

Dr. Shaikh Asif Mahmood Associate professor, BUET

Adjunct Faculty, ECE, NSU

CIRCUIT THEOREMS

Linearity Property

Superposition

Thevenin's Theorem

Norton's Theorem

Maximum Power Transfer

Find the Norton equivalent circuit of the circuit shown below.

*Refer to in-class illustration, textbook, $R_N = I\Omega$, $I_N = I0A$.

FIG. 9.67 Example 9.12.

FIG. 9.68 Identifying the terminals of particular interest for the network in Fig. 9.67.

FIG. 9.69 Determining R_N for the network in Fig. 9.68.

FIG. 9.70 Determining I_N for the network in Fig. 9.68.

FIG. 9.71 Substituting the Norton equivalent circuit for the network external to the resistor R_L in Fig. 9.67.

FIG. 9.72 Example 9.13.

FIG. 9.73 Identifying the terminals of particular interest for the network in Fig. 9.72.

FIG. 9.74 Determining R_N for the network in Fig. 9.73.

FIG. 9.75 Determining the contribution to IN from the voltage source E_1 .

FIG. 9.76 Determining the contribution to IN from the current source I.

FIG. 9.77 Substituting the Norton equivalent circuit for the network to the left of terminals a-b in Fig. 9.72.

MAXIMUM POWER TRANSFER THEOREM

When designing a circuit, it is often important to be able to answer one of the following questions:

— What load should be applied to a system to ensure that the load is receiving maximum power from the system?

Conversely:

- For a particular load, what conditions should be imposed on the source to ensure that it will deliver the maximum power available?

If the entire circuit is replaced by its <u>Thevenin</u> equivalent except for the load, the power delivered to the load is:

$$P = i^2 R_L = \left(\frac{V_{Th}}{R_{Th} + R_L}\right)^2 R_L$$

$$\frac{dp}{dR_L} = V_{\text{Th}}^2 \left[\frac{(R_{\text{Th}} + R_L)^2 - 2R_L(R_{\text{Th}} + R_L)}{(R_{\text{Th}} + R_L)^4} \right]$$
$$= V_{\text{Th}}^2 \left[\frac{(R_{\text{Th}} + R_L - 2R_L)}{(R_{\text{Th}} + R_L)^3} \right] = 0$$

For maximum power dissipated in R_L , P_{max} , for a given R_{TH} , and V_{TH} ,

$$R_L = R_{TH} \implies P_{\text{max}} = \frac{V_{Th}^2}{4R_L}$$

The power transfer profile with different R_L

FIG. 9.79 Thévenin equivalent network to be used to validate the maximum power transfer theorem.

FIG. 9.80 P₁ versus R₁ for the network in Fig. 9.79.

If the load applied is less than the Thévenin resistance, the power to the load will drop off rapidly as it gets smaller.

However, if the applied load is greater than the Thévenin resistance, the power to the load will not drop off as rapidly as it increases.

If efficiency is the overriding factor, then the load should be much larger than the internal resistance of the supply. If maximum power transfer is desired and efficiency less of a concern, then the conditions dictated by the maximum power transfer theorem should be applied.

FIG. 9.88 Example 9.17.

FIG. 9.89 Determining R_{Th} for the network external to resistor R_L in Fig. 9.88.

FIG. 9.90 Determining E_{Th} for the network external to resistor R_L in Fig. 9.88.

$$V_1 = V_3 = 0 \text{ V}$$

 $V_2 = I_2 R_2 = I R_2 = (6 \text{ A})(10 \Omega) = 60 \text{ V}$

and

Applying Kirchhoff's voltage law,

$$\Sigma_{\text{C}} V = -V_2 - E_1 + E_{Th} = 0$$
and
$$E_{Th} = V_2 + E_1 = 60 \text{ V} + 68 \text{ V} = 128 \text{ V}$$
Thus,
$$P_{L_{\text{max}}} = \frac{E_{Th}^2}{4R_{Th}} = \frac{(128 \text{ V})^2}{4(15 \Omega)} = 273.07 \text{ W}$$

Find the value of R_L for maximum power transfer in the circuit of Fig. 4.50. Find the maximum power. Example 4.13

Figure 4.50

For Example 4.13.

Solution:

We need to find the Thevenin resistance R_{Th} and the Thevenin voltage V_{Th} across the terminals a-b. To get R_{Th} , we use the circuit in Fig. 4.51(a) and obtain

$$R_{\text{Th}} = 2 + 3 + 6 \| 12 = 5 + \frac{6 \times 12}{18} = 9 \Omega$$

Figure 4.51

For Example 4.13: (a) finding R_{Th} , (b) finding V_{Th} .

To get V_{Th} , we consider the circuit in Fig. 4.51(b). Applying mesh analysis gives

$$-12 + 18i_1 - 12i_2 = 0$$
, $i_2 = -2$ A

Solving for i_1 , we get $i_1 = -2/3$. Applying KVL around the outer loop to get V_{Th} across terminals a-b, we obtain

$$-12 + 6i_1 + 3i_2 + 2(0) + V_{Th} = 0 \implies V_{Th} = 22 \text{ V}$$

For maximum power transfer,

$$R_L = R_{Th} = 9 \Omega$$

and the maximum power is

$$p_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_L} = \frac{22^2}{4 \times 9} = 13.44 \text{ W}$$