

BIOLOGY Chapter 7

METABOLISMO: Fotosíntesis

Elysia chlorotica

Existe un animal que es capaz de realizar la fotosíntesis; su nombre científico es *Elysia clorótica* y es una babosa marina que se alimenta del alga *Vaucheria litorea* para luego asimilar sus cloroplastos, proceso llamado cleptoplastia

METABOLISMO

conjunto de reacciones químicas que ocurre dentro de una célula,

1.CATABOLISMO: o

degradación de moléculas complejas a moléculas simples, llamado también proceso exergónico, ejm:

- ✓ Respiración celular
- ✓ Digestión celular

- 2.ANABOLISMO: o formación de moléculas complejas a partir de moléculas simples, llamado también proceso endergónico. ejm.
- ✓ Fotosíntesis
- ✓ síntesis de proteínas

BIOLOGY

ATP Son moléculas transportadoras de energía.

La energía que se necesita para las reacciones endergónicas se obtiene de la hidrólisis del ATP.

Energía del catabolismo

FOTOSÍNTESIS

Es el proceso ANABÓLICO mediante el cual se sintetizan compuestos orgánicos como la glucosa a partir de CO2 y el H2O, empleando como fuente de energía la luz solar. En la fotosíntesis la energía luminosa se convierte en energía química.

CUANTOSOMA

PIGMENTOS FOTOSINTÉTICOS

- Los eucariotas fotosintéticos (plantas y algas), la clorofila a es el principal pigmento
 - ✓ Absorbe luz violeta, azul, anaranjadorojizo, rojo
- Pigmentos accesorios:
 - ✓ incluyen a la clorofila b, c, d y e
 - ✓ Los carotenoides que pueden ser de dos tipos: los carotenos (amarillos) y las xantofilas (naranjas).
 - ✓ Las ficobilinas: ficocianina y ficoeretrina, pigmentos presentes el algas y cianobacterias
 - ✓ Estos absorben la energía que la clorofila no puede absorber

FASES DE LA FOTOSÍNTESIS

FASE LUMINOSA

SE REALIZA EN LOS TILACOIDES (GRANA)

EVENTOS:

- 1. Fotoexcitación de la clorofila.
- 2. Fotólisis del agua
- 3. Fotofosforilación de ADP
- 4. Fotoreducción del NADP

FASE LUMINOSA

FASE OSCURA

SE REALIZA EN EL ESTROMA

EVENTOS:

- Activación energética de la ribulosa.
- 2. Fijación del CO2. (Carboxilación)
- 3. Reducción del fosfoglicerato
- 4. Regeneración de la ribulosa y obtención de la glucosa.

FASE OSCURA

HELICOSINTESIS

Estroma

BIOLOGY HELICOPRACTICE

4th

SECONDARY

METABOLISMO: Fotosíntesis

Mencione.

Los compuestos químicos que intervienen en la fotosíntesis son:

AGUA
DIÓXIDO DE CARBONO
PIGMENTOS FOTOSINTÉTICOS

2. El oxígeno liberado por las plantas durante la fotosíntesis proviene de - FOTÓLISIS DEL AGUA -

Demnestro mis conocimientos

3. En el cloroplasto, la fase oscura de la fotosíntesis se realiza en – EL ESTROMA DEL CLOROPLASTO

 Mencione dos diferencias entre la fase luminosa y la fase oscura de la fotosíntesis.

Sustentación

Fase luminosa	Fase oscura
 SE REALIZA EN EL TILACOIDE DEPENDE DE LA LUZ 	 SE REALIZA EN EL ESTROMA NO DEPENDE DE LA LUZ

 Mencione la importancia de la fase oscura de la fotosíntesis.

Sustentación

PRODUCCIÓN DE GLUCOSA

6. Al visitar un jardín botánico se observó variedad de vegetales, Lucia recordó su clase de fotosíntesis y preguntó ¿cuáles son los productos finales de la fase luminosa?

ATP y NADPH2

7. En la clase el profesor coloco un papelografo con la estructura de la clorofila. Pregunto. ¿Cual es el componente que promueve la asimilación del la energia luminosa?

- A) K
- C) Mg

- B) Ca
- D) Cl