Conjugate Bayesian Models for Massive Spatial Data

Andrew Finley¹ & Jeffrey Doser² May 15, 2023

¹Department of Forestry, Michigan State University.

²Department of Integrative Biology, Michigan State University.

Case Study: Alaska Tanana Valley Forest Height Dataset

Forest height and tree cover

Forest fire history

- Forest height (red lines) data from LiDAR at 5×10^6 locations
- Knowledge of forest height is important for biomass assessment, carbon management etc

Case Study: Alaska Tanana Valley Forest Height Dataset

Forest height and tree cover Forest fire history

- Goal: High-resolution domainwide prediction maps of forest height
- Covariates: Domainwide tree cover (grey) and forest fire history (red patches) in the last 20 years

Analyzing the data

Models used:

Non-spatial regression:

$$y_{FH}(s) = \beta_0 + \beta_{tree} x_{tree} + \beta_{fire} x_{fire} + \epsilon(s)$$

Figure: Variogram of the residuals from non-spatial regression indicates strong spatial pattern

NNGP models

Collapsed NNGP:

- $y_{FH}(s) = \beta_0 + \beta_{tree} x_{tree} + \beta_{fire} x_{fire} + w(s) + \epsilon(s)$
- $w(s) \sim NNGP(0, C(\cdot, \cdot | \sigma^2, \phi))$
- $y_{FH} \sim N(X\beta, \tilde{C} + \tau^2 I)$ where \tilde{C} is the NNGP covariance matrix derived from C
- Response NNGP:
 - $y_{FH}(s) \sim NNGP(\beta_0 + \beta_{tree}x_{tree} + \beta_{fire}x_{fire}, \Sigma(\cdot, \cdot \mid \sigma^2, \phi, \tau^2))$
 - $y_{FH} \sim N(X\beta, \tilde{\Sigma})$ where $\tilde{\Sigma}$ is the NNGP covariance matrix derived from $\Sigma = C + \tau^2 I$

3

NNGP models

	Non-spatial regression	Collapsed NNGP	Response NNGP
CRPS	2.3	0.86	0.86
RMSPE	4.2	1.73	1.72
CP	93%	94%	94%
CIW	16.3	6.6	6.6

Table: Model comparison metrics for the Tanana valley dataset

- NNGP models perform significantly better than the non-spatial model
- MCMC run time for the NNGP models:
 - Collapsed model: 319 hours
 - Response model: 38 hours
- For massive spatial data, full Bayesian output for even NNGP models require substantial time

Another look at the response model

- Original full GP model: $y(s) \stackrel{ind}{\sim} N(x(s)'\beta + w(s), \tau^2)$
- $w(s) \sim GP$ with a stationary covariance function $C(\cdot, \cdot \mid \sigma^2, \phi)$
- $Cov(w) = \sigma^2 R(\phi)$
- Full GP model: $y \sim N(X\beta, \Sigma)$ where $\Sigma = \sigma^2 M$
- $M = R(\phi) + \alpha I$
- $\alpha = \tau^2/\sigma^2$ is the ratio of the noise to signal variance
- Response NNGP model: $y \sim N(X\beta, \tilde{\Sigma})$
- $\tilde{\Sigma} = \sigma^2 \tilde{M}$ where \tilde{M} is the NNGP approximation for M

- $y \sim N(X\beta, \sigma^2 \tilde{M})$
- If ϕ and α are known, M, and hence \tilde{M} , are known matrices
- The model becomes a standard Bayesian linear model
- Assume a *Normal Inverse Gamma (NIG)* prior for $(\beta, \sigma^2)'$
- $(\beta, \sigma^2)' \sim NIG(\mu_{\beta}, V_{\beta}, a_{\sigma}, b_{\sigma})$, i.e., $\beta \mid \sigma^2 \sim N(\mu_{\beta}, \sigma^2 V_{\beta})$ and $\sigma^2 \sim IG(a_{\sigma}, b_{\sigma})$

• $y \sim N(X\beta, \sigma^2 \tilde{M})$, \tilde{M} is known

Joint likelihood:

$$N(y \mid X\beta, \sigma^2 \tilde{M}) \times N(\beta \mid \mu_{\beta}, \sigma^2 V_{\beta}) \times IG(\sigma^2 \mid a_{\sigma}, b_{\sigma})$$

• $y \sim N(X\beta, \sigma^2 \tilde{M})$, \tilde{M} is known

Joint likelihood:

$$N(y \mid X\beta, \sigma^2 \tilde{M}) \times N(\beta \mid \mu_{\beta}, \sigma^2 V_{\beta}) \times IG(\sigma^2 \mid a_{\sigma}, b_{\sigma})$$

- Conjugate posterior distribution $(\beta, \sigma^2) | y \sim NIG(\mu_{\beta}^*, V_{\beta}^*, a_{\sigma}^*, b_{\sigma}^*)$
- Expressions for μ_{β}^* , V_{β}^* , a_{σ}^* and b_{σ}^* can be calculated in O(n) time

- $(\beta, \sigma^2) | y \sim NIG(\mu_{\beta}^*, V_{\beta}^*, a_{\sigma}^*, b_{\sigma}^*)$
- Marginal posterior: $\beta \mid y \sim MVt_{2a^*_{\sigma}}(\mu^*_{\beta}, \frac{b^*_{\sigma}}{a^*_{\sigma}}V^*_{\beta})$
- MVt_k(m, V) is the multivariate t distribution with degrees of k, mean m and scale matrix V
- $E(\beta \mid y) = \mu_{\beta}^*$, $Var(\beta \mid y) = \frac{b_{\sigma}^*}{a_{\sigma}^* 1} V_{\beta}^*$
- Marginal posterior: $\sigma^2 \mid y \sim IG(a_\sigma^*, b_\sigma^*)$
- $E(\sigma^2 \mid y) = \frac{b_{\sigma}^*}{a_{\sigma}^* 1}$, $Var(\sigma^2 \mid y) = \frac{b_{\sigma}^{*2}}{(a_{\sigma}^* 1)^2(a_{\sigma}^* 2)}$
- Exact posterior distributions of β and σ^2 are available

Predictive distributions

- $y(s) | y \sim t_{2a_{\sigma}^*}(m(s), \frac{b_{\sigma}^*}{a_{\sigma}^*}v(s))$
- E(y(s)|y) = m(s), $Var(y(s)|y) = \frac{b_{\sigma}^*}{a_{\sigma}^* 1}v(s)$
- m(s) and v(s) can be computed using O(m) flops
- Exact posterior predictive distributions of y(s) | y for any s
- No MCMC required for parameter estimation or prediction

Choosing α and ϕ

- ϕ and α are chosen using K-fold cross validation over a grid of possible values
- Unlike MCMC, cross-validation can be completely parallelized
- Resolution of the grid for ϕ and α can be decided based on computing resources available
- In practice, a reasonably coarse grid often suffices

Choosing α and ϕ

Figure: Simulation experiment: True value (+) of (α, ϕ) and estimated value (\circ) using 5-fold cross validation

Scalability

- Computation and storage requirements are O(n)
- One evaluation time similar to the response NNGP model
- Unlike response NNGP, does not involve any serial MCMC iterations
- For K fold cross validation and G combinations of ϕ and α , total number of evaluations is KG
- Embarassingly parallel: Each of the KG evaluations can proceed in parallel

Scalability

Figure: Run times of different NNGP models with increasing sample size

Alaska Tanana Valley dataset

	Conjugate NNGP	Collapsed NNGP	Response NNGP
β_0	2.51	2.41 (2.35, 2.47)	2.37 (2.31,2.42)
β_{TC}	0.02	0.02 (0.02, 0.02)	0.02 (0.02, 0.02)
β_{Fire}	0.35	0.39 (0.34, 0.43)	0.43 (0.39, 0.48)
σ^2	23.21	18.67 (18.50, 18.81)	17.29 (17.13, 17.41)
$ au^2$	1.21	1.56 (1.55, 1.56)	1.55 (1.54, 1.55)
ϕ	3.83	3.73 (3.70, 3.77)	4.15 (4.13, 4.19)
CRPS	0.84	0.86	0.86
RMSPE	1.71	1.73	1.72
time (hrs.)	0.002	319	38

Table: Parameter estimates and model comparison metrics for the Tanana valley dataset

- Conjugate model produces estimates and model comparison numbers very similar to the MCMC based NNGP models
- For 5×10^6 locations, conjugate model takes 7 seconds

Summary

- MCMC free exact Bayesian approach by fixing some covariance parameters
- Conjugate posterior distributions of the parameters and posterior predictive distributions available in closed form
- Embarassingly parallel cross validation to identify best choices for fixed parameters
- Runs in seconds for massive spatial dataset with millions of locations
- Available in the spNNGP package in R