习题四解答

1、用幂法求解下列矩阵的按模最大的特征值及相应的特征向量,取 $x^{(0)} = (1,1,1)^T$,要求至少迭代 6 次。

$$\begin{bmatrix} 11 & 8 & 1 \\ 3 & -5 & -2 \\ 1 & -2 & 2 \end{bmatrix}, \quad \begin{bmatrix} 4 & -1 & 1 \\ -1 & 3 & 2 \\ 1 & -2 & 3 \end{bmatrix}_{\circ}$$

解: (1) 按算法 4.1: 取初值 $y^{(0)} = x^{(0)} = (1,1,1)^T$, $\alpha = 1$; 列表如下:

1		$x^{(k)}$			$y^{(k)}$			
k	$x_1^{(k)}$	$x_{2}^{(k)}$	$X_3^{(k)}$	$lpha_{_k}$	$y_1^{(k)}$	$y_2^{(k)}$	$y_3^{(k)}$	
0	1	1	1	1	1	1	1	
1	20	-4	1	20	1	-0.200	0.0500	
2	9.4500	3. 9000	1.5000	9.4500	1.0000	0.4127	0.1587	
3	14. 4603	0.6190	0. 4921	14. 4603	1.0000	0.0428	0.0340	
4	11. 3764	2. 7179	0. 9824	11. 3764	1.0000	0.2389	0.0864	
5	12. 9976	1.6328	0.6949	12. 9976	1.0000	0.1256	0.0535	
6	12. 0584	2. 2650	0.8557	12.0584	1.0000	0. 1878	0.0710	

则最大特征值近似值 $\lambda \approx 12.0584$, 对应特征向量 $\mu_1 \approx x^{(6)} = (12.0584, 2.2650, 0.8557)^T$

$$u_1 \approx x^{(6)} = (12.0584, 2.2650, 0.8557)^T$$

(2) 按算法 4.1: 取初值 $y^{(0)} = x^{(0)} = (1,1,1)^T$, $\alpha = 1$; 列表如下:

1		$x^{(k)}$		α	$\mathcal{Y}^{(k)}$			
k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$	$\alpha_{_k}$	$y_1^{(k)}$	$y_2^{(k)}$	$y_3^{(k)}$	
0	1	1	1	1	1	1	1	
1	4	4	2	4	1	1	0.5	
2	3. 5	3	0.5	3. 5	1	0.8571	0. 1429	
3	3. 2857	1.8571	-0. 2857	3. 2857	1	0. 5652	-0.0870	
4	3. 3478	0. 5217	-0.3913	3. 3478	1	0.1158	-0.1169	
5	3. 7273	-0.7662	0. 3377	3. 7273	1	-0. 2056	0.0906	
6	4. 2962	-1.4355	1. 6829	4. 2962	1	-0. 3341	0. 3917	

则最大特征值近似值 ~4.2962

对应近似特征向量 $u_1 \approx x^{(6)} = (4.2962, -1.4355, 1.6829)^T$ 。

2、用反幂法求矩阵

$$A = \begin{bmatrix} 4 & 1 & 4 \\ 1 & 10 & 1 \\ 4 & 1 & 10 \end{bmatrix}$$

的接近 12 的特征值及相应的特征向量,取 $x^{(0)} = (1,0,0)^T$,要求有四位有效数字。

解: 作 B = A - 12I 的 Doolittle 分解得:

$$A - 12I = \begin{pmatrix} -8 & 1 & 4 \\ 1 & -2 & 1 \\ 4 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -0.125 & 1 & 0 \\ -0.5 & -0.8 & 1 \end{pmatrix} \cdot \begin{pmatrix} -8 & 1 & 4 \\ 0 & -1.875 & 1.5 \\ 0 & 0 & 1.2 \end{pmatrix} = LU$$

取初值
$$y^{(0)} = x^{(0)}/1 = (1,0,0)^T$$
; 由 $Lz = y^{(0)}$; $Ux^{(1)} = z$,算法 4.3 计算列表如下:

k	$y_1^{(k)}$	$y_2^{(k)}$	$y_3^{(k)}$	$X_1^{(k)}$	$x_{2}^{(k)}$	$X_3^{(k)}$	$\alpha_{\scriptscriptstyle k}$	$\lambda_{_{k}}$
0	1	0	0					12
1	0. 3334	0.6667	1	0. 1667	0. 3333	0.5	0.5	14
2	0. 5385	0. 5385	1	0.7778	0.7778	1. 4444	1. 4444	12. 6923
3	0. 5263	0. 5791	1	0. 7692	0.8463	1.4615	1. 4615	12. 6842
4	0. 5263	0.5789	1	0. 7807	0.8421	1. 4824	1. 4825	12. 6746
5	0. 5266	0.5680	1	0. 7771	0.8422	1. 4753	1. 4753	12. 6778

$$\left|\lambda_{5}-\lambda_{4}\right|<10^{-3}$$
,迭代 5 次得接近 12 的四位有效数字的特征值 $\lambda_{1}=12.6778$

而特征向量为
$$u_1 \approx \frac{x^{(5)}}{\alpha^{(5)}} = (0.5267, 0.5709, 1)^T$$

3、用带 Aitken 加速的幂法计算第 1 题中矩阵的按模最大的特征值与相应的特征向量,要求有四位有效数字。

解: (1) 由算法 4.2 可得计算结果如下: 比较题 1(1)多右侧一列 Aitken 加速序列,计算公式为 $\lambda_2 = \alpha_0 - \frac{(\alpha_1 - \alpha_0)^2}{\alpha_2 + \alpha_0 - 2\alpha_1} = 13.2166$

	$\chi^{(k)}$							
k	$\mathcal{X}_{1}^{(k)}$	$\mathcal{X}_2^{(k)}$	$\mathcal{X}_3^{(k)}$	$\alpha_{\scriptscriptstyle k}$	$y_1^{(k)}$	$y_2^{(k)}$	$y_3^{(k)}$	$\lambda_{_k}$

0	1	1	1	1	1	1	1	
1	20	-4	1	20	1	-0.2	0.0500	
2	9.4500	3.9000	1.5000	9.4500	1.0000	0.4127	0.1587	13. 2166
3	14. 4603	0.6190	0. 4921	14. 4603	1.0000	0.0428	0.0340	12.8470
4	11. 3764	2. 7179	0. 9824	11. 3764	1.0000	0. 2389	0.0864	12. 5514
5	12. 9976	1.6328	0.6949	12. 9976	1.0000	0. 1256	0.0535	12. 4390
6	12.0584	2. 2650	0.8557	12. 0584	1.0000	0. 1878	0.0710	12. 4029

由 $\left|\lambda_6 - \lambda_5\right| = 0.0361 < 0.1$, $\lambda \approx \lambda_6 = 12.4$ 具有三位有效数字,相应的特征向量为对应特征向量 $x^{(6)} = (12.0854, 2.2650, 0.8557)^T$ 。从 α_k 与 λ_k 的比较可知,Aitken 方法可加速幂法的收敛。

(2) 由算法 4.2 可得计算结果如下: 比较题 1(2)多右侧一列 Aitken 加速序列, 计算公式

为
$$\lambda_2 = \alpha_0 - \frac{(\alpha_1 - \alpha_0)^2}{\alpha_2 + \alpha_0 - 2\alpha_1} = 3.5714$$
 等

列表如下:

	73700					$\mathbf{y}^{(k)}$		
,		$x^{(k)}$		α		1		
k	$\mathcal{X}_1^{(k)}$	$X_{2}^{(k)}$	$X_3^{(k)}$	$lpha_{_k}$	$\mathcal{Y}_1^{(k)}$	$y_2^{(k)}$	$y_3^{(k)}$	$\lambda_{_k}$
0	1	1	1	1	1	1	1	
1	4	4	2	4	1	1	0.5	
2	3. 5	3	0.5	3. 5	1	0.8571	0. 1429	3. 5714
3	3. 2857	1.8571	-0. 2857	3. 2857	1	0. 5652	-0.0870	3. 1250
4	3. 3478	0. 5217	-0.3913	3. 3478	1	0. 1158	-0.1169	3. 3339
5	3. 7273	-0. 7662	0.3377	3. 7273	1	-0. 2056	0.0906	3. 2736
6	4. 2962	-1.4355	1.6829	4. 2962	1	-0.3341	0.3917	2. 5878
:	:	:	:	:	:	:	:	:
24	4. 4780	0. 3819	2.5192	4. 4780	1	0. 0853	0.5626	4. 4745
25	4. 4773	0. 3810	2. 5172	4. 4773	1	0.0851	0. 5622	4. 4765

由 $|\lambda_{24} - \lambda_{25}| = 0.0020 < 0.01$, $\lambda \approx \lambda_{25} = 4.4765$ 具有三位有效数字,相应的特征向量为对应特征向量 $x^{(6)} = (4.4773, 0.3810, 2.5172)^T$ 。该矩阵求模最大特征值,Aitken 方法无明显加速收敛作用。

4、用 Jacobi 古典方法求下列对称矩阵的全部特征值与特征向量,要求 $E(A^{(k)}) < 10^{-3}$ 。

$$(1) \begin{bmatrix} 4 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}; (2) \begin{bmatrix} 4 & 2 & 2 \\ 2 & 5 & 1 \\ 2 & 1 & 6 \end{bmatrix}.$$

解:(1)按 Jacobi 算法 4. 4,全部特征值为 $\lambda_1 \approx 0.3004$, $\lambda_2 \approx 4.4605$, $\lambda_3 \approx 2.2391$ 对应特征向量 $u_1 \approx (0.1531, -0.5665, 0.8097)^T$,

 $u_2 \approx (-0.9018, -0.4153, 0.1200)^T$, $u_3 \approx (0.4042, -0.7118, -0.5744)^T$

(1) 全部特征值为 $\lambda_1 \approx 4.4865$, $\lambda_2 \approx 2.1259$, $\lambda_3 \approx 8.3876$

对应特征向量 $u_1 \approx (0.1555, -0.7172, 0.6793)^T$,

$$u_2 \approx (-0.8281, 0.4696, 0.3062)^T$$
, $u_3 \approx (-0.5386, -0.5149, -0.6669)^T$

5、已知方阵 A 如下,先用幂法作适当步数(如 2 步或 3 步),然后按原点平移的加速方法,求模最大的特征值及相应的特征向量,要求特征值有四位有效数字, $x^{(0)}=(1,0,0)^T$ 。

$$A = \begin{bmatrix} -4 & -3 & -7 \\ 2 & 3 & 2 \\ 4 & 2 & 7 \end{bmatrix}$$

解: 使用幂法算法 4.1: 取 $x^{(0)} = (1,0,0)^T$,

$$y^{(k)} = \frac{x^{(k)}}{x_r^{(k)}}, \left| x_r^{(k)} \right| = \max_{1 \leq i \leq n} \left\{ \left| x_i^{(k)} \right| \right\}, x^{(k+1)} = A y^{(k)}, \quad k = 0, 1, 2, \cdots, \lambda_1 \approx x_r^{(k+1)}, \quad u_1 \approx x^{(k+1)}$$

幂法求解结果如下:,

1-		$x^{(k)}$		a	$\mathcal{Y}^{(k)}$			
k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$	$\alpha_{_k}$	$\mathcal{Y}_1^{(k)}$	$y_2^{(k)}$	$y_3^{(k)}$	
0	1	0	0	1	1	0	0	
1	-4	2	4	4	-1	0.5	1	
2	-4.5	1.5	4	-4.5	1	0.3333	-0.8889	
3	3.2222	-0.7778	-2.8888	3.2222	1	0.2414	0.8965	

矩阵 A 按模最大特征值近似值为 3.2222

取 $\lambda_0 = 3.2222$, 作 $B = A - \lambda_0 I$,用原点平移法和反幂法求矩阵 B 的最小特征值,按

算法 4.3,数值结果如下:仍取 $x^{(0)} = (1,0,0)^T$

7	$x^{(k)}$			a	$y^{(k)}$			
k	$\mathcal{X}_1^{(k)}$	$X_{2}^{(k)}$	$X_3^{(k)}$	$\alpha_{_k}$	$y_1^{(k)}$	$y_2^{(k)}$	$y_3^{(k)}$	
0	1	0	0	1	1	0	0	4. 22222
1	8. 0272	-0. 7366	-8. 1089	-8. 1089	-0. 9899	0.0908	1	3.09888
2	4. 9872	-0.1152	-4. 9545	4. 9872	1	-0.0231	-0.9935	3. 42271
3	-4. 5247	0.0226	4. 5156	-4. 5247	1	-0.0050	-0.9980	3.00119
4	-4. 5015	0.0045	4. 4995	-4. 5015	1	-0.0010	-0.9996	3.00005
5	-4. 5033	0.0008	4. 5029	-4. 5033	1	-0.0002	-0.9999	3.00014

 $|\lambda_a - \lambda_s| = 0.00009 < 10^4$, 迭代 5 次得 $\lambda \approx 3.00014$,

特征向量为 $u \approx y^{(4)} = (1, -0.0002, -0.9999)^T$

6、设矩阵 A 的特征值满足: $\lambda_1 > \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_n \geq 0$ 。求证: 当取 $\lambda_0 = (\lambda_2 + \lambda_n)/2$ 时,用原点平移的加速方法求 λ 的收敛速度加快。

证明: 当取 $\lambda_0 = (\lambda_2 + \lambda_n)/2$ 则由条件 $\lambda_1 > \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n \ge 0$,有

$$0 < \frac{\lambda_2 - \lambda_0}{\lambda_1 - \lambda_0} = \frac{\lambda_2 - \lambda_n}{2\lambda_1 - \lambda_2 - \lambda_n} = \frac{\lambda_2 - \lambda_n}{\lambda_1 - \lambda_n + \lambda_1 - \lambda_2} < \frac{\lambda_2 - \lambda_n}{\lambda_1 - \lambda_n} < \frac{\lambda_2}{\lambda_1}$$

则原点平移法, 当取 $\lambda_n = (\lambda_n + \lambda_n)/2$ 求 λ_n 可使收敛速度加快。

7、用 Householder 变换将下列矩阵化成相似的拟上三角阵

$$\begin{bmatrix} -4 & -3 & -7 \\ 2 & 3 & 2 \\ 4 & 2 & 7 \end{bmatrix}.$$

解: 对 k = 1 确定变换 $H_1 = \begin{pmatrix} 1 & 0 \\ 0 & R_1 \end{pmatrix}$, $\alpha_{21}^{(1)} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$, 其中 R_1 为 2 阶初等反射矩阵,且使

$$R_1 \alpha_{21}^{(1)} = -\sigma_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \sigma_1 = \|\alpha_{21}^{(1)}\| = \sqrt{20} \approx 4.472136$$

$$H = H_1 A H_1 = \begin{pmatrix} -4 & 7.602634 & -0.447217 \\ -4.472136 & 7.800003 & -0.399999 \\ 0 & -0.399999 & 2.200000 \end{pmatrix}.$$

8、设 λ 是实对称矩阵 A 的特征值,相应地特征向量为u,且 $\|u\|_2 = 1$,若存在正交矩阵 P 使得 $Pu = e_1 = (1,0,0,\cdots,0)^T$,求证:矩阵 $B = PAP^T$ 的第 1 行第 1 列除 λ 外,其余元素均为 0。

证明: 因为 $B = PAP^T$, 所以 $B^T = (PAP^T)^T = P^TAP$ 又 $A = A^T$, ,故B 为对称矩阵。

设 λ 和x是A的特征值及对应的特征向量,则 $Ax = \lambda x$ 。由P为正交阵,且 $Px = e_1$,

故
$$Be_1 = PAP^TPx = PAx = \lambda Px = \lambda e_1$$
, 即 $Be_1 = \lambda e_1$,

所以
$$b_{21} = b_{31} = \cdots = b_{n1} = 0$$
,得证。

9、用 QR 方法求下列矩阵的全部特征值。

$$(1)\begin{bmatrix}2&1&0\\-1&3&1\\0&1&4\end{bmatrix};\ (2)\begin{bmatrix}3&-1&0\\-1&2&-1\\0&-1&1\end{bmatrix}.$$

解: (1) 按 QR 算法: $\begin{cases} A^{(k)} = Q_k R_k \\ A^{(k+1)} = R_k Q_k \end{cases}, \quad k = 0, 1, 2, \cdots$

$$\begin{split} A &= A^{(0)} = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 4 \end{bmatrix} = Q_0 R_0 \\ &= \begin{bmatrix} -0.8944 & -0.4260 & -0.1361 \\ 0.4472 & -0.8520 & -0.2722 \\ 0 & -0.3043 & 0.9526 \end{bmatrix} \begin{bmatrix} -2.2361 & 0.4472 & 0.4472 \\ 0 & -3.2863 & -2.0692 \\ 0 & 0 & 3.5382 \end{bmatrix} \end{split}$$

$$A^{(1)} = R_0 Q_0$$

$$= \begin{bmatrix} 2.2000 & 0.4355 & 0.6086 \\ -1.4696 & 3.4296 & -1.0766 \\ 0 & -1.0767 & 3.3705 \end{bmatrix}$$

接 (4.3.1) 算法
$$A^{(k)}$$
 $\xrightarrow{k \longrightarrow \infty}$
$$\begin{bmatrix} 4.5214 & 0.0000 & 0.0000 \\ 0.0000 & 2.2393 & 0.0000 \\ 0.0000 & 0.0000 & 2.2393 \end{bmatrix}$$

所以 A 的特征值为4.5214, 2.2393, 2.2393

(2) 类似, A 的全部特征值近似为3.7321, 2.0000, 0.2679。