Modelo de Envio de Exercícios

Email: marcioklein@uni9.pro.br

Subject (Assunto): 25/08/2022 - 5^a f DIURNO -

```
RA<sub>1</sub> - Nome<sub>1</sub>
RA<sub>2</sub> - Nome<sub>2</sub>
RA<sub>3</sub> - Nome<sub>3</sub>
RA<sub>4</sub> - Nome<sub>4</sub>

RESOLUÇÃO DO EXERCÍCIO
```

Tabela ASCII

ASCII (American Standard Code for Information Interchange; "Código Padrão Americano para o Intercâmbio de Informação") é um código binário (cadeias de bits: 0s e 1s) que codifica um conjunto de 128 sinais: 95 sinais gráficos (letras do alfabeto latino, sinais de pontuação e sinais matemáticos) e 33 sinais de controle, utilizando portanto apenas 7 bits para representar todos os seus símbolo. Observe a tabela a seguir.

O 8º bit pode ser usado como check-digit.

Decimal	Hex	Char	Decimal	Hex	Char	 Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	(SPACE)	64	40	@	96	60	*
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	-	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27		71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	1
10	A	[LINE FEED]	42	2A	*	74	4A	1	106	6A	i
11	В	[VERTICAL TAB]	43	28	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C		76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	P
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	ICANCELI	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	V
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	18	[ESCAPE]	59	3B	;	91	5B	E	123	7B	-
28	10	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	1
29	10	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	1
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E		126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]

Tabela ASCII

- Observe as três colunas que compõe a tabela:
 - A primeira (Dec) é a velha conhecida nossa.
 - A segunda coluna (Hex), com valores decimais e letra, será objeto do nosso próximo estudo.
 - A terceira coluna é dos caracteres que correspondem a cada um dos código binário da tabela (binário? Como assim)

Tabela Hexadecimal

Binário	Hex
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

Binário	Hex
1000	8
1001	9
1010	Α
1011	В
1100	C
1101	D
1110	E
1111	F

Conversão de caractere em byte

De acoi	do com	Aplicando
a Tabel	a ASCII	a Tabela ASCII
temos o	lue:	para binário
Exempl	os	temos que:
Caracter	е Нех	Byte
*	2A	00101010
>	3E	00111110
M	4D	01001101
k	6B	01101011

- Desta forma, quando o computador quiser enviar a letra M (eme maiúsculo) para o vídeo ou para a impressora, ele enviará o byte composto pelos bits 01001101
- Mas não é só para representar caracteres que a base hexadecimal é usada. Posto que as instruções do microprocessador são também binárias, a tabela de instruções de um microprocessador também utiliza a representação hexadecimal, conforme pode-se observar no próximo slide (tabela de instruções do microprocessador Intel 8080

Subconjunto de Instruções do Processador 8080

Hex	Mncmor	nico	Hex	Mnem	onico	Hex	Mnemo	nico
00	NOP		28	DCX	Н	56	MOV	D,M
01	LXI	B,D16	2C	INR	L	57	MOV	D.A
02	STAX	В	2D	DCR	L	58	MOV	E,B
03	INX	В	2E	MVI	L.D8	59	MOV	E.C
04	INR	В	2F	CMA		5A	MOV	E,D
05	DCR	В	30			5B	MOV	E,E
06	MVI	B,D8	31	LXI	SP,D16	5C	MOV	E,H
07	RLC		32	STA	Adr	5D	MOV	E,L
08			33	INX	SP	5E	MOV	E.M
09	DAD	8	34	INR	M	5F	MOV	E,A
0A	LDAX	В	35	DCR	M	60	MOV	H,B
OB	DCX	8	36	MVI	M,D8	61	MOV	H,C

 A base hexadecimal também é usada para representar os endereços (posições) de memória, bem como os respectivos conteúdos destes, como mostrado no próximo slide.

Classe

0000 cafe babe 0003 002d 0012 0700 0e07 0010 0a00 0200 040c 0007 0005 0100 0328 2956 1628 5b4c 6a61 7661 2f6c 616e 672f 7269 6e67 3b29 5601 0006 3c69 6e69 743e 0100 0443 6f64 6501 000d 436f 6e73 7461 6e74 5661 6c75 6501 000a 4578 0060 7074 696f 6e73 0100 0f4c 696e 654e 756d 0070 6265 7254 6162 6c65 0100 0e4c 6f63 616c 0080 5661 7269 6162 6c65 7301 000a 536f 0090 6365 4669 6c65 0100 0361 6464 0100 0861 00a0 6464 2e6a 6176 6101 0010 6a61 7661 2f6c 00b0 616e 672f 4f62 6a65 6374 0100 046d 6169 00c0 6e00 2100 0100 0200 0000 0000 0200 0900 00d0 1100 0600 0100 0800 0000 2d00 00e0 0000 0d10 0f3c 1009 3d03 3e1b 1c60 0001 000b 0000 000e 0003 0000 0004 0006 000c 0002 0001 0000 001d 0001 0001 0000 0005

...([Ljava/lang/ String;) V...<ini t>...Code...Cons tantValue...Exce ptions...LineNum berTable...Local Variables...Sour ceFile...add...a dd.java...java/l ang/Object...mai n..............

DECIFRANDO A TABELA

	00001	0203	0405	0607	0809	A0B0	COD0	EOFO ,~	~_ ASCII V
0000	cafe	babe	0003	002d	0012	0700	0e07	0010/	ASCII I
0010	0a00	0200	040c	0007	0005	0100	0328	2956) /	() V
0020	0100	1628	5b4c	6a61	7661	2f6c	616e	67 21	([Ljava/lang/
0030	5374	7269	6e67	3b29	5601	0006	3c69	6e <mark>69</mark> \$	String;) V <ini< td=""></ini<>
0040	743e	0100	0443	6f64	6501	000d	436f	6e73 t	t>CodeCons
0050	7461	6e74	5661	6c75	6501	000a	4578	6365 t	tantValueExce
0060	7074	696f	6e73	0100	0f4c	696e	654e	756d p	otionsLineNum
0070	6265	7254	6162	6c65	0100	0e4c	6f63	616c k	perTableLocal
0800	5661	7269	6162	6c65	7301	000a	536f	7572	VariablesSour
0090	6365	4669	6c65	0100	0361	6464	0100	0861	ceFileadda
00a0	6464	2e6a	6176	6101	0010	6a61	7661	2f6c 0	dd.javajava/l
00b0	616e	672f	4f62	6a65	6374	0100	046d	6169 a	ang/Objectmai
00c0	6e00	2100	0100	0200	0000	0000	0200	0900 r	n
00d0	1100	0600	0100	0800	0000	2d00	0200	0400	
00e0	0000	0d10	0f3c	1009	3d03	3e1b	1c60	3eb1	
00f0	0000	0001	000b	0000	000e	0003	0000	0004	
0100	0008	0006	000c	0002	0001	0007	0005	0001	
0110	0008	0000	001d	0001	0001	0000	0005	2ab7	
0120	0003	b100	0000	0100	0b00	0000	0600	0100	
0130	0000	0100	0100	0d00	0000	0200	0f00		

- Finalmente, com código hexadecimal e um editor hexadecimal como o Hex Editor Neo, podemos conhecer e alterar o conteúdo de quaisquer arquivos do HD.
- Por exemplo, suponhamos a criação de um arquivo através do bloco de notas, chamado Foi.txt, cujo conteúdo é exatamente a palavra "Foi" conforme mostra o próximo slide.

- O arquivo de nome BlocoDeNotas.txt é gravado no diretório
 - c:/Este Computador/Wincows(c:)/TesteDoEditorHexa.

Se abrirmos o mesmo arquivo com o editor Hexa teremos:

Se mudarmos o F para R teremos

Se gravarmos e voltarmos ao editor, teremos:

Criando um arquivo semelhante no WordPad e lendo com o hexa edito:

Por último, com o Word Office, que não segue o padrão ASCII:

Voltando ao universo da Matemática

• Recordando a tabela hexadecimal:

Binário	Hex
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

Binário	Hex
1000	8
1001	9
1010	Α
1011	В
1100	C
1101	D
1110	E
1111	F

Conversão de hexadecimal em decimal

Procure verificar os decimais correspondentes a A, B, C, D, E, F:

Binário	Hex	Dec
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

Binário	Hex	Dec
1000	8	8
1001	9	9
1010	Α	10
1011	В	- 11
1100	C	12
1101	D	13
1110	Ε	14
1111	F	15

Assim, vamos ver, por exemplo, a conversão de 3F₁₆ em decimal: 3 \downarrow **F** \Longrightarrow 3x16¹ + F x16⁰ sendo $F_{16} \Longrightarrow 15_{10} \Longrightarrow$ 3x16 + 15x1 = $=48+15=63_{10}$

Exercícios

7. Converter em decimais os seguintes hexadecimais:

Conversão Decimal para Hexadecimal

Procure verificar os decimais correspondentes a A, B, C, D, E, F:

Binário	Hex	Dec
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

Binário	Hex	Dec
1000	8	8
1001	9	9
1010	Α	10
1011	В	- 11
1100	C	12
1101	D	13
1110	E	14
1111	F	15

Exercícios

8. Converter em hexadecimais os seguintes decimais:

Conversão Hexadecimal para Binário

• Procure verificar os decimais correspondentes a A, B, C, D, E, F:

Binário	Hex	Dec
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

Binário	Hex	Dec
1000	8	8
1001	9	9
1010	Α	10
1011	В	- 11
1100	C	12
1101	D	13
1110	E	14
1111	F	15

Seja o valor Hexa C13₁₆

Sua conversão para binário é bastante simples e muito semelhante à de Octal para binário, só que invés de cada valor corresponder à 3 bits, corresponde à 4 bits.

C 1 3 1100 0001 0011 Ou seja:

$$C13_{16} = 110000010011_2$$

Exercícios

9. Converter em hexadecimais para binários:

c) Transformar o hexadecimal 3A7 em binário e o resultado em octal

Conversão Binário para Hexadecimal

Procure verificar os decimais correspondentes a A, B, C, D, E, F:

Binário	Hex	Dec
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

Binário	Hex	Dec
1000	8	8
1001	9	9
1010	Α	10
1011	В	11
1100	C	12
1101	D	13
1110	Е	14
1111	F	15

Análogo à conversão de Binário para Octal, porém com agrupamento de 4 dígitos.

Exemplo:10011000₂ \Longrightarrow 1001 1000
9 8

Exercícios

10. Converter em hexadecimais os binários: