Dr Kamal Bentahar

School of Computing, Electronics and Mathematics Coventry University

Week 3 - 5/2/2018

NFA → DFA

Regularity ε-NFAs

Regular operations

RegEx → NFA
NFA → RegEx
GNFA
NFA → GNFA
GNFA → RegEx

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity

E-NFAs
Regular operations

Regular expressions RegEx → NFA

 $NFA \longrightarrow RegEx$ GNFA $NFA \longrightarrow GNFA$ $GNFA \longrightarrow RegEx$

■ NFA: $\delta: Q \times \Sigma \rightarrow 2^Q$

Surprising result

NFAs recognize exactly the same languages as DFAs.

a

b

Observation: DFAs are a *special case* of NFAs. For example:

DFA	а	b		NF
\rightarrow A	Α	В	\rightarrow	\rightarrow
* B	Α	В		*

How about the reverse?
Can we convert any NFA into a DFA?

Minamap

 $NFA \rightarrow DFA$

Regularity ε-NFAs

expressions

RegEx → NFA

NFA → RegEx

GNFA

NFA → GNFA

GNFA → RegEx Summary

Example (The Subset construction method)

NFA ↔ DFA ↔ RegEx

Mindmap

 $NFA \rightarrow DFA$

Regularity &-NFAs

E-NFAS
Regular operations

expressions

RegEx → NFA

NFA → RegEx

GNFA

GNFA \rightarrow GNFA GNFA \rightarrow RegEx

$NFA \rightarrow DFA$

Regularity E-NFAs Regular operation

Regular expressions

 $\begin{array}{c} \text{RegEx} \longrightarrow \text{NFA} \\ \text{NFA} \longrightarrow \text{RegEx} \\ \text{GNFA} \\ \text{NFA} \longrightarrow \text{GNFA} \end{array}$

 $\begin{array}{c} \text{NFA} \longrightarrow \text{GNFA} \\ \text{GNFA} \longrightarrow \text{RegEx} \end{array}$

Example (The subset construction method directly applied to a table)	Example	(The subse	t construction	method	directly	applied to a table)
--	---------	------------	----------------	--------	----------	--------------------	---

NFA		0	1	
	Α	{A, B}	{A, B}	
*	B C	{A, B} {A} {A}	{A, B} {C}	
\rightarrow	С	{A}	{A}	

Example (A longer example)

NFA → DFA

NFA ↔ DFA → RegEx

€-NFAs

RegEx → NFA NFA → RegEx NFA → GNFA

GNFA → RegEx

Given an NFA $N = (Q, \Sigma, \delta, q_{\text{start}}, F)$, we can construction an equivalent DFA $D = (Q', \Sigma, \delta', \{q_{\text{start}}\}, F')$ as follows:

- $\bigcirc Q' \subset 2^Q$ is the set of all possible states that can be reached from q_{start} .
- For each entry $(A, s) \in Q' \times \Sigma$ in the transition table of D, we find the result $\delta'(q, s)$ as the **union** of all $\delta(q, s)$ for all $q \in A$
- $F' \subset Q'$ contains all the sets that have a state from F.

Regular Languages

→ ReaEx

NFA -> DFA

€-NFAs

NEA - GNEA

GNFA → RegEx

RegEx → NFA NFA → RegEx

Every NFA has an equivalent DFA.

Definition (Regular Languages)

A language is **regular** if and only if some NFA recognizes it.

Theorem: NFAs and DFAs recognize the same languages

NFAs and DFAs are equivalent in terms of languages recognition.

Theorem: The equivalence of NFAs and DFAs

Extension: ε -NFAs \longleftrightarrow Regular Languages

We allow ε as a transition label.

Definition of ε -NFAs

An ε -NFA is defined by the 5-tuple $(Q, \Sigma, \delta, q_{\text{start}}, F)$ like normal NFAs, but where the transition function is given by

$$\delta \colon Q \times {\color{red} \Sigma_{\varepsilon}} o 2^Q \quad \text{where } {\color{gray} \Sigma_{\varepsilon}} = {\color{gray} \Sigma} \cup \{{\color{gray} \varepsilon}\}.$$

Definition (Regular Languages)

A language is **regular** if and only if some ε -NFA recognizes it.

Mindmap

 $NFA \rightarrow DFA$

Regularity ε-NFAs

Regular operations

Regular
expressions
RegEx → NFA
NFA → RegEx
GNFA
NFA → GNFA
GNFA → RegEx

The following operations are called **the regular operations**:

- **11 Union:** $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ i.e. strings from A or from B.
- **Concatenation:** $AB = \{xy \mid x \in A \text{ and } y \in B\}$ i.e. string from A followed by string from B.
- **Star:** $A^* = \{x_1 x_2 \cdots x_n \mid n \ge 0 \text{ and each } x_i \in A\}$ i.e. concatenations of zero or more strings from A.

$$A^* = \{\varepsilon\} \cup A \cup AA \cup AAA \cup \cdots = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \cdots$$

.....

 $NFA \rightarrow DFA$

ε-NFAs
Regular operations

expressions
RegEx → NFA
NFA → RegEx
GNFA
NFA → GNFA
GNFA → RegEx

Regular Languages - closures

NFA ↔ DFA ↔ RegEx

If L and M are two regular languages then the following are also regular

1 $L \cup M$ (Union: string in L or M)

2 LM (Concatenation: string from L followed by string M)

3 L^* (Star: $L^* = L^0 \cup L^1 \cup L^2 \cup \cdots$)

Theorem

The class of regular languages is closed under the regular operations (union, concatenation, and star).

Proof: Next 3 slides.

wiiridinap

 $NFA \rightarrow DFA$

€-NFAs
Regular operations

Regular
expressions
RegEx → NFA
NFA → RegEx
GNFA
NFA → GNFA
GNFA → RegEx

Proof: Closure under Union

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity

-NFAs

Regular operations

expressions
RegEx → NFA
NFA → RegEx
GNFA
NFA → GNFA
GNFA → RegEx

Proof: Closure under Concatenation

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity
ε-NFAs
Regular operations

expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA → RegEx Summary

Proof: Closure under Star

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity

E-NFAs

Regular operations

expressions
RegEx → NFA
NFA → RegEx
GNFA
NFA → GNFA

GNFA → RegEx Summary

Regular expressions

We can describe NFAs using Finite Automata.

We can also describe them using Regular Expressions.

Example

Let $\Sigma = \{0, 1\}$

- The finite language $\{1, 11, 00\}$: 1 + 11 + 00
- Strings ending with 0: ∑*0
- Strings starting with 11: 11∑*
- Strings of even length: $(\Sigma\Sigma)^*$

Definition (Regular Expressions – Recursive definition)

R is said to be a regular expression (RegEx) if and only if

- \blacksquare R is \emptyset or ε or a single symbol from the alphabet
- or R is the union, concatenation or star of other ("smaller") RegEx's.

NEA 📥 DEA → ReaEx

NFA -> DFA

€-NFAs

Regular

expressions RegEx → NFA

NFA -> RegEx

NEA - GNEA GNFA → RegEx

- Union: +
- Concatenation: Juxtaposition (i.e. no symbol)
- Star: * as a superscript

Unless brackets are used to explicitly denote precedence, the **operators precedence** for the regular operations is: star, concatenation, then union.

Theorem

A language is regular if and only if some regular expression describes it.

Constructive proof in two parts:

- (1/2): RegEx → NFA
- (2/2): NFA → RegEx

viinamap

NFA → DFA

e-NFAs

Regular operations

Regular expressions

 $NFA \rightarrow RegEx$ GNFA $NFA \rightarrow GNFA$ $GNFA \rightarrow RegEx$

We cover all the possible cases from the definition of RegEx's:

 $\mathbf{1} R = \emptyset$

2 $R = \varepsilon$

 $oldsymbol{\mathsf{R}} = \mathbf{a} \in \Sigma$

 $\begin{matrix} \mathsf{NFA} \leftrightarrow \mathsf{DFA} \\ \leftrightarrow \mathsf{RegEx} \end{matrix}$

Mindmap

NFA → DFA

Regularity ε-NFAs

Regular

RegEx → NFA

 $NFA \rightarrow RegEx$ GNFA $NFA \rightarrow GNFA$

GNFA → RegEx

ouriiriai y

4. R = A + B (Union)

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity ε-NFAs

Regular expressions RegEx → NFA

NFA → RegEx
GNFA
NFA → GNFA
GNFA → RegEx

5. R = AB (Concatenation)

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity €-NFAs

Regular operations

 $\begin{array}{c} \text{RegEx} \longrightarrow \text{NFA} \\ \text{NFA} \longrightarrow \text{RegEx} \\ \text{GNFA} \\ \text{NFA} \longrightarrow \text{GNFA} \end{array}$

GNFA → RegEx

6. $R = A^*$ (Star)

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity

Regular operations

expressions
RegEx → NFA

 $NFA \longrightarrow RegEx$ GNFA $NFA \longrightarrow GNFA$ $GNFA \longrightarrow RegEx$

ummarv

We introduce a machine to help us produce RegEx's for any given NFA:

Generalized Nondeterministic Finite Automaton (GNFA)

GNFAs are similar to NFAs but have the following restrictions/extensions:

- 11 Only one accept state
- 2 Initial state: no in-coming transitions
- 3 Accept state: no out-going transitions
- **Transitions:** RegEx's, rather than just symbols from the alphabet

We can convert any NFA into a GNFA in three steps:

- **11** Add a **new start state** with an ε -transition to the NFA's start state.
- **2** Add a **new accept state** with ε -transitions from the NFA's accept states.
- Replace **transitions that have multiple labels** with their union. (e.g. $a, b \rightarrow a + b$.)

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity

E-NFAs

Regular operations

Regular expressions
RegEx → NFA
NFA → RegEx
GNFA

GNFA → RegEx

Proof (2/2): NFA → RegEx | Converting NFA into GNFAs

Example (NFA \rightarrow GNFA)

NFA ↔ DFA ↔ RegEx

шпатар

NFA → DFA

Regularity

€-NFAs

Regular expressions

 $NFA \longrightarrow RegEx$ GNFA $NFA \longrightarrow GNFA$

GNFA → RegEx

20/23

Key observation: Given a GNFA, the "inner states" may be removed from it, one at a time, with regular expressions replacing each removed transition. We end with only the initial and accept states, and a single transition between them, labelled with a regular expression.

The GNFA Algorithm

- Convert the NFA to a GNFA.
- 2 Remove the "inner states," one at a time, and replace the affected transitions using RegEx's.
- Repeat until only two states (initial and accept) remain.
- 4 The RegEx on the only remaining transition is the required RegEx.

minamap

NFA → DFA

≺eguiarity ε-NFAs Regular operations

Regular
expressions
RegEx → NFA
NFA → RegEx
GNFA
NFA → GNFA
GNFA → RegEx

Example

NFA ↔ DFA ↔ RegEx

Mindmap

 $NFA \rightarrow DFA$

Regularity

Regular operations

expressions
RegEx → NFA
NFA → RegEx
GNFA

 $NFA \rightarrow GNFA$ $GNFA \rightarrow RegEx$

.....

Summary

- ↔ RegEx
- Introduced GNFAs as a means of converting NFAs to equivalent RegEx's
- Demonstrated how to turn an NFA into a GNFA
- Demonstrated how to obtain RegEx's from a GNFA by removing states one at a time
- The set of regular languages is exactly equal to the set of languages described by some RegEx/GNFA/ε-NFA/NFA/DFA.

Regular Languages

The class of regular languages can be:

- **11** Recognized by NFAs. (equiv. GNFA or ε -NFA or NFA or DFA).
- Described using Regular Expressions.
- Generated using Linear Grammars. (See this later!)

wiiridinap

NEA 📥 DEA

 $NFA \rightarrow DFA$

Regularity ε-NFAs

PREGUIAT

EXPRESSIONS

RegEx → NFA

NFA → RegEx

GNFA

NFA → GNFA

GNFA → RegEx
Summary