

KEGG diagram legend

Node Types

Edge Types

compound			
hidden compound			
activation		gene (protein/enzyme)	
inhibition			
expression			
repression		group (complex)	
indirect effect	•••••••••••••••••••••••••••••••••••••••		
state change			
binding/association		compound (metabolite/glycan)	
dissociation	•••••		
phosphorylation			
dephosphorylation	<u>−p</u>	map (pathway)	Pathway name
glycosylation	<u>+g</u>		
ubiquitination	<u>+u</u>		
methylation	<u>+m</u>		
others/unknown	? →		