Implementing Minimum Error Rate Classifier.

Rakib Hossain Rifat

Department of Computer Science and Engineering Ahsanullah University of Science and Technology Dhaka, Bangladesh 160204099@aust.edu

Abstract—Main objective of this experiment is classify data points and minimize the error.

Index Terms—Minimum Error Rate, Minimum Classifier, Gaussian Distribution, Probabilities.

I. INTRODUCTION

Minimum Error Rate Classifier is used for minimize the error rate at the time of classification. In this experiment I need to classify data points of two class using Minimum Error Rate Classifier.

II. METHODOLOGY

In this experiment I need to perform several tasks.

A. Plotting Test Data of Both Classes

For this I need to plot training data of both classes from "test-Minimum-Error-Rate-Classifier.txt", and samples belonging to same class should have same marker and color. for this we will use normal distribution formula given below-

$$N_k(x_i|\mu_k, \Sigma_k) = \frac{1}{\sqrt{(2\pi)^D|\Sigma_k|}} e^{\frac{-1}{2}((x_i - \mu_k)^T)\Sigma_k^{-1}(x_i - \mu_k)^T)}$$

Normal distribution expressed by mean and sigma. Where sigma is the variance.

B. Draw Decision Boundary

For this I need to use the equation given bellow.

$$g_1(x) = g_2(x)$$

$$= > p(w_1|x) = p(w_2|x)$$

$$= > p(w_1|x) - p(w_2|x) = 0$$

$$= > P(x|w_1) \cdot P(w_1) - P(x|w_2) \cdot P(w_2) = 0$$

Taking In we can get,

$$=> lnP(x|w_1).P(w_1) - lnP(x|w_2).P(w_2) = 0$$

$$=> lnP(x|w_1) + lnP(w_1) - lnP(x|w_2) - lnP(w_2) = 0$$

$$=> lnP(x|w_1)/lnP(x|w_2) - lnP(w_2)/lnP(w_1) = 0$$

This is the equation of the decision boundary for minimum error rate classifier.

III. RESULT ANALYSIS

A. Plotting Training Data of Both Classes

Here I have plotted data of both classes with different marker and color.

Class 1= [1, 1.0], [1, -1.0], [0, 2.0] Class 2= [4, 5.0], [-2, 2.5], [2, -3.0]

Fig. 1. Test Data of Class One and Class Two

B. Plotting contour graph along with its decision boundary.

Here I have plotted the contour graph along with its decision boundary.

Fig. 2. contour plot along with its decision boundary.

IV. CONCLUSION

From the experiment it can be stated that data points can be classified using their normal distribution and using minimum error rate. And this classifier is based on probability.

V. Code

```
# -*- coding: utf-8 -*-
"""160204099_B2_03.ipynb
Automatically generated by Colaboratory.
Original file is located at
    https://colab.research.google.com/drive/1
    psNqDxX4zlvdOAEbA-11T69DKEvE68c6
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
train_df=pd.read_csv("/content/test-Minimum-Error-
    Rate-Classifier.txt", sep=", " , names=["x1", "x2"])
train_set=np.array(train_df)
def multivariate_gaussian(pos, miu, Sigma):
    n = miu.shape[0]
    Sigma_det = np.linalg.det(Sigma)
    Sigma_inv = np.linalg.inv(Sigma)
    N = np.sqrt((2*np.pi)**n * Sigma_det)
    fac = np.einsum('...k,kl,...l->...', pos-miu,
    Sigma_inv, pos-miu)
    return np.exp(-fac / 2) / N
class1 = []
class2 = []
class1_X=[]
class1_Y=[]
class2_X=[]
class2_Y=[]
pri_omega_one=0.5
pri_omega_two=0.5
miu_one=np.array([0,0])
miu_two=np.array([2,2])
sigma_one=np.array([[.25,.3],[.3,1]])
sigma_two=np.array([[.5,0],[0,.5]])
for i in range(0,len(train_set)):
  term_one_1=pow((2*math.pi),D)
  term_one_2=np.linalg.det(sigma_one)
  term_one_one=1/math.sqrt(term_one_1 * term_one_2)
  term\_one\_two = -0.5 * np.dot(np.transpose(np.
    subtract(train_set[i] , miu_one) ), np.dot(np.
linalg.inv(sigma_one), (np.subtract(train_set[i]
     , miu_one)) ))
  normal_one=term_one_one*np.exp(term_one_two)
  term_two_1=pow((2*math.pi),D)
  term_two_2=np.linalg.det(sigma_two)
  term_two_one=1/math.sqrt(term_two_1* term_two_2)
  term_two_two = -0.5 * np.dot(np.transpose(np.
    subtract(train_set[i] , miu_two) ), np.dot(np.
linalg.inv(sigma_two), (np.subtract(train_set[i]
     , miu_two)) ))
```

```
normal_two=term_two_one*np.exp(term_two_two)
  post1=normal_one*pri_omega_one
 post2=normal_two*pri_omega_two
  if (post1 > post2) :
    class1.append([train_set[i][0],train_set[i
    ][1],1])
  else :
    class2.append([train_set[i][0],train_set[i
for i in range(len(class1)):
 class1_X.append(class1[i][0])
 class1_Y.append(class1[i][1])
for i in range(len(class2)):
 class2_X.append(class2[i][0])
 class2_Y.append(class2[i][1])
plt.figure(figsize=(10,5))
plt.plot(class1_X, class1_Y, 'ro' , label = 'Train
    Class 1')
plt.plot(class2_X,class2_Y,'bv' , label = 'Train
   Class 2')
plt.xlabel('x1')
plt.ylabel('x2')
plt.legend(loc="upper center", bbox_to_anchor=(1.25,
   1))
plt.show()
X = np.linspace(-7, 7, 32)
Y = np.linspace(-7, 7, 32)
X, Y = np.meshgrid(X, Y)
pos = np.empty(X.shape + (2,))
pos[:, :, 0] = X
pos[:, :, 1] = Y
Z = multivariate_gaussian(pos, miu_one, sigma_one)
Z1 = multivariate_gaussian(pos, miu_two, sigma_two)
db = (Z-Z1)
fig = plt.figure()
ax = fig.gca(projection='3d')
fig.set_figheight(4)
fig.set_figwidth(8)
z=0
ax.scatter(class1_X,class1_Y,color='red',alpha=1)
ax.scatter(class2_X, class2_Y, color='blue', alpha=1)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
    linewidth=1, antialiased=True,
                cmap=cm.Oranges,alpha=.3)
ax.plot_surface(X, Y, Z1, rstride=1, cstride=1,
    linewidth=1, antialiased=True,
                cmap=cm.ocean,alpha=.3)
ax.contourf(X, Y, db, zdir='z', offset=-.15,cmap=cm.
    Accent, alpha=0.7)
ax.set_title('Probability Density')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Probability Density')
ax.set_zlim(-0.15,.2)
ax.set_zticks(np.linspace(.30,0.0,7))
ax.view_init(30, -102)
plt.show()
```