

Using Machine Learning to Identify Anomalous Activities for Data Leakage Detection

Sheng-Chun Lim and Hunter Paul Computer Science Department San Diego State University

Introduction

- Data leakage has become a critical concern for modern organizations, posing risks such as financial losses, reputational damage, and legal liabilities. The consequences of exposing sensitive information can be severe and far-reaching. With the increasing reliance on digital systems and the rapid growth of data, there is an urgent need for efficient and accurate methods to detect data leakage.
- This research aims to investigate the effectiveness of machine learning techniques in identifying data leakage by focusing on anomaly detection in user activities within a computer network or system.

Background

- Anomaly detection techniques have traditionally focused on single paradigms, such as unsupervised learning. Semi-supervised and supervised methods are often underutilized in the context of data leakage detection.
- Lack of comprehensive studies that explore diverse machine learning paradigms for anomaly detection

Dataset

- Data Leakage Detection Dataset from Kaggle
- The dataset captures various aspects of user interactions with the system and the presence of abnormalities in user behavior
- 49,500 records x 15 columns (43,560 records x 11 columns are used)

All variables are binary, except for:

* Categorical variables

+ Continuous variables

Approach

Procedures

Data Cleaning
 Remove missing data (12%)
 Data Transformation
 Transform categorical features into one-hot encoded
 Transform datetime data into seconds
 Extract13 features from 17 columns using principal component analysis (PCA)

80% for training set, 20% for testing set

Models

Modeling

All models were tuned using 10-fold cross-validation to optimize hyperparameters.

Model Evaluation

Metrics	Formula	Meaning	
Accuracy	$\frac{TP + TN}{TP + TN + FP + FN}$	An overall performance measure	
Precision	$\frac{TP}{TP + FP}$	The model's reliability in detecting anomalies	
Recall	$\frac{TP}{TP + FN}$	The model's ability to capture all anomalies	
F1-Score	$2 \cdot precision \cdot recall$	The harmonic mean of precision	
	precision + recall	and recall, balancing false positives and false negatives	

Results

Model Performance on the test dataset

Autoencoder .67 .56 .67 .57 Logistic Regression .70 .67 .70 .67 Decision Tree .69 .69 .69 .69 Random Forest .77 .76 .77 .76 SVM .72 .76 .72 .73		Accuracy	Precision	Recall	F1-Score
Logistic Regression .70 .67 .70 .67 Decision Tree .69 .69 .69 .69 Random Forest .77 .76 .77 .76 SVM .72 .76 .72 .73	Isolation Forest	.63	.59	.63	.61
Regression .70 .67 .70 .67 Decision Tree .69 .69 .69 .69 Random Forest .77 .76 .77 .76 SVM .72 .76 .72 .73	Autoencoder	.67	.56	.67	.57
Random Forest .77 .76 .77 .76 SVM .72 .76 .72 .73		<i>/</i> ()	.67	.70	.67
SVM .72 .76 .72 .73	Decision Tree	.69	.69	.69	.69
	Random Forest	.77	.76	.77	.76
XGBoost .77 .77 .77 .77	SVM	.72	.76	.72	.73
	XGBoost	.77	.77	.77	.77

Figure. Precision/Recal/F1 Curve of XGBoost Model on training set
The optimal threshold was determined at the "golden cross"—the point
where precision equals recall, which is 0.5919.

Conclusions

- Key Findings:
 - O XGBoost demonstrated the best performance, making it the most suitable for anomaly detection for data leaks in the given dataset
- Future Work:
 - Integrate models into real-time monitoring systems
 - Explore ensemble methods combining the strengths of multiple paradigms

References

Nassif, A. B., Talib, M. A., Nasir, Q., Albadani, H., & Dakalbab, F. M. (2021). Machine learning for cloud security: a systematic review. *IEEE Access*, *9*, 20717-20735.

Naseer, S., Saleem, Y., Khalid, S., Bashir, M. K., Han, J., Iqbal, M. M., & Han, K. (2018). Enhanced network anomaly detection based on deep neural networks. *IEEE access*, *6*, 48231-48246.