Normal form of a matrix Every matrix of rank 'r' can be reduced using sequence of elementary transformations (row and column both) to the form [Ir O called the NORMAL FORM. Thus, rank of a matrix can be obtained by reducing it to the normal form. Ex Reduce the matrix A to its normal form and hence find its rank. Sol. (Please note the process carefully) $A = \begin{bmatrix} 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & -2 & -4 \\ 2 & 3 & -1 & -1 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ by $R \leftrightarrow R_2$ to make $a_1 = 1$.

$$\sim \begin{bmatrix}
1 & -1 & -2 & -4 \\
0 & 5 & 3 & 7 \\
0 & 4 & 9 & 10 \\
0 & 5 & 3 & 7
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 5 & 3 & 7 \\
0 & 4 & 9 & 10 \\
0 & 9 & 12 & 17
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 5 & 3 & 7 \\
0 & 4 & 9 & 10 \\
0 & 9 & 12 & 17
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 4 & 9 & 10 \\
0 & 9 & 12 & 17
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 4 & 9 & 10 \\
0 & 9 & 12 & 17
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 4 & 9 & 10 \\
0 & 9 & 12 & 17
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & -6 & -3 \\
0 & 0 & 33 & 22 \\
0 & 0 & 66 & 44
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 23 & 22 \\
0 & 0 & 66 & 44
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 23 & 22 \\
0 & 0 & 66 & 44
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 23 & 22 \\
0 & 0 & 66 & 44
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1$$

	F ₃ 10 1		
This is	the required	normal f	orm of A showing
that	ς (A)=3	VI - 6 +	
Exercisis	Reduce the form a	ollowing m	fund their
i) [0	121	-67	0 1
	2 2 1	-5 (A -5 (A -7) (C -7) (C -7) (C	ms. 4
ii) $\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$	2 1070	Ams: 3	
40 11 1 1 1	3 -1 -3		
iii) [1 1 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	-1 2 -1 -1 2 -1	1 Ams. 2	
	5-, h - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c ic c c c c c c c c c c c c c c c c c	nned with CamScanner