$- x \le x \le x $	Triangle inequality: $ x + y \le x + y $
$\sqrt{x^2} = x $	-x
If $\lim_{x \to c} g(x) = 0$, $\lim_{x \to c} \frac{\sin g(x)}{g(x)} = \lim_{x \to c} \frac{g(x)}{\sin g(x)} = 1$	$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x}{\sin x} = 1$
$If \lim_{x \to c} g(x) = 0,$ $\lim_{x \to c} \frac{\tan g(x)}{g(x)} = \lim_{x \to c} \frac{g(x)}{\tan g(x)} = 1$	$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{x}{\tan x} = 1$
Derivative by first principle: $f'(x) = \lim_{h \to 0} \frac{f(x-h) - f(x)}{h}$ $f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$	Continuity: (i) $\lim_{x \to c} f(x) \ exists$ (ii) $\lim_{x \to c} f(x) = f(c)$

x^n	nx^{n-1}		$\ln x$	$\frac{1}{x}$
cos x	$-\sin x$		$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
sin x	cos x		cos⁻¹ x	$-\frac{1}{\sqrt{1-x^2}}$
tan x	sec ² x		tan ^{−1} x	$\frac{1}{1+x^2}$
sec x	sec x tan x		cot ^{−1} x	$-\frac{1}{1+x^2}$
csc x	$-\csc x \cot x$		sec ^{−1} x	$\frac{1}{ x \sqrt{x^2-1}}, x > 1$
cot x	$-\csc^2 x$		csc ^{−1} x	$-\frac{1}{ x \sqrt{x^2-1}}, x > 1$
e ^x	e ^x		$\ln x$	$\frac{1}{x}$
Sum ru	le		$\frac{d}{dx}(u+v) =$	$=\frac{du}{dx} + \frac{dv}{dx}$
Product 1	rule		$\frac{d}{dx}(uv) = \frac{dx}{dx}$	$\frac{d}{dx}v + \frac{dv}{dx}u$
Quotient	Quotient rule		$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{du}{dx}$	$\frac{\frac{d}{dx}v - \frac{dv}{dx}u}{v^2}$
	_			1

Product rule	$\frac{d}{dx}(uv) = \frac{du}{dx}v + \frac{dv}{dx}u$
Quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{\frac{du}{dx}v - \frac{dv}{dx}u}{v^2}$
Derivative of inverse function	$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$
$f(x)^{g(x)}$	$f(x)^{g(x)}(g'(x)\ln f(x) + \frac{f'(x)}{f(x)}g(x))$
$a^{g(x)}$	$a^{g(x)}g'(x)\ln a$
Intermediate Value Theorem	If f be continuous on $[a,b]$ and k is a number between $f(a)$ and $f(b)$, Then $f(c) = k$ for some $c \in [a,b]$.

Tangent equation	$y - f(x_0) = m(x - x_0)$		
Normal equation	$y - f(x_0) = -\frac{1}{m}(x - x_0)$		
LHopital's Rule	$\lim_{n \to c} \frac{f(x)}{g(x)} = \lim_{n \to c} \frac{f'(x)}{g'(x)}$		
	(only when $\lim_{n\to c} f(x) = \lim_{n\to c} g(x) = 0$ or ∞ s. t. $\frac{f(x)}{g(x)} = \frac{0}{0}$ or $\frac{\infty}{\infty}$)		
0°/∞°/1°	$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} = e^{\lim_{x \to 0^+} x \ln x}$		
Rolle's Theorem	Let f be continuous on $[a, b]$ and differentiable on (a, b) . If $f(a) = f(b)$, then there is at least one number c such that $f'(c) = 0$.		
Mean Value Theorem	Let f be continuous on $[a, b]$ and differentiable on (a, b) .		
	Then, there is at least one number c such that $f'(c) = \frac{f(b)-f(a)}{b-a}$		
Critical points:	i) $f'(x) = 0$, ii) $f'(x)$ does not exist		

$\sin^2 x + c$	$\cos^2 x = 1$	$\sin A \cos B = \frac{1}{2} (\sin(A$	$(+B) + \sin(A-B)$
$\sin 2A = 2$	sin A cos A	$\cos A \sin B = \frac{1}{2} (\sin(A))$	$(+B) - \sin(A-B)$
$\cos 2A = \cos 2A = \cos 2A = 1 - 2$		$\cos A \cos B = \frac{1}{2}(\cos (A$	$(+B) + \cos(A-B)$
$= 2 \cos$	$A^2 A - 1$	$\sin A \sin B = -\frac{1}{2}(\cos(A$	$(+B) - \cos(A-B)$
$\sin(\pi - \theta) = \sin \theta$ $\cos(\pi - \theta) = -\cos \theta$ $\tan(\pi - \theta) = -\tan \theta$	$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$ $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$ $\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$	$\sin(\pi + \theta) = -\sin \theta$ $\cos(\pi + \theta) = -\cos \theta$ $\tan(\pi + \theta) = \tan \theta$	$\sin(-\theta) = -\sin\theta$ $\cos(-\theta) = \cos\theta$ $\tan(-\theta) = -\tan\theta$

$\int (ax+b)^n dx \Rightarrow \frac{(ax+b)^{n+1}}{(n+1)a} +$	- C	$\int \sec(ax+b)\tan(ax)$	$(x + b) dx \Rightarrow \frac{1}{a} \sec(ax + b) + C$	7
$\int \frac{1}{ax + b} dx \Rightarrow \frac{1}{a} \ln ax + b + \epsilon$	Ç.	$\int \csc(ax+b)\cot(ax)$	$(x+b) dx \Rightarrow \frac{1}{a} \sec(ax+b) + C$ $(x+b) dx \Rightarrow -\frac{1}{a} \csc(ax+b) + C$	-
$\int \frac{1}{ax+b} dx \Rightarrow \frac{1}{a} \ln ax+b + \epsilon$ $\int e^{ax+b} dx \Rightarrow \frac{1}{a} e^{ax+b} + C$		$\int \frac{1}{a^2 + (a + b)^2} da$	$\frac{a}{dx \Rightarrow \frac{1}{a} \arctan(ax + b) + C}$	1
$\int \sin(ax+b) \Rightarrow -\frac{1}{a}\cos(ax+b)$	+ <i>C</i>	$\int u^2 + (x+b)^2$	$\begin{aligned} tx &\Rightarrow \frac{1}{a}\arctan(ax+b) + C \\ &\Rightarrow \frac{1}{a}\arcsin(ax+b) + C \\ &\Rightarrow \frac{1}{a}\arcsin(ax+b) + C \\ dx &\Rightarrow \frac{1}{a}\arccos(ax+b) + C \end{aligned}$	
		$\int \sqrt{a^2 - (x+b)}$	1 1	_
$\int \cos(ax+b) dx \Rightarrow \frac{1}{a} \sin(ax+b)$		$\int \sqrt{a^2 - (x+b)^2}$	$dx \Rightarrow -\arccos(ax + b) + C$	
$\int \tan(ax+b) dx \Rightarrow \frac{1}{a} \ln \sec(ax+b) dx$) + <i>C</i>	$\int \frac{1}{a^2 - (x+b)^2} dx$	$dx \Rightarrow \frac{1}{2a} \ln \left \frac{x+b+a}{x+b-a} \right + C$	
+ 1	an(ax	$\int \frac{1}{(x+b)^2 - a^2} dx$	$dx \Rightarrow \frac{1}{2a} \ln \left \frac{x+b-a}{x+b+a} \right + C$	Theorem
+	cot(ax b) + C	$\int \frac{1}{\sqrt{(x+b)^2 + a^2}} dx \Rightarrow$	$\ln\left (x+b) + \sqrt{(x+b)^2 + a^2}\right + C$	
$\int \cot(ax+b) dx \Rightarrow -\frac{1}{a} \ln \csc(ax+b) dx$	b) + C	$\int \frac{1}{\sqrt{(x+h)^2 - a^2}} dx \Rightarrow$	$\ln \left (x+b) + \sqrt{(x+b)^2 - a^2} \right + C$	
$\int \cot(ax+b) dx \Rightarrow -\frac{1}{a} \ln \csc(ax+b) dx \Rightarrow \frac{1}{a} \tan(ax+b)$) + C	$\int \sqrt{a^2 - x^2} dx \Rightarrow \frac{x}{2}$	$\frac{1}{2}\sqrt{a^2-x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$	Theorem Squeeze
$\int csc^2(ax+b) dx \Rightarrow -\frac{1}{a}\cot(ax+b)$) + C	$\int \sqrt{x^2 - a^2} dx \Rightarrow \frac{x}{2} \sqrt{x^2}$	$\frac{1}{1-a^2} - \frac{a^2}{2} \ln \left x + \sqrt{x^2 - a^2} \right + C$	for Sequ Theorem
Integration by substitution: Expression	i	Substitution	Identity involved	_
$\sqrt{a^2 - (x+b)^2}$		Let $x + b = a \sin \theta$	$1 - \sin^2 \theta = \cos^2 \theta$	-
$\sqrt{a^2 + (x+b)^2}$	1	$Let \ x + b = a \tan \theta$	$1 + \tan^2 \theta = \sec^2 \theta$	Lemma
$\frac{\sqrt{a^2 + (x+b)^2}}{\sqrt{(x+b)^2 - a^2}}$		$Let \ x + b = a \sec \theta$	$\sec^2\theta - 1 = \tan^2\theta$	-
Integration by parts		$\int uvdx = u\cdot (\int vdx)$	$-\int (u'\cdot \int vdx)dx$	Theorem Test for
Riemann's sum		$\int uv dx = u \cdot \left(\int v dx \right)$ $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \left\{ \sum_{k=1}^{n} \left(\frac{b}{n} \right) \right\}$	$\left(\frac{-a}{n}\right)f\left(a+k\frac{(b-a)}{n}\right)$	Theorem
Remain 3 sun	$\int_{a}^{b} f$	$f(x) dx \approx \sum_{k=1}^{n} \left(\frac{b-a}{n}\right) f\left(a + \frac{b-a}{n}\right) f\left(a + \frac{b-a}$	$k\frac{(b-a)}{n}$, when n is large	Theorem
Fundamental Theorem of Calculus		$\frac{d}{dx} \int_{a}^{u(x)} f(t) dt =$		Integral
Improper integrals (Type 1) $[a, \infty]$		$\int_{a}^{\infty} f(x) dx = \lim_{b \to a} \int_{a}^{\infty} f(x) dx = \lim_{b \to$	·a .	_
$[-\infty, b]$ $[-\infty, \infty]$		$\int_{a}^{b} f(x) dx = \lim_{a \to a} \int_{a}^{b} f(x) dx = \lim_{a \to a} f(x)$	$\underset{-\infty}{\text{m}} \int_{0}^{b} f(x) dx$	
. , ,		$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx$		Theorem p-series
Improper integrals (Type 2) (a, b]		$\int_{a}^{b} f(x) dx = \lim_{c \to c}$		Theorem Compari
[a, b] (a, b)		$\int_{a}^{b} f(x) dx = \lim_{c \to a}$	$\lim_{b^{-}} \int_{a}^{c} f(x) dx$	

$\int \cos(ax+b) dx \Rightarrow \frac{1}{a} \sin(ax+b) + C$		+ C	$\int \frac{-1}{\sqrt{a^2 - (x+b)^2}}$	$dx \Rightarrow \frac{1}{a}\arccos(ax+b) + C$	
$\int \tan(ax+b) dx \Rightarrow \frac{1}{a} \ln \sec(ax+b) + C$			$\int \frac{-1}{\sqrt{a^2 - (x+b)^2}} dx \Rightarrow \frac{1}{a} \arccos(ax+b) + C$ $\int \frac{1}{a^2 - (x+b)^2} dx \Rightarrow \frac{1}{2a} \ln \left \frac{x+b+a}{x+b-a} \right + C$		
$\int \tan(ax+b) dx \Rightarrow \frac{1}{a} \ln \sec(ax+b) + C$ $\int \sec(ax+b) dx \Rightarrow \frac{1}{a} \ln \sec(ax+b) + \tan(ax+b) + C$		$\int \frac{1}{(x+b)^2 - a^2} dx \Rightarrow \frac{1}{2a} \ln \left \frac{x+b-a}{x+b+a} \right + C$			
	$\int \csc(ax+b) dx \Rightarrow -\frac{1}{a} \ln \csc(ax+b) + \cos(ax+b) dx$	b) cot(ax b) + C	$\int \frac{1}{\sqrt{(x+b)^2 + a^2}} dx \Rightarrow$	$\ln \left (x+b) + \sqrt{(x+b)^2 + a^2} \right + C$	
	$\int \cot(ax+b) dx \Rightarrow -\frac{1}{a} \ln \csc(ax+b) dx$		$\int \frac{1}{\sqrt{(x+h)^2 - a^2}} dx \Rightarrow$	$\ln\left (x+b) + \sqrt{(x+b)^2 - a^2}\right + C$	
	$\int \sec^2(ax+b) dx \Rightarrow \frac{1}{a} \tan(ax+b)$		$\int \sqrt{a^2 - x^2} dx \Rightarrow \frac{x}{2}$	$\sqrt{a^2 - x^2} + \frac{a^2}{2} \arctan \frac{x}{a} + C$	
	$\int csc^2(ax+b) dx \Rightarrow -\frac{1}{a}\cot(ax+b)$	o) + C	$\int \sqrt{x^2 - a^2} dx \Rightarrow \frac{x}{2} \sqrt{x^2}$	$\frac{1}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$ $\frac{1}{2} - a^2 - \frac{a^2}{2} \ln x + \sqrt{x^2 - a^2} + C$	
l	Integration by substitution:	1 ,	3.1.44.41	11 00 1 1 1	
	Expression		Substitution $x + b = a \sin \theta$	Identity involved $1 - \sin^2 \theta = \cos^2 \theta$	
	$\sqrt{a^2 - (x+b)^2}$		$a + b = a \tan \theta$	$1 + \tan^2 \theta = \sec^2 \theta$	
	$\sqrt{a^2 + (x+b)^2}$ $\sqrt{(x+b)^2 - a^2}$		$a + b = a \tan \theta$ $a + b = a \sec \theta$	$\sec^2 \theta - 1 = \tan^2 \theta$	
	$\sqrt{(x+b)^2-a^2}$	Let	$a + b = a \sec \theta$	$\sec \theta - 1 = \tan \theta$	
	Integration by parts		$\int uvdx = u\cdot (\int vdx)$	$-\int (u' \cdot \int v dx) dx$ $\frac{-a}{a} f\left(a + k \frac{(b-a)}{n}\right)$	
		\int_{a}^{b}	$f(x) dx = \lim_{n \to \infty} \left\{ \sum_{i=1}^{n} \left(\frac{b_i}{n} \right) \right\}$	$\left\frac{a}{n} \right) f\left(a + k \frac{(b-a)}{n} \right)$	
	Riemann's sum	$\int_{a}^{b} f(x) dx$	$\int_{k=1}^{n} \left(\frac{b-a}{n}\right) f\left(a+k\frac{(b-a)}{n}\right), \text{ when } n \text{ is large}$		
	Fundamental Theorem of Calculus	Ja .	$\int dx \approx \sum_{k=1}^{n} {b-a \choose n} f\left(a + k \frac{(b-a)}{n}\right), when n is large$ $\frac{d}{dx} \int_{a}^{u(x)} f(t) dt = f(u(x)) \cdot u'(x)$ $\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$		
			\int_{α}^{∞}	(b	
	Improper integrals (Type 1) $[a, \infty]$		$\int_{a} f(x) dx = \lim_{b \to a} f(x) dx = \lim_{b \to a$	$ \lim_{n \to \infty} \int_{a} f(x) dx $	
	$[-\infty, b]$		$\int_{-\infty}^{b} f(x) dx = \lim_{a \to \infty} \int_{-\infty}^{b} f(x) dx = \lim_{a \to \infty}^{b} f(x) dx = \lim_{a \to \infty}^{b} f(x) dx = \lim_{a \to \infty}^{b} f(x) d$	$\int_{a}^{b} f(r) dr$	
	$[-\infty,\infty]$		J _{−∞} (x) ax a→	$\int_{a}^{\infty} \int_{a}^{\infty} \int_{a}^{\infty}$	
			$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} f(x) dx$	$\int_C f(x) dx$	
	Improper integrals (Type 2) (a, b]		$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx = \lim_{c \to c} \int_{a_{b}}^{b} f(x) dx = \lim_{c \to c} \int_{a_{b}}^{c} f(x) dx = \lim_{c \to c}^{c} f(x) dx = \lim_{c}^{c} f(x) dx = \lim_{c \to c}^{c} f(x) dx = $	$\prod_{x^+} \int_c^b f(x) dx$	
	$ \begin{array}{c} (a,b) \\ (a,b) \end{array} $		$\int_{a}^{b} f(x) dx = \lim_{c \to a}$	$\prod_{b^{-}} \int_{c}^{c} f(x) dx$	
	(4,2)		$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x)$		
	ı			-	
	Area under curve		A	$= \int_{a}^{b} f(x) dx$	
	bounded by the curve, lines $y = 0$, $x = 0$	= a and x = b	A	$= \int_{c}^{d} f(y) dy$	
	Area between curves $f(x) \ge g(x)$ for all $a \le x$	≤ <i>b</i>	$A = \int$	$= \int_{c}^{d} f(y) dy$ $\int_{c}^{b} (f(x) - g(x)) dx$	
	Area between curves		$A = \int$	f(x) - g(x) dx	
•	Solid of Revolution by Disk N	1ethod	Volume l	bounded by two curves	
	(Rotated around x-axis)			$f(x) for all \ a \le x \le b$	
	y = f(x)		+	y = f(x) R $y = g(x)$	
	$V = \pi \int_{a}^{b} f(x)^{2} dx$		$V = \pi \int_{a}^{b} f$	$(x)^2 dx - \pi \int_a^b g(x)^2 dx$	
			•		

$A = \int_{c}^{a} f(y) dy$
$A = \int_{a}^{b} (f(x) - g(x)) dx$
$A = \int_{a}^{b} f(x) - g(x) dx$
Volume bounded by two curves $f(x) \ge g(x) for \ all \ a \le x \le b$ $V = \pi \int_{a}^{b} f(x)^{2} dx - \pi \int_{a}^{b} g(x)^{2} dx$

Cylindrical Shell Method of two curves

	C b	$V = 2\pi \int_{a}^{b} x f(x) - g(x) dx$
V=2	$2\pi \int_{a}^{b} x f(x) dx$	
Le	ength of curve	$Arc \ length = \int_{a}^{b} \sqrt{1 + f'(x)^2} dx$
Theorem 6.1.	Let f be a function, and $\{a_n\}$ be	e a sequence s.t. $f(n) = a_n$ for all n . If $\lim_{x \to \infty} f(x) = L$,
	then $\lim_{n\to\infty} a_n = L$.	
	If $\{a_n\}$ and $\{a_n\}$ are convergent $\bullet \qquad \lim ca_n = c \text{ lim}$	t sequences and c is a constant, then:
		$= \lim_{x \to \infty} a_n \pm \lim_{x \to \infty} b_n$
	• $\lim a_n b_n = \lim$	$m \ a_n \ lim \ b_n$
	• $\lim_{n \to \infty} \frac{x}{a_n} = \lim_{n \to \infty} \frac{x}{a_n}$	$\frac{n}{n}, \text{ if } \lim_{x \to \infty} b_n \neq 0$
Theorem 6.2.	2.70	
Squeeze Theorem	If $a_n \le b_n \le c_n$ for all n and $\frac{1}{x}$	$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L, \text{ then } \lim_{n\to\infty} b_n = L.$
for Sequence Theorem 6.3	If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are con	overgent series, so are the series
_	$\sum_{n=1}^{\infty} ca_n$ and $\sum_{n=1}^{\infty} (a_n + b_n)$.	Moreover,
	$\sum_{n=1} c a_n = c \sum_{n=1} a_n$	and $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$
Lemma 6.4	If $\sum_{n=0}^{\infty} a_n$ is convergent, then	
Theorem of 6.5	n=1	8
Test for Divergent	If $\lim_{n\to\infty} a_n$ does not exist or i	$f \lim_{x \to \infty} a_n \neq 0$, then the series $\sum_{n=0}^{\infty} a_n$
	is divergent	<u>n=1</u>
Theorem 6.6	00	agative terms converges iff its partial sums
		egative terms converges if f its partial sums
Theorem 6.7		e. \exists a constant K s.t. $S_n < K$ for all n) is a continuous, positive, decreasing
Integral test	function of x for all $x \ge 1.7$	Then,
	If $\int_{c}^{\infty} f(x) dx$ is convergent	(that is equals to a constant), then $\sum_{n=c}^{\infty} a_n$ is converg
	If $\int_{c}^{\infty} f(x) dx$ is divergent, t	hen $\sum_{n=c}^{\infty} a_n$ is divergent.
Theorem 6.8 p-series	The $p = series \sum_{n=0}^{\infty} \frac{1}{n^p} is converges.$	pergent iff $n > 1$
	n = 1	
Theorem 6.9 Comparison test	Suppose $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ are se	ries with positive terms $s.t.a_n \le b_n$
	If $\sum_{n=0}^{\infty} b_n$ is convergent, then	$\sum_{n=1}^{\infty} a_n$ is convergent.
	n=1 ∞	n=1
	If $\sum_{n=1}^{\infty} a_n$ is divergent, then	$\sum b_n$ is divergent
Theorem 6.10 Ratio test	$6.10 - Suppose \sum_{n=1}^{\infty} a_n \text{ is a s}$	/=1
	n=1	
Theorem 6.11 Root test	$6.11 - Suppose \sum_{n=1}^{\infty} a_n$ is a s	eries s. t. $\lim_{n\to\infty} \sqrt[n]{ a_n } = L$,
	(L is a finite number or ∞)	00
	If $0 \le L < 1$, $\sum_{\substack{n=1 \ \infty}} a_n$ is absolu	tely convergent. $(\sum_{n=1}^{\infty} a_n \text{ is convergent})$
	If $L > 1$, then $\sum_{n=1}^{\infty} a_n$ is diver	
Theorem 6.12	If $L = 1$, ratio test is inconcluded in $L = 1$, ratio test is inconcluded in $L = 1$, ratio test is inconcluded in $L = 1$, ratio test is inconcluded in $L = 1$, ratio test is inconcluded in $L = 1$, ratio test is inconcluded in $L = 1$, ratio test is inconcluded in $L = 1$, ratio test is inconcluded in $L = 1$, ratio test is inconcluded in $L = 1$, ratio test is inconcluded in $L = 1$, ratio test is inconcluded in $L = 1$, ratio test is inconcluded in $L = 1$.	lusive ve numbers s.t.(i) b_n is decreasing, and
Alternating series test	(ii) $\lim_{n\to\infty} b_n = 0$, then the alte	rnating series
	$\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3$	
Absolute convergence	If $\sum_{n=1}^{\infty} a_n $ is convergent, the	$\sum_{n=1}^{\infty} a_n$ is convergent
	n=1	<u>/</u>

Theorem 6.14	Σ ()"
	For a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, only one of the following
	possibilities hold: (i) The series converges at x = q only
	 (i) The series converges at x = a only. (ii) The series converges for all x.
	(iii) There is a positive number R such that the series converges if $ x - a < R$ and
Radius of	diverges if $ x-a > R$. If $\lim_{n\to\infty} \left \frac{c_{n+1}}{c_n} \right = L$ or $\lim_{n\to\infty} \sqrt[n]{ c_n } = L$, where L is a real number or ∞
converges (R)	Then $R = \frac{1}{2}$
Theorem 6.15	L. 00
	If the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ has $R>0$, then the function f
	$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ is differentiable on interval $ x-a < R$, and
	n=0
	ii. $\int f(x) dx = \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1} + C, for x-a < R$
Theorem 6.16 Taylor series an	Tuytor series.
Maclaurin series	
	Maclaurin series: (Taylor series when $a = 0$)
	$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (x)^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \dots$
	n=0
Power series for special function:	$\frac{1-x}{1-x} = 1+x+x^2+x^2+\dots+x^n+\dots$ ($\sum_{n=0}^{\infty} x^n$, geometric series), $\kappa = 1$
(Maclaurin serie	2
	$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots \qquad \left(\sum_{n=0}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} \cdot x^n \right), R = 1$
	$\lim_{n \to \infty} (1+x) = x - \frac{1}{2} + \frac{1}{3} - \dots $ $\lim_{n \to \infty} (-1)^{n-1} - \frac{1}{n} \cdot x^n, R = 1$
	$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \qquad \left(\sum_{n=0}^{\infty} (-1)^n \cdot \frac{1}{(2n+1)!} \cdot x^{2n+1} \right), R = \infty$
	$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$ $\left(\sum_{n=0}^{\infty} (-1)^n \cdot \frac{1}{(2n)!} \cdot x^{2n} \right), R = \infty$
	$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots \qquad \qquad \left(\sum_{n=0}^{\infty} (-1)^n \cdot \frac{1}{2n+1} \cdot x^{2n+1} \right), R = 1$
Theorem 7.1:	Distance $ P_1P_2 $ between points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$:
Distance	Distance $ P_1P_2 $ between points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$: $ P_1P_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
Theorem 7.2:	Equation of sphere with center $C(h, k, l)$ and radius r :
Sphere Proportion of	$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$
Properties of Vectors	a+b=b+a $a+(b+c)=a+(b+c)$ $c(a+b)=ca+cb$ $(c+d)a=ca+da$
	a + 0 = a (cd)a = c(da)
Length	a + (-a) = 0 $1a = aLength a = \sqrt{x^2 + y^2 + z^2}, where a = \langle x, y, z \rangle$
Unit vector	If $a \neq 0$, then a unit vector in the same direction as a is:
	$u = \frac{a}{u}$
Dot product	Given $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$
^	$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
	$0 \cdot \mathbf{a} = 0$ $\mathbf{a} \cdot \mathbf{a} = \ \mathbf{a}\ ^2$
Theorem 7.7	$\mathbf{u} \cdot \mathbf{u} = \ \mathbf{u}\ $ Let θ be the angle between nonzero vectors \mathbf{a} and \mathbf{b} ,
	$\boldsymbol{a} \cdot \boldsymbol{b} = \ \boldsymbol{a}\ \ \boldsymbol{b}\ \cos \theta$
Projections	Two vectors \boldsymbol{a} and \boldsymbol{b} are perpendicular (orthogonal) if and only if $\boldsymbol{a} \cdot \boldsymbol{b} = 0$
sjeedolis	
	D a D a
	P S Q S P Q
	\overrightarrow{PS} is the vector projection of \boldsymbol{b} onto \boldsymbol{a} , denoted as $\operatorname{proj}_{\boldsymbol{a}}\boldsymbol{b}$ Scalar projection of \boldsymbol{b} onto \boldsymbol{a} , denoted as
	Scalar projection of b onto a , denoted as
	Scalar projection of \boldsymbol{b} onto \boldsymbol{a} , denoted as $comp_{\boldsymbol{a}}\boldsymbol{b} = \ \boldsymbol{b}\ \cos\theta = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\ \boldsymbol{a}\ }$
	Scalar projection of ${m b}$ onto ${m a}$, denoted as $comp_{{m a}}{m b} = \ {m b}\ \cos\theta = \frac{{m a}\cdot{m b}}{\ {m a}\ }$ Then,
Thomas 7.0	Scalar projection of \boldsymbol{b} onto \boldsymbol{a} , denoted as $comp_a \boldsymbol{b} = \ \boldsymbol{b}\ \cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\ \boldsymbol{a}\ }$ Then, $proj_a \boldsymbol{b} = comp_a \boldsymbol{b} \times \frac{\boldsymbol{a}}{\ \boldsymbol{a}\ }$
Theorem 7.9 Distance –	Scalar projection of \boldsymbol{b} onto \boldsymbol{a} , denoted as $comp_a \boldsymbol{b} = \ \boldsymbol{b}\ \cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\ \boldsymbol{a}\ }$ Then, $proj_a \boldsymbol{b} = comp_a \boldsymbol{b} \times \frac{\boldsymbol{a}}{\ \boldsymbol{a}\ }$ The shortest distance from a point $P(x_0, y_0, z_0)$ to plane $ax + by + cz = d$ is given by:
Distance – Point to	Scalar projection of \boldsymbol{b} onto \boldsymbol{a} , denoted as $comp_a \boldsymbol{b} = \ \boldsymbol{b}\ \cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\ \boldsymbol{a}\ }$ Then, $proj_a \boldsymbol{b} = comp_a \boldsymbol{b} \times \frac{\boldsymbol{a}}{\ \boldsymbol{a}\ }$
Distance – Point to plane	Scalar projection of $\bf b$ onto $\bf a$, denoted as $comp_a \bf b = \ \bf b\ \cos \theta = \frac{\bf a \cdot \bf b}{\ \bf a\ }$ Then, $proj_a \bf b = comp_a \bf b \times \frac{\bf a}{\ \bf a\ }$ The shortest distance from a point $P(x_0, y_0, z_0)$ to plane $ax + by + cz = d$ is given by: $\frac{ ax_0 + by_0 + cz_0 - d }{\sqrt{\alpha^2 + b^2 + c^2}}$
Distance – Point to	Scalar projection of \boldsymbol{b} onto \boldsymbol{a} , denoted as $comp_a \boldsymbol{b} = \ \boldsymbol{b}\ \cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\ \boldsymbol{a}\ }$ Then, $proj_a \boldsymbol{b} = comp_a \boldsymbol{b} \times \frac{\boldsymbol{a}}{\ \boldsymbol{a}\ }$ The shortest distance from a point $P(x_0, y_0, z_0)$ to plane $ax + by + cz = d$ is given by:

Theorem 7.11	If θ is the angle between \boldsymbol{a} and \boldsymbol{b} ,	Second derivative test	
/.11	$\ \mathbf{a} \times \mathbf{b}\ = \ \mathbf{a}\ \ \mathbf{b}\ \sin \theta$ Use cross product to:	derivative test	
	i. To find area of a parallelogram		ı
	ii. To find distance from a point to a line in \mathbb{R}^3		ı
	9		
	$\sqrt{\frac{1}{100}} \sin \theta$		
	$ \begin{array}{c c} & \overrightarrow{PQ} & \sin \theta \\ \hline & R & a \end{array} $	Double integral	l
	P R a	integrai	l
Line	$x(t) = x_0 + at$, $y(t) = y_0 + bt$, $z(t) = z_0 + ct$		
parametric equation	$\mathbf{r}(t) = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$	Iterated	
Equation of	$n \cdot (r - r_0) = 0$, where n is the normal vector	integral	l
plane	$n \cdot r = n \cdot r_0$		l
	Linear equation: $ax + by + cz + d = 0$	Fubini's	r
Derivative of	Let $r(t) = \langle f(t), g(t), h(t) \rangle$, where f, g, h are differentiable at $t = a$, then r is	Theorem	l
Vector-valued	differentiable at $t = a$:		
function	$r'(a) = \langle f'(a), g'(a), h'(a) \rangle$ Let C curve be $r(t) = \langle f(t), g(t), h(t) \rangle$.	Area of plane	Г
Arc length	Let C curve be $\mathbf{r}(t) = (f(t), g(t), h(t)),$	region	l
	Length from a to $b = \int_{a}^{b} \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2} dt$	Conversion to	L
Level curve	Two-dimensional graph of equation $f(x, y) = k$, for some constant k	Conversion to Polar	l
Contour plot	Graph of numerous level curves $f(x, y) = k$, for representative value of k that are equally	Coordinates	İ
	spaced		l
Clairaut's	Suppose f is defined ona disk D that contains (a,b) . If functions f_{xy} and f_{yx} are both	Surface area	Γ
Theorem	continuous on D, then $f_{xy}(a,b) = f_{yx}(a,b)$		
Equation of Tangent Plane	A normal vector to the tangent plane is: $\mathbf{n} = \langle f_{\mathbf{r}}(a,b), f_{\mathbf{v}}(a,b), -1 \rangle$	O II Diff	
rangent rame	Hence, the equation of tangent plane is given:	Ordinary Differer Separable	ıτ
	$\mathbf{n} \cdot \langle x - a, y - b, z - c \rangle = 0$, where $c = f(a, b)$	ODE	l
	$f_x(a,b)(x-a) + f_y(a,b)(y-b) - (z-f(a,b)) = 0$		l
Chain rule	Suppose $z = f(x, y)$, where $x = g(t)$ and $y = h(t)$ are differentiable functions of f , then	Reduction to	L
	$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$	separable	l
	Suppose $z = f(x, y)$, where $x = g(s, t)$ and $y = h(s, t)$, then	form	l
	$\frac{\partial z}{\partial z} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial z} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial z}$		l
	$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \text{ and } \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$ Suppose equation $F(x, y, z) = 0$,		l
Implicit differentiation	Suppose equation $F(x, y, z) = 0$,		l
2 – IV	$\frac{\partial z}{\partial x} = -\frac{r_x(x, y, z)}{F_x(x, y, z)}$ and $\frac{\partial z}{\partial y} = -\frac{r_y(x, y, z)}{F_y(x, y, z)}$		l
	$\frac{\partial z}{\partial x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)} \text{ and } \frac{\partial z}{\partial y} = -\frac{F_y(x, y, z)}{F_z(x, y, z)}$ Suppose f is differentiable at (a, b) . Let Δx and Δy be small increments in x and y from	Linear first	ſ
	(a,b):	order ODE	l
n	$\Delta z \approx dz = f_X(a,b)dx + f_Y(a,b)dy = f_X(a,b)\Delta x + f_Y(a,b)\Delta y$ If $f(x,y)$ is a differentiable function, then f has a directional derivative in the direction of		İ
Directional derivatives	If $f(x, y)$ is a differentiable function, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$		L
(2-D and 3-D)	$D_{\boldsymbol{u}}f(x,y) = f_{\boldsymbol{x}}(x,y)a + f_{\boldsymbol{y}}(x,y)b = \langle f_{\boldsymbol{x}},f_{\boldsymbol{y}}\rangle \cdot \langle a,b\rangle = \langle f_{\boldsymbol{x}},f_{\boldsymbol{y}}\rangle \cdot \boldsymbol{u}$	Bernoulli	İ
	For functions of three variables $f(x, y, z)$	equation	İ
	$D_{u}f(x,y,z) = \nabla f(x,y,z) \cdot \mathbf{u}$		l
Gradient	$\nabla f(x,y) = \langle f_x, f_y \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$	Malthus	ſ
		Model of Population	l
	$\nabla f(x, y, z) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$	1 opulation	l
Level curve,	$\nabla f(x_0, y_0)$ is perpendicular/normal to the level curve $f(x, y) = k$ at the point (x_0, y_0)		l
level surface	$\nabla F(x_0, y_0, z_0) \cdot \mathbf{r}'(t_0) = 0$, that is $\nabla F(x_0, y_0, z_0)$ is perpendicular/normal to tangent vector		l
vs ∇f	$r'(t_0)$ to any curve C on the surface S that passes through $\langle x_0, y_0, z_0 \rangle$.		l
	Σ (VF(x ₀ , y ₀ , z ₀)		l
	$P(x_0, y_0)$ tangent plane		l
	level curve		l
	f(x,y) = k		l
		Half-life	r
Tr . 1	$\nabla F(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$		İ
			ı
to level	$F_X(x_0, y_0, z_0)(x - x_0) + F_Y(x_0, y_0, z_0)(y - y_0) + F_Z(x_0, y_0, z_0)(z - z_0) = 0$		
to level surface	Let θ be angle between vectors \boldsymbol{u} and ∇f		
Tangent plane to level surface Maximising rate	Let θ be angle between vectors \mathbf{u} and ∇f $D_{\mathbf{u}}f(P) = \ \nabla f(P)\ \cos \theta$		
to level surface Maximising	Let θ be angle between vectors \mathbf{u} and ∇f $D_{\mathbf{u}f}(P) = \ \nabla f(P)\ \cos \theta$ In direction of $\nabla f(P)$, $\ \nabla f(P)\ $ is the maximum rate of increase of f at P	18	0'
to level surface Maximising	Let θ be angle between vectors \mathbf{u} and ∇f $D_{\mathbf{u}}f(P) = \ \nabla f(P)\ \cos \theta$	18	10°

Second derivative test	Define discriminant D for the point (a,b) : $D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - \left[f_{xy}(a,b)\right]^2$
	If $D > 0$ and $f_{xx}(a,b) < 0$, then $f(a,b)$ is a local maximum; If $D > 0$ and $f_{xx}(a,b) > 0$, then $f(a,b)$ is a local minimum; If $D < 0$, then $f(a,b)$ is a saddle point of f ; If $D = 0$, then no conclusion can be drawn
Double integral	If $f(x, y) \ge 0$, the volume V of the solid above rectangle R and below surface $z = f(x, y)$ is
	$Volume = \iint_{R} f(x, y) dA$ $\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$
Iterated integral	$\int_{a}^{b} \int_{a}^{d} f(x,y) dy dx$
5	First integrate with respect to y from c to d (keeping x fixed), then with respect to x from a to b
Fubini's Theorem	If f is continuous on the rectangle $R = [a, b] \times [c, d]$, $ \iint f(x, y) dA = \int_{a}^{b} \int_{a}^{d} f(x, y) dy dx = \int_{a}^{d} \int_{a}^{b} f(x, y) dx dy $
Area of plane	$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$ Let $f(x,y) = 1$ over a given region D . Then the area of D is
region	$A(D) = \iint_D 1 dA$ If f is continuous on a polar rectangle R : $R = \{(r, \theta) : 0 \le \alpha \le r \le b, \alpha \le \theta \le \beta\}$
Conversion to	If f is continuous on a polar rectangle R: $R = \{(r, \theta): 0 \le a \le r \le b, \alpha \le \theta \le \beta\}$ then.
Coordinates	$\iint_{R} f(x,y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r dr d\theta$ $\iint_{\Omega} dS = \iint_{\Omega} \sqrt{f_{x}^{2} + f_{y}^{2} + 1} dA$
Surface area	$\iint_{D} dS = \iint_{D} \sqrt{f_{x}^{2} + f_{y}^{2} + 1} dA$
dinary Differer	
Separable ODE	$\frac{dy}{dx} = f(x)g(x)$
	Separating the variables: $\frac{1}{g(y)}dy = f(x) dx$ $y' = g\left(\frac{y}{x}\right)$
Reduction to separable	$y' = g\left(\frac{y}{x}\right)$
form	where g is any function of $\frac{y}{x}$. Let $v = \frac{y}{x}$, then $y = vx$ and $y' = v + xv'$. Then the equation can be written as $v + xv' = g(v)$, which is separable.
	A differential equation of the form $y' = f(ax + by + c)$ where f is continuous and $b \neq 0$
Linear first	(if $b = 0$, the equation is separable) can be solved by setting $u = ax + by + c$
order ODE	$\frac{dy}{dx} + P(x)y = Q(x)$ Let $I(x) = e^{\int P(x)dx}$, then
	$y \cdot I(x) = \int I(x) \cdot Q(x) dx$ $y' + p(x)y = q(x)y^{n}$
Bernoulli	
equation	Then let $u = y^{1-n}$, substituting into the equation $u' + (1-n)p(x)u = (1-n)q(x)$
	Solve in the form of linear first order ODE above.
Malthus Model of	Let $N(t)$ be the total population, B be the per capita birth rate, D be the per capita death rate.
Population	$\frac{dN}{dt} = (B - D)N = kN$
	$N(t) = N_0 e^{kt}$
	D is an increasing function of N, such that $D = sN$ (s is a constant), $\frac{dN}{dt} = \frac{dN}{dt} = \frac{dN}{dt} = \frac{dN}{dt} = \frac{dN}{dt} = \frac{dN}{dt}$
	$\frac{dN}{dt} = BN - sN^2, \qquad N(0) = N_0$ Rewriting as Bernoulli equation and solving,
	Rewriting as Bernoulli equation and solving, $N = \frac{N_{oo}}{1 + \left(\frac{N_{oo}}{N_0} - 1\right)e^{-Bt}}$
	where $N_{\infty} = \frac{B}{s}$, which is the carrying capacity (logistic equilibrium population)
Half-life	where $N_{\infty} = \frac{B}{s}$, which is the carrying capacity (logistic equilibrium population) $t_{\frac{1}{2}} = \frac{\ln 2}{k}$
	90° sin θ positive \sin θ positive \cos θ negative \cos θ positive \tan θ negative \tan θ positive
	turro regulare turro positive

 $tan \ \theta \ positive$

 $\sin \theta$ negative $\cos \theta$ negative $\cos \theta$ positive $\cos \theta$

 $tan\,\theta\;negative$

270°