Lab11-Solution

CS363-Computability Theory, Xiaofeng Gao, Spring 2016

- 1. Recall that $A \otimes B = \{\pi(a, b) \mid a \in A, b \in B\}$. Prove the following statements.
 - (a) For any sets A, B, if $B \neq \emptyset$ then $A \leq_m A \otimes B$.
 - (b) $A \equiv_m A \otimes \mathbb{N}$ for any set A,
 - (c) $A \equiv_m A \otimes B$ if $A \neq \mathbb{N}$ and B is a non-empty recursive set.

Solution.

- (a) Let $b_0 \in B$, then $a \in A \Leftrightarrow \pi(a, b_0) \in A \otimes B$, so $A \leq_m A \otimes B$.
- (b) ' $A \leq_m A \otimes \mathbb{N}$ ' has been proved in 1a;
 - $x \in A \otimes \mathbb{N} \iff \pi_1(x) \in A$. Thus $A \otimes \mathbb{N} \leq_m A$.
- (c) Since ' $A \leq_m A \otimes B$ ' has been proved in 1a, we only need to show that $A \otimes B \leq_m A$. To prove this, let $a_0 \notin A$, then define the following function

$$f(x) = \begin{cases} \pi_1(x) & \pi_2(x) \in B\\ a_0 & \text{otherwise} \end{cases}$$

$$x \in A \otimes B \Leftrightarrow f(x) \in A$$

Thus $A \otimes B \leq_m A$.

- 2. Let **a**, **b** be m-degrees.
 - (a) Show that the least upper bound of \mathbf{a} , \mathbf{b} is uniquely determined; denote this by $\mathbf{a} \cup \mathbf{b}$;
 - (b) Show that if $\mathbf{a} \leq_m \mathbf{b}$ then $\mathbf{a} \cup \mathbf{b} = \mathbf{b}$;
 - (c) Show that if \mathbf{a}, \mathbf{b} are r.e., then so is $\mathbf{a} \cup \mathbf{b}$;
 - (d) Let $A \in \mathbf{a}$ and let \mathbf{a}^* denote $d_m(\overline{A})$. (Check that \mathbf{a}^* is independent of the choice of $A \in \mathbf{a}$.) Show that $(\mathbf{a} \cup \mathbf{a}^*)^* = \mathbf{a} \cup \mathbf{a}^*$.

Solution.

- (a) Any pair of m-degrees \mathbf{a}, \mathbf{b} have a least upper bound, denoted by \mathbf{c} . Suppose there is another m-degree \mathbf{d} , which is also a least upper bound of \mathbf{a}, \mathbf{b} . Then we have $\mathbf{c} \leq_m \mathbf{d}$ and $\mathbf{d} \leq_m \mathbf{c}$ by the properties of least upper bound, i.e. $\mathbf{c} \equiv_m \mathbf{d}$. Therefore, from the definition of m-degree, we have $\mathbf{c} = \mathbf{d}$.
- (b) Apparently we have $\mathbf{a} \leq_m \mathbf{b}$ and $\mathbf{b} \leq_m \mathbf{b}$. Furthermore, for any upper bound \mathbf{c} of \mathbf{a}, \mathbf{b} , we have $\mathbf{b} \leq_m \mathbf{c}$. Then from the definition of the least upper bound, \mathbf{b} is a least upper bound of \mathbf{a}, \mathbf{b} .
- (c) Since \mathbf{a}, \mathbf{b} are r.e., then we have $\mathbf{a} \leq_m K$ and $\mathbf{b} \leq_m K$, indicating that K is an upper bound of \mathbf{a}, \mathbf{b} . Hence by definition, $\mathbf{a} \cup \mathbf{b} \leq_m K$. Therefore $\mathbf{a} \cup \mathbf{b}$ is r.e.
- (d) Let $A \in \mathbf{a}$ and $B \in \mathbf{a} \cup \mathbf{a}^*$, and $\overline{A} \in \mathbf{a}^*$. Then we have $A \leq_m B$ and $\overline{A} \leq_m B$. By the theorem that " $A \leq_m B$ iff. $\overline{A} \leq_m \overline{B}$ ". We have $\overline{A} \leq_m \overline{B}$ and $A \leq_m \overline{B}$. Thus $d_m(\overline{B})$ is a upper bound of $\mathbf{a} \cup \mathbf{a}^*$. From the definition of least upper bound, we could get $B \leq_m \overline{B}$. Then we apply the theorem again, we get $\overline{B} \leq_m B$. Hence $B \equiv_m \overline{B}$, i.e. $(\mathbf{a} \cup \mathbf{a}^*)^* = \mathbf{a} \cup \mathbf{a}^*$.

3. Show that the following sets all belong to the same m-degree:

- (a) $\{x \mid \phi_x = 0\},\$
- (b) $\{x \mid \phi_x \text{ is total and constant}\},\$
- (c) $\{x \mid W_x \text{ is infinite}\}.$

Solution.

 \bullet $(a) \Rightarrow (b)$

We construct the function given as

$$f(x,y) = \begin{cases} c & \text{if } \phi_x(y) = 0\\ \text{undefined otherwise} \end{cases}$$

Since f(x,y) is obviously computable, there is a total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x,y)$.

Consequently, $\phi_x = 0 \Leftrightarrow \phi_{k(x)} = c$.

And therefore, $\{x \mid \phi_x = 0\} \leq_m \{x \mid \phi_x \text{ is total and constant}\}.$

• $(b) \Rightarrow (c)$

We construct the function given as
$$f(x,y) = \begin{cases} 1 & \text{if } \phi_x(0) \downarrow \land H(x,z,\phi_x(0)) \text{ for any } 0 \leq z \leq y \\ \text{undefined otherwise} \end{cases}$$

Since f(x,y) is obviously computable, there is a total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x,y)$.

Hence, it is clear that ϕ_x is total and constant $\Rightarrow W_{k(x)}$ is infinite.

And if ϕ_x is not total or not constant, then there is a z such that $\phi_x(z) \uparrow \text{ or } \phi_x(z) \neq \phi_x(0)$ and therefore $\forall t \in W_{k(x)}, t < z$. Thus, $W_{k(x)}$ is not infinite.

Therefore, ϕ_x is total and constant $\Leftrightarrow W_{k(x)}$ is infinite.

And $\{x \mid \phi_x \text{ is total and constant }\} \leq_m \{x \mid W_x \text{ is infinite}\}.$

 \bullet $(c) \Rightarrow (a)$

Consider the function shown below:
$$f(x,y) = \begin{cases} 0 & \text{if } \exists z > y(\phi_x(z) \downarrow) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Obviously, f(x,y) is computable.

Then, there is a total computable function k(x) such that $\phi_{k(x)} \simeq f(x,y)$.

And it is obvious that W_x is infinite $\Rightarrow \phi_{k(x)} = 0$.

On the other hand, if W_x is finite, then there is a z such that $\forall t \in W_x, t \leq z$ and therefore $\phi_{k(x)}(z)$ is undefined. Thus, $\phi_{k(x)} \neq 0$.

Hence, W_x is infinite $\Leftrightarrow \phi_{k(x)} = 0$.

Therefore, $\{x \mid W_x \text{ is infinite}\} \leq_m \{x \mid \phi_x = 0\}.$

And since \leq_m is transitive, we can conclude that

 $\{x \mid \phi_x = 0\} \equiv_m \{x \mid \phi_x \text{ is total and constant}\} \equiv_m \{x \mid W_x \text{ is infinite}\}.$