Runinations about Langlands duality with generalized coefficients

Sanath Devalapurkur

a = conn. reductive gp/C

Review. K = Q - alg

6(0) = 6(C[+]), 6(f) = 6(C((+))), 6m=6(F)/6(0)

Shu ho (hra, k) x51

15 derived goom. Satake Begruhanika = Finkelberg - (Mirkovic) - Cingburg

Qcoh ((g) [2]/ h) simply laced Who (g) mod are (h) (2]/ h)

Ruk Whiteler approach:

alcoh ((ox o)/k)) Shvh(o) (hn; k)

Q; What if k = comm. ring (spectrum) ?

X space $C^*(X;\mathbb{Z})$ \longrightarrow $H^*(X;\mathbb{Z})$

Eilenberg- Steenrod axions

Functors: Spc --> CorAb

* 1-7 Z in every even weight

* KU*(X) Cpx K-theory

y → k*(x)

Spc → Cn Ab

X

Sp

Map Sp (Σ[∞](X; k) A

Spectra linearize spaces"

Just as one can form Shu(x; Z), can also form Shu(x; k) 2 comm. zing spectrum

Ruk Subtle to extend to stacks.

$$KU^*(BS^1) \simeq Z[x-1][\beta^{\pm 1}]$$
 CP^{60}
 $O(1)$
 $T_{*}(KU_{S^1}) \simeq Z[x^{\pm}][\beta^{\pm}]$
 $equiv.$
 $C-K-therry$
 $R(S^1) \simeq Z[x^{\pm}][\beta^{\pm}]$

Thm (Atyah - Segal)
$$KU_{h}(x)$$
 is a completion. $KU(x)_{h}(x)$

Deep insight (Quillen, Morara, ...) k= comm ring spectrum St. TT+ C* (BS2; k)

aplar-oriented TI* (k)[t] 1

II Fis a (1-dihil) formal go law.

C1 (L1 × L2)

Ey. It k=Z, F(x, Y)= x+Y

TF k=KU, (E(L)=LL]-1, F(x,Y)=X+Y+XY $\left(t=\frac{x-1}{B}\right)$

$$k = C$$
-criented comm. ring spectrum

 $G = torus T$
 $Shv_T (hv_T : k) = \bigoplus Shv_T (pt; k)$
 $T_1(T) = \bigoplus Mod (kT)$
 $X_X(T) = therefore Boser" (*(BT; k))$

or "genwhe" T-equiv. corsin of k.

Take htpy 970 of kT:

und filt. ____ gn (+ shear)

It
$$H = Spec \Pi_{X}(kge)$$
, 1-dia (famel) grover Spec $\Pi_{A}(k_{T}) = Hom(X'(T), IH) =: T_{H}(Spb)$

Det
$$|H| = 1 - d$$
 (formal) gp scheme / $\pi_*(k)$
 $X = \text{Stack} / \pi_*(h)$

$$E_{A} = G_{A}, L_{H} \times = TE_{1}(x)$$

$$H = G_{M}, L_{H} \times = L \times = X \times X$$

$$T_{A}(k)$$

beb.
$$GIH \longrightarrow LIH(BG) = GIH/G$$

$$\int \int \int BG$$
Spec $\pi_*(k) \longrightarrow BG$

EX.
$$H = \hat{G}_{\alpha}$$
, $G_{IH} = 9\hat{\chi}$
 $IH = \hat{G}_{m}$, $G_{IH} = \hat{G}_{n}$
 $IH = E$, $G_{IH} = Bun_{G}^{(SS,0)}(E)$ trivialization at base pt ell-curre, $G_{IH} = G_{IH}^{(SS,0)}(E)$

Conf.
$$k = \alpha$$
-oriented comm. ring spectrum, Sho $\alpha(\omega)$ (Gra, k) $\alpha(\omega)$ $\alpha(\omega)$

pagey

Thm This is true it G = Eg, K = ZZ, KU, elliptic cohomo Logy

and you base - change the categories to som odg. closed field of large - enough chan.

"(lasticully", I note object 12 & Shullos (lura; a) and a S-sheaf at the basepoint

Expectations.
$$\ddot{R}_{h} \in Shv (--, k)$$

Expect A sits inside an algebra; I'M describe for
$$SL_2$$
: $T_{=}$ incose of h in F
 $N_{HH}(SL_2) = \pi_{+}(h)[t]^{\wedge}(e, F, h)$
 $h_{=}(h + t) + h$
 $h_{=}(h + t) = h$

Pages

Eq. $|H = G_{m}$, $U_{H}(SL_{2})$ basically $U_{A}(SL_{2})$ $A \hookrightarrow U_{A}(SL_{2})$ $G \longleftrightarrow G^{\circ}$

LMod A LMod Tx A