AoPS Community 1987 USAMO

USAMO 1987

www.artofproblemsolving.com/community/c4485 by Binomial-theorem, rrusczyk

1 Determine all solutions in non-zero integers a and b of the equation

$$(a^2 + b)(a + b^2) = (a - b)^3.$$

- 2 AD, BE, and CF are the bisectors of the interior angles of triangle ABC, with D, E, and F lying on the perimeter. If angle EDF is 90 degrees, determine all possible values of angle BAC.
- 3 Construct a set *S* of polynomials inductively by the rules:
 - (i) $x \in S$;
 - (ii) if $f(x) \in S$, then $xf(x) \in S$ and $x + (1-x)f(x) \in S$.

Prove that there are no two distinct polynomials in S whose graphs intersect within the region $\{0 < x < 1\}.$

- 4 Three circles C_i are given in the plane: C_1 has diameter AB of length 1; C_2 is concentric and has diameter k (1 < k < 3); C_3 has center A and diameter 2k. We regard k as fixed. Now consider all straight line segments XY which have one endpoint X on C_2 , one endpoint Y on C_3 , and contain the point B. For what ratio XB/BY will the segment XY have minimal length?
- 5 Given a sequence (x_1, x_2, \dots, x_n) of 0's and 1's, let A be the number of triples (x_i, x_j, x_k) with i < j < k such that (x_i, x_j, x_k) equals (0, 1, 0) or (1, 0, 1). For $1 \le i \le n$, let d_i denote the number of j for which either j < i and $x_j = x_i$ or else j > i and $x_j \neq x_i$.
 - (a) Prove that

$$A = \binom{n}{3} - \sum_{i=1}^{n} \binom{d_i}{2}.$$

(Of course, $\binom{a}{b} = \frac{a!}{b!(a-b)!}$.) [5 points]

(b) Given an odd number n, what is the maximum possible value of A? [15 points]

These problems are copyright © Mathematical Association of America (http://maa.org).