

THUISTON DONE OF THE DESTRICT + "(x) = 2x +1 Example 3 cont 1'(c) = 2c+1, where x=c -c -- is within C-1,13 -C= (-1+1) = -+ '(0) = 2(0) +1 C=O 0+1 f)(0) = 1, where c=0 f:(0) = 1,, slore of tangent

Examp	e 5.	4(0)		and	ح (۷) ع	= 4	ه د ما۱	values	0 f ×,_	How	large	can
		1) be?										
		£,(*)	۷_	for a	الا باماني	S-04->						
		* \s_	2 ifferen	thable	and co	n tinuo	ss ev	erywher	٠,			
		Mean	Value	Theorem	1 - 4h,	(1) - 4	(0)	2	in int	erval (ر (۱, ٥	
			where		C		0					
						F()) - (-;	2)				
							1					
					- }(c) = (f (1) + 3	2				
					\F'(c) = 4) \ = (\) +	2				
		- Y										
			2 4	1 thou	c 1	\ \ \ \ \						
		T . L X) _				00						
					+C1	J.+J.						
		F(1)+	2 = 4									
		F(1)?	£ 2\	47	his is	how_l	arge -	-(1) c	on be	•		
											t l	

Example 6

Suprose that f(-1) = -1 and $f'(x) \leq 3$ for all values of x.

How large can f(2) be?

f'(x) <3 for all values of x

F is continuous and differentiable everywhere

Mean Value Theorem: c = exists in interval (-1,2)where f'(c) = f(2) - f(-1)

2-(-1)

f(2)-f(-1)

2 + N

]= f'(c)= f(2)+1

__し」 |-| 11 |

3. f'(c) = f(2) +1 -3

3 + '(c) = + (2) +1

& '(x) = 3, where & '(x) = 3

f'(c) = +'(x)

3 F'(c) = 9, where +'(c) = 3

3 f'(c) = f(2) +1

f(2) +1 < 9

TF(2) < 8 | < This is how large f(2) can be,

