Mahout Workshop, Section 4

Allen Day, PhD
MapR Technologies

Section 3 (this one)

Section 4 (next one) Documents Normalization Process Dimension Reduction Search Clustering Process Process Process Derived Features Classification **Derived Features** Process Derived Features Recommendation Process

Documents Section 4 (next one) Normalization Process Dimension Reduction Clustering Search Process Process Process Derived Features Classification **Derived Features** Process Derived Features Recommendation

Process

TF-IDF

Observation: Unequal Word Distributions

Motivation: "Undo" Effect of Unequal Distribution

	doc1	doc2	doc3	TF (max)	DF(bool)
car	27	4	24	27	3
auto	3	33	0	33	2
insurance	0	33	29	33	2
best	14	0	17	17	2

	doc1	doc2	doc3	TF (max)	DF (bool)
car	27/27 * log(3/3)	4/27 * log(3/3)	24/27 * log(3/3)	27	3
auto	3/33 * log(3/2)	33/33 * log(3/2)	0/33 * log(3/2)	33	2
insurance	0/33 * log(3/2)	33/33 * log(3/2)	29/33 * log(3/2)	33	2
best	14/17 * log(3/2)	0/17 * log(3/2)	17/17 * log(3/2)	17	2

Motivation: "Undo" Effect of Unequal Distribution

	doc1	doc2	doc3	TF (max)	DF (bool)
car	27/27 * log(3/3)	4/27 * log(3/3)	24/27 * log(3/3)	27	3
auto	3/33 * log(2/3)	33/33 * log(2/3)	0/33 * log(2/3)	33	2
insurance	0/33 * log(2/3)	33/33 * log(2/3)	29/33 * log(2/3)	33	2
best	14/17 * log(2/3)	0/17 * log(2/3)	17/17 * log(2/3)	17	2

	doc1	doc2	doc3	TF (max)	DF (bool)
car	0	0	0	27	3
auto	0.04	0.40	0	33	2
insurance	0	0.40	0.35	33	2
best	0.14	0	0.40	17	2

Note that I've used TF_{max} and DF_{bool} here. Other tf*idf variants are also valid.

Motivation: "Undo" Effect of Unequal Distribution

	doc1	doc2	doc3	TF (sum)	DF (bool)
car	27/55 * log(3/3)	4/55 * log(3/3)	24/55 * log(3/3)	55	3
auto	3/36 * log(3/2)	33/36 * log(3/2)	0/36 * log(3/2)	36	2
insurance	0/62 * log(3/2)	33/62 * log(3/2)	29/62 * log(3/2)	62	2
best	14/31 * log(3/2)	0/31 * log(3/2)	17/31 * log(3/2)	31	2

	doc1	doc2	doc3	TF (sum)	DF (bool)
car	0	0	0	27	3
auto	0.03	0.37	0	33	2
insurance	0	0.21	0.19	33	2
best	0.18	0	0.22	17	2

Note that I've used TF_{max} and DF_{bool} here. Other tf*idf variants are also valid.

TF-IDF IN CASCADING (ON HADOOP)

public class

1: copy


```
Main
  public static void
  main( String[] args )
   String inPath = args[ 0 ];
   String outPath = args[ 1 ];
   Properties props = new Properties();
   AppProps.setApplicationJarClass( props, Main.class );
   HadoopFlowConnector flowConnector = new HadoopFlowConnector( props
);
    // create the source tap
   Tap inTap = new Hfs( new TextDelimited( true, "\t" ), inPath );
   // create the sink tap
   Tap outTap = new Hfs( new TextDelimited( true, "\t" ), outPath );
   // specify a pipe to connect the taps
   Pipe copyPipe = new Pipe( "copy" );
    // connect the taps, pipes, etc., into a flow
   FlowDef flowDef = FlowDef.flowDef().setName( "copy" )
     .addSource( copyPipe, inTap )
     .addTailSink( copyPipe, outTap );
    // run the flow
   flowConnector.connect( flowDef ).complete();
```

I mapper 0 reducers 10 lines code

2: word count

I mapper I reducer I8 lines code

3: wc + scrub

I mapper
I reducer
22+10 lines code

4: wc + scrub + stop words

5: tf-idf

11 mappers 9 reducers 65+10 lines code

6: tf-idf + tdd

12 mappers 9 reducers 76+14 lines code

CLASSIFICATION INTRO

What is it?

- *D*-dimensional observations $X(x_1, ..., x_n)$
- 2+ known classes K on some subset of X
- Find function f(x) to assign each X to a class K
 - Make it perform well
 - Precision vs Recall. Resource and time complexity

What is it?

- D-dimensional observations $X(x_1, ..., x_n)$
- 2+ known classes K on some subset of X
- Find function f(x) to assign each X to a class K
 - Make it perform well
 - Precision vs Recall. Resource and time complexity

Applications

- Security Does an observation fall outside of normal behavior boundaries?
- Marketing Can a user's gender be inferred by browsing behavior? Search terms?
- Search Does the user's query pattern imply she wants documents of a particular class?

 Health – Emergency Room triage. Does this patient need to be seen immediately?

Learning is impossible, unless...

Given:

Training examples (x,f (x)) of unknown function f

Find:

A good approximation to f

Example	X 1	X 2	X 3	X 4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

Precision vs. Recall aka Sensitivity vs. Specificity

	actual class (observation)				
predicted class	tp (true positive) Correct result	fp (false positive) Unexpected result			
(expectation)	fn (false negative) Missing result	tn (true negative) Correct absence of result			

$$\begin{aligned} & \text{Precision} = \frac{tp}{tp + fp} \\ & \text{Recall} = \frac{tp}{tp + fn} \end{aligned}$$

In this figure the relevant items are to the left of the straight line while the retrieved items are within the oval. The red regions represent errors. On the left these are the relevant items not retrieved (false negatives), while on the right they are the retrieved items that are not relevant (false positives).

- D-dimensional observations $X(x_1, ..., x_n)$
- 2+ known classes K on some subset of X
- Find function f(x) to assign each X to a class K
 - Make it perform well
 - Precision vs Recall. Resource and time complexity

ROC Curve

http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Linear vs. Non-linear

http://en.wikipedia.org/wiki/Linear_classifier

Classifiers

- K-Nearest Neighbors (KNN)
- Backpropagation Neural Networks (NN)
- Probabilistic Neural Networks (PNN)
- Multi-Class SVM: One-Versus-Rest (OVR)
- Multi-Class SVM: One-Versus-One (OVO)
- Multi-Class SVM: DAGSVM
- Multi-Class SVM by Weston & Watkins (WW)
- Multi-Class SVM by Crammer & Singer (CS)
- Weighted Voting: One-Versus-Rest
- Weighted Voting: One-Versus-One
- Decision Trees: CART

instance-based neural networks kernel-based voting

decision trees

- Naïve Bayesian Classifiers
- Support Vector Machines

Ensemble classifiers

NAÏVE BAYES

What is it?

A classifier that:

- Can train on a small # of observations
- Assumes independence between features
- Simple to implement

Applications

- Typically K=2-class classifiers
 - − K>2 possible
- E.g.
 - Spam vs. Non-spam
 - Female vs. Male

Prior vs. Posterior Probabilities

Description vs. Prediction

How does it work?

- Given the prior probability of a class k in K
- ...the prior probabilities of N object features
- ...and their associations with k
- Calculate the posterior probability that a given object belongs to class k

- Easier to work through an example
 - http://bit.ly/10alkWY

Making Best use of Data

- Train vs. Test
- Cross-validation
- ROC
 Ensembles

HIERARCHICAL CLUSTERING