Математический анализ-1

Лектор: Подольский Владимир Евгеньевич 22 ноября 2024 г.

Конспект: Кирилл Яковлев, 108 группа tg: @fourkenz

Содержание

1	Эле	менты теории множеств	4
	1.1	Условности и обозначения	4
	1.2	Операции над множествами	5
	1.3	Декартово произведение множеств	5
	1.4	Отображения	5
	1.5	Операции над множествами (продолжение)	6
2	Дей	ствительные числа	7
	2.1	Натуральные числа. Аксиоматика Пеано	7
	2.2	Отношение порядка и принцип наименьшего элемента	7
	2.3	Арифметические операции	8
	2.4	Целые числа	9
	2.5	Рациональные числа	9
	2.6	Упорядоченные и архимедовы поля	10
	2.7	Действительные числа. Аксиома полноты	11
	2.8	Модели действительных чисел	11
		2.8.1 Модель бесконечных десятичных дробей	11
		2.8.2 Сечения Q	12
		2.8.3 Геометрическая модель числовой прямой	12
	2.9	Принципы полноты	13
		2.9.1 Верхние и нижние грани множества	13
		2.9.2 Принцип полноты Вейерштрасса	14
		2.9.3 Принцип вложеных отрезков (принцип полноты Кантора)	15
	2.10		16
	2.11	Отношение эквивалентности. Равномощные множества	17
	2.12	Теорема Кантора и аксиома выбора	18
3	Топ	ология $\mathbb R$	21
	3.1	Окрестность точки. Классификация точек относительно подмно-	
		жеств действительных чисел	21
	3.2		22
	3.3		24
	3.4		25

4	Чи	словые последовательности			
	4.1	Предел последовательности			
	4.2	О-символика. Бесконечно малые и бесконечно большие последо-			
		вательности			
	4.3	Арифметические свойства сходящихся последовательностей			
	4.4	Монотонные последовательности			
	4.5	Число е			
	4.6	Сходимость последовательностей и частичные пределы			
5	Предел функции				
	5.1	Определение предела по Коши и по Гейне			
	5.2	Простейшие свойства предела функции			
	5.3	Предел по множеству. Односторонние пределы			
	5.4	О-симводика			
	5.5	Арифметрические свойства пределов функций и предельные пе-			
		реходы в неравенствах			
	5.6	Монотонные функции			
	5.7	Критерий Коши			
6	Непрерывные функции				
	6.1	Локальные свойства непрерывных функций			
	6.2	Глобальные свойства непрерывных функций			
	6.3	Точки разрыва функции			
	6.4	Равномерная непрерывность			
	6.5	Элементарные функции			
	6.6	Замечательные пределы			
7	Дифференциальное исчисление функций одной переменной 4				
	7.1	Производная функции			
	7.2	Дифференцируемые функции			
	7.3	Производные элементарных функций			

1 Элементы теории множеств

1.1 Условности и обозначения

Определение. Кванторами будем называть символы, заменяющие слова в выражениях.

Замечание. Пока что кванторы не подразумевают логические операции, мы будем использовать их только для более удобной и формальной записи.

- ∀ квантор всеобщности
- В квантор существования
- ! квантор единственности
- Запись $A \Rightarrow B$ обозначает, что из высказывания A, следует высказывание B.
- Запись $A \Leftrightarrow B$ обозначает, что высказывание A равносильно высказыванию B.
- Запись $a \in A$ означает, что a является элементом множества A, отрицанием такой записи будет $a \notin A$
- Если x объект, а P свойство, то запись $\{x:P(x)\}$ означает класс всех объектов обладающих свойством P.

Определение. Множество, не содержащее ни одного элемента, называется пустым и обозначается \varnothing .

Определение. Множество A' является подмножеством множества A, если $\forall a : a \in A' \Rightarrow a \in A$. Если A' - подмножество A, то пишут $A' \subset A$.

Определение. Для любого множества A выполнено:

- 1. $\varnothing \subset A$.
- $2. A \subset A.$

Определение. Если $A \subset B$ и $A \neq B$, то A называется собственным подмножеством множества B.

1.2 Операции над множествами

Определение. Множество $C = A \cup B$ называется объединением множеств A и B, если $\forall a : (a \in A \Rightarrow a \in C)$ и $\forall b : (b \in B \Rightarrow b \in C)$, а также $\forall c : c \in C \Rightarrow (c \in A)$ или $c \in B$.

Определение. Множество $C = A \cap B$ называется пересечением множеств A и B, если $\forall c : c \in C \Rightarrow (c \in A \text{ и } c \in B)$, а также $\forall c : (c \in A \text{ и } c \in B) \Rightarrow c \in C$.

Определение. Множество $C = A \setminus B$ называется разностью множеств A и B, если $\forall c : (c \in A \text{ и } c \notin B) \Rightarrow c \in C$, а также $\forall c : c \in C \Rightarrow (c \in A \text{ и } c \notin B)$

Утверждение. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Утверждение. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Доказательство. $a \in (A \cap (B \cup C)) \Leftrightarrow a \in A$ и $a \in (B \cap C) \Leftrightarrow a \in A$ и $(a \in B)$ или $a \in C) \Leftrightarrow (a \in A)$ и $a \in B$ или $a \in C$.

1.3 Декартово произведение множеств

Определение. Множество A называется одноэлементным, если $\exists \ a \in A$ такое, что $A \setminus \{a\} = \varnothing$.

Определение. Множество A называется двуэлементным, если $\exists \ a \in A$ такое, что $A \setminus \{a\}$ - одноэлементное.

Определение. Пусть $x \in X, y \in Y$. Упорядоченной парой называется двуэлементное множество $\{x, \{x, y\}\}$, упорядоченную пару обозначают (x, y).

Определение. Множество всех упорядоченных пар (x, y) называется декартовым произведением множеств X и Y, где $x \in X, y \in Y$. Декартово произведение обозначают $X \times Y$.

1.4 Отображения

Определение. Пусть X,Y - множества. Подмножество $f \subset X \times Y$ такое, что $\forall (x_1,y_1), (x_2,y_2) \in f: y_1 \neq y_2 \Rightarrow x_1 \neq x_2$ называется отображением из X в Y, и обозначается $f: X \to Y$.

Замечание. Запись $(x,y) \in f$ часто заменяют на y = f(x).

Определение. Пусть $f: X \to Y$. Множество $\{x: \exists (x,y) \in f\} = D_f$ называется областью определения функции f.

Определение. Пусть $f: X \to Y$. Множество $\{y: \exists (x,y) \in f\} = R_f$ называется областью значений функции f.

Определение. Пусть $f: X \to Y$. f - инъекция $\Leftrightarrow \forall (x_1, y_1), (x_2, y_2) \in f: x_1 \neq x_2 \Rightarrow y_1 \neq y_2$.

Определение. Пусть $f: X \to Y$. f - сюръекция $\Leftrightarrow Y = R_f$

Замечание. Обычно используют определение f - сюръекция $\Leftrightarrow \forall y \in Y$ $\exists x \in X : y = f(x)$.

Определение. f - биекция $\Leftrightarrow f$ - инъекция и f - сюръекция.

Определение. Пусть $f: X \to Y, \ X_1 \subset X$. Множество $\{(x,y) \in f: x \in X_1\} = f|_{X_1}$ называется ограничением f на X_1 .

Определение. Пусть $f: X \to Y, \ X_1 \subset X$. Множество $f(X_1) = \{y \in Y: \exists \ x \in X_1: (x,y) \in f\}$ называют образом множества X_1 .

Определение. Пусть $f: X \to Y, Y_1 \subset Y$. Множество $f^{-1}(Y_1) = \{x \in X: \exists y \in Y_1: (x,y) \in f\}$ называют полным прообразом множества Y_1 .

Определение. Пусть $f: X \to Y$. Если $\forall y \in R_f: f^{-1}(y)$ - одноэлементное множество, то подмножество $f^{-1} \subset Y \times X = \{(y,x)\}$ является отображением и называется обратным отображением к f. Если у отображения f существует обратное отображение f^{-1} , то оно называется обратимым.

Утверждение. f - обратимое $\Leftrightarrow f$ - биекция.

Замечание. Иногда $f:X\to Y$ записывают в виде y_x и называют индексацией y элементами x.

1.5 Операции над множествами (продолжение)

Утверждение. $\bigcup_{\alpha} (A \setminus A_{\alpha}) = A \setminus (\bigcap_{\alpha} A_{\alpha}).$

Доказательство. $a \in \bigcup_{\alpha} (A \setminus A_{\alpha}) \Leftrightarrow (a \in A \text{ и } a \notin A_{\alpha_1}) \text{ или } \dots \text{ или } (a \in A \text{ и } a \notin A_{\alpha_n}) \Leftrightarrow a \in A \text{ и } (a \notin A_{\alpha_1} \text{ и } \dots \text{ и } a \notin A_{\alpha_n}) \Leftrightarrow a \in A \setminus (\bigcap_{\alpha} A_{\alpha}).$

Утверждение. $\bigcap_{\alpha} (A \setminus A_{\alpha}) = A \setminus (\bigcup_{\alpha} A_{\alpha}).$

Доказательство. $a \in \bigcap_{\alpha} (A \setminus A_{\alpha}) \Leftrightarrow (a \in A \text{ и } a \notin A_{\alpha_{1}}) \text{ и ... и } (a \in A \text{ и } a \notin A_{\alpha_{n}}) \Leftrightarrow a \in A \text{ и } (a \notin A_{\alpha_{1}} \text{ или ... или } a \notin A_{\alpha_{n}}) \Leftrightarrow a \in A \setminus (\bigcup_{\alpha} A_{\alpha}).$

2 Действительные числа

2.1 Натуральные числа. Аксиоматика Пеано

Определение. (Аксиоматика Пеано)

- 1. В множестве $\mathbb{N} \ \forall n \in \mathbb{N}, \exists !$ элемент, называемый следующим и обозначаемый как S(n).
- 2. $\forall n \in \mathbb{N} \exists$ не более одного элемента \mathbb{N} , для которого n следующий.
- 3. ∃! элемент N, не являющийся следующим ни для какого элемента. Этот элемент обозначается 1 и называется единицей.
- 4. (Аксиома индукции) Пусть $M \subset \mathbb{N}$, такое, что $1 \in M$ и $\forall m \in M$: $S(m) \in M$. Тогда $M = \mathbb{N}$.

Множество, удовлетворяющее этим аксиомам, называется множеством натуральных чисел и обозначается \mathbb{N} .

Определение. Рассмотрим множество X. Если для некоторого $n \in \mathbb{N} \exists$ биекция $\varphi: X \to \{1, \dots n\}$, то X называется n-элементным, или говорят, что количество элементов в X равно n. Тот факт что множество X - n-элементное обозначается как |X| = n или cardX = n.

Замечание. По определению считаем, что $card(\varnothing) = 0$.

Определение. Все множества, количество элементов которых равно какому-то натуральному числу или нулю, называются конечными. Все остальные множетсва называются бесконечными.

2.2 Отношение порядка и принцип наименьшего элемента

Определение. $R \subset X \times Y$ называется отношением между элементами X и Y. Обозначают xRy, если $(x,y) \in R$.

Определение. Отношение R называется отношением порядка, если $\forall x \in X$, $\forall y \in Y$ выполнено:

- 1. xRy или yRx.
- 2. (xRy и $yRx) \Rightarrow x = y$.

3. $(xRy \text{ и } yRz) \Rightarrow xRz$.

Такое отношение обозначают ≤.

Теорема. \exists ! отношение порядка на \mathbb{N} , такое, что $\forall n \in \mathbb{N} : n \leq S(n)$. (Можно использовать на экзамене без доказательства)

Теорема. (Принцип наименьшего элемента)

 $M \subset \mathbb{N}, M \neq \emptyset$ имеет наименьшей элемент, т.е. $\exists n_{min} \in M, \forall n \in M : n_{min} \leq n$.

Доказательство. Предположим, что в M нет минимального элемента.

База: если $1 \in M$, то $n_{min} = 1 \Rightarrow 1 \notin M \Rightarrow 1 \in \mathbb{N} \setminus M$.

Шаг: $\{1,2,\ldots,n\}\subset\mathbb{N}\setminus M\Rightarrow S(n)\in\mathbb{N}\setminus M$, тогда по аксиоме индукции $\mathbb{N}\setminus M=\mathbb{N}\Rightarrow M=\varnothing$ - противоречие. \square

2.3 Арифметические операции

Определение. Рассмотрим $A,B,card(A)=n,card(B)=k,n,k\in\mathbb{N}$. Пусть $A\cap B=\varnothing$. Тогда число $card(A\cup B)$ называется суммой n и k и обозначается $card(A\cup B)=n+k$.

Замечание. Естественно выполняется n + k = k + n (коммутативность) и (n + k) + m = n + (k + m) (ассоциативность).

Замечание. n+0=0+n=n, т.к. $cardA=card(A\cup\varnothing)$.

Замечание.
$$A \leftrightarrow \{1, \dots, n\}, B \leftrightarrow \{1, \dots, k\}$$
. Возьмем $card(A \cup B) = \{1, \dots, n\} \cup \{\underbrace{S(n), S(S(n)), \dots, S(S(\dots(S(n)) \dots)}_{k}\},$ (где $\{1, \dots, k\} \leftrightarrow \{\underbrace{S(n), S(S(n)), \dots, S(S(\dots(S(n)) \dots)}_{k}\})$

Из тех же соображений получаем, что S(n) = n + 1.

Определение. $n,k\in\mathbb{N}$. Тогда $\sum\limits_{i=1}^k n=nk$ называется произведением n на k.

Замечание.
$$nk = \underbrace{(n+n+\cdots+n)}_{k}$$
.

Замечание. Выполнены:

- nk = kn (коммутативность)
- n(km) = (nk)m (ассоциативность)
- k(n+m) = kn + km (дистрибутивность)

ullet Если $k \leq n$, то $k+m \leq n+m$ и если $k \leq m$, то $kn \leq mn$

Определение. Если n+k=m, то n=m-k называется разностью m и $k,\ k=m-n$ называется разностью m и n.

Замечание. m-0=m, m+0=m, m-m=0.

Определение. $nk = m, \frac{m}{n} = k, \frac{m}{k} = n.$

2.4 Целые числа

Определение. Введем набор символов $-\mathbb{N} = \{\dots, -2, -1\}$. Множество символов $-\mathbb{N} \cup \{0\} \cup \mathbb{N}$ называется целыми числами и обозначаются \mathbb{Z} .

Замечание. Принимаем выполненными следующие свойства:

1.
$$k + (-n) = \begin{cases} k - n, \text{ если } k \ge n, \\ -(n - k), \text{ если } k < n. \end{cases}$$
 .
$$(-k) + (-n) = -(k + n)$$

2.
$$k \cdot 0 = (-k) \cdot 0 = 0$$
,
 $(-k) \cdot n = (-kn)$,
 $(-k)(-n) = kn$.

3.
$$(\pm k)((\pm n) + (\pm m)) = (\pm k)(\pm n) + (\pm k)(\pm m)$$
.

4.
$$\forall k : (-k) \leq 0,$$
 $(-k) \leq (-n), \text{ если } n \leq k.$

5.
$$\forall (\pm k), (\pm n), (\pm m) \in \mathbb{Z}$$
, если $(\pm k) \leq (\pm n)$, то $(\pm k) + (\pm m) \leq (\pm n) + (\pm m)$.

6.
$$\forall (\pm n), (\pm k) \in \mathbb{Z}, m \in \mathbb{N}, \text{ если } (\pm n) \leq (\pm k), \text{ то } (\pm n)m \leq (\pm k)m.$$

Далее пишем -k вместо (-k). $\forall k, n \in \mathbb{Z} \ \exists (k-n) = k + (-n)$.

2.5 Рациональные числа

Определение. Множество $\mathbb{Q} = (m, n) \in \mathbb{Z} \times \mathbb{N}$ называется множеством рациональных чисел, если введены следующие операции:

$$\frac{m}{n} + \frac{p}{q} = \frac{mq + pn}{nq}$$
$$\frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$$

а также введено отношение порядка:

$$\frac{m}{n} \leq \frac{p}{q}$$

Свойства операций $(a, b, c \in \mathbb{Q})$:

(1)
$$a + b = b + a$$

(2)
$$a + (b+c) = (a+b) + c$$

(3)
$$\exists ! \ 0 \in \mathbb{Q} : a + 0 = 0 + a = a$$

$$(4) \ \forall a \in \mathbb{Q} \ \exists! \ (-a) \in \mathbb{Q} : a + (-a) = 0$$

$$(5)$$
 $ab = ba$

$$(6) \ a(bc) = (ab)c$$

(7)
$$\exists ! \ 1 \in \mathbb{Q} \ \forall a : a \cdot 1 = 1 \cdot a = a$$

(8)
$$\forall a \neq 0 \ \exists ! \ a^{-1} : aa^{-1} = a^{-1}a = 1$$

$$(9) \ a(b+c) = ab + ac$$

$$(10)\ \forall a,b\in\mathbb{Q}\ a\leq b$$
 или $b\leq a$

$$(11)$$
 $a \le b$ и $b \le a \Rightarrow a = b$

(12)
$$a \le b$$
 и $b \le c \Rightarrow a \le c$

(13)
$$\forall c \in \mathbb{Q} : a \le b \Rightarrow a + c \le b + c$$

$$(14) \ \forall c > 0 : a \le b \Rightarrow ac \le bc$$

2.6 Упорядоченные и архимедовы поля

Определение. Множество X с операциями $(\cdot, +)$ и отношением порядка \leq называется упорядоченным полем.

Замечание. $\mathbb Q$ - упорядоченное поле.

Определение. Упорядоченное поле X называется архимедовым, если (15) $\forall a \in X : \exists \ n \in \mathbb{N} : a \leq n$.

Замечание. \mathbb{Q} - архимедово поле.

Замечание. $\frac{m}{n} = \frac{p}{q} \Leftrightarrow mq = pn$.

Замечание. $\forall m \in \mathbb{Z}$ число $\frac{m}{1} \in \mathbb{Q}$ можно отождествить с m.

2.7 Действительные числа. Аксиома полноты

Определение. Множество \mathbb{R} называется множеством действительных чисел, если $\mathbb{Q} \subset \mathbb{R}$, \mathbb{R} удовлетворяет (1)-(15) и дополнительно выполняется (16).

Определение. (Аксиома полноты)

(16)
$$\forall A, B \subset \mathbb{R}$$
 таких, что $\forall a \in A, \forall b \in B : a \leq b \; \exists \; c \in \mathbb{R} : a \leq c \leq b$.

Пример. Аксиома полноты не выполняется в Q.

$$A=\{a\leq 0$$
 или $a>0:a^2<2\},\ B=\{b>a:b^2>2\},$ но $ot \exists \frac{m}{n},\frac{m^2}{n^2}=2$

2.8 Модели действительных чисел

2.8.1 Модель бесконечных десятичных дробей

Определение. Отображение $\{a_n\}: \mathbb{N} \to X$ называется последовательностью элементов X.

Определение. Выражение вида $\pm a_0, a_1, \ldots, a_n, \ldots$ называется бесконечной десятичной дробью, если $a_0 \in \mathbb{N}$ или $a_0 = 0$ и $\forall i \in \mathbb{N}$ $a_i \in \{0, 1, \ldots, 9\}$.

Определение. Введем отношение порядка ≤ на множестве всех бесконечных десятичных дробей следующим образом:

- 1. Если $a_0 \le 0$, $b_0 > 0$, то $a \le b$.
- 2. Если $a_0, b_0 \ge 0$, то $a \le b$
 - если $a_0 < b_0$ или $a_0 = b_0$, $a_1 < b_1$ или $a_0 = b_0$, $a_1 = b_1$, $a_2 < b_2$, или ... или $a_0 = b_0$, $a_1 = b_1$, $a_2 = b_2$, ..., $a_{n-1} = b_{n-1}$, $a_n < b_n$...
 - если $a_0 = b_0$, $a_1 = b_1$, ..., $a_n \neq 9$, $b_n = a_n + 1$. $a_{n+k} = 9$, $b_{n+k} = 0$, $\forall k \in \mathbb{N}$, т.е $a = \overline{a_0 a_1 ... a_n(9)}$, а $b = \overline{b_0 b_1 ... b_n(0)}$. (в числе a начиная с a_{n+1} все a_i равны 9, а в числе b начиная с b_{n+1} все b_i равны 0), то a = b.
- 3. Если $a_0, b_0 < 0$, то a < b, если -b < -a (случай 3 сведен к случаю 2)

Teopema. Множество бесконечных десятичных дробей с введенным отношением порядка (\leq) удовлетворяет аксиоме полноты.

Доказательство. Пусть $A, B \subset \{$ множество бесконечных десятичных дробей $\}$ и $\forall a \in A, \forall b \in B : a \leq b.$

1. $a < 0, b \ge 0$, тогда c = 0.

2.
$$a > 0, b > 0$$
 $\square_{\text{УСТЬ}}$
 $\overline{b_0} = \min\{b_0 : b_0b_1b_2 \dots \in B\},$
 $\overline{b_1} = \min\{b_1 : \overline{b_0}b_1b_2 \dots \in B\},$
 $\overline{b_2} = \min\{b_2 : \overline{b_0b_1}b_2 \dots \in B\},$
 \vdots

Возьмем $\overline{b} = \overline{b_0b_1b_2 \dots b_n \dots} \in B$, тогда $\forall a \in A, \forall b \in B : a < \overline{b} < b.$

3. a < 0, b < 0 строим число по аналогии с пунктом 2.

2.8.2 Сечения ℚ

Определение. (Дедекиндовы сечения)

Пусть $A,B\subset\mathbb{Q}:A\cap B=\varnothing,A\cup B=\mathbb{Q},\ \forall a\in A,\ \forall b\in B:a\leq b$ и в B не существует минимального элемента, тогда (A,B) - пара сечений $\mathbb{Q}.$

Теорема. На множестве всех пар сечений $\{(A,B)\}$ можно ввести операции $(+),(\cdot)$ и отношение (\leq) , так что будут выполняться (1)-(16).

Доказательство. Без доказательства.

2.8.3 Геометрическая модель числовой прямой

Выбираем точку, называем ее 0

затем выбираем точку справа от него, называем е
е $1\,$

затем вводим сложение и получаем 2, 3, 4, и т.д. (натуральный ряд)

затем делаем также в другую сторону, получаем целые числа

Проведем через 0 под непрямым углом вспомогательную прямую на ней выберем точку, назовем ее 1' и аналогично первой прямой получаем на ней целые числа. Проведем прямую через n' и 1 тогда параллельная ей прямая проходящая через 1' проходит через $\frac{1}{n}$ (по теореме Фаллеса)

таким образом складывая m раз $\frac{1}{n}$, получим любое рациональное число $\frac{m}{n}$. Построим бесконечную десятичную дробь, например $0,37152\dots$ Разобьем отрезок:

0, 37152... находится между 0.2 и 0.4, теперь разобьем этот отрезок:

0,37152... находится между 0.36 и 0.4, теперь разобьем этот отрезок и т.д. Получаем последовательность вложеных отрезков, у которых длина стремится к нулю, значит у них есть единственная общая точка - наше число.

Таким образом, прямая - множество бесконечных десятичных дробей, а значит на ней выполняеются (1)-(16).

2.9 Принципы полноты

2.9.1 Верхние и нижние грани множества

Определение.

- Элемент $a \in \mathbb{R}$ называется максимальным элементом множества A $(\max A \subset \mathbb{R}), A \neq \emptyset$, если $\forall a' \in A : a \geq a'$ и $a \in A$.
- Элемент $a \in \mathbb{R}$ называется минимальным элементом множества A (min $A \subset \mathbb{R}$), $A \neq \emptyset$, если $\forall a' \in A : a \leq a'$ и $a \in A$.

Определение.

- Элемент $m \in \mathbb{R}$ называется верхней гранью $A \subset \mathbb{R}, A \neq \emptyset$, если $\forall a \in A : a \leq m$.
- Элемент $m \in \mathbb{R}$ называется нижней гранью $A \subset \mathbb{R}, A \neq \emptyset$, если $\forall a \in A : a \geq m$.

Определение.

- Множество $A \subset \mathbb{R}, A \neq \emptyset$ называется ограниченным сверху, если у A существует верхняя грань.
- Множество $A \subset \mathbb{R}, A \neq \emptyset$ называется ограниченным снизу, если у A существует нижняя грань.
- Множество $A \subset \mathbb{R}$ называется ограниченным, если A ограничено и сверху и снизу.

Определение.

- Пусть множество $A\subset\mathbb{R}$ ограничено сверху, B множество верхних граней A. Элемент $c=\min B$ называется точной верхней гранью A и обозначается $\sup A$.
- Пусть множество $A \subset \mathbb{R}$ ограничено снизу, B множество нижних граней A. Элемент $c = \max B$ называется точной нижней гранью A и обозначается inf A.

2.9.2 Принцип полноты Вейерштрасса

Теорема. (Принцип полноты Вейерштрасса)

Для каждого ограниченого сверху или снизу множества A существует $\sup A$ или $\inf A$ соответственно.

Доказательство. Докажем для верхней грани (аналогично для нижней) A - ограничено сверху, B - множество верхних граней. Значит $\forall a \in A$ и $\forall b \in B: a \leq b \Rightarrow$ по аксиоме полноты $\exists \ c \in \mathbb{R}: a \leq c \leq b \Rightarrow c = \sup A$.

Лемма. (Свойство точной грани)

Если у множества A существует $M=\sup A$ или $m=\inf A$, то $\forall \varepsilon>0$ \exists $a\in A$: $a\in (M-\varepsilon,M)$ или $a\in (m,m+\varepsilon)$ соответственно.

Доказательство. Докажем для верхней грани. $M=\sup A\Rightarrow \forall a\in A: a\leq M.$ Поскольку M - минимальная из верхних граней, то $\forall \varepsilon>0: \widetilde{M}=M-\varepsilon$ - не является верхней гранью. Тогда $\exists \ a\in A: a>\widetilde{M}\Rightarrow a\in (M-\varepsilon,M).$

Определение. $\forall a, b \in \mathbb{R} : a < b$ рассмотрим следующие множетсва:

- $[a,b]:=\{x\in\mathbb{R}:a\leq x\leq b\}$ отрезок
- $(a,b) := \{x \in \mathbb{R} : a < x < b\}$ интервал
- ullet $[a,b):=\{x\in\mathbb{R}:a\leq x< b\}$ полуинтервал
- $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$ полуинтервал

Такие множества называют промежутками.

Определение. $\forall a \in \mathbb{R}$ функция

$$|a| = \begin{cases} a, & a \ge 0, \\ -a, & a < 0. \end{cases}$$

называется модулем.

Определение. Для любого промежутка с концами $a,b \in \mathbb{R}$ длиной называется число |b-a|.

Определение. Рассмотрим последовательность $\{[a_n,b_n]\}_{n=1}^{\infty}$. Говорят, что $|b_n-a_n|\to 0$ при $n\to\infty$, если $\forall \varepsilon>0$ $\exists N\in\mathbb{N}: \forall n>N$ выполнено $|b_n-a_n|<\varepsilon$.

2.9.3 Принцип вложеных отрезков (принцип полноты Кантора)

Теорема. (Принцип вложеных отрезков)

Пусть последовательность $\{[a_n,b_n]\}_{n=1}^{\infty}$ такова, что $\forall n:[a_{n+1},b_{n+1}]\subset [a_n,b_n].$ Тогда $\exists c\in\mathbb{R}:c\in[a_n,b_n], \forall n.$ Если $|b_n-a_n|\to 0$ то c - единственная.

Доказательство. $\forall n, m \in \mathbb{N} : a_n \leq b_m$, т.к

- если n < m, то $a_n \le a_m \le b_m$.
- если n > m, то $a_n \le b_n \le b_m$.

Значит для $\forall m,n\in\mathbb{N}$: Рассмотрим множества $A=\{a_n\}$ и $B=\{b_n\}$. По аксиоме полноты $\exists c\in\mathbb{R}: a_n\leq c\leq b_m,\ \forall n,m\Rightarrow a_n\leq c\leq b_n,\ \forall n.$

Пусть $|b_n - a_n| \to 0$, предположим, что $\exists c_1$ и $c_2 : c_1 \neq c_2$ - различные общие точки, значит $|c_2 - c_1| > 0$. Получаем, что $0 < |c_2 - c_1| < |b_n - a_n|$, $\forall n$, значит $|c_2 - c_1| \to 0$ получаем противоречие.

2.10 Неравенство Бернулли и Бином Ньютона

Теорема. (Неравенство Бернулли)

Пусть $\{x_k\}_{k=1}^n, x_k \in \mathbb{R} \ \forall k : x_k > 0$ или $x_k \in (-1,0)$. Тогда

$$\prod_{k=1}^{n} (1 + x_k) \ge 1 + \sum_{k=1}^{n} x_k$$

Доказательство. Индукция по n. База: $n=1:1+x_1\geq 1+x_1$. Пусть при n утверждение верно.

$$\prod_{k=1}^{n+1} (1+x_n) \ge (1+x_{n+1})(1+\sum_{k=1}^n x_k) = 1+\sum_{k=1}^{n+1} x_k + (\sum_{k=1}^n x_k) \cdot x_{n+1} > 1+\sum_{k=1}^{n+1} x_n$$

Определение. Число $\frac{n!}{k!(n-k)!}$ называется биномиальным коэффициентом и обозначается C_n^k .

Замечание. По определнию считается, что 0! = 1.

Теорема. (Бином Ньютона)

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Доказательство. Индукция по n. База: для n=1 верно. Пусть верно для n. Распишем выражение для n+1:

$$(a+b)^{n+1} = (a+b)\sum_{k=0}^{n} C_n^k a^k b^{n-k} = \sum_{k=0}^{n} C_n^k a^{k+1} b^{n-k} + \sum_{k=0}^{n} C_n^k a^k b^{n-k+1}$$

Сдвинем нумерацию в первой сумме:

$$\sum_{k=0}^{n} C_n^k a^{k+1} b^{n-k} = \sum_{m=1}^{n+1} C_n^{m-1} a^m b^{n-m+1}$$

Получаем, что

$$\sum_{k=0}^{n} C_n^k a^{k+1} b^{n-k} + \sum_{k=0}^{n} C_n^k a^k b^{n-k+1} = \sum_{m=1}^{n+1} C_n^{m-1} a^m b^{n-m+1} + \sum_{m=0}^{n} C_n^m a^m b^{n-m+1} =$$

$$= C_n^n a^{n+1} b^0 + \sum_{m=1}^{n} (C_n^{m-1} + C_n^m) a^n b^{n-m+1} + C_n^0 a^0 b^{n+1} = \sum_{m=0}^{n+1} C_{n+1}^m a^m b^{n-m+1}$$

2.11 Отношение эквивалентности. Равномощные множества

Определение. Отношение \sim называется отношением эквивалентности, если оно удовлетворяет:

- 1. $x \sim x$ (Рефлексивность)
- 2. $x \sim y \Rightarrow y \sim x$ (Симметричность)
- 3. $x \sim y$ и $y \sim z \Rightarrow x \sim z$ (Транзитивность)

Определение. Множества называются равномощными, если между ними существует биекция.

Теорема. Равномощность множеств является отношением эквивалентности.

Доказательство. Пусть A,B,C - множества, $\varphi:A\to B,\psi:B\to C$ - биекции.

- 1. Рефлексивность очевидна, поскольку у любого множества существует биекция в себя.
- 2. Для любой биекции $\varphi:A\to B$ существует $\varphi^{-1}:B\to A.$
- 3. $\varphi: A \to B, \psi: B \to C$, to $\psi \circ \varphi: A \to C$.

Замечание. Если A равномощно B то иногда пишут $A \sim B$ или |A| = |B|.

Теорема. Конечные множества равномощны \Leftrightarrow они содержат одинаковое количество элементов.

Доказательство.

- (\Leftarrow) Пусть $\varphi:A\to\{1,\ldots,n\},\ \psi:B\to\{1,\ldots,n\}$ $\Rightarrow\exists\ \psi^{-1}:\{1,\ldots,n\}\to B.$ Тогда $\varphi\circ\psi^{-1}:A\to B$ искомая биекция.
- (\Rightarrow) Пусть $\varphi:A\to B$ биекция, если $A=\varnothing$, то $B=\varnothing$. Докажем индукцией по количеству элементов. База: пусть $A=\{a\}$, тогда $\exists!\ b\in B: \varphi(a)=b$. Пусть утверждение верно для случая когда A это n-элементное множество. Теперь если A это n+1-элементное, то $\exists\ \varphi:A\to\{1,2,...,n+1\}$ биекция. Значит $\exists!\ a\in A$, что $\varphi(a)=n+1$. Тогда $A\setminus\{a\}$ n-элементное и $\exists!\ b\in B:b=\varphi(a)\Rightarrow B\setminus\{b\}$ n-элементное $\Rightarrow B$ n+1-элементное.

Определение. Множества, равномощные № называются счетными.

Определение. Множество называется не более чем счетным, если оно конечно или счетно.

Теорема. Объединение не более чем счетного числа счетных множеств счетно.

Доказательство. Предъявим проход по элементам, который задает биекцию:

$$a_{11}$$
 a_{12} a_{13} a_{14} \cdots a_{1n} a_{21} a_{22} a_{23} \cdots \cdots a_{2n} a_{31} a_{32} a_{33} \cdots \cdots a_{3n} \vdots

Teopema. Объединение не более чем счетного числа не более чем счетных множеств не более чем счетно.

Примеры.

- 1. Множество целых чисел \mathbb{Z} счетно.
- 2. Множество рациональных чисел ℚ счетно.
- 3. Множество многочленов с рациональными коэффициентами счетно.
- 4. Множество алгебраических чисел (чисел которые являются корнями многочлена с рациональными коэффициентами) счетно.

2.12 Теорема Кантора и аксиома выбора

Теорема. (Теорема Кантора)

Интервал (0,1) несчетен.

Доказательство. Докажем от противного. Предположим, что у нас получилось перечислить все элементы интервала (0,1)

$$x_1 = 0, \ a_{11} \ a_{12} \ a_{13} \ \dots$$

 $x_2 = 0, \ a_{21} \ a_{22} \ a_{23} \ \dots$
 $x_3 = 0, \ a_{31} \ a_{32} \ a_{33} \ \dots$
:

Теперь построим такую последовательность b, задающую число, которого нет

в списке. Определим последовательность так: $b_0 = 0$ и на i-й позиции b_i отличается от a_{ii} , например зададим ее так:

$$b_i = egin{cases} 1, & ext{если}, & a_{ii}
eq 1, \ 2, & ext{если}, & a_{ii} = 1. \end{cases}$$

Таким образом, построенное число x = 0, $b_1 b_2 b_3 \dots$ отличается от каждого из $x_1, x_2, x_3 \dots$ на i позиции \Rightarrow оно не было пересчитано, получаем противоречие.

Следствие. Действительных чисел несчетно.

Доказательство. Достаточно показать, что $\mathbb{R} \sim (0,1)$. Например функция $f:(0,1)\to\mathbb{R}$, такая что $f(x)=\frac{2x-1}{4x-4x^2}$ задает нужную биекцию.

Определение. Действительные числа не являющиеся алгебраическими называются трансцендентными.

Определение. Множества равномощные интервалу (0,1) называются множествами мощности континуума.

Теорема. У любого множетсва мощность множества всех подмножеств строго больше чем мощность самого множества.

Определение. Для множеств A и B обозначим $|A| \leq |B|$, если $\exists B' \subset B$ такое, что $A \sim B'$.

Теорема. Сравнение мощностей множеств $|A| \leq |B|$ является отношением порядка.

- 1. $\forall A, B : |A| \le |B|$ или $|B| \le |A|$
- 2. $|A| \leq |B|$ и $|B| \leq |A| \Rightarrow |A| = |B|$ (Теорема Кантора-Бернштейна)
- 3. $|A| \leq |B|$ и $|B| \leq |C| \Rightarrow |A| \leq |C|$

Доказательство. Без доказательства.

Аксиома. (Аксиома выбора)

Если существует семейство непустых множеств, то из каждого множества можно выбрать по одному элементу и составить из них другое множество.

Утверждение. Множество $2^{\mathbb{N}}$ всех подмножеств \mathbb{N} равномощно интервалу (0,1) (множеству $\{0,1\}^{\mathbb{N}}$ бесконечных последовательностей нулей и единиц).

\mathcal{A} оказательство. Каждому $A\subset\mathbb{N}$ ставим в соответствие характеристическую
последовательность, которая принимает значения: единицу, если элемент лежит
в подмножестве и ноль иначе $\Rightarrow 2^{\mathbb{N}} \sim \{0,1\}^{\mathbb{N}}$. Поскольку каждое число из
интервала $(0,1)$ представляется как последовательность цифр $0,\ a_1,\ a_2,\ a_3,\ \dots$
и каждую цифру можно представить в двоичной системе исчисления, то можно
сделать вывод, что $2^{\mathbb{N}} \sim (0,1)$.
Теорема. У любого бесконечного множества существует счетное подмножество.
Доказательство. Выбираем элемент и сразу присваиваем ему номер. Продол-
жая это действие, построим счетное множество.
Теорема. Пусть A - бесконечное, B - не более чем счетное $\Rightarrow A \sim A \cup B$
Доказательство. Выделим из A счетное подмножество A' . Тогда $A \sim (A \backslash A') \cup$
A', поскольку объединение не более чем счётного числа не более чем счётных
множеств не более чем счётно, то $(A \setminus A') \cup A' \sim (A \setminus A') \cup (A' \cup B) \sim (A \cup B)$.

3 Топология $\mathbb R$

3.1 Окрестность точки. Классификация точек относительно подмножеств действительных чисел

Определение. $\forall x \in \mathbb{R}, \ \forall \varepsilon > 0 : B_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon)$. Множество $B_{\varepsilon}(x)$ называется ε -окрестностью точки x.

Определение. $\forall x \in \mathbb{R}, \ \forall \varepsilon > 0 : \mathring{B}_{\varepsilon}(x) = (x - \varepsilon, x) \cup (x, x + \varepsilon)$. Множество $\mathring{B}_{\varepsilon}(x)$ называется проколотой ε -окрестностью точки x.

Определение. Точка $x \in A \subset \mathbb{R}$ называется внутренней точкой множества A, если $\exists B_{\varepsilon}(x) \subset A$. Множество всех внутренних точек $x \in A$ называется внутренностью множетсва A.

Определение. Точка $x \in \mathbb{R} \setminus A$ называется внешней точкой для множества $A \subset \mathbb{R}$, если x - внутренняя точка для $\mathbb{R} \setminus A$. Множество всех внешних точек $x \in A$ называется внешностью множетсва A.

Определение. Точка называется граничной для множества $A \subset \mathbb{R}$, если она не является ни внешней ни внутренней для A (в любой ее окрестности есть как точки из A так точки из $\mathbb{R} \setminus A$). Множество всех граничных точек называется границей множества A и обозначается ∂A .

Определение. Точка $x \in \mathbb{R}$ называется предельной точкой множества $A \subset \mathbb{R}$, если в любой проколотой окрестности точки x бесконечно много точек A, т.е $\forall \ \varepsilon > 0 : A \cap \mathring{B}_{\varepsilon}(x) \neq \varnothing$. Множество всех предельных точек A обозначается A'

Определение. Точка $x \in A$ называется изолированной точкой $A \subset \mathbb{R}$, если $\exists \ \varepsilon > 0 : A \cap \mathring{B}_{\varepsilon}(x) = \varnothing$.

Определение. Точка $x \in \mathbb{R}$ называется точкой прикосновения $A \subset \mathbb{R}$, если $\forall \ \varepsilon > 0 : A \cap B_{\varepsilon}(x) \neq \varnothing$.

Утверждение. Точки прикосновения множества *А* являются либо внутренними, либо граничными.

Доказательство. Точка прикосновения не может являться внешней точкой, поскольку в этом случае $\exists \ \varepsilon > 0 : B_{\varepsilon}(x) \in \mathbb{R} \setminus A$, что противоречит с условием $\forall \ \varepsilon > 0 : A \cap B_{\varepsilon}(x) \neq \varnothing \Rightarrow$ она либо внутренняя либо граничная.

Утверждение. Точки прикосновения являются либо предельными, либо изолированными.

 \mathcal{A} оказательство. Если $\forall \ \varepsilon > 0 : A \cap \mathring{B}_{\varepsilon}(x) \neq \varnothing$, то x - предельная. Если $\exists \ \varepsilon > 0 : A \cap \mathring{B}_{\varepsilon}(x) = \varnothing$, но по определению $\forall \ \varepsilon > 0 : A \cap B_{\varepsilon}(x) \neq \varnothing$ $\Rightarrow x \in A \Rightarrow x$ - изолированная.

Определение. (Множество Кантора)

Разбиваем отрезок [0,1] на три части и выбрасываем середину, затем каждый из получившихся отрезков разбиваем на три части и выбрасываем середину, и т.д.

- Суммарная длина всех выброшенных интервалов равна 1.
- Концов отрезков счетное множество.
- Общее количество точек имеет мощность континуума.

3.2 Открытые и замкнутые множества

Определение. Множество называется открытым, если все его точки - внутренние.

Пример. Любой интервал - открытое множество

Определение. Множество $A \subset \mathbb{R}$ называется замкнутым, если его дополнение $\mathbb{R} \setminus A$ открыто.

Пример. Отрезок - замкнутое множество.

Замечание. По определению считаем, что \varnothing и $\mathbb R$ и открыты и замкнуты одновременно.

Теорема. (Критерии замкнутости множества)

Следующие условия эквивалетны:

- (0) $A \subset \mathbb{R}$ замкнуто.
- $(1) \ \partial A \subset A,$
- (2) Все точки прикосновения содержатся в A,
- (3) $A' \subset A$.

Доказательство. Докажем по цепочке $(0) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (0)$.

1. $(0) \Rightarrow (1) : A$ - замкнуто $\Rightarrow \mathbb{R} \setminus A$ - открыто $\Rightarrow \partial A \not\subset \mathbb{R} \setminus A \Rightarrow \partial A \subset A$.

- 2. (1) \Rightarrow (2) : Все точки прикосновения являются граничными или внутренними. Поскольку $\partial A \subset A$ то все точки прикосновения содержатся в A.
- 3. (2) \Rightarrow (3) : Если x предельная, то $x \in A$ или x точка прикосновения. Поскольку все точки прикосновения содержатся в A, то и все предельные точки содержатся в A.
- 4. (3) \Rightarrow (0) : $A' \subset A \Rightarrow \forall x \in \mathbb{R} \setminus A : x \notin A' \Rightarrow \forall x \in \mathbb{R} \setminus A \exists \mathring{B}_{\varepsilon} : \mathring{B}_{\varepsilon}(x) \cap A = \emptyset$ $\Rightarrow B_{\varepsilon}(x) \cap A = \emptyset$ (т.к $x \notin A$) $\Rightarrow x$ - внешняя точка $A, B_{\varepsilon}(x) \subset \mathbb{R} \setminus A$ $\Rightarrow \mathbb{R} \setminus A$ - открыто $\Rightarrow A$ - замкнуто.

Теорема. Пусть A - множество индексов. Пусть $\{U_{\alpha}\}_{\alpha \in A}$ - открытые, $\{X_{\alpha}\}_{\alpha \in A}$ - замкнутые. Тогда:

- 1. $\bigcup_{\alpha} U_{\alpha}$ открыто (объединение открытых множетсв открыто).
- 2. $\bigcap_{i=1}^{n} U_{\alpha_i}$ открыто (конечное пересечение открытых множеств открыто).
- 3. $\bigcup_{i=1}^{n} X_{\alpha_i}$ замкнуто (конечное объединение замкнутых множеств замкнуто).
- 4. $\bigcap_{\alpha} X_{\alpha}$ замкнуто (пересечение замкнутых множеств замкнуто).

Доказательство.

- 1. Пусть $u \in \bigcup_{\alpha} U_{\alpha} \Rightarrow \exists \alpha_0 : u \in U_{\alpha_0} \Rightarrow \exists B(u) \in U_{\alpha_0} \Rightarrow B(u) \in \bigcup_{\alpha} U_{\alpha}$ $\Rightarrow \bigcup_{\alpha} U_{\alpha}$ - открыто.
- 2. Пусть $u \in \bigcap_{i=1}^{n} U_{\alpha_i} \Rightarrow \forall i \in \{1, \dots, n\} \exists \varepsilon_i : B_{\varepsilon_i}(u) \in U_{\alpha_i} \Rightarrow \exists \varepsilon_0 = \min\{\varepsilon_i\}$ $\Rightarrow B_{\varepsilon_0} \subset U_{\alpha_i} \ \forall i \Rightarrow B_{\varepsilon_0} \subset \bigcap_{i=1}^{n} U_{\alpha_i} \Rightarrow \bigcap_{i=1}^{n} U_{\alpha_i} \text{ - открыто.}$
- 3. Поскольку $\bigcap_{\alpha} (A \setminus A_{\alpha}) = A \setminus (\bigcup_{\alpha} A_{\alpha})$ (доказано ранее), то $\mathbb{R} \setminus \bigcup_{i=1}^{n} X_{\alpha_{i}} = \bigcap_{i=1}^{n} (\mathbb{R} \setminus X_{\alpha_{i}})$. Так как $X_{\alpha_{i}}$ замкнуто, то $\mathbb{R} \setminus X_{\alpha_{i}}$ открыто. Тогда по пункту 2 получаем: $\bigcap_{i=1}^{n} (\mathbb{R} \setminus X_{\alpha_{i}})$ открыто $\Rightarrow \mathbb{R} \setminus \bigcup_{i=1}^{n} X_{\alpha_{i}}$ открыто $\Rightarrow \bigcup_{i=1}^{n} X_{\alpha_{i}}$ замкнуто.

4. Поскольку $\bigcup_{\alpha} (A \setminus A_{\alpha}) = A \setminus (\bigcap_{\alpha} A_{\alpha})$ (доказано ранее), то $\mathbb{R} \setminus \bigcap_{\alpha} X_{\alpha} = \bigcup_{\alpha} (\mathbb{R} \setminus X_{\alpha})$. Так как X_{α} - замкнуто, то $\mathbb{R} \setminus X_{\alpha}$ - открыто. Тогда по пункту 1 получаем: $\bigcup_{\alpha} (\mathbb{R} \setminus X_{\alpha})$ - открыто $\Rightarrow \mathbb{R} \setminus \bigcap_{\alpha} X_{\alpha}$ - открыто $\Rightarrow \bigcap_{\alpha} X_{\alpha}$ - замкнуто.

Примеры.

1.
$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n}\right) = [0, 1].$$

2.
$$\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1 - \frac{1}{n} \right] = (0, 1).$$

Теорема. Если A - ограничено сверху или снизу и замкнуто, то существует $\max A$ или $\min A$ соответственно.

$$\forall \varepsilon > 0 \; \exists \; a \in (\alpha - \varepsilon, \alpha] \Rightarrow \alpha$$
 - точка прикосновения $\Rightarrow \alpha \in A \Rightarrow \alpha = \max A$. \square

3.3 Компакты

Определение. Говорят, что семейство $\{A\}_{\alpha}$ является покрытием множества B, если $B\subset\bigcup A_{\alpha}$

Определение. Рассмотрим $X \subset \mathbb{R}$. Если для любого покрытия X открытыми множествами $\{A\}_{\alpha}$ существует $\{\alpha_i\}_{i=1}^n$ - конечное подпокрытие такое, что $X \subset \bigcup_{i=1}^n A_{\alpha_i}$, то X называется компактным множеством или компактом.

Теорема. Любой отрезок является компактом.

Доказательство. Пусть $[a,b]\subset\bigcup_{\alpha}A_{\alpha},\ A_{\alpha}$ - открытые и нельзя выделить конечное подпокрытие. Тогда $[a,b]=[a_1,b_1]$ делим отрезок пополам и выбираем половину $[a_2,b_2]$, у которой нельзя выделить конечное подпокрытие и т.д. Получаем систему вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$, у которых нельзя выделить конечное подпокрытие и длина стремится к нулю $\Rightarrow \exists !\ c\in [a_n,b_n]\ \forall n\Rightarrow \exists\ \alpha_0:c\in A_{\alpha_0}$. Поскольку A_{α_0} - открыто, то $\exists\ B_{\varepsilon}(c)\subset A_{\alpha_0}\Rightarrow\exists\ n_{\alpha_0}:[a_{n_{\alpha_0}},b_{n_{\alpha_0}}]\subset A_{\alpha_0}$ получаем противоречие.

Теорема. (Лемма Гейне-Бореля)

A - компакт $\Leftrightarrow A$ - замкнуто и ограничено.

Доказательство. Без доказательства.

3.4 Теорема Больцано-Вейерштрасса

Теорема. (Больцано-Вейерштрасса)

Если A - ограниченное и бесконечное множетсво, то в нем есть хотя бы одна предельная точка $(A' \neq \varnothing)$.

Доказательство. т.к A - ограничено, то $\exists \sup A = b$, $\inf A = a$ $\Rightarrow A \subset [a_1,b_1] = [a,b]$. Поделим отрезок $[a_1,b_1]$ пополам и возьмем половину $[a_2,b_2]$ в которой бесконечно много элементов из множества A и т.д. Получаем систему вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$, у которых длина стремится к нулю (упражнение) $\Rightarrow \exists ! \ c \in [a_n,b_n] \ \forall n \Rightarrow \forall \varepsilon > 0 \ \exists \ n_\varepsilon : [a_{n_\varepsilon},b_{n_\varepsilon}] \subset B_\varepsilon(c) \Rightarrow \text{существует бесконечно много элементов в } \mathring{B}_\varepsilon(c) \Rightarrow c \in A'$.

4 Числовые последовательности

4.1 Предел последовательности

Определение. Отображение $\{a_n\}: \mathbb{N} \to \mathbb{R}$ называется последовательностью.

Замечание. Далее, в обозначении последовательности будем опускать скобки и писать a_n .

Определение. Говорят, что a_n ограничена сверху (снизу), если ее образ ограничен сверху (снизу).

Определение. Пусть последовательность номеров n_k - образ $\varphi: \mathbb{N} \to \mathbb{N}$ и $\forall k: n_{k+1} > n_k$. Тогда для любой последовательности a_n последовательность a_{n_k} называется подпоследовательностью a_n .

Определение. Рассмотрим последовательность a_n . Если $\exists a \in \mathbb{R}$, такое что

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} \in \mathbb{N} : \forall n > N_{\varepsilon} : |a_n - a| < \varepsilon$$

то говорят что последовательность a_n сходится, а число a называется пределом последовательности a_n и обозначается

$$\lim_{n \to \infty} a_n = a$$

Теорема. Если a_n сходится, то ее предел единственный.

Доказательство. Пусть $\exists \ a,b \in \mathbb{R}: a \neq b$ - два предела последовательности a_n . Тогда

$$\exists \ N_1: \forall n > N_1: |a_n - a| < \frac{|a - b|}{3} \quad \text{if} \quad \exists \ N_2: \forall n > N_2: |a_n - b| < \frac{|a - b|}{3}$$

Тогда $\forall n > N = \max(N_1, N_2)$ получаем, что $a_n \in B_{\frac{|a-b|}{3}}(a)$ и $a_n \in B_{\frac{|a-b|}{3}}(b)$, но $B_{\frac{|a-b|}{3}}(a) \cap B_{\frac{|a-b|}{3}}(b) = \varnothing \Rightarrow$ получаем противоречие.

Теорема. Пусть $\exists \lim_{n\to\infty} a_n = a$, тогда $\forall a_{n_k} \exists \lim_{n\to\infty} a_{n_k} = a$.

Доказательство. $\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} \; \forall n > N_{\varepsilon} : |a_n - a| < \varepsilon \Rightarrow \forall k > N_{\varepsilon} : |a_{n_k} - a| < \varepsilon \Rightarrow \forall k > N_{\varepsilon} : \square$

Замечание. $\forall k \in \mathbb{Z}$ отображение $\mathbb{Z} \setminus \{..., k-1\} \to \mathbb{R}$ тоже будем называть последовательностью.

Замечание.

- 1. Если $\exists \lim_{n\to\infty} a_n = a$, то $\exists \lim_{n\to\infty} a_{n+k} = a$.
- 2. Если $\exists \lim_{\substack{n\to\infty\\n\to\infty}} a_n = a$ и b_n отличается от a_n конечным числом членов, то $\exists \lim_{\substack{n\to\infty\\n\to\infty}} b_n \stackrel{n\to\infty}{=} a$.

Теорема. (Теорема об отделимости)

Пусть
$$\exists \lim_{n \to \infty} a_n = a$$
 и $b \neq a$. Тогда $\exists \varepsilon > 0 \exists N_{\varepsilon} : B_{\varepsilon}(b) \cap \{a_n\}_{n=N_{\varepsilon}}^{\infty} = \varnothing$.

 \mathcal{A} оказательство. Предположим, что выполнено обратное: $\forall \varepsilon > 0 \ \forall \ N_{\varepsilon}$: $B_{\varepsilon}(b) \cap \{a_n\}_{n=N_{\varepsilon}}^{\infty} \neq \varnothing$. Возьмем $\varepsilon = \frac{|b-a|}{3}$, сразу получаем противоречие. \square

Замечание. Теорема об отделимости равносильна следующему утверждению: $\exists \ \varepsilon > 0 : \mathring{B}_{\varepsilon}(b) \cap \{a_n\}_{n=1}^{\infty} = \varnothing$, причем если $b \notin \{a_n\}_{n=1}^{\infty}$, то $B_{\varepsilon}(b) \cap \{a_n\}_{n=1}^{\infty} = \varnothing$.

4.2 О-символика. Бесконечно малые и бесконечно большие последовательности

Определение. Рассмотрим пару последовательностей a_n и b_n . Если $\exists \lim_{n\to\infty} \frac{a_n}{b_n} = 0$, то говорят, что последовательность a_n это о-малое от b_n и обозначают $a_n = \bar{\bar{o}}(b_n)$, при $n\to\infty$.

Определение. Если $\exists M > 0 : |\frac{a_n}{b_n}| \leq M \ \forall n$, то говорят, что последовательность a_n это О-большое от b_n и обозначают $a_n = O(b_n)$ при $n \to \infty$.

Примеры.

1.
$$\frac{\sin n}{n} \to 0 \Leftrightarrow \sin n = \bar{\bar{o}}(n)$$

$$2. \frac{\cos n}{n} \to 0 \Leftrightarrow \cos n = \bar{\bar{o}}(n)$$

3.
$$\frac{\sqrt{n+1}}{n} \to 0 \Leftrightarrow \sqrt{n+1} = \bar{o}(n)$$

Замечание. O(1) - обозначение класса ограниченных последовательностей.

Определение. Последовательность a_n называется бесконечно малой, если

$$a_n = \bar{o}(1) \iff \lim_{n \to \infty} a_n = 0$$

Определение. Последовательность a_n называется бесконечно большой, если

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon}, \; \forall n > N_{\varepsilon} : |a_n| > \varepsilon$$

такие последовательности обозначаются $\lim_{n\to\infty} a_n = \infty$ (это всего лишь обозначение, конечно у последовательности a_n не существует предела)

Если в определении $a_n > \varepsilon$, то пишут $\lim_{n \to \infty} a_n = +\infty$.

Если в определении $a_n < -\varepsilon$, то пишут $\lim_{n \to \infty} a_n = -\infty$.

Теорема. (Исчисление бесконечно малых)

Пусть $a_n = \bar{\bar{o}}(1), n \to \infty, \ b_n = \bar{\bar{o}}(1), n \to \infty$ и $c_n = O(1)$. Тогда $\forall c \in \mathbb{R}$:

1.
$$ca_n = \bar{o}(1)$$

2.
$$a_n + b_n = \bar{\bar{o}}(1)$$

3.
$$a_n b_n = \bar{o}(1)$$

4.
$$c_n a_n = \bar{o}(1)$$

Доказательство. $\forall \varepsilon > 0 \; \exists \; N_1, \; \forall n > N_1 : |a_n| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |b_n| < \varepsilon.$ Возьмем $n > \max\{N_1, N_2\}$. Также по определению $\exists \; M > 0 : |c_n| < M$. Тогда:

- 1. $|ca_n| = |c| |a_n| < |c| \varepsilon$. Поскольку ε принимает любое вещественное положительное значение, то величина $|c| \varepsilon$ тоже $\Rightarrow ca_n = \bar{o}(1)$.
- 2. $|a_n + b_n| \le |a_n| + |b_n| < \varepsilon + \varepsilon = 2\varepsilon$. Поскольку ε принимает любое вещественное положительное значение, то величина 2ε тоже $\Rightarrow a_n + b_n = \bar{o}(1)$.
- 3. $|a_n b_n| = |a_n| \ |b_n| < \varepsilon \cdot \varepsilon = \varepsilon^2$. Поскольку ε принимает любое вещественное положительное значение, то величина ε^2 тоже $\Rightarrow a_n b_n = \bar{o}(1)$.
- 4. $|c_n a_n| = |c_n| |a_n| < M \varepsilon$. Поскольку ε принимает любое вещественное положительное значение, то величина $M \varepsilon$ тоже $\Rightarrow c_n a_n = \bar{o}(1)$.

Теорема. Пусть a_n - бесконечно большая и $a_n \neq 0$, тогда $\frac{1}{a_n}$ - бесконечно малая.

Доказательство.
$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon}, \; \forall n > N_{\varepsilon} : |a_n| > \varepsilon \Rightarrow \frac{1}{|a_n|} < \frac{1}{\varepsilon} \Rightarrow \frac{1}{a_n} = \bar{\bar{o}}(1)$$

Лемма.
$$\lim_{n\to\infty} a_n = a \Leftrightarrow a_n - a = \bar{o}(1)$$
 т.е $a_n = a + \bar{o}(1)$

Доказательство. Из определения предела для a_n получаем: $|a_n-a|<\varepsilon$, а это и означает что $a_n-a=\bar{o}(1)$.

4.3 Арифметические свойства сходящихся последовательностей

Теорема. Пусть $\exists \lim_{n \to \infty} a_n = a, \ \exists \lim_{n \to \infty} b_n = b,$ тогда

1.
$$\exists \lim_{n \to \infty} (a_n + b_n) = a + b$$

$$2. \ \exists \lim_{n \to \infty} (ca_n) = ca$$

3.
$$\exists \lim_{n \to \infty} (a_n b_n) = ab$$

4. Если дополнительно $\forall n: b_n \neq 0$ и $b \neq 0$, то $\exists \lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{a}{b}$

Доказательство. Используя тот факт, что $a_n = a + \bar{o}(1), b_n = b + \bar{o}(1)$ и исчисление бесконечно малых, получаем:

1.
$$a_n + b_n = a + \bar{o}(1) + b + \bar{o}(1) = a + b + \bar{o}(1)$$
.

2.
$$ca_n = c(a + \bar{o}(1)) = ca + c\bar{o}(1) = ca + \bar{o}(1)$$
.

3.
$$a_n b_n = (a + \bar{o}(1))(b + \bar{o}(1)) = ab + a\bar{o}(1) + b\bar{o}(1) + \bar{o}(1)\bar{o}(1) = ab + \bar{o}(1)$$
.

4.
$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{a_n b - ab_n}{bb_n} = \frac{b(a + \bar{o}(1)) - a(b + \bar{o}(1))}{b(b + \bar{o}(1))} = \frac{ab - ab + b\bar{o}(1) - a\bar{o}(1)}{b^2 + b\bar{o}(1)} = \frac{1}{b^2 + \bar{o}(1)} \bar{o}(1) = O(1)\bar{o}(1) = \bar{o}(1).$$

Замечание. т.к $b \neq 0$, $b_n \neq 0 \ \forall n$, то 0 отделен от b_n , т.е $\exists \ \varepsilon > 0 : B_{\varepsilon}(0) \cap b_n = \varnothing \Rightarrow |b_n| > \varepsilon \Rightarrow \frac{1}{|b_n|} < \frac{1}{\varepsilon}$.

Теорема. Пусть $\exists \lim_{n\to\infty} a_n = a$ и $a_n \ge 0$, $\forall n$. Тогда $a \ge 0$.

Доказательство. Пусть a < 0, тогда $\exists N, \ \forall n > N : |a - a_n| < \frac{|a|}{3} \Rightarrow$ начиная с N все члены a_n отрицательные \Rightarrow получаем противоречие.

Следствие. Пусть $\exists \lim_{n\to\infty} a_n = a, \ \exists \lim_{n\to\infty} b_n = b$ и пусть $\forall n: a_n \geq b_n$. Тогда $a \geq b$.

Доказательство. Рассмотрим последовательность $a_n - b_n \ge 0$.

$$a_n - b_n \to a - b \ge 0.$$

Теорема. (Теорема о двух милиционерах)

Пусть $\exists \lim_{n\to\infty} a_n = a, \ \exists \lim_{n\to\infty} b_n = a: a_n \le b_n$ и пусть $a_n \le c_n \le b_n, \ \forall n,$ тогда $\exists \lim_{n\to\infty} c_n = a.$

Доказательство.
$$\forall \varepsilon > 0 \; \exists \; N_1, \; \forall n > N_1 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |b_n - a| < \varepsilon \Rightarrow \forall n > N = \max\{N_1, N_2\} : a - \varepsilon < a_n \leq c_n \leq b_n < a + \varepsilon \Rightarrow |c_n - a| < \varepsilon.$$

4.4 Монотонные последовательности

Определение.

- 1. Если $\forall n : a_{n+1} > a_n$, то a_n (строго) возрастает.
- 2. Если $\forall n : a_{n+1} \ge a_n$, то a_n неубывает.
- 3. Если $\forall n : a_{n+1} < a_n$, то a_n (строго) убывает.
- 4. Если $\forall n : a_{n+1} \leq a_n$, то a_n невозрастает.

Такие последовательности называют монотонными.

Теорема. Если последовательность неубывает (невозраствает) и ограничена сверху (снизу), то у нее есть предел.

 \mathcal{A} оказательство. Докажем для неубывающей, ограниченной сверху. a_n - ограничена сверху $\Rightarrow \exists \ a = \sup a_n \Rightarrow \forall \varepsilon > 0 \ \exists \ a_{N_\varepsilon} : a - \varepsilon < a_{N_\varepsilon} < a, \ a_n$ - неубывает $\Rightarrow \forall n > N_\varepsilon : a_n > a - \varepsilon \Rightarrow a - a_n < \varepsilon$.

4.5 Число е

Лемма.

- 1. $a_n = (1 + \frac{1}{n})^n$ возрастает.
- 2. $b_n = (1 + \frac{1}{n})^{n+1}$ убывает.

Доказательство.

1.
$$\frac{a_{n+1}}{a_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n} = \frac{(n+2)^{n+1} n^n}{(n+1)^{2n+1}} = \frac{(n^2 + 2n)^n (n+2)}{(n^2 + 2n + 1)^n (n+1)} =$$

$$= \left(1 - \frac{1}{(n+1)^2}\right)^n \left(\frac{n+2}{n+1}\right) > \left(1 - \frac{n}{(n+1)^2}\right) \cdot \frac{n+2}{n+1} =$$

$$= \frac{n^2 + n + 1}{n^2 + 2n + 1} \cdot \frac{n+2}{n+1} = \frac{n^3 + 3n^2 + 3n + 2}{n^3 + 3n^2 + 3n + 1} > 1$$

2.
$$\frac{b_n}{b_{n+1}} = \frac{(1+\frac{1}{n})^{n+1}}{(1+\frac{1}{n+1})^{n+2}} = \frac{(n+1)^{2n+3}}{n^{n+1}(n+2)^{n+2}} = \frac{(n^2+2n+1)^{n+1}(n+1)}{(n^2+2n)^{n+1}(n+2)} = \\
= (1+\frac{1}{n^2+2n})^{n+1} \frac{(n+1)}{n+2} > (1+\frac{n+1}{n^2+2n}) (\frac{n+1}{n+2}) = \\
= \frac{n^2+3n+1}{n^2+2n} \cdot \frac{n+1}{n+2} = \frac{n^3+4n^2+4n+1}{n^3+4n^2+4n} > 1$$

Теорема. $\exists \lim_{n\to\infty} (1+\frac{1}{n})^n$

Доказательство.
$$\forall n, \ a_n < b_n, \ \text{т.к.} \ b_n = a_n(1+\frac{1}{n}) \Rightarrow \forall n, m: a_n < b_m$$
 $\Rightarrow a_n$ - ограничена $\Rightarrow \exists \lim_{n \to \infty} a_n$

Определение. $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$

4.6 Сходимость последовательностей и частичные пределы

Теорема. Если a_n ограничена, то $\exists a_{n_k} \to a, k \to \infty$.

Доказательство.

- 1. Образ a_n бесконечен. Тогда $\exists a$ предельная точка образа. Тогда в проколотой окрестности a есть хотя бы одна точка, возьмем эту точку, назовем ее a_{n_1} , далее возьмем новую проколотую окрестность a так, чтобы a_{n_1} в нее не попадало, возьмем в ней a_{n_2} такую, что $n_2 > n_1$ и так далее. Получим подпоследовательность, сходящуюся к a.
- 2. Образ a_n конечен. Тогда $\exists \ a$ из образа, встречающаяся в последовательности бесконечно много раз. Тогда возьмем постоянную (стационарную) подпоследовательность.

Теорема. (Критерий Коши)

Последовательность a_n сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon}, \; \forall n, m > N_{\varepsilon} : |a_n - a_m| < \varepsilon$$

Доказательство.

$$(\Rightarrow)$$
 $\exists \lim_{n \to \infty} a_n = a \Leftrightarrow \forall \varepsilon > 0 \; \exists \; N_{\varepsilon}, \; \forall n > N_{\varepsilon} : |a_n - a| < \frac{\varepsilon}{2}.$ Тогда $\forall m, n > N_{\varepsilon} : |a_m - a_n| = |(a_m - a) + (a - a_n)| \leq |a_m - a| + |a - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

 $(\Leftarrow)\ \forall \varepsilon > 0\ \exists\ N_{\varepsilon},\ \forall n,m>N_{\varepsilon}: |a_{n}-a_{m}|<\varepsilon.$ Фиксируем m, тогда $a_{m}-\varepsilon < a_{n}< a_{m}+\varepsilon \Rightarrow a_{n}$ - ограничена $\Rightarrow\exists\ a_{n_{k}}\to a,\ k\to\infty.$ Поскольку $n_{k}\geq n>N$, то $|a_{n}-a_{n_{k}}|<\varepsilon.$ Тогда $|a_{n}-a|=|a_{n}-a_{n_{k}}+a_{n_{k}}-a|<<(|a_{n}-a_{n_{k}}|+|a_{n_{k}}-a|<2\varepsilon$ (2 ε пробегает все вещественные положительные числа)

Определение. Последовательность a_n , удовлетворяющая условию $\forall \varepsilon > 0 \; \exists \; N_{\varepsilon}, \; \forall n, m > N_{\varepsilon} : |a_n - a_m| < \varepsilon$ называется фундаментальной.

Пример.

Пример.
$$a_n = \sum_{k=1}^n \frac{1}{k^2} - \text{сходится, поскольку:}$$

$$|a_n - a_m| = |\sum_{k=1}^n \frac{1}{k^2} - \sum_{k=1}^m \frac{1}{k^2}| = |\sum_{k=m+1}^n \frac{1}{k^2}| < |\sum_{k=m+1}^n (\frac{1}{k-1} - \frac{1}{k})| = \frac{1}{m} - \frac{1}{n} < \frac{1}{m} < \varepsilon$$

$$a_n = \sum_{k=1}^n \frac{1}{k} - \text{расходится, поскольку:}$$

$$|a_n - a_m| = |\sum_{k=m+1}^{2n} \frac{1}{k}| > \frac{1}{2n}n = \frac{1}{2}$$

Определение. Если у a_n есть сходящаяся подпоследовательность a_{n_k} , то $\lim_{k\to\infty}a_{n_k}=a$ называется частичным пределом последовательности a_n .

Теорема. Рассмотрим a_n , и пусть $a \subset \mathbb{R}$ - множество всех частичных пределов a_n . Тогда A замкнуто.

Доказательство. $\forall x \in \mathbb{R} \setminus A \Rightarrow x \notin A \Rightarrow \exists B_{\varepsilon}(x) : B_{\varepsilon}(x) \cap \{a_n\}_{n=1}^{\infty}$ - конечно. Тогда $\forall x' \in B_{\varepsilon}(x) \exists B_{\varepsilon'}(x')$, что $B_{\varepsilon'}(x') \cap \{a_n\}_{n=1}^{\infty}$ конечно $\Rightarrow \forall x' \notin A$ $\Rightarrow B_{\varepsilon}(x) \subset \mathbb{R} \setminus A \Rightarrow \mathbb{R} \setminus A$ - открыто.

Определение. Пусть a_n ограничена. Тогда $\exists \max A$ и $\min A$, которые называют верхним пределом $\varlimsup_{n\to\infty} a_n$ и нижним пределом $\varliminf_{n\to\infty} a_n$.

Теорема. Пусть a_n ограничена. Тогда $\overline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} \sup\{a_k\}_{k=1}^\infty$ и $\underline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} \inf\{a_k\}_{k=1}^\infty$.

Доказательство. Докажем для верхнего: $\sup\{a_k\}_{k=n+1}^{\infty} \leq \sup\{a_k\}_{k=n}^{\infty}, \ \sup\{a_k\}_{k=n}^{\infty}$ ограничена снизу. $\Rightarrow \exists \lim_{n \to \infty} \sup\{a_k\}_{k=n}^{\infty} = \alpha. \ \forall \varepsilon > 0 : (\alpha + \varepsilon, +\infty) \cap \{a_n\}_{n=1}^{\infty}$ конечно. С другой стороны $\forall \varepsilon > 0 : (\alpha - \varepsilon, \alpha + \varepsilon) \cap \{a_n\}_{n=1}^{\infty}$ бесконечно $\Rightarrow \alpha$ - частичный предел $\Rightarrow \alpha = \overline{\lim_{n \to \infty}} a_n$.

Теорема. $\exists \lim_{n \to \infty} a_n = a \Leftrightarrow \overline{\lim}_{n \to \infty} a_n = a$ и $\underline{\lim}_{n \to \infty} a_n = a$.

Доказательство.

- (⇒) очев
- $(\Leftarrow) \inf\{a_k\}_{k=n}^{\infty} \le a_n \le \sup\{a_k\}_{k=n}^{\infty}$ по лемме о двух милиционерах $a_n \to a$.

Определение. Если a_n имеет бесконечно большую подпоследовательность то используют обозначения $\overline{\lim}_{n\to\infty} a_n = \infty \ (+\infty, \ -\infty)$ и $\underline{\lim}_{n\to\infty} a_n = \infty \ (+\infty, \ -\infty)$

5 Предел функции

5.1 Определение предела по Коши и по Гейне

В данном разделе будут рассматриваться функции $f: \mathbb{R} \to \mathbb{R}$.

Определение. Пусть f(x) определена в $\mathring{B}(x_0)$. Число a называется пределом f(x) в точке x_0 , по Коши, если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in \mathring{B}_{\delta_{\varepsilon}}(x_0) : |f(x) - a| < \varepsilon$$

Определение. Пусть f(x) определена в $\mathring{B}(x_0)$. Число a называется пределом f(x) в точке x_0 по Гейне, если

$$\forall x_n : x_n \to x_0, \ x_n \neq x_0 \ \forall n : \exists \lim_{n \to \infty} f(x_n) = a$$

Определение. Пусть f(x) определена на $(-\infty, x_0)$ и на $(x_0, +\infty)$. Тогда a - предел f при $x \to \infty$ $(x \to +\infty, x \to -\infty)$ если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \forall x : |x| > \delta_{\varepsilon} \; (x > \delta_{\varepsilon}, \; x < \delta_{\varepsilon}) : |f(x) - a| < \varepsilon$$

Теорема. Определения предела по Коши (1) и по Гейне (2) эквивалентны. Доказательство.

1. (1)
$$\Rightarrow$$
 (2): $\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0$, $\forall x \in \mathring{B}_{\delta_{\varepsilon}}(x_{0}) : |f(x) - a| < \varepsilon$.
 $\forall x_{n} : x_{n} \to x_{0}, \; x_{n} \neq x_{0} \; \exists \; N_{\delta_{\varepsilon}} : 0 < |x_{0} - x_{n}| < \delta_{\varepsilon}$
 $\Rightarrow \forall n > N_{\delta_{\varepsilon}}, \; x_{n} \in \mathring{B}_{\delta_{\varepsilon}}(x_{0}) : |f(x_{n}) - a| < \varepsilon, \text{ r.e. } f(x_{n}) \to a$.

2. (2) \Rightarrow (1): Выведем из отрицания предела по Коши отрицание предела по Гейне: $\exists \ \varepsilon > 0 \ \forall \delta > 0 \ \exists \ x_{\delta} \in \mathring{B}_{\delta}(x_{0}) : |f(x_{\delta}) - a| \geq \varepsilon_{0}.$ Возьмем $x_{1} \in \mathring{B}_{1}(x_{0}) \Rightarrow |f(x_{1}) - a| \geq \varepsilon; \ x_{2} \in \mathring{B}_{\frac{|x_{1}|}{2}}(x_{0}) \Rightarrow |f(x_{2}) - a| \geq \varepsilon_{0};$ $x_{3} \in \mathring{B}_{\frac{|x_{2}|}{2}}(x_{0}) \Rightarrow |f(x_{3}) - a| \geq \varepsilon_{0}; \dots; \ x_{n} \in \mathring{B}_{\frac{|x_{n}|}{2}}(x_{0}) \Rightarrow |f(x_{n}) - a| \geq \varepsilon_{0}$ это и есть отрицание по Гейне.

Замечание. В доказательстве пользуемся тем, что для утверждений A и B верно: $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$

Замечание. при $x \to \infty \ (+\infty, \ -\infty)$ доказывается аналогично.

5.2 Простейшие свойства предела функции

Теорема. Если у функции существует предел в точке x_0 то он единственный.

Доказательство. Получим противоречие с определением по Гейне, пусть $x_n: x_n \to x_0, \ x_n \neq x_0 \ \forall n: \lim_{n\to\infty} f(x_n) = a$. Предположим, что $b\neq a$ - тоже предел. Тогда $\exists \ t_n: t_n \to x_0, \ t_n \neq x_0 \ \forall n: \lim_{n\to\infty} f(t_n) = b$. Получаем, что последовательность $y_n = x_1, t_1, x_2, t_2, \cdots: y_n \to x_0$, но при этом $f(y_n) = f(x_1), f(t_1), f(x_2), f(t_2) \ldots$ - имеет два различных частичных предела.

Теорема. Если $\exists \lim_{x \to x_0} f(x) = a$, то $\exists \delta > 0$ такое, что f(x) ограничена в $\mathring{B}_{\delta}(x_0)$.

Доказательство. Возьмем $\varepsilon = 1$, тогда $\exists \ \delta > 0$, что $\forall x \in \mathring{B}_{\delta}(x_0) : |f(x) - a| < 1 \Rightarrow a - 1 < f(x) < a + 1 \Rightarrow f(x)$ - ограничена.

Теорема. (Теорема об отделимости)

Пусть $\exists \lim_{x \to x_0} f(x) = a$. Тогда $\forall b \neq a \ \exists \ \delta > 0$ и $\exists \ \varepsilon > 0$, что $f(\mathring{B}_{\delta}(x_0)) \cap \mathring{B}_{\varepsilon}(b) = \varnothing$.

Доказательство. Возьмем $\varepsilon = \frac{|a-b|}{3}$, тогда $\exists \ \delta > 0$ такое, что $\forall x \in \mathring{B}_{\delta}(x_0) : |f(x) - a| < \frac{|a-b|}{3} \Rightarrow f(\mathring{B}_{\delta}(x_0)) \cap \mathring{B}_{\frac{|a-b|}{3}}(b) = \varnothing.$

5.3 Предел по множеству. Односторонние пределы

Определение. Число a называется пределом f(x) в точке x_0 по множеству $X \subset \mathbb{R}$, если

$$x_0 \in X'$$
 и $\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in \mathring{B}_{\delta}(x_0) \cap X : |f(x) - a| < \varepsilon$

Обозначают

$$\lim_{X\ni x\to x_0} f(x) = a$$

Утверждение. Если $\exists \lim_{X\ni x\to x_0} f(x)=a$ и $X_1\subset X,\ x_0\in X_1'.$ Тогда $\exists \lim_{X_1\ni x\to x_0} f(x)=a.$

Доказательство. Очевидно.

Определение.

- 1. Если $X = (x_0, x_0 + \delta)$, то обозначают $\lim_{x \to x_0 + 0} f(x) = a$.
- 2. Если $X = (x_0 \delta, x_0)$, то обозначают $\lim_{x \to x_0 0} f(x) = a$.

Такие пределы называются односторонними.

Теорема.
$$\exists \lim_{x \to x_0} f(x) = a \Leftrightarrow \exists \lim_{x \to x_0 + 0} f(x) = a$$
 и $\exists \lim_{x \to x_0 - 0} f(x) = a$.

Доказательство. (дано в качестве очевидного) *

- $1.(\Rightarrow)$ Поскольку $\forall \varepsilon > 0 \; \exists \; \delta > 0, \; \forall x \in \mathring{B}_{\delta}(x_0) : |f(x) a| < |\varepsilon,$ то $\forall x \in (x, x + \delta) : |f(x) a| < \varepsilon \; \text{и} \; \forall x \in (x \delta, x) : |f(x) a| < \varepsilon.$
 - (\Leftarrow) Поскольку $\forall \varepsilon > 0 \; \exists \; \delta > 0, \; \forall x \in (x, x + \delta) : |f(x) a| < \varepsilon$ и $\forall x \in (x \delta, x) : |f(x) a| < \varepsilon$, то и $\forall x \in \mathring{B}_{\delta}(x_0) : |f(x) a| < \varepsilon$.

5.4 О-символика

Определение. Если $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, то $f(x) = \bar{o}(g(x))$ при $x \to x_0$.

Определение. Функция f(x) называется бесконечно малой, если $f(x) = \bar{o}(1)$ при $x \to x_0$.

Определение. Если $\exists~M>0$ такое, что $\forall x\in X\subset\mathbb{R}: |\frac{f(x)}{g(x)}|< M$, то f(x)=O(g(x)) на X

Определение. Для обозначения класса ограниченных функций используется запись f(x) = O(1).

Определение. Пусть f(x) определена в $\mathring{B}(x_0)$. Если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in \mathring{B}_{\delta_{\varepsilon}}(x_0) : |f(x)| > \varepsilon \; (f(x) > \varepsilon, \; f(x) < -\varepsilon)$$

то говорят что f(x) бесконечно большая и пишут

$$\lim_{x \to x_0} f(x) = \infty, \ \left(\lim_{x \to x_0} f(x) = +\infty, \ \lim_{x \to x_0} f(x) = -\infty\right)$$

Теорема. (Исчисление бесконечно малых)

Пусть $\alpha(x) = \bar{o}(1)$ при $x \to x_0$, $\beta(x) = \bar{o}(1)$ при $x \to x_0$, $\gamma(x) = O(1)$ в $\mathring{B}(x_0), c \in \mathbb{R}$. Тогда:

1.
$$\alpha(x) + \beta(x) = \bar{o}(1), x \to x_0.$$

2.
$$c\alpha(x) = \bar{o}(1), x \to x_0.$$

3.
$$\alpha(x)\beta(x) = \bar{o}(1), x \to x_0.$$

4.
$$\alpha(x)\gamma(x) = \bar{o}(1), x \to x_0.$$

Доказательство. (дано в качестве очевидного) ⊛

Запишем определение по Гейне:

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} \alpha(x) = 0 \Leftrightarrow \forall x_n : x_n \to x_0, \ x_n \neq 0, \ \forall n : \exists \lim_{\substack{n \to \infty \\ n \to \infty}} \alpha(x_n) = 0,$$
$$\lim_{\substack{x \to x_0 \\ x \to x_0}} \beta(x) = 0 \Leftrightarrow \forall x_n : x_n \to x_0, \ x_n \neq 0, \ \forall n : \exists \lim_{\substack{n \to \infty \\ n \to \infty}} \beta(x_n) = 0.$$
$$\gamma(x) = O(1) \Leftrightarrow \exists M > 0 : |\gamma(x)| < M.$$
 Тогда:

1.
$$\alpha(x_n) + \beta(x_n) = \bar{o}(1) + \bar{o}(1) = \bar{o}(1)$$
.

2.
$$c\alpha(x_n) = c\bar{o}(1) = \bar{o}(1)$$
.

3.
$$\alpha(x_n)\beta(x_n) = \bar{o}(1)\bar{o}(1) = \bar{o}(1)$$
.

4.
$$\alpha(x)\gamma(x) = \bar{o}(1)M = \bar{o}(1)$$
.

Утверждение. $\exists \lim_{x \to x_0} f(x) = a \Leftrightarrow f(x) = a + \bar{o}(1), \ x \to x_0.$

$$\forall \varepsilon > 0 \; \exists \; \delta > 0, \; \forall x \in \mathring{B}_{\delta}(x_0) : |f(x) - a| < \varepsilon \Leftrightarrow f(x) - a = \bar{o}(1).$$

Теорема. Если $\exists \lim_{x \to x_0} f(x) = a, \ a \neq 0, \text{ то } \frac{1}{f(x)} = O(1) \text{ в } \mathring{B}(x_0).$

Доказательство. По теореме об отделимости $\exists \ \mathring{B}(x_0)$ и $\exists \ \varepsilon > 0$: $f(\mathring{B}(x_0)) \cap \mathring{B}_{\varepsilon}(0) \neq \varnothing$. Тогда $\forall x \in \mathring{B}(x_0) : |f(x)| \geq \varepsilon \Rightarrow \frac{1}{|f(x)|} \leq \frac{1}{\varepsilon}$.

5.5 Арифметрические свойства пределов функций и предельные переходы в неравенствах

Теорема. Если $\exists \lim_{x \to x_0} f(x) = a, \ \exists \lim_{x \to x_0} g(x) = b, \ \text{то}$

1.
$$\forall \alpha, \beta \in \mathbb{R} \exists \lim_{x \to x_0} (\alpha f(x) + \beta g(x)) = \alpha a + \beta b.$$

2.
$$\exists \lim_{x \to x_0} (f(x)g(x)) = ab.$$

3. Если
$$b \neq 0$$
, то $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$.

Доказательство. Эту теорему можно доказать используя тот факт, что $\lim_{x\to x_0} f(x) = a \Leftrightarrow f(x) = a + \bar{o}(1), \ \lim_{x\to x_0} g(x) = b \Leftrightarrow g(x) = b + \bar{o}(1), \$ а также исчисление бесконечно малых функций.

Пример.

1. $\forall \alpha, \beta \in \mathbb{R}$, если $\alpha > \beta$, то $x^{\alpha} = \bar{o}(x^{\beta}), \ x \to 0$, так как $\lim_{x \to x_0} \frac{x^{\alpha}}{x^{\beta}} = \lim_{x \to x_0} x^{\alpha - \beta} = 0$. Например: $x + \bar{o}(x) + x^2 + \bar{o}(x^2) = x + \bar{o}(x), \ x \to 0$.

2.
$$\sin x = x + \bar{\bar{o}}(x), \ x \to 0$$
, так как $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

Теорема. Пусть $\exists \lim_{x \to x_0} f(x) = a$, $\exists \lim_{x \to x_0} g(x) = b$ и пусть $\forall x \in \mathring{B}(x_0)$: $f(x) \ge g(x)$, тогда $a \ge b$.

Доказательство. (дано в качестве очевидного) ⊛

 $\forall x_n \to x_0, \ x_n \neq x_0, \ \forall n: \lim_{x \to x_0} f(x_n) = a$ и $\lim_{x \to x_0} g(x_n) = b.$ $f(x_n) \geq g(x_n)$ значит, по доказанному для последовательностей $a \geq b$.

Теорема. Пусть $\exists \lim_{x \to x_0} f(x) = a, \ \exists \lim_{x \to x_0} g(x) = b,$ и пусть a > b. Тогда $\exists \ \mathring{B}(x_0) : f(x) > g(x)$.

Доказательство. (дано в качестве очевидного) *

По теореме об отделимости: $\exists \ \delta > 0 \ \exists \ \varepsilon > 0 : f(\mathring{B}_{\delta}(x_0)) \cap \mathring{B}_{\varepsilon}(b)$.

Теорема. (Теорема о двух милиционерах)

Пусть $\exists \lim_{x \to x_0} f(x) = a$, $\exists \lim_{x \to x_0} g(x) = a$ и пусть в $\mathring{B}(x_0) : f(x) \le h(x) \le g(x)$. Тогда $\exists \lim_{x \to x_0} h(x) = a$.

Доказательство. по Гейне.

5.6 Монотонные функции

Определение. Если $\forall x_1, x_2 \in (\alpha, \beta) : x_1 < x_2$ выполнено, что

- 1. $f(x_1) \le f(x_2)$, то f(x) называют неубывающей.
- 2. $f(x_1) < f(x_2)$, то f(x) называют возрастающей.
- 3. $f(x_1) \ge f(x_2)$, то f(x) называют невозрастающей.
- 4. $f(x_1) > f(x_2)$, то f(x) называют убывающей.

такие функции называют монотонными.

Теорема. Пусть f(x) определена на $(a - \delta, a)$, f(x) - неубывающая (невозрастающая) и ограниченная сверху (снизу). Тогда $\exists \lim_{x \to a-0} f(x) = A$.

Доказательство.
$$\exists \sup f(x) = A. \ \forall \varepsilon > 0 \ \exists \ x_{\varepsilon} \in (a - \delta, a), \ f(x_{\varepsilon}) > A - \varepsilon.$$
 Тогда $\forall x \in (x_{\varepsilon}, a) : f(x) \geq f(x_{\varepsilon}) > A - \varepsilon$, а значит $\forall x \in \mathring{B}(A) : f(x) - A < \varepsilon$.

5.7 Критерий Коши

Теорема. (Критерий Коши)

$$\exists \lim_{x \to x_0} = a \Leftrightarrow \forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0 : \forall x_1, x_2 \in \mathring{B}_{\delta_{\varepsilon}}(x_0) : |f(x_1) - f(x_2)| < \varepsilon$$

Доказательство.

- $(\Rightarrow) \ \forall \varepsilon > 0 \ \exists \ \delta_{\varepsilon} > 0 : \forall x \in \mathring{B}_{\delta_{\varepsilon}}(x_{0}) : |f(x) a| < \varepsilon$ $\forall x_{1}, x_{2} \in \mathring{B}_{\delta_{\varepsilon}}(x_{0}) : |f(x_{1}) f(x_{2})| = |f(x_{1}) a + a f(x_{2})| \le |f(x_{1}) a| + |f(x_{2}) a| < 2\varepsilon.$
- $(\Leftarrow) \ \forall \varepsilon > 0 \ \exists \ \delta_{\varepsilon} > 0 : \forall x_1, x_2 \in \mathring{B}_{\delta_{\varepsilon}}(x_0) : |f(x_1) f(x_2)| < \varepsilon.$ $\forall \{x_n\}, \ x_n \to x_0, \ x_n \neq x_0 \ \exists \ N_{\delta_{\varepsilon}} : \forall n > N_{\delta_{\varepsilon}} : |x_n x_0| < \delta_{\varepsilon}$ $\Rightarrow n, m > N_{\delta_{\varepsilon}} : |f(x_n) f(x_m)| < \varepsilon \Rightarrow \exists \lim_{n \to \infty} f(x_n) = a.$ $\{t_n\}, \ t \to x_0, \ t_n \neq x_0, \ \exists \lim_{n \to \infty} f(t_n) = b. \ x_1, t_1, x_2, t_2 (\text{пояснить}), \dots \Rightarrow a = b.$

6 Непрерывные функции

6.1 Локальные свойства непрерывных функций

Определение. Пусть D_f - область определения f(x). Пусть $x_0 \in D_f$. Если $\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0$, что $\forall x \in B_{\delta_{\varepsilon}}(x_0) \cap D_f : |f(x) - f(x_0)| < \varepsilon$, то f(x) называется непрерывной в точке x_0 .

Замечание. Определение эквивалентно тому, что $\exists \lim_{x \to x_0} f(x) = f(x_0)$, если x_0 не изолированная точка.

Теорема. Пусть f(x), g(x) - непрерывны в точке x_0 . Тогда:

- 1. $\alpha f(x) + \beta g(x)$ непрерывна в точке x_0
- 2. f(x)g(x) непрерывна в точке x_0
- 3. если $g(x_0) \neq 0$, то $\frac{f(x)}{g(x)}$ непрерывна в точке x_0

Теорема. (Непрерывность композиции непрерывных функций)

f(x) определена в $B_{\delta}(x_0)$ и f(x) непрерывна в точке x_0 . $f(B_{\delta}(x_0)) \subset B(y_0)$, $f(x_0) = y_0$. g(y) определена в $B(y_0)$ и непрерывна в точке y_0 . Тогда g(f(x)) непрерывна в точке x_0 .

Доказательство.
$$\forall x_n \to x_0, \ f(x_n) \to f(x_0). \ y_n \to y_0, \ g(y_n) \to g(y_0). \ y_n = f(x_n), \ g(f(x_n)) \to g(f(x_0)).$$

6.2 Глобальные свойства непрерывных функций

Определение. Пусть f(x) - определена на $X \subset \mathbb{R}$ и $\forall x \in X : f(x)$ - непрерывна в точке x. Тогда говорят, что f(x) непрерывна на X и пишут $f(x) \in \mathcal{C}(X)$.

Теорема. (1-я теорема Вейерштрасса)

Если $f(x) \in \mathcal{C}[a,b]$, то f(x) - ограничена на [a,b].

Доказательство. Предположим, что f(x) неограничена, то есть

$$\forall M > 0 \exists x_M \in [a, b] : |f(x_M)| > M$$

Возьмем $x_1: |f(x_1)| > 1; \quad x_2: |f(x_2)| > 2; \quad \dots \quad x_M: |f(x_M)| > M; \dots$ Получаем последовательность $\{x_n\} \subset [a,b] \exists \{x_{n_k}\}: \exists \lim_{k \to \infty} \{x_{n_k}\} = x_0.$ f(x) непрерывная $\Rightarrow \exists \lim_{k \to \infty} f(\{x_{n_k}\}) = f(x_0)$, но $|f(x_{n_k})| \to +\infty$.

Теорема. (2-я теорема Вейерштрасса)

Пусть $f(x) \in \mathcal{C}[a,b]$. Тогда f(x) имеет максимальное $\max f(x)$ и минимальное $\min f(x)$ значения на [a,b]

Доказательство.
$$\alpha = \sup_{x \in [a,b]} f(x) : \exists x_1 \in [a,b], \ f(x_1) > \alpha - 1, \ \exists x_2 \in [a,b], \ f(x - 2) > \alpha - \frac{1}{2} \dots \exists x_n \in [a,b], \ f(x-n) > \alpha - \frac{1}{n}, \dots \exists \{x_{n_k}\}, x_{n_k} \to x', \ f(x_{n_k}) \to f(x'), \ \alpha - \frac{1}{n_k} < f(x_{n_k}) \le \alpha \Rightarrow f(x_{n_k}) \to \alpha.$$

Теорема. Пусть $f(x) \in \mathcal{C}[a,b]$. f(a) = A, f(b) = B, пусть $a \leq B$. Тогда $\forall C: A \leq C \leq B \; \exists \; C \in [a,b], \; f(c) = C$

Доказательство. A = B ограничена, далее A < B. Возьмем $x_1 = \frac{a+b}{2}$. Если $f(\frac{a+b}{2}) = C$, то все. Если $f(\frac{a+b}{2}) \neq C$, то $f(\frac{a+b}{2}) > C$ или $f(\frac{a+b}{2}) < C$. Возьмем ту половину отрезка $[a_1,b_1]: f(a_1) < C < f(b_1)$, снова делим пополам и т.д. Получаем $\{[a_n,b_n]\}$ последовательность вложеных отрезков $\Rightarrow \exists c \in [a_n,b_n]$, $\forall n,\ a_n \to c,\ b_n \to c.\ \lim_{n\to\infty} f(a_n) = f(c) \leq C.\ \lim_{n\to\infty} f(b_n) = f(c) \geq C$ $\Rightarrow f(c) = C$.

Определение. Пусть f(x) определена в $B(x_0)$.

6.3 Точки разрыва функции

- 1. Если $\exists \lim_{x \to x_0 = 0} = \lim_{x \to x_0 + 0} \neq f(x_0)$, то точка x_0 называется точкой устранимого разрыва функции f(x).
- 2. Если $\exists \lim_{x \to x_0 = 0} = \alpha$, $\exists \lim_{x \to x_0 + 0} = \beta$, $\alpha \neq \beta$, то точка называется точкой разрыва 1 рода функции f(x).
- 3. Если не существует хотя бы одного из односторонних пределов, то x_0 называется точкой разрыва 2 рода функции f(x).

Пример. $f(x) = \frac{1}{x}$ непрерывна на всей области определения (в нуле нет точки разрыва, так как она там не определена).

Теорема. Пусть f(x) определена на [a,b] и монотонна. Тогда у этой функции могут быть разрывы только 1-го рода.

Доказательство. Пусть $f(x) \leq f(b)$ и f монотонно возрастает. Так как $f(a) \leq f(x) \leq f(b)$, то f - ограничена $\Rightarrow \forall x_0 \in [a,b] \exists \lim_{x \to x_0 = 0} f(x)$ и $\exists \lim_{x \to x_0 + 0}$. Значит у f(x) могут быть разрывы только 1-го рода.

Следствие. Утверждение теоремы верно и для функции f(x), определенной на интервале (a,b).

Доказательство.
$$\exists \ [a,b] \subset (a,b): (a,b) = \bigcup_{n=1}^{\infty} [a_n,b_n]$$

Утверждение. У монотонной функции разрывов не более чем счетное множество.

Теорема. Пусть f(x) строго монотонна на [a,b] и $f(x) \in C[a,b]$, $f(a) = \alpha$, $f(b) = \beta$. Тогда $\exists f^{-1}(y) \in C[\alpha,\beta]$ и она строго монотонна.

Доказательство. Пусть строго возрастает. $\forall x_1, x_2, x_1 < x_2 : f(x_1) = y_1 < y_2 = f(x_2)$. Тогда f(x) - биекция между [a,b] и $[\alpha,\beta] \Rightarrow \exists f^{-1}$. Предположим что она разрывная, но тогда нарушается биекция, и вообще нарушается условие того что функция определена на всем отрезке [a,b].

6.4 Равномерная непрерывность

Определение. Пусть f(x) определена на [a,b]. Если $\forall \varepsilon \exists \delta_{\varepsilon} > 0$, $\forall x', x'' \in [a,b]: |x'-x''| < \delta_{\varepsilon}$, то $|f(x')-f(x'')| < \varepsilon$, то f(x) называется равномерно непрерывной на [a,b].

Теорема. (Теорема Кантора)

Если $f(x) \in \mathcal{C}[a,b]$, то f(x) равномерно непрерывна на [a,b].

Доказательство. Пусть $\exists \ \varepsilon_0 > 0$, что $\forall \delta > 0 \ \exists \ x', x'' : |x' - x''| < \delta : |f(x') - f(x'')| \ge \varepsilon_0$. Возьмем последовательность $\delta_n = \frac{1}{n} : x', x'', \ |x' - x''| < \frac{1}{n}, \ |f(x') - f(x')| \ge \varepsilon_0$. $\exists x'_{n_k} \to x_0$, тогда $f(x'_{n_k}) \to f(x_0)$ и $f(x''_{n_k}) \to f(x_0)$.

6.5 Элементарные функции

1. Показательная функция Пусть a > 1

(i)
$$n \in \mathbb{N}, \ a^n = \prod_{j=1}^n a; \ a^{n+m} = a^n a^m$$

(ii)
$$n \in \mathbb{Z}, \ n = -k, \ k \in \mathbb{N},$$
 тогда $a^{-k} = \frac{1}{a^k}, \ a^0 = 1$

(iii) $a^{\frac{1}{n}}:b^n=a$ в \mathbb{R}_+ (строго положительные числа). Пусть $A=\{x\in\mathbb{R}_+:x^n\leq a\},\ B=\{x\in\mathbb{R}_+:x^n>a\},\ A\cup B=\mathbb{R}_+$. По аксиоме полноты $\exists\ b:x_1\leq b\leq x_2,\ \forall x_1\in A,\ \forall x_2\in B$ и $b=a^{\frac{1}{n}}.\ \forall \frac{m}{n}\in\mathbb{Q}$ $a^{\frac{m}{n}}=(a^{\frac{1}{n}})^m;\ a^{r_1+r_2}=a^{r_1}a^{r_2},\ (a^{\frac{m_1}{n_1}}\ V\ a^{\frac{m_2}{n_2}})^{n_1n_2}\Rightarrow a^{m_1n_2}\ V\ a^{m_2n_1}.$

(iv)
$$\lim_{n\to\infty}a^{\frac{1}{n}}=1$$
. $(1+\frac{a}{n})^n>1+a>a\Rightarrow 1+\frac{a}{n}>a^{\frac{1}{n}}>1$ по теореме о двух милиционерах $a^{\frac{1}{n}}\to 1$. Пусть $\forall x_0\in\mathbb{R},\ r_n\to x_0-0,\ s_n\to x_0+0$. Тогда $\exists\lim_{n\to\infty}a^{r_n}=\alpha,\ \exists\lim_{n\to\infty}a^{s_n}=\beta,\ \alpha\leq\beta$. Пусть $\alpha<\beta,\ a^{s_n}-a^{r_n}=a^{r_n}(a^{s_n-r_n}-1)\to\beta-\alpha>0$?. Рассмотрим подпоследовательность $0< s_{n_k}-r_{n_k}<\frac{1}{k}$. Тогда $1< a^{s_{n_k}-r_{n_k}}< a^{\frac{1}{k}}$. По теореме о двух милиционерах $a^{s_{n_k}-r_{n_k}}\to 1\Rightarrow a^{s_{n_k}}-a^{r_{n_k}}\to 0\Rightarrow$

(v) При
$$0 < a < 1$$
, $a^x = \frac{1}{(\frac{1}{a})^x}$

2. Функция, обратная к $y=a^x$ называется логарифмом и обозначается $x=\log_a y$. Далее пишем $y=\log_a x$. $\log_{a^\alpha} x^\beta=\frac{\beta}{\alpha}\log_a x,\ \log_a xy=\log_a x+\log_a y.$ Обозначение: $\log_e x:=\ln x.$

 $\alpha = \beta = a^{x_0}$. Непрерывность и монотонность есть по построению.

- 3. Степенная функция. $\forall x>0, \ \forall \alpha \in \mathbb{R}: x^{\alpha}=e^{\alpha \cdot \ln x}$. Распространяем: при $\alpha \geq 0$ доопределяем x^{α} в точке x_0 по непрерывности (ищем предел и добавляем его как значение), при $\alpha \in \mathbb{Z}$ доопределяем x^{α} при x<0 четно, если α четное и нечетное, если α нечетное.
- 4. $y = \sin x$. Возьмем окружность единичного радиуса, на $[0, 2\pi]$ синус ордината. $\forall x \in \mathbb{R} : |\sin x| \le |x|, \sin (x+\delta) \sin x = |2\sin (\frac{\delta}{2})\cos (x+\frac{\delta}{2})| \le \delta$. сов определяем в соответсвтии определения синуса.
- 5. $\arcsin x$ определяем на области, где будет биекция с $\sin x$ (обычно берут $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$)
- 6. $\sinh x = \frac{e^x e^{-x}}{2}$, $\cosh x = \frac{e^x + e^{-x}}{2}$, $\th x = \frac{\sinh x}{\cosh x}$ и $\coth x = \frac{\cosh x}{\sinh x}$ для этих функций можно получить формулы, аналогичные тем, что верны для тригонометрических функций.

6.6 Замечательные пределы

Теорема. $\exists \lim_{x\to 0} \frac{\sin x}{x} = 1.$

Доказательство.
$$\sin x < x < \operatorname{tg} x \Rightarrow \frac{\sin x}{x} < 1$$
 и $\frac{x}{\sin x} < \frac{1}{\operatorname{ctg} x}$ $\Rightarrow \operatorname{ctg} x < \frac{\sin x}{x} < 1$. По теореме о двух милиционерах $\frac{\sin x}{x} \to 1$.

Утверждение. $\lim_{x\to\infty}(1+\frac{1}{x})^x=e$.

Доказательство. $\alpha_n \to \infty$, $(1 + \frac{1}{[\alpha_n]+1})^{[\alpha_n]} \le (1 + \frac{1}{\alpha_n})^{\alpha_n} \le (1 + \frac{1}{[\alpha_n]})^{[\alpha_n]+1} \Rightarrow$ по лемме о двух милиционерах $(1 + \frac{1}{\alpha_n})^{\alpha_n} \to e$. $\beta_n \to -\infty$, $(1 + \frac{1}{\beta_n})^{\beta_n} = (\frac{\beta_n+1}{\beta_n}) = (\frac{\beta_n}{\beta_n+1})^{-\beta_n} = (1 - \frac{1}{\beta_n+1})^{-\beta_n}$.

Следствие. $\lim_{x\to 0} (1+\frac{1}{x})^{\frac{1}{x}} = e$.

Утверждение. $\lim_{x\to 0} (\frac{\ln{(1+x)}}{x}) = 1.$

Доказательство. $\lim_{x\to 0} \frac{\ln{(1+x)}}{x} = \lim_{x\to 0} \ln{(1+x)^{\frac{1}{x}}} = 1.$

Теорема. (Второй замечательный предел)

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Доказательство. $e^x - 1 = t$, $e^x = 1 + t$, $x = \ln(1+t) \Rightarrow \lim_{t \to 0} \frac{t}{\ln(1+t)} = 1$.

7 Дифференциальное исчисление функций одной переменной

7.1 Производная функции

Пусть f(x) определена в $B(x_0)$.

Определение. Производной функции f(x) в точке x_0 называется (если он существует) предел

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0)$$

Определение. Производной функции f(x) в точке x_0 по множесту A называется (если он существует) предел

$$\exists \lim_{A \ni \Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'_A(x_0)$$

Если $A = (x_0 - \Delta x, x_0)$ или $(x_0, x_0 + \Delta x)$, то пишут f'_- или f'_+ .

Замечание. Если обозначить $\Delta x = x - x_0$, то

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Теорема. Если существует производная функции f(x) в точке x_0 , то f(x) непрерывна в точке x_0 .

Доказательство. временно очев

Теорема. Если у функций f(x) и g(x) существуют производные в точке x_0 , то $\forall C \in \mathbb{R}$ выполнено:

- 1. $\exists (Cf(x))' = Cf'(x_0)$.
- 2. $\exists (f(x) \pm g(x))' = f'(x_0) \pm g'(x_0)$.

Теорема. Если $\exists f'(x_0)$ и $\exists g'(x_0)$, то $\exists (f(x)g(x))' = f'(x_0)g(x_0) + g'(x_0)f(x_0)$.

Доказательство.

$$\lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{(f(x) - f(x_0))g(x)}{x - x_0} + \lim_{x \to x_0} \frac{(g(x) - g(x_0))f(x_0)}{x - x_0} =$$

$$= f'(x_0)g(x_0) + g'(x_0)f(x_0)$$

в последнем переходе используется непрерывность g(x) ($\exists g'(x_0) \Rightarrow g(x)$ непрерывна в точке x_0).

Теорема. Если $\exists f'(x_0), \exists g'(x_0) \text{ и } g(x_0) \neq 0, \text{ то}$

$$\exists \ (\frac{f(x)}{g(x)})' = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

Доказательство.

$$\lim_{x \to x_0} \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)(x - x_0)} =$$

$$= \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x_0) + f(x_0)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)(x - x_0)} =$$

$$= \lim_{x \to x_0} \frac{(f(x) - f(x_0))g(x_0) - (g(x) - g(x_0))f(x_0)}{g(x)g(x_0)(x - x_0)} =$$

$$= \frac{f'(x_0)g(x_0) - g'(x_0)f(x_0)}{g^2(x_0)}$$

в последнем переходе используется непрерывность g(x).

Теорема.
$$y = f(x), \ y_0 = f(x_0), \ \exists \ f'(x_0), \ \exists \ g'(y_0).$$
 Тогда $\exists \ (g(f(x)))' = g'(f(x_0))f'(x_0).$

Доказательство. $x_n \to x_0, \ f(x_n) \to f(x_0)$ и пусть $f(x_n) \neq f(x_0)$. Тогда

$$\lim_{x_n \to x_0} \frac{g(f(x_n)) - g(f(x_0))}{x_n - x_0} = \lim_{x_n \to x_0} \frac{g(f(x_n)) - g(f(x_0))}{f(x_n) - f(x_0)} \cdot \frac{f(x_n) - f(x_0)}{x_n - x_0}$$

В любой окрестности x_0 есть бесконечно много точек, в которых $f(x_n) = f(x_0)$. Тогда

$$f'(x_0) = \lim_{x_n \to x_0} \frac{f(x_n) - f(x_0)}{x_n - x_0} = 0$$

$$\Rightarrow g'(f(x_0))f(x_0) = 0$$

Замечание.

$$\lim_{x_n \to x_0} \frac{g(f(x_n)) - g(f(x_0))}{x_n - x_0} = 0$$

(Использовалось в доказательстве)

7.2 Дифференцируемые функции

Определение. Разность $f(x_0 = \Delta x) - f(x_0)$ называют полным приращением функции

Определение. Пусть f(x) определена в $B(x_0)$. Если $\exists A \in \mathbb{R}$ такое, что

$$f(x_0 + \Delta x) - f(x_0) = A\Delta x + \bar{o}(\Delta x)$$

то f(x) называется дифференцируемой в точке x_0 , а главная линенйная часть приращения функции $A\Delta x$ называется (первым) дифференциалом f(x) в точке x_0 , его обозначают $df = A\Delta x$.

Если функция f(x) дифференцируема на $X \subset \mathbb{R}$, то пишут $f(x) \in \mathcal{D}(X)$

Теорема. $f(x) \in \mathcal{D}(x_0) \Leftrightarrow \exists f'(x_0)$.

Доказательство.

1.
$$(\Rightarrow)$$
 $f(x_0 + \Delta x) - f(x_0) = A\Delta x + \bar{o}(\Delta x) \Rightarrow$

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A + \bar{o}(1) \Rightarrow \exists f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A$$

2. (\Leftarrow) $\exists f'(x_0)$, значит

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \Rightarrow f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + \bar{o}(\Delta x)$$

Замечание.

1.
$$df = f'(x_0)\Delta x$$

2.
$$dx = x'\Delta x = \Delta x \Rightarrow df = f'(x)dx$$

3. d(g(f(x))) = g'(f(x))f'(x)dx = g'(f(x))df (Инвариантность формы первого дифференциала)

Теорема. Пусть
$$\exists y' = f'(x_0), \ f'(x_0) \neq 0.$$
 Тогда $\exists x = f^{-1}(y)$ и $(f^{-1}(y_0))' = \frac{1}{f'(x_0)}$

Доказательство.

$$\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$$

7.3 Производные элементарных функций

1.
$$(e^x)' = e^x$$

$$\lim_{\Delta x \to 0} \frac{e^{x_0 + \Delta x} - e^{x_0}}{\Delta} = e^{x_0} \cdot \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x} = e^{x_0}$$

2.
$$y' = (\ln x)' = \frac{1}{x}$$

$$(\ln x)' = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$$

$$3. (x^{\alpha})' = \alpha x^{\alpha - 1}$$

$$(x^{\alpha})' = (e^{\alpha \ln x})' = \frac{\alpha}{x} \cdot e^{\alpha \ln x} = \alpha x^{\alpha - 1}$$

$$4. (\sin x)' = \cos x.$$

$$\lim_{\Delta x \to 0} \frac{\sin\left(x_0 + \Delta x\right) - \sin x_0}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos\left(x_0 + \frac{\Delta x}{2}\right)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \cos x_0 \cos\frac{\Delta x}{2} - \sin x_0 \sin\frac{\Delta x}{2} = \cos x_0$$

5.
$$y' = (\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\arcsin x)' = \frac{1}{(\sin x)'} = \frac{1}{\cos y} = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - \sin^2(\arcsin x)}} = \frac{1}{\sqrt{1 - \sin^2(\arcsin x)}} = \frac{1}{\sqrt{1 - x^2}}$$