# Disease Knowledge Transfer across

Neurodegenerative Diseases

Răzvan V. Marinescu<sup>1,2</sup>, Marco Lorenzi<sup>3</sup>, Stefano B. Blumberg<sup>1</sup>, Alexandra L. Young Fell F Arman Eshaghi $^{1,4}$ , Keir X. Young $^5$ , Sebastian J. Crutch $^5$ , Polina Golland $^2$ , Daniel C Alexander 1

<sup>1</sup>Centre for Medical Image Computing, UCL, UK

<sup>3</sup>University of Côte d'Azur, Inria Sophia Antipolis

<sup>4</sup>Queen Square MS Centre, UCL Institute of Ne **H** 



a ell-Morell<sup>1</sup>, Neil P. Oxtoby<sup>1</sup>,

Aim: Infer progression of non-MRI biomarkers in rare neurodegenerative diseases by leveraging larger datasets of common neurodegenerative diseases.

## Why

Rare neurodegenerative diseases not well understood

<sup>2</sup>Computer Science and Artificial Intelligence Laboratory, MIT, USA

Identify outcome measures and subjects for clinical trials

### Method

1. Each disease characterised 2. Dysfunction score modelled by region-specific dysfunction

profile
$$\gamma_{ij}^{l} = f(\beta_i + m_{ij}; \lambda_{d_i}^{l})$$

using region-specific

biomarkers
$$y_{ijk} = g(\gamma_{ij}^{\psi(k)}; \theta_k) + N(0, \epsilon_k)$$





3. Extend to multiple subjects, biomarkers and diseases  $p(\mathbf{y}|\theta,\lambda,\beta,\epsilon) = \prod_{(i,j,k)\in\Omega} p(y_{ijk}|\theta_k,\lambda_{d_i}^{\psi(k)},\beta_i)$ 

# **Inference**: Perform loopy belief propagation

Initialise  $\boldsymbol{\theta}^{(0)}$ ,  $\boldsymbol{\lambda}^{(0)}$ ,  $\boldsymbol{\beta}^{(0)}$ 

while  $\theta$ ,  $\lambda$ ,  $\beta$  not converged do

; // Estimate biomarker trajectories (disease agnostic)  $\theta_k^{(u)} = \arg\min_{\theta_k} \sum_{(i,j) \in \Omega_k} \left[ y_{ijk} - g \left( f(\beta_i^{(u-1)} + m_{ij}; \lambda_{d_i}^{\psi(k),(u-1)}); \theta_k \right) \right]^2$ ; // Estimate dysfunction trajectories (disease specific)  $\lambda_d^{l,(u)} = \arg\min_{\lambda_d^l} \sum_{(i,j,k) \in \Omega_{d,l}} \left| y_{ijk} - g \left( f(\beta_i^{(u-1)} + m_{ij}; \lambda_d^l); \theta_k^{(u)} \right) \right|^2$ ;//Estimate subject-specific time shifts  $\beta_i^{(u)} = \arg\min_{\beta_i} \sum_{(j,k) \in \Omega_i} \left[ y_{ijk} - g \left( f(\beta_i + m_{ij}; \lambda_{d_i}^{\psi(k),(u)}); \theta_k^{(u)} \right) \right]^2$ 

# Demographics

- Dementia Research Center cohort: 76 PCA, 67 tAD, 87 agematched controls.
- TADPOLE Challenge dataset split into three cohorts with different progressions: hippocampal, cortical and subcortical.
- Synthetic dataset mimicking the DRC cohort.

# Challenges

Typical Neurodeg. Diseases

- Large datasets
- Multimodal imaging
- Longitudinal

Rare Neurodeg. Diseases

- Small datasets X
- MRI only X
- Cross-sectional X

#### Results

In synthetic experiment, the estimated parameters are close to the true parameters



Inferred multimodal trajectories for Posterior Cortical Atrophy are plausible, suggesting late-stage parietal and occipital damage.



Our model has favourable performance compared to other models, on two different datasets

| Model        | Cingulate                                          | <b>Frontal</b>                  | Hippocam.                         | Occipital          | <b>Parietal</b>                 | <b>Temporal</b>                 |
|--------------|----------------------------------------------------|---------------------------------|-----------------------------------|--------------------|---------------------------------|---------------------------------|
|              | TADPOLE: Hippocampal subgroup to Cortical subgroup |                                 |                                   |                    |                                 |                                 |
| DKT (ours)   | $0.56 \pm 0.23$                                    | $\textbf{0.35}\pm\textbf{0.17}$ | $\textbf{0.58} \pm \textbf{0.14}$ | $-0.10 \pm 0.29$   | $0.71 \pm 0.11$                 | $\textbf{0.34}\pm\textbf{0.26}$ |
| Latent stage | $0.44 \pm 0.25$                                    | $0.34 \pm 0.21$                 | $0.34 \pm 0.24^*$                 | $-0.07 \pm 0.22$   | $0.64 \pm 0.16$                 | $0.08 \pm 0.24^*$               |
| Multivariate | $0.60 \pm 0.18$                                    | $0.11 \pm 0.22^*$               | $0.12 \pm 0.29^*$                 | $-0.22 \pm 0.22$   | $-0.44 \pm 0.14^*$              | $-0.32 \pm 0.29^*$              |
| Spline       | $-0.24 \pm 0.25^*$                                 | $-0.06 \pm 0.27^*$              | $0.58 \pm 0.17$                   | $-0.16 \pm 0.27$   | $0.23 \pm 0.25^*$               | $0.10 \pm 0.25^*$               |
| Linear       | $-0.24 \pm 0.25^*$                                 | $0.20 \pm 0.25^*$               | $0.58 \pm 0.17$                   | $-0.16 \pm 0.27$   | $0.23 \pm 0.25^*$               | $0.13 \pm 0.23^*$               |
|              | typical Alzheimer's to Posterior Cortical Atrophy  |                                 |                                   |                    |                                 |                                 |
| DKT (ours)   | $0.77 \pm 0.11$                                    | $0.39 \pm 0.26$                 | $0.75 \pm 0.09$                   | $0.60 \pm 0.14$    | $\textbf{0.55}\pm\textbf{0.24}$ | $\textbf{0.35}\pm\textbf{0.22}$ |
| Latent stage | $0.80 \pm 0.09$                                    | $\textbf{0.53}\pm\textbf{0.17}$ | $\textbf{0.80} \pm \textbf{0.12}$ | $0.56 \pm 0.18$    | $0.50 \pm 0.21$                 | $0.32 \pm 0.24$                 |
| Multivariate | $0.73 \pm 0.09$                                    | $0.45 \pm 0.22$                 | $0.71 \pm 0.08$                   | $-0.28 \pm 0.21^*$ | $0.53 \pm 0.22$                 | $0.25 \pm 0.23^*$               |
| Spline       | $0.52 \pm 0.20^*$                                  | $-0.03 \pm 0.35^*$              | $0.66 \pm 0.11^*$                 | $0.09 \pm 0.25^*$  | $0.53 \pm 0.20$                 | $0.30 \pm 0.21^*$               |
| Linear       | $0.52 \pm 0.20^*$                                  | $0.34 \pm 0.27$                 | $0.66 \pm 0.11^*$                 | $0.64 \pm 0.17$    | $0.54 \pm 0.22$                 | $0.30 \pm 0.21^*$               |

#### Conclusion

- Developed a novel methodology and model for transfer learning across different diseases
- Personal website: https://people.csail.mit.edu/razvan/

#### **Funders and Grants**









