

EE2211 Pre-Tutorial 5

Dr Feng LIN feng_lin@nus.edu.sg

Agenda

- Recap
- Self-learning
- Tutorial 5

Recap

- Functions, Derivative and Gradient
 - Inner product, linear/affine functions
 - Maximum and minimum, partial derivatives, gradient
- Least Squares, Linear Regression
 - Objective function, loss function
 - Least square solution, training/learning and testing/prediction
 - Linear regression with multiple outputs

Linear and Affine Functions

Linear Functions

A function $f: \mathbb{R}^d \to \mathbb{R}$ is **linear** if it satisfies the following two properties:

- Homogeneity $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$ Scaling
- Additivity $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ Adding

Inner product function

$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = a_1 x_1 + a_2 x_2 + \cdots + a_d x_d$$

Linear function is affine, but affine not necessarily to be linear function

Affine function

$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + \mathbf{b}$$
 scalar b is called the offset (or bias)

Functions: Maximum and Minimum

Max and Arg Max

- Given a set of values $\mathcal{A} = \{a_1, a_2, ..., a_m\},\$
- The operator $\max_{a \in \mathcal{A}} f(a)$ returns the highest value f(a) for all elements in the set \mathcal{A}
- The operator $\arg\max_{a\in\mathcal{A}}f(a)$ returns the element of the set \mathcal{A} that maximizes f(a)
- When the set is implicit or infinite, we can write

$$\max_{a} f(a) \quad \text{or} \quad \arg\max_{a} f(a)$$
 E.g. $f(a) = 3a, \ a \in [0,1] \rightarrow \max_{a} f(a) = 3 \quad \text{and} \quad \arg\max_{a} f(a) = 1$

Min and Arg Min operate in a similar manner

Note: **arg max** returns a value from the **domain** of the function and **max** returns from the **range (codomain)** of the function.

Derivative and Gradient

The gradient of a function is a vector of **partial derivatives**

<u>Differentiation of a scalar function w.r.t. a vector</u>

If $f(\mathbf{x})$ is a scalar function of d variables, \mathbf{x} is a d x1 vector. Then differentiation of $f(\mathbf{x})$ w.r.t. \mathbf{x} results in a d x1 vector

$$\frac{df(\mathbf{x})}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{bmatrix}$$

This is referred to as the **gradient** of $f(\mathbf{x})$ and often written as $\nabla_{\mathbf{x}} f$.

Derivative and Gradient

Partial Derivatives

Differentiation of a vector function w.r.t. a vector

If f(x) is a vector function of size h x1 and x is a d x1 vector. Then differentiation of f(x) results in a $h \times d$ matrix

$$\frac{d\mathbf{f}(\mathbf{x})}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_h}{\partial x_1} & \dots & \frac{\partial f_h}{\partial x_d} \end{bmatrix}$$

The matrix is referred to as the **Jacobian** of f(x)

Derivative and Gradient

Some Vector-Matrix Differentiation Formulae

$$\frac{d\mathbf{A}\mathbf{x}}{d\mathbf{x}} = \mathbf{A}$$

$$\frac{d(\boldsymbol{b}^T \mathbf{x})}{d\mathbf{x}} = \boldsymbol{b} \qquad \frac{d(\mathbf{y}^T \mathbf{A} \mathbf{x})}{d\mathbf{x}} = \mathbf{A}^T \mathbf{y}$$

$$\frac{d(\mathbf{x}^T \mathbf{A} \mathbf{x})}{d\mathbf{x}} = (\mathbf{A} + \mathbf{A}^T)\mathbf{x}$$

$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = a_1 x_1 + a_2 x_2 + \cdots + a_d x_d$$

Learning objective function

 To find the optimal values for w* and b* which minimizes the following expression:

$$\frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

 In mathematics, the expression we minimize or maximize is called an objective function, or, simply, an objective

 $(f_{\mathbf{w}}(\mathbf{x}_i) - \mathbf{y}_i)^2$ is called the **loss function**: a measure of the difference between $f_{\mathbf{w}}(\mathbf{x}_i)$ and \mathbf{y}_i or a penalty for misclassification of example *i*.

Learning (Training)

• Consider the set of feature vector \mathbf{x}_i and target output y_i indexed by i = 1, ..., m, a linear model $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$ can be stacked as

Note: The **bias/offset term** is responsible for **translating** the line/plane/hyperplane away from the origin.

Least Squares Regression

In vector-matrix notation, the minimization of the objective function can be written compactly using $\mathbf{e} = \mathbf{X}\mathbf{w} - \mathbf{y}$:

$$J(\mathbf{w}) = \mathbf{e}^{T}\mathbf{e}$$

$$= (\mathbf{X}\mathbf{w} - \mathbf{y})^{T}(\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$= (\mathbf{w}^{T}\mathbf{X}^{T} - \mathbf{y}^{T})(\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$= \mathbf{w}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{w} - \mathbf{w}^{T}\mathbf{X}^{T}\mathbf{y} - \mathbf{y}^{T}\mathbf{X}\mathbf{w} + \mathbf{y}^{T}\mathbf{y}$$

$$= \mathbf{w}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{w} - 2\mathbf{y}^{T}\mathbf{X}\mathbf{w} + \mathbf{y}^{T}\mathbf{y}.$$

Note: when
$$f_{\mathbf{w}}(\mathbf{X}) = \mathbf{X}\mathbf{w}$$
, then
$$\sum_{i=1}^{m} (f_{\mathbf{w}}(\mathbf{x}_i) - \mathbf{y}_i)^2 = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}).$$

Differentiating J(w) with respect to w and setting the

result to 0:

$$\frac{\partial}{\partial \mathbf{w}} J(\mathbf{w}) = \mathbf{0}$$

$$\frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2 \mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{y}^T \mathbf{y}) = \mathbf{0}$$

$$\Rightarrow 2 \mathbf{X}^T \mathbf{X} \mathbf{w} - 2 \mathbf{X}^T \mathbf{y} = \mathbf{0}$$

$$\Rightarrow \mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

 \Rightarrow Any minimizer $\hat{\mathbf{w}}$ of $J(\mathbf{w})$ must satisfy $\mathbf{X}^T(\mathbf{X}\mathbf{w} - \mathbf{y}) = \mathbf{0}$.

If $\mathbf{X}^T\mathbf{X}$ is invertible, then

Learning/training:
$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Prediction/testing:
$$\hat{f}_{\mathbf{w}}(\mathbf{X}_{new}) = \mathbf{X}_{new}\hat{\mathbf{w}}$$

Collect Data Model and Loss Function Learning/Training: Compute y_{new} Prediction /Testing: Compute y_{new} $\frac{1}{m} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - \mathbf{y}_i)^2 \qquad \widehat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \qquad \widehat{\mathbf{f}}_{\mathbf{w}}(\mathbf{X}_{new}) = \mathbf{X}_{new} \widehat{\mathbf{w}}$

- X: Samples
- y: Target values

- Linear or Affine function
- Squared error loss function

- Check the invertibility
- Least square approximation (leftinverse)
- Prediction for new inputs
- Testing: Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Learning of Vectored Function (Multiple Outputs)

For one sample: a linear model $\mathbf{f}_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}^T \mathbf{W}$ Vector function

For m samples: $\mathbf{F}_{\mathbf{w}}(\mathbf{X}) = \mathbf{X}\mathbf{W} = \mathbf{Y}$

Sample 1
$$\begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_m^T \end{bmatrix}$$
 $\mathbf{W} = \begin{bmatrix} 1 & \chi_{1,1} & \dots & \chi_{1,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \chi_{m,1} & \dots & \chi_{m,d} \end{bmatrix} \begin{bmatrix} w_{0,1} & \dots & w_{0,h} \\ w_{1,1} & \dots & w_{1,h} \\ \vdots & \ddots & \vdots \\ w_{d,1} & \dots & w_{d,h} \end{bmatrix}$

Sample 1's output
$$y_{1,1}$$
 ... $y_{1,h}$

$$\vdots$$

$$y_{m,1}$$
 ... $y_{m,h}$

$$m$$

$$\mathbf{X} \in \mathbf{\mathcal{R}}^{m \times (d+1)}$$
, $\mathbf{W} \in \mathbf{\mathcal{R}}^{(d+1) \times h}$, $\mathbf{Y} \in \mathbf{\mathcal{R}}^{m \times h}$

Objective:
$$\sum_{i=1}^{m} (\mathbf{f_w}(\mathbf{x}_i) - \mathbf{y}_i)^2 = \mathbf{E}^T \mathbf{E}$$

Least Squares Regression of Multiple Outputs

In matrix notation, the sum of squared errors cost function can be written compactly using $\mathbf{E} = \mathbf{XW} - \mathbf{Y}$:

$$J(\mathbf{W}) = \operatorname{trace}(\mathbf{E}^{T}\mathbf{E})$$
$$= \operatorname{trace}[(\mathbf{X}\mathbf{W} - \mathbf{Y})^{T}(\mathbf{X}\mathbf{W} - \mathbf{Y})]$$

If $\mathbf{X}^T\mathbf{X}$ is invertible, then

Learning/training: $\hat{\mathbf{W}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$ Y is a matrix

Prediction/testing: $\hat{\mathbf{F}}_{\mathbf{w}}(\mathbf{X}_{new}) = \mathbf{X}_{new}\hat{\mathbf{W}}$

THANK YOU