Activité 7.2 – Représenter les molécules organiques

Objectifs de la séance :

> Connaître les quatre représentations des molécules organiques.

Contexte : Les molécules organiques sont composées de chaînes carbonées, auxquelles sont ajoutés des atomes d'hydrogène, d'oxygène ou d'azote le plus souvent.

→ Comment représenter les molécules organiques?

1 – La formule brute

Document 1 - Formule brute

Elle indique le nombre de chaque éléments présents dans la molécule.

ightharpoonup Exemple : Le butane C_4H_{10} , l'éthanol C_2H_6O ou l'acide carbonique CH_2O_3 Elle permet de calculer facilement les **masses molaires** et de vérifier si deux molécules sont **isomères**. Par contre elle **ne permet pas** de déterminer la géométrie d'une molécule.

Deux molécules sont **isomères** si elles ont la même formule brute, mais un agencement des atomes différents.

 \rightarrow Exemple: Le glucose et le fructose sont isomères de formules brutes $C_6H_12O_6$, mais ce ne sont pas les mêmes molécules car leur géométries sont différentes.

L'oxybenzone est une molécule utilisée pour protéger des UVA et B issu du soleil. Sa formule brute est $C_{14}H_{12}O_3$.

1 — Indiquer le nombre d'élément d'hydrogène, d'oxygène et de carbon penzone.	e dans la molécule d'oxy-
d'alanine est un acide aminé utilisé dans le corps humain pour former des protéines. Sa représentation avec un modèle moléculaire est présentée ciontre avec le code couleur suivant : • Blanc : hydrogène. • Rouge : oxygène. • Noir : carbone. • Bleu : azote. 2 — Donner la formule brute de l'alanine	

Document 2 - Formule développée

Elle représente tous les éléments chimiques et toutes les liaisons dans le même plan, ce qui permet de **préciser la géométrie d'une molécule**.

 \rightarrow Exemples:

Document 3 - Formule semi-développée

Comme la formule développée, elle représente tous les éléments chimiques, mais elle ne détaille pas les liaisons des éléments **hydrogènes**.

 \rightarrow Exemples:

$$HO-CH_2-CH_3$$
 $Cl-CH_2-SiH_3$

éthanol

chlorométhylsilane

paracétamol

Document 4 - Formule topologique

éthanol

Elle représente les liaisons carbone-carbone C—C par des segments formant des angles. Chacune des extrémités d'un segment représente un carbone, sauf si un autre élément chimique y est attaché. Les éléments carbones et les hydrogènes qui sont attachés aux carbones ne sont pas représentés. Tous les autres éléments chimiques sont représentés normalement.

 \rightarrow Exemples:

$$_{\mathrm{HO}}$$
 $_{\mathrm{Cl}}$ $_{\mathrm{SiH}_{3}}$ $_{\mathrm{HO}}$

chlorométhylsilane

Donner la formule brute, semi-développée et développée du paracétamol.