Solutions to Exercises from "A Book of Abstract Algebra" by Charles C. Pinter

Eric Bailey

Contents

Chapter 2.	Operations	5
Chapter 3.	The Definition of Groups	15
Chapter 4.	Elementary Properties of Groups	23
Appendix.	Glossary	29

CHAPTER 2

Operations

A. Examples of Operations

- 1 $a*b = \sqrt{|ab|}$ is not an operation on \mathbb{Q} , because $2*1 = \sqrt{|2|}$, but $\sqrt{|2|} \notin \mathbb{Q}$.
- **2** $a*b=a\ln b$ is not an operation on $\mathbb{R}_{>0}$, because $\forall a,b\in\mathbb{R}_{>0}(b\leq 1\to a\ln b\not\in\mathbb{R}_{>0})$
- **3** If a*b is a root of the equation $x^2 a^2b^2 = 0$, * is not an operation on \mathbb{R} , because $\forall a, b \in \mathbb{R} (a \neq 0 \land b \neq 0 \rightarrow x = \pm ab)$
- **4** Subtraction is an operation on \mathbb{Z} , because $\forall a, b \in \mathbb{Z} (a b \in \mathbb{Z})$.
- **5** Subtraction is not an operation on $\mathbb{Z}_{\geq 0}$, because e.g. $0-1 \notin \mathbb{Z}_{\geq 0}$.
- **6** a * b = |a b| is an operation on $\mathbb{Z}_{\geq 0}$, because $\forall a, b \in \mathbb{Z}_{\geq 0}(|a b| \in \mathbb{Z}_{\geq 0})$.

B. Properties of Operations

- 1 x * y = x + 2y + 4
 - (i) * is not commutative.

$$x * y = x + 2y + 4$$
$$y * x = y + 2x + 4$$
$$x * y \neq y * x$$

(ii) * is not associative.

$$x*(y*z) = x*(y+2z+4)$$

$$= x + 2(y + 2z + 4) + 4$$

$$= x + 2y + 4z + 12$$

$$(x*y)*z = (x + 2y + 4)*z$$

$$= x + 2y + 4 + 2z + 4$$

$$= x + 2y + 2z + 8$$

$$x + 2y + 4z + 12 \neq x + 2y + 2z + 8$$

(iii) \mathbb{R} does not have an identity element with respect to *.

$$x*e = x$$

$$x + 2e + 4 = x$$

$$2e + 4 = 0$$

$$e = -2$$

$$e*x = x$$

$$e + 2x + 4 = x$$

$$e = -x - 4 \neq -2$$

- (iv) Since there is no identity element, there can be no inverses.
- **2** x * y = x + 2y xy
 - (i) * is not commutative.

$$x * y = x + 2y - xy$$
$$y * x = y + 2x - yx$$
$$x * y \neq y * x$$

(ii) * is not associative.

$$x*(y*z) = x*(y+2z-yz)$$

$$= x + 2(y + 2z - yz) - x(y + 2z - yz)$$

$$= x + 2y + 4z - 2yz - xy - 2xz + xyz$$

$$(x*y)*z = (x + 2y - xy)*z$$

$$= (x + 2y - xy) + 2z - (x + 2y - xy)z$$

$$= x + 2y + 2z - 2yz - xy - xz + xyz$$

$$x*(y*z) \neq (x*y)*z$$

(iii) \mathbb{R} does not have an identity element with respect to *.

$$x * e = x$$

$$x + 2e - xe = x$$

$$2e - xe = 0$$

$$e(2 - x) = 0$$

$$e = 0$$

$$e * x = x$$

$$e + 2x - ex = x$$

$$e + x - ex = 0$$

$$e(1 - x) = -x$$

$$e = -x(1 - x) \neq 0$$

- (iv) Since there is no identity element, there can be no inverses.
- **3** x * y = |x + y|
 - (i) * is commutative.

$$x * y = |x + y|$$

 $y * x = |y + x| = |x + y|$
 $x * y = y * x$

(ii) * is not associative.

$$\begin{split} x*(y*z) &= x*|y+z| = |x+|y+z||\\ (x*y)*z &= |x+y|*z = ||x+y|+z|\\ x &= 0, y < 0 \rightarrow x*(y*z) = |y+z|\\ (x*y)*z &= ||y|+z|\\ y &< 0 \rightarrow y \neq |y| \rightarrow |y+z| \neq ||y|+z|\\ x*(y*z) \neq (x*y)*z \end{split}$$

(iii) \mathbb{R} has an identity element with respect to *.

$$x * e = x$$
$$|x + e| = x$$
$$e = 0$$
$$e * x = x$$
$$|e + x| = x$$
$$e = 0$$

7

(iv) Every $x \in \mathbb{R}$ has an inverse with respect to *.

$$x * x' = 0$$

$$|x + x'| = 0$$

$$x' = -x$$

$$x * (-x) = |x - x| = 0$$

$$(-x) * x = |-x + x| = 0$$

$$x * x' = x' * x$$

4 x * y = |x - y|

(i) * is commutative.

$$x * y = |x - y|$$

$$y * x = |y - x|$$

$$x = y \rightarrow x * y = 0$$

$$y * x = 0$$

If x < y then x = y + k, and:

$$x * y = |(y + k) - y| = |k|$$

$$y * x = |y - (y + k)| = |-k| = |k|$$

$$x * y = y * x$$

If x = y:

$$x * y = |y - y| = 0$$
$$y * x = |y - y| = 0$$
$$x * y = y * x$$

If x > y then y = x + k, and:

$$x * y = |x - (x + k)| = |-k| = |k|$$

 $y * x = |(x + k) - x| = |k|$
 $x * y = y * x$

(ii) * is not associative.

$$x * (y * z) = x * |y - z|$$

= $|x - |y - z||$
 $(x * y) * z = |x - y| * z$
= $||x - y| - z|$

If x = 0 and y < 0:

$$x * (y * z) = |-|y - z|| = |y - z| = \sqrt{(y - z)^2}$$

$$(x * y) * z = ||-y| - z| = ||y| - z| = \sqrt{(|y| - z)^2}$$

$$|y| \neq y$$

$$x * (y * z) \neq (x * y) * z$$

(iii) \mathbb{R} does not have an identity element with respect to *.

$$x * e = x$$
$$|x - e| = x$$
$$e = 2e$$

(iv) Since there is no identity element, there can be no inverses.

5
$$x * y = xy + 1$$

(i) * is commutative.

$$x * y = xy + 1$$

 $y * x = yx + 1 = xy + 1$
 $x * y = y * x$

(ii) * is not associative.

$$x * (y * z) = x * (yz + 1)$$

$$= x(yz + 1) + 1 = xyz + x + 1$$

$$(x * y) * z = (xy + 1) * z$$

$$= (xy + 1)z + 1 = xyz + z + 1$$

$$x * (y * z) \neq (x * y) * z$$

(iii) \mathbb{R} does not have an identity element with respect to *.

$$x*e = x$$

$$xe + 1 = x$$

$$xe = x - 1$$

$$x = 1 - \frac{1}{x}$$

- (iv) Since there is no identity element, there can be no inverses.
- 6 $x * y = \max\{x, y\}$ = the larger of the two numbers x and y
 - (i) * is commutative.

$$x * y = \max \{ x, y \}$$

 $y * x = \max \{ y, x \} = \max \{ x, y \}$
 $x * y = y * x$

(ii) * is associative.

$$\begin{split} x*(y*z) &= x*\max \{\, y,z \,\} \\ &= \max \{\, x, \max \{\, y,z \,\} \,\} = \max \{\, x,y,z \,\} \\ (x*y)*z &= (\max \{\, x,y \,\})*z \\ &= \max \{\, \max \{\, x,y \,\} \,,z \,\} = \max \{\, x,y,z \,\} \\ x*(y*z) &= (x*y)*z \end{split}$$

(iii) \mathbb{R} does not have an identity element with respect to *.

$$x*e = x$$

$$\max \{ x, e \} = x$$

$$e = \{ n \in \mathbb{R} : n \le x \}$$

- (iv) Since there is no identity element, there can be no inverses. 7 $x*y=\frac{xy}{x+y+1}$
- - (i) * is commutative.

$$x * y = \frac{xy}{x+y+1}$$

$$y * x = \frac{yx}{y+x+1} = \frac{xy}{x+y+1}$$

$$x * y = y * x$$

9

Table 4. 0_4

(ii) * is associative.

$$x*(y*z) = x*(\frac{yz}{y+z+1})$$

$$= \frac{\frac{xyz}{y+z+1}}{x+\frac{yz}{y+z+1}+1}$$

$$= \frac{xyz}{x(y+z+1)+yz+(y+z+1)}$$

$$= \frac{xyz}{xy+xz+yz+x+y+z+1}$$

$$(x*y)*z = (\frac{xy}{x+y+1})*z$$

$$= \frac{\frac{xyz}{x+y+1}}{\frac{xy}{x+y+1}+z+1}$$

$$= \frac{xyz}{xy+z(x+y+1)+z+(x+y+1)}$$

$$= \frac{xyz}{xy+xz+yz+x+y+z+1}$$

$$x*(y*z) = (x*y)*z$$

(iii) \mathbb{R} does not have an identity element with respect to *.

$$x * e = x$$

$$\frac{xe}{x + e + 1} = x$$

$$xe = x(x + e + 1)$$

$$e = e + x + 1$$

Table 2. 0_2

(iv) Since there is no identity element, there can be no inverses.

C. Operations on a Two-Element Set

Let A be the two-element set $A = \{a, b\}$. TABLE 1. 0_1

1	$ \begin{array}{c} (x,y) \\ (a,a) \\ (a,b) \\ (b,a) \end{array} $	$ \begin{vmatrix} x * y \\ a \\ a \\ a \end{vmatrix} $	(a,b) (b,a)	$\frac{x*y}{a}$	$ \begin{array}{c} (x,y) \\ (a,a) \\ (a,b) \\ (b,a) \end{array} $	$ \begin{array}{c} x * y \\ a \\ b \end{array} $	(b,a)	$ \begin{array}{c} x * y \\ a \\ b \\ d \end{array} $
	(b, b)	a	(b,b)	b	(b,b)	$\mid a \mid$	(b,b)	b
		Table 5. 0_5	·	Table 6. 0_6		Table 7. 0_7		Table 8. 0_8

Table 3. 0_3

(x, y)	x * y	(x,y)	x * y	(x, y)	x * y	(x,y)	x*y
(a,a)	a	(a,a)	a	(a,a)	a	(a,a)	a
(a,b)	b	(a,b)	b	(a,b)	b	(a,b)	b
(b,a)	a	(b,a)	a	(b,a)	b	(b,a)	b
(b,b)	a	(b,b)	b	(b,b)	a	(b,b)	b

Table 9. 0_9

Table 10. 0_{10}

Table 11. 0_{11}

Table 12. 0_1

(x, y)	x * y		
(a,a)	b		
(a,b)	a		
(b,a) (b,b)	b		
(b,b)	a		
	TABLE	15.	0

$$\begin{array}{c|cc} (x,y) & x*y \\ \hline (a,a) & b \\ (a,b) & a \\ (b,a) & b \\ (b,b) & b \\ \end{array}$$

Table 16. 0_1 15

2 Commutativity

- 0_1 is commutative: a * b = a = b * a
- 0_2 is commutative: a * b = a = b * a
- 0_3 is not commutative: $a * b = a \neq b = b * a$
- 0_4 is not commutative: $a * b = a \neq b = b * a$
- 0_5 is not commutative: $a * b = b \neq a = b * a$
- 0_6 is not commutative: $a * b = b \neq a = b * a$
- 0_7 is commutative: a * b = b = b * a
- 0_8 is commutative: a * b = b = b * a
- 0_9 is commutative: a * b = a = b * a
- 0_{10} is commutative: a * b = a = b * a
- 0_{11} is not commutative: $a * b = a \neq b = b * a$
- 0_{12} is not commutative: $a * b = a \neq b = b * a$
- 0_{13} is not commutative: $a * b = b \neq a = b * a$
- 0_{14} is not commutative: $a * b = b \neq a = b * a$
- 0_{15} is commutative: a * b = b = b * a
- 0_{16} is commutative: a * b = b = b * a

3 Associativity

• 0_1 is associative:

$$\forall x, y \in A(x * y = a \to x * (y * z) = x * a = a = a * z = (x * y) * z)$$

• 0_2 is associative.

$$a*(a*a) = a*a = (a*a)*a$$

$$a*(a*b) = a*a = a*b = (a*a)*b$$

$$a*(b*a) = a*a = (a*b)*a$$

$$a*(b*b) = a*b = (a*b)*b$$

$$b*(a*a) = b*a = a*a = (b*a)*a$$

$$b*(a*b) = b*a = a*b = (b*a)*b$$

$$b*(b*a) = b*a = (b*b)*a$$

$$b*(b*b) = b*b = (b*b)*a$$

• 0_3 is not associative: $b * (a * b) = b * a = b \neq a = b * b = (b * a) * b$

11

• 0_4 is associative.

$$a*(a*a) = a*a = (a*a)*a$$

$$a*(a*b) = a*a = a*b = (a*a)*b$$

$$a*(b*a) = a*b = a*a = (a*b)*a$$

$$a*(b*b) = a*b = (a*b)*b$$

$$b*(a*a) = b*a = (b*a)*a$$

$$b*(a*b) = b*a = b*b = (b*a)*b$$

$$b*(b*a) = b*b = b*a = (b*b)*a$$

- 0_5 is not associative: $b * (a * b) = b * b = a \neq b = a * b = (b * a) * b$
- 0_6 is associative.

$$a*(a*a) = a*a = (a*a)*a$$

$$a*(a*b) = a*b = (a*a)*b$$

$$a*(b*a) = a*a = b*a = (a*b)*a$$

$$a*(b*b) = a*b = (a*b)*b$$

$$b*(a*a) = b*a = (b*a)*a$$

$$b*(a*b) = b*b = (b*a)*b$$

$$b*(b*a) = b*a = (b*b)*a$$

$$b*(b*b) = b*b = (b*b)*a$$

• 0_7 is associative.

$$a*(a*a) = a*a = (a*a)*a$$

$$a*(a*b) = a*b = (a*a)*b$$

$$a*(b*a) = a*b = b*a = (a*b)*a$$

$$a*(b*b) = a*a = b*b = (a*b)*b$$

$$b*(a*a) = b*a = (b*a)*a$$

$$b*(a*b) = b*b = (b*a)*b$$

$$b*(b*a) = b*b = a*a = (b*b)*a$$

$$b*(b*b) = b*a = a*b = (b*b)*a$$

• 0_8 is associative.

$$a*(a*a) = a*a = (a*a)*a$$

$$a*(a*b) = a*b = (a*a)*b$$

$$a*(b*a) = a*b = b*a = (a*b)*a$$

$$a*(b*b) = a*b = b*b = (a*b)*b$$

$$b*(a*a) = b*a = (b*a)*a$$

$$b*(a*b) = b*b = (b*a)*b$$

$$b*(b*a) = b*b = b*a = (b*b)*a$$

$$b*(b*b) = b*b = (b*b)*b$$

• 0_9 is not associative: $a * (a * b) = a * a = b \neq a = b * b = (a * a) * b$

• 0_{10} is associative.

$$a*(a*a) = a*b = b*a = (a*a)*a$$
 $a*(a*b) = a*a = b*b = (a*a)*b$
 $a*(b*a) = a*a = (a*b)*a$
 $a*(b*b) = a*b = (a*b)*b$
 $b*(a*a) = b*b = a*a = (b*a)*a$
 $b*(a*b) = b*a = a*b = (b*a)*b$
 $b*(b*a) = b*a = (b*b)*a$

- 0_{11} is not associative: $a * (a * a) = a * b = a \neq b = b * a = (a * a) * a$
- 0_{12} is not associative: $a * (b * a) = a * b = a \neq b = a * a = (a * b) * a$
- 0_{13} is not associative: $a * (a * a) = a * b = b \neq a = b * a = (a * a) * a$
- 0_{14} is not associative: $a * (b * a) = a * a = b \neq a = b * a = (a * b) * a$
- 0_{15} is not associative: $a * (a * a) = a * b = b \neq a = b * b = (a * a) * b$
- 0_{16} is associative:

$$\forall x, y \in A(x * y = b \to x * (y * z) = x * b = b = b * z = (x * y) * z)$$

4 Identity

- A does not have an identity element with respect to 0_1 .
- A has an identity element with respect to 0_2 .

$$x * e = x$$
 $a * b = a$
 $b * b = b$
 $e = b$
 $e * x = x$
 $b * a = a$
 $b * b = b$
 $e = b$

- A does not have an identity element with respect to 0_3 .
- A does not have an identity element with respect to 0_4 .
- A does not have an identity element with respect to 0_5 .
- A does not have an identity element with respect to 0_6 .
- A does not have an identity element with respect to 0_7 .
- A has an identity element with respect to 0_8 .

$$x * e = x$$

$$a * a = a$$

$$b * a = b$$

$$e = a$$

$$e * x = x$$

$$a * a = a$$

$$a * b = b$$

$$e = a$$

• A does not have an identity element with respect to 0_9 .

13

• A has an identity element with respect to 0_{10} .

$$x * e = x$$
 $a * b = a$
 $b * b = b$
 $e = b$
 $e * x = x$
 $b * a = a$
 $b * b = b$
 $e = b$

- A does not have an identity element with respect to 0_{11} .
- A does not have an identity element with respect to 0_{12} .
- A does not have an identity element with respect to 0_{13} .
- A does not have an identity element with respect to 0_{14} .
- A does not have an identity element with respect to 0_{15} .
- A does not have an identity element with respect to 0_{16} .
- **5** Since A only has identity elements with respect to 0_2 , 0_8 , and 0_{10} , the rest cannot have inverses. As it turns out, with respect to those three operations, it is not the case that every $x \in A$ has an inverse.

D. Automata: The Algebra of Input/Output Sequences

Let A be an alphabet and A^* be the set of all sequences of symbols in the alphabet A. There is an operation on A^* called *concatenation*: If **a** and **b** are in A^* , say $\mathbf{a} = a_1 a_2 ... a_n$ and $\mathbf{b} = b_1 b_2 ... b_m$, then

$$\mathbf{ab} = a_1 a_2 ... a_n b_1 b_2 ... b_m$$

The symbol λ denotes the empty sequence.

1 Concatenation is associative.

$$a(bc) = a(b_1b_2...b_mc_1c_2...c_k) = a_1a_2...a_nb_1b_2...b_mc_1c_2...c_k$$

$$(ab)c = (a_1a_2...a_nb_1b_2...b_m)c = a_1a_2...a_nb_1b_2...b_mc_1c_2...c_k$$

$$a(bc) = (ab)c$$

2 Concatenation is not commutative.

$$ab = a_1 a_2 \dots a_n b_1 b_2 \dots b_m$$
$$ba = b_1 b_2 \dots b_m a_1 a_2 \dots a_n$$
$$ab \neq ba$$

3 λ is the identity element for concatenation: $x\lambda = \lambda x = x$

The Definition of Groups

A. Examples of Abelian Groups

- $\mathbf{1} \ \langle \mathbb{R}, x * y = x + y + k \rangle$
 - (i) * is commutative: x * y = x + y + k = y + x + k = y * x
 - (ii) * is associative.

$$x(yz) = x(y + z + k) = x + y + z + 2k$$

 $(xy)z = (x + y + k)z = (xy)z$
 $x(yz) = (xy)z$

(iii) \mathbb{R} has an identity element with respect to *.

$$xe = x$$

$$x + e + k = x$$

$$e = -k$$

$$(-k)x = x$$

$$-k + x + k = x$$

(iv) $\forall x \in \mathbb{R}(\exists x' \in \mathbb{R}(x * x' = -k))$

$$xx' = -k$$

$$x + x' + k = -k$$

$$x' = -x - 2k$$

x'x = xx' due to commutativity

- $2 \ \langle \mathbb{R}^*, x * y = \frac{xy}{2} \rangle$
 - (i) * is commutative: $x * y = \frac{xy}{2} = \frac{yx}{2} = y * x$
 - (ii) * is associative.

$$x*(y*z) = x*(\frac{yz}{2}) = \frac{xyz}{4}$$
$$(x*y)*z = (\frac{xy}{2})*z = \frac{xyz}{4}$$

(iii) \mathbb{R}^* has an identity element with respect to *.

$$x * e = \frac{xe}{2} = \frac{ex}{2} = e * x = x$$
$$e = 2$$

(iv) $\forall x \in \mathbb{R}(\exists x' \in \mathbb{R}(x * x' = 2))$

$$x * x' = \frac{xx'}{2} = \frac{x'x}{2} = x' * x = e = 2$$

 $x' = \frac{4}{2}$

- **3** $\{ \{ x \in \mathbb{R} : x \neq -1 \}, x * y = x + y + xy \}$
 - (i) * is commutative: x * y = x + y + xy = y + x + yx = y * x
 - (ii) * is associative.

$$x*(y*z) = x*(y+z+yz) = x + (y+z+yz) + x(y+z+yz) = x + y + z + xy + xz + yz + xyz$$

$$(x*y)*z = (x+y+xy)*z = (x+y+xy) + z + (x+y+xy)z = x + y + z + xy + xz + yz + xyz$$

(iii) $\{x \in \mathbb{R} : x \neq -1\}$ has an identity element with respect to *.

$$x * e = x + e + xe = e + x + ex = e * x = x$$

 $e(x + 1) = 0$
 $e = 0$

(iv) Every element of $\{x \in \mathbb{R} : x \neq -1\}$ has an inverse with respect to *.

$$x * x' = x + x' + xx' = x' + x + x'x = e = 0$$

 $x'(x+1) = -x$
 $x' = -\frac{x}{x+1}$

- $\begin{array}{l} \textbf{4} \ \left< \left\{ \, x \in \mathbb{R} : -1 < x < 1 \, \right\}, x * y = \frac{x + y}{xy + 1} \right> \\ \text{(i) * is commutative: } x * y = \frac{x + y}{xy + 1} = \frac{y + x}{yx + 1} = y * x \end{array}$
 - (ii) * is associative.

$$x * (y * z) = x * (\frac{y+z}{yz+1}) = \frac{x + (\frac{y+z}{yz+1})}{x(\frac{y+z}{yz+1}) + 1} = \frac{xyz + x + y + z}{xy + xz + yz + 1}$$
$$(x * y) * z = \frac{x+y}{xy+1} * z = \frac{(\frac{x+y}{xy+1}) + z}{(\frac{x+y}{xy+1})z + 1} = \frac{x+y+z+xyz}{xy + yz + xz + 1}$$

(iii) $\{x \in \mathbb{R} : -1 < x < 1\}$ has an identity element w.r.t. *.

$$x * e = \frac{x + e}{xe + 1} = x$$

$$x + e = x(xe + 1)$$

$$e = ex^{2}$$

$$e(1 - x^{2}) = 0$$

$$e = 0$$

$$x * 0 = \frac{x + 0}{(x \times 0) + 1} = x = \frac{0 + x}{0x + 1} = 0 * x$$

(iv) Every element of $\{x \in \mathbb{R} : -1 < x < 1\}$ has an inverse with respect to *.

$$x * x' = \frac{x + x'}{xx' + 1} = 0;$$
 $x + x' = 0;$ $x' = -x$
 $x * (-x) = \frac{x - x}{x(-x) + 1} = 0 = \frac{-x + x}{-x^2 + 1} = (-x) * x$

- B. Groups on the Set $\mathbb{R} \times \mathbb{R}$
 - **1** (a,b)*(c,d) = (ad + bc,bd), on the set $\{(x,y) \in \mathbb{R} \times \mathbb{R} : y \neq 0\}$
 - (i) * is commutative.

$$(c,d) * (a,b) = (cb + da, db)$$

= $(ad + bc, bd)$
= $(a,b) * (c,d)$

(ii) * is associative.

$$(a,b) * [(c,d) * (e,f)] = (a,b) * (cf + de, df)$$

= $(adf + bcf + bde, bdf)$
= $(ad + bc, bd) * (e, f)$
= $[(a,b) * (c,d)] * (e,f)$

(iii)
$$(e_1, e_2) = (0, 1)$$

$$(a,b) * (e_1, e_2) = (ae_2 + be_1, be_2)$$

= (a,b)

$$be_2 = b$$
$$e_2 = 1$$

$$ae_2 + be_1 = a$$

$$a + be_1 = a$$

$$e_1 = 0$$

(iv)
$$(a', b') = (\frac{-a}{b^2}, \frac{1}{b})$$

$$(a,b)*(a',b') = (ab' + ba',bb')$$

= (0,1)

$$bb' = 1$$

$$b' = \frac{1}{b}$$

$$ab' + ba' = 0$$

$$\frac{a}{b} + ba' = 0$$

$$ba' = \frac{-a}{b}$$

$$a' = \frac{-a}{b^2}$$

$$(a,b) * \left(\frac{-a}{b^2}, \frac{1}{b}\right) = \left(\frac{a}{b} + \frac{-a}{b}, b\left(\frac{1}{b}\right)\right)$$
$$= (0,1)$$

- **2** (a,b)*(c,d) = (ac,bc+d), on the set $\{(x,y) \in \mathbb{R} \times \mathbb{R} : x \neq 0\}$
 - (i) * is not commutative: $(c, d) * (a, b) = (ca, da + b) \neq (a, b) * (c, d)$
 - (ii) * is associative.

$$[(a,b)*(c,d)]*(e,f) = (ac,bc+d)*(e,f)$$

$$= (ace,bce+de+f)$$

$$= (a,b)*(ce,de+f)$$

$$= (a,b)*[(c,d)*(e,f)]$$

(iii)
$$(e_1, e_2) = (1, 0)$$

$$(a,b)*(e_1,e_2) = (ae_1,be_1+e_2)$$

= (a,b)

$$ae_1 = a$$

$$e_1 = 1$$

$$be_1 + e_2 = b$$

$$b + e_2 = b$$

$$e_2 = 0$$

(iv)
$$(a', b') = (\frac{1}{a}, \frac{-b}{a})$$

 $(a, b) * (a', b') = (a, b) * (a', b')$

$$(a,b)*(a',b') = (aa',ba'+b')$$

= (1,0)

$$aa' = 1$$
$$a' = \frac{1}{a}$$

$$ba' + b' = 0$$

$$\frac{b}{a} + b' = 0$$

$$b' = \frac{-b}{a}$$

$$(a,b) * (\frac{1}{a}, \frac{-b}{a}) = (\frac{a}{a}, \frac{b}{a} - \frac{b}{a})$$

- **3** (a,b)*(c,d)=(ac,bc+d), on the set $\{(x,y)\in\mathbb{R}\times\mathbb{R}\}$
 - (i) * is not commutative, as per 2(i).
 - (ii) * is associative, as per 2(ii).
 - (iii) $(e_1, e_2) = (1, 0)$, as per 2(iii).
 - (iv) a' is not defined $\forall a \in \mathbb{R}$, notably when a = 0.
- **4** (a,b)*(c,d) = (ac-bd,ad+bc), on the set $\{(x,y) \in (\mathbb{R} \times \mathbb{R}) \setminus \{(0,0)\}\}$
 - (i) * is commutative.

$$(c,d) * (a,b) = (ca - db, cb + da)$$

= $(ac - db, ad + bc)$
= $(a,b) * (c,d)$

(ii) * is associative.

$$\begin{split} (a,b)*[(c,d)*(e,f)] &= (ac-bd,ad+bc)*(ce-df,cf+de) \\ &= (a(ce-df)-b(cf+de),a(cf+de)+b(ce-df)) \\ &= (ace-adf-bcf-bde,acf+ade+bce-bdf) \\ &= (e(ac-bd)-f(ad+bc),f(ac-bd)+e(ad+bc)) \\ &= (ac-bd,ad+bc)*(e,f) \\ &= [(a,b)*(c,d)]*(e,f) \end{split}$$

(iii) $(e_1, e_2) = (?,?)$

$$(a,b)*(e_1,e_2) = (ae_1 - be_2, ae_2 + be_1)$$

= (a,b)

$$ae_2 + be_1 = b$$

$$be_1 = b - ae_2$$

$$e_1 = 1 - \frac{ae_2}{b}$$

$$ae_1 - be_2 = a$$
$$-be_2 = a - ae_1$$
$$be_2 = ae_1 - a$$
$$e_2 = \frac{ae_1 - a}{b}$$

C. Groups of Subsets of a Subset

1 The identity element with respect to the operation + is \emptyset .

$$A + I = (A - I) \cup (I - A) = A$$
$$= (A - \emptyset) \cup (I - \emptyset)$$

$$I = \emptyset$$

2 $\langle 2^D, + \rangle$ is a group, since $\forall A \in 2^D, A^{-1} = A$.

$$A + A^{-1} = \emptyset$$

$$(A - A^{-1}) \cup (A^{-1} - A) = \emptyset$$

$$A - A^{-1} = A^{-1} - A = \emptyset$$

$$A^{-1} = A$$

3 Let $D = \{ a, b, c \}$.

$$2^{D} = \{ \emptyset, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ a, c \}, \{ b, c \}, \{ a, b, c \} \}$$
 Table 1. $\langle 2^{D}, + \rangle$

+	Ø	$\{a\}$	$\{\ b\ \}$	$\{ c \}$	$\{\ a,b\ \}$	$\{a,c\}$	$\set{b,c}$	$\{a,b,c\}$
Ø	Ø	{ a }	$\{b\}$	$\{c\}$	$\{a,b\}$	$\{a,c\}$	$\{b,c\}$	$\{a,b,c\}$
$\{a\}$	$\{a\}$	Ø	$\Set{a,b}$	$\{ a, c \}$	$\{\ b\ \}$	$\{\ c\ \}$	$\{a,b,c\}$	$\set{b,c}$
$\{\ b\ \}$	$\{b\}$	$\{a,b\}$	Ø	$\set{b,c}$	$\{a\}$	$\{a,b,c\}$	$\{ c \}$	$\{a,c\}$
$\{\ c\ \}$	$\{ c \}$	$\{ a, c \}$	$\set{b,c}$	Ø	$\{a,b,c\}$	$\{a\}$	$\{\ b\ \}$	$\{a,b\}$
$\{a,b\}$	$\{a,b\}$	$\{\ b\ \}$	$\{a\}$	$\{a,b,c\}$	Ø	$\set{b,c}$	$\{a,c\}$	\Set{c}
$\{a,c\}$	$\{a,c\}$	$\{ c \}$	$\{a,b,c\}$	$\{a\}$	$\set{b,c}$	Ø	$\{ a, b \}$	\Set{b}
$\Set{b,c}$	$\set{b,c}$	$\{a,b,c\}$	$\{ c \}$	$\{\ b\ \}$	$\{a,c\}$	$\{a,b\}$	Ø	$\{a\}$
$\set{a,b,c}$	$\{a,b,c\}$	$\set{b,c}$	$\{a,c\}$	$\{a,b\}$	$\{ c \}$	$\{\ b\ \}$	$\{a\}$	Ø

D. A Checkerboard Game

Table 2.
$$\langle G, * \rangle$$

As shown in the Cayley table above, the identity element is I and every element is its own inverse. Having shown that and granting associativity, $\langle G, * \rangle$ is a group.

E. A Coin Game

Table 3. $\langle G, * \rangle$

*	$\mid I \mid$	M_1	M_2	M_3	M_4	M_5	M_6	M_7
\overline{I}	I	M_1	M_2	M_3	M_4	M_5	M_6	M_7
M_1	M_1	I	M_3	M_2	M_5	M_4	M_7	M_6
M_2	M_2	M_2	I	M_1	M_{c}	M_{7}	M_{A}	$M_{\scriptscriptstyle E}$
M_3	M_3	M_2	M_1	I	M_7	M_6	M_5	M_4
M_4	M_4	M_6	M_5	M_7	I	M_2	M_1	M_3
M_5	M_5	M_7	M_4	M_6	M_1	M_3	I	M_2
M_6	M_6	M_4	M_7	M_5	M_2	I	M_3	M_1
M_7	M_7	M_5	M_6	M_4	M_3	M_1	M_2	I

As shown in the Cayley table above, the identity element is I and every element is invertible. Having shown that and granting associativity, $\langle G, * \rangle$ is a group. It is not commutative, because, for example $M_6 * M_4 = M_2$, while $M_4 * M_6 = M_1$, so $M_6 * M_4 \neq M_4 * M_6$.

FIGURE 1. $\langle r, s, t \mid r^2, s^2, t^2, (rs)^4, (st)^3, (rt)^2 \rangle$

F. Groups in Binary Codes

1 $(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_n) = (b_1, b_2, ..., b_n) + (a_1, a_2, ..., a_n)$, since the left-hand side is equivalent to $(a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$, which by commutativity is equivalent to $(b_1 + a_1, b_2 + a_2, ..., b_n + a_n)$, which is equivalent to $(b_1, b_2, ..., b_n) + (a_1, a_2, ..., a_n)$.

2

$$1 + (1+1) = 1 + 0 = 1 = 0 + 1 = (1+1) + 1$$

$$1 + (1+0) = 1 + 1 = 0 = 0 + 0 = (1+1) + 0$$

$$1 + (0+1) = 1 + 1 = 0 = 1 + 1 = (1+0) + 1$$

$$0 + (1+1) = 0 + 0 = 0 = 1 + 1 = (0+1) + 1$$

$$1 + (0+0) = 1 + 0 = 1 = 1 + 0 = (1+0) + 0$$

$$0 + (0+1) = 0 + 1 = 1 = 0 + 1 = (0+0) + 1$$

$$0 + (1+0) = 0 + 1 = 1 = 1 + 0 = (0+1) + 0$$

$$0 + (0+0) = 0 + 0 = 0 = 0 + 0 = (0+0) + 0$$

3

$$\begin{aligned} (a_1,a_2,...,a_n) + [(b_1,b_2,...,b_n) + (c_1,c_2,...,c_n)] &= (a_1,a_2,...,a_n) + (b_1+c_1,b_2+c_2,...,b_n+c_n) \\ &= (a_1+b_1+c_1,a_2+b_2+c_2,...,a_n+b_n+c_n) \\ &= (a_1+b_1,a_2+b_2,...,a_n+b_n) + (c_1,c_2,...,c_n) \\ &= [(a_1,a_2,...,a_n) + (b_1,b_2,...,b_n)] + (c_1,c_2,...,c_n) \end{aligned}$$

- 4 The identity element of \mathbb{B}^n , that is, the identity element for adding words on length n, is 0^n .
- **5** The inverse, with respect to word addition, of any word $(a_1,...,a_n)$ is $(a_1,...,a_n)$.
- 6 $\mathbf{a} + \mathbf{b} = \mathbf{a} + (-\mathbf{b})$, since $\mathbf{b} = -\mathbf{b}$. Thus $\mathbf{a} + \mathbf{b} = \mathbf{a} \mathbf{b}$.

7

$$\mathbf{a} + \mathbf{b} = \mathbf{c}$$

$$\mathbf{a} + (-\mathbf{b}) = \mathbf{c}$$

$$\mathbf{a} - \mathbf{b} = \mathbf{c}$$

$$\mathbf{a} = \mathbf{b} + \mathbf{c}$$

G. Theory of Coding: Maximum-Likelihood Decoding

Table 4. Parity check equations in C_1

	C_1	a_4	$a_1 + a_3$	$a_4 = a_1 + a_3$	a_5	$a_1 + a_2 + a_3$	$a_5 = a_1 + a_2 + a_3$
	00000	0	0 + 0	✓	0	0 + 0 + 0	\checkmark
	00111	1	0 + 1	\checkmark	1	0 + 0 + 1	\checkmark
	01001	0	0 + 0	\checkmark	1	0 + 1 + 0	\checkmark
1	01110	1	0 + 1	\checkmark	0	0 + 1 + 1	\checkmark
	10011	1	1 + 0	\checkmark	1	1 + 0 + 0	\checkmark
	10100	0	1 + 1	\checkmark	0	1 + 0 + 1	\checkmark
	11010	1	1 + 0	\checkmark	0	1 + 1 + 0	\checkmark
	11101	0	1 + 1	\checkmark	1	1 + 1 + 1	\checkmark

2 (a)

 $C_2 = \{\,000000, 001001, 010111, 011110, 100011, 101010, 110000, 111101\,\}$

Table 5. Distance in C_2

	$d(\mathbf{a}, \mathbf{b})$	000000	001001	010111	011110	100011	101010	110000	111101
	000000		2	4	4	3	3	2	5
	001001	2		4	4	3	3	4	3
	010111	4	4		2	3	5	4	3
(b)	011110	4	4	2		5	3	4	3
	100011	3	3	3	5		2	3	4
	101010	3	3	5	3	2		3	4
	110000	2	4	4	4	3	3		3
	111101	5	3	3	3	4	4	3	

The minimum distance of the code C_2 is 2.

- (c) Since the minimum distance is C_2 , one error is sure to be detected in any codeword of C_2 .
- **3** $C_3 = \{0000, 0101, 1011, 1110\}$ where $a_3 = a_1$ and $a_4 = a_1 + a_2$.

Table 6. Distance in C_3

$d(\mathbf{a}, \mathbf{b})$	0000	0101	1011	1110
0000	0	2	3	3
0101	2	0	3	3
1011	3	3	0	2
1110	3	3	2	0
ε	$\min_{\mathbf{a} \in C_3, \mathbf{a} \neq 0}$	$d(\mathbf{a}, \mathbf{b})$	(-1) = 2	

- 4
- $111111 \rightarrow 11101$
- $\bullet \ 00101 \rightarrow 00111$
- $\bullet \ 11000 \rightarrow 11010$
- $\bullet \ 10011 \rightarrow 10011$
- $\bullet \ 10001 \rightarrow 10011$
- $\bullet \ 101111 \rightarrow 10011 \ or \ 00111$

Elementary Properties of Groups

A. Solving Equations in Groups

1

$$axb = c$$

$$ax = cb^{-1}$$

$$x = a^{-1}cb^{-1}$$

 $\mathbf{2}$

$$x^{2}b = xa^{-1}c$$

$$xb = a^{-1}c$$

$$x = a^{-1}cb^{-1}$$

3

$$acx = xac$$

$$xacx = x^{2}ac$$

$$x^{2}a = bxc^{-1}$$

$$x^{2}ac = bx$$

$$xacx = bx$$
$$xac = b$$
$$x = b(ac)^{-1}$$

4

$$x^3 = e$$

$$ax^{2} = b$$

$$a = bx$$

$$x = b^{-1}a$$

5

$$x^5 = e$$
$$x^4 = x^{-1}$$

$$x^{2} = a^{2}$$

$$x^{4} = a^{2}x^{2}$$

$$x^{-1} = a^{2}x^{2}$$

$$e = a^{4}x$$

$$(a^{4})^{-1} = x$$

$$23$$

 $x^2a = (xa)^{-1}$

6

$$(xax)^{3} = bx$$

$$xa(x^{2}a)(x^{2}a)x = bx$$

$$xa(xa)^{-1}(xa)^{-1}x = bx$$

$$(xa)^{-1}x = bx$$

$$a^{-1}x^{-1}x = bx$$

$$b^{-1}a^{-1} = x$$

B. Rules of Algebra in Groups

$$G = \langle \{ I, A, B, C, D, K \}, \cdot \rangle$$

$$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix} \qquad \mathbf{D} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \qquad \mathbf{K} = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$$

$$\mathbf{1} \ \mathbf{A}^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = e \dots \text{ but } \mathbf{A} \neq e, \text{ so } x^2 = e \implies x = e.$$

$$\mathbf{2} \ \mathbf{A}^2 = \mathbf{I}^2, \text{ but } \mathbf{A} \neq \mathbf{I}, \text{ so } x^2 = a^2 \implies x = a.$$

2 $\mathbf{A}^2 = \mathbf{I}^2$, but $\mathbf{A} \neq \mathbf{I}$, so $x^2 = a^2 \implies x = a$. 3 $(\mathbf{A}\mathbf{B})^2 = \mathbf{K}^2 = \mathbf{I}$, and $\mathbf{A}^2\mathbf{B}^2 = \mathbf{I}\mathbf{D} = \mathbf{D}$, but $\mathbf{I} \neq \mathbf{D}$, so $(ab)^2 = a^2b^2$ is not true in every group G.

 $4 x^2 = x \implies x = e$

$$x^{2} = x$$

$$xx = x$$

$$xxx^{-1} = xx^{-1}$$

$$xe = e$$

$$x = e$$

Table 1. $\langle \{ I, A, B, C, D, K \}, \cdot \rangle$

As shown in the table, there does not exist an $x \in G$ such that $x = y^2$ for $y \in \{\mathbf{A}, \mathbf{C}, \mathbf{K}\}$. Therefore $\neg (\forall x \in G, \exists y \in G (x = y^2))$.

$$y = xz$$
$$x^{-1}y = x^{-1}xz$$
$$z = x^{-1}y$$

Therefore, for all $x, y \in G$, there exists a $z \in G$ such that y = xz.

 $^{^{1}(}ab)^{2}=a^{2}b^{2}$ is only true in abelian groups.

C. Elements That Commute

- 1 $a^{-1}b^{-1} = (ba)^{-1} = (ab)^{-1} = b^{-1}a^{-1}$
- **2** Since $a = b^{-1}ba = b^{-1}ab$, $ab^{-1} = (b^{-1}ab)b^{-1} = b^{-1}a$.
- **3** a(ab) = a(ba) = (ab)a
- 4 $(xax^{-1})(xbx^{-1}) = xa(x^{-1}x)bx^{-1} = x(ab)x^{-1} = x(ba)x^{-1} = xb(x^{-1}x)ax^{-1} = (xbx^{-1})(xax^{-1})$
- $5 \ ab = ba \iff aba^{-1} = b$

PROOF. First, assume ab = ba. Multiplying by a^{-1} on the right shows $ab = ba \implies aba^{-1} = b$. Next, assume $aba^{-1} = b$. Multiplying by a on the right shows $aba^{-1} = b \implies ab = ba$.

6 $ab = ba \iff aba^{-1}b^{-1} = e$

PROOF. First, assume ab = ba. Multiplying by a^{-1} on the right yields $aba^{-1} = b$. Then multiplying by b^{-1} on the right yields $aba^{-1}b^{-1} = e$. Thus $ab = ba \implies x$. Next, assume $aba^{-1}b^{-1} = e$. Multiplying by b on the right yields $aba^{-1} = b$. Then multiplying by a^{-1} on the right yields ab = ba. Thus $aba^{-1}b^{-1} = e \implies ab = ba$ and $ab = ba \iff aba^{-1}b^{-1} = e$.

D. Group Elements and Their Inverses

 $\mathbf{1} \ ab = e \implies ba = e$

PROOF. If ab = e, then $ab = aa^{-1}$, so by the cancellation law, $b = a^{-1}$ and $a = b^{-1}$.

Thus, $bb^{-1} = e \implies ba = e$, as desired.

2 $abc = e \implies cab = e$ and bca = e.

PROOF. If (ab)c = e, then $(ab)c = (ab)(ab)^{-1}$, so by the cancellation law, $c = (ab)^{-1} = b^{-1}a^{-1}$ Thus, $(ab)^{-1}(ab) = e \implies c(ab) = e$, and $b(b^{-1}a^{-1})a = e \implies cba = e$.

3 ..

4 Let G be a group such that $xay = a^{-1}$ for all $a, x, y \in G$. Prove that $yax = a^{-1}$ as well.

PROOF. If $xay = a^{-1}$, then $(xay)a = a^{-1}a$, so by the definition of inversion, (xay)a = e. Thus $x^{-1}(xay)ax = x^{-1}ex$, so by associativity and the definition of the identity element, $(x^{-1}x)a(yax) = e \iff ea(yax) = e \iff a(yax) = e$. Multiply by a^{-1} on the left to obtain $a^{-1}a(yax) = a^{-1}e$, so by the definition of inversion, $yax = a^{-1}$.

5 Let $a = a^{-1}$, $b = b^{-1}$, and $c = c^{-1}$. If ab = c show that bc = a and ca = b as well.

$$ab = c$$

$$abb^{-1} = cb^{-1} = cb$$

$$a = cb$$

$$a^{-1} = b^{-1}c^{-1} = bc$$

$$bc = a$$

$$ab = c$$

$$b^{-1}a^{-1} = c^{-1}$$

$$ba^{-1} = c$$

$$ba^{-1}a = ca$$

$$ca = b$$

6 Let $abc = (abc)^{-1}$, show that $bca = (bca)^{-1}$ and $cab = (cab)^{-1}$.

$$abc = (abc)^{-1}$$

 $bca = a^{-1}(abc)^{-1}a$
 $= a^{-1}(bc)^{-1}$
 $= (bca)^{-1}$

$$bca = (bca)^{-1}$$

 $cab = b^{-1}(bca)^{-1}b$
 $= b^{-1}(ca)^{-1}$
 $= (cab)^{-1}$

7 Let $a = a^{-1}$ and $b = b^{-1}$, show that $(ab)^{-1} = ba$.

PROOF. Replace a and b with their inverses on the right-hand side of $(ab)^{-1} = b^{-1}a^{-1}$ to obtain $(ab)^{-1} = b^{-1}a^{-1}$ ba.

8 $a = a^{-1} \iff a^2 = e$

PROOF. If $a = a^{-1}$, then $a^2 = e$ by multiplying by a on the right. If $a^2 = e$, then $a = a^{-1}$ by multiplying by a^{-1} on the right.

9 Let $c = c^{-1}$. Prove $ab = c \iff abc = e$.

PROOF. If ab = c, then $ab = c^{-1}$, since $c = c^{-1}$. Multiply by c on the right to obtain abc = e. If abc = e, then $abc^{-1} = e$ since $c = c^{-1}$. Multiply by c on the right to obtain ab = c.

E. Counting Elements and Their Inverses

1 Prove that in any finite group G, $2 \mid |\{x \in G : x \neq x^{-1}\}|$.

PROOF. By definition, $G = \{ x \in G : x = x^{-1} \} \cup \{ x \in G : x \neq x^{-1} \}.$

Therefore, $\forall x \in G (x = x^{-1} \lor (x \neq x^{-1} \land \exists y \in G (y \neq x \land y = x^{-1}))).$

So,
$$\left|\left\{x \in G : x \neq x^{-1}\right\}\right| = \left|\left\{x_0, x_0^{-1}, x_1, x_1^{-1}, x_2, x_2^{-1}, x_3, x_3^{-1}...\right\}\right| = 2k$$
.

2 Prove $|\{x \in G : x = x^{-1}\}|$ has the same parity as |G|. PROOF. Since $|G| = |\{x \in G : x = x^{-1}\}| + |\{x \in G : x \neq x^{-1}\}|$,

and
$$|\{x \in G : x \neq x^{-1}\}|$$
 is even, $|\{x \in G : x = x^{-1}\}|$ has the same parity as $|G|$.

3 Prove $2 \mid |G| \implies \exists x \in G (x \neq e \land x = x^{-1}).$

PROOF. If $2 \mid |G|$ then $2 \mid |\{x \in G : x = x^{-1}\}|$. Since $e = e^{-1}, 2 \nmid |\{x \in G : x \neq e \land x = x^{-1}\}|$ and thus $\exists x \in G \, (x \neq e \land x = x^{-1}).$

4 Given a finite abelian group $G = \{e, a_1, a_2, ...a_n\}$, prove $(a_1a_2...a_n)^2 = e$.

$$(a_1 a_2 ... a_n)^2 = (a_1 a_2 ... a_n) (a_1^{-1} a_2^{-1} ... a_n^{-1})$$
$$= a_1 a_1^{-1} a_2 a_2^{-1} ... a_n a_n^{-1}$$
$$= ee...e$$

5 Prove $\forall x \in G (x \neq e \implies x \neq x^{-1}) \implies a_1 a_2 ... a_n = e$.

PROOF. Assume $\forall x \in G \ (x \neq e \implies x \neq x^{-1})$. Then $\forall x \in a_1 a_2 ... a_n \ (\exists y \in a_1 a_2 ... a_n \ (x \neq y \land y = x^{-1}))$. So $a_1 a_2 ... a_n$ can be rewritten $a_1 a_1^{-1} a_2 a_2^{-1} ... a_{n/2} a_{n/2}^{-1}$, which reduces to e.

6 Prove that if there is exactly one $x \neq e$ in G such that $x = x^{-1}$ then $a_1 a_2 ... a_n = x$.

PROOF. $a_1a_2...a_n$ can be rewritten $xa_1a_1^{-1}a_2a_2^{-1}...a_{n/2}a_{n/2}^{-1}$, which is equivalent to xe.

F. Constructing Small Groups

- 1 $a, b \in G$
 - (a) Prove $a^2 = a \implies a = e$.

PROOF. Assume $a^2 = a$. Divide by a to get a = e.

(b) Prove $ab = a \implies b = e$.

PROOF. Assume ab = a. Multiply by a^{-1} on the left to get $a^{-1}ab = a^{-1}a \equiv b = e$.

(c) Prove $ab = b \implies a = e$.

PROOF. Assume ab = b. Multiply by b^{-1} on the right to get $abb^{-1} = b^{-1} \equiv a = e$.

- 2 Explain why elements of each row in a Cayley table must be distinct.
- **3** There is exactly oneo group with three distinct elements.

Table 2. Multiplication Table for \mathbb{Z}_3

4 There is exactly one group G with four elements, such that $\forall x \in G(xx = e)$.

Table 3. Multiplication Table for v_4

5 There is exactly one group G with four elements, such that $\exists x \in G(x \neq e \land xx = e)$ and $\exists y \in G(yy \neq e)$.

Table 4. Multiplication Table for v_4

		e	\mathbf{a}	b	\mathbf{c}
	e	e	a	b c e a	c
	a	a	e	c	b
	b	b	c	e	a
	\mathbf{c}	c	b	a	e
6		'			

Explain why \mathbb{Z}_3 and V_4 are the only possible groups of order 4.

G. Direct Products of Groups

1 Prove that $G \times H$ is a group. PROOF.

$$(x_1, y_1) [(x_2, y_2)(x_3, y_3)] = (x_1, y_1)(x_2x_3, y_2y_3)$$

$$= (x_1x_2x_3, y_1y_2y_3)$$

$$= (x_1x_2, y_1y_2)(x_3, y_3)$$

$$= [(x_1, y_1)(x_2, y_2)] (x_3, y_3)$$

(G2) Let e_G be the identity element of G, and e_H the identity element of H. The identity element of $G \times H$ is (e_G, e_H) .

$$(x,y)(e_G,e_H) = (xe_G,ye_H) = (x,y)$$

$$(e_G, e_H)(x, y) = (e_G x, e_H y) = (x, y)$$

(G3)
$$\forall (a,b) \in G \times H((a,b)^{-1} = (a^{-1},b^{-1}))$$

$$(a,b)(a^{-1},b^{-1}) = (aa^{-1},bb^{-1}) = (e_G,e_H) = e_{G\times H}$$

$$(a^{-1}, b^{-1})(a, b) = (a^{-1}a, b^{-1}b) = (e_G, e_H) = e_{G \times H}$$

Glossary

Cayley table: The multiplication table for a finite group.. 19