

专注于商业智能BI和大数据的垂直社区平台

常见参数假设检验

Allen

www.hellobi.com

课程目录

- u检验
- t检验
- 卡方检验
- 小结

u检验

- 如果原假设 $H_0: \mu = \mu_0$ 为真,那么子样均值 \overline{x} 应当在 μ_0 上下随机摆动,而不会偏离 μ_0 太大,所以其临界域的结构形如 $(\overline{x} \mu_0) \ge k$
- 为了便于查找分位数表,将统计量改写成 $u=\frac{\overline{X}-\mu_0}{\sigma_0/\sqrt{n}}$,在原假设为真是服从标准正态分布 $\frac{\partial u}{\partial u \partial u}$

u检验

• 给定显著性水平 α ,当原假设 H_0 为真时, $P\left(|u| \ge u_{1-\frac{\alpha}{2}}\right) = \alpha$,这里的 $u_{1-\frac{\alpha}{2}}$ 是标准 正态分布N(0,1)的 $1-\frac{\alpha}{2}$ 分位点,查表就可得到,进而求出临界域

$$C = \left(|u| \ge u_{1-\frac{\alpha}{2}} \right)$$
 给出显著性水平并求出临界域

• 根据子样观测值算出u的值,若 $|u| \ge u_{1-\frac{\alpha}{2}}$ 则拒绝原假设 $H_0: \mu = \mu_0$,并认为母体均值与原假设有显著差异

以上这种方法称为u检验

t检验

- 设X₁,X₂,...,X_n是取自正态母体 N(μ,σ²) 的一个子样,其中σ² = σ₀² 为未知常数,要检验假设H₀: μ = μ₀, H₁: μ≠ μ₀
- 之前的u检验中的统计量 $u=\frac{\overline{X}-\mu_0}{\sigma_0/\sqrt{n}}$ 中的 σ_0 未知,固不能使用u检验,并且首先要选取一个不含未知参数的 σ^2 的统计量。
- 选取方差的无偏估计量 $S^{*2} = \frac{1}{n-1}\sum_{i=1}^{n}(x_i \overline{x})^2$ 去代替母体方差 σ^2 ,这样就得到t 统计量 $t = \frac{\overline{X} \mu_0}{S^*}\sqrt{n}$,这个统计量服从自由度为n-1的t分布

给出检验统计量

t检验

• 给定显著性水平 α ,当原假设 H_0 为真时, $P\left(|t| \ge t_{1-\frac{\alpha}{2}}(n-1)\right) = \alpha$,这里的 $t_{1-\frac{\alpha}{2}}(n-1)$ 是自由度为 $t_{1-\frac{\alpha}{2}}$ 分位点,查表就可得到,进而求出临界域

给出显著性水平并求出临界域

t检验

• 根据子样观测值算出t的值,若 $|t| \ge t_{1-\frac{\alpha}{2}}(n-1)$ 则拒绝原假设 $H_0: \mu = \mu_0$,并认为 母体均值与原假设有显著差异

以上这种方法称为t检验

卡方检验——母体均值已知

• 设 $X_1, X_2, ..., X_n$ 是取自正态母体 $N(\mu, \sigma^2)$ 的一个子样,要检验假设 $H_0: \sigma^2 = \sigma_0^2$,

$$H_1: \sigma^2 \neq \sigma_0^2$$
 绘出原假

给出原假设和备择假设

- 下面要分别对 # 已知和 # 未知两种情况进行讨论
- $\mu = \mu_0$ 为已知常数构造统计量 $\chi^2 = \frac{\sum_{i=1}^{n} (X_i \mu_0)^2}{\sigma_0^2}$ 服从自由度为n的卡方分布

给出检验统计量

卡方检验——母体均值已知

• 给定显著性水平 α ,由图可看出卡方分布的临界域的格式为 $\{\chi^2 \le k_1\} \cup \{\chi^2 \ge k_2\}$ 概率表示为 $P(\chi^2 \le k_1) = \alpha_1$ 和 $P(\chi^2 \ge k_2) = \alpha_2$ 其中 $\alpha_1 + \alpha_2 = \alpha$,显然 k_1 和 k_2 分别是自由度为n的卡方分布的 α_1 和 $1-\alpha_2$ 分位点

卡方检验——母体均值已知

• 若取 α_1 和 α_2 分别为 $\frac{\alpha}{2}$, 这时 k_1 和 k_2 就分别是卡方分布的 $\frac{\alpha}{2}$ 和 $1-\frac{\alpha}{2}$ 分位 点 , 即 $k_1 = \chi_{\alpha/2}{}^2(n)$, $k_2 = \chi_{1-\alpha/2}{}^2(n)$ 这时得到的临界域为 $C = \left\{ \chi^2 \leq \chi_{\alpha/2}{}^2(n) \right\} \cup \left\{ \chi^2 \geq \chi_{1-\alpha/2}{}^2(n) \right\}$

给出显著性水平并求出临界域

• 根据子样观测值算出检验统计量值,若小于 $\chi_{\alpha/2}^2(n)$ 或者大于 $\chi_{1-\alpha/2}^2(n)$ 则 拒绝原假设,并认为母体均值与原假设有显著差异

以上这种方法称为卡方检验

卡方检验——母体均值未知

• 设 $X_1, X_2, ..., X_n$ 是取自正态母体 $N(\mu, \sigma^2)$ 的一个子样,要检验假设 $H_0: \sigma^2 = \sigma_0^2$,

$$H_1: \sigma^2 \neq \sigma_0^2$$

给出原假设和备择假设

• μ 为未知,则用子样均值 \overline{x} 去代替母体均值构造统计量 $\chi^2 = \frac{\sum\limits_{i=1}^n \left(X_i - \overline{X}\right)^2}{\sigma_0^2}$ 服从自由度为n-1 的卡方分布

给出检验统计量

卡方检验——母体均值未知

• 给定显著性水平 α ,由图可看出卡方分布的临界域的格式为 $\{\chi^2 \le k_1\} \cup \{\chi^2 \ge k_2\}$ 概率表示为 $P(\chi^2 \le k_1) = \alpha_1$ 和 $P(\chi^2 \ge k_2) = \alpha_2$ 其中 $\alpha_1 + \alpha_2 = \alpha$,显然 k_1 和 k_2 分别是自由度为n的卡方分布的 α_1 和 $1-\alpha_2$ 分位点

卡方检验——母体均值未知

• 若取 α_1 和 α_2 分别为 $\frac{\alpha}{2}$,这时 k_1 和 k_2 就分别是卡方分布的 $\frac{\alpha}{2}$ 和 $1-\frac{\alpha}{2}$ 分位 点 ,即 $k_1 = \chi_{\alpha/2}{}^2(n-1)$, $k_2 = \chi_{1-\alpha/2}{}^2(n-1)$ 这时得到的临界域为 $C = \left\{ \chi^2 \leq \chi_{\alpha/2}{}^2(n-1) \right\} \cup \left\{ \chi^2 \geq \chi_{1-\alpha/2}{}^2(n-1) \right\}$

给出显著性水平并求出临界域

• 根据子样观测值算出检验统计量值,若小于 $\chi_{\alpha/2}^2(n-1)$ 或者大于 $\chi_{1-\alpha/2}^2(n-1)$ 则拒绝原假设,并认为母体均值与原假设有显著差异

以上这种方法称为卡方检验

小结

- u检验
- t检验
- 卡方检验
- 小结

