

기술예술

[논문리뷰] Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation

bestantaco 2020. 4. 1. 15:09

Deep Image Prior 논문도 다양한 Image Restoration에 큰 영향이 있었는데, 이를 Image Distribution을 학습하는 GAN을 이용해서 직관적으로 다양하게 쓸 수 있게 되서 좋은 논문 인듯하다. Optimization 방법에 주로 Latent space를 찾게 되는데, 완벽하게 찾지 못하게 될 때이를 조금 유연하게 만들어줌으로서 그 방법을 해결하였다. 이를 위해, 아깝지만 사용하지 않게 되는 Discriminator를 사용하는 논문으로서도 아이디어가 좋아 보인다.

[Deep Image Prior] (Previous Work)

- 문제: Image Prior(Natural Image들만 갖는 공통된 정보?라 하면 되겠다)가 있으면, Degraded image만으로도 restoration image를 얻을 수 있다.
- 방법: 1) Degraded image를 CNN 통과한 결과는 deep image prior를 갖는다.
 - 2) Optimization을 진행해 Degraded image의 결과와, Result image의 image statistics(image prior)가 같은 값을 같도록.

[Deep Generative Prior]

- 가정: Natural image를 다 만드는 아주 Powerful한 GAN이 있다면, Corrupted Image를 통해 회복 또한 가능.

Suppose $\hat{\mathbf{x}}$ is obtained via $\hat{\mathbf{x}} = \phi(\mathbf{x})$, where \mathbf{x} is the original natural image and ϕ is a degradation transform. e.g., ϕ could be a graying transform that turns \mathbf{x} into a grayscale image. Many tasks of image restoration can be regarded as recovering \mathbf{x} given $\hat{\mathbf{x}}$. A common practice is learning a mapping from $\hat{\mathbf{x}}$ to \mathbf{x} , which often requires task-specific training for different ϕ s. Alternatively, we can also employ statistics of \mathbf{x} stored in some prior, and search in the space of \mathbf{x} for an optimal \mathbf{x} that best matches $\hat{\mathbf{x}}$, viewing $\hat{\mathbf{x}}$ as partial observations of \mathbf{x} .

While various priors have been proposed [30]36[34] in the second line of research, in this paper we are interested in studying a more generic image prior, *i.e.*, a GAN generator trained on large-scale natural images for image synthesis. Specifically, a straightforward realization is a reconstruction process based on GAN-inversion, which optimizes the following objective:

$$\mathbf{z}^* = \underset{\mathbf{z} \in \mathbb{R}^d}{\operatorname{arg min}} E(\hat{\mathbf{x}}, G(\mathbf{z}; \boldsymbol{\theta})), \qquad \mathbf{x}^* = G(\mathbf{z}^*; \boldsymbol{\theta}),$$

$$= \underset{\mathbf{z} \in \mathbb{R}^d}{\operatorname{arg min}} \mathcal{L}(\hat{\mathbf{x}}, \phi(G(\mathbf{z}; \boldsymbol{\theta}))),$$
(1)

where \mathcal{L} is a distance metric such as the L2 distance, G is a GAN generator parameterized by $\boldsymbol{\theta}$ and trained on natural images. Ideally, if G is sufficiently powerful that the data manifold of natural images is well captured in G, the above objective will drag \mathbf{z} in the latent space and locate the optimal natural image $\mathbf{x}^* = G(\mathbf{z}^*; \boldsymbol{\theta})$, which contains the missing semantics of $\hat{\mathbf{x}}$ and matches $\hat{\mathbf{x}}$ under ϕ . For example, if ϕ is a graying transform, \mathbf{x}^* will be an image with a natural color configuration subject to $\phi(\mathbf{x}^*) = \hat{\mathbf{x}}$. However, in practice it is not always the case.

처음 부분이 Image Restoration을 개괄적으로 잘 정리해서 인상 깊어서 캡처함.

- 이를 어렵게 하는 것들: 1) Latent Space로 Encoding을 해도(GAN-Inversion), 완전히 같을 수 없다. 2) 그정도 Powerful 하기는 어렵다.
- 해결 방법[1]: Relaxed GAN reconstruction을 통해서 [Latent Space]만 찾는게 아니라, [Generator의 Parameter]도 input에 Finetune 하자.
- 해결 방법[2]: <u>Discriminator-based distance metric</u>
- 1) 이유: Generator와 Discriminator는 같이 학습하니 well-aligned 되어 있다.
- 2) 방법: <u>L1 distance in discriminator feature space</u>
- 해결 방법[3]: Progressive Reconstruction
- 2) 이유: 한 번에 맞추기에는 context가 잘 무시된다.
- 2) 방법: Low-level to high-level (coarse to fine spirit과 연결)

https://openbackyard.tistory.com/127

Fig. 4. Progressive reconstruction of the generator can better preserves the consistency between missing and existing semantics in comparison to simultaneous fine-tuning on all the parameters at once

구체적 방법 [1] [2] [3] 요약

구체적 방법 [1] [2]의 코드 수준에서의 요약

- 결과

[개인 의견]

- 1. Deep Image Prior도 그렇고, 실험을 할때는 Initialize에 사용된 Reference Image가 있어야 되는거 아닌가? DIP도 그렇고, Image Statistics가 Image Prior에서 중요한 Initialization 요소인데 이를 안보여준 사진들은 좀 아쉽다.
- 2. Degradation Operation이 Fixed되고 알아야 이 방법을 통해서 해결 가능하다는 점이 한계점인듯 하다.
- 3. Deep Image Prior에 따르면, 학습하지 않은 네트워크도 Image Statistics를 잘 반영하는데, 그렇다면 Discriminator의 Feature가 큰 상관이 없을 수도 있다는 것 아닌가? <u>아무 네트워크를 통해서도 L2 Distance를 구하면 되지 않나?</u>

https://openbackyard.tistory.com/127

[Reference]

논문: https://arxiv.org/abs/2003.13659

코드: https://github.com/XingangPan/deep-generative-prior

공감

구독하기

'<u>기술예술</u>' 카테고리의 다른 글

[논문리뷰] Cross-Identity Motion Transfer for Arbitrary Objects through Pose-Attentive Video Reassembling (0)	2020.09.15
[논문리뷰] Semantic Pyramid for Image Generation, CVPR 2020 (0)	2020.09.04
[논문리뷰] A U-Net Based Discriminator for Generative Adversarial Networks, CVPR 2020 (0)	2020.09.04
[논문리뷰] Gradient Free Optimizer: BasinCMA, NeverGrad (0)	2020.09.04
[논문리뷰] Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation (0)	2020.04.01
[논문리뷰] MonkeyNet (MOviNg KEYpoints Network) (0)	2020.03.20

'기술예술' Related Articles

NO IMAGE

$$=\sum_{p\in\mathcal{U}}H_k[$$

[논문리뷰] Semantic Pyramid for Image… [논문리뷰] A U-Net Based Discriminator for… [논문리뷰] Gradient Free Optimizer: BasinCMA,… [논문리뷰] MonkeyNet (MOviNg KEYpoints…

이름	암호	Secret		
여러분의 소중한 댓글을 입력해주세요.				
댓글달기				

1 ··· 19 20 21 22 **23** 24 25 26 27 ··· 75

DESIGN BY TISTORY 관리자

https://openbackyard.tistory.com/127