não usar		
1		
2		
3		
4		
T		

1. Considere o seguinte excerto de um programa escrito em *assembly* e a executar numa máquina com cache:

Considere que o registo %ebx aponta para o início de um array de inteiros (4 bytes) com os seguintes valores: -10, 30, 1024, -33, 0. Note que o ciclo termina quando o valor lido do array for 0. A frequência do relógio é de 2 GHz, o CPI_{CPU} é 2, a *miss rate* de instruções é de 4% e a de dados de 5%. Sabendo que o tempo de execução deste programa é de 150 ns, qual é a miss penalty (expressa em tempo)?

 Indique se a afirmação abaixo é verdadeira ou falsa, justificando.
"A técnica de <i>pipelining</i> acelera o desempenho de um processador por permitir que uma única instrução processe vários elementos de dados. Trata-se de explorar um tipo de paralelismo conhecido como Single Instruction Multiple Data".

Nome: ______ Número: _____

Número:_____

3.	A tabela abaixo apresenta na coluna da esquerda uma sequência de endereços (m=4) de
	acesso à memória gerados por um determinado programa. As 3 colunas seguintes referem-
	se a um modo de mapeamento numa cache que usa o algoritmo de substituição LRU.
	Preencha-as indicando em que set/linha (dentro do set) mapeia cada endereço, qual a tag
	associada a essa linha depois deste acesso e indicando se se trata de um cold miss, colisão
	ou de um hit. Considere a cache inicialmente fria.

Addr	(S=2,E=2,B=2,m=4)	tag	cold miss/hit/colisão
1			
13			
0			
6			
8			

4.	Diga o que entende por dependências de dados no contexto de uma máquina com <i>pipeline</i> , de que forma estas podem prejudicar o desempenho do <i>pipeline</i> e que estratégia(s) conhece para minimizar este impacto.

Nome: _____