Naming: why so many?

CS 118: Computer Networks

George Varghese

Review: Routes flow from sources

- Princeton CS router sends route to Border Router
- Border router sends aggregate prefix route to ISP
- Left border router in ATT sends route to right Border

Review: Data Packets flow in reverse

- The best routes are installed in the Forwarding Table
- Now a data packet to Princeton CS flows in reverse . .
- For traffic to Harvard, need routes from Harvard

So what does BGP do

- Only way in distance vector to tune routes is via link cost
- In BGP, one can "control" routes in more complex ways

Choose between routes based on attributes and local network policy specified in config files at routers

Common uses of Attributes

Local Preference

Prioritize route received on an interface (e.g., cheaper ISP)

AS Path Length

Rough measure of shortest (count of networks to destination)

MED

 Hint to one's ISP as to how to split traffic when there are multiple exits to the ISP

Community

 A way to tag all routes of a specific type so that remote routers can act on tag (say drop route) based on one community value as opposed to a long list of prefixes

CS 118 – Naming 5

Default Route Selection

First Local Preference

Operator knows best

AS Path Length

After that shortest path (roughly speaking) makes sense

MED

Other things being equal, honor MED priorities

eBGP over iBGP

- Other things being equal, a route from an external border router makes more sense than one from an internal router
- Shortest IGP weight (from Link State, or Distance Vector)
 - Other things being equal, pick shortest cost to border router

BGP is suboptimal

Local knowledge only:

your neighbors best routes may not be your best

AS Path Length

Does not measure real distance or latency

Other Metrics

May care about cost etc. and have to hack BGP attributes

New: Software Defined Networks within organizations

- Google Espresso has BGP speakers but they send all BGP messages to a central cluster that also does measurements and picks more globally optimal route to customer ISPs
- Read Google blog: Search for "Google Blog Espresso"

Google Espresso

Back to naming: why so many? How assigned? How mapped?

ccle.ucla.edu

131.71.29.8

58:B0:35:F2:3C:D9

Similar in Operating Systems

Three topics in naming

- How to get a an IP address to get started (DHCP)
- How to map from user-friendly names like ccle.ucla.edu to an IP address to send (DNS)
- How to build a large private network with only 1 assigned public IP address: magic. No (NAT).

Browser points to ccle.ucla.edu

Q: How do we go from ccle.edu to an IP address for CCLE

A: App (browser) maps using the Domain Name Service

TCP'S VIEW OF THE WORLD

Q: How do IP addresses get assigned

A: DHCP (Dynamic Host Control Protocol

Layers of Identifiers

- Host name (e.g., ccle.ucla.edu)
 - Used by humans to specify host of interest
 - Unique, selected by host administrator
 - Hierarchical, variable-length string of alphanumeric characters
- IP address (e.g., 131.71.29.8)
 - Used by routers to forward packets
 - Unique, topologically meaningful locator
 - Hierarchical namespace of 32 bits
- MAC address (e.g., 58:B0:35:F2:3C:D9)
 - Used by network adaptors to identify interesting frames
 - Unique, hard-coded identifier burned into network adaptor
 - Flat name space (of 48 bits in Ethernet)

Naming Hierarchies

- Host name: ccle.ucla.edu (human readable)
 - Domain: registrar for each top-level domain (e.g., .edu)
 - Host name: local administrator at UCLA assigns to each host
- IP addresses: 131.71.70.238 (for scalable routing)
 - Prefixes: ICANN, regional Internet registries, and ISPs
 - Hosts: static configuration, or dynamic using DHCP
- MAC addresses: 58:B0:35:F2:3C:D9 (for unique ID)
 - OIDs (first 3 bytes): assigned to vendors by the IEEE
 - Adapters: assigned by the vendor from its block

Mapping Between Identifiers

- Domain Name System (DNS):
 - Given a host name, provide the IP address
 - Given an IP address, provide the host name
- Address Resolution Protocol (ARP)
 - Given an IP address, provide the MAC address
 - To enable communication within the Local Area Network
- Dynamic Host Configuration Protocol (DHCP)
 - Automates host boot-up process
 - Given a MAC address, assign a unique IP address
 - ... and tell host other stuff about the Local Area Network

Address Resolution Protocol

- Recall: every node maintains an ARP table
 - (IP address, MAC address) pair
- Consult the table when sending a packet
 - Map destination IP address to MAC address
 - Encapsulate and transmit the data packet
- What if the IP address is not in the table?
 - Broadcast: "Who has IP address x.x.x.x?"
 - Response: "MAC address yy:yy:yy:yy:yy"
 - Sender caches the result in its ARP table

Have you started your Programming Assignment yet?

Whence come IP Addresses?

- You already have a bunch from the days when you called Jon Postel and asked for them (e.g. UCLA!)
- You get them from another provider
 - E.g. buy service from Sprint and get a /24 from one of their address blocks
- You get one directly from a routing registry
 - ARIN: North America, APNIC (Asia Pacific), RIPE (Europe), LACNIC (Latin America), AFRINIC (Africa)
 - Registries get address from IANA (Internet Assigned Numbers Authority)

How Do You And I Get One?

- Well from your provider!
- But how do you know what it is?
- Manual configuration
 - They tell you and you type that number into your computer (along with the default gateway, DNS server, etc.)
- Automated configuration
 - Dynamic Host Resolution Protocol (DHCP)

Bootstrapping Problem

- Host doesn't have an IP address yet
 - So, host doesn't know what source address to use
- Host doesn't know who to ask for an IP address
 - So, host doesn't know what destination address to use

Solution:

- shout on LAN using well known DHCP multicast address (like ARP, but not broadcast) to discover server who can help
- Install DHCP server on the LAN to answer distress calls

DHCP

- Broadcast-based LAN protocol algorithm
 - Host broadcasts "DHCP discover" on LAN (e.g. Ethernet broadcast)
 - DHCP server responds with "DHCP offer" message
 - Host requests IP address: "DHCP request" message
 - DHCP server sends address: "DHCP ack" message w/IP address
- Easy to have fewer addresses than hosts (e.g. UCLA wireless) and to renumber network (use new addresses)
- What if host goes away (how to get address back?)
 - Address is a "lease" not a "grant", has a timeout
 - Host may have different IP addresses at different times?

- Distributed administrative control
 - Hierarchical name space divided into zones
 - Distributed over a collection of DNS servers
- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers
- Performing the translations
 - Local DNS servers
 - Resolver software

In 20-30 years, one of the hardest things our kids will have to do will be finding a screen name that hasn't already been taken.

DNS: Distributed Database

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M

Using DNS

- Local DNS server ("default name server")
 - Usually near the end hosts who use it
 - Local hosts configured with local server (e.g., /etc/resolv.conf) or learn the server via DHCP

Client application

- Extract server name (e.g., from the URL)
- Do gethostbyname() to trigger resolver code

Server application

- Extract client IP address from socket
- Optional gethostbyaddr() to translate into name

Example

"closest" copy of Service

Reliability

- DNS servers are replicated
 - Name service available if at least one replica is up
 - Queries can be load balanced between replicas
- UDP used for queries
 - Need reliability: must implement this on top of UDP
 - Try alternate servers on timeout
 - Exponential backoff when retrying same server
- Cache responses to decrease load
 - Both at end hosts and local servers

Private Address Space

- Sometimes you can't get/don't want IP addresses
 - An organization wants to change service providers without having to renumber its entire network
 - A network may be unable obtain (or cannot afford) enough IP addresses for all of its hosts. Recall IP address depletion.
- IP provides private address space anyone can use
 - 10/8, 192.168/16, 172.16.0/20
 - These addresses are not routable—Internet routers should drop packets destined to these so-called bogons
- What good are they if can't use them on the Internet?

Network Address Translation

- Gateway router can rewrite IP addresses as packets leave or enter a given network
 - I.e., replace private addresses with public ones
 - Router needs to see and update every packet
- Maintains a mapping of private-to-public addresses
 - Simple case is a one-to-one mapping
 - Anytime network changes provider, just update mapping table
 - In more clever scenarios, can map a set of private addresses to a smaller set of public addresses
 - In the extreme map the entire private network to one public IP!

IP Masquerading

- A.K.A. Network Address and port Translation (NApT), Port
 Address Translation (PAT), or, colloquially, just NAT.
- Entire local network uses just one IP address as far as outside world is concerned:
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus).

A NAT'd Network

All packets leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers Packets with source or destination in this network have 10.0.0.0/8 address for source, destination (as usual)

NA(p)T Example

NAT Challenges

- End hosts may not be aware of external IP address
 - Some applications include IP addresses in application dat
 - Many NATs will inspect/rewrite certain protocols, e.g., FTP
- NAT'd end hosts are not reachable from the Internet
 - All connections must be initiated from within private network
 - Many protocols for NAT traversal to get around this

NAT: What's the trick?

- How can we can we communicate with multiple hosts in a private network using 1 public IP
 - Hack: We use the TCP Port numbers to disambiguate
 - So we are extending IP space from 32 to 32 + 32 = 64!
- But like all hacks it causes issues (see challenges)
 - Right solution is IPv6, 128 bit addresses
 - Enough everyone and their devices without hacks like NAT
 - IPv6 deployment increasing: over 9 million domain names and 23% of all networks do both IPv6 and v5.
 - Big pushes in Japan and India

Summary

- IP to MAC Address mapping
 - Dynamic Host Configuration Protocol (DHCP)
 - Address Resolution Protocol (ARP)
- Domain Name System
 - Distributed, hierarchical database
 - Distributed collection of servers
 - Caching to improve performance
 - Hacks like Akamai to find "closest" service