Tree search algorithms for the sequential ordering problem

<u>Luc Libralesso</u> - Abdel-Malik Bouhassoun Hadrien Cambazard - Vincent Jost September 2020 - CPAIOR 2020

Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France email: luc.libralesso@grenoble-inp.fr

Very simple yet competitive tree search algorithm

Sequential Ordering Problem (ATSP + precedence constraints)

- · Sequential Ordering Problem (ATSP + precedence constraints)
- · Iterative beam search

- Sequential Ordering Problem (ATSP + precedence constraints)
- · Iterative beam search
- · Simple branching scheme: Forward search

- Sequential Ordering Problem (ATSP + precedence constraints)
- · Iterative beam search
- · Simple branching scheme: Forward search
- · Simple bounds (selected edge costs)

- Sequential Ordering Problem (ATSP + precedence constraints)
- · Iterative beam search
- · Simple branching scheme: Forward search
- · Simple bounds (selected edge costs)
- · Dynamic Programming inspired prunings

- Sequential Ordering Problem (ATSP + precedence constraints)
- · Iterative beam search
- · Simple branching scheme: Forward search
- · Simple bounds (selected edge costs)
- · Dynamic Programming inspired prunings
- New-best-known solutions on 6/7 open instances

The Sequential Ordering Problem (SOP)

Asymmetric Traveling Salesman Problem with precedence constraints

The Sequential Ordering Problem (SOP)

Asymmetric Traveling Salesman Problem with precedence constraints

Large benchmark: SOPLIB $n = \{200, 300...700\}$, 7 open instances Studied a lot over the last 30 years

The Sequential Ordering Problem (SOP)

Asymmetric Traveling Salesman Problem with precedence constraints

Large benchmark: SOPLIB $n = \{200, 300...700\}$, 7 open instances Studied a lot over the last 30 years

- · Branch & Cut, MDD+CP, etc.
- · LKH3, ACO+SA, 3-opt moves, etc.

Iterative Beam Search

- · Runs a beam of size 1 (greedy)
- Then runs a beam of size 2, then 4, then 8 ...

Stops when no heuristic fathoming is done (proves optimality)

Results - New best-so-far solutions

6 over 7 new-best-so-far solutions (the other one is probably optimal)

best known	BS+PE (600s)
5.284	5.261
49.504	49.366
5.472	5.469
55.213	54.994
7.021	7.020
65.305	64.777
	5.284 49.504 5.472 55.213 7.021

Results - New best-so-far solutions

6 over 7 new-best-so-far solutions (the other one is probably optimal)

Instance	best known	BS+PE (600s)
R.500.100.15	5.284	5.261
R.500.1000.15	49.504	49.366
R.600.100.15	5.472	5.469
R.600.1000.15	55.213	54.994
R.700.100.15	7.021	7.020
R.700.1000.15	65.305	64.777

Overall:

- Works best with lots of precedence constraints (different to MIP/LS approaches)
- Not so well with few precedence constraints

Tree search algorithms for the sequential ordering problem

<u>Luc Libralesso</u> - Abdel-Malik Bouhassoun Hadrien Cambazard - Vincent Jost September 2020 - CPAIOR 2020

Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France email: luc.libralesso@grenoble-inp.fr

References