Capítulo 4 Projeto do controlador PID

Controlador PID

Controlador mais usado em controle de processos contínuos. Sua saída é resultado da soma de três diferentes tipos de ação:

Ação Proporcional –P

- Ação imediata e proporcional ao valor do erro corrente
- Acelera a resposta de um processo controlado
- Reduz o tempo de subida e o erro máximo
- Aumenta o "overshoot" e o tempo de estabilização
- Produz um "off-set" inversamente proporcional ao ganho

Ação Integral –I

- Ação de controle gradual, proporcional a integral do erro
- Responde ao passado do erro enquanto este for diferente de zero
- Elimina o "off-set". Reduz o tempo de subida.
- Aumenta o "overshoot", o período de oscilação e tempo de estabilização
- Produz respostas lentas e oscilatória. Tende a instabilizar a malha

Ação Derivativa –D

- Ação antecipatória, resposta proporcional à derivada do erro
- Usada para acelerar e estabilizar a malha.
- Reduz o "overshoot" e o erro máximo e o período de oscilação
- Não é indicada para processos com ruído

Ações de controle

Ações do controlador PID

$$E(s)=a/s$$

Ação Proporcional

$$s(t) = K.e(t)$$

$$H(s) = \frac{S(s)}{E(s)} = \frac{\frac{K.a}{s}}{\frac{a}{s}} = K$$

$$S(s) = K. a/s$$

$$s(t) = \frac{1}{T_i} \int_0^t e(t) dt$$

$$H(s) = \frac{S(s)}{E(s)} = \frac{a}{T_i \cdot s^2} \cdot \frac{s}{a} = \frac{1}{T_i \cdot s}$$

Ação Derivativa

$$e(t)$$
 $e(t) = at \ e \ E(z) = \frac{a}{z^2}$
 t

e(t)
$$s(t) = at \ e \ E(s) = \frac{a}{s^2}$$

$$s(t) = T_d \cdot \frac{de(t)}{dt}$$

$$H(s) = \frac{S(s)}{E(s)} = \frac{Td \cdot a}{s} \cdot \frac{s^2}{a} = Td \cdot s$$

$$s(t) = T_d.a \in S(s) = \frac{T_d.a}{s^2}$$

$$t$$

Efeito da variação da ação proporcional na resposta à mudança de set-point

Efeito da variação da ação integral na resposta à mudança de set-point

Efeito da variação da ação derivativa na resposta à mudança de set-point

Algoritmos PID: formas principais

$$u = K_{C} \left(e + \frac{1}{T_{R}} \int e dt + T_{D} \frac{de}{dt} \right)$$

$$u = K'_{C} \left[e + \frac{1}{T'_{R}} \int e dt \left[1 + T'_{D} \frac{d}{dt} \right] \right]$$

Forma Paralela :

$$u = K_P e + K_I \int e dt + K_D \frac{de}{dt}$$

Alguns PID tem opção de ação proporcional e/ou derivativa no erro ou somente na PV (variável de processo). Evita "overshoot" em mudança de set-point.

Normalmente os PID comerciais tem filtro na ação derivativa. Reduz o efeito do ruído sobre a ação derivativa. Em geral a constante do filtro é função do termo derivativo.

Algoritmo PID Padrão ISA

Equação no tempo

$$u = K_{C} \left(e + \frac{1}{T_{R}} \int e dt + T_{D} \frac{de}{dt} \right)$$

Função de transferência (Laplace)

$$G_c(s) = K_C \left(1 + \frac{1}{T_R s} + T_D s \right) = \frac{K_C}{T_R} \left[\frac{T_R T_D s^2 + T_R s + 1}{s} \right]$$

Parâmetros de sintonia

 K_{c} - Ganho do controlador ou Banda Proporcional BP(%)=100/ K_{c}

 T_R - tempo de reset(ou tempo integral), ou taxa de reset KI=1/ T_R

T_D - tempo derivativo

Algoritmo PID série

Equação no tempo

Função de transferência (Laplace)

$$u = K'_{C}\left[\left(1 + \frac{T'_{D}}{T'_{R}}\right)e + \frac{1}{T'_{R}}\int edt + T'_{D}\frac{de}{dt}\right] \qquad G_{c}(s) = K'_{C}\left(T'_{D}s + 1\right)\left(1 + \frac{1}{T'_{R}s}\right) = \frac{K'_{C}}{T'_{R}}\left[\frac{(T'_{D}s + 1)(T'_{R}s + 1)}{s}\right]$$

Parâmetros de sintonia

K'_C - Ganho do controlador ou Banda Proporcional BP(%)=100/K'_C

 T'_R - tempo de reset(ou tempo integral), ou taxa de reset KI=1/T_R

T'_D - tempo derivativo

Algoritmo PID paralelo

Equação no tempo

$$u = K_P e + K_I \int e dt + K_D \frac{de}{dt}$$

Função de transferência (Laplace)

$$u = K_P e + K_I \int e dt + K_D \frac{de}{dt}$$

$$G_c(s) = K_P + K_I \frac{1}{s} + K_D s = \frac{K_D s^2 + K_P s + K_I}{s}$$

Parâmetros de sintonia

Kp - Ganho proporcional

Ki - Ganho Integral

Kd - Ganho derivativo

Relação entre os parâmetros

$$K_C + \frac{K_C}{T_R s} + K_C T_D s \qquad T_R = \frac{K_P}{K_I} \qquad K_P + \frac{K_I}{s} + K_D s$$

$$K_C T_D = K_D$$

$$K_C = K_P$$

$$\frac{K_C}{T_R} = K_I$$

$$T_R = \frac{K_P}{K_I}$$

$$K_C T_D = K_D$$

$$T_D = \frac{K_D}{K_P}$$

Paralela

$$K_P + \frac{K_I}{s} + K_D s$$

ISA

$$K_C + \frac{K_C}{T_P s} + K_C T_D s$$

$$K_C = K_C' \left(\frac{T_R' + T_D'}{T_R'} \right)$$

$$K_C' = \frac{K_C}{\left(\frac{T_R' + T_D'}{T_R'}\right)}$$

$$\frac{K_C}{T_R} = \frac{K_C}{T_R'}$$

$$T_R = \frac{K_C}{T_R'} = \frac{K_C}{T_R'}$$

$$K_{\scriptscriptstyle C}T_{\scriptscriptstyle D}=K_{\scriptscriptstyle C}^{'}T_{\scriptscriptstyle D}^{'}$$

$$T_D = T_D' \frac{K_C'}{K_C} = \frac{T_D' T_R'}{T_R' + T_D'}$$

Série

$$K_{C} + \frac{K_{C}}{T_{R}S} + K_{C}T_{D}S \qquad \frac{\frac{K_{C}}{T_{R}} = \frac{K_{C}'}{T_{R}'}}{T_{R} = T_{R}' \cdot \frac{K_{C}}{K_{C}'} = (T_{R}' + T_{D}')} \qquad K_{C}' \left(\frac{T_{R}' + T_{D}'}{T_{R}'}\right) + \frac{K_{C}'}{T_{R}'S} + K_{C}'T_{D}'S$$

Diferenças entre os algoritmos

Uso da ação derivativa na forma Forma Série

$$PB_{(efetivo)} = PB/(1+Td/Ti)$$

 $Ti_{(efetivo)} = Ti + Td$
 $Td_{(efetivo)} = 1/(1/Ti+1/Td)$

- Não é possível ter uma ação derivativa efetiva maior que ¼ do tempo integral efetivo.
- Quando Td>Ti, o Ti efetivo é ajustado mais por Td e o Td efetivo é ajustado mais por Ti
- A maior ação derivativa ocorre quando Td=Ti. Manter Td<Ti

Ação integral na forma paralela

$$T_R = Kp/Ki$$

 $T_D = Td/Kp$

Como a ação integral não é afetada pela proporcional, o aumento ou a redução do ganho proporcional pode levar à instabilização do sistema

Características típicas de controle PID

Propriedade	Vazão e Pressão de Líquido	Pressão de Gas	Nível de Líquido	Temperatura
Tempo morto	Não	Não	Não	Variável
Capacidade	Múltiplas	1	1	3 – 6
Período	1 – 10 seg	0 - 2 min	1 – 10 seg	Min – horas
Linearidade	Quadrado/linear	Linear	Linear	Não linear
Ruído	Sempre	Nenhum	Sempre	Nenhum
BP (%)	100 – 500 5 - 200	0-5	5 – 50	10 – 100
Integral	Essencial	Desnecessário	Não	Sim
Derivativo	Não	Desnecessário	Não	Essencial
Válvula	Linear/igual%	Linear	Linear	Igual %

Sintonia de controladores PID

- A boa sintonia é sempre um compromisso entre a estabilidade/robustez e a velocidade de resposta/desempenho da malha de controle.
- A sintonia é parte de um processo de redução de variabilidade. Não existe uma "receita de bolo" única para todos os casos.
- O sucesso da sintonia depende de vários fatores como conhecimento, método, ferramentas adequadas e principalmente experiência.
- A sintonia é facilitada pelo conhecimento do processo controlado.

Objetivos da sintonia

Encontrar os parâmetros proporcional, integral e derivativo para atender critérios tais como:

- Conseguir variabilidade mínima em operação normal
- Mínimo (ou nenhum) "overshoot" para mudanças de "set-point"
- Atingir rapidamente o novo "set-point" em caso de mudança
- Operação estável do controlador mesmo para alterações significativas nos parâmetros do processo (robustez)

Critérios de sintonia

Critérios simples

Off-set : c

Overshoot: a

Tempo de elevação : rt

Tempo de assentamento : st

Razão de queda(decay ratio) : b/a

Frequência de oscilação: 1/wo

Critérios de desempenho do erro integral

ISE (Integral of Square Error):

IAE (Integral of Absolute Error):

ITAE (Integral of Time-weighted Absolute Error):

Procedimento geral de sintonia

- 1. Testes de variação
- Identificação do processo
- Escolha do método de sintonia
- 4. Cálculo dos parâmetros
- 5. Análise da robustez (estabilidade)
- 6. Testes de performance

Identificação do processo

Objetivo: Encontrar os parâmetros de um modelo que caracterizem o processo a controlar

Métodos:

- Realização de testes de variação em malha aberta
- Realização de testes de variação em malha fechada. Usado no tradicional método de Ziegler-Nichols para obter uma variação cíclica senoidal.
- Realização de teste de variação controlada (relé dois estados).
 Permite variação mais controlada que em malha fechada.
- Uso dos dados históricos da operação normal da malha. Não interfere na operação da malha. Pode ser muito difícil obter um bom modelo devido às perturbações não medidas.

Modelo de primeira ordem com tempo morto-FOTD

Ganho de processo (Kp)

Razão entre a diferença no valor da variável controlada após a estabilidade pela diferença no sinal de saída do controlador.

Constante de tempo (τ)

É o tempo necessário para a resposta a uma perturbação em degrau atingir 63% no seu valor total.

Tempo morto (θ)

É o intervalo de tempo entre a aplicação da perturbação e o início da variação da variável controlada.

Razão de Controlabilidade ($\alpha = \theta / \tau$)

É a razão entre o tempo morto e a constante de tempo do processo. Indica a dificuldade de obter um bom controle.

Identificação em malha aberta

Teste de variação em degrau

Com o controlador em manual aplica-se uma perturbação em degrau esperandose a estabilização. Obtém-se então a curva de reação do um sistema. Procura-se comparar com um modelo de primeira ordem com tempo morto FODT.

ΔMV – Variação da manipulada

ΔPV – Variação da controlada após estabilizar

t0 – Tempo em que foi feito a variação

t1 – Tempo em a tangente corta a primeira linha horizontal

t2 – Tempo que a tangente corta a segunda linha horizontal

$$K_{P} = \Delta PV / \Delta MV$$

$$\theta = t1 - t0$$

$$\tau = t2 - t1 \text{ ou}$$

$$\tau = t(0.63^{*} \Delta PV) - t1$$

Identificação em malha aberta

Para se determinar o tempo morto e a constante de tempo pode-se usar um artifício: Forçar a curva do modelo FODT a passar coincidindocom a curva de reação experimental em dois pontos fixos, correspondentes às abscissas de 28,3% e 63,2% da variação final da variável controlada. Assim teremos:

$$k_p = \frac{\Delta c_{ss}}{\Delta M}$$

$$\tau_p = 1.5 (t_{63\%} - t_{28\%})$$

$$\theta = 1.5 \left(t_{28\%} - \frac{t_{63\%}}{3} \right)$$

Identificação em malha fechada

Procedimento:

Com o controlador em automático e somente com a ação proporcional (P) fazer uma pequena alteração no "set-point". Observar a variação do PV. Caso não haja oscilação aumentar o ganho do controlador. O sinal de PV tende a aumentar a oscilação. Repetir o procedimento até obter-se uma variação senoidal estável de amplitude constante.

O ganho do controlador que corresponde ao imediatamente anterior ao processo tender a instabilizar chama-se de *Ganho Último (Ku)*, e o período da oscilação senoidal resultante *Período Último*(Tu).

Identificação por variação tipo relé

Teste de relé

A saída de controle é variada em forma de relé de dois estados. Após um período de inicialização em que a saída é alterada uma variação prédefinida no PV, a saída é alterada na direção inversa cada vez que o PV corta o eixo do "set-point".

Cálculo dos parâmetros do processo

As seguintes equações são derivadas de um modelo de primeira ordem no domínio da frequência:

$$\tau = \frac{T_u}{2\pi} \tan \left(\pi - \frac{2\pi\theta}{T_u} \right) \quad para \rightarrow \left(\pi - \frac{2\pi\theta}{Tu} \right) < \frac{\pi}{2}$$

$$para \rightarrow \left(\pi - \frac{2\pi\theta}{Tu}\right) < \frac{\pi}{2}$$

$$K_{p} = \frac{1}{K_{u}} \sqrt{1 + \frac{4 \pi^{2} \tau^{2}}{T_{u}^{2}}}$$

Onde:

Ku: Ganho último Tu : Período último

Kp: Ganho estático do processo

τ : Constante de tempo θ: Tempo morto aparente

O modelo pode ser melhorado fazendo-se a identificação do Ganho Kp por um teste de degrau em malha fechada e calculando-se o Ganho como:

$$K_p = \frac{\Delta S_p}{\Delta u}$$

Onde:

ΔSp = Variação de set-point (%) Δu = Variação na saída (%)

$$\tau = \frac{T_u}{2\pi} \sqrt{\left(K_p K_u\right)^2} - 1 \qquad \theta = \frac{T_u}{2\pi} \left(\pi - \tan^{-1} \left(\frac{2\pi\tau}{Tu}\right)\right)$$

Identificação do processo Cuidados para a realização dos testes de identificação

- ➤ A perturbação na MV deve ser de tamanho adequado a causar uma variação significativa na PV (normalmente de 5% a 10%).
- A variação na PV deve ser maior que os ruídos existentes
- A variação deve ser feita na região normal de operação.
- Durante o teste os valores de PV e MV não devem chegar muito próximos dos seus limites.

Identificação do processo

Cuidados para a realização dos testes de identificação

- ➤ Se houver não-linearidade ou assimetria o teste deve ser feito na região mais crítica (maior ganho, maior tempo morto, menor constante de tempo).
- ➤ A variação deve começar quando o processo estiver estável,ou seja, sem variação na PV.
- Observar possíveis perturbações medidas ou não durante o teste. Caso ocorram repetir o procedimento.
- Executar o procedimento mais de uma vez em duas direções para verificar a repetibilidade do teste.

Método de Ziegler-Nichols

Controlador	Кс	Ti	Td
Р	$\frac{Ku}{2}$ ou $\frac{\tau}{Kp\theta}$		
PI	$\frac{Ku}{2,2}$ ou $\frac{0,9\tau}{Kp\theta}$	$\frac{Tu}{1,2}$ ou $3,33\theta$	
PID	$\frac{Ku}{1,7}$ ou $\frac{1,2\tau}{Kp\theta}$	$\frac{Tu}{2}$ ou 2θ	$\frac{Tu}{8}$ ou $\frac{\theta}{2}$

Método de Ziegler-Nichols - comentários

- •Utiliza o critério de razão de queda = ¼. O erro máximo em cada direção será a metade do anterior na direção oposta.
- •Inadequado para alterações de "set-point". "Overshoot" de ~50%
- •É bom para correção rápida de perturbações
- Desenvolvido para PID do tipo padrão
- Válido para razão de controlabilidade α=θ/τ entre 0,10 e 1,0

Método de Ziegler-Nichols Modificado

Astrom propôs regras mais flexíveis com a especificação de valores para Margem de Fase e Margem de Ganho

$$K = K_u G_m \cos \phi$$

$$T_i = \frac{T_u}{4\pi\alpha} \left(\tan\phi + \sqrt{4\alpha + \tan^2\phi} \right)$$

$$T_d = \alpha T_i$$

Ku = Ganho Último

Tu = Período Último

 ϕ = Margem de fase desejada

 α = Razão Td/Ti selecionado

Gm = Inverso da Margem de ganho desejado

K = Ganho do controlador

Ti = tempo Integral do controlador

Td = tempo derivativo do controlador

Esta equação fornece melhores resultados que o método original de Ziegler-Nichols para sistemas com razão de controlabilidade (Tempo morto / Constante de tempo) pequena.