Horst:

Aufnahmetest in Mathematik für das WS 2016/17

Name: Punkte: /36

Nummer: Entspricht: %

Bearbeitungszeit 60 Minuten. Keine Hilfsmittel, kein Taschenrechner.

1. Berechnen Sie. $\frac{\frac{1}{2}(-\frac{4}{5})}{\frac{1}{2}-\frac{4}{1}} = \frac{-(2-3+4)}{(-2)\cdot 3\cdot (-4)} = 1$	$\left(\frac{a}{b+a}\cdot(-a-b)\right)^3 = 1$	Punkte
$\frac{2}{5}$	(b) u	/ 3
2. Vereinfachen Sie. $(-2x) \cdot x - 2x \cdot (x^2 + 3x^2)^{\frac{1}{2}} =$	$\frac{\left(a-3\right)\left(\frac{a}{3}+1\right)}{3} =$	/2

3.	Horst und Gunda sind gemeinsam dreimal so alt wie Horst. Vor vier Jahren war	/0
	Gunda dreimal so alt wie Horst. Wie alt sind Horst und Gunda heute?	/2

4.	Zeichnen Sie die Graphen der Funktionen $f(x) = x - 1$ und $g(x) = -\frac{1}{2}x$ und	
	berechnen sie den Schnittpunkt der beiden Funktionen.	/2

Gunda:

6. Gegeben sind die Mengen:
$$A = \{3,4,\sqrt{3}\}, B = \{1,2,3,4\}, \mathbb{R}, \mathbb{N} \text{ und } \mathbb{Z}.$$

Berechnen Sie:
$$A \cap B = \qquad \qquad A \cup B = \qquad \qquad (\mathbb{R} \backslash \mathbb{Z}) \cap A =$$

$$(\mathbb{R} \cap \mathbb{Z}) \cap A = A \cap (B \cup \mathbb{R}) = (\mathbb{N} \cup B) \cap A =$$

7. Vereinfachen Sie soweit wie möglich.

 $\frac{(x-2)^3}{x^2-4x+4} + 2 = \frac{(a+b)\cdot(2a-2b)}{a^2} = \frac{a^{x-3y}\cdot 4^{y-2}}{u^{-2x-3y}\cdot x^{-1}} = \frac{(\log_4 16) - (\log_2 4)}{(\log_4 16) - (\log_2 4)} = \frac{(a+b)\cdot(2a-2b)}{a^2} = \frac{a^{x-3y}\cdot 4^{y-2}}{u^{-2x-3y}\cdot x^{-1}} = \frac{(\log_4 16) - (\log_2 4)}{(\log_4 16) - (\log_2 4)} = \frac{(a+b)\cdot(2a-2b)}{(\log_4 16) - (\log_4 16)} = \frac{(a+b)\cdot(2a-2b)}{(\log_4 16)} = \frac{(a+b)\cdot(2a-$

x2-4x+22

8. Skizzieren Sie die Graphen der Funktionen $f(x) = \ln(x)$ und $g(x) = \sin(\pi \cdot x)$.

/2

9. Bestimmen Sie die Fläche des Quadrats. Der Kreisradius beträgt $r = \sqrt{18}$.

A =

/2

10. Auf einer Halbkugel mit Radius r = 2 ist ein Kegel mit Höhe h = 2r. Berechnen Sie das gesamte Volumen.

V =

/2

11. Geben Sie zwei weitere Folgenglieder und den Grenzwert der Folge an.

$$(a_n)_{n\in\mathbb{N}} = \left\{\frac{2}{7}, \frac{3}{10}, \frac{4}{13}, \right\}$$

$$\lim_{n\to\infty}(a_n)=$$

/2

12. Bestimmen Sie alle Lösungen der Gleichung. $-2x^4 + 6x^3 - 8x = 0$

$$x_1 =$$

$$\chi_3$$

/3

13. Berechnen Sie für die Vektoren $\vec{a} = \binom{-2}{1}$ und $\vec{b} = \binom{2}{-1}$:

$$2\vec{a} + \vec{b} =$$

$$|\vec{a} - \vec{b}| =$$

/2

14. Berechnen Sie die Ableitung der Funktionen.

$$f(x) = \sqrt{x} \cdot cos(2^{3x})$$

$$f'(x) =$$

/2

15. Berechnen Sie folgendes Integral:

$$\int_{1}^{1} (4x^3 - x + 1)dx =$$

1.	Berechnen Sie. $\frac{\frac{1}{2} \cdot \left(-\frac{4}{5}\right)}{\frac{1}{2} \cdot \frac{4}{5}} = \frac{\frac{1}{4}}{\frac{1}{2} \cdot \frac{4}{5}} - \frac{-(2-3+4)}{(-2)\cdot 3\cdot (-4)} = \frac{1}{3} \cdot \left(\frac{a}{b+a}\cdot (-a-b)\right)^3 = -\frac{3}{4}$	Punkte
. ;	$\frac{2-5}{2-5}$ 3 $(-2)\cdot 3\cdot (-4)$ 8 $(b+a)$	/3
2.	Vereinfachen Sie. $(-2x) \cdot x - 2x \cdot (x^2 + 3x^2)^{\frac{1}{2}} = -6x^2 \frac{(a-3) \cdot (\frac{a}{3}+1)}{3} = \frac{a^4}{3} - 1$	/2
3.	Horst und Gunda sind gemeinsam dreimal so alt wie Horst. Vor vier Jahren war Gunda dreimal so alt wie Horst. Wie alt sind Horst und Gunda heute? Horst: Gunda:	/2
4.	Zeichnen Sie die Graphen der Funktionen $f(x) = x - 1$ und $g(x) = -\frac{1}{2}x$ und berechnen sie den Schnittpunkt der beiden Funktionen.	/2
	$S(\frac{2}{3}/-\frac{4}{3})$	/1
5.	Bestimmen Sie die Lösungsmenge folgender Ungleichung: $ x + 1 > -2x + 4$	/2
	Lösungsmenge $\mathbb{L} = \int 1$; ∞	
6.	Gegeben sind die Mengen: $A = \{3,4,\sqrt{3}\}$, $B = \{1,2,3,4\}$, \mathbb{R} , \mathbb{N} und \mathbb{Z} . Berechnen Sie: $A \cap B = \{3,4\}$ $A \cup B = \{3,4,\sqrt{3}\}$ $A \cup B = \{3,4,\sqrt{3}\}$ $A \cap (B \cup \mathbb{R}) = \{3,4,\sqrt{3}\}$ $A \cap (B \cup \mathbb{R}) = \{3,4,\sqrt{3}\}$ $(\mathbb{N} \cup B) \cap A = \{3,4\}$	/3
7.	Vereinfachen Sie soweit wie möglich. $\frac{(x-2)^3}{x^2-4x+4} + 2 = \times \qquad \frac{(a+b)\cdot(2a-2b)}{a^2} = 2 - 2\frac{j^2}{a^2} \qquad \frac{u^{x-3y}\cdot v^{-4t-2}}{u^{-2x-3y}\cdot v^{t-1}} = \sqrt{3x} - 5 \pm \sqrt{1}$ $(log_4 16) - (log_2 4) = 0 \qquad (g^{\frac{1}{4}} \cdot \sqrt[8]{t^4})^4 \cdot g^2 = g^{\frac{3}{4}} \pm \sqrt[2]{1}$	/5

8. Skizzieren Sie die Graphen der Funktionen $f(x) = \ln(x)$ und $g(x) = \sin(\pi \cdot x)$.

12

9. Bestimmen Sie die Fläche des Quadrats. Der Kreisradius beträgt $r = \sqrt{18}$.

 $A = \frac{1}{2} \Upsilon^2 = 9$

/2

 ${f 10.}$ Auf einer Halbkugel mit Radius r=2 ist ein Kegel mit Höhe h=2r. Berechnen Sie das gesamte Volumen.

 $V = \frac{32}{3}\pi \approx 33.5$

12

Geben Sie zwei weitere Folgenglieder und den Grenzwert der Folge an.

$$(a_n)_{n\in\mathbb{N}} = \left\{\frac{2}{7}, \frac{3}{10}, \frac{4}{13}, \frac{5}{16}, \frac{6}{19}\right\}$$

$$\lim_{n\to\infty}(a_n)=\frac{4}{3}$$

12

12. Bestimmen Sie alle Lösungen der Gleichung. $-2x^4 + 6x^3 - 8x = 0$

$$x_1 = 0$$

$$x_2 = -1$$

$$x_3 = 1$$

/3

 $x_1 = 0$ $x_2 = 1$ $x_3 = 1$ 13. Berechnen Sie für die Vektoren $\vec{a} = \binom{-2}{1}$ und $\vec{b} = \binom{2}{-1}$:

$$2\vec{a} + \vec{b} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$|\vec{a} - \vec{b}| = \sqrt{20} = 2\sqrt{5}$$

12

14. Berechnen Sie die Ableitung der Funktionen.

$$f(x) = \sqrt{x} \cdot \cos(2^{3x})$$

$$f'(x) = \frac{1}{2\sqrt{x}} \cos(2^{3x}) - \sqrt{x} \cdot 3 \cdot \ln(2) \cdot 2 \cdot \sin(2^{3x})$$

/2

15. Berechnen Sie folgendes Integral:

Aufnahmetest in Mathematik

Name: **Punkte:** /36

> % **Entspricht:**

Bearbeitungszeit 60 Minuten. Keine Hilfsmittel, kein Taschenrechner.

- **1.** Berechnen Sie. $\frac{\frac{2}{3}\cdot\left(-\frac{12}{8}\right)}{\frac{1}{2}-\frac{4}{5}} = -\frac{-(2-1+4)}{(-2)\cdot(-4)} = \left(\frac{-a}{b+a}\cdot(-a-b)\right)^3 =$ Punkte **2.** Vereinfachen Sie. $(-2x) \cdot x - x =$
- **3.** Eine Treppe hat 14 Stufen. Wenn jede Stufe 1,75 cm höher wäre, braucht man nur /2 noch 12 Stufen. Wie hoch ist eine von den 14 Stufen? Stufenhöhe:
- Zeichnen Sie die Graphen der Funktionen f(x) = x 1 und $g(x) = -\frac{1}{2}x$ und 4. /2berechnen sie den Schnittpunkt der beiden Funktionen.

S(/)

/1

- /2**5.** Bestimmen Sie die Lösungsmenge folgender Ungleichung: |x+1| > -2x + 4Lösungsmenge $\mathbb{L} =$
- **6.** Ein Zylinder ist genauso lang wie hoch (d = h) und hat ein Volumen von 3141 cm³. Berechnen Sie seine Höhe h.

Höhe $h = \sqrt[3]{}$

/3

Vereinfachen Sie soweit wie möglich.

$$\frac{(x-2)^3}{x^2-4x+4} - x = \frac{(a+b)\cdot(4a-4b)}{4a^2} = \frac{u^{x-3y}\cdot v^{-4t-2}}{u^{-2x-3y}\cdot v^{t-1}} =$$

$$\frac{(a+b)\cdot(4a-4b)}{4a^2} =$$

$$\frac{u^{x-3y} \cdot v^{-4t-2}}{u^{-2x-3y} \cdot v^{t-1}} =$$

$$(log_464) - (log_24) =$$

$$\left(h^{\frac{1}{4}} \cdot \sqrt[8]{m^4}\right)^4 \cdot h^3 =$$

8. Skizzieren Sie die Graphen der Funktionen $f(x) = \frac{1}{x}$ und $g(x) = 2 \cdot sin(\pi \cdot x)$.

/2

9. Bestimmen Sie die Fläche des Rechtecks. Der Kreisradius beträgt $r = \sqrt{18}$.

A =

/2

10. Auf einer Halbkugel mit Radius r=2 ist ein Kegel mit Höhe h=2r. Berechnen Sie das gesamte Volumen.

V =

/2

Geben Sie zwei weitere Folgenglieder und den Grenzwert der Folge an.

$$(a_n)_{n\in\mathbb{N}} = \left\{\frac{2}{7}, \frac{4}{10}, \frac{6}{13}, \dots \right\} \qquad \lim_{n\to\infty} (a_n) =$$

/2

12. Bestimmen Sie alle Lösungen der Gleichung. $-2x^3 + \frac{1}{3}x^2 + \frac{1}{3}x = 0$

$$x_1 =$$

$$x_2 =$$

$$x_3 =$$

/3

 $x_1 = x_2 = x_3 =$ **13.** Berechnen Sie für die Vektoren $\vec{a} = \binom{-2}{4}$ und $\vec{b} = \binom{4}{-1}$:

$$3\vec{a} - \vec{b} =$$

$$|\vec{a} + \vec{b}| =$$

/2

14. Berechnen Sie die Ableitung der Funktionen.

$$f(x) = \cos(2^{3x})$$

$$f'(x) =$$

/2

15. Berechnen Sie folgendes Integral:

$$\int_{-2}^{2} (4x^3 - x + 3) dx =$$

Aufnahmetest in Mathematik

Name:

Punkte:

/36

Entspricht:

%

Bearbeitungszeit 60 Minuten. Keine Hilfsmittel, kein Taschenrechner.

1.	Berechnen Sie. $\frac{\frac{2}{3}\left(-\frac{12}{8}\right)}{\frac{1}{2}-\frac{4}{5}} = \frac{\frac{10}{3}}{3} - \frac{-\frac{(2-1+4)}{(-2)\cdot(-4)}}{\frac{1}{2}-\frac{4}{5}} = \frac{\frac{5}{3}}{3} \left(\frac{-a}{b+a}\cdot(-a-b)\right)^3 = \frac{3}{3}$	Punkte / 3
2.	Vereinfachen Sie. $(-2x) \cdot x - x = -2x^2 - x$ $\frac{(a-3) \cdot \left(\frac{a}{3}+1\right)}{\frac{1}{3}} = \frac{2}{a} - \frac{3}{3}$	/2
3.	Eine Treppe hat 14 Stufen. Wenn jede Stufe 1,75 cm höher wäre, braucht man nur noch 12 Stufen. Wie hoch ist eine von den 14 Stufen? Stufenhöhe: 10,5 cm	/2
4.	Zeichnen Sie die Graphen der Funktionen $f(x) = x - 1$ und $g(x) = -\frac{1}{2}x$ und berechnen sie den Schnittpunkt der beiden Funktionen.	/2
	$S(\frac{2}{3}/-\frac{4}{3})$, ,
	x x	/1
5.	Bestimmen Sie die Lösungsmenge folgender Ungleichung: $ x + 1 > -2x + 4$	/2
	Lösungsmenge $\mathbb{L} = 11$; ∞	
6.	Ein Zylinder ist genauso lang wie hoch $(d = h)$ und hat ein Volumen von 3141 cm ³ .	
	Berechnen Sie seine Höhe h . Höhe $h = \sqrt[3]{4000}$	/3
7.	Vereinfachen Sie soweit wie möglich. $\frac{(x-2)^3}{x^2-4x+4} - x = -2 \qquad \frac{(a+b)\cdot(4a-4b)}{4a^2} = 1 - \frac{b^2}{a^2} \qquad \frac{u^{x-3y} \cdot v^{-4t-2}}{u^{-2x-3y} \cdot v^{t-1}} = 1 - \frac{b^2}{a^2}$	/5
	$(\log_4 64) - (\log_2 4) = $	

8. Skizzieren Sie die Graphen der Funktionen $f(x) = \frac{1}{x}$ und $g(x) = 2 \cdot \sin(\pi \cdot x)$.

12

9. Bestimmen Sie die Fläche des Rechtecks. Der Kreisradius beträgt $r = \sqrt{18}$.

A = 18

/2

10. Auf einer Halbkugel mit Radius r=2 ist ein Kegel mit Höhe h=2r. Berechnen Sie das gesamte Volumen.

 $V = \frac{32}{3} \text{ T}$

12

11. Geben Sie zwei weitere Folgenglieder und den Grenzwert der Folge an.

$$(a_n)_{n\in\mathbb{N}} = \left\{\frac{2}{7}, \frac{4}{10}, \frac{6}{13}, \frac{8}{16}, \frac{10}{15}\right\}$$

$$\lim_{n\to\infty}(a_n)=\frac{2}{3}$$

12

12. Bestimmen Sie alle Lösungen der Gleichung. $-2x^3 + \frac{1}{3}x^2 + \frac{1}{3}x = 0$

$$x_1 = 0$$

$$x_1 = 0$$
 $x_2 = \frac{1}{2}$ $x_3 = \frac{1}{3}$

$$x_3 = \frac{4}{5}$$

13

13. Berechnen Sie für die Vektoren $\vec{a} = \binom{-2}{4}$ und $\vec{b} = \binom{4}{-1}$:

$$3\vec{a} - \vec{b} = \begin{pmatrix} -13 \\ 13 \end{pmatrix} \qquad |\vec{a} + \vec{b}| = \sqrt{13}$$

$$\left|\vec{a} + \vec{b}\right| = \sqrt{13}$$

/2

14. Berechnen Sie die Ableitung der Funktionen.

$$f(x) = \cos(2^{3x})$$

$$f'(x) = \int_{\Omega} (2) .$$

$$f'(x) = l_n(2) \cdot 2^{3x} \cdot 3 \cdot (-\sin(2^{3x}))$$

/2

15. Berechnen Sie folgendes Integral:

