# Uso del cinturón de seguridad y mortalidad en accidentes de tránsito en EE.UU.

Exposición Econometría Avanzada

Samuel Suesca J. David Rengifo Mario Aguirre

Universidad EAFIT

31 de Agosto del 2024



# Contenidos

- Motivación
- Revisión de literatura
- O Descripción de los Datos
- Estadísticas descriptivas
- Modelos Econométricos
- Resultados
- Conclusiones

#### Motivación

Figura: Evolución de accidentes vehiculares por país. Fuente: OECD.



• Según la OMS, los accidentes de tránsito son la primera causa de muerte de personas entre 15 y 29 años en el mundo y se estima que anualmente mueren cerca de 1.3 millones de personas por esta causa.

# Objetivos

- Estimar el impacto del uso del cinturón de seguridad en la mortalidad por accidentes vehiculares en Estados Unidos.
- Evaluar la validez de la hipótesis del comportamiento compensatorio en el contexto del uso del cinturón de seguridad.
- Investigar la presencia de dependencia espacial en los datos y aplicar las correcciones necesarias para garantizar la validez de los resultados.

#### Revisión de literatura

Figura: Linea del tiempo de revisión de literatura.



# Descripción de los Datos

#### Características:

 Base de datos en formato panel que abarca los 50 estados de Estados Unidos, más Washington D.C., durante el período 1983-1997.

#### Fuentes de información

- Fatality Analysis Reporting System (FARS): Muertes por accidentes vehiculares.
- National Highway Traffic Safety Administration: Uso del cinturón de seguridad.
- Las variables de control se obtuvieron de: U.S. Census, Highway Statistics, Bureau of Labor Statistics (BLS), y Department of Justice.
- The Fact Book: Property/Casualty Insurance Facts: Legislación



Figura: Descripción variables continuas, Fuente: Cohen, Alma Einav, Liran. (2003).

| Variable                                     | Mean   | Std. Dev. | Min    | Max      | Within<br>Std. Dev. | Number of Observations <sup>4</sup> |
|----------------------------------------------|--------|-----------|--------|----------|---------------------|-------------------------------------|
| % Blacks                                     | 10.79% | 12.05%    | 0.25%  | 68.86%   | 0.43%               | 765                                 |
| % Hispanics                                  | 5.44%  | 7.45%     | 0.47%  | 39.92%   | 0.85%               | 765                                 |
| Mean Age                                     | 35.14  | 1.70      | 28.23  | 39.17    | 0.68                | 765                                 |
| Median Income                                | 17,992 | 4,811     | 8,372  | 35,863   | 3,852               | 765                                 |
| Traffic Density Rural                        | 0.33   | 0.22      | $NA^3$ | 1.11     | 0.05                | 765                                 |
| Traffic Density Urban                        | 1.52   | 0.52      | 0.62   | 3.74     | 0.15                | 765                                 |
| VMT Rural                                    | 16,566 | 12,588    | $NA^3$ | 64,939   | 2,252               | 765                                 |
| VMT Urban                                    | 24,882 | 33,246    | 980    | 230,541  | 6,108               | 765                                 |
| Unemployment rate                            | 6.25   | 2.05      | 2.23   | 18.02    | 1.53                | 765                                 |
| Violent Crimes <sup>1</sup>                  | 0.30   | 0.65      | 0.02   | 5.06     | 0.14                | 765                                 |
| Property Crimes <sup>1</sup>                 | 3.00   | 5.71      | 0.13   | 42.78    | 0.53                | 765                                 |
| Fuel Tax                                     | 16.24  | 4.96      | 5.00   | 39.00    | 3.60                | 765                                 |
| Seat belt Usage rate                         | 52.89% | 17.02%    | 6.00%  | 87.00%   | 13.43%              | 556                                 |
| CDC usage                                    | 71.04% | 15.50%    | 27.78% | 95.24%   | 11.62%              | 485                                 |
| Occupant Fatalities                          | 707.85 | 695.80    | 24.00  | 4,398.00 | 101.38              | 765                                 |
| Non-Occupant Fatalities                      | 139.12 | 188.96    | 3.00   | 1,220.00 | 26.20               | 765                                 |
| Occupant Fatalities per VMT <sup>2</sup>     | 18.34  | 5.53      | 6.34   | 37.52    | 3.41                | 765                                 |
| Non-Occupant Fatalities per VMT <sup>2</sup> | 3.15   | 1.63      | 0.46   | 10.27    | 0.94                | 765                                 |

Suesca, Rengifo y Aguirre Econometría Avanzada

Figura: Muertes por accidentes vehiculares y el uso del cinturón de seguridad.



¿Es causal? Cambios tecnológicos, *air bags*, clima, características poblacionales, condiciones viales, campañas de inteligencia vial.

Figura: Legislación a través del tiempo.



Instrumentos relevantes aunque podrían ser endógenos (prob. de pasar las leyes es proporcional al número de muertes).

Figura: Evolución por estado de la muertes de ocupantes de vehículos en accidentes.



Figura: Evolución por estado de la muertes de no ocupantes de vehículos en accidentes.



Suesca, Rengifo y Aguirre Ec

Figura: Evolución por estado del uso de cinturón de seguridad.



## Modelos Econométricos

- ullet Variables. Sea  $y \in \{\text{farnoc}, \text{faroc}, \text{Log}(\text{farnoc}), \text{Log}(\text{faroc}), \text{ usage}\}\$ y  $X = [x_1, C], \text{ donde}$ 
  - $x_1 \in \{\text{usage}, \text{Log}(\text{usage})\};$
  - C los controles (heterogeneidad de la población, distancia recorrida, densidad vehicular, crimen, otras leyes, desincentivos).
- Modelo de regresión lineal..

$$y = X\beta + \varepsilon$$

- Efectos aleatorios. Sea u el error ideosincrático y  $\alpha$  el término de efectos aleatorios, definido como  $\alpha = \text{vec}([\alpha_1,...,\alpha_n]^T 1_T^T)$ , entonces,  $\varepsilon = u + \alpha$ .
- Efectos fijos. Sea u el error ideosincrático y  $\mu$  el componente de efectos fijos definido como  $\mu = \text{vec}([\mu_1,...,\mu_T]^T 1_n^T) + \text{vec}([\omega_1,...,\omega_n]^T 1_T^T)$ , entonces  $\varepsilon = u + \mu$ .
- Variable Instrumental. Sea Z=[L,C], con L dummies sobre la implementación legislativa, entonces  $x_1=Z\gamma+v$ .
- Modelo espacial generalizado. Sea u el error ideosincrático y  $W_i$  la matriz de pesos espaciales para la variable i, entonces

$$y = \rho W_y Y + X\beta + W_X X\theta + \lambda W_u \varepsilon + u.$$



# Resultados

Cuadro: Efecto del uso de cinturón de seguridad en muertes por accidentes vehiculares.

| Dependent     | Independent          | OLS                   | Fixed Effects                     | IV                     |
|---------------|----------------------|-----------------------|-----------------------------------|------------------------|
| ·             | •                    | (1)                   | (2)                               | (3)                    |
| farsocc       | Seat belt usage      | 0.0026***<br>(0.0010) | -0.0027***<br>(0.0009)            | -0.0052***<br>(0.0018) |
| log farsocc   | Log(Seat belt usage) | 0.1140***<br>(0.0255) | -0.0535 <sup>**</sup><br>(0.0225) | -0.1334***<br>(0.0448) |
| farsnocc      | Seat belt usage      | 0.0011***<br>(0.0003) | -0.0001<br>(0.0003)               | 0.0007<br>(0.0006)     |
| Log(farsnocc) | Log(Seat belt usage) | 0.1575***<br>(0.0527) | -0.1192 <sup>**</sup><br>(0.0524) | -0.0424 $(0.1031)$     |
| Year FE       |                      | Yes                   | Yes                               | Yes                    |
| State FE      |                      | No                    | Yes                               | Yes                    |
| Observations  |                      | 556                   | 556                               | 556                    |

Note:

<sup>\*</sup>p<0.1; \*\*p<0.05; \*\*\*p<0.01

## Resultados

Cuadro: Impacto de las leyes sobre el uso del cinturón de seguridad.

|                                  |                       | Dependent variable                | e:                    |
|----------------------------------|-----------------------|-----------------------------------|-----------------------|
|                                  | OLS                   | Seat Belt Usage<br>Random Effects | Fixed Effects         |
|                                  | (1)                   | (2)                               | (3)                   |
| Secondary enforcement            | 0.1310***<br>(0.0114) | 0.1340***<br>(0.0104)             | 0.1122***<br>(0.0103) |
| Primary enforcement              | 0.2859***<br>(0.0144) | 0.2559***<br>(0.0227)             | 0.2190***<br>(0.0273) |
| Secondary to primary enforcement | 0.1217***<br>(0.0270) | 0.1238***<br>(0.0236)             | 0.1350***<br>(0.0223) |
| Year FE                          | Yes                   | No                                | Yes                   |
| State FE                         | No                    | No                                | Yes                   |
| Random Effects                   | No                    | Yes                               | No                    |

Note: \*p<0.1; \*\*p<0.05; \*\*\*p<0.05

#### **Conclusiones**

- Las medidas de obligatoriedad fueron efectivas pero heterogéneas en sus efectos.
- El uso del cinturón redujo el número de accidentes fatales.
- Se rechaza la hipótesis del comportamiento compensatorio.
- Existen indicios de dependencia espacial que debe ser explorada a profundidad y controlada.
- **Limitaciones:** Sesgo potencial en la tasa de uso del cinturón de seguridad; supuesto de pasajeros de vehículos; distancias limitadas.

### Referencias

- Cohen, A., Einav, L. (2003). The effects of mandatory seat belt laws on driving behavior and traffic fatalities. Review of Economics and Statistics, 85(4), 828-843.
- Joksch, H. C. (1976). Critique of Sam Peltzman's study: the effects of automobile safety regulation. Accident Analysis Prevention, 8(2), 129-137.
- Evans, L. (1986). The effectiveness of safety belts in preventing fatalities. Accident Analysis Prevention, 18(3), 229-241.
- Dee, T. S., Sela, R. J. (2003). The fatality effects of highway speed limits by gender and age. Economics Letters, 79(3), 401-408.

### Referencias

- Kopits, E., Cropper, M. (2005). Traffic fatalities and economic growth. Accident analysis prevention, 37(1), 169-178.
- Eluru, N., Bhat, C. R. (2007). A joint econometric analysis of seat belt use and crash-related injury severity. Accident Analysis Prevention, 39(5), 1037-1049.
- Houston, D. J., Richardson, L. E. (2007). Risk compensation or risk reduction? Seatbelts, state laws, and traffic fatalities. Social Science Quarterly, 88(4), 913-936.
- Carpenter, C. S., Stehr, M. (2008). The effects of mandatory seatbelt laws on seatbelt use, motor vehicle fatalities, and crash-related injuries among youths. Journal of health economics, 27(3), 642-662.

#### Referencias

- Dee, T. S. (2009). Motorcycle helmets and traffic safety. Journal of Health Economics, 28(2), 398-412.
- Harper, S., Strumpf, E. C., Burris, S., Smith, G. D., Lynch, J. (2014). The
  effect of mandatory seat belt laws on seat belt use by socioeconomic
  position. Journal of Policy Analysis and Management, 33(1), 141-161.
- Burke, P. J., Nishitateno, S. (2015). Gasoline prices and road fatalities: International evidence. Economic Inquiry, 53(3), 1437-1450.