Examen parcial de Física - ELECTRÒNICA 18 de maig de 2017

Model A

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** El díode Zener del circuit de la figura es caracteritza per una tensió llindar $V_{\gamma} = 0.7 \text{ V}$ i una tensió Zener $V_Z=10$ V. Si la capacitat del condensador és d'1 nF, quina és la seva càrrega en règim estacionari?
 - a) 0.7 nC.
 - b) 10 nC.
 - c) 0 nC.
 - d) 20 nC.

- T2) La tensió llindar dels díodes de la porta de la figura és de 0.7 V. Quina de les següents afirmacions és correcta?
 - a) $V_A = 5 \text{ V}, V_B = 0 \text{ V}, I = 4.3 \text{ mA}.$
 - b) $V_A = 0$, $V_B = 5$ V, I = 0.
 - c) $V_A = V_B = 5 \text{ V}, I = 4.3 \text{ mA}$.
 - d) $V_A = V_B = 0$, I = 0.

- **T3**) Els paràmetres característics de l'NMOS de la figura són $\beta = 1 \text{ mA/V}^2$ i $V_T = 1 \text{ V}$. Si el valor de la resistència R és variable, trobeu el seu valor màxim perquè el transistor treballi en règim de saturació.
 - a) 1 k Ω .
 - b) $5 \text{ k}\Omega$.
 - c) $10 \text{ k}\Omega$.
 - d) $0.5 \text{ k}\Omega$.

- **T4)** Els paràmetres del PMOS de la figura són $V_T = -1$ V i $\beta = 1$ mA/V². Quina de les afirmacions següents és certa?

 - d) $I_D = 0$, $V_{out} = 5$ V i $V_{DS} = 0$.

- **T5)** El circuit CMOS de la figura correspon a la porta lògica
 - a) NAND.
 - b) AND.
 - c) NOR.
 - d) OR.

Examen parcial de Física - ELECTRÒNICA 18 de maig de 2017

Model B

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** Els paràmetres característics de l'NMOS de la figura són $\beta = 1 \text{ mA/V}^2$ i $V_T = 1 \text{ V}$. Si el valor de la resistència R és variable, trobeu el seu valor màxim perquè el transistor treballi en règim de saturació.
 - a) $0.5 \text{ k}\Omega$.
 - b) 5 k Ω .
 - c) $10 \text{ k}\Omega$.
 - d) 1 k Ω .

- **T2)** El circuit CMOS de la figura correspon a la porta lògica
 - a) AND.
 - b) NAND.
 - c) OR.
 - d) NOR.

- T3) La tensió llindar dels díodes de la porta de la figura és de 0.7 V. Quina de les següents afirmacions és correcta?
 - a) $V_A = 5 \text{ V}, V_B = 0 \text{ V}, I = 4.3 \text{ mA}.$
 - b) $V_A = 0$, $V_B = 5$ V, I = 0.
 - c) $V_A = V_B = 0$, I = 0.
 - d) $V_A = V_B = 5 \text{ V}, I = 4.3 \text{ mA}$.

- T4) El díode Zener del circuit de la figura es caracteritza per una tensió llindar $V_{\gamma}=0.7~\mathrm{V}$ i una tensió Zener $V_Z = 10$ V. Si la capacitat del condensador és d'1 nF, quina és la seva càrrega en règim estacionari?
 - a) 10 nC.
 - b) 0 nC.
 - c) 0.7 nC.
 - d) 20 nC.

- **T5**) Els paràmetres del PMOS de la figura són $V_T = -1$ V i $\beta = 1$ mA/V². Quina de les afirmacions següents és certa?

 - a) $I_D = 5 \text{ mA}$, $V_{out} = 5 \text{ V i } V_{DS} = 0$. b) $I_D = 5 \text{ mA}$, $V_{out} = 5 \text{ V i } V_{DS} = 5 \text{ V}$. c) $I_D = 0$, $V_{out} = 0 \text{ i } V_{DS} = -5 \text{ V}$.

 - d) $I_D = 0$, $V_{out} = 5$ V i $V_{DS} = 0$.

Cognoms i Nom:

Examen parcial de Física - ELECTRÒNICA 18 de maig de 2017

Problema: 50% de l'examen

En el circuit de la figura, el transistor NMOS té les següents característiques: $\beta=0.2\,\mathrm{mA/V^2}$ i $V_T=1\,\mathrm{V}$. Sabem que $V_{DD}=20\,\mathrm{V},\,R_D=10\,\mathrm{k\Omega}$.

- a) Considereu que $R_S = 0$ i $V_{GG} = 15$ V. Per aquestes condicions, trobeu I_D i V_{DS} . Comproveu que el règim de treball del transistor escollit és correcte (5p).
- b) Calculeu els valors del punt de treball del transistor (V_{GS}, V_{DS}, I_D) quan $R_S = 5 \text{ k}\Omega$ i $V_{GG} = 9 \text{ V}$; esbrineu el seu règim de funcionament. Demostreu que el règim indicat és correcte (5p).

Codi:

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	a	c
T2)	a	a
T3)	c	a
T4)	c	c
T5)	b	c

Resolució del Model A

- T1) Pel condensador, un vegada carregat, no circula corrent. El díode Zener està en polarització directa, deixa passar corrent i la tensió als seus borns és $V_{\gamma}=0.7$ V, que és la tensió en borns del condensador perquè per la resistència de la dreta no passa corrent. Llavors, $Q=CV_{\gamma}=0.7$ nC.
- T2) Si $V_A = 0$ o $V_B = 0$, el díode corresponent estarà en polarització directa, deixarà passar corrent i la tensió als seus extrems serà 0.7 V, que serà igual a V_{out} , de manera que la ddp a la resistència serà (5 V) (0.7 V) = 4.3 V i $I = (4.3 \text{ V})/(1 \text{ k}\Omega) = 4.3 \text{ mA}$. La intensitat I només serà nul·la quan cap dels dos díodes estigui polaritzat directament, la qual cosa correspon a $V_A = V_B = 5 \text{ V}$.
- **T3)** $V_{GS} = 2$ V. En saturació $(V_{DS} > V_{GS} V_T > 0)$ $I_D = \beta (V_{GS} V_T)^2/2 = 0.5$ mA i $V_{DS} = 6 RI_D > (V_{GS} V_T)$, d'on trobem que $R \le 10$ kΩ.
- **T4)** $V_{in}=V_G=5$ V \Rightarrow $V_{GS}=V_G-V_S=5-5=0$ > $V_T=-1$ V i, per tant, està en tall amb $I_D=0$. Aleshores $V_{out}=V_D=R_DI_D=0$ i $V_{DS}=V_D-V_S=0-5=-5$ V
- T5) Dos PMOS en paral·lel implementen una NAND. I dos NMOS en sèrie també. Per tant, la part de l'esquerra amb entrades A i B, on els dos PMOS es complementen amb els dos NMOS, és una porta NAND amb CMOS. I, com que la seva sortida està connectada a l'entrada d'un inversor CMOS, la sortida Y és la negació d'una NAND, és a dir una AND.

Resolució del Problema

a) Considerem $R_S=0$ i $V_{GG}=15$ V. Com que $R_S=0,\,V_{GS}=V_{GG}=15$ V. Tenim

$$I_D = \frac{V_{DD} - V_{DS}}{R_D}$$

i com que V_{GS} és gran assumim que treballa en règim òhmic.

$$I_D = \beta \left[(V_{GS} - V_T)V_{DS} - \frac{V_{DS}^2}{2} \right]$$

Combinant les dues equacions anteriors trobem

$$\beta R_D V_{DS}^2 - 2[\beta R_D (V_{GS} - V_T) + 1] V_{DS} + 2V_{DD} = 0$$

Posant valors,

$$2V_{DS}^2 - 58V_{DS} + 40 = 0$$

Resolent l'equació de segon grau trobem dues solucions $V_{DS}=0.71~{\rm V}$ i $V_{DS}=28.29~{\rm V}$. Només la primera té sentit, així que la resposta correcta és $V_{DS}=0.71~{\rm V}$. Coneixent V_{DS} podem ara calcular el corrent, $I_D=1.93~{\rm mA}$.

Comprovem que el règim òhmic és correcte, $V_{DS} < V_{GS} - V_T$. Efectivament, 0.71 < 15 - 1. Per tant, les solucions trobades són consistents.

b) A partir de la llei d'Ohm aplicada a la connexió V_{DD} -Terra, tenim que:

$$V_{DS} = 20 - 15000 I_D \quad (1)$$

També sabem que la connexió de la porta a V_{GG} no condueix corrent, per la qual cosa: $V_{GG} = V_{GS} + R_S I_D$, és a dir que: $V_{GS} = 9 - R_S I_D$.

Suposarem que el transistor treballa en règim de saturació. En tal cas, es satisfà que:

$$I_D = \frac{\beta}{2} (V_{GS} - V_T)^2 = \frac{\beta}{2} (V_{GS} - 1)^2$$
 (2)

Aïllant I_D en les dues equacions (1) i (2), tenim que:

$$\frac{9 - V_{GS}}{5000} = 10^{-4} \left(V_{GS}^2 - 2 V_{GS} + 1 \right)$$

que resulta ser: $0.5\,V_{GS}^2=8.5$. Aquesta equació té dues solucions: $V_{GS}=\pm 4.123$ V. Però com que V_{GS} ha de ser positiu per tal que el transistor funcioni, tenim $V_{GS}=4.123\,$ V, que dóna $V_{GT}=3.123\,$ V, $I_D=0.975\,$ mA i $V_{DS}=5.45\,$ V.

Comprovació: Hem obtingut que $V_{DS} > V_{GT}$, verificant-se que el transistor NMOS treballa en règim de saturació.