Department of Engineering

The Hong Kong Institute of Vocational Education (IVE)

MBS4522 IoT Applications

Mini-project: Mini observatory and automatic watering system (v1.1)

Instructions:

Please follow the detailed manual and complete all of them. You need to submit a report that shows the screenshot results of major steps and answer questions if any. Please also include your copyable source code (e.g. C, C++, Arduino) at the end of the report. Here are some instructions:

- Write down all your answers/screenshot to a PDF file. (Do not copy the problems/descriptions) Please ensure the answers/screenshot is readable and clear enough.
- 2. Only one report is required for a group. Although discussion is permitted, the solution must be written by yourself. Plagiarism will not be tolerated. Otherwise, you will get zero mark.
- 3. Due at 17:30pm, May 12, 2023. Late submission is capped at 70% of the original marks. It will be zero mark if it lates 48 hours or above.

Note:

- 1. If you are facing a problem, please try to deal it by yourself first. Debugging, problem-solving skill and self-learning are the most important learning points. Take the chance, do not give up easily. Otherwise, you learn nothing!
- 2. Do not forget that Google, Stack overflow, GitHub are your friends. Try it before you give up or ask someone.

Software tools:

- 1. Visual Studio Code (VS code)
- 2. PlatformIO IDE (an extension of VS code)
- 3. Node-RED
- 4. Mosquitto (MQTT)

Hardware tools:

- 1. ESP32 x1
- 2. DHT22 sensor x1
- 3. Resistor x2
- 4. Variable resistor x1
- 5. LDR (photoresistor) x1
- 6. 0.96" OLED monitor x1
- 7. LED x1
- 8. Router x1

Group: D

Name: Yu Hoi Lam, Cheung Tsz Chun Noddy, Lai Ho, Lai Ka Ming

ID: 220135612, 220171174, 220668951, 220140474

Task:

- a) Build the circuit and take photo. (15%)
 - i. Variable resistance representative soil moisture meter
 - ii. LED representative the pump
 - iii. You have a choice to use method 1 or 2 for soil moisture meter. The rest follows the pinout and circuit exactly.

- b) Code a program on ESP32 and fulfil below requirements. (Total: 20%)
 - i. Display the real time temperature, humidity, brightness and soil moisture on OLED monitor. (10%)
 - ii. When the soil moisture is less than 30%, turn on the pump and water the plant. Turn it off when the soil moisture level exceeds 65%. (10%)

LED ON:

LED OFF:

Might need to replace the resistor currently using to a smaller resistor to function normally.

Github link:

https://github.com/noddycheung/loT-lesson-2223/blob/571d5e1663805ce398f81921d28a3d14267 9992b/mini%20project%20part%20A

```
#include <Arduino.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include <DHT.h>
#include <Adafruit_Sensor.h>

#define DHTPIN 19
#define DHTTYPE DHT22
#define LDRPIN 32
#define VARPIN 33
```

Page **5** of **15**

```
#define LEDPIN 18
DHT dht (DHTPIN, DHTTYPE);
Adafruit SSD1306 display(128, 64, &Wire, -1);
void setup() {
 Serial.begin(115200);
 pinMode(LEDPIN, OUTPUT);
 dht.begin();
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
 display.clearDisplay();
 display.setTextSize(1);
 display.setTextColor(WHITE);
void loop() {
 float humidity = dht.readHumidity();
 float temperature = dht.readTemperature();
 int brightness = analogRead(LDRPIN);
 int brightnesslevel = map(brightness, 0, 1500, 0, 100);
 if (brightnesslevel > 100) {
   brightnesslevel = 100;
 int varValue = analogRead(VARPIN);
 int currentPercentage = map(varValue, 0, 4095, 0, 100);
 if (currentPercentage < 30) {</pre>
   digitalWrite(LEDPIN, HIGH);
                                                                             Page 6 of 1.
```

```
} else if (currentPercentage > 65) {
  digitalWrite(LEDPIN, LOW);
display.clearDisplay();
display.setCursor(0, 0);
display.print("Noddy Farming System");
display.setCursor(0, 10);
display.print("Temp: ");
display.print(temperature);
display.print(" C");
display.setCursor(0, 20);
display.print("Humidity: ");
display.print(humidity);
display.print(" %");
display.setCursor(0, 30);
display.print("Brightness: ");
display.print(brightnesslevel);
display.print(" %");
display.setCursor(0, 40);
display.print("Soil Moisture: ");
display.print(currentPercentage);
display.print(" %");
display.display();
delay(1000);
```

- c) Using Node-RED to build a web and fulfil below requirements. (Total: 65%)
 - Communication by MQTT
 - ii. Display the real time temperature and humidity (20%)
 - iii. Display the real time brightness and soil moisture (10%)
 - iv. Display the history record of temperature, humidity, brightness and soil moisture. (20%)
 - v. Have a switch to turn on/off the pump. Display the status of the pump also. (10%)
 - vi. Nice outlook of website (5%)

GitHub link:

https://github.com/noddycheung/loT-lesson-2223/blob/789698adaa365f7f19f057e63bb2591d66268fb5/IOT%20Q2

```
#include <Arduino.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include <DHT.h>
#include <Adafruit_Sensor.h>
```

```
#include <PubSubClient.h>
#include <WiFi.h>
#define DHTPIN 19
#define DHTTYPE DHT22
#define LDRPIN 32
#define VARPIN 33
#define LEDPIN 18
const char* ssid = "Azurix.exe";
const char* password = "CH3COOCH2CH3";
const char* mqtt server = "test.mosquitto.org";
WiFiClient espClient;
PubSubClient client(espClient);
DHT dht (DHTPIN, DHTTYPE);
Adafruit SSD1306 display(128, 64, &Wire, -1);
```

```
delay(10);
 Serial.println();
 Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);
   delay(500);
   Serial.print(".");
 Serial.println("");
 Serial.print("WiFi connected - ESP IP address: ");
 Serial.println(WiFi.localIP());
void callback(String topic, byte* message, unsigned int length) {
 Serial.print("Message arrived on topic: ");
 Serial.print(topic);
 Serial.print(". Message: ");
 String messageTemp;
 for (int i = 0; i < length; i++) {
   Serial.print((char)message[i]);
   messageTemp += (char)message[i];
```

```
Serial.println();
 Serial.println();
ESP8266
void reconnect() {
 while (!client.connected()) {
   Serial.print("Attempting MQTT connection...");
   if (client.connect("ESP32Client", "", "")) {
     Serial.println("connected");
```

```
client.subscribe("AIR2223 humid");
     client.subscribe("AIR2223 brightness");
     client.subscribe("AIR2223 soil moisture");
     client.subscribe("AIR2223 LEDStatus");
     Serial.print("failed, rc=");
     Serial.print(client.state());
     Serial.println(" try again in 5 seconds");
     delay(5000);
void setup() {
 Serial.begin(9600);
 setup_wifi();
 client.setServer(mqtt server, 1883);
 client.setCallback(callback);
 pinMode(LEDPIN, OUTPUT);
 dht.begin();
 display.begin(SSD1306 SWITCHCAPVCC, 0x3C);
 display.clearDisplay();
 display.setTextSize(1);
                                                                           Page 12 of 1.
```

```
display.setTextColor(WHITE);
void loop() {
 if (!client.connected()) {
   reconnect();
 if(!client.loop())
   client.connect("ESP32Client");
float humidity = dht.readHumidity();
 float temperature = dht.readTemperature();
 int brightness = analogRead(LDRPIN);
 int brightnesslevel = map(brightness, 0, 1500, 0, 100);
 if (brightnesslevel > 100) {
   brightnesslevel = 100;
 int varValue = analogRead(VARPIN);
 int currentPercentage = map(varValue, 0, 4095, 0, 100);
 if (currentPercentage < 30) {</pre>
   digitalWrite(LEDPIN, HIGH);
 } else if (currentPercentage > 65) {
   digitalWrite(LEDPIN, LOW);
 display.clearDisplay();
 display.setCursor(0, 0);
 display.print("Noddy Farming System");
```

```
display.setCursor(0, 10);
display.print("Temp: ");
display.print(temperature);
display.print(" C");
display.setCursor(0, 20);
display.print("Humidity: ");
display.print(humidity);
display.print(" %");
display.setCursor(0, 30);
display.print("Brightness: ");
display.print(brightnesslevel);
display.print(" %");
display.setCursor(0, 40);
display.print("Soil Moisture: ");
display.print(currentPercentage);
display.print(" %");
display.display();
delay(1000);
  client.publish("AIR2223 Temp", String(temperature).c str());
  client.publish("AIR2223 humid", String(humidity).c str());
  client.publish("AIR2223_brightness", String(brightnesslevel).c_str());
  client.publish("AIR2223_soil_moisture", String(currentPercentage).c_str());
  client.publish("AIR2223_LEDStatus", String().c_str());
```

Complete and sign the form. All team members need to agree the weighting and sign.

Name	1. Yu Hoi Lam	2. Cheung Tsz Chun Noddy	3. Lai Ho	4. Lai Ka Ming
ID Workload	1. 220135612 Node-Red coding Node-Red Layout debugging Report Googling	2. 220171174 Core Code Node-Red coding Circuit debugging Wiring OLED Report Googling	3. 220668951 mental support(warm and friendly)	4. 220140474 N/A
Weighting (Amount is 100%)	45	45	10	0
Signature	ESS	張子俊		\$16
Remark				Quitted IVE
Adjustment (For faculty use)				

Tips/references:

• For task c (ii, iii, iv): https://www.tomshardware.com/how-to/raspberry-pi-pico-w-node-red

~~END~~