

What is claimed is:

Claims:

1 1. A vertical semiconductor device structure, comprising:
2 a substrate defining a substantially horizontal plane;
3 a gate electrode projecting vertically from said substrate;
4 at least one semiconducting nanotube extending vertically through said gate
5 electrode between opposite first and second ends;
6 a gate dielectric electrically insulating said at least one semiconducting
7 nanotube from said gate electrode;
8 a source electrically coupled with said first end of said at least one
9 semiconducting nanotube; and
10 a drain electrically coupled with said second end of said at least one
11 semiconducting nanotube.

1 2. The semiconductor device structure of claim 1 wherein said source is
2 composed of a catalyst material effective for growing said at least one semiconducting
3 nanotube.

1 3. The semiconducting device structure of claim 1 wherein said drain is
2 composed of a catalyst material effective for growing said at least one semiconducting
3 nanotube.

1 4. The semiconductor device structure of claim 1 further comprising:
2 an insulating layer disposed between said drain and said gate electrode for
3 electrically isolating said drain from said gate electrode.

1 5. The semiconductor device structure of claim 1 further comprising:
2 an insulating layer disposed between said source and said gate electrode for
3 electrically isolating said source from said gate electrode.

1 6. The semiconducting device structure of claim 1 wherein said at least one
2 semiconducting nanotube is composed of arranged carbon atoms.

1 7. The semiconducting device structure of claim 1 wherein said at least one
2 semiconducting nanotube defines a channel region of a field effect transistor having a
3 channel along which current flow is regulated by application of a control voltage to
4 said gate electrode.

1 8. The semiconducting device structure of claim 1 wherein said at least one
2 semiconducting nanotube is oriented substantially perpendicular to said horizontal
3 plane.

1 9. The semiconducting device structure of claim 1 further comprising:
2 a plurality of semiconducting nanotubes extending vertically through said gate
3 electrode.

1 10. The semiconducting device structure of claim 1 wherein said gate dielectric is
2 disposed on said at least one semiconducting nanotube.

- 1 11. A method of forming a semiconductor device structure comprising:
2 forming a conductive pad on a substrate;
3 growing at least one semiconducting nanotube extending substantially
4 vertically from the conductive pad between a first end electrically coupled with the
5 conductive pad and a second free end;
6 electrically insulating the at least one semiconducting nanotube with a gate
7 dielectric;
8 forming a gate electrode electrically insulated from and overlying the
9 conductive pad with the at least one semiconducting nanotube extending vertically
10 through the gate electrode; and
11 forming a contact electrically coupled with the second end of the at least one
12 semiconducting nanotube and electrically insulated from the gate electrode.

- 1 12. The method of claim 11 wherein electrically insulating the at least one
2 semiconducting nanotube comprises:
3 encasing the at least one semiconducting nanotube inside the gate dielectric.

- 1 13. The method of claim 11 wherein forming the contact comprises:
2 removing the gate dielectric from the free end of the at least one
3 semiconducting nanotube; and
4 providing a metal feature operating as said contact.

- 1 14. The method of claim 13 further comprising:
2 forming an insulating layer on the gate electrode; and
3 recessing the insulating layer to expose the free end of the at least one
4 semiconducting nanotube.

1 15. The method of claim 11 wherein the at least one semiconducting nanotube is a
2 carbon nanotube and the conductive pad is formed of a catalyst material suitable for
3 growing carbon nanotubes, and growing the at least one semiconducting nanotube
4 further comprises:

5 exposing the conductive pad to a carbonaceous reactant under conditions
6 effective to incorporate carbon atoms into the carbon nanotube with a semiconducting
7 molecular structure.

1 16. The method of claim 11 wherein growing the at least one semiconducting
2 nanotube further comprises:

3 growing the at least one semiconducting nanotube by a chemical vapor
4 deposition technique.

1 17. The method of claim 11 wherein the free end of the at least one
2 semiconducting nanotube projects into a metal constituting the contact.

1 18. The method of claim 11 wherein the at least one semiconducting nanotube is
2 characterized by arranged carbon atoms.

1 19. The method of claim 11 wherein the at least one semiconducting nanotube
2 defines a channel region of a field effect transistor having a channel regulated by
3 application of a control voltage to the gate electrode.

1 20. The method of claim 11 wherein forming the gate electrode comprises:
2 applying an insulating layer on the conductive pad;
3 applying a conductive layer overlying the insulating layer; and
4 patterning the conductive layer to define the gate electrode.

- 1 21. The method of claim 20 wherein forming the contact comprises:
2 recessing the insulating layer to expose the free end of the at least one
3 semiconducting nanotube.

- 1 22. The method of claim 21 further comprising:
2 removing the gate dielectric from the free end of the at least one
3 semiconducting nanotube; and
4 providing a metal feature operating as said contact.

- 1 23. The method of claim 11 wherein said at least one semiconducting nanotube
2 defines a channel region of a field effect transistor having a channel along which
3 current flow is regulated by application of a control voltage to said gate electrode.

- 1 24. The method of claim 11 further comprising:
2 growing at least one conducting nanotube extending substantially vertically
3 from the conductive pad; and
4 destroying the at least one conducting nanotube before forming the gate
5 electrode.

- 1 25. A semiconductor device structure, comprising:
 - 2 a substrate defining a substantially horizontal plane;
 - 3 a conductive first plate disposed on said substrate,
 - 4 at least one nanotube projecting vertically from said first plate and electrically
 - 5 coupled with said first plate;
 - 6 a conductive second plate positioned vertically above said first plate; and
 - 7 a dielectric layer electrically isolating said second plate from said first plate
 - 8 and said at least one carbon nanotube.

- 1 26. The semiconductor device structure of claim 25 wherein said at least one
2 nanotube has a conducting molecular structure.

- 1 27. The semiconductor device structure of claim 25 wherein said at least one
2 nanotube has a semiconducting molecular structure.

- 1 28. The semiconducting device structure of claim 25 wherein said dielectric layer
2 defines a coating that encases said at least one nanotube.

1 29. A method of forming a semiconductor device structure comprising:
2 forming a conductive first plate on a substrate;
3 growing at least one nanotube extending substantially vertically from the first
4 plate that is electrically coupled with the first plate;
5 covering the at least one nanotube and the first plate with a dielectric layer;
6 and
7 forming a second plate overlying said first plate that is electrically insulated by
8 the dielectric layer from the at least one nanotube and the first plate.

1 30. The method of claim 29 wherein said at least one nanotube has a conducting
2 molecular structure.

1 31. The method of claim 29 wherein said at least one nanotube has a
2 semiconducting molecular structure.

1 32. The method of claim 29 wherein covering the at least one nanotube and the
2 first plate comprises:
3 encasing the at least one nanotube inside the dielectric layer.