Introduction to The Theory of Computation

Chap. 1

Summary

- Let's review some of the main ideas from *finite mathematics* and establish the *notation* used in the text.
 - Important is the *proof techniques*:
 - proof by deduction, induction or by contradiction.
- The main ideas of the course:
 - Automata, Languages, Grammars, their definitions, and their relations. → Extended to a number of different types of automata, languages and grammars.
- Some simple examples of the role these concepts in Computer Science, particularly in Programming Languages, digital design, and text processing.

These issues will encounter applications of these concepts in a number of other CS courses, e.g.) CSci 465

Learning Objectives

- Define the 3 basic concepts in the Theory of Computation:
 - Machine (Automaton, Turing Machine),
 - Formal Language (Regular language, Context-Free language, etc.), and
 - Grammar (Regular grammar, Context-Free grammar, etc.)
- Evaluate expressions involving operations on strings and on languages.
- Generate strings from simple grammars.
- Construct grammars to generate simple languages.
- Describe the essential components of an automaton.
- Design grammars to describe simple programming constructs.

Basic Concepts: Automaton -- Language -- Grammar

- Automaton: a formal construct that accepts input, produces output, may have some temporary storage, and can make decisions.
 - The abstract mathematical model of modern computer.
- Formal Language: a set of sentences formed from a set of symbols according to formal rules.
- Grammar: a set of rules for generating the sentences in a formal language.
 In addition,
- Computability: the types of problems computers can solve in principle decidability, acceptability
- Complexity: the types of problems that can be solved in practice – time/space complexity

Mathematical Preliminaries

- Sets: basic notation, operations (union, intersection, difference, and complementation), disjoint sets, power set, partitions.
- Functions and Relations: domain, range, total function, partial function, order of magnitude, equivalence relations.
- Graphs and Trees: vertices, edges, walk, path, simple path, cycle, loop, root vertex, parent, child, leaves, depth, height.
- *Proof Techniques*: proof by deduction, proof by induction, proof by contradiction.

Proof by Deduction

- A proof where a statement is proved to be true based on well-known mathematical principles; i.e. establish facts through reasoning or make conclusions about a particular instance by referring to a general rule or principle.
- It may use the algebraic symbols and construct logical arguments from known facts to show that something is true for all instances.
- Example: Prove that the difference between the squares of any two consecutive integers is equal to the sum of those integers.

Proof) Choose any two consecutive integers, n and n+1.

Then, take the squares of these integers: n^2 and $(n+1)^2 = n^2 + 2n+1$.

The difference between these squares is $(n^2 + 2n + 1) - n^2 = 2n + 1$ (A)

The sum of the original two consecutive integers is: n + (n+1) = 2n+1 (B).

Therefore, the given claim is true since the above (A) and (B) are equal.

Q.E.D.

Proof by Induction

- A proof by which the truth of a number of statements can be inferred from the truth of a few specific instances.
- Suppose we have a sequence of statements $P_1,\,P_2,\,\dots$, and we want to prove P_k to be true, for all $k\geq 1$. Suppose the following holds:
 - 1. For some $k \ge 1$, the starting statement(s) P_1 , $(P_2, ..., P_k)$ are true.
 - 2. The problem is s.t. for any $n \ge k$, the truths of P_1 , P_2 ,..., P_n imply the truth of P_{n+1} .

Use induction to show that every statement in this sequence is true.

- · Base case:
 - For some $k \ge 1$, the starting statement(s) P_1 , $(P_2, ..., P_k)$ are true.
- Inductive Hypothesis (I.H.):
 - Assume that P_1 , P_2 , ..., P_n , $n \ge k \ge 1$ are true.
- Inductive Step:
 - Prove P_{n+1} is true using Inductive Hypothesis and Base case.

Therefore, the given statement P_k is true for all $k \ge 1$.

Proof by Induction (cont.)

• Example: A binary tree of height h has at most 2h leaves.

Proof by Induction) Let l(h) denote the maximum number of leaves of a binary tree of height h.

Claim: Show that $l(h) \leq 2^h$.

Basis: h = 0.

 $l(0)=1=2^0$ since a tree of height 0 has a root only, i.e. it has at most one leaf. Thus, $l(h) \le 2^h$ for h=0.

<u>Inductive Hypothesis</u>: Assume that $l(h) \le 2^h$ is true for h = 0, 1, ..., n.

Inductive Step: Let's prove that a binary tree of height h+1 has at most 2^{h+1} leaves, i.e. $l(h+1) \le 2^{h+1}$.

To get a binary tree of height h+1 from one of height h, we can create it by merging at most two binary trees T_H , T_R , of height h, adding a new root.

Thus, $l(h+1) = l(T_H) + l(T_R) = l(h) + l(h) = 2 \cdot l(h)$.

Hence, $l(h+1) = \frac{2 \cdot l(h)}{2} \le \frac{2^h}{2} = 2^{h+1}$ by I.H. The claim is true for h+.

Therefore, $l(h) \le 2^h$ for all $h \ge 0$.

i.e. A binary tree of height h has at most 2^h leaves for any height h. Q.E.D.

Proof by Contradiction

- A proof that determines the truth of a statement by assuming the proposition is false, then working to show its falsity until the result of that assumption is a contradiction.
- A disproof by counterexample also belongs to it.
- Example: Disprove that for any a, $b \in Z$, if $a^2 = b^2$, then a = b.

By CounterExample) Z is the set of all positive or negative integers.

If an a and b s.t. $a \neq b$ but $a^2 = b^2$, then the statement is disproved.

Choose any integer for a, then choose b = -a.

Then,
$$a^2 = b^2 = (-a)^2$$
, but $a \neq b$ (= -a).

e.g.)
$$a = 4$$
, $b = -4 \Rightarrow a^2 = b^2 \Leftrightarrow 4^2 = (-4)^2 = 16$, but $a \neq b$

Thus, the given statement is false: a is not necessarily equal to b. Q.E.D.

Proof by Contradiction (cont.)

• Example: For all integers n, if n^3+5 is odd, then n is even.

Proof) Let n be any integer. Suppose that n^3+5 and n are both odd.

Then, there exist integers j and k s.t. $n^3+5=2k+1$ and n=2j+1.

Substituting for n we have:

$$2k+1 = n^3+5 = (2j+1)^3+5$$
$$= 8j^3 + 3(2j)^21 + 3(2j)(1)^2 + 1^3 + 5$$
$$2k = 8j^3 + 12j^2 + 6j + 5$$

Dividing by 2 and rearrange it yields

*
$$k - 4j^3 - 6j^2 - 3j = 5/2$$
 **

-- impossible because 5/2 ** is a non-integer rational number while

* is an integer by the closure properties for integer.

Thus, the assumption 'n is odd' is false, i.e. n must be even.

Formal Languages: Basic Concepts

- Alphabet: a set of symbols, i.e. $\Sigma = \{a, b\}$
- String: a finite sequence of symbols from Σ , such as v = aba and w = abaaa
 - So, any string $u \in \Sigma^*$
 - Empty string: λ, ε
 - Substring, prefix, suffix
- Operations on strings:
 - Concatenation: vw = abaabaaa
 - Reverse: $w^R = aaaba$
 - Repetition: $v^2 = abaaba$ and $v^0 = \lambda$ (empty string)
- Length of a string: |v| = 3 and $|\lambda| = 0$

Formal Languages: Property

```
• Example 1.8: For the strings u, v, |uv| = |u| + |v|. Proof by Induction)
```

First, let's define the length of a string recursively:

```
|a| = 1, |ua| = |u| + 1, for any a \in \Sigma and any string u on \Sigma^*.
```

Base case: For all u of any length and all v of length 1, i.e. |v|=1,

|uv| = |u| + 1 = |u| + |v| where $v \in \Sigma$. Holds.

Inductive Hypothesis (I.H.): Assume that |uv| = |u| + |v|

for all u of any length and all v of length $k \le n$, i.e. $|v| \le n$.

<u>Inductive Step</u>: For any v of |v| = n+1, rewrite v as v = wa where |w| = n. Then, |v| = |w| + 1, |uv| = |uwa| = |uw| + 1.

By I. H., |uw| = |u| + |w| since |w| = n, so that

|uv| = |uwa| = |uw| + 1 = |u| + |w| + 1 = |u| + |wa| = |u| + |v|.

Therefore, |uv| = |u| + |v| for all u and v of any length. Q.E.D.

Formal Languages: Definitions

- Σ^* = a set of *all strings* formed by concatenating *zero* or *more* symbols in Σ .
- Σ^+ = a set of all *non-empty strings* formed by concatenating symbols in Σ .

In other words, $\Sigma^+ = \Sigma^* - \{\lambda\}$

• A *formal language* is any subset of Σ^*

```
Example 1.10: \Sigma = \{a, b\}

L_1 = \{ a^n b^n \mid n \ge 0 \} \text{ and } L_2 = \{ ab, aa \}
```

• A string in a language is also called a *sentence* of the language.

Formal Languages: Set Operations

- A language is a set of strings.
 Thus, set operations are defined as usual.
- If $L_1 = \{ a^n b^n \mid n \ge 0 \}$ and $L_2 = \{ ab, aa \}$ where $\Sigma = \{ a, b \}$
 - Union: $L_1 \cup L_2 = \{ aa, \lambda, ab, aabb, aaabbb, ... \}$
 - Intersection: $L_1 \cap L_2 = \{ ab \}$
 - Difference: $L_1 L_2 = \{ \lambda, aabb, aaabbb, ... \}$ = $\{ a^n b^n \mid n = 0 \text{ or } n \ge 2 \}$
 - Complement: $\overline{L_2} = \Sigma^* L_2 = \Sigma^* \{ab, aa\}$
- Find $L_2 L_1$?

Formal Languages: Other Operations

- Reversal of all strings in a language:
 - $L^R = \{ w^R \mid w \in L \}$
- Concatenation of strings from two languages, and
 - $L_1L_2 = \{ xy \mid x \in L_1, y \in L_2 \}$
- Concatenation of strings from the *same* language:
 - LL = L^2 = { $xy \mid x \in L, y \in L$ }
- Star-Closure: $L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup ...$

where $L^0 = \{ \lambda \}$, $L^1 = L$, $L^2 = L \cdot L$, etc.

• Positive Closure: $L^+ = L^1 \cup L^2 \cup L^3 \cup ...$

Example: Other Operations

- If $L_1 = \{ a^n b^n \mid n \ge 0 \}$ and $L_2 = \{ ab, aa \}$
 - Reversal: $L_2^R = \{ ba, aa \}, L_1^R = \{ b^n a^n \mid n \ge 0 \}$
 - Concatenation: $L_1L_2 = \{ab, aa, abab, abaa, aabbab, aabbaa, \dots \}$

Concatenation: $L_2L_2 = L_2^2 = \{ abab, abaa, aaab, aaaa \}$

- Star-Closure: $L_2^* = L_2^0 \cup L_2^1 \cup L_2^2 \cup L_2^3 \cup ...$
- *Positive Closure:* $L_2^+ = L_2^- \cup L_2^-$
- Find $(L_2 L_1)^R$?

Grammars: Definition

- A rule to describe the strings in a language.
- In English grammar:
 - <sentence> → <noun phrase> < predicate>,
 - <noun phrase $> \rightarrow <$ article> <noun>,
 - < predicate $> \rightarrow <$ verb>,
 - $\langle article \rangle \rightarrow a \mid the$,
 - $< noun > \rightarrow boy \mid dog$,
 - $\langle verb \rangle \rightarrow runs \mid walks$.
- Example: a boy walks, the dog runs.

Grammars: Definition

- A rule to describe the strings in a language, i.e. a syntax of a language – not a semantics.
- Def. 1.1: A grammar G is defined as a quadruple

$$G = (V, T, S, P)$$
 where

V: a finite set of variable or non-terminal symbols

T: a *finite* set of *terminal* symbols

 $S (\in V)$: a variable called the *start* symbol

P: a finite set of productions (i.e. rules)

• Example 1.11:

$$V = \{ S \}$$

$$T = \{ a, b \}$$

$$P = \{ S \rightarrow aSb, S \rightarrow \lambda \} \qquad \Rightarrow L(G) = \{ a^nb^n \mid n \ge 1 \}$$

Grammars: Derivation of Strings

- Beginning with the *start symbol*, strings are derived by repeatedly replacing variable symbols with the expression on the right-hand side of any applicable production.
- Any applicable production can be used, in arbitrary order, until the string contains no variable symbols.
- Sample derivation using grammar in Ex. 1.11:

```
S \rightarrow aSb, S \rightarrow \lambda

S \Rightarrow aSb (applying 1<sup>st</sup> production)

\Rightarrow aaSbb (applying 1<sup>st</sup> production)

\Rightarrow aabb (applying 2<sup>nd</sup> production)
```

The Language generated by a Grammar

<u>Def. 1.2</u>: For a given grammar G=(V, T, S, P),
 the language generated by G,

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}$$

is the set of all strings derived from the start symbol.

- To show a language L is generated by G: L = L(G)
 - Show every string in *L* can be generated by G and $\forall w \in L \rightarrow \forall w \in L(G)$.
 - Show every string generated by G is in L. $\forall w \in L(G) \rightarrow \forall w \in L$.
- A given language can normally be generated by different grammars.

The Language generated by a Grammar

 For convenience, productions with the same lefthand sides are written on the same line:

$$S \rightarrow A \mid B \Leftrightarrow S \rightarrow A, S \rightarrow B$$

• Example 1.13: For a given grammar G=(V, T, S, P) with productions $S \rightarrow SS \mid \lambda \mid aSb \mid bSa$,

find
$$L(G) = ?$$

$$L(G) = \{ w \mid ? \}$$

Equivalence of Grammars

- Two grammars, G_1 and G_2 , are *equivalent* if they generate the same language: $L(G_1) = L(G_2)$.
- For convenience, productions with the same left-hand sides are written on the same line: $S \rightarrow A \mid B \ (= S \rightarrow A, S \rightarrow B)$
- Example 1.11:

$$G_1 = (V, T, S, P)$$
 where $V = \{ S \}, T = \{ a, b \},$ $P = \{ S \rightarrow aSb \mid \lambda \}$

• Example 1.14:

G₂= (V, T, S, P) where
V = { A, S }, T = {
$$a$$
, b },
P = { $S \rightarrow aAb \mid \lambda$
 $A \rightarrow aAb \mid \lambda$ }

 G_1 and G_2 are equivalent since $L(G_1) = L(G_2)$.

Automata

- An *Automaton* is an *abstract mathematical model* of a (von Neumann) digital computer.
- An automaton consists of
 - An *input* mechanism
 - A control unit
 - Possibly, a *storage* mechanism
 - Possibly, an *output* mechanism

• Control unit can be in any number of internal *states*, as determined by a *next-state* or *transition* function.

Figure: https://en.wikipedia.org/wiki/Von_Neumann_architecture

Application: Grammars for Programming Languages

- The syntax of constructs in a programming language is commonly described with grammars.
- Assume that in a hypothetical programming language,
 - Identifiers consist of digits and the letters a, b, or c
 - Identifiers must begin with a letter
- Productions for a sample grammar:

```
<id> \rightarrow <|etter> <rest> </ex>
<rest> \rightarrow <|etter> <rest> | <digit> <rest> | \lambda <|etter> \rightarrow a \mid b \mid c 
<digit> \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

• Ref.) CSci 465. Principles of Translation. Compiler