Supervised ML Classification Capstone Project

Mobile Price Range Prediction

Suraj Kad Suraj.kad.90@gmail.com

classification in supervised learning

The Classification algorithm is a Supervised Learning technique that is used to identify the category of new observations on the basis of training data. In Classification, a program learns from the given dataset or observations and then classifies new observation into a number of classes or groups.

difference of classification and regression

The most significant difference between regression vs classification is that while regression helps predict a continuous quantity, classification predicts discrete class labels.

Problem Statement

- In the competitive mobile phone market companies want to understand sales data of mobile phones and factors which drive the prices.
- The objective is to find out some relation between features of a mobile phone(e.g.:- RAM, Internal Memory, etc.) and its selling price. In this problem, we do not have to predict the actual price but a price range indicating how high the price is.

Points to discuss:

- Data description and summary
- Data Preprocessing
- 1. Getting the dataset
- 2. Importing libraries
- 3. Importing datasets
- 4. Finding Missing Data
- **5. Encoding Categorical Data**
- Exploratory data analysis
- Heat map
- Machine learning algorithms
- 1. Logistic regression
- 2. Decision tree
- 3. Random forest classifier
- 4. SVM
- Conclusion

Data description

The data contains information regarding mobile phone features, specifications etc and their price range. The various features and information can be used to predict the price range of a mobile phone.

- Battery_power Total energy a battery can store in one time measured in mAh
- Blue Has bluetooth or not
- Clock_speed speed at which microprocessor executes instructions
- Dual_sim Has dual sim support or not
- Fc Front Camera megapixels
- Four_g Has 4G or not
- Int_memory Internal Memory in Gigabytes
- M_dep Mobile Depth in cm
- Mobile_wt Weight of mobile phone

Data description

- N_cores Number of cores of processor
- Pc Primary Camera megapixels
- Px_height Pixel Resolution Height
- Px width Pixel Resolution Width
- Ram Random Access Memory in Megabytes
- Sc_h Screen Height of mobile in cm
- Sc_w Screen Width of mobile in cm
- Talk_time longest time that a single battery charge will last when you are
- Three g Has 3G or not
- Touch_screen Has touch screen or not
- Wifi Has wifi or not
- Price_range This is the target variable with value of O(low cost), 1(medium cost),
- 2(high cost) and 3(very high cost).

Data Preprocessing

• Read and write Mobile Price Range (tabular) data using pandas functions

```
MPR_Dataset.info()
   <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 2000 entries, 0 to 1999
    Data columns (total 21 columns):
    # Column
                       Non-Null Count Dtype
        battery_power 2000 non-null
        blue
                       2000 non-null
                                       int64
        clock_speed
                       2000 non-null
                                       float64
         dual sim
                       2000 non-null
                                       int64
        fc
                       2000 non-null
         four g
                       2000 non-null
                       2000 non-null
                       2000 non-null
         mobile wt
                                       int64
                       2000 non-null
                                       int64
     11 px_height
                       2000 non-null
                                       int64
     12 px width
                       2000 non-null
                                       int64
    13 ram
                       2000 non-null
                                       int64
    14 sc h
                       2000 non-null
                                       int64
     15
        SC_W
                       2000 non-null
                                       int64
     16 talk_time
                                       int64
                       2000 non-null
    17 three g
                       2000 non-null
                                       int64
        touch screen
                       2000 non-null
                                       int64
    19 wifi
                       2000 non-null
                                      int64
    20 price range
                       2000 non-null
    dtypes: float64(2), int64(19)
    memory usage: 328.2 KB
```

The info() method prints information about the Mobile Price Range Data Frame. The information contains the number of columns, column labels, column data types, memory usage, range index, and the number of cells in each column (non-null values).


```
print(len(MPR_Dataset[MPR_Dataset.px_height==0]))
print(len(MPR_Dataset[MPR_Dataset.px_width==0]))
print(len(MPR_Dataset[MPR_Dataset.sc_h==0]))
print(len(MPR_Dataset[MPR_Dataset.sc_w==0]))

L
2
0
0
180
```

Firstly check the minimum value of pixel width, pixel Height and Screen, Width Screen Height is cannot be Zero.

I can found the zero value in pixel Height and screen width columns. So handle this value assigning mean .

>	MPR_Dataset.nun	nique()	
⊏⇒	battery_power	1094	
	blue	2	
	clock_speed	26	
	dual_sim	2	
	fc	20	
	four_g	2	
	int_memory	63	
	m dep	10	
	mobile wt	121	
	n_cores	8	
	рс	21	
	px height	1137	
	px width	1109	
	ram	1562	
	sc h	15	
	SC_W	19	
	talk time	19	
	three_g	2	
	touch screen	2	
	wifi	2	
	price_range	4	
	dtype: int64		

The pandas.unique() function returns the unique values present in a dataset.

os Os	0	MPR_Dataset.isr	l/missing values Present in Dataset Or Not??? null().sum() missing values in the datasets.
	₽	battery_power blue clock_speed dual_sim fc four_g int_memory m_dep mobile_wt n_cores pc px_height px_width ram sc_h sc_w talk_time three_g touch_screen wifi	
		price_range dtype: int64	0

• We will count total number of NaN data present in Mobile Price Range dataset and find out the number of NaN or missing values in each columns.

Exploratory data analysis

PRICE

• we can see that ,this pie chart there are mobile phones in 4 price ranges. the number of elements is almost similar

BATTERY

• This plot shows how the battery mAh is spread. there is a gradual increase as the price range increases

BLUETOOTH

half the devices have Bluetooth, and half don't

This Bluetooth features distribution is almost similar along all the price ranges variable, it may not be helpful in making predictions

3G AND 4G

50% of the phones support 4_g and 76% of phones support 3_g

Distribution of price range almost similar of supported and unsupported feature in 4G . So that is not used full of prediction.

feature 'ThreeG' play an important feature in prediction

RAM

Boxplot grouped by price_range ram 4000 3500 3000 RAM (Megabyte) 1500 1000 500 3 0 2 price range

Ram has continuous increase with price range while moving from Low cost to Very high cost.

MOBILE WEIGHT

we can see that ,this boxplot costly phones are lighter weight

SCREEN HEIGHT

There is not a continuous increase in pixel width as we move from Low cost to Very high cost. Mobiles with 'Medium cost' and 'High cost' has almost equal pixel width. so we can say that it would be a driving factor in deciding price range.

SCREEN WIDTH

Pixel height is almost similar as we move from Low cost to Very high cost. Little variation in pixel height

FC (front camera megapixels)

• This features distribution is almost similar along all the price ranges variable, it may not be helpful in making predictions

PC (Primary camera Megapixels)

• Primary camera megapixels are showing a little variation along the target categories, which is a good sign for prediction.

HEAT MAP

- RAM and price range shows high correlation which is a good sign, it signifies that RAM will play major deciding factor in estimating the price range.
- There is some collinearity in feature pairs ('pc', 'fc') and ('px_width', 'px_height'). Both correlations are justified since there are good chances that if front camera of a phone is good, the back camera would also be good.
- Also, if px_height increases, pixel width also increases, that means the overall pixels in the screen. We can replace these two features with one feature. Front Camera megapixels and Primary camera megapixels are different entities despite of showing collinearity. So we'll be keeping them as they are.

Supervised ML Classification Machine Learning algorithms

1. Logistic Regression

Logistic regression is a Machine Learning classification algorithm that is used to predict the probability of certain classes based on some dependent variables. In short, the logistic regression model computes a sum of the input features (in most cases, there is a bias term), and calculates the logistic of the result.

Logistic Regression

Classificatio	precision	_	f1-score	support
0	0.97	0.94	0.95	375
1	0.86	0.89	0.88	338
2	0.83	0.89	0.86	326
3	0.96	0.91	0.94	361
accuracy			0.91	1400
macro avg	0.91	0.91	0.91	1400
weighted avg	0.91	0.91	0.91	1400

p	recision	recall	f1-score	support	
0	0.95	0.94	0.94	141	
1	0.86	0.85	0.86	153	
2	0.79	0.85	0.82	143	
3	0.94	0.90	0.92	163	
accuracy			0.88	600	
macro avg	0.88	0.88	0.88	600	
weighted avg	0.89	0.88	0.88	600	

TRAIN ACCURACY: 91% TEST ACCURACY: 88%

2. Random forest

A Random Forest Algorithm is a supervised machine learning algorithm which is extremely popular and is used for Classification and Regression problems in Machine Learning. We know that a forest comprises numerous trees, and the more trees more it will be robust.

Random Forest

		recall f	recision	Pi
361	1.00	1.00	1.00	0
349	1.00	1.00	1.00	1
347	1.00	1.00	1.00	2
343	1.00	1.00	1.00	3
1400	1.00			accuracy
1400	1.00	1.00	1.00	macro avg
1400	1.00	1.00	1.00	weighted avg

	precision	recall	f1-score	support	
0	0.91	0.93	0.92	139	
1	0.82	0.86	0.84	151	
2	0.86	0.82	0.84	153	
3	0.94	0.92	0.93	157	
accuracy			0.88	600	
macro avg	0.88	0.88	0.88	600	
weighted avg	0.88	0.88	0.88	600	

TRAIN ACCURACY: 100% TEST ACCURACY: 88%

Feature importance Decision tree

Feature importances are provided by the fitted attribute feature_im portances_ and they are computed as the mean and standard deviation of accumulation of the impurity decrease within each tree.

Hyperparameter tuning for Random Forest

In the case of a random forest, hyperparameters include the number of decision trees in the forest and the number of features considered by each tree when splitting a node. (The parameters of a random forest are the variables and thresholds used to split each node learned during training)

print(classif	ication_repo	rt(y_trai	n, y_pred))			
Classificatio	n report for	Hyperpar	ameter tun:	ing for Rando	m Forest (Train se	t)=
	precision	recall	f1-score	support			
0	0.97	0.98	0.97	395			
1	0.92	0.93	0.93	409			
2	0.93	0.92	0.92	408			
2	0.97	0.97	0.97	388			
accuracy			0.95	1600			
macro avg	0.95	0.95	0.95	1600			
weighted avg	0.95	0.95	0.95	1600			

)	<pre>print('Class print(classi</pre>		and the second of		the second second	r Random Forest (Test set)= ')
	Classificati	on report for precision		ameter tun f1-score	_	n Forest (Test set)=
	0	0.94	0.96	0.95	105	
	1	0.84	0.80	0.82	91	
	2	0.76	0.79	0.78	92	
	3	0.92	0.89	0.90	112	
	accuracy			0.87	400	
	macro avg	0.86	0.86	0.86	400	
	weighted avg	0.87	0.87	0.87	400	

TRAIN ACCURACY: 95%

TEST ACCURACY: 87%

Feature importance for Hyperparameter tuning for Random Forest

3. Decision tree

A decision tree is a non-parametric supervised learning algorithm, which is utilized for both classification and regression tasks. It has a hierarchical, tree structure, which consists of a root node, branches, internal nodes and leaf nodes.

st))	, y_pred_te	rt(y_test	cation_repo	lassifica	print(cl
n set)=	Tree (trai	Decision	Report for	ication F	→ Classifi
support	f1-score	recall	recision	pr	•
105	0.93	0.90	0.96	0	
91	0.81	0.86	0.76	1	
92	0.75	0.73	0.78	2	
112	0.90	0.91	0.89	3	
400	0.85			uracy	accu
400	0.85	0.85	0.85	o avg	macro
400	0.85	0.85	0.86	d avg	weighted

	print('Classi print(classi)= ')	
₽	Classification	on report for precision		0.00	100		
	0	0.87	0.98	0.92	93		
	1	0.81	0.73	0.77	101		
	2	0.78	0.67	0.72	108		
	3	0.81	0.93	0.87	98		
	accuracy			0.82	400		
	macro avg	0.82	0.83	0.82	400		
	weighted avg	0.82	0.82	0.82	400		

TRAIN ACCURACY: 85%

TEST ACCURACY: 82%

4. SUPPORT VECTOR MACHINE

Support Vector Machine(SVM) is a supervised machine learning algorithm used for both classification and regression. Though we say regression problems as well its best suited for classification. The objective of SVM algorithm is to find a hyperplane in an N-dimensional space that distinctly classifies the data points.

Support Vector Machine

/]	<pre>print('Classi print(classi</pre>	Strange Strange				L)=)
	Classificatio	n Report for	Decision	Tree (Trai	n set)=	
		precision	recall	f1-score	support	
	0	0.99	0.99	0.99	395	
	1	0.97	0.97	0.97	409	
	2	0.97	0.97	0.97	408	
	3	0.99	0.98	0.99	388	
	accuracy			0.98	1600	
	macro avg	0.98	0.98	0.98	1600	
	weighted avg	0.98	0.98	0.98	1600	

			ort for Sup rt(y_pred_t		or Machine (Test se est))	t)= ')
Classif		**************************************	Support Ve recall f		ine (Test set)= support	
	0	0.93	0.97	0.95	101	
	1	0.87	0.81	0.84	98	
	2	0.82	0.77	0.79	97	
	3	0.88	0.95	0.92	104	
acc	uracy			0.88	400	
macr	o avg	0.88	0.88	0.87	400	
weighte	ed avg	0.88	0.88	0.88	400	

TRAIN ACCURACY: 98%

TEST ACCURACY: 88%

Conclusion

- From EDA we can see that here are mobile phones in 4 price ranges. The number of elements is almost similar.
- 2. half the devices have Bluetooth, and half don't
- 3. There is a gradual increase in battery as the price range increases Ram has continuous increase with price range while moving from Low cost to Very high cost
- 4. costly phones are lighter
- 5. RAM, battery power, pixels played more significant role in deciding the price range of mobile phone.
- 6. form all the above experiments we can conclude that logistic regression, SVM and Hyperparameter tuning for Random Forest we got the best results
- 7. This project model could be improved by developing software that could predict by selecting features so that it could be used while launching the new product.

Thank You