HOMEWORK 4

LEANDRO RIBEIRO (WORKED WITH KYLE FRANKE AND JOYCE GOMEZ)

Proposition 2.18. (i) For all $k \in \mathbb{N}$, $k^3 + 2k$ is divisible by 3.

- (ii) For all $k \in \mathbb{N}$, $k^4 6k^3 + 11k^2 6k$ is divisible by 4.
- (iii) For all $k \in \mathbb{N}$, $k^3 + 5k$ is divisible by 6.

Proof. (i) Let's first identify P(n). We put P(n) to be the sentence, " $n^3 + 2n$ is divisible by 3." Let us first consider P(1).

Base. P(1) asserts $1^3 + 2 = 3$, we conclude that P(1) holds.

Successor We have that P(n) holds. That is, 3 divides $n^3 + 2n$. Consider $(n+1)^3 + 2(n+1)$. $(n+1)^3 + 2n + 2 = \ldots = n^3 + 3n^2 + 2n + 1 = n^3 + 2n + 3n^2 + 1$. Now our inductive hypothesis tells us that 3 divides $n^3 + 2n = 3 \cdot j$. We now see that $(n+1)^3 + 2(n+1) = 3j + 3(n^2 + 1) = 3(j + n^2 + 1)$. Since $j + n^2 + 1$ is an integer, we conclude that 3 divides $(n+1)^3 + 2(n+1)$. That is to say, P(n+1) holds. By the principle of induction the proposition holds.

(ii) Let's first identify P(n). We put P(n) to be the sentence, " n^4 - $6n^3$ + $11n^2$ - 6n is divisible by 4". Let's consider P(1).

Base. P(1) asserts 1 - 6 + 11 - 6 = 0. Proposition 1.17 tells us 0 is divisible by any integer, so we conclude that P(1) holds.

Successor. Suppose P(n) holds. That is, $n^4 - 6n^3 + 11n^2 - 6n$ is divisible by 4. Consider $(n+1)^4 - 6(n+1)^3 + 11(n+1)^2 - 6(n+1)$. $(n+1)^4 - 6(n+1)^3 + 11(n+1)^2 - 6(n+1) = (n+1)^4 - 6(n+1)^3 + 11(n+1)^2 - 6n + 6 = \dots = (n^4 - 6n^3 + 11n^2 - 6n) + 4n^3 - 12n^2 + 8n$. Now our inductive hypothesis tells us that 4 divides $n^4 - 6n^3 + 11n^2 - 6n = 4 \cdot j$. We now see that $(n^4 - 6n^3 + 11n^2 - 6n) + 4n^3 - 12n^2 + 8n = 4j + 4n^3 - 12n^2 + 8n = 4j + 4(n^3 - 3n^2 + 2n)$. Letting $n^3 - 3n^2 + 2n = i$, we have $4j + 4(n^3 - 3n^2 + 2n) = 4j + 4i = 4(j+i)$.

Thus 4 divides $(n+1)^4$ - $6(n+1)^3$ + $11(n+1)^2$ - 6(n+1), verifying that P(n + 1) holds. By the principle of induction we conclude n^4 - $6n^3 + 11n^2$ - 6n is divisible by 4.

(iii) Let's first identify P(n). We put P(n) to be the sentence " $n^3 + 5n$ is divisible by 6". Let's first consider P(1).

Base. P(1) asserts $1^3 + 5$ is divisible by 6. Since $1^3 + 5 = 6$, we

Date: February 13, 2017.

conclude that P(1) holds.

successor Assume P(n) holds. That is, $n^3 + 5n$ is divisible by 6. Consider $(n+1)^3 + 5(n+1)$. $(n+1)^3 + 5n + 5 = n^3 + 3n^2 + 3n + 1 + 5n + 5 = (n^3 + 5n) + (3n^2 + 3n + 6) = (n^3 + 5n) + 3(n^2 + n + 2)$. In order to move forward, we first need to prove $n^2 + n + 2$ is divisible by 2 (proven below). Now that we know $n^2 + n + 2$ is even, we have $2 \cdot j = n^2 + n + 2$ for some j. We thus have that $3(n^2 + n + 2) = 3 \cdot 2 \cdot j = 6 \cdot j$. Letting $n^3 + 5n = 6 \cdot i$, we see that $(n+1)^3 + 5n = 6i + 6j = 6(i + j)$. Thus 6 divides $(n+1)^3 + 5(n+1)$, verifying that P(n+1) holds. By the principle of induction we conclude $n^3 + 5n$ is divisible by 6.

Proposition. For all $n \in \mathbb{N}$, $n^2 + n + 2$ is divisible by 2.

Proof. Let's first identify P(n). We put P(n) to be the sentence " $n^2 + n + 2$ is divisible by 2". Let's first consider P(1).

Base. P(1) asserts $1^2 + 1 + 2$ is divisible by 2. Since $1^2 + 1 + 2 = 4$, and 4 is divisible by 2, we conclude that P(1) holds.

Successor. Assume P(n) holds. That is $n^2 + n + 2$ is divisible by 2. Consider $(n+1)^2 + n + 1 + 2$. $(n+1)^2 + n + 3 = n^3 + 2n + 1 + n + 3 = n^3 + 3n + 4$. Rewriting we have $(n^2 + n + 2) + (2n + 2)$. Since P(n) holds, $n^2 + n + 2 = 2j$ for some j. We have 2(j + n + 1). We conclude that $(n+1)^2 + n + 1 + 2$ is divisible by 2, verifying that P(n + 1) holds. By the principle of induction the proposition holds.

Proposition 2.21. There exists no integer x such that 0 < x < 1.

Proof. Suppose toward a contradiction there exists an integer x such that 0 < x < 1. By definition, $x - 0 \in \mathbb{N}$ and by our axioms for the integers $x \in \mathbb{N}$. x < 1, but by Proposition 2.20 (proven below), $x \ge 1$ which is absurd.

Proposition 2.20. For all $k \in \mathbb{N}$, $k \geq 1$.

Proof. Let's formulate P(n). " $n \ge 1$ "

Base. For this case, 1 = 1, so $1 \ge 1$. Hence P(1) holds.

Successor. Suppose P(n) holds. That is $1 \le n$. Consider n+1-n. Commuting we see that 1+n-n=1. Therefore $n+1-n\in\mathbb{N}$. We deduce that n< n+1 since P(n) holds $1\le n$. The relation \le is transitive, so $1\le n\le n+1$ implies $1\le n+1$. We have proven the successor case by the principle of mathematical induction, we are done.

Proposition 2.23. Let $m, n \in \mathbb{N}$. If n is divisible by m then $m \leq n$.

Proof. We argue by induction on the claim P(n) "m $\leq n$."

Base. n = 1. In this case $1 = j \cdot m$ for some $j \in \mathbb{Z}$ by definition of

divisibilty. $j \in \mathbb{N}$ by proposition 2.11. m = j = n = 1, Thus P(1) holds. **Successor.** Suppose P(n) holds. That is, $m \le n$. By definition, this means $n - m \in \mathbb{N}$ or n - m = 0. If $n - m \in \mathbb{N}$, $n - m + 1 \in \mathbb{N}$ because \mathbb{N} is closed under addition, and $1 \in \mathbb{N}$ by proposition 2.14(i). Otherwise, if n - m = 0, then $n - m + 1 = 0 + 1 = 1 \in \mathbb{N}$ by proposition 2.14.(i). We have proven the successor case by the induction.

Proposition 2.24. For all $k \in \mathbb{N}$, $k^2 + 1 > k$.

Proof. We argue by induction the claim P(n) " $n^2 + 1 > n$." Let's first observe P(1)

Base. n = 1. In this case $1^2 + 1 = 2 > 1$. Thus P(1) holds. **Successor.** Suppose P(n) holds. That is, $n^2 + 1 > n$. Consider $(n+1)^2 + 1$. $(n+1)^2 + 1 = n^2 + 2n + 2 = n^2 + 2 + 2n = n^2 + 1 + 1 + 2n > n + 1 + 2n$. n + 1 + 2n > n + 1 by proposition 2.7(i), since 2n > 0. By transitivity of >, $(n+1)^2 + 1 > (n+1)$. By induction, we've proven the proposition.

Proposition 2.27. For all integers $k \geq 2$, $k^2 < k^3$.

Proof. We argue by induction the claim P(n) " $n^2 < n^3$." Let's first observe P(2)

Base. n = 2. In this case, $2^2 < 2^3$. $2^2 = 4 < 2^3 = 8$. Thus P(2) holds. **Successor** Suppose P(n) holds. That is, $n^2 < n^3$. Consider $(n+1)^3$. $(n+1)^3 = n^3 + 3n^2 + 3n + 1 > n^2 + 3n^2 + 3n + 1 = 4n^2 + 3n + 1 = 3n^2 + n + n^2 + 2n + 1$. $3n^2 + n + n^2 + 2n + 1 > n^2 + 2n + 1 > n^2 + 2n + 1$ by proposition 2.7(i), since $3n^2 + n > 0$. $n^2 + 2n + 1 = (n+1)^2$, so by transitivity of >, $(n+1)^2 < (n+1)^3$. We have thus proven this proposition by induction.