TABELLA DELLE FORMULE ASINTOTICHE PIÙ USATE

 $ANALISI\ MATEMATICA\ 1,\ (INGEGNERIA\ GESTIONALE,\ CANALE\ 1,\\ UNIVERSIT\`A\ DEGLI\ STUDI\ DI\ PADOVA)$

Durante il compitino vi daremo un formulario contenente queste relazioni e eventuali altre formule necessarie allo svolgimento dei calcoli.

Per $x \to 0$ valgono le seguenti relazioni (solo per alcune abbiamo dimostrato il limite notevole collegato).

$e^x - 1 \sim x$	equivalente a	$e^x - 1 = x + o(x)$	
$a^{x} - 1 \sim (\ln a)x + o(x)$, se $a \neq 1$:	equivalente a	$a^x - 1 = (\ln a)x + o(x)$	
$\sin(x) \sim x$	equivalente a	$\sin(x) = x + o(x)$	
$1 - \cos(x) \sim \frac{x^2}{2}$	equivalente a	$1 - \cos(x) = \frac{x^2}{2} + o(x^2)$	
$\tan(x) \sim x$	equivalente a	$\tan(x) = x + o(x)$	
$\ln(1+x) \sim x$	equivalente a	ln(1+x) = x + o(x)	
$\sinh(x) \sim x$	equivalente a	$\sinh(x) = x + o(x)$	
$\cosh(x) - 1 \sim \frac{x^2}{2}$	equivalente a	$\cosh(x) - 1 = \frac{x^2}{2} + o(x^2)$	
$\tanh(x) \sim x$	equivalente a	$\tanh(x) = x + o(x)$	
$(1+x)^{\alpha} - 1 \sim \alpha x$ per $\alpha \neq 0$,	equivalente a	$(1+x)^{\alpha} - 1 = \alpha x + o(x)$	
$\arcsin(x) \sim x$	equivalente a	$\arcsin(x) = x + o(x)$	
$\arctan(x) \sim x$	equivalente a	$\arctan(x) = x + o(x)$	
$\operatorname{arctanh}(x) = x + o(x)$	equivalente a	$\operatorname{arctanh}(x)$	$\sim x$