

Introduction to Data Science

MODULE II - PART II

Data Cleaning & Exploration

Prof Sergio Serra e Jorge Zavaleta

Scientific lifecycle

Very complex!

Alberto Pepe, Matthew Mayernik, Christine L. Borgman, Herbert Van de Sompel: "From Artifacts to Aggregations: Modeling Scientific Life Cycles on the Semantic Web". https://arxiv.org/ftp/arxiv/papers/0906/0906.2549.pdf

Data lifecycle (Data Science)

Fig. 1.1 The data life cycle

1+2

Very FAIR!

Ciclo de Vida de Projetos de Ciência de Dados

- 1. Entender o problema e definir objetivos Que problema estou resolvendo?
- 2. Coletar e analisar os dados De que informações preciso?
- 3. Preparar os dados Como preciso tratar os dados?
- 4. Construir o modelo Quais são os padrões nos dados que levam a soluções?
- 5. Avaliar e criticar o modelo O modelo resolve meu problema?
- 6. Apresentar resultados Como posso resolver o problema?
- 7. Distribuir o modelo Como resolvo o problema no mundo real?

Ciclo de Vida de Projetos de Ciência de Dados

Etapa 1-2: Problema

Etapa 1 – Definição

- 1 Elencar as perguntas dos gestores, Requisitos funcionais e não-funcionais
- 2. Identificar as variáveis que desejam ser preditas ou descritas, assim como as que possivelmente são relacionadas
- 3. Classificar cada pergunta em um dos tipos de problemas de CD

Etapa 2 – Coleta de Dados

- 1. Verificar a disponibilidade das variáveis elencadas na etapa anterior
- 2. Modelar (se não existir) o DW/DM/DL, definir o processo de ETL/ELT e integrá-lo a uma ferramenta
- 3. Analisar os dados

Etapa 3–5: Recursos

Etapa 3 – Pre Processamento

- 1. Remover ou inputar dados faltantes e tratar dados inconsistentes
- 2. Corrigir ou amenizar outliers e desbalanceamento entre classes
- 3. Selecionar as variáveis e instâncias para compor o(s) modelo(s)

Etapa 4 – Modelagem e Inferência

- 1. Elencar os modelos possíveis e passíveis para cada tipo de problema
- 2. Estimar os parâmetros que compõem os modelos, baseando-se nas instâncias e variáveis pré-processadas
- 3. Avaliar os resultados de cada modelo, usando métricas e um processo justo de comparação

Etapa 5 – Pos Processamento

- 1. Combinar heurísticas de negócio com os modelos ajustados
- 2. Pós-avaliar tendo em vista os pontos fortes e dificuldades na implementação de cada um dos modelos

Etapa 6-7: Resultados

Etapa 6 - Apresentação de Resultado

- 1. Relatar a metodologia adotada para endereçar a solução às demandas dos gestores
- 2. Comparar os resultados do melhor modelo com o benchmark atual (caso haja)
- 3. Planejar os passos para a implantação da solução proposta

Etapa 7 – Implantação do modelo e geração de valor

- 1. Implantar o modelo em produção
- 2. Calcular os ganhos qualitativos (ganhos operacionais e de recursos humanos) e quantitativos (ROI e outras métricas)
- 3. Monitorar o modelo implantado

What? The Data Science Process

Ask an interesting question & learn reproducibility

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

Plot the data.

Are there anomalies or egregious issues?

Are there patterns?

Modules II, III and IV

Data Cleaning Techniques

Data cleaning or cleansing is the process of detecting and correcting (or removing) corrupt or inaccurate records from a record set, table, or database.

- Refers to identifying incomplete, incorrect, inaccurate or irrelevant parts of the data and then replacing, modifying, or deleting the dirty or coarse data.
- Missing Data
- Irregular Data (Outliers)
- Unnecessary Data Repetitive Data, Duplicates and more
- Inconsistent Data Capitalization, Addresses and more

Store and Explore Data

Why Pandas?

- Used by a lot of people
- Pandas is a fast, powerful, flexible and easy to use open-source data analysis and manipulation tool, built on top of the Python programming language.
- •Allows for high-performance, easy-to-use data structures and data analysis
- Unlike NumPy library which provides multi-dimensional arrays,
- Pandas provides 1D table object called Series
- Pandas provides 2D table object called DataFrame (akin to a spreadsheet with column names and row labels).

Pandas

Series: a named, ordered dictionary

- The keys of the dictionary are the indexes
- Built on NumPy's ndarray
- Values can be any Numpy data type object

DataFrame: a table with named columns

- Represented as a Dict (col_name -> series)
- Each Series object represents a column

Series DataFrame apples oranges apples oranges 0 3 0

DataFrame

Visualization

Hands on...

NOTEBOOK:

PANDAS