

2020, Volume 7, e6619 ISSN Online: 2333-9721

ISSN Print: 2333-9705

Outlier Detection and Effects on Modeling

Christopher O. Arimie¹, Emmanuel O. Biu², Maxwell A. Ijomah²

¹Department of Radiology, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria ²Department of Mathematics and Statistics, University of Port Harcourt, Port Harcourt, Nigeria Email: codarimie@yahoo.com, biu.emmanuel@uniport.edu.ng, Maxwell.ijomah@uniport.edu.ng

How to cite this paper: Arimie, C.O., Biu, E.O. and Ijomah, M.A. (2020) Outlier Detection and Effects on Modeling. *Open Access Library Journal*, **7**: e6619. https://doi.org/10.4236/oalib.1106619

Received: July 16, 2020 Accepted: September 13, 2020 Published: September 16, 2020

Copyright © 2020 by author(s) and Open Access Library Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

In this work, a comprehensive framework for traditional outlier detection techniques based on simple and multiple linear regression models was studied. Two data sets were used for the illustration and evaluation of each class of outlier detection techniques (analytical and graphical methods). Outlier detection aims at identifying such outlier in order to improve the analytic of data and suitable model built. Furthermore, comparisons of the different methods were done to highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques. The results show that by removing the influential points (or outliers), the model adequacy increased (from $R^2 = 0.72$ to $R^2 = 0.97$). It was observed that Jackknife residuals and Atkinson's measure methods are very useful in detecting outliers; hence, both methods were recommended for outliers' detection.

Subject Areas

Applied Statistical Mathematics

Keywords

Outliers' Detection, Classification and Comparisons, Simple and Multiple Linear Regression Models

1. Background of the Study

Outliers are observations that appear inconsistent with the remainder of the dataset. Bollen and Jackman [1] defined outliers as observations that are distinct from most of the data points in the sample. Hawkins [2] described outlier as an observation that deviates so much from other observations as to arouse suspicions that it was generated by different mechanisms. Dixon [3] sees outlier as values that are dubious in the eyes of the researcher and contaminants. Outliers are often present in real data but may go unnoticed because nowadays much da-

ta are produced by computer without careful inspection or screening. Outliers may be mistakes in data entry or otherwise, accurate but unexpected observations which could shed new light on the phenomenon under study.

In general, outliers can be classified into two types: man-made one and random one. Man-made outliers may arise because of typographical error(s), misreporting of information, incorrect distribution assumption and sampling error. Random outliers, on the other hand, may arise because of random chance for drawing sample from a population. Presence of man-made or random outliers or both would seriously influence the result of statistical analysis including point and interval estimates and type 1 and type 11 errors. Outlier can cause us to misinterpret patterns in plots; it can affect visual resolution of remaining data in plot (forces observations into clusters) and may indicate that our model fails to capture important characteristics of the data. Unusual cases can substantially influence the fit of the ordinary least square model thus, leading to faulty conclusion. Some man-made outliers can be avoided by a strict data entry and rechecking process before conducting a statistical analysis. Data transformation is another way to reduce the influence of outliers (see Barnett and Lewis [4]; Montgomery [5]).

Quite a number of authors have proposed different methods of detecting outliers.

Abuzaid et al. [6], proposed a number of diagrammatical plots and hypothesis testing to detect outliers in the simple circular regression model. The work focused on detecting outlier in the down and Mardia's circular-circular regression model. Zhang et al. [7] presented a method which applies signal processing techniques to solve important problems in data mining. They introduced an outlier detection approach termed to find out, based on wavelet transform. The main idea in the method is to remove the clusters from the original data and then identify the outliers. Rousseeuw [8] proposed a depth based method to detect outlier. The data points are organized in layers in the data space according to the value of the point depth. Aggarwal and Yu [9] proposed a method which entails studying the projection from the rest of the data in a sparse data with high dimensionality. Arning et al. [10] introduced a method which relies on the observations such that after seeing a series of similar data, an element disturbing the series is considered an outlier.

Hodge and Austin [11] identified an efficient method for on-line classification and outlier detection in multivariate sensor data. This involved a comparative review to identify and distinguish their advantages and disadvantages and introducing a survey of contemporary outlier detection techniques. Sebert $et\ al$. [12] and Montgomery [5] asserts that to identify the existence of outliers the standardized residuals are computed and a large standardized residual of (d > 3) indicates outlier. Worden $et\ al$. [13] used the concept of discordances to signal deviance from the norm.

Kitagawa [14] and Wing-Kam Fung and Bacon-Shone [15] applied Akaike information criterion (AIC) in detection of outliers by using (quasi) Bayesian

approach with predictive likelihood. Belsey *et al.* [16] suggested standardizing each residual with an estimate of its standard deviation that is independent of the residual. This is accomplished by using as the estimate of variance for the ith residual, the residual mean square from an analysis where that observation has been omitted. The result is a jackknife residual also called a fully studentized residual.

In this study, concentration is on the effect of outlier as well as detection methods on linear regression model. Specifically, we are concerned with observations that differ from the regression plane defined by the data. It is important to identify these types of outliers in regression modeling because the observations when undetected can lead to erroneous parameter estimates and inference from the model. Deleting outliers from a regression model can sometimes give completely different results as bias or distortion of estimates are removed. Identifying outliers in the real world data-base is important for improving the quality of original data and for reducing the impact of outliers. Identifying outliers and high-leverage points, is a fundamental step in the least-squares regression model building process. On this note, it is the purpose of this research to examine the effect of outliers on simple and multiple linear regression, compare different methods of detecting outlier and show its effect on modeling.

2. Methods of Outlier Detection and Effects on Regression Model

There are many methods for the detection of outliers in linear regression. They may be classified into graphical and analytical methods. The graphical methods include Scatter graph, Boxplot, Williams graph, Rankit graph (or Q-Q Plot) and graph of predicted residuals. The analytical methods are predicted residuals, standardized residuals, studentized residuals, Jack-knife residuals, Cook's distance, Different-in-fits (DFFITS) and Atkinson's measure.

The general linear model is given as

$$y_{n\times 1} = X_{n\times k}\beta_{k\times 1} + \varepsilon_{n\times 1} \tag{2.1}$$

where,

 $y_{n\times 1}$ is the observation (dependent variables);

 $X_{n \times k}$ is the design matrix including a constant;

 $\varepsilon \sim N(0, \sigma^2 I)$ is the error term;

 $\beta = (\beta_0, \beta_1, \beta_2, \dots, \beta_{k-1})'$ is the coefficient and k is the number of covariates or predictors for each observation.

Then, the least square estimator is given as

$$\beta = (XX)^{-1}(XY) \tag{2.2}$$

where the fitted (predicted) values for mean of Y are

$$\hat{Y} = X\beta = X(X'X)^{-1}(X'Y) = HY$$
(2.3)

where $H = X(X'X)^{-1}X'$ is the projection matrix (or hat matrix).

The t^{th} diagonal element of H (given by $h_i = x_i' (X'X)^{-1} x_i$ is known as the leverage of the t^{th} observation).

Similarly, the t^{h} element of the residual vector

$$\varepsilon_i = Y_i - \hat{Y}_i = (I - H)Y_i \tag{2.4}$$

where *H* is as defined in Equation (2.3), *I* is the identity matrix and Y_i is corresponding fitted value ($i = 1, 2, \dots, n$).

In this study, Outliers were detected using the following methods:

2.1. Studentized and Standardized Residuals

The Studentized residual is obtained by

$$\varepsilon_{S.i} = \frac{\widehat{\varepsilon}_i}{\widehat{\sigma}\sqrt{1 - h_i}} = \frac{\widehat{\varepsilon}_i}{\sqrt{\widehat{\sigma}^2 \left(1 - h_i\right)}}$$
 (2.5)

where $\hat{\sigma}$ is an appropriate estimate of σ , and the estimate of $\hat{\sigma}^2$ (Mean Residual Sum of Squares) is the internally studentized residuals. h_i is leverage points as already defined.

$$\hat{\sigma}^2 = \frac{1}{n-k} \sum_{j=1}^n \hat{\varepsilon}_j \tag{2.6}$$

where k is the number of parameters in the model (Equation (2.1)).

Studentized residuals with large absolute values are considered large. If the regression model is appropriate, with no outlying observations, each Studentized residual follows a t distribution with n - k - 1 degrees of freedom.

CRITICAL: Each deleted residual has a student's t-distribution with n - k - 1 degrees of freedom.

If the Studentized residual is divided by the estimates of its standard error so that the outcome is a residual with zero mean and standard deviation one, it becomes standardized residual denoted by

$$\varepsilon_{ST.i} = \frac{\widehat{\varepsilon}_i}{sd(\sigma)} \tag{2.7}$$

where $sd(\sigma)$ is the standard deviation of $\hat{\sigma}^2$ in Equation (2.6).

CRITICAL: The standardized residuals, $d_i > 3$ potentially indicate outlier.

2.2. Jackknife Residuals

The jackknife residuals are residuals which with an assumption of normality of errors have a student distribution with (n - k - 1) degrees of freedom. The formula is:

$$\varepsilon_{J,i} = \widehat{\varepsilon}_{S,i} \sqrt{\frac{(n-k-1)}{(n-k-\widehat{\varepsilon}_{S,i}^2)}}$$
 (2.8)

where $\varepsilon_{S,i}$ is the Studentized residuals Equation (2.5).

The jackknife residual examines the influence of individual point on the mean quadratic error of prediction.

CRITICAL: Each deleted residual has a student's t-distribution with n - k - 1 degrees of freedom.

2.3. Predicted Residuals

The predicted residual or Cross-validated residuals for observation i is defined as the residual for the i observation that results from dropping the i observation from the parameter estimates. The sum of squares of predicted residual errors is called the PRESS statistic:

$$\varepsilon_{P.i} = \frac{\varepsilon_i}{1 - h} \tag{2.9}$$

PRESS is called Prediction sum of squares; an assessment of your model's predictive ability. PRESS, similar to the residual sum of squares, is the sum of squares of the prediction error. In least squares regression, PRESS is calculated with the following formula:

$$PRESS = \sum_{i=1}^{n} \left(\frac{\varepsilon_i}{1 - h_i} \right)^2$$
 (2.10)

where ε_i = residual and h_i = leverage value for the t^{th} observation. In general, the smaller the PRESS value, the better the model's predictive ability.

2.4. Cook's Distance

Cook's distance D_i of observation, i is defined as the sum of all the changes in the regression model when observation i is removed from it. Cook [17] proposed a statistic for detection of outlier, given as:

$$D_{i} = \frac{\sum_{j=1}^{n} (y_{j} - \hat{y}_{j(i)})^{2}}{kS^{2}}$$
 (2.11)

and $S^2 = (n-k)^{-1} \varepsilon' \varepsilon$ is the mean squared error of the regression model. Equivalently, it can be expressed using the leverage

$$D_i = \frac{\varepsilon_i^2}{kS^2} \left[\frac{h_i}{\left(1 - h_i\right)^2} \right] \tag{2.12}$$

Here, D_i measures the sum of squared changes in the predictions when observation "i" is not used in estimating β . D_i approximately follows F(p, n-p) distribution.

CRITICAL: The cut off value of Cook-Statistic is 4/n.

2.5. Difference-in-Fit (DFFIT)

It is the difference between the predicted responses from the model constructed using complete data and the predicted responses from the model constructed by setting the i^{th} observation aside. It is similar to cook's distance. Unlike cook's distance, it does not look at all of the predicted values with the i^{th} observation set aside. It looks only at the predicted values for the i^{th} observation. It combines le-

verage and studentized residual (deleted t residuals) values into one overall measure of how unusual an observation is. DFFIT is computed as follows:

DFFIT =
$$\varepsilon_i \left[\sqrt{\frac{n-k-1}{\sigma^2 (1-h_i) - \varepsilon_i^2}} \right] \sqrt{\frac{h_i}{1-h_i}}$$
 (2.13)

where ε_i = residual, n = sample size, k = the number of parameters in the model, σ^2 = variance and h_i = leverage value for the t^{th} observation.

CRITICAL: The cut off value of DFFIT is $2\sqrt{\frac{k}{n}}$.

2.6. Atkinson's Measure (A_i)

It enhances the sensitivity of distance measures to high-leverage point. This modified version of cook's measure D_i suggested by Atkinson is even more closely related to Belsey *et al.* (1980) [16] DFFITS and has the form

$$A_{i} = \left| \varepsilon_{J,i} \right| \left[\sqrt{\frac{n-k}{k} \times \frac{h_{i}}{1-h_{i}}} \right]$$
 (2.14)

where n, k, h_i are as defined in Equations (2.13) and $\varepsilon_{J,i}$ is the absolute value of Jackknife residuals.

This measure is also convenient for graphical interpretation.

2.7. Scatter Graph and Box Plot

Scatter plot is a line of best fit (alternatively called "trendline") drawn in order to study the relationship between the variables measured. For a set of data variables (dimensions) X_1, X_2, \dots, X_k , the scatter plot matrix shows all the pairwise scatter plots of the variables on the dependent variable.

A box plot is a method for graphically depicting groups of numerical data through their quartiles (*i.e.* Mean, Median Mode, quartiles). Box plots may also have lines extending vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles. It is also called box-and-whisker plot and box-and-whisker diagram. Outliers may be plotted as individual points and it can be used for outlier detection in regression model, where the primary aim here is not to fit a regression model but find out outliers using regression and to improve a regression model by removing the outliers.

2.8. Willams Graph, Rankit Graph (or Q-Q Plot) and Predicted Residuals Graph

The Williams graph (Williams [18]) has the diagonal elements H_{ii} on the x-axis and the jackknife residuals $\hat{\varepsilon}_{Ji}$ on the y-axis. Two boundary lines are drawn, the first for outlier $y = t_{0.95}(n - k - i)$, and the second for high leverages, x = 2kln. Note: $t_{0.95}(n - k - 1)$ is the 95% quantile of the student distribution with (n - k - 1) degrees of freedom.

The Q-Q plot (or Rankit Graph) has the quantile of the standardized normal distribution μp_i for $P_i = i/(n+1)$ on the x-axis and the ordered residuals

 $\hat{\mathcal{E}}_{S,i},\hat{\mathcal{E}}_{P,i},\hat{\mathcal{E}}_{J,i}$ *i.e.* increasingly ordered values of various types of residuals on the y-axis.

The graph of predicted residuals (or Predicted Residuals Graph) has the predicted residuals $\hat{\varepsilon}_{Pi}$ on the *x*-axis and the ordinary residuals $\hat{\varepsilon}_{i}$ (Equation (3.4)) on the *y*-axis. The outlier can easily be detected by their location, as they lie outside the line y = x far from its central pattern (Meloun and Militky [19]).

3. Methodology

Two sets of data (see **Appendix**), were collected and used to build the regression models. The first was data of rainfall (in Millimetres) and yield of Wheat (in kg) and the second was data of agricultural products (Crop production, Livestock, Forestry and fishing) and Nigeria gross domestic product (GDP). The seven analytical and five graphical methods listed above were then applied to detect outliers in the simple and multiple linear regression models.

4. Results and Discussion

4.1. Simple Linear Regression

Simple linear regression of rainfall (Millimetres) on yield of Wheat (kg) was done, using Minitab 17 software to obtain the residuals of the model for outlier detection Methods to be applied.

Regression Analysis: Wheat (kg) versus Rain (Millimetres)

```
The regression equation is Wheat (kg) = 252 + 4.50 Rain (Millimetres)
Predictor
                      Coef SE Coef
Constant 252.38 14.51 17.39 0.000
Rain (Millimetres) 4.4962 0.5676 7.92 0.000
Analysis of Variance
Source DF SS MS F P Regression 1 30250 30250 62.76 0.000
Residual Error 24 11568
                            482
Total
                25 41818
Unusual Observations
       Millimetres) Wheat (kg)
Obs
                                      Fit
                                              SE Fit
                                                       Residual
                                                                   St Resid
                     260.00
                                    306.34
       12.0
                                               8.26
                                                        -46.34
                                                                     -2.28R
 26
                         406.00
                                    477.19
                                               15.14
                                                         -71.19
                                                                    -4.48RX
              50.0
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.
```

4.1.1. Outlier Detection Methods

The seven analytical and five graphical methods for outlier detection discussed in Section 2 were used to detect outliers when the regression model was built using the rainfall and yield of wheat data. The results of the computation using the analytical methods are shown in **Table 1** while **Table 2** gives a summary of the number of outliers detected by each analytical method. **Figures 1(a)-(f)** show the scatter plot of outliers detected by the methods indicated. **Figures 2(a)-(f)** show the box plot of outliers detected by the methods indicated while **Figures 3(a)-(d)** show the Rankit Graph (or Q-Q Plot) of outliers detected.

Figure 1. Scatter plots showing outliers detected by each of the analytical methods indicated. (a) Leveages; (b) Studentised residuals; (c) Cook's distance; (d) Different-in-fits (DFFITS); (e) Jack-knife residuals; (f) Atkinson's measure.

Figure 2. Boxplots showing outliers detected by each of the analytical methods indicated. (a) Leverages; (b) Residuals; (c) Standardized residuals; (d) Atkinson's measure; (e) Jack-knife residual; (f) Cook's distance.

Figure 3. Rankit graph (or Q-Q Plot) of outliers detected by each of the analytical methods indicated. (a) Q-Q plot of Residuals; (b) Standardized Residuals; (c) Studentized Residuals; (d) Jack-knife Residuals.

Table 1. Outliers detected using the analytical methods.

Leverages h_i	Residuals $\boldsymbol{\varepsilon}_{i}$	Standardized residuals $\varepsilon_{{}_{ST.i}}$	Studentised residuals $\mathcal{E}_{\scriptscriptstyle{S,i}}$	Predicted residuals $\mathcal{E}_{p,i}$	Cook's distance D_i	Different-in-fits (DFFITS) DFFit	Jack-knife residuals $arepsilon_{_{J,i}}$	Atkinson's measure A_i
0.141601	-46.3356	-2.27796	-2.5189	-53.979094	0.42799	-1.023	-2.518867	5.0118657
0.125665	-40.8318	-1.989	-2.1306	-46.700407	0.2843	-0.8077	-2.130629	3.9571423
0.111065	-5.328	-0.2574	-0.2523	-5.9936891	0.00414	-0.0892	-0.252329	0.4369446
0.085876	-4.3204	-0.20582	-0.2017	-4.7262735	0.00199	-0.0618	-0.201665	0.3028088
0.066033	-10.3128	-0.48606	-0.4782	-11.041932	0.00835	-0.1271	-0.478185	0.6228977
0.058116	-7.809	-0.3665	-0.3598	-8.2908299	0.00414	-0.0894	-0.359792	0.4378303
0.051536	-8.3052	-0.38843	-0.3815	-8.7564736	0.0041	-0.0889	-0.381453	0.4356032
0.051536	1.6948	0.07926	0.0776	1.78688912	0.00017	0.0181	0.077601	0.0886176
0.051536	5.6948	0.26634	0.2611	6.00423421	0.00193	0.0609	0.261118	0.2981865
0.042385	0.7024	0.03269	0.032	0.73348893	0.00002	0.0067	0.032002	0.0329837
0.042385	8.7024	0.40506	0.3979	9.08757695	0.00363	0.0837	0.397894	0.4100941
0.039815	14.2061	0.66035	0.6524	14.7951697	0.00904	0.1328	0.6524	0.6508272
0.038581	9.7099	0.45106	0.4434	10.0995508	0.00408	0.0888	0.443447	0.4351884
0.040123	10.7175	0.49827	0.4903	11.1654931	0.00519	0.1002	0.490322	0.4911064
0.040123	13.7175	0.63774	0.6297	14.2908935	0.0085	0.1287	0.62967	0.6306783
0.042899	11.2213	0.52244	0.5144	11.724259	0.00612	0.1089	0.514373	0.533493
0.042899	14.2213	0.66212	0.6542	14.8587244	0.00983	0.1385	0.654182	0.678498
0.047012	13.7251	0.64039	0.6323	14.4021751	0.01012	0.1404	0.632332	0.6880368
0.047012	14.7251	0.68705	0.6793	15.4515062	0.01164	0.1509	0.679298	0.7391394
0.052461	12.2289	0.57222	0.564	12.9059595	0.00906	0.1327	0.564033	0.6501741
0.052461	15.2289	0.7126	0.7051	16.0720561	0.01406	0.1659	0.705095	0.8127804
0.059247	12.7327	0.59794	0.5898	13.5345835	0.01126	0.148	0.58976	0.7250636
0.059247	12.7327	0.59794	0.5898	13.5345835	0.01126	0.148	0.58976	0.7250636
0.067369	11.2365	0.52997	0.5219	12.0481734	0.01014	0.1403	0.521874	0.6871421
0.067369	11.2365	0.52997	0.5219	12.0481734	0.01014	0.1403	0.521874	0.6871421
0.475646	-71.1915	-4.47807	-10.8101	-135.76992	9.09517	-10.2957	-10.81004	50.438549

Footnote: $d_i > 3$; $t_{0.05}(22) = 2.074$; 4/n = 4/25 = 0.160; $2\sqrt{\frac{k}{n}} = 0.566$; $t_{0.05}(22) = 2.074A_i > 3$.

Table 2. Summary of the results in **Table 1**.

Outlier detection methods	Standardized residuals $\mathcal{E}_{ST.i.}$	Studentised residuals ε_{s_J}	Cook's distance D_i	Different-in-fits (DFFITS) DFFit	Jack-knife residuals $\varepsilon_{\scriptscriptstyle J,\scriptscriptstyle I}$	Atkinson's measure A_i
Numbers of outliers	1	3	3	3	3	3

4.1.2. Simple Linear Regression without Outliers (Using Mean Imputation Methods)

Similarly, Simple linear regression of rainfall (Millimetres) on Wheat (kg) was done without the outliers identified (Mean imputation methods). The results of the computation are shown in **Table 3** and summary of the number of outliers detected is shown in **Table 4**.

Regression Analysis: Wheat (kg) versus Rain (Millimetres)

```
The regression equation is
Wheat (kg) = 314 + 2.19 \text{ Rain} (Millimetres)
Predictor Coer 314.35
                    Coef SE Coef
                                      Т
                                             Р
                           15.32 20.52 0.000
Rain (Millimetres) 2.1950 0.5989 3.66 0.001
S = 23.1677  R-Sq = 35.9\%  R-Sq(adj) = 33.2\%
PRESS = 24576.2 R-Sq(pred) = 0.00%
Analysis of Variance
                     SS
Source
              DF
                              MS
Regression
              1 7209.2 7209.2 13.43 0.001
Residual Error 24 12881.8
Total 25 20091.0
                          536.7
Total
Unusual Observations
           Rain
Obs (Millimetres)
                   Wheat (kg) Fit SE Fit Residual
                                                      St Resid
     50.0
                   362.00 424.10 15.98 -62.10
                                                        -3.70RX
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.
```

4.1.3. Simple Linear Regression without Outliers (Using Remove Methods)

Also, Simple linear regression of rainfall (Millimetres) on Wheat (kg) done without outliers identified (remove Methods), has results of the computation displayed in **Table 5** and summary of the number of outliers detected is shown in **Table 6**.

Regression Analysis: Wheat (kg) versus Rain (Millimetres)

```
The regression equation is
Wheat (kg) = 225 + 5.92 \text{ Rain} (Millimetres)
Predictor
                      Coef SE Coef
                                       T
                                              Ρ
                   224.715 4.995 44.98 0.000
Constant
Rain (Millimetres) 5.9153 0.2011 29.41 0.000
S = 4.74701
             R-Sq = 97.6\% R-Sq(adj) = 97.5\%
PRESS = 563.964 R-Sq(pred) = 97.18%
Analysis of Variance
Source DF Regression 1
                    SS
                           MS
              1 19497 19497 865.23 0.000
Residual Error 21 473
                          23
              22 19970
Total
```

Table 3. Outliers detected using the analytical methods when the regression model was considered without outlier (Mean imputation method).

Residuals $arepsilon_i$	Standardized residuals $arepsilon_{_{ST,i}}$	Studentised residuals $arepsilon_{_{S,t}}$	Predicted residuals $arepsilon_{_{P,i}}$	Cook's distance D_i	Different-in-fits (DFFITS) DFFit	Jack-knife residuals $arepsilon_{_{J,i}}$	Atkinson's measure A_i
21.3066	0.99263	0.99232	24.82132	0.08127	0.40303	0.992313	1.974436
19.1117	0.88222	0.878	21.85856	0.05593	0.33286	0.877999	1.630676
-35.0833	-1.60614	-1.66431	-39.4667	0.16116	-0.58829	-1.66431	2.881998
-29.4732	-1.33058	-1.35345	-32.242	0.08316	-0.41483	-1.35344	2.032256
-30.8631	-1.37845	-1.40624	-33.0452	0.06717	-0.37392	-1.40624	1.83181
-26.0581	-1.15894	-1.16768	-27.6659	0.04144	-0.29005	-1.16768	1.420953
-24.2531	-1.07491	-1.07856	-25.5709	0.03139	-0.25141	-1.07856	1.231672
-14.2531	-0.63171	-0.62361	-15.0276	0.01084	-0.14536	-0.62362	0.712144
-10.2531	-0.45442	-0.44678	-10.8102	0.00561	-0.10415	-0.44678	0.510203
-10.643	-0.46945	-0.46169	-11.1141	0.00488	-0.09713	-0.46169	0.475847
-2.643	-0.11658	-0.11416	-2.75998	0.0003	-0.02402	-0.11416	0.117658
5.1621	0.22739	0.22284	5.376151	0.00107	0.04538	0.222842	0.222305
2.9671	0.13062	0.12791	3.086167	0.00034	0.02562	0.127915	0.125533
8.5772	0.37788	0.37103	8.935728	0.00298	0.07586	0.371029	0.371623
11.5772	0.51005	0.50204	12.06113	0.00544	0.10264	0.502039	0.502843
11.3822	0.50219	0.49422	11.89237	0.00565	0.10463	0.49422	0.512591
14.3822	0.63455	0.62647	15.02684	0.00902	0.13263	0.626467	0.649753
16.1873	0.71573	0.70826	16.98584	0.01264	0.15731	0.70826	0.770653
17.1873	0.75994	0.75306	18.03517	0.01424	0.16726	0.753055	0.819394
16.9923	0.75348	0.7465	17.93309	0.01572	0.17565	0.746498	0.860506
19.9923	0.88651	0.88241	21.09918	0.02176	0.20763	0.882412	1.017178
19.7973	0.88102	0.87677	21.0441	0.02444	0.22003	0.876765	1.077914
							1.077914
							1.208451
							1.208451 25.81417
	21.3066 19.1117 -35.0833 -29.4732 -30.8631 -26.0581 -24.2531 -10.2531 -10.2531 -10.643 -2.643 5.1621 2.9671 8.5772 11.5772 11.3822 14.3822 16.1873 17.1873 16.9923 19.9923	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε_{srs} ε_{sss} ε_{pss} 21.3066 0.99263 0.99232 24.82132 19.1117 0.88222 0.878 21.85856 -35.0833 -1.60614 -1.66431 -39.4667 -29.4732 -1.33058 -1.35345 -32.242 -30.8631 -1.37845 -1.40624 -33.0452 -26.0581 -1.15894 -1.16768 -27.6659 -24.2531 -1.07491 -1.07856 -25.5709 -14.2531 -0.63171 -0.62361 -15.0276 -10.2531 -0.45442 -0.44678 -10.8102 -10.643 -0.46945 -0.46169 -11.1141 -2.643 -0.11658 -0.11416 -2.75998 5.1621 0.22739 0.22284 5.376151 2.9671 0.13062 0.12791 3.086167 8.5772 0.37788 0.37103 8.935728 11.5772 0.51005 0.50204 12.06113 11.3822 0.50219 0.49422 11.89237 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄̄	ε, ε, ε, ε, ε, p, DFFit ε, the control of the c

Footnote: $d_i > 3$; $t_{0.05}(22) = 2.074$; 4/n = 4/25 = 0.160; $2\sqrt{\frac{k}{n}} = 0.566$; $t_{0.05}(22) = 2.074A_i > 3$.

Table 4. Summary of the results in **Table 3**.

Outlier detection methods	Standardized residuals $oldsymbol{arepsilon}_{\scriptscriptstyle{ST,I}}$	Studentised residuals $\varepsilon_{\scriptscriptstyle S.i.}$	Cook's distance D_i	Different-in-fits (DFFITS) DFFit	Jack-knife residuals $arepsilon_{_{J,i}}$	Atkinson's measure A_i
Numbers of outliers	1	1	1	1	1	1

Table 5. Outliers detected using the analytical methods when the regression model was considered without outlier (Remove method).

Leverages h_i	Residuals \mathcal{E}_i	Standardized residuals $\varepsilon_{{}_{ST,i}}$	Studentised residuals $\varepsilon_{s,i}$	Predicted residuals $\varepsilon_{\scriptscriptstyle P,i}$	Cook's distance	Different-in-fits (DFFITS) DFFit	Jack-knife residuals $\varepsilon_{\scriptscriptstyle J,i}$	Atkinson's measure A_i
0.235643	2.47097	0.59539	0.58601	3.232743	0.054642	0.325373	0.586445	1.527277
0.168539	0.64045	0.14796	0.14447	0.770271	0.002219	0.065044	0.14463	0.305421
0.115793	-8.19007	-1.83481	-1.95405	-9.26262	0.220434	-0.70713	-1.94784	3.306202
0.094803	-7.10534	-1.57323	-1.63467	-7.8495	0.12961	-0.52902	-1.63157	2.476611
0.077403	-9.0206	-1.97838	-2.14044	-9.7774	0.164186	-0.61998	-2.13181	2.896224
0.077403	0.9794	0.2148	0.20985	1.061569	0.001935	0.060784	0.210082	0.285412
0.077403	4.9794	1.09207	1.09737	5.397156	0.050029	0.317853	1.097113	1.490512
0.053371	-2.85112	-0.61731	-0.60798	-3.01187	0.010743	-0.14436	-0.60841	0.677595
0.053371	5.14888	1.11481	1.12164	5.439174	0.035035	0.266328	1.121311	1.248821
0.046738	9.23361	1.99226	2.15894	9.68633	0.097302	0.478049	2.150042	2.232992
0.043695	3.31835	0.71483	0.70625	3.46997	0.011674	0.150966	0.70665	0.708489
0.048377	1.48783	0.32129	0.31432	1.563466	0.002624	0.07087	0.314642	0.332748
0.048377	4.48783	0.96913	0.96766	4.715975	0.023873	0.218178	0.96773	1.023417
0.056102	0.57257	0.12415	0.1212	0.606602	0.000458	0.029548	0.121338	0.138751
0.056102	3.57257	0.77464	0.767	3.784911	0.017833	0.186992	0.767367	0.877488
0.067416	1.6573	0.36152	0.35391	1.777105	0.004724	0.095156	0.354262	0.446759
0.067416	2.6573	0.57966	0.57028	2.849395	0.012145	0.153328	0.570708	0.719718
0.082319	-1.25796	-0.27663	-0.27046	-1.3708	0.003432	-0.081	-0.27074	0.380338
0.082319	1.74204	0.38308	0.37516	1.898307	0.006582	0.112363	0.375527	0.527541
0.100811	-2.17322	-0.48279	-0.47379	-2.41687	0.013066	-0.15864	-0.47421	0.744748
0.100811	-2.17322	-0.48279	-0.47379	-2.41687	0.013066	-0.15864	-0.47421	0.744748
0.122893	-5.08848	-1.14457	-1.15354	-5.80144	0.091776	-0.43179	-1.15311	2.024514
0.122893	-5.08848	-1.14457	-1.15354	-5.80144	0.091776	-0.43179	-1.15311	2.024514
0.067369	11.2365	0.52997	0.5219	12.04817	0.01014	0.1403	0.521122	0.656941

Footnote: $d_i > 3$; $t_{0.05}(22) = 2.074$; 4/n = 4/25 = 0.160; $2\sqrt{\frac{k}{n}} = 0.566$; $t_{0.05}(22) = 2.074A_i > 3$.

Table 6. Summary of results in Table 5.

Outlier detection methods	Standardized residuals $\varepsilon_{_{ST.I}}$	Studentised residuals $\varepsilon_{s,i}$	Cook's distance D_i	Different-in-fits (DFFITS) DFFit	Jack-knife residuals $arepsilon_{_{J,i}}$	Atkinson's measure A_i
Numbers of outliers	0	0	0	0	1	1

4.2. Multiple Linear Regression

Multiple linear regression of agricultural products (Crop production, Livestock, Forestry and fishing) on Nigeria gross domestic product (GDP) was done. The results of the computation are shown in **Table 7** while the summary of the number of outliers detected by each of the analytical methods is shown in **Table 8**.

```
Regression Analysis: GDP versus Crop production, Livestock, ...
The regression equation is
GDP = -43929 + 0.995 Crop production + 7.58 Livestock + 85.7 Forestrv
     + 17.8 Fishing
                  Coef SE Coef
Predictor
                                 -3.75 0.000
                 -43929
                          11705
Constant
Crop production 0.9949
                          0.1088
                                  9.14 0.000
                 7.576
                          2.345
                                   3.23 0.001
Livestock
Forestry
                 85.75
                           12.41
                                   6.91 0.000
                                   4.16 0.000
                17.805
                           4.279
Fishing
S = 142464 R-Sq = 99.0% R-Sq(adj) = 99.0%
PRESS = 4.658142E+12 R-Sq(pred) = 98.80%
Analysis of Variance
                             SS
Source
               DF
                                          MS
                 4 3.83524E+14 9.58811E+13 4724.11 0.000
Regression
Residual Error 191
                    3.87656E+12
                                 20296116024
               195 3.87401E+14
Total
Source
                DF
                          Seq SS
Crop production
                1 3.73368E+14
Livestock
                 1
                     7.76702E+12
                    2.03799E+12
Forestry
                 1
Fishing
                 1 3.51362E+11
Unusual Observations
          Crop
Obs production
                    GDP
                             Fit SE Fit Residual
                                                      St Resid
155
         360372
                  685016
                          974349
                                   22449
                                           -289334
                                                        -2.06R
158
         240550
                 799246
                         1142086
                                    37531
                                            -342840
                                                        -2.49R
165
        266058 1164239
                         1530877
                                    31332
                                            -366638
                                                        -2.64R
         339385 1182576
                                            -410870
166
                         1593447
                                    24925
                                                        -2.93R
167
         390466
                1181000
                         1470805
                                    19006
                                            -289805
                                                        -2.05R
169
         606640 1625546
                         2134003
                                    15393
                                            -508456
                                                        -3.59R
170
         773833
                1735803
                          2287721
                                    21061
                                            -551919
                                                        -3.92R
171
         890303
                1792349
                          2194706
                                    41125
                                            -402356
                                                        -2.95RX
172
        779468 1758883
                          2086168
                                    28505
                                            -327286
                                                        -2.34R
173
         651425
                2039516
                          2463602
                                    22632
                                            -424086
                                                        -3.02R
174
                2127893
         830961
                          2345948
                                    98614
                                            -218055
                                                        -2.12RX
175
         956030 2171579
                          2501750
                                    38900
                                            -330171
                                                        -2.41R
176
         837013
                2148243
                          2462496
                                    25306
                                            -314253
                                                        -2.24R
177
         618328 2831256
                          2624812
                                    40130
                                            206444
                                                        1.51 X
178
        811556
                2592273
                          2986711
                                    34694
                                            -394438
                                                        -2.85R
179
       1062752
                2985542
                          2860760
                                    99670
                                             124781
                                                        1.23 X
185
        931325 3986280
                          4010379
                                    52870
                                             -24100
                                                        -0.18 X
187
       1619235
                4986489
                          4854292
                                    47008
                                             132198
                                                        0.98 X
                5165742
188
       1506111
                          4775696
                                    61521
                                             390046
                                                         3.04RX
189
       1087908
                4740807
                          4610574
                                    59946
                                            130233
                                                        1.01 X
190
       1440102
                 4853839
                          5036364
                                    44850
                                            -182524
                                                        -1.35 X
191
       1889913
                5524364
                          5529255
                                    56499
                                             -4891
                                                        -0.04 X
                5538295
                                    58708
                                             245074
192
       1606558
                          5293220
                                                         1.89 X
193
       1148460
                5421317
                          4970468
                                    64858
                                             450848
                                                         3.55RX
194
       1554121
                5704400
                          5475048
                                    50750
                                             229352
                                                         1.72 X
                6340199
195
       2074683
                          6288836
                                    58280
                                              51363
                                                         0.40 X
       1767306 6376225
                         5585943
                                    44522
                                             790283
                                                         5.84RX
196
```

X denotes an observation whose X value gives it large influence.

Table 7. Outliers detected using the analytical methods.

Leverages h_i	Residuals ε_i	Standardized residuals $arepsilon_{\scriptscriptstyle{ST.I}}$	Studentised residuals $\mathcal{E}_{\scriptscriptstyle{S,i}}$	Predicted residuals $\mathcal{E}_{p,i}$	Cook's distance D_i	Different-in-fits (DFFITS) DFFit	Jack-knife residuals $arepsilon_{_{J,i}}$	Atkinson's measure A_i
0.006745	40,628	0.28615	0.28546	40,903.9	0.000111	0.02352	0.864667	0.997557
0.006745	40,792	0.2873	0.28661	41,069.01	0.000112	0.02362	0.868156	1.001582
0.006745	41,167	0.28994	0.28924	41,446.56	0.000114	0.02384	0.876166	1.010822
0.006745	41,305	0.29092	0.29022	41,585.49	0.000115	0.02392	0.879139	1.014253
0.006742	40,791	0.2873	0.2866	41,067.88	0.000112	0.02361	0.868156	1.001358
0.006743	40,883	0.28794	0.28725	41,160.55	0.000113	0.02367	0.870098	1.003672
0.006742	41,312	0.29096	0.29027	41,592.42	0.000115	0.02392	0.87926	1.014166
0.006743	41,445	0.2919	0.2912	41,726.36	0.000116	0.02399	0.882113	1.017531
0.006742	40,801	0.28737	0.28667	41,077.95	0.000112	0.02362	0.868369	1.001603
0.006742	40,797	0.28734	0.28664	41,073.92	0.000112	0.02362	0.868278	1.001498
0.006742	41,325	0.29106	0.29036	41,605.5	0.000115	0.02392	0.879564	1.014516
0.006742	41,464	0.29204	0.29134	41,745.45	0.000116	0.024	0.882537	1.017945
0.006746	40,290	0.28377	0.28308	40,563.64	0.000109	0.02333	0.857448	0.989302
0.006742	40,337	0.28409	0.28341	40,610.8	0.00011	0.02335	0.858419	0.990126
0.006746	40,900	0.28806	0.28737	41,177.79	0.000113	0.02368	0.870462	1.004317
0.006746	41,062	0.28921	0.28851	41,340.89	0.000114	0.02378	0.873951	1.008342
0.006744	40,368	0.28431	0.28363	40,642.09	0.00011	0.02337	0.859086	0.991044
0.006745	40,469	0.28503	0.28434	40,743.82	0.00011	0.02343	0.86127	0.993637
0.006744	40,978	0.28861	0.28792	41,256.23	0.000113	0.02372	0.87213	1.006092
0.006744	41,113	0.28956	0.28887	41,392.15	0.000114	0.0238	0.875013	1.009417
0.006745	40,131	0.28264	0.28196	40,403.52	0.000108	0.02323	0.85402	0.985274
0.006745	40,250	0.28348	0.2828	40,523.33	0.000109	0.0233	0.856568	0.988213
0.006744	40,771	0.28715	0.28646	41,047.83	0.000112	0.0236	0.867701	1.000982
0.006744	40,947	0.28839	0.2877	41,225.02	0.000113	0.02371	0.871463	1.005322
0.006745	40,289	0.28376	0.28307	40,562.59	0.000109	0.02333	0.857418	0.989193
0.006746	40,398	0.28453	0.28384	40,672.38	0.00011	0.02339	0.859753	0.991962
0.006745	40,913	0.28815	0.28746	41,190.83	0.000113	0.02369	0.870735	1.004557
0.006746	41,070	0.28926	0.28857	41,348.94	0.000114	0.02378	0.874102	1.008517
0.006743	41,763	0.29414	0.29344	42,046.52	0.000117	0.02418	0.88891	1.025372
0.006744	41,819	0.29454	0.29383	42,102.94	0.000118	0.02421	0.890123	1.026849
0.006744	42,137	0.29677	0.29606	42,423.1	0.00012	0.0244	0.896891	1.034656
0.006745	42,216	0.29733	0.29662	42,502.68	0.00012	0.02444	0.898591	1.036694

ntinued								
0.006744	41,738	0.29396	0.29326	42,021.39	0.000117	0.02416	0.888363	1.024818
0.006745	41,796	0.29437	0.29367	42,079.83	0.000118	0.0242	0.889608	1.02633
0.006744	42,122	0.29667	0.29596	42,408	0.00012	0.02439	0.896587	1.034306
0.006745	42,201	0.29722	0.29651	42,487.58	0.00012	0.02443	0.898257	1.036309
0.006744	41,673	0.29351	0.2928	41,955.95	0.000117	0.02413	0.886998	1.023243
0.006745	41,737	0.29395	0.29325	42,020.43	0.000117	0.02417	0.888333	1.02486
0.006745	42,080	0.29638	0.29567	42,365.76	0.000119	0.02436	0.895707	1.033367
0.006745	42,187	0.29713	0.29642	42,473.48	0.00012	0.02443	0.897984	1.035993
0.006755	39,592	0.27885	0.27817	39,861.26	0.000106	0.02294	0.842526	0.972738
0.006756	39,684	0.2795	0.27882	39,953.93	0.000106	0.023	0.844497	0.975086
0.006753	40,354	0.28422	0.28353	40,628.36	0.00011	0.02338	0.858813	0.991394
0.006755	40,433	0.28477	0.28409	40,707.98	0.00011	0.02343	0.860481	0.993468
0.006759	39,000	0.27468	0.27402	39,265.39	0.000103	0.0226	0.829881	0.958424
0.00676	39,122	0.27554	0.27487	39,388.26	0.000103	0.02268	0.832488	0.961507
0.006757	40,008	0.28178	0.2811	40,280.17	0.000108	0.02318	0.851412	0.983144
0.006759	40,081	0.2823	0.28161	40,353.75	0.000108	0.02323	0.852989	0.985112
0.006762	38,009	0.2677	0.26705	38,267.77	0.000098	0.02203	0.808719	0.934193
0.006763	37,945	0.26725	0.2666	38,203.37	0.000097	0.022	0.807355	0.932687
0.006757	39,036	0.27494	0.27427	39,301.56	0.000103	0.02262	0.830669	0.959191
0.00676	39,092	0.27533	0.27466	39,358.06	0.000103	0.02266	0.831852	0.960772
0.006754	37,078	0.26114	0.2605	37,330.13	0.000093	0.02148	0.788836	0.910682
0.006755	37,257	0.26241	0.26177	37,510.38	0.000094	0.02159	0.792685	0.915194
0.006748	38,477	0.271	0.27034	38,738.41	0.0001	0.02228	0.818723	0.944763
0.006752	38,514	0.27126	0.2706	38,775.81	0.0001	0.02231	0.819511	0.945955
0.006725	36,796	0.25915	0.25852	37,045.13	0.000091	0.02127	0.782805	0.901765
0.006729	39,052	0.27504	0.27438	39,316.56	0.000102	0.02258	0.830972	0.957538
0.006718	40,338	0.2841	0.28341	40,610.82	0.000109	0.02331	0.858449	0.988385
0.006722	40,434	0.28478	0.28409	40,707.64	0.00011	0.02337	0.860512	0.991057
0.006756	33,988	0.23938	0.23879	34,219.18	0.000078	0.01969	0.722917	0.834705
0.00676	34,268	0.24135	0.24076	34,501.23	0.000079	0.01986	0.728882	0.841844
0.006739	36,267	0.25543	0.2548	36,513.06	0.000089	0.02099	0.771533	0.88971
0.006755	36,047	0.25343	0.25326	36,292.15	0.000089	0.02099	0.766867	0.885386
0.006687	36,451	0.25672	0.25609	36,696.39	0.000089	0.02101	0.775442	0.890738
0.006688	36,579	0.25762	0.25699	36,825.29	0.000089	0.02109	0.778169	0.893938

ntinued								
0.006682	38,170	0.26883	0.26818	38,426.77	0.000097	0.022	0.812145	0.932546
0.00669	38,131	0.26855	0.2679	38,387.81	0.000097	0.02199	0.811296	0.932133
0.006661	36,637	0.25803	0.2574	36,882.68	0.000089	0.02108	0.779411	0.893544
0.006663	37,559	0.26452	0.26387	37,810.93	0.000094	0.02161	0.79908	0.916231
0.00666	39,104	0.2754	0.27473	39,366.18	0.000102	0.0225	0.832064	0.953834
0.006671	38,900	0.27397	0.2733	39,161.24	0.000101	0.0224	0.827728	0.949652
0.006726	34,804	0.24512	0.24452	35,039.68	0.000081	0.02012	0.7403	0.852864
0.006733	34,986	0.24641	0.2458	35,223.16	0.000082	0.02024	0.744208	0.857815
0.006704	37,329	0.26291	0.26227	37,580.94	0.000093	0.02155	0.7942	0.913452
0.006738	36,706	0.25852	0.25789	36,955	0.000091	0.02124	0.780896	0.90044
0.006792	32,899	0.23171	0.23114	33,123.98	0.000073	0.01911	0.699693	0.810055
0.006802	33,840	0.23835	0.23776	34,071.76	0.000078	0.01968	0.719798	0.833948
0.006744	27,684	0.19498	0.19449	27,871.97	0.000052	0.01603	0.58856	0.678964
0.006793	36,093	0.25421	0.25359	36,339.86	0.000088	0.02097	0.767837	0.889013
0.006629	36,810	0.25924	0.2586	37,055.64	0.00009	0.02112	0.783078	0.895574
0.006634	37,542	0.2644	0.26376	37,792.72	0.000093	0.02155	0.798716	0.913805
0.006622	39,906	0.28105	0.28037	40,172.02	0.000105	0.02289	0.849198	0.970676
0.006645	39,487	0.2781	0.27742	39,751.15	0.000103	0.02269	0.840251	0.962127
0.006953	23,171	0.16321	0.16279	23,333.24	0.000037	0.01362	0.492526	0.576977
0.006927	21,289	0.14995	0.14957	21,437.5	0.000031	0.01249	0.452466	0.529049
0.006845	25,843	0.18203	0.18156	26,021.11	0.000046	0.01507	0.549405	0.638556
0.006827	26,589	0.18728	0.1868	26,771.77	0.000048	0.01549	0.565277	0.656133
0.006765	19,580	0.13791	0.13755	19,713.36	0.000026	0.01135	0.416102	0.480768
0.006743	18,337	0.12915	0.12882	18,461.49	0.000023	0.01061	0.389649	0.449467
0.006684	23,331	0.16431	0.16389	23,487.99	0.000036	0.01344	0.49585	0.569446
0.006671	24,251	0.17079	0.17036	24,413.86	0.000039	0.01396	0.515432	0.591355
0.00667	13,968	0.09838	0.09812	14,061.79	0.000013	0.00804	0.296766	0.340454
0.006646	12,997	0.09153	0.0913	13,083.96	0.000011	0.00747	0.276094	0.316165
0.006593	18,912	0.13319	0.13285	19,037.51	0.000024	0.01082	0.401848	0.458319
0.006586	19,856	0.13983	0.13947	19,987.64	0.000026	0.01136	0.4219	0.480932
0.006619	10,696	0.07533	0.07513	10,767.27	0.000008	0.00613	0.227213	0.259657
0.00659	10,074	0.07094	0.07076	10,140.83	0.000007	0.00576	0.213969	0.243981
0.006538	16,118	0.11351	0.11321	16,224.07	0.000017	0.00918	0.342432	0.38891
0.006522	17,562	0.12367	0.12335	17,677.29	0.00002	0.00999	0.373104	0.423223

ontinued								
0.006703	11,014	0.07757	0.07737	11,088.33	0.000008	0.00636	0.233972	0.269083
0.006669	10,657	0.07506	0.07486	10,728.55	0.000008	0.00613	0.226399	0.259708
0.006593	16,785	0.11821	0.1179	16,896.4	0.000019	0.00961	0.35662	0.406735
0.006567	19,595	0.13799	0.13764	19,724.53	0.000025	0.01119	0.416343	0.473908
0.006717	7039	0.04958	0.04945	7086.601	0.000003	0.00407	0.149534	0.172154
0.006675	8335	0.0587	0.05855	8391.01	0.000005	0.0048	0.177044	0.203184
0.006593	13,533	0.09531	0.09506	13,622.82	0.000012	0.00774	0.287501	0.327903
0.006564	16,353	0.11517	0.11487	16,461.05	0.000018	0.00934	0.347443	0.39539
0.006679	13,040	0.09184	0.0916	13,127.68	0.000011	0.00751	0.27703	0.318028
0.00665	12,586	0.08864	0.08841	12,670.26	0.000011	0.00723	0.267373	0.306271
0.006719	13,070	0.09205	0.09181	13,158.41	0.000011	0.00755	0.277663	0.319715
0.006545	21,679	0.15267	0.15228	21,821.82	0.000031	0.01236	0.460683	0.523493
0.006759	7056	0.0497	0.04957	7104.016	0.000003	0.00409	0.149896	0.173113
0.006719	8117	0.05717	0.05702	8171.907	0.000004	0.00469	0.172428	0.198542
0.006647	14,072	0.09911	0.09885	14,166.16	0.000013	0.00809	0.298969	0.342385
0.006587	18,224	0.12835	0.12801	18,344.84	0.000022	0.01042	0.387234	0.441449
0.006523	8069	0.05682	0.05668	8121.98	0.000004	0.00459	0.171373	0.194408
0.006631	12,589	0.08866	0.08843	12,673.03	0.00001	0.00723	0.267434	0.305899
0.006401	14,479	0.10196	0.10169	14,572.28	0.000013	0.00816	0.30757	0.345614
0.016748	-110,431	-0.78172	-0.78092	-112,312	0.002082	-0.10192	-2.3926	4.371676
0.006547	18,806	0.13244	0.1321	18,929.93	0.000023	0.01072	0.399584	0.454133
0.006306	5064	0.03566	0.03556	5096.136	0.000002	0.00283	0.107548	0.119944
0.00625	13,374	0.09417	0.09393	13,458.11	0.000011	0.00745	0.284061	0.315385
0.00625	19,343	0.1362	0.13585	19,464.65	0.000023	0.01077	0.410938	0.456253
0.006993	15,273	0.10758	0.10731	15,380.56	0.000016	0.00901	0.324533	0.381278
0.006223	4129	0.02907	0.029	4154.856	0.000001	0.00229	0.087672	0.097128
0.006183	15,727	0.11074	0.11045	15,824.85	0.000015	0.00871	0.334071	0.368904
0.006192	21,843	0.1538	0.15341	21,979.09	0.000029	0.01211	0.464096	0.512862
0.006049	29,116	0.205	0.20448	29,293.19	0.000051	0.01595	0.618865	0.675901
0.005951	23,060	0.16235	0.16194	23,198.05	0.000032	0.01253	0.489928	0.530703
0.005997	31,983	0.22518	0.22462	32,175.96	0.000061	0.01745	0.679926	0.739372
0.005974	40,856	0.28764	0.28695	41,101.54	0.000099	0.02225	0.869188	0.943355
0.006387	-5515	-0.03884	-0.03873	-5550.45	0.000002	-0.00311	-0.11714	0.131483
0.006213	-2138	-0.01505	-0.01502	-2151.37	0	-0.00119	-0.04539	0.050243

Continued								
0.006577	10,690	0.07529	0.07509	10,760.77	0.000008	0.00611	0.227093	0.258689
0.006209	23,834	0.16782	0.16739	23,982.91	0.000035	0.01323	0.506457	0.560446
0.007934	-52,714	-0.37149	-0.37065	-53,135.6	0.000221	-0.03315	-1.12405	1.40731
0.007447	-52,923	-0.37287	-0.37203	-53,320.1	0.000209	-0.03222	-1.12825	1.368197
0.008159	-31,286	-0.22051	-0.21996	-31,543.4	0.00008	-0.01995	-0.66579	0.845404
0.007124	-9704	-0.06836	-0.06818	-9773.63	0.000007	-0.00578	-0.20619	0.244512
0.016214	16,153	0.11431	0.11401	16,419.22	0.000043	0.01464	0.344847	0.619797
0.015191	-1697	-0.012	-0.01197	-1723.18	0	-0.00149	-0.03619	0.062927
0.029804	176,446	1.25741	1.25933	181,866.3	0.009714	0.22072	3.943493	9.676463
0.014671	59,006	0.41725	0.41635	59,884.57	0.000518	0.0508	1.263604	2.158631
0.027189	33,348	0.23733	0.23674	34,280.04	0.000315	0.03958	0.716709	1.677464
0.025367	1771	0.01259	0.01256	1817.094	0.000001	0.00203	0.037969	0.085758
0.027198	37,345	0.26577	0.26513	38,389.11	0.000395	0.04433	0.802869	1.879442
0.024538	79,062	0.5619	0.56089	81,050.83	0.001588	0.08896	1.70748	3.791387
0.028664	-65,898	-0.46933	-0.46837	-67,842.6	0.0013	-0.08046	-1.4229	3.422053
0.025857	-92,206	-0.65575	-0.65477	-94,653.5	0.002283	-0.10668	-1.9982	4.557678
0.027779	-39,633	-0.28214	-0.28146	-40,765.4	0.000455	-0.04758	-0.8525	2.017438
0.025337	1024	0.00728	0.00726	1050.62	0	0.00117	0.021955	0.049558
0.026983	-247,429	-1.7607	-1.77051	-254,291	0.017194	-0.29484	-5.75144	13.40878
0.020807	-257,930	-1.82962	-1.84103	-263,411	0.014227	-0.26837	-6.01831	12.28212
0.02483	-289,334	-2.05661	-2.07432	-296,701	0.021539	-0.33099	-6.94061	15.50507
0.021941	53,796	0.38182	0.38097	55,002.82	0.000654	0.05706	1.155523	2.422993
0.024957	-243,028	-1.72758	-1.73668	-249,248	0.015278	-0.27784	-5.62512	12.59924
0.069402	-342,840	-2.49462	-2.52963	-368,408	0.092822	-0.69082	-8.96871	34.28963
0.014566	-185,919	-1.31463	-1.31716	-188,667	0.005109	-0.16014	-4.13866	7.044401
0.017882	-129,235	-0.91536	-0.91497	-131,588	0.003051	-0.12346	-2.81735	5.322244
0.031035	-5145	-0.03669	-0.03659	-5309.79	0.000009	-0.00655	-0.11065	0.277248
0.01901	-71,030	-0.50339	-0.5024	-72,406.4	0.000982	-0.06994	-1.52738	2.976697
0.01257	5073	0.03584	0.03574	5137.579	0.000003	0.00403	0.108091	0.170738
0.011602	66,459	0.46923	0.46827	67,239.11	0.000517	0.05073	1.422596	2.157794
0.048367	-366,638	-2.63813	-2.6805	-385,272	0.070746	-0.60431	-9.73028	30.71093
0.048367	-300,038 -410,870	-2.9292	-2.98944	-383,272 -423,843	0.054184	-0.5312	-9.73028 -11.4871	28.5762
0.017798	-289,805	-2.05258	-2.07015	-295,056	0.015269	-0.27867	-6.92359	13.04802
0.02339	-226,547	-1.60913	-1.6159	-231,973	0.012403	-0.25007	-5.1829	11.22937

Continued								
0.011674	-508,456	-3.59002	-3.7079	-514,462	0.030446	-0.40298	-17.4203	26.50598
0.021854	-551,919	-3.91712	-4.07391	-564,250	0.068564	-0.60895	-22.7626	47.63366
0.083329	-402,356	-2.94983	-3.0115	-438,932	0.1582	-0.90797	-11.6249	49.06897
0.040035	-327,286	-2.34473	-2.37298	-340,935	0.045856	-0.4846	-8.23024	23.53057
0.025237	-424,086	-3.01508	-3.0814	-435,066	0.047072	-0.49581	-12.0746	27.20006
0.479139	-218,055	-2.12079	-2.14059	-418,643	0.827497	-2.05307	-7.21511	96.88145
0.074555	-330,171	-2.40911	-2.44015	-356,770	0.093512	-0.6926	-8.54095	33.93885
0.031553	-314,253	-2.24148	-2.2656	-324,492	0.032738	-0.40894	-7.75034	19.58534
0.079348	206,444	1.51025	1.51536	224,236.7	0.039316	0.44487	4.824169	19.82763
0.059306	-394,438	-2.85462	-2.90989	-419,305	0.102749	-0.73064	-11.0051	38.68541
0.489461	124,781	1.22583	1.22745	244,410.3	0.288122	1.20185	3.836712	52.59347
0.059191	-169,428	-1.2261	-1.22773	-180,088	0.018916	-0.30795	-3.83762	13.4762
0.072177	-64,078	-0.46695	-0.466	-69,062.7	0.003392	-0.12997	-1.41561	5.527627
0.032944	-172,907	-1.23419	-1.23589	-178,797	0.010378	-0.22811	-3.86492	9.986897
0.06561	-87,542	-0.63569	-0.6347	-93,688.9	0.005675	-0.16819	-1.93585	7.181591
0.036653	173,358	1.23979	1.24154	179,953.8	0.011696	0.24217	3.883835	10.60601
0.137725	-24,100	-0.18217	-0.18171	-27,949.3	0.00106	-0.07262	-0.54983	3.076372
0.052288	134,008	0.96624	0.96607	141,401.6	0.010302	0.22692	2.981036	9.802978
0.108874	132,198	0.98299	0.9829	148,349.4	0.023611	0.34356	3.035183	14.8527
0.186478	390,046	3.03546	3.10328	479,453.5	0.422413	1.48577	12.21964	81.90596
0.177056	130,233	1.00769	1.00774	158,252.6	0.043695	0.46743	3.115275	20.22994
0.09911	-182,524	-1.34983	-1.35276	-202,604	0.040089	-0.44869	-4.25985	19.78087
0.15728	-4891	-0.0374	-0.0373	-5803.83	0.000052	-0.01612	-0.1128	0.682207
0.169819	245,074	1.88801	1.90089	295,205.5	0.145832	0.85973	6.248917	39.56759
0.20726	450,848	3.55434	3.66842	568,721.1	0.66059	1.87573	16.98241	121.5681
0.126898	229,352	1.72292	1.73191	262,686.4	0.086287	0.66027	5.607449	29.92873
0.167351	51,363	0.39511	0.39423	61,686.26	0.006275	0.17674	1.196039	7.506829
0.097666	790,283	5.83972	6.4263	875,820.9	0.738231	2.11422	#NUM!	#NUM!

Footnote: $d_i > 3$; $t_{0.05}(193) = 1.646$; 4/n = 4/193 = 0.0204; $2\sqrt{\frac{k}{n}} = 0.286$; $t_{0.05}(193) = 1.646$; $A_i > 3$.

Table 8. Summary of results in **Table 7**.

Outlier detection methods	Standardized residuals $\mathcal{E}_{\scriptscriptstyle{ST.I.}}$	Studentised residuals $\varepsilon_{s,i}$	Cook's distance D_i	Different-in-fits (DFFITS) DFFit	Jack-knife residuals $arepsilon_{J_J}$	Atkinson's measure A_i
Numbers of outliers	5	20	21	25	39	42

Graphical Methods

Figures 4-10 show the results of graphical methods.

Figure 4. Graph of the predicted residuals.

Figure 5. Scatter plot of Fishing against GDP.

Figure 6. Forestry against GDP.

Figure 7. Livestock against GDP.

Figure 8. Crop production against GDP.

Figure 9. Graphs of predicted residuals.

Figure 10. Boxplots of outliers detected by the analytical methods indicated.

5. Conclusion

Outliers detection and effects on simple and multiple linear regression modeling were studied using the above listed analytical and graphical methods. Two data sets were used for the illustration. From the results obtained, we concluded that by removing the influential point (or Outliers), the model adequacy increased (from $R^2 = 0.72$ to $R^2 = 0.97$). Also, Jack-knife residuals and Atkinson's measure methods are more useful for detecting outliers.

Acknowledgements

We thank the National Bureau of Statistics and the Central Bank of Nigeria (CBN) for granting us access to their statistical bulletins from which the data used were extracted.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- [1] Bollen, K.A. and Jackman, R.W. (1990) Regression Diagnostics: An Expository Treatment of Outliers and Influential Cases. In: Fox, J. and Scott, L.J., Eds., *Modern Methods of Data Analysis*, Sage, Newbury Park, 257-291.
- [2] Hawkins, D.M. (1983) Discussion of Paper by Beckman and Cook. *Technometrics*,
 25, 155-156. https://doi.org/10.1080/00401706.1983.10487843
- [3] Dixon, W.J. (1950) Analysis of Extreme Values. *The Annals of Mathematical Statistics*, **21**, 488-506. https://doi.org/10.1214/aoms/1177729747
- [4] Barnett, V. and Lewis, T. (1994) Outliers in Statistical Data. John Wiley, New York.
- [5] Montgomery, D.C., Peck, E.A. and Vining, G.G. (2013) Introduction to Linear Regression Analysis. John Wiley and Sons, Hoboken.
- [6] Abuzaid, A.H., Hussin, A.G. and Mohamed, I.B. (2008) Identifying Single Outlier in Linear Circular Regression Model Based on Circular Distance. *Journal of Applied Probability and Statistics*, 3, 107-117.
- [7] Zhang, Y., Meratnia, N. and Havinga, P.J.M. (2010) Outlier Detection Techniques for Wireless Sensor Networks Survey. *IEEE Communication Survey and Tutorial*, 12, 159-170. https://doi.org/10.1109/SURV.2010.021510.00088
- [8] Rousseeuw, P.J. (1984) Least Median of Squares Regression. *Journal of the American Statistical Association*, 79, 871-880.
 https://doi.org/10.1080/01621459.1984.10477105
- [9] Aggarwal, C.C. and Yu, P.S. (2013) Outlier Detection for High Dimensional Data.
 https://www.researchgate.net/publication/2401320_Outlier_Detection_for_High_Dimensional_Data
- [10] Arning, A., Agrawal, R. and Raghavan, P. (1996) A Linear Method for Deviation Detection in Large Databases. *KDD*-1996, Portland, 2-4 August 1996, 164-169.
- [11] Hodge, V.J. and Austin, J. (2018) An Evaluation of Classification and Outlier Detection Algorithms. https://arxiv.org/pdf/1805.00811.pdf
- [12] Sebert, D.M., Montgomery, D.C. and Rollier, D.A. (1998) Clustering Algorithm for

- Identifying Multiple Outliers in Linear Regression. *Computational Statistics and Data Analysis*, **27**, 461-484. https://doi.org/10.1016/S0167-9473(98)00021-8
- [13] Worden, K., Manson, G. and Fieller, N.R.J. (2000) Damage Detection Using Outlier Analysis. *Journal of Sound and Vibration*, 229, 647-667. https://doi.org/10.1006/jsvi.1999.2514
- [14] Kitagawa, G. (1984) Bayesian Analysis of Outliers via Akaike's Predictive Likelihood of a Model. *Communication Statistics—Simulation Computation*, 13, 107-126. https://doi.org/10.1080/03610918408812361
- [15] Fung, W.-K. and Bacon-Shone, J. (1993) Quasi-Bayesian Modelling of Multivariate Outliers. *Computational Statistics and Data Analysis*, 16, 271-278. https://doi.org/10.1016/0167-9473(93)90129-H
- [16] Belsey, D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley, Hoboken. https://doi.org/10.1002/0471725153
- [17] Cook, R.D. (1977) Detection of Influential Observation in Linear Regression. *Technometrics*, **19**, 15-18. https://doi.org/10.1080/00401706.1977.10489493
- [18] Williams, D.X. (1973) Letter to the Editor. *Applied Statistics*, **22**, 407-408. https://doi.org/10.1111/j.1467-9876.1973.tb00281.x
- [19] Meloun, M. and Militky, J. (2001) Detection of Single Influential Points in OLS Regression Model Building. *Analytica Chimica Acta*, 439, 169-191. https://doi.org/10.1016/S0003-2670(01)01040-6

Appendix

Data 1.

Rain (mm)	Wheat (kg)	Rain (mm)	Wheat (kg)	Rain (mm)	Wheat (kg)	Rain (mm)		Rain (mm)	Wheat (kg)	Rain (mm)	Wheat (kg)
12	260	19	330	22	360	27	385	29	398	50	406
13	270	20	334	23	370	27	388	30	400		
14	310	20	344	24	370	28	392	30	400		
16	320	20	348	26	380	28	393	31	403		
18	323	22	352	26	383	29	395	31	403		

Data 2.

S/no.	Year	Crop production	Livestock	Forestry	Fishing	GDP
1		224.4	31.0	37.0	9.4	497.7
2	1961	288.2	31.2	35.0	9.6	558.7
3	1961	329.3	29.7	31.0	7.7	586.0
4		288.3	28.4	29.7	8.7	580.0
5		229.2	35.2	34.6	11.4	527.1
6	1062	292.4	35.4	33.6	11.6	601.5
7	1962	336.4	33.7	28.9	9.3	617.2
8		294.5	32.2	27.7	10.5	615.5
9		257.3	37.0	34.5	11.7	575.5
10	1062	328.2	37.2	33.5	11.9	561.0
11	1963	377.6	35.4	28.8	9.6	680.7
12		330.6	33.9	27.6	10.8	680.3
13		268.6	33.8	41.0	11.7	608.7
14	1064	342.6	43.0	39.8	12.0	700.9
15	1964	394.2	32.4	34.3	9.6	720.9
16		345.1	31.0	32.9	10.8	725.4
17		262.4	38.1	38.9	18.2	648.6
18	1065	334.8	38.3	37.8	18.6	736.2
19	1965	385.2	36.5	32.5	14.9	760.9
20		337.2	34.9	31.2	16.8	758.7
21		260.1	40.1	41.6	20.7	700.4
22	1966	331.8	40.3	40.3	21.2	789.9
23	1700	381.8	38.4	34.8	17.0	799.8
24		334.3	36.1	33.3	19.1	820.0
25	1967	288.9	40.1	38.4	28.9	758.4
26		368.5	40.3	37.2	29.5	856.4

Continue	e d					
27		423.9	38.4	32.1	23.6	869.4
28		371.2	36.1	30.7	26.6	890.5
29		239.8	34.8	20.3	30.2	614.9
30		305.9	34.9	19.7	30.9	698.8
31	1968	351.9	33.3	17.0	24.8	710.0
32		308.1	31.8	16.3	27.9	728.9
33		217.6	33.8	20.6	30.7	594.5
34	1000	277.6	34.0	20.0	31.4	675.2
35	1969	319.4	32.4	17.2	25.2	680.3
36		279.6	31.0	16.5	28.4	705.6
37		269.8	37.3	22.0	34.9	803.2
38	1070	344.2	37.6	21.3	35.8	899.1
39	1970	396.0	35.7	18.4	28.6	903.1
40		346.7	34.1	17.6	32.2	944.0
41		392.4	45.6	40.7	74.3	1211.6
42	1071	500.5	45.9	39.5	75.8	1337.3
43	1971	575.9	43.7	34.1	60.9	1337.3
44		504.2	41.8	32.6	68.6	1339.3
45		467.5	49.5	46.0	86.3	1392.7
46	1972	596.4	49.8	44.6	88.1	1556.7
47	1972	686.1	47.4	38.5	70.7	1681.3
48		600.7	45.4	36.9	79.7	1677.1
49		449.0	60.3	56.9	105.2	1735.8
50	1973	572.8	60.7	55.2	107.4	1691.3
51	17/3	659.0	57.7	47.6	86.2	1816.9
52		576.9	55.3	45.6	97.1	1794.9
53		446.7	86.2	64.3	119.3	1884.3
54	1974	569.9	86.6	62.4	121.8	2071.0
55	17/4	655.6	82.4	53.8	97.8	2179.9
56		574.0	78.5	51.5	110.1	2127.1
57		545.5	184.8	45.1	200.8	2252.5
58	1975	695.9	185.8	43.8	204.9	4627.2
59	2273	800.6	176.8	37.7	164.5	4706.5
60		701.0	169.8	36.1	165.3	4528.1
61		738.6	202.6	89.6	279.1	4981.2
62	1976	942.1	203.7	87.0	284.9	5352.5
63		1083.9	193.9	75.0	228.6	5386.7

64		949.0	185.6	71.6	257.6	5195.1
65		818.0	260.4	94.6	174.7	6530.9
66		1043.5	261.3	91.8	178.3	6714.7
67	1977	1200.6	249.2	79.2	143.1	6663.3
68		1051.1	238.5	75.8	161.2	6424.7
69		1013.6	319.1	82.6	204.2	6853.1
70		1293.0	321.1	80.1	208.4	7928.0
71	1978	1487.6	305.8	69.1	167.3	7876.2
72		1302.0	292.5	66.2	188.5	7515.7
73		1001.0	339.2	82.8	368.4	8099.9
74		1276.8	341.0	80.3	376.0	8490.9
75	1979	1469.1	324.5	69.3	301.8	8636.4
76		1286.2	310.6	66.3	349.0	8309.1
77		1103.3	384.9	85.0	496.0	9103.7
78		1407.4	387.0	82.5	506.2	10,330.8
79	1980	1619.2	368.2	71.1	406.3	1486.3
80		1417.6	352.4	66.1	457.7	10,061.7
81		1314.1	482.4	87.3	323.9	11,095.9
82		1676.2	485.0	84.7	330.6	12,105.0
83	1981	1928.5	461.5	73.0	265.4	12,377.5
84		1688.4	441.7	70.0	298.9	11,908.9
85		2006.3	440.5	294.4	192.2	13,241.6
86		2559.3	442.5	285.6	196.2	11,241.9
87	1982	2944.5	421.1	246.3	157.5	11,958.3
88		2577.9	402.1	236.9	177.4	11,743.6
89		2242.3	690.7	295.9	235.2	12,675.9
	1002	2860.2	692.5	287.0	242.1	11,420.9
91	1983	3290.6	660.9	247.6	192.7	12,344.8
92		2881.0	632.5	237.1	217.1	12,176.5
93		2559.6	905.2	321.2	344.9	13,127.1
94	1004	3285.1	910.1	311.7	352.0	12,226.5
95	1984	3756.5	866.1	268.8	282.5	13,361.6
96		3288.8	828.9	257.5	318.3	13,226.1
97		3365.0	1153.9	350.3	303.2	14,293.2
98	1007	4292.6	1160.1	339.9	309.4	13,859.0
99	1985	4938.6	1104.0	293.1	248.4	15,021.6
100		4323.8	1056.7	280.7	279.7	14,989.6

Continue	d					
101		3923.8	1248.5	372.5	188.8	15,750.4
102		5005.1	1255.3	361.5	192.7	15,647.0
103	1986	5758.6	1194.5	311.7	154.6	17,115.3
104		5041.6	1143.3	298.6	174.2	18,049.3
105		4066.6	1288.0	399.0	266.6	15,874.4
106	1097	5186.0	1295.0	387.2	274.2	17,460.1
107	1987	5966.6	1232.4	333.8	220.1	17,418.8
108		5223.8	1179.5	319.8	247.9	18,393.6
109		6208.9	1459.6	402.5	232.3	24,995.7
110	1988	7918.8	1467.5	391.6	237.0	25,452.0
111	1900	9110.7	1396.6	387.7	190.2	25,416.5
112		7976.5	1336.6	323.4	214.3	27,358.3
113		9681.4	1549.6	472.1	407.3	32,232.7
114	1989	12,349.6	1558.0	458.1	415.7	34,961.2
115	1505	14,208.4	1482.6	395.1	333.6	35,329.8
116		12,439.5	1419.0	378.4	375.9	36,561.7
117		11,252.2	2055.3	552.0	843.4	53,255.4
118	1990	14,353.4	2066.4	535.7	550.8	54,337.8
119	1990	16,513.8	1966.4	462.0	690.9	53,793.9
120		144,459.0	1882.1	442.4	778.3	55,410.5
121		1360.9	2465.8	595.5	1120.7	65,929.7
122	1001	17,357.0	2479.1	577.9	1143.8	67,103.8
123	1991	19,969.4	2359.2	498.3	918.1	66,260.6
124		17,483.4	2258.0	477.3	1034.2	69,255.9
125		15,911.0	1715.0	618.5	1249.5	75,449.4
126		20,296.2	2729.7	600.2	1275.2	75,243.7
127	1992	23,350.9	2597.7	517.6	1023.6	77,318.5
128		20,444.0	2486.3	495.7	1153.1	80,126.2
129		24,009.1	4013.9	759.3	1647.6	133,927.1
130		30,626.1	4035.8	736.6	1681.7	133,280.6
131	1993	35,235.7	3841.4	635.4	1348.7	130,710.2
132		30,849.2	3675.7	608.5	1520.5	134,716.0
133		39,007.5	6375.5	1006.9	1951.2	158,745.6
134	1994	49,758.2	6410.0	977.0	1991.5	171,233.1
135		57,247.3	6100.0	842.6	1598.4	170,640.0
136		50,120.6	5838.3	806.9	1800.7	175,251.1

Continue	d					
137		59,061.5	9465.7	1518.6	2681.8	211,794.3
138		75,339.1	9517.0	1473.5	2737.1	225,286.2
139	1995	86,678.5	9056.6	1270.8	2196.9	227,716.4
140		75,887.8	8668.1	1217.0	2474.9	235,956.4
141		104,606.4	16,963.2	2096.2	5087.5	475,135.4
142	1996	133,817.8	17,035.0	2033.0	5172.0	482,976.8
143	1990	1539.8	16,210.9	1753.3	4151.2	481,117.3
144		134,792.4	15,515.5	1679.0	4676.6	493,962.0
145		141,959.5	22,731.2	2632.0	7979.1	670,619.8
146	1997	181,084.2	22,854.3	2554.0	8143.7	675,141.6
147	1997	208,339.4	21,748.8	2202.5	6536.4	670,697.4
148		182,403.0	20,815.9	2109.3	7363.6	686,280.4
149		160,649.3	25,279.9	3186.9	9635.5	686,351.0
150	1998	204,924.9	25,416.8	3092.0	9834.4	700,532.3
151	1,50	235,788.3	24,187.3	2666.9	7693.4	699,923.5
152		206,417.3	23,149.8	2554.0	8892.3	715,165.8
153		177,413.6	27,595.5	4031.4	11,685.8	647,960.4
154	1999	226,309.6	27,345.0	3911.9	11,928.9	678,288.7
155	1999	360,371.7	26,402.9	3373.6	9572.9	685,015.5
156		227,957.8	25,270.3	3230.8	10,784.4	897,156.2
157		188,577.0	28,651.9	4900.6	13,478.6	777,923.9
158	2000	240,549.6	38,807.0	4755.3	13,756.7	799,246.2
159	2000	276,755.0	27,413.5	4101.0	11,041.0	801,411.1
160		242,301.5	26,237.6	3827.4	12,438.9	816,338.7
161		198,896.3	30,014.3	6217.6	14,364.2	1,165,093.3
162		253,714.9	30,176.8	6033.3	14,650.3	1,144,268.2
163	2001	291,899.5	28,717.1	5203.1	11,758.8	1,124,629.8
164		255,560.7	27,485.2	4982.8	13,246.9	1,148,136.0
0.8		266,058.3	39,839.6	7610.4	19,978.0	1,164,239.0
166		339,385.1	40,055.4	7384.7	20,390.1	1,182,576.3
167	2002	390,466.3	38,117.8	6368.6	16,365.8	1,181,000.0
168		341,856.8	36,482.7	6099.0	18,437.0	1,197,270.8
169		606,640.0	47,242.2	9196.4	24,033.7	1,625,546.2
170	2003	773,832.5	47,498.1	8923.7	24,529.5	1,735,802.5
171		890,302.8	45,200.4	7695.9	19,688.2	1,792,349.4
172		779,468.2	43,261.5	7370.0	22,179.8	1,758,882.6

_			4
Con	tin	1110	а

173		651,425.4	52,157.4	11,201.4	28,295.5	2,039,515.9
174	2004	830,961.1	15,439.9	10,869.2	28,878.9	2,127,893.3
175	2004	956,029.9	49,903.2	9373.7	23,179.2	2,171,579.1
176		837,012.8	47,762.8	9876.8	26,112.6	2,148,243.2
177		618,328.3	55,588.3	11,560.0	36,012.1	2,831,255.6
178	2005	811,555.8	59,516.5	12,676.1	38,494.5	2,592,273.2
179	2005	1,062,751.7	62,650.6	13,211.3	13,473.9	2,985,541.8
180		98,460.7	66,137.2	13,810.1	42,106.0	3,201,996.4
181		749,944.0	73,375.5	15,212.4	37,696.9	3,169,613.4
182	2006	986,377.9	77,684.6	15,388.1	40,821.5	3,399,351.8
183	2006	1,292,413.0	79,508.8	15,504.6	47,099.6	3,924,775.0
184		1,199,547.3	82,688.3	15,620.1	44,360.0	4,078,498.8
185		931,325.0	87,245.7	19,471.8	44,769.1	3,986,279.5
186	2007	1,232,947.2	89,714.4	18,637.2	46,705.8	4,426,083.8
187	2007	1,619,235.4	104,601.5	17,928.5	53,776.4	4,986,489.4
188		1,506,111.4	97,341.0	17,423.6	61,203.9	5165742.0
189		1,087,907.7	104,146.3	22,167.2	49,557.1	4,740,806.8
190	2000	1,440,102.2	99,366.7	21,231.4	60,332.3	4,853,839.3
191	2008	1,889,913.4	118,850.9	20,494.6	58,139.3	5,524,363.8
192		1,606,557.7	111,787.6	19,918.7	66,494.3	5,538,294.6
193		1,148,460.0	111,750.0	23,920.0	54,710.0	5,421,316.8
194	2000	1,554,120.9	114,084.0	24,401.1	57,072.4	5,704,400.3
195	2009	2,074,683.0	135,850.8	24,417.0	64,352.7	6,340,199.4
196		1,767,306.1	120,471.0	21,534.9	62,474.5	6,376,225.2