US Army Edgewood Arsenal Chemical Research and Development Laboratories Technical Report

CRDLR 3300

Leeward Deposition of Particles on Cylinders
From Moving Aerosols

by
Gabrielle Asset
Thomas G. Hutchins

CLEARINGHOUSE
FOR FEDERAL SCIENTIFIC AND
TECHNICAL INFORMATION
Hardeepy Microfiche
\$ 2.60 \$ 7.50 33pp 40

August 1965

LEEWARD DEPOSITION OF PARTICLES ON CYLINDERS FROM MOVING AEROSOLS

by

Gabrielle Asset
Thomas G. Hutchins

Physicochemical Research Division Directorate of Weapons Systems

August 1965

US Army Edgewood Arsenal
CHEMICAL RESEARCH AND DEVELOPMENT LABORATORIES
Edgewood Arsenal, Maryland 21010

FOREWORD

The work described in this document was authorized under Task 1C522301A06001, Basic Agents Investigation (U). This work was started in August 1962 and completed in June 1964. The experimental data are recorded in notebooks 7060, 7061, 7155, 7156, and 7157.

Acknowledgments

The authors are grateful for the assistance in particle sizing rendered by the following personnel attached to the Colloid Branch: Pfc's Robert Brakewood, Timothy Treacy, Clayton Rhodes, Terry Hight, David Olsovicky, William Stark, Roland Levrault, and Lawrence Toffoli.

Notices

Reproduction of this document in whole or in part is prohibited except with permission of US Army Edgewood Arsenal Chemical Research and Development Laboratories; however, DDC is authorized to reproduce the document for United States Government purposes.

The information in this report has been cleared for release to the general public.

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Disposition

When this report has served its purpose, DESTROY it.

DIGEST

A study of leeward (back) deposition of moving aerosols on cylinders was conducted in a wind tunnel. Cylinder sizes were varied from 3.1 to 41 mm in diameter, aerosol particles from 4.0 μ to 110 μ in diameter, and wind velocities from 3 to 18 mph.

The ratio $N_L:N_W$, calculated from the experimental results, is defined as the ratio of the particle count of leeward and windward deposits on the cylinders. The impaction parameter, K, and the Reynolds number, R, of the flow around the cylinder were also calculated.

It is concluded that, in general, there is little leeward (back) deposition of particles over 100μ in diameter, an intermediate number of particles between 10μ and 100μ , depending on the conditions, and a large number of particles below 10μ in diameter at velocities from 3 to 18 mph.

When K was greater than the critical value of 0.0625, $N_L:N_W$ was 0.4% or less, and, in general, showed no variation with particle size, cylinder diameter, and wind velocity.

When K was less than 0.0625, $N_L:N_W$ ranged from about 0.5% to 131% and, in general, increased with cylinder diameter and with decreasing particle size and wind velocity.

Exceptions to this general behavior were found at R < 300 and > 10,000. In these regions, N_L:N_W was greater than expected. Since at these R's vortexes are near, or at, the cylinder surface on the leeward side, it is probable that vortexes in the wake play a role in leeward deposition.

CONTENTS

			Page			
I.	INT	RODUCTION	7			
и.	EXPERIMENTATION					
	A.	Approach	7			
	в.	Materials	8			
	C.	Equipment	8			
	D.	Procedure	11			
	E.	Computations	13			
ш.	RES	ULTS	14			
IV.	DISC	CUSSION	20			
	A.	Variances in Results	20			
	В.	Discussion of Windward Deposit	20			
	c.	Description of the Mechanism of Deposition by Turbulent Diffusion	25			
	D.	Discussion of Leeward Deposition	25			
	E.	Anomalous Behavior	27			
	F.	Practical Considerations	27			
v.	CON	CLUSIONS ·····	28			
	LIT	ERATURE CITED	29			
		CUMENT CONTROL DATA - R&D, DD FORM 1473, WITH	31			

- The state of the

A CONTRACT OF THE PROPERTY OF

ANNEXA CONTRACTOR CONT

LIST OF FIGURES

Figure		Page
1.	Diagram of Equipment	9
2.	Ratio N _L :N _W Versus Cylinder Diameter at Wind Velocity = 8.5 mph	22
3.	Ratio N _L :N _W Versus Cylinder Diameter at Velocity = 3, 1 mph	23
4.	NL:NW Versus Wind Velocity for 41-mm Rod	24
	LIST OF TABLES	
Table		
1.	Leeward Deposition of Particles From Aerosols	15
2.	Summary of Results	21

LEEWARD DEPOSITION OF PARTICLES ON CYLINDERS FROM MOVING AEROSOLS

I. INTRODUCTION.

Leeward deposition of particles from a moving aerosol has been reported by several workers. Yeomans et al. 1 reported that over twice as many particles were deposited on the back of a glass disk as on the front from an aerosol, mass mean diameter (MMD) 11.3 μ , moving at 8 mph. Particles up to 28 μ were deposited on the back.

Landahl and Herrmann, 2 using vertical slides in a wind tunnel, found that the deposit on the back of the slides from aerosols of MMD 4μ moving at 1 mph was equal to that on the front. Even when particles were 25μ , the deposit on the back was 37% to 66% of that on the front.

On the other hand, in connection with studies on deposition by inertial impaction on the upwind side of cylinders, Gregory³ found that the downwind deposit was nil except for small deposits on the back of narrow cylinders at very low windspeeds.

Rosinski and Nagamoto, ⁴ in studying deposits of single layers of particles on cylinders covered with sticky substances, reported that the deposit of particles of 2µ was of the same order of magnitude on the leeward side as the windward side for velocities of 4.7 mph. At velocities of approximately 11 and 16 mph, the leeward deposition was greater than the windward by an order of magnitude.

In field studies* of deposition from windblown aerosols, it was reported that there was considerable deposition on the back of targets relative to that on the front. Since further information was needed on leeward deposition in connection with a number of problems in these Laboratories, it was decided to conduct a study of leeward deposition of particles under laboratory conditions.

II. EXPERIMENTATION.

A. Approach.

Glass rods coated with petrolatum were exposed in a wind tunnel to aerosols of polystyrene spheres. The rods were supported in a horizontal

^{*} Gerber, B. Private communication. 1962.

position across the stream at a distance of 12 ft from the point where aerosols were introduced. After exposure of a rod, it was removed from the wind tunnel, put under a traveling microscope, and its surface scanned in order to count the number of particles deposited on back and front. From this count the ratio $N_L:N_W$ was computed, N_L being the number of polystyrene spheres counted on the leeward (back) side of the rod and N_W the number counted on the windward (front) side. Experimental conditions were varied by using glass rods 41, 21, 7.5, and 3.1 mm in diameter, aerosols composed of particles of four diameter ranges (4.0 μ to 5.5 μ , 10 μ to 14 μ , 19 μ to 24 μ , and 90 μ to 110 μ), and wind-tunnel airstream speeds of 18, 8.5, and 3 mph.

B. Materials.

1. Polystyrene Powder.

The powders that were dispersed in this work consisted of polystyrene spheres of specific gravity 1.06. The powders, classified according to particle diameter, fall into the following groups: 54 μ to 154 μ , 6 μ to 77 μ , 4 μ to 27 μ , and 1 μ to 10 μ .

2. Glass Rods.

The glass rods on which deposition was studied were 16 in. long and of various diameters (41, 21, 7.5, and 3.1 mm). Wooden plugs or collars were glued to each end of the rods to provide a means of supporting the rods and of attaching indicator pins. Indicator pins were actually heavy steel wire about 1-1/2 in. long, glued to the wooden plugs or collars, extending outward radially. The pins were used as reference points. When a rod was being exposed, the pin pointed in the leeward direction; when the rod was rotated, it was possible to measure the angle of rotation by measuring the rotation of the pin from its original position.

C. Equipment.

1. Wind Tunnel.

A schematic diagram (figure 1) shows the arrangement of the wind tunnel, the disperser, and accessory equipment.

40.0

一种的一个 一个 大大

The state of the s

DIAGRAM OF EQUIPMENT

The tunnel, previously described, ⁵ produced an airstream of uniform velocity over an area 7 in. square in the center of the tunnel. The working section of the tunnel was 16 by 18 in. in cross section and 27 ft long. Airstream velocity was controlled by a motor generator set. In the work described in this report, the free-stream velocities were set at 18, 8.5, and 3 mph for each combination of particle size and rod diameter. No runs were made with the large spheres at 3 mph because they settled too rapidly to be carried to the glass rods.

2. Dispersers.

a. Hattersley-Maguire Disperser.

The smaller particles were introduced into the airstream through a glass tube, 2 cm in outside diameter (OD) and 1.8 cm in inside diameter (ID). The tube extended vertically from the outlet of a Hattersley-Maguire disperser (placed on the top of the wind tunnel) into the airstream inside the tunnel. The disperser (figure 1) consisted of a hopper, a rotating table with a concentric groove 1/4 in. from its perimeter, a pair of scrapers, and a venturi nozzle. The inlet of the venturi nozzle was positioned just above the groove. The powder flowed from the hopper to the rotating table, where the pair of scrapers pushed the material into the groove. When nitrogen from a cylinder flowed inrough the venturi, the powder was sucked up in the venturi inlet and discharged into the 2-cm-OD outlet tube.

Different lengths and forms of outlet tubes were used for dispersing different powders. The tube used in dispersing the 6µ to 77µ and 4µ to 27µ powders extended to only the center of the tunnel, with the opening at the end of the tube facing downward. Although the powder was introduced at right angles to the flow, the particles were immediately entrained and traveled horizontally to the target. When the finest powder was introduced into the flow by this tube, the particles traveled upward, following the flow in the wake of the tube. To obviate the rise of the powder, a tube of the same diameter, but extending to the floor, was used. A 1-cm opening was blown in the side of the tube halfway down. The powder, upon leaving the orifice, traveled horizontally to the target.

b. Glass Funnel.

A glass funnel was used to introduce the largest spheres (90 μ to 110 μ) into the flow. These particles were not entrained in the main airstream when the Hattersley-Maguire disperser was used, but instead were deposited

beneath it on the floor of the tunnel. Thus, in lieu of the disperser, a glass funnel with a long, narrow stem was used to slow the speed of the spheres as they were ejected into the flow. The stem of the funnel was 26 in. long with 0.4-cm OD and 0.09-cm ID. The spheres were immediately entrained into the flow as they reached the funnel outlet.

In order to create the same size wake and disturbance in the flow as existed in the dispersion of the smaller spheres, the stem was surrounded by 2-cm glass tubing, which extended into the stream the same distance as in the case of the runs with smaller spheres.

3. Manometer.

The velocity of the airflow in the wind tunnel was measured by a thermopile anemometer, manufactured by Hastings-Radyst, Inc. Its precision was 7% of the scale reading after calibration against an inclined alcohol manometer. In the latter instrument, manufactured by Flow Corp., the vertical change in the liquid level was measured by a micrometer reading to 0.0001 in.

4. Traveling Microscope.

To study the deposit, the glass rods were mounted horizontally under a traveling microscope. The equipment was made from a bench lathe. Chucks on the headpiece and tailpiece were used to hold the rod for scanning. A protractor was made and mounted around the chuck of the tailpiece. As the rod was rotated during scanning, the steel pen and protractor made it possible to measure the angle of rotation from a reference direction.

Using a binocular microscope mounted on the movable crosspiece of the lathe and a Caywood Patterson graticule in one eyepiece, it was possible to count particles as small as 1.5 μ with a magnification of 150.

D. Procedure.

1. Preparation of Powder.

The powders, consisting of particles of 54μ to 154μ and 6μ to 77μ were used without sieving. Powders consisting of particles of 4μ to 27μ and 1μ to 10μ , however, were sieved through a 325-mesh screen in order to reduce the size of the agglomerates. For each powder the proper dispersing outlet tube was used.

2. Exposure of Rods.

After a glass rod was thoroughly cleaned with soap and hot water, it was warmed in a drying oven and covered with liquid petrolatum. The petrolatum coating was allowed to cool and solidify. The rod was then clamped into position across the center of the tunnel, 12 ft from the disperser in a horizontal position across the flow. The wind-tunnel fan was turned on at the predetermined speed, and nitrogen gas was sent through the venturi for 3 min to stabilize the flow before the Hattersley-Maguire disperser was turned on. The rod was exposed for a suitable length of time, determined empirically. After exposure, the disperser was turned off, and the flows through the venturi and finally through the tunnel were stopped. The rod was removed from the tunnel and mounted under the traveling microscope.

- 3. Time of Exposure.

The exposure time of the rod to the aerosol was chosen by trial and error. The criteria for the proper time were that it should be sufficiently long to obtain a single-layered deposit, dense enough for a reliable counting, but sparse enough for ease in discriminating between single particles and agglomerates.

The exposure time varied considerably with particle size, stream velocity, and rod size. In runs with large particles, high velocities, and small rods, conditions were such as to obtain a high efficiency of deposition by the mechanism of inertial impaction; therefore, only I min was needed to cover the front with a single layer of polystyrene powder. On the other hand, in the runs with small particles, low velocities, and larger rods, as much as 30 min to 2 hr were needed to obtain enough particles to count. Under the latter conditions, the efficiency of inertial deposition was zero, and deposition occurred by some other mechanism.

In humid weather, with relative humidities of 50% and above, many agglomerates were formed in the powder consisting of 4μ to 27μ and 1μ to 10μ spheres. To obtain a sufficient number of single particles, exposure time was increased.

4. Scanning.

In scanning the rods, only the particles of a narrow size range in each powder were counted. The size range in each powder classification follows:

Powder classification	Size range counted
Particle diameter, µ	Particle diameter, µ
54-154	90-110
6-77	19-24
4-27	10-14
1-10	4.0-5.5

Counts were made only of particles lying in defined areas of the rod surface 0.1 or 0.05 in. apart along its length and at angular positions around the circumference, 10° apart. Only the lower half of the surface of the rod was scanned in order to eliminate the count of particles that were deposited by settling. The defined area, in most cases, lay within the boundary of the Caywood Patterson graticule; however, in the case of the 90µ to 110µ particles, this area included only two particles. In scanning the larger rods (41- and 21-mm diameters), therefore, the entire microscope field of view was used. In scanning the smaller rods (7.5- and 3.1-mm diameters), only a central strip of the microscope field was used, whose length was the diameter of the full field and whose width was the same as that of the graticule.

In all cases, at least 1,000 particles were counted on the windward side. In some cases, when the deposition was heavy, as many as 3,000 were counted.

5. Measurement of Wind Velocity.

Vertical- and horizontal-velocity surveys were made at a distance of 1 ft upwind from each rod at each velocity. The velocities were read from the meter on the Hastings anemometer and corrected according to the calibration chart. Separate surveys were made with the outlet tube used for dispersing the coarse powders and that used for dispersing the fine powders.

E. Computations.

1. Deposition.

The ratio $N_L:N_W$ was used as a measure of the leeward deposit. Nw was the total count on the windward side of the rod, and N_L was that or an equal area on the leeward side.

It might have been more meaningful, theoretically, to obtain an efficiency of deposition, E, which by definition is equal to the ratio D:A, D being the deposit per unit area per unit time on the surface of the rod and A the area dose of the moving aerosol. At the time of the commencement of this work, the effect of turbulence on sampling was not known. This method, therefore, was not feasible. In field studies, moreover, the back deposition had been related to windward deposition rather than to area dose. It was decided, therefore, to obtain the ratio NL:NW instead of an efficiency ratio that involved the use of the area dose.

2. Inertial Parameter and Reynolds Number.

For each set of experimental conditions, the impaction parameter, K, was computed. K is defined as $\rho d^2V/18\mu D$, where ρ is the particle density, d the particle diameter, D the rod diameter, μ the viscosity of air, and V the velocity of the particle relative to the air near the object towards which the particle is moving. It has been shown by G. I. Taylor that, for K < 0.0625 the particle moving near the cylinder never touches it, and deposition by the impaction mechanism does not take place.

Since it was expected that vortexes formed in the wake near the cylinder might affect leeward deposition, the Reynolds number, R, of the flow relative to the cylinder was computed. R is equal to DV/J, where J is the kinematic viscosity of the air.

III. RESULTS.

Table 1 shows the counts obtained on the leeward and windward sides of the rods, N_L and N_W , and the ratio N_L : N_W expressed in percent for each run.

As shown in table 1A, there was only a very small deposition of particles of diameters between 90µ and 110µ at any windspeed on any rod.

As shown in table 1B, there was also a very small deposition of particles of diameters between 19 μ and 24 μ at 18 mph on any rod. At 8.5 mph, however, there was a greater deposition but only on the 41-mm rod, where N_L:N_W was 0.69%. At 3 mph, there was an even greater deposition on three rods: N_L:N_W was 2.5%, 0.49%, 0.05%, and 0.67% for rods of 41, 21, 7.5, and 3.1 mm, respectively.

TABLE 1

LEEVARD DEPOSITION OF PARTICLES FROM AEROSOLS

(Ratio of losward count and windward count, NL;Nw)

			Stream Red Time		Particle count		Average
anua pe t	velecity	diameter		NL	NW	NL:NW	NL:NW
	mph	ma	mia				*
			A. Particle diam	erer. 90u to 110u			
	•		1				
470	18	41	2	5	1,476	0.34	l
472	1		2 2	3	1,259 1,264	0.24 0.47	ł
491 496		ł	2		1,279	0.31	Į.
500	1	į	2		1,296	0.46	0.34 ±0.00
	1	١.,	1	•	1		
469 471		21	2		1,151 1,282		1
492	}	•		i	1,205	0.06	}
496	1		2	ò	1,276		0.02 ±0.04
2		7.5	1	•	637		
•	ł	1 "	1 i		747		ł
6	1		l i		1,063		i
493			1.5	•	1,409	į o	
494		3.1	1	•	1,292	l •	
495	1	· · · · ·	li	ě	1.332		1
497	ł	!	1	Ó	1,257	6	1
499	1	!	1	•	1,187	•	0
474	8.5	41	1 1	2	502	0.40	1
476			3	•	1.176	•	Í
478	1	į	4	1	894	0.11	
401	i	1		0	737	•	j
462		İ	10	3	649	0.45	0.16.6.19
50ì	1	\	5	•	476	•	0. 16 ±G. 11
473		21	4	•	502		-
475	Į.			•	707	0.00	1
477	į.	l			1,313 566		0.02 ±0.04
466		1	1	_		i	0.00 20.0
7	1	7.5		•	575	•	1
21			1 :		476 374		l
463 464	1	1	1 ;	1	334	1	
	1	1	1	•	1	1	1
465		3.1	1.5	:	321 347		i
406 400	j	}	1.5	1 .	293		i
445	1	į	i		212		1
490	1	1	3	•	233	i e	•
			B. Particle diam	eter. 19u to 24u			
					_		
536	18	41	20	2	1,262	0.16	1
540		1	20 20	2 3	1,379 1,225	0.15 0.24	1
542 544	i	1	15		1,232	0.46	0.24 :0.14
	1	1	1	I	•	i	1
537	1	21	10 15	•	1,283 1,269		1
539 541	1	1	13		1,263	0.00	1
543	1	1	15	;	1,269		0.02 ±0.04
		1	3		1,333		1
2 3A	1	7.5		1	2,143	0.05	1
3A 18A	1	1	:	•	2,000		1
25		I	=		1,208	•	1
30			-	•	2,023		I .
36	ļ	Į	-	•	1,547	•	0.01 ±0.0
6A	}	3.1	-		1,769	•	1
7.4	ì	1 "	_		2,034	•	1
11	1		-	1	2,016	0.05	1
36	1		-	•	1,804	•	I
52	1	ļ		•	2,000 3,100	0.03	1
62							

15

TABLE | (contd)

mph	mm mia mia 1,184 0,68 1,184 0,66 1,20 1,159 0,78 20 8 1,241 0,54 20 1,159 0,78 20 8 1,241 0,54 20 1,55 0 1,192 0 1,55 0 1,192 0 1,55 0 1,192 0 0 1,290 0 0 0,290 0 0,290 0 0,290 0 0,290 0 0,290 0 0,290 0 0,290 0 0,290 0 0,290 0,2	No. No. No. No. No. No. No.
10	1.5 41 30 8 1,184 0.68 20 8 1,159 0.78 20 8 1,241 0.66 21 15 0 1,263 0 0 1,192 0 0 1,192 0 0 1,192 0 0 1,192 0 0 1,192 0 0 1,192 0 0 0 1,192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S
10 10 10 10 10 10 10 10		9 1,159 0,78 1,241 0,64 8 1,204 0,66 0,69 ±0,05 0 1,263 0 0 1,290 0 0 1,290 0 0 1,350 0 0 1,635 0 0 1,816 0 0 1,749 0 0 3,126 0 0 1,840 0 0 1,749 0 0 1,744 0 0 1,744 0 0 1,744 0 0 1,744 0 0 1,744 0 0 1,744 0 0 1,744 0 0 1,744 0 0 1,374 0 0 0 1,744 0 0 1,374 0 0 0 1,374 0 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,188 0 0 1,374 0 0 1,188 0 0 1,374 0 0 1,188 0 0 1,374 0 0 1,188 0 0 1,227 1,096 2,46 21 1,216 1,73 3,21 3,21 3,21 3,21 3,21 3,21 3,21 3,21
20	20 8 1,241 0,548 0.66 1,204 0.67 1,205 0.66 1,204 0.67 1,205 0.66 1,204 0.67 1,204 0.66 1,204 0.66 1,204 0.67 1,204 0.66 1,204 0.67 1,204 0.66 1,204 0.66 1,204 0.67 1,204 0.66 1,204 0.67 1,204 0.66 1,204 0.66 1,204 0.67 1,204 0.66 1,204 0.67 1,204 0.66 1,204 0.67 1,204 0.66 1,204 0.67	R
156	20	8 1,204 0,66 0,69 ±0.05 0 1,263 0 0 1,192 0 0 0 1,290 0 0 1,350 0 0 0 0 0 3,521 0 0 1,635 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21	21	C 1,263 0 0 1,192 0 0 1,290 0 0 1,290 0 0 1,350 0 0 1,635 0 0 1,635 0 0 1,1749 0 0 1,1749 0 0 1,246 0 0 1,534 0 0 1,490 0 0 1,764 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 1,227 3,67 1,307 3,21 3,21 3,21 45 1,227 3,67 1,38 4 <
15	15 0 1.192 0 0 1.192 0 0 1.550 0 0 1.290 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 1.550 0 0 1.550 0 0 1.550 0 0 1.550 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 0 1.550 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 0 1.550 0 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 0 1.550 0 0 0 0 0 1.550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1,192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15	15 0 1.192 0 0 1.192 0 0 1.550 0 0 1.290 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 1.550 0 0 1.550 0 0 1.550 0 0 1.550 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 1.550 0 0 0 0 1.550 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 0 1.550 0 0 0 0 0 1.550 0 0 0 0 1.550 0 0 0 0 0 1.550 0 0 0 0 0 1.550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1,192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15	1.5 0 1.290 0 0 1.290 0 0 1.290 0 0 1.350 0 0 0 1.350 0 0 0 0 1.350 0 0 0 0 1.350 0 0 0 0 1.350 0 0 0 0 1.351 0 0 0 0 1.351 0 0 0 1.316 0 0 0 0 1.316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1,290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	7.5 20 0 1,350 0	0 1,350 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 A	7.5	0
1	- 0 1,635 0	0 1,635 0 0 1,816 0 0 1,749 0 0 3,126 0 0 1,749 0 0 0 1,749 0 0 0 1,966 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9A	- 0 1.816 0	0 1.816 0 0 1.749 0 0 0 1.749 0 0 0 1.749 0 0 0 1.966 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11A	- 0 1,749 0 1,096 0 1,096 0 1,096 0 1,096 0 1,096 0 1,096 0 1,096 0 1,096 0 1,096 0 1,534 0 0 1,534 0 0 1,534 0 0 1,534 0 0 1,534 0 0 1,188 0 0 1,188 0 0 1,188 0 0 1,188 0 0 1,188 0 0 1,188 0 0 1,188 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,374 0 0 1,216 1,73 300 27 1,096 2,46 1,73 300 27 1,096 2,46 1,73 300 23 1,222 1,88 1,227 300 23 1,222 1,88 21 300 5 1,225 0,41 300 23 1,225 0,41 300 5 1,225 0,73 350 5 1,197 0,45 350 4 1,095 0,37 350 5 1,197 0,45 350 0 1,217 0 0 200 0 1,217 0 0 200 0 1,217 0 0 200 0 1,217 0 0 200 0 1,217 0 0 200 0 1,210 7 0 200 0 1,210 7 0 200 0 1,210 7 0 200 0 1,210 7 0 200 0 1,210 7 0 200 0 1,210 7 0 200	0 1.749 0 0 0 1.749 0 0 0 1.226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27	- 0 3,126 0 - 0 1,096 0 - 0 1,840 0 - 0 1,534 0 - 0 1,744 0 - 0 1,744 0 - 0 1,744 0 - 0 1,744 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,374 0 - 0 1,216 1,73 - 1,300 23 1,140 2,46 - 1,300 45 1,227 3,67 - 300 45 1,227 3,67 300 45 1,227 3,67 300 45 1,227 3,67 300 4 1,095 0,37 310 30 4 1,095 0,37 310 30 4 1,123 0,09 20 0 1,217 0 20 0 1,217 0 20 0 1,217 0 3,1 11 7 1,435 0,49 10 4 1,226 0,49 10 13 1,431 0,92 10 13 1,431 0,92 10 13 1,431 0,92 10 13 1,431 0,92 10 15 17 1,243 1,37 21 15 2 1,256 0,16 30 5 1,222 0,41 30 5 1,222 0,41 30 5 1,222 0,41 30 5 1,239 0,46 20 20 2 1,023 0,20 20 2 1,023 0,20 20 2 1,023 0,20 20 2 1,023 0,20 20 3 1,106 0,27 7.5 15 1 3,040 0,03	0 3,126 0 0 0 1,096 0 0 0 0 1,840 0 0 0 1,534 0 0 0 1,764 0 0 0 1,764 0 0 0 1,188 0 0 0 1,374 0 0 0 23 1,140 2,01 27 1,096 2,46 21 1,216 1,73 3,21 1,307 3,21 45 1,227 3,67 23 1,227 1,68 2,5±0.7 5 1,235 0,41 1,095 0,37 5 1,235 0,41 1,095 0,37 5 1,107 0,45 9 1,225 0,73 0,49 ±0.14 1 1,123 0,09 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,186 0,76 7 1,335 0,49 1,224 0,49 13 1,413 0,92
32	1.5 3.1 -	0 1,096 0 0 1,840 0 0 1,534 0 0 1,534 0 0 1,490 0 0 1,164 0 0 1,188 0 0 1,188 0 0 1,140 2,01 27 1,096 2,46 21 1,216 1,73 3,21 1,22 1,307 3,21 45 1,227 3,67 23 1,222 1,88 2,5±0.7 5 1,235 0,41 4 1,095 0,37 5 1,235 0,41 4 1,095 0,37 5 1,225 0,73 0,49±0.14 1 1,123 0,09 0 1,179 0 0 1,217 0 0 1,217 0 1 1,210 0 0 1,186 0,76 7 1,335 0,49 1,335 0,49 1,186 0,76 1,186 0,76 1,135 0,49 1,124 0,49 13 1,413 0,92
SA	1.5 3.1 -	0 1,840 0 0 1,534 0 0 1,690 0 0 1,764 0 0 1,188 0 0 1,374 0 0 0 1,374 0 0 0 1,374 0 0 0 1,374 0 0 0 1,374 0 0 0 1,217 1,227 1,307 3,21 1,227 3,67 1,227 3,67 1,227 3,67 1,227 3,67 1,227 1,88 2,5±0.7 5 1,235 0,41 4 1,095 0,37 5 1,107 0,45 9 1,225 0,73 0,49±0.14 1,179 0 1,217 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,210 0 0 1,210 0 0 0,05±0.06 1,224 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,49 1,335 0,92
12		0 1,534 0 0 1,690 0 0 1,764 0 0 1,764 0 0 1,788 0 0 1,374 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1		0 1,490 0 0 1,764 0 0 0 1,764 0 0 0 1,764 0 0 0 1,188 0 0 0 1,374 0 0 0 0 1,374 0 0 0 0 1,374 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1		0 1,764 0 0 1,188 0 0 0 1,188 0 0 0 1,188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 1,188 0	1	0 1,188 0 0 0 1,374 0 0 0 23 1,140 2,01 27 1,096 2,46 1,216 1,73 3,21 49 1,227 3,67 23 1,227 3,67 23 1,222 1,88 2,5±0.7 5 1,235 0,41 4 1,095 0,37 5 1,107 0,45 9 1,225 0,73 0,49 ±0.14 1 1,123 0,09 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,210 7 0.05±0.06 9 1,186 0,76 1,435 0,49 1,435 0,49 1,324 0,49 13 1,413 0,92
1	1	0 1,374 0 0 0 23 1,140 2.01 27 1,096 2.46 21 1,216 1.73 3.2 1,307 3.21 45 1,227 3.67 23 1,222 1.88 2.5±0.7 5 1,235 0.41 1.095 0.37 5 1,107 0.45 9 1,225 0.73 0.49 ±0.14 1 1,123 0.09 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 0 1,217 0 1,255 0.16 1,210 0 0.05±0.06 9 1,186 0.76 7 1,435 0.49 13 1,413 0.92
Solid 3	1	23
10		27
30		21 1,216 1.73 3.2 1,307 3.21 45 1,227 3.67 23 1,222 1.88 2,5±0.7 5 1,235 0.41 4 1,095 0.37 5 1.107 0.45 9 1.225 0.73 0.49±0.14 1 1,123 0.09 0 1,179 0 0 1,217 0 2 1,255 0.16 0 1,210 7 0.05±0.06 7 1,435 0.49 13 1,413 0.92
10	30 32 1,307 3,21 300 45 1,227 3,67 3,21 300 23 1,222 1,88 300 4 1,095 0,37 3,21 300 4 1,095 0,37 3,21 300 9 1,225 0,73 3,20 3,00 9 1,225 0,73 3,00 9 1,225 0,73 3,00 9 1,225 0,73 3,00 3,00 3,1217 0 200 0 1,217 0 200 0 1,217 0 200 0 1,217 0 200 0 1,210 7 3,14 3,00 3,14 1,255 0,16 3,00 3,14 3,144 3,092 3,10 3,14 3,144 3,092 3,10 3,14 3,144 3,092 3,14 3,144 3,092 3,14 3,144 3,1	1,307 45 1,227 1,227 3,67 23 1,222 1,88 2,5±0.7 5 1,235 0,41 1,095 0,37 5 1,107 0,45 0,73 0,49±0.14 1,123 0,09 1,217 0 1,217 0 1,217 0 1,210 0 1,210 0 1,186 0,76 1,435 0,49 1,335 0,49 1,343 0,49 1,343 0,49 1,343 0,49 1,343 0,49 1,343 0,49 1,343 0,49 1,343 0,49 1,343 0,49 1,343 0,49 1,343 0,49 1,343 0,49 1,343 0,92
30	30	1,227 3.67 1.88 2.5±0.7 1,222 1.88 2.5±0.7 1,235 0.41 1.095 0.37 1.107 0.45 1,107 0.45 0.73 0.49±0.14 1 1,123 0.09 1.179 0 0 1.217 0 0 1.217 0 0 1.215 0.16 1,210 0 0.05±0.06 1,186 0.76 1.435 0.49 1.433 0.49 1.43 0.92
30	21 30 23 1,222 1.88 21 30 5 1,235 0.41 30 4 1.095 0.37 31 0.45 1.107 0.45 30 9 1,225 0.73 7.5 20 1 1 1,123 0.09 20 0 1,179 0 20 20 1,217 0 20 2 1,255 0.16 20 0 1,210 7 3.1 11 7 1,435 0.49 10 7 1,435 0.49 10 6 1,224 0.49 10 10 13 1,413 0.99 10 9 1,281 0.70 G. Particle diameter, 10µ to 14µ 41 80 31 1,413 0.99 10 9 1,281 0.70 G. Particle diameter, 10µ to 14µ 21 15 2 1,256 0.16 30 41 1,200 3.42 15 13 1,102 1.18 21 15 2 1,256 0.16 30 5 1,222 0.41 30 5 1,222 0.41 30 5 1,222 0.41 30 5 1,222 0.41 30 5 1,229 0.40 20 6 1,179 0.51 20 20 2 1,023 0.20 20 1 1,003 0.20 20 3 1,004 0.03 7.5 15 1 1 3,040 0.03	23 1,222 1.88 2.5 ±0.7 5 1,235 0.41 4 1.095 0.37 5 1.107 0.45 1.225 0.73 0.49 ±0.14 1 1,123 0.09 0 1.179 0 0 1.217 0 2 1.255 0.16 0 1,210 0 0.05 ±0.06 7 1,435 0.49 13 1,413 0.92
21 30 5 1,235 0.41	21 30 5 1,235 0.41 30 4 1.095 0.37 31 1.225 0.73 32 5 1.107 0.45 330 9 1.225 0.73 330 9 1.225 0.73 32 20 0 1.179 0 20 0 1.217 0 20 2 1.255 0.16 20 0 1.210 7 3.1 11 7 1.186 0.76 10 7 1.335 0.49 10 6 1.224 0.49 10 13 1.413 0.92 10 9 1.281 0.70 3 1 1 1 1 1 1 1 1 1	5 1,235 0.41 1.095 0.37 5 1.107 0.45 9 1.225 0.73 0.49 ±0.14 1 1,123 0.09 0 1,179 0 0 1,217 0 2 1,255 0.16 0 1,210 7 0.05 ±0.06 7 1,435 0.49 1 1,224 0.49 13 1,413 0.92
30	30	1 1.095 0.37 1.107 0.45 0.45 0.45 0.45 0.45 0.73 0.49 ±0.14 1.123 0.09 1.179 0 1.217 0 0 1.217 0 0.1210 0 0.05 ±0.06 0 1.435 0.49 1.435 0.49 1.435 0.49 1.435 0.49 1.435 0.49 1.3 1.433 0.92
30	30	1 1.095 0.37 1.107 0.45 0.45 0.45 0.45 0.45 0.73 0.49 ±0.14 1.123 0.09 1.179 0 1.217 0 0 1.217 0 0.1210 0 0.05 ±0.06 0 1.435 0.49 1.435 0.49 1.435 0.49 1.435 0.49 1.435 0.49 1.3 1.433 0.92
30 5 1.107 0.45		5 1.107 0.45 0.73 0.49 ±0.14 1.123 0.09 0.1.179 0 0 0.1.217 0 0.16 0.16 0.210 0 0.05 ±0.06 0.76 1.435 0.49 0.49 0.49 0.49 1.413 0.92
10 1 1 1 1 1 1 1 1 1	7.5 20	9 1,225 0.73 0.49 ±0.14 1 1,123 0.09 1.179 0 1.217 0 2 1,255 0.16 1,210 7 0.05 ±0.06 7 1.186 0.76 7 1,435 0.49 6 1,224 0.49 13 1,413 0.92
T.5 20	7.5 20 1 1,123 0,09 20 20 0 1,217 0 20 2 1,255 0,16 10 7 1,435 0,49 10 10 13 1,413 0,92 10 9 1,281 0,70 10 9 1,281 0,70 10 9 1,281 0,70 10 9 1,281 0,70 10 10 13 1,413 0,92 10 9 1,281 0,70 10 10 10 10 10 10 10	1
Sil	20	0 1.179 0 1.217 0 0 1.217 0 0 1.217 0 0.05 ±0.06 1.210 7 0.05 ±0.06 1.435 0.49 1.224 0.49 13 1.413 0.92
20		0 1,217 0 0.16 2 1,255 0.16 0 1,186 0.76 7 1,435 0.49 6 1,224 0.49 13 1,413 0.92
20 2 1,255 0,16 0.05	20	2 1,255 0.16 0.05 ±0.06 3 1,186 0.76 7 1,435 0.49 6 1,224 0.49 13 1,413 0.92
20	3.1 11 2 1.186 0.76 1.00 10 10 7 1.435 0.49 10 6 1.224 0.49 10 13 1.413 0.92 10 9 1.281 0.70 G. Particle diameter, 19µ to 14µ. 41 80 31 1.284 2.42 30 19 1.027 1.85 30 41 1.200 3.42 15 13 1.102 1.18 15 17 1.243 1.37 21 15 2 1.256 0.16 30 5 1.222 0.41 30 5 1.222 0.41 30 5 1.229 0.40 20 20 20 1 1.046 0.10 20 20 3 1.108 0.27 7.5 15 1 3.040 0.03 1.286 0	0 1,210 7 0.05 ±0.06 7 1,435 0.49 6 1,224 0.49 13 1,413 0.92
3.1	3.1 11 7 1.186 0.76 10 7 1.435 0.49 10 6 1.224 0.49 10 13 1.413 0.92 10 9 1.281 0.70 G. Particle diameter, 194 to 144 1.281 0.70 41 80 31 1.284 2.42 1.85 30 41 1.200 3.42 15 13 1.102 1.18 15 17 1.243 1.37 21 15 2 1.256 0.16 30 5 1.222 0.41 30 5 1.222 0.41 30 5 1.222 0.41 30 5 1.239 0.40 20 20 2 1.023 0.20 20 20 2 1.023 0.20 20 20 20 3 1.108 0.27 7.5 15 1 3.040 0.03 1.286 0	7 1.186 0.76 7 1.435 0.49 6 1.224 0.49 13 1.413 0.92
10	10	7 1,435 0.49 6 1,224 0.49 13 1,413 0.92
10 6 1.224 0.49	10	6 1,224 0.49 13 1,413 0.92
10	10	13 1.413 0.92
G. Particle diameter, 19µ to 14µ 232 18 41 80 31 1,284 2,42 451 30 19 1,027 1,85 454 30 41 1,200 3,42 455 15 17 1,243 1,37 2,1 336 21 15 2 1,256 0,16 337 30 5 1,222 0,41 338 30 5 1,222 0,41 339 30 5 1,239 0,40 376 20 6 1,179 0,51 450 20 2 1,023 0,20 452 20 3 1,108 0,27 456 20 3 1,108 0,27 72 7.5 15 1 3,040 0,03 331 332 15 0 1,232 0 332 333 30 0 1,314 0	G. Particle diameter, 19µ to 14µ 41 80 31 1,284 2,42 30 19 1,027 1.85 30 41 1.200 3.42 1.18 15 13 1.102 1.18 15 17 1.243 1.37 21 15 2 1,256 0.16 30 5 1,222 0.41 30 5 1,229 0.40 20 6 1,179 0.51 20 2 1,023 0.20 20 2 1,023 0.20 20 20 1 1,046 0.10 20 3 1,108 0.27 7.5 15 1 3,040 0.03 15 0 1,286 0	
G. Particle diameter, 19µ to 14µ 232 18 41 80 31 1,284 2,42 451 30 19 1,027 1,85 454 30 41 1,200 3,42 455 15 13 1,102 1,18 457 15 17 1,243 1,37 2,1 336 21 15 2 1,256 0,16 337 30 5 1,222 0,41 338 30 5 1,222 0,41 339 5 1,229 0,40 376 20 6 1,179 0,51 450 20 6 1,179 0,51 450 20 2 1,023 0,20 456 20 3 1,108 0,27 0,30 456 72 7.5 15 1 3,040 0,03 331 15 0 1,286 0 332 333 30 0 1,314 0	G. Particle diameter, 19µ to 14µ 41 80 31 1,284 2.42 30 19 1,027 1.85 30 41 1.200 3.42 15 13 1,102 1.18 15 17 1,243 1.37 21 15 2 1,256 0.16 30 5 1,222 0.41 30 5 1,222 0.41 30 5 1,222 0.41 20 6 1,179 0.51 20 2 1,023 0.20 20 1 1,046 0.10 20 3 1,108 0.27 7.5 15 1 3,040 0.03 15 0 1,286 0	
232	41	9 1,281 0.70 0.67 ±0.16
451 454 455 455 457 458 457 30 119 11,027 1,186 1,102 1,118 1,102 1,118 1,107 1,243 1,37 2,1 336 337 330 5 1,222 0,41 338 338 30 5 1,222 0,41 338 30 5 1,223 0,40 376 450 20 6 1,179 0,51 450 20 20 1 1,104 0,10 456 72 72 7,5 15 1 1 3,040 0,03 1,108 0,27 0,30 331 332 333 330 0 1,1232 0 3 1,134 0	30	le diameter, 194 to 144
451 30 19 1,027 1.85 454 30 41 1,220 3,42 455 15 13 1,102 1,18 457 15 17 1,243 1,37 2,1 336 21 15 2 1,256 0,16 3,1	30	1 31 1 1.284 1 2.42 1
154 30	30 41 1.200 3.42 1.18 15 13 1.102 1.18 1.37 15 17 1.243 1.37 1.37 15 17 1.243 1.37 1.37 1 1.37 1 1.30 1.30 1.30 1.222 0.41 1.30 1.30 1.30 1.222 0.41 1.229 0.40 1.239 0.40 1.239 0.40 1.230 1.230 0.20 1.230 0.20 1.044 0.10 1.046 0.10 1.046 0.10 1.046 0.10 1.05 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	
15	21	
15	21 15 2 1,256 0.16 1,222 0.41 30 5 1,222 0.41 30 5 1,222 0.41 20 6 1,179 0.51 20 2 1,023 0.20 20 1 1,046 0.10 20 3 1,106 0.27 7.5 15 1 3,040 0.03 15 0 1,286 0	
336 337 338 339 330 35 37 376 376 20 376 450 450 450 450 72 72 7.5 15 1 1 3,040 0,03 331 332 333 333 30 0 1,1314 0 0 1,232 0 0 1,232 0 0 1 1,232 0 0 1 1,232 0 0 1 1,232 0 0 1 1,232 0 1 1,314	21 15 2 1,256 0.16 30 5 1,222 0.41 30 5 1,239 0.40 20 6 1,179 0.51 20 2 1,023 0.20 20 1 1,046 0.10 20 3 1,108 0.27 7.5 15 1 3,040 0.03 15 0 1,286 0	
337 338 339 330 35 370 371 450 450 452 452 456 72 72 7.5 15 1 3,040 1,108 0,27 0,30 1,108 0,27 0,30 331 332 333 330 0 1,1314 0 0,41 0,40 0,41 0,40 0,40 0,40 0,40	30 5 1,222 0.41 0.90 20 1,239 0.51 0.51 0.51 0.51 0.50 0.51 0.50 0.50	
336 30 5 1,239 0.4e 376 20 6 1,179 0.51 450 20 2 1,023 0.20 452 20 1 1,046 0.10 456 20 3 1,108 0.27 0.3d 72 7.5 15 1 3,040 0.03 331 15 0 1,286 0 332 15 0 1,232 0 333 30 0 1,314 0	7.5 15 1 3,040 0.03 1.286 0 0.40 0.40 0.03 0.20 0.20 0.20 0.20 0.20 0.20 0.2	
376 20 6 1,179 0,51 450 20 2 1,023 0,20 452 20 1 1,046 0,10 456 20 3 1,108 0,27 0.30 72 7.5 15 1 3,040 0.03 331 15 0 1,286 0 332 15 0 1,232 0 333 30 0 1,314 0	20 6 1,179 0.51 20 2 1,023 0.20 20 1 1,046 0.10 20 3 1,108 0.27 7.5 15 1 3,040 0.03 15 0 1,286 0	
450	7.5 15 1 3,040 0.03 1.286 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
452 20	7.5 15 1 3,040 0.03 15 0 1,286 0	
456 20 3 1,108 0,27 0,30 72 7.5 15 1 3,040 0,03 331 15 0 1,286 0 332 15 0 1,232 0 333 30 0 1,314 0	7.5 15 1 3,040 0.03 15 0 1,286 0	
72 7.5 15 1 3,040 0.03 331 15 0 1,286 0 1,232 0 333 30 0 1,314 0	7.5 15 1 3,040 0.03 15 0 1,286 0	
331 332 333 333 30 30 0 1,232 0 1,314	15 0 1,286 0	
332 333 30 0 1,232 0 1,314 0		
333 30 0 1,314 0		
		, u , 1,434 l V !
		0 1,314 0
52 3.1 30 0 2,080 0		0 1,314 0 0.16 0.04±9.06
62 30 1 3,186 0.03		0 1,314 0 0.16 0.04 19.06 0 0 0 0
74 30 2 2,564 0.08		0 1,314 0 0.16 0.04 19.06 0 2,080 0 0 1 3,188 0.03
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1,314 0 0,16 0.04±2.26 0 2,080 0 1 3.184 0.03 2 2,564 0.08
	30 1 1,676 0.06	0 1,314 0 0,16 0.04 ±9.26 0 2,080 0 1 3,188 0.03 2 2,544 0.08 1 1,676 0.06
	30 1 1,676 0.06 30 2 2,520 0.98	0
ا مقد ا ا مقد ا ا مقد ا	30 1 1,676 0.06 30 2 2,520 0.98 15 0 1,269 0	0
326 30 1 1,272 0 329 30 0 1,266 0	30 1 1,676 0.06 30 2 2,520 0.98 15 0 1,269 0 30 1 1,272 0	0

1.18

TABLE | (contd)

Rus	Stream'	Red	Time	Partie		N _L :N _W	Average
mm þe r	velecity	diameter		NL	IVW		NL:NW
	RK ph	****	mla		1	1	5
345	8.5	41	1 10	31	1,246	2.46	1
349	1 ""	"	is	40	1,235	3. 24	1
416	İ	1	20	45	1,004	4, 48	ł
423	1	1	15	71	1,2/5	5.84	1
427]	1	25	63	1,227	5.13	1
466	1	1	18	28	1,039	2.69	4.0 ±1.6
372	8,5	21	25	30	1,062	2.82	ĺ
424	1	į	30	14	1,216	1.14	ł
426	I	1	*	33	1,214	2,72	1
462	1		!	39	1,330	2.93	2.4 ±0.7
463	1	1	5	24	1,045	2.46	2.7 20.7
126	I	7.5	15	•	1,454	•	
17 <u>2</u> 187	1	1	15 15	1 :	1,377		1
343	1	1	15		1,411		1
347	1	1	15	1	2,412	0.00	j
374	1	1	25	1	1,436	0.67	1
421	· ·		20	•	1,209	•	1
425	1	1	15	•	1,332	•	1
428	1	1	20	•	1,227	•	0.02 ±0.0
134	1	3. 1	10	•	2,554	•	· ·
166	}	}	16	1	2,212	0.05	
170		1	10		2,062		1
170 182	Į.	1	1 1		2,096 2,706		l
271	1	1		1	1,612		1
41.5	•	1	•	•	1,235	•	i
420	1	1	•	•	1,177	•	•
322	3.0	41	120	100	1,478	6.77	I
234			120	65	1,016	6.39	1
262	1	l .	105	134	1,751	7.65	1
263	1	1	120	107	1,379	7.75	1
435	1	ì	!	101	1,161	8.55	1
436 458	1	l l	90	95 75	1,212	7.84 7.43	7.5 40.7
-	1	1	ı		Ę.	1	1.5 20.1
260		31	35	115	1,543	7, 45	1
436 443	1	1	15	72	1,003	8.87 7.16	1
459	1		20	1 73	1,014	7.20	1
460	1	Ì	20	69	1,064	6.47	1
461	1)	20	101	1,006	9.30	7.7 ±1.6
192	3. 0	7.5	20	**	1,325	2.99	
236			30	42	1,106	3.00	1
240		ı	13	70	1.819	3.85]
442	1	Į.	35	40	1,090	3.67	
444	ĺ	i	11	41	1,021	4.62	3.7 ±0.4
196	1	3.1	30	26	1,040	2.50	l
196	1		39 39 39	36	1,376	2,62	1
200 202	1		2	16	1.449	1.10	1
292 210	1	1	7	1 55	1,090	1.56	1
239		[ü	1,066	2.25	1
241	1	ł	6	45	2,813	1.60	1
247	Į.	Į.	4	29	:.155	2.51	į.
249		I	4	21	1.015	2.07	1
433	1	· f	36	26	1,130	1.66	1
441 464	·	1	10	13 26	1,251	1.04 2.76	1
465	1	i i	20	1 11	1,016	1.06	2 ±0.7
•	•	•		•	, ,,,,,	,	,
				nator, 4. 6, to 5. Sp			,
548 532	16.6	41	29	1,023	1,205	84.9 96.7	
554	1	1	36	1,021	1,195	85.4	1
571	1	1	30	1,050	1,055	100	1
577	I	1	60	1,098	1,072	102	92 👊
549	I	21	, ,,,	1,364	1,207	1113	1
553	I	1	25	2, 055	1,223	166	Ī
557 572	1	1	20	1,400	1,240	118	1

TABLE | (contd)

* +71/4

Rus	ftream	Red		Partick	e count		Average
manhor	wiecity	diameter	Time	NL	NW	N _L :N _W	NL:NW
	mph	19.00	Toda				
550	1	7.5	16	25	1,210	2,06	ſ
554	i i	1 ""	15	41	1,190	3,44	
558	ı	Ī	15	15	1.390	1.06	
776 579		l .	60	49	1,001	4.90	
	1	1	12	27	1,139	2, 37	2,8 ±1.3
595		Į.	1		1,137	{	2 213
551	I	3.1	10	7	1,254	0,56	1
555	1		10	0	1,308	0.00	
559			10	1 1	2, ; 28	0.05	•
593	1		16	1	1,359	0.07	6. 17 ±0. 22
	1	41	40	193	1.215	15.9	
560	8.1	{ • • ·		103	1, 052		i
564	i i	Ţ	30			9.8	•
598	i	}	45	136	1.027	13.4	
603	1	1	40	154	1.074	14,3	13,4 22.2
561	1	21	29	210	1.623	12.9	
594	1		30	79	1,093	7,23	Ĭ
597	1	ł .	30	76	1, 336	5,69	1
604	i		50	65	1.064	5,99	8 ±2.9
		1	1		1	t	· ·
962	1	7.5	25	54	1,639	3,29	l
563		l	64	32	1,078	2,97	1
590	I	i	30	**	1,060	4.53	
599	ì	1	15	83	1,003	7.66	4,6 ±1.8
563	Į.	3.1	30	44	3,127	1.41	
573	i	1	50	27	1.154	2,34	1
589	1	i	115	19	1,225	1.55	j
592	i	1	12	l ži	1.509	1.39	1.7 ±0.4
	1	1		Į.	I '		
579	3, 1 ±0. 3	41	105	128	1,036	12, 3	1
596	· ·	I	60	115	1,045	11.0	i
600	į.	Į	60	163	1.010	16.1	1
605	i	Ī	60	36	1.079	8.0	;2 ±3
567	} -	21	40	103	1,103	9.3	1
575	1	ļ 	1 60	112	1.067	10.5	
580	1	l	1 6	164	1,007	16.3	
601	i	i	1 6	114	1.101	10.4	l .
613	1	1	95	1 115	1,061	10.8	11 ±3
· · · · ·	t	I	1		1	1	1
574	1	. 7,5	60	400	1,269	21.5	4
566	1	l .	60	162	1,004	16.1	
607	1	i	60	292	1,050	27.8	1
610	1	}	30	300	1.090	27.5	26 ±6
545	3.6 ±0.2	3.1	20	237	1,069	21.0	1
307 568	3. 4 24. 6	3.1	30	221	1.046	21.1	i
	i	I	30	723	1,052	68.7	ł
576	1	1	45	813		74.5	}
562	j	1			1,091		1
608	l	1	45	634	1,002	63.3]
611	ł	I	45	197	1,021	19.3	43 423
415	1	t	45	397	1,225	32.4	1 43 443

As shown in table 1C, there was, in general, greater deposition of particles with diameters between 10µ and 14µ. At 18 mph, there was significant deposition only on the largest rod of 41 mm where N_L:N_W was 2.1%. At 8.5 mph, there was deposition on the two larger rods: N_L:N_W was 3.4% for the 41-mm rod and 2.4% for the 21-mm rod. At 3 mph, however, there was significant leeward deposition on all rods: N_L:N_W was 7.5%, 7.7%, 3.7%, and 2.0% for rods of 41, 21, 7.5, and 3.1 mm, respectively.

As shown in table 1D, $N_L:N_W$ was largest for particle diameters between 4.0 μ and 5.5 μ for a given wind velocity and rod diameter. At 16.6 mph, $N_L:N_W$ was 92% for the 41-mm rod and 131% for the 21-mm rod, at 7.3 mph it was 13.4% and 8%, and at 3.1 mph it was 12% and 11%, respectively.

Table 1 shows that the ratio N_L:N_W was independent of duration of exposure. For example, N_L:N_W for particles of 90µ to 110µ, deposited at 8.5 mph on the 41-mm rod,was 0%, 0.11%, 0%, 0%, 0.40%, and 0.45% for exposure times of 3, 4, 5, 6, 7, and 10 min, respectively. In another example (i.e., for particles of 10µ to 14µ, deposited at 18 mph on the 41-mm rod), N_L:N_W was 1.4%, 3.4%, and 2.4% for exposure times of 15, 30, and 80 min, respectively.

Table 2 shows the average values of $N_L:N_W$, K, and R for each experimental condition; $N_L:N_W$ is expressed as percent. When K was greater than the critical value of 0.0625, $N_L:N_W$ was small, varying from 0% to less than 0.4%. On the other hand, when K < 0.0625, $N_L:N_W$ was larger, varying from about 0.5% to 131%.

Table 2 also shows the general trend. When K was greater than the critical value, $N_L:N_W$ was very small, or zero, and did not seem to be affected by particle size, cylinder diameter, or wind velocity. On the other hand, when K was less than the critical value, in general, $N_L:N_W$ decreased with cylinder diameter but increased with decreasing wind velocities and decreasing particle size.

Exceptions to these generalities can be found in table 2. The first was the deposition of 19 μ to 24 μ particles at 3 mph on the 3.1-mm cylinder where N_L:N_W was larger than expected for K > 0.0625, and was, in fact, larger than those on the two larger cylinders. The second was the deposition of 4.0 μ to 5.5 μ particles at 16.8 mph on the 21-mm cylinder, where N_L:N_W was 131%,whereas on the 41-mm cylinder it was only 92%. The third was the deposition of 4.0 μ to 5.5 μ particles at 3 mph on the 7.5- and 3.1-mm rods,

where $N_L:N_W$ increased with decreasing cylinder diameter. The Reynolds number in the first case was 277; in the second, 10,500 and 20,500; and in the third, 293. These anomalous results are explained in section IV, E.

Some of the results are graphed in figures 2, 3, and 4. Figures 2 and 3 show the graph of N_L:N_W plotted against cylinder diameter for various particle sizes at wind velocities of 8.5 and 3.1 mph. In figure 4, N_L:N_W is plotted against wind velocity for various particle sizes. These graphs show the general trends and the exceptions occurring at R = 277 and 22,000.

IV. DISCUSSION.

A. Variances in Results.

Wide variances existed in $N_L:N_W$. Such variances were to be expected when deposition was small on the leeward side of the rcds, since small differences in a total of one to five particles of the leeward deposit would make a large difference in $N_L:N_W$.

Another cause of variance was in the relative number of agglomerations in the powders, which varied with the humidity. When there were many agglomerates, less leeward deposition occurred, even with a heavy windward deposition.

B. Discussion of Windward Deposit.

As shown in table 2, results can be divided into two groups: results occurring when K > 0.0625 and results occurring when K < 0.0625. When K > 0.0625 the small value of N_L:N_W and the short exposure time needed to obtain an adequate deposit suggest that inertial impaction was the main mechanism of deposition on the windward side, and that the rate of deposition was rapid.

When K < 0.0625, the longer time required for deposition suggests another mechanism of deposition, which has been shown by Pereles⁸ to be turbulent diffusion. The longer time of exposure required to obtain a satisfactory deposit shows that this process is slower than inertial impaction. That turbulence was present in the tunnel was shown by measurements made by a constant-current, hot-wire anemometer. The turbulent intensity, with the dispersal outlet tube extending halfway down into the tunnel flow, was found to be 4% to 5%.

TABLE 2
SUMMARY OF RESULTS

Particle diameter	Stream velocity	Rod diameter	N _L :N _W	Impaction parameter	Reynolds number
μ	mph	mm	%	<u> </u>	
90-110	18	41	0.36	6.4	22,000
		21	0.02	12	11,300
		7.5	Ó	35	4,020
		3.1	0	84	1,660
	8.5	41	0.16	3.0	10,400
	İ	21	0.02	5.9	5,320
		7.5	0	17	1,900
	ļ	3.1	0	40	785
19-24	18	41	0.24	0.26	22,000
·		21	0.02	0.50	11,300
		7.5	0.01	1.4	4,020
		3.1	0.91	3.4	1,660
	8.5	41	0.69	0.12	10,390
	Į	21	0	0.24	5,320
		7.5	0	0.66	1,900
		3.1	0	1.6	785
	3	41	2.5	0.04	3,660
	1	21	0.49	0.08	1,880
	t	7.5	0.05	0.23	670
		3.1	0.67	0.57	277
10-14	18	41	2.1	0.06	22,000
		21	0.30	0.13	11,300
	1	7.5	0.04	0.35	4,020
		3.1	0.05	0.85	1,660
	8.5	41	4.0	0.03	10,390
	1	21	2.4	0.06	5,320
		7.5	0.02	0.17	1,830
		3.1	0	0.40	785
	3	41	7.5	0.01	3,660
		21	7.7	0.02	1,880
	1	7.5	3.7	0.06	670
		3.1	2.0	0.14	277
4.0-5.5	16.8	41	92	0.015	20, 400
		21	131	0.029	10,500
		7.5	2.8	0.082	3,750
		3.1	0.17	0.200	1,550
	8.1	41	13,4	0. 007	9,920
	1	21	8.0	0.014	5,080
	l	7.5	4.6	0.039	1,820
		3.1	1.7	0.096	750
	3.1	41	12.0	0.003	3,880
		21	11.0	0.005	1,950
	l	7.5	26.0	0.016	720
	1	3.1	43.0	0.038	293

RATIO NL: NW VERSUS CYLINDER DIAMETER AT VELOCITY = 3.1 MPH

RATIO NL: NW VERSUS CYLINDER DIAMETER AT WIND VELOCITY = 8.5 MPH

N_L:N_W VERSUS WIND VELOCITY FOR 41-MM ROD

The fact that 30 min to 2 hr was required to obtain a countable deposition on the windward side when K<0.0625 suggests a reason why some workers in the field of impaction were not able to find deposition. Exposure time was not long enough to obtain measurable amounts of deposit by the mechanism of turbulent diffusion.

C. Description of the Mechanism of Deposition by Turbulent Diffusion.

Deposition by turbulent diffusion on the side walls of a wind tunnel and a pipe have been discussed by Pereles⁸ and Friedlander. ⁹

Turbulence in the airflow causes particles to execute excursions at right angles to their mean trajectories. When the path of a particle approaches the surface of a cylinder, the lateral excursion of the particle may bring it into the boundary layer of the cylinder. Within the boundary layer, also turbulent, the particle executes further excursions and thus reaches the nonturbulent laminar sublayer lying immediately adjacent to the cylinder surface. If the stopping distance of the particle is greater than the thickness of the laminar sublayer (a few thousandths of an inch), the particle penetrates the sublayer and is deposited on the cylinder surface.

D. Discussion of Leeward Deposition.

1. Vortexes.

Leeward deposition is accounted for by the presence of vortexes in the wake of the cylinder. These vortexes have been measured and photographed. Description, photographs, and measurements are to be found in textbooks on fluid dynamics such as Goldstein, ¹⁰ Prandtl and Tietjens, ¹¹ and Hoerner. ¹²

A vortex is a rotational flow of fluid found in the wake of blunt objects such as spheres, cylinders, and plates. The size, strength, and nature of the vortex depends upon the Reynolds number of the flow based upon the diameter of the blunt object. At all Reynolds numbers, the direction of rotation is from the edge of the wake inward toward the center. There is, then, within the wake, a return flow of fluid toward the object, opposite in direction to that of the main flow.

At Reynolds numbers of approximately 10 and below, there are no vortexes in the wake. Between Reynolds numbers of 10 and 20, depending on the flow, two small vortexes, symmetrical and equal in size, appear behind the cylinder near the top and bottom. Between Reynolds numbers of 20 and 65, depending on the flow, the vortexes become larger but still cling to the surface of the cylinder and are of equal size and symmetrical. Between 65 and 300, the vortexes become unequal in size and asymmetrical. The larger vortex breaks off from the cylinder and travels downstream. In the meantime, the smaller one grows larger and breaks off. The breaking off is alternate and periodic and the eddies persist downstream. There is a strong return flow to the cylinder. The type of wake is called Von Karman street and is often seen in the wake of small boats.

Between Reynolds numbers of 300 and 1,600, the vortexes become elongated and move downwind, forming at some distance behind the cylinder. The return flow is weak.

At a Reynolds number of 1,600, the vortexes suddenly become shorter. Between 1,600 and 10,000, the distance between the formation of the vortexes and the cylinder shortens continuously. At Reynolds numbers of 10,000 to 20,000, the vortexes are formed at the surface and the return flow is strong. At a Reynolds number of 20,000, the wake becomes turbulent, and the vortex flow weakens because of the dissipating action of turbulence.

In the above discussion, cited values of R are approximate since the particular values at which the changes in the vortexes occur depend on the experimental conditions, such as the relative dimensions of the wind tunnel and cylinder and the intensity of upstream turbulence. The figures quoted here are for a wide tunnel with very low upstream turbulence.

2. Explanation of Leeward Deposition.

Pearcy and Hill¹³ have given an account of leeward deposition of particles on a sphere in their paper on the coalescence of raindrops. They have shown that vortexes in the wake entrain particles of a smaller terminal velocity than their own velocity and, by rotational flow, bring the particles into the wake. The return flow carries the particles to the sphere, provided that its velocity is greater than their terminal velocity. In the application of these ideas to cylinders, it is to be expected that there would be, for a given particle size and wind velocity, greater leeward deposits when the return flow in the wake is strong, as it is in the Von Karman region and the region of

Reynolds numbers from 10,000 to 20,000. Table 2 shows that N_L:N_W is indeed greater for a specified particle size and wind velocity in these two regions. Examples in the Von Karman region are the deposition of particles of the 19µ to 24µ range and smaller, moving at 3 mph toward a 3.1-mm rod. The corresponding Reynolds numbers were 277 and 293, at the upper limit of this region. Examples in the region of high Reynolds numbers are the deposition of particles of all sizes moving at 18 mph toward the 41-mm rods. The corresponding Reynolds numbers were 10,000 to 20,000, where N_L:N_W was greater by one or two orders of magnitude than when the Reynolds number was smaller.

E. Anomalous Behavior.

The anomaly in $N_L:N_W$ that appeared in the deposition of 4.0 μ to 5.5µ particles at 16.8 mph on rods of 21 and 41 mm may be explained as a turbulence effect. $N_1:N_W$ at R = 20,000 was 92% and at R = 10,000 was 131%, whereas for the larger particles it was greater for R = 20,000. The explanation is that wakes become turbulent at a lower Reynolds number because of greater upstream turbulence. Greater upstream turbulence was caused by full-length extension of the dispersal outlet tube in the wind tunnel. . For the dispersion of the 4.0 μ to 5.5 μ particles the dispersal outlet tube extended from top to bottom of the wind tunnel, whereas for the dispersion of the larger particles the ejector extended only halfway down. Surveys of the wakes of the ejector in both extensions showed a greater velocity deficiency when it extended all the way to the floor. According to Eskinazi, 14 the larger velocity deficiency is associated with greater turbulence. The indication is that the greater upstream turbulence induces turbulence behind the cylinder at an R value lower than 20,000. The effect of the turbulence is to dissipate the strength of the vortexes.

F. Practical Considerations.

The results show that there was very little leeward deposition on cylinders of particles over 100µ from aerosols moving at velocities up to 18 mph. Thus, for practical purposes, no further consideration need be given to leeward deposition of particles over this size. There was, however, considerable leeward deposition of particles in the 5µ range. The heaviest leeward deposit occurred when the flow Reynolds number relative to the cylinder was between 10,000 and 20,000. Leeward deposit was then as great or greater than that on the windward side. Many cylindrical objects in field tests, for example, a man's arm held out in a wind of 4 mph, have a Reynolds number in this range. In calculations of the total amount of aerosol deposited on such a target, the leeward deposition should be taken into account.

Consideration of leeward deposition would increase the calculated amounts of aerosol reaching the target by as much as 100% or more in the case of particles of 5µ and less, and perhaps give more realistic estimates.

V. CONCLUSIONS.

It is concluded that, in general, there is little leeward (back) deposition of particles over 100μ in diameter, an intermediate number of particles between 10μ and 100μ depending on the conditions, and a large number of particles below 10μ in diameter at velocities from 3 to 18 mph.

When K was greater than the critical value of 0.0625, $N_L:N_W$ was 0.4% or less, and, in general, showed no variation with particle size, cylinder diameter, and wind velocity.

When K was less than 0.0625. $N_L:N_W$ ranged from about 0.5% to 131%, and,in general, increased with cylinder diameter and with decreasing particle size and wind velocity.

Exceptions to this general behavior were found at R < 300 and > 10,000. In these regions, $N_L:N_W$ was greater than expected. Since at these R's vortexes are near, or at, the cylinder surface on the leeward side, it is probable that vortexes in the wake play a role in leeward deposition.

LITERATURE CITED

- 1. Yeomans, A. H., Rogers, E. E., and Ball, W. H. Deposit of Aerosol Particles. J. Econ. Entomol. 42, 591 (1949).
- 2. Landahl, H. G., and Herrmann, R. G. Sampling of Liquid Aerosols by Wires, Cylinders, and Slides and the Efficiency of Impaction of the Droplets. J. Colloid Sci. 4, 103 (1949).
- 3. Gregory, P. H. Deposition of Air-borne Lycopodium Spores on Cylinders, Ann. Appl. Biol. 38, 357 (1951).
- 4. Rosinski, J., and Nagamoto, C. Particle Trajectories to Cylindrical Surfaces. Kolloid-Z. Band 175, Heft 1, 29 (1961).
- 5. Asset, G., Gynn, G. M., and Adams, E. A. CWL Special Publication 1-17. Wind Tunnel for the Study of Aerosols in a Turbulent Boundary Layer. July 1960. UNCLASSIFIED Report.
- 6. Hattersley, R., Maguire, B. A., and Tye, D. L. A Laboratory Dust Cloud Disperser. Min. Fuel Power (Gt. Brit.), Safety Mines Res. Estab., Res. Rept. 103. 1954.
- 7. Taylor, G. I. Notes on Possible Equipment and Technique for Experiments on Icing on Aircraft. Rept. Memor. Aero. Res. Comm. (London) No. 2024. 1940.
- 8. Pereles, E. G. The Theory of Dust Deposition from a Turbulent Air Stream by Several Mechanisms. Min. Power (Gt. Brit.), Safety Mines Res. Estab. Res. Rept. 144. 1958.
- 9. Friedlander, S. K. Contract No. AT(11-1)-276. Technical Report No. 13. Deposition of Suspended Particles from Turbulent Gas Streams. 1954. UNCLASSIFIED Report.
- 10. Goldstein, S. Modern Developments in Fluid Dynamics. vol II. Clarendon Press, Oxford, England. 1952.
- 11. Prandtl, L., and Tietjens, O. G. Applied Hydro and Aeromechanics. McGraw-Hill Book Co., New York. 1934.

- 12. Hoerner, S. Fluid Dynamic Drag. Published by the author, Midland Park, N. J. 1958.
- 13. Pearcy, T., and Hill, G. W. A Theoretical Estimate of the Collection Efficiencies of Small Droplets. J. Roy. Meteorol. Soc. 83, 77 (1957).
- 14. Eskinazi, S., and Lyman, F. Contract NAw6498. The Investigation of Wakes in Equilibrium. 1957. UNCLASSIFIED Report.

UNCLASSIFIED Security Classification

OZ4588 (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)								
1 ORIGINATING ACTIVITY (Corporate author)	US Army Edgewood Arsenal Chemical Research and UNCLASSIFIED							
Development Laboratories, Edgewood 21010 Physicochemical Research D	-	N/A						
REPORT TITLE LEEWARD DEPOSITION OF PARTICLES ON CYLINDERS FROM MOVING AEROSOLS								
11011110 111100012								
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) This work was started in August 19	62 and completed	i in June 1964.						
Asset, Gabrielle Hutchins, Thomas G.								
6 REPORT DATE	74. TOTAL NO OF							
August 1965	031	015						
SE CONTRACT OR GRANT NO	CRDLR 3300	REPORT NUMBER(S)						
6 PROJECT NO								
m1- N- 1.0522701.405001								
c Task No. 1C522301A06001	\$b OTHER REPORT	NO(5) (Any other numbers that may be sasigned						
d Work Unit.	N/A							
Qualified requesters may obtain copies of this report from Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314.								
11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY Basic agents investigation N/A								
A study of leeward (back) deposition of in a wind tunnel. Cylinder sizes were aerosol particles from 4.5µ to 110µ in 18 mph. There was little leeward deposintermediate amount of deposition of p (depending on conditions), and a large diameter at velocities from 3 to 18 mp count deposits on the cylinders were c impaction parameter K and the Reynolds were also calculated. When K was great ratio was 0.4½ or less, and showed no diameter, and wind velocity. When K was about 0.5½ to 131½. In general, the rand wind velocity and with increasing 14 KEYWORDS Deposition Deposition Velocity Leeward Parameter Windward Aerosols Cylinders Particle of Reynolds in Particle of Reynolds in Particle size	e varied from 3. In diameter, and we sition of particles between deposition of particles between deposition of particles and the ratio of the standard from the criter than the criter than the criter than the criter than one at the criter than the criter	I to 41 mm in diameter, wind velocities from 3 to cles over 100µ in diameter, an n 10µ and 100µ in diameter particles below 10µ in f leeward and windward particle experimental results. The airflow around the cylinder itical value of 0.0625, the particle size, cylinder 625, the ratio ranged from with decreasing particle size						
Particle size Airflow Calculation Wind tunnel								

DD 1508% 1473

