Week 7 Video 1

Clustering

Clustering

□ A type of **Structure Discovery** algorithm

Clustering

- You have a large number of data points
- You want to find what structure there is among the data points

You don't know anything a priori about the structure

Clustering tries to find data points that "group together"

Trivial Example

- Let's say your data has two variables
 - Probability the student knows the skill from BKT (Pknow)
 - Unitized Time

Note: clustering works for (and is effective in)
large feature spaces

k-Means Clustering Algorithm

Not the only clustering algorithm

Just the simplest

□ We'll discuss fancier ones as the week goes on

How did we get these clusters?

- □ First we decided how many clusters we wanted, 5
 - How did we do that? More on this in the next lecture

- We picked starting values for the "centroids" of the clusters...
 - Usually chosen randomly
 - Sometimes there are good reasons to start with specific initial values...

Then...

- We classify every point as to which centroid it's closest to
 - This defines the clusters
 - Typically visualized as a voronoi diagram

Then...

 We re-fit the centroids as the center of the points in each cluster

Then...

- Repeat the process until the centroids stop moving
- □ "Convergence"

Note that there are some outliers

What if we start with these points?

Not very good clusters +3 time 0 -3 0 pknow

What happens?

What happens if your starting points are in strange places?

 Not trivial to avoid, considering the full span of possible data distributions

One Solution

Run several times, involving different starting points

cf. Conati & Amershi (2009)

Exercises

- Take the following examples
- (The slides will be available in course materials so you can work through them)
- And execute k-means for them
- Do this by hand...
- Focus on getting the concept rather than the exact right answer...
- (Solutions are by hand rather than actually using code, and are not guaranteed to be perfect)

Exercise 7-1-1

pknow

Pause Here with In-Video Quiz

□ Do this yourself if you want to

Only quiz option: go ahead

pknow

pknow

No points switched -- convergence

Notes

□ K-Means did pretty reasonable here

Pause Here with In-Video Quiz

□ Do this yourself if you want to

Only quiz option: go ahead

 The three clusters in the same data lump might move around for a little while

But really, what we have here is one cluster and two outliers...

- □ k should be 3 rather than 5
 - See next lecture to learn more

Exercise 7-1-3

Pause Here with In-Video Quiz

□ Do this yourself if you want to

Only quiz option: go ahead

- □ The bottom-right cluster is actually empty!
- There was never a point where that centroid was actually closest to any point

Exercise 7-1-4

Pause Here with In-Video Quiz

□ Do this yourself if you want to

Only quiz option: go ahead

Kind of a weird outcome

- By unlucky initial positioning
 - One data lump at left became three clusters
 - Two clearly distinct data lumps at right became one cluster

Exercise 7-1-5

Pause Here with In-Video Quiz

□ Do this yourself if you want to

Only quiz option: go ahead

□ That actually kind of came out ok...

As you can see

- A lot depends on initial positioning
- And on the number of clusters

How do you pick which final position and number of clusters to go with?

Next lecture

Clustering – Validation and Selection of k