ECE368: Probabilistic Reasoning

Lab 2 – Part II: Hidden Markov Model

Name:	Seurahun	Cho	Student Number:	100/68/325
	(, 0)			

You should hand in: 1) A scanned .pdf version of this sheet with your answers (file size should be under 2 MB); 2) one Python file inference.py that contains your code. The files should be uploaded to Quercus.

1. (a) Write down the formulas of the forward-backward algorithm to compute the marginal distribution $p(\mathbf{z}_i|(\hat{x}_0,\hat{y}_0),\ldots,(\hat{x}_{N-1},\hat{y}_{N-1}))$ for $i=0,1,\ldots,N-1$. Your answer should contain the initializations of the forward and backward messages, the recursion relations of the messages, and the computation of the marginal distribution based on the messages. (1 **pt**)

$$X(Z_n) = P(X_n | Z_n) \sum_{Z_{n-1}} X(Z_{n+1}) P(Z_n | Z_{n-1})$$

$$B(Z_n) = \sum_{Z_{n+1}} B(Z_{n+1}) P(X_{n+1} | Z_{n+1}) P(Z_{n+1} | Z_n)$$

$$P(Z_n | X) = \frac{X(Z_n) B(Z_n)}{\sum_{Z_n} X(Z_n) B(Z_n)}$$
These are $\sum_{Z_n} X(Z_n) B(Z_n)$

(b) After you run the forward-backward algorithm on the data in test.txt, write down the obtained marginal distribution of the state at i = 99 (the last time step), i.e., $p(\mathbf{z}_{99}|(\hat{x}_0, \hat{y}_0), \dots, (\hat{x}_{99}, \hat{y}_{99}))$. Only include states with non-zero probability in your answer. (2 **pt**)

2. Modify your forward-backward algorithm so that it can handle missing observations. After you run the modified forward-backward algorithm on the data in test_missing.txt, write down the obtained marginal distribution of the state at i = 30, i.e., $p(\mathbf{z}_{30}|(\hat{x}_0, \hat{y}_0), \dots, (\hat{x}_{99}, \hat{y}_{99}))$. Only include states with non-zero probability in your answer. (1 **pt**)

3. (a) Write down the formulas of the Viterbi algorithm using \mathbf{z}_i and $(\hat{x}_i, \hat{y}_i), i = 0, 1, \dots, N-1$. Your answer should contain the initialization of the messages and the recursion of the messages in the Viterbi algorithm. (1 **pt**)

$$|W_1(Z_1) = |n|P(Z_1) + |n|P(|X_1||Z_1)$$

 $|W_n(Z_n) = |n|P(|X_n||Z_n) + \max_{Z_{n-1}} \frac{1}{2} |n|P(|Z_n||Z_{n-1}) + W_{n-1}(|Z_n|) \frac{1}{2}$
 $|Z_n| = \underset{Z_n}{\operatorname{arg}} \max_{Z_n} W_N(|Z_n|)$

(b) After you run the Viterbi algorithm on the data in test_missing.txt, write down the last 10 hidden states of the most likely sequence (i.e., $i = 90, 91, 92, \ldots, 99$) based on the MAP estimate. (3 **pt**)

	ì	X	Y	action		ontimus			
	90	(1	5	down	99	6	7	left	
	a1	1(6	down					
	92	11	7	down					
	93		7	Stoly	>				
	94	11	7	Stay					
~	95	10	7	left left					
	96	9	$\begin{vmatrix} ' \\ 0 \end{vmatrix}$	left					
	91	8	1						
	98	1	17	left					

- 4. Compute and compare the error probabilities of $\{\tilde{\mathbf{z}}_i\}$ and $\{\tilde{\mathbf{z}}_i\}$ using the data in test_missing.txt. The error probability of $\{\tilde{\mathbf{z}}_i\}$ is $2^{0}/2$. (1 pt)
- 5. Is sequence $\{\check{\mathbf{z}}_i\}$ a valid sequence? If not, please find a small segment $\check{\mathbf{z}}_i, \check{\mathbf{z}}_{i+1}$ that violates the transition model for some time step i. You answer should specify the value of i as well as the corresponding states $\check{\mathbf{z}}_i, \check{\mathbf{z}}_{i+1}$. (1 **pt**)

