1 appendix

1.1 Experimental Setup

The experimental setup for this research work comprises the hardware requirements of CPU @ 2.90 GHz with Intel Core i7-7500 CPU over 64-bit Operating System having 8.00 GB RAM. We use the software of $Python\ 3$ with library modules of networkx for graphical analysis, NLTK for text processing, pandas to handle the data, matplotlib for graph plot, and many other relevant modules. We implement the baselines by using existing modules which are further modified to incorporate the settings for EdgeGraph. We use the default parameter settings of random walk based GKET which are available in the existing implementation.

1.2 Performance evaluation for long text documents

1.3 Statistical Significance

We use the following symbolic representation for four categories of statistical analysis:

- 1. EdgeGraph significantly outperforms WCN: The resulting values for t-test are positive and the p-value < 0.05. It is represented as Bold in p-value column.
- 2. EdgeGraph is better than WCN, but not statistically significant: The resulting values for t-test are positive and the $p-value \not< 0.05$. It is represented as bold + italics in p-value column.
- 3. WCN is better than EdgeGraph, but not statistically significant: he resulting values for t-test are negative and the $p-value \not< 0.05$. It is represented as italics in p-value column.
- 4. WCN significantly outperforms EdgeGraph: The resulting values for t-test are negative and the p-value < 0.05. It is represented as normal text in p-value column.

¹ https://github.com/boudinfl/pke

Fig. 1. Performance evaluation of the random walk based GKET over WCN and Edge-Graph representation of long-texts for varying values of k: F-measure, Precision and Recall.

 ${\bf Table~1.}$ Statistical Significance for different keyphrase Extraction over WCN and EdgeGraph.

Dataset Theses-100						
	Recall		Precision		F Measure	
Methods	t_test	p_value	t_test	p_value	t_test	p_value
Text Rank	2.9808	0.007679			-7.2403	7.14E-07
NE Rank		2.74E-08	0.1505	0.8818	-4.9817	8.28E-05
Position Rank	1			9.41E-07	1.3439	0.19478
Single Rank	10.2857	3.34E-09		0.04840	4.8088	0.00012
Dataset FAO 30						
Methods			Precision		F Measure	
	t_test	p_value	t_test	p_value	t_test	p_value
Text Rank	3.8896	0.00098	-29.1109	3.17E-17	-18.0404	2.06E-13
NE Rank	7.7256	2.80E-07				7.55E-14
Position Rank	1	0.02039	-6.3402	4.39E-06	-0.6857	0.5011
Single Rank	2.3643	0.0288	-2.5759	0.0185	0.6899	0.4985
Dataset 500N-KPC						
			Precision		F Measure	
Methods	t_test	p_value	t_test	p_value	t_test	p_value
Text Rank	8.8480	3.64E-08	-11.3725		10.5934	2.06E-09
NE Rank		1.45E-12	0.8804	0.3896	21.4380	8.98E-15
Position Rank	1	2.09E-10	-14.8203		20.5013	2.03E-14
Single Rank	9.2492	1.82E-08		1.61E-12	12.9572	7.01E-11
Dataset PAK 2018						
Methods	Recall Precision		F Measure			
	t_test	p_value	t_test	p_value	t_test	p_value
Text Rank	4.0972	0.00061	-0.8953	0.3817	-0.4678	0.6452
NE Rank	23.8044	1.31E-15	13.5307	3.33E-11	27.1391	1.17E-16
Position Rank	-5.7231	1.62E-05	-4.0292	0.0007	-7.1178	9.08E-07
Single Rank	3.9588	0.00084	-1.3992	0.1778	-0.3888	0.7016
Dataset PT BN KP						
Methods	Recall		Precision		F Measure	
	t_test	p_value	t_test	p_value	t_test	p_value
Text Rank	11.3315	6.78E-10	-1.1464	0.2658	16.6051	9.09E-13
NE Rank	17.2039	4.83E-13	-0.7460	0.4647	30.9321	1.02E-17
Position Rank	22.7884	2.93E-15	-12.3763	1.54E-10	19.9476	3.34E-14
Single Rank	8.3208	9.30E-08	1.4777	0.1558	9.008	2.75E-08
Dataset WIKI 20						
Methods			Precision		F Measure	
	t_test	p_value	t_test	p_value	t_test	p_value
Text Rank	-5.0775	6.69E-05	-17.7666	2.71E-13	-12.0685	2.35E-10
NE Rank	5.5577	2.32E-05	-16.2917	1.28E-12	-1.1878	0.2495
Position Rank		0.0030	-4.0372	0.00070	-3.9784	0.0008
Single Rank	0.6545	0.5206	-5.6385	1.95E-05	-0.9103	0.3740