## VAN course Lesson 4

Dr. Refael Vivanti refael.vivanti@mail.huji.ac.il

#### Today's topics

- Epipolar geometry
- Epipole
- Fundamental Matrix Calculation
- Rectification
- RANSAC



• The relations between views as appeared in the image



- The relations between views as appeared in the image
- In 3D: Ray r<sub>1</sub> intersects P



• The relations between views as appeared in the image

• In 3D: Ray r<sub>1</sub> intersects P In image: P is projected to p



• The relations between views as appeared in the image

• In 3D: Ray r<sub>1</sub> intersects P In image: P is projected to p

• In 3D: Ray r<sub>2</sub> intersect P



• The relations between views as appeared in the image

• In 3D: Ray r<sub>1</sub> intersects P In image: P is projected to p

• In 3D: Ray  $r_2$  intersect P In Image:  $r_2$  is projected to line  $\ell$ 



• The relations between views as appeared in the image

• In 3D: Ray r<sub>1</sub> intersects P In i

• In 3D: Ray r<sub>2</sub> intersect P

 $ullet \ell$  is the **epipolar line** 

In image: P is projected to p

**In Image:**  $r_2$  is projected to line  $\ell$ 



- The relations between views as appeared in the image
- In 3D: Ray r<sub>1</sub> intersects P
- In 3D: Ray r<sub>2</sub> intersect P
- $ullet \ell$  is the **epipolar line**
- $ullet \ell$  intersects p in image 1

In image: P is projected to p

**In Image:**  $r_2$  is projected to line  $\ell$ 



• The relations between views as appeared in the image

• In 3D: Ray r₁ intersects P In image: P is projected to p

• In 3D: Ray  $r_2$  intersect P In Image:  $r_2$  is projected to line  $\ell$ 

ullet $\ell$  is the **epipolar line** 

 $ullet \ell$  intersects p in image 1

• C<sub>1</sub> PC<sub>2</sub> defines the **epipolar plane** 



- What epipolar line is good for?
- If we search for a match for p<sub>1</sub>
  - It will be on the epipolar line  $\ell$
- If we suspect the match is wrong
  - We can decide it is an outlier if it's not on  $\ell$

• In 3D: All 3D rays coming from C<sub>2</sub> create a pencil



- In 3D: All 3D rays coming from C<sub>2</sub> create a pencil
- In image: all epipolar lines intersect at point e





- In 3D: All 3D rays coming from C<sub>2</sub> create a pencil
- In image: all epipolar lines intersect at point e
- e is the **epipole**





- In 3D: All 3D rays coming from C<sub>2</sub> create a pencil
- In image: all epipolar lines intersect at point e
- e is the **epipole**
- e is the projection of c<sub>2</sub> 3D location





geometric derivation of F:



$$x' = H_{\pi}x$$

$$1' = e' \times x' = [e']_{\times} H_{\pi}x = Fx$$

- If we don't know  $K_1$ ,  $K_2$ , R, or t, can we still estimate F?
- Yes, given enough correspondences.

#### Many algorithms:

- Linear (the normalized 8-point algorithm)
- Minimal (7-point)
- Robust (RANSAC)
- Non-linear refinement (MLE, Algebraic minimization)
- We use 8-point algorithm
  - Although it's inaccurate
  - Because it's fast

The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathsf{T}}\mathbf{F}\mathbf{x} = \mathbf{0}$$

for any pair of matches x and x' in two images.

• Let  $x=(u,v,1)^T$  and  $x'=(u',v',1)^T$ , each match gives a linear equation

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$$

$$uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$$

8-point algorithm
$$\begin{bmatrix} u_{1}u_{1}' & v_{1}u_{1}' & u_{1}' & u_{1}v_{1}' & v_{1}v_{1}' & v_{1}' & u_{1} & v_{1} & 1 \\ u_{2}u_{2}' & v_{2}u_{2}' & u_{2}' & u_{2}v_{2}' & v_{2}v_{2}' & v_{2}' & u_{2} & v_{2} & 1 \\ \vdots & \vdots \\ u_{n}u_{n}' & v_{n}u_{n}' & u_{n}' & u_{n}v_{n}' & v_{n}v_{n}' & v_{n}' & u_{n} & v_{n} & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix} = 0$$



We solve it as before, using SVD decomposition:

$$Af = 0$$

$$A = U\Sigma V^{T}$$

$$f = V^{T}_{N}$$

- We can use more than 8 points. M>N=8
  - But now, instead of solving  $\mathbf{Af} = 0$ , we seek  $\mathbf{f}$  to minimize  $\|\mathbf{Af}\|$ , least eigenvector of  $\mathbf{A}^T\mathbf{A}$ .
  - Still, we take  $f = V_N^T$

- Problem: F should have rank 2. It doesn't.
- To enforce that **F** is of rank 2, F is replaced by F' that minimizes  $\|\mathbf{F} \mathbf{F}'\|$  subject to the rank constraint.

• This too is achieved by SVD. Let  $\mathbf{F} = \mathbf{U} \Sigma \mathbf{V}^{\mathrm{T}}$ , where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix} \qquad \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then  $\mathbf{F'} = \mathbf{U} \mathbf{\Sigma'} \mathbf{V}^{\mathrm{T}}$  is the solution.







Orders of magnitude difference between column of data matrix → least-squares yields poor results

- normalized least squares yields good results
- Transform image to  $\sim$ [-1,1]x[-1,1]





# 8-point algorithm Results (8-point algorithm)



Results (normalized 8-point algorithm)



#### **Example: forward motion**





#### **Example: motion parallel with image plane**







• In stereo rectification

We wish all epipolar lines to be:

$$F(x,y,1)^{T} \rightarrow (0, 1, -y)$$

So F is from the shape:

$$[t]_{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}_{x} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$



- RANdom SAmple Consensus
- Problem:
  - All inliers obey some model
  - But there are some unknown outliers.
- Example: inliers are on a curve
- Chicken and egg situation:
  - If we had the curve, we could spot the outliers
  - If we knew the inliers, we could estimate the curve
- Key to solution:
  - The model can be estimated using a small set





- Algorithm:
  - 1. Repeat:
    - 1. Sample a minimal set
    - 2. Estimate a model
    - 3. Check how many points obey the model
  - 2. Choose model with maximal #points
  - 3. Repeat:
    - 1. Estimate model from all inliers
    - 2. Calc inliers of new model
- Output: inliers, outliers, and model

- Example:
- #inliers = 3. max #inliers = 3
- #inliers = 5. max #inliers = 5
- #inliers = 3. max #inliers = 5

•

•

• Output: #inliers = 5



- When to stop the first loop of RANSAC?
- Goal: one sample that will have only inliers, with high prob p.
- Prob of being an outlier:  $\epsilon$
- P(being an inlier) =  $1 \epsilon$
- P(all inliers-sample) =  $(1 \epsilon)^s$
- P(bad sample)=  $1-(1-\epsilon)^{s}$
- P(All samples are bad) =  $(1 (1 \epsilon)^s)^I$
- We wish it to be small:  $(1-(1-\varepsilon)^s)^I < 1-p$

$$\log(1-(1-\varepsilon)^s)^I < \log(1-p)$$

$$I\log(1-(1-\varepsilon)^s) < \log(1-p)$$

$$I > \log(1-p)/\log(1-(1-\varepsilon)^s)$$

This can be really high:

| $\mathbf{s} \setminus \mathbf{\epsilon}$ | 25% | 50% | 60%  | 70%   | 80%    | 85%    |
|------------------------------------------|-----|-----|------|-------|--------|--------|
| 2                                        | 6   | 16  | 26   | 49    | 113    | 202    |
| 3                                        | 8   | 34  | 70   | 168   | 573    | 1362   |
| 7                                        | 33  | 588 | 2808 | 21055 | 2.5E05 | 2.6E06 |

- What if we don't know  $\varepsilon$ ?
- We can estimate it online:
  - We calc #inliers at each sample
  - This gives an ever-decreasing upper-bound on  $\epsilon$
  - Hence the needed iteration number I is also decreasing

- Which models are used with RANSAC?
- 2D points matching:
  - Fundamental matrix
  - Homography transformation
  - Essential Matrix
  - Trifocal Tensor
- 3D points:
  - Point cloud registration
  - Perspective-n-Point (PNP)
  - Plane fitting
  - Curve fitting

- Limitations of RANSAC with FM:
  - Efficiency: unknown
    - because outliers ratio ε in unknown
  - Accuracy
    - Even good sample may give a bad model
    - Sensitive to inlier threshold
  - Degeneracy
    - The plain+paralax problem
  - Many tricks and extensions:
    - PROSAC
    - USAC



#### Thanks

#### 3D points cloud registration

- In the matched case
  - Each 3D point in X have a correspondence in Y)

$$y_{3x1} = R_{3x3}x_{3x1} + t_{3x1}$$

$$\widetilde{Y} = Y - \overline{Y}, \widetilde{X} = X - \overline{X}$$

$$t = \overline{X} - \overline{Y}$$

$$\widetilde{Y}_{3xN} = R_{3x3}\widetilde{X}_{3xN}$$

$$U_{3x3}\Sigma_{3x3}V_{3x3}^{T} = SVD(X^{T}_{Nx3}Y_{Nx3})$$

$$R = V^{T}U$$

#### 3D points cloud registration

- In the not-matched case
- The ICP Iterative Closest Point algorithm
  - Repeat until convergence:
    - Find temporary matches:
    - For each point in X:
    - Set the closest point in Y to match it
  - Calculate R and t using the SVD algorithm above
    - May use RANSAC for outlier removal
  - Transform X using R and t



