Linear Alegbra

Pugazharasu A. D.

June 2020

Preface

Contents

Preface							
1	Polynomials						
	1.1	Degree	1				
		1.1.1 Proposition	1				
		1.1.2 Corollary	1				
		1.1.3 Corollary	1				
		1.1.4 Division Algorithm	1				
	1.2	Complex Coefficients	1				
		1.2.1 Fundamental Theorem of Algebra	1				
		1.2.2 Corollary	1				
	1.3	Real Coefficients	1				
		1.3.1 Properties	1				
		1.3.2 Proposition	1				
		1.3.3 Proposition	1				
		1.3.4 Theorem	1				
2	Matrix Algebra						
	2.1	Basic Operations	3				
	2.2	Row Reduction	3				
	2.3	Determinants	3				
	2.4	Permuatation Matrices	3				
	2.5	Cramer's Rule	3				
	2.6	Gram–Schmidt process	3				
3	Vector Spaces						
	3.1	Fields	5				
	3.2	Complex Numbers	5				
	ŭ - <u>-</u>	3.2.1 Addition	5				
		3.2.2 Multiplication	5				
		3 2 3 Properties	5				

vi *CONTENTS*

		3.2.3.1 Commutativity 6					
		3.2.3.2 Associativity					
		3.2.3.3 Identities					
		3.2.3.4 Additive Inverse 6					
		3.2.3.5 Multiplicative Inverse 6					
		3.2.3.6 Distributive Property 6					
	3.3	Notation					
	3.4	Definition of a Vector Space					
		3.4.1 Commutativity					
		3.4.2 Associativity					
		3.4.3 Additive Identity					
		3.4.4 Additive Inverse					
		3.4.5 Multiplicative identity					
		3.4.6 Distributive properties					
	3.5	Properties of a Vector Space					
		3.5.1 A vector space has a unique additive identity					
		3.5.2 Ever element in a vector space has a unique additive					
		inverse					
		$3.5.3 0\mathcal{V} = 0 \ \forall \ \mathcal{V} \in \mathbb{V} \dots \dots$					
		$3.5.4 0\alpha = 0 \ \forall \ \alpha \in \mathcal{F} \dots \dots$					
		$3.5.5 (-1)\mathcal{V} = -\mathcal{V} \forall \mathcal{V} \in \mathcal{F} \dots \qquad \qquad$					
	3.6	Subspaces					
		3.6.1 Definition					
		3.6.2 Properties					
		3.6.2.1 Additive identity					
		3.6.2.2 Closed under addition					
		3.6.2.3 Closed under scalar multiplication 9					
	3.7	Sums					
	3.8	Direct Sums					
		3.8.1 Proposition 1					
		3.8.1.1 Proof					
		3.8.2 Proposition 2					
		3.8.2.1 Proof					
	3.9	Note					
4	Finite Dimensional Vector Spaces 1						
	4.1	Span and Linear Independence					
		4.1.1 Span					
	4.2	Bases					
	4.3	Dimension					

CC	vii	
5	Infinite Dimensional Vector Spaces	15

viii *CONTENTS*

Polynomials

1.1	Degree
T • T	Degree

- 1.1.1 Proposition
- 1.1.2 Corollary
- 1.1.3 Corollary
- 1.1.4 Division Algorithm
- 1.2 Complex Coefficients
- 1.2.1 Fundamental Theorem of Algebra
- 1.2.2 Corollary
- 1.3 Real Coefficients
- 1.3.1 Properties
- 1.3.2 Proposition
- 1.3.3 Proposition
- 1.3.4 Theorem

Matrix Algebra

- 2.1 Basic Operations
- 2.2 Row Reduction
- 2.3 Determinants
- 2.4 Permutation Matrices
- 2.5 Cramer's Rule
- 2.6 Gram–Schmidt process

Vector Spaces

3.1 Fields

A field \mathcal{F} is an abstract algebraic object. Throughout these notes \mathcal{F} stands for either \mathbb{R} or \mathbb{C} .

3.2 Complex Numbers

A complex number is an order pair $\in \mathbb{C}$ where $a, b \in \mathbb{R}$ where we can denote it as z = a + ib where $i = \sqrt{-1}$

3.2.1 Addition

$$z_1 = a_1 + ib_1, \ z_2 = a_2 + ib_2$$

$$z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$$

3.2.2 Multiplication

$$z_1 = a_1 + ib_1, \ z_2 = a_2 + ib_2$$

$$z_1 z_2 = (a_1 + ib_1)(a_2 + ib_2) = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1)$$

3.2.3 Properties

2

¹Many of theorems and definitions work even if replace \mathcal{F} with an arbitrary field.

 $^{^{2}\}mathcal{W},\mathcal{Z},\lambda\in\mathbb{C}$

3.2.3.1 Commutativity

$$W + Z = Z + W$$

 $WZ = ZW$

3.2.3.2 Associativity

$$(\mathcal{Z}_1 + \mathcal{Z}_2) + \mathcal{Z}_3 = \mathcal{Z}_1 + (\mathcal{Z}_2 + \mathcal{Z}_3)$$
$$(\mathcal{Z}_1 \mathcal{Z}_2) \mathcal{Z}_3 = \mathcal{Z}_1 (\mathcal{Z}_2 \mathcal{Z}_3)$$

3.2.3.3 Identities

$$\mathcal{Z} + 0 = \mathcal{Z}$$
$$\mathcal{Z}1 = \mathcal{Z}$$

3.2.3.4 Additive Inverse

$$\forall \ \mathcal{Z} \ \exists \ \mathcal{Z}^{-1} \mid \mathcal{Z} + \mathcal{Z}^{-1} = 0$$

3.2.3.5 Multiplicative Inverse

$$\forall \ \mathcal{Z} \neq 0 \ \exists \ \mathcal{W} \mid \mathcal{ZW} = 1$$

3.2.3.6 Distributive Property

$$\lambda(\mathcal{W} + \mathcal{Z}) = \lambda \mathcal{W} + \lambda \mathcal{Z}$$

3.3 Notation

n-tuple refers to an ordered set of n numbers over a field \mathcal{F} .

3.4 Definition of a Vector Space

A vector space \mathbb{V} is a set along with the regular multiplication and addition operations over a field \mathcal{F} , such that the following axioms hold: ³

³Here, $\alpha, \beta \in \mathcal{F}$ and \mathcal{U}, \mathcal{V} and $\mathcal{W} \in \mathbb{V}$

3.4.1 Commutativity

$$\mathcal{U} + \mathcal{V} = \mathcal{V} + \mathcal{U}$$

3.4.2 Associativity

$$(\mathcal{U} + \mathcal{V}) + \mathcal{W} = \mathcal{V} + (\mathcal{U} + \mathcal{W})$$
$$(\alpha \beta) \mathcal{V} = \alpha(\beta \mathcal{V})$$

3.4.3 Additive Identity

$$\exists \ 0 \in \mathbb{V} \mid \mathcal{V} + 0 = 0 + \mathcal{V} = \mathcal{V}$$

3.4.4 Additive Inverse

$$\forall \ \mathcal{V} \ \exists \ \mathcal{V}^{-1} \mid \mathcal{V} + \mathcal{V} = 0$$

3.4.5 Multiplicative identity

$$\exists \ 1 \in \mathbb{V} \mid 1\mathcal{V} = \mathcal{V}$$

3.4.6 Distributive properties

$$\alpha(\mathcal{U} + \mathcal{V}) = \alpha \mathcal{U} + \alpha \mathcal{V}$$

$$(\alpha + \beta)\mathcal{U} = \alpha\mathcal{U} + \beta\mathcal{U}$$

3.5 Properties of a Vector Space

3.5.1 A vector space has a unique additive identity

Suppose there exist two additive identities 0 and 0' for the vector space \mathbb{V} , we can say that

$$0 = 0 + 0' = 0'$$

Thus,

$$0 = 0'$$
 (3.1)

3.5.2 Ever element in a vector space has a unique additive inverse

Suppose where \mathcal{W} and $\mathcal{W}^{'}$ are the additive inverses of \mathcal{V} , then

$$W = W' \tag{3.2}$$

3.5.3 $0\mathcal{V} = 0 \ \forall \ \mathcal{V} \in \mathbb{V}$

 $\forall \ \mathcal{V} \in \mathbb{V},$

$$0\mathcal{V} = (0+0)\mathcal{V} = 0\mathcal{V} + 0\mathcal{V}$$
$$0\mathcal{V} - 0\mathcal{V} = 0 = 0\mathcal{V}$$

Thus,

$$0 = 0\mathcal{V} \tag{3.3}$$

3.5.4 $0\alpha = 0 \ \forall \ \alpha \in \mathcal{F}$

 $\forall \alpha \in \mathbb{F},$

$$0\alpha = (0+0)\alpha = 0\alpha + 0\alpha$$
$$0\alpha - 0\alpha = 0 = 0\alpha$$

Thus,

$$0\alpha = 0 \tag{3.4}$$

3.5.5 $(-1)\mathcal{V} = -\mathcal{V} \ \forall \ \mathcal{V} \in \mathcal{F}$

 $\forall \ \mathcal{V} \in \mathbb{V},$

$$0\mathcal{V} = (0+0)\mathcal{V} = 0\mathcal{V} + 0\mathcal{V}$$
$$0\mathcal{V} - 0\mathcal{V} = 0 = 0\mathcal{V}$$

Thus,

$$0 = 0\mathcal{V} \tag{3.5}$$

3.6. SUBSPACES 9

3.6 Subspaces

3.6.1 Definition

A $\mathbb{U} \subset \mathbb{V}$ is called a subspace of \mathbb{V} if \mathbb{U} is also a vector space as defined in Sec 1.3

3.6.2 Properties

If $\mathbb{U} \subset \mathbb{V}$ then to check whether \mathbb{U} is a subspace of \mathbb{V} , we simply need to check for the following properties

3.6.2.1 Additive identity

$$0 \in \mathbb{U}$$

3.6.2.2 Closed under addition

$$\mathcal{U}, \mathcal{V} \in \mathbb{U} \implies \mathcal{U} + \mathcal{V} \in \mathbb{U}$$

3.6.2.3 Closed under scalar multiplication

$$\forall \ \alpha \in \mathcal{F} \ and \ \mathcal{U} \in \mathbb{U} \implies \alpha \mathcal{U} \in \mathbb{U}$$

3.7 Sums

The sum of \mathcal{U} and \mathcal{V} which are subspaces of \mathbb{V} is defined to be the set of all poissible sums of the elements is denoted in the RHS as,

$$\mathcal{U} + \mathcal{V} = \{ u + v : u \in \mathcal{U}, v \in \mathcal{V} \}$$

3.8 Direct Sums

A direct sum of sub-spaces is a special type of sum in which

3.8.1 Proposition 1

Suppose $\mathbb{U}_1, \mathbb{U}_2$ are subspaces of \mathbb{V} . Then $\mathbb{V} = \mathbb{U}_1 \oplus \mathbb{U}_2$ if and only if both the following conditions hold:

•
$$\mathbb{V} = \mathbb{U}_1 + \mathbb{U}_2$$

• the only wayt to write - as a sum $\mathcal{U}_1 + \mathcal{U}_2$, where each $\mathcal{U}_j \in \mathbb{U}_j$, is by taking all the $\mathcal{U}_j = 0$

3.8.1.1 Proof

First suppose that $\mathbb{V} = \mathbb{U}_1 \oplus \mathbb{U}_2$. Clearly the first condition holds because of how sum and direct sum are defined. To prove the latter suppose $\mathcal{U}_1 \in \mathbb{U}_1, \mathcal{U}_2 \in \mathbb{U}_2$ and

$$0 = \mathcal{U}_1 + \mathcal{U}_2$$

Then each \mathcal{U}_i must be, as this follows from the uniqueness part of the definition of direct sum because 0 = 0 + 0 and $0 \in \mathbb{U}_1, 0 \in \mathbb{U}_2$. Now suppose that both the conditions hold. Let $\mathcal{V} \in \mathbb{V}$. By the first condition we can write:

$$\mathcal{V} = \mathcal{U}_1 + \mathcal{U}_1$$

for some $\mathcal{U}_1 \in \mathbb{U}_1$ and $\mathcal{U}_2 \in \mathbb{U}_2$. To show that this representation is unique, suppose we also have:

$$\mathcal{V} = \mathcal{V}_1 + \mathcal{V}_2$$

where $\mathcal{V}_1 \in \mathbb{U}_1$ and $\mathcal{V}_2 \in \mathbb{U}_2$. Subtracting these two equations we have

$$0 = (\mathcal{U}_1 - \mathcal{V}_1) + (\mathcal{U}_2 - \mathcal{V}_2)$$

Clearly $\mathcal{U}_i - \mathcal{V}_i \in \mathbb{U}_i$, so the equation above and the second condition imply that each $\mathcal{U}_i - \mathcal{V}_i = 0$. Thus, $\mathcal{U}_i = \mathcal{V}_i$ as desired.

3.8.2 Proposition 2

Suppose that \mathbb{U} and \mathbb{W} are subspaces of \mathbb{V} . Then $\mathbb{V} = \mathbb{U} + \mathbb{W}$ i.f.f. $\mathbb{V} = \mathbb{U} + \mathbb{W}$ and $\mathbb{V} \cap \mathbb{W} = 0$.

3.8.2.1 Proof

First suppose that $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$. Then $\mathbb{V} = \mathbb{U} + \mathbb{W}$, by the definition of a direct sum. Also, if $\mathcal{V} \in \mathbb{U} \cap \mathbb{W}$, then $0 = \mathcal{V} + (-\mathcal{V})$, where $\mathcal{V} \in \mathbb{U}$ and $-\mathcal{V} \in \mathbb{W}$. By the unique reppresentation of as the sum of a vector \mathbb{U} in and a vector in \mathbb{W} , we must have $\mathcal{V} = 0$. Thus, $\mathbb{U} \cap \mathbb{W} = \{0\}$. This is one way to prove it.

To prove the other way, now suppose that $\mathbb{V} = \mathbb{U} + \mathbb{W}$ and $\mathbb{U} \cap \mathbb{W} = 0$. To prove that $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$, suppose that

$$0 = \mathcal{U} + \mathcal{V}$$

3.9. NOTE 11

where $\mathcal{U} \in \mathbb{U}$ and $\mathcal{W} \in \mathbb{W}$. To complete the proof, we only need to show that $\mathcal{U} = \mathcal{W} = 0$. The equation above implies that $\mathcal{U} = -\mathcal{W} \in \mathbb{W}$. from axiom 4. Thus, $\mathcal{U} \in \mathbb{U} \cap \mathbb{W}$, and hence $\mathcal{U} = 0$

3.9 Note

- Sums of subspaces are analogous to unions of subsets
- Similarly, direct sums of subspaces are analogous to disjoint unions of subset i.e. they have no element in common
- No two subspaces of a vector space can be disjoint because both must contain 0 as per the axioms stated in
- Thus, disjointness is replaced, at least in the case of two subspaces, with the requirement that the intersection equals 0

Finite Dimensional Vector Spaces

4.1 Span and Linear Independence

Linear Combination: Is a vector formed from a list $(\mathcal{V}_1, ..., \mathcal{V}_i)$ of vectors with the structure

$$\sum_{i}^{n} a_{i} \mathcal{V}_{i} \tag{4.1}$$

 $\forall a_i \in \mathcal{F}$

4.1.1 Span

The **Span** of is the set of all linear combinations denoted as

$$span(\mathcal{V}_1, ..., \mathcal{V}_i) = \{ \sum_{i=1}^{n} a_i \mathcal{V}_i : a_i \in \mathcal{F} \}$$

$$(4.2)$$

The span of any list of vectors in \mathbb{V} is a subspace of \mathbb{V} until and unless we consider an empty list, in that case $span() = \{\}$

If $span(\mathcal{V}_1, ..., \mathcal{V}_i) = \mathbb{V}$, then we say that $span(\mathcal{V}_1, ..., \mathcal{V}_i)$ spans \mathbb{V} .

A vector space is said to be finite dimensional if it spanned by a list of vectors in it. This follows from the definition that a list must be finite. A vector space that is not finite dimensional is said to be infinite dimensional, a good example of are the elements of Polynomials over a field i.e. $\mathbb{P}(\mathcal{F})$

4.2 Bases

4.3 Dimension

Infinite Dimensional Vector Spaces