Curs 11

2020-2021 Fundamentele limbajelor de programare

Cuprins

- 1 Logica propozițională (recap.)
- 2 Logica de ordinul I (recap.)
- 3 Algoritmul de unificare
- 4 Formă clauzală. Rezoluție
 - Rezoluția în logica propozițională
- 5 Logica Horn
- 6 Rezoluţia SLD

Logica propozițională (recap.)

Limbajul și formulele PL

- □ Limbajul PL
 - \square variabile propoziționale: $Var = \{p, q, v, \ldots\}$
 - \square conectori logici: \neg (unar), \rightarrow , \land , \lor , \leftrightarrow (binari)
- ☐ Formulele PL

$$var ::= p \mid q \mid v \mid \dots$$

 $form ::= var \mid (\neg form) \mid form \land form \mid form \lor form$
 $\mid form \rightarrow form \mid form \leftrightarrow form$

- □ Conectorii sunt împărțiți în conectori de bază și conectori derivați (în functie de formalism).
- ☐ Legături între conectori:

$$\begin{array}{rcl}
\varphi \lor \psi & := & \neg \varphi \to \psi \\
\varphi \land \psi & := & \neg (\varphi \to \neg \psi) \\
\varphi \leftrightarrow \psi & := & (\varphi \to \psi) \land (\psi \to \varphi)
\end{array}$$

Sintaxa și semantica

Un sistem logic are două componente:

 Sintaxa □ noțiuni sintactice: demonstrație, teoremă □ notăm prin ⊢ φ faptul că φ este teoremă □ notăm prin Γ ⊢ φ faptul că formula φ este demonstrabilă din mulțimea de formule Γ 	
 Semantica □ noțiuni semantice: adevăr, model, tautologie (formulă universal adevărată) □ notăm prin ⊨ φ faptul că φ este tautologie □ notăm prin Γ ⊨ φ faptul că formula φ este adevărată atunci când toate formulele din mulțimea Γ sunt adevărate 	d
amplatitudina: E tagramala si E tautalogiila caincid	

Completitudine: F-teoremele și F-tautologiile coincid

 $\Gamma \vdash \varphi$ dacă și numai dacă $\Gamma \vDash \varphi$

Logica propozițională

Exemplu

Formalizați următorul raționament:

If winter is coming and Ned is not alive then Robb is lord of Winterfell. Winter is coming. Rob is not lord of Winterfell. Then Ned is alive.

O posibilă formalizare este următoarea:

```
p = winter is coming q = Ned is alive r = Robb is lord of Winterfel \{(p \land \neg q) \rightarrow r, p, \neg r\} \vDash q
```

Logica de ordinul I (recap.)

Logica de ordinul I - sintaxa

Limbaj de ordinul l \mathcal{L}
\square unic determinat de $ au=(R,F,C,\mathit{ari})$
Termenii lui \mathcal{L} , notați $\mathit{Trm}_{\mathcal{L}}$, sunt definiți inductiv astfel:
orice variabilă este un termen;
orice simbol de constantă este un termen;
\square dacă $f \in \mathbf{F}$, $ar(f) = n$ și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen
Formulele atomice ale lui ${\mathcal L}$ sunt definite astfel:
□ dacă $R \in \mathbb{R}$, $ar(R) = n$ și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.
Formulele lui \mathcal{L} sunt definite astfel:
orice formulă atomică este o formulă
\square dacă $arphi$ este o formulă, atunci $\lnot arphi$ este o formulă
$\hfill\Box$ dacă φ și ψ sunt formule, atunci $\varphi\lor\psi$, $\varphi\land\psi$, $\varphi\to\psi$ sunt formule
\Box dacă φ este o formulă și x este o variabilă, atunci $\forall x \varphi, \exists x \varphi$ sunt formule

Logica de ordinul I - semantică

- O structură este de forma $A = (A, \mathbf{F}^{A}, \mathbf{R}^{A}, \mathbf{C}^{A})$, unde
 - A este o mulţime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - $□ R^{A} = \{R^{A} \mid R \in R\} \text{ este o mulțime de relații pe } A;$ dacă R are aritatea n, atunci $R^{A} \subseteq A^{n}$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ ($\mathcal A$ -interpretare) este o funcție $\mathit I:V \to A$.

Inductiv, definim interpretarea termenului t în A sub I notat t_I^A .

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \vDash \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

- O formulă φ este adevărată într-o structură $\mathcal A$, notat $\mathcal A \vDash \varphi$, dacă este adevărată în $\mathcal A$ sub orice interpretare. Spunem că $\mathcal A$ este model al lui φ .
- O formulă φ este adevărată în logica de ordinul I, notat $\vDash \varphi$, dacă este adevărată în orice structură. O formulă φ este validă dacă $\vDash \varphi$.
- O formulă φ este satisfiabilă dacă există o structură $\mathcal A$ și o $\mathcal A$ -interpretare I astfel încât $\mathcal A$, $I \vDash \varphi$.

Unificare

 \square O subtituție σ este o funcție (parțială) de la variabile la termeni,

$$\sigma: V \to \mathit{Trm}_{\mathcal{L}}$$

- \square Doi termeni t_1 și t_2 se unifică dacă există o substituție heta astfel încât
 - $\theta(t_1)=\theta(t_2).$
- \square În acest caz, θ se numesțe unificatorul termenilor t_1 și t_2 .
- Un unificator ν pentru t_1 și t_2 este un cel mai general unificator (cgu,mgu) dacă pentru orice alt unificator ν' pentru t_1 și t_2 , există o substituție μ astfel încât

$$\nu' = \nu; \mu.$$

 \square Pentru o mulțime finită de termeni $\{t_1,\ldots,t_n\},\ n\geq 2$, algoritmul de unificare stabileste dacă există un cgu. □ Algoritmul lucrează cu două liste: ■ Lista soluție: *S* Lista de rezolvat: R □ Iniţial: \square Lista soluție: $S = \emptyset$ ■ Lista de rezolvat: $R = \{t_1 \stackrel{.}{=} t_2, \dots, t_{n-1} \stackrel{.}{=} t_n\}$ = este un simbol nou care ne ajută sa formăm perechi de termeni (ecuații).

Algoritmul constă în aplicarea regulilor de mai jos:

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.
- □ REZOLVĂ
 - orice ecuație de forma x = t sau t = x din R, unde variabila x nu apare în termenul t, este mutată sub forma x = t în S. În toate celelalte ecuații (din R și S), x este înlocuit cu t.

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S dă cgu.

Algoritmul este oprit cu concluzia inexistenței unui cgu dacă:

În R există o ecuație de forma

$$f(t_1,\ldots,t_n)\stackrel{\cdot}{=} g(t'_1,\ldots,t'_k)$$
 cu $f\neq g$.

2 În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat	
	S	R	
Inițial	Ø	$t_1 \stackrel{.}{=} t'_1, \ldots, t_n \stackrel{.}{=} t'_n$	
SCOATE	S	R' , $t \stackrel{\cdot}{=} t$	
	S	R'	
DESCOMPUNE	S	$R', f(t_1,\ldots,t_n) \stackrel{\cdot}{=} f(t'_1,\ldots,t'_n)$	
	5	R' , $t_1 \stackrel{.}{=} t'_1, \ldots t_n \stackrel{.}{=} t'_n$	
REZOLVĂ	S	R', $x = t$ sau $t = x$, x nu apare în t	
	$x \stackrel{.}{=} t$, $S[x/t]$	R'[x/t]	
Final	S	Ø	

S[x/t]: în toate ecuațiile din S, x este înlocuit cu t

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
w = h(g(y)),	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \stackrel{.}{=} h(g(z))$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	Ø	
$w \stackrel{\cdot}{=} h(g(z))$		

 \square $\nu = \{y/z, x/g(z), w/h(g(z))\}$ este cgu.

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) \doteq x, f(x, h(y), y) \doteq f(g(z), b, z)\}$ au gcu?

S	R	
Ø	$g(y) = x, \ f(x, h(y), y) = f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(y) \stackrel{\cdot}{=} b, y \stackrel{\cdot}{=} z$	- EŞEC -

- \square h și b sunt simboluri de operații diferite!
- Nu există unificator pentru ecuațiile din U.

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \doteq f(y,w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

- \square În ecuația $g(y) \stackrel{\cdot}{=} y$, variabila y apare în termenul g(y).
- □ Nu există unificator pentru ecuațiile din U.

Validitate și satisfiabilitate

Propoziție

Dacă φ este o formulă atunci

 φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Formă clauzală. Rezoluție

Literali. FNC

☐ În logica propozițională un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$literal := P(t_1, \ldots, t_n) \mid \neg P(t_1, \ldots, t_n)$$

- unde $P \in \mathbf{R}$, ari(P) = n, și t_1, \ldots, t_n sunt termeni.
- \square Pentru un literal L vom nota cu L^c literalul complement.
 - O formulă este în formă normală conjunctivă (FNC) dacă este o conjuncție de disjuncții de literali.

Forma clauzală în logica propozițională

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- ☐ Pentru o formulă din logica propozițională determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\varphi \to \psi \quad \exists \quad \neg \varphi \lor \psi$$
$$\varphi \leftrightarrow \psi \quad \exists \quad (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

3 principiului dublei negații

$$\neg\neg\psi$$
 \forall

4 distributivitatea

$$\varphi \lor (\psi \land \chi) \quad \exists \quad (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$(\psi \land \chi) \lor \varphi \quad \exists \quad (\psi \lor \varphi) \land (\chi \lor \varphi)$$

Forma clauzală în logica de ordinul I

```
□ O formulă este formă normală conjunctivă prenex (FNCP) dacă
      \square este în formă prenex Q_1x_1 \dots Q_nx_n\psi (Q_i \in \{\forall, \exists\}) oricare i
      \square \psi este FNC
   O formulă este formă clauzală dacă este enunț universal și FNCP:
                            \forall x_1 \dots \forall x_n \psi unde \psi este FNC
   Pentru orice formulă \varphi din logica de ordinul I există o formă clauzală
   \varphi^{fc} astfel încât
           arphi este satisfiabilă dacă și numai dacă arphi^{\mathit{fc}} este satisfiabilă
\square Pentru o formulă \varphi, forma clauzală \varphi^{fc} se poate calcula astfel:
      se determină forma rectificată
         se cuantifică universal variabilele libere
         se determină forma prenex
         se determină forma Skolem
         în acest moment am obținut o formă Skolem \forall x_1 \dots \forall x_n \psi
      5 se determină o FNC \psi' astfel încât \psi \vDash \psi'
      6 \varphi^{fc} este \forall x_1 \dots \forall x_n \psi'
```

Clauze

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

clauză = mulțime de literali

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.
- \square Când n = 0 obținem clauza vidă, care se notează \square
- ☐ Prin definiție, clauza ☐ nu este satisfiabilă.

Forma clauzală

- Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulţimea $\{C_1, \ldots, C_k\}$

FNC = mulțime de clauze

- \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă
- \square Când k = 0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$
- □ Prin definiție, mulțimea de clauze vidă {} este satisfiabilă.
 - $\{\}$ este satisfiabilă, dar $\{\Box\}$ nu este satisfiabilă

Forma clauzală

- \square Dacă arphi este o formulă în calculul propozițional, atunci $arphi^{fc} = igwedge_{i=1}^k igvee_{j=1}^{n_i} L_{ij}$ unde L_{ij} sunt literali
- Dacă φ o formulă în logica de ordinul I, atunci $\varphi^{fc} = \forall x_1 \dots \forall x_n \left(\bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij} \right) \text{ unde } L_{ij} \text{ sunt literali}$

arphi este satisfiabilă dacă și numai dacă $arphi^{fc} \text{ este satisfiabilă dacă și numai dacă} \{\{L_{11},\ldots,L_{1n_1}\},\ldots,\{L_{k1},\ldots,L_{kn_k}\}\} \text{ este satisfiabilă}$

Rezoluția în logica propozițional

Regula rezoluției

Rez
$$\frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p, \neg p\} \cap C_1 = \emptyset$ și $\{p, \neg p\} \cap C_2 = \emptyset$.

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Derivare prin rezoluție

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Exemplu

 $C_5 = \square$

Fie
$$\mathcal{C} = \{\{\neg q, \neg p\}, \{q\}, \{p\}\}\}$$
 o mulțime de clauze. O derivare prin rezoluție pentru \square din \mathcal{C} este $C_1 = \{\neg q, \neg p\}$ $C_2 = \{q\}$ $C_3 = \{\neg p\}$ (Rez, C_1, C_2) $C_4 = \{p\}$

 (Rez, C_3, C_4)

Teorema de completitudine

 $\models \varphi$ dacă și numai dacă există o derivare prin rezoluție a lui \square din $(\neg \varphi)^{fc}$.

Procedura Davis-Putnam DPP (informal)

$\textbf{Intrare:} \ \ o \ \ mul \\ time \ \mathcal{C} \ \ de \ clauze$
Se repetă următorii pași:
se elimină clauzele triviale
\square se alege o variabilă p
\square se adaugă la mulțimea de clauze toți rezolvenții obținuti prin aplicarea Rez pe variabila p
\square se șterg toate clauzele care conțin p sau $\neg p$
leșire: dacă la un pas s-a obținut \square , mulțimea $\mathcal C$ nu este satisfiabilă altfel $\mathcal C$ este satisfiabilă.

Logica Horn

Clauze definite. Programe logice. Clauze Horn

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \to P_1 \vee \dots \vee P_k$ unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n=0: $\longrightarrow P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- □ scop definit (țintă, întrebare): k=0
 - $\square Q_1 \wedge \ldots \wedge Q_n \to \bot$
- \square clauza vidă \square : n = k = 0

Clauza Horn = clauză program definită sau clauză scop ($k \le 1$)

Programare logica

- □ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn
 - \square formule atomice: $P(t_1,\ldots,t_n)$
 - □ $Q_1 \wedge ... \wedge Q_n \rightarrow P$ unde toate Q_i , P sunt formule atomice, \top sau \bot
- □ Problema programării logice: reprezentăm cunoștințele ca o mulțime de clauze definite KB și suntem interesați să aflăm răspunsul la o întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice
 - $KB \models Q_1 \wedge \ldots \wedge Q_n$
 - ☐ Variabilele din KB sunt cuantificate universal.
 - □ Variabilele din $Q_1, ..., Q_n$ sunt cuantificate existențial.

Limbajul PROLOG are la bază logica clauzelor Horn.

Sistem de deducție backchain

Sistem de deducție pentru clauze Horn

Pentru un program logic definit KB avem

- ☐ Axiome: orice clauză din KB
- ☐ Regula de deducție: regula backchain

$$\frac{\theta(Q_1) \quad \theta(Q_2) \quad \dots \quad \theta(Q_n) \quad (Q_1 \land Q_2 \land \dots \land Q_n \to P)}{\theta(Q)}$$

unde $Q_1 \wedge Q_2 \wedge \ldots \wedge Q_n \rightarrow P \in KB$, iar θ este cgu pentru Q și P.

Sistem de deducție

$$\dfrac{ heta(\mathit{Q}_1) \quad heta(\mathit{Q}_2) \quad \dots \quad heta(\mathit{Q}_n) \quad (\mathit{Q}_1 \wedge \mathit{Q}_2 \wedge \dots \wedge \mathit{Q}_n
ightarrow \mathit{P})}{ heta(\mathit{Q})}$$

unde $Q_1 \wedge Q_2 \wedge \ldots \wedge Q_n \rightarrow P \in KB$, iar θ este cgu pentru Q și P.

Exemplu

```
KB conţine următoarele clauze definite: father(jon, ken). father(ken, liz). father(X, Y) \rightarrow ancestor(X, Y) daugther(X, Y) \rightarrow ancestor(Y, X) ancestor(X, Y) \wedge ancestor(Y, Z) \rightarrow ancestor(X, Z) atunci father(ken, liz)
```

$$\frac{father(ken, 112)}{father(ken, Z)} \frac{(father(Y, X) \rightarrow ancestor(Y, X))}{ancestor(ken, Z)}$$

Fie *T* o mulțime de clauze definite.

$$\mathsf{SLD} \boxed{ \frac{\neg Q_1 \lor \cdots \lor \neg Q_i \lor \cdots \lor \neg Q_n}{\theta(\neg Q_1 \lor \cdots \lor \neg P_1 \lor \cdots \lor \neg P_m \lor \cdots \lor \neg Q_n)} }$$

unde

- \square $Q \lor \neg P_1 \lor \cdots \lor \neg P_m$ este o clauză definită din KB (în care toate variabilele au fost redenumite) și
- \square variabilele din $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ și Q_i se redenumesc
- \square θ este c.g.u pentru Q_i și Q

Fie KB o mulțime de clauze definite și $Q_1 \wedge ... \wedge Q_m$ o întrebare, unde Q_i sunt formule atomice.

O derivare din KB prin rezoluție SLD este o secvență

$$G_0 := \neg Q_1 \lor \ldots \lor \neg Q_m, \quad G_1, \quad \ldots, \quad G_k, \ldots$$

în care G_{i+1} se obține din G_i prin regula SLD.

□ Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numește SLD-respingere.

Exercițiu

Găsiți o SLD-respingere pentru următorul program Prolog și ținta:

- 1. p(X) := q(X,f(Y)), r(a). ?- p(X), q(Y,Z).
- 2. p(X) := r(X).
- 3. q(X,Y) := p(Y).
- 4. r(X) := q(X,Y).
- 5. r(f(b)).

Soluție

$$\begin{array}{lll} G_0 = \neg p(X) \vee \neg q(Y,Z) & \\ G_1 = \neg r(X_1) \vee \neg q(Y,Z) & (2 \text{ cu } \theta(X) = X_1) \\ G_2 = \neg q(Y,Z) & (5 \text{ cu } \theta(X_1) = f(b)) \\ G_3 = \neg p(Z_1) & (3 \text{ cu } \theta(X) = Y_1 \text{ si } \theta(Y) = Z_1) \\ G_4 = \neg r(X) & (2 \text{ cu } \theta(Z_1) = X) \\ G_5 = \square & (5 \text{ cu } \theta(X) = f(b)) \end{array}$$

Rezoluția SLD - arbori de căutare

Arbori SLD

- \square Presupunem că avem o mulțime de clauze definite KB și o țintă $G_0 = \neg Q_1 \lor \ldots \lor \neg Q_m$
- ☐ Construim un arbore de căutare (arbore SLD) astfel:
 - ☐ Fiecare nod al arborelui este o țintă (posibil vidă)
 - \square Rădăcina este G_0
 - Dacă arborele are un nod G_i , iar G_{i+1} se obține din G_i folosind regula SLD folosind o clauză $C_i \in KB$, atunci nodul G_i are copilul G_{i+1} . Muchia dintre G_i și G_{i+1} este etichetată cu C_i .
- □ Dacă un arbore SLD cu rădăcina G_0 are o frunză □ (clauza vidă), atunci există o SLD-respingere a lui G_0 din KB.

Rezoluția SLD - arbore de căutare complet

Exercițiu

Desenați arborele SLD pentru programul Prolog de mai jos și ținta ?-p(X,X).

```
1. p(X,Y) := q(X,Z), r(Z,Y). 7. s(X) := t(X,a). 2. p(X,X) := s(X). 8. s(X) := t(X,b). 3. q(X,b). 9. s(X) := t(X,X). 4. q(b,a). 10. t(a,b). 5. q(X,a) := r(a,X). 11. t(b,a). 6. r(b,a).
```

41 / 47

Rezoluția SLD - arbore SLD complet

```
1. p(X,Y) := q(X,Z), r(Z,Y).

 s(X):-t(X,a).

                                           q(b,a).
                                                                                                           10. t(a,b).
                                           5. q(X,a) :- r(a,X).
                                                                            s(X):-t(X,b).
2. p(X,X) := s(X).
                                                                                                            11. t(b.a).
q(X,b).
                                           6. r(b,a).
                                                                             9. s(X) :- t(X,X).
p(X, Y) \vee \neg q(X, Z) \vee \neg r(Z, Y)
                                                                             s(X) \vee \neg t(X, a)
                                                                                                            t(a, b)
                                           a(b, a)
                                           q(X, a) \vee \neg r(a, X)
                                                                             s(X) \vee \neg t(X, b)
p(X, X) \vee \neg s(X)
                                                                                                            t(b, a)
q(X, b)
                                           r(b, a)
                                                                             s(X) \vee \neg t(X, X)
                                                          \neg p(X,X)
```

Rezoluția SLD - arbori de execuție

Exercițiu

Fie KB următoarea bază de cunoștințe definită în Prolog:

- 1. r(a, a)
- 2. q(X, a)
- 3. p(X, Y) := q(X, Z), r(Z, Y)
- (a) Desenați arborele SLD și arborele de execuție pentru întrebarea ?-p(X, Z)
- (b) Exprimați KB ca o mulțime de formule în logica de ordinul I demonstrați folosind rezoluția că din KB se deduce p(X,Z), adică KB $\vdash \exists x \exists z \, p(x,z)$.

(a) Soluție:

```
1. r(a, a).
2. q(X, a).
3. p(X, Y) :- q(X, Z), r(Z, Y)
```

Arborele SLD:

Arborele de execuție:

?-
$$p(X,Z)$$
 $\downarrow 3$
:- $q(X1,Z1)$, $r(Z1,Y1)$
 $\downarrow 2$
:- $r(a,Y1)$
 $\downarrow 1$

(cont.)

Fie KB următoarea bază de cunoștințe definită în Prolog:

1.
$$r(a, a)$$
. 2. $q(X, a)$. 3. $p(X, Y) := q(X, Z), r(Z, Y)$

(b) Soluție:

$$\mathsf{KB} = \{ r(a, a), \forall x \, q(x, a), \forall x \forall y \forall z \, (\neg q(x, y) \lor \neg r(z, y) \lor p(x, y)) \}$$

KB $\vdash \exists x \exists z \ p(x,z)$ dacă și numai dacă există o derivare prin rezoluție pentru \Box din forma clauzală a mulțimii $KB \cup \{\neg(\exists x \exists z \ p(x,z))\}.$

Forma clauzală a mulțimii
$$KB \cup \{\neg(\exists x \exists z \ p(x,z))\}$$
 este $\mathcal{C} = \{\{r(a,a)\}, \{q(x,a)\}, \{\neg q(x,y), \neg r(z,y), p(x,y)\}, \{\neg p(x,z)\}\}$. Se

face derivarea direct sau se construiește arborele SLD.

Pe săptămâna viitoare!