Modeling the population dynamics with adaptive exponential integrate and fire (AdExp) model neuron in newborn rat cortical networks

11th of July at OCNC 2019 Heidi Teppola-Gürel

heidi.teppola@tuni.fi

University of Tampere

Tutor: Cliff Kerr

The aim of the project

 To model population dynamics of the excitatory and inhibitory neurons

 To model the contribution of AMPA, NMDA and (GABA_A) receptor conductance on to the population activity To compare the simulated population dynamics to the experimentally recorded multiunit spike activity under AMPA and NMDA receptor antagonists

Spiking AdExp neuron model for excitatory and inhibitory neurons with synapse model

$$\begin{cases} C\frac{dV}{dt} = -g_L(V - E_L) + g_L \Delta T e^{\left(\frac{V - V_T}{\Delta T}\right)} - w + \sum I_{syn} + I_{bg} \\ \tau_w \frac{dV}{dt} = a(V - E_L) - w \end{cases}$$

Brette R, Gerstner W. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol. 2005 Nov; 94: 3637–3642. 10.1152/jn.00686.2005. https://doi.org/10.1152/jn.00686.2005 PMID: 16014787

$$\begin{cases} I_{syn} = g_{syn}(v - E_{rev}) \\ \tau_{syn} \frac{dg_{syn}}{dt} = -g_{syn} \end{cases}$$

$$\begin{cases} & \tau_{syn} \frac{dg_{syn}}{dt} = -g_{syn} \\ & \tau_{rise} \frac{dg_{rise}}{dt} = -g_{rise} \\ & I_{syn} = (g_{syn} - g_{rise})(\nu - E_{rev}) \end{cases}$$

Simulation of population activity with all conductances

Simulation of population activity with supressed NMDA receptor conductance

Simulation of population activity with suppressed AMPA receptor conductance

Simulation of population activity with disinhibited GABA_A receptor conductance

Comparison to experimental data

Acknowledgement

My tutor: Cliff Kerr

Organizers:

Eric De Schutter

Kenji Doya

Thank you all!