Statistics Pitfalls and Tips

Darrell Sonntag

CE Graduate Seminar

October 17, 2024

Why are do we care about statistical tests?

Why are do we care about statistical tests?

- Are the differences we see in our data due to random variability of our sample?
- Or do the data suggest that the differences are due to true differences between groups?
 - Strength of different treatments of concrete
 - Air quality in different types of homes
 - etc.

Question #1

- Download ozone.IO.csv
- Calculate the mean indoor/outdoor (I/O) ratio of ozone concentrations for Central and Evaporative Air-conditioned homes
- Calculate the 95% confidence intervals of the mean for each type of home

Below LOD O TRUE △ FALSE Day Type ● Normal ● Wildfire Smoke

$$\left(ar{x} - t_{n-1,lpha/2} \cdot rac{s}{\sqrt{n}}, ar{x} + t_{n-1,lpha/2} \cdot rac{s}{\sqrt{n}}
ight)$$

- \bar{x} = sample mean
- s =sample standard deviation
- n = sample size
- $t_{n-1,\alpha/2} = t$ critical value (next slide)
- \propto = type I error (typically 5%)
- 1∞ = Confidence level (typically 95%)

t-distribution table

Areas in the upper tail are given along the top of the table. Critical t* values are given in the table.

	0.1	0.05	0.025	0.02	0.01	0.005	df	0.1	0.05	0.025	0.02	0.01	0.005
1	3.078	6.314	12.706	15.895	31.821	63.657	51		1.675	2.008	2.108	2.402	2.676
2	1.886	2.920	4.303	4.849	6.965	9.925	52		1.675	2.007	2.107	2.400	2.674
3	1.638	2.353	3.182	3.482	4.541	5.841	53		1.674	2.006	2.106	2.399	2.672
4	1.533	2.132	2.776	2.999	3.747	4.604	54		1.674	2.005	2.105	2.397	2.670
5	1.476	2.015	2.571	2.757	3.365	4.032	55	1.297	1.673	2.004	2.104	2.396	2.668
6	1.440	1.943	2.447	2.612	3.143	3.707	56	1.297	1.673	2.003	2.103	2.395	2.667
7	1.415	1.895	2.365	2.517	2.998	3.499	57	1.297	1.672	2.002	2.102	2.394	2.665
8	1.397	1.860	2.306	2.449	2.896	3.355	58	1.296	1.672	2.002	2.101	2.392	2.663
9	1.383	1.833	2.262	2.398	2.821	3.250	59	1.296	1.671	2.001	2.100	2.391	2.662
10	1.372	1.812	2.228	2.359	2.764	3.169	60	1.296	1.671	2.000	2.099	2.390	2.660
11	1.363	1.796	2.201	2.328	2.718	3.106	61	1.296	1.670	2.000	2.099	2.389	2.659
12	1.356	1.782	2.179	2.303	2.681	3.055	62	1.295	1.670	1.999	2.098	2.388	2.657
13	1.350	1.771	2.160	2.282	2.650	3.012	63	1.295	1.669	1.998	2.097	2.387	2.656
14	1.345	1.761	2.145	2.264	2.624	2.977	64	1.295	1.669	1.998	2.096	2.386	2.655
15	1.341	1.753	2.131	2.249	2.602	2.947	65	1.295	1.669	1.997	2.096	2.385	2.654
6	1.337	1.746	2.120	2.235	2.583	2.921	66	1.295	1.668	1.997	2.095	2.384	2.652
1	1.333	1.740	2.110	2.224	2.567	2.898	67	1.294	1.668	1.996	2.095	2.383	2.651
в	1.330	1.734	2.101	2.214	2.552	2.878	68	1.294	1.668	1.995	2.094	2.382	2.650
19	1.328	1.729	2.093	2.205	2.539	2.861	69	1.294	1.667	1.995	2.093	2.382	2.649
20	1.325	1.725	2.086	2.197	2.528	2.845	70	1.294	1.667	1.994	2.093	2.381	2.648
21	1.323	1.721	2.080	2.189	2.518	2.831	71	1.294	1.667	1.994	2.092	2.380	2.647
2	1.321	1.717	2.074	2.183	2.508	2.819	72	1.293	1.666	1.993	2.092	2.379	2.646
r	1.319	1.714	2.069	2.177	2.500	2.807	73	1.293	1.666	1.993	2.091	2.379	2.645
Γ	1.318	1.711	2.064	2.172	2.492	2.797	74	1.293	1.666	1.993	2.091	2.378	2.644
	1.316	1.708	2.060	2.167	2.485	2.787	75	1.293	1.665	1.992	2.090	2.377	2.643
5	1.315	1.706	2.056	2.162	2.479	2.779	76	1.293	1.665	1.992	2.090	2.376	2.642
	1.314	1.703	2.052	2.158	2.473	2.771	77	1.293	1.665	1.991	2.089	2.376	2.641
	1.313	1.701	2.048	2.154	2.467	2.763	78	1.292	1.665	1.991	2.089	2.375	2.640
	1.311	1.699	2.045	2.150	2.462	2.756	79	1	1.664	1.990	2.088	2.374	2.640
	1.310	1.697	2.042	2.147	2.457	2.750	80	1	1.664	1.990	2.088	2.374	2.639
31	1.309	1.696	2.040	2.144	2.453	2.744	81		1.664	1.990	2.087	2.373	2.638
	1.309	1.694	2.037	2.141	2.449	2.738	82		1.664	1.989	2.087	2.373	2.637
3	1.308	1.692	2.035	2.138	2.445	2.733	83		1.663	1.989	2.087	2.372	2.636
4	1.307	1.691	2.032	2.136	2.441	2.728	84		1.663	1.989	2.086	2.372	2.636
5	1.306	1.690	2.030	2.133	2.438	2.724	85		1.663	1.988	2.086	2.371	2.635
86	1.306	1.688	2.028	2.131	2.434	2.719	86		1.663	1.988	2.085	2.370	2.634
37	1.305	1.687	2.026	2.129	2.431	2.715	87	1	1.663	1.988	2.085	2.370	2.634
88	1.304	1.686	2.024	2.127	2.429	2.712	88	1	1.662	1.987	2.085	2.369	2.633
39	1.304	1.685	2.023	2.125	2.426	2.708	89	1	1.662	1.987	2.084	2.369	2.632
o	1.303	1.684	2.021	2.123	2.423	2.704	90	1	1.662	1.987	2.084	2.368	2.632
11	1.303	1.683	2.020	2.121	2.421	2.701	91		1.662	1.986	2.084	2.368	2.631
12	1.302	1.682	2.018	2.120	2.418	2.698	92		1.662	1.986	2.083	2.368	2.630
13	1.302	1.681	2.017	2.118	2.416	2.695	93		1.661	1.986	2.083	2.367	2.630
4	1.301	1.680	2.015	2.116	2.414	2.692	94		1.661	1.986	2.083	2.367	2.629
_	1.301	1.679	2.014	2.115	2.412	2.690	95		1.661	1.985	2.082	2.366	2.629
151		1.679	2.013	2.114	2.410	2.687	96	1	1.661	1.985	2.082	2.366	2.628
_	1,500						97	1					
6	1.300 1.300	1.678	2.012	2.112	2.408	2.685				1.985	2.082	2.365	2.627
6	1.300	1.678 1.677	2.012	2.112 2.111	2.408 2.407	2.685		1	1.661	1.985	2.082	2.365	
15 16 17 18		1.678 1.677 1.677	2.012 2.011 2.010	2.112 2.111 2.110	2.408 2.407 2.405	2.685 2.682 2.680	98 99	1.290	1.661 1.660	1.985 1.984 1.984	2.082 2.081 2.081	2.365 2.365 2.365	2.627 2.627 2.626

$$\left(ar{x} - t_{n-1,lpha/2} \cdot rac{s}{\sqrt{n}}, ar{x} + t_{n-1,lpha/2} \cdot rac{s}{\sqrt{n}}
ight)$$

- Assumptions:
 - Independent, random sample from normal population
 - "Robust to small or even moderate departures from normality unless n is quite small"

$$\left(ar{x} - t_{n-1,lpha/2} \cdot rac{s}{\sqrt{n}}, ar{x} + t_{n-1,lpha/2} \cdot rac{s}{\sqrt{n}}
ight)$$

- Assumptions:
 - Independent, random sample from normal population
 - "Robust to small or even moderate departures from normality unless n is quite small"
- Is it appropriate for us to apply the t-distribution to our data?

$$\left(ar{x}-t_{n-1,lpha/2}\cdotrac{s}{\sqrt{n}},ar{x}+t_{n-1,lpha/2}\cdotrac{s}{\sqrt{n}}
ight)$$

- How do we decrease the size of the confidence intervals?
 - Increase n (which also decreases $t_{n-1,\alpha/2}$)
 - Decrease standard deviation (s)

Question #2

- Download timeseries.csv
- Calculate the mean indoor aerosol concentrations for Central and Evaporative Air-conditioned homes
- Calculate the 95% confidence intervals of the mean for each type of home

Tip 1: Graph your data (inside and out)

- Use statistical models and tests to confirm what you already suspect or know from graphs
- If you are learning about important relationships from your statistical tests, I have two concerns:
 - You probably haven't sufficiently visualized your data
 - Are you sure your statistical assumptions of your results are satisfied?

Example: Wildfire Smoke

Normal
 Wildfire Smoke

Example: Wildfire Smoke

NormalWildfire Smoke

Tip 2: Are the statistical tests appropriate for your random variable?

- What is a random variable?
 - A variable that can change with each observation
 - For example..
 - Traffic flow at same location at same time during the week
 - Strain measured on beam during a test
- Are my random variables independent?
 - Is my sampling truly random?
 - Are my observations dependent on one another? Or are they influenced by one? Or more likely to be similar or different than others?
- Are my random variables and identically distributed?
 - Do my observations come from the same probability distribution (e.g. normal)

Tip 3: Change your random variable (if needed)

- If your random variable doesn't meet the assumptions, you have options
 - Easier: Change your random variable of interest if your current random variables doesn't meet the
 - Harder: Develop more complex statistical model (e.g. mixed model that accounts for dependence of samples and other factors, time-series model that accounts for autocorrelation)
- We went with the easier option above

Tip 3: Change your random variable (if needed)

- Question #1
 - Initially, we chose to evaluate the average I/O from each visit as our random variable of interest
 - Next, we chose to evaluate the average I/O from each home (potentially averaged over several visits) as our random variable of interest
 - Now our random variables are independent from one another
- Question #2
 - Initially, we chose to evaluate the average 1-minute indoor concentrations from our data
 - Data from one visit were highly dependent on each other
 - Next, we averaged the 1-minute indoor concentrations for each visit, then the average visits from each house. We treated the average indoor concentrations at each house as our random variable of interest

Tip 4: Don't rely on 95% Confidence intervals to determine statistical significance

- IF the 95% CI's overlap, does it mean the data are not significantly different at a 5% type I error rate?
- OR what if one group has a large confidence interval, but not the other group?
 - You don't know for sure....
- Well, if they don't overlap at all, I know they are significantly different
 - But...this is overly conservative, and there may be significant differences
- Solution:
 - Better to use a t-test
 - Show results of t-test graphically

Tip 5: Use scripts

- Keep your graphics and analysis separate from your data files
- Advantages:
 - You have a record of your analysis steps from raw data to final results for paper
 - You can easily apply your analysis to new datasets

Tip 6: Take my class

- CE 594R Winter 2025
- Data Science for Engineers
- Objectives:
 - Learn to script using R
 - Large focus on data visualization (graphics)
 - Apply statistical models
 - Learn machine learning techniques
 - Bring your own research data for the course project