Week9-mollaiyan-mohammadjavad

Task 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Placenza campus in the moment that you are solving this exercise (provide the inputs that you utilize that you take the contract of t

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

			oggi in I 02 Dicem				
	13:00	14:00	16:00	18:00	20:00	21:00	22:00
	246	24	Mr.	Mr.	*	600	34
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud
Temperatura effettiva	10°C	10°C	9°C	6°C	7°C	7°C	8°C
Temperatura percepita	10°C	10°C	8°C	5°C	7°C	6°C	7°C
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Umidità	79 %	77 %	89 %	90 %	90 %	92 %	91 %
Pressione atmosferica	1016 hPa	1015 tiPa	1016 hPs	1017 hPs	1019 hPa	1019 hPa	1020 tPa

The time now is 8 pm from the data given in the website : relative humidity is =90% Total air presure = $101.9 \, \text{kPa}$ Tempurture in kelvin scale T= $230 \, \text{K}$

absoulte humidty cu = 0,0055

balb temperature
$$T_{ub} = 6^{\circ}c$$

$$W = \frac{91622PV}{Pa} = \frac{21692PV}{P-PV} = \frac{970055}{P}$$

in+aduce D=101,9 Kp

autem
$$\phi = \frac{m_0}{m_0} = 90\%$$

Par any Ideal gas => water vapour, Rsp=0,4615

$$P_{V} = {}^{\circ}/893 \, \text{Kpa}$$

$$M_{V} = {}^{\circ}/893 \, \text{V}$$

$${}^{\circ}/4615 \times 230 \, \text{S}/41 \, \text{M}^{\circ} \text{V}$$

$$m = \frac{Mn_V}{90\%} = 9,34 \times 10^{-3} \text{ V}$$

Task 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the inflitration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

internal apines

internal gains:

calculate the sensibile cooling load from internal equins;

9igs = 136 + 2.2 Acf + 22 No= 136+2.22 22+200+22*2 -620 W

calculate cooling & int gains.

0 ig 1 = 20 +0,22 Acp + 12 Noc= 20 +0,22 * 20+12 * 2=8800

in hiltmation ?

Aul = 1,4 cm2/m2

A = A wall + A roof = 200+144=344 m

thus , AL = Res & Au = 344x1, 4 = 481,6 cm2

Toolig = 2 &c Theory = 20°c

Steeding = 31,1 c-24c = 7,1 c = 7,1 k

AThoug = 202-(-412) = 24,12 = 241 K

DR =7,1°C = 7,1 K

[DFLowning = 9/978 L Sxcm2

[DF cooling = 2/033 L 5xcm2

quir flow rate:

Qi, hoothey = AL+IDTharry = 481,6 x0,073 & 35,157 &

Qi awlig = A 1 x IDT why = 481,6 x 0,033 & 15,899 =

min whole building retilation?

Qu = 0,05 Acf +35(Nbr+1) = 405 x 200 +8,5x(H1) = 174

0; - Vhouring = 0; heating + Q x 35,157+17=52,157=

Qi_vcoolig = Qicoolig +Qv \$15,898 +17 = 32,8934

Given that Csensible = 1,23, Cratent = 3010, 2 Woody = 9,10039

9inf -ves = Cs Qive Ste x 1,28 x 32,893 x 71 = 287,25 W

9 inl-Va; = C, Qim DW, M, 3010 x32,893 x 0,0039 = 386,13 W

9 inl-vai = C, Qive DWc & 3010 x 32,893 x 0,0039 = 386,13 W Pirl-vhs = C, Qive DT have = 1,23 x 52,157 x 24,1 = 1546,09 W