Instrukcja laboratoryjna z przedmiotu: Sieci komputerowe

Ćwiczenie 5: Adresowanie IPv4. Adres sieci i rozgłoszeniowy

> Marta Szarmach Zakład Telekomunikacji Morskiej Wydział Elektryczny Uniwersytet Morski w Gdyni

> > 03.2022

I. Wprowadzenie

Adres IP jest adresem przydzielonym interfejsowi sieciowemu, po którym można znaleźć go w sieci (nie tylko lokalnej). Adresy zgodne z protokołem IPv4 składają się z 32 bitów, zazwyczaj grupuje się je po 8 bitów w tzw. oktety, oddzielane kropkami i zapisywane dziesiętnie. Przykład: 192.168.0.100.

Adres IP składa się z dwóch części. Jedna z nich określa, do której sieci należy host o danym adresie (tzw. część sieci), druga jednoznacznie identyfikuje hosta w ramach tejże sieci (tzw. część hosta). Do oddzielenia części sieci od części hosta służy maska sieciowa. Ma ona taką samą długość, co adres IP. Tam, gdzie w masce sieciowej występuje wartość 1, odpowiadające jej bity w adresie IP należą do części sieci. Analogicznie, te bity, które w masce mają wartość 0, należą do części hosta. Ważne — w masce sieciowej bity o wartości 1 nie mogą być przerywane zerami.

Przykład:

Adres IP dziesiętnie: Maska sieciowa dziesiętnie:

192.168.0.100 255.255.255.0

Maska sieciowa binarnie:

Adres IP binarnie:

 $\mathbf{11000000.10101000.00000000}.01100100$

Pogrubiono bity należące do części sieci, w tym przypadku są to 3 pierwsze oktety.

Często maskę zapisuje się w sposób skrócony — podając liczbę występujących w niej jedynek. Przykładowo, maska 255.255.255.0 może być zapisana jako /24.

Adres IP, w którym część sieci jest wyzerowana, stanowi identyfikator sieci — jest to tzw. **adres sieci**. Otrzymuje się go poprzez wykonanie binarnej operacji AND na adresie IP i masce:

Maska: 111111111.111111111.11111111.000000000

Adres: 11000000.10101000.00000000.01100100 AND

Innym charakterystycznym adresem dla każdej sieci jest **adres rozgło-szeniowy**. Wysyłane są na niego wiadomości, które mają dotrzeć do każdego innego urządzenia w sieci (z wyjątkiem nadawcy). Budowany jest poprzez ustawienie wszystkich bitów w części hosta (np. jako wykonanie operacji OR na adresie IP i odwróconej masce):

Odwr. maska: **00000000.00000000.0000000**.11111111 Adres hosta: **11000000.10101000.0000000**.01100100 OR

Broadcast IP: **11000000.10101000.0000000**.11111111 \Rightarrow 192.168.0.255

Od ilości bitów w części hosta zależy maksymalna ilość hostów, jakie można połączyć w ramach danej sieci. Skoro każdy bit może przyjąć jedną z dwóch wartości (0 lub 1), wszystkich możliwości zaadresowania mamy 2 liczba bitów w części hosta. Pamiętajmy jednak, że adresów, które możemy nadać hostom, jest o 2 mniej (host nie może przyjąć kombinacji z samymi zerami, gdyż jest to adres sieci, ani z samymi jedynkami, gdyż jest to adres rozgłoszeniowy).

Jako że w zagadnieniach adresacji IP korzystamy z konwersji liczb pomiędzy różnymi systemami liczbowymi, warto przypomnieć sobie 3 najważniejsze systemy z punktu widzenia sieci komputerowych:

• System dziesiętny, w którym podstawe stanowi liczba 10:

$$234 = 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$$

Wykorzystywane cyfry: 0,1,2,3,4,5,6,7,8,9.

Spotykany najszerzej w użyciu przez ludzi jako "naturalny" system liczbowy, do którego jesteśmy przyzwyczajeni. Klasycznie, poszczególne oktety adresu IP zapisywane są w systemie dzesiętnym.

• System binarny w którym podstawę stanowi liczba 2:

$$1100_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 8 + 4 = 12$$

Wykorzystywane cyfry: 0,1.

Spotykany w informatyce i elektronice, idealny do przedstawiania dwóch stanów on/off. Dzięki zapisowi binarnemu maski sieciowej jesteśmy w stanie odróżnić w adresie IP część sieci od części hosta.

• System szesnastkowy, w którym podstawę stanowi liczba 16:

$$0xA8 = 10 \cdot 16^{1} + 8 \cdot 16^{0} = 160 + 8 = 168$$

Wykorzystywane cyfry: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F, gdzie A=10, $B=11, \ldots, F=15.$

Adresy MAC zapisywane są w systemie szesnastkowym.

II. Cel ćwiczenia

Celem niniejszego ćwiczenia jest zapoznanie się z podstawami adresowania IPv4 poprzez:

- poznanie roli maski sieciowej,
- przypomnienie sobie konwersji liczb pomiędzy różnymi systemami liczbowymi (w kontekście adresowania IP przydaje się konwersja dziesiętny — binarny — dziesiętny),
- wyznaczanie adresu sieci, rozgłoszeniowego i ilości hostów w sieci przy zadanej masce sieciowej.

III. Stanowisko laboratoryjne

Do wykonania ćwiczenia nie jest wymagane żadne specjalistyczne stanowisko laboratoryjne.

IV. Przebieg ćwiczenia

1 Zapis liczb w różnych systemach liczbowych

 ${\bf W}$ tym ćwiczeniu przypomnisz sobie sposoby konwertowania liczb pomiędzy 3 systemami: binarnym, dziesiętnym i szesnastkowym.

1.	pisz za pomocą systemu binarnego i szesnastkowego.
a)	System dziesiętny: 141 System binarny: System szesnastkowy:
b)	System dziesiętny: 100 System binarny: System szesnastkowy:
c)	System dziesiętny: 191 System binarny: System szesnastkowy:
1.	2 Liczby przedstawione poniżej w systemie binarnym za- pisz za pomocą systemu dziesiętnego i szesnastkowego.
a)	System binarny: 1010 1001 System dziesiętny: System szesnastkowy:
b)	System binarny: 0011 1110 System dziesiętny: System szesnastkowy:
c)	System binarny: 0010 1111 System dziesiętny: System szesnastkowy:
1.3	3 Liczby przedstawione poniżej w systemie szesnastkowym zapisz za pomocą systemu binarnego i dziesiętnego.
a)	System szesnastkowy: 32 System dziesiętny: System binarny:
b)	System szesnastkowy: AC System dziesiętny: System binarny:

c) System szesnastkowy: 7F System dziesiętny: System binarny:
2 Obliczanie adresu sieci i rozgłoszeniowego dla sieci
W koleejnej części ćwiczenia zrozumiesz, na czym polega powiązanie adres IP i maski sieciowej, dzięki czemu nauczysz się wyznaczać adres sieci, dktórej podłączony jest badany host, oraz adres rozgłoszeniowy przypisany do tej sieci.
2.1 Wyobraź sobie, że masz komputer z przydzielonym kon kretnym adresem IP oraz maską sieciową. Oblicz, do któ rej sieci należy ten komputer, jaki jest jej adres rozgło szeniowy oraz ile hostów jest w stanie pomieścić.
IP komputera: 172.16.1.33 Maska sieciowa: 255.255.255.0
a) Przyjrzyj się masce sieciowej. Zamień ją na podstać binarną i policz, jak długa jest według niej część sieci (tj. ile maska zawiera jedynek). Ilość bitów w części sieci:
b) Policz, ile w takim razie zostało w adresie IP bitów przeznaczonych neczęść hosta: od wszystkich 32 bitów adresu IP odejmij ilość bitów w część sieci. Ilość bitów w części hosta:
c) Policz, ile różnych hostów można zaadresować w ramach tej sieci. Ilość możliwych hostów = $2^{\text{ilość bitów w części hosta}} - 2$ Ilość możliwych hostów:
d) Oblicz adres sieci, do której należy host. Możesz to zrobić, wykonują operację binarną AND na adresie IP i masce w binarnej postaci, albe poszukując najbliższej wielokrotności ilości wszystkich adresów w ramach tej sieci mniejszej niż adres hosta. Adres sieci:
e) Oblicz adres rozgłoszeniowy sieci, do której należy host. Możesz to zrobić ustawiając wszystkie bity w części hosta, lub też poszukując adresu o mniejszego niż adres następnej sieci. Adres rozgłoszeniowy:

2.2 Powtórz to ćwiczenie dla następujących hostów:

a)	Adres IP: 172.16.1.33 Maska sieciowa: 255.255.0.0 Ilość bitów w części sieci:
b)	Adres IP: 172.16.1.33 Maska sieciowa: 255.255.255.192 Ilość bitów w części sieci: Ilość możliwych hostów:
c)	Adres IP: 172.16.1.33 Maska sieciowa: 255.255.255.224 Ilość bitów w części sieci:
d)	Adres IP: 192.168.0.100 Maska sieciowa: 255.255.0.0 Ilość bitów w części sieci:
e)	Adres IP: 192.168.0.100 Maska sieciowa: 255.255.255.128 Ilość bitów w części sieci:
f)	Adres IP: 192.168.0.100 Maska sieciowa: 255.255.255.240 Ilość bitów w części sieci: Ilość bitów w części hosta:

3	Obliczanie adresu sieci i rozgłoszeniowego dla podsieci
3.1	Wyobraź sobie, że masz komputer z przydzielonym kon- kretnym adresem IP oraz maską podsieci, który należy do większej sieci. Oblicz, do której podsieci należy ten komputer, jaki jest jej adres rozgłoszeniowy, pierwszy i ostatni adres, który można nadawać hostom, oraz ile hostów jest w stanie pomieścić dana podsieć.
Mas	komputera: 172.16.1.33 ska podsieci: 255.255.255.128 ska oryginalnej sieci: 255.255.255.0
,	Oblicz, jak długa jest część sieci w masce podsieci. lość bitów w części sieci:
,	Policz, jak długa jest część hosta w masce podsieci. lość bitów w części hosta:
Í	Policz, ile różnych hostów można zaadresować w ramach tej podsieci. lość możliwych hostów = $2^{i\text{lość bitów w części hosta}} - 2$ lość możliwych hostów:
,	Oblicz adres podsieci, do której należy host. Adres sieci:
,	Oblicz adres rozgłoszeniowy podsieci, do której należy host. Adres rozgłoszeniowy:
W	Oblicz pierwszy adres z tej podsieci, który można nadać hostom (o 1 większy niż adres podsieci). Adres pierwszego hosta:
SZ	Oblicz ostatni adres z tej podsieci, który można nadać hostom (o 1 mniejzy niż adres rozgłoszeniowy). Adres ostatniego hosta:
o il Il	Policz, o ile bitów wydłużona została maska przy tworzeniu podsieci (wybraź sobie, że część bitów z części hosta przeznaczono do części sieci) i le takich podsieci można stworzyć w ramach całej sieci. lość podsieci = $2^{\text{ilość bitów, o ile wydłużono maskę podsieci}}$
I	lość możliwych podsieci:
	7

Ilość możliwych hostów:

Adres rozgłoszeniowy:

Adres sieci:

3.2 Powtórz to ćwiczenie dla następujących hostów:

)	Adres IP: 172.16.1.33 Maska sieciowa: 255.255.255.252 Maska oryginalnej sieci: 255.255.255.192 Ilość bitów w części sieci:
b)	Adres IP: 192.168.2.100
	Maska sieciowa: 255.255.25.0
	Maska oryginalnej sieci: 255.255.0.0
	Ilość bitów w części sieci:
	Ilość bitów w części hosta:
	Ilość możliwych hostów:
	Adres sieci:
	Adres rozgłoszeniowy:
	Adres pierwszego hosta:
	Adres ostatniego hosta:
	Ilość możliwych podsieci:
	Adres IP: 192.168.0.101
	Maska sieciowa: 255.255.252
	Maska oryginalnej sieci: 255.255.255.240
	Ilość bitów w części sieci:
	Ilość bitów w części hosta:
	Ilość możliwych hostów: Adres sieci:
	Agres sieci:
	Adres rozgłoszeniowy:

V. Pytania kontrolne

- 1. Czym różni się system dziesiętny od binarnego i szesnastkowego?
- 2. Jaka jest rola maski sieciowej w adresowaniu IP?
- 3. Czym różni się adres sieci od adresu rozgłoszeniowego?

Odpowiedzi:

1.1

- a) 1000 1101₂, 0x8D
- b) 0110 0100₂, 0x64
- c) 1011 11112, 0xBF

1.2

- a) 169, 0xA9
- b) 62, 0x3E
- c) 47, 0x2F

1.3

- a) 0011 0010₂, 50
- b) 1010 1100₂, 172
- c) 0111 1111₂, 127

2.1

Ilość bitów w części sieci: 24 Ilość bitów w części hosta: 8 Ilość możliwych hostów: 254 Adres sieci: 172.16.1.0

Adres rozgłoszeniowy: 172.16.1.255

$\mathbf{2.2}$

a)

Ilość bitów w części sieci: 16 Ilość bitów w części hosta: 16 Ilość możliwych hostów: 65534

Adres sieci: 172.16.0.0

Adres rozgłoszeniowy: 172.16.255.255

b)

Ilość bitów w części sieci: 26 Ilość bitów w części hosta: 6 Ilość możliwych hostów: 62 Adres sieci: 172.16.1.0

Adres rozgłoszeniowy: 172.16.1.63

c)

Ilość bitów w części sieci: 27 Ilość bitów w części hosta: 5 Ilość możliwych hostów: 30 Adres sieci: 172.16.1.32

Adres rozgłoszeniowy: 172.16.1.63

d)

Ilość bitów w części sieci: 16 Ilość bitów w części hosta: 16 Ilość możliwych hostów: 65534

Adres sieci: 192.168.0.0

Adres rozgłoszeniowy: 192.168.255.255

e)

llość bitów w części sieci: 25 Ilość bitów w części hosta: 7 Ilość możliwych hostów: 126 Adres sieci: 192.168.0.0

Adres rozgłoszeniowy: 192.168.0.127

f)

Ilość bitów w części sieci: 28 Ilość bitów w części hosta: 4

Ilość możliwych hostów: 14 Adres sieci: 192.168.0.96

Adres rozgłoszeniowy: 192.168.0.111

3.1

Ilość bitów w części sieci: 25 Ilość bitów w części hosta: 7 Ilość możliwych hostów: 126 Adres podsieci: 172.16.1.0 Adres rozgłoszeniowy: 172.16.1.127 Adres pierwszego hosta: 172.16.1.1 Adres ostatniego hosta: 172.16.1.126 Ilość możliwych podsieci: 2

3.2

a)

Ilość bitów w części hosta: 2 Ilość możliwych hostów: 2 Adres podsieci: 172.16.1.32 Adres rozgłoszeniowy: 172.16.1.35 Adres pierwszego hosta: 172.16.1.33 Adres ostatniego hosta: 172.16.1.34 Ilość możliwych podsieci: 16

Ilość bitów w części sieci: 30

b)

Ilość bitów w części sieci: 24 Ilość bitów w części hosta: 8 Ilość możliwych hostów: 254 Adres podsieci: 192.168.2.0

Adres pierwszego hosta: 192.168.2.255 Adres pierwszego hosta: 192.168.2.1 Adres ostatniego hosta: 192.168.2.254

Ilość możliwych podsieci: 256

c)

Ilość bitów w części sieci: 30 Ilość bitów w części hosta: 2 Ilość możliwych hostów: 2 Adres podsieci: 192.168.0.100 Adres rozgłoszeniowy: 192.168.0.103 Adres pierwszego hosta: 192.168.0.101

Adres ostatniego hosta: 192.168.0.102

Ilość możliwych podsieci: 4