Teoria q em tempo contínuo

1 Ambiente e problema em forma de sequência

- Aqui, vamos aproximar o que já fizemos da apresentação de Romer. Mas mantemos depreciação e a mesma função de ajustamento de capital dos slides anteriores.
- Estamos interessados no seguinte problema:

$$\max \int_0^\infty e^{-rt} d_t dt$$

s.a.

$$d_{t} = \pi (K_{t}) k_{t} - i_{t} - G (i_{t}, k_{t})$$
$$\dot{k}_{t} = i_{t} - \delta k_{t}$$
$$\dot{K}_{t} = J (K_{t})$$

Hipóteses subjacentes:

- Problema sem incerteza para simplificar. Estacionario em (k, K).
- Também para simplificar, fizemos $p_{k,t}=1$. Preço de bens de capital é constante.
- Retornos constantes ao nível da firma: $\pi(K_t) k_t$ é linear e $G(i_t, k_t)$ tem retornos constantes de escala.
 - Aqui, seguimos com $G(i_t, k_t) = k_t g\left(\frac{i_t}{k_t}\right)$ em que $g\left(\hat{i}\right) = G\left(\hat{i}, 1\right)$.
- $\bullet~\pi'\left(\cdot\right)<0,$ efeito de congestão no mercado, externo à firma, consequências de competição.
- $\bullet\,$ Vamos supor que existe um contínuo firmas idênticas, logo $k_t=K_t$ e

$$\dot{K}_{t} = J\left(K_{t}\right) = \left(\hat{i}_{t}^{*} - \delta\right) K_{t}$$

no espírito da consistência de leis de movimento agregadas de eq competitivo recursivo.

- Importante que isso seja imposto só depois das CPOs tiradas (ou seja, firma toma a lei de movimento agregada e π como dados). Não errem isto!
- Ainda teremos que mostrar que \hat{i}_t^* depende apenas de K_t . A dependência se dará através de q.

2 A HJB

Temos aqui que V(k, K) tem que satisfazer

$$rV = \max_{i} [\pi(K) k - i - G(i, k)] + V_{k} [i - \delta k] + V_{K} [J(K)]$$

Tirando a CPO em i, temos

$$q := V_k = 1 + G_i(i, k) = 1 + g'(\hat{i}),$$

como antes. Daqui,

$$\hat{i} = \phi(q)$$
,

com $\phi(q) := g'^{-1}(q-1)$.

Podemos também diferenciar V(k, K) em k para buscar uma condição adicional análoga ao Teorema do Envelope,

$$rV_{k} = \pi(K) - G_{k} + V_{kk}\dot{k} + V_{k}(-\delta) + V_{Kk}[J(K)].$$
(1)

Em princípio, esta condição envolve V_{kk} e V_{Kk} .

Mas como no resultado de Hayashi, podemos verificar que

$$V(k, K) = v(K) k$$
.

Para isto, basta notarmos que

$$r\left[v\left(K\right)k\right] = \max_{\hat{i}} \left[\pi\left(K\right) - \hat{i} - g\left(\hat{i}\right)\right]k + v\left(K\right)\left[\hat{i} - \delta\right]k + v'\left(K\right)\left[J\left(K\right)\right]k.$$

Podemos cancelar k acima e obter uma equação diferencial para $q=v\left(K\right)$, porém ainda envolvendo \hat{i}

Note que uma consequência da fatoração acima é que

$$Q = \frac{V(k, K)}{k} = v(K) = V_k = q,$$

como em nossas notas de tempo discreto.

Voltando à equação 1 e usando nossa fatoração, temos $V_{kk}=0$ e $V_{Kk}=v'\left(K\right)$. Logo,

$$(r+\delta) V_k = \pi (K) - G_k + v'(K) \dot{K}.$$

Temos também,

$$q = v(K) \implies \dot{q} = v'(K)\dot{K},$$

logo obtemos

$$(r+\delta)q = \pi(K) - G_k + \dot{q}. \tag{2}$$

Comentários:

- Esta equação é análoga à representação de q como o valor presente do produto marginal do capital e das reduções de custos de investimentos futuros que derivamos nos slides (slide 13). Para mostrar isto, basta integrar a equação 2.
- É também análoga à equação 9.22 de Romer (pois $G_k = 0$ e $\delta = 0$ no exemplo dele), embora a fatoração V(k, K) = v(K) k não valha naquele contexto.
- Romer interpreta esta equação como o custo para o usuário do capital sendo igualado a $\pi(K)$. Há ligeira imprecisão, então esta interpretação vale apenas como analogia, pois q é um valor sombra do capital instalado (e, inclusive por isto, aparece G_k acima).

• Podemos também chegar à equação 2 a partir de 1 com uma álgebra que verifica que $(q-1)\hat{i} - g(\hat{i}) = -G_k$ no ótimo.¹

3 Usando a simetria

Em equilíbrio, todas as firmas têm a mesma taxa de investimento $\hat{i} = \psi(q)$, então

$$\frac{\dot{K}}{K} = (\phi(q) - \delta). \tag{3}$$

Portanto, o locus $\dot{K} = 0$ é vertical no plano (K, q).

Temos também, sob nossas hipóteses de retornos constantes em G

$$G_k\left(i_t, k_t\right) = \psi\left(\hat{i}_t\right),$$

em que $\psi(x) := G_k(x,k)|_{k=1} = -g'(x)x + g(x)$ e $\hat{i}_t = \frac{i_t}{k_t} = \phi(q)$. Logo, a equação 2 pode ser escrita como

$$\dot{q} = (r + \delta) q + \psi \left(\phi \left(q\right)\right) - \pi \left(K\right). \tag{4}$$

O sistema com as equações 3 e 4 caracteriza a dinâmica de K e q e pode ser representado em um diagrama de fases.² Em relação ao sistema apresentado no Romer, as únicas diferenças são o termo $\psi(\phi(q))$ em 4, a presença de δ em 3 e o fato de todos os termos à direita em 3 serem proporcionais a K (porque nosso modelo entrega resultados sobre a taxa $\hat{i} = i/k$ e não diretamente sobre o nível i).

Se garantirmos que

$$(r+\delta) + G_{k,i} (\phi(q), 1) \phi'(q) > 0,$$

conseguimos ter certeza sobre os sinais envolvidos em \dot{q} e a análise passa a ser toda qualitativamente igual à apresentada no capítulo 9 do livro do Romer, apesar do ponto de partida diferente.

Note, no entanto, que $G_{k,i}\left(\phi\left(q\right),1\right)=-g^{''}\left(\frac{i}{k}\right)\left(\frac{1}{k^2}\right)<0$. Para que, junto com $\pi^{'}\left(\cdot\right)<0$, tenhamos o locus $\dot{q}=0$ negativamente inclinado em (K,q), precisamos retringir (ao menos em uma vizinhança do estado estacionário) $g^{''}\left(\frac{i}{k}\right)\left(\frac{1}{k^2}\right)< r+\delta$ com hipóteses sobre primitivos.

Note que $G(i,k) = kg\left(\frac{i}{k}\right)$ e, portanto, $G_k = g\left(\frac{i}{k}\right) - g'\left(\frac{i}{k}\right)\left(\frac{i}{k}\right)$. No ótimo, $g'\left(\frac{i}{k}\right) = q - 1$. Então, $G_k = g\left(\hat{i}\right) + (1-q)\left(\hat{i}\right)$.

 $^{^{&#}x27;2}$ Esta é uma maneira de resolver para trajetórias de equilíbrio, mas como $q=v\left(K\right)$ parece ser possível escrever toda a solução como função de K apenas, abrindo mão da representação gráfica.