Robótica grupo2 Clase 23

Facultad de Ingeniería UNAM

M.I. Erik Peña Medina

Derechos reservados

Todos los derechos reservados, Facultad de Ingeniería de la Universidad Nacional Autónoma de México © 2020. Quedan estrictamente prohibidos su uso fuera del ámbito académico, alteración, descarga o divulgación por cualquier medio, así como su reproducción parcial o total.

Contenido

Planeación de movimientos en el espacio de las juntas de un robot

- Plantemiento general
- Perfil de quinto grado
- Consideraciones de para el cálculo de postura de un robot
- Comprobación numérica
- Simulación de una cadena cinemática (Práctica 2)

Planeación de movimientos

Planeación de movimientos de trabajo de un robot

Trayectoria

- Lugar geométrico
- Perfil de trayectoria

Planeación de movimientos

Planeación de movimientos de trabajo de un robot

Figura. 25. Simulación del sistema robótico usando un interpolador cubico

Planeación de movimientos

Planeación de movimientos de trabajo de un robot

Trayectoria

- Lugar geométrico
- Perfil de trayectoria

Planteamiento del modelo dinámico

Cálculo de los pares de un robot (Eüler-Lagrange)

Efectos dinámicos externos

Planteamiento del modelo dinámico

Cálculo de los pares de un robot (Eüler-Lagrange)

Efectos dinámicos externos

Planteamiento del modelo dinámico

Cálculo de los pares de un robot (Eüler-Lagrange)

Efectos dinámicos externos

$${}^{0}\boldsymbol{\xi}_{P}(q) = \begin{pmatrix} {}^{0}\boldsymbol{p}_{P} \\ {}^{0}\boldsymbol{\theta}_{P} \end{pmatrix} = \begin{pmatrix} {}^{0}\boldsymbol{x}_{1} + L_{1}\cos({}^{0}\boldsymbol{\theta}_{1}) + L_{2}\cos({}^{0}\boldsymbol{\theta}_{1} + {}^{1}\boldsymbol{\theta}_{2}) + L_{3}\cos({}^{0}\boldsymbol{\theta}_{1} + {}^{1}\boldsymbol{\theta}_{2} + {}^{2}\boldsymbol{\theta}_{3}) \\ {}^{0}\boldsymbol{y}_{1} + L_{1}\sin({}^{0}\boldsymbol{\theta}_{1}) + L_{2}\sin({}^{0}\boldsymbol{\theta}_{1} + {}^{1}\boldsymbol{\theta}_{2}) + L_{3}\sin({}^{0}\boldsymbol{\theta}_{1} + {}^{1}\boldsymbol{\theta}_{2} + {}^{2}\boldsymbol{\theta}_{3}) \\ {}^{0}\boldsymbol{\theta}_{1} + {}^{1}\boldsymbol{\theta}_{2} + {}^{2}\boldsymbol{\theta}_{3} \end{pmatrix}$$

$${}^{0}\boldsymbol{\xi}_{P} = \left(\begin{array}{c} {}^{0}\boldsymbol{x}_{P} \\ {}^{0}\boldsymbol{y}_{P} \\ {}^{0}\boldsymbol{\theta}_{P} \end{array} \right)$$

$${}^{0}\boldsymbol{\xi}_{P}(q) = \begin{pmatrix} {}^{0}\boldsymbol{p}_{P} \\ {}^{0}\boldsymbol{\theta}_{P} \end{pmatrix} = \begin{pmatrix} {}^{0}\boldsymbol{x}_{1} + L_{1}\cos({}^{0}\boldsymbol{\theta}_{1}) + L_{2}\cos({}^{0}\boldsymbol{\theta}_{1} + {}^{1}\boldsymbol{\theta}_{2}) + L_{3}\cos({}^{0}\boldsymbol{\theta}_{1} + {}^{1}\boldsymbol{\theta}_{2} + {}^{2}\boldsymbol{\theta}_{3}) \\ {}^{0}\boldsymbol{y}_{1} + L_{1}\sin({}^{0}\boldsymbol{\theta}_{1}) + L_{2}\sin({}^{0}\boldsymbol{\theta}_{1} + {}^{1}\boldsymbol{\theta}_{2}) + L_{3}\sin({}^{0}\boldsymbol{\theta}_{1} + {}^{1}\boldsymbol{\theta}_{2} + {}^{2}\boldsymbol{\theta}_{3}) \\ {}^{0}\boldsymbol{\theta}_{1} + {}^{1}\boldsymbol{\theta}_{2} + {}^{2}\boldsymbol{\theta}_{3} \end{pmatrix}$$

$${}^{0}\boldsymbol{\xi}_{P}(t) = {}^{0}\boldsymbol{\xi}_{P}(q)$$

$$\mathbf{F}(X,q) = {}^{0}\boldsymbol{\xi}_{P}(t) - {}^{0}\boldsymbol{\xi}_{P}(q) = \mathbf{0}$$

$$\mathbf{F}(X,q) = {}^{0}\xi_{P}(q) - {}^{0}\xi_{P}(t) = \mathbf{0}$$

$$X = \{ {}^{0}x_{P}, {}^{0}y_{P}, {}^{0}\theta_{P} \}$$

$$\mathbf{F}(X,q) = \begin{pmatrix} {}^{0}x_{P}(t) \\ {}^{0}y_{P}(t) \\ {}^{0}\theta_{P}(t) \end{pmatrix} - \begin{pmatrix} {}^{0}x_{1} + L_{1}\cos({}^{0}\theta_{1}) + L_{2}\cos({}^{0}\theta_{1} + {}^{1}\theta_{2}) + L_{3}\cos({}^{0}\theta_{1} + {}^{1}\theta_{2} + {}^{2}\theta_{3}) \\ {}^{0}y_{1} + L_{1}\sin({}^{0}\theta_{1}) + L_{2}\sin({}^{0}\theta_{1} + {}^{1}\theta_{2}) + L_{3}\sin({}^{0}\theta_{1} + {}^{1}\theta_{2} + {}^{2}\theta_{3}) \\ {}^{0}\theta_{1} + {}^{1}\theta_{2} + {}^{2}\theta_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$F(X,q) = \begin{pmatrix} {}^{0}x_{3}(t) \\ {}^{0}y_{3}(t) \\ {}^{0}\theta_{3}(t) \end{pmatrix} - \begin{pmatrix} {}^{0}x_{1} + L_{1}\cos({}^{0}\theta_{1}) + L_{2}\cos({}^{0}\theta_{1} + {}^{1}\theta_{2}) \\ {}^{0}y_{1} + L_{1}\sin({}^{0}\theta_{1}) + L_{2}\sin({}^{0}\theta_{1} + {}^{1}\theta_{2}) \\ {}^{0}\theta_{1} + {}^{1}\theta_{2} + {}^{2}\theta_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$F(X,q) = \begin{pmatrix} {}^{0}x_{1} + L_{1}\cos({}^{0}\theta_{1}) + L_{2}\cos({}^{0}\theta_{1} + {}^{1}\theta_{2}) \\ {}^{0}y_{1} + L_{1}\sin({}^{0}\theta_{1}) + L_{2}\sin({}^{0}\theta_{1} + {}^{1}\theta_{2}) \\ {}^{0}\theta_{1} + {}^{1}\theta_{2} + {}^{2}\theta_{3} \end{pmatrix} - \begin{pmatrix} {}^{0}x_{3}(t) \\ {}^{0}y_{3}(t) \\ {}^{0}\theta_{3}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$${}^{0}\theta_{P}(t) = {}^{0}\theta_{1} + {}^{1}\theta_{2} + {}^{2}\theta_{3}$$
$${}^{2}\theta_{3} = {}^{0}\theta_{P}(t) - {}^{0}\theta_{1} - {}^{1}\theta_{2}$$