$$\begin{cases} x_1 - x_2 - 2x_3 = 0, \\ x_3 + x_4 = 0, \\ 3x_2 + 4x_3 - x_5 = 0. \end{cases}$$

- 2. ③ При $\alpha > 1/20$ положительно определена, при $\alpha = 1/20$ положительно полуопределена, при $\alpha < 1/20$ не определена.
- 3. ③

$$\begin{pmatrix}
26/3 & 14 & -40/3 \\
14 & 24 & -24 \\
-40/3 & -24 & 128/5
\end{pmatrix}$$

- 4. 4 $y' = \frac{2(x-1)(x-5)}{(x-3)^2}$, $y'' = \frac{16}{(x-3)^3}$, $y_{\min} = y(5) = 9$, $y_{\max} = y(1) = -7$.
- 5. ② $\frac{2}{3}\sqrt{x-1} \cdot e^{3\sqrt{x-1}} \frac{2}{9}e^{3\sqrt{x-1}} + C$
- 6. ⑤ 2x y 3 = 0 и 2x + 3y 7 = 0.
- 8. (4) $dw = \frac{1}{4}(dx + dy), d^2w = \frac{7}{32}dx^2 \frac{1}{16}dx dy \frac{1}{32}dy^2,$ $w(x,y) = 2 + \frac{1}{4}x + \frac{1}{4}(y-3) + \frac{7}{64}x^2 - \frac{1}{32}x(y-3) - \frac{1}{64}(y-3)^2 + o(x^2 + (y-3)^2).$
- 9. ③ Сходится поточечно. На E_1 равномерно: $|u_n(x)| \leq \arctan \frac{1}{n^2} \sim \frac{1}{n^2}$; на E_2 неравномерно: $u_n(n) = \arctan(1/2)$.
- 10. (4) Сходится при $0 < \alpha < 2$.

- 12. (4) $y = (Ce^{-x} e^{3x})^{-1}, y = 0.$
- 13. ④ Общее решение $y = C_1 e^{-3x} + C_2 e^x + e^{-2x}$, допустимая экстремаль $y = e^{-2x} e^x$.
- 14. (3) (1,5,4) максимум, (1,5,-6) минимум.
- 15. ④ $f(x) = \frac{2}{\pi} + \sum_{n=1}^{\infty} \frac{-4}{\pi(4n^2 1)} \cos nx$, сумма S = 1/2 получается при подстановке x = 0.
- 16. (3) Удобнее всего применить формулу Грина, а затем перейти к полярным координатам: $I=2\pi/3$.
- 17. 4 46π .
- 18. $\textcircled{4} \frac{1}{2}\pi i (1 + 2 \operatorname{sh} 2 \operatorname{ch} 2).$

$$\begin{cases}
-5x_1 + 3x_2 - 7x_3 + x_4 = 0, \\
x_1 - 2x_2 + x_3 + x_5 = 0.
\end{cases}$$

- 2. (3) При $\alpha < -25/32$ отрицательно определена, при $\alpha = -25/32$ отрицательно полуопределена, при $\alpha > -25/32$ не определена.
- 3. (3)

$$\begin{pmatrix}
3 & 0 & -9 \\
0 & 9 & 27/2 \\
-9 & 27/2 & 297/5
\end{pmatrix}$$

- 4. (4) $y' = -\frac{(x+1)(x-5)}{(x-2)^2}$, $y'' = -\frac{18}{(x-2)^3}$, $y_{\min} = y(-1) = 7$, $y_{\max} = y(5) = -5$.
- 5. ② $-\sqrt{x+5} \cdot \cos(2\sqrt{x+5}) + \frac{1}{2}\sin(2\sqrt{x+5}) + C$
- 6. (5) x + y 1 = 0 и 3x y + 5 = 0
- 7. ⑤ Числитель = $17x^2 + o(x^2)$, знаменатель = $8x^2 + o(x^2)$, итого 17/8.
- 8. $\textcircled{4} dw = 2dx dy, d^2w = -4dx^2 + 4dx dy 2dy^2,$ $w(x,y) = 2(x-1) - y - 2(x-1)^2 + 2(x-1)y - y^2 + o((x-1)^2 + y^2).$
- 9. ③ Сходится поточечно. На E_2 равномерно: $|u_n(x)| \leq \sin \frac{1}{n^3} \sim \frac{1}{n^3}$; на E_1 неравномерно: $u_n(1/n) = \sin(1/2)$.
- 10. (4) Сходится при $\alpha < 2$.
- 11. $4 \binom{x}{y} = C_1 \binom{2}{3} e^{3t} + C_2 \binom{1}{-1} e^{-2t} + \binom{4}{-1} e^{-t}.$
- 12. $\textcircled{4} \ y = (Ce^x e^{2x})^{-2}, \ y = 0.$
- 13. ④ Общее решение $y = C_1 e^{2x} + C_2 e^{3x} + e^{5x}$, допустимая экстремаль $y = e^{5x} 2e^{2x}$
- 14. (3)(1,4,4) минимум, (1,4,-2) максимум.
- 15. 4 $f(x) = \frac{\pi}{2} + \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos(2k-1)x}{(2k-1)^2}$, сумма $S = \pi^2/8$ получается при подстановке x = 0 или $x = \pi$.
- 16. ③ Удобнее всего применить формулу Грина, а затем перейти к полярным координатам: $I=-\pi/24$.
- 17. 4 45π .
- 18. $4 \frac{1}{2}\pi i (2 \operatorname{ch} 1 + \operatorname{sh} 1 \operatorname{sh} 3).$

$$\begin{cases} x_1 + 2x_2 + x_4 = 0, \\ x_2 + x_3 - 3x_4 = 0, \\ x_2 - x_4 + x_5 = 0. \end{cases}$$

- 2. ③ При $\alpha < -9/28$ отрицательно определена, при $\alpha = -9/28$ отрицательно полуопределена, при $\alpha > -9/28$ не определена.
- 3. (3)

$$\begin{pmatrix}
31 & -17/2 & 163/6 \\
-17/2 & 7/3 & -15/2 \\
163/6 & -15/2 & 124/5
\end{pmatrix}$$

- 4. 4 $y' = \frac{3x(x+2)}{(x+1)^2}$, $y'' = \frac{6}{(x+1)^3}$, $y_{\min} = y(0) = 5$, $y_{\max} = y(-2) = -7$.
- 5. ② $\frac{2}{3}\sqrt{x-2} \cdot \text{ch}(3\sqrt{x-2}) \frac{2}{9} \text{sh}(3\sqrt{x-2}) + C$
- 6. (5) x y 3 = 0 и x + 5y + 9 = 0.
- 7. ⑤ Числитель = $8x^2 + o(x^2)$, знаменатель = $-5x^2 + o(x^2)$, итого -8/5.
- 8. (4) dw = 2dx + 2dy, $d^2w = 6dx^2 + 8dx dy + 4dy^2$, $w(x,y) = 1 + 2(x-1) + 2y + 3(x-1)^2 + 4(x-1)y + 2y^2 + o((x-1)^2 + y^2)$.
- 9. ③ Сходится поточечно. На E_2 равномерно: $|u_n(x)| \le \operatorname{th} \frac{1}{n^3} \sim \frac{1}{n^3}$; на E_1 неравномерно: $u_n(1/n) = \operatorname{th}(1/2)$.
- 10. (4) Сходится при $\alpha > 0$.

- 12. $\textcircled{4} \ y = (Ce^{2x} + 3e^x)^{-1}, \ y = 0.$
- 13. ④ Общее решение $y = C_1 e^{-x} + C_2 e^{3x} + 3e^{2x}$, допустимая экстремаль $y = 3e^{2x} 2e^{3x}$.
- 15. ④ $f(x) = \frac{2}{3\pi} + \sum_{n=1}^{\infty} \frac{-12}{\pi(4n^2 9)} \cos nx$, сумма S = 1/18 получается при подстановке x = 0.
- 16. ③ Удобнее всего применить формулу Грина, а затем перейти к полярным координатам: $I=27\pi/2$.
- 17. (4) 64π .

$$\begin{cases} x_2 + 3x_3 - x_4 = 0, \\ 7x_1 + 5x_2 + 7x_3 + x_5 = 0. \end{cases}$$

- 2. ③ При $\alpha > 9/32$ положительно определена, при $\alpha = 9/32$ положительно полуопределена, при $\alpha < 9/32$ не определена.
- 3. ③

$$\begin{pmatrix}
32 & 16 & 8/3 \\
16 & 14 & 4/3 \\
8/3 & 4/3 & 2/5
\end{pmatrix}$$

4.
$$(4)$$
 $y' = -\frac{2x(x+4)}{(x+2)^2}$, $y'' = -\frac{16}{(x+2)^3}$, $y_{\min} = y(-4) = 15$, $y_{\max} = y(0) = -1$.

5. ②
$$\sqrt{x+4} \cdot \sin(2\sqrt{x+4}) + \frac{1}{2}\cos(2\sqrt{x+4}) + C$$

6. ⑤
$$5x - 2y - 11 = 0$$
 и $x - 2y + 1 = 0$.

7. ⑤ Числитель =
$$12x^2 + o(x^2)$$
, знаменатель = $-\frac{9}{2}x^2 + o(x^2)$, итого $-8/3$.

8. (4)
$$dw = \frac{1}{4}(dx + 3dy), d^2w = \frac{7}{32}dx^2 - \frac{3}{16}dx dy - \frac{9}{32}dy^2,$$

 $w(x,y) = 2 + \frac{1}{4}x + \frac{3}{4}(y-1) + \frac{7}{64}x^2 - \frac{3}{32}x(y-1) - \frac{9}{64}(y-1)^2 + o(x^2 + (y-1)^2).$

- 9. ③ Сходится поточечно. На E_1 равномерно: $|u_n(x)| \leq \ln(1 + \frac{1}{n^3}) \sim \frac{1}{n^3}$; на E_2 неравномерно: $u_n(n) = \ln(3/2)$.
- 10. ④ Сходится при $\alpha > 0$.

11.
$$(4)$$
 $\begin{pmatrix} x \\ y \end{pmatrix} = C_1 \begin{pmatrix} 2 \\ -3 \end{pmatrix} e^{4t} + C_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{3t} + \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^t.$

12. (4)
$$y = (Ce^{2x} + 2e^x)^{-2}, y = 0.$$

- 13. ④ Общее решение $y = C_1 e^{4x} + C_2 e^x + e^{5x}$, допустимая экстремаль $y = 2e^x + e^{5x}$.

- 16. (3) Удобнее всего применить формулу Грина, а затем перейти к полярным координатам: $I=5\pi/3$.
- 17. $\textcircled{4} 90\pi$.
- 18. (4) $\frac{2}{9}\pi (\sinh 3 3)$.

$$\begin{cases} x_1 - 2x_5 = 0, \\ x_2 + x_4 = 0, \\ x_3 + 2x_4 + 2x_5 = 0. \end{cases}$$

- 2. ③ При $\alpha < -1/20$ отрицательно определена, при $\alpha = -1/20$ отрицательно полуопределена, при $\alpha > -1/20$ не определена.
- 3. (3)

$$\begin{pmatrix}
3 & -9 & -45/4 \\
-9 & 36 & 81/2 \\
-45/4 & 81/2 & 243/5
\end{pmatrix}$$

- 4. 4 $y' = -\frac{x(x-4)}{(x-2)^2}$, $y'' = -\frac{8}{(x-2)^3}$, $y_{\min} = y(0) = 6$, $y_{\max} = y(4) = -2$.
- 5. ② $\frac{2}{3}\sqrt{x-5} \cdot \sin(3\sqrt{x-5}) \frac{2}{9} \cot(3\sqrt{x-5}) + C$
- 6. ⑤ x + 3y 4 = 0 и 3x y + 8 = 0.
- 7. ⑤ Числитель = $4x^2 + o(x^2)$, знаменатель = $8x^2 + o(x^2)$, итого 1/2.
- 8. (4) dw = 3dx 2dy, $d^2w = -9dx^2 + 12dx dy 6dy^2$, $w(x,y) = 3(x-1) 2y \frac{9}{2}(x-1)^2 + 6(x-1)y 3y^2 + o((x-1)^2 + y^2)$.
- 9. ③ Сходится поточечно. На E_1 равномерно: $|u_n(x)| \leq \arctan \frac{1}{n^3} \sim \frac{1}{n^3}$; на E_2 неравномерно: $u_n(n) = \arctan(1/2)$.
- 10. (4) Сходится при $1 < \alpha < 2$.

11.
$$4 \binom{x}{y} = C_1 \binom{1}{-4} e^{-3t} + C_2 \binom{1}{2} e^{3t} + \binom{2}{-1} e^{2t}.$$

- 12. (4) $y = (Ce^{3x} + e^x)^{-1}, y = 0.$
- 13. ④ Общее решение $y = C_1 e^{2x} + C_2 e^x + 4e^{3x}$, допустимая экстремаль $y = 4e^{3x} 3e^{2x}$.
- 15. ④ $f(x) \sim \frac{1}{2} + \sum_{n=0}^{\infty} \frac{2(-1)^n}{\pi(2n+1)} \cos(2n+1)x$, сумма $S = \pi/4$ получается при подстановке x=0 или $x=\pi$.
- 16. ③ Удобнее всего применить формулу Грина, а затем перейти к полярным координатам: $I = -\pi/8$.
- 17. (4) 120π .
- 18. $\bigoplus \frac{2}{9}\pi i (3 \operatorname{sh} 1 \operatorname{ch} 1 + \operatorname{ch} 2).$

$$\begin{cases} x_1 - x_3 + 2x_4 - x_5 = 0, \\ 5x_1 + 3x_2 - 4x_3 + 6x_4 = 0. \end{cases}$$

- 2. ③ При $\alpha > 25/8$ положительно определена, при $\alpha = 25/8$ положительно полуопределена, при $\alpha < 25/8$ не определена.
- 3. (3)

$$\begin{pmatrix}
18 & 18 & 52 \\
18 & 56/3 & 172/3 \\
52 & 172/3 & 968/5
\end{pmatrix}$$

- 4. 4 $y' = \frac{3(x-1)(x+3)}{(x+1)^2}$, $y'' = \frac{24}{(x+1)^3}$, $y_{\min} = y(1) = 10$, $y_{\max} = y(-3) = -14$.
- 5. ② $\sqrt{x+3} \cdot e^{2\sqrt{x+3}} \frac{1}{2}e^{2\sqrt{x+3}} + C$
- 6. ⑤ x + 2y + 2 = 0 и 5x 2y 14 = 0.
- 7. ⑤ Числитель = $-2x^2 + o(x^2)$, знаменатель = $-\frac{9}{2}x^2 + o(x^2)$, итого 4/9.
- 8. $\textcircled{4} dw = \frac{1}{2}(dx + dy), d^2w = -\frac{1}{2}(dx^2 + dy^2),$ $w(x,y) = \frac{\pi}{4} + \frac{1}{2}(x-1) + \frac{1}{2}(y-1) - \frac{1}{4}(x-1)^2 - \frac{1}{4}(y-1)^2 + o((x-1)^2 + (y-1)^2).$
- 9. ③ Сходится поточечно. На E_1 равномерно: $|u_n(x)| \leq \sin \frac{1}{n^3} \sim \frac{1}{n^3}$; на E_2 неравномерно: $u_n(n) = \sin(1/2)$.
- 10. (4) Сходится при $0 < \alpha < 2$.
- 11. $\textcircled{4} \begin{pmatrix} x \\ y \end{pmatrix} = C_1 \begin{pmatrix} -2 \\ 3 \end{pmatrix} e^t + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{6t} + \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^{-t}.$
- 12. 4 $y = (Ce^{-x} e^{2x})^{-2}, y = 0.$
- 13.
 ④ Общее решение $y = C_1 e^x + C_2 e^{3x} 2e^{4x}$, допустимая экстремаль $y = 5e^{3x} 2e^{4x}$
- 14. (3) (2, -3, 1) максимум, (2, -3, 5) минимум.
- 15. ④ $\sin \frac{x}{2} = \frac{2}{\pi} + \sum_{n=1}^{\infty} \frac{-4}{\pi(4n^2 1)} \cos nx$, сумма $S = 1/2 \pi/4$ получается при подстановке $x = \pi$.
- 16. (3) Удобнее всего применить формулу Грина, а затем перейти к полярным координатам: $I = -27\pi/4$.
- 17. (4) 62π .
- 18. $(4) \frac{2}{9}\pi i (\sinh 1 3 \cosh 2 + \sinh 2).$

$$\begin{cases} x_1 - x_2 + x_3 = 0, \\ -x_1 + x_2 + x_4 = 0, \\ x_2 + x_5 = 0. \end{cases}$$

- 2. (3) При $\alpha < -9/20$ отрицательно определена, при $\alpha = -9/20$ отрицательно полуопределена, при $\alpha > -9/20$ не определена.
- 3. (3)

$$\begin{pmatrix} 14 & 4 & 4/3 \\ 4 & 8/3 & 0 \\ 4/3 & 0 & 2/5 \end{pmatrix}$$

4.
$$(4)$$
 $y' = \frac{2x(x-2)}{(x-1)^2}$, $y'' = \frac{4}{(x-1)^3}$, $y_{\min} = y(2) = 13$, $y_{\max} = y(0) = 5$.

5. ②
$$-\frac{2}{3}\sqrt{x+1} \cdot \cos(3\sqrt{x+1}) + \frac{2}{9}\sin(3\sqrt{x+1}) + C$$

6. ⑤
$$4x - y + 11 = 0$$
 и $x + y + 4 = 0$.

7. ⑤ Числитель
$$= -9x^2 + o(x^2)$$
, знаменатель $= \frac{1}{2}x^2 + o(x^2)$, итого -18 .

8. (4)
$$dw = \frac{1}{4}(3dx + dy), d^2w = \frac{15}{32}dx^2 - \frac{3}{16}dx dy - \frac{1}{32}dy^2,$$

 $w(x,y) = 2 + \frac{3}{4}x + \frac{1}{4}(y-1) + \frac{15}{64}x^2 - \frac{3}{32}x(y-1) - \frac{1}{64}(y-1)^2 + o(x^2 + (y-1)^2).$

- 9. ③ Сходится поточечно. На E_2 равномерно: $|u_n(x)| \leq \arctan \frac{1}{n^2} \sim \frac{1}{n^2}$; на E_1 неравномерно: $u_n(1/n) = \arctan(1/2)$.
- 10. (4) Сходится при $0 < \alpha < 2$.

11.
$$4 \binom{x}{y} = C_1 \binom{3}{-2} e^{3t} + C_2 \binom{1}{-2} e^{-t} + \binom{1}{1} e^{-2t}.$$

12.
$$\textcircled{4} \ y = (Ce^{-2x} - e^x)^{-1}, \ y = 0.$$

13. ④ Общее решение
$$y = C_1 e^{4x} + C_2 e^{-x} + 3e^{3x}$$
, допустимая экстремаль $y = 3e^{3x} - 4e^{4x}$.

15. ④
$$f(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\sin(2k-1)x}{(2k-1)^2}$$
, сумма $S = \pi^2/8$ получается при подстановке $x = \pi/2$.

- 16. ③ Удобнее всего применить формулу Грина, а затем перейти к полярным координатам: $I=2\pi.$
- 17. (4) 90π .
- 18. (4) $\frac{1}{2}\pi (\sinh 2 2 \cosh 2)$.

$$\begin{cases} 2x_1 - 3x_2 + 4x_3 - 7x_4 = 0, \\ x_3 - x_5 = 0. \end{cases}$$

- 2. ③ При $\alpha > 9/8$ положительно определена, при $\alpha = 9/8$ положительно полуопределена, при $\alpha < 9/8$ не определена.
- 3. ③

$$\begin{pmatrix}
12 & -3 & -18 \\
-3 & 3 & -9/4 \\
-18 & -9/4 & 243/5
\end{pmatrix}$$

4.
$$(4)$$
 $y' = -\frac{(x-1)(x+5)}{(x+2)^2}$, $y'' = -\frac{18}{(x+2)^3}$, $y_{\min} = y(-5) = 14$, $y_{\max} = y(1) = 2$.

5. ②
$$\sqrt{x-3} \cdot \text{ch}(2\sqrt{x-3}) - \frac{1}{2} \text{sh}(2\sqrt{x-3}) + C$$

- 6. ⑤ 2x + y 1 = 0 и 8x y + 11 = 0.
- 7. ⑤ Числитель = $17x^2 + o(x^2)$, знаменатель = $-\frac{9}{2}x^2 + o(x^2)$, итого -34/9.
- 8. (4) dw = dx dy, $d^2w = -dx^2 + 2dx dy 2dy^2$, $w(x,y) = (x-2) y \frac{1}{2}(x-2)^2 + (x-2)y y^2 + o((x-2)^2 + y^2)$.
- 9. ③ Сходится поточечно. На E_2 равномерно: $|u_n(x)| \leq \ln(1 + \frac{1}{n^4}) \sim \frac{1}{n^4}$; на E_1 неравномерно: $u_n(1/n) = \ln(3/2)$.
- 10. (4) Сходится при $\alpha < 2$.

11.
$$4 \binom{x}{y} = C_1 \binom{4}{-1} e^{3t} + C_2 \binom{1}{1} e^{-2t} + \binom{3}{1} e^t$$
.

12.
$$(4)$$
 $y = (Ce^{-2x} - e^{-x})^{-2}, y = 0.$

- 13. ④ Общее решение $y=C_1e^{-x}+C_2e^{-3x}+2e^{-4x}$, допустимая экстремаль $y=3e^{-3x}+2e^{-4x}$.
- 14. ③ (2,-2,8) максимум, (2,-2,-4) минимум.
- 16. (3) Удобнее всего применить формулу Грина, а затем перейти к полярным координатам: $I = -\pi/4$.
- 17. (4) 56π .
- 18. (4) $2\pi i (1 \cos 1)$.

1. (3)

$$\begin{cases} x_1 + 2x_2 + x_4 = 0, \\ 3x_2 + x_3 - x_4 = 0, \\ x_2 - x_4 + x_5 = 0. \end{cases}$$

- 2. ③ При $\alpha > 1/4$ положительно определена, при $\alpha = 1/4$ положительно полуопределена, при $\alpha < 1/4$ не определена.
- 3. (3)

$$\begin{pmatrix} 2/3 & -2 & -8/3 \\ -2 & 78 & 60 \\ -8/3 & 60 & 242/5 \end{pmatrix}$$

- 4. 4 $y' = \frac{3(x-4)(x-6)}{(x-5)^2}$, $y'' = \frac{6}{(x-5)^3}$, $y_{\min} = y(6) = 22$, $y_{\max} = y(4) = 10$.
- 5. ② $\frac{2}{3}\sqrt{x+2} \cdot \sin(3\sqrt{x+2}) + \frac{2}{9}\cos(3\sqrt{x+2}) + C$
- 6. ⑤ x + y 4 = 0 и x 3y + 8 = 0.
- 7. ⑤ Числитель = $21x^2 + o(x^2)$, знаменатель = $\frac{1}{2}x^2 + o(x^2)$, итого 42.
- 8. ① dw = 4dx dy, $d^2w = 20dx^2 8dx dy + dy^2$, $w(x,y) = 1 + 4(x-1) y + 10(x-1)^2 4(x-1)y + \frac{1}{2}y^2 + o((x-1)^2 + y^2)$.
- 9. ③ Сходится поточечно. На E_1 равномерно: $|u_n(x)| \le \operatorname{th} \frac{1}{n^4} \sim \frac{1}{n^4}$; на E_2 неравномерно: $u_n(n) = \operatorname{th}(1/2)$.
- 10. (4) Сходится при $\alpha > 2$.

11.
$$(4)$$
 $\begin{pmatrix} x \\ y \end{pmatrix} = C_1 \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^{3t} + C_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{5t} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{2t}.$

- 12. (4) $y = (Ce^{2x} e^{3x})^{-1}, y = 0.$
- 13. ④ Общее решение $y = C_1 e^{-4x} + C_2 e^x e^{-3x}$, допустимая экстремаль $y = 3e^{-4x} e^{-3x}$.
- 14. ③ (1,5,-3) максимум, (1,5,5) минимум.
- 15. ④ $f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos(2n-1)x$, сумма $S = \pi^2/8$ получается при подстановке x=0 или $x=\pi$.
- 16. ③ Удобнее всего применить формулу Грина, а затем перейти к полярным координатам: $I=3\pi.$
- 17. (4) 105π .
- 18. (4) $-2\pi i (1 + \sinh 1 \cosh 1)$.

$$\begin{cases} x_1 + x_2 + x_4 = 0, \\ x_2 + 7x_3 + 6x_4 - 3x_5 = 0. \end{cases}$$

- 2. ③ При $\alpha < -25/8$ отрицательно определена, при $\alpha = -25/8$ отрицательно полуопределена, при $\alpha > -25/8$ не определена.
- 3. ③

$$\begin{pmatrix}
18 & 0 & -16 \\
0 & 2/3 & 8/3 \\
-16 & 8/3 & 128/5
\end{pmatrix}$$

4.
$$(y' = -\frac{2(x+1)(x+5)}{(x+3)^2}, \ y'' = -\frac{16}{(x+3)^3}, \ y_{\min} = y(-5) = 17, \ y_{\max} = y(-1) = 1.$$

5. ②
$$\sqrt{x-1} \cdot \text{sh}(2\sqrt{x-1}) - \frac{1}{2} \text{ch}(2\sqrt{x-1}) + C$$

- 6. ⑤ 5x y 7 = 0 и x y + 1 = 0.
- 7. ⑤ Числитель = $18x^2 + o(x^2)$, знаменатель = $-\frac{9}{2}x^2 + o(x^2)$, итого -4.
- 8. (4) dw = 6dx + dy, $d^2w = 42dx^2 + 12dx dy + dy^2$, $w(x,y) = 1 + 6(x-1) + y + 21(x-1)^2 + 6(x-1)y + \frac{1}{2}y^2 + o((x-1)^2 + y^2)$.
- 9. ③ Сходится поточечно. На E_2 равномерно: $|u_n(x)| \leq \sin \frac{1}{n^2} \sim \frac{1}{n^2}$; на E_1 неравномерно: $u_n(1/n) = \sin(1/2)$.
- 10. (4) Сходится при $\alpha > 1$.

11.
$$(4)$$
 $\begin{pmatrix} x \\ y \end{pmatrix} = C_1 \begin{pmatrix} 3 \\ -1 \end{pmatrix} e^{-3t} + C_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{4t} + \begin{pmatrix} 2 \\ -3 \end{pmatrix} e^{-t}.$

- 12. (4) $y = (Ce^{3x} + e^{2x})^{-2}, y = 0.$
- 13. ④ Общее решение $y = C_1 e^{2x} + C_2 e^{-3x} e^{-x}$, допустимая экстремаль $y = 2e^{-3x} e^{-x}$.
- 14. ③ (2,5,-7) максимум, (2,5,-5) минимум.
- 15. ④ $f(x) \sim \frac{1}{2} + \sum_{n=0}^{\infty} \frac{2(-1)^{n+1}}{\pi(2n+1)} \cos(2n+1)x$, сумма $S = \pi/4$ получается при подстановке x = 0 или $x = \pi$.
- 16. (3) Удобнее всего применить формулу Грина, а затем перейти к полярным координатам: $I = \pi/3$.
- 17. (4) 66π .
- 18. $\textcircled{4} \ 2\pi \ (1-\sin 1)$.