EXPERIMENTAL AUXILIARY ROCKET ENGINE

CONTRACT NAS 7-305

FINAL REPORT

PART II

REPORT NO. 8374-933004

1-5-66

FOREWORD

Part I of this report includes the following:

Section

I Introduction

II Program Progress Summary

III Program Plan

IV Summary of Technical Progress - Task I and II

V Technical Discussion - Task I

Part II of this report includes the following:

Section

VI Technical Discussion - Task II

VII Trips and Visits

VIII Conclusions and Recommendations

Appendix I

Appendix II

Appendix III

Credits

Distribution List

CONTENTS

Section			Page
VI	TE	CHNICAL DISCUSSION - TASK II	VI-1
	Α.	Fabrication of the Prototype Engine Assemblies	VI-1
		1. Design Completion and Procurement	VI-1
		2. Fabrication Schedule and Injector Check Out Firings	VI-1
		3. Fabrication Details	VI-3
	в.	Demonstration Testing	VI-34
		1. Prototype Engine Assembly S/N 2	VI-34
		a. Thermocouple Attachment	VI-34
		b. Altitude Test Facility	VI-34
		c. Instrumentation	VI-35
		d. Test Series - Prototype Engine S/N 2	VI-35
		2. Prototype Engine S/N 1	VI-43
		a. Thermocouple Attachment	VI-43
		b. Altitude Test Facility	VI-43
		c. Instrumentation	VI-43
		d. Test Series - Prototype Engine S/N 1	VI-43
	C.	Metallographic Inspection of Chambers - S/N 1 and S/N 2.	VI-118
	D.	Thermal Analyses Correlation with Test Results	VI-121
		1. Injector and Propellant Valve Temperature	VI-121
		2. Fiberglass Wrap Temperature	VI-122
	Ε.	Performance and Instrumentation	VI-131
		1. Test Summary	VI-131
		2. Minimum Impulse Bit	VI-132
		3. Engine Performance	VI-132
		4. Instrumentation Accuracies	VI-132
VII	TR	IPS AND VISITS	VII-1
VIII	CC	ONCLUSIONS AND RECOMMENDATIONS	VIII-1
	Α.	Conclusions	VΠI-1
	В.	Recommendations	VIII-2
APPEND	I XI		A-1
APPEND	II XI	COMPUTER PROGRAMS	B-1
APPEND	II XI	I INJECTOR CONFIGURATION DETAILS	
CREDITS	3		
APPENE APPENE	OIX II	COMPUTER PROGRAMS	

bo BELL AEROSYSTEMS COMPANY ____

ILLUSTRATIONS (CONT)

Figure		Page
VI-1	Model 8374 (NAS 7-305) Fabrication Schedule - 2 Prototype	
	Engines	VI-9
VI-2	Model 8374 (NAS 7-305) Fabrication Schedule - 2 Prototype	
	Engines	VI-10
VI-3	100-lb Injector Prior to Electron Beam Welding	VI-11
VI-4	100-lb Injector Prior to Electron Beam Welding	VI-12
VI-5	100-lb Injector After Electron Beam Welding	VI-13
VI-6	100-lb Injector After Electron Beam Welding	VI-14
VI-7	100-lb Injector Assembly After Brazing	VI-15
VI-8	100-lb Injector Assembly After Brazing	VI-16
VI-9	Semi-Machined 100-lb Columbium Chamber (Bar Stock)	VI-17
VI-10	Fabrication of Chamber	VI-18
VI-11	Chamber and Nozzle Extension for 100-lb Columbium Engine Prior to Electron Beam Welding	37T 10
VI-12	Chamber and Nozzle Extension for 100-lb Columbium Engine	VI-19
V 1-12		T7T 00
VI-13	After Coating	VI-20
V 1-10	100-lb Thrust Chamber Assembly After Welding Injector and Support to Chamber	37T 01
VI-14	100-lb Thrust Chamber Assembly After Welding Injector and	VI-21
VI 11	Support to Chamber	X7T 00
VI-15	Columbium Shell (Insulation Retainer) Prior to Coating	VI-22
VI-16	Columbium Shell (Insulation Retainer) After Coating	VI-23
VI-17	100-lb Thrust Chamber Assembly Before Installing Insulation	VI-24
VI-18	100-lb Thrust Chamber Assembly Before Installing Insulation	VI-25
VI-19	100-lb Thrust Chamber Assembly Thermocouple Installation	VI-26
VI-13 VI-20	Dyna-Quartz Insulation	VI-27
VI-20 VI-21		VI-28
VI-21 VI-22	Dyna-Quartz Insulation	VI-29
VI-22 VI-23	Moog Bipropellant Valve	VI-30
V1-23	100-lb Thrust Chamber Assembly After Curing Fiberglass	01
VI-24	Outer Wrap	VI-31
	8374-470001 100-lb Engine Assembly	VI-32
VI-25	8374-470001 100-lb Engine Assembly	VI-33
VI-26	Thermocouple Locations - Prototype Engine Assemblies	
T/T 05	S/N 2 & 1	VI-64
VI-27	Thermocouple Installation with Engine Assembly on Test Stand	VI-65
V:-28	Thermocouple Installation with Engine Assembly on Test Stand	VI-66
VI-29	Altitude Test Chamber, Hardware Test Section	VI-67
VI-30	View of Steam Ejector	VI-68
VI-31	Thrust Measuring and Calibrating Installation	VI-69
VI-32	Thrust Chamber Mount Assembly	VI-70
VI-33	Diffuser Duct Assembly	VI-71
VI-34	Thrust Chamber Installation on Alinco Stand	VI-72
VI-35	Typical Altitude Cell Schematic	VI-73
VI-36	Engine Assembly S/N 2 Installed on Test Stand Before Fire Test.	VI-74

ILLUSTRATIONS (CONT)

Figure		Page
VI-37 VI-38	Engine Assembly S/N 2 Installed on Test Stand Before Fire Test . Injector Flange and Stand Temperature versus Time Engine	VI-75
	S/N 2	VI-76
VI-39	P.V. Temperature versus Time Engine S/N 2	VI-77
VI-40	Fiberglass Temperature versus Time Engine 2	VI-78
VI-41	Insulation Temperature versus Time Engine S/N 2	VI-79
VI-42	Engine Assembly S/N 2 After Fire Test	VI-80
VI-43	Engine Assembly S/N 2 After Fire Test	VI-81
VI-44	Engine Assembly S/N 2 After Fire Test	VI-82
VI-45	Engine Assembly S/N 2 After Fire Test	VI-83
VI-46	Engine Assembly S/N 2 After Fire Test (30 Minutes and	
	3 Seconds Accumulated Time)	VI-84
VI-47	Chamber Burnout Region - Engine Assembly S/N 2 After Fire	,
	Test	VI-85
VI-48	Chamber from Engine Assembly S/N 2 After Fire Test	VI-86
VI-49	Columbium Shell from Engine Assembly S/N 2 After Fire Test	VI-87
VI-50	Dyna-Quartz Insulation from Engine Assembly S/N 2 After Fire Test	VI-88
VI-51	Alumina Bubble Comparison Before and After Fire Test (Engine	V 1-00
11 01	Assembly S/N 2)	VI-89
VI-52	Injector S/N 2-C Water Flow Impingement After Fire Test of	V 1-03
VI 02	Engine Assembly S/N 2	VI-90
VI-53	Injector Temperature versus Time - Engine S/N 1	VI-90 VI-91
VI-54	P.V. Body Temperature versus Time	VI-91 VI-92
VI-55	Insulation and Fiberglass Temperature versus Time - Engine	V 1-92
VI-56	S/N 1	VI-93
	S/N 1 - Apollo Command Module Duty Cycle	VI-94
VI-57	Propellant Valve Temperature versus Time - Engine S/N 1 -	
	Apollo Command Module Duty Cycle	VI-95
VI-58	Fiberglass Temperature versus Time - Engine S/N 1 - Apollo	
	Command Module Duty Cycle	VI-96
VI-59	Oscillograph Trace - Pulse(1 0.01 Sec On - 60 Sec Off)	VI-97
VI-60	Oscillograph Trace - Pulse 2 (0.010 Sec On - 60 Sec Off)	VI-98
VI-61	Oscillograph Trace - Pulse 1(0.030 Sec On - 0.60 Sec Off)	VI-99
VI-62	Oscillograph Trace - Pulse 2(0.030 Sec On - 0.60 Sec Off)	VI-100
VI-63	Oscillograph Trace - Pulse 1 (0.100 Sec On - 0.9 Sec Off)	VI-101
VI-64	Oscillograph Trace - Pulse 2(0.100 Sec On - 0.9 Sec Off)	VI-102
VI-65	Oscillograph Trace - Pulses 1-3(0.030 Sec On - 0.270 Sec Off)	VI-103
VI-66	Prototype Engine S/N 1 Installed in Altitude Facility	VI-104
VI-67	Prototype Engine S/N 1 Installed in Altitude Facility	VI-105
VI-68	Engine S/N 1 After Test	VI-106
VI-69	Engine S/N 1 After Test	VI-107

ILLUSTRATIONS (CONT)

Figure		Page
VI-70	Engine S/N 1 After Test	VI-108
VI-71	Engine S/N 1 After Test Dyna-Quartz Removed	VI-109
VI-72	Chamber Assembly From Engine S/N 1 After Test Burnout	
	Region	VI-110
VI-73	Chamber Assembly From Engine S/N 1 After Test Burnout	
	Region	VI-111
VI-74	Chamber Assembly From Engine S/N 1 After Test Looking at	
	Throat	VI-112
VI-75	Moog Valve from Engine S/N 1 After Fire Test	VI-113
VI-76	Injector S/N 1A From Engine Assembly S/N 1 After Fire Test	VI-114
VI-77	Columbium Chamber S/N 1 and S/N 2 After Sectioning	VI-116
VI-78	Metallurgical Specimens	VI-117
VI-79	Photomicrograph of Modified Silicide Coated SCb 291 Columbium	
	Chamber Fired for 30 Minutes - Section Taken from Approxi-	
	mate Midpoint of Inlet - O.D. Surface	VI-118
VI-80	Photomicrograph of Modified Silicide Coated SCb 291 Columbium	
	Chamber Fired for 30 Minutes - Section Taken from Approxi-	
	mate Midpoint of Inlet - O.D. Surface	VI-119
VI-81	Photomicrograph of Modified Silicide Coated SCb 291 Columbium	
	Chamber Fired for 30 Minutes - Section Taken from	
	Area Adjacent to Burnthrough - O.D. Surface	VI-120
VI-82	Propellant Valve Temperature versus Duty Cycle	VI-124
VI-83	Injector Temperature versus Duty Cycle	VI-125
VI-84	Injector and Propellant Valve Temperature Time History	VI-126
VI-85	Injector and Propellant Valve Temperature Time History	VI-127
VI-86	Propellant Valve Temperatures	VI-128
VI-87	Injector Temperatures	VI-129
VI-88	Fiberglass Wrap Temperature Engine S/N 2	VI-130
VI-89	Impulse Bit 0.010 sec ON Engine S/N 1	VI-133
VI-90	c* versus Mixture Ratio Engine S/N 1	VI-134
VI-91	I _{Sp∞} versus Mixture Ratio Engine S/N 1	VI-135

TABLES

Number		Page
VI-1	Data Summary Unbalanced Injectors in S.S. Chamber	
	Injectors S/N TU-6A, S/N 1 and S/N 2	VI-4
VI-2	Performance and Temperature Comparison	VI-6
VI-3	Prototype Engine S/N 2 Performance Data Tests 1684 to 1687	VI-37
VI-4	Prototype Engine S/N 2 Performance Data Tests 1688 and 1689.	VI-39
VI-5	Prototype Engine S/N 2 Temperature Data (°F)	VI-40
VI-6	S/N 1 Engine Data	VI-45
VI-7	Duty Cycle Description	VI-47
VI-8	Typical Apollo C/M Reaction Control Engine Duty Cycle	VI-48
VI-9	Performance Data	VI-40
VI-10	Prototype Engine S/N 1 Temperature Data	VI-50 VI-57
VI-11	S/N 1 Engine Data	
VI-12	S/N 1 Engine Data	VI-60
V 1- 12	S/N 1 Engine Data	VI-62

VI. TECHNICAL DISCUSSION - TASK II

A. FABRICATION OF THE PROTOTYPE ENGINE ASSEMBLIES

1. Design Completion and Procurement

The drawings for the two prototype engines were released for fabrication by June 1, 1965. Procurement orders for all the materials, including the Moog bipropellant valve, were placed by June 4, 1965.

2. Fabrication Schedule and Injector Check Out Firings

Except for fabrication of the two injector blanks in June 1965, the fabrication effort commenced during the first week of July 1965.

A schedule showing the fabrication progress from this date is given in Figure VI-1, with only a limited amount of effort being expended during the first two weeks of July due to the Bell vacation shutdown.

During the fabrication of both orifice plates difficulty was encountered in obtaining proper impingement characteristics, based on water flow inspection, and required rework of each orifice plate.

The first of two prototype injector assemblies (S/N 2) was prepared for checkout fire tests in a columbium test chamber. This test chamber had been used for previous injector evaluation test series and had developed small cracks in the uncoated flange. During the installation of the prototype injector S/N 2 further cracking resulted, causing leakage past the gasket sealing surfaces.

An attempt to repair the columbium test chamber was made, but without success. It was therefore necessary to conduct the checkout fire tests of each prototype injector in a stainless steel test chamber. This resulted in some data compromise since the assembly could not be fire tested to equilibrium temperature conditions.

The stainless steel chamber was instrumented with 22 thermocouples, including six at the throat station and six at the convergent nozzle station. Two chamber pressure transducers were installed on the injector pickup, and one on the chamber pickup.

Prior to installing the prototype injector S/N 2 in the test chamber, the injector was orificed to provide the desirable unbalance between the outboard and inboard fuel orifices. This is accomplished by inserting an orifice in the central fuel tube at the injector-propellant valve interface. This orifice technique is the same as used on the initial unbalanced injector TU-6A. An 0.0512-inch diameter orifice was installed in S/N 2 injector and the injector was reidentified as S/N 2A.

The injector was then subjected to three fire tests of 5-second, 8-second, and 10-second duration. The performance was approximately two percent lower than desired, and a slight erosion streak was noted in the barrel section of the test chamber. Slight misimpingement of two fans in the erosion area were indicated during water flow inspection. Two fuel orifices were reworked slightly to improve the impingement of the streams and the intersection of the fans.

To obtain reasonable correlation of heating rates and performance, the original unbalanced injector TU-6A was also fire tested in the stainless steel chamber. The second prototype injector assembly S/N 1A (orificed with an 0.0512-inch diameter orifice) was then tested. The reworked prototype injector S/N 2A was designated S/N 2B and retested, showing approximately one percent lower performance and no streaking characteristics. For these tests and subsequent series, the stainless steel chamber was rotated approximately 90° to relocate the eroded area in respect to the injector elements. Injector S/N 2B was then reorificed with an 0.055 orifice, identified as S/N 2C and fire tested, resulting in an increase in performance of approximately three quarters percent.

The identification of the three unbalanced injectors used in this series is as follows:

S/N	Configuration
	<u> </u>

TU-6A Same as previously tested in C_b chamber with 0.0465-inch orifice in center fuel tube.

S/N	Configuration
1-A	Prototype with 0.0512-inch orifice in center fuel tube.
2-A	Prototype with 0.0512-inch orifice in center fuel tube.
2-В	Prototype with 0.0512-inch orifice in center fuel tube and after rework of injector to eliminate streak.
2-C	Prototype with 0.055-inch orifice (after above rework).

During this entire test series difficulty was encountered in obtaining reasonable correlation between the chamber pressure transducers. For this reason an analysis and comparison of the data was made based on one chamber pressure transducer (that revealed good repeatability). A summary of the tests conducted in this checkout series and the performance and chamber temperature data is given in Table VI-1. A comparison of these same performance and temperature data is shown in Table VI-2.

Based on a c* of 5400 ft/sec obtained with TU-6A injector in the columbium chamber during previous test firings, the specific impulse of the prototype injectors S/N 1A and S/N 2C was predicted to be 286 seconds and 285 seconds, respectively. Bell has concluded that the performance of both prototype injectors was below that obtained with the original unbalanced preprototype injector TU-6A due to the difficulties encountered in the initial drilling of the prototype orifice plates. In the process of drilling each columbium orifice plate, broken drills required hand rework of the injector orifice thereby compromising the reproducibility characteristics of these plates. Improved drilling techniques with the refractory materials will definitely result in higher quality of the injector orifices similar to that obtained with the unbalanced, stainless steel injector TU-6A.

Bell will be demonstrating the manufacturability of a high performance refractory metal injector of the same unbalanced configuration, in production quantities, on a contractual Air Force Program.

3. Fabrication Details

The following items describe the general fabrication techniques used to assemble each of the two prototype engine assemblies.

_	4
7.17	7 ^
Ī	
7	٠.
Д Д	7

DATA SUMMARY UNBALANCED INJECTORS IN S.S. CHAMBER INJECTORS S/N TU-6A, S/N 1 & S/N 2

	Max. Throat Temperature	515 585 550 995	570 590 1 <u>020</u>	000	1140 515 490 500	880 485 50 5	855 535 890 495 825
	Max. Chamber M Temperature T	1640	1580	6 1	1720	1420	1415 1410 1340
	Max. C Temp	950 1030 1020	975 1000	$\frac{1020}{1075}$	920 865 855	845 860	875
	c* corr	5245 5300 5270 5240	5405 5385 5365	5295 5290	5250 5185 5190 5185	5185 5200	5220 5320 5215 5035
	Total Flow	0.332 0.330 0.338	0.340 0.338 0.340	0.340	0.341 0.335 0.334	0.339 0.339	0.339 0.334 0.339 0.340
	$rac{ ext{Pc}}{ ext{Test}}$	77.6 78.0 79.3	81.8 80.9 80.4	80.3	79.0 78.0 77.6	78.6	78.6 79.6 77.3 76.4
•	M.R.	1.52 1.52 1.61	1.59 1.59 1.57	1.62	1.58	1.58 1.57	1.57 1.35 1.34 1.75
	Data Pt.		10 2 2	່ນນ	က် အသက်	. 52 C	10 10 10
	Run Dur.	5 8 10	5	5	5 10	5	10
	Injector	2A (0.0512 Orifice)	TU-6A (0.0465 Orifice)	1A (0.0512 Orifice)	2B (0.0512 Orifice) after reworking)	2C (0.055 Orifice)	
	Run No.	2269 2270 2271	2272 2273	2274 2275	2276 2277 2278	2279 2280	2281 2282

Max. Throat Temperature	545	570	980	605	1010	590	1010
Max. Chamber Temperature	086	995	1570	1020	1600		1575
c*	5310	5305	5255	5340	5335	5205	5205
Total Flow	0.343	0.344	0.343	0.343	0.341	0.343	0.343
$\frac{P_c}{Test}$	81.8	81.9	80.0	82.2	81.0	80.1	79.3
M.R.	1.60	1.58	1.58	1.37	1.36	1.79	1.79
Data Pt.	2	ည	10	2	10	2	10
Run Dur.	2	10	1.	10		10	
Injector	1A	(New 0.0512 Orifice)					
Run No.	2283			2285		2286	

TABLE VI-1 (CONT)

TABLE VI-2

PERFORMANCE AND TEMPERATURE COMPARISON

COMPARISON OF UNBALANCED INJECTORS IN S. S. CHAMBER

	Maximum Chamber Temp. (°F)	Maximum Throat Temp. (°F)	Average Chamber Temp. (°F)	Average Throat Temp. (°F)	c* Corr.	% c* Variation
TU-6A	1580	1020	1500	870	5365	
2A	$\underline{1640}$	<u>995</u>	<u>1445</u>	<u>835</u>	$_{5240}$	
△ 2A	+60	-25	-55	-35	-125	-2.5
*TU-6A-VS-1A	1720	1140	1525	915	5250	
△ 1A	+140	+120	+25	+45	-115	-2.1
TU-6A-VS-2B	1420	880	1390	<u>765</u>	<u>5170</u>	
△ 2B	-160	-140	-110	-105	-1 95	-3.5
*TU-6A-VS-2C	1415	855	1380	775	5220	
(MR = 1.6)	-165	-165	-120	-95	-145	-2.7
TU-6A-VS-2C	1410	890	1365	785	5215	
(MR = 1.35)	-170	-130	-135	-85	-150	-2.8

- a. Injector Assembly (Figures VI-3 to VI-8)
 - (1) Orifice Plate machined from columbium (1% zirconium) bar stock.
 - (2) Orifice Plate Assembly the columbium (1% zirconium) inserts and titanium support cage were E.B. welded to the orifice plate.
 - (3) Injector Assembly the stainless steel capillary tubes were brazed to the columbium inserts and to the stainless steel valve adapter plate. The adapter plate and the phenolic spacer were bolted to the titanium support cage.
- b. Thrust Chamber (Figures VI-9 to VI-12)
 - (1) Chamber machined from columbium (291) bar stock.
 - (2) Nozzle Extension spun and machined from columbium (1% zirconium) sheet stock.
 - (3) Thrust Chamber the chamber and nozzle extension were EB welded, then the entire assembly was coated with a silicide 508-C oxidation resistance coating (Sylcor), internally and externally.
- c. Thrust Chamber Assembly (Figure VI-13 and VI-14)
 - (1) The columbium (1% zirconium) support cone was EB welded to the injector assembly; then the injector assembly was EB welded to the thrust chamber.
- d. Engine Assembly (Figures VI-15 through VI-25)
 - (1) Insulation Shell (alumina bubble container) the shell was fabricated from columbium (1% zirconium) sheet stock, shaped and TIG welded, then coated with a silicide 508-C coating both internally and externally. This shell was installed over the thrust chamber assembly by heating the shell to approximately 800°F for approximately 15 minutes. The shell was positioned in place by lightly peening at the columbium support cone end at three positions, approximately 120° apart.
 - (2) Mounting Flange the titanium mounting flange was EB welded to the columbium support cone.
 - (3) Internal Thermocouples three Pl Pl/Rh thermocouples were inserted through the columbium shell into the alumina bubble cavity and positioned 1/4 inch from the external surface of the thrust chamber at the throat and convergent nozzle station. These thermocouples were not attached directly to the thrust chamber surface due to the concern for chemical incompatibility and the possibility of any external oxidation of the substrate causing

eventual failure of the chamber. The thermocouples were held rigidly in position with the ceramic beads that separate the two thermocouple wires. Five additional Pl-Pl/Rh thermocouples were resistance welded to the external surface of the columbium shell.

- (4) Alumina Bubble Insulation this insulation material was purchased from Carborundum Co. and sifted to a screen size between No. 10 and No. 16 mesh. The cavity between the thrust chamber assembly and the columbium shell was filled with alumina bubbles through the fill port on the support cone. The port was sealed with a columbium (1% zirconium) plug provided with small vent holes. During the filling of the cavity the assembly was tapped gently to assure complete filling.
- (5) Dyna-Quartz Insulation this insulation material was purchased from Johns Manville Co. and was shaped to size. The insulation was grooved as necessary to provide clearance for the eight thermocouples along the columbium shell. The four pieces of insulation were positioned on the assembly and hand fitted to assure tight joints. This package was then wrapped with teflon tape at three locations to hold the pieces in position until the fiberglass wrap was installed.
- (6) Fiberglass Wrap the entire package was then wrapped with 2 to 3 plies of WBC 3205-181-935 resin impregnated fiberglass supplied by Western Backing Corporation. The fiberglass was then wrapped with shrink tape and the entire engine was cured in an air oven. This fiberglass outer wrap served as an external protection to the soft Dyna-Quartz and allowed easy handling of the engine.
- (7) Stainless Steel Bands two stainless steel bands and one stainless steel end strap assembly were installed over the fiberglass wrap and were held in position with safety wire. These bands were installed for precautionary purposes should the fiberglass wrap peel or split during the demonstration testing.
- (8) Bipropellant Valve this Model 52 x 125 bipropellant valve was purchased from Moog Inc. and was attached to the injector adapter plate with six bolts and safety wired. Servotronics Co. metal seals, teflon coated, were used at the interface between the propellant valve and the injector assembly.

Figure VI-1. Model 8374 (NAS 7-305) Fabrication Schedule - 2 Prototype Engines

			1 W	2 T	3 F	6 M	7 T
T	(30100) G/V 1		Pol	ish			Cle
Injector Assembly (8374-473100) S/N 1			Repair				
Injector Assembly (8374-4			7.	.epa1			CI
Orifice Plate Assembly (4							
Orifice Plate Assembly (4	•		i				
	73102) S/N 1						
	73102) S/N 2						
Injector Blank (4	•						
Inserts (Oxid. & Fuel) (4							
•	73105)	·					
	73106)						
	173107)					H	
Tubes (Oxid. & Fuel) (4	73108)					0	
Support Cone Assembly (4	73110)					L I	
Thrust Chamber Assembly Chamber Assembly of Chamber Assembly of Chamber Chamber Insulation Jacket Nozzle Support Strap End Strap, Assy of Shell Bolt, Valve (Special) Flange, Mounting	(470002) S/N 1		Ct		chine		1
Seal Retainer	(470012)						
Ring, Seal Spacer	(470013)						
Plug	(470014)						
-	(310013)						
"Moog" Propellant Valve	(52x125)						

Figure VI-2. Model 8374 (NAS 7-305) Fabrication Schedule - 2 Prototype Engines

Figure VI-3. 100-lb Injector Prior to Electron Beam Welding

Figure VI-4, 100-lb Injector Prior to Electron Beam Welding

Figure VI-5. 100-lb Injector After Electron Beam Welding

Figure VI-6. 100-lb Injector After Electron Beam Welding

Figure VI-7. 100-lb Injector Assembly After Brazing

Figure VI-9. Semi-Machined 100-lb Columbium Chamber (Bar Stock)

Report No. 8374-933004

Figure VI-11. Chamber and Nozzle Extension for 100-lb Columbium Engine Prior to Electron Beam Welding

Figure VI-12. Chamber and Nozzle Extension for 100-lb Columbium Engine After Coating

Figure VI-13. 100-lb Thrust Chamber Assembly After Welding Injector and Support to Chamber

Figure VI-14. 100-lb Thrust Chamber Assembly After Welding Injector and Support to Chamber

Figure VI-15. Columbium Shell (Insulation Retainer) Prior to Coating

Figure VI-16. Columbium Shell (Insulation Retainer) After Coating

Report No. 8374-933004

Figure VI-17. 100-lb Thrust Chamber Assembly Before Installing Insulation

Figure VI-18. 100-lb Thrust Chamber Assembly Before Installing Insulation

Report No. 8374-933004

Figure VI-19. 100-lb Thrust Chamber Assembly Thermocouple Installation

Report No. 8374-933004

Report No. 8374-933004

Figure VI-22. Moog Bipropellant Valve

Figure VI-23. 100-lb Thrust Chamber Assembly After Curing Fiber Glass Outer Wrap

Figure VI-24. 8374-470001 100-lb Engine Assembly

VI-33

B. DEMONSTRATION TESTING

1. Prototype Engine Assembly S/N 2

a. Thermocouple Attachment

Additional thermocouples were attached to the engine assembly as shown in Figure VI-26 resulting in a total of 38 temperature measurements on the engine. The two injector temperatures (T-1 & T-2) were measured using Cr/Al probes clamped against the back face of the injector. All the remaining thermocouples on the injector assembly and the propellant valve body (excluding cover) were resistance welded. All the thermocouples on the fiberglass, stainless steel end strap assembly and the propellant valve cover were attached with Armstrong A-6 cement (Figures VI-27 and VI-28).

Two thermocouples were attached to the test stand, one positioned 1-1/2 inches below the chamber mounting flange, the other positioned on the bottom stand "stringer" and six inches from the mounting flange.

b. Altitude Test Facility

The demonstration testing was conducted in the altitude test cell 2E-S at the Bell Test Center facility, shown in Figures VI-29 and VI-30. The test cell consists of a 9 foot diameter chamber, 22 feet in length with two steam ejector systems. The large steam system has the capability of maintaining 100,000 feet simulated altitude for 6 minutes, at 400 pound thrust or less. The small steam system can maintain 100,000 feet simulated altitude for a minimum of 48 hours at 20 pounds thrust.

The test stand was modified to provide thrust measurement capability at the 100 pound level. A description of the flexure type thrust stand, calibration fixture and engine mount are shown in Figures VI-31 and VI-32, respectively.

An aspirator duct was used to provide the capability of maintaining 100,000 feet altitude for one hour while fire testing the 100 pound thrust engine. This water cooled duct was designed to provide approximately 1/8 inch annulus between the engine assembly and the aspirator duct.

A one foot diameter opening in the main bulkhead between the altitude chamber and the ejector system allowed rapid evacuation of the altitude chamber with the aspirator

duct in position. During fire testing of the engine assembly this opening was 'closed off' using a remotely controlled 'flapper valve'.

Details of the aspirator duct and the overall installation of the engine in the altitude facility are given in Figures VI-33 and VI-34, respectively.

c. Instrumentation

The type of instrumentation equipment used for this series is as follows:

Parameter	Instrument	Model Number
Thrust	Alinco Load Cell	36-200
Chamber Pressure	Taber	217-100A
Fuel and Oxidizer	Taber	226-500A
Feed Pressure		
Fuel Flow	Cox	8-6
Oxidizer Flow	Cox	8

Chamber pressure was measured at the face of the injector only, propellant feed pressures and feed temperatures were measured approximately one inch and three inches upstream of the bipropellant valve, respectively. The propellant flowmeters were located approximately 10 feet upstream of the bipropellant valve with propellant temperatures measured between the two flowmeters in each line. A cavitating venturi was installed in each propellant line approximately two feet upstream of the bipropellant valve to assure mixture ratio and total flow control through the long duration test. A schematic of the typical test cell setup is given in Figure VI-35.

d. Test Series - Prototype Engine S/N 2

Six tests were conducted on prototype engine S/N 2 to demonstrate the feasibility of the adiabatic wall design concept for continuous operation for a scheduled one hour period. The installation of the engine assembly is shown in Figures VI-36 and VI-37.

(1) Check Out Tests (Run Nos. 2E-S 1684-1687)

The first four tests were performed as checkout runs and evaluation of the thrust test stand and the aspirator duct. These tests were of 6, 31, 16, and 5 second

duration, respectively. Instrumentation problems were encountered during the first three checkout runs but were corrected prior to the last five second test. During these tests the pressure in the altitude chamber increased slightly, requiring a correction to thrust measurement due to unequal pressure across the engine assembly. A tabulation of the test data for these four tests is given in Table VI-3.

(2) Long Duration Demonstration Test and Restart (Run Nos. 2E-S 1688, 1689)

This demonstration test was a planned one hour duration test but was prematurely shut down at 29 minutes and 8 seconds due to a gradual decrease in thrust chamber pressure, indicating throat erosion. Difficulty was encountered after approximately two minutes of firing when it was apparent the aspirator duct was not operating properly. The equivalent altitude in the altitude chamber decreased from approximately 120,000 feet at the start of the test to approximately 90,000 feet at two minutes. As the test continued it was apparent that separation was occurring in the nozzle. Visual observation of the engine during the last 20 minutes of the firing revealed damage to the nozzle and to the insulation material became progressively worse.

Since the major purposes of the test were to demonstrate the feasibility of the adiabatic wall design concept and the capability of the coating, the test was continued until thrust chamber pressure gave indication of coating damage or throat erosion. It was realized the temperature data obtained would be somewhat compromised due to the unusual exhaust gas flow characteristics across the exterior of the engine assembly. Thrust chamber pressure was very steady for the first 26 minutes of the test at which time a slight pressure decay of approximately 0.5 psi/min.was noted. At 29 minutes the chamber pressure decay had increased to a rate of approximately 5.0 psi/min. at which time shutdown was made.

After shutdown, heat soak back from the chamber to the propellant valve was allowed to take place until each major component had reached a maximum temperature. During this period the temperature data was monitored and recorded at one minute intervals for a total of 20 minutes. At this time a two second duration firing was made to demonstrate the capability of restarting following a maximum heat soak back condition.

TABLE VI PROTOTYPE ENGINE S/N 2 -TESTS 1684 TO

			①		1	1		
Run No. Date	Run Dur.	Data Pt.	w f <u>lb/sec</u>	w _o	WT lb/sec	<u>M.R.</u>	P _c T psia	c <u>ft</u>
1684, 2E-S 10-19-65	6.3	5.8		0.201			78.1	
1685	31.2	5.0	0.140	0.205	0.345	1.46	78.9	51
10-20-65		15.0	0.140	0.204	0.344	1.46	79.9	5
		30.8	0.140	0.206	0.347	1.47	79.5	51
1686	16.0	6.0	0.136	0.204	0.340	1.51	79.2	5:
10-21-65		15.5	9.136	0.205	0.341	1.51	78.9	57
1687	5. 8	5.3	0.134	0.210	0.344	1.57	77.6	50
10-21-65								

¹ Data unreliable due to questionable fuel flow data.

Report No. 8374-933004

11-37-1

² Data unreliable due to difficulty with thrust measurement - data not listed.

BELL AEROSYSTEMS COMPANY -

PERFORMANCE DATA
1687

(1) k	① c*					Altitude Chamber	2	2
T /sec	corr ft/sec	FEP psia	OFP psia	FPVIT °F	OPVIT °F	Pressure psia	F _∞	I _{sp} ∞
i !		144.1	148.5	64	65	0.074		
.45	5120	148.0	151.6	72	73	0.049		
.75	5190	148.2	149.6	67	70	0.065		
55	5220	148.8	151.3	64	66	0.114		
:33	5235	149.1	151.0	70	71	0.058		
.88	5205	148.7	150.3	66	68	0.060		
)73	5065	149.7	154.7	65	66	0.066		
4								

(3) Performance Data

A tabulation of the performance data for this 29 minute 8 second test and the two second restart is given in Table VI-4.. A tabulation of the temperature data for both tests, including heat soak back data is shown in Table VI-5.. Figures VI-38 through VI-41 reveal the temperature profile for various sections of the engine assembly.

(4) Post-Run Inspection

After returning to sea level pressure conditions and following a N_2 gas purge of the engine assembly a visual inspection was made of the assembly on the test stand. The following observations were made:

- (1) Severe nozzle damage had occurred.
- (2) Slight throat erosion was evident at the 12:30 and 6:00 o'clock positions with chamber wall erosion and burnout noted at 12:30 o'clock position. The burnout was about two inches from the injector face and was approximately 1/2 inch wide and 3/16 inch long. The erosion pattern was approximately one inch wide and two and one-half inches long. A black discoloration was observed on the fiberglass wrap directly "over" the burnout and was approximately one inch in diameter.
- (3) At least 50% of the alumina bubbles had been aspirated from the chamber.
- (4) The fiberglass wrap was partially charred along the entire length of engine between the 3:00 and 9:00 o'clock position.
- (5) Residue had accumulated on the mounting flange and on the bipropellant valve, apparently from the combustion products which had "blown back" into the altitude chamber throughout the firing. Figures VI-42 through VI-45 show the condition of the engine assembly on the test stand following this test series.

The assembly was removed from the test stand and disassembled and inspected. The bipropellant valve was removed from the engine and was flushed and dried prior to installing on the second prototype engine S/N 1. The injector assembly was machined from the chamber, inspected under magnification and water flowed.

		28	0.130	0.208
		29	0.130	0.208
	Heat Soak	Back		
		1 min		
		5		
		10		
		15		
		19		
1689	2 sec	static		
		$1.0~{ m sec}$	0.128	0.184
		2.0 sec	0.130	0.191
	Heat Soak	Back		
		1 min		
outa.		5 min		
Report No	. 8374-9330	004	V	-39-/

 $\mathbf{w}_{\mathbf{T}}$

lb/sec

0.343

0.344

0.343

0.342

0.340

0.339

0.337

0.337

0.338

0.3380.338

0.3120.321

 $\mathbf{w}_{\mathbf{f}}$

0.133

0.133

0.133

0.132

0.132

0.132

0.130

0.129

0.130

lb/sec

lb/sec

0.210

0.211

0.210

0.210

0.208

0.207

0.207

0.208

0.208

Data Pt.

sec

10 sec

1 min

5

10

15

20

2526

27

Run Dur.

sec

29 min

& 8 sec

Run No.

Date

1688

TABLE VI-4 PROTOTYPE ENGINE S/N 2 - PERFORMANCE DATA **TESTS 1688 AND 1689**

	$^{\mathrm{P}}_{\mathrm{c}}$	c* T	c* corr	\mathbf{FFP}	OFP
M.R.	psia	ft/sec_	ft/sec	psia	psia
1.58	79.3	5200	5200	147	152
1.59	79.6	5205	5275	148	155
1.58	79.5	5210	5280	147	155
1.58	79.5	5225	5295	147	155
1.57	79.4	5255	5325	146	155
1.57	79.9	5290	5360	146	155
1.59	78.8	5255	5325	142	154
1.61	78.5	5220	5290	142	154
1.61	78.1	5195	5265	141	155
1.60	77.0	5130	5200	140	153
1.61	71.6	4760	-	135	148

76.6 5501

5292

75.6

1.44

1.48

151

150

181

Run No.	Δ Qι	ıestionable I	Data	·	
1688	FPVIT °F	OPVIT °F	Altitude Chamber Pressure psia	F ₆	I sp _∞ sec (Calc)
	62	63	0.068	\triangle	287
	58	58	0.070		291
	61	61	2.15		291
	64	64	3.83		292
	69	70	6.2		294
	69	Δ	9.0		296
	69	Δ	10.4		294
	70	70	10.6		292
	70	71	10.8		291
	70	71	10.8		287
	70	71	10.9	Δ	· <u>-</u>
	113	112			
	164	167			
	218	211			
	232	234			
	174	231			
1689	170	221	6.7		
	135	175	6.6 △	7	
	117	138	6.7	7	
	137	160			
	157	165			

TABLE PROTOTYPE ENGINE S/N 2 -

Tests 1688

												*
Run	Run	Data					P.V.		P.V.		Itg	Fiber
No.	Duration		Inj . 1	Inj. 2	Flange		Fuel 9	Ox 10	Ox 11	Fla 14	ange 15	Glass 28
1 200	Min.	Min.			$\frac{7}{7c}$	8 75	73	88	70	74	$\frac{13}{71}$	$\frac{28}{66}$
1688	29 min & 8 sec	Static	74	75	76	75						
		1	934	847	72	64	63	90	62	153	131	65
		5	1006	960	106	79	70	116	65	343	287	98
		10	1068	1021	126	88	74	129	70	462	394	193
		15	1096	1039	150	103	84	140	79	650	549	434
		20	1168	1081	169	110	86	153	80	737	640	502
		25	1155	1070	181	118	91	158	82	803	709	628
		26	1165	1092	180	118	91	158	82	803	715	604
		27	1187	1088	183	119	91	160	84	804	718	590
		28	1202	1097	184	120	91	160	84	807	720	591
		29	1262	1116	183	120	92	160	84	799	735	600
	Heat Soak	Back										
		1	1792	1797	341	234	156	258	112	_	962	595
		2	1686	1694	484	339	200	362	145	_	948	556
		3	1582	1585	494	410	221	421	189	-	909	519
		4	1451	1454	544	460	242	482	230	_	852	493
		5	1384	1387	560	482	258	_	252	_	821	482
		10	1043	1040	524	482	313	504	291	727	657	434
		15	844	836	_	_	308	_	289	600	547	398
		19	636		422	268	236	290	273	521	476	371
1689	2 sec	Static	617	610	330	227	230	271	256	486	464	
		1.0 sec		611	330	226	230	270	256	486	462	
		2.0 sec		627	330	226	223	269	241	486	463	
	Heat Soak		. 002	941	000		220	200		200	200	J .
	mai boak				950	100	109	100	205	606	357	
		1 min			258	198	193	190	205			
		5 min			223	202	197	176	199	57 3	337	

Report No. 8374-933004

II-40-1

bell AEROSYSTEMS COMPANY ___

VI-5 TEMPERATURE DATA (°F)

and 1689

	Insulation Temp				lumbiu ell Ter			Rin Supj	_	Struct Supp		l P.V. Cover	
18	19	25	20	21	22	23	24	3	4	5	6	12	13
_	-	74	Ann. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		76	76	77	74	73	72	73	74	74
387	74	74			307	468	376	442	573	208	158	74	74
1671	439	387			1607	1666	1646	708	788	455	413	92	94
2060	1149	1103			2079	2105	2136	824	922	586	514	102	103
2461	1646	1668			2294	2259	2406	888	1020	714	597	124	127
2805	1986	1994			2523	2459	2589	944	1097	800	673	144	145
2948	-	2194			2606	2501	2676	948	1129	856	712	163	162
2811	-	2212			2622	2518	2703	960	1136	856	712	164	163
2775	-	2226			2633	2525	2731	963	1145	858	716	166	164
2790	-	2147			2648	2538	2755	966	1145	867	724	168	165
2800	-	2613			2660	2560	-	1015	1561	899	729	168	164
2051	2370	2213			2475	2444	-	1598	1602	1017	1017	187	188
1750	2068	1993			2251	2251	-	1536	1512	1017	1017	210	218
15 60	-	1837			2071	2089	-	1409	1414	1017	1017	235	246
1386	-	1681			1890	1913	-	1275	1286	1017	1017	260	271
1307	-	1606			1803	1827	-	1206	1224	1017	1017	271	280
962	-	1239			1394	1415	-	900	932	805	812	296	29 8
761	-	1007			1132	1150	-	727	755	655	658	290	291
738	-	886			989	980		578	616	551	535	275	272
762	-	870	3185	127	972	956	-	556	59 8	533	511	270	266
745	1945	929	-	129	972	955	-	558	606	531	509	269	265
768	1859	1104	2872	129	993	960	-	575	642	537	512	269	265

^{*} See Second Sheet for Note

Run No.	Run Duration Min	Data Point Min	Stand 16	Temp 17	Inj. Flange 33	26
1688	29 min	Static	69	68	67	69
	& 8 sec	1	69	68	6 8	69
		5	98	74	92	115
		10	157	86	176	249
		15	441	116	505	591
		20	546	151	488	591
		25	591	190	524	591
		26	591	197	508	591
		27	591	203	503	591
		28	591	208	509	591
		29	591	212	497	591
	Heat Soak B	ack				
		1	579	216	474	-
		2	561	217	452	-
		3	545	548	433	-
,		4	526	219	416	-
		5	515	220	408	-
		10	447	217	364	524
		15	394	212	324	451
		19	360	206	295	407
1689	2 sec	Static	354	205	291	400
		1.0 sec	354	205	290	400
		2.0 sec	353	205	290	401

Heat Soak Back

 $1 \min$

2 min

* Note: Fiberglass temperatures in excess of normal tative of actual temperature since this thermo

TI-41-1

NT)

	Fibe	erglass Tei	mp*				
30	31	32	34	35	36	37	38
64	63	60	67	65	70	70	63
64	63	61	67	66	70	70	80
109	304	517	100	149	89	88	591
243	504	591	206	366	135	131	591
457	454	591	581	585	280	250	591
580	591	591	468	591	311	334	591
549	591	591	512	591	354	405	591
543	591	591	508	591	358	415	591
566	591	591	508	591	364	426	591
591	591	591	525	591	372	433	591
591	591	531	510	591	378	438	591
-	532		460		396	449	_
-	372		425		409	457	444
582	281		404		421	460	370
548	228	k un	386	tun	432	461	313
525	218	Lost on Run	378	Lost on Run	434	462	281
392	155	ost	323	ost	405	428	188
304	132	H	277	Ä	358	371	158
258	139		247		325	333	250
252	144	370	243	-	320	218	270
251	203	439	243	-	320	218	270
251	461	-	243	-	320	218	328

313

290

ist gas "blow back". Fiberglass temperature T-36 is more represenon the top of the chamber - away from the blow back region.

Figures VI-46 through VI-50 reveal various parts of the engine assembly during disassembly and inspection. Additional observations made during this inspection were as follows:

- (1) Compatibility between the alumina bubbles and the silicide coated columbium was excellent (both at the chamber-alumina bubble interface and at the columbium shell-alumina bubble interface).
- (2) The alumina bubbles had discolored and fused together at the higher temperature regions along the chamber wall but showed no undesirable characteristics (Figure VI-51).
- (3) The Dyna-Quartz insulation was compatible with the silicide coated columbium and, except for melting in the region of nozzle separation and chamber burnout, showed no deterioration due to temperature.
- (4) The injector appeared in good condition visually and during inspection under 30X magnification revealed all orifices were clear. Slight oxidation scale was noted around each oxidizer orifice and on the inside surface of each oxidizer orifice. The scale was loose and offered no restrictions to any orifice. The injector face was partially covered with a black-gray residue that was loose and soft and appeared to be "debris" that had fallen in the chamber after burnout. Due to post run handling of the engine this loose debris had partially covered the injector face. A water flow was made of the injector assembly to check for impingement and pressure drop characteristics. The impingement check revealed all orifices were flowing freely and the impingement of all streams were similar to that observed during the previous flow conducted prior to welding the injector to the chamber. The two fans that were not intersecting properly originally revealed similar characteristics, resulting in streams directed in the vicinity of the erosion and burnout region at 12:30 o'clock and the erosion at 6:00 o'clock. The fan from element No. 1 was slightly heavy on on one side and was directed toward the erosion pattern at the 6:00 o'clock position on the convergent nozzle. This correlation between the erosion areas and the injector impingement characteristics and the similarity of impingement before and after fire test indicate that gradual oxidation and erosion was probably occurring throughout the long duration test.

The pressure drop of the fuel side of the injector revealed no change, the oxidizer pressure drop had increased 2 psi.

The identification of the injector impingement is shown in Figure VI-52.

- (5) The metal, teflon coated seals used at the propellant valve-injector interface showed no visual signs of deterioration.
- (6) The propellant valve operated satisfactorily during the post-run flush and revealed no liquid or N₂ gas leakage. Further discussion is made on the propellant valve in a later section.

2. Prototype Engine Assembly S/N 1

a. Thermocouple Attachment

The thermocouple installation for this assembly was the same as previously described for $S/N\ 2$ assembly.

b. Altitude Test Facility

The same test cell and test standwere used as previously discussed for S/N 2 assembly. The small eight inch diameter aspirator duct was removed from the test cell.

The cavitating venturis were removed from the propellant feed lines and an orifice was installed at the inlet to the bipropellant valve. Each orifice was sized for approximately 30 psi pressure drop at rated flow to simulate a trim orifice installation desirable for production type assemblies.

c. Instrumentation

All instrumentation equipment was identical to that used for the S/N 2 assembly.

d. Test Series - Prototype Engine S/N 1

A total of 32 tests were conducted on the assembly at a minimum of 100,000 feet simulated altitude to demonstrate the adiabatic design concept during pulse mode and short duration operation.

(1) Checkout Tests (Run Nos. 2E-S 1691-1693)

The first three tests were performed for checkout purposes. These tests were of 5, 15, and 30 seconds duration, respectively. The large capacity steam ejector system was used for each test.

Following the satisfactory initial five second checkout firing, bipropellant valve seat leakage was noted just prior to conducting the second checkout firing. The engine assembly was removed from the test stand, flushed, and the bipropellant valve was removed from the engine assembly. The bipropellant valve was leak tested with N_2 gas and simulated propellants, revealing the following leakage rates:

	Fue	l Side	Oxidiz	er Side
	N ₂ Gas	Methonal	N ₂ Gas	Methylene Chloride cc/min
Before Liquid Flush and Cycling (At 300 psig inlet pressure)	900	0.13	330	0.83
After Liquid Flush and Cycling (At 300 psig inlet pressure)	-	8.5	-	3.4

Inspection of the seats revealed the following:

- (1) The teflon seats had been rolled over into the valve orifice (see sketch below).
- (2) The height of the teflon was even with and in some spots below its metal (SST) retainer.
- (3) The teflon material had a very noticeable glazed appearance in contrast to the dull grey appearance of a new seat.
- (4) No gouges, nicks, scratches or evidence of harmful contamination was noticed.

The cause of the seat failure has been attributed to the exposure of the valve to excessive temperatures following hot firing. After shutdown of the 30 minute firing test, soakback temperatures between 500°F and 565°F were experienced at the outlet of the

ba BELL AEROSYSTEMS COMPANY

valve in the vicinity of the valve seats. Teflon has a melting point between 545°F and 563°F. It has been reasoned that the teflon was extruded from its retainer due to the high temperatures. The teflon was structurally weakened by the thinning effect of extrusion as well as the high temperature. The subsequent static load of the poppet on the seat as well as the dynamic loads created by cycling the valve caused the teflon to roll over into the orifices. (Cycling was performed on two subsequent hot fire tests and also in post-fire purging and flushing operations). The teflon was so malformed that the poppet was bottomed on the metal seat retainers and only partial contact with the teflon was made, resulting in propellant leakage. The glazed appearance of the teflon further substantiates malforming due to high temperature.

The valve was repaired by replacing both seat assemblies. Leakage tests conducted after the repair showed zero GN₂ leakage in five minutes for both sides of the valve. Operation of the valve was normal and was deemed not otherwise affected by the high temperature experience. The valve was brought back to Bell and subsequently used satisfactorily in steady-state and pulse mode hot firing tests.

The excessive temperature is attributed to the abnormal conditions that existed during the long duration firing on engine S/N 2 when exhaust gas 'blow back' heated the engine and test stand to abnormally high temperatures.

The repaired propellant valve was reinstalled on engine S/N 1, the engine assembly was reinstalled in the altitude facility and the checkout tests were repeated with satisfactory results. A tabulation of the test data for the three checkout tests is given in Table VI-6 .

TABLE VI-6 S/N 1 ENGINE DATA

Run No.	Dur sec	Data P _T	P _{ct}	M.R. O/F	c*T	c* c ft/sec	F _∞	I sp ∞ sec	^C f ∞
1691	5	5	79.5	1.62	5257	5252	101.4	298.5	1.83
1692	5	5	80.4	1.55	5208	5203	104.9	302.6	1.87

(2) Pulse Mode Tests (Run Nos. 2E-S 1694-1704)

The next eleven tests consisted of various types of pulse mode series, including a typical Apollo Command Module Duty Cycle. Following each pulse series the hardware temperatures were monitored during the heat soak period until all temperatures reached a maximum. The small steam ejector system was used for these pulse tests and provided a simulated altitude in excess of 100,000 feet. These tests were as follows:

Run Nos. 1694, 1695 and 1696 were conducted to evaluate two 10% duty cycles and one 1% duty cycle. A large number of pulses were performed on Run No. 1694 in an attempt to approach the quasi-steady state temperature condition for the engine assembly. The remaining two pulse series were made with approximately the same total energy input to the engine as for Run No. 1694. A visual inspection of the assembly was made following Run No. 1695 and showed no indication of erosion. The type of duty cycle operation is shown in Table VI-7.

Run No. 1697 consisted of a five-second steady state performance check run.

Run No. 1698-1702 were conducted to evaluate the capability of the engine to operate during very short electrical "on times" and to determine the type of pulse repeatability. The type of duty cycle operation is also listed in Table VI-7.

Run No. 1703 was a five-second steady state performance check run.

Run No. 1704 subjected the engine assembly to a typical Apollo Command Module Duty Cycle. The duty cycle was performed by controlling the bipropellant valve "fire" sequence and instrumentation recording with a magnetic tape. The conditions of this duty cycle are given in Table VI-8.

A visual inspection was made of the engine assembly following this pulse series and again revealed the chamber to be in excellent condition.

A summary of the performance data for the steady state check firings and the longer duration firings in the Apollo Duty Cycle are given in Table VI-9. The data reveals no degradation in performance following the "more than" 4800 pulses. Temperature data are given in Table VI-10 and Figure VI-53 through VI-58.

TABLE VI-7 DUTY CYCLE DESCRIPTION

Run No. (2 ES)	On Time (sec)	Off Time (sec)	% Duty Cycle	No. of Pulses
1694	0.030	0.270	10	3000
1695	0.100	0.900	10	1000
1696	0.100	9.9	1	150
1698	0.010	60		10
1699	0.020	60		10
1700	0.030	60		10
1701	0.040	. 60		10
1702	0.010	60		4

Representative oscillograph traces of these tests are shown in Figures VI-59 through VI-65. It must be noted that chamber pressure response is very poor due to the long coupling on the transducer. The thrust trace is representative of actual thrust except during the shutdown transient. This shutdown trace shows oscillations due to the dynamics of this steady state stand.

(3) Mixture Ratio and Chamber Pressure Series (Run Nos. 1705-1714)

These 10 tests were performed to evaluate the effect of mixture ratio and chamber pressure. The high capacity steam ejector system was used for these tests, which consisted of the following: (Engine installed in test cell is shown in Figures VI-66 and VI-67).

Run No.	Duration (second)	Pc (Nominal) (psia)	Mixture Ratio (Nominal)
1705	10	80	1.6
1706	10	80	1.6

TABLE VI-8

TYPICAL APOLLO C/M REACTION CONTROL ENGINE DUTY CYCLE

Time at Start of	No. of	Total Length of	Individual Pulse Width
Pulse Train	Pulses	Fire	(secs)
0	1	1 950	1.050
2.2	1	$1.250 \\ 0.050$	1.250
15	1	0.250	$0.050 \\ 0.250$
18.8	12	0.240	0.020
21	4	0.080	0.020
31	1	2.5	2.500
44	1	1.0	1.000
50	70	1.4	0.020
61	28	0.56	0.020
65	1	0.02	0.020
66	1	0.02	0.020
74	1	1.5	1.500
83	1	1.0	1.000
91	1	0.25	0.250
99	1	0.5	0.500
106	1	0.25	0.250
119	1	2.0	2.000
133	1	1.0	1.000
139	1	0.5	0.500
159	1	1.5	1.500
169	1	1.0	1.000
179	1	0.25	0.250
199	1	0.02	0.020
249	1	0.02	0.020
309	4	0.08	0.020
349	1	15.0	15.000
369	2	0.04	0.020
389	1	0.02	0.020
395	9	0.900	0.100
398	1	0.05	0.050

Time at Start of Pulse Train	No. of Pulses	Total Length of Fire	Individual Pulse Wi dt h (secs)
Fulse Italii	- uiscs		(5005)
399	1	0.05	0.050
401	1	0.05	0.050
404	1	0.05	0.100
406	16	1.6	0.100
412.6	1	0.05	0.050
413	2	0.10	0.050
415	1	0.05	0.050
418.8	1	0.05	0.050
423,6	1	0.05	0.050
428	1	0.05	0.050
430	1	0.05	0.050
436	1	0.05	0.050
447	1	0.02	0.020
453	1	0.02	0.020
464	1	0.05	0.050
467.6	16	1.6	0.100
476	1	0.05	0.050
483	9	0.9	0.100
487	1	0.05	0.050
489	1	0.05	0.050
489.5	1	0.05	0.050
492	1	0.05	0.050
498.4	1	0.05	0.050
499	1	0.05	0.050
509	1	0.05	0.050
516	1	0.02	0.020
519	1	0.02	0.020
526	1	0.02	0.020
529	1	0.05	0.050
534.2	1	0.05	0.050
538.6	1	0.02	0.020
540	1	0.02	0.020

		Total	Individual
Time at	No.	Length	Pulse
Start of	\mathbf{of}	of	Width
Pulse Train	Pulses	Fire	(secs)
	• • • • • • • • • • • • • • • • • • •		
546	1	0.02	0.020
54 8	25	2.5	0.100
553	2	0.1	0.050
556	1	0.05	0.050
563	16	1.6	0.100
567	2	0.1	0.050
569	1	0.05	0.050
572	1	0.05	0.050
579	25	2.5	0.100
582.2	1	0.05	0.050
583	1	0.05	0.050
587	1	0.05	0.050
592	11	1.1	0.100
596	1	0.05	0.050
599	1	0.05	0.050
601	1	0.05	0.050
602	2	0.10	0.050
604.2	1	0.05	0.050
606	1	0.05	0.050
609	1	0.05	0.050
610	1	0.05	0.050
619	1	0.05	0.050
620	. 1	0.02	0.050
629	1	0.02	0.020
643	1	0.02	0.020
649	1	0.02	0.020
657	1	0.05	0.050
665	1	0.02	0.020
679	1	0.02	0.020
698	16	1.6	0.100

Time at	No	Total	Individual
Start of	No. of	Length of	Pulse Width
Pulse Train	Pulses	Fire	(secs)
- Turbo II am	1 ulses	THE_	(8608)
700.2	1	0.05	0.050
701	1	0.05	0.050
704	1	0.05	0.050
708	7	0.7	0.100
710	1	0.05	0.050
711	1	0.05	0.050
714	6	0.6	0.100
717	1	0.05	0.050
718	1	0.05	0.050
724	1	0.05	0.050
725	. 1	7.1	7.100
733	1	0.05	0.050
734.2	1	0.05	0.050
735	1	0.05	0.050
739	1	0.1	0.100
741	1	0.05	0.050
749	1	0.1	0.100
751	1	0.1	0.100
761	30	3.0	0.100
766	1	0.05	0.050
767	1	0.05	0.050
15 min			
1051	1	2.0	2.000
1057	16	1.6	0.100
1060	3	0.15	0.050
1064	1	0.05	0.050
1065	2	0.1	0.050
1069	8	0.8	0.100
1074	1	0.05	0.050
20 min			
1323	1	0.05	0.050
1327	1	0.05	0.050
1333	1	0.02	0.020
1338	2	0.1	0.050

		Total	Individual
Time at	No.	Length	Pulse
Start of	of	of	Width
Pulse Train	Pulses	Fire	(secs)
			
1340.2	1	0.05	0.050
1354	1	0.05	0.050
1359	1	0.05	0.050
1367.6	2	0. 1 .2	0.050
1374	1	0.02	0.020
1384	1	0.05	0.050
1394	1	0.02	0.020
1399	1	0.05	0.050
1409	1	0.05	0.050
1411	1	0.05	0.050
1415	1	0.05	0.050
1428.2	1	0.05	0.050
1431	1	0.05	0.050
1439	2	0,11 =	0.050
1443.4	1	2.25	2.250
1473	1	0.05	0.500
1475	1	2.5	2.500
1491	1	0.75	0.750
1505	1	0.75	0.750
1513	1	2.5	2.500
1569	2	0.1	0.050
1572	1	0.05	0.050
1579	1	0.05	0.050
1588	2	0.1	0.050
1592	1	0.02	0.020
1598	1	0.05	0.050
1604	1	0.02	0.020
1618.2	1	0.05	0.050
1620	1	0.05	0.050
1623	1	0.02	0.020
1629	1	0.05	0.050
1640	1	0.02	0.020
1645	1	0.05	0.050
1647.6	1	0.05	0,050
1652	1	0.02	0.020

Time at Start of Pulse Train	No. of Pulses	Total Length of Fire	Individual Pulse Width (secs)
1658	1	0.05	0.050
1670	1	0.02	0.020
1684	1	0.02	0.020
1699	2	0.1	0.050
1708.4	1	0.05	0.050
1710	1	0.05	0.050
1713	1	0.02	0.020
1718	1	0.05	0.050
1723	1	0.05	0.050
1727.6	13	1.3	0.100
1734	2	0.1	0.050
1736	1	0.05	0.050
1753	$ar{f 1}$	0.05	0.050
1759	1	0.05	0.050
1761	1	0.05	0.050
1762.2	1	0.05	0.050
1767.6	2	0.1	0.050
1770.6	1	0.05	0.050
1777	2	0.2	0.100
1779.6	4	0.4	0.100
1784	1	0.05	0.050
1786	1	0.05	0.050
1789	1	0.05	0.050
1790.6	1	0.05	0.050
1793	. 1	0.05	0.050
1798	9	0.9	0.100
30 min			
1801.6	4	0.2	0.050
1807.6	6	0.6	0.100
1815	1	0.05	0.050
1817	3	0.3	0.100

		Total	Individual
Time at	No.	Length	Pulse
Start of	of	of	Width
Pulse Train	Pulses	Fire	(secs)
			
1821	4	0.4	0.100
1823	1	0.05	0.050
1824	1	0.05	0.050
1826	1	0.05	0.050
1827	9	0.9	0.100
1833	1	0.05	0.050
1835	1	0.05	0.050
1836	1	0.05	0.050
1840	6	0.6	0.100
1847	13	1.3	0.100
1851	6	0.6	0.100
1854	1	0.05	0.050
1855	1	0.05	0.050
1857	15	1.5	0.100
1860	20	2.0	0.100
1864	3	0.15	0.050
1867	1	0.05	0.050
1871	9	0.9	0.100
1874	2	0.2	0.100
1876.2	1	0.1	0.100
1877.8	2	0.2	0.100
1880.2	1	0.1	0.100
1881.8	1	0.1	0.100
1882.6	1	0.1	0.100
1884	1	0.1	0.100
1885.8	4	0.4	0.100
1890.2	3	0.3	0.100
1896	13	1.3	0.100
1903	6	0.6	0.100
1912.6	3	0.75	0.250
1927.4	3	0.75	0.250

		Total	Individual
Time at	No.	Length	Pulse
Start of	of	\mathbf{of}	\mathbf{Width}
Pulse Train	Pulses	Fire	(secs)
			
1943.8	1	0.25	0.250
1944.4	2	0.5	0.250
1946	2	0.5	0.250
1948.4	1	0.25	0.250

TABLE VI-9 PERFORMANCE DATA

Data Pt		Pulse Dur. at Data Pt.	w	w O	L _w	1	P	c*T	° *5	ds	r L	FPVIT	OPVIT
sec min sec lb/sec	lb/sec	lb/sec		lb/sec	lb/sec	MR		ft/sec	ft/sec	sec	ī	°F	°F
												7.1	7.1
1.25	1.25	0.132		0.216	0.347	1.64	82.3	5320	5255	291.0	1.76	64	99
	2.5	0.132		0.215	0.347	1.63	81.6	5281	5240	290.2	1.77	62	63
15.0	15.0	0.132		0.214	0.346	1.62	81.1	5253	5250	291.7	1.79	25	54
0.050	0.050											99	28
	7.1	0.131		0.214	0.345	1.63	81.1	5270	5245	293.8	1.79	58	59
2.0	2.0						80.4		-	286.3	1.78	61	99
0.050	0.050											20	74
1514 (25.2) 2.5 0.132	2.5	0.132		0.213	0.345	1.62	80.2	5216	5190	289.3	1.78	99	28
												29	09
												57	59
at Soak Back													
r-d										-		70	75
10			-									91	97
20												108	117
22									•			110	121

TABLE VI-10
PROTOTYPE ENGINE S/N 1 TEMPERATURE DATA

1										
1										Mfg.
Run	Run	Data			P.V.	P.V.	P.V.	P.V.	P.V.	Flange
No.	Duration	Point	Inj. 1	Inj. 2	Flange 7	Fuel 8	Fuel 9	Ox. 10	Ox 11	14, 15 C
1694	15 1/2 Min	Static	73	74	72	71	71	87	72	74
2001		1 Min	181	255	72	75	71	88	74	80
		5 Min	607	668	80	93	71	97	79	159
		10 Min	683	732	99	108	73	122	83	200
		15 Min	713	766	112	114	73	126	85	220
		15 1/2 Min	743	828						
	Heat Soak I	Back								
		1 Min	839	911	133	127	86	129	95	217
		5 Min	688	724	187	184	119	149	132	265
		10 Min	566	593	210	210	150	166	150	276
	•	20 Min	455	472	214	218	174	176	166	265
		30 Min	394	407	207	211	178	175	168	248
		40 Min	352	362	198	203	176	170	167	231
							Between			
1695	17 1/2 M in	Static	213	218	156	158	151	144	148	168
		1 Min	330	419	138	130	100	128	102	159
		5 Min	751	829	130	127	90*	145	95	213
		10 Min	817	902	177	142	90*	170	98	270
		15 Min	843	925	193	151	90*	176	102	299
		17 Min	852	935	202	153	90*	176	104	306
	Heat Soak I									
		1 Min	972	1048		163	121	171	118	290
		5 Min	810	851		235	153	167	156	305
		10 Min	678	707	175	268	191	171	180	300
		20 Min	551	572	188	278	224	180	219	289
		30 Min	481	498	195	272	233	181	227	274
		40 Min	435	449	195	260	231	177	226	257
1696	26 Min	Static	68	74	(Furge	25	en this 7	38	24	44
1030	20 Milli	10 Min	170	210		20	J	30	24	**
		26 Min	289	334		39	45	44	44	82
			200	001			40	**	77	04
	Heat Soak I									
	Heat Soak l	Back	241	254		58	30	39	29	79
1697		Back 10 Min	241	254		58 64	30 39	39	29 50	79 79
1697 1698	5 Sec	Back 10 Min 5 Sec	241	254	56	58 64 54	30 39 57	39	50	79
		Back 10 Min	241	254	56 58	64	39	_		
1698	5 Sec 10 Min	Back 10 Min 5 Sec 10 Min	241	254		64 54	39 57	39 70	50 55	79 58
1698 1699	5 Sec 10 Min 10 Min	Back 10 Min 5 Sec 10 Min 10 Min	241	254	58	64 54 55	39 57 56	39 70 71	50 55 57	79 58 61
1698 1699 1700	5 Sec 10 Min 10 Min 10 Min	10 Min 5 Sec 10 Min 10 Min 10 Min	241	254	58 61	64 54 55 58	39 57 56 61	70 71 74	50 55 57 60	79 58 61 62
1698 1699 1700 1701	5 Sec 10 Min 10 Min 10 Min 10 Min	Back 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min	241	254	58 61 61	64 54 55 58 58	39 57 56 61 62	39 70 71 74 74	50 55 57 60 62	79 58 61 62 65
1698 1699 1700 1701 1702	5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min	3ack 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min	108	109	58 61 61 61	64 54 55 58 58	39 57 56 61 62 61	39 70 71 74 74 74	50 55 57 60 62 62	79 58 61 62 65 64
1698 1699 1700 1701 1702 1703	5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec	3ack 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec		109 651	58 61 61 61	64 54 55 58 58 62	39 57 56 61 62 61 62	39 70 71 74 74 74 76	50 55 57 60 62 62 62	79 58 61 62 65 64
1698 1699 1700 1701 1702 1703	5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec	3ack 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec Static ≈ 6 Min ≈ 10 Min	108	109 651 869	58 61 61 61 75 81	64 54 55 58 58 62	39 57 56 61 62 61 62	39 70 71 74 74 74 76 88	50 55 57 60 62 62 62 82	79 58 61 62 65 64 64
1698 1699 1700 1701 1702 1703	5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec	3ack 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec Static ≈ 6 Min ≈ 10 Min ≈ 221/2 Min	108 647 790 693	109 651 869 711	58 61 61 61 75 81 103 115	64 54 55 58 58 62 86 102	39 57 56 61 62 61 62 80 63	39 70 71 74 74 74 76 88 100	50 55 57 60 62 62 62 82 66	79 58 61 62 65 64 64 86 165
1698 1699 1700 1701 1702 1703	5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec	3ack 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec Static ≈ 6 Min ≈ 10 Min ≈ 22 1/2 Min ≈ 30 Min	108 647 790 693 677	109 651 869 711 683	58 61 61 61 75 81 103 115 113	64 54 55 58 58 62 86 102 111 194 126	39 57 56 61 62 61 62 80 63 63 121 72	39 70 71 74 74 76 88 100 122	50 55 57 60 62 62 62 82 66 70	79 58 61 62 65 64 64 86 165 209
1698 1699 1700 1701 1702 1703	5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec 32 1/2 Min	3ack 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec Static ≈ 6 Min ≈ 10 Min ≈ 22 1/2 Min ≈ 30 Min 32 1/2 Min	108 647 790 693	109 651 869 711	58 61 61 61 75 81 103 115	86 55 58 58 62 86 102 111 194	39 57 56 61 62 61 62 80 63 63	39 70 71 74 74 76 88 100 122 136	50 55 57 60 62 62 62 82 66 70 84	79 58 61 62 65 64 64 86 165 209 236
1698 1699 1700 1701 1702 1703	5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec	3ack 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec Static ≈ 6 Min ≈ 10 Min ≈ 22 1/2 Min ≈ 30 Min 32 1/2 Min Back	108 647 790 693 677 794	109 651 869 711 683 838	58 61 61 61 75 81 103 115 113	64 54 55 58 62 86 102 111 194 126	39 57 56 61 62 61 62 80 63 63 121 72	39 70 71 74 74 76 88 100 122 136 75	50 55 57 60 62 62 62 82 66 70 84 78	79 58 61 62 65 64 64 86 165 209 236 236 255
1698 1699 1700 1701 1702 1703	5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec 32 1/2 Min	Back 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec Static ≈ 6 Min ≈ 10 Min ≈ 22 1/2 Min ≈ 30 Min 32 1/2 Min Back 1 Min	108 647 790 693 677 794	109 651 869 711 683 838	58 61 61 61 75 81 103 115 113 136	64 54 55 58 62 86 102 111 194 126 120	39 57 56 61 62 61 62 80 63 63 121 72 70	39 70 71 74 74 76 88 100 122 136 75 95	50 55 57 60 62 62 62 82 66 70 84 78 76	79 58 61 62 65 64 64 86 165 209 236 236 255
1698 1699 1700 1701 1702 1703	5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec 32 1/2 Min	Back 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec Static ≈ 6 Min ≈ 10 Min ≈ 22 1/2 Min ≈ 30 Min 32 1/2 Min Back 1 Min 10 Min	108 647 790 693 677 794 852 591	109 651 869 711 683 838	58 61 61 61 75 81 103 115 113 136	64 54 55 58 62 86 102 111 194 126 120 174 220	39 57 56 61 62 61 62 80 63 63 121 72 70 146 154	39 70 71 74 74 76 88 100 122 136 75 95	50 55 57 60 62 62 62 82 66 70 84 78 76	79 58 61 62 65 64 64 86 165 209 236 236 255
1698 1699 1700 1701 1702 1703	5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec 32 1/2 Min	Back 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec Static ≈ 6 Min ≈ 10 Min ≈ 22 1/2 Min ≈ 30 Min 32 1/2 Min Back 1 Min 10 Min 20 Min	108 647 790 693 677 794 852 591 479	109 651 869 711 683 838 877 604 489	58 61 61 61 75 81 103 115 113 136	64 54 55 58 62 86 102 111 194 126 120 174 220 220	39 57 56 61 62 61 62 80 63 63 121 72 70 146 154 178	39 70 71 74 74 76 88 100 122 136 75 95 97 103 156	50 55 57 60 62 62 62 82 66 70 84 78 76 108 168 184	79 58 61 62 65 64 64 86 165 209 236 236 255 251 248 236
1698 1699 1700 1701 1702 1703	5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec 32 1/2 Min	Back 10 Min 5 Sec 10 Min 10 Min 10 Min 10 Min 4 Min 5 Sec Static ≈ 6 Min ≈ 10 Min ≈ 22 1/2 Min ≈ 30 Min 32 1/2 Min Back 1 Min 10 Min	108 647 790 693 677 794 852 591	109 651 869 711 683 838	58 61 61 61 75 81 103 115 113 136	86 102 111 194 126 120 220 219	39 57 56 61 62 61 62 80 63 63 121 72 70 146 154	39 70 71 74 74 76 88 100 122 136 75 95 97 103 156 157	50 55 57 60 62 62 82 66 70 84 78 76 108 168 184 184	79 58 61 62 65 64 64 86 165 209 236 236 255

^{*}Data Questionable

亚-57-1

BELL AEROSYSTEMS COMPANY _____

€

-	1												
rulatio l'emp.	n			lumbiuı ell Ter			Rii Supp	_		tural ort	P.V.	Cover	
19	25	20	21	22	23	24	3	4	5u _[7]	6	12	13	Type of Run
74	72	71	76	74	74	73	74	73	73	72	71	72	3000 Pulses 0.030 on 0.270
74	73	71	76	82	89	93	181	155	104	97	85	77	off
109	92	89	110	440	496	512	488	438	310	256	137	94	
280	232	229	228	772	791	840	565	530	389	316	156	107	
479	422	419	366	964	962	1019	614	578	429	345	168	114	
503	446	442	383	981	979	1043	613	584	435	314	168	115	
535	477	473	406	1004	988	1059	627	609	450	315	169	115	
639	586	583	486	968	928	986	550	548	444	278	154	124	
692	651	651	533	888	844	891	472	477	39 9	247	157	142	
666	641	644	521	765	730	767	393	400	345	225	164	161	
598	580	583	474	666	641	670	347	354	310	211	165	166	
530	516	519	425	584	565	589	312	319	282	197	162	164	
286	281	281	244	312	305	315	195	197	183	150	139	143	1000 Pulses 0.100 on 0.90
284	277	278	242	314	311	331	315	278	215	183	155	144	off
303	284	281	265	673	705	762	623	554	420	341	202	140	
55 8	406	402	367	1002	1015	1071	705	637	502	408	221	148	
	581	580		1183	1176	1243	738	678	533	435	229	155	•
	648	648		1235	1223	1298	751	692	542	444	232	158	
	707	228		1258	1242		751	725	562	425	224	156	
	792			1190	1146		661	659	546	384	197	163	
	832			1087	1039		574	580	493	344	196	178	
	789			929	893		481	491	427	309	210	207	
				805 713	779 693		426 388	435 396	385 254	284	212 209	215 214	
				113	U33			J#0	354	262	203		
	145			87	86	153	69	69	65	44			150 Pulses 0.100 on
	218 235			22 5	219 397	218	155	149	122	83			9.9 off
	200			428	J31	451	234	232	174	119			•
	131			421	381	203	193	199	164	101			Chook Dun
													Check Run 10 Pulses 0.010 on 60.0 off
													10 Pulses 0.020 on 60.0 off
													10 Pulses 0.030 on 60.0 off
													10 Pulses 0.040 on 60.0 off
					<u>-</u>						<u> </u>		4 Pulses 0.010 on 60.0 off
				149	144	150	101	100	07	0.5	70	01	Check Run
				462	144 467	158 350	101 478	102 45 6	97 332	85 223	79 102	81 83	Apollo C.M. Duty Cycle Minimum on Time of
				732	731	479	652	573	332 437	301	139	93	0.020 sec
				886	848	521	551	544	454	294	143	117	Maximum on Time of
				950	916	514	564	552	427	322	137	107	15.0 sec
				988	964		653	611	450	344	165	111	-
				1057	1043		655	641	505	350	162	114	
				1026	986		493	500	423	287	160	145	•
				840	801		413	421	362	259	168	167	
				818	781		401	410	353	255	169	169	
i													
——													

TABLE VI-10 (CONT)

Run	Data	Flg.	Stand Fiberglass					Inj. Flg.	Fiberglass					
No.	Point	15	16	17	26	27	30	31	32	33	34	35	36	38
1694	Static	72	71	72	72	70	69	68	68	72	71	72	75	73
	1 Min	83	76	74	77	88	91	96	122	74	96	114	87	138
	5 Min	207	97	81	106	133	150	169	229	96	159	213	136	262
	10 Min	285	125	89	150	162	188	233	281	116	184	268	170	311
	15 Min	328	148	98	185	176	217	274	307	124	196	291	181	330
	15 1/2 Min	333	150	99	190	177	220	276	306	126	197	292	183	328
	Heat Soak B	ack												
	1 Min	343	152	99	193	172	216	271	290	146	187	275	178	310
	5 Min	347	158	100	200	157	193	243	246	236	158	232	156	262
	10 Min	322	160	103	203	148	177	212	211	265	146	201	141	222
	20 Min	288	158	105	199	147	165	168	171	263	150	167	135	177
	30 Min	262	154	106	190	146	154	148	149	248	152	147	135	158
	40 Min	241	150	106	181	142	143	134	136	232	148	135	133	145
1695	Static	165	123	100	139	111	105	100	104	168	115	105	111	112
	1 Min	169	127	103	142	123	120	118	143	146	134	139	122	162
	5 Min	299	149	112	171	169	175	192	262	125	196	244	177	300
	10 Min	367	176	123	223	208	226	272	331	145	233	312	218	370
	15 Min	406	204	135	265	228	260	314	353	156	254	341	241	393
	17 Min	419	213	140	278	235	271	322	361	159	259	346	247	397
	Heat Soak Back													
	1 Min	436	217	141	285	230	269	314	341	183	251	324	244	371
	5 Min	436	218	142	283	205	240	280 .	284	300	208	266	206	303
	10 Min	406	217	144	276	187	218	242	239	335	187	226	178	250
	20 Min	362	208	144	260	176	194	188	186	331	183	181	165	197
	30 Min	330	198	143	244	170	176	163	164	315	180	162	160	170
	40 Min	306	189	141	230	167	166	148	150	300	174	150	156	160
1696	Static	62	32	67	71	71	70	70	71	44	71	72	75	74
	10 Min	87	27	59	78	90	96	107	126	56	96	117	97	135
	26 Min	130	31	58	96	105	124	147	166	63	112	156	110	175
	Heat Soak Ba													
	10 Min	133	35	55	93	97	119	136	139	92	102	138	98	145
1704	Static	88	71	63	78	70	70	69	70	91	73	72	73	75
	6 Min	238	86	65	98	87	89	99	122	126	94	113	93	142
	10 Min	302	105	70	123	111	120	150	206	129	128	189	118	250
	$22 \; 1/2 \; Min$	345	135	76	173	120	142	180	201	257	119	187	122	226
	30 Min	347	145	81	187	131	154	179	206	155	138	192	128	235
	32 1/2 Min	348	152	86	197	152	172	205	256	136	170	241	150	293
	Heat Soak B		_						_					
	1 Min	391	158	87	212	162	183	212	245	200	172	224	164	276
	10 Min	346	161	90	214	148	164	180	188	277	151	178	144	208
	20 Min	305	156	92	204	142	152	152	156	266	148	150	136	170
	22 Min	298	155	92	201	142	150	147	151	264	148	147	136	165

Run No.	Duration (second)	Pc (nominal) (psia)	Mixture Ratio(nominal)					
1707	20	80	1.4					
1708	20	80	1.4					
1709	20	80	1.8					
1710	20	80	1.8					
1711	20	70	1.6					
1712	20	70	1.6					
1713	20	90	1.6					
1714	20	90	1.6					

A summary of the performance data for these tests is given in Table VI-11.

(4) Accumulated Time and Performance Series (Run Nos. 1715-1722)

These eight tests were made to accumulate time on the engine assembly in short duration, steady state firings. The low capacity steam ejector system, was used for this series. Due to operational problems with the steam supply boilers the pressure in the altitude chamber varied throughout each test and resulted in various run durations and various off times between each run. These tests consisted of the following:

Run No.	Duration (second)	Off Time (minutes)	P _c (nominal) (psia)	Mixture Ratio (nominal)
1715	12		80	1.6
1716	15		80	1.6
1717	10		80	1.6
1718	10		80	1.6
1719	10		80	1.6
1720	7		80	1,6
1721	10		85	1.6
1722	7		85	1.6

TABLE VI-11

	C. F.	1.76	1:77	1.77	1.78	1.78	1.79	1.77	1.79	1.79	1.79	1.77	1.78	1.78	1.79	1.78	1.80	1.80	1.80
S/N 1 ENGINE DATA	Sp &	296.3	291.8	295.7	295.4	294.9	295.8	286.8	287.7	287.8	289.5	292.1	291.7	291.3	292.8	289.0	291.1	292.8	294.8
	F 3	102.2	100.3	99.9	100.0	99.7	93.66	7.76	97.7	8.76	8.76	86.5	86.4	9.98	86.3	1	1	ı	ı
	c* c ft/sec	5300	5310	5375	5355	5315	5345	5205	5205	5175	5215	5320	5300	5255	5295	5215	5240	5230	5280
	c*T ft/sec	5300	5310	5375	5330	5315	5320	5205	5180	5175	5190	5320	5275	5255	5270	5215	5215	5230	5255
S/N 1 E	M.R.	1.58	1.56	1.41	1.40	1.41	1.39	1.77	1.75	1.76	1.74	1.61	1.61	1.61	1.59	1.61	1.58	1.57	1.55
	P _{cT} psia	81.4	81.3	80.9	80.4	80.1	8.62	79.0	78.3	78.4	78.1	70.2	9.69	9.69	69.3	88.6	88.1	88.2	88.1
	Data Pt sec	9.5	9.5	10	20	10	20	10	20	10	20	10	20	10	20	10	20	10	20
	Dur.	10	10	20		20		20		20		20		20		20		20	
	Run No.	1705	1706	1707		1708		1709		1710		1711		1712		1713		1714	

Throughout Run Nos. 1721 and 1722 an increase of approximately five psi was noted in chamber pressure with no apparent change in flow rate. Run No. 1722 was terminated prematurely at seven seconds due to a rapid decrease in chamber pressure. It should be noted that the off time following Run Nos. 1720 and 1721 were 20 and 10 minutes, allowing heat soak back.

Performance data for these tests are given in Table VI-12.

(5) Post-Run Inspection

Post-run inspection of the engine assembly disclosed a burnout in the chamber section at approximately the 1:00 o'clock position. The burnout was approximately one inch in diameter and two inches from the injector. The burnout caused damage to the alumina bubble insulation, the columbium shell, the "Dyna-Quartz" insulation, and the fiberglass wrap at the injector end of the assembly. Another small burnout region about 1/8 inch in diameter was noted in the chamber section at approximately the 3:00 o'clock position. No damage had occurred to the insulation material in this area of the chamber. Metal was deposited at the throat station apparently accounting for at least a portion of the chamber pressure increase noted during the last two tests.

Figure VI-68 through VI-69 show the condition of the engine assembly on the test stand following the test series.

The assembly was removed from the test stand, disassembled and inspected. The bipropellant valve was removed from the assembly and was flushed and dried. The injector assembly was machined from the chamber, inspected under magnification and water flowed.

Figures VI-70 through VI-75 reveal various parts of the engine assembly during disassembly and inspection. Additional observations made during this inspection were as follows:

(1) The compatibility between the alumina bubbles and the silicide coated columbium and the Dyna-Quartz insulation and the silicide coated columbium was again excellent as noted on the first engine assembly.

TABLE VI-12 S/N 1 ENGINE DATA

C _F \otimes	1.76	1.77	1.77	1.77	1.77	1.78	1.78	1.72	1.71
$\frac{1}{\cos \cos}$	287.5	290.9	287.8	289.1	290.5	293.0	8.062	302.8	300.6
F8	97.5	98.5	0.86	98.6	98.7	99.3	99.3	102.0	101.4
c* ft/sec	5280	5280	5260	5250	5275	5285	5265	5673 D	D 6292
c*T ft/sec	5270	5280	5240	5250	5275	5285	5270	5673 D	5664 D
M.R.	1.61	1.60	1.60	1.60	1.60	1.59	1.60	1.57	1.56
P c _T	.6.67	79.7	79.5	8.62	79.8	8.62	80.2	85.2	85.1
Data Pt sec	12	10	15	10	10	10	വ	10	9
Dur	12	15		10	10	10	2	10	2
Run No.	1715	1716		1717	1718	1719	1720	1721	1722

Questionable

There were areas around the erosion and burnout region where the alumina bubbles had partially melted and reacted with the chamber coating and base material. This reaction, however, was caused by the extremely high temperatures that existed due to the apparent high heating rates in the erosion and burnout regions and the gas flow past the alumina bubbles once burnout occurred.

- (2) Considerable erosion was noted in the chamber section.
- (3) The injector appeared in good condition and during inspection under 30 x magnification revealed all orifices were clear. The face of the injector had a white-grey discoloration. Very little oxidation scale was noted at the oxidizer orifices. A water flow revealed all the orifices were flowing freely. The pressure drop of the fuel side had increased 3 psi, the oxidizer drop indicated a decrease of 3 psi. An impingement check revealed similar characteristics to those obtained during prefire impingement flows. The fans developed by three of the eight elements showed discrepancies considered undesirable. The identification of the injector impingement is shown in Figure VI-76.
- (4) The propellant valve was leak tested with N_2 gas at 300 psig for 5 minutes, revealing no leakage on either the fuel or oxidizer side.

END VIEW

T-1	Injector Temp	T-14	Flange Temp	T-26	Fiberglass Temp
T-2	Injector Temp	T-15	Flange Temp	T-27	Fiberglass Temp
T-3	Ring Support Temp	T-16	Stand Temp	T-28	Fiberglass Temp
T-4	Ring Support Temp	T-17	Stand Temp	T-29	Fiberglass Temp
T-5	Structural Support Temp	T-18	Insulation Temp (1/4 in. from wall)	T-30	Fiberglass Temp
T-6	Structural Support Temp	T-19	Insulation Temp (1/4 in. from wall)	T-31	Fiberglass Temp
T-7	P.V. Flange Temp	T-20	Columbium Shell Temp	T-32	Fiberglass Temp
T-8	P.V. Fuel Body Temp	T-21	Columbium Shell Temp	T-33	Injector Flange Temp
T-9	P.V. Fuel Body Temp	T-22	Columbium Shell Temp	T-34	Fiberglass Temp
T-10	P.V. Oxidizer Body Temp	T-23	Columbium Shell Temp	T-35	Fiberglass Temp
T-11	P.V. Oxidizer Body Temp	T-24	Columbium Shell Temp	T-36	Fiberglass Temp
T-12	P.V. Cover Temp	T-25	Insulation Temp (1/4 in. from wall)	T-37	Fiberglass Temp
T-13	P.V. Cover Temp	•	,	T-38	Fiberglass Temp

Figure VI-26. Thermocouple Location - Prototype Engine Assemblies S/N 2 & 1

Figure VI-27. Thermocouple Installation with Engine Assembly on Test Stand

VI-68

Figure VI-31. Thrust Measuring and Calibrating Installation

DETAIL - 5 (4 REQ'D) MAT'L 'A' B.P

Figure VI-32. Thrust Chamber Mount Assembly

Report No. 8374-933004

TI-71.1

bo BELL AEROSYSTE

JI-71-2

LEVE - 4 READ

PLG.

Figure VI-33. Diffuser Duct Assembly

bo BELL AEROS

E Control Rm

r Valve Instl r Duct By Pass 36560

ıser Duct

2E-5

Ditch Systems 2 Pipe Coupling into

Assy Diffuser Duct Assy 8500-986556

H₂O

In

Out

H₂O

H₂O

H₂O

YSTEMS COMPANY

Alt. Chamber

Figure VI-34. Thrust Chamber Installation on Standard

Figure VI-35. Typical Altitude Cell Schematic

Figure VI-36. Engine Assembly S/N 2 Installed on Test Stand, Before Fire Test

Figure VI-37. Engine Assembly S/N 2 Installed on Test Stand, Before Fire Test

Figure VI-38. Injector Flange and Stand Temperature versus Time Engine S/N 2

Report No. 8374-933004

Report No. 8374-933004

VI-79

VI-80

Figure VI-43. Engine Assembly S/N 2 After Fire Test

Figure VI-44. Engine Assembly S/N 2 After Fire Test

Figure VI-45. Engine Assembly S/N 2 After Fire Test

Report No. 8374-933004

Figure VI-47. Chamber Burnout Region - Engine Assembly S/N 2 After Fire Test

Figure VI-48. Chamber From Engine Assembly S/N 2 After Fire Test

Report No. 8374-933004

Figure VI-49. Columbium Shell From Engine Assembly S/N 2 After Fire Test

Figure VI-50. Dyna-Quartz Insulation From Engine Assembly S/N 2 After Fire Test

Figure VI-51. Alumina Bubbles - Comparison Before and After Fire Test Engine Assembly S/N 2

Figure VI-52. Injector S/N 2-C Water Flow Impingement After Fire Test of Engine Assembly S/N 2

Figure VI-53. Injector Temperature Versus Time - Engine S/N 1

Report No. 8347-933004

VI-91

Figure VI-54. P.V. Body Temperature Versus Time-Engine S/N 1

Figure VI-55. Insulation and Fiberglass Temperature versus Time Engine S/N 1

Figure VI-56. Injector, Flange, and Stand Temperature versus Time - Engine S/N 1 - Apollo Command Module Duty Cycle

Figure VI-57. Propellant Valve Temperature Versus Time - Engine S/N 1 Apollo Command Module Duty Cycle

Figure VI-58. Fiberglass Temperature Versus Time - Engine S/N 1 - Apollo Command Module Duty Cycle

Figure VI-59. Oscillograph Trace - Pulse 1 (0.010 Sec On - 60 Sec Off)

Figure VI-60. Oscillograph Trace - Pulse 2 (0.010 Sec On - 60 Sec Off)

Figure VI-61. Oscillograph Trace - Pulse 1 (0.030 Sec On - 60 Sec Off)

Figure VI-62. Oscillograph Trace - Pulse 2 0.030 Sec On - 60 Sec Off

Figure VI-63. Oscillograph Trace - Pulse 1 (0.100 Sec On - 0.9 Sec Off)

Figure VI-64. Oscillograph Trace - Pulse 2(0.100 Sec On - 0.9 Sec Off)

Figure VI-65. Oscillograph Trace - Pulses 1 - 3 (0.030 Sec On - 0.270 Sec Off)

Report No. 8374-933004

Report No. 8374-933004

Report No. 8374-933004

Report No. 8374-933004

Figure VI-70. Engine S/N 1 After Test

Figure VI-72. Chamber Assembly From Engine S/N 1 After Test Burnout Region

Figure VI-73. Chamber Assembly From Engine S/N 1 After Test

Figure VI-74. Chamber Assembly From Engine S/N 1 After Test Looking at Throat

Figure VI-75. Moog Valve From Engine S/N 1 After Fire Test

Figure VI-76. Injector S/N 1-A From Engine Assembly S/N 1 After Fire Test

C. METALLOGRAPHIC INSPECTION OF CHAMBERS - S/N 1 AND S/N 2

Both chambers were sectioned in half in preparation for metallurgical study of the oxidation protection provided by the silicide coating and the compatibility between the silicide coating and the alumina bubbles. These sectioned chambers are shown in Figure VI-77.

Three specimens were prepared from one halved section from each chamber. A specimen was removed from the divergent nozzle section, the chamber section near the erosion region, and the chamber section near the injector end; to serve as representative specimens along the length of each chamber.

Visual examination of these six specimens at 250 x revealed that the silicide coating was intact, provided good oxidation protection to the columbium base metal, and showed no compatibility problem with the alumina bubbles. Grain growth was present in all the specimens from chamber S/N 2 as would be expected, since this assembly had been subjected to over 30 minutes of run time. The largest grains were present in the specimen taken from the center of the chamber, adjacent to the erosion area, and thereby, the highest temperature region. Only slight intergranular oxidation was noted in the specimen taken from the divergent nozzle section of chamber S/N 2. The specimens from chamber S/N 1 revealed the original "as forged" structure with no grain growth indicated except on the specimen in the erosion area. In this specimen some grain growth had occurred and portions of the specimen showed oxidation and contamination of the substrate as would be expected under severely high temperature conditions.

These details are further described in Figure VI-78.

Photomicrographs of three of the six specimens are given in Figures VI-79, VI-80, and VI-81.

Chamber S/N 2

Figure VI-77. Columbium Chamber S/N 1 and S/N 2 After Sectioning

From Engine S/N 2

From Engine S/N 1

Specimen No.

Large Grains -Slight Intergranular Oxidation Coating Intact As Forged Structure
No Intergranular Oxidation
Coating Intact

Largest Grain Size Coating Intact

Near Burnout Region Intergranular Oxidation
Caused by Excessive
Temperature. Foreion
Phase Diffused Into
Structure - Some
Recrystallation

Smaller Grains Coating Intact

As Forced Structure Coating Intact

Figure VI-78, Metallurgical Specimens

Coating

Grain Growth

Met No. 65-1871 Mag. 100x Etched

Figure VI-79. Photomicrograph of Mödified Silicide Coated SCb 291 Columbium Chamber Fired for 30 Minutes - Section Taken From Approximate Midpoint of Inlet -O.D. Surface

Met No. 65-1871 Mag. 250x **Etched**

Figure VI-80. Photomicrograph of Modified Silicide Coated SCb 291 Columbium Chamber Fired for 30 Minutes - Section Taken From Approximate Midpoint of Inlet -O.D. Surface

Met No. 65-1871 Mag. 100x Etched

Figure VI-81. Photomicrograph of Modified Silicide Coated SCb 291 Columbium Chamber Fired for 30 Minutes - Section Taken From Area Adjacent to Burn Through -O.D. Surface

D. THERMAL ANALYSES CORRELATION WITH TEST RESULTS

A comparison of the thermocouple data from the test series has been made with temperatures obtained by thermal analyses performed on the mathematical model.

1. Injector and Propellant Valve Temperature

Temperatures in the proximity of the injector and propellant valve are of particular interest during pulse mode operation and also during the extended heat soakback period following engine shutdown. Temperature correlations in these areas are presented in Figures VI-82 through VI-87.

Shown in Figure VI-82 are the maximum valve temperatures as a function of duty cycle during operation and also during the subsequent extended soakback period. Since the test data for a duty cycle of 1.0 was obtained from the 29 minute firing and the shutdown period which followed, the chamber burnout and the hot exhaust gases flowing past the valve during the operating condition, the analytic results are in good agreement with test data but during the snutdown period they overpredict the maximum valve temperatures which were recorded. Two possible reasons for the overprediction are as follows:

- (1) More heat is conducted into the test stand than what was arbitrarily assumed for the design condition. The design boundary condition assumed the mounting flange was either insulated or held at a maximum of 400°F.
- (2) The mathematical model does not quite simulate the shutdown transient in so far as it appears to be slow in time responses. The 0.01 duty cycle test data was not included in the figure since there was insufficient pulsing to obtain valid data.

Figure VI-83 is similar to Figure VI-82 except that it presents the maximum temperatures in the vicinity of the injector. Thermocouples T-1 and T-2 were located between the mathematical nodes 60 and 62. The results looked good, except once again the maximum shutdown temperature for a duty cycle of 1.0 was extremely high because of the problems encountered during the 29 minute firing.

Again it would appear that analysis overpredicts the heatup during coast and this again is partially due to the more stringent boundary conditions imposed on the mounting flange of the analytic model then that in test.

Figure VI-84 shows the shutdown transient in the injector and the valve during the heat soakback period following a steady state firing. Analytic results for an engine design with alumina bubbles and also another design without the bubbles are presented since both had been reviewed in support of the choice of the design. Since most of the bubbles were expended during the test firing, it is reasonable to expect the injector cooldown to be somewhere between the analytic results for these two engine designs. The chamber burnout during test probably caused additional heat to reach the propellant valve, causing it to overheat.

Figure VI-85 illustrates the injector and valve shutdown transient following a pulse mode operation of 0.1 duty cycle. The correlation between analysis and test data is fairly good.

Following the test series shown in Figures VI-86 and VI-87, the mathematical model was subjected to the same duty cycle and as nearly as possible, the same boundary conditions as in test, in order to correlate analysis with test data. Except for thermocouple T-8, the valve correlations shown in Figure VI-80 appear to be very good. The injector results presented in Figure VI-87 are very interesting in so far as trends and levels are excellent except that a substantial increase in heating or decrease in the cooling effectiveness is evident in the last two runs. It is also worthy of note that a substantial increase in performance was indicated in these runs and that the chamber burned out at this time.

2. Fiberglass Wrap Temperature

The temperature transient on the surface of the fiberglass wrap was also obtained during the 29 minute engine firing. This test data, which was recorded by thermocouple T-36, is presented in Figure VI-88. Some analytic results for the corresponding node 47 on the mathematical model are also shown in the figure. Since the engine was designed to withstand a long duration firing, a steady state analysis was performed to obtain the equilibrium temperature distribution throughout the chamber assembly. The transient temperatures were only determined for the initial 400 seconds of firing. Therefore only the first 6.67 minutes of the time history for node 47 is available for correlation with test data. During this period, the correlation is very good. An extrapolation of the analytical curve up to about 11 minutes of firing would also show good agreement.

The analytical steady state temperature of 330°F for this node is also indicated in the figure. Although the test results at the end of the firing are somewhat higher than this predicted equilibrium temperature, the hot gases flowing past the outer surface caused the temperature to be higher than expected. The distinct increase in the slope of the test data during the 12th to 15th minute of the firing seems to verify the fact that unusual external heating occurred during this period. The predicted steady state temperature would have shown much better agreement had this incident not occurred during the test firing.

Figure VI-82. Propellant Valve Temperature versus Duty Cycle

Figure VI-83. Injector Temperature versus Duty Cycle

Figure VI-84. Injector and Propellant Valve Temperature Time History Cooldown After Steady State Firing (Duty Cycle = 1.0)

Figure VI-85. Injector and Propellant Valve Temperature Time History Cool Down After Steady State Firing (Duty Cycle = 0.1)

Figure VI-86.. Propellant Valve Temperatures

Run Mo. 1723

Figure VI-87. In ector Cemperatures

Figure VI-88. Fiberglass Wrap Temperature Engine S/N 2

Firirg Tim : - Min

Report No. 8374-933004

VI-130

E. PERFORMANCE AND INSTRUMENTATION

1. Test Summary

Listed below is a summary of the total number of tests performed on the two prototype demonstration engines.

Run No.	Date	Run Duration
2E-S	Engine S/N 2	(sec)
1684	10-19-65	6.3
1685	10-19-65	31.2
1686	10-21-65	16.0
1687	10-21-65	5.8
1688	10-21-65	1748.0
1689	10-21-65	2.0

Total Time 1809.3 sec (30.1 min)

Engine	S/N	1
THEILE	D/ IN	

1691	10-29-65	4.9	
1692	11-3-65	5.6	
1693	11-3-65	30.0	
1694	11-3-65	90.0	3000 Pulses (0.030 On, 0.27 Off)
1695	11-3-65	100.0	1000 Pulses (0.100 On, 0.90 Off)
1696	11-4-65	15.0	150 Pulses (0.100 On, 9.9 Off)
1697	11-4-65	5.1	
1698	11-4-65)	10 Pulses (0.010 On, 60 sec Off)
1699	11-4-65		10 Pulses (0.020 On, 60 sec Off)
1700	11-4-65	\ 1	10 Pulses (0.030 On, 60 sec Off)
1701	11-4-65		10 Pulses (0.040 On, 60 sec Off)
1702	11-4-65		4 Pulses (0.010 On, 60 sec Off)
1703	11-4-65) _{4.8}	,
1704	11-4-65	98.0	Appollo Command Module Duty Cycle
1705	11-5-65	10.2	
1706		10.3	
1707		20.3	
1708		20.8	
1709		20.2	
1710		20.3	
1711		21.1	
1712		20.2	·
1713	•	20.3	

		Run Duration
Run No.	Date	(sec)

1714		20.4
1715		20.1
1716		15.3
1717		10.3
1718		10.8
1719		10.3
1720		7.1
1721		10.5
1722		7.2

Total Time 631.2 sec (10.5 min) Total No. of Starts = 4906

2. Maximum Impulse Bit

The capability of this engine to develop small impulse bits has been demonstrated. The thrust trace from the second 0.010 second pulse from Run No. 1702 has been integrated to determine the impulse bit. This impulse bit for a 10 millisecond electrical signal to the propellant valve is 0.002 lb/sec. This is referenced in Figure VI-68.

3. Engine Performance

The performance for Engine S/N 1 and S/N 2 is shown in Figures VI-90 and VI-91. At a nominal mixture ratio of 1.6 the characteristic velocity is 5280 ft/sec, the I space is 291.5 seconds for S/N 1, 5275 ft/sec and 291 seconds for S/N 2.

4. Instrumentation Accuracies

The following instrumentation accuracies apply to the demonstration engine data:

$$F = 2.2\%$$
 $P_{c} = 1.2\%$ $I_{sp} = 2.2\%$ $w_{T} = 0.5\%$ $C_{f} = 2.5\%$

Figure VI-89. Impulse Bit $0.010~{\rm sec}$ ON Engine S/N 1

Figure VI-90. c* versus Mixture Ratio Engine S/N 1 & 2

Report No. 8374-933004

ft/sec

versus Mixture Ratio Engine S/N 1 & 2 Figure VI-91. I

VII. TRIPS AND VISITS

Following is a summary of the trips, visits and meetings during this program:

1. June 1964

A brief meeting was held at JPL (Los Angeles) on 6-24-64 with the BAC Chief of Structures - Rockets attending. The purpose of this meeting was to provide BAC with information concerning pyrolytic graphite technology. On 6-25-64 a meeting was held at MSC (Houston) with the BAC, Chief of Structures - Rockets and BAC Chief of Applied Technology - Rockets attending. The purpose of this meeting was to provide BAC with information concerning thermal and dynamic environments induced by the Apollo and Gemini vehicles on the secondary propulsion units.

2. September 1964

Bell Aerosystems Company personnel visited NASA-JPL on 21 September 1964 for a technical review of the progress during the first quarter. The importance of incorporating ignition "spike" investigations in this program was emphasized during this review.

3. October 1964

Bell Aerosystems Company personnel visited NASA-Houston on 14 and 15 October 1964 to discuss the ignition spike problem. The results of the NASA-Houston precombustor test series were reviewed and indicated the capability of the precombustor to reduce or eliminate the ignition spike during altitude starts. A brief meeting was also held at NASA-Houston with personnel from Vitro Laboratories, New Jersey, to discuss their coating capabilities.

Bell Aerosystems Company personnel visited IIT Research Institute, Chicago, Illinois, on 28 October 1964 to review the coating process they were developing.

4. December 1964

The Second Quarterly review was held at Bell on December 18, 1964 with Messrs. J. Flanagan, NASA Headquarters, and D. Evans, NASA-JPL in attendance.

5. March 1965

Bell personnel visited IIT Research Institute, Chicago, Illinois on 3 March . 1965 to review the hafnium-tantalum clad chamber test results.

The Third Quarterly Review was held at BAC on 25 March 1965 with Messrs. R. Rollins, NASA Headquarters, D. Evans, NASA-JPL and L. Como in attendance.

6. May 1965

Design Review at JPL.

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Whereas the objectives of the subject program were not fully attained, it is with much satisfaction that the following conclusions are reached.

- 1. The program did analytically determine an engine design concept which satisfies a wide spectrum of applications in reaction control and spacecraft maneuvering systems, suitable for installation either internal or external to the vehicle, which is capable of unlimited duty cycle operation.
- 2. The prototype engine test program did in fact demonstrate the feasibility of an engine in the buried configuration at the 100 lb thrust level with the following limitations.
 - (a) Additional effort must be expended in fabrication of small injectors, and/or new injector screening techniques must be developed to improve and measure the quality of any particular injector, thereby minimizing damage due to "streaking"
 - (b) More effort must be expended to determine the time, temperature capability of the selected coated refractory metal system and/or effort expended in the promising new high temperature coated/clad refractory metal systems.

The 29 minute engine firing must certainly be considered a very significant milestone, especially considering that it was accomplished utilizing an injector acknowledged to be less than perfect prior to test.

- 3. The injector selected has been demonstrated to be throttleable over a 4:1 range.
- 4. The concept selected and the learned technology is considered applicable to a family of engines from 25 to 1000 pounds thrust.

The referred to "learned technology" evolved and/or demonstrated during the program includes.

- (a) A demonstration of the adequacy of the selected bipropellant valve.
- (b) The development of the unique unbalanced triplet coolant technique which eliminates the need for very small discreet coolant holes.
- (c) The demonstration of the composite insulation technique in consideration of overall conductivity, temperature capability, and size/volume relationship.
- (d) The compatability of the selected insulation materials with the coated refractory metal system selected.
- (e) The ability to analytically define a thermal model of a given engine configuration and predict temperatures at various stations with a high degree of confidence.

It is further stated that whereas the test program fell short of demonstrating the 1 hour operating life as an insulated engine, we believe there is a high probability the life would have reached or exceeded this goal uninsulated, in which case it would be operating at approximately 2400°F instead of 2900°F.

B. RECOMMENDATIONS

With the aforementioned conclusion that the design concept has been proven teasible, the first and foremost recommendation is that the concept be adapted for a specific application and that a development program be initiated.

In order to evolve a more reliable, more optimum design and consideration of the various other conclusions reached, the following areas of interest should be explored at the 100 pound thrust level.

- (1) Improvement of injector fabrication techniques.
- (2) Refinement of injector impingement inspection techniques.
- (3) Further definition of the time/temperature capabilities for the coated refractory metal system selected.
- (4) Evaluation of promising higher temperature capability materials to increase reliability margin.
- (5) Definition and evaluation of promising new high temperature insulation materials
- (6) Size/weight optimization considering operating at higher chamber pressures, smaller L*, and shorter nozzles (RAO).
- (7) Engine evaluation using Dyna Quartz insulation insteady of composite.

(8) Definition of the engines endurance capabilities as a radiation cooled device.

It is further suggested that the engine concept be evaluated at other thrust levels that present studies indicate will be optimal for future applications.

APPENDIX I

- Heat Flux (Entire Unit)
 in BTU/(in.²-sec)
- O Chamber Heat Flux in BTU/(in.2-sec)
- △ Nozzle Heat Flux in BTU/(in.²-sec)

Model 8374
Injector S/N TF-2
7.3% Film Coolant
H₂O Cooled T.C.A.
Flow Ratio = 1.53, P_C = 79.7
Run No. 1990

- Heat Flux (Entire Unit) in BTU/(in.2-sec)
- Chamber Heat Flux in BTU/(in.²-sec)
- Nozzle Heat Flux in BTU/(in.2-sec)

Model 8374 Injector S/N TF-2 10% Film Coolant H_2O Cooled T.C.A. Flow Ratio = 1.53, $P_c = 79.2$ Run No. 1989

- O Heat Flux (Entire Unit) in BTU/(in.2-sec)
- O Chamber Heat Flux in BTU/(in.2-sec)
- △ Nozzle Heat Flux in BTU/(in.2-sec)

Model 8374
Injector S/N TF-2
13% Film Coolant
H₂O Cooled T.C.A.
Flow Ratio = 1.54, P_C = 78.9
Run No. 1988

- Heat Flux (Entire Unit) in BTU/(in.2-sec)
- Chamber Heat Flux in BTU/(in.2-sec) 0
- Nozzle Heat Flux in BTU/(in.2-sec)

Model 8374 Injector S/N TF-2 22.2% Film Coolant H₂O Cooled T.C.A. Flow Ratio = 1.48, P_c = 75.2 Run No. 1991

```
PR
BAROMETRIC PRESS
                   14.30
                          PSIA
                          DEG.FAHR.
AMB. AIR TEMP.
                    37.
TIME OF RUN
                   2011.
                          HRS.
LENGTH OF RUN
                   30.50
                          SEC.
                   .875
FUEL SP-GR-60/60
OXID-SP-GR-60/60
                   1.456
                                                   AV
ITEM
NO.
        PARAMETER DESCRIPTION
     THRUST CHAMBER FUEL FLOW
                                      AVG.
 2.
     THRUST CHAMBER OXID FLOW
                                      AVG.
     THRUST CHAMBER TOTAL FLOW
 3.
     THRUST CHAMBER FLOW RATIO
 4.
 5.
     FUEL FEED TEMPERATURE
     FUEL SPECIFIC GRAVITY AT FFT
 6.
 7.
     OXID FEED TEMPERATURE
     OXID SPECIFIC GRAVITY AT OLT
 8.
 9.
     THRUST CHAMBER PRESSURE
                                      AVG.
10.
     THRUST CHAMBER CHARACTERISTIC VELOCITY
11.
     FUEL VENTURI INLET PRESSURE
                                      AVG.
12.
     FUEL FEED PRESSURE
     OXID VENTURI INLET PRESSURE
13.
                                      AVG.
14.
     OXID FFFD PRESSURE
15.
     WATER IN TEMPERATURE
                                       AVG.
     THRUST CHAMBER SKIN TEMPERATURE
16.
17.
     VALVE PLATE TEMPERATURE
18.
     NOZZLE SKIN TEMPERATURE
19.
     INJECTOR TEMPERATURE
20.
     FUEL COOLANT INLET PRESSURE
21.
     COOLANT WATER FLOW
                                      AVG.
22.
     NOZZLE WATER TEMPERATURE
                                NO. 1
23.
     NOZZLE WATER TEMPERATURE
                                NO. 2
24.
     NOZZLE WATER TEMPERATURE
                                NO. 3
25.
     NOZZLE WATER TEMPERATURE
                                NO. 4
26.
     NOZZLE WATER TEMPERATURE
                                NO. 5
27.
     NOZZLE WATER TEMPERATURE
                                NO. 6
28.
     NOZZLE WATER TEMPERATURE
                                NO. 7
29.
     NOZZLE WATER TEMPERATURE
                                NO. 8
30.
     NOZZLE WATER TEMPERATURE
                                NO. 9
31.
     NOZZLE WATER TEMPERATURE
                                NO.10
32.
     NOZZLE WATER TEMPERATURE
                                NO.11
33.
     NOZZLE WATER TEMPERATURE
                                NO.12
34.
     NOZZLE WATER TEMPERATURE
                                NO.13
35.
     NOZZLE WATER TEMPERATURE
                                NO.14
36.
     NOZZLE WATER TEMPERATURE
                                NO.15
37.
     NOZZLE WATER TEMPERATURE
                                NO.16
```

ELL AEROSYSTEMS COMPANY _____

REPORT (SAM)	PLE)				
.270 IN.SQD.	•	,	WINDLE AND	tr 2 79 d	
			MUDEL NO.	8374	
9500 IN.SQD. 9015 IN.SQD.			TEST DATE	11204	
.000 IN.SQD.			TEST CELL	20200	
			TEST NO.	2019	
0			1.C. S/N	1	
0 PUTED DATA			N\S .LNI	TS-4	
FOIED DATA			SEC	CONDS	
DIMENSION	STATIC	26.0	27.0	28.0	29.0
LBS/SEC		.1332	•1332	.1332	.1333
LBS/SEC		.2077	.2074	.2077	-2077
LBS/SEC		.3409	.3406	.3409	.3410
		1.5587	1.5578	1.5593	1.5584
DEG.FAHR	59.2	63.5	63.6	63.6	63.7
		.8733	.8732	.8732	.8732
DEG.FAHR	56.7	59.8	59.9	59.9	60.0
52331 A.M.	2001	1.4562	1.4562	1.4561	1.4560
		144502	1.4702	1.4701	1.4300
PSIA		82.8	82.7	82.7	82.7
FT/SEC		5390.0	5391.0	5389.2	5385.4
PSIA	547.7	536.3	536.2	536.3	536.4
PSIA	J 11 6 1	166.3	165.6	165.8	165.6
PSIA	401.4	389.8	389.8	389.8	389.8
PSIA	70107	161.4	161.4	161.4	161.2
7315		101.4	101.4	101.4	101.2
DEG.FAHR	82.7	83.0	83.0	83.1	83.1
DEG.FAHR	100.4	178.0	178.0	178.2	178.4
DEG.FAHR	149.7	149.7	149.7	149.7	149.7
DEG.FAHR	84.5	123.6	123.6	123.5	123.6
DEG.FAHR	590.8	590.8	590.8	590.8	590.8
PSIA					
LBS/SEC		.4184	.4163	-4166	-4158
DEG.FAHR	83.2	111.4	111.5	111.7	111 6
DEG. FAHR	83.1	110.9	111.1	111.2	111.4 111.4
DEG. FAHR	83.3	119.4	118.6	118.7	119.2
DEG. FAHR	76.9	105.1	106.8	108.7	
DEG. FAHR	83.1	113.4	114.0	114.2	109.2
DEG.FAHR	83.1	112.4	112.4	112.7	113.8
DEG. FAHR	82.7	109.8	110.0		112.0
DEG. FAHR	83.0	110.1	110.4	110.1	109.9
DEG.FAHR	82.9			110.2	110.4
DEG.FAHR	82.9	108.4	108.7	108-6	108.6
DEG.FAHR	82.8	108.1 107.2	108.0	107.9	107.9
DEG.FAHR	83.0		107.2	107.2	107.1
DEG.FAHR	56 . 9	108.7	109.3	108.9	109.1
DEG.FAHR	82.8	57.0	57.0	57.0	57.0
DEG.FAHR	83.0	104.8 109.2	104.9	105.0	105.0
DEG.FAHR	83.1	109.2	109.3 105.7-	109.3	109.1
DEGET MIN	0.74.1	4000	TO 2.4 L.	105.9	105.9

L AEROSYSTEMS COMPANY _____

URT (SAMPL	E)	_			
IN. SQD.		Mſ	DEL NO.	8374	
IN. SQD.			ST DATE	11204	
IN.SCD.			ST CELL	20200	
IN.SQD.			-ST NO.	2019	
17703400			C. S/N	1	
			1J. S/N	TS-4	
DATA					
			SEC	ONDS	
ENSION	STATIC	26.0	27.0	28.0	29.0
G.FAHR		27.9	27.9	28.1	27.8
G.FAHR		27.4	27.6	27.7	27.9
G.FAHR		35.8	35.0	35.1	35.5
G.FAHR		27.9	29.6	31.4	31.9
G.FAHR		29.9	30.5	30.7	30.3
G.FAHR		28.9	28.9	29•2	28.5
:G.FAHR		26 .7	26.9	27.0	26.8
G.FAHR		26.8	27.0	26.8	27.0
:G.FAHR		25.2	25.4	25.3	25.3
G.FAHR		24.8	24.8	24.6	24.7
G.FAHR		24.0	24.0	24.0	23.9
G.FAHR		25.4	25.9	25.5	25.7
G.FAHR		1	- • 2	2	2
:G.FAHR		21.6	21.7	21.7	21.7
G.FAHR		2 5. 8	25.9	25.8	25.7
G.FAHR		22.5	22.2	22.4	22.4
.BS/SEC		.0264	.0263	.0263	-0263
.BS/SEC		.0236	.0235	.0235	-0235
.BS/SEC		.0201	.0200	.0200	.0200
.BS/SEC		.0205	.0204	.0204	.0203
.BS/SEC		.0210	.0209	.0209	.0209 .0233
.BS/SEC .BS/SEC		.0234 .0256	.0233	.0233 .0255	.0255
.BS/SEC		•0284	.0255 .0283	.0283	.0283
.8\$/\$EC		•0296	•0294	.0295	.0294
.BS/SEC		.0303	.0302	.0302	.0301
.BS/SEC		.0284	.0283	.0283	.0283
.BS/SEC		.0277	.0276	.0276	.0276
.BS/SEC		.0297	•0276	.0296	.0296
.BS/SEC		.0279	.0278	.0278	.0277
.BS/SEC		.0272	.0270	.0270	.0270
.85/SEC		.0283	.0281	.0282	.0281
,55/560			• O L O L		

BELL AEROSYSTEMS COMPANY _____

			1		
REPORT (SAMP	LE)				
70 IN.SQD.			MODEL NO	0274	
DO IN.SQD.			MODEL NO.	8374	
15 IN. SQD.			TEST DATE	11204	
DO IN.SQD.			TEST CELL	20200	
0			TEST NO.	2019	
0			T.C. S/N	1	
			INJ. S/N	TS-4	
TED DATA			QT.	CONDS	
DIMENSION	STATIC	26.0			
711E1131611	314110	20.0	27.0	28.0	29.0
BIU/SEC		1204		_	
		.7394	•7380	.7424	-7335
BTU/SEC		•6511	•6520	•6535	.657 0
BTU/SEC		.7217	.7012	.7038	•7115
BTU/SEC		•5726	•6040	-6416	. 6506
BTU/SEC		•6311	•6402	-6446	-6350
BTU/SEC		.6798	.6761	•6843	.666 8
BTU/SEC		-6885	-6888	•6920	-6848
BTU/SEC		. 7650	.7676	.7629	.7674
BTU/SEC		•7475	. 7496	-7488	-7453
BTU/SEC		.7564	. 7500	• 7459	•7466
BTU/SEC		-6864	•6829	-6835	.6782
BTU/SEC		.7066	-7188	.7084	.7111
BTU/SEC		0070	0074	0079	0079
BTU/SFC		•6060	-6042	-6068	•6056
BTU/SEC		.7041	-7021	.7017	.6968
BTU/SEC		•6381	.6280	-6326	-6333
C/IN.SQD		1.4614	1.4586	1.4673	1.4499
C/IN.SQD		1.2869	1.2887	1.2917	1.2985
C/IN.SQD		1.4265	1.3859	1.3912	1.4063
C/IN.SQD		1.1318	1.1938	1.2681	1.2858
C/IN.SQD		1.2474	1.2654	1.2741	1.2550
C/IN.SQD		1.3437	1.3364	1.3525	1.3179
C/IN.SQD		1.3608	1.3614	1.3678	1.3535
C/IN.SQD		1.5120	1.5171	1.5079	1.5167
C/IN.SQD		1.4775	1.4816	1.4801	1.4731
C/IN.SQD		1.4950	1.4825	1.4743	1.4756
C/IN.SQD		1.3567	1.3497	1.3510	1.3405
C/IN.SQD		1.3967	1.4207	1.4001	1.4056
C/IN.SQD		0139	0148	0157	0157
C/IN.SQD		1.1978	1.1943	1.1994	1.1970
C/IN.SQD		1.3917	1.3878	1.3869	
C/IN. SQD		1.2612	1.2413	1.2504	1.3773
		4-5012	106713	1.4.6.30.4	1.2518

ELL AEROSYSTEMS COMPANY _____

PORT (SAMPL)

D IN-500.					
		ν.	ODEL NO.	8374	
D IN.SQD.		T	EST DATE	11204	
5 IN.SQD.			EST CELL	20200	
o in.sod.			EST NO.	2019	
D			.C. S/N	1	
0		I	NJ. S/N	TS-4	
ED DATA			SEC	CONDS	
IMENSION	STATIC	26.0	27.0	28.0	29.0
DEG.FAHR	86.2	176.6	176.9	177.1	177.5
DEG.FAHR	84.6	178.8	179.4	179.1	179.2
DEG.FAHR	84.8	183.7	183.9	184.0	184.2
DEG.FAHR	87.0	190.6	190.3	190.6	190.8
DEG.FAHR	87.1	192.6	192.7	193.0	193.5
DEG.FAHR	85.4	186.7	186.7	186.8	187.2
DEG.FAHR	84.0	184.2	184.6	184.8	184.3
DEG.FAHR	84.7	170.4	170.4	170.5	170.3
DEG.FAHR	83.8	168.8	168.7	168.6	168.8
			170.0	169.9	169.9
DEG.FAHR	86.1	172.2	172.5	172.4	172.6
DEG.FAHR	85.7	170.9	168.1	168.0	168.1
DEG.FAHR	84.4	168.3	168.6	168.8	168.7
DEG.FAHR	84.0	170.0	170.0	170.0	169.6
DEG.FAHR	84.0	173.4	173.9	173.8	173.1
DEG.FAHR	84.5	172.8	172.9	173.0	172.6
DEG.FAHR		62.2	62.3	62.4	63-1
DEG.FAHR		66.4	66.7	66.4	66.3
DEG.FAHR		62.8	63.8	63.8	63.5
DEG.FAHR		75.4	73.4	71.9	71.6
DEG.FAHR		75.2	74.7	74.8	75.7
DEG.FAHR		72.1	72.1	71.8	73.0
DEG. FAHR		73.2	73.4	73.5	73.2
DEG. FAHR		58.6	58.3	58.6	58.2
DEG.FAHR		59.5	59.2	59-1	59.4
DEG. FAHR		60.5	60.6	60.7	60.6
DEG.FAHR		61.7	62.0	61.9	62.2
DEG.FAHR		59.4	56.1	56.3	56.3
DEG.FAHR		83.7	84.1	84.3	84-1
		64.0	63.9	63.8	63.4
DEG.FAHR					
		63.2	63.7 65.8	63.6 65.8	63.1 65.3

```
PREI
  BAROMETRIC PRESS
                     14.30
                            PSIA
  AMB. AIR TEMP.
                       37.
                            DEG. FAHR.
  TIME OF RUN
                     2011.
                            HRS.
  LENGTH OF RUN
                     30.50
                            SEC.
  FUEL SP.GR.60/60
                     .875
  OXID-SP-GR-60/60
                     1.456
                                                     AVE
  ITEM
  NO.
          PARAMETER
                     DESCRIPTION
 134.
       WATER FLOW THRU SEGMENT
                                   NO. 1
 135.
       WATER FLOW THRU SEGMENT
                                   NO. 2
 136.
       WATER FLOW THRU SEGMENT
                                   NO. 3
 137.
       WATER FLOW THRU SEGMENT
                                   NO. 4
       WATER FLOW THRU SEGMENT
                                   NO. 5
 138.
 139.
                                   NO. 6
       WATER FLOW THRU SEGMENT
 140.
       WATER FLOW THRU SEGMENT
                                   NO. 7
 141.
       WATER FLOW THRU SEGMENT
                                   NO. 8
       WATER FLOW THRU SEGMENT
 142.
                                   NO. 9
       WATER FLOW THRU SEGMENT
 143.
                                   NO.10
144.
       WATER FLOW THRU SEGMENT
                                   NO.11
 145.
       WATER FLOW THRU SEGMENT
                                   NO.12
 146.
       WATER FLOW THRU SEGMENT
                                   NO.13
 147.
       WATER FLOW THRU SEGMENT
                                   NO.14
       WATER FLOW THRU SEGMENT
 148.
                                   NO.15
       WATER FLOW THRU SEGMENT
 149.
                                   NO.16
150.
       CHAMBER HEAT TRANSFER RATE NO. 1
151.
       CHAMBER HEAT TRANSFER RATE NO. 2
152.
       CHAMBER HEAT TRANSFER RATE NO. 3
153.
       CHAMBER HEAT TRANSFER RATE NO. 4
154.
       CHAMBER HEAT TRANSFER RATE NO. 5
155.
       CHAMBER HEAT TRANSFER RATE NO. 6
156.
       CHAMBER HEAT TRANSFER RATE NO. 7
157.
       CHAMBER HEAT TRANSFER RATE NO. 8
158.
       CHAMBER HEAT TRANSFER RATE NO. 9
159.
       CHAMBER HEAT TRANSFER RATE NO.10
160.
       CHAMBER HEAT TRANSFER RATE NO.11
161.
       CHAMBER HEAT TRANSFER RATE NO.12
       CHAMBER HEAT TRANSFER RATE NO.13
162.
       CHAMBER HEAT TRANSFER RATE NO.14
163.
164.
       CHAMBER HEAT TRANSFER RATE NO.15
```

CHAMBER HEAT TRANSFER RATE NO.16

165.

BELL AEROSYSTEMS COMPANY _____

I REPORT (SAMPLE	E)				
0.270 IN.SQD.		M	ODEL NO.	8374	
)9500 IN.SQD.			EST DATE	11204	
59015 IN. SQD.			EST CELL	20200	
.000 IN.SQD.			EST NO.	2019	
0			.C. S/N	1	
Ö			NJ. S/N	TS-4	
APUTED DATA		•	37.11	15-1	
			SEC	CONDS	
DIMENSION	STATIC	26.0	27.0	28.0	29.0
LBS/SEC		.0264	.0263	.0263	.0263
LBS/SEC		•0236	.0235	.0235	.0235
LBS/SEC		.0201	.0200	•0200	.0200
LBS/SEC		.0205	-0204	-0204	.0203
LBS/SEC		.0210	•0 209	.0209	.0209
LBS/SEC		.0234	.0233	.0233	.0233
LBS/SEC		•0256	.0255	•0255	•0255
LBS/SEC		•028 4	•0283	.0283	-0283
LBS/SEC		•0296	.0294	.0295	•0294
LBS/SEC		.0303	-0302	.0302	.0301
LBS/SEC		-0284	.0283	.0283	.0283
LBS/SEC		•0277	.0276	.0276	-0276
LBS/SEC		.0297	•0296	•0296	•0296
LBS/SEC		.0279	-0278	-0278	.0277
LBS/SEC		.0272	.0270	.0270	.0270
LBS/SEC		.0283	.0281	.0282	.0281
BTU/SEC		1.6526	1.6487	1.6510	1.6676
BTU/SEC		1.5775	1.5777	1.5716	1.5665
BTU/SEC		1.2668	1.2804	1.2818	1.2731
BTU/SEC		1.5505	1.5017	1.4724	1.4628
BTU/SEC		1.5878	1.5692	1.5717	1.5880
BTU/SEC		1.6970	1.6886	1.6836	1.7073
BTU/SEC		1.8866	1.8814	1.8865	1.8746
BTU/SEC		1.6742	1.6586	1.6678	1.6538
BTU/SEC		1.7691	1.7506	1.7507	1.7542
BTU/SEC		1.8439	1.8381	1.8414	1.8357
BTU/SEC		1.7653	1.7643	1.7630	1.7676
BTU/SEC		1.6563	1.5557	1.5641	1.5603
BTU/SEC		2.5030	2.5004	2.5092	2.4990
BTU/SEC BTU/SEC		1.7941	1.7835	1.7824	1.7681
		1.7254	1.7293	1.7293	1.7103
BTU/SEC		1.8610	1.8622	1.8625	1.8460

ELL AEROSYSTEMS COMPANY

	EPORT	(SAMPLE)				
	0 IN-S	son.			MODEL NO.	8374	
	0 IN-S				TEST DATE	11204	
	5 IN-5				TEST CELL	20200	
	0 IN. S				TEST NO.	2019	
ı	0 IN.5				T.C. S/N	1	•
_	0				INJ. S/N	TS-4	
-		ATA					
					SEC	ONDS	
-	IMENSI	ON	STATIC	26.0	27.0	28.0	29.0
4	C/IN.S			1.3045	1.3014	1.3032	1.3163
	C/IN.S			1.2452	1.2454	1.2406	1.2365
	C/IN.S			.9999	1.0107	1.0118	1.0049
	C/IN-S			1.2239	1-1854	1.1622	1.1546
	C/IN.S	-		1.2533	1.2387	1.2406	1.2535
	C/IN.S			1.3395	1.3329	1.3289	1.3476
	C/IN-S			1.4892	1.4851	1.4891	1.4797
	C/IN.S			1.3215	1.3092	1.3165	1.3054
	C/IN-S			1.3964	1.3818	1.3819	1.3846
I	C/IN.S			1.4555	1.4509	1.4535	1.4490
	C/IN.S			1.3934	1.3926 1.2280	1.3916	1.3953
	C/IN.S			1.9757	1.2280	1.2347 1.9806	1.2316 1.9726
	C/IN.			1.4161	1.4078	1.4069	1.3956
	C/IN.			1.3619	1.3650	1.3650	1.3500
	C/IN.			1.4689	1.4699	1.4702	1.4571
_	BTU/S			2.3920	2.3866	2.3934	2.4012
	BTU/S			2.2286	2.2297	2.2252	2.2235
	BTU/			1.9885	1.9816	1.9856	1.9846
	BTU/S			2.1231	2.1057	2.1140	2.1133
	BTU/			2.2189	2.2095	2.2163	2.2230
	BTU/			2.3769	2.3648	2.3679	2.3741
	BTU/S			2.5751	2.5702	2.5785	2.5594
	BTU/S			2.4392	2.4261	2.4307	2.4212
	BTU/S			2.5166	2.5001	2.4996	2.4995
_	BTU/S			2.6003	2.5882	2.5873	2.5823
حد	BTU/S			2.4517	2.4471	2.4466	2.4458
	BTU/			2.3629	2.2745	2.2725	2.2715
	BTU/S			2.4959	2.4929	2.5012	2.4910
	BTU/S			2.4001	2.3878	2.3892	2.3737
	BTU/S	SEC		2.4295	2.4314	2.4310	2.4071
	BTU/S	SEC		2.4991	2.4903	2.4951	2.4793

BELL AEROSYSTEMS COMPANY _____

REPORT (SAMPLE)

.270 IN.SQU.		;	MODEL NO.	8374	
9500 IN.SUD.		1	TEST DATE	11204	
9015 IN.SQD.		1	TEST CELL	20200	
.000 IN.SQD.		1	TEST NO.	2019	
0		1	1.C. S/N	1	
0			INJ. S/N	TS-4	
PUTED DATA					
			SE	CONDS	
DIMENSION	STATIC	26.0	27.0	28.0	29.0
/SEC/IN.SQD		1.3493	1.3462	1.3500	1.3544
/SEC/IN.SOD		1.2571	1.2577	1.2552	1.2542
/SEC/IN.SQD		1.1217	1.1178	1.1200	1.1194
/SEC/IN.SQD		1.1976	1.1878	1.1924	1.1921
/SEC/IN.SQD		1.2516	1.2463	1.2502	1.2539
/SEC/IN.SQD		1.3407	1.3339	1.3357	1.3392
/SEC/IN.SQD		1.4526	1.4498	1.4545	1.4437
/SEC/IN.SQD		1.3759	1.3685	1.3711	1.3657
/SEC/IN.SQD		1.4196	1.4103	1.4099	1.4099
/SEC/IN.SQD		1.4668	1.4599	1.4594	1.4566
/SEC/IN.SQD		1.3830	1.3804	1.3801	1.3796
/SEC/IN.SQD		1.3329	1.2830	1.2819	1.2813
/SEC/IN.SQD		1.4079	1.4062	1.4109	1.4051
/SEC/IN.SQD		1.3538	1.3469	1.3477	1.3389
/SEC/IN.SQD		1.3704	1.3715	1.3713	1.3578
/SEC/IN.SQD		1.4097	1.4047	1.4074	1.3985

APPENDIX II COMPUTER PROGRAMS

PROGRAM NUMBER - 3262

TITLE ----- THREE-DIMENSIONAL TRANSIENT HEAT TRANSFER PROGRAM WITH ARBITRARY INITIAL AND BOUNDARY CONDITIONS

DESCRIPTION - - - -Program 3262 is a generalized heat transfer program for computing the transient temperature distribution within a simple or complex network made up of as many as 150 nodes. This program is an advanced version of an earlier program, number 1740, that had somewhat less sophistication but has been in use for over five years. The new program is written in FORTRAN IV. Any or all nodes may be involved in a transfer of heat by conduction and/or radiation interchange with any or all other nodes in the same network. Radiation to space and incident solar and/or nocturnal radiation may be included. Temperature dependent material thermal properties may be functionally inputted. Initial and boundary conditions are imposed by relating nodes in the network to control nodes by conduction, convection, and/or radiation. For the control nodes, the known temperatures, and for convection the heat transfer film coefficients may be held constant or may vary with time. The film coefficients may be dependent upon the resulting temperatures of the network nodes. Known levels of heat flux versus time may also be applied to the network nodes. An additional option allows the setting of prescribed temperature limits versus time for selected network nodes. In this option the temperatures of the governed nodal points are computed and compared with the limits. The temperatures then assigned to the nodes will be less than, greater than, or equal to the limits, depending upon the instructions. The program output includes the network node temperatures at selected time intervals and, if desired, the values of heat flux by the various modes of heat transfer to or from selected nodal points in the network and to or from selected control nodes.

PROGRAM NUMBER - 1757

TITLE - - - - - - - THREE-DIMENSIONAL STEADY STATE HEAT TRANSFER PRO-GRAM WITH ARBITRARY BOUNDARY CONDITIONS

DESCRIPTION - - - - Program 1757 is a generalized heat transfer program for computing the steady state temperature distribution within a simple or complex network made up of as many as 80 nodal points. Any or all nodes may be involved in a transfer of heat by conduction, and/or radiation interchange with any or all other nodes in the same network. Conduction between nodes includes the effect of temperature dependent values of thermal conductivity. Boundary conditions are imposed by relating nodes in the network to control nodes of known temperatures by any or all modes of heat transfer - - conduction, convection, and radiation. Convection film coefficients between nodes in the network and control nodes may be dependent upon the resulting temperatures of the network nodes concerned. Known levels of heat flux also may be applied to the network. In addition to the steady state temperature distribution, the program output can include the values of heat flow by the various modes of heat transfer to or from selected nodal points in the network and to or from selected control nodes.

APPENDIX III INJECTOR CONFIGURATION DETAILS

Injector S/N	•	Outer Fuel	Injector Orifices Inner Fuel	Outer Ox.	Inner Ox.
T-1	Dia. (in.) Angle (°)	0.0197 30	0.0197 30	0.0310	
TF-2	Dia. (in.) Angle (°)	0.0210 30	0.0210 30		
TU-3	Dia. (in.) Angle (°)	0.0260 30	0.0210 50	0.03	330
TS-4	Dia. (in.) Angle (°)	0.0225	0.0200	0.0225	0.0250
TF-5	Dia. (in.) Angle (°)	0.0225 18	0.0160 30	0.0210 20	0.0250 10
TU-6	Dia. (in.) Angle (°)	0.0236 30	0.0196 50	0.03	350

CREDITS

The effort of the following NASA and JPL personnel and Bell Rockets Propulsion personnel culminated in the successful completion of the Model 8374 Experimental Auxiliary Rocket Engine Program (NAS7-305).

NASA AND JPL

Chief Liquid Propulsion NASA, OART Program Manager NASA, OART Technical Director JPL Contracting Officer NASA, W.O.O.

James Flannagan Robert Rollins David Evans Walter Hall

BELL

Program Manager

Technical Director Contract Administrator

Budget Analyst Thrust Chamber Design Engineer

Thrust Chamber Designer Fabrication Engineer Propellant Valve Design Engineer Thermal Analysis

Stress Engineer Propellant Performance Analysis A. Friona
W. Jackson
N. Roth
J. Weisbeck
R. Goerke
E. Morse
M. Drexhage
B. Matthews
J. Peckham
S. Esmond
F. Opiela
C. Schmidt

M. Drozdziel Dr. W. Gaubatz

J. Palumbo

DISTRIBUTION LIST

COPIES	RECIPIENT	COPIES	RECIPIENT	
	NASA Western Operations Office 150 Pico Boulevard, Santa Monica, California 90406	2	Langley Research Center Langley Station Hampton, Virginia 23365	
1 1 1	Office of Technical Information Contracts Management Division General Counsel for Patent Matters	2	Technical Librarian Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Technical Librarian Marshall Space Flight Center Huntsville, Alabama 35812 Technical Librarian	
4	Chief, Liquid Propulsion Experimental Systems, RPX Office of Advanced Research and Technology NASA Headquarters			
25	Washington, D. C. 20546 NASA Scientific and Technical Information Facil-	_		
	ity P. O. Box 33 College Park, Maryland 20740	2	Manned Spacecraft Center Houston, Texas 77001 Technical Librarian	
1	Mr. Vincent L. Johnson Director, Launch Vehicles and Propulsion, SV Office of Space Science and Applications NASA Headquarters, Washington, D. C. 20546	2	Western Operations Office 150 Pico Boulevard Santa Monica, California 90406 Technical Librarian	
1	Mr. Edward L. Gray Director, Advanced Manned Missions, MT Office of Manned Space Flight NASA Headquarters, Washington, D.C. 20546	2	John F. Kennedy Space Center, NASA Cocoa Beach, Florida 32931 Technical Librarian	
1	Mr. Clarence A Syvertson Mission Analysis Division NASA Ames Research Center	1	GOVERNMENT INSTALLATIONS Aeronautical Systems Division	
1	Moffett Field, California 24035 Mr. David D. Evans, 125-224 Jet Propulsion Laboratory 4800 Oak Grove Drive	•	Air Force Systems Command Wright-Patterson Air Force Base Dayton, Ohio 45433 Technical Librarian	
1	Pasedena, California 91103 Mr. Henry Pohl Auxiliary Propulsion Branch	1	Air Force Missile Development Center Holloman Air Force Base, New Mexico Technical Librarian	
	Manned Spacecraft Center Houston, Texas 77001	1	Air Force Missile Test Center Patrick Air Force Base, Florida	
1	Mr. John Scheller, MAT Office of Manned Space Flight NASA Headquarters Washington, D. C. 20546	1	Technical Librarian Air Force Systems Division Air Force Unit Post Office Los Angeles 45, California Technical Librarian	
	NASA FIELD CENTERS	1	Arnold Engineering Development Center	
2	Ames Research Center Moffett Field, California 94035 Technical Librarian		Arnold Air Force Station Tullahoma, Tennessee Technical Librarian	
2	Goddard Space Flight Center Greenbelt, Maryland 20771 Technical Librarian	1	Bureau of Naval Weapons Department of the Navy Washington, D. C. Technical Librarian	
2	Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, California 91103 Technical Librarian	1	Defense Documentation Center Headquarters Cameron Station, Building 5 5010 Duke Street Alexandria, Virginia 22314 ATTN: TISIA Technical Librarian	

COPIES	RECIPIENT	COPIES	RECIPIENT
1	Headquarters, U. S. Air Force Washington 25, D. C. Technical Librarian	1	Astropower Laboratory Douglas Aircraft Company 2121 Paularino Newport Beach, California 92663
1	Picatinny Arsenal Dover, New Jersey 07801 Technical Librarian	1	Technical Librarian
1	Air Force Rocket Propulsion Laboratory Research and Technology Division Air Force Systems Command	1	Atlantic Research Corporation Edsall Road and Shirley Highway Alexandria, Virginia 22314 Technical Librarian
	Edwards, California 93523 Technical Librarian	1	Beech Aircraft Corporation Boulder Division
1	U. S. Atomic Energy Commission Technical Information Services Box 62 Oak Ridge, Tennessee		Box 631 Boulder, Colorado Technical Librarian
1	Technical Librarian U.S. Army Missile Command Redstone Arsenal	1	Bell Aerosystems Company P. O. Box 1 Buffalo, New York 14240 Technical Librarian
	Alabama 35809 Technical Librarian	1	Bendix Systems Division Bendix Corporation
1	U. S. Naval Ordnance Test Station China Lake California 93557 Technical Librarian		3300 Plymouth Road Ann Arbor, Michigan Technical Librarian
1	Chemical Propulsion Information Agency Applied Physics Laboratory 8621 Georgia Avenue	1	Boeing Company P. O. Box 3707 Seattle, Washington 98124 Technical Librarian
	Silver Spring, Maryland 20910 Technical Librarian	1	Missile Division Chrysler Corporation P. O. Box 2628
1	INDUSTRY CONTRACTORS Aerojet-General Corporation P. O. Box 296		Detroit, Michigan 48231 Technical Librarian
1	Azusa, California 91703 Technical Librarian Aerojet-General Corporation	1	Wright Aeronautical Division Curtiss-Wright Corporation Wood-Ridge, New Jersey 07075 Technical Librarian
•	P. O. Box 1947 Technical Library, Bldg. 2015, Dept. 2410 Sacramento, California 95809 Technical Librarian	1	Missile and Space Systems Division Douglas Aircraft Company, Inc. 3000 Ocean Park Boulevard Santa Monica, California 90406
1	Aeronautronic Philco Corporation Ford Road Newport Beach, California 92663 Technical Librarian	1	Technical Librarian Aircraft Missile Division Fairchild Hiller Corporation Hagerstown, Maryland 10 Technical Librarian
1	Aerospace Corporation 2400 East El Segundo Boulevard P. O Box 95085 Los Angeles, California 90045 Technical Librarian	1	General Dynamics/Astronautics Library & Information Services (128-00) P. O. Box 1128 San Diego, California 92112 Technical Librarian
1	Arthur D. Little, Inc. 20 Acorn Park Cambridge, Massachusetts 02140 Technical Librarian	1	Re-Entry Systems Department General Electric Company 3198 Chestnut Street
1	Astrosystems International, Inc. 1275 Bloomfield Avenue Fairfield, New Jersey 07007 Technical Librarian		Philadelphia, Pennsylvania 19101 Technical Librarian

COPIES	RECIPIENT	COPIES	RECIPIENT
1	Advanced Engine & Technology Dept. General Electric Company Cincinnati, Ohio 45215 Technical Librarian	1	Space General Corporation 9200 East Flair Avenue El Monte, California 91734 Technical Librarian
1	Grumman Aircraft Engineering Corp. Bethpage, Long Island New York Technical Librarian	1	Stanford Research Institute 333 Ravenswood Avenue Menlo Park, California 94025 Technical Librarian
1	Ling-Temco-Vought Corporation Astronautics P. O. Box 5907 Dallas, Texas 75222 Technical Librarian	1	Space Technology Laboratories TRW Incorporated One Space Park Redondo Beach, California 90278 Technical Librarian
1	Lockheed California Company 2555 North Hollywood Way Burbank, California 91503 Technical Librarian	1	TAPCO Division TRW, Incorporated 23555 Euclid Avenue Cleveland, Ohio 44117 Technical Librarian
1	Lockheed Missiles and Space Company ATTN: Technical Information Center P. O. Box 504 Sunnyvale, California 94088 Technical Librarian	1	Thickol Chemical Corporation Huntsville Division Huntsville, Alabama Technical Librarian
1	Lockheed Propulsion Company P. O. Box 111 Redlands, California 92374 Technical Librarian	. 1	Research Laboratories United Aircraft Corporation 400 Main Street East Hartford, Connecticut 06108 Technical Librarian
1	The Marquardt Corporation 16555 Saticoy Street Van Nuys, California 91409 Technical Librarian	1	United Technology Center 587 Methilda Avenue P. O. Box 358
1	Baltimore Division Martin Marietta Corporation Baltimore, Maryland 21203 Technical Librarian	1	Sunnyvale, California 94088 Technical Librarian Aerospace Operations Walter Kidde and Company, Inc.
. 1	Denver Division Martin Marietta Corporation P. O. Box 179		567 Main Street Belleville, New Jersey 07109 Technical Librarian
	Denver, Colorado 80201 Technical Librarian	1	Florida Research and Development Pratt and Whitney Aircraft United Aircraft
1	McDonnell Aircraft Corporation P. O. Box 516 Municipal Airport St. Louis, Missouri 63166 Technical Librarian	1	United Aircraft Corporation P. O. Box 2691 West Palm Beach, Florida 33402 Technical Librarian
1	Space & Information Systems Division North American Aviation, Inc. 12214 Lakewood Boulevard		Rocket Research Corporation 520 South Portland Street Seattle, Washington 98108 Technical Librarian
	Downey, California 90241 Technical Librarian		Astro-Electronics Division Radio Corporation of America Princeton, New Jersey 08540
1	Rocketdyne (Library 586-306) North American Aviation, Inc. 6633 Canoga Avenue		Technical Librarian Reaction Motors Division
	Canoga Park, California 91304 Technical Librarian		Thiokol Chemical Corporation Denville, New Jersey 07832 Technical Librarian
1	Northrop Space Laboratories 3401 West Broadway Hawthorne, California Technical Librarian	1	Republic Aviation Corporation Farmingdale Long Island, New York Technical Librarian