Università degli Studi di Cagliari Corso di Laurea in Matematica

RSA e firma digitale

Mara Manca

Relatore: prof. Andrea Loi

Anno Accademico 2015-2016

Sommario

Crittologia

2 RSA

3 Matematica dietro la crittografia

La parola crittologia deriva dal greco kryptòs, che significa "nascosto".

La parola crittologia deriva dal greco kryptòs, che significa "nascosto".

Problema Alice vuole inviare un messaggio a Bob, impedendo a Eva, l'antagonista, di conoscere il contenuto del messaggio.

La parola *crittologia* deriva dal greco *kryptòs*, che significa "nascosto".

Problema Alice vuole inviare un messaggio a Bob, impedendo a Eva, l'antagonista, di conoscere il contenuto del messaggio.

Soluzione Alice invia una versione distorta del messaggio a Bob, che è l'unico in grado di ripristinare il messaggio in modo legittimo. In altre parole, Alice crittografa il messaggio (testo cifrato), lo invia a Bob, che a sua volta decodifica il messaggio (testo in chiaro).

La parola *crittologia* deriva dal greco *kryptòs*, che significa "nascosto".

Problema Alice vuole inviare un messaggio a Bob, impedendo a Eva, l'antagonista, di conoscere il contenuto del messaggio.

Soluzione Alice invia una versione distorta del messaggio a Bob, che è l'unico in grado di ripristinare il messaggio in modo legittimo. In altre parole, Alice crittografa il messaggio (testo cifrato), lo invia a Bob, che a sua volta decodifica il messaggio (testo in chiaro).

<u>Chiave</u>: parametro utilizzato per la cifratura o la decifratura decifrazione, permette di passare dal testo in chiaro al testo cifrato, e viceversa.

La crittologia può essere divisa in due categorie:

La crittologia può essere divisa in due categorie: crittografia: si occupa della progettazione dei crittosistemi.

La crittologia può essere divisa in due categorie: crittografia: si occupa della progettazione dei crittosistemi. crittoanalisi: si occupa dell'attacco ai cifrari, ad esempio di come trovare la natura della chiave che è stata utilizzata.

La crittologia può essere divisa in due categorie: crittografia: si occupa della progettazione dei crittosistemi. crittoanalisi: si occupa dell'attacco ai cifrari, ad esempio di come trovare la natura della chiave che è stata utilizzata.

Cifrari simmetrici: la stessa chiave è utilizzata sia per la cifratura che per la decifrazione

La crittologia può essere divisa in due categorie: crittografia: si occupa della progettazione dei crittosistemi. crittoanalisi: si occupa dell'attacco ai cifrari, ad esempio di come trovare la natura della chiave che è stata utilizzata.

Cifrari simmetrici: la stessa chiave è utilizzata sia per la cifratura che per la decifrazione

Cifrari asimmetrici o a chiave pubblica: ogni utilizzatore del crittosistema possiede una chiave che è costituita da due parti: una pubblica e una privata.

Formalmente un crittosistema a chiave pubblica è costituito da:

Formalmente un crittosistema a chiave pubblica è costituito da:

• un insieme M di potenziali messaggi (sia testi in chiaro che testi cifrati);

Formalmente un crittosistema a chiave pubblica è costituito da:

- un insieme M di potenziali messaggi (sia testi in chiaro che testi cifrati);
- un insieme K di chiavi possibili;

Formalmente un crittosistema a chiave pubblica è costituito da:

- un insieme M di potenziali messaggi (sia testi in chiaro che testi cifrati);
- un insieme K di chiavi possibili;
- Per ogni k∈K esistono le funzioni invertibili

$$E_k: M \to M$$
 $D_k: M \to M$

tali che:

Formalmente un crittosistema a chiave pubblica è costituito da:

- un insieme M di potenziali messaggi (sia testi in chiaro che testi cifrati);
- un insieme K di chiavi possibili;
- Per ogni k∈K esistono le funzioni invertibili

$$E_k: M \to M$$
 $D_k: M \to M$

tali che:

 \emptyset $\forall k \in K, \exists k' \in K$ tale che $D_{k'}$ è l'inversa di E_k ;

Formalmente un crittosistema a chiave pubblica è costituito da:

- un insieme M di potenziali messaggi (sia testi in chiaro che testi cifrati);
- un insieme K di chiavi possibili;
- Per ogni k∈K esistono le funzioni invertibili

$$E_k: M \to M$$
 $D_k: M \to M$

tali che:

- **1** $\forall k \in K, \exists k' \in K \text{ tale che } D_{k'} \text{ è l'inversa di } E_k;$
- **2** $\forall k \in K \text{ e } \forall m \in M, E_k(m) = c \text{ e } D_{k'}(c) = m \text{ sono facilmente calcolabili;}$

Formalmente un crittosistema a chiave pubblica è costituito da:

- un insieme M di potenziali messaggi (sia testi in chiaro che testi cifrati);
- un insieme K di chiavi possibili;
- Per ogni k∈K esistono le funzioni invertibili

$$E_k: M \to M$$
 $D_k: M \to M$

tali che:

- **1** $\forall k \in K$, $\exists k' \in K$ tale che $D_{k'}$ è l'inversa di E_k ;
- **2** $\forall k \in K \text{ e } \forall m \in M, E_k(m) = c \text{ e } D_{k'}(c) = m \text{ sono facilmente calcolabili;}$
- **3** per quasi tutti i $k \in K$, non è computazionalmente possibile trovare $D_{k'}$, data E_k .

Supponiamo che Bob voglia mandare un messaggio ad Alice:

1 Alice sceglie due numeri primi grandi $p \in q$ tali che $p \neq q$;

- **1** Alice sceglie due numeri primi grandi $p \in q$ tali che $p \neq q$;
- 2 Alice calcola n = pq e s = (p-1)(q-1);

- **1** Alice sceglie due numeri primi grandi $p \in q$ tali che $p \neq q$;
- 2 Alice calcola n = pq e s = (p-1)(q-1);
- **3** Alice sceglie un *esponente di cifratura* $e \in \mathbb{Z}_s = \{0, \dots, s-1\}$ tale che MCD(e, s) = 1;

- **1** Alice sceglie due numeri primi grandi $p \in q$ tali che $p \neq q$;
- **2** Alice calcola n = pq e s = (p 1)(q 1);
- **3** Alice sceglie un *esponente di cifratura* $e \in \mathbb{Z}_s = \{0, \dots, s-1\}$ tale che MCD(e, s) = 1;
- 4 Alice calcola *d* in modo che $de \equiv 1 \pmod{s}$;

- **1** Alice sceglie due numeri primi grandi $p \in q$ tali che $p \neq q$;
- **2** Alice calcola n = pq e s = (p 1)(q 1);
- 3 Alice sceglie un *esponente di cifratura* $e \in \mathbb{Z}_s = \{0, ..., s-1\}$ tale che MCD(e, s) = 1;
- 4 Alice calcola *d* in modo che $de \equiv 1 \pmod{s}$;
- **6** Alice rende pubblici (*n*,*e*) (chiave pubblica), e tiene segreti (*p*,*q*,*d*) (chiave segreta);

- **1** Alice sceglie due numeri primi grandi $p \in q$ tali che $p \neq q$;
- **2** Alice calcola n = pq e s = (p 1)(q 1);
- **3** Alice sceglie un *esponente di cifratura* $e \in \mathbb{Z}_s = \{0, \dots, s-1\}$ tale che MCD(e, s) = 1;
- 4 Alice calcola *d* in modo che $de \equiv 1 \pmod{s}$;
- 6 Alice rende pubblici (n,e) (chiave pubblica), e tiene segreti (p,q,d) (chiave segreta);
- **6** Bob codifica il messaggio come una sequenza di interi $m_1, ..., m_k$ tali che 1 < m_i < n − 1 $\forall i$.

- **1** Alice sceglie due numeri primi grandi $p \in q$ tali che $p \neq q$;
- **2** Alice calcola n = pq e s = (p 1)(q 1);
- **3** Alice sceglie un *esponente di cifratura* $e \in \mathbb{Z}_s = \{0, ..., s-1\}$ tale che MCD(e, s) = 1;
- 4 Alice calcola *d* in modo che $de \equiv 1 \pmod{s}$;
- 6 Alice rende pubblici (n,e) (chiave pubblica), e tiene segreti (p,q,d) (chiave segreta);
- **6** Bob codifica il messaggio come una sequenza di interi m_1, \ldots, m_k tali che 1 ≤ $m_i < n-1 \ \forall i$.
 - La sequenza c_1, \ldots, c_k che rappresenta il testo cifrato, si trova calcolando $c_i \equiv m_i^e \pmod{n} \ \forall i = 1, \ldots, k$.
 - Quindi Bob, invia questa sequenza ad Alice.

- **1** Alice sceglie due numeri primi grandi $p \in q$ tali che $p \neq q$;
- **2** Alice calcola n = pq e s = (p 1)(q 1);
- **3** Alice sceglie un *esponente di cifratura* $e \in \mathbb{Z}_s = \{0, \dots, s-1\}$ tale che MCD(e, s) = 1;
- 4 Alice calcola *d* in modo che $de \equiv 1 \pmod{s}$;
- 6 Alice rende pubblici (n,e) (chiave pubblica), e tiene segreti (p,q,d) (chiave segreta);
- **6** Bob codifica il messaggio come una sequenza di interi m_1, \ldots, m_k tali che 1 ≤ $m_i < n 1 \ \forall i$. La sequenza c_1, \ldots, c_k che rappresenta il testo cifrato, si trova calcolando $c_i \equiv m_i^e \pmod{n} \ \forall i = 1, \ldots, k$.
 - Quindi Bob, invia questa sequenza ad Alice.
- Alice decifra il messaggio calcolando $m_i \equiv c_i^d \pmod{n} \ \forall i = 1, ..., k.$

Teorema

Per ogni i = 1, ..., k $c_i^d \equiv m_i \pmod{n}$.

Teorema

Per ogni i = 1, ..., k $c_i^d \equiv m_i \pmod{n}$.

Definizione

Sia n \geq 1 un intero e sia $\phi(n)$ il numero di elementi in

 $\mathbb{Z}_n = \{0, \dots, n-1\}$ che sono relativamente primi con n.

La funzione ϕ definita in questo modo, è chiamata funzione di Eulero.

Teorema

Per ogni i = 1, ..., k $c_i^d \equiv m_i \pmod{n}$.

Definizione

Sia n \geq 1 un intero e sia $\phi(n)$ il numero di elementi in

 $\mathbb{Z}_n = \{0, \dots, n-1\}$ che sono relativamente primi con n.

La funzione ϕ definita in questo modo, è chiamata funzione di Eulero.

Teorema (Teorema di Eulero-Fermat)

Se a e n sono due interi relativamente primi, allora

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

$$c_i \equiv m_i^e \pmod{n} \quad \Rightarrow \quad c_i^d \equiv m_i^{ed} \pmod{n}$$
 (1)

$$c_i \equiv m_i^e \pmod{n} \quad \Rightarrow \quad c_i^d \equiv m_i^{ed} \pmod{n}$$
 (1)

Ma $ed \equiv 1 \pmod{s}$, ciò significa che $s \mid ed - 1$.

$$c_i \equiv m_i^e \pmod{n} \quad \Rightarrow \quad c_i^d \equiv m_i^{ed} \pmod{n}$$
 (1)

Ma $ed \equiv 1 \pmod{s}$, ciò significa che $s \mid ed - 1$. Quindi, esiste un intero t tale che st = ed - 1.

$$c_i \equiv m_i^e \pmod{n} \quad \Rightarrow \quad c_i^d \equiv m_i^{ed} \pmod{n}$$
 (1)

Ma $ed \equiv 1 \pmod{s}$, ciò significa che $s \mid ed - 1$. Quindi, esiste un intero t tale che st = ed - 1.

$$c_i \equiv m_i^e \pmod{n} \quad \Rightarrow \quad c_i^d \equiv m_i^{ed} \pmod{n}$$
 (1)

Ma $ed \equiv 1 \pmod{s}$, ciò significa che $s \mid ed - 1$. Quindi, esiste un intero t tale che st = ed - 1.

Inoltre,
$$s = (p-1)(q-1) = \phi(pq) = \phi(n)$$
.

Allora, $ed = st + 1 = \phi(n)t + 1$ e si ha

$$c_i \equiv m_i^e \pmod{n} \quad \Rightarrow \quad c_i^d \equiv m_i^{ed} \pmod{n}$$
 (1)

Ma $ed \equiv 1 \pmod{s}$, ciò significa che $s \mid ed - 1$. Quindi, esiste un intero t tale che st = ed - 1.

Inoltre,
$$s = (p-1)(q-1) = \phi(pq) = \phi(n)$$
.

Allora, $ed = st + 1 = \phi(n)t + 1$ e si ha

$$m_i^{ed} = m_i^{\phi(n)t+1} = (m_i^{\phi(n)})^t m_i$$
 (2)

Dimostrazione teorema

$$c_i \equiv m_i^e \pmod{n} \quad \Rightarrow \quad c_i^d \equiv m_i^{ed} \pmod{n}$$
 (1)

Ma $ed \equiv 1 \pmod{s}$, ciò significa che $s \mid ed - 1$. Quindi, esiste un intero t tale che st = ed - 1.

Inoltre,
$$s = (p-1)(q-1) = \phi(pq) = \phi(n)$$
.

Allora, $ed = st + 1 = \phi(n)t + 1$ e si ha

$$m_i^{ed} = m_i^{\phi(n)t+1} = (m_i^{\phi(n)})^t m_i$$
 (2)

Avendo scelto m_i piccolo, $MCD(m_i, n) = 1$ quindi $m_i^{\phi(n)} \equiv 1 \pmod{n}$ grazie al teorema di Eulero-Fermat.

Dimostrazione teorema

$$c_i \equiv m_i^e \pmod{n} \quad \Rightarrow \quad c_i^d \equiv m_i^{ed} \pmod{n}$$
 (1)

Ma $ed \equiv 1 \pmod{s}$, ciò significa che $s \mid ed - 1$. Quindi, esiste un intero t tale che st = ed - 1.

Inoltre,
$$s = (p-1)(q-1) = \phi(pq) = \phi(n)$$
.

Allora, $ed = st + 1 = \phi(n)t + 1$ e si ha

$$m_i^{ed} = m_i^{\phi(n)t+1} = (m_i^{\phi(n)})^l m_i$$
 (2)

Avendo scelto m_i piccolo, $MCD(m_i, n) = 1$ quindi $m_i^{\phi(n)} \equiv 1 \pmod{n}$ grazie al teorema di Eulero-Fermat. Dalle equazioni (1) e (2) otteniamo

$$c_i^d \equiv m_i^{ed} \equiv (m_i^{\phi(n)})^t m_i \equiv (1)^t m_i \equiv m_i \pmod{n}$$
 (3)

come enunciato.

Alice sceglie p=885320963 e q=238855417 primi e calcola n=211463707796206571 ed e=9007.

Alice sceglie p=885320963 e q=238855417 primi e calcola n=211463707796206571 ed e=9007.

Alice manda a Bob la coppia (n, e) che rappresenta la chiave pubblica.

Alice sceglie p=885320963 e q=238855417 primi e calcola n=211463707796206571 ed e=9007.

Alice manda a Bob la coppia (n, e) che rappresenta la chiave pubblica. Il messaggio da cifrare è 'cat'.

Alice sceglie p=885320963 e q=238855417 primi e calcola n=211463707796206571 ed e=9007.

Alice manda a Bob la coppia (n, e) che rappresenta la chiave pubblica. Il messaggio da cifrare è 'cat'.

Per convenzione, numeriamo le lettere secondo lo schema

$$a \leftrightarrow 01, b \leftrightarrow 02, \dots, z \leftrightarrow 26.$$

Alice sceglie p=885320963 e q=238855417 primi e calcola n=211463707796206571 ed e=9007.

Alice manda a Bob la coppia (n, e) che rappresenta la chiave pubblica. Il messaggio da cifrare è 'cat'.

Per convenzione, numeriamo le lettere secondo lo schema

$$a \leftrightarrow 01, b \leftrightarrow 02, \ldots, z \leftrightarrow 26.$$

Il messaggio risulta dunque: *m*= 30120.

Alice sceglie p=885320963 e q=238855417 primi e calcola n=211463707796206571 ed e=9007.

Alice manda a Bob la coppia (n, e) che rappresenta la chiave pubblica. Il messaggio da cifrare è 'cat'.

Per convenzione, numeriamo le lettere secondo lo schema

$$a \leftrightarrow 01, b \leftrightarrow 02, \ldots, z \leftrightarrow 26.$$

Il messaggio risulta dunque: *m*= 30120.

Il testo che Bob deve cifrare è molto corto, quindi sceglie di non dividere la parola che costituirà così un unico blocco.

Alice sceglie p=885320963 e q=238855417 primi e calcola n=211463707796206571 ed e=9007.

Alice manda a Bob la coppia (n, e) che rappresenta la chiave pubblica. Il messaggio da cifrare è 'cat'.

Per convenzione, numeriamo le lettere secondo lo schema

$$a \leftrightarrow 01, b \leftrightarrow 02, \ldots, z \leftrightarrow 26.$$

Il messaggio risulta dunque: *m*= 30120.

Il testo che Bob deve cifrare è molto corto, quindi sceglie di non dividere la parola che costituirà così un unico blocco.

Bob calcola $c \equiv m^e \equiv 30120^{9007} \equiv 113535859035722866 \pmod{n}$ e invia c ad Alice.

Alice sceglie p=885320963 e q=238855417 primi e calcola n=211463707796206571 ed e=9007.

Alice manda a Bob la coppia (n, e) che rappresenta la chiave pubblica. Il messaggio da cifrare è 'cat'.

Per convenzione, numeriamo le lettere secondo lo schema

$$a \leftrightarrow 01, b \leftrightarrow 02, \ldots, z \leftrightarrow 26.$$

Il messaggio risulta dunque: *m*= 30120.

Il testo che Bob deve cifrare è molto corto, quindi sceglie di non dividere la parola che costituirà così un unico blocco.

Bob calcola $c \equiv m^e \equiv 30120^{9007} \equiv 113535859035722866 \pmod{n}$ e invia c ad Alice.

Alice, conoscendo p e q, calcola d in modo che $ed \equiv 1 \pmod{s}$; ottenendo d=116402471153538991

Alice sceglie p=885320963 e q=238855417 primi e calcola n=211463707796206571 ed e=9007.

Alice manda a Bob la coppia (n, e) che rappresenta la chiave pubblica. Il messaggio da cifrare è 'cat'.

Per convenzione, numeriamo le lettere secondo lo schema

$$a \leftrightarrow 01, b \leftrightarrow 02, \dots, z \leftrightarrow 26.$$

Il messaggio risulta dunque: *m*= 30120.

Il testo che Bob deve cifrare è molto corto, quindi sceglie di non dividere la parola che costituirà così un unico blocco.

Bob calcola $c \equiv m^e \equiv 30120^{9007} \equiv 113535859035722866 \pmod{n}$ e invia c ad Alice.

Alice, conoscendo p e q, calcola d in modo che $ed \equiv 1 \pmod{s}$; ottenendo d=116402471153538991

Infine Alice calcola

 $c^d = 113535859035722866^{116402471153538991} \equiv 30120 \pmod{n}$; ottenendo il messaggio originale.

Sicurezza RSA

Teorema

Sia n=pq il prodotto di due primi p e q diversi tra loro. Allora p e q sono le radici dell'equazione

$$x^{2} - (n - \phi(n) + 1)x + n = 0$$

Teoremi

Teorema (Eulero- Fermat)

Se a e n sono due interi relativamente primi, allora

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Per provare il teorema di Eulero- Fermat, abbiamo necessità del seguente lemma.

Lemma

Siano x e y interi tali che $x \not\equiv y \pmod{n}$. Se MCD(a, b) = 1 allora, $ax \not\equiv ay \pmod{n}$.

Dimostrazione.

(Lemma) Supponiamo che $ax \equiv ay \pmod{n}$. MCD(a, b) = 1 allora l'inverso moltiplicativo a^{-1} di a esiste. Moltiplichiamo entrambi i membri per a^{-1}

$$a^{-1}ax \equiv a^{-1}ay \pmod{n} \iff x \equiv y \pmod{n}$$

che contraddice le ipotesi del teorema.

Dimostrazione.

(Teorema di Eulero-Fermat) Nell'insieme $\mathbb{Z}_n = \{0, \dots, n-1\}$ troviamo $\phi(n)$ elementi relativamente primi con n. Indichiamo questi elementi con

$$X_1,\ldots,X_{\phi(n)} \tag{4}$$

Se $i \neq j$ allora $x_i \not\equiv x_j \pmod{n}$. Poniamo

$$y_i = ax_i \pmod{n}$$
 per $i = 1, \dots, \phi(n)$

e troviamo

$$y_1,\ldots,y_{\phi(n)} \tag{5}$$

elementi di \mathbb{Z}_n . Osserviamo che $MCD(x_i, n) = 1 \quad \forall i = 1, ..., \phi(n)$ (per definizione di $\phi(n)$), allora

$$MCD(y_i, n) = 1 \quad \forall i = 1, \dots, \phi(n)$$

$$y_i \not\equiv y_i \pmod{n}$$
 se $i \neq j$

Dimostrazione.

Perciò $y_1, \ldots, y_{\phi(n)}$ è un elenco di elementi che sono tutti relativamente primi con n. Ciascun y_i in (5) compare esattamente una volta in (4) e ogni x_i compare solo una volta nell'elenco (5), allora

$$x_1 \cdots x_{\phi(n)} \equiv y_1 \cdots y_{\phi(n)} \pmod{n} \tag{6}$$

Dal momento che $y_i = ax_i \pmod{n} \quad \forall \quad i = 1, \dots, \phi(n)$ allora,

$$y_1 \cdots y_{\phi(n)} \equiv ax_1 \cdots ax_{\phi(n)} \equiv a^{\phi(n)}x_1 \cdots x_{\phi(n)} \pmod{n}$$
 (7)

Uguagliando le ultime due equazioni troviamo

$$a^{\phi(n)}x_1\cdots x_{\phi(n)}\equiv x_1\cdots x_{\phi(n)}\pmod{n}$$
 (8)

Ogni x_i è relativamente primo con n, quindi, esistono i loro inversi moltiplicativi modulo n. Moltiplicando entrambi i membri per ciascun inverso, si ottiene il risultato $a^{\phi(n)} = 1 \pmod{n}$.