```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

Static Versus Dynamic Typing, Part One

Now can argue...

Having carefully stated facts about static checking, can *now* consider arguments about which is *better*: static checking or dynamic checking

Remember most languages do some of each

 For example, perhaps types for primitives are checked statically, but array bounds are not

Claim 1a: Dynamic is more convenient

Dynamic typing lets you build a heterogeneous list or return a "number or a string" without workarounds

```
(define (f y)
  (if (> y 0) (+ y y) "hi"))
(let ([ans (f x)])
  (if (number? ans) (number->string ans) ans))
```

```
datatype t = Int of int | String of string
fun f y = if y > 0 then Int(y+y) else String "hi"

case f x of
   Int i => Int.toString i
   | String s => s
```

Claim 1b: Static is more convenient

Can assume data has the expected type without cluttering code with dynamic checks or having errors far from the logical mistake

```
(define (cube x)
  (if (not (number? x))
        (error "bad arguments")
        (* x x x)))
(cube 7)
```

```
fun cube x = x * x * x
cube 7
```

Claim 2a: Static prevents useful programs

Any sound static type system forbids programs that do nothing wrong, forcing programmers to code around limitations

```
(define (f g)
  (cons (g 7) (g #t)))

(define pair_of_pairs
  (f (lambda (x) (cons x x))))
```

```
fun f g = (g 7, g true) (* does not type-check *)
val pair_of_pairs = f (fn x => (x,x))
```

Claim 2b: Static lets you tag as needed

Rather than suffer time, space, and late-errors costs of tagging everything, statically typed languages let programmers "tag as needed" (e.g., with datatypes)

In the extreme, can use "TheOneRacketType" in ML

Extreme rarely needed in practice

Claim 3a: Static catches bugs earlier

Static typing catches many simple bugs as soon as "compiled"

- Since such bugs are always caught, no need to test for them
- In fact, can code less carefully and "lean on" type-checker

```
fun pow x y = (* does not type-check *)
  if y = 0
  then 1
  else x * pow (x,y-1)
```

Claim 3b: Static catches only easy bugs

But static often catches only "easy" bugs, so you still have to test your functions, which should find the "easy" bugs too

```
fun pow x y = (* curried *)
  if y = 0
  then 1
  else x + pow x (y-1) (* oops *)
```