

Sistemas de numeración

David López

Sistemas de numeración

- Un sistema de numeración tiene un conjunto de símbolos válidos. Ej.: { 0,1, 2, 3, 4, 5, 6, 7, 8, 9 } para el sistema decimal { 0,1} para el binario
- A la cantidad de símbolos distintos se la llama base
- Un número de d dígitos en base b puede representar b^d combinaciones distintas (valores)
- Ejemplos
 - 2 dígitos decimales \rightarrow 10² = 100 posibilidades (0-99)
 - 3 dígitos binarios \rightarrow 2³ = 8 posibilidades (000-111)

Sistemas de numeración

Los que vamos a usar:

- Decimal
- Binario
- Hexadecimal
- BCD

Sistema binario

Sólo unos y ceros

Bit

Mínima unidad de información

Dígito binario

0

1

Conversión de decimal a binario

Ejemplo: 42 decimal a binario

Conversión de binario a decimal

Ejemplo: 110101 binario a decimal

Sistema hexadecimal

Consta de 16 símbolos

```
• 0 al 9 (0000<sub>b</sub> - 1001<sub>b</sub>)

• A = 10_d = 1010_b

• B = 11_d = 1011_b

• C = 12_d = 1100_b

• D = 13_d = 1101_b

• E = 14_d = 1110_b

• F = 15_d = 1111_b
```

Se usa para representar números binarios en una forma compacta

- Es muy fácil convertir entre binario y hexadecimal
- 1dígito hexadecimal equivale a 4 bits

Ejemplo: hexadecimal / binario

Convertir 10100111 binario a hexadecimal

Convertir 2E hexadecimal a binario

$$2 E_{(16} = 001011110_{(2)}$$

$$E_{(16} = 14_{(10)} = 11110_{(2)}$$

BCD (Binary Coded Decimal)

Es un híbrido entre decimal y binario

- Se expresa el nro en decimal
- y luego cada dígito se convierte a binario en forma independiente

Ejemplo:

- 64d se expresa en BCD como
 - 0110 0100
 - Notar que en binario sería:
 - 01000000

26