Package 'stochtree'

February 7, 2025

```
Title Stochastic Tree Ensembles (XBART and BART) for Supervised Learning and Causal Inference
```

Version 0.1.0

Copyright Copyright details for stochtree's C++ dependencies, which are vendored along with the core stochtree source code, are detailed in inst/COPYRIGHTS

Description Flexible stochastic tree ensemble software.

Robust implementations of Bayesian Additive Regression Trees (BART) Chipman, George, McCulloch (2010) <doi:10.1214/09-AOAS285> for supervised learning and Bayesian Causal Forests (BCF) Hahn, Murray, Carvalho (2020) <doi:10.1214/19-BA1195> for causal inference. Enables model serialization and parallel sampling and provides a low-level interface for custom stochastic forest samplers.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

LinkingTo cpp11, BH

Suggests testthat (>= 3.0.0),

SystemRequirements C++17

Imports R6, stats

URL https://stochtree.ai

Config/testthat/edition 3

NeedsCompilation yes

Author Drew Herren [aut, cre] (https://orcid.org/0000-0003-4109-6611),

Richard Hahn [aut],

Jared Murray [aut],

Carlos Carvalho [aut],

Jingyu He [aut],

Pedro Lima [ctb],

stochtree contributors [cph],

Eigen contributors [cph] (C++ source uses the Eigen library for matrix

2 Contents

operations, see inst/COPYRIGHTS),

xgboost contributors [cph] (C++ tree code and related operations include or are inspired by code from the xgboost library, see inst/COPYRIGHTS),

treelite contributors [cph] (C++ tree code and related operations include or are inspired by code from the treelite library, see inst/COPYRIGHTS),

Microsoft Corporation [cph] (C++ I/O and various project structure code include or are inspired by code from the LightGBM library, which is a copyright of Microsoft, see inst/COPYRIGHTS),

Niels Lohmann [cph] (C++ source uses the JSON for Modern C++ library for JSON operations, see inst/COPYRIGHTS),

Daniel Lemire [cph] (C++ source uses the fast_double_parser library internally, see inst/COPYRIGHTS),

Victor Zverovich [cph] (C++ source uses the fmt library internally, see inst/COPYRIGHTS)

Maintainer Drew Herren <drewherrenopensource@gmail.com>

Repository CRAN

Date/Publication 2025-02-07 10:00:02 UTC

Contents

stochtree-package	4
bart	5
bcf	10
calibrateInverseGammaErrorVariance	16
computeForestLeafIndices	17
computeForestLeafVariances	19
computeForestMaxLeafIndex	20
convertPreprocessorToJson	21
CppJson	22
CppRNG	28
createBARTModelFromCombinedJson	29
createBARTModelFromCombinedJsonString	30
createBARTModelFromJson	31
createBARTModelFromJsonFile	32
createBARTModelFromJsonString	33
createBCFModelFromCombinedJson	34
createBCFModelFromCombinedJsonString	35
createBCFModelFromJson	37
createBCFModelFromJsonFile	39
createBCFModelFromJsonString	41
createCppJson	42
createCppJsonFile	43
createCppJsonString	44
createCppRNG	44
cranta-Foract	15

Contents 3

createForestDataset	
createForestModel	. 46
$create Forest Model Config \ \dots $. 47
createForestSamples	. 49
createGlobalModelConfig	. 50
createOutcome	. 50
createPreprocessorFromJson	
createPreprocessorFromJsonString	. 51
createRandomEffectSamples	
createRandomEffectsDataset	
createRandomEffectsModel	
createRandomEffectsTracker	
Forest	
ForestDataset	
ForestModel	
ForestModelConfig	
ForestSamples	
getRandomEffectSamples	
getRandomEffectSamples.bartmodel	
getRandomEffectSamples.bcfmodel	
GlobalModelConfig	
loadForestContainerCombinedJson	
loadForestContainerCombinedJsonString	
loadForestContainerJson	. 88
loadRandomEffectSamplesCombinedJson	. 88
loadRandomEffectSamplesCombinedJsonString	. 89
load Dandom Effect Samples Lean	. 90
loadRandomEffectSamplesJson	. 90
loadScalarJson	
loadVectorJson	
Outcome	
predict.bartmodel	
predict.bcfmodel	
preprocessPredictionData	
preprocessTrainData	
RandomEffectSamples	
RandomEffectsDataset	
$Random Effects Model \dots \dots$	
RandomEffectsTracker	
resetActiveForest	
resetForestModel	
$reset Random Effects Model \\ \ldots \\ $	
$reset Random Effects Tracker \dots \dots$	
$rootResetRandomEffectsModel \dots \dots$	
$rootResetRandom Effects Tracker \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 112
$sample Global Error Variance One Iteration \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
$sample Leaf Variance One Iteration \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 114
saveBARTModelToJson	. 115
saveBARTModelToJsonFile	. 116

4 stochtree-package

stoch	htree-package	stochtree: vised Lear						: (2	ΧB	AF	RT	an	ıd	B	A I	R <i>T</i>	') <i>f</i>	or	Si	ир	er-
Index																					124
	savePreprocessor	ГоJsonString		 		 				•											. 123
	saveBCFModelTo																				
	saveBCFModelTo saveBCFModelTo																				
	saveBARTModel	_																			

Description

Flexible stochastic tree ensemble software. Robust implementations of Bayesian Additive Regression Trees (BART) Chipman, George, McCulloch (2010) doi:10.1214/09AOAS285 for supervised learning and Bayesian Causal Forests (BCF) Hahn, Murray, Carvalho (2020) doi:10.1214/19BA1195 for causal inference. Enables model serialization and parallel sampling and provides a low-level interface for custom stochastic forest samplers.

Author(s)

Maintainer: Drew Herren <drewherrenopensource@gmail.com> (ORCID)

Authors:

- · Richard Hahn
- · Jared Murray
- Carlos Carvalho
- Jingyu He

Other contributors:

- Pedro Lima [contributor]
- stochtree contributors [copyright holder]
- Eigen contributors (C++ source uses the Eigen library for matrix operations, see inst/COPYRIGHTS) [copyright holder]
- xgboost contributors (C++ tree code and related operations include or are inspired by code from the xgboost library, see inst/COPYRIGHTS) [copyright holder]
- treelite contributors (C++ tree code and related operations include or are inspired by code from the treelite library, see inst/COPYRIGHTS) [copyright holder]
- Microsoft Corporation (C++ I/O and various project structure code include or are inspired by code from the LightGBM library, which is a copyright of Microsoft, see inst/COPYRIGHTS) [copyright holder]
- Niels Lohmann (C++ source uses the JSON for Modern C++ library for JSON operations, see inst/COPYRIGHTS) [copyright holder]

• Daniel Lemire (C++ source uses the fast_double_parser library internally, see inst/COPYRIGHTS) [copyright holder]

• Victor Zverovich (C++ source uses the fmt library internally, see inst/COPYRIGHTS) [copyright holder]

See Also

Useful links:

• https://stochtree.ai

bart

Run the BART algorithm for supervised learning.

Description

Run the BART algorithm for supervised learning.

Usage

```
bart(
  X_train,
 y_train,
  leaf_basis_train = NULL,
  rfx_group_ids_train = NULL,
  rfx_basis_train = NULL,
 X_{test} = NULL
  leaf_basis_test = NULL,
  rfx_group_ids_test = NULL,
  rfx_basis_test = NULL,
  num_gfr = 5,
  num_burnin = 0,
  num_mcmc = 100,
  previous_model_json = NULL,
  previous_model_warmstart_sample_num = NULL,
  general_params = list(),
 mean_forest_params = list(),
  variance_forest_params = list()
)
```

Arguments

X_train

Covariates used to split trees in the ensemble. May be provided either as a dataframe or a matrix. Matrix covariates will be assumed to be all numeric. Covariates passed as a dataframe will be preprocessed based on the variable types (e.g. categorical columns stored as unordered factors will be one-hot encoded, categorical columns stored as ordered factors will passed as integers to the core algorithm, along with the metadata that the column is ordered categorical).

y_train Outcome to be modeled by the ensemble.

leaf_basis_train

(Optional) Bases used to define a regression model $y \sim W$ in each leaf of each regression tree. By default, BART assumes constant leaf node parameters, implicitly regressing on a constant basis of ones (i.e. $y \sim 1$).

rfx_group_ids_train

(Optional) Group labels used for an additive random effects model.

rfx_basis_train

(Optional) Basis for "random-slope" regression in an additive random effects model. If rfx_group_ids_train is provided with a regression basis, an intercept-only random effects model will be estimated.

X_test

(Optional) Test set of covariates used to define "out of sample" evaluation data. May be provided either as a dataframe or a matrix, but the format of X_test must be consistent with that of X_train.

leaf_basis_test

(Optional) Test set of bases used to define "out of sample" evaluation data. While a test set is optional, the structure of any provided test set must match that of the training set (i.e. if both X_train and leaf_basis_train are provided, then a test set must consist of X_test and leaf_basis_test with the same number of columns).

 $rfx_group_ids_test$

(Optional) Test set group labels used for an additive random effects model. We do not currently support (but plan to in the near future), test set evaluation for group labels that were not in the training set.

rfx_basis_test (Optional) Test set basis for "random-slope" regression in additive random effects model.

num_gfr Number of "warm-start" iterations run using the grow-from-root algorithm (He and Hahn, 2021). Default: 5.

num_burnin Number of "burn-in" iterations of the MCMC sampler. Default: 0.

num_mcmc Number of "retained" iterations of the MCMC sampler. Default: 100.

previous_model_json

(Optional) JSON string containing a previous BART model. This can be used to "continue" a sampler interactively after inspecting the samples or to run parallel chains "warm-started" from existing forest samples. Default: NULL.

previous_model_warmstart_sample_num

(Optional) Sample number from previous_model_json that will be used to warmstart this BART sampler. One-indexed (so that the first sample is used for warm-start by setting previous_model_warmstart_sample_num = 1). Default: NULL.

general_params (Optional) A list of general (non-forest-specific) model parameters, each of which has a default value processed internally, so this argument list is optional.

- cutpoint_grid_size Maximum size of the "grid" of potential cutpoints to consider in the GFR algorithm. Default: 100.
- standardize Whether or not to standardize the outcome (and store the offset / scale in the model object). Default: TRUE.

• sample_sigma2_global Whether or not to update the sigma^2 global error variance parameter based on IG(sigma2_global_shape, sigma2_global_scale). Default: TRUE.

- sigma2_global_init Starting value of global error variance parameter. Calibrated internally as 1.0*var(y_train), where y_train is the possibly standardized outcome, if not set.
- sigma2_global_shape Shape parameter in the IG(sigma2_global_shape, sigma2_global_scale) global error variance model. Default: 0.
- sigma2_global_scale Scale parameter in the IG(sigma2_global_shape, sigma2_global_scale) global error variance model. Default: 0.
- variable_weights Numeric weights reflecting the relative probability of splitting on each variable. Does not need to sum to 1 but cannot be negative. Defaults to rep(1/ncol(X_train), ncol(X_train)) if not set here. Note that if the propensity score is included as a covariate in either forest, its weight will default to 1/ncol(X_train).
- random_seed Integer parameterizing the C++ random number generator. If not specified, the C++ random number generator is seeded according to std::random_device.
- keep_burnin Whether or not "burnin" samples should be included in the stored samples of forests and other parameters. Default FALSE. Ignored if num_mcmc = 0.
- keep_gfr Whether or not "grow-from-root" samples should be included in the stored samples of forests and other parameters. Default FALSE. Ignored if num_mcmc = 0.
- keep_every How many iterations of the burned-in MCMC sampler should be run before forests and parameters are retained. Default 1. Setting keep_every
 k for some k > 1 will "thin" the MCMC samples by retaining every k-th sample, rather than simply every sample. This can reduce the autocorrelation of the MCMC samples.
- num_chains How many independent MCMC chains should be sampled. If num_mcmc = 0, this is ignored. If num_gfr = 0, then each chain is run from root for num_mcmc * keep_every + num_burnin iterations, with num_mcmc samples retained. If num_gfr > 0, each MCMC chain will be initialized from a separate GFR ensemble, with the requirement that num_gfr >= num_chains. Default: 1.
- verbose Whether or not to print progress during the sampling loops. Default: FALSE.

mean_forest_params

(Optional) A list of mean forest model parameters, each of which has a default value processed internally, so this argument list is optional.

- num_trees Number of trees in the ensemble for the conditional mean model.
 Default: 200. If num_trees = 0, the conditional mean will not be modeled using a forest, and the function will only proceed if num_trees > 0 for the variance forest.
- alpha Prior probability of splitting for a tree of depth 0 in the mean model.
 Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta.
 Default: 0.95.

 beta Exponent that decreases split probabilities for nodes of depth > 0 in the mean model. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta. Default: 2.

- min_samples_leaf Minimum allowable size of a leaf, in terms of training samples, in the mean model. Default: 5.
- max_depth Maximum depth of any tree in the ensemble in the mean model.
 Default: 10. Can be overridden with -1 which does not enforce any depth limits on trees.
- sample_sigma2_leaf Whether or not to update the leaf scale variance parameter based on IG(sigma2_leaf_shape, sigma2_leaf_scale). Cannot (currently) be set to true if ncol(leaf_basis_train)>1. Default: FALSE.
- sigma2_leaf_init Starting value of leaf node scale parameter. Calibrated internally as 1/num_trees if not set here.
- sigma2_leaf_shape Shape parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale) leaf node parameter variance model. Default: 3.
- sigma2_leaf_scale Scale parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale) leaf node parameter variance model. Calibrated internally as 0.5/num_trees if not set here.
- keep_vars Vector of variable names or column indices denoting variables that should be included in the forest. Default: NULL.
- drop_vars Vector of variable names or column indices denoting variables
 that should be excluded from the forest. Default: NULL. If both drop_vars
 and keep_vars are set, drop_vars will be ignored.

variance_forest_params

(Optional) A list of variance forest model parameters, each of which has a default value processed internally, so this argument list is optional.

- num_trees Number of trees in the ensemble for the conditional variance model. Default: 0. Variance is only modeled using a tree / forest if num_trees > 0.
- alpha Prior probability of splitting for a tree of depth 0 in the variance model. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta. Default: 0.95.
- beta Exponent that decreases split probabilities for nodes of depth > 0 in the variance model. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta.
 Default: 2.
- min_samples_leaf Minimum allowable size of a leaf, in terms of training samples, in the variance model. Default: 5.
- max_depth Maximum depth of any tree in the ensemble in the variance model. Default: 10. Can be overridden with -1 which does not enforce any depth limits on trees.
- leaf_prior_calibration_param Hyperparameter used to calibrate the IG(var_forest_prior_shape, var_forest_prior_scale) conditional error variance model. If var_forest_prior_shape and var_forest_prior_scale are not set below, this calibration parameter is used to set these values to num_trees / leaf_prior_calibration_param^2 + 0.5 and num_trees / leaf_prior_calibration_param^2, respectively. Default: 1.5.

var_forest_leaf_init Starting value of root forest prediction in conditional (heteroskedastic) error variance model. Calibrated internally as log(0.6*var(y_train))/num_trees, where y_train is the possibly standardized outcome, if not set.

- var_forest_prior_shape Shape parameter in the IG(var_forest_prior_shape, var_forest_prior_scale) conditional error variance model (which is only sampled if num_trees > 0). Calibrated internally as num_trees / leaf_prior_calibration_param + 0.5 if not set.
- var_forest_prior_scale Scale parameter in the IG(var_forest_prior_shape, var_forest_prior_scale) conditional error variance model (which is only sampled if num_trees > 0). Calibrated internally as num_trees / leaf_prior_calibration_param if not set.
- keep_vars Vector of variable names or column indices denoting variables that should be included in the forest. Default: NULL.
- drop_vars Vector of variable names or column indices denoting variables
 that should be excluded from the forest. Default: NULL. If both drop_vars
 and keep_vars are set, drop_vars will be ignored.

Value

List of sampling outputs and a wrapper around the sampled forests (which can be used for inmemory prediction on new data, or serialized to JSON on disk).

```
n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
f_XW <- (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) \%in\% test_inds)]
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test,</pre>
                     num_gfr = 10, num_burnin = 0, num_mcmc = 10)
```

10 bcf

bcf

Run the Bayesian Causal Forest (BCF) algorithm for regularized causal effect estimation.

Description

Run the Bayesian Causal Forest (BCF) algorithm for regularized causal effect estimation.

Usage

```
bcf(
  X_train,
  Z_train,
  y_train,
  propensity_train = NULL,
  rfx_group_ids_train = NULL,
  rfx_basis_train = NULL,
  X_{test} = NULL
  Z_{test} = NULL,
  propensity_test = NULL,
  rfx_group_ids_test = NULL,
  rfx_basis_test = NULL,
  num_gfr = 5,
  num_burnin = 0,
  num_mcmc = 100,
  previous_model_json = NULL,
  previous_model_warmstart_sample_num = NULL,
  general_params = list(),
  prognostic_forest_params = list(),
  treatment_effect_forest_params = list(),
  variance_forest_params = list()
)
```

Arguments

X train

Covariates used to split trees in the ensemble. May be provided either as a dataframe or a matrix. Matrix covariates will be assumed to be all numeric. Covariates passed as a dataframe will be preprocessed based on the variable types (e.g. categorical columns stored as unordered factors will be one-hot encoded, categorical columns stored as ordered factors will passed as integers to the core algorithm, along with the metadata that the column is ordered categorical).

Z_train

Vector of (continuous or binary) treatment assignments.

y_train

Outcome to be modeled by the ensemble.

propensity_train

(Optional) Vector of propensity scores. If not provided, this will be estimated from the data.

bcf 11

rfx_group_ids_train

(Optional) Group labels used for an additive random effects model.

rfx_basis_train

(Optional) Basis for "random-slope" regression in an additive random effects model. If rfx_group_ids_train is provided with a regression basis, an interceptonly random effects model will be estimated.

 X_{test}

(Optional) Test set of covariates used to define "out of sample" evaluation data. May be provided either as a dataframe or a matrix, but the format of X_test must be consistent with that of X_train.

 Z_{test}

(Optional) Test set of (continuous or binary) treatment assignments.

propensity_test

(Optional) Vector of propensity scores. If not provided, this will be estimated from the data.

rfx_group_ids_test

(Optional) Test set group labels used for an additive random effects model. We do not currently support (but plan to in the near future), test set evaluation for group labels that were not in the training set.

rfx_basis_test (Optional) Test set basis for "random-slope" regression in additive random effects model.

num_gfr

Number of "warm-start" iterations run using the grow-from-root algorithm (He and Hahn, 2021). Default: 5.

num_burnin

Number of "burn-in" iterations of the MCMC sampler. Default: 0.

num_mcmc

Number of "retained" iterations of the MCMC sampler. Default: 100.

previous_model_json

(Optional) JSON string containing a previous BCF model. This can be used to "continue" a sampler interactively after inspecting the samples or to run parallel chains "warm-started" from existing forest samples. Default: NULL.

previous_model_warmstart_sample_num

(Optional) Sample number from previous_model_json that will be used to warmstart this BCF sampler. One-indexed (so that the first sample is used for warm-start by setting previous_model_warmstart_sample_num = 1). Default:

general_params (Optional) A list of general (non-forest-specific) model parameters, each of which has a default value processed internally, so this argument list is optional.

- cutpoint_grid_size Maximum size of the "grid" of potential cutpoints to consider in the GFR algorithm. Default: 100.
- standardize Whether or not to standardize the outcome (and store the offset / scale in the model object). Default: TRUE.
- sample_sigma2_global Whether or not to update the sigma^2 global error variance parameter based on IG(sigma2_global_shape, sigma2_global_scale). Default: TRUE.
- sigma2_global_init Starting value of global error variance parameter. Calibrated internally as 1.0*var((y_train-mean(y_train))/sd(y_train)) if not set.

• sigma2_global_shape Shape parameter in the IG(sigma2_global_shape, sigma2_global_scale) global error variance model. Default: 0.

- sigma2_global_scale Scale parameter in the IG(sigma2_global_shape, sigma2_global_scale) global error variance model. Default: 0.
- variable_weights Numeric weights reflecting the relative probability of splitting on each variable. Does not need to sum to 1 but cannot be negative. Defaults to rep(1/ncol(X_train), ncol(X_train)) if not set here. Note that if the propensity score is included as a covariate in either forest, its weight will default to 1/ncol(X_train). A workaround if you wish to provide a custom weight for the propensity score is to include it as a column in X_train and then set propensity_covariate to 'none' adjust keep_vars accordingly for the mu or tau forests.
- propensity_covariate Whether to include the propensity score as a covariate in either or both of the forests. Enter "none" for neither, "mu" for the prognostic forest, "tau" for the treatment forest, and "both" for both forests. If this is not "none" and a propensity score is not provided, it will be estimated from (X_train, Z_train) using stochtree::bart(). Default: "mu".
- adaptive_coding Whether or not to use an "adaptive coding" scheme in which a binary treatment variable is not coded manually as (0,1) or (-1,1) but learned via parameters b_0 and b_1 that attach to the outcome model [b_0 (1-Z) + b_1 Z] tau(X). This is ignored when Z is not binary. Default: TRUE.
- control_coding_init Initial value of the "control" group coding parameter. This is ignored when Z is not binary. Default: -0.5.
- treated_coding_init Initial value of the "treatment" group coding parameter. This is ignored when Z is not binary. Default: 0.5.
- rfx_prior_var Prior on the (diagonals of the) covariance of the additive group-level random regression coefficients. Must be a vector of length ncol(rfx_basis_train). Default: rep(1, ncol(rfx_basis_train))
- random_seed Integer parameterizing the C++ random number generator. If not specified, the C++ random number generator is seeded according to std::random device.
- keep_burnin Whether or not "burnin" samples should be included in the stored samples of forests and other parameters. Default FALSE. Ignored if num_mcmc = 0.
- keep_gfr Whether or not "grow-from-root" samples should be included in the stored samples of forests and other parameters. Default FALSE. Ignored if num_mcmc = 0.
- keep_every How many iterations of the burned-in MCMC sampler should be run before forests and parameters are retained. Default 1. Setting keep_every
 k for some k > 1 will "thin" the MCMC samples by retaining every k-th sample, rather than simply every sample. This can reduce the autocorrelation of the MCMC samples.
- num_chains How many independent MCMC chains should be sampled. If num_mcmc = 0, this is ignored. If num_gfr = 0, then each chain is run from root for num_mcmc * keep_every + num_burnin iterations, with num_mcmc

samples retained. If num_gfr > 0, each MCMC chain will be initialized from a separate GFR ensemble, with the requirement that num_gfr >= num_chains. Default: 1.

verbose Whether or not to print progress during the sampling loops. Default: FALSE.

prognostic_forest_params

(Optional) A list of prognostic forest model parameters, each of which has a default value processed internally, so this argument list is optional.

- num_trees Number of trees in the ensemble for the prognostic forest. Default: 250. Must be a positive integer.
- alpha Prior probability of splitting for a tree of depth 0 in the prognostic forest. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta. Default: 0.95.
- beta Exponent that decreases split probabilities for nodes of depth > 0 in the prognostic forest. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta. Default: 2.
- min_samples_leaf Minimum allowable size of a leaf, in terms of training samples, in the prognostic forest. Default: 5.
- max_depth Maximum depth of any tree in the ensemble in the prognostic forest. Default: 10. Can be overridden with -1 which does not enforce any depth limits on trees.
- variable_weights Numeric weights reflecting the relative probability of splitting on each variable in the prognostic forest. Does not need to sum to 1 but cannot be negative. Defaults to rep(1/ncol(X_train), ncol(X_train)) if not set here.
- sample_sigma2_leaf Whether or not to update the leaf scale variance parameter based on IG(sigma2_leaf_shape, sigma2_leaf_scale).
- sigma2_leaf_init Starting value of leaf node scale parameter. Calibrated internally as 1/num_trees if not set here.
- sigma2_leaf_shape Shape parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale) leaf node parameter variance model. Default: 3.
- sigma2_leaf_scale Scale parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale) leaf node parameter variance model. Calibrated internally as 0.5/num_trees if not set here.
- keep_vars Vector of variable names or column indices denoting variables that should be included in the forest. Default: NULL.
- drop_vars Vector of variable names or column indices denoting variables that should be excluded from the forest. Default: NULL. If both drop_vars and keep_vars are set, drop_vars will be ignored.

treatment_effect_forest_params

(Optional) A list of treatment effect forest model parameters, each of which has a default value processed internally, so this argument list is optional.

- num_trees Number of trees in the ensemble for the treatment effect forest. Default: 50. Must be a positive integer.
- alpha Prior probability of splitting for a tree of depth 0 in the treatment effect forest. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta. Default: 0.25.

14 bcf

• beta Exponent that decreases split probabilities for nodes of depth > 0 in the treatment effect forest. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta. Default: 3.

- min_samples_leaf Minimum allowable size of a leaf, in terms of training samples, in the treatment effect forest. Default: 5.
- max_depth Maximum depth of any tree in the ensemble in the treatment effect forest. Default: 5. Can be overridden with -1 which does not enforce any depth limits on trees.
- variable_weights Numeric weights reflecting the relative probability of splitting on each variable in the treatment effect forest. Does not need to sum to 1 but cannot be negative. Defaults to rep(1/ncol(X_train), ncol(X_train)) if not set here.
- sample_sigma2_leaf Whether or not to update the leaf scale variance parameter based on IG(sigma2_leaf_shape, sigma2_leaf_scale). Cannot (currently) be set to true if ncol(Z_train)>1. Default: FALSE.
- sigma2_leaf_init Starting value of leaf node scale parameter. Calibrated internally as 1/num_trees if not set here.
- sigma2_leaf_shape Shape parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale) leaf node parameter variance model. Default: 3.
- sigma2_leaf_scale Scale parameter in the IG(sigma2_leaf_shape, sigma2_leaf_scale) leaf node parameter variance model. Calibrated internally as 0.5/num_trees if not set here.
- keep_vars Vector of variable names or column indices denoting variables that should be included in the forest. Default: NULL.
- drop_vars Vector of variable names or column indices denoting variables that should be excluded from the forest. Default: NULL. If both drop_vars and keep_vars are set, drop_vars will be ignored.

variance_forest_params

(Optional) A list of variance forest model parameters, each of which has a default value processed internally, so this argument list is optional.

- num_trees Number of trees in the ensemble for the conditional variance model. Default: 0. Variance is only modeled using a tree / forest if num_trees > 0.
- alpha Prior probability of splitting for a tree of depth 0 in the variance model. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta. Default: 0.95.
- beta Exponent that decreases split probabilities for nodes of depth > 0 in the variance model. Tree split prior combines alpha and beta via alpha*(1+node_depth)^-beta. Default: 2.
- min_samples_leaf Minimum allowable size of a leaf, in terms of training samples, in the variance model. Default: 5.
- max_depth Maximum depth of any tree in the ensemble in the variance model. Default: 10. Can be overridden with -1 which does not enforce any depth limits on trees.
- leaf_prior_calibration_param Hyperparameter used to calibrate the IG(var_forest_prior_shape, var_forest_prior_scale) conditional error variance model. If var_forest_prior_shape and var_forest_prior_scale

bcf 15

are not set below, this calibration parameter is used to set these values to num_trees / leaf_prior_calibration_param^2 + 0.5 and num_trees / leaf_prior_calibration_param^2, respectively. Default: 1.5.

- variance_forest_init Starting value of root forest prediction in conditional (heteroskedastic) error variance model. Calibrated internally as log(0.6*var((y_train-mean(y_train))/sd(y_train)))/num_trees if not set.
- var_forest_prior_shape Shape parameter in the IG(var_forest_prior_shape, var_forest_prior_scale) conditional error variance model (which is only sampled if num_trees > 0). Calibrated internally as num_trees / 1.5^2 + 0.5 if not set.
- var_forest_prior_scale Scale parameter in the IG(var_forest_prior_shape, var_forest_prior_scale) conditional error variance model (which is only sampled if num_trees > 0). Calibrated internally as num_trees / 1.5^2 if not set.
- keep_vars Vector of variable names or column indices denoting variables that should be included in the forest. Default: NULL.
- drop_vars Vector of variable names or column indices denoting variables
 that should be excluded from the forest. Default: NULL. If both drop_vars
 and keep_vars are set, drop_vars will be ignored.

Value

List of sampling outputs and a wrapper around the sampled forests (which can be used for inmemory prediction on new data, or serialized to JSON on disk).

```
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
pi_x <- (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (0.2) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (0.4) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (0.6) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (0.8)
)
tau_x <- (
    ((0 \le X[,2]) & (0.25 > X[,2])) * (0.5) +
    ((0.25 \le X[,2]) & (0.5 > X[,2])) * (1.0) +
    ((0.5 \le X[,2]) & (0.75 > X[,2])) * (1.5) +
    ((0.75 \le X[,2]) & (1 > X[,2])) * (2.0)
Z \leftarrow rbinom(n, 1, pi_x)
```

```
noise_sd <- 1</pre>
y <- mu_x + tau_x*Z + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2</pre>
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test</pre>
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
pi_test <- pi_x[test_inds]
pi_train <- pi_x[train_inds]</pre>
Z_test <- Z[test_inds]</pre>
Z_train <- Z[train_inds]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
mu_test <- mu_x[test_inds]</pre>
mu_train <- mu_x[train_inds]</pre>
tau_test <- tau_x[test_inds]</pre>
tau_train <- tau_x[train_inds]</pre>
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,</pre>
                   propensity_train = pi_train, X_test = X_test, Z_test = Z_test,
                   propensity_test = pi_test, num_gfr = 10,
                   num_burnin = 0, num_mcmc = 10)
```

calibrateInverseGammaErrorVariance

Calibrate the scale parameter on an inverse gamma prior for the global error variance as in Chipman et al (2022)

Description

Chipman, H., George, E., Hahn, R., McCulloch, R., Pratola, M. and Sparapani, R. (2022). Bayesian Additive Regression Trees, Computational Approaches. In Wiley StatsRef: Statistics Reference Online (eds N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J.L. Teugels). https://doi.org/10.1002/9781118445112.stat08288

Usage

```
calibrateInverseGammaErrorVariance(
   y,
   X,
   W = NULL,
   nu = 3,
   quant = 0.9,
   standardize = TRUE
)
```

Arguments

у	Outcome to be modeled using BART, BCF or another nonparametric ensemble method.
Χ	Covariates to be used to partition trees in an ensemble or series of ensemble.
W	(Optional) Basis used to define a "leaf regression" model for each decision tree. The "classic" BART model assumes a constant leaf parameter, which is equivalent to a "leaf regression" on a basis of all ones, though it is not necessary to pass a vector of ones, here or to the BART function. Default: NULL.
nu	The shape parameter for the global error variance's IG prior. The scale parameter in the Sparapani et al (2021) parameterization is defined as nu*lambda where lambda is the output of this function. Default: 3.
quant	(Optional) Quantile of the inverse gamma prior distribution represented by a linear-regression-based overestimate of sigma^2. Default: 0.9.
standardize	(Optional) Whether or not outcome should be standardized ((y-mean(y))/sd(y)) before calibration of lambda. Default: TRUE.

Value

Value of lambda which determines the scale parameter of the global error variance prior (sigma^2 ~ IG(nu,nu*lambda))

Examples

```
n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
y <- 10*X[,1] - 20*X[,2] + rnorm(n)
nu <- 3
lambda <- calibrateInverseGammaErrorVariance(y, X, nu = nu)
sigma2hat <- mean(resid(lm(y~X))^2)
mean(var(y)/rgamma(100000, nu, rate = nu*lambda) < sigma2hat)</pre>
```

computeForestLeafIndices

Compute vector of forest leaf indices

Description

Compute and return a vector representation of a forest's leaf predictions for every observation in a dataset.

The vector has a "row-major" format that can be easily re-represented as as a CSR sparse matrix: elements are organized so that the first n elements correspond to leaf predictions for all n observations in a dataset for the first tree in an ensemble, the next n elements correspond to predictions for the second tree and so on. The "data" for each element corresponds to a uniquely mapped column index that corresponds to a single leaf of a single tree (i.e. if tree 1 has 3 leaves, its column indices range from 0 to 2, and then tree 2's leaf indices begin at 3, etc...).

Usage

```
computeForestLeafIndices(
  model_object,
  covariates,
  forest_type = NULL,
  forest_inds = NULL
)
```

Arguments

model_object

Object of type bartmodel, bcfmodel, or ForestSamples corresponding to a BART / BCF model with at least one forest sample, or a low-level ForestSamples object.

covariates

Covariates to use for prediction. Must have the same dimensions / column types as the data used to train a forest.

forest_type

Which forest to use from model_object. Valid inputs depend on the model type, and whether or not a given forest was sampled in that model.

1. BART

- 'mean': Extracts leaf indices for the mean forest
- 'variance': Extracts leaf indices for the variance forest

2. BCF

- 'prognostic': Extracts leaf indices for the prognostic forest
- 'treatment': Extracts leaf indices for the treatment effect forest
- 'variance': Extracts leaf indices for the variance forest

3. ForestSamples

• NULL: It is not necessary to disambiguate when this function is called directly on a ForestSamples object. This is the default value of this

forest_inds

(Optional) Indices of the forest sample(s) for which to compute leaf indices. If not provided, this function will return leaf indices for every sample of a forest. This function uses 0-indexing, so the first forest sample corresponds to forest_num = 0, and so on.

Value

List of vectors. Each vector is of size num_obs * num_trees, where num_obs = nrow(covariates) and num_trees is the number of trees in the relevant forest of model_object.

```
X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
bart_model <- bart(X, y, num_gfr=0, num_mcmc=10)
computeForestLeafIndices(bart_model, X, "mean")
computeForestLeafIndices(bart_model, X, "mean", 0)
computeForestLeafIndices(bart_model, X, "mean", c(1,3,9))</pre>
```

computeForestLeafVariances

Compute vector of forest leaf scale parameters

Description

Return each forest's leaf node scale parameters.

If leaf scale is not sampled for the forest in question, throws an error that the leaf model does not have a stochastic scale parameter.

Usage

```
computeForestLeafVariances(model_object, forest_type, forest_inds = NULL)
```

Arguments

model_object

Object of type bartmodel or bcfmodel corresponding to a BART / BCF model with at least one forest sample

forest_type

Which forest to use from model_object. Valid inputs depend on the model type, and whether or not a given forest was sampled in that model.

1. BART

- 'mean': Extracts leaf indices for the mean forest
- 'variance': Extracts leaf indices for the variance forest

2. BCF

- 'prognostic': Extracts leaf indices for the prognostic forest
- 'treatment': Extracts leaf indices for the treatment effect forest
- 'variance': Extracts leaf indices for the variance forest

forest_inds

(Optional) Indices of the forest sample(s) for which to compute leaf indices. If not provided, this function will return leaf indices for every sample of a forest. This function uses 0-indexing, so the first forest sample corresponds to forest_num = 0, and so on.

Value

Vector of size length(forest_inds) with the leaf scale parameter for each requested forest.

```
X \leftarrow matrix(runif(10*100), ncol = 10)

y \leftarrow -5 + 10*(X[,1] > 0.5) + rnorm(100)

bart\_model \leftarrow bart(X, y, num\_gfr=0, num\_mcmc=10)

computeForestLeafVariances(bart\_model, "mean")

computeForestLeafVariances(bart\_model, "mean", 0)

computeForestLeafVariances(bart\_model, "mean", c(1,3,5))
```

computeForestMaxLeafIndex

Compute and return the largest possible leaf index computable by computeForestLeafIndices for the forests in a designated forest sample container.

Description

Compute and return the largest possible leaf index computable by computeForestLeafIndices for the forests in a designated forest sample container.

Usage

```
computeForestMaxLeafIndex(
  model_object,
  covariates,
  forest_type = NULL,
  forest_inds = NULL
)
```

Arguments

model_object

Object of type bartmodel, bcfmodel, or ForestSamples corresponding to a BART / BCF model with at least one forest sample, or a low-level ForestSamples object.

covariates

Covariates to use for prediction. Must have the same dimensions / column types as the data used to train a forest.

forest_type

Which forest to use from model_object. Valid inputs depend on the model type, and whether or not a

1. BART

- 'mean': Extracts leaf indices for the mean forest
- 'variance': Extracts leaf indices for the variance forest

2. BCF

- 'prognostic': Extracts leaf indices for the prognostic forest
- 'treatment': Extracts leaf indices for the treatment effect forest
- 'variance': Extracts leaf indices for the variance forest

3. ForestSamples

• NULL: It is not necessary to disambiguate when this function is called directly on a ForestSamples object. This is the default value of this

forest_inds

(Optional) Indices of the forest sample(s) for which to compute max leaf indices. If not provided, this function will return max leaf indices for every sample of a forest. This function uses 0-indexing, so the first forest sample corresponds to forest_num = 0, and so on.

Value

Vector containing the largest possible leaf index computable by computeForestLeafIndices for the forests in a designated forest sample container.

Examples

```
X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
bart_model <- bart(X, y, num_gfr=0, num_mcmc=10)
computeForestMaxLeafIndex(bart_model, X, "mean")
computeForestMaxLeafIndex(bart_model, X, "mean", 0)
computeForestMaxLeafIndex(bart_model, X, "mean", c(1,3,9))</pre>
```

convertPreprocessorToJson

Convert the persistent aspects of a covariate preprocessor to (inmemory) C++ JSON object

Description

Convert the persistent aspects of a covariate preprocessor to (in-memory) C++ JSON object

Usage

```
convertPreprocessorToJson(object)
```

Arguments

object

List containing information on variables, including train set categories for categorical variables

Value

wrapper around in-memory C++ JSON object

```
cov_mat <- matrix(1:12, ncol = 3)
preprocess_list <- preprocessTrainData(cov_mat)
preprocessor_json <- convertPreprocessorToJson(preprocess_list$metadata)</pre>
```

22 CppJson

CppJson

Class that stores draws from an random ensemble of decision trees

Description

Wrapper around a C++ container of tree ensembles

Public fields

```
json_ptr External pointer to a C++ nlohmann::json object
num_forests Number of forests in the nlohmann::json object
forest_labels Names of forest objects in the overall nlohmann::json object
num_rfx Number of random effects terms in the nlohman::json object
rfx_container_labels Names of rfx container objects in the overall nlohmann::json object
rfx_mapper_labels Names of rfx label mapper objects in the overall nlohmann::json object
rfx_groupid_labels Names of rfx group id objects in the overall nlohmann::json object
```

Methods

Public methods:

- CppJson\$new()
- CppJson\$add_forest()
- CppJson\$add_random_effects()
- CppJson\$add_scalar()
- CppJson\$add_integer()
- CppJson\$add_boolean()
- CppJson\$add_string()
- CppJson\$add_vector()
- CppJson\$add_integer_vector()
- CppJson\$add_string_vector()
- CppJson\$add_list()
- CppJson\$add_string_list()
- CppJson\$get_scalar()
- CppJson\$get_integer()
- CppJson\$get_boolean()
- CppJson\$get_string()
- CppJson\$get_vector()
- CppJson\$get_integer_vector()
- CppJson\$get_string_vector()
- CppJson\$get_numeric_list()
- CppJson\$get_string_list()

• CppJson\$return_json_string()

```
• CppJson$save_file()
  • CppJson$load_from_file()
  • CppJson$load_from_string()
Method new(): Create a new CppJson object.
 Usage:
 CppJson$new()
 Returns: A new CppJson object.
Method add_forest(): Convert a forest container to json and add to the current CppJson object
 CppJson$add_forest(forest_samples)
 Arguments:
 forest_samples ForestSamples R class
 Returns: None
Method add_random_effects(): Convert a random effects container to json and add to the
current CppJson object
 Usage:
 CppJson$add_random_effects(rfx_samples)
 Arguments:
 rfx_samples RandomEffectSamples R class
 Returns: None
Method add_scalar(): Add a scalar to the json object under the name "field_name" (with
optional subfolder "subfolder_name")
 CppJson$add_scalar(field_name, field_value, subfolder_name = NULL)
 Arguments:
 field_name The name of the field to be added to json
 field_value Numeric value of the field to be added to json
 subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value
 Returns: None
Method add_integer(): Add a scalar to the json object under the name "field_name" (with
optional subfolder "subfolder_name")
 Usage:
 CppJson$add_integer(field_name, field_value, subfolder_name = NULL)
 Arguments:
 field_name The name of the field to be added to json
 field_value Integer value of the field to be added to json
```

24 CppJson

subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value *Returns:* None

Method add_boolean(): Add a boolean value to the json object under the name "field_name" (with optional subfolder "subfolder_name")

Usage:

CppJson\$add_boolean(field_name, field_value, subfolder_name = NULL)

Arguments:

field_name The name of the field to be added to json

field_value Numeric value of the field to be added to json

subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value

Returns: None

Method add_string(): Add a string value to the json object under the name "field_name" (with optional subfolder "subfolder_name")

Usage:

CppJson\$add_string(field_name, field_value, subfolder_name = NULL)

Arguments:

field_name The name of the field to be added to json

field_value Numeric value of the field to be added to json

subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value

Returns: None

Method add_vector(): Add a vector to the json object under the name "field_name" (with optional subfolder "subfolder_name")

Usage:

CppJson\$add_vector(field_name, field_vector, subfolder_name = NULL)

Arguments:

field_name The name of the field to be added to json

field_vector Vector to be stored in json

subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value

Returns: None

Method add_integer_vector(): Add an integer vector to the json object under the name "field_name" (with optional subfolder "subfolder_name")

Usage:

CppJson\$add_integer_vector(field_name, field_vector, subfolder_name = NULL)

Arguments:

field_name The name of the field to be added to json

field_vector Vector to be stored in json

subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value

Returns: None

Method add_string_vector(): Add an array to the json object under the name "field_name" (with optional subfolder "subfolder_name") Usage: CppJson\$add_string_vector(field_name, field_vector, subfolder_name = NULL) field_name The name of the field to be added to json field_vector Character vector to be stored in json subfolder_name (Optional) Name of the subfolder / hierarchy under which to place the value Returns: None Method add_list(): Add a list of vectors (as an object map of arrays) to the json object under the name "field name" CppJson\$add_list(field_name, field_list) Arguments: field_name The name of the field to be added to json field_list List to be stored in json Returns: None **Method** add_string_list(): Add a list of vectors (as an object map of arrays) to the json object under the name "field_name" Usage: CppJson\$add_string_list(field_name, field_list) Arguments: field_name The name of the field to be added to json field_list List to be stored in json Returns: None Method get_scalar(): Retrieve a scalar value from the json object under the name "field_name" (with optional subfolder "subfolder_name") Usage: CppJson\$get_scalar(field_name, subfolder_name = NULL) Arguments: field_name The name of the field to be accessed from json subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored Returns: None **Method** get_integer(): Retrieve a integer value from the json object under the name "field_name" (with optional subfolder "subfolder_name") CppJson\$get_integer(field_name, subfolder_name = NULL) Arguments:

26 CppJson

field_name The name of the field to be accessed from json subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored Returns: None **Method** get_boolean(): Retrieve a boolean value from the json object under the name "field_name" (with optional subfolder "subfolder_name") Usage: CppJson\$get_boolean(field_name, subfolder_name = NULL) Arguments: field_name The name of the field to be accessed from json subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored Returns: None **Method** get_string(): Retrieve a string value from the json object under the name "field_name" (with optional subfolder "subfolder_name") Usage: CppJson\$get_string(field_name, subfolder_name = NULL) Arguments: field_name The name of the field to be accessed from json subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored Returns: None **Method** get_vector(): Retrieve a vector from the json object under the name "field_name" (with optional subfolder "subfolder_name") Usage: CppJson\$get_vector(field_name, subfolder_name = NULL) Arguments: field_name The name of the field to be accessed from json subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored Returns: None Method get_integer_vector(): Retrieve an integer vector from the json object under the name "field_name" (with optional subfolder "subfolder_name") Usage: CppJson\$get_integer_vector(field_name, subfolder_name = NULL) Arguments: field_name The name of the field to be accessed from json subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored Returns: None

Method get_string_vector(): Retrieve a character vector from the json object under the name "field_name" (with optional subfolder "subfolder_name")

Usage: CppJson\$get_string_vector(field_name, subfolder_name = NULL) Arguments: field_name The name of the field to be accessed from json subfolder_name (Optional) Name of the subfolder / hierarchy under which the field is stored Returns: None Method get_numeric_list(): Reconstruct a list of numeric vectors from the json object stored under "field_name" CppJson\$get_numeric_list(field_name, key_names) Arguments: field_name The name of the field to be added to json key_names Vector of names of list elements (each of which is a vector) Returns: None Method get_string_list(): Reconstruct a list of string vectors from the json object stored under "field_name" Usage: CppJson\$get_string_list(field_name, key_names) Arguments: field_name The name of the field to be added to json key_names Vector of names of list elements (each of which is a vector) Returns: None **Method** return_json_string(): Convert a JSON object to in-memory string Usage: CppJson\$return_json_string() Returns: JSON string **Method** save_file(): Save a json object to file Usage: CppJson\$save_file(filename) Arguments: filename String of filepath, must end in ".json" Returns: None Method load_from_file(): Load a json object from file Usage: CppJson\$load_from_file(filename) Arguments: filename String of filepath, must end in ".json"

28 CppRNG

```
Returns: None
```

Method load_from_string(): Load a json object from string

Usage:

CppJson\$load_from_string(json_string)

Arguments:

json_string JSON string dump

Returns: None

CppRNG

Class that wraps a C++ random number generator (for reproducibility)

Description

Persists a C++ random number generator throughout an R session to ensure reproducibility from a given random seed. If no seed is provided, the C++ random number generator is initialized using std::random_device.

Public fields

```
rng_ptr External pointer to a C++ std::mt19937 class
```

Methods

Public methods:

• CppRNG\$new()

Method new(): Create a new CppRNG object.

Usage:

CppRNG $new(random_seed = -1)$

Arguments:

random_seed (Optional) random seed for sampling

Returns: A new CppRNG object.

createBARTModelFromCombinedJson

Convert a list of (in-memory) JSON representations of a BART model to a single combined BART model object which can be used for prediction, etc...

Description

Convert a list of (in-memory) JSON representations of a BART model to a single combined BART model object which can be used for prediction, etc...

Usage

```
createBARTModelFromCombinedJson(json_object_list)
```

Arguments

```
json_object_list
```

List of objects of type CppJson containing Json representation of a BART model

Value

Object of type bartmodel

```
n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
f_XW \leftarrow (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
bart_model <- bart(X_train = X_train, y_train = y_train,</pre>
                     num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bart_json <- list(saveBARTModelToJson(bart_model))</pre>
bart_model_roundtrip <- createBARTModelFromCombinedJson(bart_json)</pre>
```

 ${\tt createBARTModelFromCombinedJsonString}$

Convert a list of (in-memory) JSON strings that represent BART models to a single combined BART model object which can be used for prediction, etc...

Description

Convert a list of (in-memory) JSON strings that represent BART models to a single combined BART model object which can be used for prediction, etc...

Usage

createBARTModelFromCombinedJsonString(json_string_list)

Arguments

```
json_string_list
```

List of JSON strings which can be parsed to objects of type CppJson containing Json representation of a BART model

Value

Object of type bartmodel

```
n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
bart_model <- bart(X_train = X_train, y_train = y_train,</pre>
                    num_gfr = 10, num_burnin = 0, num_mcmc = 10)
```

createBARTModelFromJson

```
bart_json_string_list <- list(saveBARTModelToJsonString(bart_model))
bart_model_roundtrip <- createBARTModelFromCombinedJsonString(bart_json_string_list)</pre>
```

createBARTModelFromJson

Convert an (in-memory) JSON representation of a BART model to a BART model object which can be used for prediction, etc...

Description

Convert an (in-memory) JSON representation of a BART model to a BART model object which can be used for prediction, etc...

Usage

```
createBARTModelFromJson(json_object)
```

Arguments

json_object Object of type CppJson containing Json representation of a BART model

Value

Object of type bartmodel

```
n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
f_XW <- (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
bart_model <- bart(X_train = X_train, y_train = y_train,</pre>
                    num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bart_json <- saveBARTModelToJson(bart_model)</pre>
bart_model_roundtrip <- createBARTModelFromJson(bart_json)</pre>
```

createBARTModelFromJsonFile

Convert a JSON file containing sample information on a trained BART model to a BART model object which can be used for prediction, etc...

Description

Convert a JSON file containing sample information on a trained BART model to a BART model object which can be used for prediction, etc...

Usage

```
createBARTModelFromJsonFile(json_filename)
```

Arguments

```
json_filename String of filepath, must end in ".json"
```

Value

Object of type bartmodel

```
n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
f_XW \leftarrow (
    ((0 \le X[,1]) \& (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
bart_model <- bart(X_train = X_train, y_train = y_train,</pre>
                    num_gfr = 10, num_burnin = 0, num_mcmc = 10)
tmpjson <- tempfile(fileext = ".json")</pre>
saveBARTModelToJsonFile(bart_model, file.path(tmpjson))
bart_model_roundtrip <- createBARTModelFromJsonFile(file.path(tmpjson))</pre>
unlink(tmpjson)
```

createBARTModelFromJsonString

Convert a JSON string containing sample information on a trained BART model to a BART model object which can be used for prediction, etc...

Description

Convert a JSON string containing sample information on a trained BART model to a BART model object which can be used for prediction, etc...

Usage

```
createBARTModelFromJsonString(json_string)
```

Arguments

Value

Object of type bartmodel

```
n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
f_XW <- (
    ((0 \le X[,1]) \& (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
bart_model <- bart(X_train = X_train, y_train = y_train,</pre>
                    num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bart_json <- saveBARTModelToJsonString(bart_model)</pre>
bart_model_roundtrip <- createBARTModelFromJsonString(bart_json)</pre>
y_hat_mean_roundtrip <- rowMeans(predict(bart_model_roundtrip, X_train)$y_hat)</pre>
```

createBCFModelFromCombinedJson

Convert a list of (in-memory) JSON strings that represent BCF models to a single combined BCF model object which can be used for prediction, etc...

Description

Convert a list of (in-memory) JSON strings that represent BCF models to a single combined BCF model object which can be used for prediction, etc...

Usage

```
createBCFModelFromCombinedJson(json_object_list)
```

Arguments

```
json_object_list
```

List of objects of type CppJson containing Json representation of a BCF model

Value

Object of type bcfmodel

```
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
mu_x < - (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
pi_x \leftarrow (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (0.2) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (0.4) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (0.6) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (0.8)
)
tau_x <- (
    ((0 \le X[,2]) & (0.25 > X[,2])) * (0.5) +
    ((0.25 \le X[,2]) & (0.5 > X[,2])) * (1.0) +
    ((0.5 \le X[,2]) & (0.75 > X[,2])) * (1.5) +
    ((0.75 \le X[,2]) & (1 > X[,2])) * (2.0)
)
Z \leftarrow rbinom(n, 1, pi_x)
E_XZ \leftarrow mu_x + Z*tau_x
```

```
rfx\_group\_ids \leftarrow rep(c(1,2), n %/% 2)
rfx\_coefs \leftarrow matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))</pre>
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)</pre>
y \leftarrow E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2</pre>
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test</pre>
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
pi_test <- pi_x[test_inds]</pre>
pi_train <- pi_x[train_inds]</pre>
Z_test <- Z[test_inds]</pre>
Z_train <- Z[train_inds]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
mu_test <- mu_x[test_inds]</pre>
mu_train <- mu_x[train_inds]</pre>
tau_test <- tau_x[test_inds]</pre>
tau_train <- tau_x[train_inds]</pre>
rfx_group_ids_test <- rfx_group_ids[test_inds]</pre>
rfx_group_ids_train <- rfx_group_ids[train_inds]</pre>
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]</pre>
rfx_term_train <- rfx_term[train_inds]</pre>
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,</pre>
                   propensity_train = pi_train,
                   rfx_group_ids_train = rfx_group_ids_train,
                   rfx_basis_train = rfx_basis_train, X_test = X_test,
                   Z_test = Z_test, propensity_test = pi_test,
                   rfx_group_ids_test = rfx_group_ids_test,
                   rfx_basis_test = rfx_basis_test,
                   num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bcf_json_list <- list(saveBCFModelToJson(bcf_model))</pre>
bcf_model_roundtrip <- createBCFModelFromCombinedJson(bcf_json_list)</pre>
```

createBCFModelFromCombinedJsonString

Convert a list of (in-memory) JSON strings that represent BCF models to a single combined BCF model object which can be used for prediction, etc...

Description

Convert a list of (in-memory) JSON strings that represent BCF models to a single combined BCF model object which can be used for prediction, etc...

Usage

createBCFModelFromCombinedJsonString(json_string_list)

Arguments

```
json_string_list
```

List of JSON strings which can be parsed to objects of type CppJson containing Json representation of a BCF model

Value

Object of type bcfmodel

```
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
mu_x <- (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
pi_x \leftarrow (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (0.2) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (0.4) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (0.6) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (0.8)
)
tau_x <- (
    ((0 \le X[,2]) & (0.25 > X[,2])) * (0.5) +
    ((0.25 \le X[,2]) & (0.5 > X[,2])) * (1.0) +
    ((0.5 \le X[,2]) & (0.75 > X[,2])) * (1.5) +
    ((0.75 \le X[,2]) & (1 > X[,2])) * (2.0)
)
Z \leftarrow rbinom(n, 1, pi_x)
E_XZ \leftarrow mu_x + Z*tau_x
snr <- 3
rfx_group_ids <- rep(c(1,2), n %/% 2)
rfx\_coefs \leftarrow matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)</pre>
y \leftarrow E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
pi_test <- pi_x[test_inds]</pre>
```

createBCFModelFromJson 37

```
pi_train <- pi_x[train_inds]</pre>
Z_test <- Z[test_inds]</pre>
Z_train <- Z[train_inds]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
mu_test <- mu_x[test_inds]</pre>
mu_train <- mu_x[train_inds]</pre>
tau_test <- tau_x[test_inds]</pre>
tau_train <- tau_x[train_inds]</pre>
rfx_group_ids_test <- rfx_group_ids[test_inds]</pre>
rfx_group_ids_train <- rfx_group_ids[train_inds]</pre>
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]</pre>
rfx_term_train <- rfx_term[train_inds]</pre>
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,</pre>
                  propensity_train = pi_train,
                  rfx_group_ids_train = rfx_group_ids_train,
                  rfx_basis_train = rfx_basis_train, X_test = X_test,
                  Z_test = Z_test, propensity_test = pi_test,
                  rfx_group_ids_test = rfx_group_ids_test,
                  rfx_basis_test = rfx_basis_test,
                  num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bcf_json_string_list <- list(saveBCFModelToJsonString(bcf_model))</pre>
bcf_model_roundtrip <- createBCFModelFromCombinedJsonString(bcf_json_string_list)</pre>
```

createBCFModelFromJson

Convert an (in-memory) JSON representation of a BCF model to a BCF model object which can be used for prediction, etc...

Description

Convert an (in-memory) JSON representation of a BCF model to a BCF model object which can be used for prediction, etc...

Usage

```
createBCFModelFromJson(json_object)
```

Arguments

json_object Object of type CppJson containing Json representation of a BCF model

Value

Object of type bcfmodel

```
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
mu_x < - (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
pi_x \leftarrow (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (0.2) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (0.4) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (0.6) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (0.8)
)
tau_x <- (
    ((0 \le X[,2]) & (0.25 > X[,2])) * (0.5) +
    ((0.25 \le X[,2]) & (0.5 > X[,2])) * (1.0) +
    ((0.5 \le X[,2]) & (0.75 > X[,2])) * (1.5) +
    ((0.75 \le X[,2]) & (1 > X[,2])) * (2.0)
)
Z \leftarrow rbinom(n, 1, pi_x)
E_XZ \leftarrow mu_x + Z*tau_x
snr <- 3
rfx\_group\_ids \leftarrow rep(c(1,2), n %/% 2)
rfx\_coefs \leftarrow matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))</pre>
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)</pre>
y \leftarrow E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test</pre>
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
pi_test <- pi_x[test_inds]</pre>
pi_train <- pi_x[train_inds]</pre>
Z_test <- Z[test_inds]</pre>
Z_train <- Z[train_inds]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
mu_test <- mu_x[test_inds]</pre>
mu_train <- mu_x[train_inds]</pre>
tau_test <- tau_x[test_inds]</pre>
tau_train <- tau_x[train_inds]</pre>
rfx_group_ids_test <- rfx_group_ids[test_inds]</pre>
rfx_group_ids_train <- rfx_group_ids[train_inds]</pre>
rfx_basis_test <- rfx_basis[test_inds,]</pre>
rfx_basis_train <- rfx_basis[train_inds,]</pre>
rfx_term_test <- rfx_term[test_inds]</pre>
```

createBCFModelFromJsonFile

Convert a JSON file containing sample information on a trained BCF model to a BCF model object which can be used for prediction, etc...

Description

Convert a JSON file containing sample information on a trained BCF model to a BCF model object which can be used for prediction, etc...

Usage

```
createBCFModelFromJsonFile(json_filename)
```

Arguments

```
json_filename String of filepath, must end in ".json"
```

Value

Object of type bcfmodel

```
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)
mu_x <- (
        ((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
        ((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
        ((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
        ((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)
)
```

```
pi_x \leftarrow (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (0.2) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (0.4) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (0.6) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (0.8)
)
tau_x <- (
    ((0 \le X[,2]) & (0.25 > X[,2])) * (0.5) +
    ((0.25 \le X[,2]) & (0.5 > X[,2])) * (1.0) +
    ((0.5 \le X[,2]) & (0.75 > X[,2])) * (1.5) +
    ((0.75 \le X[,2]) & (1 > X[,2])) * (2.0)
Z \leftarrow rbinom(n, 1, pi_x)
E_XZ \leftarrow mu_x + Z*tau_x
snr <- 3
rfx_group_ids \leftarrow rep(c(1,2), n \%/\% 2)
rfx\_coefs \leftarrow matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)</pre>
y \leftarrow E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2</pre>
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
pi_test <- pi_x[test_inds]</pre>
pi_train <- pi_x[train_inds]</pre>
Z_test <- Z[test_inds]</pre>
Z_train <- Z[train_inds]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
mu_test <- mu_x[test_inds]</pre>
mu_train <- mu_x[train_inds]</pre>
tau_test <- tau_x[test_inds]</pre>
tau_train <- tau_x[train_inds]</pre>
rfx_group_ids_test <- rfx_group_ids[test_inds]
rfx_group_ids_train <- rfx_group_ids[train_inds]</pre>
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]</pre>
rfx_term_test <- rfx_term[test_inds]</pre>
rfx_term_train <- rfx_term[train_inds]
mu_params <- list(sample_sigma_leaf = TRUE)</pre>
tau_params <- list(sample_sigma_leaf = FALSE)</pre>
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,
                   propensity_train = pi_train,
                   rfx_group_ids_train = rfx_group_ids_train,
                   rfx_basis_train = rfx_basis_train, X_test = X_test,
                   Z_test = Z_test, propensity_test = pi_test,
                   rfx_group_ids_test = rfx_group_ids_test,
                   rfx_basis_test = rfx_basis_test,
                   num_gfr = 10, num_burnin = 0, num_mcmc = 10,
```

createBCFModelFromJsonString

Convert a JSON string containing sample information on a trained BCF model to a BCF model object which can be used for prediction, etc...

Description

Convert a JSON string containing sample information on a trained BCF model to a BCF model object which can be used for prediction, etc...

Usage

```
createBCFModelFromJsonString(json_string)
```

Arguments

```
json_string JSON string dump
```

Value

Object of type bcfmodel

```
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
mu_x < - (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
pi_x <- (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (0.2) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (0.4) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (0.6) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (0.8)
)
tau_x <- (
    ((0 \le X[,2]) & (0.25 > X[,2])) * (0.5) +
    ((0.25 \le X[,2]) & (0.5 > X[,2])) * (1.0) +
```

42 createCppJson

```
((0.5 \le X[,2]) & (0.75 > X[,2])) * (1.5) +
    ((0.75 \le X[,2]) & (1 > X[,2])) * (2.0)
)
Z \leftarrow rbinom(n, 1, pi_x)
E_XZ \leftarrow mu_x + Z*tau_x
snr <- 3
rfx\_group\_ids \leftarrow rep(c(1,2), n \%/\% 2)
rfx\_coefs \leftarrow matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))</pre>
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)</pre>
y \leftarrow E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
pi_test <- pi_x[test_inds]</pre>
pi_train <- pi_x[train_inds]</pre>
Z_test <- Z[test_inds]</pre>
Z_train <- Z[train_inds]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
mu_test <- mu_x[test_inds]</pre>
mu_train <- mu_x[train_inds]</pre>
tau_test <- tau_x[test_inds]</pre>
tau_train <- tau_x[train_inds]</pre>
rfx_group_ids_test <- rfx_group_ids[test_inds]</pre>
rfx_group_ids_train <- rfx_group_ids[train_inds]</pre>
rfx_basis_test <- rfx_basis[test_inds,]</pre>
rfx_basis_train <- rfx_basis[train_inds,]</pre>
rfx_term_test <- rfx_term[test_inds]</pre>
rfx_term_train <- rfx_term[train_inds]</pre>
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,</pre>
                   propensity_train = pi_train,
                   rfx_group_ids_train = rfx_group_ids_train,
                   rfx_basis_train = rfx_basis_train, X_test = X_test,
                   Z_test = Z_test, propensity_test = pi_test,
                   rfx_group_ids_test = rfx_group_ids_test,
                   rfx_basis_test = rfx_basis_test,
                   num_gfr = 10, num_burnin = 0, num_mcmc = 10)
bcf_json <- saveBCFModelToJsonString(bcf_model)</pre>
bcf_model_roundtrip <- createBCFModelFromJsonString(bcf_json)</pre>
```

createCppJson

Create a new (empty) C++ Json object

Description

Create a new (empty) C++ Json object

createCppJsonFile 43

Usage

```
createCppJson()
```

Value

CppJson object

Examples

```
example_vec <- runif(10)
example_json <- createCppJson()
example_json$add_vector("myvec", example_vec)</pre>
```

createCppJsonFile

Create a C++ Json object from a Json file

Description

Create a C++ Json object from a Json file

Usage

```
createCppJsonFile(json_filename)
```

Arguments

json_filename Name of file to read. Must end in . json.

Value

CppJson object

```
example_vec <- runif(10)
example_json <- createCppJson()
example_json$add_vector("myvec", example_vec)
tmpjson <- tempfile(fileext = ".json")
example_json$save_file(file.path(tmpjson))
example_json_roundtrip <- createCppJsonFile(file.path(tmpjson))
unlink(tmpjson)</pre>
```

44 createCppRNG

createCppJsonString

Create a C++ Json object from a Json string

Description

Create a C++ Json object from a Json string

Usage

```
createCppJsonString(json_string)
```

Arguments

Value

CppJson object

Examples

```
example_vec <- runif(10)
example_json <- createCppJson()
example_json$add_vector("myvec", example_vec)
example_json_string <- example_json$return_json_string()
example_json_roundtrip <- createCppJsonString(example_json_string)</pre>
```

createCppRNG

Create an R class that wraps a C++ random number generator

Description

Create an R class that wraps a C++ random number generator

Usage

```
createCppRNG(random_seed = -1)
```

Arguments

random_seed

(Optional) random seed for sampling

Value

CppRng object

createForest 45

Examples

```
rng <- createCppRNG(1234)
rng <- createCppRNG()</pre>
```

createForest

Create a forest

Description

Create a forest

Usage

```
createForest(
  num_trees,
  leaf_dimension = 1,
  is_leaf_constant = FALSE,
  is_exponentiated = FALSE
)
```

Arguments

Whether forest predictions should be exponentiated before being returned

Value

Forest object

```
num_trees <- 100
leaf_dimension <- 2
is_leaf_constant <- FALSE
is_exponentiated <- FALSE
forest <- createForest(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)</pre>
```

46 createForestModel

createForestDataset

Create a forest dataset object

Description

Create a forest dataset object

Usage

```
createForestDataset(covariates, basis = NULL, variance_weights = NULL)
```

Arguments

covariates

Matrix of covariates

basis

(Optional) Matrix of bases used to define a leaf regression

variance_weights

(Optional) Vector of observation-specific variance weights

Value

ForestDataset object

Examples

```
covariate_matrix <- matrix(runif(10*100), ncol = 10)
basis_matrix <- matrix(rnorm(3*100), ncol = 3)
weight_vector <- rnorm(100)
forest_dataset <- createForestDataset(covariate_matrix)
forest_dataset <- createForestDataset(covariate_matrix, basis_matrix)
forest_dataset <- createForestDataset(covariate_matrix, basis_matrix, weight_vector)</pre>
```

createForestModel

Create a forest model object

Description

Create a forest model object

Usage

```
createForestModel(forest_dataset, forest_model_config, global_model_config)
```

Arguments

```
forest_dataset ForestDataset object, used to initialize forest sampling data structures
forest_model_config
```

ForestModelConfig object containing forest model parameters and settings global_model_config

GlobalModelConfig object containing global model parameters and settings

Value

ForestModel object

Examples

```
num_trees <- 100</pre>
n <- 100
p <- 10
alpha <- 0.95
beta <- 2.0
min_samples_leaf <- 2</pre>
max_depth <- 10
feature_types <- as.integer(rep(0, p))</pre>
X <- matrix(runif(n*p), ncol = p)</pre>
forest_dataset <- createForestDataset(X)</pre>
forest_model_config <- createForestModelConfig(feature_types=feature_types,</pre>
                                                   num_trees=num_trees, num_features=p,
                                                 num_observations=n, alpha=alpha, beta=beta,
                                                   min_samples_leaf=min_samples_leaf,
                                                   max_depth=max_depth, leaf_model_type=1)
global_model_config <- createGlobalModelConfig(global_error_variance=1.0)</pre>
forest_model <- createForestModel(forest_dataset, forest_model_config, global_model_config)</pre>
```

createForestModelConfig

Create a forest model config object

Description

Create a forest model config object

Usage

```
createForestModelConfig(
  feature_types = NULL,
  num_trees = NULL,
  num_features = NULL,
  num_observations = NULL,
  variable_weights = NULL,
  leaf_dimension = 1,
```

```
alpha = 0.95,
beta = 2,
min_samples_leaf = 5,
max_depth = -1,
leaf_model_type = 1,
leaf_model_scale = NULL,
variance_forest_shape = 1,
variance_forest_scale = 1,
cutpoint_grid_size = 100
```

Arguments

feature_types Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered

categorical, 2 = unordered categorical)

num_trees Number of trees in the forest being sampled

num observations

Number of observations in training dataset

variable_weights

Vector specifying sampling probability for all p covariates in ForestDataset

leaf_dimension Dimension of the leaf model (default: 1)

alpha Root node split probability in tree prior (default: 0.95)

beta Depth prior penalty in tree prior (default: 2.0)

min_samples_leaf

Minimum number of samples in a tree leaf (default: 5)

max_depth Maximum depth of any tree in the ensemble in the model. Setting to -1 does

not enforce any depth limits on trees. Default: -1.

leaf_model_type

Integer specifying the leaf model type (0 = constant leaf, 1 = univariate leaf regression, 2 = multivariate leaf regression). Default: 0.

leaf_model_scale

Scale parameter used in Gaussian leaf models (can either be a scalar or a q x q matrix, where q is the dimensionality of the basis and is only >1 when leaf_model_int = 2). Calibrated internally as 1/num_trees, propagated along diagonal if needed for multivariate leaf models.

variance_forest_shape

Shape parameter for IG leaf models (applicable when leaf_model_type = 3). Default: 1.

variance_forest_scale

Scale parameter for IG leaf models (applicable when leaf_model_type = 3). Default: 1.

cutpoint_grid_size

Number of unique cutpoints to consider (default: 100)

createForestSamples 49

Value

ForestModelConfig object

Examples

```
config <- createForestModelConfig(num_trees = 10, num_features = 5, num_observations = 100)</pre>
```

createForestSamples

Create a container of forest samples

Description

Create a container of forest samples

Usage

```
createForestSamples(
  num_trees,
  leaf_dimension = 1,
  is_leaf_constant = FALSE,
  is_exponentiated = FALSE
)
```

Arguments

Whether forest predictions should be exponentiated before being returned

Value

ForestSamples object

```
num_trees <- 100
leaf_dimension <- 2
is_leaf_constant <- FALSE
is_exponentiated <- FALSE
forest_samples <- createForestSamples(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)</pre>
```

50 createOutcome

```
createGlobalModelConfig
```

Create a global model config object

Description

Create a global model config object

Usage

```
createGlobalModelConfig(global_error_variance = 1)
```

Arguments

```
global_error_variance
```

Global error variance parameter (default: 1.0)

Value

GlobalModelConfig object

Examples

```
config <- createGlobalModelConfig(global_error_variance = 100)</pre>
```

createOutcome

Create an outcome object

Description

Create an outcome object

Usage

```
createOutcome(outcome)
```

Arguments

outcome

Vector of outcome values

Value

Outcome object

```
X \leftarrow matrix(runif(10*100), ncol = 10)

y \leftarrow -5 + 10*(X[,1] > 0.5) + rnorm(100)

outcome \leftarrow createOutcome(y)
```

createPreprocessorFromJson

Reload a covariate preprocessor object from a JSON string containing a serialized preprocessor

Description

Reload a covariate preprocessor object from a JSON string containing a serialized preprocessor

Usage

```
createPreprocessorFromJson(json_object)
```

Arguments

json_object

in-memory wrapper around JSON C++ object containing covariate preprocessor metadata

Value

Preprocessor object that can be used with the preprocessPredictionData function

Examples

```
cov_mat <- matrix(1:12, ncol = 3)
preprocess_list <- preprocessTrainData(cov_mat)
preprocessor_json <- convertPreprocessorToJson(preprocess_list$metadata)
preprocessor_roundtrip <- createPreprocessorFromJson(preprocessor_json)</pre>
```

create Preprocessor From Json String

Reload a covariate preprocessor object from a JSON string containing a serialized preprocessor

Description

Reload a covariate preprocessor object from a JSON string containing a serialized preprocessor

Usage

```
createPreprocessorFromJsonString(json_string)
```

Arguments

json_string in-memory JSON string containing covariate preprocessor metadata

Value

Preprocessor object that can be used with the preprocessPredictionData function

Examples

```
cov_mat <- matrix(1:12, ncol = 3)
preprocess_list <- preprocessTrainData(cov_mat)
preprocessor_json_string <- savePreprocessorToJsonString(preprocessor_json_string)
preprocessor_roundtrip <- createPreprocessorFromJsonString(preprocessor_json_string)</pre>
```

createRandomEffectSamples

 $Create\ a\ {\tt RandomEffectSamples}\ object$

Description

Create a RandomEffectSamples object

Usage

```
createRandomEffectSamples(num_components, num_groups, random_effects_tracker)
```

Arguments

Value

RandomEffectSamples object

```
n <- 100
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)
rfx_samples <- createRandomEffectSamples(num_components, num_groups, rfx_tracker)</pre>
```

createRandomEffectsDataset

Create a random effects dataset object

Description

Create a random effects dataset object

Usage

```
createRandomEffectsDataset(group_labels, basis, variance_weights = NULL)
```

Arguments

group_labels Vector of group labels

basis Matrix of bases used to define the random effects regression (for an intercept-

only model, pass an array of ones)

variance_weights

(Optional) Vector of observation-specific variance weights

Value

RandomEffectsDataset object

Examples

```
rfx_group_ids <- sample(1:2, size = 100, replace = TRUE)
rfx_basis <- matrix(rnorm(3*100), ncol = 3)
weight_vector <- rnorm(100)
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis)
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis, weight_vector)</pre>
```

createRandomEffectsModel

Create a RandomEffectsModel object

Description

Create a RandomEffectsModel object

Usage

```
createRandomEffectsModel(num_components, num_groups)
```

Arguments

```
num_components Number of "components" or bases defining the random effects regression num_groups Number of random effects groups
```

Value

RandomEffectsModel object

Examples

```
n <- 100
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_model <- createRandomEffectsModel(num_components, num_groups)</pre>
```

createRandomEffectsTracker

Create a RandomEffectsTracker object

Description

Create a RandomEffectsTracker object

Usage

```
createRandomEffectsTracker(rfx_group_indices)
```

Arguments

```
rfx_group_indices
```

Integer indices indicating groups used to define random effects

Value

RandomEffectsTracker object

```
n <- 100
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
num_groups <- length(unique(rfx_group_ids))
num_components <- ncol(rfx_basis)
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)</pre>
```

Forest 55

Forest

Class that stores a single ensemble of decision trees (often treated as the "active forest")

Description

Wrapper around a C++ tree ensemble

Public fields

forest_ptr External pointer to a C++ TreeEnsemble class

internal_forest_is_empty Whether the forest has not yet been "initialized" such that its predict function can be called.

Methods

Public methods:

```
• Forest$new()
```

- Forest\$predict()
- Forest\$predict_raw()
- Forest\$set_root_leaves()
- Forest\$prepare_for_sampler()
- Forest\$adjust_residual()
- Forest\$num_trees()
- Forest\$leaf_dimension()
- Forest\$is_constant_leaf()
- Forest\$is_exponentiated()
- Forest\$add_numeric_split_tree()
- Forest\$get_tree_leaves()
- Forest\$get_tree_split_counts()
- Forest\$get_forest_split_counts()
- Forest\$tree_max_depth()
- Forest\$average_max_depth()
- Forest\$is_empty()

Method new(): Create a new Forest object.

```
Usage:
Forest$new(
 num_trees,
  leaf_dimension = 1,
  is_leaf_constant = FALSE,
  is\_exponentiated = FALSE
)
```

56 Forest

```
Arguments:
```

num_trees Number of trees in the forest

leaf_dimension Dimensionality of the outcome model

is_leaf_constant Whether leaf is constant

is_exponentiated Whether forest predictions should be exponentiated before being returned

Returns: A new Forest object.

Method predict(): Predict forest on every sample in forest_dataset

```
Usage:
```

```
Forest$predict(forest_dataset)
```

Arguments:

forest_dataset ForestDataset R class

Returns: vector of predictions with as many rows as in forest_dataset

Method predict_raw(): Predict "raw" leaf values (without being multiplied by basis) for every sample in forest_dataset

Usage:

Forest\$predict_raw(forest_dataset)

Arguments:

forest_dataset ForestDataset R class

Returns: Array of predictions for each observation in forest_dataset and each sample in the ForestSamples class with each prediction having the dimensionality of the forests' leaf model. In the case of a constant leaf model or univariate leaf regression, this array is a vector (length is the number of observations). In the case of a multivariate leaf regression, this array is a matrix (number of observations by leaf model dimension, number of samples).

Method set_root_leaves(): Set a constant predicted value for every tree in the ensemble. Stops program if any tree is more than a root node.

Usage:

```
Forest$set_root_leaves(leaf_value)
```

Arguments:

leaf_value Constant leaf value(s) to be fixed for each tree in the ensemble indexed by forest_num. Can be either a single number or a vector, depending on the forest's leaf dimension.

Method prepare_for_sampler(): Set a constant predicted value for every tree in the ensemble. Stops program if any tree is more than a root node.

Usage:

```
Forest$prepare_for_sampler(
  dataset,
  outcome,
  forest_model,
  leaf_model_int,
  leaf_value
)
```

```
Arguments:
 dataset ForestDataset Dataset class (covariates, basis, etc...)
 outcome Outcome class (residual / partial residual)
 forest_model ForestModel object storing tracking structures used in training / sampling
 leaf_model_int Integer value encoding the leaf model type (0 = constant gaussian, 1 = uni-
     variate gaussian, 2 = multivariate gaussian, 3 = log linear variance).
 leaf_value Constant leaf value(s) to be fixed for each tree in the ensemble indexed by forest_num.
     Can be either a single number or a vector, depending on the forest's leaf dimension.
Method adjust_residual(): Adjusts residual based on the predictions of a forest
This is typically run just once at the beginning of a forest sampling algorithm. After trees are
initialized with constant root node predictions, their root predictions are subtracted out of the
residual.
 Usage:
 Forest$adjust_residual(dataset, outcome, forest_model, requires_basis, add)
 Arguments:
 dataset ForestDataset object storing the covariates and bases for a given forest
 outcome Outcome object storing the residuals to be updated based on forest predictions
 forest_model ForestModel object storing tracking structures used in training / sampling
 requires_basis Whether or not a forest requires a basis for prediction
 add Whether forest predictions should be added to or subtracted from residuals
Method num_trees(): Return number of trees in each ensemble of a Forest object
 Usage:
 Forest$num_trees()
 Returns: Tree count
Method leaf_dimension(): Return output dimension of trees in a Forest object
 Forest$leaf_dimension()
 Returns: Leaf node parameter size
Method is_constant_leaf(): Return constant leaf status of trees in a Forest object
 Usage:
 Forest$is_constant_leaf()
 Returns: TRUE if leaves are constant, FALSE otherwise
Method is_exponentiated(): Return exponentiation status of trees in a Forest object
 Usage:
 Forest$is_exponentiated()
 Returns: TRUE if leaf predictions must be exponentiated, FALSE otherwise
```

Method add_numeric_split_tree(): Add a numeric (i.e. X[,i] <= c) split to a given tree in the ensemble

58 Forest

```
Usage:
 Forest$add_numeric_split_tree(
    tree_num,
   leaf_num,
    feature_num,
    split_threshold,
    left_leaf_value,
    right_leaf_value
 Arguments:
 tree_num Index of the tree to be split
 leaf_num Leaf to be split
 feature_num Feature that defines the new split
 split_threshold Value that defines the cutoff of the new split
 left_leaf_value Value (or vector of values) to assign to the newly created left node
 right_leaf_value Value (or vector of values) to assign to the newly created right node
Method get_tree_leaves(): Retrieve a vector of indices of leaf nodes for a given tree in a
given forest
 Usage:
 Forest$get_tree_leaves(tree_num)
 Arguments:
 tree_num Index of the tree for which leaf indices will be retrieved
Method get_tree_split_counts(): Retrieve a vector of split counts for every training set
variable in a given tree in the forest
 Usage:
 Forest$get_tree_split_counts(tree_num, num_features)
 Arguments:
 tree_num Index of the tree for which split counts will be retrieved
 num_features Total number of features in the training set
Method get_forest_split_counts(): Retrieve a vector of split counts for every training set
variable in the forest
 Usage:
 Forest$get_forest_split_counts(num_features)
 Arguments:
 num_features Total number of features in the training set
Method tree_max_depth(): Maximum depth of a specific tree in the forest
 Usage:
 Forest$tree_max_depth(tree_num)
 Arguments:
```

ForestDataset 59

tree_num Tree index within forest

Returns: Maximum leaf depth

Method average_max_depth(): Average the maximum depth of each tree in the forest

Usage:

Forest\$average_max_depth()

Returns: Average maximum depth

Method is_empty(): When a forest object is created, it is "empty" in the sense that none of its component trees have leaves with values. There are two ways to "initialize" a Forest object. First, the set_root_leaves() method simply initializes every tree in the forest to a single node carrying the same (user-specified) leaf value. Second, the prepare_for_sampler() method initializes every tree in the forest to a single node with the same value and also propagates this information through to a ForestModel object, which must be synchronized with a Forest during a forest sampler loop.

Usage:

Forest\$is_empty()

Returns: TRUE if a Forest has not yet been initialized with a constant root value, FALSE otherwise if the forest has already been initialized / grown.

ForestDataset

Dataset used to sample a forest

Description

A dataset consists of three matrices / vectors: covariates, bases, and variance weights. Both the basis vector and variance weights are optional.

Public fields

data_ptr External pointer to a C++ ForestDataset class

Methods

Public methods:

- ForestDataset\$new()
- ForestDataset\$update_basis()
- ForestDataset\$num_observations()
- ForestDataset\$num_covariates()
- ForestDataset\$num_basis()
- ForestDataset\$has_basis()
- ForestDataset\$has_variance_weights()

Method new(): Create a new ForestDataset object.

```
Usage:
 ForestDataset$new(covariates, basis = NULL, variance_weights = NULL)
 Arguments:
 covariates Matrix of covariates
 basis (Optional) Matrix of bases used to define a leaf regression
 variance_weights (Optional) Vector of observation-specific variance weights
 Returns: A new ForestDataset object.
Method update_basis(): Update basis matrix in a dataset
 Usage:
 ForestDataset$update_basis(basis)
 Arguments:
 basis Updated matrix of bases used to define a leaf regression
Method num_observations(): Return number of observations in a ForestDataset object
 Usage:
 ForestDataset$num_observations()
 Returns: Observation count
Method num_covariates(): Return number of covariates in a ForestDataset object
 Usage:
 ForestDataset$num_covariates()
 Returns: Covariate count
Method num_basis(): Return number of bases in a ForestDataset object
 Usage:
 ForestDataset$num_basis()
 Returns: Basis count
Method has_basis(): Whether or not a dataset has a basis matrix
 Usage:
 ForestDataset$has_basis()
 Returns: True if basis matrix is loaded, false otherwise
Method has_variance_weights(): Whether or not a dataset has variance weights
 Usage:
 ForestDataset$has_variance_weights()
 Returns: True if variance weights are loaded, false otherwise
```

ForestModel 61

ForestModel

Class that defines and samples a forest model

Description

Hosts the C++ data structures needed to sample an ensemble of decision trees, and exposes functionality to run a forest sampler (using either MCMC or the grow-from-root algorithm).

Public fields

```
tracker_ptr External pointer to a C++ ForestTracker class
tree_prior_ptr External pointer to a C++ TreePrior class
```

Methods

Public methods:

```
• ForestModel$new()
```

- ForestModel\$sample_one_iteration()
- ForestModel\$propagate_basis_update()
- ForestModel\$propagate_residual_update()
- ForestModel\$update_alpha()
- ForestModel\$update_beta()
- ForestModel\$update_min_samples_leaf()
- ForestModel\$update_max_depth()

Method new(): Create a new ForestModel object.

```
Usage:
ForestModel$new(
  forest_dataset,
  feature_types,
  num_trees,
  n,
  alpha,
  beta,
  min_samples_leaf,
  max_depth = -1
)
```

Arguments:

forest_dataset ForestDataset object, used to initialize forest sampling data structures

feature_types Feature types (integers where 0 = numeric, 1 = ordered categorical, 2 = unordered categorical)

num_trees Number of trees in the forest being sampled

n Number of observations in forest_dataset

alpha Root node split probability in tree prior

62 ForestModel

```
beta Depth prior penalty in tree prior
 min_samples_leaf Minimum number of samples in a tree leaf
 max_depth Maximum depth that any tree can reach
 Returns: A new ForestModel object.
Method sample_one_iteration(): Run a single iteration of the forest sampling algorithm
(MCMC or GFR)
 Usage:
 ForestModel$sample_one_iteration(
    forest_dataset,
    residual,
    forest_samples,
    active_forest,
    rng,
    forest_model_config,
    global_model_config,
   keep_forest = TRUE,
    gfr = TRUE
 )
 Arguments:
 forest_dataset Dataset used to sample the forest
 residual Outcome used to sample the forest
 forest_samples Container of forest samples
 active_forest "Active" forest updated by the sampler in each iteration
 rng Wrapper around C++ random number generator
 forest_model_config ForestModelConfig object containing forest model parameters and set-
 global_model_config GlobalModelConfig object containing global model parameters and
     settings
 keep_forest (Optional) Whether the updated forest sample should be saved to forest_samples.
```

Default: TRUE.

gfr (Optional) Whether or not the forest should be sampled using the "grow-from-root" (GFR)

gfr (Optional) Whether or not the forest should be sampled using the "grow-from-root" (GFR) algorithm. Default: TRUE.

Method propagate_basis_update(): Propagates basis update through to the (full/partial) residual by iteratively (a) adding back in the previous prediction of each tree, (b) recomputing predictions for each tree (caching on the C++ side), (c) subtracting the new predictions from the residual.

This is useful in cases where a basis (for e.g. leaf regression) is updated outside of a tree sampler (as with e.g. adaptive coding for binary treatment BCF). Once a basis has been updated, the overall "function" represented by a tree model has changed and this should be reflected through to the residual before the next sampling loop is run.

```
Usage:
ForestModel$propagate_basis_update(dataset, outcome, active_forest)
Arguments:
```

dataset ForestDataset object storing the covariates and bases for a given forest outcome Outcome object storing the residuals to be updated based on forest predictions active_forest "Active" forest updated by the sampler in each iteration

Method propagate_residual_update(): Update the current state of the outcome (i.e. partial residual) data by subtracting the current predictions of each tree. This function is run after the Outcome class's update_data method, which overwrites the partial residual with an entirely new stream of outcome data.

Usage: ForestModel\$propagate_residual_update(residual) Arguments: residual Outcome used to sample the forest Returns: None Method update_alpha(): Update alpha in the tree prior Usage: ForestModel\$update_alpha(alpha) Arguments: alpha New value of alpha to be used Returns: None Method update_beta(): Update beta in the tree prior Usage: ForestModel\$update_beta(beta) Arguments: beta New value of beta to be used Returns: None Method update_min_samples_leaf(): Update min_samples_leaf in the tree prior Usage: ForestModel\$update_min_samples_leaf(min_samples_leaf) Arguments: min_samples_leaf New value of min_samples_leaf to be used Returns: None **Method** update_max_depth(): Update max_depth in the tree prior ForestModel\$update_max_depth(max_depth) Arguments: max_depth New value of max_depth to be used

Returns: None

64 ForestModelConfig

ForestModelConfig	Object used to get / set parameters and other model configuration options for a forest model in the "low-level" stochtree interface

Description

The "low-level" stochtree interface enables a high degreee of sampler customization, in which users employ R wrappers around C++ objects like ForestDataset, Outcome, CppRng, and ForestModel to run the Gibbs sampler of a BART model with custom modifications. ForestModelConfig allows users to specify / query the parameters of a forest model they wish to run.

Value

Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered categorical, 2 = unordered categorical)

Vector specifying sampling probability for all p covariates in ForestDataset

Root node split probability in tree prior

Depth prior penalty in tree prior

Minimum number of samples in a tree leaf

Maximum depth of any tree in the ensemble in the model

Scale parameter used in Gaussian leaf models

Shape parameter for IG leaf models

Scale parameter for IG leaf models

Number of unique cutpoints to consider

Public fields

feature_types Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered categorical, 2 = unordered categorical)

num_trees Number of trees in the forest being sampled

num_features Number of features in training dataset

num_observations Number of observations in training dataset

leaf_dimension Dimension of the leaf model

alpha Root node split probability in tree prior

beta Depth prior penalty in tree prior

min_samples_leaf Minimum number of samples in a tree leaf

max_depth Maximum depth of any tree in the ensemble in the model. Setting to -1 does not enforce any depth limits on trees.

leaf_model_type Integer specifying the leaf model type (0 = constant leaf, 1 = univariate leaf regression, 2 = multivariate leaf regression)

leaf_model_scale Scale parameter used in Gaussian leaf models

ForestModelConfig 65

```
variable_weights Vector specifying sampling probability for all p covariates in ForestDataset
variance_forest_shape Shape parameter for IG leaf models (applicable when leaf_model_type = 3)
variance_forest_scale Scale parameter for IG leaf models (applicable when leaf_model_type = 3)
cutpoint_grid_size Number of unique cutpoints to consider Create a new ForestModelConfig object.
```

Methods

Public methods:

- ForestModelConfig\$new()
- ForestModelConfig\$update_feature_types()
- ForestModelConfig\$update_variable_weights()
- ForestModelConfig\$update_alpha()
- ForestModelConfig\$update_beta()
- ForestModelConfig\$update_min_samples_leaf()
- ForestModelConfig\$update_max_depth()
- ForestModelConfig\$update_leaf_model_scale()
- ForestModelConfig\$update_variance_forest_shape()
- ForestModelConfig\$update_variance_forest_scale()
- ForestModelConfig\$update_cutpoint_grid_size()
- ForestModelConfig\$get_feature_types()
- ForestModelConfig\$get_variable_weights()
- ForestModelConfig\$get_alpha()
- ForestModelConfig\$get_beta()
- ForestModelConfig\$get_min_samples_leaf()
- ForestModelConfig\$get_max_depth()
- ForestModelConfig\$get_leaf_model_scale()
- ForestModelConfig\$get_variance_forest_shape()
- ForestModelConfig\$get_variance_forest_scale()
- ForestModelConfig\$get_cutpoint_grid_size()

Method new():

Usage:

```
ForestModelConfig$new(
   feature_types = NULL,
   num_trees = NULL,
   num_features = NULL,
   num_observations = NULL,
   variable_weights = NULL,
   leaf_dimension = 1,
   alpha = 0.95,
   beta = 2,
```

66 ForestModelConfig

```
min_samples_leaf = 5,
   max_depth = -1,
    leaf_model_type = 1,
    leaf_model_scale = NULL,
    variance_forest_shape = 1,
    variance_forest_scale = 1,
    cutpoint_grid_size = 100
 )
 Arguments:
 feature_types Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered
     categorical, 2 = unordered categorical)
 num_trees Number of trees in the forest being sampled
 num_features Number of features in training dataset
 num_observations Number of observations in training dataset
 variable_weights Vector specifying sampling probability for all p covariates in ForestDataset
 leaf_dimension Dimension of the leaf model (default: 1)
 alpha Root node split probability in tree prior (default: 0.95)
 beta Depth prior penalty in tree prior (default: 2.0)
 min_samples_leaf Minimum number of samples in a tree leaf (default: 5)
 max_depth Maximum depth of any tree in the ensemble in the model. Setting to -1 does not
     enforce any depth limits on trees. Default: -1.
 leaf_model_type Integer specifying the leaf model type (0 = constant leaf, 1 = univariate leaf
     regression, 2 = \text{multivariate leaf regression}). Default: 0.
 leaf_model_scale Scale parameter used in Gaussian leaf models (can either be a scalar or a q
     x q matrix, where q is the dimensionality of the basis and is only >1 when leaf_model_int
     = 2). Calibrated internally as 1/num_trees, propagated along diagonal if needed for multi-
     variate leaf models.
 variance_forest_shape Shape parameter for IG leaf models (applicable when leaf_model_type
     = 3). Default: 1.
 variance_forest_scale Scale parameter for IG leaf models (applicable when leaf_model_type
     = 3). Default: 1.
 cutpoint_grid_size Number of unique cutpoints to consider (default: 100)
 Returns: A new ForestModelConfig object.
Method update_feature_types(): Update feature types
 ForestModelConfig$update_feature_types(feature_types)
 Arguments:
 feature_types Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered
     categorical, 2 = unordered categorical)
Method update_variable_weights(): Update variable weights
 Usage:
 ForestModelConfig$update_variable_weights(variable_weights)
```

Arguments: variable_weights Vector specifying sampling probability for all p covariates in ForestDataset **Method** update_alpha(): Update root node split probability in tree prior Usage: ForestModelConfig\$update_alpha(alpha) Arguments: alpha Root node split probability in tree prior **Method** update_beta(): Update depth prior penalty in tree prior Usage: ForestModelConfig\$update_beta(beta) Arguments: beta Depth prior penalty in tree prior **Method** update_min_samples_leaf(): Update root node split probability in tree prior Usage: ForestModelConfig\$update_min_samples_leaf(min_samples_leaf) Arguments: min_samples_leaf Minimum number of samples in a tree leaf Method update_max_depth(): Update root node split probability in tree prior Usage: ForestModelConfig\$update_max_depth(max_depth) Arguments: max_depth Maximum depth of any tree in the ensemble in the model Method update_leaf_model_scale(): Update scale parameter used in Gaussian leaf models Usage: ForestModelConfig\$update_leaf_model_scale(leaf_model_scale) Arguments: leaf_model_scale Scale parameter used in Gaussian leaf models **Method** update_variance_forest_shape(): Update shape parameter for IG leaf models Usage: ForestModelConfig\$update_variance_forest_shape(variance_forest_shape) Arguments: variance_forest_shape Shape parameter for IG leaf models Method update_variance_forest_scale(): Update scale parameter for IG leaf models Usage: ForestModelConfig\$update_variance_forest_scale(variance_forest_scale)

Arguments: variance_forest_scale Scale parameter for IG leaf models Method update_cutpoint_grid_size(): Update number of unique cutpoints to consider Usage: ForestModelConfig\$update_cutpoint_grid_size(cutpoint_grid_size) Arguments: cutpoint_grid_size Number of unique cutpoints to consider Method get_feature_types(): Query feature types for this ForestModelConfig object Usage: ForestModelConfig\$get_feature_types() Method get_variable_weights(): Query variable weights for this ForestModelConfig object Usage: ForestModelConfig\$get_variable_weights() **Method** get_alpha(): Query root node split probability in tree prior for this ForestModelConfig object Usage: ForestModelConfig\$get_alpha() Method get_beta(): Query depth prior penalty in tree prior for this ForestModelConfig object Usage: ForestModelConfig\$get_beta() Method get_min_samples_leaf(): Query root node split probability in tree prior for this ForestModelConfig object Usage: ForestModelConfig\$get_min_samples_leaf() Method get_max_depth(): Query root node split probability in tree prior for this ForestModel-Config object Usage: ForestModelConfig\$get_max_depth() Method get_leaf_model_scale(): Query scale parameter used in Gaussian leaf models for this ForestModelConfig object Usage: ForestModelConfig\$get_leaf_model_scale() **Method** get_variance_forest_shape(): Query shape parameter for IG leaf models for this ForestModelConfig object Usage: ForestModelConfig\$get_variance_forest_shape()

ForestSamples 69

Method get_variance_forest_scale(): Query scale parameter for IG leaf models for this ForestModelConfig object

Usage:

ForestModelConfig\$get_variance_forest_scale()

Method get_cutpoint_grid_size(): Query number of unique cutpoints to consider for this ForestModelConfig object

Usage:

ForestModelConfig\$get_cutpoint_grid_size()

ForestSamples

Class that stores draws from an random ensemble of decision trees

Description

Wrapper around a C++ container of tree ensembles

Public fields

forest_container_ptr External pointer to a C++ ForestContainer class

Methods

Public methods:

- ForestSamples\$new()
- ForestSamples\$load_from_json()
- ForestSamples\$append_from_json()
- ForestSamples\$load_from_json_string()
- ForestSamples\$append_from_json_string()
- ForestSamples\$predict()
- ForestSamples\$predict_raw()
- ForestSamples\$predict_raw_single_forest()
- ForestSamples\$predict_raw_single_tree()
- ForestSamples\$set_root_leaves()
- ForestSamples\$prepare_for_sampler()
- ForestSamples\$adjust_residual()
- ForestSamples\$save_json()
- ForestSamples\$load_json()
- ForestSamples\$num_samples()
- ForestSamples\$num_trees()
- ForestSamples\$leaf_dimension()
- ForestSamples\$is_constant_leaf()
- ForestSamples\$is_exponentiated()

70 ForestSamples

```
• ForestSamples$add_forest_with_constant_leaves()
  • ForestSamples$add_numeric_split_tree()
  • ForestSamples$get_tree_leaves()
  • ForestSamples$get_tree_split_counts()
  • ForestSamples$get_forest_split_counts()
  • ForestSamples$get_aggregate_split_counts()
  • ForestSamples$get_granular_split_counts()
  • ForestSamples$ensemble_tree_max_depth()
  • ForestSamples$average_ensemble_max_depth()
  • ForestSamples$average_max_depth()
  • ForestSamples$num_forest_leaves()
  • ForestSamples$sum_leaves_squared()
  • ForestSamples$is_leaf_node()
  • ForestSamples$is_numeric_split_node()
  • ForestSamples$is_categorical_split_node()
  • ForestSamples$parent_node()
  • ForestSamples$left_child_node()
  • ForestSamples$right_child_node()
  • ForestSamples$node_depth()
  • ForestSamples$node_split_index()
  • ForestSamples$node_split_threshold()
  • ForestSamples$node_split_categories()
  • ForestSamples$node_leaf_values()
  • ForestSamples$num_nodes()
  • ForestSamples$num_leaves()
  • ForestSamples$num_leaf_parents()
  • ForestSamples$num_split_nodes()
  • ForestSamples$nodes()
  • ForestSamples$leaves()
  • ForestSamples$delete_sample()
Method new(): Create a new ForestContainer object.
 Usage:
 ForestSamples$new(
   num_trees,
   leaf_dimension = 1,
   is_leaf_constant = FALSE,
   is_exponentiated = FALSE
 )
 Arguments:
 num_trees Number of trees
 leaf_dimension Dimensionality of the outcome model
 is_leaf_constant Whether leaf is constant
```

is_exponentiated Whether forest predictions should be exponentiated before being returned
Returns: A new ForestContainer object.

Method load_from_json(): Create a new ForestContainer object from a json object

Usage:

ForestSamples\$load_from_json(json_object, json_forest_label)

Arguments:

json_object Object of class CppJson

json_forest_label Label referring to a particular forest (i.e. "forest_0") in the overall json hierarchy

Returns: A new ForestContainer object.

Method append_from_json(): Append to a ForestContainer object from a json object

Usage:

ForestSamples\$append_from_json(json_object, json_forest_label)

Arguments:

json_object Object of class CppJson

json_forest_label Label referring to a particular forest (i.e. "forest_0") in the overall json hierarchy

Returns: None

 $\textbf{Method} \ \texttt{load_from_json_string():} \ \ Create \ a \ new \ \texttt{ForestContainer} \ object \ from \ a \ json \ object$

Usage:

ForestSamples\$load_from_json_string(json_string, json_forest_label)

Arguments:

json_string JSON string which parses into object of class CppJson

json_forest_label Label referring to a particular forest (i.e. "forest_0") in the overall json hierarchy

Returns: A new ForestContainer object.

Method append_from_json_string(): Append to a ForestContainer object from a json object

Usage:

ForestSamples\$append_from_json_string(json_string, json_forest_label)

Arguments:

json_string JSON string which parses into object of class CppJson

json_forest_label Label referring to a particular forest (i.e. "forest_0") in the overall json hierarchy

Returns: None

Method predict(): Predict every tree ensemble on every sample in forest_dataset *Usage*:

72 ForestSamples

ForestSamples\$predict(forest_dataset)

Arguments:

forest_dataset ForestDataset R class

Returns: matrix of predictions with as many rows as in forest_dataset and as many columns as samples in the ForestContainer

Method predict_raw(): Predict "raw" leaf values (without being multiplied by basis) for every tree ensemble on every sample in forest_dataset

Usage:

ForestSamples\$predict_raw(forest_dataset)

Arguments:

forest_dataset ForestDataset R class

Returns: Array of predictions for each observation in forest_dataset and each sample in the ForestSamples class with each prediction having the dimensionality of the forests' leaf model. In the case of a constant leaf model or univariate leaf regression, this array is two-dimensional (number of observations, number of forest samples). In the case of a multivariate leaf regression, this array is three-dimension (number of observations, leaf model dimension, number of samples).

Method predict_raw_single_forest(): Predict "raw" leaf values (without being multiplied by basis) for a specific forest on every sample in forest_dataset

Usage:

ForestSamples\$predict_raw_single_forest(forest_dataset, forest_num)

Arguments:

forest_dataset ForestDataset R class

forest_num Index of the forest sample within the container

Returns: matrix of predictions with as many rows as in forest_dataset and as many columns as dimensions in the leaves of trees in ForestContainer

Method predict_raw_single_tree(): Predict "raw" leaf values (without being multiplied by basis) for a specific tree in a specific forest on every observation in forest_dataset

Usage:

ForestSamples\$predict_raw_single_tree(forest_dataset, forest_num, tree_num)

Arguments:

forest_dataset ForestDataset R class

forest_num Index of the forest sample within the container

tree_num Index of the tree to be queried

Returns: matrix of predictions with as many rows as in forest_dataset and as many columns as dimensions in the leaves of trees in ForestContainer

Method set_root_leaves(): Set a constant predicted value for every tree in the ensemble. Stops program if any tree is more than a root node.

Usage:

```
ForestSamples$set_root_leaves(forest_num, leaf_value)

*Arguments:
```

forest_num Index of the forest sample within the container.

leaf_value Constant leaf value(s) to be fixed for each tree in the ensemble indexed by forest_num. Can be either a single number or a vector, depending on the forest's leaf dimension.

Method prepare_for_sampler(): Set a constant predicted value for every tree in the ensemble. Stops program if any tree is more than a root node.

```
Usage:
ForestSamples$prepare_for_sampler(
    dataset,
    outcome,
    forest_model,
    leaf_model_int,
    leaf_value
)

Arguments:
dataset ForestDataset Dataset class (covariates, basis, etc...)
outcome Outcome Outcome class (residual / partial residual)
forest_model ForestModel object storing tracking structures used in training / sampling
leaf_model_int Integer value encoding the leaf model type (0 = constant gaussian, 1 = univariate gaussian, 2 = multivariate gaussian, 3 = log linear variance).
leaf_value Constant leaf value(s) to be fixed for each tree in the ensemble indexed by forest_num.
Can be either a single number or a vector, depending on the forest's leaf dimension.
```

Method adjust_residual(): Adjusts residual based on the predictions of a forest

This is typically run just once at the beginning of a forest sampling algorithm. After trees are initialized with constant root node predictions, their root predictions are subtracted out of the residual.

```
Usage:
```

```
ForestSamples$adjust_residual(
  dataset,
  outcome,
  forest_model,
  requires_basis,
  forest_num,
  add
)
```

Arguments:

dataset ForestDataset object storing the covariates and bases for a given forest outcome Outcome Object storing the residuals to be updated based on forest predictions forest_model ForestModel object storing tracking structures used in training / sampling requires_basis Whether or not a forest requires a basis for prediction forest_num Index of forest used to update residuals add Whether forest predictions should be added to or subtracted from residuals

Method save_json(): Store the trees and metadata of ForestDataset class in a json file

```
ForestSamples$save_json(json_filename)
 Arguments:
 json_filename Name of output json file (must end in ".json")
Method load_json(): Load trees and metadata for an ensemble from a json file. Note that any
trees and metadata already present in ForestDataset class will be overwritten.
 Usage:
 ForestSamples$load_json(json_filename)
 Arguments:
 json_filename Name of model input json file (must end in ".json")
Method num_samples(): Return number of samples in a ForestContainer object
 Usage:
 ForestSamples$num_samples()
 Returns: Sample count
Method num_trees(): Return number of trees in each ensemble of a ForestContainer object
 Usage:
 ForestSamples$num_trees()
 Returns: Tree count
Method leaf_dimension(): Return output dimension of trees in a ForestContainer object
 ForestSamples$leaf_dimension()
 Returns: Leaf node parameter size
Method is_constant_leaf(): Return constant leaf status of trees in a ForestContainer ob-
ject
 Usage:
 ForestSamples$is_constant_leaf()
 Returns: TRUE if leaves are constant, FALSE otherwise
Method is_exponentiated(): Return exponentiation status of trees in a ForestContainer
object
 Usage:
 ForestSamples$is_exponentiated()
 Returns: TRUE if leaf predictions must be exponentiated, FALSE otherwise
Method add_forest_with_constant_leaves(): Add a new all-root ensemble to the container,
```

with all of the leaves set to the value / vector provided

Usage:

ForestSamples\$add_forest_with_constant_leaves(leaf_value)

```
leaf_value Value (or vector of values) to initialize root nodes in tree
Method add_numeric_split_tree(): Add a numeric (i.e. X[,i] <= c) split to a given tree in
the ensemble
 Usage:
 ForestSamples$add_numeric_split_tree(
    forest_num,
    tree_num,
    leaf_num,
    feature_num,
    split_threshold,
   left_leaf_value,
    right_leaf_value
 )
 Arguments:
 forest_num Index of the forest which contains the tree to be split
 tree_num Index of the tree to be split
 leaf_num Leaf to be split
 feature_num Feature that defines the new split
 split_threshold Value that defines the cutoff of the new split
 left_leaf_value Value (or vector of values) to assign to the newly created left node
 right_leaf_value Value (or vector of values) to assign to the newly created right node
Method get_tree_leaves(): Retrieve a vector of indices of leaf nodes for a given tree in a
given forest
 Usage:
 ForestSamples$get_tree_leaves(forest_num, tree_num)
 Arguments:
 forest_num Index of the forest which contains tree tree_num
 tree_num Index of the tree for which leaf indices will be retrieved
Method get_tree_split_counts(): Retrieve a vector of split counts for every training set
variable in a given tree in a given forest
 Usage:
 ForestSamples$get_tree_split_counts(forest_num, tree_num, num_features)
 Arguments:
 forest_num Index of the forest which contains tree tree_num
 tree_num Index of the tree for which split counts will be retrieved
 num_features Total number of features in the training set
Method get_forest_split_counts(): Retrieve a vector of split counts for every training set
variable in a given forest
```

Usage:

ForestSamples\$get_forest_split_counts(forest_num, num_features)

Arguments:

forest_num Index of the forest for which split counts will be retrieved

num_features Total number of features in the training set

Method get_aggregate_split_counts(): Retrieve a vector of split counts for every training set variable in a given forest, aggregated across ensembles and trees

Usage:

ForestSamples\$get_aggregate_split_counts(num_features)

Arguments:

num_features Total number of features in the training set

Method get_granular_split_counts(): Retrieve a vector of split counts for every training set variable in a given forest, reported separately for each ensemble and tree

Usage:

ForestSamples\$get_granular_split_counts(num_features)

Arguments:

num_features Total number of features in the training set

Method ensemble_tree_max_depth(): Maximum depth of a specific tree in a specific ensemble in a ForestSamples object

Usage:

ForestSamples\$ensemble_tree_max_depth(ensemble_num, tree_num)

Arguments:

ensemble_num Ensemble number

tree_num Tree index within ensemble ensemble_num

Returns: Maximum leaf depth

Method average_ensemble_max_depth(): Average the maximum depth of each tree in a given ensemble in a ForestSamples object

Usage:

ForestSamples\$average_ensemble_max_depth(ensemble_num)

Arguments.

ensemble_num Ensemble number

Returns: Average maximum depth

Method average_max_depth(): Average the maximum depth of each tree in each ensemble in a ForestContainer object

Usage.

ForestSamples\$average_max_depth()

Returns: Average maximum depth

Method num_forest_leaves(): Number of leaves in a given ensemble in a ForestSamples object

Usage:

ForestSamples\$num_forest_leaves(forest_num)

Arguments:

forest_num Index of the ensemble to be queried

Returns: Count of leaves in the ensemble stored at forest_num

Method sum_leaves_squared(): Sum of squared (raw) leaf values in a given ensemble in a ForestSamples object

Usage:

ForestSamples\$sum_leaves_squared(forest_num)

Arguments:

forest_num Index of the ensemble to be queried

Returns: Average maximum depth

Method is_leaf_node(): Whether or not a given node of a given tree in a given forest in the ForestSamples is a leaf

Usage:

ForestSamples\$is_leaf_node(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

node_id Index of the node to be queried

Returns: TRUE if node is a leaf, FALSE otherwise

Method is_numeric_split_node(): Whether or not a given node of a given tree in a given forest in the ForestSamples is a numeric split node

Usage:

ForestSamples\$is_numeric_split_node(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

node_id Index of the node to be queried

Returns: TRUE if node is a numeric split node, FALSE otherwise

Method is_categorical_split_node(): Whether or not a given node of a given tree in a given forest in the ForestSamples is a categorical split node

Usage:

ForestSamples\$is_categorical_split_node(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried node_id Index of the node to be queried

Returns: TRUE if node is a categorical split node, FALSE otherwise

Method parent_node(): Parent node of given node of a given tree in a given forest in a ForestSamples object

Usage:

ForestSamples\$parent_node(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried
tree_num Index of the tree to be queried

node_id Index of the node to be queried

Returns: Integer ID of the parent node

Method left_child_node(): Left child node of given node of a given tree in a given forest in a ForestSamples object

Usage:

ForestSamples\$left_child_node(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

node_id Index of the node to be queried

Returns: Integer ID of the left child node

Method right_child_node(): Right child node of given node of a given tree in a given forest in a ForestSamples object

Usage:

ForestSamples\$right_child_node(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

node_id Index of the node to be queried

Returns: Integer ID of the right child node

Method node_depth(): Depth of given node of a given tree in a given forest in a ForestSamples object, with 0 depth for the root node.

Usage:

ForestSamples\$node_depth(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

node_id Index of the node to be queried

Returns: Integer valued depth of the node

Method node_split_index(): Split index of given node of a given tree in a given forest in a ForestSamples object. Returns -1 is node is a leaf.

Usage:

ForestSamples\$node_split_index(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

node_id Index of the node to be queried

Returns: Integer valued depth of the node

Method node_split_threshold(): Threshold that defines a numeric split for a given node of a given tree in a given forest in a ForestSamples object. Returns Inf if the node is a leaf or a categorical split node.

Usage:

ForestSamples\$node_split_threshold(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

node_id Index of the node to be queried

Returns: Threshold defining a split for the node

Method node_split_categories(): Array of category indices that define a categorical split for a given node of a given tree in a given forest in a ForestSamples object. Returns c(Inf) if the node is a leaf or a numeric split node.

Usage:

ForestSamples\$node_split_categories(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

node_id Index of the node to be queried

Returns: Categories defining a split for the node

Method node_leaf_values(): Leaf node value(s) for a given node of a given tree in a given forest in a ForestSamples object. Values are stale if the node is a split node.

Usage:

ForestSamples\$node_leaf_values(forest_num, tree_num, node_id)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

node_id Index of the node to be queried

Returns: Vector (often univariate) of leaf values

Method num_nodes(): Number of nodes in a given tree in a given forest in a ForestSamples object.

Usage:

ForestSamples\$num_nodes(forest_num, tree_num)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

Returns: Count of total tree nodes

Method num_leaves(): Number of leaves in a given tree in a given forest in a ForestSamples object.

Usage:

ForestSamples\$num_leaves(forest_num, tree_num)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

Returns: Count of total tree leaves

Method num_leaf_parents(): Number of leaf parents (split nodes with two leaves as children) in a given tree in a given forest in a ForestSamples object.

Usage:

ForestSamples\$num_leaf_parents(forest_num, tree_num)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

Returns: Count of total tree leaf parents

Method num_split_nodes(): Number of split nodes in a given tree in a given forest in a ForestSamples object.

Usage:

ForestSamples\$num_split_nodes(forest_num, tree_num)

Arguments:

forest_num Index of the forest to be queried

tree_num Index of the tree to be queried

Returns: Count of total tree split nodes

Method nodes(): Array of node indices in a given tree in a given forest in a ForestSamples object.

Usage:

ForestSamples\$nodes(forest_num, tree_num)

Arguments:

forest_num Index of the forest to be queried
tree_num Index of the tree to be queried

Returns: Indices of tree nodes

Method leaves(): Array of leaf indices in a given tree in a given forest in a ForestSamples object.

Usage:

ForestSamples\$leaves(forest_num, tree_num)

Arguments:

forest_num Index of the forest to be queried
tree_num Index of the tree to be queried

Returns: Indices of leaf nodes

Method delete_sample(): Modify the ForestSamples object by removing the forest sample indexed by 'forest_num

Usage:

ForestSamples\$delete_sample(forest_num)

Arguments:

forest_num Index of the forest to be removed

 ${\tt getRandomEffectSamples}$

Generic function for extracting random effect samples from a model object (BCF, BART, etc...)

Description

Generic function for extracting random effect samples from a model object (BCF, BART, etc...)

Usage

```
getRandomEffectSamples(object, ...)
```

Arguments

object Fitted model object from which to extract random effects
... Other parameters to be used in random effects extraction

Value

List of random effect samples

Examples

getRandomEffectSamples.bartmodel

Extract raw sample values for each of the random effect parameter terms.

Description

Extract raw sample values for each of the random effect parameter terms.

Usage

```
## S3 method for class 'bartmodel'
getRandomEffectSamples(object, ...)
```

Arguments

object Object of type bartmodel containing draws of a BART model and associated sampling outputs.

... Other parameters to be used in random effects extraction

Value

List of arrays. The alpha array has dimension (num_components, num_samples) and is simply a vector if num_components = 1. The xi and beta arrays have dimension (num_components, num_groups, num_samples) and is simply a matrix if num_components = 1. The sigma array has dimension (num_components, num_samples) and is simply a vector if num_components = 1.

```
n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)
f_XW <- (
        ((0 <= X[,1]) & (0.25 > X[,1])) * (-7.5) +
        ((0.25 <= X[,1]) & (0.5 > X[,1])) * (-2.5) +
        ((0.5 <= X[,1]) & (0.75 > X[,1])) * (2.5) +
        ((0.75 <= X[,1]) & (1 > X[,1])) * (7.5)
```

```
snr <- 3
group_ids <- rep(c(1,2), n %/% 2)
rfx_coefs <- matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)</pre>
rfx_basis <- cbind(1, runif(n, -1, 1))</pre>
rfx_term <- rowSums(rfx_coefs[group_ids,] * rfx_basis)</pre>
E_y \leftarrow f_XW + rfx_term
y \leftarrow E_y + rnorm(n, 0, 1)*(sd(E_y)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
rfx_group_ids_test <- group_ids[test_inds]</pre>
rfx_group_ids_train <- group_ids[train_inds]</pre>
rfx_basis_test <- rfx_basis[test_inds,]</pre>
rfx_basis_train <- rfx_basis[train_inds,]</pre>
rfx_term_test <- rfx_term[test_inds]</pre>
rfx_term_train <- rfx_term[train_inds]</pre>
bart_model <- bart(X_train = X_train, y_train = y_train, X_test = X_test,</pre>
                     rfx_group_ids_train = rfx_group_ids_train,
                     rfx_group_ids_test = rfx_group_ids_test,
                     rfx_basis_train = rfx_basis_train,
                     rfx_basis_test = rfx_basis_test,
                     num_gfr = 10, num_burnin = 0, num_mcmc = 10)
rfx_samples <- getRandomEffectSamples(bart_model)</pre>
```

getRandomEffectSamples.bcfmodel

Extract raw sample values for each of the random effect parameter terms.

Description

Extract raw sample values for each of the random effect parameter terms.

Usage

```
## S3 method for class 'bcfmodel'
getRandomEffectSamples(object, ...)
```

Arguments

object Object of type bcfmodel containing draws of a Bayesian causal forest model and associated sampling outputs.

.. Other parameters to be used in random effects extraction

Value

List of arrays. The alpha array has dimension (num_components, num_samples) and is simply a vector if num_components = 1. The xi and beta arrays have dimension (num_components, num_groups, num_samples) and is simply a matrix if num_components = 1. The sigma array has dimension (num_components, num_samples) and is simply a vector if num_components = 1.

```
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
mu_x < - (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
pi_x <- (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (0.2) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (0.4) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (0.6) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (0.8)
)
tau_x <- (
    ((0 \le X[,2]) & (0.25 > X[,2])) * (0.5) +
    ((0.25 \le X[,2]) & (0.5 > X[,2])) * (1.0) +
    ((0.5 \le X[,2]) & (0.75 > X[,2])) * (1.5) +
    ((0.75 \le X[,2]) & (1 > X[,2])) * (2.0)
)
Z \leftarrow rbinom(n, 1, pi_x)
E_XZ \leftarrow mu_x + Z*tau_x
snr <- 3
rfx_group_ids <- rep(c(1,2), n \%/% 2)
rfx\_coefs \leftarrow matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))</pre>
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)</pre>
y \leftarrow E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test</pre>
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
pi_test <- pi_x[test_inds]</pre>
pi_train <- pi_x[train_inds]</pre>
Z_test <- Z[test_inds]</pre>
Z_train <- Z[train_inds]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
mu_test <- mu_x[test_inds]</pre>
mu_train <- mu_x[train_inds]</pre>
```

GlobalModelConfig 85

```
tau_test <- tau_x[test_inds]</pre>
tau_train <- tau_x[train_inds]</pre>
rfx_group_ids_test <- rfx_group_ids[test_inds]</pre>
rfx_group_ids_train <- rfx_group_ids[train_inds]</pre>
rfx_basis_test <- rfx_basis[test_inds,]</pre>
rfx_basis_train <- rfx_basis[train_inds,]
rfx_term_test <- rfx_term[test_inds]
rfx_term_train <- rfx_term[train_inds]</pre>
mu_params <- list(sample_sigma_leaf = TRUE)</pre>
tau_params <- list(sample_sigma_leaf = FALSE)</pre>
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,</pre>
                  propensity_train = pi_train,
                  rfx_group_ids_train = rfx_group_ids_train,
                  rfx_basis_train = rfx_basis_train, X_test = X_test,
                  Z_test = Z_test, propensity_test = pi_test,
                  rfx_group_ids_test = rfx_group_ids_test,
                  rfx_basis_test = rfx_basis_test,
                  num_gfr = 10, num_burnin = 0, num_mcmc = 10,
                  prognostic_forest_params = mu_params,
                  treatment_effect_forest_params = tau_params)
rfx_samples <- getRandomEffectSamples(bcf_model)</pre>
```

GlobalModelConfig

Object used to get / set global parameters and other global model configuration options in the "low-level" stochtree interface

Description

The "low-level" stochtree interface enables a high degreee of sampler customization, in which users employ R wrappers around C++ objects like ForestDataset, Outcome, CppRng, and ForestModel to run the Gibbs sampler of a BART model with custom modifications. GlobalModelConfig allows users to specify / query the global parameters of a model they wish to run.

Value

Global error variance parameter

Public fields

global_error_variance Global error variance parameter Create a new GlobalModelConfig object.

Methods

Public methods:

- GlobalModelConfig\$new()
- GlobalModelConfig\$update_global_error_variance()
- GlobalModelConfig\$get_global_error_variance()

Method new():

```
Usage:
```

GlobalModelConfig\$new(global_error_variance = 1)

Arguments:

global_error_variance Global error variance parameter (default: 1.0)

Returns: A new GlobalModelConfig object.

Method update_global_error_variance(): Update global error variance parameter

Usage:

GlobalModelConfig\$update_global_error_variance(global_error_variance)

Arguments:

global_error_variance Global error variance parameter

Method get_global_error_variance(): Query global error variance parameter for this GlobalModelConfig object

Usage:

GlobalModelConfig\$get_global_error_variance()

load Forest Container Combined Js on

Combine multiple JSON model objects containing forests (with the same hierarchy / schema) into a single forest_container

Description

Combine multiple JSON model objects containing forests (with the same hierarchy / schema) into a single forest_container

Usage

 $loadForestContainerCombinedJson(json_object_list, json_forest_label)$

Arguments

```
json_object_list
```

List of objects of class CppJson

json_forest_label

Label referring to a particular forest (i.e. "forest_0") in the overall json hierarchy (must exist in every json object in the list)

Value

ForestSamples object

Examples

```
X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
bart_model <- bart(X, y, num_gfr=0, num_mcmc=10)
bart_json <- list(saveBARTModelToJson(bart_model))
mean_forest <- loadForestContainerCombinedJson(bart_json, "forest_0")</pre>
```

load Forest Container Combined Js on String

Combine multiple JSON strings representing model objects containing forests (with the same hierarchy / schema) into a single forest_container

Description

Combine multiple JSON strings representing model objects containing forests (with the same hierarchy / schema) into a single forest_container

Usage

loadForestContainerCombinedJsonString(json_string_list, json_forest_label)

Arguments

```
json_string_list
List of strings that parse into objects of type CppJson
json_forest_label
Label referring to a particular forest (i.e. "forest_0") in the overall json hierarchy
(must exist in every json object in the list)
```

Value

ForestSamples object

```
X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
bart_model <- bart(X, y, num_gfr=0, num_mcmc=10)
bart_json_string <- list(saveBARTModelToJsonString(bart_model))
mean_forest <- loadForestContainerCombinedJsonString(bart_json_string, "forest_0")</pre>
```

loadForestContainerJson

Load a container of forest samples from json

Description

Load a container of forest samples from json

Usage

```
loadForestContainerJson(json_object, json_forest_label)
```

Arguments

Value

ForestSamples object

Examples

```
X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
bart_model <- bart(X, y, num_gfr=0, num_mcmc=10)
bart_json <- saveBARTModelToJson(bart_model)
mean_forest <- loadForestContainerJson(bart_json, "forest_0")</pre>
```

load Random Effect Samples Combined Js on

Combine multiple JSON model objects containing random effects (with the same hierarchy / schema) into a single container

Description

Combine multiple JSON model objects containing random effects (with the same hierarchy / schema) into a single container

Usage

```
loadRandomEffectSamplesCombinedJson(json_object_list, json_rfx_num)
```

Arguments

Value

RandomEffectSamples object

Examples

loadRandomEffectSamplesCombinedJsonString

Combine multiple JSON strings representing model objects containing random effects (with the same hierarchy / schema) into a single container

Description

Combine multiple JSON strings representing model objects containing random effects (with the same hierarchy / schema) into a single container

Usage

```
loadRandomEffectSamplesCombinedJsonString(json_string_list, json_rfx_num)
```

Arguments

```
json_string_list
List of objects of class CppJson
json_rfx_num Integer index indicating the position of the random effects term to be unpacked
```

Value

RandomEffectSamples object

Examples

loadRandomEffectSamplesJson

Load a container of random effect samples from json

Description

Load a container of random effect samples from json

Usage

```
loadRandomEffectSamplesJson(json_object, json_rfx_num)
```

Arguments

```
json_object Object of class CppJson
json_rfx_num Integer index indicating the position of the random effects term to be unpacked
```

Value

RandomEffectSamples object

loadScalarJson 91

loadScalarJson

Load a scalar from json

Description

Load a scalar from json

Usage

```
loadScalarJson(json_object, json_scalar_label, subfolder_name = NULL)
```

Arguments

Value

R vector

Examples

```
example_scalar <- 5.4
example_json <- createCppJson()
example_json$add_scalar("myscalar", example_scalar)
roundtrip_scalar <- loadScalarJson(example_json, "myscalar")</pre>
```

loadVectorJson

Load a vector from json

Description

Load a vector from json

Usage

```
loadVectorJson(json_object, json_vector_label, subfolder_name = NULL)
```

92 Outcome

Arguments

Value

R vector

Examples

```
example_vec <- runif(10)
example_json <- createCppJson()
example_json$add_vector("myvec", example_vec)
roundtrip_vec <- loadVectorJson(example_json, "myvec")</pre>
```

Outcome

Outcome / partial residual used to sample an additive model.

Description

The outcome class is wrapper around a vector of (mutable) outcomes for ML tasks (supervised learning, causal inference). When an additive tree ensemble is sampled, the outcome used to sample a specific model term is the "partial residual" consisting of the outcome minus the predictions of every other model term (trees, group random effects, etc...).

Public fields

```
data_ptr External pointer to a C++ Outcome class
```

Methods

Public methods:

```
• Outcome$new()
```

- Outcome\$get_data()
- Outcome\$add_vector()
- Outcome\$subtract_vector()
- Outcome\$update_data()

Method new(): Create a new Outcome object.

Usage:

Outcome\$new(outcome)

Arguments:

predict.bartmodel 93

outcome Vector of outcome values *Returns:* A new Outcome object.

Method get_data(): Extract raw data in R from the underlying C++ object

Usage:

Outcome\$get_data()

Returns: R vector containing (copy of) the values in Outcome object

Method add_vector(): Update the current state of the outcome (i.e. partial residual) data by adding the values of update_vector

Usage:

Outcome\$add_vector(update_vector)

Arguments:

update_vector Vector to be added to outcome

Returns: None

Method subtract_vector(): Update the current state of the outcome (i.e. partial residual) data by subtracting the values of update_vector

Usage:

Outcome\$subtract_vector(update_vector)

Arguments:

update_vector Vector to be subtracted from outcome

Returns: None

Method update_data(): Update the current state of the outcome (i.e. partial residual) data by replacing each element with the elements of new_vector

Usage:

Outcome\$update_data(new_vector)

Arguments

new_vector Vector from which to overwrite the current data

Returns: None

predict.bartmodel

Predict from a sampled BART model on new data

Description

Predict from a sampled BART model on new data

94 predict.bartmodel

Usage

```
## S3 method for class 'bartmodel'
predict(
   object,
   X,
   leaf_basis = NULL,
   rfx_group_ids = NULL,
   rfx_basis = NULL,
   ...
)
```

Arguments

object	Object of type bart containing draws of a regression forest and associated sampling outputs.
X	Covariates used to determine tree leaf predictions for each observation. Must be passed as a matrix or dataframe.
leaf_basis	(Optional) Bases used for prediction (by e.g. dot product with leaf values). Default: NULL.
rfx_group_ids	(Optional) Test set group labels used for an additive random effects model. We do not currently support (but plan to in the near future), test set evaluation for group labels that were not in the training set.
rfx_basis	(Optional) Test set basis for "random-slope" regression in additive random effects model.
	(Optional) Other prediction parameters.

Value

List of prediction matrices. If model does not have random effects, the list has one element – the predictions from the forest. If the model does have random effects, the list has three elements – forest predictions, random effects predictions, and their sum (y_hat).

predict.bcfmodel 95

predict.bcfmodel

Predict from a sampled BCF model on new data

Description

Predict from a sampled BCF model on new data

Usage

```
## $3 method for class 'bcfmodel'
predict(
   object,
   X,
   Z,
   propensity = NULL,
   rfx_group_ids = NULL,
   rfx_basis = NULL,
   ...
)
```

Arguments

object	Object of type bcfmodel containing draws of a Bayesian causal forest model and associated sampling outputs.
X	Covariates used to determine tree leaf predictions for each observation. Must be passed as a matrix or dataframe.
Z	Treatments used for prediction.
propensity	(Optional) Propensities used for prediction.
rfx_group_ids	(Optional) Test set group labels used for an additive random effects model. We do not currently support (but plan to in the near future), test set evaluation for group labels that were not in the training set.
rfx_basis	(Optional) Test set basis for "random-slope" regression in additive random effects model.
	(Optional) Other prediction parameters.

96 predict.bcfmodel

Value

List of 3-5 nrow(X) by object\$num_samples matrices: prognostic function estimates, treatment effect estimates, (optionally) random effects predictions, (optionally) variance forest predictions, and outcome predictions.

```
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
mu_x <- (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
pi_x \leftarrow (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (0.2) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (0.4) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (0.6) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (0.8)
tau_x <- (
    ((0 \le X[,2]) & (0.25 > X[,2])) * (0.5) +
    ((0.25 \le X[,2]) & (0.5 > X[,2])) * (1.0) +
    ((0.5 \le X[,2]) & (0.75 > X[,2])) * (1.5) +
    ((0.75 \le X[,2]) & (1 > X[,2])) * (2.0)
Z \leftarrow rbinom(n, 1, pi_x)
noise_sd <- 1
y \leftarrow mu_x + tau_x*Z + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds \leftarrow (1:n)[!((1:n) \%in\% test_inds)]
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
pi_test <- pi_x[test_inds]</pre>
pi_train <- pi_x[train_inds]</pre>
Z_test <- Z[test_inds]</pre>
Z_train <- Z[train_inds]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
mu_test <- mu_x[test_inds]</pre>
mu_train <- mu_x[train_inds]</pre>
tau_test <- tau_x[test_inds]</pre>
tau_train <- tau_x[train_inds]</pre>
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,</pre>
                   propensity_train = pi_train, num_gfr = 10,
                   num_burnin = 0, num_mcmc = 10)
preds <- predict(bcf_model, X_test, Z_test, pi_test)</pre>
```

preprocessPredictionData

Preprocess covariates. DataFrames will be preprocessed based on their column types. Matrices will be passed through assuming all columns are numeric.

Description

Preprocess covariates. DataFrames will be preprocessed based on their column types. Matrices will be passed through assuming all columns are numeric.

Usage

```
preprocessPredictionData(input_data, metadata)
```

Arguments

input_data Covariates, provided as either a dataframe or a matrix

metadata List containing information on variables, including train set categories for cate-

gorical variables

Value

Preprocessed data with categorical variables appropriately handled

Examples

preprocessTrainData

Preprocess covariates. DataFrames will be preprocessed based on their column types. Matrices will be passed through assuming all columns are numeric.

Description

Preprocess covariates. DataFrames will be preprocessed based on their column types. Matrices will be passed through assuming all columns are numeric.

Usage

```
preprocessTrainData(input_data)
```

Arguments

input_data Covariates, provided as either a dataframe or a matrix

Value

List with preprocessed (unmodified) data and details on the number of each type of variable, unique categories associated with categorical variables, and the vector of feature types needed for calls to BART and BCF.

Examples

```
cov_mat <- matrix(1:12, ncol = 3)
preprocess_list <- preprocessTrainData(cov_mat)
X <- preprocess_list$X</pre>
```

RandomEffectSamples

Class that wraps the "persistent" aspects of a C++ random effects model (draws of the parameters and a map from the original label indices to the 0-indexed label numbers used to place group samples in memory (i.e. the first label is stored in column 0 of the sample matrix, the second label is store in column 1 of the sample matrix, etc...))

Description

Coordinates various C++ random effects classes and persists those needed for prediction / serialization

Public fields

```
rfx_container_ptr External pointer to a C++ StochTree::RandomEffectsContainer class label_mapper_ptr External pointer to a C++ StochTree::LabelMapper class training_group_ids Unique vector of group IDs that were in the training dataset
```

Methods

Public methods:

- RandomEffectSamples\$new()
- RandomEffectSamples\$load_in_session()
- RandomEffectSamples\$load_from_json()
- RandomEffectSamples\$append_from_json()
- RandomEffectSamples\$load_from_json_string()
- RandomEffectSamples\$append_from_json_string()
- RandomEffectSamples\$predict()
- RandomEffectSamples\$extract_parameter_samples()
- RandomEffectSamples\$delete_sample()

• RandomEffectSamples\$extract_label_mapping() Method new(): Create a new RandomEffectSamples object. Usage: RandomEffectSamples\$new() Returns: A new RandomEffectSamples object. Method load_in_session(): Construct RandomEffectSamples object from other "in-session" R objects Usage: RandomEffectSamples\$load_in_session(num_components, num_groups, random_effects_tracker) Arguments: num_components Number of "components" or bases defining the random effects regression num_groups Number of random effects groups random_effects_tracker Object of type RandomEffectsTracker Returns: None Method load_from_json(): Construct RandomEffectSamples object from a json object Usage: RandomEffectSamples\$load_from_json(json_object, json_rfx_container_label, json_rfx_mapper_label, json_rfx_groupids_label) Arguments: json_object Object of class CppJson json_rfx_container_label Label referring to a particular rfx sample container (i.e. "random_effect_container_0") in the overall json hierarchy

Returns: A new RandomEffectSamples object.

dom_effect_groupids_0") in the overall json hierarchy

in the overall ison hierarchy

Method append_from_json(): Append random effect draws to RandomEffectSamples object from a json object

json_rfx_groupids_label Label referring to a particular set of rfx group IDs (i.e. "ran-

json_rfx_mapper_label Label referring to a particular rfx label mapper (i.e. "random_effect_label_mapper_0")

Usage:

```
RandomEffectSamples$append_from_json(
    json_object,
    json_rfx_container_label,
    json_rfx_mapper_label,
    json_rfx_groupids_label
 )
 Arguments:
 json_object Object of class CppJson
 json_rfx_container_label Label referring to a particular rfx sample container (i.e. "ran-
     dom effect container 0") in the overall json hierarchy
 json_rfx_mapper_label Label referring to a particular rfx label mapper (i.e. "random_effect_label_mapper_0")
     in the overall json hierarchy
 json_rfx_groupids_label Label referring to a particular set of rfx group IDs (i.e. "ran-
     dom_effect_groupids_0") in the overall json hierarchy
 Returns: None
Method load_from_json_string(): Construct RandomEffectSamples object from a json ob-
ject
 Usage:
 RandomEffectSamples$load_from_json_string(
    json_string,
    json_rfx_container_label,
    json_rfx_mapper_label,
    json_rfx_groupids_label
 )
 Arguments:
 json_string JSON string which parses into object of class CppJson
 json_rfx_container_label Label referring to a particular rfx sample container (i.e. "ran-
     dom_effect_container_0") in the overall json hierarchy
 json_rfx_mapper_label Label referring to a particular rfx label mapper (i.e. "random_effect_label_mapper_0")
     in the overall json hierarchy
 json_rfx_groupids_label Label referring to a particular set of rfx group IDs (i.e. "ran-
     dom_effect_groupids_0") in the overall json hierarchy
 Returns: A new RandomEffectSamples object.
Method append_from_json_string(): Append random effect draws to RandomEffectSamples
object from a json object
 Usage:
 RandomEffectSamples$append_from_json_string(
    json_string,
    json_rfx_container_label,
    json_rfx_mapper_label,
    json_rfx_groupids_label
 )
 Arguments:
```

json_string JSON string which parses into object of class CppJson

json_rfx_container_label Label referring to a particular rfx sample container (i.e. "ran-dom_effect_container_0") in the overall json hierarchy

json_rfx_mapper_label Label referring to a particular rfx label mapper (i.e. "random_effect_label_mapper_0") in the overall json hierarchy

json_rfx_groupids_label Label referring to a particular set of rfx group IDs (i.e. "random_effect_groupids_0") in the overall json hierarchy

Returns: None

Method predict(): Predict random effects for each observation implied by rfx_group_ids and rfx_basis. If a random effects model is "intercept-only" the rfx_basis will be a vector of ones of size length(rfx_group_ids).

Usage:

RandomEffectSamples\$predict(rfx_group_ids, rfx_basis = NULL)

Arguments:

rfx_group_ids Indices of random effects groups in a prediction set

rfx_basis (Optional) Basis used for random effects prediction

Returns: Matrix with as many rows as observations provided and as many columns as samples drawn of the model.

Method extract_parameter_samples(): Extract the random effects parameters sampled. With the "redundant parameterization" of Gelman et al (2008), this includes four parameters: alpha (the "working parameter" shared across every group), xi (the "group parameter" sampled separately for each group), beta (the product of alpha and xi, which corresponds to the overall group-level random effects), and sigma (group-independent prior variance for each component of xi).

Usage:

RandomEffectSamples\$extract_parameter_samples()

Returns: List of arrays. The alpha array has dimension (num_components, num_samples) and is simply a vector if num_components = 1. The xi and beta arrays have dimension (num_components, num_groups, num_samples) and is simply a matrix if num_components = 1. The sigma array has dimension (num_components, num_samples) and is simply a vector if num_components = 1.

Method delete_sample(): Modify the RandomEffectsSamples object by removing the parameter samples index by sample_num.

Usage:

RandomEffectSamples\$delete_sample(sample_num)

Arguments:

sample_num Index of the RFX sample to be removed

Method extract_label_mapping(): Convert the mapping of group IDs to random effect components indices from C++ to R native format

Usage:

RandomEffectSamples\$extract_label_mapping()

Returns: List mapping group ID to random effect components.

102 RandomEffectsDataset

Description

A dataset consists of three matrices / vectors: group labels, bases, and variance weights. Variance weights are optional.

Public fields

data_ptr External pointer to a C++ RandomEffectsDataset class

Methods

Public methods:

- RandomEffectsDataset\$new()
- RandomEffectsDataset\$num_observations()
- RandomEffectsDataset\$has_group_labels()
- RandomEffectsDataset\$has_basis()
- RandomEffectsDataset\$has_variance_weights()

Method new(): Create a new RandomEffectsDataset object.

Usage:

RandomEffectsDataset\$new(group_labels, basis, variance_weights = NULL)

Arguments:

group_labels Vector of group labels

basis Matrix of bases used to define the random effects regression (for an intercept-only model, pass an array of ones)

variance_weights (Optional) Vector of observation-specific variance weights

Returns: A new RandomEffectsDataset object.

Method num_observations(): Return number of observations in a RandomEffectsDataset object

Usage:

RandomEffectsDataset\$num_observations()

Returns: Observation count

Method has_group_labels(): Whether or not a dataset has group label indices

Usage:

RandomEffectsDataset\$has_group_labels()

Returns: True if group label vector is loaded, false otherwise

Method has_basis(): Whether or not a dataset has a basis matrix

RandomEffectsModel 103

Usage:

RandomEffectsDataset\$has_basis()

Returns: True if basis matrix is loaded, false otherwise

Method has_variance_weights(): Whether or not a dataset has variance weights

Usage:

RandomEffectsDataset\$has_variance_weights()

Returns: True if variance weights are loaded, false otherwise

RandomEffectsModel

The core "model" class for sampling random effects.

Description

Stores current model state, prior parameters, and procedures for sampling from the conditional posterior of each parameter.

Public fields

rfx_model_ptr External pointer to a C++ StochTree::RandomEffectsModel class
num_groups Number of groups in the random effects model
num_components Number of components (i.e. dimension of basis) in the random effects model

Methods

Public methods:

- RandomEffectsModel\$new()
- RandomEffectsModel\$sample_random_effect()
- RandomEffectsModel\$predict()
- RandomEffectsModel\$set_working_parameter()
- RandomEffectsModel\$set_group_parameters()
- RandomEffectsModel\$set_working_parameter_cov()
- RandomEffectsModel\$set_group_parameter_cov()
- RandomEffectsModel\$set_variance_prior_shape()
- RandomEffectsModel\$set_variance_prior_scale()

Method new(): Create a new RandomEffectsModel object.

Usage:

RandomEffectsModel\$new(num_components, num_groups)

Arguments.

num_components Number of "components" or bases defining the random effects regression num_groups Number of random effects groups

104 RandomEffectsModel

Returns: A new RandomEffectsModel object.

```
Method sample_random_effect(): Sample from random effects model.
```

```
RandomEffectsModel$sample_random_effect(
    rfx_dataset,
   residual,
   rfx_tracker,
   rfx_samples,
   keep_sample,
   global_variance,
    rng
 Arguments:
 rfx_dataset Object of type RandomEffectsDataset
 residual Object of type Outcome
 rfx_tracker Object of type RandomEffectsTracker
 rfx_samples Object of type RandomEffectSamples
 keep_sample Whether sample should be retained in rfx_samples. If FALSE, the state of
     rfx_tracker will be updated, but the parameter values will not be added to the sample
     container. Samples are commonly discarded due to burn-in or thinning.
 global_variance Scalar global variance parameter
 rng Object of type CppRNG
 Returns: None
Method predict(): Predict from (a single sample of a) random effects model.
 Usage:
 RandomEffectsModel$predict(rfx_dataset, rfx_tracker)
 Arguments:
 rfx_dataset Object of type RandomEffectsDataset
 rfx_tracker Object of type RandomEffectsTracker
```

Method set_working_parameter(): Set value for the "working parameter." This is typically used for initialization, but could also be used to interrupt or override the sampler.

Returns: Vector of predictions with size matching number of observations in rfx_dataset

```
RandomEffectsModel$set_working_parameter(value)
Arguments:
value Parameter input
Returns: None
```

Method set_group_parameters(): Set value for the "group parameters." This is typically used for initialization, but could also be used to interrupt or override the sampler.

Usage:

RandomEffectsModel\$set_group_parameters(value) Arguments: value Parameter input Returns: None **Method** set_working_parameter_cov(): Set value for the working parameter covariance. This is typically used for initialization, but could also be used to interrupt or override the sampler. Usage: RandomEffectsModel\$set_working_parameter_cov(value) Arguments: value Parameter input Returns: None Method set_group_parameter_cov(): Set value for the group parameter covariance. This is typically used for initialization, but could also be used to interrupt or override the sampler. Usage: RandomEffectsModel\$set_group_parameter_cov(value) Arguments: value Parameter input Returns: None Method set_variance_prior_shape(): Set shape parameter for the group parameter variance prior. Usage: RandomEffectsModel\$set_variance_prior_shape(value) Arguments: value Parameter input Returns: None **Method** set_variance_prior_scale(): Set shape parameter for the group parameter variance prior. Usage: RandomEffectsModel\$set_variance_prior_scale(value) Arguments: value Parameter input Returns: None

106 resetActiveForest

Random Effects Tracker

Class that defines a "tracker" for random effects models, most notably storing the data indices available in each group for quicker posterior computation and sampling of random effects terms.

Description

Stores a mapping from every observation to its group index, a mapping from group indices to the training sample observations available in that group, and predictions for each observation.

Public fields

rfx_tracker_ptr External pointer to a C++ StochTree::RandomEffectsTracker class

Methods

Public methods:

• RandomEffectsTracker\$new()

Method new(): Create a new RandomEffectsTracker object.

Usage:

RandomEffectsTracker\$new(rfx_group_indices)

Arguments:

rfx_group_indices Integer indices indicating groups used to define random effects

Returns: A new RandomEffectsTracker object.

resetActiveForest Reset an active forest, either from a specific forest in a ForestContainer or to an ensemble of single-node (i.e. root) trees

Description

Reset an active forest, either from a specific forest in a ForestContainer or to an ensemble of single-node (i.e. root) trees

Usage

```
resetActiveForest(active_forest, forest_samples = NULL, forest_num = NULL)
```

resetForestModel 107

Arguments

forest_samples (Optional) Container of forest samples from which to re-initialize active forest.

If not provided, active forest will be reset to an ensemble of single-node (i.e.

root) trees.

forest_num (Optional) Index of forest samples from which to initialize active forest. If not

provided, active forest will be reset to an ensemble of single-node (i.e. root)

trees.

Value

None

Examples

```
num_trees <- 100
leaf_dimension <- 1
is_leaf_constant <- TRUE
is_exponentiated <- FALSE
active_forest <- createForest(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)
forest_samples <- createForestSamples(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)
forest_samples$add_forest_with_constant_leaves(0.0)
forest_samples$add_numeric_split_tree(0, 0, 0, 0.5, -1.0, 1.0)
forest_samples$add_numeric_split_tree(0, 1, 0, 1, 0.75, 3.4, 0.75)
active_forest$set_root_leaves(0.1)
resetActiveForest(active_forest, forest_samples, 0)
resetActiveForest(active_forest)</pre>
```

resetForestModel

Re-initialize a forest model (tracking data structures) from a specific forest in a ForestContainer

Description

Re-initialize a forest model (tracking data structures) from a specific forest in a ForestContainer

Usage

```
resetForestModel(forest_model, forest, dataset, residual, is_mean_model)
```

Arguments

forest_model Forest model with tracking data structures forest Forest from which to re-initialize forest model

dataset Training dataset object

residual Residual which will also be updated

is_mean_model Whether the model being updated is a conditional mean model

108 resetForestModel

Value

None

```
n <- 100
p < -10
num_trees <- 100</pre>
leaf_dimension <- 1</pre>
is leaf constant <- TRUE
is_exponentiated <- FALSE
alpha <- 0.95
beta <- 2.0
min_samples_leaf <- 2</pre>
max_depth <- 10
feature_types <- as.integer(rep(0, p))</pre>
leaf_model <- 0</pre>
sigma2 <- 1.0
leaf_scale <- as.matrix(1.0)</pre>
variable_weights <- rep(1/p, p)</pre>
a_forest <- 1
b_forest <- 1
cutpoint_grid_size <- 100
X <- matrix(runif(n*p), ncol = p)</pre>
forest_dataset <- createForestDataset(X)</pre>
y < -5 + 10*(X[,1] > 0.5) + rnorm(n)
outcome <- createOutcome(y)</pre>
rng <- createCppRNG(1234)</pre>
global_model_config <- createGlobalModelConfig(global_error_variance=sigma2)</pre>
forest_model_config <- createForestModelConfig(feature_types=feature_types,</pre>
                                                  num_trees=num_trees, num_observations=n,
                                                  num_features=p, alpha=alpha, beta=beta,
                                                  min_samples_leaf=min_samples_leaf,
                                                  max_depth=max_depth,
                                                  variable_weights=variable_weights,
                                                  cutpoint_grid_size=cutpoint_grid_size,
                                                  leaf_model_type=leaf_model,
                                                  leaf_model_scale=leaf_scale)
forest_model <- createForestModel(forest_dataset, forest_model_config, global_model_config)</pre>
active_forest <- createForest(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)</pre>
forest_samples <- createForestSamples(num_trees, leaf_dimension,</pre>
                                        is_leaf_constant, is_exponentiated)
active_forest$prepare_for_sampler(forest_dataset, outcome, forest_model, 0, 0.)
forest_model$sample_one_iteration(
    forest_dataset, outcome, forest_samples, active_forest,
    rng, forest_model_config, global_model_config,
    keep_forest = TRUE, gfr = FALSE
resetActiveForest(active_forest, forest_samples, 0)
resetForestModel(forest_model, active_forest, forest_dataset, outcome, TRUE)
```

resetRandomEffectsModel 109

resetRandomEffectsModel

Reset a RandomEffectsModel object based on the parameters indexed by sample_num in a RandomEffectsSamples object

Description

Reset a RandomEffectsModel object based on the parameters indexed by sample_num in a RandomEffectsSamples object

Usage

```
resetRandomEffectsModel(rfx_model, rfx_samples, sample_num, sigma_alpha_init)
```

Arguments

rfx_model Object of type RandomEffectsModel.

rfx_samples Object of type RandomEffectSamples.

sample_num Index of sample stored in rfx_samples from which to reset the state of a random effects model. Zero-indexed, so resetting based on the first sample would require setting sample_num = 0.

sigma_alpha_init

Initial value of the "working parameter" scale parameter.

Value

None

```
n <- 100
p < -10
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)</pre>
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis)</pre>
y \leftarrow (-2*(rfx\_group\_ids==1)+2*(rfx\_group\_ids==2)) + rnorm(n)
y_std <- (y-mean(y))/sd(y)
outcome <- createOutcome(y_std)</pre>
rng <- createCppRNG(1234)</pre>
num_groups <- length(unique(rfx_group_ids))</pre>
num_components <- ncol(rfx_basis)</pre>
rfx_model <- createRandomEffectsModel(num_components, num_groups)</pre>
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)</pre>
rfx_samples <- createRandomEffectSamples(num_components, num_groups, rfx_tracker)</pre>
for (i in 1:3) {
    rfx_model$sample_random_effect(rfx_dataset=rfx_dataset, residual=outcome,
                                      rfx_tracker=rfx_tracker, rfx_samples=rfx_samples,
                                      keep_sample=TRUE, global_variance=1.0, rng=rng)
```

```
}
resetRandomEffectsModel(rfx_model, rfx_samples, 0, 1.0)
```

resetRandomEffectsTracker

Reset a RandomEffectsTracker object based on the parameters indexed by sample_num in a RandomEffectsSamples object

Description

Reset a RandomEffectsTracker object based on the parameters indexed by sample_num in a RandomEffectsSamples object

Usage

```
resetRandomEffectsTracker(
    rfx_tracker,
    rfx_model,
    rfx_dataset,
    residual,
    rfx_samples
)
```

Arguments

```
rfx_tracker Object of type RandomEffectsTracker.
rfx_model Object of type RandomEffectsModel.
rfx_dataset Object of type RandomEffectsDataset.
residual Object of type Outcome.
rfx_samples Object of type RandomEffectSamples.
```

Value

None

```
n <- 100
p <- 10
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)
rfx_basis <- matrix(rep(1.0, n), ncol=1)
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis)
y <- (-2*(rfx_group_ids==1)+2*(rfx_group_ids==2)) + rnorm(n)
y_std <- (y-mean(y))/sd(y)
outcome <- createOutcome(y_std)
rng <- createCppRNG(1234)
num_groups <- length(unique(rfx_group_ids))</pre>
```

rootResetRandomEffectsModel

Reset a RandomEffectsModel object to its "default" state

Description

Reset a RandomEffectsModel object to its "default" state

Usage

```
rootResetRandomEffectsModel(
    rfx_model,
    alpha_init,
    xi_init,
    sigma_alpha_init,
    sigma_xi_init,
    sigma_xi_shape,
    sigma_xi_scale
)
```

Arguments

```
rfx_model Object of type RandomEffectsModel.

alpha_init Initial value of the "working parameter".

xi_init Initial value of the "group parameters".

sigma_alpha_init

Initial value of the "working parameter" scale parameter.

sigma_xi_init Initial value of the "group parameters" scale parameter.

sigma_xi_shape Shape parameter for the inverse gamma variance model on the group parameters.

sigma_xi_scale Scale parameter for the inverse gamma variance model on the group parameters.
```

Value

None

Examples

```
n <- 100
p < -10
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)</pre>
rfx_basis <- matrix(rep(1.0, n), ncol=1)</pre>
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis)</pre>
y \leftarrow (-2*(rfx\_group\_ids==1)+2*(rfx\_group\_ids==2)) + rnorm(n)
y_std <- (y-mean(y))/sd(y)
outcome <- createOutcome(y_std)</pre>
rng <- createCppRNG(1234)</pre>
num_groups <- length(unique(rfx_group_ids))</pre>
num_components <- ncol(rfx_basis)</pre>
alpha_init <- c(1)</pre>
xi_init <- matrix(rep(alpha_init, num_groups),num_components,num_groups)</pre>
sigma_alpha_init <- diag(1,num_components,num_components)</pre>
sigma_xi_init <- diag(1,num_components,num_components)</pre>
sigma_xi_shape <- 1
sigma_xi_scale <- 1
rfx_model <- createRandomEffectsModel(num_components, num_groups)</pre>
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)</pre>
rfx_samples <- createRandomEffectSamples(num_components, num_groups, rfx_tracker)
for (i in 1:3) {
    rfx_model$sample_random_effect(rfx_dataset=rfx_dataset, residual=outcome,
                                      rfx_tracker=rfx_tracker, rfx_samples=rfx_samples,
                                      keep_sample=TRUE, global_variance=1.0, rng=rng)
}
rootResetRandomEffectsModel(rfx_model, alpha_init, xi_init, sigma_alpha_init,
                              sigma_xi_init, sigma_xi_shape, sigma_xi_scale)
```

rootResetRandomEffectsTracker

Reset a RandomEffectsTracker object to its "default" state

Description

Reset a RandomEffectsTracker object to its "default" state

Usage

```
rootResetRandomEffectsTracker(rfx_tracker, rfx_model, rfx_dataset, residual)
```

Arguments

```
rfx_tracker Object of type RandomEffectsTracker.
rfx_model Object of type RandomEffectsModel.
rfx_dataset Object of type RandomEffectsDataset.
```

residual Object of type Outcome.

Value

None

Examples

```
n <- 100
p < -10
rfx_group_ids <- sample(1:2, size = n, replace = TRUE)</pre>
rfx_basis <- matrix(rep(1.0, n), ncol=1)</pre>
rfx_dataset <- createRandomEffectsDataset(rfx_group_ids, rfx_basis)</pre>
y \leftarrow (-2*(rfx\_group\_ids==1)+2*(rfx\_group\_ids==2)) + rnorm(n)
y_{std} \leftarrow (y_{mean}(y))/sd(y)
outcome <- createOutcome(y_std)</pre>
rng <- createCppRNG(1234)</pre>
num_groups <- length(unique(rfx_group_ids))</pre>
num_components <- ncol(rfx_basis)</pre>
alpha_init <- c(1)</pre>
xi_init <- matrix(rep(alpha_init, num_groups),num_components,num_groups)</pre>
sigma_alpha_init <- diag(1,num_components,num_components)</pre>
sigma_xi_init <- diag(1,num_components,num_components)</pre>
sigma_xi_shape <- 1
sigma_xi_scale <- 1
rfx_model <- createRandomEffectsModel(num_components, num_groups)</pre>
rfx_tracker <- createRandomEffectsTracker(rfx_group_ids)</pre>
rfx_samples <- createRandomEffectSamples(num_components, num_groups, rfx_tracker)</pre>
for (i in 1:3) {
    rfx_model$sample_random_effect(rfx_dataset=rfx_dataset, residual=outcome,
                                      rfx_tracker=rfx_tracker, rfx_samples=rfx_samples,
                                      keep_sample=TRUE, global_variance=1.0, rng=rng)
rootResetRandomEffectsModel(rfx_model, alpha_init, xi_init, sigma_alpha_init,
                              sigma_xi_init, sigma_xi_shape, sigma_xi_scale)
rootResetRandomEffectsTracker(rfx_tracker, rfx_model, rfx_dataset, outcome)
```

 ${\tt sampleGlobalErrorVarianceOneIteration}$

Sample one iteration of the (inverse gamma) global variance model

Description

Sample one iteration of the (inverse gamma) global variance model

Usage

```
sampleGlobalErrorVarianceOneIteration(residual, dataset, rng, a, b)
```

Arguments

residual	Outcome class
dataset	ForestDataset class
rng	C++ random number generator
а	Global variance shape parameter
b	Global variance scale parameter

Value

None

Examples

```
X <- matrix(runif(10*100), ncol = 10)
y <- -5 + 10*(X[,1] > 0.5) + rnorm(100)
y_std <- (y-mean(y))/sd(y)
forest_dataset <- createForestDataset(X)
outcome <- createOutcome(y_std)
rng <- createCppRNG(1234)
a <- 1.0
b <- 1.0
sigma2 <- sampleGlobalErrorVarianceOneIteration(outcome, forest_dataset, rng, a, b)</pre>
```

 ${\tt sampleLeafVarianceOneIteration}$

Sample one iteration of the leaf parameter variance model (only for univariate basis and constant leaf!)

Description

Sample one iteration of the leaf parameter variance model (only for univariate basis and constant leaf!)

Usage

```
sampleLeafVarianceOneIteration(forest, rng, a, b)
```

Arguments

forest	C++ forest
rng	C++ random number generator
a	Leaf variance shape parameter
b	Leaf variance scale parameter

Value

None

saveBARTModelToJson 115

Examples

```
num_trees <- 100
leaf_dimension <- 1
is_leaf_constant <- TRUE
is_exponentiated <- FALSE
active_forest <- createForest(num_trees, leaf_dimension, is_leaf_constant, is_exponentiated)
rng <- createCppRNG(1234)
a <- 1.0
b <- 1.0
tau <- sampleLeafVarianceOneIteration(active_forest, rng, a, b)</pre>
```

saveBARTModelToJson

Convert the persistent aspects of a BART model to (in-memory) JSON

Description

Convert the persistent aspects of a BART model to (in-memory) JSON

Usage

```
saveBARTModelToJson(object)
```

Arguments

object

Object of type bartmodel containing draws of a BART model and associated sampling outputs.

Value

Object of type CppJson

```
n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
f_XW \leftarrow (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test</pre>
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
```

saveBARTModelToJsonFile

Convert the persistent aspects of a BART model to (in-memory) JSON and save to a file

Description

Convert the persistent aspects of a BART model to (in-memory) JSON and save to a file

Usage

```
saveBARTModelToJsonFile(object, filename)
```

Arguments

object Object of type bartmodel containing draws of a BART model and associated

sampling outputs.

filename String of filepath, must end in ".json"

Value

None

```
n <- 100
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
f_XW \leftarrow (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
noise_sd <- 1
y <- f_XW + rnorm(n, 0, noise_sd)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test</pre>
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
```

saveBARTModelToJsonString

Convert the persistent aspects of a BART model to (in-memory) JSON string

Description

Convert the persistent aspects of a BART model to (in-memory) JSON string

Usage

saveBARTModelToJsonString(object)

Arguments

object

Object of type bartmodel containing draws of a BART model and associated sampling outputs.

Value

in-memory JSON string

118 saveBCFModelToJson

saveBCFModelToJson

Convert the persistent aspects of a BCF model to (in-memory) JSON

Description

Convert the persistent aspects of a BCF model to (in-memory) JSON

Usage

```
saveBCFModelToJson(object)
```

Arguments

object

Object of type bcfmodel containing draws of a Bayesian causal forest model and associated sampling outputs.

Value

Object of type CppJson

```
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
mu_x < - (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
pi_x \leftarrow (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (0.2) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (0.4) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (0.6) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (0.8)
tau_x <- (
    ((0 \le X[,2]) & (0.25 > X[,2])) * (0.5) +
    ((0.25 \le X[,2]) & (0.5 > X[,2])) * (1.0) +
    ((0.5 \le X[,2]) & (0.75 > X[,2])) * (1.5) +
```

saveBCFModelToJsonFile 119

```
((0.75 \le X[,2]) & (1 > X[,2])) * (2.0)
)
Z \leftarrow rbinom(n, 1, pi_x)
E_XZ \leftarrow mu_x + Z*tau_x
snr <- 3
rfx\_group\_ids \leftarrow rep(c(1,2), n \%/\% 2)
rfx\_coefs \leftarrow matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))</pre>
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)</pre>
y \leftarrow E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
pi_test <- pi_x[test_inds]</pre>
pi_train <- pi_x[train_inds]</pre>
Z_test <- Z[test_inds]</pre>
Z_train <- Z[train_inds]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
mu_test <- mu_x[test_inds]</pre>
mu_train <- mu_x[train_inds]</pre>
tau_test <- tau_x[test_inds]</pre>
tau_train <- tau_x[train_inds]</pre>
rfx_group_ids_test <- rfx_group_ids[test_inds]</pre>
rfx_group_ids_train <- rfx_group_ids[train_inds]</pre>
rfx_basis_test <- rfx_basis[test_inds,]</pre>
rfx_basis_train <- rfx_basis[train_inds,]</pre>
rfx_term_test <- rfx_term[test_inds]</pre>
rfx_term_train <- rfx_term[train_inds]</pre>
mu_params <- list(sample_sigma_leaf = TRUE)</pre>
tau_params <- list(sample_sigma_leaf = FALSE)</pre>
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,</pre>
                   propensity_train = pi_train,
                   rfx_group_ids_train = rfx_group_ids_train,
                   rfx_basis_train = rfx_basis_train, X_test = X_test,
                   Z_test = Z_test, propensity_test = pi_test,
                   rfx_group_ids_test = rfx_group_ids_test,
                   rfx_basis_test = rfx_basis_test,
                   num_gfr = 10, num_burnin = 0, num_mcmc = 10,
                   prognostic_forest_params = mu_params,
                   treatment_effect_forest_params = tau_params)
bcf_json <- saveBCFModelToJson(bcf_model)</pre>
```

saveBCFModelToJsonFile

Convert the persistent aspects of a BCF model to (in-memory) JSON and save to a file

Description

Convert the persistent aspects of a BCF model to (in-memory) JSON and save to a file

Usage

```
saveBCFModelToJsonFile(object, filename)
```

Arguments

object Object of type bcfmodel containing draws of a Bayesian causal forest model

and associated sampling outputs.

filename String of filepath, must end in ".json"

Value

in-memory JSON string

```
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
mu_x < - (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
pi_x \leftarrow (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (0.2) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (0.4) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (0.6) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (0.8)
)
tau_x <- (
    ((0 \le X[,2]) & (0.25 > X[,2])) * (0.5) +
    ((0.25 \le X[,2]) & (0.5 > X[,2])) * (1.0) +
    ((0.5 \le X[,2]) & (0.75 > X[,2])) * (1.5) +
    ((0.75 \le X[,2]) & (1 > X[,2])) * (2.0)
)
Z \leftarrow rbinom(n, 1, pi_x)
E_XZ \leftarrow mu_x + Z*tau_x
snr <- 3
rfx\_group\_ids \leftarrow rep(c(1,2), n %/% 2)
rfx\_coefs \leftarrow matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))</pre>
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)</pre>
y \leftarrow E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2</pre>
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test
```

```
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
pi_test <- pi_x[test_inds]</pre>
pi_train <- pi_x[train_inds]</pre>
Z_test <- Z[test_inds]</pre>
Z_train <- Z[train_inds]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
mu_test <- mu_x[test_inds]</pre>
mu_train <- mu_x[train_inds]</pre>
tau_test <- tau_x[test_inds]</pre>
tau_train <- tau_x[train_inds]</pre>
rfx_group_ids_test <- rfx_group_ids[test_inds]</pre>
rfx_group_ids_train <- rfx_group_ids[train_inds]</pre>
rfx_basis_test <- rfx_basis[test_inds,]</pre>
rfx_basis_train <- rfx_basis[train_inds,]</pre>
rfx_term_test <- rfx_term[test_inds]</pre>
rfx_term_train <- rfx_term[train_inds]</pre>
mu_params <- list(sample_sigma_leaf = TRUE)</pre>
tau_params <- list(sample_sigma_leaf = FALSE)</pre>
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,</pre>
                   propensity_train = pi_train,
                   rfx_group_ids_train = rfx_group_ids_train,
                   rfx_basis_train = rfx_basis_train, X_test = X_test,
                   Z_test = Z_test, propensity_test = pi_test,
                   rfx_group_ids_test = rfx_group_ids_test,
                   rfx_basis_test = rfx_basis_test,
                   num_gfr = 10, num_burnin = 0, num_mcmc = 10,
                   prognostic_forest_params = mu_params,
                   treatment_effect_forest_params = tau_params)
tmpjson <- tempfile(fileext = ".json")</pre>
saveBCFModelToJsonFile(bcf_model, file.path(tmpjson))
unlink(tmpjson)
```

saveBCFModelToJsonString

Convert the persistent aspects of a BCF model to (in-memory) JSON string

Description

Convert the persistent aspects of a BCF model to (in-memory) JSON string

Usage

```
saveBCFModelToJsonString(object)
```

Arguments

object

Object of type bcfmodel containing draws of a Bayesian causal forest model and associated sampling outputs.

Value

JSON string

```
n <- 500
p <- 5
X <- matrix(runif(n*p), ncol = p)</pre>
mu_x < - (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (-7.5) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (-2.5) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (2.5) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (7.5)
)
pi_x <- (
    ((0 \le X[,1]) & (0.25 > X[,1])) * (0.2) +
    ((0.25 \le X[,1]) & (0.5 > X[,1])) * (0.4) +
    ((0.5 \le X[,1]) & (0.75 > X[,1])) * (0.6) +
    ((0.75 \le X[,1]) & (1 > X[,1])) * (0.8)
)
tau_x <- (
    ((0 \le X[,2]) & (0.25 > X[,2])) * (0.5) +
    ((0.25 \le X[,2]) & (0.5 > X[,2])) * (1.0) +
    ((0.5 \le X[,2]) & (0.75 > X[,2])) * (1.5) +
    ((0.75 \le X[,2]) & (1 > X[,2])) * (2.0)
)
Z \leftarrow rbinom(n, 1, pi_x)
E_XZ \leftarrow mu_x + Z*tau_x
snr <- 3
rfx\_group\_ids \leftarrow rep(c(1,2), n \%/\% 2)
rfx\_coefs \leftarrow matrix(c(-1, -1, 1, 1), nrow=2, byrow=TRUE)
rfx_basis <- cbind(1, runif(n, -1, 1))
rfx_term <- rowSums(rfx_coefs[rfx_group_ids,] * rfx_basis)</pre>
y \leftarrow E_XZ + rfx_term + rnorm(n, 0, 1)*(sd(E_XZ)/snr)
test_set_pct <- 0.2
n_test <- round(test_set_pct*n)</pre>
n_train <- n - n_test</pre>
test_inds <- sort(sample(1:n, n_test, replace = FALSE))</pre>
train_inds <- (1:n)[!((1:n) %in% test_inds)]</pre>
X_test <- X[test_inds,]</pre>
X_train <- X[train_inds,]</pre>
pi_test <- pi_x[test_inds]</pre>
pi_train <- pi_x[train_inds]</pre>
Z_test <- Z[test_inds]</pre>
Z_train <- Z[train_inds]</pre>
y_test <- y[test_inds]</pre>
y_train <- y[train_inds]</pre>
```

```
mu_test <- mu_x[test_inds]</pre>
mu_train <- mu_x[train_inds]</pre>
tau_test <- tau_x[test_inds]</pre>
tau_train <- tau_x[train_inds]</pre>
rfx_group_ids_test <- rfx_group_ids[test_inds]</pre>
rfx_group_ids_train <- rfx_group_ids[train_inds]</pre>
rfx_basis_test <- rfx_basis[test_inds,]
rfx_basis_train <- rfx_basis[train_inds,]</pre>
rfx_term_test <- rfx_term[test_inds]</pre>
rfx_term_train <- rfx_term[train_inds]</pre>
mu_params <- list(sample_sigma_leaf = TRUE)</pre>
tau_params <- list(sample_sigma_leaf = FALSE)</pre>
bcf_model <- bcf(X_train = X_train, Z_train = Z_train, y_train = y_train,</pre>
                  propensity_train = pi_train,
                  rfx_group_ids_train = rfx_group_ids_train,
                  rfx_basis_train = rfx_basis_train, X_test = X_test,
                  Z_test = Z_test, propensity_test = pi_test,
                  rfx_group_ids_test = rfx_group_ids_test,
                  rfx_basis_test = rfx_basis_test,
                  num_gfr = 10, num_burnin = 0, num_mcmc = 10,
                  prognostic_forest_params = mu_params,
                  treatment_effect_forest_params = tau_params)
saveBCFModelToJsonString(bcf_model)
```

savePreprocessorToJsonString

Convert the persistent aspects of a covariate preprocessor to (inmemory) JSON string

Description

Convert the persistent aspects of a covariate preprocessor to (in-memory) JSON string

Usage

```
savePreprocessorToJsonString(object)
```

Arguments

object

List containing information on variables, including train set categories for categorical variables

Value

in-memory JSON string

```
cov_mat <- matrix(1:12, ncol = 3)
preprocess_list <- preprocessTrainData(cov_mat)
preprocessor_json_string <- savePreprocessorToJsonString(preprocess_list$metadata)</pre>
```

Index

bart, 5 bcf, 10	Forest, 55 ForestDataset, 59 ForestModel, 61
calibrateInverseGammaErrorVariance, 16	ForestModelConfig, 64
computeForestLeafIndices, 17	ForestSamples, 69
computeForestLeafVariances, 19	
computeForestMaxLeafIndex, 20	<pre>getRandomEffectSamples, 81</pre>
convertPreprocessorToJson, 21	<pre>getRandomEffectSamples.bartmodel, 82</pre>
CppJson, 22	<pre>getRandomEffectSamples.bcfmodel, 83</pre>
CppRNG, 28	GlobalModelConfig, 85
createBARTModelFromCombinedJson, 29	
createBARTModelFromCombinedJsonString,	loadForestContainerCombinedJson, 86
30	loadForestContainerCombinedJsonString,
createBARTModelFromJson, 31	87
createBARTModelFromJsonFile, 32	loadForestContainerJson, 88
<pre>createBARTModelFromJsonString, 33</pre>	loadRandomEffectSamplesCombinedJson,
createBCFModelFromCombinedJson, 34	88
<pre>createBCFModelFromCombinedJsonString,</pre>	<pre>loadRandomEffectSamplesCombinedJsonString, 89</pre>
35	loadRandomEffectSamplesJson, 90
createBCFModelFromJson, 37	loadScalarJson, 91
<pre>createBCFModelFromJsonFile, 39</pre>	loadVectorJson, 91
createBCFModelFromJsonString, 41	1000100001,71
createCppJson, 42	Outcome, 92
createCppJsonFile, 43	
createCppJsonString, 44	predict.bartmodel, 93
createCppRNG, 44	predict.bcfmodel, 95
createForest, 45	preprocessPredictionData,97
createForestDataset, 46	preprocessTrainData, 97
createForestModel, 46	
createForestModelConfig, 47	RandomEffectSamples, 98
createForestSamples, 49	RandomEffectsDataset, 102
createGlobalModelConfig, 50	RandomEffectsModel, 103
createOutcome, 50	RandomEffectsTracker, 106
createPreprocessorFromJson, 51	resetActiveForest, 106
createPreprocessorFromJsonString, 51	resetForestModel, 107
createRandomEffectSamples, 52	resetRandomEffectsModel, 109
createRandomEffectsDataset, 53	resetRandomEffectsTracker, 110
createRandomEffectsModel, 53	rootResetRandomEffectsModel, 111
createRandomEffectsTracker, 54	rootResetRandomEffectsTracker, 112

INDEX 125

```
sampleGlobalErrorVarianceOneIteration, 113
sampleLeafVarianceOneIteration, 114
saveBARTModelToJson, 115
saveBARTModelToJsonFile, 116
saveBARTModelToJsonString, 117
saveBCFModelToJson, 118
saveBCFModelToJsonFile, 119
saveBCFModelToJsonString, 121
savePreprocessorToJsonString, 123
stochtree (stochtree-package), 4
stochtree-package, 4
```