

Relatório 11 – Grupo G2

OBJETIVO:

• Estudar o trabalho da energia mecânica através do movimento do carrinho no trilho de ar.

MATERIAL UTILIZADO:

• Kit do trilho de ar; balança;

PROCEDIMENTO EXPERIMENTAL

Tabela 1: Massa que compõem o sistema

Carrinho	Suporte de massa	Massa1 de 10g	Massa1 de 20g
$(0,20490 \pm 0,00001)$ kg	$(0.00797 \pm 0.00001) \text{ kg}$	$(0,00895 \pm 0,00001) \text{ kg}$	$(0.01899 \pm 0.00001) \text{ kg}$

Erros de medida associados ao tempo e a posição:

Erro tempo = $\pm 2\%$

Erro posição = ± 0.5 cm

Altura inicial do suporte de massas ao chão $h = 0.8900 \pm 0.0005$ m.

Tabela 2: Tempo medido entre os deslocamentos demarcados, para impulso com massa de 10g.

X_{F}	Δt 1 (ms)	Δt 2 (ms)	Δt 3 (ms)	Δt 4 (ms)	Δt 5 (ms)	Média Δt (ms)
0	0.000	0.000	0.000	0.000	0.000	0.000
(0.100 ± 0.005) m	(0.5380 ± 0.0108) s	$(0,5260 \pm 0,0105)$ s	(0.5350 ± 0.0107) s	(0.5320 ± 0.0106) s	(0.535 ± 0.0107) s	$(0,5330 \pm 0,0107)$ s
$(0.200 \pm 0{,}005) \text{ m}$	(0.8950 ± 0.0179) s	(0.8970 ± 0.0179) s	(0.8990 ± 0.0179) s	(0.901 ± 0.018) s	(0.900 ± 0.018) s	(0.8980 ± 0.0179) s
(0.300 ± 0.005) m	$(1,1480 \pm 0,0229)$ s	$(1,150 \pm 0,023)$ s	$(1,151 \pm 0,023)$ s	$(1,153 \pm 0,023)$ s	$(1,1440 \pm 0,0229)$ s	$(1,1490 \pm 0,0229)$ s
$(0.400 \pm 0,005)$ m	$(1,3270 \pm 0,0265)$ s	$(1,3210 \pm 0,0264)$ s	$(1,3280 \pm 0,0265)$ s	$(1,3330 \pm 0,0266)$ s	(1.3190 ± 0.0263) s	$(1,3260 \pm 0,0265)$ s
(0.500 ± 0.005) m	$(1,4710 \pm 0,0294)$ s	$(1,4650 \pm 0,0293)$ s	$(1,4690 \pm 0,0293)$ s	$(1,4710 \pm 0,2942)$ s	$(1,4710 \pm 0,2942)$ s	$(1,4690 \pm 0,0293)$ s

Tabela 3: Tempo medido entre os deslocamentos demarcados, para impulso com massa de 20g.

X_F (cm) $\Delta t 1$ (ms)		Δt 2 (ms) Δt 3 (ms)		Δt 4 (ms)	Δt 5 (ms)	Média Δt (ms)	
0	0.000	0.000	0.000	0.000	0.000	0.000	
$(0.100 \pm 0.005) \text{ m}$	$(0,4050 \pm 0,0081)$ s	$(0,4090 \pm 0,0082)$ s	$(0,4090 \pm 0,0082)$ s	$(0,4070 \pm 0,0081)$ s	$(0,4080 \pm 0,0082)$ s	$(0,4080 \pm 0,0082)$ s	
$(0.200 \pm 0,005) \text{ m}$	$(0,6080 \pm 0,0122)$ s	$(0,6060 \pm 0,0121)$ s	$(0,6040 \pm 0,0121)$ s	$(0,6040 \pm 0,0121)$ s	$(0,6060 \pm 0,0121)$ s	$(0,6060 \pm 0,0121)$ s	
$(0.300 \pm 0,005)$ m	(0.7540 ± 0.0150) s	$(0,7550 \pm 0,0151)$ s	(0.7510 ± 0.0150) s	(0.7550 ± 0.0151) s	(0.7570 ± 0.0151) s	(0.7540 ± 0.0151) s	
$(0.400 \pm 0.005) \text{ m}$	(0.8750 ± 0.0175) s	(0.8840 ± 0.0177) s	(0.8770 ± 0.0175) s	(0.8830 ± 0.0177) s	(0.8820 ± 0.0176) s	(0.8800 ± 0.0176) s	
$(0.500 \pm 0.005) \text{ m}$	(0.9830 ± 0.0197) s	$(0.9840 \pm 0.0197) \text{ s}$	$(0,9790 \pm 0,0196)$ s	(0.9840 ± 0.0197) s	(0.9800 ± 0.0196) s	(0.9820 ± 0.0196) s	

Tabela 4: Tempo medido entre os deslocamentos demarcados, para impulso com massa de 30g.

X _F (cm)	Δt 1 (ms)	Δt 2 (ms)	Δt 3 (ms)	Δt 4 (ms)	Δt 5 (ms)	Média ∆t (ms)
0	0.000	0.000	0.000	0.000	0.000	0.000
$(0.100 \pm 0,005) \text{ m}$	(0.3560 ± 0.0071) s	(0.3620 ± 0.0072) s	(0.3570 ± 0.0071) s	(0.3570 ± 0.0071) s	$(0,3610 \pm 0,0072)$ s	$(0,3590 \pm 0,0072)$ s
$(0.200 \pm 0{,}005) \text{ m}$	$(0,5210 \pm 0,0104)$ s	$(0,5190 \pm 0,0104)$ s	$(0.5180 \pm 0.0104) \text{ s}$	$(0,5170 \pm 0,0103)$ s	$(0,5180 \pm 0,0104)$ s	$(0,5190 \pm 0,0104)$ s
$(0.300 \pm 0.005) \text{ m}$	$(0,6410 \pm 0,0128)$ s	$(0,6380 \pm 0,0128)$ s	$(0,6390 \pm 0,0128) \text{ s}$	$(0,6390 \pm 0,0128)$ s	$(0,6460 \pm 0,0129)$ s	$(0,6410 \pm 0,0128)$ s
$(0.400 \pm 0,005) \text{ m}$	(0.7450 ± 0.0149) s	(0.7440 ± 0.0149) s	$(0.7420 \pm 0.0148) \text{ s}$	(0.7420 ± 0.0149) s	(0.7480 ± 0.0150) s	(0.7440 ± 0.0149) s
(0.500 ± 0.005) m	(0.8370 ± 0.0167) s	(0.8340 ± 0.0167) s	(0.8410 ± 0.0168) s	(0.8410 ± 0.0168) s	(0.8370 ± 0.0167) s	(0.8380 ± 0.0168) s

Para apresentar no relatório:

Gráfico 1: Gráfico X_F em Função do Tempo referente a tabela 2

Aceleração do Sistema: 0,3808 m/s²

Gráfico 2: Gráfico X_F em Função do Tempo referente a tabela 3

Aceleração do Sistema: 0,9348 m/s²

Gráfico 3: Gráfico X_F em Função do Tempo referente a tabela 4

Aceleração do sistema = 1,327 m/s²

Tabela 5: Resumo dos Resultados referentes ao Gráfico 1.

X _F (cm)	$\mathrm{Ep}_{\mathbf{f}}\left(\mathrm{J}\right)$	V _f (m/s)	$\mathrm{Ec}_{\mathbf{f}}(\mathrm{J})$	$\tau_{Fr}(J)$	$\Delta Ec(J)$	$\Delta Ep(J)$	$\Delta EM(J)$
0	$(0.1476 \pm 0.0003) \text{ J}$	0	0	0	0	0	0
0.1	$(0,131 \pm 0,001) \text{ J}$	$(0,203 \pm 0,004)$ m/s	$(0,0046 \pm 0,0002)$ J	$(0,0092 \pm 0,0005) \text{ J}$	$(0,0046 \pm 0,0002)$ J	$(-0.017 \pm 0.001) \text{ J}$	(-0.012 ± 0.002) J
0.2	$(0,114 \pm 0,001) \text{ J}$	(0.342 ± 0.007) m/s	$(0.0131 \pm 0.0005) \text{ J}$	$(0.0183 \pm 0.0005) \text{ J}$	$(0.0131 \pm 0.0005) \text{ J}$	$(-0.033 \pm 0.001) \text{ J}$	$(-0.020 \pm 0.002) \text{ J}$
0.3	$(0,098 \pm 0,001) \text{ J}$	(0.438 ± 0.009) m/s	$(0.025 \pm 0.001) \text{ J}$	$(0.0275 \pm 0.0005) \text{ J}$	$(0.025 \pm 0.001) \text{ J}$	$(-0.050 \pm 0.001) \text{ J}$	$(-0.025 \pm 0,002) \text{ J}$
0.4	$(0.081 \pm 0.001) \text{ J}$	$(0.50 \pm 0.01) \text{ m/s}$	$(0.029 \pm 0.001) \text{ J}$	(0.0367 ± 0.0005) J	$(0.029 \pm 0.001) \text{ J}$	$(-0.066 \pm 0.001) \text{ J}$	(-0.038 ± 0.002) J
0.5	$(0,064 \pm 0,001) \text{ J}$	$(0.56 \pm 0.01) \text{ m/s}$	$(0.035 \pm 0.001) \text{ J}$	$(0.0459 \pm 0.0005) \text{ J}$	$(0.035 \pm 0.001) \text{ J}$	$(-0.083 \pm 0.001) \text{ J}$	(-0.048 ± 0,003) J

Tabela 6: Resumo dos Resultados referentes ao Gráfico 2.

X _F (cm)	$\mathrm{Ep_{f}}\left(\mathrm{J}\right)$	V _f (m/s)	$\mathrm{Ec}_{\mathbf{f}}(\mathrm{J})$	$\tau_{Fr}\left(J\right)$	ΔEc(J)	$\Delta Ep(J)$	$\Delta EM(J)$
0	$(0,2351 \pm 0,0003) \text{ J}$	0	0	0	0	0	0
0.1	$(0,209 \pm 0,002) \text{ J}$	(0.381 ± 0.007) m/s	$(0.0156 \pm 0.0006) \text{ J}$	$(0.023 \pm 0.001) \text{ J}$	$(0.0156 \pm 0.0006) \text{ J}$	$(-0.026 \pm 0.002) \text{ J}$	(-0,011 ± 0,003) J
0.2	$(0.182 \pm 0{,}002) \text{ J}$	$(0.57 \pm 0.01) \text{ m/s}$	$(0.034 \pm 0.001) \text{ J}$	$(0.045 \pm 0.001) \text{ J}$	$(0.034 \pm 0.001) \text{ J}$	$(-0.053 \pm 0.002) \text{ J}$	(-0,019 ± 0,003) J
0.3	$(0.156 \pm 0,002) \text{ J}$	$(0.70 \pm 0.01) \text{ m/s}$	$(0.062 \pm 0.003) \text{ J}$	$(0.068 \pm 0.001) \text{ J}$	$(0.062 \pm 0.003) \text{ J}$	$(-0.079 \pm 0,002) \text{ J}$	$(-0.017 \pm 0.004) \text{ J}$
0.4	$(0.129 \pm 0{,}002) \text{ J}$	$(0.82 \pm 0.02) \text{ m/s}$	$(0.072 \pm 0.003) \text{ J}$	$(0,090 \pm 0,001) \text{ J}$	$(0.072 \pm 0.003) \text{ J}$	$(-0.106 \pm 0,002) \text{ J}$	$(-0.033 \pm 0.005) \text{ J}$
0.5	$(0.103 \pm 0,002) \text{ J}$	$(0.92 \pm 0.02) \text{ m/s}$	$(0,090 \pm 0,004) \text{ J}$	$(0.113 \pm 0.001) \text{ J}$	$(0.090 \pm 0.004) \text{ J}$	(-0.132 ± 0,002) J	(-0,042 ± 0,006) J

Tabela 7: Resumo dos Resultados referentes ao Gráfico 3.

X _F (cm)	$\mathrm{Ep}_{\mathbf{f}}\left(\mathbf{J}\right)$	V _f (m/s)	Ec _f (J)	$\tau_{\mathrm{Fr}}\left(\mathrm{J}\right)$	ΔEc(J)	ΔEp(J)	$\Delta EM(J)$
0	$(0,0695 \pm 0,0001) \text{ J}$	0	0	0	0	0	0
0.1	$(0.0617 \pm 0.0005) \text{ J}$	$(0,476 \pm 0,009)$ m/s	$(0.026 \pm 0.001) \text{ J}$	$(0.032 \pm 0.002) \text{ J}$	$(0.026 \pm 0.001) \text{ J}$	$(-0.0078 \pm 0,0006)$ J	$(0.019 \pm 0.002) \text{ J}$
0.2	$(0.0539 \pm 0.0005) \text{ J}$	$(0.69 \pm 0.01) \text{ m/s}$	$(0.055 \pm 0.002) \text{ J}$	$(0,064 \pm 0,002) \text{ J}$	$(0.055 \pm 0.002) \text{ J}$	$(-0.0156 \pm 0,0006)$ J	$(0.040 \pm 0.003) \text{ J}$
0.3	$(0.0461 \pm 0.0005) \text{ J}$	$(0.85 \pm 0.02) \text{ m/s}$	$(0.098 \pm 0.004) \text{ J}$	$(0.096 \pm 0.002) \text{ J}$	$(0.098 \pm 0.004) \text{ J}$	$(-0.0234 \pm 0,0006)$ J	$(0.074 \pm 0.005) \text{ J}$
0.4	$(0.0383 \pm 0.0005) \text{ J}$	$(0.99 \pm 0.02) \text{ m/s}$	$(0.113 \pm 0.005) \text{ J}$	$(0.128 \pm 0.002) \text{ J}$	$(0,113 \pm 0,005) \text{ J}$	$(-0.0312 \pm 0,0006)$ J	$(0.082 \pm 0.006) \text{ J}$
0.5	$(0.0305 \pm 0.0005) \text{ J}$	$(1,11 \pm 0,02)$ m/s	$(0.144 \pm 0.006) \text{ J}$	$(0,160 \pm 0,002) \text{ J}$	$(0.144 \pm 0.006) \text{ J}$	(-0.0391 ± 0,0006) J	$(0,105 \pm 0,007) \text{ J}$

Gráfico 4: Gráfico XY Força em Função de Aceleração.

O coeficiente angular representa a massa total do sistema.

De acordo com a teoria da conservação de energia, a energia mecânica de um sistema é a soma da energia cinética e da energia potencial do sistema. Quando apenas forças conservativas atuam, a energia mecânica deve ser preservada. Portanto, podemos afirmar que a energia em um sistema desse tipo é constante e não pode ser criada nem destruída, apenas transformada de uma forma para outra.

Além disso, de acordo com o teorema trabalho-energia, o trabalho resultante é igual à variação da energia cinética, e a energia é a capacidade de realizar trabalho. Esses princípios podem ser observados em nossos experimentos, onde a variação da energia mecânica é muito próxima de zero nos resultados. Durante o experimento, à medida que a energia cinética aumentava, a energia potencial diminuía, e o sistema mantinha praticamente a mesma energia mecânica do início.

No entanto, é importante mencionar que houve uma pequena discrepância entre o trabalho da força resultante obtido e a variação da energia cinética. Esses valores deveriam ter sido mais próximos um do outro.