(Deep) Neural Networks

K Sri Rama Murty

IIT Hyderabad

ksrm@ee.iith.ac.in

March 22, 2022

Pass linear aggregated input though activation function

- Pass linear aggregated input though activation function
 - Output $\hat{t} = y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{i=1}^{D} w_i x_i\right)$

Inputs Weights Sum Non-Linearity Output

- Pass linear aggregated input though activation function
 - Output $\hat{t} = y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{i=1}^{D} w_i x_i\right)$
 - f(.) is linear: Linear regression

Inputs Weights Sum Non-Linearity Output

- Pass linear aggregated input though activation function
 - Output $\hat{t} = y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{i=1}^{D} w_i x_i\right)$
 - f(.) is linear: Linear regression
 - f(.) is sigmoid: Logistic regression

- Pass linear aggregated input though activation function
 - Output $\hat{t} = y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{i=1}^{D} w_i x_i\right)$
 - f(.) is linear: Linear regression
 - f(.) is sigmoid: Logistic regression
 - f(.) is softmax: Multiclass logistic regression

- Pass linear aggregated input though activation function
 - Output $\hat{t} = y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{i=1}^{D} w_i x_i\right)$
 - f(.) is linear: Linear regression
 - f(.) is sigmoid: Logistic regression
 - f(.) is softmax: Multiclass logistic regression
 - f(.) is hard-limiting function: Perceptron

- Pass linear aggregated input though activation function
 - Output $\hat{t} = y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{i=1}^{D} w_i x_i\right)$
 - f(.) is linear: Linear regression
 - f(.) is sigmoid: Logistic regression
 - f(.) is softmax: Multiclass logistic regression
 - f(.) is hard-limiting function: Perceptron
- 🏿 Models linear ip-op relation or linearly separable boundaries 🚁 🕞 🔊

 A complex pattern classification problem can be transformed to a linearly seprabale one, provided

- A complex pattern classification problem can be transformed to a linearly seprabale one, provided
 - The transformation from input space to feature space is nonlinear

- A complex pattern classification problem can be transformed to a linearly seprabale one, provided
 - The transformation from input space to feature space is nonlinear
 - The dimensionality of the feature space is high enough

- A complex pattern classification problem can be transformed to a linearly seprabale one, provided
 - The transformation from input space to feature space is nonlinear
 - The dimensionality of the feature space is high enough

•
$$\mathbf{x} = [x_1 \ x_2] \to \phi(\mathbf{x}) = [x_1^2 \ x_2^2 \ \sqrt{2}x_1x_2]$$

• Apply linear models in feature space $\phi(\mathbf{x})$:

$$\hat{t} = y(\phi(\mathbf{x}), \mathbf{w}) = h\left(\mathbf{w}^\mathsf{T}\phi(\mathbf{x})\right)$$

• Apply linear models in feature space $\phi(\mathbf{x})$:

$$\hat{t} = y(\phi(\mathbf{x}), \mathbf{w}) = h\left(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x})\right)$$

- Polynomial kernel of order n: $k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^\mathsf{T} \mathbf{y} + c)^n$
 - For $\mathbf{x} \in \mathbb{R}^2$, n = 2 and c = 1: $k(\mathbf{x}, \mathbf{y}) = (x_1y_1 + x_2y_2 + 1)^2$
 - $k(\mathbf{x}, \mathbf{y}) = \phi^{\mathsf{T}}(\mathbf{x})\phi(\mathbf{y})$ where $\phi(\mathbf{x}) = [1 \ x_1^2 \ x_2^2 \ \sqrt{2}x_1 \ \sqrt{2}x_2 \ \sqrt{2}x_1x_2]^{\mathsf{T}}$
 - Polynomial kernels are explicit kernels

• Apply linear models in feature space $\phi(\mathbf{x})$:

$$\hat{t} = y(\phi(\mathbf{x}), \mathbf{w}) = h\left(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x})\right)$$

- Polynomial kernel of order n: $k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^\mathsf{T} \mathbf{y} + c)^n$
 - For $\mathbf{x} \in \mathbb{R}^2$, n = 2 and c = 1: $k(\mathbf{x}, \mathbf{y}) = (x_1y_1 + x_2y_2 + 1)^2$
 - $k(\mathbf{x}, \mathbf{y}) = \phi^{\mathsf{T}}(\mathbf{x})\phi(\mathbf{y})$ where $\phi(\mathbf{x}) = [1 \ x_1^2 \ x_2^2 \ \sqrt{2}x_1 \ \sqrt{2}x_2 \ \sqrt{2}x_1x_2]^{\mathsf{T}}$
 - Polynomial kernels are explicit kernels
- Gaussian kernel: $k(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{y}\|^2}{h}\right)$
 - Gaussian kernel is an infinite dimensional kernel
 - ullet Feature representation $\phi(\mathbf{x})$ is not available: Implicit kernel
 - However, inner product can be evaluated in the transformed space

• Apply linear models in feature space $\phi(\mathbf{x})$:

$$\hat{t} = y(\phi(\mathbf{x}), \mathbf{w}) = h\left(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x})\right)$$

- Polynomial kernel of order n: $k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^\mathsf{T} \mathbf{y} + c)^n$
 - For $\mathbf{x} \in \mathbb{R}^2$, n = 2 and c = 1: $k(\mathbf{x}, \mathbf{y}) = (x_1y_1 + x_2y_2 + 1)^2$
 - $k(\mathbf{x}, \mathbf{y}) = \phi^{\mathsf{T}}(\mathbf{x})\phi(\mathbf{y})$ where $\phi(\mathbf{x}) = [1 \ x_1^2 \ x_2^2 \ \sqrt{2}x_1 \ \sqrt{2}x_2 \ \sqrt{2}x_1x_2]^{\mathsf{T}}$
 - Polynomial kernels are explicit kernels
- Gaussian kernel: $k(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{y}\|^2}{h}\right)$
 - Gaussian kernel is an infinite dimensional kernel
 - ullet Feature representation $\phi(\mathbf{x})$ is not available: Implicit kernel
 - However, inner product can be evaluated in the transformed space
- There is no reason to believe that the same transformation suits well for all domains image, speech, medical, forensic, financial etc.,

• Desired output is estimated as linear combination of nonlinear basis functions of the inputs $\mathbf{x} \in \mathbb{R}^D o \phi(\mathbf{x}) \in \mathbb{R}^M$

$$\hat{t} = f\left(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}[n])\right) = f\left(\sum_{j=1}^{M} w_j\phi_j(\mathbf{x}[n])\right)$$

• Desired output is estimated as linear combination of nonlinear basis functions of the inputs $\mathbf{x} \in \mathbb{R}^D o \phi(\mathbf{x}) \in \mathbb{R}^M$

$$\hat{t} = f\left(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}[n])\right) = f\left(\sum_{j=1}^{M} w_j\phi_j(\mathbf{x}[n])\right)$$

• Goal is to design the basis functions $\phi_i(\mathbf{x})$ from the data $(\mathcal{X}, \mathcal{T})$

• Desired output is estimated as linear combination of nonlinear basis functions of the inputs $\mathbf{x} \in \mathbb{R}^D o \phi(\mathbf{x}) \in \mathbb{R}^M$

$$\hat{t} = f\left(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}[n])\right) = f\left(\sum_{j=1}^{M} w_j\phi_j(\mathbf{x}[n])\right)$$

- ullet Goal is to design the basis functions $\phi_j(\mathbf{x})$ from the data $(\mathcal{X},\mathcal{T})$
 - Make $\phi_j(\mathbf{x}[n])$ depend on some parameters $\mathbf{W}^{(1)}$

• Desired output is estimated as linear combination of nonlinear basis functions of the inputs $\mathbf{x} \in \mathbb{R}^D o \phi(\mathbf{x}) \in \mathbb{R}^M$

$$\hat{t} = f\left(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}[n])\right) = f\left(\sum_{j=1}^{M} w_j\phi_j(\mathbf{x}[n])\right)$$

- ullet Goal is to design the basis functions $\phi_j(\mathbf{x})$ from the data $(\mathcal{X},\mathcal{T})$
 - Make $\phi_j(\mathbf{x}[n])$ depend on some parameters $\mathbf{W}^{(1)}$
 - ullet Adjust the parameters $oldsymbol{W}^{(1)}$ along with $oldsymbol{w}$ during training

• Desired output is estimated as linear combination of nonlinear basis functions of the inputs $\mathbf{x} \in \mathbb{R}^D o \phi(\mathbf{x}) \in \mathbb{R}^M$

$$\hat{t} = f\left(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}[n])\right) = f\left(\sum_{j=1}^{M} w_j \phi_j(\mathbf{x}[n])\right)$$

- ullet Goal is to design the basis functions $\phi_j(\mathbf{x})$ from the data $(\mathcal{X},\mathcal{T})$
 - Make $\phi_j(\mathbf{x}[n])$ depend on some parameters $\mathbf{W}^{(1)}$
 - ullet Adjust the parameters $oldsymbol{W}^{(1)}$ along with $oldsymbol{w}$ during training
- Neural networks use nonlinear function of linear combination of inputs for basis functions

$$\phi_j(\mathbf{x}) = h\left(\sum_{i=1}^D w_{ji}^{(1)} x_i\right) \qquad j = 1, 2 \cdots, M$$

• Desired output is estimated as linear combination of nonlinear basis functions of the inputs $\mathbf{x} \in \mathbb{R}^D o \phi(\mathbf{x}) \in \mathbb{R}^M$

$$\hat{t} = f\left(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}[n])\right) = f\left(\sum_{j=1}^{M} w_j\phi_j(\mathbf{x}[n])\right)$$

- ullet Goal is to design the basis functions $\phi_j(\mathbf{x})$ from the data $(\mathcal{X},\mathcal{T})$
 - Make $\phi_j(\mathbf{x}[n])$ depend on some parameters $\mathbf{W}^{(1)}$
 - ullet Adjust the parameters $oldsymbol{W}^{(1)}$ along with $oldsymbol{w}$ during training
- Neural networks use nonlinear function of linear combination of inputs for basis functions

$$\phi_j(\mathbf{x}) = h\left(\sum_{i=1}^D w_{ji}^{(1)} x_i\right) \qquad j = 1, 2 \cdots, M$$

K Sri Rama Murty (IITH) DNN March 22, 2022 5/

- Input: $\mathbf{x} \in \mathbf{R}^D$
- Hidden: $\mathbf{z} = \phi(\mathbf{x}) \in \mathbf{R}^M$
- Output: $\mathbf{y} \in R^K$
- $\bullet \ w_{ji}^{(1)}: x_i \to z_j$
- $w_{kj}^{(2)}: z_j \rightarrow y_k$

• At jth hidden unit:

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$
 $z_{j} = h(a_{j})$

• Input: $\mathbf{x} \in \mathbf{R}^D$

• Hidden: $\mathbf{z} = \phi(\mathbf{x}) \in \mathbf{R}^M$

• Output: $\mathbf{y} \in R^K$

 $\bullet \ w_{ji}^{(1)}: x_i \to z_j$

• $w_{kj}^{(2)}: z_j \to y_k$

• At jth hidden unit:

$$a_j = \sum_{i=0}^D w_{ji}^{(1)} x_i \qquad z_j = h(a_j)$$

• h(.) is a nonlinear function

• Input: $\mathbf{x} \in \mathbf{R}^D$

• Hidden: $\mathbf{z} = \phi(\mathbf{x}) \in \mathbf{R}^M$

• Output: $\mathbf{y} \in R^K$

 $\bullet \ w_{ji}^{(1)}: x_i \to z_j$

• $w_{kj}^{(2)}: z_j \to y_k$

• Input: $\mathbf{x} \in \mathbf{R}^D$

• Hidden: $\mathbf{z} = \phi(\mathbf{x}) \in \mathbf{R}^M$

• Output: $\mathbf{y} \in R^K$

•
$$w_{ji}^{(1)}: x_i \rightarrow z_j$$

•
$$w_{kj}^{(2)}: z_j \rightarrow y_k$$

• At jth hidden unit:

$$a_j = \sum_{i=0}^D w_{ji}^{(1)} x_i \qquad z_j = h(a_j)$$

- h(.) is a nonlinear function
- At k^{th} output unit:

$$a_k = \sum_{i=0}^{M} w_{kj}^{(2)} z_j \qquad y_k = f(a_k)$$

• Input: $\mathbf{x} \in \mathbf{R}^D$

• Hidden: $\mathbf{z} = \phi(\mathbf{x}) \in \mathbf{R}^M$

• Output: $\mathbf{y} \in R^K$

•
$$w_{ji}^{(1)}: x_i \rightarrow z_j$$

$$\bullet \ w_{kj}^{(2)}: z_j \to y_k$$

• At *j*th hidden unit:

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$
 $z_{j} = h(a_{j})$

- h(.) is a nonlinear function
- At k^{th} output unit:

$$a_k = \sum_{i=0}^{M} w_{kj}^{(2)} z_j \qquad y_k = f(a_k)$$

• Choice of f(.) depends on task

- Input: $\mathbf{x} \in \mathbf{R}^D$
- Hidden: $\mathbf{z} = \phi(\mathbf{x}) \in \mathbf{R}^M$
- Output: $\mathbf{y} \in R^K$
- $w_{ji}^{(1)}: x_i \rightarrow z_j$
- $\bullet \ w_{kj}^{(2)}: z_j \to y_k$

• At jth hidden unit:

$$a_j = \sum_{i=0}^D w_{ji}^{(1)} x_i \qquad z_j = h(a_j)$$

- h(.) is a nonlinear function
- At k^{th} output unit:

$$a_k = \sum_{i=0}^{M} w_{kj}^{(2)} z_j \qquad y_k = f(a_k)$$

- Choice of f(.) depends on task
 - Linear for Regression

- Input: $\mathbf{x} \in \mathbf{R}^D$
- Hidden: $\mathbf{z} = \phi(\mathbf{x}) \in \mathbf{R}^M$
- Output: $\mathbf{y} \in R^K$
- $w_{ji}^{(1)}: x_i \rightarrow z_j$
- $w_{kj}^{(2)}: z_j \rightarrow y_k$

• At *j*th hidden unit:

$$a_j = \sum_{i=0}^D w_{ji}^{(1)} x_i \qquad z_j = h(a_j)$$

- h(.) is a nonlinear function
- At k^{th} output unit:

$$a_k = \sum_{j=0}^{M} w_{kj}^{(2)} z_j \qquad y_k = f(a_k)$$

- Choice of f(.) depends on task
 - Linear for Regression
 - Sigmoid for Binary Classification

- Input: $\mathbf{x} \in \mathbf{R}^D$
- Hidden: $\mathbf{z} = \phi(\mathbf{x}) \in \mathbf{R}^M$
- Output: $\mathbf{y} \in R^K$
- $w_{ji}^{(1)}: x_i \rightarrow z_j$
- $w_{kj}^{(2)}: z_j \rightarrow y_k$

• At *j*th hidden unit:

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$
 $z_{j} = h(a_{j})$

- h(.) is a nonlinear function
- At kth output unit:

$$a_k = \sum_{j=0}^{M} w_{kj}^{(2)} z_j \qquad y_k = f(a_k)$$

- Choice of f(.) depends on task
 - Linear for Regression
 - Sigmoid for Binary Classification
 - Softmax for Multiclass Classification

- Input: $\mathbf{x} \in \mathbf{R}^D$
- Hidden: $\mathbf{z} = \phi(\mathbf{x}) \in \mathbf{R}^M$
- Output: $\mathbf{y} \in R^K$
- $w_{ji}^{(1)}: x_i \rightarrow z_j$
- $w_{ki}^{(2)}: z_i \rightarrow y_k$

• At *j*th hidden unit:

$$a_j = \sum_{i=0}^D w_{ji}^{(1)} x_i \qquad z_j = h(a_j)$$

- h(.) is a nonlinear function
- At k^{th} output unit:

$$a_k = \sum_{j=0}^{M} w_{kj}^{(2)} z_j \qquad y_k = f(a_k)$$

- Choice of f(.) depends on task
 - Linear for Regression
 - Sigmoid for Binary Classification
 - Softmax for Multiclass Classification

•
$$y_k = f\left(\sum_{i=0}^M w_{kj}^{(2)} h\left(\sum_{i=0}^D w_{ji}^{(1)} x_i\right)\right)$$

Universal Approximator

- (a) $f(x) = x^2$, (b) $f(x) = \sin(x)$ (c) f(x) = |x|, (d) f(x) = sign(x)
- One hidden layer with 3 tanh(.) units

7/26

Weight Space Symmetry

- Error $J(\mathbf{W}) = \mathbb{E}[\|\mathbf{t} \mathbf{y}\|]$ is nonconvex in $\mathbf{W} = [\mathbf{W}^{(1)} \mathbf{W}^{(2)}]$.
- There are $2^M M!$ symmetric points with the same error
 - Order of neuronal units in hidden layer does not matter: M!
 - Weights leading to and going out of a hidden unit can be negated: 2^M
- Architecture, nonlinearity, loss function and dataset

9/26

• Network weights $\mathbf{W} = [\mathbf{W}^{(1)} \ \mathbf{W}^{(2)}]$ have to be adjusted to minimize

$$J(\mathbf{W}) = \sum_{n=1}^{N} J_n(\mathbf{W})$$

$$J_n(\mathbf{W}) = \frac{1}{2} \sum_{k=1}^{K} (y_{nk} - t_{nk})^2$$

9/26

• Network weights $\mathbf{W} = [\mathbf{W}^{(1)} \ \mathbf{W}^{(2)}]$ have to be adjusted to minimize

$$J(\mathbf{W}) = \sum_{n=1}^{N} J_n(\mathbf{W})$$
$$J_n(\mathbf{W}) = \frac{1}{2} \sum_{k=1}^{K} (y_{nk} - t_{nk})^2$$

Network parameters can be updated using gradient descent

$$\mathbf{W}^{new} = \mathbf{W}^{old} - \eta
abla J(\mathbf{W})$$

• Network weights $\mathbf{W} = [\mathbf{W}^{(1)} \ \mathbf{W}^{(2)}]$ have to be adjusted to minimize

$$J(\mathbf{W}) = \sum_{n=1}^{N} J_n(\mathbf{W})$$
$$J_n(\mathbf{W}) = \frac{1}{2} \sum_{k=1}^{K} (y_{nk} - t_{nk})^2$$

Network parameters can be updated using gradient descent

$$\mathbf{W}^{new} = \mathbf{W}^{old} - \eta \nabla J(\mathbf{W})$$

• Gradients $\frac{\partial J(\mathbf{W})}{\partial w_{ii}^{(1)}}$ and $\frac{\partial J(\mathbf{W})}{\partial w_{ki}^{(2)}}$ are computed using error backpropagation

9/26

Forward pass input x

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$
$$z_{j} = h(a_{j})$$

$$z_j = h(a_j)$$

Forward pass input x

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$
$$z_{j} = h(a_{j})$$
$$\sum_{i=0}^{M} w_{i}^{(2)}$$

$$a_k = \sum_{j=0}^{M} w_{kj}^{(2)} z_j$$

$$y_k = f(a_k)$$

Forward pass input x

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$

$$z_{j} = h(a_{j})$$

$$a_{k} = \sum_{j=0}^{M} w_{kj}^{(2)} z_{j}$$

$$y_{k} = f(a_{k})$$

$$J(\mathbf{W}) = \frac{1}{2} \sum_{k=1}^{K} (y_{k} - t_{k})^{2}$$

Forward pass input x

$$a_j = \sum_{i=0}^D w_{ji}^{(1)} x_i$$

$$z_j = h(a_j)$$

$$a_k = \sum_{j=0}^{M} w_{kj}^{(2)} z_j$$

$$y_k = f(a_k)$$

$$J(\mathbf{W}) = \frac{1}{2} \sum_{k=1}^{K} (y_k - t_k)^2$$

$$\frac{\partial J}{\partial w_{kj}^{(2)}} = \frac{\partial J}{\partial y_k} \frac{\partial y_k}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}^{(2)}}$$

Forward pass input x

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$
$$z_{j} = h(a_{j})$$

$$a_k = \sum_{j=0}^M w_{kj}^{(2)} z_j$$

$$y_k = f(a_k)$$

$$J(\mathbf{W}) = \frac{1}{2} \sum_{k=1}^{K} (y_k - t_k)^2$$

$$\frac{\partial J}{\partial w_{kj}^{(2)}} = \frac{\partial J}{\partial y_k} \frac{\partial y_k}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}^{(2)}}$$
$$= (y_k - t_k) z_j = \delta_k z_j$$

Forward pass input x

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$

$$z_{j} = h(a_{j})$$

$$a_{k} = \sum_{j=0}^{M} w_{kj}^{(2)} z_{j}$$

$$y_{k} = f(a_{k})$$

$$J(\mathbf{W}) = \frac{1}{2} \sum_{k=1}^{K} (y_k - t_k)^2$$

$$\begin{split} \frac{\partial J}{\partial w_{kj}^{(2)}} &= \frac{\partial J}{\partial y_k} \frac{\partial y_k}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}^{(2)}} \\ &= \left(y_k - t_k \right) z_j = \delta_k z_j \\ \frac{\partial J}{\partial w_{ii}^{(1)}} &= \sum_{k=1}^K \frac{\partial J}{\partial y_k} \frac{\partial y_k}{\partial a_k} \frac{\partial a_k}{\partial z_j} \frac{\partial z_j}{\partial a_j} \frac{\partial a_j}{\partial w_{ii}^{(1)}} \end{split}$$

Forward pass input x

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$

$$z_{j} = h(a_{j})$$

$$a_{k} = \sum_{j=0}^{M} w_{kj}^{(2)} z_{j}$$

$$y_{k} = f(a_{k})$$

$$J(\mathbf{W}) = \frac{1}{2} \sum_{k=1}^{K} (y_{k} - t_{k})^{2}$$

$$\frac{\partial J}{\partial w_{kj}^{(2)}} = \frac{\partial J}{\partial y_k} \frac{\partial y_k}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}^{(2)}}
= (y_k - t_k) z_j = \delta_k z_j
\frac{\partial J}{\partial w_{jj}^{(1)}} = \sum_{k=1}^K \frac{\partial J}{\partial y_k} \frac{\partial y_k}{\partial a_k} \frac{\partial a_k}{\partial z_j} \frac{\partial z_j}{\partial a_j} \frac{\partial a_j}{\partial w_{jj}^{(1)}}
= \sum_{k=1}^K (y_k - t_k) w_{kj}^{(2)} h'(a_j) x_i$$

Forward pass input x

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}$$

$$z_{j} = h(a_{j})$$

$$a_{k} = \sum_{j=0}^{M} w_{kj}^{(2)} z_{j}$$

$$y_{k} = f(a_{k})$$

$$J(\mathbf{W}) = \frac{1}{2} \sum_{k=1}^{K} (y_{k} - t_{k})^{2}$$

$$\frac{\partial J}{\partial w_{kj}^{(2)}} = \frac{\partial J}{\partial y_k} \frac{\partial y_k}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}^{(2)}}$$

$$= (y_k - t_k) z_j = \delta_k z_j$$

$$\frac{\partial J}{\partial w_{ji}^{(1)}} = \sum_{k=1}^K \frac{\partial J}{\partial y_k} \frac{\partial y_k}{\partial a_k} \frac{\partial a_k}{\partial z_j} \frac{\partial z_j}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}^{(1)}}$$

$$= \sum_{k=1}^K (y_k - t_k) w_{kj}^{(2)} h'(a_j) x_i$$

$$= \left(h'(a_j) \sum_{k=1}^K w_{kj}^{(2)} \delta_k\right) x_i$$

ullet Evaluate the input at the i^{th} node by forward passing the input

- Evaluate the input at the *i*th node by forward passing the input
- Evaluate the error at the j^{th} node by backpropagating error

$$\delta_j = h'(a_j) \sum_{k=1}^K w_{kj} \delta_k$$

- Evaluate the input at the ith node by forward passing the input
- ullet Evaluate the error at the j^{th} node by backpropagating error

$$\delta_j = h'(a_j) \sum_{k=1}^K w_{kj} \delta_k$$

• Update the weight w_{ji} : $w_{ji}(au) = w_{ji}(au - 1) - \eta \delta_j z_i$

12 / 26

• Typical weight update in GD: $w^{new} = w^{old} - \eta \operatorname{error} \times \operatorname{input}$

- Typical weight update in GD: $w^{new} = w^{old} \eta \operatorname{error} \times \operatorname{input}$
 - Evaluate *input* at each node though forward pass

- Typical weight update in GD: $w^{new} = w^{old} \eta \operatorname{error} \times \operatorname{input}$
 - Evaluate input at each node though forward pass
 - Evaluate error at each node though backpropagation

- Typical weight update in GD: $w^{new} = w^{old} \eta \operatorname{error} \times \operatorname{input}$
 - Evaluate *input* at each node though forward pass
 - Evaluate error at each node though backpropagation
 - \bullet Update the weight connecting two nodes using respective input & error

- Typical weight update in GD: $w^{new} = w^{old} \eta \operatorname{error} \times \operatorname{input}$
 - Evaluate input at each node though forward pass
 - Evaluate error at each node though backpropagation
 - Update the weight connecting two nodes using respective input & error
- Weight updates for a 2-layer feed FF network

$$w_{kj}^{(2)}(\tau) = w_{kj}^{(2)}(\tau - 1) - \eta_2 \sum_{n \in \mathcal{B}} \delta_{nk} z_{nj}$$

- Typical weight update in GD: $w^{new} = w^{old} \eta \operatorname{error} \times \operatorname{input}$
 - Evaluate input at each node though forward pass
 - Evaluate error at each node though backpropagation
 - Update the weight connecting two nodes using respective input & error
- Weight updates for a 2-layer feed FF network

$$w_{kj}^{(2)}(au) = w_{kj}^{(2)}(au - 1) - \eta_2 \sum_{n \in \mathcal{B}} \delta_{nk} z_{nj}$$

$$w_{ji}^{(1)}(\tau) = w_{ji}^{(1)}(\tau - 1) - \eta_1 \sum_{n \in \mathcal{B}} \left(h'(a_{nj}) \sum_{k=1}^K w_{kj}^{(2)} \delta_{nk} \right) x_{ni}$$

- Typical weight update in GD: $w^{new} = w^{old} \eta \operatorname{error} \times \operatorname{input}$
 - Evaluate input at each node though forward pass
 - Evaluate error at each node though backpropagation
 - Update the weight connecting two nodes using respective input & error
- Weight updates for a 2-layer feed FF network

$$w_{kj}^{(2)}(\tau) = w_{kj}^{(2)}(\tau - 1) - \eta_2 \sum_{n \in \mathcal{B}} \delta_{nk} z_{nj}$$

$$w_{ji}^{(1)}(\tau) = w_{ji}^{(1)}(\tau - 1) - \eta_1 \sum_{n \in \mathcal{B}} \left(h'(a_{nj}) \sum_{k=1}^K w_{kj}^{(2)} \delta_{nk} \right) x_{ni}$$

ullet denotes a random mini-batch of samples drawn from dataset.

13 / 26

• BP is the workhorse behind the deep learning algorithms

- BP is the workhorse behind the deep learning algorithms
- Elegant in assigning the hidden units their share/responsibility of error

- BP is the workhorse behind the deep learning algorithms
- Elegant in assigning the hidden units their share/responsibility of error
- Linear computational complexity $\mathcal{O}(\mathbf{W})$

- BP is the workhorse behind the deep learning algorithms
- Elegant in assigning the hidden units their share/responsibility of error
- Linear computational complexity $\mathcal{O}(\mathbf{W})$
 - Weight perturbation requires $\mathcal{O}(\mathbf{W}^2)$ operations

- BP is the workhorse behind the deep learning algorithms
- Elegant in assigning the hidden units their share/responsibility of error
- Linear computational complexity $\mathcal{O}(\mathbf{W})$
 - Weight perturbation requires $\mathcal{O}(\mathbf{W}^2)$ operations
- Gradient descent may get trapped in local minima or saddle-points

- BP is the workhorse behind the deep learning algorithms
- Elegant in assigning the hidden units their share/responsibility of error
- Linear computational complexity $\mathcal{O}(\mathbf{W})$
 - Weight perturbation requires $\mathcal{O}(\mathbf{W}^2)$ operations
- Gradient descent may get trapped in local minima or saddle-points
 - Does the gradient always point in the right direction?

- BP is the workhorse behind the deep learning algorithms
- Elegant in assigning the hidden units their share/responsibility of error
- Linear computational complexity $\mathcal{O}(\mathbf{W})$
 - Weight perturbation requires $\mathcal{O}(\mathbf{W}^2)$ operations
- Gradient descent may get trapped in local minima or saddle-points
 - Does the gradient always point in the right direction?
- Major drawback of BP is slow rate of convergence

- BP is the workhorse behind the deep learning algorithms
- Elegant in assigning the hidden units their share/responsibility of error
- Linear computational complexity $\mathcal{O}(\mathbf{W})$
 - Weight perturbation requires $\mathcal{O}(\mathbf{W}^2)$ operations
- Gradient descent may get trapped in local minima or saddle-points
 - Does the gradient always point in the right direction?
- Major drawback of BP is slow rate of convergence
 - The algorithm operates entirely on the bassis of 1st order statistics

- BP is the workhorse behind the deep learning algorithms
- Elegant in assigning the hidden units their share/responsibility of error
- Linear computational complexity $\mathcal{O}(\mathbf{W})$
 - Weight perturbation requires $\mathcal{O}(\mathbf{W}^2)$ operations
- Gradient descent may get trapped in local minima or saddle-points
 - Does the gradient always point in the right direction?
- Major drawback of BP is slow rate of convergence
 - The algorithm operates entirely on the bassis of 1st order statistics
 - Smaller learning rates are preferred for stable learning

Virtues & Limitations of BP

- BP is the workhorse behind the deep learning algorithms
- Elegant in assigning the hidden units their share/responsibility of error
- Linear computational complexity $\mathcal{O}(\mathbf{W})$
 - Weight perturbation requires $\mathcal{O}(\mathbf{W}^2)$ operations
- Gradient descent may get trapped in local minima or saddle-points
 - Does the gradient always point in the right direction?
- Major drawback of BP is slow rate of convergence
 - The algorithm operates entirely on the bassis of 1st order statistics
 - Smaller learning rates are preferred for stable learning
 - Initial layers experience smaller updates (vanishing gradients)

Virtues & Limitations of BP

- BP is the workhorse behind the deep learning algorithms
- Elegant in assigning the hidden units their share/responsibility of error
- Linear computational complexity $\mathcal{O}(\mathbf{W})$
 - Weight perturbation requires $\mathcal{O}(\mathbf{W}^2)$ operations
- Gradient descent may get trapped in local minima or saddle-points
 - Does the gradient always point in the right direction?
- Major drawback of BP is slow rate of convergence
 - The algorithm operates entirely on the bassis of 1st order statistics
 - Smaller learning rates are preferred for stable learning
 - Initial layers experience smaller updates (vanishing gradients)
 - Weight space dynamics is influenced by weight initialization, batch size, order of presentation, learning rate schedule.

$$a_1 = w_1 x$$

$$z_1=h(a_1)$$

$$a_1 = w_1 x$$

$$z_1 = h(a_1)$$

$$a_2 = w_2 z_1$$

$$z_2 = h(a_2)$$

$$a_3 = w_3 z_2$$

$$z_3 = h(a_3)$$

$$y = w_4 z_3$$

Training Speed

Training Speed

Training Speed

- ullet Training speed is quantified using the norm of the weight update ΔW
- The updates are much smaller for initial layers hence not trained
- The representations supplied to the deeper layers are not reliable

Derivatives of Activation Functions

Derivatives of Activation Functions

Some Common Activation Functions & Their Derivatives

Derivatives of Activation Functions

- The magnitude of derivatives of tanh(.) and $\sigma(.)$ are less than 1
- Deep cascade of such activation layers lead to vanishing gradients
- ReLU address this issue as it offers unity gradient for +ve values.

Choice of Nonlinearity

Nane	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH -		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan -		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]	/	$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

- 18 layer net has lower error than 34 layer net!
- Skip-connections to overcome vanishing grd.

$$\mathbf{z}^{(l)} = h\left(\mathbf{W}^{(l-1,l)}\mathbf{z}^{(l-1)} + \mathbf{W}^{(l-2,l)}\mathbf{z}^{(l-2)}\right)$$

- 18 layer net has lower error than 34 layer net!
- Skip-connections to overcome vanishing grd.

$$\mathbf{z}^{(l)} = h\left(\mathbf{W}^{(l-1,l)}\mathbf{z}^{(l-1)} + \mathbf{W}^{(l-2,l)}\mathbf{z}^{(l-2)}\right)$$

• If there are no weights on skip connections

$$\mathbf{z}^{(l)} = h\left(g(\mathbf{z}^{(l-2)}) + \mathbf{z}^{(l-2)}\right)$$

- 18 layer net has lower error than 34 layer net!
- Skip-connections to overcome vanishing grd.

$$\mathbf{z}^{(l)} = h\left(\mathbf{W}^{(l-1,l)}\mathbf{z}^{(l-1)} + \mathbf{W}^{(l-2,l)}\mathbf{z}^{(l-2)}\right)$$

• If there are no weights on skip connections

$$\mathbf{z}^{(l)} = h\left(g(\mathbf{z}^{(l-2)}) + \mathbf{z}^{(l-2)}\right)$$

Backpropagation

Regularization Techniques

- DNNs with large number of parameters tend to overfit
 - Error on training data reduces, but not on validation/test data
 - Performance on test data could be worse than smaller models (paradox)
 - With larger parameters, the model gets tuned to noise in training data
 - Weights blow up to capture the noisy fluctuations
- Arrest the growth of the weights to avoid overfitting to training data
- Finding the right balance between bias and variance trade-off.
- Common regularization techniques for DNNs include:
 - Early Stopping, explicit weight regularization, activity regularization/constraints, dropout, input corruption with noise

Early Stopping

- Initialize the weights with small random values
 - Glorot Normal $w_{ji} \in \mathcal{N}\left(0, \frac{\sqrt{2}}{f_{in} + f_{out}}\right)$
 - Update the weights using backpropagation algorithm
- Monitor training and validation errors after every epoch.
- Stop the training when validation error starts to increase

Weight Regularization

Add a penalty term to the error function to discourage weight growth

$$J(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_{nk} - d_{nk})^{2} + \lambda \|\mathbf{W}\|_{p}$$

ullet λ controls the trade-off between bias and variance

Weight Regularization

Add a penalty term to the error function to discourage weight growth

$$J(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_{nk} - d_{nk})^{2} + \lambda \|\mathbf{W}\|_{p}$$

 \bullet λ controls the trade-off between bias and variance

L_1 vs L_2

- L₁ regularization promotes sparser solutions
- L_1 regularization \implies Laplacian priors
- L_2 regularization \implies Gaussian priors

Dropout

24 / 26

Dropout

- Some nodes may tend to be too critical in network operation
- Avoid such situation by sharing the responsibility across the nodes

Dropout

- Some nodes may tend to be too critical in network operation
- Avoid such situation by sharing the responsibility across the nodes
- Drop nodes in the hidden layers with a probability p=(0.5)
- With M hidden units, it can create 2^M different network architectures

Dropout Implementation

- Network training
 - Forwardpass the input to evaluate neuronal outputs in the hidden layer

$$a_j = \sum_{i=0}^{D} w_{ji}^{(1)} x_i$$
 $z_j = h(a_j) m_j$

- ullet m_j is the mask drawn from a Bernoulli distribution with parameter p
- Backpropagate the error to evaluate the share of the hidden neuron

$$\delta_j = m_j h'(a_j) \sum_{k=1}^K w_{kj} \delta_k$$

25/26

Dropout Implementation

- Network training
 - Forwardpass the input to evaluate neuronal outputs in the hidden layer

$$a_j = \sum_{i=0}^{D} w_{ji}^{(1)} x_i$$
 $z_j = h(a_j) m_j$

- ullet m_j is the mask drawn from a Bernoulli distribution with parameter p
- Backpropagate the error to evaluate the share of the hidden neuron

$$\delta_j = m_j h'(a_j) \sum_{k=1}^K w_{kj} \delta_k$$

- Inference from the network
 - Evaluate the network output for different dropouts & combine them
 - Use expected neuronal activation $z_j p_j$ to infer the network output
 - Expected neuronal activation \implies GM over 2^M configurations

25/26

Dropout Implementation

- Network training
 - Forwardpass the input to evaluate neuronal outputs in the hidden layer

$$a_j = \sum_{i=0}^{D} w_{ji}^{(1)} x_i$$
 $z_j = h(a_j) m_j$

- ullet m_j is the mask drawn from a Bernoulli distribution with parameter p
- Backpropagate the error to evaluate the share of the hidden neuron

$$\delta_j = m_j h'(a_j) \sum_{k=1}^K w_{kj} \delta_k$$

- Inference from the network
 - Evaluate the network output for different dropouts & combine them
 - Use expected neuronal activation z_i p_i to infer the network output
 - Expected neuronal activation \implies GM over 2^M configurations
- Interpretation of Dropout
 - Dropout can be interpreted as mixture of experts (novel combination)
 - A node is expected to perform in different configurations:
 Regularization

• FFNN offers data-dependent nonlinear transformation

$$\mathbf{z}[n] = \phi(\mathbf{x}[n]) = g(\mathbf{W}^{(1)}\mathbf{x}[n])$$
 $\mathbf{y}[n] = f(\mathbf{W}^{(2)}\mathbf{z}[n])$

FFNN offers data-dependent nonlinear transformation

$$\mathbf{z}[n] = \phi(\mathbf{x}[n]) = g(\mathbf{W}^{(1)}\mathbf{x}[n])$$
 $\mathbf{y}[n] = f(\mathbf{W}^{(2)}\mathbf{z}[n])$

- FFNNs are memoryless models
 - Transformed representation depends only on current input
 - Impossible to choose a fixed-length window varying context

FFNN offers data-dependent nonlinear transformation

$$\mathbf{z}[n] = \phi(\mathbf{x}[n]) = g(\mathbf{W}^{(1)}\mathbf{x}[n])$$
 $\mathbf{y}[n] = f(\mathbf{W}^{(2)}\mathbf{z}[n])$

- FFNNs are memoryless models
 - Transformed representation depends only on current input
 - Impossible to choose a fixed-length window varying context
 - FFNNs are not capable of capturing the sequential information
 - Need to explore nonlinear sequential models for signal processing

26 / 26

FFNN offers data-dependent nonlinear transformation

$$\mathbf{z}[n] = \phi(\mathbf{x}[n]) = g(\mathbf{W}^{(1)}\mathbf{x}[n])$$
 $\mathbf{y}[n] = f(\mathbf{W}^{(2)}\mathbf{z}[n])$

- FFNNs are memoryless models
 - Transformed representation depends only on current input
 - Impossible to choose a fixed-length window varying context
 - FFNNs are not capable of capturing the sequential information
 - Need to explore nonlinear sequential models for signal processing
- Incorporate sequential information in the transformed representation
 - Finite memory: $\mathbf{z}[n] = \phi(\mathbf{x}[n-k] : \mathbf{x}[n+k])$
 - Infinite memory: $\mathbf{z}[n] = \phi(\mathbf{x}[-\infty] : \mathbf{x}[\infty])$

CNNs RNNs

26 / 26