Esame di Elettronica 1- I mod Ingegneria Informazione 11 /1/2008 Prof. G. de Cesare

a) Dato il circuito di figura, disegnare la curva di trasferimento V_{out}/V_{in} nell'intervallo dei valori 0 < Vin < 5V

Q:
$$k=1 \text{mA/V}^2$$
, $V_T=1 \text{V}$
 $R_G = 1 \text{K}\Omega$,

2) Disegnare il circuito di un raddrizzatore con filtro capacitivo, e spiegarne il funzionamento.

3) Ricavare l'espressione del parametro di transconduttanza $\,$ per piccoli segnali (g_m) del Transistore MOS a partire dal modello per grandi segnali.

Corso di ELETTRONICA 1 (I mod) Ingegneria Elettronica Ingegneria delle Telecomunicazioni Proff. F. Centurelli / G. de Cesare 11 gennaio 2008

1) Dato il circuito di figura, disegnare la curva di trasferimento Vout/ Vin nell'intervallo dei valori 0<Vin<5V

T:
$$\beta$$
=100, V_{be} =0,7V, V_{cesat} =0,2V
 R_1 = 3 KΩ, R_2 = 1KΩ, R_E = 2,3 KΩ,
 D_Z : ($V\gamma$ = 0,6 V, $|V_Z|$ = 3 V)
 V_{CC} = 5 V

2) Disegnare il circuito di un raddrizzatore a semionda, e dimensionare la capacità del filtro capacitivo per avere un ripple minore del 5%, quando Vin = 10V, fin =50 Hz, RL= $10K\Omega$. (considerare il diodo ideale).

3) Ricavare l'espressione del parametro di transconduttanza per piccoli segnali (g_m) del Transistore MOS a partire dal modello per grandi segnali.

Esame di Elettronica Ingegneria Informatica 11/1/2008 Prof. G. de Cesare

1 Dato il circuito di figura, disegnare la curva di trasferimento V_{out}/V_{in} nell'intervallo dei valori 0 < Vin < 5V

Q:
$$k=1mA/V^2$$
, $V_T=1V$
 $R_G=1K\Omega$,

Op Amp ideale
$$V^+_{sat}=-V^-_{sat}=10\ V$$

$$R_G$$

$$V_{out}$$

2) Ricavare l'espressione del parametro di transconduttanza per piccoli segnali (g_m) del Transistore MOS a partire dal modello per grandi segnali.

3) Disegnare il circuito di un inverter CMOS e commentare il dimensionamento geometrico dei due transistori.

Esame di Elettronica per la Laurea Triennale in Ingegneria Informatica Prof. G. De Cesare e Prof. R. Asquini 02 Aprile 2008

1. Si consideri l'amplificatore riportato in figura. Siano:

$$V_{DD} = V_{SS} = 5 \text{ V}$$
; $I = 1 \text{ mA}$;
 $R_D = 2.5 \text{ k}\Omega$; $R_G = 5 \text{ M}\Omega$; $R_L = 25 \text{ k}\Omega$; $R_{sig} = 1 \text{ k}\Omega$; $C = \infty$
 $V_t = 1 \text{ V}$; $V_A = 100 \text{ V}$; $\frac{1}{2}k_n'\frac{W}{L} = K = 2 \text{ mA/V}^2$

Considerando in ingresso come tensione v_{sig} un segnale sinusoidale con 0.1 V picco-picco (per il quale si può considerare valida l'approssimazione per piccoli segnali), determinare e graficare il segnale di tensione in uscita v_o .

- 2. Disegnare il circuito di un generatore d'onda triangolare e illustrarne il principio di funzionamento.
- 3. Consumo di potenza in un inverter CMOS.

Esame di Elettronica 1- I mod Ingegneria Informazione 04 /04/2008 Prof. G. de Cesare

1. Dato il circuito di figura in cui

disegnare e calcolare la V_{out} nel tempo. Considerare C_1 , C_2 , C_3 cortocircuiti alla frequenza del segnale e l'amplificatore operazionale ideale.

_

- 2) Dimostrare che il prodotto Banda-Guadagno di un amplificatore controreazionato è costante.
- 3) Specificare la condizione di piccolo segnale per un amplificatore a transistore bipolare

Esame di Elettronica 1- I mod Ingegneria Elettronica Ingegneria delle Telecomunicazioni 04 /04/2008 Prof. G. de Cesare

1 Dato il circuito di figura in cui

disegnare e calcolare la V_{out} nel tempo. Considerare C_1 , C_2 , C_3 cortocircuiti alla frequenza del segnale e l'amplificatore operazionale ideale.

- 2) Specificare la condizione di piccolo segnale per un amplificatore a transistore bipolare
 - 3) Disegnare lo schema circuitale di un amplificatore BJT in configurazione a collettore comune e calcolare i parametri della rete 2 porte equivalente

Esame di Elettronica 1- I mod Ingegneria Informatica 04 /04/2008 Prof. G. de Cesare

2. Dato il circuito di figura in cui

disegnare e calcolare la V_{out} nel tempo. Considerare C_1 , C_2 , C_3 cortocircuiti alla frequenza del segnale e l'amplificatore operazionale ideale.

2) Dimostrare che il prodotto Banda-Guadagno di un amplificatore controreazionato è costante.

3) Consumo di potenza in un inverter CMOS

Esame di Elettronica per la Laurea Triennale in Ingegneria Informatica Prof. G. De Cesare e Prof. R. Asquini 15 Aprile 2008

1 Il circuito di figura è caratterizzato dai seguenti parametri:

$$i=1~mA$$
 ;
$$R_1{=}6~k\Omega \; ; \qquad R_2{=}2~k\Omega \; ;$$
 op amp ideale con $L^+=|L^-/=12{\rm V};$

Determinare la corrente i_L che scorre sulla resistenza di carico R_L nel caso in cui:

a)
$$R_L=1 k\Omega$$

b)
$$R_L=2 k\Omega$$
.

- 2 Disegnare e commentare la funzione di trasferimento di un amplificatore NMOS ad arricchimento.
- 3 Disegnare il circuito logico del flip-flop SR, quindi implementarlo in tecnologia CMOS e spiegarne il funzionamento.

Elettronica Ingegneria dell'Informazione Prof. G. de Cesare 23 Aprile 2008

1 Si consideri l'amplificatore riportato in figura. Siano:

$$V_{DD}=V_{SS}=5~{\rm V}$$
; $I=1~{\rm mA}$;
$$R_D=2.5~{\rm k}\Omega$$
; $R_G=5~{\rm M}\Omega$; $R_L=25~{\rm k}\Omega$; $R_{sig}=1~{\rm k}\Omega$; $C=\infty$
$$V_t=1~{\rm V}$$
; $K=1{\rm ma/V}^2$

Considerando in ingresso come tensione v_{sig} un segnale sinusoidale per il quale si può considerare valida l'approssimazione per piccoli segnali, determinare l'amplificazione di tensione v_o/v_{sig} .

- 2) Struttura e principio di funzionamento del transistore bipolare.
- 3) Spiegare perché si definisce: "corto circuito virtuale" l'ingresso di un amplificatore operazionale, e descrivere i limiti di validità.

Elettronica Ingegneria Informatica (V.O.) Prof. G. de Cesare 23 Aprile 2008

1 Si consideri l'amplificatore riportato in figura. Siano:

$$V_{DD}=V_{SS}=5~{\rm V}$$
; $I=1~{\rm mA}$;
$$R_D=2.5~{\rm k}\Omega$$
; $R_G=5~{\rm M}\Omega$; $R_L=25~{\rm k}\Omega$; $R_{sig}=1~{\rm k}\Omega$; $C=\infty$
$$V_t=1~{\rm V}$$
; $K=1~{\rm ma/V}^2$

Considerando in ingresso come tensione v_{sig} un segnale sinusoidale per il quale si può considerare valida l'approssimazione per piccoli segnali, determinare l'amplificazione di tensione v_o/v_{sig} .

- 2) Spiegare perché si definisce: "*corto circuito virtuale*" l'ingresso di un amplificatore operazionale, e descrivere i limiti di validità.
- 3) Commentare il dimensionamento geometrico dei due transistori in un inverter CMOS.

Elettronica Ingegneria Elettronica, Ingegneria delle Telecomunicazioni Prof. G. de Cesare 23 Aprile 2008

1 Si consideri l'amplificatore riportato in figura. Siano:

$$V_{DD}=V_{SS}=5~{\rm V}$$
; $I=1~{\rm mA}$;
$$R_D=2.5~{\rm k}\Omega$$
; $R_G=5~{\rm M}\Omega$; $R_L=25~{\rm k}\Omega$; $R_{sig}=1~{\rm k}\Omega$; $C=\infty$
$$V_t=1~{\rm V}$$
; $K=1{\rm ma/V}^2$

Considerando in ingresso come tensione v_{sig} un segnale sinusoidale per il quale si può considerare valida l'approssimazione per piccoli segnali, determinare l'amplificazione di tensione v_o/v_{sig} .

- 2) Struttura e principio di funzionamento del transistore bipolare.
- 3) Disegnare il circuito di un raddrizzatore con filtro capacitivo, e spiegarne il funzionamento.

Corso di ELETTRONICA 1 (I mod) Ingegneria dell'Informazione Prof. G. de Cesare 7 luglio 2008

Dato il circuito di figura in cui R_1 =1 $K\Omega$ e C=1 μ F, determinare analiticamente e graficare l'evoluzione temporale della tensione di uscita V_{OUT} , quando il segnale d'ingresso V_{IN} ha la forma riportata in figura. Considerare l'amplificatore operazionale ideale con tensione di alimentazione pari a ±10V. Supporre il condensatore scarico per t<0.

- 2 Determinare il parametro di transconduttanza g_m di un transistore bipolare (BJT).
- 3 Calcolare il guadagno di tensione per piccoli segnali di un amplificatore NMOS con carico a svuotamento.

Esame di Elettronica 1- I mod Ingegneria Elettronica Ingegneria delle Telecomunicazioni 07 /07/2008 Prof. G. de Cesare

1 Dato il circuito di figura, in cui R_1 =1 $M\Omega$, R_2 =1 $M\Omega$, R_D =2 $k\Omega$, R_E =1 $k\Omega$, V_{DD} =10V, V_T =1V e K=0.5 mA/V^2 , dimensionare R_E in modo che il guadagno a centro banda sia pari a -4. Considerare i condensatori dei corto circuiti alla frequenza del segnale sinusoidale V_S .

- 2 Determinare il parametro di transconduttanza g_m di un transistore bipolare (BJT).
- 3 Calcolare il guadagno di tensione per piccoli segnali di un amplificatore NMOS con carico a svuotamento.

Corso di ELETTRONICA 1 (I mod)

Ingegneria Informatica Prof. G. de Cesare 7 luglio 2008

1 Dato il circuito di figura in cui R_1 =1 $K\Omega$ e C=1 μF , determinare analiticamente e graficare l'evoluzione temporale della tensione di uscita V_{OUT} , quando il segnale d'ingresso V_{IN} ha la forma riportata in figura. Considerare l'amplificatore operazionale ideale con tensione di alimentazione pari a $\pm 10V$. Supporre il condensatore scarico per t<0.

2 Determinare il parametro di transconduttanza g_m di un transistore NMOS ad arricchimento.

3 Calcolare i margini di rumore di un inverter logico CMOS.

Esame di Elettronica per la Laurea Triennale in Ingegneria Informatica Prof. G. de Cesare e Prof. R. Asquini 09 luglio 2008

2. Si consideri l'amplificatore riportato in figura. Siano:

$$V_{DD} = 10 \text{ V}$$

$$R_A = R_B = 10 \text{ k}\Omega$$
; $R_G = 2.5 \text{ k}\Omega$; $R_L = 6 \text{ k}\Omega$;

$$V_t = 1 \text{ V}$$
; $K=0.5 \text{ mA/V}^2$

Dimensionare R_S e R_D per avere una corrente $I_D = 2$ mAed un guadagno di tensione $v_{out}/v_s = -2$

- 3. Circuito e funzionamento dell'integratore invertente con amplificatore operazionale.
- 4. Definire e calcolare i margini di rumore di un inverter CMOS.

Esame di Elettronica per la Laurea Triennale in Ingegneria Informatica Prof. G. de Cesare e Prof. R. Asquini 15 Settembre 2008

5. Per il seguente circuito, in presenza di un segnale impulsivo V_{in} di ampiezza 1V e durata 100ms, calcolare e graficare l'andamento nel tempo della tensione di uscita V_{out} specificando i punti significativi del grafico (definire ampiezze e costanti di tempo in gioco). Si consideri l'operazionale ideale con $|V_{sat}| = 15$ V.

- 4. Illustrare la struttura e il principio di funzionamento di un transistore MOS esplicitando le relazioni corrente-tensione nelle differenti zone di funzionamento.
- 5. Disegnare il circuito delle porte NAND e NOR in tecnologia CMOS a tre ingressi e commentare le caratteristiche di occupazione d'area.

Corso di ELETTRONICA 1 (I mod) Ingegneria dell'Informazione

Prof. G. de Cesare 17 settembre 2008

Matricola	Cognome	Nome:	

1) Dato il circuito in figura, determinare e graficare l'andamento della tensione di uscita Vout in presenza del segnale a gradino riportato.

dove
$$V_{DD}$$
=10V R_A =7kOhm R_B =3kOhm R_D =2kOhm R_G =2,1kOhm C = 0,1 μF V_T =1V K =0,5mA/ V ²,

- 2) Disegnare lo schema circuitale di un amplificatore BJT in configurazione ad emettitore comune e calcolare i parametri della rete 2 porte equivalente
 - 3) Schema e funzionamento di un circuito derivatore con amplificatore operazionale.

Corso di ELETTRONICA 1 (I mod)

Ingegneria Informatica Prof. G. de Cesare 17 settembre 2008

2) Dato il circuito in figura, determinare e graficare l'andamento della tensione di uscita Vout in presenza del segnale a gradinoriportato.

dove
$$V_{DD}$$
=10V R_A =7kOhm R_B =3kOhm R_D =2kOhm R_G =2,1kOhm C = 0,1 μF V_T =1V K =0,5 mA/V^2 ,

2) Schema di una porta logica NAND e NOR in tecnologia CMOS: confronto in termini di occupazione di area.

3) Schema e funzionamento di un circuito derivatore con amplificatore operazionale.

Corso di ELETTRONICA 1 (I mod)

Ingegneria Elettronica Ingegneria delle Telecomunicazioni Prof. G. de Cesare 17 settembre 2008

3) Dato il circuito in figura, determinare e graficare l'andamento della tensione di uscita Vout in presenza del segnale a gradino riportato.

dove
$$V_{DD}$$
=10V R_A =7kOhm R_B =3kOhm R_D =2kOhm R_G =2,1kOhm C = 0,1 μF V_T =1V K =0,5mA/ V ²,

- 2) Disegnare lo schema circuitale di un amplificatore BJT in configurazione ad emettitore comune e calcolare i parametri della rete 2 porte equivalente
 - 3) Disegnare il circuito di un raddrizzatore con filtro capacitivo, e spiegarne il funzionamento.