Grupa:	Skład:	
4A4	1. Grzegorz Ziarko	4. Adam Mickiewicz
	2. Anna Kowalska	5. Juliusz Słowacki
	3. Gal Anonim	6. Zygmunt Krasiński
Data:	Temat:	
23.01.2025	Ćwiczenie PG4 Wahadło matematyczne	

Wprowadzenie

W ćwiczeniu będziemy wykorzystywać model wahadła matematycznego, czyli punktową masę zawieszoną na nierozciągliwej oraz nieważkiej nici. Modelem tym możemy opisywać, z dobrym przybliżeniem, każde wahadło fizyczne polegające na zawieszeniu ciężarka na nitce lub cienkim sznurku. Przy założeniu wychylenia o niewielkie kąty (poniżej 5°) okres drgań wahadła matematycznego zależy od jego długości zgodnie z wzorem

$$T = 2\pi \sqrt{\frac{l}{g}}. (1)$$

Celem ćwiczenia będzie pomiar okresu drgań dla różnych długości wahadła w celu zweryfikowania tego wzoru. Przekształcając powyższy wzór otrzymujemy wyrażenie na ziemskie przyspieszenie grawitacyjne

$$g = \frac{4\pi^2 l}{T^2}. (2)$$

Przy pomocy wykonanych pomiarów zostanie wyznaczona wartość ziemskiego przyspieszenia grawitacyjnego.

Wyniki pomiarów

Okres drgań wyznaczono mierząc czas 10 pełnych drgań, a następnie dzieląc wynik przez 10. Uwzględniając ten fakt niepewność pomiaru czasu wynikającą z refleksu oraz dokładności stopera przyjęto równą 0,1 s. Niepewność pomiaru długości równa jest 0,01 m, wynika ona ze skali taśmy mierniczej. Wyniki pomiarów oraz wartości przyspieszenia grawitacyjnego obliczonego z równania (2) przedstawiono w tabeli 1. Średnia wartość ziemskiego przyspieszenia grawitacyjnego z wszystkich pomiarów wynosi 9,90 m/ s^2 .

Tabela 1: Dane pomiarowe wraz z obliczonym ziemskim przyspieszeniem grawitacyjnym.

Długość wahadła [m]	Okres [s]	Wyznaczone przyspieszenie ziemskie $[m/s^2]$
$0,25\pm0,01$	1,0(1)	9,68
0.50 ± 0.01	1,4(1)	9,93
0.75 ± 0.01	1,7(1)	10,01
$1,00\pm0,01$	2,0(1)	9,97

Na podstawie danych zawartych w tabeli wykreślono zależność okresu od długości wahadła. Wykreślono też zależność wynikającą z przewidywań równania (1), którą przedstawiono na rysunku 1.

Rysunek 1: Zależność okresu wahadła od jego długości.

Podsumowanie

Na podstawie wyników przedstawionych na rysunku 1 można stwierdzić, że wyniki pomiarów zgadzają się z przewidywaniami wynikającymi z równania (1). Otrzymana wartość ziemskiego przyspieszenia grawitacyjnego 9,90 m/ s^2 jest większa o 0,87% od wartości tablicowej równej 9,81 m/ s^2