Récapitulatif W et Q classiques pour un gaz parfait

		W	Q
	isoV	0	$C_V \Delta T$
	$\mathrm{mono}P$	$-P_{\mathrm{ext}}\Delta V$	cas rare : si $P_1 = P_2 = P_{\text{ext}}$ $C_P \Delta T$
	isoP	$-P\Delta V$	$C_P\Delta T$
	isoT	$-nRT\ln\left(\frac{V_2}{V_1}\right)$	$nRT \ln \left(\frac{V_2}{V_1}\right)$
		$nRT \ln \left(\frac{P_2}{P_1}\right)$	$-nRT\ln\left(\frac{P_2}{P_1}\right)$
	adiabatique	$C_V \Delta T$	0