基于 CST 的贴片天线仿真

实验步骤:

1、创建项目

打开 CST STUDIO SUITE,点击"Create Project"创建一个新的项目,选择 MW & RF& OPTICAL 中的"Antennas",点击 next。选择"Planar"(即贴片天线),点击 next。Solver 选择"Time Domain"(即时域算法)。Units 部分采用系统设置,不需更改。最后点击 Finish,新项目创建完成。

units 不用修改,直接点击 next.

设置要仿真的频段,最小频率和最大频率。这里暂时没有设置,建模完成后再设置。直接点击 next。

点击 Finish, 完成仿真项目文件创建。

2、建立模型

贴片天线是在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用 光刻腐蚀方法制成一定形状的金属贴片,利用微带线或同轴探针对贴片馈电构成 的天线(本次实验中是用同轴线)。

● 创建基片

首先创建基片(substrate)。选择 Modeling 中的 Brick ,

软件会出现如下提示:

ble c	lick	first	point	in	working	plane	(Press	ESC	to sh	how dialog box)
-3D		Schematic								

按下 Esc 键, 弹出设置框, 填上如下图参数, 取名为 substrate, Xmin 和 Xmax 表示该物体在 X 方向的最小坐标和最大坐标, 该物体 X 方向上的长度 L=Xmax-Xmin, 其他方向同理。:

这里,用变量 A 来表示正方形衬底的边长,则 Xmin=-A/2,Xmax=A/2,衬底的材料为自己定义的给定介电常数的材料。Zmin=-h,Zmax=0,表示衬底的厚度为h,位于 Z 的负方向上。在 Material 栏选择【New Material】,弹出如下窗口:

在 Epsilon 框中填入相对介电常数,这里取 2.2;同时也可以将 Material name 框改为 substrate。点击 OK。回到 Brick 参数框,继续点击 OK,弹出如下界面,分别输入 A 和 h 的值(不用带单位,单位默认为 mm,在创建项目部分, units 里设置的长度单位为 mm):

Name:		ОК
substrate		Drovious
ew Parameter	Tree:	X
Define missing	parameter	ОК
Parameter:	h	
Value:	1	Cancel
Description:		
componenti		•
Material:		88
	`	▼ Help

点击 OK, 完成衬底 substrate 的创建。

• 创建接地面

下一步是创建贴片天线的接地面。天线是由底面的同轴电缆馈电,而所选模板定义的电边界并不适合作为接地面,因此还需再定义一个金属块。激活选面工具(Modeling->Picks->Pick Face),

使用右下角的旋转工具 , 将基片旋转到 Z 的负方向,

双击基片的背面(z=-h的一面),最后被选中的面如下:

使用"Extrude"工具(上)来拉伸被选面,弹出如下窗口:

Name 可以改为 Ground, Height 填入接地面的厚度 t(0.035mm), 材料从 Load from Material Library... 中选择 copper(pure):

用 Use filter 查找 copper,如下图所示:

点击 Load, 回到 Extrude Face 界面, 点击 OK, 输入参数 t 的值, 这里取 0.035mm。接地面创建完成。

● 创建贴片天线

这里我们要创建方形贴片,选择 Modeling 中的 Brick \square ,按下 Esc,弹出如下窗口,并填入相应数据,参数 L 和 W 分别表示矩形贴片天线的长和宽,厚度仍然取 t,材料为 copper(pure),并设置 L 和 W 的值,点击 OK:

Name:		ОК
patch		Preview
(min:	Xmax:	
-L/2	L/2	Cancel
Ymin:	Ymax:	
-W/2	W/2	
Zmin:	Zmax:	
0	t	
Component:		
component1		-
Material:		
Copper (pure)		→ Help

● 创建同轴线

最后一个建模步骤是创建用做激励源的馈电同轴线。创建空气包裹的同轴线,首先创建同轴线的外壳(空气部分),点击圆柱创建:

再按下 Esc 键,弹出如下窗口,创建圆柱,内半径为0,外半径设为参数 Ro,Xcenter 和 Ycenter 可以确定同轴线的位置,这里设置为参数 x 和 y,相关参数如下:

生成的圆柱和两个已经存在的图形交叠,故需选择图形交叠的处理方式。在此处,将两个介质材料物体合二为一很方便,所以请在如下的"图形交叠对话框"中选择 Insert highlighted shape 项,并点击 OK 确认:

接下来需要将介质圆柱插入到 copper(pure)材料接地面中去,因此选择 Insert highlighted shape 项:

用另一个 copper(pure)圆柱来构造内导体。其外径为 Ri,在 Z 负方向延伸 $t+h(\mathbb{D})$ 村底和接地面的厚度)。具体参数如下:

Name:		ОК
probe_in		Preview
Orientation 🔘 🗙	⊚ Y	Cancel
Outer radius:	Inner radius:	
Ri	0.0	
Kcenter:	Ycenter:	
x	у	
Zmin:	Zmax:	
-t-h	0	
Segments:		
0		
Component:		
component1		
Material:		20.
Copper (pure)	,	Help

至此,建模完成。

正面

背面

3、仿真设置

● 定义波导端口

用 Pick Face 选择,双击接地面表面的同轴线表面:

弹出如下窗口,本次实验我们不用改变其中的参数,直接保留缺省设置,点击 OK,端口创建完成。

● 设置频率

根据要实现的谐振频率来确定频率宽度,如,要实现 2.2GHz,则可以设置计算的频率范围为 1GHz-4GHz。点击 Simulation 中的 Frequency,如下图所示:

● 边界设置

点击 Simulation 中的 Boundaries, 边界条件设置如下图所示:

	Boundaries		Boundary Temperature Symmetry Planes					
ПАрр	ly in all directions							
Xmin:	open	~	Xmax:	open	¥			
Ymin:	open	V	Ymax:	open	V			
Zmin:	electric (Et = 0)	V	Zmax:	open (add space)	V			
Cond.:	1000		S/m	Open Boundary.				

● 定义远场监视器(Field Monitor)

点击 Field Monitor:

Frequency 设置为要实现的谐振频率(即观察该频点下的远场分布),点击OK:

● 设置仿真

点击 Setup Solver

弹出如下窗口,点击 start 开始计算仿真。

● 扫描参数

很多时候初始的参数不能达到想要的结果,可以通过扫描参数来实现最优结果和相应的参数值。这里的参数指在前面设置的 A, W, L, x, y, h 等。

点击下图中的 Par.Sweep...

弹出如下窗口:

点击 New Seq., 再点击 New Par..., 弹出如下窗口,这里选择矩形贴片的长 L,使其在 8mm-12mm 范围内等距取 5 个样本点进行仿真计算。

● 查看结果

S11 参数,在左边 Navigation Tree 栏框中的 1D results 下。远场分布也在左边 Navigation Tree 栏框中的 Farfields 下。

