DM 27 : un corrigé Polynômes de Bernstein et théorème de Stone-Weierstrass

Partie I : Polynômes de Bernstein

1°)

- \diamond D'après le cours, $\deg(B_{n,k}) = \deg(X^k) + \deg((1-X)^{n-k}) = k+n-k=n.$
- $\diamond B_{n,k}(X) = X^k Q(X)$ où $Q \in \mathbb{R}[X]$ vérifie $Q(0) = 1 \neq 0$, donc 0 est racine de $B_{n,k}$ de multiplicité k. En particulier, 0 est racine de $B_{n,k}$ si et seulement si $k \geq 1$.
- \diamond De même, on montre que 1 est racine de $B_{n,k}$ de multiplicité n-k. En particulier, 1 est racine de $B_{n,k}$ si et seulement si $k \leq n-1$.

2°) D'après la formule du binôme de Newton,
$$B_{n,k} = X^k \sum_{h=0}^{n-k} \binom{n-k}{h} (-X)^h$$
,

donc
$$B_{n,k} = \sum_{h=0}^{n-k} {n-k \choose h} (-1)^h X^{k+h}$$
. En posant $j = h + k$,

on obtient
$$B_{n,k} = \sum_{j=k}^{n} {n-k \choose j-k} (-1)^{j-k} X^{j}$$
.

3°)
$$X^k = X^k (X + (1 - X))^{n-k} = X^k \sum_{h=0}^{n-k} {n-k \choose h} X^h (1 - X)^{n-k-h}$$
, donc en posant

$$j = k + h, X^k = \sum_{j=k}^n {n-k \choose j-k} X^j (1-X)^{n-j} = \sum_{j=k}^n {n-k \choose j-k} B_{n,j}.$$

4°) Soit
$$P \in \mathbb{R}_n[X]$$
. Il existe $(p_k)_{0 \le k \le n} \in \mathbb{R}^{n+1}$ tel que $P(X) = \sum_{k=0}^n p_k X^k$, donc

d'après la question précédente,
$$P(X) = \sum_{k=0}^{n} p_k \sum_{j=k}^{n} {n-k \choose j-k} B_{n,j}$$
. Ainsi,

$$P(X) = \sum_{\substack{j,k \in \mathbb{N}^2 \\ 0 \le k \le j \le n}} p_k \binom{n-k}{j-k} B_{n,j} = \sum_{j=0}^n \left(\sum_{k=0}^j p_k \binom{n-k}{j-k}\right) B_{n,j}. \text{ Ceci montre qu'il}$$

existe
$$(\alpha_k)_{0 \le k \le n} \in \mathbb{R}^{n+1}$$
 tel que $P(X) = \sum_{k=0}^{n} \alpha_k B_{n,k}$.

Donc $(B_{n,k})_{0 \le k \le n}$ est une famille génératrice de $\mathbb{R}_n[X]$, or cette famille est de cardinal $n+1=\dim(\mathbb{R}_n[X])$, donc c'est une base.

5°) Pour tout
$$n, k \in \mathbb{N}$$
 tels que $0 \le k \le n$, posons $I_{n,k} = \int_0^1 B_{n,k}(t) dt$.

\$\Rightarrow\$ Supposons que
$$0 \le k < n$ et intégrons par parties :
$$I_{n,k} = \left[\frac{t^{k+1}}{k+1}(1-t)^{n-k}\right]_0^1 + \int_0^1 \frac{t^{k+1}}{k+1}(n-k)(1-t)^{n-k-1} dt, \text{ donc } I_{n,k} = \frac{n-k}{k+1}I_{n,k+1}.$$$$

 \diamond On peut en déduire par récurrence descendante finie sur $k \in \{0, \dots, n\}$

que
$$R(k)$$
: $I_{n,k} = I_{n,n} \prod_{h=k}^{n-1} \frac{n-h}{h+1}$.

En effet, c'est vrai pour k = n car le produit est alors vide, donc il est égal à 1. De plus, si R(k+1) est vrai pour $0 \le k < n$,

alors
$$I_{n,k} = \frac{n-k}{k+1} I_{n,k+1} = \frac{n-k}{k+1} \times I_{n,n} \prod_{h=k+1}^{n-1} \frac{n-h}{h+1} = I_{n,n} \prod_{h=k}^{n-1} \frac{n-h}{h+1}.$$

 \diamond De plus $I_{n,n} = \frac{1}{n+1}$, donc pour tout $n, k \in \mathbb{N}$ tels que $0 \le k \le n$,

$$I_{n,k} = \frac{(n-k)!}{\left[\frac{(n+1)!}{k!}\right]} = \frac{n+1}{(n+1)\binom{n}{k}}.$$

6°) Pour tout $j \in \{0,\ldots,n\}$, $B'_{n,j} = jX^{j-1}(1-X)^{n-j} - (n-j)X^{j}(1-X)^{n-j-1}$: c'est en particulier vrai lorsque j=0 ou j=n, en travaillant dans $\mathbb{R}(X)$ (ensemble des fractions rationnelles). Ainsi,

$$Q'(X) = \sum_{j=1}^{n} {n \choose j} j \alpha_j X^{j-1} (1-X)^{n-j} - \sum_{j=0}^{n-1} {n \choose j} (n-j) \alpha_j X^j (1-X)^{n-j-1}.$$

Dans la première somme, on pose i = j - 1:

$$Q'(X) = \sum_{i=0}^{n-1} \binom{n}{i+1} (i+1)\alpha_{i+1} X^{i} (1-X)^{n-i-1} - \sum_{j=0}^{n-1} \binom{n}{j} (n-j)\alpha_{j} X^{j} (1-X)^{n-j-1}.$$

De plus, d'après la formule comité-président, pour tout $j \in \{0, \dots, n-1\}$

$$\binom{n}{j+1}(j+1) = n\binom{n-1}{j} \text{ et } \binom{n}{n-j}(n-j) = n\binom{n-1}{n-j-1} = n\binom{n-1}{j},$$

donc
$$Q'(X) = n \sum_{j=0}^{n-1} (\alpha_{j+1} - \alpha_j) {n-1 \choose j} B_{n-1,j}.$$

Soit $r \in \mathbb{N}$. On note R(r) l'assertion suivante : pour tout $n \geq r$, pour tout

$$(\alpha_0, \dots, \alpha_n) \in \mathbb{R}^{n+1}$$
, si l'on pose $Q(X) = \sum_{j=0}^n \binom{n}{j} \alpha_j B_{n,j}$,

alors
$$Q^{(r)}(X) = \frac{n!}{(n-r)!} \sum_{j=0}^{n-r} \left(\sum_{k=0}^{r} {r \choose k} (-1)^{r-k} \alpha_{j+k} \right) {n-r \choose j} B_{n-r,j}$$

$$\Rightarrow$$
 Pour $r=0$, on vérifie que $\sum_{k=0}^{r} {r \choose k} (-1)^{r-k} \alpha_{j+k} = \alpha_j$, donc $R(0)$ est vraie.

 \diamond Pour $r \geq 0$, on suppose R(r). Soit $n \geq r+1$ et $(\alpha_0, \ldots, \alpha_n) \in \mathbb{R}^{n+1}$.

Posons
$$Q(X) = \sum_{j=0}^{n} {n \choose j} \alpha_j B_{n,j}$$
. D'après $R(r)$,

$$Q^{(r)}(X) = \frac{n!}{(n-r)!} \sum_{j=0}^{n-r} \left(\sum_{k=0}^{r} {r \choose k} (-1)^{r-k} \alpha_{j+k} \right) {n-r \choose j} B_{n-r,j}.$$

On peut alors appliquer la question précédente (c'est-à-dire R(1)) en remplaçant n par

$$n-r$$
. On obtient que $Q^{(r+1)}=(n-r)\frac{n!}{(n-r)!}\sum_{j=0}^{n-r-1}\beta_j\binom{n-r-1}{j}B_{n-r-1,j}$, où

$$\beta_{j} = \sum_{k=0}^{r} {r \choose k} (-1)^{r-k} \alpha_{j+1+k} - \sum_{k=0}^{r} {r \choose k} (-1)^{r-k} \alpha_{j+k}$$

$$= \sum_{k=1}^{r+1} {r \choose k-1} (-1)^{r-(k-1)} \alpha_{j+k} + \sum_{k=0}^{r} {r \choose k} (-1)^{r-k+1} \alpha_{j+k}$$

$$= \alpha_{j+r+1} + (-1)^{r+1} \alpha_{j} + \sum_{k=1}^{r} {r \choose k-1} + {r \choose k} (-1)^{r-k+1} \alpha_{j+k},$$

donc d'après la relation du triangle de Pascal,

$$\beta_j = \sum_{k=0}^{r+1} {r+1 \choose k} (-1)^{r+1-k} \alpha_{j+k}, \text{ donce}$$

$$Q^{(r+1)} = \frac{n!}{(n-(r+1))!} \sum_{j=0}^{n-r-1} \left(\sum_{k=0}^{r+1} {r+1 \choose k} (-1)^{r+1-k} \alpha_{j+k} \right) {n-r-1 \choose j} B_{n-r-1,j}, \text{ce}$$

qui prouve R(r+1).

D'après le principe de récurrence, la propriété est démontrée.

Partie II : Théorème de Stone-Weierstrass

8°) Soit $x \in [0, 1]$.

$$\Rightarrow B_n(1)(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} = (x+(1-x))^n = 1 \text{ d'après la formule du binôme}$$
 de Newton, donc $B_n(1) = 1$.

$$\Rightarrow B_n(X)(x) = \sum_{k=0}^n \binom{n}{k} \frac{k}{n} x^k (1-x)^{n-k}$$
, or d'après la formule comité-président,

$$k \binom{n}{k} = n \binom{n-1}{k-1}$$
 pour tout $k \in \{1, \dots, n\}$,

donc $B_n(X)(x) = x \sum_{k=1}^n \binom{n-1}{k-1} x^{k-1} (1-x)^{(n-1)-(k-1)}$. Ainsi, toujours d'après la for-

mule du binôme de Newton, $B_n(X) = X$.

 \diamond Lorsque n=1, $B_1(f)(x)=f(0)(1-x)+f(1)x$, donc $B_1(X^2)=X$. Supposons maintenant que $n\geq 2$.

$$B_n(X^2)(x) = \sum_{k=0}^n \binom{n}{k} \frac{k^2}{n^2} x^k (1-x)^{n-k}$$
, or $k^2 = k(k-1) + k$ donc

$$B_n(X^2)(x) = \sum_{k=2}^n \binom{n}{k} \frac{k(k-1)}{n^2} x^k (1-x)^{n-k} + \sum_{k=1}^n \binom{n}{k} \frac{k}{n^2} x^k (1-x)^{n-k}, \text{ or d'après la}$$

formule comité-président-vice-président,

$$k(k-1)\binom{n}{k} = n(n-1)\binom{n-2}{k-2}$$
 pour tout $k \in \{2, \dots, n\}$,

donc
$$B_n(X^2)(x) = x^2 \sum_{k=2}^n \binom{n-2}{k-2} \frac{n-1}{n} x^{k-2} (1-x)^{(n-2)-(k-2)} + \frac{1}{n} B_n(X)(x)$$
. Ainsi,

$$B_n(X^2) = \frac{n-1}{n}X^2 + \frac{1}{n}X$$
, ce qui est encore vrai lorsque $n=1$.

9°)

 \diamond Pour tout $f \in \mathcal{C}$, $B_n(f)$ est un polynôme, donc $B_n(f) \in \mathcal{C}$.

De plus, on vérifie que, pour tout $f, g \in \mathcal{C}$ et $\alpha \in \mathbb{R}$, $B_n(\alpha f + g) = \alpha B_n(f) + B_n(g)$, donc $B_n \in L(\mathcal{C})$.

 \diamond Soit $f \in \mathcal{C}$. Soit $x \in [0, 1]$.

$$|B_n(f)(x)| = \left| \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k} \right|$$

$$\leq \sum_{k=0}^n \binom{n}{k} \left| f\left(\frac{k}{n}\right) \right| \times |x^k (1-x)^{n-k}| \text{ (par inégalité triangulaire)}$$

$$\leq \sum_{k=0}^n \binom{n}{k} ||f|| \times |x^k (1-x)^{n-k}|$$

$$= ||f|| \sum_{k=0}^n \binom{n}{k} \times x^k (1-x)^{n-k} \text{ (car } 0 \leq x^k (1-x)^{n-k})$$

$$= ||f||,$$

Ainsi, ||f|| est un majorant de $\{|B_n(f)(x)| / x \in [0,1]\}$, or la borne supérieure est le plus petit des majorants, donc $||B_n(f)|| \le ||f||$ (par la suite, cet argument sera appelé un passage à la borne supérieure). De plus, B_n est linéaire, donc d'après le cours, B_n est continue.

10°) Soit
$$x \in [0, 1]$$
.

$$B_n(f)(x) = \sum_{k=0}^n \binom{n}{k} \left(e^{\frac{1}{n}}x\right)^k (1-x)^{n-k} = \left(e^{\frac{1}{n}}x + 1 - x\right)^n = \left(1 + x\left(e^{\frac{1}{n}} - 1\right)\right)^n.$$

Ainsi,
$$B_n(f) = (1 + X(e^{\frac{1}{n}} - 1))^n$$
.
 $B_n(f)(x) = e^{n \ln(1 + x(\frac{1}{n} + o(\frac{1}{n})))} = e^{n(\frac{x}{n} + o(\frac{1}{n}))} = e^{x + o(1)} \underset{n \to +\infty}{\longrightarrow} e^x$.

 \diamond On a déjà vu que $0 \leq x^k (1-x)^{n-k},$ donc $S_{n,\delta}(x) \geq 0.$

$$\diamond$$
 Pour tout $k \in \{0, ..., n\}$ tel que $\left|\frac{k}{n} - x\right| \ge \delta$, $\delta^2 \le \left(\frac{k}{n} - x\right)^2$, donc

$$\delta^{2}S_{n,\delta}(x) \leq \sum_{\substack{0 \leq k \leq n \\ |\frac{k}{n} - x| \geq \delta}} \left(\frac{k}{n} - x\right)^{2} \binom{n}{k} x^{k} (1 - x)^{n - k}$$

$$\leq \sum_{k=0}^{n} \left[\left(\frac{k}{n}\right)^{2} - 2x \frac{k}{n} + x^{2}\right] \binom{n}{k} x^{k} (1 - x)^{n - k}$$

$$= B_{n}(X^{2})(x) - 2x B_{n}(X)(x) + x^{2} B_{n}(1)(x)$$

$$= \frac{n - 1}{n} x^{2} + \frac{1}{n} x - 2x^{2} + x^{2},$$

donc $S_{n,\delta}(x) \le \frac{x - x^2}{n\delta^2}$.

De plus,
$$x^2 - x = (x - \frac{1}{2})^2 - \frac{1}{4} \ge -\frac{1}{4}$$
, donc $S_{n,\delta}(x) \le \frac{1}{4n\delta^2}$.

12°)

 \diamond Soit $x \in [0,1]$ et $\delta > 0$.

$$f(x) - B_n(f)(x) = \sum_{k=0}^n \binom{n}{k} \left(f(x) - f\left(\frac{k}{n}\right) \right) x^k (1-x)^{n-k}, \text{ donc par inégalité triangu-}$$

laires,
$$|f(x) - B_n(f)(x)| \le \sum_{\substack{0 \le k \le n \\ |\frac{k}{n} - x| \le \delta}} \left| f(x) - f\left(\frac{k}{n}\right) \right| \binom{n}{k} x^k (1 - x)^{n-k} + A,$$

où
$$A = \sum_{\substack{0 \le k \le n \\ \left|\frac{k}{n} - x\right| \ge \delta}} \left| f(x) - f\left(\frac{k}{n}\right) \right| \binom{n}{k} x^k (1 - x)^{n - k}.$$

Or, pour tout $k \in \{0, \dots, n\}$, $\left| f(x) - f\left(\frac{k}{n}\right) \right| \le |f(x)| + \left| f\left(\frac{k}{n}\right) \right| \le 2||f||$, donc $A \leq 2||f||S_{n,\delta}(x)$, ce qu'il fallait démontrer.

 \diamond Soit $\varepsilon > 0$. f est continue sur [0, 1] qui est compact, donc d'après le théorème de Heine, f est uniformément continue. Ainsi, il existe $\delta > 0$ tel que, pour tout $x, y \in [0, 1]$ avec $|x-y| \le \delta$, $|f(x)-f(y)| \le \frac{\varepsilon}{2}$.

 $\frac{\|f\|}{2n\delta^2}\underset{n\to +\infty}{\longrightarrow} 0, \text{ donc il existe } N\in\mathbb{N}^* \text{ tel que, pour tout } n\geq N, \frac{\|f\|}{2n\delta^2}\leq \frac{\varepsilon}{2}.$ Soit $n\geq N$. Soit $x\in[0,1]$. D'après l'inégalité précédemment démontrée,

$$|f(x) - B_n(f)(x)| \le 2||f||S_{n,\delta}(x) + \sum_{\substack{0 \le k \le n \\ |\frac{k}{n} - x| \le \delta}} \frac{\varepsilon}{2} {n \choose k} x^k (1 - x)^{n-k},$$

donc
$$|f(x) - B_n(f)(x)| \le \frac{||f||}{2n\delta^2} + \frac{\varepsilon}{2} \le \varepsilon$$
.

Alors, par passage à la borne supérieure, on en déduit que $||f - B_n(f)|| \le \varepsilon$, ce qu'il fallait démontrer.

13°) D'après la question précédente,
$$\left| \int_0^1 (f(t) - B_n(f)(t)) dt \right| \leq \int_0^1 |f(t) - B_n(f)(t)| dt \leq \int_0^1 ||f - B_n(f)|| dt, \text{ donc}$$

$$\left| \int_0^1 (f(t) - B_n(f)(t)) dt \right| \leq ||f - B_n(f)|| \underset{n \to +\infty}{\longrightarrow} 0.$$

Ainsi, d'après le principe des gendarmes, $\int_0^1 B_n(f)(t) dt \xrightarrow[n \to +\infty]{} \int_0^1 f(t) dt$.

Mais par ailleurs, $\int_0^1 B_n(f)(t) dt = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) \int_0^1 B_{n,k}(t) dt$, donc d'après la

question 5, $\int_0^1 B_n(f)(t) dt = \frac{1}{n+1} \sum_{k=0}^n f\left(\frac{k}{n}\right)$, ce qui permet de conclure.

14°) D'après l'hypothèse, par combinaison linéaire, pour tout
$$P \in \mathbb{R}[X]$$
,
$$\int_0^1 P(x)f(x) \ dx = 0$$
, donc en particulier, pour tout $n \in \mathbb{N}^*$,
$$\int_0^1 B_n(f)(x)f(x) \ dx = 0$$
.

D'autre part, $\left| \int_0^1 (B_n(f)(x) - f(x))f(x) dx \right| \le \|B_n(f) - f\| \|f\| \underset{n \to +\infty}{\longrightarrow} 0$, donc d'après

le principe des gendarmes, $\int_0^1 B_n(f)(x) f(x) dx \xrightarrow[n \to +\infty]{} \int_0^1 f^2(t) dt$.

On en déduit que $\int_0^1 f^2(t) dt = 0$, or f^2 est positive et continue, donc f^2 est identiquement nulle. On a bien montré que f = 0.

Partie III : convergence uniforme des dérivées

 $15^{\circ})$

♦ D'après la question 7,

$$[B_n(f)]^{(r)} = \frac{n!}{(n-r)!} \sum_{j=0}^{n-r} \left(\sum_{k=0}^r {r \choose k} (-1)^{r-k} f\left(\frac{j+k}{n}\right) \right) {n-r \choose j} B_{n-r,j}.$$

 \diamond En particulier, avec r=1, on obtient que pour tout $x \in [0,1]$,

$$[B_n(f)]'(x) = n \sum_{j=0}^{n-1} \left(f\left(\frac{j+1}{n}\right) - f\left(\frac{j}{n}\right) \right) \binom{n-1}{j} B_{n-1,j}.$$

Si l'on suppose que f est croissante, alors pour tout $j \in \{0, ..., n-1\}$,

$$f\left(\frac{j+1}{n}\right) - f\left(\frac{j}{n}\right) \ge 0$$
, donc $B_n(f)'(x) \ge 0$, ce qui prouve que $B_n(f)$ est aussi croissante.

 \diamond Lorsque $n=1, B_1(f)$ est un polynôme de degré inférieur à 1, donc c'est une fonction toujours convexe (et concave). Supposons maintenant que $n \geq 2$. Alors d'après la formule précédente avec r=2, pour tout $x \in [0,1]$,

$$[B_n(f)]''(x) = n(n-1)\sum_{j=0}^{n-2} \left(f\left(\frac{j}{n}\right) - 2f\left(\frac{j+1}{n}\right) + f\left(\frac{j+2}{n}\right) \right) \binom{n-2}{j} B_{n-2,j}.$$

Supposons que f est convexe.

Soit $j \in \{0, \dots, n-2\}$. Alors, par inégalité de convexité,

$$f\left(\frac{j+1}{n}\right) = f\left(\frac{1}{2}\left[\frac{j}{n} + \frac{j+2}{n}\right]\right) \le \frac{1}{2}\left[f\left(\frac{j}{n}\right) + f\left(\frac{j+2}{n}\right)\right],$$

donc $f\left(\frac{j}{n}\right) - 2f\left(\frac{j+1}{n}\right) + f\left(\frac{j+2}{n}\right) \ge 0$. Alors $[B_n(f)]''(x) \ge 0$, ce qui prouve que $B_n(f)$ est aussi convexe

Soit $n \in \mathbb{N}^*$ et $k \in \{0, \dots, n\}$. D'après l'égalité des accroissements finis, il 16°) existe $t_{n,k} \in]\frac{k}{n+1}, \frac{k+1}{n+1}[$ tel que $f\left(\frac{k+1}{n+1}\right) - f\left(\frac{k}{n+1}\right) = \frac{1}{n+1}f'(t_{n,k}).$ De plus, $|t_{n,k} - \frac{k}{n}| \leq |t_{n,k} - \frac{k}{n+1}| + |\frac{k}{n+1} - \frac{k}{n}| \leq \frac{1}{n+1} + n|\frac{1}{n+1} - \frac{1}{n}| = \frac{2}{n+1}.$ Soit $\varepsilon > 0$. f' étant uniformément continue, il existe $\delta > 0$ tel que, pour tout $x, y \in [0, 1]$

avec $|x-y| \le \delta$, $|f'(x) - f'(y)| \le \varepsilon$. $\underset{n \to +\infty}{\overset{2}{\longrightarrow}} 0$, donc il existe $N \in \mathbb{N}^*$ tel que pour tout $n \ge N$, $\frac{2}{n+1} \le \delta$.

Soit
$$n \ge N$$
 et $k \in \{0, \dots, n\}$. Alors $\left| (n+1) \left[f\left(\frac{k+1}{n+1}\right) - f\left(\frac{k}{n+1}\right) \right] - f'\left(\frac{k}{n}\right) \right| = \left| f'(t_{n,k}) - f'\left(\frac{k}{n}\right) \right| \le \varepsilon$, car $|t_{n,k} - \frac{k}{n}| \le \frac{2}{n+1} \le \delta$.

 17°)

 \diamond Montrons d'abord que $B_{n+1}(f)' - B_n(f') \underset{n \to +\infty}{\longrightarrow} 0$. Pour tout $x \in [0,1]$,

$$B_{n+1}(f)'(x) - B_n(f')(x) \stackrel{(1)}{=} \sum_{k=0}^{n} \left((n+1) \left[f\left(\frac{k+1}{n+1}\right) - f\left(\frac{k}{n+1}\right) \right] - f'\left(\frac{k}{n}\right) \right) \binom{n}{k} B_{n,k}.$$

Soit
$$\varepsilon > 0$$
. D'après la question précédente, il existe $N \in \mathbb{N}^*$ tel que $\forall n \geq N, \ \forall k \in \{0, \dots, n\}, \ \left| (n+1) \left[f \left(\frac{k+1}{n+1} \right) - f \left(\frac{k}{n+1} \right) \right] - f' \left(\frac{k}{n} \right) \right| \leq \varepsilon.$ Soit $n \geq N$. Pour tout $x \in [0,1]$, d'après la relation (1) et l'inégalité triangulaire,

$$|B_{n+1}(f)'(x) - B_n(f')(x)| \le \sum_{k=0}^n \varepsilon \binom{n}{k} x^k (1-x)^{n-k} = \varepsilon$$
. Ainsi, par passage au sup,

on a montré que $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, $\forall n \geq N$, $||B_{n+1}(f)' - B_n(f')|| \leq \varepsilon$. \diamond On sait d'après la question 12 que $B_n(f') \underset{n \to +\infty}{\longrightarrow} f'$,

donc
$$B_{n+1}(f)' = [B_{n+1}(f)' - B_n(f')] + B_n(f') \underset{n \to +\infty}{\longrightarrow} f'$$
, puis $[B_n(f)]' \underset{n \to +\infty}{\longrightarrow} f'$.

a) Il s'agit d'un polynôme d'interpolation de Lagrange, donc d'après le cours,

$$P(X) = \sum_{k=0}^{r} g(k) L_k(X)$$
, où $L_k(X) = \prod_{\substack{0 \le h \le r \\ h \ne k}} \frac{X - h}{k - h}$.

Or
$$\prod_{\substack{0 \le h \le r \\ h \ne k}} (k - h) = \left(\prod_{h=0}^{k-1} (k - h) \right) \times (-1)^{r-k} \prod_{h=k+1}^{r} (h - k) = (-1)^{r-k} k! (r - k)!, \text{ donc}$$

$$P(X) = \sum_{k=0}^{r} g(k) \frac{(-1)^{r-k}}{k!(r-k)!} \prod_{0 \le h \le n \atop h \ne k} (X-h).$$

b) Soit $k \in \{0, ..., r-1\}$. L'application P-g s'annule en k et k+1, donc d'après le lemme de Rolle, il existe $\alpha_{k,1} \in]k, k+1[$ tel que $(P-g)'(\alpha_{k,1})=0.$

De même, pour tout $k \in \{0, \ldots, r-2\}$, (P-g)' s'annule en $\alpha_{k,1}$ et $\alpha_{k+1,1}$, donc il existe $\alpha_{k,2} \in]\alpha_{k,1}, \alpha_{k+1,1}[$ tel que $(P-g)''(\alpha_{k,2}) = 0.$

Par récurrence sur h, on peut donc montrer que, pour tout $h \in \{1, \ldots, r\}$, il existe une famille $(\alpha_{k,h})_{0 \le k \le r-h}$ strictement croissante de réels de [0,r[en lesquels $(P-g)^{(h)}$ s'annule.

En particulier, lorsque h = r, $(P - g)^{(r)}(\alpha_{0,r}) = 0$. Posons $x = \alpha_{0,r}$.

P est un polynôme de degré inférieur à r, donc $P^{(r)}(x)$ est égal à son coefficient de degré r multiplié par r!. Ainsi, d'après la question a), $P^{(r)}(x) = r! \sum_{k=0}^{r} g(k) \frac{(-1)^{r-k}}{k!(r-k)!}$.

On a donc
$$g^{(r)}(x) = \sum_{k=0}^{r} {r \choose k} (-1)^{r-k} g(k)$$
.

 19°) On suppose que f est de classe C^r . D'après la question 15, en remplaçant n $\operatorname{par} n + r, \ [B_{n+r}(f)]^{(r)} = \frac{(n+r)!}{n!} \sum_{k=0}^{n} \left(\sum_{k=0}^{r} {r \choose k} (-1)^{r-k} f\left(\frac{j+k}{n+r}\right) \right) {n \choose j} B_{n,j}.$

Soit $j \in \{0,\ldots,n\}$. Posons $g_{n,j}(x) = f\left(\frac{j+x}{n+r}\right)$ pour tout $x \in [0,r]$. L'application

 $g_{n,j}$ est bien définie car pour $0 \le j \le n$ et $0 \le x \le r$, $0 \le \frac{j+x}{n+r} \le 1$. De plus $g_{n,j}$ est de classe C^r , donc d'après la question précédente, il existe $x_{n,j} \in]0, r[$ tel que

$$g_{n,j}^{(r)}(x_{n,j}) = \sum_{k=0}^{r} {r \choose k} (-1)^{r-k} g(k)$$
. Or $g_{n,j}^{(r)}(x) = \left(\frac{1}{n+r}\right)^r f^{(r)} \left(\frac{j+x}{n+r}\right)$, donc en posant

$$t_{n,j} = \frac{j + x_{n,j}}{n+r}$$
, on obtient : $\sum_{k=0}^{r} {r \choose k} (-1)^{r-k} f\left(\frac{j+k}{n+r}\right) = \left(\frac{1}{n+r}\right)^r f^{(r)}(t_{n,j})$.

On peut alors adapter les raisonnements des questions 16 et 17

$$\frac{n!(n+r)^r}{(n+r)!}[B_{n+r}(f)]^{(r)} - B_n(f^{(r)}) = \sum_{j=0}^n \binom{n}{j} \left(f^{(r)}(t_{n,j}) - f^{(r)}\left(\frac{j}{n}\right) \right) B_{n,j}.$$

Pour tout $n \in \mathbb{N}^*$ et $j \in \{0, \dots, n\}$

$$\left| t_{n,j} - \frac{j}{n} \right| = \left| \frac{j + x_{n,j}}{n+r} - \frac{j}{n} \right| = \left| \frac{n x_{n,j} - r j}{n(n+r)} \right| \le \frac{|x_{n,j}|}{n+r} + \frac{r j}{n(n+r)} \le \frac{2r}{n+r}.$$

Soit $\varepsilon > 0$. $f^{(r)}$ étant uniformément continue, il existe $\delta > 0$ tel que,

pour tout $x, y \in [0, 1]$ avec $|x - y| \le \delta$, $|f^{(r)}(x) - f^{(r)}(y)| \le \varepsilon$. $\frac{2r}{n+r} \underset{n \to +\infty}{\longrightarrow} 0$, donc il existe $N \in \mathbb{N}^*$ tel que pour tout $n \ge N$, $\frac{2r}{n+r} \le \delta$.

Ainsi, pour tout $n \geq N$ et $j \in \{0, \ldots, n\}, \left| f^{(r)}(t_{n,j}) - f^{(r)}\left(\frac{j}{n}\right) \right| \leq \varepsilon$. On en déduit

comme en question 17 que, pour tout $n \geq N$, $\left\| \frac{n!(n+r)^r}{(n+r)!} [B_{n+r}(f)]^{(r)} - B_n(f^{(r)}) \right\| \leq \varepsilon$.

Ainsi,
$$\frac{n!(n+r)^r}{(n+r)!}[B_{n+r}(f)]^{(r)} - B_n(f^{(r)}) \underset{n \to +\infty}{\longrightarrow} 0, \text{ or}$$

$$\frac{n!(n+r)^r}{(n+r)!} = \frac{(n+r)^r}{(n+r)(n+r-1)\dots(n+1)} \underset{n \to +\infty}{\sim} \frac{n^r}{n^r} = 1,$$

$$\text{donc } [B_{n+r}(f)]^{(r)} - B_n(f^{(r)}) \underset{n \to +\infty}{\longrightarrow} 0. \text{ On sait d'après la question } 12 \text{ que } B_n(f^{(r)}) \underset{n \to +\infty}{\longrightarrow} f^{(r)},$$

$$\text{donc } [B_{n+r}(f)]^{(r)} \underset{n \to +\infty}{\longrightarrow} f^{(r)}, \text{ puis } [B_n(f)]^{(r)} \underset{n \to +\infty}{\longrightarrow} f^{(r)}.$$

Partie IV : vitesse de convergence vers f

 $20^{\circ})$

♦ Pour tout $x, y \in [0, 1], |f(x) - f(y)| \le |f(x)| + |f(y)| \le 2||f||,$ donc $\{|f(x) - f(y)| / (x, y \in [0, 1]) \land (|x - y| \le \delta)\}$ est majoré par 2||f||. Cet ensemble étant non vide. $\omega(\delta)$ est bien défini et par passage au sup. $\omega(\delta) < 2||f||,$ donc ω est une

étant non vide, $\omega(\delta)$ est bien défini et par passage au sup, $\omega(\delta) \leq 2||f||$, donc ω est une application bornée.

- \diamond Soit $\delta, \delta' \in \mathbb{R}_+$ avec $\delta \leq \delta'$. Alors $\{|f(x) f(y)| / (x, y \in [0, 1]) \land (|x y| \leq \delta)\}$ est inclus dans $\{|f(x) f(y)| / (x, y \in [0, 1]) \land (|x y| \leq \delta')\}$, donc d'après le cours, $\omega(\delta) \leq \omega(\delta')$: l'application ω est croissante.
- 21°) Notons $K = \{(x,y) \in [0,1]^2 \ / \ | x-y| \le \delta \}$. K est inclus dans la boule unité de \mathbb{R}^2 muni de la norme infinie, donc K est borné. De plus $K = [0,1]^2 \cap \varphi^{-1}([0,\delta])$ où φ est l'application de \mathbb{R}^2 dans \mathbb{R} définie par $\varphi(x,y) = |x-y|$. φ est continue d'après les théorèmes usuels et $[0,\delta]$ est un fermé de \mathbb{R} , donc K est un fermé. Ainsi K est un fermé borné de \mathbb{R}^2 qui est de dimension finie, donc c'est un compact de \mathbb{R}^2 .

Alors l'application continue $(x,y) \mapsto |f(x) - f(y)|$ est bornée et elle atteint sa borne supérieure : il existe $(x,y) \in [0,1]^2$ tel que $|x-y| \le \delta$ et $|f(x) - f(y)| = \omega(\delta)$.

22°) D'après le théorème de la limite monotone, $\omega(\delta) \underset{\delta \to 0^+}{\longrightarrow} \ell = \inf\{\omega(\delta) \ / \ \delta > 0\}.$

Soit $\varepsilon > 0$. f étant uniformément continue, il existe $\delta > 0$ tel que, pour tout $x, y \in [0, 1]$, $|x - y| \le \delta \Longrightarrow |f(x) - f(y)| \le \varepsilon$.

Alors d'après la question précédente, $\omega(\delta) \leq \varepsilon$, donc $\ell \leq \varepsilon$, pour tout $\varepsilon > 0$. On en déduit que $\ell \leq 0$, mais ω est à valeurs dans \mathbb{R}_+ , donc $\ell = 0$.

23°) Soit $\delta > 0$ et $x, y \in [0, 1]$.

Quitte à échanger x et y, on peut supposer que $x \leq y$.

Posons $n = \left\lfloor \frac{y-x}{\delta} \right\rfloor$. Ainsi n est un entier tel que $n \leq \frac{y-x}{\delta} \leq n+1$.

En particulier, $0 \le \frac{y-x}{n+1} \le \delta$.

pour tout $k \in \{0, \dots, n+1\}$, posons $x_k = x + k \frac{y-x}{n+1}$. Ainsi,

$$|f(x) - f(y)| = |f(x_0) - f(x_{n+1})| = \left| \sum_{k=0}^{n} (f(x_k) - f(x_{k+1})) \right| \le \sum_{k=0}^{n} |f(x_k) - f(x_{k+1})|, \text{ or pour tout } k \in \{0, \dots, n\}, |x_k - x_{k+1}| = \frac{y - x}{n+1} \le \delta, \text{ donc } |f(x_k) - f(x_{k+1})| \le \omega(\delta).$$
 On en déduit que $|f(x) - f(y)| \le (n+1)\omega(\delta) \le (n^2 + 1)\omega(\delta) \le \omega(\delta) \left(1 + \frac{|x - y|^2}{\delta^2}\right).$

Soit $n \in \mathbb{N}^*$. Alors 24°)

$$|B_n(f)(x) - f(x)| = \left| \sum_{k=0}^n \left(f\left(\frac{k}{n}\right) - f(x) \right) \binom{n}{k} x^k (1-x)^{n-k} \right|$$

$$\leq \sum_{k=0}^n \left| f\left(\frac{k}{n}\right) - f(x) \right| \binom{n}{k} x^k (1-x)^{n-k},$$
donc d'après la question précédente, pour tout $\delta > 0$,

$$|B_{n}(f)(x) - f(x)| \leq \sum_{k=0}^{n} \omega(\delta) \left(1 + \frac{|x - \frac{k}{n}|^{2}}{\delta^{2}} \right) \binom{n}{k} x^{k} (1 - x)^{n-k}$$

$$= \omega(\delta) \left(1 + \frac{1}{\delta^{2}} (x^{2} - 2xB_{n}(X)(x) + B_{n}(X^{2})(x) \right)$$

$$\leq \omega(\delta) \left(1 + \frac{1}{4n\delta^{2}} \right),$$

d'après le calcul effectué en fin de question 11. En particulier pour $\delta = \frac{1}{\sqrt{n}}$, après passage au sup, on obtient que $||B_n(f) - f|| \le \frac{5}{4}\omega\left(\frac{1}{\sqrt{n}}\right)$.

Or, par composition des limites, $\omega\left(\frac{1}{\sqrt{n}}\right) \underset{n \to +\infty}{\longrightarrow} 0$, donc d'après le principe des gendarmes, on obtient à nouveau que $B_n(f) \underset{n \to +\infty}{\longrightarrow} f$.