Stochastic Methods for Finance

Exam June 26, 2018

Exercice 1 (10 points) Consider a Black-Scholes market and a derivative contract with payoff at the maturity T given by

$$F(n, S_T) = n^{\alpha} * 1_{n < S_T < n+1}, \qquad \alpha > 0, n \in \mathbb{N}.$$

- i) Compute the price of the contract $F(n, S_T)$ at any time $t \in [0, T)$ and any n = 1, 2, ... and the limit of the price for $n \to \infty$. [HINT: compare the cumulated Gaussian distribution with the behavior of the power function n^{α} , $\alpha > 0$.];
 - ii) Compute the Delta of the contract $F(n, S_T)$ and the limit of the Delta for $n \to \infty$;
- iii) Illustrate graphically the change of price and Delta of $F(n, S_T)$ for a upward shift of the volatility;
 - iv) Compute the price of the portfolio F given by

$$F(S_T) = \sum_{n=1}^{\infty} F(n, S_T);$$

- v) Compute the amount of Call options with strike price K = 1 one has to buy/sell in order to get a Delta neutral (global) portfolio including F.
- vi) Compute the amount of Call options with strike price K = 1 one has to buy/sell in order to get a Delta-Gamma neutral (global) portfolio including F.

Exercice 2 (5 points)

Consider a Black&Scholes market where a risky asset evolves according to

$$\frac{dS_t}{S_t} = \mu dt + \sigma dB_t$$
$$S_0 = s,$$

and a riskless asset is associated to the risk free rate r. Consider a Super-Butterfly option, that is a derivative contract with payoff at the maturity T given by

$$a \qquad if \ S_T < K_1;$$
 $a + nS_T - nK_1 \qquad if \ K_1 < S_T < K_2;$ $a - nS_T + n(2K_2 - K_1) \qquad if \ K_2 < S_T < K_3;$ $a \qquad if \ S_T > K_3,$

where $n \in \mathbb{N}$, a > 0 and $K_3 = 2K_2 - K_1$.

- i) Compute the price of the contract at any time $t \in [0, +\infty)$;
- ii) Compute the Delta and the Gamma of the contract;
- iii) Illustrate graphically the change of price and Delta for a upward shift of the volatility.

Exercice 3 (5 points)

In the Black-Scholes model, find the price at time $t \leq T$ of a DOWN-AND-OUT contract where the owner receives the Super-Butterfly payoff (as in the previous exercise)

$$a \qquad if \ S_T < K_1; \\ a + nS_T - nK_1 \qquad if \ K_1 < S_T < K_2; \\ a - nS_T + n(2K_2 - K_1) \qquad if \ K_2 < S_T < K_3; \\ a \qquad if \ S_T > K_3,$$

(where $n \in \mathbb{N}$, a > 0 and $K_3 = 2K_2 - K_1$) at the maturity T only if the asset has not reached the lower barrier L. Provide the price of the contract when $n \to +\infty$. Finally, find the Delta of the contract.

Exercice 4 (5 points)

Solve the following PDE for $t \leq T$:

$$\frac{\partial F}{\partial t} + \frac{1}{2}x^2 \frac{\partial^2 F}{\partial x^2} + \frac{1}{2} \frac{\partial^2 F}{\partial y^2} + xy = 0$$
$$F(T, x, y) = x.$$

Exercice 5 (8 points)

Questions on the theory.

- i) State and prove the (first version of the) Feynman-Kac formula.
- ii) Provide the price of a CALL option in the Black-Scholes model where all parameters are deterministic
- iii) Provide the price of a DOC and DOP barrier contract iv) Find the distribution function of the running maximum for the Brownian motion with (constant) drift.