1) The table below gives a clear idea how convergence varies wrt the learning criterion and eps.

Learnin g_rate	Eps	epo chs	Parameters	Error	Error difference
0.001	1E-09	6902	[0.995621180.0013 3885]	1.69370E-06	
0.01	1E-09	803	[0.9963085,0.0013 3978]	1.24333E-06	9.85678E-10
0.1	1E-08	78	[0.996351290.0013 3983]	1.230919E-06	8.47481E-09
1	1E-08	2	[0.9966201 0.0013402]	1.1947898E-06	2.9646E-21

So, I could have chosen the learning rate to be 1 as it converges faster with eps=1e-8. But for visualization and plotting, I chose <u>learning rate= 0.1 with eps=1e-9.</u>

Command to run: python q1.py --eps 1e-9 --Ir 0.1

Parameter vector is:

[[0.99653574]

[0.00134008]]

No of iterations is: 89

Learning_rate=0.001

Command to run: python q1.py --eps 1e-9 --lr 0.001 No of iterations is: 6902

Learning_rate=0.025

Command to run: python q1.py --eps 1e-9 --lr 0.025

No of iterations is: 338

As we can see, the number of iterations increases manifold as we keep decreasing the learning_rate. Also, if the learning_rate is small, then threshold/eps value has to be kept lower to get the same precision in the final parameters.

Q2)python q2.py --eps 1e-8 --bs 1

Note: K- it is the no of iterations after which we take the average of the cost so remove the spurious oscillations.

Error wrt the original hypothesis is: [[1.96589384]]

Batch_size=1

Error wrt the learned hypothesis is: [[1.97123999]]

K	Time taken	Epochs	Parameters	Error difference
100	4.1007	30000	[3.01699166] [1.00603733] [2.00643416]	0.0157

Batch_size=100

K	Time	Epochs	Parameter s	Error difference	
	5	3.85	20000	[2.98572244] [1.001279] [1.99553391]	0.0666

Error wrt the learned hypothesis is: 1.9693803717273972

Batch_size=10000 Error wrt the learned hypothesis is: 1.96670090

Eps	К	Time	Epochs	Parameters	Error difference
1E-05	2	22.95	22000	[2.99227157] [1.00116254] [1.99839991]	0.00869

Batch_size=1000000, epochs=25000 Error wrt the learned hypothesis is: 1.96650090

Q3)python q3.py --lr 1 --eps 1e-8 lr=learning_rate eps= threshold for convergence

Parameter vector is:

[[0.40114656] [2.58823623] [-2.72525064]]

Equation of the decision boundry is: 0.4011+2.5882*x-2.7252*y=0

Qs4)Command to run: python q4.py

Gaussian Discriminant Analysis:

```
case 1: 5, +5,
   The decision boundary is defined where P(\pi|y=0; 0) P(y=0; 0) = P(\pi|y=1; 0) P(y=1; 0)
  > P(x1y=0; 0) P(y=0; 0) = 1
    P(x1/=1; 0) P(y=1; 0)
  ) leg [P(x17=0;0) P(7=0;0)] = 0
        [P(x17=1;0) P(7=1;0)
$ & we know
Egn (1) boomes
```

Mean of

```
Mean of class Alaska:
  [[-0.75529433]
  [ 0.68509431]]
Covariance matrix of class Canada is:
  [[0.47747117 0.1099206 ]
  [0.1099206 0.41355441]]
Covariance matrix of class Alaska is:
  [[ 0.38158978 -0.15486516]
  [-0.15486516 0.64773717]]
Covariance matrix for in the linear case is:
  [[ 0.42953048 -0.02247228]
  [-0.02247228 0.53064579]]
```


The quadratic boundry gives more space of the x-y plane to class Canada which might cause underfitting as it is not evident from the training data.