CHAPTER 10

Section 10.1

1.

a. H_o will be rejected if $f \ge F_{.05,4,15} = 3.06$ (since I – 1 = 4, and I (J – 1) = (5)(3) = 15). The computed value of F is $f = \frac{MSTr}{MSE} = \frac{2673.3}{1094.2} = 2.44$. Since 2.44 is not

 \geq 3.06, H_o is not rejected. The data does not indicate a difference in the mean tensile strengths of the different types of copper wires.

b. $F_{.05,4,15} = 3.06$ and $F_{.10,4,15} = 2.36$, and our computed value of 2.44 is between those values, it can be said that .05 < p-value < .10.

2.

Type of Box	\overline{x}	S
1	713.00	46.55
2	756.93	40.34
3	698.07	37.20
4	682.02	39.87

Grand mean = 712.51

$$MSTr = \frac{6}{4-1} [(713.00 - 712.51)^{2} + (756.93 - 712.51)^{2} + (698.07 - 712.51)^{2} + (682.02 - 712.51)^{2}] = 6,223.0604$$

$$MSE = \frac{1}{4} [(46.55)^{2} + (40.34)^{2} + (37.20)^{2} + (39.87)^{2}] = 1,691.9188$$

$$f = \frac{MSTr}{MSE} = \frac{6,223.0604}{1,691.9188} = 3.678$$

$$F_{053.20} = 3.10$$

3.678 > 3.10, so reject H_o . There is a difference in compression strengths among the four box types.

- With \mathbf{m}_1 = true average lumen output for brand i bulbs, we wish to test H_0 : $\mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3$ versus H_a : at least two \mathbf{m}_1 's are unequal. $MSTr = \hat{\mathbf{s}}_B^2 = \frac{591.2}{2} = 295.60, \quad MSE = \hat{\mathbf{s}}_W^2 = \frac{4773.3}{21} = 227.30, \text{ so}$ $f = \frac{MSTr}{MSE} = \frac{295.60}{227.30} = 1.30 \text{ For finding the p-value, we need degrees of freedom I} 1 = 2 \text{ and I (J} 1) = 21. \text{ In the 2}^{\text{nd}} \text{ row and 21}^{\text{st}} \text{ column of Table A.9, we see that } 1.30 < F_{.10,2,21} = 2.57, \text{ so the p-value} > .10. \text{ Since .10 is not < .05, we cannot reject H}_0.$ There are no differences in the average lumen outputs among the three brands of bulbs.
- 4. $x_{\bullet \bullet} = IJ\overline{x}_{\bullet \bullet} = 32(5.19) = 166.08$, so $SST = 911.91 \frac{(166.08)^2}{32} = 49.95$. $SSTr = 8 \left[(4.39 5.19)^2 + ... + (6.36 5.19)^2 \right] = 20.38$, so SSE = 49.95 20.38 = 29.57. Then $f = \frac{20.38/3}{29.57/28} = 6.43$. Since $6.43 \ge F_{.05,2,28} = 2.95$, $H_0 : \mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3 = \mathbf{m}_4$ is rejected at level .05. There are differences between at least two average flight times for the four treatments.
- 5. \mathbf{m}_{i} = true mean modulus of elasticity for grade i (i = 1, 2, 3). We test H_{0} : \mathbf{m}_{1} = \mathbf{m}_{2} = \mathbf{m}_{3} vs. H_{a} : at least two \mathbf{m}_{1} 's are unequal. Reject H_{0} if $f \geq F_{.01,2,27} = 5.49$. The grand mean = 1.5367, $MSTr = \frac{10}{2} \left[(1.63 1.5367)^{2} + (1.56 1.5367)^{2} + (1.42 1.5367)^{2} \right] = .1143$ $MSE = \frac{1}{3} \left[(.27)^{2} + (.24)^{2} + (.26)^{2} \right] = .0660, \ f = \frac{MSTr}{MSE} = \frac{.1143}{.0660} = 1.73. \text{ Fail to reject } H_{0}. \text{ The three grades do not appear to differ.}$

6.

Source	Df	SS	MS	F
Treatments	3	509.112	169.707	10.85
Error	36	563.134	15.643	
Total	39	1,072.256		

 $F_{.01,3,36} \approx F_{.01,3,30} = 4.51$. The computed test statistic value of 10.85 exceeds 4.51, so reject H_0 in favor of H_a : at least two of the four means differ.

Source	Df	SS	MS	F
Treatments	3	75,081.72	25,027.24	1.70
Error	16	235,419.04	14,713.69	
Total	19	310,500.76		

The hypotheses are H_0 : $\mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3 = \mathbf{m}_4$ vs. H_a : at least two \mathbf{m}_1 's are unequal. $1.70 < F_{.10.3.16} = 2.46$, so p-value > .10, and we fail to reject H_0 .

8. The summary quantities are $x_{1\bullet} = 2332.5$, $x_{2\bullet} = 2576.4$, $x_{3\bullet} = 2625.9$, $x_{4\bullet} = 2851.5$, $x_{5\bullet} = 3060.2$, $x_{\bullet\bullet} = 13,446.5$, so CF = 5,165,953.21, SST = 75,467.58, SST = 43,992.55, SSE = 31,475.03, $MSTr = \frac{43,992.55}{4} = 10,998.14$,

$$MSE = \frac{31,475.03}{30} = 1049.17$$
 and $f = \frac{10,998.14}{1049.17} = 10.48$. (These values should be

displayed in an ANOVA table as requested.) Since $10.48 \ge F_{.01.4.30} = 4.02$,

 $H_0: \mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3 = \mathbf{m}_4 = \mathbf{m}_5$ is rejected. There are differences in the true average axial stiffness for the different plate lengths.

9. The summary quantities are $x_{1\bullet} = 34.3$, $x_{2\bullet} = 39.6$, $x_{3\bullet} = 33.0$, $x_{4\bullet} = 41.9$,

$$x_{\bullet \bullet} = 148.8$$
, $\Sigma \Sigma x_{ij}^2 = 946.68$, so $CF = \frac{(148.8)^2}{24} = 922.56$,

$$SST = 946.68 - 922.56 = 24.12$$
,

$$SSTr = \frac{(34.3)^2 + ... + (41.9)^2}{6} - 922.56 = 8.98$$
, $SSE = 24.12 - 8.98 = 15.14$.

Source	Df	SS	MS	F
Treatments	3	8.98	2.99	3.95
Error	20	15.14	.757	
Total	23	24.12		

Since $3.10 = F_{.05,3,20} < 3.95 < 4.94 = F_{.01,3,20}$, .01 < p-value < .05 and H_o is rejected at level .05.

a.
$$E(\overline{X}_{\bullet\bullet}) = \frac{\sum E(\overline{X}_{i\bullet})}{I} = \frac{\sum m_i}{I} = m$$
.

b.
$$E(\overline{X}_{i\bullet}^2) = Var(\overline{X}_{i\bullet}) + [E(\overline{X}_{i\bullet})]^2 = \frac{S^2}{I} + m_i^2$$
.

c.
$$E(\overline{X}_{\bullet \bullet}^2) = Var(\overline{X}_{\bullet \bullet}) + [E(\overline{X}_{\bullet \bullet})]^2 = \frac{S^2}{II} + m^2$$
.

d.
$$E(SSTr) = E\left[J\Sigma\overline{X}_{i\bullet}^{2} - IJ\overline{X}_{\bullet\bullet}^{2}\right] = J\sum\left(\frac{\mathbf{s}^{2}}{J + \mathbf{m}_{i}^{2}}\right) - IJ\left(\frac{\mathbf{s}^{2}}{IJ + \mathbf{m}^{2}}\right)$$
$$= I\mathbf{s}^{2} + J\Sigma\mathbf{m}_{i}^{2} - \mathbf{s}^{2} - IJ\mathbf{m}^{2} = (I - 1)\mathbf{s}^{2} + J\Sigma(\mathbf{m}_{i} - \mathbf{m})^{2}, \text{ so}$$
$$E(MSTr) = \frac{E(SSTr)}{I - 1} = E\left[J\Sigma\overline{X}_{i\bullet}^{2} - IJ\overline{X}_{\bullet\bullet}^{2}\right] = \mathbf{s}^{2} + J\sum\frac{(\mathbf{m}_{i} - \mathbf{m})^{2}}{I - 1}.$$

e. When H_0 is true, $\mathbf{m}_i = ... = \mathbf{m}_i = \mathbf{m}$, so $\Sigma(\mathbf{m}_i - \mathbf{m})^2 = 0$ and $E(MSTr) = \mathbf{S}^2$. When H_0 is false, $\Sigma(\mathbf{m}_i - \mathbf{m})^2 > 0$, so $E(MSTr) > \mathbf{S}^2$ (on average, MSTr overestimates \mathbf{S}^2).

Section 10.2

11.
$$Q_{.05,5,15} = 4.37, w = 4.37\sqrt{\frac{272.8}{4}} = 36.09.$$

$$3 \qquad 1 \qquad 4 \qquad 2 \qquad 5$$

$$437.5 \qquad 462.0 \qquad 469.3 \qquad 512.8 \qquad 532.1$$

The brands seem to divide into two groups: 1, 3, and 4; and 2 and 5; with no significant differences within each group but all between group differences are significant.

3	1	4	2	5
437.5	462.0	469.3	512.8	532.1

Brands 2 and 5 do not differ significantly from one another, but both differ significantly from brands 1, 3, and 4. While brands 3 and 4 do differ significantly, there is not enough evident to indicate a significant difference between 1 and 3 or 1 and 4.

13.

Brand 1 does not differ significantly from 3 or 4, 2 does not differ significantly from 4 or 5, 3 does not differ significantly from 1, 4 does not differ significantly from 1 or 2, 5 does not differ significantly from 2, but all other differences (e.g., 1 with 2 and 5, 2 with 3, etc.) do appear to be significant.

14. I = 4, J = 8, so
$$Q_{.05,4,28} \approx 3.87$$
, $w = 3.87 \sqrt{\frac{1.06}{8}} = 1.41$.

1	2	3	4
4.39	4.52	5.49	6.36

Treatment 4 appears to differ significantly from both 1 and 2, but there are no other significant differences.

15.
$$Q_{.01,4,36} = 4.75$$
, $w = 4.75 \sqrt{\frac{15.64}{10}} = 5.94$.

	•		
2	1	3	4
24.69	26.08	29.95	33.84

Treatment 4 appears to differ significantly from both 1 and 2, but there are no other significant differences.

16.

- **a.** Since the largest standard deviation ($s_4 = 44.51$) is only slightly more than twice the smallest ($s_3 = 20.83$) it is plausible that the population variances are equal (see text p. 406).
- **b.** The relevant hypotheses are H_0 : $\mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3 = \mathbf{m}_4 = \mathbf{m}_5$ vs. H_a : at least two \mathbf{m}_1 's differ. With the given f of 10.48 and associated p-value of 0.000, we can reject H_0 and conclude that there is a difference in axial stiffness for the different plate lengths.

c.

4	6	8	10	12
333.21	368.06	375.13	407.36	437.17

There is no significant difference in the axial stiffness for lengths 4, 6, and 8, and for lengths 6, 8, and 10, yet 4 and 10 differ significantly. Length 12 differs from 4, 6, and 8, but does not differ from 10.

17.
$$\mathbf{q} = \Sigma c_i \mathbf{m}_i$$
 where $c_1 = c_2 = .5$ and $c_3 = -1$, so $\hat{\mathbf{q}} = .5\overline{x}_{1 \bullet} + .5\overline{x}_{2 \bullet} - \overline{x}_{3 \bullet} = -.396$ and $\Sigma c_i^2 = 1.50$. With $t_{.025,6} = 2.447$ and MSE = .03106, the CI is (from 10.5 on page 418)
$$-.396 \pm (2.447) \sqrt{\frac{(.03106)(1.50)}{3}} = -.396 \pm .305 = (-.701, -.091).$$

18.

a. Let $\mathbf{m}_i = \text{true}$ average growth when hormone #i is applied. $H_0: \mathbf{m}_1 = ... = \mathbf{m}_5$ will be rejected in favor of H_a : at least two \mathbf{m}_i 's differ if $f \ge F_{.05,4,15} = 3.06$. With

$$\frac{x_{\bullet\bullet}^2}{II} = \frac{(278)^2}{20} = 3864.20$$
 and $\Sigma\Sigma x_{ij}^2 = 4280$, SST = 415.80.

$$\frac{\Sigma x_{i\bullet}^2}{J} = \frac{(51)^2 + (71)^2 + (70)^2 + (46)^2 + (40)^2}{4} = 4064.50 \text{ , so SSTr} = 4064.50 - 4064.50 \text{ }$$

3864.20 = 200.3, and SSE = 415.80 - 200.30 = 215.50. Thus

$$MSTr = \frac{200.3}{4} = 50.075$$
, $MSE = \frac{215.5}{15} = 14.3667$, and

$$f=\frac{50.075}{14.3667}=3.49$$
 . Because $3.49\geq3.06$, reject $\rm H_o.$ There appears to be a

difference in the average growth with the application of the different growth hormones.

b.
$$Q_{.05,5,15}=4.37$$
, $w=4.37\sqrt{\frac{14.3667}{4}}=8.28$. The sample means are, in increasing order, 10.00, 11.50, 12.75, 17.50, and 17.75. The most extreme difference is 17.75 – $10.00=7.75$ which doesn't exceed 8.28, so no differences are judged significant. Tukey's method and the F test are at odds.

19. MSTr = 140, error d.f. = 12, so
$$f = \frac{140}{SSE/12} = \frac{1680}{SSE}$$
 and $F_{.05,2,12} = 3.89$.
$$w = Q_{.05,3,12} \sqrt{\frac{MSE}{J}} = 3.77 \sqrt{\frac{SSE}{60}} = .4867 \sqrt{SSE}$$
. Thus we wish $\frac{1680}{SSE} > 3.89$ (significance of f) and $.4867 \sqrt{SSE} > 10$ (= 20 – 10, the difference between the extreme $\overline{x}_{i\bullet}$'s - so no significant differences are identified). These become $431.88 > SSE$ and $SSE > 422.16$, so $SSE = 425$ will work.

- Now MSTr = 125, so $f = \frac{1500}{SSE}$, $w = .4867\sqrt{SSE}$ as before, and the inequalities become 385.60 > SSE and SSE > 422.16. Clearly no value of SSE can satisfy both inequalities.
- a. Grand mean = 222.167, MSTr = 38,015.1333, MSE = 1,681.8333, and f = 22.6. The hypotheses are $\boldsymbol{H}_0: \boldsymbol{m}_1 = ... = \boldsymbol{m}_6$ vs. $\boldsymbol{H}_a:$ at least two \boldsymbol{m}_i 's differ. Reject \boldsymbol{H}_o if $f \geq F_{.01,5,78}$ (but since there is no table value for $\boldsymbol{n}_2 = 78$, use $f \geq F_{.01,5,60} = 3.34$) With $22.6 \geq 3.34$, we reject \boldsymbol{H}_o . The data indicates there is a dependence on injection regimen.
 - **b.** Assume $t_{.005,78} \approx 2.645$
 - Confidence interval for $\mathbf{m}_1 \frac{1}{5} (\mathbf{m}_2 + \mathbf{m}_3 + \mathbf{m}_4 + \mathbf{m}_5 + \mathbf{m}_6)$: $\Sigma c_i \overline{x}_i \pm t_{\mathbf{a}/2, I(J-1)} \sqrt{\frac{MSE(\Sigma c_i^2)}{J}}$ $= -67.4 \pm (2.645) \sqrt{\frac{1,681.8333(1.2)}{14}} = (-99.16, -35.64).$
 - ii) Confidence interval for $\frac{1}{4} (\mathbf{m}_2 + \mathbf{m}_3 + \mathbf{m}_4 + \mathbf{m}_5) \mathbf{m}_6$: = $61.75 \pm (2.645) \sqrt{\frac{1,681.8333(1.25)}{14}} = (29.34,94.16)$

Section 10.3

- Summary quantities are $x_{1\bullet}=291.4$, $x_{2\bullet}=221.6$, $x_{3\bullet}=203.4$, $x_{4\bullet}=227.5$, $x_{\bullet\bullet}=943.9$, CF=49,497.07, $\Sigma\Sigma x_{ij}^2=50,078.07$, from which SST=581, $SSTr=\frac{(291.4)^2}{5}+\frac{(221.6)^2}{4}+\frac{(203.4)^2}{4}+\frac{(227.5)^2}{5}-49,497.07$ = 49,953.57-49,497.07=456.50, and SSE=124.50. Thus $MSTr=\frac{456.50}{3}=152.17$, $MSE=\frac{124.50}{18-4}=8.89$, and f=17.12. Because $17.12 \geq F_{.05,3,14}=3.34$, $H_0: \mathbf{m}_1=...=\mathbf{m}_4$ is rejected at level .05. There is a difference in yield of tomatoes for the four different levels of salinity.
- 23. $J_{1} = 5, J_{2} = 4, J_{3} = 4, J_{4} = 5, \ \overline{x}_{1\bullet} = 58.28, \ \overline{x}_{2\bullet} = 55.40, \ \overline{x}_{3\bullet} = 50.85, \ \overline{x}_{4\bullet} = 45.50,$ $MSE = 8.89. \ With \ W_{ij} = Q_{.05,4,14} \cdot \sqrt{\frac{MSE}{2} \left(\frac{1}{J_{i}} + \frac{1}{J_{j}}\right)} = 4.11 \sqrt{\frac{8.89}{2} \left(\frac{1}{J_{i}} + \frac{1}{J_{j}}\right)},$ $\overline{x}_{1\bullet} \overline{x}_{2\bullet} \pm W_{12} = (2.88) \pm (5.81); \qquad \overline{x}_{1\bullet} \overline{x}_{3\bullet} \pm W_{13} = (7.43) \pm (5.81)^{*};$ $\overline{x}_{1\bullet} \overline{x}_{4\bullet} \pm W_{14} = (12.78) \pm (5.48)^{*}; \qquad \overline{x}_{2\bullet} \overline{x}_{3\bullet} \pm W_{23} = (4.55) \pm (6.13);$ $\overline{x}_{2\bullet} \overline{x}_{4\bullet} \pm W_{24} = (9.90) \pm (5.81)^{*}; \qquad \overline{x}_{3\bullet} \overline{x}_{4\bullet} \pm W_{34} = (5.35) \pm (5.81);$ *Indicates an interval that doesn't include zero, corresponding to \mathbf{M} 's that are judged significantly different.

This underscoring pattern does not have a very straightforward interpretation.

24.

Source	Df	SS	MS	F
Groups	3-1=2	152.18	76.09	5.56
Error	74-3=71	970.96	13.68	
Total	74-1=73	1123.14		

Since $5.56 \ge F_{.01,2.71} \approx 4.94$, reject $H_0: \mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3$ at level .01.

- **a.** The distributions of the polyunsaturated fat percentages for each of the four regimens must be normal with equal variances.
- **b.** We have all the \overline{X}_i 's, and we need the grand mean:

$$\overline{X}_{...} = \frac{8(43.0) + 13(42.4) + 17(43.1) + 14(43.5)}{52} = \frac{2236.9}{52} = 43.017$$

$$SSTr = \sum_{i} J_{i} (\overline{x}_{i.} - \overline{x}_{...})^{2} = 8(43.0 - 43.017)^{2} + 13(42.4 - 43.017)^{2}$$

$$+17(43.1 - 43.017)^{2} + 13(43.5 - 43.017)^{2} = 8.334$$
and $MSTr = \frac{8.334}{3} = 2.778$

$$SSTr = \sum_{i} (J_{i} - 1)s^{2} = 7(1.5)^{2} + 12(1.3)^{2} + 16(1.2)^{2} + 13(1.2)^{2} = 77.79 \text{ and}$$

$$MSE = \frac{77.79}{48} = 1.621. \text{ Then } f = \frac{MSTr}{MSE} = \frac{2.778}{1.621} = 1.714 \text{ Since}$$

 $1.714 < F_{.10,3,50} = 2.20$, we can say that the p-value is > .10. We do not reject the null hypothesis at significance level .10 (or any smaller), so we conclude that the data suggests no difference in the percentages for the different regimens.

26.

a.

i: 1 2 3 4 5 6
$$J_{\rm I}: \ 4 \ 5 \ 4 \ 4 \ 5 \ 4$$

$$x_{i\bullet}\colon \ 56.4 \ 64.0 \ 55.3 \ 52.4 \ 85.7 \ 72.4 \ x_{\bullet\bullet} = 386.2$$

$$\overline{x}_{i\bullet}\colon \ 14.10 \ 12.80 \ 13.83 \ 13.10 \ 17.14 \ 18.10 \ \Sigma\Sigma x_j^2 = 5850.20$$
 Thus SST = 113.64, SSTr = 108.19, SSE = 5.45, MSTr = 21.64, MSE = .273, f = 79.3. Since $79.3 \ge F_{0.15, 20} = 4.10$, $H_0: \mathbf{m} = \dots = \mathbf{m}_6$ is rejected.

b. The modified Tukey intervals are as follows: (The first number is $\overline{x}_{i\bullet} - \overline{x}_{j\bullet}$ and the

second is
$$W_{ij} = Q_{.01} \cdot \sqrt{\frac{MSE}{2} \left(\frac{1}{J_i} + \frac{1}{J_j}\right)}$$
.)

Pair	Interval	Pair	Interval	Pair	Interval
1,2	1.30 ± 1.37	2,3	-1.03 ± 1.37	3,5	-3.31 ± 1.37 *
1,3	$.27 \pm 1.44$	2,4	30 ± 1.37	3,6	$-4.27 \pm 1.44 *$
1,4	1.00 ± 1.44	2,5	$-4.34 \pm 1.29 *$	4,5	-4.04 ± 1.37 *
1,5	$-3.04\pm1.37*$	2,6	$-5.30 \pm 1.37 *$	4,6	$-5.00 \pm 1.44 *$
1,6	$-4.00 \pm 1.44 *$	3,4	$.37 \pm 1.44$	5,6	96 ± 1.37

Asterisks identify pairs of means that are judged significantly different from one another.

c. The 99% t confidence interval is
$$\sum c_i \overline{x}_{i\bullet} \pm t_{.005,I(J-1)} \sqrt{\frac{MSE(\sum c_i^2)}{J_i}}$$
.
$$\sum c_i \overline{x}_{i\bullet} = \frac{1}{4} \overline{x}_{1\bullet} + \frac{1}{4} \overline{x}_{2\bullet} + \frac{1}{4} \overline{x}_{3\bullet} + 14 \overline{x}_{4\bullet} - 12 \overline{x}_{5\bullet} - \frac{1}{2} \overline{x}_{6\bullet} = -4.16$$
, $\frac{(\sum c_i^2)}{J_i} = .1719$,
$$\text{MSE} = .273, \ t_{.005,20} = 2.845$$
. The resulting interval is
$$-4.16 \pm (2.845) \sqrt{(.273)(.1719)} = -4.16 \pm .62 = (-4.78, -3.54)$$
. The interval in the answer section is a Scheffe' interval, and is substantially wider than the t interval.

27.

a. Let $\mathbf{m}_1 = \text{true}$ average foliacin content for specimens of brand I. The hypotheses to be tested are $H_0 : \mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3 = \mathbf{m}_4$ vs. H_a : at least two \mathbf{m}_1 's differ.

$$\Sigma\Sigma x_{ij}^2 = 1246.88 \text{ and } \frac{x_{\bullet\bullet}^2}{n} = \frac{(168.4)^2}{24} = 1181.61, \text{ so SST} = 65.27.$$

$$\frac{\Sigma x_{i\bullet}^2}{J_i} = \frac{(57.9)^2}{7} + \frac{(37.5)^2}{5} + \frac{(38.1)^2}{6} + \frac{(34.9)^2}{6} = 1205.10, \text{ so }$$

$$SSTr = 1205.10 - 1181.61 = 23.49.$$

Source	Df	SS	MS	F
Treatments	3	23.49	7.83	3.75
Error	20	41.78	2.09	
Total	23	65.27		

With numerator df = 3 and denominator = 20,

 $F_{.05,3,20} = 3.10 < 3.75 < F_{.01,3,20} = 4.94$, so .01 < p-value < .05, and since the p-value < .05, we reject $H_{\rm o}$. At least one of the pairs of brands of green tea has different average folacin content.

b. With $\overline{x}_{i\bullet} = 8.27, 7.50, 6.35$, and 5.82 for I = 1, 2, 3, 4, we calculate the residuals $x_{ij} - \overline{x}_{i\bullet}$ for all observations. A normal probability plot appears below, and indicates that the distribution of residuals could be normal, so the normality assumption is plausible.

Normal Probability Plot for ANOVA Residuals

c.
$$Q_{.05,4,20} = 3.96$$
 and $W_{ij} = 3.96 \cdot \sqrt{\frac{2.09}{2} \left(\frac{1}{J_i} + \frac{1}{J_j}\right)}$, so the Modified Tukey

intervals are:

Pair	Inte	Interval		r	Interval	
1,2	.77 ±	$.77 \pm 2.37$		3	1.15 ± 2.45	
1,3	1.92 ±	2.25	2,4	ļ.	1.68 ± 2.45	
1,4	$2.45 \pm$	$2.45 \pm 2.25 *$		ļ	$.53 \pm 2.34$	
	4	3	2	1		

Only Brands 1 and 4 are different from each other.

$$SSTr = \sum_{i} \left\{ \sum_{j} \left(\overline{X}_{i \bullet} - \overline{X}_{\bullet \bullet} \right)^{2} \right\} = \sum_{i} J_{i} \left(\overline{X}_{i \bullet} - \overline{X}_{\bullet \bullet} \right)^{2} = \sum_{i} J_{i} \overline{X}_{i \bullet}^{2} - 2 \overline{X}_{\bullet \bullet} \sum_{i} J_{i} \overline{X}_{i \bullet} + \overline{X}_{\bullet \bullet}^{2} \sum_{i} J_{i} \overline{X}_{i \bullet}^{2} - 2 \overline{X}_{\bullet \bullet} X_{\bullet \bullet} + n \overline{X}_{\bullet \bullet}^{2} = \sum_{i} J_{i} \overline{X}_{i \bullet}^{2} - 2 n \overline{X}_{\bullet \bullet}^{2} + n \overline{X}_{\bullet \bullet}^{2} = \sum_{i} J_{i} \overline{X}_{i \bullet}^{2} - n \overline{X}_{\bullet \bullet}^{2}.$$

29.
$$E(SSTr) = E\left(\sum_{i} J_{i} \overline{X}_{i \bullet}^{2} - n \overline{X}_{\bullet \bullet}^{2}\right) = \sum J_{i} E\left(\overline{X}_{i \bullet}^{2}\right) - n E\left(\overline{X}_{\bullet \bullet}^{2}\right)$$

$$= \sum J_{i} \left[Var(\overline{X}_{i \bullet}) + \left(E(\overline{X}_{i \bullet})\right)^{2} \right] - n \left[Var(\overline{X}_{\bullet \bullet}) + \left(E(\overline{X}_{\bullet \bullet})\right)^{2} \right]$$

$$= \sum J_{i} \left[\frac{\mathbf{s}^{2}}{J_{i}} + \mathbf{m}_{i}^{2} \right] - n \left[\frac{\mathbf{s}^{2}}{n} + \frac{(\sum J_{i} \mathbf{m}_{i})^{2}}{n} \right]$$

$$= (I - 1)\mathbf{s}^{2} + \sum J_{i} (\mathbf{m} + \mathbf{a}_{i})^{2} - \left[\sum J_{i} (\mathbf{m} + \mathbf{a}_{i})\right]^{2}$$

$$= (I - 1)\mathbf{s}^{2} + \sum J_{i} \mathbf{m}^{2} + 2\mathbf{n} \sum J_{i} \mathbf{a}_{i} + \sum J_{i} \mathbf{a}_{i}^{2} - \left[\mathbf{n} \sum J_{i}\right]^{2} = (I - 1)\mathbf{s}^{2} + \sum J_{i} \mathbf{a}_{i}^{2}, \text{ from which E(MSTr) is obtained through division by } (I - 1).$$

30.

a.
$$\boldsymbol{a}_1 = \boldsymbol{a}_2 = 0$$
, $\boldsymbol{a}_3 = -1$, $\boldsymbol{a}_4 = 1$, so $\Phi^2 = \frac{2(0^2 + 0^2 + (-1)^2 + 1^2)}{1} = 4$, $\Phi = 2$, and from figure (10.5), power $\approx .90$.

- **b.** $\Phi^2 = .5J$, so $\Phi = .707\sqrt{J}$ and $\mathbf{n}_2 = 4(J-1)$. By inspection of figure (10.5), J = 9 looks to be sufficient.
- c. $\mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3 = \mathbf{m}_4$, $\mathbf{m}_5 = \mathbf{m}_1 + 1$, so $\mathbf{m} = \mathbf{m}_1 + \frac{1}{5}$, $\mathbf{a}_1 = \mathbf{a}_2 = \mathbf{a}_3 = \mathbf{a}_4 = -\frac{1}{5}$, $\mathbf{a}_4 = \frac{4}{5}$, $\Phi^2 = \frac{2(20/25)}{1} = 1.60$ $\Phi = 1.26$, $\mathbf{n}_1 = 4$, $\mathbf{n}_2 = 45$. By inspection of figure (10.6), power $\approx .55$.
- 31. With $\mathbf{S} = 1$ (any other \mathbf{S} would yield the same Φ), $\mathbf{a}_1 = -1$, $\mathbf{a}_2 = \mathbf{a}_3 = 0$, $\mathbf{a}_4 = 1$, $\Phi^2 = \frac{.25(5(-1)^2 + 5(0)^2 + 5(0)^2 + 5(1)^2)}{1} = 2.5$, $\Phi = 1.58$, $\mathbf{n}_1 = 3$, $\mathbf{n}_2 = 14$, and power $\approx .62$.
- 32. With Poisson data, the ANOVA should be done using $y_{ij} = \sqrt{x_{ij}}$. This gives $y_{1\bullet} = 15.43$, $y_{2\bullet} = 17.15$, $y_{3\bullet} = 19.12$, $y_{4\bullet} = 20.01$, $y_{\bullet\bullet} = 71.71$, $\Sigma \Sigma y_{ij}^2 = 263.79$, CF = 257.12, SST = 6.67, SSTr = 2.52, SSE = 4.15, MSTr = .84, MSE = .26, f = 3.23. Since $F_{.01,3,16} = 5.29$, H_o cannot be rejected. The expected number of flaws per reel does not seem to depend upon the brand of tape.

33.
$$g(x) = x \left(1 - \frac{x}{n}\right) = nu(1 - u)$$
 where $u = \frac{x}{n}$, so $h(x) = \int [u(1 - u)]^{-1/2} du$. From a table of integrals, this gives $h(x) = \arcsin\left(\sqrt{\frac{x}{n}}\right)$ as the appropriate transformation.

34.
$$E(MSTr) = \mathbf{S}^2 + \frac{1}{I-1} \left(n - \frac{IJ^2}{n} \right) \mathbf{S}_A^2 = \mathbf{S}^2 + \frac{n-J}{I-1} \mathbf{S}_A^2 = \mathbf{S}^2 + J\mathbf{S}_A^2$$

Supplementary Exercises

35.

- **a.** $H_0: \mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3 = \mathbf{m}_4$ vs. $H_a:$ at least two \mathbf{m}_i 's differ; 3.68 is not $\geq F_{.01,3,20} = 4.94$, thus fail to reject H_0 . The means do not appear to differ.
- **b.** We reject H_0 when the p-value < alpha. Since .029 is not < .01, we still fail to reject H_0 .

36.

- a. $H_0: \mathbf{m}_1 = ... = \mathbf{m}_5$ will be rejected in favor of H_a : at least two \mathbf{m}_1 's differ if $f \geq F_{.05,4,40} = 2.61$. With $\overline{x}_{\bullet \bullet} = 30.82$, straightforward calculation yields $MSTr = \frac{221.112}{4} = 55.278, \ MSE = \frac{80.4591}{5} = 16.1098, \ \text{and}$ $f = \frac{55.278}{16.1098} = 3.43$. Because $3.43 \geq 2.61$, H_0 is rejected. There is a difference among the five teaching methods with respect to true mean exam score.
- **b.** The format of this test is identical to that of part **a**. The calculated test statistic is $f = \frac{33.12}{20.109} = 1.65$. Since 1.65 < 2.61, H_o is not rejected. The data suggests that with respect to true average retention scores, the five methods are not different from one another.

37. Let $\mathbf{m}_i = \text{true}$ average amount of motor vibration for each of five bearing brands. Then the hypotheses are $H_0 : \mathbf{m}_1 = ... = \mathbf{m}_5$ vs. H_a : at least two \mathbf{m}_i 's differ. The ANOVA table follows:

Source	Df	SS	MS	F
Treatments	4	30.855	7.714	8.44
Error	25	22.838	0.914	
Total	29	53.694		

 $8.44 > F_{.001,4,25} = 6.49$, so p-value < .001, which is also < .05, so we reject H_o. At least two of the means differ from one another. The Tukey multiple comparison is appropriate. $Q_{.05,5,25} = 4.15$ (from Minitab output. Using Table A.10, approximate with

$$Q_{.05,5,24} = 4.17$$
). $W_{ij} = 4.15\sqrt{.914/6} = 1.620$.

Pair	$\overline{x}_{i\bullet} - \overline{x}_{j\bullet}$	Pair	$\overline{x}_{iullet} - \overline{x}_{jullet}$	
1,2	-2.267*	2,4	1.217	
1,3	0.016	2,5	2.867*	
1,4	-1.050	3,4	-1.066	
1,5	0.600	3,5	0.584	
2,3	2.283*	4,5	1.650*	
*Indicates significant pairs.				
5	3	1 4	2	
_			-	

38. $x_{1\bullet} = 15.48$, $x_{2\bullet} = 15.78$, $x_{3\bullet} = 12.78$, $x_{4\bullet} = 14.46$, $x_{5\bullet} = 14.94$ $x_{\bullet\bullet} = 73.44$, so CF = 179.78, SST = 3.62, SSTr = 180.71 - 179.78 = .93, SSE = 3.62 - .93 = 2.69.

Source	Df	SS	MS	F
Treatments	4	.93	.233	2.16
Error	25	2.69	.108	
Total	29	3.62		

 $F_{05425} = 2.76$. Since 2.16 is not ≥ 2.76 , do not reject H_o at level .05.

39.
$$\hat{\boldsymbol{q}} = 2.58 - \frac{2.63 + 2.13 + 2.41 + 2.49}{4} = .165$$
, $t_{.025,25} = 2.060$, MSE = .108, and $\Sigma c_i^2 = (1)^2 + (-.25)^2 + (-.25)^2 + (-.25)^2 + (-.25)^2 = 1.25$, so a 95% confidence interval for \boldsymbol{q} is $.165 \pm 2.060 \sqrt{\frac{(.108)(1.25)}{6}} = .165 \pm .309 = (-.144,.474)$. This interval does include zero, so 0 is a plausible value for \boldsymbol{q} .

40.
$$\mathbf{m}_{1} = \mathbf{m}_{2} = \mathbf{m}_{3}, \, \mathbf{m}_{4} = \mathbf{m}_{5} = \mathbf{m}_{1} - \mathbf{s}$$
, so $\mathbf{m} = \mathbf{m}_{1} - \frac{2}{5}\mathbf{s}$, $\mathbf{a}_{1} = \mathbf{a}_{2} = \mathbf{a}_{3} = \frac{2}{5}\mathbf{s}$, $\mathbf{a}_{4} = \mathbf{a}_{5} = -\frac{3}{5}\mathbf{s}$. Then $\Phi^{2} = \frac{J}{I}\sum \frac{\mathbf{a}_{i}^{2}}{\mathbf{s}^{2}}$

$$= \frac{6}{5}\left[\frac{3\left(\frac{2}{5}\mathbf{s}\right)^{2}}{\mathbf{s}^{2}} + \frac{2\left(-\frac{3}{5}\mathbf{s}\right)^{2}}{\mathbf{s}^{2}}\right] = 1.632 \text{ and } \Phi = 1.28, \, \mathbf{n}_{1} = 4, \, \mathbf{n}_{2} = 25. \text{ By}$$
inspection of figure (10.6), power $\approx .48$, so $\mathbf{b} \approx .52$.

- This is a random effects situation. $H_0: \mathbf{S}_A^2 = 0$ states that variation in laboratories doesn't contribute to variation in percentage. H_0 will be rejected in favor of H_a if $f \geq F_{.05,3,8} = 4.07$. SST = 86,078.9897 86,077.2224 = 1.7673, SSTr = 1.0559, and SSE = .7114. Thus $f = \frac{1.0559/3}{.7114/8} = 3.96$, which is not ≥ 4.07 , so H_0 cannot be rejected at level .05. Variation in laboratories does not appear to be present.
- **a.** $\mathbf{m}_1 = \text{true average CFF for the three iris colors. Then the hypotheses are <math>H_0: \mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3 \text{ vs. } H_a: \text{at least two } \mathbf{m}_1's \text{ differ. SST} = 13,659.67 13,598.36$ $= 61.31, SSTR = \left(\frac{(204.7)^2}{8} + \frac{(134.6)^2}{5} + \frac{(169.0)^2}{6}\right) 13,598.36 = 23.00 \text{ The}$

ANOVA table follows:

Source	Df	SS	MS	F
Treatments	2	23.00	11.50	4.803
Error	16	38.31	2.39	
Total	18	61.31		

Because $F_{.05,2,16} = 3.63 < 4.803 < F_{.01,2,16} = 6.23$, .01 < p-value < .05, so we reject H_o . There are differences in CFF based on iris color.

Chapter 10: The Analysis of Variance

b.
$$Q_{.05,3,16} = 3.65$$
 and $W_{ij} = 3.65 \cdot \sqrt{\frac{2.39}{2} \left(\frac{1}{J_i} + \frac{1}{J_j}\right)}$, so the Modified Tukey intervals are:
$$\frac{\text{Pair}}{1,2} \frac{\left(\overline{x}_{i\bullet} - \overline{x}_{j\bullet}\right) \pm W_{ij}}{1,2} - 1.33 \pm 2.27$$

$$1,3 \qquad -2.58 \pm 2.15 *$$

$$2,3 \qquad -1.25 \pm 2.42$$
Brown Green Blue 25.59 Green Blue 28.17

The CFF is only significantly different for Brown and Blue iris color.

43.
$$\sqrt{(I-1)(MSE)(F_{.05,I-1,n-I})} = \sqrt{(2)(2.39)(3.63)} = 4.166 \text{ For } \mathbf{m}_1 - \mathbf{m}_2, c_1 = 1, c_2 = -1, c_3 = 0, \text{ so } \sqrt{\sum \frac{c_i^2}{J_i}} = \sqrt{\frac{1}{8} + \frac{1}{5}} = .570 \text{ . Similarly, for } \mathbf{m}_1 - \mathbf{m}_3, \sqrt{\sum \frac{c_i^2}{J_i}} = \sqrt{\frac{1}{8} + \frac{1}{6}} = .540; \text{ for } \mathbf{m}_2 - \mathbf{m}_3, \sqrt{\sum \frac{c_i^2}{J_i}} = \sqrt{\frac{1}{5} + \frac{1}{6}} = .606, \text{ and for } .5 \mathbf{m}_2 + .5 \mathbf{m}_2 - \mathbf{m}_3, \sqrt{\sum \frac{c_i^2}{J_i}} = \sqrt{\frac{.5^2}{8} + \frac{.5^2}{5} + \frac{(-1)^2}{6}} = .498.$$

Contrast	Estimate	Interval
$m_1 - m_2$	25.59 - 26.92 = -1.33	$(-1.33)\pm(.570)(4.166)=(-3.70,1.04)$
$m_1 - m_3$	25.59 - 28.17 = -2.58	$(-2.58)\pm(.540)(4.166)=(-4.83,33)$
$m_2 - m_3$	26.92 - 28.17 = -1.25	$(-1.25)\pm(.606)(4.166)=(-3.77,1.27)$
$.5m_2 + .5m_2 - m_3$	-1.92	$(-1.92)\pm(.498)(4.166)=(-3.99,0.15)$

The contrast between \mathbf{m}_1 and \mathbf{m}_3 since the calculated interval is the only one that does not contain the value (0).

Source	Df	SS	MS	F	F.05
Treatments	3	24,937.63	8312.54	1117.8	4.07
Error	8	59.49	7.44		
Total	11	24,997.12			

Because $1117.8 \ge 4.07$, $H_0: \mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3 = \mathbf{m}_4$ is rejected. $Q_{.05,4,8} = 4.53$, so $w = 4.53 \sqrt{\frac{7.44}{3}} = 7.13$. The four sample means are $\overline{x}_{4\bullet} = 29.92$, $\overline{x}_{1\bullet} = 33.96$, $\overline{x}_{3\bullet} = 115.84$, and $\overline{x}_{2\bullet} = 129.30$. Only $\overline{x}_{1\bullet} - \overline{x}_{4\bullet} < 7.13$, so all means are judged significantly different from one another except for \mathbf{m}_4 and \mathbf{m}_1 (corresponding to PCM and OCM).

- **45.** $Y_{ij} \overline{Y}_{\bullet \bullet} = c(X_{ij} \overline{X}_{\bullet \bullet})$ and $\overline{Y}_{i \bullet} \overline{Y}_{\bullet \bullet} = c(\overline{X}_{i \bullet} \overline{X}_{\bullet \bullet})$, so each sum of squares involving Y will be the corresponding sum of squares involving X multiplied by c^2 . Since F is a ratio of two sums of squares, c^2 appears in both the numerator and denominator so cancels, and F computed from Y_{ij} 's = F computed from X_{ij} 's.
- **46.** The ordered residuals are -6.67, -5.67, -4, -2.67, -1, -1, 0, 0, 0, .33, .33, .33, 1, 1, 2.33, 4, 5.33, 6.33. The corresponding z percentiles are -1.91, -1.38, -1.09, -.86, -.67, -.51, -.36, -.21, -.07, .07, .21, .36, .51, .67, .86, 1.09, 1.38, and 1.91. The resulting plot of the respective pairs (the Normal Probability Plot) is reasonably straight, and thus there is no reason to doubt the normality assumption.

Chapter 10: The Analysis of Variance