Exercises from Chapter 1

Wesley Basener

March 27, 2025

Problem 1.1. Beginning with the formula for the sum of a geometric series, use differentiation to obtain the identity.

$$\sum_{n=0}^{\infty} ne^{-An} = \frac{e^{-A}}{(1 - e^{-A})^2}$$

Solution. First, we integrate the left side to get the expression into geometric series form.

$$\int \sum_{n=0}^{\infty} ne^{-An} dA = \sum_{n=0}^{\infty} -e^{-An}$$

Next, recall that the sum of a geometric series is $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$. Using this fact, the previous result can be rewritten,

$$\frac{-1}{1 - e^A}$$

Finally, we take the derivative with respect to A, to undo our previous integration.

$$\frac{d}{dA}\frac{-1}{1 - e^A} = \frac{e^{-A}}{(1 - e^{-A})^2}$$

Problem 1.2. In Planck's model of blackbody radiation, the energy in a given frequency ω of electromagnetic radiation is distributed randomly over all numbers of the form $n\hbar\omega$, where n=0,1,2,... Specifically,

> $p(E = n\hbar\omega) = \frac{1}{Z}e^{-\beta n\hbar\omega},$ $Z = \frac{1}{1 - e^{-\beta n\hbar\omega}}$

Where Z is a normalization constant, which is chosen so that the sum over n of the probabilities is 1. Here $\beta = \frac{1}{k_B T}$, where T is the temperature and k_B is Boltzman's constant. The expected value of the energy, denoted $\langle E \rangle$, is defined to be

$$< E> = \frac{1}{Z} \sum_{n=0}^{\infty} (n\hbar\omega) e^{-\beta n\hbar\omega}.$$

(a) using exercise 1, show that

the likelihood of finding energy $n\hbar\omega$ is postulated to be

$$< E> = \frac{\hbar \omega}{e^{\beta \hbar \omega} - 1}.$$

(b) Show that $\langle E \rangle$ behaves like $\frac{1}{\beta} = k_B T$ for small ω , but that $\langle E \rangle$ decays exponentially as ω tends to infinity.

Proof. (a) From exercise 1, we can rewrite the sum term as

$$\frac{\hbar\omega e^{-\hbar\omega\beta}}{(1-e^{-\hbar\omega\beta})^2}$$

Multiply this by $\frac{1}{Z} = 1 - e^{-\hbar\omega\beta}$.

$$1 - e^{-\hbar\omega\beta} \frac{\hbar\omega e^{-\hbar\omega\beta}}{(1 - e^{-\hbar\omega\beta})^2}$$
$$= \frac{\hbar\omega e^{-\hbar\omega\beta}}{1 - e^{-\hbar\omega\beta}}$$
$$= \frac{\hbar\omega}{e^{\hbar\omega\beta} - 1}$$

(b) Using the Taylor series expansion of e^x , we can rewrite $\langle E \rangle$

$$=\frac{\hbar\omega}{e^{\hbar\omega\beta}-1}$$

$$=\frac{\hbar\omega}{(1+\hbar\omega\beta+\sum_{n=2}^{\infty}\frac{(\hbar\omega\beta)^n}{n})-1}$$

$$=\frac{1}{\beta+\sum_{n=2}^{\infty}\frac{(\hbar\omega)^{n-1}\beta^n}{n}}$$

as ω approaches 0, the sum disappears and the fraction approaches $\frac{1}{\beta}$. It is easy to find the limit of $\langle E \rangle$ as ω approaches ∞ using L'Hospital's rule

$$\frac{\hbar\omega}{e^{\hbar\omega\beta} - 1} \stackrel{\mathrm{H}}{=} \frac{\hbar}{\hbar\beta e^{\hbar\omega\beta}}$$