Aplicando Ant Colony Optimization y Bee Colony Optimization para Clustering

Adán González Rodríguez Sara Porto Álvarez

Dataset Utilizado

Hemos decidido usar el Dataset: Mall Customer Segmentation

El dataset está diseñado para enseñar conceptos relacionados con la segmentación de clientes, también conocida como análisis de canasta de mercado (market basket analysis).

Lo usaremos para hacer un clustering sobre los atributos del mismo, intentando clasificar por grupos de consumo entre los clientes.

Atributos del dataset y cuáles utilizamos

- Gender
- Age
- Annual Income (k\$)
- Spending Score (0-100)

Ant Colony Optimization

Código: Link al código de ACO

- Imports de las librerías necesarias
- Clase AntColonyClustering
 - Método __init___
 - Método run()
 - Método _construct_path()
 - Método _select_next_node(current_node, unvisited)
 - Método <u>update_pheromones(all_paths)</u>
 - Método _form_clusters()
 - Método assign_test_data(test_data, train_data):
 - Método evaluate_test_data(test_labels, true_test_labels)
 - Método plot_clusters(train_data, test_data=None, test_labels=None)
- Método main

Bee Colony Optimization

Código: Link al código de BCO

- Imports de las librerías necesarias
- Clase BeeColonyOptimization
 - Método __init__
 - Método fitness(self, centroids)
 - Método _bound_solution(solution)
 - Método _local_search(current_position)
 - Método update_positions()
 - Método _finalize_centroids(top_positions)
 - Método run()
 - Método assign_test_data(test_data)
 - Método plot_clusters(train_data)
- Método main

Comparación entre algoritmos ACO y BCO

Métricas de evaluación utilizadas

• <u>Índice de Silhouette</u>

- Evalúa qué tan bien separados están los clústeres y cuán compactos son
- Buen clustering → coeficiente mayor de 0.5

• <u>Índice de Davis-Bouldin</u>

- Mide la compacidad y separación entre clústeres
- Mejor cuanto más cercano a 0 sea (valores altos indican un mal clustering)

Índice de Calinski-Harabaz

- Mide la dispersión entre y dentro de los clústeres
- Valor alto indica buen clustering

K-means: Link al Código de K-Means

Silhouette Score: 0.44473703994455477 Davies-Bouldin Score: 0.82163717258315 Calinski-Harabasz Score: 151.133658537184

Evaluación ACO: Link a más pruebas con ACO

Silhouette Score: 0.3386
Davies-Bouldin Score: 0.7935
Calinski-Harabasz Score: 160.1774

Evaluación BCO: Link a más pruebas con BCO

Silhouette Score: 0.4904 Davies-Bouldin Score: 0.6542 Calinski-Harabasz Score: 220.9043

Modificación de Hiperparámetros en el algoritmo ACO

Alpha (Importancia de las Feromonas)

Alpha = 1 (Favorece la exploración)

Alpha = 10 (Favorece las Feromonas)

Evaporation Rate

Ev_Rate = 0.3 (Favorece las rutas conocidas)

Ev_Rate = 0.9 (Evita sobreajuste)

Modificación de Hiperparámetros en el algoritmo BCO

Generations

Generations: 100

-1.5 ·

Comparativa final

Comparación

- ¿Los algoritmos identifican correctamente los grupos esperados?
 - **Sí**. Ambos tienen un buen desempeño a la hora de identificar los grupos esperados
 - Aún así, los clusters no son exactamente iguales a los identificados por K-Means
- ¿Cuál parece ser más eficiente o robusto?
 - El BCO presenta mejores resultados
- ¿Existen diferencias en la distribución de los clusters?
 - Sí, tal y como se vio en las imágenes (aunque no son grandes diferencias)

Ventajas y Desventajas de cada algoritmo

Ant Colony Optimization (ACO)	
Buena exploración del espacio de búsqueda	Rápida
Manejo efectivo de soluciones globales y locales	Flexibi
Puede adaptarse bien a cambios dinámicos	Baland
Alto costo computacional en problemas grandes	Puede
Requiere ajuste fino de parámetros	Sensib

Bee Colony Optimization (BCO) Rápida convergencia hacia soluciones óptimas Flexibilidad en la asignación de recursos Balance entre exploración y explotación Puede quedar atrapado en óptimos locales Sensible a la elección de parámetros

Fin