

Enhancing Music Genre Classification Through PCA and Logistic Regression: A Comprehensive Approach to Data Preprocessing. Dimensionality Reduction, and Model Evaluation

Introduction to Music Classification

Music genre classification is a vital task in the field of audio processing. This presentation explores how PCA (Principal Component Analysis) and Logistic Regression can enhance this classification process. We will discuss data preprocessing, dimensionality reduction, and model evaluation techniques that lead to improved accuracy.


```
data = pd.read_csv('/content/music_dataset_mod.csv')
data.head()
```

Tempo	Dynamics Range	Vocal Presence	Percussion Strength	String Instrument Detection	Electronic Element Presence	Rhythm Complexity	Drums Influence	Distorted Guitar	Metal Frequencies	Ambient Sound Influence	Instrumental Overlaps	Genre
0 114.618354	57.976367	53.251766	99.061840	14.686768	17.628630	46.545522	75.839434	79.378892	71.753088	96.439665	53.771763	Country
1 116.672803	69.387087	95.787280	90.831033	47.280419	-15.618194	85.421085	100.455908	0.713015	0.000000	17.327295	15.017146	Classical
2 128.328121	52.930677	65.701187	104.439247	5.984994	50.467388	18.006722	77.642913	80.652946	87.692110	95.125207	25.308020	Rock
3 128.511337	25.494755	14.095374	40.106130	47.715584	87.335201	68.603329	63.536557	74.888346	76.239108	97.016998	96.893109	Hip-hop
4 135.474190	45.174876	101.469872	70.002203	108.177637	25.865590	31.295163	81.121030	36.178193	23.381542	53.753793	30.142986	Country

data.columns

Data Preprocessing Techniques

Effective data preprocessing is crucial for successful classification. This involves steps like normalization, feature extraction, and noise reduction. By ensuring that the data is clean and well-prepared, we set a solid foundation for further analysis and modeling.

```
data.info()
   <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000 entries, 0 to 999
   Data columns (total 13 columns):
        Column
                                     Non-Null Count Dtype
                                                     float64
        Tempo
                                     1000 non-null
        Dynamics Range
                                     1000 non-null
                                                     float64
        Vocal Presence
                                     1000 non-null
                                                     float64
        Percussion Strength
                                     1000 non-null
                                                     float64
        String Instrument Detection 1000 non-null
                                                    float64
        Electronic Element Presence 1000 non-null
                                                   float64
        Rhythm Complexity
                                     1000 non-null float64
        Drums Influence
                                     1000 non-null
                                                    float64
        Distorted Guitar
                                     1000 non-null
                                                     float64
        Metal Frequencies
                                     1000 non-null
                                                     float64
        Ambient Sound Influence
                                     1000 non-null
                                                     float64
        Instrumental Overlaps
                                     1000 non-null float64
                                                     object
    12 Genre
                                     890 non-null
    dtypes: float64(12), object(1)
   memory usage: 101.7+ KB
   data['Genre'].unique()
→ array(['Country', 'Classical', 'Rock', 'Hip-hop', nan, 'Jazz'],
         dtype=object)
```

Checking for missing values
data.isnull().sum()

[♣]

	9
Tempo	0
Dynamics Range	0
Vocal Presence	0
Percussion Strength	0
String Instrument Detection	0
Electronic Element Presence	0
Rhythm Complexity	0
Drums Influence	0
Distorted Guitar	0
Metal Frequencies	0
Ambient Sound Influence	0
Instrumental Overlaps	0
Genre	110

```
[7] label encoder = LabelEncoder()
   data['Genre Encoded'] = label encoder.fit transform(data['Genre'])
  # Select numerical features (assuming all except 'Genre' and 'Genre Encoded')
   numerical features = data.drop(['Genre', 'Genre Encoded'],axis=1)
   #Scale numerical faetures
   scaler = StandardScaler()
   scaled features = scaler.fit transform(numerical features)
   # Convert a new Dataframe with scaled features
   scaled data = pd.DataFrame(scaled features, columns=numerical features.columns)
   scaled_data['Genre_Encoded'] = data['Genre_Encoded']
```


Understanding PCA

Principal Component Analysis (PCA) is a technique used for dimensionality reduction. It transforms high-dimensional data into a lower-dimensional format while retaining most of the variance. This slide will cover how PCA helps in simplifying the dataset for better model performance.

```
# Apply PCA
pca = PCA(n components=0.95) # Explain 95% of variance
pca features = pca.fit transform(scaled data.drop(['Genre_Encoded'], axis=1))
# Create a DataFrame with PCA features
pca_data = pd.DataFrame(pca_features, index=data.index)
pca_data['Genre_Encoded'] = data['Genre_Encoded'] # Add back the target variable
X_train, X_test, y_train, y_test = train test split(
    pca_data.drop(['Genre_Encoded'], axis=1),
    pca data['Genre Encoded'],
    test size=0.2,
    random_state=42
```


LogisticRegression 🗗 😉

LogisticRegression(max_iter=1000)

12] y_pred = model.predict(X_test)

Logistic Regression Overview

Logistic Regression is a statistical method for predicting binary outcomes. In the context of music genre classification, it helps in understanding the relationship between features and genre labels. We will discuss its application and effectiveness in this domain.

Model Evaluation Metrics

Evaluating the performance of our model is essential. We will focus on key evaluation metrics such as accuracy, precision, and recall. Understanding these metrics allows us to assess the effectiveness of our classification approach accurately.

	precision	recall	f1-score	support
0	0.73	0.95	0.83	40
1	0.46	0.36	0.41	36
2	0.36	0.39	0.38	31
3	0.51	0.62	0.56	39
4	0.44	0.55	0.49	29
5	0.00	0.00	0.00	25
accuracy			0.52	200
macro avg	0.42	0.48	0.44	200
weighted avg	0.45	0.52	0.48	200

Conclusion and Future Work

In conclusion, combining **PCA** and **Logistic Regression** significantly enhances music genre classification accuracy. Future work may involve exploring **deep learning** techniques and other advanced algorithms to further improve classification results and explore new genres.

The weighted average f1-score is 0.52, indicating the model has some classification capability but may benefit from further tuning.

To improve performance, we could try the following:

- Adjusting PCA components to optimize dimensionality reduction.
- Hyperparameter tuning of the logistic regression model.
- Exploring additional classifiers (e.g., SVM, Random Forest) for comparison.

By Pranav Mishra (Data Analyst Fellow)