A non-stationary PI algorithm

Bruno Scherrer

March 26, 2022

Abstract

..

Solve the n-horizon problem

$$T_{\vec{u},\vec{v}}v = T^n v.$$

Lemma 1. For any policy μ , there exist $x, v \leq i < i + c \leq n$, such that

$$v_{\mu}(x) - v(x) \le \frac{\gamma^{i+c}}{1 - \gamma^{c}} \mathbb{1}_{x} (T^{n-i}v - T^{n-i-c}v).$$

Proof. μ_* play against $\vec{\nu}$. Once a cycle is found involving x, one loops.

$$M_{x,c} = \{ \mu \; ; \; \exists \vec{\nu}, x, c, \; \mathbb{1}_x P_{\mu^c, \vec{\nu}} = \mathbb{1}_x \}.$$

Let

$$v_{x,c} = \max_{\mu \in M_{x,c}} v_{\mu}(x)$$

Lemma 2. For any policy ν , there exist $x, v \leq i < i + c \leq n$, such that

$$v_{\vec{\mu}_1^i(\vec{\mu}_{i+1}^{i+c})^{\infty},\nu^{\infty}}(x) - v(x) \ge \frac{\gamma^{i+c}}{1-\gamma^c} \mathbb{1}_x(T^{n-i}v - T^{n-i-c}v).$$

Proof. $\vec{\mu}$ plays against ν . Once a cycle is found, one loops.

Algorithm: compute a policy μ' that is better than $(\vec{\mu}_{i+1}^{i+c})^{\infty}$ for all i and c. From any x, μ' will end up cycling in y.

Can we guarantee that one makes significant progress?

1 The 1-player case

$$M_{x,c} = \{ \pi \; ; \; \exists x, c, \; \mathbb{1}_x (P_{\pi_*})^c = \mathbb{1}_x \}$$

Let

$$T_{\vec{\pi}}v = T^n v$$

Find x, i, c such that $\mathbb{1}_x(T^{n-i}v - T^{n-i-c}v) > 0$. Then consider the next policy as $\vec{\pi}' = \vec{\pi}_{i+1}^{i+c}$. We have

$$v_{\vec{\pi}'}(x) - T^n v(x) > v_{x,c}$$

By monotonicity we get n^2 iterations.