Efficient Algorithms for Nearest Correlation Matrix Computation with Missing Data

Ibrahim Oyeyinka

Department of Mathematical Sciences Northern Illinois University

Thesis Director: Prof. Nathan Krislock — October 13, 2025

Masters Thesis Defense

Abstract Overview

This thesis investigates *efficient algorithms* for computing the nearest correlation matrix (NCM) with missing data. Empirical estimates often violate PSD and unit-diagonal constraints. We compare **Modified Alternating Projections (MAP)** and **Anderson Acceleration (AA)** and analyze how **MCAR** and **NMAR** mechanisms affect performance and reliability. The results provide practical guidance for financial practitioners.

Background and Context

Role in Finance

• Correlation matrices underpin risk management, portfolio optimization, derivative pricing, fraud detection, and regulatory compliance.

Modern Portfolio Theory (MPT)

• Low/negative correlations reduce portfolio risk without reducing expected return.

Data Challenge

 Missing/asynchronous observations (non-trading days, delistings, reporting gaps, corporate actions) yield invalid empirical matrices.

Problem Statement: Invalid Correlation Matrices

Goal: Reconstruct a valid correlation matrix X from imperfect A.

- Validity: $X = X^{\top}$, $X \succeq 0$, $X_{ii} = 1$.
- Naive fixes can still violate these, leading to poor risk estimates and decisions.
- Seek the nearest valid X to A under a chosen norm.

Research Objectives

Objective 1: Algorithm Comparison

- MAP: alternating projections onto \mathcal{S}^n_+ and \mathcal{U}^n with Dykstra's correction.
- AA: accelerates convergence using prior iterates/residuals.
- Metrics: efficiency, speed, accuracy, robustness, scalability.

Objective 2: Missing Data Analysis

- Examine MCAR (scattered) vs. NMAR (structured) on estimation and algorithm behavior.
- Provide practical recommendations for finance.

Core Definitions: Correlation Matrix

For *a*, *b*:

$$ho_{\mathsf{a}\mathsf{b}} = rac{\mathrm{Cov}(\mathsf{a},\mathsf{b})}{\sigma_{\mathsf{a}}\sigma_{\mathsf{b}}} \in [-1,1].$$

Correlation matrix $X \in \mathbb{R}^{n \times n}$:

- $X \succeq 0 \text{ (PSD)}$
- $X_{ii} = 1$ (unit diagonal)

Feasible sets:

$$\mathcal{S}^n_+ = \{Y = Y^\top: \ Y \succeq 0\}, \quad \mathcal{U}^n = \{Y = Y^\top: \ \mathrm{diag}(Y) = e\}.$$

Nearest Correlation Matrix (NCM) Problem

$$\min_{X \in \mathcal{S}_1^n \cap \mathcal{U}^n} \|A - X\|_F, \qquad \|A\|_F^2 = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2.$$

Compute the minimal distance $\gamma(A)$ and the minimizer X in $\mathcal{S}^n_+ \cap \mathcal{U}^n$.

Weighted Norms for NCM

W-norm:

$$||A||_W = ||W^{1/2}AW^{1/2}||_F, \quad W \succ 0$$

Preserves inertia under congruence; emphasizes rows/cols via W; fits dense financial data. (Adopted in this thesis.)

H-norm:

$$||A||_{H} = ||H \circ A||_{F}, \quad H \ge 0$$

Entrywise weighting (Hadamard); useful for sparse/partial/confidence-weighted observations.

Literature: NCM Methods & Acceleration

MAP (Higham): alternating projections onto \mathcal{S}^n_+ and \mathcal{U}^n ; converges in Frobenius norm; *linear* rate can be slow for large/ill-conditioned cases. Dykstra's correction stabilizes by compensating projection bias.

Newton-type: Qi & Sun; refined by Borsdorf & Higham offers faster convergence, higher complexity.

Anderson Acceleration (AA): leverages past iterates/residuals for fixed-point acceleration; often cuts iterations by factors of 2-3+ with minimal overhead. Widely effective in practice.

Theoretical Background

Convex Characterization of the NCM Problem

Minimize $||A - X||_W$ over $X \in \mathcal{S}^n_+ \cap \mathcal{U}^n$, where

$$||A||_W = ||W^{1/2}AW^{1/2}||_F, \quad W \succ 0.$$

Optimality condition:

$$\langle Z-X, A-X\rangle_W \leq 0, \quad \forall Z \in \mathcal{S}^n_+ \cap \mathcal{U}^n,$$

which implies

$$A - X \in \partial(\mathcal{S}^n_+ \cap \mathcal{U}^n)(X).$$

Normal cone sum rule:

$$\partial(\mathcal{S}^n_+\cap\mathcal{U}^n)(X)=\partial\mathcal{S}^n_+(X)+\partial\mathcal{U}^n(X),$$

valid because $ri(\mathcal{S}^n_+) \cap ri(\mathcal{U}^n) \neq \emptyset$.

Lemma: Normal Cone of \mathcal{U}^n

For
$$A \in \mathcal{U}^n$$
 and $W \succ 0$:

$$\partial \mathcal{U}^n(A) = \{ W^{-1} \operatorname{Diag}(\theta) W^{-1} : \theta \in \mathbb{R}^n \}.$$

Idea:

- If WYW had any nonzero off-diagonal entry, then $\langle Z-A,Y\rangle_W$ could become unbounded for feasible $Z\in\mathcal{U}^n$.
- To keep the supremum finite, WYW must therefore be diagonal.
- ullet Hence every normal element has the form $Y=W^{-1}\operatorname{Diag}(heta)\,W^{-1}$ for some $heta\in\mathbb{R}^n$.

Lemma: Normal Cone of \mathcal{S}^n_+

For $A \in \mathcal{S}^n_+$:

$$\partial \mathcal{S}_{+}^{n}(A) = \{ Y = Y^{\top} : Y \leq 0, \langle Y, A \rangle_{W} = 0 \}.$$

Idea:

• If $Y \not \leq 0$, then

$$\sup_{Z\succ 0}\langle Y,Z\rangle_W=+\infty$$

(by scaling along a positive eigenvector of Y), so Y cannot lie in the normal cone.

• If $Y \leq 0$, the supremum is finite and $\langle Y, A \rangle_W = 0$ follows from orthogonality between the supports of Y and A.

Corollary: Structure of $\partial \mathcal{S}^n_+(A)$

Statement: For $A \in \mathcal{S}^n_+$, the elements of the normal cone are

$$\partial \mathcal{S}_{+}^{n}(A) = \{ Y : WYW = -VDV^{\top}, D = \operatorname{Diag}(d_{i}) \succeq 0 \},$$

where $V \in \mathbb{R}^{n \times p}$ has orthonormal columns spanning null(A).

Idea: Let $A = Q \Lambda Q^{\top}$ with $Q = [Q_1, Q_2]$ partitioned so that Q_1 corresponds to positive eigenvalues and Q_2 spans $\operatorname{null}(A)$. From $\langle Y, A \rangle_W = 0$ and $Y \leq 0$,

$$Q^{\top}(WYW)Q = \begin{bmatrix} G & H \\ H^{\top} & M \end{bmatrix} \leq 0$$
, with $G = 0$, $H = 0$, $M \leq 0$.

Hence $WYW = Q_2 M Q_2^{\top} = -VDV^{\top}$ for some diagonal $D \succeq 0$.

Theorem: Solution Characterization

X solves

$$\min_{X \in \mathcal{S}^n_t \cap \mathcal{U}^n} \|A - X\|_W \quad \Longleftrightarrow \quad X = A + W^{-1} (VDV^\top + \mathsf{Diag}(\theta)) W^{-1},$$

where V spans null(X), $D \succeq 0$, and $\theta \in \mathbb{R}^n$.

Proof Sketch:

- From optimality: $A X = Y_1 + Y_2$ with $Y_1 \in \partial \mathcal{S}^n_+(X)$ and $Y_2 \in \partial \mathcal{U}^n(X)$.
- Substitute the normal cone expressions: $Y_1 = W^{-1}V(-D)V^\top W^{-1}$ and $Y_2 = W^{-1}\mathsf{Diag}(\theta)\,W^{-1}$.
- \bullet Combine terms and rearrange to obtain the stated form of X.

Constraints and Eigenvalue Analysis

Assume $A = A^{\top}$, $a_{ii} \geq 1$, and W is diagonal.

ullet Diagonal correction: From the unit-diagonal constraint, the diagonal multipliers θ_i must satisfy

$$\theta_i \leq 0$$
,

ensuring that x_{ii} is reduced (or unchanged) to enforce $diag(X) = \mathbf{e}$.

• **Eigenvalue structure:** If A has t nonpositive eigenvalues, each iterate $R_k = A + \Delta_k$ and the solution X retain at least t zero eigenvalues. Negative directions cannot be "recovered" under the PSD constraint.

Theorem: Projection onto S^n_+

For symmetric A and W > 0,

$$P_{\mathcal{S}_{+}^{n}}(A) = W^{-1/2}((W^{1/2}AW^{1/2})_{+})W^{-1/2}.$$

Optimality Conditions:

$$A - X \leq 0$$
, trace $((A - X)WXW) = 0$.

Proof Sketch:

- Let $B = W^{1/2}AW^{1/2} = B_+ B_-$ with $B_{\pm} \succeq 0$.
- Set $X = W^{-1/2}B_+W^{-1/2}$.
- Then $W^{1/2}(A-X)W^{1/2}=-B_- \leq 0$, and $B_-B_+=0$ ensures orthogonality.

Theorem: Projection onto \mathcal{U}^n

$$P_{\mathcal{U}^n}(A) = A - W^{-1} \mathsf{Diag}(\theta) \ W^{-1}, \qquad (W^{-1} \circ W^{-1}) \ \theta = \mathsf{diag}(A - I).$$

Proof Sketch:

- From optimality, $A X = W^{-1} \text{Diag}(\theta) W^{-1}$ for some $\theta \in \mathbb{R}^n$.
- Enforcing the unit-diagonal constraint $x_{ii} = 1$ gives $(W^{-1} \circ W^{-1}) \theta = \text{diag}(A I)$.
- Since $W \succ 0 \Rightarrow W^{-1} \succ 0$, the Hadamard product $W^{-1} \circ W^{-1} \succ 0$, so the linear system admits a unique solution θ .

Methodology and Algorithms

Modified Alternating Projections (MAP)

Algorithm:

- **1 Input:** Matrix $A \in \mathbb{R}^{n \times n}$, tolerance.
- **Orrection:** $R_k \leftarrow Y_{k-1} \Delta S_{k-1}$ (Dykstra term)
- **9** Projection 1: $X_k \leftarrow P_{\mathcal{S}_+^n}(R_k)$
- **4 Update** ΔS : $\Delta S_k \leftarrow X_k R_k$
- **9** Projection 2: $Y_k \leftarrow P_{\mathcal{U}^n}(X_k)$
- **5** Stop when $||Y_k X_k|| / ||Y_k|| \le \text{tolerance}$.

Converges to the unique nearest correlation matrix in $\mathcal{S}^n_+ \cap \mathcal{U}^n$ (weighted Frobenius).

MAP: Convergence and Efficiency

Assume $A = A^{\top}$, $a_{ii} \geq 1$, and W is diagonal.

Iteration structure:

$$R_k = A + \Delta_k, \qquad \Delta_k = \sum_{i=1}^{k-1} D_i \preceq 0 ext{ (diagonal)}.$$

Eigenvalue persistence: If A has t nonpositive eigenvalues, then each R_k has at least t, so $P_{\mathcal{S}_+^n}(R_k)$ has at least t zero eigenvalues.

Computational note: For large-scale settings, compute only the top n-t positive eigenpairs of $W^{1/2}R_kW^{1/2}$ (via Lanczos or tridiagonalization) to reduce the cost of the PSD projection.

Anderson Acceleration (AA)

View: MAP as a fixed-point:

$$Z_{k+1} = g(Z_k), \qquad f(z) = \mathrm{vec}(\tilde{g}(Z)) - z,$$

where $Z_k = [Y_k, \Delta S_k]$, $z_k = \text{vec}(Z_k)$. g(Z) performs one full MAP step; $\tilde{g}(Z)$ is its vectorized form.

Algorithm:

- **①** Compute residual $f_k = f(z_k)$.
- Solve LS: $\gamma^{(k)} = \arg\min_{\gamma} \|f_k F_k \gamma\|_2$.
- **1** Update: $z_{k+1} = z_k X_k \gamma^{(k)} + f_k F_k \gamma^{(k)}$.
- **3** Stop when $||Y_k X_k||_2 / ||Y_k||_2 \le \text{tol.}$

Notes: Small history $(m \le 5) \Rightarrow \mathcal{O}(n^2)$ cost vs. $\mathcal{O}(n^3)$ eigensolve. Cuts MAP iterations by $5-10 \times$ with same accuracy.

Missing Data Mechanisms (Rubin, 1976)

Mechanism	Definition	Financial Example	
MCAR	Missingness is independent of (Y_{obs}, Y_{mis})	Random outages or technical errors	
MAR	Missingness depends only on $Y_{\rm obs}$ (after conditioning)	Reporting tied to observed firm attributes	
NMAR	Missingness depends on $Y_{\rm mis}$ even after conditioning	Suppression of extreme correlations	

Focus here: MCAR and NMAR.

Stock Selection:

- Dataset of 550 global equities (2020–2025), containing approximately 768,900 observations.
- Balanced sector representation: 50 stocks randomly selected from each of 11 GICS sectors.
- Equal weighting scheme applied (no market-cap bias).

Missing Data Simulation: MCAR

Deletion probability $p \in [0.05, 0.50]$. Randomly remove off-diagonals symmetrically.

Example (6 \times 6, p=0.4; 12 missing off-diagonals):

Scattered/noisy missingness pattern.

Missing Data Simulation: NMAR

Target large $|A_{ij}|$ until deletion rate p is met; set symmetric pairs missing.

Example (6 \times 6, threshold τ =0.2, 12 missing):

Structured/clustered pattern near stronger entries.

Results, Conclusions, and Future Work

Results — MAP vs. AA (Table 6.2)

Example	Method	Iter	Time (s)	$ A-X _F$
Higham 4×4	MAP	19	0.00104	2.133
	AA	3	0.00601	2.251
Toeplitz 6×6	MAP	27	0.00159	0.369
	AA	4	0.00477	0.402
Real 550×550 (1% MCAR)	MAP	13	0.656	0.116
	AA	3	0.686	0.124
Real 550×550 (1% NMAR)	MAP	19	0.914	0.0392
	AA	3	1.18	0.0412
Real 550×550 (25% MCAR)	MAP	84	6.18	4.832
	AA	10	2.26	5.072
Real 550×550 (25% NMAR)	MAP	72	4.75	3.558
	AA	7	1.88	3.734

Convergence: AA slashes iterations (88% fewer at 25% MCAR; 90% fewer at 25% NMAR).

Scalability: At higher missingness on large n, AA is 60–63% faster than MAP.

Results — AA under MCAR vs. NMAR (Table 6.3)

Mechanism	Missing (%)	Iterations	Time(s)	$ A-X _F$
MCAR	5 %	4	1.07	0.827
MCAR	10 %	7	1.41	1.647
MCAR	20 %	7	1.50	3.369
MCAR	30 %	30	5.46	6.342
MCAR	40 %	46	7.87	9.998
MCAR	50 %	55	9.06	14.845
NMAR	5 %	5	1.18	0.921
NMAR	10 %	5	1.28	1.703
NMAR	20 %	7	1.40	2.717
NMAR	30 %	10	1.83	4.961
NMAR	40 %	38	6.51	8.211
NMAR	50 %	72	12.8	12.881

Analysis: AA converges markedly faster under NMAR at moderate rates (e.g., 30%: 10 vs 30 iter). Outputs are typically well-conditioned (min eigenvalues near 0^+). At 40-50% missingness, both runtime and reconstruction error rise for obvious reasons (information loss).

Implications & Future Research

Implications for Finance:

- Anderson Acceleration (AA) yields faster and more robust NCM reconstructions as both dimension and missingness increase.
- Improved structural integrity (preserved null eigenvalues) enhances portfolio stability and risk estimation.

Future Directions:

- Incorporate MAR mechanisms through explicit dependency modeling.
- Analyze how the *eigenvalue spectrum* affects portfolio optimization and the shape of the efficient frontier.
- Validate at scale (millions of observations, thousands of assets) to test frontier robustness under missing data.

Thank You / Questions

Ibrahim Oyeyinka

Masters Thesis Defense

Department of Mathematical Sciences

Northern Illinois University

Thesis Director: Prof. Nathan Krislock

Date: October 13, 2025

GitHub Repository:

Scan to view the code & data