Minimização De Funções Booleanas

Apesar de não existir um critério geral para obtenção de forma mais simples de uma expressão booleana, é possível definir uma forma simples a qual chegamos por métodos sistemáticos (representação em 2 níveis).

Formas Padrão de Função Booleanas

1. **Literal** – Uma variável qualquer ou seu complemento

Ex.: A,
$$\overline{A}$$
, B, \overline{B} , etc

2. **Termo Produto** - Uma série de variáveis relacionadas pela função "E".

Ex.:
$$A\overline{B}C$$
 $A\overline{B}\overline{C}D$, etc.

3. Termo Soma – Uma série de literais relacionadas pela função "OU".

Ex.:
$$A + B + \overline{C}$$
, $A + \overline{D}$, etc.

4. **Termo Normal** – Um termo produto ou termo soma onde nenhuma variável aparece mais de uma vez.

$$A \, B\overline{C} \, A \rightarrow A \, B \, \overline{C}$$

Ex.:
$$A\overline{C}DC \rightarrow 0$$

$$A + B + C + \overline{B} \rightarrow 1$$

5. Soma de produtos

$$Ex. : f(A, B, C, D, E) = (\overline{AC} + \overline{D}) \cdot (\overline{B} + \overline{CE})$$

$$= (\overline{A} + \overline{C} + \overline{D}) \cdot (\overline{B} \cdot \overline{CE})$$

$$= (\overline{A} + \overline{C} + \overline{D}) \cdot (\overline{B} \cdot \overline{CE})$$

$$= (\overline{A} + \overline{C} + \overline{D}) \cdot (\overline{B} \cdot \overline{C} + \overline{E})$$

$$= (\overline{A} + \overline{C} + \overline{D}) \cdot (\overline{B} \cdot \overline{C} + \overline{B} \cdot \overline{E})$$

$$= (\overline{A} + \overline{C} + \overline{D}) \cdot (\overline{B} \cdot \overline{C} + \overline{B} \cdot \overline{E})$$

$$= (\overline{A} + \overline{C} + \overline{D}) \cdot (\overline{B} \cdot \overline{C} + \overline{B} \cdot \overline{E})$$

$$= \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{E} + \overline{B} \cdot \overline{C} \cdot \overline{E} + \overline{B} \cdot \overline{D} \cdot \overline{E} - SDP$$

Seja agora a função:

$$f(A, B, C, D) = A \overline{B} C + A \overline{C} + B C D + \overline{A} B D$$

$$= A \overline{B} C(D + \overline{D}) + A \overline{C}(B + \overline{B}) + B C D (A + \overline{A}) + \overline{A} B D (C + \overline{C})$$

$$= A \overline{B} C D + A \overline{B} C D + A \overline{B} \overline{C} (D + \overline{D}) + A \overline{B} \overline{C} (D + \overline{D}) + A \overline{B} C D + \overline{A} B C D + \overline{A} B C D + \overline{A} B C D$$

$$= A \overline{B} C D + A \overline{B} C \overline{D} + A \overline{B} \overline{C} \overline{D}$$

Nesta expressão, que é uma soma de produtos, todos os termos contêm tantas literais quantas as variáveis da função. Cada produto é chamado *produto canônico*, *produto padrão* ou *mintermo*. A expressão está na forma *padrão* ou *canônica* de soma de produtos.

Teorema – Todas as funções de chaveamento de N variáveis $f(x_1, x_2, ... x_n)$ podem ser colocadas na forma de *soma de produtos* padrão (SDP).

Pelo princípio da dualidade é de se esperar que funções de chaveamento também possam ser representadas por na forma de *produtos* de somas padrão (PDS) ou produtos de *maxtermos*.

$$Ex.: f(A, B, C, D) = A + C + \overline{B} \, \overline{D}$$

$$= A + (C + \overline{B} \, \overline{D})$$

$$= A + (C + \overline{B}).(C + \overline{D})$$

$$= (A + C + \overline{B}).(A + C + \overline{D})$$

$$= (A + C + \overline{B} + D \, \overline{D}).(A + C + \overline{D} + B \, \overline{B})$$

$$= (A + \overline{B} + C + D).(A + \overline{B} + C + \overline{D}).(A + B + C + \overline{D}).(A + \overline{B} + C + \overline{D})$$

Tabela de Mintermos (m) e Maxtermos (M) para uma função de 3 variáveis

ABC	Mintermo	Maxtermo
000	$m_0 - \bar{A}.\bar{B}.\bar{C}$	M ₀ - (A+B+C)
001	$m_1 - \overline{A}.\overline{B}.C$	M_1 - (A+B+ \overline{C})
010	$m_2 - \bar{A}.B.\bar{C}$	M ₂ - (A+B+C)
011	m ₃ - Ā.B.C	M_3 - $(A+\overline{B}+\overline{C})$
100	m ₄ - A.B.C	M ₄ - (Ā+B+C)
101	m ₅ - A.B.C	$M_5 - (\bar{A} + B + \bar{C})$
110	m ₆ - A.B.C	M ₆ - (A+B+C)
111	m ₇ - A.B.C	$M_7 - (\overline{A} + \overline{B} + \overline{C})$

Linha	Α	В	С	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

Linha	Α	В	С	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

$$f(A, B, C) = \sum m(1, 2, 5, 7) \Rightarrow \text{linha onde } f = 1$$

Linha	Α	В	С	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

$$f(A, B, C) = \sum m(1, 2, 5, 7) \implies \text{linha onde } f = 1$$

$$f(A,B,C) = \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + A.\overline{B}.C + A.B.C$$
 (SDP)

Linha	Α	В	С	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

$$f(A, B, C) = \sum m(1, 2, 5, 7) \implies \text{linha onde } f = 1$$

$$f(A, B, C) = \pi M(0,3,4,6) \implies \text{linha onde } f = 0$$

$$f(A,B,C) = \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + A.\overline{B}.C + A.B.C$$
 (SDP)

$$(A,B,C) = (A+B+C).(A+B+C).(A+B+C).(A+B+C)$$
 (PDS)

Simplificação de Funções

Uma expressão de SDP de dois níveis será considerada mínima se não existe outra expressão equivalente:

- com menos termos produto,
- com mesmo número de produtos mas com menor número de literais (entradas).

Observe que definimos **UMA** expressão e não **A** expressão.

Exemplo:
$$f(A,B,C) = \overline{A}.B.C + A.B.C = (A + \overline{A}).B.C = B.C$$

Os dois termos da expressão original são chamados de termos **VIZINHOS** ou **LOGICAMENTE ADJACENTES**, ou seja, diferem de apenas uma variável e assim se prestam para minimização.

Esta característica pode ser vista mais claramente por meio de uma representação gráfica.

Mapas de Karnaugh

Meta: Colocar como "vizinhos" termos logicamente adjacentes e com isso facilitar a visualização das simplificações.

Mapas de Karnaugh

Meta: Colocar como "vizinhos" termos logicamente adjacentes e com isso facilitar a visualização das simplificações.

- Mapa de Karnaugh para funções de 2 variáveis:

\ A	1	
В	0	1
0	0	2
1	1	3

Mapas de Karnaugh

Meta: Colocar como "vizinhos" termos logicamente adjacentes e com isso facilitar a visualização das simplificações.

- Mapa de Karnaugh para funções de 2 variáveis:

\ A		
В	0	1
	0	2
0		
1	1	3

- Mapa de Karnaugh para funções de 3 variáveis:

Α .	λB			
c	00	01	11	10
0	0	2	6	4
1	1	3	7	5

_ A	В			
c	00	01	11	10
0	0	2	6	4
1	1	3	7	5

$$F(A,B,C) = \overline{A}.\overline{B} + A.B$$

$$F(A,B,C) = \overline{A}.\overline{B} + A.B$$

$$F(A,B,C) = \overline{A}.\overline{B} + A.B$$

$$f(A,B,C) = \overline{A}.\overline{B} + A.B$$

$$f(A,B,C) = B.C + \overline{B}.\overline{C}$$

ͺ A	В			
c	00	01	11	10
	0	2	6	4
0	1		1	
4	1	3	7	5
1	1	1	1	

$$f(A,B,C) = \overline{A}.\overline{B} + A.B + \overline{A}.C$$

$$f(A,B,C) = \overline{A}.\overline{B} + A.B + \overline{A}.C$$

$$f(A,B,C) = \overline{A}.\overline{B} + A.B + \overline{A}.C$$

$$f(A,B,C) = \bar{A}.B + A.B = (\bar{A} + A).B = B$$

$$f(A,B,C) = \overline{A}.\overline{B} + A.B + \overline{A}.C$$

$$f(A,B,C) = \bar{A}.B + A.B = (\bar{A} + A).B = B$$

$$f(A,B,C) = \overline{A}.\overline{B} + A.B + \overline{A}.C$$

$$f(A,B,C) = B$$

$$f(A,B,C) =$$

- Mapa de Karnaugh para funções de 4 variáveis:

- Mapa de Karnaugh para funções de 4 variáveis:

ͺ A	В			
CD	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

- Minimizar a função $f(A,B,C,D) = \Sigma m(0,5,7,8,12,14)$

ͺ A	В			
CD	00	01	11	10
	0	4	12	8
00	1		1	1
01	1	1	13	9
11	3	7	15	11
		1		
	2	6	14	10
10			1	

- Minimizar a função $f(A,B,C,D) = \Sigma m(0,5,7,8,12,14)$

$$f(A,B,C,D) = \overline{A}.B.D + \overline{B}.\overline{C}.\overline{D} + A.B.\overline{D}$$

_

- Minimizar a função $f(A,B,C,D) = \Sigma m(0,1,4,5,7,8,10,13,15)$

AB					
CD	00	01	11	10	
CD	0	4	12	8	
00	1	1		1	
04	1	5	13	9	
01	1	1	1		
11	3	7	15	11	
		1	1		
10	2	6	14	10	
10				1	

- Minimizar a função $f(A,B,C,D) = \Sigma m(0,1,4,5,7,8,10,13,15)$

$$f(A,B,C,D) = \overline{A}.\overline{C} + B.D + A.\overline{B}.\overline{D}$$

_

- Mapa de Karnaugh para funções de 5 variáveis:

- Minimizar a função $f(A,B,C,D,E) = \sum m(4,5,8,10,12,13,14,17,20,24,26,28,30)$

	A=0				
BC					
DE	00	01	11	10	
00	0	1	1	1	
01	1	1	1	9	
11	3	7	15	11	
10	2	6	1	10	

	A=1				
DE BO	00	01	11	10	
	16	20	28	24	
00		1	1	1	
01	1	21	29	25	
11	19	23	31	27	
10	18	22	1	1 26	

- Minimizar a função $f(A,B,C,D,E) = \Sigma m(4,5,8,10,12,13,14,17,20,24,26,28,30)$

 $f(A,B,C,D,E) = A.\overline{B}.\overline{C}.\overline{D}.E + \overline{A}.C.\overline{D} + B.\overline{E} + C.\overline{D}.\overline{E}$

Implementação de circuitos AND-OR com NAND-NAND

Implementação de circuitos AND-OR com NAND-NAND

00 1 01 1 10 1 11 0

Implementação de circuitos AND-OR com NAND-NAND

Tabela Verdade Nand

AB	Saída
00	1
01	1
10	1
11	0