ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων

Εαρινό Εξάμηνο 2024

Ρολόγια και Χρονισμός

Synchronous Timing

- Όλα τα στοιχεία στο σύστημα ενημερώνονται ταυτόχρονα με ένα κεντρικό ρολόι
- Στην πραγματικότητα
 - Clock skew
 - Clock jitter

Plesiochronous and Asynchronous Timing

- Plesiochronous Timing
 - Τα blocks έχουν ανεξάρτητα ρολόγια από ξεχωριστούς ταλαντωτές
 - Κύκλωμα ανάκτησης ρολογιού
 - Συχρονισμός μεταξύ διαφορετικών clock domains
 - · FIFO
- · Asynchronous timing
 - Αυτοχρονιζόμενα (self-timed) συστήματα
 - Δεν υπάρχει ανάγκη για κεντρικό ρολόι
 - Υπάρχει extra «κόστος» στα κυκλώματα (handshaking)
 - Αυξημένη πολυπλοκότητα

Synchronous Timing Basics

- · Σε ιδανικές συνθήκες (t_{clk1} = t_{clk2})
 - $-T_{clk} \ge T_{c2q} + T_{clog} + T_{su}$
 - T_{clogm} ≥ T_{hd} T_{c2qm}
- Στις πραγματικές συνθήκες
 - Clock skew
 - Clock jitter

Clock Skew and Jitter

Clock skew

- Χωρική μεταβλητότητα (spatial variation) στους χρόνους άφιξης των μεταβάσεων του ρολογιού σε διαφορετικά σημεία ενός κυκλώματος

Clock jitter

- Χρονική μεταβλητότητα (temporal variation) της περιόδου του ρολογιού σε ένα δεδομένο σημείο του κυκλώματος
- Από κύκλο σε κύκλο (cycle-to-cycle) t_{is} : short-term
- Long term til

Positive and Negative Skew

(a) Positive skew Ρολόι και δεδομένα προς την ίδια κατεύθυνση

(b) Negative skew Ρολόι και δεδομένα προς αντίθετες κατευθύνσεις

Positive Skew

Η ακμή εκκίνησης φτάνει πρίν την ακμή άφιξης

Negative Skew

Η ακμή άφιξης φτάνει πρίν την ακμή εκκίνησης

Clock Jitter

Το jitter προκαλεί μεταβλητότητα στην περίοδο Τ του ρολογιού από κύκλο σε κύκλο

Combined Impact of Skew and Jitter

Clock skew: $T_{sk}(\delta)$

Clock jitter: T_{jt}

$$T_{clk} \ge T_{c2q} + T_{cloq} + T_{su} + T_{sk} + 2T_{jt}$$
 (w.c. negative skew)

$$T_{clogm} \ge T_{hd} - T_{c2gm} + T_{sk} + 2T_{jt}$$
 (w.c. positive skew)

Sources of Clock Skew and Jitter

- Clock generation (1): PLL –jitter
- Manufacturing variations on clk driver (2): --skew
- Interconnect variations(3): inter-layer dielectric (ILD) thickness affects interconnect R and C—skew
- Temperature and power supply (4 &5)Variations: --skew and jitter
 - Parameters depend on temperature
 - Delay through buffers is a strong function of the power supply
- Capacitive coupleing(6 &7) --jitter

Clock Distribution Networks

- Clock skew and jitter can ultimately limit the performance of a digital system, so designing a clock network that minimizes both is important
 - In many high-speed processors, a majority of the dynamic power is dissipated in the clock network.
 - To reduce dynamic power, the clock network must support clock gating (shutting down (disabling the clock) units)
- Clock distribution techniques
 - Balanced paths (H-tree network, matched RC trees)
 - In the ideal case, can eliminate skew
 - Could take multiple cycles for the clock signal to propagate to the leaves of the tree

H-Tree Clock Network

If the paths are perfectly balanced, clock skew is zero

More realistic H-tree

