Estructura de Computadores

Grado de Ingeniería Informática ETSINF

Objetivos

- Conocer la visión del programador acerca de los dispositivos de Entrada / Salida del computador
- Conocer los elementos básicos de toda interfaz de periférico y saber cómo se conecta al bus del sistema
- Comprender los diferentes mecanismos de direccionamiento de interfaces a periféricos.
- Diseñar sistemas de selección de interfaces de acuerdo con un mapa de entrada/salida definido
- Escribir programas en ensamblador que gestionen interfaces de periférico sencillas

Contenido

- I El sistema de Entrada-Salida
 - Elementos de la unidad de E/S
 - Funciones del adaptador de E/S
 - Ejemplos de adaptadores
- 2 El concepto de interfaz de E/S
 - Diagrama simplificado de una interfaz de E/S
 - Registros de la interfaz
 - Direccionamiento de la interfaz
 - Ejemplo de interfaz: Visualizador de 7 segmentos
 - Esquemas de direccionamiento de las interfaces
- 3 Estructura interna de la interfaz
 - · La selección de la interfaz
 - · Selección y operación de los registros
 - Ejemplos

Bibliografia

- Patterson, D.A., Hennessy, J.L.
 - ✓ Estructura y diseño de computadores. La interfaz hardware-Software (4ª ed.). Ed. Reverté, 2011
 - Cap 6
- Stallings, W.
 - ✓ Organización y arquitectura de computadores (7ª ed.). Ed. Prentice Hall,
 2006
 - Cap. 7
- Hamacher, V.C., Vranesic, Z.G., Zaky, S.G.
 - ✓ Organización de computadores (5ª ed.). Ed. McGraw Hill, 2003

I - El sistema de Entrada/Salida

The Big Picture

El sistema de Entrada/Salida

- Comunicación del sistema (UCP+memoria) con el exterior
 - ✓ ¿Cómo llegan los programas a la memoria? ¿Y los datos?
 - ✓ ¿Cómo se pueden visualizar los resultados de los programas?
- Diversidad de dispositivos y de medios físicos

Dispositivo	Uso	Medio físico
Teclado	Entrada de texto	Electromecánico
Ratón	Entrada gráfica Óptico	
Monitor	Visualización CRT, matriz TFT	
Disco duro	Almacenamiento	Magnético
DVD	Almacenamiento Óptico	
Red	Comunicación Cable Ethernet, línea telefónica	
Impresora	Visualización	Electrostático, inyección de tinta

El sistema de Entrada/Salida

¿ Cómo conectar los dispositivos de E/S al sistema?

Elementos de la Unidad de E/S

- ✓ Tipos:
 - De interacción con humanos: teclado, ratón, pantallas,...
 - · De interacción con otros dispositivos: motores, actuadores, sensores,...
 - De almacenamiento: discos, CD, DVD,...
 - De comunicaciones: tarjetas de red, dispositivos Bluetooh,...
- ✓ No se pueden conectar directamente al bus del sistema.

Elementos de la Unidad de E/S

- Hace la conversión entre la tecnología propia del periférico y las señales del bus
- · Cada periférico necesita su adaptador
- ✓ Constituye la interfaz visible para el programador
 - · Traduce las órdenes dadas sobre la interfaz en acciones sobre el periférico
 - Traduce las actuaciones externas hechas por el periférico en información de estado disponible en la interfaz
 - Permite la transferencia de los datos

Funciones del adaptador de E/S

- Las principales funciones de todo adaptador de E/S son:
 - ✓ Comunicación con el procesador:
 - Interfaz al bus del sistema
 - Conjunto de registros. Direccionamiento de la E/S
 - √ Comunicación con el dispositivo periférico
 - Interfaz externa: Conjunto de señales que conectan con el periférico (cables y conectores)
 - √ Control y temporización
 - · Sincronización: prueba de estado vs. interrupciones
 - ✓ Transferencia de datos:
 - Almacenamiento temporal de datos (data buffering)
 - Transferencia por programa vs. Acceso directo a memoria (ADM)
 - ✓ Control de errores

Tema 7

Ejemplos de adaptadores

¡ Son todos distintos ¡

Necesitamos un cierto nivel de abstracción

2 - El concepto de interfaz de E/S

La visión del programador

Concepto de interfaz de E/S

- Interfaz de un periférico
 - ✓ Es un conjunto (heterogéneo) de registros que permiten a los programas comunicarse con un periférico dado.
 - ✓ Cada periférico tiene su interfaz que, en general, será distinta de la de cualquier otro periférico en cuanto al número y al uso de los registros.
 - ✓ Cada registro de la interfaz tiene una dirección en un espacio de direccionamiento del procesador.
 - ✓ El conjunto de registros de cada interfaz ocupa direcciones consecutivas en el espacio de direccionamiento a partir de cierta dirección: la dirección base de la interfaz.
 - ✓ Los registros son accesibles mediante instrucciones de lectura y escritura en el espacio direccionable, pero su función no es la de almacenar datos o instrucciones (Memoria Principal).

Diagrama simplificado de una interfaz de E/S

Registros de la interfaz

Tamaños:

• Tipicos: 8,16 o 32 bits

Modo de acceso:

- Un registro puede ser accesible para lectura (/RD), para escritura (/WR) o para ambas operaciones (R/W*).
- Escribir en un registro de lectura no tiene ningún efecto; leer de un registro de escritura no da ninguna información útil.

Registros de la interfaz

Contenidos:

- El valor de un registro puede estar estructurado o no. Si está estructurado, cada bit o grupo de bits del registro tiene un significado propio, independiente del resto.
- En general, entre los bits útiles de un registro puede haber otros indefinidos.

Tipos:

- **Órdenes**: para producir acciones en el periférico
- Estado: para obtener información actual de la operación del periférico
- **Datos**: para transmitir o recibir datos a/desde el periférico
- Otros: para propósitos específicos de la interfaz del periférico

Direccionamiento de la interfaz

- ✓ Cada registro de la interfaz tiene una DIRECCIÓN en un espacio de direccionamiento del procesador:
 - Espacio único: (Memory-Mapped I/O)
 → Modelo MIPS
 - Espacios separados (I/O Mapped I/O)
 → Modelo Intel
- ✓ El conjunto de registros de cada interfaz ocupa un rango de direcciones consecutivas:

✓ La dirección inicial se denomina DIRECCIÓN BASE de la interfaz.

Ejemplo de interfaz: Visualizador de 7 segmentos

Activa el visualizador y el parpadeo

- ON (bit 0): encendido a 1, apagado a 0
- Frec (bits 6..4): frecuencia intermitente en Hz
- Frec = 0: continuo

bits *a...h*: a 1 activan el segmento correspondiente

Estructura de Computadores

Visualizador de 7 segmentos: programación

```
la $t0,0xFFFF0100
# apaga el visualizador
sw $zero,0($t0)
```


Esquemas de direccionamiento de las interfaces

Memory-Mapped I/O

- ✓ Mapa de direccionamiento único (Modelo MIPS). Las interfaces de E/S comparten el espacio de direccionamiento con la memoria.
 - El acceso a los registros se hace con las instrucciones 'Load/Store'.

P2 M3 M2 MI

Mapa de Memoria

Interfaces de periférico

- Para tratar los periféricos
- Cada interfaz abarca unas pocas direcciones
- Cada registro de una interfaz tiene un uso concreto

Módulos de memoria

- Para almacenar instrucciones y datos
- Gran capacidad (actualmente, del orden del GB)
- Todas las palabras de la memoria tienen el mismo uso

Esquemas de direccionamiento de las interfaces

- Input/Output-Mapped I/O
 - ✓ Mapas de direccionamiento separados para la memoria y la E/S (Modelo Intel)
 - El acceso a la memoria se hace con instrucciones de tipo 'Load/Store'.
 - El acceso a los periféricos se hace con instrucciones de tipo 'Input/Output'.

Administrador de dispositivos de Windows

Adaptador IDE-SATA (discos)

Adaptador de red local (Realtek)

Mapeado en dos espacios: E/S y Memoria

3 - Estructura interna de la interfaz

Detalles del hardware

La selección de la interfaz

Hay que definir las funciones de selección de la interfaz en el mapa de direcciones correspondiente

La selección de la interfaz

- Implementación de la selección con mapa único
 - ✓ Ejemplo con 16 líneas de dirección, ancho de palabra de 8 bits.
 - ✓ Interfaz con tres registros (n=16, p=2), DB = $0 \times F590$.

La selección de la interfaz

• Implementación de la selección (mapa separado)

✓ Una línea en el bus permite distinguir entre los dos espacios de direccionamiento.

M/IO = 1: espacio de Memoria

M/IO = 0: espacio de Entrada/Salida

Curso 2017-2018

Selección y operación de los registros

- ✓ Los registros tienen señal de escritura (CLK, flanco de reloj), de lectura (OE*) o ambas y entrada/salida de datos paralela conectada al bus de datos.
- ✓ Dos líneas del bus definen la operación: RD* para lectura y WR* para escritura.

Empleo de BE* en la selección de la interfaz

Ejemplo I: Selección del visualizador

Ejemplo 2: Multi-sensor de temperatura

- ✓ Dos sensores de temperatura (termopares TI y T2)
- ✓ Dirección base (DB) = 0xFFFF0200

✓ Registros de 32 bits:

Dos registros en la misma dirección (uno de lectura y ← otro de escritura)

Nombre	Dir.	Acceso	Estructura
Órdenes	DB	Escr.	Bit 0: (AQ) a '1' activa la adquisición de temperatura
Estado	DB	Lect.	Bit 7: (R) a '1' indica temperatura ha sido adquirida se pone a '0' cuando se lee la temperatura
Temp1	DB+4	Lect.	Bits 70: (T1) temperatura del sensor 1 entre 0 y 255 °C
Temp 2	DB+8	Lect	Bits 70: (T2) temperatura del sensor 2 entre 0 y 255 °C
		,	

Ejercicio de clase

- ✓ Realice un esquema del circuito de selección de la interfaz del multisensor de temperatura indicado anteriormente.
- ✓ Escriba un fragmento de código en ensamblador del MIPS para adquirir la temperatura de los dos sensores (T I y T2) y guardarla en dos variables de memoria 'Temp I' y 'Temp2'.
 - Observe que debe emitirse la orden de adquirir y esperar a que la interfaz indique que la adquisición ha terminado, antes de leer el resultado de los dos registros de temperatura.

Solución

Ejemplo 3: Visualizador de 8 dígitos

REGISTRO DE ÓRDENES:

(8 bits – escritura)

Activa el Visualizador y el parpadeo:

- ON (bit 0): encendido a 1, apagado a 0
- Frec (bits 6..4): frecuencia intermitente en Hz
- Frec = 0: continuo

Ejemplo 3: Visualizador de 8 dígitos

Ejercicio de casa

- ✓ Realice un esquema del circuito de selección de la interfaz del visualizador de 8 dígitos.
 - Los registros de D1 a D7 se pueden acceder como bytes individuales (sb) o de 4 en 4 como una word (sw).
 - Para ello debe hacer participar en la selección a los Bytes Enables (BE0*.. BE3*)
- ✓ Escriba un fragmento de código en ensamblador del MIPS visualizar un rotulo deslizante.