Table of Laplace Transformations

f(t)	$\mathscr{L}\{f\}(s)$
1	$\frac{1}{s}$, $s > 0$
e^{at}	$\frac{1}{s-a}, \ s>a$
$t^n \ n = 1, 2, \dots$	$\frac{n!}{s^{n+1}}, \ s > 0$
$\sin bt$	$\frac{b}{s^2 + b^2}, \ s > 0$
$\cos bt$	$\frac{s}{s^2 + b^2}, s > 0$
$e^{at}t^n \ n=1,2,\dots$	$\frac{n!}{(s-a)^{n+1}}, \ s>a$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2}, s > a$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \ s>a$
u(t-a)	$\frac{e^{-as}}{s}$
$\delta(t-a)$	e^{-as}

Other Formulas:

•
$$\mathscr{L}\lbrace g(t)u(t-a)\rbrace(s)=e^{-as}\mathscr{L}\lbrace g(t+a)\rbrace(s).$$

$$\bullet \ \mathcal{L}^{-1}\{e^{-as}F(s)\}(t)=f(t-a)u(t-a).$$

• For
$$f(t)$$
 periodic with period T , $\mathcal{L}\{f\}(s) = \frac{F_T(s)}{1 - e^{-sT}}$