Machine Learning-Based Prediction of Student GPA from Academic Behaviors

Group 15

Đỗ Nguyễn Gia Như Nguyễn Quang Anh Vương Hồng Minh Trần Thanh Phát Nguyễn Quang Minh

May 2025

Table of content

- Problem definition
- 2 Dataset
- Methodology
- Result
- Model evaluation
- 6 Demo

Problem definition

Project Goals

- Predict student academic performance
- Analyze learning patterns
- Identify at-risk students
- Provide early interventions

Dataset

Summary Dashboard

Dataset

Summary Dashboard

Methodology

Linear Regression

with some libraries

Methodology

- Data preprocessing
 - The dataset is divided into three types: numerical, ordinal, and nominal features.
 - Missing values are handled using SimpleImputer.
 - The data is split into 80% training and 20% testing sets.
- 2 Training the model using Linear Regression
 - Apply a bounded Linear Regression model with pipeline integration.
- Evaluating the model
 - Use MAE, MSE, and R² to assess performance.
- Opening Predicting output using the test set
 - Generate predicted GPA values and compare with actual outcomes.

• Predicted & Actual GPA:

Figure 3.1: Predicted vs Actual GPA

Result

Correlation heatmap of all features:

Model evaluation

Evaluate Model Results

- Mean Absolute Error (MAE) ≈ 0.597 The average of absolute differences between predicted and actual GPA values.
- Mean Squared Error (MSE) ≈ 0.596 Gives more weight to large errors, useful for identifying outliers.
- Coefficient of Determination (R^2 score) ≈ 0.755 Indicates that the model explains about 77.5% of the variance in GPA.
- **⇒** The model shows good predictive performance overall.

Model evaluation

Disadvantages

- Only works well if data is simple and linear
- Can be wrong if data has outliers
- Cannot learn complex patterns
- Gets confused if features are too similar

Future work

- Try better models like Random Forest or Neural Network
- Add more useful features (class time, mental health, etc.)

Thank you for listening