日本国特許庁

14.04.99

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

REC'D 1 4 JUN 1999

出願年月日 Date of Application:

1998年 8月 5日

WIPO PCT

出 願 番 号 Application Number:

平成10年特許願第221910号

出 類 人 Applicant (s):

協和醗酵工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

1999年 5月28日

特許庁長官 Commissioner, Patent Office 44位山建 龍龍

【書類名】

特許願

【整理番号】

H10-1231N2

【提出日】

平成10年 8月 5日

【あて先】

特許庁長官殿

【国際特許分類】

C12N 15/09

【発明の名称】

微生物によるイソプレノイド化合物の製造方法および抗

菌または除草活性化合物の探索方法

【請求項の数】

20

【発明者】

【住所又は居所】

神奈川県川崎市麻生区王禅寺2625

【氏名】

三宅 浩一郎

【発明者】

【住所又は居所】

東京都町田市成瀬2丁目12-1

【氏名】

橋本 信一

【発明者】

【住所又は居所】

神奈川県横浜市市ヶ尾町5-1-5

【氏名】

本山 裕章

【発明者】

【住所又は居所】

東京都町田市中町3-9-13

【氏名】

尾崎 明夫

【発明者】

【住所又は居所】

東京都八王子市上野町100-5

【氏名】

瀬戸 治男

【発明者】

【住所又は居所】

東京都世田谷区代沢2-11-5

【氏名】

葛山 智久

【発明者】

【住所又は居所】

東京都文京区西片1-9-5

【氏名】

髙橋 俊二

【特許出願人】

【識別番号】

000001029

【氏名又は名称】 協和醗酵工業株式会社

【代表者】

平田 正

【先の出願に基づく優先権主張】

【出願番号】

平成10年特許願第103101号

【出願日】

平成10年 4月14日

【手数料の表示】

【予納台帳番号】 008187

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【物件名】

図面 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 微生物によるイソプレノイド化合物の製造方法および抗菌または除草活性化合物の探索方法

【特許請求の範囲】

【請求項1】 以下の(a)、(b)、(c)、(d)、(e)および(f)から選ばれるDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを原核生物由来の宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中にイソプレノイド化合物を生成蓄積させ、該培養物からイソプレノイド化合物を採取することを特徴とする、イソプレノイド化合物の製造法。

- (a) ピルビン酸とグリセルアルデヒド3-リン酸から1-デオキシーD-キシルロース5-リン酸を生成する反応を触媒する活性を有する蛋白質をコードするDNA
 - (b) ファルネシルピロリン酸合成酵素をコードするDNA
- (c)配列番号3記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNA
- (d)配列番号4記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNA
- (e) 1 ーデオキシー D ーキシルロース 5 ーリン酸から 2 ー C ーメチルー D ーエリスリトール 4 ーリン酸を生じる反応を触媒する活性を有する蛋白質をコードする D N A
- (f) (a)、(b)、(c)、(d)および(e)から選ばれるDNAと ストリンジェントな条件下でハイブリダイズし、かつ選ばれたDNAにコード

された蛋白質が有する活性と実質的に同一の活性を有している蛋白質をコード するDNA

1)

【請求項2】 ピルビン酸とグリセルアルデヒド3ーリン酸から1ーデオキシーDーキシルロース5ーリン酸を生成する反応を触媒する蛋白質をコードするDNAが、配列番号1記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつピルビン酸とグリセルアルデヒド3ーリン酸から1ーデオキシーDーキシルロース5ーリン酸を生成する反応を触媒する活性を有する蛋白質をコードするDNAである、請求項1記載の製造法。

【請求項3】 DNAが、配列番号6記載の塩基配列を有するDNAである、請求項1または2記載の製造法。

【請求項4】 ファルネシルピロリン酸合成酵素をコードするDNAが、配列番号2記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつファルネシルピロリン酸合成酵素活性を有する蛋白質をコードするDNAである、請求項1記載の製造法。

【請求項5】 DNAが、配列番号7記載の塩基配列を有するDNAである、請求項1または4記載の製造法。

【請求項6】 1ーデオキシーDーキシルロース5ーリン酸から2ーCーメチルーDーエリスリトール4ーリン酸を生じる反応を触媒する活性を有する蛋白質をコードするDNAが、配列番号5記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつピルビン酸とグリセルアルデヒド3ーリン酸から1ーデオキシーDーキシルロース5ーリン酸を生成する反応を触媒する活性を有する蛋白質をコードするDNAである、請求項1記載の製造法。

【請求項7】 DNAが、配列番号10記載の塩基配列を有するDNAである、請求項1または6記載の製造法。

【請求項8】 DNAが、配列番号8または9記載の塩基配列から選ばれる塩基配列を有するDNAである、請求項1記載の製造法。

【請求項9】 イソプレノイド化合物が、ユビキノン、ビタミンK2およびカロテノイドから選ばれるイソプレノイド化合物である、請求項1記載の製造方法。

【請求項10】以下の(a)、(b)および(c)から選ばれるイソプレ ノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質。

- (a)配列番号3記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質
- (b)配列番号4記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質
- (c)配列番号5記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質

【請求項11】 請求項10記載の蛋白質をコードするDNAをベクターに組み込み、得られた組換え体DNAを宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中に該蛋白質を生成蓄積させ、該培養物から該蛋白質を採取することを特徴とする、イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質の製造法。

【請求項12】 形質転換体が、Escherichia属に属する微生物またはErwinia属に属する微生物である、請求項1または11記載の製造法。

【請求項13】以下の(a)~(g)いずれかに記載の、イソプレノイド 化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNA。

- (a) 配列番号3記載のアミノ酸配列を有する蛋白質をコードするDNA
- (b) 配列番号4記載のアミノ酸配列を有する蛋白質をコードするDNA
- (c)配列番号5記載のアミノ酸配列を有する蛋白質をコードするDNA

- (d) 配列番号8記載の塩基配列を有するDNA
- (e) 配列番号9記載の塩基配列を有するDNA
- (f) 配列番号10記載の塩基配列を有するDNA
- (g) (a) ~ (f) いずれかに記載のDNAとストリンジェントな条件下で ハイブリダイズするDNA

【請求項14】ピルビン酸とグリセルアルデヒド3リン酸より1ーデオキシーDーキシルロース5ーリン酸を生合成した後、2ーCーメチルーDーエリスリトール4ーリン酸の生合成を経由しイソペンテニルピロリン酸を生合成するための非メバロン酸経路上に存在する酵素から選ばれる酵素の有する活性を有している蛋白質の反応を阻害する物質を探索することを特徴とする抗菌活性を有する物質の探索法。

【請求項15】ピルビン酸とグリセルアルデヒド3リン酸より1ーデオキシーDーキシルロース5ーリン酸を生合成した後、2ーCーメチルーDーエリスリトール4ーリン酸の生合成を経由しイソペンテニルピロリン酸を生合成するための非メバロン酸経路上に存在する酵素から選ばれる酵素の有する活性を有している蛋白質の反応を阻害する物質を探索することを特徴とする除草活性を有する物質の探索法。

【請求項16】蛋白質が、以下の(a)または(b)の蛋白質であることを特徴とする、請求項14または15記載の探索方法。

- (a) ピルビン酸とグリセルアルデヒド3-リン酸から1ーデオキシーD-キシルロース5-リン酸を生成する反応を触媒する活性を有する蛋白質
- (b) 1 デオキシーD キシルロース5 リン酸から2 C メチルーD エリスリトール4 リン酸を生じる反応を触媒する活性を有する蛋白質

【請求項17】 ピルビン酸とグリセルアルデヒド3-リン酸から1-デオキシーD-キシルロース5-リン酸を生成する反応を触媒する蛋白質が、配列番号1記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつピルビン酸とグリセルアルデヒド3-リン酸から1-デオキシ-D-キシルロース5-リン酸を生成する反応を触媒する活性を有

する蛋白質である、請求項16記載の探索法。

【請求項18】 1ーデオキシーDーキシルロース5ーリン酸から2ーCーメチルーDーエリスリトール4ーリン酸を生じる反応を触媒する活性を有する蛋白質が、配列番号5記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつピルビン酸とグリセルアルデヒド3ーリン酸から1ーデオキシーDーキシルロース5ーリン酸を生成する反応を触媒する活性を有する蛋白質である、請求項16記載の探索法。

【請求項19】 請求項14記載の探索法により取得される抗菌活性を有する物質。

【請求項20】 請求項15記載の探索法により取得される除草活性を有する物質。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、原核生物由来の形質転換体を用いたイソプレノイド化合物の製造法、ならびに非メバロン酸経路に係わる抗菌または除草活性物質の探索方法に関する。

[0002]

【従来の技術】

イソプレノイドとは、炭素数5のイソプレン単位を基本骨格に持つ化合物の 総称で、イソペンテニルピロリン酸(IPP)の重合によって生合成される。 自然界には多種多様なイソプレノイド化合物が存在しており、人類にとって有 用なものも多い。

[0003]

例えば、ユビキノンは電子伝達系の必須成分として、生体内で重要な機能を 果たしており、心疾患に効果のある医薬品として使用されているほか、欧米で は健康食品としての需要が増大している。

ビタミンKは血液凝固系に関与する重要なビタミンであり、止血剤として利

用されているほか、最近骨代謝への関与が示唆され、骨粗鬆症治療への応用が 期待されており、フィロキノンとメナキノンは医薬品として許可されている。

[0004]

また、ユビキノンやビタミンK類には貝類の付着阻害作用があり、貝類付着 防止塗料への応用が期待される。

さらに、カロテノイドと呼ばれる炭素数 4 0 のイソプレン骨格を基本とする 化合物は抗酸化作用があり、βーカロチン、アスタキサンチン、クリプトキサ ンチンなど、がん予防や免疫賦活活性を有するものとして期待されているもの もある。

[0005]

このように、イソプレノイド化合物には多くの有用物質が含まれており、これらの安価な製造法が確立されれば、社会的にも医学的にも多大な恩恵があると思われる。

発酵法によるイソプレノイド化合物の生産は以前から検討されており、培養 条件の検討や変異処理による菌株育種、さらに遺伝子工学的手法による生産量 の向上への試みもなされている。しかし、その効果は個々の化合物種に限定さ れており、イソプレノイド化合物全般に効果のある方法は知られていない。

[0006]

イソプレノイド化合物の基本骨格単位であるイソペンテニルピロリン酸(IPP)は、動物や酵母などの真核生物ではアセチルCoAからメバロン酸を経由して生合成される(メバロン酸経路)ことが証明されている。

メバロン酸経路では3-ヒドロキシー3-メチルグルタリルCoA (HMG-CoA) リダクターゼが律速と考えられており [Mol. Biol. Cell, <u>5</u>, 655(1994)]、酵母において、HMG-CoAリダクターゼを高発現化させカロテノイドの生産性を上げる試みがなされている [三沢ら カロテノイド研究談話会講演要旨集(1997)]。

[0007]

原核生物ではメバロン酸経路の存在を証明した知見はなく、別の経路、即ち、 、ピルビン酸とグリセルアルデヒド3-リン酸が縮合して生じる1-デオキシ - D-キシルロース5-リン酸を経由してIPPが生合成されるという非メバロン酸経路が多くの原核生物において発見されており [Biochem. J., 295, 517 (1993)]、 ¹³Cラベル化基質を使った実験から1ーデオキシーDーキシルロース5ーリン酸は2-C-メチルーD-エリスリトール4ーリン酸を経由してIPPへと転換されることが示唆されている [Tetrahedron Lett. 38, 4769 (1997)]。

[0008]

大腸菌において、ピルビン酸とグリセルアルデヒド3-リン酸を縮合させ1ーデオキシーDーキシルロース5-リン酸を生合成させる酵素1ーデオキシーDーキシルロース5ーリン酸合成酵素(DXS)をコードする遺伝子が同定されている[Proc. Natl. Acad. Sci. USA., 94, 12857 (1997)]。該遺伝子は、ファルネシルピロリン酸合成酵素をコードするispAを含む4つのORFからなるオペロンに含まれている。

[0009]

更に、大腸菌においては、1ーデオキシーDーキシルロース5ーリン酸を2 ーCーメチルーDーエリスリトール4ーリン酸に変換する活性が存在すること が知られている[Trtrahedron Lett. 39, 4509(1998)]。

該オペロンに含まれるこれら遺伝子を操作して、イソプレノイド化合物の生産性を向上させることに関する記載も示唆も現時点ではない。

[0010]

原核生物における非メバロン酸経路に関する知見は徐々に蓄積されつつあるが、関与する酵素やそれをコードする遺伝子の多くは未だ不明である。

光合成細菌において、コリスメートを4ーヒドロキシベンゾエートへ転換する酵素ubiCの遺伝子(ubiC遺伝子)およびpーヒドロキシベンゾエートトランスフェラーゼの遺伝子(ubiA)を導入することにより、ユビキノン-10を効率的に生産する方法が知られている(特開平8-107789)が、非メバロン酸経路の酵素遺伝子を操作することによってイソプレノイド化合物の生産性を向上させた例は皆無である。

更に、非メバロン酸経路上の反応を、変異または薬剤処理等により阻害する

ことにより、原核生物がいかなる影響を受けるかに関する知見はない。

[0011]

4)

【発明が解決しようとする課題】

本発明の課題は、心疾患、骨粗鬆症、止血、がん予防、免疫賦活等を目的とした医薬品、健康食品および貝類付着防止塗料等に有用なイソプレノイド化合物の生合成に関与するDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを原核生物由来の宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中にイソプレノイド化合物を生成蓄積させ、該培養物からイソプレノイド化合物を採取することを特徴とする、イソプレノイド化合物の製造法、イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中に該蛋白質を生成蓄積させ、該培養物から該蛋白質を採取することを特徴とする、該蛋白質の製造法、該蛋白質および該蛋白質をコードするDNAを提供することにある。さらに、本発明の課題は、非メバロン酸経路上の酵素反応を阻害する物質を探索することを特徴とする、抗菌および除草活性物質の探索方法を提供することにある。

[0012]

【課題を解決するための手段】

本発明者らは、原核生物によるイソプレノイド生産性を向上させることのできるDNAを検索し、得られたDNAを原核生物に導入することにより、イソプレノイド生産性を向上させることのできることを見出し本発明を完成するに至った。

[0013]

即ち、本願の第1の発明は、以下の(a)、(b)、(c)、(d)、(e) および(f)から選ばれるDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを原核生物由来の宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中にイソプレノイド化合物を生成蓄積させ、該培養物からイソプレノイド化合物を採取することを特徴とする、イソプレノ

イド化合物の製造法である。

[0014]

- (a) はピルビン酸とグリセルアルデヒド3-リン酸から1-デオキシ-D-キシルロ-ス5-リン酸を生成する反応を触媒する蛋白質をコードするDNA、
 - (b) はファルネシルピロリン酸合成酵素をコードするDNA、
- (c) は配列番号3記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNA、
- (d) は配列番号4記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNA、
- (e) は1-デオキシ-D-キシルロース5-リン酸から2-C-メチル-D-エリスリトール4-リン酸を生じる反応を触媒する活性を有する蛋白質をコードするDNA、
- (f)は(a)、(b)、(c)、(d)および(e)から選ばれるDNAとストリンジェントな条件下でハイブリダイズし、かつ選ばれたDNAにコードされた蛋白質が有する活性と実質的に同一の活性を有している蛋白質をコードするDNAである。

[0015]

本明細書中の、アミノ酸の欠失、置換若しくは付加は、出願前周知技術である部位特異的変異誘発法により実施することができ、また、1若しくは数個のアミノ酸とは、部位特異的変異誘発法により欠失、置換若しくは付加できる程度の数のアミノ酸を意味する。

[0016]

かかる1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質は、モレキュラー・クローニング:ア・ラボラトリー・マニュアル(Molecular Cloning, A laboratory manual)、第二版 [サンブルック(Sambrook)、フリッチ(Fritsch)、マニアチス(Maniatis)編集、コールド・スプリング・ハーバー・ラボラトリー・プレス (Cold Spring Harbor Laboratory Press)、1989年刊(以下、モレキュラー・クローニング 第二版と略す)]、Current Protocols in Molecular Biology, John Wiley & Sons (1987–1997)、Nucleic Acids Research, 10, 6487 (1982)、Proc. Natl. Acad. Sci., USA, 79, 6409(1982)、Gene, 34, 315 (1985)、Nucleic Acids Research, 13, 4431 (1985)、Proc. Natl. Acad. Sci USA, 82, 488 (1985)等に記載の方法に準じて調製することができる。

[0017]

d i

上記において、ピルビン酸とグリセルアルデヒド3ーリン酸から1ーデオキシーDーキシルロース5ーリン酸を生成する反応を触媒する蛋白質をコードするDNAとして、例えば、配列番号1記載のアミノ酸配列を有する蛋白質をコードするDNA、該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつピルビン酸とグリセルアルデヒド3ーリン酸から1ーデオキシーDーキシルロース5ーリン酸を生成する反応を触媒する活性を有する蛋白質をコードするDNA等をあげることができる。

具体的な例として、配列番号6記載の塩基配列を有するDNA等をあげることができる。

[0018]

ファルネシルピロリン酸合成酵素をコードするDNAとして、例えば、配列番号2記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつファルネシルピロリン酸合成酵素活性を有する蛋白質をコードするDNAをあげることができる。具体的な例として、配列番号7記載の塩基配列を有するDNA等をあげることができる。

[0019]

配列番号3記載のアミノ酸配列を有する蛋白質をコードするDNAの具体的な例として、配列番号8記載の塩基配列を有するDNA等をあげることができる。

配列番号4記載のアミノ酸配列を有する蛋白質をコードするDNAの具体的な例として、配列番号9記載の塩基配列を有するDNA等をあげることができる。

[0020]

1ーデオキシーDーキシルロース5ーリン酸から2ーCーメチルーDーエリスリトール4ーリン酸を生じる反応を触媒する活性を有する蛋白質をコードするDNAとして、例えば、配列番号5記載のアミノ酸配列を有する蛋白質をコードするDNA、該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ1ーデオキシーDーキシルロース5ーリン酸から2ーCーメチルーDーエリスリトール4ーリン酸を生じる反応を触媒する活性を有する蛋白質をコードするDNA等をあげることができる。

該DNAの具体的な例として、配列番号10記載の塩基配列を有するDNA 等をあげることができる。

[0021]

上記の「ストリンジェントな条件下でハイブリダイズするDNA」とは、上記のDNAまたは該DNAの断片をプローブとして、コロニー・ハイブリダイゼーション法、プラークハイブリダイゼーション法、あるいはサザンブロットハイブリダイゼーション法等を用いることにより得られるDNAを意味し、具体的には、コロニーあるいはプラーク由来のDNAまたは該DNAの断片を固定化したフィルターを用いて、0.7~1.0MのNaC1存在下、65℃でハイブリダイゼーションを行った後、0.1~2倍程度のSSC溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウムよりなる)を用い、65℃条件下でフィルターを洗浄することにより同定できるDNAをあげることができる。

[0022]

ハイブリダイゼーションは、モレキュラー・クローニング 第二版等に記載されている方法に準じて行うことができる。ハイブリダイズ可能なDNAとして、具体的には配列番号1、2、3、4および5から選ばれる塩基配列と少なくとも70%以上の相同性を有するDNA、好ましくは90%以上の相同性を有するDNAをあげることができる。

[0023]

イソプレノイド化合物として、例えば、ユビキノン、ビタミンK2、カロテ ノイド等をあげることができる。

本願の第2の発明は、以下の(a)、(b)および(c)から選ばれるイソ プレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質 である。

[0024]

- (a) は配列番号3記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質、
- (b) は配列番号4記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質、
- (c) は配列番号5記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質である。

[0025]

本願の第3の発明は、上記の第2の発明に記載の蛋白質をコードするDNA をベクターに組み込み、得られた組換え体DNAを宿主細胞に導入し、得られ た形質転換体を培地に培養し、培養物中に該蛋白質を生成蓄積させ、該培養物 から該蛋白質を採取することを特徴とする、イソプレノイド化合物の生合成効 率を向上させることのできる活性を有する蛋白質の製造法である。

[0026]

上記において、形質転換体として、<u>Escherichia</u>属に属する微生物または<u>Erwinia</u>属に属する微生物をあげることができる。

本願の第4の発明は、以下の(a)、(b)、(c)および(d)から選ばれるイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNAである。

[0027]

- (a) は配列番号3記載のアミノ酸配列を有する蛋白質をコードするDNA、
- (b) は配列番号4記載のアミノ酸配列を有する蛋白質をコードするDNA、
- (c) は配列番号5記載のアミノ酸配列を有する蛋白質をコードするDNA、
- (d) は配列番号8記載の塩基配列を有するDNA、
- (e)は配列番号9記載の塩基配列を有するDNA、
- (f) は配列番号10記載の塩基配列を有するDNA、
- (g)は(a)~(f)いずれかに記載のDNAとストリンジェントな条件下 でハイブリダイズするDNAである。

[0028]

本願の第5の発明は、ピルビン酸とグリセルアルデヒド3リン酸より1ーデオキシーDーキシルロース5ーリン酸を生合成した後、2ーCーメチルーDーエリスリトール4ーリン酸の生合成を経由しイソペンテニルピロリン酸を生合成するための非メバロン酸経路上に存在する酵素から選ばれる酵素の有する活性を有している蛋白質の反応を阻害する物質を探索することを特徴とする抗菌活性を有する物質の探索法である。

[0029]

本願の第6の発明は、ピルビン酸とグリセルアルデヒド3リン酸より1ーデオキシーDーキシルロース5ーリン酸を生合成した後、2ーCーメチルーDーエリスリトール4ーリン酸の生合成を経由しイソペンテニルピロリン酸を生合成するための非メバロン酸経路上に存在する酵素から選ばれる酵素の有する活性を有している蛋白質の反応を阻害する物質を探索することを特徴とする除草活性を有する物質の探索法である。

[0030]

上記発明5および6において、蛋白質として、以下の(a)または(b)の 蛋白質をあげることができる。

- (a) はピルビン酸とグリセルアルデヒド3-リン酸から1ーデオキシ-D-キシルロース5-リン酸を生成する反応を触媒する活性を有する蛋白質、
- (b)は1-デオキシーD-キシルロース5-リン酸から2-C-メチルー D-エリスリトール4-リン酸を生じる反応を触媒する活性を有する蛋白質である。

[0031]

上記において、ピルビン酸とグリセルアルデヒド3ーリン酸から1ーデオキシーDーキシルロース5ーリン酸を生成する反応を触媒する蛋白質として、例えば、配列番号1記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつピルビン酸とグリセルアルデヒド3ーリン酸から1ーデオキシーDーキシルロース5ーリン酸を生成する反応を触媒する活性を有する蛋白質をあげることができる。

[0032]

1ーデオキシーDーキシルロース5ーリン酸から2ーCーメチルーDーエリスリトール4ーリン酸を生じる反応を触媒する活性を有する蛋白質として、例えば、配列番号5記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつピルビン酸とグリセルアルデヒド3ーリン酸から1ーデオキシーDーキシルロース5ーリン酸を生成する反応を触媒する活性を有する蛋白質をあげることができる。

[0033]

本発明の第7の発明は、上記第5の発明の探索法により取得される抗菌活性を 有する物質である。

本発明の第8の発明は、上記第6の発明の探索法により取得される除草活性を 有する物質である。

以下、本発明を詳細に説明する。

[0034]

【発明の実施の形態】

- I. イソプレノイド化合物の生合成に関与する蛋白質をコードするDNAの取得
- (1) DXSをコードするDNA (DXS遺伝子) の塩基配列を利用した、イソプレノイド化合物の生合成に関与する蛋白質をコードするDNAの取得既に決定されている、大腸菌の染色体およびDXS遺伝子の塩基配列情報 [Proc. Natl. Acad. Sci. USA., 94, 12857 (1997)] を利用し、大腸菌よりDXS遺伝子を含む、あるいはDXS遺伝子近隣の遺伝子のDNA領域をPCR法 [Science, 230, 1350(1985)] によりクローニングし、取得することができる。DXS遺伝子を含む塩基配列情報として、例えば、配列番号11に記載の塩基配列をあげることができる。

[0035]

DXS遺伝子を含むDNA領域の取得法としては、具体的には以下の方法をあげることができる。

大腸菌、例えば<u>E. coli</u> XL1-Blue株(東洋紡より購入可能)を大腸菌に適した培地、例えばLB液体培地 [バクトトリプトン(ディフコ社製) 10g、酵母エキス(ディフコ社製) 5g、NaCl 5gを水1リットルに含みpH7.2に調整した培地〕を用い常法に従って培養する。

[0036]

培養後、培養物より遠心分離により菌体を取得する。

取得した菌体より公知の方法(例えば、モレキュラー・クローニング 第二版)に従い染色体DNAを単離する。

配列番号11に記載された塩基配列情報を利用し、DXS遺伝子を含む、あるいはDXS遺伝子近隣の遺伝子のDNA領域に対応する塩基配列を含有するセンスプライマーおよびアンチセンスプライマーをDNA合成機を用いて合成する。

[0037]

PCR法により増幅後、該増幅DNA断片をプラスミドに導入可能なように

センスプライマーおよびアンチセンスプライマーの5 '末端には適切制限酵素サイト、例えばBamHI、EcoRI等の制限酵素サイトを付加させることが好ましい。

[0038]

該センスプライマー、アンチセンスプライマーの組合せとしては、例えば、配列番号12および13、配列番号14および15、配列番号12および16、配列番号17および18、配列番号19および13、配列番号22および23の組合せの塩基配列を有するDNA等をあげることができる。

[0039]

染色体DNAを鋳型として、これらプライマー、TaKaRa LA-PCRTM Kit Ver .2(宝酒造社製)またはExpandTM High-Fidelity PCR System(ベーリンガー・マンハイム社製)等を用い、DNAThermal Cycler(パーキンエルマージャパン社製)でPCRを行う。

[0040]

PCRの条件として、上記プライマーが2kb以下のDNA断片の場合には94℃で30秒間、55℃で30秒~1分間、72℃で2分間からなる反応工程を1サイクルとして、2kbを超えるDNA断片の場合にはは98℃で20秒間、68℃で3分間からなる反応工程を1サイクルとして、30サイクル行った後、72℃で7分間反応させる条件をあげることができる。

[0041]

該増幅されたDNA断片を、大腸菌で増幅可能な適切なベクターを上記プライマーで付与した制限酵素サイトと同じサイトで切断後、アガロース電気泳動、シュークロース密度勾配超遠心分離等の手法によりDNA断片を分画・回収する。

該回収DNA断片を用い、常法、例えば、モレキュラー・クローニング 第二版、Current Protocols in Molecular Biology, Supplement 1~38, John Wiley & Sons (1987-1997)、DNA Cloning 1: Core Techniques, A Practical Appr ach, Second Edition, Oxf rd University Press (1995)等に記載された方法、あるいは市販のキット、例えばSuperScript Plasmid System for cDNA

Synthesis and Plasmid Cloning (ライフ・テクノロジーズ社製) やZAP-cDNA Synthesis Kit [ストラタジーン (Staratagene)社製] を用いクローニングベクターを作製し、作製した該クローニングベクターを用い、大腸菌、例えば \underline{E} . coli DH5 α 株 (東洋紡より購入可能) を形質転換する。

[0042]

該大腸菌を形質転換するためのクローニングベクターとしては、大腸菌K12 株中で自律複製できるものであれば、ファージベクター、プラスミドベクター等いずれでも使用できる、大腸菌の発現用ベクターをクローニングベクターとして用いてもよい。具体的には、ZAP Express [ストラタジーン社製、Strate gies, 5, 58 (1992)]、pBluescript II SK(+) [Nucleic Acids Research, 17, 9494 (1989)]、Lambda ZAP II (ストラタジーン社製)、 λgt10、 λgt 11 [DNA Cloning, A Practical Approach, 1, 49 (1985)]、 λTriplEx (クローンテック社製)、 λExCell (ファルマシア社製)、 pT7T318U (ファルマシア社製)、 pcD2 [H.Okayama and P.Berg; Mol. Cell. Biol., 3, 280 (1983)]、 pMW218 (和光純薬社製)、 pUC118 (宝酒造社製)、 pEG400 [J. Bac., 172, 2392 (1990)]、 pQE-30 (QIAGEN社製)等をあげることができる。

[0043]

得られた形質転換株より、目的とするDNAを含有したプラスミドを常法、例えば、モレキュラー・クローニング 第二版、Current Protocols in Molecular Biology, Supplement 1~38, John Wiley & Sons (1987-1997)、DNA Clning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995)等に記載された方法により取得することができる。

[0044]

該方法により、ピルビン酸とグリセルアルデヒド3ーリン酸から1ーデオキシーDーキシルロース5ーリン酸を生成する反応を触媒する蛋白質をコードするDNA、ファルネシルピロリン酸合成酵素をコードするDNA、配列番号3 記載のアミノ酸配列を有する蛋白質をコードするDNA、配列番号4記載のアミノ酸配列を有する蛋白質をコードするDNA等を有するプラスミドおよびこれらDNAを1つ以上含むプラスミドを取得することができる。

[0045]

該プラスミドとして、例えば、上記DNAを全て含むプラスミドpADO-1、配列番号 6 記載の塩基配列を有するDNAを含むプラスミドpDXS-1あるいはpQEDXS-1、配列番号 7 記載の塩基配列を有するDNAを含むプラスミドpISP-1、配列番号 8 記載の塩基配列を有するDNAを含むプラスミドpXSE-1、配列番号 9 記載の塩基配列を有するDNAを含むプラスミドpXSE-1、配列番号 9 記載の塩基配列を有するDNAを含むプラスミドpTFE-1 等をあげることができる。

[0046]

これらプラスミドに挿入された大腸菌由来のDNA断片の塩基配列を利用し、他の原核生物、例えば、Rhodobacter属に属する微生物等より、該DNAのホモログを上記と同様の方法により取得することができる。

- (2) 大腸菌のメチルエリスリトール要求性変異株を相補することのできる 活性を有する蛋白質をコードするDNA (メチルエリスリトール要求性相補遺 伝子) の取得
 - ① 大腸菌メチルエリスリトール要求性変異株の取得大腸菌、例えばE. coli W3110株 (ATCC14948) を、常法に従って培養する

[0047]

培養後、得られた培養液より遠心分離により菌体を取得する。

該菌体を、適切な緩衝剤、例えば、0.05M トリスーマレイン酸緩衝液 (pH6.0) 等で洗浄後、菌体濃度が $10^4 \sim 10^{10}$ 細胞/m1になるように同緩衝液に懸濁する。

[0048]

該懸濁液を用いて常法により変異処理を行う。常法として、例えば、該懸濁液にNTGを終濃度が600mg/1になるように加え、室温で20分間保持して変異処理する方法をあげることができる。

該変異処理懸濁液を最少寒天培地に0.05~0.5 んメチルエリスリトールを添加した培地で培養する。

[0049]

最少寒天培地として、例えば、M9培地(モレキュラー・クローニング 第 二版)に寒天を添加した培地等をあげることができる。

メチルエリスリトールは、Tetrahedron Letters, <u>38</u>, 35, 6184 (1997)に 記載の方法に準じて化学合成したものを用いることができる。

[0050]

培養後、生育し形成されたコロニーを、最少寒天培地とメチルエリスリトールを 0.05~0.5%含む最少寒天培地にレプリカし、メチルエリスリトール要求性を示すもの、すなわち、メチルエリスリトールを含む最少寒天培地では生育できるが、最少寒天培地では生育できない株を目的の変異株として選択する。

[0051]

該操作により取得されたメチルエリスリトール要求性変異株としてME7株をあげることができる。

② メチルエリスリトール要求性相補遺伝子の取得

大腸菌、例えば、<u>E. coli</u> W3110株(ATCC14948)を培養培地、例えば、L B液体培地に植菌し、常法に従って対数増殖期まで培養する。

[0052]

培養後、得られた培養液を遠心分離して菌体を回収する。

得られた菌体より、常法(例えば、モレキュラー・クローニング 第二版に 記載の方法)に従い染色体DNAを単離・精製する。上記(1)に記載の方法 で取得される染色体DNAを単離・精製された染色体DNAとして用いること もできる。

[0053]

該染色体DNAの適当量を適切な制限酵素、例えば、<u>Sau</u>3AIで部分消化し、得られた消化DNA断片を、常法、例えば、シュークロース密度勾配超遠心分離(26,000rpm、20℃、20hr)により、サイズ分画する

該分画により取得される大きさが4~6kbのDNA断片を、適切な制限酵素で消化したベクター、例えば、pMW118 (ニッポンジーン社製) にライ

ゲーションすることにより染色体ゲノムライブラリーを作製する。

[0054]

作製した染色体ライブラリーを用い、上記①で分離されたメチルエリスリトール要求性変異株、例えば、ME7株を常法(例えば、モレキュラー・クローニング 第二版に記載の方法)に従い形質転換する。

該形質転換体を、ベクターの有する薬剤耐性遺伝子に対応する薬剤を添加した最少寒天培地、例えば、アンピシリン100μg/1入れたM9寒天培地に塗布し、37℃で一晩培養する。

[0055]

該方法により、メチルエリスリトール要求性の回復された形質転換体を選択 することができる。

得られた該形質転換体より、常法によりプラスミドを抽出する。該メチルエリスリトール要求性を回復させることのできるプラスミドとして、例えばpMEW73、pQEDXRをあげることができる。

[0056]

該プラスミド中に導入されたDNAの塩基配列を決定する。

該方法により決定された塩基配列として、配列番号10に示されるyaeN遺伝子の塩基配列を含む配列等をあげることができる。得られた該yaeN遺伝子の塩基配列情報を利用して他の原核生物あるいは植物から該yaeN遺伝子のホモログを上記と同様の方法により取得することができる。

[0057]

II. イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質の製造

上記のようにして得られたDNAを宿主細胞中で発現させるためには、まず、目的とする該DNA断片を、制限酵素類あるいはDNA分解酵素類で、該遺伝子を含む適当な長さのDNA断片とした後に、発現ベクター中プロモーターの下流に挿入し、次いで上記DNAを挿入した発現ベクターを、発現ベクターに適合した宿主細胞中に導入する。

[0058]

宿主細胞としては、目的とする遺伝子を発現できるものは全て用いることができる。例えば、エッシェリヒア属、セラチア属、コリネバクテリウム属、ブレビバクテリウム属、シュードモナス属、バチルス属、ミクロバクテリウム属等に属する細菌、クルイベロミセス属、サッカロマイセス属、シゾサッカロマイセス属、トリコスポロン属、シワニオミセス属等に属する酵母や動物細胞、昆虫細胞等をあげることができる。

[0059]

発現ベクターとしては、上記宿主細胞において自立複製可能ないしは染色体中への組込みが可能で、上記目的とするDNAを転写できる位置にプロモーターを含有しているものが用いられる。

細菌等を宿主細胞として用いる場合は、上記DNAを発現させるための発現ベクターは該細菌中で自立複製可能であると同時に、プロモーター、リボソーム結合配列、上記DNAおよび転写終結配列より構成された組換えベクターであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。

[0060]

発現ベクターとしては、例えば、pBTrp2、pBTac1、pBTac2(いずれもベーリンガーマンハイム社より市販)、pKK233-2(Pharmacia社製)、pSE280(Invitrogen社製)、pGEMEX-1(Promega社製)、pQE-8(QIAGEN社製)、pQE-30(QIAGEN社製)、pRYP10(特開昭58-110600)、pKYP200(Agricultural Biological Chemistry, 48, 669(1984)]、pLSA1(Agric. Biol. Chem., 53, 277(1989)]、pGEL1(Proc. Natl. Acad. Sci. USA, 82, 4306(1985)]、pBluescriptII SK+、pBluescriptII SK(-)(Stratagene社製)、pTrS30(FERM BP-5407)、pTrS32(FERM BP-5408)、pGEX(Pharmacia社製)、pET-3(Novagen社製)、pTerm2(US4686191、US4939094、US5160735)、pSupex、pUB110、pTPS、pC194、pUC18(gene, 33, 103(1985)]、pUC19(Gene, 33, 103(1985)]、pSTV28(宝酒造社製)、pSTV29(宝酒造社製)、pUC18(宝酒造社製)、pPA1(特開昭63-233798)、pEG400(J. Bacteri 1., 172, 2392(1990)]、pQE-30(QIAGEN社製)等を例示することができる。

[0061]

プロモーターとしては、宿主細胞中で発現できるものであればいかなるものでもよい。例えば、 \underline{trp} プロモーター(\underline{Ptrp})、 \underline{lac} プロモーター(\underline{Plac})、 $\underline{P_L}$ プロモーター、 $\underline{P_R}$ プロモーター、 $\underline{P_{SE}}$ プロモーター等の、大腸菌やファージ等に由来するプロモーター、 $\underline{SP01}$ プロモーター、 $\underline{SP02}$ プロモーター、 \underline{Ptp} を2つ直列させたプロモーター(\underline{Ptp} × 2)、 \underline{tac} プロモーター、 \underline{let} Iプロモーター、 \underline{lac} I \underline{tac} \underline{tac}

[0062]

リボソーム結合配列としては、宿主細胞中で発現できるものであればいかなるものでもよいが、シャインーダルガノ (Shine-Dalgarno) 配列と開始コドンとの間を適当な距離 (例えば6~18塩基) に調節したプラスミッドを用いることが好ましい。

[0063]

目的とするDNAの発現には転写終結配列は必ずしも必要ではないが、好適には構造遺伝子直下に転写終結配列を配置することが望ましい。

宿主細胞としては、Escherichia属、Corynebacterium属、Brevibacterium属、Bacillus属、Microbacterium属、Serratia属、Pseudomonas属、Agrobacterium属、Alicyclobacillus属、Anabaena属、Anacystis属、Arthrobacter属、Azobacter属、Chromatium属、Erwinia属、Methylobacterium属、Phormidium属、Rhodobacter属、Rhodopseudomonas属、Rhodospirillum属、Scenedesmun属、Streptomyces属、Synnecoccus属、Zymomonas属等に属する微生物をあげることができ、好ましくは、Escherichia属、Corynebacterium属、Brevibacterium属、Bacillus属、Pseudomonas属、Agrobacterium属、Alicyclobacillus属、Anabaena属、Anacystis属、Arthrobacter属、Azobacter属、Chromatium属、Erwinia属、Methylobacterium属、Phormidium属、Rhodobacter属、Rhodopseudomonas属、Rhodospirillum属、Scenedesmun属、Streptomyces属、Synnecoccus属、Zymomonas属に属する微生物等をあげることができる。

[0064]

該徴生物の具体例として、例えば、Escherichia coli XL1-Blue、Escher ichia coli XL2-Blue、Escherichia coli DH1、Escherichia coli DH5 α, Escherichia coli MC1000, Escherichia coli KY3276, Escherichi a coli W1485, Escherichia coli JM109, Escherichia coli HB101, Es cherichia coli No.49, Escherichia coli W3110, Escherichia coli N Y49, Escherichia coli MP347, Escherichia coli NM522, Bacillus subtilis, Bacillus amyloliquefacines, Brevibacterium ammoniagenes 、Brevibacterium immariophilum ATCC14068、Brevibacterium saccharoly ticum ATCC14066, Brevibacterium flavum ATCC14067, Brevibacterium la ctofermentum ATCC13869, Corynebacterium glutamicum ATCC13032, Coryne bacterium glutamicum ATCC14297, Corynebacterium acetoacidophilum A TCC13870, Microbacterium ammoniaphilum ATCC15354, Serratia ficaria 、Serratia fonticola、Serratia liquefaciens、Serratia marcescens、 Pseudomonas sp. D-0110, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Anabaena cylindrica, Anabaena do liolum, Anabaena flos-aquae, Arthrobacter aurescens, Arthrobacter citreus、Arthrobacter globformis、Arthrobacter hydrocarboglutamicus Arthrobacter mysorens, Arthrobacter nicotianae, Arthrobacter para ffineus, Arthrobacter protophormiae, Arthrobacter roseoparaffinus 、Arthrobacter sulfureus、Arthrobacter ureafaciens、Chromatium bu deri, Chromatium tepidum, Chromatium vinosum, Chromatium warmingi i、Chromatium fluviatile、Erwinia uredovora、Erwinia carotovora Erwinia ananas, Erwinia herbicola, Erwinia punctata, Erwinia terreus, Methylobacterium rhodesianum, Methylobacterium extorque ns, Phormidium sp. ATCC29409, Rhodobacter capsulatus, Rhodobacter sphaer ides, Rhodopseudom nas blastica, Rhodopseudomonas marina, Rh d pseudomonas palustris, Rhodospirillum rubrum, Rhod spirillum sa lexigens, Rhodospirillum salinarum, Streptomyces ambofaciens, Stre ptomyces aureofaciens 、Streptomyces aureus、Streptomyces fungicid

icus、Streptomyces griseochromogenes、Strept myces griseus、Strept
omyces lividans、Streptomyces olivogriseus、Streptomyces rameus、St
reptomyces tanashiensis、Streptomyces vinaceus、Zymomonas mobilis
等をあげることができる。

[0065]

組換えベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法 [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]、プロトプラスト法 (特開昭63-2483942)、またはGene, 17, 107 (1982)やMolecular & General Genetics, 168, 111 (1979)に記載の方法等をあげることができる。

[0066]

酵母を宿主細胞として用いる場合には、発現ベクターとして、例えば、YEp13 (ATCC37115)、YEp24 (ATCC37051)、YCp50 (ATCC37419)、pHS19、pHS15等を例示することができる。

プロモーターとしては、酵母中で発現できるものであればいかなるものでもよく、例えば、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、gal 1プロモーター、gal 10プロモーター、ヒートショック蛋白質プロモーター、MFalプロモーター、CUP1プロモーター等のプロモーターをあげることができる。

[0067]

宿主細胞としては、サッカロミセス・セレビシエ(Saccharomyces cerevisae)、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)、 クリュイベロミセス・ラクチス(Kluyveromyces lactis)、トリコスポロン・プルランス(Trichosporon pullulans)、シュワニオミセス・アルビウス(Schwanniomyces alluvius)等をあげることができる。

[0068]

組換えベクターの導入方法としては、酵母にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法 [Methods. Enzymol., 194, 182 (1990) 、スフェロプラスト法 [Pr c. Natl. Acad. Sc

i. USA, <u>75</u>, 1929 (1978)]、酢酸リチウム法 [J. Bacteriol., <u>153</u>, 163 (1983)]、Proc. Natl. Acad. Sci. USA, <u>75</u>, 1929 (1978)記載の方法等をあげることができる。

[0069]

動物細胞を宿主細胞として用いる場合には、発現ベクターとして、例えば、pcDNAI、pcDM8 (フナコシ社より市販)、pAGE107 [特開平3-22979; Cytotechnology, 3, 133, (1990)]、pAS3-3 (特開平2-227075)、pCDM8 [Nature, 329, 840, (1987)]、pcDNAI/Amp (Invitrogen社製)、pREP4 (Invitrogen社製)、pAGE103 [J. Biochem., 101, 1307 (1987)]、pAGE210等を例示することができる

[0070]

プロモーターとしては、動物細胞中で発現できるものであればいずれも用いることができ、例えば、サイトメガロウイルス(ヒトCMV)のIE(immediate early)遺伝子のプロモーター、SV40の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、SRaプロモーター等をあげることができる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。

[0071]

宿主細胞としては、ナマルバ細胞、HBT5637(特開昭63-299) 、COS1細胞、COS7細胞、CHO細胞等をあげることができる。

動物細胞への組換えベクターの導入法としては、動物細胞にDNAを導入できるいかなる方法も用いることができ、例えば、エレクトロポーレーション法 [Cytotechnology, 3, 133(1990)]、リン酸カルシウム法(特開平2-227075)、リポフェクション法[Proc.Natl.Acad.Sci.,USA, 84, 7413(1987)]、virology, 52, 456 (1973)に記載の方法等を用いることができる。形質転換体の取得および培養は、特開平2-227075号公報あるいは特開平2-257891号公報に記載されている方法に準じて行なうことができる。

[0072]

昆虫細胞を宿主として用いる場合には、例えばバキュロウイルス・イクスプレッション・ベクターズ・ア・ラボラトリー・マニュアル (Baculovirus Expression Vectors, A Laboratory Manual)、カレント・プロトコールズ・イン・モレキュラー・バイオロジー サプルメント1-38 (1987–1997)、Bio/Technology, $\underline{6}$, 47 (1988)等に記載された方法によって、蛋白質を発現することができる。

[0073]

即ち、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導 入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルス を昆虫細胞に感染させ、蛋白質を発現させることができる。

該方法において用いられる遺伝子導入ベクターとしては、例えば、pVL1392、pVL1393、pBlueBacIII(ともにインビトロジェン社製)等をあげることができる。

[0074]

バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス (Autographa californica nuclear polyhedrosis virus)等を用いることができる。

昆虫細胞としては、Spodoptera frugiperdaの卵巣細胞であるSf9、Sf 21 [バキュロウイルス・エクスプレッション・ベクターズ、ア・ラボラト リー・マニュアル、ダブリュー・エイチ・フリーマン・アンド・カンパニー(W. H. Freeman and Company)、ニューヨーク(New York)、(1992)]、Tric hoplusia niの卵巣細胞であるHigh 5 (インビトロジェン社製) 等を用 いることができる。

[0075]

組換えウイルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法 (特開平2-227075)、リポフェクション法 [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)] 等をあげることができる。

[0076]

遺伝子の発現方法としては、直接発現以外に、モレキュラー・クローニング 第二版に記載されている方法等に準じて、分泌生産、融合蛋白質発現等を行 うことができる。

酵母、動物細胞または昆虫細胞により発現させた場合には、糖あるいは糖鎖が付加された蛋白質を得ることができる。

[0077]

上記DNAを組み込んだ組換え体DNAを保有する形質転換体を培地に培養し、培養物中にイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質を生成蓄積させ、該培養物より該蛋白質を採取することにより、イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質を製造することができる。

[0078]

本発明のイソプレノイド化合物の生合成効率を向上させることのできる活性 を有する蛋白質製造用の形質転換体を培地に培養する方法は、宿主の培養に用 いられる通常の方法に従って行うことができる。

本発明の形質転換体が大腸菌等の原核生物、酵母菌等の真核生物である場合、これら微生物を培養する培地は、該微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行える培地であれば天然培地、合成培地のいずれでもよい。

[0079]

炭素源としては、それぞれの徴生物が資化し得るものであればよく、グルコース、フラクトース、スクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノールなどのアルコール類が用いられる。

[0080]

窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム、等の各種無機酸や有機酸のアンモニウム塩、その他含窒素化合物、並びに、ペプトン、肉エキス、酵母エキス、コーン

スチープリカー、カゼイン加水分解物、大豆粕および大豆粕加水分解物、各種 発酵菌体およびその消化物等が用いられる。

[0081]

無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が用いられる。

培養は、振盪培養または深部通気攪拌培養などの好気的条件下で行う。培養温度は15~40℃がよく、培養時間は、通常16時間~7日間である。培養中pHは、3.0~9.0に保持する。pHの調整は、無機あるいは有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニアなどを用いて行う。

[0082]

また培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を 培地に添加してもよい。

プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピルーβーDーチオガラクトピラノシド(IPTG)等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸(IAA)等を培地に添加してもよい。

[0083]

動物細胞を宿主細胞として得られた形質転換体を培養する培地としては、一般に使用されているRPMI1640培地 [The Journal of the American Me dical Association, 199, 519 (1967)]、EagleのMEM培地 [Scienc e, 122, 501 (1952)]、DMEM培地 [Virology, 8, 396 (1959)]、19 9培地 [Proceeding of the Society for the Biological Medicine, 73, 1 (1950)] またはこれら培地に牛胎児血清等を添加した培地等が用いられる。

[0084]

培養は、通常 p H 6~8、30~40℃、5% CO₂存在下等の条件下で1

~7日間行う。

また、培養中必要に応じて、カナマイシン、ペニシリン等の抗生物質を培地 に添加してもよい。

[0085]

昆虫細胞を宿主細胞として得られた形質転換体を培養する培地としては、一般に使用されているTNM-FH培地 [Pharmingen社製]、Sf-900 II SFM培地 (ギブコBRL社製)、ExCell400、ExCell405 [いずれもJRH Bioscience s社製]、Grace's Insect Medium [Grace, T.C.C., Nature, 195, 788 (1962)] 等を用いることができる。

[0086]

培養は、通常 p H 6 ~ 7、25~30℃等の条件下で、1~5日間行う。 また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培地に添加して もよい。

本発明の形質転換体の培養物から、本発明のイソプレノイド化合物の生合成 効率を向上させることのできる活性を有する蛋白質を単離精製するには、通常 の酵素の単離、精製法を用いればよい。

[0087]

例えば、本発明の蛋白質が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液にけん濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミル等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)ーセファロース、DIAION HPA-75 (三菱化成社製) 等レジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い

、精製標品を得ることができる。

[0088]

また、該蛋白質が細胞内に不溶体を形成して発現した場合は、同様に細胞を 回収後破砕し、遠心分離を行うことにより得られた沈殿画分より、通常の方法 により該蛋白質を回収後、該蛋白質の不溶体を蛋白質変性剤で可溶化する。該 可溶化液を、蛋白質変性剤を含まないあるいは蛋白質変性剤の濃度が蛋白質が 変性しない程度に希薄な溶液に希釈、あるいは透析し、該蛋白質を正常な立体 構造に構成させた後、上記と同様の単離精製法により精製標品を得ることがで きる。

[0089]

本発明の蛋白質あるいはその糖修飾体等の誘導体が細胞外に分泌された場合には、培養上清に該蛋白質あるいはその糖鎖付加体等の誘導体を回収することができる。即ち、該培養物を上記と同様の遠心分離等の手法により処理することにより可溶性画分を取得し、該可溶性画分から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。

[0090]

このようにして取得される蛋白質として、例えば、配列番号1~5に示されるアミノ酸配列から選ばれるアミノ酸配列を有する蛋白質をあげることができる。 また、上記方法により発現させた蛋白質を、Fmoc法(フルオレニルメチルオキシカルボニル法)、tBoc法(t-ブチルオキシカルボニル法)等の化学合成法によっても製造することができる。また、桑和貿易(米国Advanced chemTech社製)、パーキンエルマージャバン(米国Perkin-Elmer社製)、ファルマシアバイオテク(スウューデンPharmacia Biotech社製)、アロカ(米国Protein Technology Instrument社製)、クラボウ(米国Synthecell-Vega社製)、日本パーセプティブ・リミテッド(米国PerSeptive社製)、島津製作所等のペプチド合成機を利用し合成することもできる。

[0091]

III. イソプレノイド化合物の製造

上記II. で取得された形質転換体を、上記II. の方法に準じて培養し、培養

物中にイソプレノイド化合物を生成蓄積させ、該培養物からイソプレノイド化 合物を採取することによりイソプレノイド化合物を製造することができる。

[0092]

該培養により、ユビキノン、ビタミンK2、カロテノイド等のイソプレノイド化合物を製造することができる。具体的な例として、例えば、Escherichia 属に属する微生物を形質転換体としたユビキノンー8やメナキノンー8の製造、Rhodobacter属に属する微生物を形質転換体としたのユビキノンー10の製造、Arthrobacter属に属する微生物を形質転換体としたビタミンK2の製造、Agrobacterium属に属する微生物を形質転換体としたアスタキサンチンの製造、Erwinia属に属する微生物を形質転換体としたアスタキサンチンの製造でおいます。

[0093]

培養終了後、培養液に適当な溶媒を加えてイソプレノイド化合物を抽出し、 遠心分離などで沈殿物を除去した後、各種クロマトグラフィーを行うことによ りイソプレノイド化合物を単離・精製することができる。

IV. 非メバロン酸経路上の酵素活性を阻害する物質の探索

(1) 非メバロン酸経路上の酵素活性の測定

非メバロン酸経路上の酵素活性の測定は、通常の酵素の活性測定法に準じて 行うことができる。

[0094]

即ち、活性測定の反応液に用いる緩衝液のPHは、目的とする酵素の活性を 阻害しないPH範囲であればよく、最適PHを含む範囲のPHが好ましい。

例えば、1-デオキシーD-キシルロース5-リン酸レダクトイソメラーゼにおいては、pH5~10、好ましくは6~9である。

[0095]

緩衝液としては、酵素活性を阻害せず、上記pHを達成できるものであればいずれの緩衝液も用いることができる。該緩衝液として、トリス塩酸緩衝液やリン酸緩衝液、硼酸緩衝液、HEPES緩衝液、MOPS緩衝液、炭酸水素緩衝液などを用いることができる。1ーデオキシーDーキシルロース5ーリン酸

レダクトイソメラーゼにおいては、例えば、トリス塩酸緩衝液が好適に用いられる。

[0096]

緩衝液の濃度は酵素活性に阻害を及ぼさない限りどのような濃度でも用いることができるが、好適には1mMから1Mである。

目的とする酵素に補酵素が必要な場合には、反応液に補酵素を添加する。例 えば、1ーデオキシーDーキシルロース5ーリン酸レダクトイソメラーゼにお いては、NADPH、NADHあるいはその他の電子供与体を用いることがで き、好ましくはNADPHをあげることができる。

[0097]

添加する補酵素の濃度は、反応を阻害しない限りいずれの濃度でも用いることができるが、好適には $0.01 \, \mathrm{mM} \sim 100 \, \mathrm{mM}$ 、より好ましくは $0.1 \, \mathrm{mM} \sim 10 \, \mathrm{mM}$ の濃度である。

反応液には必要に応じて金属イオンを添加してもよい。金属イオンは、反応 を阻害しない限りどのようなものでも添加することができるが、好適にはCo²⁺、Mg²⁺、Mn²⁺などがあげられる。

[0098]

金属塩として金属イオンを添加することができ、例えば、塩化物や硫酸塩、 炭酸塩、リン酸塩などとして添加することができる。

添加する金属イオンの濃度は、反応を阻害しない限りどのような濃度でも添加できるが、好適には0mMから100mM、より好適には0.1mMから10mMである。

[0099]

反応被には、目的とする酵素の基質を添加する。例えば、1ーデオキシーDーキシルロース5ーリン酸レダクトイソメラーゼにおいては、1ーデオキシーDーキシルロース5ーリン酸を添加する。

基質の濃度は反応に支障のない限りどのような濃度でも用いることができるが、好適には反応液中の濃度は0.01mM~0.2Mである。

[0100]

反応に用いる酵素濃度に特に制限はないが、通常 0.01 mg/mlから100 mg/mlの濃度範囲で反応を行う。

用いる酵素は必ずしも単一にまで精製されている必要はなく、反応を妨害しない限り、他の快雑蛋白質が混入した標品であってもよい。また、下記(2)の探索においては、該酵素活性を含む細胞抽出液あるいは該酵素活性を有する細胞も用いることができる。

[0101]

反応温度は、目的とする酵素の活性を阻害しない温度範囲であればよく、最適温度を含む範囲の温度が好ましい。即ち、反応温度は、10 Cから60 C、より好ましくは30 Cから40 Cである。

活性の検出は、反応に伴う基質の減少、あるいは反応生成物の増加を、基質 あるいは反応生成物を測定できる方法を用いて行うことができる。

[0.102]

該方法として、例えば、必要に応じて高速液体クロマトグラフィー法(HPLC)等により目的物質を分離定量する方法をあげることができる。また反応の進行に伴ってNADHやNADPHが増減する場合には、反応液の340nmの吸光度を測定することで活性を直接測定することができる。例えば、1ーデオキシーDーキシルロース5ーリン酸レダクトイソメラーゼにおいては、340nmの吸光の減少を分光光度計で測定することにより反応の進行に伴い減少するNADPHを定量し、活性を検出することができる。

[0103]

(2) 非メバロン酸経路上の酵素活性を阻害する物質の探索

非メバロン酸経路上の酵素活性を阻害する物質の探索は、上記(1)の酵素活性測定系に被探索物質を加えて同様に反応させ、無添加時より基質の減少量を抑えるような物質あるいは反応産物の生成量を抑えるような物質を探索することで行うことができる。

[0104]

探索の方法としては、基質の減少量あるいは反応生産物の増加量等を経時的 に追跡する方法、一定時間反応させた後の基質の減少量あるいは反応生産物の 増加量等を測定する方法等をあげることができる。

基質の減少量あるいは反応生産物の増加量等を経時的に追跡する方法においては、反応中15秒~20分程度の間隔で基質の減少量あるいは反応生産物の増加量を測定することが好ましく、1~3分間隔で測定することがより好ましい。

[0105]

一定時間反応させた後の基質の減少量あるいは反応生産物の増加量等を測定する方法においては、反応時間は、10分~1日が好ましく、より好ましくは30分~2時間である。

非メバロン酸経路上の酵素活性を阻害する物質は、該非メバロン酸経路を有する微生物および植物の生育を阻害する。該物質が該微生物および植物の生育 を阻害することは、本発明者らが始めて見出した。

[0106]

非メバロン酸経路は微生物や植物に存在し、動物や人には存在しないことより、上記探索法により、人や動物に影響を及ぼさない、非メバロン酸経路上の 酵素活性を阻害する物質を取得することができる。

該物質は、有効な抗菌剤あるいは除草剤となり得る。

[0107]

以下に本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。

実施例で示した遺伝子組換え実験は、特に言及しない限りモレキュラー・クローニング 第二版に記載の方法(以下、常法と呼ぶ)を用いて行った。

【実施例】

[0108]

実施例1 イソプレノイド化合物の生合成に関与する蛋白質をコードする DNAの取得

(1) 大腸菌DXS遺伝子の塩基配列を利用した、イソプレノイド化合物の 生合成に関与する蛋白質をコードするDNAの取得

E. coli XL1-Blue株 (東洋紡より購入)を1白金耳、10m1のLB液体

培地に植菌し、37℃で一晩培養した。

[0109]

培養後、得られた培養液より遠心分離により菌体を取得した。

該菌体より、常法に従い染色体DNAを単離・精製した。

配列番号12および13、配列番号14および15、配列番号12および16、配列番号17および18、配列番号19および13の塩基配列の組合せを有する5 '末端に<u>Bam</u>HIおよび<u>Eco</u>RI制限酵素切断部位をそれぞれ有するセンスプライマーおよびアンチセンスプライマー、配列番号22および23の塩基配列の組合せを有する5 '末端に<u>Bam</u>HI制限酵素切断部位をそれぞれ有するセンスプライマーおよびアンチセンスプライマーをDNA合成機を用いて合成した。

[0110]

染色体DNAを鋳型として、これらプライマーと、TaKaRa LA-PCRTM Kit Ver.2(宝酒造社製)、ExpandTM High-Fidelity PCR System(ベーリンガー・マンハイム社製)またはTaq DNA polymerase (Boelinnger社製)を用い、DNA Thermal Cycler(パーキンエルマージャパン社製)でPCRを行った。

[0111]

PCRは、2kb以下のDNA断片は94℃で30秒間、55℃で30秒~1分間、72℃で2分間からなる反応工程を1サイクルとして、2kbを超えるDNA断片は98℃で20秒間、68℃で3分間からなる反応工程を1サイクルとして、30サイクル行った後、72℃で7分間反応させる条件で行った

[0112]

PCRにより増幅されたDNA断片のうち、5 '末端に<u>Bam</u>HIおよび<u>E</u> <u>co</u>RI制限酵素切断部位をそれぞれ有するセンスプライマーおよびアンチセンスプライマーを用いて増幅されたDNA断片は制限酵素<u>Bam</u>HIおよび<u>E co</u>RIで消化し、5 '末端に<u>Bam</u>HI制限酵素切断部位をそれぞれ有するセンスプライマーおよびアンチセンスプライマーを用いて増幅されたDNA断片は制限酵素 BamHIで消化した。

[0113]

消化後、これら制限酵素処理DNA断片をアガロースゲル電気泳動し、<u>Ba</u> <u>mHI-Eco</u>RI処理DNA断片および<u>Bam</u>HI処理DNA断片を取得し た。

1 a c プロモーターを有する広宿主域ベクターp E G 4 0 0 [J. Bac., <u>17</u> <u>2</u>, 2392 (1990)] を、制限酵素 <u>B a m H I および E c o R I で消化後、アガロースゲル電気泳動を行い、<u>B a m H I - E c o R I 処理 p E G 4 0 0 断片を取得した。</u></u>

[0114]

pUC118(宝酒造社製)を制限酵素<u>Bam</u>HIで消化後、アガロースゲル電気泳動を行いBamHI処理pUC118断片を取得した。

上記で取得されたBamHI-EcoRI処理DNA断片各々についてBamHI-EcoRI処理pEG400断片と混合した後、エタノール沈殿を行い、得られたDNA沈殿物を 5μ 1の蒸留水に溶解し、ライゲーション反応を行うことにより組換え体DNAを各々取得した。

[0115]

該組換え体DNAを用い、E. coli (東洋紡より購入) DH5 α株を常法に従って形質転換後、該形質転換体をスペクチノマイシン100μg/mlを含む LB寒天培地に塗布し、37℃で一晩培養した。

生育してきたスペクチノマイシン耐性の形質転換体のコロニー数個について、スペクチノマイシン100μg/mlを含むLB液体培地10mlで37℃ 16時間振盪培養した。

[0116]

得られた培養液を遠心分離することにより菌体を取得した。

該菌体より常法に従ってプラスミドを単離した。

該方法により単離したプラスミドを各種制限酵素で切断して構造を調べ、塩 基配列を決定することにより、目的のDNA断片が挿入されているプラスミド であることを確認した。

[0117]

配列番号6記載の塩基配列を有するDNA、配列番号7記載の塩基配列を有するDNA、配列番号8記載の塩基配列を有するDNAおよび配列番号9記載の塩基配列を有するDNAを含むプラスミドをpADO-1、配列番号6記載の塩基配列を有するDNAを含むプラスミドをpDXS-1、配列番号7記載の塩基配列を有するDNAを含むプラスミドをpISP-1、配列番号8記載の塩基配列を有するDNAを含むプラスミドをpXSE-1、配列番号9記載の塩基配列を有するDNAを含むプラスミドをpXSE-1、配列番号9記載の塩基配列を有するDNAを含むプラスミドをpTFE-1と命名した。

[0118]

また、上記で取得されたBamHI処理DNA断片およびBamHI処理DUC118断片を混合した後、エタノール沈殿を行い、得られたDNA沈殿物を 5μ 1の蒸留水に溶解し、ライゲーション反応を行うことにより組換え体DNAを取得した。以後上記と同様の方法で、大腸菌を形質転換し、該大腸菌よりプラスミドを単離した。

[0119]

上記同様、該方法により単離したプラスミドを各種制限酵素で切断して構造 を調べ、塩基配列を決定することにより、目的のDNA断片が挿入されている プラスミドであることを確認した。

該プラスミドをBamHI処理し、目的のDNA断片を上記と同様の方法で回収し、発現ベクターpQE30(Qiagen社製)に常法によりサブクローニングした。

[0120]

該サブクローニングにより得られた、配列番号6記載の塩基配列を有するプラスミドをpQEDXS-1と命名した。

- (2) メチルエリスリトール要求性相補遺伝子の取得
- ① 大腸菌メチルエリスリトール要求性変異株の取得

<u>E. coli</u> W3110株 (ATCC14948) を、LB液体培地に植菌し、対数増殖期まで 培養した。

[0121]

培養後、得られた培養液より遠心分離により菌体を取得した。

該菌体を、0.05Mトリスーマレイン酸緩衝液(pH6.0)で洗浄後、 菌体濃度が 10^9 細胞/m1になるように同緩衝液に懸濁した。

該懸濁液にNTGを終濃度が600mg/1になるように加え、室温で20 分間保持して変異処理を行った。

[0122]

得られた変異処理菌体をメチルエリスリトール0. 1%を含むM9最少寒天培地〔モレキュラー・クローニング 第二版〕プレートに塗布し、培養した。メチルエリスリトールは、Tetrahedron Letters, <u>38</u>, 35, 6184 (1997)に記載の方法に準じて化学合成した。

[0123]

メチルエリスリトール0. 1%を含むM9最少寒天培地上で生育してきたコロニーを、M9最少寒天培地とメチルエリスリトールを0. 1%含むM9最少寒天培地にレプリカし、メチルエリスリトール要求性を示すもの、すなわち、メチルエリスリトールを0. 1%含むM9最少寒天培地では生育できるが、M9最少寒天培地では生育できるが、M9最少寒天培地では生育できない株を目的の変異株として選択した。

[0124]

該選択により得られたメチルエリスリトール要求性変異株ME7株を以下の 実験に用いた。

② メチルエリスリトール要求性相補遺伝子の取得

E. <u>coli</u> W3110株 (ATCC14948) をLB液体培地に植菌して対数増殖期まで培養した後、遠心分離して菌体を回収した。

[0125]

得られた菌体より、常法に従い染色体DNAを単離・精製した。

該染色体DNA 200 μ gを制限酵素 Sau 3AIで部分消化し、得られた消化DNA断片を、シュークロース密度勾配超遠心分離(26,000rpm、20 $\mathbb C$ 、20hr)により、サイズ分画した。

[0126]

該分画により取得された大きさが $4 \sim 6 \text{ k b } \text{ODN A 断片を、制限酵素} \underline{B \text{ a}}$ mHIで消化したベクターpMW118 (ニッポンジーン社製) にライゲーシ

ョンすることにより染色体ゲノムライブラリーを作製した。

作製した染色体ライブラリーを用い、上記①で分離されたME7株を常法に 従い形質転換した。

[0127]

得られた形質転換体を、アンピシリン100μg/1入れたLB寒天培地に 塗布し、37℃で一晩培養した。

該培養において生育してきた複数のコロニーからプラスミドを抽出して塩基 配列を決定した。

[0128]

塩基配列を決定したクローンは配列番号10に示される塩基配列を含む配列を有していた。これらのプラスミドをpMEW41およびpMEW73と名づけた。

該配列を有するクローンの1株より抽出したプラスミドをpMEW73と命名した。 pMEW73を<u>Hin</u>dIIIおよび<u>Sac</u>Iで二重消化し、得られた配列番号1 Oに示される塩基配列を有する<u>Hin</u>dIII-<u>Sac</u>I処理DNA断片を広宿主域ベクターpEG400 [J. Bac., <u>172</u>, 2392 (1990)] のマルチクローニングサイトに連結してpEGYM1を作製した。

[0129]

上記<u>HindIII-Sac</u>I処理DNA断片をベクターpUC19 [Gene, 33, 103 (1985)] の<u>HindIII-Sac</u>I部位に連結してpUCYM-1を作製した。 Genbankのデータベースに基づく大腸菌の染色体塩基配列情報より、ベクターに挿入されたDNA断片はyaeM遺伝子を含有することが分かった。

[0130]

y a e M遺伝子を十分発現させるような組換え体ベクターをPCR法 [Science, 230, 1350 (1985)] を用いて下記方法により構築した。

配列番号20に示した配列を有するセンスプライマーおよび配列番号21に 示した配列を有するアンチセンスプライマーをDNA合成機を用いて合成した

[0131]

該センスプライマーおよびアンチセンスプライマーの5′ 末端にはそれぞれ

tac	aaa	ccc	att	gtc	gcg	att	tac	tcc	act	ttc	ctg	caa	cgc	gcc	tat	1200
Tyr 385	Lys	Pro	Ile	Val	Ala 390	Ile	Tyr	Ser	Thr	Phe 395	Leu	Gln	Arg	Ala	Tyr 400	
gat	cag	gtg	ctg	cat	gac	gtg	gcg	att	caa	aag	ctt	ccg	gtc	ctg	ttc	1248
Asp	Gln	Val	Leu	His 405	Asp	Val	Ala	Ile	Gln 410	Lys	Leu	Pro	Val	L eu 415	Phe	
gcc	atc	gac	cgc	gcg	ggc	att	gtt	ggt	gct	gac	ggt	caa	acc	cat	cag	1296
Ala	Ile	Asp	Arg 420	Ala	G1 y	Ile	Val	Gly 425	Ala	Asp	Gly	Gln	Thr 430	His	Gln	
ggt	gct	ttt	gat	ctc	tct	tac	ctg	cgc	tgc	ata	ccg	gaa	atg	gtc	att	1344
Gly	Ala	Phe 435	Asp	Leu	Ser	Tyr	Leu 440	Arg	Cys	Ile	Pro	Glu 445	Met	Val	Ile	
atg	acc	ccg	agc	gat	gaa	aac	gaa	tgt	cgc	cag	atg	ctc	tat	acc	ggc	1392
Met	Thr 450	Pro	Ser	Asp	Glu	Asn 455	Glu	Cys	Arg	Gln	Met 460	Leu	Tyr	Thr	Gly	
tat	cac	tat	aac	gat	ggc	ccg	tca	gcg	gtg	cgc	tac	ccg	cgt	ggc	aac	1440
Tyr 465	His	Tyr	Asn	Asp	Gly 470	Pro	Ser	Ala	Val	Arg 475	Tyr	Pro	Arg	Gly	Asn 480	

BamHIの制限酵素サイトを付加させた。

染色体DNAを鋳型として、これらプライマーおよび<u>Taq</u> DNA polymerase (Boelinnger社製)を用い、DNA Thermal Cycler (パーキンエルマージャパン社製)でPCRを行うことによりyaeM遺伝子を増幅した。

[0132]

増幅されたDNA断片およびpUC118(宝酒造社製)を制限酵素<u>Bam</u>HIで消化後、各々のDNA断片をアガロースゲル電気泳動によって精製した。

[0133]

これら精製された両断片を混合した後エタノール沈殿を行い、得られたDNA沈殿物を5μlの蒸留水に溶解し、ライゲーション反応を行うことにより組換え体DNAを取得した。

該組換え体 DNAがyae M遺伝子であることを DNA配列を決定することによって確認した後、発現ベクターpQE30(Qiagen社製)にサブクローニングした。

[0134]

得られた組換え体DNAをpQEYM1と命名した。

pQEYM1を用いて、ME7株を常法に従って形質転換後、該形質転換体をアンピシリン 100μ g/m1を含むLB寒天培地に塗布し、37℃で一晩培養した。

[0135]

該形質転換株は、野生型株と同程度の生育速度でコロニーを形成することが確認されたことより、yaeM遺伝子によりME7株の変異が相補されることが分かった。

[0136]

実施例2 組換え大腸菌によるユビキノン-8(CoQ8)の生産

(1) 実施例1で取得したプラスミドpADO-1、pDXS-1、pXSE

-1またはコントロールとして p E G 4 O O を E. coli DH5 α 株にそれぞれ導入し、1 O O μ g / m l 濃度のスペクチノマイシンに抵抗性を示す形質転換体 E. coli DH5 α / pADO-1、 E. coli DH5 α / pDXS-1、 E. coli DH5 α / pXSE-1 および E. coli DH5 α / pEG400を各々取得した。

[0137]

チアミン (thiamine) とビタミン B_6 をそれぞれ100 m g / 1、p ーヒドロキシ安息香酸 50 m g / 1、スペクチノマイシン 100 μ g / m 1 添加したLB 培地を10 m 1 入れた試験管にこれら形質転換体を植菌し、30 $\mathbb C$ で 72 時間振盪培養した。

[0138]

培養終了後、各々の培養液を10倍濃縮した。

各々の濃縮液300μ1に2ーブタノール300μ1およびガラスビーズ300μ1を加え、マルチビーズショッカーMB-200(安井器械社製)で5分間菌体破砕しつつ、イソプレノイド化合物の溶媒抽出を行った後、遠心分離により2ーブタノール層を採取した。

[0139]

該ブタノール層中のC o Q 8 を、高速液体クロマトグラフィー (LC-10A 島津製作所製) で定量分析することにより、形質転換体によるC o Q 8 の生産量を算定した。

カラムはDevelosil ODS-HG-5 (野村化学)を用い、メタノール:n-ヘキサン=8:2の溶液を移動相とし、流速1m1/min、測定波長275nmの条件で分析した。

結果を第1表に示す。

[0140]

【表1】

第1表 大腸菌形質転換株のCoQ8生産

形質転換株	生育量 [0D660]	CoQ8生産量 [mg/L]	菌体内含量*1
E. coli DH5α/pEG400	5. 8	0. 63	1. 1
E. coli DH5α/pADO-1	5. 5	0.98	1.8
E. coli DH5α/pDXS-1	5. 2	0.85	1. 6
E. coli DH5α/pXSE-1	5. 6	0. 67	1. 2

*1:菌体内含量はCoQ8生産量[mg/L]を10倍し た値を生育量[0D660]で割った値で示した。

 $C \circ Q 8$ の生成量は、コントロール株DH5 α / pEG400と比較し、DH5 α / pA DO-1、DH5 α / pDXS-1およびDH5 α / pXSE-1では有意に高かった。特に、実施例 1 で取得した DN A を全て導入した DH5 α / pADO-1において最も高い生産性が得られた。

[0141]

(2) M9 培地を10m1入れた試験管に、上記(1)で取得した \underline{E} . \underline{coli} DH5 α / pEG400をそれぞれ植菌し、30 \mathbb{C} で 72 時間振盪培養した。

培養終了後、上記(1)と同様の方法により形質転換体によるC o Q 8 の生産量を算定した。

結果を第2表に示す。

[0142]

【表2】

第2表 大腸菌形質転換株のC。Q8生産

形質転換株	生育量 [0D660]	CoQ8生産量 [mg/L]	菌体内含量*1		
E. coli DH5α/pEG400	3. 1	0. 49	1.6		
E. coli DH5α/pDXS-1	2. 5	1. 02	4.1		

*1:菌体内含量はCoQ8生産量[mg/L]を10倍し た値を生育量[0D660]で割った値で示した。

 $C \circ Q 8$ の生成量は、コントロール株 $DH5 \alpha / pEG400$ と比較し、 $DH5 \alpha / pD$ XS-1では有意に高かった。

(3) 網換え大腸菌によるCoQ8の生産

実施例 1 で取得したプラスミド p E G Y M 1 またはコントロールとして p E G 4 O O e E. coli DH5 α 株に導入し、1 O O μ g / m 1 濃度のスペクチノマイシンに抵抗性を示す形質転換体E. coli DH5 α / pEG400を各々取得した。

[0143]

グルコース1%、ビタミン B_1 100 m g / 1、ビタミン B_6 100 m g / 1、p - ハイドロキシ安息香酸 50 m g / 1 添加した L B 培地を 10 m 1 入れた試験管にこれら形質転換体を植菌し、30%で 72 時間振盪培養した

培養終了後、上記(1)と同様の方法により形質転換体によるC o Q 8 の生産量を算定した。

結果を第3表に示す。

[0144]

【表3】

第3表 大腸菌形質転換株のC。Q8生産

形質転換株	生育量 [0D660]	CoQ8生産量 [mg/L]	菌体内含量*1	
E. coli DH5α/pEG400	14. 44	0.83	0. 57	
E. coli DH5α/pEGYM1	13. 12	0.94	0. 71	

*1:菌体内含量はCoQ8生産量[mg/L]を10倍し た値を生育量[0D660]で割った値で示した。

CoQ8の生成量は、コントロール株DH5a/pEG400と比較し、DH5a/pEGYM1では有意に高かった。

[0145]

実施例3 組換え大腸菌によるメナキノン-8(MK-8)の生産

(1) スペクチノマイシンを 100μ g/ml添加したTB培地〔バクトトリプトン(ディフコ社製) 12g、酵母エキス(ディフコ社製) 24g、グリセロール 5gを水900mlに溶解し、 KH_2PO_4 を0.17M、 K_2H PO $_4$ を0.72M含有する水溶液を100ml加えて調製した培地〕を10ml入れた試験管に、実施例2(1)で取得した、E. coli DH5 α /pEG400をそれぞれ植菌し、30°で72時間振盪培養した。

[0146]

培養終了後、実施例2(1)のCoQ8の定量法と同様の方法によりMK-8を定量し、形質転換体によるMK-8の生産量を算定した。

結果を第4表に示す。

[0147]

【表4】

第4表 大腸菌形質転換株のMK-8生産

形質転換株	生育量 [0D660]	MK-8生産量 [mg/L]	菌体内含量*1	
E. coli DH5α/pEG400	23. 2	1.1	0. 46	
E. coli DH5α/pADO-1	23. 5	1.8	0.75	

*1: 菌体内含量はCoQ8生産量[mg/L]を10倍し た値を生育量[0D660]で割った値で示した。

MK-8の生産量は、コントロール株DH5 α / pEG400と比較して、DH5 α / pAD0-1では有意に高かった。

(2) 実施例 2 (1) で取得した \underline{E} . \underline{coli} DH5 α / pDXS-1または \underline{E} . \underline{coli} DH5 α / pEG400を、上記 (1) と同様の方法で培養し、形質転換体によるMK-8 の生産量を算定した。

結果を第5表に示す。

[0148]

【表 5】

第5表 大腸菌形質転換株のMK-8生産

形質転換株	生育量 [0D660]	MK-8生産量 [mg/L]	菌体内含量*1	
E. coli DH5α/pEG400	42.8	2. 41	0. 56	
E. coli DH5α/pDXS-1	44.0	2.96	0. 67	

*1:菌体内含量はCoQ8生産量[mg/L]を10倍し た値を生育量[0D660]で割った値で示した。

MK-8の生産量は、コントロール株 $DH5\alpha$ /pEG400と比較して、 $DH5\alpha$ /pDXS-1では有意に高かった。

[0149]

実施例4 Erwinia car tovoraによるCoQ8の生産

実施例1で取得したプラスミドpDXS-1またはコントロールとしてpE

45

G 4 0 0 を Erwinia carotovora IFO-3380株に導入し、1 0 0 μ g / m 1 濃度のスペクチノマイシンに抵抗性を示す形質転換体IFO-3380/pDXS-1およびIF 0-3380/pEG400を取得した。

[0150]

スペクチノマイシンを100μg/m1添加したLB培地を10m1入れた 試験管にこれら形質転換体を植菌し、30℃で72時間振盪培養した。

培養終了後、実施例2(1)と同様の方法により形質転換体によるCoQ8 の生産量を算定した。

結果を第6表に示す。

[0151]

【表6】

第6表 Erwinia carotovora 形質転換株によるCoQ8生産

形質転換株	生育量 0D660	CoQ8生産量 mg/L	菌体内含量*1		
IF0-3380/pEG400	1. 68	0. 26	1. 5		
IF0-3380/pDXS-1	2. 48	0. 45	1.8		

*1: 菌体内含量はCoQ8生産量[mg/L]を10倍し た値を生育量[0D660]で割った値で示した。

C o Q 8 の生成量は、コントロール株IFO-3380/pEG400と比較し、IFO-3380/pDXS-1では有意に高かった。

[0152]

実施例 5: Erwinia uredovoraによるユビキノンおよびカロテノイドの生産 実施例 1 で取得したプラスミドpUCYM-1、pQEDXS-1、pQEYM-1またはコントロールとしてpUC19およびpQE30をエレクトロポレーション法によりErwinia uredovora DSM-30080株に導入し、100μg/m1濃度のアンピシリンに抵抗性を示す形質転換体E. uredovora DSM-30080/pUCYM-1、E. uredovora DSM-30080/pQEDXS-1、E. uredovora DSM-30080/pQEYM-1、E. uredovora DSM-30080/pQEYM-1

[0153]

アンピシリン $100 \mu g/m1$ 、グルコース1%、ビタミン B_1 100 mg/1、ビタミン B_6 100 mg/1、pーハイドロキシ安息香酸 50 mg/1添加したLB培地を10m1入れた試験管にこれら形質転換体を植菌し、30%772時間振盪培養した。

[0154]

培養終了後、実施例2(1)と同様の方法により形質転換体によるCoQ8 の生産量を算定した。

カロテノイド色素の生産量は、実施例2(1)と同様の方法により得られた 2-ブタノール層を分光光度計を用い、450nmの吸光度を測定することに より算出した。

結果を第7表に示す。

[0155]

【表7】

第7表 E. uredovora 形質転換株によるCoQ8およびカロテノイド生産

	生育量		CoQ8	カロ	ıテノイド
形質転換株	空育重 OD660	生産量 mg/L	菌体内含量比 相対値	生産量 相対値	菌体内含量比 相対値
DSM-30080/pUC19	2. 00	1.15	1. 0	1.0	1.0
DSM-30080/pUCYM-1	1.88	1.39	1.3	1.5	1.6
DSM-30080/pQE30	2. 52	1. 29	1. 0	1.0	1.0
DSM-30080/pQEYM-1	1.92	1.36	1. 4	1.7	2. 2
DSM-30080/pQEDXS-1	2. 12	3. 21	3. 0	5. 6	6. 7

C o Q 8 の生産量およびカロテノイド色素の生産量ともに、コントロール株 DSM-30080/pUC19と比較し、DSM-30080/pUCYM-1では有意に高かった。

同様に、CoQ8の生産量およびカロテノイド色素の生産量ともに、コントロール株DSM-30080/pQE30と比較し、DSM-30080/pQEYM-1およびDSM-30080/pQ EDXS-1では有意に高かった。

[0156]

実施例 6 yaeN遺伝子がコードする酵素の活性測定

(1) yaeN遺伝子の高発現化

y a e M遺伝子を十分発現させるような組換え体プラスミドを P C R 法 [Science, 230, 1350 (1985)] を用いて下記方法により構築した。

[0157]

配列番号24に示した配列を有するセンスプライマーおよび配列番号25に示した配列を有するアンチセンスプライマーをDNA合成機を用いて合成した

該センスプライマーおよびアンチセンスプライマーの5、末端にはそれぞれ BamHIの制限酵素サイトを付加させた。

[0158]

染色体 D N A を鋳型として、これらプライマーおよび Taq DNA polymerase (ベーリンガー社製) を用い、DNA Thermal Cycler (パーキンエルマージャパン社製) で P C R を行うことにより y a e M 遺伝子を増幅した。

PCRは、94 Cで30 秒間、55 Cで30 秒間、72 Cで2 分間からなる反応工程を1 サイクルと30 サイクル行った後、72 Cで7 分間反応させる条件で行った。

[0159]

増幅されたDNA断片およびpUC118(宝酒造社製)を制限酵素<u>Bam</u>HIで消化後、各々のDNA断片をアガロースゲル電気泳動によって精製した。

これら精製された両断片を混合した後エタノール沈殿を行い、得られたDNA沈殿物を $5 \mu 1$ の蒸留水に溶解し、ライゲーション反応を行うことにより組換え体DNAを取得した。

[0160]

該組換え体DNAがyaeM遺伝子であることをDNA配列を決定することによって確認した。

該組換え体からプラスミドを抽出し、制限酵素制限酵素<u>Bam</u>HIで消化後、アガロースゲル電気泳動を行い<u>Bam</u>HI処理yaeM遺伝子含有DNA断片を取得した。

[0161]

p QE30 (QIAGEN社製) を制限酵素 B a m H I で消化後、アガロースゲル電気 泳動を行いB a m H I 処理pQE30断片を取得した。

上記で取得されたBamHI処理yaeM遺伝子含有DNA断片をBamHI 消化pQE30断片と混合した後、エタノール沈殿を行い、得られたDNA沈殿物を $5\mu1$ の蒸留水に溶解し、ライゲーション反応を行うことにより組換え体DN Aを取得した。

[0162]

該組換え体 D N A を用い、 \underline{E} . Coli JM109株を常法に従って形質転換後、該形質転換体をアンピシリン 100μ g / m 1 を含む L B 寒天培地に塗布し、 37 で一晩培養した。

上記と同様の方法で、該大腸菌よりプラスミドを単離した。

[0163]

上記同様、該方法により単離したプラスミドを各種制限酵素で切断して構造 を調べ、塩基配列を決定することにより、目的のDNA断片が挿入されている プラスミドであることを確認した。このプラスミドをpQEDXRと命名した。

- (2) yae M遺伝子産物の活性測定
- ① yae M遺伝子産物の精製
- (1)で作成したpQEDXRを常法によりpREP4を有する<u>E</u>. <u>coli</u> M15株(QIAGE N社製)に導入し、アンピシリン200 μ g/ml、カナマイシン25 μ g/mlに耐性を示すM15/pREP4+pQEDXR株を得た。

[0164]

M15/pREP4+pQEDXR株をアンピシリン200μg/m1、カナマイシン25μg/m1を含むLB液体培地100m1中、37℃で培養し、660nmの濁度が0.8に達した時点でイソプロピルチオガラクトシドを終濃度0.2mMになるように添加した。さらに37℃で5時間培養した後、遠心分離(3000rpm、10分間)によって培養上清を除いた。この菌体を100mMトリス塩酸緩衝液(pH8.0)6m1に懸濁し、超音波破砕機(SONIFIER,BRANSON社製)を用いて氷冷しつつ破砕した。得られた菌体破砕液を遠心分離(10

,000rpm、20分間、4℃)にかけ、上清を回収した。この細胞抽出液遠心上清をNi-NTAレジンカラム(QIAGEN社製)に通し、20mlの洗浄緩衝液 [100mM トリス塩酸 (pH8.0)、50mM イミダゾール、0.5% Tween 20]で洗浄した。ついで溶出緩衝液 [100mM トリス塩酸 (pH8.0)、200mM イミダゾール] 10mlを通塔し、溶出液を1mlづつ分画した。

[0165]

各分画について蛋白量を測定 (BioRad社の蛋白量定量キット使用)し、蛋白質を含む画分を精製蛋白画分とした。

② 基質1-デオキシ-D-キシルロース5-リン酸の調製

反応基質である1-デオキシ-D-キシルロース5-リン酸は以下のようにして調製した。1-デオキシ-D-キシルロース5-リン酸の検出は、HPLC [カラム: Senshu pak NH2-1251-N(4.6 x 250mm、Senshu社製)、移動層:100mM KH2PO4 (pH3.5)] によって195nmの吸光度を測定する方法で行った。

[0166]

大腸菌のdxs遺伝子を高発現するプラスミドpQDXS-1を上記と同様にE. coli M15/pREP4株に導入し、M15/pREP4+pQDXS-1株を得た。

該株を実施例6(2)①と同様に培養し、Ni-NTAレジンカラムを用いてdxs酵素蛋白質を精製した。

[0167]

[0168]

1 2時間反応した後、反応液を水で300mlに希釈し、活性炭カラム(2 . 2 x 8 c m)を通した後、Dowex 1-X8(C1-型、3.5 x 25 c m)に通塔し、1%食塩水で溶出した。溶出画分を濃縮後、Sephad x G-10(1.8 x

100cm)に通塔し、水で溶出した。1ーデオキシーDーキシルロース5ーリン酸含有画分を凍結乾燥し、約50mgの白色粉末を得た。

[0169]

該粉末が1-デオキシ-D-キシルロース5-リン酸であることをNMR分析(A-5 00、日本電子社製)で確認した。

③ yaeN遺伝子産物の酵素活性測定

100mM トリス塩酸 (pH7.5)、1mM MmC12、0.3mM NADPHと実施例2 (1)で得た yae M遺伝子産物を含む反応液1m1に、上記のように合成した1ーデオキシーDーキシルロース5ーリン酸0.3 mM (終濃度)を加え、37℃でインキュベートした。インキュベート中のNADPHの増減を340nMの吸光を分光光度計(UV-160、島津社製)で測定する方法で追跡したところ、経時的にNADPHが減少することが分かった。

[0170]

上記反応産物の構造を確認するため、以下のようにスケールを大きくして反応を行い、産物を単離した。1ーデオキシーDーキシルロース5ーリン酸の濃度を0.15mMとした以外は上記と同じ組成の反応被200m1を、同様に37℃で30分間インキュベートした後、その全量を活性炭カラムに通し、通過液を水で1Lに希釈した後、Dowex 1-X8 (C1-型、3.5 x 20 c m) カラムに通塔した。

[0171]

1%食塩水400m1で溶出し、Sephadex G-10(1.8 x 100 c m) に通塔し、水で溶出した。溶出画分を凍結乾燥することで、反応産物を単離した。

HR-FABMS解析から単離された反応産物の分子式は $C_5H_{12}O_7P$ [m/z 215.0276 (M-H) 、 $\Delta-4$.5 mmu] と推定された。 1 Hおよび 13 C NMR解析から、以下のケミカルシフトが得られた。

[0172]

 ^1H NMR(D₂0, 500 MHz): δ 4.03(ddd, J=11.5, 6.5, 2.5 Hz, 1H), 3.84(ddd , J=11.5, 8.0, 6.5 Hz, 1H), 3.78(dd, J=80, 2.5 Hz, 1H), 3.60(d, J=12.0 Hz, 1H), 3.50(d, J=12.0 Hz, 1H), 1.15(s, $^3\text{H})$; ^{13}C NMR(D₂0, 125 MHz): δ 75

.1(C-2), 74.8(C-3), 67.4(C-1), 65.9(C-4), 19.4(2-Me)

この反応産物をアルカリ性ホスファターゼ(宝酒造社製)で処理して得られる化合物を 1 Hおよび 13 C NMR解析して得られるケミカルシフトは、Tetrahedron Letter, 38, 6184 (1997)に記載の方法で合成した 2 CーメチルーDーエリスリトールのNMR解析で得られるケミカルシフトと完全に一致した

[0173]

さらに前者の旋光度は $\begin{bmatrix} \alpha \end{bmatrix}_D^{21}$ =+6.0 (c=0.050, H_2O) で、報告されている $\begin{bmatrix} \text{Tetrahedron Letter}, \underline{38}, 6184 & (1997) \end{bmatrix}$ 2 -C-メチルー D-エリスリトールの旋光度 $\begin{bmatrix} \alpha \end{bmatrix}_D^{25}$ =+7.0 (c=0.13, H_2O) と 一致した。

これらの結果から、yaeM遺伝子産物の反応産物は2-C-メチルーD-エリスリトール4-リン酸であることが明らかになった。即ち、yaeM遺伝子産物はNADPHの消費を伴いながら1-デオキシーD-キシルロース5-リン酸から2-C-メチルーD-エリスリトール4-リン酸を生じる活性を有することが判明した。この触媒活性に基づき、本酵素を1-デオキシーD-キシルロース5-リン酸レダクトイソメラーゼと命名した。

[0174]

④ 1ーデオキシーDーキシルロース5ーリン酸レダクトイソメラーゼの性質

実施例2(3)に記した1m1反応系を用いて、1ーデオキシーDーキシルロース5ーリン酸レダクトイソメラーゼの酵素学的性質を調べた。なお1uとは1分間に1mmolのNADPHを酸化する活性と定義する。

[0175]

NADPHをNADHに置換した場合、活性は1/100以下に低下した

1 ーデオキシーDーキシルロース 5 ーリン酸の代りに 1 ーデオキシーDーキシルロースを用いると全く反応は起らなかった。

SDS-PAGE解析から、本酵素は42kDaポリペプチドから機成さ

れていることが分かった。

反応系への金属添加効果を第8表に示した。

[0176]

【表8】

第8表 1-デオキシ-D-キシルロース 5-リン酸レダクトイソメラーゼ 活性に及ぼす各種金属イオンの影響

添加物	比活性 (units/mg protein)
なし	0.3
EDTA	N. D.
MnCl ₂	11.8
$CoCl_2$	6. 0
${ m MgCl}_2$	4.0
CaCl ₂	0. 2
$NiSO_4$	0. 2
$ZnS0_4$	0.3
CuSO ₄	N. D.
FeS0 ₄	N. D.

各種金属イオンおよび EDTA は 1mM になるように添加した。 N. D. は活性が検出できなかったことを示す。

[0177]

 $MnC1_2$ 存在下での1-デオキシ-D-キシルロース5-リン酸、NAD PHへのKmは、それぞれ 249μ M、 7.4μ Mだった。

反応温度の影響を図1に、反応pHの影響を図2に示した。

[0178]

実施例7 yaeM欠損変異株の作成と性質

(1) yae M欠損変異株の作成

1 ーデオキシーDーキシルロース5ーリン酸レダクトイソメラーゼが細胞の 生育に必須か否かを調べるため、以下のようにしてその欠損変異株を作成した

[0179]

yaeM遺伝子中に挿入するためのカナマイシン耐性遺伝子カセットを以下のようにして作成した。

実施例1 (2) ②で得たプラスミドpMEW41を制限酵素BalIで消化後アガロースゲル電気泳動し、BaiII処理DNA断片を取得した。

[0180]

Tn5を制限酵素<u>Hind</u>IIIと<u>Sam</u>Iで消化した後、DNA blunting k it (宝酒造社製)を用いて断片の末端を平滑化した。

得られた平滑化DNA断片を先に作成したBaiII処理pMEW41DNA断片と混合した後、エタノール沈殿を行い、得られたDNA沈殿物を $5\mu1$ の蒸留水に溶解し、ライゲーション反応を行うことにより組換え体DNAを取得した。

[0181]

該組換え体DNAを用い、 \underline{E} . \underline{coli} JM109株(宝酒造より購入)を常法に従って形質転換後、該形質転換体をアンピシリン100 μ g/mlとカナマイシン15 μ g/mlを含むLB寒天培地に塗布し、37 $\mathbb C$ で一晩培養した。

生育してきたアンピシリン耐性の形質転換体のコロニー数個について、アンピシリン100μg/m1とカナマイシン15μg/m1を含むLB液体培地10m1で37℃16時間振盪培養した。

[0182]

得られた培養液を遠心分離することにより菌体を取得した。

該菌体より常法に従ってプラスミドを単離した。

該方法により単離したプラスミドを各種制限酵素で切断して構造を調べ、目的のDNA断片が挿入されているプラスミドであることを確認した。このプラスミドをpMEW41kmと名づけた。

[0183]

pMEW41Kmを用いて、相同組換えによる染色体上のyaeM遺伝子の破壊を行った。 組換えの模式図を図3に示した。

pMEW41Kmを制限酵素HindIIIとSacIで消化し、アガロースゲル電気泳動を行い直鎖状の断片を精製した。この断片を用いて常法に従って、大腸

菌FS1576株を形質転換した。FS1576株は国立遺伝学研究所よりME9019株の名で入手可能である。該形質転換体をカナマイシン15μg/mlと2-C-メチル-D-エリスリトール1g/lを含むLB寒天培地に塗布し、37℃で一晩培養した。

[0184]

生育してきたカナマイシン耐性コロニー数個について、カナマイシン15μg/m1と2-C-メチル-D-エリスリトール1g/1を含むLB液体培地10m1で37℃16時間振盪培養した。

得られた培養液を遠心分離することにより菌体を取得した。

[0185]

該菌体より常法に従って染色体DNAを単離した。

染色体DNAを制限酵素<u>Sma</u>Iまたは<u>Pst</u>Iで消化した。またFS1576株の染色体についても同様に処理した。常法に従って、これら制限酵素処理DNAをアガロースゲル電気泳動後、カナマイシン耐性遺伝子およびyaeM遺伝子をプローブとしたサザンハイブリダイゼーション解析に供した。その結果、カナマイシン耐性コロニーの染色体は図3に示した構造をとっており、目的どおりyaeM遺伝子がカナマイシン耐性遺伝子で分断破壊されていることが確かめられた。

[0186]

(2) yaeM欠損変異株の性質

上記の手順で作成された y a e M 欠損株およびその親株である F S 1 5 7 6 株を、L B 寒天培地および 2 − C − メチル − D − エリスリトール 1 g / 1 を含む L B 寒天培地に塗布し、3 7℃で培養した。2日後の生育度合いを第9表に示した。

[0187]

【表9】

第9表 大腸菌の生育に対する yaeM 遺伝子の欠損の影響

# <i>H</i> :	各培地上での菌の生育*1						
菌株 	LB	LB+ME*2					
FS1576	+	+ .					
yaeM 欠損株		+					

*1:生育度合い +;良好に生育、-;生育せず

*2:MEは2-C-メチル-D-エリスリトール 1g/1 添加を表す。

[0188]

yaeM欠損変異株は2-C-メチル-D-エリスリトールを添加しない 培地では生育できないため、2-C-メチル-D-エリスリトール非存在下で は本遺伝子が細胞の生育に必須であることが明白となった。

従って、yaeM(1ーデオキシーDーキシルロース5ーリン酸レダクトイソメラーゼ)の活性を阻害する物質は有効な抗菌剤あるいは除草剤となり得る

[0189]

【発明の効果】

本発明によれば、心疾患、骨粗鬆症、止血、がん予防、免疫賦活等を目的とした医薬品、健康食品および貝類付着防止塗料等に有用なイソプレノイド化合物の生合成に関与するDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを原核生物由来の宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中にイソプレノイド化合物を生成蓄積させ、該培養物からイソプレノイド化合物を採取することを特徴とする、イソプレノイド化合物の製造法、イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中に該蛋白質を生成蓄積させ、該培養物から該蛋白質を採取することを特徴とする、該蛋白質の製造法、および該蛋白質、ならびに1

ーデオキシーDーキシルロース5ーリン酸から2-C-メチルーDーエリスリトール4ーリン酸を生じる反応を触媒する活性を有する新規な酵素蛋白質および該酵素を阻害する物質を探索することによる、抗菌およびまたは除草活性を有する化合物の探索方法を提供することができる。

[0190]

「配列表フリーテキスト」

配列番号12-人工配列の説明:合成DNA

配列番号13-人工配列の説明:合成DNA

配列番号14一人工配列の説明:合成DNA

配列番号15一人工配列の説明:合成DNA

配列番号16-人工配列の説明:合成DNA

配列番号17-人工配列の説明:合成DNA

配列番号18-人工配列の説明:合成DNA

配列番号19-人工配列の説明:合成DNA

配列番号20一人工配列の説明:合成DNA

配列番号21-人工配列の説明:合成DNA

配列番号22一人工配列の説明:合成DNA

配列番号23-人工配列の説明:合成DNA

配列番号24-人工配列の説明:合成DNA

配列番号25-人工配列の説明:合成DNA

[0191]

【配列表】

SEQUENCE LISTING

<110> KYOWA HAKKO KOGYO CO., LTD.

<120> A METHOD OF PRODUCING ISOPRENOIDO COMPAUND

<130> H10-110N2

<140>

<141>

<150> H10-103101

<151> 1998-04-14

<160> 24

<170> PatentIn Ver. 2.0

[0192]

⟨210⟩ 1

<211> 620

<212> PRT

<213> Escherichia coli

<400> 1

Met Ser Phe Asp Ile Ala Lys Tyr Pro Thr Leu Ala Leu Val Asp Ser

Thr Gln Glu Leu Arg Leu Leu Pro Lys Glu Ser Leu Pro Lys Leu Cys Asp Glu Leu Arg Arg Tyr Leu Leu Asp Ser Val Ser Arg Ser Ser Gly His Phe Ala Ser Gly Leu Gly Thr Val Glu Leu Thr Val Ala Leu His Tyr Val Tyr Asn Thr Pro Phe Asp Gln Leu Ile Trp Asp Val Gly His Gln Ala Tyr Pro His Lys Ile Leu Thr Gly Arg Arg Asp Lys Ile Gly Thr Ile Arg Gln Lys Gly Gly Leu His Pro Phe Pro Trp Arg Gly Glu Ser Glu Tyr Asp Val Leu Ser Val Gly His Ser Ser Thr Ser Ile Ser Ala Gly Ile Gly Ile Ala Val Ala Ala Glu Lys Glu Gly Lys Asn Arg Arg Thr Val Cys Val Ile Gly Asp Gly Ala Ile Thr Ala Gly Met Ala

Phe	Glu	Ala	Met	Asn 165	His	Ala	Gly	Asp	Ile 170	Arg	Pro	Asp	Met	Leu 175	Val
Ile	Leu	Asn	Asp 180	Asn	Glu	Met	Ser	Ile 185	Ser	Glu	Asn	Val	Gly 190	Ala	Leu
Asn	Asn	His 195	Leu	Ala	Gln	Leu	Leu 200	Ser	Gly	Lys	Leu	Tyr 205	Ser	Ser	Leu
Arg	Glu 210	Gly	G1 y	Lys	Lys	Val 215	Phe	Ser	Gly	Val	Pro 220	Pro	Ile	Lys	Glu
Leu 225	Leu	Lys	Arg	Thr	Glu 230	Glu	His	Ile	Lys	Gly 235	Met	Val	Val	Pro	Gly 240
Thr	Leu	Phe	Glu	Glu 245	Leu	Gly	Phe	Asn	Tyr 250	Ile	Gly	Pro	Val	Asp 255	G1 y
His	Asp	Val	L eu 260	Gly	Leu	Ile	Thr	Thr 265	Leu	Lys	Asn	Met	Arg 270	Asp	Leu
Lys	Gly	Pro 275	Gln	Phe	Leu	His	I le 280	Met	Thr	Lys	Lys	Gly 285	Arg	Gly	Tyr

Asp Pro Ser Ser Gly Cys Leu Pr Lys Ser Ser Gly Gly Leu Pro Ser 305 310 315 320

Glu Pro Ala Glu Lys Asp Pro Ile Thr Phe His Ala Val Pro Lys Phe

295

290

300

Tyr Ser Lys Ile Phe Gly Asp Trp Leu Cys Glu Thr Ala Ala Lys Asp
325 330 335

Asn Lys Leu Met Ala Ile Thr Pro Ala Met Arg Glu Gly Ser Gly Met
340 345 350

Val Glu Phe Ser Arg Lys Phe Pro Asp Arg Tyr Phe Asp Val Ala Ile
355 360 365

Ala Glu Gln His Ala Val Thr Phe Ala Ala Gly Leu Ala Ile Gly Gly
370 375 380

Tyr Lys Pro I le Val Ala I le Tyr Ser Thr Phe Leu Gln Arg Ala Tyr 385 390 395 400

Asp Gln Val Leu His Asp Val Ala Ile Gln Lys Leu Pro Val Leu Phe
405
410
415

Ala Ile Asp Arg Ala Gly Ile Val Gly Ala Asp Gly Gln Thr His Gln
420 425 430

Gly Ala Phe Asp Leu Ser Tyr Leu Arg Cys Ile Pro Glu Met Val Ile
435
440
445

Met Thr Pro Ser Asp Glu Asn Glu Cys Arg Gln Met Leu Tyr Thr Gly
450 455 460

Tyr His Tyr Asn Asp Gly Pro Ser Ala Val Arg Tyr Pr Arg Gly Asn

Ala Val Gly Val Glu Leu Thr Pro Leu Glu Lys Leu Pro Ile Gly Lys Gly Ile Val Lys Arg Arg Gly Glu Lys Leu Ala Ile Leu Asn Phe Gly Thr Leu Met Pro Glu Ala Ala Lys Val Ala Glu Ser Leu Asn Ala Thr Leu Val Asp Met Arg Phe Val Lys Pro Leu Asp Glu Ala Leu Ile Leu Glu Met Ala Ala Ser His Glu Ala Leu Val Thr Val Glu Glu Asn Ala Ile Met Gly Gly Ala Gly Ser Gly Val Asn Glu Val Leu Met Ala His Arg Lys Pro Val Pro Val Leu Asn Ile Gly Leu Pro Asp Phe Phe Ile Pro Gln Gly Thr Gln Glu Glu Met Arg Ala Glu Leu Gly Leu Asp Ala Ala Gly Met Glu Ala Lys Ile Lys Ala Trp Leu Ala

[0193]

<210> 2

<211> 299

<212> PRT

<213> Escherichia coli

<400> 2

Met Asp Phe Pro Gln Gln Leu Glu Ala Cys Val Lys Gln Ala Asn Gln

1 5 10 15

Ala Leu Ser Arg Phe Ile Ala Pro Leu Pro Phe Gln Asn Thr Pro Val

20 25 30

Val Glu Thr Met Gln Tyr Gly Ala Leu Leu Gly Gly Lys Arg Leu Arg

35 40 45

Pro Phe Leu Val Tyr Ala Thr Gly His Met Phe Gly Val Ser Thr Asn

50 55 60

Thr Leu Asp Ala Pro Ala Ala Ala Val Glu Cys Ile His Ala Tyr Ser

65 70 75 80

Leu Ile His Asp Asp Leu Pro Ala Met Asp Asp Asp Leu Arg Arg

85 90 95

Gly Leu Pro Thr Cys His Val Lys Phe Gly Glu Ala Asn Ala Ile Leu

100 105 110

Ala	Gly	Asp	Ala	Leu	Gln	Thr	Leu	Ala	Phe	Ser	Ile	Leu	Ser	Asp	Ala
		115					120					125			

Asp Met Pro Glu Val Ser Asp Arg Asp Arg Ile Ser Met Ile Ser Glu
130 135 140

Leu Ala Ser Ala Ser Gly Ile Ala Gly Met Cys Gly Gly Gln Ala Leu
145 150 155 160

Asp Leu Asp Ala Glu Gly Lys His Val Pro Leu Asp Ala Leu Glu Arg

170 175

Ile His Arg His Lys Thr Gly Ala Leu Ile Arg Ala Ala Val Arg Leu
180 185 190

Gly Ala Leu Ser Ala Gly Asp Lys Gly Arg Arg Ala Leu Pro Val Leu
195 200 205

Asp Lys Tyr Ala Glu Ser Ile Gly Leu Ala Phe Gln Val Gln Asp Asp
210 215 220

Ile Leu Asp Val Val Gly Asp Thr Ala Thr Leu Gly Lys Arg Gln Gly
225 230 235 240

Ala Asp Gln Gln Leu Gly Lys Ser Thr Tyr Pro Ala Leu Leu Gly Leu
245 250 255

Glu Gln Ala Arg Lys Lys Ala Arg Asp Leu Ile Asp Asp Ala Arg Gln
260 265 270

Ser Leu Lys Gln Leu Ala Glu Gln Ser Leu Asp Thr Ser Ala Leu Glu 275 280 285

Ala Leu Ala Asp Tyr Ile Ile Gln Arg Asn Lys
290 295

[0194]

<210> 3

<211> 80

<212> PRT

<213> Escherichia coli

<400> 3

Met Pro Lys Lys Asn Glu Ala Pro Ala Ser Phe Glu Lys Ala Leu Ser

1 5 10 15

Glu Leu Glu Gln Ile Val Thr Arg Leu Glu Ser Gly Asp Leu Pro Leu
20 25 30

Glu Glu Ala Leu Asn Glu Phe Glu Arg Gly Val Gln Leu Ala Arg Gln
35 40 45

Gly Gln Ala Lys Leu Gln Gln Ala Glu Gln Arg Val Gln Ile Leu Leu
50 55 60

Ser Asp Asn Glu Asp Ala Ser Leu Thr Pro Phe Thr Pro Asp Asn Glu
65 70 75 80

[0195] <210> 4 **<211> 348** <212> PRT <213> Escherichia coli <400> 4 Val Thr Gly Val Asn Glu Cys Ser Arg Ser Thr Cys Asn Leu Lys Tyr 1 5 10 15 Asp Glu Tyr Ser Arg Ser Gly Ser Met Gln Tyr Asn Pro Leu Gly Lys 20 25 30 Thr Asp Leu Arg Val Ser Arg Leu Cys Leu Gly Cys Met Thr Phe Gly 35 40 45 Glu Pro Asp Arg Gly Asn His Ala Trp Thr Leu Pro Glu Glu Ser Ser 50 55 60 Arg Pro Ile Ile Lys Arg Ala Leu Glu Gly Gly Ile Asn Phe Phe Asp 65 70 **75** 80

Ala Leu Arg Asp Phe Ala Arg Arg Glu Asp Val Val Ala Thr Lys

100 105 110

Thr Ala Asn Ser Tyr Ser Asp Gly Ser Ser Glu Glu Ile Val Gly Arg

85

90

95

Val Phe His Arg Val Gly Asp Leu Pro Glu Gly Leu Ser Arg Ala Gln
115 120 125

Ile Leu Arg Ser Ile Asp Asp Ser Leu Arg Arg Leu Gly Met Asp Tyr
130 135 140

Val Asp Ile Leu Gln Ile His Arg Trp Asp Tyr Asn Thr Pro Ile Glu

145 150 155 160

Glu Thr Leu Glu Ala Leu Asn Asp Val Val Lys Ala Gly Lys Ala Arg

165 170 175

Tyr Ile Gly Ala Ser Ser Met His Ala Ser Gln Phe Ala Gln Ala Leu
180 185 190

Glu Leu Gln Lys Gln His Gly Trp Ala Gln Phe Val Ser Met Gln Asp

200 205

His Tyr Asn Leu Ile Tyr Arg Glu Glu Glu Arg Glu Met Leu Pro Leu 210 215 220

Cys Tyr Gln Glu Gly Val Ala Val Ile Pro Trp Ser Pro Leu Ala Arg
225 230 235 240

Gly Arg Leu Thr Arg Pro Trp Gly Glu Thr Thr Ala Arg Leu Val Ser
245 250 255

Asp Glu Val Gly Lys Asn Leu Tyr Lys Glu Ser Asp Glu Asn Asp Ala

260 265 270

Gln Ile Ala Glu Arg Leu Thr Gly Val Ser Glu Glu Leu Gly Ala Thr
275 280 285

Arg Ala Gln Val Ala Leu Ala Trp Leu Leu Ser Lys Pro Gly Ile Ala
290 295 300

Ala Pro Ile Ile Gly Thr Ser Arg Glu Glu Gln Leu Asp Glu Leu Leu
305 310 315 320

Asn Ala Val Asp Ile Thr Leu Lys Pro Glu Gln Ile Ala Glu Leu Glu
325 330 335

Thr Pro Tyr Lys Pro His Pro Val Val Gly Phe Lys
340 345

[0196]

<210> 5

<211> 398

<212> PRT

<213> Escherichia coli

<400> 5

Met Lys Gln Leu Thr Ile Leu Gly Ser Thr Gly Ser Ile Gly Cys Ser

1 5 10 15

Thr Leu Asp Val Val Arg His Asn Pro Glu His Phe Arg Val Val Ala

20 25 30

Leu Val Ala Gly Lys Asn Val Thr Arg Met Val Glu Gln Cys Leu Glu
35 40 45

Phe Ser Pro Arg Tyr Ala Val Met Asp Asp Glu Ala Ser Ala Lys Leu
50 55 60

Leu Lys Thr Met Leu Gln Gln Gln Gly Ser Arg Thr Glu Val Leu Ser

70

75

80

Gly Gln Gln Ala Ala Cys Asp Met Ala Ala Leu Glu Asp Val Asp Gln
85 90 95

Val Met Ala Ala Ile Val Gly Ala Ala Gly Leu Leu Pro Thr Leu Ala
100 105 110

Ala Ile Arg Ala Gly Lys Thr Ile Leu Leu Ala Asn Lys Glu Ser Leu
115 120 125

Val Thr Cys Gly Arg Leu Phe Met Asp Ala Val Lys Gln Ser Lys Ala 130 135 140

Gln Leu Leu Pro Val Asp Ser Glu His Asn Ala Ile Phe Gln Ser Leu
145 150 155 160

Pro Gln Pro Ile Gln His Asn Leu Gly Tyr Ala Asp Leu Glu Gln Asn 165 170 175

Gly	Val	Val	Ser 180	Ile	Leu	Leu	Thr	Gly 185	Ser	Gly	Gly	Pro	Phe 190	Arg	Glu
Thr	Pro	Leu 195	Arg	Asp	Leu	Ala	Thr 200	Met	Thr	Pro	Asp	Gln 205	Ala	C ys	Arg
His	Pro 210	Asn	Trp	Ser	Met	Gly 215	Arg	Lys	Ile	Ser	Val 220	Asp	Ser	Ala	Thr
Met	Met	Asn	Lys	Gly	Leu		Tyr	Ile	Glu	Ala		Trp	Leu	Phe	Asn
225					230					235					240
Ala	Ser	Ala	Ser	Gln 245	Met	Glu	Val	Leu	11e 250	His	Pro	Gln	Ser	Val 255	Ile
His	Ser	Met	Val 260	Arg	Tyr	Gln	Asp	Gly 265	Ser	Val	Leu	Ala	Gln 270	Leu	Gly
Glu	Pro	Asp 275	Met	Val	Arg	Gln	Leu 280	Pro	Thr	Pro	Trp	Ala 285	Trp	Pro	Asn
Arg	Val 290	Asn	Ser	Gly	Val	L ys 295	Pro	Leu	Asp	Phe	C ys 300	L y s	Leu	Ser	Ala
T 0	Th-	Dhe	4 1 a	Alo	Dro	A 0=	Т	40-	A == -	Т	Desc	Cvic	Los	1	1 0

Ala Met Glu Ala Phe Glu Gln Gly Gln Ala Ala Thr Thr Ala Leu Asn 325 330 335

310

305

315

320

Ala Ala Asn Glu Ile Thr Val Ala Ala Phe Leu Ala Gln Gln Ile Arg
340 345 350

Phe Thr Asp Ile Ala Ala Leu Asn Leu Ser Val Leu Glu Lys Met Asp 355 360 365

Met Arg Glu Pro Gln Cys Val Asp Asp Val Leu Ser Val Asp Ala Asn 370 375 380

Ala Arg Glu Val Ala Arg Lys Glu Val Met Arg Leu Ala Ser 385 390 395

[0197]

<210> 6

<211> 1860

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1)..(1860)

<400> 6

atg agt ttt gat att gcc aaa tac ccg acc ctg gca ctg gtc gac tcc 48

Met Ser Phe Asp Ile Ala Lys Tyr Pro Thr Leu Ala Leu Val Asp Ser

1

5

10

15

acc	cag	gag	tta	cga	ctg	ttg	ccg	aaa	gag	agt	tta	ccg	aaa	ctc	tgc	96
Thr	Gln	Glu	Leu	Arg	Leu	Leu	Pro	Lys	Glu	Ser	Leu	Pro	Lys	Leu	Cys	
			20					25					30			
gac	gaa	ctg	cgc	cgc	tat	tta	ctc	gac	agc	gtg	agc	cgt	tcc	agc	ggg	144
Asp	Glu	Leu	Arg	Arg	Tyr	Leu	Leu	Asp	Ser	Va l	Ser	Arg	Ser	Ser	Gly	
		3 5					40					45				
cac	ttc	gcc	tcc	ggg	ctg	ggc	acg	gtc	gaa	ctg	acc	gtg	gcg	ctg	cac	192
His	Phe	Ala	Ser	Gly	Leu	Gly	Thr	Val	Glu	Leu	Thr	Val	Ala	Leu	His	
	50					55					60					
tat	gtc	tac	aac	acc	ccg	ttt	gac	caa	ttg	att	tgg	gat	gtg	ggg	cat	240
Tyr	Val	Tyr	Asn	Thr	Pro	Phe	Asp	Gln	Leu	Ile	Trp	Asp	Val	Gly	His	
65					70					7 5					80	
cag	gct	tat	ccg	cat	aaa	att	ttg	acc	gga	cgc	cgc	gac	aaa	atc	ggc	288
Gln	Ala	Tyr	Pro	His	Lys	Ile	Leu	Thr	Gly	Arg	Arg	Asp	L ys	Ile	Gly	
				85					90					95		
acc	atc	cgt	cag	aaa	ggC	ggt	ctg	cac	ccg	ttc	ccg	tgg	cgc	ggc	gaa	336
Thr	Ile	Arg	Gln	Lys	Gly	Gly	Leu	His	Pro	Phe	Pro	Trp	Arg	Gly	Glu	

			100					105					110			
agc	gaa	tat	gac	gta	tta	agc	gtc	ggg	cat	tca	tca	acc	tcc	atc	agt	384
Ser	Glu		Asp	Val	Leu	Ser		Gly	His	Ser	Ser		Ser	Ile	Ser	
		115					120					125				
gcc	gga	att	ggt	att	gcg	gtt	gct	gcc	gaa	aaa	gaa	ggc	aaa	aat	cgc	432
Ala	-	Ile	Gly	Ile	Ala		Ala	Ala	Glu	Lys		Gly	Lys	Asn	Arg	
	130					135					140					
cgc	acc	gtc	tgt	gtc	att	ggc	gat	ggc	gcg	att	acc	gca	ggc	atg	gCg	480
Arg	Thr	Val	Cys	Val	Ile	Gly	Asp	G1 y	Ala	Ile	Thr	Ala	Gly	Met	Ala	
145					150					155					160	
ttt	gaa	gcg	atg	aat	cac	gcg	ggc	gat	atc	cgt	cct	gat	atg	ctg	gtg	528
Phe	Glu	Ala	Met	Asn	His	Ala	Gly	Asp	Ile	Arg	Pro	Asp	Met	Leu	Val	
				165					170					175		
att	ctc	aac	gac	aat	gaa	atg	tcg	att	tcc	gaa	aat	gtc	ggc	gCg	ctc	576
Ile	Leu	Asn		Asn	Glu	Met	Ser		Ser	Glu	Asn	Val		Ala	Leu	
			180					185					190			
aac	aac	cat	ctg	gca	cag	ctg	ctt	tcc	ggt	aag	ctt	tac	tct	tca	ctg	624

Asn	Asn	His 195	Leu	Ala	Gln	Leu	Leu 200	Ser	Gly	Lys	Leu	Tyr 205	Ser	Ser	Leu	
cgc	gaa	ggc	ggg	aaa	aaa	gtt	ttc	tct	ggc	gtg	ccg	cca	att	aaa	gag	672
Arg	Glu 210	Gly	Gly	Lys	Lys	Val 215	Phe	Ser	Gly	Val	Pro 220	Pro	Ile	Lys	Glu	
ctg	ctc	aaa	cgc	acc	gaa	gaa	cat	att	aaa	ggc	atg	gta	gtg	cct	ggC	720
Leu 225	Leu	Lys	Arg	Thr	Glu 230	Glu	His	Ile	Lys	Gly 235	Met	Val	Val	Pro	Gly 240	
acg	ttg	ttt	gaa	gag	ctg	ggc	ttt	aac	tac	atc	ggC	ccg	gtg	gac	ggt	768
Thr	Leu	Phe	Glu	Glu 245	Leu	Gly	Phe	Asn	Tyr 250	Ile	Gly	Pro	Val	Asp 255	Gly	
cac	gat	gtg	ctg	ggg	ctt	atc	acc	acg	cta	aag	aac	atg	cgc	gac	ctg	816
His	Asp	Val	Leu 260	Gly	Leu	Ile	Thr	Thr 265	Leu	Lys	Asn	Met	Arg 270	Asp	Leu	
aaa	ggC	ccg	cag	ttc	ctg	cat	atc	atg	acc	aaa	aaa	ggt	cgt	ggt	tat	864
Lys	Gly	Pro 275	Gln	Phe	Leu	His	Ile 280	Met	Thr	Lys	Lys	Gl y 285	Arg	Gly	Tyr	

gaa ccg gca gaa aaa gac ccg atc act ttc cac gcc gtg cct aaa ttt 912

																{
Glu	Pro	Ala	Glu	Lys	Asp	Pro	Ile	Thr	Phe	His	Ala	Val	Pro	Lys	Phe	
	290					295		•			300					
gat	ссс	tcc	agc	ggt	tgt	ttg	ccg	aaa	agt	agc	ggC	ggt	ttg	ccg	agc	960
									٠							
Asn	Pro	Ser	Ser	Glv	Cvs	Leu	Pro	Lvs	Ser	Ser	Glv	Clv	I en	Pro	Ser	
305			D -1	0-3	310			2,7-	501	315	4.5	0.5	Low	110	320	
303					210					219					320	
tat	tca	aaa	atc	ttt	ggc	gac	tgg	ttg	tgc	gaa	acg	gca	gcg	aaa	gac	1008
Tyr	Ser	Lys	Ile	Phe	Gly	Asp	Trp	Leu	Cys	Glu	Thr	Ala	Ala	Lys	Asp	
				325					330					335		
aac	aag	ctg	atg	gcg	att	act	ccg	gcg	atg	cgt	gaa	ggt	tcc	ggc	atg	1056
								•								٠
Asn	Lys	Leu	Met	Ala	Ile	Thr	Pro	Ala	Met	Arg	Glu	Gly	Ser	Gly	Met	
	-		340					345		_		·	350	-		
			010					0.10								
-+-			+	a=+		++0		-a.4.		+	44.		_4 _		~44°	.1104
gic	gag		ica	cgı	aaa	ttc	ccg	gai	cgc	tac	llc	gac	gıg	gca	all	1104
Val	Glu	Phe	Ser	Arg	Lys	Phe	Pro	Asp	Arg	Tyr	Phe	Asp	Val	Ala	Ile	
		355					360				•	365				
gcc	gag	caa	cac	gcg	gtg	acc	ttt	gct	gcg	ggt	ctg	gcg	att	ggt	ggg	1152
Ala	Glu	Gln	His	Ala	Val	Thr	Phe	Ala	Ala	Gly	Leu	Ala	Ile	Gly	Gly	
	370					375				-	380			-	,	
											-					

															-	
gcg	gtc	ggc	gtg	gaa	ctg	acg	ccg	ctg	gaa	aaa	cta	cca	att	ggc	aaa	1488
Ala	Val	Gly	Val	Glu	Leu	Thr	Pro	Leu	Glu	Lys	Leu	Pro	Ile	Gly	L y s	
				485					490					495		
ggC	att	gtg	aag	cgt	cgt	ggC	gag	aaa	ctg	gCg	atc	ctt	aac	ttt	ggt	1536
Gly	Ile	Val	Lys	Arg	Arg	Gly	Glu	Lys	Leu	Ala	Ile	Leu	Asn	Phe	Gly	
			500					505					510			
acg	ctg	atg	cca	gaa	gcg	gcg	aaa	gtc	gcc	gaa	tcg	ctg	aac	gcc	acg	1584
Thr	Leu		Pro	Glu	Ala	Ala	_	Val	Ala	Glu	Ser		Asn	Ala	Thr	
		515					520					525				
ctg	gtc	gat	atg	cgt	ttt	gtg	aaa	ccg	ctt	gat	gaa	gcg	tta	att	ctg	1632
1	v - 1	A	V-4	4	DL -	W = 1	I	D	1	A	C1	41-	¥	71-		
Leu	Va l 530	ASP	Met	Arg	Pne	535	Lys	PIU	Leu	ASP	540	Ala	Leu	He	Leu	
	000							٠			010					
gaa	atg	gcc	gcc	agc	cat	gaa	gcg	ctg	gtc	acc	gta	gaa	gaa	aac	gcc	1680
Clu	Met	11 2	Ma	Car	Nic	Clu	Ala	Ī en	Val	Thr	Va 1	Clu	C1n	1 en	A la	
545	nec	MIG	ДІС	ber	550	G i u	H10	Leu	, 41	555	741	dru	d.u	ASII	560	
											-					
att	atg	ggc	ggc	gca	ggc	agc	ggc	gtg	aac	gaa	gtg	ctg	atg	gcc	cat	1728
Ile	Met	Glv	Glv	Ala	Glv	Ser	Glv	Val	Asn	Glu	Val	Leu	Met	Ala	His	

565 570 575

cgt aaa cca gta ccc gtg ctg aac att ggc ctg ccg gac ttc ttt att 1776

Arg Lys Pro Val Pro Val Leu Asn Ile Gly Leu Pro Asp Phe Phe Ile

580 585 590

ccg caa gga act cag gaa gaa atg cgc gcc gaa ctc ggc ctc gat gcc 1824

Pro Gln Gly Thr Gln Glu Glu Met Arg Ala Glu Leu Gly Leu Asp Ala

595 600 605

gct ggt atg gaa gcc aaa atc aag gcc tgg ctg gca 1860

Ala Gly Met Glu Ala Lys Ile Lys Ala Trp Leu Ala
610 615 620

[0198]

<210> 7

<211> 897

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1)..(897)

<400> 7

atg	gac	ttt	ccg	cag	caa	ctc	gaa	gcc	tgc	gtt	aag	cag	gcc	aac	cag	48
Met	Asp	Phe	Pro	Gln	Gln	Leu	Glu	Ala	Ċÿs	Val	Lys	Gln	Ala	Asn	Gln	
1				5					10					15		
gcg	ctg	agc	cgt	ttt	atc	gcc	cca	ctg	ссс	ttt	cag	aac	act	ссс	gtg	96
							_		_					_	•	
Ala	Leu	Ser	Arg	Phe	He	Ala	Pro	Leu 25	Pro	Phe	Gln	ASN		Pro	Val	
			20					20					30			
gtc	gaa	acc	atg	cag	tat	ggC	gca	tta	tta	ggt	ggt	aag	cgc	ctg	cga	144
Va I	Glu	Thr	Met	Gln	Tyr	Gly	Ala	Leu	Leu	Gly	Gly	Lys	Arg	Leu	Arg	
		35					40					45		•		
_																100
cct	ttc	Ctg	gtt	tat	gcc	acc	ggt	cat	atg	ttc	ggc	gtt	agc	aca	aac	192
Pro	Phe	Leu	Va 1	Tyr	Ala	Thr	Gly	His	Met	Phe	Gly	Val	Ser	Thr	Asn	
	50			·		55	-				60					
acg	ctg	gac	gca	ссс	gct	gcc	gcc	gtt	gag	tgt	atc	cac	gct	tac	tca	240
	Leu	Asp	Ala	Pro		Ala	Ala	Val	Glu		Ile	His	Ala	Tyr		
65					70					7 5					80	
tta	att	cat	gat	gat	tta	ccg	gca	atg	gat	gat	gac	gat	ctg	cgt	cgc	288
	-	-	-	-		Ū	-	•	-		-	=	J	_	-	
Leu	Ile	His	Asp	Asp	Leu	Pro	Ala	Met	Asp	Asp	Asp	Asp	Leu	Arg	Arg	
				95					Q٨					95		

ggt	ttg	cca	acc	tgc	cat	gtg	aag	ttt	ggc	gaa	gca	aac	gcg	att	ctc	336
Gly	Leu	Pro	Thr	Cys	∦is	Val	Lys	Phe	Gly	Glu	Ala	Asn	Ala	Ile	Leu	
			100					105					110			
gct	ggc	gac	gct	tta	caa	acg	ctg	gcg	ttc	tcg	att	tta	agc	gat	gcc	384
Ala	Gly	Asp	Ala	Leu	Gln	Thr	Leu	Ala	Phe	Ser	lle	Leu	Ser	Asp	Ala	
		115					120					125				
gat	atg	ccg	gaa	gtg	tcg	gac	cgc	gac	aga	att	tcg	atg	att	tct	gaa	432
Asp	Met	Pro	Glu	Val	Ser	Asp	Arg	Asp	Arg	Ile	Ser	Met	Ile	Ser	Glu	
	130					135					140					
ctg	gcg	agc	gcc	agt	ggt	att	gcc	gga	atg	tgc	ggt	ggţ	cag	gca	tta	480
Leu	Λla	Ser	Ala	Ser	Gly	Ile	Ala	Gly	Met	Cys	Gly	Gly	Gln	Ala	Leu	
145					150	•				155					160	
gat	tta	gac	gcg	gaa	ggc	aaa	cac	gta	cct	ctg	gac	gcg	ctt	gag	cgt	528
Asp	Leu	Asp	Ala	Glu	Gly	Lys	His	Val	Pro	Leu	Asp	Ala	Leu	Glu	Arg	
		-		165					170					175		
att	cat	cgt	cat	aaa	acc	ggc	gca	ttg	att	cgc	gco	gcc	gtt	cgo	ctt	576
T l a	и; -	A # ~	. His	Tue	The		, Ala	[,en	1e	Arø	Ala	Ala	Val	Arg	Leu	

			180					185				•	190			
ggt	gca	tta	agc	gcc	gga	gat	aaa	gga	cgt	cgt	gct	ctg	ccg	gta	ctc	624
Gly	Ala		Ser	Ala	Gly	Asp	L ys 200	Gly	Arg	Arg	Ala	Leu 205	Pro	Val	Leu	
		195					200					200				
gac	aag	tat	gca	gag	agc	atc	ggc	ctt	gcc	ttc	cag	gtt	cag	gat	gac	672
Asp	Lys	Tyr	Ala	Glu	Ser	Ile	Gly	Leu	Ala	Phe	Gln	Val	Gln	Asp	Asp	
	210					215					220	٠				
atc	ctg	gat	gtg	gtg	gga	gat	act	gca	acg	ttg	gga	aaa	cgc	cag	ggt	720
] le	Leu	Asp	Val	Val	Gly	Asp	Thr	Ala	Thr	Leu	Gly	Lys	Arg	Gln	Gly	
225					230					235					240	
gcc	gac	cag	caa	ctt	ggt	aaa	agt	acc	tac	cct	gca	ctt	ctg	ggt	ctt	768
Ala	Asp	Gln	Gln	Leu	Gly	Lys	Ser	Thr	Tyr	Pro	Ala	Leu	Leu	Gly	Leu	
				245					250					255		
gag	caa	gcc	cgg	aag	aaa	gcc	cgg	gat	ctg	atc	gac	gat	gcc	cgt	cag	816
Glu	Gln	Ala	Arg	Lys	Lys	Ala	Arg	Asp	Leu	Ile	Asp	Asp	Ala	Arg	Gln	
			260					265					270			

864

tcg ctg aaa caa ctg gct gaa cag tca ctc gat acc tcg gca ctg gaa

Ser Leu Lys Gln Leu Ala Glu Gln Ser Leu Asp Thr Ser Ala Leu Glu 275 280 285

gcg cta gcg gac tac atc atc cag cgt aat aaa

897

Ala Leu Ala Asp Tyr Ile Ile Gln Arg Asn Lys 295 290

[0199]

<210> 8

<211> 240

<212> DNA

(213) Escherichia coli

<220>

<221> CDS

<222> (1)..(240)

<400> 8

1

atg ccg aag aaa aat gag gcg ccc gcc agc ttt gaa aag gcg ctg agc 48

Met Pro Lys Lys Asn Glu Ala Pro Ala Ser Phe Glu Lys Ala Leu Ser 5

10

15

gag ctg gaa cag att gta acc cgt ctg gaa agt ggc gac ctg ccg ctg

Glu Leu Glu Gln Ile Val Thr Arg Leu Glu Ser Gly Asp Leu Pro Leu

20

25

30

45

60

gaa gag gcg ctg aac gag ttc gaa cgc ggc gtg cag ctg gca cgt cag 144

Glu Glu Ala Leu Asn Glu Phe Glu Arg Gly Val Gln Leu Ala Arg Gln

35 40

55

ggg cag gcc aaa tta caa caa gcc gaa cag cgc gta caa att ctg ctg 192

Gly Gln Ala Lys Leu Gln Gln Ala Glu Gln Arg Val Gln Ile Leu Leu

tct gac aat gaa gac gcc tct cta acc cct ttt aca ccg gac aat gag 240

Ser Asp Asn Glu Asp Ala Ser Leu Thr Pro Phe Thr Pro Asp Asn Glu
65 70 75 80

[0200]

⟨210⟩ 9

⟨211⟩ 1044

50

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1)..(1044)

<400> 9

gtg act ggg gtg aac gaa tgc agc cgc agc aca tgc aac ttg aag tat 48

Val	Thr	Gly	Val	Asn	Glu	Cys	Ser	Arg	Ser	Thr	Cys	Asn	Leu	Lys	Tyr	
1				5					10	ı				15		
gac	gag	tat	agc	agg	agt	ggc	agc	atg	caa	tac	aac	ccc	tta	gga	aaa	96
	C1	Т	C	1	Com	C1	C	V-4	C1-	Т	A	D	• -	61	T _	
ИSЪ	Gru	1 yr	20	Arg	Ser	GIY	Ser	ме t 25	GIN	lyr	ASN	Pro		Ī	Lys	
			20					20					30			
acc	gac	ctt	cgc	gtt	tcc	cga	ctt	tgc	ctc	ggC	tgt	atg	acc	ttt	ggC	144
												J			00	
Thr	Asp	Leu	Arg	Val	Ser	Arg	Leu	Cys	Leu	Gly	Cys	Met	Thr	Phe	Gly	
		35					40					45				
gag	cca	gat	cgc	ggt	aat	cac	gca	tgg	aca	ctg	ccg	gaa	gaa	agc	agc	192
Glu		Asp	Arg	Gly	Asn		Ala	Trp	Thr	Leu		Glu	Glu	Ser	Ser	
	50					55					60					
0-4					4						-4-	4	44.		- 4	040
cgı	ccc	ala	att	aaa	cgi	gca	Cig	gaa	ggc	ggc	ata	aat	ttc	τττ	gat	240
Arg	Pro	īle	Tle	Lys	Arg	Ala	I.eu	Glu	Glv	Glv	Ile	Asn	Phe	Phe	Asn	
65	•	•	• • •	25-	70			u-w	<u> </u>	75	1.0	11011	1 1.10	7	80	
acc	gcc	aac	agt	tat	tct	gac	ggC	agc	agc	gaa	gag	atc	gtc	ggt	cgc	288
Thr	Ala	Asn	Ser	Tyr	Ser	Asp	Gly	Ser	Ser	Glu	Glu	Ile	Val	Gly	Arg	
				85					90					95		

gca	ctg	cgg	gat	ttc	gcc	cgt	cgt	gaa	gac	gtg	gtc	gtt	gcg	acc	aaa	336
Ala	Leu	Arg	Asp	Phe	Ala	Arg	Arg	Glu	Asp	Val	Val	Val	Ala	Thr	Lys	
			100					105	_				110			
gtg	ttc	cat	cgc	gtt	ggt	gat	tta	ccg	gaa	gga	tta	tcc	cgt	gcg	caa	384
Val	Phe	His	Arg	Val	Glv	Asp	Leu	Pro	Glu	G1 v	Leu	Ser	Arg	Ala	Gln	
		115	_ 0	•			120	•		u-j	204	125	m- 8	4.0	0111	
att	ttg	cgc	tct	atc	gac	gac	agc	ctg	cga	cgt	ctc	ggC	atg	gat	tat	432
Ile		Arg	Ser	Ile	Asp	Asp	Ser	Leu	Arg	Arg	Leu	Gly	Met	Asp	Tyr	
	130					135					140					
gtc	gat	atc	ctg	caa	att	cat	cgc	tgg	gat	tac	aac	acg	CCg	atc	gaa	480
Val	Asp	Ile	Leu	Gln	Ile	His	Arg	Trp	Asp	Tyr	Asn	Thr	Pro	I le	Glu	
145					150					155					160	
gag	acg	ctg	gaa	gcc	ctc	aac	gac	gtg	gta	aaa	gcc	ggg	aaa	gcg	cgt	528
Glu	Thr	Leu	Glu	Ala	Leu	Asn	Asp	Val	Val	Lys	Ala	Gly	Lys	Ala	Arg	
				165					170					175		
tat	atc	ggc	gcg	tca	tca	atg	cac	gct	tcg	cag	ttt	gct	cag	gca	ctg	576
_								_								
Tyr	[le	Gly		Ser	Ser	Met	His		Ser	Gln	Phe	Ala		Ala	Leu	
			180					185					190			

gaa	ctc	caa	aaa	cag	cac	ggc	tgg	gCg	cag	ttt	gtc	agt	atg	cag	gat	624
Glu	Leu	Gln	Lys	Gln	His	Gly	Trp	Ala	Gln	Phe	Val	Ser	Met	Gln	Asp	
		195					200					205				
cac	tac	aat	ctg	att	tat	cgt	gaa	gaa	gag	cgc	gag	atg	cta	cca	ctg	672
His	Tyr	Asn	Leu	Ile	Tyr	Arg	Glu	Glu	Glu	Arg	Glu	Met	Leu	Pro	Leu	
	210					215					220					
tgt	tat	cag	gag	ggc	gtg	gCg	gta	att	сса	tgg	agc	CCg	ctg	gca	agg	720
										,		Ū				
Cys	Tyr	Gln	Glu	Gly	Val	Ala	Val	Ile	Pro	Trp	Ser	Pro	Leu	Ala	Arg	
225					230					235					240	
LLO					200					200					240	
ggc	cgt	ctg	acg	cgt	ccg	tgg	gga	gaa	act	acc	gca	cga	ctg	gtg	tct	768
Gly	Arg	Leu	Thr	Arg	Pro	Trp	Gly	Glu	Thr	Thr	Ala	Arg	Leu	Val	Ser	
				245					250					255		
														٠,		
gat	gag	gtg	ggg	aaa	aat	ctc	tat	aaa	gaa	agc	gat	gaa	aat	gac	gCg.	816
.		0.0	000				-		3	6	6	6		6	8-8	010
Asn	Glu	V a l	Gly	Ive	۸en	T 611	Tur	Ive	Clu	Ser	Asn	C1	Acn	Acn	412	
ДЗР	Giu	101		Lys	ДЭП	Leu	1 91	_	gru	Ser	иор	Giu		иор	Ala	
			260					265					270			
cag	atc	gca	gag	cgg	tta	aca	ggc	gtc	agt	gaa	gaa	ctg	ggg	gcg	aca	864
Gln	Ile	Ala	Glu	Arg	Leu	Thr	Gly	Val	Ser	Glu	Glu	Leu	Gly	Ala	Thr	

300

275 280 285

cga gca caa gtt gcg ctg gcc tgg ttg ttg agt aaa ccg ggc att gcc 912

Arg Ala Gin Val Ala Leu Ala Trp Leu Leu Ser Lys Pro Gly Ile Ala

295

gca ccg att atc gga act tcg cgc gaa gaa cag ctt gat gag cta ttg 960

Ala Pro Ile Ile Gly Thr Ser Arg Glu Glu Gln Leu Asp Glu Leu Leu

305 310 315 320

aac gcg gtg gat atc act ttg aag ccg gaa cag att gcc gaa ctg gaa 1008

Asn Ala Val Asp Ile Thr Leu Lys Pro Glu Gln Ile Ala Glu Leu Glu
325 330 335

acg ccg tat aaa ccg cat cct gtc gta gga ttt aaa 1044

Thr Pro Tyr Lys Pro His Pro Val Val Gly Phe Lys
340 345

[0201]

<210> 10

<211> 1194

290

<212> DNA

<213> Escherichia coli

<22	0>															
<22	1> C	DS												·		
<22	2> (1)	(119	4)												
<40	0> 1	0														
			ctc	acc	att	cta	ggc	tra	acc.	aac.	tca	911	aat	t ac	200	10
utg	uug	Caa		ucc	act	Ctg	880	teg	acc	ggc	ıcg	att	ggı	igi	agc	48
V-4	T	C1-	1	Th	71.	T	C.L.	0	m1	61	0	71.	61	_	_	
	Lys	Gin	Leu		116	Leu	Gly	Ser		GIY	Ser	116	GIY	•		
1				5					10					15		
acg	ctg	gac	gtg	gtg	cgc	cat	aat	ccc	gaa	cac	ttc	cgc	gta	gtt	gcg	96
Thr	Leu	Asp	Val	Val	Arg	His	Asn	Pro.	Glu	His	Phe	Arg	Val	Val	Ala	
			20					25					30			
ctg	gtg	gca	ggc	aaa	aat	gtc	act	cgc	atg	gta	gaa	cag	tgc	ctg	gaa	144
Leu	Val	Ala	Gly	Lys	Asn	Val	Thr	Arg	Met	Val	Glu	Gln	Cys	Leu	Glu	
		35					40					45				
ttc	tct	ccc	CgC	tat	gcc	øta	atg	gac	σat	ฮลล	_ወ ር ወ	aot	σCσ	222	ctt	192
			-8-	00	8	8		8	8	Buu	5 ~5	~ ₆ t	P.P			102
Dho	Com	Dwa	A == ~	T	410	Va I	Vat	A	۱	C1	.1-	C	41-	T		
rne		PIU	Arg	lyr	Ala		Met	ASP	ASP	GIU		Ser	Ala	Lys	Leu	
	50					55					60					
ctt	aaa	acg	atg	cta	cag	caa	cag	ggt	agc	cgc	acc	gaa	gtc	tta	agt	240

Leu Lys Thr Met Leu Gln Gln Gln Gly Ser Arg Thr Glu Val Leu Ser

65 70 75 80

ggg	caa	caa	gcc	gct	tgc	gat	atg	gca	gcg	ctt	gag	gat	gtt	gat	cag	288
G1y	Gln	Gln	Ala	Ala	Cys	Asp	Met	Ala	Ala	Leu	Glu	Asp	Val	Asp	Gln	
				85					90					95		
gtg	atg	gca	gcc	att	gtt	ggc	gct	gct	ggg	ctg	tta	cct	acg	ctt	gct	336
Val	Met	Ala	Ala	Ile	Val	Gly	Ala	Ala	Gly	Leu	Leu	Pro	Thr	Leu	Ala	
			100				·	105					110			
gcg	atc	cgc	gcg	ggt	aaa	acc	att	ttg	ctg	gcc	aat	aaa	gaa	tca	ctg	384
Λla	ī le	Ara	Ala	Glv	Ive	Thr	īle	I en	l en	Δla	Asn	Ivs	Glu	Ser	Len	
ліц	110	115	nια	ury	Lyo	1	120	Dou		11.0	Mon	125		001	Пос	
gtt	acc	tgc	gga	cgt	ctg	ttt	atg	gac	gcc	gta	aag	cag	agc	aaa	gCg	432
Val	Thr 130	Cys	Gly	Arg	Leu	Phe 135	Met	Asp	Ala	Val	Lys 140	Gln	Ser	Lys	Ala	
					•											
caa	ttg	tta	ccg	gtc	gat	agc	gaa	cat	aac	gcc	att	ttt	cag	agt	tta	480
	Leu	Leu	Pro	Val	-	Ser	Glu	His	Asn		Ile	Phe	Gln	Ser		
145					150					155					160	
ccg	caa	cct	atc	cag	cat	aat	ctg	gga	tac	gct	gac	ctt	gag	caa	aat	528
Pro	Gl'n	Pro	Ile	Gln	His	Asn	Leu	Gly	Tyr	Ala	Asp	Leu	Glu	Gln	Asn	

Ø.	
3	

165

170

175

ggc	gtg	gtg	tcc	att	tta	ctt	acc	ggg	tct	ggt	ggC	cct	ttc	cgt	gag	576
Gly	Val	Val	Ser	Ile	Leu	Leu	Thr	Gly	Ser	Gly	Gly	Pro	Phe	Arg	Glu	
			180					185					190			
acg	cca	ttg	cgc	gat	ttg	gca	aca	atg	acg	ccg	gat	caa	gcc	tgc	cgt	624
Thr	Pro	Leu	Arg	Asp	Leu	Ala	Thr	Met	Thr	Pro	Asp	Gln	Ala	Cys	Arg	
		195					200					205				
cat	ccg	aac	tgg	tcg	atg	ggg	cgt	aaa	att	tct	gtc	gat	tcg	gct	acc	672
His	Pro	Asn	Trp	Ser	Met	Gly	Arg	Lys	Ile	Ser	Val	Asp	Ser	Ala	Thr	
	210					215					220					
atg	atg	aac	aaa	ggt	ctg	gaa	tac	att	gaa	gcg	cgt	tgg	ctg	ttt	aac	720
Met	Met	Asn	Lys	Gly	Leu	Glu	Tyr	Ile	Glu	Ala	Arg	Trp	Leu	Phe	Asn	
225					230					235					240	
gcc	agc	gcc	agc	cag	atg	gaa	gtg	ctg	att	cac	ccg	cag	tca	gtg	att	768
Ala	Ser	Ala	Ser	Gln	Met	Glu	Val	Leu	[le	His	Pro	Gln	Ser	Val	I l e	
				245					250					255		
cac	tca	atg	gtg	cgc	tat	cag	gac	ggc	agt	gtt	ctg	gCg	cag	ctg	ggg	816

His Ser Met Val Arg Tyr Gln Asp Gly Ser Val Leu Ala Gln Leu Gly

9 0

816¥

	260	265	. 2	70
gaa ccg gat	atg gta cgc	caa ttg ccc a	ica cca tgg gca t	gg ccg aat 864
Glu Pro Asp 275	Met Val Arg	Gln Leu Pro T 280	Thr Pro Trp Ala T 285	rp Pro Asn
cgc gtg aac	tct ggc gtg	aag ccg ctc g	at ttt tgc aaa c	ta agt gcg 912
Arg Val Asn 290		Lys Pro Leu A 295	sp Phe Cys Lys L	eu Ser Ala
ttg aca ttt	gcc gca ccg	gat tat gat c	gt tat cca tgc c	tg aaa ctg 960
Leu Thr Phe 305	Ala Ala Pro 310	Asp Tyr Asp A	rg Tyr Pro Cys L	eu Lys Leu 320
gcg atg gag	gcg ttc gaa	caa ggc cag g	ca gcg acg aca g	ca ttg aat 1008
Ala Met Glu	Ala Phe Glu 325		la Ala Thr Thr A	ia Leu Asn 335
gcc gca aac	gaa atc acc	gtt gct gct t	tt ctt gcg caa c	aa atc cgc 1056
Ala Ala Asn	Glu Ile Thr	Val Ala Ala P 345	he Leu Ala Gln G 39	_
ttt acg gat	atc gct gcg	ttg aat tta t	cc gta ctg gaa a	aa atg gat 1104

Phe Thr Asp Ile Ala Ala Leu Asn Leu Ser Val Leu Glu Lys Met Asp 355 360 365

atg cgc gaa cca caa tgt gtg gac gat gtg tta tct gtt gat gcg aac 1152

Met Arg Glu Pro Gln Cys Val Asp Asp Val Leu Ser Val Asp Ala Asn 370 375 380

gcg cgt gaa gtc gcc aga aaa gag gtg atg cgt ctc gca agc 1194

Ala Arg Glu Val Ala Arg Lys Glu Val Met Arg Leu Ala Ser 385 390 395

[0202]

<210> 11

<211> 4390

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (208)..(447)

<220>

<221> CDS

<222> (450)..(1346)

<220>

<221> CDS <222> (1374)..(3233)

<220>

<221> CDS

<222> (3344)..(4390)

<400> 11

atggcggcaa tggttcgttg gcaagcctta agcgacttgt atagggaaaa atacagcagc 60

ccacacctgc ggctgcatcc aggcgcggaa gtataccact aacatcgctt tgctgtgcac 120

atcaccttac cattgcgcgt tatttgctat ttgccctgag tccgttacca tgacggggcg 180

aaaaatattg agagtcagac attcatt atg ccg aag aaa aat gag gcg ccc gcc 234

Met Pro Lys Lys Asn Glu Ala Pro Ala

1 -

agc ttt gaa aag gcg ctg agc gag ctg gaa cag att gta acc cgt ctg 282

gaa agt ggc gac ctg ccg ctg gaa gag gcg ctg aac gag ttc gaa cgc 330

Glu	Ser	Gly	Asp	Leu	Pro	Leu	Glu	Glu	Ala	Leu	Asn	Glu	Phe	Glu	Arg	
				30					35			٠		40		
ggc	gtg	cag	ctg	gca	cgt	cag	ggg	cag	gcc	aaa	tta	caa	caa	gcc	gaa	378
Gly	Val	Gln	Leu	Ala	Arg	Gln	Gly	Gln	Ala	Lys	Leu	Gln	Gln	Ala	Glu	
			45					50					55			
cag	cgc	gta	caa	att	ctg	ctg	tct	gac	aat	gaa	gac	gcc	tct	cta	acc	426
Gln	Arg		Gln	Ile	Leu	Leu		Asp	Asn	Glu	Asp		Ser	Leu	Thr	
		60					65					70				
4	444				4		4	- 4						_4_		450
CCI	ιιι	aca	ccg	gac	aat	gag	ta a	atg į	gac	ttt	ccg	cag	caa	ctc ;	gaa	473
Pro	Phe	Thr	Pro	1 en	Asn	C1n	1	fet i	Acn 1	Dha I	Dro (~ln (^ln i	l on 1	C 1 ss	
110	75	1111	110	лэр	дэн	80	1	1	тор 1	ne i	10 (5 5	3111	Leu	GIU	
						00		•				J				
gcc	tgc	gtt	aag	cag	gCC	aac	cag	gCg	ctg	agc	cgt	ttt	atc	gCC	сса	521
			J	J	Ū									9		021
Ala	Cys	Val	Lys	Gln	Ala	Asn	Gln	Ala	Leu	Ser	Arg	Phe	Ile	Ala	Pro	
	10					15					20					
ctg	ссс	ttt	cag	aac	act	ссс	gtg	gtc	gaa	acc	atg	cag	tat	ggc	gca	569
Leu	Pro	Phe	Gln	Asn	Thr	Pro	Va 1	Val	Glu	Thr	Met	Gln	Tyr	Gly	Ala	
25			·		30					35		٠			40	
	-				,											
tta	tta	ggt	ggt	aag	cgc	ctg	cga	cct	ttc	ctg	gtt	tat	gcc	acc	ggt	617

Leu	Leu	Gly	Gly	Lys	Arg	Leu	Arg	Pro	Phe	Leu	Val	Tyr	Ala	Thr	Gly	
				45					50					55		
cat	atg	ttc	ggc	gtt	agc	aca	aac	acg	ctg	gac	gca	ссс	gct	gcc	gcc	665
His		Phe	Gly	Val	Ser		Asn	Thr	Leu	Asp		Pro	Ala	Ala	Ala¥	
	60					65					70					
at t	asa	tat	atc	cac	act	tac	tca	tta	2++	cat	en t	~a+	++0	000	~~	719
gıı		tg t	att	Cac	gci	tac	ica	lla	all	Cat	gat	gai	lla	ccg	gca	713
Val	Glu	Cys	Ile	His	Ala	Tyr	Ser	Leu	Ile	His	Asp	Asp	Leu	Pro	Ala	
		75				-	80				_	85				
		•														
atg	gat	gat	gac	gat	ctg	cgt	cgc	ggt	t tg.	cca	acc	tgc	cat	gtg	aag	7 61
Met	Asp	Asp	Asp	Asp	Leu	Arg	Arg	Gly	Leu	Pro	Thr	Cys	His	Val	L ys	
	90					95					100					
ttt	ggc	gaa	gca	aac	gcg	att	ctc	gct	ggc	gac	gct	tta	caa	acg	ctg	809
Dho	Cla	Cl.	410	400	Ala	710	T	110	C1	1	41-	T	C1-	ጥL		
105	GIY	GIU	Ala	ASII	110	116	Leu	Ala	GIY		Ala	Leu	GIN	lur		
100										115					120	
gcg	ttc	tcg	att	tta	agc	gat	gcc	gat	atg	ccg	gaa	gtg	tcg	gac	CgC	857
		-			-	-	_		J	J	-	- •	.		~	- - •
Ala	Phe	Ser	Ile	Leu	Ser	Asp	Ala	Asp	Met	Pro	Glu	Val	Ser	Asp	Arg	
				125					130					135		

gac	aga	att	tcg	atg	att	tct	gaa	ctg	gcg	agc	gcc	agt	ggt	att	gcc	905
Asp	Arg	Ile	Ser 140	Met	Ile	Ser	Glu	Leu 145		Ser	Ala	Ser	Gly 150		Ala	
gga	atg	tgc	ggt	ggt	cag	gca	tta	gat	tta	gac	gcg	gaa	ggc	aaa	cac	953
Gly	Met	C ys 155	Gly	Gly	Gln	Ala	Leu 160	Asp	Leu	Asp	Ala	Glu 165	_	Lys	His	
gta	cct	ctg	gac	gcg	ctt	gag	cgt	att	cat	cgt	cat	aaa	acc	ggc	gca	1001
Val	Pro 170	Leu	Asp	Ala	Leu	Glu 175	Arg	Ile	His	Arg	His	Lys	Thr	Gly	Ala	·
ttg	att	cgc	gcc	gcc	gtt	cgc	ctt	ggt	gca	tta	agc	gcc	gga	gat	.aaa	1049
L eu 185	Ile	Arg	Ala	Ala	Val 190	Arg	Leu	Gly	Ala	Leu 195	Ser	Ala	Gly	Asp	L ys 200	
gga	cgt	cgt	gct	ctg	ccg	gta	ctc	gac	aag	tat	gca	gag	agc	atc	ggc	1097
Gly	Arg	Arg	Ala	Leu 205	Pro	Val	Leu	Asp	Lys 210	Tyr	Ala	Glu	Ser	I le 215	Gly	
ctt	gcc	ttc	cag	gtt	cag	gat	gac	atc	ctg	gat	gtg	gtg	gga	gat	act	1145
Leu	Ala		Gln 220	Val	Gln	Asp	_	I le	Leu	Asp	Val	Val	Gly 230	Asp	Thr	

gca	acg	ttg	gga	aaa	cgc	cag	ggt	gcc	gac	cag	caa	ctt	ggt	aaa	agt	1193
Ala	Thr	Leu 235	Gly	Lys	Arg	Gln	Gly 240	Ala	Asp	Gln	Gln	Leu 245	Gly	Lys	Ser	
acc	tac	cct	gca	ctt	ctg	ggt	ctt	gag	caa	gcc	cgg	aag	aaa	gcc	Cgg	1241
Thr	Tyr 250	Pro	Ala	Leu	Leu	Gl y 255	Leu	Glu	Gln	Ala	Arg 260	Lys	Lys	Ala	Arg	
gat	ctg	atc	gac	gat	gcc	cgt	cag	tcg	ctg	aaa	caa	ctg	gct	gaa	cag	1289
Asp 265	Leu	Ile	Asp	Asp	Ala 270	Arg	Gln	Ser	Leu	L y s 275	Gln	Leu	Ala	Glu	Gln 280	
tca	ctc	gat	acc	tcg	gca	ctg	gaa	gcg	cta	gcg	gac	tac	atc	atc	cag	1337
Ser	Leu	Asp	Thr	Ser 285	Ala	Leu	Glu	Ala	Leu 290	Ala	Asp	Tyr	Ile	Ile 295	Gln	
cgt	aat	aaa	taaa	acaat	aa g	tatt	aata	ıg go	ccct	tg at	g ag	çt ti	tt ga	ıt at	t gcc	1391
Arg	Asn	Lys								Me	et Se	er Ph	ne As	Sp [l	e Ala	
aaa	tac	ccg	acc	ctg	gca	ctg		gac	tcc	acc		gag	tta	cga		1439
Lys	Tyr	Pro	Thr	Leu	Ala	Leu	Val	Asp	Ser	Thr	Gln	Glu	Leu	Arg	Leu	

10

15

20

ttg	ccg	aaa	gag	g agt	tta	ccg	aaa	ctc	tgc	gac	gaa	ctg	cgc	cgc	tat	1487
Leu	Pro	L y s 25		ı Ser	· Leu	Pro	L y s 30	•	Cys	Asp	Glu	Leu 35		Arg	Tyr	
tta	ctc	gac	agc	gtg	agc	cgt	tcc	agc	ggg	cac	ttc	gcc	tcc	ggg	ctg	1535
Leu	Leu 40	Asp	Ser	Val	Ser	Arg 45	Ser	Ser	Gly	His	Phe 50	Ala	Ser	Gly	Leu	
ggc	acg	gtc	gaa	ctg	acc	gtg	gcg	ctg	cac	tat	gtc	tac	aac	acc	ccg	1583
G1 y 55	Thr	Val	Glu	Leu	Thr 60	Val	Ala	Leu	His	Tyr 65	Val	Tyr	Asn	Thr	Pro 70	
ttt	gac	caa	ttg	att	tgg	gat	gtg	ggg	cat		gct	tat	ccg	cat	•	1631
Phe	Asp	Gln	Leu		Trp	Asp	Val	Gly		Gln	Ala	Tyr	Pro		Lys	
att	ttg	acc	gga	75 cgc	cgc	gac	aaa	atc	80 ggc	acc	atc	cgt	cag	85 aaa	ggc	1679
¥Ile	e Leu	ı Thı	G13	y Arı	g Arg	, Asp	Lys	95	e Gly	/ Thr	Ile	e Arg	Glr 100	ı Lys	Gly	
ggt	ctg	cac	ccg	ttc	ccg	tgg	cgc	ggc	gaa	agc	gaa	tat	gac	gta	tta	1727
Gly	Leu	His	Pro	Phe	Pr	Trp	Arg	Gly	Glu	Ser	Glu	Tyr	Asp	Val	Leu	

		105					110					115				
agc	gtc	ggg	cat	tca	tca	acc	tcc	atc	agt	gcc	gga	att	ggt	att	gcg	1775
Ser	Val 120	Gly	His	Ser	Ser		Ser	Ile	Ser	Ala		Ile	Gly	Ile	Ala	
	120					125					130					
gtt	gct	gcc	gaa	aaa	gaa	ggc	aaa	aat	cgc	cgc	acc	gtc	tgt	gtc	att	1823
Val	Ala	Ala	Glu	Lys	Glu	Gly	Lys	Asn	Arg	Arg	Thr	Val	Cys	Val	Ile	
135					140					145					150	
	σat	gg(a ca	att	acc	gra.	gge	ato	aca	***	422	aca	atg	a'a t	626	1071
860	gut	55°	5~5	411	ucc	gca	880	atg	g c g		gaa	gcg	aig	aal	cac	1871
Gly	Asp	Gly	Ala		Thr	Ala	Gly	Met		Phe	Glu	Ala	Met		His	
				155					160					165		
gcg	ggc	gat	atc	cgt	cct	gat	atg	ctg	gtg	att	ctc	aac	gac	aat	gaa	1919
Ala	G1 y	Asp	Ile	Arg	Pro	Asp	Met	Leu	Val	Ile	Leu	Asn	Asp	Asn	Glu	
			170					175					180			
								•								
atg	tcg	att	tcc	gaa	aat	gtc	ggC	gcg	ctc	aac	aac	cat	ctg	gca	cag.	1967
Met	Ser		Ser	Glu	Asn	Val		Ala	Leu	Asn	Asn		Leu	Ala	Gln	
		185					190					195				

ctg ctt tcc ggt aag ctt tac tct tca ctg cgc gaa ggc ggg aaa aaa

2015

` L€	≥u	Leu	Ser	Gly	Lys	. Leu	Tyr	Ser	Ser	Leu	Arg	Glu	Gly	Gly	Lys	Lys	
		200					205					210					
gt	t	ttc	tct	ggc	gtg	ccg	cca	att	aaa	gag	ctg	ctc	aaa	cgc	acc	gaa	2063
Va	ı 1	Phe	Ser	Gly	Va 1	Pro	Pro	Ile	Lys	Glu	Leu	Leu	Lys	Arg	Thr	Glu	
21	5					220					225					230	
					*												
ga	a	cat	att	aaa	ggc	atg	gta	gtg	cct	ggc	acg	ttg	ttt	gaa	gag	ctg	2111
G1	u	His	Ile	Lys	Gly	Met	Val	Val	Pro	Gly	Thr	Leu	Phe	Glu	Glu	Leu	
					235					240					245		
gg	c	ttt	aac	tac	atc	ggc	ccg	gtg	gac	ggt	cac	gat	gtg	ctg	ggg	ctt	2159
G1	у	Phe	Asn	Tyr	Ile	Gly	Pro	Val	Asp	Gly	His	Asp	Va l	Leu	Gly	Leu	
				250		,			255			•		260	- 0		
at	c	acc	acg	cta	aag	aac	atg	CgC	gac	ctg	aaa	ggC-	CCg	cag	ttc	ctg	2207
										0		-	0				220.
11	e	Thr	Thr	Leu	Lvs	Asn	Met	Arg	Asp	ī.eu	I.vs	Glv	Pro	Gln	Phe	I.en	
			265		_•	_		270					275	G =		200	
													2.0				
ca	t. :	a t.c	atg	acc	aaa	aaa	ggt	cet	øøt	tat	gaa	CCø	gCa	gaa	222	asc	2255
	•						66 °	-	88 4		Buu	006	Bou	guu	uuu	Buc	2200
His	s	Ile	Met	Thr	ī.vs	Lve	Clv	Ara	Clv	Tvr	Glu	Pro	Δla	Glu	Ive	Acn	
** **		280	.,	1 444	253		285	11 E	u i y	131	uiu	290	діа	uiu	ப	лор	
	•	700					200					70A					

CCg	ato	act	ttc	cac	gcc	gtg	cct	aaa	ttt	gat	ccc	tço	ago	ggt	tgt	2303
Pro	Ile	Thr	Phe	His	Ala	Val	Pro	Lys	: P he	. Asp	Pro	Ser	Ser	Gly	, Cys	
295					300	ı				305	i				310	
ttg	ccg	aaa	agt	agc	ggC	ggt	ttg	ccg	agc	tat	tca	aaa	ato	ttt	ggc	2351
Leu	Pro	Lys	Ser	Ser	Gly	Gly	Leu	Pro	Ser	Tyr	Ser	L y s	Ile	P he	Gly	
				315					320					325		
gac	tgg	ttg	tgc	gaa	acg	gca	gcg	aaa	gac	aac	aag	ctg	atg	gcg	att	2399
Asp	Trp	Leu	Cys	Glu	Thr	Ala	Ala	Lys	Asp	Asn	Lys	Leu	Met	Ala	Ile	
			330					335					340			
act	ccg	gcg	atg	cgt	gaa	ggt	tcc	ggC	atg	gtc	gag	ttt	tca	cgt	aaa	2447
Thr	Pro		Met	Arg	Glu	Gly	Ser	Gly	Met	Val	Glu	Phe	Ser	Arg	Lys	
		345					350					355				
ttc	CCg	gat	cgc	tac	ttc	gac	gtg	gca	att	gcc	gag	caa	cac	gcg	gtg	2495
Phe	Pro	Asp	Arg	Tyr	Phe	Asp	Val	Ala	Ile	Ala	Glu	Gln	His	Ala	Val	
	360					365					370					
acc	ttt	gct	gcg	ggt	ctg	gcg	att	ggt	ggg	tac	aaa	ccc	att	gtc	gcg	2543
[hr	Phe	Ala	Ala	G1 y	Leu	Ala	Ile	Gly	Gly	Tyr	Lys	Pro	Ile	Val	Ala	
375					380					225					300	

att	tac	tcc	act	ttc	ctg	caa	cgc	gcc	tat	gat	cag	gtg	ctg	cat	gac	2591
Ile	Tyr	Ser	Thr	Phe	Leu	Gln	Arg	Ala	Tyr	Asp	Gln	Val	Leu	His	Asp	
				395					400					405		
gtg	gcg	att	caa	aag	ctt	ccg	gtc	ctg	ttc	gcc	atc	gac	cgc	gcg	ggc	2639
Val	Ala	Ile	Gln	Lys	Leu	Pro	Val	Leu	Phe	Ala	Ile	Asp	Arg	Ala	Gly	
			410					415					420			
att	gtt	ggt	gct	gac	ggt	caa	acc	cat	cag	ggt	gct	tti	gat	ctc	tct	2687
								4								
Ile	Val	Gly 425	Ala	Asp	Gly	Gln	Thr 430	His	Gln	Gly	Ala	Phe 435	Asp	Leu	Ser	
tac	ctg	cgc	tgc	ata	ccg	gaa	atg	gtc	att	atg	acc	ccg	agc	gat	gaa	2735
Tyr	Leu	Arg	Cys	Ile	Pro	Glu	Met	Val	Ile	Met	Thr	Pro	Ser	Asp	Glu	
	440					445					450					
aac	gaa	tgt	cgc	cag	atg	ctc	tat	acc	ggc	tat	cac	tat	aac	gat	ggc	2783
Asn	Glu	Cys	Arg	Gln	Met	Leu	Tyr	Thr	Gly	Tyr	His	Tyr	Asn	Asp	Gly	
455					460					465					470	
ccg	tca	gcg	gtg	cgc	tac	ccg	cgt	ggc	aac	gcg	gtc	ggC	gtg	gaa	ctg	2831
Pro	Ser	Ala	Val	Aro	Tvr	Pro	Ara	Clv	A sn	412	Val	Clv	Va l	C111	Ĭ 6 11	

	475	480	485
acg ccg ctg gaa	ı aaa cta cca att	ggc aaa ggc att	gtg aag cgt cgt 2879
Thr Pro Leu Glu 490		Gly Lys Gly Ile	Val Lys Arg Arg 500
ggc gag aaa ctg	gcg atc ctt aac	ttt ggt acg ctg	atg cca gaa gcg 2927
Gly Glu Lys Leu 505	Ala Ile Leu Asn 510	Phe Gly Thr Leu	Met Pro Glu Ala 515
gcg aaa gtc gcc	gaa tcg ctg aac	gcc acg ctg gtc	gat atg cgt ttt 2975
Ala Lys Val Ala 520	Glu Ser Leu Asn 525	Ala Thr Leu Val 530	Asp Met Arg Phe
gtg aaa ccg ctt	gat gaa gcg tta	att ctg gaa atg į	gcc gcc agc cat 3023
Val Lys Pro Leu	Asp Glu Ala Leu 540	Ile Leu Glu Met 1 545	Ala Ala Ser His 550
gaa gcg ctg gtc	acc gta gaa gaa	aac gcc att atg g	gc ggc gca ggc 3071
Glu Ala Leu Val	Thr Val Glu Glu 555	Asn Ala Ile Met (sly Gly Ala Gly 565
agc ggc gtg aac	gaa gtg ctg atg	gcc cat cgt aaa o	ca gta ccc gtg 3119

Ser Gly Val Asn Glu Val Leu Met Ala His Arg Lys Pro Val Pr Val 570 575 580

ctg aac att ggc ctg ccg gac ttc ttt att ccg caa gga act cag gaa 3167

Leu Asn Ile Gly Leu Pro Asp Phe Phe Ile Pro Gln Gly Thr Gln Glu
585 590 595

gaa atg cgc gcc gaa ctc ggc ctc gat gcc gct ggt atg gaa gcc aaa 3215

Glu Met Arg Ala Glu Leu Gly Leu Asp Ala Ala Gly Met Glu Ala Lys
600 605 610

atc aag gcc tgg ctg gca taatccctac tccactcctg ctatgcttaa 3263

Ile Lys Ala Trp Leu Ala 615 620

gaaattattc atagactcta aataattcga gttgcaggaa ggcggcaaac gagtgaagcc 3323

ccaggagctt acataagtaa gtg act ggg gtg aac gaa tgc agc cgc agc aca 3376

Val Thr Gly Val Asn Glu Cys Ser Arg Ser Thr

1 5 10

tgc aac ttg aag tat gac gag tat agc agg agt ggc agc atg caa tac 3424

Cys Asn Leu Lys Tyr Asp Glu Tyr Ser Arg Ser Gly Ser Met Gln Tyr

25

特平10-221910

15 20

aac	ССС	tta	gga	aaa	acc	gac	ctt	cgc	gtt	tcc	cga	ctt	tgc	ctc	ggc	3472
Aen	Pro	Ĭ 6 11	Glv	Ive	Thr	Asn	I en	Ara	Val	Ser	Ara	I Au	Cue	Leu	Cly	
ДЭП	110		uly	Lys	1 111	дор		T. P	741	SCI	V. P		O y S	Lcu	diy	
		30					35					40				
tgt	atg	acc	ttt	ggc	gag	cca	gat	cgc	ggt	aat	cac	gca	tgg	aca	ctg	3520
Cys	Met	Thr	Phe	Gly	Glu	Pro	Asp	Arg	Gly	Asn	His	Ala	Trp	Thr	Leu	
	4 5					50					5 5					
	10										00					
			٠													0500
ccg	gaa	gaa	agc	agc	cgt	ccc	ata	att	aaa	cgt	gca	ctg	gaa	ggc	ggC	3568
Pro	Glu	Glu	Ser	Ser	Arg	Pro	Ile	Ile	Lys	Arg	Ala	Leu	Glu	Gly	Gly	
60					65					70					7 5	
ata	aat	ttc	ttt	gat	acc	gcc	aac	agt	tat	tct	gac	ggc	agc	agc	gaa	3616
						-							_			
110	400	Dha	Dho	Acn	тЬ∽	41a	Acn	Cor	Т	Cor	Acn	C1	Cor	Cor	C 1	
116	KSII	rne	rne		TIII	MIA	W211	Set	_	Sei	ИSÞ	GIY	261	Ser	GIU	
				80					85					90		
gag	atc	gtc	ggt	cgc	gca	ctg	cgg	gat	ttc	gcc	cgt	cgt	gaa	gac	gtg	3664
Glu	Ile	Val	Gly	Arg	Ala	Leu	Arg	Asp	Phe	Ala	Arg	Arg	Glu	Asp	Val	
			95	-			_	100			-		105	•		
			J 0					100					100			

gtc gtt gcg acc aaa gtg ttc cat cgc gtt ggt gat tta ccg gaa gga 3712

Val	Val	Ala	Thi	Lys	s Val	Phe	His	Arg	Val	Gly	Asp	Let	Pro	Glu	ıGly	
		110)				115	j				120)			
¥tta tcc cgt gcg caa att ttg cgc tct atc gac gac agc ctg cga cgt															3760	
Leu	Ser	Arg	Ala	Gln	Ile	Leu	Arg	Ser	Ile	Asp	Asp	Ser	Leu	i Arg	Arg	
	125	i				130					135					-
ctc	ggc	atg	gat	tat	gtc	gat	atc	ctg	caa	att	cat	cgc	tgg	gat	tac	3808
Leu	Gly	Met	Asp	Tyr	Val	Asp	Ile	Leu	Gln	Ile	His	Arg	Trp	Asp	Tyr	
140					145					150					155	
aac	acg	ccg	atc	gaa	gag	acg	ctg	gaa	gcc	ctc	aac	gac	gtg	gta	aaa	3856
					٠											
Asn	Thr	Pro	Ile	Glu	Glu	Thr	Leu	Glu	Ala	Leu	Asn	Asp	Val	Val	Lys	
				160					165					170		
gcc	ggg	aaa	gcg	cgt	tat	atc	ggc	gcg	tca	tca	atg	cac	gct	tcg	cag	3904
Ala	Gly	Lys	Ala	Arg	Tyr	Ile	Gly	Ala	Ser	Ser	Met	His	Ala	Ser	Gln	
			175					180					185			
ttt	gct	cag	gca	ctg	gaa	ctc	caa	aaa	cag	cac	ggc	tgg	gCg	cag	ttt	3952
Phe	A la	Cln	41a	I Au	Glu	Lou	Cin	Two	C1-	II: a	C1	Т	410	C1-	DL -	
, ne	AIG	190	ліа	Leu	Giu	Leu	195	Lys	GIII	піѕ	GIY	200	Ala	GIN	Pne	
		100					100					40V				
gtc	agt	atg	cag	gat	cac	tac	aat	ctg	att	tat	cgt	gaa	gaa	gag	CgC	4000

Val Ser Met Gln Asp His Tyr Asn Leu Ile Tyr Arg Glu Glu Glu Arg 205 210 215

gag atg cta cca ctg tgt tat cag gag ggc gtg gcg gta att cca tgg 4048 Glu Met Leu Pro Leu Cys Tyr Gln Glu Gly Val Ala Val Ile Pro Trp 220 225 230 235 agc ccg ctg gca agg ggc cgt ctg acg cgt ccg tgg gga gaa act acc 4096 Ser Pro Leu Ala Arg Gly Arg Leu Thr Arg Pro Trp Gly Glu Thr Thr 240 245 250 gca cga ctg gtg tct gat gag gtg ggg aaa aat ctc tat aaa gaa agc 4144 Ala Arg Leu Val Ser Asp Glu Val Gly Lys Asn Leu Tyr Lys Glu Ser 255 260 265 gat gaa aat gac gcg cag atc gca gag cgg tta aca ggc gtc agt gaa 4192 Asp Glu Asn Asp Ala Gln Ile Ala Glu Arg Leu Thr Gly Val Ser Glu 270 275 280 gaa ctg ggg gcg aca cga gca caa gtt gcg ctg gcc tgg ttg ttg agt 4240 Glu Leu Gly Ala Thr Arg Ala Gln Val Ala Leu Ala Trp Leu Leu Ser

aaa ccg ggc att gcc gca ccg att atc gga act tcg cgc gaa gaa cag 4288

290

285

295

Lys Pro Gly Ile Ala Ala Pro Ile Ile Gly Thr Ser Arg Glu Glu Gln
300 305 310 315

ctt gat gag cta ttg aac gcg gtg gat atc act ttg aag ccg gaa cag 4336

Leu Asp Glu Leu Leu Asn Ala Val Asp Ile Thr Leu Lys Pro Glu Gln
320 325 330

att gcc gaa ctg gaa acg ccg tat aaa ccg cat cct gtc gta gga ttt 4384

Ile Ala Glu Leu Glu Thr Pro Tyr Lys Pro His Pro Val Val Gly Phe
335 340 345

aaa taa 4390

Lys

[0203]

<210> 12

⟨211⟩ 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 12

ccggatccat ggcggcaatg gttcgttggc aag

33

[0204]

<210> 13

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 13

ccgaattctt atttaaatcc tacgacagga tgcg

34

[0205]

<210> 14

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Descripti n of Artificial Sequence:Synthetic DNA

<400> 14

ccggatccat gagttttgat attgccaaat acc

33

[0206]

<210> 15

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 15

ccgaattctt atgccagcca ggccttgatt ttg

33

[0207]

<210> 16

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 16

ccgaattctt actcattgtc cggtgtaaaa ggg

33

[0208] <210>─17─── <211> 33 <212> DNA <213> Artificial Sequence <220>¥<223> Description of Artificial Sequence:Synthetic DNA <400> 17 ccggatccat ggactttccg cagcaactcg aag 33 [0209] <210> 18 <211> 33 <212> DNA <213> Artificial Sequence <220>

ccgaattett atttattacg ctggatgatg tag

<223> Description of Artificial Sequence: Synthetic DNA

<400> 18

[0210]

<210> 19

⟨211⟩ 33

<212> DNA

(213) Artificial Sequence

⟨220⟩

<223> Description of Artificial Sequence: Synthetic DNA

<400> 19

ccggatccta atccctactc cactcctgct atg

33

[0211]

<210> 20

⟨211⟩ 30

<212> DNA

(213) Artificial Sequence

⟨220⟩

(223) Description of Artificial Sequence: Synthetic DNA

<400> 20

gggggatcca agcaactcac cattctgggc

30

[0212]

<210> 21

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 21

gggggatccg cttgcgagac gcatcacctc

30

[0213]

<210> 22

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 22

gggggatcca gttttgatat tgccaaatac cc

32

[0214]

<210> 23

<211> 32 <212> DNA <213> Artificial Sequence <220> **<400> 23** gggggatcct gccagccagg ccttgatttt gg [0215] <210> 24 <211> 30 <212> DNA

<223> Description of Artificial Sequence:Synthetic DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic DNA

<400> 24

gggggatccg agcaactcac cattctgggc

30

32

[0216]

<210> 25

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 25

gggggatccg cttgcgagac gcatcacctc

30

【図面の簡単な説明】

【図1】 1ーデオキシーDーキシルロース5ーリン酸レダクトイソメラーゼの活性に対する反応温度の影響を示した図である。

【図2】 1ーデオキシーDーキシルロース5ーリン酸レダクトイソメラーゼの活性に対する反応液pHの影響を示した図である。100mMトリス塩酸緩衝液中の各pHにおける活性を示した。pH8.0での活性を100%として、各pHにおける活性を相対活性として示した。

【図3】 相同組換えを利用した染色体上のyaeM遺伝子破壊方法を示した図である。

【書類名】

図面

【図1】

【図2】

【図3】

【書類名】 要約書

【要約】

【課題】 心疾患、骨粗鬆症、止血、がん予防、免疫賦活等を目的とした 医薬品、健康食品および貝類付着防止塗料等に有用なイソプレノイド化合物の 製造法、抗菌剤および除草剤を提供する。

【解決手段】 本発明によれば、イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中に該蛋白質あるいはイソプレノイド化合物を生成蓄積させ、該培養物から該蛋白質あるいはイソプレノイド化合物を採取することを特徴とする、該蛋白質あるいはイソプレノイド化合物の製造法、該DNA、該蛋白質、非メバロン酸経路上の酵素反応を阻害する物質を探索することを特徴とする、抗菌および除草活性物質の探索方法、該方法により取得される抗菌物質および除草活性物質を提供することができる。

【選択図】 なし

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

000001029

【住所又は居所】

東京都千代田区大手町1丁目6番1号

【氏名又は名称】

協和醗酵工業株式会社

識別番号

[000001029]

1. 変更年月日 1990年 8月 6日

[変更理由] 新規登録

住 所 東京都千代田区大手町1丁目6番1号

氏 名 協和醗酵工業株式会社

