215A: Algebraic Topology

Greg DePaul

December 7, 2021

1 Foundational Review

1.1 Motivating The Search for a Fundamental Group $\pi_1(X)$

This course is built on two different subjects. You have topology, which tends to be intuitive. For instance, we can easily say a sphere and torus are different simply by the presence of a hole. But this initially lacks precision. So instead, we turn to the precise and algorithmic language of algebra to solve this problem. Specifically, given a topological space, we can establish a fundamental group. We do this in the hopes that equivalent spaces can be identified with the same fundamental group!

Definition 1.1. The solid ball of radius 1 is defined

$$D^n := \{x \in \mathbb{R}^n : ||x|| \le 1\} \quad n \ge 1$$

as well as the sphere of radius 1

$$S^{n-1} := \partial D^n = \{x \in \mathbb{R} : ||x|| = 1\}$$

Note 1.2. When n = 0, define $D^0 = \{0\}$.

We want to define a magical function that is able to distinguish between the torus and the sphere. Specifically, suppose a function π_1 such that

$$\pi_1(\text{torus}) = \mathbb{Z} \oplus \mathbb{Z}$$

$$\pi_1(S^1) = \mathbb{Z}$$

$$\pi_1(S^2) = \{1\}$$

 π (2-torus ∞) = (a non-commutative) free group generated by two elements

We need to develop algebraic machinery in order to define such a function.

1.2 Equivalence Relation

Definition 1.3. Given a space X, we consider equivalence relations \bowtie that follow

- \bullet $x\bowtie x$
- $\bullet \ x \bowtie y \implies y \bowtie x$
- $x \bowtie y$ and $y \bowtie z \implies x \bowtie z$

We can prove that this partitions the space, allowing us to consider classes

$$[x] := \{ y \in X : x \bowtie y \}$$

1.3 Review of Topology

- Open sets of a topological space *X*
 - Union of open sets is open
 - Finite intersections of opens sets is open
 - $-\emptyset$, *X* are open
- Base: We establish a family of open subsets of X such that for all open sets $U \subset X$, and $x \in U$, there exists V within our basis such that

$$x \in V \subset U$$

Definition 1.4. Given X, Y topological spaces, a function $f: X \to Y$ is continuous if

$$f^{-1}(U) = \{x \in X : f(x) = U\}$$
 is open

for all open subsets $U \subset Y$

In this course, any $g: X \to Y$ is assumed to be continuous.

Definition 1.5. X and Y are homeomorphic if there exists $f: X \to Y$ and $g: Y \to X$ such that

$$f\circ g\equiv id_Y$$

$$g \circ f \equiv id_X$$

Notation: Given any topological space X, Y, we will write X = Y provided X and Y are homeomorphic.

Definition 1.6. *X* is compact if for all open covers $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of *X*, there exists a finite subcover

$$X \subset U_{\alpha_1} \cup \ldots \cup U_{\alpha_k}$$

Remark 1.7. Lebesgue's Covering Lemma: If $X \subset \mathbb{R}^n$ is compact, then for any open cover $\{U_\alpha\}$, we can identify δ such that for all $x \in X$, there exists U_α such that

$$x + \delta D^n = B_{\delta}(x) \subset U_{\alpha}$$

Definition 1.8. *Let* I = [0,1]*. A path is a continuous function* $\phi : I \to X$ *such that*

$$x_0 = \phi(0) = initial point$$

$$x_1 = \phi(1) = terminal point$$

The image of ϕ connects x_0 with x_1 .

Proposition 1.9. If X is a topological space, then we can define an equivalence relation $x \bowtie y$, if and only if there exists a path $\phi: I \to X$ with $\phi(0) = x$ and $\phi(1) = y$.

Proof. • It's easy to see for any x ∈ X, the constant function $\phi(t) = x$ is a path from x to itself. So $x \bowtie x$

- Suppose $x \bowtie y$. Then there is a path from x to y, say ϕ . Now define $\psi(t) = \phi(1-t)$. Then ψ is a path from y to x. So $y \bowtie x$.
- Lastly, suppose $x \bowtie y$ and $y \bowtie z$. Then we must have a path from x to y, say ϕ , and a path from y to z, say ψ . Then we see that we can define a sort of product between the two paths by:

$$\phi \cdot \psi := \begin{cases} \phi(2t) & 0 \le t \le \frac{1}{2} \\ \psi(2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

Further, we see that $\phi \cdot \psi$ is a path between x and z. So $x \bowtie z$.

Corollary 1.9.1. The equivalence classes under the equivalence relation of path connectedness are the path connected components of the space X.

Corollary 1.9.2. *X* is path connected if and only if for any $x, y \in X$ can be connected by a path.

1.4 Review of Groups

We are all familiar with the definition of a group.

Definition 1.10. $H \subset G$ is a subgroup if $g^{-1}h \in H$ for all $g, h \in H$.

Definition 1.11. One action fundamentally linking geometry with algebra is conjugation, in which for any $g, h \in G$

$$g^{-1}hg$$

is the conjugate.

Definition 1.12. *N* is a normal subgroup of *G* provided *N* is a subgroup of *G* and

$$ghg^{-1} \in N$$

for all $h \in N$. That is, N is a subgroup closed under conjugation.

Definition 1.13. A function $\phi: G_1 \to G_2$ is a homomorphism for group G_1, G_2 provided

$$\phi(g_1g_2) = \phi(g_1) \cdot \phi(g_2)$$

and ϕ is a surjection. We can further describe $Ker(\phi) := \{g \in G_1 : \phi(g) = 1_{G_2}\}$. Such a homomorphism is called an isomorphism provided $Ker(\phi) = \{0\}$.

Remark 1.14. We will want to make use of an equivalent definition of isomorphism. $\phi: G \to H$ is an isomorphism if and only if \exists a homomorphism $\psi: H \to G$ such that

$$\phi \circ \psi = id_H$$

$$\psi \circ \phi = id_G$$

Proposition 1.15. $Ker(\phi)$ is a normal subgroup of G_1 .

Proposition 1.16. *If* ϕ *is surjective, then* $G_2 \cong G_1/Ker(\phi)$.

Definition 1.17. The commutator subgroup $K = \langle ghg^{-1}h^{-1} : g, h \in G \rangle$ is a normal subgroup.

Proposition 1.18. G/K := commutative group. It's also the maximally commutative group generated by projecting G over any subgroup of G.

Example 1.19.

$$\mathbb{Z}$$

$$\mathbb{Z}_2 = \{0, 1\}$$

$$\mathbb{Z}^n = \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n \text{ copies}}$$

Definition 1.20. Given a set of generators $\{g_{\alpha}\}_{{\alpha}\in\mathcal{A}}$, a free group is any finite sequence a_1,a_2,\ldots,a_k such that $a_i=g_{\alpha}$ or g_{α}^{-1}

Remark 1.21. Ø is the unit element of any free group since it is a sequence of length 0.

Remark 1.22. We define the product operation of a free group to be

$$(a_1,\ldots,a_k)(b_1,\ldots,b_k)=a_1\ldots a_kb_1\ldots b_k$$

3

1.5 Operations on Topological Spaces

Definition 1.23. *Given topological spaces X, Y, the product*

$$X \times Y := \{(x, y) : x \in X, y \in Y\}$$

equipped with the basis of topology defined to be:

$$\mathcal{B} = \{U \times V : \text{for any open subsets } U \subset X, V \subset Y\}$$

Example 1.24.
$$\mathbb{R}^n := \underbrace{\mathbb{R} \times \dots \mathbb{R}}_{n \text{ times}}$$

Example 1.25. *The torus* $\mathbb{T} := S^1 \times S^1$.

Definition 1.26. Given a topological spaces X, the quotient of an equivalence relation \bowtie is defined

$$X/ \bowtie := \{ set \ of \ equivalence \ classes \}$$

equipped with the basis of topology defined to be:

$$\mathcal{B} = \{U \mid \bowtie : \text{ for any open subset } U \subset X\}$$

Note 1.27. Another way to consider this is by the projection mapping $\pi: X \to X/\bowtie$

Example 1.28. Given a topological space X and any subset $A \subset X$. Then we can define

$$x \bowtie y \iff x, y \in A \text{ or } x = y$$

Then $X/\bowtie = X/A$.

Example 1.29. $S^1 = I/\bowtie$ where $0\bowtie 1$ and all other points are self-identifiable. Further, we can simply write:

$$S^1 = I/\{0, 1\}$$

Definition 1.30. Given a group G and a topological space X, we can define the <u>action of G on X</u> provided we can identify continuous functions for every $g \in G$, such that

$$g \cdot (h \cdot x) = (gh) \cdot x$$

for any $g, h \in G, x \in X$

Note 1.31. *Group actions induce an equivalence relation on the topological space* X *by*

$$x \bowtie y \iff \exists g \in G \text{ such that } y = gx$$

i.e. The equivalence classes are the orbits of our action by G. Quotienting by this equivalence relation is denoted $X/\bowtie = X/G$

Example 1.32. Given the action of \mathbb{Z} onto \mathbb{R} by

$$k \cdot x = x + k$$

Then we see that $S^1 = \mathbb{R}/\mathbb{Z} = [0,1)$ represents each equivalence class uniquely with $0 \bowtie 1$.

This can become a bit of a notational nightmare.

Example 1.33. Given the action of \mathbb{R} onto \mathbb{C} by

$$x \cdot z = e^{ix}z$$

Then we see that

$$\mathbb{C}/\mathbb{R} \neq \mathbb{C}/\bowtie$$

So one must be careful with this notation if it isn't obvious.

Example 1.34. The torus can be identified using the polygonal diagram:

Alternatively, we can identify the torus by defining the relation on I^2

$$x \bowtie y \iff x - y \in \mathbb{Z}^2 \implies \mathbb{T} = I^2 / \bowtie$$

These notations can be unified on the following manner:

Example 1.35. Let \mathbb{Z}^2 act on \mathbb{R}^2 by defining

$$\forall (r,m) \in \mathbb{Z}^2, (x,y) \in \mathbb{R}^2, (r,m) \cdot (x,y) = (x+r,y+m)$$

Then we see that

$$\mathbb{T} = S^1 \times S^1 = \mathbb{R}^2 / \mathbb{Z}^2$$

Therefore, we see that

$$I^2/\bowtie = \mathbb{R}^2/\mathbb{Z}^2$$

Example 1.36. Observe $S^{n-1} \subset D^n$, the $D^n/S^{n-1} = S^n$. We can see this by defining the quotient mapping

$$\pi: D^n \to S^n \subset \mathbb{R}^{n+1}$$

$$ru \to (\underbrace{u \sin \pi r}_{\in \mathbb{R}^n}, \cos \pi r) \in \mathbb{R}^{n+1}$$

where $u \in S^{n-1}$.

2 Homotopy

2.1 Defining Homotopy

Definition 2.1. Given two functions $f, g: X \to Y$, we say f and g are homotopic, denoted $f \sim g$, provided there exists a continuous function $F: X \times I \to Y$ such that

$$F(x,0) = f(x) \quad F(x,1) = g(x)$$

We call such a function F a deformation of f into g.

Proposition 2.2. \sim is an equivalence relation on the set of continuous maps $f, g: X \to Y$

Proof. • $f \sim f$ obviously since we can consider the deformation F(x, t) = f(x)

- $f \sim g \implies g \sim f$ by the deformation G(x, t) = F(x, 1 t)
- $f \sim_F g$, $g \sim_G h \implies f \sim h$ by the deformation

$$H(x,t) = \begin{cases} F(x,2t) & t \le \frac{1}{2} \\ G(x,2t-1) & t \ge \frac{1}{2} \end{cases}$$

Proposition 2.3. Suppose $f_0, f_1 : X \to Y$ and $g_0, g_1 : Y \to Z$. If $f_0 \sim f_1$ and $g_0 \sim g_1$, then $g_0 \circ f_0 \sim g_1 \circ f_1$.

Proof. Let F_t be a homotopy between f_0 and f_1 and G_t be a homotopy between g_0 and g_1 . Then $g_0 \circ f_0 \sim g_0 \circ f_1$ via $g_0 \circ F_t$ and $g_0 \circ f_1 \sim g_1 \circ f_1$ via $G_t \circ f_1$. Since homotopy forms an equivalence relation, by transitivity, we have $g_0 \circ f_0 \sim g_1 \circ f_1$

Example 2.4. Any two maps $f_0, f_1: X \to D^n$ are homotopic by the deformation

$$F_t(x) = (1 - t)f_0(x) + tf_1(x)$$

Example 2.5. Let $X = S^1$, $Y = D^2$, and consider

$$f_0 = i: S^1 \hookrightarrow D^2$$

$$f_1(x) = (0,0) \in D^2$$

Then by the previous example, we have the deformation

$$F_t(x) = (1 - t)x$$

Example 2.6. Let $X = S^1, Z = D^2 \setminus \{(\frac{1}{2}, 0)\}$. We again consider

$$f_0=i:S^1\hookrightarrow Z$$

$$f_1(x)=(0,0)\in Z$$

Then we don't have a way of deforming the spaces into one another by the previous deformation.

Remark 2.7. Not only the homotopy above breaks down, but we will see that there does not exist a homotopy between $f_0, f_1: S^1 \to Z$.

6

Definition 2.8. Let $A \subset X$ and $f_0, f_1 : X \to Y$. Then $f_0 \sim f_1$ relative to A provided

- $f_0(x) = f_1(x)$ for $x \in A$
- $\exists F_t(x) = f_0(x) \text{ for all } x \in A.$

Example 2.9. Given two curves γ , $\delta: I \to X$ with $\gamma \sim \delta$, we say that $\gamma \sim \delta$ relative to $\{0,1\} \subset I$ provided that

$$\phi_t(0) = \gamma(0) = \delta(0)$$

$$\phi_t(1) = \gamma(1) = \delta(1)$$

The initial and terminal points are fixed!

Proposition 2.10. *If* $Y = D^n$, or any convex $Y \subset \mathbb{R}^n$, then for any $f_0, f_1 : X \to Y$ that agree on $A \subset X$, and $f_0 \sim f_1$, then $f_0 \sim f_1$ relative to A.

Definition 2.11. X, Y are homotopy equivalent provided $\exists f: X \to Y, g: Y \to X$ such that

$$f \circ g \sim id_Y$$

$$g \circ f \sim id_X$$

Definition 2.12. *If* X *is homotopy equivalent to a point, then we say* X *is contractible.*

Definition 2.13. *Suppose* $A \subset X$.

- $r: X \to A$ is a <u>retraction</u>, or A is a retract of X, if r is continuous and r(x) = x for $x \in A$.
- A is a deformation retraction of X if there exists a homotopy $F_t: X \to A$ relative to A where $f_0 = id_X$ and $f_1: X \to A$ a retraction.

Example 2.14. S^{n-1} is a deformation retraction of $D^n \setminus \{0\}$ by taking the deformation:

$$F_t: D^n \setminus \{O\} \to D^n \setminus \{O\}$$
$$x \to (1-t)x + t \frac{x}{\|x\|}$$

Remark 2.15. The function $f: X \to Y$ is the mapping cylinder $X \times I \perp \!\!\! \perp Y / \bowtie$

Proposition 2.16. $A \subset X$ is a deformation retract of X implies A and X are homotopy equivalent.

Proof. Since $r = \phi_1 : X \to A$ and $i : A \to X$, then we see that $r \circ i \sim id_A$ and $i \circ r \sim id_X$.

Example 2.17. $id_X: X \to X$ is homotopic to some $r: X \to A$ relative to A, meaning there exists $F: X \times I \to X$ such that if we let $\phi_t(x) = F(x,t)$, then

$$\phi_0(x) = x \ \forall x \in X$$

$$\phi_1(x) \in A \ \forall x \in X$$

$$\phi_t(z) = z \ \forall z \in A$$

This is known as an elementary contraction.

Theorem 2.18 (Hatcher). If f is a homotopy equivalence between X and Y, then both $X = X \times O$ and Y are deformation retractions of $X \times I \perp Y /\bowtie$.

2.2 New Operations from Homotopy

Definition 2.19. The cone operation from $X \to C(X) = X \times I/X \times \{1\}$

Definition 2.20. The suspension operation $S(X) = C(X)/X \times \{O\}$

Remark 2.21. Any function $f: X \to Y$ extends naturally to $Cf: CX \to CY$ and $Sf: SX \to SY$.

Definition 2.22. The wedge operation $X \vee Y$ at the points $x_0 \in X$, $y_0 \in Y$ is defined as

$$X \vee Y = X \perp \!\!\! \perp Y/\bowtie$$

where \bowtie is defined by $x_0 \bowtie y_0$, and all other points are self-identified.

Example 2.23. We can consider the wedge of two circles $S^1 \vee S^1$

Example 2.24. We already discussed the torus $T = S^1 \times S^1$. If we delete a point x_0 from T, then $T \setminus \{x_0\}$ deformation retracts to a copy of $S^1 \vee S^1$. We can see this by choosing some basic circles

and label them $a, b: I \to T$ such that they start and stop at the same point

$$a(0) = a(1) = b(0) = b(1)$$

Then because $T=I^2/\bowtie w$ where $x\bowtie y\iff x-y\in\mathbb{Z}^2$. Then for all $x\in I^2\setminus\{x_0\}$, then there exists $\lambda_x\geq 1$ such that

$$\underbrace{x_0 + \lambda_x(x - x_0)}_{I_{tr}} \in \partial I$$

Then we see that

$$\partial I^2/\bowtie=a\wedge b$$

2.3 Path Homotopy

Suppose $\gamma, \delta: I \to X$ are paths such that $\gamma(1) = \delta(0)$.

Definition 2.25. We can define the path product

$$\begin{split} \gamma \cdot \delta : I \to X \\ s \to \begin{cases} \gamma(2s) & s \leq \frac{1}{2} \\ \delta(2s-1) & s \geq \frac{1}{2} \end{cases} \end{split}$$

Definition 2.26. Further, we can define the path inverse

$$\overline{\gamma} = \gamma^{-1}(s) := \gamma(1-s)$$

Definition 2.27. *The constant path on a point* $z \in X$ *is:*

$$1_z: I \to X$$
$$s \to z$$

Definition 2.28. Two curves γ , $\delta: I \to X$ are fixed point homotopic provided $\gamma \sim \delta$ and

$$\gamma(0) = \delta(0)$$

$$\gamma(1) = \delta(1)$$

Lemma 2.29. *Consider the curves* γ , δ , $\eta: I \rightarrow X$. *Then*

1. Suppose $\gamma(0) = y$ and $\gamma(1) = z$. Then

$$1_{\nu} \cdot \gamma \sim \gamma \sim \gamma \cdot 1_{z}$$

relative to $\{0,1\}$

- 2. $\gamma \cdot \overline{\gamma} \sim 1_y$ and $\overline{\gamma} \cdot \gamma \sim 1_z$ relative to $\{0, 1\}$.
- 3. Suppose a surjective $\Theta: I \to I$ such that $\Theta(0) = 0, \Theta(1) = 1$. Then $\gamma \circ \Theta$ is a <u>reparametrization</u> and $\gamma \circ \Theta \sim \gamma$ relative to $\{0,1\}$.

4.
$$\gamma(1) = \delta(0), \delta(1) = \eta(0)$$
, then

$$(\gamma \cdot \delta) \cdot \eta \sim \gamma \cdot (\delta \cdot \eta)$$

relative to $\{0, 1\}$.

Proof. 1. We need to define ϕ_t such that $\gamma_0 = 1_y \cdot \gamma$ and $\phi_1 = \gamma$. Then

$$\phi_t(s) = y \ s \le \frac{1}{2}(1-t)$$

While implicitly

$$\gamma(s) = \phi_t((1-s)\frac{1}{2}(1-t) + s)$$

2. Define a new curve

$$\sigma^t: I \to X$$
$$s \to \phi(ts)$$

for some $t \in [0, 1]$. Then we can let

$$\phi_t = \sigma_t \cdot \overline{\sigma^t}$$

with $\phi_0 = 1_y$ and $\gamma_1 = \gamma \cdot \overline{\gamma}$.

3. Let $\gamma_0 = \gamma$ and $\gamma_1 = \Theta \cdot \gamma$ with

$$\phi_t(s) = \gamma((1-t)s + t\Theta(s))$$

4. We can identify a reparametrization $\Theta: I \to I$ such that

$$(\gamma \cdot \delta) \cdot \eta = [\gamma \cdot (\delta \cdot \eta)] \circ \Theta$$

But by 3, we know that implies

$$(\gamma \cdot \delta) \cdot \eta \sim \gamma \cdot (\delta \cdot \eta)$$

Definition 2.30. The fundamental group $\pi(X, x_0) :=$ the equivalence classes of paths $\gamma : I \to X$ with $\gamma(0) = \gamma(1) = x_0$ under the equivalence relation $\gamma \sim \delta$ relative to $\{0, 1\}$. Symbolically, we can write

$$\pi_1(X,x_0) = \{ [\gamma] : \gamma : [0,1] \to X, \gamma(0) = \gamma(1) = x_0, \gamma \bowtie \delta \iff \gamma \sim \delta \text{ relative to } \{0,1\} \}$$

We can define the operation within the fundamental group over the equivalence classes to be induced from the path operations we defined earlier

$$[\gamma] \cdot [\delta] = [\gamma \cdot \delta]$$

$$[\gamma] \cdot [\overline{\gamma}] = [1_{x_0}]$$

Lemma 2.31. Suppose X is path connected, and $x_0, y_0 \in X$, $\eta : [0,1] \to X$, $\eta(0) = x_0$, $\eta(1) = y$. Then the mapping

$$\beta_\eta:\pi_1(X,x_0)\to\pi_1(X,y_0)$$

$$[\gamma] \to [\overline{\eta} \cdot \gamma \cdot \eta]$$

is an isomorphism.

Proof. An easy way to prove this is to find an inverse for β_{η} . Specifically, $\beta_{\overline{\eta}} = \beta_{\eta}^{-1}$, which is clearly a homomorphism with

$$\beta_{\overline{\eta}} \circ \beta_{\eta}[\gamma] = \beta_{\overline{\eta}}(\beta_{\eta}([\gamma])) = [\eta \cdot (\overline{\eta} \cdot \gamma \cdot \eta) \cdot \overline{\eta}] = [1_{y_0} \cdot \gamma \cdot 1_{x_0}] = [\gamma] \implies \beta_{\overline{\eta}} = id_{\pi_1(X,x_0)}$$

The similar calculation occurs for $\beta_{\eta} \circ \beta_{\overline{\eta}} = id_{\pi_1(X,y_0)}$. Therefore, β_{η} is an isomorphism.

Remark 2.32. $\pi_1(X, x_0) \cong \pi_1(X, y_0)$ with the isometry dependent on the path η .

Theorem 2.33. *If X is path connected, then*

$$\pi(X) = fundamental\ group \cong \pi_1(X, x_0)\ \forall x_0 \in X$$

Remark 2.34. For some spaces this group is interesting. But for many this fundamental group is trivial.

Definition 2.35. *X is simply connected if X is path connected and* $\pi_1(X) = \{1\}$.

Example 2.36. $X = \{z\}$, the space of a single point, then $\pi_1(X) = \{1\}$.

Example 2.37. $X \subset \mathbb{R}^n$ a convex set, then for all $x, y \in X$, and for all $t \in [0, 1]$, then

$$(1-t)x + ty \in X$$

So $\pi_1(X) = \{1\}$

Example 2.38. Since $int(D^n)$, D^n , and \mathbb{R}^n are convex, then by the last example we know

$$\pi_1(int(D^n)) = \pi_1(D^n) = \pi_1(\mathbb{R}^n)$$

Example 2.39. $S^n \setminus \{x_0\}$ for some $x_0 \in S^n$, then $S^n \cong \mathbb{R}^n$ by stereographic projection, so

$$\pi_1(S_n \setminus \{x_0\}) = \{1\}$$

Another way of looking at this, we can define a homeomorphism from D^n to $S^n \setminus \{x_0\}$ by

$$f(ru) = (u \sin \pi r, \cos \pi r) \subset \mathbb{R}^n$$

which will serve as a homeomorphism.

Proposition 2.40. *If* X *is path connected with* $x_0 \in X$ *, and let* A_α *,* $\alpha \in \mathcal{F}$ *, be an open cover of* X *such that*

$$X \subset \bigcup_{\alpha \in \mathcal{F}} A_{\alpha}$$

And let $x_0 \in A_\alpha$ for all α . Lastly, assume for all $\alpha, \beta, A_\alpha \cap A_\beta$ is path-connected. Then for any path $\gamma : [0,1] \to X, \gamma(0) = \gamma(1) = x_0$, then

$$\gamma \sim \delta_1, \ldots, d_r$$
 relative to $\{0, 1\}$

where for all $\delta_i(0) = \delta_i(1) = x_0$ and for all δ_i , $\exists \alpha_i$ such that $\delta_i \subset A_{\alpha_i}$

Proof. Observe, $\gamma^{-1}(A_{\alpha})$ with $\alpha \in \mathcal{F}$ that forms an open covering of [0,1]. So there exists a large enough r such that for all $1 \le i \le r$, there exists α_i such that

$$\left[\frac{i-1}{r},\frac{i}{r}\right]\subset\gamma^{-1}(A_{\alpha_i})$$

$$\implies \gamma\left(\left[\frac{i-1}{r},\frac{i}{r}\right]\right) \subset A_{\alpha_i}$$

we can then restrict our path to:

$$\gamma_i := \gamma|_{\left[\frac{i-1}{r},\frac{i}{r}\right]}$$

Now, for any $2 \le i \le r - 1$,, there exists a mutually identifiable path $\eta_i : [0,1] \to A_{i-1} \cap A_i$ such that $\eta_{i-1} = x_0, \eta_{i-1}(1) = \gamma(\frac{i-1}{r})$. Therefore, we can define

$$\delta_i = \eta_{i-1} \gamma \eta_i$$

Continuing this process of mutual identification across these intersections, we assume

$$\eta_0 = \eta_r = 1_{x_0}$$

Example 2.41. $\pi_1(S^n) = \{1\} \text{ if } n \geq 2.$

Proof. Take any two points $p, q \in S^n$ such that $p \neq q$. Now define

$$A_1 = S^n \setminus \{p\}$$

$$A_2 = S^n \setminus \{q\}$$

And let $x_0 \in S^n \setminus \{p, q\}$. Then we see that

$$X \subset A_1 \cup A_2$$

so we have an open cover and for x within their intersection, allowing us to apply our previous proposition. Since A_1 and A_2 are simply connected, then any $\gamma \sim 1_{x_0}$.

Definition 2.42. Given two path-connected topological spaces X, Y, then for any continuous mapping $f: X \to Y$, with $x_0 \in X$, $f(x_0) = y_0 \in Y$, the push-forward of f is defined to be:

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$
$$[\gamma] \to [f \circ \gamma]$$

for any $\gamma: I \to X$, $\gamma(0) = \gamma(1) = x_0$.

Remark 2.43. The push-forward is well-defined since for any $\gamma \sim \delta$ relative to $\{0,1\}$ implies $f \circ \gamma \sim f \circ \delta$ relative to $\{0,1\}$.

Definition 2.44. A push-forward is a homomorphism provided for any γ , $\delta: I \to X$, $\gamma(0) = \gamma(1) = \delta(0) = \delta(1)$ provided

$$f_*([\gamma] \cdot [\delta]) = f_*([\gamma]) \cdot f_*([\delta])$$

Definition 2.45. The push-forward of a composition of the mappings

$$f:(X,x_0)\to (Y,y_0)$$

$$g:(Y,y_0)\to(Z,z_0)$$

is given by

$$(g \circ f)_* = g_* \circ f_*$$

Proposition 2.46. Given $A \subset X$ a retraction of X, with $r: X \to A$, then for any base point $x_0 \in A$,

- 1. $r_*: \pi_1(X, x_0) \to \pi_1(A, x_0)$ is surjective.
- 2. If r is a deformation retraction, then r_* is an isomorphism.

Proof. 1. Let $i: A \to X$, with i(x) = x. Then $r \circ i = id_A$, and

$$r_* \circ i_* = (id_A)_* = id_{\pi_1(A,x_0)}$$

If $[\gamma] \in \pi_1(A, x_0)$, then

$$[\gamma] = r_*(i_*([\gamma]))$$

2. Let $\phi_t : X \to X$ serve as the homotopy on X with $\phi_0 = id_X$, $\phi_1 = r$ and $\phi_t(x) = x$ for all $x \in A$. We need to show that r_* is injective. Observe, for any $[\gamma] \in \pi_1(X, x_0)$ with

$$r_*([\gamma]) = 1 \in \pi_1(A, x_0) \implies r \circ \gamma \sim 1_{x_0} \text{ in } A \text{ relative to } \{0, 1\}$$

We also know that $\gamma \sim r \circ \gamma$ relative to $\{0,1\}$ via $\phi_t \circ \gamma$. By the transitive relation of homotopy, we know $\gamma \sim 1_{x_0}$ in X.

Theorem 2.47. If X, Y are path-connected topological spaces and $f: X \to Y$ is a homotopic equivalence, then for any base point $x_0 \in X$, $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is an isomorphism.

Remark 2.48. There exists $g: Y \to X$ such that $f \circ g \sim id_Y$ and $g \circ f \sim id_X$, possibly with $z_0 = g(y_0) \neq x_0$. (That is, they don't need to be inverses)

Theorem 2.49. Consider $h: Z \to Z$, with Z a path-connected topological space and $w_0 \in Z$ some base point. Then if $h \sim id_Z$, then

$$h_*: \pi_1(Z, w_0) \to \pi_1(X, h(w_0))$$

is an isomorphism.

Proof. Let $\eta(t) = \phi_t(w_0)$ where $h(w_0) = v_0$, $\phi_0 = id_Z$ and $\phi_1 = h$. Recall, $\beta_\eta : \pi_1(Z, w_0) \to \pi_1(Z, v_0)$ is an isomorphism with

- $[\gamma] \in \pi_1(Z, w_0) \implies \beta_n([\gamma]) = [\overline{\eta} \cdot \gamma \cdot \eta]$
- By homomorphism,

$$\beta_n[\gamma \cdot \delta] = [\overline{\eta} \cdot \gamma \cdot \delta \cdot \eta] = [\overline{\eta} \cdot \gamma \cdot \eta \cdot \overline{\eta} \cdot \delta \cdot \eta] = \beta_h([\gamma]) \cdot \beta_h([\delta])$$

So we prove $h \circ \gamma \sim \overline{\eta} \gamma \eta$ relative to $\{0, 1\}$. So

$$\eta(t) = \phi_t(w_0) \quad \eta^t(s) = \eta(ts)$$

Therefore,

$$\Theta_t := \eta^t \cdot \phi_t \circ \gamma \cdot \overline{\eta^t}$$

is a homotopy which shows

$$\gamma \sim \eta \cdot \phi_1 \circ \gamma \cdot \overline{\eta} = \eta \cdot h \circ \overline{\eta}$$

So we have proved that $\gamma \sim \eta \cdot h \circ \overline{\eta}$ relative to $\{0,1\}$. Now

$$\overline{\eta} \cdot \gamma \eta \sim \underbrace{\overline{\eta} \cdot \eta}_{id_{v_0}} h \circ \gamma \cdot \underbrace{\overline{\eta} \cdot \eta}_{id_{v_0}}$$

So we get

$$\beta_{\eta}([\gamma]) = h_*([\gamma])$$

$$\implies h_* = \beta_{\eta}$$

which is an isomorphism!

Corollary 2.49.1. Given that there exists $g: Y \to X$ such that $f \circ g \sim id_Y$ and $g \circ f \sim id_X$, possibly with $z_0 = g(y_0) \neq x_0$. Then

$$f_*\circ g_*=id_{\pi_1(Y)}$$

$$g_* \circ f_* = id_{\pi_1(X)}$$

and moreover,

$$\pi_1(X) \approx \pi_1(Y)$$

Corollary 2.49.2. *If* X *is homotopy equivalent to a point, then* $\pi_1(X) = \{1\}$.

Proof. Left as an Exercise

Remark 2.50. Any closed path starting and ending at a point x_0 can be thought of as maps $\gamma:(S^1,1)\to (X,x_0)$ since for any $\gamma:[0,1]\to X$, we can define

$$\gamma_0': S^1 \to X$$

$$e^{2\pi i s} \to \gamma(s)$$

3 Covering Spaces

Proposition 3.1. Suppose X is a path connected topological space. Then $\pi_1(X) = \{1\}$ if and only if for all $x_0, y_0 \in X, \gamma, \delta : [0,1] \to X$ with $\gamma(0) = \delta(0) = x_0$ and $\gamma(1) = \delta(1) = y_0$ then $\gamma \sim \delta$ relative to $\{0,1\}$.

Proof. • (\Leftarrow) Since $\gamma(0) = \delta(0) = x_0$ and $\gamma(1) = \delta(1) = y_0$, then $\gamma \sim \delta = 1_{x_0} \implies \pi_1(X, x_0) = \{1\}$

• (\Rightarrow) Now assume $\pi_1(X) = \{1\}$. Then all homotopies are fixed endpoint. That is,

$$\gamma \sim \gamma \cdot 1_{y_0} \sim \gamma \cdot \overline{\delta} \cdot \delta \sim 1_{x_0} \cdot \delta \sim \delta$$

Definition 3.2. A covering map $p: \tilde{X} \to X$ provided

- p is surjective.
- For all $x_0 \in X$, $\exists U \subset X$ open with $x_0 \in U$ such that $p^{-1}(U) = \bigcup_{\alpha \in \mathcal{F}} V_\alpha$ where

$$V_{\alpha} \cap V_{\beta} = \emptyset \ \forall \alpha \neq \beta$$

 $p|_{V_{\alpha}}:V_{\alpha}\to U$ is a homeomorphism for all V_{α}

Example 3.3. Define $p: \mathbb{R} \to S^1$ with $p(x) = e^{2\pi i x}$. Then for all $x_0 = e^{2\pi i s} \in S^1$, we let

$$U = \left\{ e^{2\pi i r} : |r - s| < \frac{1}{2} \right\}$$

Then $p^{-1}(x_0) = \{s + k : k \in \mathbb{Z}\}$

Example 3.4. Define $p: \mathbb{R}^2 \to S^1 \times S^1 = torus$ by

$$p(x,z)=(e^{2\pi ix},e^{2\pi iz})$$

Then for any $w_0 = (e^{2\pi i x_0}, e^{2\pi i y_0}) \in S^1 \times S^1$, then

$$p^{-1}(w_0) = \{(x_0+k,y_0+m): (k,m) \in \mathbb{Z}^2\}$$

This should be familiar because

$$S^1 \times S^1 = \mathbb{R}^2/\mathbb{Z}^2$$
 (as a group action)

Definition 3.5. $\mathbb{R}P^n := \mathbb{R}^{n+1} \setminus \{0\} / \bowtie where we define the equivalence relation <math>x \bowtie y$ if and only if $\exists \lambda \in R \setminus 0$ such that

$$y = \lambda x$$

Remark 3.6. Observe, $S^n \subset \mathbb{R}^{n+1} \setminus \{0\}$ and

$$\mathbb{R}P^n = S^n / \bowtie$$

by the same equivalence relation, which only acts on the antipodal points

$$x = \pm y$$

Example 3.7. Define $p: S^n \to \mathbb{R}P^n$ by $p(x) = [x] \in \mathbb{R}P^n$, then

$$p^{-1}(x) = \{x, -x\}$$

3.1 Path Lifting

Lemma 3.8. Let $p: Y \to X$ a covering map and a base point $x_0 \in X$, $x_0 \in Y$ an covered open set. Let Z be path connected with a function $f: Z \to X$ that satisfies $f(x_0) = x_0$, $f(Z) \subset U$. Let $p(y_0 = x_0)$ for some $y_0 \in V_0$, $p|_{V_0}: V_0 \to U_0$ a homeomorphism. Then there exists a unique continuous $\tilde{f}: Z \to Y$ such that

$$p \circ \tilde{f} = f, \tilde{f}(z_0) = y_0$$

That is, the diagram

commutes.

Proof. • Existence: Let $\tilde{f} := p|_{V_0} \cdot f$

• Uniqueness: Now assume that $\tilde{g}: Z \to Y$ such that

$$\tilde{g}(z_0) = y_0, p \circ \tilde{g} = f$$

Then

$$Z = \tilde{g}^{-1}(V_0) \perp \!\!\! \perp \tilde{g}^{-1}(Y \setminus V_0)$$

We claim that $\tilde{g}^{-1}(Y \setminus V_0)$ is open since if $z \in Z$, $\tilde{g}(z) = y \in V_0$ if and only if $z \in \tilde{g}^{-1}(Y \setminus Y_0)$. So

$$p(y) = p \cdot \tilde{g}(z) = f(z) \in U$$

So there exists V_{α} such that $p|V_{\alpha}:V_{\alpha}\to U$ is a homeomorphism with $V_{\alpha}\cap V_{0}=\emptyset$. So $\tilde{g}(V_{\alpha})$ is open with

$$\tilde{g}^{-1}(V_\alpha)\subset \tilde{g}^{-1}(Y\setminus V_0)$$

Therefore, $g^{-1}(V_{\alpha})$ is open. Further $\tilde{g}^{-1}(Y \setminus V_0) = \emptyset$ since Z is path connected. So

$$p\circ \tilde{g}=p\circ \tilde{f}=f$$

But since $p|_{V_0}$ is a homeomorphism, then

$$\tilde{g} = \tilde{f}$$

Theorem 3.9 (Monodromy, Existence of Path Lifting). Let $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ be a covering map. If $\gamma: I \to X$ is a path with $\gamma(0) = x_0$, then there exists a unique $\tilde{\gamma}: I \to \tilde{X}$ such that

- 1. $\tilde{\gamma}(0) = x_0$
- $2. \ p\circ\tilde{\gamma}=\gamma$

Further, the diagram

$$I \xrightarrow{\exists ! \tilde{\gamma}} \tilde{X} \downarrow_{p}$$

commutes.

Proof. There exists $\{U_j\}_{j\in\mathcal{F}}$ a family of evenly covered open $U_j\subset X$ such that $\gamma\subset\bigcup_{j\in\mathcal{F}}U_j$. Lebesgue's lemma tells us that $\{\gamma^{-1}(U_j)\}_{j\in\mathcal{F}}$ serves as a covering of I, specifically,

$$I\subset\bigcup_{j\in\mathcal{F}}\gamma^{-1}(U_j)$$

Further, there exists *i*, *k* such that

$$\left[\frac{i-1}{k},\frac{i}{k}\right]\subset \gamma^{-1}(U_i)$$

Therefore,

$$\gamma\left(\left[\frac{i-1}{k},\frac{i}{k}\right]\right)\subset U_i$$

By a nod to induction on i, the we see $V_i \subset \tilde{X}$ an open subset, then $p|_{V_i}: V_i \to U_i$ is a homomorphism and $\tilde{\gamma}(\frac{i-1}{k}) \in V_i, \tilde{\gamma}(\frac{0}{k}) = \tilde{x}_0$.

Theorem 3.10 (Homotopy Lifting). Let $p:(\tilde{X},\tilde{x}_0)\to (X,x_0)$ be a covering map. Suppose we have two homotopic paths

$$\gamma, \delta: I \to X$$

$$\gamma(0) = \delta(0) = x_0$$

$$\gamma(1) = \delta(1) = x_1$$

such that $\gamma \sim \delta$ relative to $\{0,1\}$. Then there exists two paths

$$\tilde{\gamma}, \tilde{\delta}: I \to \tilde{X}$$

such that

1.
$$\tilde{\gamma}(0) = \tilde{\delta}(0) = \tilde{x}_0$$

2.
$$\tilde{\gamma}(1) = \tilde{\delta}(1) = \tilde{x}_1$$

3. The following relations are satisfied:

$$p\circ\tilde{\gamma}=\gamma$$

$$p\circ \tilde{\delta}=\delta$$

$$p(\tilde{x}_0) = x_0$$

$$p(\tilde{x}_1) = x_1$$

Further, we a well defined deformation $F:[0,1]^2 \to X$, we can identify a unique lifted deformation such that the diagram

$$I^2 \xrightarrow{\exists ! \tilde{\gamma}} \tilde{X}$$

$$\downarrow^F \qquad \downarrow^p X$$

commutes.

Proof. Consider the continuous deformation $F : [0,1]^2 \to X$ with

$$F(s,t)=\phi_t(s)$$

$$F(s,0) = \gamma(s)$$

$$F(0,t)=x_0$$

$$F(s,1) = \delta(s)$$

$$F(1,t)=x_1$$

Observe, we can consider $\{U_i\}_{i\in\mathcal{F}}$ an even open covering of X with

$$F([0,1]^2) \subset \bigcap_{j \in \mathcal{J}} U_j$$

Then by Lebesgue's lemma, we can identify a $k \ge 2$ such that for all $\alpha, \beta = 1, ..., k$,

$$W_{\alpha,\beta} := \left[\frac{\alpha-1}{k}, \frac{\alpha}{k}\right] \times \left[\frac{\beta-1}{k}, \frac{\beta}{k}\right]$$

satisfies

$$F(W_{\alpha,\beta}) \subset U_{\alpha,\beta}$$

Then if we define the lexicographic ordering

$$W_{i,j} < W_{\alpha,\beta} \iff i < \alpha \text{ or } i = \alpha \text{ and } j < \beta$$

The for all α , $\beta = 1, ..., k$ with $(\alpha, \beta) \neq (1, 1)$, then

$$\left(\bigcup_{W_{i,j} < W_{\alpha,\beta}} W_{i,j}\right) \cap W_{\alpha,\beta} \neq \emptyset$$

Then we can construct $\tilde{F}:[0,1]^2 \to \tilde{X}$ such that

$$\tilde{F}(0,0) = \tilde{x}_0$$

and $p \circ \tilde{F} = F$ by induction on i.

- So first constuct $\tilde{F}_{W_{1,1}}$ and define recursively until defining over all $W_{i,j}$.
- Upon reaching step (α, β) , then there exists

$$z_{\alpha,\beta} \in W_{\alpha,\beta} \cap W_{i,j}$$

where $W_{i,j} < W_{\alpha,\beta}$. By induction, we know $\tilde{F}(z_{\alpha,\beta}) \in \tilde{X}$. The previous lemma then gives us $\tilde{F}|_{W_{\alpha,\beta}}$

Definition 3.11. A space Y is locally path connected provided there exists a base of path connected open sets.

Theorem 3.12. Let $p:(\tilde{X},\tilde{x}_0)\to (X,x_0)$ be a covering map. Suppose Y is a simply connected and locally path connected space. Then for all $f:(Y,y_0)\to (X,x_0)$, then there exists a unique $\tilde{f}:(Y,y_0)\to (\tilde{X},\tilde{x}_0)$ such that

$$p\circ \tilde{f}=f$$

In other words, the diagram

$$Y \xrightarrow{\exists ! \tilde{f}} \tilde{X} \downarrow p \\ X$$

commutes.

Theorem 3.13 (Monodromy, Existence of Path Lifting). Let $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ be a covering map on a path connected space X. Then $p^{-1}(x_0)$ and $p^{-1}(x_1)$ have the same cardinality for all $x_0, x_1 \in X$.

Proof. For all $\tilde{x} \in \tilde{X}$ with $p(\tilde{x}) = x_0$. Let $\tilde{\gamma}_{\tilde{x}} : I \to \tilde{X}$ such that

$$p\circ\tilde{\gamma}_{\tilde{x}}=\gamma$$

and $\tilde{\gamma}_{\tilde{x}}(0) = \tilde{x}$. Where $\gamma: I \to X, \gamma(0) = x_0, \gamma(1) = x_1$. Then

$$\phi: p^{-1}(x_0) \to p^{-1}(x_1) \quad \phi(\tilde{x}) = \tilde{\gamma}_{\tilde{x}}(1)$$

$$\psi: p^{-1}(x_1) \to p^{-1}(x_0) \quad \psi(\tilde{g}) = \tilde{\overline{\gamma}}_{\tilde{y}}(1)$$

Then

$$\psi \circ \phi = id_{p^{-1}(x_0)}$$

$$\phi \circ \psi = id_{p^{-1}(x_1)}$$

And therefore we ϕ is a bijection.

Remark 3.14. If $\sharp p^{-1}(x_0) = k \in \mathbb{N}$, then $p^{-1}(x_0)$ is known as k-sheeted covering.

Definition 3.15. X is locally path connected if for all $x \in X$ and $S \subset X$ open with $x \in S$. Then there exists $x \in W \subset S$, W open and path connected.

Exercise 3.16. Suppose we have a covering map $p: \tilde{X} \to X$ and X is locally path connected. Then \tilde{X} is also locally path connected.

Theorem 3.17. Let $p:(Y,y_0) \to (X,x_0)$ be a covering map. Let (X,x_0) be path connected, Ysimply connected, and let

$$f:(Z,z_0)\to (X,x_0)$$

continuous function with Z locally path connected. Then there exists a unique continuous $\tilde{f}:(Z,z_0)\to (Y,y_0)$ such that

$$p \circ \tilde{f} = f$$

In other words, the diagram

$$Z \xrightarrow{\exists! \tilde{f}} \tilde{Y} \downarrow_{\tilde{f}} \downarrow_{X}$$

commutes.

Proof.

For all $q \in Z$, we choose $\tilde{f}(z) = f \circ \gamma$. Why do we need z simply connected? If not, \tilde{f} is not well-defined, see later example. But if z is simply connected, then any other path δ from z_0 to z is fixed endpoint homotopic to γ , so $f \circ \gamma$ and $f \circ \delta$ are fixed endpoint homotopic, and $f \circ \delta$ are fixed endpoint homotopy lifting. Then

$$\widetilde{f \circ \gamma}(1) = \widetilde{f \circ \delta}(1)$$

By construction:

- $p \circ \tilde{f} = f$
- ullet $ilde{f}$ is unique (can check that any $ilde{f}$ must have the same property)

Since Z is locally path connected, we can show that \tilde{f} is continuous. Specifically, let $S \subset Y$ an open set, and $\tilde{f}(z) - y \in S$. Let x = p(y) = f(z). Then there exists some evenly covered open $U \subset X$ with $p^{-1}(V) \subset S$, $y \in p^{-1}(V)$ and $p:V \to U$ a homeomorphism. Since Z is path connected, there exists an open neighborhood W of z which is path connected such that $f(W) \subset U$. So for any $q \in W$, we can connect z to q in W by a path τ . So that $f \circ \tau$ gives a path from f(z) to f(q) in U, which is lifted to a path $f \circ \tau$ from f(z) to f(z) to f(z) to f(z) in f(z) to f(z) to f(z) to f(z) to f(z) to f(z) in f(z) to f(z) t

Example 3.18. $p: \mathbb{R} \to S^1$ via $p(t) = e^{2\pi i t}$. Then $p(0) = 1 = e^{2\pi i 0}$. Then $\gamma_1(s) = e^{2\pi i s}$ and $\gamma_2(s) = e^{4\pi i s}$ are both loops at p(0) = 1, but they get lifted to paths with different endpoints in \mathbb{R} .

Proposition 3.19. *If* f *is a covering and* Y *is path connected, then so is* \tilde{f} .

Proof. If f is a covering, choose some neighborhood U of x which is evenly covered by both f and p. Then $V_0 = p^{-1}(f(W))$ is homeomorphic to f(W). So $f^{-1}(W_0) = \bigcup_{\alpha} S_{\alpha}$ with $f|_{S_{\alpha}} : S_{\alpha} \xrightarrow{\sim} f(W)$. This will be the covering!

Remark 3.20. The notation $\gamma : x \rightsquigarrow y$ means that γ is a path from x to y.

Theorem 3.21. *Let X be path connected as well as locally path connected. Let*

$$p_1:(\tilde{X}_1,\tilde{x}_1)\to(X,x_0)$$

$$p_2: (\tilde{X}_2, \tilde{x}_2) \rightarrow (X, x_0)$$

be covering maps with \tilde{X}_1, \tilde{X}_2 simply connected. Then there exists a unique homeomorphism $\Phi: \tilde{X}_1 \to \tilde{X}_2$ such that

$$p_2 \circ \Phi = p_1 \quad \Phi(\tilde{X}_1) = \tilde{X}_2$$

That is, the diagram

commutes.

Proof. Note that X is locally path connected implies that \tilde{X}_1 , \tilde{X}_2 are both locally path connected since for sufficiently small neighborhoods in \tilde{X}_1 , \tilde{X}_2 must be homeomorphic to neighborhoods in X. Then we recall by the previous theorem, we see that

$$\tilde{X}_1=Z, \tilde{X}_2=Y$$

gives rise to a continuous $\Phi: \tilde{X}_1 \to \tilde{X}_2$ with $\phi(\tilde{X}_1) = \tilde{X}_2$. Similarly, if we let $\tilde{X}_1 = Y$, $\tilde{X}_2 = Z$, then by the previous theorem there exists $\Psi: \tilde{X}_2 \to \tilde{X}_1$ with $\Psi(\tilde{x}_2) = \tilde{x}_1$. Since $id_{\tilde{X}_1}$ and $\Psi \circ \Phi$ both satisfy the previous theorem with $Y = Z = X_1$, then

So the maps are equal. An identical argument establishes that $\Phi \circ \Psi - id_{\tilde{X}_2}$, so that Φ is a homeomorphism. So we can apply the previous theorem to

which shows that Φ is unique!

Remark 3.22. Two coverings of the same space implies the coverings are equivalent.

3.2 Universal Covers

Definition 3.23. *If* $p : \tilde{X} \to X$ *is a covering map such that* X *is locally path connected and* \tilde{X} *is simply connected, then* \tilde{X} *is called a universal cover.*

Proposition 3.24 (Properties of Universal Covers). 1. *Universal covers are unique up to unique (pointed) isomorphism. That is, if* \tilde{X}' *is another universal cover, then there exists a unique pointed isomorphism* $\phi: \tilde{X} \xrightarrow{\sim} \tilde{X}'$.

- 2. If $\tilde{X}_1, \tilde{X}_2 \in p^{-1}(x_0)$, then there is a unique homeomorphism $\phi: \tilde{X} \to \tilde{X}$ such that $\phi(\tilde{x}_1) = \tilde{x}_2$ and $p \circ \phi = p$. ϕ here is called a deck transformation.
- 3. If $q:(Y,y_0)\to (X,x_0)$ is any covering of X, then there exists a unique covering $s:(\tilde{X},\tilde{x}_0)\to (Y,y_0)$ such that $q\circ s=p$. That is, the diagram

commutes.

Theorem 3.25. *If X is path connected and locally simply connected, then there exists a universal cover!*

Definition 3.26. Let G be a group acting on Y. Recall that this means that for each $g \in G$, there is a homeomorphism φ_g such that $\varphi_{gh} = \varphi_g \circ \varphi_h$ and $\varphi_1 = id_Y$. We say that G acts freely if for all $y \in Y$, $g \neq h \in G$, $gy \neq hy$. G acts freely and properly if for all $y \in Y$, there exists an open neighborhood V containing g such that $g \neq h$ $g \in G$. This is sometimes called a covering transformation or a properly discontinuous action.

Remark 3.27. *In the case of* Y, $q: Y \rightarrow Y/G$ *will be a covering.*

Theorem 3.28. *If* $p : \tilde{X} \to X$ *is a covering map,* \tilde{X} *simply connected, and* X *is locally path connected. Then*

- 1. $\pi_1(X)$ acts freely and properly on \tilde{X} .
- 2. Fixing a basepoint \tilde{x}_0 , with $p(\tilde{x}_0) = x_0$, then for $[\gamma] \in \pi_1(X, x)$, we can lift the loop γ to the path $\tilde{\gamma}$ in \tilde{X} . Then

$$\phi_{[\gamma]}: \tilde{X} \to \tilde{X}$$

i.e. the action of $[\gamma]$ on \tilde{X} , is the unique homeomorphism such that $\phi_{[\gamma]}(\tilde{x}_0) = \tilde{\gamma}(1) \in p^{-1}(x_0)$. Moreover, there is the correspondence

$$\pi_1(X, x_0) \leftrightarrow group \{\phi_{[\gamma]}\} \leftrightarrow p^{-1}(x_0)$$

Proof. Use the previous two theorems.

3.3 Group Actions and Deck Transformations

Theorem 3.29 (Deck Transformation Theorem). *Let G act freely and properly on a simply connected and locally path connected space Y. Then*

1. For X = Y/G, we have $\pi_1(X) \cong G$. That is, G acts on Y as in the previous theorem.

2. If $p: Y \to Y/G = X$ is a covering map, with $p(y_0) = x_0$, then

$$\pi_1(X,x_0) \leftrightarrow p^{-1}(x_0) \sim \{\phi_{[\gamma]}: Y \to Y | [\gamma] \in \pi_1(X)\}$$

where $\phi_{[\gamma]}: Y \to Y$ is the unique homeomorphism such that

$$\phi_{[\gamma]}(y_0) = \tilde{\gamma}(1) \in p^{-1}(x_0)$$

and

$$p \circ \phi_{[\nu]} = p$$

Remark 3.30. *G* is referred to as a deck transform.

Remark 3.31. For any $[\gamma] = [\delta] \in \pi_1(X) \iff \tilde{\gamma}(1) = \tilde{\delta}(1)$.

Theorem 3.32. 1. $\pi_1(S^1) = \mathbb{Z}$

2. For all $n \in \mathbb{Z}$, let w_n be a path $w_n : I \to S^1$ such that

$$w_n(s) = e^{2\pi i n s}$$

$$[w_n] \in \pi_1(S_1, 1).$$

Proof. Let $p: \mathbb{R} \to S^1$ be the covering maps $p(s) = e^{2\pi i s}$. Then the lift

$$\tilde{w}_n: I \to \mathbb{R}$$
 $s \to ns$
 $1 \to n$

So $\pi_1(S^1, 1) \cong \mathbb{Z} = p^{-1}(1)$ and we have

$$\phi: \mathbb{Z} \to \pi_1(S^1, 1)$$
$$n \to [w_n]$$

Remark 3.33. $w_1: I \to S^1$, $w_1(s) = e^{2\pi i s}$ gives $[w_1]$, a generator of $\pi_1(S^1, 1)$.

Theorem 3.34. 1. $\pi(S^1 \times S^1) = \mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z} = \mathbb{Z} \oplus \mathbb{Z}$

2.

$$p: (\mathbb{R}^2, (0,0)) \to (S^1 \times S^1, (1,1))$$

$$(s,t) \to (e^{2\pi i s}, e^{2\pi i t}) \in S^1 \times S^1$$

 $S^1 \times S^1 = \mathbb{R}^2/\mathbb{Z}^2 \implies \pi_1(S^1 \times S^1) = \mathbb{Z}^2$ and $[w_1 \times id_1]$, $[id_1 \times w_1]$ generate this group.

Theorem 3.35. $\mathbb{R}P^n = S^n / \bowtie$, where we define the equivalence relation \bowtie as $x \bowtie \pm x$, for all $n \ge 2$. Since $\mathbb{Z}_2 = \{-1, 1\}$, then

$$\mathbb{R}P^n = S^n/\mathbb{Z}_2$$

Since $\pi_1(S^n) = \{1\}$, we have $\pi_1(\mathbb{R}P^n) = \mathbb{Z}_2$ by the Deck Transformation Theorem.

Theorem 3.36. There is no retraction $r: D^2 \to S^1 = \partial D^2$.

Proof. If there exists such a retraction, then there is a surjection $r_*: \pi_1(D_2,1) \to \pi_1(S^1,1)$. But $\pi_1(D^2) = \{1\}, \pi_1(S^1) = \mathbb{Z}$. Contradiction!

Theorem 3.37 (Brouwer Fixed Point). *If* $f: D^2 \to D^2$ *continuous, then there exists* $x \in D^2$ *with* f(x) = x.

Proof. Suppose $f(x) \neq x$ for all $x \in D^2$. Then for all $x \in D^2$, there exists $\lambda_x > 0$ such that

$$f(x) + (x - f(x))\lambda_x \in \partial D^2$$

Let $r(x) = f(x) + (x - f(x))\lambda_x$ Then r(x) is continuous and r(x) = x for any $x \in S^1$. But r(x) is then homotopic to the identify via straight-line homotopy of each x to r(x). So r is a deformation retraction. Contradiction!

Theorem 3.38 (Fundamental Theorem of Algebra). Let $p : \mathbb{C} \to \mathbb{C}$ be $p(z) = \sum_{i=0}^{n} a_i z^i$ where $a_n \neq 0$ for some $n \geq 1$. Then there exists $z_0 \in \mathbb{C}$ such that $p(z_0) = 0$.

Proof. There exists R > 1 such that $|a_n|R^n > \sum_{i=0}^{n-1} |a_i|R^i$. The for all $0 \le r \le R$ to consider the path

$$\phi_r: I \to (S^1, 1)$$

$$\frac{p(re^{2\pi is})}{|p(re^{2\pi is})|} \cdot \frac{|p(r)|}{p(r)}$$

Then $\gamma_0(s) = 1$ for all $s \in I$. But $\gamma_R \sim \gamma_0$ relative to $\{0,1\}$ via $F(s,t) = \gamma_{Rt}(s)$. Now let

$$q_t(s) = a_n R^n e^{2\pi i s n} + t \sum_{j=0}^{n-1} a_j e^{2\pi i j s} R^j = a_n z^n + t \sum_{j=0}^{n-1} a_j z^j$$

where $z = Re^{2\pi is}$. Now let

$$\delta_t(s) = \frac{q_t(s)}{|q_t(s)|} \cdot \frac{p(r)}{|p(r)|}$$

Then δ_t is a homotopy from $\delta_1 = \gamma_R$ to $\delta_0(s) = e^{2\pi i n s} = w_n(s)$. But the

$$[w_n] = [\delta_0] = [\delta_1] = [\gamma_R] = [\gamma_0] = \text{ constant path } [w_0]$$

Contradiction, since $n \ge 1$!

Proposition 3.39. $\pi_1(S^1) = \mathbb{Z}$.

Proposition 3.40. $\pi_1(S^n) = \{1\} \text{ for } n \geq 2.$

Proposition 3.41. $\pi_1(X) = \{1\}$ if X is contractible.

Theorem 3.42. If X_1 , X_2 are topological spaces, then $\pi_1(X_1 \times X_2) = \pi_1(X_1) \times \pi_1(X_2)$.

Proof. (Idea)

Let $X = X_1 \times X_2, x_1 \in X_1, x_2 \in X_2$. Let $(x_1, x_2) \in X$. If $\gamma : I \to X$, then $\gamma = \gamma_1 \times \gamma_2$, where γ_1, γ_2 are continuous. Conversely, if γ_1, γ_2 loops within X_1, X_2 , then $\gamma_1 \times \gamma_2$ is a loop in X.

Example 3.43. $\pi_1(S^1 \times S^1) = \mathbb{Z} \oplus \mathbb{Z}$.

4 Seifert-Van Kampan Theorem

Definition 4.1. Let $\{G_{\alpha}\}_{{\alpha}\in I}$ be a family of groups. Then the free product of the family $\{G_{\alpha}\}$, denoted $*_{{\alpha}\in I}G_{\alpha}$, consists of finite sequences g_1,g_2,\ldots,g_k such that $g_i\in some\ G_{\alpha}$, subject only to the relations with G_{α} . That is,

- If $g_i, g_{i+1} \in G_\beta$, then $g_i g_{i+1}$ can be replaced with $g_i \cdot g_{i+1}$. Or $g_i g_{i+1} \sim g_i \cdot g_{i+1}$.
- 1_{α} can be omitted for any G_{α} , that is, for any β , and any $g \in G_{\beta}$. $1_{\alpha}g = g$ or $1_{\alpha} \sim \epsilon$.

Theorem 4.2 (Seifert-Van Kampan). Let X be path connected with $x_0 \in X$. Let $\{A_\alpha\}_{\alpha \in \mathcal{F}}$ be an open cover of X, with $x_0 \in A_\alpha$ for each α and $A_\alpha \cap A_\beta \cap A_\gamma$ is path connected for any $\alpha, \beta, \gamma \in \mathcal{F}$ (not necessarily distinct). Then

1. There exists a surjective homomorphism

$$\psi : *_{\alpha \in \mathcal{F}} \pi_1(A_\alpha, x_0) \to p_1(X, x_0)$$

2. For all A_{α} , A_{β} , let

$$i_{\alpha\beta}: A_{\alpha} \cap A_{\beta} \hookrightarrow A_{\alpha}$$

 $i_{\beta\alpha}: A_{\alpha} \cap A_{\beta} \hookrightarrow A_{\beta}$

Then ker(ϕ) *is the normal subgroup generated by*

$$((i_{\alpha\beta})_*[\gamma])((i_{\beta\alpha})_*[\gamma])$$

for all $\alpha, \beta \in \mathcal{F}$, $\gamma : I \to A_{\alpha} \cap A_{\beta}$. Equivalently, it is the subgroup of the free product with the relations $(i_{\alpha\beta})_*[\gamma] = (i_{\beta\alpha})_*[\gamma]$.

Remark 4.3. We essentially want $(i_{\alpha\beta})_*[\gamma]$ is equal to $(i_{\beta\alpha})_*[\gamma]$ for any $[\gamma] \in \pi_1(A_\alpha \cap A_\beta, x_0)$

Proof. Easily readable from Hatcher.

Corollary 4.3.1. For all $\alpha \neq \beta$, $A_{\alpha} \cap A_{\beta}$ simple connected implies $\pi_1(X, x_0) = *_{\alpha \in \mathcal{F}} \pi_1(A_{\alpha}, x_0)$

Example 4.4. Consider $S^1 \vee S^1$. We recall its definition is

$$S^1 \vee S^1 = \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + y^2 = 1\} \cup \{(x,y) \in \mathbb{R}^2 : (x+1)^2 + y^2 = 1\}$$

Now, let

$$A_{\alpha} := \left\{ (x, y) \in S^1 \lor S^1 : x < \frac{1}{2} \right\}$$
$$A_{\beta} := \left\{ (x, y) \in S^1 \lor S^1 : x > \frac{-1}{2} \right\}$$

Then we see that $A_{\alpha} \cap A_{\beta}$ is contractible since it is homeomorphic to \times and hence it is simple connected. Further, A_{α} and A_{β} can both be deformation retracted to S^1 . Therefore, by the previous corollary, we see that

$$\pi_1(S^1\vee S^1)=\mathbb{Z}*\mathbb{Z}$$

Remark 4.5. $In *_{\alpha \in \mathcal{F}} \pi_1(A_\alpha, x_0), i_{\alpha\beta^*}[\gamma] = i_{\beta\alpha^*}[\gamma]$

Remark 4.6. *If for all* $\alpha \neq \beta$, $\pi_1(A_{\alpha} \cap A_{\beta}, x_0) = \{1\}$, then $\pi_1(X, x_0) = *_{\alpha \in \mathcal{F}} \pi_1(A_{\alpha}, x_0)$

Example 4.7. Let $\vee_{\alpha \in \mathcal{F}} S^1_{\alpha}$ be defined such that for any $x_{\alpha} \in S^1_{\alpha}$,

$$X = \perp \!\!\! \perp \alpha S_{\alpha}^{1} / \bowtie$$

where $x_{\alpha} \bowtie x_{\beta}$ for all $\alpha, \beta \in \mathcal{F}$. Then

$$\pi_1(\vee_{\alpha\in\mathcal{F}}S^1_\alpha)=*_{\alpha\in\mathcal{F}}Z$$

with a free group generated by $[\gamma_{\alpha}]$ with $\gamma_{\alpha}: I \to S^1_{\alpha}$ defined by $\gamma_{\alpha}(x) = e^{2\pi i s}$

Example 4.8. We can now discuss the <u>oriented surfaces of genus $g \ge 1$ </u>. Let $X = P /\bowtie w$ where P is a 4g-polygonal diagram in \mathbb{R}^2 shown below:

Let

$$A_{\alpha} = P \setminus \{z_0\}, z_0 \in int(P)$$

 $A_{\beta} = int(P)$

Then we see that $A_{\alpha} \cap A_{\beta} = int(P) \setminus \{z_0\}$. Further,

$$\gamma(s) = z_0 + re^{-2\pi i s}$$

with $s \in [0, 1]$. Then we see that the deformation retracts to the image of $\gamma \approx rS^1$. We can make this explicitly by defining for any $x \in A_\alpha \cap A_\beta = int(P) \setminus \{z_0\}$, then

$$\phi_t(x) = (1 - t)x + t(z_0 + r \frac{x - z_0}{\|x - z_0\|})$$

Further $\pi_1(A_\alpha \cap A_\beta \text{ is generated by } [\gamma]$. In A_α , we can project the polygon through $g: P/\bowtie X$ in $\pi_1(A_\alpha)$, $[\gamma] \sim [\partial P]$. In A_β , $\pi_1(A_\beta) = \{1\}$. and A_β is connectible, then

$$i_{\beta\alpha*}[\gamma] \in \pi_1(A_\beta) \text{ in } \{1\}$$

Van Kampen tells us $[\partial P] \sim \{1\}$ *in* $\pi_1(X)$ *. So*

$$[a_1][b_1][\bar{a}_1][\bar{b}_1]\dots[a_g][b_g][\bar{a}_g][\bar{b}_g] = 1$$

This is the only relation in $\pi_1(A_\alpha) * \pi_1(A_\beta)$ to define $\pi_1(X)$. How to do this properly with base point.

Let

$$x_0 = \gamma(0) = \gamma(1) \in A_\alpha \cap A_\beta$$

Then we can fix

$$f: S^1 \to \partial P$$
 homeomorphism

We can then carry x_0 to the boundary via the path $\delta: x_0 \sim f(1)$. Then we see that

$$\gamma \sim \underbrace{\overline{\delta} f \delta}_{\partial P}$$

Remark 4.9. When g = 1, then we get the torus polygonal diagram:

with the relation

$$\mathbb{Z}[a]*\mathbb{Z}[b]/\langle [a][b][\overline{a}][\overline{b}]\rangle$$

where

$$[a][b][\overline{a}][\overline{b}] = 1 \iff [a][b][a]^{-1}[b]^{-1} = 1 \iff [a][b] = [b][a]$$

and therefore,

$$\mathbb{Z}[a] * \mathbb{Z}[b] / \langle [a][b][\overline{a}][\overline{b}] \rangle = \mathbb{Z} \oplus \mathbb{Z}$$

 A_{α} deformation retracts to $a_1 \vee b_1 \vee a_2 \vee b_2 \vee ... \vee a_g \vee b_g = Z$. Then Z is the wedge product of 2g copies of S^1 . In the previous example,

$$\pi_1(A_\alpha) = \mathbb{Z}[a_1] * \mathbb{Z}[b_1] * \dots * \mathbb{Z}[a_g] * \mathbb{Z}[b_g]$$

5 Cell Complexes

Definition 5.1. A CW-complex X is the union of X^n , where X^n is the n-skeleton defined inductively on $n \in \mathbb{N}$. Specifically,

$$X^0 := set \ of \ discrete \ points, \ possibly \ X^0 = \{point\}$$

Then, given some X^{n-1} , $n \ge 1$, either $X^n = X^{n-1}$ or choose some family of $\{D^n_\alpha\}_{\alpha \in \mathcal{F}_n}$ in balls, then $\phi^n_\alpha = S^{n-1}_\alpha : \partial D^n_\alpha \to X^{n-1}$ (referred to as the characteristic maps) are continuous, then

$$X^n = X^{n-1} \perp (\perp \!\!\!\perp_{\alpha \in \mathcal{T}_n} D_{\alpha}^n) / \bowtie$$

where the equivalence relation is defined for any $x \in S_{\alpha}^{n-1} \bowtie \phi_{\alpha}^{n}(x)$. Specifically, $\Phi_{\alpha}^{n}: D_{\alpha}^{n} \to X$ is homeomorphic to $int(D_{\alpha}^{n})$ and let

$$e_{\alpha}^{n} := \Phi_{\alpha}^{n}(intD_{\alpha}^{n})$$

and n-cell. Then X^n is the attaching of $e^n_\alpha \in \mathcal{F}_n$ through $\phi^n_\alpha : S^{n-1}_\alpha \to X^{n-1}$. Then we allow

$$X := \bigcup_{n \ge 0} X^n$$

Definition 5.2. Suppose $X = \bigcup_{n \ge 0} X^n$ be a CW-complex. Then X^n is the quotient topology, where

- If $X = X^d$ and n = d, then X^d defines X
- If X is infinite dimensional, where if $Z \subset X$ is <u>closed</u> if and only if $Z \cap X^n$ is closed for all $n \ge 0$.

Remark 5.3. If $Y \subset X$ is a subcomplex, then if Y is closed and if $Y \cap e_{\alpha}^{n} \neq \emptyset$, then $e_{\alpha}^{n} \subset Y$. Further, $\varphi_{\alpha}^{n}(D^{n}) \subset Y$. In this case, Y itself is a CW Complex (Exercise).

Proposition 5.4. *If* $A \subset X$ *is a subcomplex,* A *is closed and* $A \cap e^n_\alpha$ *yields* $e^n_\alpha \subset A$ *if and only if* $\exists \mathcal{F}^n_A \in \mathcal{F}$ *for all* n *such that*

$$A = \bigcup_{n} \bigcup_{\alpha \in \mathcal{F}_{A}^{n}} \phi_{\alpha}^{n}(D_{\alpha}^{n})$$

Proposition 5.5. *If* A, $B \subset X$ *are subcomplexes, then* $A \cap B$, $A \cup B$ *are subcomplexes.*

Proposition 5.6. *If* $A \subset X$ *is a subcomplex, then* A *is a* CW *complex.*

Example 5.7. Suppose S^n with two cells for $n \ge 1$. Then

$$X^0 = \{point\} = p, \quad X^0 = \dots = X^{n-1}$$

$$S^n = D^n / \partial D^n$$

where for an n-dimensional cell,

$$\phi_1^n: \partial D_1^n \to \{p\}$$

Moreover,

$$\phi_1^1(1) = \phi_1^1(-1) = p$$

Example 5.8. We can consider S^n with 2n cells. When n = 1, then we can split S^2 into the upper and lower hemispheres. *Insert Image*

 $S^k \subset S^n$ is a subcomplex for $0 \le k \le n$.

Example 5.9. Let $X = \mathbb{R}P^n = S^n / \bowtie$ where $x \bowtie \pm x$. Then it we consider it over n + 1 cells, we see

$$X^0 = \{p\}, n \ge 1$$

$$\phi^n: \partial D^n \to \mathbb{R}P^{n-1}$$
$$x \to [x]$$

insert image

Then we allow $\mathbb{R}P^n = D^n / \bowtie where x \bowtie y, x \neq y \iff x, y \in \partial D^n, x = -y$.

Remark 5.10. Any differentiable manifold has a CW complex.

Remark 5.11. Any real or complex algebraic variety has a CW complex.

Remark 5.12. *Simplicial complexes are CW Complex Structures.*

Remark 5.13. *Simplicial complexes are CW Complex Structures.*

Example 5.14. Let $X = Y_1 \cup Y_2 \cup Y_3$ where for all $Y_i = S^1$ and $Y_1 \cap Y_2 = \{z_1\}$ and $Y_2 \cap Y_3 = \{z_2\} \neq \{z_1\}$. Then we have a CW complex with 4 one-dimensional cells. Further

$$e_{\alpha}^{n} \cap X^{n-1} = \emptyset$$

Remark 5.15. Infinite dimensional CW complexes exhibit strange behavior. Let S^1_{α} be an indexed family of circles with $\alpha \in \mathcal{F}$. Then

$$\bigvee_{\alpha} S_{\alpha}^{1} = CW Compex X^{0} = common point$$

Let $x_{\alpha} \in S^1_{\alpha}$. Then we allow $x_{\alpha} \bowtie$. Take $y_{\alpha} \in S^1_{\alpha} \setminus \{x_{\alpha}\} \implies y_{\alpha} \in e^1_{\alpha}$. Then we see that if \mathcal{F} is infinite, then $\{y_{\alpha}\}_{{\alpha} \in \mathcal{F}}$ is a closed CW complex yet may not be locally compact. This should illustrate why we need finiteness.

Definition 5.16. *If* $Z \subset X$ *is a subcomplex, then if* Z *is compact if and only if* Z *is closed and intersects only finitely many cells* e^n_α .

Remark 5.17. Any CW complex can be recognized as

$$X^n = X^{n-1} \perp \!\!\!\perp D^n_\alpha \perp \!\!\!\perp D^n_\beta / \bowtie = q$$

where $\phi_{\alpha}^n:\partial D_{\alpha}^n=S_{\alpha}^{n-1}\to X^{n-1}$ and $\phi_{\beta}^n:\partial D_{\beta}^n=S_{\beta}^{n-1}\to X^{n-1}$ are the characteristic maps.

Then if we define

$$\Phi_{\alpha}^n := q/D_{\alpha}^n$$

then we see that

$$\Phi_{\alpha}^{n}|_{int(D_{\alpha}^{n})}$$

is a homeomorphism.

5.1 Graphs

Definition 5.18. A 1-dimensional CW complex is called a <u>graph</u> where e^1_{α} are referred to as <u>edges</u> and the points of X^0 serves as the <u>vertices</u>.

Definition 5.19. A (graph theoretic) simple path of a graph X, consisting of $v_1, \ldots, v_k \in X^0$, is one such that $v_i \neq v_j$ for any $i \neq j$ and for all $1 \leq i \leq k-1$, there exists e_i^1 beginning in v_i and ending in v_{i+1} . A (graph theoretic) simple path is a (graph theoretic) simple circle provided there exists e_k^1 connected v_k to v_1 .

Lemma 5.20. A 1-dimensional CW complex X^1 is path connected if and only if for all $v, w \in X^1$, there exists a (GT) simple path such that $v = v_1$ and $w = v_k$.

Lemma 5.21. For all CW complexes X, X is path connected if and only if X^1 is path connected.

Definition 5.22. X^1 is a tree if X^1 is path connected and X does not possess any (graph theoretic) simple circles.

Lemma 5.23. X^1 is a tree if and only if for all $v, w \in X^0$, there is a unique graph theoretic simple path connecting v to w.

Proof. Suppose there exists two graph theoretic simple paths from v to w. Then the two paths share the same initial and terminal points. Further, at some point, the two paths diverge at a point and then converge at a different point. These two archs form a graph theoretic simple circle. This contradicts the fact that X^1 does not posses any simple circles. Therefore, no two paths can exist.

Lemma 5.24. X^1 is a tree implies X^1 is contractible by a deformation retract to any $v \in X^0$.

Proof. If we fix $v_0 \in X^0$, then for all $x \in X^1 \setminus \{v_0\}$, there exists a unique injective

$$\gamma_x : [0,1] \to X^1$$
$$\gamma_x(0) = \{v_0\}$$
$$\gamma_x(1) = X$$

If $x \notin X^0$, then $x \in e^1_\alpha$ and e^1_α has two endpoints w_1, w_2 . We may assume that the unique graph theoretic simple path to w_2 contains w_1 . Then upon performing the contraction, each path retracts along themselves until each x is moved to v_0 along y_x .

Theorem 5.25. If X^1 is path connected, then there exists a subcomplex $Y \subset X$ such that Y is a tree and $Y^0 = X^0$.

Remark 5.26. Y is referred to as a <u>maximal tree</u>. (Existence guaranteed by axiom of choice)

Definition 5.27. For any X^1 and $v \in X^0$, then we define N_v to be a (canonical) open neighborhood of v defined as

- 1. $v \in X^0$, $N_v \subset X^1$ is open where N_v is a deformation retract to v.
- 2. For any $w \neq r$, then $N_v \cap N_w = \emptyset$
- 3. $Y^1 \subset X^1$ a subcomplex implies

$$N_Y := Y \cup \left(\bigcup_{v \in X^0 \cap Y} N_v\right)$$

Further, N_Y deformation retracts to Y.

Remark 5.28. $Y^1, Z^1 \subset X^1$ are subcomplexes, then

$$N_{Y \cap Z} = N_Y \cap N_Z$$

$$N_{Y \cup Z} = N_Y \cup N_Z$$

Theorem 5.29. Let X^1 be connected, and let $Y^1 \subset X^1$ be a maximal tree. Let $\{e^1_\alpha\}_{\alpha \in \epsilon}$ be the set of 1-cells of X^1 , $v_0 \in X^0 = Y^0$ with $e^1_\alpha \cap Y = \emptyset$. Let

$$\epsilon := \{ \alpha \in \mathcal{F} : e^1_\alpha \notin Y \} = \{ edges \ not \ in \ Y \}$$

1. For any $\alpha \in \epsilon$, $Z_{\alpha} = Y \cup e_{\alpha}$ has a unique graph theoretic simple circle, inducing

$$[\delta_\alpha] \in \pi_1(Z_\alpha, v_0)$$

2. $\pi_1(X^1, v_0) = *_{\alpha \in \epsilon} \mathbb{Z}[\delta_{\alpha}] \implies \pi_1(X) = *_{\alpha \in \epsilon} \mathbb{Z} = \text{free group generated by } \{e^1_{\alpha}\}_{\alpha \in \epsilon}$

Proof. Let v, w be the endpoints of e^1_α for some $\alpha \in \epsilon$ (it is possible for v = w). Since there exists two unique graph theoretic path

$$v_0 = v_1, \ldots, v_k = v$$

$$v_0 = w_1, \dots, w_k = w$$

from v_0 to v and w within Y since Y is a tree. Then there exists an index $p \ge 1$ such that the two paths diverge with $v_i = w_i$ if $i \le p$ and $v_{p+1} \ne w_{p+1}$. Then there exists a graph theoretic simple circle

$$v_p, \ldots, v_k, w_m, \ldots, w_p$$

which generates a closed path $n_{\alpha}: v_p \to v_p$. Then $\eta_{\alpha} = S^1$, and Z_{α} deformation retracts to η_{α} as Y in a tree. For for all $x \in Z_{\alpha} \setminus \eta_{\alpha}$, there exists a unique

$$\gamma_x : I \to Z_\alpha$$

$$\gamma_x(0) = x$$

$$\gamma_x \text{ injective}$$

$$\gamma_x \cap \eta_\alpha = q \in Y^0 \cap \eta_\alpha$$

which is a deformation retraction of Z_{α} to η_{α} along γ_{x} . So

$$\delta_{\alpha}: v_0 \leadsto v_p \xrightarrow{\eta_{\alpha}} v_p \leadsto v_0$$

By Van Kampen theorem,

$$A_{\alpha}=N_{Z_{\alpha}}, \alpha \in \epsilon$$

Then

$$\pi_1(A_\alpha) = \pi_1(Z_\alpha) = \pi_1(\eta_\alpha) = \pi_1(\text{circle}) = \mathbb{Z}$$

$$\implies \pi_1(A_\alpha, v_0) = \pi_1(Z_\alpha, v_0) = \pi_1(\eta_\alpha, v_0) = \mathbb{Z}[\delta_\alpha]$$

Since $\alpha \neq \beta \implies A_{\alpha} \cap A_{\beta} = N_{Y}$ as $Z_{\alpha} \cap Z_{\beta} = Y$, then we see that

$$\pi_1(A_\alpha \cap A_\beta) = \pi_1(\text{tree } Y) = \{1\}$$

since any tree is contractible.

Theorem 5.30. Suppose Y is path connected and for the closed balls D_{α}^{n} , $\alpha \in \mathcal{F}$, for some fixed $n \geq 2$. We consider the continuous closed paths

$$\phi_{\alpha}^n: \partial D_{\alpha}^n \to Y$$

Such that we can consider our space X to be identified with

$$X = Y \perp \!\!\! \perp (\perp \!\!\! \perp_{\alpha \in \mathcal{F}} D_{\alpha}^{n}) / \bowtie$$

where for any $x \in \partial D_{\alpha}^{n}$, $x \bowtie \phi_{\alpha}^{n}(x)$. THEN

1. When $n \ge 3$, we see that

$$\pi_1(X) = \pi_1(Y)$$

2. When n = 2

$$\pi_1(X, x_0) = \pi_1(Y, x_0)/H$$

where H is the normal subgroup generated by the classes $\{[\phi_{\alpha}^2]\}_{\alpha \in \mathcal{F}}$.

More precisely, let $q: Y \perp \!\!\! \perp (\perp \!\!\! \perp_{\alpha \in \mathcal{F}} D_{\alpha}^n) \to X$ be the quotient map of this equivalence relation, we can define

$$\Phi_{\alpha}^n := q|_{D_{\alpha}^n}$$

Lastly, for all $x_0 \in Y$, $\alpha \in \mathcal{F}$, there is a

$$\gamma_{\alpha}: I \to Y$$

$$\gamma_{\alpha}(0) = x_0$$

$$\gamma_{\alpha}(1) = \phi_{\alpha}^{n}(1)$$

$$\partial D_{x}^{n} = S_{\alpha}^{n-1}$$

and

$$\delta_{\alpha} = \gamma \cdot \phi_{\alpha}^2 \cdot \overline{\gamma_{\alpha}}$$

Then H is the normal subgroup generated by $[\delta_{\alpha}]_{\alpha \in \mathcal{F}}$.

Proof. Consult Hatcher.

Example 5.31. On oriented surfaces of genus $g \ge 1$. Then if we allow

$$X = P/\bowtie$$

where P is a polygon with 4g sides, $g \ge 1$, then

$$\partial P = a_1 b_1 \overline{a_1} \overline{b_1} \dots a_g b_g \overline{a_g} \overline{b_g}$$

Then we see that by the previous theorem,

$$\pi_1(X) = \pi_1(Y)/H = (*_{\alpha=1}\mathbb{Z}[a_{\alpha}]) * (*_{\alpha=1}\mathbb{Z}[b_{\alpha}]) / \langle a_1b_1\overline{a_1}\overline{b_1}\dots a_gb_g\overline{a_g}\overline{b_g} = 1 \rangle$$

where

$$Y = (\bigvee_{\alpha=1} a_{\alpha}) \vee (\bigvee_{\alpha=1} b_{\alpha})$$

Example 5.32. Now consider a non-orientable surface with genus $g \ge 1$. Let P be a polygon with 2g sides. Then we see that

$$\partial P = a_1 a_1 a_2 a_2 \dots a_g a_g$$

Then by the previous theorem, we know

$$Y = *_{\alpha=1}S_{\alpha}^{1} = *_{\alpha=1}a_{\alpha}$$

Then we see that

$$\pi_1(X) = *_{\alpha=1}^g \mathbb{Z}[a_\alpha]/\langle a_1a_1a_2a_2\dots a_ga_g = 1\rangle$$

Example 5.33. When n = 2, then we see that

$$\pi_1(\mathbb{R}P^2) = \mathbb{Z}[a_1]/\langle a_1 a_1 = 1 \rangle = \mathbb{Z}_2$$

Example 5.34. When $n \ge 3$, then we see that

$$\pi_1(\mathbb{R}P^n) = \mathbb{Z}_2$$

since $X = \mathbb{R}P^n$ is a CW complex with $X^k = \mathbb{R}P^k$.

Theorem 5.35. *If X is any CW complex, then*

$$\pi_1(X) = \pi_1(X^2)$$

Theorem 5.36. For any group G, then exists a CW complex X^2 such that

$$\pi_1(X^2) = G$$

Proof. Let $G = *_{\alpha \in \mathcal{F}} \mathbb{Z}[g_{\alpha}]/N$. Then let

$$X^1 = \bigvee_{\alpha \in \mathcal{F}} S_{\alpha}, S_{\alpha} \leftrightarrow g_{\alpha}$$

Then for each relation among g_{α} in N, then

$$h_1 = \ldots = h_k, 1 \le i \le k$$

for all $h_i = g_{\alpha_i} g_{\alpha}^{-1}$. Then we define

$$\phi_{\beta}^2: S^1 \to X$$
$$\partial S_{\beta}^1 \to S_{\alpha_1}^1 \dots S_{\alpha_k}^1$$

Proposition 5.37. *For* $k \ge 2$, $k \in \mathbb{Z}$, *consider the sequence of unions*

$$X = X_1 \cup X_2 \cup \ldots \cup X_k$$

such that each X_i is homeomorphic to S^n , $n \ge 1$, and each X_i intersects both X_{i-1} and X_{i+1} exactly once. Then

- 1. When n = 1, then $\pi_1(X) = *_{i=1}^k \mathbb{Z} = *_{i=1}^k \mathbb{Z}[x_i]$
- 2. When $n \ge 2$, then $\pi_1(X) = \{1\}$.

Proof. We will induce on k. When k = 1, the problem is trivial. Now, suppose that the property holds for k - 1, and consider the complex

$$X' = X_1 \cup \ldots \cup X_{k-1}$$

Then clearly $X = X' \vee S^n$. Then $X' \cap S^n$ is a single point, so by Van Kampen, we see that

$$\pi_1(X) = \pi_1(X') * \pi_1(S^n)$$

giving the desired result.

Proposition 5.38. Let X be a path connected graph and let Y be a maximal tree in X. Then $\pi_1(X, x)$ is isomorphic to the free group generated by $|X^1| - |T^1|$ elements.

Example 5.39. Consider the cell complex defined by

$$X = X_1 \cup X_2 \cup X_3 \cup X_4$$

such that each $X_i = S^1$ arranged in the following way:

31

We not only can make this into a CW complex, we can also consider it a graph. Further, it has a maximal tree

$$Y_1 = \{e_1, e_2, e_7\}$$

Therefore, we see that

$$\pi_1(X) = *_{edges\ not\ in\ Y^1} \mathbb{Z} = *_1^5 \mathbb{Z}$$

Further, we can set $\epsilon = \{3, 4, 5, 6, 8\}$ *in order to get explicit generators:*

$$\pi_1(X) = *_{i \in \epsilon} \mathbb{Z}[e_i]$$

Example 5.40. Consider the cell complex defined by

$$Z = Z_1 \cup Z_2 \cup Z_3 \cup Z_4$$

such that each $Z_i = S^2$ arranged in the following way:

Starting with circles, this can be arranged similar to X by gluing disks to make Z_i / So we see that $Z^1 = X$ from the previous example! So for each i, we glue $D_{i,1}^2$, $D_{i,2}^2$ to X_i , giving us the 2-sphere Z_i . This forms a series

$$[e_{\delta}] \rightarrow [1]$$

by either disks attached to give Z_4 . For Z_3 , we see that e_2 , e_6 are already trivial. So

$$[e_6 \cdot e_2 \cdot e_7] \rightarrow [1]$$

and since $[e_2 \cdot e_7] \to [1]$, it follows that $[e_6] \to [1]$. So on Z_2 , we see that $[e_3 \cdot e_5] \to 1 \implies [e_3] = [e_5]$. Lasly, for $Z_1, [e_4 \cdot e_1] \to [1] \implies [e_1] = 1 = [e_4]$. So all of the generators collapse to the identity except for one, leaving us with

$$\pi_1(Z) = \mathbb{Z}[e_3] = \mathbb{Z}$$

5.2 Some More Facts about CW Complexes

Theorem 5.41. *If* X *is a CW-complex, every subcomplex* $A \subset X$ *has an open neighborhood* N_A *with the following properties:*

- 1. N_A deformation retracts to A.
- 2. If B is a subcomplex, $N_A \cup N_B = N_{A \cup B}$ and if $A \cap B \neq \emptyset$, $N_A \cap N_B = N_{A \cap B}$. If $A \cap B\emptyset$, then $N_A \cap N_B = \emptyset$. (We could also just define $N_\emptyset = \emptyset$ to make it more consistent)

Proof. (Idea) Construct $N_A \cap X^n$ by induction on n.

Theorem 5.42. If X is a CW-complex that locally contractible, then for any $z \in X$, and any neighborhood S of S, there exists an open neighborhood S of S such that S deformation retracts to S. That is, every point has an open neighborhood base of contractible sets.

Remark 5.43. *If X is a CW complex, then X is locally simply connected.*

Theorem 5.44. If X is a CW-complex, and $p: \tilde{X} \to X$ is a covering map, then \tilde{X} is a CW-complex. Furthermore, if e^n_α is an n-cell in X, then $p^{-1}(e^n_\alpha)$ is a union of n-cells in \tilde{X} .

Theorem 5.45. *If* X *and* Y *are* CW-complexes, then $X \times Y$ *is a* CW-complex.

6 Homotopy Extension

Definition 6.1. *If* $A \subset X$ *, then* (X, A) *satisfies the homotopy extension property if given a continuous*

$$g: A \times I \cup X \times \{0\} \rightarrow Y$$

Then, there exists $f: X \times I \rightarrow Y$ *with*

$$f|_{X\times\{0\}\cup A\times I}=g$$

Lemma 6.2. (X,A) with $A \subset X$ has the homotopy extension property if and only if either of the following equivalent conditions holds:

- 1. Given $g_0: X \to Y$ and a homotopy $g_t: A \times I \to Y$ connecting $g_0|_A$ to $g_1|_A$, then there exists a homotopy $f_t: X \times \{t\} \to Y$, $t \in I$ such that $f_0 = g_0$ and $f_1|_A = g_1$.
- 2. $A \times I \cup X \times \{0\}$ is a retract of $X \times I$.

Remark 6.3. *Can't prescribe* $f_1|_{X\setminus A}$.

Theorem 6.4. If (X, A) has the homotopy extension property and A is contractible, then the quotient map $g: X \to X/A$ is a homotopy equivalence map.

In essence, if you contract the "contractible part" of a space, you really shouldn't change the overall homotopy type of the space.

Proof. (Idea:)

We need some map $h: X/A \to X$. Since we know that A is contractible, then we can define

$$g_t : A \times \{t\}$$

where $g_0 = id_A$ and $g_1(x) = x_0 \in A$ for all $x \in A$, $x_0 \in A$ fixed. By homotopy extension, there exists

$$f_t: X \times \{t\} \to A$$

such that

$$f_0 = id_X$$
 $f_1(x) = x_0 \ \forall x \in A$

Then considering the inverse map h, we see that

$$h: X/A \to X$$
$$[x] \to f_1(x) \ \forall x \in X$$

Technically one must check that this is continuous, but we'll leave this as an exercise to the already stressed reader.

Theorem 6.5. If X is a CW complex and A is a subcomplex, then (X, A) satisfies the homotopy extension property.

7 Returning to Covering Spaces

Theorem 7.1. *If* $p : \tilde{X} \to X$ *is a covering,* \tilde{X} , X *path connected spaces. Then*

- 1. $p_*: \pi_1(\tilde{X}) \to \pi_1(X)$ is injective with $p(\tilde{x}_0) = x_0$.
- 2. If $\gamma, \delta : I \to X, \gamma(0) = \delta(0) = x_0, \gamma(1) = \delta(1) = x_1$, then

$$\tilde{\gamma}(1) = \tilde{\delta}(1) \iff [\gamma \cdot \bar{\delta}] \in p_*(\pi_1(X, x_0))$$

3. $p^{-1}(x_0) \leftrightarrow cosets \ of \ \pi_1(X,x_0) \ with \ respect \ to \ \underbrace{p_*(\pi_1(\tilde{X}_0,\tilde{x}_0))}_H \ such \ that \ for \ all \ [\delta] \in \pi_1(X,x_0)$

$$\tilde{\delta}(1) \leftrightarrow H \cdot [\delta]$$

4. If $\tilde{x}_1 \in p^{-1}(x_0)$ and $\tilde{\eta} \cdot \tilde{x}_0 \rightsquigarrow \tilde{x}_1$, $[p \circ \tilde{\eta}] = [\eta] \in \pi_1(X, x_0)$, then

$$p_*(\pi_1(\tilde{X}, \tilde{x}_1)) = [\overline{\eta}]H[\eta]$$

Theorem 7.2. If $p: \tilde{X} \to X$ is a covering map, with \tilde{X} , X both path connected, and Z is a path connected and locally path connected space with $p(\tilde{x}_0) = x_0$, $f: Z \to X$, $f(z_0) = x_0$, then

1. There exists $\tilde{f}: Z \to \tilde{X}$ with $p \circ f = \tilde{f}$, $\tilde{f}(z_0) = \tilde{x}_0$ and the diagram

$$(Z,z_0) \xrightarrow{\exists ! \tilde{f}} \tilde{X}, \tilde{x}_0)$$

$$\downarrow^p$$

$$(X,x_0)$$

commutes if and only if we satisfy the lifting criteria:

$$f_*(\pi_1(Z,z_0)) \subset p_*(\pi_1(\tilde{X},\tilde{x}_0))$$

2. If the lifting criteria holds, then \tilde{f} is unique.

Lemma 7.3. Suppose we have $p: \tilde{X} \to X$ a covering, X, \tilde{X} are path connected and locally path connected, with base point $p(\tilde{x}_0) = x_0$. Then for any $\tilde{y} \in p^{-1}(x_0)$, there exists a continuous $f_{\tilde{y}}: \tilde{X} \to \tilde{X}$ with

$$f_{\tilde{y}}(\tilde{x}_0) = \tilde{y}$$

and

$$p \circ f_{\tilde{y}} = p$$

if and only if $p_*(\pi_1(\tilde{X}, \tilde{x}_0)) \subset \pi_1(X, x_0)$ is a normal subgroup.

Proof. We can realize this lemma using the previous theorem, by stipulating $\tilde{x}_0 = z_0$, $\tilde{X} = Z$. Then we see that

$$(\tilde{X}, \tilde{x}_0) \xrightarrow{\exists ! \tilde{f}_{\tilde{y}}} (\tilde{X}, \tilde{y}_0)$$

$$\downarrow^p \qquad \downarrow^p \qquad \qquad (X, x_0)$$

Then by the lifting criteria, we see that

$$p_*(\pi_1(\tilde{X}, \tilde{x}_0)) \subset p_*(\pi_1(\tilde{X}, \tilde{y}))$$

So we choose $\tilde{\gamma}: \tilde{x}_0 \leadsto \tilde{y}$ in \tilde{X} such that

$$\gamma = p \circ \tilde{\gamma}$$

Then we see that

$$p_*(\pi_1(\tilde{X}, \tilde{y})) = [\gamma] p_*(\pi_1(\tilde{X}, \tilde{x}_0)) [\overline{\gamma}]$$

Therefore, there exists $f_{\tilde{y}}$ for every $\tilde{y} \in p^{-1}(x_0) \implies p^*(\pi(\tilde{X}, \tilde{x}_0))$ coincides with its conjugates and is therefore normal!

Remark 7.4. If $p_*(\pi_1(\tilde{X}, \tilde{x}_0))$ is a normal subgroup, then $f_{\tilde{y}}: \tilde{X} \to \tilde{X}$ is a homeomorphism for every $\tilde{y} \in p^{-1}(x_0)$.

This is similar to the argument used in our proof of the universal cover.

Theorem 7.5. If $p: \tilde{X} \to X$ is a covering, with \tilde{X}, X both path connected and locally connected, with base point $p(\tilde{x}_0) = x_0$. If $p_*(\pi_1(\tilde{X}, \tilde{x}_0)) \subset \pi_1(X, x_0)$ is a normal subgroup, then

$$G = \pi_1(X, x_0)/p_*(\pi_1(\tilde{X}, \tilde{x}_0))$$

acts freely and properly on \tilde{X} and there exist a natural correspondence such that for every $g \in G$, $f_g : \tilde{X} \to \tilde{X}$ is a homeomorphism with $G \leftrightarrow p^{-1}(x_0)$ and $g \leftrightarrow f_g(\tilde{x}_0)$.

Theorem 7.6. If \tilde{X} is both path connected and locally path connected with a group G that acts freely and properly on \tilde{X} , then the projection

$$q: \tilde{X} \to \tilde{X}/G$$

is a covering with

$$\pi_1(X/G) = q_*(\pi_1(\tilde{X})) = G$$

where $q_*(\pi_1(\tilde{X}))$ is normal.

Recall *G* here is the group of deck transformations.

Example 7.7. We consider a covering of $S^1 \vee S^1$ by $S^1 \vee S^1 \vee S^1 \vee S^1$

Specifically, any homeomorphism $f: \tilde{X} \to \tilde{X}$ *with* $p \circ f = o$ *is* $f = id_{\tilde{X}}$. *This implies that*

$$p_*(\pi_1(\tilde{X}, \tilde{x}_0))$$

is not a normal subgroup within $\pi_1(X, x_0) = \mathbb{Z} * \mathbb{Z}$.

Theorem 7.8. If X is a path connected and locally simply connected space, then there exists $p: \tilde{X} \to X$ a covering with \tilde{X} simply connected.

Remark 7.9. This tells us that \tilde{X} is a universal cover and is unique.

Proof. (Idea)

Upon fixing a basepoint $x_0 \in X$, we define

$$\tilde{X} := \{ [\gamma] : \text{ where } \gamma : [0,1] \to X \text{ is a path with } \gamma(0) = x_0 \}$$

along with the equivalence classes defined

$$[\gamma] := \{\delta : [0,1] \rightarrow X, \delta \sim \gamma \text{ relative to } \{0,1\}\}$$

Then we can define $p: \tilde{X} \to X, p([\gamma]) = \gamma(1)$. So we see that $\gamma, \eta: x_0 \rightsquigarrow x$, then $[\gamma] = [\delta] \iff \gamma \sim \delta$ relative to $\{0, 1\}$. So

$$p^{-1}(x) = \text{homotopy classes of paths } x_0 \rightsquigarrow x$$

Now we need to define a topology on this new space. Specifically, let $U \subset X$ containing x be open. Then U is evenly covered if and only if U is simply connected. Finally, \tilde{X} is simply connected since for every $\tilde{x}_0 \in \tilde{X}$, with $p(\tilde{x}_0) = x_0$, then we consider $\tilde{\gamma} : \tilde{x}_0 \leadsto \tilde{x}_0$ and we can realize

$$\gamma = p \circ \tilde{\gamma}$$

is a closed path $x_0 \leadsto x_0$. So $\tilde{\gamma}$ is the lift of γ has the same terminal point as constant \tilde{x}_0 . So $\gamma \sim x_0 \implies \tilde{\gamma} \sim \tilde{x}_0$.

7.1 Classification of Covering Spaces

Theorem 7.10. Let X be a path connected and locally simply connected space and take any base $x_0 \in X$. Then for any subgroup $H \subset \pi_1(X, x_0)$, there exists a unique covering map $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ such that

$$p_*(\pi_1(\tilde{X}, \tilde{x}_0)) = H$$

Moreover, conjugates of H correspond to $p_*(\tilde{X}, \tilde{y}) \to (X, x_0)$ where $\tilde{y} \in p^{-1}(x_0)$.

Remark 7.11. We have uniqueness since if there exists covering maps $p_i: (\tilde{X}_i, \tilde{x}_i) \to (X, x_0)$ such that for i = 1, 2 we have

$$(p_i)_*(\pi_1(\tilde{X}_i,\tilde{x}_i))=H$$

then there exists a unique homeomorphism $f: (\tilde{X}_1, \tilde{x}_1) \to (\tilde{X}_2, \tilde{x}_2)$ such that

$$p_2\circ f=p_1$$

Moreover, the diagram

$$(\tilde{X}_1, \tilde{x}_1) \xrightarrow{\exists ! f} (\tilde{X}_2, \tilde{x}_2)$$

$$(X, x_0)$$

commutes.

Remark 7.12. If $y \in p^{-1}(x_0)$ and $\tilde{\gamma} : \tilde{x}_0 \leadsto \tilde{y}_0$ with $p(\tilde{\gamma}) = \gamma$, then $p_*(\pi_1(\tilde{X}, \tilde{y})) = [\gamma]H[\overline{\gamma}]$.

Remark 7.13. To see the existence of the above theorem, we simply allow \tilde{X} to be the equivalence classes of paths $\gamma:[0,1] \to X$, $\gamma(0) = x_0$, $\gamma(1) = \delta(1)$, $[\gamma \overline{\delta}] \in H$, specifically where γ and δ are equivalent path.

Remark 7.14. In Hatcher, he defines this notion differently. Specifically, let X be path connected, locally path connected and locally simply connected. Then <u>Hatcher's condition</u> states that there exists a basis $\{U_{\alpha}\}$ of the topology of X such that

- All U_{α} is path connected
- $\gamma: [0,1] \to U_{\alpha}, \gamma(0) = \gamma(1) = x_0$, then $\exists F: I \times X \to X$ such that

$$F(s,0) = \gamma(s)$$
 and $F(s,1) = x_0$

Example 7.15. Consider a group G with a set of generators $\{g_{\alpha}\}_{{\alpha}\in\mathcal{F}}$. Then X_G is a CW-complex where

$$X_G^{(1)} = \bigvee_{\alpha \in \mathcal{F}} S_\alpha^1$$

Then for all $\alpha \in \mathcal{F}$, we fix

$$\delta_{\alpha}: I \to S^{1}_{\alpha}$$
$$s \to e^{2\pi i s}$$

Then we see that $X_G = X_G^{(2)}$ for each

$$g_{\alpha_1}g_{\alpha_2}\dots g_{\alpha_k}=1$$

within our group G. Further, we attach the two-cell

$$\phi^{1}_{\alpha_{1},\dots,\alpha_{k}}:\partial D^{2}\to X^{(1)}_{G}$$

$$s\to \delta_{\alpha_{1}}\cdot\delta_{\alpha_{2}}\cdot\dots\cdot\delta_{\alpha_{k}}$$

So we see that

$$\pi_1(X_G^{(2)}) = \pi_1(X^{(1)})/H = *_{\alpha \in \mathcal{F}} Z[\delta_\alpha]/H$$

where H is the normal group generated by $[\phi_{\alpha_1,...,\alpha_k}] = 1$. So

$$\pi_1(X_G) = G$$

Example 7.16. We can consider a Cayley digraph Y_G such that $Y_G^{(0)} = G$. That is, two elements h and g are connected by 1-cell edges provided there exists g_α such that

$$g = hg_{\alpha}$$

Therefore, if we see that $\#\{g_{\alpha}\}_{\alpha\in\mathcal{F}}=m$, then we typically say that $Y_G^{(1)}$ is m-regular. Also, for each relation

$$g_{\alpha_1} \dots g_{\alpha_k} = 1$$
,

we attached 2-cells based on each $h \in G$.

7.2 Coverings of Manifolds

Definition 7.17. *X* is an *n*-manifold if there exists an open $\{U_{\alpha}\}_{{\alpha}\in\mathcal{F}}$, with \mathcal{F} countable, such that for all U_{α} , there exists $\phi_{\alpha}: U_{\alpha} \to int(D^n)$ homeomorphisms. Further, for any α, β , we maintain a compatibility constraint such that

$$\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

is a diffeomorphism. Such a manifold that satisfies this constraint is a \mathbb{C}^1 -n-manifold.

Definition 7.18. *X* is <u>orientable</u> provided there exists $\{U_{\alpha}\}_{{\alpha}\in\mathcal{F}}$ such that

$$det(\phi_{\beta}\circ\phi_{\alpha}^{-1})(x)>0$$

for all α , β and $x \in \phi_{\alpha}(U_{\alpha} \cap U_{\beta})$. Otherwise, we say X is <u>non-orientable</u>.

Example 7.19. We consider the non-orientable Mobius band:

Lemma 7.20. Let X be a C^1 n-manifold. Then

- 1. With $\gamma:[0,1] \to X$, one can trace along γ the orientation at $\gamma(0)$ in an orientation at $\gamma(1)$.
- 2. $\gamma \sim \delta \implies \gamma$ and δ translate orientation in the same way.

Theorem 7.21. Let X be a non-orientable C^1 n-manifold, $x_0 \in X$ and take $H \subset \pi_1(X, x_0)$ such that

 $H = \{ [\gamma] : \gamma \text{ keeps orientation at } x_0 \}$

Then we see that

$$|\pi_1(X, x_0)/H| = 2$$

provided there exists $\eta: x_0 \rightsquigarrow x_0$ that changes orientation. Further, if γ, σ change orientation, then

$$[\gamma \cdot \overline{\sigma}] \in H$$

Topologically, this tells us there exists a two sheeted covering $p: \tilde{X} \to X$ and \tilde{X} is an orientable C^1 n-manifold.

Example 7.22. $S^2 \to \mathbb{R}P^2$.

Example 7.23. *Consider the klein bottle.*

Covered by the Toris

Example 7.24. *Universal Covers of Compact 2-Manifolds*

Recall a universal cover \tilde{X} requires the covering to originate from a simply connected space. Then we know there exists a deck transformation G such that

$$X = \tilde{X}/G$$

Then we see when

- $g = 0 \implies \mathbb{C} \cup \{\infty\} = S^2 \rightarrow S^2 \implies curvature = 1$
- $g = 1 \implies \mathbb{C} = \mathbb{R}^2 \rightarrow S^1 \times S^1 = torus \implies curvature = 0$
- $g \ge 2 \implies int(D^2) \to Mg \implies hyperbolic geometry curvature = -1$

This lead many to consider the following hard problem suggested around 1900:

Theorem 7.25 (Poincaré Conjecture). Every simply connected compact 3-manifolds is homeomorphic to S^3 .

which was finally solved by Perelman in 2002.

This theorem fails to generalize. For example, when n = 4, we see that the fundamental groups are the same,

$$\pi_1(S^4) = \{1\} = \pi_1(S^2 \times S^2)$$

but if we consider a generalization of the fundamental group,

$$\pi_2(S^4) = \{1\}$$
 $\pi_2(S^2 \times S^2) = \mathbb{Z} \times \mathbb{Z}$

8 Higher Homotopy Groups

Definition 8.1. Let $n \ge 0$ and consider an arbitrary base point $x_0 \in X$. Then

$$\pi_n(X, x_0) := homotopy classes of \phi : (S^n, \xi_n) \to (X, x_0)$$

where $\xi_n \in S^n$.

Note 8.2. *This object is not necessarily a group for every n.*

Example 8.3. When n = 0, we see that $S^0 = \{\xi_0, z\}$. So any $\phi, \psi : (S^0, \xi_0) \to (X, x_0)$ is homotopic if and only if $\phi(z) = \psi(z)$ are in the same path connected component of X. In other words, $\pi_0(X)$ is the number of path connected components of X.

Remark 8.4. For $n \ge 1$, we can write $S^n = D^n/\partial D^n$. This is useful since

$$\pi_n(X, x_0) := relative homotopic classes of maps {\phi : (D^n, \partial D^n) \rightarrow (X, x_0)}$$

Specficially, $D^n \xrightarrow{\phi}$ *and simultaneously* $\phi D^n \xrightarrow{\phi} \{x_0\}$. But this is equivalent to

$$\pi_n(X, x_0) := relative homotopic classes of maps $\{ \phi : (I^n, \partial I^n) \to (X, x_0) \}$$$

where I is the unit interval.

Proposition 8.5. When $n \ge 1$, we can define a group structure on $\pi_n(X, x_0)$.

Proof. • We have already seen this for the fundamental group $\pi_1(X, x_0)$.

• Let $n \ge 2$ and consider $\phi, \psi : [0,1] \times I^{n-1} \to (X,x_0)$ to be defined as

$$\phi \cdot \psi(s, x) = \begin{cases} \phi(2s, x) & 0 \le s \le \frac{1}{2} \\ \psi(2s - 1, x) & \frac{1}{2} \le s \le 1 \end{cases}$$

Lemma 8.6. 1. $\pi_n(X, x_0)$ is a group with operation defined above.

- 2. The unit element is the constant x_0 map.
- 3. When $n \ge 2$, then $\pi_n(X, x_0)$ is commutative.

Proof. To proof statement (3), we consider a sequence of steps:

• Claim: $\psi \cdot \phi$ Insert proof from picture

When n > 2, we can choose any changes in the first two coordinates.

8.1 Action of Paths on $\pi_n(X, x_0)$ with $n \ge 2$

Definition 8.7. The action of paths in X on $\pi_n(X, x_0)$ for $n \ge 2$, $x_0, x_1 \in X$ and $\gamma : x_0 \rightsquigarrow x_1$ such that

$$\gamma:[0,1]\to X$$

$$\gamma(0) = \gamma(1) = x_1$$

Then $\phi:(S^n,\epsilon_n)\to (X,x_0)$ we can define our function radially by

$$\phi: (D^n, \partial D^n) \to (X, x_0)$$

such that for all $u \in \partial D^2 m$ we see that

$$\gamma\phi(su) := \begin{cases} \phi(2su) & s \le \frac{1}{2} \\ \gamma(2s-1) & s \ge \frac{1}{2} \end{cases}$$

Moreover, $[\gamma \phi] \in \pi_n(X, x_1)$ with $x_1 = \gamma(1)$.

Remark 8.8. Notationally, $\phi \cdot \gamma$ would be more appropriate in order to give a make the group action explicit, with

$$[(\phi + \psi) \cdot \gamma] = [\phi \cdot \gamma] + [\psi \cdot \gamma]$$

Lemma 8.9. 1. Given $\gamma: x_0 \rightsquigarrow x_1$ and $\phi: (D^n, \partial D^n) \to (X, x_0)$, then we see that

$$\overline{\gamma} \cdot (\gamma \cdot \phi) \sim \phi$$

2. $\gamma \cdot (\phi \cdot \psi) \sim (\gamma \cdot \phi)(\gamma \cdot \psi)$ where $\phi, \psi : (I^n, \partial I^n) \to (X, x_0)$.

Corollary 8.9.1. Any path connected space X and any path $\gamma: x_0 \rightsquigarrow x_1$ define an isomorphism

$$\pi_n(X, x_0) \cong \pi_n(X, x_1)$$

 $[\phi] \to [\phi \cdot \gamma]$

Remark 8.10. $\mathbb{Z}\pi_1(X, x_0)$ is a group algebra over $\pi_1(X, x_0)$ which are elements of the form:

$$\sum_{finite} k_i [\gamma_i]$$

where $k_i \in \mathbb{Z}$, $[\gamma_i] \in \pi_1(X, x_0)$.

Remark 8.11. When $n \ge 2$, $\pi_n(X, x_0)$ is a module over $\mathbb{Z}\pi_1(X, x_0)$ with the ring multiplication action defined as:

$$(\phi \cdot \gamma) \cdot \delta = \phi \cdot (\gamma \cdot \delta)$$

Definition 8.12. Given a function $f:(X,x_0) \to (Y,y_0)$ where X and Y are path connected, we define the <u>push forward</u> of f onto the higher homotopy group to be:

$$f_*: \pi_n(X, x_0) \to \pi_n(Y, y_0)$$
$$[\gamma] \to [f \circ \gamma]$$

Further, this f_* is a homomorphism.

Theorem 8.13. If $f:(X,x_0) \to (Y,y_0)$, where X and Y are path connected, is a homotopy equivalence (basepoint is irrelevant) then $f_*\pi_n(X,x_0) \to \pi_n(Y,y_0)$ is an isomorphism.

Remark 8.14. There exists $g:(Y, y_0) \rightarrow (X, x_0)$ such that

$$f \circ g \sim id_Y \quad g \circ f \sim id_X$$

Corollary 8.14.1. *If* X *is contractible, then* $\pi_n(X) = \{0\}$ *for* $n \ge 2$.

Theorem 8.15. If $p: \tilde{X} \to X$ is a covering, $p(\tilde{x}_0) = x_0$, \tilde{X} , X path connected, then $p_*: \pi_n(\tilde{X}, \tilde{x}_0) \to \pi_n(X, x_0)$ is an isomorphism for $n \ge 2$.

Proof. • To see that p_* is surjective, since S^n is simply connected, then for any $phi: (S^n, \epsilon_n) \to (X, x_0)$, we know there exists $\tilde{\phi}: (S^n, \epsilon_n) \to (\tilde{X}, \tilde{x}_0)$ such that

$$p \circ \tilde{\phi} = \phi \implies p_*([\tilde{\phi}]) = [\phi]$$

since the diagram

$$S^n \xrightarrow{\exists ! \tilde{\phi}} \tilde{X} \\ \downarrow^p \\ X$$

commutes.

• p_* is injective since if we assume $p_*[\gamma] = 0$, then $\tilde{\phi}: (S^n, \epsilon_n) \to (\tilde{X}, \tilde{x}_0)$, then

$$\phi = p \circ \tilde{\phi}$$

Now consider the function $F(z,t) = \phi_t$ to be the homotopy defined by $\phi_t : S^n \to X$ such that $\phi_0 = \phi_1$ and $\phi_1(z) = x_0$ for all $z \in S^n$. Since $S^n \times I$ is simply connected, then $F : S^n \times I \to X$ can be lifted to a homotopy $\tilde{F} : S^n \times I \to \tilde{X}$ where $\tilde{F}(z,1) = \tilde{x}_0$.

Theorem 8.16. $\pi_n(S^1) = 0$ for all $n \ge 2$.

Proof. Take the typical $\mathbb{R} \to S^1$ to be a covering. Then

$$\pi_n(S^1) = \pi_n(\mathbb{R}) = \{0\}$$

Theorem 8.17. *If* X *is a compact two manifold (i.e. a compact surface), and* $X \neq S^2$ *nor* $\mathbb{R}P^2$, *then* $\pi_n(X) = 0$ *for all* $n \geq 2$. *Proof.* Topologically, \mathbb{R}^2 is the universal covering space of X, and therefore

$$\pi_n(X) = \pi_n(\mathbb{R}) = \{0\}$$

Remark 8.18. $\pi_n(S^2) = \pi_n(\mathbb{R}P^2)$ since S^2 is the universal covering of $\mathbb{R}P^2$.

8.2 Higher Homotopies on CW Complexes

Theorem 8.19. $\pi_n(S^k) = 0$ *for all* $2 \le n < k$.

Proof. Let S^n be represented by the sequence of cells $\{e_0, \ldots, e_n\}$ and let S^k be represented by the sequence of cells $\{d_0, \ldots, d_k\}$. Now suppose we have a function $\phi: S^n \to S^k$ such that

$$\phi(e^0)=d^0$$

Then for any $\psi \sim \phi$, it should follow that $X = S^n$, $Y = S^k$

$$\psi(X^{(n)}) \subset Y^{(n)} = \{d^0\}$$

Lemma 8.20. For $n \ge 1$, $\phi: S^n \to X$ is homotopic to a constant map if and only if $\exists f: D^{n+1} \to X$ such that $f|_{S^n} = \phi$.

Proof. • (\Leftarrow) Suppose there exists such a function $f: D^{n+1} \to X$ with $f|_{\partial D^{n+1}} = \phi$. Then we can define the homotopy, we know that

$$f_t(x) = f(tx) \quad \forall x \in s \in S^{n-1}$$

Notice that $f_0 \equiv \text{constant while } f_1 = \phi$

• (\Rightarrow) Left as a homework exercise.

Theorem 8.21. For all $n \ge 1$, $\pi_n(X \times Y) = \pi_n(X) \times \pi_n(Y)$.

Remark 8.22. *Not all topologically spaces are expressible as CW complexes.*

Example 8.23. Let $u = (1,0) \in \mathbb{R}^2$ and $v = (0,1) \in \mathbb{R}^2$. Clearly $\mathbb{R} = \mathbb{R}u + \mathbb{R}v$. Now define

$$X = \{tu : t \in [0,1]\} \cup \{tv : t \in [0,1]\} \cup \{\frac{1}{n}u + tv : n \in \mathbb{N}, t \in [0,1]\}$$

Notice, there is no small neighborhood of $\frac{1}{2}v$ *. Therefore,* X *is not a CW complex.*

Remark 8.24. If X has a CW structure with cells $\{e_{\alpha}^{n}\}$ and Y has a CW structure with cells $\{d_{\beta}^{m}\}$, then $X \times Y$ has a CW structure with cells $\{e_{\alpha}^{n} \times d_{\beta}^{m}\}$

Remark 8.25. If X has a CW structure with cells $\{e_{\alpha}^n\}$ and Y has a CW structure with cells $\{d_{\beta}^m\}$, then $X \times Y$ has a CW structure with cells $\{e_{\alpha}^n \times d_{\beta}^m\}$

Corollary 8.25.1. *If X is a CW complex, then*

$$\pi_n(X) = \pi_n(X^{n+1}) \quad \forall n \ge 1$$

Proof. Let $\phi_0, \phi_1 : (S^n, \epsilon_n) \to (X, x_0), x_0 \in X^0$ and let $\phi_0 \sim \phi_1$ in X relative to x_0 . By cellular approximation, there exists

$$\psi_0 \sim \phi_0 \quad \psi_1 \sim \phi_1$$

relative to ϵ_n such that

$$\psi_0(S^m) \subset X^n \quad \psi_1(S^n) \subset X^m$$

Further, $\psi_0 \sim \psi_1$ relative to ϵ_n in X. So we can identify a homotopy

$$F: S^{n} \times I \to X$$

$$F|_{S^{n} \times \{0\}} = \phi_{0}$$

$$F|_{S^{n} \times \{1\}} = \phi_{1}$$

Then $S^n \times I$ is an (n+1)-dimensional CW complex. Let $A = (S^n \times \{0\}) \cup (S^n \times \{1\})$ be a subcomplex. Then by cellular approximation, we have a new homotopy

$$G: S^n \times I \to X^{n+1}$$

 $G \sim F$ relative to A
 $G(x,0) = \phi_0(x)$
 $G(x,1) = \phi_1(x)$

Theorem 8.26. If X is a compact surface, S^2 or $\mathbb{R}P^2$, then $\pi_n(X) = \{0\}$ for all $n \geq 2$.

9 Fiber Bundles and Exact Sequences

9.1 Fiber Bundles

Definition 9.1. $F \to E \xrightarrow{p} B$ is a fiber bundle if there exists $p: E \to B$ such that for all $b \in B$, there exist open balls $b \in U \subset B$ with $p^{-1}(U)$ homeomorphic to $U \times F$.

Example 9.2. Any covering is a fiber bundle if and only if F is a discrete space, in which case

$$p^{-1}(U) = \perp \!\!\!\perp_{\alpha} U_{\alpha}$$

Example 9.3. *If* E *is trivial, then* $E = B \times F$.

Example 9.4. The Hopf Fibration (1931). Let $\mathbb{R}^4 = \mathbb{C}^2$. Consider the realization

$$S^3 = \{(z_1, z_2) : z_1, z_2 \in \mathbb{C}, |z_1|^2 + |z_2| = 1\}$$

Consider the projection

$$p: S^3 \to S^2 = \mathbb{C} \cup \infty$$
$$(z_1, z_2) \to z_1: z_2$$

Then for any $w \in \mathbb{C}$,

$$p^{-1}(w) = \{(z_1|z_2) : |z_1|^2 + |z_2|^2 = 1 \text{ and } z_1 = wz_2\} = \{(wz_2 : z_2) : |z_2|^2 = \frac{1}{1 + |w|^2}\}$$

So $p^{-1}(\mathbb{C})$ is homeomorphic to $\mathbb{C} \times S^1$. So for all $z \in \mathbb{C} \cup \{\infty\}$, $p^{-1}(S^2 \setminus z)$ is homeomorphic to $(S^2 \setminus z) \times S^1$.

Remark 9.5. Shortly, we'll see

$$\pi_2(S^2 \times S^1) = \pi_2(S^2) \times \pi_2(S^1) = \mathbb{Z} \times \{0\} = \mathbb{Z}$$

which is a nontrivial fibration, while $\pi_2(S^3) = 0$.

9.2 Exact Sequences

Definition 9.6. Given A, B, C groups the sequence $A \xrightarrow{\beta} B \xrightarrow{\gamma} C$ with β and γ homomorphisms is \underline{exact} if and only if $im(\beta) = ker(\gamma)$.

Example 9.7. $\{1\} \xrightarrow{\alpha} A \xrightarrow{\beta} B$ is exact implies

$$ker(\beta) = im(\alpha) = \{1_A\} \implies \beta \text{ is injective }$$

Example 9.8. $A \xrightarrow{\gamma} B \xrightarrow{\delta} 1$ is exact implies

$$ker(\delta) = im(\gamma) = \{1_B\} \implies \gamma \text{ is injective }$$

Example 9.9. $\{1\} \xrightarrow{\alpha} A \xrightarrow{\beta} B \xrightarrow{\gamma} C \xrightarrow{\delta} 1$ is a short exact sequence which implies

$$C = B/A$$

Example 9.10. $\{1\} \to A \xrightarrow{\beta} B \xrightarrow{\gamma} 1$ implies β is an isomorphism.

9.3 Relative Homotopy

Definition 9.11. Let $x_0 \in A \subset X$. Then for all n, $\pi_n(X, A, x_0)$ is a set of homotopy classes of

$$\phi: (D^n, \partial D^n = S^{n-1}, \epsilon_{n-1}) \to (X, A, x_0)$$

such that $\phi \bowtie \psi$ if and only if $\exists \phi_t : (D^n, \partial D^n, \epsilon_{n-1}) \to (X, A, x_0)$ such that

$$\phi_0 = \phi, \phi_t = \psi.$$

Question 9.12. How do we define a group operation on these homotopy classes?

Firstly, we cannot define one for n = 1. For $n \ge 2$, it is possible to define it on $\phi|_{\partial D}$. Observe, if we consider the hypercubes

$$I^{n} = \{(s_{1}, \dots, s_{n}) \in \mathbb{R}^{n} : s_{i} \in [0, 1]\}$$

$$I^{n-1} = \{(s_{1}, \dots, s_{n-1}, 0) \in \mathbb{R}^{n} : s_{i} \in [0, 1]\}$$

$$\mathcal{F}_{n-1} := closure(\partial I^{n} \setminus I^{n-1})$$

Then we see that

$$\pi_n(X, A, x_0) = \text{homotopy classes of } \phi : (I^n, I^{n-1}, \mathcal{F}_{n-1}) \to (X, A, x_0)$$

and so we can adapt the same formula as before for its multiplication!

Proposition 9.13. *If* $n \ge 2$, then $\pi_n(X, A, x_0)$ is a group with multiplication defined on $\phi|_{\partial D^n}$. When $n \ge 3$, $\pi_n(X, A, x_0)$ is commutative.

9.4 Long Exact Sequences

Theorem 9.14 (The Long Exact Sequence for Relative Homotopy). *Consider* $x_0 \in A \subset X$, and injection $i : A \hookrightarrow X$, and $j : (X, x_0) \to (X, A, x_0)$. Then there exists the long exact sequence for all $n \ge 2$:

$$\dots \xrightarrow{\partial_*} \pi_n(A, x_0) \xrightarrow{i_*} \pi_n(X, x_0) \xrightarrow{j_*} \pi_n(X, A, x_0) \xrightarrow{\partial_*} \pi_{n-1}(A, x_0) \xrightarrow{i_*} \dots$$

Proof. (Idea)

 $\phi: (D^n, \partial D^n, \epsilon_{n-1}) \to (X, A, x_0)$ is nullhomotopic in $\pi_n(X, A, x_0)$, so it can be homotopied into $(D^n, \partial D^n, \epsilon_{n-1}) \to \pi_n(A, A, x_0)$:

$$\phi: (D^n, \partial D^n, x_0) \to (X, A, x_0)$$
$$\partial_*[\phi] \to [\phi|_{\partial D}]$$

Lemma 9.15. $f: S^n \to A$ is homotopic to a constant map if and only if there exists $g: D^{n+1} \to A$ with $g|_{\partial D^{n+1}} = f$.

Example 9.16. Let $x_0 \in A \subset X$. If A is contractible, then $\pi_n(X, A, x_0) = \pi_n(X, x_0)$, since by the long exact sequence theorem,

$$\{1\} = \pi_n(A) \to \pi_n(X) \xrightarrow{j_*} \pi_n(X, A) \to \pi_{n-1}(A) = \{1\}$$

$$\Longrightarrow \{1\} \to \pi_n(X) \to \pi_n(X, A) \to \{1\}$$

$$\Longrightarrow \pi_n(X) \cong \pi_n(X, A)$$

Example 9.17. Let $x_0 \in A \subset X$. If A is a deformation retract of X, then $\pi_n(X, A, x_0) = \{1\}$. Observe, we have the long exact sequence

$$\pi_n(A) \xrightarrow{i_{*,n}} \pi_n(X) \xrightarrow{j_{*,n}} \pi_n(X,A) \xrightarrow{\partial_*} \pi_{n-1}(A) \xrightarrow{i_{*,n-1}} \pi_{n-1}(X) \to \dots$$

Since $i_{*,n}$, $i_{*,n-1}$ are isomorphisms, we see that

$$Ker j_{*,n} = Im i_{*,n}(X) \implies Im j_{*,n} = \{1\}$$

$$\implies Im \partial_* = Ker i_{*,n-1} = \{1\}$$

$$\implies Ker \partial_* = \pi_n(X, x_0)$$

$$\implies \pi_n(X, A) = \{1\}$$

Theorem 9.18 (Long Exact Sequence for a Fiber Bundle). *Given* $F \to E \xrightarrow{p} B$, then if B and E are path connected, then there exists a sequence

$$\dots \xrightarrow{\partial_*} \pi_n(F, x_0) \xrightarrow{i_*} \pi_n(E, x_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial_*} \pi_{n-1}(F, x_0) \xrightarrow{i_*} \pi_{n-1}(E, x_0) \rightarrow \dots \rightarrow \pi_2(B, b_0) \rightarrow \pi_1(F, x_0) \rightarrow \pi_1(E, x_0) \rightarrow \pi_1(B, b_0)$$

Proof. All we need to check is that $p_*: \pi_n(E, F, x_0) \to \pi_n(B, b_0)$ is an isomorphism.

• p_* is surjective since $\phi:(D^n,\partial D^n)\to (B,b_0)$ such that

$$[\phi] = \pi_n(B, b_0)$$

As a consequence of Homotopy lifting, we know there exists $\psi: D^n \to E$ such that

$$p \circ \psi = \phi$$

• π_* is injective: Suppose $\psi:(D^n,\partial D^n,\epsilon_{n-1})\to (E,F,x_0)$ with $\phi=p\circ\psi\sim b_0$ under a homotopy ϕ_t . Then

$$\psi_1(x) \in F \forall x \in D^n \implies [\psi] = 0$$

Remark 9.19. If $b_0 \in B$, $b_0 = p(x_0)$, $x_0 \in E$, then we can assume $F = p^{-1}(b_0)$ and $(F, x_0) \hookrightarrow (E, x_0)$.

Corollary 9.19.1. $\pi_2(S^2) = \mathbb{Z}$

Proof. Since we have $S^1 \to S^3 \to S^2$ by the Hopf Fibration, we see that we have the long exact sequence

$$\{1\} = \pi_2(S^3) \to \pi_2(S^2) \to \pi_1(S^1) \to \pi_1(S^3) = \{1\}$$

$$\implies \pi_2(S^2) \cong \pi_1(S^1) = \mathbb{Z}$$

Theorem 9.20 (Freudenthal). $\pi_i(S^n) = \pi_{i+1}(S^{n+1})$ for $i \le 2n - 2$.

Corollary 9.20.1. $\pi_n(S^n) = \mathbb{Z}$.

	π1	π2	π3	π4	π ₅	π ₆	π ₇	π ₈	π9	π ₁₀	π ₁₁	π ₁₂	π ₁₃	π ₁₄	π ₁₅
S ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ¹	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z	Z	Z ₂	Z ₂	Z ₁₂	Z ₂	Z ₂	Z ₃	Z ₁₅	Z ₂	\mathbf{Z}_2^2	Z ₁₂ × Z ₂	$\mathbf{Z}_{84} \times \mathbf{Z}_2^2$	Z ₂ ²
S³	0	0	z	Z ₂	Z ₂	Z ₁₂	Z ₂	Z ₂	Z ₃	Z ₁₅	Z ₂	\mathbf{Z}_2^2	Z ₁₂ × Z ₂	$\mathbf{Z}_{84} \times \mathbf{Z}_2^2$	\mathbf{Z}_2^2
S ⁴	0	0	0	Z	Z ₂	Z ₂	Z × Z ₁₂	\mathbf{Z}_2^2	\mathbf{Z}_2^2	Z ₂₄ × Z ₃	Z ₁₅	Z ₂	\mathbf{Z}_2^3	Z ₁₂₀ × Z ₁₂ × Z ₂	$\mathbf{Z}_{84} \times \mathbf{Z}_2^5$
S ⁵	0	0	0	0	Z	Z ₂	Z ₂	Z ₂₄	Z ₂	Z ₂	Z ₂	Z ₃₀	Z ₂	\mathbf{Z}_2^3	Z ₇₂ × Z ₂
S ⁶	0	0	0	0	0	Z	Z ₂	Z ₂	Z ₂₄	0	z	Z ₂	Z ₆₀	Z ₂₄ × Z ₂	\mathbf{Z}_2^3
S ⁷	0	0	0	0	0	0	z	Z ₂	Z ₂	Z ₂₄	0	0	Z ₂	Z ₁₂₀	\mathbf{Z}_2^3
S ⁸	0	0	0	0	0	0	0	Z	Z ₂	Z ₂	Z ₂₄	0	0	Z ₂	Z × Z ₁₂₀

Definition 9.21. We say that $p: E \to B$ is a <u>fibration</u> with respect to B if whenever $f_0, f_1: X \to B$ are homotopic via f_t , and there is a lift $g_0: X \to E$, such that

$$p \circ g_0 = f_0$$
,

then there is a lift

$$g_t: X \to E$$

such that

$$p \circ g_1 = f_1$$

Remark 9.22. $p: E \to B$ is a fibration if it is a fibration with respect to any X.

Remark 9.23. $p: E \to B$ is a Serre fibration if it has this property with respect to ball $X = D^k$ for any $k \ge 1$.

Proposition 9.24. *Serra fibrations are fibrations with respect to any* (X, A) *where* X *is a CW complex and* A *is a subcomplex.*

Remark 9.25. $F \to E \xrightarrow{p} B$ is a fiber bundle implies $p: E \to B$ is a Serre Fibration. If B is a CW complex, then $p: E \to B$ is a fibration.

10 The Cube is a CW complex

Theorem 10.1. *One can represent a CW structure in multiple ways.*

Example 10.2. *A cube is a CW complex.*

Proof. The faces

$$I^n := \{(s_1, \dots, s_n) \in D^n : \forall s_i \in [0, 1]\}$$

- (n-1) faces serves as the facets
- Claim: There exists $2n \ (n-1)$ -faces. If we fix $i \in \{1, ..., n\}$ and let either $s_i = 1$, then $F_i := \{(s_1, ..., s_n) \in I^n : s_i = 1\}$ or $s_i = 0 \implies \tilde{F}_i = \{(s_1, ..., s_n) \in I^n : s_i = 0\}$. This gives us exactly $\{F_1, ..., F_n, \tilde{F}_1, ..., \tilde{F}_n\}$ faces each congruent to I^{n-1} .
- Now, for k = 0, ..., n 1 we choose n k coordinates $\mathcal{F} \subset \{1, ..., n 1\}$ such that $\#\mathcal{F} = n k$. Then for each $j \in \mathcal{F}$, we choose $\epsilon_j \in \{0, 1\}$. Then

$$F := \{(s_1, \dots, s_n) \in I^n : s_j = \epsilon_j \text{ for } j \in \mathcal{F}\}$$

is a k-dimensional face congruent to I^k . In particular, there exist 2^n 0-faces which serve as the vertices.

• The CW structure of $I^n \implies X^k$ = the k cells are the interiors of the k-faces. For each k-face F, there exists a characteristic map

$$\Phi: I^k \to F$$

where

$$\phi = \Phi|_{\partial I^k} : \partial I^l \to X^{k-1}$$

Now we can consider

Definition 10.3. *Let* $m \ge 2$. *Then the mth subdivision of a cube* I^n *is*

$$I^n = \bigcup_{\alpha \in \mathcal{F}_{\min}} (x_\alpha + \frac{1}{m} I^n)$$

where $x_{\alpha} \in \frac{1}{m}\mathbb{Z}^n$, and $x_{\alpha} + \frac{1}{m}I^n \subset I^n$. This represents a CW-complex with m^n n-cells.

If we consider the relative topology, we see that

$$\phi:(I^n,I^{n-1},\mathcal{F}_{n-1})\to (X,A,x_0)$$

Here, then I^{n-1} front facets = $\{(s_1, \dots, s_n) \in I^n : s_n = 0\}$ and

$$\mathcal{F}_{n-1}$$
 = union of the other 2^{n-1} facets = closure of $\partial I^n \setminus I^{n-1}$

Theorem 10.4. Long exact sequences for relative homotopies $x_0 \in A \subset X$, then for $n \ge 2$, we see that

$$\pi_n(A, x_0) \xrightarrow{i_*} \pi_n(X, x_0) \xrightarrow{i_*} \pi_n(X, A, x_0) \xrightarrow{\partial_*} \pi_{n-1}(A, x_0) \xrightarrow{i_*} \pi_{n-1}(X, x_0)$$

with

$$\phi: (D^n, \partial D^n, x_0) \to (X, A, x_0)$$

$$\Longrightarrow \partial_* [\phi] = [\phi|_{\partial D^n}]$$

$$\Longrightarrow i: A \to X, \phi(D^n, \partial D^n) \to (X, x_0) \implies \phi \text{ can be consider } (D^n, \partial D^n, x_0) \to (X, A, x_0)$$

Proof. Why? When need $Im\partial_* = Keri_*$ for $\pi_{n-1}(A, x_0)$. Then

$$\phi:(\partial D^n,x_0)\to(A,x_0)$$

Then $i_*([\phi]) = \{1\} \implies \exists$ homotopy $\phi_t : \partial D^n \to X$ to the constant map $\partial D^n \to x_0$. By lemma, $\exists \tilde{\phi} : D^n \to X$ such that $\tilde{\phi}|_{\partial D^n} = \phi$. By this, we see that $[\phi] = \partial_*([\tilde{\phi}])$.

10.1 Fiber Bundles

Definition 10.5. Given a sequence $F \to E \xrightarrow{p} B$ where $p : E \to B$ is surjective, and for any $b \in B$, there exists $b \in U \subset B$ an open neighborhood with $p^{-1}(U)$ is homeomorphic to $U \times F$.

Example 10.6. *Let* $E = B \times F$ *be the trivial fiber bundle.*

Example 10.7. *In differential geometry, a typical bundle of consideration is the vector bundle.*

Lemma 10.8. Let $A \subset \partial I^n$ be a subcomplex, and let $f_0, f_1 : I^n \to B$ be homotopic, and let

$$G: (I^n \times \{1\}) \cup (A \times I) \rightarrow B \times F$$

Then there exists $\tilde{G}: I^n \times I \to B \times F$ such that $\tilde{G}|_{I^n \times I \cup A \times I} = G$.

Proof. • Basis: When n = 1, we know that G can be extended to

$$I \times \{1\} \cup \{0\} \times I \cup \{1\} \cup I = \mathcal{F}_1$$

Say if $0 \notin A$, then we define $\tilde{G}(0, t) = G(0, 1)$.

• Inductive Step: When $n \ge 1$, there exists a retraction

$$r: I^2 \to \mathcal{F}_1$$

allowing us to define

$$\tilde{G}(s,t) = G(r(s,t))$$

Specifically, then (n-1)-facets of I_n , labelled F_1, \ldots, F_{2n} , each have $F_i = I^{n-1}$. We already know \tilde{G} on F and on $(A \cap F_1) \times I$. So induction will extend \tilde{G} to $F_1 \times I$. By induction on $j = 1, \ldots, 2n$, we also see that \tilde{G} extends to $F_j \times I$. Therefroe, \tilde{G} has been defined on $I_n \subset \partial I^{n+1}$ with

$$x \in I^n \times I \implies \tilde{G}(x) = \tilde{G}(r_{n+1}(x))$$

49