Interpretable Machine Learning

Functional Decompositions Introduction

Learning goals

- Basic idea of additive functional decompositions
- Motivation and usefulness of functional decompositions
- Difficulty of obtaining or even defining a functional decomposition
- Several examples

PRELIMINARIES

Recap: Interactions

- Interactions between features: Effect of one feature on the prediction output depends on (one or more) other features
- \bullet Definition: Features x_j and x_k are considered to interact, if

$$\mathbb{E}\left[\left(\frac{\partial^2 f(\mathbf{x})}{\partial x_j \partial x_k}\right)^2\right] > 0$$

PRELIMINARIES

Recap: Interactions

- Interactions between features: Effect of one feature on the prediction output depends on (one or more) other features
- \bullet Definition: Features x_j and x_k are considered to interact, if

$$\mathbb{E}\left[\left(\frac{\partial^2 f(\mathbf{x})}{\partial x_j \partial x_k}\right)^2\right] > 0$$

Recap: GAMs

- Decomposition into only main effects
- Do not contain any interactions

$$\hat{f}(\mathbf{x}) = \theta_0 + g_1(x_1) + g_2(x_2) + \ldots + g_p(x_p)$$

FIRST EXAMPLE: ADDITIVE DECOMPOSITION

Example

Consider

$$\hat{f}(x_1, x_2) = 4 - 2x_1 + 0.3e^{x_2} + |x_1|x_2$$

• Idea: Additive decomposition depending on which features used:

FIRST EXAMPLE: ADDITIVE DECOMPOSITION

Example

Consider

$$\hat{f}(x_1, x_2) = 4 - 2x_1 + 0.3e^{x_2} + |x_1|x_2$$

Single terms with immediate interpretation, full model understanding

FIRST EXAMPLE: ADDITIVE DECOMPOSITION

Example

Consider

$$\hat{f}(x_1, x_2) = 4 - 2x_1 + 0.3e^{x_2} + |x_1|x_2$$

Part depending on no features at all (intercept)

Parts depending on a single feature (main effects)

Part depending on both features (interaction)
(1)

- → Single terms with immediate interpretation, full model understanding
- \leftrightarrow Not possible with effects of single features (e.g. PDPs) or GAM surrogate model (miss interaction part)

Goal in general: Given a black-box model $\hat{f}: \mathbb{R}^2 \to \mathbb{R}$, find a decomposition

$$\hat{f}(x_1, x_2) = g_{\emptyset} + g_1(x_1) + g_2(x_2) + g_{1,2}(x_1, x_2)$$
 (2)

Goal in general: Given a black-box model $\hat{f}: \mathbb{R}^2 \to \mathbb{R}$, find a decomposition

$$\hat{f}(x_1, x_2) = g_{\emptyset} + g_1(x_1) + g_2(x_2) + g_{1,2}(x_1, x_2)$$
 (2)

0000

Example

 \rightsquigarrow More details on this example later

Example

$$\hat{f}(x_1, x_2, x_3) = -2x_1 - 2\sin(x_3) + |x_1|x_2 + 0.5x_1x_2x_3 - \sin(x_2x_3) + 1$$

Again, read additive decomposition from formula:

Example

$$\hat{f}(x_1, x_2, x_3) = -2x_1 - 2\sin(x_3) + |x_1|x_2 + 0.5x_1x_2x_3 - \sin(x_2x_3) + 1$$

Again, read additive decomposition from formula:

$$\hat{f}(x_1, x_2, x_3) = -2x_1 - 2\sin(x_3) + |x_1|x_2 + 0.5x_1x_2x_3 - \sin(x_2x_3) +$$
n. read additive decomposition from formula:

$$g_{\emptyset}(x_{1}, x_{2}, x_{3}) = 1$$

$$g_{1}(x_{1}, x_{2}, x_{3}) = -2x_{1}$$

$$g_{2}(x_{1}, x_{2}, x_{3}) = 0$$

$$g_{3}(x_{1}, x_{2}, x_{3}) = -2\sin(x_{3})$$

$$g_{1,2}(x_{1}, x_{2}, x_{3}) = |x_{1}|x_{2}$$

$$g_{1,3}(x_{1}, x_{2}, x_{3}) = 0$$

$$g_{2,3}(x_{1}, x_{2}, x_{3}) = -\sin(x_{2}x_{3})$$

$$g_{1,2,3}(x_{1}, x_{2}, x_{3}) = 0.5x_{1}x_{2}x_{3}$$

constant part, no effects

main effects, no interactions

2-way interactions (depending on 2 features)

3-way interactions (3)

⇒ 8 components in total, but some empty ~ Certain interactions not present

GENERAL FORM OF FUNCTIONAL DECOMPOSITION • "Li and Rabitz" 2011 • "Chastaing e

Definition

Functional decomposition: Additive decomposition of a function $\hat{f}: \mathbb{R}^p \mapsto \mathbb{R}$ into a sum of components of different dimensions w.r.t. inputs x_1, \ldots, x_p :

 \leadsto one component for every possible combination S of indices, allowed to formally only depend on these features / be a function of these features

Problems:

- How to find / compute such a decomposition for any black-box models \hat{f} ?
- ... such that the decomposition is useful / has nice properties (w.r.t. the model / w.r.t. the data)?

GENERAL FORM OF FUNCTIONAL DECOMPOSITION • "Li and Rabitz" 2011 • "Chastaing

Definition

Functional decomposition: Additive decomposition of a function $\hat{f}: \mathbb{R}^p \mapsto \mathbb{R}$ into a sum of components of different dimensions w.r.t. inputs x_1, \ldots, x_p :

$$\hat{f}(\mathbf{x}) = \sum_{S \subseteq \{1, \dots, p\}} g_S(\mathbf{x}_S)
= g_\emptyset + g_1(x_1) + g_2(x_2) + \dots + g_p(x_p) +
g_{1,2}(x_1, x_2) + \dots + g_{p-1,p}(x_{p-1}, x_p) + \dots +
g_{1,2,3}(x_1, x_2, x_3) + \dots + g_{1,2,3,4}(x_1, x_2, x_3, x_4) + \dots + g_{1,\dots,p}(x_1, \dots, x_p)$$

 \rightsquigarrow one component for every possible combination S of indices

Sort terms according to degree of interaction:

- $g_{\emptyset} = \text{Constant mean (intercept)}$
- $g_j = \hat{f}$ first-order or main effect of j-th feature alone on $\hat{f}(\mathbf{x})$
- $g_{j,k} =$ second-order interaction effect of features j and k w.r.t. $\hat{f}(\mathbf{x})$
- $g_S(\mathbf{x}_S) = |S|$ -order effect, depends **only** on features in S

• Interpretability: Extremely powerful decomposition, reveals complete interaction structure

- Interpretability: Extremely powerful decomposition, reveals complete interaction structure
- Compare to GAM: Same decomposition, but without interactions
 Any GAM already comes with its decomposition

$$\hat{f}(\mathbf{x}) = g_{\emptyset} + g_1(x_1) + g_2(x_2) + \ldots + g_p(x_p)$$

Same for LMs: Decomposition explicitly modeled

- Interpretability: Extremely powerful decomposition, reveals complete interaction structure
- Compare to GAM: Same decomposition, but without interactions
 Any GAM already comes with its decomposition

$$\hat{f}(\mathbf{x}) = g_{\emptyset} + g_{1}(x_{1}) + g_{2}(x_{2}) + \ldots + g_{p}(x_{p})$$

- Same for LMs: Decomposition explicitly modeled
- Easy decomp. also for decision trees and tree ensembles (see below)

- Interpretability: Extremely powerful decomposition, reveals complete interaction structure
- Compare to GAM: Same decomposition, but without interactions
 Any GAM already comes with its decomposition

$$\hat{f}(\mathbf{x}) = g_{\emptyset} + g_{1}(x_{1}) + g_{2}(x_{2}) + \ldots + g_{p}(x_{p})$$

- Same for LMs: Decomposition explicitly modeled
- Easy decomp. also for decision trees and tree ensembles (see below)
- Problem 1: Calculating decomposition extremely difficult, often infeasible
 - For p features: Decomposition with 2^p terms \rightarrow too many different terms, difficult to interpret

- Interpretability: Extremely powerful decomposition, reveals complete interaction structure
- Compare to GAM: Same decomposition, but without interactions
 Any GAM already comes with its decomposition

$$\hat{f}(\mathbf{x}) = g_{\emptyset} + g_{1}(x_{1}) + g_{2}(x_{2}) + \ldots + g_{p}(x_{p})$$

- Same for LMs: Decomposition explicitly modeled
- Easy decomp. also for decision trees and tree ensembles (see below)
- Problem 1: Calculating decomposition extremely difficult, often infeasible
 - For p features: Decomposition with 2^p terms \rightarrow too many different terms, difficult to interpret
- **Problem 2:** Definition not complete: Decomposition not unique, many trivial decompositions not useful
 - → More requirements or constraints needed to ensure decomposition is meaningful
 - Even worse once features are dependent or correlated (see later)

PROBLEM 2: DEFINITION NOT ENOUGH

Example

Again consider

$$\hat{f}(x_1, x_2, x_3) = -2x_1 - 2\sin(x_3) + |x_1|x_2 + 0.5x_1x_2x_3 - \sin(x_2x_3) + 1$$

PROBLEM 2: DEFINITION NOT ENOUGH

Example

Again consider

$$\hat{f}(x_1, x_2, x_3) = -2x_1 - 2\sin(x_3) + |x_1|x_2 + 0.5x_1x_2x_3 - \sin(x_2x_3) + 1$$

$$g_{1,\ldots,p}(x_1,\ldots,x_p):=\hat{f}(\mathbf{x})$$
 and for all other terms $g_{S}(\mathbf{x}_{S}):=0,$

or:

$$g_{\emptyset} = 1; \quad g_{1}(x_{1}) = x_{1}; \quad g_{2}(x_{2}) = 2x_{2}; \quad g_{3}(x_{3}) = 3x_{3};$$

$$g_{1,2}(x_{1}, x_{2}) = \frac{1}{2}x_{1}x_{2}; \quad g_{1,3}(x_{1}, x_{3}) = \frac{1}{3}x_{1}x_{3}; \quad g_{2,3}(x_{2}, x_{3}) = \frac{2}{3}x_{2}x_{3};$$
and
$$g_{1,2,3}(x_{1}, x_{2}, x_{3}) = \hat{f}(x_{1}, x_{2}, x_{3}) - \sum_{S \subsetneq \{1,2,3\}} g_{S}(\mathbf{x}_{S})$$

PROBLEM 2: DEFINITION NOT ENOUGH

Example

Again consider

$$\hat{f}(x_1, x_2, x_3) = -2x_1 - 2\sin(x_3) + |x_1|x_2 + 0.5x_1x_2x_3 - \sin(x_2x_3) + 1$$

$$g_{1,\ldots,p}(x_1,\ldots,x_p):=\hat{f}(\mathbf{x})$$
 and for all other terms $g_S(\mathbf{x}_S):=0,$

or:

$$g_{\emptyset} = 1; \quad g_{1}(x_{1}) = x_{1}; \quad g_{2}(x_{2}) = 2x_{2}; \quad g_{3}(x_{3}) = 3x_{3};$$

$$g_{1,2}(x_{1}, x_{2}) = \frac{1}{2}x_{1}x_{2}; \quad g_{1,3}(x_{1}, x_{3}) = \frac{1}{3}x_{1}x_{3}; \quad g_{2,3}(x_{2}, x_{3}) = \frac{2}{3}x_{2}x_{3};$$
and
$$g_{1,2,3}(x_{1}, x_{2}, x_{3}) = \hat{f}(x_{1}, x_{2}, x_{3}) - \sum_{S \subsetneq \{1,2,3\}} g_{S}(\mathbf{x}_{S})$$

⇒ Definition of decomposition not unique

EXAMPLE: DECISION TREES

Define $interaction\ type\ t$ of a node: subset of features used to build this node.

Example:

EXAMPLE: DECISION TREES

Define $interaction\ type\ t$ of a node: subset of features used to build this node.

Example:

 \Rightarrow Degree of interaction in each node is |t|.

DECOMPOSITION FOR DECISION TREES

Here: Decomposition via indicator functions

$$\hat{f}(\mathbf{x}) = g_{\emptyset} + g_{2,4}(x_2, x_4) + g_{2,3}(x_2, x_3) + g_{1,2,4}(x_1, x_2, x_4)$$

⇒ Lower-order effects "hidden" inside higher-order terms

→ reading from decision tree not enough, "bad decomposition"

DECOMPOSITION FOR DECISION TREES

Here: Decomposition via indicator functions

$$\hat{f}(\mathbf{x}) = g_{\emptyset} + g_{2,4}(x_2, x_4) + g_{2,3}(x_2, x_3) + g_{1,2,4}(x_1, x_2, x_4)$$

 \implies Lower-order effects "hidden" inside higher-order terms

→ reading from decision tree not enough, "bad decomposition"

EXAMPLE: EBM

- See before: **GAMs** have functional decomposition by definition
- EBMs: Sum of the final one- and two-dimensional components

EXAMPLE: EBM

- See before: **GAMs** have functional decomposition by definition
- EBMs: Sum of the final one- and two-dimensional components

- In general: Model with functional decomposition up to max. order 2 is always "inherently interpretable"
- Reason: Visualization of all components

