IITP 프로젝트 결과 보고서

제목	운전자 이상행동 탐지	
조명	가디언즈	
조원	이선오	조장, 이미지 라벨링, YOLO 모델, 웹앱 구현, 어플리케이션 영상 제작, 보고서 작성
	강미수	이미지 라벨링, YOLO 모델, 자료 시각화, 포 스터 제작
	박예린	이미지 라벨링, YOLO 모델, 기획서 작성, PPT 제작
	천대원	이미지 라벨링, CNN 모델(VGG16 등), 머신러 닝 모델(XGB 등)
	- 한국도로공사 자료에 따르면 졸음이 교통사고 발생 원인 1위	
	- 졸음 운전은 혈중 알코올 농도 0.17%의 음주운전과 같은 위험	
	- 화물차 가해 사망사고 원인 1위 또한 졸음과 주시 태만	
목적	- 물류/화물 차량의 운행 및 사고 특성에는 1. 7시간 이상의 장거리 운전, 2. 사고 시 높은 피해 금액, 넓은 피해 범위, 3. 낙하물 발생 시 심한 교통 정체	
	- 시장조사 결과 테슬라, 제네시스 등에는 졸음 운전 방지 기능이 탑재되어 있으나 고 가의 차량에만 존재, 화물차에는 제공되지 않는 한계	
	- 최종 산출물인 product에 대한 조사 결과 블랙박스에 카메라를 도입할 경우 운전자과실 책정 가능성 존재, 운전자의 자발적인 설치 기대하기 어려움	
	- 실시간 카메라 application은 설치 위치, 촬영 각도 등 환경 요인 통제 불가, 배터리	
	소모 등의 추가적인 문제 발생	
	- 최종적으로 운전자 행동 탐지를 위한 IoT 카메라와 맞춤형 알림 전송을 위한 모바어플 개발	

- 데이터 수집 및 전처리
- AI허브 운전자 및 탑승자 상태 이상행동 모니터링 데이터 사용
- Drowsy(졸음), Search(물건 찾기), Phone(휴대폰 사용), Normal(정상 운전자) 4개 class 를 선정,

차량 안의 운전자 이미지 30,000장의 이미지를 4개의 class 별로 직접 라벨링

- CNN + 머신러닝 분류 모델/YOLO 2가지 방법으로 프로젝트 수행
- CNN + 머신러닝 분류 모델
- CNN 모델
- 이미지의 공간 정보를 유지한 상태로 학습이 가능한 딥러닝 모델
- 데이터를 train, test, validation 8:1:1로 분할
- 128x128로 이미지 resize, 클래스 별 이미지 증강
- drowsy : 16,000장, search : 16,000장, phone : 16,000장, normal : 16,000장
- RESNET-50, VGG16, VGG19, CUSTOMIZING 모델을 같은 조건에서 학습

수행 내용

- 가장 성능이 좋았던 VGG16을 채택, CNN 모델에서 추출한 feature로 분류 학습 진행
- 머신러닝 분류 모델
- 지도학습 알고리즘으로 분류 및 회귀 문제 학습
- XGBoost, Random-Forest, Logistic Regression, Decision Tree 4개의 모델 사용

XGBOOST

accuracy: 0.9300 recall: 0.9275 precision: 0.9300 f1-score: 0.9275

LOGISTIC REGRESSION

 \leq

accuracy: 0.9300 recall: 0.9325 precision: 0.9300 f1-score: 0.9325

RANDOM FOREST

accuracy: 0.8700 recall: 0.8725 precision: 0.8675 f1-score: 0.8625

DECISION TREE

accuracy: 0.7100 recall: 0.7075 precision: 0.7100 f1-score: 0.7075

- 가장 성능이 높은 Logistic Regression 채택
- YOLO 모델
- 빠른 속도와 높은 정확도를 가진 실시간 객체 탐지 알고리즘
- 성능 비교를 위해YOLO v5, 7, 8, 9 총 4가지 버전을 사용
- train, test, validation(8:1:1)로 data split, data.yaml 파일을 names: ['drowsy', 'search', 'phone', 'normal'] 4개 클래스로 수정
- YOLO v5
- yolo v5를 수정해 사용, 사전 학습된 가중치는 사용하지 않음
- 이미지 사이즈 320, batch size 64, epochs 20

- best.pt 최적 가중치 성능 P=0.89, R=0.86, mAP50=0.93, mAP50-95=0.52으로 우수
- 가중치를 사용해 새 이미지를 detection한 결과 실제 사용 가능한 모델이라고 판단
- YOLO v7
- 데이터 split, data.yaml 파일 수정까지 동일하게 수행
- yolo v7 모델을 사용, 이미지 사이즈 128, batch size 16, epochs 100

- best.pt 최적 가중치 성능 P=0.47, R=0.49, mAP50=0.47, mAP50-95=0.19
- 이미지, 영상 detecting 결과 바운딩 박스 크기 축소, 운전자의 얼굴 외에도 다른 부분 class로 탐지
- YOLO v8
- 데이터 split, data.yaml 파일 수정까지는 동일하게 수행
- yolo v8 모델을 사용, 이미지 사이즈 128, batch size 32, epochs 20

- best.pt 최적 가중치 성능은 P=0.9, R=0.91, mAP50=0.95, mAP50-95=0.59로 YOLO v5 모델보다 높음
- 두 모델의 가중치로 영상을 detecting한 결과 YOLO v8 모델이 학습 이미지와 다른 feature가 있는 영상에서도 더 잘 탐지함
- YOLO v9
- split과 data.yaml 동일, YOLO v9 모델 중 gelan-c 모델을 수정해 사용
- 이미지 사이즈 128, batch size 32, epochs 30

- best.pt 최적 가중치 성능 P=0.90, R=0.90, mAP50=0.95, mAP50-95=0.59

- YOLO v8과 비슷하나 이미지, 영상 detecting 결과 바운딩 박스 크기 축소, 운전자의 얼굴을 여러 class로 나눠서 탐지, 사람이 아닌 차 내부까지 탐지

- YOLO v8 모델과 동일한 파라미터, epochs만 10 증가시켜 상이한 결과를 얻음
- 과적합이라고 판단, 성능 지표가 우수하고 새로운 이미지, 영상 탐지 결과 모두 뛰어 난 YOLO v8을 최종적으로 선정

- YOLO 모델 detecting 결과 샘플

- 실제 사용 가능한 딥러닝/머신러닝 모델
- 모델 가중치를 사용해 개발한 Streamlit으로 WebApplication
- 설계했던 최종 product은 실시간 감지 카메라와 운전자에게 알림을 전송하기 위한모 바일 어플 2가지이나, 학습된 YOLO 모델의 가중치를 테스트할 수 있도록 웹앱 구현
- 이미지, 비디오, 유튜브 세 가지 source에 가중치를 적용해 detection이 잘 진행되는 지 확인해볼 수 있음
- 아래 링크에서 접속 가능

프로젝 트 산 출물

WebApp Link: https://abnormal-driver-detection-yolov8-webapp.streamlit.app/

- 모바일 application demo 영상
- 시간 부족으로 어플을 개발하지 못했으나 설계한 기능을 설명하기 위해 간단한 Demo 영상 제작
- Driveguard 어플은 실시간 이상행동 감지 카메라와 연동되어 운전자 휴대전화에 알림 전송
- 휴대폰 사용, 졸음, 전방 주시 미비 등의 행동이 감지될 시 경고음 재생
- 경고음 재생에도 이상 행동 지속으로 졸음이 개선되지 않을 경우 AI 음성 챗봇 및 GPS 실행, 운전자 근처의 졸음 쉼터 위치를 안내
- Youtube Link: https://youtu.be/8u3Gu_bbSuU?feature=shared