

ANSYS Composite PrepPost 19.0

Workshop 10.6 – Rotordynamics

 In this workshop we will model a spinning composite disk clamped on a steel shaft by a rigid connection.

- We will go through the complete process of modeling solving postprocessing.
- We consider an single ply for the composite disk where the fibers are arranged as 0°, 90°, 45°, -90°, 0° layup with respect to the radial direction of the disk

1. Start ANSYS Workbench and restore from archive rotor_from_start_19.0.wbpz

1. The preexistent model of the spinning rotor uses a simple steel for both rotor and shaft, we will

- 1. Drag and drop ACP (Pre) in the project schematic
- 2. Connect Model of the Mechanical Model of the rotor to the ACP (Pre) Model
- 3. Engineering Data rotor of the Mechanical Model of the rotor to the ACP (Pre) Engineering Data

© 2018 ANSYS, Inc.

- Double click on Engineering Data rotor and add two new materials from Engineering Data Sources, Resin_Epoxy and Epoxy_Carbon_Woven_230GPa_Prepreg
- 2. Double click on *Setup* in ACP (Pre)

before

- 1. Create a new Modeling Group with fabric and oriented selection set defined before
- 2. Add 5 plies with Ply Angles oriented respectively at 0°, 90°, 45°, -90°, 0°

- 1. Extrude the shell to create a solid model, select *Analysis Ply Wise* and *Resin_Epoxy* as global drop-off material
- 2. Update and close ACP (Pre)

- 1. Add a new Transient Structural analysis in the project schematic
- 2. Connect the Mechanical Model of the Shaft and the Setup of ACP (Pre) to the Model of the transient analysis and open Mechanical for the transient analysis

Definition	
Type	Cylindrical
Coordinate System	Program Controlled
Suppressed	No
Origin	
Define By	Geometry Selection
Geometry	Click to Change
Origin X	-6.6214e-004 mm
Origin Y	1.5091e-004 mm
Origin Z	5. mm
Principal Axis	
Axis	X
Define By	Global X Axis
Orientation About Prin	cipal Axis
Axis	Υ
Define By	Default
Directional Vectors	•
Transformations	
Base Configuration	Absolute
Transformed Configura	tion [-6.6214e-004 1.5091e-004 !

1. Create a new cylindrical coordinate system, it will be later used to plot solution quantities

The clamp is modeled with constraint equations. The inertia properties of the clamp are:

```
Mass = 6.8748 \text{ kg}

Inertia (XX,YY) = 0.0282 \text{ kg.m}^2

Inertia (ZZ) = 0.0355 \text{ kg.m}^2
```


 Add a command snippet in the model to constrain disk a and shaft together, the mass and inertia of the rigid clamp are added to a point mass

Step Controls	
Number Of Steps	1.
Current Step Number	1.
Step End Time	1. s
Auto Time Stepping	On
Define By	Substeps
Initial Substeps	20.
Minimum Substeps	1.
Maximum Substeps	100.
Time Integration	On
Solver Controls	
Solver Type	Direct
Weak Springs	Off
Large Deflection	On

- 1. Select an appropriate number of steps for the analysis
- 2. Solve the model

(1) In the solution insert directional deformation in radial direction, (2) hoop stress and (3) radial stress for the rotor disk (use the cylindrical system defined before)

=	Scope					
	Scoping Method	Geometry Selection				
	Geometry	1 Face				
	Sub Scope By	Layer				
	Layer	Entire Section				
	Position	Top/Bottom				
	Definition					
	Туре	Normal Stress				
	Orientation	X Axis				
	Ву	Time				
	Display Time	Last				
	Coordinate System	Coordinate System Cyl				
	Calculate Time History	Yes				
	Identifier					
	Suppressed	No				
₽	Integration Point Results					
	Display Option	Averaged				
	Average Across Bodies	No				

	Scope				
	Scoping Method	Geometry Selection			
	Geometry	1 Face			
	Sub Scope By	Layer			
	Layer	Entire Section			
	Position	Top/Bottom			
⊟	Definition				
	Туре	Normal Stress			
	Orientation	Y Axis			
	Ву	Time			
	Display Time	Last			
	Coordinate System	Coordinate System Cy			
	Calculate Time History	Yes			
	Identifier				
	Suppressed	No			
-	Integration Point Resul	lts			
	Display Option	Averaged			
	Average Across Bodies	No			
Ξ	Results				

- Add ACP(Post) in the project schematic, drag and drop onto model of ACP (Pre)
 and connect it as shown in the picture above to the transient structural solution)
- 2. Update the project and open ACP(Post)

- 1. Add Max Stress and Max Strain failure criteria
- 2. Double click Solution 1. Select the last set (time 1.0) in Solution 1
- 3. Right click Solution 1, select Create Stress from the menu

- 1. Visualize the stress plot by selecting the appropriate ply
- 2. Exit ACP (Post)

- 1. Add *Modal Analysis* to the Project Schematic and connect it to *Setup* of *ACP (Pre)* and *Model* of *Mechanical Model* as shown here
- Update the project and open Mechanical of the Modal analysis

As before add (1) Fixed support and Rotational Velocity, (2) Cylindrical Coordinate System, (3) Command snippet to clamp shaft and rotor

1. Tabular Data for the added rotational velocity

2. Insert Campbell Diagram in the solution

Mode	Whirl Direction	Mode Stability	Critical Speed	0.1 rad/s	50. rad/s	100. rad/s	500. rad/s
1.	BW	STABLE	468.13 rad/s	197.81 Hz	175.07 Hz	154.43 Hz	67.587 Hz
2.	FW	STABLE	NONE	198.4 Hz	231.55 Hz	259.77 Hz	585.87 Hz
3.	FW	STABLE	NONE	207.13 Hz	207.07 Hz	207. Hz	208.3 Hz
4.	BW	STABLE	NONE	222.76 Hz	224.16 Hz	226.37 Hz	248. Hz

