Теория категорий Категориальная логика

Валерий Исаев

28 апреля 2017 г.

План лекции

Интерпретация лямбда исчисления

Логика и теория типов

Интерпретация логических теорий Логика первого порядка Интерпретация

Мотивация

- Лямбда исчисление предоставляет синтаксис для (декартово замкнутых) категорий, а категории предоставляют семантику лямбда исчисления.
- С одной стороны, лямбда исчисление позволяет просто описывать различные конструкции в категориях.
- С другой стороны, различные конструкции в категориях могут мотивировать новые языковые конструкции для лямбда исчисления.

Термы лямбда исчисления

- ▶ Типы строятся индуктивно из двух бинарных функций \times и \to , одной константы \top и базовых типов, множество которых мы будем обозначать \mathcal{S} .
- Термы строятся индуктивно согласно следующим правилам:

$$\frac{\Gamma \vdash}{\Gamma, x : A \vdash}, x \notin \Gamma \qquad \frac{\Gamma \vdash}{\Gamma \vdash x : A}, (x : A) \in \Gamma$$

$$\frac{\Gamma \vdash}{\Gamma \vdash \text{unit} : \top} \qquad \frac{\Gamma \vdash a : A}{\Gamma \vdash (a, b) : A \times B}$$

$$\frac{\Gamma \vdash p : A \times B}{\Gamma \vdash \pi_1 p : A} \qquad \frac{\Gamma \vdash p : A \times B}{\Gamma \vdash \pi_2 p : B}$$

$$\frac{\Gamma, x : A \vdash b : B}{\Gamma \vdash \lambda x . b : A \to B} \qquad \frac{\Gamma \vdash f : A \to B}{\Gamma \vdash f a : B}$$

Аксиомы лямбда исчисления

Кроме того, у нас есть следующие аксиомы:

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash \pi_{1}(a, b) \equiv a : A} \qquad \frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash \pi_{2}(a, b) \equiv b : B}$$

$$\frac{\Gamma \vdash t : \top}{\Gamma \vdash \text{unit} \equiv t : \top} \qquad \frac{\Gamma \vdash p : A \times B}{\Gamma \vdash (\pi_{1} p, \pi_{2} p) \equiv p : A \times B}$$

$$\frac{\Gamma, x : A \vdash b : B \qquad \Gamma \vdash a : A}{\Gamma \vdash (\lambda x . b) a \equiv b[x := a] : B} \qquad \frac{\Gamma \vdash f : A \to B}{\Gamma \vdash \lambda x . f x \equiv f : A \to B}$$

Интерпретация лямбда исчисления

- Что является моделями алгебраической теории лямбда исчисления (которую мы так и не построили)?
- Это в точности декартово замкнутые категории!
- Так как мы точно не определили эту теорию, то мы и не можем доказать это утверждение, но мы хотя бы можем проинтерпретировать лямбда исчисление в произвольной декартовой категории (так же как термы теории групп можно проинтерпретировать в произвольной группе).
- ▶ Пусть С декартово замкнутая категория. Тогда мы будем интерпретировать типы как объекты категории, а термы как ее морфизмы.

 $\llbracket -
rbracket$.

00000000

Интерпретацию типов и термов мы будем обозначать как

Тогда типы интерпретируются следующим образом:

► Если $\Gamma = x_1 : A_1, ..., x_n : A_n$, то мы можем определить интерпретацию Γ как $\llbracket \Gamma \rrbracket = \llbracket A_1 \rrbracket \times \ldots \times \llbracket A_n \rrbracket$.

Интерпретация термов

- ▶ Теперь мы определим интерпретацию термов.
- ▶ Если $\Gamma \vdash a : A$, то $\llbracket a \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket A \rrbracket$.
- $ightharpoonup [\![x_i]\!] = \pi_i$ если $\Gamma = x_1 : A_1, \dots x_n : A_n$.
- $\qquad \qquad \llbracket \mathrm{unit} \rrbracket = !_{\llbracket \Gamma \rrbracket}.$
- $\qquad \qquad \llbracket (a,b) \rrbracket = \langle \llbracket a \rrbracket, \llbracket b \rrbracket \rangle.$
- $\blacktriangleright \ \llbracket \pi_1 \, \rho \rrbracket = \pi_1 \circ \llbracket \rho \rrbracket.$
- $\blacktriangleright \ \llbracket \pi_2 \, p \rrbracket = \pi_2 \circ \llbracket p \rrbracket.$
- ightharpoonup $\llbracket f a
 Vert = \operatorname{ev} \circ \langle \llbracket f
 Vert, \llbracket a
 Vert \rangle$, где $\operatorname{ev} : \llbracket B
 Vert \llbracket A
 Vert \times \llbracket A
 Vert \to \llbracket B
 Vert$.
- ▶ $[\![\lambda x.b]\!] = \varphi([\![b]\!])$, где $\varphi: \operatorname{Hom}([\![\Gamma]\!] \times [\![A]\!], [\![B]\!]) \simeq \operatorname{Hom}([\![\Gamma]\!], [\![B]\!]^{[\![A]\!]})$ функция каррирования из определения экспонент.

Проверка аксиом

- Разумеется нам нужно проверить, что эта интерпретация уважает аксиомы.
- ▶ Для этого сначала нужно доказать лемму, что подстановка интерпретируется как композиция, то есть если $\Gamma, x:A\vdash b:B$ и $\Gamma\vdash a:A$, то $[\![b[x:=a]]\!]=[\![b]\!]\circ\langle\mathrm{id}_{\llbracket\Gamma\rrbracket},[\![a]\!]\rangle$. Это легко сделать индукцией по b.
- ▶ Теперь бета эквивалентность соответствуют тому, что функция каррирования и обратная к ней дают тождественную функцию при композиции, а эта эквивалентность соответствует тому, что эти функции дают id при композиции в обратном порядке.
- ▶ Аксиомы для ⊤ и × легко следуют из определения произведений.

План лекции

Интерпретация лямбда исчисления

Логика и теория типов

Интерпретация логических теорий Логика первого порядка Интерпретация

Логика, теория типов и теория категорий

Type theory	Category
T + x	Cartesian
$T + \times + \rightarrow$	Cartesian closed
$\top + \Sigma + \mathrm{Id}$	finitely complete
$\top + \Sigma + \mathrm{Id} + \Pi$	LCC
$\top + \Sigma + \mathrm{Id} + \ - \ $	regular
$reg + 0 + \vee$	coherent
$coh + \forall$	Heyting
$\mid \top + \Sigma + \mathrm{Id} + \Pi + \mathrm{Prop} \mid$	elementary topos
	$\begin{array}{c} \top + \times \\ \top + \times + \rightarrow \\ \top + \Sigma + \operatorname{Id} \\ \top + \Sigma + \operatorname{Id} + \Pi \\ \top + \Sigma + \operatorname{Id} + \ - \ \\ \operatorname{reg} + 0 + \vee \\ \operatorname{coh} + \forall \end{array}$

Замечания

- Пусть T теория типов из второго столбца. Тогда существуют эквивалентности (2-)категорий T- $\mathbf{Mod} \simeq C \simeq L$, где C категория категорий из третьего столбца, а L категория теорий логики из первого.
- Все теории в первом столбце мультисортные.
- Теории в столбце Logic перечеислены в порядке возрастания числа логчиеских связок в них; каждая последующая строчка включает предыдущую.
- Все теории типов, начиная с третьей строчки, включают аксиому К.
- LCC это локльно декартово замкнутые категории, то есть такие категории C, что для любого объекта X категория C/X декартово замкнута.

Замечания

- ▶ reg и coh это теории, соответствующие строчкам regular и coherent соответственно.
- ightharpoonup и Π включают функциональную экстенсиональность.
- Prop включает пропозициональную экстенсиональность и полноту.
- ▶ Последняя строчка включает все предыдущие, даже те, для которых нет записи в первом столбце.

Интерпретации теорий

- ▶ Мы уже видели как проинтерпретировать $\top + \times$ в декартовой категории, а $\top + \times + \to$ в декартово замкнутой категории.
- Мы (почти) увидим как каждую из теорий типов проинтерпретировать в соответствующей категории.
- Для любой логической теории можно определить понятие модели в Set. Это обычное понятие модели.
- Но можно определить модели теории и в других категориях, если они удовлетворяют определенным условиям.
- Конкретно, для любой теории из первого столбца можно определить категорию моделей в любой категории, удовлетворяющей соответствующему условию из третьего.

Модели теорий

- Например, мы можем определить категории моноидов,
 групп, колец, и так далее в любой декартовой категории.
- ► Так как аксиомы полей используют \bot , \exists и \lor , то поля можно определить в любой когерентной категории.
- Если отождествить логическую теорию с соответствующей ей категорией C, то модели C в категории D это просто функторы $C \to D$, которые сохраняют дополнительную структуру из той строчки таблицы, в которой находятся C и D.

План лекции

Интерпретация лямбда исчисления

Логика и теория типов

Интерпретация логических теорий Логика первого порядка Интерпретация

Сигнатуры логики первого порядка

Сигнатура $\Sigma = (\mathcal{S}, \mathcal{F}, \mathcal{P})$ логики первого порядка состоит из:

- ightharpoonup Множества \mathcal{S} , называемого множеством coptos.
- Множества \mathcal{F} , называемого множеством функциональных символов. Каждому функциональному символу $f \in \mathcal{F}$ приписана сигнатура вида $f: s_1 \times \ldots \times s_n \to s$, где $s_1, \ldots s_n, s \in \mathcal{S}$.
- ▶ Множества \mathcal{P} , называемого множеством предикатных символов. Каждому предикатному символу $R \in \mathcal{P}$ приписана сигнатура вида $R: s_1 \times \ldots \times s_n$, где $s_1, \ldots s_n \in \mathcal{S}$.

Термы логики первого порядка

Пусть V-S-индексированное множество переменных. Тогда мы можем определить множество $\mathrm{Term}_{\Sigma}(V)_s$ термов сорта s индуктивным образом:

- lacktriangle Если $x\in V_s$, то $x\in \mathrm{Term}_{\Sigma}(V)_s$.
- lacktriangle Если $a_i\in \mathrm{Term}_{f \Sigma}(V)_{s_i}$ и $(f:s_1 imes\ldots imes s_n o s)\in \mathcal{F}$, то $f(a_1,\ldots a_n)\in \mathrm{Term}_{f \Sigma}(V)_s$.

Конструкцию термов можно доопределить до функтора $\mathrm{Term}_\Sigma: \mathbf{Set}^\mathcal{S} \to \mathbf{Set}^\mathcal{S}$. Более того, на этом функторе существует естественная структура монады. Упражнение: определите эту структуру.

Формулы логики первого порядка

Пусть, как и раньше, $V \in \mathbf{Set}^{\mathcal{S}}$. Теперь мы определим множество $\mathrm{Form}_{\Sigma}(V)$ формул индуктивным образом:

- lacktriangle Если $a_i\in \mathrm{Term}_{f \Sigma}(V)_{s_i}$ и $(R:s_1 imes\ldots imes s_n)\in \mathcal{P}$, то $R(a_1,\ldots a_n)\in \mathrm{Form}_{f \Sigma}(V).$
- lacktriangle Если $a_1,a_2\in \mathrm{Term}_{\Sigma}(V)_s$, то $a_1=a_2\in \mathrm{Form}_{\Sigma}(V)$.
- ▶ \bot , \top ∈ Form_{Σ}(V).
- ▶ Если $\varphi \in \operatorname{Form}_{\Sigma}(V)$, то $\neg \varphi \in \operatorname{Form}_{\Sigma}(V)$.
- ► Если $\varphi, \psi \in \operatorname{Form}_{\Sigma}(V)$, то $\varphi \wedge \psi, \varphi \vee \psi, \varphi \rightarrow \psi \in \operatorname{Form}_{\Sigma}(V)$.
- ► Если $\varphi \in \operatorname{Form}_{\Sigma}(V \cup \{x : s\})$, то $\forall (x : s)\varphi, \exists (x : s)\varphi \in \operatorname{Form}_{\Sigma}(V).$

Теории логики первого порядка

- ▶ *Теория* логики первого порядка состоит из сигнатуры Σ и множества аксиом вида $\varphi \vdash^{V} \psi$, где V конечное множество переменных, а φ и ψ формулы такие, что $\mathrm{FV}(\varphi) \subseteq V$ и $\mathrm{FV}(\psi) \subseteq V$.
- Когда мы рассматриваем логики, более слабые, чем первого порядка, то мы можем ограничить формулы и/или секвенции, которые можно использовать.
- $lackbox{O}$ Секвенции $arphi \stackrel{\mathbf{x}_1,...\mathbf{x}_n}{\longmapsto} \psi$ можно думать как о формуле $\forall \mathbf{x}_1 \dots \mathbf{x}_n \ (arphi o \psi)$
- Если в логике есть импликация, то секвенции можно заменить одной формулой.
- ► Если в логике еще есть квантор всеобщности, то можно считать, что эта формула замкнута.

Интерпретация сигнатуры

Пусть C – декартова категория. Тогда интерпретация сигнатуры $(S, \mathcal{F}, \mathcal{P})$ в C состоит из следующих данных:

- ▶ Функция $\llbracket \rrbracket : \mathcal{S} \to \mathit{Ob}(\mathbf{C})$.
- Функция $[\![-]\!]$, сопоставляющая каждому $(\sigma: s_1 \times \ldots \times s_n \to s) \in \mathcal{F}$ морфизм $[\![\sigma]\!]: [\![s_1]\!] \times \ldots \times [\![s_n]\!] \to [\![s]\!].$
- lackbox Функция $[\![-]\!]$, сопоставляющая каждому $(R:s_1 imes\ldots imes s_n)\in\mathcal{P}$ мономорфизм $[\![R]\!]:d_R o [\![s_1]\!] imes\ldots imes [\![s_n]\!].$

Интерпретация термов

Пусть ${\bf C}$ — декартова категория и $[\![-]\!]$ — некоторая интерпретация сигнатуры $(\mathcal{S},\mathcal{F},\mathcal{P})$. Если t — терм этой сигнатуры сорта s со свободными переменными в $\{x_1:s_1,\ldots x_n:s_n\}$, то мы можем определить его интерпретацию $[\![t]\!]:[\![s_1]\!]\times\ldots\times[\![s_n]\!]\to[\![s]\!]$ следующим образом:

$$\qquad \qquad \llbracket \sigma(t_1,\ldots t_n)\rrbracket = \llbracket \sigma\rrbracket \circ \langle \llbracket t_1\rrbracket,\ldots \llbracket t_n\rrbracket \rangle.$$

Модели алгебраических теорий

- ightharpoonup Пусть \mathcal{A} алгебраическая теория, то есть множество аксиом вида $t_1=t_2$.
- ▶ Тогда модель этой теории в декартовой категории ${\bf C}$ это интерпретация сигнатуры теории, такая что для любой аксиомы $t_1=t_2$ верно $[\![t_1]\!]=[\![t_2]\!].$

Интерпретация формул в **Set**

- ▶ Прежде чем описать интерпретацию формул в произвольной конечно полной категории, вспомним как она описывается в Set.
- В Set формулы интерпретируются как подмножества.
- ▶ Пусть $\llbracket \rrbracket$ сопоставляет каждому $(R: s_1 \times \ldots \times s_n) \in \mathcal{S}$ подмножество множества $\llbracket s_1 \rrbracket \times \ldots \times \llbracket s_n \rrbracket$.
- ▶ Пусть $V = x_1 : s_1, \dots x_k : s_k$ упорядоченное множество переменных. Тогда функция интерпретации $\llbracket \rrbracket$ сопостовляет каждой формуле из $Form_{\Sigma}(V)$ подмножество множества $\llbracket s_1 \rrbracket \times \dots \times \llbracket s_k \rrbracket$.

Интерпретация формул в **Set**

- ▶ [⊥] пустое подмножество.
- ▶ 『T〗 всё множество.
- ▶ $\llbracket \neg \varphi \rrbracket$ дополнение подмножества $\llbracket \varphi \rrbracket$.
- $\blacktriangleright \llbracket \varphi \wedge \psi \rrbracket = \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket.$
- $\blacktriangleright \llbracket \varphi \lor \psi \rrbracket = \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket.$
- Упражнение: опишите интерпретацию импликации, кванторов и равенства.

Истинность формул в **Set**

- ▶ Интерпретация замкнутой формулы это подмножество одноэлементного множества.
- Следовательно, либо одноэлементное множество, либо пустое.
- ▶ В первом случае говорят, что эта формула истинна в этой интерпретации, во втором, что она ложна.

Интерпретация формул в конечно полной категории

- ▶ Пусть C конечно полная категория.
- ightharpoonup Тогда формулы со свободными переменными в V интерпретируются как подобъекты $|\!|V|\!|\!|$.
- ▶ Если $[\![t_1]\!], [\![t_2]\!]: [\![s_1]\!] \times \ldots \times [\![s_n]\!] \to [\![s]\!],$ то формула $t_1 = t_2$ интерпретируется как уравнитель $[\![t_1]\!]$ и $[\![t_2]\!]$.
- lacktriangle Формула $arphi=R(t_1,\ldots t_k)$ интерпретируется как пулбэк $[\![R]\!]$:

$$d_{\varphi} \xrightarrow{\hspace{1cm}} d_{R}$$

$$[\![\varphi]\!] \downarrow \qquad \qquad \downarrow [\![R]\!]$$

$$[\![V]\!] \xrightarrow{\hspace{1cm} \langle [\![t_{1}]\!], \dots [\![t_{k}]\!] \rangle} [\![s_{1}]\!] \times \dots \times [\![s_{k}]\!]$$

Истинность секвенций

- ▶ Мы будем говорить, что секвенция $\varphi \longmapsto \psi$ истина в некоторой интерпретации $[\![-]\!]$, если подобъект $[\![\varphi]\!]$ является подобъектом $[\![\psi]\!]$.
- ▶ Модель некоторой теории логики первого порядка это интерпретация, такая что все аксиомы в ней истины.

Интерпретация ⊤ и ∧

- ▶ ⊤ интерпретируется как максимальный объект.
- ▶ Наибольший подобъект объекта X это id_X .
- $ho \ \varphi \land \psi$ интерпретируется как пересечение подобъектов $[\![\varphi]\!]$ и $[\![\psi]\!]$.