. ~ SOLUTIONS o ...

Math 53: Chaos!: Midterm 2, FALL 2011

2 hours, 60 points total, 6 questions worth various points (proportional to blank space)

1. [9 points] Complex dynamics. Please show working or some explanation.

1 (a) Is i in the Julia set
$$J(1)$$
? $C=1$ in $Z_{n+1}=Z_n^2+C$ runp. Apply map:

Iferate
$$z_0=0$$
: — $1-12-15-1-10$ so 0 is in basing of 10 , so 1 not in Mandelbrot set.

(c) Consider the map $f(z) := z^2 + 1$, for $z \in \mathbb{C}$. Could there exist a periodic sink for this map?

Fatou theorem states that for a polynomial may such as f, each periodic sinh must attract a critical point of f. The only critical point is f'(z) = 2z = 0, ie z = 0, and we found 0 headed to so under the map, so, no, cannot exist any periodic sink.

(d) Could there exist a $z_0 \in \mathbb{C}$ such that $f^n(z_0)$ remains bounded as $n \to \infty$?

No reason why not (such points are in J(I); see BONUS for an example). rie 1 not in Mandelbrot.

(e) Based on your answers above, do you expect J(1) to be connected/disconnected? Have nonzero/zero measure? (circle those that apply; no explanation needed)

BONUS: Either find an example of a bounded such z_0 from part (d), or prove there cannot exist any.

e.g. a fixed pt of f: solve f(z)=z is $z^2t=z$ is $z=1\pm \sqrt{-3}$.

There are countably infinite, taking fixed yt of f^n .

(at (east)

Consider 1D motion of a point particle in the potential $P(x) = x^3/3 - x$, which has roughly the following graph:

4. (a) Write a system of first-order ODEs for the dynamics in this potential, with no damping.

fore =
$$-\frac{dP}{dx} = -x^2 + 1$$

so $\int x = y$
 $\int y = fore = -x^2 + 1$

4 (b) Sketch the phase plane (x, \dot{x}) showing several orbits including all the types of motion that can occur:

(c) Find all equilibria and categorize their stability. Justify your stabilities by giving a rigorous \mathfrak{S} argument in each case. [Hint: use the phase plane] force=0 so $-x^2+1=0$ re $x=\pm 1$. DF(xy)= $\begin{pmatrix} 0 \\ -2x \end{pmatrix}$ $DF(a) = \begin{pmatrix} 0 \\ +2 \end{pmatrix}$ so eigents $\lambda^2-2=0$ is $\lambda=\pm 1$. One eigent has positive real part =) Unstable. equil.a: equil. b: $(1,0): \quad \widehat{Df}(b) = \begin{pmatrix} 0 & 1 \\ -2 & 0 \end{pmatrix}$ O): $Df(b) = {20 \choose 20}$ eigrals $\chi^2 + 2 = 0$ is $\chi = \pm i \sqrt{2}$ Re parts both gers => nonlinear stability theorem tells us nothing!

However, in any neighborhood. $N_{\Sigma}(b)$, you may find a closed contour of $E(x,x) = \frac{x^2}{2} + P(x)$ which encloses a neighborhood $N_{\Sigma}(b)$

which never leaves $N_{\epsilon}(b)$ \Rightarrow regoransly, b is Stable. [This is essence of Lyapunar function].

(d) In what set of energies do periodic orbits lie? [take care with endpoints]

1

rolling in the well: $- - P(-1) = -\frac{1}{3} + 1 = \frac{1}{3}$ $- P(1) = -\frac{1}{3}$ note E= - 2/3 => equilibrium at b 50 -42 LE 6 4/2 E= +3/3 = homochnic orbit, not

(e) Sketch the set of all phase plane points which have the unstable equilibrium as their limit as $t \to \infty$.

C'not strictly true, since ANB = single point {xi}, but we know this is period-1 already

(a) Find the box-counting dimension of the curve (a subset of \mathbb{R}^2) formed by the limiting process sketched below: for each straight line segment remove the middle third and replace it by the other three sides of the square. [Hint: describe your 'boxes'. To avoid colliding boxes you may rotate them to cover without collisions]

$$\epsilon = 1$$
 $\epsilon = 1/3$ $1/3^2$ $1/3^n$ $1/$

$$d = \lim_{\epsilon \to 0} \ln N(\epsilon) = \lim_{n \to \infty} \ln N(b_n) = \lim_{n \to \infty} \ln \frac{5^n}{\ln 3^n} = \lim_{n \to \infty} \ln \frac{5^n}{\ln 5^n} = \lim_{n \to \infty} \ln$$

(c) What is the box-counting dimension of this attractor in \mathbb{R}^2 ? 2

(d) Let $(x_0, y_0) \to (x_1, y_1) \to \dots$ be any orbit with (x_0, y_0) in the unit square. Give a tight upper bound on the distance of (x_n, y_n) from the attractor.

- 2

(b) Give the mathematical definition of an equilibrium point ${\bf v}$ of a flow being stable.

For each 2>0, N2(V) must contain an open set N, containing of such think all pts in No never leave NE(V) as to 100.

3 (c) What is the measure of the set of points in [0,1] whose decimal expansion never uses the digit	_
Ko construction of Easter set by removal	
Ke [0,1] in which successive digits are) . 1. 52
Ke 1/10 et] Messure multiplied by 1/10 ench Fine => live 300 messure multiplied by 1/10 ench Fine => live 3000 mes	nsure
Prove if this set is finite, countably infinite, or uncountably infinite. (You may use known properties of the set [0, 1].)	
Take any xeKos above, and map degit "1" through "9"	in its
Take any xeKos above, and may drgit "1" through "9" decimal expansion to digits "0" through "8".	
Interpret the rout as nonary (base -9). This do	
a 1-to-1 map from to to [0,1], which is	
unconstably or (by Cantois diagonal proof).	
So Kas is un conntable.	
2 (d) What is the Lyapunov exponent of almost all bounded orbits of $G(x) = 4x(1-x)$? Explain why.	
G(x) is conjugate to tent map T(x):= 1-2/x	-1/2/
on [0,1]. Lyapunor exponent of T is In 2 si	
T'(x) =2 +x+1/2. Conjugacy preserves Lyapun.	
exponent, => 1/2.	
(e) Prove that there exists an orbit of $G(x) = 4x(1-x)$ that is dense in [0,1].	+ 1
G has complete transition graph DEBO	
I may construct orbit LR LLIR RRRL LLI LLR LRL	Λ,
listing all fruite-length strongs in order. Since length of len	oth-k
Submiterval & The (it's enough to know upper bound so as	Kod
point in [0,1].	awa
point in [0,17.	