Devoir surveillé n°6 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Une relation fonctionnelle.

Le but de cet exercice est de trouver toutes les bijections bicontinues (i.e. les bijections continues à réciproque continue) $\varphi: \mathbb{R} \to \mathbb{R}$ vérifiant

$$\forall x \in \mathbb{R}, \qquad x = \frac{1}{2} \left(\varphi(x) + \varphi^{-1}(x) \right).$$

Soit φ une solution de ce problème. On pose $h = \varphi - \mathrm{Id}$.

- 1) Montrer que $\varphi \circ \varphi = 2\varphi \mathrm{Id}$.
- 2) Montrer que φ ne peut pas être strictement décroissante, et en déduire qu'elle est strictement croissante en le justifiant avec précision.
- 3) Montrer que pour tout $n \in \mathbb{Z}$ et tout $x \in \mathbb{R}$, $\varphi^n(x) = nh(x) + x$, et en déduire les limites quand n tend vers $+\infty$ et $-\infty$ de la suite $\left(\frac{\varphi^n(x)}{n}\right)_{n \in \mathbb{Z}^*}$, pour x fixé.

On suppose dans la suite que h est non nulle. Pour fixer les idées, supposons qu'il existe $a \in \mathbb{R}$ tel que h(a) > 0.

- 4) Établir que la suite $(\varphi^n(a))_{n\in\mathbb{Z}}$ est croissante et tend vers $+\infty$ quand $n\to+\infty$ et vers $-\infty$ quand $n\to-\infty$.
- 5) En déduire que pour tout $x \in \mathbb{R}$, il existe $p \in \mathbb{Z}$ tel que $\varphi^p(a) \leqslant x < \varphi^{p+1}(a)$.
- **6)** En tirer que h est constante.
- 7) Conclure.

II. Un théorème de Kronecker.

On note $\mathbb{Z}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{Z} . Dans tout ce problème, n désigne un entier naturel non nul.

On note \mathscr{K}_n l'ensemble des polynômes de $\mathbb{Z}[X]$ unitaires, de degré égal à n, et dont toutes les racines complexes sont à la fois non nulles et de module inférieur ou égal à 1.

On note enfin \mathcal{R}_n l'ensemble des racines complexes des éléments de \mathcal{K}_n .

L'objectif de ce problème est de démontrer le théorème de Kronecker : il existe $r \in \mathbb{N}$ tel que $\mathcal{R}_n \subset \mathbb{U}_r$.

Si $P \in \mathbb{C}[X]$ est de degré n, on note $\sigma_1(P), \ldots, \sigma_n(P)$ les fonctions symétriques élémentaires des racines de P.

On pourra utiliser sans justification le principe des tiroirs : si n+1 éléments appartiennent à un ensemble contenant au plus n éléments, alors deux de ces éléments sont égaux (au moins).

- 1) Soit $P \in \mathcal{K}_n$, que l'on écrit sous forme développée réduite $P = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$.
 - a) Rappeler les expressions de $\sigma_1(P), \ldots, \sigma_n(P)$.
 - **b)** Montrer que $|a_0| = 1$ et que $|a_{n-1}| \leq n$.
 - c) Montrer que $\mathscr{R}_n \subset \mathbb{U}$.
- 2) Cas particulier n=2. Dans cette question uniquement, on écrit $P=(X-\alpha)(X-\beta)$, où $\alpha, \beta \in \mathbb{U} \setminus \{0\}$.
 - a) Montrer que si $\alpha \notin \mathbb{R}$, alors P est égal à l'un des polynômes suivants : $X^2 X + 1$, $X^2 + 1$ et $X^2 + X + 1$.
 - **b)** Que peut valoir $P \text{ si } \alpha \in \mathbb{R}$?
 - c) Déduire des deux questions précédentes que $\mathcal{R}_2 \subset \mathbb{U}_{12}$.
- 3) Dans cette question uniquement, on considère un polynôme $P \in \mathbb{Z}[X]$ de degré n.
 - a) Montrer qu'il existe un unique polynôme $\widehat{P} \in \mathbb{Z}[X]$ de degré n vérifiant $P(X)P(-X) = (-1)^n \widehat{P}(X^2)$.
 - b) Écrire la décomposition de \widehat{P} en produit de facteurs irréductibles sur $\mathbb{C}[X]$ en fonction de celle de P.
 - c) Montrer que si $P \in \mathcal{K}_n$, alors $\hat{P} \in \mathcal{K}_n$.
 - d) En déduire que \mathcal{R}_n est stable par la transformation $z \mapsto z^2$.
- 4) a) Montrer que l'ensemble $\{ |\sigma_k(P)| | 1 \le k \le n \text{ et } P \in \mathcal{K}_n \}$ est majoré.
 - b) Soit $N \in \mathbb{N}$, combien existe-t-il de polynômes $P \in \mathbb{Z}[X]$ unitaires, de degré n et à coefficients dans [-N, N]?
 - c) En déduire que \mathscr{R}_n est fini.
- **5)** a) Montrer que pour tout $\alpha \in \mathcal{R}_n$, il existe $r \in \mathbb{N}$ tel que $\alpha \in \mathbb{U}_r$.
 - b) Démontrer le théorème de Kronecker.
 - c) Soit $r \in \mathbb{N}$ vérifiant $\mathscr{K}_n \subset \mathbb{U}_r$, soit $P \in \mathscr{K}_n$. Montrer qu'il existe $s \in \mathbb{N}$ indépendant de P tel que P divise $(X^r 1)^s$.

— FIN —