Logique séquentielle

Le problème du combinatoire

Signaux idéaux

Comment assurer ceci?

Temps unité

$$x^*[k] = x(kT) = \sum_{k=0}^{\infty} x(t)\delta(t - kT)$$

Signaux idéaux

Comment assurer ceci?

Temps unité

$$x^*[k] = x(kT) = \sum_{k=0}^{\infty} x(t)\delta(t - kT)$$

Solution: la bascule D!

On s'autorise à observer les signaux uniquement en sortie de bascule 5 (ou – ce qui revient au même- après un temps de stabilisation égal à la période d'horloge)

Echantillonnage par bascule D

Vue macroscopique

Aussi appelé:

- Edge triggereed flip-flop,
- Flip-flop,
- Registre
- Bascule D

Analogies:

- suites numériques indicées par le numéro du tick d'horloge
- au Z de la transformée en Z

Exemple d'utilisation

en traitement du signal

(Notation maladroite ici) Il s'agit d'une Multiplication par une constante

Table de vérité de la bascule D

Echantillonnage

Vue microscopique

Le signal à échantillonner doit être respecter certaines contraintes imposées par l'horloge : Le signal doit être stable avant et après le front d'échantillonnage

Echantillonnage

Vue microscopique

Le signal à échantillonner doit être respecter certaines contraintes imposées par l'horloge : Le signal doit être stable avant et après le front d'échantillonnage

Echantillonnage

Vue macroscopique

décalage temporel systématique

Vue macroscopique

explicitons l'indice temporel

l'indice n'est jamais explicite dans le circuit : ce sont les ticks d'horloge

Expérimentons cette notion d'indice temporel Retour sur l'exo 3 du TE2

Retrouver un circuit possible qui se comporte De cette manière!

Solution possible

solution:

On voit que:

- -n1 est le OU entre e1 et e2
- s1 marque le debut de la sequence des 1 de n1 ($\rightarrow n1_t.\overline{n1_{t-1}}$)
- $-s2_t$ vaut 1 quand :
 - $-s1_t$ vaut 0 ET $s1_{t-1}$ vaut 1 ($\rightarrow \overline{s1_t}.s1_{t-1}$)
 - OU $s2_{t-1}$ valait déjà 1, sauf dans le cas où $s1_t$ vaut 1 (auquel cas, $s2_t$ vaut 0) ($\to s2_{t-1}.\overline{s1_t}$)
 - donc $s2_t = \overline{s1_t}.s1_{t-1} + s2_{t-1}.\overline{s1_t}$

Solution possible

solution:

On voit que:

- -n1 est le OU entre e1 et e2
- -s1 marque le debut de la sequence des 1 de n1 ($\rightarrow n1_t.\overline{n1_{t-1}}$)
- $-s2_t$ vaut 1 quand :
 - $-s1_t$ vaut 0 ET $s1_{t-1}$ vaut 1 ($\rightarrow \overline{s1_t}.s1_{t-1}$)
 - OU $s2_{t-1}$ valait déjà 1, sauf dans le cas où $s1_t$ vaut 1 (auquel cas, $s2_t$ vaut 0) ($\to s2_{t-1}.\overline{s1_t}$)
 - $\operatorname{donc} s2_{t} = \overline{s1_{t}}.s1_{t-1} + s2_{t-1}.\overline{s1_{t}}$

Echantillonnage contrôlé par enable

C'est l'utilisation la plus classique If (condition) { V2 = v1; UV 1.5}

Fonctionnement en régime permanent

- Les bascule D effectuent une recopie systématique de l'entrée sur la sortie, lors d'un court temps d'échantillonnage
 - Ce temps est quasi-instantanné : temps de montée de l'horloge (plus rarement : descente)
 - Le signal recopié ne pourra être vu par une autre bascule qu'au coup d'horloge suivant
- Le régime permanent correspond au fonctionnement normal du circuit...

Combinatoire et séquentiel

Un schéma générique

- Ce seul schéma théorique peut représenter n'importe quel système numérique
 - L'état évolue en fonction de ses entrées et de son passé
- En pratique, le concepteur préfère distribuer l'état du système dans plusieurs tels « petits » schémas
 - Exemple dans un slide suivant
- On va l'appliquer à différents cas :
 - Opérateurs séquentiels : ex → compteur
 - Automates d'états finis ou « machine d'états finis »
 - FSM en anglais : finite state machine
 - Ce concept est fondamental !!! Il n'y en aura pas beaucoup d'autres ! UV 1.5

Dérivation du schéma générique

Dérivation du schéma générique

Exemple de systèmes numériques complexes « distribués » sur puce (SoC)

SoC System-on-Chip

(thèse Hommais)

Combinatoire et séquentiel

Exemple minimaliste

État codé ici sur 1 bit => 1 bascule

Représentation « diagramme à bulle »

Représentation intuitive de l'évolution de l'état du système

Du circuit au diagramme à bulles ?

Retour sur l'exo 5 du TE2

Le circuit ne possède qu'une seule bascule D donc un seul bit d'état, ce qui va beaucoup nous aider. On écrit la table de vérité de la fonction de transition $f_{trans}(e_1, e_2, Q)$:

e1	e2	Q	D	ligne
0	0	0	0	0
0	0	$\mid 1 \mid$	0	1
0	1	0	1	2
0	1	$\mid 1 \mid$	1	3
1	0	0	0	4
1	0	$\mid 1 \mid$	1	5
1	1	0	1	6
1	1	1	1	7

Appelons E cette variable d'état. L'état courant de E est matérialisé par Q et sont état futur par D. Comment évolue cette variable au cours du temps? On peut dessiner le diagramme à bulle suivant (ou diagramme d'état), et faire donc apparaître 4 conditions booléennes possibles, appelées k_1, k_2, k_3, k_4 , relatives aux transitions.

Du circuit au diagramme à bulles ?

Retour sur l'exo 5 du TE2

e1	e2	Q	D	ligne
0	0	0	0	0
0	0	$\mid 1 \mid$	0	1
0	1	0	1	2 3
0	1	$\mid 1 \mid$	1	3
1	0	0	0	4
1	0	1	1	5
1	1	0	1	6
1	1	1	1	7

- E passe de 0 à 0 sur les lignes 0 et 4 d'où la condition $k_1 = \overline{e_2}$
- E passe de 0 à 1 sur les lignes 2 et 6 d'où la condition $k_2 = e_2$ (soit encore $k_2 = \overline{k_1}$).
- E passe de 1 à 1 sur les lignes 3, 5 et 7 d'où la condition $k_3 = e_1 + e_2$
- E passe de 1 à 0 sur les lignes 1, d'où la condition $k_4 = \overline{e_1}.\overline{e_2}$ (soit encore $k_4 = \overline{k_3}$).

Représentation « diagramme à bulle »

Représentation intuitive de l'évolution de l'état du système

Table de vérité

Etats	Etats Suivants					
	C = 0	C = 1				
000	001	000				
001	010	000				
010	011 ₅	000				
011	100	000				
100	101	000				
101	110	000				
110	111	000				
111	000	000				

Association Etat ↔ Bascule

direction : tableaux de Karnaugh !

Etats	Etats Suivants $Q_2Q_1Q_0(n+1)$		D (n)	C = 0 $D_2(n) D_1(n) D_0(n)$			$C = 1$ $D_2(n) D_1(n)$		
$Q_2Q_1Q_0(n)$	C = 0	C = 1	D ₂ (11)	D ₁ (II)	D ₀ (II)	$D_2(n)$ $D_0(n)$	D ₁ (II)		
000	001	000	0	0	1	0	0	0	
001	010	000	0	1	0	0	0	0	
010	011	000	0	1	1	0	0	0	
011	100	000	1	0	0	0	0	0	
100	101	000	1	0	1	0	0	0	
101	110	000	1	1	0	0	0	0	
110	111	000	1	1	1	0	0	0	
111	000	000	0	0	0	0	0	0	

Table de Karnaugh

de la fonction de transition

Etats	Etats Suivants			C = 0 $D_2(n) D_1(n) D_0(n)$			$C = 1$ $D_2(n) D_1(n)$		
$Q_2Q_1Q_0(n)$		$Q_2Q_1Q_0(n+1)$							
	C = 0	C = 1				$D_0(n)$			
000	001	000	0	0	1	0	0	0	
001	010	000	0	1	0	0	0	0	
010	011	000	0	1	1	0	0	0	
011	100	000	1	0	0	0	0	0	
100	101	000	1	0	1	0	0	0	
101	110	000	1	1	0	0	0	0	
110	111	000	1	1	1	0	0	0	
111	000	000	0	0	0	0	0	0	

 Q_0C

$$D_2 = C'.(Q_2' \oplus Q_1.Q_0)$$
 $D_1 = C'.(Q_1 \oplus Q_0)$

$$D_0 = C'.Q_0'$$

Table de Karnaugh

de la fonction de transition

Etats	Etats Suivants			C = 0			C = 1	
$Q_2Q_1Q_0(n)$	Q_2Q_1Q $C = 0$	C(n+1)	D ₂ (n)	D ₁ (n)	D ₀ (n)	D ₂ (n) D ₀ (n)		D ₁ (n)
000	001	000	0	0	1	0	0	0
001	010	000	0	1	0	0	0	0
010	011	000	0	1	1	0	0	0
011	100	000	1	0	0	0	0	0
100	101	000	1	0	1	0	0	0
101	110	000	1	1	0	0	0	0
110	111	000	1	1	1	0	0	0
111	000	000	0	0	0	0	0	0

 $\Omega_{\circ}C$

D2,D1,D0?

	Q ₀ C								
Q_2Q_1		00	01	11	10				
	00				1				
	01	1							
	11	1							
	10				1				

$$D_2 = C'.(Q_2' \oplus Q_1.Q_0)$$

$$D_1 = C'.(Q_1 \oplus Q_0)$$

$$D_0 = C'.Q_0'$$

Solution

FSM Mealy et Moore

FSM de Mealy / Moore

diagramme à bulles

FSM de Mealy / Moore

diagramme à bulles

Initialisation d'une bascule D

au démarrage du circuit

- Le symbol ° ou son absence indique la polarité du signal actif
 - Presence de °
 - Pol = 0
 - Absence de °
 - Pol= 1

Set =POL => Q=1 Rst =POL => Q=0

Dans tous les autres cas, Q reste **inchangé**

Exemple d'initialisation

- Cas d'un automate simple
 - État encodé sur 2 bits
 - Stockés dans 2 bascules
 D
 - Q1 et Q0
 - Etat de démarrage
 - 01 => Q1=0 & Q0=1
 - On suppose ici que le reset = signal actif haut

Exemple d'initialisation

autres bascules, autre init!

- Cas d'un automate simple
 - État encodé sur 2 bits
 - Stockés dans 2 bascules
 D
 - Q1 et Q0
 - Etat de démarrage
 - 01 => Q1=0 & Q0=1
 - On suppose ici que le reset = signal actif haut

L'encodage des états

- La numérotation des états a des conséquences importantes sur la complexité des équations des fonctions d'état suivant et des sorties
 - Cette numérotation s'appelle l'encodage des états
 - Dans l'exemple précédent : S0->0,S1->1,S2->2...
 - N états => Ceil(log₂(N)) bits => encodage dense
- Parmi les stratégies possibles, l'une d'entre elle est très répandue : encodage « one-hot »
 - Aussi appelé « 1 bit par état »
 - N états => N bits

- => encodage « one-hot »
- Elle conduit à des circuits rapides
- moyennant plus de bascules que pour d'autres encodages
- On peut obtenir directement le circuit !!!

Encodage One-hot

- 1 bit par état :
 - N états => N bascules
 - Exemple
 - S0 = 001
 - S1 = 010
 - S2 = 100
 - Une seule bascule possède le 1 à un instant donné
- Tout se passe comme si, lors d'une transition d'un état à un autre, le '1' se déplacait d'une bascule à l'autre, comme un jeton...

Exemple : le distributeur

(on précise que le dispositf ne rend pas la monnaie) $_{
m UV\,1.5}$

Méthode « classique » (sans astuce)

present state	inputs	next state	output
$Q_3Q_2Q_1Q_0$	D N	$D_3 D_2 D_1 D_0$	open
0001	0 0	0 0 0 1	0
	0 1	0 0 1 0	0
	1 0	0 1 0 0	0
	1 1		_
0 0 1 0	0 0	0 0 1 0	0
	0 1	0 1 0 0	0
	1 0	1 0 0 0	0
	1 1		_
0 1 0 0	0 0	0 1 0 0	0
	0 1	1 0 0 0	0
	1 0	1 0 0 0	0
	1 1		_
1000		1 0 0 0	1

$$\begin{split} &D_0 = Q_0 D' N' \\ &D_1 = Q_0 N + Q_1 D' N' \\ &D_2 = Q_0 D + Q_1 N + Q_2 D' N' \\ &D_3 = Q_1 D + Q_2 D + Q_2 N + Q_3 \\ &OPEN = Q_3 \end{split}$$

Résultat

Méthode astucieuse, graphique

Quelques « patterns » de contrôle connus

- a) if then else
- b) while cond // ou for....

```
c) while { // ou for....
      If() {
       Exit loop;
```

d) « loop » à deux entrées (« goto » dans une boucle)....

Constitution interne des bascules

Constitution interne (1/4)

Exception (cachée):
ici on autorise
exceptionnellement
un rebouclage
combinatoire

(a) Logic diagram

SR	Q Q'	
10	10	B
0 0	1.0	(after S=1, R=0)
0.1	0.1	
0.0	0 1	(after S=0, R=1)
11	0 0	

(b) Truth table

Basic flip-flop circuit with NOR gates

Constitution interne (2/4)

(a) Logic diagram

SR	Q Q'	
1 0	0 1	•
1 1	0 1	(after S=1, R=0)
0 1	10	39 00 00 Normal Technological
11	10	(after S=0, R=1)
0 0	1 1	

(b) Truth table

Basic flip-flop circuit with NAND gates

Constitution interne (3/4)

(a) Logic diagram

QSR	Q(t+1)
000	0
001	0
010	1
0 1 1	indeterminate
100	1
101	0
110	1
111	indeterminate

(b) Truth table

Clocked SR flip-flop

Constitution interne (4/4)

(a) Logic diagram with NAND gates

(b) Graphical symbol

QD	Q(t+1)
0.0	0
0 1	1
1 0	0
11	1

(c) Transition table