Mathematical logic Le chure 6 11.11 2022 Theorem 2. Let p be a eguirduevelchon

on the ett A. The pray xy EA, the following

statements or equivalent: (i) 28 y (ii) 7 E 8 (n) = 1 2 6 4 1 2 8 2 4 (iii) 9< m> = 9< y> (iv) g (x7 n g (3) ≠ \$ the on ditions (il - (N) say that Remodes. 1). the set { S(x) | x e A } is a pertidon of A because if (1) $\bigcup g(x) = A$, because g(x) by effects g(x) = g(x) (g(y) = g(x)) (g(y) = g(x))Def me denti A/g = { g(x) | x ∈ A} This part him is called the guotest (factor) set of A w.r.t g. (modulo g/ xxx g(x) = 1 [2] & clan of & modelo g. Ruch 21 Korril Mu relat g of last due. 9 (1) = [1, 25 = 9, (2). 9, (3) = [3,4,5] = 9, (1) = 9, (5) 9, (3) = [0] . We get A/g = [1,1], [54,7], (6) = 1,7

3) One colleton 5= (A, A12), we way always consider the set of section ? g(x) | x = 4 7. Their gis an egriveline e, this set or eperthon JA. Prof of the 2 (i) (ii) by the ly of g(x). (i) = 1 (iii) Assum Mt x g g. Regain of sports, This exact to pour that g(+) = g(j). let 2 e g(x). The we (are x g2. From xey, we st yex (by (51) 10 for 2 to hong, y g ≥ , honce. 2 ∈ g(y). (ili) = 1(i/ A some Mf g(x) = g(z). By (R) we kne y & S(J7, here y & S(x) hue x g y. (i) = r (iv) A soume that x g), so g e g (x 7. g = g < 70 g ()7 + Ø Buf yegg). Hen (ir) = 1 (i) A sum Ht = 2 = g(x) () ((g), 50 x g 2 and y g 2. By (5), we have 2 5 y. By (T) it pllow that & Sy. Remain Then has theorem say hat the concept of egovirel and partition on esseably the same. Horeover; and or or equiv. rel., and when Ap = 17 http://fortst.nes an eswiv.rel., the Ap is a pertine, and we have Sale = 8

Functions and equivalence relations
Def 1. Let J: A - 3 B m < Function. The kernel of f (dented kerf) is the relation on A defined applians; relation on A defined applians;
They. 1. Let f: A - 3 h h = febr. The
i). Reef 13 (1 eswelle relation on A 2). A/kerf = f f b) be Im f }. Part i). (R). × kerf × (=, f(x)=f(x)) the +x=A
(T): Am × kufy and y kuf 2. Then: f(x) = fo1 and for 1= fo1 = fo1 = fo1
= ? x kerf 2 (S). Arm x kerf \(\) = ? \(\)
2) 18 del / / lear f = { (kurf) (x) 2 e A }. Let 2 e A . Let 5:= far e Im f We orly and to prove At (kurf) (x7 = f ⁻¹ (6)
(led let g e A. helm y c (lerf) (x) = 7 x leafy (=, far = f(x k=, fr) = f(x))

Def 2 let 9 be an egenden releter on A. The counted projection amocieted to g 1) the fucks of P : A - A/P Proporting properties:

Allowing properties:

1). P is surjective. (ie. Imp = A/g) 2). ker p = 9 9nof 1). We han A/g = { g(x7) x & A }. for of gent CA/g who xeA, we have PAR PEX, here pg 15 strjæetra. 2). Let a, y e A. We have: x lear p y = s p(a) = p(y) = s(x) = s(y) = 2py the king = 9. 2 inta.

Theorem (he 1st factority how theorem) Let f: A - Dhe specher. Perf Jung Canonical inclusion

Perf Jung Imf Then I! bijente freh f: Alery - h f s. K. the diagn 13 commutate, i.e. (this is the canonial decorps show 11) Proof (!) (unique nem of J) We comme that Jexist and we prove that it is unisue. We hope treeA : f & 1= (20 To Part) (21) = 2(T(Part a1)) = = \(\big(\left(\text{ker } \frac{1}{2} \left(\text{x} \gamma \gamma \gamma) \left(\text{x} \gamma \gam Here I ((kerf 1 (=>) (is only defiel of xet (3). Let $\{f: A/kerf \longrightarrow Im f\}$ $\{f: (kerf)(x)\} = f(x) \in lmf$ · the def of \$ is given by asy the reprentatue x e (keof) (~7. We han ho son Pet the def of & does not defend on the choice http://papefkit.net repre sext - Lius.

Indied, let y ∈ (kerf) (x), i.e. x kerf y here (kerf) (x) = (kerf) (x)? The \$\frac{7}{4}(\frac{1}{2} + \frac{1}{2}) = f(3) = f(x) « we shar tit J 1s rjecture. Let rig & A s. L. $\overline{f}((k_r f)(x_7)) = \overline{f}((k_r f)(g_7))$ $= f(x) = f(y) = x \ker f y = x$ 7m2, (kerf) (x7 = (kerf) (5). e we don that J is angerte. Let be luf. The 7 read s.t. f(x)=h In I (lear 1) < n >) = l. flere J is sujective. a we show that the diagram is commute live: let ne A. We have ; (20 Folkers) (21) = 2 (f (Plang (21)) = $= \int \left(\left(\ker f \right) \left\langle x \right\rangle \right) \stackrel{\text{def}}{=} \int \left\langle x \right\rangle$ Mue 20 J. Phy = J. 51,52 Henework

http://paperkit.net