Paul Gustafson

Texas A&M University - Math 447

Instructor: Dr. Johnson

HW 4, due 2/21

18.3 Prove that $\int_1^\infty (1/x) dx = \infty$.

Proof. Let $f(x) = (\chi_{(1,\infty)}(x))(1/x)$. Define $\phi_m = \sum_{n=1}^m \frac{1}{n+1} \chi_{(n,n+1)}$. Then for all $m \geq 1$, we have $\phi_m \leq f$. Hence, by the monotonicity of the integral, $\int f \, dm \geq \int \phi_m \, dm = \sum_{n=1}^m \frac{1}{n+1} \to \infty$ as $m \to \infty$.

4 Find (f_n) nonnegative measurable functions that converge uniformly to 0, but $\lim_{n\to\infty} \int f_n = 1$.

Proof. Let
$$f_n = (1/n)\chi_{(0,n)}$$
.

6 Suppose (f_n) nonnegative, measurable decrease pointwise to f, and that $\int f_k < \infty$ for some k. Prove that $\int f = \lim_{n \to \infty} f_n$. Also, give an example showing that the condition $\int f_k < \infty$ is necessary.

Proof. For the counterexample, let $f_n = \chi_{(n,\infty)}$ for $n \ge 1$.

For the other part of the problem, for all $n \geq k$, let $g_n = f_k - f_n$. Since (f_n) is nonnegative and decreasing, $(g_n)_{n \geq k}$ is increasing and nonnegative. Since $g_n \leq f_k$, we have $\int g_n < \infty$ for all $n \geq k$. Hence, using the linearity of the integral on integrable functions and the MCT,

$$\int f \, dm = -\int (f - f_k) \, dm + \int f_k \, dm$$

$$= -\int \lim_{n \to \infty} f_k - f_n \, dm + \int f_k \, dm$$

$$= -\lim_{n \to \infty} \left(\int f_k - f_n \, dm \right) + \int f_k \, dm$$

$$= -\lim_{n \to \infty} \int -f_n \, dm$$

$$= \lim_{n \to \infty} \int f_n \, dm$$

7 Let $\mu: \mathcal{A} \to [0, \infty]$ be a nonnegative, finitely additive, set function defined on a σ -algebra \mathcal{A} . Prove that:

- 1. $\mu(E) \leq \mu(F)$ whenever $E, F \in \mathcal{A}$ satisfy $E \subset F$.
- 2. if $\mu(\emptyset) \neq 0$, then $\mu(E) = \infty$ for all $E \in \mathcal{A}$.

Proof. For (1), we have $\mu(F) = \mu(E) + \mu(E \setminus F) \ge \mu(E)$. For (2), if $\mu(\emptyset) \ne 0$, we have $\mu(E) = \mu(E \cup \bigcup_{i=1}^{n} \emptyset) = \mu(E) + n\mu(\emptyset) \to \infty$ as $n \to \infty$.

1

8 Define μ and \mathcal{A} as in (7). Prove that TFAE:

- 1. $\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$ for every pairwise disjoint $(E_n) \subset \mathcal{A}$.
- 2. $\mu(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$ for every increasing $(E_n) \subset \mathcal{A}$.

Proof. To prove (2) implies (1), let $F_k = \bigcup_{n=1}^k E_n$. Then (F_k) is an increasing sequences of sets in \mathcal{A} , so, by (2), $\mu(\bigcup_{n=1}^{\infty} E_n) = \mu(\bigcup_{k=1}^{\infty} F_k) = \lim_{k \to \infty} \mu(F_k) = \lim_{k \to \infty} \sum_{n=1}^k \mu(E_n) = \sum_{n=1}^{\infty} \mu(E_n)$.

For (1) implies (2), let (F_n) be the disjointification of (E_n) . That is, $F_n := E_n \setminus (\bigcup_{k < n} E_k)$, so for all N, we have $\bigcup_{n=1}^N F_n = \bigcup_{n=1}^N E_n$. Then, applying (1) to F_n , we have $\mu(\bigcup_{n=1}^\infty E_n) = \mu(\bigcup_{n=1}^\infty F_n) = \sum_{n=1}^\infty \mu(F_n) = \lim_{N \to \infty} \sum_{n=1}^N \mu(F_n) = \lim_{N \to \infty} \mu(E_N)$.

15 Let f be nonnegative and measurable. Prove that $\int f < \infty$ if and only if $L := \sum_{i=-\infty}^{\infty} 2^k \, m\{f>2^k\} < \infty$.

Proof. Note that $f \leq \sum_{k=-\infty}^{\infty} 2^{k+1} \chi_{\{2^k < f \leq 2^{k+1}} \leq 2 \sum_{k=-\infty}^{\infty} 2^k \chi_{\{f > 2^k\}}$. Hence, $\int f \leq \int 2 \sum_{k=-\infty}^{\infty} 2^k \chi_{\{f > 2^k\}} = 2 \sum_{k=-\infty}^{\infty} \int 2^k \chi_{\{f > 2^k\}} = 2L$. For the opposite inequality, we have

$$\begin{split} \sum_{k=\infty}^{\infty} 2^k \chi_{\{f > 2^k\}} &= \sum_{k=-\infty}^{\infty} \sum_{j=k}^{\infty} 2^k \chi_{\{2^j < f \le 2^{j+1}\}} \\ &= \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{j} 2^k \chi_{\{2^j < f \le 2^{j+1}\}} \\ &= \sum_{j=-\infty}^{\infty} 2^{j+1} \chi_{\{2^j < f \le 2^{j+1}\}} \\ &\le 2f. \end{split}$$

16 Let $f \ge 0$ be integrable. Given $\epsilon > 0$, show that there is a measurable set E with $m(E) < \infty$ such that $\int_E f > \int f - \epsilon$. Moreover, show that E can be chosen so that f is bounded on E.

Proof. For $k \geq 1$, define $E_k := f^{-1}([k-1,k])$. By Corollary 18.12, we have $\int f = \sum_k \int_{E_k} f$. Since $\int f < \infty$, we may pick N such that $\sum_{k>N} \int_{E_k} < \epsilon/2$. Hence, if $F := \bigcup_{k \leq N} E_k$, then f < N on F and $\int_F f = \sum_{k \leq N} \int_{E_k} f > \int_C f - \epsilon/2$.

Next, pick an an integrable, nonnegative, simple function $\phi \leq \chi_F f$ such that $\int_F f - \int \phi \leq \epsilon/2$. Write ϕ in standard form as $\phi = \sum_{i=0}^n a_i \chi_{A_i}$ where $a_0 = 0$. Note that since ϕ is integrable, we have $m(A_0^c) = \sum_{i=1}^n m(A_i) \leq (\min_{i\geq 1} a_i)^{-1} \sum_{i=1}^n a_i m(A_i) = (\min_{i\geq 1} a_i)^{-1} \int \phi \leq \infty$. Hence, if $E := A_0^c$, we have $\int_E f \geq \int_E \phi = \int_{\mathbb{R}} \phi \geq \int_F f - \epsilon/2 > \int f - \epsilon$. Note that f is bounded on E since $\phi \leq \chi_F f$ implies $E = A_0^c \subset F$.

17 If f is nonnegative and integrable, prove that the function $F(x) = \int_{-\infty}^{x} f$ is continuous. In fact, even more is true: Given $\epsilon > 0$, show that there is a $\delta > 0$ such that $\int_{E} f < \epsilon$ whenever $m(E) < \delta$. [Hint: This is easy when f is bounded; see (16)]

Proof. By (16), pick a measurable set $F \in \mathbb{R}$ such that $f|_F \leq M$ for some bound M>0, and $\int f - \int_F f < \epsilon/2$. If $m(E) < \epsilon/(2M) =: \delta$, then $\int_E f = \int_{E\cap F} f + \int_{E\cap F^c} f \leq \int_{E\cap F} M + \int_{F^c} f \leq M \, m(E) + (\int f - \int_F f) < \epsilon/2 + \epsilon/2$. This implies uniform continuity because for any x < y with $y - x < \delta$, we

This implies uniform continuity because for any x < y with $y - x < \delta$, we have, by the linearity of the integral on integrable functions, $F(y) - F(x) = \int_{(x,y)} f < \epsilon$.

14 Define $f:[0,1] \to [0,\infty)$ by f(x)=0 if x is rational and $f(x)=2^n$ if x is irrational with exactly $n=0,1,2,\ldots$ leading zeros in its decimal expansion. Show that f is measurable, and find $\int_0^1 f$.

Proof. Note that if $a \le 0$, then $\{f \ge a\} = [0,1]$. If 0 < a < 1, then $\{f \ge a\} = [0,1] \setminus \mathbb{Q}$. If $a \ge 1$, let 2^n be the minimal power of 2 such that $2^n \ge a$. Then $\{f \ge a\} = \{f \ge 2^n\} = (0,10^{-n}) \setminus \mathbb{Q}$ where I use the convention that zeros in front of the decimal do not count, so, for example, 0.34... has zero leading zeros. Since the inverse image of each ray is measurable, f is measurable.

Define $\phi_m = \sum_{n=0}^m 2^n \chi_{(10^{-n-1}, 10^{-n})}$. Then $\phi_m \to f$ a.e., so $\int f = \lim_{m \to \infty} \int \phi_m = \sum_{n=0}^{\infty} 2^n (10^{-n} - 10^{-n-1}) = (1 - 1/10) \sum_{n=0}^{\infty} (2/10)^n = (9/10)(5/4) = 9/8$.

J18.1 Suppose that f is a nonnegative integrable function and A is a measurable set. Define F on \mathbb{R} by $F(t) = m_f(A+t)$. Show that F is a continuous function. Recall that $m_f(E) := \int \chi_E f \, dm$. (Hint: First treat the case where A is a bounded interval.)

Proof. To show that F is continuous at t, it suffices to show that every sequence $t_n \to t$ has $F(t_n) \to F(t)$. WLOG, by replacing A with A-t and t_n with t_n-t , we can assume t=0.

Case A an interval: If A is an interval and $x \in A^{\circ}$, pick δ so small that $A_{\delta}(x) \subset A$. Then if $|t_n| < \delta$, we have $x + t_n \in A$. Hence, $\chi_{A+t_n}(x) = \chi_A(x)$ for all large n. Similarly, if $x \in (A^c)^{\circ}$, we have, for all large n, that $x + t_n \in A^c$ so $\chi_{A+t_n}(x) = \chi_A(x)$. Since an interval has at most two boundary points, we have $\chi_{A+t_n} \to \chi_A$ a.e. Hence, $\chi_{A+t_n} f \to \chi_A f$ a.e., so since these functions are dominated by f, we have $\int \chi_{A+t_n} f \to \int \chi_A f$. Thus, $F(t_n) \to F(t)$ for every $t_n \to t$, so F is continuous at t.

General case