Hypothesis Testing

log S&P closing price adjusted for splits and dividends

Dependent Variable: LOGP Method: Least Squares
Date: 11/18/15 Time: 08:23
Sample (adjusted): 1/04/1950 8/13/2015
Included observations: 16509 after adjustments

Variable	Coefficien Std. Erro		t-Statistic	Prob.
C LOGP(-1) @TREND	0.002232 0.999391 1.61E-07	0.000834 0.000265 7.43E-08	2.674596 3777.368 2.165799	0.0075 0.0000 0.0303
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.999947 0.999947 0.009704 1.554245 53099.50 1.57E+08 0.000000	Mean deper S.D. depend Akaike info Schwarz cri Hannan-Qui Durbin-Wat	dent var criterion terion nn criter.	5.366932 1.338434 -6.432431 -6.431029 -6.431968 1.944332

t-test on lagged stock prices

$$\hat{\beta}=0.999391$$

$$\frac{0.999391 - 1.0}{0.000265} = -2.30$$

Copyright Dick Startz Copyright Dick Startz

Statistical vs Economic Significance

- · Statistical significance
 - ✓ Strong evidence that $\beta \neq 1$
- · Economic significance

Hypothesis

Definition:

A *hypothesis* is a statement about a population parameter.

Examples:

$$\beta = 1$$

 μ < 3.14159

right Dick Startz 5 Copyright Dick Startz

Hypothesis test

$$H_0: \theta \in \Theta_0$$

$$H_1 (or H_A): \theta \in \Theta_0^C$$

Two-sided hypothesis:

$$H_0: \beta = \beta_0$$

 $H_A: \beta \neq \beta_0$

One-sided hypothesis

$$H_0: \beta \ge \beta_0$$

 $H_A: \beta < \beta_0$

A *hypothesis test* is a decision rule that tells us for which sample values we should *reject* the null hypothesis.

Frequentist hypothesis tests tells us the strength of the evidence against the null—they say nothing about the alternative.

Copyright Dick Startz 7 Copyright Dick Startz

Error types

	Reject	Don't reject
Null is true	Type I error	
Alternative is true		Type II error

opyright Dick Startz

9

Convright Dick Start

Classic test on mean

If $x_i{\sim}iidN(\mu_0,\sigma^2)$, then if we take $\hat{\mu}=\bar{x}$

We know

$$z = \frac{\hat{\mu} - \mu_0}{\sqrt{\sigma^2/n}} \sim N(0,1)$$

Copyright Dick Startz

Decision rule. Reject the null is |z|>1.96. Probability of Type 1 error is 0.05.

16

Copyright Dick Startz

Size of a test

 $size = \alpha = P(reject H_0|H_0 true)$

In this example we have

$$0.05 = P\left(\left|\frac{\hat{\mu} - \mu_0}{\sqrt{\sigma^2/n}}\right| > 1.96 | \mu = \mu_0\right)$$

$$size = \alpha = \sup_{\theta_0 \in \Theta_0} P(\text{reject } H_0 | H_0 \text{ true})$$

Power of a test

 $power = \beta(\mu) = P(reject H_0|\mu)$

$$\beta(\mu) = P\left(\left|\frac{\hat{\mu} - \mu_0}{\sqrt{\sigma^2/n}}\right| > 1.96|\mu\right)$$

Note that the size is the power evaluated at μ_0 .

Copyright Dick Startz 18 Copyright Dick Startz

Write a program that computes the power function for our standard mean of iid normal variables, assuming the null hypothesis is $\mu_0=0$ and, that $\sigma^2=1$, that the sample is size n, and we do a 5 percent test. So we need to compute

$$\beta(\mu) = P\left(|z > 1.96| \left| z \sim N\left(\mu, \frac{\sigma^2}{n}\right)\right)\right)$$

Graph the power function for n=20 and n=120. Suppose you are "accept" the null with 20 observations. Is it convincing that the true $\mu \neq 1$? How about $\mu \neq .25$? What would your answer be for 120 observations?

Copyright Dick Startz

Uniformly Most Powerful Test

Definition 8.3.11 Let \mathcal{C} be a class of tests for testing H_0 : $\theta \in \Theta_0$ versus H_1 : $\theta \in \Theta_0^C$. A test in class \mathcal{C} , with power function $\beta(\theta)$, is a *uniformly most powerful* (UMP) *class* \mathcal{C} *test* if $\beta(\theta) \geq \beta'(\theta)$ for every $\theta \in \Theta_0^C$ and every $\beta'(\theta)$ that is a power function of a test in class \mathcal{C} .

Copyright Dick Startz 23

Neyman-Pearson Lemma

Theorem 8.3.12 (Neyman-Pearson Lemma)

Consider testing H_0 : $\theta = \theta_0$ versus H_1 : $\theta = \theta_1$ using a test where

Reject if $L(x|\theta_1) > kL(x|\theta_0)$

Don't reject if $L(x|\theta_1) < kL(x|\theta_0)$

For some $k \ge 0$, and

 $size = \alpha$

Copyright Dick Startz

Then

Every such test is a UMP size α test.

Two-sided hypothesis:

 $H_0: \beta = \beta_0$ $H_A: \beta \neq \beta_0$

Hypothesis test

One-sided hypothesis

 $H_0: \beta \geq \beta_0$ H_A : $\beta < \beta_0$

Critical value

Critical value c, reject if test statistic > c.

Examples:

$$|z| > c = 1.96$$

Two-sided test with size = 0.05

$$|z| > c = 2.58$$

Two-sided test with size = 0.01

$$z > c = 1.64$$

One-sided test with size = 0.05

0.25

Copyright Dick Startz

Copyright Dick Startz

Confidence interval

We invert a test statistic to get a confidence interval.

$$\begin{split} |z| &< c \\ \Rightarrow \\ -c &< z < c \\ \left| \frac{\hat{\mu} - \mu_0}{\sqrt{\sigma^2/n}} \right| &< 1.96 \\ \Rightarrow \\ \hat{\mu} - 1.96 \times \sqrt{\sigma^2/n} &< \mu_0 < \hat{\mu} + 1.96 \times \sqrt{\sigma^2/n} \end{split}$$

ight Dick Startz

p-Value

Table A.2 t distribution: critical values of t

		Significance level					
Degrees of	Two-tailed test:	10%	5%	2%	1%	0.2%	0.1%
freedom	One-tailed test:	5%	2.5%	1%	0.5%	0.1%	0.05%
1		6.314	12.706	31.821	63.657	318.309	636.619
2		2.920	4.303	6.965	9.925	22.327	31.599
3		2.353	3.182	4.541	5.841	10.215	12.924
4		2.132	2.776	3.747	4.604	7.173	8.610
5		2.015	2.571	3.365	4.032	5.893	6.869
6		1.943	2.447	3.143	3.707	5.208	5.959
7		1.894	2.365	2.998	3.499	4.785	5.408
8		1.860	2.306	2.896	3.355	4.501	5.041
9		1.833	2.262	2.821	3.250	4.297	4.781
10		1.812	2.228	2.764	3.169	4.144	4.587
	$10, t = 2.00,$ $alue \approx 7.3\%$			= 10, t = value ≈			

Copyright Dick Startz

p-value

At what significance level are we on the margin between rejecting and not rejecting?

95% confidence interval = (.515 - 1.96 $\times \frac{.49}{\sqrt{89984}},$. 515 + 1.96 \times

Copyright Dick Startz 3

Wald statistic, single restriction

 $\frac{amount\ hypothesis\ missed\ by}{\sqrt{\mathrm{var}(miss)}}$ $H_0\colon\theta=\theta^0$ $\hat{\theta}\sim N\left(\theta,\sigma^2/n\right)$ Under null $z=\frac{\hat{\theta}-\theta}{\sqrt{\sigma^2/n}}\sim N(0,1)$ $t=\frac{\hat{\theta}-\theta}{\sqrt{s^2/n}}\sim t_{n-1}$

Copyright Dick Startz

$$H_{0}: \theta_{1} + \theta_{2} = \theta^{0}$$

$$\begin{bmatrix} \hat{\theta}_{1} \\ \hat{\theta}_{2} \end{bmatrix} \sim N \begin{pmatrix} \theta_{1} \\ \theta_{2} \end{bmatrix}, \sigma^{2} \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}$$

$$z = \frac{\hat{\theta}_{1} + \hat{\theta}_{2} - \theta^{0}}{\sqrt{\text{var}(\hat{\theta}_{1} + \hat{\theta}_{2} - \theta^{0})}} \sim N(0,1)$$

$$\text{var}(\hat{\theta}_{1} + \hat{\theta}_{2} - \theta^{0}) = \sigma^{2}(V_{11} + V_{22} + 2V_{12})$$

$$t = \frac{\hat{\theta}_{1} + \hat{\theta}_{2} - \theta^{0}}{\sqrt{s^{2}(V_{11} + V_{22} + 2V_{12})}} \sim t_{n-k}$$

Matrix version, single restriction

$$H_{0}: R\theta = r \\ R = \begin{bmatrix} 1 & 1 \end{bmatrix} \\ \theta = \begin{bmatrix} \theta_{1} \\ \theta_{2} \end{bmatrix} \\ r = \theta^{0} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \theta_{1} \\ \theta_{2} \end{bmatrix} = \theta^{0} \\ var(R\hat{\theta}) = R var(\hat{\theta}) R' \\ = \begin{bmatrix} 1 & 1 \end{bmatrix} \sigma^{2} \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ = \sigma^{2}(V_{11} + V_{22} + 2V_{12})$$

$$\frac{R\hat{\theta} - r}{\sqrt{R var(\hat{\theta}) R'}} \sim N(0,1)$$

$$\frac{(R\hat{\theta} - r)^{2}}{R var(\hat{\theta}) R'} \sim \chi_{1}^{2}$$

Wald test, multiple restrictions

Copyright Dick Startz

$$\begin{split} H_0 &: \theta_1 = \theta_1^0 \\ \theta_2 &= \theta_2^0 \\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} \\ R\theta &= r \\ R \text{ is } q \times k, \theta \text{ is } k \times 1 \text{ and } r \text{ is } q \times 1 \\ \widehat{\theta} \sim N(\theta, \Sigma) \\ \left(R\widehat{\theta} - r \right)' [R\Sigma R']^{-1} \left(R\widehat{\theta} - r \right) \sim \chi_q^2 \end{split}$$

Wald *F*-test

$$(R\hat{\theta} - r)'[R\Sigma R']^{-1} (R\hat{\theta} - r) \sim \chi_q^2$$

$$\frac{s^2}{\sigma^2} \sim \chi_{n-k}^2$$

$$\frac{(R\hat{\theta} - r)'[R\Sigma R']^{-1} (R\hat{\theta} - r)/q}{s^2/\sigma^2}$$

$$(R\hat{\theta} - r)'[R\hat{\Sigma}R']^{-1} (R\hat{\theta} - r)/q \sim F(q, n - k)$$

MLE Wald test

$$W = \frac{(\hat{\mu}_{mle} - \mu_H)^2}{-\operatorname{E}\left(\frac{\partial^2 \mathcal{L}}{\partial \mu^2}\right)^{-1}} \stackrel{A}{\sim} \chi_1^2$$

$$(\hat{\mu}_{mle} - \mu_H)I(\hat{\mu}_{mle})(\hat{\mu}_{mle} - \mu_H) \stackrel{A}{\sim} \chi_1^2$$

MLE Wald test

$$H_0: g(\theta) = 0$$

$$rank\left(\frac{\partial g}{\partial \theta}\right) = q$$

$$g(\hat{\theta})' \left(\frac{\partial g(\hat{\theta})}{\partial \theta} I^{-1}(\hat{\theta}) \frac{\partial g(\hat{\theta})'}{\partial \theta} \right)^{-1} g(\hat{\theta}) \stackrel{A}{\sim} \chi_q^2$$

Cobb-Douglass example

$$y = AL^{\alpha}K^{\beta} + \varepsilon$$

$$H_0$$
: $g(A, \alpha, \beta, \sigma^2) = \alpha + \beta - 1 = 0$

$$\frac{\partial g(\theta^{hat})}{\partial \theta} = \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$$

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	1.320637	0.576169	2.292098	0.0323
C(2)	0.661973	0.136539	4.848222	0.0001
C(3)	0.282077	0.061910	4.556265	0.0002
R-squared	0.940485	Mean dependent var		165.9167
Adjusted R-squared	0.934817	S.D. dependent var		43.75318
S.E. of regression	11.17063	Akaike info criterion		7.780921
Sum squared resid	2620.441	Schwarz criterion		7.928178
Log likelihood	-90.37105	Hannan-Quinn criter.		7.819988
Durbin-Watson stat	1.672870			

C(1) C(2) C(3) 0.33197116... -0.07167473... 0.02010866... -0.07167473... 0.01864296... -0.00721652... 0.02010866... -0.00721652... 0.00383280...

Wald = 0.389 $\chi_1^2(.95) = 3.84$

Copyright Dick Startz Copyright Dick Startz

Likelihood ratio test (LRT)

$$\lambda(x) = \frac{\sup_{\substack{\Theta_0 \\ \Theta}} L(\theta|x)}{\sup_{\substack{\Theta}} L(\theta|x)}$$

Reject if $\lambda(x) \le c$, $0 \le c \le 1$

$$-2\left(\mathcal{L}(\theta_0) - \mathcal{L}(\hat{\theta}_{mle})\right) \stackrel{A}{\sim} \chi_q^2$$

Method: Least Squares (Gauss-Newton / Marquardt steps) Date: 11/15/15 Time: 11:31 Sample: 1899 1921 Included observations: 24

Convergence achieved after 15 iterations
Coefficient covariance computed using outer product of gradients
Y=C(1)*L^C(2)*K^C(3)

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	1.320637	0.576169	2.292098	0.0323
C(2)	0.661973	0.136539	4.848222	0.0001
C(3)	0.282077	0.061910	4.556265	0.0002
R-squared	0.940485	Mean dependent var		165.9167
Adjusted R-squared	0.934817	S.D. dependent var		43.75318
S.E. of regression	11.17063	Akaike info criterion		7.780921
Sum squared resid	2620.441	Schwarz cri		7.928178
Log likelihood	-90.37105	Hannan-Qui		7.819988

Dependent Variable: Y
Method: Least Squares (Gauss-Newton / Marquardt steps)
Date: 11/15/15 Time: 11:49
Sample: 1899 1922
Included observations: 24
Convergence achieved after 6 iterations
Crafficient covariance computed using quiter product of gra-

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(3)	1.006646 0.258040	0.027841 0.048815	36.15666 5.286056	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.939363 0.936607 11.01614 2669:849 -90.59507 1.524913	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui	lent var criterion terion	165.9167 43.75318 7.716256 7.814427 7.742301

LR = -2(-90.59507 - -90.37105) -44804

Lagrange multiplier (LM) or score test

$$LM = \frac{\partial \mathcal{L}(\theta)}{\partial \theta}\Big|_{\theta_0} \left[I(\theta_{H_0}) \right]^{-1} \frac{\partial \mathcal{L}(\theta)}{\partial \theta}\Big|_{\theta_0} \overset{A}{\sim} \chi_q^2$$

Cobb-Douglas Example

$$\begin{split} \mathcal{L} &= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum \left(y_i - A L_i^\alpha K_i^\beta \right)^2 \\ &\frac{\partial \mathcal{L}}{\partial \theta} = \begin{bmatrix} \frac{1}{\sigma^2} \sum \left(y_i - A L_i^\alpha K_i^\beta \right) \left(L_i^\alpha K_i^\beta \right) \\ \frac{\alpha}{\sigma^2} \sum \left(y_i - A L_i^\alpha K_i^\beta \right) \left(A L_i^{\alpha-1} K_i^\beta \right) \\ \frac{\beta}{\sigma^2} \sum \left(y_i - A L_i^\alpha K_i^\beta \right) \left(A L_i^\alpha K_i^{\beta-1} \right) \\ -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^{2^2}} \sum \left(y_i - A L_i^\alpha K_i^\beta \right)^2 \end{bmatrix} \end{split}$$

right Dick Startz 42 Copyright Dick Startz

function LMTestCobbDouglas %{

Tompute LM test that Cobb-Douglas coefficients show CRTS using coefficients estimated by EViews

 $y = A*1^alpha*k^beta + epsilon$

Econ 241A Dick Startz November 2015 %}

load cobbdouglas data.mat; %original Cobb-Douglas Data %coefficients estimated in EViews A = 1.006646220473282; beta = 0.2580401723789838; alpha = 1 - beta;

n = length(y);
resid = y - A*(1.^alpha).*(k.^beta);
ssr = sum(resid.^2);
sigmaSqr = ssr/n;

% write out partial derivative contributions, then put them together

d1 = resid.*(1.^alpha.*k.^beta)/sigmaSqr;
d2 = alpha*resid.*(&*l.^(alphal).*k.^beta)/sigmaSqr;
d3 = beta*resid.*(A*l.^alpha.*k.^(betal))/sigmaSqr;
d4 = (-!resid.^2/sigmaSqr)/(2*sigmaSqr);

d4 = (-1+resid.^2/sigmaSqr)/(2*sigma
partial = [d1 d2 d3 d4];
dLdTheta = sum(partial,1)';
info = partial'*partial;
LM = dLdTheta'*inv(info)*dLdTheta;

disp(['LM statistic for CRTS =
',num2str(LM)]);
end

LM statistic for CRTS = 0.26562

Suppose $x_i{\sim}iid(\mu,\sigma^2)$, $i=1,\dots,n$ with σ^2 known. Show that the Wald, likelihood ratio, and Lagrange multiplier tests of

$$H_0$$
: $\mu = \mu_0$
 H_a : $\mu \neq \mu_0$

Are all identical, where

$$W = \frac{(\hat{\mu}_{mle} - \mu_0)^2}{I(\hat{\mu}_{mle})^{-1}}$$

$$\begin{split} LR &= -2 \left(\mathcal{L}^*(\mu_0) - \mathcal{L}(\hat{\mu}_{mle})\right) \\ LM &= \frac{\partial \mathcal{L}(\mu)}{\partial \mu} \Big|_{|\mu_0} \Big[I(\mu_0)]^{-1} \frac{\partial \mathcal{L}(\mu)}{\partial \mu} \Big|_{|\mu_0} \end{split}$$

pyright Dick Startz 44 Copyright Dick Startz 4

Income is distributed (very) roughly log-normal, once people with zero income are dropped from the sample. The file cpsMarch2016Income.mat contains wage and salary income from the March 2016 current population survey in the variable wsal_val and gender in the variable fe (fe=1 for women and fe=0 for men.) You may "remember" (or may have looked it up), that the pdf of a log normal can be written

$$f(y|\mu,\sigma^2) = \frac{1}{y\sigma\sqrt{2\pi}} \exp\left\{-\frac{(\log y - \mu)^2}{2\sigma^2}\right\}$$

And that the mean is $\exp\left[\mu + \frac{\sigma^2}{2}\right]$, while the variance is $\left[\exp(\sigma^2) - \frac{\sigma^2}{2}\right]$

Copyright Dick Startz