Methoden und Anwendungen der Optimierung Übung 3 $-Musterl\"{o}sung$ -

Aufgabe 12:

Allgemein: Unterteilung der Variablen in abhängige und unabhängige Variablen.

- I: Indexmenge der unabhängigen Variablen
- \rightarrow Partitionierung von I in I^{fix} und I^{frei} bis $I^{fix}=I$

Auswahl der nächsten zu fixierenden Variablen durch Lösen eines Hilfsproblems, welches die $x_j \in I^{frei}$ bewertet

 \rightarrow Auswahl der Variablen x_j mit der höchsten Bewertung

Hier: Rucksackproblem besitzt lediglich unabhängige Variablen

Idee: Die besten Gegenstände sind die, für die der relative Nutzen $\frac{p_j}{w_i}$ am größten ist.

 \rightarrow Bestimme die zu fixierende Variable x_j^* durch Lösen des folgenden Ersatzproblems:

$$j^* = \arg \max_{j \in I^{frei}} \{z_j\}$$

$$z_j = \begin{cases} \frac{p_j}{w_j}, & \text{falls } w_j \leq C - \sum_{k \in I^{fix}} w_k \cdot x_k \\ -M, & \text{sonst } (M >> 0) \end{cases}$$

Iteration	$C - \sum_{k \in I^{fix}} w_k \cdot x_k$	$ z_1 $	z_2	z_3	z_4	z_5	z_6	z_7
1	9			$2,\overline{6}$	6,25	5	6	1
2	7	_	3,5	$2,\overline{6}$	$6,\!25$	5	6	1
3	3	_	-M	$2,\overline{6}$	_	5	6	1
4	2	_	-M	-M	_	5	_	1
5	1	_	-M	-M	_	_	_	1
6	0	_	-M	-M	_	_	_	_

Iteration	I^{frei}	I^{fix}	fixierte Variablen
1	$\{1, 2, 3, 4, 5, 6, 7\}$	Ø	$x_1 = 1$
2	$\{2, 3, 4, 5, 6, 7\}$	{1}	$x_4 = 1$
3	$\{2, 3, 5, 6, 7\}$	$\{1, 4\}$	$x_6 = 1$
4	$\{2, 3, 5, 7\}$	$\{1, 4, 6\}$	$x_5 = 1$
5	$\{2, 3, 7\}$	$\{1, 4, 5, 6\}$	$x_7 = 1$
6	$\{2, 3\}$	$\{1,4,5,6,7\}$	$x_2 = 0$
7	{3}	$\{1, 2, 4, 5, 6, 7\}$	$x_3 = 0$
8	Ø	$\{1, 2, 3, 4, 5, 6, 7\}$	

Lösung: $x^T = (1, 0, 0, 1, 1, 1, 1), z = 50$

Aufgabe 13:

- a) Idee: Wähle die Spalten mit den meisten Einsen, um mit möglichst wenig Spalten alle Zeilen zu überdecken.
 - ightarrow Bestimme die zu wählende Spalte durch Lösen des folgenden Ersatzproblems

$$j^* = \arg\max_{j \in I^{frei}} \{z_j\} \quad \text{mit } z_j = |M_j|$$

 $M_j=\{i\in\{1,\ldots,m\},\ a_{ij}=1\}\,\hat{=}\,$ Menge der von der Spalte j überdeckten Zeilen. $M\hat{=}\,$ Menge der noch nicht überdeckten Zeilen

 \rightarrow Löse Teilproblem iterativ, bis alle Zeilen überdeckt sind.

It.	I^{frei}	I^{fix}	M	fix. Var.
1	$I \backslash I^{fix}$	Ø	$\{1,\ldots,17\}$	$x_7 = 1$
2	$I \backslash I^{fix}$	{7}	$\{1, 2, 3, 9, 10, 11, 14, \dots, 17\}$	$x_8 = 1$
3	$I \backslash I^{fix}$	$\{7, 8\}$	$\{1, 2, 10, 14, 15, 16, 17\}$	$x_{11} = 1$
4	$I \backslash I^{fix}$	$\{7, 8, 11\}$	$\{1, 2, 15, 17\}$	$x_3 = 1$
5	$I \setminus I^{fix}$	${3,7,8,11}$	$\{15, 17\}$	$x_4 = 1$
6	$I \setminus I^{fix}$	$\{3, 4, 7, 8, 11\}$	$\{15, 17\}$	$x_9 = 1$
7	$I \setminus I^{fix}$	${3,4,7,8,9,11}$	$\{15, 17\}$	$x_{10} = 1$
8	$I \setminus I^{fix}$	$\{3, 4, 7, 8, 9, 10, 11\}$	{15}	$x_{12} = 1$
9	$I \backslash I^{fix}$	${3,4,7,8,9,10,11,12}$	{15}	$x_{13} = 1$
10	$I \setminus I^{fix}$	${3,4,7,8,9,10,11,12,13}$	Ø	

 \rightsquigarrow fertig

Besser: Wähle die Spalten mit den meisten Einsen in noch nicht überdeckten Zeilen Ersatzproblem: $j^* = \arg\max_{i \in I^{frei}} \{z_j\}$ mit $z_j = |M_j \cap M|$

Iteration	$ z_1 $	z_2	z_3	z_4	z_5	z_6	z_7	z_8	z_9	z_{10}	z_{11}	z_{12}	z_{13}	z_{14}	z_{15}	z_{16}	z_{17}
1	4	5	6	6	4	4	7	7	6	6	7	6	6	6	5	6	4
2	3	5	4	2	0	0	_	3	5	6	5	2	2	4	4	6	4
3	2	2	2	2	0	0	_	1	1	_	1	1	2	2	2	2	1
4	_	0	0	0	0	0	_	0	0	_	1	1	2	2	2	2	1

Iteration	I^{frei}	I^{fix}	M	fix. Variablen
1	$\{1, \dots, 17\}$	Ø	$\{1,\ldots,17\}$	$x_7 = 1$
2	$I \setminus \{7\}$	{7}	$\{1, 2, 3, 9, 10, 11, 14, \dots, 17\}$	$x_{10} = 1$
3	$I \setminus \{7, 10\}$	$\{7, 10\}$	$\{1, 3, 14, 15\}$	$x_1 = 1$
4	$I \setminus \{1, 7, 10\}$	$\{1, 7, 10\}$	$\{14, 15\}$	$x_{13} = 1$
5	$I \setminus \{1, 7, 10, 13\}$	$\{1, 7, 10, 13\}$	Ø	

\leadsto fertig

b) Neues Ersatzproblem:

$$\arg\min_{j\in I^{frei}}\{z_j\} \text{ mit } z_j = \frac{c_j}{|M\cap M_j|}$$

Iteration	I^{frei}	I^{fix}	M	z_1	z_2	z_3	z_4	z_5	z_6
1	I	Ø	$\{1, \dots, 8\}$	3000	4000	4000	3250	2500	4000
2	$\{1, 2, 3, 4, 6\}$	$\{5\}$	$\{1, 2, 3, 5, 6, 8\}$	6000	4000	6000	3250	_	4000
3	$\{1, 2, 3, 6\}$	$\{4, 5\}$	$\{1, 2, 6, 8\}$	6000	4000	6000	_	_	8000
4	$\{1, 3, 6\}$	$\{2, 4, 5\}$	$\{1, 8\}$	6000	_	12000	_	_	8000
5	$\{3, 6\}$	$\{1, 2, 4, 5\}$	{8}	_	_	12000	_	_	8000
6	$\{3\}$	$\{1, 2, 4, 5, 6\}$	Ø						

 \leadsto fertig Lösung: $x^T = (1,1,0,1,1,1), \ z = 33500$

Aufgabe 14:

Modellierung des WLP:

Gegeben:

Menge $M=\{1,\ldots,m\}$ von Kunden i Menge $N=\{1,\ldots,n\}$ von potentiellen Lagern j Kosten:

- Fixkosten F_j für das Öffnen des Lagers j
- ullet Bedienkosten c_{ij} des Kunden i durch Lager j

Gesucht:

- Menge der zu öffnenden Lager (Lokation)
- Zuordnung von Kunden zu Lagern (Allokation)

 \leadsto minimale Gesamtkosten

$$EV: y_j = \begin{cases} 1, & \text{Lager j ge\"offnet} \\ 0, & \text{sonst} \end{cases}$$

 x_{ij} Anteil des Bedarfs von Kunde i, der durch Lager j bedient wird

$$\min z = \sum_{j=1}^{n} F_j \cdot y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$$

$$\text{s.d.} \sum_{j=1}^{n} x_{ij} = 1 \ \forall i = 1, \dots, m$$

$$x_{ij} \le y_j \ \forall i = 1, \dots, m \ \forall j = 1, \dots, n$$

$$x_{ij} \ge 0 \ \forall i \forall j$$

$$y_j \in \{0, 1\} \ \forall j$$

Optimale Lösung besitzt die sogenannte single Sourcing Eigenschaft. D.h. jeder Kunde kann vollständig dem günstigsten Lager zugewiesen werden.

D.h. bei bekannter Lokationsentscheidung ist die Allokation sehr einfach zu lösen.

 \rightsquigarrow unabhängige Variablen y_j und abhängige Variablen x_{ij}

Es sei $\overline{N} \subset N$ die Indexmenge der bereits geöffneten Lager

$$\rightsquigarrow$$
 min. Allokationskosten $\overline{c_i}(\overline{N}) = \begin{cases} \min_{j \in \overline{N}} \{c_{ij}\}, & \text{falls } \overline{N} \neq \emptyset \\ M >> 0, & \text{sonst} \end{cases}$

Ersatzproblem für noch nicht geöffnete Lager:

$$z_{j} = \sum_{i \in M} (\overline{c_{i}}(\overline{N}) - \overline{c_{i}}(\overline{N} \cup \{j\})) - F_{j}$$

Fixierung:

- $\bullet\,$ wähle j
 mit größtem $z_j>0$ und setze $y_j=1$
- setze $y_j = 0$ falls $z_j \le 0$
- a) Greedy-Verfahren:

$$I^{frei} = \{1, \dots, 6\}, \ I^{fix} = \varnothing, \ \overline{N} = \varnothing$$

1. Iteration:

2. Iteration:

$$\frac{j \mid 1 \quad 2 \quad 3 \quad 4 \quad 5}{z_j \mid 2 \quad -7 \quad 5 \quad 5 \quad 2}$$

$$\Rightarrow j^* = 3 \quad \Rightarrow y_3 = 1, \ z_2 < 0 \Rightarrow y_2 = 0$$

$$I^{fix} = \{2, 3, 6\} \ I^{frei} = \{1, 4, 5\} \ \overline{N} = \{3, 6\}$$

3. Iteration:

$$\frac{j \mid 1 \quad 4 \quad 5}{z_j \mid -3 \quad 2 \quad -4}$$

$$\Rightarrow j^* = 4 \quad \Rightarrow y_4 = 1, \ z_1, z_5 < 0 \Rightarrow y_1 = y_5 = 0$$

Lösung:

geöffnetes Lager	zugeordnete Kunden
3	4,6
4	1,5
6	2, 3, 7

$$z = 1 + 3 + 3 + 1 + 2 + 3 + 2 + 6 + 1 + 1 = 23$$

Anmerkung: Eventuell werden nicht allen geöffneten Standorten auch tatsächlich Kunden zugeordnet

Beispiel:

c_{ij}	1	2	3
1	100	1	20
2	100	1	20
3	1	100	20
4	1	100	20
$\overline{F_j}$	10	10	10
\sum_{i}	212	212	90

 \leadsto Es werden alle Standorte 1,2 und 3 geöffnet

 \leadsto Lösung

Standort	Kunden
1	3, 4
2	1, 2
3	_

 \leadsto schließe Standorte ohne Kunden

b) Ausgangslösung: \rightsquigarrow nur Lager 1 geöffnet $y^T = (1, 0, 0, 0, 0, 0) \rightsquigarrow z = 49$

1. Nachbarschaft

$$\begin{aligned} y^T &= (1,1,0,0,0,0), \ \Delta z = 0 \\ y^T &= (1,0,1,0,0,0), \ \Delta z = 20 \\ y^T &= (1,0,0,1,0,0), \ \Delta z = 13 \\ y^T &= (1,0,0,0,1,0), \ \Delta z = -2 \\ y^T &= (1,0,0,0,0,1), \ \Delta z = 21 \ \text{(Beste Lösung \leadsto \"{o}ffne Lager 6)} \end{aligned}$$

2. Nachbarschaft

$$\begin{aligned} y^T &= (0,0,0,0,0,1), \ \Delta z = -2 \\ y^T &= (1,1,0,0,0,1), \ \Delta z = -9 \\ y^T &= (1,0,1,0,0,1), \ \Delta z = 0 \\ y^T &= (1,0,0,1,0,1), \ \Delta z = 2 \ (\text{Beste L\"osung} \leadsto \ \text{\"offne Lager 4}) \\ y^T &= (1,0,0,0,1,1), \ \Delta z = -3 \end{aligned}$$

3. Nachbarschaft

$$\begin{array}{l} y^T=(0,0,0,1,0,1),\ \Delta z=1\ (\text{Beste L\"osung}\leadsto \text{schlie\'se Lager 1})\\ y^T=(1,1,0,1,0,1),\ \Delta z=-9\\ y^T=(1,0,1,1,0,1),\ \Delta z=0\\ y^T=(1,0,0,1,1,1),\ \Delta z=-3\\ y^T=(1,0,0,1,0,0),\ \Delta z=-10 \end{array}$$

4. Nachbarschaft

$$\begin{array}{l} y^T = (0,1,0,1,0,1), \ \Delta z = -7 \\ y^T = (0,0,1,1,0,1), \ \Delta z = 2 \ (\text{Beste L\"osung} \leadsto \ \text{\"offne Lager 3}) \\ y^T = (0,0,0,0,0,1), \ \Delta z = -5 \\ y^T = (0,0,0,1,1,1), \ \Delta z = -1 \\ y^T = (0,0,0,1,0,0), \ \Delta z = -18 \end{array}$$

5. Nachbarschaft

$$\begin{aligned} y^T &= (1,0,1,1,0,1), & \Delta z = -3 \\ y^T &= (0,1,1,1,0,1), & \Delta z = -9 \\ y^T &= (0,0,1,0,0,1), & \Delta z = -2 \\ y^T &= (0,0,1,1,1,1), & \Delta z = -4 \\ y^T &= (0,0,1,1,0,0), & \Delta z = -6 \end{aligned}$$

$$\rightsquigarrow$$
 keine bessere Lösung \rightsquigarrow Verfahren endet Beste Lösung: $y^T = (0,0,1,1,0,1)$, $z = 49-21-2-1-2=23$

Vollständigkeit und Richtigkeit - Alle Angaben ohne Gewähr!!!