Logika és számításelmélet

Második zárthelyi dolgozat, A

1. feladat. [5 pont]

Tekintsük az alábbi f(n) és a g(n) függvényeket. Az $f(n) = \mathcal{O}(g(n)), f(n) = \Omega(g(n)), f(n) = \Theta(g(n))$ állítások közül melyik igaz? A választ indokold is!

- 1. $f(n) = n^2$ és a $g(n) = n \log n$,
- 2. $f(n) = n^n$ és a $g(n) = 2^{2^n}$.
- **2. feladat.** [5 pont] Mutasd meg az alábbi Turing-gép működését az *abab* és az *bab* szavakon (írd le a gép konfigurációátmeneteit ezeken a szavakon)!

Általánosan, mikor áll meg q_i -ben az alábbi Turing gép (ha a gépet egy $u \in \{a,b\}^*$ szóval a bemenetén indítjuk el) és mi lesz akkor a gép szalagján? A választ indokold is!

3. feladat. [5 pont] Adj meg egy olyan egyszalagos determinisztikus Turing-gépet, ami a következő nyelvet dönti el: $L = \{u \# v \mid u, v \in \{0, 1\}^+, l(u) = 2l(v)\}.$

Mekkora lesz a megadott gép időigénye?

- **4. feladat.** [5 pont] Vázlatosan ismertesd azt a Turing-gépet, ami az $L = \{a^n b^{2n} \mid n \geq 0\}$ nyelvet dönti el. A leírásból derüljön ki, hogy milyen algoritmus szerint működik a gép és hogyan manipulálja a szalagjait. Hogyan módosítanád a megadott gépet ahhoz, hogy az L nyelv eldöntése logaritmikus tárral működjön?
- **5. feladat.** [5 pont] Adj meg egy olyan dominokészletet, amelynek nincs a Post Megfelelkezési Probléma szerint megoldása, de ha a készletben egy dominóban megcseréljük a szavakat (az alsó megy felülre és fordítva), akkor már van a készletnek megoldása! A megoldást igazold is!
- **6. feladat.** [5 pont] Legyen $L_{\text{HALT}} = \{ \langle M, w \rangle \mid M \text{ megáll a } w \text{ bemeneten} \}$. Mutasd meg, hogy L_{HALT} egy eldönthetetlen nyelv!