Lecture 7: Source Coding and Kraft Inequality

- Codes
- Kraft inequality and consequences

Horse Racing

Which horse won?

$p_{\pmb{i}}$	Code 1	Code 2	
1/2	000	0	
1/4	001	10	
1/8	010	110	
1/16	011	1110	
1/64	100	111100	
1/64	101	111101	
1/64	110	111110	
1/64	111	111111	
El_i	3	2	

$$H(X) = -\sum p_i \log p_i = 2 \text{bits}$$

How to find the best code?

Codes

ullet Source code C for a random variable X is

$$C(x): \mathcal{X} \to \mathcal{D}^*$$

 \mathcal{D}^* : set of finite-length strings of symbol from D-ary alphabet \mathcal{D}

- Code length: l(x)
- ullet Example: C(red)=00, C(blue)=11, $\mathcal{X}=\{\text{red, blue}\}$, $\mathcal{D}=\{0,1\}$

Morse's code (1836)

- A code for English alphabet of four symbols
- Developed for electric telegraph system
- $\mathcal{D} = \{ dot, dash, letter space, word space \}$
- Short sequences represent frequent letters
- Long sequences represent infrequent letter

International Morse Code

- 1. A dash is equal to three dots.
- 2. The space between parts of the same letter is equal to one dot.
- 3. The space between two letters is equal to three dots.
- 4. The space between two words is equal to seven dots.

Dr. Yao Xie, ECE587, Information Theory, Duke University

Source coding applications

- Magnetic recording: cassette, hardrive, USB...
- Speech compression
- Compact disk (CD)
- Image compression: JPEG

Still an active area of research:

- Solid state hard drive
- Sensor network: distributed source coding

What defines a good code

• Non-singular:

$$x \neq x' \Rightarrow C(x) \neq C(x')$$

- ullet non-singular enough to describe a single RV X
- ullet When we send sequences of value of X, without "comma" can we still uniquely decode
- Uniquely decodable if extension of the code is nonsingular

$$C(x_1)C(x_2)\cdots C(x_n)$$

X	Singular	Nonsingular not uniquely decodable	Uniquely decoable	Prefix
1	0	0	10	0
2	0	010	00	10
3	0	01	11	110
4	0	10	110	111

- Uniquely decodable if only one possible source string producing it
- However, we have to look at entire string to determine
- Prefix code (instantaneous code): no codeword is a prefix of any other code

Expected code length

ullet Expected length L(C) of a source code C(x) for X with pdf p(x)

$$L(C) = \sum_{x \in \mathcal{X}} p(x)l(x)$$

• We wish to construct instantaneous codes of minimum expected length

Kraft inequality

- By Kraft in 1949
- Coded over alphabet size D
- m codes with length l_1, \ldots, l_m
- The code length of all instantaneous code must satisfy Kraft inequality

$$\sum_{i=1}^{m} D^{-l_i} \le 1$$

- Given l_1, \ldots, l_m satisfy Kraft, can construct instantaneous code
- Can be extended to uniquely decodable code (McMillan inequality)

Proof of Kraft inequality

- Consider *D*-ary tree
- Each codeword is represented by a leaf node
- Path from the root traces out the symbol
- Prefix code: no codeword is an ancestor of any other codeword on the tree
- Each code eliminates its descendants as codewords

- ullet $l_{
 m max}$ be the length of longest codeword
- A codeword at level l_i has $D^{l_{\max}-l_i}$ descendants
- Descendant sets must be disjoint:

$$\sum D^{l_{\max}-l_i} \le D^{l_{\max}}$$

$$\Rightarrow \sum D^{-l_i} \le 1$$

- Converse: if l_1, \ldots, l_{\max} satisfy Kraft inequality, can label first node at depth l_1 , remove its descendants...
- ullet Can extend to infinite prefix code $l_{
 m max} o \infty$

Optimal expected code length

- One application of Kraft inequality
- Expected code length of *D*-ary is lower bounded by entropy:

$$L \geq H_D(X)$$

Proof:

$$L - H_D(X) = \sum_{i=1}^{n} p_i l_i - \sum_{i=1}^{n} p_i \log_D \frac{1}{p_i}$$
$$= D(p||r) + \log_D \frac{1}{c} \ge 0$$
$$r_i = D^{-l_i} / \sum_{j=1}^{n} D^{-l_j}, \quad c = \sum_{i=1}^{n} D^{-l_i} \le 1$$

- Achieve minimum code length if
 - -c = 1: Kraft inequality is equality
 - $r_i = p_i$: approximated pdf using D-ary alphabet is exact
- How to construct such an optimal code?
- ullet Finding the D-adic distribution that is closet to distribution of X
- Construct the code by converse of Kraft inequality

Construction of optimal codes

- ullet Finding the D-adic distribution that is closet to distribution of X is impractical because finding the closest D-adic distribution is not obvious
- Good suboptimal procedure
 - Shannon-Fano coding
 - Arithmetic coding
- Optimal procedure: Huffman coding

First step: finding optimal code length

Solving optimization problem

$$\begin{aligned} & \underset{i=1}{\text{minimize}}_{l_i} & & \sum_{i=1}^{m} p_i l_i \\ & \text{subject to} & & \sum_{i=1}^{m} D^{-l_i} \leq 1. \end{aligned}$$

Solve using Lagrangian multiplier

$$J = \sum_{i=1}^{m} p_i l_i + \lambda (\sum_{i=1}^{m} D^{-l_i} - 1)$$

• Solution:

$$l_i^* = -\log_D p_i.$$

• Achieves the lower bound:

$$L^* = \sum p_i l_i^* = -\sum p_i \log_D p_i = H_D(X).$$

- Problem: $-\log_D p_i$ may not be an integer!
- Rounding up

$$l_i = \lceil -\log_D p_i \rceil.$$

may not be optimal.

• Usable code constructions?

Summary

- Nonsingular > Uniquely decodable > Instantaneous codes
- Kraft inequality for Instantaneous code
- Entropy is lower bound on expected code length