ESERCIZI SULLE RELAZIONI

18 ottobre 2007

ESERCIZIO 1

Siano S un insieme non vuoto e \mathcal{P} l'insieme delle parti di S. Posto $\overline{\mathcal{P}} = \mathcal{P} \setminus \emptyset$, si consideri la relazione $\rho \subseteq \overline{\mathcal{P}} \times \overline{\mathcal{P}}$ così definita:

$$\forall X, Y \in \overline{\mathcal{P}} \qquad X \,\rho\, Y \Leftrightarrow X \cap Y \neq \emptyset.$$

Provare che ρ non è una relazione d'ordine.

ESERCIZIO 2

Sia \leq la relazione d'ordine definita sull'insieme $X = \{a, b, c, d, e\}$ avente il seguente diagramma di Hasse:

- 1. Determinare elementi massimali, minimali, minimo e massimo di X rispetto a \leq .
- 2. Scrivere la matrice di incidenza di \leq .
- 3. Costruire una relazione d'ordine totale ρ contenente \leq .

ESERCIZIO 3 (I prova in itinere a.a. 2006/2007)

Si consideri l'insieme $\mathbb{N}=\{0,1,2,3,\ldots\}$ dei numeri naturali e la relazione R su \mathbb{N} così definita:

 $n R m \Leftrightarrow n$ è dispari ed esiste t naturale pari tale che n = m + t.

Si consideri inoltre la relazione T su \mathbb{N} così definita:

$$nTm \Leftrightarrow nRm$$
 oppure $n=m$ pari.

- 1. Si dica di quali proprietà gode R.
- 2. Si dimostri che T è una relazione d'ordine su $\mathbb{N}.$
- 3. T è la chiusura d'ordine di R?
- 4. Si determinino, se esistono, gli elementi minimali, massimali, minimo e massimo di $\mathbb N$ rispetto a T.
- 5. Posto $A = \{5, 9, 11, 23\}$, si determinino gli eventuali minoranti, maggioranti, estremo superiore ed estremo inferiore di A rispetto a T in \mathbb{N} .
- 6. Si stabilisca se A rispetto a T è un reticolo (e se è un'algebra di Boole).