Structural Dynamics and Acoustics

Case-study 3

Filippo Gatti, filippo.gatti@centralesupelec.fr

January 6, 2022

Key points of the TP

- 1. Compute the dynamic response of a 3D multi-story building with COMSOL Multiphysics®
- 2. Export the Results into the support notebook mdof_comsol_todo.ipvnb for further analysis and comparison with a simplified MDOF (see Case-study 2)
 - Compare the Eigen-frequency and Eigen-modes of simplified 1D MDOF and the 3D multi-story building designed in COMSOL Multiphysics®
 - Compare the Participation factors of simplified 1D MDOF and the 3D multi-story building designed in COMSOL Multiphysics®
 - Compute the simplified dynamic response of the MDOF to earthquake loading, using the Participation factors of the 3D multi-story building designed in COMSOL Multiphysics®

Problem setting: Global Definitions

- MDOF_EigenFrequency_solved.mph
 - - Parameters
 - Default Model Inputs
 - Materials

rarameters			
■Settings •Properties			
Parameters			
Label: Parameters			
- Parameters			
Name ^	Expression	Value	Description
bb	30 [cm]	0.3 m	Cross sectional base for beam elements
bc	30 [cm]	0.3 m	Cross sectional base for column elements
c1x	-Lx/2	-2.5 m	Origin of master frame in the x direction
c1y	-Ly/2	-2.5 m	Origin of the master frame in the y direction
c1z	0 [m]	0 m	Origin of the master frame in the z direction
E_beam	28.3e9 [Pa]	2.83E10 Pa	Beam/Column concrete Young's modulus
E_floor	25e9 [Pa]	2.5E10 Pa	Floor concrete Young's modulus
	hb	0.3 m	Thickness of the floor
hb	30 [cm]	0.3 m	Cross sectional height for beam elements
hc	30 [cm]	0.3 m	Cross sectional height for column elements
Hf	3 [m]	3 m	Floor's height
Lx	5 [m]	5 m	Intercolumn distance in the x direction
Ly	5 [m]	5 m	Intercolumn distance in the y direction
Mf		0	issing frames in the z direction
Mx		0	Missing frames on the x direction
Му		0	Missing frames in the y direction
Nf	3		Number of floors
Nx	1	1	Number of frames in the x direction
Ny			Number of frames in the y direction
rho_beam	500 [kg/m^:	500 kg/m³	Beam/Column concrete unit mass density
rho_floor	2300 [kg/m [,]	2300 kg/m³	Floor concrete unit mass density

Problem setting: component Frame3D

MasterFrame:

- 1D Vertical concrete beams of height H_f (Columns)
- 1D Horizontal concrete beams of length L_x and L_y (Beams)
- 2D Horizontal concrete shells of area $L_x \times L_y$ (Floors)

MultiStoryBuilding:

- Array of $N_x \times N_y \times N_f$ MasterFrames
- $M_x \times M_y \times M_f$ missing frames

Problem setting: component Frame3D

Physical entities: Floors, Columns, Beams:

- LEM: Linear Elastic Material
- Sigma: Cross-Section properties
- Free: Free boundaries/edges
- IC: Initial Conditions

 ${\tt Materials} \ ({\tt from} \ {\tt COMSOL} \ {\tt multiphysics} \\ {\tt @library}) \ {\tt are} \ {\tt assigned} \\ \ {\tt to} \ {\tt each} \ {\tt component} \\$

Problem setting: component Frame3D

Each physical entity is meshed according to Settings:

- Extremely coarse
- ...
- Extremely fine

Problem setting: Study

✓ ™ Eigenfrequencies

Im Step 1: Eigenfrequency

> Im Solver Configurations

☑ 1[Hz]

Automatic

Eigenfrequency search method around shift: Closest in absolute value

Search for eigenfrequencies around:

Use real symmetric eigenvalue solver:

Include geometric nonlinearity

Real symmetric eigenvalue solver consistency check

- Real symmetric eigenvalue solver consistency check
- No Include geometric nonlinearity
- Compute every time the model is modified

Problem setting: Results

[TASK #1]: COMSOL Multiphysics Modal Shapes and Eigen-frequencies

- In the Global Definitions, select Nx=Ny=1 and Nf=3, with no missing frames (Mx=My=Mf=0)
- Rebuild the Geometry by building all the entities (in Form Union (fin))
- Story Shear Building Model
 - Constrain the structure in the x-z plane
 - For each physical entity Floors, Columns, Beams, introduce the adequate kinematic constraints

(*Hint*: Right click on the component \rightarrow Prescribed...)

- Constrain Columns to pure shear (b) Doubly clamped beam (see: equation (21)).
- (HintRight click on the Columns component \rightarrow ...)

Eigen-frequencies from COMSOL Multiphysics)

• Compute the Eigenfrequencies study for 10 eigen-frequencies (real) around 1 Hz and report the corresponding Modal Shapes in the jupyter notebook mdof_comsol_todo.ipynb (snapshots to be placed in the cell Report the Modal Shapes

[TASK #2]: Compare the Eigen-frequencies

- In the jupyter notebook mdof_comsol_todo.ipynb, compute the approximate mass and stiffness matrices of each story of the COMSOL Multiphysic) model *Nota Bene:* Do not consider the masses of the beams and columns (double clamped beam)
- In the jupyter notebook mdof_comsol_todo.ipynb, compute the eigen-frequencies and eigen-modes of the MDOF system. What are the natural frequencies? Do they correspond to the COMSOL Multiphysics®ones?
- Plot the eigen-modes of MDOF system and compared them to the COMSOL
 Multiphysics ones (evaluated on at the midsurface of each floor)
 (*Hint*: Export umx, umy and umz from COMSOL Multiphysics®and import the files in the notebook).

[TASK #2]: Compare the Eigen-frequencies

• Compute the Participation Factors Γ_{ij} and compare them to those from COMSOL Multiphysics®((from Export Groups Participation Factors (Eigenfrequencies)).

Nota bene: Using modal participation factors is a way to characterize how much a certain mode will be excited by a rigid body acceleration d_j in a certain direction j. The normalized participation factor with respect to mode i and excitation direction j, is defined as:

$$\tilde{\Gamma}_{ij} = \frac{\langle \boldsymbol{\phi}_i, \boldsymbol{M}.\boldsymbol{d}_j \rangle}{\langle \boldsymbol{\phi}_i, \boldsymbol{M}.\boldsymbol{\phi}_j \rangle} = \frac{\Gamma_{ij}}{m_i}$$

with $\Gamma_{ij} = \langle \phi_i, M.d_j \rangle$ the Participation Factors and $m_i = \langle \phi_i, M.\phi_j \rangle$ the i^{th} modal mass.