Aprendizagem por Reforço

Fabrício Barth

Insper Instituto de Ensino e Pesquisa

Março de 2023

Contexto

Até o momento vimos nesta disciplina:

- Conceito de Agente Autônomo;
- Solução de problemas usando busca em espaço de estados:
 - Algoritmos de busca cega, e;
 - Algoritmos de busca informados.
- Busca competitiva.

Conteúdo desta aula e das próximas

- Visão Geral sobre Aprendizagem por Reforço
- Algoritmo Q-Learning e Sarsa
- Implementações com os projetos GYMNASIUM e PETTINGZOO.

Ao final deste material você saberá

- o que é Aprendizagem por Reforço e os seus principais conceitos;
- como desenvolver um agente autônomo usando os algoritmos
 Q-Learning e Sarsa, e;
- quais os aspectos positivos e negativos dos algoritmos Q-Learning e Sarsa.

Taxi Driver - OpenAl Gym

Podemos implementar uma solução para este problema usando o algoritmo A^* . Neste caso, **o que é necessário fazer?**

Taxi Driver - OpenAl Gym

Definir uma **Heurística** H que seja admissível e que traga algum valor para o processo de busca.

Ambientes competitivos

Podemos implementar uma solução para este tipo de problema usando o algoritmo ${
m Min-Max}$. Neste caso, o que é necessário fazer?

Ambientes competitivos

Definir uma **função de utilidade** que consegue descrever a utilidade dos estados possíveis para o meu agente.

Questão

E se fosse possível desenvolver um agente autônomo sem ter que codificar nenhum conhecimento sobre a tarefa que ele precisa executar (heurísticas ou funções de utilidade específicas)?

Um agente aprende a resolver uma tarefa através de repetidas interações com o ambiente, por tentativa e erro, recebendo (esporadicamente) reforços (punições ou recompensas) como retorno.

• Este agente não tem conhecimento algum sobre a tarefa que precisa executar (heurísticas ou funções de utilidade específicas).

- Este agente não tem conhecimento algum sobre a tarefa que precisa executar (heurísticas ou funções de utilidade específicas).
- Sendo assim, como é que o agente consegue atingir um determinado objetivo?

- Este agente não tem conhecimento algum sobre a tarefa que precisa executar (heurísticas ou funções de utilidade específicas).
- Sendo assim, como é que o agente consegue atingir um determinado objetivo?
- O agente aprende uma política de controle, executando uma sequência de ações por tentativa e erro, e observando as suas consequências.

Política de Controle

• A política de controle desejada é aquela que **maximiza** os reforços (reward) acumulados ao longo do tempo pelo agente: $r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots$ onde $0 \le \gamma < 1$.

Política de Controle

• A política de controle desejada é aquela que **maximiza** os reforços (*reward*) acumulados ao longo do tempo pelo agente: $r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots$ onde $0 < \gamma < 1$.

- O $V(s_1)$ será a soma de r_1 com o $V(s_2)$. No entanto, considerando o fator de desconto γ , temos: $V(s_1) = r_1 + \gamma V(s_2)$.
- O valor de um estado final leva-se em consideração apenas o reforço: $V(s_n) = r_n$.

Exemplo

Início	Campo	Campo	Campo
Campo	Buraco	Campo	Buraco
Campo	Campo	Campo	Buraco
Buraco	Campo	Campo	Objetivo

Ações que o agente sabe executar:

- Mover para Baixo (↓)
- Mover para Cima (†)
- **3** Mover para Direita (\rightarrow)
- ullet Mover para Esquerda (\leftarrow)

Exemplo

- Considerando que o local do objetivo, dos buracos e dos campos serão sempre os mesmos então temos 16 estados possíveis.
- Este problema tem 4 ações possíveis.
- Se o agente cair em um buraco ele recebe -1 como recompensa, se ele ir para um campo ele recebe 0 e ao chegar no objetivo ele recebe 1.

Considere o seguinte estado

Campo	Buraco	Campo	Buraco
Campo	Campo	Campo	Buraco
Buraco	Campo	Campo	Objetivo

ullet Se o agente for para o (direita) então $V(s_n)=1$

Considere um estado anterior s_{n-1}

Início	Campo	Campo	Campo
Campo	Buraco	Campo	Buraco
Campo	Campo	Campo	Buraco
Buraco	Campo	Campo	Objetivo

- ullet Se o agente for para o (direita) então $V(s_{n-1})=-1$
- Se o agente for para ↓ (baixo) então:

$$V(s_{n-1}) = r(s_{n-1}) + \gamma V(s_n)$$

$$V(s_{n-1}) = 0 + \gamma \times 1$$
(1)

Considere um estado anterior s_{n-2}

Início	Campo	Campo	Campo
Campo	Buraco	Campo	Buraco
Campo	Campo	Campo	Buraco
Buraco	Campo	Campo	Objetivo

- Se o agente for para o (direita) então $V(s_{n-2}) = -1$
- Se o agente for para \leftarrow (esquerda) então $V(s_{n-2}) = -1$
- Se o agente for para ↓ (baixo) então:

$$V(s_{n-2}) = r(s_{n-2}) + \gamma V(s_{n-1}) + \gamma^2 V(s_n)$$

$$V(s_{n-1}) = 0 + \gamma \times (\gamma^2 \times 1) + \gamma^2 \times 1$$
(2)

Fator de desconto γ

- O fator de desconto (γ) é um hiperparâmetro que consiste em um número entre 0 e 1 que define a importância das recompensas futuras em relação a atual $(0 \le \gamma < 1)$.
- Valores mais próximos ao 0 dão mais importância a recompensas imediatas enquanto os mais próximos de 1 tentarão manter a importância de recompensas futuras.

Para que agente possa identificar uma política de controle ótima este agente precisa criar um **mapeamento** entre **estados** (S) e **ações** (A).

• Este mapeamento pode ser representado por uma função Q(S,A) onde S são todos os estados possíveis (s_1, s_2, \cdots) e onde A são todos as ações possíveis (a_1, a_2, \cdots)

Q-table	a_1	a ₂	<i>a</i> ₃	<i>a</i> ₄
s_1				
<i>s</i> ₂				
• • •				
Sn				

• Para criar um **mapeamento** Q(S, A) é necessário executar o agente no ambiente considerando o **reforço** dado por cada ação.

referee

cioryo				
	esquerda	baixo		
S1	0	0		
S2	0	-1		
S3	-1	0		
S4	0	0		
S5	0	0		

Como é que o agente pode saber quais são as melhores ações em cada estado?

Como é que o agente pode saber quais são as melhores ações em cada estado?

- A ideia é fazer com que o agente aprenda a função de mapeamento Q(S,A). Ou seja, que seja capaz de identificar qual é a melhor ação para cada estado através das suas **experiências**.
- Testando infinitas vezes o ambiente. Ou seja, testando muitas vezes as combinações entre estados (S) e ações (A).

Início	Campo	Campo	Campo
Campo	Buraco	Campo	Buraco
Campo	Campo	Campo	Buraco
Buraco	Campo	Campo	Objetivo

Primeiro episódio ($\gamma = 0.9$):

$$Q(s_1, baixo) \leftarrow r + \gamma \max_{a'} Q(s', a')$$

$$Q(s_1, baixo) \leftarrow 0 + 0.9 \times \max[0, 0, 0]$$

$$Q(s_2, direita) \leftarrow -1 + 0.9 \times \max[0, 0, 0, 0]$$

Q-table resultante da execução do 1º episódio.

Q-table	esquerda	baixo	direita	cima
<i>s</i> ₁	0	0	0	0
<i>s</i> ₂	0	0	-1	0
<i>s</i> ₃	0	0	0	0
<i>S</i> ₄	0	0	0	0
• • •	• • •			
Sn	0	0	0	0

Q-table resultante da execução do *n*-éssimo episódio.

Q-table	esquerda	baixo	direita	cima
<i>s</i> ₁	0.02	0.03	0.0001	0.0001
<i>s</i> ₂	0.00	0.05	-0.003	0.001
			• • •	
Sn	0.985	0.0001	0.003	0.002

Após a execução de n episódios o agente conhece qual a melhor ação para cada estado.

```
function Q-Learning(env, \alpha, \gamma, episódios)
inicializar os valores de Q(s, a) arbitrariamente
for todos os episódios do
  inicializar s a partir de env
  repeat
     escolher uma ação a para um estado s
     executar a ação a
     observar a recompensa r e o novo estado s'
     Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{A'} Q(s', A') - Q(s, a)]
     s \leftarrow s'
  until s ser um estado final
end for
return Q(s,a)
```

Atividade de implementação

Setup do ambiente

Faça o clone ou fork do projeto https://github.com/Insper/rl_code Link

Atualização da Q-table

O objetivo desta atividade é implementar a rotira responsável pela atualização da *Q-table* no arquivo QLearning.py

Atividades

Siga o roteiro descrito em https://insper.github.io/rl/classes/05_q_learning/ • Link

Algoritmo Q-Learning: hiperparâmetro α

• α é a taxa de aprendizado (0 < $\alpha \leq$ 1), quanto maior, mais valor dá ao novo aprendizado.

Que ação escolher?

```
function Q-Learning(env, \alpha, \gamma, episódios)
inicializar os valores de Q(s, a) arbitrariamente
for todos os episódios do
   inicializar s a partir de env
   repeat
      escolher uma ação a para um estado s
     executar a ação a
     observar a recompensa r e o novo estado s'
     Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{A'} Q(s',A') - Q(s,a)]
     s \leftarrow s'
   until s ser um estado final
end for
return Q(s, a)
```

 A política que o agente utiliza para escolher uma ação a para um estado s não interfere no aprendizado da Q-table.

- A política que o agente utiliza para escolher uma ação a para um estado s não interfere no aprendizado da Q-table.
- No entanto, para que o algoritmo Q-learning possa convergir para um determinado problema é necessário que o algoritmo visite pares de ação-estado infinitas (muitas) vezes.

- A política que o agente utiliza para escolher uma ação a para um estado s não interfere no aprendizado da Q-table.
- No entanto, para que o algoritmo Q-learning possa convergir para um determinado problema é necessário que o algoritmo visite pares de ação-estado infinitas (muitas) vezes.
- Por isso, que a escolha de determinada ação em um estado poderia ser feita de forma aleatória.

- A política que o agente utiliza para escolher uma ação a para um estado s não interfere no aprendizado da Q-table.
- No entanto, para que o algoritmo Q-learning possa convergir para um determinado problema é necessário que o algoritmo visite pares de ação-estado infinitas (muitas) vezes.
- Por isso, que a escolha de determinada ação em um estado poderia ser feita de forma aleatória.
- Porém, normalmente se utiliza uma política que inicialmente escolhe aleatoriamente as ações, e, à medida que vai aprendendo, passa a utilizar cada vez mais as decisões determinadas pela política derivada de Q.

- A política que o agente utiliza para escolher uma ação a para um estado s não interfere no aprendizado da Q-table.
- No entanto, para que o algoritmo Q-learning possa convergir para um determinado problema é necessário que o algoritmo visite pares de ação-estado infinitas (muitas) vezes.
- Por isso, que a escolha de determinada ação em um estado poderia ser feita de forma aleatória.
- Porém, normalmente se utiliza uma política que inicialmente escolhe aleatoriamente as ações, e, à medida que vai aprendendo, passa a utilizar cada vez mais as decisões determinadas pela política derivada de Q.
- Esta estratégia inicia explorando (tentar uma ação mesmo que ela não tenha o maior valor de Q) e termina escolhendo a ação que tem o maior valor de Q (exploitation).

Exemplo de função para escolha de ações

A escolha de uma ação para um estado é dada pela função:

```
function \operatorname{escolha}(s,\epsilon): a

\operatorname{rv} = \operatorname{random} (0 < rv \le 1)

if rv < \epsilon then

return uma ação \alpha aleatória em A

end if

return \max_a Q(s,a)
```

O fator de exploração ϵ ($0 \le \epsilon \le 1$) inicia com um valor alto (0.7, por exemplo) e, conforme a simulação avança, diminiu: $\epsilon \leftarrow \epsilon \times \epsilon_{dec}$, onde $\epsilon_{dec} = 0.99$

Epsilon


```
function Q-Learning(env, \alpha, \gamma, \epsilon, \epsilon_{min}, \epsilon_{dec}, episódios)
inicializar os valores de Q(s, a) arbitrariamente
for todos os episódios do
   inicializar s a partir de env
   repeat
      a \leftarrow escolha(s, \epsilon)
      s', r \leftarrow executar a ação a no env
      Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{A'} Q(s', A') - Q(s, a)]
      s \leftarrow s'
   until s ser um estado final
   if \epsilon > \epsilon_{min} then \epsilon \leftarrow \epsilon \times \epsilon_{dec}
end for
return Q
```

Atividade de implementação

Hiperparâmetros e seleção das ações

O objetivo desta atividade é compreender o funcionamento e impacto dos hiperparâmetros de α , γ e dos conceitos de *exploration* e *exploitation*.

Atividades

Siga o roteiro descrito em

A regra para update da **Q-table** no algoritmo **Q-Learning** é:

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{A'} Q(s',A') - Q(s,a)]$$
 (3)

A diferença entre o novo valor e a estimativa antiga é utilizada para atualizar a estimativa antiga. O algoritmo **Q-Learning** considera como o novo valor o valor máximo das possibilidades no novo estado s':

$$\max_{A'} Q(s', A') \tag{4}$$

- No entanto, a ação realmente executada pelo agente pode não ser a ação que tem o valor máximo em s' devido a função de escolha da ação ser baseada no valor de ϵ e ter características aleatórias.
- Por isso que o algoritmo **Q-Learning** é chamado de **off-policy**.

O algoritmo SARSA é chamado de **on-policy** porque ele atualiza a **Q-table** da seguinte forma:

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma Q(s',a) - Q(s,a)]$$
 (5)

o algoritmo SARSA atualiza Q(s,a) considerando a real ação a executada pelo agente em s'.

```
function Sarsa(env, \alpha, \gamma, \epsilon, \epsilon_{min}, \epsilon_{dec}, episódios)
inicializar os valores de Q(s, a) arbitrariamente
for todos os episódios do
   inicializar s a partir de env
   repeat
      a \leftarrow escolha(s, \epsilon)
      s', r \leftarrow executar a ação a no env
       Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma Q(s',a) - Q(s,a)]
      s \leftarrow s'
   until s ser um estado final
   if \epsilon > \epsilon_{min} then \epsilon \leftarrow \epsilon \times \epsilon_{dec}
end for
return Q
```

Material de consulta

- Tom Mitchell. Machine Learning. McGraw-Hill, 1997.
- Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. Second Edition, in progress. The MIT Press, 2015.
- Projeto Gymnasium Link
- Projeto PettingZoo ► Link