Discounting the Future in Systems Theory

Luca de Alfaro, UC Santa Cruz Tom Henzinger, UC Berkeley Rupak Majumdar, UC Los Angeles

Chess Review May 11, 2005 Berkeley, CA

A Graph Model of a System

Property \diamondsuit c ("eventually c")

Property $\Diamond c$ ("eventually c")

∃ ◇c ... some trace has the property ◇c

Property \diamondsuit c ("eventually c")

 $\exists \diamondsuit c$

.. some trace has the property $\Diamond c$

∀ ♦c

.. all traces have the property $\Diamond c$

Richer Models

Concurrent Game

player "left"
player "right"

-for modeling open systems [Abramsky, Alur, Kupferman, Vardi, ...]
-for strategy synthesis ("control") [Ramadge, Wonham, Pnueli, Rosner]

Property \diamondsuit c

 $\langle\langle \text{left}\rangle\rangle \diamondsuit c$... player "left" has a strategy to enforce $\diamondsuit c$

Property \diamondsuit c

 $\langle\langle \operatorname{left} \rangle\rangle \diamond c \qquad \dots \\ \langle \operatorname{left} \rangle \diamond c \qquad \dots$

. player "left" has a strategy to enforce $\Diamond c$

... player "left" has a randomized strategy to enforce \diamondsuit c

Qualitative Models

Trace: sequence of observations

Property p: assigns a reward to each trace

boolean rewards

Model m: generates a set of traces

(game) graph

Value(p,m): defined from the rewards of the

generated traces

 \mathbb{B} $\exists \text{ or } \forall \ (\exists \forall)$

Stochastic Game

right left	1	2
1	a: 0.6 b: 0.4	a: 0.5 b: 0.5
2	a: 0.1 b: 0.9	a: 0.2 b: 0.8

right left	1	2
1	a: 0.0 c: 1.0	a: 0.0 c: 1.0
2	a: 0.7 b: 0.3	a: 0.0 b: 1.0

Property \diamondsuit c

Probability with which player "left" can enforce $\Diamond c$?

Semi-Quantitative Models

Trace: sequence of observations

Property p: assigns a reward to each trace

boolean rewards

Model m: generates a set of traces

(game) graph

Value(p,m): defined from the rewards of the

generated traces $[0,1]\subseteq\mathbb{R}$

sup or inf (sup inf)

A Systems Theory

Algorithm for computing Value(p,m) over models m

Distance between models w.r.t. property values

A Systems Theory

ω-regular properties

Class of properties p over traces

Algorithm for computing Value(p,m) over models m

μ-calculus

GRAPHS

Distance between models w.r.t. property values

bisimilarity

Transition Graph

Q

 δ : $Q o 2^Q$

states

transition relation

Graph Regions

 \bigcirc

 $\delta \colon \: Q \to 2^Q$

 $\mathfrak{R} = [Q \to B]$

 $\exists pre, \forall pre: \Re \rightarrow \Re$

states transition relation

regions

Graph Property Values: Reachability

 $\exists \Diamond R$

Given R⊆Q, find the states from which some trace leads to R.

Graph Property Values: Reachability

$$\exists \lozenge R = (\mu X) (R \vee \exists pre(X))$$

Given R⊆Q, find the states from which some trace leads to R.

Graph Property Values: Reachability

$$\forall \lozenge R = (\mu X) (R \lor \forall pre(X))$$

Given R⊆Q, find the states from which all traces lead to R.

Concurrent Game

 Σ_{l}, Σ_{r} $\delta: \mathbf{Q} \times \Sigma_{l} \times \Sigma_{r} \to \mathbf{Q}$

states

moves of both players

transition function

Game Regions

 \mathbf{C}

 $\Sigma_{\mathsf{l}}, \Sigma_{\mathsf{r}}$

δ: $\mathbf{Q} × Σ_{\mathbf{I}} × Σ_{\mathbf{r}} → \mathbf{Q}$

 $\mathfrak{R} = [Q \to B]$

Ipre, rpre: $\Re \to \Re$

states moves of both players

transition function

regions

Game Property Values: Reachability

$\langle\langle \text{left} \rangle\rangle \diamondsuit R$

Given $R\subseteq Q$, find the states from which player "left" has a strategy to force the game to R.

Game Property Values: Reachability

$$\langle\langle left \rangle\rangle \diamondsuit R = (\mu X) (R \lor lpre(X))$$

Given R⊆Q, find the states from which player "left" has a strategy to force the game to R.

An Open Systems Theory

ω-regular properties

Class of winning conditions p over traces

Distance between models w.r.t. property values

Algorithm for computing Value(p,m) over models m

(lpre,rpre) fixpoint calculus

alternating bisimilarity

[Alur, H, Kupferman, Vardi]

An Open Systems Theory

ω-regular properties ⟨⟨left⟩⟩◇R

Class of winning conditions p over traces

Algorithm for computing Value(p,m) over models m

(lpre,rpre) fixpoint calculus

 $(\mu X) (R \vee Ipre(X))$

Every deterministic fixpoint formula φ computes Value(p,m), where p is the linear interpretation [Vardi] of φ.

An Open Systems Theory

Two states agree on the values of all fixpoint formulas iff they are alternating bisimilar [Alur, H, Kupferman, Vardi].

Algorithm for computing Value(p,m) over models m

(lpre,rpre) fixpoint calculus

alternating bisimilarity

Stochastic Game

 $\Sigma_{\rm l}$, $\Sigma_{\rm r}$

states

moves of both players

δ: $Q \times \Sigma_I \times \Sigma_r \rightarrow Dist(Q)$ probabilistic transition function

Quantitative Game Regions

$$\Sigma_{\mathsf{l}}, \Sigma_{\mathsf{r}}$$

$$\mathfrak{R} = [Q \rightarrow [0,1]]$$

states

moves of both players

δ: $Q \times \Sigma_I \times \Sigma_r \rightarrow Dist(Q)$ probabilistic transition function

quantitative regions

lpre, rpre: $\Re \rightarrow \Re$

 $Ipre(R)(q) = (\sup \sigma_{l} \in \Sigma_{l}) (\inf \sigma_{r} \in \Sigma_{r}) R(\delta(q, \sigma_{l}, \sigma_{r}))$

Quantitative Game Regions

 \bigcirc

$$\Sigma_{\rm l}$$
, $\Sigma_{\rm r}$

δ: $Q \times \Sigma_I \times \Sigma_r \rightarrow Dist(Q)$ probabilistic transition function

$$\mathfrak{R} = [Q \rightarrow [0,1]]$$

 \mathbb{B}

states moves of both players

quantitative regions

Ipre, rpre:
$$\Re \rightarrow \Re$$

$$Ipre(R)(q) = (\sup \sigma_l \in \Sigma_l) (\inf \sigma_r \in \Sigma_r) R(\delta(q, \sigma_l, \sigma_r))$$

$$(\mu X) (c \lor Ipre(X))$$

right left	1	2
1	a: 0.6 b: 0.4	a: 0.5 b: 0.5
2	a: 0.1 b: 0.9	a: 0.2 b: 0.8

right left	1	2
1	a: 0.0 c: 1.0	a: 0.0 c: 1.0
2	a: 0.7 b: 0.3	a: 0.0 b: 1.0

$$(\mu X) (c \lor Ipre(X))$$

right left	1	2
1	a: 0.6 b: 0.4	a: 0.5 b: 0.5
2	a: 0.1 b: 0.9	a: 0.2 b: 0.8

right left	1	2
1	a: 0.0 c: 1.0	a: 0.0 c: 1.0
2	a: 0.7 b: 0.3	a: 0.0 b: 1.0

 $(\mu X) (c \lor Ipre(X))$

right left	1	2
1	a: 0.6 b: 0.4	a: 0.5 b: 0.5
2	a: 0.1 b: 0.9	a: 0.2 b: 0.8

right left	1	2
1	a: 0.0 c: 1.0	a: 0.0 c: 1.0
2	a: 0.7 b: 0.3	a: 0.0 b: 1.0

$$(\mu X) (c \lor Ipre(X))$$

right left	1	2
1	a: 0.6 b: 0.4	a: 0.5 b: 0.5
2	a: 0.1 b: 0.9	a: 0.2 b: 0.8

right left	1	2
1	a: 0.0 c: 1.0	a: 0.0 c: 1.0
2	a: 0.7 b: 0.3	a: 0.0 b: 1.0

$$(\mu X) (c \lor Ipre(X))$$
 $\lor = pointwise max$

In the limit, the deterministic fixpoint formulas work for all ω-regular properties [de Alfaro, Majumdar].

A Probabilistic Systems Theory

ω-regular properties

Class of properties pover traces

Distance between models w.r.t. property values

Algorithm for computing Value(p,m) over models m

quantitative fixpoint calculus

quantitative bisimilarity

[Desharnais, Gupta, Jagadeesan, Panangaden]

A Probabilistic Systems Theory

quantitative ω-regular properties

MARKO\

DECISION

PROCESSES

max expected value of satisfying ◇R

Algorithm for computing Value(p,m) over models m

quantitative fixpoint calculus

 $(\mu X) (R \vee \exists pre(X))$

Every deterministic fixpoint formula φ computes expected Value(p,m), where p is the linear interpretation of φ.

Qualitative Bisimilarity

e:
$$Q^2 \to \{0,1\}$$

... equivalence relation

F

... function on equivalences

$$F(e)(\mathbf{q},\mathbf{q}') = 0$$
$$= mir$$

```
F(e)(q,q') = 0 if q and q' disagree on observations
            = min { e(r,r') \mid r \in \exists pre(q) \land r' \in \exists pre(q') }
                                                                else
```

Qualitative bisimilarity

... greatest fixpoint of F

Quantitative Bisimilarity

```
d: Q^2 \rightarrow [0,1] ... pseudo-metric ("distance")

F ... function on pseudo-metrics

F(d)(q,q') = 1 \qquad \text{if } q \text{ and } q' \text{ disagree on observations} \\ \approx \max \text{ of } \sup_{l} \inf_{r} d(\delta(q,l,r),\delta(q',l,r)) \\ \sup_{r} \inf_{l} d(\delta(q,l,r),\delta(q',l,r)) \qquad \text{else}

Quantitative bisimilarity ... greatest fixpoint of F
```

Natural generalization of bisimilarity from binary relations to pseudo-metrics.

A Probabilistic Systems Theory

Two states agree on the values of all quantitative fixpoint formulas iff their quantitative bisimilarity distance is 0.

Algorithm for computing Value(p,m) over models m

Distance between models w.r.t. property values

quantitative fixpoint calculus

quantitative bisimilarity

Great -BUT ...

1 The theory is too precise.

Even the smallest change in the probability of a transition can cause an arbitrarily large change in the value of a property.

2 The theory is not computational.

We cannot bound the rate of convergence for quantitative fixpoint formulas.

Solution: Discounting

Economics:

A dollar today is better than a dollar tomorrow.

Value of \$1.- today: 1

Tomorrow: α for discount factor $0 < \alpha < 1$

Day after tomorrow: α^2

etc.

Solution: Discounting

Economics:

A dollar today is better than a dollar tomorrow.

Value of \$1.- today: 1

Tomorrow: α for discount factor $0 < \alpha < 1$

Day after tomorrow: α^2

etc.

Engineering:

A bug today is worse than a bug tomorrow.

Discounted Reachability

Reward (
$$\diamondsuit_{\alpha} c$$
) = α^{k} if c is first true after k transitions 0 if c is never true

The reward is proportional to how quickly c is satisfied.

Discounted Property \diamondsuit_{α} c

$$\exists \diamondsuit_{\alpha} \mathbf{c}$$

Discounted Property \diamondsuit_{α} c

 $\exists \diamondsuit_{\alpha} \mathbf{c}$

Discounted fixpoint calculus: $pre(\phi) \rightarrow \alpha \cdot pre(\phi)$

Fully Quantitative Models

Trace: sequence of observations

Property p: assigns a reward to each trace

real reward

Model m: generates a set of traces

(game) graph

Value(p,m): defined from the rewards of the

 $[0,1] \subseteq \mathbb{R}$ generated traces

sup or inf (sup inf)

Discounted Bisimilarity

```
d: Q^2 \rightarrow [0,1] ... pseudo-metric ("distance")

F ... function on pseudo-metrics

F(d)(q,q') = 1 \quad \text{if } q \text{ and } q' \text{ disagree on observations} \\ \approx \max \text{ of } \sup_{l} \inf_{r} d(\delta(q,l,r),\delta(q',l,r)) \\ \sup_{r} \inf_{l} d(\delta(q,l,r),\delta(q',l,r)) \quad \text{else}

Quantitative bisimilarity ... greatest fixpoint of F
```


A Discounted Systems Theory

discounted ω-regular properties

Class of winning rewards p over traces

Algorithm for computing Value(p,m) over models m

Distance between models w.r.t. property values

discounted fixpoint calculus

discounted bisimilarity

A Discounted Systems Theory

discounted ω-regular properties

Class of expected rewards p over traces

max expected reward \diamondsuit_{α} R achievable by left player

Algorithm for computing Value(p,m) over models m

deterministic fixpoint formula ϕ computes Value(p,m), where p is the linear

interpretation of ϕ .

Every discounted

discounted fixpoint calculus

(μ X) (R $\vee \alpha \cdot Ipre(X)$)

A Discounted Systems Theory

The difference between two states in the values of discounted fixpoint formulas is bounded by their discounted bisimilarity distance.

Algorithm for computing Value(p,m) over models m

Distance between models w.r.t. property values

discounted fixpoint calculus

discounted bisimilarity

Discounting is Robust

Continuity over Traces:

Every discounted fixpoint formula defines a reward function on traces that is continuous in the Cantor metric.

Continuity over Models:

If transition probabilities are perturbed by ε , then discounted bisimilarity distances change by at most $f(\varepsilon)$.

Discounting is robust against effects at infinity, and against numerical perturbations.

Discounting is Computational

The iterative evaluation of an α -discounted fixpoint formula converges geometrically in α .

(So we can compute to any desired precision.)

Discounting is Approximation

If the discount factor tends towards 1, then we recover the classical theory:

- $\lim_{\alpha \to 1} \alpha$ -discounted interpretation of fixpoint formula ϕ = classical interpretation of ϕ
- $\lim_{\alpha \to 1} \alpha$ -discounted bisimilarity = classical (alternating; quantitative) bisimilarity

Further Work

- Exact computation of discounted values of temporal formulas over finite-state systems [de Alfaro, Faella, H, Majumdar, Stoelinga].
- Discounting real-time systems: continuous discounting of time delay rather than discrete discounting of number of steps [Prabhu].

Conclusions

- Discounting provides a continuous and computational approximation theory of discrete and probabilistic processes.
- Discounting captures an important engineering intuition.

"In the long run, we're all dead." J.M. Keynes