FURTHER MATHEMATICS HIGHER LEVEL

August 2019			Na	me i	n blo	ck le	tters		
Review Assignment									

INSTRUCTIONS

- Do not use the calculator unless directed to do so in the question.
- There are 20 questions. Try to answer them all.
- All numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working or explanations. Where an answer is incorrect, some marks may be given for a correct method provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

1.	(a) Draw a tree that has no Hamiltonian path.
	(b) Draw a graph with an Eulerian circuit but no Hamiltonian cycle.
	(c) For what values of n does the complete graph $K_{\rm n}$ have an Eulerian circuit?

2.	Consider the elementary matrices $E_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$.
	(a) To what elementary row operations do E ₁ and E ₂ correspond?
	(b) Write down $\det E_1$ and $\det E_2$.
	(c) Write down E_1^{-1} and E_2^{-1} .

3. Consider the Abelian group $(\{2,4,6,8\},\otimes)$ where the operation \otimes is multiplication modulo 10.	
(a) Construct the Cayley table for the group.	
(b) List all the proper subgroups of the group.	
(c) Is this group cyclic? If so, name a generator.	
	• •
	•••
	• •
	• •
	• •
	• •
	• •
	• •
	•••

4.	A cycle graph C_n is a graph on n vertices that is a cycle.
	(a) Draw the first five cycle graphs C_1 through C_5 .
	(b) For what values of n is C_n bipartite?
	(c) Prove that a bipartite graph contains no cycle of odd length.

5.	Consider the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
	(a) Show that the series converges by comparing the series to a suitable p-series.
	(b) Show that $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$.
	(c) Hence find the exact sum of the series.

6.	Consider the matrix $M = \begin{pmatrix} x & x+2 \\ x-5 & -x \end{pmatrix}$ where $\det M = 1$.
	(a) Find the two possible values of x .
	(b) Let A be the matrix when $x = 3$. Find the smallest group of matrices that contains A and state another group to which this group is isomorphic.

7.	Consider the series $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots + \frac{1}{2n-1} + \dots$
	(a) Show that the ratio test cannot be used to establish the convergence or divergence of the series
	(b) Use the integral test, clearly stating any necessary conditions for its use, to establish whether the series converges or diverges.
	the series converges of three-ges.

8. I	Let ω be the cube root of unity which has smallest positive argument.
	(a) Show that $1 + \omega + \omega^2 = 0$.
	(b) Find the matrix product $\begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}$ giving your answer in simplest form.
	(c) Hence solve the following system giving your answers as real numbers.
	$x + y + z = 3$ $x + \omega y + \omega^2 z = -3$ $x + \omega^2 y + \omega z = -3$
•	
•	
•	
•	
•	
•	

9.	(a)	State De Morgan's laws for sets.
	(b)	Use Venn diagrams to show that $(A \cup B)' = A' \cap B'$.
	(c)	With the help of De Morgan's laws prove that $[(A' \cup B) \cap (A \cup B')]' = A \triangle B$.
	• • • •	
	• • • •	
	• • • •	

١.	Consider the cycle graph C_5 .
	(a) Draw the complement C_5' of C_5 .
	(b) Draw another graph with five vertices that is also isomorphic to its complement.
	(c) If G is a simple graph with five vertices, find the sum of the adjacency matrices $A(G)$ and $A(G')$

11. Consider the points $A(-3,9)$ and $B(1,5)$ in the Cartesian plane.
(a) Find the equation of the circle with diameter [AB].
(b) The locus of the point P such that $PA = 3PB$ is the circle \mathfrak{C} . Find the centre and radius of \mathfrak{C} .
(c) The tangents to $\mathcal C$ through A meet $\mathcal C$ at P_1 and P_2 respectively. Find the lengths AP_1 and AP_2 .

12.	The parametric equations of the hyperbola \mathcal{H} are $x=e^t+e^{-t}$ and $y=e^t-e^{-t}$.
	(a) Find the Cartesian equation of \mathcal{H} .
	(b) Find the coordinates of the foci of \mathcal{H} .
	(c) Use parametric differentiation to find the gradient of ${\mathfrak H}$ when $t=\ln 2$.

13. Let S be the series $\sum_{n=0}^{\infty} \left(\frac{t}{t+1}\right)^n$ where $t \neq 0$.
(a) Find the value to which S converges when $t = 1$.
(b) Determine the values of t for which S converges.
(c) Find all values of t for which the sum of the series is greater than 10.

14.	(a) Prove that the base angles of an isosceles trapezium are equal.
	(b) Hence prove that an isosceles trapezium is cyclic.
	(c) An isosceles trapezium has sides of length 5, 5, 7 and 8. Use Ptolemy's theorem to find the lengths of the diagonals.

 15. Consider the matrix A = (1 1 1 1 1) (1 2 3 4) (2 3 4 6). (a) Use your calculator to find the reduced row echelon form for A. (b) Write down a basis for the row space of A. (c) State the rank of A. (d) State the nullity of A. (e) Find a basis for the null space of A.

16.	. Consider the simple connected planar graph G with ν vertices, e edges and f faces.
	(a) State Euler's formula for G.
	(b) If $v \ge 3$ prove that $e \le 3v - 6$.
	(c) Hence prove that K_n is not planar when $n \ge 5$.

17. A matrix A is called <i>skew symmetric</i> if $A^T = -A$.
(a) Calculate the product $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
(b) Prove that if A is an $n \times n$ skew symmetric matrix and $\vec{x} \in \mathbb{R}^n$, then $\vec{x}^T A \vec{x} = 0$.

18.	(a) Find $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$.
	(b) Show that $\int_{1}^{\infty} xe^{-x} dx = \frac{2}{e}.$
	(c) Find $\lim_{x \to 0^+} \frac{e^{-1/x}}{x}$.

19. Consider the structure $(\mathbb{R}\setminus\{-1\},\circ)$ where the operation \circ is defined by $a\circ b=a+ab+b$.
(a) Prove that the structure is an Abelian group.
(b) Solve the equation $2 \circ (x \circ (-3)) = 5$ where $x \in \mathbb{R} \setminus \{-1\}$.

20.	(a) State Menelaus's theorem.
	(b) Use Menelaus's theorem to prove Ceva's theorem.
	(c) In the diagram, the numbers 3, 4 and 6 are the areas of their respective triangles. What is the area of the unmarked quadrilateral?
	3 4