Exercices de Statistiques

1. Ajustement d'une droite

On cherche à ajuster, par régression linéaire, la droite d'équation $y = \beta_0 + \beta_1 x$ aux données suivantes :

\boldsymbol{x}	y
1	2
2	4
3	5

- (a) Tracer les points et vérifier qu'ils sont approximativement alignés.
- (b) Calculer les estimations b_0 et b_1 des paramètres β_0 et β_1 par la méthode matricielle (pour éviter les erreurs d'arrondi, on pourra exprimer les résultats sous forme de fractions).
- (c) Calculer les sommes de carrés d'écarts SS_t, SS_e, SS_r et vérifier l'équation d'analyse de la variance.
- (d) Donner des valeurs décimales approchées (3 à 4 chiffres significatifs) pour le coefficient de détermination r^2 et le coefficient de corrélation r
- (e) Calculer la variance résiduelle V_r , l'écart-type résiduel s_r et le rapport de variances F. Donner une valeur approchée de s_r avec 2 chiffres significatifs.
- (f) Calculer les écart-types (s_0, s_1) des paramètres de la droite. Donner des valeurs approchées avec 2 chiffres significatifs.
- (g) Donner la présentation des résultats sous la forme :

$$y = (b_0 \pm s_0) + (b_1 \pm s_1)x$$

$$n = \cdots \qquad r^2 = \cdots \qquad r = \cdots \qquad F = \cdots$$

(h) Calculer le coefficient de corrélation r_{01} entre les paramètres estimés. Comment interpréter le résultat?

2. Dosage chromatographique

Lors de l'étalonnage d'une méthode chromatographique, on a obtenu les données suivantes, où x désigne la quantité de produit dosé et y la réponse du détecteur (en unités arbitraires).

x	0,8	1,6	2,4	3,2	4
\overline{y}	0,377	0,68	0,893	1,155	1,3

A l'aide du logiciel WinReg, on a modélisé la courbe d'étalonnage, soit par une droite, soit par un polynôme du deuxième degré, afin de déterminer quel est le modèle le plus approprié.

(a) Régression linéaire : $y = \beta_0 + \beta_1 x$

Param	. Valeur	E.type	t Student	$\text{Prob}(> \mathbf{t})$
b_0	0.1847	0.0488	3.7851	0.0323
b_1	0.2901	0.0184	15.7755	0.0006

$$n = 5$$
; $s_r = 0.047$; $r = 0.994$; $r^2 = 0.988$; $F = 249$; $Prob(> F) = 0.0006$

Ecrire l'équation de la droite sous la forme conseillée.

Soit l'hypothèse nulle : $\beta_0 = 0$. Peut-on rejeter cette hypothèse ? A quel risque ? Ce résultat est-il compatible avec ce que l'on attend d'une courbe d'étalonnage ?

(b) Régression polynomiale : $y = \beta_0 + \beta_1 x + \beta_2 x^2$

Param.	Valeur	E.type	t Student	$\text{Prob}(> \mathbf{t})$
b_0	0.0512	0.0568	0.9017	0.4624
b_1	0.4332	0.0541	8.0082	0.0152
b_2	-0.0298	0.0111	-2.6953	0.1145

$$n = 5$$
; $s_r = 0.027$; $r = 0.999$; $r^2 = 0.997$; $F = 388$; $Prob(> F) = 0.0026$

Ecrire l'équation de la courbe sous la forme conseillée.

Tester à nouveau l'hypothèse nulle : $\beta_0 = 0$

Soit l'hypothèse nulle : $\beta_2=0$ Peut-on rejeter cette hypothèse ? A quel risque ?

(c) Comparaison des deux modèles

Comparer les critères statistiques des 2 modèles (coefficients de détermination, écart-type résiduel, rapport de variance).

Au vu des résultats et de ceux des questions précédentes, quel modèle choisiriez-vous pour représenter la courbe d'étalonnage?

3. Ajustement d'un modèle exponentiel

On cherche à ajuster, par régression non linéaire, le modèle exponentiel $y = a \exp(-bx)$ aux données suivantes :

\boldsymbol{x}	y
1	10
2	5
3	2

(a) Après linéarisation on a obtenu l'équation :

$$ln y = 3,1445 - 0,8047x$$

En déduire les estimations initiales a^0 et b^0 du modèle exponentiel

(b) Calculer les dérivées partielles :

$$y'_a = \frac{\partial f}{\partial a}(x; a, b)$$
 $y'_b = \frac{\partial f}{\partial b}(x; a, b)$

(c) Montrer que le vecteur \mathbf{z} de la régression non linéaire et la matrice Jacobienne \mathbf{J} sont donnés approximativement par :

$$\mathbf{z} \approx \begin{bmatrix} -0,3792\\0,3582\\-0,07591 \end{bmatrix} \qquad \mathbf{J} \approx \begin{bmatrix} 0,4472&-10,38\\0,2000&-9,284\\0,08945&-6,228 \end{bmatrix}$$

(d) On donne:

$$\delta = (\mathbf{J}^{\mathsf{T}}\mathbf{J})^{-1}(\mathbf{J}^{\mathsf{T}}\mathbf{z}) \approx \begin{bmatrix} -2,110 \\ -0,05931 \end{bmatrix}$$

En déduire les nouvelles estimations a et b des paramètres du modèle exponentiel.

(e) Que faudrait-il faire pour terminer l'estimation des paramètres du modèle par régression non linéaire?

4. Equation de Michaelis

L'équation de Michaelis est utilisée en Biochimie pour représenter les variations de la vitesse initiale v_0 d'une réaction catalysée par une enzyme, en fonction de la concentration initiale s_0 du substrat :

$$v_0 = \frac{V_{max}s_0}{K_m + s_0}$$

où V_{max} désigne la vitesse maximale et K_m la constante de Michaelis.

- (a) Quelle est l'allure du graphe de v_0 en fonction de s_0 ?
- (b) Montrer que K_m représente la concentration de substrat correspondant à la moitié de la vitesse maximale.
- (c) Montrer que l'équation de Michaelis peut être linéarisée en exprimant $1/v_0$ en fonction de $1/s_0$ (transformation en double inverse dite de Lineweaver et Burk)
- (d) Quelle condition devrait vérifier l'écart-type de v_0 pour que la linéarisation précédente donne une estimation fiable des paramètres K_m et V_{max} ?

5. Dosage spectrophotométrique du 4-nitrophénol

On a mesuré l'absorption de la lumière par des solutions alcalines de 4-nitrophénol, de concentrations croissantes. On a obtenu les résultats suivants (pour une lumière de longueur d'onde 400 nm et un trajet optique de 1 cm) :

concentration C	1×10^{-5}	2×10^{-5}	3×10^{-5}	4×10^{-5}	5×10^{-5}
(en mol/l)					
absorbance A	0,1865	0,3616	0,5370	0,7359	0,9238

- (a) Vérifier graphiquement qu'on peut admettre l'existence d'une relation linéaire entre l'absorbance et la concentration (loi de Beer-Lambert).
- (b) En supposant que les hypothèses du cours sont satisfaites, estimer les paramètres de la droite de régression de A par rapport à C:
 - ponctuellement,
 - par des intervalles de confiance au risque 5 %. En déduire une estimation du coefficient d'extinction du 4-nitrophénol. Préciser son unité.

Extrait de la table de Student pour $\alpha = 0.05$:

d.d.l.	1	2	3	4	5
$t_{0,975}$	12,7	4,30	3,18	2,78	$2,\!57$

6. Produit ionique des alcools

Le produit ionique des alcools est défini par l'équilibre;

$$R - OH + R - OH \rightleftharpoons R - OH_2^+ + R - O^-$$
$$K_s = [R - OH_2^+][R - O^-]$$
$$pK_s = -\log K_s$$

La valeur de pK_s est liée à la constante diélectrique D par une relation du type :

$$pK_s = \alpha + \frac{\beta}{D} \tag{1}$$

On connaît les résultats suivants :

solvants	D	pK_s
eau	78,5	14
éthanol	24,3	19,1
isopropanol	18,3	20,8
méthanol	32,6	16,7

- (a) Vérifier graphiquement la validité de la relation (1) pour ces solvants.
- (b) Estimer les valeurs de α et de β :
 - ponctuellement,
 - par des intervalles de confiance au coefficient de sécurité 0,95.
- (c) Pour le *n*-propanol, on a : D = 20.1. Estimer son pK_s :
 - ponctuellement,
 - par un intervalle de confiance au risque 0,05.

Note : Si \hat{y}_0 désigne une valeur estimée à l'aide d'une droite de régression, pour une valeur x_0 de la variable indépendante ($\hat{y}_0 = b_0 + b_1 x_0$), la variance de cette estimation peut être calculée par :

$$\operatorname{Var}(\hat{y}_0) = \mathbf{x}^{\top} \mathbf{V} \mathbf{x}$$

où \mathbf{x} est le vecteur $\begin{bmatrix} 1 & x_0 \end{bmatrix}^{\top}$ et \mathbf{V} représente la matrice de variancecovariance des paramètres de la droite.

(d) Donner un intervalle de confiance du pK_s mesuré pour le n-propanol. On utilisera les relations :

$$y_0 = \hat{y}_0 + \epsilon \implies \operatorname{Var}(y_0) = \operatorname{Var}(\hat{y}_0) + \operatorname{Var}(\epsilon)$$

7. Cinétique du premier ordre

Un corps chimique se décompose selon une cinétique du premier ordre caractérisée par l'équation : $Q = Q_0 e^{-kt}$ où :

Q désigne la quantité de corps restant à l'instant t;

 Q_0 la quantité initiale;

k la constante de vitesse de la décomposition.

On dispose des données expérimentales suivantes :

t (min)	1	2	3	4	5	6	7	8	9	10
Q (nanomoles)	416	319	244	188	144	113	85	66	50	41

Estimer la constante de vitesse k par linéarisation, puis par régression non linéaire. Quelle est la méthode la plus précise?

Donner un intervalle de confiance de k au risque 0,05 (on donne $t_{0,975}$ = 2,306 à 8 d.d.l.)

Préciser l'unité de k

8. Ajustement de l'équation de Michaelis

Le tableau suivant représente les variations de la vitesse initiale v_0 d'une réaction enzymatique en fonction de la concentration initiale s_0 du substrat :

$s_0 \pmod{\mathrm{L}^{-1}}$	$v_0 \; (\mu \text{mol L}^{-1} \; \text{s}^{-1})$
0,10	0,71
0,20	1,19
0,40	1,62
0,80	2,37
1,00	2,87
2,00	4,26
4,00	4,81
6,00	5,50
8,00	5,77
10,00	6,31

- (a) Estimer K_m et V_{max} par linéarisation, puis par régression non linéaire (dans WinReg : F5 puis choisir « Michaelis »).
- (b) Pour chaque méthode de régression, tracer les résidus normalisés en fonction de y_{calc} (dans WinReg : menu « Graphique / Axes et courbes »). Peut-on admettre que la répartition des résidus est conforme aux hypothèses du cours? Les résultats permettent-ils de privilégier une méthode de régression?

(c) Donner les valeurs de K_m et V_{max} sous forme : valeur estimée \pm écart-type. Préciser les unités.

9. Influence de la température sur la cinétique d'une réaction enzymatique

Le tableau suivant représente les variations de $K_{\rm m}$ et de la constante catalytique $k_{\rm cat} = V_{\rm max}/e_{\rm tot}$, où $e_{\rm tot}$ désigne la concentration totale en enzyme, en fonction de la température, pour l'enzyme étudiée à l'exercice précédent.

Temperature (°C)	$K_{\rm m} \ ({\rm mM})$	$k_{\rm cat}~({\rm s}^{-1})$
10		454
15	0,97	503
20	1,05	659
25	1,33	796
30	1,80	1200
35	2,07	1541
40	3,03	1901

Le mécanisme de la réaction peut être représenté sous la forme :

$$E + S \rightleftharpoons ES \rightarrow E + P$$

avec E= enzyme, S= substrat, ES= complexe enzyme-substrat, P= produit de la réaction. $K_{\rm m}$ représente la constante de dissociation du complexe ES ($K_m=[E][S]/[ES]$) et $k_{\rm cat}$ représente la constante de vitesse de la réaction $ES\to E+P$

La variation de $K_{\rm m}$ et $k_{\rm cat}$ avec la température s'exprime par les relations suivantes :

$$\ln \frac{1}{K_{\rm m}} = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R} \tag{2}$$

$$\ln \frac{k_{\text{cat}}}{T} = \ln \frac{k_{\text{B}}}{h} - \frac{\Delta H^{\ddagger}}{RT} + \frac{\Delta S^{\ddagger}}{R}$$
 (3)

 $K_{\rm m}$: constante de Michaelis (mol L⁻¹)

 $k_{\rm cat}$: constante catalytique (s⁻¹)

T: température absolue (K)

 $\Delta H^{\circ},\,\Delta S^{\circ}$: variations d'enthalpie et d'entropie pour la formation du complexe ES

 $\Delta H^{\ddagger}, \; \Delta S^{\ddagger}$: enthalpie et entropie d'activation pour la réaction $ES \to E + P$

R: constante des gaz parfaits = 8,31 J mol⁻¹ K⁻¹

 $k_{\rm B}$: constante de Boltzmann = 1,38 ×10⁻²³ J K⁻¹

h: constante de Planck = 6,62 $\times 10^{-34}$ J s

- (a) Les valeurs déterminées au TP précédent correspondent à la température de 25°C. Quelle était la concentration de l'enzyme?
- (b) Pourquoi utilise-t-on $1/K_{\rm m}$ dans l'équation 2?
- (c) Montrer que l'on peut estimer ΔH° , ΔS° , ΔH^{\ddagger} , ΔS^{\ddagger} par régression linéaire à partir des équations 2 et 3. Quelles conditions doivent vérifier les écart-types de $K_{\rm m}$ et $k_{\rm cat}$ pour que ces estimations soient valables?
- (d) En supposant ces conditions vérifiées, estimer ces paramètres. Précisez les écart-types et les unités.
- (e) Le schéma suivant représente l'évolution de l'enthalpie du système au cours de la réaction :

- i. Faire correspondre aux niveaux d'enthalpie les états du système : $E+S,\,ES,\,ES^{\ddagger}$ (état de transition), E+P
- ii. A quoi correspondent les variations d'enthalpie symbolisées par les flèches?