QUIZ1

1. Recall that N is the size of the data set and d is the dimensionality of the input space. The primal formulation of the linear soft-margin support vector machine problem, without going through the Lagrangian dual problem, is

A. a quadratic programming problem with N variables

B. a quadratic programming problem with d+1 variables

C. none of the other choices

D. a quadratic programming problem with 2N variables

E. a quadratic programming problem with N+d+1 variables

2. Consider the following training data set:

 $\mathbf{x}_1 = (1,0), y_1 = -1$ $\mathbf{x}_2 = (0,1), y_2 = -1$ $\mathbf{x}_3 = (0,-1), y_3 = -1$

 $\mathbf{x}_4 = (-1,0), y_4 = +1$ $\mathbf{x}_5 = (0,2), y_5 = +1$ $\mathbf{x}_6 = (0,-2), y_6 = +1$

 $\mathbf{x}_7 = (-2, 0), y_7 = +1$

Use following nonlinear transformation of the input vector $\mathbf{x} = (x_1, x_2)$ to the transformed vector $\mathbf{z} = (\phi_1(\mathbf{x}), \phi_2(\mathbf{x}))$:

 $\phi_1(\mathbf{x}) = x_2^2 - 2x_1 + 3$ $\phi_2(\mathbf{x}) = x_1^2 - 2x_2 - 3$

What is the equation of the optimal separating "hyperplane" in the \mathcal{Z} space?

A. $z_1 + z_2 = 4.5$

B. $z_1 - z_2 = 4.5$

C. $z_1 = 4.5$

D. $z_2 = 4.5$

E. none of the other choices

3. Consider the same training data set as Question 2, but instead of explicitly transforming the input space \mathcal{X} to \mathcal{Z} , apply the hard-margin support vector machine algorithm with the kernel function

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^2,$$

which corresponds to a second-order polynomial transformation. Set up the optimization problem using $(\alpha_1, \dots, \alpha_7)$ and numerically solve for them (you can use any package you want). Which of the followings are true about the optimal α ?

1

A. $\sum_{n=1}^{7} \alpha_n \approx 2.8148$

B. $\min_{1 < n < 7} \alpha_n = \alpha_7$

C. there are 6 nonzero α_n

D. none of the other choices

E. $\max_{1 \le n \le 7} \alpha_n = \alpha_7$

4. Following Question 3, what is the corresponding nonlinear curve in the \mathcal{X} space?

A. $\frac{1}{9}(8x_1^2 - 16x_1 + 6x_2^2 - 15) = 0$

- B. none of the other choices
- C. $\frac{1}{9}(8x_2^2 16x_2 + 6x_1^2 + 15) = 0$
- D. $\frac{1}{9}(8x_2^2 16x_2 + 6x_1^2 15) = 0$
- E. $\frac{1}{9}(8x_1^2 16x_1 + 6x_2^2 + 15) = 0$
- 5. Compare the two nonlinear curves found in Questions 2 and 4, which of the following is true?
 - A. none of the other choices
 - B. The curves should be the same in the $\mathcal X$ space, because they are learned with respect to the same $\mathcal Z$ space
 - C. The curves should be different in the $\mathcal X$ space, because they are learned with respect to different $\mathcal Z$ spaces
 - D. The curves should be different in the \mathcal{X} space, because they are learned from different raw data $\{(\mathbf{x}_n, y_n)\}$
 - E. The curves should be the same in the \mathcal{X} space, because they are learned from the same raw data $\{(\mathbf{x}_n, y_n)\}$