Семинар 9. Формула Тейлора.

Скубачевский Антон

11 октября 2021 г.

о малое. Говорят, что f(x)=o(g(x)) при $x\to x_0,$ если $\lim_{x\to x_0}\frac{f(x)}{g(x)}=0$

К примеру, $x^2 = o(x)$ при $x \to 0; x = o(x^2)$ при $x \to \infty$

Определение. Пусть $\exists f^{(n)}(x_0)$. Тогда в некоторой окрестности $U(x_0)$ можно написать:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(f, x) = P_n(f, x) + r_n(f, x)$$

Это называется формулой Тейлора функции f в точке x_0 . P_n - многочлен Тейлора, r_n - остаточный член формулы Тейлора.

Теорема. Пусть $\exists f^{(n)}(x_0)$. Тогда $r_n(f,x) = o((x-x_0)^n)$ при $x \to x_0$.

Таким образом, получили **Формулу Тейлора с остаточным членом в форме Пеано:**

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

Теорема. Данное разложение единственно, т.е. если в $U(x_0)$ заданы

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + o((x - x_0)^n)$$

$$f(x) = b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)^n + o((x - x_0)^n)$$

то $a_0 = b_0$, $a_1 = b_1$, ..., $a_n = b_n$.

Замечание. Если в формуле Тейлора $x_0=0$, то такая формула Тейлора называется формулой Маклорена.

Пример 1. Пользуясь определением формулы Тейлора с остаточным членом в форме Пеано, разложить функцию $f(x) = sin(2x + \pi/4)$ по формуле Тейлора до $o(x^n)$.

Как видно из определения, для нахождения формулы Тейлора заданной функции f(x) нужно знать $f^{(k)}(x_0)$. В нашем случае $x_0=0$. Найдем $sin^{(k)}(2x+\pi/4)$. По формуле k-й производной табличной $sin^{(k)}(2x+\pi/4)=2^ksin(2x+\pi/4+\pi k/2)$. При $x=x_0=0$ данная производная равна $2^ksin(\pi/4+\pi k/2)$. Подставим ее в определение формулы Тейлора. Получим разложение по формуле Тейлора функции $f(x)=sin(2x+\pi/4)$:

$$f(x) = \sum_{k=0}^{n} \frac{2^{k}}{k!} \sin \frac{\pi}{4} (2k+1)x^{k} + o(x^{n})$$

Но, вообще говоря, для нахождения формулы Тейлора некоторой функции не обязательно брать kю производную. Как и с производными, существуют табличные разложения:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n) = \sum_{k=0}^n \frac{x^k}{k!} + o(x^k)$$

Считается, что 0!=1

Удостоверимся в том, что разложение экспоненты в самом деле такое с помощью определения:

$$(e^x)^{(k)} = e^x$$
. При $x = 0$, таким образом, $(e^x)^{(k)}(0) = e^0 = 1$.

Подставив ее в определение формулы Тейлора при $x_0 = 0$, имеет

$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^k)$$

ч.т.д.

Выписываем табличные разложения дальше:

$$sinx = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} + o(x^{2n+1})$$

$$cosx = \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!} + o(x^{2n})$$

Если вместо sinx пишем shx, $(-1)^k$ убираем. С cosx и chx аналогично.

$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n) = \sum_{k=1}^n \frac{(-1)^{k-1}}{k} x^k + o(x^n)$$

$$(1+x)^{\alpha} = \sum_{k=0}^{n} C_{\alpha}^{k} x^{k} + o(x^{n}),$$

где

$$C_{\alpha}^{k} = \frac{\alpha(\alpha-1)\dots(\alpha-(k-1))}{k!}$$

Пример 2. Найдем разложение по Формуле Тейлора функции $f(x) = \frac{1}{1-x} = (1-x)^{-1}$ до $o(x^n)$

Воспользуемся формулой для $(1+x)^{\alpha}$ при $\alpha = -1$, а вместо x в данную формулу будем подставлять -x:

$$(1-x)^{-1} = \sum_{k=0}^{n} C_{-1}^{k}(-x)^{k} + o(x^{n}) = \sum_{k=0}^{n} C_{-1}^{k}(-1)^{k}(x)^{k} + o(x^{n})$$

Осталось расписать C_{-1}^k :

$$C_{-1}^{k} = \frac{(-1)(-1-1)...(-1-(k-1))}{k!} = \frac{(-1)(-2)...(-k)}{k!} = \frac{(-1)^{k}k!}{k!} = (-1)^{k}$$

Подставим полученный результат в формулу для $(1-x)^{-1}$:

$$(1-x)^{-1} = \sum_{k=0}^{n} C_{-1}^{k} (-1)^{k} (x)^{k} + o(x^{n}) = \sum_{k=0}^{n} (-1)^{k} (-1)^{k} (x)^{k} + o(x^{n}) =$$
$$= \sum_{k=0}^{n} (-1)^{2k} (x)^{k} + o(x^{n}) = \sum_{k=0}^{n} (x)^{k} + o(x^{n})$$

Пример 3. Найдем разложение по Формуле Тейлора функции $f(x) = \sqrt{1+x} = (1+x)^{1/2}$ до $o(x^n)$

Для решения достаточно подставить $\alpha=1/2$ в табличное разложение:

$$\sqrt{1+x} = \sum_{k=0}^{n} C_{1/2}^{k} x^{k} + o(x^{n})$$

В целом, такое разложение сойдет в качестве ответа на экзамене или семестровой кр, $C_{1/2}^k$ не нужно раскрывать. НО: в дз в номерах типа этого в ответах стоят мистические двойные факториалы: (2k-3)!!. Поэтому давайте раскроем $C_{1/2}^k$, чтобы понять, откуда эти двойные факториалы берутся.

Для начала дадим определение двойного факториала: это то же самое, что и обычный факториал, но "перепрыгивая" через один:

$$7!! = 1 \cdot 3 \cdot 5 \cdot 7$$

$$8!! = 2 \cdot 4 \cdot 6 \cdot 8$$

То есть умножение для нечетных начинается с 1, а для четных с 2. По определению

$$C_{1/2}^{k} = \frac{(1/2)(1/2 - 1)\dots(1/2 - (k-1))}{k!} = \frac{(-1)^{k-1}(2k - 3)!!}{2^{k}k!}$$

Таким образом,

$$\sqrt{1+x} = \sum_{k=0}^{n} C_{1/2}^{k} x^{k} + o(x^{n}) = \sum_{k=0}^{n} \frac{(-1)^{k-1} (2k-3)!!}{2^{k} k!} x^{k} + o(x^{n})$$

Обе формы записи верны.

Пример 4. Найдем разложение по Формуле Тейлора функции $f(x) = ln(x^2 + 3x + 2)$ до $o(x^n)$

Мы знаем разложение ln(1+x), поэтому постараемся свести с помощью свойств логарифма нашу функцию к подобным:

$$f(x) = ln(x^2 + 3x + 2) = ln((x+1)(x+2)) = ln(x+1) + ln(x+2)$$

Проблема все еще остается со вторым логарифмом. Некоторые из вас сказали бы:

$$ln(2+x) = ln(1+(1+x))$$

И разложили бы его по табличной формуле, вместо x подставив (1+x). Но это будет неверно, потому что x должен $\to 0$, а x+1 не $\to 0$ при $x\to 0$. Поэтому придется еще разок воспользоваться свойством логарифмов:

$$f(x) = \ln(1+x) + \ln(1+x/2) = \ln(1+x/2) = \ln(1+x/2) = \ln(1+x) + \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + o(x^n) + \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} (x/2)^k + o(x^n)$$

Но это еще не формула Тейлора: чтобы оно стало формулой Тейлора, нужно, чтобы при каждой степени икса был явно выделен коэффициент, а тут 2 суммы, и в каждой присутствуют степени икса от 1 до п. Чтобы получить ответ, нужно 2 этих суммы слить в одну, вынеся x^k за скобку. Имеем:

$$f(x) = \ln 2 + \sum_{k=1}^{n} x^{k} \frac{(-1)^{k-1}}{k} (1 + \frac{1}{2^{k}}) + o(x^{n})$$

Это уже ответ.

Здесь мы воспользовались также свойством о малого:

$$o(x^n) + o(x^n) = o(x^n)$$

То есть сумма 2 функций, бесконечно малых по сравнению с x^n , тоже бесконечно мала по сравнению с x^n .

Как видите, нужно будет постоянно компановать 2 суммы в одну. А что, если в одной сумме x^k , а в другой x^{k+1} ? Например,

Пример 5. Записать следующее выражение в виде формулы Тейлора:

$$\sum_{k=1}^{n} \frac{x^k}{2^k} + \sum_{k=1}^{n} 3x^{k+1} + o(x^n)$$

Заметим прежде всего, что это НЕ формула Тейлора: ведь Формула Тейлора - некоторый многочлен + о малое, где коэффициенты при каждом x^k явно выражены. А тут 2 отдельных суммы, то есть при x^k коэффициенты разбросаны по разным суммам. Нужно собрать их воедино.

Проблема заключается в том, что в одной сумме x^k , а в другой x^{k+1} . Поэтому нельзя, как в предыдущем примере, лихо вынести x^k за скобку. Кроме того, как можно заметить, в первой сумме младшая степень икса k=1, а старшая k=n. В то время, как во второй сумме младшая k=2, а старшая k=n+1. То есть степени от k=2 до k=n присутствуют в обеих суммах, а степени k=1 и k=n+1 - в каждой по-отдельности. Поэтому давайте для начала эти разные степени вынесем за сумму:

$$\sum_{k=1}^{n} \frac{x^{k}}{2^{k}} + \sum_{k=1}^{n} 3x^{k+1} + o(x^{n}) = \frac{x^{1}}{2^{1}} + \sum_{k=2}^{n} \frac{x^{k}}{2^{k}} + \sum_{k=1}^{n-1} 3x^{k+1} + 3x^{n+1} + o(x^{n})$$

Теперь в первой и второй суммах старшие и младшие степени совпадают. Но все же записаны степени в одной как x^k , а в другой как x^{k+1} . Поэтому давайте во второй поменяем форму записи, чтобы тоже было x^k . Для этого пределы суммирования сдвинем на 1 вверх, а все k под знаком суммы - на 1 вниз. При данном преобразовании значение суммы, разумеется, не изменится:

$$\sum_{k=1}^{n-1} 3x^{k+1} = \sum_{k=2}^{n} 3x^k$$

Теперь можем уже скомпоновать 2 наших суммы в одну, вынеся x^k за скобку:

$$\frac{x^{1}}{2^{1}} + \sum_{k=2}^{n} \frac{x^{k}}{2^{k}} + \sum_{k=1}^{n-1} 3x^{k+1} + 3x^{n+1} + o(x^{n}) = \frac{x^{1}}{2^{1}} + \sum_{k=2}^{n} \frac{x^{k}}{2^{k}} + \sum_{k=2}^{n} 3x^{k} + 3x^{n+1} + o(x^{n}) = \frac{x^{1}}{2^{1}} + \sum_{k=2}^{n} x^{k} (\frac{1}{2^{k}} + 3) + 3x^{n+1} + o(x^{n})$$

Ну и напоследок заметим, что $3x^{n+1}$ бесконечно мало по сравнению с x^n , то есть является о малым от x^n (грубо говоря, "входит в о малое"). То есть на этот член можем смело забить. Получаем ответ (это уже формула Тейлора):

$$\frac{x}{2} + \sum_{k=2}^{n} x^{k} (\frac{1}{2^{k}} + 3) + o(x^{n})$$

Пример 6. Найдем разложение по Формуле Тейлора функции $f(x) = (x^2 - 2x + 4)ln\sqrt[7]{x^2 - 2x + 2}$ до $o((x - x_0)^{2n+1})$ в окрестности точки $x_0 = 1$. Это типичная задача письменной работы.

Мы знаем табличные разложения в окрестности $x_0 = 0$, поэтому сделаем замену: (x-1) = t. Теперь уже будем раскладывать до $o(t^{2n+1})$. Наша функция после замены:

$$f = (t^2 + 3)ln\sqrt[7]{1 + t^2} = \frac{1}{7}(t^2 + 3)ln(1 + t^2) = \frac{1}{7}(t^2 + 3)(\sum_{k=1}^{n} \frac{(-1)^{k-1}(t^2)^k}{k} + o(t^{2n})) = \frac{1}{7}(t^2 + 3)ln\sqrt[7]{1 + t^2} = \frac{1}{7}(t^2 + 3)ln(1 + t^2) = \frac{1}{7}(t^2 + 3)(\sum_{k=1}^{n} \frac{(-1)^{k-1}(t^2)^k}{k} + o(t^{2n})) = \frac{1}{7}(t^2 + 3)ln(1 + t^2) = \frac{1}{7}(t^2 + 3)(\sum_{k=1}^{n} \frac{(-1)^{k-1}(t^2)^k}{k} + o(t^{2n})) = \frac{1}{7}(t^2 + 3)ln(1 + t^2) = \frac{1}{7}(t^2 + 3)(\sum_{k=1}^{n} \frac{(-1)^{k-1}(t^2)^k}{k} + o(t^{2n})) = \frac{1}{7}(t^2 + 3)ln(1 + t^2) = \frac{1}{7}(t^2 + 3)(\sum_{k=1}^{n} \frac{(-1)^{k-1}(t^2)^k}{k} + o(t^{2n})) = \frac{1}{7}(t^2 + 3)(\sum_{k=1}^{n} \frac{(-1)^{k-1}(t^2)^k}{k} + o(t^{2$$

$$= [\text{раскроем в лоб скобки}] = \frac{3}{7} \sum_{k=1}^{n} \frac{(-1)^{k-1} t^{2k}}{k} + o(t^{2n}) + \frac{1}{7} t^2 \sum_{k=1}^{n} \frac{(-1)^{k-1} t^{2k}}{k} + o(t^{2n+2}) = \frac{1}{7} \sum_{k=1}^{n} \frac{(-1)^{k-$$

=[т.к. $o(t^{2n+2})$ является также о малым от $t^{2n},\,$ забьем на него; занесем также t^2 под $\sum]=$

$$= \frac{3}{7} \sum_{k=1}^{n} \frac{(-1)^{k-1} t^{2k}}{k} + \frac{1}{7} \sum_{k=1}^{n} \frac{(-1)^{k-1} t^{2k+2}}{k} + o(t^{2n}) =$$

= [вынесли из сумм, как и в предыдущем примере, крайние слагаемые,

которые входят только в 1 сумму] =

$$= \frac{3}{7}t^2 + \frac{3}{7}\sum_{k=2}^{n} \frac{(-1)^{k-1}t^{2k}}{k} + \frac{1}{7}\sum_{k=1}^{n-1} \frac{(-1)^{k-1}t^{2k+2}}{k} + \frac{1}{7}\frac{(-1)^{n-1}t^{2n+2}}{n} + o(t^{2n}) =$$

$$= \left[\text{ T.K. } t^{2n+2} = o(t^{2n})\right] =$$

$$= \frac{3}{7}t^2 + \frac{3}{7}\sum_{k=2}^{n} \frac{(-1)^{k-1}t^{2k}}{k} + \frac{1}{7}\sum_{k=1}^{n-1} \frac{(-1)^{k-1}t^{2k+2}}{k} + o(t^{2n}) =$$

= [произведем во второй сумме сдвиг пределов на 1 вверх, а k под суммой на 1 вниз] =

$$= \frac{3}{7}t^2 + \frac{3}{7}\sum_{k=2}^n \frac{(-1)^{k-1}t^{2k}}{k} + \frac{1}{7}\sum_{k=2}^n \frac{(-1)^{k-2}t^{2k}}{k-1} + o(t^{2n}) =$$

$$= \frac{3}{7}t^2 + \sum_{k=2}^n \frac{(-1)^k}{7} \left(\frac{1}{k-1} - \frac{3}{k}\right)t^{2k} + o(t^{2n}) =$$

= [т.к. у нас только четные степени, в $o(t^{2n})$ можем написать на степень выше] =

$$= \frac{3}{7}t^2 + \sum_{k=2}^{n} \frac{(-1)^k}{7} \left(\frac{1}{k-1} - \frac{3}{k}\right) t^{2k} + o(t^{2n+1}) =$$

$$= \frac{3}{7}(x-1)^2 + \sum_{k=2}^{n} \frac{(-1)^k}{7} \left(\frac{1}{k-1} - \frac{3}{k}\right) (x-1)^{2k} + o((x-1)^{2n+1})$$

Это ответ.

Замечание. В конце данного примера мы лихо написали вместо $o(t^{2n})$ $o(t^{2n+1})$. Сделали мы это, потому что в условии от нас требовалось разложение до $o((x-1)^{2n+1})$. Имеем право заменить 2n на 2n+1, потому что в нашей формуле Тейлора только четные степени. То есть в разложении нет степени (2n+1), поэтому, написав ее в о малом вместо 2n, мы не потеряем точности. Для наглядности рассмотрим разложение косинуса до $o(x^4)$. Оно тоже по четным степеням.

$$cosx = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

Мы можем написать разложение до $o(x^2)$:

$$\cos x = 1 - \frac{x^2}{2!} + o(x^2),$$

поскольку $\frac{x^4}{4!}$ бесконечно мала по сравнению с x^2 . Но мы можем также вместо $o(x^2)$ написать $o(x^3)$, т.к. $\frac{x^4}{4!}$ также бесконечно мала по сравнению с x^3 . Такие выкрутасы можем вытворять только в случае, когда степени скачут через 1, т.е. либо только четные, либо только нечетные. Делается для того, чтобы подогнать вашу формулу под ответ. Как видите, это не подгон, все четко.

Пример 7. Найдем разложение по Формуле Маклорена функции $f(x) = ln(x+\sqrt{x^2+1})$ до $o((x)^{2n})$. Это тоже типичная задача письменной работы.

Решение данного типа задач строится следующим образом: видишь $ln,\ arcsin$ или arctg от крокодила - бери производную и раскладывай первым делом ее по формуле Тейлора. Пусть разложение производной:

$$f'(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$$
 (1)

Тогда доказано, что разложение функции будет:

$$f(x) = f(0) + \sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1} + o(x^{n+1})$$
 (2)

Формулу 2 легко запомнить: она получается интегрированием обеих частей (1) от x_0 (в нашем случае $x_0 = 0$) до х.

Итак, возьмем производную:

$$f'(x) = (\ln(x + \sqrt{x^2 + 1}))' = \frac{1}{\sqrt{1 + x^2}} = (1 + x^2)^{-1/2} = \sum_{k=0}^{n} C_{-1/2}^k x^{2k} + o(x^{2n})$$

Если что, $C_{\alpha}^{0} = 1$ считается.

Теперь, воспользовавшись формулой (2), получим:

$$f(x) = \ln(x + \sqrt{x^2 + 1}) = f(0) + \sum_{k=0}^{n} \frac{C_{-1/2}}{2k + 1}^{k} x^{2k+1} + o(x^{2n+1}) =$$

$$= \ln(0 + \sqrt{0 + 1}) + \sum_{k=0}^{n} \frac{C_{-1/2}}{2k + 1}^{k} x^{2k+1} + o(x^{2n+1}) =$$

$$= \sum_{k=0}^{n-1} \frac{C_{-1/2}}{2k + 1}^{k} x^{2k+1} + o(x^{2n-1}) = \sum_{k=0}^{n-1} \frac{C_{-1/2}}{2k + 1}^{k} x^{2k+1} + o(x^{2n})$$

Это ответ. 2 равенства в конце сделаны, потому что в ответе должно быть $o(x^{2n})$, а не $o(x^{2n+1})$. В первом из этих равенств мы выкинули последний член суммы, а во втором заменили 2n-1 на 2n (см. замечание к предыдущей задаче).

Теоретическая задача. Представить формулой Маклорена функцию $f(x) = e^x + x^2|x|$ до $o(x^n)$. Какие значения может принимать n?

Тут все просто: чтобы представить функцию f(x) формулой Маклорена до $o(x^n)$ нужно, чтобы у нее существовали все производные в точке 0 вплоть до n—й(мы же в окрестности нуля раскладываем). То есть надо проверить, какие производные существуют. Очевидно, что из-за |x| с производными начнутся проблемы, начиная с некоторого порядка.

Рассмотрим функцию $g(x) = x^2|x| = x^3 signx$. Найдем ее производные в точке 0.

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{x^2|x|}{x} = \lim_{x \to 0} x|x| = 0$$

$$g''(0) = \lim_{x \to 0} \frac{g'(x) - g'(0)}{x - 0} = \lim_{x \to 0} \frac{3x^2 signx - 0}{x} = \lim_{x \to 0} x signx = 0$$

Равно нулю, потому что произведение бесконечно малой на ограниченную.

$$g'''(0) = \lim_{x \to 0} \frac{g''(x) - g''(0)}{x - 0} = \lim_{x \to 0} \frac{6xsignx - 0}{x} = \lim_{x \to 0} 6signx$$

Предела сигнума, как мы знаем, не существует. Значит, третьей производной функции g(x) в точке 0 не существует. Значит и у f(x) тоже. Значит, можем разложить f(x) до o(x), либо до $o(x^2)$. Причем тут надо учесть, что $x^2|x| = o(x)$; $x^2|x| = o(x^2)$, то есть этот член войдет в о малое. Останется только кусок от экспоненты. Получаем ответ

Возможны разложения при $n \le 2$. Вот они:

$$f(x) = 1 + x + o(x)$$

$$f(x) = 1 + x + \frac{x^2}{2} + o(x^2)$$