

Strategies to Minimize Unwanted Axon Activation for Retinal BMIs

Isaac Cheruiyot

Stanford Department of Electrical Engineering - Artificial Retina Project

Introduction

 Unwanted axon activation is a major problem for modern epiretinal prosthetics.

Methods

• We evaluate a bi-electrode, bipolar electrical stimulation strategy, as proposed in [3] -- which focuses on minimizing change in E-field across axon.

 $\begin{array}{c} \text{Minimize max}(\frac{d^2V_e}{dx^2})\\ \text{Subject to:}\ p_e \in P_r,\ I_e \in [-4\mu A, 4\mu A]\\ \text{Given:}\ p_{e,fixed},\ r,\ and\ I_{e,fixed} \end{array}$

- We tested the following optimization methods:
 - Naive Method (Brute Force)
 - Global Particle Swarm Optimization (GPSO)
 - L-BFGS-B Gradient Search
 - Nelder-Mead
 - Conjugate Gradient

Results

Results Cont.

Optimization Method	# of Best Performances	Average Cost Improvement	Run-time
Naive Method	23	10.521	1
GPSO	16.67	11.2057	4.5423
BFGS	12.33	6.821	3.942

Optimization Method	# of Best Performances	Average Win Difference	Average Time
Naive Method	2.33	0.6279	0.001
GPSO	17.33	0.649	2.045
BFGS	18.33	2.065	1.98

Conclusions

• Overall, **L-BFGS** performed the best for the single axon scenario and the **Naive Method** worked best for the two axon scenario.

Future Research

- Re-design particle swarm optimizer, tailored to the lab-specific data structure
- Implement a deep learning model
- Evaluate impact on soma activation to fully understand the impact of this strategy on cellular selectivity

Acknowledgements

This research was made possible by the funding and mentorship provided by the Stanford REU Program. I would also like to thank Prof. Subhasish Mitra's Robust Systems Group and my mentor Raman Vilkhu for their guidance throughout the summer.

References

- L. Axon Bundles Image. (2019). Stanford Artificial Retina Project.
- http://med.stanford.edu/artificial-retina/research/competition.html
- Epiretinal Prosthetic. (2020). PLOS One. https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0193598.g001
 Rattay F. (1987). Ways to approximate current-distance relations for electrically stimulated fibers. *Journal of*
- theoretical biology, 125(3), 339–349. https://doi.org/10.1016/s0022-5193(87)80066-8
- 4. Kochenderfer, M. J., & Wheeler, T. A. (2019). *Algorithms for optimization*. Cambridge (Mass.): The MIT Press.