

IIT Madras ONLINE DEGREE

Can slope of a line uniquely determine a line?

Answer: No, it can not uniquely determine the line.

How is the slope useful?

To explore:

- Condition for parallel lines
- Condition for perpendicular lines

Characterization of Parallel Lines via slope

Let l_1 and l_2 be two non-vertical lines with slopes m_1 and m_2 with inclinations \boldsymbol{a} and $\boldsymbol{\beta}$ respectively.

- If l_1 is parallel to l_2 , then $a = \beta$.
- It is clear that tana = tanβ.
- Hence, $m_1 = m_{2.}$
- Assume $m_1 = m_2$. Then $\tan a = \tan \beta$.
- Since, $0^{\circ} \le \alpha$, $\beta \le 180^{\circ}$, $\alpha = \beta$.
- Therefore, \boldsymbol{l}_1 is parallel to \boldsymbol{l}_2

Two non-vertical lines l_1 and l_2 are parallel if and only if their slopes are equal.

Characterization of Perpendicular Lines via Slope

Let ${\it l}_1$ and ${\it l}_2$ be two non-vertical lines with slopes m_1 and m_2 with inclinations ${\it a}$ and ${\it \beta}$ respectively.

- If l_1 is perpendicular to l_2 , then 90 + $\alpha = \beta$.
- Now, $tan\beta = tan(90 + a) = -cota = -1/tana$.
- Hence, $m_2 = -1/m_1$ or $m_1 m_2 = -1$.
- Assume $m_1 m_2 = -1$. Then $\tan \alpha \tan \beta = -1$.
- $\tan \alpha = -\cot \beta = \tan(90 + \beta)$ or $\tan(90 \beta)$.
- Hence, a and β differ by 90° which proves
 l₁ is perpendicular to l₂

Two non-vertical lines l_1 and l_2 are perpendicular if and only if m_1m_2 =-1

Relation of Angles between the Two lines and their slopes

Let ${\it l}_1$ and ${\it l}_2$ be two non-vertical lines with slopes m_1 and m_2 with inclinations ${\it a}_1$ and ${\it a}_2$ respectively.

Suppose ${\it l}_1$ and ${\it l}_2$ intersect and let φ and $\pmb{\theta}$ be the adjacent angles formed by ${\it l}_1$ and ${\it l}_2$.

Now,
$$\theta = a_2 - a_1$$
, for $a_1, a_2 \neq 90^\circ$

Then,

$$an heta= an(lpha_2-lpha_1)=rac{ anlpha_2- anlpha_1}{1+ anlpha_1 anlpha_2}=rac{m_2-m_1}{1+m_1m_2}, m_1m_2
eq -1.$$

$$an\phi= an(180- heta)=- an heta=rac{m_1-m_2}{1+m_1m_2}$$