1 nalen

. $\mathbf{N}^+ = \mathbf{N} - \{0\}$ נסמן . הוכחה . $\mid K \mid = \aleph_0$. א

הפונקציה חד-חד-ערכית, והתמונה $f: \mathbf{N}^+ o \mathbf{R}^+$ היא פונקציה $f: \mathbf{N}^+ o \mathbf{R}^+$ המוגדרת כך: $f: \mathbf{N}^+ o K$ מדועי). ניתן אפוא לראות את $f: \mathbf{N}^+ o K$ מדועי). ניתן אפוא לראות את

ובהגדרה או של התחום והטווח, f היא פונקציה **חד-חד-ערכית** ו**על**.

. איא כידוע איהיא , \mathbf{N}^+ שווה לעוצמת שוויון עוצמות, עוצמת עוצמת לכן , מהגדרת שוויון עוצמות, אוא שווה לעוצמת

 $g:K o {f R}$ הפונקציה בכיוון ההפוך: הפונקציה על ידי פונקציה אפשר גם החוכיח על ידי פונקציה בכיוון החפוך

 \mathbf{N}^+ היא פונקציה חד-חד-ערכית (נמקו זאת!) והתמונה שלה היא בדיוק, $g(x)=x^2$

-חד-חד היא התחום והטווח של התחום , $g:K \to \mathbf{N}^+$ כפונקציה ק כפונקציה את לכן ניתן לראות ערכית ועל. לכן...

,
| $L \mid \leq C$, ראשית. הוכחה: תקציר הוכחה. .
| $L \mid = C$

. | $\mathbf{R} \times \mathbf{R}$ | = C וכידוע , $L \subseteq \mathbf{R}^+ \times \mathbf{R}^+ \subseteq \mathbf{R} \times \mathbf{R}$ כי

 $L_1 = \{(x,y) \in \mathbf{R}^+ imes \mathbf{R}^+ \mid x \cdot y = 1\}$ מצד שני, L מכילה את הקבוצה

את האונה הסדור . $(x,1/x)\in L_1$ את הזוג הסדור את אונה לכל השלימו (נתאים לכל - $|L_1|=C$ - שלימו את הטיעון). לכן . $|L|\geq C$ לכן הטיעון). לכן

. $\mid L \mid = C$ משני האי-שוויונים, לפי משפט קנטור-ברנשטיין,

: אבוצות אל קבוצות אל כאיחוד של .
| א קבוצות הוכחה הוכחה . | א קבוצות . | א קבוצות אל הוכחה הוכחה הוכחה הוכחה א

 $M_k = \{(x,y) \in \mathbf{R}^+ imes \mathbf{R}^+ \mid (x \cdot y = k) \wedge (x^2 \in \mathbf{N}) \}$ תהי $k \in \mathbf{N}^+$ לכל

 $k \in \mathbf{N}^+$, M_k היא איחוד כל הקבוצות M

. כידוע, איחוד \aleph_0 קבוצות שכל אחת מהן בת-מניה הוא בר-מניה

. היא בת-מניה $M_{_k}$, $k\in \mathbf{N}^{^+}$ שלכל שנוכיח די שנוכיח ו $M\mid =\aleph_{_0}$ היא היא לכן כדי לכן כדי

. לא אפרט כאן את ההמשך – השלימו בעצמכם

2 nalen

א. בחוברת "אוסף תרגילים פתורים" קבוצה 3 שאלה 10ה", מראים כי קבוצת הסדרות הסדרות הסוברות אלא בתת-קבוצות של הסופיות של טבעיים היא בת-מניה. בשאלה שלפנינו עוסקים לא בסדרות אלא בתת-קבוצות של N. נתאים לכל קבוצה סופית של מספרים טבעיים - סדרה סופית: פשוט נסדר את אברי הקבוצה בסדר עולה. בכך הגדרנו פונקציה של הקבוצה M שבשאלה אל קבוצת הסדרות הסופיות של טבעיים. פונקציה זו אינה על (מדוע?) אך מובן שהיא חד-חד-ערכית. לפיכך M! M

מצד שני, K היא אינסופית, מכיון שהיא מכילה את כל הקבוצות מהצורה K, לכל K טבעי. מכאן לפי משפט קנטור-שרדר-ברנשטיין $|K|=\aleph_0$ (למעשה אין כאן צורך במשפט הנייל, שהוא בגדר ייתותח כבדיי. ניתן להראות בלעדיו, שקבוצה אינסופית המוכלת בקבוצה בת-מניה היא בת-מניה).

3 Dalen

א. ניעזר בקבוצות K,L מהשאלה הקודמת.

 $K \cup L \cup M = P(\mathbf{N})$ ורות זו לזו, ו- K,L,M הקבוצות

כעת, אילו M היתה בת-מניה, היינו מקבלים ש- $P({\mathbb N})$ היא איחוד של 3 קבוצות זרות בנות-מניה הוא מניה. עייי שימוש חוזר בשאלה 4.3 בעמי 119 בספר (איחוד שתי קבוצות זרות בנות-מניה הוא בר-מניה) היינו מקבלים כי $P({\mathbb N})$ היא בת-מניה - בסתירה למשפט 5.25 , וכן בסתירה למשפט 5.6 (משפט קנטור). לכן M אינה בת-מניה.

 $M=P(\mathbf{N})-B$ נסמן ב. נסמן מהאמור בתחילת פתרון הסעיף הקודם, $B=K\cup L$ נסמן ב. B היא בת-מנייה, ו- B היא קבוצה אינסופית שאינה בת-מנייה. B היא בת-מנייה, ו- B מקיימות אפוא את תנאי משפט 5.13ב (עמי 16 בחוברת "פרק 5") עבור הקבוצות B B B B בהתאמה. לכן B בהתאמה. לכן B בהתאמה. לכן B בהתאמה. לכן B בהתאמה. B בהתאמה. B בהתאמה.

4 22167

. A יחס מעל קבוצה אברי של זוגות הוא קבוצה כלשהי אברי A

 $A \times A$ של הוא **קבוצה חלקית כלשהי** של במלים אחרות, יחס מעל

 $P(A \times A)$ לפיכך קבוצת כל היחסים מעל A היא בדיוק

(שימו לב: אנו לא רק אומרים שיש להן אותה עוצמה, אלא שזו היא ממש אותה הקבוצה!).

. $|P(\mathbf{R} \times \mathbf{R})| = 2^{|\mathbf{R} \times \mathbf{R}|} = 2^C$ בעת, בעזרת משפטים ידועים:

5 nalen

. $k_1,\,k_2$, m_1,m_2 ההתאמה בהתאמה קבוצות קבוצות הבוצות A_1,A_2 , B_1,B_2 א.

. $m_1 \le m_2$, $k_1 \le k_2$ נתון

כדי לקצר מעט את ההוכחה ניעזר בטריק השימושי הבא: אנו חופשים לבחור כראות עינינו את הקבוצות המייצגות את העוצמות השונות, כל עוד הקבוצות שנבחר הן בעלות העוצמות

 A_2 של הנדרשות. מתוך הנתון, לפי שאלה 5.1א בחוברת "פרק", σ יימת קבוצה חלקית של

(!) $B_1 \subseteq B_2$, $A_1 \subseteq A_2$ לכן ב.ה.כ. נניח

. $k_2 \cdot m_2 = |A_2 \times B_2|$, $k_1 \cdot m_1 = |A_1 \times B_1|$ כעת מהגדרת כפל עוצמות

 $A_1 \times B_1 \subseteq A_2 \times B_2$ אבל מכיוון ש- $B_1 \subseteq B_2$, $A_1 \subseteq B_2$, אבל מכיוון ש-

. $k_1 \cdot m_1 \leq k_2 \cdot m_2$,בהסתמך על שאלה 5.1ב, לכן

. א $_0 \cdot C \le C \cdot C = C$, א ולכן בעזרת סעיף א ולכן א ולכן א ולכן א מצד אחד,

. $C = 1 \cdot C \le \aleph_0 \cdot C$ מצד שני $1 \le \aleph_0$ ולכן בדומה

משני הכיוונים יחד, בעזרת קנטור-שרדר-ברנשטיין, נובע המבוקש.

גיב זאת ונקבל . $2^{\aleph_0}=C$,5.26, געיב זאת נקבל . .

$$C^{C} = (2^{\aleph_0})^{C} = 2^{\aleph_0 \cdot C} = 2^{C}$$

במעברים נעזרנו במשפט 5.27ג ובסעיף ב של שאלה זו.

איתי הראבן