Honors Calculus III HW #2

Ozaner Hansha

September 24, 2018

1 Problem 1

Problem: Find a right-handed orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ such that:

$$\left(\exists k \in \mathbb{R}^+\right) \mathbf{u}_1 = k(4, 4, 7) \tag{1}$$

$$\mathbf{u}_2 \cdot (1, 0, 2) = 0 \tag{2}$$

Solution: To find \mathbf{u}_1 we must normalize the (4,4,7). This leaves us with:

$$\|(4,4,7)\| = \sqrt{4^2 + 4^2 + 7^2} = 9$$

$$\mathbf{u}_1 = \frac{1}{9}(4,4,7)$$

To find \mathbf{u}_2 , recall that it must be orthogonal to (1,0,2) (by condition 2) and \mathbf{u}_1 (because it's an orthonormal basis). This means that if we take the normalized cross product of these two vectors, we will have a vector that matches both criteria:

$$\mathbf{u}_{2} = \frac{(1,0,2) \times \frac{1}{9}(4,4,7)}{\|(1,0,2) \times \frac{1}{9}(4,4,7)\|}$$

$$= \frac{\frac{1}{9}(-8,1,4)}{\|\frac{1}{9}(-8,1,4)\|} = \frac{\frac{1}{9}(-8,1,4)}{\left|\frac{1}{9}\right| \|(-8,1,4)\|}$$

$$= \frac{\frac{1}{9}(-8,1,4)}{\left|\frac{1}{9}\right| \cdot 9}$$

$$= \frac{1}{9}(-8,1,4)$$

Now we simply take the cross product of \mathbf{u}_1 and \mathbf{u}_2 , both of which we know to be orthonormal, to find a third orthonormal vector:

$$\mathbf{u}_{3} = \mathbf{u}_{1} \times \mathbf{u}_{2}$$

$$= \frac{1}{9}(4, 4, 7) \times \frac{1}{9}(-8, 1, 4)$$

$$= \frac{1}{9^{2}}(9, -72, 36)$$

$$= \frac{1}{9}(1, -8, 4)$$

Note that the order of the cross product was chosen in accordance to the right-handedness condition.

$$\left\{\frac{1}{9}(4,4,7),\frac{1}{9}(-8,1,4),\frac{1}{9}(1,-8,4)\right\}$$

However, note that when we found the cross product of $(1,0,2) \times \frac{1}{9}(4,4,7)$ we could have switched their order to arrive at a \mathbf{u}_2 with a flipped sign that still satisfied the required conditions. And to retain righthandedness, \mathbf{u}_3 would also be flipped (in accordance to the anticommutivity of the cross product). This gives us another equally valid basis:

$$\left\{\frac{1}{9}(4,4,7), \frac{-1}{9}(-8,1,4), \frac{-1}{9}(1,-8,4)\right\}$$

And so, there are two valid bases that satisfy the given conditions.

2 Problem 2

Problem: Given two lines ℓ_1 and ℓ_2 parametrized below:

$$\mathbf{x}: \mathbb{R} \to \ell_1$$

$$\mathbf{x}(t) = (1, 2, 2) + t(0, 3, 3)$$

$$\mathbf{y}: \mathbb{R} \to \ell_2$$

$$\mathbf{y}(s) = s(2, 1, 2)$$

What is the distance between these lines? Also, what values of t and s minimize $\|\mathbf{x}(t) - \mathbf{y}(s)\|$?

Solution: Notice that ℓ_1 is in the direction of (0,3,3) and that ℓ_2 is in the direction of (2,1,2). The shortest path from a line to another line is perpendicular to both of them. As such, we will take the cross product of these vectors

(and normalize it to get a vector only describing the direction from ℓ_1 to ℓ_2):

$$\mathbf{u} = \frac{(2,1,2) \times (0,3,3)}{\|(2,1,2) \times (0,3,3)\|}$$
$$= \frac{(-3,-6,6)}{\|(-3,-6,6)\|} = \frac{(-3,-6,6)}{9}$$
$$= \frac{1}{3}(-1,-2,2)$$

Now we simply take any point on ℓ_1 and any point on ℓ_2 , produce the vector that joins them **w**, and project that vector onto **u**. The magnitude of this vector is the distance we are looking for:

$$\mathbf{x}(0) = (1, 2, 2)$$

 $\mathbf{y}(0) = (0, 0, 0)$
 $\mathbf{w} = \mathbf{x}(0) - \mathbf{y}(0) = (1, 2, 2)$

While we could project \mathbf{w} onto \mathbf{u} and take the magnitude of the result, notice that because \mathbf{u} is already a unit vector it suffices to simply take the dot product of the two vectors (\mathbf{w} 's component in the \mathbf{u} direction) and take its absolute value:

$$|\mathbf{w} \cdot \mathbf{u}| = \left| (1, 2, 2) \cdot \frac{1}{3} (-1, -2, 2) \right| = \frac{1}{3}$$

So we are done (with the first part) and the distance is $\frac{1}{3}$. To find what t and s actually minimize this we must minimize the following:

$$\|\mathbf{x}(t) - \mathbf{y}(s)\| = \sqrt{(1-2s)^2 + (2+3t-s)^2 + (2+3t-2s)^2}$$

Now we just have to take the partial derivative of the above function with respect to both t and s and set them equal to zero. Also, note that minimizing the norm is the same as minimizing the norm squared, so we will do just that to make the calculus a little easier:

$$\frac{\partial}{\partial t} \partial \|\mathbf{x}(t) - \mathbf{y}(s)\|^2 = 36t = 18s + 24 = 0$$
$$\frac{\partial}{\partial s} \partial \|\mathbf{x}(t) - \mathbf{y}(s)\|^2 = 18s - 18t - 16 = 0$$

We can now solve for t and s via the following system of equations:

$$36t = 18s + 24 = 0$$
$$18s - 18t - 16 = 0$$
$$t = \frac{-4}{9} \land s = \frac{4}{9}$$

3 Problem 3

Problem: Let the line ℓ_1 pass through (1,2,2) and (1,5,5), and let the line ℓ_2 be given by $\mathbf{x}_0 + (2,1,2)$. The set of all points \mathbf{x}_0 where these lines meet (i.e $\ell_1 \cap \ell_2 \neq \emptyset$) forms a plane. Give this plane in the form ax + by + cz = d.

Solution: Call a point that ℓ_1 and ℓ_2 intersect in **p**. We can now define the plane the lines sit on as the set of all **x** such that $\mathbf{a} \cdot (\mathbf{p} - \mathbf{p}_0) = 0$ where $\mathbf{a} \neq \mathbf{0}$. Because ℓ_2 is in this plane, so too is \mathbf{x}_0 .

Now we'll parameterize the plane using that arbitrary point on the plane **p** (and the fact that (1,5,5)-(1,2,2)=(0,3,3) for ℓ_1):

$$\mathbf{r}(t) = \mathbf{p} + t(0, 3, 3)$$

 $\mathbf{q}(s) = \mathbf{p} + s(2, 1, 2)$

Plugging in $\mathbf{a}(t)$ and $\mathbf{b}(s)$ in for \mathbf{x} into $\mathbf{a} \cdot (\mathbf{x} - \mathbf{p}) = 0$ (which they must satisfy given that they parameterize the plane) we find the following:

$$\mathbf{a} \cdot (0,3,3) = 0$$

 $\mathbf{a} \cdot (2,1,2) = 0$

This means **a** is some scalar multiple of $(0,3,3)\times(2,1,2)=(3,6,-6)$. This is equivalent to saying it is a scalar multiple of (-1,-2,2) (i.e multiply by $\frac{-1}{3}$) and so by taking another point on the plane, say (1,2,2) (which is on line ℓ_1) we can compute the standard form of a plane ax+by+cz=d with (a,b,c)=(-1,-2,2) and $d=(-1,-2,2)\cdot(1,2,2)=-1$:

$$-x - 2y + 2z = -1$$

4 Problem 4

The householder reflection $h_{\mathbf{u}}$ given by \mathbf{u} is defined as $h_{\mathbf{u}}(\mathbf{x}) = \mathbf{x} - 2(\mathbf{x} \cdot \mathbf{u})u$. Also note that $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ represents the canonical basis of \mathbb{R}^3

4.1 Part a

Problem: Find a **u** such that $h_{\mathbf{u}}(\mathbf{e}_1) = \frac{1}{9}(4,4,7)$

Solution: We have to find a **u** such that the following is true:

$$\mathbf{u} = \frac{\mathbf{e}_1 - \frac{1}{9}(4, 4, 7)}{\|\mathbf{e}_1 - \frac{1}{9}(4, 4, 7)\|}$$

$$= \frac{\frac{1}{9}(5, -4, -7)}{\|\frac{1}{9}(5, -4, -7)\|}$$

$$= \frac{\frac{1}{9}(5, -4, -7)}{\|\frac{1}{9}(5, -4, -7)\|}$$

$$= \frac{\frac{1}{9}(5, -4, -7)}{\frac{10}{\sqrt{3}}}$$

$$= \frac{1}{3\sqrt{10}}(5, -4, -7)$$

4.2 Part b

Problem: Using the **u** found in part a, compute $h_{\mathbf{u}}(\mathbf{e}_2)$ and $h_{\mathbf{u}}(\mathbf{e}_3)$. Also show that $\{h_{\mathbf{u}}(\mathbf{e}_1), h_{\mathbf{u}}(\mathbf{e}_2), h_{\mathbf{u}}(\mathbf{e}_3)\}$ is a left-handed orthonormal basis of \mathbb{R}^3 .

Solution: By doing the computations with $\mathbf{u} = \frac{1}{3\sqrt{10}}(5, -4, -7)$ we find:

$$h_{\mathbf{u}}(\mathbf{e}_2) = \frac{1}{45}(20, 29, -28)$$

 $h_{\mathbf{u}}(\mathbf{e}_3) = \frac{1}{45}(35, -28, -4)$

Of course $h_{\mathbf{u}}(\mathbf{e}_1)$, $h_{\mathbf{u}}(\mathbf{e}_2)$, and $h_{\mathbf{u}}(\mathbf{e}_3)$ are orthonormal because both length and orthogonality are preserved by the householder transformation. To check if they form a lefthanded basis the following must be true:

$$h_{\mathbf{u}}(\mathbf{e}_1) \times h_{\mathbf{u}}(\mathbf{e}_2) = -h_{\mathbf{u}}(\mathbf{e}_3)$$

And indeed when we do the calculations we find:

$$\frac{1}{9}(4,4,7) \times \frac{1}{45}(20,29,-28) = \frac{-1}{45}(35,-28,-4)$$

5 Problem 5

Let \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 be any vectors in \mathbb{R}^3 such that $\mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3) \neq 0$

5.1 Part a

 $\textbf{Problem:} \text{ Prove that } |\mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3)| = |\mathbf{v}_2 \cdot (\mathbf{v}_3 \times \mathbf{v}_1)| = |\mathbf{v}_3 \cdot (\mathbf{v}_2 \times \mathbf{v}_1)|.$

Solution: Recall triple product identity, which states that any cyclic permutation of the vectors a, b, and c in the form $a \cdot (b \times c)$ is equivalent to each other. So, simply call \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 a, b, and c respectively and then take the absolute value of the quantity inside (just a weaker statement than the triple product identity) and we're done.

5.2 Part b

Problem: Call the scalar triple product referenced in part a D. Define the 3 vectors:

$$\mathbf{w}_1 = \frac{1}{D} \mathbf{v}_2 \times \mathbf{v}_3$$
$$\mathbf{w}_2 = \frac{1}{D} \mathbf{v}_3 \times \mathbf{v}_1$$
$$\mathbf{w}_3 = \frac{1}{D} \mathbf{v}_1 \times \mathbf{v}_2$$

Show that for all $1 \leq i$ and $j \leq 3$ the following is true: $\mathbf{v}_i \cdot \mathbf{w}_j = \delta_{ij}$

Solution: Note that the triple product of any two vectors is 0 if any two of them are equal. This is a result of being able to cyclically permutate the vectors until the two equivalent vectors are together in the cross product part of the triple product. And so:

$$\mathbf{v}_1 \cdot \mathbf{w}_1 = \left(\frac{1}{D}\right) \mathbf{v}_1 \cdot \mathbf{v}_2 \times \mathbf{v}_3 = 1$$

$$\mathbf{v}_2 \cdot \mathbf{w}_1 = \left(\frac{1}{D}\right) \mathbf{v}_2 \cdot \mathbf{v}_2 \times \mathbf{v}_3 = 0$$

$$\mathbf{v}_3 \cdot \mathbf{w}_1 = \left(\frac{1}{D}\right) \mathbf{v}_3 \cdot \mathbf{v}_2 \times \mathbf{v}_3 = 0$$

The first one being true because the triple product is D and the second and third being true because of the property noted above. The same argument follows for \mathbf{w}_2 and \mathbf{w}_3 .

6 Problem 6

Let v_1, v_2, v_3, w_1, w_2 and w, 3 be the same ones from problem 5.

6.1 Part a

Problem: Show that span $(\{v_1, v_2, v_3\}) = \mathbb{R}^3$

Solution: We know that span($\{v_1, v_2, v_3\}$) forms a subspace of \mathbb{R}^3 because it is closed under scalar multiplication and vector addition. Also note that any subspace of \mathbb{R}^3 must either be a line or plane through the origin, or all of \mathbb{R}^3 itself. So we just have to show that there exists no plane that can contain these 3 vectors.

The plane through the origin containing \mathbf{v}_1 and \mathbf{v}_2 is defined by the equation $x \cdot (\mathbf{v}_1 \times \mathbf{v}_2) = 0$. However, recall from problem 5 that v_3 does not satisfy that equation. And so, the three vectors are not contained in a plane (ruling out a line as well) thus they must span the entirety of \mathbb{R}^3 .

6.2 Part b

Problem: Show that all vectors in \mathbb{R}^3 can be expressed as a unique linear combination of the vectors $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + t_3\mathbf{v}_3$ and that $t_j = \mathbf{w}_j \cdot \mathbf{x}$.

Solution: Because, as we've shown in part a, these **three** vectors span all of real **three**-space, we can conclude that there exists a unique triplet of scalars that satisfy the following for all $\mathbf{x} \in \mathbb{R}^3$:

$$t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + t_3\mathbf{v}_3 = \mathbf{x}$$

So we've proved the first statement. Now taking the dot product of both sides with \mathbf{w}_1 we get:

$$\mathbf{w}_1 \cdot \mathbf{x} = t_1(\mathbf{w}_1 \cdot \mathbf{v}_1) + t_2(\mathbf{w}_1 \cdot \mathbf{v}_2) + t_3(\mathbf{w}_1 \cdot \mathbf{v}_3) = t_1$$

Remember from problem 5 that because the indices don't match (i.e. orthogonal), the dot product equals 0 for the last two terms. The same argument follows for \mathbf{w}_2 and \mathbf{w}_3 .

7 Problem 7

Define the following three vectors as so:

$$\mathbf{v}_1 = (1, 0, 1)$$

$$\mathbf{v}_2 = (1, 1, 1)$$

$$\mathbf{v}_3 = (1, 2, 3)$$

7.1 Part a

Problem: Find three vectors \mathbf{w}_1 , \mathbf{w}_2 , and \mathbf{w}_3 such that for all $1 \le i$ and $j \le 3$ the following is true: $\mathbf{v}_i \cdot \mathbf{w}_j = \delta_{ij}$

Solution: First we compute the following three vectors:

$$\mathbf{v}_2 \times \mathbf{v}_3 = (1, -2, 1)$$

 $\mathbf{v}_3 \times \mathbf{v}_1 = (2, 2, -2)$
 $\mathbf{v}_1 \times \mathbf{v}_2 = (-1, 0, 1)$

Now, using the formula from problem 6 part a, we divide them by $D = \mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3) = 2$, and arrive at:

$$\mathbf{w}_1 = \mathbf{v}_2 \times \frac{1}{2} \mathbf{v}_3 = (1, -2, 1)$$

 $\mathbf{w}_2 = \mathbf{v}_3 \times \mathbf{v}_1 = (1, 1, -1)$
 $\mathbf{w}_3 = \mathbf{v}_1 \times \frac{1}{2} \mathbf{v}_2 = (-1, 0, 1)$

7.2 Part b

Problem: Find three numbers t_1 , t_2 , and t_3 such that:

$$t_1(1,0,1) + t_2(1,1,1) + t_3(1,2,3) = (12,-7,19)$$

Solution: Now, using the formula from problem 6 part b, we just solve for the constants:

$$t_1 = \mathbf{w}_1 \cdot (12, -7, 19) = \frac{45}{2}$$
$$t_2 = \mathbf{w}_2 \cdot (12, -7, 19) = -14$$
$$t_3 = \mathbf{w}_3 \cdot (12, -7, 19) = \frac{7}{2}$$

8 Problem 8

Problem: Show that for any 3 vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} in \mathbb{R}^3 that:

$$(\mathbf{b} \times \mathbf{c}) \cdot [(\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|^2$$

Solution: Recall Lagrange's identity, that is for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$:

$$\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})\mathbf{y} - (\mathbf{x} \cdot \mathbf{y})\mathbf{z}$$

Now we define $\mathbf{x}=(\mathbf{c}\times\mathbf{a}),\ \mathbf{y}=\mathbf{a},\ \mathrm{and}\ \mathbf{z}=\mathbf{b}.$ Plugging these into the identity we find:

$$(\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b}) = ((\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b})\mathbf{a} - ((\mathbf{c} \times \mathbf{a}) \cdot \mathbf{a})\mathbf{b}$$

Because of the fact that any if any 2 vectors in the triple product are equal the product is 0, we can cancel out the second term on the left-hand side to arrive at:

$$(\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b}) = ((\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b})\mathbf{a}$$

Now we just take the dot product of both sides with $(\mathbf{b} \times \mathbf{c})$:

$$\begin{split} (\mathbf{b} \times \mathbf{c}) \cdot [(\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] &= (\mathbf{b} \times \mathbf{c}) \cdot [((\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}) \mathbf{a}] \\ &= ((\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b})((\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}) \\ &= ((\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c})((\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}) \quad \text{(cyclic permutate)} \\ &= |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|^2 \end{split}$$

And we are done.