After this tutorial you should be able to:

- 1. Convert an English or mathematical description of a context-free language into a CFG, and argue why your grammar is correct.
- 2. Describe in English or mathematics the language of a CFG, and argue why your description is correct.
- 3. Argue if a CFG is ambiguous or not.

Problem 1. Let $\Sigma = \{0, 1\}$.

1. Describe in one sentence the language generated by the following grammar:

$$S \to X1X$$
$$X \to 0X \mid \epsilon$$

2. Describe in one sentence the language generated by the following grammar:

$$S \rightarrow 0S0 \mid 1$$

Solution 1.

- 1. The set of binary strings of the form $0^n 10^m$ for $n, m \ge 0$ (i.e., the language is $L(0^*10^*)$).
- 2. The set of binary strings of the form $0^n 10^n$ for $n \ge 0$.

Note that although X stores the information "any number of zero", the two occurrence of X in $S \rightarrow X1X$ are independent of each other.

Note that 0100 is derivable by the first grammar, but not by the second grammar.

Problem 2. Consider the following grammar:

$$E \rightarrow E + T \mid E - T \mid T$$

$$T \rightarrow F \times T \mid T/T \mid F$$

$$F \rightarrow (E) \mid V \mid C$$

$$V \rightarrow a \mid b \mid c$$

$$C \rightarrow 1 \mid 2 \mid 3$$

- 1. Indicate the set of variables, terminals, production rules, and the start variable.
- 2. Give a left-most derivation of the string $a + b \times c$
- 3. Give a right-most derivation of the string $a + b \times c$
- 4. Give a parse tree for $a \times b 2 \times c$

5. Give a parse tree for $a \times (b-2 \times c)$

Solution 2.

1. $V = \{E, T, F, V, C\}$ $T = \{a, b, c, 1, 2, 3, (,), \times, /, +, -\}$

Production rules as above (note there are 15 rules!)

Start variable as *E* (if it's not stated we assume it's the first one, or *S*)

2.

$$E \Rightarrow E + T$$

$$\Rightarrow T + T$$

$$\Rightarrow F + T$$

$$\Rightarrow V + T$$

$$\Rightarrow a + T$$

$$\Rightarrow a + F \times T$$

$$\Rightarrow a + V \times T$$

$$\Rightarrow a + b \times T$$

$$\Rightarrow a + b \times F$$

$$\Rightarrow a + b \times C$$

3.

$$E \Rightarrow E + T$$

$$\Rightarrow E + F \times T$$

$$\Rightarrow E + F \times F$$

$$\Rightarrow E + F \times C$$

$$\Rightarrow E + F \times C$$

$$\Rightarrow E + V \times C$$

$$\Rightarrow E + b \times C$$

$$\Rightarrow T + b \times C$$

$$\Rightarrow F + b \times C$$

$$\Rightarrow A + b \times C$$

Problem 3.

- 1. Write a recursive definition of the set of strings of balanced parentheses. So, e.g., the following strings are in the language:
 - ()(())
 - ()
 - \bullet ϵ

and the following are not:

-)()
- (()))

- 2. Write a CFG for the language of balanced parentheses.
- 3. If you haven't already, write an unambiguous CFG for the language of balanced parentheses. Can you explain why your grammar is unambiguous?

Solution 3. Here is a recursive definition:

- 1. The empty string is balanced.
- 2. If w is balanced then so is (w).
- 3. If v, w are balanced then so is vw.

Here is the corresponding CFG: $S \rightarrow SS \mid (S) \mid \varepsilon$.

This grammar is ambiguous since every leftmost derivation can be prefixed by $S \Rightarrow SS \rightarrow S$ (using the $S \rightarrow \varepsilon$ rule).

An unambiguous grammar that generates the same language is $S \to \epsilon |(S)S$.

Problem 4.

- 1. Show that every regular language is context-free. You may want to give a recursive translation of regular expressions to CFGs.
- 2. Show that there is some context-free language that is not regular.

Solution 4. We give a recursive transformation of a RE *R* into a CFG. Let's call this RETOCFG:

- 1. If $R = \emptyset$ then return the grammar $S \to S$.
- 2. If $R = \epsilon$ then return the grammar $S \to \epsilon$.
- 3. If R = a for $a \in \Sigma$ then return the grammar $S \to a$.
- 4. If $R = (R_1R_2)$ then let $G_1 = \text{REToCFG}(R_1)$ and $G_2 = \text{REToCFG}(R_2)$. Suppose that the start state of G_i is S_i . Return the grammar consisting of the rules of G_1 , the rules of G_2 , and the additional rule $S \to S_1S_2$, where S is a new state.
- 5. If $R = (R_1 \cup R_2)$ then let $G_1 = \text{REToCFG}(R_1)$ and $G_2 = \text{REToCFG}(R_2)$. Suppose that the start state of G_i is S_i . Return the grammar consisting of the rules of G_1 , the rules of G_2 , and the additional rule $S \to S_1 | S_2$ where S is a new state.
- 6. If $R = (R_1)^*$ then let $G_1 = \text{REToCFG}(R_1)$. Suppose the start state of G_1 is S_1 . Return the grammar consisting of the rules of G_1 and the new rule $S \to S_1 S \mid \epsilon$.

For the second part, note that $S \to 0S1|\epsilon$ generates the non-regular language $\{0^n1^n : n \ge 0\}$.

Problem 5. Some programming languages define the if statement in similar ways to the following grammar:

```
Conditional \rightarrow if Condition then Statement

Conditional \rightarrow if Condition then Statement else Statement

Statement \rightarrow Conditional \mid S_1 \mid S_2

Condition \rightarrow C_1 \mid C_2
```

- 1. Show that this grammar is ambiguous.
- 2. Show that the string you provided can be interpreted in two different ways, i.e., resulting in programs with different behaviours.
- 3. Write a CFG that captures if statements but is not ambiguous.

Solution 5.

- 1. The string "if C1 then if C2 then S1 else S2" has two leftmost derivations.
 - (a) Here is one derivation (not drawing \Rightarrow):
 - i. Conditional
 - ii. if Condition then Statement
 - iii. if C1 then Statement
 - iv. if C1 then Conditional
 - v. if C1 then if Condition then Statement else Statement
 - vi. if C1 then if C2 then Statement else Statement
 - vii. if C1 then if C2 then S1 else Statement
 - viii. if C1 then if C2 then S1 else S2
 - (b) Here is another:
 - i. Conditional
 - ii. if Condition then Statement else Statement
 - iii. if C1 then Statement else Statement
 - iv. if C1 then Conditional else Statement
 - v. if C1 then if Condition then Statement else Statement
 - vi. if C1 then if C2 then Statement else Statement
 - vii. if C1 then if C2 then S1 else Statement
 - viii. if C1 then if C2 then S1 else S2
- 2. If C1 is true and C_2 is false, then one of the programs does S_2 , and the other doesn't do S_2 .

3.

 $Conditional \rightarrow if Condition then Statement end if Conditional \rightarrow if Condition then Statement else Statement end if$

Problem 6. Describe the language generated by the following context-free grammar:

$$S \to X1Y$$

$$X \to \epsilon \mid X0$$

$$Y \to \epsilon \mid 1Y \mid Y0$$

Briefly explain why your answer is correct.

Is the grammar ambiguous?

Solution 6. Language of the regexp 0*11*0*.

Informally, the reason is that *S* generates X1Y; *X* generates 0^* ; *Y* generates 1^*0^* .

More precisely, we will show two things: that every string matching the regexp 0*11*0*. can be generated by this grammar; and that every leftmost derivation generates a string matching this grammar.

Every string of the form $0^n 11^m 0^l$ can be generated as follows: $S \Rightarrow X1Y \Rightarrow^n 0^n 1Y \Rightarrow^m 0^n 11^m Y \Rightarrow^l 0^n 11^m 0^l$. On the other hand, a leftmost derivation must look as follows $S \Rightarrow X1Y \Rightarrow^n 0^n 1Y$ for some $n \ge 0$, and $Y \Rightarrow^* 1^m 0^l$ for some $m, l \ge 0$.

It is ambiguous because, e.g., $S \Rightarrow X1Y \Rightarrow 1Y \Rightarrow 11Y \Rightarrow 11Y \Rightarrow 11Y0 \Rightarrow 110$ and $S \Rightarrow X1Y \Rightarrow 1Y \Rightarrow 1Y0 \Rightarrow 11Y0 \Rightarrow 110$ are two leftmost derivations of the string 110.