CESAR

Características Gerais e Modos de Endereçamento

Prof. Sérgio Luis Cechin

Características Gerais

- Não é código-compatível com o RAMSES nem com o NEANDER
- É um processador de 16 bits
- Incorpora todos os recursos já vistos nos processadores anteriores
 - A forma, no entanto, é diferente
- Tudo o que se pode fazer com o CESAR pode ser feito com o RAMSES ou o NEANDER...
- ...Entretanto, é mais eficiente

Características Específicas (1)

- Largura dos dados e endereços: 16 bits
 - Tamanho da memória: 65.536 bytes
- Representação dos dados em complemento de 2
 - Afeta a forma com a ULA efetua seus cálculos
- Modos de endereçamento: 8
- Processamento de pilha
- Código das Instruções ocupando 1 ou 2 bytes (1 ou 2 endereços de memória)

Características Específicas (2)

- Registradores
 - 8 registradores de 16 bits, chamados R0, R1, ..., R7
 - 1 registrador de estado
- Registradores de uso geral
 - R0, R1, ..., R5
- Registradores de uso específico
 - R6: apontador de pilha (SP Stack Pointer)
 - R7: apontador de programa (PC Program Counter)

Características Específicas (3)

- Registrador de estado
 - Código de condição N (Negativo)
 - Se 1, indica valores negativos (complemento de 2)
 - Código de condição Z (Zero)
 - Se 1, indica valor zero
 - Código de condição C (Carry)
 - Se 1, significado dependente da instrução geradora
 - Código de condição V (Overflow)
 - Se 1, indica estouro de representação (complemento de 2)

Estrutura da Memória

- Organizada em bytes
 - Cada endereço corresponde a 1 byte da memória
 - Porque...
 - ...permite acomodar, de forma eficiente, instruções com 1 byte;
 - ...é utilizada na maioria dos processadores comerciais;
 - ...em geral, dados mais largos são sempre múltiplos de 8 bits.
- Armazenamento de valores com 16 bits
 - Little endian ou Low-high: Intel
 - Big endian ou High-low: Motorola, Cesar

Armazenamento do valor 1234H em...

Big endian ou High-low

Little end	lian ou l	Low-	hig	h
------------	-----------	------	-----	---

	MEMÓRIA		
End + 0	1 2		
End + 1	3 4		

	MEMÓRIA		
End + 0	3 4		
End + 1	1 2		

Modos de Endereçamento

- Oito modos de endereçamento
- Grupo 1
 - Registrador
 - Registrador pós-incrementado
 - Registrador pré-decrementado
 - Indexado
- Grupo 2
 - Registrador Indireto
 - Registrador pós-incrementado Indireto
 - Registrador pré-decrementado Indireto
 - Indexado Indireto

Registrador (1)

- Código: 000
- Simbólico
 - Ri
- Operação de endereçamento
 - Operando := Ri
- Corresponde ao acesso aos conteúdos dos registradores R0, R1, ..., R7
 - Da mesma forma que o acesso aos registradores A, B e X, no RAMSES

Registrador (2)

Registrador pós-incrementado (1)

- Código: 001
- Simbólico
 - -(Ri)+
- Operação de endereçamento
 - Operando := MEM(Ri) e MEM(Ri+1)
 - Ri := Ri + 2
- Corresponde ao modo de endereçamento direto do RAMSES.
 - Entretanto, utiliza o conteúdo dos registradores como endereço
 - Auto-incrementa o conteúdo do registrador usado como endereço.

Registrador pós-incrementado (2)

Registrador pré-decrementado (1)

- Código: 010
- Simbólico
 - -(Ri)
- Operação de endereçamento
 - -Ri := Ri-2
 - Operando := MEM(Ri) e MEM(Ri+1)
- Corresponde ao modo de endereçamento direto do RAMSES.
 - Entretanto, utiliza o conteúdo dos registradores como endereço
 - Auto-decrementa o conteúdo do registrador usado como endereço.

Registrador pré-decrementado (2)

Indexado (1)

- Código: 011
- Simbólico
 - ddd(Ri)
 - ddd está representado em complemento de 2
- Operação de endereçamento
 - Operando := MEM(ddd+Ri) e MEM(ddd+Ri+1)
- Corresponde ao modo de endereçamento indexado do RAMSES.
 - Entretanto, utiliza o conteúdo de qualquer dos registradores como índice

Indexado (2)

Registrador Indireto

- Código: 100
- Simbólico (Ri)
- Operação de endereçamento
 - Operando := MEM(Ri) e MEM(Ri+1)
- Corresponde ao modo de endereçamento direto do NEANDER/RAMSES
 - Entretanto, utiliza o conteúdo dos registradores como endereço

Registrador Indireto

Registrador pós-incrementado Indireto (1)

- Código: 101
- Simbólico
 - ((Ri)+)
- Operação de endereçamento
 - Endereço := MEM(Ri) e MEM(Ri+1)
 - Operando := MEM(Endereço) e MEM(Endereço+1)
 - -Ri := Ri+2
- Corresponde ao modo de endereçamento indireto do RAMSES.
 - Entretanto, utiliza o conteúdo dos registradores como referência
 - Auto-incrementa o conteúdo do registrador usado como referência.

Registrador pós-incrementado Indireto (2)

Registrador pré-decrementado Indireto (1)

- Código: 110
- Simbólico
 - -(-(Ri))
- Operação de endereçamento
 - -Ri := Ri-2
 - Endereço := MEM(Ri) e MEM(Ri+1)
 - Operando := MEM(Endereço) e MEM(Endereço+1)
- Corresponde ao modo de endereçamento indireto do RAMSES.
 - Entretanto, utiliza o conteúdo dos registradores como endereço
 - Auto-decrementa o conteúdo do registrador usado como endereço.

Registrador pré-decrementado Indireto (2)

Indexado Indireto (1)

- Código: 111
- Simbólico
 - (ddd(Ri))
 - ddd está representado em complemento de 2
- Operação de endereçamento
 - Endereço := MEM(ddd+Ri) e MEM(ddd+Ri+1)
 - Operando := MEM(Endereço) e MEM(Endereço+1)
- Não tem correspondência com os modos de endereçamento do NEANDER/RAMSES.

Indexado Indireto (2)

Pilha do Processador

- Utilização do registro R6 como ponteiro de pilha (SP - Stack Pointer)
- Na inicialização, R6 recebe 0
- Operações
 - No empilhamento, R6 é decrementado
 - No desempilhamento, é incrementado
 - A pilha cresce com R6 movendo-se em direção aos endereços menores
 - Não existe controle de colisão

Empilhamento

Desempilhamento

Modos de Endereçamento Usando o R7 (PC)

- O processador permite ao programador o uso do R7 (*Program Counter*) da mesma forma que os outros registradores.
- O programador pode:
 - Ler seu conteúdo
 - Alterar seu conteúdo (o que ocasiona um desvio)
 - Utilizar seu conteúdo para calcular o endereço de um operando
- Criam-se, então, novos modos de endereçamento: absoluto, imediato e relativo.

Modo Imediato – definição

- A palavra que segue o código da instrução é uma constante de 16 bits
- Implementação
 - Através do modo 001 sobre R7
 - Registrador pós-incrementado
 - (R7)+
 - Operação
 - Operando := MEM(R7)
 - R7 := R7 + 2

Modo Imediato – operação

Modo Absoluto – definição

- A palavra que segue o código da instrução é o endereço do operando
- Corresponde ao modo direto do NEANDER/RAMSES
- Implementação
 - Através do modo 101 sobre R7
 - Pós-incrementado indireto
 - ((R7)+)
 - Comparando com o modo imediato: apresenta um nível a mais de acesso à memória
 - Operação
 - Operando := MEM(MEM(R7))
 - R7 := R7 + 2

Modo Absoluto – operação

Modo Relativo – definição

- A palavra que segue o código da instrução é o deslocamento da posição do operando, em relação a posição da instrução
- É útil para escrever código relocável
 - Que pode rodar em qualquer endereço
- Implementação
 - Através do modo 011 sobre R7
 - Indexado
 - ddd(R7)
 - Operação
 - Operando := MEM(ddd+R7)

Modo Relativo – operação

Relativo Indireto – definição

- A palavra que segue o código da instrução é o deslocamento da posição do <u>endereço do</u> operando, em relação a posição da instrução
- Também é útil para escrever código relocável
 - Que pode rodar em qualquer endereço
- Implementação
 - Através do modo 111 sobre R7
 - Indexado Indireto
 - (ddd(R7))
 - Comparando com o modo relativo: apresenta um nível a mais de acesso à memória
 - Operação
 - Operando := MEM(MEM(ddd+R7))

Relativo Indireto – operação

Resumo

Código	Nome	Simb.	Operação
000	Registrador	Ri	Ri
001	Reg. Pós-incrementado	(Ri)+	MEM(Ri) Ri += 2
010	Reg. Pré-decrementado	-(Ri)	Ri - = 2 MEM(Ri)
011	Indexado	ddd(Ri)	MEM(ddd+Ri)
100	Reg. Indireto	(Ri)	MEM(Ri)
101	Pós-incrementado Indireto	((Ri)+)	MEM(MEM(Ri)) Ri += 2
110	Pré-decrementado Indireto	(-(Ri))	Ri - = 2 MEM(MEM(Ri))
111	Indexado Indireto	(ddd(Ri))	MEM(MEM(ddd+Ri))