SESSION 6: Visualization & Plotting Assignment 1

- 1. Import the Titanic Dataset from the following link:
 - https://drive.google.com/file/d/1JTJCjdGuUxzKXYlwOavwovB01k6FWg3r/view?ts=5b42ea10

Perform the below operations:

a. Pre-process the passenger names to come up with a list of titles that represent families and represent using appropriate visualization graph.

Answer:

```
library(readxl)
library(stringr)
library(dplyr)
library(plyr)
mainFunc<-function(){
        setwd("C://Users//DELL//Desktop//Assignments//Session6")
        titanicDF <- read excel("titanic3.xls")</pre>
        tDf<-data.frame(cbind(sapply(titanicDF$name,function(x) getTitle(x),simplify = T)))
        colnames(tDf)<-"TitlNm"
        ttlCnt<-count(tDf, "TitlNm")
        mCnt <- max(ttlCnt[,2])+1
        plot(ttlCnt,type="p",main="Family Title and Count Representation", ylab="No. of Family members",
                xlab="Family Title", ylim=c(0,mCnt))
        View(ttlCnt)
}
getTitle <- function (x){</pre>
        if (str_detect(x,",") == T ) {
                cPtr <- str_locate(x,",")
                titleNm<-substr(x,1, cPtr-1)
                return (titleNm)
       }
```

Output:

mainFunc()

b. Represent the proportion of people survived by family size using a graph.

```
Answer:
```

```
library(readxl)
library(stringr)
library(dplyr)
library(plyr)
library(data.table)
mainFunc<-function(){</pre>
        setwd("C://Users//DELL//Desktop//Assignments//Session6")
        titanicDF <- read_excel("titanic3.xls")</pre>
        tDf<-data.frame(cbind(sapply(titanicDF$name,function(x) getTitle(x),simplify = T)))
        colnames(tDf)<-"TitlNm"
        ttlCnt<-count(tDf, "TitlNm")
        tDf$survived<-data.frame(cbind(titanicDF$survived))
        survivedCnt<- count(filter(tDf,survived==1), "TitlNm")</pre>
        tNsChrt<-merge(ttlCnt, survivedCnt, by.x="TitlNm", by.y="TitlNm", all.x=T)
        nChrt<-data.frame()
       for (i in 1:length(tNsChrt[,1])){
                if ( is.na(tNsChrt[i,3]) == T ) {
                        tNsChrt[i,3] = 0
                        nChrt[1,i]=tNsChrt[i,2]
                        nChrt[2,i]=tNsChrt[i,3]
                }else{
                        tNsChrt[i,2] = tNsChrt[i,2] - tNsChrt[i,3]
                        nChrt[1,i]=tNsChrt[i,2]
                        nChrt[2,i]=tNsChrt[i,3]
                }
        bpChrt<-data.matrix(nChrt[1:50]) # considering 1st 50 record to get clear graph
        rownames(bpChrt)<-c("Dead","Survived")</pre>
        colnames(bpChrt)<-tNsChrt$TitlNm[1:50]
        View(bpChrt)
        barplot(bpChrt, col=c("Red","Green"), legend=rownames(bpChrt),main="Family Count, Dead and
                Survival Representation", ylab="No. of Family members", xlab="Family Title", las=2,
                cex.names = 0.75)
}
getTitle <- function (x){</pre>
        if (str_detect(x,",") == T ) {
                cPtr <- str_locate(x,",")
                titleNm<-substr(x,1, cPtr-1)
                return (titleNm)
       }
}
mainFunc()
```

Output:

We have considered only 50 rows to get the clear chart. For around 875 rows the chart we not visible properly.

c. Impute the missing values in Age variable using Mice library, create two different graphs showing Age distribution before and after imputation Answer:
Output: