Green Sheet ISA - Vectorial Pipeline CPU

					System	
	ld			Null		
Type Op Nul		Null	INUII			
		31:30 29:28 27:25		27:25	24:0	
	NOP	00 00 000		000	000000000000000000000000000000000000000	
	COM	I 00 01 000		000	000000000000000000000000000000000000000	
	END 00 10 000		000	000000000000000000000000000000000000000		

			torial				
	ld			Registers			Null
	Type Op IS		IS	RD RA RB		RB	Null
	31:30	29:27	26:25	24:21	20:17	16:13	12:0
ADDV	01	000	00	XXXX	XXXX	XXXX	0000000000000
MOVV	01	001	001 00 xxxx xxx xxxx xxxx		XXXX	0000000000000	
XORV	01	010	10 00 xxxx xxxx		XXXX	000000000000	
ORV	01	011	00	XXXX	XXXX	XXXX	000000000000
SHRV	01	100	00	XXXX	XXXX	XXXX	0000000000000
SHLV	01	101	00	XXXX	XXXX	XXXX	0000000000000
CMPV	01	110	00	XXXX	XXXX	XXXX	0000000000000

				alar			
	ld			Registers			Null
	Type Op IS		IS	RD RA RB		RB	Null
	31:30	29:27	26:25	24:21	20:17	16:13	12:0
ADDS	01	000	01	xxxx	xxxx	xxxx	000000000000
MOVS	01	001	01	XXXX	XXXX	XXXX	0000000000000
XORS	01	010	01	XXXX	XXXX	XXXX	0000000000000
ORS	01	011	01	XXXX	XXXX	XXXX	0000000000000
SHRS	01	100	01	XXXX	XXXX	XXXX	0000000000000
SHLS	01	01 101 01 xxxx xxxx		XXXX	0000000000000		
CMPS	01	110	01	XXXX	XXXX	XXXX	0000000000000

				scalar			
	ld			Registers			Null
	Tipo Op IS		IS	RD RA Immediate		Immediate	Null
	31:30	29:27	26:25	24:21	20:17	16:9	8:0
ADDS	01	000	11	XXXX	XXXX	XXXXXXXX	00000000
MOVS	01	001	11	XXXX	XXXX	XXXXXXXX	00000000
XORS	01	010	11	XXXX	XXXX	XXXXXXXX	00000000
ORS	01	011	11	XXXX	XXXX	XXXXXXXX	00000000
SHRS	01	100	11	XXXX	XXXX	XXXXXXXX	00000000
SHLS	01	101	11	XXXX	XXXX	XXXXXXXX	00000000
CMPS	01	110	11	XXXX	XXXX	XXXXXXXX	00000000

		Memoria							
			ld			Null			
	Туре	Op	Null	IS	RD	RA	Immediate	Null	
	31:30	29	28:27	26:25	24:21	20:17	16:9	8:0	
LDRV	10	0	00	00	XXXX	XXXX	XXXXXXXX	000000000	
LDRS	10	0	00	01	XXXX	XXXX	XXXXXXX	000000000	
STRV	10	1	00	00	XXXX	XXXX	XXXXXXX	000000000	
STRS	10	1	00	01	XXXX	XXXX	XXXXXXXX	000000000	

				Contr			
	ld			Null	Instr number	Null	
	Type Op Null		Null	Null	Immediate	Null	
	31:30	29:28	27:25	24:17	16:9	8:0	
JMP	11	00	000	00000000	XXXXXXX	00000000	
JEQ	11	01	000	00000000	XXXXXXX	00000000	
JLT	11	10	000	00000000	XXXXXXX	00000000	

INSTRUCCIÓN	MODO	EJEMPLO	SINTAXIS	COMPORTAMIENTO	OP CODE	TIPO
NOP	no aplica	NOP	NOP	PC ← PC + 4; Flags ← 0	0	
СОМ	no aplica	СОМ	СОМ	COMFlag ← 1	1	system
END	no aplica	END	END	ENDFlag ← 1	2	
ADDV	registro	ADDV RV[1:8], RV[1:8], RV[1:8]	ADDV Rd, Ra, Rb	Rd ← Ra + Rb		
ADDS	registro	ADDS RV[1:8], RV[1:8], RS[1:6]	ADDS Rd, Ra, Rb	Rd ← Ra + Rb	0	
ADDS	inmediato	ADDS RV[1:8], RV[1:8], #5	ADDS Rd, Ra, Imm	Rd ← Ra + Imm		
MOVV	registro	MOVV RV[1:8], RV[1:8]	MOVV Rd, Rb	Rd ← Rb		
MOVS	registro	MOVS RS[1:6], RS[1:6]	MOVS Rd, Rb	Rd ← Rb	1	
MOVS	inmediato	MOVS RS[1:6], #5	MOVS Rd, Rb	Rd ← Imm		
XORV	registro	XORV RV[1:8], RV[1:8], RV[1:8]	XORV Rd, Ra, Rb	Rd ← Ra ^ Rb		
XORS	registro	XORS RV[1:8], RV[1:8], RS[1:6]	XORS Rd, Ra, Rb	Rd ← Ra ^ Rb	2	
XORS	inmediato	XORS RV[1:8], RV[1:8], #5	XORS Rd, Ra, Imm	Rd ← Ra ^ Imm		
ORV	registro	ORV RV[1:8], RV[1:8], RV[1:8]	ORV Rd, Ra, Rb	Rd ← Ra Rb		
ORS	registro	ORS RV[1:8], RV[1:8], RS[1:6]	ORS Rd, Ra, Rb	Rd ← Ra Rb	3	dato
ORS	inmediato	ORS RV[1:8], RV[1:8], #5	ORS Rd, Ra, Imm	Rd ← Ra Imm		
SHRV	registro	SHRV RV[1:8], RV[1:8], RV[1:8]	SHRV Rd, Ra, Rb	Rd ← Ra >> Rb		
SHRS	registro	SHRS RV[1:8], RV[1:8], RS[1:6]	SHRS Rd, Ra, Rb	Rd ← Ra >> Rb	4	
SHRS	inmediato	SHRS RV[1:8], RV[1:8], #5	SHRS Rd, Ra, Imm	Rd ← Ra >> Imm		
SHLV	registro	SHLV RV[1:8], RV[1:8], RV[1:8]	SHLV Rd, Ra, Rb	Rd ← Ra << Rb		
SHLS	registro	SHLS RV[1:8], RV[1:8], RS[1:6]	SHLS Rd, Ra, Rb	Rd ← Ra << Rb	5	
SHLS	inmediato	SHLS RV[1:8], RV[1:8], #5	SHLS Rd, Ra, Imm	Rd ← Ra << Imm		
CMPV	registro	SHRV RV[1:8], RV[1:8]	SHRV Ra, Rb	Ra – Rb; ALUFLags ← NZ		
CMPS	registro	SHRS RV[1:8], RS[1:6]	SHRS Ra, Rb	Ra – Rb; ALUFLags ← NZ	6	
CMPS	inmediato	SHRS RV[1:8], #5	SHRS Ra, Imm	Ra – Imm; ALUFLags ← NZ		
LDRV	registro	LDRV RV[1:8], [RV[1:8]]	LDR Rd, [Ra]	Rd ← MEM[Ra + 0]		
LDRV	inmediato	LDRV RV[1:8], [RV[1:8], #8]	LDR Rd, [Ra, Imm]	Rd ← MEM[Ra + Imm]	0	
LDRS	registro	LDRS RS[1:6], [RV[1:8]]	LDR Rd, [Ra]	$Rd \leftarrow MEM[Ra + 0]$		memoria
LDRS	inmediato	LDRS RS[1:6], [RV[1:8], #8]	LDR Rd, [Ra, Imm]	Rd ← MEM[Ra + Imm]		
STRV	registro	STRV RV[1:8], [RV[1:8]]	STR Rd, [Ra]	MEM[Ra + 0] ← Rd	1	
STRV	inmediato	STRV RV[1:8], [RV[1:8], #8]	STR Rd, [Ra, Imm]	MEM[Ra + Imm] ← Rd		
JMP	incondicional	JMP_loop	JMP LABEL	PC ← Imm	0	
JEQ	condicional	JEQ _loop	JEQ LABEL	$PC \leftarrow Imm \text{ if } Z=1 \text{ else } PC+4$	1	control
JLT	condicional	JLT_loop	JLT LABEL	PC ← Imm if N=1 else PC+4	2	
JLI	Condicional	321 _100p	JET ET WEE	10 (111111 1111 1 1 1 1 1 1 1 1 1 1 1 1		

INSTRUCCIÓN	NOMBRE	DESCRIPCIÓN/PROPÓSITO
NOP	No Operation	Esta instrucción no hace nada durante la ejecución. Se utiliza con fines de temporización, para prevenir riesgos y para invalidar una instrucción existente, como un salto, como objetivo de una instrucción de ejecución.
СОМ	Communication	Esta instrucción activa la bandera de COM. Se utiliza como indicador para iniciar la comunicación con el arduino.
END	End	Esta instrucción activa la bandera de END. Se utiliza como indicador para indicar la finalización del algoritmo.
ADD	Add	Esta instrucción realiza la suma de dos valores y los almacena en un registro destino.
MOV	Move	Esta instrucción almacena el valor de un registro o inmediato recibido en un registro destino.
XOR	Xor	Esta instrucción realiza la operación lógica xor de dos valores y los almacena en un registro destino.
OR	Or	Esta instrucción realiza la operación lógica or de dos valores y los almacena en un registro destino.
SHR	Shift right	Esta instrucción realiza la operación de desplazamiento a la derecha en un valor y lo almacena en un registro destino.
SHL	Shift left	Esta instrucción realiza la operación de desplazamiento a la izquierda en un valor y lo almacena en un registro destino.
СМР	Compare	Esta instrucción realiza la resta de dos valores y actualiza las banderas de la ALU acorde al resultado que obtiene.
LDR	Load	Esta instrucción guarda en el primer registro de la instrucción el valor ubicado en la dirección de memoria efectiva conformada por el valor del segundo registro adicionado a un indice que puede ser indicado con un inmediato u otro registro. Si no se indica un indice, se asume un cero y la dirección efectiva es igual al segundo registro.
STR	Store	Esta instrucción guarda el valor del primer registro de la instrucción en la dirección de memoria efectiva conformada por el valor del segundo registro adicionado a un indice que puede ser indicado con un inmediato u otro registro. Si no se indica un indice, se asume un cero y la dirección efectiva es igual al segundo registro.
JMP	Jump	Esta instrucción realiza un salto a la primera instrucción después de la etiqueta que se indica.
JEQ	Jump equal	Esta instrucción comprueba si la bandera Z (cero) se ha accionado, si es así realiza un salto a la primera instrucción después de la etiqueta correspondiente, sino continua con la siguiente instrucción. NOTA: La instrucción CMP debe ser utilizada antes de emplear esta instrucción, en caso contrario podría tener un funcionamiento incierto.
JLT	Jump less than	Esta instrucción comprueba si la bandera N (negativo) se ha accionado, si es así realiza un salto a la primera instrucción después de la etiqueta correspondiente, sino continua con la siguiente instrucción. NOTA: La instrucción CMP debe ser utilizada antes de emplear esta instrucción, en caso contrario podría tener un funcionamiento incierto.
		Instruccion, en caso contrato podria terrei un toricionamiento incierro.
REGISTROS		DESCRIPCIÓN/PROPÓSITO