

DATA2901: Data Science, Big Data and Data Variety (Adv)

# Practical Assignment Report: PARRAMATTA & EASTERN SUBURB ANALYSIS

ADV 01 - Group 2

Bao Ngo - 540916379 Cong Thanh Vu - 530784058

#### 1. DATASET DESCRIPTION

#### 1.1. Data Sources

| Table                  | Source                            | Description                                                                       |
|------------------------|-----------------------------------|-----------------------------------------------------------------------------------|
| sa2_boundaries         | ABS SA2 shapefile via ABS website | The geographic boundaries of each SA2 region in Greater Sydney.                   |
| businesses             | ABS Business<br>Register          | Number of businesses by SA2 and industry code.                                    |
| stops                  | Transport for NSW<br>Open Data    | Public transport stops (buses/ trains) in GTFS format (TXT file).                 |
| catchments<br>(school) | NSW Department of<br>Education    | Polygons defining catchment areas for public schools in NSW.                      |
| population             | ABS Census 2021                   | SA2-level demographic data including total population and age-grouped population. |
| income                 | ABS Census 2021                   | Median income for each SA2_region.                                                |
| sa2_pois               | NSW POI API                       | POIs per SA2s (e.g. supermarkets, libraries, etc.)                                |

## 1.2. Key Fields

Key fields retained across datasets include sa2\_code identifier, geom for spatial joins, and numeric fields like total\_population, young\_population, total\_businesses, and median\_income for score calculations.

## 1.3. Data Preprocessing

**SRID**: all geom columns in the datasets were transformed to EPSG:4326 for compatibility with PostGIS functions (e.g. ST\_Intersect(), ST\_Contains, etc.)

Geographic Filter: restricted SA2 regions to Greater Sydney.

**Type & Schema Alignment:** pruned columns that are not needed for spatial joins and scoring to reduce table bloating, checked for ID uniqueness (duplicates), casted all ID to INT and renamed columns to match with database schema (e.g. "SA2\_CODE21" to "sa2\_code").

**Missing & Unassigned Records:** dropped rows with non-numeric keys (e.g. "np"), and filtered child tables to only sa2\_code(s) that are in the master sa2\_boundaries.

#### 2. DATABASE DESCRIPTION

#### 2.1. Schema Overview



We designed a PostgreSQL database with PostGIS to support spatial integration and scoring. The schema includes the following key tables. All spatial tables use EPSG:4326, and sa2\_code serves as the primary key for linking most tables. This structure enabled efficient spatial joins and metric computation for scoring and analysis.



Database Schema Diagram

## 2.2. Indexing Strategy

**Spatial:** to enable efficient spatial joins, GiST indexes were created for all geometry columns. **B-Tree:** because PostgreSQL only automatically generates indexes on unique constraints or primary keys.

B-Tree indexes were created on sa2\_code of foreignly linked child tables to improve join & filtering operations.

#### 3. RESULTS & CORRELATION ANALYSIS

## 3.1. Scoring Methodology

Given the **z-score** formula:

$$z = \frac{x - \mu}{\sigma}$$

x: the raw value for the SA2 (e.g., number of schools per 1000 youth)

 $\mu$  : the mean value of that component across all SA2s within the same SA4,

 $\sigma$ : the standard deviation for the component within the SA4

This **z-score** formula standardized each component by converting them into a common scale (mean = 0, sd = 1). This ensures that each component contributes equally to the aggregated sigmoid score, preventing any metric from dominating due to its numerical magnitude. A positive z-score indicates above-average performance, while a negative score indicates below-average.

We use the sigmoid function to extend the z-score approach to produce a meaningful indicator for the well-resourcefulness of each SA2 region:

$$Score_{SA2} = S(z_{business} + z_{stops} + z_{schools} + z_{POIs})$$

- $S(x) = \frac{1}{1 + e^{-x}}$ : the **sigmoid function** transforms the aggregated sum of z-scores into a value between 0 and 1.
- \*\*Zbusiness\*: z-score of businesses per 1000 residents, focusing on the Transport, Postal and Warehousing industry.
- z<sub>stops</sub>: z-score of the number of public transport stops within the SA2.
- Zschools: z-score of school catchments per 1000 'young population' (ages 0-19).
- *ZPOIs*: z-score of number of points of interest within the SA2.



Because z-score standardization ensures that all components contribute equally, and one standard deviation of any component makes the same impact on the aggregated score. All components have proportional contribution and components with higher z-scores have greater influence on the aggregated sigmoid score.

Moreover, the shape of the sigmoid function makes the overall score very sensitive around midpoint, allowing for clearer differentiation between moderately well-resourced SA2 regions. While at the extremes (0 and 1), the curve flattens, preventing very high or very low inputs to disproportionately influence the overall score. This provides stability and reduces the impact of outliers.

To provide meaningful per-capita calculations and fair comparisons, SA2 regions with a total population under 100 are excluded from the scoring process. Such areas often serve non-residential or special-purpose functions and do not reflect typical population-based dynamics central to our analysis. The excluded SA2s were: *Centennial Park* (Eastern Suburbs), *Rookwood Cemetery, Smithfield Industrial*, and *Yennora Industrial* (Parramatta).

It is also important to note that, since scores are calculated relative to other SA2s within a specific SA4 region, comparisons of SA2 scores are valid only within the SA4 and should not be used for cross-region evaluations.

## 3.2. Result Analysis

#### 3.2.1. Distribution



Sigmoid Score Distribution in Eastern Suburbs & Parramatta

The histograms above reveal a bimodal distribution of sigmoid scores for both **Eastern Suburbs** and **Parramatta**. This pattern suggests a polarisation in well-resourcefulness between SA2 regions within each SA4. Many SA2s scored either quite high or very low, with relatively few falling in the middle range. In the **Eastern Suburbs**, for example, SA2 regions such as Rose Bay - Vaucluse - Watsons Bay or Double Bay - Darling Point scored well above 0.8, while several other regions scored below 0.2. (see <u>Appendix A</u>) Parramatta displays a similar polarity, but with a slightly greater number of middle-ranked SA2s. The bimodality of distribution indicates that access to infrastructure and services is uneven within these regions - some SA2s are highly-resourced, while others significantly lag behind.

#### 3.2.2. Spatial Patterns

In the **Eastern Suburbs**, many of the low-scoring SA2s are concentrated along the coastline. As shown in the map above, this includes areas such as Bondi Beach, South Coogee, and Dover Heights, which tend to



have fewer public transport stops, limited school catchments, and lower density of POIs - all key factors contributing to their lower scores.



Choropleth Map: Sigmoid Score by SA2 Region in Eastern Suburbs & Parramatta

However, this coastal pattern is not uniform. Coastal SA2s like Rose Bay – Vaucluse – Watsons Bay, Maroubra – South, and Malabar scored relatively high, driven by better infrastructure coverage and particularly high POI counts. This suggests that POI density is the dominant driver of score variation in Eastern Suburbs, with well-connected SA2s showing consistently higher performance.

In **Parramatta**, lower-scoring SA2s like Winston Hills, North Rocks, and Carlingford are mostly located on the outer edges of the SA4, where public transport, POIs, and school access are limited. In contrast, higher scores cluster near the centre, in areas like Granville – Clyde, Rosehill – Harris Park, and Parramatta – North, which are better connected and commercially active.

Notably, top SA2s don't require all components to be above average. For example, the region with the highest score, Granville - Clyde had a slightly negative schools' score (-0.28), while Ermington – Rydalmere had a negative score in business (-0.88), yet both scored highly due to strengths in other areas. Conversely, low-scoring regions, such as Greystanes - South, can still have isolated strengths (z-stops = 1.36), but these aren't enough to offset major weaknesses. (see Appendix A)

Overall, the results highlight that balanced performance across components is more valuable than excelling in just one. The sigmoid function reinforces this by compressing the influence at the extremes.

## 3.3 Correlation Analysis

To evaluate the relationship between well-resourcefulness and income in a SA2 region, we conducted a correlation analysis by comparing each SA2's sigmoid score with its median income.

In both **Parramatta** and **Eastern Suburbs**, we observe a consistent pattern: lower sigmoid scores often occur in high-income suburbs, while higher scores are more common in lower-income areas. In Parramatta, the correlation between score and income is –0.33, while the correlation in Eastern Suburbs is slightly weaker, –0.17 (see <u>Appendix E</u>). Wealthier areas such as Woollahra and South Coogee tend to have limited public infrastructure, while regions like Granville - Clyde or Matraville - Chifley score highly due to better access to transport, schools, and POIs.

These findings demonstrate a key insight: a region's economic wealth does not necessarily correspond to its public service access. The scoring method provides a complementary lens to traditional income-based metrics by revealing under-serviced areas that may be overlooked when income is the indicator. Thus, this method presents as a valuable tool for equity-focused urban planning and future infrastructure investment.







Scatter Plot between Sigmoid Score & Median Income in Eastern Suburbs & Parramatta

#### 3.4 Rank Based Scoring Method

To complement the original scoring system, we designed a rank-based alternative that evaluates SA2 regions based on their relative standing across key components:

$$avg\_rank_{SA_2} = rac{r_{business} + r_{stops} + r_{POIs} + r_{schools}}{4}$$

- Tbusiness: rank of businesses per 1,000 residents, focusing on the Transport, Postal and Warehousing industry.
- \*\*POIs\*: rank of number of Points of Interest (from the NSW POI API).
- \*\*rstops\*: rank of public transport stops (train and bus).
- \*rschools\*: rank of school catchments per 1,000 youth (ages 0-19).

Next, to standardise the result on a 0-1 scale, we applied min-max normalization, producing the final rank-based score:

$$r\_score_{SA_2} = 1 - rac{avg\_rank_{SA_2} - min(avg\_rank)}{max(avg\_rank) - min(avg\_rank)}$$

Comparison to original results: The rank-based and sigmoid scoring methods generally agree on the top and bottom SA2s. Regions like Granville – Clyde and Double Bay – Darling Point consistently score highly in both methods, while Winston Hills and South Coogee rank low in both.

In general, a high rank score tends to align with a high sigmoid score, but not necessarily the other way around. For example, Rose Bay – Vaucluse – Watsons Bay ranks 1st by sigmoid score due to extremely high POIs and transport stops, yet only 10th by rank score because of weaker school and business presence. Similarly, Auburn North ranks 2nd by sigmoid (driven by high business density), but drops to 13th in rank score due to imbalance

This scoring method ensures that SA2s with better (lower) average ranks receive higher scores, and the final score reflects balanced, consistent performance across all components. (see <a href="Appendix">Appendix</a> C)



Sigmoid Score & Rank Score method comparision



across metrics. (See <u>Appendix B</u> & <u>Appendix D</u>). This suggests that rank-based scores reward consistency, while sigmoid scores emphasize individual strengths, making the rank-based method more reliable for identifying well-rounded, well-serviced regions.

#### 3.5 Building Regression Model

To explore how public infrastructure and geography relate to median income across regions, we developed a multiple linear regression model. We selected the following features based on their relevance to urban accessibility and regional development:

- businesses\_per\_1000: number of Transport, Postal and Warehousing businesses per 1,000 residents in each SA2.
- num stops: number of public transport stops within each SA2.
- num pois: number of Points of Interest in each SA2.
- areasqkm21: area of each SA2 region in square kilometers.

An 80/20 train-test split was applied, and we used backward stepwise selection on the training set to retain only statistically significant predictors. The final model retained all four predictors (see Appendix F), the estimated regression equation is:

 $\widehat{median\_income} = 78400 - 2154 \times areasqkm21 - 44.3 \times num\_stops - 1096.7 \times businesses\_per\_1000 + 94.2 \times num\_pois$ 

The model performed well on the training set, with an adjusted R-squared of 0.776, indicating that approximately 78% of the variability in median income can be explained by the model. On the test set, the model achieved a Test R² of 0.35 and a Root Mean Squared Error (RMSE) of 7164, indicating moderate predictive performance.

**Assumptions Checking:** (see Appendix G)

The residuals vs fitted values plot shows no major curvature or funneling, suggesting that the relationship between predictors and income is approximately linear, and the residuals display homoscedasticity. The Q-Q plot indicates that residuals are approximately normally distributed, with only minor deviations. This supports the assumption of normal error terms.

We also calculated the Variance Inflation Factor (VIF) for each predictor. All VIF values were well below 5, indicating no significant multicollinearity.

**Limitations:** A key limitation of this analysis is the small dataset size. We only included SA2s from two SA4 regions (Eastern Suburbs and Parramatta), resulting in just around 50 observations. This restricts the model's generalisability and statistical power, particularly on the test set.

**Conclusion:** Interestingly, three of the four predictors - areasqkm21, businesses\_per\_1000, and num\_stops - have negative coefficients, indicating that larger, more industrial, or more connected areas tend to be associated with lower median incomes. In contrast, num\_pois is positively associated with income, suggesting that access to public amenities such as parks and community facilities is linked to higher-income areas. These findings suggest that not all infrastructure contributes equally to socioeconomic outcomes, and in some cases, high density or industrial development may coincide with lower-income populations.

#### 4. CONCLUSION

Overall, this project demonstrates how spatial data and public infrastructure metrics can be combined to evaluate regional equity and identify underserved areas. While both scoring methods identified well-resourced SA2s, the rank-based approach more reliably captured balanced infrastructure access. We found that high service access did not always align with income, and our regression model showed that POI access significantly influenced socioeconomic outcomes. These findings underscore the value of data-driven approaches in supporting equity-focused urban planning.



# **APPENDIX A: Sigmoid Score's Results**

|    | sa2_code  | sa2_name                             | businesses_per_1000 | num_pois | num_stops | schools_per_1000 | z_business | z_stops   | z_pois    | z_schools | s_score  |
|----|-----------|--------------------------------------|---------------------|----------|-----------|------------------|------------|-----------|-----------|-----------|----------|
| 0  | 118011346 | Rose Bay - Vaucluse - Watsons<br>Bay | 2.660680            | 233      | 191       | 1.664447         | -1.027254  | 2.440997  | 2.398938  | -1.386235 | 0.918822 |
| 1  | 118011650 | Double Bay - Darling Point           | 4.678479            | 174      | 74        | 6.784261         | 0.047784   | -0.849287 | 1.328308  | 1.868944  | 0.916503 |
| 2  | 118021653 | Matraville - Chifley                 | 8.686614            | 94       | 129       | 2.617040         | 2.183228   | 0.697428  | -0.123395 | -0.780576 | 0.878327 |
| 3  | 118021570 | Randwick - South                     | 3.505492            | 139      | 129       | 5.383023         | -0.577157  | 0.697428  | 0.693188  | 0.978037  | 0.857110 |
| 4  | 118011345 | Paddington - Moore Park              | 2.545723            | 177      | 101       | 6.038647         | -1.088501  | -0.089991 | 1.382747  | 1.394883  | 0.831898 |
| 5  | 118021652 | Malabar - La Perouse                 | 3.088442            | 210      | 127       | 3.222836         | -0.799352  | 0.641183  | 1.981574  | -0.395411 | 0.806589 |
| 6  | 118011341 | Bondi Junction - Waverly             | 3.806112            | 106      | 144       | 4.689332         | -0.416993  | 1.119259  | 0.094361  | 0.536988  | 0.791438 |
| 7  | 118021568 | Maroubra - West                      | 8.273635            | 56       | 64        | 5.500000         | 1.963203   | -1.130508 | -0.812953 | 1.052411  | 0.745006 |
| 8  | 118021567 | Maroubra - South                     | 6.023013            | 57       | 122       | 4.639393         | 0.764122   | 0.500573  | -0.794807 | 0.505236  | 0.726140 |
| 9  | 118021564 | Kensington (NSW)                     | 6.012526            | 70       | 73        | 5.798394         | 0.758534   | -0.877409 | -0.558905 | 1.242130  | 0.637458 |
| 10 | 118011649 | Bellevue Hill                        | 3.857812            | 117      | 159       | 2.195734         | -0.389449  | 1.541090  | 0.293970  | -1.048443 | 0.598007 |
| 11 | 118021565 | Kingsford                            | 7.985481            | 61       | 89        | 3.052270         | 1.809680   | -0.427456 | -0.722222 | -0.503857 | 0.538957 |
| 12 | 118021569 | Randwick - North                     | 4.848708            | 53       | 110       | 4.093199         | 0.138478   | 0.163108  | -0.867392 | 0.157966  | 0.399430 |
| 13 | 118011339 | Bondi - Tamarama - Bronte            | 4.456651            | 80       | 102       | 3.255562         | -0.070401  | -0.061869 | -0.377443 | -0.374604 | 0.292284 |
| 14 | 118021566 | Maroubra - North                     | 4.574565            | 70       | 72        | 3.773585         | -0.007579  | -0.905531 | -0.558905 | -0.045244 | 0.179865 |
| 15 | 118021651 | Coogee - Clovelly                    | 2.839757            | 87       | 116       | 2.147651         | -0.931846  | 0.331841  | -0.250419 | -1.079014 | 0.126813 |
| 16 | 118011347 | Woollahra                            | 2.404488            | 59       | 53        | 5.416385         | -1.163747  | -1.439851 | -0.758515 | 0.999248  | 0.086049 |
| 17 | 118011340 | Bondi Beach - North Bondi            | 4.039732            | 78       | 96        | 1.530222         | -0.292526  | -0.230601 | -0.413735 | -1.471575 | 0.082532 |
| 18 | 118011344 | Dover Heights                        | 4.828326            | 55       | 84        | 1.750700         | 0.127619   | -0.568066 | -0.831100 | -1.331395 | 0.068949 |
| 19 | 118021654 | South Coogee                         | 2.659574            | 40       | 49        | 3.342246         | -1.027843  | -1.552339 | -1.103294 | -0.319490 | 0.017934 |

## Sigmoid Score in Eastern Suburbs, ordered by s-score

|    |           | - 3                                      |                     |          |           | ,                | /          |           |           |           |          |
|----|-----------|------------------------------------------|---------------------|----------|-----------|------------------|------------|-----------|-----------|-----------|----------|
|    | sa2_code  | sa2_name                                 | businesses_per_1000 | num_pois | num_stops | schools_per_1000 | z_business | z_stops   | z_pois    | z_schools | s_score  |
| 0  | 125031481 | Granville - Clyde                        | 25.476892           | 185      | 239       | 3.299120         | 1.007516   | 1.234396  | 1.081511  | -0.289826 | 0.954069 |
| 1  | 125041719 | Rosehill - Harris Park                   | 33.004386           | 134      | 59        | 5.208333         | 1.938641   | -1.339569 | 0.144083  | 1.116391  | 0.865244 |
| 2  | 125021477 | Ermington - Rydalmere                    | 10.197912           | 168      | 294       | 3.598299         | -0.882441  | 2.020885  | 0.769035  | -0.069468 | 0.862713 |
| 3  | 125041717 | Parramatta - North                       | 16.389412           | 167      | 60        | 7.102273         | -0.116574  | -1.325269 | 0.750654  | 2.511359  | 0.860587 |
| 4  | 125041489 | North Parramatta                         | 13.307326           | 213      | 198       | 3.702942         | -0.497817  | 0.648104  | 1.596178  | 0.007606  | 0.852465 |
| 5  | 125011586 | Lidcombe                                 | 17.155714           | 173      | 181       | 3.938041         | -0.021785  | 0.405007  | 0.860940  | 0.180767  | 0.806110 |
| 6  | 125011583 | Auburn - North                           | 41.370938           | 59       | 80        | 4.672897         | 2.973554   | -1.039273 | -1.234488 | 0.722020  | 0.805622 |
| 7  | 125031484 | Guildford West - Merrylands<br>West      | 16.433143           | 180      | 262       | 2.098951         | -0.111165  | 1.563292  | 0.989606  | -1.173803 | 0.780388 |
| 8  | 125041491 | Northmead                                | 14.738285           | 247      | 103       | 3.550543         | -0.320813  | -0.710377 | 2.221130  | -0.104642 | 0.747495 |
| 9  | 125031483 | Guildford - South Granville              | 19.817344           | 144      | 242       | 2.254156         | 0.307449   | 1.277296  | 0.327892  | -1.059487 | 0.701228 |
| 10 | 125031714 | Merrylands - Holroyd                     | 20.369059           | 179      | 199       | 2.097789         | 0.375695   | 0.662404  | 0.971226  | -1.174658 | 0.697341 |
| 11 | 125011587 | Regents Park                             | 24.409144           | 44       | 66        | 7.269790         | 0.875439   | -1.239470 | -1.510202 | 2.634743  | 0.681464 |
| 12 | 125031479 | Chester Hill - Sefton                    | 15.913978           | 151      | 256       | 2.283850         | -0.175383  | 1.477493  | 0.456559  | -1.037616 | 0.672839 |
| 13 | 125041493 | Toongabbie - Constitution Hill           | 12.867327           | 180      | 194       | 3.041145         | -0.552244  | 0.590905  | 0.989606  | -0.479836 | 0.633772 |
| 14 | 125031480 | Fairfield - East                         | 15.132329           | 132      | 230       | 3.115265         | -0.272071  | 1.105698  | 0.107321  | -0.425243 | 0.626143 |
| 15 | 125011582 | Auburn - Central                         | 31.887301           | 100      | 141       | 2.775850         | 1.800461   | -0.166985 | -0.480869 | -0.675237 | 0.617127 |
| 16 | 125041589 | Wentworthville - Westmead                | 20.639882           | 127      | 174       | 2.744237         | 0.409195   | 0.304909  | 0.015416  | -0.698521 | 0.507749 |
| 17 | 125011584 | Auburn - South                           | 22.801303           | 52       | 83        | 5.577689         | 0.676555   | -0.996374 | -1.363155 | 1.388438  | 0.426894 |
| 18 | 125031715 | Pemulwuy - Greystanes (North)            | 10.176951           | 168      | 93        | 3.840000         | -0.885034  | -0.853376 | 0.769035  | 0.108555  | 0.297168 |
| 19 | 125021712 | Carlingford - West                       | 10.416127           | 118      | 211       | 2.561072         | -0.855449  | 0.834002  | -0.150012 | -0.833430 | 0.267981 |
| 20 | 125041588 | Pendle Hill - Girraween                  | 18.729001           | 100      | 129       | 3.157064         | 0.172825   | -0.338582 | -0.480869 | -0.394457 | 0.260941 |
| 21 | 125011585 | Berala                                   | 19.081762           | 50       | 96        | 4.975124         | 0.216461   | -0.810476 | -1.399917 | 0.944623  | 0.259358 |
| 22 | 125031716 | South Wentworthville                     | 15.680393           | 45       | 120       | 4.955401         | -0.204277  | -0.467281 | -1.491821 | 0.930096  | 0.225607 |
| 23 | 125021711 | Carlingford - East                       | 7.892931            | 99       | 121       | 4.608295         | -1.167559  | -0.452981 | -0.499250 | 0.674437  | 0.190718 |
| 24 | 125021478 | Oatlands - Dundas Valley                 | 9.538180            | 141      | 152       | 2.587880         | -0.964048  | -0.009687 | 0.272750  | -0.813685 | 0.180248 |
| 25 | 125011710 | Wentworth Point - Sydney<br>Olympic Park | 11.184816           | 165      | 71        | 3.141690         | -0.760364  | -1.167971 | 0.713892  | -0.405780 | 0.165174 |
| 26 | 125041718 | Parramatta - South                       | 27.108434           | 34       | 59        | 3.680336         | 1.209332   | -1.339569 | -1.694012 | -0.009044 | 0.137846 |
| 27 | 125011709 | Silverwater - Newington                  | 14.138817           | 64       | 80        | 4.506534         | -0.394965  | -1.039273 | -1.142583 | 0.599486  | 0.121603 |
| 28 | 125041490 | North Rocks                              | 6.496575            | 87       | 139       | 4.065041         | -1.340284  | -0.195584 | -0.719822 | 0.274307  | 0.121172 |
| 29 | 125031713 | Greystanes - South                       | 8.769822            | 79       | 248       | 1.523395         | -1.059091  | 1.363094  | -0.866869 | -1.597724 | 0.103346 |
| 30 | 125041494 | Winston Hills                            | 6.161264            | 126      | 153       | 2.538071         | -1.381760  | 0.004613  | -0.002965 | -0.850371 | 0.097046 |
|    |           |                                          |                     |          |           |                  |            |           |           |           |          |

Sigmoid Score in Parramatta, ordered by s-score



# **APPENDIX B: Rank Score's Results**

|    | sa2_code  | sa2_name                          | r_business | r_poi | r_stops | r_schools | avg_rank | r_score  |
|----|-----------|-----------------------------------|------------|-------|---------|-----------|----------|----------|
| 0  | 118011650 | Double Bay - Darling Point        | 8          | 4     | 15      | 1         | 7.00     | 1.000000 |
| 1  | 118021653 | Matraville - Chifley              | 1          | 8     | 4       | 15        | 7.00     | 1.000000 |
| 2  | 118021570 | Randwick - South                  | 14         | 5     | 4       | 6         | 7.25     | 0.975610 |
| 3  | 118011341 | Bondi Junction - Waverly          | 13         | 7     | 3       | 7         | 7.50     | 0.951220 |
| 4  | 118011345 | Paddington - Moore Park           | 19         | 3     | 11      | 2         | 8.75     | 0.829268 |
| 5  | 118021567 | Maroubra - South                  | 4          | 16    | 7       | 8         | 8.75     | 0.829268 |
| 6  | 118021652 | Malabar - La Perouse              | 15         | 2     | 6       | 13        | 9.00     | 0.804878 |
| 7  | 118021564 | Kensington (NSW)                  | 5          | 12    | 16      | 3         | 9.00     | 0.804878 |
| 8  | 118011649 | Bellevue Hill                     | 12         | 6     | 2       | 16        | 9.00     | 0.804878 |
| 9  | 118011346 | Rose Bay - Vaucluse - Watsons Bay | 17         | 1     | 1       | 19        | 9.50     | 0.756098 |
| 10 | 118021568 | Maroubra - West                   | 2          | 17    | 18      | 4         | 10.25    | 0.682927 |
| 11 | 118011339 | Bondi - Tamarama - Bronte         | 10         | 10    | 10      | 12        | 10.50    | 0.658537 |
| 12 | 118021569 | Randwick - North                  | 6          | 19    | 9       | 9         | 10.75    | 0.634146 |
| 13 | 118021565 | Kingsford                         | 3          | 14    | 13      | 14        | 11.00    | 0.609756 |
| 14 | 118021566 | Maroubra - North                  | 9          | 12    | 17      | 10        | 12.00    | 0.512195 |
| 15 | 118021651 | Coogee - Clovelly                 | 16         | 9     | 8       | 17        | 12.50    | 0.463415 |
| 16 | 118011340 | Bondi Beach - North Bondi         | 11         | 11    | 12      | 20        | 13.50    | 0.365854 |
| 17 | 118011344 | Dover Heights                     | 7          | 18    | 14      | 18        | 14.25    | 0.292683 |
| 18 | 118011347 | Woollahra                         | 20         | 15    | 19      | 5         | 14.75    | 0.243902 |
| 19 | 118021654 | South Coogee                      | 18         | 20    | 20      | 11        | 17.25    | 0.000000 |
|    |           |                                   |            |       |         |           |          |          |

## Rank Score in Eastern Suburbs, ordered by r-score

|    |           |                                       |            | ,     |         |           | ,        |          |
|----|-----------|---------------------------------------|------------|-------|---------|-----------|----------|----------|
|    | sa2_code  | sa2_name                              | r_business | r_poi | r_stops | r_schools | avg_rank | r_score  |
| 0  | 125031481 | Granville - Clyde                     | 5          | 3     | 6       | 17        | 7.75     | 1.000000 |
| 1  | 125011586 | Lidcombe                              | 13         | 7     | 12      | 11        | 10.75    | 0.793103 |
| 2  | 125041489 | North Parramatta                      | 21         | 2     | 10      | 13        | 11.50    | 0.741379 |
| 3  | 125031484 | Guildford West - Merrylands West      | 14         | 4     | 2       | 29        | 12.25    | 0.689655 |
| 4  | 125021477 | Ermington - Rydalmere                 | 25         | 8     | 1       | 15        | 12.25    | 0.689655 |
| 5  | 125041719 | Rosehill - Harris Park                | 2          | 15    | 30      | 4         | 12.75    | 0.655172 |
| 6  | 125031714 | Merrylands - Holroyd                  | 9          | 6     | 9       | 30        | 13.50    | 0.603448 |
| 7  | 125031483 | Guildford - South Granville           | 10         | 13    | 5       | 28        | 14.00    | 0.568966 |
| 8  | 125041717 | Parramatta - North                    | 15         | 10    | 29      | 2         | 14.00    | 0.568966 |
| 9  | 125041491 | Northmead                             | 19         | 1     | 21      | 16        | 14.25    | 0.551724 |
| 10 | 125031479 | Chester Hill - Sefton                 | 16         | 12    | 3       | 27        | 14.50    | 0.534483 |
| 11 | 125041493 | Toongabbie - Constitution Hill        | 22         | 4     | 11      | 21        | 14.50    | 0.534483 |
| 12 | 125011583 | Auburn - North                        | 1          | 26    | 25      | 7         | 14.75    | 0.517241 |
| 13 | 125011582 | Auburn - Central                      | 3          | 20    | 16      | 22        | 15.25    | 0.482759 |
| 14 | 125041589 | Wentworthville - Westmead             | 8          | 17    | 13      | 23        | 15.25    | 0.482759 |
| 15 | 125031480 | Fairfield - East                      | 18         | 16    | 7       | 20        | 15.25    | 0.482759 |
| 16 | 125011584 | Auburn - South                        | 7          | 27    | 24      | 3         | 15.25    | 0.482759 |
| 17 | 125011587 | Regents Park                          | 6          | 30    | 28      | 1         | 16.25    | 0.413793 |
| 18 | 125011585 | Berala                                | 11         | 28    | 22      | 5         | 16.50    | 0.396552 |
| 19 | 125041588 | Pendle Hill - Girraween               | 12         | 20    | 18      | 18        | 17.00    | 0.362069 |
| 20 | 125031715 | Pemulwuy - Greystanes (North)         | 26         | 8     | 23      | 12        | 17.25    | 0.344828 |
| 21 | 125031716 | South Wentworthville                  | 17         | 29    | 20      | 6         | 18.00    | 0.293103 |
| 22 | 125021712 | Carlingford - West                    | 24         | 19    | 8       | 25        | 19.00    | 0.224138 |
| 23 | 125021711 | Carlingford - East                    | 29         | 22    | 19      | 8         | 19.50    | 0.189655 |
| 24 | 125041718 | Parramatta - South                    | 4          | 31    | 30      | 14        | 19.75    | 0.172414 |
| 25 | 125011709 | Silverwater - Newington               | 20         | 25    | 25      | 9         | 19.75    | 0.172414 |
| 26 | 125011710 | Wentworth Point - Sydney Olympic Park | 23         | 11    | 27      | 19        | 20.00    | 0.155172 |
| 27 | 125021478 | Oatlands - Dundas Valley              | 27         | 14    | 15      | 24        | 20.00    | 0.155172 |
| 28 | 125041490 | North Rocks                           | 30         | 23    | 17      | 10        | 20.00    | 0.155172 |
| 29 | 125031713 | Greystanes - South                    | 28         | 24    | 4       | 31        | 21.75    | 0.034483 |
| 30 | 125041494 | Winston Hills                         | 31         | 18    | 14      | 26        | 22,25    | 0.000000 |

Rank Score in Parramatta, ordered by r-score



# **APPENDIX C: Distribution of Rank Score and Sigmoid Score**

0.2

0

0.0

Distribution of Sigmoid vs Rank-Based Scores - Eastern Suburbs

Sigmoid Score
Rank Score

4

2

1

Rank Score & Sigmoid Score Distribution in Eastern Suburbs

Score

0.6

0.8

1.0

0.4



Rank Score & Sigmoid Score Distribution in Parramatta



# **APPENDIX D: Rank Scores and Sigmoid Score by SA2**



Bar Graph of Rank Scores vs Sigmoid Score by SA2 in the Eastern Suburbs



Bar Graph of Rank Score vs Sigmoid Scores by SA2 in Parramatta



# **APPENDIX E: Correlation Matrix**



Correlation Heat Map: Sigmoid Score vs Median Income - Eastern Suburbs



Correlation Heat Map: Sigmoid Score vs Median Income (Parramatta)



# **APPENDIX F: Model Summary**

OLS Regression Results

|                     |            |        |      |              |        |           | =        |
|---------------------|------------|--------|------|--------------|--------|-----------|----------|
| Dep. Variable:      | median_    | income | R-sq | uared:       |        | 0.79      | 9        |
| Model:              |            | OLS    | Adj. | R-squared:   |        | 0.77      | 5        |
| Method:             | Least S    | quares | F-st | atistic:     |        | 34.78     | 3        |
| Date:               | Sun, 18 Ma | y 2025 | Prob | (F-statisti  | c):    | 9.60e-1   | 2        |
| Time:               | 14         | :12:21 | Log- | Likelihood:  |        | -406.2    | 2        |
| No. Observations:   |            | 40     | AIC: |              |        | 822.4     | 1        |
| Df Residuals:       |            | 35     | BIC: |              |        | 830.9     | 9        |
| Df Model:           |            | 4      |      |              |        |           |          |
| Covariance Type:    | non        | robust |      |              |        |           |          |
|                     |            | ====== |      |              | ====== |           |          |
|                     | coef       | std 0  | err  | t            | P> t   | [0.025    | 0.975]   |
|                     |            |        |      |              |        |           |          |
| Intercept           |            |        |      |              |        |           |          |
| areasqkm21          |            |        |      |              |        |           |          |
| num_stops           |            |        |      |              |        |           |          |
| businesses_per_1000 | -1096.7140 | 110.2  | 241  | -9.948       | 0.000  | -1320.515 | -872.913 |
| num_pois            | 94.1517    | 27.3   | 370  | 3.440        | 0.002  | 38.588    | 149.715  |
|                     |            | ====== |      |              | ====== |           | =        |
| Omnibus:            |            |        |      | in-Watson:   |        | 1.59      | 5        |
| Prob(Omnibus):      |            |        |      | ue-Bera (JB) | :      | 1.16      | 3        |
| Skew:               |            | 0.109  |      | ` '          |        | 0.55      |          |
| Kurtosis:           |            | 2.192  | Cond | l. No.       |        | 561       |          |
|                     |            | ====== |      |              | ====== |           | =        |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Summary of Final Regression Model Predicting Median Income

Test R<sup>2</sup>: 0.3500337315030242 Test RMSE: 7163.80135118231

Statistics on testing data



# **APPENDIX G: Assumptions Checking**



Residuals vs Fitted Values Plot for Income Regression Model



Q-Q Plot of Residuals for Income Regression Model



|   | Feature             | VIF      |
|---|---------------------|----------|
| 0 | const               | 8.727391 |
| 1 | businesses_per_1000 | 1.019778 |
| 2 | num_pois            | 2.137954 |
| 3 | num_stops           | 1.892515 |
| 4 | areasqkm21          | 3.083768 |

Variance Inflation Factor (VIF) for Regression Predictors