

Psychotherapieforschung

MSc Klinische Psychologie und Psychotherapie SoSe 2025

Prof. Dr. Dirk Ostwald

(5) Pretest-Posttest-Designs

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Linear-Mixed-Model-Analyse

Selbstkontrollfragen

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Linear-Mixed-Model-Analyse

Selbstkontrollfragen

Parallelgruppen-Pretest-Posttest-Designs

Parallelgruppen-Pretest-Posttest-Design

Charakteristika

- Randomisierte Aufteilung von Proband:innen auf eine Kontroll- und eine Treatmentgruppe
- Typischerweise univariate primäre Zielvariable
- Messung der Zielvariablen vor (Pretest, T0, Baseline) und nach (Posttest, T1) Intervention

Nomenklatur im Kontext faktorieller Designs

- Zweifaktorielles Design mit Messwiederholung
- Between-Group Faktor Gruppe mit den Leveln Kontrolle und Treatment
- Within-Group Faktor Zeit mit den Leveln Pretest und Posttest

Motivation

- Parallelgruppen-Pretest-Postdesigns als die einfachsten RCT-Longitudinaldesigns
- RCT-Longitudinaldesigns oft primär an T0 und T1 interessiert

Anwendungsbeispiel

- n=16 Proband:innen randomisiert auf Kontrollgruppe ($n_1=8$) und Treatmentgruppe ($n_2=8$) aufgeteilt
- ullet Proband:innen i=1,...,8 in Kontrollgruppe, Proband:innen i=9,...16 in Treatmentgruppe
- Messung der primären Zielvariablen Pre und Post Intervention in beiden Gruppen
- y_{i0} und y_{i1} für Pre- bzw. Postwerte von Proband:in $i=1,\dots,n$

Р	Group	Pre	Post
1	Control	37	32
2	Control	31	32
3	Control	37	33
4	Control	38	31
5	Control	37	29
6	Control	32	27
7	Control	34	28
8	Control	35	29
9	Treatment	34	24
10	Treatment	31	23
11	Treatment	32	26
12	Treatment	32	21
13	Treatment	34	22
14	Treatment	34	25
15	Treatment	34	24
16	Treatment	35	25

Anwendungsbeispiel

- n=16 Proband:innen randomisiert auf Kontrollgruppe $(n_1=8)$ und Treatmentgruppe $(n_2=8)$ aufgeteilt
- ullet Proband:innen i=1,...,8 in Kontrollgruppe, Proband:innen i=9,...16 in Treatmentgruppe
- Messung der primären Zielvariablen Pre und Post Intervention in beiden Gruppen
- ullet y_{i0} und y_{i1} für Pre- bzw. Postwerte von Proband:in $i=1,\dots,n$

Means ± SD

Anwendungsbeispiel

- ullet n=16 Proband:innen randomisiert auf Kontrollgruppe $(n_1=8)$ und Treatmentgruppe $(n_2=8)$ aufgeteilt
- Proband: innen i = 1, ..., 8 in Kontrollgruppe, Proband: innen i = 9, ... 16 in Treatmentgruppe
- Messung der primären Zielvariablen Pre und Post Intervention in beiden Gruppen
- ullet y_{i0} und y_{i1} für Pre- bzw. Postwerte von Proband:in i=1,...,n

Datenanalysen für Parallelgruppen-Pretest-Posttest-Designs

Posttest-Varianzanalyse

• Analyse allein der Posttestdaten

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

• Korrektur der Posttest-Gruppenunterschiede durch Pretest-Messungen

Change-Score-Varianzanalyse

• Analyse der Gruppenunterschiede basierend auf Posttest-Pretest-Differenzen

Linear-Mixed-Model-Analyse

• Einfachster Fall von Longitudinal-Datenanalyse mit Linear Mixed Models

Literaturhinweise

Vergleichsarbeiten zu den hier betrachteten Analyseverfahren

- Crager (1987), Frison and Pocock (1992), Fitzmaurice (2001), Oakes and Feldman (2001)
- Yang and Tsiatis (2001), Senn (2006), Winkens et al. (2007), O Connell et al. (2017)
- Tango (2017) für einen exzellenten Überblick insbesondere bezüglich Linear Mixed Models

Arbeiten mit einem Fokus auf bivariater Modellerierung des Prettest-Posttest-Szenarios

- Chen (2006), T. Funatogawa, Funatogawa, and Shyr (2011)
- I. Funatogawa and Funatogawa (2011), I. Funatogawa and Funatogawa (2020)

Zur Repeated-Measures ANOVA (Split-Plot ANOVA) Frage

- Generell für Parallelgruppen-Pretest-Posttest-Designs nicht empfohlen
- Winer (1971) gibt einen ausführlichen Überblick und zu Repeated-Measures ANOVA
- Huck and McLean (1975), Brogan and Kutner (1980), Jennings (1988), McCulloch (2005)

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Linear-Mixed-Model-Analyse

Selbstkontrollfragen

Posttest-Varianzanalyse

Posttest-Varianzanalyse

- Nichtberücksichtigung der Pretestdaten
- Einfaktorielle Varianzanalyse/Zweistichproben-T-Test-Analyse im Rahmen des ALM
- Posttestdaten können Mittelwerte über mehrere Posttestmessungen sein
- Generell nicht empfohlen, Betrachtung hier nur zur Vergleichszwecken
- Vgl. Frison and Pocock (1992), O Connell et al. (2017), Tango (2017) Kapitel 2.1

Gründe für die datenanalytische Inklusion von Pretestdaten (vgl. Huck and McLean (1975))

- Anpassen der Posttest-Daten für im Pretest bestehende Gruppenunterschiede
- Sensitivitätserhöhung für Gruppeneffekt durch Reduktion der Within-Group Variabilität

Posttest-Varianzanalyse

Strukturelle Modellform

Für i=1,...,n Proband:innen seien y_{i1} die Posttest-Daten.

Dann hat das Posttest-Varianzanalysemodell die strukturelle Modellform

$$y_{i1} = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{1}$$

mit

- $x_i := 0$ für Proband:in i in Kontrollgruppe
- ullet $x_i := 1$ für Proband:in i in Treatmentgruppe
- $\varepsilon_i \sim N(0, \sigma^2)$ u.i.v.

Parameterbedeutungen

- β_0 Erwartungswert der Kontrollgruppen-Posttestdaten
- β_1 Ewartungswertunterschied zwischen Kontrollgruppen- und Treatmentgruppen-Posttestdaten
- σ^2 Posttestdatenvariabilität

Designmatrixform für das Anwendungsbeispiel

$$y = X\beta + \varepsilon \Leftrightarrow \begin{pmatrix} y_{11} \\ y_{21} \\ y_{31} \\ y_{41} \\ y_{51} \\ y_{61} \\ y_{71} \\ y_{81} \\ y_{91} \\ y_{11} \\ y_{111} \\ y_{121} \\ y_{131} \\ y_{141} \\ y_{161} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 6\beta_1 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \\ \varepsilon_7 \\ \varepsilon_8 \\ \varepsilon_9 \\ \varepsilon_{10} \\ \varepsilon_{10} \\ \varepsilon_{11} \\ \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{14} \\ \varepsilon_{15} \\ \varepsilon_{16} \end{pmatrix}$$

$$(2)$$

mit

$$\varepsilon_i \sim N(0, \sigma^2)$$
 u.i.v. für $i = 1, ..., n \Leftrightarrow \varepsilon \sim N(0_{16}, \sigma^2 I_{16})$ (3)

Posttest-Varianzanalyse

Modellevaluation für das Anwendungsbeispiel

```
D = read.csv("./5_Daten/pre-post.csv", row.names = 1)  # Dateneinlesen

M = lm(Post - Group, data = D)  # Modellformulierung und -schätzung

round(summary(M)$coefficients,2)  # Parameterschätzer
```

 \Rightarrow Geschätzter Ewartungswertunterschied zwischen Treatment- und Kontrollgruppe: -6.57 (\pm 1.04)

Visualisierung für das Andwendungsbeispiel

 \bullet Kontrollgruppe $~\bullet$ Treatmentgruppe, ~- , - $\hat{y}=X\hat{\beta}$

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Linear-Mixed-Model-Analyse

Selbstkontrollfragen

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

- Kovarianzanalyse der Posttestdaten mit Pretestdaten als Kovariate im Rahmen des ALM
- ullet Verringerung residueller Variabilität im Vergleich zur Posttest-Varianzanalyse \Rightarrow Sensitivität \uparrow
- Korrektur für Pretest-Gruppenunterschiede im Sinne adjustierter Posttest-Gruppenmittelwerte

vgl. Crager (1987), Frison and Pocock (1992), Chen (2006)

Strukturelle Modellform

Für i=1,...,n Proband:innen seien y_{i0} und y_{i1} die Pretest- bzw. Posttest Daten.

Dann hat das Kovarianzanalysemodell mit Pretest-Kovariaten die strukturelle Modellform

$$y_{i1} = \beta_0 + \beta_1 x_i + \beta_2 y_{i0} + \varepsilon_i \tag{4}$$

mit

- $x_i := 0$ für Proband:in i in Kontrollgruppe
- $x_i := 1$ für Proband:in i in Treatmentgruppe
- $\varepsilon_i \sim N\left(0,\sigma^2\right)$ u.i.v.

Parameterbedeutungen

- β_0 Erwartungswert der Kontrollgruppe
- β_1 Ewartungswertunterschied zwischen Kontrollgruppe und Treatmentgruppe
- $\beta_2 \qquad {\it Steigungsparameter der Pretest-Kovariaten}$
- √2 Variabilität der Differenzen von Posttest- und Pretest-Daten.

Designmatrixform für das Anwendungsbeispiel

$$y = X\beta + \varepsilon \Leftrightarrow \begin{pmatrix} y_{11} \\ y_{21} \\ y_{31} \\ y_{41} \\ y_{51} \\ y_{61} \\ y_{71} \\ y_{81} \\ y_{91} \\ y_{101} \\ y_{111} \\ y_{121} \\ y_{131} \\ y_{141} \\ y_{151} \\ y_{161} \end{pmatrix} = \begin{pmatrix} 1 & 0 & y_{10} \\ 1 & 0 & y_{20} \\ 1 & 0 & y_{30} \\ 1 & 0 & y_{50} \\ 1 & 1 & y_{50} \\ 1 & 1 & y_{90} \\ 1 & 1 & y_{100} \\ 1 & 1 & y_{110} \\ 1 & 1 & y_{110} \\ 1 & 1 & y_{120} \\ 1 & 1 & y_{130} \\ 1 & 1 & y_{140} \\ 1 & 1 & y_{150} \\ 1 & 1 & y_{150} \\ 1 & 1 & y_{160} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \\ \varepsilon_7 \\ \varepsilon_8 \\ \varepsilon_9 \\ \varepsilon_{10} \\ \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{14} \\ \varepsilon_{15} \\ \varepsilon_{16} \end{pmatrix}$$

$$(5)$$

mit

$$\varepsilon_i \sim N(0,\sigma^2) \text{ u.i.v. für } i=1,\dots,n \Leftrightarrow \varepsilon \sim N(0_{16},\sigma^2 I_{16}) \tag{6}$$

Modellevaluation für das Anwendungsbeispiel

```
D = read.csv("./5_Daten/pre-post.csv", row.names = 1)  # Dateneinlesen

M = lm(Post ~ Group + Pre, data = D)  # Modellformulierung und -schätzung
round(summary(M)$coefficients,2)  # Parameterschätzer
```

	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	16.72		9.20		1.82	0.09
${\tt GroupTreatment}$	-5.75		1.15		-5.01	0.00
Pre	0.39		0.26		1.48	0.16

 \Rightarrow Geschätzter Ewartungswertunterschied zwischen Treatment- und Kontrollgruppe: -5.75 (\pm 1.15)

Visualisierung für das Andwendungsbeispiel

 $\bullet \ \, {\sf Kontrollgruppe}, \quad \bullet \ \, {\sf Treatmentgruppe}, \quad -, \, -\, \hat{y} = X \hat{\beta}, \\$

Adjustierte Posttest-Gruppenmittelwerte

Modellschätzer-basierte Prädiktion der Posttest-Gruppenmittelwerte für marginalen Pretest-Mittelwert

Marginaler Pretest-Mittelwert = Pretestdatenmittelwert über beide Gruppen

$$\bar{y}_0 = \frac{1}{n} \sum_{i=1}^{n} y_{i0} \tag{7}$$

Modellschätzer-basierte Prädiktion der Posttest-Gruppenmittelwerte (C: Control, T: Treatment)

$$\begin{pmatrix} \hat{\bar{y}}_1^{\mathsf{C}} \\ \hat{\bar{y}}_1^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \bar{y}_0 \\ 1 & 1 & \bar{y}_0 \end{pmatrix} \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} \tag{8}$$

- Bedingte Antwort auf die Frage nach den Gruppenmittelwerten bei angenommenen identischen Pretest-Daten
- "Wenn die Pretestdaten beider Gruppen identisch wären, was wären dann die Posttest-Gruppenmittelwerte?"
- Amarginaler Pretestdatenmittelwert als Schätzer für Interventionsunabhängige Prestest-Erwartungswert
- · Aka Expected / Conditional / Estimated / Population Marginal Means

vgl. Goodnight and Harvey (1978), Searle, Speed, and Milliken (1980), Lenth (2016)

Adjustierte Posttest-Gruppenmittelwerte

```
D = read.csv("./5_Daten/pre-post.csv", row.names = 1) # Dateneinlesen

M = lm(Post - Group + Pre, data = D) # Modellformulierung und -schätzung

beta_hat = M$coefficients # Betaparameterschätzer

y_0_bar = mean(D$Pre) # Marginaler Mittelwert Pretest-Daten

X_D = matrixc(1,1,0,1,y_0_bar,y_0_bar), nrow = 2) # Prädiktionsdesignmatrix

y_1_bar_adj = X_D %*% beta_hat # Ajdustierte Post-Gruppenmittelwerte
```

Adjusted marginal means Control : 29.9

Group emmean SE df lower.CL upper.CL Control 29.9 0.761 13 28.3 31.5 Treatment 24.2 0.761 13 22.5 25.8

Confidence level used: 0.95

Adjustierte Posttest-Gruppenmittelwerte

Visualisierung für das Anwendungsbeispiel

- ullet Kontrollgruppe, ullet Treatmentgruppe, -, $\hat{y}=X\hat{eta}$,
- ♦ Pretest-Kontrollgruppenmittelwert, ♦ Pretest-Treatmentgruppenmittelwert, Marginaler Pretest-Mittelwert
 - ♦ Adjustierter Post-Kontrollgruppenmittelwert, ♦ Adjustierter Post-Treatmentgruppenmittelwert

Adjustierte Posttest-Gruppenmittelwerte

 ${\sf Geringe\ Pretest-Gruppenmittelwertsunterschiede} \Rightarrow {\sf Geringer\ Effekt\ der\ Posttest-Gruppenmittelwertadjustierung}$

• Kontrollgruppe, • Treatmentgruppe, -, - $\hat{y} = X\hat{\beta}$,

Adjustierte Posttest-Gruppenmittelwerte

Große Pretest-Gruppenmittelwertsunterschiede mit Verstärkung des Posttest-Gruppenmittelwertsunterschieds

• Kontrollgruppe, • Treatmentgruppe,
$$-$$
, $\hat{y} = X\hat{\beta}$,

Adjustierte Posttest-Gruppenmittelwerte

Große Pretest-Gruppenmittelwertsunterschiede mit Verringerung des Posttest-Gruppenmittelwertsunterschieds

$$ullet$$
 Kontrollgruppe, $ullet$ Treatmentgruppe, $-$, $\hat{y} = X\hat{eta}$

Adjustierte Posttest-Gruppenmittelwerte

Geringe Pretest-Posttest-Korrelation ⇒ Geringer Effekt der Posttest-Gruppenmittelwertadjustierung

• Kontrollgruppe, • Treatmentgruppe, -, - $\hat{y} = X\hat{\beta}$,

Adjustierte Posttest-Gruppenmittelwerte

- Adjustierte Posttest-Gruppenmittelwerte unterscheiden sich von tatsächlichen Post-Gruppenmittelwerten (nur)
 dann stark, wenn sich die Pretest-Daten der Zielvariablen zwischen den Gruppen stark unterscheiden und die
 Pretest-Posttest-Korrelation groß ist.
- Wenn sich die Pretest-Daten der Zielvariablen zwischen den Gruppen nicht unterscheiden, führt auch eine starke Pretest-Posttest-Korrelation nicht zu einem Unterschied zwischen adjustierten und tatsächlichen Gruppenmittelwerten.
- In randomisierten kontrollierten Studien ("Experimentellen Designs") ist der Zweck der Randomisierung gerade die Minimierung von Unterschieden zwischen Gruppen in den Pretest-Daten.
- In randomisierten kontrollierten Studien sollten in der Regel die adjustierten Post-Gruppenmittelwertealso nur wenig von den tatsächlichen Post-Gruppenmittelwerten abweichen.
- Die Bestimmung adjustierter Post-Gruppenmittelwert im Rahmen einer Posttest-Kovarianzanalyse mit Pretest-Kovariaten ist also insbesondere bei nicht-randomisierten Studien ("Quasiexperimentellen Designs") mit erheblichen in den Pretest-Daten bestehenenden Gruppenunterschieden sinnvoll.

vgl. Maxwell, Delanev, and Kellev (2018), Kapitel 9

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Linear-Mixed-Model-Analyse

Selbstkontrollfragen

Change-Score-Varianzanalyse

Change-Score-Varianzanalyse

- Change Scores aka Gain Scores aka Difference Scores
- Einfaktorielle Varianzanalyse/Zweistichproben-T-Test-Analyse der Post-Pre-Differenzen
- Rückführung bivariater Proband:innendaten (Pre, Post) auf univariates Maß (Post-Pre)
- Langanhaltende Debatte zur Validität und Äquivalenz bezüglich Posttest-Kovarianzanalyse

vgl. z.B. Lord (1967), Allison (1990), Maris (1998)

Change-Score-Varianzanalyse

Strukturelle Modellform

Für i=1,...,n Proband:innen seien y_{i0} und y_{i1} die Pretest- bzw. Posttest Daten. Weiterhin seien

$$y_{i1} - y_{i0}$$
 (9)

die Differenzem von Posttest- und Pretest-Daten.

Dann hat das Change-Score-Analyse-Modell die strukturelle Modellform

$$y_{i1} - y_{i0} = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{10}$$

mit

- $x_i := 0$ für Proband:in i in Kontrollgruppe
- $x_i := 1$ für Proband:in i in Treatmentgruppe
- $\varepsilon_{i}\sim N\left(0,\sigma^{2}\right)$ u.i.v.

Parameterbedeutungen

- β_0 Erwartungswert der Posttest-Pretest-Differenzen in der Kontrollgruppe
- $\beta_1 \qquad \text{Ewartungswertunterschied der Posttest-Pretest-Differenzen zwischen Kontroll- und Treatmentgruppe}$
- σ^2 Variabilität der Posttest-Pretest-Differenzen zwischen Proband:innen

Designmatrixform für das Anwendungsbeispiel

$$y = X\beta + \varepsilon \Leftrightarrow \begin{pmatrix} y_{11} - y_{10} \\ y_{21} - y_{20} \\ y_{31} - y_{30} \\ y_{41} - y_{40} \\ y_{51} - y_{50} \\ y_{61} - y_{60} \\ y_{71} - y_{70} \\ y_{91} - y_{90} \\ y_{101} - y_{100} \\ y_{111} - y_{110} \\ y_{121} - y_{120} \\ y_{131} - y_{130} \\ y_{151} - y_{150} \\ y_{161} - y_{160} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0$$

mit

$$\varepsilon_i \sim N(0, \sigma^2)$$
 u.i.v. für $i = 1, ..., n \Leftrightarrow \varepsilon \sim N(0_{16}, \sigma^2 I_{16})$ (12)

Change-Score-Varianzanalyse

Modellevaluation für das Anwendungsbeispiel

```
D = read.csv("./5_Daten/pre-post.csv", row.names = 1)  # Dateneinlesen

D$CS = D$Post - D$Pre  # Change-Score Berechnung

M = lm(CS - Group, data = D)  # Modellformulierung und -schätzung

round(summary(M)$coefficients,2)  # Parameterschätzer
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.93 0.82 -6.05 0
GroupTreatment -4.43 1.15 -3.84 0
```

 \Rightarrow Geschätzter Ewartungswertunterschied zwischen Treatment- und Kontrollgruppe: -4.43 (\pm 1.15)

Visualisierung für das Anwendungsbeispiel

Post-Pre-Differenzen

• Kontrollgruppe • Treatmentgruppe, \blacklozenge , \blacklozenge $y = X\hat{\beta}$

Spezielle Äquivalenzen der bisher betrachteten Modelle für i=1,...,n

Posttest-Kovarianzanalyse mit Pretest-Kovariate
$$y_{i1} = \beta_0 + \beta_1 x_i + \beta_2 y_{i0} + \varepsilon_i$$
 Posttest-Varianzanalyse
$$y_{i1} = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 Change-Score-Varianzanalyse
$$y_{i1} - y_{i0} = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Für das Posttest-Kovarianzanalysemodell mit Pretest-Kovariate gelte $\beta_2 := 0$

· Dann gilt

$$y_{i1} = \beta_0 + \beta_1 x_i + 0 \cdot y_{i0} + \varepsilon_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
(13)

und das Posttest-Kovarianzanalysmodell ist äquivalent zum Posttest-Varianzanalysemodell.

Für das Posttest-Kovarianzanalysemodell mit Pretest-Kovariate gelte $\beta_2 \coloneqq 1$

Dann gilt

$$y_{i1} = \beta_0 + \beta_1 x_i + 1 \cdot y_{i0} + \varepsilon_i = \beta_0 + \beta_1 x_i + y_{i0} + \varepsilon_i \Leftrightarrow y_{i1} - y_{i0} = \beta_0 + \beta_1 x_i \cdot y_{i0} + \varepsilon_i$$
 (14)

und das Posttest-Kovarianzanalysmodell ist äquivalent zum Change-Score-Varianzanalysemodell.

Allgemeinere Einsichten in die Beziehungen zwischen den hier betrachteten Modellen erlaubt an späterer Stelle die bivariate Anlayse des Gruppen×Zeitpunkt-Linear Mixed Models mit zufälligen Proband:inneneffekt

Lord Paradox

- Divergierende Resultate bei Posttest-Kovarianz- und Change-Score-Varianzanalyse
- ⇔ Divergierende Resultate bei unterschiedlichen "Korrekturen" f
 ür Pretestunterschiede
- Insbesondere bei Pretest-Gruppenunterschieden ("Quasiexperimenten") bedeutsam
- Letztlich unterschiedliche korrekte Antworten auf unterschiedliche Fragen

Lord Paradox Beispiel Annahmen

- Parallelgruppen-Pretest-Posttest-Design mit Treatment- und Kontrollgruppe
- Keine Effekt der Treatment- bzw. Kontrollintervention
- Pretest-Gruppenerwartungswertunterschiede
- Positive Pretest-Post-Korrelation

Lord Paradox Beispiel Resultate

- Change-Score-Varianzanalyse zeigt keinen Gruppenunterschied der Veränderung
- Pretest-Kovariaten adjustierter Posttestmittelwerte zeigen Gruppenunterschied

vgl. Lord (1967), Fitzmaurice (2001), Wainer and Brown (2006)

Lord Paradox

Beispiel Datengeneration

```
set.seed(0)
                                                                            # Zufallszahlengeneratorzustand
library (MASS)
                                                                            # Multivariate Normalverteilung
n_1
                                                                            # Anzahl Proband:innen Kontrollgruppe
            = 100
n 2
            = 100
                                                                            # Anzahl Proband:innen Treatmentgruppe
           = n_1 + n_2
                                                                            # Gesamtanzahl Proband:innen
           = 1:n
                                                                            # Proband:innen ID
           = c(rep("Control", n_1), rep("Treatment", n_2))
                                                                            # Gruppenfaktor
group
           = matrix(c(25,25), nrow = 2)
                                                                            # Kontroll-Pre-Post-Erwartungswerte
mu_1
           = matrix(c(30,30), nrow = 2)
                                                                            # Treatment-Pre-Post-Erwartungswerte
mu 2
                                                                            # Pre-Post-Kovarianzmatrix
           = matrix(c(4,1,1,4), nrow = 2)
Sigma
γ
           = rbind(mvrnorm(n_1, mu_1, Sigma), mvrnorm(n_2, mu_2, Sigma))
                                                                            # Datensatz
           = data.frame(P = P, Group = group, Pre = Y[,1], Post = Y[,2])
                                                                            # Dataframe
write.csv(D, "./5_Daten/pre-post-lord.csv")
                                                                            # Speichern
```

Lord Paradox

Kontrolle für Pretest-Unterschiede durch Change-Score-Analyse

```
D = read.csv("./5_Daten/pre-post-lord.csv", row.names = 1)  # Dateneinlesen

D$CS = D$Post - D$Pre  # Change-Score Berechnung

M1 = lm(CS - Group, data = D)  # Modellformulierung und -schätzung

round(summary(M1)$coefficients,2)  # Ausgabe
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.11 0.23 -0.48 0.63
GroupTreatment 0.12 0.33 0.36 0.72
```

⇒ Geringer und nicht signifikanter Effekt von Treatment

Lord Paradox

Kontrolle für Pretest-Unterschiede durch Auswertung Pretest-adjustierter Posttestgruppenunterschiede

```
library(emmeans)
       = read.csv("./5_Daten/pre-post-lord.csv", row.names = 1) # Dateneinlesen
M2
       = lm(Post ~ Group + Pre, data = D)
                                                                # Modellformulierung und -schätzung
M2a
       = emmeans(M2, "Group")
                                                                # Adjustierte Posttest-Gruppenmittelwerte
summary (M2a)
                                                                # Adjustierte Posttest-Gruppenmittelwerte
Group
                    SE df lower.CL upper.CL
 Control
            25.7 0.265 197
                                25.2
                                        26.2
 Treatment 29.4 0.265 197
                               28.9
                                        29.9
Confidence level used: 0.95
pairs(M2a)
                                                                # Adjustierte Posttest-Gruppenmittelwertsdifferenz
                                SE df t.ratio p.value
 contrast
                    estimate
 Control - Treatment
                       -3 72 0 455 197 -8 181 < 0001
```

⇒ Adjustierte Posttestgruppenmittelwertsdifferenz signifikant unterschiedlich

Lord Paradox

Beispiel Visualisierung

Kontrollgruppe,
 Treatmentgruppe

Lord Paradox

Fragestellung bei Change-Score-Varianzanalyse

- "Gibt es einen Erwartungswertunterschied in der Pre-Post-Veränderung zwischen Kontrolle und Treatment?"
- Die Frage wird unabhängig von, d.h. gemittelt über alle, möglichen Pretestwerte gestellt
- In diesem Sinn ist die Fragestellung bei Change-Score-Varianzanalyse "unbedingt" bzw. "marginal"
- · Die Fragestellung ist die entscheidende Fragestellung in der Evaluation von Interventionen

Fragestellung bei Posttest-Kovarianzanalyse mit Pretest-Kovariaten und adjustierten Posttestgruppenmittelwerten

- "Gibt es einen Posttest-Erwartungswertunterschied zwischen einer Kontrollproband:in und einer Treatmentproband:in mit identischem Pretest-Wert?"
- · Die Frage wird explizit bedingt auf einen der möglichen Pretestwerte gestellt
- In diesem Sinn ist die Fragestellung bei Posttest-Kovarianzanalysen "bedingt" bzw. "conditional"
- Bestehen Pretestunterschiede zwischen Gruppen und haben zwei Proband:innen den gleichen Pretestwert (z.B.
 den marginalen Pretestgruppenmittelwert), so sind sie per Definition bezüglich ihrer Gruppenerwartungswerte
 untypisch und der "Regression-zur-Mitte-Effekt" induziert adjustierte Posttestgruppenunterschiede, die den
 Pretestunterschieden ähneln.
- Die Fragestellung ist bei der Evaluation von Interventionen nicht entscheidend und im Idealfall gibt es in randomisierten Designs sowieso keine Pretestgruppenunterschiede bezüglich der primären Zielvariablen.

vgl. Fitzmaurice (2001)

Lord Paradox und Regression-zur-Mitte-Effekt

Intuitive Erläuterung

- Eine Proband:in habe einen festen Gruppenerwartungswert μ bezüglich der primären Zielvariable.
- Für die Pretest- und Posttestfehlervariablen gelte $\varepsilon_{i0} \sim N(0,\sigma^2)$ und $\varepsilon_{i1} \sim N(0,\sigma^2)$, also $\mathbb{V}(\varepsilon_{i0}) = \mathbb{V}(\varepsilon_{i1})$
- In der Pretest-Messung zeige sich ein hoher Wert $y_{i0} = \mu + \varepsilon_{i0}$ durch einen hohen Fehlerbeitrag ε_{i0} .
- Hohe Abweichungen von $\varepsilon_{i0} \sim N(0, \sigma^2)$ von 0 sind unwahrscheinlicher als geringe Abweichungen.
- Der Pretestwert für die Proband:in ist also bezüglich des Gruppenrerwartungswerts untypisch.
- In der Postest-Messung ist ε_{i1} mit hoher Wahrscheinlichkeit geringer als ε_{i0} , da auch $\varepsilon_{i1} \sim N(0,\sigma^2)$
- Damit ist aber auch $y_{i1} = \mu + \varepsilon_{i1}$ mit hoher Wahrscheinlichkeit geringer als y_{i0} .
- Bedingt auf y_{i0} zeigt sich eine durch den Zufallsfehler induzierte Reduktion in der primären Zielvariablen.
- · Marginal, d.h. gemittelt über viele Proband:innen gleichen sich positive und negative Effekte dieser Art aus.

Lord Paradox und Regression-zur-Mitte-Effekt

Formale Erläuterung

• Gegeben sei für $\sigma_{00}^2 := \sigma_{11}^2 := \sigma^2$

$$\begin{pmatrix} y_{i0} \\ y_{i1} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu \\ \mu \end{pmatrix}, \begin{pmatrix} \sigma_{00}^2 & \sigma_{01}^2 \\ \sigma_{10}^2 & \sigma_{11}^2 \end{pmatrix} \end{pmatrix}$$
 (15)

· Dann gilt nach dem Theorem zu den Normalverteilungen

$$\mathbb{E}(y_{i1}|y_{i0}) = \mu + \frac{\sigma_{01}^2}{\sigma_{11}^2}(y_{i0} - \mu)$$

$$= \mu + \frac{\mathbb{C}(y_{i0}, y_{i1})}{\mathbb{V}(y_{11})}(y_{i0} - \mu)$$

$$= \mu + \frac{\mathbb{C}(y_{i0}, y_{i1})}{\sqrt{\mathbb{V}(y_{i1})}\sqrt{\mathbb{V}(y_{i0})}}(y_{i0} - \mu)$$

$$= \mu + \rho(y_{i0}, y_{i1})(y_{i0} - \mu_0)$$
(16)

• Mit $|\rho(y_{i0}, y_{i1})| \leq 1$ folgt dann

$$\mathbb{E}(y_{i1}|y_{i0}) - \mu \le y_{i0} - \mu \Leftrightarrow \mathbb{E}(y_{i1} - \mu|y_{i0}) \le y_{i0} - \mu \tag{17}$$

• Gegeben den Pretest-Wert y_{i0} ist die erwartete Abweichung des Posttest-Wertes y_{i1} vom Posttesterwartungswert also geringer als die Abweichung des Pretest-Wertes y_{i0} vom Prestesterwartungwert, sofern $|\rho(y_{i0},y_{i1})|<1$, also entsprechend $|\rho(\varepsilon_{i0},\varepsilon_{i1})|<1$.

Einführung

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Linear-Mixed-Model-Analyse

Selbstkontrollfragen

Einführung

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Linear-Mixed-Model-Analyse

Selbstkontrollfragen

Referenzen I

- Allison, Paul D. 1990. "Change Scores as Dependent Variables in Regression Analysis." Sociological Methodology 20: 93. https://doi.org/10.2307/271083.
- Brogan, Donna R, and Michael H Kutner. 1980. "Comparative Analyses of Pretest-Posttest Research Designs." *The American Statistician* 34 (4): 229–32.
- Chen, Xun. 2006. "The Adjustment of Random Baseline Measurements in Treatment Effect Estimation." Journal of Statistical Planning and Inference 136 (12): 4161–75. https://doi.org/10.1016/j.jspi.2005.08.046.
- Crager, Michael R. 1987. "Analysis of Covariance in Parallel-Group Clinical Trials with Pretreatment Baselines." Biometrics 43 (4): 895. https://doi.org/10.2307/2531543.
- Fitzmaurice, Garrett. 2001. "A Conundrum in the Analysis of Change." Nutrition 17 (4): 360–61. https://doi.org/10.1016/S0899-9007(00)00593-1.
- Frison, Lars, and Stuart J. Pocock. 1992. "Repeated Measures in Clinical Trials: Analysis Using Mean Summary Statistics and Its Implications for Design." Statistics in Medicine 11 (13): 1685–1704. https://doi.org/10.1002/ sim.4780111304.
- Funatogawa, Ikuko, and Takashi Funatogawa. 2011. "Analysis of Covariance with Pre-Treatment Measurements in Randomized Trials: Comparison of Equal and Unequal Slopes." Biometrical Journal 53 (5): 810–21. https://doi.org/10.1002/bimj.201100065.
- 2020. "Longitudinal Analysis of Pre- and Post-Treatment Measurements with Equal Baseline Assumptions in Randomized Trials." *Biometrical Journal* 62 (2): 350–60. https://doi.org/10.1002/bimj.201800389.

Referenzen II

- Funatogawa, Takashi, Ikuko Funatogawa, and Yu Shyr. 2011. "Analysis of Covariance with Pre-Treatment Measurements in Randomized Trials Under the Cases That Covariances and Post-Treatment Variances Differ Between Groups: ANCOVA with Baseline in Randomized Trials." Biometrical Journal 53 (3): 512–24. https://doi.org/10.1002/bimj.201000200.
- Goodnight, James, and Walter R Harvey. 1978. "Least Squares Means in the Fixed Effects General Linear Model SAS Technical Report." SAS Institute.
- Huck, Schuyler W., and Robert A. McLean. 1975. "Using a Repeated Measures ANOVA to Analyze the Data from a Pretest-Posttest Design: A Potentially Confusing Task." Psychological Bulletin 82 (4): 511–18. https: //doi.org/10.1037/h0076767.
- Jennings, Earl. 1988. "Models for Pretest-Posttest Data: Repeated Measures ANOVA Revisited." Journal of Educational Statistics 13 (3): 273–80.
- Lenth, Russell V. 2016. "Least-Squares Means: The R Package Lsmeans." Journal of Statistical Software 69 (1). https://doi.org/10.18637/jss.v069.i01.
- Lord, Frederic M. 1967. "A Paradox in the Interpretation of Group Comparisons." Psychological Bulletin 68 (5): 304–5. https://doi.org/10.1037/h0025105.
- Maris, Eric. 1998. "Covariance Adjustment Versus Gain Scores—Revisited." Psychological Methods 3 (3): 309–27.
- Maxwell, Scott E., Harold D. Delaney, and Ken Kelley. 2018. *Designing Experiments and Analyzing Data: A Model Comparison Perspective*. Third edition. New York London: Routledge, Taylor & Francis Group.
- McCulloch, Charles E. 2005. "Repeated Measures ANOVA, R.I.P.?" CHANCE 18 (3): 29–33. https://doi.org/10. 1080/09332480.2005.10722732.

Referenzen III

- O Connell, Nathaniel S, Lin Dai, Yunyun Jiang, Jaime L Speiser, Ralph Ward, Wei Wei, Rachel Carroll, and Mulugeta Gebregziabher. 2017. "Methods for Analysis of Pre-Post Data in Clinical Research: A Comparison of Five Common Methods." *Journal of Biometrics & Biostatistics* 08 (01). https://doi.org/10.4172/2155-6180.1000334.
- Oakes, J. Michael, and Henry A. Feldman. 2001. "Statistical Power for Nonequivalent Pretest-Posttest Designs: The Impact of Change-Score Versus ANCOVA Models." *Evaluation Review* 25 (1): 3–28. https://doi.org/10. 1177/0193841X0102500101.
- Searle, S R, F M Speed, and G A Milliken. 1980. "Population Marginal Means in the Linear Model: An Alternative to Least Squares Means." The American Statistician 34 (4): 216–22.
- Senn, Stephen. 2006. "Change from Baseline and Analysis of Covariance Revisited." Statistics in Medicine 25 (24): 4334–44. https://doi.org/10.1002/sim.2682.
- Tango, Toshiro. 2017. Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials. 0th ed. Chapman and Hall/CRC. https://doi.org/10.1201/9781315152097.
- Wainer, Howard, and Lisa M. Brown. 2006. "Three Statistical Paradoxes in the Interpretation of Group Differences: Illustrated with Medical School Admission and Licensing Data." In *Handbook of Statistics*, 26:893–918. Elsevier. https://doi.org/10.1016/S0169-7161(06)26028-0.
- Winer, B J. 1971. Statistical Principles in Experimental Design.
- Winkens, Bjorn, Gerard J. P. Van Breukelen, Hubert J. A. Schouten, and Martijn P. F. Berger. 2007. "Randomized Clinical Trials with a Pre- and a Post-Treatment Measurement: Repeated Measures Versus ANCOVA Models." Contemporary Clinical Trials 28 (6): 713–19. https://doi.org/10.1016/j.cct.2007.04.002.
- Yang, Li, and Anastasios A Tsiatis. 2001. "Efficiency Study of Estimators for a Treatment Effect in a Pretest-Posttest Trial." The American Statistician 55 (4): 314–21. https://doi.org/10.1198/000313001753272466.