ЦИКЛИЧЕСКИЕ АЛГОРИТМЫ

Процесс многократного повторения действий называется *повторением* или $\underline{umepaque u}$. Циклы C++: for, while, do while.

Цикл for

```
Синтаксис оператора:
```

 ΓCA .

Простое решение:

Математическое обоснование:

cout << 2 << 4 << 6 << 8 << 10 <<12 <<14 <<16 <<18 << 20;

for (;;)1. $A = 2 \cdot k$, k = 1, 2, ..., 102. TV : A = 1

ΓCA:

Программный код:

Пример 2. Вычислить сумму п первых слагаемых $\frac{x^2}{2} + \frac{x^4}{4} + \dots + \frac{x^{i \cdot 2}}{2 \cdot i} + \dots = \sum_{i=1}^{\infty} \frac{z^{i \cdot 2}}{2 \cdot i}$ Способ 1.

Математическое обоснование:

1.
$$A = \frac{x^2}{2 \cdot i}$$
; $i = 1, ..., n$

#include < cmath>

int main () {

int n; cin ** n;

int i;

float A, Sum=D;

float >cin >>>c;

for (i=1; i=n; i=i+1) {

 $A = pow(>c, 2i)/(2*i);$

Sum-Sum+A;

3

cout <<"Sum=" < Sum;

3

Пример 2 (продолжение). Вычислить сумму п первых слагаемых

$$\frac{x^2}{2} + \frac{x^4}{4} + \dots + \frac{x^{i2}}{2i} + \dots$$

Способ 2 (эффективный по времени).

Математическое обоснование:

$$A_{i+1} = A_i$$
 $A_{i+1} = A_i$
 $A_{i+1} = A_i$

Sum = 0;
$$A = 1$$
;
for (i=1; i<=n; i=i+1) { //1=i
 $k = i * x * x < /(i+1)$; $(|k=\frac{x^2}{2}|$
 $A = A * k$;
Sum = Sum + A; $(|A_1|^2 = \frac{x^2}{2})$. 1
cout < L ----

Пример 3. Вычислить произведение п чисел $\frac{x^2}{2} * \frac{x^4}{4} * ... * \frac{x^{i-2}}{2 \cdot i} * ...$ 2. $\frac{x^2}{2} * \frac{x^4}{4} * ... * \frac{x^{i-2}}{2 \cdot i} * ...$ $\frac{x^2}{2} * \frac{x^4}{4} * ... * \frac{x^{i-2}}{2 \cdot i} * ...$