PATENT SPECIFICATION

(11) 1 501 967

19

(21) Application No. 30681/75

(22) Filed 22 July 1975

(31) Convention Application No. 491 075

(32) Filed 23 July 1974

(31) Convention Application No. 583 481

(32) Filed 9 June 1975 in

(33) United States of America (US)

(44) Complete Specification published 22 Feb. 1978

(51) INT CL2 C09C 1/50

(52) Index at acceptance

C1A J1 J201 J243 J244 J246 J290 J300 J302 J606 J613 J614

(72) The inventors of this invention in the sense of being the actual devisers thereof within the meaning of Section 16 of the Patents Act, 1949, are KEITH L. HALE of 5742 Rutherglenn, Houston, Texas; WILLIAM B. CRULL, Jr., of Z25 Chelsea, Dumas, Texas; NORMAN R. HIGGINS of 406 Briar Hill Drive, Houston, Texas, and DON T. NORMAN of 1418 Alice Lane, Sulphur, Louisiana; all of the United States of America and all citizens of the U.S.A.

(54) CARBON BLACK

(71) We, CONTINENTAL CARBON COMPANY, a Corporation organised under the Laws of the State of Delaware, United States of America, of Houston, Texas, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to a new family of rubber-reinforcing high-structure carbon blacks having a novel combination of properties which, when used to manufacture tire tread rubber compounds, affords high treadwear resistance even at relatively high oil loadings.

A discussion of the various types and grades of carbon black is presented in "Analysis of Carbon Black," *Encyclopedia of Industrial Chemical Analysis* (1969) Vol. 8, pp. 179—243. Table 4 on pp. 198—199 lists some of the properties of various types and grades.

various types and grades.

Since the publication of this reference, various new HAF blacks have been developed with the following typical analytical properties:

Grade (ASTM No.)	Grade (Common)	Surface Area ¹	Tint ²	DBP	24M4 ⁴
N-339	HAF—HS	·90	111	122	103
N347	HAF—HS	90	105	122	100
N-358	. HAP—VHS	90	98	150	115

Notes:

1. Iodine No. per ASTM Test Method D—1510—70, the common industry standard test method used to classify carbon black by grade (SAF, ISAF, IISAF, HAF, etc.). Generally, the higher the iodine number, the smaller the particle size and the greater the surface area.

2. Tint (tinting strength) is another indication of particle size which has become important in evaluation of carbon black. High tint indicates small particle-size and has been associated with high rubber reinforcing properties. The test method is ASTM D—3265—73, and the reference black is IRB #3. For purposes of this invention, we use the Densichron light reflectance instrument and read paste tint through the slide on which the sample is spread.

25

20

5

10

15

30

25

20

5

10

15

30

2	1,501,967	2
5	3. Dibutyl phthalate absorption per ASTM Test Method D—2414—72. This is a measure of structure discussed on pp. 187—191 of the above reference. 4. 24M4 is the designation of a relatively new method, now well known in the art as ASTM D—2414 (tentative), of subjecting a carbon black sample to repeated compressions prior to determining the DBP absorption. The 24M4 value is indicative of the permanent or persistent (as contrasted with transient) structure of the carbon black and is therefore a more meaningful indication of structure. A suitable press and method are disclosed in U.S. patent 3.548,454, the method being described specifically in column 4, line 27—column 5, line 2.	5
10	A need has existed for a carbon black with a higher structure than N—339 but with equivalent performance (particularly treadwear resistance) properties when compounded with higher oil loading. The capability to add additional oil is particularly beneficial because this reduces the overall cost of the rubber compound due to the relatively low cost of the oil as compared with the other	10
15	compound ingredients. This need presented a problem because, for a given grade of black, a significant increase in structure could not be obtained without sacrificing treadwear resistance. Also, the addition of oil has been associated with a decrease in treadwear resistance. It is the object of this invention to provide such an improved HAF—VHS black (one grade of which is hereinafter identified as	15
20	X—1303) (VHS means "very high structure". It is a further object of this invention to provide a family of blacks (including X—1303) having corresponding combinations of properties. N—358 (a very high structure HAF) does not satisfy such need because it does	20
25	not have the high treadwear resistance of N-339, undoubtedly because it does not have the high tint and high 24M4 of the present blacks. Without limiting ourselves, we offer the following explanation for our invention. As indicated above, iodine adsorption number is often taken as an indicator of	25
30	the specific surface area of the ultimate carbon black particles. The 24M4 DBP absorption is often taken as an indicator of carbon black structure, i.e., the amount of aggregation of the ultimate particles. These two tests are thus related to the size of the ultimate carbon black particles and to the size of the particle aggregates. The size of all particles and aggregates are not uniform within a grade of	30
35	carbon black but are distributed over a range of sizes. The distribution of sizes for a sample of carbon black is typically skewed to the right similar to a log-normal distribution so the modal size (peak of curve) is usually less than the arithmetic mean size. For example see Figures 3—5, pp. 184—185 of "Analysis of Carbon Black," Encyclopedia of Industrial Chemical Analysis. The low reinforcing grades of furnace black are characteristically skewed far	35
40	to the right resulting in a low specific particle surface area. The more reinforcing grades of earbon black approach more and more toward a symmetrical distribution resulting in an increasing specific particle surface area. The arithmetic mean diameter approaches more and more the modal diameter. This suggests that for a given specific particle surface area (or iodine number),	40
45	the more symmetrical and narrow the particle size distribution, the more the specific projected cross-sectional area (hiding power or tinting strength). Further, the more symmetrical and narrow the aggregate size distribution, the more the specific aggregate surface area (24M4 DBP absorption). The advantage of higher tinting strength and higher 24M4 DBP of carbon	45
50	black at a given Iodine No. level is higher reinforcing, better processability and higher oil and black loadings in a rubber compound. Our invention is a new family of oil furnace carbon black, having iodine numbers (I ₂) (as hereinbefore defined) within the range of 60—150, and having the following relationships between iodine number, tint (as hereinbefore defined) and	50
55 .	persistent structure (24M4) (as hereinbefore defined):— $125.1-(\exp[\{4.83274-0.033969(I_2)\} \le 24M4 \le 140.6-[\exp[\{4.94743-0.03054(I_2)\}]$	55
	and	
	$112.8 - [\exp[(4.72852 - 0.026274(I_2))] \le Tint \le 122.2 - [\exp[(4.80471 - 0.026123(I_2))]$	
60	No one of these properties is novel per se, but we believe that the above combination of properties is novel and unobvious. Referring to the accompanying drawings,	60

3	1,501,967		3
	Figure 1 is a drawing showing isopleths of ca various Treadwear Index levels within a defined r for a prior art black.	ange of rubber hardness values,	,,
5	Figure 2 is a drawing of similar isopleths for invention. Figure 3 is a graph illustrating the mathem	natical formulae describing the	5
10	properties of the present family of carbon blacks. As is well known in the art, the properties reactor (furnace) design and the operating condition of the conventional carbon black oil of so the control of the converging section reactor described in U.S. patents 3,256, Figure 2 of 3,256,066 and Figures 1 and 2 of 3,74	of carbon black depend upon one employed, assuming that the latisfactory quality. satisfactory for manufacture of g section-to-throat-to diverging 066 and 3.741.165, particularly	10
15	5—7 inches. Suitable operating conditions for the manufolder are:		15
	Air Rate, SCFH	130,000—200,000	
	Air Preheat Temp., °F.	500—700	
20	Feedstock Oil Rate, GPH(US)	190—260	20
	Air/Fuel Gas Ratio	12/1—17/1	
	Distance, Feedstock Nozzle to Throat	30—60"	
	Distance, Quench to Throat	4—8′	
	Distance, Feedstock Nozzle to Quench	812'	
25	Reactor Pressure Drop Across Throat	1.0—8.0 psig	25
	Reaction Temp., °F.	3,000-3,300	
	Reaction Time (Milliseconds)	850	
30	The feedstock can be any carbon black o oils are well known in the carbon black in following specifications:		
	API Gravity	+ 2.0	
	Viscosity SFS @ 122°F.	40.1	
	BS&W,%	0.22	
	Ash, %	0.01	
35	Asphaltenes, %	4.31	35
	Carbon,%	90.67	
	Hydrogen,%	8,12	
	Sulfur, %	0.54	
	BMCI	109.5	
40	EXAMPLES. A number of pilot plant runs were made utilize the operating conditions described above and comparable to that described above. Analytical prof the present invention are shown in TABLE I	in TABLE I, and a feedstock operties of representative blacks.	40

4						1,	501,967							<u>,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		4
						,			1435H	80 80 80	107.3	153.4	122.7	114	8.8	
									1382A							
									1406A	90.0	95,5	162,9	119.9	106	17.0	
ļ		•							1382A							
									1382A							
	150,000	610	8095	15/1	13 40	3_10			1390B	91.9	101.8	151.3	128.0	110.0	19.4	
									1382A	93.1	103.9	148.7	121.8	106	20.4	
LE 1					spu	ction to		TABLE II	1363A	89.4	103.5	144.2	120.4	112	6.61	
TABLE		_	bsig.		, milliseco	lstock inje conds		TA	1332A ₁	91.3	103.2	149.1	124.3	105	1.61	
	Air Rate, SCFH	Oil Rate, GPH(US) Air Preheat, °F.	Oil Spray Pressure, psig	Air/Gas Ratio	Total reaction time, milliseconds	Reaction time, feedstock injection to throat, milliseconds			1303A ₁	91.3	8.66	150.0	121.5	501	19.7	
							American de la companya de la compan		Rito No.—	Iodine Number	N. Surface Area ASTM D-3037-73	18 D	24M4	Tint v. IRB #43	Density, Ibs/ft ² ASTM D-1513-60	

5								1.5	01,96	57	•						. 5	
		1435H	4		-510	-130	+550	+26.7	-3.0	8. 8.	4		-3.9	9.0	+46	- :	- 1 4	_
		1382A												•				
		1406À	m		470	-130	+510	+25.7	-1.7	-2.3	m		-2.9	3.5	+53			
		1382A											•					
		1382A																
		1390B	ю		-350	-120	+550	+37.2	4.9	-5.8	ო		-2.6	-1.0	%			
	inued)	1382A	m		500	-120	+560	+27.6	-6.2	6.9	m		-3.1	9	+26			
	TABLE II (Continued)	1363A	m		-350	96-	069+	+38.6	-7.0	-8.2	ĸ		-2.8	-3.5	+33	•		
	TABLE	1332A,	m		410	-120	+670	+28.0	-	-1.0	w.		-3.1	-2.8	+51			
		1303A,	m		400	-100	+550	+29.4	4.0	4.	m		-2.1	-1:1	+42			
				Min.	8	8	30			•	,	Min.	8	4	\$	•		
		Run No	ASTM Recipe¹ v. [RB ≠		Tensile Strength ASTM D-412-68	Ultimate Blongation	Modulus @ 300%	Mooney @ 250°F. Min. Visc.	J.	t _{d3}	ASTM Recipe v. IRB #-		GH Rebound, % ASTM D-1054-66	Firestone Rebound, %	Firestone HBU, °F. ASTM D—623—67; Load 250 lbs; oscillation 0.3 in.			

6	1435H	च		+300	-140	+ 1040	+1110	+15.8	-1.2	1,5	01,96 •	37.7	47.7	79.0		65	25 31.25		3020	380	2300	6
	1382A							•	~	~		_	C	~		65	25 31.25		3070	400	2160	1
	1406A	3		+240	-100	+ 1090	+1150	4.6+	-13	-2.5	m	39.0	48.0	81.3	•	65	5 31.25		2970	60	2150	•
	1382A															63	33.25		3100	420	2150	1
	1382A															63	43.25		2750	460	1680	,
	1390B	w		001-	-110	+1040	+910	+11.6	-1.6	-3.2	ιń	36.5	47.5	76.8		65	31,25		3140	420	2100	
nued)	1382A	3		-340	-130	+820	+1030	+13.0	-1.1	-1.6	m	38.9	45.0	86.4		65	31.25		2890	380	2160	
TABLE II (Continued)	1363A	3		+60	96	1910	+1120	+15.0	1 8;	4:1-	m	38.3	45.9	83.0		65	31.25		3080	440	1950	
TABLE	1332A ₁	3		.+290	-100	+1060	+1050	+12.0	+0.4	40.9	m	36.6	46.0	79.6		65	31,25		3080	9	2280	
	1303A,	3		290	-70	+1320	+1290	+14.0	-1.2	-1.7	m	35.6	45.5	78.2		65	31.25		2900	360	2230	
			Min.	8	ક્ષ	22	દ્ધ					thod B						Min.	30	8	93	
	Run No	NBS Recipe? v. JRB #		Tensile Strength	Ultimate Elongation	Modulus @ 300%	Modulus @ 300",	Mooney @ 280°F. Min. Visc.	آقب		NBS Recipe v. IRB #	Extrusion, gm/m. ASTM D2270-73, Method B	gm/m, IRB #3	", of IRB #3	Treadwear Recipes	Parts Black	Parts Oil		Tensile Strength	Ultimate Elongation	Modulus @ 300%	•

Run No	1303A ₁	TABL 1332A,	TABLE II (Continued) 2A, 1363A 1382A	_	1390B	[382A]	1382A	1406A 1	1382A	1435H	7
Treadwear Recipe (Continued)											
Mooney @ 280°F. Min. Visc.	86.5	43.8	4.4	43.0	42.7	28.5	40.0	43.0	44.0	47.0	
J	9.2	9.3	12.7	13.2	12.5	15.8	12.7	14.3	12.9	12.7	
L ₃ ,	10.6	10.9	14.9	15.7	14.9	18.3	14.7	16.3	15.2	14.4	
Min.											
GH Rebound, % 40	52.2	52.5	51.6	50.8	51.0	54.8	8.49	53.4	52.9	52.3	
Firestone HBU, "R. (Control; Sample) 40	265,265	270;272	253;265	254;261	260;253	265;238	265;249	277;279	271;269	261,270	
Extrusion, Wt., gm/m	34.2	33,3	39.4	35.5	35.9	37.9	38.1	35.4	35.0	34.5	
Extrusion, Diam., Inches	0,240	0.239	0.242	0.249	0.246	0.255	0,253	0.249	0,244	0.244	
Tread Hardness, Shore A ASTM D-2240-68		92	20	69	19	63	63	90	\$	69	1,50
Treadwear index	66	66	80	\$	102	103	86	16	25	8	1,96
It will be found that the values for iodine number, tint and persistent atructure (24M4) of the above Runs satisfy the relationships set forth above when inserted in those relationships.	found that above Runships.	the values f s satisfy the	or iodine relations	nnmber, ti hips set fo	int and per rth above	It will be found that the values for lodine number, fint and persist ent structure 14) of the above Runs satisfy the relationships set forth above when inserted in a relationships.	ructure orted in		•		7
5 Foomotes to TABLE II	ABLE II							.c			
1. ASTM D—3192 73 Natural Rubber Recipe. 2. Industry synthetic recipe:	-3192 73 N nthetic rec	atural Rub ipe:	ıber Reci	8							
	Ingredients				Parta by weight	reight					
	SBR 1500				100.0					•	
10 2	Zinc Oxide				5.0			10		•	
S	Stearic Acid	7 7			1.50						
	Benzothiazyl Disulfide	yl Disulfide			2.00						
	Carbon Black	ķ			50,00	_				٠,	7
S	Sulfur				2.00						

1,501,967

3. Treadwear recipe and procedure are described in TABLE III and description below.

TABLE III The standard treadwear recipe for the treadwear tests is as follows:

Parts by Weight
50.00
34.40
34,40
1.50
0,50
3.00
1.50
1,25
0.10
0.50
se Case 65.00)
se Case 12.50)

^{*} registered Trade Marks.

Note: All of these ingredients are well known in the art and are described in "Materials and Compounding Ingredients for Rubber," Rubber World, Bill Communication, Inc., N.Y. 1970 Edition.

It will be noted that the amount of carbon black and the amount of Petroflux LV (a commonly used extender oil) are variable. Rubber compounders desire flexibility in compounding so that for a given desired hardness and Treadwear LIV. Index, they can use a greater amount of carbon black and/or oil loading. In the above standard treadwear recipe, the SBR 1710 and Ameripol CB-441 each above standard treadwear recipe, the SBK 1710 and American Case formulation contain 37.5 parts of oil per 100 parts of rubber, so that the Base Case formulation (65 parts carbon black and 12.50 parts added extender oil Petroflux LV) actually contains 31.25 parts total oil per hundred parts of rubber. In the following tables of data, therefore, the parts oil means the total oil; in other words, a treadwear recipe which contained 46.25 parts oil had 15 parts of Petroflux LV in addition to the Base Case amount of 12.50 parts of oil.

For the treadwear tests, rubber compounds were prepared from these ingredients using a Banbury mixer and accepted mixing procedures and practices. Carefully prepared batches were pressed into separate sections. Multiple sections were applied to buffed tire carcasses, retreaded and cured for sixty minutes at 302°F. (150°C). The control black was an ISAF—HM (N—220) black having an iodine number of 116—120, a Densichron Tint (v. IRB 3) of 110—112, a DBP of 115—117, and a 24M4 of 97—101. The tires were placed on automobiles and driven under carefully controlled uniform test conditions for 7200 miles. The change in tread groove depth was measured and compared to the original depth to get a tread loss for each compound. The samples were compared to the control black arbitrarily assigned a Treadwear Index value of 100.

Another series of pilot plant and plant runs conducted as above resulted in production of blacks as shown in TABLE IV. Again it will be found that the given values for iodine number, tint and persistent structure (24M4) satisfy the relationships given above.

The values quoted for Runs PCX125 are those for two separately mixed batches of rubber/black compositions and, as is well known, no two separate batches will give exactly identical results in rubber tests.

5

10

15

20

25

30

35

30

5

10

15

20

25

35

PCX125 PCX125 1445A 1438A PCX125 WLX114 WLX114 X1382A BKX47 BKX47 BK					TABLE IV	≥			
17.3 19.1 10.1			PCX125 PCX125	1445A	1438A	1438A PCX125 WLX114 WLX11	4 X1382A	BKX47	
107.9 105.8 104.5 104.1 101.5 96.5 153.9 147.7 150.4 151.0 150.9 156.8 152.9 142.5 120.8 118.8 120.3 120.0 152.9 122.5 120.8 118.8 120.3 120.0 152.9 122.5 120.8 118.8 120.3 120.0 152.9 122.5 120.8 118.8 120.3 120.0 152.9 122.5 120.8 130.9 192.8 192.8 20 -260 -390 -340 -300 -100 -120 -30 20 -260 -390 -40 -100 -100 -120 -30 20 -260 -390 -450 -450 -450 -450 -450 20 -260 -390 -450 -450 -450 -450 -450 20 -20 -20 -20 -20 -20 20 -20 -20 -20 -20 -20 20 -20 -20 -20 -20 -20 20 -20 -20 -20 -20 20 -20 -20 -20 -20 20 -20 -20 -20 -20 20 -20 -20 -20 -20 20 -20 -20 -20 20 -20 -20 -20 20 -20 -20 -20 20 -20 -20 -20 20 -20 -20 -20 20 -20 -20 -20 20 -20 -20 -20 20 -20 -20	Iodine Number		91.3	88.8	92.5	83.8	89.3	84.4	
1539 1477 1504 1510 1509 1568 1529 1568 1529 1525 1203 1650	821		6.701	105.8	104.5	104.1	101.5	96.6	
NB #45 106.8 122.5 120.8 118.8 120.1 120.0 NIB #42 106.8 108.3 106.0 107.6 107.6 102.4 NIB #42 Mia.			153.9	147.7	150.4	151.0	150.9	156.8	
INB #3 106.8 106.9 107.6 107.6 102.4 101.8 106.8 106.0 107.6 107.6 102.4 10			6221	122.5	120.8	118.8	120.3	120.0	
V.IRB #44 Min. 20.1 20.5 18.9 19.8 18.7 V.IRB #44 Min. 30 -260 -390 -340 -350 -390 -410 30 -260 -390 -340 -100 -120 -90 30 -80 -90 -110 -100 -120 -90 STM D-1646-72 +32.4 +53.2 +16.0 +34.0 +560 +610 STM D-1646-72 +32.4 +23.2 +16.0 +34.0 +27.0 +16.0 STM D-1646-72 +32.4 +23.2 +16.0 +34.0 +27.0 +16.0 STM D-1646-72 -0.7 -0.8 -3.2 -2.9 -2.9 -0.7 -0.8 -1.0 -0.8 -3.7 -3.1 -3.5 17.IRB #4 Min. -1.0 -0.8 -3.7 -2.9 -2.9 80 -0.8 -3.2 -2.6 -0.9 -1.0 -3.0 80 -1.3 -	ASTM Dens. Tint v. IRB #3		106.8	108.3	106.0	107.6	104.2	102.4	
v.IRB #44 Min. 30 -260 -390 -340 -350 -410 -100 -120 -410 30 -80 -80 -80 -110 -100 -120 -90 30 +420 +380 +450 +590 +560 +610 STM D—1646—72 +32.4 +23.2 +16.0 +34.0 +27.0 +610 STM D—1646—72 +32.4 +23.2 +16.0 +34.0 +27.0 +16.0 STM D—1646—72 -0.7 -0.9 -0.5 -3.2 -2.9 -2.9 -0.7 -0.8 -0.5 -0.5 -3.7 -2.9 -2.9 -1.1 B #4 -1.0 -0.8 -3.7 -3.1 -3.5 -1.1 B #4 -1.2 -1.0 -0.9 -0.5 -2.9 -2.9 -2.9 -1.1 B #4 -1.2 -1.2 -2.6 -2.9 -2.9 -2.9 -2.9 -1.2 B #4 -1.3 -4.1 -3.7 -2.6 <t< td=""><td>Density, lbs/ft¹</td><td></td><td>19.4</td><td>20.1</td><td>20,5</td><td>18.9</td><td>19.8</td><td></td><td></td></t<>	Density, lbs/ft ¹		19.4	20.1	20,5	18.9	19.8		
30 -260 -390 -340 -350 -390 -410 30 -80 -80 -110 -100 -120 -90 30 $+420$ $+380$ $+450$ $+590$ $+560$ $+610$ STM D—1646—72 $+32.4$ $+23.2$ $+16.0$ $+34.0$ $+50$ $+610$ STM D—1646—72 -0.9 -0.5 -0.5 -3.2 -2.9 -2.9 -0.7 -0.9 -0.5 -3.2 -2.9 -2.9 -2.9 $\sqrt{3}$ $\sqrt{3}$ -1.0 -0.8 -3.7 -3.1 -3.5 $\sqrt{3}$ $\sqrt{4}$ -1.5 -4.2 -1.0 -2.6 -2.9 -2.9 $\sqrt{3}$ $\sqrt{4}$ -1.5 -4.2 -1.0 -2.6 -2.9 -2.9 -2.9 $\sqrt{3}$ $\sqrt{3}$ -3.2 -2.6 -2.9 -2.9 -2.9 -2.9 -2.9 -2.9		Min.							
30 -80 -110 -100 -120 -90 STM D— 1646 —72 $+320$ $+450$ $+590$ $+560$ $+610$ STM D— 1646 —72 $+32.4$ $+22.2$ $+16.0$ $+34.0$ $+27.0$ $+16.0$ STM D— 1646 —72 $+32.4$ $+22.2$ $+16.0$ $+34.0$ $+27.0$ $+16.0$ STM D— 1646 —72 -0.9 -0.5 -0.5 -2.9 -2.9 -0.7 -0.9 -0.5 -0.5 -2.9 -2.9 -0.8 -1.0 -0.8 -3.7 -3.1 -3.5 -0.8 -0.8 -3.2 -2.6 -0.9 -1.0 -3.0 -0.8 -0.8 -3.2 -2.6 -2.6 -2.5 -1.2 -0.8 -0.8 -1.0 -2.6 -2.6 -2.5 -1.2 -0.8 -0.8 -1.0 -2.6 -2.6 -2.5 -1.2 -0.8 -1.5	Tensile Strength	30	-260	-390	-340	-350	-390	410	
STM D—1646—72 +32.4 +23.2 +16.0 +34.0 +59.0 +56.0 +610 STM D—1646—72 +32.4 +23.2 +16.0 +34.0 +27.0 +16.0 -0.7 -0.9 -0.5 -3.2 -2.9 -2.9 -2.9 -0.8 -1.0 -0.8 -3.7 -3.1 -3.5 -1.1 -3.5 -3.6 -0.9 -1.0 -3.6 -1.2 -2.6 -2.6 -2.6 -2.6 -2.9 -2.9 -3.7 -3.1 -3.5 -3.8 -3.1 -3.5 -3.1 -3.5 -3.1 -3.5 -3.2 -2.9 -2.9 -3.2 -2.9 -2.9 -3.3 -3.1 -3.5 -3.4 -3.5 -2.6 -3.5 -1.2 -3.6 -3.0 -3.7 -3.1 -3.5 -3.8 -3.1 -3.8 -3.1 -3.8 -3.1 -3.9 -2.9 -3.1 -3.5 -3.1 -3.5 -3.1 -3.2 -3.5 -3.2 -3.3 -3.4 -3.5 -3.5	ag.	30	08-	8	-110	001	-120	8	
STM D—1646—72 +32.4 +23.2 +16.0 +34.0 +34.0 +27.0 + -0.7 -0.9 -0.5 -3.2 -2.9 -0.8 -1.0 -0.8 -3.7 -3.1 V.IRB #4 Min.	%00£	9	+420	+380	+450	065+	+560	+610	
The column The	.50°F. ASTM D—1646 Visc.	Ę	+32.4	+23.2	+16.0	+34.0	+27.0		
-0.8 -1.0 -0.8 -3.1 -3.1 -0.8 -3.2 -2.6 -0.9 -1.0 -1.5 -4.2 -1.0 -2.6 -2.5 +37 +41 +52 +40 +			-0.7	-0.9	-0.5	-3.2	-2.9		
1v. IRB #4 Min. 40 -0.8 -3.2 -2.6 -0.9 -1.0 % 40 -1.5 -4.2 -1.0 -2.6 -2.5 40 +37 +41 +52 +25 +40 +			8.0	-1.0	-0.8	-3.7	.3.1	-3.5	
40 -0.8 -3.2 -2.6 -0.9 -1.0 % 40 -1.5 -4.2 -1.0 -2.6 -2.5 40 +37 +41 +52 +25 +40 +		Min.							
% 40 -1.5 -4.2 -1.0 -2.6 -2.5 40 +37 +41 +52 +25 +40 +	4, %	\$	8.0-	-3.2	-2.6	6'07	-1.0		
40 +37 +41 +52 +25 +40	ebound, %	\$	-1.5	4	0'1	-2.6	-2.5		
	8U, °F.	4	+37	141	+52	+25	+40	\$7	

10

1,501,967

			TAI	BLE IV (TABLE IV (Continued)		
Run No		PCX125 PCX125	1445A	1438A	1438A PCX125 WLX114 WLX114 X1382A BKX47 BKX47	KX47 BKX4	ــــــــــــــــــــــــــــــــــــــ
ASTM Synthetic Rubber Recipe D-3191 v. IRB #4	Min.						
Tensile Strength	8	99	-130	-10	410 +-20	340	
Ultimate Elong.	8	-100	99	2.70	-110 -50 -	-120	
Modulus @ 300%	35	+980	+880	+870	+710 +740 +	+1060	
Modulus @ 300%	8	+980	+950	+840	+ 830 +	+1050	:-
Mooney @ 280°F. Min. Visc.		+21.7	+17.5	+19.3	+16.5 +17.0	+18.0	
3		-2.0	-1.0	-3.4	-5.25.3	-6.3	
		-3.2	-1.8	14.7	-5.9	4.7-	
Extrusion weight gm/m		37.1	37.4	36,	38.5 36.8	36.6	
gm/m, IRB #4		48.0	48.3	48.	48,4 50.2	48.4	•
% of IRB #4		77.3	77.4	75.	73.3	75.6	,
							-
							_

				TA	TABLE IV (Continued)	ontinued)						***************************************	11
Run No.—	:	PCX125 PCX125	CX125	1445A	1438A	1438A P	CX125 W	PCX125 WLX114 WLX114 X1382A	LX114 >		BKX47	BKX47	
Treadwear Recipe													
Parts Black		65	65	65	65	65	65	65	જ	65	65		
Parts Oil	Min,	31.25	31.25	31.25	31.25	46.25	46.25	31.25	46.25	31.25	31.25	46.25	
Tensile Strength	8	2920	3040	3060	3000	2270	2890	3240	2780	2960	3080	2700	
Ultimate Blong.	8	360	390	410	380	430	470	330	450	350	360	460	
Modulus @ 300%	8	2400	2200	2140	2260	1400	1650	2450	1680	2480	2520	1650	
Hardness, Shore A		29	8	89	69	61	8	89	8	89	65	ß	1
Mooney @ 280°F. Min Visc.		48.0	49.0	46.2	46.2	31,2	32.0	47.0	35.0	44.5	44.5	32.0	,501,
.		13.2	13.2	14.5	13.9	16.2	17.4	14.4	8.8	14.6	13.4	15.0	967
		15.2	15.0	16.7	16.0	18.2	19.6	16.6	21.2	16.7	15.6	17.0	
GH Rebound, %	4	54.8	54.8	53.6	53.0	21.6	56.4	55.8	54.2	56.2	55.6	53.7	
Firestone HBU, °F.												•	
Control	8	250	998	366	266	390	260	260	260	252	252	253	
Sample	\$	252	3 €1	262	270	260	252	259	248	257	345	243	
Extrusion, Wt., gm/m		34.5	34.8	34.7	32.8	35,6	38.0	35,5	38.4	33.2	32.6	36.0	
Extrusion, Diam., In.		0.250	0.242	0.243	0.232	0.250	0.258	0.251	0.260	0,240	0.260	0.250	
Tread Hardness		69	\$	89	69	19	B	2	29	69	69	99	
Treadwear Index		96	\$	100	\$	103	6	96	16	86	95	101	:
							-						11

12		1	,501	,967										12	2
	750	E9316		6	23.25	83		3400	370	7997	69	53.0	12.0	14,0	
	i	09316	1	53	23.25	95		3280	410	2180	\$	41.0	14.8	17.6	
s <u>9</u>	!	247 H9316	7	ئ	43.25	100		2670	400	1920	67	40.0	13.6	16.2	
	!	247 G9316	9	£5	53.25	절		2420	460	1450	8	30.0	16.9	19.4	
The above data are representative of data which we have obtained showing that we have produced a very high-structure (approximately 150 DBP) HAF-grade black having treadwear properties (Treadwear Index about 95—104) closely approximating our control black in our base case standard treadwear recipe. Frevious data obtained from testing of prior HAF blacks showed that as the DBP was increased from about 116 to 147 the Treadwear Index dropped from about 103 N—338 blacks are 100, 93 and 91 respectively. TABLE V shows the results of additional studies of varying the oil/black from Run No. 1382A. The control black was the ISAF—HM (N—220) control black described above.		247 F9316	'n	£7	63.25	93		2310	530	1180	8	24.2	16.8	19.7	
have out 150 DB about 95 about 95 about 95 about 160 about 170 abo	-	254 C9316	1	63	33,25	86		3100	420	2150	2	40.0	12.7	14.7	:
which we proximate at Index Case stands. Index of prior a prior a prior a bed above the ISAF		247 E9316	4	ß	33,25	106		2760	400	1980	65	42.0	13.6	15.7	;
o of data Treatwee our base our base our base four base for the American Haller of the American Americ	TABLE V	254 B9316		63	43.25	103		2750	460	1680	æ	28.5	8 51	. e	?
resentativ / high-stru operties black in testing of to 147 th vear Inde- ud 91 res esults of dwear rec	H	247 D9316		æ	43.25	, 10		2570	470	1510	29	30.0	2 2	7 91	18.0
ta are repreded a very dwear proceed a very dwear proceed from ined from all Tready all Tready all Tready (100, 93 and the repreded tready the representation).		247 C9316	74	Œ	53.25	95		2400	\$40	170	57	74.7	4 6	5.12 5.05	Z3.8
above date producting treating our data obtained and all our second from the control of the cont		247 B9316	-	. £3	43.25	46		2310	490	; ; ;	3	2 2	3 4	0.81	20.4
The that we he black he approxing was increte to about N-358 lefton Rublack debugging if from Rublack debugging the second secon		Cantrol	15	. %	31.25			2980	480	5 5	3	,	20.0	18.5	21.3
\$ 01							Min.	2	? ?	3 8	3 8		V 18C.		
		Sample No.	Potch No	Darts Black		rates on Treadwear Index		Tourist Steenedt	Teliance Strength	Offinate mong.	Modurus (# 300%	Hardness, Shore A	Mooney @ 280°F. Min. Visc.	* 2.	t _{3s}

13							1,501,9	67	*****	 		, , , , ,		. 1	13
254 E9416		55.6	257	35.9	0.250	71									
254 D9316		58.4	231	39.4	0.265	29									
247 H9316		47.7	281	32.8	0.236	8	٧n	10		15		8		25	
247 G9316		45.9	592	35.4	0.244	જ	ck/oil essent urved black Test arbon						same of 94.		. The
247 F9316		45.4	268	38.0	0,254	8	Figures 1 and 2 are isopleth drawings showing the results of carbon black/oil ing studies on a prior art black (N—339) and on the blacks, of the presentation, respectively. The Treadwear Index values (represented by the curved) were derived as described above and were compared with the control black is standard recipe (TABLE III). The Shore A Hardness (per ASTM Test hod 2240—68) is a standard industry property of cured rubber stack, "Carbon	k Loading phr" means the parts of carbon black per hundred parts of rubber its o prepare the overall composition. "Total Oil Loading phr" means the total is of extender oil (commonly used in rubber compounding and listed as offux I'v in the recine on TARIR IV) nor hundred parts of rubber used. These	cths show that our black will afford to a rubber compounder greater bility, in that for a given desired hardness and Treadwear Index, he can use a ter amount of earbon black and/or total oil loading.	The relationships shown in Figures 1 and 2 were surprising in that the present ks, although having a lower tint and therefore a lower expected Treadwear x than N—339, actually turned out to have higher Treadwear Index values	N-339,	dwear Inc tand, usir	ig to the	oost per r	596597 574.
254 C9316		\$.9	249	36.1	0.253	19	sults of ca e blacks, presented of with the refiness (pe	hundred ing phr' 1 pounding rts of rub	er compower Inde	rising in t ver expec Treadwea	ten using	for a Trea be other b	mpoundir Treadwe	identifies dollar	, 1968, p
ued) 247 E9316		52.0	261	36.3	0.248	89	ing the re and on th salues (rej compare ire A Hai	black per Oil Load ober com	nd Tread	were surp fore a lov e higher	en that w	loading, oil, On t	S and co	nt blacks cost is th	Y N Y
V (Contin 254 B9316		54.8	238	37.9	0.255	63	ings show N=339) in Index v and were The Sho	f carbon n. "Total ed in rui V) per hy	afford transfer and transfer an	s I and 2 ind there ut to hav	adings. an be see	simum oil 55 pbr of	ding of 8 ling of 70	the prese	, Inc., N.B. price
TABLE V (Continued) 247 254 2 D9316 B9316 E9		49.9	254	38.4	0.255	49	eth drawi t black () Treadwce ed above XLE III).	ne parts o empositio monly use	ack will desired h	in Figure For tint a	folack for nd 2, it c	r, the may f 65, was	plack load in oif load	one of III. The	Company filling F.C
247		48.2	192	41.8	0.267	59	are isoplar prior are lely. The asseribe (TAE)	k Loading phr" means the parts of case to prepare the overall composition. So extender oil (commonly used offux IV) in the recine on TABLE IV)	t our blu ragiven arbon bl	pa shown ving a lov actually	nge of oil gures 1 a	g of 85 ph ardness o	ld allow a	339 and TABLE	inderbilt the previ
247 B9316		52.1	232	47.3	0.286	85	s I and 2 idies on respective derived recorded r	ding phr" spare the xtender V in the	show that in that fo	lationship hough ha	broad rai	ck loading hore A h	acks at the following the follows the	for N-	R. T. V.
Control		49.6	243	45.2	0.278	88	Figures I and 2 are isopleth drawings showing the results of carbon black/oil loading studies on a prior art black (N—339) and on the blacks, of the present invention, respectively. The Treadwear Index values (represented by the curved lines) were derived as described above and were compared with the control black in the standard recipe (TABLE III). The Shore A Hardness (per ASTM Test Method 2240—68) is a standard industry property of cured rubber stock. "Carbon	Black Loading phr." means the parts of carbon black per hundred parts of rubber used to prepare the overall composition. "Total Oil Loading phr." means the total parts of extender oil (commonly used in rubber compounding and listed as Petroflux I.V in the recine on TARIA IV) nor hundred parts of rubber used. These	isopleths show that our black will afford to a rubbe flexibility, in that for a given desired hardness and Treadw greater amount of carbon black and/or total oil loading.	The relationships shown in Figures 1 and 2 were surprising in that the present blacks, although having a lower tint and therefore a lower expected Treadwear Index than N—339, actually turned out to have higher Treadwear Index values	hrough a Refer	earbon bla 33 and a S	oresent blandness o	comperies, for N—339 and one of the present blacks identified as Y—1303 compounded as per TABLE III. The compound cost is the dollar cost per pound in the following the compound of the compo	Handbook, R. T. Vanderbilt Company, Inc., N.Y., N.Y., 1968, pp. 596597. The ingredient cost was the prevailing F.O.B. price for Soptember, 1974.
	Min.	40	4				6	92		. 53 	-	8		25	~4.14
Sample No.—		GH Rebound	Firestone HBU	Extrusion, Wt., gm/m	Extrusion, Diam., In.	Initial Hardness		·							

1.	4				1	,501,9	967			, , , .						14	_
						PCX144A	150	27.1	730	110	17.5	1 1	†	71.2	84.5	162.2	118.5
						1509A	248.8	477.2	†	125	1 1	1		6.63	77.3	164.3	115.4
				νο 		1507A	250	475.4		210	1 1	2350	-3-10	8.89	79.4	154.6	114.5
	Compound Cost	0.2425	0.2293	II—VI are in the —93. Additional different iodine bination of high of these runs are alues for iodine ups given above.		1503D	244.5	461.5		200	! ! ! !	1 1	1	65.6	74.8	159.0	115.9
	Treadwear Index	93	\$	ote that the blacks in TABLES bear in the range of about 84 produce additional blacks of produce additions) and a comistent structures. The results will be found that the given ver (24M4) satisfy the relationsh		1503A	244.3	458		195	1	1	i i ! !	65.6	77.1	153.1	112.5
TABLEVI					VII	1513C	249.4	302,2	610	315	15	†	†	121.3	134,4	142.0	125.1
	Parts Oil	55	8		TABLE VII	1055A	248	311.6	1 1	310		0	01	111.0	117.5	156,9	125.0
	Parts Black	88	85	e skilled in the art will ne cries having iodine num it runs were made to (about 110—125 and 65 high permanent or pers TABLE VII. Again it int, and persistent structi		1498B	250.2	316.9	! ! ! !	335	1 1 1 1	830	310-	113.0	123.5	175.2	135.0
	Black	N-339	X1303	Those skilled in the N-300 series having i pilot plant runs were numbers (about 110—tins and high permanshown in TABLE VII.	,	1498A	250	315.9	1	340	1	1	1	116.9	124.3	175.5	133.8
				N—3 pilot snum show show		Run No.—	Air Rate, 1000 SCFH	Oil Rate, GPH(US)	Air Preheat, °F.	Oil Spray Pressure, psig	Air/gas ratio	Total reaction time, Milliseconds	Reaction time, feedstock to throat, milliseconds	Iodine Number	N, Surface Area	DBP	24M4

15							1,501,9	67							, , . .		15
	PCX144A	95.6	17.8	T-VHS													•
	1509.4	94.4	17.9	T-VHS													
	1507A	97.6	18.6	T-VHS		ıcks		\$ 6	1								
	1503D	92.7	18.0	T-VHS		nproved bla		PCX144A (T-VHS)		-860	-160	+550	+20	-1:1	-1.0	+27	
ntinued)	1503A	94.0	18.7	T-VHS		of the new in		1513C (ISAF—VHS)		-380	5,-	+250	+34	-5.3	4.0	+45	
TABLE VII (Continued)	1513C	114.5	19.8	ISAF— VHS		on sample	TABLE VIII		Min.	30	윲	30		\$	\$	\$	
TABI	1055A	110.7	17.4	ISAF— VHS		ber test data CXI44A.	TAB		B#4				₩.				
	[498B	109.6	17.5	ISAF VHS		II gives rub			92—73 v. IR	th	gation	%	1+4@212°1	*	% puno	J, ºF.	
	1498A	0.011	15.5	ISAF-VHS		TABLE VIII gives rubber test data on samples of the new improved blacks made in Runs 1513C and PCX144A.		Run No.	ASTM D-3192-73 v. IRB #4	Tensile Streng	Ultimate Esongation	Modulus @ 300%	Mooney, ML 1+4@ 212° P.	GH Rebound, %	Firestone Rebound, %	Firestone HBU, °F.	
	Run No.—	Tint v. 1RB #3	Density, lbs/ft3	Grade of Black										٠		-	

16

16

1,501,967

. ----

TABLE VIII (Continued)								
Run No.		I513C (ISAF—VHS)	PCX144A (T—VHS)					
ASTM Synthetic Rubber Recipe D—3191 y. IRB#4	Min,							
Tensile Strength	50	–60	-490					
Ultimate Elongation	50	80	-120					
Modulus @ 300%	35	+380	+850					
Modulus @ 300%	50	+620	+800					
Mooney, ML 1+4 @ 212°F. ASTM D164672		+29	+20					
Extrusion gm/m, IRB #4		· _11.5	-13.1					
% of IRB #4		76.7	73.5					
Treadwear Recipe	Min	<u>.</u>						
Parts Black		65	65					
Parts Oil		46.25	41.25					
Tensile Strength	30	2620	2890					
Ultimate Elongation	30	560	480					
Modulus @ 300%	30	1360	1310					
Hardness, Shore A		55	58					
Mooney, ML 1+4@212°F.		51	49					
GH Rebound, %	40	41.2	48.5					
Firestone HBU, °F. (Control; sample)	40	275	265;258					
Extrusion, Wt., gm/m		40	35.1					
Extrusion, Diam., Inches		.266	.250					
Tread Hardness		62	62					
Treadwear Index		99	92					

Note: The control was the same as the control of TABLE V.

The above data (TABLES VII and VIII) show that we have developed a new ISAF—VHS black which, when compounded with 14 additional parts of oil (46.25 parts total oil compared with 31.25 in our standard treadwear recipe), resulted in a Treadwear Index of 99. This compares favorably with the Treadwear Index of 100 with our control black at standard oil loading. This results from the combination of higher 24M4 and high tint.

The above data (TABLES VII and VIII) also show that we have developed a new T—VHS black which, when compounded with 10 additional parts of oil (41.25 total oil compared with 31.25 in our standard treadwear recipe), resulted in a Treadwear Index of 92. This compares favorably with a Treadwear Index of about

5

10

10

5

17	1,501,967									
4 	86—89 (at standard oil loading of 31.25 parts) for the closest prior art black T—HS (N—351). Again, this results from a higher 24M4 combined with a high tint as shown by the following typical values:									
5		24M4	Tint v. IRB #3	Treadwear Index (10 Additional Parts Oil)	5					
	T—H8 (N—351)	98	103	87						
	Our new T-VHS	115	95	92						
10	WHAT WE CLAIR 1. A family of grade (as hereinbefore defined relationships between ion structure (24M4) (as here	is of oil furnace i) within the ran dine number, tin	ige of 60—150, ai t (as hereinbefore	ving iodine numbers (I ₂) nd having the following defined), and persistent	10					
•	125.1-[exp][4.83274-0.0	33969(I ₂)]≤24M	4≤140.6[exp][4.9	04743—0.03054(I₂)]						
	and									
15	112.8-[exp][4.72852-0.0	26274(I ₂)l≤Tint≤	≤122.2[exp][4.80	471—0.026123(I ₂)]	15					
	range of 84—93. 3. The carbon black			number falls within the						
20		k of Claim I in	which the iodine	number falls within the	20					
	range of 65—75. 5. An oil furnace chereinbefore described and VII.			Claim I substantially as foregoing Tables II, IV						
25				accordance with Claim	25					
		Chartered Pr Enterpris Isambard B Portsmouth as	runel Road, POI 2AN, id London, WC1V (

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1978. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

1501967

COMPLETE SPECIFICATION

2 SHEETS This drawing is a reproduction of the Original on a reduced scale

Sheet 1

Apr. 13 2004 03:57PM P32

FROM: PHONE NO.: 7034184777

1501967

COMPLETE SPECIFICATION

2 SHEETS

This drawing is a reproduction of the Original on a reduced scale

Sheet 2

