Optimization and Machine Learning SI151

Lu Sun

School of Information Science and Technology ShanghaiTech University

March 16, 2020

Today:

- Linear Methods for Classification I
 - Introduction
 - Linear regression of an indicator matrix
 - Linear discriminant analysis

Readings:

• The Element of Statistical Learning, Chapters 4.1, 4.2 and 4.3

Linear Methods for Classification I

- Introduction
- Linear regression of an indicator matrix
- Linear discriminant analysis

Example

Handwritten digits recognition

Input variables

$$X^T = (X_0, X_1, X_2, \dots, X_{256})$$

Categorical output variable *G* with values from

$$G = \{0,1,2...,9\}$$

Non-binary (multi-class) classification

Example

Handwritten digits recognition

$$\min_{\mathbf{B}} \|\mathbf{Y} - \mathbf{X}\mathbf{B}\|_F^2 \longrightarrow \widehat{\mathbf{B}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

- 1. Any problems?
- 2. Other methods?

Binary classification

• Linear regression

$$f(x) = \beta_0 + x^T \beta$$

• Least squares solution

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Decision boundary

$$\{x: x^T \hat{\beta} = threshold \}$$

$$threshold = 0, if y \in \{-1,1\}$$

$$threshold = 0.5, if y \in \{0,1\}$$

Multi-class classification

• Linear regressions for *K* classes

$$f_k(x) = \beta_{k0} + x^T \beta_k, \qquad k = 1, \dots, K$$

• Decision boundary between classes k and ℓ :

$$\left\{x: \hat{f}_k(x) = \hat{f}_\ell(x)\right\}$$

For *K* classes, there are $\binom{K}{2} = \frac{K(K-1)}{2}$ decision boundaries

• That is an affine set or hyperplane:

$$\{x: (\hat{\beta}_{k0} - \hat{\beta}_{\ell 0}) + x^T (\hat{\beta}_k - \hat{\beta}_{\ell}) = 0\}$$

Linear Methods for Classification I

- Introduction
- Linear regression of an indicator matrix
- Linear discriminant analysis

• Indicator response matrix

Γ			l	
	Y_1	Y_2		Y ₁₀
	1	0		0
	0	1		0
	0	0		1

K

• Our problem:

$$\widehat{\mathbf{B}} = \underset{\mathbf{B}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}\mathbf{B}\|_F^2 \qquad \mathbf{B} = (\beta_1, \beta_2, ..., \beta_{10}) \in \mathbb{R}^{(p+1) \times K}$$

$$\mathbf{B} = (\beta_1, \beta_2, \dots, \beta_{10}) \in \mathbb{R}^{(p+1) \times K}$$

• The fitted values on **X**:

$$\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\mathbf{B}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \mathbf{H}\mathbf{Y}$$

A new observation x is classified by

• Compute the fitted output

output
$$\hat{f}(x) = \hat{\mathbf{B}}^T \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} \hat{f}_1(x) \\ \hat{f}_2(x) \\ \vdots \\ \hat{f}_K(x) \end{pmatrix} \in \mathbb{R}^K$$
of to
$$f_1(x) < \hat{f}_2(x) \qquad f_1(x) = f_2(x)$$

$$\hat{f}(x) = \hat{f}(x) \qquad \hat{f}(x) = \hat{f}(x) = \hat{f}(x) \qquad \hat{f}(x) = \hat{f}(x) \qquad \hat{f}(x) = \hat{f}(x) \qquad \hat{f}(x) = \hat{f}(x) \qquad \hat{f}(x) = \hat{f}(x) = \hat{f}(x) \qquad \hat{f}(x) = \hat{f}(x) = \hat{f}(x) \qquad \hat{f}(x) = \hat{$$

• Classify *x* according to

$$\widehat{G}(x) = \operatorname*{argmax} \widehat{f}_k(x)$$

• Or equivalently,

$$\widehat{G}(x) = \operatorname{argmin}_{k \in \mathcal{G}} \|\widehat{f}(x) - t_k\|_2^2$$

where $t_k = (0, ..., 0, 1, 0, ..., 0)^T \in \mathbb{R}^K$ is a target with 1 being the k-th element

Categorical output variable G with values from $G = \{1, ..., K\}$.

• The zero-one loss function

$$L(k,\ell) = \begin{cases} 1, & k \neq \ell \\ 0, & k = \ell \end{cases}$$

• Expected prediction error (EPE) w.r.t. Pr(G, X)

$$EPE = E\left[L\left(G, \widehat{G}(X)\right)\right]$$

• Pointwise minimization leads to

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmin}} \sum_{\ell=1}^{K} L(k, \ell) \Pr(G = \ell | X = x)$$

$$= \underset{k \in \mathcal{G}}{\operatorname{argmax}} \Pr(G = k | X = x) \longrightarrow \text{posterior}$$

A new observation x is classified by

• Compute the fitted output

output
$$\hat{f}(x) = \hat{B}^T \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} \hat{f}_1(x) \\ \hat{f}_2(x) \\ \vdots \\ \hat{f}_K(x) \end{pmatrix} \in \mathbb{R}^K$$

$$f_1(x) < \hat{f}_2(x) \qquad f_1(x) = f_2(x)$$

$$\hat{f}(x) = \hat{f}(x) \qquad \hat{f}(x) = f_2(x)$$

• Classify *x* according to

$$\widehat{G}(x) = \operatorname*{argmax}_{k \in \mathcal{G}} \widehat{f}_k(x)$$

• Minimizing EPE w.r.t. the 0-1 loss gives rise to

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \Pr(G = k | X = x)$$

• Our question:

Are the $\hat{f}_k(x)$ reasonable estimates of the posterior $\Pr(G = k | X = x)$?

ment

Linear classification:

$$\hat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \hat{f}_k(x)$$

Minimizing EPE:

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \Pr(G = k | X = x)$$

Two defining properties of probability

- 1. $\sum P = 1$
- 2. 0 < P < 1
- It can be verified that $\sum_{k \in \mathcal{G}} \hat{f}_k(x) = 1$
- However, it is possible that $\hat{f}_k(x) < 0$ or $\hat{f}_k(x) > 1$

Suppose that $X \leftarrow (\mathbf{1}_N, X)$ and

$$\widehat{\mathbf{Y}} = \widehat{f}(\mathbf{X}) = \mathbf{X}\widehat{\mathbf{B}} = (\widehat{f}_1(\mathbf{X}), \dots, \widehat{f}_K(\mathbf{X}))$$

We have the followings

$$\sum_{k=1}^{K} \widehat{f}_{K}(\mathbf{X}) = \widehat{\mathbf{Y}} \cdot \mathbf{1}_{K} \qquad \text{Indicator matrix}$$

$$= \mathbf{X} \widehat{\mathbf{B}} \cdot \mathbf{1}_{K}$$

$$= \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{Y} \cdot \mathbf{1}_{K}$$

$$= \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \cdot \mathbf{1}_{N}$$

$$= \mathbf{H} \cdot \mathbf{1}_{N}$$

 $\mathbf{H} \cdot \mathbf{1}_N$ is a projection of $\mathbf{1}_N$ onto the column space of \mathbf{X} , thus $\mathbf{H} \cdot \mathbf{1}_N = \mathbf{1}_N$

Linear classification: $\hat{G}(x) = \underset{k \in G}{\operatorname{argmax}} \hat{f}_k(x)$

Minimizing EPE:

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \Pr(G = k | X = x)$$

Two defining properties of probability

- 1. $\sum P = 1$
- 2. 0 < P < 1
- It can be verified that $\sum_{k \in \mathcal{G}} \hat{f}_k(x) = 1$
- However, it is possible that $\hat{f}_k(x) < 0$ or $\hat{f}_k(x) > 1$

It suffers from the problem of masking, if #classes $K \geq 3$

• a class may be masked by others, i.e., there is no region in the feature space that is labeled as this class

The Phenomenon of Masking

- A class may be masked by others, i.e., there is no region in the feature space that is labeled as this class
- The linear regression model is too rigid

The Phenomenon of Masking

• 3-class classification

.. _ . .

Yellow: class 1 Blue: class 2

Green: class 3

The Phenomenon of Masking

3-class classification

Yellow: class 1

Blue: class 2 **Green**: class 3

$$\hat{\mathbf{B}} = \underset{\mathbf{B}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}\mathbf{B}\|_F^2$$
, where $\mathbf{X} = (\mathbf{1}_N, \mathbf{x})$

$$\hat{f}(x) = \widehat{\mathbf{B}}^T \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} \hat{f}_1(x) \\ \hat{f}_2(x) \\ \hat{f}_3(x) \end{pmatrix}$$

The indicator matrix

$$g = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \to \mathbf{Y} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Degree
$$= 2$$
; Error $= 0.04$

 $Y = \beta_0 + \beta_1 X + \beta_2 X^2$

Linear Methods for Classification I

- Introduction
- Linear regression of an indicator matrix
- Linear discriminant analysis

• Recall our discussion on linear regression of an indicator matrix

Linear classification:

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \widehat{f}_{k}(x)$$

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \Pr(G = k | X = x)$$

- It is inappropriate to represent a posterior directly by a linear function.
- Solution: make some monotone transformation of the posterior be linear in *X*

Linear decision boundary

• Logit transform

$$logit(Pr(x)) = log\left(\frac{Pr(x)}{1 - Pr(x)}\right)$$

It maps $Pr(x) \in (0,1)$ to $logit(Pr(x)) \in (-\infty, +\infty)$

- Decision boundary
 - Odds equals to 1
 - Or, logit equals to 0

Odds (发生比)

• Example: binary (two class) classification

Logit:
$$\log \frac{\Pr(G=1|X=x)}{1-\Pr(G=1|X=x)} = \log \frac{\Pr(G=1|X=x)}{\Pr(G=2|X=x)} = \beta_0 + x^T \beta$$

The posterior probability

$$Pr(G = 1|X = x) = \frac{\exp(\beta_0 + x^T \beta)}{1 + \exp(\beta_0 + x^T \beta)}, \exp(x) = e^x$$

$$Pr(G = 2|X = x) = \frac{1}{1 + \exp(\beta_0 + x^T \beta)}, X_2 \uparrow_{>0.5}^{\Pr(G = 1|X = x)} \downarrow_{>0.5}^{\Pr(G = 1|X = x)}$$
ion boundary

Decision boundary

$$\{x|\beta_0 + x^T\beta = 0\}$$

 $\begin{array}{c}
\operatorname{Core}(\beta_0 + x^T \beta) \\
\operatorname{Decision boundary} \\
\operatorname{Pr}(G = 1 | X = x) \\
= \operatorname{Pr}(G = 2 | X = x) = 0.5
\end{array}$ Green: class 1
Blue: class 2 $\begin{array}{c}
\operatorname{Pr}(G = 2 | X = x) \\
> 0.5
\end{array}$

The Bayes theorem
$$Pr(A|B) = \frac{Pr(B|A) Pr(A)}{Pr(B)}$$

• Idea:

model the posterior Pr(G = k | X = x) based on the Bayes theorem

Posterior

$$\Pr(G = k | X = x) = \frac{\Pr(X = x | G = k) \Pr(G = k)}{\Pr(X = x)} = \frac{\Pr(X = x | G = k) \Pr(G = k)}{\sum_{\ell=1}^{K} \Pr(X = x | G = \ell) \Pr(G = \ell)}$$

□ Density of *X* in class G = k:

$$f_k(x) = \Pr(X = x | G = k)$$

Class prior:

$$\pi_k = \Pr(G = k)$$

$$\pi_k = \Pr(G = k)$$

$$\Pr(G = k | X = x) = \frac{f_k(x)\pi_k}{\sum_{\ell=1}^K f_\ell(x)\pi_\ell}$$

• It produces LDA, QDA (quadratic DA), MDA (mixture DA), kernel DA and naïve Bayes, under various assumptions on $f_k(x)$

$$\Pr(G = k | X = x) = \frac{f_k(x)\pi_k}{\sum_{\ell=1}^{K} f_{\ell}(x)\pi_{\ell}}$$

- Assumptions in LDA
 - 1. Model each class density as multivariate Gaussian

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)\right)$$

- 2. Assume that classes share a common covariance $\Sigma_k = \Sigma$, $\forall k$
- Compare two classes k and ℓ

Decision boundary is linear w.r.t. X

Parameter estimation

 $\hat{\pi}_k = N_k/N$, where N_k is the number of class-k observations;

$$\hat{\mu}_k = \sum_{g_i = k} x_i / N_k;$$

$$\hat{\Sigma} = \sum_{k=1}^{K} \sum_{g_i = k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T / (N - K).$$

Pooled covariance (合并方差)

$$\widehat{\Sigma} = \frac{(N_1 - 1)\widehat{\Sigma}_1 + (N_2 - 1)\widehat{\Sigma}_2 + \dots + (N_K - 1)\widehat{\Sigma}_K}{(N_1 - 1) + (N_2 - 1) + \dots + (N_K - 1)}, \text{ where } \widehat{\Sigma}_k = \frac{\sum_{g_i = k} (x_i - \widehat{\mu}_k)(x_i - \widehat{\mu}_k)^T}{N_k - 1}$$

Weighted average

	Da	ata	Class
	X_1	X_2	G
x_1^T	0.2	0.3	1
x_2^T	8.0	0.7	3
x_3^T	0.4	0.6	2
x_4^T	0.6	0.4	2
x_5^T	0.3	0.2	1
x_6^T	0.7	8.0	3

• Class prior
$$\hat{\pi}_1 = \hat{\pi}_2 = \hat{\pi}_3 = \frac{1}{3}$$

Class-specific sample mean

$$\hat{\mu}_1 = \frac{1}{2}(x_1 + x_5) = \frac{1}{2} {0.2 \choose 0.3} + \frac{1}{2} {0.3 \choose 0.2} = {0.25 \choose 0.25}$$

$$\hat{\mu}_2 = \frac{1}{2}(x_3 + x_4) = \frac{1}{2} {0.4 \choose 0.6} + \frac{1}{2} {0.6 \choose 0.4} = {0.5 \choose 0.5}$$

$$\hat{\mu}_3 = \frac{1}{2}(x_2 + x_6) = \frac{1}{2} {0.8 \choose 0.7} + \frac{1}{2} {0.7 \choose 0.8} = {0.75 \choose 0.75}$$

Common covariance

$$\widehat{\Sigma} = \frac{\sum_{k=1}^{K} \sum_{g_{i=k}} (x_i - \widehat{\mu}_i) (x_i - \widehat{\mu}_i)^T}{N - K} = \frac{\binom{0.05}{-0.05} \binom{-0.05}{0.05} + \binom{0.02}{-0.02} \binom{-0.02}{0.02} + \binom{0.05}{-0.05} \binom{-0.05}{0.05}}{6 - 3} = \binom{0.04}{-0.04} \binom{-0.04}{0.04}$$

	Da	ata	Class	
	X_1	X_2		G
x_1^T	0.2	0.3		1
x_2^T	8.0	0.7		3
x_3^T	0.4	0.6		2
x_4^T	0.6	0.4		2
x_5^T	0.3	0.2		1
x_6^T	0.7	8.0		3

- Decision boundary 1-2: $\{(x_1, x_2) | x_1 + x_2 = 0.75\}$
 - Similarly, decision boundary 2-3: $\{(x_1, x_2) | x_1 + x_2 = 1.25\}$

• Suppose that
$$\log \frac{\Pr(G=k|X=x)}{\Pr(G=\ell|X=x)} = \delta_k(x) - \delta_\ell(x)$$

- $\delta_k(x) > \delta_\ell(x)$, class k
- $\delta_k(x) < \delta_\ell(x)$, class ℓ
- $\delta_k(x) = \delta_\ell(x)$, decision boundary
- Linear discriminant functions

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

Classify to class k that maximizes the discriminant function

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \, \delta_k(x)$$
 Any difference? Linear classification:
$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \, \widehat{f}_k(x)$$

- Binary classification (K = 2)
 - Correspondence between LDA and linear classification
- Multi-class classification $(K \ge 3)$
 - □ LDA is different with linear classification
 - Avoid the masking problem

FIGURE 4.1. The left plot shows some data from three classes, with linear decision boundaries found by linear discriminant analysis. The right plot shows quadratic decision boundaries. These were obtained by finding linear boundaries in the five-dimensional space $X_1, X_2, X_1X_2, X_1^2, X_2^2$. Linear inequalities in this space are quadratic inequalities in the original space.

FIGURE 4.5. The left panel shows three Gaussian distributions, with the same covariance and different means. Included are the contours of constant density enclosing 95% of the probability in each case. The Bayes decision boundaries between each pair of classes are shown (broken straight lines), and the Bayes decision boundaries separating all three classes are the thicker solid lines (a subset of the former). On the right we see a sample of 30 drawn from each Gaussian distribution, and the fitted LDA decision boundaries.

Quadratic Discriminant Analysis

Assumptions in LDA

1. Model each class density as multivariate Gaussian

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right)$$

- 2. Assume that classes share a common covariance $\Sigma_k = \Sigma, \forall k$
- Assumption: Each class has a specific covariance Σ_k
- Quadratic discriminant functions

$$\delta_k(x) = -\frac{1}{2}\log|\mathbf{\Sigma}_k| - \frac{1}{2}(x - \mu_k)^T \mathbf{\Sigma}_k^{-1}(x - \mu_k) + \log \pi_k.$$

• The quadratic decision boundary between two classes k and ℓ

$${x: \delta_k(x) = \delta_\ell(x)}$$

Difference with LDA

$$\mu_k, k = 1, ..., K$$

- $_{\Box}$ Σ_k has to be estimated for each class $_{\Box}$ LDA need to estimate $K \times p + p \times p$ parameters $_{\Box}$ Σ_k, k = 1, ..., K
- \Box QDA need to estimate $K \times p + K \times p \times p$ parameters

Quadratic Discriminant Analysis

FIGURE 4.6. Two methods for fitting quadratic boundaries. The left plot shows the quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA in the five-dimensional space $X_1, X_2, X_1X_2, X_1^2, X_2^2$). The right plot shows the quadratic decision boundaries found by QDA. The differences are small, as is usually the case.

Summary

- Linear regression of an indicator matrix
 - The indicator matrix
 - $Prediction is conducted by \hat{G}(x) = \operatorname{argmax}_k \hat{f}_k(x)$
 - Suffer from the masking problem
- Linear discriminant analysis
 - □ Logit transformation: logit(Pr(x)) = log $\left(\frac{Pr(x)}{1-Pr(x)}\right)$
 - □ Model the posterior Pr(G = k | X = x)
 - □ Assumptions on Pr(X = x | G = k)
 - \Box Discriminant functions $\delta_k(x)$
- Quadratic discriminant analysis
 - Difference with LDA

Classification

Linear regression

$$G = \{1, 2, ..., K\}$$

Indicator matrix
$$\mathbf{Y} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Multi-output regression

Prediction
$$\hat{f}(x) = \widehat{\mathbf{B}}^{T} \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} \hat{f}_{1}(x) \\ \hat{f}_{2}(x) \\ \vdots \\ \hat{f}_{K}(x) \end{pmatrix}$$

$$\hat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \hat{f}_{k}(x)$$

Limitation

The masking problem $(K \ge 3)$

Theoretical

Regression function

 $f(x) = \mathrm{E}(Y|X=x)$

Least squares

Linear

Nearest neighbors

Nonlinear

Regression

Zero-one loss

Bayes classifier

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \Pr(G = k | X = x)$$

$$(0,1) \rightarrow (-\infty, +\infty)$$

Logit transformation $\log t(x) = \log \left(\frac{x}{1-x}\right)$

Pairwise odds = 1

Decision boundary $\log \frac{\Pr(G = k | X = x)}{\Pr(G = \ell | X = x)} = 0$

Bayes theorem

LDA, QDA, RDA Logistic

Linear boundary

regression