EARTHQUAKE DAMAGE PREDICTION SYSTEM

PRESENTED BY

ANISH SHILPAKAR

ANUSHIL TIMSINA

SUGAM KARKI

AAROSH DAHAL

AGENDAS

DATASET

MODEL DEVELOPMENT

EDA

MODEL EVALUATION

DATA PREPROCESSING

MODEL OPTIMIZATION

DATASET

- From Kaggle: **DATASET**
- Data Overview: 762106 rows and 31 columns
- Target: damage_grade(grade 1, 2, 3, 4, 5)

```
df.columns
 ✓ 0.8s
Index(['building_id', 'district_id', 'vdcmun_id', 'ward_id',
       'count_floors_pre_eq', 'count_floors_post_eq', 'age_building',
       'plinth_area_sq_ft', 'height_ft_pre_eq', 'height_ft_post_eq',
       'land_surface_condition', 'foundation_type', 'roof_type',
       'ground_floor_type', 'other_floor_type', 'position',
       'plan_configuration', 'has_superstructure_adobe_mud',
       'has_superstructure_mud_mortar_stone', 'has_superstructure_stone_flag',
       'has_superstructure_cement_mortar_stone',
       'has_superstructure_mud_mortar_brick',
       'has_superstructure_cement_mortar_brick', 'has_superstructure_timber',
       'has_superstructure_bamboo', 'has_superstructure_rc_non_engineered',
       'has_superstructure_rc_engineered', 'has_superstructure_other',
       'condition_post_eq', 'damage_grade', 'technical_solution_proposed'],
      dtype='object')
```

EXPLORATORY DATA ANALYSIS

• The classes seem to be unevenly distributed with most data being of class 'Grade 5'

- A total of 80% of buildings in the Sindhupalchok district were classified as 'Grade 5' damaged buildings.
- The least affected among these 11 district seem to be Makwanpur with 69% of building suffering damages below Grade 4

- Buildings with foundations of Mud-mortar-Stone/Brick suffered the most damage from the earthquake. Almost 80% of these buildings suffered grade 4 or 5 damage.
- Buildings with the foundation of RC suffered the least damage from the earthquake.

• Buildings having Bamboo/Timber roofs are prone to serious damage by earthquakes whereas buildings made up of RCC/RB/RBC roof type seem to be resilient to high damage.

• Building above the age of 10 seem be highly prone to heavy damages by the earthquake

• Most buildings that were marked Grade 5 damage were reduced to ground by the earthquake

- Buildings having buildings attached to 3 sides seem to be less affected by the earthquake.
- Buildings having building attached to only 1 side seems to be the most affected by the earthquake.

- Building with Plan Configuration shaped Rectangular and Square seems to be most prone to high damage from the earthquake
- Central-Courtyarded Buildings appear to be less affected by the earthquake

• Rasuwa and Sindhupalchowk have most percentage of Grade 5 damaged buildings followed by Dolakha.

• Rasuwa and Sindhupalchowk have the most percentage of totally destroyed buildings followed by Dolakha and Nuwakot.

DATA PREPROCESSING

NULL VALUES

building_id	0	
district_id	0	
vdcmun_id	0	
ward_id	0	
count_floors_pre_eq	0	
count_floors_post_eq	0	
age_building	0	
plinth_area_sq_ft	0	
height ft_pre_eq	0	
height_ft_post_eq	0	
land_surface_condition	0	
foundation_type	0	
roof_type	0	
ground_floor_type	0	
other_floor_type	0	
position	1	
plan_configuration	1	
has_superstructure_adobe_mud	0	
has_superstructure_mud_mortar_stone	0	
has_superstructure_stone_flag	0	
has_superstructure_cement_mortar_stone	0	
has_superstructure_mud_mortar_brick	0	
has_superstructure_cement_mortar_brick	0	
has_superstructure_timber	0	
has_superstructure_bamboo	0	
has_superstructure_rc_non_engineered	0	
has_superstructure_rc_engineered	0	
has_superstructure_other	0	
condition_post_eq	0	
damage_grade	12	
technical_solution_proposed	12	
dtype: int64		

DATA CLEANING

All rows with null values in target column were dropped as the null count was only 12

```
def cleanDataByRemoving(df):
    df.dropna(inplace=True)
    return df
```

FEATURE SELECTION

- Damage grade is target variable and rest of columns in data frame as features
- Train test split performed with split ratio of 75% train, 25% test.
- Stratify = y so that both train and test set contains approximately the same percentage of samples of each target class.

```
def selectFeatures(df):
    # Variables for selecting features
    random_seed = 42
    test_ratio = 0.25
    # Damage grade is the required target variable
    y = df["damage_grade"]
    # Technical solution proposed is conflicting with output so trying by dropping it
    # Currently considering all other columns as features
    X = df.drop("damage_grade",axis=1)
    # stratify help to make equal distribution of classes in both train and test
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = test_ratio, random_state = random_seed, stratify = y)
    return X_train, X_test, y_train, y_test, X, y
```

VARIABLE ENCODING

- Label Encoder for Ordinal variables.
- One hot encoding for Nominal variables

```
def encodeVariables(df):
    # numeric columns
    numeric_cols = [col for col in df.columns if df[col].dtype = 'int64']
    # Categorical ordinal columns
    cat_ordinal=["land_surface_condition","position","damage_grade",
    "technical_solution_proposed"]
    # Nominal ordinal columns
    cat_nominal=["foundation_type","ground_floor_type","other_floor_type",
    "plan_configuration","condition_post_eq","roof_type"]
    df[cat_ordinal] = df[cat_ordinal].apply(LabelEncoder().fit_transform)
    df = pd.get_dummies(df,columns=cat_nominal,prefix=cat_nominal)
    return df
```

FEATURE ENGINEERING

- Net Floor and Net Height calculated from pre- and post-earthquake data
- Calculated decrement instead of flat value
- High correlation
- Converted to single feature using mean

```
df['net_floor'] = df['count_floors_pre_eq'] - df['count_floors_post_eq']
df['net_height'] = df['height_ft_pre_eq'] - df['height_ft_post_eq']
```

```
# Adding two new columns net_floors and net_height from count_floors and height
df['net_floor'] = df['net_floor']/df.count_floors_pre_eq
df['net_height'] = df['net_height']/df.height_ft_pre_eq
```

FEATURE REMOVAL

- Unwanted features were removed.
- Building id, District id, vdcmun id, ward id removed
- Count floors and height_ft removed
- net height and net floor removed
- technical_solution_proposed removed.

FEATURE SCALING

- Standard Scaler used to scale the features i-e X_train and X_test
- This reduced computational complexity and helped to reduce model training time.

```
def scaleFeatures(X_train, X_test):
    scaler = StandardScaler()
    X_train1 = scaler.fit_transform(X_train)
    X_test1 = scaler.transform(X_test)
    return X_train1, X_test1
```

MODELS

LOGISTIC REGRESSION

ADA BOOST

DECISION TREE

GRADIENT BOOST

RANDOM FOREST

XG BOOST

PARAMETERS

	Model Name	Accuracy	Precision	Recall	Test F1 Score	Train F1 Score
0	Logistic Regression	0.819304	0.825867	0.819304	0.816788	0.816722
1	Decision Tree	0.873040	0.872883	0.873040	0.872958	0.998922
2	Random Forest	0.903503	0.905435	0.903503	0.904199	0.998912
3	Gradient Boosting	0.883453	0.889472	0.883453	0.884711	0.884191
4	Ada Boost	0.796677	0.823926	0.796677	0.778001	0.777413
5	XG Boost	0.881532	0.888086	0.881532	0.882907	0.882235

LOGISTIC REGRESSION

DECISION TREE

RANDOM FOREST

GRADIENT BOOST

ADA BOOST

XG BOOST

PARAMETERS

Considering Top 10 features(columns) only

Considering Top 10 features(columns) only

	Model Name	Accuracy	Precision	Recall	Test F1 Score	Train F1 Score
0	Decision Tree	0.880503	0.886974	0.880503	0.881876	0.882462
1	Random Forest	0.880750	0.887232	0.880750	0.882120	0.882464
2	Gradient Boosting	0.880955	0.887499	0.880955	0.882357	0.881785
3	XG Boost	0.880955	0.887499	0.880955	0.882357	0.881782

HYPERPARAMETER TUNING

Considering Random Forest only

Finally best hyperparameter obtained for Random Forest model was:

```
n_estimators = 300
min_samples_split = 10
min_samples_leaf = 1
```

max_features = auto

 $max_depth = 100$

bootstrap = False

	Model Name	Accuracy	Precision	Recall	Test F1 Score	Train F1 Score
0	Random Forest	0.906426	0.908614	0.906426	0.907169	0.973333

Considering Random Forest only

Considering Random Forest only

```
{'bootstrap': False,
    'max_depth': 50,
    'min_samples_leaf': 2,
    'min_samples_split': 2,
    'n_estimators': 200}
```

	Model Name	Accuracy	Precision	Recall	Test F1 Score	Train F1 Score
0	Random Forest	0.905445	0.907978	0.905445	0.906206	0.963743

Considering Random Forest only

MODEL OPTIMIZATION

- Under-sampling and Oversampling
- Hyperparameter Tuning
- PCA
- Deployment

All methods were performed on Random Forest Classifier

UNDERSAMPLING

- 2 methods used for undersampling
 - Random undersampling
 - Nearmiss undersampling.
- Data undersampled so all the classes have equal 58635 rows

```
def underSampleData(X_train,y_train,X_test,y_test):
    # random under sampling
    rus = RandomUnderSampler(random_state=42)
    X_train_rus, y_train_rus = rus.fit_resample(X_train,y_train)
    # Check the number of records after over sampling
    print(sorted(Counter(y_train_rus).items()))
    # Nearmiss under sampling
    nearmiss = NearMiss(version=3)
    X_train_nearmiss, y_train_nearmiss = nearmiss.fit_resample(X_train, y_train)
    # Check the number of records after over sampling
    print(sorted(Counter(y_train_nearmiss).items()))
    return X_train_rus, y_train_rus, X_train_nearmiss, y_train_nearmiss
```

OVERSAMPLING

- 2 methods used for oversampling
 - Random oversampling
 - SMOTE undersampling.
- Data oversampled so all the classes have equal 206784 rows

```
def overSampleData(X_train,y_train):
    # random over sampling
    ros = RandomOverSampler(random_state=42)
    X_train_ros, y_train_ros = ros.fit_resample(X_train,y_train)
    # Check the number of records after over sampling
    print(sorted(Counter(y_train_ros).items()))
    smote = SMOTE(random_state=42)
    X_train_smote, y_train_smote= smote.fit_resample(X_train, y_train)
    # Check the number of records after over sampling
    print(sorted(Counter(y_train_smote).items()))
    return X_train_ros, y_train_ros, X_train_smote, y_train_smote
```

SAMPLING RESULTS

Model Name	Accuracy_Test	Accuracy_Train	Precision_Test	Precision_Train	Recall_Test	Recall_Train	F1_Score_Test	F1_Score_Train
Normal	0.713532	0.714039	0.717065	0.718432	0.713532	0.714039	0.698504	0.699440
Random Oversampling	0.713495	0.662418	0.719238	0.666584	0.713495	0.662418	0.708035	0.655470
SMOTE Oversampling	0.716540	0.661617	0.722646	0.663711	0.716540	0.661617	0.714315	0.658882
Random Undersampling	0.713894	0.662895	0.720699	0.668616	0.713894	0.662895	0.708431	0.655997
Near Miss Undersampling	0.693913	0.741043	0.698761	0.714536	0.693913	0.741043	0.670236	0.707567

- Random under and over sampling took few seconds to complete
- SMOTE oversampling took about 13 minutes and nearmiss undersampling took about 12 minutes.

RESULTS OF FEATURE ENGINEERING AND REMOVAL

Model Name	Accuracy_Test	Accuracy_Train	Precision_Test	Precision_Train	Recall_Test	Recall_Train	F1_Score_Test	F1_Score_Train
Normal	0.731146	0.749855	0.737879	0.757903	0.731146	0.749855	0.729433	0.748666
Random Oversampling	0.722761	0.735611	0.733074	0.746924	0.722761	0.735611	0.722239	0.734456
Random Undersampling	0.721365	0.703191	0.733419	0.715804	0.721365	0.703191	0.720206	0.700921

• It was observed removing the technical solution proposed feature reduced the overall score of the model from 90% to 72% as it has highest correlation to the target variable.

HYPERPARAMETER OPTIMIZATION

- Hyperparameter optimization to reduce overfitting.
- 2 methods used:
 - Grid Search and Randomized Search algorithms
 - Manually changing hyperparameters
- Using algorithms took a long time, about 6-12 hrs.
- Better scores obtained from manual hyperparameter tuning.
- Best Parameters Found:
 - n_estimators=150,min_samples_split=5,min_samples_leaf=5,max_depth=30, random_state=RANDOM_STATE
 - This provided test f1_score of 77.89 and train f1_score of 82.

HYPERPARAMETER OPTIMIZATION

• Hyperparameter optimization to reduce overfitting.

Model Name	Accuracy_Test	Accuracy_Train	Precision_Test	Precision_Train	Recall_Test	Recall_Train	F1_Score_Test	F1_Score_Train
Normal	0.773745	0.996336	0.775141	0.996337	0.773745	0.996336	0.773801	0.996336
Random Oversampling	0.769378	0.996662	0.772624	0.996664	0.769378	0.996662	0.770718	0.996662
SMOTE Oversampling	0.773299	0.997572	0.776593	0.997572	0.773299	0.997572	0.774555	0.997572
Random Undersampling	0.761726	0.997138	0.771019	0.997138	0.761726	0.997138	0.764857	0.997138
Near Miss Undersampling	0.701770	0.999008	0.700114	0.999008	0.701770	0.999008	0.698437	0.999008

Outputs when no hyperparameters used

Model Name	Accuracy_Test	Accuracy_Train	Precision_Test	Precision_Train	Recall_Test	Recall_Train	F1_Score_Test	F1_Score_Train
Normal	0.774685	0.822207	0.777916	0.827563	0.774685	0.822207	0.772696	0.821312
Random Oversampling	0.774391	0.860454	0.781040	0.863030	0.774391	0.860454	0.776470	0.860974
Random Undersampling	0.764665	0.801245	0.773913	0.806666	0.764665	0.801245	0.767060	0.802177

CHECKING IMPORTANT FEATURES

PRINCIPAL COMPONENT ANALYSIS (PCA)

- PCA done to reduce the dimensionality
- Slight overfitting seen after performing PCA

```
from sklearn.decomposition import PCA
pca = PCA(n_components=22)
X_train_normal_pca = pca.fit_transform(X_train_normal)
X_test_normal_pca = pca.transform(X_test_normal)
```

Model Name	Accuracy_Test	Accuracy_Train	Precision_Test	Precision_Train	Recall_Test	Recall_Train	F1_Score_Test	F1_Score_Train
Normal	0.725742	0.842372	0.728641	0.850014	0.725742	0.842372	0.721893	0.842096
Random Oversampling	0.716029	0.889136	0.722765	0.891399	0.716029	0.889136	0.716801	0.889784
Random Undersampling	0.712458	0.830180	0.723755	0.835038	0.712458	0.830180	0.714128	0.831488

DEPLOYMENT

- Best model saved in pickle format
- A simple web app developed using Django for user input
- Some data preprocessing done to convert the data from web app into form suitable for model prediction.
- Currently, model hosted only in localhost.

SAVING MODELS

```
def save_model(model,name):
       pickle.dump(model,open(f'{name}.pkl','wb'))
       print(f'{name} model saved successfully')
   save_model(forest1, 'normal_model')
normal_model model saved successfully
```

WEB APP DEMO

CONCLUSION

- Hence, in this project various machine learning concepts were researched and implemented, and a simple web app was developed to predict the earthquake damage to buildings.
- Overall code can be found in GitHub:
- JuJu2181/earthquake-damage-predictor: A ML model to predict building damages (github.com)
- Demo video can be found here: **DEMO VIDEO**
- Some problems we faced are uneven distribution of data, irrelevant features, overfitting, computational time.

THANKYOU