Algoritmos - Aula 12

Fernando Raposo

Vamos ver

- Complexidade Computacional
 - Conceitos Introdutórios
 - Problemas Computacionais
 - Problemas de Busca
 - Problemas de Decisão
 - Caixeiro Viajante
 - Computabilidade
 - Solubilidade
 - Problemas Classe P
 - Problemas Classe NP
 - Redutibilidade
 - \circ P \neq NP

Introdução

 Você já se perguntou se existe um problema que na teoria você saheria resolver, mas na prática não seria possível?

- Correção Algorítmica
 - Um algoritmo é dito **CORRETO** se, para cada instância, ele gera a saída correta.
 - Dizemos então que um Algoritmo Correto RESOLVE um dado Problema Computacional.
- Complexidade: Definição Teórica
 - É o consumo de tempo do <u>melhor algoritmo possível</u> para um problema (no pior caso).
- Mas... Já conhecemos o melhor algoritmo?
 - Podemos dizer que quase sempre o melhor algoritmo <u>ainda é desconhecido</u>.

Problemas Computacionais

Lembram-se destas questões?

- Dados dois vértices a e b de um grafo, e um número n. Encontrar um caminho de a a b neste grafo que tenha comprimento menor que n. (Ou confirmar que não existe tal caminho)
 - Encontrar um ciclo hamiltoniano (ou seja, um ciclo que passe por todos os vértices) num grafo dado (ou constatar que tal ciclo não existe)

O Dado um número natural n, encontrar um número natural p, maior que 1 mas menor que n, que seja divisor de n (ou constatar que tal p não existe).

Ou destas

- Menor caminho: Dados vértices a e b de um grafo, encontrar um caminho de comprimento mínimo de a a b no grafo (ou constatar que não há caminho algum de a a b)
- Encontrar o MDC entre dois números.

Problemas Computacionais

- Os problemas em verde categorizam-se como: Problemas de Busca e/ou Decisão
 - Respostas: SIM ou NÃO
- Os problemas em azul categorizam-se como: Problemas de Otimização
 - Os problemas de otimização podem ser formulados como problema de busca se consideramos que cada resposta R tem um custo C e buscamos pelas respostas que excedem <u>um limiar</u> ou atingem um <u>valor máximo</u>.

Caixeiro Viajante

- O algoritmo do Caixeiro Viajante é um problema de <u>otimização</u>.
- Vimos que calcular o trajeto ótimo tem um custo computacional altíssimo mesmo para instâncias pequenas.

o Hipóteses: (n-1)!

Complexidade: O(n!)

 Logo vamos tentar caracterizar os problemas...

Função de		Taman	ho da Instâ	incia do Pro	oblema	1
complexidade	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	segundos	segundos	segundos	segundos	segundos	segundos
n²	0,0001	0,0004	0,0009	0,0016	0,0025	0,0036
	segundos	segundos	segundos	segundos	segundos	segundos
n³	0,001	0,008	0,027	0,064	0,125	0,216
	segundos	segundos	segundos	segundos	segundos	segundos
n 5	0,1	3,2	24,3	1,7	5,2	13,0
	segundos	segundos	segundos	minutos	minutos	minutos
2"	0,001	1,0	17,9	12,7	35,7	366
	segundos	segundos	segundos	dias	anos	séculos
3 ⁿ	0,059	58	6,5	3855	2 × 10 ⁸	1,3 × 10 ¹³
	segundos	minutos	anos	séculos	séculos	séculos

Computabilidade

- Hoje em dia aprendemos na escola a resolver equações quadráticas: $ax^2 + bx + c = 0$ (lembram de Báskara?) $x = \frac{1}{2a}(-b \pm \sqrt{b^2 4ac})$
- Foram achadas fórmulas para resolver equações de grau 3 e 4, e iniciou-se a busca incansável pela <u>fórmula quíntica</u>;
- Até que a álgebra moderna levou a uma resposta surpreendente: Não Há!
- Mas... qual o obstáculo para a fórmula quíntica?

• Por que <u>não existe</u> fórmula de x tal que: $ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$

Computabilidade

- Quando falamos de <u>fórmula</u>, estamos falando de uma sequência de passos finita e bem determinada que deve ser seguida com cuidado para obtermos o resultado;
- Ou seja, não há algoritmo estruturado capaz de resolver a quíntica;

Computabilidade

- Um problema computável é aquele em que há uma máquina de Turing capaz de <u>solucioná-lo</u>.
 - <u>Máquina de Turing:</u> Uma seqüência finita de instruções, as quais podem ser realizadas mecanicamente, em tempo finito.

Solubilidade

Problema Solucionável

 Um problema é dito Solucionável ou Totalmente Solucionável se existe um algoritmo que solucione o problema tal que sempre termine para qualquer entrada, com uma resposta afirmativa (aceita) ou negativa (rejeita).

Problema Não-solucionável

 Um problema é dito Não-Solucionável se não existe um algoritmo que solucione o problema tal que sempre termine para qualquer entrada.

Problema Parcialmente Solucionável

- Um problema é dito Parcialmente Solucionável se existe um algoritmo que solucione o problema tal que termine quando a resposta é afirmativa (aceita).
- Mas, quando a resposta esperada for negativa, o algoritmo pode terminar (rejeita) ou entrar em loop infinito.

Solubilidade (cont...)

- Problema Completamente Insolúvel ou Não-Computável
 - Um problema é dito Completamente Insolúvel ou Não-Computável se não existe um algoritmo que solucione o problema tal que termine quando a resposta é afirmativa (aceita).

Complexidade

- Concluímos que o desenvolvimento de diversos algoritmos (procedimentos computacionais de passo-a-passo) nos trouxe a noção clara de Computabilidade;
- Entretanto, a incomputabilidade tornou-se uma das leis que limitam a nossa capacidade de resolver problemas;
- Há classes de problemas em que um esforço computacional consegue chegar a uma solução em tempo polinomial;
- Há classes de problemas que <u>possuem solução</u>, mas uma solução custosa (exponencial, intratável)

Possibilidade de Computabilidade

- É a classe de todos os problemas de decisão que podem ser <u>resolvidos</u> por algoritmos polinomiais;
- São chamados de problemas tratáveis, ou problemas fáceis, cujo algoritmo é de ordem *O(n^k)*;
 - Ordenações (Mergesort, Bubblesort, Heapsort)
 - Busca Binária
 - Busca em Grafos (Profundidade, Largura, Identificar ciclos)
 - Resolver equações do segundo grau

- Um problema da classe P é "fácil" de resolver em tempo polinomial e "fácil" de verificar.
- Se eu recebo um array e digo que ele está ordenado, verificar a suposta ordenação é feito em tempo polinomial, assim como a implementação da ordenação em si.

- Formada pelos problemas de decisão que não podem ser resolvidos em tempo polinomial MAS <u>possuem um verificador polinomial para a</u> <u>resposta SIM</u>;
- **NP** = "Nondeterministic Polynomial time" não confundir com Não-Polinomial;

- Podemos lembrar de problemas de Criptografia, o do Caixeiro Viajante, e o Sudoku que veremos adiante.
- Vocês sabem jogar Sudoku?

	5	3			7				
Exemplo 1	6			1	9	5			
 Números de 1-9; Números com repetição pos 		9	8					6	
 Números sem repetição nos quadrados; 	8				6				3
 Números sem repetição em cada linha ou coluna. 	4			8		3			1
	7				2				6
		6					2	8	
				4	1	9			5
					8			7	9

	5	3			7				
Exemplo 1	6			1	9	5			
No primeiro quadrado A o 7 cetão feltendo:		9	8					6	
1, 2, 4 e 7 estão faltando;	8				6				3
	4			8		3			1
	7				2				6
		6					2	8	
				4	1	9			5
					8			7	9

	5	3			7				
Exemplo 1	6			1	9	5			
No primeiro quadrado A o 7 cetão feltondo:		9	8					6	
1, 2, 4 e 7 estão faltando;Assim, se formos começar	8				6				3
com este quadrado, há 4 opções	4			8		3			1
	7				2				6
		6					2	8	
				4	1	9			5
					8			7	9

	5	3	1		7				
Exemplo 1	6	2		1	9	5			
No primeiro quadrado		9	8					6	
1, 2, 4 e 7 estão faltando;Depois, temos 3 opções	8				6				3
Depois, temos 2 opçõesNo final 4! apenas para este	4			8		3			1
quadrante;	7				2				6
		6					2	8	
			2.2	4	1	9			5
					8			7	9

	5	3			7				
Exemplo 1	6			1	9	5			
E faremos similar no seguinte		9	8					6	
com 5!	8				6				3
	4			8		3			1
	7				2				6
		6					2	8	
				4	1	9			5
					8			7	9

	5	3			7				
Exemplo 1	6			1	9	5			
E faremos similar no seguinte		9	8					6	
com 8! Resolver isso, além de ser	8				6				3
difícil, gasta muito tempo (Fatorial);	4			8		3			1
	7				2				6
		6					2	8	
				4	1	9			5
					8			7	9

	5	3			7				
Exemplo 1	6			1	9	5			
Contudo, se uma pessoa		9	8					6	
vem e me diz: "Olha eu resolvi esse Sudoku!". Eu consigo	8				6				3
verificar linhas, colunas e quadrados em tempo polinimial	4			8		3			1
	7				2				6
		6					2	8	
				4	1	9			5
					8			7	9

- Resumindo:
- Um problema NP é "difícil" de resolver e "fácil" de verificar.
- Exemplo 2:
 - Equação do segundo grau: É fácil verificar se um dado inteiro x satisfaz a equação ax² + bx + c = 0: basta calcular o número a x x x x + b x x + c e compará-lo com zero. Se x satisfaz a equação então o número de dígitos de x não passa do número de dígitos de (a, b, c) e portanto os cálculos consomem tempo limitado por um polinômio no números de dígitos de (a, b, c). Portanto, o problema da equação do segundo grau pertence à classe NP.

- Um momento... a equação de segundo grau faz parte tanto da classe P quanto da NP?
 - Sim, pois se eu consigo resolver em tempo polinomial, eu consigo tanto verificar, quanto, dados números inteiros a, b e c, encontrar um número inteiro x tal que ax² + bx + c = 0 (ou constatar que tal x não existe).

- Portanto: P ⊆ NP
- Ou seja, se um algoritmo pode ser resolvido em tempo polinomial, ele também pode ser verificado em tempo polinomial.

$P \neq NP$ ou P = NP?

- Qual a implicação disto? O que aconteceria se uma pessoa conseguisse provar que P = NP?
- Questão de 1 milhão de dólares;

Já se você provar que P ≠ NP, você vai demonstrar que existe uma classe de problemas que não tem solução.

$P \neq NP$ ou P = NP?

- Toda a segurança da informação (algoritmos de criptografia) e de segurança na web tornariam-se vulneráveis a ataques;
- TUDO se tornaria mais eficiente, tal como transportes, entendimento de DNA,
 Bitcoin...
- Contudo até hoje ninguém encontrou ainda um problema de NP que não esteja em P, isto é, um problema polinomialmente verificável <u>para o qual não</u> <u>existe algoritmo polinomial</u>.

Redutibilidade

- Sabemos que o status de muitos problemas em NP é incerto, portanto é bom verificar a sua complexidade relativa;
- Informalmente, dizemos que um problema Y não é mais difícil que um problema X se Y for um subproblema, ou caso particular, de X

Redutibilidade

- É comum na resolução de um problema "Y", reduzi-lo a um problema "X";
- Quadrado Perfeito:
 - O Dado um número natural n, encontrar um número natural x tal que $x^2 = n$ (ou constatar que tal x não existe).
- Equação do segundo grau:
 - O Dados números inteiros a, b e c, encontrar um número inteiro x tal que $ax^2 + bx + c = 0$ (ou constatar que tal x não existe)

Assim, vemos que o problema do quadrado perfeito é um caso particular, ou um subproblema da equação do segundo grau.

 Ou seja, o problema do quadrado perfeito não é mais difícil (ou pode ser reduzido) que o problema da equação do segundo grau.

Redutibilidade

Portanto entendemos que:

"Se Y não é mais difícil que X e X está na classe P então Y também está na classe P"

ou

""Se Y é redutível a X e X está na classe P então Y também está na classe P"

Problemas Classe NP-Completo e NP-Difícil

- Um problema X é NP-Difícil se todos os problemas em NP são redutíveis a ele em tempo polinomial;
- Um problema é NP-Completo se for NP-Difícil e estiver em NP;

