Лекция 3 по курсу «Дискретные преобразования сигналов» 18 февраля 2025 г.

2. Спектры периодических и импульсных сигналов (продолжение).

Спектры гармонических сигналов. Растекание спектральных компонент при ограничении сигнала по длительности. Спектр периодического сигнала (в общем виде).

Спектры гармонических сигналов

Спектры гармонических сигналов

Вычислим обратное преобразование Фурье для $X(f) = \delta(f - f_0)$, т.е. от дельта-функции в точке f_0 оси частот.

$$x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi f t) df = \int_{-\infty}^{\infty} \delta(f - f_0) \exp(j2\pi f t) df.$$
$$x(t) = \exp(j2\pi f_0 t).$$

Тогда с учетом того, что

$$\cos(2\pi f_0 t) = \frac{\exp(j2\pi f_0 t) + \exp(-j2\pi f_0 t)}{2},$$

$$\sin(2\pi f_0 t) = \frac{\exp(j2\pi f_0 t) - \exp(-j2\pi f_0 t)}{2j}.$$

получаем

$$1 \overset{FT}{\longleftrightarrow} \delta(f),$$

$$\exp(j2\pi f_0 t) \overset{FT}{\longleftrightarrow} \delta(f - f_0),$$

$$\cos(2\pi f_0 t) \overset{FT}{\longleftrightarrow} \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0),$$

$$\sin(2\pi f_0 t) \overset{FT}{\longleftrightarrow} \frac{1}{2j} \delta(f - f_0) - \frac{1}{2j} \delta(f + f_0).$$

Пример. Определить спектр X(f) гармонического сигнала $x(t) = \cos(2\pi f_1 t) + 3\cos(2\pi f_2 t)$

где
$$f_1 = 100$$
 Гц, $f_2 = 200$ Гц.

Решение. По свойствам преобразования Фурье

$$\cos(2\pi f_0 t) \stackrel{FT}{\longleftrightarrow} \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0).$$

Тогда по свойству линейности преобразования Фурье

$$X(f) = \frac{1}{2}\delta(f - f_1) + \frac{1}{2}\delta(f + f_1) + \frac{3}{2}\delta(f - f_2) + \frac{3}{2}\delta(f + f_2)$$

Эффект растекания спектральных компонент (leakage)

Эффект растекания спектральных компонент при ограничении длительности сигнала

Ограничение сигнала по длительности эквивалентно умножению на прямоугольную оконную функцию: y(t) = w(t)x(t).

Пусть
$$x(t) \stackrel{FT}{\longleftrightarrow} X(f), w(t) \stackrel{FT}{\longleftrightarrow} W(f)$$
. Тогда
$$w(t)x(t) \stackrel{FT}{\longleftrightarrow} \int_{0}^{\infty} W(\tilde{f})X(f-\tilde{f})d\tilde{f}.$$

Пример. Гармонический сигнал x(t) имеет вид

$$x(t) = \cos(2\pi f_1 t) + 3\cos(2\pi f_2 t)$$

где f_1 = 100 Гц, f_2 = 200 Гц. Определить, какой вид будет иметь спектр для x(t)w(t), где w(t) — некоторая оконная функция.

Решение. Пусть $x(t) \overset{FT}{\longleftrightarrow} X(f), w(t) \overset{FT}{\longleftrightarrow} W(f)$. Тогда

$$X(f) = \frac{1}{2}\delta(f - f_1) + \frac{1}{2}\delta(f + f_1) + \frac{3}{2}\delta(f - f_2) + \frac{3}{2}\delta(f + f_2).$$

$$w(t)x(t) \stackrel{FT}{\longleftrightarrow} \int_{-\infty}^{\infty} W(\tilde{f})X(f-\tilde{f})d\tilde{f}.$$

$$Y(f) = \frac{1}{2}W(f - f_1) + \frac{1}{2}W(f + f_1) + \frac{3}{2}W(f - f_2) + \frac{3}{2}W(f + f_2).$$

Эффект растекания спектральных компонент (leakage)

w(t) - прямоугольное окно длиной $\tau = 0,1$ c.

w(t) - прямоугольное окно длиной $\tau = 0.05 \ c$.

w(t) - окно Ханна длиной $\tau = 0,1$ c.

Эффект растекания спектральных компонент (leakage)

Пример. Окно Ханна.

Определим спектр $W_H(f)$ аналогового окна Ханна длительностью au.

$$w_H(t) = egin{cases} rac{1}{2} igg(1 + \cosigg(rac{2\pi t}{ au}igg)igg), & ext{если } |t| < rac{ au}{2}, \ 0, & ext{если } |t| \geq rac{ au}{2}. \end{cases}$$

Способ 1.

Пусть w(t) — прямоугольное окно той же длительности.

$$w_H(t) = \frac{1}{2}w(t) + \frac{1}{4}w(t)\exp\left(j2\pi t \frac{1}{\tau}\right) + \frac{1}{4}w(t)\exp\left(-j2\pi t \frac{1}{\tau}\right).$$

Тогда по теореме смещения для преобразования Фурье

$$W_{H}(f) = \frac{1}{2}W(f) + \frac{1}{4}W\left(f - \frac{1}{\tau}\right) + \frac{1}{4}W\left(f + \frac{1}{\tau}\right).$$

Далее остается подставить W(f).

$$W_H(f) = \frac{\sin(\pi f \tau)}{2\pi f (1 - \tau^2 f^2)}.$$

Способ 2.

Рассмотрим сигнал $x(t) = \frac{1}{2} \left(1 + \cos \left(\frac{2\pi t}{\tau} \right) \right).$

Его спектр
$$X(f) = \frac{1}{2}\delta(f) + \frac{1}{4}\delta\left(f - \frac{1}{\tau}\right) + \frac{1}{4}\delta\left(f + \frac{1}{\tau}\right)$$
.

При этом $W_H(t) = W(t)X(t)$ и $W_H(f) = W(f) \otimes X(f)$.

Использую фильтрующее свойство δ -функции, получаем

$$W_H(f) = \frac{1}{2}W(f) + \frac{1}{4}W\left(f - \frac{1}{\tau}\right) + \frac{1}{4}W\left(f + \frac{1}{\tau}\right).$$

Спектр периодического сигнала (в общем виде).

Спектр периодического сигнала (в общем виде).

Периодический сигнал x(t) с периодом T представим рядом Фурье:

$$x(t) = \sum_{n=-\infty}^{\infty} A_n \exp\left(j2\pi \frac{n}{T}t\right),$$

где коэффициенты Фурье

$$A_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \exp\left(-j2\pi \frac{n}{T}t\right) dt.$$

По свойству для гармонических сигналов

$$\exp(j2\pi f_0 t) \stackrel{FT}{\longleftrightarrow} \delta(f - f_0)$$

для каждой экспоненты в ряде Фурье можем записать

$$A_n \exp\left(j2\pi \frac{n}{T}t\right) \stackrel{FT}{\longleftrightarrow} A_n \delta\left(f - \frac{n}{T}\right).$$

Тогда

$$x(t) = \sum_{n = -\infty}^{\infty} A_n \exp\left(j2\pi \frac{n}{T}t\right) \stackrel{FT}{\longleftrightarrow} \sum_{n = -\infty}^{\infty} A_n \delta\left(f - \frac{n}{T}\right)$$

Получаем, что спектр T – периодического сигнала представляет собой последовательность следующих с

периодом $\Delta f = \frac{1}{T}$ дельта-функций с весами, равными коэффициентам A_n разложения этого сигнала в ряд Фурье.

Заметим, что поскольку спектр одного периода сигнала вычисляется по формуле

$$X_T(f) = \int_{-T/2}^{T/2} x(t) \exp(-j2\pi f t) dt,$$

коэффициенты Фурье A_n равны его выборкам в точках

$$A_n = \frac{1}{T} X_T \left(\frac{n}{T} \right).$$

Спектр периодического сигнала (в общем виде).

Пример. Найдем спектр периодической последовательности прямоугольных импульсов x(t).

Поскольку спектр одного периода

$$X_T(f) = E\tau \frac{\sin(\pi\tau f)}{\pi\tau f},$$

то коэффициенты Фурье равны

$$A_{n} = \frac{1}{T} X_{T} \left(\frac{n}{T} \right) = \frac{E \tau}{T} \frac{\sin(n \pi \tau / T)}{n \pi \tau / T},$$

$$x(t) \stackrel{FT}{\longleftrightarrow} \sum_{n = -\infty}^{\infty} \frac{E \tau}{T} \frac{\sin(\pi \tau f)}{\pi \tau / T} \delta \left(f - \frac{n}{T} \right).$$

Спектр периодической последовательности прямоугольных импульсов представляет собой последовательность следующих с периодом $\Delta f = \frac{1}{T}$ дельта-функций с весами, равными коэффициентам A_n .

При этом для пачки из первых N импульсов спектр принимает вид

$$X_N(f) = \exp(-j\pi f T(N-1)) E \tau \frac{\sin(\pi f \tau)}{\pi f \tau} \frac{\sin(\pi f T)}{\sin(\pi f T)}.$$

Спектр периодического сигнала (в общем виде).

При ограничении числа импульсов (ограничении длительности сигнала окном) наблюдаем эффект растекания спектральных компонент (leakage) — дельта-функции в спектре «размываются» в спектральные максимумы. Чем больше импульсов, тем эти максимумы тоньше.

Задачи с лекции

Задачи для самостоятельного решения

№1. Определить спектры изображенных на графике периодических последовательностей $x_1(t)$ и $x_2(t)$.

№2. Предположим, что сигнал $x(t) = \cos(2\pi f_0 t)$, $f_0 = 100$ Гц наблюдается с момента времени t = 0 с в течении $\tau = 0,1$ с. Найти спектр наблюдаемого участка сигнала.

№3. Гармонический сигнал x(t) имеет вид $x(t) = \cos(2\pi f_1 t) + 2\cos(2\pi f_2 t)$

где $f_1=100$ Гц, $f_2=200$ Гц. а) Изобразить график спектра сигнала x(t). б) Определить, какой вид будет иметь спектр для сигнала x(t)w(t), где w(t) — симметричное относительно t=0 окно Ханна длительностью $\tau=0,1$ c.