Chapter 1

Linear Algebra Done right

1.1 Excercise: 3.D

Problem. 1. Suppose $T \in \mathcal{L}(U,V)$ and $S \in \mathcal{L}(V,W)$ are both invertible linear maps. Prove that $ST \in \mathcal{L}(U,W)$ is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$

Proof. Since ST is a composition of two bijections, it is also a bijection, and hence is also a bijection. We only need to show that $(ST)^{-1} = T^{-1}S^{-1}$.

$$(T^{-1}S^{-1})(ST) = T^{-1}(S^{-1}S)T$$

= $T^{-1}IT$
= $T^{-1}T = I$

Similarly, $(ST)(T^{-1}S^{-1}) = I$.

Problem. 9. Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST is invertible if and only if both S and T are invertible.

Proof. The reverse direction is immediate from Problem 1. Now suppose that ST is invertible. Let $v \in V$. Then STv = v. Hence S is surjective and therefore invertible. Suppose that Tu = Tv. Then, STu = STv. Since ST is invertible, we have u = v. Therefore, T is injective, and since V is finite dimension, T is invertible.

Problem. 10. Suppose V is finite-dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST = I if and only if TS = I

Proof. Suppose ST = I. Then STv = v. Since V is finite dimensional, S is invertible. Now,

$$I = S^{-1}S = S^{-1}(ST)S = (S^{-1}S)TS = ITS = TS$$