

BC95&M35 R2.0

兼容设计手册

GSM/GPRS/NB-IoT 系列

版本: BC95&M35 R2.0_兼容设计手册_V1.0

日期: 2017-04-21

移远公司始终以为客户提供最及时、最全面的服务为宗旨,如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司

上海市徐汇区田州路 99 号 13 幢 501 室 电话: +86 21 51086236

邮箱: <u>info@quectel.com</u>

或联系我司当地办事处,详情请登录:

http://www.quectel.com/support/salesupport.aspx

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/support/techsupport.aspx

或发送邮件至: Support@quectel.com

前言

移远公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范,参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,移远公司有权对该文档规范进行更新。

版权申明

本文档手册版权属于移远公司,任何人未经我公司允许复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2017, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2017.

文档历史

修订记录

版本	日期	作者	变更描述
1.0	2017-04-21	鲁义文	初始版本

目录

文档	当历史	2
目录	₹	3
表格	各索引	4
图片	├索引	5
1	引言	6
'		
2	综述	7
	2.1. 产品简介	7
	2.2. 功能概述	8
	2.3. 管脚分配	9
3	管脚描述	11
3		
4	硬件参考设计	
	4.1. 供电电源	_
	4.1.1. 供电电源设计	
	4.1.2. 减少电压跌落	
	4.2. 开机电路	
	4.3. 关机电路	
	4.3.1. 模块关机	18
	4.3.2. 紧急关机与复位	
	4.4. 网络状态指示*	21
	4.5. (U)SIM 卡接口	21
	4.6. 串口	22
	4.7. RF 接口	22
5	物理尺寸	24
6	生产和包装	29
-	6.1. 生产焊接	
	6.2. 包装	
7	₩录▲	33

表格索引

表 1:	模块基本信息	7
表 2:	主要性能参数	8
	IO 参数定义	
表 4:	管脚对比	11
表 5:	可生产性	29
表 6:	参考文档	33

图片索引

图 1:	BC95&M35 R2.0 管脚分配	9
图 2:	BC95&M35 R2.0 兼容管脚分配	10
图 3:	供电电源参考设计电路	16
图 4:	VBAT 输入参考电路	17
图 5:	M35 R2.0 PWRKEY 驱动电路	17
图 6:	开机时序	18
图 7:	关机时序图(M35 R2.0 使用 AT 命令关机)	19
图 8:	关机时序图(M35 R2.0 使用 PWRKEY 关机)	19
图 9:	紧急关机和复位驱动电路	20
图 10:	紧急关机和复位时序	20
图 11:	NETLIGHT 参考设计电路	21
图 12:	6-PIN (U)SIM 卡兼容设计电路	21
图 13:	串口通信参考设计电路	22
图 14:	RF 天线接口参考设计电路	23
图 15:	BC95 与 M35 R2.0 底视图	24
	推荐兼容封装(单位:毫米)	
图 17:	BC95 钢网尺寸(单位:毫米)	26
图 18:	M35 R2.0 钢网尺寸(单位:毫米)	27
图 19:	安装效果图	28
	回流焊温度曲线	
图 21:	卷带尺寸(单位:毫米)	31
图 22:	卷盘尺寸	32

1 引言

移远通信的 NB-IoT 模块 BC95 与 GSM/GPRS 模块 M35 R2.0 相互兼容。本文主要讲述了 BC95 与 M35 R2.0 的兼容设计。

2 综述

2.1. 产品简介

M35 R2.0 是一款四频段的 GSM/GPRS 模块,支持 GSM850/EGSM900/DCS1800/PCS1900 频段。 BC95 是一款 NB-IoT 系列的模块,包含三个型号: BC95-B5, BC95-B8 和 BC95-B20。BC95 与 M35 R2.0 采用兼容设计,用户可根据需求选择合适的产品作为终端应用。

表 1: 模块基本信息

模块	外观	封装	尺寸	描述
BC95	BC95 BC95HA-02-STD BC95HARDXADXM16 HA-W2099 SN: ME2262903004XX1 IME: 8930710101990X3	54-pin LCC + 40-pin LGA	19.9 × 23.6 × 2.2mm	NB-IoT 模块 包含三个型号: BC95-B5,BC95-B8 和 BC95-B20
M35 R2.0	M35 MSFA035TD ASSFA035TD A MSFA035TD A MSFA036TD A MSPA036TD ME 88071010199115 C € 2200 FCC IDMR0128085 CMIT 02102FB97 上海等运通信技术有限公司	42-pin LCC	19.9 × 23.6 × 2.65mm	GSM/GPRS 模块

2.2. 功能概述

下表对比了 M35 R2.0 与 BC95 的主要性能参数。

表 2: 主要性能参数

功能	M35 R2.0	BC95
供电	3.3~4.6V	3.1~4.2V
峰值电流	VBAT 最大电流: 2A	VBAT 最大电流: 0.3A
睡眠电流	2G @DRX=5: 1.3mA	PSM 最大电流: 5uA
频段	四频段: GSM850/900/1800/1900	BC95-B5: Band 5 @H-FDD BC95-B8: Band 8 @H-FDD BC95-B20: Band 20 @H-FDD
GPRS	Multislot class 12	不支持
温度范围	正常工作温度: -35°C ~ +80°C ¹⁾ 扩展温度: -40°C ~ +85°C ²⁾	正常工作温度: -30°C ~ +75°C ¹⁾ 扩展温度: -40°C ~ +85°C ²⁾
UART 接口	波特率: 300~115200bps 自适应波特率: 4800~115200bps 流控: RTS/CTS 信号电平: 2.8V	波特率: ● 主串口: 9600/115200bps ³⁾ ● 调试串口: 921600bps 信号电平: 3.0V
模拟音频	两路模拟音频输入输出通道	不支持
RTC	V_0 max=3 V V_1 =1.5 V ~3.3 V	不支持

- 1. 1) 表示当模块工作在此温度范围时,模块的相关性能满足 3GPP 标准要求。
- 2. ²⁾ 表示当模块工作在此温度范围时,模块仍能保持正常工作状态,具备短信、数据传输等功能,不会出现不可恢复的故障;射频频谱、网络基本不受影响,仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。
- 3. ³⁾ BC95 主串口用于 AT 命令通信和数据传输时,波特率为 9600bps; 用于固件升级时波特率为 115200bps。

2.3. 管脚分配

BC95 及 M35 R2.0 模块管脚分配图如下:

图 1: BC95&M35 R2.0 管脚分配

- 1. 蓝色标示的是 BC95 比 M35 R2.0 多出的管脚。
- 2. 绿色标示的是 M35 R2.0 比 BC95 多出的管脚。
- 3. 红色标示的是 BC95 和 M35 R2.0 的主串口位置。

BC95 与 M35 R2.0 管脚兼容图如下所示:

图 2: BC95&M35 R2.0 兼容管脚分配

- 1. BC95 与 M35 R2.0 模块尺寸相同,黑色标示的是 BC95 与 M35 R2.0 功能上兼容的管脚。
- 2. 蓝色标示的是 BC95 比 M35 R2.0 多出的管脚。
- 3. 红色字体标示的是 M35 R2.0 的管脚名称。
- 4. 绿色标示的是 M35 R2.0 比 BC95 多出的管脚。
- 5. 紫色标示的是 BC95 与 M35 R2.0 功能上不兼容的管脚。

3 管脚描述

该章节描述了 BC95 与 M35 R2.0 的管脚分配及定义。

表 3: IO 参数定义

类型	描述
Ю	双向端口
DI	数字输入
DO	数字输出
PI	电源输入
РО	电源输出
Al	模拟输入
AO	模拟输出
OD	漏极开路

下表描述了 BC95 及 M35 R2.0 的管脚管脚功能及电气特性对比:

表 4: 管脚对比

BC95				M35 R2	2.0		
管脚号	管脚名	Ю	描述	管 脚 号	管脚名	Ю	描述
1	RESERVED	/	1	/	1	/	1
2	GND	/	地	1	AGND	/	地
3	RESERVED	/	1	2	MIC2P	Al	差分音频输入通道 2。
4	RESERVED	/	1	3	MIC2N	Al	差分音频输入通道 2。
5	RESERVED	/	1	4	MIC1P	Al	差分音频输入通道 1。

6	RESERVED	/	/	5	MIC1N	Al	差分音频输入1通道。
7	RESERVED	/	/	1	1	/	/
8	RESERVED	/	/	1	/	/	/
9	RESERVED	/	/	1	/	/	/
10	RESERVED	/	/	6	SPK1N	AO	差分音频输出 1 通道。
11	RESREVED	/	/	7	SPK1P	AO	差分音频输出 1 通道。
12	RESERVED	/	/	8	LOUDSPKN	AO	差分音频输出 2 通道。
13	RESERVED	/	/	9	LOUDSPKP	AO	差分音频输出 2 通道。
14	RESERVED	/	/	10	PWRKEY	DI	模块开机或关机接口, 内部上拉到 VBAT。
15	RESET	DI	模块复位信号。	11	EMERG_ OFF	DI	紧急关机接口。通过下 拉至少40ms执行紧急 关机。仅在AT命令或 PWRKEY无法关机时 启用。
16	RESERVED	/	1	1	1	1	
17	RESERVED	/		12	STATUS/ PCM_SYN ¹⁾	DO	模块工作状态指示/PCM同步信号。可通过AT命令切换功能。
18	NETLIGHT*	DO	指示模块的网络状态。 2.8V	13	NETLIGHT	DO	指示模块的网络状态。 2.8V
19	DBG_RXD	DI	调试串口 RXD。 3.0V	14	DBG_RXD	DI	调试串口 RXD。 2.8V
20	DBG_TXD	DO	调试串口 TXD。 3.0V	15	DBG_TXD	DO	调试串口 TXD。 2.8V
21	ADC*	AI	通用模数转换器。	1	/	/	/
/	/	/	/	41	PCM_OUT	DO	PCM 串行数据输出。 2.8V
/	/	/	/	42	PCM_IN	DI	PCM 串行数据输入。 2.8V
22	RESERVED	/	1	/	/	/	/
23	RESERVED	/	/	16	SIM2_DATA	Ю	(U)SIM2 数据接口。 1.8V/3.0V

24	RESERVED	/	/	17	SIM2_CLK	DO	(U)SIM2 时钟接口。 1.8V/3.0V
25	RESERVED	/	/	18	SIM2_VDD	РО	(U)SIM2供电接口。 1.8V/3.0V
26	VDD_EXT	РО	3.0V	19	VDD_EXT	РО	2.8V
27	RESERVED	/	/	20	DTR/SIM1_ PRESENCE ²⁾	DI	数据终端就绪/ (U)SIM1 卡插入检测信号。 可通过 AT 命令切换功能。 2.8V
28	RESERVED	/	/	/	1	/	/
29	RXD	DI	模块接收数据。 3.0V	21	TXD	DO	模块发送数据。 2.8V
30	TXD	DO	模块发送数据。 3.0V	22	RXD	DI	模块接收数据。 2.8V
31	RESERVED	/	1	23	СТЅ	DO	模块清除发送。 2.8V
32	RESERVED	/	1	24	RTS	DI	DTE 请求发送数据。 2.8V
33	RESERVED	1	1	25	DCD/ SIM2_RST ³⁾	DO	数 据 载 波 检 测 /(U)SIM2卡复位信号。 2.8V
34	RI*	DO	模块输出振铃提示。 3.0V	26	RI/ PCM_CLK ⁴⁾	DO	模块输出振铃提示/PCM时钟信号。 这些功能可以通过 AT 命令切换。 2.8V
35	RESERVED	/	1	/	1	1	/
36	RESERVED	1	1	1	1	1	/
37	RESERVED	1	1	1	1	1	1
38	USIM_VDD	РО	USIM 卡供电电源。 3.0V	27	SIM1_VDD	РО	(U)SIM1 卡供电电源。 1.8/3.0V
39	USIM_RST	DO	USIM 卡复位信号。 3.0V	28	SIM1_RST	DO	(U)SIM1 卡复位信号。 1.8/3.0V
40	USIM_ DATA	Ю	USIM 卡数据信号。 3.0V	29	SIM1_DATA	Ю	(U)SIM1 卡数据信号。 1.8/3.0V
41	USIM_ CLK	DO	USIM 卡时钟信号。 3.0V	30	SIM1_CLK	DO	(U)SIM1 卡时钟信号。 1.8/3.0V

42	USIM_ GND	/	地	31	SIM1_GND	/	(U)SIM1 专用地
43	GND	/	地	/	1	/	/
44	RESERVED	/	/	32	VRTC	PI/ PO	V _o max=3V V _o min=2V V _o norm=2.8V V _{I=1.5~3.3V} I _{in} ≈10uA
45	VBAT	PI	模块供电电源。 3.1V~4.2V	33	VBAT	PI	模块供电电源。 3.3~4.6V
46	VBAT	PI	模块供电电源。 3.1V~4.2V	34	VBAT	PI	模块供电电源。 3.3~4.6V
47	GND	/	地	35	GND	/	地
48	GND	/	地	36	GND	1	地
49	RESERVED	/	/	1	1	1	1
50	RESERVED	/	1	/		1	1
51	GND	/	地	37	GND	1	地
52	GND	1	地	38	GND	1	地
53	RF_ANT	Ю	射频天线引脚。	39	RF_ANT	Ю	射频天线引脚。
54	GND	1	地	40	GND	1	地
55~58, 67~70, 75~80, 84~91	RESERVED	/	/			/	/
59~66, 71~74, 81~83, 92~94	GND	/	地	/	/	/	/

- 1. 蓝色标示的是 BC95 比 M35 R2.0 多出的管脚。
- 2. 红色标示的是结构上兼容的管脚,但功能不同。
- 3. 绿色标示的是 M35 R2.0 比 BC95 多出来的管脚。
- 4. 黑色标示的是 BC95 与 M35 R2.0 功能上兼容的管脚。
- 5. RESERVED 管脚和不使用的管脚,请保持悬空。
- 6. GND 的管脚需要连接到地。
- 7. 如果 M35 R2.0 的模拟音频接口做单端使用,需要将其 1 脚 AGND 单端接地。若是差分使用,可以直

接连接到板子的主地。

- 8. "*"表示 BC95 的 NETLIGHT、ADC 和 RI 功能正在开发中。
- 9. 1) M35 R2.0 的 STATUS 管脚可复用为 PCM_SYNC 管脚。
- 10. 2) DTR 管脚可以通过 AT 命令配置为 SIM1_PRESENCE 管脚。详细信息请参考文档 [2]。
- 11. 3) M35 R2.0 的 DCD 管脚可复用为 SIM2_RST 管脚。
- 12. ⁴⁾ M35 R2.0 的 RI 管脚可复用为 PCM_CLK 管脚。

4 硬件参考设计

本章节描述了 BC95 与 M35 R2.0 主要功能的兼容设计。

4.1. 供电电源

4.1.1. 供电电源设计

电源设计对模块的供电至关重要,必须选择能够提供至少 2A 电流能力的电源。

电池电源的参考设计如下图所示。电池输出电压的典型值为 3.6V。

图 3: 供电电源参考设计电路

4.1.2. 减少电压跌落

M35 R2.0 的供电范围为 3.3V~4.6V,BC95 的供电范围为 3.1~4.2V,推荐为 3.6V,要确保电压不能低于 3.3V,且不超过 4.2V。BC95 的 VBAT 管脚与 M35 R2.0 兼容,因此建议并联滤波电容 C1~C4。参考电路如下:

图 4: VBAT 输入参考电路

4.2. 开机电路

BC95 和 M35 R2.0 的开机方式不同。 BC95 只要通过向 VBAT 管脚提供电源便可以自动开启, 而 M35 R2.0 需要按压 PWRKEY 约 1 秒后,才能启动。下图是 M35 R2.0 上电电路的参考设计。

图 5: M35 R2.0 PWRKEY 驱动电路

BC95 与 M35 R2.0 的开机时序对比图如下:

图 6: 开机时序

备注

- 1. 在拉低 M35R2.0 PWRKEY 管脚之前,建议将 VBAT 上电到 3.6V 后稳定约 100ms (T₁) 再拉低 PWRKEY 管脚,以保证 VBAT 电压稳定。不建议一直拉低 PWRKEY 管脚。
- 2. 黑色标示的是 BC95 的开机时序。
- 3. 红色标示的是 M35 R2.0 的开机时序。

4.3. 关机电路

4.3.1. 模块关机

可通过 AT+QPOWD 命令或者将 PWRKEY 管脚拉低一段时间来实现 M35 R2.0 模块关机,而 BC95 只能通过断开 VBAT 电源关机。

关机时序图如下图所示:

图 7: 关机时序图 (M35 R2.0 使用 AT 命令关机)

图 8: 关机时序图 (M35 R2.0 使用 PWRKEY 关机)

- 1. 黑色标示的是 BC95 的关机时序。
- 2. 红色标示的是 M35 R2.0 的关机时序。
- 3. 网络注销时间与本地网络信号强度有关。

4.3.2. 紧急关机与复位

M35 R2.0 的 EMERG_OFF 电路与 BC95 的 RESET 电路兼容。 M35 R2.0 可以通过 EMERG_OFF 管脚紧急关机,BC95 可以通过 RESET 管脚复位。 它们只能在特定情况下使用。

M35 R2.0 紧急关机和 BC95 复位的参考设计如下图所示:

图 9: 紧急关机和复位驱动电路

紧急关机和复位时序图:

图 10: 紧急关机和复位时序

- 4. 黑色标示的是 BC95 的复位时序。
- 5. 红色标示的是 M35 R2.0 的紧急关机时序。

4.4. 网络状态指示*

NETLIGHT 管脚信号可以用来指示模块的网络状态,参考设计如下:

图 11: NETLIGHT 参考设计电路

备注

"*"表示 BC95 的 NETLIGHT 功能正在开发中。

4.5. (U)SIM 卡接口

M35 R2.0 的(U)SIM 接口默认支持 1.8V/3.0V 的(U)SIM 卡,而 BC95 的 USIM 接口仅支持 3.0V 的 USIM 卡。BC95 的 USIM 卡接口跟 M35 R2.0 的(U)SIM1 接口是兼容的。

6-pin (U)SIM 卡兼容设计如下图所示:

图 12: 6-Pin (U)SIM 卡兼容设计电路

4.6. 串口

BC95 与 M35 R2.0 的主串口和调试串口具有相同的功能,但串口电压域不同。BC95 的电压域为 3.0V, 而 M35 R2.0 的电压域为 2.8V。BC95 串口不支持硬件流控制。

当主机与模块通过 UART 接口通信时,由于 MCU 与模块之间信号的电压域不同,建议在 MCU 与模块之间增加串口电平转换芯片,详情请参考*文档 [1]*。

串口通信参考设计电路如下图所示:

图 13: 串口通信参考设计电路

备注

- 1. M35 R2.0 串口电源域是 2.8V, BC95 串口电源域是 3.0V。
- 2. <u>红色</u>标示的是 M35 R2.0 与 BC95 不同的引脚名称。
- 3. 绿色标示的是 M35 R2.0 的主串口比 BC95 主串口多出的管脚和电路设计。
- 4. 若使用 BC95 模块,请贴 R1 和 R4 电阻;若使用 M35 R2.0 模块,请贴 R2 和 R3 电阻。R1~R4 的 电阻值都为 0Ω。

4.7. RF 接口

BC95 与 M35 R2.0 的天线接口 RF_ANT 管脚是兼容的,接口特征阻抗为 50Ω 。为了能够更好地调试射频性能,建议预留 π 型匹配电路,且 π 型匹配器件(R1/C1/C2)应靠近天线放置。天线连接参考电路如下图所示。其中 C1,C2 默认不贴,只贴 0 欧姆电阻 R1。

RF 天线接口参考设计如下图所示:

图 14: RF 天线接口参考设计电路

5 物理尺寸

BC95 与 M35 R2.0 的底视图如下图所示:

图 15: BC95 与 M35 R2.0 底视图

BC95 与 M35 R2.0 兼容封装如下图所示:

图 16: 推荐兼容封装(单位:毫米)

BC95 与 M35 R2.0 模块的 PCB 厚度不同,为保证模块锡膏焊接质量,BC95 模块焊盘部分对应的钢网厚度推荐为 0.15mm, M35 R2.0 的钢网厚度推荐为 0.2mm。详细信息请参考*文档 [3]*。

BC95 推荐钢网尺寸如下图所示:

图 17: BC95 钢网尺寸(单位:毫米)

M35 R2.0 推荐钢网尺寸如下图所示:

图 18: M35 R2.0 钢网尺寸(单位:毫米)

BC95 与 M35 R2.0 安装效果图如下所示:

图 19: 安装效果图

6 生产和包装

下表列出了 BC95 与 M35 R2.0 生产兼容性:

表 5: 可生产性

功能	BC95&M35 R2.0
回流焊温度曲线	兼容
卷盘包装	兼容

6.1. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB 上,印刷刮板需调整到合适的力度。为保证模块锡膏焊接质量,BC95 模块焊盘部分对应的钢网厚度推荐为 0.15mm,M35 R2.0 的钢网厚度推荐为 0.2mm。详细信息请参考*文档 [3]*。

推荐回流焊的温度为 235~245℃,最高不能超过 260℃。为避免模块因反复受热而损坏,建议客户在 完成 PCB 板第一面回流焊后再贴模块。推荐的回流焊曲线温度图如下所示:

图 20: 回流焊温度曲线

6.2. 包装

BC95 或 M35 R2.0 模块采用卷带包装,并用真空密封袋将其封装。建议在模块准备焊接时再打开包。每个卷带包含 250 个模块,卷带直径为 330 毫米。具体规格如下:

图 21: 卷带尺寸(单位: 毫米)

图 22: 卷盘尺寸

7 附录 A

表 6:参考文档

序号	文档名称	备注
[1]	Quectel_BC95_硬件设计手册	BC95 硬件设计手册
[2]	Quectel_M35_硬件设计手册	M35 硬件设计手册
[3]	移远通信模块贴片应用指导	移远通信模块贴片应用指导