CS 3313 Foundations of Computing:

CYK Parsing Algorithm

http://gw-cs3313.github.io

1

Simplification and Parsing

- 1. Simplification rules: transform a grammar such that:
 - Resulting grammar generates the same language
 - and has "more efficient" production rules in a specific format
- 2. Normal Forms: express all CFGs using a standard "format" for how the production rules are specified
 - Definition of CFGs places no restrictions on RHS of production
 - It is convenient (for parsing algorithms) to restrict to a standard form
 - Chomsky Normal Form (CNF) or Greiback Normal Form (GNF)
- 3. Parsing Algorithm: Design a parsing algorithm that takes a grammar in a standard form (CNF) to check if string w is generated by grammar G.

Procedure to transform any CFG to Chomsky Normal Form

- A CFG is said to be in *Chomsky Normal Form* if every production is of one of these two forms:
 - 1. $A \rightarrow BC$ (right hand side is two variables).
 - 2. A $\rightarrow a$ (right hand side is a single terminal).
- Theorem: If L is a CFL, then L { λ} has a CFG in CNF.
 - Note: Theorem 2.4 implies every string on RHS of prodution is either a single terminal or has length > 2.
 - This is our starting point when converting to CNF form
- Question: property of parse trees for CNF grammars ?

3

3

CNF

- G_1 with production rules:
 - $\circ S \rightarrow AS \mid a$
 - $\circ A \rightarrow SA \mid b$
- Is G_1 in CNF?
- *G*₂ with production rules:
- $P: S \rightarrow ABa \ A \rightarrow aab \ B \rightarrow Ac$
- Is G_2 in CNF?

Testing for Membership – a Parsing Algorithm

- Simple algorithm: Convert CFG to a Greibach Normal Form (all productions are of the form $A \rightarrow a\alpha$)
 - For string w of length n, we have n derivation steps.
 - At each step, explore all productions.
 - Time: $O(|P|^n)$ this is exponential (in length of input string w)
- Example: $S \rightarrow aSB \mid bSA \mid aB \quad A \rightarrow a \quad B \rightarrow b$
- w = baba

5

Testing Membership (Parsing)

- Determine if w is in L(G).
- Can we do better than the simple method with GNF with $O(|P|^n)$ for string of length n?
- Assume G is in CNF.
 - Or convert the given grammar to CNF.
 - $w = \lambda$ is a special case, solved by testing if the start symbol is nullable.
- Cocke Younger Kashimi Algorithm (*CYK*) is a good example of dynamic programming and runs in time $O(n^3)$, where n = |w|.

6

CYK Algorithm notations

- Important: these notations are a bit different from notations in the book, but the end algorithm works in the same manner
- Input string w has length n i.e, consists of n terminal symbols:

$$w = a_1 a_2 ... a_n$$
 where each $a_i \in T$

- Ex: w = abcaab $a_1 = a a_2 = b a_3 = c,...$
- Define a substring x_{ii} (of w) as the substring starting at position i and having length j
 - $x_{13} = abc$ $x_{22} = bc$ $x_{33} = caa$
- For a substring x_{ij} , define V_{ij} to be set of variables that derive x_{ij}
 - $V_{ij} = \{ A \mid A =>^* x_{ij} \}$
 - Ex: $V_{33} = \{ A \mid A => *x_{33} = caa \}$

Setting up our solution/algorithm: Notations

- Input string w = abcaab
- Define a substring x_{ii} (of w) as the substring starting at position i and having length *j*
 - Ex:
- $x_{13} = abc x_{22} = bc$
- $x_{33} = caa$
- x_{15} = abcaa
- $w=x_{16}=abcaab$
- For a substring x_{ij} , define V_{ij} to be set of variables that derive x_{ij}
 - $V_{ii} = \{ A \mid A = >^* x_{ii} \}$

Algorithm

- Claim is that we can construct V_{ij} iteratively
- Basis: $V_{il} = \{ A \mid A \rightarrow x_{il} \text{ is a production } \}$
- Ind. $A = >^* x_{ij}$ iff $A \to BC$ and for some k, 1 <= k <= j, $B = >^* x_{ik}$ and $C = >^* x_{i+k,j-k}$
- Since k, j-k are $\leq j$ the IH holds.
- w is in L(G) iff $S \in V_{In}$ (since $w = x_{In}$)

```
V_{ij} = \{A \mid A \rightarrow BC, \text{ and} \} for some k, B is in V_{ik} and C is in V_{i+k,j-k}
```

9

CYK Algorithm

Input: CFG G=(V,T,P,S) in CNF, Input string w of length n

Time Complexity

- Step 1: takes O(n) to examine each of the n symbols
 - Assume P is a constant.
- Step 2: $O(n^3)$
 - Outer j loop iterates O(n)
 - The *i* loop iterates O(n)
 - For each of the n^2 iterations, the k loop iterates O(n)
- Dynamic programming formulation
 - Construct solution for size *n* in terms of sizes *n-1*
 - Principle of optimality needs to hold

11

Example: Application of CYK Algorithm

- $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$
- $B \rightarrow CC | b \quad C \rightarrow AB | a$
- w = baaba (length 5), so i,j iterate from 1 to 5.
- Some sample V_{ij}
- To compute V_{3l} , $x_{3l} = a$. $V_{3l} = \{ X \mid X \rightarrow a \text{ is in } P \}$
 - $V_{31} = \{A, C\}$
- To compute V_{12} : $X \rightarrow YZ$ in P and
 - check if $Y \in V_{11}$ and $Z \in V_{21}$
- To compute $V_{23}: X \rightarrow YZ$ in P and
 - Check for Y in V_{21} and Z in V_{32}
 - Check for Y in V_{22} and Z in V_{41}

Example: Application of CYK Algorithm							
■ $S \rightarrow AB \mid BC \mid A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$							
Example: Application of CYK Algorithm S \rightarrow AB BC A \rightarrow BA a B \rightarrow CC b C \rightarrow AB a $w = baaba$ (length 5), so i,j iterate from 1 to 5. Visualize computation of CYK Algorithm Visualize computation of CYK Algorithm Visualize computation of CYK Algorithm							
				i			
j							
	,	<i>i=1 j=5</i>					

Visualize computation **Example: Application of CYK Algorithm** visuumee computurion as a 2-D n by n array • $S \rightarrow AB \mid BC \mid A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB | a$ w = baaba (length 5), so *i,j* iterate from 1 to 5 • $V_{12} = \{ X \mid X \rightarrow YZ, Y \text{ in } V_{11} = (B) \text{ and } Z \text{ in } V_{21} = (A, C) \}$ 3 $x_{31}=a$ $\sum_{x_{2I}=a}^{2}$ $x_{4I} = b$ $x_{51}=a$ $1 \atop x_{II} = b$ $V_{31} =$ $V_{41} =$ $V_{5I} =$ $V_{2I} =$ $V_{II} =$ { *A*, *C*} { B} { *A*,*C*} { *A*,*C*} { B} 1 j $V_{12} = {S,A}$ 2 3 $V_{51} = {B}$ 4 5 V_{15}

15

Example: CYK Algorithm								
■ $S \rightarrow AB \mid BC A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$								
• $V_{24} = \{X \mid X \rightarrow YZ, Y \text{ in } V_{21} \text{ and } Z \text{ in } V_{33}\} \cup \{X \mid X \rightarrow YZ, Y \text{ in } V_{22} \text{ and } Z \text{ in } V_{42}\}$								
$U\{X \mid X \rightarrow YZ, Y \text{ in } V_{23} \text{ and } Z \text{ in } V_{51}\}$								
i								
	_	$\begin{matrix} 1 \\ x_{II} = b \end{matrix}$	$ \begin{array}{c} 2 \\ x_{2I} = a \end{array} $		$x_{3I} = a$	$x_{41} = b$	$x_{51} = a$ 5	_
l ,		В	A,C		A,C	В	A,C	
j	1							
	2	S,A	В		S,C	S,A		
	_							
	3	Ø	В		B //			
	3	-	Į	ļ				
	4	Ø						
	4							
	, 5							
		V_{I5}]

Application of CYK Algorithm

• $S \rightarrow AB \mid BC$

$$A \rightarrow BA \mid a$$

$$A \rightarrow BA|a \qquad B \rightarrow CC|b \qquad C \rightarrow AB|a$$

$$C \rightarrow AB|a$$

- $w_1 = baaba$
- $w_2 = aab$?

S is in V₁₅ therefore w is in L(G)

17

Application of CYK Algorithm

 $\bullet \quad S \rightarrow AB \mid BC \qquad \quad A \rightarrow BA \mid a \qquad B \rightarrow CC \mid b \qquad C \rightarrow AB \mid a$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b \mid$$

$$C \rightarrow AB \mid a$$

• Parse tree for $w_1 = baaba$

В	A, C	A, C	В	A, C
S, A	В	S, C	A, S	
Ø	В	В		
Ø	В			
S, A, C				

S is in V₁₅ therefore w is in L(G)