

AP2210

General Description

The AP2210 is a 300mA ULDO regulator which provides very low noise, ultra low dropout voltage (typically 250mV at 300mA), very low standby current (1 μ A maximum) and excellent power supply ripple rejection (PSRR 75dB at 100Hz) in battery powered applications, such as handsets, PDAs and in noise sensitive applications, such as RF electronics.

The AP2210 also features individual logic compatible enable/shutdown control inputs, a low power shutdown mode for extended battery life, over current protection, over temperature protection, as well as reversed-battery protection.

The AP2210 has 2.5V, 2.8V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V and ADJ versions.

The AP2210 is available in space saving SOT-23-3 and SOT-23-5 packages.

Features

- Up to 300mA Output Current
- Excellent ESR Stability
- Low Standby Current
- Low Dropout Voltage: V_{DROP}=250mV at 300mA
- High Output Accuracy: ± 1%
- Good Ripple Rejection Ability: 75dB at 100Hz and I_{OUT} =100 μ A
- Tight Load and Line Regulation
- Low Temperature Coefficient
- Over Current Protection
- Thermal Protection
- Reverse-battery Protection
- Logic-controlled Enable

Applications

- · Cellular Phones
- Cordless Phones
- Wireless Communicators
- PDAs/Palmtops
- PC Mother Board
- Consumer Electronics

Figure 1. Package Types of AP2210

Pin Configuration

Figure 2. Pin Configuration of AP2210 (Top View)

Pin Description

Pin Nu	umber	D' M	Function
SOT-23-3	SOT-23-5	Pin Name	runction
1	2	GND	Ground
2	2 5 VOUT		Regulated output voltage
3	1	VIN	Input voltage
	3	EN	Enable input: CMOS or TTL compatible input. Logic high=enable, logic low=shutdown
	4	BYP/ADJ	Bypass capacitor for low noise operation/Adjustable Output

Functional Block Diagram

Fixed Version

ADJ Version (For SOT-23-5)

Figure 3. Functional Block Diagram of AP2210

AP2210

Ordering Information

Package	Temperature	Part I	Number	Mark	ing ID	Packing
1 ackage	Range	Lead Free	Green	Lead Free	Green	Type
		AP2210N-2.5TRE1	AP2210N-2.5TRG1	EH2	GH2	Tape & Reel
		AP2210N-2.8TRE1	AP2210N-2.8TRG1	ЕН3	GH3	Tape & Reel
		AP2210N-3.0TRE1	AP2210N-3.0TRG1	EH4	GH4	Tape & Reel
SOT-23-3	-40 to 125°C	AP2210N-3.3TRE1	AP2210N-3.3TRG1	EH5	GH5	Tape & Reel
			AP2210N-3.6TRG1		GB7	Tape & Reel
			AP2210N-4.0TRG1		GC7	Tape & Reel
			AP2210N-5.0TRG1		GH9	Tape & Reel
		AP2210K-2.5TRE1	AP2210K-2.5TRG1	E5C	G5C	Tape & Reel
		AP2210K-2.8TRE1	AP2210K-2.8TRG1	E5F	G5F	Tape & Reel
		AP2210K-3.0TRE1	AP2210K-3.0TRG1	E5H	G5H	Tape & Reel
SOT-23-5	40 / 1250G	AP2210K-3.3TRE1	AP2210K-3.3TRG1	E5K	G5K	Tape & Reel
301-23-3	-40 to 125°C		AP2210K-3.6TRG1		G5I	Tape & Reel
			AP2210K-4.0TRG1		G5J	Tape & Reel
			AP2210K-5.0TRG1		G5L	Tape & Reel
			AP2210K-ADJTRG1		G5M	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

AP2210

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit	
Supply Input Voltage	V _{IN}		15		
Enable Input Voltage	V _{EN}		15	V	
Power Dissipation	P_{D}	Internally Limite	ed (Thermal Protection)	W	
Lead Temperature (Soldering, 10sec)	T_{LEAD}		260		
Junction Temperature	T_{J}		150	°C	
Storage Temperature	T _{STG}	-6	55 to 150	°С	
ESD (Machine Model)	ESD		300	V	
	0	SOT-23-3	200	0 ~ ~~	
Thermal Resistance (No Heatsink)	$ heta_{ m JA}$	SOT-23-5	200	°C/W	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Input Voltage	V _{IN}	2.5	13.2	V
Enable Input Voltage	V _{EN}	0	13.2	V
Operating Junction Temperature	T_{J}	-40	125	°C

AP2210

Electrical Characteristics (Continued) AP2210-2.5 Electrical Characteristics

 V_{IN} =3.5V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} >2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C \leq T $_J$ \leq 125 o C (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{ m OUT}/V_{ m OUT}$	Variation from specified	-1		1	%
Output Voltage Recuracy	3.001001	V _{OUT}	-2		2	70
Output Voltage	$\Delta V_{ m OUT}/\Delta T$			120		μV/°C
Temperature Coefficient (Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			48		ppm/°C
Line Regulation	$V_{ m RLINE}$	V _{IN} =3.5V to 13.2V		1.5	4.5	
	KEINE	IIV			12	mV
Load Regulation	$ m V_{RLOAD}$	I _{OUT} =0.1mA to 300mA		1	6	
(Note 4)	REONE	001			30	mV
		I _{OUT} =100μA		15	50	
					70	
		I _{OUT} =50mA		110	150	
					230	mV
Dropout Voltage (Note 5)	$ m V_{DROP}$	I _{OUT} =100mA I _{OUT} =150mA		140	250	
					300	
				165	275	
					350	
		I _{OUT} =300mA		250	400	
					500	
Standby Current	I_{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μA
	515	V _{EN} ≤0.18V (shutdown)			5	,
		V _{EN} ≥2.0V, I _{OUT} =100μA		100	150	
		2.1			180	μΑ
		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	P+2.1
Ground Pin Current	$I_{ m GND}$	2.1			800	
(Note 6)	GND	V _{EN} ≥2.0V, I _{OUT} =150mA		1.3	1.9	
		2.1			2.5	mA
		V _{EN} ≥2.0V, I _{OUT} =300mA		4	10	
		2.1			15	
Ripple Rejection	PSRR	f=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I_{LIMIT}	V _{OUT} =0V		450	900	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}

Jan. 2012 Rev. 1. 6

AP2210

Electrical Characteristics (Continued) AP2210-2.5 Electrical Characteristics

 V_{IN} =3.5V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C≤ T_J ≤125 o C (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-low Voltage	$ m V_{IL}$	Regulator shutdown			0.4	V
Endote input logic for voltage	· IL	regulator situata wii			0.18	•
Enable Input Logic-high Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-low Current	$I_{ m IL}$	V _{IL} ≤0.4V		0.01	1	μA
Endote input Logic low Current	-IL	V _{IL} ≤0.18V			2	pt2 1
Enable Input Logic-high Current	I _{IH}	V _{IL} ≥2.0V		5	20	μA
Endoic input Logic-ingli Current	-1H	V _{IL} ≥2.0V			25	μ/1

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% (T_J =25°C) or 2% (-40° C \leq T $_1$ \leq 125°C) below its nominal value measured at 1V differential.

AP2210

Electrical Characteristics (Continued) AP2210-2.8 Electrical Characteristics

 $V_{IN}\!\!=\!\!3.8V\!,\,I_{OUT}\!\!=\!\!100\mu A,\,C_{IN}\!\!=\!\!1.0\mu F,\,C_{OUT}\!\!=\!\!2.2\mu F,\,V_{EN}\!\!\geq\!\!2.0V\!,\,T_{J}\!\!=\!\!25^{o}C,\,\textbf{Bold}\,\,\text{typeface applies over -40}{}^{o}C\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}C\,\,(\text{Note 2}),\,$ unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{ m OUT}/V_{ m OUT}$	Variation from specified	-1		1	%
Output Voltage Recuracy	- 1001 1001	V _{OUT}	-2		2	70
Output Voltage	$\Delta V_{ m OUT}/\Delta T$			120		μV/°C
Temperature Coefficient (Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			42.8		ppm/°C
Line Regulation	$V_{ m RLINE}$	V _{IN} =3.8V to 13.2V		1.5	4.5	
	KENVE				12	mV
Load Regulation	$ m V_{RLOAD}$	I _{OUT} =0.1mA to 300mA		1	6	
(Note 4)	REONE	001			30	
		I _{OUT} =100μA		15	50	
					70	
Dropout Voltage (Note 5)		I _{OUT} =50mA		110	150	
					230	
	V_{DROP}	I _{OUT} =100mA I _{OUT} =150mA		140	250	mV
1 5 ()	Dito:				300	
				165	275	
					350	
		I _{OUT} =300mA		250	400	
		001			500	
Standby Current	I_{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μA
	515	V _{EN} ≤0.18V (shutdown)			5	,
		V _{EN} ≥2.0V, I _{OUT} =100μA		100	150	
		EN 7 OOT			180	μA
		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	μΑ
Ground Pin Current	$I_{ m GND}$	EN 7 OOT			800	
(Note 6)	GND	V _{EN} ≥2.0V, I _{OUT} =150mA		1.3	1.9	
		EN 33 OOT			2.5	mA
		V _{EN} ≥2.0V, I _{OUT} =300mA		4	10	11111
		2.001			15	
Ripple Rejection	PSRR	f=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I _{LIMIT}	V _{OUT} =0V		450	900	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}

Jan. 2012 Rev. 1. 6

BCD Semiconductor Manufacturing Limited

AP2210

Electrical Characteristics (Continued) AP2210-2.8 Electrical Characteristics

 V_{IN} =3.8V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C≤ T_J ≤125 o C (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-low Voltage	$ m V_{IL}$	Regulator shutdown			0.4	V
Endote input logic for voltage	· IL	regulator situata wii			0.18	•
Enable Input Logic-high Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-low Current	$I_{ m IL}$	V _{IL} ≤0.4V		0.01	1	μA
Endote input Logic low Current	-IL	V _{IL} ≤0.18V			2	pt2 1
Enable Input Logic-high Current	I _{IH}	V _{IL} ≥2.0V		5	20	μA
Endoic input Logic-ingli Current	-1H	V _{IL} ≥2.0V			25	μ/1

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% (T_J =25°C) or 2% (-40° C \leq T $_1$ \leq 125°C) below its nominal value measured at 1V differential.

AP2210

Electrical Characteristics (Continued) AP2210-3.0 Electrical Characteristics

 $V_{IN}\!\!=\!\!4V,~I_{OUT}\!\!=\!\!100\mu\text{A},~C_{IN}\!\!=\!\!1.0\mu\text{F},~C_{OUT}\!\!=\!\!2.2\mu\text{F},~V_{EN}\!\!\geq\!\!2.0V,~T_{J}\!\!=\!\!25^{o}\text{C},~\textbf{Bold}~\text{typeface applies over -}40^{o}\text{C}\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}\text{C}~(\text{Note 2}),~\text{unless otherwise specified}.$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{ m OUT}/V_{ m OUT}$	Variation from specified	-1		1	%
output voltage recuracy	_ · 001/ · 001	V _{OUT}	-2		2	70
Output Voltage Temperature Coefficient	$\Delta V_{OUT}/\Delta T$			120		μV/°C
(Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			40		ppm/°C
Line Regulation	V _{RLINE}	V _{IN} =4V to 13.2V		1.5	4.5	
	KENVE	n,			12	mV
Load Regulation	$ m V_{RLOAD}$	I _{OUT} =0.1mA to 300mA		1	6	* 7
(Note 4)	REOND	001			30	mV
		I _{OUT} =100μA		15	50	
Dropout Voltage (Note 5)		001			70	
		I _{OUT} =50mA		110	150	
		001			230	
	$ m V_{DROP}$	I _{OUT} =100mA		140	250	mV
Bropout voluge (riote 3)	· DROP	-001			300	
		I _{OUT} =150mA		165	275	
		001			350	
		I _{OUT} =300mA		250	400	
					500	
Standby Current	I _{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	^
Standby Current	-81D	V _{EN} ≤0.18V (shutdown)			5	μΑ
		V _{EN} ≥2.0V, I _{OUT} =100μA		100	150	
		VEN=2.0 V, 1001 100m1			180	
		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	μΑ
Ground Pin Current	I	VENEZ.OV, IOUT JOHN			800	
(Note 6)	$I_{ m GND}$	V _{EN} ≥2.0V, I _{OUT} =150mA		1.3	1.9	
		VENZZ.OV, IOUT-130MA			2.5	mA
		V >2.0V L =3.00m A		4	10	
		V _{EN} ≥2.0V, I _{OUT} =300mA			15	
Ripple Rejection	PSRR	f=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I _{LIMIT}	V _{OUT} =0V		450	900	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}

Jan. 2012 Rev. 1. 6

BCD Semiconductor Manufacturing Limited

AP2210

Electrical Characteristics (Continued) AP2210-3.0 Electrical Characteristics

 V_{IN} =4V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C≤ T_J ≤125 o C (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-low Voltage	$ m V_{IL}$	Regulator shutdown			0.4	V
Endote input logic for voltage	· IL	regulator situata wii			0.18	•
Enable Input Logic-high Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-low Current	$I_{ m IL}$	V _{IL} ≤0.4V		0.01	1	μA
Endote input Logic low Current	-IL	V _{IL} ≤0.18V			2	pt2 1
Enable Input Logic-high Current	I _{IH}	V _{IL} ≥2.0V		5	20	μA
Endoic input Logic-ingli Current	-1H	V _{IL} ≥2.0V			25	μ/1

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% ($T_J=25^{\circ}$ C) or 2% (-40° C \leq $T_1\leq$ 125 $^{\circ}$ C) below its nominal value measured at 1V differential.

AP2210

Electrical Characteristics (Continued) AP2210-3.3 Electrical Characteristics

 $V_{IN}\!\!=\!\!4.3V, I_{OUT}\!\!=\!\!100\mu\text{A}, C_{IN}\!\!=\!\!1.0\mu\text{F}, C_{OUT}\!\!=\!\!2.2\mu\text{F}, V_{EN}\!\!\geq\!\!2.0V, T_{J}\!\!=\!\!25^{o}\text{C}, \textbf{Bold} \text{ typeface applies over -}40^{o}\text{C}\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}\text{C} \text{ (Note 2), unless otherwise specified.}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{ m OUT}/V_{ m OUT}$	Variation from specified	-1		1	%
Output Voltage Necuracy	4 · 001 · · 001	V _{OUT}	-2		2	, , ,
Output Voltage	$\Delta V_{OUT}/\Delta T$			120		μV/°C
Temperature Coefficient (Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			36.3		ppm/°C
Line Regulation	V _{RLINE}	V _{IN} =4.3V to 13.2V		1.5	4.5	
Line regulation	KLINE	IN WE SEE SEE			12	mV
Load Regulation	V_{RLOAD}	I _{OUT} =0.1mA to 300mA		1	6	
(Note 4)	REO/ID	001			30	mV
		I _{OUT} =100μA		15	50	
					70	
Dropout Voltage (Note 5)		I _{OUT} =50mA		110	150	
					230	
	V_{DROP}	I _{OUT} =100mA		140	250	mV
					300	
		I _{OUT} =150mA		165	275	
					350	
		I _{OUT} =300mA		250	400	
					500	
Standby Current	I_{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μΑ
		V _{EN} ≤0.18V (shutdown)			5	
		V _{EN} ≥2.0V, I _{OUT} =100μA		100	150	
					180	μΑ
		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	
Ground Pin Current	I_{GND}				800	
(Note 6)		V _{EN} ≥2.0V, I _{OUT} =150mA		1.3	1.9	
					2.5	mA
		V _{EN} ≥2.0V, I _{OUT} =300mA		4	10	
					15	
Ripple Rejection	PSRR	f=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I_{LIMIT}	V _{OUT} =0V		450	900	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}

Jan. 2012 Rev. 1. 6

BCD Semiconductor Manufacturing Limited

AP2210

Electrical Characteristics (Continued) AP2210-3.3 Electrical Characteristics

 V_{IN} =4.3V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C≤ T_J ≤125 o C (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-low Voltage	$ m V_{IL}$	Regulator shutdown			0.4	V
Endote input logic for voltage	· IL	regulator shatao wh			0.18	,
Enable Input Logic-high Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-low Current	$I_{ m IL}$	V _{IL} ≤0.4V		0.01	1	μA
Endote input Logic low Current	-IL	V _{IL} ≤0.18V			2	pu 1
Enable Input Logic-high Current	I _{IH}	V _{IL} ≥2.0V		5	20	μΑ
Endote input Logic ingli Current	-III	V _{IL} ≥2.0V			25	

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% ($T_J=25^{\circ}$ C) or 2% (-40° C \leq $T_1\leq$ 125 $^{\circ}$ C) below its nominal value measured at 1V differential.

AP2210

Electrical Characteristics (Continued) AP2210-3.6 Electrical Characteristics

 $V_{IN}\!\!=\!\!4.6\text{V}, I_{OUT}\!\!=\!\!100\mu\text{A}, C_{IN}\!\!=\!\!1.0\mu\text{F}, C_{OUT}\!\!=\!\!2.2\mu\text{F}, V_{EN}\!\!\geq\!\!2.0\text{V}, T_{J}\!\!=\!\!25^{o}\text{C}, \textbf{Bold} \text{ typeface applies over -40}^{o}\text{C}\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}\text{C} \text{ (Note 2), unless otherwise specified.}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{OUT}/V_{OUT}$	Variation from specified	-1		1	%
		V _{OUT}	-2		2	/0
Output Voltage	$\Delta V_{ m OUT}/\Delta T$			120		μV/°C
Temperature Coefficient (Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			48		ppm/°C
Line Regulation	$V_{ m RLINE}$	V _{IN} =4.6V to 13.2V		1.5	4.5	
	KENVE				12	mV
Load Regulation	$ m V_{RLOAD}$	I _{OUT} =0.1mA to 300mA		1	6	
(Note 4)	REONE	001			30	mV
		I _{OUT} =100μA		15	50	
					70	
		I _{OUT} =50mA		110	150	
					230	
Dropout Voltage (Note 5)	V_{DROP}	I _{OUT} =100mA		140	250	mV
					300	
		I _{OUT} =150mA		165	275	
					350	
		I _{OUT} =300mA		250	400	
					500	
Standby Current	I_{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μA
	512	V _{EN} ≤0.18V (shutdown)			5	'
		V _{EN} ≥2.0V, I _{OUT} =100μA		100	150	
		EN OOT			180	μΑ
		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	
Ground Pin Current	$I_{ m GND}$	EN 7 OUT			800	
(Note 6)	GND	V _{EN} ≥2.0V, I _{OUT} =150mA		1.3	1.9	
		LIV 7 OUT			2.5	mA
		V _{EN} ≥2.0V, I _{OUT} =300mA		4	10	1111 1
		EN 7 OOT			15]
Ripple Rejection	PSRR	f=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I_{LIMIT}	V _{OUT} =0V		450	900	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}

Jan. 2012 Rev. 1. 6

AP2210

Electrical Characteristics (Continued) AP2210-3.6 Electrical Characteristics

 V_{IN} =4.6V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_J =25°C, **Bold** typeface applies over -40°C≤ T_J ≤125°C (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-low Voltage	$ m V_{IL}$	Regulator shutdown			0.4	V
Endote input logic for voltage	' IL	Regulator shataown			0.18	,
Enable Input Logic-high Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-low Current	$I_{ m IL}$	V _{IL} ≤0.4V		0.01	1	μA
	-IL	V _{IL} ≤0.18V			2	pu 1
Enable Input Logic-high Current	I _{IH}	V _{IL} ≥2.0V		5	20	μA
	-III	V _{IL} ≥2.0V			25	μΛ

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% (T_J =25°C) or 2% (-40° C \leq T $_1$ \leq 125°C) below its nominal value measured at 1V differential.

AP2210

Electrical Characteristics (Continued) AP2210-4.0 Electrical Characteristics

 $V_{IN}\!\!=\!\!5.0V\!,\,I_{OUT}\!\!=\!\!100\mu A,\,C_{IN}\!\!=\!\!1.0\mu F,\,C_{OUT}\!\!=\!\!2.2\mu F,\,V_{EN}\!\!\geq\!\!2.0V\!,\,T_{J}\!\!=\!\!25^{o}C,\,\textbf{Bold}\,\,\text{typeface applies over -40}{}^{o}C\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}C\,\,(\text{Note 2}),\,$ unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{OUT}/V_{OUT}$	Variation from specified	-1		1	%
		V _{OUT}	-2		2	70
Output Voltage	$\Delta V_{ m OUT}/\Delta T$			120		μV/°C
Temperature Coefficient (Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			48		ppm/°C
Line Regulation	$V_{ m RLINE}$	V _{IN} =5.0V to 13.2V		1.5	4.5	
	KENVE				12	mV
Load Regulation	$ m V_{RLOAD}$	I _{OUT} =0.1mA to 300mA		1	6	
(Note 4)	REONE	001			30	mV
		I _{OUT} =100μA		15	50	
					70	
		I _{OUT} =50mA		110	150	
					230	
Dropout Voltage (Note 5)	$V_{ m DROP}$	I _{OUT} =100mA		140	250	mV
1 5 ()	Dito:	001			300	
		I _{OUT} =150mA		165	275	
		001			350	
		I _{OUT} =300mA		250	400	
		001			500	
Standby Current	I_{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μA
	515	V _{EN} ≤0.18V (shutdown)			5	,
		V _{EN} ≥2.0V, I _{OUT} =100μA		100	150	
		EN 7 OOT			180	μA
		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	,
Ground Pin Current	$I_{ m GND}$	EN 7 OOT			800	
(Note 6)	GND	V _{EN} ≥2.0V, I _{OUT} =150mA		1.3	1.9	
		EN 33 GOT			2.5	mA
		V _{EN} ≥2.0V, I _{OUT} =300mA		4	10	11111
		2.001			15	
Ripple Rejection	PSRR	f=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I _{LIMIT}	V _{OUT} =0V		450	900	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}

Jan. 2012 Rev. 1. 6

BCD Semiconductor Manufacturing Limited

AP2210

Electrical Characteristics (Continued) AP2210-4.0 Electrical Characteristics

 V_{IN} =5.0V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_J =25 o C, **Bold** typeface applies over -40 o C≤ T_J ≤125 o C (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-low Voltage	$ m V_{IL}$	Regulator shutdown			0.4	V
Endote input logic for voltage	' IL	Regulator shataown			0.18	,
Enable Input Logic-high Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-low Current	$I_{ m IL}$	V _{IL} ≤0.4V		0.01	1	μA
	-IL	V _{IL} ≤0.18V			2	pu 1
Enable Input Logic-high Current	I _{IH}	V _{IL} ≥2.0V		5	20	μA
	-III	V _{IL} ≥2.0V			25	μΛ

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% (T_J =25°C) or 2% (-40° C \leq T $_1$ \leq 125°C) below its nominal value measured at 1V differential.

AP2210

Electrical Characteristics (Continued) AP2210-5.0 Electrical Characteristics

 $V_{IN}\!\!=\!\!6.0V\!,\,I_{OUT}\!\!=\!\!100\mu A,\,C_{IN}\!\!=\!\!1.0\mu F,\,C_{OUT}\!\!=\!\!2.2\mu F,\,V_{EN}\!\!\geq\!\!2.0V\!,\,T_{J}\!\!=\!\!25^{o}C,\,\textbf{Bold}\,\,\text{typeface applies over -40}{}^{o}C\!\!\leq\!\!T_{J}\!\!\leq\!\!125^{o}C\,\,(\text{Note 2}),\,$ unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{OUT}/V_{OUT}$	Variation from specified	-1		1	%
		V _{OUT}	-2		2	/0
Output Voltage	$\Delta V_{ m OUT}/\Delta T$			120		μV/°C
Temperature Coefficient (Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			48		ppm/°C
Line Regulation	$V_{ m RLINE}$	V _{IN} =6.0V to 13.2V		1.5	4.5	
	KENVE				12	mV
Load Regulation	$ m V_{RLOAD}$	I _{OUT} =0.1mA to 300mA		1	6	
(Note 4)	REONE	001			30	mV
		I _{OUT} =100μA		15	50	
					70	
		I _{OUT} =50mA		110	150	
					230	
Dropout Voltage (Note 5)	$V_{ m DROP}$	I _{OUT} =100mA		140	250	mV
1 5 ()	Dito:	001			300	
		I _{OUT} =150mA		165	275	
		001			350	
		I _{OUT} =300mA		250	400	
		001			500	
Standby Current	I_{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μA
	515	V _{EN} ≤0.18V (shutdown)			5	,
		V _{EN} ≥2.0V, I _{OUT} =100μA		100	150	
		EN 7 OOT			180	μA
		V _{EN} ≥2.0V, I _{OUT} =50mA		350	600	,
Ground Pin Current	$I_{ m GND}$	EN 7 OOT			800	
(Note 6)	GND	V _{EN} ≥2.0V, I _{OUT} =150mA		1.3	1.9	
		EN 33 GOT			2.5	mA
		V _{EN} ≥2.0V, I _{OUT} =300mA		4	10	11111
		EW			15	
Ripple Rejection	PSRR	f=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I _{LIMIT}	V _{OUT} =0V		450	900	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}

Jan. 2012 Rev. 1. 6

AP2210

Electrical Characteristics (Continued) AP2210-5.0 Electrical Characteristics

 V_{IN} =6.0V, I_{OUT} =100 μ A, C_{IN} =1.0 μ F, C_{OUT} =2.2 μ F, V_{EN} ≥2.0V, T_J =25°C, **Bold** typeface applies over -40°C≤ T_J ≤125°C (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Enable Input Logic-low Voltage	$ m V_{IL}$	Regulator shutdown			0.4	V
Endote input logic for voltage	' IL	Regulator shataown			0.18	,
Enable Input Logic-high Voltage	V_{IH}	Regulator enabled	2.0			V
Enable Input Logic-low Current	$I_{ m IL}$	V _{IL} ≤0.4V		0.01	1	μA
	-IL	V _{IL} ≤0.18V			2	pu 1
Enable Input Logic-high Current	I _{IH}	V _{IL} ≥2.0V		5	20	μA
	-III	V _{IL} ≥2.0V			25	μΛ

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 1% ($T_J=25^{\circ}$ C) or 2% (-40° C \leq $T_1\leq$ 125 $^{\circ}$ C) below its nominal value measured at 1V differential.

AP2210

Electrical Characteristics (Continued) AP2210-ADJ Electrical Characteristics

 $V_{IN}=V_{OUT}+1V$, $I_{OUT}=100\mu A$, $C_{IN}=1.0\mu F$, $C_{OUT}=2.2\mu F$, $V_{EN}\ge 2.0V$, $T_J=25^{o}C$, **Bold** typeface applies over $-40^{o}C\le T_{J}\le 125^{o}C$ (Note 2), unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	$\Delta V_{ m OUT}/V_{ m OUT}$	Variation from specified	-1		1	%
	2.001001	V _{OUT}	-2		2	70
Output Voltage	$\Delta V_{ m OUT}/\Delta T$			120		μV/°C
Temperature Coefficient (Note 3)	$(\Delta V_{OUT}/V_{OUT})/\Delta T$			48		ppm/°C
Line Regulation	$ m V_{RLINE}$	$V_{IN}=V_{OUT}+1V$ to 13.2V		1.5	4.5	
zine regulation	· KLINE	TIN TOOL TO TOOL			12	mV
Load Regulation	$V_{ m RLOAD}$	I _{OUT} =0.1mA to 300mA		1	6	
(Note 4)	REOAD	001			30	mV
Standby Current	I_{STD}	V _{EN} ≤0.4V (shutdown)		0.01	1	μA
	315	V _{EN} ≤0.18V (shutdown)			5	
		V _{EN} ≥2.0V, I _{OUT} =100μA		100	150	
		EN 7 OOT			180	μА
		V _{FN} ≥2.0V, I _{OUT} =50mA		350	600	PV. 1
Ground Pin Current	$I_{ m GND}$	EN 7 OUT			800	
(Note 6)	GND	V _{EN} ≥2.0V, I _{OUT} =150mA		1.3	1.9	
		· EN==== *, -001			2.5	
	V _{EN} ≥2.0V. I	V _{EN} ≥2.0V, I _{OUT} =300mA		4	10	
		EN 33 9 OOT 333			15	
Ripple Rejection	PSRR	f=100Hz, I _{OUT} =100μA		75		dB
Current Limit	I_{LIMIT}	V _{OUT} =0V		450	900	mA
Output Noise	e _{no}	I _{OUT} =50mA, C _{OUT} =2.2μF, 100pF from BYP to GND		260		nV/\sqrt{Hz}
Enable Input Logic-low	V_{IL}	Regulator shutdown			0.4	V
Voltage	* IL	Regulator shutdown			0.18	v
Enable Input Logic-high Voltage	$ m V_{IH}$	Regulator enabled	2.0			V
Enable Input Logic-low	I_{IL}	V _{IL} ≤0.4V		0.01	1	μΑ
Current	IL.	V _{IL} ≤0.18V			2	
Enable Input Logic-high	I_{IH}	V _{IL} ≥2.0V		5	20	μА
Current	111	V _{II.} ≥2.0V			25	

AP2210

Electrical Characteristics (Continued) AP2210-ADJ Electrical Characteristics

 $V_{IN}=V_{OUT}+1V$, $I_{OUT}=100\mu A$, $C_{IN}=1.0\mu F$, $C_{OUT}=2.2\mu F$, $V_{EN}\geq 2.0V$, $T_J=25^{\circ}C$, **Bold** typeface applies over -40°C $\leq T_J\leq 125^{\circ}C$ (Note 2), unless otherwise specified.

Note 2: Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Typical Performance Characteristics

550 500 I_{OUT}=100mA 450 I_{OUT}=150mA 400 Dropout Voltage (mv) - I_{OUT}=300mA 350 300 250 200 150 100 50 -60 -20 60 80 100 120 140 -40 20 40 Junction Temperature (°C)

Figure 4. Output Voltage vs. Junction Temperature

Figure 5. Dropout Voltage vs. Junction Temperature

Figure 6. Ground Pin Current vs. Output Current

Figure 7. Ground Pin Current vs. Junction Temperature

Typical Performance Characteristics (Continued)

2.0

1.8

AP2210-3.0

C_{IN}=1.0μF, C_{OUT}=2.2μF

V_{IN}=4V, I_{OUT}=100μA

1.2

V_{EN}=logic high

1.0

0.8

0.6

0.4

-50

-25

0 25

50

75

100

125

Junction Temperature (°C)

Figure 8. Enable Current vs. Junction Temperature

Figure 9. Enable Voltage vs. Junction Temperature

Figure 10. Output Noise vs. Frequency

Figure 11. Line Transient (Conditions: V_{IN}=4 to 5V, V_{EN}=2V, I_{OUT}=1mA, C_{OUT} =2.2 μ F)

Typical Performance Characteristics (Continued)

 $\label{eq:figure 12. Load Transient} Figure 12. Load Transient \\ (Conditions: V_{IN}=4V, V_{EN}=2V, I_{OUT}=10mA to 300mA, \\ C_{IN}=1.0\mu F, C_{OUT}=2.2\mu F) \\$

Figure 14. PSRR vs. Frequency

 $\begin{aligned} & \text{Figure 13. V}_{\text{EN}} \text{ vs. V}_{\text{OUT}} \\ & \text{(Conditions: V}_{\text{EN}}\text{=0 to 2V, V}_{\text{IN}}\text{=4V, I}_{\text{OUT}}\text{=30mA,} \\ & \text{C}_{\text{IN}}\text{=1.0} \text{\mu}\text{F, C}_{\text{OUT}}\text{=2.2} \text{\mu}\text{F)} \end{aligned}$

Figure 15. Power Dissipation vs. Ambient Temperature

Typical Performance Characteristics (Continued)

Figure 16. Power Dissipation vs. Ambient Temperature

Figure 17. ESR vs. Output Current

Figure 19. ESR vs. Output Current

Typical Application

For Fixed Version

Typical Application (Continued)

 $V_{OUT} = 1.25V*(1+R2/R1)$

For Adjustable Version

Figure 20. Typical Application of AP2210 (Note 7)

Note 7: Dropout voltage is 250mV when T_A =25°C. In order to obtain a normal output voltage, V_{OUT} +0.25V is the minimum input voltage which will results a low PSRR, imposing a bad influence on system. Therefore, the recommended input voltage is V_{OUT} +1V to 13.2V. For AP2210-3.0 version, its input voltage can be set from $4V(V_{OUT}$ +1V) to 13.2V.

AP2210

Application Information

Input Capacitor

A $1\mu F$ minimum capacitor is recommended to be placed between V_{IN} and GND.

Output Capacitor

It is required to prevent oscillation. $1.0\mu F$ minimum is recommended when C_{BYP} is unused. $2.2\mu F$ minimum is recommended when C_{BYP} is 100pF. The output capacitor may be increased to improve transient response.

Noise Bypass Capacitor

Bypass capacitor is connected to the internal voltage reference. A small capacitor connected from BYP to GND make this reference quiet, resulting in a significant reduction in output noise, but the ESR stable area will be narrowed. In order to keep the output stability, it is recommended to use the bypass capacitor no more than 100pF.

The start-up speed of the AP2210 is inversely proportional to the value of reference bypass capacitor. In some cases, if output noise is not a major concern and rapid turn-on is necessary, omit $C_{\rm BYP}$ and leave BYP open.

Power Dissipation

Thermal shutdown may take place if exceeding the maximum power dissipation in application. Under all possible operating conditions, the junction temperature must be within the range specified under absolute maximum ratings to avoid thermal shutdown. To determine if the power dissipated in the regulator reaches the maximum power dissipation (see figure 16, 17), using:

$$\begin{split} &T_{J} = P_{D} * \theta_{JA} + T_{A} \\ &P_{D} = &(V_{IN} - V_{OUT}) * I_{OUT} + V_{IN} * I_{GND} \end{split}$$

Where: $T_J \le T_{J(max)}$, $T_{J(max)}$ is absolute maximum ratings for the junction temperature; $V_{IN}*I_{GND}$ can be ignored due to its small value.

 $T_{J(max)}$ is 150°C, θ_{JA} is 200°C/W, no heatsink is required since the package alone will dissipate enough heat to satisfy these requirements unless the calculated value for power dissipation exceeds the limit.

Example (3.0V version): I_{OUT}=300mA, T_A=50°C, V_{IN(Max)} is: (150°C-50°C)/(0.3A*200°C/W)+3.0V=4.67V

Therefore, for good performance, please make sure that input voltage is less than 4.67V without heatsink when $T_A=50^{\rm o}{\rm C}$.

Mechanical Dimensions

SOT-23-3 Unit: mm(inch)

Mechanical Dimensions (Continued)

SOT-23-5 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788