Étude de filtres du premier ordre

Objectifs:

- Apprendre à effectuer les mesures permettant de tracer les diagrammes de Bode de filtres du premier ordre.
- Se sensibiliser aux effets des filtres sur des signaux périodiques.

Préparation: Obligatoire.

Compte rendu papier : À remettre à la fin de la séance de TP.

1 Préparation (6 points)

Filtre passe bas

On étudie le montage suivant :

- 1. Que vaut v_{-} ? Justifiez votre réponse.
- 2. Exprimer Z_{eq} , l'impédance équivalente à la mise en parallèle de R_2 et C.
- 3. Exprimer v_{-} en fonction de v_{in} , v_{out} , R_{1} et Z_{eq} .
- 4. Montrer que la fonction de transfert du montage peut s'écrire sous la forme

$$H\left(\jmath f\right) = -\frac{A_0}{1 + \jmath \frac{f}{f_0}}$$

et exprimer A_0 et f_0 en fonction de R_1 , R_2 et C.

- 5. On s'intéresse au gain de H.
 - (a) exprimer le gain de H en décibel.
 - (b) que vaut le gain en dB lorsque $f \to 0$?
 - (c) que vaut le gain en dB lorsque $f \to +\infty$?
 - (d) que vaut le gain en dB lorsque $f = f_0$?
 - (e) pour $f > f_0$, que vaut la pente du gain en décibels par décade?
- 6. On s'intéresse à la phase de H.
 - (a) exprimer la phase de H en degrés.
 - (b) que vaut la phase en degrés lorsque $f \to 0$?
 - (c) que vaut la phase en degrés lorsque $f \to +\infty$?
 - (d) que vaut la phase en degrés lorsque $f=f_0$?

Filtre passe haut

On étudie le montage suivant :

- 1. Que vaut v_- ? Justifiez votre réponse.
- 2. Exprimer Z_{eq} , l'impédance équivalente à la mise en série de R_1 et C.
- 3. Exprimer v_{-} en fonction de v_{in} , v_{out} , R_2 et Z_{eq} .
- 4. Montrer que la fonction de transfert du montage peut s'écrire sous la forme

$$H(j\omega) = -\frac{j\frac{\omega}{\omega_1}}{1 + j\frac{\omega}{\omega_2}}$$

et exprimer ω_1 et ω_2 en fonction de R_1 , R_2 et C.

On pose par la suite $R_1=R_2=R$, on a donc $\omega_1=\omega_2=\omega_0$.

- 5. On s'intéresse au gain de H.
 - (a) exprimer le gain de H en décibel.
 - (b) que vaut le gain en dB lorsque $f \to 0$?
 - (c) que vaut le gain en dB lorsque $f \to +\infty$?
 - (d) que vaut le gain en dB lorsque $f = f_0$?
 - (e) pour $f < f_0$, que vaut la pente du gain en décibels par décade?
- 6. On s'intéresse à la phase de H.
 - (a) exprimer la phase de H en degrés.
 - (b) que vaut la phase en degrés lorsque $f \to 0$?
 - (c) que vaut la phase en degrés lorsque $f \to +\infty$?
 - (d) que vaut la phase en degrés lorsque $f = f_0$?

2 Manipulations (14 points)

Les AOP seront alimentés en -12 V et 12 V.

Il est recommandé de câbler les deux montages ensemble afin de ne pas perdre de temps. Pour les manipulations on prend : $R_1=R_2=10~k\Omega$ et C=10~nF. Pour chaque filtre :

- 1. Calculer ω_0 et en déduire f_0 .
- 2. Appliquer en entrée v_{in} une tension sinusoïdale de 10 V d'amplitude. Pour f variant de 10 Hz à 100 kHz (au moins 2 points de mesure par décade et à f_0), mesurer l'amplitude et la phase de v_{out} .
- 3. Tracer sur papier semi-log les diagrammes de Bode (gain et phase). Préciser les asymptotes, les pentes en dB par décade (et leur signe), les valeurs particulières à f_0 et les valeurs sur les axes.
- 4. Appliquer en entrée v_{in} une tension triangulaire de 1 V d'amplitude et f égale à $f_0/10$, f_0 et $10f_0$: relever les oscillogrammes et commenter.
- 5. Appliquer en entrée v_{in} une tension carrée de 1 V d'amplitude et f égale à $f_0/10$, f_0 et $10f_0$: relever les oscillogrammes et commenter.

Annexe: Brochage des TL081, TL082 et TL084

TL081:

PIN CONNECTIONS (top view)

TL082:

PIN CONNECTIONS (top view)

TL084:

PIN CONNECTIONS (top view)

