Úvod, Číselné soustavy a kódy

Úvod do digitální techniky, číselné soustavy, převody, aritmetické operace, číselné kódy

Ing. Pavel Lafata, Ph.D. lafatpav@fel.cvut.cz

Úvod, Číselné soustavy a kódy – Organizace předmětu B2B32DITA

- B2B32DITA Digitální technika
 - rozsah výuky 2p + 2l, zakončení předmětu klasifikovaný zápočet, 4 kredity
 - vyučující Katedra telekomunikační techniky, FEL, ČVUT v Praze: přednášející, garant – Ing. Pavel Lafata, Ph.D., místnost 810, e-mail: lafatpav@fel.cvut.cz vedoucí cvičení – Ing. Tomáš Zeman, Ph.D., místnost 711, e-mail: zeman@fel.cvut.cz asistent – Ing. Josef Šebánek, e-mail: sebanjos@fel.cvut.cz
 - stručná osnova předmětu:
 - Digitální systémy, číselné soustavy a kódy
 - Logické funkce elementární log. funkce a hradla, vyjadřování log. funkcí, Booleova algebra, minimalizace log. funkcí pomocí Karnaughových map, realizace log. funkcí pomocí hradel
 - Kombinační a sekvenční log. obvody rozdíly, příklady komb. obvodů, logické hazardy, klopné obvody, čítače, konečné stavové automaty (Mealy vs. Moore)
 - Technologie pro realizaci logických obvodů TTL, CMOS, FPGA
 - Moderní způsoby realizace log. obvodů programovatelná pole FPGA a jazyk VHDL
 - klasifikovaný zápočet maximální počet 100 bodů
 - průběžné hodnocení na cvičení + zápočtový test
 - ze cvičení lze získat maximálně 49 bodů (vstupní testy + laboratorní měření)
 - zápočtový test příklady + písemné otázky, z testu lze získat až 51 bodů (podmínkou je získat více než 50%, tj. 26 bodů z testu)
 - hodnocení ECTS, podrobněji viz úvodní cvičení a v průběhu semestru

Úvod, Číselné soustavy a kódy – Literatura

B2B32DITA – Digitální technika

1. **Přednášky předmětu – MS Teams, materiály na seminární cvičení, návody na lab. úlohy** – vše dostupné na Moodlu v kurzu B2B32DITA: https://moodle.fel.cvut.cz/

2. Skripta:

[1] Lafata, P. - Hampl, P. - Pravda, M.: Digitální technika. 1. vyd. Praha: Česká technika - nakladatelství ČVUT, 2011. 164 s. ISBN 978-80-01-04914-3.

3. Další užitečná literatura:

- [1] Pinker, J. Poupa, M.: Číslicové systémy a jazyk VHDL. Praha: BEN technická literatura, 2006. 349 s. ISBN 80-7300-198-5.
- [2] Šťastný, J.: FPGA prakticky: realizace číslicových systémů pro programovatelná hradlová pole. Praha: BEN technická literatura, 2010. 199 s. ISBN 978-80-7300-261-9.
- [3] Antošová, M. Davídek, V.: Číslicová technika. České Budějovice : KOPP, 2003. 286 s. ISBN 80-7232-206-0.
- [4] Strnad, L.: Základy číslicové techniky: cvičení. Praha: ČVUT, 1996. 124 s. ISBN 80-01-01433-9.
- [5] Ashender, P., J.: The VHDL Cookbook. online: https://tams-www.informatik.uni-hamburg.de/vhdl/doc/cookbook/VHDL-Cookbook.pdf.
- [6] SYNARIO: VHDL Reference Manual. online: http://www.ics.uci.edu/~jmoorkan/vhdlref/Synario%20VHDL%20Manual.pdf.

Úvod, Číselné soustavy a kódy – Digitální systém, digitální signál

• Úvod

- digitální systém, digitální obvod obecná definice?
 - digitální systém (obvod) = obecně jakýkoliv obvod umožňující zpracovávat digitální signály
- co je tedy digitální signál?
 - sekvence diskrétních hodnot signál nespojitý v čase i amplitudě
 - 3 operace při převodu analogového signálu na digitální: vzorkování – odebírání vzorků z analogového signálu v periodických časových okamžicích (vzorkovací teorém) – diskretizace v časové oblasti kvantování – signál spojitý v amplitudě se převádí na soubor diskrétních hodnot pomocí kvantizačních hladin (kvantizační šum) – diskretizace v amplitudové oblasti kódování – přiřazení (vyjádření) kódové hodnoty kvantizačním hladinám
- logický signál (dvouhodnotová logika) digitální signál nabývající jen 2 hodnot
 - logická 1 vs. logická 0, high (H) vs. low (L), pravda (true) vs. nepravda (false)...

modulační rychlost

$$v_m = \frac{1}{a}$$
 [Bd]

Úvod, Číselné soustavy a kódy – Logický signál, číselné soustavy

Úvodní pojmy

- logický signál, logická funkce
 - logická funkce soubor pravidel pro jednoznačné přiřazení výstupních logických hodnot kombinacím vstupních logických proměnných
 - dvouhodnotová logika (existují i jiné) operace s dvěma hodnotami logická 1 a logická 0 – s výhodou lze využít binární (dvojkovou) polyadickou číselnou soustavu
 - logický obvod digitální obvod pracující s logickými signály

Číselné soustavy

- **číselná soustava** = soubor pravidel pro jednoznačný zápis libovolného čísla pomocí jednotlivých číslic
- číslice = symbol reprezentující v dané číselné soustavě určitou hodnotu:
 např. v desítkové soustavě 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

1. polyadické (poziční) číselné soustavy

stejný základ na všech řádových místech, vyjádření daného čísla pomocí mnohočlenu

2. nepolyadické (nepoziční) číselné soustavy

různý základ na jednotlivých řádových místech, nelze rozvinout pomocí mnohočlenu

- Polyadické (poziční) číselné soustavy
 - základ číselné soustavy přirozené číslo Z, větší než 1: Z > 1
 - pojmenování číselných soustav pomocí jejich základů, nejpoužívanější: dvojková (binární) soustava základ číslo 2 (Z = 2)
 osmičková (oktalová) soustava základ číslo 8 (Z = 8)
 desítková (dekadická) soustava základ číslo 10 (Z = 10)
 šestnáctková (hexadecimální) soustava základ číslo 16 (Z = 16)
 - libovolné kladné číslo N lze v polyadické číselné soustavě se základem Z zapsat pomocí polynomického rozvoje:

$$N_{(Z)} = \sum_{i=-n}^{m-1} a_i \cdot Z^i = a_{m-1} \cdot Z^{m-1} + a_{m-2} \cdot Z^{m-2} + \dots + a_1 \cdot Z^1 + a_0 \cdot Z^0 + a_{-1} \cdot Z^{-1} + \dots + a_{-n+1} \cdot Z^{-n+1} + a_{-n} \cdot Z^{-n}$$

- $N_{(Z)}$ je číslo vyjádřené v číselné soustavě se základem Z Z je základ číselné soustavy a_i jsou číselné koeficienty (číslice), pro které platí $a_i \in \{0,1,2...,Z-1\}$ m je počet míst na kterých má základ Z kladný exponent, celá část čísla $N_{(Z)}$ n je počet míst na kterých má základ Z záporný exponent, desetinná část čísla $N_{(Z)}$, je desetinná čárka, odděluje celou a desetinnou část čísla $N_{(Z)}$
- příklad rozvoje libovolného čísla v desítkové soustavě: $1307,12_{(10)} = 1x10^3 + 3x10^2 + 0x10^1 + 7x10^0 + 1x10^{-1} + 2x10^{-2}$

- kapacita soustavy, maximální číslo v dané soustavě
 - K kapacita číselné soustavy se základem Z a s m kladnými řádovými místy: $K = Z^m$
 - N_{max} nejvyšší číslo číselné soustavy se základem Z a s m kladnými řádovými místy: $N_{max} = Z^m 1$

1. převod z desítkové soustavy do soustavy se základem Z

- pokud obsahuje číslo desetinnou část, převedeme nejprve celou část a pak desetinnou
- dva možné postupy:
- postupné dělení základem soustavy Z
- postupné dělení mocninami základu soustavy Z
- příklad převeďte číslo z desítkové soustavy 41₍₁₀₎ do dvojkové soustavy (Z = 2)
- metoda 1 postupné dělení základem soustavy Z:

$$41: 2 = 20 + 1/2$$
 LSB
 $20: 2 = 10 + 0/2$
 $10: 2 = 5 + 0/2$
 $5: 2 = 2 + 1/2$
 $2: 2 = 1 + 0/2$
 $1: 2 = 0 + 1/2$ MSB

výsledek obdržíme sepsáním jednotlivých zbytků dělení směrem odspodu nahoru:

$$41_{(10)} = 101001_{(2)}$$

 metoda 2 – dělením mocninami základu Z: mocniny základu 2:

$$2^0 = 1$$
, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 32$, $2^6 = 64$, $2^7 = 128$...

nejprve vydělíme převáděné číslo $N_{(10)}$ nejbližší nižší mocninou základu Z – dále snižujeme o 1 mocninu základu a postupně dělíme zbytky po předchozím dělení, až se dostaneme do posledního dělení 1:

- výsledek obdržíme sepsáním jednotlivých výsledků dělení směrem seshora dolu:
 41₍₁₀₎ = 101001₍₂₎
- převod desetinného (necelého) čísla z desítkové soustavy do soustavy se základem Z:
- 1. nejprve převedeme zvlášť celou část čísla (metodou 1 či 2)
- 2. pak převedeme zvlášť desetinnou část, předchozí metodou 2, nebo pomocí metody postupného násobení základem Z a odečítáním celé části výsledku

 příklad – převeďte číslo 54,6875₍₁₀₎ do dvojkové soustavy nejprve převedeme celou část čísla (například metodou 1):

```
54:2=27+0/2 LSB
27:2=13+1/2
 13:2=6+1/2
  6:2=3+0/2
  3:2=1+1/2
  1:2=0+1/2 \mid MSB
dále převedeme desetinnou část pomocí obou způsobů:
- způsob 1 – dělení mocninami čísla 2 (metoda 2):
mocniny 2: 2^{-1} = 0.5, 2^{-2} = 0.25, 2^{-3} = 0.125, 2^{-4} = 0.0625, 2^{-5} = 0.03125...
   0.6875:0.5 = 1 + 0.1875/2 | MSB
  0,1875:0,25=0+0,1875/2
 0.1875:0.125 = 1 + 0.0625/2
0.0625 : 0.0625 = 1 + 0/2 

LSB
- způsob 2 – násobení základem a odečítání celé části výsledku:
0,6875 x 2 = 1,3750 – odečteme celou část 1, desetinná část 0,3750
                                                                        MSB
0,3750 x 2 = 0,7500 – odečteme celou část 0, desetinná část 0,7500
0,7500 \times 2 = 1,5000 - \text{odečteme celou část } 1, \text{ desetinná část } 0,5000
0,5000 \times 2 = 1,0000 - \text{odečteme celou část } 1, \text{ desetinná část } 0,0000 \downarrow \text{LSB}
výsledek: 54,6875_{(10)} = 110110,1011_{(2)}
```

převod z desítkové do libovolné jiné číselné soustavy se základem Z – zcela stejný postup

2. převod čísel ze soustavy se základem Z do desítkové soustavy

- jednoduše dosadíme do polynomiálního rozvoje čísla
- příklad převeďte číslo z dvojkové soustavy $10011101,10001_{(2)}$ do desítkové: $10011101,10001_{(2)} = 1x2^7 + 0x2^6 + 0x2^5 + 1x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0 + 1x2^{-1} + 0x2^{-2} + 0x2^{-3} + 0x2^{-4} + 1x2^{-5} = 128 + 0 + 0 + 16 + 8 + 4 + 0 + 1 + 0,5 + 0 + 0 + 0 + 0,03125 = <math display="block">157,53125_{(10)}$
- převod z libovolné jiné soustavy se základem Z do desítkové je zcela stejný

příklady s převody z/do osmičkové a šestnáctkové soustavy:

převeďte číslo z desítkové soustavy 109,125₍₁₀₎ do osmičkové:

109:8 = 13 +
$$\frac{5}{8}$$
 13:8 = 1 + $\frac{5}{8}$ 1:8 = 0 + $\frac{1}{8}$

$$0.125 \times 8 = 1 + 0.000$$

výsledek: <u>109,125₍₁₀₎ = 155,1₍₈₎</u>

• převeďte číslo z osmičkové soustavy $307,21_{(8)}$ do desítkové: $307,21_{(8)} = 3x8^2 + 0x8^1 + 7x8^0 + 2x8^{-1} + 1x8^{-2} = 192 + 0 + 7 + 0,25 + 0,015625 = 199,265625₍₁₀₎$

- šestnáctková (hexadecimální) soustava číslice 0, 1, 2, ..., 9, A, B, C, D, E, F
 - A = 10 v desítkové soustavě
 - B = 11 v desítkové soustavě
 - C = 12 v desítkové soustavě
 - D = 13 v desítkové soustavě
 - E = 14 v desítkové soustavě
 - F = 15 v desítkové soustavě
- příklad převeďte číslo z desítkové soustavy 698,1875₍₁₀₎ do šestnáctkové:

698:
$$16 = 43 + 10/16$$
 10 = A
43: $16 = 2 + 11/16$ 11 = B
2: $16 = 0 + 2/16$

$$0,1875 \times 16 = 3 + 0,0000$$

výsledek: <u>2BA,3₍₁₆₎</u>

• příklad – převeďte číslo z šestnáctkové soustavy E0F,A8₍₁₆₎ do desítkové: E0F,A8₍₁₆₎ = $14x16^2 + 0x16^1 + 15x16^0 + 10x16^{-1} + 8x16^{-2} = 3584 + 0 + 15 + 0,625 + 0,03125 = 3599,65625₍₁₀₎$

3. převod ze soustavy se základem Z1 do soustavy se základem Z2

- **obecně** převedeme číslo ze soustavy se základem Z1 do desítkové a následně provedeme převod čísla z desítkové soustavy do soustavy se základem Z2
- pokud je však základ Z1 mocninou základu Z2 (nebo naopak), lze převod provést jednodušeji použitelné např. pro převody dvojková osmičková, dvojková šestnáctková, neboť 2³ = 8 a 2⁴ = 16
- např. převod dvojková ↔ osmičková soustava, neboť 2³ = 8 tedy 3 řádová místa
 (číslice) ve dvojkové soustavě představují 1 řádové místo v osmičkové soustavě
- a také dvojková ↔ šestnáctková soustava, neboť 2⁴ = 16 tedy 4 řádová místa (číslice)
 ve dvojkové soustavě představují 1 řádové místo v šestnáctkové soustavě
- při převodu z dvojkové do osmičkové (nebo šestnáctkové) soustavy, rozdělujeme
 převáděné číslo vždy od konce! (od LSB směrem k MSB) po trojicích (nebo čtveřicích)
- při opačném převodu z osmičkové (nebo šestnáctkové) soustavy do dvojkové,
 rozepisujeme každou číslici na trojici (nebo čtveřici) ve dvojkové soustavě

příklady:

převeďte číslo z dvojkové soustavy 1011100111₍₂₎ do osmičkové: 001 011 100 111₍₂₎ = 1347₍₈₎ – rozdělujeme převáděné číslo na trojice vždy odzadu! na začátek čísla můžeme doplnit nuly pro získání poslední trojice (nebo čtveřice), nula před číslem nezmění jeho hodnotu!

3. převod ze soustavy se základem Z1 do soustavy se základem Z2

- další příklady:
- převeďte číslo z dvojkové soustavy 1101110011011₍₂₎ do šestnáctkové:
 0110 1110 0110 1011₍₂₎ = 6E6B₍₁₆₎
- převeďte číslo z osmičkové soustavy 7013₍₈₎ do dvojkové soustavy: 7013₍₈₎ = 111 000 001 011₍₂₎ – každou 1 číslici v osmičkové soustavě musíme převést jako 3 číslice ve dvojkové soustavě, 0 tedy není 0 ale 000!, 1 není 1 ale 001!
- převeďte číslo ze šestnáctkové soustavy 3AC1₍₁₆₎ do dvojkové: 3AC1₍₁₆₎ = 0011 1010 1100 0001₍₂₎ – každou 1 číslici v šestnáctkové soustavě musíme převést jako 4 číslice ve dvojkové soustavě, 3 není 11 ale 0011, 1 není 1 ale 0001 dvojici nul na počátku výsledného čísla v dvojkové soustavě můžeme vypustit

Čísla signed (se znaménkem) vs. unsigned (bez) – vyjádření záporných čísel

- 1. znaménkový bit (tzv. signum bit)
 - vyhrazení jednoho bitu (řádového místa) pro znaménko tzv. signum bit
 - pokud první bit (signum bit) = 0 kladné číslo, pokud bit = 1 záporné číslo
 - příklad: 7 bitové binární číslo (m=7) jeho rozsah může být 0000000-1111111 $\mathbf{1}_{(2)}$ (0 až 127), přidáme 8. (signum) bit, získáme **01111111\mathbf{1}_{(2)} = +127**, **11111111\mathbf{1}_{(2)} = -127**
- 2. logický doplněk (tzv. one's complement)
- 3. dvojkový doplněk (tzv. two's complement)

Úvod, Číselné soustavy a kódy – Logický doplněk, dvojkový doplněk, záporná čísla

logický doplněk

- záporné číslo je vytvořeno pomocí inverze na všech řádových místech binárního čísla (zaměníme 0 za 1 a naopak)
- symetrický interval kolem nuly +n-1... -n+1, dvě vyjádření pro nulu

dvojkový doplněk

- nejprve získáme logický doplněk (inverze 0 a 1) a pak přičteme + 1 = dvojkový doplněk
- nesymetrický interval kolem nuly +n-1... -n

číslo bez znaménka (nezáporné) – dvojková/desítková soust.	logický doplněk – dvojková/desítková soust.	dvojkový doplněk – dvojková/desítková soust.
$OOO_{(2)} = O_{(10)}$	111 ₍₂₎ = -0 ₍₁₀₎	$OOO_{(2)} = O_{(10)}$
$001_{(2)} = 1_{(10)}$	$110_{(2)} = -1_{(10)}$	111 ₍₂₎ = -1 ₍₁₀₎
$010_{(2)} = 2_{(10)}$	101 ₍₂₎ = -2 ₍₁₀₎	110 ₍₂₎ = -2 ₍₁₀₎
$011_{(2)} = 3_{(10)}$	$100_{(2)} = -3_{(10)}$	101 ₍₂₎ = -3 ₍₁₀₎
100 ₍₂₎ = 4 ₍₁₀₎	$011_{(2)} = 3_{(10)}$	100 ₍₂₎ = -4 ₍₁₀₎
$101_{(2)} = 5_{(10)}$	$010_{(2)} = 2_{10)}$	011 ₍₂₎ = 3 ₍₁₀₎
110 ₍₂₎ = 6 ₍₁₀₎	$001_{(2)} = 1_{(10)}$	$010_{(2)} = 2_{(10)}$
111 ₍₂₎ = 7 ₍₁₀₎	$OOO_{(2)} = O_{(10)}$	$001_{(2)} = 1_{(10)}$

Úvod, Číselné soustavy a kódy – Číselné kódy

- Číselné kódy
- číselný kód = soubor pravidel pro jednoznačné přiřazení znaku (číslice, symbolu) jeho hodnotě na dané pozici v čísle
- různé kódy přinášejí různé výhody pro specifické aplikace
- Hammingova vzdálenost = počet pozic (řádových míst), na kterých se dvě stejně dlouhá kódová slova liší (příklad, Hammingova vzdálenost mezi 0000 a 1111 je 4)

BCD kód = Binary-coded decimal

- každá číslice na jednotlivé řádové pozici v desítkové soustavě je vyjádřena v binární soustavě pomocí čtveřice číslic (bitů)
- výhodou je rychlost a snadnost převodu (čitelnost), nevýhodou je redundance
- příklad: číslo v desítkové soustavě 23₍₁₀₎ -> 0010 0011 v BCD kódu

Grayův kód

- binární kód v němž se dvě po sobě následující čísla liší vždy právě jen na 1 řádovém místě (Hammingova vzdálenost dvou po sobě jdoucích čísel se vždy = 1)
- široké uplatnění detekční a korekční kódy, kódování pozic, Karnaughovy mapy, aj.

Kód 1 z n

- jednotlivá čísla jsou vyjádřena jako pozice číslice 1 v kódovém slově
- vysoká redundance, ale snadná čitelnost a možnost rychlé detekce chyby v kódu

Váhové kódy

 každému řádovému místu odpovídá jiná váha, některé kombinace váh mohou vytvořit úplné vyjádření čísel 0-9 v desítkové soustavě, např.: 5421, 84-2-1, 2421, aj.

Úvod, Číselné soustavy a kódy – Číselné kódy

Kód F+3 (XS-3)

kód F+3 (také **XS-3**) je kód, kde k číslu v binárním zápise je přičteno $+3_{(10)} = +0011_{(2)}$

Kód pro zobrazení znaků na 7segmentovém displeji

 7 samostatných světelných segmentů rozmístěných tak, aby pomocí kombinací jeho rozsvícených a zhasnutých segmentů bylo možno zobrazovat dekadické číslice a vybrané znaky abecedy.

N ₍₁₀₎	BCD kód	Váhový 5421	Váhový 84-2-1	Grayův kód	F+3 kód	Kód 1 z n	Kód 7segm. displeje
0	0000	0000	0000	0000	0011	0000000001	1000000
1	0001	0001	0111	0001	0100	0000000010	1111001
2	0010	0010	0110	0011	0101	000000100	0100100
3	0011	0011	0101	0010	0110	000001000	0110000
4	0100	0100	0100	0110	0111	0000010000	0011001
5	0101	1000	1011	0111	1000	0000100000	0010010
6	0110	1001	1010	0101	1001	0001000000	0000010
7	0111	1010	1001	0100	1010	0010000000	1111000
8	1000	1011	1000	1100	1011	0100000000	0000000
9	1001	1100	1111	1101	1100	1000000000	0010000

aritmetické operace v číselných soustavách

- zaměříme se na dvojkovou, osmičkovou a šestnáctkovou, postup stejný pro libovolnou
- lze samozřejmě nejprve převést obě čísla do desítkové, provést příslušnou operaci a výsledek převést zpět – obvykle ale rychlejší provést operaci přímo v dané soustavě

1. Sčítání

 provádí se stejně jako v desítkové soustavě – pouze kontrolujeme přenos do vyšších řádů

		Pi	.1103	CIII		Lapis	CITIC							
3. krok		přei	nos 1 1	1			4. krok		přei	nos 0 1	1			
	1	0	1	1	0	1			1	0	1	1	0	1
+	0	1	1	0	1	1		+	0	1	1	0	1	1
1+1+0 =	2 ₍₁₀) = 1	0 ₍₂₎	0	0	0		1+1+1 = 3 ₍₁₎	₀₎ = 2	11 ₍₂₎	1	0	0	0

dokončení – sečtěte 101101₍₂₎ + 11011₍₂₎:

5. krokpřenos1101101+011011+0+1 = $2_{(10)}$ = $10_{(2)}$ 0100

6. krok přenos $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 0 1 1 0 1 + 1+1+0 = 2₍₁₀₎ = 10₍₂₎ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 0 1 0 0 0

1. Sčítání

- takto lze sčítat čísla v libovolné polyadické číselné soustavě je jen nutné kontrolovat přenos do vyšších řádů při překročení *Z-1*
- jiné příklady a soustavy: dvojková soustava

šestnáctková soustava

osmičková soustava

2. Odečítání – 2 metody

- a) odečítání stejným způsobem jako v desítkové soustavě, "vypůjčení" z vyššího řádu
- při odečítání si můžeme vypůjčit z vyššího řádu jedničku a místo 0 si představit 2 neboť $2_{(10)} = 10_{(2)}$, nebo místo 1 si představit 3 neboť $3_{(10)} = 11_{(2)}$ příklad odečtěte ve dvojkové soustavě $101100_{(2)}$ $11111_{(2)}$:

	V	ypů	jče	ní	-1		
-	0	1	1	1	1	1	
místo 2,	0 si	pře . 2, ₁	dst	aví	me = 1	1	
	- místo 2,	1 - 0	1 0 - 0 1	1 0 1 - 0 1 1	1 0 1 1 - 0 1 1 1	- 0 1 1 1 1	vypůjčení -1 1 0 1 1 0 0 - 0 1 1 1 1 1 místo 0 si představíme $2_{(10)} \dots 2_{(10)} - 1_{(10)} = 1$

2. krok		vyp	ůjče	ení	-1		
		1	0	1	1	0	0
	-	0	1	1	1	1	1
0 < 1+1,	místo 0 2 ₍₁₀₎	si př 2 ₍	eds ⁻	taví (10)	me = 0	0	1

3. krok	vypů	jčer	ηĺ	-1			
		1 1	1	0	0		
	-	0	1	1	1	1	1
1 < 1+1, místo 1 3 ₍₁₀	si pře , 3 ₍₁	edst ₀₎ -2	avír (10) :	me = 1	1	0	1

4. krok	vypůjče	ení	-1					
		1	0	1	1	0	0	
	-	0	1	1	1	1	1	_
$1 < 1+1$, místo 1 si představíme $3_{(10)} \dots 3_{(10)} - 2_{(10)} = 1$					1	0	1	-

2. Odečítání – 2 metody

a) dokončení příkladu – odečtěte ve dvojkové soustavě $101100_{(2)}$ - $11111_{(2)}$: **5. krok**

vypůjčení -1

1 0 1 1 0 0

- 0 1 1 1 1 1

0 < 1+1, místo 0 si představíme
$$2_{(10)} \dots 2_{(10)}^{-2} = 0$$

0 1 1 0 1

6. krok

2. Odečítání – 2 metody

- b) použití dvojkového doplňku 4 kroky:
 - 1. vyrovnání počtu řádových míst menšence a menšitele doplníme před menšitele zleva tolik 0, aby byl počet řádových míst obou čísel shodný
 - 2. vytvoříme dvojkový doplněk menšitele
 - 3. sečteme (nikoliv odečteme!) menšence a dvojkový doplněk menšitele
 - 4. pokud byl při sčítání překročen počet řádových míst (výsledek má větší počet řádových míst než původní menšenec), tato přetékající řádová místa vyškrtneme
- stejný příklad jako předchozí odečtěte ve dvojkové soustavě 101100₍₂₎ 11111₍₂₎:
 - 1. krok vyrovnání počtu řádových míst doplníme jednu 0 před menšitele

2. krok – vytvoříme dvojkový doplněk upraveného menšitele $011111_{(2)}$ -> $100000_{(2)}$ + $1_{(2)}$ = **100001**₍₂₎

- 2. Odečítání 2 metody
 - b) dokončení příkladu odečtěte ve dvojkové soustavě 101100₍₂₎ 11111₍₂₎:
 - 3. krok nyní sečteme menšence a dvojkový doplněk menšitele

4. krok – zkontrolujeme počet řádových míst výsledku a škrtneme přetékající

porovnejte s výsledkem první metody = 1101₍₂₎

2. Odečítání

- další příklady a jiné soustavy:
- stejný postup i pro jiné soustavy (metoda 1), metoda 2 lze použít jen pro dvojkovou s.

dvojková soustava

šestnáctková soustava

osmičková soustava

3. Násobení

- postup násobení ve dvojkové soustavě je stejný jako v desítkové při násobení 1 jen opisujeme, při násobení 0 napíšeme řádek nul nebo jen jednu nulu a posuneme
- příklad vynásobte ve dvojkové soustavě 101100₍₂₎ x 1011₍₂₎:

1	1	1	1	0	0	1	0	0	-
1	0	1	1	0	0				_
	0	0	0	0	0	0			
		1	0	1	1	0	0		
			1	0	1	1	0	0	
		X			1	0	1	1	
			1	0	1	1	0	0	

 složitější situace může nastat, pokud při konečném sčítání narazíme na přenos o více řádů

3. Násobení

příklad – vynásobte ve dvojkové soustavě 101111₍₂₎ x 1111₍₂₎:

protože $4_{(10)}$ je ve dvojkové soustavě $100_{(2)}$, nepřičteme přenos 1 o jednu ale o dvě pozice, přičteme tedy přenos 0 o jednu pozici vlevo a přenos 1 o dvě pozice vlevo

3. Násobení

 další příklady a jiné soustavy: dvojková soustava

šestnáctková soustava

1

osmičková soustava

		5	3	1	
	X		4	7	
	4	5	5	7	,
2	5	4	4		
3	2	2	1	7	•

4. Dělení

- obecně lze použít stejný postup jako při dělení v desítkové soustavě to je ale například ve dvojkové soustavě těžké si představit
- proto obvykle převádíme operaci dělení na odečítání
- 2 metody dělení založené na odečítání:
- a) **přímé odečítání** kontinuálně odečítáme od dělence dělitele dokud je výsledek odečítání nezáporný:
- příklad vydělte ve dvojkové soustavě 10010₍₂₎: 110₍₂₎

4. Dělení

- b) odečítání s posunem o řády postupně odečítáme od dělence dělitele posunutého o n-řádů:
- nejprve posuneme dělitele o n-řádů směrem vlevo (doplníme nuly zprava) tak,
 abychom vyrovnali počet řádových míst dělence a dělitele
- pokud je výsledek odečítání kladný, provedeme odečtení a zapíšeme 1, pokud je výsledek záporný, neprovedeme odečtení a napíšeme 0
- potom provedeme posun dělitele o n-1-řádů a opět zkusíme odečtení od dělence či výsledku předchozího odečítání
- tímto způsobem pokračujeme, dokud se nedostaneme na nulový posun
- výsledek sepíšeme pomocí poznamenaných nul a jedniček nezáporný výsledek = 1,
 záporný výsledek = 0

4. Dělení

- b) odečítání s posunem o řády
- příklad vydělte ve dvojkové soustavě 100011₍₂₎: 111₍₂₎
 - 1. krok posuneme dělitele o 3 řády (doplníme 3 nuly)
 - 1 0 0 0 1 1
 - 1 1 1 0 0 0 → dělitel > dělenec = 0
 - 2. krok posuneme dělitele o 2 řády (doplníme 2 nuly)
 - 1 0 0 0 1 1
 - 1 1 1 0 0 → dělitel < dělenec = 1
 1 1 1 1
 - 3. krok posuneme dělitele o 1 řád (doplníme 1 nulu)
 - 1 1 1
 - 1 1 1 0 → dělitel > dělenec = 0

X4. krok – bez posunu dělitele (nedoplňujeme nuly)

- 1 1 1
- 1 1 1 → dělitel = dělenec = 1

výsledek zapíšeme odshora dolů = $101_{(2)}$