

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э.БАУМАНА

(национальный исследовательский университет)»

Факультет: Информатика и системы управления

Кафедра: Теоретическая информатика и компьютерные технологии

Лабораторная работа № 2

«Аппроксимация методом наименьших квадратов.

Двухпараметрические модели»

по дисциплине «Численные методы»

Вариант 10

Работу выполнил

студент группы ИУ9-62Б

Жук Дмитрий

Цель работы

Целью данной работы является изучение создания аппроксимирующей функции на основе априорных данных о ней, а также оценка ошибки с помощью среднеквадратичного отклонения.

Задание

- 1. Построить графики таблично заданной функции и функции z(x).
- 2. Найти значение $x_a, x_g, x_h, y_a, y_g, y_h, z(x_a), z(x_g), z(x_h), \delta_1, ..., \delta_9,$ $\delta_k = \min \delta_i.$
- 3. Составить систему уравнений для определения a и b и решить её.
- 4. Найти среднеквадратичное отклонение Δ.

Индивидуальный вариант

$$n = 8$$

i	0	1	2	3	4	5	6	7	8
x_i	1	1,5	2	2,5	3	3,5	4	4,5	5
y_i	1,32	1,81	2,58	2,88	3,88	4,29	4,58	5,00	4,14

Реализация

1. Используя сайт <u>GeoGebra</u>, изобразим на координатной плоскости заданные точки (x_i, y_i) , i = 0, ..., n и проведем гладкую монотонную кривую, аппроксимирующую эту зависимость (рисунок 1).

Рисунок 1 – заданные точки и получившийся график в GeoGebra

2. Используя Excel (рисунок 2) и GeoGebra (рисунок 1), вычислим значения величин $x_a = \frac{x_0 + x_n}{2}, x_g = \sqrt{x_0 x_n}, x_h = \frac{2}{\frac{1}{x_0} + \frac{1}{x_n}}, y_a = \frac{y_0 + y_n}{2}, y_g = \sqrt{y_0 y_n},$ $y_h = \frac{2}{\frac{1}{y_0} + \frac{1}{y_n}}, \ z(x_a), \ z(x_g), \ z(x_h).$ Так же вычислим значения следующих величин:

$\delta_1 = z(x_a) - y_a ,$	$\delta_2 = z(x_g) - y_g ,$	$\delta_3 = \big z(x_a) - y_g \big ,$
$\delta_4 = z(x_g) - y_a ,$	$\delta_5 = z(x_h) - y_a ,$	$\delta_6 = z(x_a) - y_h ,$
$\delta_7 = z(x_h) - y_h ,$	$\delta_8 = \big z(x_h) - y_g \big ,$	$\delta_9 = \left z(x_g) - y_h \right $

и выберем из них наименьшее. По рисунку 2 – это $\delta_7 \;\Rightarrow\; k=7$.

,					
8	2.	i	x_i	y_i	
9		0	1	1,32	
10		n	5	4,14	
11					
12		*	x_*	y_*	z(x_*)
13		a	3,00000	2,73000	3,76087
14		g	2,23607	2,33769	2,84023
15		h	1,66667	2,00176	2,03988
16					
17		į 🔻	δ_i	ans	
18		7	0,0381237	min	
19		4	0,1102288		
20		8	0,2978092		
21		2	0,5025377		
22		5	0,6901181		
23		9	0,8384706		
24		1	1,0308688		
25		3	1,4231776		
26		6	1,7591106	max	
27					

Рисунок 2 – расчеты δ в Excel

3. Для определения коэффициентов a и b перейдем к обратным величинам:

$$\frac{1}{z_7(x)} = \frac{ax+b}{x} = a + \frac{b}{x}$$

Минимизируется величина:

$$F(a,b) = \sum_{i=0}^{n} \left(a + \frac{b}{x_i} - \frac{1}{y_i} \right)^2$$

$$\begin{split} \frac{\partial F}{\partial a} &= \left(\sum_{i=0}^{n} \left(a + \frac{b}{x_{i}} - \frac{1}{y_{i}}\right)^{2}\right)_{a}^{2} = \sum_{i=0}^{n} \left[2\left(a + \frac{b}{x_{i}} - \frac{1}{y_{i}}\right)\left(a + \frac{b}{x_{i}} - \frac{1}{y_{i}}\right)'_{a}\right] \\ &= 2\sum_{i=0}^{n} \left[\left(a + \frac{b}{x_{i}} - \frac{1}{y_{i}}\right)(1 + 0 - 0)\right] = 2\sum_{i=0}^{n} \left(a + \frac{b}{x_{i}} - \frac{1}{y_{i}}\right) \\ \frac{\partial F}{\partial b} &= \left(\sum_{i=0}^{n} \left(a + \frac{b}{x_{i}} - \frac{1}{y_{i}}\right)^{2}\right)_{b}^{'} = \sum_{i=0}^{n} \left[2\left(a + \frac{b}{x_{i}} - \frac{1}{y_{i}}\right)\left(a + \frac{b}{x_{i}} - \frac{1}{y_{i}}\right)'_{b}\right] \\ &= 2\sum_{i=0}^{n} \left[\left(a + \frac{b}{x_{i}} - \frac{1}{y_{i}}\right)\left(0 + \frac{1}{x_{i}} - 0\right)\right] = 2\sum_{i=0}^{n} \left(\frac{a}{x_{i}} + \frac{b}{x_{i}^{2}} - \frac{1}{x_{i}y_{i}}\right) \\ \begin{cases} \frac{\partial F}{\partial a} &= 0 \\ \frac{\partial F}{\partial b} &= 0 \end{cases} \Rightarrow \begin{vmatrix} \tilde{x}_{i} &= \frac{1}{x_{i}} \\ \tilde{y}_{i} &= \frac{1}{y_{i}} \end{vmatrix} \Rightarrow \begin{cases} 2\sum_{i=0}^{n} (a + b\tilde{x}_{i} - \tilde{y}_{i}) &= 0 \\ 2\sum_{i=0}^{n} (a + b\tilde{x}_{i} - \tilde{y}_{i}) &= 0 \end{cases} \\ 2\sum_{i=0}^{n} (a + b\tilde{x}_{i} - \tilde{y}_{i}) &= 0 \end{cases} \\ \Rightarrow \begin{cases} an + b\sum_{i=0}^{n} \tilde{x}_{i} &= \sum_{i=0}^{n} \tilde{y}_{i} \\ a\sum_{i=0}^{n} \tilde{x}_{i} &= \sum_{i=0}^{n} \tilde{x}_{i} \tilde{y}_{i} \end{cases} \\ a\sum_{i=0}^{n} \tilde{x}_{i} &= \sum_{i=0}^{n} \tilde{x}_{i} \cdot \sum_{i=0}^{n} \tilde{y}_{i} \\ b= \frac{n\sum_{i=0}^{n} \tilde{x}_{i} \cdot \sum_{i=0}^{n} \tilde{x}_{i} \cdot \sum_{i=0}^{n} \tilde{x}_{i} \cdot \sum_{i=0}^{n} \tilde{x}_{i}}{\tilde{x}_{i}} \end{cases} \end{cases}$$

Произведем вычисления в Excel (рисунок 3) и получим значения a и b. Так же построим получившуюся функцию $z_7(x)$ в GeoGebra (рисунок 4).

28	3. Реализу	ем δ_7:										Τ
29		_										Т
30	i		0	1	2	3	4	5	6	7	8	3
31)	_i = 1/x_i	1	0,666667	0,5	0,4	0,333333	0,285714	0,25	0,2222222	0,2	2
32	<u>}</u>	/_i = 1/y_i	0,7575758	0,552486	0,3875969	0,347222	0,257732	0,2331	0,218341	0,2	0,2415459)
33												
34	4	ŧ	Σ[i=0,n](*)									
35	1	L/χ_i	3,8579365									
36	1	L/y_i	3,1955998									
37	1	L/χ_i^2	2,1990709									
38	1	L/(χ_i*y_i)	1,7584367									
39		_										
40		$h = \frac{n\Sigma \chi}{n}$	$\chi y - \Sigma \chi * $ $\chi^2 - \Sigma \chi * $	Σy _	0.641	986431341	112					
41		$\nu = \frac{1}{n\Sigma_{i}}$	$\chi^2 - \Sigma \chi *$	Σ_{χ}	0,041	700431341	112					
42												
43		a =	$\Sigma y - b * \Sigma \chi$									
44		<i>a</i> =	\overline{n}	= 0,089837109091747								
45												

Рисунок 3 – расчеты a и b в Excel

Рисунок 4 – график аппроксимированной функции в GeoGebra

4. С помощью Excel, вычислим значения известных точек в $z_7(x_i)$ i=0,...,n и найдем среднеквадратичное отклонение Δ (рисунок 5).

46	4. Средне	квадратиче	ское отклог	нение								
47												
48		i	0	1	2	3	4	5	6	7	8	
49		z_7(x_i)	1,3664123	1,931068	2,4339764	2,88474	3,29107	3,659226	3,994349	4,30069125	4,5818092	
50												
51		Δ	0,4756689									
52												

Рисунок 5 – расчеты ∆ в Excel

Вывод

В ходе лабораторной работы был изучен способ создания аппроксимирующей функции на основе априорных данных о ней. Предполагаемая и получившаяся функция различаются. Среднеквадратичное отклонение позволяет оценить размер получившийся ошибки.