Lesson 20: Practice Problems - Riccati to Second-Order Transformation

ODE 1 - Prof. Adi Ditkowski

Part A: Basic Transformations (5 problems)

- 1. Transform each Riccati equation to second-order linear form:
 - (a) $y' = 1 + y^2$
 - (b) $y' = x^2 y^2$
 - (c) $y' = \frac{1}{x^2} + \frac{2y}{x} + y^2$
 - $(d) y' = e^x + y^2$
 - (e) $y' = 1 2y + y^2$
- 2. For the equation $y' = q_0(x) + y^2$, show that the transformation y = -u'/u gives $u'' = q_0(x)u$.
- 3. Verify that if u_1 and u_2 solve the second-order equation, then $y = -\frac{u'_1 u_2 u_1 u'_2}{u_1 u_2}$ solves the associated Riccati.
- 4. Show that the transformation $y = \tan(\theta)$ converts $y' = a(x)(1+y^2)$ into $\theta' = a(x)$.
- 5. Prove that if the Riccati has constant coefficients, the transformed second-order equation also has constant coefficients.

Part B: Complete Solutions via Transformation (6 problems)

- 6. Solve $y' = 1 y^2$ by transforming to second-order form.
- 7. Find the general solution of $y' = \frac{2}{x^2} + y^2$ using the second-order approach.
- 8. Solve $y' = 4 + y^2$ and express the answer in terms of hyperbolic functions.
- 9. Transform and solve: $y' = \cos^2(x) + y^2$.
- 10. Find all solutions of $y' = e^{2x} y^2$.
- 11. Solve the equation $y' = \frac{1-n^2}{x^2} + y^2$ where n is an integer.

Part C: Reverse Transformation (5 problems)

- 12. Given u'' + u = 0, find the associated Riccati equation and solve it.
- 13. Transform u'' 4u = 0 to Riccati form and find all solutions.
- 14. Convert the Airy equation u'' xu = 0 to its Riccati form.
- 15. Show that the Bessel equation x^{2u} " + xu' + (x² n²)u = 0 corresponds to a specific Riccati equation.
- 16. Given u'' + p(x)u' + q(x)u = 0 with known solution u_1 , find the Riccati solution.

Part D: Special Cases and Applications (5 problems)

- 17. The Riccati equation $y' = ax^{2n} + by^2$ where a, b are constants:
 - (a) Transform to second-order form
 - (b) Identify when elementary solutions exist
 - (c) Solve for n = 0, 1
- 18. Consider $y' = \frac{A}{x^2} + \frac{B}{x}y + Cy^2$:
 - (a) Show this transforms to an Euler equation
 - (b) Find conditions on A, B, C for real solutions
 - (c) Solve when B = 0, C = 1
- 19. The equation $y' = \sec^2(x) + y^2$:
 - (a) Transform to second-order form
 - (b) Explain why elementary solutions don't exist
 - (c) Find series solution near x = 0
- 20. For the parametric family $y' = \lambda + y^2$:
 - (a) Find the second-order form for each λ
 - (b) Determine solution behavior as λ varies
 - (c) Identify bifurcation at $\lambda = 0$
- 21. The Schwarzian derivative connection:
 - (a) Show that $y' = -\frac{1}{2}S[f](x) + y^2$ where S[f] is the Schwarzian
 - (b) Find the second-order form
 - (c) Discuss invariance properties

Part E: Theoretical Problems (4 problems)

- 22. Prove that the transformation $y = -\frac{1}{q_2} \frac{u'}{u}$ is invertible: given y(x), we can recover u(x) up to a constant multiple.
- 23. Show that if the Riccati equation has n particular solutions y_1, \ldots, y_n , the second-order equation has n corresponding solutions $u_i with y_i = -u_i'/u_i$.
- 24. Prove that the Wronskian $W(u_1, u_2) = u_{1u_2'} u'_1u_2$ of two solutions of the second-order equation satisfies W' = -p(x)W.
- 25. Establish the connection: If y_1 and y_2 are two Riccati solutions, then $(y_1 y_2)^{-1}$ satisfies a first-order linear equation.

Part F: Exam-Style Complete Problems (6 problems)

- 26. [Prof. Ditkowski Style] Consider the Riccati equation: $y' = \frac{4}{x^2} y^2$
 - (a) Transform to second-order linear form using y = u'/u
 - (b) Identify the type of second-order equation obtained
 - (c) Solve the second-order equation
 - (d) Find the general solution of the original Riccati
 - (e) Verify your solution satisfies the original equation
 - (f) Find the solution with y(1) = 2
- 27. [Multiple Methods] For $y' = 1 + y^2$:
 - (a) Solve using the known particular solution $y_p = \tan(x)$
 - (b) Solve by transforming to second-order form
 - (c) Verify both methods give the same general solution
 - (d) Discuss the solution's periodicity and singularities
- 28. [Comparison Problem] Given the two equations:
 - (i) $y' = 1 + y^2$
 - (ii) $y' = 1 y^2$
 - (a) Transform both to second-order form
 - (b) Solve both completely
 - (c) Compare the qualitative behavior of solutions
 - (d) Explain the difference using phase portraits

29. [Application to Quantum Mechanics] The radial Schrödinger equation can yield the Riccati:

$$y' = \frac{l(l+1)}{x^2} - k^2 + \frac{2m}{\hbar^2}V(x) + y^2$$

- (a) For V(x) = 0 (free particle), transform to second-order
- (b) Solve for l=0
- (c) Discuss bound states vs scattering states

30. [Comprehensive Problem] Consider $y' = x^2 + y^2$:

- (a) Show no elementary particular solution exists
- (b) Transform to second-order form
- (c) Identify this as an Airy-type equation
- (d) Write the solution in terms of Airy functions
- (e) Analyze asymptotic behavior as $x \to \pm \infty$

31. [Challenge: Connection to Painlevé] The equation $y' = x + y^2$ is related to Painlevé II.

- (a) Transform to second-order form
- (b) Show the second-order equation has no elementary solutions
- (c) Prove solutions exist for all x
- (d) Find the asymptotic behavior as $x \to -\infty$
- (e) Explain why this is called a "Painlevé transcendent"

Solutions and Hints

Selected Solutions:

Problem 1(a): Using y = -u'/u with $q_2 = 1$: Second-order form: u'' + u = 0 Solution: $u = c_1 \cos x + c_2 \sin x$ Riccati solution: $y = \tan(x - \phi)$

Problem 6: $y' = 1 - y^2$ transforms to u'' - u = 0. Solution: $u = c_{1e}^x + c_{2e}^{-x}$ Therefore:

 $y = -c_{1e}{}^{x} - c_{2e}{}^{-x}{}_{\bar{c}1e}{}^{x} + c_{2e}{}^{-x} = \tanh(x+C)$ **Problem 7:** $y' = \frac{2}{x^{2}} + y^{2}$ gives x^{2u} + 2u = 0. This is Euler with m(m-1) + 2 = 0, som = $1 \pm \sqrt{1-8} \frac{1}{2=\frac{1\pm i\sqrt{7}}{2}}$. Solutions involve $x^{1/2}\cos(\frac{\sqrt{7}}{2}\ln x)$ and $x^{1/2}\sin(\frac{\sqrt{7}}{2}\ln x)$.

Problem 12: From u'' + u = 0, the Riccati is $y' = -1 - y^2$. This is $y' = 1 + y^2$ with $y \to iy$, giving $y = -\tan(x - C)$.

Problem 25: For $y' = \frac{4}{x^2} - y^2$: Second-order: x^{2u} " - 4u = 0(Eulerequation)Withu = x^{m} :m(m-1) = 4, som = 1 $\pm \sqrt{1+16} \frac{1}{2=\frac{1\pm\sqrt{17}}{2}}$

Key Transformation Formulas:

• Forward: $y = -\frac{1}{q_2} \cdot \frac{u'}{u}$

- Resulting 2nd-order: u'' + p(x)u' + r(x)u = 0
- Where: $p = -q_1 q_2'/q_2$, $r = q_{0q2}$
- Reverse: Given u'' + p(x)u' + q(x)u = 0, get $y' = -q py y^2$

Common Second-Order Results:

•
$$y' = a + y^2 \to u'' + au = 0$$

$$y' = a - y^2 \rightarrow u'' - au = 0$$

•
$$y' = \frac{a}{x^2} + y^2 \to x^{2u}$$
, + au = 0y = axⁿ + y² $\to u'' + ax^{nu} = 0$