1,0)$, $e_3=(0,0,1)$ переходит в параллелепипед с ребрами $f(e_1)=e_1'=(3/2,1/2,1/2)$, $f(e_2)=e_2'=(1/2,1,0)$, $f(e_3)=e_3'=(1/2,0,1)$. Каковы главные оси деформации, т. е. направления, которые сохраняются при деформации?

27. Пусть две равные по модулю и противоположные по направлению силы (например, силы, приложенные к лезвиям ножниц) стремятся сдвинуть один край разреза плоскости относительно другого. Тогда один край остается на месте, а соседний смещается относительно него, т. е. происходит поперечный сдвиг. Найти матрицу поперечного сдвига в ортонормированном базисе i, j прямоугольной декартовой системы координат Oxy в предположении, что сдвиг происходит в направлении оси Ox и смещение пропорционально расстоянию от края до оси Ox. Коэффициент пропорциональности равен μ .

6)
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 3 & 1 \end{pmatrix}$$
, $e'_1 = e_1 + e_2$, $e'_2 = e_1 + e_3$, $e'_3 = e_2 + e_3$;

B)
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
, $e_1 = e'_1 - e'_2$, $e_2 = e'_2$;

r)
$$A = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$$
, $e_1 = 2e_1' + e_2'$, $e_2 = e_1' - e_2'$.

- 13. В пространстве V_2 дан базис $e_1 = i + j$, $e_2 = i j$. Найти в базисе e_1 , e_2 матрицу:
 - а) оператора симметрии относительно оси Ox;
 - б) оператора симметрии относительно оси Oy;
- в) оператора, ортогонально проектирующего вектор a этого пространства на ось Ox .
- 14. В пространстве V_3 дан базис $e_1=i+j+k$, $e_2=2i-3j+k$, $e_3=-5i+3j-2k$. Найти в этом базисе матрицу оператора, ортогонально проектирующего вектор a этого пространства: а) на плоскость Oxy; б) на ось Ox.
- 15. Для указанных линейных операторов пространства V_3 найти дефект и ранг, а также построить базисы ядра и образа. Каждый оператор описывается своим действием на произвольный вектор $x = (x_1, x_2, x_3)$:
 - a) $f(x) = (x_1 + x_2 + x_3, x_1 + x_2 + x_3, x_1 + x_2 + x_3)$;
 - 6) $f(x) = (2x_1 x_2 x_3, x_1 2x_2 + x_3, x_1 + x_2 2x_3);$
 - B) $f(x) = (-x_1 + x_2 + x_3, x_1 x_2 + x_3, x_1 + x_2 x_3)$.
 - 16. Найти ядро и область значений:
 - а) тождественного оператора;
- б) оператора дифференцирования D в пространстве $M_n = \left\{ \alpha_0 + \alpha_1 t + \ldots + \alpha_n t^n \ \middle| \ \alpha_i \in R \right\};$
- в) линейного оператора f из V_2 , ортогонально проектирующего вектор a этого пространства на ось Ox .

17. Линейный оператор f в базисе e_1 , e_2 имеет матрицу $A = \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}$, а оператор g в базисе $e_1' = 2e_1 - e_2$, $e_2' = e_1 - e_2$ —

матрицу $B = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$. Найти матрицу оператора:

- a) f + g B базисе e_1, e_2 ; б) f + g B базисе e'_1, e'_2 ;
- в) $f \circ g$ в базисе e_1, e_2 ; г) $g \circ f$ в базисе e'_1, e'_2 .
- 18. Дать геометрическую интерпретацию собственного вектора линейного оператора.
- 19. В некотором базисе пространства заданы векторы x_1, x_2 и матрица A оператора f . Пользуясь определением, установить, какие из данных векторов являются собственными векторами оператора f , и найти их собственные значения, если:

a)
$$A = \begin{pmatrix} 2 & 3 \\ 0 & 3 \end{pmatrix}, \vec{x}_1 = \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \vec{x}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 (пространство V_2);

б)
$$A = \begin{pmatrix} -3 & 11 & 7 \\ 0 & 5 & -4 \\ 0 & 1 & 1 \end{pmatrix}$$
, $\vec{x}_1 = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$, $\vec{x}_2 = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}$. (пространство V_3

20. Найти собственные векторы и собственные значения линейного оператора $f: V_2 \to V_2$, если

- а) f симметрия относительно оси Ox;
- б) f симметрия относительно оси Oy;
- в) f оператор подобия (f(x) = kx);
- г) f оператор, ортогонально проектирующий вектор x на ось Ox .
- 21. Найти матрицу A, если известны ее собственные значения λ_1 , λ_2 и соответствующие им собственные векторы x_1 и x_2 в некотором базисе:

a)
$$\lambda_1 = 3$$
, $\lambda_2 = 1$, $\vec{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{x}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$;

6)
$$\lambda_1 = 1$$
, $\lambda_2 = -5$, $\vec{x}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\vec{x}_1 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

22. Найти собственные значения и собственные векторы линейных операторов, заданных в некотором базисе линейного пространства над полями Q, R и C матрицами:

23. Выяснить, приводится ли в вещественном линейном пространстве матрица к диагональному виду (в случае приводимости записать диагональный вид матрицы с точностью до расположения диагональных элементов):

a)
$$\begin{pmatrix} 3 & 2 \\ 10 & 2 \end{pmatrix}$$
; 6) $\begin{pmatrix} 2 & 5 \\ 0 & 2 \end{pmatrix}$; B) $\begin{pmatrix} 3 & 5 & 1 \\ 0 & 3 & 5 \\ 0 & 0 & 3 \end{pmatrix}$; F) $\begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 2 & -1 & -1 \end{pmatrix}$.

24. Найти матрицу T, диагонализирующую данную матрицу A, и записать соответствующую диагональную матрицу, если:

a)
$$A = \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} -9 & 54 & 36 \\ 0 & 0 & 0 \\ -3 & 18 & 12 \end{pmatrix}$.

- 25. Пусть в плоскости Oxy заданы базисные векторы i , j . Плоскость одинаково растянута в обе стороны от оси Oy (например, плоскость резиновая). Найти в базисе i , j матрицу оператора, описывающего этот процесс.
- 26. Протяженная изотропная среда подвержена деформации, при которой единичный куб с ребрами $e_1=(1,0,0)$, $e_2=(0,1,0)$, $e_3=(0,0,1)$ переходит в параллелепипед с ребрами $f(e_1)=e_1'=(3/2,1/2,1/2)$, $f(e_2)=e_2'=(1/2,1,0)$, $f(e_3)=e_3'=(1/2,0,1)$. Каковы главные оси деформации, т. е. направления, которые сохраняются при деформации?

27. Пусть две равные по модулю и противоположные по направлению силы (например, силы, приложенные к лезвиям ножниц) стремятся сдвинуть один край разреза плоскости относительно другого. Тогда один край остается на месте, а соседний смещается относительно него, т. е. происходит поперечный сдвиг. Найти матрицу поперечного сдвига в ортонормированном базисе i, j прямоугольной декартовой системы координат Oxy в предположении, что сдвиг происходит в направлении оси Ox и смещение пропорционально расстоянию от края до оси Ox. Коэффициент пропорциональности равен μ .

6)
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 3 & 1 \end{pmatrix}$$
, $e'_1 = e_1 + e_2$, $e'_2 = e_1 + e_3$, $e'_3 = e_2 + e_3$;

B)
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
, $e_1 = e'_1 - e'_2$, $e_2 = e'_2$;

r)
$$A = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$$
, $e_1 = 2e_1' + e_2'$, $e_2 = e_1' - e_2'$.

- 13. В пространстве V_2 дан базис $e_1 = i + j$, $e_2 = i j$. Найти в базисе e_1 , e_2 матрицу:
 - а) оператора симметрии относительно оси Ox;
 - б) оператора симметрии относительно оси Oy;
- в) оператора, ортогонально проектирующего вектор a этого пространства на ось Ox .
- 14. В пространстве V_3 дан базис $e_1=i+j+k$, $e_2=2i-3j+k$, $e_3=-5i+3j-2k$. Найти в этом базисе матрицу оператора, ортогонально проектирующего вектор a этого пространства: а) на плоскость Oxy; б) на ось Ox.
- 15. Для указанных линейных операторов пространства V_3 найти дефект и ранг, а также построить базисы ядра и образа. Каждый оператор описывается своим действием на произвольный вектор $x = (x_1, x_2, x_3)$:
 - a) $f(x) = (x_1 + x_2 + x_3, x_1 + x_2 + x_3, x_1 + x_2 + x_3)$;
 - 6) $f(x) = (2x_1 x_2 x_3, x_1 2x_2 + x_3, x_1 + x_2 2x_3);$
 - B) $f(x) = (-x_1 + x_2 + x_3, x_1 x_2 + x_3, x_1 + x_2 x_3)$.
 - 16. Найти ядро и область значений:
 - а) тождественного оператора;
- б) оператора дифференцирования D в пространстве $M_n = \left\{ \alpha_0 + \alpha_1 t + \ldots + \alpha_n t^n \ \middle| \ \alpha_i \in R \right\};$
- в) линейного оператора f из V_2 , ортогонально проектирующего вектор a этого пространства на ось Ox .

17. Линейный оператор f в базисе e_1 , e_2 имеет матрицу $A = \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}$, а оператор g в базисе $e_1' = 2e_1 - e_2$, $e_2' = e_1 - e_2$ —

матрицу $B = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$. Найти матрицу оператора:

- a) f + g B базисе e_1, e_2 ; б) f + g B базисе e'_1, e'_2 ;
- в) $f \circ g$ в базисе e_1, e_2 ; г) $g \circ f$ в базисе e'_1, e'_2 .
- 18. Дать геометрическую интерпретацию собственного вектора линейного оператора.
- 19. В некотором базисе пространства заданы векторы x_1, x_2 и матрица A оператора f . Пользуясь определением, установить, какие из данных векторов являются собственными векторами оператора f , и найти их собственные значения, если:

a)
$$A = \begin{pmatrix} 2 & 3 \\ 0 & 3 \end{pmatrix}, \vec{x}_1 = \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \vec{x}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 (пространство V_2);

б)
$$A = \begin{pmatrix} -3 & 11 & 7 \\ 0 & 5 & -4 \\ 0 & 1 & 1 \end{pmatrix}$$
, $\vec{x}_1 = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$, $\vec{x}_2 = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}$. (пространство V_3

20. Найти собственные векторы и собственные значения линейного оператора $f: V_2 \to V_2$, если

- а) f симметрия относительно оси Ox;
- б) f симметрия относительно оси Oy;
- в) f оператор подобия (f(x) = kx);
- г) f оператор, ортогонально проектирующий вектор x на ось Ox .
- 21. Найти матрицу A, если известны ее собственные значения λ_1 , λ_2 и соответствующие им собственные векторы x_1 и x_2 в некотором базисе:

a)
$$\lambda_1 = 3$$
, $\lambda_2 = 1$, $\vec{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{x}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$;

6)
$$\lambda_1 = 1$$
, $\lambda_2 = -5$, $\vec{x}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $\vec{x}_1 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

22. Найти собственные значения и собственные векторы линейных операторов, заданных в некотором базисе линейного пространства над полями Q, R и C матрицами:

23. Выяснить, приводится ли в вещественном линейном пространстве матрица к диагональному виду (в случае приводимости записать диагональный вид матрицы с точностью до расположения диагональных элементов):

a)
$$\begin{pmatrix} 3 & 2 \\ 10 & 2 \end{pmatrix}$$
; 6) $\begin{pmatrix} 2 & 5 \\ 0 & 2 \end{pmatrix}$; B) $\begin{pmatrix} 3 & 5 & 1 \\ 0 & 3 & 5 \\ 0 & 0 & 3 \end{pmatrix}$; F) $\begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 2 & -1 & -1 \end{pmatrix}$.

24. Найти матрицу T, диагонализирующую данную матрицу A, и записать соответствующую диагональную матрицу, если:

a)
$$A = \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} -9 & 54 & 36 \\ 0 & 0 & 0 \\ -3 & 18 & 12 \end{pmatrix}$.

- 25. Пусть в плоскости Oxy заданы базисные векторы i , j . Плоскость одинаково растянута в обе стороны от оси Oy (например, плоскость резиновая). Найти в базисе i , j матрицу оператора, описывающего этот процесс.
- 26. Протяженная изотропная среда подвержена деформации, при которой единичный куб с ребрами $e_1=(1,0,0)$, $e_2=(0,1,0)$, $e_3=(0,0,1)$ переходит в параллелепипед с ребрами $f(e_1)=e_1'=(3/2,1/2,1/2)$, $f(e_2)=e_2'=(1/2,1,0)$, $f(e_3)=e_3'=(1/2,0,1)$. Каковы главные оси деформации, т. е. направления, которые сохраняются при деформации?

27. Пусть две равные по модулю и противоположные по направлению силы (например, силы, приложенные к лезвиям ножниц) стремятся сдвинуть один край разреза плоскости относительно другого. Тогда один край остается на месте, а соседний смещается относительно него, т. е. происходит поперечный сдвиг. Найти матрицу поперечного сдвига в ортонормированном базисе i, j прямоугольной декартовой системы координат Oxy в предположении, что сдвиг происходит в направлении оси Ox и смещение пропорционально расстоянию от края до оси Ox. Коэффициент пропорциональности равен μ .

Тема 19. Линейный оператор в евклидовом и унитарном пространствах

I. Контрольные вопросы

- 1. Что называется скалярным умножением векторов вещественного линейного пространства?
 - 2. Что называется евклидовым пространством?
 - 3. Запишите неравенство Коши-Буняковского.
 - 4. Что называется нормой вектора евклидова пространства?
- 5. Запишите формулу, связывающую норму вектора x с его скалярным квадратом.
- 6. Запишите формулу для нахождения угла между ненулевыми векторами x, y евклидова пространства.
- 7. Какие векторы евклидова пространства называются ортогональными?
- 8. Какой вектор евклидова пространства называется нормированным?
- 9. Какой базис евклидова пространства называется ортогональным?
- 10. Какой базис евклидова пространства называется ортонормированным?
- 11. В чем заключается процесс ортогонализации базиса евклидова пространства?
- 12. По какой формуле вычисляется скалярное произведение векторов через их координаты в ортонормированном базисе?
- 13. Что называется скалярным умножением векторов комплексного линейного пространстве?
 - 14. Что называется унитарным пространством?
 - 15. Какая вещественная матрица называется ортогональной?
- 16. Сформулируйте необходимое и достаточное условие ортогональности матрицы.
 - 17. Чему равен определитель ортогональной матрицы?
- 18. Является ли произведение двух ортогональных матриц одинакового порядка ортогональной матрицей?
- 19. Является ли матрица перехода от нормированного базиса к ортонормированному базису ортогональной?
 - 20. Какой линейный оператор называется ортогональным?

- 21. Сформулируйте необходимое и достаточное условие ортогональности линейного оператора.
- 22. Сформулируйте основные свойства ортогональных операторов.
- 23. В чем заключается геометрический смысл ортогонального оператора евклидова пространства свободных векторов на плоскости?
- 24. Какой оператор называется сопряженным линейному оператору?
 - 25. Какие операторы называются взаимно сопряженными?
- 26. Как связаны между собой в ортонормированном базисе матрицы взаимно сопряженных операторов евклидова пространства?
- 27. Сформулируйте основные свойства сопряженного оператора.
- 28. Какой линейный оператор называется самосопряженным (или симметрическим)?
- 29. Какой вид имеет матрица самосопряженного оператора евклидова пространства в ортонормированном базисе?
- 30. Каким условием связаны собственные векторы самосопряженного оператора, соответствующие его различным собственным значениям?
- 31. Какими числами, действительными или комплексными, являются характеристические числа самосопряженного оператора?
- 32. Сформулируйте теорему о полноте системы собственных векторов самосопряженного оператора и следствия из нее.

II. Задания для решения

- 1. Является ли евклидовым пространством пространство V_2 , если каждой паре его векторов $x=(x_1,x_2)\,,\;y=(y_1,y_2)$ поставлено в соответствие число:
 - a) $x_1y_1 + x_2y_2$;
- 6) $x_1x_2y_1y_2$;
- B) $3x_1y_1 + 5x_1y_2 + x_2y_2$; Γ) $2x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2$?

- 2. Является ли евклидовым пространством пространство V_n , если каждой паре его векторов $x=(x_1,x_2,\ldots,x_n)$, $y=(y_1,y_2,\ldots,y_n)$ поставлено в соответствие число:
 - a) $(x_1 + x_2 + ... + x_n)(y_1 + y_2 + ... + y_n)$;
 - 6) $x_1y_1 + x_2y_2 + ... + x_ny_n$?
- 3. Доказать, что пространство $C_{[a,b]}$ (a < b) является евклидовым, если каждой паре функций f(x), g(x) этого пространства поставлено в соответствие число $\int\limits_a^b f(x)g(x)dx$. Найти в этом пространстве:
 - а) длину вектора $\cos x + \sin x$, если $a = -\pi$, $b = \pi$;
 - б) длину вектора f(x) = x;
- в) скалярное произведение векторов $\sin 2x$, $\sin 3x$, если $a = -\pi$, $b = \pi$;
 - г) скалярное произведение векторов f(x) = x, $g(x) = e^x$;
 - д) угол между векторами $\sin x$ и $\cos x$, если $a = -\pi$, $b = \pi$;
 - е) угол между векторами f(x) = 1 и g(x) = x.
- 4. Для евклидова пространства из предыдущего задания записать:
 - а) неравенство Коши-Буняковского;
 - б) неравенство треугольника.
- 5. Доказать, что любые два вектора системы тригонометрических функций 1, $\cos t$, $\sin t$, $\cos 2t$, $\sin 2t$,..., $\cos nt$, $\sin nt$,... пространства $C_{[-\pi,\pi]}$ ортогональны, если скалярное произведение задано формулой $f\cdot g=\int\limits_{-\pi}^{\pi}f(t)g(t)dt$.
- 6. Доказать, что если векторы x_1, x_2, \dots, x_n евклидова пространства E^n попарно ортогональны, то $(x_1 + x_2 + \dots + x_n)^2 = \left| \vec{x}_1 \right|^2 + \left| \vec{x}_2 \right|^2 + \dots + \left| \vec{x}_n \right|^2$ (обобщенная теорема Пифагора).
- 7. Являются ли ортогональными в евклидовом пространстве E^n следующие системы векторов:

- a) (0,1,0), (-6,0,4); 6) (2,1,-4), (3,0,5);
- B) (-1,0,0), (0,5,0), (0,0,9);
- Γ) (1,1,3), (-1,-2,1), (7,-4,-1);
- $_{\text{Д}}$) (2,1, -1), (-1, 2, 0), (0,1, 1)?
- 8. Является ли нормированным каждый из векторов евклидова пространства E^n :
 - a) (-1, 2); 6) (3/5, 4/5); B) $(\sqrt{1/10}, \sqrt{2/5}, \sqrt{1/2})$;
 - Γ) (0, -12/13, 5/13); Π) (-1/2, 1/2, -1/2, 1/2)?
- 9. В евклидовом пространстве E^n по данному ортогональному базису построить один из нормированных базисов:
 - a) $g_1 = (3, -1), g_2 = (1, 3);$
 - 6) $g_1 = (2, 0, 0), g_2 = (0, -3, 0), g_3 = (0, 0, 5);$
- B) $g_1 = (1, 1, 1, 1)$, $g_2 = (1, 1, -1, -1)$, $g_3 = (1, -1, 1, -1)$, $g_4(1, -1, -1, 1)$.
- 10. В евклидовом пространстве E^3 по данному базису построить ортонормированный базис:
 - a) $g_1 = (1, 2, 3), g_2 = (0, 3, -2), g_3 = (0, 1, -1);$
 - 6) $g_1 = (1, 2, 3), g_2 = (0, 2, 0), g_3 = (0, 0, 3);$
 - B) $g_1 = (1, 0, 0), g_2 = (0, 1, -1), g_3 = (1, 1, 1).$
- 11. Дополнить систему векторов a_1 , a_2 до ортонормированного базиса, если:

a)
$$\vec{a}_1 = \left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right), \vec{a}_2 = \left(\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\right);$$

6)
$$\vec{a}_1 = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \vec{a}_2 = \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right).$$

12. Найти такую фундаментальную систему решений системы уравнений

$$\begin{cases} 2x_1 + x_2 - 3x_3 + 5x_4 = 0, \\ x_1 - 3x_2 + 4x_3 - 8x_4 = 0, \\ 3x_1 - 2x_2 + x_3 - 3x_4 = 0, \end{cases}$$

чтобы она состояла из попарно ортогональных векторов.

- 13. Является ли унитарным комплексное линейное пространство C, если каждой паре его векторов $x = \alpha_1 + \beta_1 i$, $y = \alpha_2 + \beta_2 i$ поставлено в соответствие число $\beta_1 \beta_2$?
- 14. Доказать, что комплексное линейное пространство C является унитарным, если каждой паре его векторов $x = \alpha_1 + i\beta_1$, $y = \alpha_2 + i\beta_2$ поставлено в соответствие число
- $(\alpha_1 + i\beta_1)\overline{(\alpha_2 + i\beta_2)} = (\alpha_1\alpha_2 + \beta_1\beta_2) + i(\alpha_2\beta_1 \alpha_1\beta_2)$. В этом пространстве найти: а) длину вектора x = 3 4i; б) скалярное произведение векторов x = 3 + i, y = 4 2i.
- 15. Выяснить, является ли матрица A ортогональной, и, если является, найти обратную ей:

a)
$$A = \begin{pmatrix} 1 & 4 \\ -2 & 2 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} 1/\sqrt{10} & -3/\sqrt{10} \\ 3/\sqrt{10} & 1/\sqrt{10} \end{pmatrix}$;
B) $A = \begin{pmatrix} 1/\sqrt{3} & 2/\sqrt{6} & 2/\sqrt{30} \\ 0 & -1/\sqrt{6} & 5/\sqrt{30} \\ 2/\sqrt{3} & -1/\sqrt{6} & -1/\sqrt{30} \end{pmatrix}$; $\Gamma A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

- 16. Выяснить, является ли ортогональным оператор $f: E^2 \to E^2$, если:
 - а) f симметрия относительно оси Oy;
- б) f оператор, переводящий вектор x в вектор λx , где $\lambda \in R, \, \lambda \neq 0$:
 - в) f поворот на угол α ;
- г) $f=g\circ h$, где g- симметрия относительно оси Ox , h- поворот на угол α .
- 17. В пространстве многочленов $R_3[t]$ не выше второй степени скалярное произведение определено равенством $xy = \alpha_1\beta_1 + \alpha_2\beta_2 + \alpha_3\beta_3$, где $x = \alpha_1t^2 + \alpha_2t + \alpha_3$, $y = \beta_1t^2 + \beta_2t + \beta_3$. Оператор $f:R_3[t] \to R_3[t]$ задан следующим образом: $f(t^2) = -t^2$, f(t) = -1, f(1) = t (t^2 , t, t) базис пространства $R_3[t]$). Используя определение, доказать, что оператор f является ортогональным.

18. Оператор $f: E^3 \to E^3$ в некотором ортонормированном базисе задан матрицей A. Выяснить, является ли оператор f ортогональным, если:

a)
$$A = \begin{pmatrix} -1 & 0 & 2 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} 2/\sqrt{6} & -1/\sqrt{3} & 0 \\ -1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$.

- 19. Будет ли ортогональным оператор $f: E^3 \to E^3$, если $f(x) = x \times a$, где a фиксированный вектор пространства E^3 ?
- 20. Оператор $f: E^n \to E^n$ имеет в некотором ортонормированном базисе матрицу A. Найти матрицу сопряженного оператора в том же базисе, если:

a)
$$A = \begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} -1 & 3 & 2 \\ 0 & 1 & 4 \\ 3 & -1 & -2 \end{pmatrix}$.

- 21. Пусть $f:E^2 \to E^2$ оператор поворота на угол α . Найти сопряженный оператор f^* .
- 22. При каком значении α оператор, заданный матрицей A в некотором ортонормированном базисе, является одновременно ортогональным и самосопряженным, если:

a)
$$A = \begin{pmatrix} 1/\sqrt{2} & \alpha \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$$
; 6) $A = \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ \alpha & 1/\sqrt{5} \end{pmatrix}$?

- 23. Пусть $f:E^2\to E^2$ оператор ортогонального проектирования на ось Ox . Доказать, что f самосопряженный оператор.
- 24. Линейный оператор $f: E^2 \to E^2$ в некотором ортонормированном базисе $e_1^{}, e_2^{}$ имеет матрицу A. Найти матрицу сопряженного оператора f^* в ортонормированном базисе e_1', e_2' , если:

a)
$$A = \begin{pmatrix} -3 & 1 \\ 4 & 2 \end{pmatrix}$$
, $\vec{e_1'} = \frac{1}{\sqrt{2}}\vec{e_1} - \frac{1}{\sqrt{2}}\vec{e_2}$, $\vec{e_2'} = \frac{1}{\sqrt{2}}\vec{e_1} + \frac{1}{\sqrt{2}}\vec{e_2}$;

6)
$$A = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$$
, $\vec{e_1'} = \frac{1}{\sqrt{5}} \vec{e_1} + \frac{2}{\sqrt{5}} \vec{e_2}$, $\vec{e_2'} = \frac{2}{\sqrt{5}} \vec{e_1} - \frac{1}{\sqrt{5}} \vec{e_2}$.

- 25. Найти ортогональную матрицу, диагонализирующую симметрическую матрицу A, и записать диагональный вид этой матрицы, если:
 - a) $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$; 6) $A = \begin{pmatrix} 0 & \sqrt{5} \\ \sqrt{5} & 4 \end{pmatrix}$.

Тема 20. Квадратичные формы

- **I.** Контрольные вопросы
- 1. Что называется вещественной квадратичной формой?
- 2. Что называется матрицей квадратичной формы?
- 3. Какие квадратичные формы называют эквивалентными?
- 4. Что называется рангом квадратичной формы?
- 5. Какая квадратичная форма называется невырожденной, а какая вырожденной?
- 6. Что называется каноническим видом квадратичной формы?
- 7. Всякая ли квадратичная форма может быть приведена к каноническому виду?
- 8. Как найти ортогональную матрицу, с помощью которой можно привести квадратичную форму к каноническому виду?
- 9. В чем заключается метод Лагранжа приведения квадратичной формы к каноническому виду?
- 10. Какие миноры называют главными угловыми минорами матрицы?
- 11. Опишите метод Якоби приведения квадратичной формы к каноническому виду.
- 12. Единственным ли образом определяется канонический вид данной квадратичной формы?
- 13. Запишите действительную квадратичную форму нормального вида (в общем случае).
- 14. Сформулируйте закон инерции действительных квадратичных форм.
- 15. Сформулируйте критерий эквивалентности действительных квадратичных форм.
- 16. Какая действительная квадратичная форма называется положительно-определенной, а какая отрицательно-определенной?
- 17. Сформулируйте критерий положительной определенности действительной квадратичной формы.
- 18. Сформулируйте критерий отрицательной определенности действительной квадратичной формы.

II. Задания для решения

1. Записать матрицу квадратичной формы:

a)
$$3x_1^2 + 2x_2^2 - 6x_1x_2$$
;

6)
$$x_2^2 + 3x_1x_2$$
;

B)
$$x_1^2 - 3x_2^2 + x_3^2 - 4x_2x_3$$
;

r)
$$x_1^2 - 2x_2^2 - 3x_3^2 + 4x_1x_2 + 6x_1x_3 + 2x_2x_3$$
;

д)
$$x_2^2 - 2x_3^2 + 3x_4^2 + 4x_1x_2 - 2x_3x_4$$
.

2. Записать квадратичную форму в виде многочлена, если ее матрица имеет вид:

a)
$$A = \begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} 3 & 0 & 2 \\ 0 & -2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$; B) $A = \begin{pmatrix} -1 & 3 & 0 & 1 \\ 3 & 0 & 4 & 0 \\ 0 & 4 & 2 & 5 \\ 1 & 0 & 5 & 0 \end{pmatrix}$.

3. Записать квадратичную форму в каноническом виде и найти преобразование координат, приводящее к этому виду:

a)
$$2x_1^2 + 2x_2^2 + 2x_1x_2$$
;

б) $2x_1x_2$;

B)
$$-x_1^2 - 2x_2^2 - 3x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$
;

$$\Gamma$$
) $4x_1^2 + 5x_2^2 + 6x_3^2 - 4x_1x_2 + 4x_2x_3$;

д)
$$x_1^2 + 5x_2^2 - x_3^2 + 6x_1x_2 + 4x_2x_3$$
;

e)
$$x_1x_4 + x_2x_3$$
.

4. Методом Лагранжа привести квадратичную форму к нормальному виду:

a)
$$x_1^2 + x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3$$
;

6)
$$x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 4x_1x_3 + 2x_2x_3$$
;

B)
$$x_1^2 - 3x_3^2 - 2x_1x_2 + 2x_1x_3 - 6x_2x_3$$
;

$$\Gamma$$
) $x_1x_2 + x_1x_3 + x_2x_3$;

$$\mathbf{\Pi}$$
) $x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4$.

5. Привести квадратичную форму к каноническому виду методом Якоби и записать соответствующее преобразование:

a)
$$x_1^2 - x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_2x_3$$
;

6)
$$2x_1^2 + x_2^2 + 5x_3^2 - 2x_1x_2$$
;

B)
$$2x_2^2 - x_1^2 + x_3^2 + 6x_1x_2 - 2x_2x_3$$
.

6. Привести квадратичную форму к каноническому виду: 1) с помощью ортогонального преобразования; 2) методом Лагранжа; 3) методом Якоби (если этот метод применим):

a)
$$L(x_1, x_2) = x_1^2 + x_2^2 - 2x_1x_2$$
;

6)
$$L(x_1, x_2) = 3x_1^2 - 4x_2^2 - 4\sqrt{2}x_1x_2$$
;

B)
$$L(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_2x_3$$
.

Записать соответствующее преобразование.

7. Для квадратичных форм f, g, h над полем R найти преобразования координат, переводящие каждую из них в каждую из остальных:

a)
$$f = x_1^2 - 2x_1x_2 + 2x_2^2$$
, $g = y_1y_2$, $h = 4z_1^2 + z_2^2$;

6)
$$f = x_1^2 - 2x_1x_2 + 2x_2^2$$
, $g = 10y_1^2 - 2y_1y_2 + y_2^2$, $h = z_1^2 - z_2^2$.

8. Выяснить, какие из квадратичных форм эквивалентны между собой: а) над полем C; б) над полем R:

1)
$$f_1 = x_1^2 - 2x_2x_3$$
, $f_2 = y_1y_2 - y_3^2$, $f_3 = z_1z_2 + z_3^2$;

2)
$$f_1 = x_1^2 + 4x_2^2 + x_3^2 + 4x_1x_2 - 2x_1x_3$$
, $f_2 = y_1^2 + 2y_2^2 - y_3^2 + 4y_1y_2 - 2y_1y_3 - 4y_2y_3$, $f_3 = -4z_1^2 - z_2^2 - z_3^2 - 4z_1z_2 + 4z_1z_3 + 18z_2z_3$.

9. Исследовать на знакоопределенность следующие квадратичные формы:

a)
$$6x_1^2 + 3x_2^2 + 5x_3^2 + 2x_1x_2 + 4x_1x_3 - 2x_2x_3$$
;

6)
$$-8x_1^2 - 5x_2^2 - 6x_3^2 + 4x_1x_2 - 2x_1x_3 + 2x_2x_3$$
;

B)
$$x_1^2 - 2x_2^2 + 3x_3^2 - 4x_4^2 + x_1x_4 + 6x_2x_3$$
.

10. Исследовать на знакоопределенность следующие квадратичные формы в зависимости от значений λ :

a)
$$2x_1^2 - 3x_2^2 + 4x_3^2 + \lambda x_1 x_2 + x_2 x_3$$
;

6)
$$\lambda x_1^2 + 3x_2^2 - 4x_1x_2$$
;

B)
$$-3x_1^2 + \lambda x_2^2 - 4x_1x_2$$
;

r)
$$2x_1^2 + x_2^2 + 4x_3^2 + 2x_1x_2 + 2\lambda x_1x_3 - 4x_2x_3$$
;

д)
$$5x_1^2 + 6x_2^2 + \lambda x_3^2 + 2x_1x_2 + 4x_1x_3 + 6x_2x_3$$
;

e)
$$\lambda x_1^2 + \lambda x_2^2 + \lambda x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$
.

11. Найти все значения λ , при которых положительно определены квадратичные формы:

a)
$$2x_1^2 - x_2^2 + 4x_3^2 + (2\lambda - 1)x_1x_2 + \lambda^2 x_2x_3$$
;

6)
$$x_1^2 + x_2^2 + x_3^2 + 2\lambda x_1 x_2 + 2\lambda x_1 x_3 + 2\lambda x_2 x_3$$
;

B)
$$x_1^2 + 5x_2^2 + (\lambda^2 + 1)x_3^2 + 4x_1x_2 + 2x_1x_3 + 4x_2x_3$$
.

12. Найти все значения λ , при которых отрицательно определены квадратичные формы:

a)
$$-x_1^2 - x_2^2 - 4x_1x_2 - 4x_1x_3 - \lambda^2 x_2x_3$$
;

6)
$$-2x_1^2 - 8x_2^2 - 3x_3^2 + 2\lambda x_1 x_2 + 4x_1 x_3 - 2\lambda x_2 x_3$$
.

Тема 21. Приведение уравнений фигур второго порядка к каноническому виду

I. Контрольные вопросы

- 1. Какую фигуру называют фигурой второго порядка на плоскости?
 - 2. Перечислите фигуры второго порядка. на плоскости.
- 3. Запишите уравнение эллипса в прямоугольной декартовой системе координат, центр которого находится в данной точке, а оси симметрии параллельны координатным осям.
- 4. Запишите уравнение гиперболы в прямоугольной декартовой системе координат, центр которой находится в данной точке, а оси симметрии параллельны координатным осям.
- 5. Запишите уравнение параболы в прямоугольной декартовой системе координат, вершина которой находится в данной точке, а ось симметрии параллельна оси абсцисс (ординат).
- 6. Какими формулами описывается параллельный перенос декартовой системы координат на плоскости?
- 7. Какими формулами описывается поворот декартовой системы координат вокруг своего начала на некоторый угол?
- 8. Какую фигуру называют фигурой второго порядка в пространстве?
 - 9. Перечислите фигуры второго порядка в пространстве.

II. Задания для решения

1. Какие подмножества плоскости задаются следующими уравнениями и системами неравенств:

a)
$$5x^2 - 9y^2 - 30x + 18y - 9 = 0$$
; 6) $y = -1 + \frac{2}{3}\sqrt{x^2 - 4x + 5}$;

д)
$$\begin{cases} \frac{x^2}{4} - \frac{y^2}{9} \le 1, \\ -\frac{x^2}{4} + \frac{y^2}{9} \le 1; \end{cases}$$
 e)
$$\begin{cases} x^2 - y^2 > 1 \\ |x| \ge 1 \end{cases}$$
;

ж)
$$5x^2 + 9y^2 + 30x - 18y + 9 = 0$$
; з) $x = -2 + \sqrt{-5 - 6y - y^2}$;

M)
$$\begin{cases} \frac{(x-1)^2}{4} + \frac{(y-1)^2}{9} > 1, \\ (y-1)^2 < 4(x-1); \end{cases}$$
 K)
$$\begin{cases} y^2 - 10x < 0, \\ 5x - 3y - 15 < 0, \\ y - 2 < 0. \end{cases}$$

2. Какие фигуры второго порядка на плоскости задаются при различных значениях λ уравнениями:

a)
$$x^2 - 2y + \lambda(y^2 - 2x) = 0$$
; 6) $x^2 + 2\lambda xy + y^2 = 1$?

6)
$$x^2 + 2\lambda xy + y^2 = 1$$
?

3. Упростить уравнения фигур второго порядка на плоскости и сделать их рисунки:

a)
$$5x^2 + 4xy + 8y^2 - 32x - 56y + 80 = 0$$
;

6)
$$5x^2 + 4xy + 8y^2 - 32x - 56y + 116 = 0$$
;

B)
$$5x^2 + 4xy + 8y^2 - 32x - 56y + 152 = 0$$
;

$$\Gamma$$
) $6xy + 8y^2 - 12x - 26y + 11 = 0$;

д)
$$6xy + 8y^2 - 12x - 26y + 29 = 0$$
;

e)
$$6xy + 8y^2 - 12x - 26y + 20 = 0$$
;

ж)
$$x^2 + 2xy + y^2 + 3x + y = 0$$
;

3)
$$x^2 - 2xy + y^2 + 4x - 4y + 4 = 0$$
;

и)
$$9x^2 - 24xy + 16y^2 - 15x + 20y + 6 = 0$$
.

4. Привести к каноническому виду уравнение фигуры второго порядка:

a)
$$2x^2 + y^2 - 4xy - 4yz + 2x - y + 1 = 0$$
;

6)
$$x^2 - 2y^2 + z^2 + 4xy - 8xz - 4yz - 14x - 4y + 14z + 16 = 0$$
;

B)
$$3x^2 + 3z^2 + 2xz - 5 = 0$$
; Γ) $yz = 2$;

$$\Gamma$$
) $yz = 2$;

д)
$$x^2 + 2y^2 + 3z^2 - 4xy - 4yz + 34x + 2y - 100 = 0$$
.

5. Записать уравнение поверхности вращения, полученной при вращении гиперболы $\frac{y^2}{a^2} - \frac{z^2}{b^2} = 1$ вокруг оси: a) Oz; б) Oy.

Тема 22. Жорданова форма матрицы

I. Контрольные вопросы

- 1. Какие две матрицы называются подобными?
- 2. Что называется клеткой Жордана?
- 3. Что называется жордановой нормальной формой матрицы?
- 4. Сформулируйте необходимое и достаточное условие существования жордановой нормальной формы матрицы.
- 5. Опишите способ построения жордановой нормальной формы матрицы с помощью нахождения корней ее характеристического уравнения.

II. Задания для решения

• 1. Записать в развернутом виде матрицы Жордана:

a)
$$J_1(10)$$
; 6) $J_2(-7)$; B) $J_3(5)$; Γ) $J_4(-2)$;

B)
$$J_3(5)$$
; Γ) $J_4(-2)$

$$J_1$$
 [$J_2(3), J_1(1)$];

д)
$$[J_2(3), J_1(1)];$$
 e) $[J_2(0), J_2(-1)];$

$$\mathbb{K}$$
) $[J_1(-4), J_3(-3)]$;

ж)
$$[J_1(-4), J_3(-3)];$$
 3) $[J_2(-2), J_1(0), J_3(6)].$

(С помощью квадратных скобок обозначена матрица, состоящая более чем из одной клетки Жордана; внутри скобок указываются составляющие ее клетки Жордана).

2. Найти произведение матриц:

• a)
$$[J_1(-2), J_2(3)][J_2(2), J_1(5)];$$

$$\circ \ 6) \ \big[J_{2}(1), \ J_{2}(-1) \big] \big[J_{1}(3), \ J_{3}(0) \big];$$

B)
$$[J_2(4), J_1(-7)][J_3(-1)]; \Gamma$$
 $[J_3(2)][J_3(3)].$

3. Выяснить, приводится ли матрица к жордановой форме в вещественном пространстве:

• a)
$$\begin{pmatrix} -1 & -5 \\ 5 & -2 \end{pmatrix}$$
; \circ 6) $\begin{pmatrix} 3 & 4 \\ 1 & 3 \end{pmatrix}$; • B) $\begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 2 & 2 \end{pmatrix}$;

• г)
$$\begin{pmatrix} 1 & 2 & -3 \\ 0 & -1 & 3 \\ 1 & 0 & 4 \end{pmatrix}$$
; од) $\begin{pmatrix} 2 & -1 & 1 \\ 5 & 4 & 0 \\ 0 & 0 & -1 \end{pmatrix}$; о е) $\begin{pmatrix} 1 & -3 & 0 & 3 \\ -2 & -6 & 0 & 13 \\ 0 & -3 & 1 & 3 \\ -1 & -4 & 0 & 8 \end{pmatrix}$.

4. Найти жорданову форму матрицы A и матрицу T, с помощью которой данную матрицу можно привести к этой форме:

• a)
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
; • 6) $A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$; • B) $A = \begin{pmatrix} -1 & 7 \\ 0 & -1 \end{pmatrix}$;
• Γ) $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 3 \end{pmatrix}$; • Λ) $\Lambda = \begin{pmatrix} 3 & 0 & 0 \\ 2 & 3 & 0 \\ 0 & 2 & 3 \end{pmatrix}$; • Λ) $\Lambda = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{pmatrix}$;
• Λ) $\Lambda = \begin{pmatrix} 2 & 3 & 1 & 0 \\ 0 & 2 & -1 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 2 \end{pmatrix}$.

5. Найти жорданову форму, минимальный многочлен, систему элементарных делителей:

a)
$$\begin{pmatrix} 5 & 1 & -1 & -1 \\ 1 & 5 & -1 & -1 \\ 1 & 1 & 3 & -1 \\ 1 & 1 & -1 & 3 \end{pmatrix}; \qquad 6) \begin{pmatrix} 4 & 1 & 1 & 1 \\ -1 & 2 & -1 & -1 \\ 6 & 1 & -1 & 1 \\ -6 & -1 & 4 & 2 \end{pmatrix}.$$

Задания к лабораторным работам

Задание 1

Для данного определителя найти миноры и алгебраические дополнения элементов a_{i2} , a_{3j} . Вычислить определитель: а) разложив его по элементам i-ой строки; б) разложив его по элементам j-го столбца; в) получив предварительно нули в i-ой строке.

$$\begin{vmatrix} 1 & 1 & -2 & 0 \\ 3 & 6 & -2 & 5 \\ 1.1 & 0 & 6 & 4 \\ 2 & 3 & 5 & -1 \end{vmatrix}$$

$$i = 4, j = 1.$$

$$\begin{vmatrix} 2 & 7 & 2 & 1 \\ 1 & 1 & -1 & 0 \\ 3 & 4 & 0 & 2 \\ 0 & 5 & -1 & -3 \end{vmatrix}$$

$$i = 4, j = 1.$$

$$\begin{vmatrix} 3 & 5 & 3 & 2 \\ 2 & 4 & 1 & 0 \\ 1 & 5 & 1 & -2 & 4 \end{vmatrix}$$

$$i = 2, j = 4.$$

$$\begin{vmatrix} 2 & -1 & 2 & 0 \\ 3 & 4 & 1 & 2 \\ 2 & -1 & 0 & 1 \\ 1 & 2 & 3 & -2 \end{vmatrix}$$

$$i = 2, j = 3.$$

$$\begin{vmatrix} 1 & 1 & -2 & 0 \\ 3 & 4 & 1 & 2 \\ 2 & -1 & 2 & 0 \\ 3 & 4 & 1 & 2 \\ 2 & -1 & 0 & 1 \\ 1 & 2 & 3 & -2 \end{vmatrix}$$

$$i = 2, j = 3.$$

$$\begin{vmatrix} 2 & 0 & -1 & 3 \\ 6 & 3 & -9 & 0 \\ 0 & 2 & -1 & 3 \\ 4 & 2 & 0 & 6 \end{vmatrix}$$

$$i = 3, j = 3.$$

$$\begin{vmatrix} 4 & -5 & -1 & -5 \\ -3 & 2 & 8 & -2 \\ 5 & 3 & 1 & 3 \\ -2 & 4 & -6 & 8 \end{vmatrix}$$

$$i = 1, j = 3.$$

$$\begin{vmatrix} 3 & 2 & 0 & -5 \\ 4 & 3 & -5 & 0 \\ 1 & 0 & -2 & 3 \\ 0 & 1 & -3 & 4 \end{vmatrix}$$

$$i = 1, j = 2.$$

$$\begin{vmatrix} 3 & 2 & 0 & -2 \\ 1 & -1 & 2 & 3 \\ 4 & 5 & 1 & 0 \\ -1 & 2 & 3 & -3 \end{vmatrix}$$

$$i = 3, j = 1.$$

$$\begin{vmatrix} 0 & 4 & 1 & 1 \\ -4 & 2 & 1 & 3 \\ 0 & 1 & 2 & -2 \\ 1 & 3 & 4 & -3 \end{vmatrix}$$

$$i = 4, j = 3.$$

$$\begin{vmatrix} 5 & -3 & 7 & -1 \\ 3 & 2 & 0 & 2 \\ 2 & 1 & 4 & -6 \\ 3 & -2 & 9 & 4 \end{vmatrix}$$

$$1.11 \begin{vmatrix} 1 & 8 & 2 & -3 \\ 3 & -2 & 0 & 4 \\ 3 & 2 & 0 & 2 \end{vmatrix}$$

$$1.12 \begin{vmatrix} 1 & 8 & 2 & -3 \\ 3 & -2 & 0 & 4 \\ 3 & 2 & 0 & 2 \end{vmatrix}$$

$$1.13 \begin{vmatrix} 5 & -3 & 7 & -1 \\ 3 & 2 & 0 & 2 \\ 3 & -2 & 0 & 4 \end{vmatrix}$$

$$1.14 \begin{vmatrix} 3 & 0 & 2 & 1 \\ 4 & -1 & 1 & 5 \\ 0 & 2 & -2 & 3 \\ 4 & 1 & 1 & -2 \end{vmatrix}$$

$$1.14 \begin{vmatrix} 3 & 0 & 2 & 1 \\ 3 & 0 & 2 & 1 \\ 3 & -1 & 4 & 3 \end{vmatrix}$$

$$1.15 \begin{vmatrix} 1 & -1 & 1 & 1 \\ 4 & -1 & 2 & 5 \\ 5 & 0 & -6 & 1 \\ 1 & -1 & 2 & 1 \\ 4 & -1 & 2 & 5 \end{vmatrix}$$

$$1.16 \begin{vmatrix} 3 & 1 & 2 & 0 \\ 5 & 0 & -6 & 1 \\ -2 & 2 & 1 & 3 \\ -1 & 3 & 2 & 1 \end{vmatrix}$$

$$1.17 \begin{vmatrix} 1 & 2 & -1 & 3 \\ 4 & 0 & 1 & 2 \\ 1 & -1 & 2 & 1 \\ 4 & 0 & 1 & 2 \end{vmatrix}$$

$$1.18 \begin{vmatrix} 4 & 1 & 2 & 0 \\ 1 & -1 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

$$1 = 2, j = 4.$$

$$\begin{vmatrix} 6 & 2 & -10 & 4 \\ -5 & -7 & -4 & 1 \\ 2 & 4 & -2 & -6 \\ 3 & 0 & -5 & 4 \end{vmatrix}$$

$$i = 2, j = 3.$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ -2 & 1 & -4 & 3 \\ 3 & -4 & -1 & 2 \\ 4 & 3 & -2 & -1 \end{vmatrix}$$

$$i = 1, j = 2.$$

$$\begin{vmatrix} -1 & 2 & 0 & 4 \\ 2 & -3 & 1 & 1 \\ 3 & -1 & 2 & 4 \\ 2 & 0 & 1 & 3 \end{vmatrix}$$

$$1.25 \begin{vmatrix} 4 & 3 & -2 & -1 \\ -2 & 1 & -4 & 3 \\ 0 & 4 & 1 & -2 \\ 5 & 0 & 1 & -1 \end{vmatrix}$$

$$i = 2, j = 3.$$

$$1.26 \begin{vmatrix} 3 & -5 & 1 & 2 \\ 0 & 1 & -1 & -2 \\ 3 & 1 & -3 & 0 \\ 1 & 2 & -1 & 2 \end{vmatrix}$$

$$i = 4, j = 4.$$

$$1.26 \begin{vmatrix} 3 & -5 & 1 & 2 \\ 0 & 1 & -1 & -2 \\ 3 & 1 & -3 & 0 \\ 1 & 2 & -1 & 2 \end{vmatrix}$$

$$i = 2, j = 3.$$

$$1.27 \begin{vmatrix} 2 & -2 & 0 & 3 \\ 3 & 2 & 1 & -1 \\ 1 & 1 & -2 & 1 \\ 3 & 4 & -4 & 0 \end{vmatrix}$$

$$1.28 \begin{vmatrix} 6 & 0 & -1 & 1 \\ 2 & -2 & 0 & 1 \\ 1 & 1 & -3 & 3 \\ 4 & 1 & -1 & 2 \end{vmatrix}$$

$$i = 1, j = 2.$$

$$\begin{vmatrix}
-1 & -2 & 3 & 4 \\
2 & 0 & 1 & -1 \\
3 & -3 & 1 & 0 \\
4 & 2 & 1 & -2
\end{vmatrix}, \qquad \begin{vmatrix}
-4 & 1 & 2 & 0 \\
2 & -1 & 2 & 3 \\
-3 & 0 & 1 & 1 \\
2 & 1 & -2 & 3
\end{vmatrix}$$

$$i = 4, j = 4.$$

$$i = 2, j = 2.$$

Задание 2

Даны две матрицы A и B. Найти: a) AB; б) BA; в) A^{-1} ; г) AA^{-1} ; д) $A^{-1}A$; е) $(3A-2B)^T$; ж) решение матричного уравнения XA=B.

$$2.1 A = \begin{pmatrix} 2 & -1 & -3 \\ 8 & -7 & -6 \\ -3 & 4 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & -1 & -2 \\ 3 & -5 & 4 \\ 1 & 2 & 1 \end{pmatrix}.$$

$$2.2 A = \begin{pmatrix} 3 & 5 & -6 \\ 2 & 4 & 3 \\ -3 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 8 & -5 \\ -3 & -1 & 0 \\ 4 & 5 & -3 \end{pmatrix}.$$

$$2.3 A = \begin{pmatrix} 2 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 & 6 & 0 \\ 2 & 4 & -6 \\ 1 & -2 & 3 \end{pmatrix}.$$

$$2.4 A = \begin{pmatrix} -6 & 1 & 11 \\ 9 & 2 & 5 \\ 0 & 3 & 7 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 7 \\ 1 & -3 & 2 \end{pmatrix}.$$

$$2.5 A = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 & 2 \\ 2 & 1 & 1 \\ 3 & 7 & 1 \end{pmatrix}.$$

$$2.6 A = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 3 & -1 \\ 4 & 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 2 & -1 \\ 3 & 1 & 2 \\ 5 & 3 & 0 \end{pmatrix}.$$

$$2.7 A = \begin{pmatrix} 6 & 7 & 3 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & 5 \\ 4 & -1 & -2 \\ 4 & 3 & 7 \end{pmatrix}.$$

$$2.8 A = \begin{pmatrix} -2 & 3 & 4 \\ 3 & -1 & -4 \\ -1 & 2 & 2 \end{pmatrix}, B = \begin{pmatrix} 3 & 3 & 1 \\ 0 & 6 & 2 \\ 1 & 9 & 2 \end{pmatrix}.$$

$$2.9 A = \begin{pmatrix} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2 \end{pmatrix}, B = \begin{pmatrix} 6 & 5 & 2 \\ 1 & 9 & 2 \\ 4 & 5 & 2 \end{pmatrix}.$$

$$2.10 A = \begin{pmatrix} 2 & 6 & 1 \\ 1 & 3 & 2 \\ 0 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 4 & -3 & 2 \\ -4 & 0 & 5 \\ 3 & 2 & -3 \end{pmatrix}.$$

$$2.11 A = \begin{pmatrix} 6 & 9 & 4 \\ -1 & -1 & 1 \\ 10 & 1 & 7 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 4 & 3 \\ 0 & 5 & 2 \end{pmatrix}.$$

$$2.12 A = \begin{pmatrix} 1 & 0 & 3 \\ 3 & 1 & 7 \\ 2 & 1 & 8 \end{pmatrix}, B = \begin{pmatrix} 3 & 5 & 4 \\ -3 & 0 & 1 \\ 5 & 6 & -4 \end{pmatrix}.$$

$$2.13 A = \begin{pmatrix} 5 & 1 & -2 \\ 1 & 3 & -1 \\ 8 & 4 & -1 \end{pmatrix}, B = \begin{pmatrix} 3 & 5 & 5 \\ 7 & 1 & 2 \\ 1 & 6 & 0 \end{pmatrix}.$$

$$2.14 A = \begin{pmatrix} 2 & 2 & 5 \\ 3 & 3 & 6 \\ 4 & 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & 3 \\ 1 & -2 & -1 \end{pmatrix}.$$

$$2.15 A = \begin{pmatrix} 1 & -2 & 5 \\ 3 & 0 & 6 \\ 4 & 3 & 4 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & -2 & -1 \end{pmatrix}.$$

$$2.16 \ A = \begin{pmatrix} 5 & 4 & 2 \\ 1 & 2 & 4 \\ 3 & 0 & 5 \end{pmatrix}, \ B = \begin{pmatrix} 5 & 4 & -5 \\ 3 & -7 & 1 \\ 1 & 2 & 2 \end{pmatrix}.$$

$$2.17 \ A = \begin{pmatrix} 3 & 1 & 0 \\ 4 & 3 & 2 \\ 2 & 2 & -7 \end{pmatrix} 0, \ B = \begin{pmatrix} 2 & 7 & 0 \\ 5 & 3 & 1 \\ 1 & -6 & 1 \end{pmatrix}.$$

$$2.18 \ A = \begin{pmatrix} 8 & -1 & -1 \\ 5 & -5 & -1 \\ 10 & 3 & 2 \end{pmatrix}, \ B = \begin{pmatrix} 3 & 2 & 5 \\ 3 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix}.$$

$$2.19 \ A = \begin{pmatrix} 3 & -7 & 2 \\ 1 & -8 & 3 \\ 4 & -2 & 3 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 5 & -3 \\ 2 & 4 & 1 \\ 2 & 1 & -5 \end{pmatrix}.$$

$$2.20 \ A = \begin{pmatrix} 3 & -1 & 0 \\ 3 & 5 & 1 \\ 4 & -7 & 5 \end{pmatrix}, \ B = \begin{pmatrix} -1 & 0 & 2 \\ 1 & -8 & 5 \\ 3 & 0 & 2 \end{pmatrix}.$$

$$2.21 \ A = \begin{pmatrix} 2 & -1 & -4 \\ 4 & -9 & 3 \\ 2 & -7 & -1 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 & -4 \\ 5 & -6 & 4 \\ 7 & -4 & 1 \end{pmatrix}.$$

$$2.22 \ A = \begin{pmatrix} 8 & 5 & -1 \\ 1 & 5 & 3 \\ 1 & 1 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 4 & -7 & -6 \\ 3 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

$$2.23 \ A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -4 & 1 \\ 4 & -3 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 0 & -4 \\ 2 & 5 & -3 \\ 4 & -3 & 2 \end{pmatrix}.$$

$$2.24 \ A = \begin{pmatrix} 5 & -8 & -4 \\ 7 & 0 & -5 \\ 4 & 1 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 5 & 5 \\ 1 & 2 & 1 \\ 2 & -1 & -3 \end{pmatrix}.$$

$$2.25 \ A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -2 & 4 \\ 3 & -5 & 3 \end{pmatrix}, \ B = \begin{pmatrix} 7 & 5 & 1 \\ 5 & 3 & -1 \\ 1 & 2 & 3 \end{pmatrix}.$$

$$2.26 \ A = \begin{pmatrix} -3 & 4 & 2 \\ 1 & -5 & 3 \\ 0 & 1 & 2 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 4 & 4 \\ 1 & 3 & 2 \\ -4 & 1 & 2 \end{pmatrix}.$$

$$2.27 \ A = \begin{pmatrix} -3 & 4 & 0 \\ 4 & 5 & 1 \\ -2 & 3 & 3 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 7 & -1 \\ 0 & 2 & 6 \\ 2 & -1 & 1 \end{pmatrix}.$$

$$2.28 \ A = \begin{pmatrix} -3 & 4 & -3 \\ 1 & 2 & 3 \\ 5 & 0 & -1 \end{pmatrix}, \ B = \begin{pmatrix} 2 & -2 & 0 \\ 5 & 4 & 1 \\ 1 & -1 & 2 \end{pmatrix}.$$

$$2.29 \ A = \begin{pmatrix} -1 & 0 & 2 \\ 2 & 3 & 2 \\ 3 & 7 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 3 & 0 & 1 \\ -3 & 1 & 7 \\ 1 & 3 & 2 \end{pmatrix}.$$

$$2.30 \ A = \begin{pmatrix} 4 & 1 & -4 \\ 2 & -4 & 6 \\ 1 & 2 & -1 \end{pmatrix}, \ B = \begin{pmatrix} 0 & -1 & 1 \\ 2 & 5 & 0 \\ 1 & -1 & 2 \end{pmatrix}.$$

Задание 3

Проверить на совместность систему уравнений и в случае совместности решить ее: а) по формулам Крамера; б) с помощью обратной матрицы; в) методом Гаусса.

$$3.1 \begin{cases} 2x_1 + x_2 + 3x_3 = 7, \\ 2x_1 + 3x_2 + x_3 = 1, \\ 3x_1 + 2x_2 + x_3 = 6. \end{cases}$$

$$3.2 \begin{cases} 2x_1 - x_2 + 2x_3 = 3, \\ x_1 + x_2 + 2x_3 = -4, \\ 4x_1 + x_2 + 4x_3 = -3. \end{cases}$$

$$3.3 \begin{cases} 3x_1 - x_2 + x_3 = 12, \\ x_1 + 2x_2 + 4x_3 = 6, \\ 5x_1 + x_2 + 2x_3 = 3. \end{cases}$$

$$3.4 \begin{cases} 2x_1 - x_2 + 2x_3 = 3, \\ 4x_1 + x_2 + 2x_3 = -4, \\ x_1 + 3x_2 - x_3 = 11, \\ x_1 - 2x_2 + 2x_3 = -7. \end{cases}$$

$$\begin{array}{l} 3.5 \begin{cases} 3x_1 - 2x_2 + 4x_3 = 12, \\ 3x_1 + 4x_2 - 2x_3 = 6, \\ 2x_1 - x_2 - x_3 = -9. \end{cases} \\ 3.6 \begin{cases} 8x_1 + 3x_2 - 6x_3 = -4, \\ 4x_1 + x_2 - 3x_3 = -5. \end{cases} \\ 3.7 \begin{cases} 4x_1 + x_2 - 3x_3 = 9, \\ x_1 + x_2 - x_3 = -2, \\ 8x_1 + 3x_2 - 6x_3 = 12. \end{cases} \\ 3.8 \begin{cases} 7x_1 - 5x_2 = 24, \\ 4x_1 + 11x_3 = 39. \end{cases} \\ 3.10 \begin{cases} 2x_1 + 3x_2 + 4x_3 = 12, \\ 7x_1 - 5x_2 + x_3 = -33, \\ 4x_1 + x_3 = -7. \end{cases} \\ 3.11 \begin{cases} 3x_1 - 2x_2 + 4x_3 = 21, \\ 3x_1 - 2x_2 - 5x_3 = 9, \\ 2x_1 - x_2 - x_3 = 10. \end{cases} \\ 3.12 \begin{cases} 3x_1 - 2x_2 + 5x_3 = -22, \\ 2x_1 + 3x_2 - 4x_3 = 12, \\ 3x_1 - 2x_2 + 5x_3 = -22, \end{cases} \\ 3.13 \begin{cases} 4x_1 + x_2 + 4x_3 = 19, \\ 2x_1 - x_2 + 2x_3 = 11, \\ x_1 + x_2 + 2x_3 = 1, \\ 4x_1 + x_2 + 4x_3 = 22. \end{cases} \\ 3.15 \begin{cases} 2x_1 - x_2 + 2x_3 = 1, \\ x_1 + 5x_2 + x_3 = -3. \end{cases} \\ 3.16 \begin{cases} 2x_1 - x_2 - 3x_3 = -9, \\ 3x_1 + 4x_2 + 2x_3 = 15. \end{cases} \\ 3.17 \begin{cases} 3x_1 + 4x_2 + 2x_3 = 1, \\ x_1 + 5x_2 + x_3 = -3. \end{cases} \\ 3.18 \begin{cases} 3x_1 - 2x_2 + 3x_3 = -4, \\ x_1 + x_2 + 2x_3 = 15. \end{cases} \\ 3.19 \begin{cases} 3x_1 + x_2 + 2x_3 = 1, \\ x_1 + 5x_2 + x_3 = -4, \\ x_1 - 4x_2 - 2x_3 = -19. \end{cases} \\ 3.20 \begin{cases} 3x_1 - x_2 + x_3 = 4, \\ x_1 + 2x_2 + 4x_3 = 16. \end{cases} \\ 3x_1 - x_2 + x_3 = 1, \\ x_1 + 2x_2 + 4x_3 = 16. \end{cases} \\ 3x_1 - x_2 + x_3 = 1, \\ x_1 + 2x_2 + 4x_3 = 10. \end{cases}$$

$$3.23 \begin{cases} 2x_1 + 3x_2 + x_3 = 12, \\ 2x_1 + x_2 + 3x_3 = 16, \\ 3x_1 + 2x_2 + x_3 = 8. \end{cases}$$

$$3.24 \begin{cases} x_1 - 2x_2 + 3x_3 = 14, \\ 2x_1 + 3x_2 - 4x_3 = -16, \\ 3x_1 - 2x_2 - 5x_3 = -8. \end{cases}$$

$$3.25 \begin{cases} 3x_1 + 4x_2 - 2x_3 = 11, \\ 2x_1 - x_2 - x_3 = 4, \\ 3x_1 - 2x_2 + 4x_3 = 11. \end{cases}$$

$$3.26 \begin{cases} x_1 + 5x_2 - 6x_3 = -15, \\ 3x_1 + x_2 + 4x_3 = 13, \\ 2x_1 - 3x_2 + x_3 = 9. \end{cases}$$

$$3.27 \begin{cases} 4x_1 - x_2 = -6, \\ 3x_1 + 2x_2 + 5x_3 = -14, \\ x_1 - 3x_2 + 4x_3 = -19. \end{cases}$$

$$3.28 \begin{cases} 5x_1 + 2x_2 - 4x_3 = -16, \\ x_1 + 3x_3 = -6, \\ 2x_1 - 3x_2 + x_3 = 9. \end{cases}$$

$$3.29 \begin{cases} x_1 + 4x_2 - x_3 = -9, \\ 4x_1 - x_2 + 5x_3 = -2, \\ 3x_2 - 7x_3 = -6. \end{cases}$$

$$3.29 \begin{cases} 7x_1 + 4x_2 - x_3 = 13, \\ 3x_1 + 2x_2 + 3x_3 = 3, \\ 2x_1 - 3x_2 + x_3 = -10. \end{cases}$$

Проверить на совместность систему уравнений. Найти фундаментальную систему решений соответствующей однородной системы и общее решение данной системы.

$$4.1\begin{cases} 3x_1 + 2x_2 - 3x_3 + 4x_4 = 1, \\ 2x_1 + 3x_2 - 2x_3 + 2x_4 = 2, \\ 4x_1 + 2x_2 - 3x_3 + 2x_4 = 3, \\ 4x_2 + x_3 + 4x_4 = 1. \end{cases} 4.2\begin{cases} x_1 - x_2 + 2x_3 + 2x_4 = 2, \\ 3x_1 - 2x_2 - x_3 - x_4 = -1, \\ 5x_1 - 3x_2 - 4x_3 - 2x_4 = -4, \\ 7x_1 - 4x_2 - 7x_3 - 5x_4 = -7. \end{cases}$$

$$4.3\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 6, \\ 3x_1 + 5x_2 + 2x_3 + 2x_4 = 4, \\ 9x_1 + 4x_2 + x_3 + 7x_4 = 2, \\ x_1 - 2x_2 - x_3 + x_4 = -2. \end{cases} 4.4\begin{cases} 9x_1 - 3x_2 + 5x_3 + 6x_4 = 4, \\ 6x_1 - 2x_2 + 3x_3 + 4x_4 = 5, \\ 3x_1 - x_2 + 2x_3 + 2x_4 = -1. \end{cases}$$

$$4.5\begin{cases} 3x_1 + 2x_2 + 2x_3 + 2x_4 = 2, \\ 2x_1 + 3x_2 + 2x_3 + 5x_4 = 3, \\ 9x_1 + x_2 + 4x_3 - 5x_4 = 1, \\ 2x_1 + 2x_2 + 3x_3 + 4x_4 = 5. \end{cases}$$

$$4.7\begin{cases} 5x_1 - 3x_2 + 2x_3 + 4x_4 = 3, \\ 4x_1 - 2x_2 + 3x_3 + 7x_4 = 1, \\ 8x_1 - 6x_2 - x_3 - 5x_4 = 9, \\ 7x_1 - 3x_2 + 7x_3 + 17x_4 = 0. \end{cases}$$

$$4.8\begin{cases} 7x_1 - x_2 + 2x_3 + 2x_4 = 2, \\ 7x_1 - 4x_2 - 7x_3 - 5x_4 = -4, \\ 3x_1 - 2x_2 + 3x_3 + 4x_4 = 5, \end{cases}$$

$$4.9\begin{cases} 5x_1 - 3x_2 + 2x_3 + 4x_4 = 3, \\ 4x_1 - 2x_2 + 3x_3 + 4x_4 = 5, \\ 4x_1 - 2x_2 + 2x_3 + 2x_4 = 2. \end{cases}$$

$$4.9\begin{cases} 5x_1 - 3x_2 + 2x_3 + 4x_4 = 3, \\ 4x_1 - 2x_2 + 3x_3 + 4x_4 = 5, \\ 4x_1 - 2x_2 + 2x_3 + 2x_4 = 2. \end{cases}$$

$$4.9\begin{cases} 5x_1 - 3x_2 + 2x_3 + 2x_4 = -1, \\ 2x_1 - 2x_2 + 3x_3 + 4x_4 = 5, \\ 4x_1 - 2x_2 + 2x_3 + 2x_4 = 2. \end{cases}$$

$$4.9\begin{cases} 5x_1 - 3x_2 + 2x_3 + 2x_4 = -1, \\ 2x_1 - 2x_2 + 3x_3 + 4x_4 = 5, \\ 4x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 3x_2 + 6x_3 + 6x_4 = 7, \\ 4x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 3x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 3x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 3x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 3x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 3x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 3x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 3x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 3x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 3x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 8x_1$$

$$4.13 \begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\ x_1 - 2x_2 - 3x_3 - 4x_4 = 2, \\ 2x_2 + 3x_3 + 4x_4 = -1, \\ x_1 + 4x_2 + 6x_3 + 8x_4 = -1. \end{cases}$$

$$4.14 \begin{cases} 2x_1 - 2x_2 - x_3 + x_4 = 1, \\ 4x_1 - 10x_2 - 5x_3 + 7x_4 = 1, \\ 2x_1 - 14x_2 - 7x_3 + 11x_4 = -1. \end{cases}$$

$$4.15 \begin{cases} 5x_1 + 6x_2 - 2x_3 + 4x_4 = 5, \\ 2x_1 + 3x_2 - x_3 + 2x_4 = 2, \\ 7x_1 + 9x_2 - 3x_3 + 6x_4 = 7, \\ 5x_1 + 9x_2 - 3x_3 + 6x_4 = 5, \end{cases}$$

$$4.17 \begin{cases} x_1 - 2x_2 + 2x_3 + 2x_4 = 2, \\ 3x_1 - 2x_2 - x_3 - x_4 = -1, \\ 5x_1 - 3x_2 - 4x_3 - 2x_4 = -4, \\ 7x_1 - 4x_2 - 7x_3 - 5x_4 = -7. \end{cases}$$

$$4.18 \begin{cases} 9x_1 - 3x_2 + 5x_3 + 6x_4 = 4, \\ 6x_1 - 2x_2 + 3x_3 + 4x_4 = 5, \\ 3x_1 - x_2 + 2x_3 + 2x_4 = 2, \\ 3x_1 - 2x_2 + 3x_3 + 4x_4 = -8, \\ 3x_1 - x_2 + 2x_3 + 2x_4 = 2, \end{cases}$$

$$4.21 \begin{cases} 9x_1 - 3x_2 + 5x_3 + 6x_4 = 4, \\ 6x_1 - 2x_2 + 3x_3 + 4x_4 = 5, \\ 3x_1 - x_2 + 2x_3 + 2x_4 = 2, \end{cases}$$

$$4.21 \begin{cases} 2x_1 - 2x_2 - x_3 + x_4 = 1, \\ 2x_1 - 14x_2 - 7x_3 + 11x_4 = -1. \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 - 3x_3 + 4x_4 = 1, \\ 2x_1 + 3x_2 - 2x_3 + 2x_4 = 2, \\ 4x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 - 3x_3 + 4x_4 = 1, \\ 2x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 - 3x_3 + 4x_4 = 1, \\ 2x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \\ 4x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \\ 4x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \\ 4x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \\ 4x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - 3x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 - 3x_3 + 2x_4 = 3, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 + 2x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 + 2x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 + 2x_3 + 2x_4 = 2, \end{cases}$$

$$\begin{cases} 2x_1 - 2x_2 + 3x_3 + 4x_4 = 1, \end{cases}$$

$$\begin{cases} 2x_1 - 2x_2 + 3x_3 + 4x_4 = 1, \end{cases}$$

$$\begin{cases} 2x_1 - 2x_2 + 3x_3 + 4x_4 = 1, \end{cases}$$

$$\begin{cases} 2x_1 - 2x_2 + 3x_3 + 4x_4 = 1, \end{cases}$$

$$\begin{cases} 2x_1 - 2x_2 + 3x_3 + 4x_4$$

$$4.27 \begin{cases} 2x_1 - 2x_2 - x_3 + x_4 = 1, \\ x_1 + 2x_2 + x_3 - 2x_4 = 1, \\ 4x_1 - 10x_2 - 5x_3 + 7x_4 = 1, \\ 2x_1 - 14x_2 - 7x_3 + 11x_4 = -1. \end{cases}$$

$$4.28 \begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\ x_1 - 2x_2 - 3x_3 - 4x_4 = 2, \\ 2x_2 + 3x_3 + 4x_4 = -1, \\ x_1 + 4x_2 + 6x_3 + 8x_4 = -1. \end{cases}$$

$$4.29 \begin{cases} 5x_1 - 3x_2 - 4x_3 - 2x_4 = -4, \\ 2x_1 - x_2 - 3x_3 - 3x_4 = -3, \\ 3x_1 - 2x_2 - x_3 - x_4 = -1, \\ 4x_1 - 3x_2 + x_3 + x_4 = 1. \end{cases}$$

$$4.28 \begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\ x_1 - 2x_2 - 3x_3 - 4x_4 = 2, \\ 2x_2 + 3x_3 + 4x_4 = -1, \\ x_1 + 4x_2 + 6x_3 + 8x_4 = -1. \end{cases}$$

$$5x_1 + 6x_2 - 2x_3 + 4x_4 = 5, \\ 2x_1 + 3x_2 - x_3 + 2x_4 = 2, \\ 7x_1 + 9x_2 - 3x_3 + 6x_4 = 7, \\ 5x_1 + 9x_2 - 3x_3 + 6x_4 = 5. \end{cases}$$

Даны векторы: $a = \alpha m + \beta n$ и $b = \gamma m + \delta n$, где |m| = k; |n| = l; $(m,n) = \varphi$. Найти: a) $(\lambda a + \mu b)(va + \tau b)$; б) $|a \times b|$; в) $\cos(a,\tau b)$.

5.1 $\alpha = -5$, $\beta = -4$, $\gamma = 3$, $\delta = 6$, k = 3, l = 5, $\varphi = 5\pi/3$, $\lambda = -2$, $\mu = 1/3$, $\nu = 1$, $\tau = 2$.

5.2 $\alpha = -2$, $\beta = 3$, $\gamma = 4$, $\delta = -1$, k = 1, l = 3, $\varphi = \pi$, $\lambda = 3$, $\mu = 2$, $\nu = -2$, $\tau = 4$.

5.3 $\alpha = 5$, $\beta = -2$, $\gamma = -3$, $\delta = -1$, k = 4, l = 5, $\varphi = 4\pi/3$, $\lambda = 2$, $\mu = 3$, $\nu = -1$, $\tau = 5$.

5.4 $\alpha = 5$, $\beta = 2$, $\gamma = -6$, $\delta = -4$, k = 3, l = 2, $\varphi = 5\pi/3$, $\lambda = -1$, $\mu = 1/2$, $\nu = 2$, $\tau = 3$.

5.5 $\alpha = 3$, $\beta = -2$, $\gamma = -4$, $\delta = 5$, k = 2, l = 3, $\varphi = \pi/3$, $\lambda = 2$, $\mu = -3$, $\nu = 5$, $\tau = 1$.

5.6 $\alpha = 2$, $\beta = -5$, $\gamma = -3$, $\delta = 4$, k = 2, l = 4, $\phi = 2\pi/3$, $\lambda = 3$, $\mu = -4$, $\nu = 2$, $\tau = 3$.

5.7 $\alpha = 3$, $\beta = 2$, $\gamma = -4$, $\delta = -2$, k = 2, l = 5, $\varphi = 4\pi/3$, $\lambda = 1$, $\mu = -3$, $\nu = 0$, $\tau = -1/2$.

5.8 $\alpha = 5$, $\beta = 2$, $\gamma = 1$, $\delta = -4$, k = 3, l = 2, $\varphi = \pi$, $\lambda = 1$, $\mu = -2$, $\nu = 3$, $\tau = -4$.

5.9 $\alpha = -3$, $\beta = -2$, $\gamma = 1$, $\delta = 5$, k = 3, l = 6, $\varphi = 4\pi/3$, $\lambda = -1$, $\mu = 2$, $\nu = 1$, $\tau = 1$.

5.10 $\alpha = 5$, $\beta = -3$, $\gamma = 4$, $\delta = 2$, k = 4, l = 1, $\varphi = 2\pi/3$, $\lambda = 2$, $\mu = -1/2$, $\nu = 3$, $\tau = 0$.

5.11 $\alpha = -2$, $\beta = 3$, $\gamma = 3$, $\delta = -6$, k = 6, l = 3, $\varphi = 5\pi/3$, $\lambda = 3$, $\mu = -1/3$, $\nu = 1$, $\tau = 2$.

5.12 $\alpha = -2$, $\beta = -4$, $\gamma = 3$, $\delta = 1$, k = 3, l = 2, $\varphi = 7\pi/3$, $\lambda = -1/2$, $\mu = 3$, $\nu = 1$, $\tau = 2$.

5.13 $\alpha = 4$, $\beta = 3$, $\gamma = -1$, $\delta = 2$, k = 4, l = 5, $\varphi = 3\pi/2$, $\lambda = 2$, $\mu = -3$, $\nu = 1$, $\tau = 2$.

 $5.14 \ \alpha = -2 \; , \ \beta = 3 \; , \ \gamma = 5 \; , \ \delta = 1 \; , \ k = 2 \; , \ l = 5 \; , \ \phi = 2\pi \; , \ \lambda = -3 \; , \\ \mu = 4 \; , \ \nu = 2 \; , \ \tau = 3 \; .$

5.15 $\alpha = 4$, $\beta = -3$, $\gamma = 5$, $\delta = 2$, k = 4, l = 7, $\phi = 4\pi/3$, $\lambda = -3$, $\mu = 2$, $\nu = 2$, $\tau = -1$.

5.16 $\alpha = -5$, $\beta = 3$, $\gamma = 2$, $\delta = 4$, k = 5, l = 4, $\varphi = \pi$, $\lambda = -3$, $\mu = 1/2$, $\nu = -1$, $\tau = 1$.

5.17 $\alpha = 5$, $\beta = -2$, $\gamma = 3$, $\delta = 4$, k = 2, l = 5, $\varphi = \pi/2$, $\lambda = 2$, $\mu = 3$, $\nu = 1$, $\tau = -2$.

5.18 $\alpha = 7$, $\beta = -3$, $\gamma = 2$, $\delta = 6$, k = 3, l = 4, $\varphi = 5\pi/3$, $\lambda = 3$, $\mu = -1/2$, $\nu = 2$, $\tau = 1$.

5.19 $\alpha = 4$, $\beta = -5$, $\gamma = -1$, $\delta = 3$, k = 6, l = 3, $\varphi = 2\pi/3$, $\lambda = 2$, $\mu = -5$, $\nu = 1$, $\tau = 2$.

5.20 $\alpha = 3$, $\beta = -5$, $\gamma = -2$, $\delta = 3$, k = 1, l = 6, $\varphi = 3\pi/2$, $\lambda = 4$, $\mu = 5$, $\nu = 1$, $\tau = -2$.

5.21 $\alpha = -5$, $\beta = -6$, $\gamma = 2$, $\delta = 7$, k = 2, l = 7, $\phi = \pi$, $\lambda = -2$, $\mu = 5$, $\nu = 1$, $\tau = 3$.

5.22 $\alpha = -7$, $\beta = 2$, $\gamma = 4$, $\delta = 6$, k = 2, l = 9, $\varphi = \pi/3$, $\lambda = 1$, $\mu = 2$, $\nu = -1$, $\tau = 3$.

5.23 $\alpha = 5$, $\beta = 4$, $\gamma = -6$, $\delta = 2$, k = 2, l = 9, $\varphi = 2\pi/3$, $\lambda = 3$, $\mu = 2$, $\nu = 1$, $\tau = -1/2$.

5.24 $\alpha = -5$, $\beta = -7$, $\gamma = -3$, $\delta = 2$, k = 2, l = 11, $\varphi = 3\pi/2$, $\lambda = -3$, $\mu = 4$, $\nu = -1$, $\tau = 2$.

5.25 $\alpha = 5$, $\beta = -8$, $\gamma = -2$, $\delta = 3$, k = 4, l = 3, $\varphi = 4\pi/3$, $\lambda = 2$, $\mu = -3$, $\nu = 1$, $\tau = 2$.

5.26 $\alpha = -3$, $\beta = 5$, $\gamma = 1$, $\delta = 7$, k = 4, l = 6, $\phi = 5\pi/3$, $\lambda = -2$, $\mu = 3$, $\nu = 3$, $\tau = -2$.

5.27 $\alpha = -3$, $\beta = 4$, $\gamma = 5$, $\delta = -6$, k = 4, l = 5, $\varphi = \pi$, $\lambda = 2$, $\mu = 3$, $\nu = -3$, $\tau = -1$.

5.28 $\alpha = 6$, $\beta = -7$, $\gamma = -1$, $\delta = -3$, k = 2, l = 6, $\phi = 4\pi/3$, $\lambda = 3$, $\mu = -2$, $\nu = 1$, $\tau = 4$.

5.29 $\alpha = 5$, $\beta = 3$, $\gamma = -4$, $\delta = -2$, k = 6, l = 3, $\varphi = 5\pi/3$, $\lambda = -2$, $\mu = -1/2$, $\nu = 3$, $\tau = 2$.

5.30 $\alpha = 4$, $\beta = -3$, $\gamma = -2$, $\delta = 6$, k = 4, l = 7, $\varphi = \pi/3$, $\lambda = 2$, $\mu = -1/2$, $\nu = 3$, $\tau = 2$.

По координатам точек A, B и C для указанных векторов найти: а) модуль вектора a; б) скалярное произведение векторов a и b; в) проекцию вектора c на вектор d; r) координаты точки M, делящей отрезок l в отношении α : β .

6.1 A(4,6,3), B(-5,2,6), C(4,-4,-3), $a = 4\overrightarrow{CB} - \overrightarrow{AC}$, $b = \overrightarrow{AB}$, $c = \overrightarrow{CB}$, $d = \overrightarrow{AC}$, l = AB, $\alpha = 5$, $\beta = 4$.

6.2 A(4,3,-2), B(-3,-1,4), C(2,2,1), $a = -5\overrightarrow{AC} + 2\overrightarrow{CB}$, $b = \overrightarrow{AB}$, $c = \overrightarrow{AC}$, $d = \overrightarrow{CB}$, l = BC, $\alpha = 2$, $\beta = 3$.

6.3 A(-2,-2,4), B(1,3,-2), C(1,4,2), $a = 2\overrightarrow{AC} - 3\overrightarrow{BA}$, $b = \overrightarrow{BC}$, $c = \overrightarrow{BC}$, $d = \overrightarrow{AC}$, l = BA, $\alpha = 2$, $\beta = 1$.

6.4 A(2,4,3), B(3,1,-4), C(-1,2,2), $a = 2\overrightarrow{BA} + 4\overrightarrow{AC}$, $b = \overrightarrow{BA}$, c = b, $d = \overrightarrow{AC}$, l = BA, $\alpha = 1$, $\beta = 4$.

6.5 A(2,4,5), B(1,-2,3), C(-1,-2,4), $a = 3\overrightarrow{AB} - 4\overrightarrow{AC}$, $b = \overrightarrow{BC}$, c = b, $d = \overrightarrow{AB}$, l = AB, $\alpha = 2$, $\beta = 3$.

6.6 A(-1,-2,4), B(-1,3,5), C(1,4,2), $a = 3\overrightarrow{AC} - 7\overrightarrow{BC}$, $b = \overrightarrow{AB}$, c = b, $d = \overrightarrow{AC}$, l = AC, $\alpha = 1$, $\beta = 7$.

6.7 A(1,3,2), B(-2,4,-1), C(1,3,-2), $a = 2\overrightarrow{AB} + 5\overrightarrow{CB}$, $b = \overrightarrow{AC}$, c = b, $d = \overrightarrow{AB}$, l = AB, $\alpha = 2$, $\beta = 4$.

6.8 A(2,-4,3), B(-3,-2,4), C(0,0,-2), $a = 3\overrightarrow{AC} - 4\overrightarrow{CB}$, $b = c = \overrightarrow{AB}$, $d = \overrightarrow{CB}$, l = AC, $\alpha = 2$, $\beta = 1$.

6.9 A(3,4,-4), B(-2,1,2), C(2,-3,1), $a = 5\overrightarrow{CB} + 4\overrightarrow{AC}$, $b = c = \overrightarrow{BA}$, $d = \overrightarrow{AC}$, l = BA, $\alpha = 2$, $\beta = 5$.

6.10 A(0,2,5), B(2,-3,4), C(3,2,-5), $a = -3\overrightarrow{AB} + 4\overrightarrow{CB}$, $b = c = \overrightarrow{AC}$, $d = \overrightarrow{AB}$, l = AC, $\alpha = 3$, $\beta = 2$.

6.11 A(-2,-3,-4), B(2,-4,0), C(1,4,5), $a = 4\overrightarrow{AC} - 8\overrightarrow{BC}$,

 $b = c = \overrightarrow{AB}$, $d = \overrightarrow{BC}$, l = AB, $\alpha = 4$, $\beta = 2$.

6.12 A(-2,-3,-2), B(1,4,2), C(1,-3,3), $a = 2\overrightarrow{AC} - 4\overrightarrow{BC}$, $b = c = \overrightarrow{AB}$, $d = \overrightarrow{AC}$, l = BC, $\alpha = 3$, $\beta = 1$.

6.13 A(5,6,1), B(-2,4,-1), C(3,-3,3), $a=3\overrightarrow{AB}-4\overrightarrow{BC}$, $b = c = \overrightarrow{AC}$, $d = \overrightarrow{AB}$, l = BC, $\alpha = 3$, $\beta = 2$. 6.14 A(10,6,3), B(-2,4,5), C(3,-4,-6), $a=5\overrightarrow{AC}-2\overrightarrow{CB}$, $b = c = \overrightarrow{BA}$, $d = \overrightarrow{AC}$, l = CB, $\alpha = 1$, $\beta = 5$. 6.15 A(3,2,4), B(-2,1,3), C(2,-2,-1), $a=4\overrightarrow{BC}-3\overrightarrow{AC}$, $b = \overrightarrow{BA}$, $c = \overrightarrow{AC}$, $d = \overrightarrow{BC}$, l = AC, $\alpha = 2$, $\beta = 4$. 6.16 A(-2,3,-4), B(3,-1,2), C(4,2,4), $a=7\overrightarrow{AC}+4\overrightarrow{CB}$, $b = c = \overrightarrow{AB}$, $d = \overrightarrow{CB}$, l = AB, $\alpha = 5, \beta = 5$. 6.17 A(4,5,3), B(-4,2,3), C(5,-6,-2), $a=9\overrightarrow{AR}-4\overrightarrow{RC}$. $b = c = \overrightarrow{AC}$, $d = \overrightarrow{AB}$, l = BC, $\alpha = 5, \beta = 1$. 6.18 A(2,4,6), B(-3,5,1), C(4,-5,-4), $a=-6\overrightarrow{BC}+2\overrightarrow{BA}$ $b = c = \overrightarrow{CA}$, $d = \overrightarrow{BA}$, l = BC, $\alpha = 1$, $\beta = 3$. 6.19 A(-4,-2,-5), B(3,7,2), C(4,6,-3), $a = 9\overrightarrow{RA} + 3\overrightarrow{RC}$, $b = c = \overrightarrow{AC}$, $d = \overrightarrow{BC}$, l = BA, $\alpha = 4$, $\beta = 3$. 6.20 A(5,4,4), B(-5,2,3), C(4,2,-5), $a=11\overrightarrow{AC}-6\overrightarrow{AB}$, $b = \overrightarrow{BC}$, $c = \overrightarrow{AB}$, $d = \overrightarrow{AC}$, l = BC, $\alpha = 3$, $\beta = 1$. 6.21 A(3,4,6), B(-4,6,4), C(5,-2,-3), $a=-7\overrightarrow{BC}+4\overrightarrow{CA}$, $b = \overrightarrow{BA}$, $c = \overrightarrow{CA}$, $d = \overrightarrow{BC}$, l = BA, $\alpha = 5$, $\beta = 3$. 6.22 A(-5,-2,-6), B(3,4,5), C(2,-5,4), $a=8\overrightarrow{AC}-5\overrightarrow{BC}$. $b = c = \overrightarrow{AB}$, $d = \overrightarrow{BC}$, l = AC, $\alpha = 3$, $\beta = 4$. 6.23 A(3,4,1), B(5,-2,6), C(4,2,-7), $a=-7\overrightarrow{AC}+5\overrightarrow{AB}$, $b = c = \overrightarrow{BC}$, $d = \overrightarrow{AC}$, l = AB, $\alpha = 2$, $\beta = 3$.

6.24 A(4,3,2), B(-4,-3,5), C(6,4,-3), $a = 8\overrightarrow{AC} - 5\overrightarrow{BC}$, $b = \overrightarrow{c} = \overrightarrow{BA}$, $d = \overrightarrow{AC}$, l = BC, $\alpha = 2$, $\beta = 5$.

6.25 A(-5,4,3), B(4,5,2), C(2,7,-4), $a = 3\overrightarrow{BC} + 2\overrightarrow{AB}$,

 $b = c = \overrightarrow{CA}$, $d = \overrightarrow{AB}$, l = BC, $\alpha = 3$, $\beta = 4$.

6.26 A(6,4,5), B(-7,1,8), C(2,-2,-7), $a = 5\overrightarrow{CB} - 2\overrightarrow{AC}$, $b = \overrightarrow{AB}$, $c = \overrightarrow{CB}$, $d = \overrightarrow{AC}$, l = AB, $\alpha = 3$, $\beta = 2$.

6.27 A(6,5,-4), B(-5,-2,2), C(3,3,2), $a = 6\overrightarrow{AB} - 3\overrightarrow{CB}$, $b = c = \overrightarrow{AC}$, $d = \overrightarrow{CB}$, l = BC, $\alpha = 1$, $\beta = 5$. 6.28 A(-3,-5,6), B(3,5,-4), C(2,6,4), $a = 4\overrightarrow{AC} - 5\overrightarrow{BA}$, $b = \overrightarrow{CB}$, $c = \overrightarrow{BA}$, $d = \overrightarrow{AC}$, l = BA, $\alpha = 4$, $\beta = 2$. 6.29 A(3,5,4), B(4,2,-3), C(-2,4,7), $a = 3\overrightarrow{BA} - 4\overrightarrow{AC}$, $b = \overrightarrow{AB}$, $c = \overrightarrow{BA}$, $d = \overrightarrow{AC}$, l = BA, $\alpha = 2$, $\beta = 5$.

6.30 A(4,6,7), B(2,-4,1), C(-3,-4,2), $a = 5\overrightarrow{AB} - 2\overrightarrow{AC}$, $b = c = \overrightarrow{BC}$, $d = \overrightarrow{AB}$, l = AB, $\alpha = 3$, $\beta = 4$.

Задание 7

Доказать, что векторы a, b, c образуют базис, и найти координаты вектора d в этом базисе.

7.1
$$a = (5,4,1)$$
, $b = (-3,5,2)$, $c = (2,-1,3)$, $d = (7,23,4)$.
7.2 $a = (2,-1,4)$, $b = (-3,0,-2)$, $c = (4,5,-3)$, $d = (0,11,-14)$.
7.3 $a = (-1,1,2)$, $b = (2,-3,-5)$, $c = (-6,3,-1)$, $d = (28,-19,-7)$.

7.4
$$a = (1,3,4)$$
, $b = (-2,5,0)$, $c = (3,-2,-4)$, $d = (13,-5,-4)$.

7.5
$$a = (1,-1,1)$$
, $b = (-5,-3,1)$, $c = (2,-1,0)$, $d = (-15,-10,5)$.

7.6
$$a = (3,1,2)$$
, $b = (-7,-2,-4)$, $c = (-4,0,3)$, $d = (16,6,15)$.

7.7
$$a = (-3,0,1)$$
, $b = (2,7,-3)$, $c = (-4,3,5)$, $d = (-16,33,13)$.

7.8
$$a = (5,1,2)$$
, $b = (-2,1,-3)$, $c = (4,-3,5)$, $d = (15,-15,24)$.

7.9
$$a = (0,2,-3), b = (4,-3,-2), c = (-5,-4,0),$$

$$d = (-19, -5, -4)$$
.

7.10
$$a = (3,-1,2)$$
, $b = (-2,3,1)$, $c = (4,-5,-3)$, $d = (-3,2,-3)$.

7.11
$$a = (5,3,1)$$
, $b = (-1,2,-3)$, $c = (3,-4,2)$, $d = (-9,34,-20)$

7.12
$$a = (3,1,-3)$$
, $b = (-2,4,1)$, $c = (1,-2,5)$, $d = (1,12,-20)$.
7.13 $a = (6,1,-3)$, $b = (-3,2,1)$, $c = (-1,-3,4)$, $d = (15,6,-17)$.

7.14
$$a = (4,2,3)$$
, $b = (-3,1,-8)$, $c = (2,-4,5)$, $d = (-12,14,-31)$.

7.15 $a = (-2,1,3)$, $b = (3,-6,2)$, $c = (-5,-3,-1)$, $d = (31,-6,22)$.

7.16 $a = (1,3,6)$, $b = (-3,4,-5)$, $c = (1,-7,2)$, $d = (-2,17,5)$.

7.17 $a = (7,2,1)$, $b = (5,1,-2)$, $c = (-3,4,5)$, $d = (26,11,1)$.

7.18 $a = (3,5,4)$, $b = (-2,7,-5)$, $c = (6,-2,1)$, $d = (6,-9,22)$.

7.19 $a = (5,3,2)$, $b = (2,-5,1)$, $c = (-7,4,-3)$, $d = (36,1,15)$.

7.20 $a = (11,1,2)$, $b = (-3,3,4)$, $c = (-4,-2,7)$, $d = (-5,11,-15)$.

7.21 $a = (9,5,3)$, $b = (-3,2,1)$, $c = (4,-7,4)$, $d = (-10,-13,8)$.

7.22 $a = (7,2,1)$, $b = (3,-5,6)$, $c = (-4,3,-4)$, $d = (-1,18,-16)$.

7.23 $a = (1,2,3)$, $b = (-5,3,-1)$, $c = (-6,4,5)$, $d = (-4,11,20)$.

7.24 $a = (-2,5,1)$, $b = (3,2,-7)$, $c = (4,-3,2)$, $d = (-4,22,-13)$.

7.25 $a = (3,1,2)$, $b = (-4,3,-1)$, $c = (2,3,4)$, $d = (14,14,20)$.

7.26 $a = (3,-1,2)$, $b = (-2,4,1)$, $c = (4,-5,-1)$, $d = (-5,11,1)$.

7.27 $a = (4,5,1)$, $b = (1,3,1)$, $c = (-3,-6,7)$, $d = (19,33,0)$.

7.28 $a = (1,-3,1)$, $b = (-2,-4,3)$, $c = (0,-2,3)$, $d = (-8,-10,13)$.

7.29 $a = (5,7,-2)$, $b = (-3,1,3)$, $c = (1,-4,6)$, $d = (14,9,-1)$.

7.30 $a = (-1,4,3)$, $b = (3,2,-4)$, $c = (-2,-7,1)$, $d = (6,20,-3)$.

Даны векторы: a, b, и c. Необходимо: a) вычислить смешанное произведение трех указанных векторов; b0) найти модуль векторного произведения; b1) вычислить скалярное произведение указанных векторов; b2) проверить, будут ли коллинеарны или ортогональны векторы; b3) проверить, будут ли компланарны соответствующие векторы.

8.1
$$a = 2i - 3j + k$$
, $b = j + 4k$, $c = 5i + 2j - 3k$; a) $a, 3b, c$;
6) $3a, 2c$; B) $b, -4c$; Γ) a, c ; μ) μ 0, μ 3.

8.2
$$a = 3i + 4j + k$$
, $b = i - 2j + 7k$, $c = 3i - 6j + 21k$; a)
 $5a, 2b, c$; 6 , $4b, 2c$; 8 , a, c ; 6 , b , 6 ; 1 , 1 , 1 , $2a, -3b, c$.

8.5
$$a = -4i + 2j - k$$
, $b = 3i + 5j - 2k$, $c = j + 5k$; a) $a, 6b, 3c$; (5) $(2b, a)$; $(3c)$ $(3c)$

8.6
$$a = 3i - 2j + k$$
, $b = 2j - 3k$, $c = -3i + 2j - k$; a)
 $a, -3b, 2c$; 6) $5a$, $3c$; 6) $5a$, $5a$, $6a$; $6a$

8.7
$$a = 4i - j + 3k$$
, $b = 2i + 3j - 5k$, $c = 7i + 2j + 4k$; a)
7 $a, -4b, 2c$; $6)$ 3 a , 5 c ; $6)$ 2 b , 4 c ; $6)$ 6 , 6 ; 6 , 6 ; $7a$, 2 a , 5 a .

8.8
$$a = 4i + 2j - 3k$$
, $b = 2i + k$, $c = -12i - 6j + 9k$; a) $2a, 3b, c$; б) $4a, 3b$; в) $b, -4c$; г) a, c ; д) $2a, 3b, -4c$.

8.9
$$a = -i + 5k$$
, $b = -3i + 2j + 2k$, $c = -2i - 4j + k$; a)
3a, -4b, 2c; 6) 7a, -3c; B) 2b, 3a; Γ) b, c; Π) 7a, 2b, -3c.

8.10
$$a = 6i - 4j + 6k$$
, $b = 9i - 6j + 9k$, $c = i - 8k$; a) $2a, -4b, 3c$; б) $3b, -9c$; в) $3a, -5c$; г) a, b ; д) $3a, -4b, -9c$

.

6a.3b.8c:6) -7b.6a:B) $-5a.4c:\Gamma$) $a.b:\Pi$) -5a.3b.4c.

4a, -7b, -2c; б) 6a, -4c; в) -2a, 5b; г) a, c; д) 6a, -7b, -2c. 8.25 a = -3i - j - 5k, b = 2i - 4j + 8k, c = 3i + 7j - k; а) 2a, -b, 3c; б) -9a, 4c; в) 5b, -6c; г) b, c; д) 2a, 5b, -6c. 8.26 a = -3i + 2j + 7k, b = i - 5k, c = 6i + 4j - k; а) -2a, b, 7c; б) 5a, -2c; в) 3b, c; г) a, c; д) -2a, 3b, 7c. 8.27 a = 3i - j + 5k, b = 2i - 4j + 6k, c = i - 2j + 3k; а) -3a, 4b, -5c; б) 6b, 3c; в) a, 4c; г) b, c; д) -3a, 4b, -5c. 8.28 a = 4i - 5j - 4k, b = 5i - j, c = 2i + 4j - 3k; а) a, 7b, -2c; б) -5a, 4b; в) 8c, -3a; г) a, c; д) -3a, 4b, 8c. 8.29 a = -9i + 4k, b = 2i - 4j + 6k, c = 3i - 6j + 9k; а) 3a, -5b, -4c; б) 6b, 2c; в) -2a, 8c; г) b, c; д) 3a, 6b, -4c. 8.30 a = 5i - 6j - 4k, b = 4i + 8j - 7k, c = 3j - 4k; а) 5a, 3b, -4c; б) 4b, a; в) 7a, -2c; г) a, b; д) 5a, 4b, -2c.

8.24 a = 3i - j + 2k, b = -i + 5j - 4k, c = 6i - 2j + 4k; a)

Задание 9

Вершины пирамиды находятся в точках A, B, C и D. Вычислить: а) площадь указанной грани; б) площадь сечения, проходящего через середину ребра l и указанные вершины пирамиды; в) объем пирамиды ABCD.

9.1 A(3,4,5), B(1,2,1), C(-2,-3,6), D(3,-6,-3); a) ACD; 6) l = AB, C $_{\rm M}$ D.

9.2 A(-7,-5,6), B(-2,5,-3), C(3,-2,4), D(1,2,2); a) BCD; δ) l = CD, $A \bowtie B$.

9.3 A(1,3,1), B(-1,4,6), C(-2,-3,4), D(3,4,-4); a) ACD; 6) l = BC, $A \cup D$.

9.4 A(2,4,1) , B(-3,-2,4) , C(3,5,-2) , D(4,2,-3) ; a) ABD ; б) l=AC, B и D .

9.5 A(-5,-3,-4), B(1,4,6), C(3,2,-2), D(8,-2,4); a) ACD: 6) $l = BC, A \bowtie D$. 9.6 A(3,4,2), B(-2,3,-5), C(4,-3,6), D(6,-5,3); a) ABD: б) l = BD, A и C. 9.7 A(-4,6,3), B(3,-5,1), C(2,6,-4), D(2,4,-5); a) ACD; б) $l = AD, B \, \text{и} \, C$. 9.8 A(7,5,8), B(-4,-5,3), C(2,-3,5), D(5,1,-4); a) BCD: б) $l = BC, A \, \text{и} \, D$. 9.9 A(3,-2,6), B(-6,-2,3), C(1,1,-4), D(4,6,-7); a) ABD: 6) l = BD, $A \bowtie C$. 9.10 A(-5,-4,-3). B(7,3,-1). C(6,-2,0). D(3,2,-7); a) BCD: 6) $l = AD, B \bowtie C$. 9.11 A(3,-5,-2), B(-4,2,3), C(1,5,7), D(-2,-4,5); a) ACD: 6) $l = BD, A \bowtie C$. 9.12 A(7,4,9), B(1,-2,-3), C(-5,-3,0), D(1,-3,4); a) ABD: 6) $l = AB, C \bowtie D$. 9.13 A(-4,-7,-3), B(-4,-5,7), C(2,-3,3), D(3,2,1); a) $BCD: \mathfrak{H} = BC, A \times D$ 9.14 A(-4,-5,-3) B(3,1,2) C(5,7,-6) D(6,-1,5): a) ACD: 6) $l = BC, A \parallel D$. 9.15 A(5,2,4), B(-3,5,-7), C(1,-5,8), D(9,-3,5); a) ABD : 6) $l = BD, A \cup C$. 9.16 A(-6,4,5), B(5,-7,3), C(4,2,-8), D(2,8,-3); a) ACD: 6) l = AD, B H C. 9.17 A(5,3,6), B(-3,-4,4), C(5,-6,8), D(4,0,-3); a) $BCD: \mathfrak{H}$ $l=BC, A \mathbb{H} D$. 9.18 A(5,-4,4), B(-4,-6,5), C(3,2,-7), D(6,2,-9); a) ABD; 6) l = BD, $A \cup C$. 9.19 A(-7,-6,-5), B(5,1,-3), C(8,-4,0), D(3,4,-7); a) BCD; 6) l = AD, B H C. 9.20 A(7,-1,-2) , B(1,7,8) , C(3,7,9) , D(-3,-5,2) ; a) ACD

: 6) l = BD, A H C

- 9.21 A(5,7,2), B(7,-6,-9), C(-7,-6,3), D(1,-5,2); a)
- ABD; б) l = AB, C и D.
- 9.22 A(-2,-5,-1), B(-6,-7,9), C(4,-5,1), D(2,1,4); a)
- BCD; 6) $l = BC, A \bowtie D$.
- 9.23 A(-6,-3,-5), B(5,1,7), C(3,5,-1), D(4,-2,9); a)
- ACD; 6) $l = BC, A \cup D$.
- 9.24 A(7,4,2), B(-5,3,-9), C(1,-5,3), D(7,-9,1); a) ABD
- ; б) l = BD, A H C.
- 9.25 A(-8,2,7), B(3,-5,9), C(2,4,-6), D(4,6,-5); a)
- ACD; 6) l = AD, B M C.
- 9.26 A(4,3,1), B(2,7,5), C(-4,-2,4), D(2,-3,-5); a)
- ACD; 6) l = AB, C $_{\rm II}$ D.
- 9.27 A(-9,-7,4), B(-4,3,-1), C(5,-4,2), D(3,4,4); a)
- BCD; 6) l = CD, $A \mid B$.
 - 9.28 A(3,5,3), B(-3,2,8), C(-3,-2,6), D(7,8,-2); a) ACD
- ; 6) $l = BD, A \bowtie C$.
 - 9.29 A(4,2,3), B(-5,-4,2), C(5,7,-4), D(6,4,-7); a)
- ABD; 6) l = AD, B M C.
 - 9.30 A(-4, -2, -3), B(2,5,7), C(6,3,-1), D(6,-4,1); a)
- ACD; 6) $l = BC, A \bowtie D$.

Даны векторы: a, b, и c. Необходимо: a) вычислить смешанное произведение трех указанных векторов; б) найти модуль векторного произведения; в) вычислить скалярное произведение указанных векторов; г) проверить, будут ли коллинеарны или ортогональны векторы; д) проверить, будут ли компланарны соответствующие векторы.

8.1
$$a = 2i - 3j + k$$
, $b = j + 4k$, $c = 5i + 2j - 3k$; a) $a, 3b, c$;
6) $3a, 2c$; B) $b, -4c$; Γ) a, c ; μ) μ 0, μ 3.

8.2
$$a = 3i + 4j + k$$
, $b = i - 2j + 7k$, $c = 3i - 6j + 21k$; a)

$$5a, 2b, c$$
; б) $4b, 2c$; в) a, c ; г) b, c ; д) $2a, -3b, c$.

8.3
$$a = 2i - 4j - 2k$$
, $b = 7i + 3j$, $c = 3i + 5j - 7k$; a)

$$a, 2b, 3c$$
; б) $3a, -7b$; в) $c, -2a$; г) a, c ; д) $3a, 2b, 3c$.

8.4
$$a = -7i + 2k$$
, $b = 2i - 6j + 4k$, $c = i - 3j + 2k$; a)

$$a, -2b, -7c$$
; б) $4b, 3c$; в) $2a, -7c$; г) b, c ; д) $2a, 4b, 3c$.

8.5
$$a = -4i + 2j - k$$
, $b = 3i + 5j - 2k$, $c = j + 5k$; a)

$$a, 6b, 3c; 6) 2b, a; B) a, -4c; \Gamma) a, b; \Pi) a, 6b, 3c.$$

8.6
$$a = 3i - 2j + k$$
, $b = 2j - 3k$, $c = -3i + 2j - k$; a)

$$a, -3b, 2c : 6$$
) $5a, 3c : B$) $-2a, 4b : \Gamma$) $a, c : \Pi$) $5a, 4b, 3c$.

8.7
$$a = 4i - i + 3k$$
, $b = 2i + 3i - 5k$, $c = 7i + 2i + 4k$; a)

$$7a, -4b, 2c$$
; б) $3a, 5c$; в) $2b, 4c$; г) b, c ; д) $7a, 2b, 5c$.

8.8
$$a = 4i + 2i - 3k$$
, $b = 2i + k$, $c = -12i - 6i + 9k$; a)

$$2a, 3b, c$$
; б) $4a, 3b$; в) $b, -4c$; г) a, c ; д) $2a, 3b, -4c$.

8.9
$$a = -i + 5k$$
, $b = -3i + 2j + 2k$, $c = -2i - 4j + k$; a)

$$3a, -4b, 2c$$
; б) $7a, -3c$; в) $2b, 3a$; г) b, c ; д) $7a, 2b, -3c$.

8.10
$$a = 6i - 4j + 6k$$
, $b = 9i - 6j + 9k$, $c = i - 8k$; a)

$$2a, -4b, 3c; 6) 3b, -9c; B) 3a, -5c; \Gamma) a, b; \Pi) 3a, -4b, -9c$$

Даны три силы P, Q, R, приложенные к точке A. Вычислить: а) работу, производимую равнодействующей этих сил, когда точка ее приложения, двигаясь прямолинейно, перемещается в точку B; б) величину момента равнодействующей этих сил относительно точки B.

10.1
$$P = (9, -3, 4)$$
, $Q = (5, 6, -2)$, $R = (-4, -2, 7)$, $A(-5, 4, -2)$, $B(4, 6, -5)$;

10.2
$$P = (5, -2, 3)$$
, $Q = (4, 5, -3)$, $R = (-1, -3, 6)$, $A(7, 1, -5)$, $B(2, -3, -6)$:

10.3
$$P = (3, -5, 4)$$
, $Q = (5, 6, -3)$, $R = (-7, -1, 8)$, $A(-3, 5, 9)$, $B(5, 6, -3)$:

10.4
$$P = (-10,6,5)$$
, $Q = (4,-9,7)$, $R = (5,3,-3)$, $A(4,-5,9)$, $B(4,7,-5)$:

10.5
$$P = (5, -3, 1)$$
, $Q = (4, 2, -6)$, $R = (-5, -3, 7)$, $A(-5, 3, 7)$, $B(3, 8, -5)$:

10.6
$$P = (-5, 8, 4)$$
, $Q = (6, -7, 3)$, $R = (3, 1, -5)$, $A(2, -4, 7)$, $B(0, 7, 4)$:

10.7
$$P = (7, -5, 2)$$
, $Q = (3, 4, -8)$, $R = (-2, -4, 3)$, $A(-3, 2, 0)$, $B(6, 4, -3)$:

10.8
$$P = (3, -4, 2)$$
, $Q = (2, 3, -5)$, $R = (-3, -2, 4)$, $A(5, 3, -7)$, $B(4, -1, -4)$:

10.9
$$P = (4, -2, -5)$$
, $Q = (5, 1, -3)$, $R = (-6, 2, 5)$, $A(-3, 2, -6)$, $B(4, 5, -3)$;

10.10
$$P = (7,3,-4)$$
, $Q = (9,-4,2)$, $R = (-6,1,4)$, $A(-7,2,5)$, $B(4,-2,11)$:

10.11
$$P = (9, -4, 4)$$
, $Q = (-4, 6, -3)$, $R = (3, 4, 2)$, $A(5, -4, 3)$, $B(4, -5, 9)$:

10.12
$$P = (6, -4, 5)$$
, $Q = (-4, 7, 8)$, $R = (5, 1, -3)$, $A(-5, -4, 2)$, $B(7, -3, 6)$:

$$10.13 \ P = (5,5,-6) \ , \ Q = (7,-6,6) \ , \ R = (-4,3,4) \ , \ A(-9,4,7) \ , \\ B(8,-1,7); \\ 10.14 \ P = (7,-6,2) \ , \ Q = (-6,2,-1) \ , \ R = (1,6,4) \ , \ A(3,-6,1) \ , \\ B(6,-2,7); \\ 10.15 \ P = (4,-2,3) \ , \ Q = (-2,5,6) \ , \ R = (7,3,-1) \ , \ A(-3,-2,5) \ , \\ B(9,-5,4); \\ 10.16 \ P = (7,3,-4) \ , \ Q = (3,-2,2) \ , \ R = (-5,4,3) \ , \ A(-5,0,4) \ , \\ B(4,-3,5); \\ 10.17 \ P = (3,-2,4) \ , \ Q = (-4,4,-3) \ , \ R = (3,4,2) \ , \ A(1,-4,3) \ , \\ B(4,0,-2); \\ 10.18 \ P = (2,-1,-3) \ , \ Q = (3,2,-1) \ , \ R = (-4,1,3) \ , \ A(-1,4,-2) \ , \\ B(2,3,-1); \\ 10.19 \ P = (9,-3,4) \ , \ Q = (5,6,-2) \ , \ R = (-4,-2,7) \ , \\ A(-5,4,-2) \ , \ B(4,6,-5) \ ; \\ 10.20 \ P = (5,-2,3) \ , \ Q = (4,5,-3) \ , \ R = (-1,-3,6) \ , \ A(7,1,-5) \ , \\ B(2,-3,-6); \\ 10.21 \ P = (3,-5,4) \ , \ Q = (5,6,-3) \ , \ R = (-7,-1,8) \ , \ A(-3,5,9) \ , \\ B(5,6,-3); \\ 10.22 \ P = (-10,6,5) \ , \ Q = (4,-9,7) \ , \ R = (5,3,-3) \ , \ A(4,-5,9) \ , \\ B(3,8,-5); \\ 10.23 \ P = (5,-3,1) \ , \ Q = (4,2,-6) \ , \ R = (-5,-3,7) \ , \ A(-5,3,7) \ , \\ B(3,8,-5); \\ 10.24 \ P = (-5,8,4) \ , \ Q = (6,-7,3) \ , \ R = (3,1,-5) \ , \ A(2,-4,7) \ , \\ B(0,7,4); \\ 10.25 \ P = (7,-5,2) \ , \ Q = (3,4,-8) \ , \ R = (-2,-4,3) \ , \ A(-3,2,0) \ , \\ B(6,4,-3); \\ 10.26 \ P = (3,-4,2) \ , \ Q = (2,3,-5) \ , \ R = (-3,-2,4) \ , \ A(5,3,-7) \ , \\ B(4,-1,-4) :$$

10.27
$$P = (4, -2, -5)$$
, $Q = (5, 1, -3)$, $R = (-6, 2, 5)$, $A(-3, 2, -6)$, $B(4, 5, -3)$;

10.28
$$P = (7,3,-4)$$
, $Q = (9,-4,2)$, $R = (-6,1,4)$, $A(-7,2,5)$, $B(4,-2,11)$;

10.29
$$P = (9, -4, 4)$$
, $Q = (-4, 6, -3)$, $R = (3, 4, 2)$, $A(5, -4, 3)$, $B(4, -5, 9)$;

10.30
$$P = (6, -4, 5)$$
, $Q = (-4, 7, 8)$, $R = (5, 1, -3)$, $A(-5, -4, 2)$, $B(7, -3, 6)$;

Даны вершины треугольника ABC. Найти: а) уравнение стороны AB; б) уравнение высоты CH; в) уравнение медианы AM; г) точку N пересечения медианы AM и высоты CH; д) уравнение прямой, проходящей через вершину C параллельно стороне AB; е) расстояние от точки C до прямой AB; ж) точку D, симметричную точке C относительно прямой AB; з) уравнение окружности, описанной около треугольника ABC.

- 11.1 A(-2,4), B(3,1), C(10,7).
- 11.2 A(-3,-2), B(14,4), C(6,8).
- 11.3 A(1,7), B(-3,-1), C(11,-3).
- 11.4 A(1,0), B(-1,4), C(9,5).
- 11.5 A(1,-2), B(7,1), C(3,7).
- 11.6 A(-2,-3), B(1,6), C(6,1).
- 11.7 A(-4,2), B(-6,6), C(6,2).
- 11.8 A(4,-3), B(7,3), C(1,10).
- 11.9 A(4,-4), B(8,2), C(3,8).
- 11.10 A(-3,-3), B(5,-7), C(7,7).
- 11.11 A(1,-6), B(3,4), C(-3,3).
- 11.12 A(-4,2), B(8,-6), C(2,6).
- 11.13 A(-5,2), B(0,-4), C(5,7).
- 11.14 A(4,-4), B(6,2), C(-1,8).
- 11.15 A(-3,8), B(-6,2), C(0,-5).
- 11.16 A(6,-9), B(10,-1), C(-4,1).

- 11.17 A(4,1), B(-3,-1), C(7,-3).
- 11.18 A(-4,2), B(6,-4), C(4,10).
- 11.19 A(3,-1), B(11,3), C(-6,2).
- 11.20 A(-7,-2), B(-7,4), C(5,-5).
- 11.21 A(-1,-4), B(9,6), C(-5,4).
- 11.22 A(10,-2), B(4,-5), C(-3,1).
- 11.23 A(-3,-1), B(-4,-5), C(8,1).
- 11.24 A(-2,-6), B(-3,5), C(4,0).
- 11.25 A(-7,-2), B(3,-8), C(-4,6).
- 11.26 A(0,2), B(-7,-4), C(3,2).
- 11.27 A(7,0), B(1,4), C(-8,-4).
- 11.28 A(1,-3), B(0,7), C(-2,4).
- 11.29 A(-5,1), B(8,-2), C(1,4).
- 11.30 A(2,5), B(-3,1), C(0,4).

Даны три силы P, Q, R, приложенные к точке A. Вычислить: а) работу, производимую равнодействующей этих сил, когда точка ее приложения, двигаясь прямолинейно, перемещается в точку B; б) величину момента равнодействующей этих сил относительно точки B.

10.1
$$P = (9, -3, 4)$$
, $Q = (5, 6, -2)$, $R = (-4, -2, 7)$, $A(-5, 4, -2)$, $B(4, 6, -5)$;

10.2
$$P = (5, -2, 3)$$
, $Q = (4, 5, -3)$, $R = (-1, -3, 6)$, $A(7, 1, -5)$, $B(2, -3, -6)$:

10.3
$$P = (3, -5, 4)$$
, $Q = (5, 6, -3)$, $R = (-7, -1, 8)$, $A(-3, 5, 9)$, $B(5, 6, -3)$:

10.4
$$P = (-10,6,5)$$
, $Q = (4,-9,7)$, $R = (5,3,-3)$, $A(4,-5,9)$, $B(4,7,-5)$:

10.5
$$P = (5, -3, 1)$$
, $Q = (4, 2, -6)$, $R = (-5, -3, 7)$, $A(-5, 3, 7)$, $B(3, 8, -5)$:

10.6
$$P = (-5, 8, 4)$$
, $Q = (6, -7, 3)$, $R = (3, 1, -5)$, $A(2, -4, 7)$, $B(0, 7, 4)$:

10.7
$$P = (7, -5, 2)$$
, $Q = (3, 4, -8)$, $R = (-2, -4, 3)$, $A(-3, 2, 0)$, $B(6, 4, -3)$;

10.8
$$P = (3, -4, 2)$$
, $Q = (2, 3, -5)$, $R = (-3, -2, 4)$, $A(5, 3, -7)$, $B(4, -1, -4)$:

10.9
$$P = (4, -2, -5)$$
, $Q = (5, 1, -3)$, $R = (-6, 2, 5)$, $A(-3, 2, -6)$, $B(4, 5, -3)$;

10.10
$$P = (7,3,-4)$$
, $Q = (9,-4,2)$, $R = (-6,1,4)$, $A(-7,2,5)$, $B(4,-2,11)$.

10.11
$$P = (9, -4, 4)$$
, $Q = (-4, 6, -3)$, $R = (3, 4, 2)$, $A(5, -4, 3)$, $B(4, -5, 9)$;

10.12 P = (6, -4, 5), O = (-4, 7, 8), R = (5, 1, -3), A(-5, -4, 2),B(7, -3, 6): 10.13 P = (5, 5, -6), Q = (7, -6, 6), R = (-4, 3, 4), A(-9, 4, 7), B(8,-1,7): 10.14 P = (7,-6,2), Q = (-6,2,-1), R = (1,6,4), A(3,-6,1),B(6,-2,7): 10.15 P = (4, -2, 3), Q = (-2, 5, 6), R = (7, 3, -1), A(-3, -2, 5),B(9, -5, 4): 10.16 P = (7, 3, -4), Q = (3, -2, 2), R = (-5, 4, 3), A(-5, 0, 4), B(4,-3,5): 10.17 P = (3, -2, 4), O = (-4, 4, -3), R = (3, 4, 2), A(1, -4, 3),B(4,0,-2): 10.18 P = (2, -1, -3), Q = (3, 2, -1), R = (-4, 1, 3), A(-1, 4, -2)B(2,3,-1); 10.19 Q = (5, 6, -2), R = (-4, -2, 7), P = (9, -3, 4), A(-5,4,-2), B(4,6,-5): 10.20 P = (5, -2, 3), Q = (4, 5, -3), R = (-1, -3, 6), A(7, 1, -5), B(2,-3,-6): 10.21 P = (3, -5, 4), Q = (5, 6, -3), R = (-7, -1, 8), A(-3, 5, 9), B(5,6,-3): 10.22 P = (-10,6,5), Q = (4,-9,7), R = (5,3,-3), A(4,-5,9), B(4,7,-5): 10.23 P = (5, -3, 1), Q = (4, 2, -6), R = (-5, -3, 7), A(-5, 3, 7),B(3,8,-5): 10.24 P = (-5, 8, 4), Q = (6, -7, 3), R = (3, 1, -5), A(2, -4, 7), B(0,7,4): 10.25 P = (7, -5, 2), O = (3, 4, -8), R = (-2, -4, 3), A(-3, 2, 0),B(6,4,-3):

Даны четыре точки A_1 , A_2 , A_3 и A_4 . Составить уравнения: а) плоскости $A_1A_2A_3$; б) прямой A_1A_2 ; в) прямой A_4M , перпендикулярной к плоскости $A_1A_2A_3$; г) прямой A_3N , параллельной прямой A_1A_2 ; д) плоскости, проходящей через точку A_4 , перпендикулярно к прямой A_1A_2 .

Найти: е) синус угла между прямой A_1A_4 и плоскостью $A_1A_2A_3$; ж) косинус угла между координатной плоскостью Oxy и плоскостью $A_1A_2A_3$; з) проекцию точки A_4 на плоскость $A_1A_2A_3$; и) расстояние от точки A_4 до плоскости $A_1A_2A_3$; к) точку K, симметричную точке A_4 относительно плоскости $A_1A_2A_3$; л) расстояние от точки A_4 до прямой A_1A_2 .

- 12.1 $A_1(3,1,4)$, $A_2(-1,6,1)$, $A_3(-1,1,6)$, $A_4(0,4,-1)$.
- 12.2 $A_1(3,-1,2)$, $A_2(-1,0,1)$, $A_3(1,7,3)$, $A_4(8,5,8)$.
- 12.3 $A_1(3,5,4)$, $A_2(5,8,3)$, $A_3(1,2,-2)$, $A_4(-1,0,2)$.
- 12.4 $A_1(2,4,3)$, $A_2(1,1,5)$, $A_3(4,9,3)$, $A_4(3,6,7)$.
- 12.5 $A_1(9,5,5)$, $A_2(-3,7,1)$, $A_3(5,7,8)$, $A_4(6,9,2)$.
- 12.6 $A_1(0,7,1)$, $A_2(2,-1,5)$, $A_3(1,6,3)$, $A_4(3,-9,8)$.
- 12.7 $A_1(5,5,4)$, $A_2(1,-1,4)$, $A_3(3,5,1)$, $A_4(5,8,-1)$.
- 12.8 $A_1(6,1,1)$, $A_2(4,6,6)$, $A_3(4,2,0)$, $A_4(1,2,6)$.
- 12.9 $A_1(7,5,3)$, $A_2(9,4,4)$, $A_3(4,5,7)$, $A_4(7,9,6)$.
- 12.10 $A_1(6,8,2)$, $A_2(5,4,7)$, $A_3(2,4,7)$, $A_4(7,3,7)$.
- $12.11\ A_1(4,2,5)\,,\ A_2(0,7,1)\,,\ A_3(0,2,7)\,,\ A_4(1,5,0)\,.$
- 12.12 $A_1(4,4,10)$, $A_2(7,10,2)$, $A_3(2,8,4)$, $A_4(9,6,9)$.
- $12.13\ A_1(4,6,5)\ ,\ A_2(6,9,4)\ ,\ A_3(2,10,10)\ ,\ A_4(7,5,9)\ .$
- 12.14 $A_1(3,5,4)$, $A_2(8,7,4)$, $A_3(5,10,4)$, $A_4(4,7,8)$.
- 12.15 $A_1(10,9,6)$, $A_2(2,8,2)$, $A_3(9,8,9)$, $A_4(7,10,3)$.
- 12.16 $A_1(1,8,2)$, $A_2(5,2,6)$, $A_3(5,7,4)$, $A_4(4,10,9)$.
- 12.17 $A_1(6,6,5)$, $A_2(4,9,5)$, $A_3(4,6,11)$, $A_4(6,9,3)$.
- 12.18 $A_1(7,2,2)$, $A_2(-5,7,-7)$, $A_3(5,-3,1)$, $A_4(2,3,7)$.

- 12.19 $A_1(8,-6,4)$, $A_2(10,5,-5)$, $A_3(5,6,-8)$, $A_4(8,10,7)$.
- 12.20 $A_1(1,-1,3)$, $A_2(6,5,8)$, $A_3(3,5,8)$, $A_4(8,4,1)$.
- 12.21 $A_1(1,-2,7)$, $A_2(4,2,10)$, $A_3(2,3,5)$, $A_4(5,3,7)$.
- 12.22 $A_1(4,2,10)$, $A_2(1,2,0)$, $A_3(3,5,7)$, $A_4(2,-3,5)$.
- 12.23 $A_1(2,3,5)$, $A_2(5,3,-7)$, $A_3(1,2,7)$, $A_4(4,2,0)$.
- 12.24 $A_1(5,3,7)$, $A_2(-2,3,5)$, $A_3(4,2,10)$, $A_4(1,2,7)$.
- 12.25 $A_1(4,3,5)$, $A_2(1,9,7)$, $A_3(0,2,0)$, $A_4(5,3,10)$.
- 12.26 $A_1(3,2,5)$, $A_2(4,0,6)$, $A_3(2,6,5)$, $A_4(6,4,-1)$.
- 12.27 $A_1(2,1,6)$, $A_2(1,4,9)$, $A_3(2,-5,8)$, $A_4(5,4,2)$.
- 12.28 $A_1(2,1,7)$, $A_2(3,3,6)$, $A_3(2,-3,9)$, $A_4(1,2,5)$.
- 12.29 $A_1(2,-1,7)$, $A_2(6,3,1)$, $A_3(3,2,8)$, $A_4(2,-3,7)$.
- 12.30 $A_1(0,4,5)$, $A_2(3,-2,1)$, $A_3(4,5,6)$, $A_4(3,3,2)$.

Задание 13

Составить канонические уравнения : а) эллипса; б) гиперболы; в) параболы (A,B — точки, лежащие на кривой, F — фокус, a — большая (действительная) полуось, b — малая (мнимая) полуось, ϵ — эксцентриситет, $y = \pm kx$ — уравнение асимптот гиперболы, D — директриса кривой, 2c — фокусное расстояние).

- 13.1 a) b = 15, F(-10,0); 6) a = 13, $\varepsilon = 14/13$; B) D: x = -4.
- 13.2 a) b = 2, $F(4\sqrt{2},0)$; 6) a = 7, $\varepsilon = \sqrt{85}/7$; B) D: x = 5.
- 13.3 a) A(3,0), $B(2,\sqrt{5}/3)$; 6) k = 3/4, $\varepsilon = 5/4$; B) D: y = -2.
- 13.4 a) $\varepsilon = \sqrt{21}/5$, A(-5,0); 6) $A(\sqrt{80},3)$, $B(4\sqrt{6},3\sqrt{2})$; B) D: y = 1.
- 13.5 а) 2a = 22, $\varepsilon = \sqrt{57}/11$; б) k = 2/3, $2c = 10\sqrt{13}$; в) ось симметрии Ox и A(27,9).
- 13.6 а) $b=\sqrt{15}$, $\varepsilon=\sqrt{10}/25$; б) k=3/4, 2a=16; в) ось симметрии Ox и A(4,-8).
 - 13.7 a) a = 4, F(3,0); 6) $b = 2\sqrt{10}$, F(-11,0); B) D: x = -2.
 - 13.8 a) b = 4, F(9,0); 6) a = 5, $\varepsilon = 7/5$; B) D: x = 6.

13.9 a) $A(0,\sqrt{3})$, $B(\sqrt{4/13,1})$; 6) $k = \sqrt{21}/10$, $\varepsilon = 11/10$; B) D: y = -4.

13.10 a) $\varepsilon = 7/8$, A(8,0); 6) $A(3, -\sqrt{3/5})$, $B(\sqrt{13/5}, 6)$; B) D: y = 4

13.11 а) 2a=24, $\varepsilon=\sqrt{22}/6$; б) $k=\sqrt{2/3},2c=10$; в) ось симметрии Ox и A(-7,-7) .

13.12 a) b=2, $\varepsilon=5\sqrt{29}/29$; б) k=12/13, 2a=26; в) ось симметрии Ox и A(-5,15).

13.13 a) a = 6, F(-4,0); 6) b = 3, F(7,0); B) D: x = -7.

13.14 a) b = 7, F(5,0); 6) a = 11, $\varepsilon = 12/11$; B) D: x = 10.

13.15 a) $A(-\sqrt{17/3},1/3)$, $B(\sqrt{21}/2,1/2)$; 6) k=1/2, $\varepsilon=\sqrt{5}/2$; b) D:y=-1.

13.16 a) $\varepsilon = 3/5$, A(0,8); 6) $A(\sqrt{6},0)$, $B(-2\sqrt{2},1)$; B) D: y = 9.

13.17 а) 2a=22, $\varepsilon=10/11$; б) $k=\sqrt{11}/5$, 2c=12; в) ось симметрии Ox и A(-7,5).

13.18 а) b=5, $\varepsilon=12/13$; б) k=1/3,2a=6; в) ось симметрии Oy и A(-9,6).

13.19 a) a = 9, F(7,0); 6) b = 6, F(12,0); B) D: x = -1/4.

13.20 a) b = 5, F(-10,0); 6) a = 9, $\varepsilon = 4/3$; B) D: x = 12.

13.21 a) A(0,-2), $B(\sqrt{15}/2,1)$; 6) $k = 2\sqrt{10}/9$, $\varepsilon = 11/9$; B) D: y = 5

13.22 a) $\varepsilon = 2/3$, A(-6,0); 6) $A(\sqrt{8},0)$, $B(\sqrt{20}/3,2)$; B) D: y = 1.

13.23 а) 2a = 50, $\varepsilon = 3/5$; б) $k = \sqrt{29}/14$, 2c = 30; в) ось симметрии Oy и A(4,1).

13.24 а) $b=2\sqrt{15},\ \epsilon=7/8\,;\ б)\ k=5/6\,,2a=12\,;$ в) ось симметрии Oy и $A(-2,3\sqrt{2})$.

13.25 a) a = 13, F(-5,0); 6) b = 44, F(-7,0); B) D: x = -3/8.

13.26 a) b = 7, F(13,0); 6) b = 4, F(-11,0); B) D: x = 13.

13.27 a) A(-3,0), $B(1,\sqrt{40}/3)$; б) $k = \sqrt{2/3}$, $\varepsilon = \sqrt{15}/3$; в) D: y = 4

13.28 a) $\varepsilon = 5/6$, $A(0, -\sqrt{11})$; 6) $A(\sqrt{32/3}, 1)$, $B(\sqrt{8}, 0)$; B) D: y = -3.

13.29 а) $2a=30,\ \epsilon=17/15$; б) $k=\sqrt{17}/8,2c=18$; в) ось симметрии Oy и A(4,-10).

13.30 а) $b=2\sqrt{2},\ \epsilon=7/9\ ;$ б) $k=\sqrt{2}/2,2a=12\ ;$ в) ось симметрии Oy и A(-45,15) .

Записать уравнение окружности, проходящей через указанные точки и имеющей центр в точке A .

- 14.1 Вершины гиперболы $12x^2 13y^2 = 156$, A(0, -2).
- 14.2 Вершины гиперболы $4x^2 9y^2 = 36$, A(0,4).
- 14.3 Фокусы гиперболы $24x^2 25y^2 = 600$, A(0, -8).
- 14.4 O(0,0), A вершина параболы $y^2 = 3(x-4)$.
- 14.5 Фокусы эллипса $9x^2 + 25y^2 = 1$, A(0,6).

на.

- 14.6 Левый фокус гиперболы $3x^2 4y^2 = 12$, A(0, -3).
- 14.7 Фокусы эллипса $3x^2 + 4y^2 = 12$, A его верхняя верши-
- 14.8 Вершину гиперболы $x^2 16y^2 = 64$, A(0, -2).
- 14.9 Фокусы гиперболы $4x^2 5y^2 = 80$, A(0, -4).
- 14.10 O(0,0), A вершина параболы $y^2 = -(x+5)/2$.
- 14.11 Правый фокус эллипса $33x^2 + 49y^2 = 1617$, A(1,7).
- 14.12 Левый фокус гиперболы $3x^2 5y^2 = 30$, A(0,6).
- 14.13 Фокусы эллипса $16x^2 + 41y^2 = 656$, A его нижняя вершина.
 - 14.14 Вершину гиперболы $2x^2 9y^2 = 18$, A(0,4).
 - 14.15 Фокусы гиперболы $5x^2 11y^2 = 55$, A(0,5).
 - 14.16 B(1,4), A вершина параболы $y^2 = (x-4)/3$.
 - 14.17 Левый фокус эллипса $3x^2 + 7y^2 = 21$, A(-1, -3).
 - 14.18 Левую вершину гиперболы $5x^2 9y^2 = 45$, A(0, -6).
- 14.19 Фокусы эллипса $24x^2 25y^2 = 600$, A его верхняя вершина.
 - 14.20 Правую вершину гиперболы $3x^2 16y^2 = 48$, A(1,3).
 - 14.21 Левый фокус гиперболы $7x^2 9y^2 = 63$, A(-1, -2).
 - 14.22 B(2,-5), A вершина параболы $x^2 = -2(y+1)$.
 - 14.23 Правый фокус эллипса $x^2 + 4y^2 = 12$, A(2, -7).

- 14.24 Правую вершину гиперболы $40x^2 81y^2 = 3240$, A(-2,5).
- 14.25 Фокусы эллипса $x^2 + 10y^2 = 90$, A его нижняя вершина.
- 14.26 Правую вершину гиперболы $3x^2 25y^2 = 75$, A(-5, -2).
 - 14.27 Фокусы гиперболы $4x^2 5y^2 = 20$, A(0, -6).
 - 14.28 B(3,4), A вершина параболы $y^2 = (x+7)/4$.
 - 14.29 Левый фокус эллипса $13x^2 + 49y^2 = 837$, A(1,8).
 - 14.30 Правый фокус гиперболы $57x^2 64y^2 = 3648$, A(2,8).

Задание 15

Уравнения поверхностей второго порядка привести к каноническому виду и сделать рисунки этих поверхностей.

15.1 a)
$$4x^2 - y^2 - 16z^2 + 16 = 0$$
;

6)
$$x^2 + y^2 - z^2 + 2z - 1 = 0$$
.

15.2 a)
$$3x^2 + y^2 + 9z^2 - 9 = 0$$
:

6)
$$9x^2 - 36y^2 + 4z^2 - 18x + 144y - 8z - 131 = 0$$
.

15.3 a)
$$-5x^2 + 10y^2 - z^2 + 20 = 0$$
;

6)
$$x^2 + y^2 + z^2 - 12x - 6y + 37 = 0$$
.

15.4 a)
$$4x^2 - 8y^2 + z^2 + 24 = 0$$
:

6)
$$x^2 + y^2 + z^2 - 2x + 6y - 8z + 26 = 0$$
.

15.5 a)
$$x^2 - 6y^2 + z^2 = 0$$
;

6)
$$x^2 + y^2 + z^2 + 4y - 10z + 10 = 0$$
.

15.6 a)
$$8 - x^2 - 4y^2 = z$$
;

6)
$$3x^2 + 4y^2 + 6z^2 - 6x + 16y - 36z + 49 = 0$$
.

15.7 a)
$$4x^2 + 6y^2 - 24z^2 = 96$$
;

6)
$$2x^2 + y^2 - z^2 + 16x - 2y + 4z + 17 = 0$$
.

15.8 a)
$$4x^2 - 5y^2 - 5z^2 + 40 = 0$$
:

6)
$$x^2 + 2y^2 - 4z^2 - 6x + 4y + 32z - 49 = 0$$
.

15.9 a)
$$x^2 = 8(y^2 + z^2)$$
;

6)
$$2x^2 + 3y^2 + 6x - 18y - 12z + 47 = 0$$
.

15.10 a)
$$2v^2 + 5z^2 = 10x$$
;

6)
$$2x^2 - 3y^2 + 12x + 12y - 12z - 42 = 0$$
.

15.11 a)
$$x^2 - 7y^2 - 14z^2 - 21 = 0$$
;

6)
$$x^2 + y^2 - 2x - 4y + 1 = 0$$
.

15.12 a)
$$6x^2 - v^2 + 3z^2 - 12 = 0$$
:

6)
$$x^2 + y^2 - 4x - 2y - z + 5 = 0$$
.

15.13 a)
$$-16x^2 + y^2 + 4z^2 - 32 = 0$$
:

6)
$$v^2 + z^2 - 2v + 4z - 4 = 0$$
.

15.14 a)
$$x^2 + 3z = 0$$
;

$$6) x^2 + y^2 - 8x = 0.$$

15.15 a)
$$3x^2 + y^2 - 3z = 0$$
;

6)
$$x^2 + 12y^2 - z^2 - 2z - 3 = 0$$
.

15.16 a)
$$6x^2 = y^2 + 2z^2$$
;

6)
$$x^2 + y^2 - z^2 + 2z - 1 = 0$$
.

15.17 a)
$$x^2 - 2y = -z^2$$
;

6)
$$9x^2 - 36y^2 + 4z^2 - 18x + 144y - 8z - 131 = 0$$
.

15.18 a)
$$4x^2 - 6y^2 + 3z^2 = 0$$
:

6)
$$x^2 + y^2 + z^2 - 12x - 6y + 37 = 0$$
.

15.19 a)
$$z = 4 - x^2 - y^2$$
;

6)
$$x^2 + y^2 + z^2 - 2x + 6y - 8z + 26 = 0$$
.

15.20 a)
$$4x^2 + 5y^2 - 10z^2 = 60$$
;

6)
$$x^2 + y^2 + z^2 + 4y - 10z + 10 = 0$$
.

15.21 a)
$$15y = 10x^2 + 6y^2$$
;

6)
$$3x^2 + 4y^2 + 6z^2 - 6x + 16y - 36z + 49 = 0$$
.

15.22 a)
$$3x^2 - 4y^2 - 2z^2 + 12 = 0$$
;

6)
$$2x^2 + y^2 - z^2 + 16x - 2y + 4z + 17 = 0$$
.

15.23 a)
$$4x^2 + 3y^2 = 12x$$
;

6)
$$x^2 + 2y^2 - 4z^2 - 6x + 4y + 32z - 49 = 0$$
.

15.24 a)
$$8x^2 - v^2 - 2z^2 - 32 = 0$$
:

6)
$$2x^2 + 3y^2 + 6x - 18y - 12z + 47 = 0$$
.

15.25 a)
$$3x^2 - 7y^2 - 2z^2 = 42$$
;

6)
$$2x^2 - 3y^2 + 12x + 12y - 12z - 42 = 0$$
.

15.26 a)
$$3x^2 = y - 4z^2$$
;

6)
$$x^2 + y^2 - 2x - 4y + 1 = 0$$
.

15.27 a)
$$7x^2 + 2y^2 + 6z^2 - 42 = 0$$
;

6)
$$x^2 + y^2 - 4x - 2y - z + 5 = 0$$
.

15.28 a)
$$-4x^2 + 12y^2 - 3z^2 + 24 = 0$$
;

6)
$$y^2 + z^2 - 2y + 4z - 4 = 0$$
.

15.29 a)
$$-4x^2 = z^2 - 2y$$
;

$$6) x^2 + y^2 - 8x = 0.$$

15.30 a)
$$27x^2 - 63y^2 + 21z^2 = 0$$
;

6)
$$x^2 + 12y^2 - z^2 - 2z - 3 = 0$$
.

Найти все значения корня и изобразить соответствующие им точки на комплексной плоскости.

16. 1 $\sqrt[4]{-81i}$.	$16.2 \sqrt[4]{-81}$.	$16.3 \sqrt[3]{-27}$.
$16.4 \sqrt[3]{27i}$.	$16.5 \sqrt[4]{81}$.	$16.6 \sqrt[4]{-256}$.
$16.7 \sqrt[3]{-1}$.	$16.8 \sqrt[3]{-i}$.	$16.9 \sqrt[4]{-16}$.
$16.10 \sqrt[3]{-i/27}$.	$16.11 \sqrt[3]{8}$.	$16.12 \sqrt[3]{8i}$.
$16.13 \sqrt[4]{16}$.	$16.14 \sqrt[3]{-125i}$.	$16.15 \sqrt[3]{-8}$.
$16.16 \sqrt[3]{-8i}$.	$16.17 \sqrt[4]{-1/16}$.	$16.18 \sqrt[3]{125}$.
$16.19 \sqrt[3]{1/8}$.	$16.20 \sqrt[3]{i/8}$.	$16.21 \sqrt[4]{1/16}$.
$16.22 \sqrt[3]{125i}$.	$16.23 \sqrt[3]{-1/8}$.	$16.24 \sqrt[3]{1/64}$.
$16.25 \sqrt[3]{-125}$.	$16.26 \sqrt[3]{27}$.	$16.27 \sqrt[4]{1/256}$
$16.28 \sqrt[3]{-27i}$.	$16.29 \sqrt[3]{i/27}$.	$16.30 \sqrt[4]{256}$.

Задание 17

Проверить, является ли данное множество матриц кольцом, коммутативным кольцом, полем относительно обычных операций сложения и умножения матриц. В кольце с единицей, не являющимся полем, найти обратимые элементы. В кольце с делителями нуля найти делители нуля.

$$17.1 \left\{ \begin{pmatrix} a & 3b \\ b & a \end{pmatrix} : a, b \in Z \right\}.$$

$$17.2 \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in Q \right\}.$$

$$17.3 \left\{ \begin{pmatrix} a & -2b \\ b & a \end{pmatrix} : a, b \in R \right\}.$$

$$17.4 \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in Z \right\}.$$

$$17.5 \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : a, b \in Q \right\}.$$

$$17.6 \left\{ \begin{pmatrix} a & 3b \\ -b & a \end{pmatrix} : a, b \in Z \right\}.$$

$$17.7 \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in R \right\}.$$

$$17.8 \left\{ \begin{pmatrix} a & -3b \\ b & a \end{pmatrix} : a, b \in Q \right\}.$$

$$17.9 \left\{ \begin{pmatrix} a & -b \\ 2b & a \end{pmatrix} : a, b \in R \right\}. \qquad 17.10 \left\{ \begin{pmatrix} a & 2b \\ -b & a \end{pmatrix} : a, b \in R \right\}.$$

$$17.11 \left\{ \begin{pmatrix} a & 3b \\ b & a \end{pmatrix} : a, b \in Q \right\}. \qquad 17.12 \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in Z \right\}.$$

$$17.13 \left\{ \begin{pmatrix} a & -2b \\ b & a \end{pmatrix} : a, b \in Z \right\}. \qquad 17.14 \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in R \right\}.$$

$$17.15 \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : a, b \in Q \right\}. \qquad 17.16 \left\{ \begin{pmatrix} a & 3b \\ -b & a \end{pmatrix} : a, b \in Q \right\}.$$

$$17.17 \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in Q \right\}. \qquad 17.18 \left\{ \begin{pmatrix} a & -3b \\ -b & a \end{pmatrix} : a, b \in Q \right\}.$$

$$17.21 \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in Z \right\}. \qquad 17.22 \left\{ \begin{pmatrix} a & 2b \\ -b & a \end{pmatrix} : a, b \in Q \right\}.$$

$$17.23 \left\{ \begin{pmatrix} a & -2b \\ b & a \end{pmatrix} : a, b \in Q \right\}. \qquad 17.24 \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in Q \right\}.$$

$$17.25 \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : a, b \in Z \right\}. \qquad 17.26 \left\{ \begin{pmatrix} a & 3b \\ -b & a \end{pmatrix} : a, b \in R \right\}.$$

$$17.27 \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in Z \right\}. \qquad 17.28 \left\{ \begin{pmatrix} a & -3b \\ -b & a \end{pmatrix} : a, b \in R \right\}.$$

$$17.29 \left\{ \begin{pmatrix} a & -b \\ 2b & a \end{pmatrix} : a, b \in Q \right\}. \qquad 17.30 \left\{ \begin{pmatrix} a & 2b \\ -b & a \end{pmatrix} : a, b \in Z \right\}.$$

Найти в кольце R[x] наибольший общий делитель многочленов.

18.1
$$x^4 + x^3 - 3x^2 - 4x - 1$$
 и $x^3 + x^2 - x - 1$.

$$18.2 x^6 + 2x^4 - 4x^3 - 3x^2 + 8x - 5$$
 и $x^5 + x^2 - x + 1$.

18.3
$$x^5 + 3x^2 - 2x + 2$$
 и $x^6 + x^5 + x^4 - 3x^2 + 2x - 6$.

18.4
$$x^4 + x^3 - 4x + 5$$
 и $2x^3 - x^2 - 2x + 2$.

18.5
$$x^5 + x^4 - x^3 - 2x - 1$$
 и $3x^4 + 2x^3 + x^2 + 2x - 2$.

18.6
$$x^6 - 7x^4 + 8x^3 - 7x + 7$$
 и $3x^5 - 7x^3 + 3x^2 - 7$.

18.7
$$x^5 - 2x^4 + x^3 + 7x^2 - 12x + 10$$
 и

$$3x^4 - 6x^3 + 5x^2 + 2x - 2$$
.

18.8
$$x^5 + 3x^4 - 12x^3 - 52x^2 - 52x - 12$$
 и

$$x^4 + 3x^3 - 6x^2 - 22x - 12$$
.

18.9
$$x^5 + x^4 - x^3 - 3x^2 - 3x - 1$$
 $x^4 - 2x^3 - x^2 - 2x + 1$.

18.10
$$x^4 - 4x^3 + 1$$
 и $x^3 - 3x^2 + 1$.

18.11
$$x^4 - 10x^2 + 1$$
 и $x^4 - 4\sqrt{2}x^3 + 6x^2 + 4\sqrt{2}x + 1$.

$$18.12 \ x^4 + 2x^3 - x^2 - 4x - 2 \ \text{M} \ x^4 + x^3 - x^2 - 2x - 2$$
.

18.13
$$x^5 - 5x^4 - 2x^3 + 12x^2 - 2x + 12$$
 и $x^3 - 5x^2 - 3x + 17$

18.14
$$x^4 + 7x^3 + 19x^2 + 23x + 10$$

$$x^4 + 7x^3 + 18x^2 + 22x + 12$$
.

18.15
$$x^5 + 2x^4 + x^3 + 7x^2 + x + 6 \text{ M } x^4 + 4x^3 + 4x^2 + 3x + 14$$
.

18.16
$$x^3 + x^2 - x - 1$$
 M $x^4 + x^3 - 3x^2 - 4x - 1$.

18.17
$$x^5 + x^2 - x + 1$$
 M $x^6 + 2x^4 - 4x^3 - 3x^2 + 8x - 5$.

18.18
$$x^6 + x^5 + x^4 - 3x^2 + 2x - 6$$
 и $x^5 + 3x^2 - 2x + 2$.

$$18.19 \ 2x^3 - x^2 - 2x + 2 \ \text{M} \ x^4 + x^3 - 4x + 5$$
.

$$18.20 \ 3x^4 + 2x^3 + x^2 + 2x - 2 \ \text{M} \ x^5 + x^4 - x^3 - 2x - 1.$$

$$18.21 \ 3x^5 - 7x^3 + 3x^2 - 7 \$$
и $x^6 - 7x^4 + 8x^3 - 7x + 7$.

$$3x^4 - 6x^3 + 5x^2 + 2x - 2$$

$$x^5 - 2x^4 + x^3 + 7x^2 - 12x + 10$$
.

18.23
$$x^4 + 3x^3 - 6x^2 - 22x - 12$$
 и

$$x^5 + 3x^4 - 12x^3 - 52x^2 - 52x - 12$$
.

18.24
$$x^4 - 2x^3 - x^2 - 2x + 1$$
 и $x^5 + x^4 - x^3 - 3x^2 - 3x - 1$.

$$18.25 x^3 - 3x^2 + 1 и x^4 - 4x^3 + 1.$$

$$18.26 \ x^4 - 4\sqrt{2}x^3 + 6x^2 + 4\sqrt{2}x + 1 \ \text{M} \ x^4 - 10x^2 + 1.$$

18.27
$$x^4 + x^3 - x^2 - 2x - 2$$
 M $x^4 + 2x^3 - x^2 - 4x - 2$.

$$18.28 \ x^3 - 5x^2 - 3x + 17 \ \text{M} \ x^5 - 5x^4 - 2x^3 + 12x^2 - 2x + 12$$

18.29
$$x^4 + 7x^3 + 18x^2 + 22x + 12$$
 и

$$x^4 + 7x^3 + 19x^2 + 23x + 10$$
.

18.30
$$x^4 + 4x^3 + 4x^2 + 3x + 14$$
 M $x^5 + 2x^4 + x^3 + 7x^2 + x + 6$.

Задание 19

Найти рациональные корни многочлена.

19.1
$$x^4 - 2x^3 - 8x^2 + 13x - 24$$
.

$$19.2 \ x^5 - 7x^3 - 12x^2 + 6x + 36$$
.

$$19.3 6x^4 + 19x^3 - 7x^2 - 26x + 12.$$

$$19.4 \ x^5 - 2x^4 - 4x^3 + 4x^2 - 5x + 6$$
.

19.5
$$3x^4 - 2x^3 + 4x^2 - x + 2$$
.

$$19.6 \ 4x^4 - 7x^2 - 5x - 1$$
.

19.7
$$3x^4 + 5x^3 + x^2 + x - 2$$
.

$$19.8 \ 3x^6 - 5x^4 - 10x^3 - 8x^2 + x - 2$$
.

$$19.9 \ 24x^5 + 10x^4 - x^3 - 19x^2 - 5x + 6$$

$$19.10 \ 2x^3 + 3x^2 + 6x - 4.$$

19.11
$$x^4 + 2x^3 - 13x^2 - 38x - 24$$
.

$$19.12 \ x^4 + 4x^3 - 2x^2 - 12x + 9$$
.

19.13
$$x^5 + x^4 - 6x^3 - 14x^2 - 11x - 3$$
.

$$19.14 \ x^6 - 6x^5 + 11x^4 - x^3 - 18x^2 + 20x - 8$$

19.15
$$3x^3 + 5x^2 + 5x + 2$$
.

19.16
$$x^4 - 2x^3 - 8x^2 + 13x - 24$$
.

$$19.17 \ x^5 - 7x^3 - 12x^2 + 6x + 36$$

$$19.18 6x^4 + 19x^3 - 7x^2 - 26x + 12.$$

19.19
$$x^5 - 2x^4 - 4x^3 + 4x^2 - 5x + 6$$
.

$$19.20 \ 3x^4 - 2x^3 + 4x^2 - x + 2.$$

19.21
$$4x^4 - 7x^2 - 5x - 1$$
.

$$19.22 \ 3x^4 + 5x^3 + x^2 + x - 2$$
.

$$19.23 \ 3x^6 - 5x^4 - 10x^3 - 8x^2 + x - 2.$$

$$19.24 \ 24x^5 + 10x^4 - x^3 - 19x^2 - 5x + 6$$

$$19.25 \ 2x^3 + 3x^2 + 6x - 4$$
.

$$19.26 \ x^4 + 2x^3 - 13x^2 - 38x - 24.$$

$$19.27 \ x^4 + 4x^3 - 2x^2 - 12x + 9$$
.

19.28
$$x^5 + x^4 - 6x^3 - 14x^2 - 11x - 3$$
.

$$19.29 \ x^6 - 6x^5 + 11x^4 - x^3 - 18x^2 + 20x - 8.$$

$$19.30 \ 3x^3 + 5x^2 + 5x + 2$$
.

Для линейного оператора $f: E^3 \to E^3$, переводящего вектор x в вектор y=f(x), в ортонормированном базисе i,j,k найти: а) матрицу; б) область значений и ядро; в) собственные значения и собственные векторы. Является ли оператор f самосопряженным?

- $20.1\ f(x)$ ортогональная проекция вектора x на плоскость Oyz .
- $20.2\ f(x)$ ортогональная проекция вектора x на плоскость Oxy .
- $20.3 \ f(x)$ ортогональная проекция вектора x на плоскость Oxz .
- $20.4\ f(x)$ вектор, симметричный вектору x относительно плоскости Oyz .
- $20.5\ f(x)$ вектор, симметричный вектору x относительно плоскости Oxy .
- $20.6\ f(x)$ вектор, симметричный вектору x относительно плоскости Oxz .
 - 20.7 f(x) ортогональная проекция вектора x на ось Oy.
 - $20.8 \, f(x)$ ортогональная проекция вектора $\, x \,$ на ось $\, Ox \,$.
 - 20.9 f(x) ортогональная проекция вектора x на ось Oz.
- $20.10\ f(x)$ вектор, симметричный вектору x относительно начала координат.
 - 20.11 f(x) = (x a)a, если a = -i.
 - $20.12 \ f(x) = x \times a$, если a = 2i.
 - 20.13 f(x) = (a x)a, если a = -3i.
 - 20.14 $f(x) = a \times x$, если a = j.
 - 20.15 f(x) = a(x a), если a = -2j.
 - 20.16 f(x) = (x a)a, если a = 3j.
 - $20.17 \ f(x) = x \times a$, если a = -k.
 - 20.18 f(x) = (ax)a, если a = 2k.

20.19
$$f(x) = a \times x$$
, если $a = -3k$.

20.20
$$f(x) = a(x a)$$
, если $a = 4i$.

20.21
$$f(x) = (x a)a$$
, если $a = -5j$.

$$20.22 \ f(x) = x \times a$$
, если $a = 6k$.

20.23,
$$f(x) = (a x)a$$
, если $a = -4i$.

20.24
$$f(x) = a \times x$$
, если $a = -6j$.

20.25
$$f(x) = a(x a)$$
, если $a = 5k$.

20.26
$$f(x) = (x a)a$$
, если $a = -2i$.

20.27
$$f(x) = x \times a$$
, если $a = -3j$.

20.28
$$f(x) = (a x)a$$
, если $a = k$.

$$20.29 \ f(x) = a \times x$$
, если $a = 3i$.

20.30
$$f(x) = a(x a)$$
, если $a = 2j$.

Задание 21

В евклидовом пространстве $C_{[0,1]}$, где скалярное произведение функций f(x) и g(x) представляет собой интеграл $\int\limits_0^1 f(x)g(x)dx$, найти угол между векторами f(x)=1 и g(x).

21.1
$$g(x) = \sin x + 1$$
. 21.2 $g(x) = e^x - 2$.

21.3
$$g(x) = \sqrt{x} + 3$$
. 21.4 $g(x) = \cos x - 1$.

21.5
$$g(x) = e^{-2x} + 4$$
. 21.6 $g(x) = 1 - \sin 2x$.

21.7
$$g(x) = 2 - \sqrt{x}$$
. 21.8 $g(x) = 3 - \cos 2x$.

21.9
$$g(x) = 1 - e^{-x}$$
. 21.10 $g(x) = 3 + e^{2x}$.

21.11
$$g(x) = 1 - 2x$$
. 21.12 $g(x) = 3x + 1$.

21.13
$$g(x) = 1 - 2\sqrt{x}$$
. 21.14 $g(x) = 2e^x + 3$.

21.15
$$g(x) = \sin 3x + 1$$
. 21.16 $g(x) = 1 - \cos 3x$.

21.17
$$g(x) = x^{\frac{3}{2}}$$
. 21.18 $g(x) = 3 - x$.

21.19
$$g(x) = x^2$$
. 21.20 $g(x) = x^3$.

21.21
$$g(x) = 3x - 1$$
. 21.22 $g(x) = 2 - e^{-2x}$.

21.23 $g(x) = 3 - \sin 3x$. 21.24 $g(x) = \cos 3x + 2$.

21.25 g(x) = 4x + 3. 21.26 g(x) = 1 - 2x.

21.27 $g(x) = \sqrt{x} - 4$. 21.28 $g(x) = \sin x - \cos x$.

21.29 g(x) = 2 + 3x. 21.30 $g(x) = \sin 2x + \cos 2x$.

Найти линейное преобразование, приводящее квадратичную форму к каноническому виду, и записать эту форму в каноническом виде. Является ли данная квадратичная форма знакоопределенной?

22.1
$$6x_1^2 + 5x_2^2 + 7x_3^2 - 4x_1x_2 + 4x_1x_3$$
.

$$22.2\ 11x_1^2 + 5x_2^2 + 2x_3^2 + 16x_1x_2 + 4x_1x_3 - 20x_2x_3$$
.

22.3
$$x_1^2 + x_2^2 + 5x_3^2 - 6x_1x_2 - 2x_1x_3 + 2x_2x_3$$
.

$$22.4 \ x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

$$22.5\ 17x_1^2 + 14x_2^2 + 14x_3^2 - 4x_1x_2 - 4x_1x_3 - 8x_2x_3.$$

22.6
$$x_1^2 - 5x_2^2 + x_3^2 + 4x_1x_2 + 2x_1x_3 + 4x_2x_3$$
.

$$22.7\ 8x_1^2 - 7x_2^2 + 8x_3^2 + 8x_1x_2 - 2x_1x_3 + 8x_2x_3.$$

22.8
$$2x_1^2 + 3x_2^2 + 4x_3^2 - 2x_1x_2 + 4x_1x_3 - 3x_2x_3$$
.

$$22.9\ 3x_1^2-2x_2^2+2x_3^2+4x_1x_2-3x_1x_3-x_2x_3\,.$$

$$22.10 \ 3x_1^2 + 6x_2^2 + 3x_3^2 - 4x_1x_2 - 8x_1x_3 - 4x_2x_3.$$

$$22.11 \ x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_2x_3$$
.

22.12
$$3x_1^2 + 4x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_2x_3$$
.

22.13
$$2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$
.

22.14
$$x_1^2 - 2x_2^2 - 2x_3^2 - 4x_1x_2 + 4x_1x_3 + 8x_2x_3$$
.

$$22.15 \ 5x_1^2 + 6x_2^2 + 4x_3^2 - 4x_1x_2 - x_1x_3$$
.

$$22.16 6x_1^2 + 5x_2^2 + 7x_3^2 - 4x_1x_2 + 4x_1x_3$$
.

$$22.17 \ 11x_1^2 + 5x_2^2 + 2x_3^2 + 16x_1x_2 + 4x_1x_3 - 20x_2x_3$$

22.18
$$x_1^2 + x_2^2 + 5x_3^2 - 6x_1x_2 - 2x_1x_3 + 2x_2x_3$$
.

22.19
$$x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

$$22.20\ 17x_1^2 + 14x_2^2 + 14x_3^2 - 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

22.21
$$x_1^2 - 5x_2^2 + x_3^2 + 4x_1x_2 + 2x_1x_3 + 4x_2x_3$$
.

$$22.22 8x_1^2 - 7x_2^2 + 8x_3^2 + 8x_1x_2 - 2x_1x_3 + 8x_2x_3$$
.

$$22.23\ 2x_1^2 + 3x_2^2 + 4x_3^2 - 2x_1x_2 + 4x_1x_3 - 3x_2x_3\,.$$

$$22.24 \ 3x_1^2 - 2x_2^2 + 2x_3^2 + 4x_1x_2 - 3x_1x_3 - x_2x_3$$
.

$$22.25 \ 3x_1^2 + 6x_2^2 + 3x_3^2 - 4x_1x_2 - 8x_1x_3 - 4x_2x_3$$

22.26
$$x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_2x_3$$
.

$$22.27 \ 3x_1^2 + 4x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_2x_3$$
.

$$22.28 \ 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

22.29
$$x_1^2 - 2x_2^2 - 2x_3^2 - 4x_1x_2 + 4x_1x_3 + 8x_2x_3$$
.

$$22.30 \ 5x_1^2 + 6x_2^2 + 4x_3^2 - 4x_1x_2 - x_1x_3$$
.

Задание 23

Уравнение плоской фигуры второго порядка привести к каноническому виду и сделать рисунок этой фигуры в исходной системе координат.

$$23.1 \ 3x^2 - 2xy + 3y^2 - 4x + 12y + 10 = 0$$
.

23.2
$$x^2 + 6xy + y^2 + 4\sqrt{2}x + 8\sqrt{2}y - 1 = 0$$
.

23.3
$$x^2 + 4xy + y^2 + 3\sqrt{2}x + 3\sqrt{2}y + 6 = 0$$
.

$$23.4 \ 5x^2 + 6xy + 5y^2 + 2\sqrt{2}x - 2\sqrt{2}y - 30 = 0.$$

23.5
$$x^2 - 2xy + y^2 + 12\sqrt{2}y + 18 = 0$$
.

$$23.6 7x^2 - 50xy + 7y^2 + 32\sqrt{2}x - 32\sqrt{2}y + 320 = 0.$$

$$23.7 \ 25x^2 + 10xy + y^2 + 7 = 0$$
.

$$23.8 x^2 - 4xy + 4y^2 + 4x - 3y - 7 = 0$$
.

$$23.9 4x^2 - 4xy + y^2 - 2x - 14y + 7 = 0$$
.

$$23.10 7x^2 + 48xy - 4y^2 - 10x + 10y = 0.$$

$$23.11 9x^2 + 24xy + 16y^2 - 400 = 0.$$

$$23.12 \ 5x^2 + 4xy + 8y^2 + 36 = 0$$
.

$$23.13 6xy - 8y^2 - 18 = 0$$

$$23.14 \ 17x^2 - 30xy + 17y^2 - 6\sqrt{2}x - 6\sqrt{2}y - 14 = 0$$

$$23.15 \ 3x^2 - 10xy + 3y^2 - 2\sqrt{2}x - 2\sqrt{2}y + 30 = 0$$

$$23.16 \ 11x^2 - 20xy - 4y^2 - 20x - 8y + 140 = 0$$
.

$$23.17 \ 11x^2 + 24xy + 4y^2 + 42x + 64y + 51 = 0$$
.

$$23.18 x^2 + xy + y^2 - 3x - 6y + 3 = 0$$
.

23.19
$$4x^2 - 4xy + y^2 + 4x - 2y + 1 = 0$$
.

$$23.20 \ 5x^2 + 4xy + 5y^2 - 18x - 18y + 9 = 0$$
.

$$23.21 \ 25x^2 - 14xy + 25y^2 + 64x - 64y - 224 = 0$$
.

$$23.22\ 19x^2 + 6xy + 11y^2 + 38x + 6y + 29 = 0$$
.

$$23.23 \ 7x^2 + 16xy - 23y^2 - 14x - 16y - 218 = 0$$
.

$$23.24 \ 5x^2 + 12xy - 22x - 12y - 19 = 0$$
.

$$23.25 \ 3x^2 + 10xy + 3y^2 - 2x - 14y - 13 = 0$$
.

23.26
$$x^2 + 4xy + 4y^2 - 4x + 2y - 5 = 0$$
.

$$23.27 9x^2 + 12xy + 4y^2 - 24x + 16y + 3 = 0$$
.

$$23.28 9x^2 + 24xy + 16y^2 - 40x + 30y = 0.$$

$$23.29 9x^2 - 24xy + 16y^2 - 20x + 110y - 50 = 0$$
.

$$23.30 x^2 - 2xy + y^2 + 2x - 2y + 4 = 0$$
.

Найти жорданову форму данной матрицы и матрицу T , приводящую ее к этой форме.

$$24.17 \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}. \qquad 24.18 \begin{pmatrix} -4 & 2 & 10 \\ -4 & 3 & 7 \\ -3 & 1 & 7 \end{pmatrix}.$$

$$24.19 \begin{pmatrix} 7 & -12 & -2 \\ 3 & -4 & 0 \\ -2 & 0 & -2 \end{pmatrix}. \qquad 24.20 \begin{pmatrix} -2 & 8 & 6 \\ -4 & 10 & 6 \\ 4 & -8 & -4 \end{pmatrix}.$$

$$24.21 \begin{pmatrix} 0 & 3 & 3 \\ -1 & 8 & 6 \\ 2 & -14 & -10 \end{pmatrix}. \qquad 24.22 \begin{pmatrix} -1 & 1 & 1 \\ -5 & 21 & 17 \\ 6 & -26 & -21 \end{pmatrix}.$$

$$24.23 \begin{pmatrix} 8 & 30 & -14 \\ -5 & -19 & 9 \\ -6 & -23 & 11 \end{pmatrix}. \qquad 24.24 \begin{pmatrix} 4 & 5 & -2 \\ -2 & -2 & 1 \\ -1 & -1 & 1 \end{pmatrix}.$$

$$24.25 \begin{pmatrix} 9 & 22 & -6 \\ -1 & -4 & 1 \\ 8 & 16 & -5 \end{pmatrix}. \qquad 24.26 \begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix}.$$

$$24.27 \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}. \qquad 24.28 \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & -1 & 2 \end{pmatrix}.$$

$$24.29 \begin{pmatrix} 2 & 6 & -15 \\ 1 & 1 & -5 \\ 1 & 2 & -6 \end{pmatrix}. \qquad 24.30 \begin{pmatrix} 9 & -6 & -2 \\ 18 & -12 & -3 \\ 18 & -9 & -6 \end{pmatrix}.$$

Ответы

Тема 1

1. a)
$$\begin{pmatrix} 7 & 6 & 7 \\ -3 & 11 & 21 \\ 12 & -11 & -1 \end{pmatrix}$$
; 6) $\begin{pmatrix} 1 & -2 & -4 \\ 11 & -2 & 3 \\ 1 & 22 & 2 \end{pmatrix}$. 2. a) $\begin{pmatrix} 3 & -13 \\ -2 & 0 \\ -3 & -1 \end{pmatrix}$;

6)
$$\begin{pmatrix} -2 & 1/3 \\ 1/3 & -4 \end{pmatrix}$$
. **3.** a) $\begin{pmatrix} 2 & -1 & 6 \end{pmatrix}$; 6) $\begin{pmatrix} 1 & -2 \\ -3 & 4 \\ 5 & 7 \end{pmatrix}$; B) $\begin{pmatrix} 2 & 4 & 6 \\ -5 & -1 & 8 \\ 6 & 0 & 3 \end{pmatrix}$.

4. a)
$$\begin{pmatrix} -4 & -4 & 7 \\ 10 & 2 & -3 \end{pmatrix}$$
. 6) $\begin{pmatrix} 8 & 1 & 7 \\ -6 & 3 & -1 \end{pmatrix}$; **5.** $\begin{pmatrix} 4 & 2 \\ -1/2 & 3 \end{pmatrix}$. **6.**

$$\begin{pmatrix} 4 & -2 & 2 \\ 5 & 3 & -2 \\ -5 & 8 & 0 \end{pmatrix}. \mathbf{7.} \begin{pmatrix} 3 & -5 & 0 \\ 2 & 4 & 6 \end{pmatrix}. \mathbf{8.} \text{ a) } AB = (-4); 6) AB = \begin{pmatrix} 11 \\ 8 \\ 30 \end{pmatrix};$$

в)
$$AB = \begin{pmatrix} 13 & 8 \end{pmatrix};$$
 Γ) $AB = \begin{pmatrix} 0 & -1 \\ 39 & 5 \end{pmatrix},$ $BA = \begin{pmatrix} 6 & -3 \\ 15 & -1 \end{pmatrix};$ Π)

$$AB = \begin{pmatrix} -1 & -4 \\ 42 & 45 \end{pmatrix}, BA = \begin{pmatrix} 5 & 18 & -8 \\ 23 & 54 & -40 \\ 9 & 27 & -15 \end{pmatrix}; e) AB = \begin{pmatrix} 8 & 11 & 1 \\ 9 & 6 & -8 \\ -6 & -9 & -8 \end{pmatrix},$$

$$BA = \begin{pmatrix} 4 & 3 & 5 \\ 9 & 2 & 10 \\ 12 & 15 & 0 \end{pmatrix};$$
 \mathbf{x}) $AB = BA = E$. **9.** a) $\begin{pmatrix} -1 \\ -8 \\ -1 \end{pmatrix}$; $\mathbf{6}$)

$$\begin{pmatrix} 39 & -14 & -1 \\ 48 & -8 & 38 \\ 37 & 22 & 149 \\ 112 & -32 & 32 \end{pmatrix}; B) \begin{pmatrix} -37 & 54 \\ 81 & -118 \end{pmatrix}; \Gamma) \begin{pmatrix} \cos n\alpha & -\sin n\alpha \\ \sin n\alpha & \cos n\alpha \end{pmatrix}; Д)$$

$$\begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix}; e) \begin{pmatrix} a^n & na^{n-1} \\ 0 & a^n \end{pmatrix}; \mathfrak{K}) \begin{pmatrix} 2^n & n2^{n-1} & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & (-3)^n \end{pmatrix}. \mathbf{10}.$$

a)
$$\begin{pmatrix} -10 & -4 & -7 \\ 6 & 14 & 4 \\ -7 & 5 & -4 \end{pmatrix}$$
; 6) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
11. $\left\{ E, -E, \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a^2 + bc = 1 \right\}$.

Тема 2

1. а) 13; б) 0; в) $\sin(\alpha - \beta)$; г) 0; д) -40400; е) 0; ж) 0; 3) 0. 2. а) $\det A = \det B = -2$; б) $\det A = \det B = -16$. 3. а) $\alpha_1 = -1$, $\alpha_2 = 4$; б) $\alpha = -3$; в) $\alpha_1 = 0$, $\alpha_2 = 3$; г) ни при каком α . 4. $\alpha_1 = 1$, $\alpha_2 = -2$. 5. $\begin{vmatrix} 0 & 4 \\ 1 & 3 \end{vmatrix} = -4$. 6. а) $(-1)^{2+3+1+3} \begin{vmatrix} 4 & 1 \\ 0 & 1 \end{vmatrix} = -4$; б) $(-1)^{3+4} \begin{vmatrix} 3 & 4 & -7 \\ 2 & 1 & 5 \\ -7 & 0 & 5 \end{vmatrix} = 214$; в) $(-1)^{4+2} \begin{vmatrix} 3 & -7 & 1 \\ 2 & 5 & 2 \\ 3 & 4 & 6 \end{vmatrix} = 101$. 7. а) 0; б) 42; в) 140; г) -30; д) -16; е) 300; ж) 110; з) 8. 8. а) -65; б) 0. 9. а) -140; б) -2.

Тема 3

1. Являются. **2.** а) $\begin{pmatrix} 1/2 & 0 \\ 0 & 1/3 \end{pmatrix}$; б) $\frac{1}{2} \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$; в) не существует; г) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. **3.** а) При $\lambda \neq 4$ и $\lambda \neq 1$; б) ни при каком

$$\lambda$$
. **4.** a) $\begin{pmatrix} 5 & -2 \\ 3 & -1 \end{pmatrix}$; 6) $-\frac{1}{5}\begin{pmatrix} -4 & 3 \\ -1 & 2 \end{pmatrix}$; B) $\begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$; Γ)

л)
$$r = 3$$
, $M = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 1 \\ -1 & -2 & 6 \end{bmatrix}$. **8.** a) 2; б) 3; в) 3; г) 3; д) 2. **9.** a)

r=2 при $\lambda=0, \lambda=2$, r=3 при $\lambda\in (-\infty;0)\cup (0;2)\cup (2;+\infty)$; б) r=2 при $\lambda=-17$, r=3 при $\lambda\neq 17$; в) r=1 при $\lambda=-2$, r=2 при $\lambda=2$, r=3 при $\lambda^2\neq 4$; г) r=2 при $\lambda=-3$, r=3 при $\lambda\neq -3$; д) r=3 при $\lambda=\pm 3$, r=4 при $\lambda\neq \pm 3$; е) r=4.

Тема 4

1. a)
$$x_1 = 2, x_2 = 3$$
; b) $x_1 = 1, x_2 = -1, x_3 = 0$; b) $x_1 = 2, x_2 = 1, x_3 = -1$; c) $x_1 = 0, x_2 = 3, x_3 = -1$; d) $x_1 = x_2 = 1, x_3 = x_4 = -1$; e) $x_1 = -2, x_2 = 0, x_3 = 1, x_4 = -1$; 2. a) $x_1 = -1, x_2 = 2, x_3 = 3$; b) $x_1 = -1, x_2 = 0, x_3 = -1$; b) $x_1 = 2, x_2 = -1, x_3 = 1$; c) $x_1 = x_2 = x_3 = 1$. 3. $x_1 = 3, x_2 = 8, x_3 = 7$; 4. $x_1 = 2, x_2 = 3, x_3 = -1, x_4 = 5$; 5. a) $x_1 = -1, x_2 = 1, x_3 = 0$; b) Hecobmectha; b) $x_1 = 11x_3 - 4, x_2 = 3 - 7x_3$; c) $x_1 = x_2 = x_3 = 1$; d) Hecobmectha; e) $x_3 = (3 - 5x_1 + 25x_2)/9$, $x_4 = (10x_2 - 2x_1)/3$; k) $x_1 = 1, x_2 = 0, x_3 = -2, x_4 = 1$; 3) $x_1 = (1 + 5x_4)/6$, $x_2 = (1 - 7x_4)/6$, $x_3 = (1 + 5x_4)/6$; u) Hecobmectha; k) $x_1 = -x_5/2$, $x_2 = -1 - x_5/2$, $x_3 = 0$, $x_4 = -1 - x_5/2$; d) $x_1 = (1 + x_5)/3$, $x_2 = (1 + 3x_3 + 3x_4 - 5x_5)/3$. 6. $\lambda \neq 6$. 7. $\lambda \in R$. 8. $\lambda = -2$. 9. a) При $\lambda = -2$ система несовместна, при $\lambda = 1$ $x_1 = 1 - x_2 - x_3$, при $(\lambda - 1)(\lambda + 2) \neq 0$ $x_1 = x_2 = x_3 = 1/(\lambda + 2)$; 6) при $\lambda = -2$ система несовместна, при $\lambda = 1$ $x_1 = 1 - x_2 - x_3$, при $(\lambda - 1)(\lambda + 2) \neq 0$ $x_1 = x_2 = x_3 = 1/(\lambda + 2)$; 6) при $\lambda = -2$ система несовместна, при $\lambda = 1$ $x_1 = 1 - x_2 - x_3$, при $(\lambda - 1)(\lambda + 2) \neq 0$ $x_1 = x_2 = x_3 = 1/(\lambda + 2)$; 6) при $\lambda = -2$ система несовместна, при $\lambda = 1$ $x_1 = 1 - x_2 - x_3$, при $(\lambda - 1)(\lambda + 2) \neq 0$ $x_1 = x_2 = x_3 = 1/(\lambda + 2)$; 6) при $\lambda = -2$ система несовместна, при $\lambda = 1$ $\lambda =$

в) при $\lambda \neq 0$ $x_1 = 1 - \lambda$, $x_2 = \lambda$, $x_3 = 0$, при $\lambda = 0$ $x_1 = 1$, x_2 любое, $x_3 = 0$; г) при a = 1, $b = \frac{1}{2}$ $x_1 = 2 - x_3$, $x_2 = 2$, при $b(a - 1) \neq 0$ $x_1 = \frac{2b - 1}{b(a - 1)}$, $x_2 = \frac{1}{b}$, $x_3 = \frac{2ab - 4b + 1}{b(a - 1)}$, во всех остальных слу-

чаях система несовместна. 10. $I_1 = I_0 \frac{R_2}{R_1 + R_2}$, $I_2 = I_0 \frac{R_1}{R_1 + R_2}$.

$$\mathbf{11.} \begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{pmatrix} = \begin{pmatrix} R_1 & R_2 & R_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & R_3 & R_5 & R_6 \\ 0 & -R_2 & 0 & R_4 & R_5 & 0 \\ 1 & -1 & 0 & -1 & 0 & 1 \\ -1 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} E_1 + E_2 \\ E_2 + E_4 \\ -E_3 \\ 0 \\ 0 \end{pmatrix}.$$

Тема 5

1. а) 2; б) 3. **2.** а) (2, 3, 1, 0), (3, -1, 0, 1); б) (1, 3, 0, 0, 2), (0, 0, 1, 0, 2), (0, -1, 0, 1, -1). **3.** а) (1, 1); б) (0, 1, 1); в) не существует; г) (0, 2, 1, 0), (0, 1, 0, 1); д) (3, -6, 1, 0, 0), (-3, 5, 0, 1, 0), (0, -1, 0, 0, 1); е) (3, -2, 1); ж) (1, 0, 0, 0, 0), (0, -4, -3, -5, 1); з) (8, -6, 1, 0), (-7, 5, 0, 1); и) (1, 0, -3, 2); к) не существует. **4.** $\begin{cases} 35x_1 - 3x_2 + 27x_3 - 2x_4 - 35x_5 = 0, \\ 10x_1 + 12x_3 - x_4 - 16x_5 = 0; \end{cases}$ б) к системе в пункте а)

добавить любую линейную комбинацию ее уравнений; в) к системе в пункте а) добавить две любые линейные комбинации ее уравнений. 5. Нет.

Тема 6

1. а) Окружность радиуса r; б) сфера радиуса r. **2.** а) 7; б) 9; в) 13; г) 27. **3.** Да. **4.** Да. **5.** 0. **6.** $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{DO}$, $\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{AO}$, $\overrightarrow{CD} = \overrightarrow{CO} + \overrightarrow{BO}$, $\overrightarrow{DA} = \overrightarrow{DO} + \overrightarrow{CO}$. **7.** \overrightarrow{AC} ; \overrightarrow{AB} ; 0.

 $B(-1,2,4), \quad C(1,3,0).$ **35.** $A\left(\frac{1}{2},\frac{\pi}{2}\right), \quad C\left(2,\frac{\pi}{6}\right), \quad D\left(3\sqrt{2},\frac{3\pi}{4}\right),$ $F\left(2,\frac{11\pi}{18}\right).$ **36.** $A\left(1,\sqrt{3}\right), \quad B(-1,1), \quad C(0,5).$ **37.** $A\left(1,\frac{\pi}{2},\frac{\pi}{2}\right),$ $B\left(3,\frac{5\pi}{4},\arccos\left(-\frac{1}{3}\right)\right), \quad C\left(5,\frac{3\pi}{2},\arccos\frac{3}{5}\right).$ **38.** $\left(\frac{\sqrt{6}}{4},-\frac{\sqrt{2}}{4},\frac{\sqrt{2}}{2}\right).$ **39.** $B\left(\sqrt{2},\frac{7\pi}{4},-1\right), \quad C(6,\pi,8), \quad D\left(4,\frac{23\pi}{12},1\right), \quad E\left(\frac{1}{2},\frac{3\pi}{8},\frac{\sqrt{3}}{2}\right).$ **40.** $x=\frac{5000}{4687}x', \quad \text{где } x'-\text{число верст.}$ **41.** $t_c=\frac{5(t_{\Phi}-32)}{9}, \quad \text{где } t_c-\text{температура по шкале Цельсия, } t_{\Phi}-\text{температура по шкале Фаренгейта.}$

Тема 7

1. а) 20; б)
$$-\frac{\sqrt{2}}{2}$$
; в) 3; г) -3 . 2. а) 5; б) 4; в) 25; г) 39; д) -51 . 3. Сумма квадратов длин диагоналей параллелограмма равна сумме квадратов длин его сторон. 4. $\sqrt{7}$ и $\sqrt{13}$. 5. Нет. 6. а) $2+\sqrt{3}$; б) 40; в) -10.5 ; г) 4. 7. $\frac{\pi}{3}$. 8. 120° . 10. $\cos\alpha=\frac{1}{\sqrt{3}}$. 11. а) -5 ; б) 0; в) 2; г) $-\frac{1}{2}$. 12. а) 45° ; б) 90° ; в) $\cos\alpha=\frac{2}{\sqrt{15}}$; г) 3° . 13. а) $e=(\frac{1}{3},\frac{2}{3},-\frac{2}{3})$; б) $e=-\frac{2}{3}i+\frac{1}{3}j-\frac{2}{3}k$. 14. $|a|=3$, $|b|=13$, $\cos\alpha=\frac{19}{39}$. 15. $D(1,0,2)$, $\frac{\pi}{2}$. 16. $|a|=\sqrt{3}$, $|b|=\sqrt{14}$, $\cos(\frac{1}{a},b)=\frac{6}{\sqrt{42}}$, $\cos\alpha_1=\frac{1}{\sqrt{3}}$, $\cos\beta_1=\frac{1}{\sqrt{3}}$, $\cos\gamma_1=-\frac{1}{\sqrt{3}}$, $\cos\alpha_2=\frac{2}{\sqrt{14}}$, $\cos\beta_2=\frac{3}{\sqrt{14}}$, $\cos\gamma_2=-\frac{1}{\sqrt{14}}$. 17. $\arccos(\frac{\pm 1}{\sqrt{102}})$. 18. 8. 19. $\frac{17}{\sqrt{6}}$. 20. $\alpha=1$. 21. $\alpha=\pm\sqrt{\frac{47}{5}}$. 22. $b=4i-2j+10k$. 23. $b=3i+j+5k$. 24. $b=2i-2j-k$. 25. 30 Дж. 26. $A=8$, $\cos\varphi\approx0.38$. 27. 30. 28. 0. 29. $-\frac{14}{3}i-\frac{13}{3}j-\frac{7}{3}k$.

Тема 8

1. 3. **2.**
$$\frac{7}{\sqrt{2}}$$
 . **3.** 72. **4.** 30. **5.** $a \parallel b$. **6.** $72\sqrt{2}$. **7.** 24. **8.** a) $(6, -3, 0)$; $(6, -3, 0)$; $(6, -2, 0)$; $(6, -2, 0)$; $(6, -2, 0)$; $(6, -2, 0)$; $(6, -3, 0)$; $(6,$

$$\overrightarrow{M} = (-6,13,-8) \cdot \mathbf{19.} \ |\overrightarrow{M}| = 28, \cos \alpha = \frac{3}{7}, \cos \beta = \frac{6}{7}, \cos \gamma = -\frac{2}{7}.$$
20. 9*i* +13 *j* -7*k* · **21.** 230 м/с. **22.** 5 Вт. **23.** а) -20; б) 18; в) 6. **24.** а) Да; б) да. **25.** а) Да; б) нет. **26.** а) $\alpha = 1$, $\alpha = \frac{13}{7}$; б) ни при каком α · **27.** а) 12; б) 33. **28.** а) 14; б) 4. **30.** $x_1 = -5$, $x_2 = 46\frac{1}{3}$ · **31.** 100. **32.** 529. **33.** $c = 12i - 3j - 4k$.

Тема 9

2. а)
$$\alpha = \pm 3$$
; б) $\alpha = 2$; в) $\alpha = -3$; г) $\alpha = -3$; д) ни при каком α . **3.** а) $a = (-4,1)$; б) $M_1(13,0)$, $M_2(5,2)$, $M_3(1,3)$; в) $t_x = -3$, $t_y = \frac{1}{4}$; г) А и С. **4.** а) 10; б) $(41, -27)$; в) $t = 2$. **5.** $x = 3t$, $= 5t$. **6.** $x = 5 + 12t$, $y = -8 + 16t$, $t_0 = \frac{11}{12}c$. **7.** $(2, 0)$, $x = 2 + 2t$, $y = t$. **8.** а) $x = 2 + t$, $y = 1 + 2t$; б) $x = t$, $y = 5t$; в) $x = -7 + 11t$, $y = 3 - 6t$; г) $x = 3t$, $y = -4 + 4t$; д) $x = 1 + 2t$, $y = 3t$; е) $x = \frac{3}{2}$ $y = t$; ж) $x = t$, $y = -\frac{5}{4}$. **9.** а) $3x + y - 4 = 0$; б) $x - 2 = 0$; в) $6x - y - 3 = 0$; г) $2x + 5y + 11 = 0$. **10.** $2x + y = 0$. **11.** $AB:2x + 3y - 5 = 0$, $AC:2x - y - 1 = 0$, $BC:2x - 3y + 13 = 0$, $AD:x - 1 = 0$. **12.** а) -1 ; б) $-\frac{3}{4}$; в) 0; г) $\frac{7}{3}$; д) $-\frac{5}{2}$. **13.** а) $AC:x - 1 = 0$. **15.** $y = \frac{1}{2}x - 1$, $y = -2x + 7$. **16.** $x = 0$. **17.** а) $\alpha = 2$; б) ни при каком α ; в) $\alpha = \frac{1}{9}$. **18.** а) $4x - 5y + 19 = 0$; б) $3x - y + 6 = 0$; в) $x + y - 2 = 0$; г) $2x + 3y - 7 = 0$. **19.** 5. **20.**

x+3y-30=0, 3x+4y-60=0, 3x-y-30=0, x-12y+60=0. **21.** (-1,2). **22.** 3x+2y+9=0, M(-3,0). **23.** a) (15,-10); б) прямые параллельны; в), г), д) прямые совпадают; е) (1,2). **24.** 3. **25.** (-2,-6). **26.** (-4,-1), (8,-1), (6,-1), (1,-1

Тема 13

1. а) Трехосный эллипсоид; б) олнополостный в) двуполостный гиперболоид: гиперболоид; параболоид; д) гиперболический эллиптический параболоид: е) параболоид вращения; ж) эллиптический параболоид; з) конус; и) конус; к) сфера; л) эллиптический цилиндр; м) параболический цилиндр; н) гиперболический шилинлр. **2.** a) x = 0, $y^2 + z^2 = 24$; б) z = 0. $(x+1)^2 + (y-1)^2 = 9$. **3.** $z^2 + y^2 = 4$. **4.** a) эллипсоид; б) сфера; в) однополостный гиперболоид; г) эллипсоид; д) конус; е) конус: ж) эллиптический параболоид: з) гиперболический параболоид. 5. а) прямая лежит на поверхности; б) (4, 1, 3). 6x + 3y - 2z - 53 = 0, 3x + 4y + 4z - 21 = 03x + y - 2z - 2 = 0, $(\pm \sqrt{2}, 0, -2)$, R = 2. **10.** $x^{2} + y^{2} + z^{2} + 22x + 16y - 6z = 0$; 6) $x^{2} + y^{2} + z^{2} - 10z - 9 = 0$. 11. a) $\frac{x^2}{9} + \frac{y^2}{1} + \frac{z^2}{2} = 1$; 6) $\frac{x^2}{25} + \frac{y^2}{25} + \frac{z^2}{2} = 1$; B) $\frac{x^2}{0} + \frac{y^2}{36} + \frac{z^2}{36} = 1$. 12. a) $y^2 + z^2 = 4$; 6) $\frac{x^2}{4} + \frac{y^2}{0} + \frac{z^2}{0} = 1$; B) $x^2 - \frac{y^2}{4} + z^2 = 1$; r) $x^2 + y^2 = -2z$. **13.** $9x^2 + 4y^2 + 9z^2 - 18xz - 18xz$ -18x + 18z - 16y - 11 = 0 **14.** a) $16(x-1)^2 - y^2 - z^2 = 0$; 6) $x^2 + y^2 + 7z^2 - 16xy - 8xz - 8yz + 62x + 44y - 32z - 11 = 0$: **15.** a) $\frac{x^2}{25} + \frac{y^2}{25} - \frac{z^2}{49} = 0$; 6) $x^2 - 3y^2 + z^2 = 0$. **16.** 6. **17.** a) 3; 6) 2: B) 1; г) 3; д) 3; е) 2; ж) 3; з) 2; и) 1. **18.** а) гипербола; б) две прямые; в) эллипс; г) парабола. **19.** $x^2 + y^2 - z^2 = -2$. **20.** $v^2 + z^2 = -4ax$. **21.** a) $x^2 + 2y^2 - 3z^2 + 1 = 0$; $\frac{x^2}{4} - \frac{y^2}{9} + \frac{z^2}{16} = -1$. **22.** 3x + 4y - 24 = 0, 3x - 4y - 12z = 0 M

$$3x-4y=0$$
, $z=0$. **23.** $2x+y=0$, $y=3$ M $4y+3z=0$, $x=3$. **24.** $\frac{x^2}{36} - \frac{y^2}{16} = z$.

Тема 14

1. а)
$$1+18i$$
; б) $4i$; в) $10-11i$; г) $5+i$; д) $52i$; у) 2 ; ж) 1 ; з) $5+5i$. 2. $x=-\frac{4}{11}$, $y=\frac{5}{11}$. 3. а) $x=1+i$, $y=i$; б) $x=2+i$; $y=2-i$. 4. а) $\pm (1+i)$; б) $\pm (2-2i)$; в) $\pm (2-i)$; г) $\pm (1+4i)$; д) $\pm (1-3i)$; е) $\frac{\pm 1\pm i}{\sqrt{2}}$.5. а) $2+i$, $1-3i$; б) $1-i$, $\frac{4-2i}{5}$; в) $\pm \frac{\sqrt{7}}{2} \pm \frac{i}{2}$; г) $\pm 4\pm i$. 6. а) $1\pm 2i$, $-4\pm 2i$, $(x^2-2x+5)(x^2+4x+20)$; б) $2\pm i\sqrt{2}$, $-2\pm 2i\sqrt{2}$, $(x^2-4x+6)(x^2+4x+12)$. 7. а) Окружность радиуса 1 с центром в начале координат; б) луч, выходящий из начала координат и образующий угол $\pi/3$ с положительной вещественной полуосью; в) внутренность круга радиуса 1 с центром в точке $1+i$; г) круг радиуса 5 с центром в точке $-3-4i$, включая границу; д) кольцо, заключенное между окружностями радиусов 1 и 2 с центром в точке $2i$, причем окружность радиуса 1 включается, а радиуса $2-$ не включается; е) внутренность угла, содержащего положительную вещественную полуось и образованного лучами, выходящими из начала координат под углами $-\pi/6$ и $\pi/6$ к этой полуоси; ж) полоса, заключенная между прямыми $x=\pm 1$, включая эти прямые; з) внутренность полосы, заключенной между прямыми $x+y=\pm 1$; к) внутренность полосы, заключенной между прямыми $x+y=\pm 1$; п) эллипс $\frac{4x^2}{9}+\frac{4y^2}{5}=1$; м) гипербола $\frac{4x^2}{9}-\frac{4y^2}{7}=1$; н) парабола $y^2=8x$. 8. Сумма квадратов длин диагоналей параллелограмма равна сумме квадратов длин его сторон. 9.

$$\sqrt{13} - 1.$$
 10. $1 + 3\sqrt{5}$. **11.** a) $5(\cos 0 + i \sin 0)$; 6) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$; B)

$$2(\cos \pi + i \sin \pi); \qquad \qquad 3\left(\cos\left(-\frac{\pi}{2}\right) + i \sin\left(-\frac{\pi}{2}\right)\right); \qquad \qquad \pi$$

$$\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right);$$
 e) $\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right);$ \Re

$$2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right); \qquad \qquad 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right); \qquad \qquad \mathbf{M}$$

$$2\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right); \text{ } \kappa) \quad 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right). \text{ } \mathbf{12.} \text{ } a)$$

$$2^{12}(1+i)$$
; б) -2^{30} ; в) $2^{9}(1-i\sqrt{3})$; г) $(2-\sqrt{3})^{12}$; д) -64. **13.** а)

$$3+4i$$
; 6) $5-12i$. **14.** a) $4\cos^3 x \sin x - 4\cos x \sin^3 x$: 6)

$$\cos^4 x - 6\cos^2 x \sin^2 x + \sin^4 x$$
; B) $5\cos^4 x \sin x - 10\cos^2 x \sin^3 x +$

$$+\sin^5 x$$
; Γ) $\cos^5 x - 10\cos^3 x \sin^2 x + 5\cos x \sin^4 x$. **15.** a)

$$\frac{1}{8}(\cos 4 - 4\cos 2x + 3);$$
 6) $\frac{1}{8}(\cos 4x + 4\cos 2x + 3);$ B

$$\frac{1}{16}(\sin 5x - 5\sin 3x + 10\sin x); \quad \Gamma) \quad \frac{1}{16}(\cos 5x + 5\cos 3x + 10\cos x).$$

16. a)
$$\left\{1, -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}\right\}$$
; б) $\left\{\pm 1, \pm i\right\}$; в) $\left\{\frac{\sqrt{3}}{2} + \frac{1}{2}i, -\frac{\sqrt{3}}{2} + \frac{1}{2}i, -i\right\}$

; г)
$$\left\{\pm 1, \pm \frac{1+i\sqrt{3}}{2}, \pm \frac{1-i\sqrt{3}}{2}\right\}$$
; д) $\left\{1 \pm i, -1 \pm i\right\}$; е)

$$\{\pm 2, 1 \pm \sqrt{3}, -1 \pm \sqrt{3}\};$$

$$\left\{ \frac{1}{2} \sqrt[3]{4} (i-1), \frac{\sqrt[3]{4}}{4} \left(1 - \sqrt{3} - i \left(\sqrt{3} + 1 \right) \right), \frac{\sqrt[3]{4}}{4} \left(1 + \sqrt{3} - i \left(\sqrt{3} - 1 \right) \right) \right\};$$

$$\left\{ \frac{1}{2} \sqrt{2} \left(\sqrt{2 + \sqrt{3}} - i\sqrt{2 - \sqrt{3}} \right), -\frac{1}{2} \sqrt{2} \left(\sqrt{2 - \sqrt{3}} - i\sqrt{2 + \sqrt{3}} \right), 1 - i \right\};$$

и)
$$\left\{ \sqrt{3} + i, -1 + i\sqrt{3}, -\sqrt{3} - i, 1 - i\sqrt{3} \right\};$$
 к) $\left\{ \pm \left(\frac{3}{2} + i\frac{\sqrt{3}}{2} \right), \pm \left(\frac{\sqrt{3}}{2} - \frac{3}{2}i \right) \right\};$ л) $\{1, i, -1, -i\}$. 17. 0.

Тема 10

1. а) 1) 13x + 2y + z - 48 = 0; 2) 3x - 2y + 4z - 28 = 0; 6) 1) x - 7y - 3z = 0; 2) 31x + 26y - 17z - 65 = 0; B) 1) 5x + 8y - 7z - 1 = 0; 2) 3x + 10y + 2z - 27 = 0. 2. 20. 3. a) x - 4y - z + 16 = 0; 6) x + 5y - z + 5 = 0. 4. a) x = u - v, y = u, z = 3u + 3v; 6) x = 1 + v, y = -1 - u - v, z = u + 3v. 5. $5x - 2y + z \pm 3 = 0$. 6. a) Her; 6) да. 7. 27x + 11y + z - 65 = 0. 8. a) 0; 6) $\frac{1}{3\sqrt{3}}$; B) $\frac{\sqrt{3}}{6}$. 9. a) $\alpha = 2$; 6) $\alpha = 0$; B) Ни при каком α ; г) $\alpha = 0.4$; д) $\alpha = 0.5$. 10. a), г) Пересекаются; 6), д) совпадают; в) параллельны. 11. 5x + y - 3z - 11 = 0. 12. x - y + z - 2 = 0. 13. a) 5.5; 6) $\frac{1}{2\sqrt{6}}$. 14. 8. 15. Является, 5, $\frac{36}{7}$, $\cos \varphi = \frac{3}{7}$. 16. x + y + 2z - 4 = 0, 2x + y + 3z - 6 = 0, x - y - z + 1 = 0. 18. x - y + 3z - 11 = 0. 19. x + 20y + 7z - 12 = 0, x - z + 4 = 0. 20. a) 2y - z = 0; 6) 3x - y = 0; B) y - 3 = 0. 21. x + 2y - 6z + 3 = 0. 22.3. 23. 2x - 2y - z - 27 = 0, 2x - 2y - z - 27 = 0, 2x - 2y - z - 27 = 0, 2x - 2y - z - 27 = 0.

Тема 11

1. a)
$$r = 2i + 3k + t(3i - 2j - 2k)$$
; 6) $r = i + 2j + 3k + ti$; B) $r = i + 2j + 3k + t(3i + 2j + 2k)$; Γ) $r = 4i - 3j + 2k + t(i - 3j + 2k)$; Γ) Γ = $5i - 3j + 9k + t(i - 2j - k)$. **2.** a) Γ = $\frac{y + 3}{2} = \frac{y + 3}{1} = \frac{z + 5}{3}$; 6) Γ = $\frac{x - 1}{3} = \frac{y - 1}{-2} = \frac{z - 3}{0}$; B) Γ = $\frac{x + 1}{-1} = \frac{y - 2}{1} = \frac{z - 1}{1}$; Γ) Γ = $\frac{x - 1}{3} = \frac{y + 1}{-13} = \frac{z - 1}{-7}$. **3.** Γ = $\frac{x - 1}{3} = \frac{y + 1}{-13} = \frac{z - 1}{-7}$. **3.** Γ = $\frac{x - 1}{3} = \frac{y + 1}{-13} = \frac{z - 1}{-7}$. **4.** Γ = Γ =

а)
$$x=2+3t$$
, $y=1+t$, $z=-2t$; б) $x=5-2t$, $y=-3+3t$, $z=2-t$. **8.** a) $\frac{\pi}{2}$; б) $\arccos\frac{3}{5}$; в) $\frac{\pi}{3}$. **9.** $x=3+3t$, $y=1+15t$, $z=-3+19t$. **10.** a) $\sqrt{91\frac{3}{14}}$; б) $\sqrt{3}$; в) $\frac{1}{3}\sqrt{347}$. **12.** a) $(1,1,1)$; б) $(10,-1,0)$. **13.** a) $\frac{18}{\sqrt{110}}$; б) $\frac{16}{\sqrt{102}}$. **14.** a) $\frac{\pi}{6}$; б) $\frac{\pi}{3}$. **15.** a) $(-2,-2,3)$; б), е) прямая параллельна плоскости; в), г) прямая лежит в плоскости; д) $(2,3,1)$. **16.** a) $\alpha=-7$; б) $\alpha=\frac{1}{2}$. **17.** $8x-z+41=0$. **18.** $(1,-2,5)$. **19.** $(-5,2,4)$. **20.** $x=28-7.5t$, $y=-30+80t$, $z=-27+6t$. a) $P(-2,2,-3)$; б) $4c$; в) 50 . **21.** $(-2,7,1)$. **22.** $3x-2y-z+15=0$, $x+5y-7z-2=0$. **23.** a) $9x+6y-8z+13=0$; б) $x-2y+z+4=0$; в) $3x-y-3z-5=0$; г) $x+2y-5z=0$; д) $x+2y-5z-17=0$; е) $7x-3y-5z-20=0$. **24.** $(2,4,8)$. **25.** $(2,9,6)$. **26.** $18x+22y-5z-14=0$, $12x-18y+13z+35=0$. **27.** $(14,-4,1)$.

Тема 12

2.
$$(x-1)^2 + (y+3)^2 = 16$$
. **3.** a) $(x-2)^2 + (y-2)^2 = 25$; б) нет такой окружности. **4.** a) $x^2 + (y-1)^2 = 2$, $(x-2)^2 + (y-3)^2 = 2$; б) $\left(x-\frac{7}{5}\right)^2 + \left(y-\frac{21}{5}\right)^2 = 5$, $\left(x-\frac{3}{5}\right)^2 + \left(y-\frac{9}{5}\right)^2 = \frac{1}{5}$. **5.** $\left(x-\frac{1\pm\frac{1}{\sqrt{2}}}{\sqrt{2}}\right)^2 + \left(y-1\pm\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}$, $\left(x-\frac{3\pm\sqrt{2}}{2\pm\sqrt{2}}\right)^2 + \left(y-\frac{1\pm\sqrt{2}}{2\pm\sqrt{2}}\right)^2 = \frac{1}{(2\pm\sqrt{2})^2}$. **6.** a) $\frac{x^2}{25} + \frac{y^2}{9} = 1$; б) $\frac{x^2}{169} + \frac{y^2}{144} = 1$; в) $\frac{x^2}{169} + \frac{y^2}{25} = 1$; г) $\frac{x^2}{36} + \frac{y^2}{20} = 1$. **7.** a) $\frac{x^2}{27} + \frac{y^2}{36} = 1$,

$$\frac{x^2}{9} + \frac{y^2}{4} = 1, \quad \varepsilon = \frac{\sqrt{5}}{3}. \quad \textbf{10.} \quad (\pm 2, \pm 3). \quad \textbf{11.} \quad (-3,3), \quad \left(\frac{21}{13}, \frac{69}{13}\right). \quad \textbf{12.}$$

$$\frac{x^2}{16} + \frac{y^2}{12} = 1, \quad (-2,0), \quad x = -8. \quad \textbf{13.} \quad \frac{(x-3)^2}{9} + \frac{y^2}{8} = 1,$$

$$\frac{(x-4)^2}{16} + \frac{y^2}{12} = 1. \quad \textbf{14.} \quad \text{a)} \quad \frac{x^2}{144} - \frac{y^2}{81} = 1; \quad \text{fo} \quad \frac{x^2}{36} - \frac{y^2}{64} = 1; \quad \text{B} \text{B}$$

$$\frac{x^2}{4} - \frac{y^2}{1} = 1. \quad \textbf{15.} \quad \text{a)} \quad \frac{y^2}{144} - \frac{x^2}{25} = 1; \quad \text{fo} \quad \frac{y^2}{16} - \frac{x^2}{4} = 1. \quad \textbf{16.} \quad (0, \pm 5),$$

$$\varepsilon = \frac{5}{4}, \quad x = \pm \frac{3}{4}y. \quad \textbf{17.} \quad \frac{y^2}{1} - \frac{x^2}{5} = 1. \quad \textbf{18.} \quad \frac{x^2}{48} + \frac{y^2}{64} = 1. \quad \textbf{19.} \quad \text{a)}$$

$$\frac{x^2}{16} - \frac{y^2}{4} = 1; \quad \text{fo} \quad \frac{y^2}{16} - \frac{x^2}{4} = 1. \quad \textbf{20.} \quad \text{a)} \quad y^2 = x; \quad \text{fo} \quad x^2 = -\frac{1}{2}y; \quad \text{B} \text{B}$$

$$y^2 = -12x; \quad \text{r} \quad x^2 = 20y; \quad \text{д} \quad y^2 = -\frac{9}{2}x. \quad \textbf{21.} \quad \text{a)} \quad (7,0), \quad x = -7; \quad \text{fo} \quad (0, -\frac{3}{8}), \quad y = \frac{3}{8}. \quad \textbf{22.} \quad \frac{\sqrt{37}}{2}. \quad \textbf{23.} \quad \frac{16}{3}; \quad \textbf{24.} \quad \text{a)} \quad y^2 = -4x; \quad \text{fo} \quad x^2 = -4y.$$

$$\textbf{25.} \quad y^2 = \pm 16x. \quad \textbf{26.} \quad \textbf{2.} \quad \textbf{28.} \quad 3x^2 + 2xy + 3y^2 - 4x - 4y = 0. \quad \textbf{29.}$$

$$R = p. \quad \textbf{30.} \quad 91x^2 - 100xy + 16y^2 - 136x + 86y - 47 = 0. \quad \textbf{31.} \quad \text{3 m.} \quad \textbf{32.}$$

$$12 \quad \text{m.} \quad \textbf{34.} \quad 1.4 \quad \text{cm.} \quad \textbf{35.} \quad 5.1 \cdot 10^6 \quad \text{km.} \quad \textbf{36.} \quad \varepsilon \approx 0.08. \quad \textbf{37.} \quad 9/4. \quad \textbf{38.}$$

$$x^2 + y^2 = \frac{l^2}{4}, \quad \text{где} \quad l - \text{длина стержня.} \quad \textbf{39.} \quad M\left(\frac{12}{mg}, \frac{24}{m^2g^2}\right). \quad \textbf{40.}$$

$$\Pi \text{арабола} \quad (y - 4)^2 = 16(x - 4). \quad \textbf{41.} \quad \Gamma \text{ипербола} \quad \frac{x^2}{16} - \frac{y^2}{9} = 1. \quad \textbf{42.}$$

$$M \quad \text{находится на пересечении правой ветви гиперболы} |AM| - |BM| = 330t_1 \quad \text{m} \quad \text{c} \quad \varphi \text{ фокусами A и B и левой ветви гиперболы} |AM| - |BM| = 330t_1 \quad \text{m} \quad \text{c} \quad \varphi \text{ фокусами B и C.} \quad \textbf{43.}$$

$$arctg \, 0.4. \quad \textbf{44.} \quad \text{a)} \quad \Gamma \text{ипербола}; \quad \text{б)} \quad \text{эллипс}; \quad \text{B)} \quad \text{парабола.} \quad \textbf{45.} \quad \text{a)}$$

$$x^2 + y^2 - 4x = 0; \quad \text{fo} \quad x^2 + y^2 + 4y = 0; \quad \text{B} \quad x^2 + y^2 - x - y = 0. \quad \textbf{46.}$$

 $\frac{x^2}{2\epsilon} + \frac{y^2}{100} = 1$. **8.** a) $(0, \pm \sqrt{3})$, $\epsilon = \frac{\sqrt{3}}{2}$; 6) $(\pm 3, 0)$, $\epsilon = 0.6$. **9.**

а)
$$\rho = \frac{9}{4 - \sqrt{7}\cos\varphi}$$
; б) $\rho = \frac{9}{4 + \sqrt{7}\cos\varphi}$; в) $\rho^2(1 + 7\sin^2\varphi) = 144$.
47. а) $\rho = \frac{16}{5 + \sqrt{41}\cos\varphi}$; б) $\rho = \frac{16}{5 - \sqrt{41}\cos\varphi}$. 48. а) $\rho = \frac{2p\cos\varphi}{\sin^2\varphi}$; б) $\rho = \frac{p}{1 - \cos\varphi}$. 49. а) Две параллельные прямые $x = 2$ и $x = 3$; б) эллипс $\frac{(x-1)^2}{4} + \frac{(y+2)^2}{9} = 1$; в) точка $(1, -2)$; г) \varnothing ; д) гипербола $\frac{(x+2)^2}{4} - \frac{(y-3)^2}{1} = 1$; е) две пересекающиеся прямые $x - 2y + 8 = 0$ и $x + 2y - 4 = 0$;ж) гипербола $-\frac{(x+2)^2}{4} + \frac{(y-3)^2}{1} = 1$.

Тема 15

1. Группу образуют множества 1a), 2), 4) - 8), 96), 10), 11а), 12а), 13), 14), 15), 16а), 17). Абелеву группу образуют множества 1a), 2), 4) - 8), 9б), 10), 14), 17). **2.** 1) для 4), 7), 9б); 2) для 1), 4), 7), 9б); 4) для 9б); 6) для 5); 7) для 9б); 13а), б) для 12а); 16а) для 15). 3. Группами являются множества а), б), в), д), е), з); из них абелевыми множества б), 3). **4.** a), б), в) и г) в случае n=1 являются абелевыми группами. **6.** a) Да; б) нет. **8.** a) $|z_{25}| = 6$, $|z_{15}| = 10$, $|z_{13}| = 150$; б) $|z_4| = |z_{12}| = 22$, $|z_7| = 88$. **9.** Порядок *e* равен 1, порядки (1,2), (1,3), (2,3) равны 2, порядки (1,2,3) и (1,3,2) равны 3, S_3 не является циклической группой. **10.** a) 1; б) 2; в) ∞ : г) 4. 11. Кольнами являются все множества кроме 3) и 21); из них полями являются множества 4), 6), 9), 12) 14), 16), 20); множества обратимых элементов: 1) $\{\pm 1\}$; 5) $\{x + y\sqrt{2}\} | x^2 - 2y^2 = \pm 1\}; 7$ $\{x + y\sqrt{3} | x^2 - 3y^2 = 1\}; 10$ $\{\pm 1, \pm i\}$; 13) $\{\pm 1\}$; 15) $\{\pm 1\}$; 17) $Z_{n\times n}^* = \{A \mid \det A = \pm 1\}$, $P_{\text{min}}^* = GL(n, P) = \{A \mid \det A \neq 0\},$ где P = Q, R, C; $\{f(x) \in P[x] | \deg f(x) = 0\}$, где P = Q, R, C. 13. Все кольна коммутативны, но не являются полями. Обратимые элементы: a) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$; б) матрицы вида $\begin{pmatrix} 1 & b & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$ или $\begin{pmatrix} -1 & b & c \\ 0 & -1 & b \\ 0 & 0 & 1 \end{pmatrix}$, в) любая

невырожденная матрица. Делители нуля: б) матрица вида

$$\begin{pmatrix} 0 & b & c \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix}$$
, $b^2 + c^2 \neq 0$; в) ненулевые вырожденные матрицы.

14. (a,0), гле $a \neq 0$, и (0,b), гле $b \neq 0$.

Тема 16

1. a)
$$q(x) = x^2 - 2x + 4$$
, $r(x) = 3x + 11$; 6) $q(x) = 5x^2 - 15x + 34$; $r(x) = -72x - 62$; B) $q(x) = 0$; $r(x) = 2x^2 - 3x + 1$. 2. $q = m$, $q = -m^2 - 1$. 3. HOД: a) $x + 1$; 6) $x^2 + 1$; B) 1; r) $x^3 - x + 1$. HOK: a) $\frac{f(x)g(x)}{x + 1}$; 6) $\frac{f(x)g(x)}{3(x^2 + 1)}$; B) $f(x)g(x)$; r) $\frac{f(x)g(x)}{x^3 - x + 1}$. 4. a) $p(x) = -x - 1$, $q(x) = x + 2$; 6) $p(x) = -1$, $q(x) = x + 1$; B) $p(x) = -\frac{x - 1}{3}$, $q(x) = \frac{2x^2 - 2x - 3}{3}$. 5. a) $q(x) = x^3 - x^2 + 3x - 3$, $r(x) = 5$; 6) $q(x) = 2x^4 - 6x^3 + 13x^2 - 39x + 109$, $r(x) = -327$; B) $q(x) = x^2 - 2ix - 5 - 2i$; $r(x) = 8i - 9$. 6. a) 136 ; 6) 286 ; B) $-1 - 44i$. 7. a) $(x + 1)^4 - 2(x + 1)^3 - 3(x + 1)^2 + 4(x + 1) + 1$; 6) $(x - 1)^5 + 5(x - 1)^4 + 10(x - 1)^3 + 10(x - 1)^2 + 5(x - 1) + 1$; B) $(x - 2)^4 - 18(x - 2) + 38$; r) $(x + i)^4 - 2i(x + i)^3 - (1 + i)(x + i)^2 - 5(x + i) + 7 + 5i$. 8. a) $x^4 + 11x^3 + 45x^2 + 81x + 55$; 6) $39 + 54x + 35x^2 + 13x^3 + 2x^4$; B) $x^4 - 4x^3 + 6x^2 + 2x + 8$. 9. a) 3; 6) 4. 10. $a = -5$. 11. $a = 3$, $b = -4$. 12. a) $\pm 18\sqrt{3}$; 6) -216 ; B) -25 или -16 . 13. a) $(x - 1)^2(x + 2)$; 6) $(x - 1)^3$. 14. a) $(x - 1)^3(x + 1)$; 6) $(x^2 - 4)^3(x^2 + 4)^2$. 15. a) $(x - 2)(x + 1 \pm i\sqrt{3})$, $(x - 2)(x^2 + 2x + 4)$; 6) $(x + 2)(x - 1 \pm i\sqrt{3})$, $(x + 2)(x^2 - 2x + 4)$; B) $(x \pm 2)(x \pm 2i)$, $(x \pm 2)(x^2 + 4)$; r) $(x \pm \sqrt{3})\left(x \pm \frac{\sqrt{3}}{2} - \frac{3}{2}i\right)$

Тема 17

1. а), б), в), е) Не являются; г, д) Являются. **2.** а) – в) Да. **3.** Нет. **4.** Да. **5.** а) – д), ж) Да; е) нет. **6.** а), в2), г), е) Да; б), в1), д) нет. **7.** а) $5a_1 - 4a_2 - a_3 = 0$; б) $5f_1 - 4f_2 - f_3 = 0$; в) $5z_1 - 4z_2 - z_3 = 0$; г) $5A_1 - 4A_2 - A_3 = 0$; д) $f_1 + f_2 - f_3 = 0$. **9.** а), б), г) Не являются; в) $arctgx + arcctgx - \frac{\pi}{2} = 0$. **10.** (1, –2).

11.
$$A = (3, 4, -2), B \notin V$$
. **12.** $f_1 = (4, 0), f_2 = \left(\frac{5}{2}, -\frac{11}{2}\right), f_3 \notin V$.

13. a) (1,-2,3,-4,5); б) (1,7,3,-4,5); в) (1,-2,3,-4,3). **14.** a) (3,7,13); б) (1,1,1). **15.** a) 1,(1,7,5); б) 3,(-0.1,0.7,1,0,0), (-0.4,-0.2,0,1,0), (0.4,0.2,0,0,1). **16.** (-2,2). **17.** (1,0,2). **18.** a) 4; б) 3. **19.** a) $\lambda = -2$; б) при любом λ . **20.** a)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}; 6) \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}; B) \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}; \Gamma) \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}. 21.$$

a) (-1, -2, 1); б) (1, 2, 3). **22.** a) (5, 0); б) (-2, 14). **23.** a) $\left(-\frac{3}{4}, \frac{11}{4}\right)$; б) $\left(\frac{13}{5}, -\frac{1}{5}\right)$. **24.** a) $\frac{1}{7} \begin{pmatrix} 32 & -3 \\ -27 & 1 \end{pmatrix}$; б) $\frac{1}{7} \begin{pmatrix} 16 & -25 \\ -1 & 2 \end{pmatrix}$.

25. a)
$$\begin{pmatrix} 3 & 1 \\ 1 & -3 \end{pmatrix}$$
, $a = 4e_1 + 3e_2$, $a = \frac{3}{2}e_1' - \frac{1}{2}e_2'$; 6) $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$,

$$a = 2e_2,$$
 $a = e'_1 + e'_2;$ B)
$$\begin{pmatrix} -27 & -71 & -41 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{pmatrix},$$

$$a = -139e_1 + 38e_2 + 24e_3$$
, $a = e_1' + e_2' + e_3'$; Γ $\begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$,

$$a = 5e_1 - 4e_2 + 6e_3, \quad \vec{a} = \frac{7}{2}e_1' + 8e_2' + 6e_3'; \quad \mathbf{Д}) \begin{pmatrix} 2 & 0 & 1 & 0 \\ 3 & 1 & 2 & 1 \\ -3 & -1 & -2 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix},$$

$$a = 2e_1 + 4e_2 + 5e_3 - 3e_4, \qquad a = 5e_1' + 2e_2' - 8e_3' + 3e_4'. \qquad \mathbf{26.} \quad \mathbf{a})$$

$$a_1, a_2, a_3 = (1, 0, 0); \quad \mathbf{6}) \quad a_1, a_2, a_3 = (1, 0, 0, 0), \quad a_4 = (0, 1, 0, 0).$$

Тема 18

1.
$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
. 2. Нет. 3. а), д) Да; б), в), г) нет.

4. в), г), ж), з) Не являются; а)
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
; б) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$;

д)
$$\begin{pmatrix} ab & 0 & 0 \\ 0 & ab & 0 \\ 0 & 0 & ab \end{pmatrix}$$
; e) $\begin{pmatrix} 0 & 3 & -1 \\ -3 & 0 & -2 \\ 0 & -2 & 0 \end{pmatrix}$; и) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

ортогональное проектирование на ось Ox; к) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

ортогональное проектирование на плоскость Oxy. **5.** a) $\begin{pmatrix} \lambda & 0 \end{pmatrix}$ $\begin{pmatrix} -1 & 0 \end{pmatrix}$ $\begin{pmatrix} -1 & 0 \end{pmatrix}$ $\begin{pmatrix} -1 & 0 \end{pmatrix}$

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
; б) $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$; в) $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$; г) если $a = 0$, то $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$,

если $a \neq 0$, то не является линейным; д) $\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. **6.**

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & n \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$
 7. a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; б) $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. **8.** a), в) Нет;

б), г), д) да. **9.** а)
$$\begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & -1 & 1 \end{pmatrix}$$
; г) $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$; б), в) нет. **10.** а) $\begin{pmatrix} 4 & 1 \\ -1 & 5 \end{pmatrix}$; б) нет. **11.** (4, 4, -4). **12.** а) $\frac{1}{2} \begin{pmatrix} -1 & 1 \\ -1 & 5 \end{pmatrix}$; б) $\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$; г) $\frac{1}{3} \begin{pmatrix} 7 & 10 \\ -1 & 5 \end{pmatrix}$. **13.** а) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; б) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$; в) $\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. **14.** а) $-\frac{1}{7} \begin{pmatrix} 2 & 9 & -18 \\ 8 & 1 & -16 \\ 5 & 5 & -17 \end{pmatrix}$; б) $\frac{1}{7} \begin{pmatrix} 3 & 6 & -15 \\ 5 & 10 & -25 \\ 4 & 8 & -20 \end{pmatrix}$. **15.** а) dim Im $f=1$, базис (1, 1, 1), dim Ker $f=2$, базис (2, 1, 1), (-1, -2, 1), dim Ker $f=1$, базис (1, 1, 1); в) dim Im $f=3$, dim Ker $f=0$. **16.** а) Ker $f=\{0\}$, Im $f=V$; б) Im $D=M_{n-1}$, Ker $D=M_0$; в) Im $f=1$ 0 образуют все вектора, параллельные оси $f=1$ 0 образуют все векторы, перпендикулярные к оси $f=1$ 1 образуют все векторы, перпендикулярные к оси $f=1$ 2 образуют все векторы, перпендикулярные к оси $f=1$ 3 образуют все векторы, перпендикулярные к оси $f=1$ 4 образуют все векторы, перпендикулярные к оси $f=1$ 5 образуют все векторы, перпендикулярные к оси $f=1$ 5 образуют все векторы, перпендикулярные к оси $f=1$ 5 образ собственным значением 3; б) $f=1$ 6 с собственным значением -3. **20.** а) любой ненулевой $f=1$ 6 с собственным значением -1, любой

ненvлевой вектор с собственным значением k; г) любой ненулевой $x \uparrow \uparrow i$ с собственным значением 1, любой ненулевой $x \uparrow \downarrow i$ с собственным значением -1, любой ненулевой $x \perp i$ с собственным значением 0. **21.** a) $\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$; б) $-\frac{1}{11}\begin{pmatrix} 7 & 36 \\ 24 & 37 \end{pmatrix}$. **22.** а) Над Q,R собственных векторов нет, Hap $C: \lambda_1 = 1 + 2i$, $\{\alpha(1, 1-i) | 0 \neq \alpha \in C\}$, $\lambda_2 = 1 - 2i$, $\{\alpha(1, 1+i) | 0 \neq \alpha \in C\}$; б) над Q собственных векторов нет. HAD R, $C: \lambda_1 = \sqrt{2}$, $\{\alpha(1, \sqrt{2}) | 0 \neq \alpha \in R(C)\}$, $\lambda_2 = -\sqrt{2}$, $\{\alpha(1, -\sqrt{2}) | 0 \neq \alpha \in R(C) \};$ в) над Q, R, $C: \lambda_1 = 1$, $\{\alpha(1, 1) | 0 \neq \alpha \in Q(R, C)\}, \lambda_{\alpha} = -1, \{\alpha(1, -1) | 0 \neq \alpha \in Q(R, C)\}; \Gamma$ над Q, R, C: $\lambda_1 = 1$, $\{\alpha(1, 1, 1) | 0 \neq \alpha \in Q(R, C)\}$, $\lambda_2 = 2$, $\{\alpha(1, 0, 1) | 0 \neq \alpha \in Q(R, C)\}.$ $\{\alpha(1, -3, -5) | 0 \neq \alpha \in Q(R, C)\}$: π) Hap $Q = R = C : \lambda_1 = \lambda_2 = 2$. $\{(2\alpha + \beta, \alpha, \beta) | \alpha, \beta \in O(R, C), \alpha^2 + \beta^2 > 0\},$ $\lambda_3 = -5,$ $\{\alpha(1, 3, 2) | 0 \neq \alpha \in Q(R, C)\}; e)$ Had $Q, R, C: \lambda_1 = \lambda_2 = \lambda_3 = 2$ $\{\alpha(1, 2, 1) | 0 \neq \alpha \in Q(R, C)\}$. **23.** a) $\begin{pmatrix} 2 & 0 \\ 0 & -7 \end{pmatrix}$; 6), B) He приводится; г) $\begin{pmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. **24.** a) $T = \begin{pmatrix} k & m \\ k & -m \end{pmatrix}$, $k, m \in R$, $k \neq 0, m \neq 0, \begin{pmatrix} 5 & 0 \\ 0 & -3 \end{pmatrix}; 6) T = \begin{pmatrix} 6s_1 + 4t_1 & s_1 & t_1 \\ 6s_2 + 4t_2 & s_2 & t_2 \\ 3k & 0 & k \end{pmatrix}, s_1, s_2, t_1, t_2,$ $k \in R$, причем $\det T \neq 0$, $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. **25.** $\begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix}$, $\alpha = 0$ коэффициент растяжения. **26.** t(-1, 1, 1), s(0, 1, -1), p(2, 1, 1), $t, s, p \in R$, $tsp \neq 0$. **27.** $\begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}$.

Тема 19 **1.** а),г) Да; б), в) нет. **2.** а) Нет; б) да. **3.** а) $\sqrt{2\pi}$; б)

 $\sqrt{(b^3-a^3)/3}$; B) 0; Γ) $e^b(b-1)-e^a(a-1)$; $\pi/2$; e) $\arccos\left((a+b)\sqrt{3}/\left(2\sqrt{a^2+ab+b^2}\right)\right)$. **4.** a) $\left|\int_a^b f(x)g(x)dx\right| \le$ $\leq \sqrt{\int_a^b (f(x))^2 dx} \int_a^b (g(x))^2 dx$; $\sqrt{\int_a^b (f(x) + g(x))^2 dx} \leq \sqrt{\int_a^b (f(x))^2 dx} +$ $\sqrt{\int_a^b (g(x))^2 dx}$. **7.** а), в), г) Да; б), д) нет. **8.** а) Нет; б), в), г), д) да. **9.** а) $\frac{1}{\sqrt{10}}(3,-1)$, $\frac{1}{\sqrt{10}}(1,3)$; б) (1,0,0), (0,1,0), (0,0,1); B) $\frac{1}{2}(1,1,1,1)$, $\frac{1}{2}(1,1,-1,-1)$, $\frac{1}{2}(1,-1,1,-1)$, $\frac{1}{2}(1,-1,-1,1)$. **10.** a) $\frac{1}{\sqrt{14}}(1,2,3), \frac{1}{\sqrt{12}}(0,3,-2), \frac{1}{\sqrt{182}}(13,-2,-3); 6) \frac{1}{\sqrt{14}}(1,2,3);$ $-\frac{1}{\sqrt{25}}(1,-5,3), \frac{1}{\sqrt{10}}(-3,0,1);$ B) $(1,0,0), \frac{1}{\sqrt{2}}(0,1,-1),$ $\frac{1}{\sqrt{2}}(0,1,1)$. 11. a) $\frac{1}{2}(2,-2,-1)$; 6) $\frac{1}{2}(1,-1,1,-1)$, $\frac{1}{2}(1,-1,-1,1)$. **12.** (-1, -3, 0, 1), (17, 7, 77, 38). **13.** Het. **14.** a) 5; 6) 10 + 10i. **15.** a), Γ) Het; δ) $\frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix}$; B) $\frac{1}{\sqrt{30}} \begin{pmatrix} \sqrt{10} & 0 & 2\sqrt{10} \\ 2\sqrt{5} & -\sqrt{5} & -\sqrt{5} \\ 2 & 5 & -1 \end{pmatrix}$. **16.** a), в), г) Да; б) да при $\lambda = \pm 1$. **18.** а) Нет; б) да. **19.** Нет. **20.** а) $\begin{pmatrix} 2 & 4 \\ -3 & 5 \end{pmatrix}$; б) $\begin{pmatrix} -1 & 0 & 3 \\ 3 & 1 & -1 \\ 2 & 4 & 2 \end{pmatrix}$. **21.** Поворот на угол $(-\alpha)$. **24.** а)

$$\begin{pmatrix} -3 & -1 \\ -4 & 2 \end{pmatrix}; 6) \frac{1}{5} \begin{pmatrix} 19 & -17 \\ 8 & 6 \end{pmatrix}. 25. a) \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}; 6)$$
$$\frac{1}{\sqrt{6}} \begin{pmatrix} -\sqrt{5} & 1 \\ 1 & \sqrt{5} \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix}.$$

Tema 20

1. a)
$$\begin{pmatrix} 3 & -2 \ -3 & 2 \end{pmatrix}$$
; 6) $\begin{pmatrix} 0 & 3/2 \ 3/2 & 1 \end{pmatrix}$; B) $\begin{pmatrix} 1 & 0 & 0 \ 0 & -3 & -2 \ 0 & -2 & 1 \end{pmatrix}$; r) $\begin{pmatrix} 1 & 2 & 3 \ 2 & -2 & 1 \ 3 & 1 & -3 \end{pmatrix}$; π) $\begin{pmatrix} 0 & 2 & 0 & 0 \ 2 & 1 & 0 & 0 \ 0 & 0 & -2 & -1 \ 0 & 0 & -1 & 3 \end{pmatrix}$. 2.a) $x_1^2 + 3x_2^2 - 4x_1x_2$; 6) $3x_1^2 - 2x_2^2 + x_3^2 + 4x_1x_3 + 2x_2x_3$; B) $-x_1^2 + 2x_3^2 + 6x_1x_2 + 2x_1x_4 + 8x_2x_3 + 10x_3x_4$. 3. a) $y_1^2 + 3y_2^2$, $x_1 = \frac{1}{\sqrt{2}}y_1 + \frac{1}{\sqrt{2}}y_2$, $x_2 = -\frac{1}{\sqrt{2}}y_1 + \frac{1}{\sqrt{2}}y_2$; 6) $y_1^2 - y_2^2$, $x_1 = \frac{1}{\sqrt{2}}y_1 + \frac{1}{\sqrt{2}}y_2$, $x_2 = -\frac{1}{\sqrt{2}}y_1 + \frac{1}{\sqrt{2}}y_2$; B) $-y_1^2 - y_2^2 - 2y_3^2$, $y_1 = -x_1 + x_2 + x_3$, $y_2 = x_2$, $y_3 = x_3$; r) $y_1^2 + y_2^2 + 5y_3^2$, $y_1 = 2x_1 - x_2$, $y_2 = 2x_2 + x_3$, $y_3 = x_3$; π) $y_1^2 - y_2^2$, $y_1 = x_1 + 3x_2$, $y_2 = -2x_2 + x_3$, $y_3 = x_3$; e) $y_1^2 + y_2^2 - y_3^2 - y_4^2$, $x_1 = y_1 + y_4$, $x_2 = y_2 + y_3$, $x_3 = y_2 - y_3$, $x_4 = y_1 - y_4$. 4. a) $y_1^2 + y_2^2 - y_3^2$; 6) $y_1^2 + y_2^2 - y_3^2$; 7) $y_1^2 - y_2^2 - y_3^2$; 8) $y_1^2 - y_2^2$; 7) $y_1^2 - y_2^2 - y_3^2$; 7) $y_1^2 - y_2^2 - y_3^2$; 8) $y_1^2 - y_2^2$; 9) $y_1^2 - y_2^2 - y_3^2$; 8) $y_1^2 - y_2^2$; 9) $y_1^2 - y_2^2 - y_3^2$; 10) $y_1^2 - y_2^2 - y_3^2$; 21, 22, 23, 23, 23, 23, 33, 33, 34, 34

 $-y_1^2 + 11y_2^2 + \frac{10}{11}y_3^2$, $x_1 = y_1 + 3y_2 + \frac{3}{11}y_3$, $x_2 = y_2 + \frac{1}{11}y_3$, $x_2 = y_2$, 7. $f \sim h$, $x_1 = 2z_1 + z_2$, $x_2 = z_2$; 6) $f \sim g$, $x_1 = 2y_1 + y_2$, $x_2 = -y_1 + y_2$. **8.** 1a) $f_1 \sim f_2 \sim f_3$; 16) $f_1 \sim f_3$; 2a) $f_1 \sim f_2 \sim f_3$; 2б) $f_2 \sim f_3$. **9.** а) Положительно определенная; б) определенная; B) отрицательно знакоопределенной. **10.** а) Ни при каком λ ; б) $\lambda > \frac{4}{3}$; в) $\lambda < -\frac{4}{3}$; г) ни при каком λ ; д) $\lambda > \frac{57}{29}$; e) $\lambda > 1$, $\lambda < -2$. **11.** a) Ни при каком λ ; б) $-\frac{1}{2} < \lambda < 1$; в) при любом $\lambda \neq 0$. **12.** а) Ни при каком λ ; б) $|\lambda| < 4$.

Тема 21

1. а), г) Гипербола; б), в) ветвь гиперболы; ж) эллипс; з) полуокружность. **2.** a) При $-\infty < \lambda < -1$, $-1 < \lambda < 0$ гипербола, при $\lambda = -1$ две пересекающиеся прямые, при $\lambda = 0$ парабола, при $\lambda > 1$ эллипс; б) при $-\infty < \lambda < -1$, $\lambda > 1$ гипербола, при $\lambda = \pm 1$ пара параллельных прямых, при $-1 < \lambda < 0$ эллипс. 3. a) $\frac{X^2}{9} + \frac{Y^2}{4} = 1$; б) $4X^2 + 9Y^2 = 0$; в) $4X^2 + 9Y^2 = -36$; г) $9X^2 - Y^2 = 9$; II) $-9X^2 + Y^2 = 9$; e) $9X^2 - Y^2 = 0$; W) $X^2 = \frac{1}{\sqrt{2}}Y$; 3) $(Y + \sqrt{2})^2 = 0$; и) $Y = -\frac{2}{5}$, $Y = -\frac{3}{5}$. **4.** a) $\frac{X^{2}}{1/4} - \frac{\left(Y - \frac{1}{2}\right)^{2}}{1/2} - \frac{\left(Z + \frac{1}{4}\right)^{2}}{1/8} = 1; \ 6) X^{2} + \left(Y - \frac{\sqrt{2}}{3}\right)^{2} - 2\left(Z + \frac{5}{3}\right)^{2} = 0;$

в)
$$\frac{Y^2}{5/2} + \frac{Z^2}{5/4} = 1; \quad \Gamma$$

$$\frac{Y^2}{4} - \frac{Z^2}{4} = 1; \quad \Pi$$

$$-\frac{(X - 12)^2}{43/2} + \frac{(Y - \frac{11}{2})^2}{43/4} + \frac{(Z + 1)^2}{43/10} = 1.5. \text{ a}$$

$$\frac{x^2 + y^2}{a^2} - \frac{z^2}{b^2} = 1; \quad \delta$$

$$\frac{y^2}{a^2} - \frac{x^2 + z^2}{b^2} = 1.$$

$$\begin{pmatrix} 6 & 5 & 1 \\ 0 & 6 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$
. **3.** а), в), д) Нет; б), г), е) да. **4.** а) $\begin{bmatrix} J_1(2), J_1(3) \\ J_2(2), J_3(3) \end{bmatrix}$

$$T = \begin{pmatrix} 2t & s \\ t & s \end{pmatrix}, ts \neq 0;$$
 6) $[J_2(2)], T = \begin{pmatrix} t & t-s \\ -t & s \end{pmatrix}, t \neq 0;$ B)

$$[J_{2}(-1)], \qquad T = \begin{pmatrix} t & s \\ 0 & t/7 \end{pmatrix}, \qquad t \neq 0 ; \qquad \Gamma) \qquad [J_{1}(0), J_{1}(0), J_{1}(3)],$$

$$T = \begin{pmatrix} t & 0 & p \\ 0 & s & 2p \\ 0 & 0 & 3p \end{pmatrix}, tsp \neq 0; \underline{\pi}, [J_3(3)], T = \begin{pmatrix} 0 & 0 & t/4 \\ 0 & t/2 & s/2 \\ t & s & p \end{pmatrix}, t \neq 0; \underline{e}, \underline{e}$$

$$[J_{2}(3),J_{1}(0)], \qquad T = \begin{pmatrix} t & s & p \\ 0 & t/2 & 3p \\ 0 & t/2 & -6p \end{pmatrix}, \qquad tp \neq 0; \qquad \text{\%}) \qquad [J_{4}(2)],$$

$$T = \begin{pmatrix} t & s & p & k \\ 0 & t/3 & s/3 + t/9 & p/3 + 2t/27 + s/9 \\ 0 & 0 & -t/3 & -2t/9 - s/3 \\ 0 & 0 & 0 & -t/9 \end{pmatrix}, \quad t \neq 0. \quad \mathbf{5.} \quad \mathbf{a})$$

$$[J_2(4), J_1(4), J_1(4)], \quad m(x) = (x-4)^2; \quad (x-4)^2, \quad x-2, \quad x-2: \quad 6)$$

 $[J_2(3), J_1(3), J_1(-2)], \quad m(x) = (x-3)^3(x+2); \quad (x-3)^2, \quad (x-3), \quad (x+2).$

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основные учебники

- 1. Александров П.С. Курс аналитической геометрии и линейной алгебры: Учебник / П.С. Александров. М.: Наука, 1979. 512 с.
- 2. Милованов М.В. Алгебра и аналитическая геометрия. Ч. 1: Учебник / М.В. Милованов, Р.И. Тышкевич, А.С.Феденко. Мн.: Амалфея, 2001. 400 с.
- 3. Милованов М.В. Алгебра и аналитическая геометрия. Ч. 2: Учебник / М.В. Милованов, Р.И. Тышкевич, А.С.Феденко. Мн.: Амалфея, 2001. 351 с.
- 4. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры: Учебник / Д.В. Беклемишев. М.: Наука, 1987. 320 с.
- 5. Ильин В.А. Аналитическая геометрия: Учебник / В.А. Ильин, Э.Г. Позняк. М.: Наука, 1981. 232с.
- 6. Ильин В.А. Линейная алгебра: Учебник / В.А. Ильин, Э.Г. Позняк. М.: Наука, 1984. 294 с.

Дополнительные учебники и учебные пособия

- 7. Бугров Я.С. Элементы линейной алгебры и аналитической геометрии: Учебник / Я.С. Бугров, С.М. Никольский М.: Наука. Гл. ред. физ.-мат. лит., 1988. 224 с.
- 8. Гурский Е.И. Основы линейной алгебры и аналитической геометрии: Учебник / Е.И. Гурский Мн.: Выш. шк., 1982. 272 с.
- 9. Дадаян А.А. Аналитическая геометрия и элементы линейной алгебры: Учеб. пособие / А.А. Дадаян, Е.С. Масалова Мн.: Выш. шк., 1981. 224 с.
- 10. Кайгородов В.Р. Курс аналитической геометрии и линейной алгебры: Учеб. пособие / В.Р. Кайгородов Казань: Изд-во Казанского ун-та, 1985. 240 с.

- 11. Кострикин А.И. Линейная алгебра и геометрия: Учеб. пособие / А.И. Кострикин, Ю.И. Манин. М.: Наука, 1986. 304 с.
- 12. Кострикин А.И. Введение в алгебру. Часть 1. Основы алгебры: Учебник / А.И. Кострикин. М.: Физ-мат. лит-ра, 2000. 272 с.
- 13. Кострикин А.И. Введение в алгебру. Часть 2. Линейная алгебра: Учебник / А.И. Кострикин. М.: Физ-мат. лит-ра, 2000. 368 с.
- 14. Постников М.М. Аналитическая геометрия: Учебник / М.М. Постников. М.: Наука, 1986. 416 с.
- 15. Постников М.М. Линейная алгебра: Учебник / М.М. Постников. М.: Наука, 1986. 416 с.
- 16. Размыслович Г.П. Геометрия и алгебра: Учеб. пособие / Г.П. Размыслович, М.М. Феденя, В.М. Ширяев. Мн.: изд-во «Университетское», 1987. 352 с.
- 17. Рублев А.Н. Курс линейной алгебры и аналитической геометрии: Учебник / А.Н. Рублев. М.: Высшая школа, 1972. 424 с.
- 18. Федорчук В.В. Курс аналитической геометрии и линейной алгебры: Учебник / В.В. Федорчук. М.: Изд-во МГУ, 1990.-328 с.
- 19. Апатенок Р.Ф. Элементы линейной алгебры и аналитической геометрии: Учеб. пособие / Р.Ф. Апатенок, А.М. Маркина, Н.В. Попова, В.Б. Хейнман. Мн.: Выш. шк., 1986. 272 с.

Сборники задач

- 20. Беклемишева Л.А. Сборник задач по аналитической геометрии и линейной алгебре / Л.А. Беклемишева, А.Ю. Петрова, И.А. Чубаров М.: Наука, 1987. 496 с.
- 21. Клетенник Д.В. Сборник задач по аналитической геометрии / Д.В. Клетенник М.: Наука, 1980. 240 с.
- 22. Моденов П.Р. Сборник задач по аналитической геометрии / П.Р. Моденов, А.С. Пархоменко М: Наука, 1976. 385 с.

- 23. Проскуряков И.В. Сборник задач по линейной алгебре / И.В. Проскуряков М.: Лаборатория Базовых Знаний, 2000. 384 с.
- 24. Сборник задач по алгебре / Под ред. А.И. Кострикина. М.: Факториал, 1995. 454 с.
- 25. Сборник задач по алгебре и аналитической геометрии: Учеб. пособие / А.А. Бурдун, Е.А. Мурашко, М.М. Толкачев, А.С. Феденко; Под ред. А.С. Феденко. 2-е изд. Мн.: Універсітэцкае, 1999 302 с.
- 26. Сборник задач по геометрии и алгебре: Учеб. пособие / Г.П. Размыслович, М.М. Феденя, В.М. Ширяев; Под ред. В.М. Ширяева. Мн.: Университетское., 1999. 383 с.
- 27. Сборник задач по линейной алгебре и аналитической геометрии: Учеб. пособие / Р.Ф. Апатенок, А.М. Маркина, В.Б. Хейнман; Под ред. В.Т. Воднева. Мн.: Выш. шк., 1990. 286 с.
- 28. Фаддеев Д.К. Сборник задач по высшей алгебре / Д.К. Фаддеев, И.С. Соминский СПб.: Лань, 1998. 288 с.

Методические пособия и руководства

- 29. Данко П.Е. Высшая математика в упражнениях и задачах: Учеб. пособие. В 2 ч. Ч. 1 / П. Е. Данко, А.Г. Попов, Т.Я. Кожевникова. Мн.: Выш. школа, 1986. 304 с.
- 30. Жевняк Р.М. Высшая математика: Основы аналитической геометрии и линейной алгебры. Введение в анализ: Учебник/ Р. М. Жевняк, А.А. Карпук. Мн.: Выш. школа, 1992. 384 с.
- 31. Гусак А.А. Справочное пособие по решению задач: аналитическая геометрия и линейная алгебра / А.А. Гусак Мн.: ТетраСистемс, 1998. 288 с.
- 32. Волков В.А. Задачник-практикум по аналитической геометрии и высшей алгебре: Учеб. пособие / В.А. Волков, Т.А. Ефимова, А.А. Райнес, Р.А. Шмидт Л.: Изд-во Ленингр. ун-та, 1986.-262 с.
- 33. Линейная алгебра с элементами аналитической геометрии: Конспект лекций с методическими указаниями и контрольными заданиями для студентов-заочников / Авт.-сост. А.А. Стакун. СПб.: Политехника, 2000 120 с.

- 34. Методические рекомендации по выполнению лабораторных работ по курсу «Аналитическая геометрия»: В 2 ч. / Сост. Л.В. Кирилюк. Гродно: ГрГУ, 1986 1987. 78 с.
- 35. Лельчук М.П. Практические занятия по алгебре и теории чисел: Учеб. пособие/ М. П. Лельчук, И.И. Полевченко, А.М. Радьков, Б.Д. Чеботаревский. Мн.: Выш. шк., 1986. 302 с.
- 36. Рубан П.И. Руководство к решению задач по аналитической геометрии / П.И. Рубан, Е.Е. Гармаш М.: Высш. шк., 1963. 314 с.
- 37. Рябушко А.П. Сборник индивидуальных заданий по высшей математике: Учебное пособие. В 3 ч. Ч. 1 / А. П. Рябушко, В.В. Бархатов, В.В. Державец, И.Е. Юруть. Мн.: Выш. шк., 1990. 270 с.

Справочники по высшей математике

- 38. Бронштейн И.Н. Справочник по математике для инженеров и учащихся ВТУЗов / И.Н. Бронштейн, К.А. Семендяев. М.: Наука, 1981.—720 с.
- 39. Воднев В.Т. Математический словарь высшей школы / В.Т. Воднев, А.Ф. Наумович, Н.Ф. Наумович. Мн.: Выш. шк., 1984. 527 с.
- 40. Воднев В.Т. Основные математические формулы / В.Т. Воднев, А.Ф. Наумович, Н.Ф. Наумович. Мн.: Выш. шк., 1988. 269 с.
- 41. Выгодский М.Я. Справочник по высшей математике для ВУЗов и ВТУЗов / М.Я. Выгодский. М.: Джангар, 2000. 864 с.
- 42. Гусак А.А. Справочник по высшей математике / А.А. Гусак, Г.М. Гусак. Мн.: Навука і тэхніка, 1991. 480 с.
- 43. Картавов С.А. Математические термины: Справ.-библиогр. словарь / С.А. Картавов К.: Выща шк. Головное изд-во, 1988.-295 с.
- 44. Корн Γ . Справочник по математике для научных работников и инженеров / Γ . Корн, Т. Корн. М.: Наука, 1984. 832 с.
- 45. Мишина А.П. Высшая алгебра / А.П, Мишина, И.В. Проскуряков. М.: Физматгиз, 1962. 300 с.

Литература по компьютерным математическим системам

- 46. Аладьев В.З. Решение физико-технических и математических задач с пакетом Maple V / В.З. Аладьев, М.А. Богдявичюс. Вильнюс.: Техника, 1999. 686 с.
- 47. Аладьев В.З. Автоматизированное рабочее место математика / В.З. Аладьев, М.Л. Шишаков. М.: Лаборатория базовых знаний, $2000.-751~\rm c.$
- 48. Капустина Т.В. Компьютерная система Mathematica 3.0 для пользователей: Справ. Пособие / Т.В. Капустина. М.: СОЛОН –Р, 1999. 240 с.
- 49. Матросов А.В. Марle 6. Решение задач высшей математики и механики / А.В. Матросов. СПб.: БХВ Петербург, 2001.-528 с.
- 50. Monagan M.B. Maple 6. Programming Guide / M.B. Monagan, K.D. Geddes, K.M. Heal, G. Labahn, S.M. Vozkoetter, J. Mccarron. Waterloo Maple Inc., 2000 586 p.
- 51. Wolfram S. The Mathematica Book. Third Edition. Mathematica Version 3 / S. Wolfram Cambridge University Press, 1998.

Рабочая программа курса «Аналитическая геометрия и линейная алгебра»

		Количество	
		часов	
№	Название темы	ий	СК
темы		лекций	иче
] н	IKTI
			ихпрактическ
			ИХ
1	Матрицы и операции над ними	2	2
2	Определитель матрицы	2	2
3	Обратная матрица. Ранг	2+2	2
	матрицы		
4	Системы линейных уравнений	2	2
5	Однородные системы линейных	2	2
	уравнений		
6	Векторы. Метод координат	2	2
7	Скалярное произведение	2	2
	векторов		
8	Векторное и смешанное	2	2
	произведения векторов		
9	Прямая линия на плоскости	2+2	2
10	Плоскость в пространстве	2	2
11	Прямая линия в пространстве	2	2
	Контрольная работа №1		2
12	Кривые второго порядка	4	2
13	Поверхности второго порядка	2	2
14	Комплексные числа	2	2
15	Группа. Кольцо. Поле	2	2
16	Многочлены	2	2
17	Линейные пространства	2	2
18	Линейный оператор	2	2
19	Линейный оператор в	4	2
	евклидовом и унитарном		
	пространствах		
20	Квадратичные формы	2+2	2
21	Приведение уравнений фигур	2	2
	второго порядка к		
	каноническому виду		
22	Жорданова форма матрицы	2	2
	Контрольная работа №2		2
Итого:		54	48

Рабочая программа курса «Аналитическая геометрия и высшая алгебра»

		Количество часов		
№ темы	Название темы	лекций	ихпрактическ	хлабораторны
1	Матрицы и операции над ними	2	2	
2	Определитель матрицы	2	2	2
3	Обратная матрица. Ранг матрицы	2	2	
4	Системы линейных уравнений	2	1	
5	Однородные системы линейных уравнений	2	1	2
6	Векторы. Метод координат	2	2	
7	Скалярное произведение векторов	2	2	2
8	Векторное и смешанное произведения векторов	2	2	
9	Прямая линия на плоскости	2	2	
10	Плоскость в пространстве	2	2	2
11	Прямая линия в пространстве	2	2	
	Контрольная работа №1		2	
12	Кривые второго порядка	4	2	2
13	Поверхности второго порядка	2	2	
14	Комплексные числа	2	2	
15	Группа. Кольцо. Поле	2	1	2
16	Многочлены	2	1	
17	Линейные пространства	2	2	
18	Линейный оператор	2	2	
19	Линейный оператор в евклидовом и унитарном	4	2	2
20	пространствах	2	2	
20	Квадратичные формы	2	2	2
~1	Приведение уравнений фигур второго порядка к каноническому виду		2	2
22	Жорданова форма матрицы	2	2	
	Контрольная работа №2		2	
	Итого:	48	44	16