Homework Assignment 04

Numerical Statistics Fall, 2022

Jake Underland - 1A193008

2022-01-24

1.

Consider the set of data $\{(x_i, y_i)|i=1, 2, \dots, 6\} = \{(-2, -3), (-1, 0), (0, 1), (2, 3), (3, 4), (4, 7)\}.$

(1-1) Find the Pearson correlation coefficient r_{xy} based on the data. Solution.

$$\bar{x} = \frac{(-2 + -1 + 0 + 2 + 3 + 4)}{6} = 1$$
$$\bar{y} = \frac{(-3 + 0 + 1 + 3 + 4 + 7)}{6} = 2$$

x	y	$x - \bar{x}$	$y - \bar{y}$	$(x - \bar{x})(y - \bar{y})$	$(x-\bar{x})^2$	$(y-\bar{y})^2$
$\overline{-2}$	-3	-3	-5	15	9	25
-1	0	-2	-2	4	4	4
0	1	-1	-1	1	1	1
2	3	1	1	1	1	1
3	4	2	2	4	4	4
4	7	3	5	15	9	25
Total		0	0	40	28	60

$$\implies r_{xy} = \frac{40}{\sqrt{28 \times 60}} = \frac{2\sqrt{105}}{21} \dots \square$$

(1-2) Find the linear regression line, $y = \alpha + \beta x$, of y on x based on the data, and then express α and β as irreducible fractions.

Solution.

From the table above, $\bar{x} = 1$, $\bar{y} = 2$, $\sum_{i=1}^{6} (x_i - \bar{x})(y_i - \bar{y}) = 40$, $\sum_{i=1}^{6} (x_i - \bar{x})^2 = 28$. Thus,

$$\beta = \frac{40}{28} = \frac{10}{7}$$
 $\alpha = 2 - \frac{10}{7} \times 1 = \frac{4}{7} \dots \square$

(1-3) Find the coefficient of determination \mathbb{R}^2 and then express it as an irreducible fraction. Solution.

$$R^2 = r_{xy}^2 = \left(\frac{2\sqrt{105}}{21}\right)^2 = \frac{20}{21}\dots\Box$$

1

(1-4) Find the explained variation $\sum_{i=1}^{6} (y_{est,i} - \bar{y})^2$ and then express it as an irreducible fraction. Solution. Since $r_{xy}^2 = \frac{\sum_{i=1}^{6} (y_{est,i} - \bar{y})^2}{\sum_{i=1}^{6} (y_i - \bar{y})^2}$, we have

Since
$$r_{xy}^2 = \frac{\sum_{i=1}^6 (y_{est,i} - \bar{y})^2}{\sum_{i=1}^6 (y_i - \bar{y})^2}$$
, we have

$$\sum_{i=1}^{6} (y_{est,i} - \bar{y})^2 = \frac{20}{21} \times 60 = \frac{400}{7} \dots \square$$

(1-5) Find the unexplained variation $\sum_{i=1}^{6} (y_i - y_{est,i})^2$ and then express it as an irreducible fraction.

Solution.
Since
$$\sum_{i=1}^{6} (y_i - \bar{y})^2 = \sum_{i=1}^{6} (y_{est,i} - \bar{y})^2 + \sum_{i=1}^{6} (y_i - y_{est,i})^2$$
, we have

$$\sum_{i=1}^{6} (y_i - y_{est,i})^2 = \sum_{i=1}^{6} (y_i - \bar{y})^2 - \sum_{i=1}^{6} (y_{est,i} - \bar{y})^2$$
$$= 60 - \frac{400}{7} = \frac{20}{7} \dots \square$$