JEDEC STANDARD

Addendum No. 1 to JESD209-4 Low Power Double Data Rate 4X (LPDDR4X)

JESD209-4-1B

(Revision of JESD209-4-1A, February 2021)

May 2025

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

NOTICE

JEDEC standards and publications contain material that has been prepared, reviewed, and approved through the JEDEC Board of Directors level and subsequently reviewed and approved by the JEDEC legal counsel.

JEDEC standards and publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than JEDEC members, whether the standard is to be used either domestically or internationally.

JEDEC standards and publications are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action JEDEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the JEDEC standards or publications.

The information included in JEDEC standards and publications represents a sound approach to product specification and application, principally from the solid state device manufacturer viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or publication may be further processed and ultimately become an ANSI standard.

No claims to be in conformance with this standard may be made unless all requirements stated in the standard are met.

All risk and liability relating to the use of JEDEC standards is assumed by the user, who agrees to indemnify and hold JEDEC harmless.

Inquiries, comments, and suggestions relative to the content of this JEDEC standard or publication should be addressed to JEDEC at the address below, or refer to www.jedec.org under Standards and Documents for alternative contact information.

Copyright © JEDEC Solid State Technology Association 2025. All rights reserved.

JEDEC retains the copyright on this material. By downloading this file the individual agrees not to charge for or resell the resulting material.

PRICE: Contact JEDEC 3103 10th Street North, Suite 240S, Arlington, VA 22201

Contents

		Page
1	Scope	1
2	Package Ballout and Pin Definition	
2.1	Pad Order	
2.2	Single Channel Pad Order	
2.3	LPDDR4X packages	
2.3.1	LPDDR4 34x34 Quad x16 Channel (Fits 14x14 0.4 mm Pitch) – using MO-317A	4
2.3.2	144-ball ePoP MCP One-Channel FBGA (Top View) using MO-323A	
2.3.3	200-ball x32 Discrete Package, 0.80 mm x 0.65 mm using MO-311	
2.3.4	432-ball x64 HDI Discrete Package, 0.50 mm x 0.50 mm (MO-313)	7
2.3.5	254-ball e•MMC MCP Two-Channel FBGA (Top View) using MO-276	8
2.3.6	254-ball UFS MCP Two-Channel FBGA (Top View) using MO-276	
2.4	Pad Definition and Description	
2.5	Mode Register Definition	
2.5.1	MR0 Register Information (MA [7:0] = 00H)	
2.5.2	MR3 Register Information (MA[7:0] = 03 _H)	
2.5.3	MR12 Register Information (MA[7:0] = 0C _H)	
2.5.4	MR14 Register Information (MA[7:0] = 0E _H)	
2.5.5	MR21 Register Information (MA[7:0] = 15 _H)	
2.5.6	MR22 Register Information (MA[7:0] = 16 _H)	
2.5.7	MR51 Register Information (MA[7:0] = 33H)	
3	Command Definitions and Timing Diagrams	25
3.1	Pull Up/Pull Down Driver Characteristics and Calibration	
3.2	ODT Mode Register and ODT Characteristics	
3.2	ODT Mode Register and ODT Characteristics (cont'd)	
3.3	On Die Termination for DQ, DQS and DMI	
3.4	Output Driver and Termination Register Temperature and Voltage Sensitivity	30
3.5	Single-ended Mode for Clock and Strobe	
3.5.1	Combination of Mode Register Setting and ODT Termination	31
3.5.2	Restriction of Single-ended Mode	32
3.5.3	Switching Sequence between Differential and Single-ended	32
3.5.4	VRCG Enable Timing	37
3.5.5	Command Bus Training Procedure	39
3.5.6	Mode Register Function with Two Physical Registers	42
3.5.7	Reference Level for Single-ended Mode	43
3.5.8	AC Parameters for Single Ended (SE)	44
4	AC and DC Operating Conditions	
4.1	Recommended DC Operating Conditions for Low Voltage	45
4.2	Single Ended Output Slew Rate	45

4.3 Differential Output Slew Rate	16
5 V _{REF} Specifications	
5.1 CA Internal V _{REF} Specifications	
6 Power-up, Initialization, and Power-off Procedure	
7 ODT Mode Register and ODT State Table	
8 Core Timing	
Annex A — (Informative) Differences between Revisions	
A.1 Differences between JESD209-4-1B and JESD209-4-1A	
A.2 Differences between JESD209-4-1A and JESD209-4-1	
List of Figures	Page
Figure 1 — On Die Termination for CA	26
Figure 2 — On Die Termination	28
Figure 3 — Differential to SE CK and Write DQS - FSP Switching Timing CKE=High	33
Figure 4 — SE to Differential CK and Write DQS - FSP Switching Timing CKE=High	34
Figure 5 — Differential to SE CK and Write DQS - FSP Switching Timing CKE=Low	
Figure 6 — SE to Differential CK and Write DQS - FSP Switching Timing CKE=Low	
Figure 7 — VRCG Status Change to High Current Mode: Single-ended Clock Case	
Figure 8 — VRCG Status Change to High Current Mode: Differential Clock Case	
Figure 9 — Write DQS Mode Changes from Differential to Single-ended for x16 Device	
Figure 10 — Write DQS Mode Changes from Differential to Single-ended for x8 Device	
Figure 11 — Write DQS Mode Changes from Single-ended to Differential for x8 Device	
Figure 12 — Reference Point of CK_t	
Figure 13 — Reference Point of DQS_t	
_	
Figure 14 — Single Ended Output Slew Rate Definition	
Figure 15 — Differential Output Slew Rate Definition	46

Contents (cont'd)

List of Tables

	Page
Table 1 — Pad Definition and Description	13
Table 2 — Mode Register Assignment in LPDDR4 SDRAM	14
Table 3 — V _{REF} Settings for Range[0] and Range[1]	18
Table 4 — V _{REF} Settings for Range[0] and Range[1]	20
Table 5 — LPDDR4X Byte Mode Device (MR11 OP[6:4] ≠ 000B Case)	23
Table 6 — Pull-down Driver Characteristics, with ZQ Calibration	25
Table 7 — Terminated Pull-Up Characteristics, with ZQ Calibration	25
Table 8 — Terminated Valid Calibration Points	25
Table 9 — ODT DC Electrical Characteristics (Assuming RZQ = 240 Ω +/-1% over the Entire Operating Temperature Range after a Proper ZQ Calibration)	27
Table 10 — ODT DC Electrical Characteristics (Assuming RZQ = 240 Ω +/-1% over the Entire Operating Temperature Range after a Proper ZQ Calibration)	29
Table 11 — Output Driver and Termination Register Sensitivity Definition	30
Table 12 — Output Driver and Termination Register Temperature and Voltage Sensitivity.	30
Table 13 — ODT Status for Single-ended Mode for Clock and Strobe	31
Table 14 — SE from/to Differential FSP and Additional Period for MRW AC Timing	38
Table 15 — Mode Register Function with Two Physical Registers	42
Table 16 — Delta CK and DQS Specification	44
Table 17 — Recommended DC Operating Conditions	45
Table 18 — Output Slew Rate (Single-ended) for 0.6 V V _{DDQ}	45
Table 19 — Differential Output Slew Rate for 0.6 V VDDQ	46
Table 20 — CA Internal V _{REF} Specifications	47
Table 21 — DQ Internal V _{REF} Specifications	48
Table 22 — MRS Default Settings	49
Table 23 — Command Bus ODT State	50
Table 24 — Core Timing	51

This page intentionally left blank

(From JEDEC Board Ballot JCB-25-28, formulated under the cognizance of the JC-42.6 Subcommittee on Low Power Memories, item 1847.30).

1 Scope

This document defines the LPDDR4 standard, including features, functionalities, AC and DC characteristics, packages, and ball/signal assignments. The purpose of this standard is to define the minimum set of requirements for a JEDEC compliant 16-bit per channel SDRAM device with either one or two channels. LPDDR4 dual channel device density ranges from 4 Gb through 32 Gb and single channel density ranges from 2 Gb through 16 Gb. This document was created using aspects of the following standards: DDR2 (JESD79-2), DDR3 (JESD79-3), DDR4 (JESD79-4), LPDDR (JESD209), LPDDR2 (JESD209-2), and LPDDR3 (JESD209-3).

Each aspect of the standard was considered and approved by committee ballot(s). The accumulation of these ballots was then incorporated to prepare the LPDDR4 standard.

This addendum defines LPDDR4X specifications that supersede the LPDDR4 Standard (JESD209-4) to enable low V_{DDQ} operation of LPDDR4X devices to reduce power consumption.

2 Package Ballout and Pin Definition

2.1 Pad Order

C	h. A Top		
1	VDD2	41	VDD2
2	VSS	42	CKE_A
3	VDD1	43	CS_A
4	VDD2	44	VSS
5	VSS	45	CA1_A
6	VSSQ	46	CA0_A
7	DQ8_A	47	VDD2
8	VDDQ	48	ODT(ca)_A
9	DQ9_A	49	VSS
10	VSSQ	50	VDD1
11	DQ10_A	51	VSSQ
12	VDDQ	52	DQ7_A
13	DQ11_A	53	VDDQ
14	VSSQ	54	DQ6_A
15	DQS1_t_A	55	VSSQ
16	DQS1_c_A	56	DQ5_A
17	VDDQ	57	VDDQ
18	DMI1_A	58	DQ4_A
19	VSSQ	59	VSSQ
20	DQ12_A	60	DMI0_A
21	VDDQ	61	VDDQ
22	DQ13_A	62	DQS0_c_A
23	VSSQ	63	DQS0_t_A
24	DQ14_A	64	VSSQ
25	VDDQ	65	DQ3_A
26	DQ15_A	66	VDDQ
27	VSSQ	67	DQ2_A
28	ZQ	68	VSSQ
29	VDDQ	69	DQ1_A
30	VDD2	70	VDDQ
31	VDD1	71	DQ0_A
32	VSS	72	VSSQ
33	CA5_A	73	VSS
34	CA4_A	74	VDD2
35	VDD2	75	VDD1
36	CA3_A	76	VSS
37	CA2_A	77	VDD2
38	VSS	CI	h. A Bottom
39	CK_c_A		
40	CK_t_A		
C	h. A Top		

С	h. B Top
101	VDD2
102	VSS
103	VDD1
104	VDD2
105	VSS
106	VSSQ
107	DQ8 B
108	VDDQ
109	DQ9_B
110	VSSQ
111	DQ10_B
112	VDDQ
113	DQ11_B
114	VSSQ
115	DQS1_t_B
116	DQS1_c_B
117	VDDQ
118	DMI1_B
119	VSSQ
120	DQ12_B
121	VDDQ
122	DQ13_B
123	VSSQ
124	DQ14_B
125	VDDQ
126	DQ15_B
127	VSSQ
128	RESET_n
129	VDDQ
130	VDD2
131	VDD1
132	VSS
133	CA5_B
134	CA4_B
135	VDD2
136	CA3_B
137	CA2_B
138	VSS
139	CK_c_B
140	CK_t_B
C	h. B Top

141	VDD2
142	CKE_B
143	CS_B
144	VSS
145	CA1_B
146	CA0_B
147	VDD2
148	ODT(ca)_B
149	VSS
150	VDD1
151	VSSQ
152	DQ7_B
153	VDDQ
154	DQ6_B
155	VSSQ
156	DQ5_B
153	VDDQ
158	DQ4_B
159	VSSQ
160	DMI0_B
161	VDDQ
162	DQS0_c_B
163	DQS0_t_B
164	VSSQ
165	DQ3_B
166	VDDQ
167	DQ2_B
168	VSSQ
169	DQ1_B
170	VDDQ
171	DQ0_B
172	VSSQ
173	VSS
174	VDD2
175	VDD1
176	VSS
177	VDD2
	. B Bottom

- NOTE 1 Applications are recommended to follow bit/byte assignments. Bit or Byte swapping at the application level requires review of MR and calibration features assigned to specific data bits/bytes.
- NOTE 2 Additional pads are allowed for DRAM mfg-specific pads ("DNU"), or additional power pads as long as the extra pads are grouped with like-named pads.
- NOTE 3 V_{DDQ} pads ((#12, #21, #57, #66, #112, #121, #157, and #166) may be individually assigned to either V_{DDQ} or V_{DD2} . Please refer to vendor specification.

2.2 Single Channel Pad Order

	Тор		
1	VDD2	40	CK_c
2	VSS	41	CK_t
3	VDD1	42	VDD2
4	VDD2	43	CKE
5	VSS	44	CS
6	VSSQ	45	VSS
7	DQ8	46	CA1
8	VDDQ	47	CA0
9	DQ9	48	VDD2
10	VSSQ	49	ODT(ca)
11	DQ10	50	VSS
12	VDDQ	51	VDD1
13	DQ11	52	VSSQ
14	VSSQ	53	DQ7
15	DQS1_t	54	VDDQ
16	DQS1_c	55	DQ6
17	VDDQ	56	VSSQ
18	DMI1	57	DQ5
19	VSSQ	58	VDDQ
20	DQ12	59	DQ4
21	VDDQ	60	VSSQ
22	DQ13	61	DMI0
23	VSSQ	62	VDDQ
24	DQ14	63	DQS0_c
25	VDDQ	64	DQS0_t
26	DQ15	65	VSSQ
27	VSSQ	66	DQ3
28	ZQ	67	VDDQ
29	VDDQ	68	DQ2
30	VDD2	69	VSSQ
31	RESET_n	70	DQ1
32	VDD1	71	VDDQ
33	VSS	72	DQ0
34	CA5	73	VSSQ
35	CA4	74	VSS
36	VDD2	75	VDD2
37	CA3	76	VDD1
38	CA2	77	VSS
39	VSS	78	VDD2
			Bottom

- NOTE 1 Applications are recommended to follow bit/byte assignments. Bit or Byte swapping at the application level requires review of MR and calibration features assigned to specific data bits/bytes.
- NOTE 2 Additional pads are allowed for DRAM mfg-specific pads ("DNU"), or additional power pads as long as the extra pads are grouped with like-named pads.
- NOTE 3 V_{DDQ} pads (#12, #21, #57, and #66) may be individually assigned to either V_{DDQ} or V_{DD2}. Please refer to vendor specification.
- NOTE 4 A RESET_n pad is added. The RESET_n pad location is vendor specific. See vendor device datasheets for details about RESET_n pad location.

2.3 LPDDR4X packages

2.3.1 LPDDR4 34x34 Quad x16 Channel (Fits 14x14 0.4 mm Pitch) - using MO-317A

- NOTE 1 14 mm x 14 mm, 0.4 mm pitch.
- NOTE 2 376 ball count, 34 rows.
- NOTE 3 Top View, A1 in top left corner.
- NOTE 4 ODT(ca)_[x] balls are wired to ODT(ca)_[x] pads of Rank 0 DRAM die. ODT(ca)_[x] pads for other ranks (if present) are disabled in the package.
- NOTE 5 Package Channel a and Channel d shall be assigned to die Channel A of different LPDDR4 die.
- NOTE 6 DRAM die pad Vss and Vssq signals are combined to Vss package balls.
- NOTE 7 Package requires dual channel die or functional equivalent of single channel die-stack.

2.3.2 144-ball ePoP MCP One-Channel FBGA (Top View) using MO-323A

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19				
Α	DNU	VSSm	VSSm	VCCQm	VSSm	VSSm	DAT5m	VCCQm	DAT0m	CLKm	VCCm	DAT6m	VCCQm	DAT7m	VCCQm	VSSm	RSTm	VSSm	DNU			VCCm	
В	VSSm	VSSm	VCCm	VSSm	VDDI	VCCm	DAT1m	DAT4m	VSSm	VCCQm	VSSm	DAT2m	DAT3m	VSSm	DSm	VSSm	CMDm	VCCm	VSSm	eMIV	c۱	/CCQ m	
С	VSSm	VCCm																VSSm	VSSm			VSSm	
D	VSF1	VSF3																VSF5	VSF8				
E	VSF2	VSF4																VSF6	VSF9				
F	RESET_n	VSS																VSF7	RFU			VDDQ	
G	ZQ1_A	ZQ0_A																RFU	RFU	DRAI	,	VDD1	
н	VSS	vss																vss	VSS	DitA		VDD2	
J	VDD1	VDD1																VDD1	VDD1			vss	
К	VDD2	VDD2																VDD2	VDD2				
L	VSS	VDDQ							eM	19x21	GA							VDDQ	VSS				
М	DQ8_A	DQ9_A																DQ1_A	DQ0_A				
N	VDD2	DQ10_A																DQ2_A	VDD2				
P	DQ11_A	VSS																VSS	DQ3_A				
R	DQS1_t_ A	DQS1_c_ A																DQS0_c_ A	DQS0_t_ A				
т	VSS	VDDQ																VDDQ	VSS				
U	DM1_A	VSS																VSS	DM0_A				
v	VDD2	VDDQ																VDDQ	VDD2				
w	DQ12_A	DQ13_A																DQ5_A	DQ4_A				
Y	VSS	VDD2	DQ14_A	VDD1	CA5_A	VSS	CA2_A	VDD2	CK_c_A	vss	CKEO_A	CSO_A	CA1_A	VDD2	vss	DQ7_A	DQ6_A	VDD2	VSS				
AA	DNU	vss	VDDQ	DQ15_A	VDD2	CA4_A	CA3_A	vss	CK_t_A	CKE1_A	CS1_A	vss	CA0_A	ODT(ca) _A	VDD1	VDDQ	vss	vss	DNU				

NOTE 1 0.4 mm pitch, 2 rows.

NOTE 2 Top View, A1 in top left corner.

NOTE 3 Body size: 8 mm x 9.5 mm

NOTE 4 ODT(ca)_A balls are wired to ODT(ca)_A pads of Rank 0 DRAM die. ODT(ca) pads for other ranks (if present) are disabled in the package.

NOTE 5 DRAM die pad VSS and VSSQ signals are combined to V_{SS} package balls.

NOTE 6 The flash ball-out supports e•MMC 5.x

NOTE 7 Vendor specific function (VSF) - this terminal should not have any external electrical connections, but it may have an internal connection. The terminal may be routed to provide accessibility and may be used for general purpose vendor specific operations.

2.3.3 200-ball x32 Discrete Package, 0.80 mm x 0.65 mm using MO-311

0.80mm Pitch

	_	_	_	_	_	_		_	_			
	1	2	3	4	5	6	7	8	9	10	11	12
Α	DNU	DNU	VSS	VDD2	ZQ0			ZQ1	VDD2	VSS	DNU	DNU
В	DNU	DQ0_A	VDDQ	DQ7_A	VDDQ			VDDQ	DQ15_A	VDDQ	DQ8_A	DNU
C	VSS	DQ1_A	DMI0_A	DQ6_A	VSS			VSS	DQ14_A	DMI1_A	DQ9_A	VSS
D	VDDQ	VSS	DQS0_t_A	VSS	VDDQ			VDDQ	VSS	DQS1_t_A	VSS	VDDQ
Ε	VSS	DQ2_A	DQS0_c_A	DQ5_A	VSS			VSS	DQ13_A	DQS1_c_A	DQ10_A	VSS
F	VDD1	DQ3_A	VDDQ	DQ4_A	VDD2			VDD2	DQ12_A	VDDQ	DQ11_A	VDD1
G	VSS	ODTa	VSS	VDD1	VSS			VSS	VDD1	VSS	ZQ2	VSS
Н	VDD2	CAO_A	CS1_A	CSO_A	VDD2			VDD2	CA2_A	CA3_A	CA4_A	VDD2
J	VSS	CA1_A	VSS	CKEO_A	CKE1_A			CK_t_A	CK_c_A	VSS	CA5_A	VSS
K	VDD2	VSS	VDD2	VSS	CS2_A			CKE2_A	VSS	VDD2	VSS	VDD2
L												
M												
N	VDD2	VSS	VDD2	VSS	CS2_B			CKE2_B	VSS	VDD2	VSS	VDD2
P	VSS	CA1_B	VSS	CKEO_B	CKE1_B			CK_t_B	CK_c_B	VSS	CA5_B	VSS
R	VDD2	CAO_B	CS1_B	CSO_B	VDD2			VDD2	CA2_B	CA3_B	CA4_B	VDD2
T	VSS	ODT_B	VSS	VDD1	VSS			VSS	VDD1	VSS	RESET_n	VSS
U	VDD1	DQ3_B	VDDQ	DQ4_B	VDD2			VDD2	DQ12_B	VDDQ	DQ11_B	VDD1
٧	VSS	DQ2_B	DQS0_c_B	DQ5_B	VSS			VSS	DQ13_B	DQS1_c_B	DQ10_B	VSS
W	VDDQ	VSS	DQS0_t_B	VSS	VDDQ			VDDQ	VSS	DQS1_t_B	VSS	VDDQ
Υ	VSS	DQ1_B	DMI0_B	DQ6_B	VSS			VSS	DQ14_B	DMI1_B	DQ9_B	VSS
AA	DNU	DQ0_B	VDDQ	DQ7_B	VDDQ			VDDQ	DQ15_B	VDDQ	DQ8_B	DNU
AB	DNU	DNU	VSS	VDD2	VSS			VSS	VDD2	VSS	DNU	DNU

NOTE 1 0.8 mm pitch (X-axis), 0.65 mm pitch (Y-axis), 22 rows.

0.65mm Pitch

NOTE 2 Top View, A1 in top left corner.

NOTE 3 ODT(ca)_[x] balls are wired to ODT(ca)_[x] pads of Rank 0 DRAM die. ODT(ca)_[x] pads for other ranks (if present) are disabled in the package.

NOTE 4 ZQ2, CKE2_A, CKE2_B, CS2_A, and CS2_B balls are reserved for 3-rank package. For 1-rank and 2-rank package, those balls are NC.

NOTE 5 Die pad Vss and Vsso signals are combined to Vss package balls.

NOTE 6 Package requires dual channel die or functional equivalent of single channel die-stack.

2.3.4 432-ball x64 HDI Discrete Package, 0.50 mm x 0.50 mm (MO-313)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
Α	VDDQ	VDD1	VDDQ	VDDQ	VDDQ	VDD2		VDD2	VDDQ	VDDQ	VDDQ	VDD1	VDDQ		VDDQ	VDD1	VDDQ	VDDQ	VDDQ	VDD2		VDD2	VDDQ	VDDQ	VDDQ	VDD1	VDDQ	Α
В	VDDQ	VDD1	DQ0_A	VSS	CA0_A	VDD2		VDD2	CA4_A		DQ8_A	VDD1	VDDQ		VDDQ	VDD1	DQ0_C		CA0_C	VDD2		VDD2	CA4_C	VSS	DQ8_C	VDD1	VDDQ	В
С	VDDQ	DQ1_A	VSS	DQ5_A	VSS	CA2_A		CA3_A	VSS	DQ13_A		DQ9_A	VDDQ		VDDQ	DQ1_C	VSS	DQ5_C		CA2_C		CA3_C	VSS	DQ13_C		DQ9_C	VDDQ	С
D	VDDQ	VSS	DQ4_A	VSS	CA1_A	VDD2		VDD2	CA5_A		DQ12_A	VSS	VDDQ		VDDQ		DQ4_C		CA1_C	VDD2		VDD2	CA5_C	VSS	DQ12_C		VDDQ	D
Е	VDDQ	DQ2_A	VSS	DQ6_A	VSS	CLK_t_A		CLK_c_ A		DQ14_A		DQ10_A	VDDQ		VDDQ	DQ2_C	VSS	DQ6_C	VSS	CLK_t_C		CLK_c_C		DQ14_C		DQ10_C	VDDQ	E
F	VDDQ	VSS	DQS0_t _A		CS1_A	VDD2		VDD2	CKEO_A		DQS1_t _A	VSS	VDDQ		VDDQ	VSS	DQS0_t _C		CS1_C	VDD2		VDD2	CKE0_C	VSS	DQS1_t _C	VSS	VDDQ	F
G	VDDQ	DQ3_A	VSS	DQS0_c _A	VSS	CSO_A		CKE1_A	VSS	DQS1_c _A	VSS	DQ11_A	VDDQ		VDDQ	DQ3_C	VSS	DQS0_c _C	VSS	CSO_C		CKE1_C	VSS	DQS1_c _C	VSS	DQ11_C	VDDQ	G
Н	VDDQ	VSS	DMI0_A	VSS	DQ7_A	VDD2		VDD2	DQ15_A	VSS	DMI1_A	VSS	VDDQ		VDDQ	VSS	DMI0_C	VSS	DQ7_C	VDD2		VDD2	DQ15_C	VSS	DMI1_C	VSS	VDDQ	н
J	VDDQ	ZQ3_A	ZQ2_A	ODT ca_A	CS3_A	CS2_A		CKE3_A	CKE2_A	ZQ0_A	VSS	ZQ1_A	VDDQ		VDDQ	ZQ3_C	ZQ2_C	ODT ca_C	CS3_C	CS2_C		CKE3_C	CKE2_C	ZQ0_C	VSS	ZQ1_C	VDDQ	J
К																												К
L		Notes: 1) 0.5mm	n ball pit	ch																								L
М	1) 0.5mm ball pitch 2) 432 ball count 3) Top view, A1 in top left corner														М													
N						OT(ca)_[x] C shall be	•						r ranks (ii	present	t) are disa	bled in t	he packa	ge										N
Р	l					d CS2_B b reserved							ose balls	are NC														Р
R					-	combine e or funct				channel d	ie-stack.																	R
Т																												Т
V	VDDQ	VSS	VSS	ODT ca_B	CS3_B	CS2_B		CKE3_B	CKE2_B		VSS	RESET_ n	VDDQ		VDDQ		VSS	ODT ca_D	CS3_D	CS2_D		CKE3_D	CKE2_D	VSS	VSS	NC	VDDQ	٧
W	VDDQ	VSS	DMI0_B	VSS	DQ7_B	VDD2		VDD2	DQ15_B		DMI1_B	VSS	VDDQ		VDDQ	VSS	DMI0_D	VSS	DQ7_D	VDD2		VDD2	DQ15_D	VSS	DMI1_D	VSS	VDDQ	w
Y	VDDQ	DQ3_B	VSS	DQS0_c _B	VSS	CSO_B		CKE1_B	VSS	DQS1_c _B	VSS	DQ11_B	VDDQ		VDDQ	DQ3_D	VSS	DQS0_c _D	VSS	CSO_D		CKE1_D	VSS	DQS1_c _D	VSS	DQ11_D	VDDQ	Υ
AA	VDDQ	VSS	DQS0_t _B	VSS	CS1_B	VDD2		VDD2	CKEO_B	VSS	DQS1_t _B	VSS	VDDQ		VDDQ	VSS	DQS0_t _D	VSS	CS1_D	VDD2		VDD2	CKE0_D	VSS	DQS1_t _D	VSS	VDDQ	AA
AB	VDDQ	DQ2_B	VSS	DQ6_B	VSS	CLK_t_B		CLK_c_B	VSS	DQ14_B	VSS	DQ10_B	VDDQ		VDDQ	DQ2_D	VSS	DQ6_D	VSS	CLK_t_D		CLK_c_ D	VSS	DQ14_D	VSS	DQ10_D	VDDQ	АВ
AC	VDDQ	VSS	DQ4_B	VSS	CA1_B	VDD2		VDD2	CA5_B	VSS	DQ12_B	VSS	VDDQ		VDDQ	VSS	DQ4_D	VSS	CA1_D	VDD2		VDD2	CA5_D	VSS	DQ12_D	VSS	VDDQ	AC
AD	VDDQ	DQ1_B	VSS	DQ5_B	VSS	CA2_B		CA3_B	VSS	DQ13_B	VSS	DQ9_B	VDDQ		VDDQ	DQ1_D	VSS	DQ5_D	VSS	CA2_D		CA3_D	VSS	DQ13_D	VSS	DQ9_D	VDDQ	AD
AE	VDDQ	VDD1	DQ0_B	VSS	CA0_B	VDD2		VDD2	CA4_B	VSS	DQ8_B	VDD1	VDDQ		VDDQ	VDD1	DQ0_D	VSS	CA0_D	VDD2		VDD2	CA4_D	VSS	DQ8_D	VDD1	VDDQ	AE
AF	VDDQ	VDD1	VDDQ	VDDQ	VDDQ	VDD2		VDD2	VDDQ	VDDQ	VDDQ	VDD1	VDDQ		VDDQ	VDD1	VDDQ	VDDQ	VDDQ	VDD2		VDD2	VDDQ	VDDQ	VDDQ	VDD1	VDDQ	AF
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	

2.3.5 254-ball e•MMC MCP Two-Channel FBGA (Top View) using MO-276

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Α	DNU	DNU	DQ0_A	VDD1	VDD2	VDDQ	VDDQ	VDD2	VDD1				VDDQ	VDDQ	VDD1	VDD1	DNU	DNU	Α
В	DNU		DQ1_A	VSS	VDDQ	VSS	DQ4_A	VSS	VDD2				VDD2	VDD2	VDD1	ZQ0		DNU	В
С			DQ2_A	VSS	vss	DQ5_A	vss	DQ7_A	DQS0_t _A				CA2_A	VSS	CA5_A	ZQ1			С
D			DQ3_A	VSS	DMI0_A	VSS	DQ6_A	vss	DQS0_c _A				CA3_A	VSS	VSS	ZQ2			D
E													CA4_A	VSS	CS0_A	CKE0_A			E
F													CA1_A	VSS	CS1_A	CKE1_A			F
G			DQ13_A	VSS	vss	VSS	VDD2	VDD2	VDD2				VSS	CA0_A	VSS	CLK_c_ A			G
Н			DMI1_A	VSS	VDDQ	DQ14_A	VSS	DQ15_A	VDDQ				VSS	CS2_A	VSS	CLK_t_ A			Н
J			DQ11_A	VDDQ	VDDQ	VSS	DQ12_A	VDDQ	DQS1_c _A				ODT_A	CKE2_A	VCCQ	VCCQ	VCCQ		J
К		VDD2	DQ10_A	VSS	DQ8_A	DQ9_A	VSS	VSS	DQS1_t _A				VSSm	VSSm	VCCQ	VSSm	NC		K
L							VDD2	VDD2	VDD2			VSSm	DAT7	DAT6	VSSm	VSSm	VDDI		L
М			VSF1	VSF3	VSF5	VSF7	VSF9	VSSm	CMD			DS	VSSm	VSSm	DAT1	DAT4	vcc		M
N			VSF2	VSF4	VSF6	VSF8	NC	VSSm	RST_n			VSSm	DAT2	DAT5	VSSm	VSSm	vcc		N
Р							VDD2	VDD2	VDD2			CLK	VSSm	VSSm	DAT3	DAT0	vcc		Р
R		VDD2	DQ10_B	VSS	DQ8_B	DQ9_B	VSS	VSS	DQS1_t _B				VCCQ	VCCQ	VSSm	VSSm	VSSm		R
Т			DQ11_B	VDDQ	VDDQ	VSS	DQ12_B	VDDQ	DQS1_c _B				ODT_B	CKE2_ B	VCCQ	VCCQ	NC		T
U			DMI1_B	VSS	VDDQ	DQ14_B	VSS	DQ15_B	VDDQ				VSS	CS2_B	vss	CLK_t_ B			U
v			DQ13_B	VSS	VSS	VSS	VDD2	VDD2	VDD2				VSS	CA0_B	VSS	CLK_c_ B			V
w													CA1_B	VSS	CS1_B	CKE1_ B			w
Y													CA4_B	vss	CS0_B	CKE0_ B			Y
AA			DQ3_B	VSS	DMI0_B	VSS	DQ6_B	VSS	DQS0_c _B				CA3_B	VSS	VSS	RESET_ n			AA
AB			DQ2_B	VSS	vss	DQ5_B	VSS	DQ7_B	DQS0_t _B				CA2_B	VSS	CA5_B	NC			AB
AC	DNU		DQ1_B	VSS	VDDQ	VSS	DQ4_B	VSS	VDD2				VDD2	VDD2	VDD1	NC		DNU	AC
AD	DNU	DNU	DQ0_B	VDD1	VDD2	VDDQ	VDDQ	VDD2	VDD1				VDDQ	VDDQ	VDD1	VDD1	DNU	DNU	AD
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

- NOTE 1 0.5 mm pitch, 24 rows.
- NOTE 2 Top View, A1 in top left corner.
- NOTE 3 ODT_CA_[x] balls are wired to ODT_CA)_[x] pads of Rank 0 DRAM die. ODT(ca)_[x] pads for other ranks (if present) are disabled in the package.
- NOTE 4 ZQ2, CKE2_A, CKE2_B, CS2_A, and CS2_B balls are reserved for 3 rank packages, and for 1 rank and 2 rank package those balls are NC.
- NOTE 5 DRAM die pad VSS and VSSQ signals are combined to VSS package balls.
- NOTE 6 Vendor specific function (VSF) this terminal should not have any external electrical connections, but it may have an internal connection. The terminal may be routed to provide accessibility and may be used for general purpose vendor specific operations.
- NOTE 7 Package requires dual channel die or functional equivalent of single channel die-stack.
- NOTE 8 The flash ball-out supports e•MMC 5.x.

2.3.6 254-ball UFS MCP Two-Channel FBGA (Top View) using MO-276

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Α	DNU	DNU	DQ0_A	VDD1	VDD2	VDDQ	VDDQ	VDD2	VDD1				VDDQ	VDDQ	VDD1	VDD1	DNU	DNU	Α
В	DNU		DQ1_A	VSS	VDDQ	VSS	DQ4_A	VSS	VDD2				VDD2	VDD2	VDD1	ZQ0		DNU	В
С			DQ2_A	VSS	VSS	DQ5_A	VSS	DQ7_A	DQS0_t _A				CA2_A	VSS	CA5_A	ZQ1			С
D			DQ3_A	VSS	DMI0_A	VSS	DQ6_A	VSS	DQS0_c _A				CA3_A	VSS	VSS	ZQ2			D
E													CA4_A	VSS	CS0_A	CKE0_A			E
F													CA1_A	VSS	CS1_A	CKE1_A			F
G			DQ13_A	VSS	VSS	VSS	VDD2	VDD2	VDD2				VSS	CA0_A	VSS	CLK_c_ A			G
Н			DMI1_A	VSS	VDDQ	DQ14_A	VSS	DQ15_A					VSS	CS2_A	VSS	CLK_t_A			Н
J			DQ11_A	VDDQ	VDDQ	VSS	DQ12_A	VDDQ	DQS1_c _A				ODT_A	CKE2_A	VCCQ2	VCCQ2	VCCQ2		J
К		VDD2	DQ10_A	VSS	DQ8_A	DQ9_A	VSS	VSS	DQS1_t _A				VSSm	VSSm	VCCQ2	VSSm	VDDIQ2		К
L							VDD2	VDD2	VDD2			VSSm	DIN1_c	DIN1_t	VSSm	VSSm	VDDI		L
М			NC	VSF1	VSF3	VSF5	RFU	VSSm	RFU			RST_n	VSSm	VSSm	DIN0_c	DIN0_t	VCC		М
N			NC	VSF2	VSF4	VSF6	RFU	VSSm	RFU			VSSm	DOUT1 _c	DOUT1 _t	VSSm	VSSm	VCC		N
Р							VDD2	VDD2	VDD2			REF_CL K	VSSm	VSSm	DOUT0 _c	DOUT0 _t	VCC		Р
R		VDD2	DQ10_B	VSS	DQ8_B	DQ9_B	VSS	VSS	DQS1_t _B				VCCQ	VCCQ	VSSm	VSSm	VSSm		R
Т			DQ11_B	VDDQ	VDDQ	VSS	DQ12_B	VDDQ	DQS1_c _B				ODT_B	CKE2_B	VCCQ	VCCQ	VDDIQ		Т
U			DMI1_B	VSS	VDDQ	DQ14_B	VSS	DQ15_B	VDDQ				VSS	CS2_B	VSS	CLK_t_B			U
٧			DQ13_B	VSS	VSS	VSS	VDD2	VDD2	VDD2				VSS	CA0_B	VSS	CLK_c_ B			V
W													CA1_B	VSS	CS1_B	CKE1_B			W
Y													CA4_B	VSS	CS0_B	CKE0_B			Y
AA			DQ3_B	VSS	DMI0_B	VSS	DQ6_B	VSS	DQS0_c _B				CA3_B	VSS	VSS	RESET_ n			AA
AB			DQ2_B	VSS	VSS	DQ5_B	VSS	DQ7_B	DQS0_t _B				CA2_B	VSS	CA5_B	NC			AB
AC	DNU		DQ1_B	VSS	VDDQ	VSS	DQ4_B	VSS	VDD2				VDD2	VDD2	VDD1	NC		DNU	AC
AD	DNU	DNU	DQ0_B	VDD1	VDD2	VDDQ	VDDQ	VDD2	VDD1				VDDQ	VDDQ	VDD1	VDD1	DNU	DNU	AD
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

- NOTE 1 0.5 mm pitch, 24 rows.
- NOTE 2 Top View, A1 in top left corner.
- NOTE 3 ODT_CA_[x] balls are wired to ODT_CA)_[x] pads of Rank 0 DRAM die. ODT(ca)_[x] pads for other ranks (if present) are disabled in the package.

 NOTE 4 ZQ2, CKE2_A, CKE2_B, CS2_A, and CS2_B balls are reserved for 3 rank packages, and for 1 rank and 2
- rank packages, those balls are NC.
- NOTE 5 DRAM die pad VSS and VSSQ signals are combined to VSS package balls.
- NOTE 6 Vendor specific function (VSF) this terminal should not have any external electrical connections, but it may have an internal connection. The terminal may be routed to provide accessibility and may be used for general purpose vendor specific operations.
- NOTE 7 Package requires dual channel die or functional equivalent of single channel die-stack.

2.3.7 254 ball e-MMC MCP One Channel FBGA (Top View) using MO-276

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Α	DNU	DNU	NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	NC	DNU	DNU	Α
В	DNU		NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	ZQ0		DNU	В
С			NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	ZQ1			С
D			NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	ZQ2			D
E													NC	NC	NC	NC			E
F													NC	NC	NC	NC			F
G			NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	NC			G
н			NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	NC			H
J			NC	NC	NC	NC	NC	NC	NC				NC	NC	VCCQ	VCCQ	VCCQ		J
к		NC	NC	NC	NC	NC	NC	NC	NC				VSSm	VSSm	VCCQ	VSSm	NC		К
L							NC	NC	NC			VSSm	DAT7	DAT6	VSSm	VSSm	VDDI		L
М			VSF1	VSF3	VSF5	VSF7	VSF9	VSSm	CMD			DS	VSSm	VSSm	DAT1	DAT4	VCC		М
N			VSF2	VSF4	VSF6	VSF8	NC	VSSm	RST_n			VSSm	DAT2	DAT5	VSSm	VSSm	VCC		N
Р							VDD2	VDD2	VDD2			CLK	VSSm	VSSm	DAT3	DAT0	VCC		Р
R		VDD2	DQ10_ B	VSS	DQ8_B	DQ9_B	VSS	VSS	DQS1_ t_B				VCCQ	vccq	VSSm	VSSm	VSSm		R
т			DQ11_ B	VDDQ	VDDQ	VSS	DQ12_ B	VDDQ	DQS1_ c B				ODT(ca) B	CKE2_ B	VCCQ	VCCQ	NC		Т
U			DMI1_ B	VSS	VDDQ	DQ14_ B	VSS	DQ15_ B	VDDQ				VSS	CS2_B	VSS	CLK_t_ B			U
v			DQ13_ B	VSS	VSS	VSS	VDD2	VDD2	VDD2				VSS	CA0_B	VSS	CLK_c_ B			v
w													CA1_B	VSS	CS1_B	CKE1_ B			w
Y													CA4_B	VSS	CSO_B	CKEO_ B			Y
AA			DQ3_B	VSS	DMI0_ B	VSS	DQ6_B	VSS	DQS0_ c_B				CA3_B	VSS	VSS	RESET_ n			AA
AB			DQ2_B	VSS	VSS	DQ5_B	VSS	DQ7_B	DQS0_ t B				CA2_B	VSS	CA5_B	NC			АВ
AC	DNU		DQ1_B	VSS	VDDQ	VSS	DQ4_B	VSS	VDD2				VDD2	VDD2	VDD1	NC		DNU	AC
AD	DNU	DNU	DQ0_B	VDD1	VDD2	VDDQ	VDDQ	VDD2	VDD1				VDDQ	VDDQ	VDD1	VDD1	DNU	DNU	AD
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

NOTE 1 0.5mm pitch, 24 rows.

NOTE 2 Top View, A1 in top left corner.

NOTE 3 ODT_(ca)_B ball is wired to ODT_(ca)_B pad of Rank 0 DRAM die. ODT_(ca) pads for other ranks (if present) are disabled in the package.

NOTE 4 ZQ2, CKE2_B, and CS2_B balls are reserved for 3 rank package, and for 1 rank and 2 rank package, those balls are NC.

NOTE 5 DRAM die pad Vss and Vssq signals are combined to Vss package balls.

NOTE 6 Vender specific function (VSF) – this terminal should not have any external electrical connections, but it may have an internal connection. The terminal may be routed to provide accessibility and may be used for general purpose vender specific operations.

NOTE 7 The flash ball-out supports e•MMC 5.x.

2.3.8 556-ball LPDDR4X 12.4 x 12.4 mm 4-channel PoP – using MO-317C

NOTE 1 Package Channel 0 and Channel 3 shall be assigned to die Channel A of different LPDDR4 die.

NOTE 2 ODT(ca) for Rank 0 of each channel is wired to the respective ODT(ca) ball. ODT(ca) for other ranks (if present) is disabled in the DRAM package.

NOTE 3 ZQ0_0 ball is wired to Rank 0 of the die supporting Channel 0. ZQ0_3 ball is wired to Rank 0 of the die supporting Channel 3. ZQ1_x balls are wired in the same manner to Rank 1 (if present).

2.3.9 LPDDR4/4X 254-ball NAND MCP Two-Channel FBGA (Top View) using MO-276

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
А	DNU	DNU	DQ0_A	VDD1	VDD2	VDDQ	VDDQ	VDD2	VDD1				VDDQ	VDDQ	VDD1	VDD1	DNU	DNU	А
В	DNU		DQ1_A	VSS	VDDQ	VSS	DQ4_A	VSS	VDD2				VDD2	VDD2	VDD1	ZQ0		DNU	В
С			DQ2_A	VSS	VSS	DQ5_A	VSS	DQ7_A	DQS0_t _A				CA2_A	VSS	CA5_A	ZQ1			С
D			DQ3_A	VSS	DMI0_A	VSS	DQ6_A	VSS	DQS0_c _A				CA3_A	VSS	VSS	ZQ2			D
Е													CA4_A	VSS	CS0_A	CKE0_A			E
F													CA1_A	VSS	CS1_A	CKE1_A			F
G			DQ13_A	VSS	VSS	VSS	VDD2	VDD2	VDD2				VSS	CA0_A	VSS	CK_c_A			G
Н			DMI1_A	VSS	VDDQ	DQ14_A	VSS	DQ15_A	VDDQ				VSS	CS2_A	VSS	CK_t_A			Н
J			DQ11_A	VDDQ	VDDQ	VSS	DQ12_A	VDDQ	DQS1_c _A				ODT(ca) _A	CKE2_A	VCC	VCC	VCC		J
К		VDD2	DQ10_A	VSS	DQ8_A	DQ9_A	VSS	VSS	DQS1_t _A				VSSm	VSSm	VCC	VSSm	NC		K
L							VDD2	VDD2	VDD2			VSSm	107	106	VSSm	VSSm	NC		L
М			RFU	RFU	RFU	WP_n	R/B_n	VSSm	CLE			RE_n	VSSm	VSSm	IO3	102	NC		М
N			RFU	RFU	RFU	NC	CE_n	VSSm	ALE			VSSm	IO5	104	VSSm	VSSm	NC		N
Р							VDD2	VDD2	VDD2			WE_n	VSSm	VSSm	IO1	100	NC		Р
R		VDD2	DQ10_B	VSS	DQ8_B	DQ9_B	VSS	VSS	DQS1_t _B				VCC	VCC	VSSm	VSSm	VSSm		R
Т			DQ11_B	VDDQ	VDDQ	VSS	DQ12_B	VDDQ	DQS1_c _B				ODT(ca) _B	CKE2_B	VCC	VCC	NC		T
U			DMI1_B	VSS	VDDQ	DQ14_B	VSS	DQ15_B	VDDQ				VSS	CS2_B	VSS	CK_t_B			U
V			DQ13_B	VSS	VSS	VSS	VDD2	VDD2	VDD2				VSS	CA0_B	VSS	CK_c_B			V
W													CA1_B	VSS	CS1_B	CKE1_B			W
Y													CA4_B	VSS	CS0_B	CKE0_B			Y
AA			DQ3_B	VSS	DMI0_B	VSS	DQ6_B	VSS	DQS0_c _B				CA3_B	VSS	VSS	RESET_ n			AA
AB			DQ2_B	VSS	VSS	DQ5_B	VSS	DQ7_B	DQS0_t _B				CA2_B	VSS	CA5_B	NC			AB
AC	DNU		DQ1_B	VSS	VDDQ	VSS	DQ4_B	VSS	VDD2				VDD2	VDD2	VDD1	NC		DNU	AC
AD	DNU	DNU	DQ0_B	VDD1	VDD2	VDDQ	VDDQ	VDD2	VDD1				VDDQ	VDDQ	VDD1	VDD1	DNU	DNU	AD
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

- NOTE 1 0.5mm pitch, 24 rows x 18 columns.
- NOTE 2 Top View, A1 in top left corner.
- NOTE 3 ODT(ca)_[x] balls are wired to ODT(ca)_[x] pads of Rank 0 DRAM die. ODT(ca)_[x] pads for other ranks (if present) are disabled in the package.
- NOTE 4 ZQ2, CKE2_A, CKE2_B, CS2_A and CS2_B balls are reserved for 3 rank package, and for 1 rank and 2 rank package, those balls are NC.
- NOTE 5 DRAM die pad VSS and VSSQ signals are combined to VSS package balls.
- NOTE 6 Package requires dual channel die or functional equivalent of single channel die-stack.

2.4 Pad Definition and Description

LPDDR4X pad definitions are the same as LPDDR4, except as described in Table 1.

Table 1 — Pad Definition and Description

Symbol	Type	Description
ODT_CA_A ODT_CA_B	Input	CA ODT Control: The ODT_CA pin is ignored by LPDDR4X devices. ODT-CS/CA/CK function is fully controlled through MR11 and MR22. The ODT_CA pin shall be connected to either V_{DD2} or V_{SS} .

2.5 Mode Register Definition

Table 2 — Mode Register Assignment in LPDDR4 SDRAM

0 CATR R 1 RPST 2 WR Lev W 3 DBI-WR DB	P[6] .FU	OP[5] Single	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
1 RPST 2 WR Lev W 3 DBI-WR DB 4 TUF 5 6 7 8 IO Width 9	FU					Latency	Refresh
2 WR Lev W 3 DBI-WR DB 4 TUF 5 6 7 8 IO Width 9		ended mode	RZ	Ql	RFU	Mode	mode
3 DBI-WR DB 4 TUF 5 6 7 8 IO Width 9	nV	VR (for AP)		RD-PRE	WR-PRE	BL	-
4 TUF 5 6 7 8 IO Width 9	/LS		WL			RL	
5 6 7 8 IO Width 9	I-RD		PDDS		PPRP	WR PST	PU-CAL
6 7 8 IO Width 9	Thermal O	Offset	PPRE	SR Abort	F	Refresh Rate	
7 8 IO Width 9			LPDDR4 Ma	nutacturer ID on ID-1			
8 IO Width 9				on ID-2			
9				nsity		Тур)e
		\	/endor Specifi		er	. , , ,	
			RFU	<u> </u>			ZQ-Reset
11 RFU		CA ODT		RFU		DQ ODT	
12 CBT Mode VR	R-CA			V _{REF}	(CA)		
	P-WR	DMD	RRO	VRCG	VRO	RPT	CBT
	(DQ)			V_{REF}			
15		Lower-B	yte Invert Reg		alibration		
16				ank Mask			
17			DQS Oscillato	ment Mask	,		
19			DQS Oscillato				
20			yte Invert Reg				
	Lo	ow Speed	yto iiivoit itog	0.01 101 2 4 0			
21 RFU		CA buffer			RFU		
22 ODT for x8_2ch(I	Byte) C	DDTD-CA	ODTE-CS	ODTE-CK		SOC ODT	
23		DC	S interval time	er run time set	ting		
24 TRR Mode	TRF	R Mode BA	n	Unlimited MAC		MAC Value	
25			PPR Re	esource			
26				- U			
27				- U			
28			RI				
29			RI				
30		Reser	ved for testing		ignore		
31 32		DO Ca	libration Patte	rn "A" (default	- 5AH)		
33		DQ Ca		TU A (deladit	- JAII)		
34				-U			
35				-U			
36				- U			
37				-U			
38				- U			
39			ved for testing				
40		DQ Ca	libration Patte			0: 1	
51	RFU	l		Single ended Clock	Single ended WDQS	Single ended RDQS	RFU

2.5.1 MR0 Register Information (MA [7:0] = 00H)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
CATR	RFU	Single ended mode	RZ	IQ.	RFU	Latency Mode	Refresh mode

Function	Register Type	Operand	Data	Notes
			0B : Both legacy and modified	
Refresh mode		OP[0]	refresh mode supported	
			1 _B : Only modified refresh mode supported	
		0.0141	0 _B : Device supports normal latency	- 0
Latency mode		OP[1]	1 _B : Device supports byte mode latency	5,6
RZQI (Built-in Self-Test for RZQ)	Read-only	OP[4:3]	00 _B : RZQ Self-Test Not Supported 01 _B : ZQ pin may connect to V _{SSQ} or float 10 _B : ZQ-pin may short to V _{DDQ} 11 _B : ZQ-pin Self-Test Completed, no error condition detected (ZQ-pin may not connect to V _{SSQ} or float, nor short to V _{DDQ})	1,2,3,
Single ended mode		OP[5]	0 _B : No support for Single ended mode 1 _B : Support for Single ended mode	7
CATR (CA Terminating		0.01=:	0B : CA for this ranks is not terminated	_
Rank)		OP[7]	1 _B : Vendor specific	5

- NOTE 1 RZQI MR value, if supported, will be valid after the following sequence:
 - a) Completion of MPC ZQCAL Start command to either channel.
 - b) Completion of MPC ZQCAL Latch command to either channel then tZQLAT is satisfied. RZQI value will be lost after Reset.
- NOTE 2 If the ZQ-pin is connected to V_{SSQ} to set default calibration, OP[4:3] shall be set to 01B. If the ZQ-pin is not connected to VSSQ, either OP[4:3] = 01_B or OP[4:3] = 10_B might indicate a ZQ-pin assembly error. It is recommended that the assembly error is corrected.
- NOTE 3 In the case of possible assembly error, the LPDDR4-SDRAM device will default to factory trim settings for RON, and will ignore ZQ Calibration commands. In either case, the device may not function as intended.
- NOTE 4 If ZQ Self-Test returns OP[4:3] = 11_B , the device has detected a resistor connected to the ZQ-pin. However, this result cannot be used to validate the ZQ resistor value or that the ZQ resistor tolerance meets the specified limits (i.e., $240 \Omega \pm 1\%$).
- NOTE 5 CATR functionality is Vendor specific. CATR can either indicate the connection status of the ODTCA pad for the die or whether CA for the rank is terminated. Consult the vendor device datasheet for details.
- NOTE 6 Byte mode latency for 2Ch. x16 device is only allowed when it is stacked in a same package with byte mode device.
- NOTE 7 Support for Single Ended Mode is optional. If supported, Single Ended Write DQS, Read DQS and CK can be enabled in MR51.

2.5.2 MR3 Register Information (MA[7:0] = 03_H)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
DBI-WR	DBI-RD		PDDS		PPRP	WR PST	PU-CAL

Function	Register Type	Operand	Data	Notes
PU-Cal (Pull-up Calibration Point)		OP[0]	0 _в : V _{DDQ} *0.6 1 _в : V _{DDQ} *0.5 (default)	1,4
WR PST(WR Post-Amble Length)		OP[1]	0 _B : WR Post-amble = 0.5*tCK (default) 1 _B : WR Post-amble = 1.5*tCK(Vendor specific function)	2,3,5
Post Package Repair Protection		OP[2]	0 _B : PPR protection disabled (default) 1 _B : PPR protection enabled	6
PDDS (Pull-Down Drive Strength)	Write-only	OP[5:3]	000 _B : RFU 001 _B : RZQ/1 010 _B : RZQ/2 011 _B : RZQ/3 100 _B : RZQ/4 101 _B : RZQ/5 110 _B : RZQ/6 (default) 111 _B : Reserved	1,2,3
DBI-RD (DBI-Read Enable)		OP[6]	0 _B : Disabled (default) 1 _B : Enabled	2,3
DBI-WR (DBI-Write Enable)		OP[7]	0 _в : Disabled (default) 1 _в : Enabled	2,3

- NOTE 1 All values are "typical". The actual value after calibration will be within the specified tolerance for a given voltage and temperature. Re-calibration may be required as voltage and temperature vary.
- NOTE 2 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address.
- NOTE 3 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.
- NOTE 4 For dual channel devices, PU-CAL setting is required as the same value for both Ch.A and Ch.B before issuing ZQ Cal start command.
- NOTE 5 Refer to the supplier data sheet for vender specific function. 1.5*tCK apply > 1.6 GHz clock.
- NOTE 6 If MR3 OP[2] is set to 1b then PPR protection mode is enabled. The PPR Protection bit is a sticky bit and can only be set to 0b by a power on reset. MR4 OP[4] controls entry to PPR Mode. If PPR protection is enabled then DRAM will not allow writing of 1 to MR4 OP[4].

2.5.3 MR12 Register Information (MA[7:0] = 0C_H)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
CBT Mode	VR-CA			V_{REF}	(CA)		

Function	Register Type	Operand	Data	Notes
V _{REF} (CA) (V _{REF} (CA) Setting)	Read/ Write	OP[5:0]	000000_B : Thru 110010 $_B$: See table below All Others: Reserved	1,2,3, 5,6
VR-CA (V _{REF} (CA) Range)		OP[6]	0в: V _{REF} (CA) Range[0] enabled 1в: V _{REF} (CA) Range[1] enabled (default)	1,2,4, 5,6
CBT Mode	Write	OP[7]	0 _в : Mode1 (Default) 1 _в : Mode2	7

- NOTE 1 This register controls the VREF(CA) levels. Refer to Table 3 for actual voltage of VREF(CA).
- NOTE 2 A read to this register places the contents of OP[7:0] on DQ[7:0]. Any RFU bits and unused DQ's shall be set to '0'. See the section on MRR Operation.
- NOTE 3 A write to OP[5:0] sets the internal $V_{REF}(CA)$ level for FSP[0] when MR13 OP[6] = 0_B, or sets FSP[1] when MR13 OP[6] = 1_B. The time required for $V_{REF}(CA)$ to reach the set level depends on the step size from the current level to the new level. See the section on $V_{REF}(CA)$ training for more information.
- NOTE 4 A write to OP[6] switches the LPDDR4-SDRAM between two internal V_{REF}(CA) ranges. The range (Range[0] or Range[1]) must be selected when setting the V_{REF}(CA) register. The value, once set, will be retained until overwritten, or until the next power-on or RESET event.
- NOTE 5 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address.
- NOTE 6 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.
- NOTE 7 This field can be activated in only Byte Mode: x8. Device.

2.5.3 MR12 Register Information (MA[7:0] = 0C_H) (cont'd)

Table 3 — V_{REF} Settings for Range[0] and Range[1]

Step: 0.6% (1/167)

Function	Operand	Range	[0] Valu	es (% of	V _{DDQ})	Range	[1] Valu	es (% of V	/ _{DDQ})	Notes
		000000 _B :	15.0%	011010 _B :	30.5%	000000 _B :	32.9%	011010 _B :	48.5%	
		000001 _B :	15.6%	011011 _B :	31.1%	000001 _B :	33.5%	011011 _B :	49.1%	
		000010 _B :	16.2%	011100 _B :	31.7%	000010 _B :	34.1%	011100 _B :	49.7%	
		000011 _B :	16.8%	011101 _B :	32.3%	000011 _B :	34.7%	011101 _B : default	50.3%	
		000100 _B :	17.4%	011110 _B :	32.9%	000100 _B :	35.3%	011110 _B :	50.9%	
		000101 _B :	18.0%	011111 _B :	33.5%	000101 _B :	35.9%	011111 _B :	51.5%	
		000110 _B :	18.6%	100000 _B :	34.1%	000110 _B :	36.5%	100000 _B :	52.1%	
		000111 _B :	19.2%	100001 _B :	34.7%	000111 _B :	37.1%	100001 _B :	52.7%	
		001000 _B :	19.8%	100010 _B :	35.3%	001000 _B :	37.7%	100010 _B :	53.3%	
		001001 _B :	20.4%	100011 _B :	35.9%	001001 _B :	38.3%	100011 _B :	53.9%	
		001010 _B :	21.0%	100100 _B :	36.5%	001010 _B :	38.9%	100100 _B :	54.5%	
V _{REF}		001011 _B :	21.6%	100101 _B :	37.1%	001011 _B :	39.5%	100101 _B :	55.1%	
Settings	OP	001100 _B :	22.2%	100110 _B :	37.7%	001100 _B :	40.1%	100110 _B :	55.7%	1,2,3
for	[5:0]	001101 _B :	22.8%	100111 _B :	38.3%	001101 _B :	40.7%	100111 _B :	56.3%	1,2,3
MR12		001110 _B :	23.4%	101000 _B :	38.9%	001110 _B :	41.3%	101000 _B :	56.9%	
		001111 _B :	24.0%	101001 _B :	39.5%	001111 _B :	41.9%	101001 _B :	57.5%	
		010000 _B :	24.6%	101010 _B :	40.1%	010000 _B :	42.5%	101010 _B :	58.1%	
		010001 _B :	25.1%	101011 _B :	40.7%	010001 _B :	43.1%	101011 _B :	58.7%	
		010010 _B :	25.7%	101100 _B :	41.3%	010010 _B :	43.7%	101100 _B :	59.3%	
		010011 _B :	26.3%	101101 _B :	41.9%	010011 _B :	44.3%	101101 _B :	59.9%	
		010100 _B :	26.9%	101110 _B :	42.5%	010100 _B :	44.9%	101110 _B :	60.5%	
		010101 _B :	27.5%	101111 _B :	43.1%	010101 _B :	45.5%	101111 _B :	61.1%	
		010110 _B :	28.1%	110000 _B :	43.7%	010110 _B :	46.1%	110000 _B :	61.7%	
		010111 _B :	28.7%	110001 _B :	44.3%	010111 _B :	46.7%	110001 _B :	62.3%	
		011000 _B :	29.3%	110010 _B :	44.9%	011000 _B :	47.3%	110010 _B :	62.9%	
		011001 _B :	29.9%	All Oth Reser		011001 _B :	47.9%	All Ot Rese		

NOTE 1 These values may be used for MR12 OP[5:0] to set the V_{REF}(CA) levels in the LPDDR4-SDRAM.

NOTE 2 The range may be selected in the MR12 register by setting OP[6] appropriately.

NOTE 3 The MR12 registers represents either FSP[0] or FSP[1]. Two frequency-set-points each for CA and DQ are provided to allow for faster switching between terminated and unterminated operation, or between different high-frequency setting which may use different terminations values.

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]		
RFU	VR(DQ)		V _{REF} (DQ)						

Function	Register Type	Operand	Data	Notes
V _{REF} (DQ) (V _{REF} (DQ) Setting)	Read/ Write	OP[5:0]	000000_B : Thru 110010 $_B$: See Table 4 All Others: Reserved	1,2,3, 5,6
VR(dq) (V _{REF} (DQ) Range)		OP[6]	0в: V _{REF} (DQ) Range[0] enabled 1в: V _{REF} (DQ) Range[1] enabled (default)	1,2,4, 5,6

- NOTE 1 This register controls the $V_{REF}(DQ)$ levels for Frequency-Set-Point[1:0]. Values from either VR(DQ)[0] or VR(dq)[1] may be selected by setting OP[6] appropriately.
- NOTE 2 A read (MRR) to this register places the contents of OP[7:0] on DQ[7:0]. Any RFU bits and unused DQ's shall be set to'0'. See the section on MRR Operation.
- NOTE 3 A write to OP[5:0] sets the internal V_{REF}(DQ) level for FSP[0] when MR13 OP[6] = 0_B, or sets FSP[1] when MR13 OP[6] = 1_B. The time required for V_{REF}(DQ) to reach the set level depends on the step size from the current level to the new level. See the section on V_{REF}(DQ) training for more information.
- NOTE 4 A write to OP[6] switches the LPDDR4-SDRAM between two internal V_{REF}(DQ) ranges. The range (Range[0] or Range[1]) must be selected when setting the V_{REF}(DQ) register. The value, once set, will be retained until overwritten, or until the next power-on or RESET event.
- NOTE 5 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address.
- NOTE 6 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.

2.5.4 MR14 Register Information (MA[7:0] = 0E_H) (cont'd)

Table 4 — VREF Settings for Range[0] and Range[1]

Step: 0.6% (1/167)

Function	Operand	Range	[0] Valu	es (% of	V _{DDQ})	Range	[1] Valu	es (% of \	V _{DDQ})	Notes
		000000 _B :	15.0%	011010 _B :	30.5%	000000 _B :	32.9%	011010 _B :	48.5%	
		000001 _B :	15.6%	011011 _B :	31.1%	000001 _B :	33.5%	011011 _B :	49.1%	
		000010 _B :	16.2%	011100 _B :	31.7%	000010 _B :	34.1%	011100 _B :	49.7%	
		000011 _B :	16.8%	011101 _B :	32.3%	000011 _B :	34.7%	011101 _B default:	50.3%	
		000100 _B :	17.4%	011110 _B :	32.9%	000100 _B :	35.3%	011110 _B :	50.9%	
		000101 _B :	18.0%	011111 _B :	33.5%	000101 _B :	35.9%	011111 _B :	51.5%	
		000110 _B :	18.6%	100000 _B :	34.1%	000110 _B :	36.5%	100000 _B :	52.1%	
		000111 _B :	19.2%	100001 _B :	34.7%	000111 _B :	37.1%	100001 _B :	52.7%	
		001000 _B :	19.8%	100010 _B :	35.3%	001000 _B :	37.7%	100010 _B :	53.3%	
		001001 _B :	20.4%	100011 _B :	35.9%	001001 _B :	38.3%	100011 _B :	53.9%	1,2,3
		001010 _B :	21.0%	100100 _B :	36.5%	001010 _B :	38.9%	100100 _B :	54.5%	
V _{REF}		001011 _B :	21.6%	100101 _B :	37.1%	001011 _B :	39.5%	100101 _B :	55.1%	
Settings	OP	001100 _B :	22.2%	100110 _B :	37.7%	001100 _B :	40.1%	100110 _B :	55.7%	
for	[5:0]	001101 _B :	22.8%	100111 _B :	38.3%	001101 _B :	40.7%	100111 _B :	56.3%	
MR14		001110 _B :	23.4%	101000 _B :	38.9%	001110 _B :	41.3%	101000 _B :	56.9%	
		001111 _B :	24.0%	101001 _B :	39.5%	001111 _B :	41.9%	101001 _B :	57.5%	
		010000 _B :	24.6%	101010 _B :	40.1%	010000 _B :	42.5%	101010 _B :	58.1%	
		010001 _B :	25.1%	101011 _B :	40.7%	010001 _B :	43.1%	101011 _B :	58.7%	
		010010 _B :	25.7%	101100 _B :	41.3%	010010 _B :	43.7%	101100 _B :	59.3%	
		010011 _B :	26.3%	101101 _B :	41.9%	010011 _B :	44.3%	101101 _B :	59.9%	
		010100 _B :	26.9%	101110 _B :	42.5%	010100 _B :	44.9%	101110 _B :	60.5%	
		010101 _B :	27.5%	101111 _B :	43.1%	010101 _B :	45.5%	101111 _B :	61.1%	
		010110 _B :	28.1%	110000 _B :	43.7%	010110 _B :	46.1%	110000 _B :	61.7%	
		010111 _B :	28.7%	110001 _B :	44.3%	010111 _B :	46.7%	110001 _B :	62.3%	
		011000 _B :	29.3%	110010 _B :	44.9%	011000 _B :	47.3%	110010 _B :	62.9%	
		011001 _B :	29.9%	All Oth Reser		011001 _B :	47.9%	All Oti Rese		

NOTE 1 These values may be used for MR14 OP[5:0] to set the V_{REF}(DQ) levels in the LPDDR4-SDRAM.

NOTE 2 The range may be selected in the MR14 register by setting OP[7,6] appropriately.

NOTE 3 The MR14 registers represents either FSP[0] or FSP[1]. Two frequency-set-points each for CA and DQ are provided to allow for faster switching between terminated and un-terminated operation, or between different high-frequency setting which may use different terminations values.

2.5.5 MR21 Register Information (MA[7:0] = 15_H)

OP[7] OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
RFU	Low Speed CA buffer			RFU		

Function	Register Type	Operand	Data	Notes
Low Speed CA Buffer	Write-only	OP[1]	0 _B : Normal CA Buffer (Default) 1 _B : Low Speed CA Buffer	1,2,3,4, 5,6,7

- NOTE 1 Support for the Low Speed CA Buffer feature enabled by MR21 OP[5] is optional. Refer to manufacturer data sheet for availability.
- NOTE 2 Low speed CA buffer. Low Speed CA Buffer feature can enable lower power for some manufacturers' designs. The maximum clock speed for this mode is vendor-specific, but is not above 800 MHz. Refer to manufacturer data sheet for details.
- NOTE 3 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address.
- NOTE 4 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.
- NOTE 5 After completing all other MRW commands to set the values besides MR21 OP[5] setting, MR21 OP[5] can be enabled to "high". Low Power CA Buffer cannot be enabled prior to full device initialization (completion of Step 9 in power up sequence).
- NOTE 6 Low speed CA buffer is allowed to be enabled only when CA ODT is disabled.
- NOTE 7 Devices not supporting Low Speed CA Buffer will ignore MR21 OP[5] setting.

2.5.6 MR22 Register Information (MA[7:0] = 16_{H})

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
ODTD for x8	_ ` '	ODTD-CA	ODTE-CS	ODTE-CK		SOC ODT	

Function	Register Type	Operand	Data	Notes
SoC ODT (Controller ODT Value for VOH calibration)		OP[2:0]	000 _B : Disable (Default) 001 _B : RZQ/1 (illegal if MR3 OP[0] = 0 _B) 010 _B : RZQ/2 011 _B : RZQ/3 (illegal if MR3 OP[0] = 0 _B) 100 _B : RZQ/4 101 _B : RZQ/5 (illegal if MR3 OP[0] = 0 _B) 110 _B : RZQ/6 (illegal if MR3 OP[0] = 0 _B) 111 _B : RFU	1,2,3
ODTE-CK (CK ODT enabled for nonterminating rank)		ODT bond PAD is ignored OP[3] 0 _B : ODT-CK Enable (Default) 1 _B : ODT-CK Disable		
ODTE-CS (CS ODT enable for nonterminating rank)	Write-only	OP[4]	ODT bond PAD is ignored 0B: ODT-CS Enable (Default) 1 _B : ODT-CS Disable	2,3,4
ODTD-CA (CA ODT termination disable)		OP[5]	ODT bond PAD is ignored 0 _B : ODT-CA Enable (default) 1 _B : ODT-CA Disable	2,3,4
X8ODTD[7:0] (CA/CLK ODT termination disable, [7:0] Byte select		OP[6]	Byte mode device x8 2ch only, lower [7:0] Byte selected Device 0 _B : ODT-CS/CA/CLK follows MR11 OP[6:4] and MR22 OP[5:3] (default) 1 _B : ODT-CS/CA/CLK Disabled	4
X8ODTD[15:8] (CA/CLK ODT termination disable, [15:8] Byte select	OP[7]		Byte mode device x8 2ch only, upper [15:8] Byte selected Device 0 _B : ODT-CS/CA/CLK follows MR11 OP[6:4] and MR22 OP[5:3] (default) 1 _B : ODT-CS/CA/CLK Disabled	4

- NOTE 1 All values are "typical".
- NOTE 2 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address.
- NOTE 3 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.
- NOTE 4 The ODT_CA pin is ignored by LPDDR4X devices. The ODT_CA pin shall be connected to either V_{DD2} or V_{SS}. CA/ CS/ CK ODT is fully controlled through MR11 and MR22. Before enabling CA termination via MR11, all ranks should have appropriate MR22 termination settings programmed.

2.5.6 MR22 Register Information (MA[7:0] = 16_H) (cont'd)

Table 5 — LPDDR4X Byte Mode Device (MR11 OP[6:4] ≠ 000B Case)

	OD	TD	ODT	ODT	ODT		(DDT PAI) Ignore		
MR22	Byte	mode	CA	CS	СК	С	Α	С	S	С	K
IVIIXZZ	OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	Lower Byte	Upper Byte	Lower Byte	Upper Byte	Lower Byte	Upper Byte
	0	0	0	0	0	Т	Т	Т	T	Т	Т
	0	0	0	0	1	Т	Т	Т	Т		
	0	0	0	1	0	Т	Т			Т	Т
	0	0	0	1	1	Т	Т				
	0	0	1	0	0			Т	Т	Т	Т
	0	0	1	0	1			Т	Т		
	0	0	1	1	0					Т	Т
	0	0	1	1	1						
	0	1	0	0	0		Т		Т		Т
	0	1	0	0	1		Т		Т		
	0	1	0	1	0		Т				Т
LP4X	0	1	0	1	1		Т				
LF4A	0	1	1	0	0				Т		Т
	0	1	1	0	1				Т		
	0	1	1	1	0						Т
	0	1	1	1	1						
	1	0	0	0	0	Т		Т		Т	
	1	0	0	0	1	Т		Т			
	1	0	0	1	0	Т				Т	
	1	0	0	1	1	Т					
	1	0	1	0	0			Т		Т	
	1	0	1	0	1			Т			
	1	0	1	1	0					Т	
	1	0	1	1	1						

NOTE T means "terminated" condition. Blank is "unterminated"

2.5.7 MR51 Register Information (MA[7:0] = 33H)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
	RF	-U		Single ended Clock	Single ended WDQS	Single ended RDQS	RFU

Function	Register Type	Operand	Data	Notes
Single ended RDQS		OP[1]	0 _B : Differential Read DQS (Default) 1 _B : Single ended Read DQS	1,2,3,4,5
Single ended WDQS	Write-only	OP[2]	0 _B : Differential Write DQS (Default) 1 _B : Single ended Write DQS	1,2,3,4,6
Single ended Clock	OP[3]		0 _B : Differential Clock (Default), CK_t/CK_c 1 _B : Single ended Clock, Only CK_t	1,2,3,4,7

- NOTE 1 The features described in MR51 are optional. Please check the vendor for the availability.
- NOTE 2 Device support for single ended mode features (MR51 OP[3:1]) is indicated in MR0 OP[5]
- NOTE 3 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address.
- NOTE 4 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.
- NOTE 5 When single ended RDQS mode is enabled (MR51 OP[1] =1b), DRAM drives Read DQSB low or Hi-Z.
- NOTE 6 When single ended WDQS mode is enabled (MR51 OP[2] =1b), Write DQSB is required to be at a valid logic level. A valid Write DQSB signal will meet this requirement.
- NOTE 7 When single ended Clock mode is enabled (MR51 OP[3] =1b), CK_c is required to be at a valid logic level. A valid CK_c signal will meet this requirement.

3 Command Definitions and Timing Diagrams

3.1 Pull Up/Pull Down Driver Characteristics and Calibration

Table 6 — Pull-down Driver Characteristics, with ZQ Calibration

R _{ONPD} ,nom	Resistor	Min	Nom	Max	Unit
40 Ω	R _{ON40PD}	0.9	1	1.1	RZQ/6
48 Ω	R _{ON48PD}	0.9	1	1.1	RZQ/5
60 Ω	Ron60PD	0.9	1	1.1	RZQ/4
80 Ω	Ron80PD	0.9	1	1.1	RZQ/3
120 Ω	R _{ON120PD}	0.9	1	1.1	RZQ/2
240 Ω	R _{ON240PD}	0.9	1	1.1	RZQ/1

NOTE 1 All value are after ZQ Calibration. Without ZQ Calibration Ronpp values are ± 30%.

Table 7 — Terminated Pull-Up Characteristics, with ZQ Calibration

VOH _{PU} ,nom	VOH,nom (mV)	Min	Nom	Max	Unit
V _{DDQ} ∗0.5	300	0.9	1	1.1	VOH,nom
V _{DDQ} *0.6	360	0.9	1	1.1	VOH,nom

NOTE 1 All values are after ZQ Calibration. Without ZQ Calibration VOH(nom) values are ± 30%.

NOTE 2 VOH, nom (mV) values are based on a nominal $V_{DDQ} = 0.6 \text{ V}$.

Table 8 — Terminated Valid Calibration Points

VOH _{PU} ,nom	SOC ODT Value								
	240	120	80	60	48	40			
V _{DDQ} *0.5	VALID	VALID	VALID	VALID	VALID	VALID			
V _{DDQ} *0.6	DNU	VALID	DNU	VALID	DNU	DNU			

NOTE 1 Once the output is calibrated for a given VOH(nom) calibration point, the ODT value may be changed without recalibration.

NOTE 2 If the VOH(nom) calibration point is changed, then re-calibration is required.

NOTE 3 DNU = Do Not Use.

3.2 ODT Mode Register and ODT Characteristics

Figure 1 — On Die Termination for CA

3.2 ODT Mode Register and ODT Characteristics (cont'd)

Table 9 — ODT DC Electrical Characteristics (Assuming RZQ = 240 Ω +/-1% over the Entire Operating Temperature Range after a Proper ZQ Calibration)

MR11 OP[6:4]	Rтт	Vout	Min	Nom	Max	Unit	Notes
001 2		$VOLdc = 0.20*V_{DDQ}$	8.0	1	1.1	RZQ	1,2
	240 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ	1,2
010	120 Ω	$VOLdc = 0.20*V_{DDQ}$	8.0	1	1.1	RZQ/2	1,2
		$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/2	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/2	1,2
011		$VOLdc = 0.20*V_{DDQ}$	8.0	1	1.1	RZQ/3	1,2
	80 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/3	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/3	1,2
100	60 Ω	$VOLdc = 0.20*V_{DDQ}$	8.0	1	1.1	RZQ/4	1,2
		$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/4	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/4	1,2
101	48 Ω	$VOLdc = 0.20*V_{DDQ}$	8.0	1	1.1	RZQ/5	1,2
		$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/5	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/5	1,2
110	40 Ω	$VOLdc = 0.20*V_{DDQ}$	8.0	1	1.1	RZQ/6	1,2
		$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/6	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/6	1,2
Mismatch CA-CA within clk group		0.50*V _{DDQ}	-		2	%	1,2,3

- NOTE 1 The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see **3.4** on voltage and temperature sensitivity.
- NOTE 2 Pull-down ODT resistors are recommended to be calibrated at $0.50*V_{DDQ}$. Other calibration schemes may be used to achieve the linearity spec shown above, e.g., calibration at $0.75*V_{DDQ}$ and $0.2*V_{DDQ}$.
- NOTE 3 CA to CA mismatch within clock group (CA,CS) variation for a given component including CK_t and CK_c (characterized).

$$CA - CA_{Mismatch} = \frac{RODT(max) - RODT(min)}{RODT|T(avg)}$$

3.3 On Die Termination for DQ, DQS, and DMI

On-Die Termination effective resistance R_{TT} is defined by MR11 OP[2:0].

ODT is applied to the DQ, DMI, DQS_t and DQS_c pins.

A functional representation of the on-die termination is shown in **Figure 2.**

Figure 2 — On Die Termination

3.3 On Die Termination for DQ, DQS, and DMI (cont'd)

Table 10 — ODT DC Electrical Characteristics (Assuming RZQ = 240 Ω +/-1% over the Entire Operating Temperature Range after a Proper ZQ Calibration)

MR11 OP[2:0]	Rтт	Vout	Min	Nom	Max	Unit	Notes
		$VOLdc = 0.20*V_{DDQ}$	8.0	1	1.1	RZQ	1,2
001	240 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ	1,2
		$VOLdc = 0.20*V_{DDQ}$	8.0	1	1.1	RZQ/2	1,2
010	120 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/2	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/2	1,2
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ/3	1,2
011	80 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/3	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/3	1,2
		$VOLdc = 0.20*V_{DDQ}$	8.0	1	1.1	RZQ/4	1,2
100	60 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/4	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/4	1,2
		$VOLdc = 0.20*V_{DDQ}$	8.0	1	1.1	RZQ/5	1,2
101	48 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/5	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/5	1,2
		$VOLdc = 0.20*V_{DDQ}$	8.0	1	1.1	RZQ/6	1,2
110	40 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/6	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/6	1,2
Mismatch within		0.50*V _{DDQ}	-		2	%	1,2,3

- NOTE 1 The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see **3.4** on voltage and temperature sensitivity.
- NOTE 2 Pull-dn ODT resistors are recommended to be calibrated at 0.75*V_{DDQ} and 0.2*V_{DDQ}. Other calibration schemes may be used to achieve the linearity spec shown above, e.g., calibration at 0.75*V_{DDQ} and 0.1*V_{DDQ}.
- NOTE 3 DQ to DQ mismatch within byte variation for a given component including DQS_t and DQS_c (characterized).

$$DQ - DQ_{Mismatch} = \frac{RODT(max) - RODT(min)}{RODT|T(avg)}$$

3.4 Output Driver and Termination Register Temperature and Voltage Sensitivity

If temperature and/or voltage change after calibration, the tolerance limits widen according to **Table 11** and **Table 12**.

Table 11 — Output Driver and Termination Register Sensitivity Definition

Resistor	Definition Point	Min Max U		Unit	Notes
RONPD	0.50 x V _{DDQ}	90-(dR _{on} dT x $ \Delta T $)- (dR _{on} dV x $ \Delta V $)	110+(dR _{on} dT x $ \Delta T $)+ (dR _{on} dV x $ \Delta V $)	%	1,2
VOH _{PU}	0.50 x V _{DDQ}	90-(dVOHdT x $ \Delta$ T)- (dVOHdV x $ \Delta$ V)	110+(dVOHdT x ∆T)+ (dVOHdV x ∆V)	%	1,2,5
R _{TT(I/O)}	0.50 x V _{DDQ}	90-(dR _{on} dT x $ \Delta T $)- (dR _{on} dV x $ \Delta V $)	110+(dR _{on} dT x $ \Delta T $)+ (dR _{on} dV x $ \Delta V $)	%	1,2,3
R _{TT(In)}	0.50 x V _{DDQ}	90-(dR _{on} dT x $ \Delta T $)- (dR _{on} dV x $ \Delta V $)	110+(dR _{on} dT x $ \Delta T $)+ (dR _{on} dV x $ \Delta V $)	%	1,2,4

- NOTE 1 $\Delta T = T T(@ Calibration)$, $\Delta V = V V(@ Calibration)$
- NOTE 2 dR_{ON}dT, dR_{ON}dV, dVOHdT, dVOHdV, dR_{TT}dV, and dR_{TT}dT are not subject to production test but are verified by design and characterization.
- NOTE 3 This parameter applies to Input/Output pin such as DQS, DQ and DMI and the input pins such as CK, CA, and CS.
- NOTE 4 Refer to the clause on "Pull Up/Pull Down Driver Characteristics and Calibration" in JESD209-4 for the values of VOHPU.

Table 12 — Output Driver and Termination Register Temperature and Voltage Sensitivity

Symbol	Parameter	Min	Max	Unit
dR _{ON} dT	R _{ON} Temperature Sensitivity	0.00	0.75	%/°C
dRondV	Ron Voltage Sensitivity	0.00	0.20	%/mV
dVOHdT	VOH Temperature Sensitivity	0.00	0.75	%/°C
dVOHdV	VOH Voltage Sensitivity	0.00	0.35	%/mV
dR⊤⊤dT	R _⊞ Temperature Sensitivity	0.00	0.75	%/°C
dR⊤⊤dV	R _{TT} Voltage Sensitivity	0.00	0.20	%/mV

3.5 Single-ended Mode for Clock and Strobe

LPDDR4X SDRAM supports the function of single-ended mode for Clock and Strobe independently to reduce power consumption at low frequency operation. The clock frequency applied by this function is equal or less than 800 MHz and each ODT state (CK/CA, DQS/DQ) is required to be unterminated.

This function is optional. Refer to MR0 OP[5] whether this function is support or not.

The entering and exiting single-ended mode for Clock and Strobe is controlled by MR51 OP[3:1] setting.

The single-ended mode for Strobe affects to the following commands.

- · Write-1
- · Mask Write-1**
- · Read-1
- · Mode Register Read-1*
- · MPC Write FIFO**
- MPC Read FIFO*
- MPC Read DQ calibration: regardless of the setting of Read Preamble Training Mode: MR13 OP[1]*
 - *: Read equivalent operations
 - **: Write equivalent operations

3.5.1 Combination of Mode Register Setting and ODT Termination

Single-ended mode for Clock and Strobe MR setting:MR51 [OP3:1] can be independent. It means that the all settings, i.e., OP[3:1] = 000, 001, 010 110,111 are available. For ODT behavior for each MR51 OP[3:1] setting, refer to **Table 13**.

Table 13 — ODT Status for Single-ended Mode for Clock and Strobe
--

Function	MR#/ Operand	Data	SDRAM ODT
Single ended RDQS	MR51[OP1]	0 _B : Differential	Don't Care
Siligle ended RDQS	MINSTEORT	1 _B : Single-ended	Don't Care
		0в: Differential	DQ/DQS ODT Supports both
Single ended WDQS	MR51[OP2]	OB. Differential	enable and disable
Single ended WDQS		1 _B : Single-ended	DQ/DQS ODT Supports disable
		TB. Sirigle-erided	only
		0 _B : Differential	CK ODT Supports both enable and
Single ended Clock	MR51[OP3]	OB. Differential	disable
		1 _B : Single-ended	CK ODT Supports only disable only

3.5.2 Restriction of Single-ended Mode

The following restriction applies under Single-ended mode

MR51 $[OP1] = 1_B$: Single ended RDQS is enabled.

• The output level of DQS_c is always "LOW or Hi.Z " during read or equivalent operations

MR51 $[OP2] = 1_B$: Single ended WDQS is enabled.

- · DQS c should be Valid (LOW or High) for WRITE or equivalent operations.
- · DQS t will be referenced to VREFDQ.
- The VREFDQ lower limit: MR14 OP[5:0] range is TBD thru 110010_B : for MR14 OP[6]= 0_B or 1_B .
- MR51 OP[2] has been set 1_B (Enable) for either physical register. DQS_c input level is required to "High" during tDQSCKE and tCAENT period at CBT operation.

MR51 [OP3] = 1B: Single ended Clock is enabled.

- CK_c should be Valid (LOW or High)
- · CK t will be referenced to VREFCA.
- The VREFCA lower limit: MR12 OP[5:0] range is TBD thru 110010_B : for MR12 OP[6]= 0_B or 1_B .
- MR51 OP[3] has been set 1_B (Enable) for either or both physical register. Additional timing period is needed after MRW command of changing the FSP status. VRCG status change to high current mode also is the same situation as FSP change.

3.5.3 Switching Sequence between Differential and Single-ended

Switching only Read DQS functionality from differential to single ended and vice versa, Single Ended Read DQS Enable: MR51 OP[1] can be written by Mode Register Write command regardless FSP OP setting.

Switching the Write DQS and CK functionality from differential to single ended and vice versa is done only via frequency set point switching. Therefore, the setting of FSP-OP: MR13 OP[7] and MR13 OP[6] need to be different at setting MR51 OP[3:2].

To support operation with Single-ended Clock and Strobe enabled, MR51 supports two physical registers and are included in the configuration changes supported with set points 0 and 1 during FSP switching.

The frequency set point update timing for Differential/Single-ended mode switching is shown in the following figures. When changing the frequency set point via MR13 OP[7], the VRCG setting: MR13 OP[3] have to be changed into VREF fast response (high current) mode at the same time. After frequency change time (tFC) is satisfied. VRCG can be changed into normal operation mode via MR13 OP[3].

- NOTE 1 The definition that is Clock frequency change during CKE HIGH should be followed at the frequency change operation. For more information, refer to Section 4.49 Input Clock Stop and Frequency Change.
- NOTE 2 Clock input level after Tb0 is an example. The stable high to the clock input is also allowed.
- NOTE 3 Mode Register Setting
 FSP-OP MR13 [OP7] = 0_B
 Single ended Clock MR51 [OP3] = 0_B (Disabled)
 FSP-OP MR13 [OP7] = 1_B
 Single ended Clock: MR51 [OP3] = 1_B (Enabled)

Figure 3 — Differential to SE CK and Write DQS - FSP Switching Timing CKE=High

- NOTE 1 The definition that is Clock frequency change during CKE HIGH should be followed at the frequency change operation. For more information, refer to Section 4.49 Input Clock Stop and Frequency Change.
- NOTE 2 Clock input level before Ta1 is an example. The stable high to the clock input is also allowed.
- NOTE 3 Mode Register Setting $\begin{array}{ll} FSP\text{-}OP \ MR13 \ [OP7] = 0_B \\ Single \ ended \ Clock \ MR51 \ [OP3] = 0_B \ (Disabled) \\ FSP\text{-}OP \ MR13 \ [OP7] = 1_B \\ Single \ ended \ Clock: \ MR51 \ [OP3] = 1_B \ (Enabled) \end{array}$

Figure 4 — SE to Differential CK and Write DQS - FSP Switching Timing CKE=High

- NOTE 1 The input clock frequency can be changed, stopped, or floated during power-down, provided that upon exiting power-down, the clock is stable and within specified limits for a minimum of tCKCKEH of stable clock prior to power-down exit and that the clock frequency is between the minimum and maximum frequency for the speed grade in use.
- NOTE 2 Clock input level after Te0 is an example. The stable high to the clock input is also allowed.
- NOTE 3 The CKE is able to move to LOW without satisfying tVRCG enable period.
- NOTE 4 Mode Register Setting
 FSP-OP MR13 [OP7] = 0_B
 Single ended Clock MR51 [OP3] = 0_B (Disabled)
 FSP-OP MR13 [OP7] = 1_B
 Single ended Clock: MR51 [OP3] = 1_B (Enabled)

Figure 5 — Differential to SE CK and Write DQS - FSP Switching Timing CKE=Low

- NOTE 1 The input clock frequency can be changed, stopped, or floated during power-down, provided that upon exiting power-down, the clock is stable and within specified limits for a minimum of tCKCKEH of stable clock prior to power-down exit and that the clock frequency is between the minimum and maximum frequency for the speed grade in use.
- NOTE 2 Clock input level before Td1 is an example. The stable high to the clock input is also allowed.
- NOTE 3 The CKE is able to move to LOW without satisfying tVRCG enable period.
- NOTE 4 Mode Register Setting $\begin{array}{ll} FSP\text{-}OP \ MR13 \ [OP7] = 0_B \\ Single \ ended \ Clock \ MR51 \ [OP3] = 0_B \ (Disabled) \\ FSP\text{-}OP \ MR13 \ [OP7] = 1_B \\ Single \ ended \ Clock: \ MR51 \ [OP3] = 1_B \ (Enabled) \end{array}$

Figure 6 — SE to Differential CK and Write DQS - FSP Switching Timing CKE=Low

3.5.4 VRCG Enable Timing

The VRCG Enable timing when MR51 OP[3]: Single ended Clock has been set 1B (Enable) for either or both physical register is shown in **Figure 7**.

Figure 7 — VRCG Status Change to High Current Mode: Single-ended Clock Case

NOTE 1 When Single-ended Clock is enabled on inactive mode register: MR51 OP[3].

Figure 8 — VRCG Status Change to High Current Mode: Differential Clock Case

3.5.4 VRCG Enable Timing (cont'd)

Table 14 — SE from/to Differential FSP and Additional Period for MRW AC Timing

Parameter	Symbol	Min/ Max	Data Rate Equal to or less	Unit	Note		
		IVIAX	than 1600 Mbps				
Frequency Set Point Parameters for Switching Single-ended from/to Differential Clock/Strobe							
Valid Clock Requirement after entering FSP when changing between SE/Differential modes	tCKFSPE_SE	Min	Max(15ns, 8nCK)	-			
Valid Clock Requirement before first valid command after an FSP change between SE/Differential modes	tCKFSPX_SE	Min	Max(15ns, 8nCK)	-			
Additional period for after MRW command							
Post Clock for MRW	tMRW_PST	Min	2	nCK			

3.5.5 Command Bus Training Procedure

DQS_c input level is required to "High" during tDQSCKE and CAENT period when the MR51 OP[2]: Single ended WDQS has been set 1_B (Enable) for either physical register. This restriction is to prevent capturing unexpected DQS edge when SOC mode is moving from Differential DQS mode to SE DQS mode and vice versa. The command bus training timing is shown in **Figure 9**.

NOTE 1 The status of following pins are don't care from T0 to Tg3: DQ[7], DQ[15:14], DMI[1:0], DQS_t[1] and DQS_c[1].

Figure 9 — Write DQS Mode Changes from Differential to Single-ended for x16 Device

3.5.5 Command Bus Training Procedure (cont'd)

NOTE 1 The status of DMI is don't care from T0 to Tk2.

Figure 10 — Write DQS Mode Changes from Differential to Single-ended for x8 Device

3.5.5 Command Bus Training Procedure (cont'd)

NOTE 1 The status of DMI is don't care from T0 to Tk2.

Figure 11 — Write DQS Mode Changes from Single-ended to Differential for x8 Device

3.5.6 Mode Register Function with Two Physical Registers

Parameters which have two physical registers controlled by FSP-WR and FSP-OP are shown in **Table 15** with the exception outlined in NOTE 1.

Table 15 — Mode Register Function with Two Physical Registers

MR#	Operand	Function	Note
	OP[2]	WR-PRE (WR Pre-amble Length)	
MR1	OP[3]	RD-PRE (RD Pre-amble Type)	
IVIK	OP[6:4]	nWR (Write-Recovery for Auto-Pre-charge commands)	
	OP[7]	PST (RD Post-Amble Length)	
	OP[2:0]	RL (Read latency)	
MR2	OP[5:3]	WL (Write latency)	
	OP[6]	WLS (Write Latency Set)	
	OP[0]	PU-Cal (Pull-up Calibration Point)	1
	OP[1]	WR PST(WR Post-Amble Length)	
MR3	OP[5:3]	PDDS (Pull-Down Drive Strength)	
	OP[6]	DBI-RD (DBI-Read Enable)	
	OP[7]	DBI-WR (DBI-Write Enable)	
MR11	OP[2:0]	DQ ODT (DQ Bus Receiver On-Die-Termination)	
IVIKTI	OP[6:4]	CA ODT (CA Bus Receiver On-Die-Termination)	
MR12	OP[5:0]	VREF(ca) (VREF(ca) Setting)	
IVIIX 12	OP[6]	VR-CA (VREF(ca) Range)	
MR14	OP[5:0]	VREF(dq) (VREF(dq) Setting)	
WIIX 14	OP[6]	VR(dq) (VREF(dq) Range)	
MR21	OP[5]	Low Speed CA buffer (Optional)	
	OP[2:0]	SoC ODT (Controller ODT Value for VOH calibration)	
MR22	OP[3]	ODTE-CK (CK ODT enabled for non-terminating rank)	
IVINZZ	OP[4]	ODTE-CS (CS ODT enable for non-terminating rank)	
	OP[5]	ODTD-CA (CA ODT termination disable)	
	OP[1]	SE_QE_RD (Single Ended Read DQS Enable)	
MR51	OP[2]	SE_QE_WR (Single Ended Write DQS Enable)	
	OP[3]	SE_CE (Single Ended CK Enable)	

NOTE 1 For dual channel devices, PU-CAL setting is required as the same value for both Ch.A and Ch.B before issuing ZQ Cal start command.

3.5.7 Reference Level for Single-ended Mode

When Single-ended mode is enabled for Clock and Strobe, each reference level is as follows:

- CK_t is referenced to VREF(CA), same as the command, and
- The chip select and DQS_t is referenced to VREF(DQ), same as DQ and DMI.

- This point is alternative to the crossing point between CK_t and CK_c
- NOTE 1 VREFCA is calculated value based on VDD2 and MR12.
- NOTE 2 VrefCA must be set in following Opcode. MR12 OP[6] = 0, MR12 OP[5:0]= TBD through 110010_B MR12 OP[6] = 1, MR12 OP[5:0]= TBD through 110010_B

Figure 12 — Reference Point of CK_t

- This point is alternative to the crossing point between DQS_t and DQS_c
- NOTE 1 Vref DQ is calculated value based on VDDQ and MR14.
- NOTE 2 VrefDQ must be set in following Opcode.

 MR12 OP[6] = 0, MR12 OP[5:0]= TBD through 110010

 MR12 OP[6] = 1, MR12 OP[5:0]= TBD through 110010

Figure 13 — Reference Point of DQS_t

3.5.8 AC Parameters for Single Ended (SE)

The AC timing shown in **Table 16** is applied under conditions of Single ended mode.

Table 16 — Delta CK and DQS Specification

Parameter	Symbol	Min/ Max	Data Rate Equal to or less than 1600Mbps	Unit	Note
CK single-ended input voltage	Vinse_CK_High - Vinse_CK_low	Min	210	mV	1
Rx timing window	tCIVW	Max	0.35	UI	1,5
Average High pulse	tCH(avg)	Min	TBD	tCK(avg)	1
width	tori(avg)	Max	TBD	tCK(avg)	1
Average Low pulse	tCL(avg)	Min	TBD	tCK(avg)	1
width	toE(avg)	Max	TBD	tCK(avg)	1
Absolute High clock	tCH(abs)	Min	TBD	tCK(avg)	1
pulse width	1011(450)	Max	TBD	tCK(avg)	1
Absolute Low clock	tCL(abs)	Min	TBD	tCK(avg)	1
pulse width	toE(abo)	Max	TBD	tCK(avg)	1
Input Slew Rate for	SRIN CK	Min	TBD	V/ns	1
Clock	OKII*_OK	Max	TBD	V/ns	1
DQS single-ended input voltage	Vinse_DQS_High - Vinse_DQS_low	Min	210	mV	2
Input Slew Rate for	SRIN_DQS	Min	1	V/ns	2
DQS	SKIN_DQS	Max	7	V/ns	2
Rx timing window total	tDIVW	Max	0.35	UI	2,6
DQS Single-ended output high time (DBI-Disabled)	tQSH	Min	tCH-0.10	tCK(avg)	1,3
DQS Single-ended output low time (DBI-Disabled)	tQSL	Min	tCL-0.10	tCK(avg)	1,3
DQ output window time total, per pin (DBI-Disabled)	tQW	Min	0.65	UI	6
Write leveling setup time	tWLS	Min	250	ps	4
Write leveling hold time	tWLH	Min	250	ps	4
DQS falling edge to CK setup time	tDSS	Min	0.3	tCK(avg)	4
DQS falling edge hold time from CK	tDSH	Min	0.3	tCK(avg)	4

NOTE 1 This spec is applied when MR51 OP[3]=1_B (single ended CK enabled)

NOTE 2 This spec is applied when MR51 OP[2]=1_B (single ended Write DQS enabled)

NOTE 3 This spec is applied when MR51 OP[1]=1_B (single ended Read DQS enabled)

NOTE 4 This spec is applied when MR51 $OP[3]=1_B$ and MR51 OP[2]=0B or MR51 OP[3]=0B and MR51 $OP[2]=1_B$.

NOTE 5 UI=tCK

NOTE 6 UI=tCK/2

4 AC and DC Operating Conditions

4.1 Recommended DC Operating Conditions for Low Voltage

Table 17 — Recommended DC Operating Conditions

DRAM	Symbol	Min	Тур	Max	Unit	Notes
Core 1 Power	V_{DD1}	1.70	1.80	1.95	V	1,2
Core 2 Power/Input Buffer Power	V_{DD2}	1.06	1.10	1.17	V	1,2,3
I/O Buffer Power	V_{DDQ}	0.57	0.6	0.65	V	2,3,4,5

- NOTE 1 V_{DD1} uses significantly less current than V_{DD2}.
- NOTE 2 The voltage range is for DC voltage only. DC is defined as the voltage supplied at the DRAM and is inclusive of all noise up to 20 MHz at the DRAM package ball.
- NOTE 3 The voltage noise tolerance from DC to 20 MHz exceeding a pk-pk tolerance of 45 mV at the DRAM ball is not included in the TdIVW.
- NOTE 4 V_{DDQ}(max) may be extended to 0.67 V as an option in case the operating clock frequency is equal or less than 800 Mhz.
- NOTE 5 Pull up, pull down and ZQ calibration tolerance spec is valid only in normal V_{DDQ} tolerance range (0.57 V 0.65 V).

4.2 Single Ended Output Slew Rate

Figure 14 — Single Ended Output Slew Rate Definition

Table 18 — Output Slew Rate (Single-ended) for 0.6 V VDDQ

Parameter	Symbol	Va	lue	Units			
Farameter	Symbol	Min ¹	Max ²	Units			
Single-ended Output Slew Rate (VOH = V _{DDQ} *0.5)	SRQse [†]	3.0	9	V/ns			
Output slew-rate matching Ratio (Rise to Fall)	-	0.8	1.2	-			
† SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), se: Single-ended Signals							

- NOTE 1 Measured with output reference load.
- NOTE 2 The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation.
- NOTE 3 The output slew rate for falling and rising edges is defined and measured between VOL(AC) = 0.2*VOH(DC) and VOH(AC) = 0.8*VOH(DC).
- NOTE 4 Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching.

4.3 Differential Output Slew Rate

Figure 15 — Differential Output Slew Rate Definition

Table 19 — Differential Output Slew Rate for 0.6 V VDDQ

Parameter	Symbol	Va	lue	Units			
Faianetei	Syllibol	Min	Max	Ullits			
Differential Output Slew Rate (VOH = V _{DDQ} *0.5)	SRQdiff [†]	6	18	V/ns			
† SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), diff: Differential Signals							

NOTE 1 Measured with output reference load.

NOTE 2 The output slew rate for falling and rising edges is defined and measured between VOL(AC) = -0.8*VOH(DC) and VOH(AC) = 0.8*VOH(DC).

NOTE 3 Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching.

5 V_{REF} Specifications

5.1 CA Internal V_{REF} Specifications

Table 20 — CA Internal VREF Specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
V _{REF} Max operating point Range0	V _{REF} _max_R0	-	-	44.9%	V_{DDQ}	1,11
V _{REF} Min operating point Range0	V _{REF} _min_R0	15%	-	-	V_{DDQ}	1,11
V _{REF} Max operating point Range1	V _{REF} _max_R1	-	-	62.9%	V_{DDQ}	1,11
V _{REF} Min operating point Range1	V _{REF} _min_R1	32.9%	-	-	V_{DDQ}	1,11
V _{REF} Stepsize	V _{REF} _step	0.50%	0.60%	0.70%	V_{DDQ}	2
V _{RFF} Set Tolerance	V _{REF} _set_tol	-11	0	11	mV	3,4,6
VREFSEL TOIEIAITCE		-1.1	0	1.1	mV	3,5,7
	V _{REF} _time_Short	-	-	100	ns	8
V Stan Time	V _{REF} _time_Middle	-	-	200	ns	12
V _{REF} Step Time	V _{REF} _time_Long	-	-	250	ns	9
	V _{REF} _time_weak	-	-	1	ms	13,14
V _{REF} Valid tolerance	V _{REF} _val_tol	-0.10%	0.00%	0.10%	V_{DDQ}	10

- NOTE 1 V_{REF} DC voltage referenced to V_{DD2}_DC.
- NOTE 2 V_{REF} stepsize increment/decrement range. V_{REF} at DC level.
- NOTE 3 VREF_new = VREF_old + n*VREF_step; n= number of steps; if increment use "+"; if decrement use "-".
- NOTE 4 The minimum value of V_{REF} setting tolerance = V_{REF} _new 11 mV. The maximum value of V_{REF} setting tolerance = V_{REF} _new + 11 mV. For n>4.
- NOTE 5 The minimum value of V_{REF} setting tolerance = V_{REF} _new -1.1 mV. The maximum value of V_{REF} setting tolerance = V_{REF} _new + 1.1 mV. For n \leq 4.
- NOTE 6 Measured by recording the min and max values of the V_{REF} output over the range, drawing a straight line between those points and comparing all other V_{REF} output settings to that line.
- NOTE 7 Measured by recording the min and max values of the V_{REF} output across 4 consecutive steps(n=4), drawing a straight line between those points and comparing all other V_{REF} output settings to that line.
- NOTE 8 Time from MRS command to increment or decrement one step size for V_{REF}.
- NOTE 9 Time from MRS command to increment or decrement V_{REF}min to V_{REF}max or V_{REF}max to V_{REF}min change across the V_{REF}CA Range in V_{REF} voltage.
- NOTE 10 Only applicable for DRAM component level test/characterization purpose. Not applicable for normal mode of operation. V_{REF} valid is to qualify the step times which will be characterized at the component level.
- NOTE 11 DRAM range 0 or 1 set by MR12 OP[6].
- NOTE 12 Time from MRS command to increment or decrement more than one step size up to a full range of V_{REF} voltage within the same V_{REF}CA range.
- NOTE 13 Applies when VRCG high current mode is not enabled, specified by MR13[OP3] = 0.
- NOTE 14 $V_{REF_time_weak}$ covers all $V_{REF}(CA)$ Range and Value change conditions are applied to $V_{REF_time_Short/Middle/Long}$.

5.2 DQ Internal V_{REF} Specifications

Table 21 — DQ Internal VREF Specifications

Parameter	Symbol	Min	Тур	Max	Unit	Notes
V _{REF} Max operating point Range0	V _{REF} _max_R0	-	-	44.9%	V _{DDQ}	1,11
V _{REF} Min operating point Range0	V _{REF} _min_R0	15%	-	-	V _{DDQ}	1,11
V _{REF} Max operating point Range1	V _{REF} _max_R1	-	-	62.9%	V_{DDQ}	1,11
V _{REF} Min operating point Range1	V _{REF} _min_R1	32.9%	-	-	V _{DDQ}	1,11
V _{REF} Stepsize	V _{REF} _step	0.50%	0.60%	0.70%	V_{DDQ}	2
V Cot Toloropoo	\/	-11	0	11	mV	3,4,6
V _{REF} Set Tolerance	V _{REF} _set_tol	-1.1	0	1.1	mV	3,5,7
	V _{REF} _time_Short	-	-	100	ns	8
V Stan Time	V _{REF} _time_Middle	-	-	200	ns	12
V _{REF} Step Time	V _{REF} _time_Long	-	-	250	ns	9
	V _{REF} _time_weak			1	ms	13,14
V _{REF} Valid tolerance	lerance V _{REF} _val_tol		0.00%	0.10%	V_{DDQ}	10

- NOTE 1 V_{REF} DC voltage referenced to V_{DDQ} _DC.
- NOTE 2 VREF stepsize increment/decrement range. VREF at DC level.
- NOTE 3 V_{REF}new = V_{REF}old + n*V_{REF}step; n= number of steps; if increment use "+"; If decrement use "-".
- NOTE 4 The minimum value of V_{REF} setting tolerance = V_{REF} _new 11 mV. The maximum value of V_{REF} setting tolerance = V_{REF} _new + 11 mV. For n>4.
- NOTE 5 The minimum value of V_{REF} setting tolerance = V_{REF} _new 1.1 mV. The maximum value of V_{REF} setting tolerance = V_{REF} _new + 1.1 mV. For n \leq 4.
- NOTE 6 Measured by recording the min and max values of the V_{REF} output over the range, drawing a straight line between those points and comparing all other V_{REF} output settings to that line.
- NOTE 7 Measured by recording the min and max values of the V_{REF} output across 4 consecutive steps (n=4), drawing a straight line between those points and comparing all other V_{REF} output settings to that line.
- NOTE 8 Time from MRS command to increment or decrement one step size for V_{REF}.
- NOTE 9 Time from MRS command to increment or decrement V_{REF}min to V_{REF}max or V_{REF}max to V_{REF}min change across the V_{REF}DQ Range in V_{REF} voltage.
- NOTE 10 Only applicable for DRAM component level test/characterization purpose. Not applicable for normal mode of operation. V_{REF} valid is to qualify the step times which will be characterized at the component level.
- NOTE 11 DRAM range 0 or 1 set by MR14 OP[6].
- NOTE 12 Time from MRS command to increment or decrement more than one step size up to a full range of V_{REF} voltage within the same V_{REF}DQ range.
- NOTE 13 Applies when VRCG high current mode is not enabled, specified by MR13[OP3] = 0.
- NOTE 14 V_{REF}_time_weak covers all V_{REF}(DQ) Range and Value change conditions are applied to V_{REF}_time_Short/Middle/Long.

6 Power-up, Initialization, and Power-off Procedure

For power-up and reset initialization, default values of the following MR settings are defined in **Table 22** in order to prevent DRAM from functioning improperly.

Table 22 — MRS Default Settings

Item	MRS	Default Setting	Description
FSP-OP/WR	MR13 OP[7:6]	00в	FSP-OP/WR[0] are enabled
WLS	MR2 OP[6]	0в	Write Latency Set 0 is selected
WL	MR2 OP[5:3]	000в	WL = 4
RL	MR2 OP[2:0]	000в	RL = 6, nRTP = 8
nWR	MR1 OP[6:4]	000 _B	nWR = 6
DBI-WR/RD	MR3 OP[7:6]	00в	Write and Read DBI are disabled
CA ODT	MR11 OP[6:4]	000в	CA ODT is disabled
DQ ODT	MR11 OP[2:0]	000 _B	DQ ODT is disabled
V _{REF} (CA) Setting	MR12 OP[6]	1в	V _{REF} (CA) Range[1] enabled
V _{REF} (CA) Value	MR12 OP[5:0]	011101в	Range1: 50.3% of VDDQ
V _{REF} (DQ) Setting	MR14 OP[6]	1 _B	V _{REF} (DQ) Range[1] enabled
V _{REF} (DQ) Value	MR14 OP[5:0]	011101в	Range1: 50.3% of VDDQ

7 ODT Mode Register and ODT State Table

ODT termination values are set and enabled via MR11. The CA bus (CK_t, CK_C, CS, CA[5:0]) ODT resistance values are set by MR11 OP[6:4]. The default state for the CA is ODT disabled.

ODT is applied on the CA bus to the CK_t, CK_c, CS, and CA[5:0] signals. Generally, only one termination load will be present even if multiple devices are sharing the command signals. In contrast to LPDDR4 where the ODT_CA input is used in combination with mode registers, LPDDR4X uses mode registers exclusively to enable CA termination. Before enabling CA termination via MR11, all ranks should have appropriate MR22 termination settings programmed. In a multi rank system, the terminating rank should be trained first, followed by the non-terminating rank(s).

Table 23 — Command Bus ODT State

ODTE-CA MR11[6:4]	ODTD-CA MR22[5]	ODTF-CK MR22[3]	ODTF-CS MR22[4]	ODT State for CA	ODT State for CK_t/CK_c	ODT State for CS
Disabled ¹	Valid ²	Valid ²	Valid ²	Off	Off	Off
Valid ²	0	0	0	On	On	On
Valid ²	0	0	1	On	On	Off
Valid ²	0	1	0	On	Off	On
Valid ²	0	1	1	On	Off	Off
Valid ²	1	0	0	Off	On	On
Valid ²	1	0	1	Off	On	Off
Valid ²	1	1	0	Off	Off	On
Valid ²	1	1	1	Off	Off	Off

NOTE 1 Default Value.

NOTE2 Valid" means "0 or 1".

8 Core Timing

Table 24 — Core Timing

Parameter	Symbol	Min/ Max		Data Rate				Unit			
Core Pa	rameters	3	533	533 1066 1600 2133 2667 3200 3733					4266		
Active bank-A to active bank-B ¹	tRRD	Min			Max(1	0ns, 4	nCK)			Max (7.5ns, 4nCK) ²	ns
Four bank ACT window	tFAW	Min	40 30 ²			ns					

NOTE 1 Precharge to precharge timing restriction does not apply to Auto-Precharge commands.

NOTE 2 Devices supporting 4266 Mbps specification shall support these timings at lower data rates.

Annex A — (Informative) Differences between Revisions

A.1 Differences between JESD209-4-1B and JESD209-4-1A

This table provides a summary of the modifications in the current standard, JESD209-4-1B, compared to the previous version, JESD209-4-1A (February 2021).

Page	Description of Change
14	Correcting bit map for MR0, MR14, MR21, MR22, and MR51 in table 2.
30	Editorial revision of NOTE 4 in Table 11 to add reference to JESD209-4
43	Correcting specification of tCIVW/tDIVW in table 16 as 0.35UI Max from 0.35UI min.

A.2 Differences between JESD209-4-1A and JESD209-4-1

This table briefly describes the changes made to this standard, JESD209-4-1A, compared to its predecessor, JESD209-4-1 (January 2017). If the change to a concept involves any words added or deleted (excluding deletion of accidentally repeated words), it is included. Some punctuation changes are not included.

Page	Description of Change
11	Add 2.3.8 556 ball LPDDR4X 12.4 x 12.4 mm 4ch. PoP – Using MO-317C
12	ADD 2.3.9 — LPDDR4/4X 254 ball NAND MCP Two-Channel FBGA
15	Updated MR0 table
21	Add MR21 definition
24	Add MR51 definition
32-43	Add LPDDR4X single-ended mode for Clock and Strobe

Standard Improvement Form

JEDEC Standard No. 209-4-1B

The purpose of this form is to provide the Technical Committees of JEDEC with input from the industry regarding usage of the subject standard. Individuals or companies are invited to submit comments to JEDEC. All comments will be collected and dispersed to the appropriate committee(s).

If you can provide input, please complete this form and return to:

JEDEC Email: angies@jedec.org Attn: Publications Department 3103 10th Street North Suite 240S Arlington, VA 22201 1. I recommend changes to the following: Requirement, clause number Test method number _____ Clause number _____ The referenced clause number has proven to be: Unclear Too Rigid In Error Other _____ 2. Recommendations for correction: 3. Other suggestions for document improvement: Submitted by Name: _____ Phone: E-mail: Company: Address: Date: City/State/Zip:

