Aufgabe 1: Farben und Farbwahrnehmung

Teilaufgabe 1a: Chromatizitätsdiagramm

Abbildung 1: Aufgabe 1a

Teilaufgabe 1b

Alles auf der Purple line. Also insbesondere Magenta.

Teilaufgabe 1c

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$
(1)
(2)

$$y = \frac{Y}{X + Y + Z} \tag{2}$$

Aussage	Wahr	Falsch	Begründung		
Den Weißpunkt eines Farbraums bezeichnet man auch als Tristimuluswert.		Ø	Die RGB-Werte sind die Tristimulus-Werte. Der Weißpunkt heißt pblicherweise $D[Zahl]$, wobei die Zahl die Temperatur angibt. D65 hat eine Farbtemperatur von ca. 6504K.		
Die subjektiv empfundene Stärke von Sinneseindrücken ist proportio- nal zum Logarithmus ihrer Inten- sität.	Ø				
Jeder Farbeindruck für den Menschen kann mit drei Grundgrößen beschrieben werden.		Ø	vgl. 1 (b)		

Teilaufgabe 1d

(2) < (3) < (1), also

 ${\rm RGB} < {\rm Raum}$ aller Farben die durch 100 monochromatische Leuchtdioden darstellbar $\mathrm{sind} < \mathrm{XYZ}$

Teilaufgabe 1e

Aufgabe 2

Teilaufgabe 2a-d

Siehe Abbildung 2.

Teilaufgabe 2e

$$\eta_i \sin \theta_i = \eta_t \sin \theta_t \tag{3}$$

$$1 \cdot \frac{4}{10} = 1.5 \sin \theta_t \tag{4}$$

$$1 \cdot \frac{4}{10} = 1.5 \sin \theta_t \tag{4}$$

$$\Leftrightarrow \sin \theta_t = \frac{4}{15} = \frac{2}{7.5} \tag{5}$$

Abbildung 2: Aufgabe 2a-d; $n_1=1, n_2=1.5$

Teilaufgabe 2f

$$I_s = k_s \cdot I_L \cdot \cos^n \alpha \tag{6}$$

$$\alpha = r_L \cdot v \tag{7}$$

wobei k_s ein Material parameter und I_L die intensität der Lichtquelle ist. n wird der Phong-Exponent genannt (TODO: woher kommt der?)

Teilaufgabe 2g

Snellsches Brechungsgesetz

$$\eta_i \sin \theta_i = \eta_t \sin \theta_t$$

Aufgabe 6			
TODO			
Aufgabe 7			
TODO			
Aufgabe 8			
TODO			
Aufgabe 9			
TODO			
Aufgabe 10			
TODO			
	4		

Aufgabe 3

Aufgabe 4

Aufgabe 5

TODO

TODO

TODO

Aufgabe 11: Wasseroberfläche mit GLSL

Teilaufgabe 11a

```
shader.frag
vec3 determineIntersection(in vec3 P, in vec3 r, out int index)

// Ermitteln Sie hier den Schnittpunkt mit der nächsten Gefäßfläche
// und geben Sie ihn zurück. Zusätzlich muss 'index' auf den Index
// der entsprechenden Seitenfläche gesetzt werden.

// TODO
// TODO
```

Teilaufgabe 11b

TODO