| Datum:       |                                      | Třída:                      |
|--------------|--------------------------------------|-----------------------------|
|              | SPŠ CHOMUTOV                         | A4                          |
| Číslo úlohy: | MĚŘENÍ FOTOELEKTRICKÝCH<br>SOUČÁSTEK | Příjmení: <b>LEDVINKOVÁ</b> |

### Zadání:

Ručně změřte VA charakteristiky fotorezistoru a fotodiody a navrhněte program pro automatické měření VA charakteristiky fotodiody.

## Schéma:

1. nastavení světelné intenzity



- 2. ruční měření
- a. fotoodpor



b. fotodioda



3. Automatické měření fotodiody s převodníkem



## 4. Optočlen

a., b. VA charakteristika vysílače, výstupní charakteristika



## a. Dynamické vlastnosti



## Tabulka použitých přístrojů:

## 1. + 2. Nastavení intenzity + ruční měření:

| Název zařízení           | Označení | Údaje                               | Evidenční číslo |
|--------------------------|----------|-------------------------------------|-----------------|
| Oddělovací transformátor | ОТ       | 260 V/3 A                           | LE 5114         |
| Stejnosměrný zdroj       | $U_2$    | DC POWER SUPPLY, RXN-303D           | LE1 2390        |
| Potenciometr             | Р        | 0,63 Α/1200 Ω                       | LE1 373         |
| El. voltmetr             | $V_1$    | UT803                               | LE2 5038        |
| El. voltmetr             | $V_2$    | MX 545                              | LE2 77          |
| Luxmetr                  | -        | -                                   | LE4 1634        |
| Miliampérmetr            | mA       | 600 mA <u>_</u> <u></u> <u>₀₅</u> ☆ | LE1 2173/6      |
| Fotoodpor                | -        | WK 650 37                           | EL 1430         |
| Fotodioda                | -        | 1PP75                               | -               |

## 1. + 3. Nastavení intenzity + automatické měření:

| Název zařízení                        | Označení        | Údaje                     | Evidenční číslo |
|---------------------------------------|-----------------|---------------------------|-----------------|
| Oddělovací transformátor              | ОТ              | 260V/3A                   | LE 5114         |
| Regulační transformátor<br>+ fotometr | RT              | 0-250V/2A                 | LE1 1529        |
| Stejnosměrný zdroj                    | $U_2$           | DC POWER SUPPLY, RXN-303D | LE1 2390        |
| Zpětnovazební odpor                   | $R_2$           | 111111 Ω                  | LE1 1827        |
| číslicový voltmetr                    | ČV₁             | Agilent 34410A            | LE 5035         |
| číslicový voltmetr                    | ČV <sub>2</sub> | Agilent 34401A            | LE 5021         |
| převodník                             | 1               | MAA 741CN                 | LE 2380         |
| Generátor                             | G               | Agilent 33220A            | LE 108          |
| Luxmetr                               | lx              | DT-1308                   | LE4 2375        |
| Voltmetr                              | $V_1$           | 600V=1% - 🚨 😇 🛱           | LE2 2285/14     |
| Fotodioda                             | -               | 1 PP75                    | -               |

## 4. Optočlen

| Název přístroje:   | Označení:      | Údaje:                                | Ev. Číslo:  |
|--------------------|----------------|---------------------------------------|-------------|
| zdroj              | U1             | RXN 3010D                             | LE 5110     |
| potenciometr       | P1             | 105 Ω 2,5 A                           | LE1 343     |
| ampérmetr          | A1             | 6 A <u>□ □ 0.5</u> ☆                  | LE1 2313/17 |
| číslicový voltmetr | ČV1            | Keysight U3401A                       | LE 5096     |
| optorn             |                | WK 16412                              |             |
| zdroj              | U2             | AX-12001 DBL                          | LE 5111     |
| potenciometr       | P <sub>2</sub> | 250 Ω 1,6 Α                           | LE1 354     |
| miliampérmetr      | mA             | 600 mA <u>_</u> <u>_</u> <u>0,5</u> 🔆 | LE1 2172/5  |
| číslicový voltmetr | ČV2            | MX 553                                | LE2 5010    |
| rezistor           | R1             | 0 - 100 kΩ                            | LE1 1923    |
| rezistor           | R <sub>2</sub> | 0 - 100 kΩ                            | LE1 1920    |
| generátor          |                | SDG 1020                              | LE 5077     |
| osciloskop         |                | RIGOL DS1052E                         | LE 5066     |

#### Teorie:

Fotorezistor je součástka, která mění svůj odpor v závislosti na světelné intenzitě.

Fotodioda je součástka, která je závislá na světelné intenzitě. VA charakteristiku můžeme měřit ve 3 režimech:

- 1. Odporový režim (3. kvadrant VA char.): chová se jako odpor
- 2. Hradlový režim (4. kvadrant VA char.): chová se jako zdroj napětí
- 3. Propustný režim (1. kvadrant VA char.): chová se jako normální dioda v propustném směru Nejvíce se používá v hradlovém režimu (např. při konstrukci solárních panelů) a nejméně v propustném režimu, kde je skoro nulový vliv světelné intenzity.

Optočlen je elektronický prvek, který slouží k přenosu signálu pomocí světelného záření místo elektrického signálu. Skládá se ze dvou základních částí: vysílače a přijímače.

Vysílač může být buď LED, nebo laserová dioda. LED optočleny jsou většinou pomalejší a mají menší přenosovou rychlost než laserové optočleny, ale jsou méně nákladné a spotřebují méně energie. Přijímač je prvek, který reaguje na světelné záření a produkuje elektrický signál. Nejčastěji se používají fototranzistor, fotodioda nebo fotorezistor.

Optočleny se používají v mnoha aplikacích, například v telekomunikacích, kde se využívají pro přenos dat mezi různými zařízeními. Také se používají v průmyslových aplikacích, například v automatizované výrobě, kde slouží k přenosu signálů mezi různými senzory a řídícími systémy.

Optočleny mají několik výhod oproti elektrickým prvkům. Jsou imunní vůči elektromagnetickému rušení a mohou být použity v oblastech, kde by elektrické signály byly nebezpečné nebo nedostupné. Dále také umožňují galvanicky oddělit různé části obvodu, což zvyšuje spolehlivost a bezpečnost systému.

### Postup:

- 1. Nastavení intenzity:
- > Přiložím luxmetr k žárovce a nastavuji napětí, dokud luxmetr neukáže požadovanou hodnotu
- > Napětí pro danou intenzitu zapíši
- 2. Ruční měření
- a. Fotorezistor
- > Zjistím mezní parametry
- $P_{max} = 50 \text{ mW}$
- $I_{max} = 50 \text{ mA}$
- $U_{Rmax} = 5 V$
- > Nastavím napětí pro danou intenzitu
- > Pomocí potenciometru nastavuji napětí, dokud nedosáhnu některého z mezních parametrů
- > Snižuji napětí a odečítám proud
- b. Fotodioda

(začínám zapojením v závěrném směru – odporový režim)

- > Zjistím mezní parametry
- P<sub>max</sub> = 150 mW
- I<sub>max</sub> = 20 mA
- > Nastavím napětí pro danou intenzitu
- > Nastavuji napětí od U<sub>Rmax</sub> do 0 V a odečítám proud
- > Snížím napětí zdroje a prohodím svorky fotodiody a miliampérmetru >> hradlový režim
- > Nastavuji napětí a odečítám proud do 0 mA
- > Prohodím svorky miliampérmetru >> propustný režim
- > Zvyšuji proud do I<sub>Fmax</sub> a odečítám napětí
- 3. Automatické měření fotodiody
- > Navrhnu si zpětnovazební odpor

$$- R_2 = \frac{U_{SAT}}{I_{max}} = \frac{12}{0.6*10^{-3}} = 20000 \,\Omega$$

- > Zjistíme mezní parametry
- P<sub>max</sub> = 150 mW
- $I_{max} = 20 \text{ mA}$
- > Navrhneme program
- > Spustíme měření

- 4. Optočlen
- > Vyhledáme si mezní parametry tranzistoru
- $U_{CEmax} = 6 V$
- I<sub>Cmax</sub> = 20 mA
- $P_{Cmax} = 50 \text{ mW}$
- $I_{Fmax} = 30 \text{ mA}$
- a. VA charakteristiky vysílače:
- > Zapojíme dle schéma
- > Budeme pracovat pouze s částí připojené k vysílači
- > Změříme VA charakteristiku diody
- b. Výstupní charakteristika
- > Nastavíme konstantní proud diodou, využijeme naměřenou VA charakteristiku diody
- > Budeme nastavovat napětí na tranzistoru a odečítat proud
- > Musíme si dávat pozor, abychom nepřekročili ani jeden z mezních parametrů
- c. Dynamické vlastnosti
- > Zapojíme dle schéma
- > Vypočítáme si velikosti rezistorů

- 
$$R_1 = \frac{U_{TTL} - U_F}{I_F}$$

$$- R_2 = \frac{U_{TTL}}{I_C}$$

- > Na generátoru nastavíme obdélníkový průběh
- > Z osciloskopu odečteme dobu náběhu a doběhu (některé osciloskopy mají zabudovanou funkci na odečet)
- > Naměřené hodnoty zpracujeme tabulárně a graficky a porovnáme s katalogovými hodnotami

### **Program:**

- 1. nastavení generátoru
- Stejnosměrné napětí
- Práce do vysoké impedance
- Zapnutí výstupu
- 2. Smyčka pro vykreslení 3 celých charakteristik
- 3. Zvolení maximálního U<sub>R</sub>: 5 V
- 0 10 V
- 4. Smyčka pro vykreslení odporového režimu
- Od nastaveného U<sub>R</sub> do 0, kde začíná hradlový režim
- Krok: 1 V >> stačí tento hrubý krok kvůli malým změnám
- 5. Smyčka pro vykreslení hradlového režimu a propustného režimu
- Od 0 do 1 V
- Krok: 100 mV >> volí se jemný krok pro lepší vykreslení kolene v hradlovém režimu
- 6. Nastavení 0 V po vykreslení celé charakteristiky
- 7. Tlačítko
- Před tím, než se zmáčkne, se ručně nastaví nová intenzita osvětlení
- Pokud se zmáčkne, začne se vykreslovat další charakteristika
- 8. Spojení smyček
- 9. Zadání maximálního proudu: 0,6 mA
- 0–20 mA (více generátor nedokáže)
- 10. Zjištění naměřeného napětí
- 11. Podmínka pro spuštění Gateu
- 12. Gate
- povolí se, pokud se nepřekročil mezní proud
- 13. Vypnutí napětí
- 14. Zpoždění
- 15. Zjištění vstupního napětí
- 16. Zjištění výstupního napětí
- 17. Převedení vstupního napětí na záporné kvůli závěrnému zapojení diody
- 18. Převedení naměřeného výstupního napětí na proud
- 19. Graf
- vykreslení odporové, hradlové i propustné charakteristiky



## Tabulka naměřených hodnot:

1. nastastavení světelné intenzity

| luxmetr |      |  |  |  |
|---------|------|--|--|--|
| E [lx]  | U[V] |  |  |  |
| 200     | 145  |  |  |  |
| 400     | 172  |  |  |  |
| 600     | 192  |  |  |  |
| 800     | 210  |  |  |  |
| 1000    | 222  |  |  |  |

- 2. ruční měření
- a. fotorezistor

| 100   | 00 lx  | 800   | ) lx   | 600   | 0 lx   | 400   | ) lx   | 200   | ) lx   |
|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|
| U [V] | I [mA] |
| 1,00  | 3,20   | 1,00  | 2,80   | 1,00  | 2,26   | 1,00  | 1,80   | 1,0   | 1,18   |
| 2,00  | 6,38   | 2,00  | 5,58   | 2,00  | 4,40   | 2,00  | 3,44   | 3,0   | 3,40   |
| 3,00  | 9,56   | 3,00  | 8,38   | 3,00  | 6,78   | 3,00  | 5,20   | 4,0   | 4,50   |
| 3,50  | 11,10  | 4,00  | 11,02  | 4,00  | 8,90   | 4,00  | 6,98   | 5,0   | 5,76   |
| 4,00  | 12,62  | 5,00  | 13,80  | 5,00  | 11,00  | 5,00  | 8,60   | 6,0   | 6,90   |
| 4,50  | 14,22  | 5,50  | 15,36  | 6,00  | 13,30  | 6,00  | 10,22  | 7,0   | 8,00   |
| 5,00  | 15,70  | 6,00  | 16,38  | 7,00  | 15,10  | 7,00  | 11,90  | 8,0   | 9,06   |
| 5,50  | 17,30  | 6,50  | 17,98  | 7,50  | 16,38  | 8,00  | 13,60  | 9,0   | 10,22  |
| 6,00  | 18,78  | 7,00  | 19,08  | 8,00  | 17,40  | 9,00  | 15,20  | 10,0  | 11,40  |
| 6,29  | 20,00  | 7,23  | 20,00  | 8,17  | 18,00  | 9,31  | 16,00  | 11,4  | 13,00  |

### b. fotodioda

| závěrný směr |        |        |        |        |        |  |
|--------------|--------|--------|--------|--------|--------|--|
| 100          | 00 lx  | 600 lx |        | 200 lx |        |  |
| U [V]        | I [mA] | U [V]  | I [mA] | U [V]  | I [mA] |  |
| 0            | 0,317  | 0      | 0,215  | 0      | 0,1105 |  |
| 1            | 0,317  | 1      | 0,215  | 1      | 0,1105 |  |
| 2            | 0,319  | 2      | 0,215  | 2      | 0,1105 |  |
| 3            | 0,320  | 3      | 0,215  | 3      | 0,1105 |  |
| 4            | 0,320  | 4      | 0,215  | 4      | 0,1105 |  |
| 5            | 0,320  | 5      | 0,215  | 5      | 0,1105 |  |

| hradlový směr |        |        |        |        |        |  |
|---------------|--------|--------|--------|--------|--------|--|
| 100           | 00 lx  | 600 lx |        | 200 lx |        |  |
| U [V]         | I [mA] | U [V]  | I [mA] | U [V]  | I [mA] |  |
| 0,128         | 0,315  | 0,069  | 0,215  | 0,045  | 0,1105 |  |
| 0,200         | 0,315  | 0,090  | 0,215  | 0,300  | 0,1000 |  |
| 0,300         | 0,300  | 0,300  | 0,205  | 0,350  | 0,0750 |  |
| 0,400         | 0,195  | 0,400  | 0,093  | 0,397  | 0,0000 |  |
| 0,431         | 0,000  | 0,418  | 0,000  | 1      | -      |  |

| propustný směr |       |        |       |        |       |  |
|----------------|-------|--------|-------|--------|-------|--|
| 100            | 0 lx  | 600 lx |       | 200 lx |       |  |
| I [mA]         | U [V] | I [mA] | U [V] | I [mA] | U [V] |  |
| 0,10           | 0,437 | 0,10   | 0,429 | 0,10   | 0,419 |  |
| 0,15           | 0,441 | 0,15   | 0,433 | 0,15   | 0,425 |  |
| 0,20           | 0,444 | 0,20   | 0,437 | 0,20   | 0,431 |  |
| 0,25           | 0,447 | 0,25   | 0,441 | 0,25   | 0,436 |  |
| 0,30           | 0,450 | 0,30   | 0,444 | 0,30   | 0,440 |  |
| 0,35           | 0,452 | 0,35   | 0,448 | 0,35   | 0,444 |  |
| 0,40           | 0,455 | 0,40   | 0,450 | 0,40   | 0,447 |  |

## 4. optočlen

## a. VA charakteristika vysílače

| IF[mA] | U <sub>F</sub> [V] |
|--------|--------------------|
| 0,5    | 0,975              |
| 1,0    | 1,007              |
| 2,0    | 1,036              |
| 4,0    | 1,065              |
| 6,0    | 1,083              |
| 8,0    | 1,096              |
| 10,0   | 1,107              |
| 12,0   | 1,117              |
| 14,0   | 1,126              |
| 16,0   | 1,135              |
| 18,0   | 1,140              |
| 20,0   | 1,142              |
| 22,0   | 1,156              |
| 24,0   | 1,163              |

# b. Výstupní charakteristika

| · ·        |        |  |  |  |  |  |  |
|------------|--------|--|--|--|--|--|--|
| IF = 16 mA |        |  |  |  |  |  |  |
| UCE[V]     | Ic[mA] |  |  |  |  |  |  |
| 0,1        | 0,2    |  |  |  |  |  |  |
| 0,2        | 1,2    |  |  |  |  |  |  |
| 0,3        | 2,2    |  |  |  |  |  |  |
| 0,5        | 3,8    |  |  |  |  |  |  |
| 1,0        | 6,7    |  |  |  |  |  |  |
| 1,5        | 9,0    |  |  |  |  |  |  |
| 2,0        | 11,2   |  |  |  |  |  |  |
| 2,5        | 13,0   |  |  |  |  |  |  |
| 3,0        | 14,8   |  |  |  |  |  |  |
|            |        |  |  |  |  |  |  |

| IF = 18 mA |        |  |  |  |
|------------|--------|--|--|--|
| UCE[V]     | Ic[mA] |  |  |  |
| 0,1        | 0,3    |  |  |  |
| 0,2        | 1,4    |  |  |  |
| 0,3        | 2,4    |  |  |  |
| 0,5        | 4,0    |  |  |  |
| 1,0        | 6,8    |  |  |  |
| 1,5        | 9,2    |  |  |  |
| 2,0        | 11,4   |  |  |  |
| 2,5        | 13,4   |  |  |  |
| 3,0        | 15,2   |  |  |  |

### Použité vzorce:

- 
$$R_1 = \frac{U_{TTL} - U_F}{I_F} = \frac{5 - 1,14}{0,018} = 214,4\Omega$$
  
-  $R_2 = \frac{U_{TTL}}{I_C} = \frac{5}{0,0114} = 438,6\Omega$ 

$$- R_2 = \frac{U_{TTL}}{I_C} = \frac{5}{0.0114} = 438,6\Omega$$

## **Grafy:**

- 2. ruční měření
- a. fotoodpor

# VA charakteristika fotorezistoru



U: 1 dílek  $\cong$  2 V I: 1 dílek  $\cong$  5 mA

### b. fotodioda

# VA charakteristika diody



 $U_R$ : 1 dílek  $\cong$  1 V  $U_F$ : 1 dílek  $\cong$  1 V  $I_R$ : 1 dílek  $\cong$  0,1 mA  $I_F$ : 1 dílek  $\cong$  0,1 mA

### 3. automatické měření



katalogové hodnoty při 1000 lx  $I_L > 0.07 \text{ mA}$   $U_L > 0.3 \text{ V}$ 

naměřené hodnoty při 1000 lx  $I_L$  = 0,4 mA  $U_L$  = 0,4 V

### 4. optočlen

### a. VA charakteristika vysílače



 $U_F$ : 1 dílek  $\cong$  0,050 V  $I_F$ : 1 dílek  $\cong$  2 mA

### b. Výstupní charakteristika



 $U_{CE}$ : 1 dílek  $\cong$  0,2 V  $I_{F}$ : 1 dílek  $\cong$  2 mA

### <u>Závě</u>r:

Měření proběhlo bez problémů. Díky generátoru jsme nemuseli přepojovat obvod, takže měření bylo rychlejší než ve 3. ročníku, kde jsem měřili ručně. VA charakteristika odpovídá teoretickým předpokladům a je mnohem přesnější.