10 minutes to pandas

This is a short introduction to pandas, geared mainly for new users. You can see more complex recipes in the Cookbook.

Customarily, we import as follows:

```
In [1]: import numpy as np
In [2]: import pandas as pd
```

Object creation

See the Intro to data structures section.

Creating a **Series** by passing a list of values, letting pandas create a default integer index:

```
In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8])

In [4]: s

Out[4]:
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64
```

Creating a DataFrame by passing a NumPy array, with a datetime index using date range() and labeled columns:

```
2013-01-02 1.212112 -0.173215 0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

2013-01-04 0.721555 -0.706771 -1.039575 0.271860

2013-01-05 -0.424972 0.567020 0.276232 -1.087401

2013-01-06 -0.673690 0.113648 -1.478427 0.524988
```

Creating a **DataFrame** by passing a dictionary of objects that can be converted into a series-like structure:

The columns of the resulting **DataFrame** have different dtypes:

```
In [11]: df2.dtypes

Out[11]:

A float64

B datetime64[ns]

C float32

D int32

E category

F object

dtype: object
```

If you're using IPython, tab completion for column names (as well as public attributes) is automatically enabled. Here's a subset of the attributes that will be completed:

```
df2.append df2.D

df2.apply df2.describe

df2.applymap df2.diff

df2.B df2.duplicated
```

As you can see, the columns A, B, C, and D are automatically tab completed. E and E are there as well; the rest of the attributes have been truncated for brevity.

Viewing data

See the Basics section.

Use DataFrame.head() and DataFrame.tail() to view the top and bottom rows of the frame respectively:

```
In [13]: df.head()

Out[13]:

A B C D

2013-01-01 0.469112 -0.282863 -1.509059 -1.135632

2013-01-02 1.212112 -0.173215 0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

2013-01-04 0.721555 -0.706771 -1.039575 0.271860

2013-01-05 -0.424972 0.567020 0.276232 -1.087401

In [14]: df.tail(3)

Out[14]:

A B C D

2013-01-04 0.721555 -0.706771 -1.039575 0.271860

2013-01-05 -0.424972 0.567020 0.276232 -1.087401

2013-01-05 -0.424972 0.567020 0.276232 -1.087401

2013-01-06 -0.673690 0.113648 -1.478427 0.524988
```

Display the DataFrame.index Or DataFrame.columns:

DataFrame. to_numpy() gives a NumPy representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between pandas and NumPy: NumPy arrays have one dtype for the entire array, while pandas DataFrames have one dtype per column. When you call DataFrame. to_numpy(), pandas will find the NumPy dtype that can hold *all* of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

For df, our DataFrame of all floating-point values, and DataFrame.to_numpy() is fast and doesn't require copying data:

For df2, the DataFrame with multiple dtypes, DataFrame.to_numpy() is relatively expensive:

Note

DataFrame. to numpy () does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

```
In [19]: df.describe()

Out[19]:

A B C D

count 6.000000 6.000000 6.000000

mean 0.073711 -0.431125 -0.687758 -0.233103

std 0.843157 0.922818 0.779887 0.973118

min -0.861849 -2.104569 -1.509059 -1.135632

25% -0.611510 -0.600794 -1.368714 -1.076610

50% 0.022070 -0.228039 -0.767252 -0.386188

75% 0.658444 0.041933 -0.034326 0.461706

max 1.212112 0.567020 0.276232 1.071804
```

Transposing your data:

```
>>>
Out[20]:
  2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
    0.469112
               1.212112
                          -0.861849
                                      0.721555
                                                 -0.424972
                                                            -0.673690
                          -2.104569
   -0.282863
              -0.173215
                                     -0.706771
                                                  0.567020
                                                             0.113648
   -1.509059
                0.119209
                          -0.494929
                                      -1.039575
                                                            -1.478427
                                                  0.276232
   -1.135632 -1.044236
                          1.071804 0.271860 -1.087401
                                                            0.524988
```

DataFrame.sort index() sorts by an axis:

DataFrame.sort values() sorts by values:

```
In [22]: df.sort_values(by="B")

Out[22]:

A B C D

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

2013-01-04 0.721555 -0.706771 -1.039575 0.271860

2013-01-01 0.469112 -0.282863 -1.509059 -1.135632

2013-01-02 1.212112 -0.173215 0.119209 -1.044236

2013-01-06 -0.673690 0.113648 -1.478427 0.524988

2013-01-05 -0.424972 0.567020 0.276232 -1.087401
```

Selection

Note

While standard Python / NumPy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized pandas data access

```
methods, DataFrame.at(), DataFrame.iat(), DataFrame.loc() and DataFrame.iloc().
```

See the indexing documentation Indexing and Selecting Data and MultiIndex / Advanced Indexing.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

Selecting via [] (getitem), which slices the rows:

```
In [24]: df[0:3]
Out[24]:

A
B
C
D
2013-01-01
0.469112 -0.282863 -1.509059 -1.135632
2013-01-02
1.212112 -0.173215
0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929

In [25]: df["20130102":"20130104"]
Out[25]:

A
B
C
D
2013-01-02
1.212112 -0.173215
0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929
1.071804
2013-01-04
0.721555 -0.706771 -1.039575
0.271860
```

Selection by label

See more in Selection by Label using DataFrame.loc() or DataFrame.at().

For getting a cross section using a label:

Selecting on a multi-axis by label:

```
In [27]: df.loc[:, ["A", "B"]]
Out[27]:

A
B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648
```

Showing label slicing, both endpoints are *included*:

```
In [28]: df.loc["20130102":"20130104", ["A", "B"]]

Out[28]:

A
B

2013-01-02 1.212112 -0.173215

2013-01-03 -0.861849 -2.104569

2013-01-04 0.721555 -0.706771
```

Reduction in the dimensions of the returned object:

```
>>>
```

```
In [29]: df.loc["20130102", ["A", "B"]]
Out[29]:
A     1.212112
B     -0.173215
Name: 2013-01-02 00:00:00, dtype: float64
```

For getting a scalar value:

```
>>>
In [30]: df.loc[dates[0], "A"]
Out[30]: 0.4691122999071863
```

For getting fast access to a scalar (equivalent to the prior method):

Selection by position

See more in Selection by Position using DataFrame.iloc() or DataFrame.iat().

Select via the position of the passed integers:

```
In [32]: df.iloc[3]

Out[32]:

A      0.721555

B      -0.706771

C      -1.039575

D      0.271860

Name: 2013-01-04 00:00:00, dtype: float64
```

By integer slices, acting similar to NumPy/Python:

```
In [33]: df.iloc[3:5, 0:2]

Out[33]:

A

B

2013-01-04 0.721555 -0.706771

2013-01-05 -0.424972 0.567020
```

By lists of integer position locations, similar to the NumPy/Python style:

```
In [34]: df.iloc[[1, 2, 4], [0, 2]]

Out[34]:

A C

2013-01-02 1.212112 0.119209

2013-01-03 -0.861849 -0.494929

2013-01-05 -0.424972 0.276232
```

For slicing rows explicitly:

```
>>>
In [35]: df.iloc[1:3, :]
```

```
Out[35]:

A
B
C
D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
```

For slicing columns explicitly:

```
In [36]: df.iloc[:, 1:3]

Out[36]:

B
C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427
```

For getting a value explicitly:

```
In [37]: df.iloc[1, 1]
Out[37]: -0.17321464905330858
```

For getting fast access to a scalar (equivalent to the prior method):

```
In [38]: df.iat[1, 1]
Out[38]: -0.17321464905330858
```

Boolean indexing

Using a single column's values to select data:

```
In [39]: df[df["A"] > 0]

Out[39]:

A

B

C

D

2013-01-01

0.469112

-0.282863

-1.509059

-1.135632

2013-01-02

1.212112

-0.173215

0.119209

-1.044236

2013-01-04

0.721555

-0.706771

-1.039575

0.271860
```

Selecting values from a DataFrame where a boolean condition is met:

```
In [40]: df[df > 0]

Out[40]:

A
B
C
D

2013-01-01 0.469112 NaN NaN NaN

2013-01-02 1.212112 NaN 0.119209 NaN

2013-01-03 NaN NaN NaN 1.071804

2013-01-04 0.721555 NaN NaN 0.271860

2013-01-05 NaN 0.567020 0.276232 NaN

2013-01-06 NaN 0.113648 NaN 0.524988
```

Using the isin() method for filtering:

```
In [41]: df2 = df.copy()

In [42]: df2["E"] = ["one", "one", "two", "three", "four", "three"]

In [43]: df2

Out[43]:

A B C D E

2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three

In [44]: df2[df2["E"].isin(["two", "four"])]
Out[44]:

A B C D E

2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
```

Setting

Setting a new column automatically aligns the data by the indexes:

Setting values by label:

```
>>>
In [48]: df.at[dates[0], "A"] = 0
```

Setting values by position:

```
>>> In [49]: df.iat[0, 1] = 0
```

Setting by assigning with a NumPy array:

```
>>>
In [50]: df.loc[:, "D"] = np.array([5] * len(df))
```

The result of the prior setting operations:

```
In [51]: df
Out[51]:

A
B
C
D
F
2013-01-01 0.000000 0.000000 -1.509059 5.0 NaN
2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0
2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0
2013-01-05 -0.424972 0.567020 0.276232 5.0 4.0
2013-01-06 -0.673690 0.113648 -1.478427 5.0 5.0
```

A where operation with setting:

Missing data

pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations. See the Missing Data section.

Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data:

```
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) +
["E"])

In [56]: df1.loc[dates[0] : dates[1], "E"] = 1

In [57]: df1

Out[57]:

A B C D F E

2013-01-01 0.000000 0.000000 -1.509059 5.0 NaN 1.0
2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0 NaN
```

DataFrame.dropna() drops any rows that have missing data:

DataFrame.fillna() fills missing data:

```
In [59]: df1.fillna(value=5)

Out[59]:

A
B
C
D
F
E
2013-01-01
0.000000
0.000000
-1.509059
5.0
5.0
1.0
2013-01-02
1.212112
-0.173215
0.119209
5.0
1.0
2013-01-03
-0.861849
-2.104569
-0.494929
5.0
2013-01-04
0.721555
-0.706771
-1.039575
5.0
3.0
5.0
```

isna() gets the boolean mask where values are nan:

```
In [60]: pd.isna(df1)

Out[60]:

A B C D F E

2013-01-01 False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False True
2013-01-04 False False False False True
```

Operations

See the Basic section on Binary Ops.

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

```
In [61]: df.mean()
Out[61]:
A    -0.004474
B    -0.383981
C    -0.687758
D    5.000000
F    3.000000
dtype: float64
```

Same operation on the other axis:

```
In [62]: df.mean(1)
Out[62]:
```

Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically broadcasts along the specified dimension:

```
>>>
In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)
Out[64]:
2013-01-01
2013-01-02
2013-01-03
2013-01-04
2013-01-05
             5.0
2013-01-06
Freq: D, dtype: float64
In [65]: df.sub(s, axis="index")
Out[65]:
2013-01-01
2013-01-02
                NaN
                          NaN
                                    NaN
                                         NaN
                                              NaN
2013-01-03 -1.861849 -3.104569 -1.494929
                                         4.0
2013-01-05 -5.424972 -4.432980 -4.723768
2013-01-06 NaN
```

Apply

DataFrame.apply() applies a user defined function to the data:

```
In [66]: df.apply(np.cumsum)

Out[66]:

A B C D F

2013-01-01 0.0000000 0.0000000 -1.509059 5.0 NaN

2013-01-02 1.212112 -0.173215 -1.389850 10.0 1.0

2013-01-03 0.350263 -2.277784 -1.884779 15.0 3.0

2013-01-04 1.071818 -2.984555 -2.924354 20.0 6.0

2013-01-05 0.646846 -2.417535 -2.648122 25.0 10.0

2013-01-06 -0.026844 -2.303886 -4.126549 30.0 15.0

In [67]: df.apply(lambda x: x.max() - x.min())

Out[67]:

A 2.073961

B 2.671590

C 1.785291

D 0.000000

F 4.000000
```

dtype: float64

Histogramming

See more at Histogramming and Discretization.

```
In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
In [69]: s
Out[69]:
0     4
1     2
2     1
3     2
4     6
5     4
6     4
7     6
8     4
9     4
dtype: int64

In [70]: s.value_counts()
Out[70]:
4     5
2     2
6     2
1     1
Name: count, dtype: int64
```

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses <u>regular expressions</u> by default (and in some cases always uses them). See more at Vectorized String Methods.

Merge

Concat

pandas provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

See the Merging section.

Concatenating pandas objects together along an axis with concat():

```
>>>
In [73]: df = pd.DataFrame(np.random.randn(10, 4))
Out[74]:
0 -0.548702 1.467327 -1.015962 -0.483075
 1.637550 -1.217659 -0.291519 -1.745505
4 -0.919854 -0.042379 1.247642 -0.009920
 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
 1.193555 -0.077118 -0.408530 -0.862495
# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]
In [76]: pd.concat(pieces)
Out[76]:
0 -0.548702 1.467327 -1.015962 -0.483075
 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
  0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
8 -0.575247 0.254161 -1.143704 0.215897
 1.193555 -0.077118 -0.408530 -0.862495
```

Note

Adding a column to a **DataFrame** is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the **DataFrame** constructor instead of building a **DataFrame** by iteratively appending records to it.

Join

merge () enables SQL style join types along specific columns. See the Database style joining section.

```
In [77]: left = pd.DataFrame({"key": ["foo", "foo"], "lval": [1, 2]})

In [78]: right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]})

In [79]: left

Out[79]:
    key lval
0 foo 1
1 foo 2

In [80]: right

Out[80]:
    key rval
0 foo 4
1 foo 5

In [81]: pd.merge(left, right, on="key")

Out[81]:
    key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
```

Another example that can be given is:

```
In [82]: left = pd.DataFrame({"key": ["foo", "bar"], "lval": [1, 2]})
In [83]: right = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]})
In [84]: left
Out[84]:
    key lval
0 foo 1
1 bar 2
In [85]: right
Out[85]:
    key rval
0 foo 4
1 bar 5
In [86]: pd.merge(left, right, on="key")
Out[86]:
    key lval rval
0 foo 1 4
1 bar 2
```

Grouping

By "group by" we are referring to a process involving one or more of the following steps:

- **Splitting** the data into groups based on some criteria
- **Applying** a function to each group independently
- Combining the results into a data structure

See the Grouping section.

Grouping and then applying the sum () function to the resulting groups:

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum() function:

```
three -0.990582 -0.532532

two 1.211526 1.208843

foo one 1.614581 -1.658537

three 0.024580 -0.264610

two 1.185429 1.348368
```

Reshaping

See the sections on Hierarchical Indexing and Reshaping.

Stack

The stack () method "compresses" a level in the DataFrame's columns:

With a "stacked" DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack() is unstack(), which by default unstacks the last level:

```
>>>
In [98]: stacked.unstack()
Out[98]:
           -0.727965 -0.589346
            0.339969 -0.693205
      two
baz
             -0.339355 0.593616
             0.884345 1.591431
In [99]: stacked.unstack(1)
Out[99]:
first
     A -0.727965 0.339969
bar
     В -0.589346 -0.693205
     A -0.339355 0.884345
     B 0.593616 1.591431
Out[100]:
first
      A -0.727965 -0.339355
       A 0.339969 0.884345
t.wo
      B -0.693205 1.591431
```

Pivot tables

See the section on Pivot Tables.

```
5 one C bar -0.392670 -0.542108
6 two A foo 0.007207 0.282696
7 three B foo 1.928123 -0.087302
8 one C foo -0.055224 -1.575170
9 one A bar 2.395985 1.771208
10 two B bar 1.552825 0.816482
11 three C bar 0.166599 1.100230
```

pivot_table() pivots a DataFrame specifying the values, index and columns

Time series

pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications. See the Time Series section.

Series.tz localize() localizes a time series to a time zone:

```
In [107]: rng = pd.date_range("3/6/2012 00:00", periods=5, freq="D")

In [108]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [109]: ts

Out[109]:

2012-03-06    1.857704

2012-03-07    -1.193545

2012-03-08    0.677510

2012-03-09    -0.153931
```

Series.tz convert() converts a timezones aware time series to another time zone:

Converting between time span representations:

```
>>>
In [113]: rng = pd.date range("1/1/2012", periods=5, freq="M")
In [114]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
Out[115]:
2012-01-31 -1.475051
2012-02-29 0.722570
2012-03-31 -0.322646
2012-04-30 -1.601631
2012-05-31
Freq: M, dtype: float64
In [116]: ps = ts.to period()
In [117]: ps
Out[117]:
2012-01 -1.475051
2012-02
         0.722570
2012-03 -0.322646
2012-05
         0.778033
Freq: M, dtype: float64
In [118]: ps.to timestamp()
Out[118]:
2012-01-01 -1.475051
```

```
2012-02-01 0.722570

2012-03-01 -0.322646

2012-04-01 -1.601631

2012-05-01 0.778033

Freq: MS, dtype: float64
```

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

```
In [119]: prng = pd.period_range("1990Q1", "2000Q4", freq="Q-NOV")

In [120]: ts = pd.Series(np.random.randn(len(prng)), prng)

In [121]: ts.index = (prng.asfreq("M", "e") + 1).asfreq("H", "s") + 9

In [122]: ts.head()

Out[122]:
1990-03-01 09:00   -0.289342
1990-06-01 09:00   0.233141
1990-09-01 09:00   -0.223540
1990-12-01 09:00   0.542054
1991-03-01 09:00   -0.688585

Freq: H, dtype: float64
```

Categoricals

pandas can include categorical data in a **DataFrame**. For full docs, see the categorical introduction and the API documentation.

Converting the raw grades to a categorical data type:

Rename the categories to more meaningful names:

```
In [126]: new_categories = ["very good", "good", "very bad"]
In [127]: df["grade"] = df["grade"].cat.rename_categories(new_categories)
```

Reorder the categories and simultaneously add the missing categories (methods under Series.cat() return a new Series by default):

Sorting is per order in the categories, not lexical order:

Grouping by a categorical column also shows empty categories:

Plotting

See the **Plotting** docs.

We use the standard convention for referencing the matplotlib API:

```
In [132]: import matplotlib.pyplot as plt

In [133]: plt.close("all")
```

The plt.close method is used to <u>close</u> a figure window:

```
In [134]: ts = pd.Series(np.random.randn(1000),
index=pd.date_range("1/1/2000", periods=1000))
In [135]: ts = ts.cumsum()
In [136]: ts.plot();
```


If running under Jupyter Notebook, the plot will appear on plot(). Otherwise use matplotlib.pyplot.show to show it or matplotlib.pyplot.savefig to write it to a file.

```
>>> In [137]: plt.show();
```

On a DataFrame, the plot() method is a convenience to plot all of the columns with labels:

Importing and exporting data

CSV

Writing to a csv file: using DataFrame.to_csv()

```
In [143]: df.to_csv("foo.csv")

Reading from a csv file: using read csv()
```

HDF5

Reading and writing to HDFStores.

Writing to a HDF5 Store using DataFrame.to_hdf():

```
>>>
In [145]: df.to_hdf("foo.h5", "df")
```

Reading from a HDF5 Store using read hdf():

Excel

Reading and writing to Excel.

Writing to an excel file using DataFrame.to excel():

```
In [147]: df.to_excel("foo.xlsx", sheet_name="Sheet1")
```

Reading from an excel file using read_excel():

Gotchas

If you are attempting to perform a boolean operation on a **Series** or **DataFrame** you might see an exception like:

See Comparisons and Gotchas for an explanation and what to do.