Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	27–10 -2023	
Team ID	Team - 592731	
Project Name	Walmart Sale Analysis For Retail	
	Industry with Machine Learning	
Maximum Marks	8 marks	

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story/ Task	Story Points	Priority	Team Members
Sprint-1	Project Initialization & Infrastructure Setup	USN-1	As a project manager, I want to set up the development environment and configure the necessary infrastructure to commence the Walmart Sale Analysis project.	1	High	Akshara
Sprint-1	Data Collection	USN-2	As a data engineer, I want to gather and collate a comprehensive dataset of Walmart's historical sales data and	2	High	Akshara

						
			relevant parameters for training the			
			machine learning model.			
Sprint-2	Data preprocessing	USN-3	Preprocess the collected dataset by	3	High	Akshara
			cleaning, normalizing, and splitting it			
			into training and validation sets to			
			prepare it for analysis.			
Sprint-3	Model	USN-4	Select the most suitable model for sales	5	High	Chetan
	Development &		prediction and train the chosen machine			
	Training		learning model using the preprocessed			
			Walmart sales dataset.			
Sprint-4	Model Deployment	USN-5	As a software developer, I want to	6	High	Chetan
	& Integration		deploy the trained machine learning			
			model as a service or API and integrate it			
			into a user-friendly interface			
Sprint-5	Personalized Risk	USN-6	As an individual, I want to utilize the	1	Mediu	Yogitha
	Assessment		developed model to forecast future sales		m	
			trends and make informed decisions			
Sprint-5	Model Evaluation	USN-7	These user stories represent the key	2	High	Yogitha
	and Enhancement		phases and tasks involved in the project			
			planning for Walmart Sale Analysis in the			
			retail industry using machine learning.			
			The team members and their			
			responsibilities can be customized based			
			on your project team's composition.			

Project Tracker, Velocity and Burndown Chart: (4 marks)

Sprint	Total Story	Duration	Sprint Start	Sprint End	Story Points	Sprint
	Points		Date	Date(Planned)	Completed(as	Release Date
					On Planned	(Actual)
					End Date)	
Sprint-1	3	1 Day	28 Oct 2023	28 Oct 2023	3	28 Oct 2023
Sprint-2	3	1 Day	29 Oct 2023	29 Oct 2023	3	29 Oct 2023
Sprint-3	5	3 Days	30 Oct 2023	1 Nov 2023	5	1 Nov 2023
Sprint-4	6	3 Days	2 Nov 2023	4 Nov2023	6	4 Nov2023
Sprint-5	3	2 Days	5 Nov 2023	6 Nov 2023	3	6 Nov 2023

Velocity:

Imagine we have a 11-days sprint duration, and the velocity of the team is 3 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Velocity =
$$(3+3+5+6+3)/5 = 20/5 = 4$$

$$AV = \frac{sprint\ duration}{velocity}$$

$$AV = 11/4 = 2.75$$

Burndown Chart:

Board Section

Backlog Section

Timeline Section

