

Problems

- •Open source or inexpensive software does not exist to do the end to end calculations of a sub-sonic, fixed wing aircraft
- Much of the software that is available requires extensive training to use effectively
- •Multiple software packages exist that perform part of the solution, e.g. XFLR
- A significant number of designs have been produced that are inefficient, unstable or just plain unsafe.

Goals

- •Produce a single, extensible library of software routines that can perform many of the calculations in basic aircraft design
- Provide a wrapper program that executes the library to analyze a basic aircraft design
- •Flag potential design problems that violate best known design practices
- •Code the software using a modern scientific, open source language
- Provide the source and examples that can be used to help understand the tool
- Write the software as a collaborative learning exercise

High Level Initial Architecture

- •Julia programming language was chosen because, since its inception at MIT, it has gained a great deal of support worldwide by universities as well as industry
- It has many of the same features as Matlab and Python
- •The software is deliberately written as a library of subroutines that can be independently modified, tested or added to as necessary to improve operation or enhance capabilities

Software Status

- •Experiments have been run to use named variables in Solidworks to generate the required data for the Intermediate Data file. This work is still in its infancy. Note, that any CAD system could be used. There is no attempt to use a particular tool.
- •Excel Intermediate Data File contains formatted data with preset variable names. It does not require particular data ordering or units. It converts all units to metric and stores the data within the program. This file can be generated by a CAD system with scripting or "by hand". The software ignores additional variables it doesn't require.
- •The Julia control program and software libraries are in work with some features demonstratable. There are about 24 discrete calculations that are being reported. Additional support subroutines are included in the library. The code base is approximately 800 lines and growing. Some of the code is 'demonstration code" that can be rewritten to execute more efficiently.
- •The design rule checker and report writer are not started.

Example Input File

- •The model above was generated in Solidworks and serves as the basis for the test design
- •The spreadsheet at the right was hand generated from the CAD data.
- The black box at the right contains the Julia processor adjusting the units to be appropriate for each calculation performed

Name 🔻	Value 🔻	Units 🔻	Notes
SVstart	30	m/s	Simulation starting velocity
SVend	200	m/s	Simulation ending velocity
SVincr	5	m/s	Simulation velocity increment size
T	21	С	Air temperature
m	1504	lb	Takeoff mass
М	182864	in lb	Aircraft moment (from nose)
WSF	108 %		Wing load safety factor
b	26	ft	Wing span
Ct	24	in	Wing tip chord
Cr	54	in	Wing root chord
λ	7.31	degrees	Wing Sweep Angle
lwdle	113.78	in	Distance datum (nose) to wing LE
Ihdle	240	in	Distance datum (nose) to HS LE
lvdle	229.5	in	Distance datum (nose) to VS LE
Cth	18	in	Horizontal stab tip chord
Crh	18	in	Horizontal stab root chord
bh	132	in	Horizontal stab span
λh	0	degrees	Horizontal stab sweep Angle
λν	30.69	degrees	Vertical stab sweep Angle
Ctv	18.5	in	Vertical stab tip chord
Crv	44.8	in	Vertical stab root chord
bv	45	in	Vertical stab height
Nv	2	count	Number of vertical stabs
Cl	1.8	kg/m^3	Main wing coefficient of lift
Clh	1.8	kg/m^3	Horizontal Stab Coefficient of lift
Swetf	20	m^2	Fuselage area exposed to air
dfuse	0.8	m	Fuselage maximum diameter
lf	7	m	Fuselage maximum length

```
>>> Converted 1504.00 lb to 682.20 kg
>>> Converted 182864.00 in lb to 2106.82 kgm
>>> Converted 24.00 in to 0.61 m
>>> Converted 54.00 in to 1.37 m
>>> Converted 26.00 ft to 7.92 m
>>> Converted 18.00 in to 0.46 m
>>> Converted 18.00 in to 0.46 m
>>> Converted 132.00 in to 3.35 m
>>> Converted 18.50 in to 0.47 m
>>> Converted 44.80 in to 1.14 m
>>> Converted 45.00 in to 1.14 m
>>> Converted 45.00 in to 1.14 m
>>> Converted 240.00 in to 5.83 m
>>> Converted 275.02 kg to 7357.46 N
>>> Converted 750.25 kg to 667.34 N
```

Current Output Data

	Port I	Name	Value	Unite	Notes		
	Row	Name Any	Value Any	Units Any	Notes Any		
		,	,	,			
	1	SVstart	30	m/s	Simulation starting velocity		
	2	SVend	200	m/s	Simulation ending velocity		
	3	SVincr	5	m/s	Simulation velocity increment si		
ı	4	T	21	C	Air temperature		
ı	5	m	682.202	kg	Takeoff mass		
	6	M	2106.82	kgm	Aircraft moment (from nose)		
	7	WSF	108	%	Wing load safety factor		
ı	8	b	7.9248	m	Wing span		
ı	9	Ct	0.6096	m	Wing tip chord		
	10	Cr	1.3716	m 	Wing root chord		
ı	11	λ	7.31	degrees	Wing Sweep Angle		
	12	lwdle	2.89001	m	Distance datum (nose) to wing LE		
ı	13 14	lhdle	6.096	m	Distance datum (nose) to HS LE		
		lvdle	5.8293	m	Distance datum (nose) to VS LE		
	15 16	Cth Crh	0.4572 0.4572	m m	Horizontal stab tip chord		
	17	bh	3.3528	m	Horizontal stab root chord Horizontal stab span		
	18	λh	0	degrees	Horizontal stab sweep Angle		
	19	λιι	30.69	degrees	Vertical stab sweep Angle		
	20	Ctv	0.4699	m	Vertical stab tip chord		
	21	Crv	1.13792	m	Vertical stab root chord		
	22	bv	1.143	m	Vertical stab height		
	23	Nv	2	count	Number of vertical stabs		
	24	C1	1.8	kg/m^3	Main wing coefficient of lift		
	25	Clh	1.8	kg/m^3	Horizontal Stab Coefficient of 1		
	26	Swetf	20	m^2	Fuselage area exposed to air		
	27	dfuse	0.8	m	Fuselage maximum diameter		
	28	1f	7	m	Fuselage maximum length		
	29	Cg	3.08826	m	Center of gravity		
	30	cMAC	1.03945	m	Mean wing chord		
	31	Sw	7.85031	m^2	Wing area		
	32	AR	8.0		Wing aspect ratio		
	33	AC	0.481427	m	Wing AC from LE		
	34	d	1.7272	m	Wing MAC Distance to root		
	35	cMACh	0.4572	m	Horizontal stab mean chord		
	36	Sht	1.5329	m^2	Horizontal stab area		
	37	ARh	7.33333		Horizontal stab aspect ratio		
	38	ACh	0.1143	m	Horizontal stab AC from LE		
	39	cMACv	0.4572	m	Vertical stab mean chord		
	40	Svt	1.83774	m^2	Vertical stab area		
	41	ARV	1.4218		Vertical stab aspect ratio		
	42	ACV	0.26041	m	Vertical stab AC from LE		
	43	Lht	2.83886	m	Length ACs of wing to h stab		
	44	Lvt	2.71827	m	Length ACs of wing to v stab		
	45 46	Cht Cvt	0.533297 0.0802974		Coefficient of horizontal tail Coefficient of vertical tail		
	46	W		M			
	47	W Wh	7357.46 667.335	N N	Wing load (level flight)		
	48	Wn Wload	95.5697	N kg/m^2	Horizontal stab load Wing loading		
	50	Vstall	29.1562	m/s	Wing stall speed		
	51	Vhstall	19.8713	m/s	Horizontal stab stall speed		
	or violate 15.0/15 m/3 horizontal stab stall speed						
	>> End of Script <<						

- The output at the left is the internal data matrix that is used for storing the aircraft data. Rows 1 28 match the data being read in. The balance are calculated values.
- The software adjusts the units to remain consistent for each calculation type. Ultimately, the report generator will determine the output units
- The graph at the bottom represents the first unformatted drag plot generated from the calculated Reynolds number using the velocity and fuselage dimensions. Note that it is currently not interpolating the skin friction drag curves, hence the steps in the graph

Next Steps

•The potential for development of the product is limited to the size of the team's imagination.

Near term goals:

- Completing the calculations for static analysis of the aircraft design: additional drag components, basic performance, stability, etcetera
- Update all coordinate calculations to 3D
- Improve some of the calculation accuracies
- More tightly integrate airfoil shapes into the calculations
- Start building the framework for design rule checking the aircraft design
- Add control surface forces to enable control system design

•Longer term goals:

- Add a detailed report generator, with graphs and information on design margins against design rules
- Add dynamic modeling/predictions

Closing Thoughts

- •The intent is to move the software to an open source repository for further development.
- •It will be provided under one of the standard open source licenses.
- •Hopefully, it will be embraced by multiple people to carry the torch of learning, improvement and enhancement while providing a tool to improve safety and design consistency