Computing Longest Common Substrings Using Suffix Arrays

Maxim A. Babenko, Tatiana A. Starikovskaya

Moscow State University

Computer Science in Russia, 2008

Problem Definition

- Problem Definition
- Suffix Arrays

- Problem Definition
- Suffix Arrays
- The Algorithm

- Problem Definition
- Suffix Arrays
- The Algorithm
- Conclusions

Part 1 Problem Definition

LCS

• **Problem** (LCS, Longest Common Substring): Given a collection of N strings $A = \{\alpha_1, \ldots, \alpha_N\}$ and an integer K ($2 \le K \le N$) find the longest string β that is a substring of at least K strings in A.

LCS

- **Problem** (LCS, Longest Common Substring): Given a collection of N strings $A = \{\alpha_1, \dots, \alpha_N\}$ and an integer K ($2 \le K \le N$) find the longest string β that is a substring of at least K strings in A.
- Tools: Suffix Arrays
- Time and Space: Linear and alphabet-independent
- Model of Computation: RAM

Part 2 Suffix Arrays

Useful Definitions

• **Definition** (Suffix): Let $\omega = \omega_1 \omega_2 \dots \omega_n$ be an arbitrary string of length n. For each i (1 < i < n)

$$\omega[i..] = \omega_i \omega_{i+1} \dots \omega_n$$

is a suffix of ω

 Definition (Lexicographic order): Suppose we have some order on letters of the alphabet Σ . This order can be extended in a standard way to strings over Σ : $\alpha < \beta$ iff either α is proper prefix of β or $\alpha[1] = \beta[1], \ldots, \alpha[i] = \beta[i], \alpha[i+1] < \beta[i+1].$

$$\beta \text{ or } \alpha[1] = \beta[1], \ldots, \alpha[i] = \beta[i], \alpha[i+1] < \beta[i+1]$$

Suffix Arrays

• **Definition** (Suffix Array): Let ω be an arbitrary string of length n. Consider its non-empty suffixes

$$\omega[1..], \ \omega[2..], \ \ldots, \ \omega[n..].$$

and order them lexicographically. Let SA(i) denote the starting position of the suffix appearing on the i-th place $(1 \le i \le n)$:

$$\omega[SA(1)..] < \omega[SA(2)..] < ... < \omega[SA(n)..].$$

An Example of Suffix Array

	suffixes	SA	sorted suffixes
1	mississippi	11	i
2	ississippi	8	ippi
3	ssissippi	5	issippi
4	sissippi	2	ississippi
5	issippi	1	mississippi
6	ssippi	10	pi
7	sippi	9	ppi
8	ippi	7	sippi
9	ppi	4	sissippi
10	pi	6	ssippi
11	i	3	ssissippi

 $\label{prop:signer:si$

Why Suffix Arrays?

 A simple data structure containing all the necessary information.

Why Suffix Arrays?

- A simple data structure containing all the necessary information.
- Many nice and simple efficient construction algoritms (e.g. Kärkäinen, Sanders [2003]) with alphabet-independent time and space complexity.

Part 3 The Algorithm

Our Main Result

Theorem

Let the total length of strings $\alpha_1, \ldots, \alpha_N$ be equal to L. Then the answer to the LCS problem can be computed in O(L) time and in O(L) space.

LCS Example

• Consider the following **example** with N = 3, K = 2:

$$egin{array}{lll} lpha_1 &=& abb \ lpha_2 &=& cb \ lpha_3 &=& abc \end{array}$$

Clearly, the answer is ab.

Observation

 The longest common substring for K strings of our set is the longest common prefix of some suffixes of these strings.

Observation

- The longest common substring for K strings of our set is the longest common prefix of some suffixes of these strings.
- We calculate the longest common prefix of every K suffixes of different strings and take the longest one; the latter is the answer to the LCS problem.

• Combine the strings in A as follows:

$$\alpha = \alpha_1 \$_1 \alpha_2 \$_2 \dots \alpha_N \$_N.$$

Here $\$_i$ are special symbols (**sentinels**) that are different and lexicographically less than other symbols of the initial alphabet Σ

• Combine the strings in A as follows:

$$\alpha = \alpha_1 \$_1 \alpha_2 \$_2 \dots \alpha_N \$_N.$$

Here $\$_i$ are special symbols (**sentinels**) that are different and lexicographically less than other symbols of the initial alphabet Σ

• Example: $\alpha = abb\$_1cb\$_2abc\$_3$

- Definition (Longest Common Prefixes (LCP) array): The array containing lengths of the longest common prefixes for every pair of consecutive suffixes (w.r.t. lexicographical order).
- LCP array can be easily constructed in linear time and space.

- Definition (Longest Common Prefixes (LCP) array): The array containing lengths of the longest common prefixes for every pair of consecutive suffixes (w.r.t. lexicographical order).
- LCP array can be easily constructed in linear time and space.
- We construct the suffix array and the LCP array for α .

Step 2. Example of SA and LCP

String: $abb _1 cb _2 abc _3$

SA: 4 7 11 1 8 3 6 2 9 10 5

LCP: 0 0 0 2 0 1 1 1 0 1

	suffixes	SA	sorted suffixes	LCP
1	abb\$1cb\$2abc\$3	4	\$1cb\$2abc\$3	0
2	bb\$1cb\$2abc\$3	7	\$2abc\$3	0
3	b\$1cb\$2abc\$3	11	\$ ₃	0
4	\$1cb\$2abc\$3	1	abb\$1cb\$2abc\$3	2
5	cb\$2abc\$3	8	abc\$3	0
6	b \$2 abc \$3	3	b\$1cb\$2abc\$3	1
7	\$2abc\$3	6	b \$ 2abc \$ 3	1
8	abc \$ 3	2	bb\$1cb\$2abc\$3	1
9	bc \$ 3	9	bc \$ 3	0
10	c\$ ₃	10	c\$3	1
11	\$3	5	cb\$2abc\$3	

Further Ideas

 The longest prefix of suffixes of K different strings in A is the longest common prefix of suffixes of K different colors in α.

Further Ideas

- The longest prefix of suffixes of K different strings in A is the longest common prefix of suffixes of K different colors in α.
- Consider K suffixes at positions i_1, \ldots, i_K and assume that $SA[i_1] < SA[i_2] < \ldots < SA[i_K]$. The length of the longest common prefix of these K suffixes is equal to the **minimum** of $LCP[i_1], \ldots, LCP[i_K-1]$.

Further Ideas

- The longest prefix of suffixes of K different strings in A is the longest common prefix of suffixes of K different colors in α.
- Consider K suffixes at positions i_1, \ldots, i_K and assume that $SA[i_1] < SA[i_2] < \ldots < SA[i_K]$. The length of the longest common prefix of these K suffixes is equal to the **minimum** of $LCP[i_1], \ldots, LCP[i_K-1]$.
- Example:

SA: 4 7 11 1 8 3 6 2 9 10 5

LCP: 0 0 0 2 0 1 1 1 0 1

Suffixes: abb¹cb²abc³

abc\$3

Extensions

Theorem

• **Problem**: Given a collection of N strings $A = \{\alpha_1, \dots, \alpha_N\}$, for each K ($2 \le K \le N$) find the longest string β that is a substring of at least K strings in A.

Extensions

Theorem

- **Problem**: Given a collection of N strings $A = \{\alpha_1, \dots, \alpha_N\}$, for each K (2 \leq K \leq N) find the longest string β that is a substring of at least K strings in A.
- Let the total length of strings $\alpha_1, \ldots, \alpha_N$ be equal to L. Then the answer to the above problem can be computed in $O(L \cdot \log^* L)$ time and in O(L) space.

Part 4 Conclusions

Open Problem

 How to compute an inexact longest common substring?

Acknowledgements

The authors are thankful to the students of Department of Mathematical Logic and Theory of Algorithms and to **Maxim Ushakov** and **Victor Khimenko** (Google Moscow) for many helpful discussions.

The End:-)

Thank you for your attention.

Questions are welcome!