EFFICIENT SPARSE MATRIX PROCESSING FOR NILM

NILM Workshop 2014
Stephen Makonin, PhD Candidate, ISP, smIEEE
June 3, 2014

Simple Worked Example

• In Vancouver (BC, Canada) is a small 400 sq ft studio suite.

Appliance	Power	Description
Lights	480 W	8 Incandescent 60W Bulbs
Ent/TV	250 W	Panasonic 50 Plasma TV
Heating	3.0 kW	2 Cadet 1500W Baseboard
Microwave	1.1 kW	Panasonic Convection
Kettle	1.6 kW	Cuisinart Cordless 1.7L

Outline

- 1. Discuss the studio studio more
- 2. Discuss PMF and load states
- 3. Discuss super-state HMM
- 4. Discuss the sparse Viterbi algorithm
- 5. Discuss estimation
- 6. Discuss test results

Training or Model Building Phase

Testing and Evaluation Phase

Simple Worked Example

At 6:01pm the aggregate power reading is 3.48kW

Appliance	Power	Description			
Lights	480 W	8 Incandescent 60W Bulbs			
Ent/TV	250 W	Panasonic 50 Plasma TV			
Heating	3.0 kW	2 Cadet 1500W Baseboard			
Microwave	1.1 kW	Panasonic Convection			
Kettle	1.6 kW	Cuisinart Cordless 1.7L			

T = 61

M = 5

N = 15000 (or $15kW = 120V \times 125A$ service)

 $K = 2^5 = 32$ (super-states, since each load only has 2 states)

Our Very Small Dataset

Time	Mains	Lights	TV	Heat	Microwave	Kettle	Time	Mains	Lights	TV	Heat	Microwave	Kettle
5:00 PM	3000	0	0	3000	0	0	5:31 PM	3730	480	250	3000	0	0
5:01 PM	3000	0	0	3000	0	0	5:32 PM	3730	480	250	3000	0	0
5:02 PM	3000	0	0	3000	0	0	5:33 PM	3730	480	250	3000	0	0
5:03 PM	3000	0	0	3000	0	0	5:34 PM	3730	480	250	3000	0	0
5:04 PM	3000	0	0	3000	0	0	5:35 PM	3730	480	250	3000	0	0
5:05 PM	3000	0	0	3000	0	0	5:36 PM	3730	480	250	3000	0	0
5:06 PM	3480	480	0	3000	0	0	5:37 PM	730	480	250	0	0	0
5:07 PM	3480	480	0	3000	0	0	5:38 PM	730	480	250	0	0	0
5:08 PM	480	480	0	0	0	0	5:39 PM	730	480	250	0	0	0
5:09 PM	480	480	0	0	0	0	5:40 PM	730	480	250	0	0	0
5:10 PM	480	480	0	0	0	0	5:41 PM	730	480	250	0	0	0
5:11 PM	480	480	0	0	0	0	5:42 PM	730	480	250	0	0	0
5:12 PM	2080	480	0	0	0	1600	5:43 PM	730	480	250	0	0	0
5:13 PM	2080	480	0	0	0	1600	5:44 PM	730	480	250	0	0	0
5:14 PM	2080	480	0	0	0	1600	5:45 PM	730	480	250	0	0	0
5:15 PM	2080	480	0	0	0	1600	5:46 PM	730	480	250	0	0	0
5:16 PM	2080	480	0	0	0	1600	5:47 PM	730	480	250	0	0	0
5:17 PM	480	480	0	0	0	0	5:48 PM	730	480	250	0	0	0
5:18 PM	480	480	0	0	0	0	5:49 PM	730	480	250	0	0	0
5:19 PM	480	480	0	0	0	0	5:50 PM	730	480	250	0	0	0
5:20 PM	1580	480	0	0	1100	0	5:51 PM	730	480	250	0	0	0
5:21 PM	1580	480	0	0	1100	0	5:52 PM	730	480	250	0	0	0
5:22 PM	1580	480	0	0	1100	0	5:53 PM	2330	480	250	0	0	1600
5:23 PM	1580	480	0	0	1100	0	5:54 PM	2330	480	250	0	0	1600
5:24 PM	1580	480	0	0	1100	0	5:55 PM	5330	480	250	3000	0	1600
5:25 PM	1580	480	0	0	1100	0	5:56 PM	5330	480	250	3000	0	1600
5:26 PM	4580	480	0	3000	1100	0	5:57 PM	5330	480	250	3000	0	1600
5:27 PM	4830	480	250	3000	1100	0	5:58 PM	3730	480	250	3000	0	0
5:28 PM	4830	480	250	3000	1100	0	5:59 PM	3730	480	250	3000	0	0
5:29 PM	4830	480	250	3000	1100	0	6:00 PM	3730	480	250	3000	0	0
5:30 PM	3730	480	250	3000	0	0							

NILM sys_bootloader v1.01:

Loading dataset ... done!
Creating PMFs ... done!
Quantizing Load States ... done!

(a) Lights, m=1

n	0		480		15000		
count(n)	6	0	55	0	0		
$p_{Y_m}(n)$	0.10	0.00	0.90	0.00	0.00		
y _{peak}	0	480					
k ^(m)	0	1					
p(k ^(m))	0.10		0.90				

(b) Ent/TV, m = 2

n	0		250		15000		
count(n)	27	0	34	0	0		
$p_{Y_m}(n)$	0.44	0.00	0.56	0.00	0.00		
y _{peak}	0	250					
k ^(m)	0	1					
p(k ^(m))	0.44	0.56					

(c) Heating, m = 3

n	0		3000		15000	
count(n)	36	0	25	0	0	
$p_{Y_m}(n)$	0.59	0.00	0.41	0.00	0.00	
y _{peak}	0	3000				
k ^(m)	0	1				
p(k ^(m))	0.59	0.41				

(d) Microwave, m = 4

n	0		1100		15000		
count(n)	51	0	10	0	0		
$p_{Y_m}(n)$	0.84	0.00	0.16	0.00	0.00		
y _{peak}	0	1100					
k ^(m)	0	1					
p(k ^(m))	0.84	0.16					

(e) Kettle, m = 5

n	0		1600		15000		
count(n)	51	0	10	0	0		
$p_{Y_m}(n)$	0.84	0.00	0.16	0.00	0.00		
y _{peak}	0	1600					
k ^(m)	0	1					
$p(k^{(m)})$	0.84	0.16					

NILM sys_bootloader v1.01:

Loading dataset ... done!

Creating PMFs ... done!

Quantizing Load States ... done!

Building super-state HMM ... done!

Super-State HMM

```
\mathbf{P}_0 = [0, 0, 0, 0, 0.098, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.115, 0.082, 0.098, 0, 0.033, 0, 0.016, 0, 0.262, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.098, 0, 0.09
0.033, 0, 0, 0.164, 0.049, 0.049, 0]
\mathbf{A} = \{
val = [0.857, 0.714, 0.2, 0.5, 0.143, 0.8, 0.143, 0.833, 0.5, 0.143, 0.167, 0.938, 0.111, 0.063, 0.5, 0.889, 0.111, 0.063, 0.5, 0.143, 0.889, 0.111, 0.063, 0.5, 0.143, 0.889, 0.111, 0.063, 0.5, 0.143, 0.889, 0.111, 0.063, 0.5, 0.143, 0.889, 0.111, 0.063, 0.5, 0.143, 0.889, 0.111, 0.063, 0.5, 0.143, 0.889, 0.111, 0.063, 0.5, 0.143, 0.889, 0.111, 0.063, 0.5, 0.143, 0.889, 0.111, 0.063, 0.143, 0.889, 0.111, 0.063, 0.143, 0.889, 0.111, 0.063, 0.143, 0.889, 0.111, 0.063, 0.143, 0.889, 0.111, 0.063, 0.143, 0.889, 0.111, 0.063, 0.143, 0.889, 0.111, 0.063, 0.143, 0.889, 0.111, 0.063, 0.143, 0.889, 0.111, 0.143, 0.889, 0.111, 0.143, 0.889, 0.111, 0.143, 0.889, 0.111, 0.143, 0.889, 0.111, 0.143, 0.889, 0.111, 0.143, 0.889, 0.111, 0.143, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1443, 0.889, 0.1444, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.889, 0.88
 0.333, 0.333, 0.5, 0.667, 0.667, 1],
row_i dx = [4, 16, 17, 20, 16, 17, 16, 18, 20, 4, 18, 24, 28, 24, 25, 28, 29, 30, 25, 29, 30, 22],
 22, 22]
Note: a full matrix would be 97.85% sparse
\mathbf{B} = \{
29, 7, 15, 23, 31],
 col_ptr = [0_1, 1_{250}, 2_{230}, 3_{250}, 4_{370}, 5_{250}, 6_{230}, 7_{20}, 8_{230}, 9_{20}, 10_{230}, 11_{250}, 12_{370}, 13_{250}, 14_{50}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 10_{250}, 
 15_{180}, 16_{70}, 17_{180}, 18_{50}, 19_{250}, 20_{370}, 21_{250}, 22_{230}, 23_{20}, 24_{230}, 25_{20}, 26_{230}, 27_{250}, 28_{370}, 29_{250},
 30_{230}, 31_{250}, 32_{8571}
Note: a full matrix would be 99.99% sparse
```

NILM sys_bootloader v1.01:

Loading dataset ... done!

Creating PMFs ... done!

Quantizing Load States ... done!

Building super-state HMM ... done!

Ready to disaggregate!

Appliance State Inference

```
Algorithm 3 SPARSE-VITERBI(K, \mathbf{P}_0, \mathbf{A}, \mathbf{B}, y_{t-1}, y_t)

1: \mathbf{P}_{t-1}[k], \mathbf{P}_t[k] \leftarrow 0.0, k = 1, 2, ..., K

2: \mathbf{for}\ (j, p_b) \in \mathsf{COLUMN-VECTOR}(\mathbf{B}, y_{t-1}) \ \mathbf{do}

3: \mathbf{P}_{t-1}[j] \leftarrow \mathbf{P}_0[j] \cdot p_b

4: \mathbf{end}\ \mathbf{for}

5: \mathbf{for}\ (j, p_b) \in \mathsf{COLUMN-VECTOR}(\mathbf{B}, y_t) \ \mathbf{do}

6: (i, p_a)[] \leftarrow \mathsf{COLUMN-VECTOR}(\mathbf{A}, j)

7: \mathbf{P}_t[j] \leftarrow \max_{(i, p_a)}(\mathbf{P}_{t-1}[i] \cdot p_a \cdot p_b)

8: \mathbf{end}\ \mathbf{for}

9: \mathbf{return}\ \mathrm{arg} \max(\mathbf{P}_t)
```

Estimating Consumption

$$\begin{split} \hat{y_t} &= \sum_{m} \mathbf{y}_{peak}^{(m)}[k_t^{(m)}] \\ &= \mathbf{y}_{peak}^{(m)}[1] + \mathbf{y}_{peak}^{(m)}[1] + \mathbf{y}_{peak}^{(m)}[0] + \mathbf{y}_{peak}^{(m)}[0] + \mathbf{y}_{peak}^{(m)}[0] \\ &= 480 + 250 + 0 + 0 + 0 \\ &= 730 \end{split}$$

- Total consumption estimate is 730W
 - the lights are consuming 480W
 - the TV is consuming 250W
 - · all other loads are OFF with OW consumption

Runtime Test

time taken to disaggregate all 524,544 readings from 2 to 11 appliances (AMPds data)

Accuracy Measures

I. Finite-State f-score (FS f-score):

$$itp = \frac{|\hat{x}_t^{(m)} - x_t^{(m)}|}{K^{(m)}}, \qquad atp = 1 - itp \,.$$

$$precision = \frac{atp}{atp + itp + fp} \,, \quad recall = \frac{atp}{atp + itp + fn} \,, \quad F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall} \,,$$

2. Estimation Accuracy (Kolter & Johnson, 2011):

Est.Acc. =
$$1 - \frac{\sum_{t=1}^{T} \sum_{m=1}^{M} |\hat{y}_{t}^{(m)} - y_{t}^{(m)}|}{2 \cdot \sum_{t=1}^{T} y_{t}}$$

Accuracy Results

Load	FS f-score	Estimation	ON	Events
Basement	53.6 / 40.2	99.0 / 69.3	23.0	6404
Dryer	99.7 / 99.6	90.8 / 92.2	100.0	1826
Washer	21.5 / 3.2	60.2 / 57.4	2.6	9961
Dishwasher	60.8 / 14.3	86.3 / 85.9	2.7	4394
Fridge	76.2 / 49.2	99.4 / 99.2	45.1	43500
HVAC/Fan	97.9 / 96.2	99.7 / 98.8	100.0	2531
Garage	99.9 / 99.9	99.8 / 99.9	100.0	228
Heat Pump	98.1 / 97.0	99.1 / 88.8	100.0	8291
Home Office	95.8 / 96.0	88.1 / 82.1	100.0	11044
Ent/TV	88.9 / 85.0	98.6 / 91.5	100.0	13314
Wall Oven	99.8 / 99.6	84.0 / 85.0	100.0	396
Overall	94.5 / 91.4	97.4 / 96.8	100.0	101889

$$\label{eq:noise} \begin{aligned} &\text{noise} = y_t - \sum_{m=1}^M y_t^{(m)} \text{ ,} \\ &\text{40.9\%} \end{aligned}$$

denoised test

noised test

state switches

Stephen Makonin, PhD Candidate, ISP, smIEEE PhD Candidate, Computing Science, SFU Researcher Associate, Applied Research, BCIT

email: stephen@makonin.com

website: http://makonin.com/

