#2 10/031698 PCT/JP00/05260

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

04.08.00

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1999年 8月 4日

REC'D 21 SEP 2000

WIPO

PC1

出 願 番 号 Application Number:

平成11年特許願第220864号

帝人株式会社

JP00105260

4

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 9月 8日

特許庁長官 Commissioner, Patent Office 及川耕

出証番号 出証特2000-3070981

【書類名】 特許願

【整理番号】 P32703

【提出日】 平成11年 8月 4日

【あて先】 特許庁長官殿

【国際特許分類】 C07D211/58

【発明の名称】 環状アミンCCR3拮抗剤

【請求項の数】 11

【発明者】

【住所又は居所】 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東

京研究センター内

【氏名】 塩田 辰樹

【発明者】

【住所又は居所】 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東

京研究センター内

【氏名】 須藤 正樹

【発明者】

【住所又は居所】 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東

京研究センター内

【氏名】 横山 朋典

【発明者】

【住所又は居所】 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東

京研究センター内

【氏名】 室賀 由美子

【発明者】

【住所又は居所】 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東

京研究センター内

【氏名】 上村 孝

【特許出願人】

【識別番号】 000003001

【氏名又は名称】 帝人株式会社

【代表者】

安居 祥策

【代理人】

【識別番号】

100077263

【弁理士】

【氏名又は名称】

前田 純博

【手数料の表示】

【予納台帳番号】 010250

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】

要約書 1

【包括委任状番号】 9701951

【プルーフの要否】 要 【書類名】 明細書

【発明の名称】 環状アミンCCR3拮抗剤

【特許請求の範囲】

【請求項1】 下記式(I)

【化1】

$$\begin{array}{c}
R^{1} & O & R^{4} \\
 & -(CH_{2})_{j} - N & O & R^{4} \\
 & -(CH_{2})_{n} - N - C -(CH_{2})_{p} - C -(CH_{2})_{q} - C - R^{6}
\end{array} (I)$$

[式中、 R^1 はフェニル基、 C_3 ~ C_8 シクロアルキル基、またはヘテロ原子とし て酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環 基を表わし、上記 R^1 におけるフェニル基または芳香族複素環基は、ベンゼン環 、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~ 3個有する芳香族複素環基と縮合して縮合環を形成してもよく、さらに上記 R^1 におけるフェニル基、C3~C8シクロアルキル基、芳香族複素環基、または縮合 環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシ ル基、カルバモイル基、 $C_1 \sim C_6$ アルキル基、 $C_3 \sim C_8$ シクロアルキル基、 C_2 \sim C₆アルケニル基、C₁ \sim C₆アルコキシ基、C₁ \sim C₆アルキルチオ基、C₃ \sim C $_5$ アルキレン基、 C_2 ~ C_4 アルキレンオキシ基、 C_1 ~ C_3 アルキレンジオキシ基 、フェニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基 、ベンゾイルアミノ基、 $C_9 \sim C_7$ アルカノイル基、 $C_9 \sim C_7$ アルコキカルボニル 基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ N-アルキルカルバモイル基、 C_4 \sim C_9 N- シクロアルキルカルバモイル基、C $_1$ $^{\sim}$ $\mathrm{C_6}$ アルキルスルホニル基、 $\mathrm{C_3}$ $^{\sim}$ $\mathrm{C_8}$ (アルコキシカルボニル)メチル基、N ーフェニルカルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基 、1-ピロリジニルカルボニル基、式:-NH(C=O)O-で表わされる2価 基、式:-NH(C=S)O-で表わされる2価基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、もしくは、ジ($C_1 \sim C_6$ アルキル)アミノ基で置換されて もよく、これらのフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、ま

たは縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 $C_1\sim C_6$ アルキル基、 $C_2\sim C_7$ アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表わし、 R^2 における $C_1\sim C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1\sim C_6$ アルキル基、もしくは $C_1\sim C_6$ アルコキシ基によって置換されてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

うは0~2の整数を表わす。

kは0~2の整数を表わす。

mは2~4の整数を表わす。

nは0または1を表わす。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい1または2個のフェニル基)によって置換されていてもよい $C_1 \sim C_6$ アルキル基を表わす。

 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または $C_1 \sim C_6$ アルキル基を表わし、 R^4 および R^5 における $C_1 \sim C_6$ アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 $C_3 \sim C_8$ シクロアルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカルバモイル基、 $C_1 \sim C_6$ アルキルスルホニル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、もしくは(ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1 \sim 3$ 個有する芳香族複素環基またはそのベンゼン環との縮合により形

pは0または1を表わす。

qは0または1を表わす。

Gt, -CO-, $-SO_2-$, -CO-O-, $-NR^7-CO-$, -CO-NR 7 -, -NH-CO-NH-, -NH-CS-NH-, $-NR^{7}-SO_{2}$ -, -S O_2 -NR 7 -、-NH-CO-O-、または-O-CO-NH-で表わされる基 を表わす。ここで、 R^7 は、水素原子または C_1 ~ C_6 アルキル基を表わすか、あ るいは、 R^7 は R^5 といっしょになって C_2 ~ C_5 アルキレン基を形成してもよい。 R^6 は、フェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_6$ シクロアルケニル 基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/または 窒素原子を $1\sim3$ 個有する芳香族複素環基を表わし、上記 R^6 におけるフェニル 基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子とし て酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環 基と縮合して縮合環を形成してもよく、さらに上記 R^6 におけるフェニル基、 C_3 ~C₈シクロアルキル基、C₃~C₆シクロアルケニル基、ベンジル基、芳香族複 素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基 、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、ト リフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_9 \sim$ C_6 アルケニル基、 $C_1 \sim C_6$ アルコキシ基、 $C_3 \sim C_8$ シクロアルキルオキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_3$ アルキレンジオキシ基、フェニル基、フェノ キシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル 基、フェニルスルホニル基、 $3-フェニルウレイド基、<math>C_2 \sim C_7$ アルカノイル基 、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7 N$ - アルキルカルバモイル基、 $C_1 \sim C_6$ アルキ ルスルホニル基、フェニルカルバモイル基、N, N-ジ($C_1 \sim C_6$ アルキル)ス ルファモイル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、ベンジルアミノ基、 $C_2 \sim C_7$ (アルコキシカルボニル)ア ミノ基、 $C_1 \sim C_6$ (アルキルスルホニル)アミノ基、もしくは、ビス($C_1 \sim C_6$

アルキルスルホニル)アミノ基により置換されてもよく、これらのフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_8$ シクロアルケニル基、ベンジル基、芳香族 複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、 ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、モノ($C_1 \sim C_6$ アルキル)アミノ 基、もしくはジ($C_1 \sim C_6$ アルキル)アミノ基によって置換されていてもよい。 1

で表わされる化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR3拮抗作用を有する薬剤。

【請求項2】 上記式(I)においてk=1かつm=2である、請求項1記載のCCR3拮抗作用を有する薬剤。

【請求項3】 上記式(I)においてk=0かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。

【請求項4】 上記式(I)においてk=1かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。

【請求項5】 上記式(I)においてk=2かつm=2である、請求項1記載のCCR3拮抗作用を有する薬剤。

【請求項6】 上記式(I)においてk=1かつm=4である、請求項1記載のCCR3拮抗作用を有する薬剤。

【請求項7】 上記式(I)で表わされる化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬。

【請求項8】 疾患がアレルギー性疾患である請求項7記載の治療薬もしくは予防薬。

【請求項9】 疾患が気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、 蕁麻疹、接触皮膚炎、またはアレルギー性結膜炎である請求項8記載の治療薬も しくは予防薬。

【請求項10】 疾患が炎症性腸疾患である請求項7記載の治療薬もしくは

予防薬。

【請求項11】 疾患がエイズである請求項7記載の治療薬もしくは予防薬

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性腸症、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病など、好酸球、好塩基球、活性化T細胞などの増加、組織への浸潤が病気の進行、維持に主要な役割を演じている疾患、またはHIV(ヒト免疫不全ウイルス)の感染に起因するエイズ(AIDS:後天性免疫不全症候群)に対する治療薬および/または予防薬として効果が期待できるCCR3拮抗剤に関する。

[0002]

【従来の技術】

近年、気管支喘息などのアレルギー性疾患の本質的な病態は慢性炎症であるという概念が確立され、なかでも好酸球の炎症局所への集積がその大きな特徴の一つとしてとらえられている(例えば、Busse, W.W. J. Allergy Clin. Immunol., 1998, 102, S17-S22; 藤澤隆夫,現代医療,1999,31,1297など参照)。たとえば、サルの喘息モデルにおいて抗接着分子(ICAM-1)抗体を投与することにより、好酸球の集積が抑えられ、遅発型の喘息症状発現が抑制されることからもアレルギー性疾患における好酸球の重要性が強く示唆されている(Wegner, C.D. et al., Science, 1990,247,456)。

[0003]

この好酸球の集積/遊走を引き起こす特異的走化因子としてエオタキシンが同 定された (例えば、Jose, P.J., et al., J. Exp. Med., 1994, 179, 881; Garc ia-Zepda, E.A. et al., Nature Med., 1996, 2, 449; P nath, P.D. et al., J. Clin. Invest., 1996, 97, 604; Kitaura, M. et al., J. Biol. Chem., 19 96, 271, 7725など参照)。 さらに、エオタキシンは好酸球上に発現しているC CR3レセプターに結合し作用を発現することが解明され、また、エオタキシン-2、RANTES (regulated upon activation normal T-cell expressed and secretedの略称)、MCP-2 (monocyte chemoattractant protein-2の略称)、MCP-3 (monocyte chemoattractant protein-3の略称)、MCP-4 (monocyte chemoattractant protein-4の略称)などの走化性因子もエオタキシンよりも作用強度は弱いもののCCR3を介してエオタキシンと同様の作用を示し得ることが知られている(例えば、Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725; Daugherty, B.L. et al., J. Exp. Med., 1996, 183, 2349; Ponath, P.D. et al., J. Exp. Med., 1996, 183, 2437; Hiath, H. et al., J. Clin. Invest ., 1997, 99, 178; Patel, V.P. et al., J. Exp. Med., 1997, 185, 1163; Forssmann, U. et al., J. Exp. Med. 185, 2171, 1997など参照)。

[0004]

エオタキシンの好酸球への作用は、遊走惹起のみでなく、接着分子受容体(CD11b)の発現増強(例えば、Tenscher, K. et al., Blood, 1996, 88, 3195など参照)、活性酸素の産生促進(例えば、Elsner, J. et al., Eur. J. Immunol., 1996, 26, 1919など参照)、EDN (eosinophil-derived neurotoxineの略称)の放出促進(El-Shazly, et al., Int. Arch. Allergy Immunol., 1998, 117 (suppl. 1), 55参照)など、好酸球の活性化に関する作用も報告されている。また、エオタキシンは骨髄からの好酸球およびその前駆細胞の血中への遊離を促進する作用を有することも報告されている(例えば、Palframan, R.T. et al., Blood, 1998, 91, 2240など参照)。

[0005]

エオタキシンおよびCCR3が気管支喘息などのアレルギー性疾患において重要な役割を演じていることが、多くの報告により示されている。たとえば、マウス喘息モデルにおいて抗エオタキシン抗体により好酸球浸潤が抑制されること(Gonzalo, J.-A. et al., J. Clin. Invest., 1996, 98, 2332参照)、マウス皮

膚アレルギーモデルにおいて抗エオタキシン抗血清により好酸球浸潤が抑制されること(Teixe ira, M.M. et al., J. Clin. Invest., 1997, 100, 1657)、マウスモデルにおいて抗エオタキシン抗体が肺肉芽腫の形成を抑制すること(Ruth, J.H. et al., J. Immunol., 1998, 161, 4276参照)、エオタキシン遺伝子欠損マウスを用いた喘息モデルおよび間質性角膜炎モデルにおいて好酸球の浸潤が抑制されること(Rothenberg, M.E. et al., J. Exp. Med., 1997, 185, 785参照)、喘息患者の気管支では健常者に比べエオタキシンおよびCCR3の発現が、遺伝子レベル、蛋白レベルともに亢進していること(Ying, S. et al., Eur. J. Immunol., 1997, 27, 3507参照)、慢性副鼻腔炎患者の鼻上皮下組織ではエオタキシンの発現が亢進していること(Am. J. Respir. Cell Mol. Biol., 1997, 17, 683参照)などが報告されている。

[0006]

また、炎症性大腸疾患である潰瘍性大腸炎およびクローン病の炎症部位において、エオタキシンが多く発現していることが報告されていることから(Garcia-Zepda, E.A. et al., Nature Med., 1996, 2, 449参照)、これらの疾患においてもエオタキシンが重要な役割を担っていることがわかる。

[0007]

これらのデータから、エオタキシンは、CCR3を介して好酸球を病変部位に 集積、活性化することにより、好酸球が病変の進展に深く関わっていると想定され得る疾患、例えば、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性腸症、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病などの発症、進展、維持に深く関与していることが強く示唆されている。さらに、CCR3レセプターは好酸球のみならず好塩基球、Th2リンパ球上にも発現しており、エオタキシンによりこれらの細胞の細胞内カルシウムイオン濃度上昇および細胞遊走が惹起されることが報告されていることから、エオタキシンおよびCCR3はこれらの細胞を集積させ、活性化することによってもアレルギー性疾患など、これらの細胞が関与する疾患の発 症、進展、維持に関わっていると考えられる(例えば、Sallusto, F. et al., S cience, 1997, 277, 2005; Gerber, B.O. et al., Current Biol., 1997, 7, 8 36; Sallusto, F. et al., J. Exp. Med., 1998, 187, 875; Uguccioni, M. e t al., J. Clin. Invest., 1997, 100, 1137; Yamada, H. et al., Biochem Bi ophys. Res. Commun., 1997, 231, 365など参照)。

[0008]

したがって、エオタキシンのCCR3に対する結合を阻害する化合物、すなわち、CCR3拮抗剤は、エオタキシンに代表されるCCR3のリガンドの標的細胞への作用を阻害することにより、アレルギー性疾患、炎症性腸疾患などの疾患の治療薬および/または予防薬として有用であるといえるが、そのような作用を有する薬剤は現在知られてない。

[0009]

また、HIV-1 (ヒト免疫不全ウイルス-1) が宿主細胞に感染する際にCCR3を利用することも報告されていることから、CCR3拮抗剤はHIVウイルス感染に起因するエイズ (AIDS:後天性免疫不全症候群) の治療薬もしくは予防薬としても有用であると考えられる (例えば、et al., Choe, H. et al., Cell, 1996, 85, 1135; Doranz, B.J. et al., Cell, 1996, 85, 1149参照)

[0010]

最近、キサンテン-9-カルボキサミド誘導体(W09804554参照)、ピペラジンまたはピペリジン誘導体(EP 903349参照)、およびその他の低分子化合物(W09802151参照)が、CCR3レセプターに対する拮抗活性を有することが報告されている。しかしながら、これらの化合物は、本発明で用いる化合物とは異なる。また、本発明で用いる化合物は、W09925686に記載されている化合物と同一のものであるが、これらの化合物がCCR3レセプターに対する拮抗活性を有することは知られていない。

[0011]

【発明が解決しようとする課題】

本発明の目的は、エオタキシンなどのCCR3のリガンドが標的細胞上のCC

[0012]

【課題を解決するための手段】

本発明者らは、鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン誘導体、その薬学的に許容し得る $C_1 \sim C_6$ アルキル付加体、または薬学的に許容され得る酸付加体が、エオタキシンなどのCCR3のリガンドの標的細胞に対する結合を阻害する活性を有することを発見し、さらにはそれらの化合物がCCR3が関与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して、本発明を完成するに至った。

[0013]

すなわち、本発明によれば、下記式(I)

[0014]

【化2】

$$\begin{array}{c}
R^{1} & \xrightarrow{(CH_{2})_{k}} & \xrightarrow{(CH_{2})_{k}} & \xrightarrow{O} & R^{4} \\
R^{2} & \xrightarrow{(CH_{2})_{m}} & \xrightarrow{(CH_{2})_{m}} & \xrightarrow{(CH_{2})_{n}} & \xrightarrow{R^{3}} & (CH_{2})_{p} & \xrightarrow{R^{4}} & (CH_{2})_{q} & -G - R^{6}
\end{array}$$
(I)

[0015]

[式中、 \mathbf{R}^1 はフェニル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1\sim3$ 個有する芳香族複素環基を表わし、上記 \mathbf{R}^1 におけるフェニル基または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1\sim3$ 個有する芳香族複素環基と縮合して縮合環を形成してもよく、さらに上記 \mathbf{R}^1 におけるフェニル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、 $\mathbf{C}_1 \sim \mathbf{C}_6$ アルキル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、 $\mathbf{C}_5 \sim \mathbf{C}_8$

 $^{\rm CC}_6$ アルケニル基、 $^{\rm C}_1$ ~ $^{\rm C}_6$ アルコキシ基、 $^{\rm C}_1$ ~ $^{\rm C}_6$ アルキレン基、 $^{\rm C}_2$ ~ $^{\rm C}_4$ アルキレンオキシ基、 $^{\rm C}_1$ ~ $^{\rm C}_3$ アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、 $^{\rm C}_2$ ~ $^{\rm C}_7$ アルカノイル基、 $^{\rm C}_2$ ~ $^{\rm C}_7$ アルカノイルオキシ基、 $^{\rm C}_2$ ~ $^{\rm C}_7$ アルカノイルオキシ基、 $^{\rm C}_2$ ~ $^{\rm C}_7$ アルカノイルオキシ基、 $^{\rm C}_2$ ~ $^{\rm C}_7$ アルカノイルアミノ基、 $^{\rm C}_2$ ~ $^{\rm C}_7$ アルカルバモイル基、 $^{\rm C}_4$ ~ $^{\rm C}_9$ Nーシクロアルキルカルバモイル基、 $^{\rm C}_1$ ~ $^{\rm C}_6$ アルキルスルホニル基、 $^{\rm C}_3$ ~ $^{\rm C}_8$ (アルコキシカルボニル)メチル基、Nーフェニルカルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、 $^{\rm I}_1$ ~ $^{\rm C}_1$ $^{\rm$

[0016]

 R^2 は、水素原子、 $C_1\sim C_6$ アルキル基、 $C_2\sim C_7$ アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表わし、 R^2 における $C_1\sim C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1\sim C_6$ アルキル基、もしくは $C_1\sim C_6$ アルコキシ基によって置換されてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

[0017]

jは0~2の整数を表わす。

[0018]

kは0~2の整数を表わす。

[0019]

mは2~4の整数を表わす。

[0020]

nは0または1を表わす。

[0021]

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい1または2個のフェニル基)によって置換されていてもよい $C_1 \sim C_6$ アルキル基を表わす。

[0022]

 ${
m R}^4$ および ${
m R}^5$ は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または ${
m C}_1 \sim {
m C}_6$ アルキル基を表わし、 ${
m R}^4$ および ${
m R}^5$ における ${
m C}_1 \sim {
m C}_6$ アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 ${
m C}_3 \sim {
m C}_8$ シクロアルキル基、 ${
m C}_1 \sim {
m C}_6$ アルコキシ基、 ${
m C}_1 \sim {
m C}_6$ アルコキシ基、 ${
m C}_1 \sim {
m C}_6$ アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、 ${
m C}_2 \sim {
m C}_7$ アルカノイル基、 ${
m C}_2 \sim {
m C}_7$ アルカルボニル基、 ${
m C}_2 \sim {
m C}_7$ アルコキシカルボニル基、 ${
m C}_2 \sim {
m C}_7$ アルカルボニル基、 ${
m C}_2 \sim {
m C}_7$ アルカルボニル基、 ${
m C}_1 \sim {
m C}_6$ アルキルスルホニル基、アミノ基、モノ(${
m C}_1 \sim {
m C}_6$ アルキル)アミノ基、ジ(${
m C}_1 \sim {
m C}_6$ アルキル)アミノ基、もしくは(ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは、 ${
m R}^4$ および ${
m R}^5$ は、いっしょになって3~6 員環状炭化水素を形成してもよい。

[0023]

pは0または1を表わす。

[0024]

qは0または1を表わす。

[0025]

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH-で表わされる基

を表わす。ここで、 R^7 は、水素原子または C_1 \sim C_6 アルキル基を表わすか、あるいは、 R^7 は R^5 といっしょになって C_2 \sim C_5 アルキレン基を形成してもよい。

[0026]

 R^6 は、フェニル基、 C_3 ~ C_8 シクロアルキル基、 C_3 ~ C_6 シクロアルケニル 基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/または 窒素原子を1~3個有する芳香族複素環基を表わし、上記R⁶におけるフェニル 基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子とし て酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環 基と縮合して縮合環を形成してもよく、さらに上記 R^6 におけるフェニル基、 C_3 ~C₈シクロアルキル基、C₃~C₆シクロアルケニル基、ベンジル基、芳香族複 素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基 、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、ト リフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_2 \sim$ C_6 アルケニル基、 $C_1 \sim C_6$ アルコキシ基、 $C_3 \sim C_8$ シクロアルキルオキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_3$ アルキレンジオキシ基、フェニル基、フェノ キシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル 基、フェニルスルホニル基、 $3-フェニルウレイド基、<math>C_2 \sim C_7$ アルカノイル基 、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7 N$ - アルキルカルバモイル基、 $C_1 \sim C_6$ アルキ ルスルホニル基、フェニルカルバモイル基、N, N - ジ($C_1 \sim C_6$ アルキル)ス ルファモイル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、ベンジルアミノ基、 $C_2 \sim C_7$ (アルコキシカルボニル)ア ミノ基、 $C_1 \sim C_6$ (アルキルスルホニル) アミノ基、もしくはビス ($C_1 \sim C_6$ ア ルキルスルホニル)アミノ基により置換されてもよく、これらのフェニル基、C $_3$ ~ C_8 シクロアルキル基、 C_3 ~ C_8 シクロアルケニル基、ベンジル基、芳香族複 素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒ ドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、 またはジ($C_1 \sim C_6$ アルキル)アミノ基によって置換されていてもよい。]

で表わされる化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR3拮抗作用を有する薬剤が提供される。

[0027]

さらに、本発明によれば、上記式(I)で表わされる化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬が提供される。

[0028]

ここに、上記式(I)で表わされる化合物は、エオタキシンなどのCCR3レセプターのリガンドが標的細胞に結合することを阻害する活性、およびエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する活性を有する。すなわち、上記式(I)で表される化合物はCCR3拮抗剤である。

[0029]

【発明の実施の形態】

上記式(I)において、 \mathbf{R}^1 はフェニル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1\sim3$ 個有する芳香族複素環基を表わし、上記 \mathbf{R}^1 におけるフェニル基または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1\sim3$ 個有する芳香族複素環基と縮合して縮合環を形成してもよく、さらに上記 \mathbf{R}^1 におけるフェニル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、 $\mathbf{C}_1 \sim \mathbf{C}_6$ アルキル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、 $\mathbf{C}_2 \sim \mathbf{C}_6$ アルケニル基、 $\mathbf{C}_1 \sim \mathbf{C}_6$ アルキルチオ基、 $\mathbf{C}_3 \sim \mathbf{C}_6$ アルキレンオキシ基、 $\mathbf{C}_1 \sim \mathbf{C}_6$ アルキレンジオキシ基、フェニル基、スェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、 $\mathbf{C}_2 \sim \mathbf{C}_7$ アルカノイルオキシ基、ベンゾイルアミノ基、 $\mathbf{C}_2 \sim \mathbf{C}_7$ アルカノイルアミノ基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ (アルコキシカルボニルルバモイル基、 $\mathbf{C}_4 \sim \mathbf{C}_8$)のコキシカルボニルルバモイル基、 $\mathbf{C}_4 \sim \mathbf{C}_8$ (アルコキシカルボニル

)メチル基、 $N-フェニルカルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、<math>1-ピロリジニルカルボニル基、式:-NH(C=O)O-で表わされる 2 価基、式:-NH(C=S)O-で表わされる 2 価基、アミノ基、モノ(<math>C_1\sim C_6$ アルキル)アミノ基、もしくはジ($C_1\sim C_6$ アルキル)アミノ基で置換されてもよい。

[0030]

 R^1 における「 C_3 ~ C_8 シクロアルキル基」とは、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、および、シクロオクチル基などの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、シクロペンチル基、およびシクロヘキシル基などが挙げられる

[0031]

R¹における、「ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基」とは、例えば、チエニル、フリル、ピロリル、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル(フラザニル)、チアジアゾリル基などの芳香族複素環基を意味し、その好適な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、およびピリジル基などが挙げられる。

[0032]

R¹における「縮合環」とは、上記フェニル基または芳香族複素環基が、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としては、ナフチル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル(ベンゾフラザニル)、およびベンゾチアジアゾリル基などが挙げられる。

[0033]

なかでも R^1 は、フェニル基、チエニル基、ピラゾリル基、イソオキサゾリル

[0034]

 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基としての「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子などを意味し、その好適な具体例としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

[0035]

 R^1 の置換基としての「 C_1 ~ C_6 アルキル基」とは、例えばメチル、エチル、n-プロピル、n-プチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-ペンチル、イソプロピル、イソブチル、n-ペンチル、n-0 は n-0 に n-

[0036]

 R^1 の置換基としての「 C_3 ~ C_8 シクロアルキル基」は、前記 R^1 における「 C_3 ~ C_8 シクロアルキル基」の定義と同様であり、その好適な具体例も同じ基を挙げることができる。

[0037]

 \mathbf{R}^1 の置換基としての「 $\mathbf{C}_2 \sim \mathbf{C}_6$ アルケニル基」とは、例えば、ビニル、アリル、1 ープロペニル、2 ーブテニル、3 ーブテニル、2 ーメチルー1 ープロペニル、4 ーペンテニル、5 ーヘキセニル、4 ーメチルー3 ーペンテニル基などの \mathbf{C}_6 の直鎖または分枝状のアルケニル基を意味し、その好適な具体例としては、ビニル基および2 ーメチルー1 ープロペニル基などが挙げられる。

[0038]

 ${f R}^1$ の置換基としての「 ${f C}_1\sim {f C}_6$ アルコキシ基」とは、前記 ${f C}_1\sim {f C}_6$ アルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、メトキシ基、エトキシ基などが挙げられる。

1 5

[0039]

 R^1 の置換基としての「 $C_1\sim C_6$ アルキルチオ基」とは、前記 $C_1\sim C_6$ アルキル基とチオ基とからなる基を意味し、その好適な具体例としては、メチルチオ基、エチルチオ基などが挙げられる。

[0040]

 R^1 の置換基としての「 $C_3 \sim C_5$ アルキレン基」とは、例えば、トリメチレン、テトラメチレン、ペンタメチレン、および1-メチルトリメチレン基などの $C_3 \sim C_5$ の2 価のアルキレン基を意味し、その好適な具体例としては、トリメチレン基、テトラメチレン基などが挙げられる。

[0041]

 R^1 の置換基としての「 $C_2 \sim C_4$ アルキレンオキシ基」とは、例えば、エチレンオキシ($-CH_2CH_2O-$)、トリメチレンオキシ($-CH_2CH_2CH_2O-$)、テトラメチレンオキシ($-CH_2CH_2CH_2CH_2CH_2O-$)、1,1-ジメチルエチレンオキシ($-CH_2C$ (CH_3) $_2O-$)基などの、 $C_2 \sim C_4$ の2価アルキレン基とオキシ基とからなる基を意味し、その好適な具体例としては、エチレンオキシ基、トリメチレンオキシ基などが挙げられる。

[0042]

 R^1 の置換基としての「 $C_1 \sim C_3$ アルキレンジオキシ基」とは、例えばメチレンジオキシ($-OCH_2O-$)、エチレンジオキシ($-OCH_2CH_2O-$)、トリメチレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH_2CH_2O-$)をなどの $C_1 \sim C_3$ の2価アルキレン基と2個のオキシ基とからなる基を意味し、その好適な具体例としては、メチレンジオキシ基、エチレンジオキシ基などが挙げられる。

[0043]

 R^1 の置換基としての「 $C_2 \sim C_7 P N カ J イ N 基」とは、例えば、<math>P ext{ }$ とは、例えば、 $P ext{ }$ アセチル、プロパノイル、ブタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、イソブチリル、3 - メチルブタノイル、2 - メチルブタノイル、ピバロイル、4 - メチルペンタノイル、3 、3 - ジメチルブタノイル、5 - メチルヘキサノイル基などの $C_2 \sim C_7$ の直鎖または分枝状のP N カノイル基を意味し、その好適な具体例としては、 $P ext{ }$ を必ずられる。

 ${f R}^1$ の置換基としての「 ${f C}_2\sim {f C}_7$ アルコキシカルボニル基」とは、前記 ${f C}_1\sim {f C}_6$ アルコキシ基とカルボニル基とからなる基を意味し、その好適な具体例としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。

[0045]

 R^1 の置換基としての「 $C_2 \sim C_7$ アルカノイルオキシ基」とは、前記 $C_2 \sim C_7$ アルカノイル基とオキシ基とからなる基を意味し、その好適な具体例としてはアセチルオキシキ基などが挙げられる。

[0046]

 R^1 の置換基としての「 $C_2 \sim C_7$ アルカノイルアミノ基」とは、前記 $C_2 \sim C_7$ アルカノイル基とアミノ基とから成る基を意味し、その好適な具体例としては、アセチルアミノ基などが挙げられる。

[0047]

 R^1 の置換基としての「 C_2 ~ C_7 アルキルカルバモイル基」とは、前記 C_1 ~ C_6 アルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基などが挙げられる。

[0048]

 R^1 の置換基としての「 C_4 ~ C_9 N-シクロアルキルカルバモイル基」とは、前記 C_3 ~ C_8 シクロアルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-シクロペンチルカルバモイル基、N-シクロヘキシルカルバモイル基などが挙げられる。

[0049]

 R^1 の置換基としての「 $C_1 \sim C_6$ アルキルスルホニル基」とは、前記 $C_1 \sim C_6$ アルキル基とスルホニル基とからなる基を意味し、その好適な具体例としては、メチルスルホニル基などが挙げられる。

[0050]

 R^1 の置換基としての「 $C_3 \sim C_8$ (アルコキシカルボニル)メチル基」とは、前記 $C_2 \sim C_7$ アルコキシカルボニル基とメチル基とからなる基を意味し、その好適な具体例としては、(メトキシカルボニル)メチル基、(エトキシカルボニル

)メチル基などが挙げられる。

[0051]

 R^1 の置換基としての「モノ($C_1 \sim C_6$ アルキル)アミノ基」とは、前記 $C_1 \sim C_6$ アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

[0052]

 R^1 の置換基としての「ジ($C_1 \sim C_6$ アルキル)アミノ基」とは、同一または 異なった 2 つの前記 $C_1 \sim C_6$ アルキル基によって置換されたアミノ基を意味し、 その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N-エチルーN-メチルアミノ基などが挙げられる。

[0053]

上記の中でも、 R^1 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基としては、ハロゲン原子、ヒドロキシ基、 $C_1\sim C_6$ アルキル基、 $C_2\sim C_6$ アルケニル基、 $C_1\sim C_6$ アルコキシ基、 $C_1\sim C_6$ アルキルチオ基、 $C_3\sim C_5$ アルキレン基、 $C_2\sim C_4$ アルキレンオキシ基、メチレンジオキシ基、フェニル基、N-フェニルカルバモイル基、アミノ基、およびジ($C_1\sim C_6$ アルキル)アミノ基を特に好ましい具体例として挙げることができる。特に好ましくは、ハロゲン原子、ヒドロキシ基、 $C_1\sim C_6$ アルキル基、 $C_1\sim C_6$ アルコキシ基、 $C_1\sim C_6$ アルキルチオ基、メチレンジオキシ基、およびN-フェニルカルバモイル基を挙げることができる。

[0054]

さらに、 \mathbf{R}^1 におけるフェニル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $\mathbf{C}_1 \sim \mathbf{C}_6$ アルキル基、もしくは $\mathbf{C}_1 \sim \mathbf{C}_6$ アルコキシ基によって置換されていてもよい。ここで、ハロゲン原子、 $\mathbf{C}_1 \sim \mathbf{C}_6$ アルキル基、および $\mathbf{C}_1 \sim \mathbf{C}_6$ アルコキシ基は、前記 \mathbf{R}^1 におけるフェニル基、 $\mathbf{C}_3 \sim \mathbf{C}_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ基を好適な具体例として挙げることができる。

[0055]

上記式(I)において、 R^2 は、水素原子、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_7$ アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表わし、 R^2 における $C_1 \sim C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

[0056]

 R^2 における C_1 ~ C_6 アルキル基および C_2 ~ C_7 アルコキシカルボニル基は、 R^1 におけるフェニル基、 C_3 ~ C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0057]

 R^2 における $C_1\sim C_6$ アルキル基またはフェニル基の置換基としてのハロゲン原子、 $C_1\sim C_6$ アルキル基および $C_1\sim C_6$ アルコキシ基は、前記 R^1 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族複素環基または縮合環の置換基について定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0058]

なかでも R^2 は、水素原子を表わす場合が特に好ましい。

[0059]

上記式(I)において、jは $0\sim2$ の整数を表わす。jは0である場合が特に好ましい。

[0060]

上記式(I)において、kは0~2の整数を表わし、mは2~4の整数を表わす。なかでもkが0でmが3である場合の2-置換ピロリジン、kが1でmが2である場合の3-置換ピロリジン、kが1でmが3である場合の3-置換ピペリジン、kが2でmが2である場合の4-置換ピペリジン、またはkが1でmが4である場合の3-置換ヘキサヒドロアゼピンが好ましい。特に好ましくは、kが1でmが2である場合の3-置換ピロリジンおよびkが2でmが2である場合の4-置換ピペリジンを挙げることができる。

[0061]

上記式(I)において、nは0または1を表わす。

[0062]

特に、kが1でmが2でnが0である場合の3-7ミドピロリジン、およびkが2でmが2でnが1である場合の4-(アミドメチル)ピペリジンを特に好ましい例として挙げることができる。

[0063]

上記式(I)において、 R^3 は水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、もしくは $C_1 \sim C_6$ アルコキシ基によって置換されていてもよい1または2個のフェニル基)によって置換されていてもよい $C_1 \sim C_6$ アルキル基を表わす。

[0064]

 R^3 における C_1 ~ C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3 ~ C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、その好適な具体例としては、メチル基、エチル基、およびプロピル基が挙げられる。

[0065]

 R^3 における $C_1\sim C_6$ アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 $C_1\sim C_6$ アルキル基、および $C_1\sim C_6$ アルコキシ基は、それぞれ、前記 R^1 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

[0066]

なかでも、 R^3 は水素原子または無置換の $C_1 \sim C_6$ アルキル基である場合が特に好ましい。

[0067]

上記式(I)において、 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または $C_1 \sim C_6$ アルキル基を表わし、 R^4 および R^5 における $C_1 \sim C_6$ アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基

、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 $C_3 \sim C_8$ シクロアルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカルバモイル基、 $C_1 \sim C_6$ アルキルスルホニル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を $1 \sim 3$ 個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは、 R^4 および R^5 は、いっしょになって $3 \sim 6$ 員環状炭化水素を形成してもよい。

[0068]

 ${f R}^4$ および ${f R}^5$ における ${f C}_1{\sim}{f C}_6$ アルキル基は、前記 ${f R}^1$ におけるフェニル基、 ${f C}_3{\sim}{f C}_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

[0069]

 R^4 および R^5 における $C_1 \sim C_6$ アルキル基の置換基としてのハロゲン原子、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカルバモイル基、 $C_1 \sim C_6$ アルキルスルホニル基、モノ($C_1 \sim C_6$ アルキル)アミノ基、およびジ($C_1 \sim C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0070]

 R^4 および R^5 における C_1 ~ C_6 アルキル基の置換基としての C_3 ~ C_8 シクロアルキル基、および、ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基は、前記 R^1 において定義されたものと同

様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0071]

 R^4 および R^5 における $C_1\sim C_6$ アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 $C_1\sim C_6$ アルキル基、および $C_1\sim C_6$ アルコキシ基は、前記 R^1 においてフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0072]

 R^4 、 R^5 およびその隣接炭素原子とからなる「 $3\sim 6$ 員環状炭化水素」の好適な具体例としては、シクロプロパン、シクロブタン、シクロペンタン、およびシクロヘキサンなどが挙げられる。なかでも、水素原子と $C_1\sim C_6$ アルキル基を、 R^4 と R^5 の特に好ましい例として挙げることができる。

[0073]

上記式(I)において、pは0または1を表わし、qは0または1を表わす。 pとqがともに0である場合が特に好ましい。

[0074]

[0075]

ここで、-CO-はカルボニル基を、 $-SO_2-$ はスルホニル基を、-CS-はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例としては、例えば $-NR^7-CO-$ および-NH-CO-NH-で表わされる基などが挙げられる

[0076]

 \mathbb{R}^7 における $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル基は、前記 \mathbb{R}^1 におけるフェニル基、 $\mathbb{C}_3 \sim \mathbb{C}_8$ シ

[0077]

 R^5 と R^7 とからなる「 C_2 ~ C_5 アルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1-メチルトリメチレン、ペンタメチレンなどの C_2 ~ C_5 の直鎖または分枝状アルキレン基を意味し、その好適な具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。なかでも R^7 としては、水素原子を特に好ましい例として挙げることができる。

[0078]

上記式(I)において、 R^6 はフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim$ C₆シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄 原子、および/または窒素原子を1~3個有する芳香族複素環基を表わし、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、 またはヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3 個有する芳香族複素環基と縮合して縮合環を形成してもよく、さらに上記 R^6 に おけるフェニル基、C₃~C₈シクロアルキル基、C₃~C₆シクロアルケニル基、 ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロ キシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基 、カルバモイル基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_3 \sim C_8$ シク ロアルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルコキシ基、 $C_3 \sim C_8$ シクロ アルキルオキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_3$ アルキレンジオキシ基、 フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フ ェニルスルフィニル基、フェニルスルホニル基、 $3-フェニルウレイド基、<math>C_2$ \sim C $_7$ アルカノイル基、C $_2$ \sim C $_7$ アルコキシカルボニル基、C $_2$ \sim C $_7$ アルカノイ ルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7 N$ – アルキルカルバモイ ル基、 $C_1 \sim C_6$ アルキルスルホニル基、フェニルカルバモイル基、 $N, N-\emptyset$ ($C_1 \sim C_6$ アルキル)スルファモイル基、アミノ基、モノ($C_1 \sim C_6$ アルキル)ア ミノ基、ジ($C_1 \sim C_6$ アルキル)アミノ基、ベンジルアミノ基、 $C_9 \sim C_7$ (アル

コキシカルボニル)アミノ基、 $C_1 \sim C_6$ (アルキルスルホニル)アミノ基、もしくはビス($C_1 \sim C_6$ アルキルスルホニル)アミノ基により置換されてもよい。

[0079]

 R^6 における C_3 ~ C_8 シクロアルキル基、ヘテロ原子として酸素原子、硫黄原子、および/または窒素原子を1~3個有する芳香族複素環基、および、縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0080]

 R^6 における「 C_3 ~ C_8 シクロアルケニル基」とは、例えば、シクロプテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、およびシクロオクテニル基など環状アルケニル基を意味し、その好適な具体例としては、1-シクロペンテニル基、1-シクロヘキセニル基などが挙げられる。なかでも、 R^6 としては、フェニル基、フリル基、チエニル基、インドリル基、ベンゾフラザニル基を特に好ましい例として挙げることができる。

[0081]

 R^6 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_3$ アルキレンジオキシ基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルコキシカルボニル基、 $C_2 \sim C_7$ アルカノイルオキシ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカノイルアミノ基、 $C_2 \sim C_7$ アルカルバモイル基、 $C_1 \sim C_6$ アルキルスルホニル基、モノ($C_1 \sim C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0082]

 R^6 の置換基としての C_3 ~ C_8 シクロアルキル基は、前記 R^1 における C_3 ~ C_8 シクロアルキル基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

[0083]

 R^6 の置換基としての「 C_3 ~ C_8 シクロアルキルオキシ基」とは、前記 C_3 ~ C_8 シクロアルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、シクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基基などを挙げることができる。

[0084]

 R^6 の置換基としての「N, N-ジ(C_1 ~ C_6 アルキル)スルファモイル基」とは、同一または異なった2つの前記 C_1 ~ C_6 アルキル基によって置換されたスルファモイル基を意味し、その好適な具体例としては、例えばN, N-ジメチルスルファモイル基、N, N-ジエチルスルファモイル基、N-エチルーN-メチルスルファモイル基などが挙げられる。

[0085]

 R^6 の置換基としての「 $C_2 \sim C_7$ (アルコキシカルボニル) アミノ基」とは、前記 $C_2 \sim C_7$ アルコキシカルボニル基とアミノ基とからなる基を意味し、その好適な具体例としては、例えば(メトキシカルボニル)アミノ基、(エトキシカルボニル)アミノ基などを挙げることができる。

[0086]

 R^6 の置換基としての「 $C_1 \sim C_6$ (アルキルスルホニル)アミノ基」とは、前記 $C_1 \sim C_6$ アルキルスルホニル基とアミノ基とからなる基を意味し、その好適な具体例としては、(メチルスルホニル)アミノ基などを挙げることができる。

[0087]

 R^6 の置換基としての「ビス($C_1\sim C_6$ アルキルスルホニル)アミノ基」とは、同一または異なった2つの前記 $C_1\sim C_6$ アルキルスルホニル基によって置換されたアミノ基を意味し、その好適な具体例としては、ビス(メチルスルホニル)アミノ基などを挙げることができる。

[0088]

なかでも、 R^6 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、 $C_3\sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としては、ハロゲン原子、メルカプト基、ニトロ基、トリフルオロメチル基、 $C_1\sim C_6$

アルキル基、 $C_1 \sim C_6$ アルコキシ基、フェニル基、ベンジルオキシ基、フェニルスルフィニル基、 $C_2 \sim C_7$ アルカノイル基、 $C_2 \sim C_7$ アルカノイルアミノ基、アミノ基などを好ましい例として挙げることができる。特に好ましくは、ハロゲン原子、ニトロ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、フェニルスルフィニル基、およびアミノ基を挙げることができる。

[0089]

さらに、 R^6 におけるフェニル基、 $C_3 \sim C_8$ シクロアルキル基、 $C_3 \sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキルチオ基、モノ($C_1 \sim C_6$ アルキル)アミノ基、またはジ($C_1 \sim C_6$ アルキル)アミノ基によって置換されていてもよい。

[0090]

 R^6 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、 $C_3\sim C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、 $C_1\sim C_6$ アルキル基、 $C_1\sim C_6$ アルキル基、 $C_1\sim C_6$ アルキルチオ基、モノ($C_1\sim C_6$ アルキル)アミノ基、およびジ($C_1\sim C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3\sim C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

[0091]

上記式(I)で表わされる化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体は、その治療有効量を製薬学的に許容される担体および/または希釈剤とともに医薬組成物とすることによって、本発明のエオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することを阻害する医薬、あるいはエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する作用をもつ医薬、さらにはCCR3が関与すると考えられる疾患の治療薬もしくは予防薬とすることができる。すなわち上記式(I)で表わされる環状アミン誘導体、その薬学的に許容される酸付加塩体、

[0092]

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁剤、 カプセル剤などが挙げられる。

[0093]

錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤 ;カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなど の結合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウ ムなどの崩壊剤などを用いて通常の方法により成形することができる。

[0094]

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形することができる。液剤、懸濁剤は、例えばトリカプリリン、トリアセチンなどのグリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法によって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

[0095]

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液剤などの 形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。 非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリ ーブ油、オレイン酸エチルなどが用いられ、これらに必要に応じて防腐剤、安定 剤などが添加される。注射剤は、バクテリア保留フィルターを通す濾過、殺菌剤 の配合の処置を適宜行うことによって無菌化される。

[0096]

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤は、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを用いて、クリーム剤は、脂肪油、またはジエチレングリコールやソルビタンモノ脂肪酸エステルなどの乳化剤を用いて通常の方法によって成形される。

[0097]

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いられる。

[0098]

本発明の環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢と性別、および疾患の程度などによって異なるが、通常成人一人当たり $1\sim500$ m g / H である。

[0099]

上記式(I)の環状アミン誘導体の好適な具体例として、以下のTable1
. 1~1. 201に示される各置換基を含有する化合物を挙げることができる。

[0100]

Tablel.1~1.201において、「Table」は「表」を意味し、「Compd. No.」は「化合物番号」を意味し、「chirality」は「絶対配置」を意味する。「chirality(絶対配置)」とは、環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置を持つこと、「S」は、不斉炭素原子がSの絶対配置を持つこと、「一」はラセミ体であるか、あるいはその化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

[0101]

【表1】

Table 1.1

Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1	CI-CH2-	1	2	0	-	н	-cH₂-N-C-
.2	CI-CH2-	1	2	o	-	н	-CH ₂ -N-C-CH ₃
3	CH-CH ₂ -	1	2	.0	-	H	-CH ₂ -N-C-
. 4	CI—CH2-	1	2	0	-	н	-CH2-N-C-CF3
5	сн_С-сн₂	1	2	0	s	н	-CH ₂ -H C-CF ₃
6	CI—CH ₂ -	1	2	0	s	H	-CH ₂ -N-C
7 .	a-{_}a+e-	1	2	0	s	н	-CH2-N-C
8	CI	1	2	0	s	н	-CH2-N-C-
9	CHCH2-	1	2	0	s	н	-сн²-йс-О-сі о сі
10	a{_}-a+₂-	1	2	0	s	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃
11	a-{}-a+₂- a-{}-c+₂-	1	2	o	s	н	-CH2-N-G-OCH3
			-		`		<u> </u>

[0102]

Table 1.2

·abic	1 ,44						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
12	CH-CH ₂ -	1	2	0	s	н	-CH2-H C-CH3
13	CI(CH ₂ -	1	2	0	S	н	-CH2-N-C-CF3
	CICH ₂ -					н .	-CH³-H-C-CH³
	CI(CI+2-					н .	-CH ₂ -N-C-CI
16	CI-CH2-	1	2	0	S	н	-CH2-N-C
	CICH ₂ -				•	н`	-CH²-N-C-
18	CI	1	2	O	s	н .	-CH ₂ -N-C-CN
19	CI(CI+2-	1	2	0	s	н	-CH2-NC
20	с⊢—Сн₂-	1	2	0	S	H .	-CH₂-N-C-CF3
21	сн-О-сн2-	1	2	0	s		-CH2-NC-CF3
22	СН-СН2-	1	2	0	s	н	-CH ₂ -NC-CF ₃ -CH ₂ -NC-CF ₃

[0103]

Table 1.3

Compd.	R ¹ (CH ₂)	k	: m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
23	CI	1	2	0	s	н	-042-¼°C-€
. 24	сн-Су-сн₂-	1	2	0	S	н	-CH2-N-C-CCF3
25	CI{C}-CH ₂ -	1	2	0	· s	н	-CH₂-N-C-CF3
26	a— (}-aH²-	1	2	o	s	н	-CH ₂ -N-C-O ₂ N
27 ·	CH-CH ₂ -	1	2	0	S	н	-CH2-H C
28	с 	1	2	0	S	Н	-CH2-HC
29	CI	1	2	0	R	н .	-CH2-HC-CF3
30	a-Q-a+2-	1	2	O	R	H	-сн ₂ - н с-С
31	с⊢—Сн₂-	1	2	O _i	R	H	-CH ₂ -N-C-
32	CI—CH₂-	1	2	0	R	н	-CHZ-NC-
33	a-{_}-c+²-	1	2	0	R ·	H .	-сн²-й с-Ссі
						•	

[0104]

Table 1.4

	•				•
Compd.	R ¹ (CH ₂) _j	k m	n chirali	ty Ft³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
34	CI(C)CH ₂ -	1 2	0 R	н	-сн ₂ -м-с-
35	CH_CH ₂ -	1 2	0 R	н	-CH ⁵ -N-C
36	CH-CH2-	1 2	0 R	H.	-CH₂-N-C- OCH₃
37	CICH ₂ -	1 2	0 R	н	-CH2-N-C-CF3
38	CICH2-	1 2	0 R	н	-cH²-H c-C
39	CH-CH ₂ -	1 2	0 R	н .	-CH2-NC-CI
40	CI{CI+2-	1 2	0 R	н	-сн ₂ - н с-С -осн₃
41	CH-(1 2	0 R	н	-CH²-H C-CI
42	CI	1 2	0 R	Н	-cH²-H c-Ch
43	CI	1 2	0 R	н	-CH2-HC-CO
44	CH-CH2-	1 2	0 R	н	-сн ₂ - µ с — сг ₃

.[0105]

Table 1.5

Compd.	R ² (CH ₂)	k m n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
45	CI-CH ₂ -	1 2 0	R	Н	-CH2-N-C-CF3
46	сі—(сн²-	1 2 0	R	н	-CH ₂ -N-C-CF ₃
47	CH	1 2 0	R	H	-CH ₂ -N-C
48	CI{\bigce}-CH2-	1 2 0	R	н .	-CH ₂ -MC-CF ₃
49	CH-CH ₂ -	1 2 0	R _.	н	-CH ₂ -N-C-C-C-C-N-C-C-N-C-C-N-C-C-N-C-C-N-C-C-N-C-C-N-C-C-N-C-C-N-C-C-N-C-C-N
5 0	a-Q-ar-	1 2 0	R	н	-CH_NC_CF3
51	CH_CH2-	1 2 0	R _.	н	-CH ₂ -N-C
52	CI	1 2 0	R'	н	-CH2-HC-
53	CH-CH ₂ -	1 2 0	R	н	-CH2-H C
54	CI	1 2 0	R	н	-cH²-H°C- O Cd Cl
55	a-{\rightarrow}-a12-	1 2 0	R	н	-CH2-HC-CI

[0106]

Table 1.6

Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
56	CH-CH ₂ -	1	2	0	R	Н	-CH2-H C-
57	CI-CH ₂ -	1	2.	o	R	н	-CH2-H C
58	CH-CH2-	1	2	o ·	R	н	-CH2-N-C-CI
59	CICH ₂ -	1	2	0	R	H	-CH ₂ -N-C
60	с⊢С-сн₂-	1	2	o.	R	н .	-CH ₂ -N C
61	C⊢-{	1	2	0	R	н	-CH ₂ -N-C
62	CI—{	1	2	0	R .	н	-сн ₂ -м с-Сн ₃
63	CI—CH₂-	1	2	0	R	н	-сн ₂ - N-ССн ₂ сн ₃
64	CI	1	2	0	R	н	-сн₂-й с-СУ-си
65	CICH ₂ -	1	2	0	R	н	-cH2-Hc-
66	сСН2-	1	2	0	R ·	н	-arf-Hc-

Table 1.7

Compd.	R ² (CH ₂)j-	k m n chirality	₽³	-(CH ₂) _p (CH ₂) _q G-R ⁶
67	CICH ₂ -	1 2 0 R	н	-CH2-NC
68	CI(C)CI+2-	1 2 0 R	H	-ch²-Hc
		1 2 0 R	н	-CH ₂ -N-C-F
70	CI-CH2-	1 2 0 R	н	-CH ₂ -N-C-CF
71	CI-CH ₂	1 2 0 R	. н	-сн ₂ -м-с- н н ₃ со
72	CH2=4	1 2 0 R	н	-CH ₂ -N-C
73	CI—ĆÒ−CH²-	1 2 0 R	н	-CH _Z -N-C-C
74	CI	1 2 0 R	н	-CH ₂ -N C(-)-∞2CH ₃
75	CI(CI+2-	1 2 0 R	Н	-CH ₂ -N-C
76	CI	1 2 0 R	н	-CH2-NC-
77	CICH2-	1 2 0 R	н	-ar-Hc-

[0108]

Table 1.8

lable							
Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
78	CICH ₂ -	1	2	0	R	н	-CH2-NC-F
79	CICH ₂ -	1	2	G	R	н	$-CH_2-NC F_3C$
80	сн-С-сн-	1	2	0	R	н	- CH₂- N-C- CF₃ F₃C
81	CICH ₂ -	1	2	0	R	н	-CH ₂ -H _C -CH ₃
82	CI-CI+2-	1	Ż	0	-	—сн _з	-CH _z -N-C-CF ₃
. 83	CH2-	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
84	CI	1	2	0	R	н	-CH ₂ -N-C
85	CI—CH2-	1	2	0	-	н	-(CH ₂) ₂ -N-C-
	с⊢-{_}-сн₂-			•		н	-(CH ₂) ₂ -N-C-\ H
87	CH2-	1	2	0	S	н	-(CH ⁵) ² -H-C-CE ³
88	с⊢——сн₁-	1	2	0	s	н	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-F ₃ F ₃ C

[0109]

Tabl 1.9

	1.0						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G-R ⁶
89	CH-CH2-	1	2	0	s	н	-(CH2)2-N-C-Br
90	CI(CI-)-CI+2-	1	2	0	s	н	-(CH2)2-H-C-
91	CH-CH2-	1	2	0	s	. н	-(CH ₂) ₂ -N-C-CI
92	CI	1 .	2	0	s	Н	-(CH ₂) ₂ -N-C-
	a—{					н	-(CH ⁵) ² - N-C
94	CI—CH2-	1 :	2 .	0	s	н	-(CH ₂) ₂ -N-C-COCH ₃
95	CI-CH2-	1 - 2	2	0	S	Н	-(CH ₂) ₂ - N C-CF ₃
96	a-{a+-	1 2	2	0	s	Н	-(CH3)5-H-C-CH3
97	а— (_ -сн₂-	1 2	2	0	s	н	-(CH2)2-H-C-(CH2)2-CI
98	сн-С	1 2	2	0	S	. н	-(CH ₂) ₂ -N-C-OCH ₃
99	с	1 2	!	0	S	H .	-(CH ³) ² -H-C-CH ³

[0110]

Tabl 1.10

						•
Compd No.	R ² (CH ₂)	k m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
100	CI(CH2-	1 2	0	S	н	-(CH ₂) ₂ -N-C-CN
101	CH-CH2-	1 2	O	s	н	-(CH ⁵) ⁵ - N- C-
102	с-О-сң-	1 2	0	s	н	-(CH ₂) ₂ -N-C-
103	CH ₂ -CH ₂ -	.1 2	0	s	H	-(CH ²) ² - H C ← CF ³
104	CH-CH ₂ -	1 2	0	S	н	-(CH ₂) ₂ -N-C
105	CH_CH₂-	1 2	o	s	н	-(CH ₂) ₂ -N-C-CF ₃
106	CH2-CH2-	1 2	0	s ·	Н	-(CH ₂) ₂ -N-C
107	C⊢CH₂-	1 2	0.	S	н	-(CH2)2-N-C
108	CI	1 2.	0	s	н	-(CH ₂) ₂ -N-C- O ₂ N
109	CH ₂ -	1 2	D	s	Н	-(CH ₂) ₂ -N-C-
110	CH2-	1 2 (o	S	Н	-(CH ₂) ₂ -N-C

[0111]

Table 1.11

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
1,11	a—{_}a+.	1	2	O	R	н	-(CH2)2-H C-CF3
112	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
113	CI-CI12-	1	2	0	R	н	-(CH ₂) ₂ -N-C
114	CH-CH2-	1	2	.0	R	н	-(CH ₂) ₂ -N-C-
115	CH-CH2-	1	2	0.	R	н	-(CH ⁵) ⁵ -N-C-CI
116	CH-CH ₂ -	1	2	O	R	H	-(CH ₂) ₂ -N-C
117	CI-CH ₂ -	1	2	0	R	н	-(CH ²)2-N-C
118	CI(CI+2-	1	2	0	R	н -	(CH2)2-N-CC-C-CCH3
119	CI{CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
120	сн-Су-сн ₂ -	1	2	o	R	н	-(CH ₂) ₂ -N-C-CH ₃
121	CI-CH ₂ -	1	2	0	R	H	-(cH ₂) ₂ - Н с

[0112]

Table 1.12

Compd. No.	R ¹ (CH ₂) -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
122	CI-CH ₂ -	1	2	0	R	н	-(СН ₂) ₂ -N-С-С)-ОСН ₃
123	с	1	2	0	R	н	-(CH ⁵) ⁵ -V-C
124	CICH ₂ -	1	2	o	R	н	-(CH2)2- N C-(CH2)2- N C-(CH2
125	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
126	CI	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
127	СН-СН ₂ -	1	2	0	R .	H .	-(CH ₂) ₂ -N-C
128	cı–Ó-cıғ-	1	2	0	R	н	-(CH ₂) ₂ -N-C-F ₃
129	сі—{	1	2	Ò	R	н	-(CH ₂) ₂ -N-C
130	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
131	CI-CH ₂ -	1	2	0	R .	н	-(CH ₂) ₂ -N-C
132	CI{	1	2	0	R	н	-(CH ₂) ₂ -N-C

[0113]

Tabl 1.13

1401	1.13						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
133	a-{ar-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-\(\sigma\)
134	CI	1	2	0	R	н	-(CH ²) ² -H-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
135	СН-СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-B ₁
136	CI	1	2	0	R	Н	-(CH ₂) ₂ -N C-F
137	с	. 1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
138	CH2-CH2-	1	2	O	R	H .	-(CH2)2- H C-
139	CI	i	2	0	R	H • .	-(CH ₂) ₂ -N-C-CI
140	CI-CH2-	1	2	0	R	н	-(CH ⁵ / ⁵ -H C-
141	CI	1	2	0	R	н	-(CH2)2-HC-
142	CI————————————————————————————————————	1	2	0	R	н	-(CH ₂) ₂ -N-C
143	CH-CH ₂ -	1	2	0	Ŕ	H .	-(CH ²) ² - H c

[0114]

Table 1.14

labic	1.14					
Compd.	R ² (CH ₂)	k m	n	chirality	R³	-(CH ₂) _p
144	CI{CH ₂ -	1 2	0	R	н	-(CH ₂) ₂ -N-C-
145	CI—CH2-	1 2	0	R	н	-(CH ₂) ₂ -N-C
146	CH-CH ₂ -	1 2	0	R	н	-(CH ₂) ₂ -N-C-{ CH ₃
147	CHZ-CH²-	1 2	0	R	н	-(CH ₂) ₂ -N-C
148	CI(CI+2-	1 2	0	R	H	-(CH2)2-N-C
149	CH-CH ₂ -	1 2	0	R	H	-(CH ₂) ₂ -N c-
150	CI-CH ₂ -	1 2	0	R	Н	-(CH ₂) ₂ -N-C-
151	CH-CH ² -	1 2	0	R	н	-(CH ₂) ₂ -N-C
	с⊢-Су-сн₂-				н	-(CH ₂) ₂ -N-C
153	CH-{	1 2	O	R	н	-(CH ₂) ₂ -N-C
						-(CH ²) ² -H _C -

[0115]

Tabi 1.75

1451	1.13				-
Compd. No.	R ² /(CH ₂)j-	k m n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
155	CH-CH2-	1 2 0	R	Ħ	-(CH ₂) ₂ -N-C- H ₃ CO
156	CI	1 .2 0	R	н	-(CH2)2-HC
157	a-Q-a12-	1 2 0	R	н .	-(CH ₂) ₂ -N-C
158	CICH2-	1 2 0	R	н	-(CH ₂) ₂ -N-C-(CH ₃)-Ω ₂ CH ₃
159	CI-CH ₂ -	1 2 0	R	н	-(CH ₂) ₂ -N-C
160	CI-CI13-	1 2 0	R	H	-(CH ₂) ₂ -N-C
161	CI	1 2 0	R	н	-(CH ₂) ₂ -N-C-F-F
162	a-{_}-cH₂-	1 2 0	. R	H	-(CH2)2-N-C
163	CI{	1 2 0	R	H	-(CH ₂) ₂ -N-C- F ₃ C-CF ₃
164	с⊢{сн₂-	1 2 0	R	H	-(CH ₂) ₂ - N C-(CF ₃) F ₃ C
165	CI(CH ₂ -	1 2 0	R	н	-(CH ²)2-N C-CH ³
					•

[0116]

Tabl 1.16

Tabl 7	1.16						
Compd. No.	R ² (CH ₂)-	k	ṁ	n	chirality	₽³	—(CH ₂) _p
166	CI-CH2-	1	. 2	o	R	н	(S) P CF ₃ -CH H C-CF ₃
167	CI(C)CIH2-	1.	2	· o	R	н	(S) P -CH-N-C- CH ₃
168	CI-CH ₂ -	1	2	o	R	H .	CH.
169	CH-CH ₂ -	1	2	0	R	н	CH3
170	CH-CH ₂ -	1	2	o	R	н	(S) P -CH-N-C- H CH ₃ F
171	CI	1	2	o :	R	H .	-chhic-C-ca
172	CI	1	2	O	· R	н	CH3 P
173	CI	1	2	0	R	н	(S) P NO₂ - CH3 CH3
174	CI		2	•	. R	н	-CHNC-CF3
175	CI-CH ₂ -	1	2	0	R	н	CH-H-CBr
176	CI	1	2	O	R	н	CH-N-C-C-H-N-C-H-N-C-

[0117]

Tabl 1.17

	1.11						
Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
177	CICH ₂ -	1	2	0	R	н	(F) P CI -CH-N-C-CI -CH ₃
178	CH-CH2-	1	2	0	R	Н	(F) Q CF ₃ -CH-N-C-CF ₃ CH ₃ F
179	CI-CH2-	1	2	0	R	н	(FI) P -CH-N-C-CI EH H CH ₃
180	CH-CH ₂ -	1	2	0	R	н	CH ₃ P
181	O	1	2	O	R	H .	(F) PO2 CH3
182	a-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	.1	2	o	R	н	CH ₃ O CF ₃
183	CH-CH2-	·1	2	0	R	н .	CH ₃ O Br
184	CI	1	2	0	R	н	CH3 CH2 CI
185	CI(CH ₂ -	1	2			н	ÇH₃ O CI -ÇH N Ç-(CI CH₃
186	CICH ₂ -	1	2	0	R	н	CH ₃ O CF ₃ -CH ₃ CH ₃ -CH ₃ CF ₃
187	CH-CH2-	, 1	2	0	R	н	CH ₃ O CF ₃ -CH ₃ CH ₃ CF ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ -CH ₃ CH ₃
				-			

[0118]

Table 1.18

i abie							
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	₽³	-(CH ₂) _p (CH ₂) _q G-R ⁶
188	CI-CH ₂ -	1	2	0	R	н	CH3 0
189	CI-CH ₂ -	1	2	0	, R	н	CH3 PNO2
190	CH-CH ₂ -	1	2	o	R	н	-CH-N-DC-3
191	CH-CH ₂ -	1	2	0	R	н	CH ₂ CH ₂ CH ₂
192	CICI1 ₂ -	1	2	, o	R	н	-CH-NO-CO
193	CI—CH₂-	1	2	O	R	н .	-CHN-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
194	CH-CH ₂ -	1	2	O	R	н	(A) P C C C C C C C C C C C C C C C C C C
195	с⊢О−сн₂-	1	2	0	Ŕ	н	-CHN-C-CH
196	CH	1.	2	.0	R	н	CHA C
197	CI—CH₂-	1	2	0	R	H	(F) PO CHAPO
198	CI	1	2	0	R	н	CH-NO-CF3

Tabl 1.19

1451	5						
Compd.	R ¹ (CH ₂)	k	m	п	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
199	CH-CH ₂ -	1	2	0	R	н	- CH-H-C
200	CICH2-	1	2	0	R	н	- G+ N O- C
201	CI{	1	·2	.0	R	н	
202	CI	1	2	0	R	H	
203	CI-CH ₂ -	1	2	0	R	н	CHA-C-CI
204	CH-CH ₂ -	1	2	0	R	н .	CHA C
205	CH-CH _Z -	1	2	0	. R	н	
206	CI	.1	2	Ď	R	н	Cartico
207	CI-CH2-	1	2	0	R	н	(Gr. Hg-C)
	CI—CH ₂ -						(0.7) & CA. (0.7) & CA. (0.7) & CA.
209	CI—CH ₂ -	1	2	0	R	H	Carring Carr

[0120]

Tabi T:20

Compd. No.	R ¹ (CH ₂)-	k	m	п	chirality	R⁵	-(CH ₂) _p + (CH ₂) _q G-R ⁶
210	CI	1	2	0	R	н	(3) P (5°3) (0'4) 5° CH4 F
211	CI	1	2	0	R	н	(01/2)2-2012 -CH-HC-C-a
212	CI—CH2-	1	2	0	R	н	(C)-12/2-13-CH,
213	CH-CH2-	1	2	0	R ·	н	(04) 2 cH - CH H C VOS
214	CI(C)CIH2-	1	2	O	<u>.</u>	н	-(CH ₂) ₃ -C-
215	с⊢—Сн₂-	1	. 2	0	-	н	-(CH ₂) ₃ -C
216	сі-Су-сн₂-	1	2	0	•	н	-(CH ₂) ₃ -0-(S
217	CH-CH ₂ -	1	2	0	-	Н	H³CO H³CO CCH³
218	сн-С-сн _г -	1	2	0	-	н	-(CH ₂) ₂ -CH ₃
219	CH2-	ä	2	o	-	н	-(CH ₂) ₂ -C- O-CH ₃
220 :	с⊢-{	1	2	0	-	н	-(CH ₂) ₂ -C-CH ₃

[0121]

Tabl 1.21

iabi	1.2 1						
Compd.	R ² (CH ₂)	k	m	n	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
221	CI-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-
222	CI(C)CH2-	1,	2	0	-	н	-(CH ₂) ₂ -C-
223	-CHZ-CHZ-	1	2	0	-	н	-(CH ₂) ₂ -C
224	CI	1	2	· 0	•	H .	-CH2-8
225	CI	1	2	0	•	н	-(CH ₂) ₃ -C-N-
226	CI(1	2	0	-	H .	-(CH)3-C-N-CCH3
227	CI	1	2	0	-	H	-(CH ₂) ₃ -C-H-CI
228	CI(CI-)-CI42-	1.	2	0	•.	н	-(CH ₂) ₃ -C-N-OCH ₃
229	CI	1	2	0	-	н	-012-C-012-C-H-C-013
230	CI(C)CH2-	1	2	0	-	н	-CH ₂ -CH ₂ -C-N-C-F
231	CI-CH ₂ -	1	2	0	-	н	-(CH ⁵) ² -C- ^H - C-CH ³

[0122]

Table 1.22

Tubic 1							
Compd. No.	R1 (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
232	с⊢—СН₂-	1	2	0	-	Н	-(CH ²) ² -C- ^H -
233	с-Сснұ-	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -
234	CH-CH₂-	1	2	0	-	·н	-(CH ⁵) ³ -C-N-(CH ³
235	C⊢—CH₂-	1	2	0	-	н	-a1²-à+a1²-ç.ha1²-⟨>-a
236	с	1	2	0	-	H	-CH ₂ -N-S
237	с⊢С}-сн₂-	1	2	0	-	н	-CH2-N-C-O-CH2-
238	сн-О-сн₂-	1,	2	0	-	н	-c+0-c-H-C
239	CH _Z	1	2	0	S	н	-CH ₂ -N-C
	CH ₂ -					н	-CH ₂ -N-C-CF ₃
241	CI-CH ₂ -	1	2	0	s	н	-сн ₂ -N-с-С _{F3}
242	a-Chr.	1	2	0	s	н	-CH2-N-C

[0123]

Table 1.23

14510							
Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G −R ⁶
243	CH ² -CH ² -	1	2	0	S .	н	-CH2-N-C-CF3
244	CH ²	1	2	0	s	н	-CH2-N-C-CF3
245	CH2-	1	2	0	S	н	-CH2-N-C-CE3
246	g-ar-	1	2	0	S.	н	-CH2-N-0-CF3
247	CICH ₂ -	1	2	0	S	н	-CH2-N-C-CF3
248	H³CO_CH²-	1	2	0	s	н	-city-N-c-CE3
249	F ₃ C —CH ₂ -	1	ż	0	S	н	-CH2-N-C-CF3
250	- H _a C	1	2	0	S	н	-CH2-N-C-CF3
	F-CHg-					н	-CH2-N-C-CF3
252	н ₃ со-Су-сн ₂ -	1	2	0	S	н	-CH2-N-C
253	H3C	1	2	0	s	н	-CH ₂ -N-C-CF ₃

Table 1.24

Table 1	1.24						
Compd.	R ² (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
254	CH_CH2	1	2	0	s	н	-CH ₂ -N-C-CF ₃
255	C ₂ N	1	2	0	S	н	-CH ₂ -N-C-CF ₃
256	O2N-CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
257	CF ₃	1	. 2	o	s	н	-CH ₂ -N-C-CF ₃
258	CO ₂ CH ₂ CH ₃	1	2	0	s	н	-CH2-N-C-CF3
259	CH ₃	1	2	0	S	н	-CHZ-N-C-CF3
260	CI CITY	1	2	0	S	н	-CH2-HC-CF3
261	F3C-CH2-	1	2	0	S	н	-CH2-N-C
	CH ₂ -					н	-CH ₂ -N-C
263	Br CHr.	1	2	0	s	н	-CH2-N-C-CF3
264	O-O-OH-	1	2	0	S	H	-CH ₂ -N-C-CF ₃
							

[0125]

Table 1.25

Table	1.23						•
Compd.	R ¹ (CH ₂)	k	m	ก	chirality	R³	-(СН ₂) p С Н ₂) q G-R ⁶
265	Br—CH ₂ —	1	2	0	S	н	-ch2-N-C-CF3
266	CH ² -	1	2	O	S	н	-CH2-N-C-CF3
267	OCH ²	1	2	o	S	H .	-CH2-N-C-CF3
268	₩0.Ç-Й-О-013-	1	2	0	s	н	-cH2-H-c-Ct-3
269	H3C-\$	1	2	o	s	н '	-CH2-N-C-CF3
270	H ₃ CO ₂ C —CH ₂ —	1	2	O	s ·	н	-CH ₂ -N-C-CF ₃
271	CH2-	1	2	O	s	н	-cH-H-c-CE3
272	но-С-сн-	.1	2	0	s	н	-CH_NC-CF3
273	CN	. 1	2	0	s	н	CH ₂ - N-CСF ₃
274	NC CH ₂ -	1	2	0	s	н	-сн ₂ -µ-с-С ^{СF3}
275	NC-CH _E	1	2	0	s	н	-сн ₂ -н-с-СF ₃

[0126]

Table 1.26

labie	1.20						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _ρ + (CH ₂) _q G−R ⁶
276	F—CH ₂ -	1	2	0	S	н	-сн ₂ -N-с-С _{F3}
277	○ - ○ -o₁₂	1	2	0	s	н	-CH ₂ -N-C-CF ₃
278	н₃∞₂с-{_}-сн₂-	•				н	-CH ₂ -N-C-CF ₃
279	F3CO-{	1	2	0	s	н	-CH2-N-C-CF3
280	F³CO CH³-	1	2	0	, S	н	-CH ₂ -N-C-CF ₃
281	HO ₂ C(CH ₂ -	, 1	2	0	s	н	-CH2-N-C-CF3
282	(H3C)3C-{}-CH2F	1	2	0	s	H	-CH2-N-C-CF3
283	CH ³	1	2	0	s	н	-CH2-N-C-CF3
	CH-CH-					н	-CH ₂ -N-C-CF ₃
285	CH ₂ -	1	2	0	R	H	-CH2-N-C-CF3
286	CH ₂ -	1	2	0	R	H .	-CH ² -N-C-CE ²
							·

[0127]

Tabl 1.27

Tabi	1.27			•	
Compd. No.	R ¹ (CH ₂)	k m n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
287	CH2-	1 2 0	R	H.	-cH ₂ -N-C-CF ₃
288	CH-CHF-	1 2 0	R	Н	-CH ₂ -N-C-CF ₃
289	CI CH ₂ -	1 2 0	R'	н	-сн _я -N-с-С ^{F₃}
290	CH ² -	1 2 0	R	н	-CH2-N-C-CF3
291	CH ₂ -	1 2 0	R	Н	-CH ₂ -N-C-CF₃
292	CH2-	1 2 0	R	H	-CH ₂ -N-0-CF ₃
293	CI—CH2-	1 2 0	R	н	-CH2-H-C-CF3
294	H ₃ CQ —CH ₂ —	1 2 0	R	H ·	-CH2-N-Q-CF3
	F3C			H	-CH2-N-C-CF3
296	H ₃ C —CH ₂ —	1 2 0	R	н	-CH2-H-C-CF3
297	F-CH ₂ -	1 2 0	R	н	-CH2-N-C-CF3

Table 1.28

Table 1							
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p -1/ _p (CH ₂) _q -G-R ⁶
298	H3CO-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
299	H ₃ O(-)CH ₂ -	.1	2	0	R	н	-CH ₂ -N-C-CF ₃
300	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
301	O ₂ N —CH ₂ —	1	2	0	R	н	-C12-N-C
302	O ₂ NCH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
303 [.]	CF ₃	1	2	0	R	н	-CH2-N-C-CF3
304	CO2CH2CH3	1	· 2	Ö	R	· H	-CH ₂ -N-C-CF ₃
305	CH ³	1	2	0	R	Н	-CH2-N-C-CF3
306	CI CI+ ₂ -	1	2	0	R ·	Н	-CH ₂ -N-C-CF ₃
307	F ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
308	. Br	1	2	0	R	н	-CH2-N-C-CF3
							

[0129]

Table 1.29

(able)	1.29						
Compd. No.	R ¹ (CH ₂)	k	· m	n	chirality	H3	R ⁴ (CH ₂) _p + (CH ₂) _q G-R ⁶ R ⁵
309	Br_CH ₂ -	1	2	0	R	н	-CH-N-C-CF3
310	O-O-O-IZ	1	2	0	R	н	-CH2-N-C-CF3
311	BrCH ₂ -	1	2	0	R	н	-CH2-H-O-CF3
312	CH2-	1	2	0	R	н	CH ₂ -N-C-CF ₃
313	CH ₂	1	2	O	R	н	-CHZ-N-C-CF3
314	Prochora	1	2	0	R	н .	-CH2-N-C-C-23
315	H²C C C CHE	1	2	0	R	н	CH2-N-0
316	H ₃ CO ₂ C	1	2	0	R	н	-CH2-N-C
	CH2-				·	н	-CHI-N-O-CF3
318	HO-CH2-	1	2	0	R	н	-CH_NO-CF3
319	Ch chf-	1	2	0	R	н	-сн _{г-Н} о-С ^{СF} 3
					,		

[0130]

Table 1.30

Compd.	R ¹ (CH ₂)	k	m	n	chirality	H3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
	NG CH ₂ -					н	-сн ₂ -н-с-СF ₃
321	NC-CH2-	1	2	0	R	Ħ	-chz-H-c-CF3
322	F-CH ₂ -	· 1	2	0	R	н	-CH2-N-C-CF3
323	O-O-12-	1	2		R	Н	-CH ₂ -N-C-CF ₃
324	н,со,с-{}-сн,-	1	2	.0	·R	H	-CH2-N-C-CF3
325	F3CO-CH2-	1	2	0	R	H	-CH2-N-C-CF3
326	F ₃ CQ CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
327	HO ₂ C	1	2	0	R	н	-CHJ-N-C-CFs
	(H,C) ₂ C-()-CH ₂ F					H	-CH ₂ -N-C-CF ₃
329	CH2 CH2	1	2	0	R	н	-CH2-HC-CF3
330	CI	0	3	1	-	H	-сн₂- Н с- С

[0131]

Tabl 1.31

i abi	1.0 1						
Compd. No.	R ² (CH ₂)	k	m	n	chirality	₽³	-(CH ₂) _p
331	CH2-	0	3	1	<u>.</u>	н	-CH ⁵ -N-C-CH ³
332	CH2-	o	3	1	-	н	-CH ₂ -N-C-CH ₃ OCH ₃ OCH ₃
333	O-CH₂-	0	3	1	-	н	-CH2-N-C
334	CI-CI-CI-	0	3	1	-	Ħ	-CH2-H-C-(-)-CH3
335	CH ² -CH ² -	0	3	1		н	-CH2-H-C
336	CI-CH2-	0	3	1	-	н	-сн₂-н с-СF ₃
337	a-Q-at-	0	3	1	-	н	-CH2-N-C-C
338	CH-CH2-	0	3	1	-	н	-сн ₂ -и-с- С
339	CI	0	3	1	R	H	-сн ₂ -м с С С С С С С С С С С С С С С С С С С
340	CH-CH2-	0	3	1	s	н	-ar-Hc-Ct3
341	CI	0	3	1	-	н	-(CH ₂) ₂ -N-C-

[0132]

Table 1.32

Table 1							
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	न्त⁴ (CH₂) ₀ (CH₂) ₀ G-R [€] R ⁵
342	CI-CH ₂ -		3	1	-	Ħ	-CHN-C-
343	CI(C)CH ₂ -	0	3	1	-	Н	-CH N-C- H CH(CH ₃) ₂
344	cı—Ch₂-	0	3	1	-	, H	-CH N-C- H H CH ₂ CH(CH ₃) ₂
345	CI-CI-CI-L2-	0	3	1	-	н	-(CH ₂) ₃ -C-
346	CI	0	3	i	-	н	-(CH ₂) ₂ -C-(CH ₃
347	CH-CH2-	0	3	1	-	н	-(CH ₂) ₂ -C-(CH ₃ H ₃ C
348	CH-{-}-CH ₂ -	O	3	1	-	H	-(CH ₂) ₂ -C-\CH ₃
349	α-{_}-cн _Σ -	0	3	1	-	н	-сн ₂ -\$-Сн ₃
350	CI-CI+z-	0	3	1	· -	Н	-сн ₂ -м-\$- Н о О
351	CI	0	3	1	-	н	-CH2-N-C-O-CH2-
352	C	0	3	1	-	H	-cH²-H-c-o-cH²-€

[0133]

Tabl 1.33

Iabi	1.33				. •		
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
353	CI-CH2-	1	2	1		н 	-CH2-H-C-
354	CI{	1	3	0	-	н	-CH ₂ -N-C-
355	CI(CI+2-	1	3	0	-	н Н	-CH ₂ -N-C-CH ₃
356	a-{	1	3	0	-	H	-cH²-H-c-
357	CI-{	1	3	0	-	н -	-CH ₂ -N-C-
358	CI	1	3	0	·	H	-CH2-H-C-CF3
[.] 359	CH-CH2-	1	3	0	-	н	-(CH ₂) ₂ -N-C-C
360	CH-CH ₂ -	1	3	0	-	н.	-(CH ₂) ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
361	CI	1	3	0	•	н	-(CH ⁹⁾² -C-(C)
							-(CH2)3-C-(CH2)
363	CH-CH2-	1	3	0	-	Ħ	-(CH2)3-C{S

[0134]

Table 1.34

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
364	CH-CH ₂ -	1	3	0	<u>-</u>	н	-(CH ₂) ₂ -C-C-CH ₃
365	CH2-	. 1	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
366	CI	1	3	Ò	-	н	-(CH ₂) ₂ -C
367	CH-2-	1	3	o	-	н	-(CH ₂) ₂ -C-CH ₃
368	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-
369	CH-2-	1 ·	3	0	-	н	-(CH ₂) ₂ -C-(CH
370	CI	1	3	0	-	н	-(CH ³) ² -C-{}-(CH ³) ² CH ³
371	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-Q-S-CH ₃
372	ca-√ca+2-	1	3	0	-	н	- CH ₂ -\$
373	CI(CI+2-	1	3	0	-	н	-(CH ₂) ₃ - C H
374	CICH2-	1	3	0		н	-(CH ₂) ₃ -C-N-COCH ₃

[0135]

Table 1.35

Table 1	1.35						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p CH ₂) _q G-R ⁶
375	ci-(-)-city-	1	3	0	-	н	-(CH ₂) ₃ -C-N-CI
376	CI—CH2-	1	3	0	-	н	-(CH2)3-C-H
377	CI—CH2-	1	3	O	-	Ή	-CH2-C-CH2-C-N-C-CH
378	CI-CH2-	1	3	0	-	н	-CH ₂ -C-N
379	CI-CH2-	1	3	0	-	н	-(CH ⁵) ² -C-H ⁹
380	CI	1	3	0	· -	н	-(CH2)3-C-N-CH2-
381	CI(CI+2-	1	3	0	- .	н,	-CH2-N-S-CH3
382	CICH ₂ -	1	3	0	-	`н	-сн ₂ - н с- о- сн ₂ -
383	CI-CH _g -	1	3	0	-	н	-сн-о-с-й-(С)
384	сн-О-сн₂-	2	2	0	-	н	-CH2-N-0-CH3
385	CI(C)CH ₂ -	2	2	0	-	н	
-							

[0136]

Table 1.35

145.0							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
386	CH2-	2	2	0	-	н	-cH ₂ -N-c-
387	CH2"	2	2	0	- -	H	-CH ₂ -N-C-
388	CH2-	2	2	0	•	н	-CH ₂ -N-C-\(\sigma\)
389	CH _Z -	2	2	0	-	. н	-сн ₂ -N-о-Со₂сн₃
390	CH2-	2	2	0	-	н	-CH2-N-C-
391	C)-cHz-	2	2 .	0	-	н	-CH2-N-C-CF3
392	CH2-	2	2.	O		н	-CH ₂ -N-C-CP ₃
393	CH₂-	2	2	0	-	н	-CH ₂ -N-C-Br
394	○ -CH ₂ -	2	2	0	-	н	-CHZ-H-O-CI
395	СН2-	2	2	0	-	н	-CH ₂ -N-CBr
396	CH2-	2	2	0	-	н	-CH ₂ -N-C
						· · · · · · · · · · · · · · · · · · ·	

Tabl 1.37

Tabl 1	.37						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
397	Ch-CH ^E	2	2	0	-	н	-cH=H-c-CH
398	O-cH2-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	CH2-	2	2	0		н	-(CH ₂) ₂ -N-O-
400	O-cH2-	2	2	.0	-	н	-(CH ₂) ₂ -N-C
401	CH2-	2	2	0	. -	н	-(CH ₂) z H C-(CH ₃)
402	Ch-car-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
·403	Cart₂	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
404	CH ₂ -	2	2	0	-	н .	-(CH ₂) ₂ -N-C-C-C-S
405	C→car€	2	2	0	-	н	-(CH ₂) ₂ -N-O-Br
406	C)-city-	2	2	0	· -	н	-(CH2)2-N-0-CI
407	сн ₂ -	2	2	0	-	H	-(CH2)2-N-C

[0138]

Table 1.38

Compd. No.	R ¹ (CH ₂);	. k	m	n	chirality	R³	(CH ₂) p (CH ₂) q G-R [€]
408	€ cH²-	2	2	0	-	н	-(CH ₂) ₂ -N-C-F
. 409	O-cH2-	2	2	0		н	-(CH2)2-14-0
410	CH2-	2	2	0	-	н	CH2CH(CH3/2:
411	CH2-	2	2	0	-	Ħ	(S) P (
412	⊘ −01₂−	2	2	0	-	н	(S) P NO ₂ -CH ₂ CH(CH ₃) ₂
413	CH2-	2.	2	0	-	н	(S) P -CH-N-0
414	CH _Z -	2 ·	2	0	-	н	CH2CH(CH3)2
415	-CH2-	2	2	0	-	н	(S) CF3 · CF3 · CH ₂ CH(CH ₃) ₂ F
416	CH2-	2	2	0	-	н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
417	CH _₹	2	2	0	-	Н	CH2CH(CH3)2.
41B	CH ₂ -	2	2	0	-	н	(S) CH-N-C
					· · · · · · · · · · · · · · · · · · ·		

[0139]

Table 1.39

Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	(CH ₂) , -(CH ₂) , G-R ⁶
419	CH²-	2	2	0	-	н	(S) P -CH-N-C-Br CH ₂ CH(CH ₃) ₂
420	CH-CH-	2	2	0	-	н .	(S) P CH ₂ CH(CH ₃) ₂
421	CH2-	2	2	0	-	н	(S) CI -CH-N-C-CI CH ₂ CH(CH ₃) ₂
422	-CH2-	2	2	0	-	H .	(F) -CH-N-C- CH ₂ CH(CH ₃) ₂
423	CH ₂ -	. 2	2	0	-	н .	(R) P CH-N-C- CH₂CH(CH₃)₂
424	CH2-	2	2	Ó	-	, Н	(H) -CH-N-O- CH ₂ CH(CH ₃) ₂
425	СН-сн-	2 .·	2	0	-	н	(A) - CH-N-C- CH₂CH(CH₃)₂
426	CH2-	2	2	0	-	н	(F) -CH-N-C-CF3 CH2CH(CH3)2
427	○ -cH ₂ -	2	2	0	•	н .	(F) P CF3 -CH-N-C-CF3 CH2CH(CH3)2 F
428	CH ₂ -	2	2	0.	-	н	(A) CH-N-C- CH-CH(CH3)₂
429	О −сн ₂ -	2	2	0	-	н	CH2CH(CH3)2
						_	

[0140]

Table 1.40

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
430	CH₂-	2	2	0	- •	н	CH-N-C-CI CH ₂ CH(CH ₃) ₂ .
431	CH2-	2	2	0	-	н	CH2CH(CH3)2 -CH-N-C
432	CH2-	2	2	0	-	н .	CH2CH(CH3)2
433	O-cH2-	. 2	2	0	-	H	(H) P CI -CH-N-C-CI CH2CH(CH3)2
434	CI-CH2-CH2-	1	3	1	-	н .	-CH2-N-C-
435	CH_CH2	1	3	1	- .	Н	-CH ₂ -N-C-
436	CI-CH ₂ -	1	3	1	- .	н	-CH ₂ -N-O
437	CI—CH ₂ —	1	3	1	-	Н	-cH ₂ -H-o- -cO₂cH₃
438	CI—CH _Z —CH _Z —					H .	-CH2-N-C-CF3
439	CH-{	1	3	1	<u>.</u> .	н '	CH ² -H-C-CE ³
440	CH-{-}-CH2-	1	3	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.41

1 able	1.4 1						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
441	CICIH ₂ -	1	3	1	-	н	CH ₂ -N-C
442	CH-CHF-	1	3	1	-	H ·	-ch-h-c-
	CH-COHE				-	H	-CH2-N-C
444	CH	1	3	1	-	н	-CH2-N-C
445	CI-CH2-CH2-	1	3	1	-	н	-arta-Ho-Ca
446	a-{	1	3	1	-	н	-(CHP)5-H-C
447	CI-CI-CHE	1	3	1	-	Н	-(CH2)2-N-C
448	a-Q-ariz-	1	3	1	- .	н	-(CH ₂)z-N-C
449	CI-CHI-	1	3	1	- .	н	-(CH ₂) ₂ -N-O
450	сСснұ-	1	3	1	-	H	-(CH ₂) ₂ -N-C-CF ₃
451	CI	1	3	1	-	' н	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-CF ₃

[0142]

Table 1.42

lable	1.42						
Compd. No.	R ² /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
452	сО-снұ-	1	3	1	-	н	-(CH ₂) ₂ -N-C-COCF ₃
453	CH-CH2-	1	3	1		н	-(CH ₂) ₂ -N-C-
454	CI-CH ₂ -	1	3	1	-	Н	-(CH ₂) ₂ -N-C-CI
455	CICH2-	1	3	1	-	, н	(CH ₂) ₂ -N-C
456	CI—CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C
457	CH2-CH2-	1	_3	1	. - .	H ×	-(cH ₂)≥-N-c
458	CH-CH-	2	2	1	. •	н	-CH2-H-C-
459	CH	2	2	. 1	-	н	-CH ₂ -N-C-CH ₃
	CH-{					н	-CH2-N-C-CH3
461	CICH ₂ -	2	2	1	-	н .	-CH2-H-C-CF3
462	CI-CH ₂ -	2	2	1	-	н	-CH2-H-C-

Tabl 1.43

Compd.	R ² (CH ₂)	k	m	ກ	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
463	a-Q-a12-	2	2	1	-	н	-CH ₂ -N-C-
464	CI	2	2	1	-	H .	-CH2-H-C-(-)-OCH3
465	CI-CH ₂ -	2	2	1	-	н	-CH2-HC-
466	CI-CH ₂ -	2	2	1,	-	н	-CH2-N-C-
467	CH-CH ₂ -	2	2	1	-	Н	-CH₂-N-C-
468	CI-CH _Z -	2	2	4	-	н	-CH ₂ -NCH ₃) ₂
469	CI-CH ₂ -CH ₂ -	2	2	1	-	Ħ.	-CH ₂ -NC-COCH ₃
470	CH-CH2-	2	2	1	-	н	-cH2-HC-CM
471	a-{_}-cн₂-	2	2	1		н	-CH2-HC
472	CH-CH2-	2	2	1	-	н	-cH²-H°c
473	CI	2	2	1		H	-cH²-Hg

[0144]

Tabl 1.44

Tabl 1	1. 4 4						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	. R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
474	CI-{\(\sigma\)-CH2-	2	2	1	-	н	-СН ₂ - N C
475	CH-{	2	2	1	-	H	-CH ₂ -N-C
	CI-CH ₂ -				-	. Н	-CH ₂ -N-C
477	CH-2-	2	2	1	-	н	- CH3-H C-C-CH(CH3)
478	с⊢С}-сн₂-	2	2	1	-	н	-CH ₂ -N C N H ₃ C
479 .	с⊢——сн₂-	2	. 2	1	· · -	н	-CH2-HC-O
480	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -NC-O: Br
481	CI	2	2	1	-	н	-chz-hc-s
482	CH-CH2-	2	2	1	-	· н	-CH₂-N-C-S
483 [.]	CH-CH2-	2	. 2	1	-	H	-CH2-HC-SICH3
484	CH-CH2-	2	2.	1	-	н	-CHZ-HC-NH

Tabl 1.45

iabi 1	1.45						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	₽3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
485	с{	2	2	1	<u>-</u>	н	-CH2-H-C-CF3
486	CI(CH ₂ -	2	2	1	-	н	-CH2-N-C-CN
487	CI-CH2-	2	2	1	-	н	-cH²-Hg
488	CI-CH _Z -	2	2	1	•.	н	-CH2-N-C-NH2
489	CI	2	2	1	-	н	-CH ₂ -HC-CF ₃
490	CI{	2	2	1	•	н	-CH2-HC-CH3
491	CI	ż	2	1	-	н	-CHF-H-C-CE3
492	CI—CH ² - ·	2	.2	1	-	н .	-сн ₂ - N с-С
	CI					н	-CH ₂ -N-C-CF ₃
494	CI	2	2	1	-	н	-cH₂-H°C
495	ci	2	2	1	-	. н	-CH ₂ -NC-CF ₃
							·

[0146]

Tabl 1.46

labi	1.40	•			•		
Compd.	R1 (CH2)-	k	m	ก	chirality	R³	^{R4} −(CH ₂) р (CH ₂) q G−R ⁶
496	с⊢С-СН₂-	2	2	1	-	н	-CH2-N-C
497	сн-Сн-	2	2	1	٤	н	-CH ₂ -N-C
498	CH2-	2	2	1	-	н	-CH ² -H-C-NH-C-NH-C-L ³
499	CH2-	2	2	- 1	. -	н	-CH ^S -H _C
50 0	CI	2	2	1	-	н	-CH ₂ -N-C
501	CI-CI-CI-L	2	2	1	-	н	-CH ₂ -N-C-NO ₂
502	CI-CH2-	2	2	1	-	н	-CH ₂ -N-C-F
503	CH2-	2	2	1	-	:. · H	-CH ₂ -N-C
	CI				-	н	-сн ₂ -№ с-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С
505	CICI+2-	2	2	1	•	н	-CH ₂ -N-C-NO ₂
506	CH-2-	2	2	1	-	н	-CH ₂ -N-C
	•						

Tabl 1.47

labi 1	1.4 /						
Compd. No.	R ² (CH ₂);	k	m	n	chirality	R³	–(CH ₂) _p + (CH ₂) _q G−R ⁶
507	CI-(C)-CH ₂ -	2	2	1	-	н	-cH ₂ -N-c-()
508	CI	2	2	1	-	н	-CH2-N-C-S
509	CICH ₂ -				-	н	-CH2-NC-S
510	CI	2	2	1	-	н	-CH2-H-C-OCH3
511	a-{aH ₂ -	2	2	1	-	H	-CH ₂ -N-C-C(CH ₃) ₃
512	CICH ₂ -	2	2	1	-	н	-CH2-N-C-CHCH3
513	CH-CH ₂ -	2	2	1	-	н	-CH2-H-C-C-CH3
514	CI	2	2	1	-	н .	-CH2-N-C-(CH3)3
515	CI-CH _Z -	2	2	1	-	н	-сн₂-й-с- С }-сн₂он
516	H ₂ N-CH ₂ -	2	2	1	-	. н	-CH2-N-C-CF3
517	H ₂ N_—CH ₂ -	2	2	1	-	н	-CH2-N-C-CF3
	_						

Table 1.48

iabic .							
Compd.	R ² (CH ₂) _j -	k	m	ก	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
518	NH ₂	2	2	1	-	н	-CH₂-N-C-CF3
519		2	2	· 1	-	н	-CH ₂ -N-C-CF ₃
520	CH	2	2	1	. -	−сн₃	-CH ₂ -N-C-CF ₃
521	CH-CH-	2	2	1		(CH ₂) ₂ CH	-CH ₂ -N-C-CF₃
522	CH ₂ -CH ₂ -	2	2	- 1	-	-CH ₂ CH-	-CH2-N-C-CF3
523	CH_CH ₂ -	2	2	1		-(CH2)2CH-	-сн _{z-} н°с-С
524	CI—CH ₂ —	2	2	1		-сњсн-(-сн ₂ -н-с-С
525	CI—CH ₂ -	2	2	1	-	н	-CH2-N-C-CH3
526	CI-CH2-	2	2	1	-	н	-CH2-N-C-CO
527	CI—CH2-	2	2	1	-	. н	-CHI-N-C-CS
528	CI—CH ₂ -	2	2	1	-	н	-CH2-N-C-CH3

Table 1.49

	1.70						
Compd.	R ² (CH ₂);	k	m	n	chirality	₽³	-(СН ₂) _р (СН ₂) _д G-R ⁶
529	CI{	2	2	1	-	н	-CH ₂ -N-C-CONO ₂
530	С⊢—СН₂-	2	2	1	-	н	-cHz-H-c-CN
531	CI—CH ₂ -	2	2.	1		н	-CH2-N-C-CS
532	CI-CH2-	2	2	1	-	н	-CH ₂ -N-C-H ₃
· 533	CI-CH2-	2	2	1		н	-CH ₂ -N-C-CH ₃ -N-C-CH ₄ -C-CH ₄ -C-C-CH ₄ -C-C-CH ₄ -C-C-CH ₄ -C-C-CH ₄ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
534	CI	2	2	1	-	н	-CH ₂ -N-C-V-NO ₂ H ₃ C
535	CI-CI+2-	2	2	1	-	н	Hac-go -CH2-H-C-C-2
536	CI	2	2	1	-	н	-CH ₂ -N-C-H ₃ H ₃ C CH ₃
537	CICH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃
538	сО-снұ-	2	2	1	-	н	-OF-HOCO
539	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -H-C-CH ₃ -CH ₂ -H-C-CH ₃

Table 1.50

							•
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
540	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CH ₃
541	CI—CH2-	2	2	1	~	н	-CH ₂ -N-C
542	CI	2	2	1	-	н	-CH₂-N-C-CH₂CH₃
543	CI—CH ₂ -	2	2	1	-	н	-сн ₂ -И-с
544	CI-CH ₂ -	2	2	1	-	н . •	-сн _{z-} н-с-
545	CHCH2-	2	2	1.		н	-CH ₂ -N-C-CI
546	сн-О-сн-	2	2	1		н	-CH2-N-C-CI
547	CI{-}-CH ₂ -	2	2	1		н	-CH ₂ -N-C-CI
548	CI-CH ₂ -	2	2	1	-	н	-CH2-H-C-CI
549	с⊢С}-сң-	2	2	1	-	н	-CH2-N-C-
550	с{	2	2	1	-	н	-CH2-N-C-
			<u>.</u>				

Tabl 1.51

labi	1.5 1			•			
Compd.	R ² /(CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
551	CI{\(\sigma\)-CIH2-	2	2	1	-	н	-CH2-N-C-CH2-CH3
552	CI—CH₂-	2	2	1	-	н	-CH2-N-C-CH2-CF3
553	a-{cн²-	2	2	1	-	н	-cH²-H-c-ciн²-Ct²-Ct²-Ct²-Ct²-Ct²-Ct²-Ct²-Ct²-Ct²-Ct
554	, α - {}-αн ₂ -	2	2	1		н	-CH ₂ -N-C-N-F
555	a-{}-a+2-	2	2	1	-	н	-cH2-HC-NHCCI
556	CI-CH2-	2	2	1	-	Ħ	-CH2-H-C-N-CH3
557	CICH ₂ -	2	2	1	-	.	-(CH ₂) ₂ -N-C-(1)
558	CI-CH2-	2	2	1	-	н	-c+Hc-C
559	a—{_}-cн⁵-	2	2	1	-	н	-CHNC-CF3
560	CI-CH ₂ -	2	2	. 1	-	Н	-CHHC-CH
561	CI	2	2	1	٠ -	н	-сн. И.с.—СВг СН3

Tabl 1.52

[0152]

Idol							-
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
562	CH-CH ₂ -	2	2	1	-	н	-c+-V-c
563	CI—CH²-	2	2	1	-	H	-CHNC-CF3 -CH3 F3C
564	CI	2	2	1	-	H .	CH ₃ F ₃ C OCH ₂ CH ₃ -CH N C I H CH ₃
565	CH-CH ₂ -	2	2	1	-	н	-CHNC-CF3
566	CH-2-	2	2	1	-	н	-CH-N-C-CCF3
567	CH-CH ₂ -	2	2	1	-	н	-CHNC-CH3 CF3
568	CI	2	2	1	-	н	-CHN C-CE3
569	ССН2-	2	· 2	1	· _	H.	-CHNC-CF3
570	CH-CH2-	2	2	1	-	н	-CHNC-CF3
571	C	2	2	1	-	н	-CH-N-C
572	CICH2-	2	2	1	-	н	-CH-N-C-CF3

[0153]

Table 1.53

lable i	.53						
Compd.	R ¹ (CH ₂)-	k	m	n.	chirality	R³	-(CH ₂) p . R ⁵ (CH ₂) q G -R ⁶
573	с⊢-О-сн₂-	2	2	1	-	н	-CHNC-S
574	CH-2-	2	2	1	-	н	-CHHC-S Br
575	CICH ₂ -	2	2.	1	-	н	-ch, c-(ch,)3
576	CICH ₂ -	2	2	1	· <u>-</u>	н	-CHNC-O SCH ₃
577	C⊢————————————————————————————————————	2	2	1	-	н	-c+ nc-0
578 .	CH-CHZ-	2	2	1	-	H _.	-chhc-s
579	CI	2	2	1	- -	H	-cH N C-N
580	CI	2	2	Ή	-	н	-chhc-{stand
581	CI-CH ₂ -	2	2	1	-	Н	-chhc-s
582	CICH ₂ -	2	2	1	-	н	-сн н с-г сн
583	сСН2-	2	2	1	-	н	-CH-NC-N

[0154]

Table 1.54

Table 1	.54						
Compd.	R ² (CH ₂)	k	m	n	chirality	. R³	−(CH ₂) _p + (CH ₂) _q G−R ⁶
584	С	2	2	1	-	Н	-CH N CC- C-
585	CI-CH _Z -	2	.2	1	-	н ·	-снис-С-си
586	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-CH-CH
587	CICH ₂ -	2	2	1	-	H	-CHNC-CF3 CH3
588	CICH ₂ -	2	2	1		H	O O O O O O CH ₃
589	CI	2	2	1	-	н	-CHNC-(CH3)3 CH3
590	CI—CH2-	2	2	1	-	н	-CH-N-C- I H CH ₃
591	CH-CH2-	2	2	1	-	H	-CH-NCH ₃) ₂ -CH ₃
592	CH-CH2-	2.	2	1	-	н	-сн н с-С-осн _з
5 93	с⊢С-сн₂-	2	2	1	-	н	-CH-N-C- CH³ CH3
594	CICI-IZ-	2	2	1	-	н	-сн и с- сн² -сн и с- сн² сн²

[0155]

Tabl 1.55

	1.55						
Compd.	R ¹ (CH ₂)	k	m	n	chirality.	R³	–(СН ₂) _р
595	CI	2	2	1	-	н	-CH-N-C- CH-N
5 96	CI{CH2-	2	2	1	-	н	-CH N C-C-CH3
597	CI(CH ₂ -	2	2	1		н	-a+Nç-C
5 98	CH-CH2-	2	2	1	-	н	-CHNC-O
599	CH-2-	2	2	1	- ·	н	-CH-N-C-
600	CH-CH ₂ -	2	2	. 1	-	н	-CH-N-C-O-Br
601	CH-CH2-	2	2	1	-	н .	-CH N C-C
· 602	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- N(CH3)2 CH3
603	وي					Н	-CH-N-C-NH ₂
604	CI	2	2	1	-	Н	-c+ No-C
605 ·	CI————————————————————————————————————	2	2	1	-	н	-ch-N-c-Co

Table 1.56

Compd.	R ¹ (CH ₂)	k	m	n	chirality	Fl³	—(CH ₂) , 1 (CH ₂) G-R ⁶
606	CH-CH ₂ -	2	2	1	•	н	-CH-N-CCS
607	CH-CH2-	2	2	1	-	Н.	-CH-NC-CS
608	CI-CH ₂ -	2	2	1	-	н	CH3 H3C
.609	CH-CH ₂ -	2	2	1	-	н	-CH-N-CO CH ₃ H ₃ C
610	с⊢(2	2	1	-	н	-CH-NC-CS CH ₂ OFC _{CH3}
611	CI—CH₂-	2	2	1	-	н	CH ² H ² C C(CH ²) ²
612	сн ₂ -	2	2	1	-	н	CH3 HaC
613	CI	2	2	1	-	н	-CH-N-C-CH ₃ CH ₃ F ₃ C
614	CH2−	2	2	1	-	н	-CH-N-C-CH ₃ CH ₃ F ₃ C CH ₃
615	CI(C)CH ₂ -	2	2	1	-	н	-CHNC-CHH
616	CI-CH2-	2	2	1	•	н	-CHHIG-CHH

[0157]

Table 1.57

i anie	1.3 4					_	
Compd.	R ² (CH ₂) _j	k	m	п	chirality	R³	ij
617	a-Q-at-	2	2	1	-	н	-CHN-C-CF3
618	CI	2	2	1	-	Н.	CH(CH³)⁵ - ĊH Й Ç-
619	CI-CH2-	2	2	1	-	н	-CH N-C-CN CH(CH ₃) ₂
620	с⊢Су−сн₂−	2	2	1	-	H	-CH-N-C
621	CH-CH ₂ -	2	. 2	1	-	Н	-CH-H-C- CH CH(CH³)² CI
622	CI-CH8-	2	2	1	-	H =	-CH-N-C
623	CI{	2	2	1	-	н	-ch(ch ^{3)s} . -ch h c . och ³
624	CI—{	2	2	1	-	н	-CH-N-C
625	CI-{\(\sigma\)-CI12-	2	2	1	-	н	-CH-N-C
62 6	a-{_}-a+²-	2	2	1	·	н	ор с -снис- сн(сн ₃₎₂ сг ₃
627	a-∰-a+-	2	2	1	-	н .	-CHING-CHOCH2CH3
•							

[0158]

Table 1.58

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
628	CI(-)CIH ₂ -	2	2	1.	-	н	-CH-M-C-CO2CH3
629	CI-CH ₂ -	2	2	1	- .	Н	-CH N C-CF3 -CH(CH3)2
630	CH_CH2-	2	2	i		н	- CH-IV C
631	CI(C)CH ₂ -	2	2	1	-	Н	-CHNC-CH(CH ₃) ₂ CF ₃
632	CI-CH2-	2	2	1	-	н	
633	CI-CH ₂ -	2	2	1	-	н	CH N C CF3 CH(CH ₃) ₂ F
634	CI-CH ₂ -	2	2	1	-	н	-CHNC-F CH(CH ₃) ₂
635	CI(CH ₂ -	2	2	1	-	н	-CH N C-CH(CH ₃) ₂
636	CI—CH₂-	2	2	1	-	н	CH(CH ₃) ₂
637	с⊢—Сн₂-	2	2	1 .	-	н	-CH N C - CF3 CH(CH3)2
638	CHCH2-	2	2	1	-	н ,	сн(сн²)³ - сн. И с— Б
							•

Tabl 1.59

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	. Łą	-(CH ₂) _p (CH ₂) _q -G-R ⁶
639	CH-CH ₂ -	2	2	1	-	H .	-CH N C - N(CH ₃) ₂ -CH(CH ₃) ₂
640	сСн ₂ -	2	2	1	-	H.	- СН- N- С- СН (СН ₃) ₂
641	CI—CH2-	2	2	1	- .	н	О - СН N-С- СН(СН _{а)2}
642	CICH ₂ -	2	2	1	-	н	-сн-и с- сн(сн _{з)2}
643	CI-CIH2-	2	2	1	÷	н	-CH-N-C
644	a-(2	2	1	-	H	-сн- N-с- Сн(сн ₃) ₂ сн(сн ₃) ₂
645	a-C	2	2	1	٠.	Н	-CH+N-C- CH(CH ₃) ₂ -NH ₂
646	cı—Ç—cırız-	. 2	2	1	•	H	-сн. и.с.——-сн ² он
647	CI-CI+2-	2	2	1	-	н	CH(CH³)5 -CH M-C- C-CH³ C-CH3
648	CICH ₂ -	2	2	1	-	н	- CH N-C
649	CICH ₂ -	. 2	2	1	•	н	- c+(c+3)2 с+(c+3)2

[0160]

Table 1.60

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁸
650	CI—CH ₂ -	2	2	1	-	н	CHICHTS COLOR
651	CH-CH ₂ -	2	2	1	-	н	CHOUNT CHOP
652	CI-CH2-	2	2	1	-	н	-CH-N-C
653	CI-CH ₂ -	2	2	1	-	н	-CH-N-C
654	CI(CH ₂ -	2	2	1	-	н	-CH-N-CC
655	C⊢-{_}-CH₂-	2	2	1	-	н	CH(CH ⁹) ⁵ CH(CH ⁹) ⁵ CH ² CH
656	с⊢—Сн₂-	2	2	1	-	н	ch(ch?)s -ch-N-c-C3
657	CI-CH ₂ -	· 2	2	1	-	н	-CH-H-CC3
658	Ci—CH₂-	2	2	1	-	н	-CH-N-C
659	CICH ₂ -	2	2	1	-	н	-CH-N-C
660	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-N

[0161]

Table 1.61

Table 1							
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	H3	—(CH₂) q G —R ⁶ R ⁵
661	a-{\rightarrow}-art-	2	2	. 1	· •	н	-CH-N-C-CS -CH(CH ₃) ₂ OCH ₃
662	CICH ₂ -	2	2	. 1	-	H	CH(CH ³) ⁵ CH ³
663	CI	2	2	1	-	H ·	CH(CH ²) ⁵
664	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
665	CH-CH ₂ -	2	2	1	-	н .	- ch Ho - 2 - ch Ho - 2 - ch - - 3 - ch
666	CI	2	2	1	-	н	CH(CH ₃) ₂ CH ₃ CH ₃
667	CI-(CH ₂ -	2	2	1		Н	CH (OP)
668	CI-CH ₂ -	2	2	1	-	н	CH(CH _b) ₂ CH ₃
. 669	CI	2	2	1	-	н	CH(CH ₃) ₂ CH ₃
670	CH-CH ₂ -	2	2	1	-	н	-сн-й-с- сн(снэ) ⁵
671	CI—CH2-	· 2	2	1	<u>.</u> .	н	CH(CH ₃) ₂ NO ₂
						•	

[0162]

Table 1.62

i abie	1.02				•		
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
672	CI-CH2-	2	2	1	-	н	CH(CH3)2 H
673	CH-CH2-	2	2	1	-	н	-CH-NC-S C(CH ₃) ₂
674	CH₂-	2	2	1	-	н	-CH-M-C-S CH(CH3)2
675	.с⊢-{	2	2	1	-	н	-CH-N-C- S CH3
676	CICH ₂ -	2	2	1	-	н	CH(CH ₃) ₂ H
677	C⊢-(CH₂-	2	2	1	· -	н	-СH-И-С- СН(СН ₃) ₂ СН ₃
678	CI—CH₂-	2	2	1	-	н	CH(CH ₃) ₂
679	CI-CH ₂ -	2	2	1	•	н	-CH-N-C-SCH(CH ₃) ₂
680	CH-CH ₂ -	.2	2	1	-	н	CH(CH ₃) ₂
681	CI	2	2	i	-	н	CH(CH ³) ² CH ³
682	CI—CH2-	2	2	1	-	Н	-CH-N-O-C(CH ₃) ₃

[0163]

Table 1.63

l able	1.0 3						
Compd.	R ² (CH ₂);	k	m	n c	hirality	R³	–(СН ₂) _р
683	C-CH2-	2	2	1	-	н	-CHNC-SSCH3
684	CrCH₂-	2	2	1	÷ .	Н	-CH-N-C S S-CH(CH3)2 CH(CH3)2 O
685	C⊢CH₂-	2	2	1	-	н	-CH-K-C
686	CICH ₂ -	2	2	1	-	н	- CH N- C- H H CH₂CH(CH₃)₂
687	CI-CH2-	2	2	1	-	н	-c+4 c-
688	CH-{_}-CH₂-	2	2	1	- .	н	-CHNC-C-C-3
689	CI	2	2	1	-	н	-ch v c-Co
690	CI(CH ₂ -	2	2	1 ·	-	н	-CH N C-Br
691	CHZ-	2	2	1	-	H	-c+ n-c- (NCH ₃) ₂
692	CI	2	2	1	. -	н	-CHNC-CF3
693	CI	2	2	1	-	н	-CH N C
				_			

[0164]

Table 1.64

10010							
Compd.	R ² (CH ₂);	k	m	n	chirality	Ft3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
694	CI(CH ₂ -	2	2	1	-	н	-сн м с — ОСН ₂ СН ₃
695	CI—CH ₂	2	2	1	-	н	-CH N C- CH3
696	CH-CH2-	2	2	1	. -	н	-CH N-C-C
697	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
698	CI(CI+ ₂ -	2	2	1	-	Н	-CH N-C
699	CI-(2.	2	1	-	н	-CHN-C-()-OCH3
700	CI-CI-CH ₂ -	2.	2	1	. .	н	-CHN-C()-CO₂CH₃
701	_ CH ₂ -	2	. 2	1	-	Н	-CH N-C- C-CH3
	a-{a+2-				<u>-</u>	н	-CHN-C-CF3
703	CI(C)CH ₂ -	2	2	1	-	н	-CHN-C-(CH3)2
704	CI(C)CIH2-	2	2	1	-	н	-CH N-C

Tabl 1.65

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	₽³	—(CH ₂) , ∏ (CH ₂) , Ġ−R ⁶
705	CH-CH ₂ -	2	2	1	-	н -	-CHNC-S H ₃ C
706	CI{	2	2	1	-	H	-CHN-C-CH3
707	CI(CI+ ₂ -	2	2	1	-	н	-ching-Co-a
708	CH	2	2	1	- -	H	-CHNC-STBr
709	CICH ₂ -	2	2	1	. .	H	-CH-N-C-S SCH ₃
710	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-S Br
711	CI(CI+z-	2	2	1	-	н .	-CHN-0-CH3
712	a—{_}-cн₂-	2	2	1	-	н	- CHING-SO
713	CI(CI+2-)	2	2	1	-	н	CH N C H ₃ C
714	CI-CH2-	2	2	1	-	н	-CHIN-C-CHI3
715	CICI+2-	2	2	1	-	н .	-ching-2
·							

[0166]

Table 1.66

Compd. No.	R ² (CH ₂)-	k	m	n	chirality	R³	—(CH ₂) , G -R ⁶
716	с{	2	2	1	-	н	-chyc h
717	CI	2	2	1	-	H·	-CH-N-C- NO ⁵
718	CI-CH ₂ -	2	2	1	-	н	-CHN C-
719	CI(CI+2-	2	2	1	-	н	-CHN-C-C
720	C⊢CH₂-	2	2	1	· -	н	-CHN-C-OBr
721	CI-CH ₂ -	2	2	1	-	н	-CHMC-CH3
722	CI-CH2-	2	2	1	-	Н	-снис-О-сн⁵он
723	с⊢{	2	2	1	-	н	-CHN-C-NH2
	с⊢-{С}-сң₂-					н	-cH-N-0-(CH ₃) ₃
725	CH₂-	2	2	1	-	н	-ching-Q-g-Q
726	с⊢С}-сн₂-	2	2	1	-	н	-CHH C-CH

[0167]

Tabl 1.67

iabi 1	1.67					•	·
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³ .	-(CH ₂) _p + (CH ₂) _q G-R ⁶
727	CICH ₂ -	2	2	1	•	н	-chyo-ca
728	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-
729	CI	2	2	1	. •	н.	-CH-N-C
730	CICH2-	2	2	1	-	H	-CHH C-C
731	CH2-	2	2	1	-	н	- CHING COM
732	CI-CH2-	2	2	1	• . •	H	-CHNC-CF3
733	CICH ₂ -	2	2	1	•	н	-сн.и-о-Сн(сн.у ₂
734	CH-CH2-	2	2	1	•	H	-chine C
735	CH2-				-	н	-CH-NG-C-3
736	CI-CH ₂ -	2	2	1	-	Н	CHNC-CF3 CHNC-CF3
737	CI-CHg-	2	2	1	•	н	-CHHAC - CHE'S

[0168]

Table 1.68

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶
738	с⊢-Сн₂-	2	2	1	-	н	-CH-N-C-CH-3
739	CH-CH ₂ -	2	2	1	-	н	-CHNC-CNH
740	с⊢—Сн₂-	2	2	1	-	н	-CH-N-C-NO₂ H ₃ C
741	CI—CH₂-	2	2	1	-	н	-CHN-C-S NO2
742	с⊢— Сн₂-	2	2	1	-	н	-CHN-C-CS
743	с	2	2	1	-	H	-chyo-Co
744	с⊢—СН₂-	2	2	1	- ·	н .	-CH-N-C-CH-3
745	CI—CH ₂ -	2	2	1 .	-	H	-CH-N-C-(CH ₃) ₃
746	G-{CH₂-	2	2	1	-	н	H ₃ C ·CH ₃
747	CI-CH ₂ -	2	2	1	-	н	-CHNC CH ₃
748	CI-CH ₂ -	2	2	1	-	Н	-chyc-Cs

[0169]

Tabl 1.69

I abi	1.69						
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
749	CICI1 ₂ -	2	2	1	. -	н	-01-10-80
750	CI{CH2-	2	2	1	-	н	-cH-N-C
751	a-{_}cH²-	2	2	1	-	н	-CH-N-C
752	CI-CI-12-	2	2	1	-	н	-CH-N-C-CF3
75 3	CH-CH2-	2	2	1	-	н	-CH-N-C-CN
754	CI-CH ₂ -	2	2	. 1	. -	н	-CH-N-C-CI
7 55	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-CH³
7 56	сн-С-сн-	2	2	1	-	н	-CH-N-CCH ^{NO} 2 CH₂OH
757		2	2	1	•	н	-CH-N-C- CH²OH
758	a-{_}-cн₂-	2	2	1	-	Н	-CH-N-O-CO ₂ CH ₃ -CH-N-O-CF ₃ -CH-N-O-CF ₃
759	а-О-сн-	2	2	1	-	н	-CH-N-O-CF3 CH ₂ OH

[0170]

Table 1.70

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	₽3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
760	CH_CH ₂ -	2	2	1	-	н	-CH-N-C-CF3 -CH ₂ OH F
761 ,	с⊢—СН₂-	2	2	1	-	н	-CH-N-C
762	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CF3
763	CH- C H₂-	2	2	1	-	H	-сн-ис- Сн ⁵ он
7 64	CI-CH _Z -	. 2	2	1		н	- CH3 Ω - CH3 Ω - CH3
765	CICH ₂ -	2	2	1	-	, н	-C-H-C-CH3
766	CICH ₂ -	2	2	1	-	H .	CH ₃ O CF ₃
7 67	CH-CH ₂ -	2	2	1	-	H	CH ² b Ch ²
768	CI-CH2-			1	-	Ħ	CH ₃ P CH ₃ P
769	_CICH ₂ -	2	2	1	. -	н	, CH3 POCF3
770	CI	2	2	1	•	н	CH ₃ P OCF ₃ CH ₃ P CF ₃ CH ₃ P CF ₃ CH ₃ P CF ₃

Table 1.71

Compd. No.	R ¹ /(CH ₂)	k	m	п	chirality	₽³	-(CH ₂) p (CH ₂) q G-R ⁶
771	a-{\rightarrow}-cit_2-	2	2	1	•	н	CH ₃ P CF ₃
772	С⊢-СН₂-	2	2	1	-	н	CH ₃ P CH ₃ P CH ₃ P
773	CH2-	2	2	1	-	н	CH3 C(CH3)3
774	CH₂-	2	2	1	-	н	CH ₃ P CH ₃ SCH ₃
775	CHCH ₂ -	2	2	1	-	н	CH3 C(CH3)3
776	CH-CH ₂ -	2	2	1	-	н .	
777	CH-CH2-	2	2	1	. .	H	CH ₃ P CF ₃ CH ₃ CH ₃
778	CI	2	2	1	-	н	CH3 0 NO2
779	CI	2	2	1	-	н	
780	CI	2	2	1	-	н	CH3 P CH3 P CH3 P CH3
781	CI	2	2	1	-	H	CH ² D

[0172]

Table 1.72

table							
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
782	CI	2	2	1	-	н	CH ₃ POCH ₃
783	CH-CH2-	. 2	2	1	-	н .	CH ₃ P OCH ₂ CH ₃
784	CH-CH ₂ -	2	2	1	-	н	CH ₃ O CH ₃ CH ₂ CF ₃ CH ₃
785	CH_CH ₂ -	2	2	1	<u>.</u> .	н	CH ₃ OCH ₃
786	CH_CH2-	2	2	1	<u>-</u>	н	H ₂ C-CH ₂
787	CH-CH ₂ -	2	2	1	<u>-</u> .	H .	H ₂ C—CH ₂
788	CI—CH ₂ -	2	2	1	-	H .	-C-N-C-CF3
789	CI—CH2-	2	2	1	-	Н	Hec-art da-cart
790	CH2-	2	2	1	-	н	H ₂ C—CH ₂
791	CI—CH ₂ -	2	2	1	-	н	H ₂ C-CH ₂
792	CI-CH2-	2	2	1	•	н	H ₂ C-CH ₂ NO ₂ H ₂ C-CH ₂ OCF ₃

[0173]

Tabl	1		7	3
------	---	--	---	---

Tabl 1	1.73				······································		
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH₂) ,
793	CI	. 2	2	1	-	Ħ	H ₂ C CH ₂
794	сСн2-	2	2	1	-	H .	H ₂ C CH ₂ F
795	CI—CH2-	2	2	1	-	н	H ₂ C-CH ₂ CF ₃
796	CI-CH2-	2	2	1	-	н	HOCH, SCH3
797	CI	2	2	1	-	н	H ₂ C CH ₂ C(CH ₃) ₃
798	CI(CI-)-CI-1 ₂ -	2	2	1	-	H	He care
799	с⊢——сн₂-	2	2	1	•	,H	H ₂ C—CH ₂
800	CH-CH ₂ -	2	2	1	-	н	H ₂ C CH ₂
801	CH-CH ₂ -	2	2	1	-	н	H ₂ C—CH ₂
802	CI—CIT-	2	2	1	-	н	H ₂ C-CH ₂ OCH ₃ OCH ₂ CH ₃
803	a–∕O−ar²-	2	2	1	-	н	H ₂ C-CH ₂ OCH ₂ CH ₃

[0174]

Table 1.74

lable 1	./4						
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G−R⁵
804	CH2-CH2-	2	2	1		н	P N-C-CH ₂ CF ₃ H ₂ C-CH ₂
805	CI(CH ₂ -	2	2	1	-	н	H ₂ C—CH ₂ OCH ₃
806	CI(CH ₂ -	2	2	1	- -	н .	H ₂ C CH ₂
807	CICH ₂ -	2	2	1	-	, н	CH-No-
808	CICI12-	2	2	1	· •	н	(C1-P) = \$-N+7 -C1-H-C-C1-P
809	a-C-alz-	2	2	1	-	н	(CH) 4 C-W4
810	CI	2	. 2	. 1	-	н	COHOT BURF ()
811	CI-CH2-	2	2	1	-	н	(CH-) 2 C- NH2
812	CH-CH2-	2	2	1	• .	H	-CH-N-C-(S) SCH ₃
813	CICH ₂ -	2	2	1	-	н	-CH-N-C-C-NH2
814	CI	2	2	1	-	н	(CH 3)2 G-NH2 (CH 3)2 G-NH2 (CH 3)2 G-NH3

[0175]

Tabl 1.75

	. 45 -						
Compd. No.	R ² (CH ₂)	·k	m	n	chirality	H3	-(CH ₂) _p
815	СН2-	2	2	1	•	н	-CI+NC-CF3
816	CICH ₂ -	2	2	1	-	н	(CH) 2 C-NH2
817	CI—CH²-	2	2	1	-	н	(C+1) 2 6-10 F
818	CI	2	2	1	-	н	CH-NC-CH-WAS
819	CI	2	2	1	-	H	(CH) 2 C- NH2 CE-3
820	CH2-	2	2	1	-	н	-CH-N-O-NO2
821	CI	2	2	1	-	н	-CH-N-O-CI CH2OCH3
822	a-{	2	2	1	-	н	-CH-N-C-SCH ₃ -CH ₂ OCH ₃
823	CI	2	2	1	-	н	-CH-N-C-H
824	CICH ₂ -	2	2	· 1	-	н	-CH-N-O-C(CH3)3
825	CI	2	2	1	-	н	-at-No-Co
							·

[0176]

Table 1.76

,,	•						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
826	CH-CH2-	2	. 2	1	-	н	-CH-N-C-CH3 CH2OCH3
827	CI-CH ₂ -	2	2	1	-	н	CH2OCH3
828	CICH ₂ -	2	2	1	-	н	O OCF ₃ -CH-N-C- H CH ₂ OCH ₃
829	CH-{	2	2	1	-	н	CH-N-C-CF ₃
830	CH-CH2-	2	2	1	-	н	CH-N-C-F CH ₂ OCH ₃
831	CI-CI-CH2-	2	2	1	-	H .	-CH-N-C
832	CI-{	2	2	1	~	н .	-CH-N-C-CI
833	CI-(C)-CH2-	2	2	1	-	н	-CH-N-C
834	CI	2	2	1	•	н	-CH-N-C-CF ₃ CH ₂ OCH ₃
835	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-
836	CI-CH ₂ -	2	2	1	-	н	CH ₂ OCH ₃ -CH-N-C-CH ₃ -CH ₂ OCH ₃

[0177]

Tabl 1.77

-							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
837	CI	2	2	1	-	н	-СH-N-С-СР3 СН ₂ ОСН ₃
838	CH-(-)-CH2-	2	2	1	. .	н	-cH-N-c-CocH²cH²
839	CI	2	2	1	-	·H	-CH-N-C
840	CH-CH2-	2	2	1	-	н	-(CH ₂) ₃ -C-
841	CI(CI-)-CIH ₂ -	2	2	1	· •	н	-(CH ₂) ₂ -C-C
842	CI	2	2	1		н	-(CH ₂) ₂ -C-C-C
843	CI	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
844	CI	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
845	CI	2	2	1	-	н	-(CH ₂) ₂ -C
846	CI{	2	2	1	-	н	-(CH ₂) ₂ -C
847	CI{\infty}-CI1\frac{1}{2}-	2	2	. 1	-	н	-(CH ₂) ₂ -C-C-C-OCH ₃
							•

[0178]

Table 1.78

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
848	сі-{	2	2	1	-	H	-(CH ₂) ₂ -C- H ₃ C CH ₃
849	CI————————————————————————————————————	2	2	1	- -	н	-(CH ₂) ₂ -C- H ₃ CO
850	с⊢О−сн₂-	2	2	1	-	н	-CH ² -8
851	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CF ₃
852	CH-CH ₂ -	2	2	.1	-	н	-CH2-N-C-N-CF3
853	CI-CH ₂ -	2	2	1		Н	-CH2-H-C-H
854	CICH ₂ -	2	.2	1	-	н	-cH2-N-C-N-CH3
855	CICH ₂ -	2	2	1	-	Ħ	-CH2-H C-H- CH3
856	CI	2	2	1	-	н	-CH ₂ -N-C-N-C-CH ₃
857	CI—CH2"	2	2	1	•	н	-CH ² -H-C-H-OCH ²
858	CI	2	2	1	-	н	-сн³-Й с-Й-Осн³
							<u> </u>

Tabl 1.79

	•						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
859	CI{CH2-	2	2	1	-	н	-CH2-HC-H
860	CH-CH2-	2	2	1	-	н	-c+²-Hc-H
861	CI	2	2	1	•	H	-cH2-H-C-H-C
862	CI	2	2	1	-	н	-CH2-H-C-H-C-CH3
863	CI-CH2-	2	2	1	-	н	-cH2-HC-H-COCH3
864	CI	2	2	• 1	-	Н	-сн₂-н-с-н-С-осн₃
865	CI	2	2	1.	-	H	-CH ₂ -N-S-CH ₃
866	C	2	2	1	-	H	-CH ₂ -N-S-CF ₃
867	CH-CH2-	2	2	1	•	н	-CH ₂ -N-S-CF ₃
							-CH2-N-S
869	CI(C)CH ₂ -	2	2	1	-	н	-CH2-N-8
							•

[0180]

Tabl 1.80

1 201	1.80						
Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	. R³	-(СН ₂) _p + (СН ₂) _q G−R ⁶
870	с⊢-(СН₂-	2	2	1	-	н	-CH2-N-S-CH3
871	сі—Су-снұ-	2	2	1	-	H	- CH2-N-S-(CH2)3CH3
872	CI()-CH ₂ -	2	2	1	-	н	-CH ₂ -N-S-
873	с⊢— сн₂-	2	2	1	. -	н	-CH2-N-C-OCH2-
874	с	2	2	1	-	н	-сно-с-и—Са снэ
875	CH2-	2	2	1	.•	H	-CH2-HCCF3
876	Br	2	2	1	-	н	-сн₂- N с-С ₂
877 .	NC-CH ₂ -	2	2	1	•	н	-CH2-NC-€
	02N-CH2-				-	н	-CH2-NC-CF3
879	CH₂-	2	2	1	- .	н	-сн ₂ - N с-С _{Гз}
880	0^0 -CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
•							

[0181]

Tabl 1.81

Idbi	1.0 1						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	₽³	-(СН ₂) _р
881	GBr CH₂-	2	2	1	•	. н	-CH2-NC-CF3
. 882	O-0-012-	2	2	1	-	н	-CH2-NC-CF3
883	CI CH ₂ -	2	2.	1	-	H	-сн ₂ - N с-С _Г 3
884	4° c11-€ - CH2-	2	2	1	-	н	-CH2-N-C-CF3
885	H ₈ C-8-CH ₂ -	2	2	1	-	H	-CH2-N-C-CF3
886	F-CH ₂ -	2	2	1	•	н	-CH2-H-CCF3
887	F ₃ C-CH ₂ -	2	2	1	- .	н	-CH2-HC-CF3
888	HO-CH2-	2	2	1	•	н	-CH ₂ -N-CCF ₃
·889 ·					-	н	-CH ₂ -N-C-CF ₃
890	S-01/2-	2	2	. 1	-	н	-сн ₂ - N с - С С С С С С С С С С С С С С С С С С
891	CH ₂ -	2	2	1		. н	-CH ₂ -N-C-CF ₃
	•						

[0182]

Tabl 1.82

							•
Compd.	R ¹ (CH ₂)	k	m	n	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G −R ⁶
892	H3CO CH5-	2	2	1	-	н	-CH2-NC
893	O ₂ N —CH ₂ -	2	2	1		н	-CH ₂ -NC-CF ₃
894	HQ CH ₃ CH ₃	. 2	2	1	-	- H	-CH ₂ -N-C-CF ₃
895	(CH ₂) ₂ -	2	2	1	-	н	-CH2-HC-CF3
896	CN CN	2 ′	2	1	-	н	-CH ₂ -N-C-CF ₃
897	HO ₂ C CH ₂ -	2	2	1	-	н	-CH2-HC-CF3
898	HO ₂ C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
899	CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
900	🖵					н	-CH ₂ -N-C-CF ₃
901	○ -c+-	2	2	1	-	н	-CH₂-N°C
902	O ₂ N CH ₂ -	2	2	i	-	н	- CH2- N C-(CF3

[0183]

Tabl 1.83

	1.00						
Compd.	R ² (CH ₂)	k	m	n	chirality	Ft³	-(CH ₂) _p (CH ₂) _q G−R ⁶
903	H ₃ CQ OCH ₃	2	2	1	-	н	-CH2-NC-CF3
904	HQ CH2-	2	2	1	-	H	-CH2-N-C-CF3
905	O ₂ N CH ₂ -	2	2	1	-	н	-CH2-N-C-CF3
906	(CH ₂) ₃ -	2	2	1	-	н	-CH2-H-C-CF3
907	O-CH(CH ₂) ₂ -	2	2	1	-	н	-cHz-H-c-CcF3
908	○- # ○ - • • • • • • • • • • • • • • • • • • •	2	-2	1	-	н	-CH2-N-C-CF3
909	Q-110-Q-04-	2	2	1	-	H	-CH2-N-C-CF3
910	CH ₂ -	2 .	2	1	-	н	-CH ₂ -N-C-CF ₃
911	CH2-	2	2	1	-	H	-CH ₂ -H-C-CF ₃
912	Br CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
913	H ₃ CO	2	2	1	-	н	-CH2-H C-CF3

[0184]

Table 1.84

(able	1.0 4						
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	—(CH ₂) _p
914	O-aro-O-arr-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
915	OH-CHCH2-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
916	N	2	2	1	-	H	-CH ₂ -N-C-CF ₃
917	N − CH ₂ -	2	2	1	· -	н	-CH ₂ -N-C-CF ₃
918	н,со, с сн. — С - сн.	2	2	1	-	н	-CH ₂ -N-C-CF ₃
919	н₃с-{Сн₂-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
920	CCF ₃	2	2	1	-	н	-CH ₂ -H-C-CF ₃
921	CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
· 922	> -сн₂-					н	-CH ₂ -N-C-CF ₃
923	CI-CI-CI	2	2	1	-	н	CH ₂ -N-C-CF ₃
924	H ₂ N-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
							<u> </u>

[0185]

Table 1.85

lable	1.85						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
925	H2N-C-()-CH2-	2	2	1	•	. н	-CH2-N-C-CF3
926	- Or - O-or	2	2	1	-	н	-CH ₂ -N-C-CF ₃
927	F ₃ CQ CH ₂ -	2	2	1	;	н	-CHZ-N-C-CF3
928	F3CO-CH2-	2	2	. 1	-	н	-CH ₂ -N-C-CF ₃
929	н _я сэ-О-сн _я -	2	2	1	÷	н	-CH ₂ -N-C-CF ₃
930	CH ₂ -	2	2	1	-	н	-CH _Z -N-C-CF ₃
931	NC CH ₂ -	2	2	1	-	н	-CH2-N-C-CF3
932	CH_CH ₂ -	2	2	1	-	H	-CH2-N-C-CF3
933	O−cH-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
934	CN-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃
935	O ₂ N — CH ₂ —	2	2	1	-	H	-CH ₂ -N-C

[0186]

Table 1.86

· abic	1.00						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _р
936	NO ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
937	(H₃C)₂N{	2	2	1	-	н	-CH ₂ -N-C-CF ₃
938	CH_CH ₂ -	2	2	1	-	H	-CH _{2-N} -C-CF ₃
939	O ₂ N CI—CH ₂ —	2	2	1	-	н.	-CH ₂ -N-C-CF ₃
940	OH CH2-	2	2	1	-	н	CH ₂ -N-C-CF ₃
941	F ₃ C CH ₂ -CH ₂ -	2	2	1	-	н.	-CH _z -N-C-CF ₃
942	CI-CH2-	2	2	1	-	н	-CH N C-(CF3 CH(CH3)2 CF3
943	CH	1	4	0	-	н	-CH ₂ -N-C-CF ₃
944	с⊢—СН₂-	1	4	0		н	-CH ₂ -N-C-CH ₃
945	CICH ₂ -	1	4	0	-	н	-CH ₂ -N-O-NO ₂
946	с⊢—СН₂-	1	4	0	-	н	-(CH ₂) ₂ -N-C

[0187]

Tabl 1.87

	.87						
Compd.	R ¹ (CH ₂)	k	m	ก	chirality	R³	-(CH ₂) _p -1 (CH ₂) _q -G-R ⁶
947	CI	1	4	0	-	н	-(CH ²) ² -N-C
948	CI	1	4	0	-	н	-(CH ²) ² -C-H-CI
949	CI	1	4	0	-	н	-(CH ²) ² -C- ^H , CH ²
950	CI	0	4	1	-	н	-CH2-H-C-
951	a-√}-a+₂-	1	2	0	R	н	-CH2-H-C-C-CH3
952	CI-CH2-	1.	2	0	R	н	-CH2-H-C-(CH3)2
953	CI—CH ₂ -	1	2	0	R	H	-(CH3)2-H-C
954	CI—CH ₂ -	1	2	0	R'		· -CH₂-N-C-NH
955	CI(CI+2-	1	2	0	R	H	-(CH ₂) _Z -N-C-NH
956	CI-CI+2-	1	2	0	R	н	-(CH ²)2-H-C
957	CH-CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-OH

[0188]

Tabl 1.88

Compd.	R ¹ (CH ₂)	k	m	n	chirality	Ft3	–(CH ₂) p CH₂)q G−R⁶
958	сн-С-сн₂-	1	2	0	R	н	-(CH ²) ² -N-C-OH
- 959	CI-CH ₂ -	1	2	0	R	н	-сн²-й-с-Сн²
	CI-CI12-				R	н	-(CHP)\$- H O-CH3
961	CICH ₂ -	1	2	0	R	H	-сн₂-й-с- О-й- сн³
962	CH-CH₂ [±]	1	2	0	R	н	-(CH3)2-N-C-(CH3
963	CHCH2-	1	2	0	R	·Н	-(сн³)²-й-с-Д-он Ь
9 64 ·	CHCH2-	1	2	0	R	н	-CH ₂ -N-C
965	CH2-	1	2	0	Ķ	н	-(CH ₂) ₂ -N-C
	CH-2-					н	-сн _{2-н} с-С-сн ₃
967	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
968	CI	1	2	0	R	н	-CHZ-N-C-C-NH

[0189]

Tabl 1.89

Tabl 1	1.89						·
Compd.	R1 (CH2)-	k	m	n	chirality	R³	–(CH ₂) p (CH ₂) q G−R ⁶
969	сн-С-сн-	1	2	0	R	н	-(CH2)z-N-C-NH
970	CICH ₂ -	1	2	0	R	н	-CH ₂ -N-C
971	CI	1.	2	0	R	н	-(CH ₂) ₂ -N-C-\(\sigma\).
972	CI	1	2	O	R	н	-CH ₂ -N-C-NH ₂
973	CI	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH ₂
974	CI	1	2	0	R	н	-CH ₂ -N-C-NH ₂
975	CI—CH-	1	2	0	R	н	-(CH ₂) ₂ -N-C
976	с⊢—СН₂-	1	2	0	R	н	-CH2-H-C-NH
	CI					н	-(CH ₂) ₂ -N-C-NH
978	CI-{	1	2	0	R	н	-(CH2)2-H-C-NH
979	a-{-}	1	2	0	R	н	-(CH ³) ² -H-C

[0190]

Table 1.90

i ubic							
Compd.	R ² (CH ₂) _i	k	m	n	chirality	R³	R ⁴ 一(CH ₂) _p (CH ₂) _q G-R ⁶ R ⁵
980	CH-CH ₂ -	1	2	0	R	Н	
981	C⊢————————————————————————————————————	1	2	0	R	н	-(CH2)2-N-C-CH3
982	CH-CH ₂ -	1	2	0	R	· н	-CH ² -H-C
983	с⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C- (H ₃ C) ₂ N
984	CI-CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-CH₂OH
985	CI	. 1	2	Ο.	R	H	-(снэ) - N-с-С)-сн ₂ он
986	CI	1	2	0	R	н .	-сн ₂ -ң-с-С ^{СF₃}
987	CH-CH ² -	2	2	1	-	н	-CH2-N-C-CF3
·988	CICH ₂ -	1	4	0	· <u>-</u>	н	-CH ₂ -N-C-CF ₃
989	CI(CI+2-	1	4	0	-	Н	-CHZ-N-C-O-CHZ
990	CI-CH ₂ -	1	4	0	-	н	-CHZ-H-C-
						•	

Tabl 1.91

Tabl 1						<u>.</u>	
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
991	CH-CH2-	1	4	0	-	н .	-(CH ₂) ₂ -C-
9 92	CH-CH2-	1	4	0	-	н .	-(CH ₂) ₂ -C
993	CH-CH2-	1	4	0	-	н	-(CH ₂) ₂ -C
994	CI(CI+2-	1	4	0	-	н	-(CH ₂) ₃ -C-\
995	CH	1	4	0	-	н	-(CH ₂₎₃ -C-\OCH ₃
996	сн-О-сн-	1	4	0	-	н	-(CH2)3-C-H-CH3
997	CI-CH2-	2	.2	`. _ 1	<u>.</u>	н	CH-N-C-
998	CH-CH2-	2	2	1	•	н.	-CH-N-C
999	с⊢С-сн₂-	2	2	1	-	н	CH-N-CCH ₃
1000	CICH ₂ -	2	2	1	-	H .	CH³CH(CH³)⁵ −CH H-C− Ch CH-C − Ch
1001	c1-{_}}-c11₂-	2	2	1	-	н	CH2CH(CH3)2

[0192]

Ta	b	le	1.	.9	2
----	---	----	----	----	---

rable							<u> </u>
Compd. No.	R1 (CH ₂);-	k	m	n	chirality	₽3	R ⁵
1002	CI-CH ₂ -	2	2	1	-	н	CHNC-CHD
1003	С├СН₂-	2	2	1	-	н	-сн-и-с
1004	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
1005	CI—CH₂-	2	2	1	-	įμ	CH ₂ CH(CH ₃) ₂ OCH ₃
1006	C⊢-CH₂-	2	2	1	· •	н	-CH-N-C
1007	CI—CH₂-	2	2	i	-	н	СН ² СН(СН³) ⁵ ОСН ² СН³ —СН-М-С-{ — — — — ССН³ — СН-КСН³ — ССНСН³ — ССН°СН³
1008	сн-С-сн ₂ -	2	2	1	. -	н	(CH) 2-6-WH2
1009	CH-CH2-	2	2 -	1		н	CHPIS G-NAF
1010	CI-CH ₂ -	2	Ž	1	•	н	CHECH3
1011	CI-CH ₂ -	2	2	1	-	н	- Catho-
1012	CIQ-CH2-	2	2	1	-	н	(CHP)= &-NHF OCH ³
					·		

[0193]

Table 1.93

iubic i	1.50						
Compd. No.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1013	CI{CI-12-	. 2	2	1	-	н	COMPAGE OCH
1014	сн-{_}сн₂-	2	2	1	-	н .	(aps.k-wrs -a+H-c-Q-oarar oarar
1015	CI-CH2-	2	2	1	-	н	(೧೯) ^೩ ೬-೧೯ ೧೮೯೮೪ - ೧೮೯೮೪
1016	CI-CI-CI+2-	. 2	2	0	<u>-</u> .	н	-CH ₂ -N-C-CF ₃
1017	CICI1 ₂ -	2	2	o .	-	Н	-CH ^E -H-C-
1018	CICH ₂ -	2	.2	1	-	н	-cH²-H°O-Q-ocH²CH² ocH²CH²
1019	CICI-L	2	2	1	•	н .	-CH2-H-C-CH2CH3 OCH2CH3
1020	O-CH2-	2	2	1	-	н	-сн ₂ -н-о-сн ₃
1021	CI(C)CH2-	2	2	1	-	н	-CH ₂ -N-O-OCH ₂ CF ₃
1022	CI(CH2-	2	2	1	-	н	CH ³ OCH ³
1023	CI-{	2	2	1	-	н	CH3
					~	-	

[0194]

Table 1.94

				٠.			
Compd.	R ² (CH ₂)	k	m	n	chirality	R3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1024	CI(CH ₂ -	2	2	1		н	(S) OCH ₃ -CH ₃ OCH ₃ -CH ₃ OCH ₃
1025	CI-CH ₂ -	2	2	1	-	. н	CH3 OCH2CH3
1026	CH2-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH ₃ OCH ₂ CH ₃
1027	CH2-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1028	a-{_}-c+₂-	2	2	1	- ·	н	(S) OCH ₂ CF ₃ -CH-N-C-CH ₃ CH ₃ OCH ₂ CF ₃
1029	CH-CH2-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-O-CH ₃
1030	а - {}-сн₂-	2	2	1		н	(S) P -CH-N-C-CH3 CH3
1031	CH-CH2-	2	2	1	-	н	CH3 CH3
1032	сн-С-сн-	2	2	1	-	н	CH-N-C-CH3 CH3 CH3
1033	CH-CH ₂ -	2	2	1	-	Н	(FI) O CH₂CH₃CH-N-C
1034	CH-CH ₂ -	· 2	2	1	-	н	(H) 0 -CH-N-C

1 2 2

Table 1.95

Table 1	1.95						
Compd.	R ¹ (CH ₂)	k	m	ภ	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1035	a-{_}-c+;-	2	2	1	•	н	(F) P OCH ₂ CH ₃ -CH-N-O-OCH ₂ CH ₃
1036	CI(C)CH ₂ -	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
1037	CI{	2	2	1	-	н	CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3
1038	CH-CH ₂ -	2	2	1	-	н	(F) OCH ₂ CF ₃ -CH-N-C
1039	CH-CH2-	2	2	-1-	- <u>-</u>	н	CH ₃
1040	CI(CI-12-	2	2	1		н	-CH-NO-COCF3
1041	CI-CH _Z -	2	2	1	-	H .	CH ₃ OCH ₃ OCH ₃
1042	CH-CH ₂ -	2	2	1	· <u>-</u>	н	-CH ₂ -N C-S
1043	CH-CH2-	2	2	1	-	н	-CHZ-H-CH
1044	CICI-2-	2	2	1	-	Н	-CH2-HC-CH3
1045	CI-CH2-	2	2	1	-	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ -CH ₃ -N-C-CH ₃

[0196]

Table 1.96

•							
Compd.	R ² (CH ₂)	k	m	n	chirality		-(CH ₂) _p + (CH ₂) _q G-R ⁶
1046	CH-CH2-	2	2	1	-	Н	-CH ² -H-O-CI
1047	CH-CH2-	2	2	1		н	-CH2-N-CH3
. 1 04 8	CH-CH2-	. 2	2	1	- -	н _.	-CH ₂ -N-C
1049	CH2-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1050	CH_CH ₂ -	2	2	1	-	н	(S) OCH ₃ CH-N-C
1051	CH_CH ₂ -	2	2	1	- -	· н	(S) CH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂
1052	CH-CH ₂ -	2	2	1	· <u>·</u>	Н	CH2CH(CH3)2 OCH3
1053	СН-СН₂-	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1054	С⊢-{СН₂-	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C-C-CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1055	с⊢С-сн₂-	2	2	1	-	н	(S) CH-N-C-CH ₂ CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂
1056	с⊢С-сн₂-	2	2	1 .	-	н	(S) OCH ₂ CF ₃ -CH-N-C-CH-CH ₃ CH(CH ₃) ₂ OCH ₂ CF ₃
							·

[0197]

Tabl 1.97

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	(CH ₂) _p (CH ₂) _q -G-R ⁶
1057	с {- -Сн ₂ -	2	2	1	-	- H	(H) 0 OCH₂CH₃ -CH-N-O
1058	CI(CI+2-	2	2	1		н	(S) P OCH ₃ -CH-N-C-CH(CH ₃) ₂
1059	CI	2	2	1	-	H	(S) OCF ₃ -CH-N-C-CH-CH ₃ CH ₂ CH(CH ₃) ₂
1060	CICI12-	2	2	1	-	н	CH ² CH(CH ³) ³ -CH-H-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-
1061	a-{\(\sigma\)-a+-	2	2	. 1	-	н´	(F) OCH ₂ CF ₃ -CH-N-O-C CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062 · ·	a Car	2	2	1	-	н .	(5) P OCH ₂ CH ₃ -CH-NO-CH ₂ CH(CH ₃) -CH ₂ CH(CH ₃)
1063	a-Q-at-	2	2	1	-	н	(F) Q CCH ₃ -CH-N-C-CH ₃ CH ₂ CH(CH ₃) ₂
1064	ci-Q-cif-	2 .	2	1	·-	н .	CH2CH(CH32
1065	CI-CH2-	2	2	1	-	н	(A) D OCH3 -CH-N-O-CH3 CH2CH(CH3)2 OCH3
1066	CH-CH ₂ -	2	2	1	-	H	(R) CH ₂ CH ₃ -CH-N-C-C-CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1067	CH-CH-	2	2	1	-	H	(H) Q OCH3 -CH-N-C-C-C-OCH3 -CH ₂ CH(CH ₃) ₂ OCH ₃
							

[0198]

Table 1.98

labie i	1.90						<u> </u>
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³ ·	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1068	CI{	2	2	1	-	Ĥ	(A) OCH2CH3 -CH-N-C
1069	CI	2	2	1	-	н	CH2CH(CH3)2 OCH2CH3
1070	CH-CH2-	2	2	1	-	н	-ch-Mc-C) sch
1071	с⊢—Сн₂-	2	2	1	-	н	artoart O
1072	CH-CH ₂ -	2	2	1	· .	н	ofoaf Octoby
1073	CI-CH ₂ -	2	2	1	-	н	- anno Co
1074	CI—CH2-	2	2 .	1		н	arbar Ori
1075	CI	2	2	1	-	н	aroor O
1076	сСН2-	2	2	1	-	н	-CHNOCHE NOS
1077	CI-CH2-	2	2	1	-	н	crizocar
	сСн ₂ -						-cH-Mc-C

[0199]

Tabl 1.99

IADL							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1079	CI(CI+ ₂ -	2	2	1	-	н	CH-Ho-Carl
1080	CI-CH2-	2	2	1	-	н	orocri - or H.c. Cocricis
1081	с-С-снұ-	2	2	1	-	н	ofocif oct
1082	CI-CH ₂ -	2	2	1	-	н	(S) P C C
1.083	CI-CH2-	2	2	,1	-	н	CH NO CO
1084	CI-CH2-	1	2	0	R	н	-CH2-N-C-
1085	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1086	CH2-CH2-	1	2	0	R	H	-CH2-N-C
	C├ - (CH₂-				•	н	-cH2-HC-H
1088	CI	1	2	0	R	н	-CHZ-HQ-CO
1089	CH-CH ₂ -	1	2	0	R	н	-CH2-HC-C
					•		

Tabl 1.100

1451	1.100						
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1090	CH-CH ₂ -	1	2	o	R	н	-cH ₂ -N-C-CH ₂ CH ₃
1091	СН-СН2-	1	2	0	R	н	-CH ₂ CH ₂ -N-C-
1092	CI	1	2	0	R	н	-CH ₂ CH ₂ -N-C
1093	CI	1	2	0	R	. н	-CH ₂ CH ₂ -N-C-
1094	с	1	2	0	R	н	-chichi-hic-N
1095	CI	1	2	0	R	н	-cH2CH2-HC-C3
1096	CI	1	2	0	R	H	-CH ₂ CH ₂ -N-C-N-C-N-H
1097	CH-2- ·	1	2	0	R	н	-CH2CH2-N-C-CH2CH2
1098	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1099	CH-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-Br
1100	CICH ₂ -	1	2	0	R	н	-CH2-N-C

Table 1.101

lable 1							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p - (CH ₂) _q G-R ⁶
1101	CI	1	2	0	R	н	-сн- н с-С-сн-
1102	CICH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	H3C					н	-ch₂-No-Ch₃
1104	ньс-Ст-	1	2	0	R	н	-CH ₂ -N-C
	H ₃ O-CH ₂ -					н	-CHE-NO-CH
1106	н с-{Сн-	1	2	0	R	H .	-CH2-NC-CH3
1107	H ² O-{	1	2	0	R	н	-CH ₂ -NO ₂
1108	CH ₃	1	2	0	R ,	H	-CH2-N-C-CH3
1109	CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1110	CH ₂ -CH ₂ -	1	2	Q	Ŗ	H	-CH₂-N-CCH₂-F
1111	CH2-CH2-	,1	2	Q	R	н	-CH ₂ -N-C-CH ₃

[0202]

Table 1.102

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1112	CH3	1	2	0	R	н	-CH2-H-C-CH3
1113	CI—CH2—	2	2	1	-	н	-CH ² -N-C
1114	CI(CH ₂	2	2	1	-	н	-CH ₂ -N-C
1115	СІ{	2	2	1	-	н ·	-CH2-N-C-CI
1116	CI-CH ₂	2	2	1	· -	н	-CH ² -N-O-CH ³
1117	CI-CH ₂ -	2	.2	1	-	н	-CH ₂ -N-C
1118	O-#g-O-04-	1	2	0	R	. н	-CH2-H-C-CF3
1119	н ₃ сэ-СЭ-сн ₂ -	1	2	0	R	н	-CH2-N-C-CF3
1120	H ³ CO CH ²	1	2	. 0	R .	н	-CH2-N-C-CF3
1121	O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1122	CHCISCH—————————————————————————————————	1	2	0	R .	н	-CH ₂ -N-C-CF ₃

[0203]

Tab	•	1.1	03

i abi	1.103						
Compd. No.	R ¹ (CH ₂)	k	m	n c	hirality	R³	—(CH₂) p (CH₂) q G—R ⁶
1123	CH ₂ -	1	2	0	R	н	-CH2-NO-CF3
1124	O ₂ N O CH ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1125	CI€H ₂	2	.2	1 ·	-	. н	arbart
1126	CI—(2	2	1	- .	н	Orboars Br.
1127	CI	2	2	1	-	н	CH-NO-CHAH
1128	CI	2	2	1	-	н	-chtho-Ct
1129	сі -{ }-сн₂-	2	2	1	-	н.	-CH-Hg-Cy-
1130	CH-CHF-	2	2	1	-	н	-artig-C
	CI-CH2-					н	oroar € -a+#g-€
1132	CI-CH ₂ -	2	2	1	-	. [.] . н	ortoart
1133	H ₃ CO—CH ₂ -	1	2	0	R	н	-CH2-HC-CE3
	•						

[0204]

Table 1.104

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p
1134	H3CO - CH2-	1	2	0	R	н	-CH2-N-C-CF3
1135	NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	H ₃ CO -CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1137	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1138	CH ₂	1	. 2	0	R	н	-CH2-NC-CF3
1139	(CH ₂) ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
1140	O ₂ N CH ₂ -	1	2	0	R	H	-сн ₂ -ү-с-С ₃
.1141	CH ₂ -	1	2	0	R	н	-сн ₂ -м-с-СF ₃
1142	CH2-					н	-CH ₂ -N-C
1143	Q-040-Q-041-	1	2	0	R	н	-CH2-N-C-CF3
1144	H ₃ CO,	1	2	0	R	Ĥ	-CH2-N-C-CF3

[0205]

Table 1.105

Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) 0 + (CH ₂) 0 G−R ⁶
1145	H ₃ CO CH ₂ -	1	2	0	R	H	-CH2-NC-CFa
1146	- aro	1	2	0	R	н	-сн ₂ -N-с-С _{F3}
•	HOG H OHE					н	-CH2-N-C-CL3
1148	C)—CH2-	1	2	0	R	н	-CH2-N-C-CE3
	CH ₃					н	-CH2-N-C-CCH2CH3
•	CH3 CH3					H .	-cH²-H°c-CH²cH³
1151	CH3 CH3	1	2	0	R	∙н	-CH-HC-CH-CF3
1152	CH ²	1	2	0	R	н	-CH-HO-NDF
1153	CH ₃	1	2	0	R	н	-CH2-HC-NCCI
1154	CH ² CH ² -	1	2	o	R	н	-cH²-H°-H³-CH³
1155	CH3 CH3	1	2	0	R	H *	-CH ₂ -N-CH ₃ -CH ₂ -N-CH ₃ F ₃ C
		·					

Table 1.106

Compd.							—(CH₂) , 1 (CH₂), G-R ⁶ R ⁵
1156	CH ₃	1	2	0	R	н	-сн- н с С(сн3)3
1157	CH,	1	2	0	R	н	-CH2-NC-SCH3
1158	CH ₃	1	2	0	R	н	-CH2-N-C-
1159	CH₃ CH₃	1	2	0	R	H	-CH ₂ -N-C
1160	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃
•	H²CO-CH2- CH2-					H	-CH2-NC-CF3
	H ₃ CO-CH ₂ -					н	-CH2-NC-CF3
	H³CO- C H²-					н	-CH2-N-C-CF3
	H ₃ CO-CH ₂ -CH ₂ -					н	-CH2-HC-CF3
1165	CH₂-	·1	2	0	R	н	-CH2-HC-CE3
1166	H,CO-CH ₂ -	1	2	0	R	H	-CH2-N-C

1 3 4

[0207]

Table 1.107

Compd.	R ² /(CH ₂)	k	m	n	chirality	R³	(CH ₂) _p (CH ₂) _q G-R ⁶
1167	с⊢—СН₂-	2	2	1		н	-cH2-N-o-C
1168	CL N CHE	1	2	0	R	н .	-CH2-N-C-CF3
1169	HO SHOW	1	2	0	R	н	-CH2-N-C-CF3
1170	CH ² -CH ² -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
.1171	CH-CH2-	1	2	D	R	Н	-CH ₂ -N-C-C-Br
1172	CI-CI-CIL-	. 1	2	0	R	н	-cH2-HC-ND-OH
1173	CI-CH ₂ -	1	2	0	R	н	-CH2-NO-NO-OCH3
1174	CICI-CH ₂ -	1	2	0	R	н	-CH2-H2C-
	H ₃ C—CH ₂ -		•		•	н	CH ₂ -N-C-CH ₃
1176	H3CCH2-	1	2	0	R	H	-CH ₂ -N-O-N-OH
1177	н₃о-{Ст-	1	2	0	R	н	-CH2-N-OCH3
		•			·		

[0208]

Table 1.108

Compd. No.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH₂) , R 5 (CH₂) , G -R5
1178	H3C	1	2	o	R	н	-CH ₂ -N-C
1179	H ₃ C	1	2	0	R	н -	-CH ₂ -N-C-NO ₂
1180	H ₃ C-CH ₂ -	1	2	0	R ·	H .	-CH2-HO-N
1181	CH ₃	1	2	0	R	н	-CH ₂ -N-C-Br
1182	CH ₃	. 1	2	0	R	н .	-CH2-N-C-N-O-H
1183	CH ² -CH ² -	1	2	0	R	н	-CH ² -M-C-M-OCH ³
1184	CH ₂	1	2	0	R	н	-CH ₂ -N-C
1185	CH ²	1	2	0	Ŗ	H	-CH2-NO2
1186	CH ₃					н	-cH-Ho-N
1187	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1188	a-Q-at-	2	2	1,	-	н	-CH2-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-

Table 1.109

, ,						•	
Compd. No.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G -R ⁶
1189	CI	2	2	. 1	-	Н	-CH2-HC-ND-OCH3
1190	CH-CH2	2	2	1	-	н	-CH2-N-C
1191	CH ² CH ²	,1	2	O	R	н	-CH2-N-Q-CF3
1192	CHP CH2-	1	2	0	R	н	-CH ₂ -N-O-CF ₃
1193	CH ² CH ²	1	2	0	R	н	-CH2-NO-COF3
1194	CH ² -CH ² -	1	2	0	R	н	-CH2-NC-ST3
1195	CH ² CH ²	1	2	0	R	н	-CH2-NO-C
1196	CH ² -CH ² -	1	2	0	R ·	н	-CH2-NO2
1197	CH ² CH ²					н	-CH2-N-CF3
1198	CH ² CH ²	1	2	O	R	н	-CHZ-N-C-C
1199	CH3 CH3	1	2	o	R	H	-cH²-H°c-CH3

[0210]

Table 1.110

• • • • • • • • • • • • • • • • • • • •		•					
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	R ⁴ -(CH ₂) ₀ + (CH ₂) _q G−R ⁶ R ⁵
1200	.CH³	1	2	0	R	н	-cH ² -H-C-CI
1201	CH3 CH3	1	2	0	R	H	-CH ₂ -N-C
1202	CH³ CH³-	1	2	0	R	Н	-CH2-N-C-CF3
1203	H3C-CH2-	1	2	0	R	н	-CH ₂ -N-O-CF ₃
1204	H ³ O-CH ² -	.1	2	0	R	н	-CH ₂ -N-C
1205 .	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-O-C
1206	н ₃ с-Сн ₂ -	1	2	0	R	H	CH2N-O
1207	H³C-CH²-	. 1	2	O	R	н	-CH2-H-C-SCF3
1208	н⁴о-{Сн²-	1	2	0	R	н	-CH2-HC-C1
1209	н₀о-(С)сн₂-	1	2	0	R	н	-CH2-N-C-CH3
1210	н _о с-О-сн ₂ -	1	2	0	R	H	-CH ² -H-C-CI
					·		

Table 1.111

1 apie							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) _p
1211	H ₉ O	1	2	0	R	н	-CH ₂ -N-CF
1212	н³с-{Ссн²-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	CI	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1214	CI(C)CH ₂ -	2	2	1	-	н	-CH ² -N-C
1215	CI	2	2	1	-	. н	-CH2-N-O-CI
1216	O	2	2	1		н	-CH2-HC-CF-F
1217	CH-CH-	1	2	0	R	Н	-CH ₂ -N-CF ₃
1218	CH-CH-	, 1	2	o	R ·	н	-CH ² -H ₀ -CH ²
1219	CI-CH _Z -	1	2	0	R		-CH2-NO-CH3
1220	CH-CH ₂	1	2	0	R	н	-CH ₂ -N-C
	сн-О-сн-					н	-CH ₂ -N-C
							

[0212]

Table 1.112

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1222	с⊢О-сн₂-	.1	2	0	·R	н	-CH2-HC-NHCH3
1223	CI-CH ₂ -	1	2	0	R	н	-CH2-N-C-
1224	CI—CH ₂ -	1	2	0	R	н	-CH2-H-C
1225	H ² O-{	1	2	0	R	H	-CH2-N-C-CF3
1226	н₃с-{_}сн₂-	1	2	0	R	н .	-CH2-N-C
1227	н₃с-{Сн₂-	1	2	0	R	Н	-сн₂-н-с-Сн³
	H ₃ C-CH ₂ -					н	-CH2-N-C
1229	H3C-{\bigcrup}-CH2-	1	2	O	R	н	-CH ₂ -N C-F
1230	H ₃ C-{	1	2	0.	R	H	-CH2-N-CH3
1231	H ² O-{\bigce}-CH ₂ -	1	2	0	R	н	-CH2-N-C-C
1232	н₃с-{_}-сн₂-	1	2	0	R	н	-CH ₂ -N-C

[0213]

Table 1.113

Compd. No.	• :						—(CH ₂) , (CH ₂) , G —R ⁵
	CH ₃						" d
1234	cH ² CH ²	1	2	0	R ·	н .	-cH²-N-c-CH³
1235	CH ² CH ²	1	2	0	R	н	-CH²-Họ-CH²
	CH ² CH ²					н	-CH2-N-C
1237	CH ₃	1	2	0	R	н	-CH ₂ -NC-F
	CH ₃					н	-CH-H-N-CH3
1239	CH2 CH2 CH3				•	H .	-CH2-NO-CS-CS
1240	CH ³	1	2	0	R	Н	-CH ₂ -N-C
1241	CH-CH ₂					H	-chz-H-c-
1242	CI—CH ₂ -	2	. 2	1	-	н	-CH2-N-C-F
1243	CI—CH	2	2	1	-	н	-CH2-N-C-CI

[0214]

Tabl 1.114

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1244	C⊢—CH₂-	2	2	1	_	н	-CH ₂ -N-C
1245 .	с-СН2-	2	2	1	-	H	-CH ₂ -N-C
1246	CH2−	2	2	1	-	H	-cH2-N-C-N-CH3
1247	CI-CH ₂ -	2	2	1	-	н	-CH2-HC-C
1248	CI—CH ₂ —	2	2	1	-	н	-CH2-H-C-NO2
1249	сн-Сснұ-	1	2	O	R	н	-CH₂-N-O-CI
1250	н ₃ с-Ст-сн ₂ -	1	2	0	R	н	-CH ₂ -N-C
1251	CH ₃	1	2	0	R	н .	-CH ₂ -N-C
	CI—CH ₂ -			•			-сн ₂ -№ С-сн(снь) ₂
1253	H2C-CH2-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₂
1254	CH ² CH ²	1	. 2	0	R	н	-CH ² -H-C-(CH ²) ²

[0215]

Tabl 1.115

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(СН ₂) _р (СН ₂) _q G-R ⁶
1255	CI	1	2	0	R	H	-CH ₂ -N-C-S
1256	н₃с-{сн₂-	· 1	2	Ó	R	н	-CH2-H-C-SPr
1257	CH2 CH2	1	2	0	R	н	-CH₂-N-C-Shr H₂N
1258	H ₃ CCH ₂ -	1	2	0,	R	н .	-cH²-H o
1259	CH ₃	1	2	0	R	н	-CH2-NO-CH
1260	н³о-{сн⁵_	1	2	O	R	н	-cH-H-c-C-cH²-cH²
1261	CI—()—CH ₂ —	1	2	o	R	н	-CH2-H-0-C(CH3)3
1262	H*O-{	1	2 .	Ó	R	H	-CIF-H-C-C(CH3)3
1263	CH ²	1	2	0	R	н	-CH2-H-C(CH3)3
1264	CI—CH2-	1	2	0	R	н	-cH2-H0-C0
1265	с	1	2	0	R	н	-CH_NOCO

Table 1.116

	R ¹ (CH ₂);					R³	–(CH ₂) _p + (CH ₂) _q G−R ⁶
1266	CH3	1	2	0	R	н	, -ar-Ho-to
1267	CI-CH2-	1	2	0	R	н	-CH2-NC-ND-OCF3
1268	с-О-снұ-	1	2	·0	R	н	-CH2-N-C-I
1269	CH_CH2-	1	2	0	R	н	-CH ₂ -N-CBr
1270	а-{Сн₂-	1	2	0	R	н	-CH ₂ -N-C-I
1271	CICH ₂	1	2	0	R ·	н	-CH₂-N-CF
1272	H ₃ O-{	1 .	2	0	R	Н	-CH2-NO-NO-OCF3
1273	H ₂ O-CH ₂ -	1	2	0	R	н	-CH2-N-C-CI
	H ₃ C-CH ₂ -					н	-CH₂-N-CBr
1275	H3O-CH2-	1	2	0	R .	н	-CH2-N-C-
1276	H ₂ O-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C

[0217]

Table 1.117

	•••••						
Compd.	R ² (3.2)					₽3 .	-(CH ₂) _p (CH ₂) _q G-R ⁶
1277	CH ^a	1	2	0	R	н	-CH2-NC-NCF3
1278	CH ² CH ²	1	2	0	R	н	-cH2-H-c-
	CH ₃				R	н	-CH2-N-C
1280 :	CH ₃	1	2	0	R	н	-CH2-H-C
1281	CH3 CH2	1	2	0	R	н	-CH2-NO-F
1282	CH-CH2-	2	2	1	-	н,	-CH_NOCF3
1283	CH-CH ₂ -	2	2 .	1	-	н	-CH2-N-C-CH
1284	CH-CH2-	2	2	1	-	н	-CH-HQ-P
1285	CH2-					н	-CH ² -N-O-CI
1286	^d € _{WO} PPO~ Pe	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1287	O ₂ N	1	2	0	R	н	CH2-N-C

[0218]

Table 1.118

I abic	1.110						
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1288	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-cH2-H-C-CF3
1289	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C
1290	CH3 CH3	1	2	0	R	н	-CH ₂ -N-C-H ₃
1291	H ₃ O-CH ₂ -	1	2	0	R	н	-CH2-N-O-N-CH3
1292	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃ H ₂ N Br
1293	H ₃ C-CH ₂ -	1	2	0	R	н	CH2-N-C P CF3
	H ₃ C				R	н .	-CH2-N-CF3
1295	н₃с-О-сн₂-	1	2	0	R .	н	-CH ₂ -N-C-(CH ₃) ₃
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-SCH ₃
1297	H3C	1	2	0	R	н	-CH ₂ -N-C-CH ₃ F ₃ C
1298	H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CF ₃

[0219]

Table 1.119

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) ₀ + (CH ₂) ₀ G -R ⁶
1299	H3CO - CH2-	1	2	0	R	н	-cH₂-N°CCFa
1300	н-со-О-сн-	1	2	0	R	н	-CH2-N-C-CF3
1301	H ₃ CO CH ₂ -CH ₂ -	1	2	0	R	н	-CHZ-N-C-CF3
1302	H ² CO-CH ² -CH ² -	1	2	0	R	н	-CHZ-H-C-CF3
1303	H ₃ CO—CH ₂ -	1	.2	0	R	н	-cri-Ho-Ct3
1304	O-afo-O-ar.	1	2	0	R	н	-CH_HOCF3
1305	H ₃ CO-CH ₂ -	1	. 2	0	R	Н	-CHZ-H-C-CF3
1306	H-CCH20 -CH2-	1	2	0	R	H	-CH2-N-O-CE-3
1307	H ₂ CO————————————————————————————————————	1	2	0	R	н	-CH2-N-C-CF3
1308	CH2-CH2-	1	2	Ò	R	н	-CH2-NC-CF3
1309	H ₃ CO - CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C-CF ₃

[0220]

Table 1.120

Table I						:	·
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1310	H3CQ CH2-	1	2	0	R	H	-CH ₂ -N-C
1311	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH5-	1	2	0	R	н	-CH2-HC-CE3
1313	CH ₂ -	1	2	o	R	н	-CH₂-N-C-CF₃
1314	O ₂ N CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1315	H ₃ C CH ₂ -	1	2	0	R	н	-CH2-H-C-CF3
1316	F ₂ C CH ₂ -CH ₂ -	1	2	0	R	H	-CH ² -H C-C ₂
1317	CH_CH _Z -	i	2	0	R .	н	-CH2-HC-CF3
	CH ₂ -CH ₂ -					н _.	-CH2-HC-CF3
1319	CHE-CHE	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1320	Br-CH ₂ -	1	2	0	R	н	-сн ₂ -N-с-С ^{СF₃}

[0221]

Table 1.121

Compd.	R\ ,						
No.	R ¹ (CH ₂) _[k	m	n	chirality	R³	—(CH₂) , (CH₂) , G —R ⁶
1321	CI(C)CH2-	1	2	0	R	н	-CH₂-N-CCI
1322	CI-CH-CH-	1	2	0	R	н	-сн₂-мс-Сн₃
1323	CI	1	2	0	R	н	-cH2-N-c-CI
1324	CI-CI-CI-L	1	· 2	0	R	н	-cH⁵-H-c
1325	CI-CIT-CIT-	1	2	0	R	н	-art=Ho-O-o-O
1326	cı-(∑-cir⊱	1	2	0	R	н .	-CHZ-N-O-C
1327	CI-CITY-CITY-	1	2	0	R	. н	-CH2-N-Q-CH3
1328	н,с-С>-сн,-	1	2	0	R	н	-сн ₂ -N-о
1329	н,с-С)-сн,-	1	2	0	R	н	-CH ² -N-C
1330	н _з с-Су-сн ₂ -	1	2	0	R	н	-art-Ho-Q-a
1331	H³C-CH²-	1	2	0	R	н	-CH2-H2-CH3

[0222]

Table 1.122

							•
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	Ft ³	-(CH ₂) p (CH ₂) q G−R ⁶
1332	ң-с- О −сн ₂ -	. 1	2	0	R	н	-cH2-HC-C-C-C
1333	H ₃ C-CH ₂ -	1	2	. O	R	н	-cH2-HCC-
1334	H3C-CH2-	1	2	0	·R	н	-CH ₂ -N-C-CH ₃
1335	CH ₃	1	2	0	R .	н	-CH2-N-C-Br
1336	CH ₃ CH ₃	1	2	0	R	н	-cH²-H-o-CH³
	CH ₃					н	-cH-Ho-CI
1338	CH2-CH2-	1	2	0	R	H .	-CH2-HC-CH3
1339	CH ³				R	н	-cH²-H°C-()-c-()
1340	CH3 CH3						-CH ² -H _C -N
1341	CH³-CH²-	1	2	0	R	н	-CH ₂ -N-C
1342	CI-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CI
·							

[0223]

Table 1.123

10010							
Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1343	CICH ₂ -	2	2	-1	-	н	-сн ₂ - N-с- Сн ³
1344	с⊢——сн₂-	2	2	1	-	н	-cH ₂ -N-C-Ci
	CI(CH ₂ -			•		Ħ	-cH₂-N-CCH₃
1346	CH-CHI-	2	2	1	-	н	-cH ₂ -N-C
1347	CH-CH-	1	2	0	R	н	-CH2-NO-STCH3
	H ₃ OCH ₂ -					н	-CH2-NO-STCH3
1349	CH ₃	1	2	.0	R	н :	-CH-HO-STCH3
1350	CI-CH ₂ -	2	2	1.	-	н	-CH2-N-C-S CH3
1351	CH_CH2	1	2	0	R	н	-0+* H c-C-1
1352	H ₃ C-(CH ₂ -	1	2	0	R ·	н	-04-H2-042
1 353	H ₃ C-CH ₂ -CH ₂ -CH ₃ -	1	2	0	R	н	-04-11-0-04
					·		·

[0224]

Table 1.124

Compd.	H ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p CH ₂) _q G-R ⁶
1354	CI-CH ₂ -	2	2	1	-	· н	HH C-Ot-
1355	CH	1	2	0	R	н	-CH ² -H-C-CN
1356	H ₃ O	1	2	0	R	н	-CH ₂ -N-C
1357.	CH₂ CH₂	1	2	0	R	н	-CH ₂ -N-CN H ₂ N
1358	CI-CH2-	2	2	1	-	н	-CH ₂ -N-C-N
1359	CH ₃	.1	2	o	R	н	-ch2-h-c-
1360	CH ³	1	2	0	R	н	-CH ₂ N CH ₃ CH ₃ CH ₃
1361	H3C-CH2-	1	2	0	R	н	-сн₂-№о-Осн₃
1362	CH ₃						-сн ₂ -н-с-СН ₃
1363	CH ₃	1	2	0	R	н	-CH ² -H-C-CH ³ -CH ³ -CH ³ -CH ³ -CH ³
1364	H ₃ O-{	1	2	O	R	н	-CH2-N-C-CH3

[0225]

Table 1.125

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(СН₂) , С СН₂) , С -R ⁶ В ⁵
	CH ₃					н	-cH ² -N-c-\
1366	CH ₃	1	2	0	R	н	-сн²-Но-О-сн³
1367	HªO-CH2-	1	2	0	R	н	-cH²-Hg-⟨-⟩-cH²
1368	CI_CH _Z -	1	2	0	R	Н	-CH2-H-C-CF3
1369	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-O-CH ₂ CF ₃ F ₃ CCH ₂ O
1370	CI-CH ₂ -	1	2	0	R	H	-CHY-N-C-S) Br
1371	CH-CH _E	1	2	0	R	н	-orf-Ho-O
1372	a-C)-ar-	1	2	0	R	н	-01=H0-()
1373	H3O-{	1	2	- O	R	Н	-CH_NC-CF3
1374	н,с-С)-сн-	1	2	0	R	н	-CH2-NC-SBr
1375	H³CCH ⁱ -	1	2	0	R	н	-CH2-HC-S

[0226]

Tabl 1.126

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) p (CH ₂) q G -R ⁶
1376	H ₃ C-{}-CH ₂ -	1	2	0	R	н	-CH2-N-C-
1377	H3C-CH2-				R	н	-oris-Ho-C
1378	CH ₃	1	2	0	R	H	-CH ₂ -N-C
1379	CH3 CH3	1	2	0	R	н	-CH ₂ -N-O-CH ₂ CF ₃
1380	CH ₃	1	2	0	R	н	-CH2-N-C-SBr
1381	CH ₃	1	2	0	R	Ħ	-CH2-N-C
1382	CH ₃	1	2 .	0	R	н .	-art Light
1383	CI-CH2-	2	2	1	.	Н	-CH2-HCC1
1384	CICH2-				-	н	-CH ₂ -N-C-S-Br
1385	CI-CH ₂ -	2	2	1	-	н	-cH2-HC-C
1386	CI————————————————————————————————————	2	2	1	-	н	-CH2-HC-C

[0227]

Table 1.127

•					•		
Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(СН₂) _р
	CH ₂					. н	-cHz-Ha-A
	CH3 CH3					н	-CH ₂ -N-C-N-N CH ₃
	CH ²					н	-ch-Ho-Ch'o
1390	H ³ C CH ³ CH ³ CH ³	1	2	0	R	н	-CHZ-N-C-CF3
1391	H ₂ C-CH ₂ -	1	2	0	R	н	-CH2-NO-CF3
1392	HPO-CH ⁵ -CH ⁵ -	1	2	O	R	н	-сн ₂ -но-С ^{СF3}
					•	· н ·	-cH2-HQ-CE3
1394	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
•	њс=сн-€}−сн _₹ -					н	-CH2-N-C-CF3
1396	H ² O-CH ² -	1	2	0	R	н	-CH2-HC-CF3
1397	Br—CH2	1	2	0	R	н	-CH2-H-CCF3

[0228]

Table 1.128

lable	. 1,20					_	
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1398	CI CH3	1	2	0	R	н .	-CH2-N-CCE3
1399	CH—CH—	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1400	CH—CH— CH ³	1	2	0	R _.	н	-CH ₂ -N-C-CF ₃
1401	H ₃ O-CH ₂ -	1	2	0	R	н	-CH2-HC-NHC-CI
1402	H ₃ C	1	2	0	R	н	-CH2-N-0
1403	H ₂ C	1	2	0	R	н,	-CH2-H-C-CN
1404	H40-CH2-CH2-	1	2	0	R	н	-CH2-N-C-
1405	H ₃ O	1	2	0	R	н	-CH ₂ -N-C-N H ₃ CS
1406	H ₃ C-CH ₂ -	1	2	.0	R	н	-CH₂-N-C
	H3O-CH2-						-CH ₂ -N-C-N H ₃ -CCH ₂ S
1408	H ₃ C	1	2	0	R	н	-cH2-H-C-N-
	•						

Tabl 1.129

Compd.	R ¹ /(CH ₂)-	k	m	n	chirality	ЬŞ	-(CH ₂) _p
1409	H ₃ O	1	2	0	R	н	-CH ₂ -N-CCH ₃
1410	CH ₂	1	2	, O	R	Ή	-сн₂-й-с- С
1411	сн-Ст-сна-	1	2	0	R	н	-ar-hç-(-)
1412	H ₃ C-CH ₂ -CH ₂ -	1	2	0	R	н	-ar-ng-
1413	CH2-CH2-	· 1	2	0	R	н	-ar-ho-
1414	CI-CH _E -	2	2	1	-	H	-c+z-Ng-√
1415	CH-CH _Z -	1	2	0	R	н	-CH ₂ -N-C-SCN H ₂ N
1416	H ₈ C(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCN H ₂ N
	CHP CHP-					н	-CH ₂ -N-C-SCN H ₂ N
1418	CI-CH2-	2	2	1	-	н	-CH ₂ -N-C-SCN H ₂ N
1419	CI	1	2	0	R	н	-CH ₂ -N-C-SCN -CH ₂ -N-C-SH -CH ₂ -N-C-SH -CH ₂ -N-C-SH

[0230]

Tabl 1.130

Compd.	R ¹ (CH ₂)-	k	m ·	n	chirality	H³	-(CH ₂) p (CH ₂) q G-R ⁶
1420	H ₂ O-{\rightarrow}-CH ₂ -	1	2	0	R	н	-cH₂-H°C-SH
1421	CH ₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-SH H ₂ N
1422	CI-CH _Z -CH _Z -	2	2	1	. -	н	-CH ₂ -N-C-SH H ₂ N
1423	CI-CH2-	1	2	0	R	н	-CH2-N-C-
1424	H ₃ O(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1425	CH3 CH3	1 .	2	0	R.	н	-CH2-H-C-C
1426	CI-CH _Z -	2	2	1	÷	H	-CH2-N-C-C
1427	CICH2-	2	2	1	-	н	-CH ₂ -N-C-Shr H H ₃ C-NH
	ci-O-cut-					, н	-CH ₂ -N-C-Br
1429	HCCH2O-{	2	2	1	-	н	-CH ₂ -N-C-SCI
1430	CHI-CHI-	2	2	1	-	н	-CH ₂ -N-C- H ₂ N CI -CH ₂ -N-C- H ₂ N CI
					· · · · · · · · · · · · · · · · · · ·		

Tabl 1.131

	<u> </u>		*		•		
Compa	d. R ² (CH ₂)	k	m	n	chirality	R³	—(CH₂) q G−R ⁶ H ⁵
1431	ньсан _я о-{}-ан _г -	2	2	1		я	-CH ₂ -N-C
1432	CH2-	2	2	1	-	н	-CH ₂ -N-C
1433	н°ссн³о-О}-ан-	2	2	1	• •	н	-cH-Hc-CH-OCHCH
1434	ıfca1³o-{}-af-	2	2	1	-	H	-art how city - ochich
1435	HCCHI-CHI-	2	2	1	-	. н	-CH ₂ -N-C-CH
1436	(H ₂ C) ₂ CH-	2	2	1	-	н	-CH2-H-C-CI
1437	HC(CH ²)-CO-CH ₂ -	2	2	1	-	" H	-CH ₂ -N-CH H ₂ N
1438	нуссий—О—сий-	2	2	1	-	н	-CH ₂ -N-C-SPr
1439	(H4C)2CH	2	2	1	-	н .	-CH ₂ -N-CBr
1440	Hachiro-Cy-or-	2	2	1	-	н	-CH ₂ -N-C
1441	н,сэ-О-сн-	2	2	1	-	н	-CH ₂ -N-C-Br -CH ₂ -N-C-Br -CH ₂ -N-C-Br
							· · · · · · · · · · · · · · · · · · ·

Table 1.132

100.0								
Compd No.	R ¹	-(CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1442	ңссң-	-CH2-	2	2	1	-	н	-CH2-HC-CH2-CH2-CH2-CH3
1443	(њс)₂сн	-C-045-	2	2	1	-	н	-CH2-IN-C
1444	НССН?)	O	2	2	1	٠.	н	-C14-NC-C
1445	н₅ссн₂−	-CH2-	2	2	1	-	н	-CHZ-HC-CHZCH
1446	(H³C)₂CH	-C)-cH _Z -	2	2	1		н	-cH-Hc-Der(OH)
1447	н,скн <u>у</u> ,с	- O -01₂-	2	2	1	-	, н	-art High
1448	н _у с с	_CH ₂ −	2	2	1	-	н	-art-Ho-Ch
1449	н₄ссн <u>₂</u> —	⊘ -cH ₄ -	2	2	1	. -	Н	-CH2-NO-CF3
		-C)-alz					н	-CH2-NC-CF3
1451	(насан) ў	4- ()-01/2-	2	2	1	-	н	-CH2-N-C
1452	но н₃со-{	-ariz-	2	2	1	-	н	-cH²-Hg-Ct-3

Tabl 1.133

145.	1.100						
Compd No.	· R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1453	HCCH?YO-()-O17-	2	2	. 1	-	н	-CH ₂ -N-C
1454	ньсан₂о-С}-сн₂-	2	2	1	-	н	-CH ₂ -N-C
1455	H0-CH2-	2	2	1	-	н	-CH2-HC-CF3
1456	CHF-CHF-	2	2	1	-	н	-CH ₂ -N-C
1457	(CH ₃) ₂ N(CH ₃ -	2 .	2	1	-	H	-CH ₂ -N-C- H ₂ N
1458	H0-CH2-	2	2	1	-	н	-CH2-N-C-
1459	(HCFN-Q)-OH2-	2	2	1	-	H	-CH ₂ -N-C
1460	H0-CH²-	2	2	1	-	н	-CH ₂ -N-C
1461	HO-CH2-	2	2	1	-	H	-ar-Hg-Carpoor
1462	HO-CH-CH-	2	2	1	-	н	-CH2-HO-CH3
1463	a-Q-arr	2	1	1	-	Н	-сн _я -й-с _{сь}

[0234]

Table 1.134

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1464	CI	2	1	1	-	н	-cH ₂ -N-C
1465	CI—CH ₂ -	2	1	1	-	н	-CH2-N-C-CF3
1466	CH-CH2-	2	1	1	-	н	-CH₂-HC-
1467	С	2	1	1	-	н	-CH²-H°C-
1468	CI-CH _Z -	2	1	ৰ	-	H	-CH2-HC-
1469 ·	сн-Сн-	2	1	1	-	H	-сн ₂ -N-о-С _F
1.470	с	2	1	1	<u>.</u>	н	-cH ₂ -N-o-Cd
1471	CI—CHź-	2	1	1	-	н	-CH2-N-CF
1472	CH ₂ -CH ₂ -	1	2	0	R	н	-CH ² -H-C-C _C -2
1473	Br S-CH2-	1	2	0	R	н	-CH2-N-C-CE3
1474	CH CH	1	2	0	R	н	-CH ₂ -N-C-CF ₃

[0235]

Tabl 1.135

Tabi	1.133							
Compd No.	R ¹	-(CH ₂);	k	m	n	chirality	H3	-(CH ₂) p G (CH ₂) q G-R ⁶
1475		CH ₂	1	2	0	R	н	-CH ₂ -N-C
1476	Br	S-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1477	Br	Т \$-сн ₂ -	1	2	0	R	H .	-CH2-N-C-CF3
		D-ant					H .	-CH ₂ -N-C-CF ₃
1479	ӊ₀⊷	CH3	1	2	0	R _.	н	-CH ₂ -H ₂ C-C ₂ F ₃
1480	њо- {	-CH2-	1	2	0	R.	н	-CH2-HO-CF3
1481 -	њо-{ њо	CH ²	1	2	0	R	н	-сн ₂ -н о-С ^С F ₃
1482	BX C	-CH ₂ -	1	2 .	0	R	н .	-CH2-HC-CF3
1483	H ₃ C	ў сн ₂ -	1	2	0	R	н	-CH2-H-C-CF3
1484	. Oʻ	D-or	1	2	0	R	н	-CH2-NO-CF3
1485	ӊо- {	_ Сн-	1	2	0	R	н	-CH2-NO-STF

[0236]

Tabl 1.136

Compd. No.	R ¹ (CH ₂) _j	k	m	ก	chirality	R³	-(CH ₂) _{P +5} (CH ₂) _q G-R ⁶
1486	н₃с-{_}сн₂-	1	2	0	R	н	-CH ² -H-COCH ³
1487	H3C-{}-CH2-	1	2	o	R	н	-CH ₂ -N-C-CI
1488	H ₃ O	, 1	2	0	R	н	-сн³-и-о-Д Ь сн³
1489	H3C-CH2-	1	2	.0	R	н	-CH ₂ -N-C
1490	H3C-CH2-	1	2	0	R	н	-CH2-N-C-(CH3
1491	нРС-СНТ-	1	2	O	R	н	-CH ² -N-O-Q 0 C=0 NH ²
1492	HPC-CHP-	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
1493	CH ₃ CH ₂	1	2	0	Ŕ	н	- or Hc < 5
	CH ₃					Н	-CH2-N-OH-
1495	CH ₃	1	2	0	R	н	-CH2-N-C-CN H H3-C
1496	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-H ₃ -CH ₃ -CH ₃ -CH ₂ -N-C-H ₃ -CH ₃ -N-C-H ₃ -
				•			

[0237]

Table 1.137

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G -R ⁶
1497	CH3	1	2	0	R	н	-CH ₂ -N-O-CH ₃ CH ₃ CH ₃
1498	CH ₃					н	-CH2-N-C
1499	CH2-CH2-					н -	-сн- Н с- Д Ь сн³
1500	CH ³	1	2	0	R .	н	-cH₂-N-C CH₃
1501	CH ₃		•		R	H .	-crF-H-o
1502	CH ₃				R	н	-CHZ-N-O-CE-2
1503	CH ³	. 1	2 ,	0	R	н -	-CH ₂ -N-C-CH ₂
1504	H ₂ N-{}-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1505	O-arto_	1	2	0	R	н	-cHz-Ng-CF3
1506	CH2-CH2-	2	1	1	-	н	-CH ₂ -N-C
1507	сі-Су-снұ-	2	1	1	-	н	-CH2-N-C

[0238]

Table 1.138

Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1508	сн-С-сн-	2	1	1	-	н	-CH ₂ -N-C
1509	a-Ch-an-	. 2	1	1	-	н	-a+2-H c-
1510	CHCH ₂ -	2	. 1	1	-	н	-CH ₂ -N-O
1511	CI	2	. 1	1	-	н	-CH₂-N-C-S Br
1512	CI	2	1	1	-	н	-CH ₂ -N-C
1513	CH-CH2-	2	1	1	-	H	-CH2-N-C
1514	tericari)su-{}-ari-	2	2	1	- ·	н	-CH ₂ -N-C
1515	HO -CH2-	·· 2	2	1	-	H	-CH ₂ -N-C
	(kricari)sh-O-ars-		2		-	Н	-CH ₂ -N-C
1517	H ₂ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-H H ₂ N Br
1518	HQ CH ₂ -	2	2	1	-	н	-cH2-H0-OCHP
							•

[0239]

Table 1.139

							·
Compd. No.	R ² (CH ₂)	k	រា	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G −R ⁶
1519	H ₂ CO-CH ₂ -CH ₂ -	2	2	1	-	н	-CH-HC-OH
1520	Br—CH _Z -	1	2	0	R	н	-CH2-H-0
	H ₂ CO-CH ₂ -				R	н	-CHZ-HQ-QBr
1522	CH2-CH2-	1	2	· O	R	н	-CH ² -H-C-C
1523	H³CO-CH²-	.1	2	0	R·	H .	-CH2-HC-C
1524	HO-CH2-	1	· 2	0	R	H	-CH2-N-C-Ser
1525	Br-CH2-	1	2	0	R	н	-CH2-N-C-CF3
1526	H ₂ 00	1	2	0	R	H	-CHZ-HO-COCF3
	CAT-CHF	*				н	-CH2-NO-CF3
1528	H ₃ CO CH ₂ -	1	2	0	R	н	-CH2-HQ-CCF3
1529	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -NO-OCF ₃
							

Table 1.140

Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1530	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1531	H ₃ CO-CH ₂ -	1	2	0	R	н	-сн₂- h с-{ } с г з
1532	СН	1	2	0	R	н	-сн ₂ - № с- СЕ3
1533	H³CO-CH2-	1	2	٥	· R	н	-CH₂-N-C-CF3
1534	H0-CH2-	1	2	0	R	н	-CH2-N-C-CF3
1535	Br-CH ^z -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1536	H ₃ CO-CH ₂ -	1	2	0	Ŗ	н	-CH2-N-C-F3
1537	CH2-	1	2	0	R	н .	-CH2-N-C-CF3
1538	H ² CO-CH ² -	1	2	0	R	н	-CH ₂ -N-C
1539	H0-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1540	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

[0241]

Table 1.141

Compo	d. R1 (CH2) -	k	m	n	chirality	R³	-(CH ₂) _P +(CH ₂) _q -G-R ⁶
1541	H3CO-CH2-CH2	- 1	2	0	R	Н	-CH ₂ -N-C-F ₃
1542	CH2-CH2-	1	2	0	R	н	-CH₂-N-C-CF₃
1543	H ₃ CO — — — — — — — — — — — — — — — — — — —	1	2	0	R	• н	-CH ₂ -NO-CF ₃
1544	Ho-CH ₂	1	2	0	R .	н	-CH ₂ -N-C
1545	CLS CHE	1	2	0	R	н.	-CH2-NC-CF3
1546	H3CO CH2	1	2	0	R	н	-CH ₂ -N-C
1547	H ₂ CO-CH ₂ -	. 1	2	0	R	H	-CHE-HO-CF3
1548	H ₂ O-CH ₂ -	1	2	0	R	Н	-CH ² -H ₂ -CH ³ CH ³
1549	H ² O-{CH ² -	1	2	0	R	н	-CH ₂ -N-C
1550	HPC-Q-CH ²	1	2	0	R	н	-at-lic- Hoo Hoo
1551	H ₃ O-{	1	2	0	R	н	-are-lie-

[0242]

Table 1.142

Compd.	R ² -(CH ₂);-	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1552	H3C-{}-CH2-	1	2	0	R	H	-cH₂-N-C-
1553	H3C-CH2-	1	2	0	R	н	-or Ho-Ci
1554	H ₃ C-\(\bigc\)-CH ₂ -	1	2	o	R	н	· -CH ₂ -N-C- H H H
1555	H ₃ O-CH ₂ -	1	2	0	R	н	-CH ² -M-C-M O CH ³ CH ³
1556	н ₃ С-СН ₂ -	1	2	0	R	н	-CHZ-H-C-CH3
1557	H ₃ CCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NN H ₃ C
1558	H3C-CH2-	1	2	0	R .	н	-CH2-N-C-N-CH3
1559	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	H3C-(-)-CH2-						-CH2-N-C
1561	H ² C-{\bigcCH ² -	1	2	0	R	н	-CH ² -N-O
1562	ньс-Ст-сну-	1	2	0	R	н	-CH2-N-C-CH3 CH3 CH3 CH3
							····

[0243]

Table 1.143

. 45.0							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	₽³	—(CH ₂) p 1 (CH ₂) q G R ⁶
1563	H3C	1	2	0	Ħ	н	-crt.#g-
1564	H ² C-CH ² -	1	2	0	R	н	-or-Hc-
1565	CH ² -CH ² -	1	2	0	R	H	H ² CO H-C-CI
1566	CH ²	1	2	0	R	н .	-CH2-N-0
1567	CH ² CH ²	1	2	0	R	н	
1568	CHP CHP- CHP CHP-					H.	-or-light
1569	CHP CHP CHP	1	2	0	R	. н	~~ ~
1570	ньсэ-СЭ-снд-	2	2	1	-	н	-ar-Ho-Ca
1 57 1	нуса-Су-сн-	2	2	1	-	H	-ar-Hc-C-scrr
1572	Cho-Ch-onz	2	·2	1	-	н	-CH ₂ -N-C-CF ₃
1573	mo-Q-llg-Q-ort	~ 2	2	1	-	н	-CH2-H-C-C-23

[0244]

Table 1.144

1 4010	1.1 77						
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) , 1 -(CH ₂), G-R ⁶ R ⁵
1574	40€ Ho-Cot-	2	2	1	-	н	-CHZ-N-C-CF3
1575	c-◆ #ç-◆ - art-	2	2	1	-	. н	-CH ₂ -N-C-CF ₃
1576	~~~~	2	2	1	-	н	-сн ₂ -N-С-СF ₃
1577	HOCKY FING- CO-CH-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1578	H'c C-cH'	2	. 2	1	•	н Н	-CH ₂ -N-C-CF ₃
1579	Q.18. O-ove	2	2	1	-	н	-CH2-N-C-CF3
1580	()-#°-()-04-	2	2	1	-	H	-CH2-N-C-CF3
1581	CH-CH2-	2	2	1	-	н	-CH_NO O
	CH-CH ₂ -				-	H .	- CH, 10 - CH,
1583	CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1584	CH-CH4-	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
							

Tabl 1.145

iabi i	45						
Compd.	R ¹ (CH ₂)	k	w	п	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1585	CH-CH2-	1	2	0	R	н	-CH2-N-O-S
	сн-С-снұ-					H	-cH ₂ -N-C-N-CI
1587	CH-CH2-	1	2	o	R	н	-CH ₂ -N-C-C
1588	CH-CH2-	1	2	0	R	H .·	-cH ₂ -N-C-H ₃
1589	H²O-{}-CH²-	1	2	0	R .	H	-CH ₂ -N-C
1590	H ₃ O	1	2	0	R	н.	-CH ₂ -N-C
1591	H-0-CH2-	1	2	0	R	H	-CH_NO-NO-N
1592	HO-CH2-	1	2	o	R	н	-CH2-H0
	H3O-Q-CH2-					. H	-cur-ll o-C
1594	CH ² -CH ² -	1	2	0	R	н	-CH ₂ -N-CF ₃
1595	CH ₃	1	2	o •	R	H	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
				_			

[0246]

Table 1.146

						R³	-(CH ₂) p (CH ₂) q G-R ⁶
1596	CH ₃	1	2	0	R	н	-CH₂-N-C-S
	CH ₃					н .	-CH²-V;-C-\CI
	CH ₃					н	-CH2-H-C
1599	CH3 CH3	1	2	0	R	H .	-CH ₂ -N-C-V-CH ₃
1600	CI-CH2-	2	2	1	·. -	H·	-CH ₂ -N-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S
1601	CICH ₂ -	2	2	.1	•	H	-CH2-N-C-CF3
1602	CI—CH _Z	2	2	1	-	H	-CH ₂ -N-O-CN
1603 ⁻	с-Сн-	2	2	1	- -	н	-CH2-HO-N-CI
1604	с-Сн-					н	-CH2-N-0-
1605	CI—CH _Z	2	2	1	-	н	-CH ₂ -N-C
1606	CI—CH2-	1	2	0	R	н	-CH2-N-CSCF3

[0247]

Tabl 1.147

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	₽³	—(CH ₂) p (CH ₂) q G−R ⁶
1607	H ₂ C(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1608	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1609	CH-CH-	2	2	1	-	Н	-CH2-NO-SCF3
1610	Q#;\-\-	2	2	1	-	н	-CH ⁵ -N-C-C _{CE} ³
1611	a Dig O ar	2	2	1	-	н	-CH2-N-C-CF3
1612	ircoicum llo-O-or	. 2 ·	2	1	-	· н	-CH ₂ -N-C-CF ₃
-1613	r°∙Q [‡] şΩ α∙	2	2	1	-	н	-CH2-HQ-CF3
1614	F ₂ C9-CH ₂ -CH ₂ -	1	2	0	R	H	-CH2-N-C-CF3
1615	F ₃ C9-CH ₂ -CH ₂ -	2	2	1	-	н	CH2-N-C
1616	F ₃ CS-CH ₂ -CH ₂ -	2	2	1	-	. н	-CH2-H-C
1617	F ₂ CS-CD-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H ₂ N-C- H ₂ N-C-

Table 1.148

I abic							
Compd.	R2 (CH2)	k	m	ก	chirality	R³	—(CH ₂) p CH₂ q G R ⁶
1618	.HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH2-N-CBr
1619	HQ CH ₂ -	1	2	Ó	R	н	-CH ₂ -N-C
1620	H ³ CO-CH ² -	1	2	0	R .	. н	-CH2-H-C-CF3
1621	H ₉ CO-CH ₂ -	1	2	0	R	н	-cH₂-N-C
1622	H ² CO−CH ² -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1623	но-Ст-	1	2	0	R '	Н	-CHZ-NO-CHBI
1624	HO-CH2-	1	2	o	R	Н	-CH2-N-C-C
1625	HO-CH _Z -	1	2	0	R		-CH2-NO-CF3
	HOCH ₂ -					Н	-CH ₂ -N-O-CF ₃
1627 _.	но-СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1628	н-сэ-Ст-	1	2	O	R	н	-CH ₂ -N-C

Table 1.149

1 4214	0						
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _{р + (} CH ₂) _{q G} -R ⁶
1629	н,сэ-О-сн,-	1	2	0	R	н	CH2-N-C
1630	H°C CH ² -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
. 163 1	HENCHY—CHY-	1	2	o	R	н	-CH2-NO-CF3
1632	CF ₃ CH ₂ -	1	2	0	R	н	-CH2-HO-CF3
1633	H ₂ CS NO-CH ₂ -	1	2	0	R .	н	-CH2-NO-CF3
1634	(HC)zCH C)-CHZ	1	2	0	R	н	-cH ² -H ₀ -C ₂ -2
1635	H ₀ O	1	2	0	R	н	-сн²- <mark>н.с</mark> -С-с(сн²)²
	H ² C					. н	H₃C CH₃ -CH₂-N-C H
	CHP-CHP-CHP-						
1638	CH ² CH ² -	1	2	0	R	н	-CH2-11-0-(CH2)3-CH3
1639	CH ² -CH ² -	1	2	0	R	н	-cH-Ho-O-O(CH2)3CH

[0250]

Table 1.150

						•	·
	R ¹ (CH ₂) _j						-(CH ₂) _p + (CH ₂) _q G-R ⁶
	CH ³					н	-012-H-C-M-(CH2)-CH3
1641	CH ²	1	2	0	Ř	н	-CH ₂ -N-C-C
1642	CH ₃	1	2	0	R	н	-CH ₂ -N-C-N
	CH ³					H	-CH2-N-C-
1644	CH3	٠1	2	0	R.	н	-ch²-lho-o-o-O
1645	CH2-CH2-	1	2	0.	R	н	-CH2-N-C
1646	Br O CH2	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
1647	Hiclarina——ara-	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
	H ₃ C(CH ₂) ₃ —CH ₂ -					н	-CH2-N-O-CF3
1649	H°C(arin³—{ars_	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1650	н ^д с(ан)}	1	2	0	R	н	-CH2-N-C-CF3
•							

Table 1.151 ·

Compd. No.	R ¹ —(CH ₂) _j —	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1651	મ,c(ભર)₁ -()−ભર-	2	2	1	-	н	-ch-Ho-Ch-Chbch
1 6 52	Hc(al)()-al ₂ -	2	2	1	-	н	-CH ₂ -N-C-SBr
1653 (rtclath*	2	2	1	-	н	-CHZ-NC-H
1654	rkanni-()-ar-	2	2	1	-	н	-CH2-NCBr
1655 H	reconsar-	2	2	1	-	н	CH TOPPOH
1656 F	faari)*-()-ari-	2	2	1	-	н -	-CH ₂ -N-O
1657 H	fc(at) =-{\right\r	2	2	1	•	н	-cirtic
1658 H	fclath tar-	2	2	1	-	H	-CH ₂ -N-C-I
1659	a———ar-	2		1	-	н	-CH₂-N-C-
1660	Br—CHy-	1	2.	0	R	H	-CH2-N-C
1661	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-O-CF ₃ -CH ₂ -N-O-CF ₃ -CH ₂ -N-O-CF ₃

[0252]

Tabi 1.152

			_				
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) , (CH ₂) , G-R ⁶
1662	8r	1	2	0	R	н	-CH ₂ -N-CF
1663	Br-CH ₂ -	1	2	0	R ·	H	CI CH ₂ -N-C- H ₂ N
1664	н₃ся-Осн₂-	2	2	1	-	н	-CH ₂ -N-CF ₃ H ₂ N
1665	нусэ-О-сну-	2	2	1	-	H	-CH ₂ -N-C
1666	H ₃ CS-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CF
1667	ң саңұ — С	. 2	2	1	· •	н	-CH ₂ -N-C-B _r
1668	н•осн²—О—сн²-	2	2	1	-	Ή	-CH ₂ -N-C-F-F
1669	ньссну—Сэну-	2	2	1	-	н	-CH ₂ -N-C
1670	H ₀ CCH2-CH2-	2	2	1	. -	н	-CH ₂ -N-C
1671	ньосня—О—сня-	2	2	1.	-	н	-CH2-NC-CF3
1672	н _{ссна} —сн _а -	2	.	1	-	H	-CH₂-N O-CF3

[0253]

Table 1.153

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	—(CH ₂) _p
1673	н₃ссн₂-{}-сн₂-	2	2	1	-	н	-CH2-N-C
1674	F-CH2-	2	2	1	-	н	-CH ₂ -N-C-CH _{Br}
1675	F-C-CH2-	2	2	1	•	н	-CH ₂ -N-C
1676	F-CH ₂ -	2	2	-1	-	н	-CH ₂ -N-C
1677	E-CH ² -	2	2	1	-	н	-CH ₂ -N-O
1678	F-CH _Z -	2	2	1 .	-	н	-CH ₂ -N-C
1679	F-CH _Z -	2	2	1	-	Н	-CH ₂ -N-C-Cl
1680	F-CH2-	2	2	1	-	Ĥ	-CH ₂ -N-C-CF ₃
1681	F-CH _Z -	2	2	1	-	н	-CH2-NC-CF3
1682	F-CH ₂ -	2	2	. 1	-	н	-CH2-HC-CI
1683	O-# ₆ -O-or-	2	2	1	-	н	-CH ₂ -H-C-Br

[0254]

Table 1.154

1 abic							
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1684	O#5-O-01-	2	2	1	-	н	-CH ₂ -N-C
1685	O-#g-O-or-	2	. 2	1	-	н	-CH2-N-C
1686	O-lig-O-art	2	2	1	-	н	-CH ₂ -N-CBr
1687	Q-#g-Q-ar-	. 2	2	1	-	H ·	-CH ₂ -N-0
1688	O-Ho-O-ort-	2	2	1	, <u> </u>	н	-CH ₂ -N-C-
1689	O-11° - O-01-	2	2	1	-	H .	-CH ₂ -N-C
1690	O-Ng-O-ar-	2	2	1		н	-CH ₂ -N-C-F ₃
1691	O-Ho-O-art	2	2	1	· -	H	-CH2-N-C-CI
16 92	H ₂ C-CH ₂ -CH ₂ -	. 1	2	0	R	н	-CH2-N-C-Br
1693	H ₃ O-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F-F
1694	H30	1	2	0	R	н	-CH ₂ -N-C-F H ₂ N
i			_				

[0255]

Table 1.155

lable	1.1.00						
Compd.	R ¹ (CH ₂)j-	k	វារ	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G R ⁶
1695	H3C-CH2-CH2-	1	2	0	R	н	-CH ₂ -N-CBr
1696	H³O-CH²-	1	2	0	R	н	-CH ₂ -N-C
1697	H ₃ O-CH ₂ -	1	2	0	R .	. н	-CH ₂ -N-C-
1698	H ² C-CH ² -	1	2	o	R	н	-CH ₂ -N-O-CF ₃
1699	н _г о-Сон _г -Сон _г -	1	2	.	R	. н	-CH2-NC-CF3
1700	H ² C	1	2	0	R	н	-cH-Hc-CI
1701 ·	H ₂ C=CH-{}-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1702	H3CO-{\bigce}-CH2-	1	2	0	R	н	-cH₂-N-C
	€ CHIZ					н	-CH ₂ -N-C
1704	HO-CH2-	1	2	0	R	н	-CH ₂ -N-C-F ₃
1705	CI-CHE-CHE	1	2	0	R	н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃

Table 1.156

Table 1	1.156						
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1706	CH ^E	1	.2	0	R	H	-CH ₂ -N-C
1707	H ₃ CS-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1708	ң саң _ғ -С-	1	2	0	R	н	-сн ₂ -н-с
1709	Official Contract	. 1	2	0	R	н	-CH ₂ -N-C
1710	H ₃ C Br—CH ₂ —CH ₂ —	1	2	0	R	н	-CH2-HC-CF3
1711	CH ₂	1	2	0	R	н	-CH2-N-O-CF3
1712	HO-CH ₂ C	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
1713	H ³ C CH ³ -	1	2	0	R	н _.	-CH2-N-C-CF3
1714	HO .	1	2	0	R	н	-CH2-N-C-(CF3
1715	-CH ₂ -	1	2	0	R	н	-CH2-N-CCF3
1716	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
	<u> </u>		<u> </u>				

Tabl 1.157

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1717	H3CO-N-OCH3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
·1718	Ch Carl	1	2	0	R	н	-сн - N с-С _F 3
1719	EN-CHF	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1720	40-0	1	.2	0	R	н	-CH ₂ -N-O-CF ₃
1721	н,ссн_—С—сн_	1	2	0	R	Н	-CH ₂ -N-O-CF ₃
1722	6 Corte	1	2	0	. R	H	CH ₂ N-0
1723	CH ₂	1	2	0.	R	н	-CH2-HO-CF3
	H2O-CH2-CH2-					н	-CH2-N-C-CF3
	H ₃ C-CH ₂ -CH ₂ -					н	-CH ₂ -N-C
1726	ңоон _ғ СН-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1727	6-CHF	1	2	0	R	н	-CH2-HO-CF3

Table 1.158

Labie	1.130						
Compo	d. R ¹ (CH₂)j−	k	m	n	chirality	R³	—(CH ₂) , (CH ₂), G—R ⁶
1728	CH ₂	1	2	o	R	н	-CH2-NC-CF3
1729	H ₃ C-CH ₂ -	1	2	o	R	н	-CH2-N-C-CF3
1730	#C OH-OH-	1	2	o	,R	н	-CH ₂ -N-C-CF ₃
1731	HOW N OU	1	2	0	R	Ĥ	-CH ₂ -N-C-CF ₃
1732	HOCH2-C-CH2-	1	2	0	R	H	-CH_NC-CF3
1 73 3	О-сн-	1	2	0	R	н	-CH ₂ -N-C
1734	н,сѕ-{_}-сн,-	1.	2	O ·	R	н	-CH2-HC-CF3
1735	н _е ссні _я —СЭ—сян _я -	1	2	0	R	H	-CH2-H-C-CF3
	CH-CH-					Н	-CH ₂ -N-C-CF ₃
1737	H3C-{	1	2	0	R	H	-CH2-N-C
1738	H ₃ C CH ₂ -	1	2 ·	0	R	H.	-CH2-N-C-F

Table 1.159

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p CH ₂) _q G R ⁶
1739	(HC)2CH C - CH2-	1	2	0	R	н	-CH ₂ -N-CF
1740	CH	1	2	0	R	н	-crtz-N-c
1741	H ₃ CS()-CH ₂	1	2	o	R	н	-CH2-HC-Q
1742 I	н,сан,-О-сн,-	1	2	0	R	н	-CH2-N-CBr
1743	5-CH ² -	1	2	O	R	Н	-CH ₂ -N-O-
	H³O-CH³-				R	н	-CH2-HO-CBr
1745	H ₃ O-CH ₂ -CH ₂ -	1	2	0	R	H	-CH2-H-C-CBr
1746	ньс _ю ан-Су-ан _я .	1	2	0	R	н	-CH ₄ -H-CBr
	CH2-CH2-					н	-CH ₂ -N-C
1748 H	fccH*(C)CH*-	1	2	0	R	н	-CH2-N-C
1749	HPC-C-CHF-	1	2	0	R	н	-CH ₂ -N-C

Tabl 1.160

								
Compd. No.	R ² (C	CH ₂ }—	k	m	n	chirality	H3	—(CH ₂) p (CH ₂) q G−R ⁶
1750	\bigcirc	⊢СН ₂ -	1	2	0	R	н	-CH2-N-C-COCF3
1751	н₃сѕ-{	Ĵċн⁵-	1	2	0	·R	н	-CH2-N-C-CF3
1752	ңссн _ғ -{	}_сн ₂ -	1	2	O	R.	н	-CH ₂ -N-C-COCF ₃
1753	5	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1754							н	-CH2-N-C
1755	н₃с н₃с	Ή₃ −CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1756 e	ь с≽сн-{	} -α ₁₂ -	í.	2	0	R	H	-CH2-NC-CF3
1757	Br Br	CHĮ- ·	1	2	0	R .	н .	-CH2-HC-CF3
1758 н	Br B	ir CH ₂ ir	.1	2	.0	R	н	-CH2-N-C-CF3
1759 I	130-(·CH _Z -	1	2	0	R	н	-01-Hg-
1760 H	13C-(-CH ₂ -	1	2	o .	R	н	-OHZ-N-C

Table 1.161

Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _р CH ₂) _q G-R ⁶
1761	н₃с-О-сн₂-	1	2	0	R	н	-ch-Hc-Que Huc-H-Co
1762	CH3	1	2	0	R	н	-ch-Hc-C
1.763	CH ²	2	2	0	-	н	-cH2-HC-CH2CH3
1764	CH2-	2	2	o	-	н	-creare H c Cocrecue
1765	CH ₂ -	2	2	0			(S) P OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1766	CH2-	2 .	. 2	0	-	н	CH2CH(CH3)2
1767	a-Q-art-	1	3	1	-	Н	-CH2-NO-CH2CH3
	CI-CO-CH2-				-	н	-снея не оснен
17 6 9	CH3	1	2	0	R	н	CHANGES CONF
1770	CH ₃	1	2	0	R	н	-cht-Ho-Chholing H
1771	CH ³ CH ³	1	2	0	R	н	erero ching

[0262]

Tabl 1.162

							·
Compd.	R ¹ (CH ₂)	k	m	ภ	chirality	₽³	-(CH ₂) _P + (CH ₂) _q G-R ⁶
1772	CH ₃			o	R	н	#G-#-#-
1773	CH ₃ CH ₂ CH ₃	1	2	0	R	н	H3C
1774	CH3 CH3	1	2	0	R	н .	-CH2-HC-OH3
1775	H0-CH2- H3CO	1	2	0	R	н	-CH ₂ -N-C
1776	H ₃ CO-CH _Z -	1	2	0	R	н	-CH ₂ -N-C
1777	G————————————————————————————————————	2	2 :	. 1	-	н	-CH2-H C
1778	H ₈ C	2	2	1	-	• н	-CH ₂ -N-C
1779	· Q CH2-	2	2	1	-	H .	-CH2-N-C
1780	Br-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1781	HO	2	2	1	-	H	-CH ₂ -N-C
1782	нұо-сн-О-аң-	2	2	1	-	н	-CH ₂ -N-C

[0263]

Table 1.163

,							
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	. R ³	—(СН _{2)р}
1783	NC-CH2-	2	2	1	-	н	-CH ₂ -N-C
1784	C→-OH₂-	2	2	1	-	Н	-CH ₂ -N-C
1785	CH ₃ (CH ₃) ₂ —(C)—CH ₂ —	2	2	. 1		.н	-CH ₂ -N-C
1786	CH2-CH2-	2	2	1	-	H	-CH ₂ -N-C- H H ₂ N
1787	O4(CH)}	1	2	0	R	н	-CH ₂ -N-C-F ₃
1788	H3C-CH2-CH2-	2	2	1	-	н	-CH ₂ -N-O-CF ₃
1789	H3∞-{	2	2	1	-	H .	-CH ₂ -N-O-CF ₃
1790	a————————————————————————————————————	1	2	0	\$ \$	н	-CH ₂ -N-C-CF ₃
1791	•			0		н	-CH ₂ -N-C
1792	H³C-C-CH³	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N-C-F
1793	a—	2	2	1	•	H	-CH2-N-CF
	•						. пұм

[0264]

Table 1.164

Compd. R ² (CH ₂) k m n chirality R ³ -(CH ₂) s (CH ₂) k m n chirality R ³ -(CH ₂) s (CH	F F
1795 P-CH ₂ - 2 2 1 - H -CH ₂ -N-C-1 H ₂ N-C-1 1796 Br-CH ₂ - 2 2 1 - H -CH ₂ -N-C-1 H ₂ N-C-1 H ₂ N-C-1	
1796 Br—CH ₂ — 2 2 1 - H —CH ₂ —N-C— H ₂ N	_
-	_
1797 HO-CH ₂ - 2 2 1 - H -CH ₂ -N-C- H ₂ N	<u></u>
1798 H₃∞- CH₂- 2 2 1 - H -CH₂- N-C- H _{2-N}	<u>_</u>
1799 н ₂ о-сн- 2 2 1 - н - сн ₂ - n-с	F
1800 NG-CH₂- 2 2 1 - H -CH₂-N-C	<u></u>
1801	F
1802 Ho-CH ₂ - 1 2 0 R HCH ₂ -N-O-H	_CF₃
1803 HO CH2 1 2 0 R H -CH2 N CH2 H ₂ N	CF ₃
H ₂ CCH ₂ O 1803 HO CH ₂ - 1 2 0 R H -CH ₂ -N-C- H ₂ N 1804 H ₂ CCH ₂ - O-CH ₂ - 2 2 1 - H -CH ₂ -N-C- H ₂ N	F _F

[0265]

Tabl 1.165

							•
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	H3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1805	Br—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H ₈ ∞-(∑)-CH ₂ -	1	2	0	Ħ	Н	-CH ₂ -N-C-SCF ₃
1807	H0-CH2-CH2-	1	2	0	R	н	-CH2-N-C-SCF3
1808	H0 -CH2-	1	2	O	R	н	-CH ₂ -N-C-SCF ₃
1809	HO-CH ₂	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1810	COLORIS CHE	1	2	0	R	H =	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	. 1	2	O	R	н	-CH2-N-CSCF3
1812	нРса-О-сил-	1	2	0	R	H	-CH2-N-C-SCF3
1813	ньсон _г -{}-сн _г -	1	2	0	R	н	-CH2-N-C-SCF3
1814	€CD-aH²-	1	2	0	R	н	-CH2-N-C-SCF3
1815	CH2-CH2-CH2-	1	2	0	R	н	-CH2-NC-SCF3

[0266]

Table 1.166

Compo	I. R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) - 1 (CH ₂) - G-R ⁶
1816	(CH3)2CH	1	2	o	R	н.	-CH ₂ -N-C-SCF ₃
1817	(CH3/3) C-(-)-CH2-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1818	Br-CH2-	1	2	0	R	н	-CH ₂ -N-C-CHF ₂
1819	н₃∞-{}-сн₂-	1	2	0	R	н	-CH ₂ -N-C-CHF ₂
1820	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CHF ₂
1821	H ₀ 00-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CCHF ₂
1822	HO-C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CHF ₂
1823	CH2-	1	2	·o	R	н	-CH2-N-C-CHF2
1824	CH2-	1	2	o	R	н	-CH ₂ -N-C-CHF ₂
1825	н₃ся-{_}-сн₂-	1	2	0	R	н	-CH ₂ -N-C-CHF ₂
1826	нуссну	1	2	0	R	H	-CH ₂ -N-C-CHF ₂

[0267]

Tabl 1.167

Compd. R^{2} (CH ₂) k m n chirality R^{3} -(CH ₂) R^{5} (CH ₂) R^{5} R^{5} (CH ₂) R^{5} (CH ₂	OCHF₂
1828 H ₃ C CH ₂ 1 2 0 R H -CH ₂ N-C	
~.	
~1	XCHI ₂
1829 H ₃ C CH ₂ 1 2 0 R H _CH ₂ N C	CHF ₂
1830 (СН ₃ 4-СН ₂ - 1 2 0 R H — СН ₂ - N-О-С	CHF ₂
1831 Br CHz 1 2 0 R H -CHz NO CH	(CH₃)₃
1832 H ₃ ∞- CH ₂ - 1 2 0 R H -CH ₂ -NC-CH ₂ - 1 2 0 R	(сн _э) _э
1833 HO CH ₂ 1 2 0 R H -CH ₂ N C	(CH ₃) ₃
1834 H ₃ CO-CH ₂ - 1 2 0 R H -CH ₂ -N-C-CH ₂ - 1	(СН ₃)3
1835 HO-CH ₂ - 1 2 0 R H -CH ₂ -N-C-CH ₂ - 1	(CH ₃) ₃
1836 PG-CH ₂ - 1 2 0 R H -CH ₂ -N-C-CH ₂ - 1 2 0 R H -CH ₂ -N-C-CH ₂ - 1 2 0 R H -CH ₂ -N-C-CH ₂ - 1 2 0 R	жен)э
1837 CH2 1 2 0 R H -CH2-N-C-	ХСН³}³

[0268]

Table 1.168

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	–(CH ₂) _p + (CH ₂) _q G R ⁶
1838	H ₂ CS-CH ₂ -CH ₂ -	1	2	0	R	н	-CH2-N-C-() C(CH3)3
1839	ньсан-С-сн-	1	2	0	R	н	-CH2-N-C-(CH3)3
1840	CH2-CH2-	1	2	o	R	н	-CH2-NC-(CH3)3
1841	H ₃ C-CH ₃	1	2	o	R	н	-CH2-NO-(CH3)3
1842	H ₃ C CH ₂ -	1	2	0	R	н	-CH2-NC-() (CH3)3
1843	(снужн-С)-сн-	1	2	O	R	н	-CH2-N-C-(CH3)3
1844	(crPro-C)-crF-	1	2	O	R	·Н	-CH2-N-C-(CH3)3
	Hachy-Q-aly-				•	·H	-art ho by
1846	H ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1847	(CH ² /) C-(CH ² -	1	2	0	R-	H	-CH2-N-C-CCHF2
1848	HO-CH2-	1	2	0	R	н	-CH2-HC-COCHF2

[0269]

Tabl 1.169

Compd.	R ¹ (CH ₂)-	k	m	ก	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1849	-CH ₂ -	1	2	0	R	н	-cH2-H0
1850	нуссну—Оў—сну-	1	2	0	R	٠Н	-cHz-NG-C
1851	H²O-€ CH²-	1	2	0	R	н	-cH2-HC-C
	CH ^E					н	-cHz-ll.g-C
1853	H0-CH2-CH2-	1	2	0	R	н	-CH2-NC-C
1854	CH2	1	2	0	R	н	-cHz-Hc-C
1855	нуссну-О-сну-	1	2	0	R	н	-CH ₂ -N-C-C
1856	H3C-CH3-CH3	1	2	0	R	н	-CH2-NC-C
	O-CHE.			•		H	-CH2-N-C-
1858	Br-CH ₂ -	1	2	0	Ŗ	H	H ₂ N O Br
1859	H ₂ ∞-{\(\sigma\)-\(\chi\)-\(\chi\)-\(\chi\)	1	2	0	R	H .	-CH ₂ -N-C-Br -CH ₂ -N-C-Br -CH ₂ -N-C-Br

[0270]

Table 1.170

Compd.	R ² (CH ₂) -	k	m	n	chirality	H3	—(CH ₂) ,
1860	H3-CO -CH2-	1	2	0	R	н	-CH ₂ -N-C-Br
1861	H ₂ CO-CH ₂ -	1	2	0	R	'n	-CH2-N-C-
1862	HO-CH2-	1	2	0	R	н	-CH ₂ -N-C-B ₁
1863	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1864	нуса-Су-сну-	1	2	0	R .	H	-CH ₂ -N-C
186 5	CH2-				R	н	-cH ₂ -N-C
1866	H ₃ C CH ₃	.1	2	0	R	н	-CH ₂ -N-C-S
1867	(сн _з) ₂ сн-О-сн ₂ -	1.	2	0	·R'	н	-CH2-N-C-Br
1868	(CHP) C-(CH)-CH)-	1	2	0	·R	H	-CH2-N-C-Br
1869	. BrCH ₂	1	2	0	R	H	-CH ₂ -N-C
1870	H2CO-COH2-	1	2	0	R	н	-CH ₂ -N-C

[0271]

Table 1.171

	1.1 / 1						
Compd.	R ² (CH ₂) ₁	k	m	n	chirality	R³	-(CH ₂) _р + (CH ₂) _q G-R ⁶
1871	HO-CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1872	H ₂ CO-CH ₂ -	1	2	0	R	·H	-CH ₂ -N-C-
1873	-HO	1	2	0	R	н	-CH ₂ -N-C
1874	CH₂-	1	2	0	R	н	-CH2-H-C
1875	CH2-CH2	1	2	0	R	Н.	-CH ₂ -N-C
1876	н²са-{С}-сн₹-	1	2	0	R	н	-CH ₂ -N-C
1877	ңсанұ-(С)-анұ-	1	2	0	R	н	-CH2-N-C
	O-CH2-					H	CH2-N-C
	H ₃ C CH ₃					н	-cHz-Hz-N-c
1880	(онт/сн-О-сн-	1	2	0	R	н ·	-CH2-N-C
1881	(CH3) C-(CH2-	1	2	0	R	H	-CH ₂ -N-C

Table 1.172

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1882	BI-CH ₂ -	1	2	o	R	H	-CH ₂ -N-C
1883	H ₃ CO-CH ₂ -	1	2	O	R	н	-CH ₂ -N-C
1884	HO-CH ⁵ -CH ⁵ -	1	2	o	R	н	-CH ₂ -N-C
1885	HQ H ₃ 00-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C
1886	HO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1887	CH2-	1	2	0	R	н	-CH ₂ -N-C
1888	CHZ	1	2	0	R	Н	-CH2-N-C
1889	н₀сэ-Ст-сн₂-	1	2	O	R	н	-CH ₂ -N-C
1890	н,ссн,С-сн,_			0	R	н	-CH ₂ -N-C
1891	OCH2-	11	2	0	R	н	-CH ₂ -N-C
1892	H ₂ C	1	2	0	R	н	-CH ₂ -N-C-NO ₂ -CH ₂ -N-C-NO ₂ -CH ₂ -N-C-NO ₂

[0273]

Table 1.173

							•
Compd.	R ² /(01.2)					R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1893	H3C - CH2-	1	2	0	R	н	-CH ₂ -N-C
1894	(СНЭ) _З СН-О-СН _З	- 1	2	0	R	н	-CH ₂ -N-C
1895	(CH3)3 C	- 1	2	0	R	н	-OH ₂ -N-C
1896	H ₃ ∞ CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C
1897	н₃сэ-{_}сн₂-	1	2	0	·R	н	-CH2-N-C
1898	нусснұ — Снұ	- 1	2	0	R	н	-CH2-N-C-CF3
1899	(CH ³ 7°CH-(CH ³ -CH ³ -	· 1	2	0	R .	н	-CH ₂ -N-C
1900	HD-CH2-	1	2	0	R	н	-CH ₂ -N-C
1901	н _а сқсң _{уғ} С	•	2	0	R	н	-CH ₂ -N-C
1902	O-CHIZ-	1	2	0	R	н	-CH ₂ -N-C
1903	(CH ^{3)‡} CH-\bigch-\ch-	. 2	2	1	-	н	-CH ₂ -N-C

[0274]

Table 1.174

14410							
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1904	ңсксң ₎ , Сң-	2	2	1	-	н	-CH ₂ -N-C-C-C-F ₃
1905	a-{au_2-	1	2	0	R	н.	-CH2-N-C-CF3
1906	CH ₂	1	2	0	R	• Н	-CH ₂ -N-C
1907	HO	1	2	0	R	н	-CH ₂ -N-C
1908 ·	н ₃ со-Су-сн ₂ -	1	2	0	R	н	-CH ₂ -N-C
1909	H ₂ C=CH	1	2	0	R	н	-CH ₂ -N-C
1910	B-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1911	a—CaH²-	2	2	1		н	-CH ₂ -N-C
1912	HOCH ₂	•			-	н	-CH ₂ -N-C
1913	H ₃ C-CH ₃	2	2	1	-	н	-CH ₂ -N-C
1914	H3C	2	2.	1	-	Ħ	-CH ₂ -N-C

Table 1.175

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1915	но-С-Сну-	1	2	0	R	н	-CH ₂ -N-C
1916	HO-CH2-	1	2	0	R	Н	-CH ₂ -N-CCF ₃
1917	но-Су-сн-	2	2	. 1	•	н	-CH ₂ -N-C-C-S
1918	HO-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃
1919	CI-CIH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1920	a-C-AH2-	2	2	1	· -	н	-CH ₂ -N-CF H ₂ N
1921	a-C-412-	· 1	2	0	R	H *	-CH ₂ -N-C
1922	CC-CH ₂ -CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1923	Br-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1924	HPCO-COHE	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1925	HPCO-COHE-	2	2	1	-	н	-CH2-N-C-SCF3

[0276]

Table 1.176

							•
Compd.	H ¹ (CH ₂)-	k	m	n	chirality	Юз	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1926	F-CH2-	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1927	HO	2	2	1		н	-CH ₂ -N-C-SCF ₃
1928	OH2-	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1929	CH2	2	2	1	-	H .	-CH ₂ -N-C-SCF ₃
1930	H3CS-()-CH2-	2	2	1	-	н .	-CH2-N-C-SCF3
1931	н _т ссн ² —сн ²	2	2	1	-	H .	-CH2-NC-SCF3
1932	O CH₂	2	2	1	-	H,	-CH2-NO-SCF3
	H3C-CH3-CH2-					Н	-CH2-NC-SCF3
	H ₃ C CH ₃					Н	-CH2-N-C-SCF3
1935	O2N-(CH2-	2	2	1	-	H	-CH ₂ -N-CSCF ₃
1936	H3C-{\(\sigma\)-CH2-	2	2	1	-	н	-CH ₂ -N-CSCF ₃

[0277]

Table 1.177

Campd. No.	R ¹ (CH ₂)-	k	m	n	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
	(CH ₃) ₂ CH				-	н	-CH2-N-C-SCF3
1938	Br-CH2-	2	2	1	-	н	-CH2-HC-SCH3
1939	H300-()-CH2-	2	2	1	-	H	-CH2-N-C
1940	F	2	· 2	1	-	н	-CH2-N-C
1941	F-CHg-	2	2	1	-	H	-CH2-N-C-CH3
1942	HO-Q-CH ₂ -	2	2	1	-	н	-CH2-H-CCH3
1943	CH2-	2	2	1	•	н	-CH ₂ -N-CCH ₃
1944	CH ₂ -	2	2	1	•	н	-CH2-H-C
1945	H ₂ C3-(CH ₂	2	2	1	•	н	-CH2-H-C
1946	нусснұ—О—снұ-	2	2	1	-	н	-CH2-H CCH3
1947	O-CHE	2	2	1	-	н	-cH ₂ -N-c-CH ₃

[0278]

Table 1.178

Compd.	R ² (CH ₂) _j -	k	m	ก	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1948	H ₃ C-CH ₂ -CH ₂ -	2	2	1		н	-CH ₂ -N-C-CH ₃
1949	H ₃ C CH ₂ -	2	2	1	-	н	-cH²-Ñ-c-←CH³
1950	O ₂ N-CH ₂ -	2	2	1	-	н	-CH2-N-C
	H6C-(-)-CH2-				-	н .	-сн ₂ -й-с
1952	Br-CH ₂ -	2	2	1	-	н	-CH2-N-C-SF
1953	H300-()-CH2-	2	. 2	1	-	H	-CH ₂ -N-C
1954	F—CH _Z -	2	2	1	-	н	-CH ₂ -N-C-F
1.955	F-CH2-	2	2	1	-	ŀН	-CH ₂ -N-C
1956	HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
	CH2-CH2					н	-CH ₂ -N-C
1958	CH2-CH2-	2	2	1	<u>-</u>	н	-CH ₂ -N-C

Table 1.179

			•				•
Compd.	H2 (CH2)-	k	m	n	chirality	R³	(CH ₂) _p + (CH ₂) _q G-R ⁶
1959	ньсэ-СУ-снғ-	2	2	1	-	н	-CH ₂ -N-C
1960	н,осн,-О-сн,-	2	2	1	-	н	-CH ₂ -N-C
1961	CH ₂ -	2	2	1	-	н	-CH2-N-C
	H3C-CH2-CH2-				-	н	-CH ₂ -N-C
1963	H ₃ C CH ₃	2	2	1	-	н .	-CH ₂ -N-C
1964	0 ₂ N-CH ₂ -	2	2	1	-	H ·	-CH2-N-CF
1965	H2O-{-CH2-	2	2	1	-	H	-CH ₂ -N-C
1966	(СН ³ УСН-О-СН ² -	2	2	1	-	н .	-CH ₂ -N-CF
1967	Br-CHg-	2	2	1	•	н	-CH ₂ -N-C
1968	H ₂ ∞-{aH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1969		2	2	1	-	н	-CH ₂ -N-C

[0280]

Table 1.180

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1970	CO-CH-	2	2	1	-	н	-CH2-N-C-
1971	CH2-CH2	2	2	1	-	н	-CH2-N-C
1972	H ₃ C9-(-)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1973	нуссну-О-сну-	2	2	1	-	н	-CH ₂ -N-C
1974	H ₃ C-(-)-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1975	O₂N-CH₂-	2	2	1	-	н	-CH ₂ -N-C
1976	H ₃ C-{\bigce}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1977	NO-CH₂-	2	2	1	-	н	-CH ₂ -N-C
	(CH ² / _C H-CH ² -CH ² -				-	н	-CH ₂ -N-C
1979	CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF H ₂ N
1980	P-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N

Table 1.181

							•
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) - G CH ₂)- G-R ⁶
1981	0 ₂ N	2	2	1	-	н	-CH ₂ -N-O-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F
1982	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1983	(сн.уусн-О-сн.	2	2	1	•	н	-CH ₂ -N-C
1984	8	2	2	1	· •	H	-CH2-N-C
1985	H ₃ co-{_}-cH ₂ -	2	2	1	-	н	-a+2-14-0
1986	HO	2	2	1	-	Н	-art-li-o-
1987	CH _F	2	2	1	-	н	-CH ² -N-O
1988	CH2-	2	2	1	-	н	-a15-W-0
1989	н _я ся—С>-сн _я -	2	2	1	-	н	-art Ho
1990	H ₂ CCH ₂ -CH ₂ -	2	2	1	-	н	-a+2-H c-1
1991	5-CHE.	2	2	1	-	н	-arts-Hg-

[0282]

Table 1.182

							•
Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _р (CH ₂) _q G-R ⁶
1992	H ₃ C-CH ₂ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1993	O ₂ N-CH ₂ -	2	2	1	-	н	-CH2-N-C-
1994	H3C	2	2	1	- '	H .	-CH ² -H ² C
1995	NC-C-CH _Z -	2	2	1	-	н	-CH ² -N-C
1996	(CH ₃) ₂ CH	2	2	1	-	н	-CH ₂ -N-C
1997	H ₃ C CH ₃	2	2	1	-	н .	-CH2-N-C
1998	Br-CH ₂ -	2	2	1	•	H	-ar-Ho-Q
1999	H ₂ CO	2	2	1	-	H .	-art-Ho-Q
2000	F-CH2-	2	2	1	-	н	-alz-Ho-C
2001	HO	2	2	1		H	-a12-H 0-Q
2002	Cyp-cH₂-	2	2	1	-	н	-a+2-Hg-Q

[0283]

Table 1.183

Compd. No.	R ² (CH ₂)	j ,	ĸ	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
2003	√	l€ 2	2	2	1	-	н	-012-H-C-Q
2004	н-сэ-С	ઋ- 2	!	2	1	-	н	-cH2-N-C
2005	нуссну{	CHy- 2	!	2	1	-	н	-CH2-H-C-
•	H ₂ C-C-C					-	н	-atz-H-c-
2007	02N-()-0	H _z ⊸ 2	?	2	1	-	н	-012-N-0-
2008	H³C-{	l ₂- 2	?	2	1	-	H	-artz-M-c-C
2009	NO	i _ 2	:	2	1	-	н	-a12-H & Q
· e	(снятен-С)-					-	Н	-CH2-N-C-
2011	H ₃ C	H ₂ - 2		2	1	•	н	CHS-HO-C
2012	B	<u>r</u> 2	!	2	1	-		-aHz-N-c-Sar
2013	н₃со-{_}-с	H _z - 2		2	1	-	н	-a42-N-C

[0284]

Table 1.184

	_ 4						
No.	R ¹ (CH ₂)-	k	m	n	chirality	₽³	(CH ₂) _p + (CH ₂) _q G-R ⁶
2014	HO	2	2	1	<u>.</u>	Н	-CH ₂ -N-C
2015	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
2016	CH ₂ -CH ₂ -	2	2	1	-	н	-CH2-N-C-Br
2017	Hica-C)-CHF	2	2	1	-	н	-CH2-N-C
2018 +	г сснұ-{}-снұ-	.2	2	. 1		н	-atN-cBr
	CH2−CH2−			•	-	н	-at-No-Sa
-2020	Hac-CH3	2	2	1	-	н	-al-H0-6-a
2021	0 ₂ N-(.)-CH ₂ -	2	2	1	٠-	н	-al-Ho-Br
2022	H20	2	2	1	-	н	-cH2-N-C-(S-a
2023	NO-CH2-	2	2	1.	-	н	-cH2-HC-Br
2024 (н₃₃сн-О-сн₂-	2	2	1	-	н	-CH2-N-C

[0285]

Tabl 1.185

, Tabi	1.100						•
	R ² (CH ₂)				chirality	H3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2025	H ₃ C CH ₃	2	2	1	-	Н	-CH2-N-C
2026	F-CH2-	2	2	1	-	H	-CH2-N-C-Ser
2027	Br(-)CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2028	H₃∞- \ -OH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2029	HO- ()-CH ₂ -	2	2	1	-	н	-CH ₂ -N-O
2030	CH2-CH2-	2	2	1	· _	. H	-CH2-N-Q-Br
2031	O-cit	2	2	1	-	H .	-CH ² -M-O-Br
2032	O-CHE	2 .	2	1	٠	H	-CH ⁵ -H O-P _B
2033	H3C-CH2-CH2-	2	2	1	-	н	-CH2-M-C
2034	02N-{	2	2	1	• ·	н	-CH ₂ -N-O-Shr H ₂ N
	Ho-{						-CH ₂ -N C-C-S

[0286]

Table 1.186

							•
Compd.	R ¹ (CH ₂)	k	m	n	chirality	₽³	-(CH ₂) ,
2036	NO-CHE				-	H.	-CH ₂ -N-C
2037	H ₃ C CH ₃	2	2	1	-	Н	-CH ₂ -N-C-S
2038	F-CHz-	2	2	. 1	-	н	-CH ₂ -N-CBr
2039	H3C-(C)-CH2-	2	2	1	-	Н	-042-N-0-KN
2040	н₃с-{С}-сн₂-	1	2	0	R	н	-CH2-N-C-CH-COH
2041	H ₃ C-()-CH ₂ -	1	2	0	R	н	-atz-No-at-
2042	H3C-(1	2	0	R	н	-CH2-N-C CH3
2043	H ₃ C-(-)-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH2-CH3
	CH ₂					н	-cH2-HC-C-0-C
2045	CH3 CH3 CH3	1	2	0	R	H .	-042-HC-CH2 HW -H-CH2 HW -H-CH2 HW -H-CH2
2046	CH ₃ CH ₂ CH ₃	1	2	· 0	R .	н	-CH2-N-CH3

Table 1.187

Compd.	R ² (CH ₂);-					R³	—(CH ₂) , (CH ₂) , G −R ⁶
2047	CH ₃					н	-0. #b-C
2048	CH3 CH3					н	-CH ₂ -NC
2049	CH ³	1	2	0	R	н	-ar-#c
2050	H ₉ C S-CH ₂ -	1,	2	0	R	н	-CH2-N-0CF3
	H ^a C					н	-CH2-N-0
2052	BL OCH_CH3	2	2	1	-	н	-CH ₂ -N-C
2053	O-aro-o-ar-	2	2	1	-	н	-CH ₂ -N-C
2054	H ₈ co-CH ₂ -				÷	н	-CH ₂ -N-C
2055	OH CH2-				-	н	-CH2-N-CF
2056	Bx CH2-	2	2	1	-	н	-CH ₂ -N-C
2057	H _a co-Ch ₂ -	2	2	1	· -	н	-CH2-N-CF-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-
							

Table 1.188

Compd.	R ¹ R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
2058	H ₃ CO_OCH ₃	. 2	2	1		н	-CH ₂ -N-C
2059	О - О - СН2-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2060	H ₂ CO-CH ₂ -CH ₂ -CH ₂ -CH ₃ -CCH ₃	2	2	1	-	н	-CH ₂ -N-C
2061	CH ₃	2	2	1	-	н	-CH ₂ -N-C
2062	H ₃ CO-CH ₂ -				-	н	-CH ₂ -N-O
2063	H ₃ CO — CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2064	Bt CH2-	2	2	1	-	Н	-CH ₂ -N-C-F
2065	HECHTO CHF	2	2	1	-	н	-0H2-N-0
2066	OCH ₂ -CH ₂ -	2	2	1	-	Н	-OH2-N-CF
2067	(неженен———сн _т	2	2	1	-	н	-CH ₂ -N-C
2068	CH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.189

Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
2069	H3CO-CO-COH2-	2	2	1	•	н	-CH ₂ -N-C
2070	BY OCH2-	2	2	1	-	н	-CH ₂ -N-C
	H ³ CO-CH ³ -CH ⁵ -				-	н	-CH2-N-CF-F
2072	очочено-СУ-сич-	2	2	1	-	н	CH ₂ -N-C
2073	O-card	2	2		-	н	-CH ₂ -N-C
2074	H²∞O_O_O	2	2	1	•	н	-CH ₂ -N-C
2075	H _g CQ F-CH _Z -	2	2	1	-	н	-CH ₂ -N-C
2076	F-CH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2077	CH.	2	2	1	-	н	-CH ₂ -N-C
2078	HACCH ² O OH	2	2	1	-	н	-CH ₂ -N-C-F-F
2079	H ₂ CO-CH ₂ -	2	2	1		н	-CH ₂ -N-C

[0290]

Table 1.190

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
2080	H ₂ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2081	HO-CH _Z	2	2	1	· .	н	-CH ₂ -N-C
2082	H²co-Cy-cH²-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2083	HO-CH ₂ -	1	2	0	R	н	-aH ₂ -N-c-CF ₃
2084	HO CH ²	1	2	0	R	н	-CH ₂ -N-C
2085	H²co-C}-cH²-	1	2	0	R	н	-CH ₂ -N-C
2086	HO-Q-CH ² -	1	2	0	R	H	-CH ₂ -N-C
2087	(HPC)5N-CH5-	1	2	0	R	н	-CH ₂ -N-C
		1	2	O	R	н	-CH ₂ -N-C
2089	F-CH2-	1	2	0	R	н	-CH _Z -N-C-S-3
2090	O-o-O-care	1	2	0	R	н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃

[0291]

Table 1.191

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2091	a-{_}-a+ ₂ -	2	2	1	-	н	CHE-CHECHE
2092	a————————————————————————————————————	2	2	1		н	-dring-Cooper
2093	a	2	2	1	-	H	CH ₂ CH ₃
2094	a—{_}_cH²-	2	2	1	-	H	CHE POCHECHS .
2095	a-{_}_a-a+2-	2	. 2	1	-	н	C(CH2)3 C(CH2)3
2096	a-Ch-ale	2	2	1	-	н	CH-N-O-CH ₂ CH ₃
2097	a-€}-a+€	2	2	1	-	н	-сн и о-снусну -сн и о-с
2098	0	2	2	1	-	н	CH. HO-CI
2099	α-√∑-α+ _Σ -	2	2	1	-	н	CHHIC COCH,CH
2100	0-Q-042-	2	2	i	-	н	CH4 OCH3
2101	a-{	2	2	1	-	H .	CH

[0292]

Tabl 1.192

Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2102	a-{_}-a+₂-	2	2	1	•	н	CHPCHP-C-OCHF-CHP
2103	O	2	2	1	-	н	HICCHOCHE B
2104	CH	2	2	1	-	н	CH ² CH ² -C-OCH ² () O OCH ² CH ³
2105	H²co OH	2	2	1	•	н	-CH ₂ -N-C
2106	H3C OH	2	2	1	-	н	-CH ₂ -N-C
2107	Br CH _Z -	2	2	. 1	-	н	-CH ₂ -N-C
2108	CH ₃ CH ₂	2	2	1	-	н	-CH ₂ -N-C
2109	Br O-CH2-	2	2	1	-	н	-CH ₂ -N-C
	H ^{COH} CHE-					н	-CH ₂ -N-C-F
2111	a-CH2-	2	2	1	-	н	-CH ₂ -N-C-F-F
2112	H ₀ 00 - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F

[0293]

Tabl 1.193

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _р
2113	H ₂ N H ₃ CO-CH ₂ -CH ₂ -	2	2	1	•	Н	-CH ₂ -N-CF
2114	H ² C-CH ² -CH ² -	2	2	1	-	н	-CH ₂ -N-C
2115		2	2	1	-	н	(F) -CH-N-C
2116	CH2-	2	2	1	-	н	CH(CH ³)CH ² CH ³ CH(CH ³)CH ₂ CH ³
2117	a———aH2-	2	2	1	-	н	CH2-NH
2118	HO—CH _Z —C	1	2	0	R	н	-CH ₂ -H-C
2119	HO-CH2-CH2-	1	2	0	R	н	-CH _Z -N-C
2120	B	1	2	0	R	н	-CH ₂ -N-O-CF ₃
	HO-CH ₂ -				•	н	-CH ₂ -N-C
2122	a-€-a+ ₂ -	1	2	0	R	н	-CH ₂ -N-C
2123	O COH_	1	2	0	Ŗ	н	-CH ₂ -N-C

[0294]

Table 1.194

	•						
Compd.	R1 (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2124	O ₂ N CI—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
2125	O ₂ N H ₃ CO-CH ₂ -	1	2	0	R	н	-CH2-N-C
2126	O ₂ N	1	2	0	R.	н	-CH ₂ -N-C
2127	O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2128	H ₂ N COH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2129	H ₂ N CH ₂ -CH ₂ -	1	2	٥	R	н	-CH _{2-N-C} CF ₃
2130	OHZ-OHZ	2	2	1	-	н	-CH ₂ -N-C
2131	CH ₃ CH ₂ CH ₃	2	2	1	-	н	-CH ₂ -N-C
2132	H ₂ N CI—CH ₂ —					H .	-CH ₂ -N-CF ₃
2133	(H ₃ C) ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2134	CH ₂ - N(CH ₃) ₂	1	2	0	R	н	H ₂ N CF ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃
							·

Tabl 1.195

Tabi	1.133						
Compd.	R ¹ (CH ₂)j-	k	m	ก	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
2135	(H3C)2N	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
2136	(H ₃ C) ₂ N H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2137	CH-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2138	CH ² CH ²	1 .	2	0	R	н	-CH2-H-C
2139	Hac hand	1	2	0	R	н	-CH ₂ -N-C
2140	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2141	HO-CH2-	2	2	1	-	н	-CH2-N-C-F
2142	CH2-	2	2	1	-	н	-CH ₂ -N-C
	HNG CH			1	•	. н	-CH ₂ -N-C
2144	H2M-CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2145	HO-CH2-	2	2	1	-	Н	-CH2-NO-CF3 -CH2-NO-CF3 -CH2-NO-CF3 -CH2-NO-CF3

[0296]

Tabl 1.196

I au	1.190						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2146	CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
2147	H²CO- H H²CO- H H H H H H H H H H H H H H H H H H H	2	2	1	-	н	-CH ₂ -N-C
2148	HO-€-NH 6	2	2	1	-	н	-CH ₂ -N-C
2149	O ₂ N HO-CH ₂ -	1	2	0	R	н	
2150	CH-CH-CH-	1	2	0	R	н	-CH ₂ -N-C
2151	HME-CH?	í	2	0	A	н	-CH ₂ -N-C-CF ₃
2152	н³с-с-ин н³с-с-ин	1	2	0	R	н	-CH2-N-C-CF3
2153	H3C-C-NH CH2-CH2-	1	2	0	R	н	-CH ₂ -N-C
2154	H200-CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-3
2155	H3C-C-NH HO-CH4-	2	2	1	-	н	-CH2-N-C-CF3
2156	HO CH-	2	2	1	-	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

[0297]

Tabl 1.197

•							
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(СН _{2)p}
2157	HO-CH2-CH3	1	2	0	R	н	-CH ₂ -N-O-CF ₃
2158	HO-CH2-	1	2	0	R	н	-CH ² -M ₂ -C _{CE³}
2159	H³CO- V2 H H³C-V8H	2	2	1	-	н	-CH ₂ -N-C
21 <u>6</u> 0	HO-CH ² -CH ² -	2	2	1	- -	н	-CH ₂ -N-C
2161	C	2	2	1	-	н	-CHZ-N-C
2162	H ₃ CO-NH H ₃ CO-CH ₂ -	2	2	1	•	н	-CH2-N-O
2163	HO-CH ² -CH ² -	2	2	1	•	н	-CH ₂ -N-O-CF ₃
2164	CH2-CH2-	1	2	0	R	н	-CH2-N-C
2165	CN-CH ² -				R	н	-ar-H c-C-C-3
2166	CH2−CH2−	1	2	0	R .	н	-CH2-N-C
2167	O H CHI	1	2	0	R	H	-CH ₂ -N-C

[0298]

Table 1.198

Compd. No.	R1 (CH ₂) _j					R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2168	H ₃ C CH ₃	1	2	0	· R	Н	-CH ₂ -NC-CF ₃
2169	H ₃ C-CH ₃ -CH ₃ -CH ₃	1	2	0	R	н	-CH ₂ -N-C
2170	C)-cu-	1	2	0	R	н	-CH ₂ -N-C
2171	HNZ-CH2-	1.	2	0	R	н	-CH2-H-CCF3
2172	F ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-C-F ₃
2173	STATE CH3	1	2 .	0	R	н	-CH2-N-0-CF3
2174	Bry SH3	1	2	0	R	н	-CH2-N-C
2175	H₃CO—N—OCH₃ H₃CO—CH₂—					н	-CH ₂ -N-O-CF ₃
2176	H ₃ C N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2177	CH ⁵ OH V CH ⁵ - H ³ C OH	1	2	0	R	н	-CH ₂ -N-C
2178	HW - CHF	1 .	2	0	R	H .	-CH ₂ -N-C

[0299]

Table 1.199

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	H3	-(CH _{2)p}
2179	Ho galactic	1	2	0	R	н	-CH ₂ -N-C-F ₃
2180	a-(a+2)z-	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2181	H ² CO N COH ₂	1	2	0	R	H	-CH _Z -N-C-F ₃
2182	H ₆ C _F N _C CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
2183	S-N-CHE	1	2	0	R	н	-CH ₂ -N-C-F ₃
2184	N-CH2-	2	2	1	-	н	-CH ₂ -N-C
2185	S-N-CH2-	2	2	1	-	н	-cH2-HC-CF3
2186	CH2-	2	2	1	-	н	-cH ₂ -H ₀ -CF ₃
	HO-CH ₂ -				R	н	-CH ₂ -N-C-F ₃
2188	o are	2	2	1	-	н	-CH2-N-O-CF3
2189	o, C→ark-	1	2	0	R	н	-CH ₂ -N-O-CF ₃ H ₂ N CF ₃ -CH ₂ -N-O-CF ₃

[0300]

Table 1.200

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p -(CH ₂) _q G-R ⁶
2190	Q H	2	2	1	-	Н	-CH ₂ -N-C
2191	O H	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2192	O CHF	2	2	.1	-	н	-CH ₂ -N-C-CF ₃
2193	S H CH2	2	2	1	-	, н	-CH ₂ -N-C
2194	H ₂ N H ₃ O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2195	H ₂ N CI—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2196	H ₃ O-NH H ₃ O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2197	H3CC-NH -CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2198	CH2−CH2−	1	2	0	R	н	-CH ₂ -N-C-S
2199	H³O- V H H³O- V H	2	2	1	-	н	-CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-F ₃
2200	H ₆ C-NH CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

[0301]

Table 1.201

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
2201	H ³ O-VIH	2	2	1	-	н	-CH ₂ -N-CF H ₂ N
2202	STR CHI	1	2	0	R	н	-CH ₂ -N-C
2203	O-CH2-	2	2	1	-	н	-CH ₂ -N-C
2204	CH ₃	2	2	1	-	н	-CH ₂ H C CF ₃
2205	CH-CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
2206	HO-CH2-	2	2	1	-	Н	-CH2-NC-CF3
2207	HO-CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
2208	cr—Cy—cr+2— HIN-cr+3	2	. 2	1	-	н	-CH ₂ -N-C-CF ₃
2209	a-Charle	2	2	1	-	н	-CH ₂ -N-C

[0302]

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸;マレイン酸、ク

エン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、 蟻酸などの有機酸が挙げられる。

[0303]

さらに、本発明においては、例えばヨウ化1-(4-クロロベンジル)-1-メチル-4-[(N-(3-トリフルオロメチルベンゾイル)グリシル}アミノメチル]ピペリジニウムのような、環状アミン化合物のC₁~C₆アルキル付加体も用いられる。ここで、アルキル基としては、例えばメチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、2-メチルペンチル、1-エチルブチル基が好適な具体例として挙げられるが、特に好ましい例としては、メチル基、エチル基などが挙げられる。また、アンモニウム陽イオンの対陰イオンの好適な具体例としては、フッ化物、塩化物、臭化物、またはヨウ化物などのハロゲン化物陰イオンを挙げることができる。

[0304]

本発明においては、上記式(I)で表わされる化合物のラセミ体、および可能なすべての光学活性体も用いることができる。

[0305]

上記式(I)で表わされる化合物は、国際公開WO9925686号パンフレットに記載されているように、下記に示すいずれかの一般的な製造法を用いることにより合成可能である。

(製造法1)

下記式(II)

[0306]

【化3】

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
R^{2} \\
 & (CH_{2})_{m}
\end{array}
\right) - (CH_{2})_{n} - NH \\
 & R^{3}$$
(II)

[0307]

[式中、 R^1 、 R^2 、 R^3 、j、k、m、およびnは、上記式(I)におけるそれぞれの定義と同じである。]

で表わされる化合物1当量と、下記式(III)

【化4】

[0309]

[式中、 R^4 、 R^5 、 R^6 、G、p、およびqは、上記式(I) におけるそれぞれの定義と同じである。]

で表わされるカルボン酸、またはその反応性誘導体の 0. 1~10 当量を無溶媒 下、または溶媒存在下に反応させることによる製造方法。

[0310]

上記式(III)で表わされるカルボン酸の「反応性誘導体」とは、例えば酸ハロゲン化物、酸無水物、混合酸無水物などの合成有機化学分野において通常使用される反応性の高いカルボン酸誘導体を意味する。

[0311]

かかる反応は、適当量のモレキュラーシーブなどの脱水剤;ジシクロヘキシルカルボジイミド (DCC)、N-xチルーN- (3-ジメチルアミノプロピル)カルボジイミド (EDCIまたはWSC)、カルボニルジイミダゾール (CDI)、N-ヒドロキシサクシンイミド (HOSu)、N-ヒドロキシベンゾトリアゾール (HOBt)、ベンゾトリアゾールー1ーイルオキシトリス (ピロリジノール)ホスホニウム=ヘキサフルオロホスフェート (PyBOP)、2- (1H - ベンゾトリアゾールー1ー1イル)ー1,1,3,3ーテトラメチルウロニウム=ヘキサフルオロホスフェート (HBTU)、2- (1H-ベンゾトリアゾールー1ーイル)ー1,1,3,3ーテトラメチルウロニウム=テトラフルオロボ

レート (TBTU)、2-(5-ノルボルネン-2,3-ジカルボキシイミド)-1,1,3,3-テトラメチルウロニウム=テトラフルオロボレート (TNTU)、O-(N-サクシニミジル)-1,1,3,3-テトラメチルウロニウム=テトラフルオロボレート (TSTU)、プロモトリス (ピロリジノ) ホスホニウム=ヘキサフルオロホスフェート (PyBroP) などの縮合剤;炭酸カリウム、炭酸カルシウム、炭酸水素ナトリウムなどの無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、ピリジンなどのアミン類、(ピペリジノメチル)ポリスチレン、(モルホリノメチル)ポリスチレン、(ジメチルアミノメチル)ポリスチレン、ポリ(4ービニルピリジン)などの高分子支持塩基などの塩基を適宜用いることにより、より円滑に進行させることができる。

(製造法2)

下記式 (IV)

[0312]

【化5】

$$\begin{array}{c}
R^1 \\
 \longrightarrow (CH_2)_j -X
\end{array} (IV)$$

[0313]

[式中、 R^1 、 R^2 、およびjは、上記式(I)におけるそれぞれの定義と同じであり、Xはハロゲン原子、アルキルスルホニルオキシ基、またはアリールスルホニルオキシ基を表わす。

で表わされるアルキル化試薬1当量と、下記式(V)

[0314]

【化6】

$$\begin{array}{c} \begin{pmatrix} (CH_{2})_{k} \\ HN \end{pmatrix} - (CH_{2})_{n} - N - C - (CH_{2})_{p} - \frac{R^{4}}{R^{3}} + (CH_{2})_{q} - G - R^{6} \end{pmatrix} (V)$$

[0315]

[式中、 R^3 、 R^4 、 R^5 、 R^6 、G、k、m、n、p、および q は、上記式 (I) におけるそれぞれの定義と同じである。]

で表わされる化合物 $0.1\sim10$ 当量を無溶媒下、または溶媒存在下に反応させることによる製造方法。

[0316]

かかる反応は、上記製造法1と同様の塩基を適宜用いることにより、より円滑 にに進行させることができる。さらに、本製造方法において、ヨウ化カリウム、 ヨウ化ナトリウムなどのヨウ化物を共存させることにより、反応を促進できる場 合がある。

[0317]

上記式(IV)において、Xはハロゲン原子、アルキルスルホニルオキシ基、アリールスルホニルオキシ基を表わす。かかるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基などが挙げられる。アリールスルホニルオキシ基の好適な具体例としては、トシルオキシ基を挙げることができる。

(製造法3)

下記式 (VI)

[0318]

【化7】

$$R^1$$
 \rightarrow $(CH_2)_{j-1}$ \rightarrow (VI) R^2

[0319]

ig[式中、 igR^1 および igR^2 は、上記式(igI)におけるそれぞれの定義と同じであり、igg] は igl1 または igl2 を表わす。igr]

または、下記式 (VII)

$$R^1$$
-CHO (VII)

[式中、 R^1 は、上記式(I)における R^1 の定義と同じであり、jは0を表わす場合に相当する。]

で表わされるアルデヒド1当量と、上記式(V)で表わされる化合物0.1~1 0当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

[0320]

かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応、水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボランを用いる水素化反応、または電解還元反応などを用いることができる。

(製造法4)

下記式 (VIII)

[0321]

【化8】

$$\begin{array}{c}
R^{1} & (CH_{2})_{k} \\
 & (CH_{2})_{j} - N \\
R^{2} & (CH_{2})_{m}
\end{array}
\right) - (CH_{2})_{n} - N - C - (CH_{2})_{p} - R^{4} \\
 & (CH_{2})_{q} - NH \\
 & R^{5} - R^{7}
\end{array}$$
(VIII)

[0322]

[式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^7 、J、k、m、n、p、および q は、上記式 (I) におけるそれぞれの定義と同じである。]

で表わされる化合物1当量と、下記式 (IX)

$$HO-A-R^6 \qquad (IX)$$

[式中、 R^6 は、上記式(I)における R^6 の定義と同じであり、A はカルボニル基またはスルホニル基を表わす。

で表わされるカルボン酸またはスルホン酸、またはそれらの反応性誘導体 0.1 ~10 当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(IX)で表わされるカルボン酸またはスルホン酸の反応性誘導体とは、 例えば酸ハロゲン化物、酸無水物、混合酸無水物などの、合成有機化学分野で一 般に使用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

(製造法5)

上記式(VIII)で表わされる化合物1当量と、下記式(X)

$$Z = C = N - R^6 \tag{X}$$

[式中、 R^6 は上記式(I)における R^6 の定義と同じであり、Zは酸素原子または硫黄原子を表わす。]

で表わされるイソシアネートまたはイソチオシアネート 0. 1~10当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

(製造法6)

下記式(XI)

[0325]

【化9】

$$\begin{array}{c}
R^{1} & \nearrow (CH_{2})_{j} - N \\
R^{2} & (CH_{2})_{m} & R^{3} & R^{4} \\
(CH_{2})_{m} & R^{3} & R^{5}
\end{array}$$

$$\begin{array}{c}
CH_{2} \\
CH_{2} \\
CH_{2}
\end{array}$$

$$\begin{array}{c}
CH_{2} \\
CH_{2}
\end{array}$$

[0326]

[式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、j、k、m、n、p、および q は、上記式 (I) におけるそれぞれの定義と同じであり、A はカルボニル基またはスルホニル基を表わす。]

で表わされる化合物1当量と、下記式(XII)

$$R^6 - NH_2$$
 (XII)

[式中、 R^6 は、上記式(I)における R^6 の定義と同じである。] で表わされるアミン0. $1\sim10$ 当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

[0327]

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

[0328]

上記製造法1~6において、各反応に供する基質が、一般に有機合成化学において各反応条件において反応するか、あるいは反応に悪影響を及ぼすことが考えられる置換基を有する場合には、その官能基を既知の適当な保護基で保護して反応に供した後、従来既知の方法を用いて脱保護することにより、目的の化合物を得ることができる。

[0329]

さらに、本発明で用いられる化合物は、例えばアルキル化反応、アシル化反応、還元反応などの、一般に有機合成化学において使用される既知の反応を用いて、上記製造法6により製造される化合物の(単数または複数の)置換基をさらに変換することによっても得ることができる。

[0330]

上記各製造法において、反応溶媒としてはジクロロメタン、クロロホルムなどのハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが、反応に応じて適宜用いられる。

[0331]

いずれの製造方法においても、反応温度は-78 \mathbb{C} \sim +150 \mathbb{C} 、好ましくは0 \mathbb{C} \sim 100 \mathbb{C} の範囲である。反応完了後、通常の単離、精製操作、すなわち濃縮、濾過、抽出、固相抽出、再結晶、クロマトグラフィーなどを行うことにより、目的とする上記式(I)で表わされる環状アミン化合物を単離することができる。また、それらは通常の方法により、薬学的に許容される酸付加体または \mathbb{C}_1 \sim \mathbb{C}_6 \mathbb{C}_1 \mathbb{C}_6 \mathbb{C}_1 \mathbb{C}_6 \mathbb{C}_6 \mathbb{C}_7 \mathbb{C}_6 \mathbb{C}_7 \mathbb{C}_6 \mathbb{C}_7 \mathbb{C}_6 \mathbb{C}_7 \mathbb{C}_6 \mathbb{C}_7 \mathbb{C}_6 \mathbb{C}_7 \mathbb

[0332]

【実施例】

本発明を以下、実施例に基づいて説明する。しかしながら、本発明はこれらの 実施例に記載された化合物に限定されるものではない。以下の実施例において各 化合物に付された化合物番号(Compd. No.)は、Table1.1~1 .201において好適な具体例として挙げた化合物に付された化合物番号(Compd. No.)と対応している。

[0333]

[参考例1] <u>(R)-1-(4-クロロベンジル)-3-[{N-(3,4</u> -ジフルオロベンゾイル) グリシル} アミノ] ピロリジン(化合物番号69) の 合成

本発明の化合物はWO9925686号パンフレット記載の製造法により合成したが、例えば化合物番号69の(R)-1-(4-クロロベンジル)-3-[N-(3,4-ジフルオロベンゾイル)グリシル}アミノ]ピロリジンは以下のように合成した。

[0334]

4-クロロベンジルクロリド (4. 15g、25, 8mmol) とⁱPr₉NE t (6.67g, 51.6mmol) を、3-{(tert-ブトキシカルボニ ル) アミノ) ピロリジン (4.81g, 25.8 mmol) のDMF溶液 (50 mL) に加えた。反応混合物を70℃で15時間攪拌し、溶媒を減圧下に除去し た。再結晶 (CH₃CN, 50mL) により目的とする3-{(tert-ブト キシカルボニル) アミノ} -1-(4-クロロベンジル) ピロリジン(6.43 g, 80%) を黄白色固体として得た: 1 H NMR(CDCl $_{3}$, 300 MHz) δ 1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83 (br, 1 H)), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); 純度はRPLC/MSで求めた(98%); ESI/MS m/e 311.0 (M+H, C₁₆H₂₄ClN₂O₂) 3-{(tert-ブトキシカルボニル)アミノ}-1-(4-クロロベンジ ル) ピロリジン (6.38g, 20.5mmol) のCH3OH (80mL) 溶 液に1N HC1-Et₂O (100mL) を加え、25℃で15時間攪拌した 。溶媒を減圧下に除去し、固体を得、再結晶(1:2 CH₃OH-CH₃CN, 130mL)で精製することにより、3-アミノ-1-(4-クロロベンジル) ピロリジン・二塩酸塩(4.939g,85%)を白色粉末として得た: 1 H 1 H 1 M R (d_6 -DMSO, 300 MHz) δ 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8. 45 (br, 1 H), 8.60 (br, 1 H); 純度はRPLC/MSで求めた(>99%); ESI/MS m/e 21 1.0 (M+H, C₁₁H₁₆ClN₂)

[0335]

- - (R) -3-アミノ-1-(4-クロロベンジル) ピロリジン・二塩酸塩 (4

[0336]

[0337]

3) (R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジンの合成

(R) $-3-\{N-(tert-ブトキシカルボニル) グリシル\}$ アミノー1 $-(4-\rho \Box \Box \Delta)$ ピロリジン(5.39g,14.7mmol)のメタノール(60mL)溶液に、4N HClジオキサン(38mL)溶液を加えた。この溶液を室温で2時間攪拌した。反応混合物を濃縮し、2N NaOH溶液(80mL)を加えた。混合液をジクロロメタン(80mLx3)で抽出し、抽出液をあわせて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(SiO2, AcOEt/EtOH/Et3N=90/5/5)により、(R) $-3-(\mathcal O)$ ストロー(4ークロロベンジル)ピロリジン(3.374g,86%)を得た: 1 H NMR(CDCl3,270 MHz) δ 1.77(dd, J=1.3および

6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3および9.6 Hz, 1 H), 2 .62 (dd, J = 6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 3 .57(s, 2 H), 4.38-4. 53 (br, 1 H), 7.18-7.32 (m, 4 H), 7.39(br, s, 1 H)

- 4) $(R) 1 (4 \rho \pi \pi \pi \nu \nu) 3 [{N (3, 4 ジ \tau \nu) \over 3 \tau \nu}]$ オロベンゾイル) グリシル) アミノ] ピロリジン (化合物番号69)
- 3,4ージフルオロベンゾイルクロリド(0.060mmol)のクロロホルム溶液(0.4mL)を、(R)ー1ー(4ークロロベンジル)ー3ー(グリシルアミノ)ピロリジン(0.050mmol)とトリエチルアミン(0.070mmol)のクロロホルム(1.0mL)溶液に加えた。この反応混合物を室温で2.5時間攪拌した後、(アミノメチル)ポリスチレン樹脂(1.04mmol/g,50mg,50mmol)を加え、混合物を室温で12時間攪拌した。反応混合物を濾過し、樹脂をジクロロメタン(0.5mL)で洗浄した。濾液と洗液とを合わせ、ジクロロメタン(4mL)を加え、溶液を2N NaOH水溶液(0.5mL)にて洗浄し、濃縮することにより、(R)ー1ー(4ークロロベンジル)ー3ー[{Nー(3,4ージフルオロベンゾイル)グリシル}アミノ]ピロリジン(化合物番号69)を得た(7.8mg,38%):純度はRPLC/MSで求めた(>99%); ESI/MS m/e 408.0 (M+H, C20H20CIF2N302)

[実施例1] <u>エオタキシンにより惹起されるCCR3発現細胞の細胞内カル</u>シウム濃度上昇に対する被験化合物の阻害能の測定

CCR3レセプターを安定して発現するK562細胞を用いて、細胞内カルシウム濃度上昇に対する本発明による化合物の阻害能を次の方法にて測定した。

[0338]

CCR3発現K562細胞を10mM HEPES含有HBSS溶液に懸濁したものに1mM Fura2アセトキシメチルエステル(同仁化学社製)を加え、37℃にて30分間インキュベートした。これを340nmと380nmで励起し、340/380比をモニターすることにより、細胞内カルシウム濃度を測定した。アゴニストとしてヒトエオタキシン(0.5μg/m1)を用い、被験化合物の阻害能はエオタキシンで刺激する5分前にCCR3発現K562細胞を被験化合物で処理したときの細胞内カルシウム濃度を測定し、下記の式により抑

[0339]

抑制率 (%) = {1-(A-B)/(C-B)} x100

(A:被験化合物で処理した後エオタキシンで刺激したときの細胞内カルシウム 濃度、B:無刺激のときの細胞内カルシウム濃度、C:被験化合物で処理せずに エオタキシンで刺激したときの細胞内カルシウム濃度)

本発明で用いる環状アミン誘導体の阻害能を測定したところ、例えば、下記の化合物は、 10μ Mの濃度おいて、それぞれ $20\sim50\%$ 、 $50\%\sim80\%$ 、および、>80%の阻害能を示した。

[0340]

10μMの濃度において20%~50%の阻害能を示した化合物:
化合物番号11,156,234,330,392,424,481,523,525,533,558,567,582,602,613,630,646,649,701,738,741,754,767,814,816,833,839,873,902,909,945,1002,1159,1170,1258,1315,1352,1357,1407,1417,1448,1472,1504,1508,1531,1558,1562,1569,1661,1670,1686,1719,1751,1756,1769,1775,1783,1797,1802,1803,1815,1834,1841,1846,1883,1887,1889,1892,1913,1924,1928,1960,2006,2013,2035,2052,2083,2113,2127,2136,2189

10μMの濃度において50%~80%の阻害能を示した化合物: 化合物番号83,115,146,150,216,294,297,322, 405,440,459,461,466,482,484,487,490, 492,503,526,528,550,562,570,578,620, 623,659,685,687,703,716,730,733,755, 770,850,856,867,876,998,1015,1024,12

0, 1485, 1519, 1550, 1560, 1595, 1601, 1650, 1701, 1725, 1754, 1836, 1856, 1870, 1912, 1923, 1929, 2095, 2120, 2138, 2179

10μΜの濃度において>80%の阻害能を示した化合物:

化合物番号7, 32, 68, 169, 173, 203, 209, 215, 520, 544, 547, 851, 852, 855, 874, 910, 1003, 1012, 1032, 1038, 1042, 1043, 1046, 1114, 1190, 1244, 1247, 1384, 1441, 1513, 1527, 1545, 1582, 1673, 1687, 1689, 1705, 1850, 1869, 1871, 1876, 1877, 1899, 2027

[実施例2] <u>CCR3発現細胞膜画分へのエオタキシンの結合に対する阻害</u> 能の測定

ヒトCCR3発現K562細胞より調製した細胞膜画分を0.5mg/mLになるようにアッセイバッファー (25mM HEPES、pH7.6、1mM CaCl₂、5mM MgCl₂、0.5%BSA) に懸濁し膜画分懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。[125 I] 標識ヒトエオタキシン (アマシャム社製) を 1μ Ci/mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。0.5%BSAで被覆した96ウェルマイクロプレートに、1ウェルあたり被験化合物溶液25 μ L、標識リガンド溶液25 μ L、膜画分懸濁液50 μ Lの順番に分注し撹拌後 (反応溶液100 μ L)、25 Γ Cで90分インキュベートした。

[0341]

反応終了後、あらかじめ 0. 5%ポリエチレンイミン溶液にフィルターを浸漬した 9 6 ウェルフィルタープレート (ミリポア社製)で反応液をフィルター濾過し、フィルターを冷洗浄バッファー (アッセイバッファー+ 0. 5 M NaCl) 150μLで4回洗浄した (冷洗浄バッファー150μLを加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウェルあたり25μLずつ加え、フィルター上の膜画分が保持する放射能をトップカウント (パッカード社製)にて測定した。

[0342]

被験化合物の代わりに非標識ヒトエオタキシン 100ngを添加した時のカウントを非特異的吸着として差し引き、被験化合物を何も添加しない時のカウントを100%として、ヒトエオタキシンのCCR3膜画分への結合に対する被験化合物の阻害能を算出した。

[0343]

阻害率 (%) = $\{1 - (A - B) / (C - B)\} \times 100$

(A: 被験化合物添加時のカウント、B: 非標識ヒトエオタキシン 100ng添加時のカウント、C: [125 I] 標識ヒトエオタキシンのみ添加した時のカウント)

[0344]

【発明の効果】

本発明の環状アミン化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁~C₆アルキル付加体を有効成分とする薬剤、もしくは、CCR3が関与する疾患の治療薬もしくは予防薬は、CCR3拮抗剤として、エオタキシンなどのCCR3のリガンドの標的細胞に対する作用を抑制する作用を有するので、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、ならびに潰瘍性大腸炎およびクローン病などの炎症性腸疾患など、好酸球、好塩基球、活性化T細胞などの組織への浸潤が病気の進行、維持に主要な役割を演じている疾患に対する治療薬および/または予防薬として有用である。また、CCR3拮抗作用に基づくHIV-1の感染を阻害する作用により、エイズの治療薬および/または治療薬としても有用である。

【書類名】 要約書

【要約】

【課題】 CCR3が関与する疾患の治療薬もしくは予防薬を提供する。

【解決手段】 下記式(I)で表わされる環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 \sim C_6$ アルキル付加体を有効成分として含有する、喘息、アレルギー性鼻炎などのCCR3が関与する疾患を治療および/または予防する作用を有する医薬。

【化1】

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{k} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} - H - (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} - N - C - (CH_{2})_{p} - H - (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

【選択図】 なし

出願人履歴情報

識別番号

[000003001]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

大阪府大阪市中央区南本町1丁目6番7号

氏 名

帝人株式会社