Package 'inti'

September 3, 2024

```
Type Package
Version 0.6.6
Title Tools and Statistical Procedures in Plant Science
Description The 'inti' package is part of the 'inkaverse' project for developing
      different procedures and tools used in plant science and experimental designs.
      The mean aim of the package is to support researchers during the planning of
      experiments and data collection (tarpuy()), data analysis and graphics (yupana())
      , and technical writing.
      Learn more about the 'inkaverse' project at <a href="https://inkaverse.com/">https://inkaverse.com/>.
Date 2024-09-03
URL https://inkaverse.com/, https://github.com/flavjack/inti
BugReports https://github.com/flavjack/inti/issues/
Depends shiny, ggplot2, dplyr, tidyr, tibble, R (>= 2.10)
Imports lme4, agricolae, FactoMineR, emmeans, purrr, stringr,
      googlesheets4, DT
Suggests gsheet, cowplot, knitr, rmarkdown, bookdown
VignetteBuilder knitr
License GPL-3 | file LICENSE
LazyData true
Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no
Author Flavio Lozano-Isla [aut, cre] (<a href="https://orcid.org/0000-0002-0714-669X">https://orcid.org/0000-0002-0714-669X</a>),
      QuipoLab [ctb],
      Inkaverse [cph]
Maintainer Flavio Lozano-Isla <floranoisla@gmail.com>
Repository CRAN
Date/Publication 2024-09-03 18:00:02 UTC
```

2 Contents

Contents

Index

colortext	3
design_noreps	3
design_repblock	5
figure2qmd	6
figure2rmd	7
footnotes	7
gdoc2qmd	8
H2cal	9
include_pdf	
include_table 1	2
jc_tombola 1	3
mean_comparison	
met	
metamorphosis	6
outliers_remove	6
plot_diag	
plot_diagnostic	
plot_raw	
plot_smr	
potato	
remove_outliers	
split_folder	
table2qmd	
table2rmd	
tarpuy	
tarpuy_design	
tarpuy_plex	9
tarpuy_plotdesign	
tarpuy_traits	
web_table	
yupana	5
yupana_analysis	6
yupana_export	7
yupana_import	9
yupana_mvr	0
yupana_reshape	1

43

colortext 3

-				
col	\sim	~ + ·	ovt	

Colourise text for display in the terminal

Description

If R is not currently running in a system that supports terminal colours the text will be returned unchanged.

Usage

```
colortext(text, fg = "red", bg = NULL)
```

Arguments

text character vector

fg foreground colour, defaults to white

bg background colour, defaults to transparent

Details

Allowed colours are: black, blue, brown, cyan, dark gray, green, light blue, light cyan, light gray, light green, light purple, light red, purple, red, white, yellow

Author(s)

testthat package

Examples

```
print(colortext("Red", "red"))
cat(colortext("Red", "red"), "\n")
cat(colortext("White on red", "white", "red"), "\n")
```

design_noreps

Experimental design without replications

Description

Function to deploy field-book experiment without replications

design_noreps

Usage

```
design_noreps(
  factors,
  type = "sorted",
  zigzag = FALSE,
  nrows = NA,
  serie = 100,
  seed = NULL,
  fbname = "inkaverse",
  qrcode = "{fbname}{plots}{factors}"
)
```

Arguments

factors	Lists with names and factor vector [list].
type	Randomization in the list [string: sorted, unsorted]
zigzag	Experiment layout in zigzag [logic: FALSE].
nrows	Experimental design dimension by rows [numeric: value]
serie	Number to start the plot id [numeric: 1000].
seed	Replicability from randomization [numeric: NULL].
fbname	Bar code prefix for data collection [string: "inkaverse"].
qrcode	[string: "{fbname}{plots}{factors}"] String to concatenate the qr code.

Value

A list with the field-book design and parameters

design_repblock 5

```
## End(Not run)
```

design_repblock

Experimental design in CRD and RCBD

Description

Function to deploy field-book experiment for CRD and RCBD

Usage

```
design_repblock(
  nfactors = 1,
  factors,
  type = "crd",
  rep = 3,
  zigzag = FALSE,
  nrows = NA,
  serie = 100,
  seed = NULL,
  fbname = "inkaverse",
  qrcode = "{fbname}{plots}{factors}"
)
```

Arguments

nfactors	Number of factor in the experiment [numeric: 1].
factors	Lists with names and factor vector [list].
type	Type of experimental arrange [string: "crd" "rcbd" "lsd"]
rep	Number of replications in the experiment [numeric: 3].
zigzag	Experiment layout in zigzag [logic: F].
nrows	Experimental design dimension by rows [numeric: value]
serie	Number to start the plot id [numeric: 100].
seed	Replicability from randomization [numeric: NULL].
fbname	Bar code prefix for data collection [string: "inkaverse"].
qrcode	[string: " $\{fbname\}\{plots\}\{factors\}$ "] String to concatenate the qr code.

Value

A list with the field-book design and parameters

6 figure2qmd

Examples

```
## Not run:
library(inti)
factores <- list("geno" = c("A", "B", "C", "D", "D", 1, NA, NA, NULL, "NA")</pre>
                 , "salt stress" = c(0, 50, 200, 200, "T0", NA, NULL, "NULL")
                 , time = c(30, 60, 90)
fb <-design_repblock(nfactors = 2</pre>
                      , factors = factores
                      , type = "rcbd"
                      , rep = 5
                      , zigzag = T
                      , seed = 0
                      , nrows = 20
                      , qrcode = "{fbname}{plots}{factors}"
dsg <- fb$fieldbook</pre>
fb %>%
  tarpuy_plotdesign(fill = "plots")
fb$parameters
## End(Not run)
```

figure2qmd

Figure to Quarto format

Description

Use Articul8 Add-ons from Google docs to build Rticles

Usage

```
figure2qmd(text, path = ".", opts = NA)
```

Arguments

text	Markdown text with figure information [string]
path	Image path for figures [path: "." (base directory)]
opts	chunk options in brackets [string: NA]

figure2rmd 7

Details

Quarto option can be included in the title using "{{}}" separated by commas

Value

string mutated

figure2rmd

Figure to Rmarkdown format

Description

Use Articul8 Add-ons from Google docs to build Rticles

Usage

```
figure2rmd(text, path = ".", opts = NA)
```

Arguments

text String with the table information
path Path of the image for the figure
opts chunk options in brackets.

Value

Mutated string

footnotes

Footnotes in tables

Description

Include tables footnotes and symbols for kables in pandoc format

Usage

```
footnotes(table, notes = NULL, label = "Note:", notation = "alphabet")
```

Arguments

table Kable output in pandoc format.

notes Footnotes for the table.

label Label for start the footnote.

notation Notation for the footnotes (default = "alphabet"). See details.

8 gdoc2qmd

Details

You should use the pandoc format kable(format = "pipe"). You can add the footnote symbol using {hypen} in your table. notation could be use: "alphabet", "number", "symbol", "none".

Value

Table with footnotes for word and html documents

$\alpha \alpha$	loc2arr	ผ
20	IUCZUII	ıu

Google docs to Rmarkdown

Description

Use Articul8 Add-ons from Google docs to build Rticles

Usage

```
gdoc2qmd(file, export = NA, format = "qmd", type = "asis")
```

Arguments

file Zi	p file path from	n Articul8 exported	d in md format	[path]

export Path to export the files [path: NA (file directory)]

format Output format [string: "qmd" "rmd"]

type output file type [strig: "asis" "list", "listfull", "full"]

Details

Document rendering until certain point: "#| end" Include for next page: "#| newpage" You can include the cover page params using "#|" in a Google docs table

Value

path

H2cal 9

H2cal

Broad-sense heritability in plant breeding

Description

Heritability in plant breeding on a genotype difference basis

Usage

```
H2cal(
  data,
  trait,
  gen.name,
  rep.n,
  env.n = 1,
  year.n = 1,
  env.name = NULL,
  year.name = NULL,
  fixed.model,
  random.model,
  summary = FALSE,
  emmeans = FALSE,
  weights = NULL,
  plot_diag = FALSE,
  outliers.rm = FALSE,
  trial = NULL
)
```

Arguments

data	Experimental design data frame with the factors and traits.
trait	Name of the trait.
gen.name	Name of the genotypes.
rep.n	Number of replications in the experiment.
env.n	Number of environments (default = 1). See details.
year.n	Number of years (default = 1). See details.
env.name	Name of the environments (default = NULL). See details.
year.name	Name of the years (default = NULL). See details.
fixed.mode	The fixed effects in the model (BLUEs). See examples.
random.mod	del The random effects in the model (BLUPs). See examples.
summary	Print summary from random model (default = FALSE).
emmeans	Use emmeans for calculate the BLUEs (default = FALSE).
weights	an optional vector of 'prior weights' to be used in the fitting process (default = NULL).

10 H2cal

plot_diag Show diagnostic plots for fixed and random effects (default = FALSE). Options:

"base", "ggplot". .

outliers.rm Remove outliers (default = FALSE). See references.

trial Column with the name of the trial in the results (default = NULL).

Details

The function allows to made the calculation for individual or multi-environmental trials (MET) using fixed and random model.

1. The variance components based in the random model and the population summary information based in the fixed model (BLUEs).

- 2. Heritability under three approaches: Standard (ANOVA), Cullis (BLUPs) and Piepho (BLUEs).
- 3. Best Linear Unbiased Estimators (BLUEs), fixed effect.
- 4. Best Linear Unbiased Predictors (BLUPs), random effect.
- 5. Table with the outliers removed for each model.

For individual experiments is necessary provide the trait, gen.name, rep.n.

For MET experiments you should env.n and env.name and/or year.n and year.name according your experiment.

The BLUEs calculation based in the pairwise comparison could be time consuming with the increase of the number of the genotypes. You can specify emmeans = FALSE and the calculate of the BLUEs will be faster.

If emmeans = FALSE you should change 1 by 0 in the fixed model for exclude the intersect in the analysis and get all the genotypes BLUEs.

For more information review the references.

Value

list

Author(s)

Maria Belen Kistner

Flavio Lozano Isla

References

Bernal Vasquez, Angela Maria, et al. "Outlier Detection Methods for Generalized Lattices: A Case Study on the Transition from ANOVA to REML." Theoretical and Applied Genetics, vol. 129, no. 4, Apr. 2016.

Buntaran, H., Piepho, H., Schmidt, P., Ryden, J., Halling, M., and Forkman, J. (2020). Cross validation of stagewise mixed model analysis of Swedish variety trials with winter wheat and spring barley. Crop Science, 60(5).

Schmidt, P., J. Hartung, J. Bennewitz, and H.P. Piepho. 2019. Heritability in Plant Breeding on a Genotype Difference Basis. Genetics 212(4).

include_pdf 11

Schmidt, P., J. Hartung, J. Rath, and H.P. Piepho. 2019. Estimating Broad Sense Heritability with Unbalanced Data from Agricultural Cultivar Trials. Crop Science 59(2).

Tanaka, E., and Hui, F. K. C. (2019). Symbolic Formulae for Linear Mixed Models. In H. Nguyen (Ed.), Statistics and Data Science. Springer.

Zystro, J., Colley, M., and Dawson, J. (2018). Alternative Experimental Designs for Plant Breeding. In Plant Breeding Reviews. John Wiley and Sons, Ltd.

Examples

include_pdf

Include PDF in markdown documents

Description

Insert PDF files in markdown documents

Usage

```
include_pdf(file, width = "100%", height = "600")
```

Arguments

```
file file path from pdf file.
width width preview file.
height height preview file.
```

include_table

Value

html code for markdown

include_table

Table with footnotes

Description

Include tables with title and footnotes for word and html documents

Usage

```
include_table(table, caption = NA, notes = NA, label = NA, notation = "none")
```

Arguments

```
table Data frame.

caption Table caption (default = NULL). See details.

notes Footnotes for the table (default = NA). See details.

label Label for start the footnote (default = NA).

Notation for the symbols and footnotes (default = "none") Others: "alphabet", "number", "symbol".
```

Value

Table with caption and footnotes

```
library(inti)

table <- data.frame(
x = rep_len(1, 5)
, y = rep_len(3, 5)
, z = rep_len("c", 5)
)

table %>% inti::include_table(
  caption = "Title caption b) line 0
a) line 1
b) line 2"
, notes = "Footnote"
, label = "Where:"
)
```

jc_tombola 13

 $jc_tombola$

Journal Club Tombola

Description

Function for arrange journal club schedule

Usage

```
jc_tombola(
  data,
  members,
  papers = 1,
  group = NA,
  gr_lvl = NA,
  status = NA,
  st_lvl = "active",
  frq = 7,
  date = NA,
  seed = NA
)
```

Arguments

data	Data frame withe members and their information.
members	Columns with the members names.
papers	Number of paper by meeting
group	Column for arrange the group.
gr_lvl	Levels in the groups for the arrange. See details.
status	Column with the status of the members.
st_lvl	Level to confirm the assistance in the JC. See details.
frq	Number of the day for each session.
date	Date when start the first session of JC.
seed	Number for replicate the results (default = date).

Details

The function could consider n levels for gr_lvl. In the case of more levels using "both" or "all" will be the combination. The suggested levels for st_lvl are: active or spectator. Only the "active" members will enter in the schedule.

Value

data frame with the schedule for the JC

14 mean_comparison

mean_comparison

Mean comparison test

Description

Function to compare treatment from lm or aov using data frames

Usage

```
mean_comparison(
  data,
  response,
  model_factors,
  comparison,
  test_comp = "SNK",
  sig_level = 0.05
)
```

Arguments

data Fieldbook data.

response Model used for the experimental design.

model_factors Factor in the model.

comparison Significance level for the analysis (default = 0.05).

test_comp Comparison test (default = "SNK"). Others: "TUKEY", "DUNCAN".

sig_level Significance level for the analysis (default = 0.05).

Value

list

met 15

```
, model_factors = "bloque* geno*treat"
, comparison = c("geno", "treat")
, test_comp = "SNK"
)
mc$comparison
mc$stat

## End(Not run)
```

met

Swedish cultivar trial data

Description

The datasets were obtained from official Swedish cultivar tests. Dry matter yield was analyzed. All trials were laid out as alpha-designs with two replicates. Within each replicate, there were five to seven incomplete blocks.

Usage

met

Format

A data frame with 1069 rows and 8 variables:

```
zone Sweden is divided into three different agricultural zones: South, Middle, and North location Locations: 18 location in the Zones
rep Replications (4): number of replication in the experiment
alpha Incomplete blocks (8) in the alpha-designs
cultivar Cultivars (30): genotypes evaluated
yield Yield in kg/ha
year Year (1): 2016
env environment (18): combination zone + location + year
```

Source

doi:10.1002/csc2.20177

outliers_remove

metamorphosis	Transform fieldbooks based in a dictionary	

Description

Transform entire fieldbook according to data a dictionary

Usage

```
metamorphosis(fieldbook, dictionary, from, to, index, colnames)
```

Arguments

fieldbook Data frame with the original information.

dictionary Data frame with new names and categories. See details. from Column of the dictionary with the original names.

to Column of the dictionary with the new names.

index Column of the dictionary with the type and level of the variables.

colnames Character vector with the name of the columns.

Details

The function require at least three columns.

- 1. Original names (from).
- 2. New names (to).
- 3. Variable type (index).

Value

List with two objects. 1. New data frame. 2. Dictionary.

|--|--|--|

Description

Use the method M4 in Bernal Vasquez (2016). Bonferroni Holm test to judge residuals standardized by the re scaled MAD (BH MADR).

Usage

```
outliers_remove(data, trait, model, drop_na = TRUE)
```

plot_diag

Arguments

data	Experimental design data frame with the factors and traits.

trait Name of the trait.

model The fixed or random effects in the model.
drop_na drop NA values from the data.frame

Details

Function to remove outliers in MET experiments

Value

list. 1. Table with date without outliers. 2. The outliers in the dataset.

References

Bernal Vasquez, Angela Maria, et al. "Outlier Detection Methods for Generalized Lattices: A Case Study on the Transition from ANOVA to REML." Theoretical and Applied Genetics, vol. 129, no. 4, Apr. 2016.

Examples

```
library(inti)

rmout <- potato %>% outliers_remove(
  data = .
  , trait ="stemdw"
  , model = "0 + treat*geno + (1|bloque)"
  , drop_na = FALSE
  )

rmout
```

plot_diag

Diagnostic plots

Description

Function to plot the diagnostic of models

Usage

```
plot_diag(model, title = NA)
```

plot_diagnostic

Arguments

model Statistical model title Plot title

Value

plots

Examples

```
## Not run:
library(inti)
lm <- aov(stemdw ~ bloque + geno*treat, data = potato)
# lm <- potato %>% lme4::lmer(stemdw ~ (1|bloque) + geno*treat, data = .)
plot(lm, which = 1)
plot_diag(lm)[3]

plot(lm, which = 2)
plot_diag(lm)[2]

plot(lm, which = 3)
plot_diag(lm)[4]

plot(lm, which = 4)
plot_diag(lm)[1]

## End(Not run)
```

plot_diagnostic

Diagnostic plots

Description

Function to plot the diagnostic of models

Usage

```
plot_diagnostic(data, formula, title = NA)
```

Arguments

data Experimental design data frame with the factors and traits.

formula Mixed model formula

title Plot title

plot_raw 19

Value

plots

Examples

plot_raw

Plot raw data

Description

Function use the raw data for made a boxplot graphic

Usage

```
plot_raw(
  data,
  type = "boxplot",
 у,
  group = NULL,
 xlab = NULL,
 ylab = NULL,
 glab = NULL,
 ylimits = NULL,
 xlimits = NULL,
  xrotation = NULL,
  legend = "top",
  xtext = NULL,
  gtext = NULL,
  color = TRUE,
 linetype = 1,
  opt = NULL
)
```

20 plot_raw

Arguments

data	raw data
type	Type of graphic. "boxplot" or "scatterplot"
x	Axis x variable
У	Axis y variable
group	Group variable
xlab	Title for the axis x
ylab	Title for the axis y
glab	Title for the legend
ylimits	Limits and break of the y axis c(initial, end, brakes)
xlimits	For scatter plot. Limits and break of the x axis c(initial, end, brakes)
xrotation	Rotation in x axis c(angle, h, v)
legend	the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector)
xtext	Text labels in x axis using a vector
gtext	Text labels in groups using a vector
color	Colored figure (TRUE), black & white (FALSE) or color vector
linetype	Line type for regression. Default = 0
opt	Add new layers to the plot

Details

You could add additional layer to the plot using "+" with ggplot2 options

Value

plot

plot_smr 21

plot_smr

Plot summary data

Description

Graph summary data into bar o line plot

Usage

```
plot_smr(
  data,
  type = NULL,
  x = NULL,
  y = NULL,
  group = NULL,
 xlab = NULL,
 ylab = NULL,
  glab = NULL,
 ylimits = NULL,
  xrotation = c(0, 0.5, 0.5),
  xtext = NULL,
  gtext = NULL,
  legend = "top",
  sig = NULL,
  sigsize = 3,
  error = NULL,
  color = TRUE,
  opt = NULL
)
```

Arguments

```
data

Output from summary data

type

Type of graphic. "bar" or "line"

x

Axis x variable
```

plot_smr

у	Axis y variable
group	Group variable
xlab	Title for the axis x
ylab	Title for the axis y
glab	Title for the legend
ylimits	limits of the y axis c(initial, end, brakes)
xrotation	Rotation in x axis c(angle, h, v)
xtext	Text labels in x axis using a vector
gtext	Text labels in group using a vector
legend	the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector)
sig	Column with the significance
sigsize	Font size in significance letters
error	Show the error bar ("ste" or "std")
color	colored figure (TRUE), black & white (FALSE) or color vector
opt	Add news layer to the plot

Details

If the table is a out put of mean_comparison(graph_opts = TRUE) function. Its contain all the parameter for the plot.

You could add additional layer to the plot using "+" with ggplot2 options

Value

plot

potato 23

```
, group = "treat"
, glab = "Tratamientos"
, ylimits = c(0, 1, 0.2)
, color = c("red", "black")
, gtext = c("Irrigado", "Sequia")
)

## End(Not run)
```

potato

Water use efficiency in 15 potato genotypes

Description

Experiment to evaluate the physiological response from 15 potatos genotypes under water deficit condition. The experiment had a randomized complete block design with five replications. The stress started at 30 day after planting.

Usage

potato

Format

```
A data frame with 150 rows and 17 variables:
```

```
treat Water deficit treatments: sequia, irrigado
geno 15 potato genotypes
bloque blocks for the experimentl design
spad_29 Relative chlorophyll content (SPAD) at 29 day after planting
spad_83 Relative chlorophyll content (SPAD) at 84 day after planting
rwc_84 Relative water content (percentage) at 84 day after planting
op_84 Osmotic potential (Mpa) at 84 day after planting
leafdw leaf dry weight (g)
stemdw stem dry weight (g)
rootdw root dry weight (g)
tubdw tuber dry weight (g)
biomdw total biomass dry weight (g)
hi harvest index
ttrans total transpiration (1)
wue water use effiency (g/l)
twue tuber water use effiency (g/l)
lfa leaf area (cm2)
```

24 remove_outliers

ramova	outliers	
remove	outiters	

Remove outliers using mixed models

Description

Use the method M4 in Bernal Vasquez (2016). Bonferroni Holm test to judge residuals standardized by the re scaled MAD (BH MADR).

Usage

```
remove_outliers(data, formula, drop_na = FALSE, plot_diag = FALSE)
```

Arguments

data Experimental design data frame with the factors and traits.

formula mixed model formula.

drop_na drop NA values from the data.frame

plot_diag Diagnostic plot based in the raw and clean data

Details

Function to remove outliers in MET experiments

Value

list. 1. Table with date without outliers. 2. The outliers in the dataset.

References

Bernal Vasquez, Angela Maria, et al. "Outlier Detection Methods for Generalized Lattices: A Case Study on the Transition from ANOVA to REML." Theoretical and Applied Genetics, vol. 129, no. 4, Apr. 2016.

```
library(inti)

rmout <- potato %>%
    remove_outliers(data = .
    , formula = stemdw ~ 0 + (1|bloque) + treat*geno
    , plot_diag = FALSE
    , drop_na = FALSE
)
```

split_folder 25

split_folder

Split folder

Description

Function to split folder by size or number of elements

Usage

```
split_folder(
  folder,
  export,
  units = "megas",
  size = 500,
  zip = TRUE,
  remove = FALSE
)
```

Arguments

```
folder Path of folder to split (path).

export Path to export the split folders (path).

units Units to split folder (string: "megas", "number").

size Folder size by the units selected (numeric).

zip Zip split folders (logical).

remove Remove the split folder after zip (logical).
```

Value

zip files

```
## Not run:
split_folder("pictures/QUINOA 2018-2019 SC SEEDS EDWIN - CAMACANI/"
    , "pictures/split_num", remove = T, size = 400, units = "number")
## End(Not run)
```

26 table2rmd

table2qmd

Table to Quarto format

Description

Use Articul8 Add-ons from Google docs to build Rticles

Usage

```
table2qmd(text, type = "asis")
```

Arguments

text Markdown text with table information (string)

type output file type [strig: "asis" "list", "listfull", "full"]

Value

string mutated

table2rmd

Table to Rmarkdown format

Description

Use Articul8 Add-ons from Google docs to build Rticles

Usage

```
table2rmd(text, opts = NA)
```

Arguments

text String with the table information

opts chunk options in brackets.

Value

Mutated string

tarpuy 27

tarpuy

Interactive fieldbook designs

Description

Invoke RStudio addin to create fieldbook designs

Usage

```
tarpuy(dependencies = FALSE)
```

Arguments

dependencies Install package dependencies for run the app

Details

Tarpuy allow to create experimental designs under an interactive app.

Value

Shiny app

Examples

```
if(interactive()){
  inti::tarpuy()
}
```

tarpuy_design

Fieldbook experimental designs

Description

Function to deploy experimental designs

28 tarpuy_design

Usage

```
tarpuy_design(
  data,
  nfactors = 1,
  type = "crd",
  rep = 2,
  zigzag = FALSE,
  nrows = NA,
  serie = 100,
  seed = NULL,
  fbname = NA,
  qrcode = "{fbname}{plots}{factors}"
)
```

Arguments

data Exp	perimental design	data frame wit	th the factors an	d level. See examples.
----------	-------------------	----------------	-------------------	------------------------

nfactors Number of factor in the experiment(default = 1). See details.

type Type of experimental arrange (default = "crd"). See details.

Number of replications in the experiment (default = 3).

zigzag Experiment layout in zigzag [logic: FALSE].

nrows Experimental design dimension by rows [numeric: value]

serie Number to start the plot id [numeric: 100].

seed Replicability of draw results (default = 0) always random. See details.

fbname Barcode prefix for data collection.

qrcode [string: "{fbname}{plots}{factors}"] String to concatenate the qr code.

Details

The function allows to include the arguments in the sheet that have the information of the design. You should include 2 columns in the sheet: {arguments} and {values}. See examples. The information will be extracted automatically and deploy the design. nfactors = 1: crd, rcbd, lsd, lattice. nfactors = 2 (factorial): split-crd, split-rcbd split-lsd nfactors >= 2 (factorial): crd, rcbd, lsd.

Value

A list with the fieldbook design

```
## Not run:
library(inti)
library(gsheet)
```

tarpuy_plex 29

tarpuy_plex

Fieldbook plan information

Description

Information for build a plan for an experiment (PLEX)

Usage

```
tarpuy_plex(
 data = NULL,
  idea = NULL,
  goal = NULL,
 hypothesis = NULL,
  rationale = NULL,
 objectives = NULL,
 plan = NULL,
  institutions = NULL,
  researchers = NULL,
 manager = NULL,
 location = NULL,
  altitude = NULL,
  georeferencing = NULL,
  environment = NULL,
  start = NA,
  end = NA,
  about = NULL,
  fieldbook = NULL,
  gdocs = NULL,
  github = NULL,
  album = NULL,
 nfactor = 2,
  design = "rcbd",
  rep = 3,
```

30 tarpuy_plex

```
zigzag = FALSE,
  nrows = NA,
  serie = 100.
  seed = 0,
  qrcode = "{fbname}{plots}{factors}"
)
```

Arguments

hypothesis

Data with the fieldbook information. data

idea How the idea was born. goal The main goal of the project.

What are the expected results. rationale Based in which evidence is planned the experiment.

objectives The objectives of the project.

plan General description of the project (M & M).

institutions Institutions involved in the project. Persons involved in the project. researchers

manager Persons responsible of the collection of the data.

location Location of the project.

altitude Altitude of the experiment (m.a.s.l).

georeferencing Georeferencing information.

environment Environment of the experiment (greenhouse, lab, etc).

The date of the start of the experiments. start The date of the end of the experiments. end

about Short description of the project.

fieldbook Name or ID for the fieldbook/project.

link for Google Docs gdocs

github link with the github repository. album link with the photos of the project. Number of factors for the design. nfactor

Type of design. design

Number of replication. rep

Experiment layout in zigzag [logic: F] zigzag

Experimental design dimension by rows [numeric: value] nrows

Number of digits in the plots. serie Seed for the randomization. seed

[string: "{fbname}{plots}{factors}"] String to concatenate the qr code. qrcode

tarpuy_plotdesign 31

Details

Provide the information available.

Value

data frame or list of arguments:

- 1. info
- 2. variables
- 3. design
- 4. logbook
- 5. timetable
- 6. budget

tarpuy_plotdesign

Fieldbook plot experimental designs

Description

Plot fieldbook sketch designs based in experimental design

Usage

```
tarpuy_plotdesign(
  data,
  factor = NA,
  fill = "plots",
  xlab = NULL,
  ylab = NULL,
  glab = NULL
)
```

Arguments

data	Experimental design data frame with the factors and level. See examples.
factor	Vector with the name of the columns with the factors.
fill	Value for fill the experimental units (default = "plots").
xlab	Title for x axis.
ylab	Title for y axis.
glab	Title for group axis.

Details

The function allows to plot the experimental design according the field experiment design.

32 tarpuy_traits

Value

plot

Examples

tarpuy_traits

Field book traits

Description

Function to export field book and traits for be used in field book app.

Usage

```
tarpuy_traits(fieldbook = NULL, last_factor = NULL, traits = NULL)
```

Arguments

fieldbook Experiment field book [dataframe].

last_factor Last factor in the field book [string: colnames]

traits Traits information [dataframe or list].

Details

For the traits parameters you can used shown in the Field Book app

tarpuy_traits 33

Value

list

```
library(inti)
fieldbook <- inti::potato</pre>
traits <- list(</pre>
  list(variable = "altura de planta"
      , trait = "altp"
       , format = "numeric"
       , when = "30, 40, 50"
       , samples = 3
       , units = "cm"
       , details = NA
       , minimum = 0
       , maximum = 100
  , list(variable = "severidad"
        , trait = "svr"
         , format = "scategorical"
         , when = "30, 40, 50"
         , samples = 1
         , units = "scale"
         , details = NA
         , categories = "1, 3, 5, 7, 9"
  , list(variable = "foto"
          , trait = "foto"
          , format = "photo"
          , when = "hrv, pshrv"
          , samples = 1
          , units = "image"
          , details = NA
  )
    list(variable = "germinacion"
          , trait = "ger"
          , format = "boolean"
          , when = "30, 40, 50"
          , samples = 1
          , units = "logical"
          , details = NA
 )
fbapp <- tarpuy_traits(fieldbook, last_factor = "bloque", traits)</pre>
## Not run:
library(inti)
```

34 web_table

web_table

HTML tables for markdown documents

Description

Export tables with download, pasta and copy buttons

Usage

```
web_table(
  data,
  caption = NULL,
  digits = 2,
  rnames = FALSE,
  buttons = NULL,
  file_name = "file",
  scrolly = NULL,
  columnwidth = "200px",
  width = "100%"
)
```

yupana 35

Arguments

data Dataset.

caption Title for the table.

digits Digits number in the table exported.

rnames Row names.

buttons Buttons: "excel", "copy" or "none". Default c("excel", "copy")

file_name Excel file name

scrolly Windows height to show the table. Default "45vh"

columnwidth Column width. Default '200px'

width Width in pixels or percentage (Defaults to automatic sizing)

Value

table in markdown format for html documents

Examples

```
## Not run:
library(inti)
met %>%
  web_table(caption = "Web table")
## End(Not run)
```

yupana

Interactive data analysis

Description

Invoke RStudio addin to analyze and graph experimental design data

Usage

```
yupana(dependencies = FALSE)
```

Arguments

dependencies Install package dependencies for run the app

Details

Yupana: data analysis and graphics for experimental designs.

36 yupana_analysis

Value

Shiny app

Examples

```
if(interactive()){
  inti::yupana()
}
```

yupana_analysis

Fieldbook analysis report

Description

Function to create a complete report of the fieldbook

Usage

```
yupana_analysis(
  data,
  last_factor = NULL,
  response,
  model_factors,
  comparison,
  test_comp = "SNK",
  sig_level = 0.05,
  plot_dist = "boxplot",
  plot_diag = FALSE,
  digits = 2
)
```

Arguments

data

The last factor in your fieldbook. last_factor response Response variable. model_factors Model used for the experimental design. comparison Factors to compare Comprasison test c("SNK", "TUKEY", "DUNCAN") test_comp sig_level Significal test (default: p = 0.005) Plot data distribution (default = "boxplot") plot_dist plot_diag Diagnostic plots for model (default = FALSE). digits Digits number in the table exported.

Field book data.

yupana_export 37

Value

list

Examples

yupana_export

Graph options to export

Description

Function to export the graph options and model parameters

Usage

```
yupana_export(
  data,
  type = NA,
  xlab = NA,
 ylab = NA,
  glab = NA,
 ylimits = NA,
  xrotation = c(0, 0.5, 0.5),
 xtext = NA,
  gtext = NA,
  legend = "top",
  sig = NA,
  error = NA,
  color = TRUE,
 opt = NA,
  dimension = c(20, 10, 100)
)
```

38 yupana_export

Arguments

data	Result from yupana_analysis or yupana_import.
type	Plot type
xlab	Title for the axis x
ylab	Title for the axis y
glab	Title for the legend
ylimits	limits of the y axis
xrotation	Rotation in x axis c(angle, h, v)
xtext	Text labels in x axis
gtext	Text labels in group
legend	the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector)
sig	Column with the significance
error	Show the error bar ("ste" or "std").
color	colored figure (TRUE), otherwise black & white (FALSE)
opt	Add news layer to the plot
dimension	Dimension of graphs

Value

data frame

yupana_import 39

yupana_import

Import information from data summary

Description

Graph summary data

Usage

```
yupana_import(data)
```

Arguments

data

Summary information with options

Value

list

40 yupana_mvr

```
info <- yupana_import(fb)
## End(Not run)</pre>
```

yupana_mvr

Multivariate Analysis

Description

Multivariate analysis for PCA and HCPC

Usage

```
yupana_mvr(
  data,
  last_factor = NULL,
  summary_by = NULL,
  groups = NULL,
  variables = NULL
)
```

Arguments

data Field book data.

last_factor The last factor in your fieldbook [string: NULL].

summary_by Variables for group the analysis.

groups Groups for color in PCA.

variables Variables to be use in the analysis [string: NULL].

Details

Compute and plot information for multivariate analysis (PCA, HCPC and correlation).

Value

result and plots

```
## Not run:
library(inti)
fb <- inti::potato</pre>
```

yupana_reshape 41

yupana_reshape

Fieldbook reshape

Description

Function to reshape fieldbook according a separation character

Usage

```
yupana_reshape(
  data,
  last_factor,
  sep,
  new_colname,
  from_var = NULL,
  to_var = NULL,
  exc_factors = NULL)
```

Arguments

data	Field book raw data.
last_factor	The last factor in your field book.
sep	Character that separates the last value.
new_colname	The new name for the column created.
from_var	The first variable in case you want to exclude several. variables.
to_var	The last variable in case you want to exclude several variables.
exc_factors	Factor to exclude during the reshape.

42 yupana_reshape

Details

If you variable name is variable_evaluation_rep. The reshape function will help to create the column rep and the new variable name will be variable_evaluation.

Value

data frame

Index

* datasets met, 15 potato, 23	<pre>tarpuy_plex, 29 tarpuy_plotdesign, 31 tarpuy_traits, 32</pre>
colortext, 3	web_table, 34
<pre>design_noreps, 3 design_repblock, 5 figure2qmd, 6 figure2rmd, 7</pre>	yupana, 35 yupana_analysis, 36 yupana_export, 37 yupana_import, 39 yupana_mvr, 40
footnotes, 7	yupana_reshape, 41
gdoc2qmd, 8	
H2cal, 9	
<pre>include_pdf, 11 include_table, 12</pre>	
<pre>jc_tombola, 13</pre>	
mean_comparison, 14 met, 15 metamorphosis, 16	
outliers_remove, 16	
plot_diag, 17 plot_diagnostic, 18 plot_raw, 19 plot_smr, 21 potato, 23	
remove_outliers, 24	
split_folder, 25	
table2qmd, 26 table2rmd, 26 tarpuy, 27 tarpuy_design, 27	