Cell Structure and Function

1. Cell Theory

- Proposed by Schleiden and Schwann in 1839, later modified by Rudolf Virchow.
- States that:
 - All living organisms are composed of cells.
 - The cell is the basic unit of structure and function in living organisms.
 - All cells arise from pre-existing cells (Omnis cellula e cellula).
- Modern additions include:
 - Cells contain genetic material passed to daughter cells.
 - Cells perform all life processes.

2. Types of Cells

Prokaryotic Cells

- Lack a true nucleus (nucleoid region present).
- o No membrane-bound organelles.
- o Example: Bacteria and Archaea.

• Eukaryotic Cells

- Have a well-defined nucleus.
- o Contain membrane-bound organelles (Mitochondria, ER, Golgi, etc.).
- o Example: Plants, Animals, Fungi, and Protists.

3. Cell Membrane

• Structure:

- 1. Composed of a phospholipid bilayer with embedded proteins.
- 2. Follows the Fluid Mosaic Model (proposed by Singer and Nicolson).

Functions:

- 1. Selective permeability regulates entry and exit of substances.
- 2. Provides structural support.
- 3. Helps in cell signaling and communication.

4. Cell Wall (in Plant Cells, Fungi, and Bacteria)

Structure:

- 1. Plants: Made of cellulose.
- 2. Fungi: Composed of chitin.
- 3. Bacteria: Composed of peptidoglycan.

• Functions:

- 1. Provides rigidity and shape.
- 2. Protects against mechanical and osmotic stress.
- 3. Helps in cell-to-cell interaction.

5. Cytoplasm

Structure:

1. A semi-fluid matrix filling the cell, containing cytosol and organelles.

• Functions:

- 1. Site for metabolic activities.
- 2. Provides medium for organelle movement.
- 3. Stores molecules needed for cellular processes.

6. Nucleus

• Structure:

- 1. Enclosed by a double membrane (nuclear envelope) with pores.
- 2. Contains chromatin (DNA + proteins) and nucleolus.

Functions:

- 1. Controls cellular activities through gene expression.
- 2. Stores genetic information.
- 3. Nucleolus is responsible for ribosome synthesis.

7. Endoplasmic Reticulum (ER)

• Types:

- 1. Rough ER (RER): Ribosome-studded, involved in protein synthesis.
- 2. **Smooth ER (SER)**: Lacks ribosomes, involved in lipid synthesis and detoxification.

Functions:

- 1. RER: Protein synthesis and transport.
- 2. SER: Lipid metabolism and detoxification.
- 3. Forms transport vesicles for intracellular transport.

8. Golgi Apparatus

• Structure:

1. Stacks of flattened, membrane-bound sacs.

• Functions:

- 1. Modifies, sorts, and packages proteins and lipids.
- 2. Forms lysosomes.
- 3. Secretes cell products via vesicles.

9. Mitochondria

Structure:

- 1. Double membrane organelle with an inner folded membrane (cristae) and matrix.
- 2. Contains its own DNA and ribosomes.

• Functions:

- 1. Site of aerobic respiration (ATP synthesis).
- 2. Provides energy for cellular functions.
- 3. Regulates cell metabolism and apoptosis.

10. Lysosomes

- Structure:
 - 1. Membrane-bound vesicles containing hydrolytic enzymes.
- Functions:
 - 1. Digests cellular waste and foreign particles.
 - 2. Involved in autophagy (self-digestion) and apoptosis.
 - 3. Helps in defense against pathogens.

11. Peroxisomes

- Structure:
 - 1. Single-membrane vesicles containing oxidative enzymes.
- Functions:
 - 1. Breakdown of hydrogen peroxide (H2O2) using catalase.
 - 2. Lipid metabolism.
 - 3. Detoxification of harmful substances.

12. Ribosomes

- Structure:
 - 1. Composed of rRNA and proteins; can be free-floating or attached to the RER.
- Functions:
 - 1. Site of protein synthesis.
 - 2. Helps in translation of mRNA.
 - 3. Found in both prokaryotes and eukaryotes (70S in prokaryotes, 80S in eukaryotes).

13. Cytoskeleton

- Components:
 - 1. Microfilaments (actin), Intermediate filaments, Microtubules.
- Functions:
 - 1. Maintains cell shape.
 - 2. Aids in intracellular transport.
 - 3. Involved in cell movement (cilia, flagella, pseudopodia).

14. Cilia and Flagella

- Structure:
 - 1. Composed of microtubules in a 9+2 arrangement.
- Functions:
 - 1. Helps in cell locomotion.
 - 2. Cilia aid in movement of substances over the cell surface.
 - 3. Flagella help in sperm movement.

15. Centrosome and Centrioles

• Structure:

1. Centrosome consists of two centrioles arranged perpendicular to each other.

Functions:

- 1. Forms spindle fibers during cell division.
- 2. Organizes microtubules in the cytoskeleton.
- 3. Aids in chromosome movement during mitosis.

16. Plastids (Only in Plant Cells)

• Types:

- 1. **Chloroplasts**: Contain chlorophyll, site of photosynthesis.
- 2. **Chromoplasts**: Contain pigments other than green (carotenoids, xanthophylls).
- 3. **Leucoplasts**: Store starch (amyloplasts), proteins (proteinoplasts), or lipids (elaioplasts).

• Functions:

- 1. Photosynthesis in chloroplasts.
- 2. Storage of food in leucoplasts.
- 3. Provides pigmentation in flowers and fruits.

17. Vacuoles

• Structure:

1. Membrane-bound sacs, larger in plant cells.

Functions:

- 1. Stores water, nutrients, and waste products.
- 2. Provides turgidity to plant cells.
- 3. Helps in detoxification.

Cell Cycle and Cell Division

Introduction

The cell cycle is a series of events that cells go through as they grow and divide. It consists of **interphase** (G1, S, G2 phases) and **mitotic phase** (mitosis and cytokinesis).

Phases of the Cell Cycle

1 Interphase

Interphase is the longest phase of the cell cycle and consists of three stages:

• G1 Phase (Gap 1): Cell grows and carries out normal metabolic activities.

- S Phase (Synthesis): DNA replication occurs, doubling the genetic material.
- **G2 Phase (Gap 2)**: The cell prepares for division by synthesizing proteins and organelles.

Mitosis and Meiosis: A Detailed Overview

Mitosis

Mitosis is a type of cell division that ensures the formation of two genetically identical daughter cells. It consists of the following stages:

Prophase

- Chromatin condenses into visible chromosomes, each consisting of two sister chromatids.
- The nuclear envelope begins to break down.
- The mitotic spindle starts forming as centrioles move to opposite poles of the cell.

Metaphase

- Chromosomes align along the metaphase plate at the cell's equator.
- Spindle fibers attach to the kinetochores of each chromosome.

Anaphase

- Sister chromatids separate at the centromere and are pulled toward opposite poles of the cell.
- Ensures that each daughter cell receives an identical set of chromosomes.

Telophase

- Separated chromosomes decondense into chromatin.
- A new nuclear envelope forms around each set of chromosomes.
- Spindle fibers disappear, completing nuclear division.

Cytokinesis

- Follows mitosis, resulting in the physical separation of the cytoplasm into two daughter cells.
- In animal cells, a cleavage furrow forms, while in plant cells, a cell plate develops, leading to complete division.

Meiosis

Meiosis is a specialized type of cell division that reduces chromosome numbers by half, producing four haploid cells. It occurs in two successive stages: **Meiosis I and Meiosis II.**

Meiosis I

Meiosis I is the reductional division where homologous chromosomes separate.

Prophase I

Prophase I is the longest and most complex stage, divided into five sub-stages:

- 1. **Leptotene** Chromosomes condense and become visible under a microscope.
- 2. **Zygotene** Homologous chromosomes begin pairing (synapsis) to form bivalents or tetrads.
- 3. **Pachytene** Crossing over occurs between non-sister chromatids, increasing genetic variation.
- 4. **Diplotene** Synaptonemal complex dissolves, and homologous chromosomes start separating but remain attached at chiasmata.
- 5. **Diakinesis** Chiasmata terminalize, spindle fibers form, and the nuclear membrane breaks down.

Metaphase I

- Homologous chromosome pairs align at the metaphase plate.
- Spindle fibers attach to kinetochores.

Anaphase I

- Homologous chromosomes separate and move toward opposite poles.
- Unlike mitosis, sister chromatids remain attached at the centromere.

Telophase I and Cytokinesis

- A nuclear membrane may reappear around separated chromosomes.
- Cytokinesis follows, forming two haploid cells.

Meiosis II

Meiosis II is similar to mitosis but separates sister chromatids instead of homologous chromosomes.

Prophase II

- Chromosomes re-condense, and spindle fibers reform.
- The nuclear membrane dissolves if it had reformed.

Metaphase II

- Chromosomes align at the metaphase plate.
- Spindle fibers attach to kinetochores.

Anaphase II

• Sister chromatids separate and are pulled toward opposite poles of the cell.

Telophase II and Cytokinesis

- A new nuclear membrane forms around each set of chromatids.
- Cytokinesis follows, resulting in four genetically unique haploid daughter cells.

Significance of Meiosis

- Ensures genetic diversity through recombination and independent assortment.
- Maintains chromosome numbers across generations in sexually reproducing organisms.
- Crucial for evolution and species survival.