

Considering Interface Concavity in Spongy Mesophyll Segmentation

Evan A. Cook^{1,3}, Arthur K. MacKeith^{2,3}, Allison E. Culbert^{2,3}, Joy Pajarla^{2,3}, Craig R. Brodersen⁶, Adam B. Roddy⁷, Mark D. Shattuck⁸, and Corey S. O'Hern^{2,3,4,5}

¹Department of Computer Science, University of Chicago ²Integrated Graduate Program in Physical and Engineering Biology ³Department of Mechanical Engineering and Materials Science, Yale University ⁴Department of Physics, Yale University ⁵Department of Applied Physics, Yale University ⁶Yale School of the Environment ⁷Department of Biological Sciences, Florida International University ⁸Benjamin Levich Institute and Physics Department, The City College of the City University of New York

Introduction and Overview

Questions

- How can we maximize usable cell count in segmenting microCT scans for use in later studies?
- How do our eyes identify separate cells, and how might that inform our algorithm design?

Goals

- Designing and implementing a **new** 3D segmentation algorithm
- Testing this algorithm's accuracy and viability towards use in further studies

microCT Scans

Existing Segmentation Algorithm

spongy mesophyll z-slice

binary

Summary

- Algorithm is generally accurate, but can struggle when parsing compact clusters.
- Pruning stage can produce significant undersegmentation. Oversegmentation is preferable in the human verification stage.

Concavity Intuition in 2D

 One property of spongy mesophyll is observed necking of cell-cell interfaces. When assessing prospective borders, actual borders will usually be more concave than false borders. As such, we generate a quantitative measure of concavity:

concave border → **small** distance

convex border → **large** distance

• From the corner, we step **parallel** to the cell border, then measure perpendicular distance to cell matter. Large distances indicate convex borders, which are usually false and should be merged.

Core Algorithm in 3D

Acknowledgements

We thank financial support from NSF grant BMMB-2029756, the Biophysics Training Grant Program, and the University of Chicago Jeff Metcalf Internship Program. We also thank Chris Ambrose for generously sharing segmented *Arabidopsis* presented above.

References

- [1] Cross Section of a Leaf, pathwayz.org
- [2] *Planta* (1987), 172, 20-37
- [3] The Plant Cell (2021), 33, 3, 623–641
- [4] X-ray Computed Tomography, serc.carleton.edu
- [5] J. R. Soc. Interface (2022), 19, 197

Algorithm Behavior

case with score ≈ 20

case with score ≈ 85

case with score ≈ 150

Sample Output

binary

pruned watershed

partial prune + concavity

unsegmented binary

segmented via algorithm

Future Work

Our algorithm displays promising accuracy on test datasets (above), addressing observed shortcomings of the current algorithm. Our next steps are to increase the algorithm's robustness, and to investigate its viability with additional datasets and future studies.

- (1) Analyze more of the 40 species for which we have leaf or flower data
- (2) Automate the setting of tuning parameters in the algorithm
- (3) Assess accuracy with more complicated datasets/ground truths
- (4) Apply increased dataset of confidently segmented cells to the calculation of useful metrics (volume, SA, porosity, etc.)