限制条件的图论模型转化

黄嘉盛

2022年7月13日

- 1 差分约束
- 2 2-SAT 问题
- 3 Johnson 全源最短路

问题简述

差分约束系统是特殊的 n 元一次不等式组,不等式组的每一个不等式称为一个约束条件。

通过不等式的变形,可以通过最短路算法对差分约束系统进行求解。

问题简述

差分约束系统是特殊的 n 元一次不等式组,不等式组的每一个不等式称为一个约束条件。

通过不等式的变形,可以通过最短路算法对差分约束系统进行求解。

常见的差分约束,形式为 $a_i - a_j \le p_k$, 其中 a_i, a_j 为 i, j 的值, 未被确定, p_k 为一开始就给定的值,你需要判断的是是否存在分配每个 a_i 的方案,使得每一个限制都被满足。

观察差分约束的常见形式 $a_i-a_j \leq p_k$,并将其变形为 $a_i \leq p_k+a_i$

观察差分约束的常见形式 $a_i - a_j \le p_k$,并将其变形为 $a_i \le p_k + a_j$ 此时联想到最短路中需要满足的不等式(设 d_x 为到 x 的最短路长度,dist(u,v) 为 u,v之间距离),则有 $d_y \le d_x + dist(x,y)$,与 差分约束不等式的变形是形式一致的。

观察差分约束的常见形式 $a_i - a_j \leq p_k$, 并将其变形为

 $a_i \le p_k + a_j$

此时联想到最短路中需要满足的不等式(设 d_x 为到 x 的最短路长度,dist(u,v) 为 u,v之间距离),则有 $d_y \leq d_x + dist(x,y)$,与 差分约束不等式的变形是形式一致的。

所以可以新建n个点,对于限制 $a_i - a_j \leq p_k$,在图中由j向i 连一条边,距离为 p_k ,此时约束问题变成了图上的最短路问题。

其他形式

0000000000

差分约束

差分约束还有可能有其他的形式,比如 $a_i - a_j \ge p_k$ 。

其他形式

000000000

差分约束

差分约束还有可能有其他的形式,比如 $a_i - a_i \ge p_k$ 。 运用相同的变形,变为 $a_i \geq a_i + p_k$ 则转化为最长路问题,或者 变形为 $a_i \leq a_i + (-p_k)$,则仍为最短路问题。

判断解的存在性

差分约束

0000000000

通过上面两种形式可以将约束问题转化为最短路问题, 但是显然 p_k (或 $-p_k$) 可能是负数,那么最短路不使用 dijkstra 算法,而 使用 SPFA 算法

判断解的存在性

差分约束

000000000

通过上面两种形式可以将约束问题转化为最短路问题,但是显然 p_k (或 $-p_k$) 可能是负数,那么最短路不使用 dijkstra 算法,而 使用 SPFA 算法

存在负权边也就说明可能存在负环,在这种情况下问题肯定是无 解的。

判断解的存在性

通过上面两种形式可以将约束问题转化为最短路问题,但是显然 p_k (或 $-p_k$) 可能是负数,那么最短路不使用 dijkstra 算法,而使用 SPFA 算法

存在负权边也就说明可能存在负环,在这种情况下问题肯定是无 解的。

具体判断方法只需要在 SPFA 的 BFS 时对每个点记录一个 cnt 数组,在更新 $d_y = d_x + dist(x,y)$ 时也更新 $cnt_y = cnt_x + 1$,当 $cnt_i > n$ 时说明一定出现了负环,也说明约束问题无解

求具体解

显然,对于差分约束系统的一组解

 $\{a_i|i\in[1,n]\},\{a_i+\Delta|i\in[1,n]\}$ 也是一组解(因为 Δ 会在作差时被消掉)。

因此,为了判断差分约束系统是否有解,我们可以先求一组负数解,即增加一个编号为0的节点,令 $a_0=0$,并从0号节点向每个节点连一条边,这样就可以保证 $\forall i, a_i \leq 0$ 。

求具体解

显然,对于差分约束系统的一组解 $\{a_i|i\in[1,n]\},\{a_i+\Delta|i\in[1,n]\}$ 也是一组解 (因为 Δ 会在作差 时被消掉)。

因此,为了判断差分约束系统是否有解,我们可以先求一组负数解,即增加一个编号为0的节点,令 $a_0=0$,并从0号节点向每个节点连一条边,这样就可以保证 $\forall i, a_i \leq 0$ 。

以 0 号节点为起点跑最短路,显然,若图中存在负环,则说明永远满足不了所有的约束条件,差分约束系统无解;否则 $\{a_i|i\in[1,n]\}$ 就是一组解。

luogu P1993 小 K 的农场

小 K 在 MC 里面建立很多很多的农场,总共 n 个,以至于他自 己都忘记了每个农场中种植作物的具体数量了,他只记得一些含 糊的信息 $(共 m \land)$, 以下列三种形式描述:

- 农场 a 比农场 b 至少多种植了 c 个单位的作物;
- 农场 a 比农场 b 至多多种植了 c 个单位的作物;
- 农场 a 与农场 b 种植的作物数一样多。

但是,由干小 K 的记忆有些偏差,所以他想要知道存不存在一种 情况,使得农场的种植作物数量与他记忆中的所有信息吻合。

 $1 < n, m, a, b, c < 5 \times 10^3$

差分约束

000000000

luogu P1993 小 K 的农场 | Solution

对于 $x_a - x_b \le c$ 和 $x_a - x_b \ge c$ 都按照前面的方法转化就行了, 对于 $x_a = x_b$ 就直接变为 $x_a - x_b \le 0$ 以及 $x_a - x_b \ge 0$ 然后就是板子

Teleport

有 $n(n \le 10^6)$ 个城市,城市间互相连接形成了一棵树,每条树边有边权 w_i 为走过这条边需要花费的时间。

每个点有传送装置,并且i点传送装置有一个参数 a_i ,从i传送到j需要花费时间 $|a_i-a_i|$ 。

管理者不希望两点之间传送花费的时间比走路时间还多,而且由于城市地质限制,i城市的参数 a_i 需要满足在 $[l_i, r_i]$ 之间。

当然你也可以对城市进行改造,用x的代价让所有城市接受的区间变为 $[l_i-x,r_i+x]$,x非负整数

问在不进行改造的情况下,能否找到一种安排 a_i 的方案,满足上述所有要求。还需要回答在允许进行改造的情况下,最少花费多少代价进行改造,可以找到一种方案满足要求。

Teleport | Soltion

新建一个0号点,向i号点连一条长度为 r_i 的单向边,i号点向它连一条长度为 $-l_i$ 的单向边,那么有解等价于图中不存在负环。

由于所有负边都一定连向 0 号点,图中存在负环当且仅当图中存在一个经过 0 号点的简单负环。

到这一步就可以开始二分答案 x , 然后判断更新后的图中是否存在负环。

但是可以发现二分是没有必要的,因为所有经过0的简单环增加的长度都是 $2 \times mid$,所以可以直接找出长度最小的经过0号点的简单环,假设这个环长度为l,则答案为 $max(0, \lfloor \frac{l}{2} \rfloor)$

找出长度最小的简单环可以通过 dijkstra 或树形 DP 解决,复杂度 O(nlogn) 或 O(Tn) 。

- 1 差分约束
- 2 2-SAT 问题
- 3 Johnson 全源最短路

问题简述

现在有n个布尔变量,每个变量只能取值真或者假,所谓k-SAT问题就是最多存在一个问题含有k个布尔变量,这个问题要求这k个布尔变量在经过一系列位运算后满足为真或假

黄嘉盛

继续看上面 2-SAT 的这个例子, $x \lor y = 1$ 蕴含的是:

- X 为假, 那么 Y 肯定为真
- y 为假, 那么 x 肯定为真

继续看上面 2-SAT 的这个例子, $x \lor y = 1$ 蕴含的是:

- X 为假, 那么 Y 肯定为真
- y 为假, 那么 x 肯定为真

于是将原图每个 x 拆成两个点,分别代表它为假和它为真。(为了方便表示,分别标号为 2x 和 2x+1。)

然后我们就可以得到 $2x\rightarrow 2y+1$ 和 $2y\rightarrow 2x+1$ 这两条边。不难发现此处边的意义就是"推导出"

对于其他的约束情况也都可以这样做。如:

- x 为真时, y 为假, 那么就有一条 2x+1→2y 的边;
- x和y状态要一样,2x→2y和2x+1→2y+1的边。

由于 2-SAT 要求能够逆向推导,所以需要保证图的对称性,利用命题与其逆否命题一定等价,可以由 $a \rightarrow b$ 得到一条新边 $\neg b \rightarrow \neg a$

2-SAT 模型求解

首先是一个很直观的暴力算法

枚举每个点的状态,真或者假(如果它之前没被标过)。然后将它能标记状态的全都标记一遍,途中如果碰到自己这个状态已经被标记就返回真,如果反状态被标记了就返回假。

如果本状态当前假设状态不行,就将它刚刚标出来的状态全部清空掉(用个栈来实现),然后继续尝试它的一个反状态,如果反状态还是不行,那就是无解。

最多尝试n个点,每次要最多尝试m条边,所以总复杂度最差是O(nm)的。(能卡到最差,但是对于随机数据跑得比较快)

2-SAT 模型求解

如果对于一个点 X 的两个状态真或假都在一个强联通分量中,那 么真假就能够互推了,肯定不成立。

然后可以用反向的拓扑序(从出度为零的开始取)来染色求解,对于一个并未染色的点将它染成 1,它的一个对立状态染成 2。然后不断重复。最后所有为 1 的就可以当做一组解了。

黄嘉盛

2-SAT 模型求解

这个成立时因为,每个条件都是两两关系,只要保证了存在解, 那么这样绝对是可行的。

但没有必要写个拓扑排序,因为 Tarjan 的访问其实是根据拓扑 序来的,所以最后给他的 scc 标号(sccno)正好和拓扑序相反。如果对于一个 x,它的 sccno 比它的反状态 $x \oplus 1$ 的 sccno 要小,那么我们用 x 这个状态当做答案,否则用它的反状态当做答案。也就是我们用 sccno 小的状态当做答案。

UVALive - 3713 Astronauts

给定 n 个宇航员的年龄,平均年龄为 ave,根据下列要求分配任务:

B 任务只能分配给年龄 <ave 的宇航员; A 任务只能分配给年龄 >=ave 的宇航员; C 任务可以任意分配。

给定 m 组互相憎恨的宇航员,要求他们不能分配到同一个任务。 问能否存在这样的一组任务分配。

 $1 \le n, m \le 10^5$

UVALive - 3713 Astronauts | Solution

每个宇航员都只能分配两种任务中的一种: A或 C (年龄大于等于 ave), B或 C (年龄小于 ave), 那么为每个宇航员设立一个变量 x_i , x_i 为 0表示分配 C 任务,为 1 则分配 A 或 B (根据年龄)。对于互相仇恨的宇航员,如果属于同一类型,那么应满足 x_i 和 x_j 一真一假;如果类型不同只需要满足不同时分配 C 任务就可,即 x_i , x_j 不同时为 0。 然后建图跑 2-SAT

CF 587D Duff in Mafia

给定一张 n 个点 m 条边的无向图,每条边有一个颜色 c 和权值 t。你要选出一些边,使得它们是一个匹配,同时剩下的边每种颜色对应的所有边也是匹配(没有两条边有同样的端点)。同时,你要最小化选出的边的最大权值。 $n,m < 5 \times 10^4$ 。

CF 587D Duff in Mafia | Solution

首先二分答案, 若此时二分的值为 m, 则所有 > m 的边都不能选。 每条边有选和不选两种状态, 所以考虑 2-SAT。设第 i 条边的状态为 x_i 表示选择它, x_i' 表示不选。连边如下:

- 对于一定不能选的边, 连边 $x_i \rightarrow x_i'$ 。
- 对于选出的边一定要是一个匹配, 考虑一个点 p 上的所有边 $x_{1...k}$, 连边 $x_i \to x_i' (i \neq j)$ 。
- 对于剩下的边每种颜色也一定要是一个匹配, 考虑一个点 p 上颜色相同的所有边 $x_{1...k}$, 连边 $x_i' \to x_j (i \neq j)$ 。

CF 587D Duff in Mafia | Solution

但这样做第 2,3 类边的边数为 $\mathcal{O}(m^2)$, 这里介绍一个 2-SAT 中比较常用的优化——前缀优化。

先考虑第 2 类边,设 $x_{1...k}$ 的前缀点为 $s_{1...k}, x_{1...k}'$ 的后缀点为 $s_{1...k}'$

- 。连边如下:
 - $x_i \to s_i, s_i' \to x_i'$.
 - $s_{i-1} \rightarrow s_i, s_i' \rightarrow s_{i-1}'$ o
 - $s_{i-1} \to x'_i, x_i \to s'_{i-1}$.

这样建图和第2类边是等效的。而第3类边,就把第2类边的 箭头全部反过来即可。

然に計旦 2 CAT マ

- 1 差分约束
- 2 2-SAT 问题
- 3 Johnson 全源最短路

最初想法

 $O(n^2m)$,直接使用 Floyd 算法,时间复杂度 $O(n^3)$ 注意到单源最短路中 Dijkstra 的时间复杂度表现优秀,尝试用枚举每个源点跑 Dijkstra 的方法,发现无法处理负环于是 Johnson 想出了一个方法,给每条边重新赋权 (reweight),使得边权均为非负数,并且原图中的最短路在新图中仍为最短路

如果枚举每个起点用 Bellman-Ford 跑单源最短路, 时间复杂度

重新赋权

对与重新赋权使得边权均非负,最简单的想法是给每条边都加上权值w,但是这样显然是错的,如对与一条权值和为 w_1 长度为 l_1 的路径和 (w_2, l_2) 的路径,都加上权值w后两条路径权值和分别变为了 $w_1 + w \times l_1$ 和 $w_2 + w \times l_2$,可能导致大小顺序颠倒 Johnson 算法则通过另外一种方法来给每条边重新标注边权:

- 新建源点 S , 并且由源点向每个点连长度为 0 的边
- S 为源点跑 Bellman-Ford,得到 S 到每个节点的最短路长度 h_u
- 对于每条边 (u,v,w) ,将边权重赋值为 $w+h_u-h_v$

重新赋权后能保证权值均为非负(正确性见网上势能分析),然后枚举每个点作为源点跑 Dijkstra 就可以了,复杂度 $O(nm\log m)$