K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DIODE APPLICATIONS

Numerical 1: Simulate a half wave rectifier circuit with input Amplitude = 220V peak, f = 50Hz, and $R_L = 50$ using LTspice. Select diode as IN4148. Use a 10:1 step down transformer. Calculate the efficiency of the Half wave rectifier circuit. Plot the following using LTspice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diode
- e) Current flowing through the circuit

Figure 1: Circuit 1

Solution:

Since the transformer is a 10:1 step down transformer:

$$\frac{V_P}{V_S} = \frac{10}{1}$$

$$V_S = \frac{220}{10}$$

$$V_S = 22V$$

Current in the secondary winding:

$$I_S = \frac{V_s}{R_s} = \frac{V_s}{R_L}$$
$$I_S = \frac{22}{50}$$
$$I_S = 0.44A$$

AC Power in the transformer for a half wave rectifier, P_{AC} :

$$P_{AC} = \frac{V_S^2}{4(R_S + R_L)}$$

$$P_{AC} = \frac{22^2}{4(10^{-5} + 50)}$$

$$P_{AC} = 2.4119W$$

DC Power in the transformer for a half wave rectifier, P_{AC} :

$$P_{DC} = \frac{V_S^2}{\pi^2 R_L}$$

$$P_{DC} = \frac{22^2}{\pi^2 \times 50}$$

$$P_{DC} = 0.9808W$$

% Efficiency of the transformer, $\eta\colon$

$$\eta = \frac{P_{DC}}{P_{AC}} \times 100$$

$$\eta = \frac{0.9808}{2.4119} \times 100$$

$$\eta=40.66\%$$

SIMULATED RESULTS:

The following circuit has been simulated in LTspice and the readings obtained are as follows:

Figure 2: Circuit Schematic

Figure 3: Simulated Results

Verifying the Calculated Values with Simulated Values:

Quantity	Calculated Value	Simulated Value
$(V_P)_{max}$	220V	219.58V
$(V_S)_{max}$	22V	21.98V
$(V_R)_{max}$	21.3V	20.89V
$(I_S)_{max}$	440mA	417.93mA
P_{DC}	0.9808W	0.979W
P_{AC}	2.4119W	2.4156W
η	40.66%	40.528%
PIV rating	-22V	-21.97V

Table 1: Numerical 1

Numerical 2: Simulate a Full wave rectifier circuit with input Amplitude = 180V peak, f = 50Hz, and $R_L = 80$ using LTspice. Select diode as IN4148. Calculate the efficiency transformer. Plot the following using LTspice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diodes
- e) Current flowing through the diodes
- f) Current flowing through the circuit

Figure 4: Circuit 2

Solution:

Since the transformer is a 10:1 step down transformer:

$$\frac{V_P}{V_S} = \frac{10}{1}$$

$$V_S = \frac{180}{10}$$

$$V_S = 18V$$

Current in the secondary winding:

$$I_S = \frac{V_s}{R_s} = \frac{V_s}{R_L}$$

$$I_S = \frac{18}{80}$$

$$I_S = 0.225A$$

AC Power in the transformer for a full wave rectifier, P_{AC} :

$$P_{AC} = \frac{I_S^2}{2} \times (R_S + R_L)$$

$$P_{AC} = \frac{0.225^2}{2} \times 80$$

$$P_{AC} = 2.025W$$

DC Power in the transformer for a full wave rectifier, P_{AC} :

$$P_{DC} = \left(\frac{2I_S}{\pi}\right)^2 \times R_L$$

$$P_{DC} = \left(\frac{2 \times 0.225}{\pi}\right)^2 \times 80$$

$$P_{DC} = 1.641W$$

% Efficiency of the transformer, η :

$$\eta = \frac{P_{DC}}{P_{AC}} \times 100$$

$$\eta = \frac{1.641}{2.025} \times 100$$

$$\eta=81.037\%$$

SIMULATED RESULTS:

The following circuit has been simulated in LTspice and the readings obtained are as follows:

Figure 5: Circuit Schematic

Figure 6: Simulated Results

Verifying the Calculated Values with Simulated Values:

Quantity	Calculated Value	Simulated Value
$(V_P)_{max}$	180V	179.53V
$(V_S)_{max}$	18V	17.98V
$(V_R)_{max}$	17.3V	17.03V
$(I_S)_{max}$	225mA	213mA
P_{DC}	1.641W	1.471W
P_{AC}	2.025W	1.815W
η	81.037%	81.046%
PIV rating	-36V	-35.01V

Table 2: Numerical 2