

# STREAMLINING ML PIPELINES FOR CLINICAL WORKFLOW IN RISK FACTOR ANALYSIS FOR CARDIOVASCULAR DISEASE (CVD)

### INT 300 – INTERNSHIP PROJECT REPORT

Submitted by

JOSELYN DIANA CINDRELLA – E0120017

In partial fulfilment for the award of the degree of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

(Artificial Intelligence and Machine Learning)

Sri Ramachandra Faculty of Engineering and Technology

Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai -600116

**APRIL 2022** 

# STREAMLINING ML PIPELINES FOR CLINICAL WORKFLOW IN RISK FACTOR ANALYSIS FOR CARDIOVASCULAR DISEASE (CVD)

### INT 300 – INTERNSHIP PROJECT REPORT

### Submitted by

### JOSELYN DIANA CINDRELLA – E0120017

In partial fulfilment for the award of the degree of

### **BACHELOR OF TECHNOLOGY**

in

### COMPUTER SCIENCE AND ENGINEERING

(Medical Engineering)

Sri Ramachandra Faculty of Engineering and Technology

Sri Ramachandra Institute of Higher Education and Research, Porur,

Chennai -600116

**APRIL 2022** 

### **BONAFIDE CERTIFICATE**

SRI RAMACHANDRA FACULTY OF ENGINEERING AND TECHNOLOGY

Certified that this project report "Streamlining ML Pipelines for Clinical Workflow in Risk Factor Analysis for Cardiovascular Disease (CVD)" is the bonafide record of work done by "Joselyn Diana Cindrella – E0120017" who carried out the internship work under my supervision.

| <b>Signature</b> | of the | Super | visor |
|------------------|--------|-------|-------|
| Signature        | or the | Dupti | 11201 |

**Signature of Vice-Principal** 

### G. Jayanthi Ph. D.,

### **Assistant Professor**,

Department of Computer Science and Engineering

Sri Ramachandra Faculty of Engineering and

Technology,

SRIHER, Porur, Chennai-600 116.

### Prof. M. Prema

### Vice-Principal,

Department of Computer Science and

Engineering

Sri Ramachandra Faculty of Engineering

and Technology,

SRIHER, Porur, Chennai-600 116.

### **Evaluation Date:**



### **ACKNOWLEDGEMENT**

I express my sincere gratitude to our Chancellor, Vice-Chancellor and our sincere gratitude to our Provost **Dr. V. Raju** and our Vice-Principal **Prof. M. Prema** for their support and for providing the required facilities for carrying out this study.

I wish to thank my faculty supervisor(s), Prof. **G. Jayanthi** Department of Computer Science and Engineering, Sri Ramachandra faculty of Engineering and Technology for extending help and encouragement throughout the project. Without his/her continuous guidance and persistent help, this project would not have been a success for me.

I am grateful to all the members of Sri Ramachandra Faculty of Engineering and Technology, my beloved parents and friends for extending the support, who helped us to overcome obstacles in the study.

# TABLE OF CONTENTS

|    | Title                          | Page |
|----|--------------------------------|------|
| 1. | Abstract                       | 8    |
| 2. | Introduction                   | 9    |
| 3. | Review of Literature / Product | 10   |
| 4. | Problem Statement              | 11   |
|    | 4.1 Methodology 1              | 11   |
|    | 4.2 Methodology 2              | 12   |
|    | 4.3 Methodology 3              | 13   |
|    | 4.4 Methodology 4              | 12   |
|    | 4.5 Methodology 5              | 14   |
| 5. | Tools and Technology used      | 15   |
| 6. | Visualization                  | 16   |
|    | 6.1 Biological Factors         | 16   |
|    | 6.2 Social Factors             | 21   |
| 7. | Machine Learning               | 27   |
|    | 7.1 Biological Factors         | 27   |
|    | 7.2 Social Factors             | 32   |
|    | 7.3 Cohort Analysis            | 38   |
| 8. | Project Work Repository        | 47   |
| 9. | Timeline                       | 48   |
| 10 | .References                    | 50   |

# LIST OF FIGURES

| Figure No and Figure Name                                      | Page No |
|----------------------------------------------------------------|---------|
| Figure 3.1 Review of Literature                                | 10      |
| Figure 3.2 Accuracy for different values of K                  | 10      |
| Figure 4.1.1 Methodology 1                                     | 12      |
| Figure 4.2.1 Methodology 2 & 4                                 | 13      |
| Figure 4.3.1 Methodology 3                                     | 13      |
| Figure 4.4.1 Methodology 5                                     | 14      |
| Figure 6.1.1 Presence of heart disease m vs f                  | 16      |
| Figure 6.1.2 Average cholesterol vs diff age grp               | 16      |
| Figure 6.1.3 Trend of biological factors vs age grp            | 17      |
| Figure 6.1.4 Types of chest pain vs no. of m vs f              | 17      |
| Figure 6.1.5 Line chart of Chole, BP, HR in diff age grp       | 18      |
| Figure 6.1.6 Statistics of biological factors using box plot   | 18      |
| Figure 6.1.7 Trend line of the same factors                    | 19      |
| Figure 6.1.8 Linear Regression for Resting BP                  | 19      |
| Figure 6.1.9 Predictive Model                                  | 20      |
| Figure 6.1.10 Trend line of 3 biological factors with color    | 20      |
| shading based on old peak                                      | 20      |
| Figure 6.2.1 Work type vs the no. of people affected           | 21      |
| Figure 6.2.2 All social factors vs affected m and f            | 21      |
| Figure 6.2.3 Glucose                                           | 22      |
| Figure 6.2.4 Linear Regression-Glucose                         | 22      |
| Figure 6.2.5 Trendline of Age vs Work Type                     | 23      |
| Figure 6.2.6 Trendline of Age vs Smoking                       | 23      |
| Figure 6.2.7 Trendline of Age vs Residence                     | 24      |
| Figure 6.2.8 Trendline of Age vs Ever Married                  | 24      |
| Figure 6.2.9 Trendline of Age vs Hyper Tension                 | 25      |
| Figure 6.3.1 Heart Disease present vs gender with patient name | 25      |
| Figure 6.3.2 Scatter plot of avg cholesterol vs patients       | 26      |
| Figure 6.3.3 Random 3 patients vs the presence and             | 26      |
| absence of heart disease                                       |         |
| Figure 6.3.4 Tree map of types of chest pain vs the            | 27      |
| presence of heart disease                                      | 27      |
| Figure 7.1.1 Reading the dataset                               | 27      |
| Figure 7.1.2 Dataset in each column                            | 28      |
| Figure 7.1.3 Data describe                                     | 28      |
| Figure 7.1.4 Data processing                                   | 29      |

| Figure 7.1.5 Machine Learning           | 29 |
|-----------------------------------------|----|
| Figure 7.1.6 Standardizing the data     | 30 |
| Figure 7.1.7 Logistic Regression        | 30 |
| Figure 7.1.8 Decision tree              | 31 |
| Figure 7.1.9 Models and accuracy score  | 31 |
| Figure 7.1.10 ROC curve                 | 32 |
| Figure 7.2.1 Reading the dataset        | 32 |
| Figure 7.2.2 Shape of data frame        | 33 |
| Figure 7.2.3 Data describe              | 33 |
| Figure 7.2.4 Data processing            | 34 |
| Figure 7.2.5 Null values                | 34 |
| Figure 7.2.6 Machine Learning           | 35 |
| Figure 7.2.7 Standardizing the data     | 35 |
| Figure 7.2.8 Logistic Regression        | 36 |
| Figure 7.2.9 Decision tree              | 36 |
| Figure 7.2.10 Model and accuracy        | 37 |
| Figure 7.2.11 ROC curve                 | 37 |
| Figure 7.3.1 Reading dataset            | 38 |
| Figure 7.3.2 Datatype in each column    | 38 |
| Figure 7.3.3 Data describes             | 39 |
| Figure 7.3.4 Data frame                 | 39 |
| Figure 7.3.5 Machine Learning           | 40 |
| Figure 7.3.6 Splitting the data         | 40 |
| Figure 7.3.7 Standardizing the data     | 41 |
| Figure 7.3.8 Logistic Regression        | 41 |
| Figure 7.3.9 Decision Tree              | 42 |
| Figure 7.3.10 Models and accuracy score | 42 |
| Figure 7.3.11 ROC curve                 | 43 |
| Figure 8.1 Index                        | 44 |
| Figure 8.2 Biological Factors           | 44 |
| Figure 8.3 Data Visualization           | 45 |
| Figure 8.4 Cohort analysis form         | 45 |
| Figure 8.5 Streamlit                    | 46 |
| Figure 8.6 Overview                     | 46 |

### 1. ABSTRACT

Cardiovascular disease is a type of disease that affects the heart and blood vessels of people in different age groups. Its risk factors include resting bp, cholesterol, fasting blood sugar, maximum heart rate, average glucose level, smoking status, hyper tension, residence type, work type and so on. To create an awareness among people about the social and biological risk factors that cause cardiovascular disease. We can also use computer aided machines to improve the medical diagnosis. Visualization and machine learning is done for better analysis of the risk factors to create awareness. From the analysis, we get the major risk factors causing the cardiovascular disease like blood pressure, glucose level, work type and smoking status. Future works of this analysis include study of cohort charts using the data collected which has both the details of social and biological scores of the patient.

### 2. INTRODUCTION

### > Motivation:

• To create an awareness among people about the social and biological risk factors that cause cardiovascular disease.

## > Existing Approaches and Need for further study:

• The present approaches are done using Deep learning and not machine learning algorithms.

### > Applications & Technologies:

 We can use computer aided machines to improve the medical diagnosis which can be developed using the Python programming and we can visualize the data using Tableau and which can also be displayed on storyboard.

### 3. REVIEW OF LITERATURE / PRODUCT

Author: Muhammad Anwarul Azim, Md Rayhan Kabir, Rasif Ajwad

Title: Identifying the Risk of Cardiovascular Diseases from the Analysis of Physiological

Attributes

**Methodology:** Analyze the dataset, preprocessed the data using various supervised machine learning algorithms.

**Results:** Accuracy using KNN and Decision Tree is 86.84 and 78.95 respectively.

Limitation: Need of the usage of deep learning algorithms for better accuracy.

**Challenges:** Extracting data regarding the ECG patterns and formats.



Fig 3.1



Fig 3.2

### 4. PROBLEM STATEMENT

# **Description:**

To analyze cardiovascular dataset using Python and Tableau with ML pipeline algorithms to find the risk factors causing heart disease.

| OBJECTIVE                                             | METHODOLOGY         |
|-------------------------------------------------------|---------------------|
| 1. To collect the data samples                        | 1. Dataset - Kaggle |
| 2. To pre-process the dataset and prepare for ML task | 2. Python           |
| 3. To visualize the data                              | 3. Tableau          |
| 4. To create ML model                                 | 4. Python           |
| 5. To display all the work                            | 5. Website          |

### **4.1 METHODOLOGY 1:**

### **Description:**

- Visualizing the data using measures and dimensions using Tableau.
- Creating dash-boards / story-boards.

# Workflow diagram:



Fig 4.1.1

# **4.2 METHODOLOGY 2 & 4:**

# **Description:**

- Visualization using python.
- Creating ML models to predict accuracy.

Workflow Diagram:



Fig 4.2.1

### **4.3 METHODOLOGY 3:**

# **Description:**

- Visualizing the data using measures and dimensions using Tableau.
- Creating dash-boards / story-boards.

# **Workflow Diagram:**



Fig 4.3.1

# **4.4 METHODOLOGY 5:**

# **Description:**

• Webpage.

# Workflow Diagram:



Fig 4.4.1

# 5. TOOLS AND TECHNOLOGY USED

### > Python:

Python is commonly used for developing websites and software, task automation, data analysis, and data visualization. Since it's relatively easy to learn, Python has been adopted by many non-programmers such as accountants and scientists, for a variety of everyday tasks, like organizing finances.

### > Tableau:

Tableau is a leading data visualization tool used for data analysis and business intelligence. Gartner's Magic Quadrant classified Tableau as a leader for analytics and business intelligence.

### 6. Visualization

### **6.1 Biological Factors**



Fig 6.1.1 - Presence of heart disease m vs f



Fig 6.1.2 - Average cholesterol vs diff age grp



Fig 6.1.3 - Trend of biological factors vs age grp



Fig 6.1.4 - Types of chest pain vs no. of m vs f



Fig 6.1.5 - Line chart of Chole, BP, HR in diff age grp



Fig 6.1.6 - Statistics of biological factors using box plot



Fig 6.1.7 - Trend line of the same factors



Fig 6.1.8 - Linear Regression for Resting BP



Fig 6.1.9 - Predictive Model



Fig 6.1.10 - Trend line of 3 biological factors with color shading based on old peak

### **6.2 Social Factors**



Fig 6.2.1 - Work type vs the no. of people affected



Fig 6.2.2 - All social factors vs affected m and f



Fig 6.2.3 - Glucose



Fig 6.2.4 - Linear Regression-Glucose



Fig 6.2.5 - Trendline of Age vs Work Type



Fig 6.2.6 - Trendline of Age vs Smoking



Fig 6.2.7 - Trendline of Age vs Residence



Fig 6.2.8 - Trendline of Age vs Ever Married



Fig 6.2.9 - Trendline of Age vs Hyper Tension

# **6.3 Cohort Analysis**



Fig 6.3.1 - Heart Disease present vs gender with patient name



Fig 6.3.2 - Scatter plot of avg cholesterol vs patients



Fig 6.3.3 - Tree map of types of chest pain vs the presence of heart disease



Fig 6.3.4

# 7. Machine Learning

# 7.1 Biological Factors

Reading the Dataset

data = pd.read\_csv("heart.csv")
data.head()

|   | Age | Sex | ChestPainType | RestingBP | Cholesterol | FastingBS | RestingECG | MaxHR | ExerciseAngina | Oldpeak | ST_Slope | HeartDisease |
|---|-----|-----|---------------|-----------|-------------|-----------|------------|-------|----------------|---------|----------|--------------|
| 0 | 40  | М   | ATA           | 140       | 289         | No        | Normal     | 172   | N              | 0.0     | Up       | No           |
| 1 | 49  | F   | NAP           | 160       | 180         | No        | Normal     | 156   | N              | 1.0     | Flat     | Yes          |
| 2 | 37  | M   | ATA           | 130       | 283         | No        | ST         | 98    | N              | 0.0     | Up       | No           |
| 3 | 48  | F   | ASY           | 138       | 214         | No        | Normal     | 108   | Υ              | 1.5     | Flat     | Yes          |
| 4 | 54  | М   | NAP           | 150       | 195         | No        | Normal     | 122   | N              | 0.0     | Up       | No           |

print(f"Shape of Dataframe is: {data.shape}")

Shape of Dataframe is: (303, 14)

Fig 7.1.1

```
print('Datatype in Each Column')
pd.DataFrame(data.dtypes, columns=['Datatype']).rename_axis("Column Name")
Datatype in Each Column
                 Datatype
 Column Name
                     int64
                     int64
           sex
                     int64
            ср
                     int64
      trestbps
                     int64
          chol
                     int64
            fbs
       restecg
                     int64
        thalach
                     int64
                     int64
        exang
       oldpeak
                    float64
                     int64
         slope
                     int64
            ca
           thal
                     int64
                     int64
         target
```

Fig 7.1.2

| data.d | data.describe() |            |            |            |            |            |            |            |            |            |            |            |        |
|--------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------|
|        | age             | sex        | ср         | trestbps   | chol       | fbs        | restecg    | thalach    | exang      | oldpeak    | slope      | ca         |        |
| count  | 303.000000      | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.000000 | 303.00 |
| mean   | 54.366337       | 0.683168   | 0.966997   | 131.623762 | 246.264026 | 0.148515   | 0.528053   | 149.646865 | 0.326733   | 1.039604   | 1.399340   | 0.729373   | 2.31   |
| std    | 9.082101        | 0.466011   | 1.032052   | 17.538143  | 51.830751  | 0.356198   | 0.525860   | 22.905161  | 0.469794   | 1.161075   | 0.616226   | 1.022606   | 0.61   |
| min    | 29.000000       | 0.000000   | 0.000000   | 94.000000  | 126.000000 | 0.000000   | 0.000000   | 71.000000  | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.00   |
| 25%    | 47.500000       | 0.000000   | 0.000000   | 120.000000 | 211.000000 | 0.000000   | 0.000000   | 133.500000 | 0.000000   | 0.000000   | 1.000000   | 0.000000   | 2.00   |
| 50%    | 55.000000       | 1.000000   | 1.000000   | 130.000000 | 240.000000 | 0.000000   | 1.000000   | 153.000000 | 0.000000   | 0.800000   | 1.000000   | 0.000000   | 2.00   |
| 75%    | 61.000000       | 1.000000   | 2.000000   | 140.000000 | 274.500000 | 0.000000   | 1.000000   | 166.000000 | 1.000000   | 1.600000   | 2.000000   | 1.000000   | 3.00   |
| max    | 77.000000       | 1.000000   | 3.000000   | 200.000000 | 564.000000 | 1.000000   | 2.000000   | 202.000000 | 1.000000   | 6.200000   | 2.000000   | 4.000000   | 3.00   |
| 4      |                 |            |            |            |            |            |            |            |            |            |            |            | -      |

Fig 7.1.3

### Data Preprocessing

```
pd.DataFrame(data.isna().sum(), columns=["Null Values"]).rename_axis("Column Name")
```

#### **Null Values** Column Name age 0 0 sex ср 0 0 trestbps chol 0 0 fbs restecg 0 thalach 0 exang 0 0 oldpeak slope 0 0 ca thal 0 0 target

Fig 7.1.4

### Machine Learning

```
data.insert(0, 'id', range(1, 1 + len(data)))
data.head()

id are say on treather shall five rectors the land evans aldreak slane on that target
```

|   | id | age | sex | ср | trestbps | chol | fbs | restecg | thalach | exang | oldpeak | slope | ca | thal | target |
|---|----|-----|-----|----|----------|------|-----|---------|---------|-------|---------|-------|----|------|--------|
| 0 | 1  | 63  | 1   | 3  | 145      | 233  | 1   | 0       | 150     | 0     | 2.3     | 0     | 0  | 1    | 1      |
| 1 | 2  | 37  | 1   | 2  | 130      | 250  | 0   | 1       | 187     | 0     | 3.5     | 0     | 0  | 2    | 1      |
| 2 | 3  | 41  | 0   | 1  | 130      | 204  | 0   | 0       | 172     | 0     | 1.4     | 2     | 0  | 2    | 1      |
| 3 | 4  | 56  | 1   | 1  | 120      | 236  | 0   | 1       | 178     | 0     | 0.8     | 2     | 0  | 2    | 1      |
| 4 | 5  | 57  | 0   | 0  | 120      | 354  | 0   | 1       | 163     | 1     | 0.6     | 2     | 0  | 2    | 1      |

Splitting the data into train and test datasets

```
#Splitting the independent variables and target variable -stroke classification
X = data.drop(["id","target"], axis=1)
y = data["target"]
y= pd.DataFrame(y,columns=["target"])
```

Encoding categorical variables

```
def sexEncoder(df):
    labelEncoder = LabelEncoder()
    df["sex"] = labelEncoder.fit_transform(df["sex"])
    df.head()
#male-1
#female-0
sexEncoder(data)
```

Fig 7.1.5

#### Standardizing the data

```
numeric_cols = X.select_dtypes(["float64","int64"])
scaler = StandardScaler()
X[numeric_cols.columns] = scaler.fit_transform(X[numeric_cols.columns])
numeric_cols=X[numeric_cols.columns].round(2)
numeric_cols.head()
    age
          sex
                cp trestbps chol
                                   fbs restecg thalach exang oldpeak slope
                                                                               ca
                                                                                   thal
                       0.76 -0.26 2.39
0 0.95
         0.68
               1.97
                                          -1.01
                                                                       -2.27 -0.71 -2.15
   -1.92
         0.68
               1.00
                       -0.09 0.07 -0.42
                                           0.90
                                                   1.63
                                                         -0.70
                                                                       -2.27 -0.71 -0.51
                                                                 2.12
2 -1.47 -1.47
               0.03
                       -0.09 -0.82 -0.42
                                          -1.01
                                                  0.98
                                                         -0.70
                                                                 0.31
                                                                       0.98 -0.71 -0.51
                                           0.90
                       -0.66 -0.20 -0.42
                                                        -0.70
                                                                 -0.21
                                                                       0.98 -0.71 -0.51
3 0.18 0.68 0.03
                                                  1.24
4 0 29 -1 47 -0 94
                       -0.66 2.08 -0.42
                                          0.90
                                                  0.58
                                                                 -0.38 0.98 -0.71 -0.51
                                                        1 44
categorical_vbles = X.select_dtypes("object")
X = pd.get_dummies(X, columns=categorical_vbles.columns)
categorical_vbles=X.round(2)
categorical_vbles.shape
(303, 13)
data=pd.concat([categorical vbles,y],axis=1)
data=data.dropna()
```

Fig 7.1.6

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

model_comparison = pd.DataFrame(columns=["Model","Accuracy Score"])

Logistic Regression

from sklearn.linear_model import LogisticRegression
logit=LogisticRegression(solver = "liblinear",random_state=0)
logit.fit(X_train,y_train)
y_pred = logit.predict(X_test)
score = accuracy_score(y_pred, y_test)
print(f"Logistic Regression: {score}")

Logistic Regression: 0.8131868131868132

add_model={"Model": "LogisticRegression", "Accuracy Score": round(score,4)}
model_comparison = model_comparison.append(add_model, ignore_index=True)

K-nearest Neighbours
```

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn_model = knn.fit(X_train, y_train)
y_pred = knn_model.predict(X_test)
score_knn =accuracy_score(y_test, y_pred)
print(f"KNeighborsClassifier: {score_knn}")
```

KNeighborsClassifier: 0.8791208791208791

Fig 7.1.7

#### **Decision Tree Classifier**

```
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier(criterion='entropy', ccp_alpha=0.003)
dtc.fit(X_train,y_train)
y_Pred = dtc.predict(X_test)
score = accuracy_score(y_Pred, y_test)
print(f"DecisionTreeClassifier: {score}")
```

DecisionTreeClassifier: 0.7252747252747253

```
add_model={"Model": "DecisionTreeClassifier", "Accuracy Score": round(score,4)}
model_comparison = model_comparison.append(add_model, ignore_index=True)
```

#### Random Forest classifier

```
from sklearn.ensemble import RandomForestClassifier
randomforest = RandomForestClassifier(n_estimators=1000, random_state=30)
randomforest.fit(X_train, y_train)
y_pred = randomforest.predict(X_test)
score = accuracy_score(y_pred, y_test)
print(f"RandomForestClassifier: {score}")
```

RandomForestClassifier: 0.8131868131868132

```
add_model={"Model": "RandomForestClassifier", "Accuracy Score": round(score,4)}
model_comparison = model_comparison.append(add_model, ignore_index=True)
```

Fig 7.1.8

### Models and Accuracy Scores

# model\_comparison

|   | Model                  | Accuracy Score |
|---|------------------------|----------------|
| 0 | LogisticRegression     | 0.8132         |
| 1 | KNeighborsClassifier   | 0.8132         |
| 2 | DecisionTreeClassifier | 0.7253         |
| 3 | RandomForestClassifier | 0.8132         |

Fig 7.1.9

### **ROC Curve**

```
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
plt.plot(fpr,tpr)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.title('ROC curve for Heart disease classifier')
plt.xlabel('False positive rate (1-Specificity)')
plt.ylabel('True positive rate (Sensitivity)')
plt.grid(True)
```



```
import sklearn
sklearn.metrics.roc_auc_score(y_test,y_pred)
```

0.8102439024390243

Fig 7.1.10

### 7.2 Social Factors

#### Reading the Dataset

```
data = pd.read_csv("D:/Excel Sheets/Datastes/healthcare-dataset-stroke-data.csv")
data.head()
```

|   | id    | gender | age  | hypertension | heart_disease | ever_married | work_type     | Residence_type | avg_glucose_level | bmi  | smoking_status  | stroke |
|---|-------|--------|------|--------------|---------------|--------------|---------------|----------------|-------------------|------|-----------------|--------|
| 0 | 9No46 | Male   | 67.0 | No           | Yes           | Yes          | Private       | Urban          | 228.69            | 36.6 | formerly smoked | Yes    |
| 1 | 51676 | Female | 61.0 | No           | No            | Yes          | Self-employed | Rural          | 202.21            | NaN  | never smoked    | Yes    |
| 2 | 31112 | Male   | 80.0 | No           | Yes           | Yes          | Private       | Rural          | 105.92            | 32.5 | never smoked    | Yes    |
| 3 | 60182 | Female | 49.0 | No           | No            | Yes          | Private       | Urban          | 171.23            | 34.4 | smokes          | Yes    |
| 4 | 1665  | Female | 79.0 | Yes          | No            | Yes          | Self-employed | Rural          | 174.12            | 24.0 | never smoked    | Yes    |
|   |       |        |      |              |               |              |               |                |                   |      |                 |        |

print(f"Shape of Dataframe is: {data.shape}")

Shape of Dataframe is: (5110, 12)

Fig 7.2.1

```
print(f"Shape of Dataframe is: {data.shape}")
Shape of Dataframe is: (5110, 12)

print('Datatype in Each Column')
pd.DataFrame(data.dtypes, columns=['Datatype']).rename_axis("Column Name")
```

Datatype in Each Column

|                   | Datatype |
|-------------------|----------|
| Column Name       |          |
| id                | object   |
| gender            | object   |
| age               | float64  |
| hypertension      | object   |
| heart_disease     | object   |
| ever_married      | object   |
| work_type         | object   |
| Residence_type    | object   |
| avg_glucose_level | float64  |
| bmi               | float64  |
| smoking_status    | object   |
| stroke            | object   |

Fig 7.2.2

data.describe()

|       | age         | avg_glucose_level | bmi         |
|-------|-------------|-------------------|-------------|
| count | 5110.000000 | 5110.000000       | 4909.000000 |
| mean  | 43.226614   | 106.147677        | 28.893237   |
| std   | 22.612647   | 45.283560         | 7.854067    |
| min   | 0.080000    | 55.120000         | 10.300000   |
| 25%   | 25.000000   | 77.245000         | 23.500000   |
| 50%   | 45.000000   | 91.885000         | 28.100000   |
| 75%   | 61.000000   | 114.090000        | 33.100000   |
| max   | 82.000000   | 271.740000        | 97.600000   |

Fig 7.2.3

### Data Preprocessing

```
pd.DataFrame(data.isna().sum(), columns=["Null Values"]).rename_axis("Column Name")
```

#### **Null Values** Column Name 0 id 0 gender 0 age hypertension 0 heart\_disease 0 ever\_married 0 work\_type Residence\_type avg\_glucose\_level 0 201 smoking\_status 0 stroke 0

```
data['bmi'].fillna(data['bmi'].mean(), inplace=True)

other_index = data[data['gender'] =='Other'].index
data= data.drop(other_index)
```

Fig 7.2.4

```
data["smoking_status"].replace("Unknown", data["smoking_status"].mode().values[∅], inplace=True)

pd.DataFrame(data.isna().sum(), columns=["Null Values"]).rename_axis("Column Name")
```

|                   | Null Values |  |
|-------------------|-------------|--|
| Column Name       |             |  |
| id                | 0           |  |
| gender            | 0           |  |
| age               | 0           |  |
| hypertension      | 0           |  |
| heart_disease     | 0           |  |
| ever_married      | 0           |  |
| work_type         | 0           |  |
| Residence_type    | 0           |  |
| avg_glucose_level | 0           |  |
| bmi               | 0           |  |
| smoking_status    | 0           |  |
| stroke            | 0           |  |

Fig 7.2.5

### Machine Learning

Splitting the data into train and test datasets

```
#Splitting the independent variables and target variable -stroke classification
X = data.drop(["id","stroke"], axis=1)
y = data["stroke"]
y= pd.DataFrame(y,columns=["stroke"])
```

### Encoding categorical variables

```
def genderEncoder(df):
    labelEncoder = LabelEncoder()
    df["gender"] = labelEncoder.fit_transform(df["gender"])
    df.head()
#male-1
#female-0
genderEncoder(data)
```

## Fig 7.2.6

#### Standardizing the data

```
numeric_cols = X.select_dtypes(["float64","int64"])
scaler = StandardScaler()
X[numeric_cols.columns] = scaler.fit_transform(X[numeric_cols.columns])
numeric_cols=X[numeric_cols.columns].round(2)
numeric_cols.head()
```

|   | age  | avg_glucose_level | bmi   |
|---|------|-------------------|-------|
| 0 | 1.05 | 2.71              | 1.00  |
| 1 | 0.79 | 2.12              | -0.00 |
| 2 | 1.63 | -0.00             | 0.47  |
| 3 | 0.26 | 1.44              | 0.72  |
| 4 | 1.58 | 1.50              | -0.64 |

```
categorical_vbles = X.select_dtypes("object")
X = pd.get_dummies(X, columns=categorical_vbles.columns)

categorical_vbles=X.round(2)

categorical_vbles.shape
```

```
(5109, 21)
```

Fig 7.2.7

```
data=pd.concat([categorical_vbles,y],axis=1)
data=data.dropna()
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model_comparison = pd.DataFrame(columns=["Model","Accuracy Score"])
Logistic Regression
from sklearn.linear_model import LogisticRegression
logit=LogisticRegression(solver = "liblinear", random_state=0)
logit.fit(X_train,y_train)
y_pred = logit.predict(X_test)
score = accuracy_score(y_pred, y_test)
print(f"Logistic Regression: {score}")
Logistic Regression: 0.9425962165688193
add model={"Model": "LogisticRegression", "Accuracy Score": round(score,4)}
model_comparison = model_comparison.append(add_model, ignore_index=True)
K-nearest Neighbours
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn model = knn.fit(X_train, y_train)
y_pred = knn_model.predict(X_test)
score_knn =accuracy_score(y_test, y_pred)
print(f"KNeighborsClassifier: {score_knn}")
```

### Fig 7.2.8

### Decision Tree Classifier

KNeighborsClassifier: 0.9399869536855838

```
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier(criterion='entropy', ccp_alpha=0.003)
dtc.fit(X_train,y_train)
y_Pred = dtc.predict(X_test)
score = accuracy_score(y_Pred, y_test)
print(f"DecisionTreeClassifier: {score}")

DecisionTreeClassifier: 0.9419439008480104

add_model={"Model": "DecisionTreeClassifier", "Accuracy Score": round(score,4)}
model_comparison = model_comparison.append(add_model, ignore_index=True)
```

#### Random Forest classifier

```
from sklearn.ensemble import RandomForestClassifier
randomforest = RandomForestClassifier(n_estimators=1000, random_state=30)
randomforest.fit(X_train, y_train)
y_pred = randomforest.predict(X_test)
score = accuracy_score(y_pred, y_test)
print(f"RandomForestClassifier: {score}")
RandomForestClassifier: 0.9419439008480104

add_model={"Model": "RandomForestClassifier", "Accuracy Score": round(score,4)}
model_comparison = model_comparison.append(add_model, ignore_index=True)
```

Fig 7.2.9

## Models and Accuracy Scores

## model\_comparison

|   | Model                  | Accuracy Score |
|---|------------------------|----------------|
| 0 | LogisticRegression     | 0.9426         |
| 1 | KNeighborsClassifier   | 0.9426         |
| 2 | DecisionTreeClassifier | 0.9419         |
| 3 | RandomForestClassifier | 0.9419         |

Fig 7.2.10

## **ROC Curve**

```
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
plt.plot(fpr,tpr)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.title('ROC curve for Heart disease classifier')
plt.xlabel('False positive rate (1-Specificity)')
plt.ylabel('True positive rate (Sensitivity)')
plt.grid(True)
```



```
import sklearn
sklearn.metrics.roc_auc_score(y_test,y_pred)
```

0.5

Fig 7.2.11

# 7.3 Cohort Analysis

Reading the Dataset

data = pd.read\_csv("D:/Excel Sheets/Datastes/values.csv")
data.head()

|   | patient name | thalassemia       | resting bp | chest_pain_type | fasting bs | cholesterol | depression | sex    | age | max hr | exercise | heart_disease_present |
|---|--------------|-------------------|------------|-----------------|------------|-------------|------------|--------|-----|--------|----------|-----------------------|
| 0 | John         | normal            | 128        | ATA             | No         | 308         | No         | Female | 45  | 170    | No       | No                    |
| 1 | William      | normal            | 110        | NAP             | No         | 214         | Yes        | Male   | 54  | 158    | No       | No                    |
| 2 | James        | normal            | 125        | ASY             | No         | 304         | No         | Female | 77  | 162    | Yes      | Yes                   |
| 3 | George       | reversible_defect | 152        | ASY             | No         | 223         | No         | Female | 40  | 181    | No       | Yes                   |
| 4 | Charles      | reversible_defect | 178        | TA              | No         | 270         | Yes        | Female | 59  | 145    | No       | No                    |

Fig 7.3.1

print('Datatype in Each Column')
pd.DataFrame(data.dtypes, columns=['Datatype']).rename\_axis("Column Name")

Datatype in Each Column

## Datatype

#### Column Name

| patient name          | object |
|-----------------------|--------|
| thalassemia           | object |
| resting bp            | int64  |
| chest_pain_type       | object |
| fasting bs            | object |
| cholesterol           | int64  |
| depression            | object |
| sex                   | object |
| age                   | int64  |
| max hr                | int64  |
| exercise              | object |
| heart_disease_present | object |

Fig 7.3.2

# data.describe()

|       | resting bp | cholesterol | age        | max hr     |
|-------|------------|-------------|------------|------------|
| count | 180.000000 | 180.000000  | 180.000000 | 180.000000 |
| mean  | 131.311111 | 249.211111  | 54.811111  | 149.483333 |
| std   | 17.010443  | 52.717969   | 9.334737   | 22.063513  |
| min   | 94.000000  | 126.000000  | 29.000000  | 96.000000  |
| 25%   | 120.000000 | 213.750000  | 48.000000  | 132.000000 |
| 50%   | 130.000000 | 245.500000  | 55.000000  | 152.000000 |
| 75%   | 140.000000 | 281.250000  | 62.000000  | 166.250000 |
| max   | 180.000000 | 564.000000  | 77.000000  | 202.000000 |

Fig 7.3.3

pd.DataFrame(data.isna().sum(), columns=["Null Values"]).rename\_axis("Column Name")

|                       | Null Values |
|-----------------------|-------------|
| Column Name           |             |
| patient name          | 0           |
| thalassemia           | 0           |
| resting bp            | 0           |
| chest_pain_type       | 0           |
| fasting bs            | 0           |
| cholesterol           | 0           |
| depression            | 0           |
| sex                   | 0           |
| age                   | 0           |
| max hr                | 0           |
| exercise              | 0           |
| heart_disease_present | 0           |

Fig 7.3.4

#### Machine Learning

Splitting the data into train and test datasets

```
data.insert(0, 'id', range(1, 1 + len(data)))
heart_disease_present = {'No': 0, 'Yes': 1}
data.heart_disease_present = [heart_disease_present[item] for item in data.heart_disease_present]
data.head()
```

|   | id | patient name | thalassemia       | resting bp | chest_pain_type | fasting bs | cholesterol | depression | sex    | age | max hr | exercise | heart_disease_present |
|---|----|--------------|-------------------|------------|-----------------|------------|-------------|------------|--------|-----|--------|----------|-----------------------|
| 0 | 1  | John         | normal            | 128        | ATA             | No         | 308         | No         | Female | 45  | 170    | No       | 0                     |
| 1 | 2  | William      | normal            | 110        | NAP             | No         | 214         | Yes        | Male   | 54  | 158    | No       | 0                     |
| 2 | 3  | James        | normal            | 125        | ASY             | No         | 304         | No         | Female | 77  | 162    | Yes      | 1                     |
| 3 | 4  | George       | reversible_defect | 152        | ASY             | No         | 223         | No         | Female | 40  | 181    | No       | 1                     |
| 4 | 5  | Charles      | reversible_defect | 178        | TA              | No         | 270         | Yes        | Female | 59  | 145    | No       | 0                     |

Splitting the data into train and test datasets

```
#Splitting the independent variables and target variable -stroke classification
X = data.drop(["id","heart_disease_present"], axis=1)
y = data["heart_disease_present"]
y= pd.DataFrame(y,columns=["heart_disease_present"])
```

Fig 7.3.5

Splitting the data into train and test datasets

```
#Splitting the independent variables and target variable -stroke classification
X = data.drop(["id","heart_disease_present"], axis=1)
y = data["heart_disease_present"]
y= pd.DataFrame(y,columns=["heart_disease_present"])
```

Encoding categorical variables

```
def sexEncoder(df):
    labelEncoder = LabelEncoder()
    df["sex"] = labelEncoder.fit_transform(df["sex"])
    df.head()
#male-1
#female-0
```

sexEncoder(data)

Standardizing the data

```
numeric_cols = X.select_dtypes(["float64","int64"])
scaler = StandardScaler()
X[numeric_cols.columns] = scaler.fit_transform(X[numeric_cols.columns])
numeric_cols=X[numeric_cols.columns].round(2)
numeric_cols.head()
```

Fig 7.3.6

```
resting bp cholesterol
                             max hr
0
       -0.20
                   1.12 -1.05
                               0.93
       -1.26
                  -0.67 -0.09
                               0.39
1
2
       -0.37
                   1.04 2.38
                               0.57
3
        1.22
                  -0.50 -1.59
                               1.43
        2.75
                  0.40 0.45
                               -0.20
categorical_vbles = X.select_dtypes("object")
X = pd.get_dummies(X, columns=categorical_vbles.columns)
categorical vbles=X.round(2)
categorical_vbles.shape
(180, 197)
data=pd.concat([categorical_vbles,y],axis=1)
data=data.dropna()
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model_comparison = pd.DataFrame(columns=["Model", "Accuracy Score"])
```

age

Fig 7.3.7

## Logistic Regression

```
from sklearn.linear_model import LogisticRegression
logit=LogisticRegression(solver = "liblinear", random_state=0)
logit.fit(X_train,y_train)
y_pred = logit.predict(X_test)
score = accuracy_score(y_pred, y_test)
print(f"Logistic Regression: {score}")
Logistic Regression: 0.8148148148148148
add_model={"Model": "LogisticRegression", "Accuracy Score": round(score,4)}
model_comparison = model_comparison.append(add_model, ignore_index=True)
```

## K-nearest Neighbours

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn_model = knn.fit(X_train, y_train)
y_pred = knn_model.predict(X_test)
score_knn =accuracy_score(y_test, y_pred)
print(f"KNeighborsClassifier: {score_knn}")
KNeighborsClassifier: 0.7962962962963
```

```
add model={"Model": "KNeighborsClassifier", "Accuracy Score": round(score,4)}
model_comparison = model_comparison.append(add_model, ignore_index=True)
```

Fig 7.3.8

#### **Decision Tree Classifier**

```
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier(criterion='entropy', ccp_alpha=0.003)
dtc.fit(X_train,y_train)
y_Pred = dtc.predict(X_test)
score = accuracy_score(y_Pred, y_test)
print(f"DecisionTreeClassifier: {score}")
```

DecisionTreeClassifier: 0.6851851851851852

```
add_model={"Model": "DecisionTreeClassifier", "Accuracy Score": round(score,4)}
model_comparison = model_comparison.append(add_model, ignore_index=True)
```

#### Random Forest classifier

```
from sklearn.ensemble import RandomForestClassifier
randomforest = RandomForestClassifier(n_estimators=1000, random_state=30)
randomforest.fit(X_train, y_train)
y_pred = randomforest.predict(X_test)
score = accuracy_score(y_pred, y_test)
print(f"RandomForestClassifier: {score}")
```

RandomForestClassifier: 0.83333333333333334

```
add_model={"Model": "RandomForestClassifier", "Accuracy Score": round(score,4)}
model_comparison = model_comparison.append(add_model, ignore_index=True)
```

Fig 7.3.9

## Models and Accuracy Scores

```
model_comparison
```

|   | Model                  | Accuracy Score |
|---|------------------------|----------------|
| 0 | LogisticRegression     | 0.8148         |
| 1 | KNeighborsClassifier   | 0.8148         |
| 2 | DecisionTreeClassifier | 0.6852         |
| 3 | RandomForestClassifier | 0.8333         |

Fig 7.3.10

## **ROC Curve**

```
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
plt.plot(fpr,tpr)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.title('ROC curve for Heart disease classifier')
plt.xlabel('False positive rate (1-Specificity)')
plt.ylabel('True positive rate (Sensitivity)')
plt.grid(True)
```



```
import sklearn
sklearn.metrics.roc_auc_score(y_test,y_pred)
```

0.8448275862068966

Fig 7.3.11

## 8. Website



Fig 8.1 – Index page



Fig 8.2 – Biological Factors

## **DATA VISUALIZATION**



Fig 8.3 Data visualization



Fig 8.4 – Cohort form



Fig 8.5 – Streamlit



Fig – 8.6 Overview

# 9. Project Work Repository

• GitHub Repository Link:

https://github.com/2022-SRET-INT300/Cardiovascular-Disease

• Tableau Public Link:

https://public.tableau.com/app/profile/joselyn.diana.cindrella#!/

# 10.Timeline

| Doy 11 | 11 Ion 2022 | Haarts dataset collection                                                                                  |
|--------|-------------|------------------------------------------------------------------------------------------------------------|
| Day 11 | 11-Jan-2022 | Hearts dataset collection                                                                                  |
| Day 12 | 12-Jan-2022 | Healthcare and Patient wise dataset collection                                                             |
| Day 13 | 13-Jan-2022 | Data cleaning                                                                                              |
| Day 14 | 14-Jan-2022 | Exploratory hearts data analysis using R programming                                                       |
| Day 15 | 15-Jan-2022 | Exploratory healthcare data analysis using R programming                                                   |
| Day 17 | 17-Jan-2022 | Tried exploratory values data analysis using R programming                                                 |
| Day 18 | 18-Jan-2022 | Tried exploratory values data analysis using R programming                                                 |
| Day 19 | 19-Jan-2022 | Connecting R and Tableau                                                                                   |
| Day 20 | 20-Jan-2022 | Connecting Python and Tableau                                                                              |
| Day 21 | 21-Jan-2022 | Learning how to do analysis using Tableau and R                                                            |
| Day 22 | 22-Jan-2022 | Learning how to do analysis using Tableau and Python                                                       |
| Day 24 | 24-Jan-2022 | Analysis - Most Likely to Have Heart Disease,<br>Avg Cholesterol vs age grp, Major factors vs age<br>group |
| Day 25 | 25-Jan-2022 | Analysis - Relationship between gender and chest pain types, major factors age                             |
| Day 27 | 27-Jan-2022 | Analysis - Social factors vs heart disease, social factors                                                 |
| Day 28 | 28-Jan-2022 | Analysis - heart disease w.r.t gender & patient, Patient w.r.t Cholesterol                                 |
| Day 29 | 29-Jan-2022 | Analysis - Major factors vs random 10 ppl,<br>Chest pain type                                              |
| Day 31 | 31-Jan-2022 | Dashboard creation                                                                                         |
| Day 32 | 1-Feb-2022  | Story board creation and publishing it in tableau public                                                   |
| Day 33 | 2-Feb-2022  | Project mentor meeting                                                                                     |
| Day 34 | 3-Feb-2022  | Rectifying errors                                                                                          |
| Day 35 | 4-Feb-2022  | PPT Preparation                                                                                            |
| Day 36 | 5-Feb-2022  | Model 1st review                                                                                           |
| Day 38 | 7-Feb-2022  | 1st Review                                                                                                 |
| Day 39 | 8-Feb-2022  | 1st Review                                                                                                 |
| Day 40 | 9-Feb-2022  | Analysis - Predictive modelling                                                                            |
| Day 41 | 10-Feb-2022 | Analysis - Trend line                                                                                      |

| Day 42 | 11-Feb-2022 | Analysis - HR, BP, Cholesterol Vs Age                         |
|--------|-------------|---------------------------------------------------------------|
| Day 43 | 12-Feb-2022 | Analysis - Major factors using Box Plot with trend line       |
| Day 45 | 14-Feb-2022 | Project mentor meeting                                        |
| Day 46 | 15-Feb-2022 | Linear Regression - BP                                        |
| Day 47 | 16-Feb-2022 | Linear Regression - Glucose                                   |
| Day 48 | 17-Feb-2022 | Creating story and dashboard and publishing in tableau public |
| Day 49 | 18-Feb-2022 | Social Factors trend lines                                    |
| Day 50 | 19-Feb-2022 | Social Factors - Data visualization                           |
| Day 52 | 21-Feb-2022 | Social Factors - Density plots                                |
| Day 53 | 22-Feb-2022 | Social Factors - Machine Learning models                      |
| Day 54 | 23-Feb-2022 | Biological Factors - Data visualization                       |
| Day 55 | 24-Feb-2022 | Biological Factors - Density plots                            |
| Day 56 | 25-Feb-2022 | Biological Factors - Machine Learning models                  |
| Day 57 | 26-Feb-2022 | PPT Preparation                                               |
| Day 58 | 27-Feb-2022 | 2nd Review preparation                                        |
| Day 59 | 28-Feb-2022 | 2nd Review                                                    |
| Day 61 | 2-Mar-2022  | Website - Index page and nav bar creation                     |
| Day 62 | 3-Mar-2022  | Website - Embedding Tableau page                              |
| Day 63 | 4-Mar-2022  | Website - ML page                                             |
| Day 64 | 5-Mar-2022  | Working on website                                            |
| Day 66 | 7-Mar-2022  | Creating form for cohort analysis                             |
| Day 67 | 8-Mar-2022  | Changes in visualization part                                 |
| Day 68 | 9-Mar-2022  | Learning stremlit                                             |
| Day 69 | 10-Mar-2022 | Learning stremlit                                             |
| Day 70 | 11-Mar-2022 | Loading dataset in stremlit                                   |
| Day 71 | 12-Mar-2022 | Trying to load stremlit app                                   |
| Day 73 | 14-Mar-2022 | Competing stremlit in web app                                 |
| Day 74 | 15-Mar-2022 | Competing stremlit in web app                                 |
| Day 75 | 16-Mar-2022 | Adding stremlit to website                                    |
| Day 82 | 23-Mar-2022 | Report Preparation                                            |
| Day 83 | 24-Mar-2022 | Report Preparation                                            |
| Day 84 | 25-Mar-2022 | Report Review                                                 |
| Day 85 | 26-Mar-2022 | PPT Preparation                                               |
| Day 87 | 28-Mar-2022 | Model Presentation                                            |
| Day 88 | 29-Mar-2022 | Final Review Preparation                                      |
| Day 89 | 30-Mar-2022 | Final Review Preparation                                      |
| Day 90 | 31-Mar-2022 | Final Review                                                  |

# 11.References

- https://www.kaggle.com/fedesoriano/heart-failure-prediction
- https://www.kaggle.com/praagnya/heart-disease-prediction
- https://visualbi.com/blogs/tableau/tableau-integration-r/
- https://sci-hub.hkvisa.net/10.1109/TENSYMP50017.2020.9230887
- https://www.analyticsvidhya.com/blog/2020/12/integrate-r-tableau-and-excel/