Ride comfort mobile app

Background:

The idea of this ride comfort app is to measure customer's ride quality when they make a journey in a vehicle. It is particularly interesting when it comes to quantify the ride quality of driverless vehicle. The existing measurement of the ride quality of a journey is using an expensive sensors, see picture below (figure 1 &2). It is essentially an accelerometer and gyroscope, but with much higher accuracy. However, nowadays the smartphone is well equipped with a good accelerometer and gyroscope; it could potentially achieve the required accuracy for the ride quality measurement.

· Sensor setup

Figure 1: vibration sensor in the car

Figure 2: comparison of ride quality between car and van

App Specs:

Functionality:

- 1. Get sensor raw readings from the accelerometer and gyroscope;
- 2. Calculate running RMS, minimum, maximum RMS for each axis;
- 3. Be able to use the device to collect data, view data;
- 4. Be able to adjust sample frequency;
- 5. Upload data to backend and user can request to send data via email.

Design:

Figure 3: Brief overview of app layout

App name:

ICL-RideComfort

Calculating ride quality metrics:

Calculation of ride quality metrics

- Standard metrics:
 - RMS
 - VDV

Values needs to be calculated:

X: running RMS, min RMS, max RMS

Y: running RMS, min RMS, max RMS

Z: running RMS, min RMS, max RMS

Overall RMS

Example calculation:

		Accelerometer reading						
Time		X-axis	Y-axis	Z-axis				
	0	0.17158	0.205341	0.98495				
	0.1	0.097244	0.190006	0.998675				
	0.2	0.064279	0.151361	1.048559				
	0.3	0.065042	0.106226	1.036592				
	0.4	0.062876	0.054812	0.979403				
	0.5	0.121148	0.084047	1.010871				

Running RMS:

$$RMS = \sqrt{\frac{a_t^2}{t - t_{t-1}}}$$

	Accelerometer reading			Running RMS for each axis (m/s2)		
Time	X-axis	Y-axis	Z-axis	RMS-X	RMS-Y	RMS-Z
0	0.17158	0.205341	0.98495			
0.1	0.097244	0.190006	0.998675	0.30751253	0.600852	3.158088
0.2	0.064279	0.151361	1.048559	0.20326805	0.478646	3.315835
0.3	0.065042	0.106226	1.036592	0.20568086	0.335916	3.277992
0.4	0.062876	0.054812	0.979403	0.19883137	0.173331	3.097144
0.5	0.121148	0.084047	1.010871	0.38310361	0.26578	3.196655