Question 1

PART 1

R_{wall.total}= 6.81°C/W

 $Q_{dot} = 20-(-10)/6.81$

= 4.41W

PART 2

3m high and 5m wide wall consists of long 32cm 22cm cross section horizontal bricks($k+0.72W/m^{\circ}C$) separated by 3cm thick plaster ($k=0.22~W/m^{\circ}C$)

2cm thk plaster layers on each side of the brick and 3cm thk rigid foam (k=0.026W/m °C) on the inner side of the wall. T_1 and T_2 are 20°C and -10°C respectively. And the convection heat transfer coefficients on the inner and outer sides are h_1 =10 W/m². °C and h_2 = 40W/m², respectively.

$$R_{1conv} = 1/h_1 \times A_1 = 1/10 \times (0.015 + 0.22 + 0.015) \times 1$$

$$= 0.4 \text{ °C/W}$$

$$R_{foam} = L_{foam}/k_{foam} \times A1 = 0.03/[0.026 \times (0.015 + 0.22 + 0.015) \times 1]$$

$$= 4.62 \text{ °C/W}$$

$$R_{plaster.up} = R_{plaster.down} = L_{p.up \text{ or dn/}} k_p \times A_{p.up \text{ or p.dn}}$$

$$= 0.32/[0.22 \times 0.015 \times 1]$$

$$= 96.88 \text{ °C/W}$$

$$R_{brick} = L_{brick}/k_{brick} \times A_{brick}$$

$$= 0.32/[0.72 \times 0.22 \times 1]$$

$$= 2.02 \text{ °C/W}$$

$$1/R_{total(parallel)} = [1/R_{plaster.up}] + [1/R_{brick}] + [1/R_{palster.down}]$$

$$= [1/96.88] + [1/2.02] + [1/96.88]$$

$$= 0.516 \text{ °C/W}$$

$$R_{total(parallel)} = 1.94$$
°C/W

$$R_{plaster.left} = R_{plaster.right} = 0.02/[0.022 \text{ x } (0.015+0.22+0.015) \text{ x } 1]$$

= 0.363°C/W

$$R_{2.conv.} = 1/[40 \text{ x } (0.015+0.22+0.015) \text{ x } 1]$$

 $R_{\text{wall.total}} = 0.4 + 4.62 + 0.363 + 1.94 + 0.363 + 0.1$

Heat transfer

$$Q_{dot} = T1 - T_{\infty} / R_{wall.total}$$

= 20-(-10)/7.79

= 3.851W

By doubling the thickness of the brick in a composite wall does not change increase the thermal resistance of the whole wall, hence the rate if heat transfer does not significantly decrease.

Question 2

	Wood	Insulation
Outside Air	0.03	0.03
Wood Bevel (13mmx200mm)	0.14	0.14
Polywood(13mm)	0.11	0.11
Urethane Rigif Foam Ins.(90mm)	No	0.98x90/25 =
		3.528
Wood studs (90mm)	0.63	No
Gypsum Board (13mm)	0.079	0.079
Inside surface	0.12	0.12

R' with wood =
$$(0.03+0.14+0.11+0.63+0.079+0.12)$$

= $1.109 \text{ m}^2 \text{ °C/W}$
R' with insulation = $(0.03+0.14+0.11+3.528+0.079+0.12)$
= $4.007 \text{ m}^2 \text{ °C/W}$