```
Stu id: 21126390
1. (a) Proof: 1° 11 x1100 = max 1201 > 0
                                                                                                                                                                                                                                                                                                                          You need to justify 11x 1/20=0 (3) X =0.
                                                                                     2° YXER1, XER,
                                                                                                                    \|d\vec{x}\|_{\infty} = \max_{i \in [l,n]} |dx_i| = \max_{i \in [l,n]} |d| \cdot |x_i| = |a| \cdot \max_{i \in [l,n]} |x_i| = |a| \cdot |x_i|
                                                                                      Over all, 11211 = max |xi| is indeed a norm on R<sup>n</sup>.
                  (b) Proof: As \i∈[1,n](i∈N+), 0≤ |xi| ≤ max |xi|
                                                                            and as \exists j \in [1,n] (j \in N^+), x_j = \max_{i \in [1,n]} |x_i|

so \max_{i \in [n]} |x_i| \leq \sum_{i=1}^n |x_i| \leq \sum_{j=1}^n (\max_{i \in [1,n]} |x_i|) = n \cdot \max_{i \in [1,n]} |x_i|
                                                                                                                                              ころに こることに
                                                                                                  i.e.
                                                                                                                                                                                                                                                                                                                                                                                                                                    n. ((列)。
                     (c) Proof:
                                                                                                   |\vec{x}^{\dagger}\vec{y}| = \left|\sum_{i=1}^{n} x_i y_i\right| \leq \sum_{i=1}^{n} |x_i y_i| \leq \sum_{i=1}^{n} \left|x_i y_i\right| \leq \sum
                                                                                                                                                                                                                                                                                                                                                                 = \left(\frac{\sum_{i=1}^{n} |x_{i}|}{\sum_{i=1}^{n} |x_{i}|}\right) \cdot \max_{j \in [l,n]} |y_{j}|
                                                                                                                                                                                                                                                                                                                                                                                                       ||元||、 ||文||。
     2. (a) Proof: (I denote the reason "as IIARII, is the 2-norm on R" as "O")
                                                        1° ||A||_2 = \max_{\vec{x} \in \mathbb{R}^n, ||\vec{x}||_2 = 1} ||A||_2 = \max_{\vec{x} \in \mathbb{R}^n, ||A||_2 = 1} ||A||_2 = 1} ||A||_2 = \max_{\vec{x} \in \mathbb{R}^n, ||A||_2 = 1} ||A||_2 = \max
                                                    2^{\circ} \|AA\|_{2} = \max_{x \in \mathbb{R}^{n}, \|x\| \in \mathbb{I}} \|(dA)x\|_{2} = \max_{x \in \mathbb{R}^{n}, \|x\| \in \mathbb{I}} \|d(Ax)\|_{2}
                                                                                                                                                                                                                                                                                                  云ER"、II文リンニ
                                                                                                                                                                                                                                                                                 @ max α· || Aà|| 2

≈ER", || 12|| 15||
                                                                                                                                                                                                                                                                                 = d. || A||2
                                                  3° Assume Bmxn,
                                                                                      thus ||A+B||_2 = ||Max|| ||(A+B)||_2 = ||Max|| ||A|| + ||B|||_2
                                                                                                                                                                                                                                                                                                                                                                                () xer" | xer" | (| Ax | 12+ | Bx | 12)
                                                                                                                                                                                                                                                                                                                                                                                  \leq \max_{x \in \mathbb{R}^n, \|x\|_2 = \|Ax\|_2 + \max_{y \in \mathbb{R}^n, \|y\|_2 = 1} \|By\|_2
                                                                                                                                                                                                                                                                                                                                                                                  = ((A1), + (|B1),
```

Over all, 11.11, is indeed a norm on Rmxm

MSBU 5004 HOMEWORK OI

Name: Zheng Mingen

(b) Proof:
$$\forall \vec{x} \in \mathbb{R}^{n}$$
, $\vec{x} = ||\vec{x}||_{2} \cdot \vec{a}$ where $||\vec{x}||_{2} = ||\text{and } ||\vec{x}||_{2} \in \mathbb{R}$, $||\vec{x}||_{2} > 0$
 $||\vec{x}||_{2} = ||A \cdot ||\vec{x}||_{2} \vec{a}||_{2} = |||\vec{x}||_{2} \cdot (A\vec{a})||_{2} = ||\vec{x}||_{2} \cdot ||A\vec{a}||_{2}$
 $\leq ||\vec{x}||_{2} \cdot ||A\vec{a}||_{2} = ||A\vec{a}||_{2} \cdot ||B\vec{a}||_{2} \cdot ||A\vec{a}||_{2} = ||A\vec{a}||_{2} \cdot ||A\vec{a}||_{2} \cdot ||A\vec{a}||_{2} \cdot ||A\vec{a}||_{2} \cdot ||A\vec{a}||_{2} \cdot ||A\vec{a}||_{2} = ||A\vec{a}||_{2} \cdot ||A\vec{a}||$

3. Proof:

Part 1: Firstly prove:
$$||A||_2 = ||A||_2 =$$

Given a real symmetric matrix Pnxn, there must be an orthogonal matrix 0, s.t. $O^{T}PO = O^{-1}PO = \Lambda = \begin{bmatrix} \lambda_{1} \\ \ddots \\ \lambda_{n} \end{bmatrix}$, where λ is a eigenvalue of P and columns of O are eigenvectors of corresponding eigenvalues.

Therefore, when is an eigenvector of $\lambda \max$, $\max_{||x||=1}$ = $\lambda \max$. As ATA is a real symmetric matrix from Rnin,

$$\sqrt{\lambda_{\text{max}}(A^{T}A)} = \sqrt{\frac{1}{||\vec{x}||_{2}^{2}}} = \sqrt{\frac{$$

Partz: Through the calculation of ATA, it's obvious that
$$\|A\|_{F} = \int tr(A^{T}A)$$
 thus $\|A\|_{F} = \int tr(A^{T}A) = \int \frac{2}{i}\lambda i$, where λi is an eigenvalue of $A^{T}A$.

thus
$$||A||_F = \int tr(A^TA) = \int_{i=1}^{\infty} \lambda_i$$
, where λ_i is since $\lambda_{max}(A^TA) \leq \sum_{i=1}^{\infty} \lambda_i \leq n \cdot \lambda_{max}(A^TA)$

thus
$$\int_{\Lambda} \sum_{n=1}^{n} \lambda_i \leq \int_{\Lambda} \lambda_i \leq \int_{\Lambda} \lambda_i = \int_{\Lambda} \lambda_i =$$

i.e. 11A112 < 11A117 < 5m.11A112

4. (a)
$$Mn\vec{d} = \begin{bmatrix} an \\ \vdots \\ an \end{bmatrix}$$
 $n-dim\ col-vector$ $= an \cdot \vec{d}$,

thus an is an eigenvalue of Mn and \vec{d} is an eigenvector of λ =an.

for any row of Mn, the sum of the row is:

$$\frac{\sum_{j=1}^{n} \left(\sum_{k=1}^{n} m_{ik} m_{kj} \right)}{\sum_{j=1}^{n} \left(m_{ik} \cdot \sum_{j=1}^{n} m_{kj} \right)} = \frac{\sum_{k=1}^{n} \left(m_{ik} \cdot a_{n} \right)}{\sum_{k=1}^{n} \left(m_{ik} \cdot a_{n} \right)} = a_{n} \cdot a_{n} = a_{n}^{2}$$

Similarly, for any column of Mi, the sum of the column is

$$\frac{n}{\sum_{i=1}^{n} \left(\sum_{k=1}^{n} m_{ik} m_{kj} \right)} = \sum_{k=1}^{n} \left(m_{kj} \cdot \sum_{i=1}^{n} m_{ik} \right)$$

$$= \sum_{k=1}^{n} \left(m_{kj} \cdot a_{k} \right) = a_{k}^{2}$$

Proved.

(C) Proof: According to Schur decomposition, YAER^{nxn}, A can be decomposed as A=QHQ¹, where Q is an orthogonal matrix and H is a triangular matrix.

As $Mn \in \mathbb{R}^{n \times n}$, thus we assume $Mn = QHQ^T = QHQ^{-1}$, where $Q^{-1} = Q^T$ and H is triangular.

so $H = Q^T M n Q^{(1)}$, we assume that $H = [hij], Q = [qij], Mn = [mij], Q^T M n = [Zij]$

by calculating (1), we have
$$hij = \sum_{k=1}^{n} \sum_{k=1}^{n} \frac{\sum_{k=1}^{n} p_{ki} \cdot p_{ki}}{\sum_{k=1}^{n} p_{ki} \cdot p_{ki} \cdot p_{ki}}$$

$$= \sum_{k=1}^{n} \sum_{k=1}^{n} \left(q_{kj} \cdot q_{ki} \cdot m_{kk} \right)$$

Because $Mn \sim H$, so Mn and H share the same eigenvalues, and as H is triangular, diagonal entries of H are eigenvalues of H.

So diagonal entries of H are eigenvalues of Mn.

As we have proved in (2), all entries of $H \leq \alpha n$, and as we showed in problem (a). On is an eigenvalue of Mn, thus we can infer that αn is the largest eigenvalue of Mn.

As we proved in question 3, we have $||Mn||_2 = \int_{Max} (M_n^T M_n)$ $||argest||_{Logentalue} = \int_{Max} (M_n) ||Mn||_2 = \int_{Max} (M_n^T M_n)$ $||argest||_{Logentalue} = \int_{Max} (M_n^T M_n) ||Mn||_2 = \int_{Max} (M_n^T M_n^T M_n^T$

5. Proof: Order the m numbers from smallest to largest, and denote them as a_{51} , a_{52} , ..., a_{5m} .

Smallest largest

Part! If we assume the number which minimizes this summation is in the range of (-∞, asi)U(asm,+∞), and denote the summation in this situation as d⇒ Then we can always find that the 2 endpoints of the interval [asi, asm], i.e. asi& asm, can make the summation smaller than d.

Thus, we can deny the assumption above and infer that the number we try to find is in the range of [asi, asm].

Part2:) When the target number is in [asi, asm], the summation can be expressed as:

 $\frac{\sum_{i=1}^{m} |a_{i}-b|}{\sum_{i=1}^{m} |a_{si}-b|} = (|a_{si}-b|+|a_{sm}-b|) + \sum_{i=2}^{m-1} |a_{si}-b|$ $= (a_{sm}-a_{si}) + \sum_{i=2}^{m-1} |a_{si}-b|, (b \in [a_{si},a_{sm}])$

where (asm-asi) is constant and the optimization problem is changed into minimizing the summation: $\sum_{i=2}^{n-1} |asi-b|$

Part 3:

Exactly the same as the discussion above, we can infer that the target number is not in the range of [asi,asz)U(asm-1,asm], i.e. we narrow the potienal interval into [asz, asm-1].

If we do this procedure iteratively, we can finally determine that the number we want is located in the range denoted as T:

$$T = \begin{cases} \left[a_{s, \frac{m}{2}}, a_{s, \frac{m}{2}+1} \right], & \text{if } m \text{ is even} \end{cases}$$

$$T = \begin{cases} \left[a_{s, \frac{m}{2}}, a_{s, \frac{m}{2}+1} \right], & \text{if } m \text{ is odd} \end{cases}$$

Part 4:

1° if m is even,

 $\forall b \in T$, b can minimize $\sum_{i=1}^{m} |a_i - b|$ as $\sum_{i=1}^{m} (a_{s,m+1-i} - a_{si})$ $let b = \underbrace{a_{s,\frac{m}{2}} + a_{s,\frac{m+1}{2}}}_{i.e. b}$ i.e. b is the median.

2° if m is odd, $\forall b \in T$, $\sum_{i=1}^{m} |a_i - b| = \sum_{i=1}^{\lfloor \frac{m}{2} \rfloor} (a_{s, m+1-i} - a_{si}) + |a_{s, \frac{m}{2} + 1 - b}|$

obviously if we let $b = a_{s, \lfloor \frac{m}{2} \rfloor + 1}$ i.e. b is the median, then the summation is minimized.

Over all, a median of a_1, a_2, \dots am minimizes $\sum_{i=1}^{m} |a_i - b|$ over all, a median of a_1, a_2, \dots am minimizes $\sum_{i=1}^{m} |a_i - b|$ over all $b \in \mathbb{R}$.

6. (a) Because in the K-means algorithm, we calculate \vec{z}_j using

since $Xi_1, Xi_2, ..., Xi_n$ are all nonnegative and $|Gj| \ge 1$,

We can know $Zj_1, Zj_2, ..., Zj_n$ are all nonnegative, i.e. all Zj are also nonnegative.

(b) Suppose $\vec{x}_i = \begin{pmatrix} x_{i1} \\ x_{i2} \\ x_{in} \end{pmatrix}$ where $\sum_{k=1}^{n} x_{ik} = 1$

Since
$$Z_j^2 = \frac{1}{|G_j|} \sum_{i \in G_j} \overline{\chi_i} = \begin{pmatrix} Z_{j1} \\ Z_{j2} \\ Z_{jn} \end{pmatrix}$$

thus $Z_{jk} = \frac{1}{|G_j|} \sum_{i \in G_j} \chi_{ik}$ $(k=1,2,...,n)$

thus $\sum_{k=1}^n Z_{jk} = \sum_{k=1}^n \left(\frac{1}{|G_j|} \sum_{i \in G_j} \chi_{ik} \right) = \frac{1}{|G_j|} \left(\sum_{i \in G_j} \sum_{k=1}^n \chi_{ik} \right)$

$$= \frac{1}{|G_j|} \left(\sum_{i \in G_j} \chi_{ik} \right)$$

As we have explained in problem (a), because $\vec{x_i}$ are nonnegative, $\vec{z_j}$ are also nonnegative.

In conclusion, all Zi are also proportions.

(c) (zi); means the proportion of vectors which has a value of 1 in i-th entry

in all vectors of Groupj.