Section 3 Error Correcting Codes (ECC): Fundamentals

- Communication systems and channel models
- Definition and examples of ECCs
- Distance

For the contents relevant to distance, Lin & Xing's book, Chapter 2, should be helpful.

2018

Communication Systems

Abstract Channel Model: Binary Symmetric Channel (BSC)

Binary Symmetric Channel: a memoryless channel such that

$$\Pr\left(0 \text{ received} \middle| 1 \text{ sent}\right) = \Pr\left(\mathbf{0} \text{ received} \middle| \mathbf{0} \text{sent}\right) = p$$

Pr(1 received|1 sent) = Pr(0 received|0 sent) = 1 - p.

p is called the transition (cross-over) probability.

Memoryless channel: A channel that satisfies

 $\Pr(y | \text{received}|x | \text{sent}) = \prod_{i=1}^{n} \Pr(y_i | \text{received}|x_i | \text{sent}).$

The Memoryless q-ary Symmetric Channel

Define an alphabet set \mathbb{F}_q .

Both channel input x_i and channel output y_i are from \mathbb{F}_q .

Crossover probability p:

$$\Pr(y_i|x_i) = \begin{cases} 1 - p & \text{if } y_i = x_i \\ p/(q-1) & \text{if } y_i \neq x_i \end{cases}$$

The Memoryless Binary Erasure Channel (BEC)

Binary Erasure Channel:

- ▶ Internet traffic: a package got lost.
- Cloud storage: one copy of file messed up.

What is a Code?

Definition 3.1 (Code)

A code is a set \mathcal{C} containing (row) vectors of elements from \mathbb{F}_q . An (n, M) block code: $\mathcal{C} \subset \mathbb{F}_q^n$ and $|\mathcal{C}| = M$.

A codeword: a vector in C.

Codeword length: n Code size: M

Dimension: $k = \log_q M$. Rate: r = k/n.

Example 1:

$$\mathbb{F}_2 = \{0, 1\}. \ \mathcal{C} = \{0000, 1100, 1111\}.$$

$$n = 4$$
. $M = 3$. $k = \log_2 3 = 1.585$. $r = 0.3962$.

Example 2:

$$\mathbb{F}_3 = \{0, 1, 2\}.$$
 $\mathcal{C} = \{00000, 12121, 20202\}.$ $n = 5.$ $M = 3.$ $k = \log_3 3 = 1.$ $r = 0.2.$

Triple Repetition Code

Encoding

$$1 \rightarrow 111$$

$$0 \to 000$$

Decoding: majority voting

111, 110, 101, 011
$$\rightarrow$$
 1

$$000, 001, 010, 100 \rightarrow 0$$

Error probability computation:

$$\begin{split} &P\left(\hat{s}=1|s=0\right)\\ &=P\left(111|0\right)+P\left(110|0\right)+P\left(101|0\right)+P\left(011|0\right)\\ &=p^3+3p^2\left(1-p\right)\\ &=0.000298\text{, when }p=0.01. \end{split}$$

Much better than an uncoded system.

The price to pay: data rate 1/3.

Coding theory: tradeoff between error correction and data rate.

Performance Comparison

Uncoded case (f=0.1)

Triple repetition code

From David J.C. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.

The 2nd example: (7,4) Hamming code

Encoding: encode every 4 bit information into 7 bits. (Details are omitted.)

Code rate: $r = 4/7 \approx 0.57$.

Much higher rate but slightly larger P_e .

From David J.C. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.

Another example - low-density parity-check code

Details are omitted here. Only simulation is presented

BSC with p = 7.5%. LDPC $(20\,000, 10\,000) \ r = 0.5$

From David J.C. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.

Distance: Definition

Definition 3.2 (Distance)

A distance d on a set \mathcal{X} is a function

$$d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

such that for all $x, y, z \in \mathcal{X}$, the following conditions hold:

Positive definite:

$$d(x,y) \ge 0$$
 where "=" holds iff $x = y$.

Symmetry:

$$d(x,y) = d(y,x).$$

Triangle inequality:

$$d(x,z) \le d(x,y) + d(y,z).$$

In this course, d is also translation invariant, that is,

$$d(x,y) = d(x+z, y+z).$$

2018

Examples of Commonly Used Distances

Let $x, y \in \mathbb{R}^n$ be two vectors of length n, for example, $x = [9,1,0], \ y = [6,1,4] \in \mathbb{R}^3$

 $ightharpoonup \ell_2$ -norm distance: Euclidean distance d_2

$$d_{2}(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{\sum_{i=1}^{n} (x_{i} - y_{i})^{2}}$$
$$= \sqrt{3^{2} + 0^{2} + 4^{4}} = 5.$$

 $ightharpoonup \ell_1$ -norm distance: d_1

$$d_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} |x_i - y_i|$$

= 3 + 0 + 4 = 7.

ightharpoonup Hamming distance: d_H

$$d_H(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n \delta_{x_i \neq y_i}$$

= 1 + 0 + 1 = 2,

where $\delta_{x_i \neq y_i} = 1$ if $x_i \neq y_i$ and $\delta_{x_i \neq y_i} = 0$ if $x_i = y_i$.

Hamming Distance

Definition 3.3 (Hamming Distance)

For $oldsymbol{x},oldsymbol{y}\in\mathbb{F}^n$, the Hamming distance is given by

$$d_{H}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{n} \delta_{x_{i} \neq y_{i}}$$

= $|\{i : x_{i} \neq y_{i}\}|$

Fact 3.4

Hamming distance is a well defined distance.

To prove this fact, the only non-trivial part is the triangle inequality.

Proof of the Triangle Inequality for Hamming Distance

```
1. scalar case: d_H\left(x_i,z_i\right) \leq d_H\left(x_i,y_i\right) + d_H\left(y_i,z_i\right):

If x_i = z_i, then the equality holds obviously.

If x_i \neq z_i, LHS= 1. We have three cases:

y_i = x_i \Rightarrow y_i \neq z_i

y_i \neq x_i \text{ and } y_i \neq z_i

y_i \neq x_i \text{ and } y_i \neq z_i

2. vector case:

d_H\left(x,z\right) = \sum_{i=1}^n d_H\left(x_i,z_i\right)
\leq \sum_{i=1}^n \left(d_H\left(x_i,y_i\right) + d_H\left(y_i,z_i\right)\right)
= d_H\left(x,y\right) + d_H\left(y,z\right).
```

Hamming Distance: Properties

Fact 3.5

Hamming distance is translation invariant:

$$d_{H}\left(\boldsymbol{x}_{1},\boldsymbol{x}_{2}\right)=d_{H}\left(\boldsymbol{x}_{1}+\boldsymbol{y},\boldsymbol{x}_{2}+\boldsymbol{y}\right).$$

Definition 3.6 (Weight)

A weight of a vector $m{x} \in \mathbb{F}_q^n$ is defined as its Hamming distance from the zero vector:

$$\mathsf{wt}\left(\boldsymbol{x}\right) = d_H\left(\boldsymbol{x},0\right).$$

Example:

- $x = [9, 1, 4], y = [0, 1, 4] \Rightarrow d_H(x, y) = 1.$
- $x = [1, 2, 1, 2, 1], y = [2, 0, 2, 0, 2] \Rightarrow d_H(x, y) = 5.$
- $x = [0, 1, 0, 1] \Rightarrow \text{wt}(x) = 2.$

Decoding Techniques

Suppose that a codeword $c \in \mathcal{C} \subset \mathbb{F}_q^n$ is transmitted and a word y is received. The decoding function is defined as the mapping

$$egin{aligned} \mathcal{D}: & \mathbb{F}_q^n
ightarrow \mathcal{C} \ & oldsymbol{y} \mapsto \hat{oldsymbol{c}} \in \mathcal{C}. \end{aligned}$$

Popular decoding strategies include

Maximum likelihood decoding:

$$\hat{c}_{ML} = \mathcal{D}_{ML}\left(oldsymbol{y}
ight) = rg \max_{oldsymbol{c} \in \mathcal{C}} \Pr\left(oldsymbol{y} \; ext{received} | oldsymbol{c} \; ext{sent}
ight).$$

Minimum distance decoding:

$$\hat{\boldsymbol{c}}_{MD} = \mathcal{D}_{MD}\left(\boldsymbol{y}\right) = \arg\min_{\boldsymbol{c} \in \mathcal{C}} d_H\left(\boldsymbol{y}, \boldsymbol{c}\right).$$

They are equivalent for many channels.

Equivalence Between ML and MD decoding

Theorem 3.7

Consider a memoryless binary symmetric channel (BSC) with cross-over probability p < 1/2. Then

$$\hat{m{c}}_{ML} = \hat{m{c}}_{MD}.$$

Proof:

$$\begin{array}{l} \Pr\left(\boldsymbol{y} \; \mathsf{received} \middle| \boldsymbol{c} \; \mathsf{sent}\right) = \prod_{i=1}^{p} \Pr\left(y_i \; \mathsf{received} \middle| c_i \; \mathsf{sent}\right) \\ \text{O(n (9.6))} \Rightarrow \Pr\left(\boldsymbol{y} \middle| \boldsymbol{y} \middle| \boldsymbol{y} \middle| \boldsymbol{y} \middle| \boldsymbol{z} \middle| \boldsymbol{y}, \boldsymbol{c}\right) \\ = p^{d_H(\boldsymbol{y}, \boldsymbol{c})} \left(1 - p\right)^{n - d_H(\boldsymbol{y}, \boldsymbol{c})} \\ = (1 - p)^n \left(\frac{p}{1 - p}\right)^{d_H(\boldsymbol{y}, \boldsymbol{c})}. \end{array}$$

That p < 1/2 implies that p/(1-p) < 1. Hence, $\Pr(\boldsymbol{y} \text{ received} | \boldsymbol{c} \text{ sent})$ is a monotonically decreasing function of $d_H(\boldsymbol{y}, \boldsymbol{c})$. The maximum $\Pr(\boldsymbol{y} | \boldsymbol{c})$ is achieved when $d_H(\boldsymbol{y}, \boldsymbol{c})$ is minimized.

Distance of a Code

Definition 3.8

The distance of a code C is defined as

$$d_{H}\left(\mathcal{C}\right) = \min_{\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{C}, \ \boldsymbol{x}_{1} \neq \boldsymbol{x}_{2}} d_{H}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right).$$

Notation: An (n, M, d)-code:

a code of codeword length n, size M, and distance d.

Example: Consider the binary code

$$C = \{00000, 00111, 11111\}.$$

It is a binary (5,3,2)-code.

Example: Consider the ternary code

$$C = \{000000, 000111, 111222\}.$$

It is a ternary (6,3,3)-code.

Error Detection

Error detector: if the received word $y \in \mathcal{C}$, let $\hat{c} = y$ and claim no error; if $y \notin \mathcal{C}$, claim that errors happened.

Theorem 3.9

Let $\mathcal{C} \subset \mathbb{F}_q^n$ be an (n,M,d) code. The above error detector detects every pattern of up to d-1 many errors.

Proof:

- 1. Every pattern of d-1 many errors are detectable. Since at most d-1 many errors happened, $0 < d_H(\boldsymbol{c}, \boldsymbol{y}) < d := d(\mathcal{C})$ and $\boldsymbol{y} \notin \mathcal{C}$. The receiver will claim that errors happened.
- 2. Exists a pattern of d many errors that is not detectable. By the definition of the code distance, there exist $c_1, c_2 \in \mathcal{C}$ s.t. $d_H(c_1, c_2) = d$. Suppose that c_1 is the transmitted codeword and the channel errors happen to be $e = c_2 c_1$ (d errors happened). Then $y = c_2$ is received. As $c_2 \in \mathcal{C}$, the detector claims that no error happened and set $\hat{c} = c_2$.

Error Correction

Theorem 3 10

Let $\mathcal{C} \subset \mathbb{F}_q^n$ be an (n, M, d) code. The minimum distance decoder can

and

$$2t+1 \le d\left(\mathcal{C}\right) \le 2t+2$$
 odd **even**

Examples:

The previous ternary (6,3,3) code is exactly 1-error-detecting.

Error Correction: Proof

Proof: Let \mathcal{D} be the minimum distance decoder. Let c and y be the transmitted codeword and received word respectively. Let $\hat{c} = \mathcal{D}_{MD}\left(y\right)$.

- 1. If $d_H(\boldsymbol{y},\boldsymbol{c}) \leq t = \lfloor (d-1)/2 \rfloor$, then $\hat{\boldsymbol{c}} = \boldsymbol{c}$. Suppose that $\hat{\boldsymbol{c}} \neq \boldsymbol{c}$. By the way the decoder \mathcal{D}_{MD} is defined, $d_H(\boldsymbol{y},\hat{\boldsymbol{c}}) \leq d_H(\boldsymbol{y},\boldsymbol{c}) \leq t.$ On the other hand, by the definition of the code distance.
 - On the other hand, by the definition of the code distance, $d \le d_H(\boldsymbol{c}, \hat{\boldsymbol{c}}) \le d_H(\boldsymbol{c}, \boldsymbol{y}) + d_H(\boldsymbol{y}, \hat{\boldsymbol{c}}) \le 2t \le d-1$, which is a contradiction.
- 2. \exists a pair $(c,y) \in \mathcal{C} \times \mathbb{F}_q^n$ s.t. $d_H(y,c) = t+1$ and it may happen that $\mathcal{D}_{MD}(y) \neq c$. (i.e., $f' \in \mathcal{C}$) and $f' \in \mathcal{C}$. By the definition of the code distance, \exists $c,c' \in \mathcal{C}$ s.t. $d_H(c,c') = d$. W.l.o.g., assume the first d positions of c,c' are different. Define g such that $g_i = c_i'$, $i = 1, 2, \cdots, t+1$ and $g_i = c_i$, $i = t+2, \cdots, n$. It is clear that $d_H(g,c) = t+1$ and $f' \in \mathcal{C}_{MD}(g) = d (t+1) \leq t+1 = d_H(g,c)$. Hence, it may happen that $\hat{c} = \mathcal{D}_{MD}(g) \neq c$.

Section 4 Linear Codes

- Definition.
 - Generator matrices.
 - Parity-check matrices.
- Decoding.

Remark: Why linear codes? Low complexity in encoding, decoding, and distance computation.

For the contents relevant to distance, Lin & Xing's book, Chapter 2, should be helpful.

Linear Codes: Definition

Block codes: all codewords are of the same length $\mathcal{C} \subset \mathbb{F}_q^n$.

Definition 4.1 (Linear Codes)

A linear code is a code for which any linear combination of codewords is also a codeword. (OII ZOPOS is always a codeword!) That is, let $u, v \in \mathcal{C} \subset \mathbb{F}_q^n$. Then $\lambda u + \mu v \in \mathcal{C} \ \forall \lambda, \mu \in \mathbb{F}_q$.

Example of linear codes:

 $C = \{0000, 0011, 1100, 1111\} \subset \mathbb{F}_2^4$.

 $\mathcal{C} = \left\{ oldsymbol{v} \in \mathbb{F}_2^4 : \ \mathsf{wt}\left(oldsymbol{v}
ight) \ \mathsf{is even.}
ight\}.$

Example of nonlinear codes:

 $C = \{0000, 1100, 1111\}.$

 $\mathcal{C} = \{ oldsymbol{v} \in \mathbb{F}_3^4 : \ \mathsf{wt} \, (oldsymbol{v}) \ \ \mathsf{is} \ \mathsf{even.} \}.$

Basis

Definition 4.2 (Basis)

Let $\mathcal{B} = \{v_1, \dots, v_k\} \subset \mathbb{F}^n$. It is a basis of a set $\mathcal{C} \subset \mathbb{F}^n$ if it satisfies the following conditions:

- Linear independence property: For all $\lambda_1, \dots, \lambda_k \in \mathbb{F}$, if $\sum \lambda_i v_i = \mathbf{0}$, then necessarily $\lambda_1 = \dots = \lambda_k = 0$.
- The spanning property: For every $c \in C$, there exist $\lambda_1, \dots, \lambda_k \in \mathbb{F}$ s.t. $c = \sum_i \lambda_i v_i$.

$\dim(\mathcal{C}) = k$: the # of vectors in a basis.

The basis \mathcal{B} is not unique in general, but the dimension is.

Example: Let $C = \{0000, \ 0011, \ 1100, \ 1111\}$. $\mathcal{B}_1 = \{0011, \ 1100\}$ is a basis for C. $\mathcal{B}_2 = \{0011, \ 1111\}$ is also a basis for C. $\dim(C) = 2$.

Construct a Basis

Definition 4.3 (Linear Span)

For any subset $\mathcal{V} \subset \mathbb{F}^n$, define $\langle \mathcal{V} \rangle$ as the linear span of \mathcal{V} :

$$\langle \mathcal{V}
angle = \left\{ \sum \lambda_i oldsymbol{v}_i: \ \lambda_i \in \mathbb{F}, \ oldsymbol{v}_i \in \mathcal{V}
ight\}.$$

Construct a basis for a linear code $\mathcal{C} \subset \mathbb{F}^n$:

- 1. From \mathcal{C} , take a nonzero vector, say v_1 .
- 2. Take a nonzero vector, say v_2 , from $C \langle \{v_1\} \rangle$.
- 3. Take a nonzero vector, say v_3 , from $C \langle \{v_1, v_2\} \rangle$.
- 4. Continue this process, until $C \langle \{v_1, v_2, \cdots, v_k\} \rangle = \phi$.
- 5. Set $\mathcal{B} = \{ v_1, v_2, \cdots, v_k \}$.

The Size of a Linear Code Theorem 4.4 (I'm = rank = # different symbols

Let $\mathcal{C} \subset \mathbb{F}_q^n$ be a linear code and dim $(\mathcal{C}) = k$, then $|\mathcal{C}| = q^k$.

Proof:

- 1. $\dim(\mathcal{C}) = k \Rightarrow \exists$ a basis $\mathcal{B} = \{v_1, \dots, v_k\}$ for \mathcal{C} .
- 2. $|\mathcal{C}| \leq q^k$: **bound** Definition of the basis suggests $\mathcal{C} = \langle \mathcal{B} \rangle = \left\{ \sum_{i=1}^k \lambda_i v_i : \lambda_i \in \mathbb{F}_q \right\}$. There are q^k many possible linear combinations. Hence, $|\mathcal{C}| \leq q^k$ (repetition may exist).
- 3. $|C| = q^k$: no repetition

It suffices to show that there is no repetition. Let $\lambda^{(1)} \neq \lambda^{(2)}$. Let $x^{(1)} = \sum_{i=1}^k \lambda_i^{(1)} v_1$ and $x^{(2)} = \sum_{i=1}^k \lambda_i^{(2)} v_1$.

Then $m{x}^{(1)} - m{x}^{(2)} = \sum_{i=1}^k \left(\lambda_i^{(1)} - \lambda_i^{(2)} \right) m{v}_i
eq m{0}$ by linear independence of $m{v}_i$'s and the fact that $m{\lambda}^{(1)}
eq m{\lambda}^{(2)}$.

There is no repetition in the set $\left\{\sum_{i=1}^k \lambda_i \boldsymbol{v}_i: \ \lambda_i \in \mathbb{F}_q \right\}$.

Generator Matrix

Definition 4.5 (Generator Matrix)

A generator matrix G for a linear code $C \subset \mathbb{F}^n$ is a matrix whose rows form a basis for C.

For a given (n,k) linear code $\mathcal{C} \subset \mathbb{F}^n$, it can be defined using its generator matrix $G \in \mathbb{F}^{k \times n}$.

The encoding function that maps information symbols to a codeword is given by

 \mathbf{S} (\mathbf{r} \mathbf{k}): \mathbf{symbol}_{E} : \mathbf{r} \mathbf{r}

G(kxn): gen. mount $s \mapsto c = sG \in \mathcal{C}$.

Remark:

Encoding of a linear code is efficient: vector-matrix product. Encoding of a nonlinear code is via a look-up table and hence computationally less efficient.

Examples

Example 1: the (3,1) repetition code: $G = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$.

Example 2: the (7,4) Hamming code.

Example 3: the generator matrix is not unique.

Dual Code $C = SG : I \times N$ S: $I \times K$ G: $K \times N$ Definition 4.6 (Dual Code) $C = SH : I \times N$ S: $(X(NK))H : (N-K) \times N$ Let $C \subset \mathbb{F}_q^n$ be a non-empty code. Its dual code C^{\perp} is defined as C=SG: 1xn

$$\mathcal{C}^{\perp} = \left\{ oldsymbol{v} \in \mathbb{F}_q^n: \ oldsymbol{v} oldsymbol{c}^T = \sum_i v_i c_i = 0 \ ext{for all} \ oldsymbol{c} \in \mathcal{C}
ight\}.$$

Lemma 4.7

For any non-empty code $\mathcal{C} \subset \mathbb{F}_q^n$ (linear or nonlinear), its dual code \mathcal{C}^{\perp} is always linear.

Proof: Take arbitrary $v_1,v_2\in\mathcal{C}^\perp$. Then for all $\lambda_1,\lambda_2\in\mathbb{F}_q$ and for all $c\in\mathcal{C}$, V; C > O \rightarrow λ i V; C > O $(\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2) \mathbf{c}^T = \mathbf{0}$ $(\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2) \mathbf{c}^T = \lambda_1 \mathbf{v}_1 \mathbf{c}^T + \lambda_2 \mathbf{v}_2 \mathbf{c}^T = 0,$

which implies $\lambda_1 v_1 + \lambda_2 v_2 \in \mathcal{C}^{\perp}$.

Parity Check Matrix

Definition 4.8 (Parity-Check Matrix)

A parity-check matrix H for a linear code $\mathcal{C} \subset \mathbb{F}_q^n$ is a generator matrix for the dual code \mathcal{C}^\perp .

For a code $\mathcal{C}\left[n,k\right]$, it holds that

$$m G \in \mathbb{F}_q^{k imes n}$$
 and $m H \in \mathbb{F}_q^{(n-k) imes n}.$

$$H \cdot G^T = 0. \quad G \cdot H^7 > 0.$$

Define a linear code via its parity-check matrix:

Gen. & pc. Mous
$$C = \{c \in \mathbb{F}_q^n : cH^T = 0\}$$
. One defined for $SGH^T = 0$ (inter codes.

Examples

ightharpoonup The (3,1) repetition code:

$$G = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$
 and $H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

ightharpoonup The (7,4) Hamming code:

$$\boldsymbol{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \text{ and } \boldsymbol{H} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

A self-dual code is a code s.t. $\mathcal{C} = \mathcal{C}^{\perp}$, Example: $C = \{0000, 1010, 0101, 1111\}$, where

$$oldsymbol{G} = \left[egin{array}{ccc} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \end{array}
ight] = oldsymbol{H}.$$

Self-dual codes do not exist for vector space \mathbb{R}^n or \mathbb{C}^n .

Relation Between $m{G}$ and $m{H}$

(not necessarily)

Consider $\mathcal{C}[n,k] \subset \mathbb{F}_q^n$. Write G and H in systematic forms:

$$lacksquare$$
 Let $m{G} = [m{I}_k \; m{A}] \in \mathbb{F}_q^{k imes n}$ where $m{A} \in \mathbb{F}_q^{k imes (n-k)}.$

$$lacksquare$$
 Let $m{H} = [m{B} \ m{I}_{n-k}] \in \mathbb{F}_q^{(n-k) imes n}$ where $m{B} \in \mathbb{F}_q^{(n-k) imes k}$.

Lemma 4.9

It holds that $B = -A^T$.

Proof:

$$egin{aligned} oldsymbol{H}oldsymbol{G}^T &= [oldsymbol{B} \, oldsymbol{I}_{n-k}] \left[egin{array}{c} oldsymbol{I}_k \ oldsymbol{A}^T \end{array}
ight] = oldsymbol{B} \cdot oldsymbol{B} \cdot oldsymbol{B} \cdot oldsymbol{I}_k + oldsymbol{I}_{n-k} \cdot oldsymbol{A}^T \ &= -oldsymbol{A}^T + oldsymbol{A}^T = oldsymbol{0} \in \mathbb{F}_q^{(n-k) imes k}. \end{aligned}$$

Systematic form:

Why? Easy to compute H from G, and vice versa. How? Gaussian-Jordan elimination.

= 1 BT + Aln-8 . 0

Hamming Weight

Hamming Weight of
$$x$$
: wt $(x) = |\{i: x_i \neq 0\}| = d(x, 0)$.

Theorem 4.10

For a linear code
$$\mathcal{C}$$
, $d_{H}\left(\mathcal{C}
ight)=\min_{oldsymbol{x}\in\mathcal{C}\setminus\{oldsymbol{0}\}}\mathsf{wt}\left(oldsymbol{x}
ight).$

Proof: $d_H(c_1, c_2) = \text{wt}(c_1 - c_2) = \text{wt}(c')$ for some $c' \in C$ (by the definition of linear codes).

Notation: C[n, k, d]: n: codeword length; k: dimension; d: distance.

Distance and Parity Check Matrix

Theorem 4.11

Let $\mathcal C$ be a linear code defined by the parity-check matrix $\boldsymbol H$. Then that $d\left(\mathcal C\right)=d$ is equivalent to that

- 1. Every d-1 columns of **H** are linearly independent.
- 2. There exist d linearly dependent columns.

2018

Two Confusing Concepts

Given a matrix H,

- spark minimum number of linearly dependent columns
- column rank: maximum number of linearly independent columns.

Theorem 4.11 Suggests that
$$\operatorname{spark}(\boldsymbol{H}) = d(\mathcal{C})$$
.

Example 4.12

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$
is an $n \times (n+1)$ matrix: spark $(\mathbf{H}) = 2$ and column rank $(\mathbf{H}) = n$.

Application of Theorem 4.11: Binary Hamming Codes

Definition 4.13 (Binary Hamming Codes)

The parity-check matrix of the binary Hamming code $\mathcal{H}[2^r-1,2^r-1-r,3]$ consists of all the nonzero binary vectors (columns) of length r. (Also denoted by \mathcal{H}_r .)

The $\mathcal{H}_2[3,1,3]$ is given by

$$\boldsymbol{H} = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 2 & 3 \end{array} \right] ,$$

and the $\mathcal{H}_3\left[7,4,3\right]$ is given by

$$\boldsymbol{H} = \left[\begin{array}{cccccccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array} \right] .$$

The Distance of Binary Hamming Codes

Corollary 4.15

The distance of a binary Hamming code is 3, i.e., $d(\mathcal{H}_r) = 3$.

Proof: We apply Theorem 4.11.

- ▶ That there is no zero column implies that the minimum number of linearly dependent columns is at least 2, i.e., $d(\mathcal{C}) = \operatorname{spark}(\mathbf{H}) \geq 2$.
- ▶ In the binary field, that every two columns are distinct implies that every two columns are linearly independent. Hence, $d(\mathcal{C}) = \operatorname{spark}(\mathbf{H}) \geq 3$.
- It is easy to see that there exist three columns that are linearly dependent (for example the first three columns). Therefore $d\left(\mathcal{C}\right)=3$. \diamond

Corollary 4.16

Binary Hamming codes correct up to one error.

Theorem 4.11: Proof

Proof: Let h_i be the i^{th} column of H. $\forall c \in \mathcal{C}$, let i_1, \dots, i_K be the locations where $c_i \neq 0$. By the definition of parity-check matrix,

$$\mathbf{0} = \sum_{i=1}^{n} c_i \mathbf{h}_i = \sum_{k=1}^{K} c_{i_k} \mathbf{h}_{i_k}.$$
 dx non-zero components

 $d(\mathcal{C}) = d \Rightarrow \text{Claim 2: } d(\mathcal{C}) = d \text{ implies that } \exists c \in \mathcal{C} \text{ s.t. } \text{wt}(c) = d. \text{ That}$ is, $\sum_{k=1}^{d} c_{i_k} \mathbf{h}_{i_k} = \mathbf{0}$ or, $\mathbf{h}_{i_1}, \cdots, \mathbf{h}_{i_k}$ are linearly dependent. $d(\mathcal{C})$ d \Rightarrow Caim 1: Suppose not. $\exists h_{i_1}, \cdots h_{i_{d-1}}$ are linear dependent, i.e., $\sum_{k=1}^{d-1} x_{i_k} h_{i_k} = \mathbf{0}$. Let $\mathbf{x} = \begin{bmatrix} 0 \cdots x_{i_1} \cdots x_{i_k} \cdots x_{i_{d-1}} \cdots 0 \end{bmatrix}$. Then wt $(x) \nmid d-1$ and $x \in \mathcal{C}$. Hence $d(\mathcal{C}) \leq d-1$. A contradiction with

Claims $1\&2 \to d(\mathcal{C}) = d$: That every d-1 columns are linearly independent implies no nonzero codeword of weight d-1. That there exists d columns that are linearly dependent means the existence of a codeword of weight d. Hence $d\left(\mathcal{C}\right) = \min_{\boldsymbol{x} \in \mathcal{C} \setminus \{\mathbf{0}\}} \operatorname{wt}\left(\boldsymbol{x}\right) = d.$ \Diamond

Syndrome Vector

Let $\boldsymbol{H} \in \mathbb{F}_q^{(n-k) \times n}$ be a parity-check matrix of a linear code $\mathcal{C}\left[n,k\right] \subset \mathbb{F}_q^n$. Suppose that the received word is given by $\boldsymbol{y} \in \mathbb{F}_q^n$.

Define the syndrome vector

$$CH^T > 0$$

 $s := yH^T$
 $YH^T > QH^T$

It depends only on the error vector not the transmitted codeword.

In particular, let y=x+e where $x\in\mathcal{C}$ is the transmitted codeword and $e\in\mathbb{F}_q^n$ is the error vector introduced by the channel. It holds that

$$s = yH^T = (x + e)H^T = eH^T.$$

2018

Syndrome Decoding

MD decoding: Find
$$\hat{\boldsymbol{c}} = \operatorname*{arg\ min}_{\boldsymbol{c} \in \mathcal{C}} d_H\left(\boldsymbol{c}, \boldsymbol{y}\right)$$
.

Syndrome decoding:

- 1. For the received word y, compute the syndrome vector: $s := yH^T$.
- 2. Find the error vector e with the minimum weight: (MD decoding)

$$\hat{e} = \underset{e}{\operatorname{arg min}} \operatorname{wt}(e) \text{ s.t. } s = eH^{T}.$$
 (1)

3. Decode $m{y}$ as $\hat{m{c}} = m{y} - \hat{m{e}}$.

Comments: In general, it is computationally challenging to solve (1). However, all practical codes have particular structures in the parity-check matrix so that the decoding problem can be solved efficiently.

Decoding of Binary Hamming Codes

Take \mathcal{H}_3 (Definition 4.13) as an example.

Assume that y=[0111111]. Find the MD decoded codeword $\hat{c}\in\mathcal{C}.$

Since $d(\mathcal{H}_3) = 3$, it corrects up to 1 error.

For any e s.t. $\operatorname{wt}(e) = 1$, let $e_i \neq 0$ for some $i \in [n]$. Then

$$\boldsymbol{s} = \boldsymbol{e}\boldsymbol{H}^T = e_i \boldsymbol{h}_i^T = \boldsymbol{h}_i^T.$$

In the example, s=[001], e=[1000000] and $\hat{c}=[1111111]$.

Section 5 Coding Bounds

- Sphere packing (Hamming) bound
- Sphere covering (Gilbert-Varshamov) bound
- Singleton bound and MDS codes

The lectures will only cover sphere packing, sphere covering, singleton bounds and relevant contents. Reference: Lin & Xing's book, Chapter 5.

Coding Bounds: Motivation

Consider the Hamming code \mathcal{H}_r :

```
r = 2: [3, 1, 3]
r = 3: [7, 4, 3]
r = 4: [15, 11, 3]
```

Questions:

- Can we do better?
- What is the best that we can do?

It is possible to construct linear codes with parameters

Theorem 5.1 (Hamming bound, sphere-packing bound)

For a code of length n and distance d, the number of codewords is upper bounded by

$$M \le q^n / \left(\sum_{i=0}^t \binom{n}{i} (q-1)^i\right),$$

where
$$t:=\left\lfloor \frac{d-1}{2}\right\rfloor$$
.

There
$$t := \lfloor \frac{\alpha-1}{2} \rfloor$$
.

Y = Y₁ ... y_n | Vol = $\sum_{i>0} \binom{n}{i} (Q_{i-1})^{i}$
 $X = X_{1} ... \times x_{n}$

i d: fferences distance of a: fferent values of y

Examples

Definition 5.2 (Perfect Codes)

A perfect code is a code that attains the Hamming bound.

- Binary Hamming code $\mathcal{H}_r\left[2^r-1,2^r-1-r,3\right]$ is a perfect code. $d=3\Rightarrow t=\left\lfloor\frac{d-1}{2}\right\rfloor=1.$ Ball Volume: $\sum_{i=0}^t \binom{n}{i} \left(q-1\right)^i=1+\left(2^r-1\right)=2^r.$
 - Hamming bound: $q^n / \sum_{i=0}^t \binom{n}{i} (q-1)^i = 2^{2^r-1} / 2^r = 2^{2^r-r-1} = 2^k$.
- Perfect codes are rare (binary Hamming codes & Golay codes).

Hamming Bound: Proof (1)

Define a ball in \mathbb{F}_q^n centered at $oldsymbol{x} \in \mathbb{F}_q^n$ with radius t by

$$B\left(\boldsymbol{x},t\right)=\left\{ \boldsymbol{y}\in\mathbb{F}_{q}^{n}:\ d\left(\boldsymbol{x},\boldsymbol{y}\right)\leq t\right\} .$$

Step one: the balls $B\left(\boldsymbol{c},t\right)$, $\boldsymbol{c}\in\mathcal{C}$, are disjoint. For all $\boldsymbol{c}\neq\boldsymbol{c}'\in\mathcal{C}$, it holds that $B\left(\boldsymbol{c},t\right)\bigcap B\left(\boldsymbol{c}',t\right)=\phi$. For a $\boldsymbol{y}\in B\left(\boldsymbol{c},t\right)$, then $\boldsymbol{y}\notin B\left(\boldsymbol{c}',t\right)$ for all $\boldsymbol{c}'\neq\boldsymbol{c}$.

By triangle inequality: $d \leq d_H(\boldsymbol{c}, \boldsymbol{c}') \leq d_H(\boldsymbol{c}, \boldsymbol{y}) + d_H(\boldsymbol{y}, \boldsymbol{c}')$. Then

$$d_{H}(\boldsymbol{y}, \boldsymbol{c}') \ge d - d_{H}(\boldsymbol{c}, \boldsymbol{y}) \ge d - t = d - \left\lfloor \frac{d-1}{2} \right\rfloor$$

 $> \left\lfloor \frac{d-1}{2} \right\rfloor = t,$

which implies $\boldsymbol{y} \notin B(\boldsymbol{c}',t)$.

Hamming Bound: Proof (2)

Step two: Consider the union of these balls.

Clearly $\bigcup_{c \in \mathcal{C}} B(c,t) \subset \mathbb{F}_q^n$. Hence,

$$\operatorname{Vol}\left(\bigcup_{\boldsymbol{c}\in\mathcal{C}}B\left(\boldsymbol{c},t\right)\right)=\sum_{\boldsymbol{c}\in\mathcal{C}}\operatorname{Vol}\left(B\left(\boldsymbol{c},t\right)\right)\leq\operatorname{Vol}\left(\mathbb{F}_{q}^{n}\right)=q^{n},$$

where the first equality holds because the balls do not overlap.

The volume of each ball is

$$\operatorname{Vol}(B(\boldsymbol{c},t)) = \sum_{i=0}^{t} {n \choose i} (q-1)^{i}.$$

Therefore

$$M \operatorname{Vol}\left(B\left(\boldsymbol{c},t\right)\right) \leq q^{n} \quad \Rightarrow \quad M \leq q^{n} / \sum_{i=0}^{t} \binom{n}{i} \left(q-1\right)^{i}.$$

Gilbert-Varshamov Bound

Theorem 5.3 (Gilbert-Varshamov bound, sphere covering bound)

For given code length n and distance d, there exists a code such that

$$q^n/\operatorname{Vol}(d-1) \le M$$
,

where
$$Vol(d-1) := \sum_{i=0}^{d-1} \binom{n}{i} (q-1)^i$$
.

Comment: Different from the sphere packing bound, which holds for all codes, the sphere covering bound claims the existence of a code. That means, some badly designed codes may not satisfy this bound.

Gilbert-Varshamov Bound: Proof

It's proved by construction.

Let
$$M_0 = \lceil q^n / \text{Vol}(d-1) \rceil > 1$$
.

It suffices to show that exists a code with M_0 codewords.

Take an arbitrary word $oldsymbol{c}_1 \in \mathbb{F}_q^n$.

Since
$$M_0 > 1$$
, or $q^n > \operatorname{Vol}(d-1)$, it holds $\mathbb{F}_q^n \setminus B(c_1, d-1) \neq \phi$.

Take an arbitrary word $c_2 \in \mathbb{F}_q^n \backslash B\left(c_1, d-1\right)$.

It is clear that
$$d(c_1, c_2) \ge d(c_2 \notin B(c_1, d-1))$$
.

Continue this process inductively.

Suppose to obtain codewords c_1, \cdots, c_{M_0-1} in this way.

Since
$$\operatorname{Vol}\left(\bigcup_{i=1}^{M_0-1} B\left(\mathbf{c}_i, d-1\right)\right) \leq \left(M_0-1\right) \operatorname{Vol}\left(d-1\right) < q^n$$
,

it holds that $\mathbb{F}_q^n \setminus \bigcup_{i=1}^{M_0-1} B(\boldsymbol{c}_i, d-1) \neq \phi$.

Take an arbitrary $c_{M_0} \in \mathbb{F}_q^n \setminus \bigcup_{i=1}^{M_0-1} B(c_i, d-1) \neq \phi$.

Let
$$\mathcal{C} = \{ oldsymbol{c}_1, \cdots, oldsymbol{c}_{M_0} \}$$
 .

By construction, $d(\mathbf{c}, \mathbf{c}') > d - 1$ for all $\mathbf{c} \neq \mathbf{c}' \in \mathcal{C}$. Hence $d(\mathcal{C}) \geq d$.

Singleton Bound and MDS

Theorem 5.4 (Singleton Bound)

The distance of any code $\mathcal{C} \subset \mathbb{F}_q^n$ with M codewords satisfies

$$M \le q^{n-d+1}$$
.

In particular, if the code is linear and $M=q^k$, then

$$d \le n - k + 1.$$

Definition 5.5 (MDS)

Codes that attain the singleton bound are maximum distance separable (MDS).

Binary Hamming codes $\mathcal{H}_r\left[2^r-1,2^r-1-r,3\right]$ are not MDS in general.

▶ d = 3 < n - k + 1 = r + 1 for all $r \ge 3$.

Singleton Bound: Proof delete the first d-1 entres.

Proof of the general case:

Let \mathcal{C} be of length n and distance d.

 $\forall c \in \mathcal{C}$, let $c_{1:n-d+1} \in \mathbb{F}^{n-d+1}$ be the vector containing the first n-d+1 entries of c, and $c_{n-d+2:n} \in \mathbb{F}^{d-1}$ be the vector composed of the last d-1elements of c.

$$\begin{aligned} &\forall \boldsymbol{c} \neq \boldsymbol{c}' \in \mathcal{C}, \\ &d \leq d_H\left(\boldsymbol{c}, \boldsymbol{c}'\right) = d_H\left(\boldsymbol{c}_{1:n-d+1}, \boldsymbol{c}'_{1:n-d+1}\right) + d_H\left(\boldsymbol{c}_{n-d+2:n}, \boldsymbol{c}'_{n-d+2:n}\right). \\ &\text{But } d_H\left(\boldsymbol{c}_{n-d+2:n}, \boldsymbol{c}'_{n-d+2:n}\right) \leq d-1. \\ &\text{Hence, } d_H\left(\boldsymbol{c}_{1:n-d+1}, \boldsymbol{c}'_{1:n-d+1}\right) \geq d-(d-1) = 1. \end{aligned}$$

The truncated codewords are all distinct. Hence, $M \leq q^{n-d+1}$.

Proof for linear codes:

Note that the parity-check matrix $H \in \mathbb{F}^{(n-k)\times n}$ contains n-k rows.

Every n-k+1 columns must be linearly dependent.

By Theorem 4.11, $d \leq n - k + 1$.

Dual of MDS Codes

Theorem 5.6

If a linear code C is MDS, then its dual code C^{\perp} is also MDS.

Let the linear code $\mathcal{C}\left[n,k\right]$ be MDS.

According to Theorem 5.6, one has

	Parity-check matrix	Generator Matrix	Parameters
\mathcal{C}	$oldsymbol{H} \in \mathbb{F}^{(n-k) imes n}$	$oldsymbol{G} \in \mathbb{F}^{k imes n}$	(n,k,n-k+1)
\mathcal{C}^{\perp}	$oldsymbol{G} \in \mathbb{F}^{k imes n}$	$oldsymbol{H} \in \mathbb{F}^{(n-k) imes n}$	(n, n-k, k+1)

Key for the proof: Theorem 4.11.

If $\mathcal{C}\left[n,k\right]$ is MDS, then every set of n-k columns of $m{H}$ is linear

independent. a sn-k+1

every (d-1); n-k columns of H is linearly independent.

W. Dai (IC)

Dual of MDS Codes (Theorem 5.6): Proof

Suppose $d\left(\mathcal{C}^{\perp}\right) < k+1$. Then there exists a nonzero codeword $c \in \mathcal{C}^{\perp}$ with at most k nonzero entries and at least n-k zeros. Since permuting the coordinates reserves the codeword weights (i.e., the distance), w.l.o.g., assume that the last n-k coordinates of c are zeros.

Write the generator matrix of \mathcal{C}^{\perp} (the parity-check matrix of \mathcal{C}) as $\boldsymbol{H} = [\boldsymbol{A}, \ \boldsymbol{H}']$, where $\boldsymbol{A} \in \mathbb{F}^{(n-k)\times k}$ and $\boldsymbol{H}' \in \mathbb{F}^{(n-k)\times (n-k)}$. By definition of the generator matrix, there exists $\boldsymbol{s} \in \mathbb{F}^{n-k}$ such that $\boldsymbol{c} = \boldsymbol{s}\boldsymbol{H}$.

As \mathcal{C} is MDS, by Theorem 4.11 the columns of \boldsymbol{H}' are linearly independent. That is, \boldsymbol{H}' is invertible. That the last n-k coordinates of \boldsymbol{c} are zeros implies that $\boldsymbol{s} = \boldsymbol{c}_{k+1:n} \left(\boldsymbol{H}'\right)^{-1} = \boldsymbol{0}$. But $\boldsymbol{s} = \boldsymbol{0}$ implies $\boldsymbol{c} = \boldsymbol{s}\boldsymbol{H} = \boldsymbol{0}$ which contradicts the assumption that $\boldsymbol{c} \neq \boldsymbol{0}$. Hence, $d\left(\mathcal{C}^{\perp}\right) \geq k+1$. By the Singleton bound, $d\left(\mathcal{C}^{\perp}\right) = k+1$.

Section 6 RS & BCH Codes

- Reed-Solomon Codes
 - Definition and properties.
 - Decoding
- Cyclic and BCH codes

The contents in this section are significant re-organization and condensation of the materials of many sources, including Lin & Xing's book, Chapters 7 and 8, and Roth's book, Chapters 5, 6 and 8.

Reed-Solomon Codes

Our Heroes: Irving S. Reed and Gustave Solomon

Used in

- Magnetic recording (all computer hard disks use RS codes)
- Digital versatile disks (CDs, DVDs, etc.)
- Optical fiber networks (ITU-TG.795)
- ADSL transceivers (ITU-TG.992.1)
- Wireless telephony (3G systems, 4G systems)
- Digital satellite broadcast (ETS 300-421S, ETS 300-429)
- Deep space exploration (all NASA probes)

RS Codes: Evaluation Mapping

Definition 6.1 (Evaluation Mapping)

Let \mathbb{F}_q be a finite field. Let $n \leq q-1$ (typically n=q-1).

Let
$$\mathcal{A} = \{\alpha_1, \cdots, \alpha_n\} \subset \mathbb{F}_q$$
.

For any polynomial $f(x) \in \mathbb{F}_q[x]$, define the evaluation mapping eval (f(x)) that maps f to a vector $\mathbf{c} \in (\mathbb{F}_q)^n$

$$f \mapsto \boldsymbol{c} = [c_1, \cdots, c_n]$$
 where $c_i = f(\alpha_i)$.

Example 6.2

 $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}. \text{ Choose the primitive element } \alpha = 3.$ Let $\mathcal{A} = \{1, \alpha, \cdots, \alpha^5\} = \{1, 3, 2, 6, 4, 5\}.$

$$f\left(x\right)=2x+1\text{, }\boldsymbol{c}=\mathrm{eval}\left(f\right)=[3,0,5,6,2,4].$$

$$f(x) = 3x^2 + x + 2$$
, $c = \text{eval}(f) = [6, 4, 2, 4, 5, 5]$.

RS Codes: Definition

Definition 6.3 (Reed-Solomon Codes)

Given
$$\mathcal{A} = \{\alpha_1, \dots, \alpha_n\} \subset \mathbb{F}_q$$
, an $[n, k]$ q -ary RS code $\mathcal{C} = \{\text{eval } (f), 0 \leq \text{deg } f \leq k-1\}.$

The set A is called a defining set of points of C.

A common choice of defining set of points of $\mathcal C$ is $\mathcal A=\left\{1,\alpha,\cdots,\alpha^{q-2}\right\}$ where α is a primitive element in $\mathbb F_q$.

In this case,
$$n = q - 1$$
.

$$C = \{[f(1), f(0), ..., f(0)^{2^{2}})], alg(f) \leq k-1\}$$

$$C : \{(q-1), k, q-k\}$$

RS Codes: Properties

Theorem 6.4

- 1. RS codes are linear codes.
- 2. RS codes are MDS, i.e., The distance of the RS code is d = n k + 1.

Proof:

- 1. Let $c_1 = \operatorname{eval}(f_1)$ and $c_2 = \operatorname{eval}(f_2)$ where $\deg f_1 \leq k-1$ and $\deg f_2 \leq k-1$. Then $\alpha c_1 + \beta c_2 = \operatorname{eval}(g)$ with $g = \alpha f_1 + \beta f_2$. Since $\deg g \leq k-1$, $\operatorname{eval}(g) \in \mathcal{C}$.
- 2. A polynomial of degree $\leq k-1$ can have at most k-1 zeros. Hence, $\forall c \in \mathcal{C}$ s.t. $c \neq 0$, $c = \operatorname{eval}(f)$ has weight at least n-k+1. \Diamond
 - \$ at most k-1 zeros for each adeword

 > non-zero elements at least n-k+1

RS Codes: Conventional Definition

Let the defining set of points is $\{1,\alpha,\cdots,\alpha^{n-1}\}$ with $\operatorname{order}(\alpha)=n$ (typically n=q-1) The generated RS code has generator matrix and parity-check matrix given by

$$H = \begin{bmatrix} 1 & \alpha & \cdots & \alpha^{n-1} \\ 1 & \alpha^2 & \cdots & \alpha^{2(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & n^{n-k} & & & & & & & & \\ \end{bmatrix}$$

Generator Matrix: Justification

For any $c \in \mathcal{C}$, there exists a polynomial $f(x) = a_0 + a_1 x + \dots + a_{k-1} x^{k-1}$ s.t. $c = \text{eval}(f) = [f(1), f(\alpha), \dots, f(\alpha^{n-1})] \in \mathcal{C}$.

Note that $\forall i \in [n]$, $c_i = f\left(\alpha^i\right) = \sum_{\ell=0}^{k-1} a_\ell \left(\alpha^{i-1}\right)^\ell = [a_0, \cdots, a_{k-1}] G_i$ where G_i is the *i*-th column of the G matrix.

One has $\mathcal{C}=\{sG:\ s\in\mathbb{F}_q^k\}$ and G is a generator matrix of $\mathcal{C}.$

Remark: In the definition of the generator matrix (Def. 4.5), the rows of G are required to be linearly independent. We shall prove it later.

The $m{G}$ and $m{H}$ matrices defined in Theorem 6.5 satisfy $m{G}m{H}^T=m{0}$

Proof: Let
$$A := GH^T \in \mathbb{F}_q^{k \times (n-k)}$$

$$\forall i \in [k] \text{ and } \forall j \in [n-k], \text{ it holds that}$$

$$A_{i,j} = \sum_{\ell=1}^n \alpha^{(\ell-1)(i-1)} \alpha^{(\ell-1)j} = \sum_{\ell=1}^n \alpha^{(i+j-1)(\ell-1)}$$

$$\stackrel{(a)}{=} \frac{\alpha^{(i+j-1)n}-1}{\alpha^{i+j-1}-1} \stackrel{(b)}{=} 0, \quad \mathbf{A}^{i+j-1} = \mathbf{0}$$

where (a) comes from that i+j-1 < n and $\alpha^{i+j-1} \neq 1$, and (b) holds because $\alpha^n = 1$.

Row Rank of the G/H Matrix

Theorem 6.7

The rows of the G/H matrix in Theorem 6.5 are linearly independent.

Proof: It is sufficient to show that any k-column sub-matrix of G ((n-k)-column sub-matrix of H) has full rank.

Note that a k-column sub-matrix of G is of the form

$$m{G}' = \left[egin{array}{ccccc} 1 & 1 & \cdots & 1 \ lpha^{i_1} & lpha^{i_2} & \cdots & lpha^{i_k} \ dots & dots & \ddots & dots \ lpha^{(k-1)i_1} & lpha^{(k-1)i_2} & \cdots & lpha^{(k-1)i_k} \end{array}
ight],$$

which is a Vandermonde matrix (defined and analysed later). A Vandermonde matrix has full rank. Hence the rows of G are linearly independent.

Vandermonde Matrix

Definition 6.8 (Vandermonde Matrix)

A Vandermonde matrix $oldsymbol{V} \in \mathbb{F}^{n \times n}$ is of the form

$$V = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \cdots & \alpha_n^{n-1} \end{bmatrix}.$$

Theorem 6.9

The determinant of a Vandermonde matrix $V \in \mathbb{F}^{n \times n}$ is

$$|V| = \prod_{i < j} (\alpha_j - \alpha_i).$$

As a result, if $\alpha_i \neq \alpha_j$, $1 \leq i \neq j \leq n$, then $|V| \neq 0$ and V is of full rank.

Determinant: A Recap

Definition 6.10 (Determinant)

 $orall oldsymbol{A} \in \mathbb{F}^{n imes n}$, its determinant $|oldsymbol{A}|$ is computed via

$$|\mathbf{A}| = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} |\mathbf{M}_{i,j}|,$$

where $M_{i,j}$ is the minor matrix obtained by deleting row i and column j from A.

Lemma 6.11

- 1. |AB| = |A||B|.
- 2. If B results from A by adding a multiple of one row/column to another row/column, then |B| = |A|.
- 3. $|\mathbf{A}| \neq 0 \Leftrightarrow \mathbf{A}$ is of full rank.

Theorem 6.9: Proof (1)

We prove Theorem 6.9 by using induction.

Recall that

$$V_n = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_{n-1} & \alpha_n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_1^{n-2} & \alpha_2^{n-2} & \cdots & \alpha_{n-1}^{n-2} & \alpha_n^{n-2} \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \cdots & \alpha_{n-1}^{n-1} & \alpha_n^{n-1} \end{bmatrix}$$

Let
$$(V_n')_{:,2} = (V_n)_{:,2} - (V_n)_{:,1}$$
, \cdots , $(V_n')_{:,n} = (V_n)_{:,n} - (V_n)_{:,1}$. We obtain

$$V_n' = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ \alpha_1 & \alpha_2 - \alpha_1 & \cdots & \alpha_{n-1} - \alpha_1 & \alpha_n - \alpha_1 \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ \alpha_1^{n-2} & \alpha_2^{n-2} - \alpha_1^{n-2} & \cdots & \alpha_{n-1}^{n-2} - \alpha_1^{n-2} & \alpha_n^{n-2} - \alpha_1^{n-2} \\ \alpha_1^{n-1} & \alpha_2^{n-1} - \alpha_1^{n-1} & \cdots & \alpha_{n-1}^{n-1} - \alpha_1^{n-1} & \alpha_n^{n-1} - \alpha_1^{n-1} \end{bmatrix}$$

Theorem 6.9: Proof (2)

Let
$$(v_n'')_{n,:} = (v_n')_{n,:} - \alpha_1 (v_n')_{n-1,:}, \cdots, (v_n'')_{2,:} = (v_n')_{2,:} - \alpha_1 (v_n')_{1,:}$$
. We obtain

$$V_n'' = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & \alpha_2 - \alpha_1 & \cdots & \alpha_{n-1} - \alpha_1 & \alpha_n - \alpha_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \alpha_2^{n-2} - \alpha_1 \alpha_2^{n-3} & \cdots & \alpha_{n-1}^{n-2} - \alpha_1 \alpha_{n-1}^{n-3} & \alpha_n^{n-2} - \alpha_1 \alpha_n^{n-3} \\ 0 & \alpha_2^{n-1} - \alpha_1 \alpha_2^{n-2} & \cdots & \alpha_{n-1}^{n-1} - \alpha_1 \alpha_{n-1}^{n-2} & \alpha_n^{n-1} - \alpha_1 \alpha_n^{n-2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & \alpha_2 - \alpha_1 & \cdots & \alpha_{n-1} - \alpha_1 & \alpha_n - \alpha_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & (\alpha_2 - \alpha_1) \alpha_2^{n-3} & \cdots & (\alpha_{n-1} - \alpha_1) \alpha_{n-1}^{n-3} & (\alpha_n - \alpha_1) \alpha_n^{n-3} \\ 0 & (\alpha_2 - \alpha_1) \alpha_2^{n-2} & \cdots & (\alpha_{n-1} - \alpha_1) \alpha_{n-1}^{n-2} & (\alpha_n - \alpha_1) \alpha_n^{n-2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & & & \\ & V_{n-1}(\alpha_2, \cdots, \alpha_n) \end{bmatrix} \begin{bmatrix} 1 & & & \\ & \alpha_2 - \alpha_1 & & \\ & & \ddots & \\ & & & \alpha_{n-1} - \alpha_1 & \\ & & & & \alpha_n - \alpha_1 \end{bmatrix}$$

Hence $|V_n| = |V'_n| = |V''_n| = |V_{n-1}| \prod_{j>1} (\alpha_j - \alpha_1)$.

Decoding with Known Error Locations

Let e be the error vector.

Let $\mathcal{I} = \{i : e_i \neq 0\}$ be the set of error locations.

 $e_{\mathcal{T}}$, $H_{\mathcal{T}}$: sub-vector and sub-matrix of e and H respectively.

If we knew error locations
$$\mathcal{I}$$
: Solve $\mathbf{H}_{\mathcal{I}}\mathbf{e}_{\mathcal{I}}^{T}=\mathbf{s}^{T}$. $(\mathbf{e}_{\mathcal{I}}^{T}=\mathbf{H}_{\mathcal{I}}^{\dagger}\mathbf{s}^{T})$ Complexity of pseudo-inverse $\mathbf{H}_{\mathcal{I}}^{\dagger}$: $O\left(d^{3}\right)$

Erasure Correction

Recall the erasure channel model.

Suppose that $c \in \mathcal{C}$ was transmitted.

Receive $r = [c_1 \cdots c_{i-1} ? c_{i+1} \cdots c_n]$ (at most d-1 symbols erased).

Decoding: Set the missing symbols to zero, i.e., $r_{\mathcal{I}} = 0$.

Then r=c+e, where $e_{\mathcal{T}^c}=0$.

$$oldsymbol{s}^T = oldsymbol{H} oldsymbol{r}^T = oldsymbol{H} oldsymbol{r}^T = oldsymbol{H} oldsymbol{r}^T.$$

$$\begin{bmatrix} \alpha^{i_1-1} & \alpha^{i_2-1} & \cdots & \alpha^{i_s-1} \\ \alpha^{2(i_1-1)} & \alpha^{2(i_2-1)} & \cdots & \alpha^{2(i_s-1)} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha^{s(i_1-1)} & \alpha^{s(i_2-1)} & \cdots & \alpha^{s(i_s-1)} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_s \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_s \end{bmatrix}.$$

A Specific Example

Consider a [7,4,4] RS code over \mathbb{F}_8 ($\mathbb{F}_2[x]/x^3+x+1$). Let α be a primitive element (a root of $f(x)=x^3+x+1$).

$$\begin{split} \mathbb{F}_8 &: \alpha^3 = \alpha + 1 \\ 000 & 001 & 010 & 100 & 011 & 110 & 111 & 101 \\ 0 & 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 \\ \hline & \mathbf{v} \cdot \mathbf{j} + \mathbf{c} \cdot \mathbf{j} + \mathbf{j} & \mathbf{c} \cdot \mathbf{k} + \mathbf{c} \cdot \mathbf{k} + \mathbf{k} \\ \text{Encoded message } m(x) &= \alpha x^3 + \alpha x^2 + x. \\ \mathbf{c} &= \operatorname{eval}(m) &= \begin{bmatrix} 1 & \alpha^5 & \alpha & 1 & \alpha^5 & \alpha^6 & \alpha^5 \\ 1 & \alpha^5 & \alpha & 1 & ? & ? & \alpha^5 \end{bmatrix}. \quad \mathbf{creasure} \rightarrow \mathbf{$$

Error Correction

In previous example:

- "Error" (erasure) locations are known.
- The error values are found via matrix inverse.

For error correction:

- ► Find error locations
 - **E**xhaustive search: complexity $\binom{n}{t} = O\left(n^t\right)$.
 - ▶ In practice, \exists methods to find error locations efficiently.
- Correct errors with given error locations
 - Methods to avoid matrix inverse.

Definitions 6.12 n=4-1

Syndrome polynomial n-k+1

$$S(z) = \sum_{j=0}^{n-k-1} s_j z^j$$
, where $\mathbf{s} = \mathbf{r} \mathbf{H}^T = \mathbf{e} \mathbf{H}^T$.

Error locator polynomial: (information about error locations)

$$L(z) > 0$$
 iff $z > 0^{-i}$

$$L(z) = \prod_{i \in \mathcal{I}} (1 - \alpha^i z).$$

Error evaluator polynomial: (information about errors)

$$E(z) = L(z) \sum_{i \in \mathcal{I}} \frac{e_i \alpha^i}{(1 - \alpha^i z)} = \sum_{i \in \mathcal{I}} e_i \alpha^i \prod_{j \in \mathcal{I} \setminus \{i\}} (1 - \alpha^j z).$$

E(2) is a single term iff 2:0"

Remark: The receiver can compute the syndrome vector and the syndrome polynomial easily.

Information Encoded in L(z) and E(z)

- ▶ If we know L(z), we can find error locations.
 - $\begin{cases}
 L(\alpha^{-k}) = 0 & \text{if } k \in \mathcal{I} \\
 L(\alpha^{-k}) \neq 0 & \text{if } k \notin \mathcal{I}.
 \end{cases}$
 - Error locations can be found by exhaustively computing $L(\alpha^{-k})$, $0 \le k \le n-2$.
- \blacktriangleright E(z) helps find errors e_i , $i \in \mathcal{I}$, without matrix inverse.
 - $\forall k \in \mathcal{I}, E(\alpha^{-k}) = e_k \alpha^k \prod_{i \neq k} (1 \alpha^j \alpha^{-k}) \neq 0.$
 - $e_k = E(\alpha^{-k}) / (\alpha^k \prod_{j \neq k} (1 \alpha^j \alpha^{-k})).$
 - or $e_k = -E\left(\alpha^{-k}\right) / \frac{d}{dz} L\left(\alpha^{-k}\right)$, where $\frac{d}{dz} L\left(z\right)$ is the derivative of L(z).
 - Complexity is reduced from $O\left(n^3\right)$ to $O\left(n^2\right)$

Decoding strategy: from S(z) to find L(z) and E(z).

An Example of L(z) and E(z)

- $I = \{1, 2, 5\}.$
- $L(z) = (1 \alpha z) \left(1 \alpha^2 z \right) \left(1 \alpha^5 z \right)$
 - L (z) = 0 if $z = \alpha^{-1}, \alpha^{-2}, \text{ or } \alpha^{-5}$.
 - $ightharpoonup L(z) \neq 0$ otherwise.

$$\begin{array}{lll} \blacktriangleright E\left(z\right) = & e_{1}\alpha^{1}\left(1-\alpha^{2}z\right)\left(1-\alpha^{5}z\right) \text{ T1} \\ & + e_{2}\alpha^{2}\left(1-\alpha z\right)\left(1-\alpha^{5}z\right) \text{ T2} \\ & + e_{5}\alpha^{5}\left(1-\alpha z\right)\left(1-\alpha^{2}z\right) \text{ T3} \\ & \text{Only off mon-zero} & \text{T1} & \text{T2} & \text{T3} & E\left(z\right) \\ & \text{Cerm.} & z=\alpha^{-1} & \neq 0 & =0 & =0 & \neq 0 \\ & z=\alpha^{-2} & =0 & \neq 0 & =0 & \neq 0 \\ & z=\alpha^{-5} & =0 & =0 & \neq 0 \end{array}$$

Properties of
$$L(z)$$
 and $E(z)$ Common roots. Let $t = \lfloor \frac{d-1}{2} \rfloor$. $Z = Q^{-K}$: $\{ (Z) = 0 \}$ Theorem 6.13 (VK \in I) $\{ (Z) = 0 \}$ To $\{ (Z) = 0 \}$ Theorem 6.13 (VK $\{ (Z) = 0 \}$ To $\{ (Z) = 0 \}$ To $\{ (Z) = 0 \}$ To $\{ (Z) = 0 \}$ Theorem 6.13 (VK $\{ (Z) = 0 \}$ To $\{ (Z) = 0 \}$ To $\{ (Z) = 0 \}$ To $\{ (Z) = 0 \}$ Theorem 6.13 (VK $\{ (Z) = 0 \}$ Theorem 6.14 (VK $\{ (Z) = 0 \}$ Theorem 6.15 (VK $\{ (Z) = 0 \}$

- 1. gcd(L(z), E(z)) = 1.
- 2. The key equation:

$$E(z) = L(z) S(Z) \mod z^{d-1}$$

3. (Uniqueness) Let $a(z), b(z) \in \mathbb{F}_q[z]$ be such that $\deg(a(z)) \le t - 1$, $\deg(b(z)) \le t$, $\gcd(a(z), b(z)) = 1$ and

$$a\left(z\right)\equiv S\left(z\right)b\left(z\right)\ \left(\mathsf{mod}\ z^{d-1}
ight).$$

Then $a\left(z\right)$ and $b\left(z\right)$ are unique up to a constant. That is, we can treat $a\left(z\right)=cE\left(z\right)$, $b\left(z\right)=cL\left(z\right)$, and $E\left(z\right)$ and $L\left(z\right)$ are generated from an error vector e s.t. $\operatorname{wt}\left(e\right)\leq t$.

Decoding Process

- 1. Compute the syndrome vector and polynomial s and $S\left(z\right)$ respectively.
- 2. Apply Euclidean algorithm to z^{d-1} and $S\left(z\right)$, i.e.,

3. By Bézout's Identity (Lem. 1.5), one has

$$r_{\ell}(z) = a(z) S(z) + b(z) z^{d-1} \equiv a(z) S(z) \mod z^{d-1}.$$

4. Let c be the leading coefficient of the polynomial a(z), i.e., $c^{-1}a(z)$ is a monic polynomial. By Theorem 6.13, set

$$L(z) = c^{-1}a(z)$$
, and $E(z) = c^{-1}r_{\ell}(z)$.

5. Find the error locations $i \in \mathcal{I}$ from L(z) and the errors e_i from E(z). $\hat{c} = y - e$.

The complexity is highly reduced!

Theorem 6.13, Part 1: Proof

Proof: $L\left(z\right)$ has roots α^{-i} , $i\in\mathcal{I}$. None of them is a root of $E\left(z\right)$. $L\left(z\right)$ and $E\left(z\right)$ does not share any roots. $\gcd\left(L\left(z\right),E\left(z\right)\right)=1.$

Theorem 6.13, Part 2: Proof

Theorem 6.13 part 2 is a direct consequence of the lemma below.

Lemma 6.14

$$S(z) \equiv \sum_{i \in \mathcal{I}} \frac{e_i \alpha^i}{1 - \alpha^i z} \mod z^{d-1}$$

Proof: As $s = rH^T = eH^T$, it follows that Hence, $s_j = \sum_{i=0}^{n-1} e_i \alpha^{i(j+1)} = \sum_{i \in \mathcal{I}} e_i \alpha^{i(j+1)}$, $\forall 0 \leq j \leq d-2$.

By the definition of S(z), it holds that

$$S(z) = \sum_{j=0}^{d-2} s_j z^j = \sum_{j=0}^{d-2} \sum_{i \in \mathcal{I}} e_i \alpha^{i(j+1)} z^j$$

$$= \sum_{i \in \mathcal{I}} e_i \alpha^i \left(\sum_{j=0}^{d-2} \left(\alpha^i z \right)^j \right)$$

$$= \sum_{i \in \mathcal{I}} e_i \alpha^i \left(\sum_{j=0}^{\infty} \left(\alpha^i z \right)^j \right) \mod z^{d-1}$$

$$= \sum_{i \in \mathcal{I}} e_i \alpha^i \frac{1}{1 - \alpha^i z}.$$

Theorem 6.13, Part 3: Proof

Proof: To prove the uniqueness, we assume that there exist

$$(E(z), L(z)) \neq (E'(z), L'(z))$$
 s.t.

$$E(z) = S(z) L(z) \mod z^{d-1}$$
 and $E'(z) = S(z) L'(z) \mod z^{d-1}$.

It follows that

$$E(z) L'(z) = S(z) L(z) L'(z) \mod z^{d-1}$$

= $E'(z) L(z) \mod z^{d-1}$. (2)

By assumption, $\deg(E(z)) \leq t-1$ and $\deg(L'(z)) \leq t$.

It is clear that $\deg (E(z) L'(z)) \leq 2t - 1 \leq d - 2$.

The same is true for E'(z) L(z).

As a result, (2) becomes

$$E(z) L'(z) = E'(z) L(z)$$

Note gcd(E(z), L(z)) = 1. By Lemma 1.12, E(z) | E'(z)| and L(z)|L'(z).

Similarly from gcd(E'(z), L'(z)) = 1, E'(z) | E(z) and L'(z) | L(z).

Hence, $E\left(z\right)=cE'\left(z\right)$ and $L\left(z\right)=cL'\left(z\right)$ for some nonzero $c\in\mathbb{F}_{q}$.

Example: Consider the [7,3] RS code over \mathbb{F}_8 (\mathbb{F}_8 is given as follows).

[-, -]					0 (0 - 0		
0	1	α	α^2	α^3	α^4	α^5	α^6
000	001	010	100	011	110	111	101

Let the received signal be $y = [\alpha^3, \alpha, 1, \alpha^2, 0, \alpha^3, 1]$. Find \hat{c} .

Solutions to the Example

1. Parameters: n-k=4, d=5 (t=2), and $\boldsymbol{H}\in\mathbb{F}_8^{4\times7}$.

$$\boldsymbol{H} = \begin{bmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 \\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha & \alpha^3 & \alpha^5 \\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^5 & \alpha & \alpha^4 \\ 1 & \alpha^4 & \alpha & \alpha^5 & \alpha^2 & \alpha^6 & \alpha^3 \end{bmatrix}.$$

- 2. Syndromes: $\mathbf{s} = \mathbf{y}\mathbf{H}^T = \left[\alpha^3, \alpha^4, \alpha^4, 0\right].$ $S(z) = \alpha^4 z^2 + \alpha^4 z + \alpha^3.$
- 3. Key polynomials: apply Euclidean algorithm to z^4 and $S\left(z\right)$.
 - 3.1 $z^4 = (\alpha^3 z^2 + \alpha^3 z + \alpha^5) S(z) + (z + \alpha)$.
 - 3.2 $L'(z) = \alpha^3 z^2 + \alpha^3 z + \alpha^5$. $E'(z) = z + \alpha$.
 - 3.3 $L(z) = \alpha^5 z^2 + \alpha^5 z + 1$. $E(z) = \alpha^2 z + \alpha^3$.
- 4. Find $\hat{\boldsymbol{c}}$:
 - 4.1 Plug 1, α^{-1} , ... into L(z). $L(\alpha^{-2}) = L(\alpha^{-3}) = 0$.
 - 4.2 According E(z), we have $e_2 = \alpha^3$ and $e_3 = \alpha^6$.
 - 4.3 $\hat{c} = y e = y + e = [\alpha^3, \alpha, \alpha, 1, 0, \alpha^3, 1].$

Towards Cyclic and BCH Codes

Have seen

- ▶ Binary Hamming codes: d = 3.
- ▶ Reed-Solomon codes: MDS (d = n k + 1) and requires large fields (typically q = n + 1).

Will introduce cyclic codes

- Reed-Solomon codes are a special case of cyclic codes.
- BCH codes as another special case.
 - Systematic way to construct binary codes with large distance.

Cyclic Codes

Definition 6.15

An [n,k] linear code is cyclic if for every codeword $c=c_0c_1\cdots c_{n-2}c_{n-1}$, the right cyclic shift of c, $c_{n-1}c_0c_1\cdots c_{n-2}$, is also a codeword.

Example: The $\mathcal{H}[7,3]$ has the parity-check matrix

It's dual code \mathcal{H}_3^{\perp} (view \boldsymbol{H} as the generator matrix) is cyclic. (The codewords are 1011100, 0101110, 0010111, 1110010, 1001011, 0111001, 1100101, 0000000.)

Generating Function

Definition 6.16

The generating function of a codeword $c = [c_0 \cdots c_{n-1}]$ is $c(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$.

It will be convenient to use c(x) to represent a codeword c.

The right cyclic shift
$$c = (c_0, \cdots, c_{n-1}) \mapsto c' = (c_{n-1}, c_0, \cdots, c_{n-2})$$
 can be obtained by $c'(x) = x \cdot c(x) \mod x^n - 1$ as
$$x \cdot c(x) = c_0 x + c_1 x^2 + \cdots + c_{n-2} x^{n-1} + c_{n-1} x^n \\ = c_{n-1} + c_0 x + c_1 x^2 + \cdots + c_{n-2} x^{n-1} \mod x^n - 1.$$

Lemma 6.17

Let $c(x) \in \mathcal{C}$. For an arbitrary u(x), $u(x) c(x) \mod x^n - 1$ is in \mathcal{C} .

Generator Polynomial

Theorem 6.18

generator Polymmal

For a cyclic code C, \exists a unique monic polynomial g(x) \exists t. for all $c(x) \in C$, c(x) = u(x)g(x) for some u(x).

Proof:

Let $g(x) \in \mathcal{C}$ be the nonzero polynomial of least degree.

Since \mathcal{C} is linear, w.l.o.g., assume that $g\left(x\right)$ is monic.

Then $\forall c(x) \in \mathcal{C}$, write c(x) = u(x)g(x) + r(x).

By definition of cyclic codes, $u(x) g(x) \in \mathcal{C}$.

Hence, $r(x) \in \mathcal{C}$ by linearity of \mathcal{C} .

But deg(r(x)) < deg(g(x)), which implies r(x) = 0.

The uniqueness of $g\left(x\right)$ can be proved by contradiction. Suppose that there are two *monic* polynomials $g_{1}\left(x\right)\neq g_{2}\left(x\right)$ of the same degree that both generate \mathcal{C} . Then $g_{1}\left(x\right)-g_{2}\left(x\right)\in\mathcal{C}$ and $\deg\left(g_{1}-g_{2}\right)<\deg\left(g_{1}\right)$, which forces $g_{1}\left(x\right)-g_{2}\left(x\right)=0$.

Properties of the Generator Polynomial

Corollary 6.19

$$g\left(x\right) |x^{n}-1.$$

Proof: Write $x^n - 1 = q(x) g(x) + r(x)$.

Take "mod $x^n - 1$ " on both sides.

$$0 = x^{n} - 1 \mod x^{n} - 1 \in \mathcal{C}. \ q(x) g(x) \mod x^{n} - 1 \in \mathcal{C}(x).$$

Hence
$$r(x) \mod x^n - 1 \in \mathcal{C} \Rightarrow r(x) \in \mathcal{C} \Rightarrow r(x) = 0$$
.

Remark: Let $n = q^m - 1$.

We know how to factor x^n-1 in terms of minimal polynomials.

 $g\left(x\right)$ must be a product of minimal polynomials.

Generator Matrices of Cyclic Codes

Theorem 6.20

The generator matrix of a cyclic code C[n,k]:

$$G = \begin{bmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix} = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} \\ g_0 & g_1 & \cdots & g_{n-k} \\ & \ddots & & \ddots \\ & & g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}.$$

Observations:

- Easy for implementation: can be implemented by using flip-flops.

Parity-Check Matrices of Cyclic Codes

$$deg(g(x)) = n-k$$
 $deg(h(x)) = k$

Recall $g\left(x\right)|x^{n}-1$. Define $h\left(x\right)$ such that $g\left(x\right)h\left(x\right)=x^{n}-1$. Then $h\left(x\right)$ is a *monic* polynomial with *degree* k.

Write
$$h(x) = \sum_{i=0}^{k} a_i x^i$$
.

Definition 6.21

The reciprocal polynomial $h_{R}\left(x\right)$ of $h\left(x\right)$ is given by

$$h_R(x) = a_k + a_{k-1}x + \dots + a_0x^k = x^k h(1/x).$$

Example:
$$h(x) = 1 + x^2 + x^3 \Rightarrow h_R(x) = 1 + x + x^3$$
.

Parity-Check Matrix

Theorem 6.22

The parity-check matrix of the cyclic code $\mathcal{C}\left[n,k
ight]$ is

$$\boldsymbol{H} = \begin{bmatrix} h_{R}(x) \\ xh_{R}(x) \\ \vdots \\ x^{n-k-1}h_{R}(x) \end{bmatrix} = \begin{bmatrix} h_{k} & h_{k-1} & \cdots & h_{0} \\ h_{k} & h_{k-1} & \cdots & h_{0} \\ & \ddots & & \ddots & \\ & & h_{k} & h_{k-1} & \cdots & h_{0} \end{bmatrix}.$$

Corollary 6.23

The dual of a cyclic code, C^{\perp} , is also cyclic.

 $h_0^{-1}h_R\left(x
ight)$ is the generator polynomial of \mathcal{C}^{\perp} .

Theorem 6.22: Proof

By assumption,
$$x^n-1=g\left(x\right)h\left(x\right)$$
. Note that
$$g\left(x\right)h\left(x\right)=\left(\sum_{i=0}^{n-k}g_ix^i\right)\left(\sum_{i=0}^kh_ix^i\right)\\ =\sum_{i=0}^n\left(\sum_{\ell=0}^ig_\ell h_{i-\ell}\right)x^i=\sum_{i=0}^na_ix^i,$$
 where $a_0=g_0h_0=-1$, $a_n=g_{n-k}h_k=1\cdot 1=1$, and
$$a_i=\sum_{\ell=0}^ih_\ell g_{i-\ell}=0, \quad 1\leq i\leq n-1.$$

Let $\boldsymbol{A} = \boldsymbol{G}\boldsymbol{H}^T$ with

$$\boldsymbol{A}_{i,j} = [\underbrace{0,\cdots,0}_{i-1},g_0,\cdots,g_{n-k},0,\cdots 0] \cdot [\underbrace{0,\cdots,0}_{j-1},h_k,\cdots,h_0,0,\cdots,0]^T.$$

It can be verified that $A_{1,1}=a_k$, $A_{1,2}=a_{k+1}$, \cdots , and

$$oldsymbol{A} = oldsymbol{G} oldsymbol{H}^T = \left[egin{array}{cccc} a_k & a_{k+1} & \cdots & a_{n-1} \ a_{k-1} & a_k & \cdots & a_{n-2} \ dots & dots & \ddots & dots \ a_1 & a_2 & \cdots & a_{n-k} \end{array}
ight] = oldsymbol{0} \in \mathbb{F}^{k imes (n-k)}$$

Cyclic Codes: An Example

To construct a cyclic code on \mathbb{F}_q , we realize that

- $\qquad M^{(i)}(x) \in \mathbb{F}_q[x]$
- $M^{(i)}(x) | x^{q^m-1} 1.$

Definition 6.24

A BCH code over \mathbb{F}_q of length $n=q^m-1$ is the cyclic code generated by $g\left(x\right)=\operatorname{lcm}\left(M^{(a)}\left(x\right),\cdots,M^{(a+\delta-2)}\left(x\right)\right)$

for some integer a. (The code is called narrow-sense if a = 1.)

Lemma 6.25

A BCH code defined in Definition 6.24 has $d > \delta$.

 δ is referred to the designed distance.

Distance of BCH Codes: Proof of Lemma 6.25

Let α be the primitive element in \mathbb{F}_{q^m} . By construction, $\alpha^a, \dots, \alpha^{a+\delta-2}$ are roots of the generator polynomial g(x).

That is, $\forall c \in \mathcal{C}$, the generating function c(x) satisfies $c(\alpha^i) = 0$, $a \le i \le a + \delta - 2$. In matrix format,

$$\begin{bmatrix} 1 & \alpha^{a} & \cdots & \alpha^{a(n-1)} \\ 1 & \alpha^{a+1} & \cdots & \alpha^{(a+1)(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{a+\delta-2} & \cdots & \alpha^{(a+\delta-1)(n-1)} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{bmatrix} = \mathbf{0}$$
(3)

Any $(\delta-1)$ -column submatrix is a Vandermonde matrix and hence of full rank. This implies $d \geq \delta$.

Remark: The matrix in (3) is in $\mathbb{F}_{q^m}^{(\delta-1)\times n}$ while the vector $\boldsymbol{c}\in\mathcal{C}\subset\mathbb{F}_q^n$. Hence the matrix is not a parity-check matrix when m>1.

Example: Reed-Solomon Codes

Recall that a RS-code $\mathcal{C}\left[n,k,n-k+1\right]$ is built on \mathbb{F}_q with typically n=q-1.

Compare the parity-check matrix of a RS-code (Theorem 6.5) and Equation (3). It is clear that a RS-code is a special case of a BCH code with m=1.

In particular, suppose that we are asked to build a BCH code over \mathbb{F}_q with n=q-1 and $d\geq \delta=n-k+1.$ We find $M^{(i)}\left(x\right)\subset \mathbb{F}_q\left[x\right],$ $1\leq i\leq 1+\delta-2=n-k.$ Since $M^{(i)}\left(x\right)\subset \mathbb{F}_q\left[x\right],$ it follows that $M^{(i)}\left(x\right)=x-\alpha^i.$ Hence $g\left(x\right)=\prod_{i=1}^{n-k}\left(x-\alpha^i\right)$ and the generator matrix can be constructed (in a different form of that in Theorem 6.5) and good for implementation). Its parity-check matrix is given by the matrix in Equation (3). RS decoder can be directly applied for decoding.

Example: Binary BCH Codes

We have learned binary Hamming codes. The distance is always 3. The guestion is how to construct a binary code with large distance.

For example, how to construct a binary code of length 15 and d > 5?

- 1. For binary codes, use \mathbb{F}_2 . $n=15=2^4-1$ hence m=4.
- 2. $\delta = 5$ implies $g(x) = \text{lcm}(M^{(1)}(x), M^{(2)}(x), M^{(3)}(x), M^{(4)}(x))$.
- 3. The relevant cyclotomic cosets of 2 modulo 15 include $C_1 = \{1, 2, 4, 8\}$ and $C_3 = \{3, 6, 9, 12\}$. Hence $M^{(1)}(x) = \prod_{i \in C_1} (x - \alpha^i) = M^{(2)}(x) = M^{(4)}(x)$ and $M^{(3)}(x) = \prod_{i \in \mathcal{C}_2} (x - \alpha^i)$. Furthermore,

$$g(x) = M^{(1)}(x) \cdot M^{(3)}(x)$$
.

4. Find the generator matrix and parity-check matrix according to Theorems 6.20 and 6.22 respectively.

From Hamming to BCH

Example: A binary code of length 15 and d > 5?

$$g(x) = \operatorname{lcm} (M^{(1)}(x), M^{(2)}(x), M^{(3)}(x), M^{(4)}(x))$$

= $\operatorname{lcm} (M^{(1)}(x), M^{(3)}(x))$
= $M^{(1)}(x) \times M^{(3)}(x)$.

RS codes are special cases of BCH codes (m = 1).

Have learned [7, 4, 3] Hamming code.

$$m{H} = \left[egin{array}{ccccccc} 0 & 0 & 1 & 0 & 1 & 1 & 1 \ 0 & 1 & 0 & 1 & 1 & 1 & 0 \ 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{array}
ight]$$

Another view:

Let α be a primitive element of \mathbb{F}_8 that satisfies $\alpha^3 = \alpha + 1$.

The parity check matrix can be written as

From Hamming to BCH: Larger Distance

Binary BCH codes with $d \ge 5$:

$$g(x) = \operatorname{lcm} \left(M^{(1)}(x), M^{(2)}(x), M^{(3)}(x), M^{(4)}(x) \right)$$
$$= \operatorname{lcm} \left(M^{(1)}(x), M^{(3)}(x) \right).$$

It holds that

$$\begin{bmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 \\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha & \alpha^3 & \alpha^5 \\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^5 & \alpha & \alpha^4 \\ 1 & \alpha^4 & \alpha & \alpha^5 & \alpha^2 & \alpha^6 & \alpha^3 \end{bmatrix} \boldsymbol{c} = \boldsymbol{0}$$

$$\mathbf{But} \ c(\alpha) = 0 \Rightarrow \begin{bmatrix} \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 \\ c(\alpha^4) = c(\alpha)^4 = 0 \end{bmatrix}$$

$$\boldsymbol{H} = \begin{bmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 \\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^5 & \alpha & \alpha^4 \end{bmatrix}$$

Eventually, we get a [7,1,7] code $C = \{0000000, 11111111\}$.