

Exercise 9: Calibration

Peter Burek, Mikhail Smilovic, Luca Guillaumot International Institute for Applied Systems Analysis

Research Scholars at Water Program

- 0. What you need
- 1. Introduction into calibration
- 2. Doing a test run
- 3. A fast calibration
- 4. Visualization of the results

0. What you need

- Python 3.7 or 3.8 CWatM running
- additional libraries: Deap pip install deap or conda install deap
- and the libraries: pandas and matplotlib

Finding a parameter set which represents the observed discharge data

River: Rhine Station: Lobith

River: Klamath, Station: USGS 11523000 - Orleans, CA

River: Murray River station: Wakool Junction

Calibration:

- Daily run of 12 to 20 years
- Compared to daily or monthly observed discharge
- Objective function: KGE'

KGE': modified Kling-Gupta efficiency

NSE: Nash-Sutcliffe Efficiency R2: Correlation coefficient

B: Bias

Calibration is using an evolutionary computation framework in Python called DEAP (Fortin et al., 2012).

DEAP implemented the evolutionary algorithm NSGA-II (Deb et al., 2002)

It is used here as single objective optimization.

Starting population n = 20

Deb, K., A. Pratap, S. Agarwal and T. Meyarivan (2002). "A fast and elitist multiobjective genetic algorithm: NSGA-II." IEEE Transactions on Evolutionary Computation 6(2): 182-197.

Discharge:

Daily (or monthly) pairs of observed and simulated discharge at gauging stations

Objective function: Modified version of the Kling-Gupta Efficiency (Kling et al., 2012),

$$KGE' = 1 - \sqrt{(r-1)^2 + (\beta-1)^2 + (\gamma-1)^2}$$

where:
$$\beta = \frac{\mu_s}{\mu_o}$$
 and $\gamma = \frac{CV_s}{CV_o} = \frac{\sigma_s/\mu_s}{\sigma_o/\mu_o}$

Where:

r as the correlation coefficient between simulated and observed discharge (dimensionless), β as the bias ratio (dimensionless) and γ as the variability ratio. CV is the coefficient of variation, μ is the mean streamflow [m³ s⁻¹] and σ is the standard deviation of the streamflow [m³ s⁻¹]. KGE', r, β and γ have their optimum at unity.

1: River: Rhine, Station: Lobith, No of runs: 1296

(b) Calibration parameter space - left: all, middle: best 200, right: best

Parameter space for 8 parameter

Calibration 1995 - 2010

River: Rhine Station: Lobith

	Obs.	Sim.
KGE		0.910
NS		0.840
NSlog		0.795
R2		0.923
Bias		3.51%
RMSE		450
MAE		333
Mean	2258	2337
Min	788	729
5 %	1136	1046
50 %	1956	2076
95 %	4387	4542
99 %	6451	6163
Max	11885	9889

Calibration:

- Daily run of 15 years
- Compared to daily observed discharge
- Objective function: KGE'

KGE': modified Kling-Gupta efficiency

NSE: Nash-Sutcliffe Efficiency Correlation coefficient

Bias

Validation 1980-1995

River: Rhine Station: Lobith

NS 0.780 NSlog 0.768 R2 0.908 Bias 10.58% MAE 419 Mean 2378 2629 Min 794 768 5 % 1100 1211 50 % 2015 2321 95 % 4858 4998		Obs.	Sim.
NSIog 0.768 R2 0.908 Bias 10.58% RMSE 592 MAE 419 Mean 2378 2629 Min 794 768 5 7% 1100 1211 5 0 % 2015 2321 9 5 % 4858 4998 9 9 % 7257 6902	KGE		0.818
R2 0.908 Bias 10.58% RMSE 592 MAE 419 Mean 2378 2629 Min 794 768 5 % 1100 1211 50 % 2015 2321 95 % 4858 4998 99 % 7257 6902	NS		0.780
Bias 10.58% RMSE 592 MAE 419 Mean 2378 2629 Min 794 768 5 % 1100 1211 50 % 2015 2321 95 % 4858 4998 99 % 7257 6902	NSlog		0.768
RMSE 592 MAE 419 Mean 2378 2629 Min 794 768 5 % 1100 1211 50 % 2015 2321 95 % 4858 4998 99 % 7257 6902	R2		0.908
MAE 419 Mean 2378 2629 Min 794 768 5 % 1100 1211 50 % 2015 2321 95 % 4858 4998 99 % 7257 6902	Bias		10.58%
Mean 2378 2629 Min 794 768 5 % 1100 1211 50 % 2015 2321 95 % 4858 4998 99 % 7257 6902	RMSE		592
Min 794 768 5 % 1100 1211 50 % 2015 2321 95 % 4858 4998 99 % 7257 6902	MAE		419
Min 794 768 5 % 1100 1211 50 % 2015 2321 95 % 4858 4998 99 % 7257 6902			
5 % 1100 1211 50 % 2015 2321 95 % 4858 4998 99 % 7257 6902	Mean	2378	2629
50 % 2015 2321 95 % 4858 4998 99 % 7257 6902	Min	794	768
95 % 4858 4998 99 % 7257 6902	5 %	1100	1211
99 % 7257 6902	50 %	2015	2321
	95 %	4858	4998
Max 10940 10263	99 %	7257	6902
	Max	10940	10263

Calibration of river discharge Rhine / Lobith

1. Running a test calibration

Please have a look at:

https://cwatm.iiasa.ac.at/calibration.html
https://cwatm.iiasa.ac.at/calibration_tutorial.html

First we check if calibration setup is ok

Start: runCalibration_test_1.bat
or type python calibration_single.py settings_test_1.txt

You need the python libraries (in addition to those you need for CWatM): pandas, deap, matplotlib

This should produce the folder: CWATM_exercise9\calibrationRuns_test1\00_001 With the files shown here:

If you do not see the discharge_daily.tss

Please run the runpy00_001.bat and check the errors

Have a look at:

https://cwatm.iiasa.ac.at/calibration_tutorial.html

2. Running a fast calibration

The fast calibration is using only:

- 2 year run (normally we use ≥ 10 years)
- Initial population of 8 (normally ≥ 256)
- 2 generations (normally \geq 20)
- 4 runs per generation (normally ≥ 16)

My computer as 8 nodes, the calibration is splitting the runs for multiprocessing

Start: runCalibration_fast_2.bat or type python calibration_single.py settings_fast_2.txt

This should produce the folder:

CWATM_exercise9\calibrationRuns_fast2

With the files shown right:

3. Displaying results

Results for the fast calibration or in: F:\CWATM.ECHO\CWATM_exercise9

- pareto_front.csv shows the paran
- runs_log.csv shows the objective
- streamflow_simulated_best.csv is
- Each folder e.g. 02_003 hast the

To display a graphical figure of the plotCali_fast_2.bat or python Cali_, (you need the libraries pandas and

And have a look at: cali_plot_fast2.

River: Rhine station: Lobith

Streamflow $[m^3 s^{-1}]$

7500

5000

2500

	Obs.	Sim.
KGE		0.621
NS		-0.123
NSlog		0.031
R ²		0.730
Bias		19.05%
RMSE		1029
MAE		733
Mean	2235	2660
Min	1036	565
5%	1183	944
50%	1980	2410
95%	4222	5235
99%	5418	6579
Max	6028	7401

4. Running a longer calibration

The longer calibration is using only:

- 15 year run (normally we use ≥ 10 years)
- Initial population of 8 (normally ≥ 256)
- 5 generations (normally \geq 20)
- 8 runs per generation (normally ≥ 16)

Start: runCalibration_long_3.bat or type python calibration_single.py settings_long_3.txt (This can take an hour!)

This should produce the results shown in the figure

```
C:\WINDOWS\system32\cmd.exe
 run rand id: 03 007, KGE: 0.565
 run_rand_id: 03 004, KGE: 0.586
 run rand id: 03 002, KGE: 0.594
 run rand id: 03 006, KGE: 0.538
 run rand id: 03 008, KGE: 0.584
  gen: 3, effmax KGE: 0.616
  run rand id: 04 006, KGE: 0.608
 run rand id: 04 008, KGE: 0.602
 run rand id: 04 007, KGE: 0.636
 run rand id: 04 004, KGE: 0.613
 run rand id: 04 005, KGE: 0.596
 run rand id: 04 002, KGE: 0.581
 run rand id: 04 003, KGE: 0.592
 run rand id: 04 001, KGE: 0.619
  gen: 4, effmax KGE: 0.636
  run rand id: 05 004, KGE: 0.625
 run rand id: 05 005, KGE: 0.644
 run rand id: 05 008, KGE: 0.631
 run rand id: 05 007, KGE: 0.618
 run rand id: 05 002, KGE: 0.615
 run rand id: 05 003, KGE: 0.595
 run rand id: 05 001, KGE: 0.613
 run rand id: 05 006, KGE: 0.620
 gen: 5, effmax KGE: 0.644
 Termination criterion ngen fulfilled.
 Time elapsed: 686.56 s
 Saving optimization history (front history.csv)
 Saving Pareto optimal solutions (pareto front.csv)
 Running Model using the "best" parameter set
```

Still this is not the full calibration, so results do not show best performance!