PARTE A

1. La derivata della funzione $x(t)=\int_0^{t^2+1}\sin(z)\,dz$ vale A: $2t\sin(t^2+1)$ B: N.A. C: $2t\sin(t^2)$ D: $\sin(t^2)$ E: N.E.

2. L'integrale

$$\int_{-1}^{2} |x| \, dx$$

vale

A: $\sqrt{2}$ B: 7/2 C: N.A. D: 0 E: 3/2

3. Dati $\alpha > 0$ e $f_{\alpha}(x) = 3(\log(\alpha x))$. Allora $f'_{\alpha}(e)$ è uguale a A: $\frac{e^3}{\alpha}$ B: $\frac{3}{e}$ C: $\alpha \log(3e)$ D: $\frac{3\alpha}{e}$ E: N.A.

4. La funzione $f(x) = \begin{cases} 0 & \text{per } x < 0 \\ \log(1+x) & \text{per } x \ge 0 \end{cases}$

A: N.A. B: non è né continua né derivabile. C: è continua e derivabile. D: è continua, ma non derivabile. E: è derivabile, ma non continua.

5. La retta tangente al grafico di $y(x) = \sin(\sin(x))$ nel punto $x_0 = 0$ vale

A: N.A. B: $1 + x + x^2$ C: $1 + 2x - \frac{\pi}{2}$ D: 1 + x E: $1 + \sin(x) x$

6. Modulo e argomento del numero complesso $z=i^{44}$ sono

A: $(1, 44\pi)$ B: $(1, 3\pi/2)$ C: $(2, 44\pi)$ D: $(2, 2\pi/3)$ E: N.A.

7. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^3 + \cos(x))}{3\log(x)}$$

vale

A: 0 B: N.A. C: $+\infty$ D: 1 E: N.E.

8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x)\cos(x) < 0\}$$

valgono

$$A: \{-\pi, -\pi, +\infty, N.E.\} \quad B: \{0, 0, \pi, \pi\} \quad C: \{-\infty, N.E., 2\pi, 2\pi\} \quad D: \text{N.A.} \quad E: \{-\infty, N.E., +\infty, N.E.\}$$

9. La serie a termini non-negativi

$$\sum_{n>[\pi]}^{\infty} \frac{1+n^2}{n} \log\left(1+\frac{1}{n^{\alpha}}\right)$$

converge per

A: N.A. B: $\alpha > 1$ C: $\alpha > 2$ D: $3 < \alpha < \pi$ E: $\alpha \ge 1$

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x|^{20}$ è

A: surgettiva B: monotona crescente C: iniettiva D: N.A. E: derivabile ovunque

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

14 settembre 2015

(Cognome)										(Nome)									(Numero di matricola)											

ABCDE

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

14 settembre 2015

PARTE B

1. Studiare al variare di $\lambda \in \mathbb{R}$ il grafico della funzione

$$f(x) = \log(x) e^{\frac{\lambda}{x}}$$
 $x > 0$.

Soluzione. Se $\lambda=0$ la funzione si riduce al logaritmo naturale, pertanto cominciamo a discutere il caso $\lambda>0$ per poi passare a $\lambda<0$, osservando che f(1)=0 per ogni $\lambda\in\mathbb{R}$ e che la derivata risulta

$$f'(x) = \frac{e^{\frac{\lambda}{x}}(x - \lambda \log(x))}{x^2}.$$

Se $\lambda > 0$ allora

$$\lim_{x \to 0^+} f(x) = -\infty \qquad \text{e} \qquad \lim_{x \to +\infty} f(x) = +\infty$$

Il segno della derivata dipende solo dal termine $g(x)=x-\lambda\log(x)$, dato che gli altri sono positivi. Osserviamo che per $\lambda>0$ si ha

$$\lim_{x\to 0^+} g(x) = +\infty \qquad \text{e} \qquad \lim_{x\to +\infty} g(x) = +\infty.$$

La funzione g ha come derivata

$$g'(x) = 1 - \frac{\lambda}{x}$$

che si annulla con un cambio di segno per $x=\lambda$. Pertanto la funzione g ha un minimo per $x=\lambda$. Se il minimo è positivo non ci sono cambi di segno della derivata di f. Il valore minimo di g risulta $g(\lambda)=\lambda(1-\log(\lambda))$ che è positivo se $\lambda<$ e, nullo se $\lambda=$ e e negativo se $\lambda>$ e. Pertanto se $0<\lambda<$ e la funzione f' è sempre strettamente positiva e quindi f è monotona crescente. Se $\lambda=$ e la derivata f' è sempre positiva eccetto che in x=e, ma ancora la funzione f è strettamente crescente. Invece se $\lambda>$ e la funzione f' si annulla in 2 punti $x_1<\lambda< x_2$ e quindi f risulta crescente in $]0,x_1[\cup]x_2,+\infty[$ e decrescente all'interno. Il punto x_1 è un punto di massimo relativo mentre x_2 è un punto di minimo relativo.

Nel caso $\lambda < 0$ abbiamo invece

$$\lim_{x \to 0^+} f(x) = 0 \qquad e \qquad \lim_{x \to +\infty} f(x) = +\infty$$

e di nuovo il segno della derivata dipende solo da g che ora soddisfa

$$\lim_{x \to 0^+} g(x) = -\infty \qquad \text{e} \qquad \lim_{x \to +\infty} g(x) = +\infty.$$

Figura 1: Andamento del grafico di f
 per $0 < \lambda <$ e

Figura 2: Andamento del grafico di f
 per e < λ

Inoltre g'(x) non si annulla mai perchè $x=\lambda$ non ha soluzioni se x>0 e $\lambda<0$ quindi la derivata è negativa per $x< x_3$ e positiva per $x>x_3$. Il punto x_3 è quello dove si annulla g(x) e osserviamo che $x_3<1$, dato che g(1)=1 per ogni λ .

2. Studiare al variare di $\alpha, \beta \in \mathbb{R}^+$ la convergenza della serie numerica

$$\sum_{n=1}^{+\infty} \sqrt[\alpha]{\log\left(1 + \frac{1}{n^{\beta}}\right)}$$

Soluzione. La serie in questione è a termini non negativi e usando lo sviluppo di Taylor si ottiene che

$$\sqrt[\alpha]{\log\left(1+\frac{1}{n^\beta}\right)} = \log\left(1+\frac{1}{n^\beta}\right)^{1/\alpha} = \mathcal{O}\left(\frac{1}{n^{\beta/\alpha}}\right) \qquad \text{per } n \to +\infty.$$

Pertanto la serie converge se e solo se

$$\frac{\beta}{\alpha} > 1.$$

3. Studiare la convergenza e eventualmente calcolare

$$\int_{1}^{+\infty} \frac{x+1}{x(x+2)(x+3)} \, dx$$

Figura 3: Andamento del grafico di f per $\lambda < 0$

Soluzione. L'integrale in questione converge perchè la funzione integranda è non-negativa e

$$\frac{x+1}{x(x+2)(x+3)} = \mathcal{O}\left(\frac{1}{x^2}\right) \qquad \text{per } x \to +\infty.$$

Utilizzando la scomposizione in fattori razionali

$$\frac{x+1}{x(x+2)(x+3)} = \frac{1}{6x} + \frac{1}{2(x+2)} - \frac{2}{3(x+3)}$$

si ottiene che una primitiva di f è la funzione $\frac{\log(x)}{6} + \frac{1}{2}\log(x+2) - \frac{2}{3}\log(x+3)$. Pertanto

$$\lim_{b \to +\infty} \int_1^b \frac{x+1}{x(x+2)(x+3)} \, dx = \lim_{b \to +\infty} \frac{\log(x)}{6} + \frac{1}{2} \log(x+2) - \frac{2}{3} \log(x+3) \bigg|_1^b = \frac{1}{6} \log\left(\frac{256}{27}\right)$$

4. Studiare il problema di Cauchy

$$\begin{cases} y'(t) = \frac{\sin(t)}{y(t)} \\ y(0) = 0. \end{cases}$$

Soluzione. Osserviamo che y(0) = 0 rende senza senso il lato destro, o perlomeno questo va inteso in un senso particolare di limite come per esempio risolvendo

$$\begin{cases} y'(t) = \frac{\sin(t)}{y(t)} & \text{per } t \neq 0\\\\ \lim_{t \to 0} y(t) = 0. \end{cases}$$

Manipolando comunque in maniera formale l equazione, separiamo le variabili ottenendo $ydy = \sin(t)dt$ e integriamo ottenendo

$$y^2 = 2(C - \cos(t)).$$

Se vogliamo y(0) = 0, allora C = 1. Quindi le soluzioni risultano

$$y(t) = \sqrt{2(1 - \cos(t))}$$
 $y(t) = -\sqrt{2(1 - \cos(t))}$

In questo caso entrambe le soluzioni sono accettabili, dato che sono funzioni derivabili per $t \neq 0$ e che si annullano per t = 0. Si ha un fenomeno di non unicità.

Osserviamo che in realtà non ci sono solo queste due soluzioni, dato che lo stesso fenomeno si ha anche per $t=2k\pi$. Quindi ogni volta che viene raggiunto uno di questi punti, si può avere una soluzione che mantiene il segno o lo cambia e si può costruire una soluzione scegliendo arbitrariamente il segno davanti alla radice in ognuno degli intervalli $t \in]2k\pi, 2(k+1)\pi[$.