Exercícios - 5

Capacidade e Indutância

(adaptados de Engineering Circuit Analysis, Hayt, Kemmerly, Durbin, 8ª Edição, 2012 e de Basic Engineering Circuit Analysis, J. David Irwin, 9ª Edição, 2008)

1- Sabendo que o gráfico da fig.1 representa a tensão aos terminais de uma indutância de 100mH, calcule a corrente que a atravessa. Admita i(0)=0.

2- O gráfico da fig.2 representa a variação da corrente através dum condensador de 0.2F. Considerando o condensador inicialmente descarregado, calcule a energia que ele armazena nos instantes **a)** t=0.3s; e **b)** t=1.1s

3- Admitindo que cada um dos condensadores do circuito da fig.3 tem o valor de $6\mu F$, calcule C_{eq} .

4- Considerando que cada uma das indutâncias do circuito da fig.4 tem o valor de *12mH*, calcule a indutância equivalente entre os terminais A e B.

5- Calcule a tensão v_C em cada um dos circuitos da fig.5.

6- Calcule a corrente i_x no circuito da fig. 6.

7- Calcule v_x no circuito da fig.7, considerando que ligou entre os pontos x e y a) uma inductância de 1H; b) uma capacidade de 1F.

8- No circuito da fig.8 considere $i_S = 60e^{-200t}[mA]$ com t > 0 e $i_I(0) = 20mA$. Determine **a)** v(t); e **b)** $i_I(t)$.

9- Considere $v_S = 100e^{-80t}[V]$ e $v_I(0) = 20V$ no circuito da fig.9. Calcule a) i(t); e b) $v_2(t)$ para t > 0.

10- No circuito da fig.10, considere que todas as fontes estão ligadas há muito tempo. Usando o principio da sobreposição, calcule **a)** $v_c(t)$; e **b)** $v_L(t)$.

Respostas

$$\mathbf{1-} i(t) = \begin{cases} 0 & t \le 0 \\ 0.2t^2 & 0 \le t \le 0.1s \\ -0.02t + 0.004 & 0.1 \le t \le 0.2s \end{cases} [A]$$

- **2- a)** 6.4*J*; **b)** 40*J*
- **3-** 4.36μF
- **4-** 6.66mH
- 5- a) -13.7nV; b) 67.7nV
- **6-** 2.86mA
- 7- a) -16V; b) -25.3V
- **8- a)** $v(t) = -28.8e^{-200t}[V]$;
- **b)** $i_1(t) = (24e^{-200t} 4)[mA]$
- **9- a)** $i(t) = -6.4e^{-80t} [mA];$
- **b)** $v_2(t) = 20e^{-80t} + 60[V]$
- **10- a)** $v_C(t) = 9.2V$; **b)** $v_L(t) = 2.4 \sin(10^3 t)[V]$