How 4 simple ingredients become the best beverage in the world

The Science of Brewing:

Part 1: Barley

Nick Waters

Department of Microbiology School of Natural Sciences National University of Ireland, Galway

March 31, 2017

Ingredients

- . Barley
- ² Hops
- . Water
- . Yeast

Barley

- . Hordeum vulgare
- . 4th Most Produced Grain

2-row vs 6-row

	Two Row	Six Row	
Lineage	ancestral	derived	
vrs1 locus	WT	mutant	
Where	old world	new world	
Protein vs Carbs	more sugar	more protein/enzymes	
Starch Conversion	less yield per head	2-4% lower extraction	
Germination Time	2 days	4 days	
Diastic Power	++	+++	

Malting

- . Dry: Grains are dried to encourage natural dormancy
- Steep: Hot water is added to grains to rehydrate the kernals for 2-3 days, encourage sprouting
- . Germinate: Embryo starts making enzymes and converting start reserves
- . Kiln: Germination is halted to preserve optimal sugar and enzume content

Malt Types

Malt Type	Lovibond	Modification	Charactaristics	
Lager	2	++	neutral	
Pale Ale	3	++	general purpose	
Biscuit	25	++	bready	
Victory	25	++	bready/nutty	
Munich	10	++	oktoberfest	
Vienna	4	++	bocks	
Carapils	3	++	texture	
Caramel 10	10	+	honey	
Caramel 40	40	+	light caramel	
Caramel 60	60	+	full caramel	
Caramel 120	120	+	bittersweet caramel	
Special B 220	220		plums, nutty bitter caramel	
Chocolate	400		bittersweet chocolate	
Black Patent	580		charcoal	
Roast Barley	550		coffee, Guinness	

Other Grains

Charactaristics	
crisp, wheaty	
flavorful, spicy	
creamy	
clean	
light	

Mash

- . Protein Rest 30-40°: Encourages proteases
- . Mashing 60-70°: Encourage α and β amylases
- . Hot Crash 75°: Denaturation of Enzymes

Enzymes

Table : Mash Enzymes and Their Optimal Temperatures

Enzyme	Temp (℃)	pH Range	Function
Debranching (var.)	35-45°	5.0-5.8	Solubilization of starches.
eta Glucanase	35-45°	4.5-5.5	Best gum breaking rest.
Peptidase	45-55°	4.6-5.3	Produces Free Amino Nitrogen (FAN).
Protease	45-55°	4.6-5.3	Breaks up large proteins that form haze.
eta Amylase	55-66°	5.0-5.5	Produces maltose.
lpha Amylase	67-72°	5.3-5.7	Produces a variety of sugars, including maltose.

After the Mash: Lautering

- . Goal is to achieve maximum extraction of sugars
- . Temp $> 77^{\circ}$ leads to tannin extraction from hulls
- . Sparging is the addition of more water to rinse grains
- . Aim for volume about 1.4x desired final volume
- . Grain husks create filter

BGCP Guidelines: 9E. Strong Scotch Ale

Aroma: Deeply malty, with caramel often apparent. Peaty, earthy and/or smoky secondary aromas may also be present, adding complexity. Caramelization. Hops very low to none.

Appearance: Light copper to dark brown color, often with deep ruby highlights. Clear. Usually has a large tan head, which may not persist in stronger versions.

Flavor: Richly malty with kettle caramelization often apparent. Hints of roasted malt or smoky flavor may be present, as may some nutty character, all of which may last into the finish. Hop flavors and bitterness are low to medium-low, so malt impression should dominate. Esters may suggest plums, raisins or dried fruit. The palate is usually full and sweet, but the finish may be sweet to medium-dry (from light use of roasted barley).

BGCP Guidelines: 9E. Strong Scotch Ale, cont.1

Mouthfeel: Medium-full to full-bodied, with some versions (but not all) having a thick, chewy viscosity. A smooth, alcoholic warmth is usually present and is quite welcome since it balances the malty sweetness. Moderate carbonation.

Overall Impression: Rich, malty and usually sweet, which can be suggestive of a dessert. Complex secondary malt flavors prevent a one-dimensional impression. Strength and maltiness can vary.

Comments: Also known as a "wee heavy." Fermented at cooler temperatures than most ales, and with lower hopping rates, resulting in clean, intense malt flavors. Well suited to the region of origin, with abundant malt and cool fermentation and aging temperature. Hops, which are not native to Scotland and formerly expensive to import, were kept to a minimum.

BGCP Guidelines: 9E. Strong Scotch Ale, cont. 2

Ingredients: Well-modified pale malt, with up to 3% roasted barley. May use some crystal malt for color adjustment; sweetness usually comes not from crystal malts rather from low hopping, high mash temperatures, and kettle caramelization. A small proportion of smoked malt may add depth, though a peaty character (sometimes perceived as earthy or smoky) may also originate from the yeast and native water. Hop presence is minimal, although English varieties are most authentic. Fairly soft water is typical.

Commercial Examples: Traquair House Ale, Belhaven Wee Heavy, McEwan's Scotch Ale, Founders Dirty Bastard, MacAndrew's Scotch Ale, AleSmith Wee Heavy, Orkney Skull Splitter, Inveralmond Black Friar, Broughton Old Jock, Gordon Highland Scotch Ale, Dragonmead Under the Kilt

Microsoc Brew #2: Scotch Wee Heavy

The Grains:

- . 7kg Marris Otter (2row)
- . 250g Roasted Barley

The Mash:

- . 30min @ 40°
- . 40min @ 60°
- . 20min @ 70°

Microsoc Brew #2: Scotch Wee Heavy

The Boil:

- . 3/4 Volume for 60mins
- . 1/4 Volume for 30mins (kettle carmelization)
- . 75g Fuggle hops @ 60mins
- . 25g Fuggle hops @ flameout

The Fermentation:

- . Starter from 3/4 yeast (safbrew T-58)
- . Starter from 1/4 yeast (safbrew T-58) after 2 weeks

Estimated Final ABV: 9.0%

Sources

- http://howtobrew.com/book/section-3/how-the-mashworks/mashing-defined
- https://www.britannica.com/plant/barley-cereal
- https://www.slideshare.net/kourtney-kathryn/advanced-foodspresentation-beer
- https://www.integrowmalt.com/about-integrow/maltingbarley-storage.html
 - http://www.morebeer.com/brewing techniques/bmg/schwarz.html
- http://wynwoodbrewing.com/wpcontent/uploads/2013/08/WBcoBrewingProcess-4.jpg