Appendix

Results of mass loss

Table 2. Dust and wind properties.

model	$n_d/n_{ m H}$	M	$f_{ m Mg}$	$\overline{a_{gr}}$
		(M_{\odot}/yr)		(μm)
st28gm06n052	$3 \cdot 10^{-16}$	$5 \cdot 10^{-6}$	0.5	0.8
st28gm05n033	$3 \cdot 10^{-15}$	$5 \cdot 10^{-8}$	0.15	0.2

Notes. Listed here are the assumed seed particle abundance n_d/n_H , and the resulting temporal means of the mass-loss rate \dot{M} , the fraction of Mg condensed into grains $f_{\rm Mg}$, and the grain radius a_{gr} at the outer boundary. When forming Mg₂SiO₄ grains in a gas of solar composition, the abundance of Mg is the limiting factor, since that element will be used up first. In the models described here, however, $f_{\rm Mg}$ is well below its maximum value of 1.