

Laboratorio 9

R. Ferrero, P. Bernardi Politecnico di Torino

Dipartimento di Automatica e Informatica (DAUIN)

Torino - Italy

This work is licensed under the Creative Commons (CC BY-SA) License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

Diagramma a blocchi del SoC (p.9)

Progetto Sample: contenuto

- file di avvio del chip:
 - startup_LPC17xx.s
- librerie di sistema
 - core_cm3.c
 - system_LPC17xx.c
- Librerie di alcuni periferici:
 - peripheral.h /* prototipi */
 - lib_peripheral.c /* funzioni di base */
 - IRQ_peripheral.c /* interrupt service routine */
 - funct_peripheral.c /* funzioni utente */

Pulsanti

- INT0 -> p2.10
- KEY1 -> p2.11
- KEY2 -> p2.12

Pin connect block (pag. 119)

Table 84. Pin function select register 4 (PINSEL4 - address 0x4002 C010) bit description

	· · · · · · · · · · · · · · · · · · ·					
PINSEL4	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
1:0	P2.0	GPIO Port 2.0	PWM1.1	TXD1	Reserved	00
3:2	P2.1	GPIO Port 2.1	PWM1.2	RXD1	Reserved	00
5:4	P2.2	GPIO Port 2.2	PWM1.3	CTS1	Reserved [2]	00
7:6	P2.3	GPIO Port 2.3	PWM1.4	DCD1	Reserved 2	00
9:8	P2.4	GPIO Port 2.4	PWM1.5	DSR1	Reserved 2	00
11:10	P2.5	GPIO Port 2.5	PWM1.6	DTR1	Reserved [2]	00
13:12	P2.6	GPIO Port 2.6	PCAP1.0	RI1	Reserved 2	00
15:14	P2.7	GPIO Port 2.7	RD2	RTS1	Reserved	00
17:16	P2.8	GPIO Port 2.8	TD2	TXD2	ENET_MDC	00
19:18	P2.9	GPIO Port 2.9	USB CONNECT	RXD2	ENET_MDIO	00
21:20	P2.10	GPIO Port 2.10	EINT0	NMI	Reserved	00
23:22	P2.11[1]	GPIO Port 2.1	EINT1	Reserved	I2STX_CLK	00
25:24	P2.12[1]	GPIO Port 2.12	EINT2	Reserved	I2STX_WS	00
27:26	P2.13[1]	GPIO Port 2.13	EINT3	Reserved	I2STX_SDA	00
31:28	-	Reserved	Reserved	Reserved	Reserved	0

FIODIR (pag. 132)

Table 104. Fast GPIO port Direction register FIO0DIR to FIO4DIR - addresses 0x2009 C000 to 0x2009 C080) bit description

Bit	Symbol	Value	Description	Reset value
31:0 FIO0DIR FIO1DIR	FIO1DIR		Fast GPIO Direction PORTx control bits. Bit 0 in FIOxDIR controls pin Px.0, bit 31 in FIOxDIR controls pin Px.31.	0x0
	FIO2DIR FIO3DIR	0	Controlled pin is input.	
	FIO4DIR	1	Controlled pin is output.	

⊕ Chapter 1: LPC176x/5x	Introductory information
-------------------------	--------------------------

E- Chapter 2: LPC176x/5x Memory map

3.1 Introduction

3.2 Pin description

- 🔼 3.3 Register description

3.4 Reset

3.5 Brown-out detection

3.6 External interrupt inputs

□ Chapter 4: LPC176x/5x Clocking and power control

⊕ Chapter 5: LPC176x/5x Flash accelerator

⊕ Chapter 7: LI

Bit	Symbol	Value	Description
0	EXTMODE0	0	Level-sensitivity is selected for $\overline{\text{EINT0}}.$
		1	EINT0 is edge sensitive.

Bit	Symbol	Value	Description	Rese value
0 EXTPOLARO 0		0	EINT0 is low-active or falling-edge sensitive (depending on EXTMODE0).	0
		1	EINT0 is high-active or rising-edge sensitive (depending on EXTMODE0).	

Table 9.	External Interrupt registers			
Name	Description	Access	Reset value[1]	Address
EXTINT	The External Interrupt Flag Register contains interrupt flags for EINT0, EINT1, EINT2 and EINT3. See Table 10.	R/W	0x00	0x400F C140
EXTMODE	The External Interrupt Mode Register controls whether each pin is edge- or level-sensitive. See Table 11.	R/W	0x00	0x400F C148
EXTPOLAR	The External Interrupt Polarity Register controls which level or edge on each pin will cause an interrupt. See <u>Table 12</u> .	R/W	0x00	0x400F C14C
[1] Reset Value reflects the data stored in used bits only. It does not include reserved bits content.				

Nested Vectored Interrupt Controller (pag. 77)

Table 51. NVIC register map

Name	Description	Access	Reset value	Address
ISER0 to	Interrupt Set-Enable Registers. These 2 registers allow enabling	RW	0	ISER0 - 0xE000 E100
ISER1	interrupts and reading back the interrupt enables for specific peripheral functions.			ISER1 - 0xE000 E104
ICER0 to	Interrupt Clear-Enable Registers. These 2 registers allow disabling	RW	0	ICER0 - 0xE000 E180
ICER1	interrupts and reading back the interrupt enables for specific peripheral functions.			ICER1 - 0xE000 E184
ISPR0 to	Interrupt Set-Pending Registers. These 2 registers allow changing	RW	0	ISPR0 - 0xE000 E200
ISPR1	the interrupt state to pending and reading back the interrupt pending state for specific peripheral functions.			ISPR1 - 0xE000 E204
ICPR0 to	Interrupt Clear-Pending Registers. These 2 registers allow	RW	0	ICPR0 - 0xE000 E280
ICPR1	changing the interrupt state to not pending and reading back the interrupt pending state for specific peripheral functions.			ICPR1 - 0xE000 E284
IABR0 to	Interrupt Active Bit Registers. These 2 registers allow reading the	RO	0	IABR0 - 0xE000 E300
IABR1	current interrupt active state for specific peripheral functions.			IABR1 - 0xE000 E304
IPR0 to IPR8	Interrupt Priority Registers. These 9 registers allow assigning a priority to each interrupt. Each register contains the 5-bit priority fields for 4 interrupts.	RW	0	IPR0 - 0xE000 E400
				IPR1 - 0xE000 E404
	neide for i interrupto.			IPR2 - 0xE000 E408
				IPR3 - 0xE000 E40C
				IPR4 - 0xE000 E410
				IPR5 - 0xE000 E414
				IPR6 - 0xE000 E418
				IPR7 - 0xE000 E41C
				IPR8 - 0xE000 E420
STIR	Software Trigger Interrupt Register. This register allows software to generate an interrupt.	WO	0	STIR - 0xE000 EF00

Esercizio 1

- Nel main, prima di entrare nel ciclo infinito, accendere il led 8 tramite LED_On.
- Premendo il pulsante KEY1, spegnere il led corrente e accendere il led a sinistra (arrivati al led 4, si passa al led 11).
- Premendo il pulsante KEY2, spegnere il led corrente e accendere il led a destra (arrivati al led 11 si passa al led 4).
- Premendo il pulsante INTO, tornare alla configurazione iniziale, con il led 8 acceso.

Memorizzare il led acceso

- Per conoscere il led acceso si può:
 - leggere il contenuto di LPC_GPIO2->FIOPIN
 - leggere il contenuto di LPC GPIO2->FIOSET
 - definire una variabile globale in funct_led.c:

```
unsigned int led value;
```

led_value indica il led acceso.

Negli altri file si può accedere alla variabile dichiarando:

```
extern unsigned int led_value;
```

Rimbalzo del pulsante

- Una singola pressione del pulsante può scatenare più richieste di servizio di interrupt.
- Nell'esercizio 1, il led acceso potrebbe essere due posizioni a sinistra (o a destra) rispetto a quello spento.
- Occorre implementare via software un meccanismo anti-rimbalzo per servire la prima richiesta di interrupt e ignorare l'eventuale richiesta immediatamente successiva.

Esercizio 2

 Implementare una slot machine con tre rulli rotanti.

Ogni rullo mostra uno fra due simboli:

Rullo	Simbolo 1	Simbolo 2
rullo 1	led 4 acceso	led 5 acceso
rullo 2	led 6 acceso	led 7 acceso
rullo 3	led 8 acceso	led 9 acceso

Esercizio 2: implementazione

- Il pulsante KEY1 fa iniziare una nuova partita e comanda il primo rullo:
 - spegne tutti i led
 - accende casualmente uno fra i led 4 e 5.
- Il pulsante KEY2 comanda il secondo rullo:
 - accende casualmente uno fra i led 6 e 7.
- Il pulsante INT0 comanda il terzo rullo e determina l'eventuale vincita:
 - accende casualmente uno fra i led 8 e 9
 - in base all'esito della partita, accende il led 10 o 11.

Esercizio 2: esito della partita

- Il giocatore vince se i 3 simboli sono uguali:
 - tutti i rulli mostrano il simbolo 1, oppure
 - tutti i rulli mostrano il simbolo 2.
- Al termine della partita (dopo la pressione di INTO), la vincita è indicata accendendo il led 11.
- Se invece i simboli non sono uguali, il giocatore perde e si accende il led 10.

Generazione di numeri casuali

- I led 4-9 devono essere accesi casualmente.
- Un semplice modo per ottenere numeri casuali è misurare il tempo intercorso fra la pressione di due pulsanti (incrementando una variabile).