Sea $U=\mathbb{Z}$ el universo de las variables $x\,$ e y. Consideramos las proposiciones:

- p; $\forall x \, \exists y \, \mathsf{tal} \, \mathsf{que} \, \, 2x + y = 22.$
- q; $\exists y \, \forall x \, \text{tal que } 2x + y = 22$.
- r; $\forall y \, \exists x \, \mathsf{tal} \, \mathsf{que} \, 2x + y = 22$.

Se tiene:

- Α
- p y q son verdaderas.
- В
- q y r son falsas.
- С

Ninguna de las otras respuestas.

Pregunta 2

Sean $\,A,\,B\,{
m y}\,C\,$ subconjuntos $\,$ arbitrarios de un conjunto no vacío U. Sea el conjunto

 $Y=ig((A\cup\overline{B})\cap\overline{C}ig)\cupig((\overline{A}\cup\overline{C})\cap Big)$. Consideramos las afirmaciones:

- p; $Y\subset \overline{C}\cup B$.
- $\mathsf{q};\,Y=\overline{C}\cup(\overline{A}\cap B).$
- r; $Y \cap B = \emptyset$.
- s; $Y \subset A \cup B$.

Las únicas afirmaciones verdaderas son:

- Α
- ру r.
- В
- q y s.
- С

Sea la relación ${\mathscr R}$ de ${\mathbb Q}^3$ definida de la forma

$$(x,y,z) \mathscr{R}(a,b,c) \iff x^2 + y^2 + z^2 = a^2 + b^2 + c^2$$

y las proposiciones:

- 1. \mathscr{R} no es transitiva.
- $2.\,\mathscr{R}$ no es simétrica.
- $3.\,\mathscr{R}\,$ es antisimétrica.

Se tiene:

A Las tres proposiciones son verdaderas.

B Sólo dos proposiciones son verdaderas.

En el conjunto \mathbb{N}^* , se consideran las siguientes relaciones:

$$a\mathscr{R}b$$
 si y sólo si $a < b+1$

 $a\mathscr{S}b$ si y sólo si a+b es par y a es múltiplo de b

Se tiene:

A Ninguna de las otras respuestas.

Sólo ${\mathscr R}$ es relación de orden en ${\mathbb N}^*$.

 \mathscr{R} y \mathscr{S} son relaciones de orden en \mathbb{N}^* .

Se considera el anillo $\ (\mathbb{Z}^2,+,\cdot)$ con las operaciones

$$(a,b)+(a^{\prime},b^{\prime})=(a+a^{\prime}\,,\,b+b^{\prime})\;\mathrm{y}\;(a,b)\cdot(a^{\prime},b^{\prime})=(aa^{\prime}\,,\,ab^{\prime}+ba^{\prime}+bb^{\prime})$$

para todo $(a,b),(a',b')\in\mathbb{Z}^2$. Sean $I=\mathbb{Z} imes\{0\}$ y $J=\{0\} imes\mathbb{Z}$. Se tiene:

Α

I y J son ideales de $(\mathbb{Z}^2,+,\cdot)$.

В

J no es ideal de $(\mathbb{Z}^2,+,\cdot)$.

С

Ninguna de las otras respuestas.

Pregunta 6

Sean $a,b\in\mathbb{N}^*$ tales que el cociente y resto de la división entera de a entre b son 18 y 48, respectivamente.

Consideramos las afirmaciones:

p; El resto de la división entera de a entre 18 es 12.

q; El resto de la división entera de a entre 2b es 96.

r; a es múltiplo de 6.

s; El cociente de la división entera de 2a entre 2b es 96.

Las únicas afirmaciones verdaderas son:

Α

q y s.

В

руr.

C

Sean a y b dos números reales cualesquiera. Consideremos las afirmaciones:

p; Si a < b entonces $a^2 < b^2$.

q; Si $0 < a < b \,$ entonces $ab^2 < a^2b.$

r; Si 0 < a < b entonces 1 - a > 1 - b.

s; Si a < b entonces $a^2 < ab$.

Las siguientes afirmaciones son siempre verdaderas:

Α

Ninguna de las otras respuestas.

В

p y s.

C

qyr.

Pregunta 8

Sea $\,z=a+ib\in\mathbb{C}.$ Dado $w=rac{1-z}{1-iz}$, se cumple que w es un número imaginario puro si y sólo si:

Α

$$b=-1+a \ \text{y} \ a\neq 0.$$

В

$$(a-1/2)^2 + (b+1/2)^2 = 1/2.$$

C

Dados X e Y dos conjuntos finitos arbitrarios no vacíos y dada una aplicación $f: X \longrightarrow Y$, consideramos las afirmaciones:

p ; $\operatorname{Si}\operatorname{card}(X)>\operatorname{card}(Y)$ entonces f es sobreyectiva.

q ; $\operatorname{Si}\operatorname{card}(X)>\operatorname{card}(Y)$ entonces f no es inyectiva.

r ; $\operatorname{Si}\operatorname{card}(X)=\operatorname{card}(Y)$ entonces f es biyectiva.

s ; $\operatorname{Si}\operatorname{card}(X)=\operatorname{card}(Y)$ y f no es sobreyectiva entonces f no es inyectiva.

Las únicas afirmaciones verdaderas son:

руr.

q y s.

Ninguna de las otras respuestas

Pregunta 10

Sea $f \colon \mathbb{N} o \mathbb{N}$ tal que $f(n) = n^2$ para todo $n \in \mathbb{N}$.

Se tiene:

Existe $h \colon \mathbb{N} o \mathbb{N}$ tal que $h \circ f = I_{\mathbb{N}}$.

Ninguna de las otras respuestas.

Existe $g{:}\,\mathbb{N} o \mathbb{N}$ tal que $f \circ g = I_\mathbb{N}$.