Stock Option Pricing Using Bayes Filters

Author: Ziyang Ding

April 14, 2020

OPTION & BLACK-SCHOLES

- Options are financial instruments that are derivatives based on the value of underlying asset such as stocks.
- An options contract offers the buyer the opportunity (or promise) to buy or sell—depending on the type of contract they hold—the underlying asset.

$$y_{ti} = p_t \Phi(d_+) - K_{ti} e^{-r_t T_{ti}} \Phi(d_-)$$

where

$$d_{+} = \frac{\ln\left(\frac{p_{t}}{K_{ti}}\right) + \left(r_{t} + \frac{\theta_{t}}{2}\right)T_{ti}}{\sqrt{\theta_{t}T_{ti}}}$$
$$d_{-} = d_{+} - \sqrt{\theta_{t}T_{ti}}$$

Where p_t is asset price; r_t is risk-free interest rate; T_{ti} is exercise time; K_{ti} is strike price; θ_t is volatility; Φ is CDF of normal.

OPTION & BLACK-SCHOLES

• SPX 500 Option Data (04/01/2017 -03/31/2020)

symbol	code	OptionType	expirydate	date	close	change	bid	ask	volume	openinterest	strike	spotclose	close2
SPX	SPX1721D500	call	20170421	20170403	1761.1	0	1855.9	1860.2	0	14	500	2358.84	1761.1
SPX	SPX1721D1000	call	20170421	20170403	1355	0	1356.2	1360.7	0	6857	1000	2358.84	1355
SPX	SPX1721D1100	call	20170421	20170403	1279.8	0	1256.5	1260.7	0	20	1100	2358.84	1279.8
SPX	SPX1721D1200	call	20170421	20170403	0	0	1156.3	1160.8	0	0	1200	2358.84	1158.55
SPX	SPX1721D1225	call	20170421	20170403	0	0	1131.3	1135.6	0	0	1225	2358.84	1133.45
SPX	SPX1721D1275	call	20170421	20170403	0	0	1081.6	1085.8	0	0	1275	2358.84	1083.7
SPX	SPX1721D1300	call	20170421	20170403	0	0	1056.4	1060.9	0	0	1300	2358.84	1058.65
SPX	SPX1721D1325	call	20170421	20170403	0	0	1031.4	1035.7	0	0	1325	2358.84	1033.55
SPX	SPX1721D1350	call	20170421	20170403	0	0	1006.4	1010.9	0	0	1350	2358.84	1008.65
SPX	SPX1721D1375	call	20170421	20170403	0	0	981.4	985.7	0	0	1375	2358.84	983.55
SPX	SPX1721D1400	call	20170421	20170403	938	0	956.5	960.7	0	1	1400	2358.84	938
SPX	SPX1721D1425	call	20170421	20170403	0	0	931.7	935.9	0	0	1425	2358.84	933.8
SPX	SPX1721D1450	call	20170421	20170403	0	0	906.5	911	0	0	1450	2358.84	908.75
SPX	SPX1721D1475	call	20170421	20170403	0	0	881.6	885.8	0	0	1475	2358.84	883.7
SPX	SPX1721D1480	call	20170421	20170403	0	0	876.5	881	0	0	1480	2358.84	878.75
SPX	SPX1721D1490	call	20170421	20170403	0	0	866.5	871	0	0	1490	2358.84	868.75

EKF & GARCH(1, 1)

- p_t Stock price on day t.
- u_t Stock return on day t. $u_t = \frac{p_t p_{t-1}}{p_{t-1}}$
- θ_t Stock volatility on day t
- y_{it} the ith option price on day t

$$\theta_t = \gamma V_L + \alpha u_t^2 + \beta \theta_{t-1} + w_t$$

$$w_t \sim \mathcal{N}(0, W)$$

$$\gamma, \alpha, \beta > 0$$

$$\gamma + \alpha + \beta = 1$$

Where V_L is the long-run average variance rate V_L . To better help our computation, we may relax our boundary constraint condition by treating γV_L as ω , therefore the model becomes:

$$\theta_t = \omega + \alpha u_t^2 + \beta \theta_{t-1} + w_t \tag{1}$$

$$w_t \sim \mathcal{N}(0, W) \tag{2}$$

$$\omega, \alpha, \beta > 0 \tag{3}$$

$$\alpha + \beta < 1 \tag{4}$$

$$\theta_t = g_t(\theta_{t-1}, u_t, w_t)$$

$$y_{it} = f_{ti}(\theta_t, p_t, K_{ti}, T_{ti}) + \nu_t$$

$$\nu_t \sim N(0, v)$$

Where

$$g(\theta_{t-1}, u_t, w_t) = \omega + \alpha u_t^2 + \beta \theta_{t-1} + w_t$$

is the GARCH(1,1) process. In other word, the GARCH(1,1) is representing the dynamics inside the EKF. And

$$f_{ti}(\theta_t, p_t, K_{ti}, T_{ti}) = BS(\theta_t, p_t, K_{ti}, T_{ti})$$

MODEL ILLUSTATION

PARAMETER INFERENCE

The Model requires statistical inference uppon the following parameters:

$$\{\omega, \alpha, \beta, W, v\}$$

We develop the MCMC algorithm that

- 1. Set priors $\mathbb{P}((\omega, \alpha, \beta)^{\mathsf{T}}), \mathbb{P}(W), \mathbb{P}(v)$. Random initialize.
- 2. Forward Filtering: Update all $m_t, C_t, \forall t \in 1: T$
- 3. Backward Smoothing: Sample $\theta_{1:T}$ from $\mathbb{P}(\theta_{1:T}|\mathcal{D}_T)$ by recursively sample θ_{t-1} from $\mathbb{P}(\theta_{t-1}|\theta_t,\mathcal{D}_T)$ using EKF smoothing.
- 4. Linear Regression with Constrains: Sample $(\omega, \alpha, \beta)^{\mathsf{T}}, W$ from $\mathbb{P}(\omega, \alpha, \beta, W | \theta_{1:T}, \mathcal{D}_T, v) = \mathbb{P}(\omega, \alpha, \beta, |W, \theta_{1:T}) \mathbb{P}(W | \theta_{1:T})$ with rejection sampling for constraints of equation (3) and (4).
- 5. Inverse Gamma: Sample v from $\mathbb{P}(v|\theta_{1:T}, \mathcal{D}_T, W, \omega, \alpha, \beta) = \mathbb{P}(v|\theta_{1:T}, \mathcal{D}_T)$
- 6. Repeat 2,3,4,5 until converges.

PARAMETER INFERENCE

