实验六 预习报告

实验内容

- 1. 观察并记录实验箱上的 FPGA 型号 (现场可编程门阵列),新建一个 Project,器件选用实验箱上的 FPGA。
 - 2. 用 "AND2"和 "XOR"器件设计一个 1 位半加器,并用功能仿真进行验证。
- 3. 点击 "File" "Create/Update" "Create Symbol File for Current File" 菜单项,将1位半加器封装成元件。新建一个原理图文件,调用2个半加器实现一个1位全加器,并用功能仿真进行验证。
- 4. 将 1 位全加器封装成元件,新建原理图文件,调用 4 个全加器实现一个 4 位行波加法器,用功能仿真进行验证,用"Tools"-"Netlist Viewers"-"RTL Viewer"查看电路综合结果。
- 5. 适配编译,用"Tools"-"Netlist Viewers"-"Technology Map Viewer"查看电路 Map 结果。用"Tools"-"Chip Planner"查看器件适配结果。
 - 6. 将 4 位全加器下载到实验箱,连接逻辑电平开关进行功能验证。
 - 7. 对 1 位半加器,进行时序仿真,并做时延分析,可参考预备知识相关内容。
 - 8. 对 1 位全加器,进行时序仿真,并做时延分析,要求:
 - 1) 测量 A 第 1~4 个上升沿到对应的 S 输出之间的延迟时间;
 - 2) 对输出 S 的毛刺进行测量和分析
 - 3) 对输出 C 的毛刺进行测量和分析
 - 4) 对测得的时延结果进行分析
- 9. 参看 7.6 节 "总线(Bus)功能",将 4 位全加器的输入输出信号用总线的方式引出,并封装成元件。

实验设计方案

输入、输出信号编码(1位半加器)

输入信号:用A、B表示两个输入,A表示被加数,B表示加数。

输出信号:用 S、C表示输出,S 半加器的和,C表示半加器的进位。

列出真值表(1位半加器)

根据实验要求列出真值表如右表:

逻辑化简(1位半加器)

由真值表可得 S, C 的表达式:

$$S = A \oplus B$$

$$C = A \cdot B$$

A	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

逻辑电路图

在 Quartus 软件中绘制 1 位半加器原理图如图 1:

图 1

调用两个 1 位半加器,实现一个 1 位全加器。在 Quartus 软件中绘制原理图如图 2:

图 2

调用四个1位全加器,实现一个4位全加器。在Quartus软件中绘制原理图如图3:

图 3

功能仿真

在 Quartus 软件中对 1 位半加器进行功能仿真如图 4:

图 4

在 Quartus 软件中对 1 位全加器进行功能仿真如图 5:

在 Quartus 软件中对 4 位全加器进行功能仿真如图 6:

引脚分配

在 Quartus 软件中对 4 位全加器完成引脚分配如图 7:

图 7

电路综合结果

对 **4 位行波加法器**,用 "Tools" – "Netlist Viewers" – "RTL Viewer" 查看电路综合结果:

电路 Map 结果

对 4 位行波加法器,用 "Tools" - "Netlist Viewers" - "Technology Map Viewer" 查看电路 Map 结果:

器件适配结果

对 4 位行波加法器,用 "Tools" - "Chip Planner" 查看器件适配结果:

时序仿真与分析

对1位半加器,进行时序仿真。时延信息表如图8,时延仿真结果如图9。

Pr	ogagation Delay								
	Input Port	Output Port	RR	RF	FR	FF			
1	А	С	5.041			5.063			
2	Д	S	5.102	4.987	5.183	5.145			
3	В	С	4.759			4.747			
4	В	S	4.754	4.656	4.857	4.752			
		図 ∞							

图 8

对1位半加器做时延分析:

从图中可以看到,输入信号 A 从 "0" \rightarrow "1",输出信号 S 并不立刻变化,有一定的延 迟。可以测出,输入 A 从 "0" → "1" 后 5.102ns 输出 S 从 "0" → "1",这和前面查看 时延信息表得到的结果一致。

从图中可以看到, 当输入 BA 从 "01" → "10" 时, 输出信号 S 出现了一个很短的低电 平,输出C则出现了一个很短的高电平,这表明出现了竞争和冒险现象。BA从"01"→"10"

是两个信号同时变化,而从时延信息表可知 AS 的 FR=5. 183ns, BS 的 RF=4. 656ns, 也就是说,由于 B 信号变化的快,B 因此 "0" → "1",A 还未从 "1" → "0",短时间输入端出现了 "11"状态,根据逻辑函数,此时 S 输出 0,C 输出 1。等到 A 从 "1" → "0"后,输入稳定为 "10",根据逻辑函数,S 输出 1,C 输出 0。

对1位全加器,进行时序仿真。时延信息表如图10,时延仿真结果如图11。

Pr	Progagation Delay					
	Input Port	Output Port	RR	RF	FR	FF
1	Ai	Ci	5.543			5.554
2	Ai	S	5.603	5.501	5.725	5.624
3	Bi	Ci	5.385			5.420
4	Bi	S	5.428	5.294	5.558	5.467
5	Ci-1	Ci	8.872			8.966
6	Ci-1	S	8.915	8.781	9.155	9.014

图 10

		0 ps	20.0 ns	40.0 ns	60. Q ns	80.0 ns	100.0 ns	120.0 ns	140.0 ns	160.0 ns
	Name	0 ps ⊿								
₽ 0	Ai									
1	Bi									
23	Ci									
	Ci-1									
€ 4	S				\neg					+
图 11										

对 1 位全加器做时延分析:

1) 测量 A 第 1^{-4} 个上升沿到对应的 S 输出之间的延迟时间,结果如表 1:

Ai/(ns)	S/(ns)	$\Delta t/(ns)$
10.0	15.603	5. 603
30.0	35. 501	5. 501
50.0	55. 501	5. 501
70.0	75. 603	5. 603

表 1

S毛刺	起始时间	结束时间	输入变化
	/(ns)	/(ns)	/AiBiCi-1
1	25. 305	25. 735	100→010
2	45. 59	45. 633	110→001
3	65. 428	65. 633	101→011
4	85. 467	85. 735	111→000

表 2

2) 对输出 S 的毛刺进行测量,结果如表 2: 分析第一个 S 毛刺和第三个 S 毛刺的成因: 第一个 S 毛刺:

当输入 AiBiCi-1 从 "100" → "010" 时,输出信号 S 出现了一个很短的低电平,这表明出现了竞争和冒险现象。AiBiCi-1 从 "100" → "010" 是两个信号同时变化,而从时延信息表可知 AiS 的 FR=5. 725ns,BiS 的 RF=5. 294ns。由于 B 信号变化的快,B 因此 "0" → "1",A 还未从 "1" → "0",短时间输入端出现了 "110" 状态,根据逻辑函数,此时 S 输出 0。等到 A 从 "1" → "0" 后,输入稳定为 "010",根据逻辑函数,S 输出 1。

第三个 S 毛刺:

当输入 AiBiCi-1 从从"101"→"011"时,输出信号 S 出现了一个很短的高电平,这表明出现了竞争和冒险现象。AiBiCi-1 从"101"→"011"是两个信号同时变化,而从时延信息表可知 AiS 的 FR=5. 725ns, BiS 的 RF=5. 294ns。由于 B 信号变化的快,B 因此"0"→"1",A 还未从"1"→"0",短时间输入端出现了"111"状态,根据逻辑函数,此时 S 输出 1。等到 A 从"1"→"0"后,输入稳定为"011",根据逻辑函数,S 输出 0。

3) 对输出 C 的毛刺进行测量和分析,结果如表 3:

C毛刺	起始时间	结束时间	输入变化
	/(ns)	/(ns)	/AiBiCi-1
1	25. 385	25. 554	100→010

表 3

分析 C 毛刺的成因:

当输入 AiBiCi-1 从 "100" → "010" 时,输出信号 C 出现了一个很短的高电平,这表明出现了竞争和冒险现象。出现了竞争和冒险现象。AiBiCi-1 从 "100" → "010" 是两个信号同时变化,而从时延信息表可知 AiS 的 FR=5. 725ns,BiS 的 RF=5. 294ns。由于 B 信号变化的快,B 因此 "0" → "1",A 还未从 "1" → "0",短时间输入端出现了 "110"状态,根据逻辑函数,此时 C 输出 1。等到 A 从 "1" → "0" 后,输入稳定为 "010",根据逻辑函数,C 输出 0。

封装元件

将 4 位全加器的输入输出信号用总线的方式引出,并封装成元件如图 12。

图 12