Nina received an odd New Year's present from a student: a set of $m{n}$ unbreakable sticks. Each stick has a length, l, and the length of the i^{th} stick is l_{i-1} . Deciding to turn the gift into a lesson, Nina asks her students the following:

How many ways can you build a square using exactly 6 of these unbreakable sticks?

Note: Two ways are distinct if they use at least one different stick. As there are $\binom{n}{6}$ choices of sticks, we must determine which combinations of sticks can build a square.

Input Format

The first line contains an integer, n, denoting the number of sticks. The second line contains n spaceseparated integers $l_0, l_1, \ldots, l_{n-2}, l_{n-1}$ describing the length of each stick in the set.

Constraints

- $6 \le n \le 3000$ $1 \le l_i \le 10^7$

Output Format

On a single line, print an integer representing the number of ways that 6 unbreakable sticks can be used to make a square.

Sample Input 0

4 5 1 5 1 9 4 5

Sample Output 0

3

Sample Input 1

1 2 3 4 5 6

Sample Output 1

0

Explanation

Sample 0

Given 8 sticks (l=4,5,1,5,1,9,4,5), the only possible side length for our square is 5. We can build square S in 3 different ways:

1.
$$S = \{l_0, l_1, l_2, l_3, l_4, l_6\} = \{4, 5, 1, 5, 1, 4\}$$

2.
$$S = \{l_0, l_1, l_2, l_4, l_6, l_7\} = \{4, 5, 1, 1, 4, 5\}$$

3.
$$S = \{l_0, l_2, l_3, l_4, l_6, l_7\} = \{4, 1, 5, 1, 4, 5\}$$

In order to build a square with side length $\bf 5$ using exactly $\bf 6$ sticks, $\bf l_0, \bf l_2, \bf l_4$, and $\bf l_6$ must always build two of the sides. For the remaining two sides, you must choose $\bf 2$ of the remaining $\bf 3$ sticks of length $\bf 5$ ($l_1, l_3, \text{ and } l_7$).

Sample 1

We have to use all 6 sticks, making the largest stick length (6) the minimum side length for our square. No combination of the remaining sticks can build 3 more sides of length 6 (total length of all other sticks is 1+2+3+4+5=15 and we need at least length 3*6=18), so we print 0.