ANALYSIS of DESIGN and ALGORITHM - LAB ASSIGNMENT MCA I year II Sem

L"	NCE		
IGN	EMENT	NUMBER 3:	
त्य पर	>//		

	Objective:	CO	BL
	• Understand and implement Divide and Conquer strategies.		
	 Apply Greedy Method for optimization problems. 		
	 Analyse time complexity and behaviour of the algorithms through practical coding. 		
Q.1	Binary Search Implementation:	CO3	BL3
	 Task: Write a program to perform binary search on a sorted array. Requirements: 		
	 Implement both recursive and iterative versions. 		
	 Display the number of comparisons made. 		
	• Input: Sorted array of integers and a target element.		
	• Output: Index of the element (or appropriate message if not found).		
Q.2	Quick Sort Implementation	CO3	BL3
	Task: Implement the Quick Sort algorithm.		
	• Requirements:		
	• Use a pivot selection strategy (first element, last element, or median).		
	 Track the number of comparisons and swaps. Input: Unsorted array of integers. 		
	• Output: Sorted array.		
Q.3	Strassen's Matrix Multiplication	CO3	BL3
	Task: Implement Strassen's algorithm for matrix multiplication.		
	• Requirements:		
	 Handle matrices of size 2ⁿ × 2ⁿ (padding if necessary). 		
	 Compare execution time with conventional matrix multiplication. 		
	• Input: Two matrices.		
	• Output: Product matrix.		
Q.4	Greedy Method Algorithms	CO3	BL3
	Minimum Cost Spanning Tree (MST)		
	• Task: Implement Prim's and Kruskal's algorithms to find MST.		
	• Requirements:		
	 Print the edges included in the MST and total cost. 		
	• Input: A connected, weighted undirected graph (using adjacency		
	matrix or adjacency list).		
	Output: MST and total minimum cost.		

1

By Assistant Professor: Megha Rathore

ANALYSIS of DESIGN and ALGORITHM - LAB ASSIGNMENT MCA I year II Sem

Q.5 Knapsa	ack Problem (Fractional)	CO3	BL3
•	Task: Solve the Fractional Knapsack Problem using a greedy approach. Requirements:		
•			
•	Allow taking fractions of an item.		
•	Input: Arrays of weights, values, and the capacity of the knapsack.		
•	Output: Maximum value that can be put in the knapsack.		

2

By Assistant Professor: Megha Rathore