Practical 10: Computation of Eigen Value and Eigen Vector for dimensionality reduction

i) Find the characteristic equation of the matrix

$$A = \begin{bmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4 \end{bmatrix}$$

Solⁿ:- Characteristic eqⁿ of A $|A - \lambda I| = 0$

$$\begin{vmatrix} 2-\lambda & -3 & 1 \\ 3 & 1-\lambda & 3 & = 0 \\ -5 & 2 & -4-\lambda & = 0 \end{vmatrix}$$

$$= 2-\lambda \begin{vmatrix} 1-\lambda & 3 & +3 & 3 & +1 & 3 & 1-\lambda \\ 2 & -4-\lambda & -5 & -4-\lambda & -5 & 2 \end{vmatrix}$$

$$= 2-\lambda \left[-10-\lambda + 4\lambda + \lambda^{2} \right] + 3 \left[-3\lambda + 3 \right] + \left[6 + 5 - 5\lambda \right]$$

$$= 20 - 2\lambda + 8\lambda + 2\lambda^{2} + 10\lambda + \lambda^{2} - 4\lambda^{2} - \lambda^{3} - 9\lambda + 9 + 6 + 5 - 5\lambda$$

$$= -\lambda^3 - \lambda^2 + 2\lambda + 0$$

$$= -(\lambda^3 + \lambda^2 - 2\lambda)$$

ii) Find the eigen values of

$$A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

sol": |A -6/11 = 0

$$\begin{vmatrix} 1-\lambda & -1 & 0 \\ -1 & 2-\lambda & 1 \\ 0 & 1 & 1-\lambda \end{vmatrix} = 0$$

$$= 1 - \lambda \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} + 1 \begin{vmatrix} -1 & 1 \\ 0 & 1 - \lambda \end{vmatrix} + 0$$

=
$$1-\lambda \left[1-3\lambda+\lambda^2\right]-1+\lambda$$

$$= 1 - 3\lambda + \lambda^2 - \lambda + 3\lambda^2 - \lambda^3 - 1 + \lambda$$

$$= -\lambda^3 + 4\lambda^2 - 3\lambda$$

The eigen values for the given matrix are $\lambda = 3$, $\lambda = 1$, $\lambda = 0$

iii) Find the eigen value and eigen vector of the matriz

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

soln: characteristic eqn of A 1B - YII= 0

$$\begin{vmatrix} -2-\lambda & 2 & -3 \\ 2 & 1-\lambda & -6 \\ -1 & -2 & -\lambda \end{vmatrix} = 0$$

$$= -2-\lambda \begin{vmatrix} 1-\lambda & -6 \\ -2 & -\lambda \end{vmatrix} \begin{vmatrix} -2 & 2 & -6 \\ 1 & -\lambda \end{vmatrix} \begin{vmatrix} -3 & 2 & 1-\lambda \\ -1 & -2 \end{vmatrix}$$

$$= -2-\lambda \left[-\lambda + \lambda^{2} - 12 \right] - 2 \left(-2\lambda - 6 \right) - 3 \left(-4 + 1 - \lambda \right)$$

$$= +2\lambda -2\lambda^{2} +24 + \lambda^{2} -\lambda^{3} +12\lambda +4\lambda +12 +12 -3 +3\lambda$$

$$= -\lambda^3 - \lambda^2 + 21\lambda + 45$$
eigen values

$$\lambda = 5$$
, $\lambda = -3$. The same that $\lambda = 1$

for
$$\lambda = 5$$

$$\begin{vmatrix} -2-\lambda & 2 & -3 \\ 2 & 1-\lambda & -6 \\ -1 & -2 & -\lambda \end{vmatrix} = \begin{vmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ 1 & -2 & -5 \end{vmatrix}$$

$$2z - 4y - 6z = 0 - 0$$

$$1z - 2y - 5z = 0 - 0$$

10 L 10 L S = 1

using Gramer's rule (1) & (2)

$$\begin{vmatrix} 2 & -3 \\ -4 & -6 \end{vmatrix} = \begin{vmatrix} -4 & -3 \\ 2 & -6 \end{vmatrix} = \begin{vmatrix} 2 & 2 \\ 2 & -4 \end{vmatrix}$$

$$z = -24$$
 $y = -48$ $z = 24$

for
$$\lambda=5$$

$$\begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}$$

For
$$\lambda = -3$$

$$\begin{vmatrix} -2 - \lambda & 2 & -3 \\ 2 & 1 - \lambda & -6 \\ -1 & -2 & -\lambda \end{vmatrix} = \begin{vmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{vmatrix}$$

$$1x + 2y - 3z = 0 - 0$$

$$12 + 2y - 3z = 0$$
 -0 could topis
 $22 + 4y - 6z = 0$ -2 $\frac{2}{2}$ $\frac{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$

Using Cramer's rule
$$0 \text{ s} = 0$$

$$\begin{vmatrix} 2 & -3 \\ 4 & -6 \end{vmatrix} = \begin{vmatrix} 1 & -3 \\ 2 & -6 \end{vmatrix} = \begin{vmatrix} 2 & 2 \\ 2 & 4 \end{vmatrix}$$

$$2 = 0 \qquad y = 0 \qquad z = 0$$

for
$$\lambda = -3$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The eigen values for the given matrix is 5 and -3 and eigen vectors are $\begin{bmatrix} -1\\ 2\\ 1 \end{bmatrix}$ so $\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$ respectively

iv) Find all the eigen values and eigen vector for the following matrix A

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

soln: Characteristic eq of A

$$= 1 - \lambda \begin{vmatrix} 5 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 3 & 1 - \lambda \end{vmatrix} + 3 \begin{vmatrix} 1 & 5 - \lambda \\ 3 & 1 \end{vmatrix}$$

$$= 1 - \lambda (4 - 5\lambda - \lambda + \lambda^{2}) - (1 - \lambda + -3) + 3 (1 - 15 + 3\lambda)$$

$$= 4 - 5\lambda - \lambda + \lambda^{2} - 4\lambda + 5\lambda^{2} + \lambda^{2} - \lambda^{3} - 1 + \lambda + 3 + 3 - 45 + 9\lambda$$

$$= -\lambda + 7\lambda^{2} - 36$$
eigen values
$$\lambda = -2 \quad \lambda = 6 \quad \lambda = 3$$

$$\begin{cases} -2 \quad \lambda = 6 \quad \lambda = 3 \end{cases}$$

$$\begin{cases} 1 \quad 5 - \lambda \quad 1 \quad 3 \quad 1 \quad 2 \quad 3\alpha + y + 3z = 0 \quad \cdots \quad 0 \quad 1\alpha + 7y + 1z = 0 \quad \cdots \quad 2 \quad 3\alpha + 1y + 2z = 0 \quad \cdots \quad 3 \end{cases}$$

using cramer's rule con eq .0 % @ ! 10 de con

$$\begin{vmatrix} 2 & -y & z \\ 1 & 3 & z & 3 \\ 7 & 1 & 1 & 1 \\ 2z & -20 & -y & 0 \\ 80T & \lambda = -2 & -1 \\ 0 & 1 & 1 \end{vmatrix}$$

$$z = -20 & z = +20$$

$$z = -20 & z = +20$$

for h= 6

$$\begin{vmatrix} -5 & 1 & 3 \\ 1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} -5x + y + 3z = 0 & \cdots & 0 \\ 2 & -y - z = 0 & \cdots & 0 \\ 3x + y - 5z = 0 & \cdots & 0 \end{vmatrix}$$

using cramer's rule on og O &@

$$\begin{vmatrix} 2z & -y & z \\ 1 & 3 & = -5 & 3 \\ -1 & -1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} -5 & 1 \\ 1 & -1 \end{vmatrix}$$

$$\chi = 4$$
 $+y = +8$, $z = 4$

Practical 11: Calculate Mazima and Minima for the given function

1.00

i) Find the absolute extreme points of a function
$$f(x) = 2x^{3} - 3x^{2} + 5 \text{ in the interval } [-2,2]$$
Solⁿ:
$$f(x) = 2x^{3} - 3x^{2} + 5$$

$$f'(x) = 6x^{2} - 6x$$

$$f'(x) = 0$$

$$6x^{2} - 6x = 0$$

$$6x (x - 1) = 0$$

$$6x = 0 \quad \text{or } x = 1$$

$$x = 0$$

$$f(x) = 2x^{3} - 3x^{2} + 5$$

$$f(0) = 0 - 0 + 5$$

$$f(0) = 5$$

for $x = 1$

$$f(x) = 2(1)^{3} - 3(1)^{2} + 5$$

$$f(1) = 4$$
Checking end points of interval
$$x = -2$$

$$f(-2) = 2(-2)^{3} - 3(-2)^{2} + 5$$

$$f(2) = 2(2)^{3} - 3(2)^{2} + 5$$

The minimum value is
$$-23$$
 at $z = -2$ 8, maximum value is g at $z = 2$

t(2) = 9

f(-2) = -23

ii) Find the absolute maxima and minima of function $f(x) = 2\sin x + \cos x$ in the interval [-1,1] $\sin^{n} x$:

24 TRIC + 5 CIR F TAIL

E : (4)

a little a the a color fill the color are a second to the beginning of the fill a second to

84"x6-"11. ((x.)

war in a manife

0 = (x)'4' -.

7 = x 3 - x 3

Button to the section of

Erfane Para - vall

P. Carles 1-12

(in what the reduition of the life in

The minima value is -20 di a - 2 St

x = a do 2 di miny minimpor

Responsible to Visit

3 = 2 Top

1 = 4 7 14

P F LL 1

3 = (1 - x) x3

Jea to be as

Practical 12: Impute an example based on rolle's and Mean value Theorem

a) Verify rolle's theorem

i)
$$f(x) = \sin x + \cos x + 7$$
 at interval $x \in [0, 2\pi]$

solⁿ: The given f^n $f(x)$ is a polynomial function

hence it is continuous at $[0, 2\pi]$ and differentiable at $(0, 2\pi]$
 $f(0) = \sin x + \cos x + 7$
 $= \sin 0 + \cos 0 + 7$
 $= 0 + 1 + 7$
 $f(0) = 8$

$$f(2\pi) = \sin x + \cos x + 7$$
 $= \sin 2\pi + \cos x + 7$
 $= \sin 2\pi + \cos x + 7$
 $= 0 + 1 + 7$
 $f(2\pi) = 8$

$$\therefore \ \ \xi(0) = \ \xi(2\pi)$$

Thus the function f(x) satisfy all the condition of rolle's theorem.

ng ngang agasa dalak gapan dalah dalah dalah

Their exist CE(1,4) such that f'(c)=0f(x) = Sinx + cosx +7 f(c) = Sin c + cos c + 7 f'(c) = cosc - sinc +0 E'CC) = 0 cosc -sinc =0

Cos c = sinc

they are equal at $c = \pi$

 $\therefore C = \underline{\Pi} \qquad \in [0, 2\pi]$

Hence the rolle's theorem is verified.

Sol⁰: The given function f(x) is a polynomial function hence it is continuous at $[0,2\pi]$ and differentiable on $[0,2\pi]$ $f(0) = \sin \frac{x}{2}$

$$f(2\pi) = \sin \frac{2}{2}$$

$$\xi(2\pi) = 0$$

Thus the function satisfy all the condition of rolle's theorem their exist $C \in (0,2\pi)$ such that f'(c)=0 $f(c)=\sin\frac{C}{2}$

to head of he did

THE ACCOMP NAMES OF A PARISH

$$f'(c) = \cos \frac{c}{2}$$

$$f'(c) = 0$$

$$\cos \frac{c}{2} = 0$$

$$\left(: \cos \frac{\pi}{2} = 0 \right)$$

Hence the rolle's theorem is verified

b) Verify Lagrange's Mean Value Theorem
i)
$$f(x) = x^2 - 3x - 1$$
; $x \in \begin{bmatrix} -11 \\ 7 \end{bmatrix}$

Soln: The given function
$$f(x)$$
 is a polynomial function it is continuous at $\left[-\frac{11}{7}, \frac{13}{7}\right]$ and differentiable at $\left[-\frac{11}{7}, \frac{13}{7}\right]$

o star di

$$\frac{\xi(a)=\xi(-\frac{11}{4})}{=(-\frac{11}{4})^2-3(-\frac{11}{4})-1}$$

$$f(b)=f(\frac{13}{7}) = x^2 - 3x - 1$$
$$= (\frac{13}{7})^2 - 3(\frac{13}{7}) - 1$$

$$f(b) = -3.1224$$

$$f(c) = c^2 - 3c - 1$$

$$f'(cc) = f(b) - f(a)$$

$$2c-3 = (-3.1225) - 6.1836$$

$$\left(\frac{13}{7} - \left(-\frac{11}{7}\right)\right)$$

$$2C-3 = -9.306$$
 $24/7$

$$14C - 21 = -\frac{9.306}{24}$$

$$C = \frac{20.61225}{14}$$

ii)
$$\xi(x) = 2x - x^2$$
; $x \in [0,1]$
solⁿ: The given function $f(x)$ is a polynomial function
it's continuous at $[0,1]$ and differentiable at $(0,1)$
 $\xi(0) = 2x - x^2$
 $= 2(0) - 0$
 $\xi(a) = \xi(0) = 0$
 $\xi(b) = \xi(1) = 2x - x^2$
 $= 2 - 1^2$
 $\xi(b) = \xi(1) = 1$
 $\xi(c) = 2c - c^2$
 $\xi'(c) = 2 - 2c$
 $\xi'(c) = \frac{1-0}{1-0}$
 $2-2c = 1$

all the cuty

St. H- 1 Lo. 1911

$$2-2C=1$$
 $-2C=1-2$
 $2C=1$
 $C=\frac{1}{2} \in [0,1]$

Practical 13: Dot product and Norm of the Vector

- i) Consider the Two vector u = (1,2,-1) & v = (0,1,1)
 - a) determine the dot product of usiv.

$$u \cdot v = (1 \cdot 0) + (2 \cdot 1) + (-1 \cdot 1)$$

$$= 0 + 2 - 1$$

$$u \cdot v = 1$$

- b) determine the Norm of 'V'. $||x||^2 = \sqrt{x_1^2 + x_2^2 + x_3^2}$ $= \sqrt{0^2 + 1^2 + 1^2}$ $= \sqrt{2}$
- c) determine the norm of 'u' $||x||^2 = \sqrt{x_1^2 + x_2^2 + x_3^2}$ $= \sqrt{1^2 + 2^2 + (-1)^2}$ $= \sqrt{1 + 4 + 1}$ $= \sqrt{6}$
- ii) determine the angle between a = (3,2) and b = (1,7) $a \cdot b = (3 \times 1) + (2 \cdot 7)$ $a \cdot b = 3 + 14$ $a \cdot b = 17$

11.71.

en c. -(H)to

$$|\vec{a}| = \sqrt{3^2 + 2^2}$$

$$= \sqrt{13}$$

$$|\vec{b}| = \sqrt{1^2 + 3^2}$$

$$= \sqrt{50}$$

$$\vec{a} = \cos^{-1}(\vec{a} \cdot \vec{b})$$

$$\Theta = \cos^{-1}\left(\frac{a \cdot b}{|a| \cdot |b|}\right)$$
$$= \cos^{1}\left(\frac{17}{\sqrt{13}}, \sqrt{50}\right)$$

Practical 14: Impute Inverse of Matriz by adjoint Method

i) Find the adjoint of Matrix

a)
$$H = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$

 601^{0} : $A_{11} = (-1)^{2} \cdot a_{22} = 2$
 $A_{12} = (-1)^{3} \cdot a_{12} = -2$
 $A_{21} = (-1)^{3} \cdot a_{21} = 0$
 $A_{22} = (-1)^{4} \cdot a_{11} = 1$

$$adj(A) = \begin{bmatrix} 2 & -2 \\ 0 & 1 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4 \end{bmatrix}$$

$$501^{0.5} \quad C_{11} = (-1)^{2} \left[(1x-4) - (3x2) \right] = -10$$

$$C_{12} = (-1)^{3} \left[(3x-4) - (5x-3) \right] = -3$$

$$C_{13} = (-1)^{4} \left[(3x2) - (1x-5) \right] = 11$$

$$C_{21} = (-1)^{3} \left[(-3x-4) - (2x1) \right] = -10$$

$$C_{22} = (-1)^{4} \left[(2x-4) - (1x-5) \right] = -3$$

$$C_{23} = (-1)^{5} \left[(2x2) - (-5x-3) \right] = 11$$

$$C_{31} = (-1)^{4} \left[(-3x3) - 1 \right] = -10$$

$$C_{32} = (-1)^{5} \left[(2x3) - (3) \right] = -3$$

$$C_{33} = (-1)^{6} \left[(2) - (3x-3) \right] = 11$$

Titanij'saj e

Cofactor
$$\cdot A = \begin{bmatrix} -10 & -3 & 11 \\ -10 & -3 & 11 \\ -10 & -3 & 11 \end{bmatrix}$$

 $adj(A) = A^{T}$

$$adj(A) = \begin{bmatrix} -10 & -10 & -10 \\ -3 & -3 & -3 \\ 11 & 11 & 11 \end{bmatrix}$$

ii) Find the inverse of a matrix by adjoint method

$$H = \begin{bmatrix} 9 & 2 & 1 \\ 5 & -1 & 6 \\ 4 & 0 & 2 \end{bmatrix}$$

Solⁿ:- finding the Cofactors

$$C_{11} = (-1)^{2}(2-0) = 2$$
 $C_{12} = (-1)^{3}(-10-24) = 34$
 $C_{13} = (-1)^{4}(0+4) = 4$
 $C_{21} = (-1)^{3}(-4+0) = 4$
 $C_{22} = (-1)^{4}(-18-4) = -22$
 $C_{23} = (-1)^{5}(0-8) = 8$
 $C_{31} = (-1)^{4}(12+1) = 13$
 $C_{32} = (-1)^{5}(54-5) = -49$
 $C_{33} = (-1)^{6}(-9-10) = -19$

Co. factor matrix of
$$A = \begin{bmatrix} 2 & 34 & 4 \\ 4 & -2^2 & 8 \\ 13 & -49 & -19 \end{bmatrix}$$

adj(A) = AT

adj(A) =
$$\begin{bmatrix} 2 & 4 & 13 \\ 34 & -22 & -49 \\ 4 & 8 & -19 \end{bmatrix}$$

$$|A| = \begin{vmatrix} 9 & 2 & 1 \\ 5 & -1 & 6 \\ 4 & 0 & 2 \end{vmatrix} = \frac{9(-2) - 2(10 - 24) + 1(4)}{14}$$

$$A^{-1} = adj(A) \cdot \frac{1}{|A|}$$

$$= \frac{1}{14} \begin{bmatrix} 2 & 4 & 13 \\ 34 & -22 & -49 \\ 4 & 8 & -19 \end{bmatrix}$$