Colles, semaine 5 $(16/10\rightarrow 20/10)$

$Nombres\ complexes$ Forme algébrique, forme trigonométrique

Un nombre complexe z peut s'écrire comme une somme : z = a + ib, avec $(a, b) \in \mathbb{R}^2$ (c'est sa forme algébrique). Il y a unicité de l'écriture sous forme algébrique.

Ce même nombre complexe, s'il est non nul, peut s'écrire comme un produit : $z=re^{i\theta}$, où $r \in \mathbb{R}_+^*$ est le module de z et $\theta \in \mathbb{R}$ un argument (c'est sa forme trigonométrique). Il y a presque unicité de l'écriture sous forme trigonométrique : les arguments sont égaux à un multiple de 2π près.

Les nombres complexes de module 1 s'écrivent $e^{i\theta} = \cos\theta + i\sin\theta$ et la propriété de morphisme pour cette nouvelle exponentielle permet de faire de la **trigonométrie** avancée.

A noter. Le cours sur les complexes continuera après les vacances. : nous résoudrons des équations dans \mathbb{C} : calcul de racines carrées, équations du second degré, équation $z^n = 1...$

Questions de cours.

- Conjugué, module et produit : on sait enchaîner les preuves des identités $\overline{z \cdot z'} = \overline{z} \cdot \overline{z'}$, $z \cdot \overline{z} = |z|^2$ et $|z \cdot z'| = |z| \cdot |z'|$ (valables pour tous complexes z, z')
- Preuve de l'inégalité triangulaire (sans le cas d'égalité).
- N'importe quelle linéarisation de $\cos^p(\theta)\sin^q(\theta)$ à l'aide de la formule d'Euler.
- N'importe quelle factorisation de $\cos(nt)$ ou de $\sin(nt)$ à l'aide de la formule de Moivre.
- Calcul de $\cos a + \cos b$ et $\sin a + \sin b$ (angle moyen).
- Calcul de ∑_{k=0}ⁿ cos(kθ) et ∑_{k=0}ⁿ sin(kθ) pour θ non congru à 0 modulo 2π.
 Résolution de z³ = -4|z|.

Savoir-faire importants.

- Connaître les propriétés du conjugué, du module.
- Savoir caractériser le fait qu'un nombre complexe est en fait réel, par l'égalité avec le conjugué.
- Mettre un nombre complexe non nul sous forme trigonométrique.
- Savoir utiliser la forme trigonométrique d'un nombre complexe pour résoudre un problème « multiplicatif ».
- Savoir utiliser l'angle moitié et l'angle moyen pour faire apparaître une formule d'Euler.

À venir en semaine 6 : Primitives, intégrales.