Компьютерная обработка результатов измерений

Емельянов Эдуард Владимирович

Специальная астрофизическая обсерватория РАН Лаборатория обеспечения наблюдений

18 марта 2021 года

- Физические измерения
- Сигналы и их видь
- 3 Литература
- Случайные величины, вероятность
- 5 Характеристики случайных величин
- 6 Законы распределения
- Корреляция и ковариация
- 8 Шум

Физические измерения

Экспериментальное определение значения измеряемой величины с применением средств измерений называется измерением.

Важнейшей особенностью измерений является принципиальная невозможность получения результатов измерения, в точности равных истинному значению измеряемой величины (особенно эта особенность проявляется в микромире, где господствует принцип неопределенности). Эта особенность приводит к необходимости оценки степени близости результата измерения к истинному значению измеряемой величины, т.е. вычислять погрешность измерения.

Виды измерений

Статическими называют такие измерения, при которых зависимость погрешности измерения от скорости измерения пренебрежимо мала и ее можно не учитывать. **Динамические** измерения противоположны статическим.

Результаты **прямых** измерений находят непосредственно из опыта, **косвенных** же измерений — путем расчета по известной зависимости измеряемой величины от величин, находимых прямыми измерениями (например, измерение мощности).

Совместное измерение — одновременное измерение нескольких неодноименных величин для нахождения зависимости между ними (например, ВАХ диода).

Совокупное измерение — это проведение ряда измерений нескольких величин одинаковой размерности в различных сочетаниях с нахождением искомых величин из решения системы уравнений (например, измерение R включенных треугольником резисторов).

Табличное

Позволяет избежать многократной записи единиц измерения, обозначений измеряемой величины, используемых множителей. В таблицы, помимо основных измерений, могут быть включены и результаты промежуточных измерений.

Для удобства импортирования данных и одновременно наглядности чтения удобно хранить в формате TSV (tab separated values) или CSV (comma separated values). SED позволит легко преобразовать TSV/CSV в таблицу \mbox{ET}_{FX} .

Графическое

На основе графика легко можно сделать вывод о соответствии теоретических представлений данным эксперимента, определить вид функциональной зависимости измеряемой величины.

Таблица 3.4: Зависимость спектрального разрешения от геометрии прибора.

θ	α	β	$\cos \alpha$	$\cos \beta$	M	$\cos \theta$	D	В	L_b
11	75.3	53.3	0.2537	0.5976	0.4245	0.9816	0.7122	0.5960	64.8
10	74.3	54.3	0.2706	0.5835	0.4637	0.9848	0.7318	0.6336	59.3
9	73.3	55.3	0.2874	0.5693	0.5048	0.9877	0.7523	0.6710	
8	72.3	56.3	0.3040	0.5548	0.5479	0.9903	0.7740	0.7079	
7	71.3	57.3	0.3206	0.5402	0.5935	0.9925	0.7966	0.7450	
6	70.3	58.3	0.3371	0.5255	0.6415	0.9945	0.8205	0.7818	
5	69.3	59.3	0.3535	0.5105	0.6925	0.9962	0.8461	0.8185	
4	68.3	60.3	0.3697	0.4955	0.7461	0.9976	0.8730	0.8546	
3	67.3	61.3	0.3859	0.4802	0.8036	0.9986	0.9017	0.8912	
2	66.3	62.3	0.4019	0.4648	0.8647	0.9994	0.9323	0.9275	
1	65.3	63.3	0.4179	0.4493	0.9301	0.9998	0.9649	0.9639	

Таблица 2. Спектрографы скрещенной дисперсии в фокусе Кассегрена. Обозначения: D – диаметр телескопа; d – диаметр коллимированного пучка; θ_b – угол блеска; disp – последовательность диспергирующих элементов по ходу лучей (ech – эшелле, gr – решетка, pr – призма, filt – фильтр); R – спектральное разрешение); Obs – обсерватория. *) копии спектрографа Harvard Coll. Obs., использовавшегося на телескопе $D=1.52\,\mathrm{m}$)

Год	D (м)	$d\left(c_{M}\right)$	$\operatorname{tg}\theta_b$	$_{ m disp}$	\mathbf{R}	Obs
1971	0.9	5.5	2	$\operatorname{ech}/\operatorname{gr}$	16000	Pine Bluff Obs. [175]
1976	0.91	5	2	pr/ech	40000	Goddard SFC [119]
1977	0.61	9	2	$\operatorname{ech}/\operatorname{gr}$	43000	Mt. John Obs. [80]
1978	0.9		2	$\mathrm{pr}/\mathrm{ech}/\mathrm{pr}$	40000	Royal Greenwich [121]
1978	1.0	*	2	$\operatorname{ech}/\operatorname{gr}$	52000	Ritter Obs. [107]
1980	1.0	*	2	$\operatorname{ech}/\operatorname{gr}$	52000	Lowell Obs. [107]
1980	1.0		2	$\rm ech/gr$	30000	Siding Spring Obs.
1981	1.0	7.7	2	$\operatorname{ech}/\operatorname{gr}$	54000	Vienna Obs. [196]
1982	0.61	*	2	$\operatorname{ech}/\operatorname{gr}$		Las Campanas [107]
1982	0.61	5	3.2	$\mathrm{filt/ech}$	150000	Whipple Obs. [87]
1986	1.22		2	$\operatorname{ech}/\operatorname{gr}$	50000	Rangapur Obs.

Рис. 4.7: Спектр Арктура с использованием эталона Фабри-Перо (тонкая линия) и без его применения (жирная линия).

Рис. 4.8: Спектр неба с использованием абсорбционной ячейки на парах йода (тонкая линия) и без нее (жирная линия).

Если некоторая изменяющаяся величина измеряется непрерывно (или квазинепрерывно), мы имеем дело с потоком информации, или **сообщением**. В теории информации физический процесс, значения параметров которого отображают передаваемое сообщение, называется **сигналом**.

Модуляция–демодуляция. Зашумление. **Помехи**: аддитивные, мультипликативные, фазовые.

Add/mult

Аналоговый

Описывается непрерывной (или кусочно—непрерывной) функцией x(t): $t\in [t_0,t_1]$, $x\in [x_0,x_1]$. Аудиосигналы, телевизионные сигналы и т.п.

Дискретный

Описывается решетчатой функцией (последовательностью, временным рядом) x(nT): $x\in [x_0,x_1],\ n=\overline{1,N},\ T$ — интервал дискретизации. Величину f=1/T называют частотой дискретизации. Если интервал дискретизации является постоянной величиной, дискретный сигнал можно задать в виде ряда $\{x_1,\dots,x_N\}$.

Цифровой

Описывается квантованной решетчатой функцией и отличается от обычного дискретного сигнала тем, что каждый уровень квантования кодируется двоичным кодом. Таким образом, если величина $x \in [x_0,x_1]$ квантуется N разрядным кодом, для обратного представления из кода K_x в значение x применяется преобразование: $x=x_0+K_x\cdot(x_1-x_0)/2^N$. К цифровым сигналам относятся сигналы, используемые в системах связи с импульсно–кодовой модуляцией.

Дискретизация

Дискретизация строит по заданному аналоговому сигналу x(t) дискретный сигнал $x_n(nT)$, причем $x_n(nT)=x(nT)$. Операция **восстановления** состоит в том, что по заданному дискретному сигналу строится аналоговый сигнал.

Теорема Котельникова-Найквиста

- любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой $f>2f_c$, где f_c максимальная частота, которой ограничен спектр реального сигнала:
- если максимальная частота в сигнале равна или превышает половину частоты дискретизации (наложение спектра), то способа восстановить сигнал из дискретного в аналоговый без искажений не существует.

Теорема Котельникова-Найквиста

Фурье:
$$X_s(f) \stackrel{\mathrm{def}}{=} \sum_{n=-\infty}^{\infty} T \cdot x(nT) \ e^{-i2\pi nTf}$$

B окне:
$$X(f) = \sum_{n=-\infty}^{\infty} x(nT) \cdot \underbrace{T \cdot \mathrm{rect}(Tf) \cdot e^{-i2\pi nTf}}_{\mathcal{F}\left\{\mathrm{sinc}\left[\frac{\pi}{T}(t-nT)\right]\right\}}$$

Формула Уиттекера-Шеннона

Восстановить непрерывную функцию из дискретной:

$$x(t) = \sum_{n=-\infty}^{\infty} x(nT) \cdot \operatorname{sinc}\left[\frac{\pi}{T}(t - nT)\right]$$

Квантование

Для преобразования дискретного сигнала в цифровой вид применяется операция **квантования** или **аналогово-цифрового преобразования** (АЦП), которая по заданному дискретному сигналу $x_n(nT)$ строит цифровой кодированный сигнал $x_d(nT)$, причем $x_n(nT) \approx x_d(nT)$. Обратная квантованию операция называется операцией **цифро-аналогового преобразования** (ЦАП).

Квантование

Для преобразования дискретного сигнала в цифровой вид применяется операция **квантования** или **аналогово-цифрового преобразования** (АЦП), которая по заданному дискретному сигналу $x_n(nT)$ строит цифровой кодированный сигнал $x_d(nT)$, причем $x_n(nT) \approx x_d(nT)$. Обратная квантованию операция называется операцией **цифро-аналогового преобразования** (ЦАП).

Основная литература

- · Интернет–энциклопедия: http://wikipedia.org (Википедия).
- Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2012. 1104 с.
- Витязев В.В. Вейвлет-анализ временных рядов: Учеб. пособие. СПб.: Изд-во С.-Петерб. ун-та., 2001. 58 с.
- Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде MATLAB. М.: Техносфера, 2006 616 с.
- Гмурман В. Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов. Изд. 7-е, стер. М.: Высш. шк., 2001. 479 с.
- Говорухин В., Цибулин В. Компьютер в математическом исследовании. Учебный курс. — СПб.: Питер, 2001. — 624 с.
- Сергиенко А.Б. Цифровая обработка сигналов. СПб.: Питер, 2005. 604 с.
- · Чен К., Джиблин П., Ирвинг А. MATLAB в математических исследованиях: Пер. с англ. М.: Мир, 2001. 346 с.

Дополнительная литература

- Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. М.: Высш. шк., 1987. 630 с.
- · Кнут Д. Э. Все про Т_ЕХ./ Пер. с англ. М.В. Лисиной. Протвино: AO RDT_EX, 1993. 592 с.: ил.
- Львовский С. М. Набор и верстка в системе LATEX. 3-е изд., исрп. и доп. — М.: МЦНМО, 2003. — 448 с.
- Физическая энциклопедия/ Гл. ред. А.М. Прохоров. М.: Сов. энциклопедия. Тт. I V. 1988.
- Цифровая обработка сигналов: Справочник/ Л.М. Гольденберг,
 Б.Д. Матюшкин, М.Н. Поляк. М.: Радио и связь, 1985. 312 с., ил.
- http://www.imageprocessingplace.com/
- Pan G. W. Wavelets in electromagnetic and device modeling. John Wiley
 Sons, Inc., Hobocen, New Jersey, 2003. 531 p.

Лекция 2.

Случайные величины, вероятность

Случайной величиной называется величина X, если все ее возможные значения образуют конечную или бесконечную последовательность чисел x_1, \ldots, x_N , и если принятие ею каждого из этих значений есть случайное событие.

Вероятностью наступления события называют предел относительной частоты наступления данного события n_k/N :

$$P(x_k) = \lim_{N \to \infty} \frac{n_k}{N}.$$

Совместные и несовместные события, полная группа, свойства вероятности. Для непрерывных случайных величин вводят понятие **плотности** вероятности:

$$\rho(x) = \lim_{\Delta x \to 0} \frac{P(x < X < x + \Delta x)}{\Delta x} = \frac{dP}{dx}.$$

$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} \rho(x) \, dx$$

Свойства вероятности

$$P(\emptyset) = 0 \\ \forall A \subset B \quad P(A) \leqslant P(B) \qquad B \text{ включает в себя } A \\ 0 \leqslant P(A) \leqslant 1 \\ \forall A \subset B \quad P(B \setminus A) = P(B) - P(A) \quad B \text{ наступит без } A \\ P(\overline{A}) = 1 - P(A) \\ P(A+B) = P(A) + P(B) - P(AB) \quad \text{вероятность одного из событий} \\ P(A|B) = \frac{P(AB)}{P(B)} \quad \text{условная вероятность } (A \text{ при } B) \Longrightarrow \\ P(AB) = P(B) \cdot P(A|B) \qquad \text{или } P(AB) = P(A) \cdot P(B|A) \Longrightarrow \\ P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)} \qquad \text{(теорема Байеса)}$$

 $P(AB) = P(A) \cdot P(B)$

для независимых событий

Характеристики случайных величин

Среднее арифметическое и математическое ожидание

$$< X > = 1/N \sum_{n=1}^{N} x_n,$$

$$M(X) \equiv \overline{X} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} x_n$$
 in $M(X) = \int_{-\infty}^{\infty} x \varphi(x) dx$.

Свойства математического ожидания

- $\overline{\operatorname{const}} = \operatorname{const};$
- $\sum \mathfrak{C}_n \cdot X_n = \sum \mathfrak{C}_n \cdot \overline{X_n}$, где \mathfrak{C}_n постоянная величина;
- $\prod X_n = \prod \overline{X_n}$ (для независимых случайных величин);
- $\overline{f(x)} = \int\limits_{-\infty}^{\infty} f(x) \varphi(x) \, dx$ (для непрерывных случайных величин).

Моменты

Если $f(x)=(x-x_0)^n$, то $\overline{f(x)}$ — момент порядка n. Если $x_0=0$ — начальный момент, если $x_0=\overline{X}$ — центральный момент.

Центральный момент второго порядка называют дисперсией:

$$D(X) = \overline{(x - \overline{x})^2} \equiv \overline{x^2} - \overline{x}^2$$
, $\sigma = \sqrt{D}$.

Свойства дисперсии:

- $D(\mathfrak{C}) = 0;$
- $\mathcal{L} \cdot D(\mathfrak{C}X) = \mathfrak{C}^2 D(X)$, где \mathfrak{C} постоянная величина;
- $D(\sum X_n) = \sum D(X_n)$ (для независимых величин).

$\overline{X}\Leftrightarrow <X>$? Закон больших чисел

Неравенство Чебышёва: $P(|X-\overline{X}|\geqslant \varepsilon)\leqslant D(X)/_{\varepsilon^2}\Rightarrow P(|X-\overline{X}|<\varepsilon)=1-P(|X-\overline{X}|\geqslant \varepsilon)\geqslant 1-D(X)/_{\varepsilon^2}.$

$$\lim_{n o\infty}P\Big(\Big|rac{\sum X_n}{n}-rac{\sum \overline{X_n}}{n}\Big|$$

Теорема Бернулли: $\lim_{n\to\infty} P(m/n-p|<\varepsilon)=1$ (m событий в n испытаний).

Характеристические значения распределений

Медиана и мода

Мода — наиболее часто встречающееся значение (но вполне могут быть мультимодальные распределения). **Медиана** делит площадь распределения пополам.

Поиск медианы

Самый медленный — сортировкой ряда данных, $O(n\ln n)$. Quick Select, O(n). Гистограмма (в т.ч. дерево гистограмм), O(n). Для фиксированных n — opt_med ("Numerical Recipes in C"), O(n).

Законы распределения

Закон распределения дискретной случайной величины — соответствие между возможными значениями и их вероятностями.

Функция распределения

$$F(x) \equiv P(X \leqslant x) = \int_{-\infty}^{x} \varphi(x) dx, \qquad \int_{-\infty}^{\infty} \varphi(x) dx = 1$$
$$P(a \leqslant X \leqslant b) = F(b) - F(a).$$

Равномерное распределение

$$\varphi(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}.$$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$$

$$\overline{X} = \operatorname{med}(X) = (a+b)/2,$$
 $\operatorname{Mo}(X) = \forall x \in [a,b],$
 $\sigma_X^2 = \frac{(b-a)^2}{12}.$

Биномиальное распределение

Формула Бернулли:
$$P_n(k) = C_n^k p^k q^{n-k}, \quad C_n^k = \frac{n!}{k!(n-k)!}, \quad q=1-p.$$

$$(p+q)^n = C_n^n p^n + \dots + C_n^k p^k q^{n-k} + \dots + C_n^0 q^k.$$

Описывает вероятность наступления события k раз в n независимых испытаниях

$$F(k; n, p) = P(X \le k) = \sum_{i=0}^{\lfloor k \rfloor} C_n^i p^i (1-p)^{n-i}.$$

$$\overline{X} = np, \, \operatorname{Mo}(X) = \lfloor (n+1)p \rfloor, \\ \lfloor np \rfloor \leqslant \operatorname{med}(X) \leqslant \lceil np \rceil, \, \sigma_X^2 = npq.$$

Распределение Пуассона

При $n \to \infty$ распределение Бернулли преобразуется в распределение Пуассона ($\lambda = np$):

$$P_n(k) = \frac{\lambda^k}{k!} \exp(-\lambda).$$

$$F(k,\lambda) = \frac{\Gamma(k+1,\lambda)}{k!}, \ \overline{X} = \lambda,$$

$$\operatorname{Mo}(X) = \lfloor \lambda \rfloor,$$

$$\operatorname{med} X \approx \lfloor \lambda + 1/3 - 0.02/\lambda \rfloor,$$

$$\sigma_X^2 = \lambda.$$
 С ростом λ распределение Пуассона стремится к распределению Гаусса.

Распределение Гаусса

$$\varphi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\overline{x})^2}{2\sigma^2}\right), \ F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\pi} \exp\left(-\frac{(t-\overline{x})^2}{2\sigma^2}\right) dt,$$

$$\operatorname{Mo}(X) = \operatorname{med} X = \overline{X}. \ P(\alpha < X < \beta) = \Phi\left(\frac{\beta - \overline{x}}{\sigma}\right) - \Phi\left(\frac{\alpha - \overline{x}}{\sigma}\right),$$

функция Лапласа $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x \exp\left(-t^2/2\right)$.

Показательное (экспоненциальное) распределение

Время между двумя последовательными свершениями события

$$f(x) = \begin{cases} 0, & x < 0, \\ \lambda \exp(-\lambda x), & x \geqslant 0; \end{cases} \qquad F(x) = \begin{cases} 0, & x < 0, \\ 1 - \exp(-\lambda x), & x \geqslant 0, \end{cases}$$

$$\overline{X} = \lambda^{-1}$$
, $\operatorname{Mo}(X) = 0$, $\operatorname{med} X = \ln(2)/\lambda$, $\sigma_X^2 = \lambda^{-2}$.

Корреляция и ковариация

Ковариация является мерой линейной зависимости случайных величин и определяется формулой: $\mathrm{cov}(X,Y) = \overline{(X-\overline{X})(Y-\overline{Y})} \Longrightarrow \mathrm{cov}(X,X) = \sigma_X^2$. Ковариация независимых случайных величин равна нулю, обратное неверно.

Если ковариация положительна, то с ростом значений одной случайной величины, значения второй имеют тенденцию возрастать, а если знак отрицательный — убывать.

Масштаб зависимости величин пропорционален их дисперсиям \Longrightarrow масштаб можно отнормировать (коэффициент корреляции Пирсона):

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma X \sigma Y}, \quad \mathbf{r} \in [-1,1].$$

Коэффициент корреляции равен ± 1 тогда и только тогда, когда X и Y линейно зависимы. Если они независимы, $\rho_{X,Y}=0$ (обратное неверно!). Промежуточные значения коэффициента корреляции не позволяют однозначно судить о зависимости случайных величин, но позволяет предполагать степень их зависимости.

Корреляционная функция

Одна из разновидностей — автокорреляционная функция:

$$\Psi(au) = \int f(t)f(t- au) \, dt \equiv \int f(t+ au)f(t) \, dt.$$

Для дискретных случайных величин автокорреляционная функция имеет вид

$$\Psi(\tau) = \langle X(t)X(t-\tau)\rangle \equiv \langle X(t+\tau)X(t)\rangle.$$

Взаимно корреляционная функция

Другая разновидность — кросс-корреляционная функция:

$$(f \star g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(\tau)g(t+\tau) d\tau$$

свертка:

$$(f * g)(x) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(y) g(x - y) dy = \int_{-\infty}^{\infty} f(x - y) g(y) dy$$

Если X и Y — две независимых случайных величины с функциями распределения вероятностей f и g, то $f\star g$ соответствует распределению вероятностей выражения -X+Y, а f*g — распределению вероятностей суммы X+Y.

ВКФ часто используется для поиска в длинной последовательности более короткой заранее известной, определения сдвига (см. рис).

Связь со сверткой: $f(t) \star g(t) = f^*(-t) * g(t)$, если f и g четны, то $f(t) \star g(t) = f(t) * g(t)$. Через преобразование Фурье: $\mathcal{F}(f \star g) = \mathcal{F}(f)^* \cdot \mathcal{F}(g)$.

Шум — беспорядочные колебания различной физической природы, отличающиеся сложной временной и спектральной структурой.

Белый шум, $\xi(t)$, имеет время корреляции много меньше всех характерных времен физической системы; $\xi(t) = 0$, $\Psi(t,\tau) = \langle \xi(t+\tau)\xi(t) \rangle = \sigma^2(t)\delta(\tau)$. Разновидность — AWGN.

Дробовой шум имеет пуассонову статистику $\Longrightarrow \sigma_X \propto \sqrt{x}$ и $\mathrm{SNR}(N) \propto \sqrt{N}$. Суточные и вековые корреляции. Шум вида **«соль-перец»** обычно характерен для изображений, считываемых с ПЗС.

SNR

SNR — безразмерная величина, равная отношению мощности полезного сигнала к мощности шума.

$$\mathrm{SNR} = \frac{P_{\mathrm{signal}}}{P_{\mathrm{noise}}} = \left(\frac{A_{\mathrm{signal}}}{A_{\mathrm{noise}}}\right)^2, \quad \mathrm{SNR}(dB) = 10 \lg \left(\frac{P_{\mathrm{signal}}}{P_{\mathrm{noise}}}\right) = 20 \lg \left(\frac{A_{\mathrm{signal}}}{A_{\mathrm{noise}}}\right).$$

Спасибо за внимание!

mailto

eddy@sao.ru edward.emelianoff@gmail.com

