Traveling the world on a mission to discover new data

- 1. Set up a data science project structure in a new git repository in your GitHub account
- 2. Install Jupyter notebook prerequisites (Anaconda, Python, etc.)
- 3. Select an industry
- 4. Select two to three public data sets from that industry
- 5. Load the data sets into panda data frames following the 10 minutes to pandas guide
- 6. Formulate one or two ideas on how the data sets could be combined to establish additional value using exploratory data analysis
- 7. Transform the data sets into a single data set while following data preparation processes to clean and transform features (use pandas documentation for help)
- 8. Document your process and results
- 9. Commit your notebook, source code, visualizations and other supporting files to the git repository in GitHub

```
In [1]: 1 import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno
```

Data Loading

df_apps contains information about apps published in Google Store. Merging it with df_reviews, we can analyse which kind of apps get good reviews (sentiment analysis), from different perspectives, such as price, category and content rating.

In [3]:

1 df_apps.head()

Out[3]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating	Genres	Last Updated	Current Ver	Android Ver
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19M	10,000+	Free	0	Everyone	Art & Design	January 7, 2018	1.0.0	4.0.3 and up
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyone	Art & Design;Pretend Play	January 15, 2018	2.0.0	4.0.3 and up
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0	Everyone	Art & Design	August 1, 2018	1.2.4	4.0.3 and up
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen	Art & Design	June 8, 2018	Varies with device	4.2 and up
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone	Art & Design;Creativity	June 20, 2018	1.1	4.4 and up

In [4]: 1 msno.matrix(df_apps, figsize=(15, 3));

In [5]: 1 df_reviews.head()

Out[5]:		Арр	Translated_Review	Sentiment	Sentiment_Polarity	Sentiment_Subjectivity
	0	10 Best Foods for You	I like eat delicious food. That's I'm cooking	Positive	1.00	0.533333
	1	10 Best Foods for You	This help eating healthy exercise regular basis	Positive	0.25	0.288462
	2	10 Best Foods for You	NaN	NaN	NaN	NaN
	3	10 Best Foods for You	Works great especially going grocery store	Positive	0.40	0.875000
	4	10 Best Foods for You	Best idea us	Positive	1.00	0.300000

```
In [6]: 1 msno.matrix(df_reviews, figsize=(15, 3));
```


df_reviews contain multiple reviews for a single app. To start, we are going to transform it to get an overall review per app. We are just going to analyse apps with reviews.

```
In [7]: 1 df_reviews['App'].nunique()
Out[7]: 1074
In [8]: 1 df_reviews.dropna(inplace=True)
In [9]: 1 df_reviews['App'].nunique()
Out[9]: 865
```

We can see that 209 apps don't have any review.

Out[11]:

	Арр	Sentiment	Sentiment_Polarity	Sentiment_Subjectivity
0	10 Best Foods for You	Positive	0.470733	0.495455
1	104 找工作 - 找工作 找打工 找兼職 履歷健檢 履歷診療室	Positive	0.392405	0.545516
2	11st	Positive	0.185943	0.455340
3	1800 Contacts - Lens Store	Positive	0.318145	0.591098
4	1LINE – One Line with One Touch	Positive	0.196290	0.557315

Now we are going to merge our data sets and start the exploratory analysis.

In [13]:

1 df.head()

Out[13]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating	Genres	Last Updated	Current Ver	Android Ver
0	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyone	Art & Design;Pretend Play	January 15, 2018	2.0.0	4.0.3 and up
1	Coloring book moana	FAMILY	3.9	974	14M	500,000+	Free	0	Everyone	Art & Design;Pretend Play	January 15, 2018	2.0.0	4.0.3 and up
2	Garden Coloring Book	ART_AND_DESIGN	4.4	13791	33M	1,000,000+	Free	0	Everyone	Art & Design	September 20, 2017	2.9.2	3.0 and up
3	FlipaClip - Cartoon animation	ART_AND_DESIGN	4.3	194216	39M	5,000,000+	Free	0	Everyone	Art & Design	August 3, 2018	2.2.5	4.0.3 and up
4	Boys Photo Editor - Six Pack & Men's Suit	ART_AND_DESIGN	4.1	654	12M	100,000+	Free	0	Everyone	Art & Design	March 20, 2018	1.1	4.0.3 and up

Exploratory Data Analysis

First, let's check some distributions related to the apps reviews.

From those, we see that the most apps are well rated, while usualy the sentiment polarity is quite neutral.

From the figure above, we see that the most commom category is game . Not quite surprsing.

Here, we see that there is a high variation of rating among apps. Auto and Vehicles present the highest mean, while Entertainment present the lowest.

```
In [19]: 1 df['Reviews'] = df['Reviews'].astype(int)
```

In [20]: 1 sns.jointplot(x='Reviews', y='Rating', data=df);

In [21]: 1 sns.jointplot(x='Reviews', y='Sentiment_Polarity', data=df);

In [22]: 1 sns.jointplot(x='Reviews', y='Sentiment_Subjectivity', data=df);

The plots above show the distribution of the number of reviews jointly with the rating, sentiment polarity and sentiment subjectivy. We can see that the majority of apps don't have many reviews, despite having a good rating and good sentiment subjectivity. This shows that, despite the small number of reviews, those reviews present the similar "sentiments". An interesting thing is that apps with a huge number of reviews present a lower sentiment polarity score.

In [23]: 1 sns.boxplot(y='Content Rating', x='Rating', data=df)

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1fd34be0>

In [24]: 1 sns.boxplot(y='Content Rating', x='Sentiment_Polarity', data=df)

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1fd4e898>

In [25]: 1 sns.boxplot(y='Content Rating', x='Sentiment_Subjectivity', data=df)

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x1a20a71748>

From the plots above, we can see that, while both rating and sentiment polarity varies among content rating, the sentiment subjectivity is similar among them, with some outliers appearing mostly for the Content Rating Everyone.

In [26]: 1 sns.boxplot(y='Type', x='Sentiment_Polarity', data=df)

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1f0e24e0>

In [27]: 1 sns.boxplot(y='Type', x='Sentiment_Subjectivity', data=df)

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1f33a748>

In [28]: 1 sns.boxplot(y='Type', x='Rating', data=df)

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1fb0c908>

From the plots above, it doesn't seem that the type of the app (Paid or Free), has an impact in its overall evaluation. Howwever, it's clear that free apps present a broader range of evaluation scores.

In [29]: 1 sns.boxplot(y='Price', x='Sentiment_Polarity', data=df)

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1f910550>

In [30]: 1 sns.boxplot(y='Price', x='Sentiment_Subjectivity', data=df)

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x1a202879b0>


```
In [31]: 1 sns.boxplot(y='Price', x='Rating', data=df)
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1f0cf358>

From the plots above is once again clear that free apps present a broad range of evaluation. While the most expensive apps present the higher sentiment polarity, this is not observed for the sentiment subjectivity and rating.

Conclusion

In this assignment we have explore pandas in depth, performing some data cleansing, aggregations and merging different data frames. We have also used a varied set of charts to analyse the relationship among the data frame columns.