

Preliminary Technical Information

TrenchT2™ HiperFET™ **Power MOSFET**

IXFH160N15T2

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

$V_{\scriptscriptstyle DSS}$	=	150V
D ₂₅	=	160A
R _{DS(on)}	≤	$9.0 \mathrm{m}\Omega$
t _{rr}	≤	160ns

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	150 150	V	
V _{GSS} V _{GSM}	Continuous Transient	± 20 ± 30	V	
I _{D25}	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	160 440	A A	
I _A E _{AS}	T _c = 25°C T _c = 25°C	80 1.5	A J	
dv/dt	$I_{_{\mathrm{S}}} \le I_{_{\mathrm{DM}}}, \ V_{_{\mathrm{DD}}} \le V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \le 175^{\circ}\mathrm{C}$	15	V/ns	
P_{D}	T _c = 25°C	880	W	
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	ာ ၁ ၁	
T _L T _{SOLD}	Maximum Lead Temperature for Soldering Plastic Body for 10s	300 260	°C ℃	
M _d	Mounting Torque	1.13/10	Nm/lb.in.	
Weight		6	g	

Symbol	Test Conditions	Maximum Ratings		
V _{DSS} V _{DGR}	$T_J = 25^{\circ}\text{C}$ to 175°C $T_J = 25^{\circ}\text{C}$ to 175°C, $R_{GS} = 1\text{M}\Omega$	150 150	V	
V _{GSS} V _{GSM}	Continuous Transient	± 20 ± 30	V	
I _{D25}	$T_{\rm C} = 25^{\circ} {\rm C}$ $T_{\rm C} = 25^{\circ} {\rm C}$, Pulse Width Limited by $T_{\rm JM}$	160 440	A A	
I _A E _{AS}	T _c = 25°C T _c = 25°C	80 1.5	A J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, \ V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 175^{\circ}C$	15	V/ns	
P_{D}	T _C = 25°C	880	W	
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	°C °C °C	
T _L T _{SOLD}	Maximum Lead Temperature for Soldering Plastic Body for 10s	300 260	°C °C	
M _d	Mounting Torque	1.13/10	Nm/lb.in.	
Weight		6	g	

SymbolTest ConditionsChara $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	150			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1 \text{mA}$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 150^{\circ}0$	С		10 1	μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, \text{ Note 1}$		7.7	9.0	mΩ

G = Gate= Drain Tab = Drain S = Source

Features

- International Standard Package
- High Current Handling Capability
- Fast Intrinsic Diode
- Dynamaic dv/dt Rated
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode **Power Supplies**
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

Symbol			racteristic Values		
$(T_J = 25^{\circ}C)$	Unless Otherwise Specified)	Min.	Тур.	Max.	
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	80	130	S	
C _{iss}			15	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1120	pF	
C _{rss}			113	pF	
t _{d(on)}	Resistive Switching Times		37	ns	
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{DSS}$		15	ns	
t _{d(off)}	00 00 00 0		50	ns	
t _f	$R_{_{G}} = 2\Omega \text{ (External)}$		26	ns	
$Q_{g(on)}$			253	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		67	nC	
Q_{gd})		73	nC	
R _{thJC}				0.17 °C/W	
R _{thCS}			0.21	°C/W	

TO-247 (IXFH) Outline

Terminals: 1 - Gate 2 3 - Source

Dim.	Millimeter		Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A,	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b ₁	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

Source-Drain Diode

Symbol Test Conditions Cha		Cha	racteristic Values		
$(T_J = 25^{\circ}C U)$	nless Otherwise Specified)	Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			160	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			640	Α
V _{SD}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ {\rm Note} \ 1$			1.4	V
t _{rr}	$I_{\rm E} = 80A$, -di/dt = 100A/ μ s			160	ns
I _{RM}	•		7.00		Α
Q_{RM}	$V_R = 75V$, $V_{GS} = 0V$		0.32		μC

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 80A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 80A Value vs. Drain Current

Fig. 6. Drain Current vs. Case Temperature

IXFH160N15T2

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 18. Resistive Turn-off Switching Times

Fig. 19. Maximum Transient Thermal Impedance

