Fonctions usuelles Corrigé

DARVOUX Théo

Septembre 2023

Exercices.	
Vocabulaire sur les fonctions	2
Exercice 4.1	2
Exercice 4.2	2
${ m \acute{E}tude\ de\ fonctions.}$	2
Exercice 4.3	}
Exercice 4.4	}
Exercice 4.5	L

Exercice 4.1 $[\Diamond \Diamond \Diamond]$

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2-périodique et 3-périodique. Montrer que f est 1-périodique. On a :

$$\forall x \in \mathbb{R} \begin{cases} x - 2 \in \mathbb{R} \\ f(x - 2) = f(x) \end{cases}$$
 et $\begin{cases} x + 3 \in \mathbb{R} \\ f(x + 3) = f(x) \end{cases}$

Alors:

$$\forall x \in \mathbb{R} \begin{cases} x - 2 + 3 \in \mathbb{R} \\ f(x - 2 + 3) = f(x - 2) = f(x) \end{cases}$$

Exercice 4.2 $[\spadesuit \spadesuit \spadesuit]$

Déterminer toutes les fonctions croissantes $f: \mathbb{R} \to \mathbb{R}$ telles que

$$\forall x \in \mathbb{R} \ f(f(x)) = x.$$

Soit $x \in \mathbb{R}$ et f une solution du problème.

On remarque que $f: x \mapsto x$ est solution du problème.

Supposons f(x) > x, on a : f(f(x)) > f(x) par croissance de f. Or f(f(x)) = x donc x > f(x), ce qui est absurde.

Supposons f(x) < x, on a : f(f(x)) < f(x) par croissance de f. Or f(f(x)) = x donc x < f(x), ce qui est absurde.

Ainsi, la seule fonction de \mathbb{R} vers \mathbb{R} solution est $f: x \mapsto x$.

Exercice 4.3 $[\blacklozenge \lozenge \lozenge]$ S'entraîner tout seul à dériver.

Pour chacune des fonctions ci-dessous, donner un ou plusieurs intervalles sur lesquels la fonction est dérivable, et préciser sa dérivée.

$$A: x \mapsto x^{\pi}, \quad B: x \mapsto \pi^{x}, \quad C: x \mapsto \cos(5x), \quad D: x \mapsto \operatorname{th}(\operatorname{ch}(x)),$$

$$E: x \mapsto \ln(1+x^{3}) \, n \quad F: x \mapsto \cos\left(\sqrt{\ln(x)}\right), \quad G: x \mapsto \frac{1}{\sqrt{3x-1}}, \quad H: x \mapsto \sin|x+1|.$$

 $G': x \mapsto -\frac{3}{2}(3x-1)^{3/2}$

$$\bullet \ A' : \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \pi x^{\pi - 1} \end{cases}$$

•
$$D': \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{\sinh(x)}{\cosh^2(\cosh(x))} \end{cases}$$

•
$$H'_{-}:$$

$$\begin{cases}]-\infty, -1[\to \mathbb{R} \\ x \mapsto -\cos(-x-1) \end{cases}$$

•
$$B': \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \ln(\pi)\pi^x \end{cases}$$

•
$$E': \begin{cases} \mathbb{R} \setminus \{1\} \to \mathbb{R} \\ x \mapsto \frac{3x^2}{1+x^3} \end{cases}$$

•
$$H'_+$$
:
$$\begin{cases}]1, +\infty[\to \mathbb{R} \\ x \mapsto \cos(x+1) \end{cases}$$

•
$$C': \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -5\sin(5x) \end{cases}$$

•
$$F': \begin{cases}]1, +\infty[\to \mathbb{R} \\ x \mapsto \frac{\sin(\sqrt{\ln(x)})}{2x\sqrt{\ln(x)}} \end{cases}$$

Exercice 4.4 $[\diamondsuit \lozenge \lozenge]$

Donner le tableau de variations complet de

 $f: x \mapsto x^{x \ln(x)}$.

On a:

$$f: x \mapsto e^{x \ln^2(x)}$$

Donc:

$$f': \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \ln(x)(\ln(x) + 2)e^{x\ln^2(x)} \end{cases}$$

Son tableau de variations est donc:

x	0		e^{-2}		1		$+\infty$
f'(x)		+	0	_	0	+	
f	1		$\rightarrow e^{4/e^2}$		→ 1 <i>-</i>		+∞

1. Démontrer que

$$\forall x \in]-1, +\infty[, \quad \frac{x}{1+x} \le \ln(1+x) \le x.$$

- 2. À l'aide du théorème des gendarmes, calculer $\lim_{x\to 0} \frac{\ln(1+x)}{x}$.
- 3. Retrouver ce résultat en faisant apparaître un taux d'accroissement.

1. Posons:

$$f: x \mapsto \frac{x}{1+x} - \ln(1+x)$$
 $g: x \mapsto \ln(1+x) - x$

$$g: x \mapsto \ln(1+x) - x$$

On a:

$$f': x \mapsto -\frac{x}{(1+x)^2}$$
 $g': x \mapsto -\frac{x}{1+x}$

$$g': x \mapsto -\frac{x}{1+x}$$

Et:

x	-1	. 0	$+\infty$
f'(x)		+ 0 -	
f		$-\infty$ 0	$-\infty$

x	_	1	0		$+\infty$
g'(x)		+	0	_	
g		$-\infty$	0		$-\infty$

L'inégalité est donc vérifiée car ces fonctions prennent des valeurs négatives.

2. Soit $x \in]-1, +\infty[$. On a:

$$\frac{x}{1+x} \le \ln(1+x) \le x$$

 $\mathrm{Et}:$

$$\lim_{x \to 0} \frac{1}{1+x} = 1$$
 et $\lim_{x \to 0} 1 = 1$

Donc, d'après le théorème des gendarmes :

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

3. On a:

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \frac{\ln(x+1) - \ln(1)}{x} = \ln'(1) = \frac{1}{1} = 1$$

4 sur 4