1. Part-1:

Random forest approach for classification. Use the same dataset that you used for HW5 for the classification. (It probably won't perform well; say why.)

The training score is perfect at 1.0, but the test score is significantly lower at 0.35. I've tried out various combinations of maximum depth and bootstrapping iterations to prevent overfitting, but it seems that the test scores consistently stay low.

Random forest models tend to be limited by the data they were originally trained on, and their performance can be poor when applied to datasets that fall outside the scope of their initial training data¹. In this case, it appears that the random forest model may not be well-suited for the test dataset, which lies outside the range of the original training data. Additionally, the training dataset is widely distributed and sparse, contributing to the low performance.

One potential solution to this problem might be using pre-processed data. In task2, we utilize the ratio of changes in citation numbers compared to the previous year. This transformation can help make the dataset more compact and tightly distributed, leading to a substantial enhancement in the model's performance. We can observe significantly higher scores for both the training set and the test set, with both achieving a perfect score of 1.0.

-	part1										
	univ_rank	first_initial	last_initial	cit_2017	cit_2018	cit_2019	cit_2020	cit_2021	cit_2022	category	predict
0	51	I	P	38	102	159	245	277	381	2	1
1	L 51	S	М	153	333	510	749	963	1048	1	2
2	2 51	Α	В	5524	8950	12526	14204	16734	17508	1	0
3	51	W	Н	161	183	206	215	179	262	2	0
4	51	F	N	70	96	88	133	157	156	0	2
5	5 51	M	I	238	386	641	602	1025	1249	2	2
6	5 51	R	F	41	115	210	312	473	554	2	1
7	51	S	J	54	72	113	139	144	141	0	1
8		S	Z	135	92	160	184	238	332	2	1
9		J	Z	1678	2066	2635	3253	4319	4125	0	0
	LØ 52	E	G	151	147	156	152	169	167	0	0
	l1 52	M	С	85	121	202	264	376	383	0	1
	12 52	W	E	1375	1264	1038	998	947	784	0	0
	l3 52	Α	D	183	286	356	395	449	490	1	2
	l4 52	R	С	89	128	103	109	108	103	0	2
	15 52	٧	С	19	22	52	116	172	188	1	2
	l6 52	T	В	503	463	584	722	945	893	0	2
	l7 52	W	Α	47	82	98	128	178	346	2	2
	l8 52	K	Α	139	125	84	80	74	47	0	0
1	L9 52	S	Н	205	201	220	210	202	187	0	0
_	eature impor		77299 0.156156	42 0.16106	573 0.1492	0135 0.144	87029 0.22	993322]			
Training score: 1.0											
Test score: 0.35											

¹ Refer to https://blog.frankfurt-school.de/wp-content/uploads/2018/10/Neural-Networks-vs-Random-Forests.pdf

2. Part-2:

Introduce 5 new features based on the cita7on numbers. and use them in the RF instead of the citation numbers directly.

Each new feature is: ((citation number in year n+1)-(cita7on number in year n))/(cita7on number in year n) for 2016<n<2022

	dict
0 51 I P 1.684211 0.558824 0.540881 0.130612 0.375451 2	2
1 51 S M 1.176471 0.531532 0.468627 0.285714 0.088266 1	1
2 51 A B 0.620203 0.399553 0.133961 0.178119 0.046253 1	1
3 51 W H 0.136646 0.125683 0.043689 -0.167442 0.463687 2	2
4 51 F N 0.371429 -0.083333 0.511364 0.180451 -0.006369 0	0
5 51 M I 0.621849 0.660622 -0.060842 0.702658 0.218537 2	2
6 51 R F 1.804878 0.826087 0.485714 0.516026 0.171247 2	2
7 51 S J 0.333333 0.569444 0.230088 0.035971 -0.020833 0	0
8 51 S Z -0.318519 0.739130 0.150000 0.293478 0.394958 2	2
9 51 J Z 0.231228 0.275411 0.234535 0.327698 -0.044918 0	0
10 52 E G -0.026490 0.061224 -0.025641 0.111842 -0.011834 0	0
11 52 M C 0.423529 0.669421 0.306931 0.424242 0.018617 0	0
12 52 W E -0.080727 -0.178797 -0.038536 -0.051102 -0.172122 0	0
13 52 A D 0.562842 0.244755 0.109551 0.136709 0.091314 1	1
14 52 R C 0.438202 -0.195312 0.058252 -0.009174 -0.046296 0	0
15 52 V C 0.157895 1.363636 1.230769 0.482759 0.093023 1	1
16 52 T B -0.079523 0.261339 0.236301 0.308864 -0.055026 0	0
17 52 W A 0.744681 0.195122 0.306122 0.390625 0.943820 2	2
18 52 K A -0.100719 -0.328000 -0.047619 -0.075000 -0.364865 0	0
19 52 S H -0.019512 0.094527 -0.045455 -0.038095 -0.074257 0	0
Feature importance: [0.09792896 0.05374935 0.05545764 0.10595865 0.6869054]	
Training score: 1.0	
Test score: 1.0	