

Framework orientado a algoritmos de recomendación basados en similitudes

Autor: Alberto García Redero

Tutor: Alejandro Bellogín Kouki

Ponente: Fernando Díez Rubio

Índice

- Introducción
- Objetivos
- Estado del arte
- Solución Propuesta
 - o Implementación
- Pruebas y Resultados
- Conclusiones y Trabajo Futuro

Introducción - Los Sistemas de Recomendación

Objetivos

Construcción de un recomendador basado en similitudes.

 <u>Estudiar distintas variantes</u> del recomendador para comprobar su funcionamiento.

 Comprobar su <u>rendimiento</u> frente a algunos de los Sistemas de Recomendación más comunes actualmente.

Estado del arte - Filtrado Colaborativo

Estado del arte - Vecinos próximos

Orientado a ítems

Estado del arte - Modelos híbridos

Ejemplo de estructura de Recomendadores Híbridos

Solución implementada en el proyecto.

Estado del arte - Redes Neuronales

Red Profunda

Solución Propuesta

Modelo Híbrido en Cascada, en el que cada subrecomendador realiza las siguientes acciones:

- 1. La Red Neuronal Profunda extrae los embeddings (factores latentes) de los elementos.
- 2. Estos son utilizados por Vecinos Próximos para realizar las recomendaciones.

Implementación - Subsistema de estandarización de los Datos

Problema inicial:

 Los datasets pueden tener una estructura y características distintas.

Por lo que necesitamos una manera de estandarizar los datos para que puedan ser utilizados por las Redes Neuronales.

Implementación - Subsistema de generación de Embeddings

- Punto de partida del proyecto: GITHUB¹
- Objetivo: entrenar las Redes generando a partir de ellas los embeddings.
- Redes Neuronales que lo componen:
 - Deep fm
 - Deep
 - Linear_Deep

¹https://github.com/yxtay/recommender-tensorflow

Implementación - Subsistema de extracción de vecinos

Utilizamos Annoy.

Ventajas:

- Rápida.
- Utilizada por Spotify.
- Estructura de datos eficiente.
- Fácil de integrar en Python.

Funcionalidad - Películas similares

```
deep_fm
Movie: Star Wars (1977)
                           Star Wars (1977)
49
194
                     Terminator, The (1984)
       Bridge on the River Kwai, The (1957)
198
277
                        Bed of Roses (1996)
                           Dark City (1998)
690
Movie: Star Wars (1977)
                                       deep
49
                   Star Wars (1977)
        Princess Bride, The (1987)
172
267
                Chasing Amy (1997)
               Mary Poppins (1964)
418
           Butcher Boy, The (1998)
1644
Movie: Star Wars (1977)
                                                                 linear_deep
15
                        French Twist (Gazon maudit) (1995)
49
                                           Star Wars (1977)
229
                      Star Trek IV: The Voyage Home (1986)
                                    To Catch a Thief (1955)
489
1532
        I Don't Want to Talk About It (De eso no se ha...
```

Funcionalidad - Recomendar al usuario

```
User: 259
                                                              deep_fm
                                           Exotica (1994)
45
                         Shawshank Redemption, The (1994)
63
                              Sleepless in Seattle (1993)
87
137
                              D3: The Mighty Ducks (1996)
182
                                             Alien (1979)
189
                                           Henry V (1989)
                          Star Trek: First Contact (1996)
221
User: 259
                                                              deep
                                 Dolores Claiborne (1994)
43
48
                                              I.O. (1994)
52
                              Natural Born Killers (1994)
165
           Manon of the Spring (Manon des sources) (1986)
212
                               Room with a View, A (1986)
                                         Cape Fear (1991)
217
               Star Trek III: The Search for Spock (1984)
228
User: 259
                                                               linear_deep
        Brother Minister: The Assassination of Malcolm...
74
79
                              Hot Shots! Part Deux (1993)
80
                              Hudsucker Proxy, The (1994)
114
         Haunted World of Edward D. Wood Jr., The (1995)
160
                                           Top Gun (1986)
                                  Right Stuff, The (1983)
192
                                    Batman Returns (1992)
230
```

Funcionalidad

		movieId		title	genres
	0	1	Toy Story ((1995)	Animation Children's Comedy
	6	7	Twelve Monkeys ((1995)	Drama Sci-Fi
	49	50	Star Wars ((1977)	Action Adventure Romance Sci-Fi War
	55	56	Pulp Fiction ((1994)	Crime Drama
	97	98	Silence of the Lambs, The ((1991)	Drama Thriller
	99	100	Fargo ((1996)	Crime Drama Thriller
	120	121	Independence Day (ID4) ((1996)	Action Sci-Fi War
	126	127	Godfather, The ((1972)	Action Crime Drama
	173	174	Raiders of the Lost Ark ((1981)	Action Adventure
	180	181	Return of the Jedi ((1983)	Action Adventure Romance Sci-Fi War
	257	258	Contact ((1997)	Drama Sci-Fi
Películas más	285	286	English Patient, The ((1996)	Drama Romance War
	287	288	Scream ((1996)	Horror Thriller
populares	293	294	Liar Liar ((1997)	Comedy
	299	300	Air Force One ((1997)	Action Thriller

Pruebas y resultados

- Diferencias entre las Redes Neuronales implementadas.
- Comparación de vecinos del modelo híbrido frente al estándar.
- Comparación con otros sistemas de recomendación.

Datasets utilizados:

- Movielens 100K. 943 usuarios y 1682 ítems.
- Movielens 20M. 138493 usuarios y 27278 ítems.

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A|+|B|-|A \cap B|}$$

$$J(Deep, Deep_{-}fm) = \frac{2}{3+3-2} = \frac{1}{2}$$

~
@50
1.545E-4
1.527E-4
1.775E-4

Jaccard entre usuarios de las distintas redes.

	@5	@10	@15	@20	@50
Deep vs Deep_fm	1.188E-4	2.290E-4	3.645E-4	4.257E-4	1.024E-3
Deep_fm vs Linear_deep	1.015E-4	1.588E-4	2.615E-4	3.785E-4	9.191E-4
Deep vs Linear_deep	1.102E-4	1.739E-4	2.636E-4	3.592E-4	9.150E-4

Jaccard entre ítems de las distintas redes.

Pruebas y resultados - Comparación de usuarios e ítems

	Precisión	Recall	nDCG	EPC	AD	Gini
Modelo Híbrido, Deep	0.025	0.041	0.035	0.829	20693.19	0.188
Modelo Híbrido, Deep_fm	0.025	0.042	0.042	0.829	20259.59	0.194
Modelo Híbrido, Linear_deep	0.025	0.042	0.034	0.829	20259.59	0.191
Modelo estándar	0.019	0.032	0.026	0.889	8694.60	0.078

Comparación vecinos orientados a usuarios del modelo estándar vs el modelo híbrido.

	Precisión	Recall	nDCG	EPC	AD	Gini
Modelo Híbrido, Deep	5.832E-4	9.198E-4	7.466E-4	0.988	8460.60	0.117
Modelo Híbrido, Deep_fm	5.083E-4	8.431E-4	6.299E-4	0.977	8366.80	0.103
Modelo Híbrido, Linear_deep	5.468E-4	7.967E-4	6.073E-4	0.978	8507.20	0.122
Modelo estándar	0.023	0.039	0.032	0.849	20259.59	0.226

Comparación vecinos orientados a ítems del modelo estándar vs el modelo híbrido.

	Precisión	Recall	nDCG	EPC	AD	Gini
Random	2.563E-4	4.329E-4	3.474E-4	0.993	19752.01	0.844
Popularity	0.027	0.045	0.037	0.818	8596.69	0.048
Factorización de Matrices	0.025	0.042	0.036	0.840	1913.99	0.020
Mejor modelo estándar	0.023	0.039	0.032	0.849	20259.59	0.226
Mejor modelo Híbrido	0.025	0.042	0.042	0.829	20259.59	0.194

Resultados obtenidos contra otros recomendadores populares.

Discusión Resultados

- Mejora a Vecinos Próximos en la versión orientada a usuarios.
- Es posible obtener buenos resultados sin necesidad de utilizar Redes Neuronales muy complejas.
- Redes Neuronales similares devuelven resultados dispares pero de rendimiento parecido.

Conclusiones

- He aprendido nuevas técnicas de cálculo de vecinos. (Annoy)
- He practicado el uso de Redes Neuronales y mejorado mis conocimientos.
 - He descubierto qué son los embeddings y sus aplicaciones.
 - o TensorFlow.
- He ganado experiencia utilizando python3, Java8 y en menor medida C++.

El framework resultante del proyecto se encuentra disponible en: https://bitbucket.org/albergr/tfg/

Trabajo Futuro

- Probar el sistema con otro tipo de Red Neuronal. Por ejemplo, Convolucional o Recurrente.
- Crear la red con Keras en vez de con estimadores.
- Estudiar en profundidad las métricas de distancia que Annoy nos aporta.
- Probar distintos tamaños del vector de embeddings.
- Comparar la caracterización de los elementos realizada por las redes con la factorización de matrices

Preguntas

Diagrama Secuencia: Proceso automático

Estado del arte - Redes Neuronales

0000 SoftMax Convolutional 000000 Folding Max over time Pooling Attention Convolutional Look Up Look Up

Red Recurrente

Red Convolucional

Estructura de Deep_fm

Estructura de Deep y Linear_deep

Deep

Linear_deep

Características:

- Densa, todas las neuronas conectadas a las de la capa siguiente.
- <u>Prealimentada</u>, las conexiones entre neuronas no forman un bucle.

Características:

- Red Lineal.
- Densa.

tf.estimator.DNNClassifier

tf. estimator. DNN Linear Combined Classifier

Diferencias datasets Movielens (1)

	Ratings	Usuarios	Ítems
Movielens 100K	100000	943	1682
Movielens 20M	20000263	138493	27278

	Movielens 100K	Movielens 20M	¿Necesario?	Equivalente a
u.data	YES	NO	YES	ratings.csv
u.genre	YES	NO	NO	
u.info	YES	NO	NO	
u.item	YES	NO	YES	movies.csv, pero faltan campos
u.occupation	YES	NO	NO	
u.user	YES	NO	YES	Solo los IDs desde ratings.csv
links.csv	NO	YES	NO	
movies.csv	NO	YES	YES	u.item
ratings.csv	NO	YES	YES	u.data
tags.csv	NO	YES	NO	