Quality of Life by Country: A Clustering Analysis

Katherine M. Prioli December 22, 2018

Abstract

Example abstract text

Background

The Centers for Disease Control and Prevention (CDC) has recently issued a report indicating that life expectancy in the United States has decreased in 2017 as compared to 2016, with the overwhelming majority of deaths caused by heart disease and cancer, arguably preventable illnesses (Murphy et al. (2018)). Given that the United States has the world's largest economy, this decline in life expectancy is particularly concerning, and indicates that national wealth may not be predictive of citizens' longevity (The World Bank (2018)).

As the world's economies trend toward globalism, there is increasing interest in understanding how these nations compare on key quality of life (QoL) factors, including but not limted to life expectancy. Several organizations report on QoL measures as they evolve, including among others the World Economic Forum (WEF), World Health Organization (WHO), and the United Nations Development Programme. The QoL measures reported by these bodies can be either unidimensional values or compound scores calculated from several factors of interest.

The objective of this analysis is to explore the relationships between key QoL indicators by country, with particular focus on how the United States ranks, through a series of visualizations and k-means clustering analyses.

Methods

This analysis included country-level QoL indicators as described in Table 1.

Table 1. Country-Level QoL measures.

Measure	Single or Description		Source	
	Compound			
Gross Domestic	Single	Valued in \$US 2018	@worldbank_gdp	
Product (GDP)				
Infant mortality rate	Single	Number of infant deaths per 1,000 live births	@who_infantmort	
Life expectancy at	Single	Expected life at birth, both genders	@who_life	
birth				
Life expectancy at	Single	Expected remaining life years at age 60, both genders	@who_life	
sixty				
Human Development	Compound	Developmental level, scale of 0:1	@un_dvlpt_HDIdeso	
Index (HDI)				
Human Development	Compound	Developmental category, four levels (low, medium, high,	@un_dvlpt_HDIdeso	
Index (HDI)		very high)		
Social Progress Index	Compound	mpound Social progress level, scaled from 0:100 and comprising		
		three broad categories: basic human needs (e.g., nutrition,		
		safety), foundations of wellbeing (e.g., basic knowledge,		
		environmental quality), and opportunity (e.g., personal		
		rights, freedoms)		
Global Gender Gap	Compound	Gender equality index, scaled from 0:1, based on	@wef_gender_desc	
Index		measurements of gender-related gaps in such dimensions		
		as economic participation, level of education, health and		
		survival, and political offices held		
World Happiness Score	Compound	Happiness score, scaled from 0:10, based on several	@whr	
		factors including per-capita GDP, healthy life expectancy,		
		social support, freedoms, and perception of corruption		

Data for these measures was obtained for calendar year 2016 in .csv or .xls(x) formats. Additionally, dataframe containing country identifiers (full names and three-letter codes) was generated from the countrycode library to facilitate merging the datafiles into one dataframe.

Wrangling and Exploration

Each country-level datafile was imported, wrangled as needed, then tested against the dataframe containing country identifiers via anti_join() to identify mismatches. Mismatching country names were manually recoded for each datafile, then all datafiles were merged using serial lef_join() statements. Countries with wholly missing data were excluded. The resulting dataframe, titled alldata, is presented in Table 2.

Table 2. alldata dataframe contents.

Source	Variable Name	Description		
Social Progress Imperative (2018)	SPI	Social Progress Index value (scale of 0:100)		
The World Bank (2018)	GDP_USD_2018	2016 Gross Domestic Product (valued in \$US 2018)		
The United Nations Development	HDIrank	Human Development Index ranking		
Programme (2018)				
The United Nations Development	HDIindex	HDI index value (scale of 0:1)		
Programme (2018)				
The United Nations Development	HDI_cat	HDI index category (5 levels)		
Programme (2018)				
Helliwell, Layard, and Sachs (2018)	happiness	World Happiness Score (scale of 0:10)		
World Economic Forum (2016)	gendereq	Gender Equality Index (scale of 0:1)		
World Health Organization	infantmort	Infant mortality rate		
(2018b)		•		
World Health Organization (2018a)	$birth_MF$	Life expectancy at birth, males & females		
World Health Organization (2018a)	sixty_MF	Life expectancy at 60 years, males & females		

At least one univariate visualization was generated for each variable in alldata via ggplot(), and a correlation matrix was produced to investigate pairwise relationshps between continuous variables. Next, a series of ordered country-as-factor bivariate visualizations were created to explore the top and bottom 20 countries by ranking within each variable.

K-Means Clustering

To assess how the United States compares to the rest of the world, a series of k-means cluster analyses was carried out. K-means clustering is described elsewhere; briefly, given bivariate data and a desired number k groups, this classification algorithm classifies the points in the two-dimensional plane to minimize the total within-cluster variation for all clusters (James et al. (2013)). This is an iterative process that works by establishing k centroids, classifying each point by which centroid is closest, then moving the centroids to the center of their corresponding clusters, and repeating the process. Iteration terminates when the centroids no longer move, and the classification established in this terminal iteraton is the clustering.

The Human Development Index categorizes the world's countries into four developmental levels (low, medium, high, and very high); thus k-means clustering analysis was performed assuming 4 clusters. Missing values were excluded to ensure the clustering algorithm would run, and a function was written to subset the clustering dataset (named clusterdata) to the variables of interest for each k-means analysis. On each output plot, the United States was identified by an enlarged geom_point().

Example Code

For brevity, example code for wrangling, plotting, and clustering is presented here; full code is available in the GitHub repository for this report (Prioli (2018)).

The libraries required for this analysis were loaded as shown below.

```
library(tidyverse)
library(readxl)  # For importing .xls(x) datasets
library(lazyeval)  # For renaming columns in function
```

```
library(countrycode)
                         # For establishing uniform country identifiers
library(ggthemr)
                         # For prettifying output
library(gridExtra)
                       # For grid.arrange()
                        # For textGrob() to annotate grid.arrange() elements
library(grid)
library(kableExtra)
                        # For nicer output tables
library(GGally)
                        # For ggpairs() correlation matrix
library(wesanderson)
                       # For Wes Anderson palette
ggthemr("fresh")
                         # For prettifying plot framework
wes <- wes_palette("Darjeeling1", 5, type = "discrete")</pre>
                                                         # Establishing color scheme for cluster plots
```

Code for establishing a crosswalk for country names and 3-letter codes:

```
countries_full <- codelist_panel %>%
  select(country.name.en, year, genc3c, iso3c, wb_api3c) %>%
  group_by(country.name.en) %>%
 mutate(maxyr = max(year)) %>%
 ungroup %>%
 mutate(maxyr = case_when(
   maxyr == year ~ 1,
   TRUE ~ 0
 )) %>%
 filter(maxyr == 1) %>%
  select(-maxyr) %>%
 distinct()
countries_full <- countries_full %>%
 mutate(country3 = case_when(
    iso3c == genc3c & iso3c == wb_api3c ~ iso3c,
    is.na(iso3c) == FALSE ~ iso3c,
    is.na(iso3c) == TRUE & is.na(genc3c) == FALSE ~ genc3c,
    is.na(iso3c) == TRUE & is.na(genc3c) == TRUE & is.na(wb api3c) == FALSE ~ wb api3c
 )) %>%
 rename(country = country.name.en) %>%
 arrange(country)
countries <- countries_full %>%
  select(country, country3)
```

Code for importing and wrangling each data file, and standardizing country names (example shown for the Social Progress Index data):

```
## [1] 5 1
# Correcting for mismatches with `countries` using `mutate()`
```

TRUE

```
SPIdata <- SPIdata %>%
  mutate(country3 = case_when(
    country3 == "CHI" ~ as.character(NA), # Nonstandard code for Chile; omitting (no data in these rows)
    country3 == "KSV" ~ "XKS", # Nonstandard code for Kosovo
    country3 == "NCY" ~ as.character(NA), # Turk. Repub. of N. Cyprus; omitting (conflict w/Cyprus)
    country3 == "SML" ~ as.character(NA), # Unable to determine
    country3 == "WBG" ~ as.character(NA), # West Bank / Gaza Strip; omitting (conflict w/Palestine)
    TRUE ~ as.character(country3)
  )) %>%
  filter(!is.na(country3))
SPIanti <- SPIdata %>%
  anti_join(countries, by = "country3") %>%
  select(country3) %>%
  arrange(country3) %>%
  unique()
dim(SPIanti)
## [1] 0 1
# Removing unneeded files
rm(list = c("SPI_2016_raw", "SPIanti"))
Code to combine individual data files into one dataframe and filter out countries with no data:
joindata_1 <- full_join(countries, HDIdata, by = "country")</pre>
joindata_2 <- left_join(joindata_1, SPIdata, by = "country3")</pre>
joindata_3 <- left_join(joindata_2, WHRdata, by = "country")</pre>
joindata_4 <- left_join(joindata_3, genderdata, by = "country")</pre>
joindata_5 <- left_join(joindata_4, infantmortdata, by = "country")
joindata_6 <- left_join(joindata_5, lifeexpdata, by = "country")</pre>
joindata_7 <- left_join(joindata_6, GDPdata, by = "country3")</pre>
joinsub <- joindata_7 %>%
  arrange(country) %>%
  mutate(exclude_flag = case_when(
    is.na(HDIrank) == TRUE &
      is.na(HDIindex) == TRUE &
      is.na(HDI_cat) == TRUE &
      is.na(SPI) == TRUE &
      is.na(happiness) == TRUE &
      is.na(gendereq) == TRUE &
      is.na(infantmort) == TRUE &
      is.na(birth_MF) == TRUE &
      is.na(sixty_MF) == TRUE &
      is.na(GDP_USD_2018) == TRUE
                                               ~ TRUE,
    TRUE
                                                ~ FALSE
  )) %>%
  filter(exclude_flag == FALSE) %>%
  select(-exclude_flag)
alldata <- joinsub %>%
  mutate(country = factor(country)) %>%
  mutate(country3 = factor(country3)) %>%
  mutate(US = case_when(
    country == "United States" ~ "US",
                               ~ "Non US"
```

```
)) %>%
 mutate(color = case_when(
    country == "United States" ~ "red",
                                ~ "#545454"
    TRUE
 ))
alldata \leftarrow alldata[c(1:2, 13:14, 6, 12, 3:5, 7:11)]
len <- dim(alldata)[[1]]</pre>
# write_csv(alldata, pasteO("data/alldata_", lubridate::today(),".csv")) # Uncomment to export data
Example code for univariate explorations:
SPI hist <- ggplot(data = alldata, aes(x = SPI)) +
  geom_histogram(bins = ceiling(sqrt(len - sum(is.na(alldata$SPI))))) +
 xlab("Social Progress Index") +
 ylab("Count") +
 ggtitle("Social Progress Index Distribution")
SPIsumm <- broom::tidy(round(summary(alldata$SPI), digits = 3))
sd <- round(sd(alldata$SPI, na.rm = TRUE), digits = 3)</pre>
SPIsumm <- cbind(SPIsumm, sd)</pre>
colnames(SPIsumm) <- c("Min", "Q1", "Median", "Mean", "Q3", "Max", "NA", "SD")
SPIsumm \leftarrow SPIsumm [c(1:6,8,7)]
SPIsumm_grob <- tableGrob(t(SPIsumm), theme = ttheme_minimal())
grid.arrange(SPI_hist, SPIsumm_grob, nrow = 1, widths = c(0.8, 0.2))
Example ordered country-level plot code:
alldata_SPI <- alldata %>%
 filter(!is.na(SPI) == TRUE) %>%
 arrange(desc(SPI)) %>%
 select(SPI, country, US, color)
alldata_SPI_top20 <- alldata_SPI %>% head(20)
alldata_SPI_bot20 <- alldata_SPI %>% tail(20)
alldata_SPI40 <- bind_rows(alldata_SPI_top20, alldata_SPI_bot20)
colors <- alldata_SPI40$color[order(alldata_SPI40$SPI)]</pre>
SPI_country_point <- ggplot(data = alldata_SPI40, aes(x = SPI,
                                                        y = fct_reorder(country, SPI), color = US)) +
 geom_point() +
 scale_color_manual(values = c("US" = "red", "Non US" = "#65ADC2")) +
 theme(axis.text.y = element_text(color = colors)) +
  guides(color = FALSE) +
 xlim(0, 100) +
 xlab("SPI") +
 ylab("Country") +
 ggtitle("Social Progress Index by Country, \nTop and Bottom 20 Countries")
Example clustering code:
```

```
kmdf <- function(data, x, y, z){
   kmdata <- data %>%
      select(x, y, z)
   kmdata <- return(kmdata)
}
kmdata <- kmdf(clusterdata, "country", "SPI", "logGDP")</pre>
```

```
set.seed(19811221)
km_SPI_GDP <- kmeans(kmdata[, 2:3], 4)</pre>
km_SPI_GDP_cluster <- as.factor(km_SPI_GDP$cluster)</pre>
clusterdata1 <- cbind(clusterdata, km_SPI_GDP_cluster)</pre>
km_SPI_GDP_plot <- ggplot(data = clusterdata1,</pre>
                           aes(x = logGDP, y = SPI,
                               color = km_SPI_GDP_cluster,
                               size = US,
                               shape = HDI_cat)) +
  geom_point() +
  ylim(0, 100) +
  scale_color_manual(values = wes) +
  scale_shape_manual(values = c(18, 17, 15, 16)) +
  scale_x_continuous(labels = scales::dollar_format(prefix = "$")) +
  guides(color = guide_legend(title = "Cluster"),
         size = FALSE,
         shape = guide_legend(reverse = TRUE, title = "HDI Category")) +
  xlab("log(GDP) ($US 2018)") +
  ylab("Social Progress Index") +
  ggtitle("Cluster Analysis, Social Progress Index vs. GDP")
km_SPI_GDP_plot
```

Results

Data Exploration and Visualizations

First, exploring the Social Progress Index data:

Next, exploring GDP by summary statistics:

Min	Q1	Median	Mean	Q3	Max	SD	NA
36572612	6734069913	27424071373	383069641832	1.90463e + 11	1.86245e + 13	1.640295e + 12	10

Taking the log transform and plotting:

Exploring the Human Development Index variables:

Exploring the World Happiness Report data:

Exploring the gender equality index data:

Exploring the WHO infant mortality rate data:

Exploring the WHO life expectancy data:

Investigating pairwise relationships between continuous variables:

Correlation Matrix, Continuous Variables

Strong positive linear relationships are seen between HDIindex and SPI, happiness, and birth_MF; between SPI and happiness, birth_MF, and sixty_MF; and between happiness and sixty_MF. Additionally, strong positive relationships that are possibly nonlinear are seen between HDI_index and sixty_MF, and between birth_MF and sixty_MF.

Strong negative relationships are seen between infantmort and birth_MF, between HDIindex and infantmort, and between SPI and infantmort, though the latter two of these may not necessarily be linear. A strong negative nonlinear relationship is seen between infantmort and sixty_MF.

Since the goal of this analysis is to compare countries with particular focus on the United States, factor-ordered bivariate plots were generated to explore how the countries compare across the variables of interest, with the United States denoted in red.

First, the top and bottom 20 countries were compared by Social Progress Index:

Social Progress Index by Country, Top and Bottom 20 Countries

The United States ranks twentieth in social progress.

Next, exploring GDP by country:

Gross Domestic Product by Country, Log Scale, Top and Bottom 20 Countries

The United States has the world's largest GDP.

Next, World Happiness Score:

World Happiness Score by Country, Top and Bottom 20 Countries

which(alldata_WHR\$country == "United States")

[1] 21

The United States is not among the top 20 countries in terms of happiness; it ranks 21st.

Next, the Human Development Index:

Human Development Index by Country, Top and Bottom 20 Countries

The United States ranks twelfth by HDI.

Exploring gender equality:

Gender Equality Index by Country, Top and Bottom 20 Countries

which(alldata_gender\$country == "United States")

[1] 45

The United States is not among the top 20 countries in terms of gender equality; it ranks 45th.

Examining infant mortality:

Infant Mortality Rate, Top and Bottom 20 Countries

alldata_infantmort_asc <- alldata_infantmort %>% arrange(infantmort)
which(alldata_infantmort_asc\$country == "United States")

[1] 46

The United States has the world's 46th lowest infant mortality rate.

Finally, exploring life expectancy:

which(alldata_lifeexp_birth\$country == "United States")

[1] 34

which(alldata_lifeexp_sixty\$country == "United States")

[1] 31

Once again, the United States is not among the top 20 countries for life expectancy, ranking 34th and 31st respectively for life expectancy at birth and at 60 years of age.

Clustering Analysis

Clustering social progress versus log GDP:

Clustering social progress versus happiness:

Clustering social progress versus gender equality:

Clustering social progress versus infant mortality:

Clustering social progress versus life expectancy:

Cluster Analysis, Social Progress Index vs. Total Life Expectancy...

Discussion

Limitations

Conclusion

References

Helliwell, John F., Richard Layard, and Jeffrey D. Sachs. 2018. "World Happiness Report." http://worldhappiness.report/ed/2018/.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. "An Introduction to Statistical Learning." Springer. https://www-bcf.usc.edu/~gareth/ISL/.

Murphy, Sherry L., Jiaquan Xu, Kenneth D. Kochanek, and Elizabeth Arias. 2018. "Mortality in the United States, 2017. NCHS Data Brief, No 328." National Center for Health Statistics. https://www.cdc.gov/nchs/products/databriefs/db328.htm.

Prioli, Katherine M. 2018. "MAT_8790_Final_Project." https://github.com/kmprioliPROF/MAT_8790_Final_Project.

Social Progress Imperative. 2018. "Social Progress Index." https://www.socialprogress.org/?tab=4.

The United Nations Development Programme. 2018. "Human Development Index." http://hdr.undp.org/en/data.

The World Bank. 2018. "Gross Domestic Product." https://data.worldbank.org/indicator/ny.gdp.mktp.cd?view=map&year

 $high_desc{=}true.$

 $World\ Economic\ Forum.\ 2016.\ "Gender\ Equality."\ http://reports.weforum.org/global-gender-gap-report-2016/rankings/.$

 $World\ Health\ Organization.\ 2018a.\ ``Life\ Expectancy.''\ http://apps.who.int/gho/data/view.main.SDG2016LEXv?lang=en.$

——. 2018b. "Probability of Dying Per 1000 Live Births." http://apps.who.int/gho/data/view.main.182?lang=en.