Ecole Nationale des Sciences Appliquées Khouribga

Système d'exploitation Structure d'Unix

Med AMNAI 2018–2019

Introduction

1. Historique et généralités

- Composants d'un système informatique
- Historique des systèmes informatiques

2. Concepts de base d'Unix

- Le concept d'utilisateur
- Le concept de processus
- Le concept de fichier
- Structure générale d'Unix

3. Connexion et interfaces

- Le point de vue de l'utilisateur
- Le processus de connexion
- L'environnement graphique

4. Outils de base de Unix

- Xterm
- Emacs

Composants d'un système informatique

- Un système informatique comprend trois composants :
 - l'ordinateur proprement dit
 - les moyens de communication
 - le système d'exploitation

L'ordinateur (von Neumann)

- Ensemble physique comprenant :
 - Processeur
 - Mémoire
 - Des organes de communication (entrée et sortie)

Le système d'exploitation

- Partie logicielle du système informatique :
 - les programmes système:
 - · les utilitaires (compilateurs, éditeurs, interpréteurs de commandes);
 - le système d'exploitation : ensemble de programmes utilitaires
 - les programmes d'application.
- Gère et contrôle les composants de l'ordinateur
- Fournit une base (machine virtuelle) sur laquelle seront construits les programmes d'application et les utilitaires: services = {appels système}
- Intermédiaire entre utilisateur et matériel. Il gère l'utilisation de la totalité des ressources: temps, mémoire, fichiers, communications, etc;
- But :

Développer des applications sans se soucier des détails de fonctionnement et de gestion du matériel, ou des interactions entre les applications.

Fonctions principales d'un système d'exploitation

- Gestion de périphériques
- Gestion de la mémoire
- Gestion de processeurs

- Gestion de processus, fils (threads) ou tâches
- Gestion de fichiers
- Protection et détection d'erreurs

Concepts de base

- □ Processus : un programme en cours d'exécution, composé de: code + données + piles d'exécution, et de différents registres (e.g. compteur ordinal) caractérisant son état.
- □ **Fichiers** : ensemble de blocs de données stockés sur le disque
- Mémoires virtuelles : espaces d'adressage virtuels des processus (créés par les compilateurs).
- Dispositifs d'entrée-sortie : toute interaction avec le monde extérieur (clavier, souris, réseau).

Interface avec le matériel

- Chaque composant (processeurs, mémoires et périphériques) de l'ordinateur a son propre code (pilote ou driver) qui assure son fonctionnement et les interactions avec les autres.
- Le système d'exploitation gère et coordonne l'ensemble de ces composants notamment au moyen de lectures et d'écritures sur les bus, et d'interruptions.
- Les interruptions permettent au système d'exploitation de reprendre le contrôle:
- Interruptions matérielles:
 - Horloges (pour gérer l'allocation des processeurs)
 - Périphériques (pour signaler la fin d'E/S)
- Interruptions logicielles:
 - Erreurs arithmétiques
 - Données non disponibles en mémoire
 - Appels système (invocation du système d'exploitation)

Interactions utilisateur/système

- Les appels système peuvent être invoqués via un interpréteur de commandes (shell), une interface graphique ou des utilitaires.
- L'interpréteur de commandes (Interface utilisateur/système) :
- lancé dès la connexion au système ;
- invite l'utilisateur à introduire une commande ;
- récupère puis exécute la commande par combinaison d'appels système et d'outils (compilateurs, éditeurs de lien,...).
- affiche les résultats ou les erreurs puis se met en attente de la commande suivante.

Sys. d'exploitation les plus représentés

- Windows, dominant sur le marché de l'ordinateur personnel
- Mac-OS d'Apple, système inséparable de son ordinateur, suivi de Mac-OS X (basé sur Unix (BSD))
- UNIX, seul système non lié à un constructeur ou un fabricant de logiciel, seul fonctionnant sur tout ordinateur, sous diverses formes
- GNU/Linux, s'appuie sur le noyau Uinux (différentes distributions disponibles : Debian, Ubuntu, CentOS, Red Hat, Fedora, Mandriva, SuSE ...)

2. Concepts de base de Unix

- Le concept d'utilisateur
- Le concept de processus
- Le concept de fichier
- Structure générale de Unix

Le concept d'utilisateur

- sur un ordinateur personnel : l'utilisateur ne s'identifie pas si l'ordinateur est en libre service, l'utilisateur doit transporter ses propres données. Les fichiers présents sur l'ordinateur sont à tout le monde et n'appartient à personne.
- avec Unix : chaque utilisateur doit s'identifier, ses fichiers lui appartiennent et il peut en autoriser ou interdire l'accès par les autres, ses données sont contenues dans son répertoire personnel.

La procédure de connexion

- L'utilisateur est désigné par son nom d'utilisateur et un mot de passe;
- La procédure de connexion vérifie ces deux informations, et n'accepte qu'un utilisateur dument enregistré;
- Quand l'utilisateur se déconnecte, il libère l'ordinateur;
- L'ordinateur fonctionne en permanence, on ne l'arrête pas;
- Le mécanisme de partage des fichiers permet à l'utilisateur d'atteindre ses données depuis n'importe quel ordinateur relié au serveur de fichiers.

Attributs de l'utilisateur

- Nom d'utilisateur;
- Mot de passe : est conservé sous forme cryptée ; c'est l'élément fondamental de la sécurité;
- Répertoire personnel : sa place dans la hiérarchie des fichiers est déterminée par l'administrateur ; l'utilisateur ne peut normalement placer ses fichiers qu'ici;
- Programme de démarrage : programme avec lequel l'utilisateur dialogue au démarrage de la connexion ; la fin de ce programme termine la connexion;
 - Groupe(s) d'appartenance.

À propos du mot de passe

Vous devez respecter quelques règles :

- ne l'écrivez nulle part;
- choisissez une chaîne facile à retenir, mais ne figurant dans aucun dictionnaire;
- incluez dans cette chaîne au moins un signe de ponctuation;
- incluez dans cette chaîne au moins un chiffre mélangez majuscules et minuscules;
- n'utilisez jamais de caractères accentués;
- apprenez à taper votre mot de passe rapidement.

Le super-utilisateur

L'administrateur a les privilèges du super-utilisateur; il peut :

- Lire et modifier tout les fichiers sur le système ;
- Enregistrer les nouveaux utilisateurs et initialiser leur environnement de travail;
- Supprimer un utilisateur ;
- Installer ou mettre à jour des logiciels ;
- Surveiller le bon fonctionnement du système et corriger les défauts ;
- Effectuer les sauvegardes périodiques des programmes et données.

Le concept de processus

- Un processus est un programme en cours d'exécution;
- La plupart des commandes exécutent un programme et donc lancent un processus;
- Le programme de démarrage correspond à un processus présent pendant toute la session;
- Des dizaines ou centaines de processus sont en fonctionnement à tout moment.

Le concept de processus

Caractéristiques d'un processus

- identifié par un numéro entier ;
- code du programme en cours d'exécution ;
- données traitées par ce code ;
- identification des fichiers en cours de traitement et leur état;
- répertoire courant ;
- identité du propriétaire du processus ;
- terminal associé.

etc.

Le concept de processus : Etats

- Les processus sont dans différents états :
 - En attente d'un événement extérieur (action de l'utilisateur)
 - En attente d'exécution (tranche de temps);
 - En attente de l'arrivée d'une partie de la mémoire virtuelle;
 - En exécution (un seul à la fois).
- Tout processus est lancé par un processus père :
 - Arbre généalogique des processus ;
 - Propriétaire réel (utilisateur qui l'a lancé);
 - Propriétaire effectif (utilisateur donnant les droits du processus).

Le concept de processus : Etats

Simulation (CPU, trois tâches ABC)

Le concept de fichier

- Toutes les informations extérieures au processus sont des fichiers;
- Un fichier peut être associé au clavier, à l'écran, à l'imprimante, etc.
- Quatre catégories de fichiers :
 - Ordinaires
 - Répertoires
 - Spéciaux
 - Liens symboliques

Le concept de fichier

- ▶ Fichier ordinaire (.txt, .exe,...):
 - Suite d'octets sans structure particulière;
 - Contient des données ou des programmes;
 - Fichiers de texte structurés en lignes par une marque de fin.
- Répertoire :
 - Noeud de la hiérarchie des fichiers;
 - Fichier de références à d'autres fichiers.

Le concept de fichier

- Fichier spécial (périphériques, ..) :
 - Fichier virtuel, représentation d'un organe périphérique ;
 - accès par un programme pilote, spécifique du périphérique.
- Lien symbolique :
 - Fichier contenant la chaîne de caractères qui représente le nom d'un autre fichier;
 - Moyen de référence indirecte ;
 - Moyen de construire un graphe quelconque et plus seulement une arborescence.
- Cheminement dans la hiérarchie :
 - le passage d'un répertoire à un autre se note /
 - le répertoire racine s'appelle seulement /

Meilleure représentation

 Le matériel est au niveau le plus bas : le processeur son langage propre (langage machine)

Le noyau (kernel)

le noyau d'Unix masque le matériel on n'accède aux ressources du matériel que par les opérations primitives (open, close, read, write, fork,...).

cela comprend:

- gestion du système de fichiers
- partage du temps du processeur;
- partage de la mémoire ;
- accès aux périphériques grâce aux pilotes.

25

Le noyau (kernel)

- Accès aux primitives par instructions d'appel au système ;
 - Les primitives s'exécutent en mode privilégié ;
 - Le reste des programmes est en mode utilisateur ;
 - Les primitives permettent de :
 - lancer des processus ;
 - lire ou écrire sur des fichiers ;
 - obtenir de la place en mémoire ;
 - etc.

Le shell

- le programme de démarrage qui interprète les commandes est le shell (coquille de l'amande en anglais);
- le shell est « à l'écoute » de l'utilisateur ;
- il interprète et exécute les commandes tapées ;
- quand le processus appelé par la commande se termine, le processus du shell redevient actif.

Scripts et applications

- la plupart des programmes d'application communiquent avec le noyau sans passer par le shell;
- le shell est un langage directement interprétable (langage de script);
- on peut utiliser ce langage pour construire des scripts.

Types de shells existants

- le shell est indépendant du noyau ;
- il existe plusieurs shells plus ou moins perfectionnés :
- sh, shell de Steven Bourne, conçu au début d'Unix, beaucoup de scripts l'utilisent;
- csh, shell de la première version BSD, de syntaxe proche de celle de C;
- shells perfectionnés dérivés des précédents :
 - ksh, dérivé de sh ;
 - tcsh, dérivé de csh ;
 - bash, version améliorée de sh;
 - zsh, qui englobe tous les autres.

3. Connexion et interfaces

- Le point de vue de l'utilisateur
- Le processus de connexion
- L'environnement graphique

- l'ordinateur lui-même est l'hôte
- les utilisateurs se connectent à un hôte donné à l'aide d'un terminal;
 - Terminal alphanumérique, aujourd'hui simulé par une fenêtre de l'outil XTERM (ou une de ses variantes);
 - Terminal graphique, également appelé terminal X;
 - Station de travail ou ordinateur personnel, où les composants du terminal graphique sont indissociables de l'ordinateur;

Interface alphanumérique

- l'interface alphanumérique est celle d'une fenêtre de Xterm;
- un seul processus peut communiquer avec l'interface (clavier et affichage, pas de souris);
- le processus attaché au terminal est interactif, à l'écoute des commandes tapées par l'utilisateur;
- commandes sous forme de suites de caractères ;
- on peut lancer un processus détaché du terminal, qui passe en arrière-plan.

Interface graphique

- l'interface graphique nécessite un système de fenêtrage;
- celui qu'on utilise avec Unix s'appelle X ou X11;
- idée fondamentale s'appuyant sur la relation client-serveur :
- > le serveur X gère le terminal graphique dans sa totalité :
 - Affichage sur l'écran graphique;
 - Reconnaissance des signaux (événements) envoyés par le clavier et la souris;
 - Reconnaissance d'événements graphiques (passage de la souris dans une fenêtre, recouvrement d'une fenêtre par une autre, etc.).
- Les clients sont des programmes qui envoient au serveur X des requêtes d'affichage et reçoivent la notification des événements qui les concernent.

Le serveur X

 le système de fenêtrage est indépendant des machines;

le même serveur X peut satisfaire des requêtes

provenant de plusieurs

machines;

les clients ne savent pas comment fonctionne le serveur, et vice-versa.

Le gestionnaire de fenêtres

- le système X n'impose aucun comportement particulier aux clients ;
- l'interface graphique n'est pas imposée (contrairement à Windows ou Mac-OS) : décor, présence de menus déroulants ou apparence de boutons ou icônes traitement possible des fenêtres etc.
- tout cela est réalisé par un client particulier, le gestionnaire de fenêtres;
- plus récemment on a ajouté par au-dessus un environnement de bureau, qui codifie des comportements et des apparences.

Le processus de connexion

Connexion par interface graphique

- L'écran d'accueil sera celui de Gdm;
- En milieu d'écran apparaît la fenêtre de dialogue ;
- Saisie du nom d'utilisateur et du mot de passe :
 - Le système vérifie l'adéquation des deux informations ;
 - Si elle est bonne, la session commence ;
 - S'elle ne l'est pas, le système ne dit pas pourquoi (par sécurité).

Le processus de connexion

Démarrage de la session

- Une fois l'identification faite, le système fait démarrer :
 - Le serveur X, (c'est-à-dire le système de fenêtrage)
 - Le gestionnaire de fenêtres (ici METACITY) ;
 - L'environnement de bureau (ici GNOME);
 - Un ou plusieurs tableaux de bord, qui rassemblent les moyens graphiques de communication;
 - Un ou plusieurs clients X, c'est-à-dire des applications d'utilisation fréquente;
- Tout ceci constitue la configuration de la session ;
- On peut la modifier pendant toute la session.

Le processus de connexion

Connexion par interface textuelle

- La connexion par interface textuelle sert dans de nombreuses circonstances :
 - changement d'identité sur la même machine;
 - connexion à une machine différente mais proche;
 - connexion à distance.
- On est dans une interface textuelle locale, typiquement une fenêtre Xterm;
- Une commande permet de lancer la connexion, nous la verrons plus tard;
- Le système demande successivement le nom d'utilisateur et le mot de passe (dialogue avec un shell).

L'environnement graphique

Le tableau de bord

on doit y trouver:

- Le changeur de bureau, qui permet de changer d'écran virtuel;
- Quelques boutons de lancement des applications les plus fréquentes;
- La liste des fenêtres du bureau visible ;
- Un phylactère explicatif (une infobulle) s'ouvre quand le pointeur passe dessus;
- On le paramètre facilement par le menu accessible par le bouton droit de la souris.

4. Outils de bas de UNIX

- Xterm
- Emacs

- XTERM est un client graphique simulant un terminal alphanumérique.
- Il existe beaucoup d'outils de même nature, exp : Gnome ;
- GNOME-TERMINAL est aussi complet, avec des perfectionnements de présentation;
- Dans la fenêtre, un shell est à l'écoute :
 - lit et interprète les commandes saisies ;
 - affiche les résultats.
- Élargir la fenêtre est presque toujours inutile ;
- L'allonger en hauteur est souvent intéressant.

Mode de fonctionnement de Xterm

- Le caractère saisi au clavier est envoyé au processus, qui envoie l'écho dans la fenêtre.
- La touche Ctrl retranche 64 au code de la touche enfoncée en même temps :
 - C-a envoie le code 0 (zéro)
 - C-g correspond au signal auditif et annule en général ce qui est en cours
 - C-j est la fin de ligne
 - C-m est le retour, noté RET

Saisie des commandes

- La ligne saisie n'est envoyée au shell qu'après appui sur la touche RET (touche Entrée)
- Cette touche peut être tapée n'importe où dans la ligne
- Tant qu'elle n'est pas tapée on peut corriger la ligne
 - Déplacements par les touches ← et →
 - C-a amène en début de ligne, C-e en fin de ligne
 - C-w efface le mot précédent, C-k tout ce qui suit le curseur,
 - C-u toute la ligne
 - C-c abandonne la commande en cours de saisie

Édition de texte

- Il existe des éditeurs spécialisés, intégrés dans une application;
- Il existe aussi des éditeurs **universels**, qui peuvent travailler sur tout type de fichier
- Les éditeurs les plus simples ne font que cela : ED, EX, VI, VIM, XEDIT, NANO, etc.
- EMACS est un véritable éditeur universel :
 - véritable environnement de programmation ;
 - fonctionne sous tout système ;
 - logiciel libre ;
 - facile à étendre et adapter ; très riche.

Apprentissage de Unix

Difficultés d'apprentissage de Unix

- L'apprentissage de Unix est long et difficile :
 - Rechercher l'information;
 - Apprendre à se servir des outils de recherche;
 - Pas d'ordre logique d'apprentissage;
 - Nécessité d'être rapidement opérationnel;
 - Nécessité de revenir souvent sur la plupart des points.
- Évolution de Unix par accumulation, entraînant beaucoup de redondance.

Référence

Livre:
LINUX
Initiation et utilisation
2e édition
Dunod