Síktopológiák a Sorgenfrey-egyenes ötletével

Soukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus

1. Bevezetés

A Sorgenfrey-egyenes úgy finomítja \mathbb{R} -en az euklidészi topológiát, hogy egy $\{x_n\}_{n\in\omega}\subseteq\mathbb{R}$ sorozat pontosan akkor tart $x\in\mathbb{R}$ -hez, ha jobbról konvergál hozzá. Ezt általánosítjuk az \mathbb{R}^2 síkra, olyan finomításokat fogunk vizsgálni ahol $\{x_n\}_{n\in\omega}\subseteq\mathbb{R}^2$ pontosan akkor tart $x\in\mathbb{R}^2$ -hez, ha az x_n -en sorozat előre megadott $S\subseteq S^1$ irányokból tart x-hez. Ilyen konstrukció például a "cross-topology"-ként vagy kereszt-topológia néven ismert topológia: a síkon nyílt egy halmaz, ha minden pontjára tartalmaz egy rá illeszkedő függőleges és vízszintes szakaszt is. Ez a topológia szoros kapcsolatban áll az iránymenti folytonossággal: ha $f:(\mathbb{R}^2,\text{ kereszt-top.})\to(\mathbb{R},\text{ euklidészi-top.})$ folytonos, akkor minden függőleges és vízszintes egyenes mentén folytonos euklidészi \to euklidészi értelemben. Másik példa, ha tekintjük a Sorgenfreyegyenes önmagával vett szorzatát, ez a síkon egy olyan topológiát ad, ahol $\{x_n\}_{n\in\omega}\subseteq\mathbb{R}^2$ tart $x\in\mathbb{R}^2$ -hez, pontosan akkor, ha a sorozat az x-be eltolt origójú sík pozitív-pozitív negyede felől konvergál.

Alapvetően egy fajta általános konstrukcióval fogunk foglalkozni. Minden zárt $S \subseteq S^1$ -re definiálunk egy \mathbb{R}^2_S topológiát. Célunk meghatározni, hogy a kapott topológiák tulajdonságai milyen kapcsolatban állnak a definiáló S halmazzal. Megmutatjuk:

- \mathbb{R}^2_S tér M_1 ,
- $w(\mathbb{R}^2_S) = 2^{\omega} \text{ ha } S \neq S^1,$
- \mathbb{R}^2_S tér T_3 .

Azt mondjuk, hogy az $S\subseteq S^1$ -ből nem hiányzik teljes irány, ha $x\notin S\Rightarrow -x\in S$ és S tartalmaz teljes irányt ha létezik $x\in S^1$ amire $-x\in S^1$. Belátjuk:

- \mathbb{R}^2_S tér öröklődően Lindelöf, pontosan akkor ha az S-ből nem hiányzik teljes irány,
- \mathbb{R}^2_S tér öröklődően szeparábilis, pontosan akkor ha az S-ből nem hiányzik teljes irány.

Következményként \mathbb{R}^2_S tér öröklődően normális és öröklődően parakompakt, ha az S-ből nem hiányzik teljes irány. Az egyeneseken mint altereken euklidészi, diszkrét-topológia vagy Sorgenfrey-egyenes jelenik meg altérként, ezt használva belátjuk, hogy \mathbb{R}^2_S tér nem metrizálható ha $S \neq \emptyset$, S^1 . Kitérünk a kompakt alterek viselkedésére:

- Pontosan akkor létezik \mathbb{R}^2_S -ben megszámlálhatónál nagyobb kompakt altér, ha S tartalmaz teljes irányt.
- \mathbb{R}^2_S egy K altere pontosan akkor kompakt, ha euklidészi értelemben kompakt és minden $x \in K$ -ra és $n \in \omega$ -ra létezik r > 0, hogy $K \cap B_{S^1}(x,r) \subseteq B_S(x,\frac{1}{n},r)$.

Az összefüggőség vizsgálatához bevezetjük a szétálló S fogalmát: $S \subseteq S^1$ szétálló, ha semelyik nyílt félkörív nem tartalmazza S-et.

 $\bullet \ \mathbb{R}^2_S$ pontosan akkor összefüggő, haSszétálló.

Végül felsorolunk pár részeredményt és problémát, melyek további vizsgálatra érdemesek.

2. Jelölések, elnevezések

Legyen S^1 az origó középpontú egységsugarú körvonal, \mathbb{R}^2 -en az euklidészi topológia nyílt, zárt halmazait és környezeteit euklidészi-nyíltnak, euklidészi-zártnak, euklidészi-környezetnek nevezzük. $H\subseteq\mathbb{R}^2$ -reint(H) mindig az euklidészi topológia szerinti belsejét jelöli H-nak, cl(H) az euklidészi lezártját. B(x,r) az x pont r-sugarú euklidészi-környezete, amennyiben nem okoz félreértést, ugyanezzel a jelöléssel élünk ha \mathbb{R}^2 altereiben akarunk definiálunk környezeteket illetve $S\subseteq\mathbb{R}^2$ -re $B(S,r)=\bigcup_{x\in S}B(x,r)$.

3. Az \mathbb{R}^2_S topológia definiálása

3.1. Definíció. Legyen $S \subseteq S^1$, $x \in \mathbb{R}^2$ és r > 0-ra, $B(S, \varepsilon)$ az S ε -sugarú környezete S^1 -ben:

$$B_S(x,\varepsilon,r) = \bigcup \{ [x,x+rs) : s \in B(S,\varepsilon) \}$$

az x pont r-sugarú ε -szélességű S-környezete.

3.2. Definíció. Tetszőleges $S \subseteq S^1$ euklidészi-zárt halmazra az $\mathbb{R}^2_S = (\mathbb{R}^2, \tau_S)$ topológia legyen a következő: $G \subseteq \mathbb{R}^2$ nyílt pontosan akkor ha minden $x \in G$ -re létezik $r, \varepsilon > 0$ amire $B_S(x, \varepsilon, r) \subseteq G$.

Az \mathbb{R}^2_S topológia nyílt halmazait S-nyílt, zárt halmazait S-zártaknak nevezzük.

4. Az \mathbb{R}^2_S topológia tulajdonságai

Rögtön látszik a definícióból, hogy minden $S\subseteq S^1$ -re az euklidészi topológia finomítását kapjuk. Általánosan:

4.1. Állítás. $S \subseteq T \subseteq S^1$ euklidészi-zártakra, az \mathbb{R}^2_S topológia finomítja az \mathbb{R}^2_T -t. Ha $S \neq T$, akkor a finomítás valódi.

Bizonyítás: $S \subseteq T$ miatt $B_S(x, \varepsilon, r) \subseteq B_T(x, \varepsilon, r)$, tehát minden T-nyílt egyben S-nyílt. Ha S valódi részhalmaza T-nek, akkor van S-nyílt halmaz ami nem T-nyílt. Legyen $t \in T \setminus S$ és ε olyan kicsi, hogy $t \notin B(S, \varepsilon)$. Ekkor tetszőleges r-re és $x \in \mathbb{R}^2$ -re $B_S(x, \varepsilon, r)$ S-nyílt de nem T-nyílt, hisz x-nek nincs T-környezete $B_S(x, \varepsilon, r)$ -ben. \square

Két nevezetes speciális esetet emelhetünk ki. Az első esetben $S=S^1$, ekkor visszakapjuk az euklidészi topológiát. Ha $S=\emptyset$, akkor \mathbb{R}^2_{\emptyset} a diszkrét topológia. Látható, hogy míg az első esetben c sok nyílt halmaz van, a másodikban már 2^c . Ennek pontos leírásához megfogalmazunk egy a későbbiekben is fontos szerepet játszó definíciót és lemmát:

- **4.2. Definíció.** $Az S \subseteq S^1$ -re azt mondjuk, hogy nem hiányzik teljes irány belőle, ha minden $x \in S^1 \setminus S$ -re $-x \in S$. Az S tartalmaz teljes irányt, ha létezik $x \in S$ amire $-x \in S$.
- **4.3. Lemma.** Ha az \mathbb{R}^2_S topológiát definiáló $S \subseteq S^1$ -ből nem hiányzik teljes irány, akkor minden G S-nyílt halmaz csak megszámlálhatóan sok pontban térhet el egy euklidészi-nyílt halmaztól.

Bizonyítás: Belátjuk, hogy tetszőleges G S-nyílt halmazra a $G^* = G \setminus int(G)$ megszámlálható, azaz csak megszámlálhatóan sok pontnak nincs G-ben euklidészi-környezete. Minden G^* -belinek létezik S-környezete G-ben, ezekről feltehetjük, hogy racionális sugarúak. Ezek az S-környezetek csak a középpontjukban metszik G^* -ot, mert minden attól különböző pontja az S-környezetnek már euklidészi-belső pontja G-nek. Ha több mint megszámlálhatóan sok ilyen pont lenne, akkor létezne azonos $r \in \mathbb{Q}$ fix sugárral is több mint megszámlálhatóan sok, amiknek lenne egy euklidészi kondenzációs pontja. Ebből annyit használunk fel, hogy létezne $x,y \in G^*$ r/10 távolásgban r sugárral. Ekkor mivel nem hiányzik teljes irány, az xy vagy yx irányok valamelyike eleme S-nek, ekkor azonban az egyik r-sugarú S-környezet tartalmazná a másik pontot, ami ellentmond a fentieknek. \square

Innen könnyen adódik:

4.4. Állítás. $Az \mathbb{R}^2_S$ topológiában $|\tau_S| = c$ pontosan akkor, ha a definiáló $S \subseteq S^1$ -re nem hiányzik S-ből teljes irány. Amennyiben hiányzik, $|\tau_S| = 2^c$.

Bizonyítás: Ha S-ből hiányzik teljes irány, akkor az olyan irányú egyenesen egy diszkrét topológia jelenik meg, tehát $|\tau_S| = 2^c$.

HaS-ből nem hiányzik teljes irány, akkor a fenti 4.3 Lemma közvetlen következménye az állítás. \square

Itt tesszük meg a következő egyszerű észrevételt: az $x \in S^1$ irányú egyenesen altérként három topológia jelenhet meg az \mathbb{R}^2_S topológiában:

- az euklidészi, ha $x, -x \in S$,
- a Sorgenfrey-egyenes, ha x és -x közül pontosan egy van S-ben,
- a diszkrét topológia, ha sem x, sem -x nem eleme S-nek.
- **4.5.** Következmény. Mivel a Sorgenfrey-egyenes nem metrizálható, és az $S = \emptyset$ vagy S^1 esetektől eltekintve megjelenik altérként, ezért az \mathbb{R}^2_S tér sem metrizálható, ha $S \neq \emptyset$, S^1 .
- **4.6.** Állítás. Ha az euklidészi-zárt $S \subseteq S^1$ -ből nem hiányzik teljes irány, akkor tartalmaz teljes irányt.

Bizonyítás: A komplementerre áttérve, ekkor az $S^1 \setminus S$ euklidészi-nyílt halmazban nincs teljes irány. Be akarjuk látni, hogy $G = S^1 \setminus S$ -ből hiányzik teljes irány. G euklidészi-nyílt körívek úniója, egy ilyen körív végpontja:x nem eleme G-nek. Ha a vele átellenes -x pont sem eleme G-nek akkor kész vagyunk. Ha $-x \in G$, akkor egy kis környezete is, ám ekkor látszik, hogy lenne teljes irány G-ben ami ellentmond a feltételünknek.

4.7. Következmény. Ha nem jelenik meg diszkrét altér egyenesen, akkor létezik olyan egyenes ahol az euklidészi topológia jelenik meg.

4.1. Szétválaszthatóság- magyarázat a definícióra

4.8. Állítás. $Az \mathbb{R}^2_S$ topológia mindig T_3 .

Bizonyítás: A T_2 tulajdonság rögtön látszik. A regularitás igazolására legyen F S-zárt és $x \in \mathbb{R}^2 \setminus F$. Ekkor létezik $r, \varepsilon > 0$ amire $B_S(x, \varepsilon, r) \subseteq \mathbb{R}^2 \setminus F$. Ekkor $x \in B_S(x, \frac{\varepsilon}{2}, \frac{r}{2}) \subseteq cl(B_S(x, \frac{\varepsilon}{2}, \frac{r}{2}))$ ami S-zárt is és része $B_S(x, \varepsilon, r)$ -nek, tehát $F \subseteq \mathbb{R}^2 \setminus cl(B_S(x, \frac{\varepsilon}{2}, \frac{r}{2}))$. \square

A következőkben egy kicsit megszakítjuk az \mathbb{R}^2_S topológiák vizsgálatát, és kitérünk arra, hogy mi vezetett arra, hogy a fenti módon definiáljuk őket. Legyen $S \subseteq S^1$ -re, $r > 0, x \in \mathbb{R}^2$ -re $B_S(x,r) = \bigcup\{[x,x+sr): s \in S\}$. Ha konkrétan a bevezetőben is leírt "irányokból való konvergenciát"

akarjuk általánosítani, akkor mondhatjuk azt, hogy tetszőleges $S\subseteq S^1$ re vegyük azt az $f_S: P(\mathbb{R}^2) \to P(\mathbb{R}^2)$ hozzárendelést, amire $H \subseteq \mathbb{R}^2$ -re, $f_S(H) = \{x \in \mathbb{R}^2 : x \in H \text{ vagy } x \text{ torlódási pontja az } B_S(x,r) \cap H \text{ hal-}$ maznak (r > 0 tetszőleges), azaz H torlódik x-hez az S-beli irányokból $\}$. Ha megnézzük, hogy mikor lesz lezárás operátor f_S , azt láthatjuk, hogy ehhez ki kell kötnünk, hogy S euklidészi-nyílt legyen. Ekkor egy olyan $\overline{\mathbb{R}^2_S}$ topológiát kapunk, amiben $G \subseteq \mathbb{R}^2$ nyílt, ha minden $x \in G$ -re létezik r > 0, hogy $B_S(x,r)\subseteq G$. Ez a topológia sok szempontból hasonlóan viselkedik \mathbb{R}^2_S hez-például a később belátott megszámlálhatósági tulajdonságok bizonyításai szinte szóról-szóra ismételhetőek rájuk- azonban a T_2 tulajdonságon felül már nem lesznek általában reguláris terek- ahogy a kereszt topológia sem az. Ezen úgy javíthatunk, hogy nem egy S halmazt veszünk, hanem $S_i \subseteq S^1$: $i \in \omega$ nyîlt halmazokat, amire $cl(S_{i+1}) \subseteq S_i$ és $G \subseteq \mathbb{R}^2$ (S_i) -nyîlt ha minden $x \in G$ -re létezik r > 0 és $i \in \omega$, hogy $B_{S_i}(x,r) \subseteq G$. Ez a definíció pontosan azt teszi lehetővé, hogy minimális változtatásokkal ismételjük az 4.8 Állítás érvelését és így a kapott tér T_3 . Egy ilyen definiáló (S_i) sorozatnak tekinthetjük a metszetét: $S=\bigcap_{i\in\omega}S_i=\bigcap_{i\in\omega}cl(S_i)$ zárt halmazt. Könnyen bizonyítható, hogy ha megadunk egy másik sorozatot, melynek ugyanez az S halmaz a metszete akkor ugyanazt a topológiát kapjuk. Sőt valójában ez a definíció már az \mathbb{R}^2_S topológiát adja, ahol S ez a metszet.

4.2. Megszámlálhatóság

4.9. Állítás. Minden $S \subseteq S^1$ -re, az \mathbb{R}^2_S topológia M_1 .

Bizonyítás: Tetszőleges $x \in X$ -re $\{B_S(x; \frac{1}{n}; \frac{1}{m}) : n, m \in \omega\}$ megszámlálható környezetbázis.

4.10. Állítás. Minden $S \subset S^1$ -re, ahol $S \neq S^1$, az \mathbb{R}^2_S topológia nem M_2 , $\mathrm{w}(\mathbb{R}^2_S) = \mathrm{c}$.

Bizonyítás: $S \neq S^1$, tehát létezik hiányzó irány: $x \in S^1 \setminus S$. Az ilyen irányú egyenesen diszkrét topológia vagy Sorgenfrey-egyenes jelenik meg, ezek súlya kontinuum, tehát w(\mathbb{R}^2_S) \geq c. A $\{B_S(x; \frac{1}{n}; \frac{1}{m}) : x \in \mathbb{R}^2; n, m \in \omega\}$ halmazrendszer már c számosságú bázisa a topológiának. \square

4.11. Definíció. A $\{B_S(x; \frac{1}{n}; \frac{1}{m}) : x \in \mathbb{R}^2; n, m \in \omega\}$ halmazrendszer elemeit \mathbb{R}^2_S S-báziskörnyezeteinek nevezzük.

4.12. Tétel. $Az \mathbb{R}_S^2$ tér öröklődően Lindelöf-tulajdonságú, pontosan akkor, ha S-ből nem hiányzik teljes irány.

Bizonyítás: Ha hiányzik teljes irány, akkor az olyan irányú egyenesen az altér topológia diszkrét.

A másik irányhoz elég S-nyílt halmazokra belátni az öröklődést. Legyen G S-nyílt és $G = \bigcup \{G_i : i \in I\}$ S-nyílt fedés. Mivel az S-báziskörnyezetek bázisa a topológiának, feltehetjük, hogy a G_i -k is S-báziskörnyezetek. Alkalmazva az $\bigcup_{i \in I} G_i$ halmazra a 4.3 Lemmát kapjuk, hogy azon pontok halmaza G-ben, melyek csak S-báziskörnyezetek középpontjával vannak fedve: G^* , megszámlálható. Ekkor azonban $G \setminus G^* \subseteq \bigcup \{int(G_i) : i \in I\}$, euklidészinyílt fedés, amire alkalmazhatjuk a Lindelöf-tételt és a megszámlálható fedő halmazrendszerhez a G^* -beli pontok G_j S-báziskörnyezeteit hozzávéve egy megszámlálható fedését kapjuk G-nek. \square

4.13. Következmény. $Az \mathbb{R}^2_S$ tér öröklődően normális ha S-ből nem hiányzik teljes irány, hiszen ekkor öröklődően Lindelöf-tulajdonságú és T_3 .

Triviális további következmény, azonban tovább erősíti a kapcsolatot a tér és az egyenesek mint alterek között:

- **4.14. Következmény.** Ha az egyeneseken nem jelenik meg diszkrét altérazaz S-ből nem hiányzik teljes irány- akkor megszámlálhatónál nagyobb diszkrét altér \mathbb{R}^2_S -ben sincs az öröklődő Lindelöfség miatt.
- **4.15. Tétel.** $Az \mathbb{R}^2_S$ tér öröklődően szeparábilis, pontosan akkor, ha az S-ből nem hiányzik teljes irány.

Bizonyítás: Ha hiányzik teljes irány, akkor az olyan irányú egyenesen az altér topológia diszkrét.

A másik irányhoz a tér szeparabilitása triviális, legyen $X \subseteq \mathbb{R}^2$ altér. Vegyünk ki egy $x_1 \in X$ pontot, ez önmagában feltehetően nem sűrű. Ezután transzfinit rekurzióval, ha van már egy H halmazunk ami még nem sűrű X-ben, akkor vegyünk ki egy pontot egy olyan S-nyílt halmazból amit nem metszenek H elemei és vegyük ezt hozzá H-hoz. Minden $x_{\alpha} \in H$ pontnak ekkor létezik egy G_{α} S-báziskörnyezete amire minden $\beta < \alpha$ -ra $x_{\beta} \notin G_{\alpha}$. Ha így kiválaszhattunk volna ω_1 pontot, akkor létezik ezek között azonos ε szélességű és r sugarú S-báziskörnyezettel is megszámlálhatónál több- hiszen

az S-báziskörnyezetek sugara és szélessége az $\{\frac{1}{n}: n \in \omega\}$ megszámlálható halmazból kerül ki. Ezek \widehat{H} halmazának létezik két kondenzációs pontja: $x_{\alpha}, x_{\beta} \in \widehat{H}$, közelebb egymáshoz mint r/10, ahol feltehetjük, hogy $\alpha > \beta$.

Ekkor $x_{\beta} \notin G_{\alpha}$, azonban $x_{\alpha} \in G_{\beta}$, mivel közel vannak egymáshoz és nincs hiányzó irány. Mivel x_{β} is kondenzációs pont így létezik olyan közel hozzá egy $x_{\gamma} \in \widehat{H}$, $\gamma > \alpha$, amire $x_{\alpha} \in G_{\gamma}$ hiszen G_{γ} csak G_{β} eltoltja. Ez azonban ellentmond a fenti észrevételnek. \square

4.3. Kompakt alterek

Az \mathbb{R}^2_S tér kompakt altereit S-kompakt tereknek nevezzük.

Az \mathbb{R}^2_S tér nem lesz még csak megszámlálhatóan kompakt sem, viszont a T_3 és az öröklődő Lindelöf-tulajdonság miatt öröklődően parakompakt.

Az S-kompaktságnak nem elégséges feltétele a korlátosság és S-zártság, erre már magán a Sorgenfrey-egyenesen is példa az I=[0;1] intervallum. A kompaktság pontos leírását a következő állítás adja:

4.16. Állítás. $A \ K \subseteq \mathbb{R}^2$ altér S-kompakt pontosan akkor, ha euklidészi értelemben kompakt és minden $x \in K$ -ra és $\varepsilon > 0$ -ra létezik $r \in \mathbb{R}$ amire $K \cap B(x,r) \subseteq B_S(x,\varepsilon,r)$.

Bizonyítás: Legyen K S-kompakt. Ekkor K euklidészi kompakt is, hiszen minden euklidészi nyílt fedés S-nyílt fedés is egyben. Tegyük fel, hogy létezik $x \in K$ és $\varepsilon > 0$ amire minden $n \in \omega$ -ra létezik $x_n \in K$, hogy

 $x_n \in B(x, \frac{1}{n}) \setminus B_S(x, \varepsilon, \frac{1}{n})$. Ekkor $\{x, x_n : n \in \omega\}$ S-zárt és része K S-kompaktnak, tehát maga is S-kompakt kellene legyen, ám elég kis diszjunkt euklidészi környezetekkel fedve az x_n -eket és $B_S(x, \varepsilon, 1)$ -el x-et, nem lehet kiválasztani véges részfedést, ami ellentmondás.

Most tegyük fel, hogy K kielégíti az állítás feltételeit és legyen $K = \bigcup_{i \in \Gamma} G_i$ egy S-nyílt fedés. Rögtön feltehető, hogy a fedésben S-báziskörnyezetek vannak. Legyen G^* azon pontok halmaza melyek csak középpontként vannak fedve. Ha $|G^*|$ végtelen lenne, akkor K korlátossága miatt lenne pont amihez konvergál euklidészi értelemben, ez $k \in K$, hisz K euklidészi-zárt. Azonban kellene lennie a feltétel szerint $r \in \mathbb{R}$ -nek amire, valamilyen r-sugarú S-báziskörnyezetében vannak már K-nak a k-hoz közeli elemei, azonban ebben nem lehetnek G^* -beliek. Tehát G^* véges. Ezeket lefedjük egyenként, tehát elég $K \setminus G^*$ euklidészi-kompakt halmazra kiválasztani véges részfedést. Erre $K \setminus G^* = \bigcup_{i \in \Gamma} int(G_i)$, amire létezik véges részfedés, tehát elhagyva az inteket az eredeti fedés egy véges részfedésését kapjuk. \square

Érdekes módon Sorgenfrey-egyenesen, mint az euklidészi topológia finomításán, már nem létezik megszámlálhatónál nagyobb kompakt altér. A mi általános esetünkben ezt a kérdést tisztázza a következő tétel:

4.17. Tétel. Pontosan akkor létezik $K \subseteq \mathbb{R}^2$ S-kompakt, megszámlálhatónál nagyobb altér, ha az S tartalmaz teljes irányt.

Bizonyítás: Ha létezik teljes irány S-ben, akkor az olyan irányú egyenesen egy euklidészi topológia jelenik meg, tehát létezik nagy kompakt altér. Most tegyük fel, hogy K egy S-kompakt altér, $|K| > \aleph_0$. Az 4.16 Állítás miatt minden $x \in K$ -ra létezik $r_1^{(x)} \in \mathbb{Q}$ amire $K \cap B(x, r_1^{(x)}) \subset B_S(x, 1, r_1^{(x)})$. Létezik megszámlálhatónál több K-beli elem ugyanazzal az r_1 -el, ezek: $H_1 \subset K$. Minden $x \in H_1$ -re (sőt K-belire is) létezik $r_2^{(x)} \in \mathbb{Q}$ amire $K \cap B(x, r_2^{(x)}) \subset B_S(x, \frac{1}{2}, r_2^{(x)})$, amik közül fix r_2 -vel kiválasztható megszámlálhatónál több: $H_2 \subset H_1$. Így kapjuk a H_i egymásba skatulyázott, $|H_i| > \aleph_0$ halmazokat. T_i jelölje a teljes irányokat $B(S, \frac{1}{i})$ -ben, ezek egymásba ágyazott halmazok és $\bigcap_{i \in \omega} T_i$ már S teljes irányainak halmaza. Minden T_i nem üres, mert véve a H_i -nek egy kondenzációs pontját: y, ekkor ennek a $B_S(y, \frac{1}{i}, r_i)$ környezetében kell lennie pontjának H_i -nek: x és ekkor az xy és yx irány része $B(S, \frac{1}{i})$ -nek. τ_i legyen a $cl(B(S, \frac{1}{i+1})) \subset B(S, \frac{1}{i})$ teljes irányainak halmaza.

Ekkor $\emptyset \neq \tau_i \subset T_i$ mert $\emptyset \neq T_{i+1} \subset \tau_i$. Valamint τ_i zárt, és $\tau_{i+1} \subseteq \tau_i$ tehát $\bigcap_{i \in \omega} \tau_i \neq \emptyset$ és így $\bigcap_{i \in \omega} \tau_i = \bigcap_{i \in \omega} T_i \neq \emptyset$, amit be akartunk látni. \square

5. Összefüggőség - speciális finomítások

Egy könnyű esettel kezdjük:

5.1. Állítás. Ha az \mathbb{R}^2_S térben az S tartalmaz teljes irányt, akkor minden euklidészi-nyílt euklidészi-összefüggő halmaz \mathbb{R}^2_S -ben is összefüggő.

Bizonyítás: Legyen $v, -v \in S$. Az euklidészi-topológia egy bázisát adják az $(a,b)\times(c,d)$ alakú intervallumok szorzata, ahol most \mathbb{R}^2 -et mint egy v-irányú $(a,b)\subseteq e_v$ és egy rá merőleges $(c,d)\subseteq e_v^\perp$ egyenes szorzatát tekintjük. Elég az ilyen T szorzathalmazokra belátni az állítást. Legyen indirekt $T = G \cup H$, ahol G, H S-nyíltak és nem üresek. $x \in G$ -re az x-en átmenő v-irányú egyenes metszete T-vel teljes egészében része G-nek, hisz az euklidészi-összefüggő és euklidészi topológia jelenik meg rajta, tehát Gés H nem vághatja ketté. Ezért véve G és H merőleges -azaz v-irányúvetületét e_v^{\perp} -re: $\pi(G)$ és $\pi(H)$, azoknak diszjunktnak kell lenniük. Mivel $\pi(G) \cup \pi(H) = \pi(T) = (c,d)$ euklidészi-összefüggő és $\pi(G), \pi(H) \neq \emptyset$, az ellentmondáshoz elég belátni, hogy $\pi(G)$ és $\pi(H)$ euklidészi-nyílt. Ez teljesen hasonló a két esetben, $\pi(G)$ -re szorítkozunk. Ha $x \in G$, akkor annak egy S-báziskörnyezete is része G-nek: $B_S(x,\varepsilon,r)\subseteq G$, erre az r-re feltehető, hogy $B(x,r) \subseteq T$ egyben. Ekkor $\pi(B_S(x,\varepsilon,r))$ tartalmazza $\pi(x)$ egy kis környezetét, hisz $B_{\{v,-v\}}(x,\varepsilon,r)\subseteq B_S(x,\varepsilon,r)$, amire $\pi(B_{\{v,-v\}}(x,\varepsilon,r))$ már $\pi(x)$ középpontú nyílt intervallum.

5.2. Következmény. Ha S-ből nem hiányzik teljes irány, akkor \mathbb{R}^2_S összefüggő, hiszen 4.6 Állítás szerint teljesül a feltétel.

Megjegyzés: Könnyen látható, hogy ha S tartalmaz 2 különböző teljes irányt, akkor ívszerűen is összefüggő \mathbb{R}^2_S .

Amennyiben feltesszük már, hogy nem létezik teljes irány az S-ben, láthatóak nem összefüggő példák. Legyen a definiáló S olyan, hogy teljes egészében egy félkörívben van, például π -nél kisebb szögű zárt körív. Ha veszünk egy

olyan irányú egyenest ami a középpontból indítva elvágja ezt a félkörívet az üres résztől, akkor véve az üres rész felé eső euklidészi nyílt félsíkot és a maradék zártat, akkor két S-nyílt részre particionáltuk a teret.

Az összefüggőség viszgálalát speciális finomítások bevezetésével folytatjuk. Mint látni fogjuk, az ezekre belátott általánosabb állításokból következnek már az eddig nem tárgyalt esetek \mathbb{R}^2_S -re.

- 5.3. Definíció. Vegyünk három, egy ponton egymáshoz ragaszott azonos hoszszúságú szakaszt a síkon, melyek között van egy kitüntetett. A kitüntetett szakasszal a másik két szakasz π -nél kisebb bezárt szöge legyen tompaszög. Ezt általános λ -sémának fogjuk nevezni. Amennyiben a kijelölt szakaszra az is igaz, hogy a koordinátázott síkon az y tengellyel párhuzamos-függőleges, akkor λ -sémának nevezzük.
- **5.4. Definíció.** Rögzítsünk egy Λ_0 -al jelölt λ -sémát, ekkor jelölje $x \in \mathbb{R}^2$, r > 0-ra $\Lambda_0(x,r)$ az x középpontú, r hosszú szakaszokból ragasztott Λ_0 -nak megfelelő λ -sémát.
- **5.5. Definíció.** Mercedes-topológia: \mathbb{R}^2 alaphalmazon, minden Λ_0 rögzített λ -sémára definiálunk egy topológiát: $G \subseteq \mathbb{R}^2$ nyílt, ha minden $x \in G$ -re létezik r > 0 amire $\Lambda_0(x,r) \subseteq G$. Jelölés: $(\mathbb{R}^2, \tau_{\Lambda_0})$
- **5.6. Definíció.** Kereszt-topológia (cross-topology): \mathbb{R}^2 alaphalmazon, $G \subseteq \mathbb{R}^2$ nyílt, ha minden pontjával együtt tartalmaz egy rá illeszkedő függőleges és vízszintes nyílt szakaszt. Jelölés: (\mathbb{R}^2, τ_C)
- **5.7. Definíció.** Sugár-topológia (core-vagy radiolar-topology): \mathbb{R}^2 alaphalmazon, $G \subseteq \mathbb{R}^2$ nyílt, ha minden pontjával együtt minden irányban tartalmaz olyan irányú rá illeszkedő szakaszt. Jelölés: (\mathbb{R}^2, τ_R) .

Az utóbbi két topológia vizsgált. G. H. Greco [1], Roman Fric [2] a crosstopology és radiolar-topology sorazat-rendjéről (sequential order) állapítja meg, hogy ω_1 . Greco cikke végén említi, hogy a kereszt-topológia első előfordulás J. Nováknál található [3]. Fric több általánosítást közöl [2] végén: nem merőleges szárú keresztekkel, vagy olyan keresztekkel melyek "szárai" esetleg görbék. Strashimir G. Popvassilev "On the cross topology of the plane" címmel tartott előadást egy konferencián.

Megjegyzés: Az előbb definiált topológiák konstrukciójuknál fogva finomítják az euklidészi topológiát. Egyszerű észrevétel, ha az \mathbb{R}^2_S topológiában S tartalmazza az $(\mathbb{R}^2, \tau_{\Lambda_0})$ -et definiáló λ -sémát, akkor \mathbb{R}^2_S -nek finomítása $(\mathbb{R}^2, \tau_{\Lambda_0})$.

A kereszt-topológiában, minden függőleges és vízszintes egyenesen az altértopológia az euklidészi, míg más egyeneseken a diszkrét topológia. Míg belátható, hogy a kereszt-topológia nem reguláris, ha S az a négy pont a körvonalon, amit az origó középpontú körből vágnak ki a koordinátatengelyek, akkor a fent leírt tulajdonsággal rendelkező és reguláris teret kapunk \mathbb{R}^2_S -ként.

5.8. Állítás. A kereszt-topológia, egy Mercedes-topológia és a sugár-topológia páronként nem homeomorfak.

Bizonyítás: A kereszt-topológiában és a Mercedes-topológiákban tetszőleges $x \in \mathbb{R}^2$ -re létezik olyan megszámlálható $\{B_i(x) : x \in B_i(x), i \in \omega\}$ halmazrendszer, hogy egy $G \subseteq \mathbb{R}^2$ nyílt pontosan akkor ha minden $x \in G$ -re létezik $i \in \omega$ amire $B_i(x) \subseteq G$. Ennek a tulajdonságnak meg kell őrződnie homeomorfizmusnál, azonban ilyen megszámlálható halmazrendszer nincs semelyik pontra sem a sugár-topológiában.

Ahhoz, hogy lássuk, hogy (\mathbb{R}^2, τ_C) és $(\mathbb{R}^2, \tau_{\Lambda_0})$ nem homeomorfak, vegyük azt az \mathbb{R}^2_S topológiát, ahol $B_S(x,r) = \Lambda_0(x,r)$. Ekkor (X,τ_{Λ_0}) finomítja \mathbb{R}^2_S -et, tehát mivel \mathbb{R}^2_S 4.17 Állítás szerint nem tartalmaz c számosságú kompakt alteret, (X,τ_{Λ_0}) sem tartalmazhat. Ezzel szemben a kereszt-topológiában van ekkora kompakt altér, tehát nem lehetnek homeomorfak.

Térjünk vissza az összefüggőséghez.

5.9. Definíció. Egy S-(bázis)környezetet vagy $S\subseteq S^1$ halmazt "szétálló"-nak nevezünk, ha nem tartalmazza őt egyetlen nyílt félkörlap/félkörív sem.

Például minden λ -séma szétálló vagy az olyan $S \subseteq S^1$ -ek melyek tartalmaznak teljes irányt. A fejezet elején tett észrevételünk az új fogalommal:

5.10. Állítás. Ha S nem szétálló, akkor \mathbb{R}^2_S nem összefüggő.

Célunk azt belátni, hogy ha S szétálló, akkor \mathbb{R}^2_S összefüggő.

5.11. Lemma. Ha $S \subseteq S^1$ nem tartalmaz teljes irányt és szétálló, akkor tartalmaz általános λ -sémát.

Bizonyítás: Vegyünk egy $v \in S$ -t, és a v normálvektorú egyenessel határolt nyílt félkörlapot. Ennek tartalmaznia kell egy $u \in S$ irányt, feltehetjük a szimmetria miatt, hogy a \widehat{uv} ív rövidebb \widehat{vu} -nál. Tekintsük az S-beli irányok szuprémumát u-tól -v felé-negatív irányban, ez $w \in S$, hisz S zárt. $w \neq -v$ mert feltettük, hogy S nem tartalmaz teljes irányt.

Mivel S metszi a w által határolt, w-től negatív irányba eső nyílt félkörívet, létezik itt $s \in S$. Ez nincs a $\widehat{-vw}$ íven, tehát egy általános λ -sémát kaptunk w, v, s-el ahol a kijelölt csúcs s elhelyezkedésétől függ. \square

5.12. Következmény. Mivel a forgatás homeomorfizmus, feltehetjük, hogy ha \mathbb{R}^2_S -ben S szétálló és nem tartalmaz teljes irányt, akkor az S tartalmaz λ -sémát.

A Mercedes-topológia nyílt halmazait M-nyíltnak rövidítjük, A halmazra A' az euklidészi értelemben vett torlódási pontok halmaza.

5.13. Tétel. Tetszőleges definiáló Λ_0 λ -sémára, az (\mathbb{R}^2 , τ_{Λ_0}) Mercedes-topológiában összefüggő minden euklidészi-nyílt euklidészi-összefüggő halmaz.

Bizonyítás: Legyen $T = G \cup H$ euklidészi-nyílt euklidészi-összefüggő halmaz ahol G, H nemüres M-nyílt halmazok, ellentmondásra akarunk lyukadni. Legyen $G^* = G \setminus int(G)$ és $H^* = H \setminus int(H)$, azon pontok melyeknek nincs euklidészi környezetük G-ben illetve H-ban.

(1) Belátjuk elsőként, hogy $G^*\subseteq (H^*)'$ és $H^*\subseteq (G^*)'$: a bizonyítás a két esetben szimmetrikus, az első esetre szorítkozunk. $G^*\subseteq (H)'$ definícióból következően, de tegyük fel, hogy csak int(H) torlódik egy $g\in G^*$ -beli ponthoz, azaz létezik r>0, hogy $B(g,r)\cap H^*=\emptyset$. Feltehető, hogy erre az r-re $B(g,r)\subseteq T$ és $\Lambda_0(g,r)\subseteq G$. Könnyen láthatóan létezik olyan $x\in int(H)\cap B(g,r)$, ami olyan közel van g-hez, hogy x-en átmenő λ -sémabeli irányú egyenes metszi $\Lambda_0(g,r)\subseteq G$ -t egy $y\in G$ pontban, és az egyenesen olyan Sorgenfrey-egyenes jelenik meg, amiben [y,x) nyílt- ahhoz, hogy a metszés létezzen kihasználjuk a szétállást.

Tekintsük ekkor a G-beli pontok szuprémumát x-felé az [y,x) félegyenesen, legyen ez a pont: $z \in T$. Ekkor z nem lehet H-ban, hisz akkor H euklidészi belsejében van, de ehhez torlódnak G-beli pontok. Ha viszont $z \in G$, akkor mivel ennek egy λ -környezete része G-nek és az egy x-felé nyúló szakaszban metszi [y,x)-et, nem lehetne szuprémum. Ezzel beláttuk: $G^* \subseteq (H^*)'$.

- (2) $G^*, H^* \neq \emptyset$ és $G^* \cup H^*$ euklidészi-zárt: nem lehetnek üresek mind a ketten, mert T euklidészi-összefüggő. Ha az egyik nem üres, a másik sem lehet üres (1) miatt. A zártság triviális.
- (3) Az ellentmondás: legyen $x_1 \in G^*$ -létezik (2) miatt, $\Lambda_0(x_1; r_1) \subseteq G$ és erre az r_1 -re feltehető, hogy $B(x_1, r_1) \subseteq T$. Létezik $r_1 > s_1 > 0$, amire minden $x \in B(x_1; s_1) \cap H^*$ -ra legfeljebb $r_1/2$ sugarú λ -környezete lehet része H-nak, különben a rá illeszkedő λ -séma metszené az x_1 -re illeszkedő G-beli λ -sémát- erősen használjuk a λ -séma szétállását. Legyen $x_2 \in B(x_1; s_1) \cap H^*$,

ami létezik (1) miatt, legyen $\Lambda_0(x_2;r_2)\subseteq H\cap B(x_1;s_1)$ és a feltétel szerint $r_2< r_1/2$. Létezik $r_2> s_2>0$, amire minden $x\in B(x_2;s_2)\cap G^*$ -ra legfeljebb $r_2/2$ sugarú λ -környezete lehet része G-nek, különben a rá illeszkedő λ -séma metszené az x_2 -re illeszkedő H-beli λ -sémát. Legyen $x_3\in B(x_2;s_2)\cap G^*$ és $\Lambda_0(x_3;r_3)\subseteq G\cap B(x_2;s_2), \ r_3< r_2/2< r_1/4$. Indukcióval definiáljuk tovább az $\{x_i\}_{i\in\omega}$ sorozatot hasonlóan felváltva G^* és H^* -ból. Ezek egy Cauchysorozatot alkotnak, határértékük: $x\in G^*\cup H^*$, hisz $G^*\cup H^*$ euklidészi zárt. Azonban az x egyikben sem lehet benne, hisz semmilyen pozitiv sugarú λ -környezete nem lehet G-ben, sem H-ban, hiszen $x\in B(x_i,s_i)$ ami tiltja hogy $r_1/2^i$ -nél nagyobb lehessen ez a környezet. \square

Ennek közvetlen következményeként, összefoglalva:

5.14. Tétel. $Az \mathbb{R}^2_S$ topológia pontosan akkor összefüggő, ha S szétálló. Ha S szétálló, akkor az \mathbb{R}^2_S topológiában összefüggő minden euklidészi-nyílt euklidészi-összefüggő halmaz.

Bizonyítás: Ha S nem szétálló, akkor nem összefüggő. Ha S szétálló és tartalmaz teljes irányt akkor láttuk a bizonyítást 5.1 Állításban. Ha S szétálló és nem tartalmaz teljes irányt akkor tartalmaz λ -sémát 5.11 Lemma szerint, tehát finomítja egy Mercedes-topológia, amire 5.13 Tétel igazolja az állítást, tehát \mathbb{R}^2_S -ben is összefüggő lesz minden euklidészi-nyílt euklidészi-összefüggő halmaz. \square

További következmény, hogy a sugár-topológia is összefüggő, hisz annak tetszőleges Mercedes-topológia a finomítása. Idefűzünk még egy egyszerű és az 5.1 Állításhoz nagyon hasonló észrevételt:

5.15. Állítás. A kereszt-topológiában összefüggő minden euklidészi-nyílt, euklidészi-összefüggő halmaz.

Bizonyítás: Legyen $T = G \cup H$ euklidészi-nyílt, euklidészi-összefüggő halmaz felbontása két kereszt-nyílt halmazra. Ha $x \in G$, akkor létezik r > 0 amire feltehető, hogy $B(x,r) \subseteq T$ és a K: 2r-átmerőjű x középpontú kereszt is része G-nek. G minden pontjára az azon átmenő vízszintes T-beli szakasznak G-ben kell lennie, hisz azon euklidészi topológia jelenik meg. Ezt alkalmazva K függőleges szárára, kapjuk, hogy $B(x,r) \subseteq G$, tehát G euklidészi nyílt. Hasonlóan H-nak is euklidészi-nyíltnak kell lennie.

Tehát a két halmaz egyike üres, amit be akartunk látni.□

Megjegyzés: Végül érdekes tulajdonsága mind a Mercedes-topológiáknak, mind a teljes irányt nem tartalmazó de szétálló S-el definiált \mathbb{R}^2_S topológiáknak, hogy összefüggőek, ám minden egyenes mentén teljesen összefüggéstelenekhiszen ott diszkrét topológia, vagy Sorgenfrey-egyenes jelenik meg.

6. Kérdések, problémák

6.1. Leképezések

A térbe menő leképezések vizsgálatával tisztázható lenne az eddig nem igazán vizsgált ívszerűen összefüggőség is talán. Akár csak "szép" esetekben, miket mondhatunk a terek önmagukra menő folytonos leképezéseiről?

Ezen az irányon haladva jutunk a következő, talán legtermészetesebben felmerülő kérdéshez:

6.2. Homeomorfizmusok

Az \mathbb{R}^2_S topológiákat szétválaszottuk pár osztályra kompakt alterek számossága, összefüggőség vagy megszámlálhatósági tulajdonságokkal. Ezen túl nem sikerült egyelőre többet belátni arról, hogy mikor nem homeomorf két S-topológia. Így azt sem látjuk, hogy valójában hány teret is definiáltunk pontosan a fentiekben.

Bizonyos további speciális eseteket már sikerült szétválasztani és ezzel legalább azt belátni hogy végtelen sok teret definiáltunk.

6.1. Állítás. Ha $S,T\subseteq S^1$ szétálló, összefüggőségi komponenseik száma véges és eltérő, akkor \mathbb{R}^2_S és \mathbb{R}^2_T nem homeomorfak.

Bizonyítás: Legyen S-nek s darab, T-nek t darab összefüggőségi komponense, s < t feltehető. Az S-báziskörnyezetek egy olyan nyílt $\mathcal B$ bázisát adják $\mathbb R^2_S$ -nek, melyben a környezetek középpontját elhagyva azok s darab nemüres euklidészi-nyílt, tehát összefüggő halmazra esnek szét. Más pontját elhagyva a környezeteknek összefüggő marad a halmaz. Ezt a bázist egy φ homeomorfizmusnak egy olyan $\varphi(\mathcal B)$ nyílt bázisába kellene vinnie $\mathbb R^2_T$ -nek,

ahol hasonlóan a középpontok képeit elhagyva s darab nemüres összefüggő halmazra esnek szét a képek- más pontot elhagyva nem esnek szét. Állítsunk elő egy tetszőleges $B_T(x,\varepsilon,r)$ T-báziskörnyezetet mint $\varphi(\mathcal{B})$ -beli halmazok unióját, és tekintsük azt az $U=\varphi(B_S(y,\delta,s))\in\varphi(\mathcal{B})$ halmazt amire $x\in U$. Ekkor x-nek egy T-báziskörnyezete is része U-nak mert T-nyílt. Emiatt azonban x-et elhagyva U-ból U legalább t darab nemüres összefüggő részre esik szét, ami ellentmond annak, hogy az ősképe a homeomorfizmusnál tetszőleges pont elhagyásával csak s darabra, vagy nem eshetett szét. \square

Emiatt az állítás miatt már látjuk, hogy ha S véges, akkor különböző elemszámra különböző topológiákat kapunk. Már azt is érdekes lenne belátni, hogy a véges S-ekre, ha eltérő számú irányon jelenik meg Sorgenfrey-egyenes és euklidészi-topológia akkor nem lehetnek homeomorfak a terek.

6.3. D-tulajdonság

Egy (X,τ) topológikus tér D-tér, ha minden $U:X\to \tau$ környezethozzárendeléshez létezik $D\subseteq X$ diszkrét, zárt halmaz amire $X=\bigcup_{x\in D}U(x)$. Be lehet látni, hogy minden metrikus tér D-tulajdonságú és a Sorgenfrey-egyenes is. Azonban ismeretlenek olyan alapvető kérdésekre a válaszok, hogy minden Lindelöf vagy parakompakt tér D-tulajdonságú-e. Körbenézve a témában írt cikkek között, nem volt olyan elégséges feltétel ami implikálta volna, hogy az \mathbb{R}^2_S terek a triviális esettől eltekinte D-terek lettek volna, vagy sem. Ha nem is a fő kérdés megválaszolását, de szemléletes nem D-tereket kaphatunk esetleg a kevésbé "szép" S-ekre.

6.4. Nagy kompakt alterek elhelyezkedése

Tekintsünk olyan \mathbb{R}^2_S -eket, amikor $T \subseteq S$ teljes irányok halmaza nem üres, azaz létezik c-számosságú kompakt altér $(S \neq S^1)$. Léteznek-e nem triviális összefüggő kompakt alterek, azaz olyanok, melyek nem T-beli irányú egyenesek úniójának kompakt alterei?

Ha például nem léteznének, akkor korábbi megjegyzésünk értelmében \mathbb{R}^2_S útösszefüggő pontosan akkor, ha S-ben legalább 2 teljes irány van.

6.5. Többdimenziós általánosítás

A konvergencia irányok menti megszorításának ötlete, minden probléma nélkül általánosítható magasabb dimenziós euklidészi terekre. Érdekes lenne megvizsgálni, hogy az itt bevált egyszerű karakterizációja a tulajdonságoknak az alterekkel működne-e, a megfelelő változtatásokkal.

7. Referenciák

- [1] Greco, Gabriele H. The sequential defect of the cross topology is ω_1 . Topology Appl. 19 (1985), no. 1, 91–94.
- [2] Fric, Roman On plane topologies with high sequential order. Comment. Math. Univ. Carolin. 31 (1990), no. 1, 33–36.
- [3] J.Novák Induktion partiell stetiger Funktionen, Math. Ann, 118 (1942) 449-451.