

Visão Isométrica

Rossana Baptista Queiroz

Perspectivas

- A palavra perspectiva vem do latim Perspicere (ver através de)
- Se você se colocar atrás de uma janela envidraçada e, sem se mover do lugar, riscar no vidro o que está "vendo através da janela", terá feito uma perspectiva
- Perspectiva é a representação gráfica que mostra os objetos como eles aparecem a nossa vista, com três dimensões.

Projeções Paralelas e Perspectivas

As projeções planares paralelas e perspectivas diferem com relação a distância do plano de projeção ao centro de projeção:

Projeções Paralelas e Perspectivas

Projeções planares paralelas

- Projeções planares paralelas são subclassificadas em ortográficas e oblíquas dependendo da relação entre a direção dos raios projetores e a normal ao plano de projeção.
 - projeções ortográficas, as direções são as mesmas (raios perpendiculares ao plano de projeção).
 - projeções oblíquas, são diferentes.

Projeções Oblíquas

Ocorrem quando o observador, situado no infinito, gera retas projetantes que incidem de forma nãoperpendicular nos eixos no mundo.

Alguns tipos

Projeções Oblíquas

Cavaleira vs. Cabinet

Alguns tipos

Na cabinet há um encolhimento na dimensão do versor perpendicular ao plano de projeção para corrigir a ilusão de que o objeto exibido é maior na direção deste versor.

Projeções ortográficas: vistas lateral, frontal e planta

Projeções Axonométricas

Outro tipo de projeção ortográfica é a chamada axonométrica, que ocorre quando o plano de projeção não é ortogonal a algum eixo principal do sistema.

Projeções Axonométricas

- Possuem as seguintes características:
 - 1. A projeção no espaço 2D não possui "ponto de fuga"
 - Linhas paralelas no espaço 3D continuam paralelas no espaço 2D
 - 3. Objetos que estão distantes possuem o mesmo tamanho de objetos que estão próximos

Projeções ortográficas axonométricas

- Projeções axonométricas distorcem os objetos, alterando as relações de ângulos e dimensões de lados dos objetos, no entanto, mantém as relações de paralelismo entre eles.
- A alteração da dimensão dos lados é relacionada com a alteração da dimensão dos versores (vetores unitários) em cada um dos eixos x, y e z, quando projetados no plano.
- Projeções axonométricas se subdividem em:
 - dimétricas, quando dois versores variam a dimensão igualmente quando projetados no plano;
 - isométricas, quando três versores variam na mesma proporção; e
 - **trimétricas**, os três versores variam de forma diferenciada.

Projeções ortográficas axonométricas

Projeções Trimétricas, Dimétricas e Isométricas

Isometria

- Caso especial em que o plano de projeção forma o mesmo ângulo com os três eixos principais. As projeções dos três vetores unitários canônicos formam ângulos de 120º entre si.
- Isto permite que as medições feitas na projeção em cada eixo utilize a mesma escala

Isometria

Tipos de Isometria

- Existem várias projeções isométricas possíveis.
 Entretanto, os jogos de computadores isométricos são geralmente baseados em tiles
- É necessário então fazer com que os tiles casem para poder formar um mapa de tiles.
- Por isso, geralmente a projeção isométrica utilizada é a conhecida 1:2
 - altura e o comprimento do tile possuem uma razão de 1 para 2
- Os tamanhos de tiles mais usados nos jogos de computadores são os de 16 pixels por 32 e o 32 pixels por 64.

Combinando Tiles Isométricos

Para conseguir exibir um tile isométrico, que não possui uma forma retangular, na representação gráfica bidimensional que utiliza a transferência de mapa de bits retangulares, é necessário o uso da técnica de transparência.

Tipos de Mapas Isométricos

- Principais tipos:
 - Slide Maps
 - Staggered Maps
 - Diamond Maps

Slide Maps

- Mais fácil dos mapas isométricos de se navegar e de renderizar
- No entanto, ele possui uma aplicação prática limitada por ocupar um espaço muito grande na tela, e por isso poucos jogos utilizam esse tipo de mapa
- Contudo, por ser um mapa fácil de lidar, ele é um estudo de casos perfeito para aprender a estabelecer um sistema de coordenadas, a movimentar unidades nos mapas isométricos e de descobrir a posição de um tile na tela.

Staggered Maps

Staggered Maps

- Os Staggered Maps são mapas isométricos bastante utilizados nos jogos para PC. Jogos como Civilization II, Alpha Centauri e Civilization: Call to Power utilizam este tipo de mapa.
- Os mapas do tipo Staggered são um dos mais complicados de manipular. No entanto, algumas características os tornam bastante atrativos:
 - Pelo formato quase retangular, esse tipo de mapa é o que menos desperdiça espaço na tela. Existe ainda a possibilidade de cortar as "arestas" do mapa fazendo com que ele tome um formato totalmente retangular.
 - Aproveitando o formato retangular, é possível fazer com que o scroll do mapa na tela seja contínuo, onde a linha/coluna de tiles mais à direita/cima leva para a mais à esquerda/baixo e vice-versa, dando a impressão de um mapa cilíndrico.
 - Uma boa aplicação para os mapas cilíndricos é uma representação da Terra, como usado em Civilization II.

Diamond Maps

- Os mapas do tipo *Diamod* são um dos mapas isométricos mais utilizados, principalmente pelos jogos de estratégia em tempo real.
 - Exemplos: jogos clássicos como Age of Empires, Sim City 2000/3000 e The Sims

Principais Problemas

- Ordem de desenho
 - *Tiles* precisam ser renderizados de forma que nenhum tile seja plotado após outro que está "à frente" dele
 - Se uma pequena porção da tela for atualizada, é necessário atualizar os tiles modificados e todos os vizinhos, obedecendo à regra anterior

Principais Problemas

- Mapear um ponto na tela para uma posição no TileMap, ou seja, dado um ponto na tela, a que tile ele pertence.
 - Cálculos matemáticos ou...
 - Verificar em que retângulo de uma grade retangular um ponto está contido
 - Divide-se o mundo em retângulos
 - Descobrindo o retângulo em que está o ponto na tela
 - Conhecendo como andar no tile (de acordo com o tipo de mapa)
 - Descobrir o tile central do retângulo (índice)
 - Descobrir em qual das 5 regiões formadas está o ponto

Principais Problemas

□ Dividindo o mundo em retângulos

Solução

- Como os tiles possuem o mesmo tamanho, é possível construir uma figura externa do mesmo tamanho do retângulo construído anteriormente onde cada tile possua uma cor diferente
- Assim, para descobrir a que tile o ponto pertence, basta mapear o ponto nas coordenadas do retângulo na figura e pegar a cor existente

Slide Maps

- Adotar um sistema de coordenadas
 - x cresce para o leste e o y cresce para sudeste

Uma característica importante deste sistema de coordenadas é que ele facilita a manutenção da ordem de renderização dos tiles, uma vez que o ponto (0,0) do TileMap está na linha superior do mapa.

Slide Maps

Mapeamento

Pixel	Incremento em 1 unidade de X do TileMap	Incremento em 1 unidade de Y do TileMap	Equação
V	T'1 W' 14	TT'1 W' 14 /0	MapX*TileWidth
X	+TileWidth	+TileWidth/2	+ MapY*TileWidth/2
Y	0	+TileHeight/2	MapY*TileHeight/2

Tabela 4-1 Mapeando uma Coordenada do TileMap para a Tela no Slide Map.

Movimentação dos objetos na tela

Figura 4-10 Direções Regulares nos Mapas Isométricos (figura à esquerda) e a Direção Norte sendo composta de Direções conhecidas (figura à direita).

Supondo que exista uma unidade no tile (1,2) da Figura do slide anterior, e se deseje movê-la para o norte. Para que posição do TileMap deve-se movê-la?

Movimentação dos objetos na tela

Slide Map

Direção	Variação no X do TileMap	Variação no Y do TileMap
Norte	+1	-2
Sul	-1	+2
Leste	+1	0
Oeste	-1	0
Nordeste	+1	-1
Noroeste	0	-1
Sudeste	0	+1
Sudoeste	-1	+1

Tabela 4-2 Variação na Coordenada de um tile nos Slide Maps segundo uma Orientação.

Staggered Map

□ Sistema de coordenadas

Se MapY for par → PixeIX = MapX*TileWidth

Se MapY for impar → PixeIX = MapX*TileWidth + TileWidth/2

PixeIY = MapY*TileHeight/2

Movimentação dos Objetos na tela

Direção	Paridade do Y	Incremento em X	Incremento em Y
Leste	-	1	0
Oeste	-	-1	0
Norte	Par	0	-2
Sul	Par	0	2
Nordeste	Par	0	-1
Noroeste	Par	-1	-1
Sudeste	Par	0	1
Sudoeste	Par	-1	1
Norte	Ímpar	0	-2
Sul	Ímpar	0	2
Nordeste	Ímpar	1	-1
Noroeste	Ímpar	0	-1
Sudeste	Ímpar	1	1
Sudoeste	Ímpar	0	1

Tabela 4-4 Variação nas Coordenadas do tile nos Staggered Maps seguindo uma Orientação.

Diamond Maps

- PixelX = (MapX-MapY)*TileWidth/2
- PixelY = (MapX+MapY)*TileHeight/2

Figura 4-14 Sistema de Coordenadas do Mapa do tipo Diamond

Movimentação dos Objetos na Tela

Direção	Variação em X	Variação em Y
Sudeste	1	0
Sudoeste	0	1
Noroeste	-1	0
Nordeste	0	-1
Norte	-1	-1
Sul	1	1
Leste	1	-1
Oeste	-1	1

Tabela 4-5 Variação nas Coordenadas do Tile nos Diamond Maps seguindo uma orientação

Leitura Obrigatória:

- http://www.di.ufpe.br/~ejtsr/Forge16V/Disserta%
 E7%E3o%20de%20Mestrado.pdf
 - Capítulo 4

Dicas para o trabalho

- Considere que os tiles estão em arquivos separados, portanto, um PNM para cada tile.
- □ Como PNM não tem paleta, então não se fará mapeamento indexado por paleta ☺
- Sobre os objetos para representação do jogo:
 - apenas um tilemap, independentemente da visão escolhida, ambas apontam para o mesmo objeto tilemap
 - um objeto para cada tipo de visão (um regular e outro isométrico)
 - um objeto tileset para cada tipo de visão
 - tiles diferentes (imagens) para cada visão. Assim, o tile do id=1 deve ter uma imagem para visão regular e outra para a visão isométrica.
- Sobre o desenho do cenário e do personagens e demais elementos do jogo, podemos adotar uma das estratégias abaixo:
 - Personagem e elementos também ficam na matriz tilemap: nesta situação, os tiles estaticos (chão e cenário em geral) possui um id e são representados no mapa. O personagem e outros elementos que ficam por cima do cenário, também possuem um id e representação no tilemap. Desta forma, para cada tipo de tile de chão diferente, deve ter um tile de chão com personagem no tileset, para representar tanto o chão, quanto um chão com personagem em cima. É uma boa representação para jogos de tabuleiro.
 - Personagem e elementos ficam fora da matriz, num array de elementos: assim o tilemap possui apenas tiles de "chão" ou de cenário em geral. O personagem e os elementos são desenhados por cima do cenário base. Neste caso, é necessário uma estrutura para representar o elemento de jogo e que cada objeto de elemento possua um id (de tile) e um x e y aonde aparecem no mapa. O mapa do cenário é desenhado primeiro e os objetos são desenhados por cima. Bom para todas as situações, mas nem tanto para jogos de tabuleiro.

O que é para fazer hoje?

□ Trabalho!!!

- Entregar até o fim da aula
 - Grupo
 - Tema do Jogo
 - Pequena descrição do jogo
 - Qual tipo de tilemap isométrico pretende usar
 - Estratégia para personagens e elementos