

Universidad Nacional de Ingeniería

Facultad de Ingeniería Mecánica

Turbomáquinas I (MN232A)

Monografía I

Josue Huaroto VIIIavicencio, Bruno Landeo Sosa, Eduardo Saldivar Montero, Sergio Sotelo Cavero, 20174070I 20172024J 20174013E 20172125K

2020

Problema 7.

Por qué razones no se puede instalar la turbina a gas a 4 000 msnm?. Fundamente su respuesta.

La razón es que, en una turbina a gas, no puede elevar suficiente relación de compresión o temperatura de entrada para las etapas de expansión. Por lo tanto, tiene un ciclo de gas con eficiencia limitada (35% como máximo).

A 4000 msnm, la presión atmosférica es considerablemente menor a la de la costa; por lo tanto, se requiere destinar una mayor cantidad de potencia en el acondicionamiento del aire; es decir, el compresor de la instalación necesita más potencia, lo cual disminuye la eficiencia de la turbina.

Problema 17.

En una bomba de flujo axial, el rotor tiene un diámetro exterior de 75 cm y un diámetro interior de 40 cm, si gira a 500 RPM. En el radio medio del álabe , el ángulo en la entrada es de 128° y el ángulo a la salida es 158° . Dibuje los diagramas de velocidad correspondiente en entrada y salida, y estimar a partir de ellos (1) la altura que la bomba generaría, (2) la descarga o la tasa de flujo en L/s, (3) la potencia al eje de entrada necesaria para accionar la bomba, y (4) la velocidad específica de la bomba. Supongamos una eficiencia manométrica o hidráulica de $88\,\%$ y una eficiencia total o global de $81\,\%$

Se asume que la velocidad de entrada en la bomba axial es vertical:

Figura 1: Triángulo de velocidades

- $\beta_1 = 128^{\circ}$
- $\beta_2 = 158^{\circ}$
- N = 500 RPM
- $D_1 = 75\text{e-}2 \text{ m}$
- $D_2 = 40\text{e-}2 \text{ m}$

Con los datos del problema, se calculan las velocidades:

$$u = \frac{N\pi D}{60} = 15,0534648 \,\text{m/s} \tag{1}$$

$$c_1 = u \tan(180^\circ - \beta_1) = 19,2675563 \,\text{m/s} = c_m$$
 (2)

$$w_1 = \sqrt{u^2 + c_1^2} = 24,45088 \,\text{m/s} \tag{3}$$

$$w_2 = \frac{c_m}{\sin(180^\circ - \beta_2)} = 51,4341088 \,\text{m/s} \tag{4}$$

$$c_2 = \sqrt{w_2^2 + u^2 - 2w_2u\cos(180^\circ - \beta_2)} = 37,898664 \,\mathrm{m/s}$$
 (5)

$$c_{2u} = w_2 \cos(22^\circ) - u = 32,6354105 \,\mathrm{m/s} \tag{6}$$

Mientras que, la altura útil, caudal, potencia y velocidad específica:

$$H_{\infty} = \frac{c_{2u}u}{g} = 50,079103288 \,\mathrm{m} \longrightarrow H_{\mathrm{util}} = 88 \,\% H_{\infty} = 44,06961089 \,\mathrm{m}$$
 (7)

$$Q = c_m \frac{\pi (D_1^2 - D_2^2)}{4} = 6,09091309 \,\mathrm{m}^3/\mathrm{s} = 6090,91309 \,\mathrm{L/s}$$
(8)

$$P_{\text{eje}} = \frac{1000QH_{\text{util}}}{102 \times 0.81} = 3248,9006277 \,\text{kW} = 4360,138 \,\text{HP}$$
(9)

$$N_q = \frac{N\sqrt{Q}}{H_{\text{util}}^{3/4}} = 72,1463 \tag{10}$$

Problema 27.

Marque con V si es verdadera o con F si es falsa a las siguientes afirmaciones:

- En una turbina Francis con tubo difusor, la presión manométrica a la salida del rodete es negativa. (V).
 - Aumenta la altura útil y mejora la eficiencia, además si el tubo es difusor mejora más
- Teóricamente la velocidad relativa en la cuchara de la turbina Pelton es constante. (V). Teóricamente sí es constante pues $u_1 = u_2$, entonces $w_1 = w_2$ para que $H_{\text{estatica}} = 0$.
- La altura útil de un aerogenerador es C²/2g, donde C es la velocidad del viento en la entrada y despreciable la velocidad del viento a la salida. (V).
 Sí, la velocidad de salida es casi nula, y como sale a la misma presión que entra, la única energía transmitida es la cinética.
- La turbina Francis es lenta cuando el ángulo de la velocidad relativa es mayor a 90°. (V). Pues $C_{2u} > u_2$, entonces β_2 es obtuso y es Francis lenta.
- Se inyecta agua a la cámara de combustión de una turbina a gas para aumentar la potencia y la eficiencia. (F).
 - La potencia aumenta pero la eficiencia disminuye.

Problema 37.

En la fig. se muestra una bomba, donde la presión atmosférica es 14.7 PSIA, su eficiencia $79\,\%$, para los datos indicados y tomando las consideraciones que sean necesarias. Determinar:

- El caudal en m³/s
- La altura útil en m de agua
- La potencia hidráulica y la potencia al eje en kW
- Haga un diagrama h-s donde se muestre la altura útil.

Figura 2: Bomba hidráulica

Caso 1:

De las ecuaciones de energía en (0) y (2), (1) y (2) y la condición de continuidad del flujo:

$$H_B + \frac{P_0}{\gamma} + \frac{v_0^2}{2g} + z_0 = \frac{P_2}{\gamma} + \frac{v_2^2}{2g} + z_2$$
(11)

$$H_B + \frac{P_1}{\gamma} + \frac{v_1^2}{2g} + z_1 = \frac{P_2}{\gamma} + \frac{v_2^2}{2g} + z_2$$
 (12)

$$\frac{v_1}{4^2} = \frac{v_2}{6^2} \tag{13}$$

Figura 3: Diagrama h-s

Resolviendo el sistema de ecuaciones no lineales:

$$v_1 = 4,41082633 \,\mathrm{m/s} \tag{14}$$

$$v_2 = 9,924359 \,\text{m/s} \tag{15}$$

$$H_B = 34,43210516 \,\mathrm{m} \tag{16}$$

$$Q = A_1 v_1 = 0.08046 \,\mathrm{m}^3/\mathrm{s} \tag{17}$$

$$P_H = \frac{\rho Q H_B}{102} = 27,160838804 \,\text{kW} \tag{18}$$

$$P = \frac{P_H}{\eta} = 34,38080861 \,\text{kW} \tag{19}$$

Caso 2:

$$A_2 = 0.0081073 \,\mathrm{m}^2, \qquad A_1 = 0.01824147 \,\mathrm{m}^2$$
 (20)

A falta de datos, se asume velocidades iguales a las áreas:

$$v_1 = 0.81073 \,\mathrm{m/s}, \qquad v_2 = 1.824147 \,\mathrm{m/s} \longrightarrow Q = v_1 A_1 = 0.014789 \,\mathrm{m}^3/\mathrm{s}$$
 (21)

$$H_B = \frac{P_2 - P_1}{h} + \frac{v_2^2 - v_1^2}{2g} + z_2 - z_1 \tag{22}$$

$$H_B = \frac{49.5 - 13}{10^3 \times (0.0254)^2 \times 2.2} + \frac{v_2^2 - v_1^2}{2g} + (16 \times 12 - 8) \times (0.0254)$$
 (23)

$$H_B = 30,5250837 \,\mathrm{m}$$
 (24)

$$P_H = \frac{1000QH_B}{102} = 4,42581 \,\text{kW} \tag{25}$$

$$P = 5,6022912 \,\text{kW} \tag{26}$$

Problema 47.

Una turbina hidráulica llamada 1 opera con un salto de 50 m y el caudal de 10 $\rm m^3/s$, el modelo llamado 2 en semejanza funciona con un salto de 10 m y el caudal de 100 L/s. se pide:

- ¿Cuál es la relación entre la velocidad de rotación del modelo con la velocidad de rotación del prototipo?
- ¿Cuál es la relación entre el diámetro del modelo con la del prototipo?
- Si el modelo genera una potencia de 9 KW ¿Cuál es la potencia de la turbina real?

Turbina 1 (Prototipo)

•
$$H_p = 50 \,\mathrm{m}$$

$$Q_p = 10 \, \text{m}^3/\text{s}$$

Turbina 2 (Modelo)

•
$$H_m = 10 \,\mathrm{m}$$

$$Q_m = 0.1 \, \text{m}^3/\text{s}$$

a)

$$N_q = \frac{NQ^{1/2}}{H^{3/4}} \longrightarrow \frac{N_P\sqrt{10}}{50^{3/4}} = \frac{N_M\sqrt{0.1}}{10^{3/4}} \longrightarrow \frac{N_M}{N_P} = 2,991$$

b)

$$\psi = \frac{gH}{(ND)^2} = \frac{g \times 50}{(N_P D_P)^2} = \frac{g \times 10}{(N_M D_M)^2} \longrightarrow \frac{D_M}{D_P} = \sqrt{\frac{1}{S}} \frac{N_P}{N_M} = 0.1495$$

c)

$$P_M = 9 \,\mathrm{kW}, \hat{P} = \frac{P}{\rho N^3 D^5} \longrightarrow \frac{P_P}{\rho N_P^3 D_P^5} = \frac{9}{\rho N_M^3 D_M^5} \longrightarrow P_P = 4503,885 \,\mathrm{kW} = 6037,38 \,\mathrm{HP}$$