# LECTURE 5:COMMUNITY STRUCTURE IN NETWORKS

## Announcement

- Project
  - 4 March: Group list and tentative title/topic
  - 15 March: Project proposal
  - 3 April: Project milestone report
  - 3 May: Final report
  - Study week?: Final presentation

## Networks & Communities

□ We often think of networks "looking" like this:



■ What lead to such conceptual picture?

## Networks: Flow of Information

- How information flows through the network?
  - What structurally distinct roles do nodes play?
  - What roles do different links (short vs. long) play?
- How people find out about new jobs?
  - Mark Granovetter, part of his PhD in 1960s
  - People find the information through personal contacts
- But: Contacts were often acquaintances rather than close friends
  - This is surprising: One would expect your friends to help you out more than casual acquaintances
- Why is it that acquaintances are most helpful?

## Granovetter's Answer

- Two perspectives on friendships:
  - Structural: Friendships span different parts of the network
  - Interpersonal: Friendship between two people is either strong or weak
- Structural role: Triadic Closure



Which edge is more likely a-b or a-c?

If two people in a network have a friend in common there is an increased likelihood they will become friends themselves

# Granovetter's Explanation

 Granovetter makes a connection between social and structural role of an edge

### □ First point:

- Structurally embedded edges are also socially strong
- Edges spanning different parts of the network are socially weak

Strong

### Second point:

- The long range edges allow you to gather information from different parts of the network and get a job Weak
- Structurally embedded edges are heavily redundant in terms of information access

## Triadic Closure

Triadic closure == High clustering coefficient

#### Reasons for triadic closure:

- $\square$  If B and C have a friend A in common, then:
  - $\blacksquare B$  is more likely to meet C
    - (since they both spend time with A)
  - $\blacksquare B$  and C trust each other
    - (since they have a friend in common)
  - $lue{}$  A has incentive to bring B and C together
    - (as it is hard for A to maintain two disjoint relationships)
- Empirical study by Bearman and Moody:
  - Teenage girls with low clustering coefficient are more likely to contemplate suicide



# Granovetter's Explanation

- □ Define: Bridge edge
  - If removed, it disconnects the graph
- □ Define: Local bridge
  - Edge of Span > 2
     (Span of an edge is the distance of the edge endpoints if the edge is deleted. Local bridges with long span are like real bridges)
- Define: Two types of edges:
  - Strong (friend), Weak (acquaintance)
- □ Define: Strong triadic closure:
  - Two strong ties imply a third edge
- Fact: If strong triadic closure is satisfied then local bridges are weak ties!



## Local Bridges and Weak ties

Claim: If node satisfies Strong Triadic Closure and is involved in at least two strong ties, then any local bridge adjacent to must be a weak tie.

#### Proof by contradiction:

- satisfies StrongTriadic Closure
- Let be local bridge and a strong tie
- Then must exist because of Strong
   Triadic Closure
- But then is not a bridge!





# Tie strength in real data

- For many years the Granovetter's theory was not tested
- But, today we have large who-talks-to-whom graphs:
  - Email, Messenger, Cell phones, Facebook
- □ Onnela et al. 2007:
  - Cell-phone network of 20% of country's population
  - Edge strength: # phone calls

## Neighborhood Overlap

### Edge overlap:

$$O_{ij} = \frac{N(i) \cap N(j)}{N(i) \cup N(j)}$$

- N(i) ... a set of neighbors of node i
- Overlap = 0 whenan edge isa local bridge









# Phones: Edge Overlap vs. Strength

#### Cell-phone network

#### Observation:

Highly used links have high overlap!

#### Legend:

- True: The data
- Permuted strengths: Keep the network structure but randomly reassign edge strengths



## Real Network, Real Tie Strengths



- Real edge strengths in mobile call graph
  - Strong ties are more embedded (have higher overlap)

## Real Net, Permuted Tie Strengths



Same network, same set of edge strengths but now strengths are randomly shuffled

## Link Removal by Strength



Low disconnects the network sooner

- Removing links by strength (#calls)
  - Low to high
  - High to low



Conceptual picture of network structure

## Link Removal by Overlap



Low disconnects the network sooner

- Removing links based on overlap
  - Low to high
  - High to low



of network structure

## Conceptual Picture of Networks

Granovetter's theory leads to the following conceptual picture of networks



# Facebook User's Tie Strength



Four different views of a Facebook
User's network neighborhood, show the
structure of links corresponding
respectively to all declared friendships,
maintained relationships, one-way
communication, and reciprocal
communication

# SMALL DETOUR: STRUCTURAL HOLES

## **Small Detour: Structural Holes**



## Structural Holes



Structural Holes provide ego with access to novel information, power, freedom

## Structural Holes: Network Constraint

#### □ The "network constraint" measure [Burt]:

To what extent are person's contacts redundant



$$p_{uv} = 1/du$$

- Low: disconnected contacts
- High: contacts that are close or strongly tied

$$c_i = \sum_j c_{ij} = \sum_j \left[ p_{ij} + \sum_k (p_{ik} p_{kj}) \right]^2$$

 $p_{uv}\dots$  prop. of u's "energy" invested in relationship with v



## Example: Robert vs. James



- Constraint: To what extent are person's contacts redundant
  - Low: disconnected contacts
  - High: contacts that are close or strongly tied

- □ Network constraint:
  - James:
  - Robert:

# Spanning the Holes Matters



# NETWORK COMMUNITIES

## **Network Communities**

 Granovetter's theory (and common sense) suggest that networks are composed of tightly connected sets of nodes



Communities, clusters, groups, modules

#### Network communities:

Sets of nodes with lots of connections inside and few to outside (the rest of the network)

## Finding Network Communities

- How to automatically find such densely connected groups of nodes?
- Ideally such automatically detected clusters would then correspond to real groups
- □ For example:



Communities, clusters, groups, modules

# Micro-Markets in Sponsored Search

# Find micro-markets by partitioning the "query x advertiser" graph:



## Social Network Data



### Zachary's Karate club network:

- Observe social ties and rivalries in a university karate club
- During his observation, conflicts led the group to split
- Split could be explained by a minimum cut in the network

# Community Detection

#### How to find communities?





We will work with undirected (unweighted) networks

# Method 1: Strength of Weak Ties

 Edge betweenness: Number of shortest paths passing over the edge



#### □ Intuition•



Edge strengths (call volume) in real network



Edge betweenness in real network

## Method 1: Girvan-Newman

Divisive hierarchical clustering based on the notion of edge betweenness:

Number of shortest paths passing through the edge

- Girvan-Newman Algorithm:
  - Undirected unweighted networks
  - Repeat until no edges are left:
    - Calculate betweenness of edges
    - Remove edges with highest betweenness
  - Connected components are communities
  - Gives a hierarchical decomposition of the network

# Girvan-Newman: Example



Need to re-compute betweenness at every step

# Girvan-Newman: Example

34

Step 1:



Step 2:



Step 3:



Hierarchical network decomposition:



## Girvan-Newman: Results



## Girvan-Newman: Results

#### Zachary's Karate club:

Hierarchical decomposition





- 1. How to compute betweenness?
- 2. How to select the number of clusters?



## How to Compute Betweenness?

■ Want to compute betweenness of paths starting at node A



□ Breath first search starting from A:



# How to Compute Betweenness?

Count the number of shortest paths from A to all other nodes of the network:



# How to Compute Betweenness?

Compute betweenness by working up the tree: If there are multiple paths count them fractionally

#### The algorithm:

- •Add edge **flows**:
  - -- node flow =1+∑child edges
- -- split the flow up based on the parent value
- Repeat the BFS procedure for each starting node *U*



# We need to resolve 2 questions

- 1. How to compute betweenness?
- 2. How to select the number of clusters?



## Network Communities

- Communities: sets of tightly connected nodes
- □ Define: Modularity Q
  - A measure of how well a network is partitioned into communities
  - Given a partitioning of the network into groups  $S \in S$ :

 $Q \propto \sum_{s \in S} [ (\# \text{ edges within group } s) - (\text{expected } \# \text{ edges within group } s) ]$ 



# Null Model: Configuration Model

- Given real on nodes and edges,
   construct rewired network
  - Same degree distribution but random connections



- Consider as a multigraph
- The expected number of edge between nodes

$$i$$
 and  $j$  of degrees  $k_i$  and  $k_j$  equals to:  $k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$ 

■ The expected number of edges in (multigraph) G':

$$= \frac{1}{2} \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} \frac{k_i k_j}{2m} = \frac{1}{2} \cdot \frac{1}{2m} \sum_{i \in \mathbb{N}} k_i \left( \sum_{j \in \mathbb{N}} k_j \right) =$$

$$= \frac{1}{4m} 2m \cdot 2m = m$$

Note:  $\sum_{u \in \mathbb{N}} k_u = 2m$ 

# Modularity

#### ■ Modularity of partitioning S of graph G:

- □ Q  $\propto \sum_{s \in S}$  [ (# edges within group s) (expected # edges within group s) ]
- $Q(G,S) = \underbrace{\frac{1}{2m} \sum_{S \in S} \sum_{i \in S} \sum_{j \in S} \left( A_{ij} \frac{k_i k_j}{2m} \right) }_{}$

Normalizing cost.: -1<Q<1

$$A_{ij} = 1 \text{ if } i \rightarrow j,$$
0 else

### Modularity values take range [-1,1]

- It is positive if the number of edges within groups exceeds the expected number
- 0.3<Q<0.7 means significant community structure</p>

## Modularity: Number of clusters

Modularity is useful for selecting the number of clusters:



modularity

Why not optimize modularity directly?