BUGS Example 1: Linear Regression

• For n = 27 captured samples of the sirenian species dugong (sea cow), relate an animal's length in meters, Y_i , to its age in years, x_i .

BUGS Example 1: Linear Regression

- For n = 27 captured samples of the sirenian species dugong (sea cow), relate an animal's length in meters, Y_i , to its age in years, x_i .
- To avoid a nonlinear model for now, transform x_i to the log scale; plot of Y versus $\log(x)$ looks fairly linear!

$$Y_i = \beta_0 + \beta_1 \log(x_i) + \epsilon_i, \ i = 1, \dots, n$$

- Prior distributions:
 - flat for β_0, β_1
 - vague gamma on τ (say, Gamma(0.1, 0.1), which has mean 1 and variance 10) is traditional

$$Y_i = \beta_0 + \beta_1 \log(x_i) + \epsilon_i, \ i = 1, \dots, n$$

- Prior distributions:
 - flat for β_0, β_1
 - vague gamma on τ (say, Gamma(0.1, 0.1), which has mean 1 and variance 10) is traditional
- posterior correlation is reduced by centering the $log(x_i)$ around their own mean

$$Y_i = \beta_0 + \beta_1 \log(x_i) + \epsilon_i, \ i = 1, \dots, n$$

- Prior distributions:
 - flat for β_0, β_1
 - vague gamma on τ (say, Gamma(0.1, 0.1), which has mean 1 and variance 10) is traditional
- posterior correlation is reduced by centering the $log(x_i)$ around their own mean
- Andrew Gelman suggests placing a uniform prior on σ , bounding the prior away from 0 and $\infty \Longrightarrow U(.01, 100)$?

$$Y_i = \beta_0 + \beta_1 \log(x_i) + \epsilon_i, \ i = 1, \dots, n$$

- Prior distributions:
 - flat for β_0, β_1
 - vague gamma on τ (say, Gamma(0.1, 0.1), which has mean 1 and variance 10) is traditional
- posterior correlation is reduced by centering the $log(x_i)$ around their own mean
- Andrew Gelman suggests placing a uniform prior on σ , bounding the prior away from 0 and $\infty \Longrightarrow U(.01, 100)$?
- Code: www.biostat.umn.edu/~brad/data/dugongs_BUGS.txt

BUGS Example 2: Nonlinear Regression

Model the untransformed dugong data as

$$Y_i = \alpha - \beta \gamma^{x_i} + \epsilon_i, \ i = 1, \dots, n,$$

where $\alpha > 0$, $\beta > 0$, $0 \le \gamma \le 1$, and as usual $\epsilon_i \stackrel{iid}{\sim} N(0, \tau)$ for $\tau \equiv 1/\sigma^2 > 0$.

- In this model,
 - α corresponds to the average length of a fully grown dugong $(x \to \infty)$
 - $(\alpha \beta)$ is the length of a dugong at birth (x = 0)
 - γ determines the growth rate: lower values produce an initially steep growth curve while higher values lead to gradual, almost linear growth.

- In this model,
 - α corresponds to the average length of a fully grown dugong $(x \to \infty)$
 - $(\alpha \beta)$ is the length of a dugong at birth (x = 0)
 - γ determines the growth rate: lower values produce an initially steep growth curve while higher values lead to gradual, almost linear growth.
- Prior distributions: flat for α and β , U(.01, 100) for σ , and U(0.5, 1.0) for γ (harder to estimate)

- In this model,
 - α corresponds to the average length of a fully grown dugong $(x \to \infty)$
 - $(\alpha \beta)$ is the length of a dugong at birth (x = 0)
 - γ determines the growth rate: lower values produce an initially steep growth curve while higher values lead to gradual, almost linear growth.
- Prior distributions: flat for α and β , U(.01, 100) for σ , and U(0.5, 1.0) for γ (harder to estimate)
- Code: www.biostat.umn.edu/~brad/data/dugongsNL_BUGS.txt

- In this model,
 - α corresponds to the average length of a fully grown dugong $(x \to \infty)$
 - $(\alpha \beta)$ is the length of a dugong at birth (x = 0)
 - γ determines the growth rate: lower values produce an initially steep growth curve while higher values lead to gradual, almost linear growth.
- Prior distributions: flat for α and β , U(.01, 100) for σ , and U(0.5, 1.0) for γ (harder to estimate)
- Code: www.biostat.umn.edu/~brad/data/dugongsNL_BUGS.txt
- Obtain posterior density estimates and autocorrelation plots for α, β, γ , and σ , and investigate the bivariate posterior of (α, γ) using the Correlation tool on the Inference menu!

BUGS Example 3: Logistic Regression

Consider a binary version of the dugong data,

$$Z_i = \left\{ egin{array}{ll} 1 & \mbox{if } Y_i > 2.4 \ 0 & \mbox{otherwise} \end{array} \right.$$
 (i.e., the dugong is "full-grown")

BUGS Example 3: Logistic Regression

Consider a binary version of the dugong data,

$$Z_i = \left\{ egin{array}{ll} 1 & \mbox{if } Y_i > 2.4 \ 0 & \mbox{otherwise} \end{array} \right.$$
 (i.e., the dugong is "full-grown")

• A logistic model for $p_i = P(Z_i = 1)$ is then

$$logit(p_i) = log[p_i/(1-p_i)] = \beta_0 + \beta_1 log(x_i)$$
.

BUGS Example 3: Logistic Regression

Consider a binary version of the dugong data,

$$Z_i = \begin{cases} 1 & \text{if } Y_i > 2.4 \text{ (i.e., the dugong is "full-grown")} \\ 0 & \text{otherwise} \end{cases}$$

• A logistic model for $p_i = P(Z_i = 1)$ is then

$$logit(p_i) = log[p_i/(1-p_i)] = \beta_0 + \beta_1 log(x_i)$$
.

Two other commonly used link functions are the probit,

$$probit(p_i) = \Phi^{-1}(p_i) = \beta_0 + \beta_1 log(x_i)$$
,

and the complementary log-log (cloglog),

$$cloglog(p_i) = \log[-\log(1-p_i)] = \beta_0 + \beta_1 log(x_i)$$
.

Code: www.biostat.umn.edu/~brad/data/dugongsBin_BUGS.txt

- Code: www.biostat.umn.edu/~brad/data/dugongsBin_BUGS.txt
- Code uses flat priors for β_0 and β_1 , and the phi function, instead of the less stable probit function.

- Code: www.biostat.umn.edu/~brad/data/dugongsBin_BUGS.txt
- Code uses flat priors for β_0 and β_1 , and the phi function, instead of the less stable probit function.
- DIC scores for the three models:

model	\overline{D}	p_D	DIC
logit	19.62	1.85	21.47
probit	19.30	1.87	21.17
cloglog	18.77	1.84	20.61

In fact, these scores can be obtained from a single run; see the "trick version" at the bottom of the BUGS file!

- Code: www.biostat.umn.edu/~brad/data/dugongsBin_BUGS.txt
- Code uses flat priors for β_0 and β_1 , and the phi function, instead of the less stable probit function.
- DIC scores for the three models:

model	\overline{D}	p_D	DIC
logit	19.62	1.85	21.47
probit	19.30	1.87	21.17
cloglog	18.77	1.84	20.61

In fact, these scores can be obtained from a single run; see the "trick version" at the bottom of the BUGS file!

• Use the Comparison tool to compare the posteriors of β_1 across models, and the Correlation tool to check the bivariate posteriors of (β_0, β_1) across models.

Fitted binary regression models

The logit and probit fits appear very similar, but the cloglog fitted curve is slightly different

Fitted binary regression models

- The logit and probit fits appear very similar, but the cloglog fitted curve is slightly different
- You can also compare p_i posterior boxplots (induced by the link function and the β_0 and β_1 posteriors) using the Comparison tool.

BUGS Example 4: Hierarchical Models

Extend the usual two-stage (likelihood plus prior) Bayesian structure to a hierarchy of L levels, where the joint distribution of the data and the parameters is

$$f(\mathbf{y}|\boldsymbol{\theta}_1)\pi_1(\boldsymbol{\theta}_1|\boldsymbol{\theta}_2)\pi_2(\boldsymbol{\theta}_2|\boldsymbol{\theta}_3)\cdots\pi_L(\boldsymbol{\theta}_L|\boldsymbol{\lambda}).$$

BUGS Example 4: Hierarchical Models

Extend the usual two-stage (likelihood plus prior) Bayesian structure to a hierarchy of L levels, where the joint distribution of the data and the parameters is

$$f(\mathbf{y}|\boldsymbol{\theta}_1)\pi_1(\boldsymbol{\theta}_1|\boldsymbol{\theta}_2)\pi_2(\boldsymbol{\theta}_2|\boldsymbol{\theta}_3)\cdots\pi_L(\boldsymbol{\theta}_L|\boldsymbol{\lambda}).$$

• L is often determined by the number of subscripts on the data. For example, suppose Y_{ijk} is the test score of child k in classroom j in school i in a certain city. Model:

$$Y_{ijk}|\theta_{ij} \stackrel{ind}{\sim} N(\theta_{ij}, \tau_{\theta})$$
 $(\theta_{ij} \text{ is the classroom effect})$ $\theta_{ij}|\eta_i \stackrel{ind}{\sim} N(\eta_i, \tau_{\eta})$ $(\eta_i \text{ is the school effect})$ $\eta_i|\lambda \stackrel{iid}{\sim} N(\lambda, \tau_{\lambda})$ $(\lambda \text{ is the grand mean})$

Priors for λ and the τ 's now complete the specification!

• Data: estimated log relative hazards $Y_{ij} = \hat{\beta}_{ij}$ obtained by fitting separate Cox proportional hazards regressions to the data from each of J = 18 clinical units participating in I = 6 different AIDS studies.

- Data: estimated log relative hazards $Y_{ij} = \hat{\beta}_{ij}$ obtained by fitting separate Cox proportional hazards regressions to the data from each of J=18 clinical units participating in I=6 different AIDS studies.
- To these data we wish to fit the cross-study model,

$$Y_{ij} = a_i + b_j + s_{ij} + \epsilon_{ij}, \ i = 1, \dots, I, \ j = 1, \dots, J,$$
 where a_i = study main effect b_j = unit main effect s_{ij} = study-unit interaction term, and $\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma_{ij}^2)$

and the estimated standard errors from the Cox regressions are used as (known) values of the σ_{ij} .

	Toxo	ddI/ddC	NuCombo	NuCombo	Fungal	CMV
Unit			ZDV+ddI	ZDV+ddC		
Α	0.814	NA	-0.406	0.298	0.094	NA
В	-0.203	NA	NA	NA	NA	NA
С	-0.133	NA	0.218	-2.206	0.435	0.145
D	NA	NA	NA	NA	NA	NA
Е	-0.715	-0.242	-0.544	-0.731	0.600	0.041
F	0.739	0.009	NA	NA	NA	0.222
G	0.118	0.807	-0.047	0.913	-0.091	0.099
Н	NA	-0.511	0.233	0.131	NA	0.017
1	NA	1.939	0.218	-0.066	NA	0.355
J	0.271	1.079	-0.277	-0.232	0.752	0.203
K	NA	NA	0.792	1.264	-0.357	0.807
:	:	:	:	:	:	:
R	1.217	0.165	0.385	0.172	-0.022	0.203

- Note that some values are missing ("NA") since
 - not all 18 units participated in all 6 studies
 - the Cox estimation procedure did not converge for some units that had few deaths

- Note that some values are missing ("NA") since
 - not all 18 units participated in all 6 studies
 - the Cox estimation procedure did not converge for some units that had few deaths
- Goal: To identify which clinics are opinion leaders (strongly agree with overall result across studies) and which are dissenters (strongly disagree).

- Note that some values are missing ("NA") since
 - not all 18 units participated in all 6 studies
 - the Cox estimation procedure did not converge for some units that had few deaths
- Goal: To identify which clinics are opinion leaders (strongly agree with overall result across studies) and which are dissenters (strongly disagree).
- Here, overall results all favor the treatment (i.e. mostly negative Ys) except in Trial 1 (Toxo). Thus we multiply all the Y_{ij} 's by -1 for $i \neq 1$, so that larger Y_{ij} correspond in all cases to stronger agreement with the overall.

- Note that some values are missing ("NA") since
 - not all 18 units participated in all 6 studies
 - the Cox estimation procedure did not converge for some units that had few deaths
- Goal: To identify which clinics are opinion leaders (strongly agree with overall result across studies) and which are dissenters (strongly disagree).
- Here, overall results all favor the treatment (i.e. mostly negative Ys) except in Trial 1 (Toxo). Thus we multiply all the Y_{ij} 's by -1 for $i \neq 1$, so that larger Y_{ij} correspond in all cases to stronger agreement with the overall.
- Next slide shows a plot of the Y_{ij} values and associated approximate 95% CIs...

Second stage of our model:

$$a_i \stackrel{iid}{\sim} N(0, 100^2), \quad b_j \stackrel{iid}{\sim} N(0, \sigma_b^2), \quad \text{and} \quad s_{ij} \stackrel{iid}{\sim} N(0, \sigma_s^2)$$

Second stage of our model:

$$a_i \stackrel{iid}{\sim} N(0, 100^2), \quad b_j \stackrel{iid}{\sim} N(0, \sigma_b^2), \quad \text{and} \quad s_{ij} \stackrel{iid}{\sim} N(0, \sigma_s^2)$$

Third stage of our model:

$$\sigma_b \sim Unif(0.01, 100)$$
 and $\sigma_s \sim Unif(0.01, 100)$

That is, we

- preclude borrowing of strength across studies, but
- encourage borrowing of strength across units

Second stage of our model:

$$a_i \stackrel{iid}{\sim} N(0, 100^2), \quad b_j \stackrel{iid}{\sim} N(0, \sigma_b^2), \quad \text{and} \quad s_{ij} \stackrel{iid}{\sim} N(0, \sigma_s^2)$$

Third stage of our model:

$$\sigma_b \sim Unif(0.01, 100)$$
 and $\sigma_s \sim Unif(0.01, 100)$

That is, we

- preclude borrowing of strength across studies, but
- encourage borrowing of strength across units
- With I + J + IJ parameters but fewer than IJ data points, some effects must be treated as random!

Second stage of our model:

$$a_i \stackrel{iid}{\sim} N(0, 100^2), \quad b_j \stackrel{iid}{\sim} N(0, \sigma_b^2), \quad \text{and} \quad s_{ij} \stackrel{iid}{\sim} N(0, \sigma_s^2)$$

Third stage of our model:

$$\sigma_b \sim Unif(0.01, 100)$$
 and $\sigma_s \sim Unif(0.01, 100)$

That is, we

- preclude borrowing of strength across studies, but
- encourage borrowing of strength across units
- With I + J + IJ parameters but fewer than IJ data points, some effects must be treated as random!
- Code: www.biostat.umn.edu/~brad/data/crprot_BUGS.txt

Plot of θ_{ij} posterior means

 \Diamond Unit P is an opinion leader; Unit E is a dissenter

Plot of θ_{ij} posterior means

- \Diamond Unit P is an opinion leader; Unit E is a dissenter
- \Diamond Substantial shrinkage towards 0 has occurred: mostly positive values; no estimated θ_{ij} greater than 0.6

Model Comparision via DIC

Since we lack replications for each study-unit (i-j) combination, the interactions s_{ij} in this model were only weakly identified, and the model might well be better off without them (or even without the unit effects b_i).

As such, compare a variety of reduced models:

```
Y[i,j] ~ dnorm(theta[i,j],P[i,j])
#
     theta[i,j] \leftarrow a[i]+b[j]+s[i,j] \# full model
#
     theta[i,j] <- a[i] + b[j] # drop interactions</pre>
#
    theta[i,j] \leftarrow a[i] + s[i,j] # no unit effect
#
    theta[i,j] \leftarrow b[j] + s[i,j] # no study effect
#
    theta[i,j] \leftarrow a[1] + b[j] # unit + intercept
#
     theta[i,i] <- b[i]
                            # unit effect only
    theta[i,j] < -a[i]
                                     # study effect only
```

Investigate p_D values for these models; are they consistent with posterior boxplots of the b_i and s_{ij} ?

DIC results for Cross-Study Data:

model	\overline{D}	p_D	DIC
full model	122.0	12.8	134.8
drop interactions	123.4	9.7	133.1
no unit effect	123.8	10.0	133.8
no study effect	121.4	9.7	131.1
unit + intercept	120.3	4.6	124.9
unit effect only	122.9	6.2	129.1
study effect only	126.0	6.0	132.0

The DIC-best model is the one with only an intercept (a role played here by a_1) and the unit effects b_j .

These DIC differences are not much larger than their possible Monte Carlo errors, so almost any of these models could be justified here.

BUGS Example 5: Survival Modeling

Our data arises from a clinical trial comparing two treatments for *Mycobacterium avium* complex (MAC), a disease common in late stage HIV-infected persons. Eleven clinical centers ("units") have enrolled a total of 69 patients in the trial, of which 18 have died.

BUGS Example 5: Survival Modeling

- Our data arises from a clinical trial comparing two treatments for *Mycobacterium avium* complex (MAC), a disease common in late stage HIV-infected persons. Eleven clinical centers ("units") have enrolled a total of 69 patients in the trial, of which 18 have died.
- For $j = 1, \ldots, n_i$ and $i = 1, \ldots, k$, let

 t_{ij} = time to death or censoring

 x_{ij} = treatment indicator for subject j in stratum i

BUGS Example 5: Survival Modeling

- Our data arises from a clinical trial comparing two treatments for *Mycobacterium avium* complex (MAC), a disease common in late stage HIV-infected persons. Eleven clinical centers ("units") have enrolled a total of 69 patients in the trial, of which 18 have died.
- For $j=1,\ldots,n_i$ and $i=1,\ldots,k$, let $t_{ij}=$ time to death or censoring $x_{ij}=$ treatment indicator for subject j in stratum j
- Next page gives survival times (in half-days) from the MAC treatment trial, where "+" indicates a censored observation...

unit	drug	time	unit	drug	time	unit	drug	time
Α	1	74+	Е	1	214	Н	1	74+
Α	2	248	Е	2	228+	Н	1	88+
Α	1	272+	Е	2	262	Н	1	148+
Α	2	344				Н	2	162
			F	1	6			
В	2	4+	F	2	16+	ı	2	8
В	1	156+	F	1	76	ı	2	16+
			F	2	80	ı	2	40
С	2	100+	F	2	202	ı	1	120+
			F	1	258+	ı	1	168+
D	2	20+	F	1	268+	ı	2	174+
D	2	64	F	2	368+	ı	1	268+
D	2	88	F	1	380+	ı	2	276
D	2	148+	F	1	424+	ı	1	286+
	• • •							
						K	2	106+

With proportional hazards and a Weibull baseline hazard, stratum i's hazard is

$$h(t_{ij}; x_{ij}) = h_0(t_{ij})\omega_i \exp(\beta_0 + \beta_1 x_{ij})$$
$$= \rho_i t_{ij}^{\rho_i - 1} \exp(\beta_0 + \beta_1 x_{ij} + W_i),$$

where $\rho_i > 0$, $\beta = (\beta_0, \beta_1)' \in \Re^2$, and $W_i = \log \omega_i$ is a clinic-specific frailty term.

With proportional hazards and a Weibull baseline hazard, stratum i's hazard is

$$h(t_{ij}; x_{ij}) = h_0(t_{ij})\omega_i \exp(\beta_0 + \beta_1 x_{ij})$$
$$= \rho_i t_{ij}^{\rho_i - 1} \exp(\beta_0 + \beta_1 x_{ij} + W_i),$$

where $\rho_i > 0$, $\beta = (\beta_0, \beta_1)' \in \Re^2$, and $W_i = \log \omega_i$ is a clinic-specific frailty term.

• The W_i capture overall differences among the clinics, while the ρ_i allow differing baseline hazards which either increase ($\rho_i > 1$) or decrease ($\rho_i < 1$) over time. We assume i.i.d. specifications for these random effects,

$$W_i \stackrel{iid}{\sim} N(0, 1/\tau)$$
 and $\rho_i \stackrel{iid}{\sim} G(\alpha, \alpha)$.

As in the mice example (WinBUGS Examples Vol 1),

$$\mu_{ij} = \exp(\beta_0 + \beta_1 x_{ij} + W_i) ,$$

so that

$$t_{ij} \sim Weibull(\rho_i, \mu_{ij})$$
.

As in the mice example (WinBUGS Examples Vol 1),

$$\mu_{ij} = \exp(\beta_0 + \beta_1 x_{ij} + W_i) ,$$

so that

$$t_{ij} \sim Weibull(\rho_i, \mu_{ij})$$
.

• We recode the drug covariate from (1,2) to (-1,1) (i.e., set $x_{ij} = 2drug_{ij} - 3$) to ease collinearity between the slope β_1 and the intercept β_0 .

As in the mice example (WinBUGS Examples Vol 1),

$$\mu_{ij} = \exp(\beta_0 + \beta_1 x_{ij} + W_i) ,$$

so that

$$t_{ij} \sim Weibull(\rho_i, \mu_{ij})$$
.

- We recode the drug covariate from (1,2) to (-1,1) (i.e., set $x_{ij} = 2drug_{ij} 3$) to ease collinearity between the slope β_1 and the intercept β_0 .
- We place vague priors on β_0 and β_1 , a moderately informative G(1,1) prior on τ , and set $\alpha=10$.

As in the mice example (WinBUGS Examples Vol 1),

$$\mu_{ij} = \exp(\beta_0 + \beta_1 x_{ij} + W_i) ,$$

so that

$$t_{ij} \sim Weibull(\rho_i, \mu_{ij})$$
.

- We recode the drug covariate from (1,2) to (-1,1) (i.e., set $x_{ij} = 2drug_{ij} 3$) to ease collinearity between the slope β_1 and the intercept β_0 .
- We place vague priors on β_0 and β_1 , a moderately informative G(1,1) prior on τ , and set $\alpha=10$.
- Data: www.biostat.umn.edu/~brad/data/MAC.dat Code:

www.biostat.umn.edu/~brad/data/MACfrailty_BUGS.txt

node (unit)	mean	sd	MC error	2.5%	median	97.5%
W_1 (A)	-0.04912	0.835	0.02103	-1.775	-0.04596	1.639
W_3 (C)	-0.1829	0.9173	0.01782	-2.2	-0.1358	1.52
W_5 (E)	-0.03198	0.8107	0.03193	-1.682	-0.02653	1.572
W_6 (F)	0.4173	0.8277	0.04065	-1.066	0.3593	2.227
W_9 (I)	0.2546	0.7969	0.03694	-1.241	0.2164	1.968
W_{11} (K)	-0.1945	0.9093	0.02093	-2.139	-0.1638	1.502
$ ho_1$ (A)	1.086	0.1922	0.007168	0.7044	1.083	1.474
ρ_3 (C)	0.9008	0.2487	0.006311	0.4663	0.8824	1.431
$ ho_5$ (E)	1.143	0.1887	0.00958	0.7904	1.139	1.521
$ ho_6$ (F)	0.935	0.1597	0.008364	0.6321	0.931	1.265
$ ho_9$ (I)	0.9788	0.1683	0.008735	0.6652	0.9705	1.339
$ ho_{11}$ (K)	0.8807	0.2392	0.01034	0.4558	0.8612	1.394
au	1.733	1.181	0.03723	0.3042	1.468	4.819
eta_0	-7.111	0.689	0.04474	-8.552	-7.073	-5.874
eta_1	0.596	0.2964	0.01048	0.06099	0.5783	1.245
RR	3.98	2.951	0.1122	1.13	3.179	12.05

• Units A and E have moderate overall risk ($W_i \approx 0$) but increasing hazards ($\rho > 1$): few deaths, but they occur late

- Units A and E have moderate overall risk ($W_i \approx 0$) but increasing hazards ($\rho > 1$): few deaths, but they occur late
- Units F and I have high overall risk $(W_i>0)$ but decreasing hazards $(\rho<1)$: several early deaths, many long-term survivors

- Units A and E have moderate overall risk ($W_i \approx 0$) but increasing hazards ($\rho > 1$): few deaths, but they occur late
- Units F and I have high overall risk $(W_i>0)$ but decreasing hazards $(\rho<1)$: several early deaths, many long-term survivors
- Units C and K have low overall risk ($W_i < 0$) and decreasing hazards ($\rho < 1$): no deaths at all; a few survivors

- Units A and E have moderate overall risk ($W_i \approx 0$) but increasing hazards ($\rho > 1$): few deaths, but they occur late
- Units F and I have high overall risk $(W_i > 0)$ but decreasing hazards $(\rho < 1)$: several early deaths, many long-term survivors
- Units C and K have low overall risk $(W_i < 0)$ and decreasing hazards $(\rho < 1)$: no deaths at all; a few survivors
- Drugs differ significantly: CI for β_1 (RR) excludes 0 (1)

- Units A and E have moderate overall risk ($W_i \approx 0$) but increasing hazards ($\rho > 1$): few deaths, but they occur late
- Units F and I have high overall risk $(W_i > 0)$ but decreasing hazards $(\rho < 1)$: several early deaths, many long-term survivors
- Units C and K have low overall risk ($W_i < 0$) and decreasing hazards ($\rho < 1$): no deaths at all; a few survivors
- Drugs differ significantly: CI for β_1 (RR) excludes 0 (1)
- Note: This has all been for two sets of random effects $(W_i \text{ and } \rho_i)$, called "Model 2" in the BUGS code. You will also see models having three (adding β_{1i}), one (deleting ρ_i), or zero sets of random effects!

BRugs Example 1: Model assessment

Basic tool here is the cross-validation residual

$$r_i = y_i - E(y_i|\mathbf{y}_{(i)}) ,$$

where $\mathbf{y}_{(i)}$ denotes the vector of all the data except the i^{th} value, i.e.

$$\mathbf{y}_{(i)} = (y_1, \dots, y_{i-1}, y_{i+1}, \dots, y_n)'.$$

Outliers are indicated by large standardized residuals,

$$d_i = r_i / \sqrt{Var(y_i|\mathbf{y}_{(i)})}.$$

BRugs Example 1: Model assessment

Basic tool here is the cross-validation residual

$$r_i = y_i - E(y_i|\mathbf{y}_{(i)}) ,$$

where $\mathbf{y}_{(i)}$ denotes the vector of all the data except the i^{th} value, i.e.

$$\mathbf{y}_{(i)} = (y_1, \dots, y_{i-1}, y_{i+1}, \dots, y_n)'.$$

Outliers are indicated by large standardized residuals, $d_i = r_i / \sqrt{Var(y_i|\mathbf{y}_{(i)})}$.

• Also of interest is the conditional predictive ordinate, $p(y_i|\mathbf{y}_{(i)}) = \int p(y_i|\boldsymbol{\theta},\mathbf{y}_{(i)})p(\boldsymbol{\theta}|\mathbf{y}_{(i)})d\boldsymbol{\theta}$, the height of the conditional density at the observed value of y_i \Longrightarrow large values indicate good prediction of y_i .

Residuals: Approximate method

• Using MC draws $\theta^{(g)} \sim p(\theta|\mathbf{y})$, we have

$$E(y_i|\mathbf{y}_{(i)}) = \int \int y_i f(y_i|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}_{(i)}) dy_i d\boldsymbol{\theta}$$

$$= \int E(y_i|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}_{(i)}) d\boldsymbol{\theta}$$

$$\approx \int E(y_i|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta}$$

$$\approx \frac{1}{G} \sum_{g=1}^{G} E(y_i|\boldsymbol{\theta}^{(g)}).$$

Residuals: Approximate method

• Using MC draws $\theta^{(g)} \sim p(\theta|\mathbf{y})$, we have

$$E(y_{i}|\mathbf{y}_{(i)}) = \int \int y_{i}f(y_{i}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y}_{(i)})dy_{i}d\boldsymbol{\theta}$$

$$= \int E(y_{i}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y}_{(i)})d\boldsymbol{\theta}$$

$$\approx \int E(y_{i}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y})d\boldsymbol{\theta}$$

$$\approx \frac{1}{G}\sum_{g=1}^{G}E(y_{i}|\boldsymbol{\theta}^{(g)}).$$

• Approximation should be adequate unless the dataset is small and y_i is an extreme outlier

Residuals: Approximate method

• Using MC draws $\theta^{(g)} \sim p(\theta|\mathbf{y})$, we have

$$E(y_{i}|\mathbf{y}_{(i)}) = \int \int y_{i}f(y_{i}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y}_{(i)})dy_{i}d\boldsymbol{\theta}$$

$$= \int E(y_{i}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y}_{(i)})d\boldsymbol{\theta}$$

$$\approx \int E(y_{i}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y})d\boldsymbol{\theta}$$

$$\approx \frac{1}{G}\sum_{g=1}^{G}E(y_{i}|\boldsymbol{\theta}^{(g)}).$$

- Approximation should be adequate unless the dataset is small and y_i is an extreme outlier
- Same $\theta^{(g)}$'s may be used for each $i = 1, \ldots, n$.

Approximate methods in WinBUGS

• The ratio to compute the standardized residuals d_i must be done outside of Winbugs. Might instead define

$$d_i^* = \frac{y_i - E(y_i|\boldsymbol{\theta})}{\sqrt{Var(y_i|\boldsymbol{\theta})}}.$$

We then find $E(d_i^*|\mathbf{y})$, the posterior average of the ratio (instead of the ratio of the posterior averages).

Approximate methods in WinBUGS

• The ratio to compute the standardized residuals d_i must be done outside of Winbugs. Might instead define

$$d_i^* = \frac{y_i - E(y_i|\boldsymbol{\theta})}{\sqrt{Var(y_i|\boldsymbol{\theta})}}.$$

We then find $E(d_i^*|\mathbf{y})$, the posterior average of the ratio (instead of the ratio of the posterior averages).

For the exact method, we must evaluate $E(y_i|\mathbf{y}_{(i)})$ and $Var(y_i|\mathbf{y}_{(i)})$ separately. For the latter, use the facts that $Var(y_i|\mathbf{y}_{(i)}) = E(y_i^2|\mathbf{y}_{(i)}) - [E(y_i|\mathbf{y}_{(i)})]^2$, and

$$E(y_i^2|\mathbf{y}_{(i)}) = \int E(y_i^2|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{y}_{(i)})d\boldsymbol{\theta}$$
$$= \int \{Var(y_i|\boldsymbol{\theta}) + [E(y_i|\boldsymbol{\theta})]^2\}p(\boldsymbol{\theta}|\mathbf{y}_{(i)})d\boldsymbol{\theta}.$$

♠ An exact solution then arises by calling WinBUGS n times, once for each "leave one out" dataset!

- ♠ An exact solution then arises by calling WinBUGS n times, once for each "leave one out" dataset!
- This can be accomplished in BRugs, a suite of R routines for calling OpenBUGS from R, originally written by WinBUGS head programmer Andrew Thomas, and refined and maintained by Uwe Ligges

- ♠ An exact solution then arises by calling WinBUGS n times, once for each "leave one out" dataset!
- This can be accomplished in BRugs, a suite of R routines for calling OpenBUGS from R, originally written by WinBUGS head programmer Andrew Thomas, and refined and maintained by Uwe Ligges
- All necessary programs and instructions can be downloaded from
 - www.biostat.umn.edu/~brad/software/BRugs

- ♠ An exact solution then arises by calling WinBUGS n times, once for each "leave one out" dataset!
- This can be accomplished in BRugs, a suite of R routines for calling OpenBUGS from R, originally written by WinBUGS head programmer Andrew Thomas, and refined and maintained by Uwe Ligges
- All necessary programs and instructions can be downloaded from www.biostat.umn.edu/~brad/software/BRugs
- Note that we will now have both:
 - an R program that organizes the dataset, contains all the BRugs commands, and summarizes the output
 - a piece of BUGS code that is sent by R to OpenBUGS

• An oft-analyzed dataset, featuring the stack loss Y (ammonia escaping), and three covariates X_1 (air flow), X_2 (temperature), and X_3 (acid concentration).

- An oft-analyzed dataset, featuring the stack loss Y (ammonia escaping), and three covariates X_1 (air flow), X_2 (temperature), and X_3 (acid concentration).
- Fit the linear regression model

$$Y_i \sim N(\beta_0 + \beta_1 z_{i1} + \beta_2 z_{i2} + \beta_3 z_{i3}, \tau),$$

where the z_{ij} are the standardized covariates. We take flat priors on the β s and a Gelman-style noninformative prior on $\sigma = 1/\sqrt{\tau}$.

- An oft-analyzed dataset, featuring the stack loss Y (ammonia escaping), and three covariates X_1 (air flow), X_2 (temperature), and X_3 (acid concentration).
- Fit the linear regression model

$$Y_i \sim N(\beta_0 + \beta_1 z_{i1} + \beta_2 z_{i2} + \beta_3 z_{i3}, \tau),$$

where the z_{ij} are the standardized covariates. We take flat priors on the β s and a Gelman-style noninformative prior on $\sigma = 1/\sqrt{\tau}$.

WinBUGS code and data for approximate method: www.biostat.umn.edu/~brad/data/stacks_BUGS.txt BRugs code and data for exact method: www.biostat.umn.edu/~brad/software/BRugs

- An oft-analyzed dataset, featuring the stack loss Y (ammonia escaping), and three covariates X_1 (air flow), X_2 (temperature), and X_3 (acid concentration).
- Fit the linear regression model

$$Y_i \sim N(\beta_0 + \beta_1 z_{i1} + \beta_2 z_{i2} + \beta_3 z_{i3}, \tau),$$

where the z_{ij} are the standardized covariates. We take flat priors on the β s and a Gelman-style noninformative prior on $\sigma = 1/\sqrt{\tau}$.

- WinBUGS code and data for approximate method: www.biostat.umn.edu/~brad/data/stacks_BUGS.txt BRugs code and data for exact method: www.biostat.umn.edu/~brad/software/BRugs
- See also "stacks" in WinBUGS Examples Volume !!

Approximate vs. Exact Results

	sre	sid	СРО	
obs	approx	exact	approx	exact
1	0.948	1.098	0.178	0.124
2	-0.566	-0.628	0.224	0.188
3	1.337	1.461	0.122	0.084
4	1.672	1.851	0.078	0.047
5	-0.504	-0.477	0.251	0.244
	:	:	:	:
21	-2.126	-3.012	0.046	0.005

Approximate residuals are too small, especially for the most outlying observations!

Approximate vs. Exact Results

	sre	sid	CPO	
obs	approx	exact	approx	exact
1	0.948	1.098	0.178	0.124
2	-0.566	-0.628	0.224	0.188
3	1.337	1.461	0.122	0.084
4	1.672	1.851	0.078	0.047
5	-0.504	-0.477	0.251	0.244
:	:	:	÷	:
21	-2.126	-3.012	0.046	0.005

- Approximate residuals are too small, especially for the most outlying observations!
- Approximate CPOs also tend to understate lack of fit

BRugs Example 2: Clinical Trial Design

Following our MAC survival model, let t_i be the time until death for subject i, with corresponding treatment indicator x_i (= 0 or 1 for control and treatment, respectively). Suppose

$$t_i \sim \text{Weibull}(r, \mu_i), \text{ where } \mu_i = e^{-(\beta_0 + \beta_1 x_i)}$$
.

BRugs Example 2: Clinical Trial Design

Following our MAC survival model, let t_i be the time until death for subject i, with corresponding treatment indicator x_i (= 0 or 1 for control and treatment, respectively). Suppose

$$t_i \sim \text{Weibull}(r, \mu_i), \text{ where } \mu_i = e^{-(\beta_0 + \beta_1 x_i)}$$
.

• Then the baseline hazard function is $\lambda_0(t_i) = rt_i^{r-1}$, and the median survival time for subject i is

$$m_i = [(\log 2)e^{\beta_0 + \beta_1 x_i}]^{1/r}$$
.

BRugs Example 2: Clinical Trial Design

• Following our MAC survival model, let t_i be the time until death for subject i, with corresponding treatment indicator x_i (= 0 or 1 for control and treatment, respectively). Suppose

$$t_i \sim \text{Weibull}(r, \mu_i), \text{ where } \mu_i = e^{-(\beta_0 + \beta_1 x_i)}$$
.

• Then the baseline hazard function is $\lambda_0(t_i) = rt_i^{r-1}$, and the median survival time for subject i is

$$m_i = [(\log 2)e^{\beta_0 + \beta_1 x_i}]^{1/r}$$
.

• The value of β_1 corresponding to a 15% increase in median survival in the treatment group satisfies

$$e^{\beta_1/r} = 1.15 \iff \beta_1 = r \log(1.15)$$
.

• The range of β_1 values within which we are indifferent as to use of treatment or control

- The range of β_1 values within which we are indifferent as to use of treatment or control
- lower limit β_I , the clinical inferiority boundary
 - We typically take $\beta_I = 0$, since we would never prefer a harmful treatment

- The range of β_1 values within which we are indifferent as to use of treatment or control
- lower limit β_I , the clinical inferiority boundary
 - We typically take $\beta_I = 0$, since we would never prefer a harmful treatment
- upper limit β_S , the clinical superiority boundary
 - We typically take $\beta_S > 0$, since we may require "clinically significant" improvement under the treatment (due to cost, toxicity, etc.)
 - Example: If r=2, then $\beta_S=2\log(1.15)\approx 0.28$ corresponds to 15% improvement in median survival

- The range of β_1 values within which we are indifferent as to use of treatment or control
- lower limit β_I , the clinical inferiority boundary
 - We typically take $\beta_I = 0$, since we would never prefer a harmful treatment
- upper limit β_S , the clinical superiority boundary
 - We typically take $\beta_S > 0$, since we may require "clinically significant" improvement under the treatment (due to cost, toxicity, etc.)
 - Example: If r=2, then $\beta_S=2\log(1.15)\approx 0.28$ corresponds to 15% improvement in median survival
- The outcome of the trial can then be based on the location of the 95% posterior confidence interval for β_1 , say (β_L, β_U) , relative to the indifference zone!....

The six possible outcomes and decisions

Note both "acceptance" and "rejection" are possible!

Community of priors

Spiegelhalter et al. (1994) recommend considering several priors, in order to represent the broadest possible audience:

- Skeptical Prior
 - One that believes the treatment is likely no better than control (as might be believed by the FDA)

Community of priors

Spiegelhalter et al. (1994) recommend considering several priors, in order to represent the broadest possible audience:

- Skeptical Prior
 - One that believes the treatment is likely no better than control (as might be believed by the FDA)
- Enthusiastic (or Clinical) Prior
 - One that believes the treatment will succeed (typical of the clinicians running the trial)

Community of priors

Spiegelhalter et al. (1994) recommend considering several priors, in order to represent the broadest possible audience:

- Skeptical Prior
 - One that believes the treatment is likely no better than control (as might be believed by the FDA)
- Enthusiastic (or Clinical) Prior
 - One that believes the treatment will succeed (typical of the clinicians running the trial)
- Reference (or Noninformative) Prior
 - One that expresses no particular opinion about the treatment's merit
 - Often a improper uniform ("flat") prior is permissible

Simulating the power or other operating characteristics (say, Type I error) in this setting works as follows:

Sample "true" β values from an assumed "true prior" (skeptical, enthusiastic, or in between)

- Sample "true" β values from an assumed "true prior" (skeptical, enthusiastic, or in between)
- Given these, sample fake survival times t_i (say, N from each study group) from the Weibull

- Sample "true" β values from an assumed "true prior" (skeptical, enthusiastic, or in between)
- Given these, sample fake survival times t_i (say, N from each study group) from the Weibull
- We may also wish to sample fake censoring times c_i from a particular distribution (e.g., a normal truncated below 0); for all i such that $t_i > c_i$, replace t_i by "NA"

- Sample "true" β values from an assumed "true prior" (skeptical, enthusiastic, or in between)
- Given these, sample fake survival times t_i (say, N from each study group) from the Weibull
- We may also wish to sample fake censoring times c_i from a particular distribution (e.g., a normal truncated below 0); for all i such that $t_i > c_i$, replace t_i by "NA"
- Compute (β_L, β_U) by calling OpenBUGS from R

- Sample "true" β values from an assumed "true prior" (skeptical, enthusiastic, or in between)
- Given these, sample fake survival times t_i (say, N from each study group) from the Weibull
- We may also wish to sample fake censoring times c_i from a particular distribution (e.g., a normal truncated below 0); for all i such that $t_i > c_i$, replace t_i by "NA"
- Compute (β_L, β_U) by calling OpenBUGS from R
- Determine the simulated trial's outcome based on location of (β_L, β_U) relative to the indifference zone

- Sample "true" β values from an assumed "true prior" (skeptical, enthusiastic, or in between)
- Given these, sample fake survival times t_i (say, N from each study group) from the Weibull
- We may also wish to sample fake censoring times c_i from a particular distribution (e.g., a normal truncated below 0); for all i such that $t_i > c_i$, replace t_i by "NA"
- Compute (β_L, β_U) by calling OpenBUGS from R
- Determine the simulated trial's outcome based on location of (β_L, β_U) relative to the indifference zone
- ullet Repeat this process Nrep times; report empirical frequencies of the six possible outcomes

Results from Power.BRugs

- Assuming:
 - Weibull shape r=2, and N=50 in each group
 - median survival of 36 days with 50% improvement in the treatment group
 - a N(80, 20) censoring distribution
 - the enthusiastic prior as the "truth"

We obtain the following output from Nrep = 100 reps:

Results from Power.BRugs

- Assuming:
 - Weibull shape r=2, and N=50 in each group
 - median survival of 36 days with 50% improvement in the treatment group
 - a N(80, 20) censoring distribution
 - the enthusiastic prior as the "truth"

We obtain the following output from Nrep = 100 reps:

▶ Here are simulated outcome frequencies for N= 50

accept control: 0

reject treatment: 0.07

equivalence: 0

reject control: 0.87

accept treatment: 0.06

no decision: 0

End of BRugs power simulation

Homework Problems

WinBUGS

- PK hierarchical linear model: www.biostat.umn.edu/~brad/data/PK_BUGS.txt
- PK hierarchical nonlinear model: www.biostat.umn.edu/~brad/data/PKNL_BUGS.txt
- Interstim multivariate model: www.biostat.umn.edu/~brad/data/InterStim.odc
- Bayesian p-values (illustrated with stacks data): www.biostat.umn.edu/~brad/data/stackspval_BUGS.txt

Homework Problems

WinBUGS

- PK hierarchical linear model: www.biostat.umn.edu/~brad/data/PK_BUGS.txt
- PK hierarchical nonlinear model: www.biostat.umn.edu/~brad/data/PKNL_BUGS.txt
- Interstim multivariate model: www.biostat.umn.edu/~brad/data/InterStim.odc
- Bayesian p-values (illustrated with stacks data): www.biostat.umn.edu/~brad/data/stackspval_BUGS.txt

BRugs

Design for binary and Cox PH models: Brian Hobbs' webpage:

www.biostat.umn.edu/~brianho/papers/2007/JBS/prac_bayes_design.html

Homework Problems

WinBUGS

- PK hierarchical linear model: www.biostat.umn.edu/~brad/data/PK_BUGS.txt
- PK hierarchical nonlinear model: www.biostat.umn.edu/~brad/data/PKNL_BUGS.txt
- Interstim multivariate model: www.biostat.umn.edu/~brad/data/InterStim.odc
- Bayesian p-values (illustrated with stacks data): www.biostat.umn.edu/~brad/data/stackspval_BUGS.txt

BRugs

Design for binary and Cox PH models: Brian Hobbs' webpage:

www.biostat.umn.edu/~brianho/papers/2007/JBS/prac_bayes_design.html

Thanks for your attention!