

Course > Unit 5 Bayesian statistics > Homework 9: Bayesian Statistics > 3. Jeffreys prior

3. Jeffreys prior

Note: An extra recitation on Jeffreys prior is now available in the tabs after this homework. The concepts discussed may be helpful to you for these homework exercises.

Instructions:

For each of the following statistical models, compute Jeffreys prior distribution and determine whether it is proper or not.

(a)

2/2 points (graded)

For a family of distribution $\{\mathsf{Ber}\,(p)\}_{p\in(0,1)}$, Jeffreys prior is proportional to:

$$\pi_{j}\left(p\right) \propto \boxed{\frac{1}{\sqrt{p\cdot(1-p)}}}$$
 Answer: p^(-0.5)*(1-p)^(-0.5)

Therefore, the Jeffreys prior is:

Proper

Improper

Solution:

Recall that $\pi_{j} \propto \sqrt{\det\left(I\left(heta
ight)
ight)}$.

$$I\left(p
ight) =rac{1}{p\left(1-p
ight) }$$

$$\pi_j \propto rac{1}{\sqrt{p\left(1-p
ight)}}$$

Therefore, the prior is proper; $\mathsf{Beta}(0.5, 0.5)$.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

(b)

2/2 points (graded)

For a family of distribution $\left\{\mathsf{Exp}\left(\lambda\right)\right\}_{\lambda>0}$, Jeffreys prior is proportional to:

$\pi_{j}\left(\lambda ight) \propto$	1/lambda	✓ Answer: 1/lambda
	$\frac{1}{\lambda}$	

Therefore, the Jeffreys prior is:

● Proper● Improper ✓

Solution:

Recall that $\pi_{j} \propto \sqrt{\det\left(I\left(\lambda
ight)
ight)}$.

$$I\left(\lambda
ight)=rac{1}{\lambda^2}$$

$$\pi_j \propto rac{1}{\lambda}$$

Since $\frac{1}{\lambda}$ integrates to infinity, the prior is improper.

Submit

You have used 2 of 3 attempts

• Answers are displayed within the problem

(c)

2/2 points (graded)

For a family of distribution $\left\{\mathsf{Poiss}\left(\lambda\right)\right\}_{\lambda>0}$, Jeffreys prior is proportional to:

$$\pi_{j}\left(\lambda\right)\propto$$
 lambda^(-1/2) $m{\lambda}^{-rac{1}{2}}$

Therefore, the Jeffreys prior is:

Proper

Solution:

Recall that $\pi_{j} \propto \sqrt{det\left(I\left(\lambda
ight)
ight)}$.

$$I\left(\lambda
ight)=rac{1}{\lambda}$$

$$\pi_j \propto rac{1}{\sqrt{\lambda}}$$

Since $\frac{1}{\sqrt{\lambda}}$ i	ntegrates to infinity, the prior is improper.
Submit	You have used 1 of 3 attempts
• Answer	s are displayed within the problem
(d) Prope	rties of Jeffreys prior
1/1 point (grader) For each of t	ded) he statements below about Jeffreys prior, determine whether it is true or false. Select all the true statements.
	s us to reflect our prior belief about the possible hypotheses. In other words, Jeffreys prior is not obtained from the cal model alone.

- ☐ Jeffreys prior is always proper.
- For a Bernoulli statistical model, the Jeffreys prior $\pi(\theta_1)$, computed from using $\theta_1=p^2$ as the parameter (i.e. the model is $\operatorname{Ber}(\theta_1)=\operatorname{Ber}(p^2)$), and the Jeffreys prior $\tilde{\pi}(\theta_2)$, computed from using $\theta_2=p^3$ as the parameter (i.e. the model is $\operatorname{Ber}(\theta_2)=\operatorname{Ber}(p^3)$), satisfy $\mathbf{P}_{\pi(\theta_1)}$ ($a^2<\theta_1< b^2$) = $\mathbf{P}_{\tilde{\pi}(\theta_2)}$ ($a^3<\theta_2< b^3$) for any 0< a< b<1. That is the probability of θ_1 being between a^2 and b^2 under the distribution $\pi(\theta_1)$ is equal to the probability of θ_2 being between a^3 and a^3 under the distribution a^3 0, for any pair a< b0 within a^3 1.

Solution:

- **The first choice is false.** Recall that Jeffreys prior is obtained from the model, there is nothing we reflect about our prior belief. Hence, the first choice is false.
- The second choice is false. We have seen examples where it is not necessarily a proper prior as it does not have a finite integral.
- The third choice is true. The last choice is true because Jeffreys prior is invariant under reparametrization.

Submit

You have used 1 of 2 attempts

- Answers are displayed within the problem
- (e) Review: Reparametrization in the frequentist view

1/1 point (graded)

In the previous units, three of the frequentist methods of estimation we've covered are the maxmium likelihood estimation (MLE), the method of moments, and M-estimation. Let our original parameter is θ , and suppose that our original estimator produces a unique estimate θ^* . We then apply a bijective transformation $f(\theta) = \eta$. For which of the three frequentist methods would the estimator applied to the transformed values η^* be equal to $f(\theta^*)$?

- ✓ MLE ✓
- method of moments
- ✓ M-estimation ✓

这里想说的我理解的是频率理论认为存在一个true parameter 所以每个estimator都对应一个具体的值。 这个值可以在不同的参数下被转换,而且只要原来的estimator吐出的值一样,那么怎么参数化的结果都一样。

Solution:

The answer is that the estimator applied to the transformed values η^* will always be equal to $f(\theta^*)$. This is because in the frequentist approach, a true parameter is assumed and thus all our estimator functions (of the observation data) will correspond to a particular parameter value. This value can be converted through different parametrizations, and it will correspond to the exact same value as long as the original estimator produces a unique estimate.