

DIRECTION DU CENTRE SPATIAL DE TOULOUSE
SOUS DIRECTION BALLONS

Réf.: FIRBL-DCI-NPT-7733-CN

Version: 1.0

Date: 24/04/2015 Page: 1 / 17

INTERFACE ENTRE L'INSTRUMENT FIREBALL ET LA NACELLE POINTÉE

	Nom et Sigle	Date et Visa
Rédigé par	Frédéri MIRC DCT/BL/NB	
Accepté par	Isabelle ZENONE Jean-Marc NICOT DCT/SB/LV DCT/BL/NB	
Application Autorisée par	Frédéri MIRC DCT/BL/NB	

Applicabilité aux Systèmes Aérostatiques (cocher les systèmes concernés) :

BSO	BPS	MIR	BPCL	AEC
X				

Applicabilité aux Projets (cocher les projets concernés) :

VASCO	NOSYCA	FIRBL	PILOT	SCOUTM		
		Х				

Document géré en configuration : NON par	:	à compter du :	//
--	---	----------------	----

MODIFICATIONS

Version	Date	Objet
1.0	23/04/15	Création du document

SOMMAIRE

1.	OBJET	OBJET 4		
2.	DOCU	MENTS APPLICABLES ET DOCUMENTS DE REFERENCE		
3.	ABREV	VIATIONS ET LISTE DES AC/AD 4		
4.	GÉNÉF 4.1. 4.2.	RALITÉS 5 Schéma de principe 5 Référence horaire 6		
5.	INTERI 5.1. 5.2. 5.3.	FACE NUMERIQUE 7 Lien physique 7 Protocole 7 Messages 7		
	5.4.	 5.3.1. Liste des messages 7 5.3.2. Message de statut 8 5.3.3. Direction de visée μASC DTU 8 5.3.4. Direction de visée terrestre 9 5.3.5. Direction de visée OBC_GUIDER 9 5.3.6. Erreur de pointage en rotation 10 Modes de fonctionnement 11 		
	5.5.	 5.4.1. Mode IDLE 11 5.4.2. Mode RUN 11 Comportements dégradés 11 5.5.1. Conséquence du mode IDLE 11 5.5.2. Réception de messages invalides 11 		
6.		FACE ANALOGIQUE 12 Lien physique 12 Protocole 12 Comportements dégradés 12		
7.	ANNEX 7.1.	KE 13 Annexe 1 : Algorithme du CRC16 13		

1. OBJET

Dans le cadre du projet Fireball, une communication nécessite d'être mise en place entre le calculateur du Guider (OBC_GUIDER) et le calculateur NPT (OBC_NPT).

La communication entre ces deux calculateurs permet d'échanger des données utiles au pointage et à la gestion du basculement entre la source de pointage en provenance de la nacelle (µASC DTU par exemple) et la source de pointage en provenance de l'instrument Fireball.

L'objet du présent document est de décrire l'interface informatique entre le calculateur OBC_GUIDER et le calculateur OBC_NPT des nacelles pointées.

2. DOCUMENTS APPLICABLES ET DOCUMENTS DE REFERENCE

Référence	Titre du document
[DR1] ASC-DTU-ICD-3003 V1.3	µAdvanced Stellar Compass Electrical Interface Control Document
[DR2] ECSS-E-70-41A	ECSS Ground systems and operations —Telemetry and telecommand packet utilization
[DR3] ASC-DTU-ICD-3004 V2_1	TM/TC Interface Control Document
[DR4]	Architecture électrique du contrôle - commande MISSION FIREBALL n°3

3. ABREVIATIONS ET LISTE DES AC/AD

Sigle	Définition	
OBC_NPT	Calculateur des nacelles pointées	
OBC_GUIDER	Calculateur du Guider	
μASC (DTU)	Senseur stellaire du DTU	
MPA	Module de Pointage en Azimut	
MCA	Module de Commande d'axe	
MPF	Module de Pointage Fin	
GPS	Global Positioning System	
PPS	Pulse Per Second	

AC/AD	Paragraphe	Intitulé succinct
AC	§5.3.5	Période d'émission de l'erreur de rotation de l'OBC_GUIDER à l'OBC_NPT
AC	§5.3.6	Période d'émission de la direction de visée de l'OBC_GUIDER à l'OBC_NPT
AC	§6.2	Période d'échantillonnage des écarts analogiques ainsi que la précision du signal.

4. GÉNÉRALITÉS

1.1. SCHÉMA DE PRINCIPE

Le schéma de principe est représenté ci-dessous :

Les rectangles en bleus et blancs sont des éléments du C&C des nacelles pointées. L'élément en jaune (Guider) est l'OBC_GUIDER avec lequel des interfaces sont partagées.

L'OBC représente l'OBC_NPT et le Guider l'OBC_GUIDER.

Le μ ASC est le senseur stellaire nocturne. Il délivre la direction de visée (αd , δd , θd) directement à l'OBC_NPT qui la retransmet à l'OBC_GUIDER. L'OBC_NPT fournit la direction de visée courante (AZDV, ELDV, θ DV) à l'OBC_GUIDER.

L'OBC_GUIDER délivre à l'OBC_NPT la direction de visée (α_g , δ_g , θ_g) et l'erreur de pointage en rotation $\Delta\theta_g$. L'OBC_GUIDER délivre au MPF, via des signaux analogiques, l'erreur de pointage en élévation ΔEL_g et l'erreur de pointage en cross élévation ΔCE_g

Le MPA reçoit de l'OBC_NPT la consigne de pointage en azimut AZ T et le biais de pointage en azimut Δ AZ. Le MPA transmet à l'OBC_NPT la mesure du magnétomètre AZ M .

Le MPF reçoit de l'OBC_NPT les écarts de pointages ΔELT et ΔCET ainsi que le mode de pointage ModeT. L'utilité du ModeT n'est pas détaillée dans le présent document. Le MPF transmet les écarts de pointage ΔELM et ΔCEM à l'OBC_NPT.

Le MCA reçoit de l'OBC_NPT une consigne de rotation $\theta \tau$ et il transmet la mesure courante de rotation θM .

Le graphe fait apparaître 2 types d'interface partagées avec l'OBC_GUIDER. Une interface numérique partagée avec l'OBC_NPT (flèches noires) et une interface analogique partagée avec le MPF (flèches rouges).

1.2. RÉFÉRENCE HORAIRE

Le post traitement des données nécessite que les données recueillies par l'OBC_GUIDER et le l'OBC_NPT soient datées avec la même référence horaire. Le choix de datation s'est porté sur l'utilisation du GPS qui offre un principe de datation à mieux que la milliseconde si on utilise le PPS.

L'OBC_GUIDER date ses données avec un GPS qui lui est propre. [Jose : Maintenant ce n'est pas le cas (la référence temporelle utilisée pendant le dévélopement du logiciel est juste l'horloge interne du OBC_GUIDER. Nous allons vois si on peut ajouter un GPS pour dater les données issues par l'OBC_GUIDER. Comme alternative, on vera comment utiliser GPS et PPS venant tu OBC_NPT.]

L'OBC_NPT, le MPA et le MPF sont synchronisés à l'aide du GPS et du PPS et datent les données avec une précision meilleure que la milliseconde.

La datation des données issues du MCA s'effectue par l'OBC_NPT suite à la réception des données.

5. INTERFACE NUMERIQUE

1.3. LIEN PHYSIQUE

Le lien physique utilisé entre les calculateurs est un câble physique Ethernet. Les adresses IP des calculateurs sont :

Calculateur OBC_NPT : 172.20.4.2Calculateur OBC_GUIDER : 172.20.4.100

Les caractéristiques du lien physique utilisé sont décrites dans le [DR4].

1.4. PROTOCOLE

Le protocole de communication est le protocole standard UDP/IP. Le port de communication UDP utilisé à la fois pour l'émission et la réception de messages et pour les calculateurs est **3025**.

Le format des données est Little Endian (format Intel).

Le format d'un datagramme UDP (ou trame) est composé d'un entête et d'un message comme décrit ci-dessous.

Compteur	Taille	Identifiant	Message	CRC16
trames	message	message		

Paramètre	Type	Nombre d'octets	Valeurs autorisées
Compteur trame	Entier 16 bits non signé	2	Non limité
Taille message	Entier 16 bits non signé	2	Non limité
Identifiant message	Entier 8 bits non signé	1	Non limité
CRC16	Entier 16 bits non signé	2	Non limité

Compteur trames commencent à 0 et il est incrémenté de 1 à chaque trame émise. Lorsqu'il arrive à sa valeur maximale (0xFFFF) il repasse à 0. Ce compteur de trames est utilisé pour détecter la perte de trames (et a fortiori de messages).

Identifiant message est utilisé pour identifier le type du message reçu. Il existe un identifiant unique par message.

Taille message est le nombre d'octets contenus dans le message.

CRC16 est la valeur du checksum calculée sur les champs « Compteur », « Taille message », « Identifiant message » et « Message ». L'algorithme de calcul du CRC16 est fourni en annexe.

1.5. MESSAGES

1.5.1. LISTE DES MESSAGES

Le tableau ci-dessous liste les messages transférés entre les calculateurs.

Type de message	Identifiant du message
Message de statut	0x00
Direction de visée μASC DTU (αd, δd, θd)	0x01

Direction de visée terrestre (AZDV, ELDV, θDV)	0x02
Direction de visée OBC_GUIDER (αg, δg, θg)	0x03
Erreur de pointage en rotation ($\Delta\theta_g$)	0x04

[Jose : En principe, la direction de visée sera celle du centre du champ de vision, c'est à dire, les coordonnées du centre du CCD de la caméra de guidage, calculée par rapport au centroid de l'étoile de guidage et transformée en J2000. En principe, l'angle de rotation est évalué tous les secondes (car probablement la deuxième étoile employée sera trop faible pour permettre mesurer sa position avec une seule exposition à haute fréquence). Donc, même si la fréquence demandée est tous les 20 secondes, on pourrait fournir ces données tous les seconds]

1.1.1. MESSAGE DE STATUT

Identifiant du message : 0x00.

Ce message contient les informations suivantes :

Mode de fonctionnement

Ce message est émis par les calculateurs dans chaque mode et toutes les secondes.

Les caractéristiques des paramètres du message sont décrites dans le tableau ci-dessous.

Paramètre	Туре	Nombre d'octets	Valeurs autorisées
Mode de fonctionnement	Entier 8 bits non signé	1	0 : IDLE
			1 : RUNNING

1.1.2. DIRECTION DE VISÉE MASC DTU

Identifiant du message : 0x01.

Ce message contient les informations suivantes :

Données d'attitude du μASC DTU définies au §5.1 du [DR3].

Ce message est émis par le calculateur OBC_NPT à chaque réception d'une trame d'attitude du μ ASC DTU. Le μ ASC DTU est configuré pour transmettre cette trame toutes les 4Hz (250ms). Il est à noter que lorsque le μ ASC DTU est hors tension, cette trame n'est naturellement pas émise à l'OBC_GUIDER.

Les caractéristiques des paramètres du message sont décrites dans le tableau ci-dessous.

Paramètre	Туре	Nombre d'octets	Valeurs autorisées
Données d'attitude µASC	Entier 8 bits non signé	50	Pas de limitation
DTU			

L'OBC_NPT synchronise l'horloge du µASC DTU. La précision de datation du %ASC DTU dépend de la précision de datation de l'OBC NPT à savoir :

- Si l'OBC_NPT est synchronisé par le GPS en configuration 2D ou 3D, la précision est de 1ms. Il s'agit du cas nominal.
- Si l'OBC_NPT n'est pas synchronisé par le GPS (configuration 0D par exemple) ou si la date de l'OBC_NPT est fixée par le sol, alors la date et la précision ne sont pas garanties.

Il est à noter cependant que le GPS peut passer de 3D/2D en 0D pendant des courtes périodes. Dans ce cas-là la datation est entretenue par l'OBC NPT avec une dégradation de précision.

Il est à noter que la caméra du µASC est fixée sur la structure nacelle et elle observe le ciel à

travers le siderostat. La caméra du µASC observe donc la direction de visée qui est identique à celle du Guider pour les coordonnées Alpha et Delta, aux biais près. Par contre, ce n'est pas le cas pour la coordonnée Rotation étant donné que la caméra du Guider est placé sur une platine de rotation.

1.1.3. DIRECTION DE VISÉE TERRESTRE

Identifiant du message : 0x02.

Ce message contient les informations suivantes :

- Date des mesures exprimée nombre de secondes depuis le 1^{er} janvier 1970 et en nanosecondes dans la seconde courante.
- Azimut direction de visée exprimée en degré.
- Elévation direction de visée exprimée en degré.
- Rotation direction de visée exprimée en degré.
- Validant du message. Pour des raisons propres à l'OBC_NPT ce message peut ne pas être valide.

Ce message est émis par l'OBC_NPT toutes les secondes.

Les caractéristiques des paramètres du message sont décrites dans le tableau ci-dessous.

Paramètre	Type	Nombre d'octets	Valeurs autorisées
Date secondes	Entier 32 bits signé	4	Non limité
Date nanosecondes	Entier 32 bits signé	4	Non limité
Azimut direction de visée	Réel simple précision	4	[0 à 360]
Elévation direction de visée	Réel simple précision	4	[0 à 90]
Rotation direction de visée	Réel simple précision	4	[0 à 360]
Validant du message	Entier 8 bits non signé	1	0 : INVALIDE 1 : VALIDE

La direction de visée terrestre est établie par l'OBC_NPT à partir du magnétomètre, des codeurs incrémentaux et du μ ASC DTU. Sa précision dépend ainsi de l'état de fonctionnement du μ ASC DTU. Si ce dernier délivre une attitude valide alors les biais sont calculés et pris en compte et la précision de la mesure est bien meilleure.

Ce message a une utilité dans le cas où le µASC DTU n'est pas fonctionnel (période diurne par exemple).

La date est celle de l'OBC NPT.

1.1.4. DIRECTION DE VISÉE OBC GUIDER

Identifiant du message : 0x03.

Ce message contient les informations suivantes :

- Date des mesures exprimée nombre de secondes depuis le 1^{er} janvier 1970 et en nanosecondes dans la seconde courante.
- · Alpha direction de visée exprimée en degré.
- Elévation direction de visée exprimée en degré.
- Rotation direction de visée exprimée en degré.

 Validant du message. Pour des raisons propres à l'OBC_GUIDER ce message peut ne pas être valide.

Ce message est émis par l'OBC_GUIDER toutes les 20 secondes.

Les caractéristiques des paramètres du message sont décrites dans le tableau ci-dessous.

Paramètre	Туре	Nombre d'octets	Valeurs autorisées
Date secondes	Entier 32 bits signé	4	Non limité
Date nanosecondes	Entier 32 bits signé	4	Non limité
Alpha direction de visée	Réel simple précision	4	[0 à 360]
Delta direction de visée	Réel simple précision	4	[0 à 90]
Rotation direction de visée	Réel simple précision	4	[0 à 360]
Validant du message	Entier 8 bits non signé	1	0 : INVALIDE
		I	1 : VALIDE

La direction de visée (alpha, delta, rotation) est exprimée en J2000. Elle est établie par l'OBC_GUIDER à partir d'une identification de centroïdes acquis via sa caméra et d'un catalogue d'étoiles.

Ce message est utile pour l'OBC_NPT pour calculer les biais entre l'axe optique de la caméra de l'OBC_GUIDER et l'axe optique de la caméra du µASC DTU.

1.1.5. ERREUR DE POINTAGE EN ROTATION

Identifiant du message : 0x04.

Ce message contient les informations suivantes :

- Date des mesures exprimée nombre de secondes depuis le 1^{er} janvier 1970 et en nanosecondes dans la seconde courante.
- Erreur de pointage en rotation exprimée en degré.
- Validant du message. Pour des raisons propres à l'OBC_GUIDER ce message peut ne pas être valide.

Ce message est émis par l'OBC_GUIDER toutes les secondes.

Les caractéristiques des paramètres du message sont décrites dans le tableau ci-dessous.

Paramètre	Type	Nombre d'octets	Valeurs autorisées
Date secondes	Entier 32 bits signé	4	Non limité
Date nanosecondes	Entier 32 bits signé	4	Non limité
Erreur de pointage en rotation	Réel simple précision	4	[-180° à 180°]
Validant du message	Entier 8 bits non signé	1	0 : INVALIDE 1 : VALIDE

L'erreur de pointage en rotation est utilisée pour corriger l'orientation en rotation de l'instrument.

Il est à noter que cette erreur n'est observable que par l'OBC_GUIDER car ce dernier est positionné sur la platine de derotation de champ (le μASC DTU ne l'observe pas).

1.6. MODES DE FONCTIONNEMENT

2 modes de fonctionnement sont nécessaires pour réaliser la mission.

- Mode de fonctionnement opérationnel : IDLE
- Mode de pointage Guider : RUN

Le basculement entre mode est interne à chaque calculateur.

1.1.6. MODE IDLE

Le mode IDLE est le mode dans lequel se trouvent l'OBC_NPT et l'OBC_GUIDER lorsqu'ils ne sont pas opérationnels. C'est le cas typiquement au démarrage ou lorsqu'un dysfonctionnement est détecté, ce qui rend l'OBC non opérationnel.

Un message de statut est émis périodiquement par les calculateurs pour informer de leur état courant, lorsque l'état fonctionnel le permet.

1.1.7. MODE RUN

Le mode RUN est le mode dans lequel se trouvent l'OBC_NPT et l'OBC_GUIDER lorsqu'ils sont opérationnels. Dans ce mode, l'étage de pointage fin est piloté soit par l'OBC_NPT soit par l'OBC_GUIDER.

Un message de statut est émis périodiquement par les calculateurs pour informer de leur état courant.

1.7. COMPORTEMENTS DÉGRADÉS

1.1.8. Conséquence du mode IDLE

Chaque calculateur vérifie l'état courant du calculateur respectif. Un calculateur est considéré comme opérationnel s'il est dans l'état RUN.

Pour l'OBC_NPT, le passage de l'état de l'OBC_GUIDER dans l'état IDLE ou l'absence de réception du message de statut par l'OBC_NPT pendant plus de 3s considère que l'OBC_GUIDER est non fonctionnel. Si l'OBC_GUIDER contrôle le pointage fin à ce moment-là il est automatiquement récupéré par l'OBC_NPT.

1.1.9. RÉCEPTION DE MESSAGES INVALIDES

Sur réception d'un message invalide, les calculateurs ignorent le message. Ce dysfonctionnement n'entraîne pas de repli mais il devrait être détecté et notifié. Les erreurs entraînant une invalidation sont :

- Identifiant de message inconnu.
- Taille de message incorrect.
- · Valeur hors plage autorisée.

6. INTERFACE ANALOGIQUE

1.8. LIEN PHYSIQUE

Le lien physique utilisé entre l'OBC_GUIDER et le MPF est un câble physique permettant la transmission de 2 signaux analogiques relatifs à l'écart en élévation et l'écart en cross élévation.

Les caractéristiques du lien physique utilisé sont décrites dans le [DR4].

1.9. PROTOCOLE

Les signaux délivrés par l'OBC_GUIDER au MPF sont des signaux analogiques dont les caractéristiques sont les suivantes :

- Tension comprise dans la gamme : [-10V ; 10V]
- Rapport de conversion : 11mV/arcsec.
- Période d'échantillonnage inférieure à 30ms avec un retard pur sur la mise à jour des écarts d'une période d'échantillonnage.
- Précision du signal inférieure meilleure que 1 arcsec RMS.

1.10. COMPORTEMENTS DÉGRADÉS

Lorsque l'OBC_GUIDER n'est pas en mesure de délivrer des signaux corrects, ces signaux doivent être fixés à 0V. Cette mesure est d'autant plus importante lorsque l'OBC_GUIDER contrôle le pointage fin.

7. ANNEXE

7.1. ANNEXE 1: ALGORITHME DU CRC16

La méthode de calcul du checksum CRC16 est fournie ci-dessous.

```
/* CaclulateCheckSum
/*-----*/
/*! Effectue le calcul du checksum sur le buffer d'octets en entree. Cette
   methode a ete directement recupere du protocole FivCo.
                (input) unsigned char * ByteTab : Buffer de donnees.
(input) int Size : Nombre d'octets dans le buffer.
      \param
      \retval
                 Checksum calcule sur le tableau de donnees.
      \warning
                  Aucun.
short CPilot::CaclulateCheckSum( unsigned char * ByteTab, int Size )
  // This function return the checksum calculated
   unsigned int Sum=0;
   bool AddHighByte=true;
   unsigned int ChecksumCalculated;
   for(int i=0;i<Size;i++)</pre>
       if (AddHighByte)
           Sum+=((ByteTab[i])<<8)^0xFF00;
           AddHighByte=false;
       else
           Sum+=(ByteTab[i])^0x00FF;
           AddHighByte=true;
   if (AddHighByte==false)
       Sum+= 0xFF;
   ChecksumCalculated = ((Sum>>16) \& 0xFFFF) + (Sum \& 0xFFFF);
   ChecksumCalculated = ((ChecksumCalculated >> 16) & 0xFFFF) + (ChecksumCalculated & 0xFFFF);
#ifdef CPILOT DEBUG
      //printf("CheckSum : NbByte=%d, result= %x\n", Size, ChecksumCalculated);
#endif
   return ( short ) ChecksumCalculated;
```

LISTE DE DIFFUSION

NOM	SIGLE/SOCIETE	NB
DUBOURG Vincent	BL/D	
VARGAS André	BL/DA	
BEZ Pascale	BL/D	
ESCARNOT Jean-Pierre	BL/CM	
COCQUEREZ Philippe	BL/PR	
DOUCHIN Françoise	BL/PR	
LOUVEL Stéphane	BL/PR	
SACCOCCIO Muriel	BL/PR	1
MOURET Jean-Marie	BL/NB	
NICOLLE Eliane	BL/NB	1
BERNARD Vivian	BL/NB	
BRAY Nicolas	BL/NB	
EVRARD Jean	BL/NB	
GAUSSERES Serge	BL/NB	
GELOT Philippe	BL/NB	
MIRC Frederi	BL/NB	1
NICOT Jean-Marc	BL/NB	1
RAGAZZO Patrick	BL/NB	
REY Nelly	BL/NB	
TAPIE Pierre	BL/NB	1
VALERO Colette	BL/NB	
VALDIVIA Jean-Noël	BL/NB	
ESTACLIE Dhilippe	DA/LOS	
ESTAQUE Philippe	DA/LOS	$\vdash \vdash \vdash$
LAULHERET Roland	AQ/SF	
CATALA Roland	AQ/SO	$\vdash \vdash \vdash$
DARTOIS Jacky	EQUERT pr AQ/SO	1
DAUBAN Gilles	EQUERT pr AQ/SO	
MAILHAC Nathalie	DF/GO/TL1	
FORTAS Emmanuelle	MI-GSO pr AQ/GP	$\vdash \vdash \vdash$
ZENONE Isabelle	DCT/SB/LV	1
		igwdapprox

NOM	SIGLE/SOCIETE	NB
TOURRAILLE Jean- Michel	BL/OB	
JOUHANNET Nathalie	BL/OB	
BERGOS Pierre	BL/OB	
CARDONNE Alain	BL/OB	
CAZALET Mathieu	BL/OB	
DOULIEZ Alain	BL/OB	
DUGARRY Jean-Marc	BL/OB	
GARY Jacqueline	BL/OB	
GUILBOT Bernard	BL/OB	
LACOURTY Michel	BL/OB	
LAMARQUE Christian	BL/OB	
LOPEZ Jean-Marc	BL/OB	
LUZE Patrick	BL/OB	
NDIAYE Sarah	BL/OB	
REBIERE Patric	BL/OB	
ROUSSELET Régis	BL/OB	
SABLON Igor	BL/OB	
THOUMIEUX Frédéric	BL/OB	
TOMASIN Christian	BL/OB	
WERLING Eric	BL/VP	
LE DINH Loan	BL/VP	
BEHAR Jean-Baptiste	BL/VP	
CONESSA Huguette	BL/VP	
FACON Ghislaine	BL/VP	
HUENS Thomas	BL/VP	
LETRENNE Gérard	BL/VP	
OCHANDO André	BL/VP	
PAROT Gaël	BL/VP	
PERRAUD Sophie	BL/VP	
SOORS Xavier	BL/VP	
TROY Gabriel	BL/VP	
VENEL Stéphanie	BL/VP	

	<u> </u>	ļ	