

<u>Course</u> > <u>Unit 2:</u> ... > <u>3 Colu</u>... > 4. Rank...

4. Rank and the Rank-Nullity Theorem

Problem 4.1 Let **A** be the 3×5 matrix

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ -1 & -2 & 9 & 10 & 11 \\ 1 & 2 & 9 & 11 & 13 \end{pmatrix}.$$

- 1. Find a basis for CS(A).
- 2. What are $\dim NS(\mathbf{A})$ and $\dim CS(\mathbf{A})$?

Solution:

1. First we find a row echelon form. Add the first row to the second, and add -1 times the first row to the third:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 12 & 14 & 16 \\ 0 & 0 & 6 & 7 & 8 \end{pmatrix}.$$

Add -1/2 times the second row to the third:

$$\mathbf{B} := egin{pmatrix} 1 & 2 & 3 & 4 & 5 \ 0 & 0 & 12 & 14 & 16 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

This is in row echelon form.

4/12/2018

The pivots of ${\bf B}$ are in the first and third columns.

Basis for
$$CS(A)$$
: first and third columns of A , i.e., $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 9 \\ 9 \end{pmatrix}$.

dim
$$NS(\mathbf{A}) = \#$$
 non-pivot columns of $\mathbf{B} = 3$.
dim $CS(\mathbf{A}) = \#$ pivot columns of $\mathbf{B} = 2$.

Definition 4.2 The **nullity** of **A** is defined as the number

$$\text{nullity}(\mathbf{A}) = \dim NS(\mathbf{A}).$$

The **rank** of **A** is defined as the number

$$rank(\mathbf{A}) = dim CS(\mathbf{A}).$$

Rank concept check I

1/1 point (graded)

What can the rank of a 3 by 5 matrix be?

☑ 0 ✔	
☑ 3 ✓	
4	

Solution:

The rank is equal to the dimension of the column space of the matrix. The rank must be less than or equal to $\bf 3$ because the column space is a subspace of \mathbb{R}^3 . All of the ranks $\bf 0, 1, 2$ and $\bf 3$ can be realized as shown by the following matrices:

Rank Example

$$\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}$$

The rank of any matrix \mathbf{A} is always between $\mathbf{0}$ and $\min(m,n)$. To see why, note that the column space is a subspace of \mathbb{R}^m , so the rank is less than or equal to m. However $\mathbf{CS}(\mathbf{A})$ is spanned by n columns, hence its dimension is less than or equal to n and so is rank of n. Putting this together, this means that the rank is less than or equal to the minimum of n and n. To see that every rank between n and n and n is possible, we can create matrices with these ranks in the same way as for the specific n n n n n

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

Theorem 4.3 For any $m \times n$ matrix **A**,

$$\overline{\dim \mathrm{NS}(\mathbf{A}) + \mathrm{rank}(\mathbf{A}) = n}.$$

This theorem is called the **rank-nullity theorem**.

Proof

Proof. Let ${\bf B}$ be a row echelon form of ${\bf A}$.

$$\dim NS(\mathbf{A}) + \operatorname{rank}(\mathbf{A}) = \dim NS(\mathbf{A}) + \dim CS(\mathbf{A})$$

$$= (\# \text{ non-pivot columns of } \mathbf{B}) + (\# \text{ pivot columns of } \mathbf{B})$$

$$= \# \text{ columns of } \mathbf{B}$$

$$= n.$$

Rank-nullity concept check I

1/1 point (graded)

A 2×3 matrix **A** has $\dim NS(\mathbf{A}) = 0$. Which of the following are true?

- There exists a 2×3 matrix **A** with $\dim NS(\mathbf{A}) = 0$ and $\operatorname{rank}(\mathbf{A}) = 0$.
- lacksquare There exists a 2×3 matrix f A with $\dim NS(f A) = 0$ and rank(f A) = 1.
- lacksquare There exists a 2×3 matrix $\bf A$ with $\dim NS(\bf A) = 0$ and $\operatorname{rank}(\bf A) = 2$.
- lacksquare There exists a 2×3 matrix f A with $\dim NS(f A) = 0$ and rank(f A) = 3.
- Such a matrix cannot exist.

V

Solution:

The matrix has $\mathbf{3}$ columns but only $\mathbf{2}$ rows, so the rank cannot be grater than $\mathbf{2}$. Then $\dim \mathbf{NS}(\mathbf{A}) = n - \mathrm{rank}(\mathbf{A}) \geq 1$, which shows that it is impossible to have a matrix of this size with a $\mathbf{0}$ -dimensional nullspace.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Rank-nullity concept check II

1/1 point (graded)

A 3×2 matrix **A** has $\dim NS(\mathbf{A}) = 0$. Which of the following are true?

- There exists a 3×2 matrix **A** with $\dim NS(\mathbf{A}) = 0$ and $\operatorname{rank}(\mathbf{A}) = 0$.
- There exists a 3×2 matrix **A** with $\dim NS(\mathbf{A}) = 0$ and $\operatorname{rank}(\mathbf{A}) = 1$.
- ightharpoonup There exists a 3×2 matrix \mathbf{A} with $\dim \mathrm{NS}(\mathbf{A}) = 0$ and $\mathrm{rank}(\mathbf{A}) = 2$.
- lacksquare There exists a 3×2 matrix $\bf A$ with $\dim NS(\bf A) = 0$ and $\operatorname{rank}(\bf A) = 3$.
- Such a matrix cannot exist.

Solution:

The matrix has $\bf 3$ rows but only $\bf 2$ columns, so the rank cannot be grater than $\bf 2$. Since $\dim NS(\bf A) + \operatorname{rank}(\bf A) = n$ and $\dim NS(\bf A) = 0$, we get $\operatorname{rank}(\bf A) = n = 2$, so all columns of $\bf A$ are pivot columns.

An example of such a matrix is the following:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

When the rank of a matrix equals the number of its columns we say that this matrix has a **full column rank.** Whenever this happens, the matrix has a 0—dimensional nullspace.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Rank-nullity concept check III

1/1 point (graded)

The $m \times n$ matrix \mathbf{A} has $\mathrm{rank}(\mathbf{A}) = 2$ and $\mathrm{dim}\,\mathrm{NS}(\mathbf{A}) = 4$. What are all the possibilities for m and n?

- lacksquare m=2 and n=4
- lacksquare m=4 and n=6
- lacksquare m=6 and n=4
- ullet $m \geq 2$ and n = 6
- 0 $m \leq 2$ and $n \geq 4$

Solution:

By the rank nullity theorem, $\dim \operatorname{NS}(\mathbf{A}) + \dim \operatorname{CS}(\mathbf{A}) = n$, so the total number of columns is n = 6. The rank of \mathbf{A} is dimension of $\operatorname{CS}(\mathbf{A})$, which is a subspace of \mathbb{R}^m . So m is at least $\mathbf{2}$. The following examples that show that each of the values $m \geq 2$ are possible:

- $\begin{pmatrix}
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0
 \end{pmatrix}$
- (Keep adding rows of zeros to get all *m*!)

Submit

You have used 1 of 3 attempts

- **1** Answers are displayed within the problem
- 4. Rank and the Rank-Nullity Theorem

Topic: Unit 2: Linear Algebra, Part 2 / 4. Rank and the Rank-Nullity Theorem

Hide Discussion

Add a Post

Show all posts by recent activity ▼ There are no posts in this topic yet.

Learn About Verified Certificates

© All Rights Reserved