Zadania 5 – Wzór Taylora, wielomian Taylora

- 1. a) Zapisz wzór Taylora do rzędu n=3, dla funkcji $f(x)=\sqrt{x+1}$ wokół punktu $x_0=0$ (wzór Maclaurin'a).
 - b) Wykorzystaj wielomian Taylora P_3 do obliczenia przybliżonej wartości: $\sqrt{0.5}$, $\sqrt{0.75}$ oraz $\sqrt{1.5}$. Oblicz błąd przybliżenia korzystając z R.
 - c) Wykorzystaj resztę R_3 do oszacowania maksymalnego błędu jaki popełniamy, wykorzystując wielomian P_3 , do obliczania wartości funkcji $f(x) = \sqrt{x+1}$ na przedziale [0,1].
- 2. a) Zapisz wzór Taylora do rzędu n=3, dla funkcji $f(x)=(x+1)\ln x$ wokół punktu $x_0=1$.
 - b) Wykorzystaj wartość wielomianu Taylora $P_3(0,5)$ do aproksymacji wartości f(0,5). Oszacuj błąd przybliżenia wykorzystując resztę $R_3(0,5)$. Oblicz błąd przybliżenia, korzystając z R.
 - b) Wykorzystaj resztę R_3 do oszacowania maksymalnego błędu jaki popełniamy, wykorzystując wielomian P_3 , do obliczania wartości funkcji f na przedziale $\left[\frac{1}{2},\frac{3}{2}\right]$.
- 3. Dla funkcji $f(x) = \ln(x+1)$
 - a) wykaż, że n-ta pochodna wyraża się wzorem

$$f^{(n)}(x) = (-1)^{n+1}(n-1)!(1+x)^{-n}, \quad n = 1, 2, \dots$$

b) uzasadnij, że wielomian Taylora rzędu n wokół punktu $x_0=0$, dany jest wzorem

$$P_n(x) = \sum_{k=1}^n \frac{(-1)^{k+1}}{k} x^k,$$

- c) zapisz wzór reszty R_n i korzystając z niej, wyznacz n tak, aby błąd popełniany przy aproksymacji wartości funkcji f wielomianem P_n na przedziale $[0, \frac{1}{2}]$, był nie większy od 10^{-6} .
- 4. Wykaż rozwijając odpowiednią funkcję we wzór Maclaurin'a $(x_0 = 0)$, że

$$\sin x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + R_n(x)$$

$$\cos x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + R_n(x)$$

Zapisz wzory reszt i korzystając z nich wyznacz n tak, aby błąd popełniany przy aproksymacji wielomianem Maclaurin'a rzędu n wartości $\sin(x)$ i odpowiednio $\cos(x)$, dla $x \in [0, \pi/4]$, był nie większy od 10^{-6} .

5. Rozwiąż zadania (BF p. 15): 7 a) b) c) d), 9 a) b) c), 10, 19