

Secondary Memory

- Another form of memory that has a larger storage capacity and from which data and programs are not lost when the computer is turned off. It is also called auxiliary memory.
- ➤ It is different from primary memory as it is not directly accessible through the CPU and is non-volatile.
- ➤ Portable: Some secondary devices are removable. So, we can easily store or transfer data from one computer or device to another.

Magnetic Tape

 Magnetic tape is a medium for magnetic storage made of a thin, magnetizable coating on a long, narrow strip of plastic film.

 It was developed in Germany in 1928.

Floppy Disk

A floppy disk consists of a magnetic disc in a square plastic case. It is used to store data and to transfer data from one device to another device.

Floppy disks are available in two sizes

(a) Size: 3.5 inches, the Storage capacity of 1.44 MB

(b) Size: 5.25 inches, the Storage capacity of 1.2 MB.

> To use a floppy disk, our computer needs to have a floppy disk drive. This storage device becomes obsolete now

Magnetic Disk

- A magnetic Disk is a type of secondary memory that is a flat disc covered with a magnetic coating to hold information.
- Magnetic disks are less expensive than RAM and can store large amounts of data, but the data access rate is slower than main memory because of secondary memory.

A

- Standard diameter of these disks is 14 inches and they rotate with speeds varying from 4200 rpm (rotations per minute) for personal computers to 15000 rpm for servers.
- Data is stored by magnetizing or demagnetizing the magnetic coating. A magnetic reader arm is used to read data from and write data to the disks. A typical modern HDD has capacity in terabytes (TB).

Magnetic Disk

- A magnetic disk primarily consists of a rotating magnetic surface (called platter) and a mechanical arm that moves over it. The mechanical arm is used to read from and write to the disk. The data on a magnetic disk is read and written using a magnetization process.
- The platter keeps spinning at high speed while the head of the arm moves across its surface. When a small current is applied to the head, tiny spots on the disk surface are magnetized and data is stored.

Magnetic Disk

- Data is organized on the disk in the form of tracks and sectors, where tracks are the circular divisions of the disk.
- Tracks are further divided into sectors that contain blocks of data.
 All read and write operations on the magnetic disk are performed on the sectors.
- Random access method

Optical Disk

- ➤ A Compact Disc (CD) is a commonly used secondary storage device.
- ➤ It contains tracks and sectors on its surface. Its shape is circular and is made up of polycarbonate plastic.
- > The storage capacity of CD is up to 700 MB of data.

Digital Versatile Disc

- ➤ A Digital Versatile Disc also known as DVD it is looks just like a CD, but the storage capacity is greater compared to CD
- > it stores up to 4.7 GB of data.

Blu-ray Disc

- > A Blu-ray disc looks just like a CD or a DVD but it can store data or information up to 25 GB data.
- > If you want to use a Blu-ray disc, you need a Blu-ray reader.
- The name Blu-ray is derived from the technology that is used to read the disc 'Blu' from the blue-violet laser and 'ray' from an optical ray.

- ➤ A flash drive or pen drive comes in various storage capacities, such as 1 GB, 2 GB, 4 GB, 8 GB, 16 GB, 32 GB, 64 GB, up to 1 TB.
- A flash drive is used to transfer and store data.
- To use a flash drive, we need to plug it into a USB port on a computer.
- > As a flash drive is easy to use and compact in size.

SSD(solid-state drive)

- ➤ An SSD, or solid-state drive, is a type of storage device used in computers.
- This non-volatile storage media stores persistent data on solid-state flash memory.
- > SSDs replace traditional hard disk drives (HDDs) in computers and perform the same basic functions as a hard drive.

SSD(solid-state drive)

- > SSD has no moving parts to break or spin up or down. The two key components in an SSD are the flash controller and NAND flash memory chips.
- An SSD reads and writes data to underlying interconnected flash memory chips made out of silicon.

- 1. Faster read/write speeds. SSDs can access large files quickly.
- 2. Quicker boot times and better performance. Because the drive does not need to spin up as an HDD would, it is more responsive and provides better load performance.
- 3. Durability. SSDs are more shock-resistant and can handle heat better than HDDs because they do not have moving parts.
- 4. Power consumption. SSDs need less power to operate than HDDs due to their lack of moving parts.
- 5. Quieter. SSDs produce less audible noise because there are no moving or spinning parts.

- > It is known as a Secure Digital Card.
- ➤ It is generally used in portable devices like mobile phones, cameras, etc., to store data. It is available in different sizes like 1 GB, 2 GB, 4 GB, 8 GB, 16 GB, 32 GB, 64 GB, etc.
- To view the data stored in the SD card you can remove them from the device and insert them into a computer with help of a card reader.
- The data stores in the SD card is stored in memory chips(present in the SD Card)

Primary Memory	Secondary Memory
(i) Primary memory devices are semiconductor memories.	(i) Secondary memory devices are magnetic, optical and electronic memories.
(ii) Primary memory can be volatile as well as non-volatile. RAM is the volatile memory and ROM is the non-volatile memory,	(ii) Secondary memory is always non-volatile
(iii) Primary memory is more effective and interacts more quickly with the microprocessor	(iii) Secondary memory is somewhat slower in interacting with the microprocessor than primary memory.

Convert the binary equivalent 10101 to its decimal equivalent.

The octal equivalent of 1100101.001010 is

The decimal equivalent of (0.101)₂ will be

Convert (22)₈ into its corresponding decimal number.

Conversion of Octal number (352.56)₈ to binary number is

A

 $(011101010.101110)_2$

B

 $(011010101.101110)_2$

C

 $(011101010.101010)_2$

D

 $(011010110.101110)_2$

Octal subtraction of (232)₈ from (417)₈ will give _____

Convert (5401)₈ to hexadecimal.

The hexadecimal equivalent of the binary number (0010010100)₂ is:

Conversion of Octal number (540)₈ to binary number is

A

(101100000)₂

В

 $(100110000)_2$

C

 $(101010000)_2$

D

 $(101100100)_2$

Convert the Binary number (110011.100)₂ to Decimal number.

A

(56.4)₈

В

 $(64.4)_8$

C

 $(63.4)_8$

D

 $(67.3)_8$

Conversion of binary number (101110)₂ to hexadecimal is

Convert $(285)_{10}$ to octal.

A

(435)₈

B

 $(453)_8$

C

 $(345)_8$

D

 $(354)_8$

Convert the hexadecimal number (C35D)₁₆ to a binary number.

A

(1101001101010101)₂

В

 $(1100001100011001)_2$

C

 $(1100001101011101)_2$

 $(1111001101011101)_2$

Q. What is the binary equivalent of the decimal number 67.625?

- **(1) 1000010.110**
- **(2) 1000011.110**
- **(3) 1000010.101**
- **(4) 1000011.101**

Q. Given below are two statements:

Statement I: 8 megabytes = 2^{13} gigabytes

Statement II: The decimal equivalent of the binary

number $(11101.101)_2$ is $(29.625)_{10}$.

In the light of the above statements, choose the correct answer from the options given below:

- A. Both Statement I and Statement II are true
- B. Both Statement I and Statement II are false
- C. Statement I is true but Statement II is false
- D. Statement I is false but Statement II is true

Q. Given below are two statements:

Statement I: The base of the binary number system is 2. Statement II: Binary addition is just like decimal addition except that the rules are much simpler.

the light of the above statements, choose the correct answer from the options given below:

- A. Both Statement I and Statement II are true
- B. Both Statement I and Statement II are false
- C. Statement I is true but Statement II is false
- D. Statement I is false but Statement II is true

Q. Which of the following statement(s) is/are TRUE?

S1: The decimal number 11 is larger than the hexadecimal number 11.

S2: In the binary number 1110.101, the fractional part has the decimal value as 0.625.

- **(1) S1 only**
- (2) **S2 only**
- (3) Both S1 and S2
- (4) Neither S1 nor S2

