北京大学线性代数 (B) 期中考试 2021-2022 年度第一学期

考试时间: 2021 年 11 月 8 日上午

1. (20 分) 求 *a* 为何值时,下述线性方程组有惟一解、无解、有无穷多解? 在有无穷多解的情况下,写出解集的结构.

$$\begin{cases} x_1 - ax_2 - 2x_3 = -1 \\ x_1 - x_2 + ax_3 = 2 \\ 5x_1 - 5x_2 - 4x_3 = 1 \end{cases}$$

- 2. (10 分) 判断 \mathbb{R}^3 中下列子集是否为 \mathbb{R}^3 的子空间,并说明理由。
 - (a) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + 2x_2 + 3x_3 = 0\};$
 - (b) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + 2x_2 + 3x_3 = 4\};$
 - (c) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 x_2 x_3 = 0\};$
 - (d) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : (x_1 + x_2)^2 + (x_1 + 5x_3)^2 = 0\}.$
- 3. (10 分) 找出一个非零的 3×3 矩阵 P 使得 PA 为简化行阶梯型矩阵,其中

$$A = \begin{bmatrix} 1 & -2 & -3 \\ 0 & 2 & 2 \\ 3 & -2 & 0 \end{bmatrix}.$$

4. (20 分) 向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 和线性无关的向量组 β_1,β_2,β_3 满足如下关系

$$\begin{cases} \beta_1 - 2\beta_2 - \beta_3 = \alpha_1, \\ -3\beta_1 + \beta_2 - 7\beta_3 = \alpha_2, \\ 5\beta_1 - 3\beta_2 + 9\beta_3 = \alpha_3 \\ -2\beta_1 + \beta_2 - 4\beta_3 = \alpha_3. \end{cases}$$

求出所有满足 $\ell_1\alpha_1 + \ell_2\alpha_2 + \ell_3\alpha_3 + \ell_4\alpha_4 = 0$ 的向量 $(\ell_1, \ell_2, \ell_3, \ell_4)$ 。

解答: $\ell_1\alpha_1 + \ell_2\alpha_2 + \ell_3\alpha_3 + \ell_4\alpha_4 = 0$ 当且仅当

$$(\ell_1 - 3\ell_2 + 5\ell_3 - 2\ell_4)\beta_1 + (-2\ell_1 + \ell_2 - 3\ell_3 + \ell_4)\beta_2 + (-\ell_1 - 7\ell_2 + 9\ell_3 - 4\ell_4) = 0.$$

因为 $\beta_1, \beta_2, \beta_3$ 线性无关,所以 $\ell_1\alpha_1 + \ell_2\alpha_2 + \ell_3\alpha_3 + \ell_4\alpha_4 = 0$ 当且仅当 $(\ell_1, \ell_2, \ell_3, \ell_4)$ 是下面方程组的解。

$$\begin{cases} \ell_1 & -3\ell_2 + 5\ell_3 - 2\ell_4 = 0\\ -2\ell_1 + \ell_2 - 3\ell_3 + \ell_4 = 0\\ -\ell_1 - 7\ell_2 + 9\ell_3 - 4\ell_4 = 0 \end{cases}$$

该方程组的解参见课本86页例1的解。

- 5. (10 分) 设 $\{E_{i,i+1}\}(i=1,...,n-1)$ 为 $n\times n$ 的基本矩阵。证明:
 - (1) 如果 |i-j| > 1, 则 $E_{i,i+1}E_{j,j+1} = E_{j,j+1}E_{i,i+1}$;
 - (2) 如果 |i-j| = 1, 则 $E_{i,i+1}^2 E_{j,j+1} 2E_{i,i+1} E_{j,j+1} E_{i,i+1} + E_{i,i+1} E_{j,j+1}^2 = 0$.
- 6. $(10 \, f)$ 设 $A = (a_{ij})_{1 \leq i,j \leq n}$ 是 n 级方阵, A_{ij} 是 a_{ij} 的代数余子式。证明:

$$\begin{vmatrix} a_{11} + x & a_{12} + x & \cdots & a_{1n} + x \\ a_{21} + x & a_{22} + x & \cdots & a_{2n} + x \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} + x & a_{n2} + x & \cdots & a_{nn} + x \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + x \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}.$$

7. $(10 \, \mathcal{G})$ 令 $f(t) = \sum_{k=0}^{n-1} t^k x_k$,设 $\zeta^0, \zeta, \zeta^2, \cdots, \zeta^{n-1} \in \mathbb{C}^*$ 是所有的 n 次单位根. 证明:

$$\begin{vmatrix} x_0 & x_{n-1} & \cdots & x_1 \\ x_1 & x_0 & \cdots & x_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_{n-1} & x_{n-2} & \cdots & x_0 \end{vmatrix} = f(\zeta^0) f(\zeta) f(\zeta^2) \cdots f(\zeta^{n-1}).$$

解答: 方法 (一). 直接计算可知:

$$\begin{pmatrix} x_0 & x_1 & \cdots & x_{n-1} \\ x_{n-1} & x_0 & \cdots & x_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \cdots & x_0 \end{pmatrix} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \zeta & \cdots & \zeta^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \zeta^{n-1} & \cdots & \zeta^{(n-1)(n-1)} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \zeta & \cdots & \zeta^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \zeta^{n-1} & \cdots & \zeta^{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} f(1) & 0 & \cdots & 0 \\ 0 & f(\zeta) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f(\zeta^{n-1}) \end{pmatrix}$$

对上式左右两端同时取行列式, 又由于

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \zeta & \zeta^2 & \cdots & \zeta^{n-1} \\ 1 & \zeta^2 & \zeta^4 & \cdots & \zeta^{2(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \zeta^{n-1} & \zeta^{2(n-1)} & \cdots & \zeta^{(n-1)(n-1)} \end{vmatrix} \neq 0,$$

故得到:

$$\begin{vmatrix} x_0 & x_1 & \cdots & x_{n-1} \\ x_{n-1} & x_0 & \cdots & x_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \cdots & x_0 \end{vmatrix} = \prod_{j=0}^{n-1} f(\zeta^i).$$

方法 (二): 将第 i 行乘以 ζ^{ik} 加到 1 行. 则 (1,h) 元素变成了

$$\zeta^{hk} \sum \zeta^{ik} x_i = \zeta^{hk} f(\zeta^k).$$

所以行列式可以被 每个 $f(\zeta^k)$ 除尽. 通过比较 $f(\zeta^0)f(\zeta)f(\zeta^2)\cdots f(\zeta^{n-1})$ 与行列式两边 x_1 的次数知这是一个等式.

8. (10 分) 设矩阵 $A = (a_{ij})$ 和 P 均为 n 级矩阵,矩阵 P 为若干 P(i,j) 型初等矩阵的乘积,令 B = PAP'。判断: $a_{i,j}$ 在 A 中的代数余子式 $A_{i,j}$ 是否等于 a_{ij} 在 B 中的代数余子式? 若相等,给出证明;若不相等举出反例。

解答:结论是相等。PAP'的结果是矩阵 A的行变成了 $123\cdots n$ 的新排列 i_1, \dots, i_n ,列排列也变成了 i_1, \dots, i_n 。由第二章第一节定理 2 可知, $123\cdots n$ 可以经过一系列对换得到 i_1, \dots, i_n 。所以只要证明结论对一个对换 σ 成立即可。下面考察对行和列同时做了对换 σ 后,结论成立。

 σ 把第 i 行换成第 $\sigma(i)$ 行,如果 $i \neq \sigma(i)$,则代数余子式对应的矩阵就做了 $|\sigma(i) - i| - 1$ 次行对换,相应地,考虑列 $j \neq \sigma(j)$,做了 $|\sigma(j) - j| - 1$ 次列对换. 分情况进行讨论

 $1.i = \sigma(i), j = \sigma(j),$ 代数余子式对应的矩阵也是行列各做一次对换,自然相等;

 $2.i \neq \sigma(i), j = \sigma(j)$, 只矩阵相差 $(|\sigma(i) - i| - 1 + 1)$ 个负号,然后考虑到是代数余子式,所以也相等;

 $3.i = \sigma(i), j \neq \sigma(j)$,情况和 2 相同.

4、i (i),j (j), 只考虑矩阵就差了 (| (i)-i|-1+| (j)-j|-1) 个符号, 然后考虑到是代数余子式, 所以还是相等」