

$$\Delta Y = \Delta G$$

 $\Delta C = \Delta Y (MPC)$

Change in Consumption

Change in Deficit

Δ Government's Deficit = Δ G – Δ T

Spending Multiplier

Change in Equilibrium GDP

= 100

 $\Delta C = 1,000 (0.9) = 900$

 Δ Deficit = 100 - 0

 $\Delta G = 100$

ı

Formula:

Example:

Formula: Government Spending increase by 100
$$\Delta G = 100$$

Spending Multiplier $\left(\frac{1}{1\text{-MPC}}\right)$ increase by 1000 $\left(\frac{1}{1\text{-0.9}}\right)$

Change in Equilibrium GDP

 $\Delta Y = \Delta G \left(\frac{1}{1\text{-MPC}}\right)$
 $\Delta Y = 100 \left(\frac{1}{1\text{-0.9}}\right)$

Change in Consumption

 $\Delta C = \Delta Y \text{ (MPC)}$
 $\Delta C = 1,000 \left(\frac{0.9}{0.9}\right) = 900$

Change in Deficit

 $\Delta C = \Delta C = 1,000 \left(\frac{0.9}{0.9}\right) = 900$

Change in Deficit

 $\Delta C = 1,000 \left(\frac{0.9}{0.9}\right) = 900$
 $\Delta C = 1,000 \left(\frac{0.9}{0.9}\right) = 900$

The effect of a tax cut

