Relações e Indução

Anderson Feitoza Leitão Maia

MATEMÁTICA BÁSICA Ciência da Computação Universidade Federal do Ceará

15 de junho de 2021

Apresentação

```
Relações
Indução
```

Domínio

Seja R uma relação de A em B. Chama-se domínio de R o conjunto D de todos os primeiros elementos dos pares ordenados pertencente a R.

$$x \in D \iff y, y \in B | (x, y) \in R$$

Domínio

Seja R uma relação de A em B. Chama-se domínio de R o conjunto D de todos os primeiros elementos dos pares ordenados pertencente a R.

$$x \in D \iff y, y \in B | (x, y) \in R$$

Imagem

Seja R uma relação de A em B. Chama-se Imagem de R o conjunto I de todos os segundos elementos dos pares ordenados pertencente a R.

$$y \in Im \iff \exists x, x \in A \mid (x, y) \in R$$

Exemplo.

1°) Se $A = \{0, 2, 3, 4\}$ e $B = \{1, 2, 3, 4, 5, 6\}$, qual é o domínio e a imagem da relação $R = \{(x, y) \in A \times B \mid y \text{ é múltiplo de } x\}$?

Exemplo.

1°) Se $A = \{0, 2, 3, 4\}$ e $B = \{1, 2, 3, 4, 5, 6\}$, qual é o domínio e a imagem da relação $R = \{(x, y) \in A \times B \mid y \text{ é múltiplo de } x\}$?

$$R = \{(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}$$

 $D = \{2, 3, 4\}$ $Im = \{2, 3, 4, 6\}$

Exemplo.

1°) Se $A = \{0, 2, 3, 4\}$ e $B = \{1, 2, 3, 4, 5, 6\}$, qual é o domínio e a imagem da relação $R = \{(x, y) \in A \times B \mid y \text{ é múltiplo de } x\}$?

$$R = \{(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}$$

 $D = \{2, 3, 4\}$ $Im = \{2, 3, 4, 6\}$

Relação Inversa

Dada uma relação binária R de A em B, consideremos o conjunto

$$R^{-1} = \{(y, x) \in B \times A \mid (x, y) \in R\}.$$

Como R^{-1} é subconjunto de $B \times A$, entao R^{-1} é uma relação binária de B em A, a qual daremos o nome de relação inversa de R.

$$(y, x) \in R^{-1} \iff (x, y) \in R$$

$$(y, x) \in R^{-1} \iff (x, y) \in R$$

Exemplo.

1°.) Se
$$A = \{2, 3, 4, 5\}$$
 e $B = \{1, 3, 5, 7\}$, quais são os elementos de $R = \{(x, y) \in A \times B \mid x < y\}$ e de R^{-1} ?

$$(y, x) \in R^{-1} \iff (x, y) \in R$$

Exemplo.

1°) Se
$$A = \{2, 3, 4, 5\}$$
 e $B = \{1, 3, 5, 7\}$, quais são os elementos de $R = \{(x, y) \in A \times B \mid x < y\}$ e de R^{-1} ?

temos:
$$R = \{(2, 3), (2, 5), (2, 7), (3, 5), (3, 7), (4, 5), (4, 7), (5, 7)\}$$

 $e R^{-1} = \{(3, 2), (5, 2), (7, 2), (5, 3), (7, 3), (5, 4), (7, 4), (7, 5)\}.$

$$(y, x) \in R^{-1} \iff (x, y) \in R$$

Exemplo.

1°) Se
$$A = \{2, 3, 4, 5\}$$
 e $B = \{1, 3, 5, 7\}$, quais são os elementos de $R = \{(x, y) \in A \times B \mid x < y\}$ e de R^{-1} ?
temos: $R = \{(2, 3), (2, 5), (2, 7), (3, 5), (3, 7), (4, 5), (4, 7), (5, 7)\}$ e $R^{-1} = \{(3, 2), (5, 2), (7, 2), (5, 3), (7, 3), (5, 4), (7, 4), (7, 5)\}$.

Propriedades das Relações.

1ª.)
$$D(R^{-1}) = Im(R)$$

isto é, o domínio de R^{-1} é igual à imagem de R .
2ª.) $Im(R^{-1}) = D(R)$
isto é, a imagem de R^{-1} é igual ao domínio de R .
3ª.) $(R^{-1})^{-1} = R$
isto é, a relação inversa de R^{-1} é a relação R .

Conjuntos Numéricos

Conjuntos Numéricos

$$\begin{aligned} & | \mathbf{N} = \{ & 1, 2, 3, ... \} \\ & | \mathbf{Z} = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \} \\ & | \mathbf{Z}_{+} = \{ 0, 1, 2, 3, ... \} = | \mathbf{N} \\ & | \mathbf{Z}_{-} = \{ 0, -1, -2, -3, ... \} \\ & | \mathbf{Z}^{*} = \{ ..., -3, -2, -1, 1, 2, 3, ... \} \\ & | \mathbb{Q} = \left\{ \frac{a}{b}, a \in \mathbb{Z}, b \in \mathbb{Z}^{*} \right\} \\ & | \mathcal{I} = \mathbb{R} - \mathbb{O}
 \end{aligned}$$

Representação Geométrica

Princípio de Indução

Uma proposição P(n), aplicável aos numeros naturais n, é verdadeira para todo $n \in \mathbb{N}$, $n \ge n_0$, quando:

- 1.) $P(n_0)$ é verdadeira, isto é, a propriedade é válida para $n = n_0$.
- 2) Se $n \in \mathbb{N}$, $n \ge n_0$, e P(k) é verdadeira, então P(k+1) também é verdadeira.

Uma proposição P(n), aplicável aos numeros naturais n, é verdadeira para todo $n \in \mathbb{N}$, $n \ge n_0$, quando:

- 1.) $P(n_0)$ é verdadeira, isto é, a propriedade é válida para $n = n_0$.
- 2) Se $n \in \mathbb{N}$, $n \ge n_0$, e P(k) é verdadeira, então P(k+1) também é verdadeira.

Exemplo 1.

$$1 + 3 + 5 + ... + (2n - 1) = n^2$$
 $(n \in \mathbb{N})$

Princípio de Indução

Uma proposição P(n), aplicável aos numeros naturais n, é verdadeira para todo $n \in \mathbb{N}$, $n \ge n_0$, quando:

- 1.) $P(n_0)$ é verdadeira, isto é, a propriedade é válida para $n = n_0$.
- 2) Se $n \in \mathbb{N}$, $n \ge n_0$, e P(k) é verdadeira, então P(k+1) também é verdadeira.

Exemplo 1.

$$1 + 3 + 5 + ... + (2n - 1) = n^2$$
 $(n \in \mathbb{N})$

1°) Verifiquemos que P(1) é verdadeira:

Uma proposição P(n), aplicável aos numeros naturais n, é verdadeira para todo $n \in \mathbb{N}$, $n \ge n_0$, quando:

- 1.) $P(n_0)$ é verdadeira, isto é, a propriedade é válida para $n = n_0$.
- 2) Se $n \in \mathbb{N}$, $n \ge n_0$, e P(k) é verdadeira, então P(k+1) também é verdadeira.

Exemplo 1.

$$1 + 3 + 5 + ... + (2n - 1) = n^2$$
 $(n \in \mathbb{N})$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1 \implies 1 = 1^2$$

Uma proposição P(n), aplicável aos numeros naturais n, é verdadeira para todo $n \in \mathbb{N}$, $n \ge n_0$, quando:

- 1.) $P(n_0)$ é verdadeira, isto é, a propriedade é válida para $n = n_0$.
- 2) Se $n \in \mathbb{N}$, $n \ge n_0$, e P(k) é verdadeira, então P(k+1) também é verdadeira.

Exemplo 1.

$$1 + 3 + 5 + ... + (2n - 1) = n^2$$
 $(n \in \mathbb{N})$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1 \implies 1 = 1^2$$

2°) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

Uma proposição P(n), aplicável aos numeros naturais n, é verdadeira para todo $n \in \mathbb{N}$, $n \ge n_0$, quando:

- 1.) $P(n_0)$ é verdadeira, isto é, a propriedade é válida para $n = n_0$.
- 2) Se $n \in \mathbb{N}$, $n \ge n_0$, e P(k) é verdadeira, então P(k+1) também é verdadeira.

Exemplo 1.

$$1 + 3 + 5 + ... + (2n - 1) = n^2$$
 $(n \in |N|)$

1º) Verifiquemos que P(1) é verdadeira: $n = 1 \implies 1 = 1^2$

2°) Admitamos que
$$P(k)$$
, com $k \in \mathbb{N}^*$, seja verdadeira:

$$1 + 3 + 5 + ... + (2k - 1) = k^2$$
 (hipótese da indução)

e provemos que decorre a validade de P(k + 1), isto é:

e provemos que decorre a validade de P(k + 1), isto é:

$$1 + 3 + 5 + ... + (2k - 1) + [2(k + 1) - 1] = (k + 1)^{2}$$
.

e provemos que decorre a validade de P(k + 1), isto é:

$$1 + 3 + 5 + \dots + (2k - 1) + [2(k + 1) - 1] = (k + 1)^{2}.$$

Temos:

$$1 + 3 + 5 + ... + (2k - 1) + (2k + 1)$$

e provemos que decorre a validade de P(k + 1), isto é:

$$1 + 3 + 5 + \dots + (2k - 1) + [2(k + 1) - 1] = (k + 1)^{2}.$$

Temos:

$$\underbrace{1 + 3 + 5 + \dots + (2k - 1)}_{l} + (2k + 1) = \underbrace{k^{2}}_{l} + (2k + 1)$$

e provemos que decorre a validade de P(k + 1), isto é:

$$1 + 3 + 5 + ... + (2k - 1) + [2(k + 1) - 1] = (k + 1)^{2}.$$

Temos:

$$\underbrace{1 + 3 + 5 + ... + (2k - 1)}_{.} + (2k + 1) = \underbrace{k^{2}}_{A} + (2k + 1) = k^{2} + 2k + 1 = (k + 1)^{2}.$$

Exemplo 2.

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}, n \ge 1.$$

Exemplo 2.

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

Exemplo 2.

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 1^2 = 1 e^{\frac{n(n+1)(2n+1)}{6}} = \frac{1 \cdot 2 \cdot 3}{6} = 1.$$

Exemplo 2.

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 1^2 = 1 e^{\frac{n(n+1)(2n+1)}{6}} = \frac{1 \cdot 2 \cdot 3}{6} = 1.$$

2°) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

Exemplo 2.

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 1^2 = 1 e^{\frac{n(n+1)(2n+1)}{6}} = \frac{1 \cdot 2 \cdot 3}{6} = 1.$$

2°.) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

$$1^{2} + 2^{2} + \ldots + k^{2} = \frac{k(k+1)(2k+1)}{6}, k \ge 1$$

Exemplo 2.

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 1^2 = 1 e^{\frac{n(n+1)(2n+1)}{6}} = \frac{1 \cdot 2 \cdot 3}{6} = 1.$$

2°) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

$$1^{2} + 2^{2} + \ldots + k^{2} = \frac{k(k+1)(2k+1)}{6}, k \ge 1$$

e provemos que decorre a validade de P(k + 1), isto é:

Exemplo 2.

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 1^2 = 1 e^{\frac{n(n+1)(2n+1)}{6}} = \frac{1 \cdot 2 \cdot 3}{6} = 1.$$

2°) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

$$1^{2} + 2^{2} + \ldots + k^{2} = \frac{k(k+1)(2k+1)}{6}, k \ge 1$$

e provemos que decorre a validade de P(k + 1), isto é:

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$

temos

$$1^{2} + 2^{2} + \ldots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

temos

$$1^{2} + 2^{2} + \ldots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$
$$1^{2} + 2^{2} + \ldots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

temos

$$1^{2} + 2^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$1^{2} + 2^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$1^{2} + 2^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)[2k^{2} + k + 6k + 6]}{6}$$

$$1^{2} + 2^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)[2k^{2} + k + 6k + 6]}{6}$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$1^{2} + 2^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)[2k^{2} + k + 6k + 6]}{6}$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

Exemplo 3.

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2n = n^2 + n, n \ge 1.$$

Exemplo 3.

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2n = n^2 + n, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

Exemplo 3.

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2n = n^2 + n, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 2 \cdot 1 = 2 e 1^2 + 1 = 2.$$

Exemplo 3.

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2n = n^2 + n, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 2 \cdot 1 = 2 e 1^2 + 1 = 2.$$

2°) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

Exemplo 3.

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2n = n^2 + n, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 2 \cdot 1 = 2 e 1^2 + 1 = 2.$$

2°) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2k = k^2 + k$$

_ . .

Exemplo 3.

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2n = n^2 + n, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 2 \cdot 1 = 2 e 1^2 + 1 = 2.$$

2°.) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2k = k^2 + k$$

= $k(k+1), k \ge 1$

Exemplo 3.

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2n = n^2 + n, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 2 \cdot 1 = 2 e 1^2 + 1 = 2.$$

2°) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2k = k^2 + k$$

= $k(k+1), k \ge 1$

Indução

Exemplo 3.

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2n = n^2 + n, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 2 \cdot 1 = 2 e 1^2 + 1 = 2.$$

2°.) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \dots + 2k = k^2 + k$$

= $k(k+1), k \ge 1$

$$2 \cdot 1 + 2 \cdot 2 + \ldots + 2k + 2(k+1) = (k+1)^2 + (k+1)$$

Exemplo 3.

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2n = n^2 + n, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 2 \cdot 1 = 2 e 1^2 + 1 = 2.$$

2°.) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \dots + 2k = k^2 + k$$

= $k(k+1), k \ge 1$

$$2 \cdot 1 + 2 \cdot 2 + \ldots + 2k + 2(k+1) = (k+1)^2 + (k+1)$$

= $(k+1)[(k+1) + 1]$

Exemplo 3.

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \ldots + 2n = n^2 + n, n \ge 1.$$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1, 2 \cdot 1 = 2 e 1^2 + 1 = 2.$$

2°.) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

$$2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \dots + 2k = k^2 + k$$

= $k(k+1), k \ge 1$

$$2 \cdot 1 + 2 \cdot 2 + \ldots + 2k + 2(k+1) = (k+1)^2 + (k+1)$$

= $(k+1)[(k+1) + 1]$
= $(k+1)(k+2), k \ge 1$

$$2 \cdot 1 + 2 \cdot 2 + \ldots + 2k + 2(k+1)$$

$$2 \cdot 1 + 2 \cdot 2 + \ldots + 2k + 2(k+1) = k(k+1) + 2(k+1)$$

$$2 \cdot 1 + 2 \cdot 2 + \ldots + 2k + 2(k+1) = k(k+1) + 2(k+1)$$

= $k^2 + k + 2k + 2$

$$2 \cdot 1 + 2 \cdot 2 + \ldots + 2k + 2(k+1) = k(k+1) + 2(k+1)$$

= $k^2 + k + 2k + 2$
= $k^2 + 3k + 2$

$$2 \cdot 1 + 2 \cdot 2 + \ldots + 2k + 2(k+1) = k(k+1) + 2(k+1)$$

= $k^2 + k + 2k + 2$
= $k^2 + 3k + 2$
= $(k+1)(k+2)$

Thank you

Thank you for your attention!