Υβριδική Κάλυψη Εκδηλώσεων Εισαγωγικές πληροφορίες

Ερμής Δούλος (dit17046@uop.gr)

27 Νοεμβρίου 2024

Github Profile:

Τι Είναι Η Υβριδική Κάλυψη*;

- Ορισμός: Συνδυασμός φυσικής παρουσίας και διαδικτυακής συμμετοχής.
- Γιατί είναι σημαντική:
 - Επέκταση ακροατηρίου.
 - Πρόσβαση για όσους δεν μπορούν να παρευρεθούν εκείνη τη στιγμή.
- Παραδείγματα χρήσης: Συνέδρια, γάμοι, μαθήματα, συναντήσεις.

Εξοπλισμός που Χρειαζόμαστε

Ήχος:

- Κονσόλες ήχου (π.χ., Behringer X32).
- Καλώδια XLR:
 - Υψηλής ποιότητας μετάδοση.
 - Προστασία από παρεμβολές (balanced signal).
- Γιατί όχι 3.5mm jack;
 - Ευαίσθητα σε παρεμβολές.
 - Μειωμένη ποιότητα ήχου.

XLR vs 3.5mm audio jack

Χαρακτηριστικό	XLR	3.5mm Jack
Ποιότητα Ήχου	Ισορροπημένο σήμα: Μειώνει θόρυβο και παρεμβολές	Μη ισορροπημένο σήμα: Επιρρεπές σε θόρυβο.
Απόσταση Μετάδοσης	Μεγάλη απόσταση χωρίς υποβάθμιση (δεκάδες μέτρα).	Μικρή απόσταση, υποβαθμίζεται γρήγορα.
Αντοχή και Σχεδιασμός	Στιβαροί μεταλλικοί σύνδεσμοι, ασφαλίζουν στη θύρα.	Ευαίσθητοι σύνδεσμοι, αποσυνδέονται εύκολα.
Περιβάλλον Χρήσης	Επαγγελματικά στούντιο, συναυλίες, ζωντανές μεταδόσεις.	Καταναλωτικά προϊόντα, απλό ήχο σε ΡC/κινητά.
Κόστος	Πιο ακριβό, κατάλληλο για επαγγελματικές απαιτήσεις.	Φθηνό, αλλά λιγότερο αξιόπιστο.

Πίνακας: Σύγκριση XLR και 3.5mm Jack

Παρεμβολή Ι

3.5mm Jack (Unbalanced Signal)

Το καλώδιο 3.5mm jack μεταφέρει το σήμα μέσω ενός αγωγού, ενώ η γείωση χρησιμεύει ως αναφορά. Το σήμα με παρεμβολή περιγράφεται ως:

$$V_{\rm output} = V_{\rm signal} + V_{\rm noise}$$

όπου:

$$V_{
m noise}{}^{lpha'} \propto rac{\Phi_{
m EMI}{}^{eta'}}{d}$$

Μεγαλύτερα μήκη καλωδίων (d) οδηγούν σε περισσότερη παρεμβολή.

α Το αρχικό σήμα

^βΟ θόρυβος που προστίθεται στο σύστημα λόγω ηλεκτρομαγνητικών παρεμβολών

Παρεμβολή ΙΙ

XLR (Balanced Signal)

Το XLR χρησιμοποιεί δύο αγωγούς $(+V \kappa \alpha \iota - V)$ που μεταφέρουν αντίθετα σήματα. Το σήμα με παρεμβολή περιγράφεται ως:

$$V_{\text{output}} = (V_{\text{signal}} + V_{\text{noise}}) - (-V_{\text{signal}} + V_{\text{noise}})$$

Αναπτύσσοντας:

$$V_{\text{output}} = 2V_{\text{signal}}$$

Σημείο-κλειδί: Ο θόρυβος V_{noise} εξουδετερώνεται πλήρως † , ενώ το σήμα ενισχύεται.

Παρεμβολή III

Συμπερασματικά

• 3.5mm Jack: Το σήμα περιλαμβάνει θόρυβο:

$$V_{\rm output} = V_{\rm signal} + V_{\rm noise}$$

• XLR: Ο θόρυβος εξουδετερώνεται:

$$V_{\text{output}} = 2V_{\text{signal}}$$

Κονσόλα ήχου Ι

Σχήμα: Κονσόλα ήχου και τα βασικά της στοιχεία

Κονσόλα ήχου ΙΙ

Οι ανάγκες μας;

- τουλάχιστον 4 εισόδους (2 XLR και 2 3.5mm).
- Καλώδια ΧLR για τη σύνδεση μικροφώνων και των ηχείων.
- Τουλάχιστον 2 εξόδους ΧLR για τη σύνδεση των ηχείων.
- 48ν phantom power για τη σύνδεση τυχών μικροφώνων (στην εγκατάσταση του αμφιθεάτρου κάτι τέτοιο δεν χρειάζεται). α

 $[\]alpha$ Σκεφτείτε το phantom power ως το Power over ethernet των μικροφώνων

Εικόνα και Βίντεο Ι

- HDMI Capture Card (π . χ ., Elgato Camlink, Blackmagic[‡] Atem mini).
- Κάμερες και μικρόφωνα (τουλάχιστον 1080p ανάλυση).

HDMI Capture Cards

Σχήμα: Elgato Camlink και κονσόλα καταγραφής audio/video Atem mini α

α΄Πιο ευέλικτη κονσόλα καταγραφής από την Elgato, αλλά και πιο ακριβή

Εικόνα και Βίντεο ΙΙ

Σχήμα: Ανάλυση των θυρών της κονσόλας Atem mini

Ρυθμίσεις Εξοπλισμού Ι

Σχετικά με την κονσόλα ήχου

- Ρύθμιση των επιπέδων εισόδου και εξόδου.
- Ενεργοποίηση του phantom power για τα μικρόφωνα.
- Ρύθμιση των επιπέδων εξόδου για τα ηχεία.
- Ενεργοποίηση του audio monitoring για τεχνικό έλεγχο

Ρυθμίσεις Εξοπλισμού ΙΙ

Χρησιμοποιόντας την έξοδο της κονσόλας ως μικρόφωνο

- Χρήσιμη για παρακολούθηση ήχου.
- Ιδανική για τεχνικό έλεγχο.
- Χρήση της εξόδου της κονσόλας ως είσοδο μικροφώνου του υπολογιστή
 - Έτσι ακούγεται η «αίθουσα» διαδικτυακά
 - Αποφεύγουμε τον μικροφωνισμό^α

 lpha Θέλει πάντα προσεκτική σχεδίαση του συστήματός μας για να τον αποφύγουμε

Ρυθμίσεις Εξοπλισμού ΙΙΙ

One computer to rule them all

Απαιτήσεις:

- CPU: i5 ή ανώτερο.
- GPU: NVIDIA GTX 1660 ή νεότερη.
- RAM: $16GB + \alpha'$.

Ο κακός υπολογιστής είναι σαν να τρέχεις μαραθώνιο με σαγιονάρες. Απλά δεν γίνεται

 $[\]alpha$ Σε Linux αρκούν και 8GB μνήμης

Λογισμικό για Υβριδική Κάλυψη

OBS (Open Broadcaster Software): είναι ένα δωρεάν και ανοιχτού κώδικα λογισμικό που χρησιμοποιείται για εγγραφή και ζωντανή μετάδοση βίντεο και ήχου

• Τι κάνει:

- Εγγραφή και μετάδοση σε πραγματικό χρόνο.
- Ενσωμάτωση πηγών ήχου/βίντεο.

• Βασικές λειτουργίες:

- Ρυθμίσεις απλών ή σύνθετων σκηνών (π.χ. Picture in Picture ή ειδικά εφέ).
- Poή (streaming) σε Zoom, YouTube, Facebook.
- recording της ροής στον τοπικό υπολογιστή
- Το OBS είναι ο Ελβετικός σουγιάς των μεταδόσεων

Διάγραμμα μιας τυπικής υβριδικής αναμετάδοσης

Σχήμα: Διάγραμμα ενός συστήματος υβριδικής αναμετάδοσης

Διάγραμμα του αμφιθεάτρου μας

Σχήμα: Διάγραμμα του ηχητικού συστήματος του αμφιθεάτρου μας

OBS και Zoom

Πώς να μεταδώσεις απευθείας στο Zoom;

- Στήσε τη σκηνή σου στο πρόγραμμα OBS.
- Θ Ρύθμισε το OBS Virtual Camera.
- Θ Επέλεξε το OBS Virtual Camera ως πηγή βίντεο στο Zoom.

Χρήσιμες συμβουλές

- Ρύθμισε την εικόνα και τον ήχο πριν απο την εκδήλωση.
- Έχε πάντα ένα backup σχέδιο.
- Έχε υπομονή και όρεξη.
- Ελέγξτε τη σύνδεση δικτύου (upload speed > 10Mbps).
- Ενεργοποιήστε την ανατροφοδότηση (audio monitoring) για έλεγχο.

Συμπερασματικά

- Η υβριδική κάλυψη είναι η γέφυρα ανάμεσα στον ψηφιακό και φυσικό κόσμο των εκδηλώσεων.
- Με τον σωστό εξοπλισμό και προγραμματισμό, όλα είναι δυνατά.
- Και θυμηθείτε, αν κάτι πάει στραβά... πάντα φταίει το Internet!

Άδεια Χρήσης

άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές (CC BY 4.0). Το παρόν διατίθεται υπό την $\textcircled{\bullet}$

Επιτρέπεται στον αποδέκτη:

- Να μοιραστεί το έργο με άλλους.
- Να τροποποιήσει το έργο για προσωπική ή εμπορική χρήση.
- Να χρησιμοποιήσει το έργο σε παρουσιάσεις ή δημοσιεύσεις.
- Να αναφέρει τον δημιουργό του έργου όταν το χρησιμοποιεί.