Jon Rippe PDAQS Progress Report 21.10.0

Issues Addressed

LiDAR/Camera Alignment Configuration Storage Development OS change GPU Integration PointNet Neural Network (NN)

GPU Integration

Attempts to create a GPU enabled development environment within Windows were fruitless. Visual Studio failed to build OpenCV with CUDA support. I have transitioned to a Linux development environment. As James has been spearheading the video object detection tool, I will test GPU integration on the PointNet NN in the near future.

Notable Progress

Camera distortion parameters were added to the LiDAR point transformations. There are four customizable distortion parameters k_1 , k_2 , k_3 , and k_4 such that

$$x = \frac{1 + k_1 r^2 + k_2 r^4}{1 + k_3 r^2 + k_4 r^4} x, \quad y = \frac{1 + k_1 r^2 + k_2 r^4}{1 + k_3 r^2 + k_4 r^4} y, \quad r = \sqrt{x^2 + y^2}$$

Additionally, a rudimentary tool was developed to assist in aligning LiDAR points to camera frames. The tool allows a user to modify Camera parameters (offset, angle, distortion) and re-render point cloud data on top of camera frames. The tool also allows the user to skip forward a user determined number of frames. Figure 1 shows a screenshot of the tool.

Figure 1: LiDAR/Camera alignment tool

All project settings and parameters have been switched to json format and are stored in a single **params.json** file. This will act as a single point for saving and loading project configurations and will allow for better modularity in the future.

New Modules

No new notable infrastructure was added to the main workflow.

Next Steps

Building the LiDAR/Camera tool uncovered some areas of improvement in the way the cameras retrieve and store frames; more specifically, the behavior of the buffer when switching to the next video file.

Adding time offset adjustment to the LiDAR/Camera tool could be useful (allowing the user to advance either camera frames, LiDAR frames, or both), but will require development of a new way to handle frame information.

LiDAR Point NNs are not as readily available as image processing NNs. There are a lot of projects centered around the KITTI dataset for 3D object recognition, however they're mostly designed as proof-of-concepts that only work within the scope of the KITTI Suite (http://www.cvlibs.net/datasets/kitti/). We'll need to do some digging to see if cvlib for Python has a NN model suitable for our LiDAR data.