Санкт-Петербургский национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Система искусственного интеллекта»

Лабораторная работа №4

Вариант №3

Студент

Бобрусь Александр Владимирович Группа Р33091

Преподаватель

Авдюшина Анна Евгеньевна

Задание

- Выбор датасетов:
 - Студенты с **четным** порядковым номером в группе должны использовать набор данных о жилье в Калифорнии Скачать тут
 - Студенты с **нечетным** порядковым номером в группе должны использовать <u>про</u> обучение студентов
- Получите и визуализируйте статистику по датасету (включая количество, среднее значение, стандартное отклонение, минимум, максимум и различные квантили).
- Проведите предварительную обработку данных, включая обработку отсутствующих значений, кодирование категориальных признаков и нормировка.
- Разделите данные на обучающий и тестовый наборы данных.
- Реализуйте линейную регрессию с использованием метода наименьших квадратов без использования сторонних библиотек, кроме NumPy и Pandas (для использования коэффициентов использовать библиотеки тоже нельзя). Использовать минимизацию суммы квадратов разностей между фактическими и предсказанными значениями для нахождения оптимальных коэффициентов.
- Постройте три модели с различными наборами признаков.
- Для каждой модели проведите оценку производительности, используя метрику коэффициент детерминации, чтобы измерить, насколько хорошо модель соответствует данным.
- Сравните результаты трех моделей и сделайте выводы о том, какие признаки работают лучше всего для каждой модели.
- Бонусное задание
 - Ввести синтетический признак при построении модели

Код программы

https://github.com/BobrAll/ITMO/tree/main/term%205/Artificial%20intelligence %20systems

Заменим в выборке Yes/No на 1/0.

Выведем статистику:

"/User	s/bobr/PycharmF	Projects/Sai lab1/	venv/bin/python"	/Users/bobr/	/PycharmProjects/Sai	lab1/main.py
	Hours Studied	Previous Scores	Extracurricular	Activities	\	
count	10000.000000	10000.000000	1	0000.000000		
mean	4.992900	69.445700		0.494800		
std	2.589309	17.343152		0.499998		
min	1.000000	40.000000		0.000000		
25%	3.000000	54.000000		0.000000		
50%	5.000000	69.000000		0.000000		
75%	7.000000	85.000000		1.000000		
max	9.000000	99.000000		1.000000		
	Sleep Hours	Sample Question P	Papers Practiced	Performance	Index	
count	10000.000000		10000.000000	10000.0	00000	
mean	6.530600		4.583300	55.2	224800	
std	1.695863		2.867348	19.2	212558	
min	4.000000		0.000000	10.0	00000	
25%	5.000000		2.000000	40.0	00000	
50%	7.000000		5.000000	55.0	000000	
75%	8.000000		7.000000	71.0	000000	
max	9.000000		9.000000	100.6	000000	

Построим графики:

После нормализации:

Производим обучение моделей после разбиения на обучающую и тестовую выборки и оцениваем результат по коэффициенту детерминации:

1 модель: используем все признаки.

2 модель: для наглядности возьмем признаки, которые, на наш взгляд, не будут (или не значительно будут) коррелировать с искомой величиной (Sleep Hours, Extracurricular Activities)

3 модель: возьмем признаки, которые должны хорошо отражать искомую величину (Hours Studied, Sample Question Papers Practiced, Previous Scores) 4 модель: синтезируем новый признак, используя существующие (Hours Studied + Previous Scores * 2.5)

Результат:

```
Determination coef. (model #1) = 0.9889895699393596

Determination coef. (model #2) = 0.004826482833158452

Determination coef. (model #3) = 0.9868902473144947

Determination coef. (model #4) = 0.9857087336564307
```

Вывод

В ходе выполнения данной работы я научился строить регрессионную модель зависимости данных, а также научился синтезировать признаки для повышения производительности при работе с моделями.