

Enter Seat No:	-

SATISH PRADHAN DNYANASADHANA COLLEGE, THANE

(Arts, Science and Commerce)
Re-Accredited "B+" Grade (CGPA 2.69) by NAAC, ISO 21001:2018 (Certified)

(Affiliated To University of Mumbai)

CERTIFICATE

This is to certify that Mr.: Pranav Anil Taware of TY. BSc Computer Science (Semester-V) Class has successfully completed all the practical work in subject Artificial Intelligence under the guidance of Asst Prof. Dnyaneshwar Deore (subject in charge) during Year 2024-25 in partial fulfilment of Computer Science

Practical Examination conducted by University of Mumbai.

Tracerous Estatistical Conductor of Car	
Subject Incharge	Head of Department
Date:	
	External Incharge

SATISH PRADHAN DNYANASADHANA COLLEGE, THANE [A.Y. 2024-25]

Name: Pranav Anil Taware Std: TY. B.Sc. Computer Science

Subject: Artificial Intelligence- Practical Roll no.: 86, Batch: B, Div: B

INDEX

SR. NO.	PRACTICAL TITLE	DATE	PAGE NO.	SIGN.
1.	 Breadth First Search & Iterative Depth First Search Implement the Breadth First Search algorithm to solve a given problem. Implement the Iterative Depth First Search algorithm to solve the same problem. 	10-07-2024	1-2	
2.	 A* Search and Recursive Best-First Search:- Implement the A* Search algorithm for solving a pathfinding problem. Implement the Recursive Best-First Search algorithm for the same problem. 	24-07-2024	3-5	
3.	 Decision Tree Learning: Implement the Decision Tree Learning algorithm to build a decision tree for a given dataset. Evaluate the accuracy and effectiveness of the decision tree on test data. Visualize and interpret the generated decision tree. 	31-07-2024	6-11	
4.	 Feed Forward Back Propagation Neural Network Implement the Feed Forward Back Propagation algorithm to train a neural network. Use a given dataset to train the neural network for a specific task. 	07-08-2024	12-13	
5.	 Support Vector Machines (SVM) Implement the SVM algorithm for binary classification. Train an SVM model using a given dataset and optimize its parameters. Evaluate the performance of the SVM model on test data and analyse the results. 	21-08-2024	14-20	

6.	 Ad boost Ensemble Learning Implement the Adaboost algorithm to create an ensemble of weak classifiers. Train the ensemble model on a given dataset and evaluate its performance. Compare the results with individual weak classifiers. 	28-08-2024	21	
7.	 Naive Bayes' Classifier Implement the Naive Bayes' algorithm for classification. Train a Naive Bayes' model using a given dataset and calculate class probabilities. Evaluate the accuracy of the model on test data and analyse the results. 	04-09-2024	22-32	
8.	Implement the K-NN Algorithm for classification or regression. Apply K-NN Algorithm on the given dataset & predict the class or value for test data.	18-09-2024	33-37	
9.	 Association Rule Mining Implement the Association Rule Mining algorithm (e.g., Apriori) to find frequent itemsets. Generate association rules from the frequent itemsets and calculate their support and confidence. Interpret and analyze the discovered association rules. 	25-09-2024	38-46	