Algoritmos e Estruturas de Dados no Big Data MLP - ESBD1 - Aula 5

Importância dos breaks a cada 50 min / 1 hora

Overview:

- Analisar a Atividade 2
- Pilhas e recursão
 - Recapitular definição de grafos
- Busca em profundidade: o que é alcançado a partir de um ramo?

motivada pelos 6 grans de separação

Analisando a Atividade 2:

https://colab.research.google.com/drive/1CzzCaPp-lrL2s87ovmeULyiqmOqnEUG-#scrollTo=Sy4Z7P9mdhxs

# Médio de Arestas por Vértice # Total de Arestas # Vértices (n) $5 \parallel 5n$	Calculando o # de ar	restas em cada teste		D ton gro	lo
# Vértices (n) $5 \parallel 5n$		# Médio de Are	estas por Vértice # T	otal de Arestas	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	# Vértices (n)	5 5n	raiz(n) n * raiz(n)	n/5 n/2/5	Latic
$= 31.623$ $= 31.623$ 200000 $5*10000 = 1000*10000 = 20000 \times 10000$ $50000 = 10000000$	100	5 × 100 = 500).	20 * 100 = 2000	
50000 1000000 = 20,000 000		5 * 1000 = 5000	31,623×1000 = 31.623	200 1000 =	0
		1			0
5 * 100000 = 316.227 * 100000 = 20000 * 100000 = 20000000000		./10	l.x	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00

tan de grole cresce lineaunte no # de vertices

Calculando o grau de separação médio considerando todos os caminhos re duy o # de # Médio de Arestas por Vértice || # Total de Arestas # Vértices (n) 5 || 5n $raiz(n) \parallel n * raiz(n)$ n/5 || n^2/5 2.27 1.82 1.56 1.96 💆 3.21 1000 1.62 4.3 10000 2.0 1.63 X /O 5.31 4 100000 2.02 🐇 limite de memória

0	
T	. —

rescrito "monginal"

Análise: Observando a variação dos valores ao longo de uma linha,

- podemos notar que o número de saltos diminui
 - quando cresce o número médio de arestas por vértice.
- Atentando à variação ao longo de uma coluna
 - o notamos que, em geral, o número de saltos aumenta
 - quando cresce o número de vértices.

Vale notar que, mesmo quando o número médio de arestas é constante,

- o crescimento no número de saltos é
 - muito pequeno em relação ao crescimento do número de vértices.
- Para entender o motivo, vale considerar
 - o crescimento exponencial do número de nós alcançados.

Ademais, quando o número médio de arestas cresce

- em função do número de vértices
 - o crescimento no número médio de saltos é ainda menor,
 - ou mesmo înexistente.

orucieto O(lgn) ledo n= IVI

de nós
alcangados

5 -- 25 - 25 - 3

nive

9

Calculando o grau de separação médio considerando apenas caminhos alternantes # Médio de Arestas por Vértice | # Total de Arestas 32/2=16 orestos # Vértices (n) 5 || 5n raiz(n) || n * raiz(n) $n/5 || n^2/5$ 100 2.9 2.42 2.1 2000 31K 2.54 4.24 2.06 1000 2.15 10000 5.6 2.69 limite de memória 100000 7.03 2.49

, mander executation controlled a cogainal taxona,	erimina.		
 podemos fazer as mesmas observações feitas n 	5 5n	raiz(n) n * raiz(n)	
 No entanto, comparando as tabelas percebemos que 	2.27	1.82	
o número de saltos médio aumenta quando	3.21	1.96	
 vamos da primeira para a segunda tabela 			

4.3

5.31

2.0

2.02

n/5 || n^2/5

1.56

1.62

1.63

limite de memória

Uma maneira de interpretar a restrição dos caminhos alternantes

- é pensar que, em média, cada vértice tem
 - o metade dos vizinhos que teria sem a restrição.
- Uma consequência disso é que, fixada uma célula
 - da primeira coluna na primeira tabela,
- o valor dela é maior que o da célula
 - à direita da correspondente dela na segunda tabela.

No entanto, fixada uma célula da segunda coluna na primeira tabela,

- o valor dela é menor que o da célula à direita
 - o da correspondente dela na segunda tabela. Por que?

Uma explicação para essas últimas observações é que,

- o embora o maior número de arestas encurte os caminhos,
- a regra do caminho alternante torna inviáveis
 - caminhos de comprimento 1
 - quando os extremos têm o mesmo gênero
 - o e caminhos de comprimento 2
 - quando os extremos têm gêneros distintos.
- Por isso, quando o número médio de saltos é próximo ou inferior a 2,
 - é muito difícil que o cenário com mais arestas
 - e caminho alternante "vença".

Pilhas: Comportamento e exemplo de pilha,

Stack

Last

In

First

Out

Implementação em vetor e em lista ligada.

Soma Seg Rec (int n): se m = O devolvo O Relação com recursão. devolva m+ soma Seg Rec (n-1) sona Seg Rec (4) som Sug Rec (3) song Seg Rec (2) Dona Sig Rec(1) SSRO Jona Sig Roc (g) 55R(3) 68+4=10 Exemplo/aplicação?

http://bit.ly/EduMolinaCodigosAula5

Recapitulando definição e exemplos de Grafos: não orientados

orientados ou dirigidos

Busca em profundidade: Ideia de visitar vértices ao longo de um caminho,

exemplo com cálculo de tempos de abertura e fechamento.

Quais vértices são garantidamente alcançados a partir de um ramo?

Pseudocódigo da busca em profundidade:

busca Prof Rec (G=(V,E), origem v): visitado [v]=1 abertua [v] = t; t+=] P/eada aresta (v,w) EE: se le m foi visitado: busca Prof Rec (G, w) fechanato [v]=t; t+=

Inicialjação p/ tode v e V: visitedo [N] = 0 // inicializa abertura l'achairte parianers globers ou passades por referència

• análise de eficiência. - O(m+m), sudo m = |V| = m = |E|

Códigos do Edu -

https://colab.research.google.com/drive/1QdOsCbcWFOLkdal1X2S30a7hZ359UwTb?usp=sharing (http://bit.ly/EduMolinaCodigosAula5) MLP ESBD1 Aula 5 Códigos

Material complementar

Pilhas, recursão e busca em profundidade:

- [PDF] Pilha implementada em vetor, aplicação com parênteses e colchetes, pilha de execução, relação de pilha com recursão -http://bit.ly/MarioSanFeliceCompPilhaVetorPDF
- [PDF] Pilhas em listas encadeadas (com e sem nó cabeça) -http://bit.ly/MarioSanFeliceCompPilhaListaPDF
- [Playlist] Busca em profundidade, conectividade -<u>http://bit.ly/MarioSanFeliceBuscaProfVideo</u>
- [PDF] Busca em profundidade, conectividade http://bit.ly/MarioSanFeliceCompBuscaProfPDF

Ordenação Topológica e DAGs

- [Playlist] Ordenação topológica, DFS, DAGs aleatórios -http://bit.ly/MarioSanFeliceOrdTopVideo
- [PDF] Ordenação topológica, DFS, DAGs aleatórios -http://bit.ly/MarioSanFeliceCompOrdTopPDF