

Project 2: BJT Transistor and Amplifier

Prepared by:

Alhussein Gamal Hussein Ali (1200399)

Program: CCEE

Submitted to:

Dr. Amal Samir

Dr. Mohamed Refky

Part 1: I/V Characteristics:

NPN

 $\frac{1}{1}$ a) I_C VS V_{CE} (for different V_{BE} 's)

<u>Notice that</u> I_C is not constant as V_{CE} changes; it is affected with the change in the collector-emitter voltage due to Early effect.

b) I_C VS V_{BE}

Notice That In the active region, the collector current I_C is exponentially related to the base-emitter voltage V_{BE} .

C) To get the value of Early voltage (VA) for this transistor

Using Hand Calculations

⇒ get 2 points on the graph (
$$T_c + \sqrt{3}V_{c+}$$
)

P₁ (1.0264, 7.7479) , P₂ (1.9972, 7.8491)

Slope = $(7.8491 - 7.7479)$ m

1.9972-1.0264 = 0.104244 ×10⁻³

.: the eqn of the straight line is given by $y = mx + c$

3ub. P₁ in eqn with $m = slepe$ ⇒ get $C = 7.6409$ m ≈ 7.641 m

to get V_B , it occurs at $y = 0$ ∴ $O = (0.104244 \times 10^{-3}) \times +7.641$ m

∴ $x = -73.329$ ∴ $V_B = 73.329$ V

$$V_A = 73.329 V$$

2)

Bias Point

AT $V_{BE} = 0.7V$

V_{CE}=10V

 $I_{C}=8.68*10^{-3}$ A

Analytical g_m = (8.68*10^-3)/ (26*10^-3) =333.85m

 g_m (from graph) = 2.5284

Percentage error=86%

-Very large error

\underline{R}_{o}

 $R_o = |-73.3|/(8.68*10^{-3}) = 8.4447k$

R_o From Graph =9.593k

Percentage Error=11.95%

Notice that calculation of Ro from the graph by assuming a linear relation is valid only if the change in V_{CE} is minimal.

PNP

<u>1)</u>

a) I_C VS V_{EC} (for different V_{EB}'s)

b) I_C VS V_{EB}

C) To get the value of Early voltage (VA) for this transistor

Using Hand Calculations

Jet 2 points on the graph (Ic *s Vec)

$$P_1$$
 (6, 16.5257m) , P_2 (1.9834, 15.9773m)

 P_3 (1.9834 = 0.136409 ×10⁻³

Sub P_3 in P_3 =mx+c, with P_3 =m = get P_3 = 0.01571

 P_4 occurs at P_3 =0 . P_4 =115.17 V

 $V_A = 115.17 V$

It is noted that the Early voltage effect is higher for the PNP transistor as compared to the NPN transistor.

2)

Bias Point

AT
$$V_{EB} = 0.8V$$

$$V_{EC} = 10V$$

 $I_c = 17.07365m$

Analytical $g_m = (17.07*10^-3)/(26*10^-3) = 656.67m$

 g_m (from graph) =388.7

Percentage error = 41%

-large error

<u>-R</u>o

$$R_0 = |-127.14|/(17.07*10^{-3}) = 7.448k$$

R_o From Graph =6.993k

Percentage Error=6.1%

Part 2: Amplifier Simulation:

AT DC OPERATING POINTS

At Q1

$$\beta 1 = (Ic/Ib) = 213.43 / 2.33 = 91.6$$
 VBE1 = 0.6V

At Q2

$$\beta 2 = (Ic / Ib) = (5.65 / 0.047) = 120.21$$

VBE1 = 0.69V

DC Analysis (Capacitors are O.C.)

Getting the equivalent circuit for the original circuit

$$V_{th} = 0.984V$$

 $R_{th} = 24.05 \text{ k}\Omega$

KVL at loop 1:

$$-V_{th} + I_{B1} * R_{th} + 0.6 + I_{E1} * 1.5 = 0, I_{E1} = (\beta + 1)I_{B1}$$

$$I_{B1} = 2.35 \ \mu A$$

$$I_{C1} = 214.9 \ \mu A$$

$$I_{E1} = 217.25 \ \mu A$$

KVL at loop 2:

$$-V_{CC} + 10(I_{C1} + I_{B2}) + 0.69 + I_{E2} * 1 = 0, \ I_E = (\beta_2 + 1) \ I_{B2}$$

$$I_{B2} = 47.23 \ \mu\text{A},$$

$$I_{C2} = 5.64 \ \text{mA},$$

$$I_{E2} = 5.695 \ \text{mA}$$

Model Parameters

$$g_{m1} = I_{c1} / V_T = 8.26$$
 micro Siemens $g_{m2} = I_{c1} / V_T = 0.216$ Siemens $r_{\pi 1} = \beta_1 / g_{m1} = 11.071 k \Omega$ $r_{\pi 2} = \beta_2 / g_{m2} = 551.27 \Omega$ $r_{o1} = V_{A1} / I_{c1} = 342.48 k \Omega$ $r_{o2} = V_{A2} / I_{c2} = 13.0496 k \Omega$

The circuit reduces to the model shown:

AC Analysis (Capacitors are Open-circuited) <u>To get R</u>_{in}

 $R_{in} = V_{in} / I_{in} = R_{th} // r_{\pi 1} = 7.54 k\Omega$

Using Multisim (assuming the given parameters)

%error = ((7.54-8.26)/7.54)*100 = 9.55%

To get Rout

 $V_{in} = 0$ and Remove R_L

Hand Analysis

On Multisim

%error=((77.9843-74.2162)/77.9843)*100=4.832%

Notice that:

 Rin is large (in kilos), contrary to Rout (7.54kohm vs 77ohm), which is what we seek in an amplifier circuit.

- An amplifier is ideal if it has infinite input resistance(Rin) and zero output impedance(Rout)
- Percentage errors in Rin, Rout, and Av are all small (< 10%) which make the results acceptable.

To Get A_v (Voltage Gain)

Notice That: The voltage gain is negative as the common emitter gain is negative and it is the dominant transistor here.

On Multisim

%error=((7.0818-7.1621)/7.0818)*100=1.14%

Simulation of Vin vs Vout using Transient analysis

<u>Notice that</u> Vout is > Vin which is the goal of an amplifier circuit.