Annexe G

Exercices

Dans cette section, on va trouvez quelques exercices mathématiques autour des notions relatives au ${\rm QC}$

G.1 Montrer que H est son propre inverse de différentes manières

Enoncé : Montrer que $H \times H = I$ de différentes manières.

G.1.1 Solution

Première méthode: Calcul en force brute

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, H \times H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \times \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = I$$

Seconde méthode Calculer les images des vecteurs de la base canonique

$$H |0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle), H |1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle),$$

$$H.H |0\rangle = \frac{1}{\sqrt{2}} (H |0\rangle + H |1\rangle) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle + |0\rangle - |1\rangle) = \frac{1}{2} \cdot 2 |0\rangle = |0\rangle$$

$$H.H |1\rangle = \frac{1}{\sqrt{2}} (H |0\rangle - H |1\rangle) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle - |0\rangle + |1\rangle) = \frac{1}{2} \cdot 2 |1\rangle = |1\rangle$$

Troisième méthode On rappelle que X et Z anticommutent ; donc $XZ=_Z$ X et $X^2=Z^2=I$

$$H = \frac{1}{\sqrt{2}}(X+Z), H.H = \frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}(X^2 + XZ + ZX + Z^2) = \frac{1}{2}2.I = I$$

G.2 Calculs des valeurs propres de Z, X et H

Enoncé : Calculer les valeurs propres et les vecteurs propres des matrices X, Z et H dans \mathbb{C}^2 .

G.2.1 Solution

On doit d'abord trouver les valeurs propres en calculant l'équation caractéristiques

$$det(A - \lambda I) = 0$$

Le cas de Z est trivial, elle est diagonale, ses valeurs propres sont 1 et -1 et les vecteurs propres sont $|0\rangle$ et $|1\rangle$.

Le cas de X est à peine plus compliqué, il est simple de voir que $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ est le vecteur propre associé à la valeur propre 1, et que $\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$ est le vecteur propre associé à la valeur propre -1

Le cas de la matrice H est plus intéressant sur le plan calculatoire. On calcule l'équation caractéristique

$$H - \lambda . I = \begin{pmatrix} \frac{1}{\sqrt{2}} - \lambda & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} - \lambda \end{pmatrix}, det(H - \lambda . I) = (\lambda - \frac{\sqrt{2}}{2})(\lambda + \frac{\sqrt{2}}{2}) - \frac{1}{2} = 0$$

Par conséquent

$$\lambda^2 - \frac{1}{2} - \frac{1}{2} = 0$$
, donc $\lambda = \pm 1$

Cherchons à présent les vecteurs propres, d'abord pour $\lambda=1$. Si $|\psi_{+}\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$ alors, puisque $H\,|\psi_{+}\rangle=|psi_{+}\rangle$ alors

$$\frac{1}{\sqrt{2}}(\alpha + \beta) = \alpha$$
$$\frac{1}{\sqrt{2}}(\alpha - \beta) = \beta$$

On déduit de la première équation que $\alpha + \beta = \sqrt{2}\beta$ donc $\beta = (\sqrt{2} - 1)\alpha$.

Or, H est une matrice unitaire, donc ses vecteurs propres sont de normes 1, et donc $\alpha^2 + \beta^2 = 1$

$$\alpha^{2} + \beta^{2} = 1$$

$$\alpha^{2} + (\sqrt{2} - 1)^{2}\alpha^{2} = 1$$

$$\alpha^{2}(1 + 2 - 2\sqrt{2} + 1) = 1$$

$$\alpha^{2}(4 - 2\sqrt{2}) = 1$$

$$2\alpha^{2}(2 - \sqrt{2}) = 1$$

Donc

$$\alpha^2 = \frac{1}{2} \cdot \frac{1}{2 - \sqrt{2}} = \frac{1}{2} \cdot \frac{2 + \sqrt{2}}{4 - 2} = \frac{1}{2} (1 + \frac{1}{\sqrt{2}})$$

Sachant que $\beta = (\sqrt{2} - 1)\alpha$ on en déduit le vecteur propre

$$|\psi_{+}\rangle = \frac{1}{\sqrt{2}}\sqrt{1 + \frac{1}{\sqrt{2}}}|0\rangle + \frac{1}{\sqrt{2}}\sqrt{1 - \frac{1}{\sqrt{2}}}|1\rangle$$

De la même manière, on va calculer le vecteur propre $|\psi_{-}\rangle$ associé à la valeur propre -1

$$|\psi_{-}\rangle = -\frac{1}{\sqrt{2}}\sqrt{1 - \frac{1}{\sqrt{2}}}|0\rangle + \frac{1}{\sqrt{2}}\sqrt{1 + \frac{1}{\sqrt{2}}}|1\rangle$$

On remarquera que $\cos(\pi/8) = \frac{1}{\sqrt{2}} \sqrt{1 + \frac{1}{\sqrt{2}}} = 0.923879532511 \cdot \cdot \cdot$

$$cos(\pi/8) = \frac{1}{\sqrt{2}} \sqrt{1 + \frac{1}{\sqrt{2}}} = 0.923879532511 \cdots$$
$$sin(\pi/8) = \frac{1}{\sqrt{2}} \sqrt{1 - \frac{1}{\sqrt{2}}} = 0.382683432365 \cdots$$

Par conséquent

$$\begin{aligned} |\psi_{+}\rangle &= \cos(\pi/8) |0\rangle + \sin(\pi/8) |1\rangle \\ |\psi_{-}\rangle &= -\sin(\pi/8) |0\rangle + \cos(\pi/8) |1\rangle \end{aligned}$$

NB: Les opposés des vecteurs précédents forment aussi une base de vecteurs propres.

Scilab est votre ami : Scilab est très efficace pour trouver les valeurs propres et les vecteurs propres, en effet

```
-> H = (1/sqrt(2))*[1 1 ; 1 -1]
H =
  0.7071068
               0.7071068
  0.7071068
             -0.7071068
--> spec(H)
ans =
 -1.
  1.
--> [c,d] = spec(H)
  0.3826834 -0.9238795
 -0.9238795 -0.3826834
d =
        0.
 -1.
  0.
        1.
```

G.3 Racine carrée de CNOT

Enoncé : Ecrire la matrice de la racine carrée de CNOT dans \mathbb{C}^4 sachant que

$$\sqrt{X} \equiv \frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix}$$

G.3.1 Solution

$$\sqrt{CNOT} = |0\rangle \langle 0| I + |1\rangle \langle 1| \sqrt{X} = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1+i & 1-i \\ 0 & 0 & 1-i & 1+i \end{pmatrix}$$

G.4 Calcul de la matrice de la porte SWAP

Enoncé: Retrouver la matrice de la porte SWAP par le calcul matriciel

G.4.1 Solution

Reconstruire la matrice de la porte SWAP par le calcul matriciel Aligner des portes les unes derrière les autres revient à faire des produits de matrices. Nous allons mettre cela en pratique pour reconstruire, purement par le calcul, la matrice de la porte SWAP.

On a vu que SWAP peut se décrire comme la composition de trois portes CNOT en changeant le bit de contrôle à chaque étape.

La matrice de la porte CNOT "normale", qui agit sur le second qubit en fonction du premier, est :

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Considérons à présent la porte "CNOT renversée", qui agit sur le premier qubit en fonction du premier. Elle effectue les transformations suivantes :

- 1. $|00\rangle$ devient $|00\rangle$;
- 2. $|01\rangle$ devient $|11\rangle$;
- 3. $|10\rangle$ devient $|10\rangle$;
- 4. $|11\rangle$ devient $|01\rangle$;

La matrice de cette "porte CNOT renversée", noté \overline{CNOT} , sera donc :

$$\overline{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

On obtient la porte SWAP an appliquant CNOT, puis \overline{CNOT} , puis CNOT,

par conséquent on peut écrire :

$$SWAP = CNOT \times \overline{CNOT} \times CNOT$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

On retrouve bien la matrice de la porte SWAP établie à partir des transformées opérant sur les états de base.