Theory and Computation Update

Scott Kiehn

Table of contents

01

02

03

GitHub Updates Switch Status for **Each Carbon**

Ethane Radial & Z Distance versus Time

01 GitHub Updates

Github Updates

skiehn repository directly accessible via vscode

content of skiehn
repository directly
pushable from vscode to
github → realtime updates

+ sign indicating updated file ready to be pushed

Distance Histograms

Coordination number: **Sum**₁ of total bond lengths
that meets **switching criteria**₂ for given atom in a
given iteration

Sum of Bonds

$$\sum_{i \in A} \sum_{i \in B} s_{ij}$$

Switching Criteria

$$s_{ij} = \frac{1 - \left(\frac{r_{ij} - d_0}{r_0}\right)^n}{1 - \left(\frac{r_{ij} - d_0}{r_0}\right)^m}$$

Distances Between Each
Carbon-Hydrogen Grouped
by Carbon

S_ij values for Each Distance Grouped by Carbon

S_ij values > .99 for Each Distance Grouped by Carbon

'C_1': [0.9991850892235272], 'C_2': [0.9978354816117003], 'C_3': [], 'C_4': [0.9997288890586602], 'C_5': [0.9933706938890685], 'C_6': [0.997278637437455]}

{'C_1': [2.78921330029383], 'C_2': [2.0763401186985444], 'C_3': [1.070259226678582], 'C_4': [1.0163945100792626], 'C_5': [1.9733085221062097], 'C_6': [2.11465245820174

3rd Iteration

Coordination Number as a Function of Iteration Between C and H

Sum of s_ij Values for Each Carbon (first frame)

Parameters:

$$d_0 = 1.5 \text{Å}$$

$$r_0 = 1 Å$$

$$n = 6$$

$$m = 12$$

Values are reasonable and in expected range

$$s_{ij} = \frac{1 - \left(\frac{\mathbf{r}_{ij} - d_0}{r_0}\right)^m}{1 - \left(\frac{\mathbf{r}_{ij} - d_0}{r_0}\right)^m}$$

Code is completely generalizable: Will work on any XDATCAR file

Select which atoms to find CN between in arguments

First noninput argument defines "principle" atom: corresponding to reference atomtype.

Ex 2: Hydrogen and Carbon

parser("XDATCAR_first500", "H", "C")

Ethane Radial & Z Distances v. Time

03

Ethane Z and R Distances: Ethane Isolation

```
{'C_1': [0.991169210879772], 'C_2': [0.991169210879772], 'C_3': [], 'C_4': [], 'C_5': [], 'C_6': []}
{'C_1': [1.0161513465661207], 'C_2': [1.0161513465661207], 'C_3': [], 'C_4': [], 'C_5': [], 'C_6': []}
{'C_1': [1.0386738532847584], 'C_2': [1.0386738532847584], 'C_3': [], 'C_4': [], 'C_5': [], 'C_6': []}
{'C_1': [1.057902022687999], 'C_2': [1.057902022687999], 'C_3': [], 'C_4': [], 'C_5': [], 'C_6': []}
{'C_1': [1.0729156004320155], 'C_2': [1.0729156004320155], 'C_3': [], 'C_4': [], 'C_5': [], 'C_6': []}
{'C_1': [1.0827651871783008], 'C_2': [1.0827651871783008], 'C_3': [], 'C_4': [], 'C_5': [], 'C_6': []}
{'C_1': [1.0835669921718207], 'C_2': [1.0835669921718207], 'C_3': [], 'C_4': [], 'C_5': [], 'C_6': []}
{'C_1': [1.0733359553451942], 'C_2': [1.0733359553451942], 'C_3': [], 'C_4': [], 'C_5': [], 'C_6': []}
{'C_1': [1.0557698130750182], 'C_2': [1.0557698130750182], 'C_3': [], 'C_4': [], 'C_5': [], 'C_6': []}
{'C_1': [1.0311550337503865], 'C_2': [1.0311550337503865], 'C_3': [], 'C_4': [], 'C_5': [], 'C_6': []}
{'C_1': [1.0001262284667571], 'C_2': [1.0001262284667571]}

**C_1': [1.0001262284667571], 'C_2': [1.0001262284667571]

**C_1': [1.0001262284667571], 'C_2': [1.0001262284667571]
```

Bonded Carbons Visible Via s_ij values calculated for each other: In this case C_1 and C_2.

```
Iteration 1:
Ethane Lists: [['C_1', 'C_2'], ['C_5', 'C_6']]
Iteration 2:
Ethane Lists: [['C_1', 'C_2'], ['C_5', 'C_6']]
Iteration 3:
Ethane Lists: [['C_1', 'C_2']]
Iteration 4:
Ethane Lists: [['C_1', 'C_2']]
Iteration 5:
Ethane Lists: [['C_1', 'C_2']]
```

C_1 and C_2 pair

First 5 iterations with s_ij > .5 bonding condition

Same s_ij
values
between
carbons =
ethane
→ Easy to
isolate.

C_5 and C_6 pair

Ethane Z and R Distances: Graphs

Radial Distance Between
Ethane and Ruthenium Slab
for n Detected Ethanes with
s_ij > .3 bonding condition

Z Distance Between Ethane and Ruthenium Slab for n Detected Ethanes with s_ij > .3 bonding condition

Reference Z Plane for Z Dist. Calculation

Note: Ethane Positions =
Average of Component
Carbons Positions

Ethane Z and R Distances: Graphs

Higher Fidelity Graphs

Ethane Z and R Distances: Graphs

Notes/Caveats

1	Script Will Work on Any Carbon, Hydrogen, Ruthenium System in XDATCAR Format
	with "C, H, Ru" order in line 6. This means amount of atoms doesn't matter.

- **2** Does Not Work for Non Carbon atoms. Only Ethanes. Cannot find H₂
- **3** Need to Define Slab Size \rightarrow Inspect System with OVITO
- **4** Ethanes need to be defined for all iterations

Thanks!