

P-ţa Victoriei nr. 2 RO 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 10-11-FSM (Automate cu Stări finite)

Outline

- Definiție FSM
 - Moore
 - Mealy
- Reducerea stărilor
 - Exemplu
- Codificarea stărilor
 - Număr minim de tranziții
 - Adiacență pe bază de priorități
 - One hot

Automate cu stări finite

- \square Cvadruplul $\langle S, I, O, f, h \rangle$
 - S mulţimea stărilor
 - I mulţimea intrărilor
 - O mulţimea ieşirilor
 - f- funcțiile pt.starea urm.; h funcțiile pt.ieșire

$$\begin{split} S &= Q_1 \times Q_2 \times \dots \times Q_m \,, \\ I &= A_1 \times A_2 \times \dots \times A_k \,, \\ O &= Y_1 \times Y_2 \times \dots \times Y_n \,, \end{split}$$

Automate cu stări finite

- \square Cvadruplul $\langle S, I, O, f, h \rangle$ $f: S \times I$
 - S mulţimea stărilor
 - I mulţimea intrărilor
 - O mulţimea ieşirilor
- $f: S \times I \longrightarrow S$ $h: S \times I \longrightarrow O (Mealy-type)$ $S \longrightarrow O (Moore-type)$

f- funcțiile pt.starea urm.; h – funcțiile pt.ieșire

Circuite secvențiale reprezentare

Circuitele secvenţiale:

- MEALY sunt caracterizate prin faptul că starea următoare şi ieşirea la un moment dat depind de starea prezentă si de intrarea prezentă;
- MOORE sunt caracterizate prin faptul că ieşirea depinde numai de starea circuitului. Starea următoare depinde de intrarea prezentă;
- Modelele matematice ale circuitelor secvenţiale se numesc in teoria comutaţiilor automate finite.

Circuite secvențiale: diagrame e stare & tabelul tranzițiilor

■ Moore

PRESENT STATE Q1Q0	NEXT S Q ₁ (next)	OUTPUTS Y	
	Cnt=0	Cnt=1	
0 0	0 0	01	0
01	01	10	0
10	10	11	0
11	11	0.0	1

State and output table

Circuite secvențiale: diagrame e stare & tabelul tranzițiilor

Mealy

PRESENT STATE	NEXT STATE /OUTPUTS		
Q1Q0	$Q_1(next) Q_0(next)/Y$		
	Cnt=0	Cnt=1	
0 0	00/0	01/0	
01	01/0	10/0	
10	10/0	11/0	
11	11/0	00/1	

Implementare FSM Moore

Implementare FSM Mealy

Etape de sinteză circuit secvențial Diagrama de stare Tabel stare următoare/ieșiri Minimizarea stărilor diagramei Codificarea stărilor/intrărilor/ieșirilor Ecuațiile pentru starea următoare/ieșiri Selecția tipului de FF Ecuațiile pt.intrările FF-urilor Design & Simulare Verificare funcționalitate & timing

Exemplu: numărător modulo-3 în ambele sensuri – diagramă stare

Realizați diagrama de stare pentru un numărător care numără în ambele sensuri modulo 3. Numărătorul are 2 intrări: C – count enable care validează numărarea (pt. C=1), și D(direcție) care stabilește direcția de numărare D = 0 numără crescător, D=1 numără descrescător. Numărătorul are o ieșire Y care se setează pe 1 când numărătorul ajunge la 2 în situația în care numără crescător, sau la 0 pentru situația în care numără descrescător.

Numărător modulo-3

□ Diagrame parțiale: secvență crescătoare/descrescătoare

Numărător modulo-3 ambele sensuri

☐ Diagramă numărare ambele sensuri

Numărător modulo-3 ambele sensuri

□ Diagramă care ține cont si de semnal C inactiv

Numărător modulo-3 ambele sensuri

Diagrama completă nu prezintă numărul minim de stări

Minimizarea stărilor

- Minimizarea stărilor își propune reducerea acestora → utilizarea unui număr mai mic de FF-uri
- Se bazează pe conceptul de comportament echivalent; două stări ale unui FSM au comportament echivalent dacă:
 - Au aceași secventă de valori de ieșire pentru aceași secventă de vectori de intrare
- Două stări s_j și s_k sunt evident echivalente ($s_j \equiv s_k$) dacă și numai dacă:
 - (1) au comportament echivalent: $h(s_j,i) = h(s_k,i)$
 - (2) au aceleași stări următoare pt. toate secvențele de intrare f (s_i,i) = f (s_k,i)

Minimizarea stărilor

- Două stări s_j și s_k sunt echivalente (s_j≡ s_k) dacă și numai dacă:
 - (1) au comportament echivalent: $h(s_i,i) = h(s_k,i)$
 - (2) au stări următoare diferite, dar acestea sunt echivalente
- Două automate A1 şi A2 sunt echivalente dacă pentru fiecare stare s_j din A2 există o stare echivalentă s_k în A1 şi invers pentru fiecare stare s_j din A1 există o stare echivalentă s_k în A2
- Echivalenţa stărilor unui automat complet definit împarte mulţimea stărilor acestuia în clase de echivalenţă disjuncte.
- Relaţia de echivalenţă a stărilor automatului complet definit are proprietatea de tranzitivitate: dacă şi atunci.

Metoda tabelului implicațiilor (Algoritmul PAULL-UNGER)

tabel de formă triunghiulară având început de linii, stările automatului fără prima stare şi început de coloane stările automatului fără ultima stare.

Metoda tabelului implicațiilor

- ☐ la intersecţia unei linii cu o coloană:
 - X dacă stările din perechea respectivă sunt evident neechivalente (pentru aceeaşi intrare au ieşiri diferite)
 - implicaţiile privind echivalenţa succesorilor dacă stările din perechea respectivă au aceleaşi ieşiri pentru aceeaşi intrare (sunt 1 echivalente), dar succesori diferiţi

Metoda tabelului implicațiilor

- Se parcurge tabelul de jos în sus şi de la stânga la dreapta şi se introduce X în momentul identificării cel puţin unei perechi diferite de stări de ieşire
- Se reiterează până când în cadrul iterației curente nu se mai completează nici un X.

Metoda tabelului implicațiilor Modulo 3-counter

PRESENT	1	NEXT STATE	:		
STATE	CD=0X	CD=01	CD=11		
uo	$u_0/0$	$u_1 / 0$	$d_2/1$		
u_1	u_1/θ	$u_{2}/0$	$d_0 / 0$		
u_{γ}	$u_2 / 0$	$u_a/1$	d_{r}/θ		
d _o	$d_0 / 0$	$u_1 / 0$	$d_2/1$		
d_1	$d_1 / 0$	$u_2 / 0$	$d_0 / 0$		
d_2	$d_2 / 0$	$u_0/1$	$d_1 / 0$		
Next-state and output table					

Se scriu clasele de echivalență:

Metoda tabelului implicațiilor Modulo 3-counter

PRESENT	1	NEXT STATE			
STATE	CD=0X	CD=01	CD=11		
uo	$u_0/0$	u_1/θ	$d_2/1$		
u_I	$u_1/0$	$u_2 / 0$	$d_0 / 0$		
u_2	$u_2 / 0$	$u_0/1$	$d_{\tau}/0$		
d_{ϱ}	$d_0 / 0$	$u_1/0$	$d_2/1$		
d_1	$d_1 / 0$	$u_{2}/0$	$d_0 / 0$		
d_2	$d_2 / 0$	$u_0/1$	$d_1 / 0$		
Next-state and output table					

Metoda tabelului implicațiilor Modulo 3-counter

PRESENT	1	NEXT STATE	:		
STATE	CD=0X	CD=01	CD=11		
u _o	$u_0/0$	u_1/θ	$d_2/1$		
u_I	u_1/θ	$u_{2}/0$	$d_0 / 0$		
u_2	$u_2 / 0$	$u_n/1$	d_{i}/θ		
d_{o}	$d_0 / 0$	$u_1 / 0$	$d_2/1$		
d_1	$d_1 / 0$	$u_{2}/0$	$d_0 / 0$		
d_2	$d_2/0$	$u_0/1$	$d_1 / 0$		
Next-state and output table					

Se scriu clasele de echivalență:

$$s_0$$
: $< u_0, d_0 >$

$$s_1$$
: $< u_1, d_1 >$

$$s_2$$
: $< u_2, d_2 >$

Să se determine tabelul tranziţiilor automatului cu număr redus de stări, folosind metoda tabelului implicaţiilor, având dat iniţial automatul:

Stare	Intrări			
prezentă	1	2	3	4
1	1/0	3/0	4/0	6/1
2	4/1	2/0	5/0	7/1
3	2/0	5/1	3/0	4/1
4	2/1	4/0	5/0	8/1
5	5/1	2/0	4/0	7/1
6	4/0	2/1	5/0	6/1
7	1/0	6/1	7/1	4/0
8	1/0	6/1	7/1	4/0

Observație: în tabelul de mai sus s-au păstrat ca notații doar indicii stărilor și intrărilor.

Stări echivalente: 7 = 8, 4 = 5 $2 \neq 4$ 2 = 5

Obţinem clasele echivalente: {1}, {2, 4, 5}, {3}, {6},

{7, 8}. Dacă înlocuim fiecare clasă de echivalenţă cu stările obţinem:

Tabelul tranziţiilor automatului cu număr redus de stări devine:

Stare	Intrări				
prezentă	1	2	3	4	
Y _{1r}	$Y_{1r}/0$	$Y_{3r}/0$	$Y_{2r}/0$	$Y_{4r}/1$	
Y _{2r}	Y _{2r} /1	Y _{2r} /0	Y _{2r} /0	$Y_{5r}/1$	
Y_{3r}	$Y_{2r}/0$	$Y_{2r}/1$	$Y_{3r}/0$	$Y_{2r}/1$	
Y_{4r}	Y _{2r} /0	$Y_{2r}/1$	Y _{2r} /0	$Y_{4r}/1$	
Y _{5r}	Y _{1r} /0	$Y_{4r}/1$	Y _{5r} /1	Y _{2r} /0	

Codificarea stărilor

ENCODING NUMBER	s ₀	s_1	s ₂	s ₃
1	00	01	10	11
2	00	01	11	10
3	00	10	01	11
4	00	10	11	01
5	00	11	01	10
6	00	11	10	01
7	01	00	10	11
8	01	00	11	10
9	01	10	00	11
10	01	10	11	00
11	01	11	00	10
12	01	11	10	00
13	10	00	01	11
14	10	00	11	01
15	10	01	00	11
16	10	01	11	00
17	10	11	00	01
18	10	11	01	00
19	11	00	01	10
20	11	00	10	01
21	11	01	00	10
22	11	01	10	00
23	11	10	00	01
24	11	10	01	00

- Costul/întârzierea unei implementări FSM depind de codificarea stărilor;
- 4! Posibilități de codificare pentru 4 stări.
- ☐ 3 euristici:
 - Număr minim de tranziții
 - Adiacenţă pe bază de priorităţi
 - one-hot

Codificarea stărilor

- Număr minim de tranziții (minimum bit change):
 - Stările sunt astfel codificate încât să fie minimizate tranzițiile bițiilor registrului de stare;
 - Fiecărui arc i se alocă un cost egal cu numărul de biți care diferă la tranziția dintre stări în registrul de stare;
 - Se minimizează suma costurilor la parcurgerea grafului
- Adiacenţă pe bază de priorităţi
- one-hot

Număr minim de tranziții

Straightforward encoding

Minimum-bit-change encoding

Codificarea stărilor

- Număr minim de tranziții
- Adiacență pe bază de priorități (Prioritized adjancency strategy):
 - Codificări adiacente pentru stările:
 - Destinație comună
 - Sursă comună
 - Ieşire comună
 - Next state va apărea căsuțe adiacente în K-map;
- one-hot

Codificarea stărilor

- Număr minim de tranziții
- Adiacenţă pe bază de priorităţi
- one-hot
 - □ Fiecărei stări i se alocă un bit din registrul de stare → registrul de stare are atâția biți câte stări sunt în diagramă
 - Nu se pretează pentru diagrame cu multe stări;
 - La un moment dat un singur bit (cel corespunzător stării este pe 1)

Întrebări?

Enough Talking Let's Get To It!!Brace Yourselves!!

