#### **Fine-tuned Language Models are Continual Learners**



Tuhin Chakrabarty\* tuhin.chakr@cs.columbia.edu



Thomas Scialom \* \_tscialom@fb.com



Smaranda Muresan smara@cs.columbia.edu





#### Tasks as Instructions



Fine-tuned Language Models are Zero-Shot Learners Wei et al (2022)

#### Tasks as Instructions



Figure 3: Prompt templates from the P3 prompt collection. Each dataset has multiple prompt templates consisting of an input and target template. Italics indicate the formatting instructions. These use the raw fields of the example as well as template metadata. For example, the paraphrase prompts use *Choices*, a template-level variable consisting of Not duplicates, Duplicates for the first prompt and No, Yes. These templates are materialized to produce the prompted instance shown in Figure 1. The complete set of prompt templates used in T0 is given in Appendix G.

#### Tasks as Instructions



Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks (Wang et al 2022)

#### Instruction Tuning:



Impressive zero-shot performance

#### Instruction Tuning:

Still performs poorly on a wide range of tasks in a zero-shot setting:



#### Instruction Tuning:

Still performs poorly on a wide range of tasks in a zero-shot setting:



#### • Instruction Tuning:

Still performs poorly on a wide range of tasks in a zero-shot setting:



#### • Instruction Tuning:

 Still performs poorly on a wide range of tasks: To improve their ability on new and diverse tasks, one needs to fine-tune these models again

#### **CATASTROPHIC FORGETTING**

Why neural networks make terrible mothers...







- Instruction Tuning:
  - Still performs poorly on a wide range of tasks:
- How to keep learning new tasks without forgetting existing skills?
  Continual Learning

## Continual Learning

- A widely studied topic
  - > 20 papers accepted at NeurIPS 2022
  - A new dedicated team at DeepMind

The Continual Learning Team, led by Marc'Aurelio Ranzato

- Several complex algorithms with poor results so far
- An open research question

"The fact that catastrophic forgetting is a thing, indicates that something is fundamentally wrong with our approaches"

Nicholas Roy (MIT) at the CVPR 2022 panthingel on Embodied Al

# Why T0 to study Continual Learning?

Clearly there has been great progress with these models, however

**FLAN** (Wei et al 2022) is not publicly available and given its size (137B) it probably is highly resource intensive and perhaps difficult to use it in an academic setting

Conversely **T0** (Sanh et al 2022) is publicly available and orders of magnitude smaller and hence we resort to working with **T0**.

## Continual Learning Strategies

 Architectural Strategies: specific architectures, layers, activation functions, and/or weight-freezing strategies are used to mitigate forgetting.

2. **Regularization Strategies**: the loss function is extended with terms promoting selective consolidation of the weights which are important to retain past memories. Include regularization techniques such as weight sparsification, dropout, early stopping.

3. **Rehearsal Strategies**: past information is periodically replayed to the model, to strengthen connections for memories it has already learned. A simple approach is storing part of the previous training data and interleaving them with new patterns for future training. A more challenging approach is pseudo-rehearsal with generative models.

## Continual Learning via Rehearsal

We define the tasks to be learned as a task sequence  $T = (T_1, T_2, \dots, T_N)$  of N tasks.  $D_i$  is the corresponding dataset for task  $T_i$ . Formally, the training data augmented with **rehearsal**  $D_i^r$  is defined as:

$$D_i^r = D_i \bigcup \sum_{j=1}^{i-1} (rD_j)$$

where  $\mathbf{r}$  is the rehearsal hyper-parameter that controls the percentage of examples sampled from previous tasks  $T_1, T_2, \cdots, T_{i-1}$ . We note that  $\mathbf{r=0}$  corresponds to no memory, and  $\mathbf{r=1}$  is equivalent to a multi-task setup using all the previous examples.

## T0 Training tasks

Multiple-Choice QA: CommonsenseQA, DREAM, QUAIL, QuaRTz, Social IQA, WiQA, Cosmos, QASC, Quarel, SciQ, Wiki Hop, ARC, OpenBook QA, PiQA, RACE, BoolQ,

Extractive QA: Adversarial QA, Quoref, DuoRC, ROPES, Squad v2

Closed-Book QA: Hotpot QA\*, Wiki QA, Trivia QA, Web Questions

Structure-To-Text: Common Gen, Wiki Bio

Sentiment: Amazon, App Reviews, IMDB, Rotten Tomatoes, Yelp

Summarization: CNN Daily Mail, Gigaword, MultiNews, SamSum, XSum

Topic Classification: AG News, DBPedia, TREC

Paraphrase Identification: MRPC, PAWS, QQP

#### T0 Zero-Shot Evaluation tasks

Natural language inference: ANLI, CB, RTE

Coreference resolution: WSC, Winogrande

Word sense disambiguation: WiC

Sentence completion: COPA, HellaSwag, Story Cloze

## New tasks to be learned

| Text                          | Instruction           | Make this text simpler: "A Georgian inscription around the drum attests his name."                                                                                                                                                                  | A COFT MULTINATE                    |  |
|-------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
| Smpfl(Simp)                   | Output                | A Georgian writing on the drum is his name.                                                                                                                                                                                                         | ASSET, Wiki Auto                    |  |
| Headline<br>Generation        | Instruction           | Make a title for this article that begins with "protesters": police arrested five anti-nuclear protesters thursday after they sought to disrupt loading of a french antarctic research and supply vessel, a spokesman for the protesters said.      | Gigaword                            |  |
| (HGen)                        | Output                | protesters target french research ship                                                                                                                                                                                                              |                                     |  |
| Haiku<br>Gen (Haiku)          | Instruction<br>Output | Generate a haiku about 'Seagulls crying high'  Seagulls crying high / the air smelling of sea salt / Or is it my tears?                                                                                                                             | r/Haiku                             |  |
| Covid QA<br>(CQA)             | Instruction           | In the context of the COVID pandemic, who is at greater risk of dying from COVID19?                                                                                                                                                                 | Covid QA                            |  |
| (CQA)                         | Output                | (Moller et al 2020)                                                                                                                                                                                                                                 |                                     |  |
| Inquisitive<br>Question       | Instruction           | Given the following text, write the possible curious question it answers: "Positrons do not travel backwards in time. Positron-electron annihilation So, we know they collide frequently enough to light up the galaxy in that part of the spectrum | ELI5                                |  |
| Gen(InqQG)                    | Output                | How often do electrons and positrons collide in nature?                                                                                                                                                                                             |                                     |  |
| Empathetic<br>Dialog          | Instruction           | The associated emotion is "disappointed". Now what would be your response, given the following dialogue context:=== - I had to cancel our family vacation coming up next month.                                                                     | Empathetic Dialog<br>(Rashkin et al |  |
| Generation                    | Output                | I am really sorry to hear that. I hope everything is alright.                                                                                                                                                                                       | 2019)                               |  |
| (EmDg) Explanation Generation | Instruction           | Explain why the two following sentences are contradicting each other: "Sentence 1: A statue at a museum that no seems to be looking at."; Sentence 2: "Tons of people are gathered around the statue."                                              | eSNLI<br>(Camburu et al             |  |
| (Exp)                         | Output                | If tons of people are gathered around the statue, it is not possible that no one seems to be looking at it.                                                                                                                                         | 2018)                               |  |
| Twitter                       | Instruction           | Write a tweet about #WelcomeToNewYork, in the style of taylorswift13                                                                                                                                                                                | Tareaf et al (2017)                 |  |
| Stylometry (TwSt)             | Output                | GUYS. #WelcomeToNewYork will be up on iTunes any minute now. This is not a drill!! GO GO GO                                                                                                                                                         |                                     |  |
|                               |                       |                                                                                                                                                                                                                                                     |                                     |  |

## Evaluation for new tasks

| Text Simplification                       | BLEU-4 & SARI                                                                                                                                                                  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Headline Generation                       | ROUGE-1 & Constraint Satisfiability                                                                                                                                            |
| r/Haiku                                   | { 0.33*(0.5*(#syll <sub>pred</sub> - #syll <sub>gold</sub> ) + 0.5*(#numlines <sub>pred</sub> - #numlines <sub>gold</sub> )) + 0.33*BLEU-4(pred,gold) + 0.33*Constraint(0/1) } |
| Covid QA<br>(Moller et al 2020)           | BertScore ( deberta-mnli)                                                                                                                                                      |
| ELI5                                      | 1Tok/BertScore ( deberta-mnli)                                                                                                                                                 |
| Empathetic Dialog<br>(Rashkin et al 2019) | BertScore ( deberta-mnli)                                                                                                                                                      |
| eSNLI<br>(Camburu et al 2018)             | BertScore ( deberta-mnli)                                                                                                                                                      |
| Tareaf et al (2017)                       | Style Classifier & BertScore ( deberta-mnli)                                                                                                                                   |

We used the same hyper-parameters as the ones reported in T0 paper. The only new hyper-parameter introduced in our paper is the *rehearsal proportion r.* We explore  $r \in [0\%, 0.25\%, 1\%]$ 

For each of T0 training tasks, we consider 100,000 examples for training, such that 1% rehearsal corresponds to 1,000 examples that will be used as the memory buffer for rehearsal. Thus, for datasets with fewer training examples, we upsample them and conversely for largest datasets like Gigaword or Simplification, we limit to 100,000 examples.

Note that here, while we used rehearsal for the training data of T0 training tasks, we never used any data from T0 zero-shot tasks, so it remains completely zero-shot. It is important to highlight that rehearsal is the standard for CL, and a zero-shot set up with no rehearsal has never been explored yet to the best of our knowledge.

First, we test CLR independently on three tasks (Headline Generation with Constraint, Simplification, and Haiku Generation), by varying the rehearsal hyper-parameter between 0%, 0.25% and 1%, respectively

We observe that for the three tasks, the rehearsal value does not affect the task result: Conversely, the rehearsal value has a dramatic impact on the T0 zero-shot results

The results are normalised in % such that -1 corresponds to 100% decrease and +1 means +100% increase w.r.t. the initial performance

Starting from a single new task to learn



Steps

The results are normalised in % such that -1 corresponds to 100% decrease and +1 means +100% increase w.r.t. the initial performance



The results are normalised in % such that -1 corresponds to 100% decrease and +1 means +100% increase w.r.t. the initial performance



As observed from our previous experiments using Continual Learning via rehearsal we can learn a new task at any time without catastrophic forgetting, with just a very little rehearsal percentage.

As a next step, we propose to measure whether language models can progressively learn more tasks without catastrophic forgetting. This is an important direction as it would allow the models to continually increase their knowledge and capabilities without forgetting the knowledge already acquired.

To measure the actual success for CL on a sequence of N tasks, we introduce the notion of *Upper Bound (UB)*. UB corresponds to the maximum performance achieved by the model, when fine-tuned only on a specific task,  $T_n$ .

Arguably, the model succeeds in CL, if it maintains a performance close to UB, while learning new tasks.

The normalised results, i.e ,  $Relative\ Gain$  for a given task  $T_n$ , correspond to the actual scores s divided by their task  $T_n$  UB,  $s_{Tn}/UB_{Tn}$ . Hence, 1 corresponds to performing similar to the UB for any task. The model is expected to start below 1 before step n since it has not been trained yet on  $T_n$ , while for the latest steps t with t > n, results below 1 indicate task forgetting.

Applying the 1% rehearsal to learn progressively 8 new tasks



Applying the 1% rehearsal to learn progressively 8 new tasks



- The 8 tasks are learned and not forgotten
- Performance is maintain for T0 evaluation set (12 ZS datasets + 50 seen datasets)
- ➤ No more catastrophic forgetting, **LM are Continual Learners**.

|          | T0tr<br>R1 | T0zs<br>Acc | ASSET<br>B4/SARI | Simp<br>B4/SARI | HGen<br>R1/Cons | Haiku $H_{cust}$ | CQA<br>BS | InqQG<br>1Tok/BS | EmDg<br>BS | Exp<br>BS | TwSt<br>Clf/BS |
|----------|------------|-------------|------------------|-----------------|-----------------|------------------|-----------|------------------|------------|-----------|----------------|
| T0_3B    | 49.8       | 48.2        | 70.1/41.0        | 12.8/41.1       | 33.6/32.2       | 34.2             | 47.6      | 2.1/58.7         | 48.6       | 32.7      | 54.4/38.0      |
| T0pp     | 54.2       | 65.6        | 56.5/37.7        | 11.7/40.1       | 34.9/35.9       | 31.6             | 46.0      | 2.4/59.8         | 49.7       | 37.2      | 66.4/45.1      |
| UB_3B    | 49.8       | 48.2        | 79.9/45.2        | 13.8/44.6       | 39.7/81.0       | 62.6             | 90.0      | 5.3/63.3         | 55.7       | 71.8      | 74.8/56.5      |
| UB_pp    | 54.2       | 65.6        | 85.3/46.1        | 15.0/44.8       | 41.9/86.9       | 63.9             | 90.0      | 4.9/65.7         | 56.6       | 73.5      | 74.4/57.9      |
| Lamol    | 32.6       | 33.6        | 37.3/12.6        | 8.4/21.4        | 22.9/33.5       | 25.8             | 46.6      | 1.8/47.9         | 45.1       | 27.6      | 50.1/35.2      |
| CT03B    | 47.9       | 46.6        | 78.0/44.5        | 14.6/43.7       | 37.3/77.5       | 60.4             | 86.8      | 5.2/61.9         | 55.3       | 72.4      | 74.8/56.5      |
| CT0pp    | 53.7       | 64.4        | 85.9/46.6        | 14.6/44.7       | 40.7/85.5       | 65.8             | 89.8      | 4.8/65.2         | 56.2       | 73.0      | 74.4/57.9      |
| revfinal | 48.1       | 48.8        | 83.3/45.4        | 14.6/43.9       | 39.0/81.6       | 61.2             | 88.6      | 4.4/61.9         | 55.0       | 72.4      | 73.2/57.3      |

LAMOL : SOTA with pseudo generative replay \*

revfinal: CTO3B in reverse order

# Our work

#### Some outputs:

| Instr | Write a haiku about 'mountain winds        |
|-------|--------------------------------------------|
| IIISU | haunt'                                     |
| CT0   | mountain winds haunt, the hollow of the    |
| CIO   | stones, voices echo there.                 |
| TOpp  | a lone tree in the mountains is haunted by |
| T0pp  | the wind                                   |
|       | Explain why the two following sentences    |
|       | do not entail each other: "Sentence 1: A   |
| Instr | woman with a green headscarf, blue shirt   |
|       | and a very big grin."; Sentence 2:"The     |
|       | woman has been shot."                      |
| СТО   | A woman cannot be smiling if she has       |
| C10   | been shot.                                 |
| T0pp  | No                                         |

## Compositional Instructions

#### On model's compositionality:

We explore how our model succeeds in understanding constraint instructions beyond the one it was exposed during training.

Our model was trained on Headline Generation with Constraint (HGen) instructions with only one match, such as *Make a title for this article containing* ``X". To test generalization, we prompt our CT0 model with unseen instructions with 2 and 3 matches, such as *Make a title for this article containing* ``X" and ``Y", or Make a title for this article containing ``X" and ``Y" and ``Z".

We also compose instructions from constraint and Twitter Stylometry resulting in instructions such as Write a tweet about X, in the style of Y, containing Z

|                |      | HGen |      | TwSt |
|----------------|------|------|------|------|
| # Cons         | 1    | 2    | 3    | 1    |
| CT0            | 77.0 | 56.4 | 39.5 | 46.4 |
| $CT0_{NoCons}$ | 33.6 | 15.4 | 8.1  | 10.7 |

Table 4: Table showing Constraint generalisation i.e % of instructions completely respected, when providing constraints for unseen prompts.  $CT0_{NoCons}$  corresponds to providing the same input without constrain.

## Compositional Instructions

On model's compositionality:

Generate a haiku about ``held my hand". The associated emotion is ``faithful":

He held my hand through thick and thin/ Through sickness and health/ Through life and death



## Success for Continual Learning

- Why does Continual Learning work so well?
  - Instruction tuning or Multi-task training?

Is it because T0 is a large instruction tuned model trained on a multitask fashion? Does it work for T5 as well?

Scaling?

Are the continual learning capabilities emerging from bigger models? Will it work for a smaller model like T5-small?

## Success for Continual Learning

|            | T0tr<br>R1 | T0zs<br>Acc | ASSET<br>B4/SARI | Simp<br>B4/SARI | HGen<br>R1/Cons | $oxed{Haiku} H_{cust}$ | CQA<br>BS | InqQG<br>1Tok/BS | EmDg<br>BS | Exp<br>BS | TwSt<br>Clf/BS |
|------------|------------|-------------|------------------|-----------------|-----------------|------------------------|-----------|------------------|------------|-----------|----------------|
| UB_rand    | N/A        | N/A         | 0.5/24.3         | 0.0/29.6        | 1.5/0.1         | 9.6                    | 25.2      | 1.2/25.4         | 36.3       | 33.1      | 24.7           |
| UB_T5small | N/A        | N/A         | 87.8/45.9        | 15.6/43.2       | 35.3/67.8       | 53.4                   | 54.1      | 3.4/57.0         | 51.3       | 33.8      | 52.4/54.6      |
| UB_T53b    | N/A        | N/A         | 87.0/45.6        | 15.4/43.7       | 33.0/89.4       | 63.0                   | 89.9      | 2.92/61.5        | 55.3       | 71.6      | 75.6/55.4      |
| UB_T0      | 49.8       | 48.2        | 79.9/45.2        | 13.8/44.6       | 39.7/81.0       | 62.6                   | 90.0      | 5.3/63.3         | 55.7       | 71.8      | 74.8/56.5      |
| CTrand     | N/A        | N/A         | 0.0/22.9         | 0.0/28.5        | 0.2/0.0         | 9.6                    | 25.2      | 1.2/27.9         | 28.1       | 30.7      | 24.7           |
| CT5small   | N/A        | N/A         | 85.5/45.8        | 15.0/42.8       | 34.6/64.8       | 51.8                   | 49.5      | 3.3/56.0         | 51.2       | 32.3      | 52.4/54.6      |
| CT53B      | N/A        | N/A         | 84.6/45.8        | 14.8/44.0       | 38.3/88.3       | 62.3                   | 85.8      | 4.64/62.1        | 55.5       | 73.1      | 75.6/55.4      |
| CT03B      | 47.9       | 46.6        | 78.0/44.5        | 14.6/43.7       | 37.3/77.5       | 60.4                   | 86.8      | 5.2/61.9         | 55.3       | 72.4      | 74.8/56.5      |

CT53B is trained in similar way as CT03B just with T5-3B as an initial checkpoint instead of T0-3B CT5rand is a 3B Transformer randomly initialised.

CT5small is a T5small model trained on only tasks (without converting them to instructions)

## Success for Continual Learning



Instruction tuning / Multi-task training / Scaling

Self Supervision (a.k.a Intensive pretraining)

Self-supervision is enough to unlock Continual Learning

# Open Questions

- How to enable Continual Learning without rehearsal?
- How does self-supervision enable Continual Learning?
- Would Continual Learning break for 100 tasks? 1000 tasks?

Multimodal Continual Learning?

# Thanks tuhin.chakr@cs.columbia.edu

|            | T0zs | ASSET             | Simp              | HGen      | Haiku       | CQA  | InqQG            | EmDg        | Exp         | TwSt      |
|------------|------|-------------------|-------------------|-----------|-------------|------|------------------|-------------|-------------|-----------|
|            | Acc  | B4/SARI           | B4/SARI           | R1/Cons   | $H_{cust}$  | BS   | 1Tok/BS          | BS          | BS          | Clf/BS    |
| T0_3B      | 48.2 | 70.1/41.0         | 12.8/41.1         | 33.6/32.2 | 34.2        | 47.6 | 2.1/58.7         | 48.6        | 32.7        | 54.4/38.0 |
| T0pp (11B) | 65.6 | 56.5/37.7         | 11.7/40.1         | 34.9/35.9 | 31.6        | 46.0 | 2.4/59.8         | 49.7        | 37.2        | 66.4/45.1 |
| +Simp 3B   | 48.9 | 79.9/ <u>45.2</u> | 13.8/ <u>44.6</u> | 30.3/31.0 | 30.9        | 43.9 | 2.0/56.1         | 40.2        | 34.9        | 50.8/42.5 |
| +Simp 11B  | 66.7 | 85.3/46.1         | 15.0/44.8         | 34.9/36.1 | 33.0        | 47.2 | 2.1/59.0         | 48.1        | 39.2        | 68.8/47.6 |
| +HGen 3B   | 46.9 | 81.4/44.9         | 14.1/43.9         | 39.7/81.0 | 33.7        | 44.2 | 2.5/55.9         | 45.9        | 55.2        | 19.6/37.3 |
| +HGen 11B  | 65.5 | 84.5/46.1         | <b>15.3</b> /44.8 | 41.9/86.9 | 35.9        | 46.6 | 2.9/59.7         | 48.9        | 36.4        | 69.6/48.1 |
| +Haiku 3B  | 48.8 | <u>81.6</u> /45.0 | 14.6/43.9         | 39.0/78.2 | 62.6        | 43.0 | 2.3/54.9         | 47.2        | 39.0        | 65.6/44.5 |
| +Haiku 11B | 64.6 | 83.5/46.1         | 14.9/45.1         | 41.1/83.0 | 63.9        | 46.0 | 2.9/59.9         | 48.9        | 37.5        | 66.4/46.2 |
| +CQA 3B    | 48.5 | 79.7/44.4         | 14.0/43.8         | 37.6/75.4 | 62.2        | 90.0 | 2.0/54.4         | 42.5        | 38.7        | 66.4/45.3 |
| +CQA 11B   | 64.6 | 84.3/46.1         | 14.5/ <b>44.9</b> | 40.9/83.7 | 63.6        | 90.0 | 2.9/59.2         | 48.5        | 42.7        | 67.2/47.3 |
| +InqQG 3B  | 47.4 | 65.2/41.2         | 14.6/43.8         | 37.9/77.7 | 60.4        | 89.6 | 5.3/63.3         | 46.8        | 34.2        | 59.2/45.4 |
| +InqQG 11B | 65.5 | 85.5/46.3         | 14.9/44.8         | 40.6/81.7 | 64.5        | 89.9 | 4.9/ <b>65.7</b> | 49.2        | 47.7        | 61.2/45.9 |
| +EmDg 3B   | 48.6 | 73.9/43.8         | <u>15.0</u> /43.7 | 38.0/77.7 | <u>62.9</u> | 88.6 | 4.7/62.7         | <u>55.7</u> | 35.2        | 53.6/42.7 |
| +EmDg 11B  | 66.4 | 85.3/46.3         | 15.1/44.7         | 40.9/84.1 | 65.0        | 89.9 | <b>5.3</b> /65.5 | 56.6        | 37.0        | 61.6/45.8 |
| +Exp 3B    | 47.4 | 74.6/44.0         | 14.2/43.5         | 37.9/80.9 | 60.9        | 86.5 | 4.9/62.3         | 55.2        | 71.8        | 54.8/43.4 |
| +Exp 11B   | 65.0 | 85.6/46.5         | 14.9/44.7         | 40.7/84.6 | 64.5        | 89.8 | 4.8/65.5         | 56.5        | 73.5        | 63.6/46.3 |
| +TwSt 3B   | 46.6 | 78.0/44.5         | 14.6/43.7         | 37.3/77.5 | 60.4        | 86.8 | 5.2/61.9         | 55.3        | <u>72.4</u> | 74.8/56.5 |
| +TwSt 11B  | 64.4 | 85.9/46.6         | 14.6/44.7         | 40.7/85.5 | 65.8        | 89.8 | 4.8/65.2         | 56.2        | 73.0        | 74.4/57.9 |
| rev_final  | 48.8 | 83.3/45.4         | 14.6/43.9         | 39.0/81.6 | 61.2        | 88.6 | 4.4/61.9         | 55.0        | 72.4        | 73.2/57.3 |