Análisis Exploratorio de los Datos: MORTALIDAD TRATABLE Y PREVENIBLE , MORTALIDAD POR ENFERMEDADES INFECCIOSAS

Alicia Perdices Guerra

21 de mayo, 2021

Contents

- 1.ANÁLISIS EXPLORATORIO POR PAISES.
 - 1.1 EN RELACIÓN CON LA MORTALIDAD
 - $\ast\,$ 1.1.1 Análisis Descriptivo
 - * 1.1.2 Visualización y Distribución de la variable "Value (Mortalidad)"
 - · MORTALIDAD TRATABLE Y PREVENIBLE.
 - · MORTALIDAD POR ENFERMEDADES INFECCIOSAS.
 - * 1.1.3 Normalidad de la variable "Value (Mortalidad)"
 - · MORTALIDAD TRATABLE Y PREVENIBLE.
 - · MORTALIDAD POR ENFERMEDADES INFECCIOSAS.

1.ANÁLISIS EXPLORATORIO POR PAISES Se procede en primer lugar a cargar todos los archivos para poder realizar el análisis.

```
mortalidad_tp<-read.csv("C:/temp/Mortalidad_Tratable_Prevenible_clean.csv",sep= ",")
mortalidad_ei<-read.csv("C:/temp/Muertes_Enf_Infecciosas_clean.csv",sep= ",")</pre>
```

1.1.- EN RELACIÓN CON LA MORTALIDAD

• 1.1.1 Análisis Descriptivo

Se procede a realizar el análisis descriptivo:

summary(mortalidad_tp)

##	TIME	GEO	MORTALIT	SEX
##	Min. :2011	Length: 4536	Length: 4536	Length: 4536
##	1st Qu.:2012	Class :character	Class :character	Class :character
##	Median :2014	Mode :character	Mode :character	Mode :character
##	Mean :2014			
##	3rd Qu.:2016			
##	Max. :2017			

```
##
       ICD10
                             UNIT
                                                 Value
                                                                   Value_imp
                        Length: 4536
                                                                   Mode :logical
##
    Length: 4536
                                             Min.
                                                            6.5
##
    Class : character
                         Class : character
                                             1st Qu.:
                                                          154.3
                                                                   FALSE: 4482
                                                                   TRUE:54
##
    Mode :character
                        Mode :character
                                                          373.9
                                             Median:
##
                                             Mean
                                                        22272.2
##
                                             3rd Qu.:
                                                         8195.9
##
                                             Max.
                                                     :1210890.0
```

summary(mortalidad_ei)

```
##
         TIME
                        GEO
                                            UNIT
                                                                 SEX
##
    Min.
            :2011
                    Length: 1332
                                        Length: 1332
                                                             Length: 1332
                                                             Class :character
##
    1st Qu.:2013
                    Class : character
                                        Class : character
    Median:2015
                    Mode :character
                                        Mode :character
                                                             Mode :character
           :2015
##
    Mean
##
    3rd Qu.:2017
##
    Max.
           :2019
       ICD10
##
                            Value
                                           Value_imp
##
   Length: 1332
                                      0
                                          Mode :logical
                        Min.
##
    Class : character
                        1st Qu.:
                                    223
                                          FALSE: 1176
##
   Mode :character
                        Median :
                                   1074
                                          TRUE :156
##
                        Mean
                                   6755
##
                        3rd Qu.: 4156
##
                        Max.
                                :133225
```

Se filta el dataframe para que la variable GEO aparezcan solo los paises objeto de estudio. (Para cada archivo relacionado con La Mortalidad y unificamos la información). Además se selecciona la información relevante de las variables MORTALIT (tipo de Mortalidad), SEX (Total), UNIT (Number) e ICD10 (tipo de enfermedad infecciosa)

```
##
     TIME
                                                                         MORTALIT
## 1 2011
                                                    Belgium Preventable mortality
## 2 2011
                                                   Bulgaria Preventable mortality
## 3 2011
                                                    Czechia Preventable mortality
## 4 2011
                                                    Denmark Preventable mortality
## 5 2011 Germany (until 1990 former territory of the FRG) Preventable mortality
## 6 2011
                                                    Estonia Preventable mortality
                           Value Value_imp
       SEX ICD10
                   UNIT
## 1 Total Total Number
                        15883.5
                                      FALSE
## 2 Total Total Number
                        15459.5
                                      FALSE
```

```
## 3 Total Total Number 20972.5
                                     FALSE
## 4 Total Total Number 9022.0
                                     FALSE
## 5 Total Total Number 127461.0
                                     FALSE
## 6 Total Total Number
                          3555.0
                                     FALSE
nrow(mortalidad_pre)
## [1] 238
#Mortalidad tratable
mortalidad_tra<-filter(mortalidad_tp_paises, MORTALIT=="Treatable mortality", SEX=="Total", UNIT=="Number"
head(mortalidad_tra)
##
    TIME
                                                       GEO
                                                                      MORTALIT
## 1 2011
                                                   Belgium Treatable mortality
## 2 2011
                                                  Bulgaria Treatable mortality
## 3 2011
                                                   Czechia Treatable mortality
## 4 2011
                                                   Denmark Treatable mortality
## 5 2011 Germany (until 1990 former territory of the FRG) Treatable mortality
## 6 2011
                                                   Estonia Treatable mortality
       SEX ICD10
                  UNIT
                        Value Value_imp
## 1 Total Total Number 7459.5
                                  FALSE
## 2 Total Total Number 13422.5
                                    FALSE
## 3 Total Total Number 13383.5
                                    FALSE
## 4 Total Total Number 4445.0
                                    FALSE
## 5 Total Total Number 74029.0
                                    FALSE
## 6 Total Total Number 1870.0
                                    FALSE
nrow(mortalidad_tra)
## [1] 238
#En relación con la MORTALIDAD POR ENFERMEDADES INFECCIOSAS
mortalidad_ei_paises<-filter(mortalidad_ei,
             +(GEO!="European Union - 27 countries (from 2020)")&
             +(GEO!="European Union - 28 countries (2013-2020)")&
             +(GEO!="France (metropolitan)"))
#Filtramos TIME (2011-2017), para poder hacer comparar con la información de mortalidad prevenible y tr
mortalidad_ei_paises<-filter(mortalidad_ei_paises,</pre>
             +(TIME!=2018)&
             +(TIME!=2019))
#Mortalidad por enfermedades infecciosas clasificadas por ICD-10-CM Codes:https://www.icd10data.com/ICD
# Certain infectious and parasitic diseases A00-B99
mortalidad_A00_B99<-filter(mortalidad_ei_paises, ICD10=="Certain infectious diseases (A00-A40, A42-B99)
head(mortalidad_A00_B99)
    TIME
                                                             UNIT
## 1 2011
                                                   Belgium Number Total
```

```
## 2 2011
                                                Bulgaria Number Total
## 3 2011
                                                 Czechia Number Total
                                                 Denmark Number Total
## 4 2011
## 5 2011 Germany (until 1990 former territory of the FRG) Number Total
                                                 Estonia Number Total
##
                                            ICD10 Value Value imp
## 1 Certain infectious diseases (A00-A40, A42-B99)
                                                           FALSE
## 2 Certain infectious diseases (A00-A40, A42-B99)
                                                    290
                                                           FALSE
## 3 Certain infectious diseases (A00-A40, A42-B99)
                                                   651
                                                           FALSE
## 4 Certain infectious diseases (A00-A40, A42-B99)
                                                   559
                                                           FALSE
## 5 Certain infectious diseases (A00-A40, A42-B99) 9300
                                                           FALSE
## 6 Certain infectious diseases (A00-A40, A42-B99)
                                                   127
                                                           FALSE
nrow(mortalidad_A00_B99)
## [1] 238
# Other infectious diseases (GOO, GO3-GO4, GO6, GO8-GO9, HOO-HO1, H10, H16, H20, H30, H46, H60, H65-H66
head(mortalidad_G00_R50)
##
                                                          UNIT
    TIME
                                                     GEO
                                                                 SEX
## 1 2011
                                                 Belgium Number Total
## 2 2011
                                                Bulgaria Number Total
## 3 2011
                                                 Czechia Number Total
                                                 Denmark Number Total
## 4 2011
## 5 2011 Germany (until 1990 former territory of the FRG) Number Total
## 6 2011
                                                 Estonia Number Total
## 1 Other infectious diseases (G00, G03-G04, G06, G08-G09, H00-H01, H10, H16, H20, H30, H46, H60, H65-
## 2 Other infectious diseases (G00, G03-G04, G06, G08-G09, H00-H01, H10, H16, H20, H30, H46, H60, H65-
## 3 Other infectious diseases (G00, G03-G04, G06, G08-G09, H00-H01, H10, H16, H20, H30, H46, H60, H65-
## 4 Other infectious diseases (G00, G03-G04, G06, G08-G09, H00-H01, H10, H16, H20, H30, H46, H60, H65-
## 5 Other infectious diseases (G00, G03-G04, G06, G08-G09, H00-H01, H10, H16, H20, H30, H46, H60, H65-
## 6 Other infectious diseases (GOO, GO3-GO4, GO6, GO8-GO9, HOO-HO1, H10, H16, H20, H30, H46, H60, H65-
##
    Value Value imp
## 1 2994
              FALSE
## 2 1227
              FALSE
## 3 2336
              FALSE
## 4 1954
              FALSE
## 5 15593
              FALSE
## 6
      347
              FALSE
nrow(mortalidad_G00_R50)
## [1] 238
#Pneumonia, organism unspecified
mortalidad_pneumonia<-filter(mortalidad_ei_paises,ICD10=="Pneumonia, organism unspecified")
```

head(mortalidad_pneumonia)

```
##
     TIME
                                                         GEO
                                                               UNIT
                                                                      SEX
## 1 2011
                                                    Belgium Number Total
                                                   Bulgaria Number Total
## 2 2011
## 3 2011
                                                    Czechia Number Total
## 4 2011
                                                    Denmark Number Total
## 5 2011 Germany (until 1990 former territory of the FRG) Number Total
## 6 2011
                                                    Estonia Number Total
##
                                ICD10 Value Value_imp
## 1 Pneumonia, organism unspecified 3260
                                                FALSE
## 2 Pneumonia, organism unspecified
                                       1200
                                                FALSE
## 3 Pneumonia, organism unspecified 2073
                                                FALSE
## 4 Pneumonia, organism unspecified
                                        890
                                                FALSE
## 5 Pneumonia, organism unspecified 18020
                                                FALSE
## 6 Pneumonia, organism unspecified
                                                FALSE
nrow(mortalidad_pneumonia)
## [1] 238
#Other sepsis
mortalidad_osep<-filter(mortalidad_ei_paises,ICD10=="Other sepsis")
head(mortalidad_osep)
     TIME
                                                         GEO
                                                               UNIT
                                                                      SEX
## 1 2011
                                                    Belgium Number Total
## 2 2011
                                                   Bulgaria Number Total
## 3 2011
                                                    Czechia Number Total
## 4 2011
                                                    Denmark Number Total
## 5 2011 Germany (until 1990 former territory of the FRG) Number Total
## 6 2011
                                                    Estonia Number Total
##
            ICD10 Value Value_imp
## 1 Other sepsis 1148
                            FALSE
## 2 Other sepsis
                    233
                            FALSE
                   714
                            FALSE
## 3 Other sepsis
## 4 Other sepsis
                   250
                            FALSE
## 5 Other sepsis 7411
                            FALSE
## 6 Other sepsis
                            FALSE
nrow(mortalidad_osep)
## [1] 238
Se crea un Dataframe con toda la información:
year<-(mortalidad_osep$TIME)#Columna Year</pre>
country<-(mortalidad_osep$GEO) #Columna Paises</pre>
length(unique(mortalidad_osep$GEO))
```

[1] 34

length(unique(mortalidad_pre\$GEO))

[1] 34

```
##
     TIME
                                                         Pais Mortalidad_Prevenible
## 1 2011
                                                      Belgium
                                                                             15883.5
## 2 2011
                                                     Bulgaria
                                                                             15459.5
## 3 2011
                                                      Czechia
                                                                             20972.5
## 4 2011
                                                      Denmark
                                                                              9022.0
## 5 2011 Germany (until 1990 former territory of the FRG)
                                                                            127461.0
                                                                              3555.0
## 6 2011
     Mortalidad_Tratable Mortalidad_A00_B99 Mortalidad_G00_R50
##
## 1
                   7459.5
                                         1148
                                                             2994
## 2
                  13422.5
                                          233
                                                             1227
## 3
                  13383.5
                                          714
                                                             2336
## 4
                                          250
                                                             1954
                   4445.0
## 5
                  74029.0
                                         7411
                                                            15593
## 6
                  1870.0
                                                              347
##
     Mortalidad_pneumonia Other_sepsis
## 1
                      3260
                                    1148
## 2
                      1200
                                     233
## 3
                      2073
                                     714
                                     250
## 4
                       890
## 5
                     18020
                                    7411
## 6
                        29
                                       3
```

```
#Generamos el fichero filtrado para utilizarlo en el siguiente análisis.
write.csv(mortalidad, file="Mortalidad_Analisis.csv", row.names = FALSE)
```

Se reescalan los datos:

```
mortalidad["Mortalidad_Prevenible_norm"] <-
    rescale(mortalidad$Mortalidad_Prevenible, to=c(0,1))
mortalidad["Mortalidad_Tratable_norm"] <-
    rescale(mortalidad$Mortalidad_Tratable, to=c(0,1))
mortalidad["Mortalidad_A00_B99_norm"] <-
    rescale(mortalidad$Mortalidad_A00_B99, to=c(0,1))
mortalidad["Mortalidad_G00_R50_norm"] <-
    rescale(mortalidad$Mortalidad_G00_R50, to=c(0,1))
mortalidad["Mortalidad_pneumonia_norm"] <-
    rescale(mortalidad$Mortalidad_pneumonia, to=c(0,1))
mortalidad["Other_sepsis_norm"] <-
    rescale(mortalidad$Other_sepsis, to=c(0,1))</pre>
```

• 1.1.2 Visualización y Distribución de la variable "Value (mortalidad)"

Se visualiza la variable "Value" en función de TIME, y causas de Mortalidad.

```
#Diagrama de BARRAS: CAUSAS DE MORTALIDAD
#-----
plot1=ggplot(data=mortalidad)+geom_col(aes(x=TIME,y=Mortalidad_Prevenible))+
 theme(axis.text.x = element_text(angle = 45))+
 scale y continuous(limit=c(0,900000))+
 ggtitle("Mortalidad Prevenible")+
 theme (plot.title = element_text(size=rel(0.5), hjust = 0.5))
plot2=ggplot(data=mortalidad)+geom_col(aes(x=TIME,y=Mortalidad_Tratable))+
 theme(axis.text.x = element_text(angle = 45))+
 scale_y_continuous(limit=c(0,900000))+
 ggtitle("Mortalidad Tratable")+
 theme (plot.title = element_text(size=rel(0.5), hjust = 0.5))
plot3=ggplot(data=mortalidad)+geom_col(aes(x=TIME,y=Mortalidad_A00_B99))+
 theme(axis.text.x = element_text(angle = 45))+
 scale_y_continuous(limit=c(0,900000))+
 ggtitle("Mortalidad_A00_B99")+
 theme (plot.title = element_text(size=rel(0.5), hjust = 0.5))
plot4=ggplot(data=mortalidad)+geom_col(aes(x=TIME,y=Mortalidad_G00_R50))+
 theme(axis.text.x = element_text(angle = 45))+
 scale y continuous(limit=c(0,900000))+
 ggtitle("Mortalidad_G00_R50")+
 theme (plot.title = element_text(size=rel(0.5), hjust = 0.5))
plot5=ggplot(data=mortalidad)+geom_col(aes(x=TIME,y=Mortalidad_pneumonia))+
 theme(axis.text.x = element text(angle = 45))+
 scale y continuous(limit=c(0,900000))+
 ggtitle("Mortalidad_pneumonia")+
 theme (plot.title = element_text(size=rel(0.5), hjust = 0.5))
plot6=ggplot(data=mortalidad)+geom_col(aes(x=TIME,y=Other_sepsis))+
 theme(axis.text.x = element_text(angle = 45))+
 scale_y_continuous(limit=c(0,900000))+
 ggtitle("Other_sepsis")+
 theme (plot.title = element_text(size=rel(0.5), hjust = 0.5))
#Diagrama de Puntos: CAUSAS DE MORTALIDAD
plot7=ggplot(data=mortalidad)+geom_point(aes(x=Pais,y=Mortalidad_Prevenible))+
 theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
 scale_y_continuous(limit=c(0,200000))+
 ggtitle("Mortalidad_Prevenible")+
 theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
plot8=ggplot(data=mortalidad)+geom_point(aes(x=Pais,y=Mortalidad_Tratable))+
 theme(axis.text.x = element text(size= 5,angle = 30,vjust=1,hjust = 1))+
 scale_y_continuous(limit=c(0,100000))+
```

```
ggtitle("Mortalidad_Tratable")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
plot9=ggplot(data=mortalidad)+geom_point(aes(x=Pais,y=Mortalidad_A00_B99))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Mortalidad_A00_B99")+
  theme (plot.title = element text(size=rel(0.5),hjust = 0.5))
plot10=ggplot(data=mortalidad)+geom_point(aes(x=Pais,y=Mortalidad_G00_R50))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Mortalidad_G00_R50")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
plot11=ggplot(data=mortalidad)+geom_point(aes(x=Pais,y=Mortalidad_pneumonia))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Mortalidad_pneumonia")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
plot12=ggplot(data=mortalidad)+geom_point(aes(x=Pais,y=Other_sepsis))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Other sepsis")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
grid.arrange(plot1,plot7,widths=c(1,3), ncol=2)
```


grid.arrange(plot2,plot8,widths=c(1,3), ncol=2)

grid.arrange(plot3,plot9,widths=c(1,3), ncol=2)

grid.arrange(plot4,plot10,widths=c(1,3), ncol=2)

grid.arrange(plot5,plot11,widths=c(1,3), ncol=2)

grid.arrange(plot6,plot12,widths=c(1,3), ncol=2)

Se obtienen los 5 países con mayor índice de mortalidad según el tipo de causa que la provoca.

```
#Se filtra por año

y_2011<-filter(mortalidad, TIME==2011)
y_2012<-filter(mortalidad, TIME==2012)
y_2013<-filter(mortalidad, TIME==2013)
y_2014<-filter(mortalidad, TIME==2014)
y_2015<-filter(mortalidad, TIME==2015)
y_2016<-filter(mortalidad, TIME==2016)
y_2017<-filter(mortalidad, TIME==2017)</pre>
```

• Mortalidad_Prevenible

```
#Filtramos por Mortalidad Prevenible
mortalidad_2011<-y_2011[with(y_2011, order(-y_2011$Mortalidad_Prevenible)),]
mortalidad_2012<-y_2012[with(y_2012, order(-y_2012$Mortalidad_Prevenible)),]
mortalidad_2013<-y_2013[with(y_2013, order(-y_2013$Mortalidad_Prevenible)),]
mortalidad_2014<-y_2014[with(y_2014, order(-y_2014$Mortalidad_Prevenible)),]
mortalidad_2015<-y_2015[with(y_2015, order(-y_2015$Mortalidad_Prevenible)),]
mortalidad_2016<-y_2016[with(y_2016, order(-y_2016$Mortalidad_Prevenible)),]
mortalidad_2017<-y_2017[with(y_2017, order(-y_2017$Mortalidad_Prevenible)),]

#Se crea una tabla con la información de la variable Mortalidad_Prevenible por años
kable(mortalidad_2011[0:5,c(2,3)],
```

```
col.names = c("País", "Mortalidad_Prevenible"),
caption = "Países con mayor Mortalidad_Prevenible en 2011")
```

Table 1: Países con mayor Mortalidad_Prevenible en 2011

	País	Mortalidad_Prevenible
5	Germany (until 1990 former territory of the FRG)	127461.0
32	United Kingdom	82226.0
10	France	78950.5
21	Poland	77175.5
34	Turkey	68225.0

Table 2: Países con mayor Mortalidad_Prevenible en 2012

	País	Mortalidad_Prevenible
5	Germany (until 1990 former territory of the FRG)	125457.5
32	United Kingdom	81962.5
10	France	77596.5
21	Poland	76992.0
34	Turkey	67271.5

Table 3: Países con mayor Mortalidad_Prevenible en 2013

	País	Mortalidad_Prevenible
5	Germany (until 1990 former territory of the FRG)	126132.0
32	United Kingdom	82478.5
34	Turkey	80578.0
10	France	77270.0
21	Poland	75400.0

Table 4: Países con mayor Mortalidad_Prevenible en 2014

	País	Mortalidad_Prevenible
5	Germany (until 1990 former territory of the FRG)	120737.5
32	United Kingdom	82551.0
34	Turkey	80566.0
10	France	76003.5
21	Poland	72755.5

Table 5: Países con mayor Mortalidad_Prevenible en 2015

	País	Mortalidad_Prevenible
5	Germany (until 1990 former territory of the FRG)	122759.0
32	United Kingdom	84677.5
34	Turkey	80325.0
10	France	77864.0
21	Poland	72929.5

Table 6: Países con mayor Mortalidad_Prevenible en 2016

	País	Mortalidad_Prevenible
5	Germany (until 1990 former territory of the FRG)	120129.5
32	United Kingdom	86777.5
34	Turkey	84518.5
10	France	77585.5
21	Poland	73164.5

Table 7: Países con mayor Mortalidad_Prevenible en 2017

	País	Mortalidad_Prevenible
5	Germany (until 1990 former territory of the FRG)	118506.5
32	United Kingdom	87159.0
34	Turkey	83229.0
10	France	77585.5
21	Poland	74998.0

A continuación, se aprupa toda la Mortalidad_Prevenible por paises y se crea una tabla con toda la información:

```
a1<-group_by(mortalidad,Pais)#Se agrupa por paises
a2<-select(a1,Pais:Mortalidad_Prevenible)#Seleccionamos las variables GEO y Mortalidad_Prevenible
a3<-(summarize(a2,suma=sum(Mortalidad_Prevenible/10)))#Se muestra la información por cada país, con Val
a4<-data.frame(a3)#Se convierte la información en un dataframe
a5<-a4[with(a4,order(-a4$suma)),]#Se ordena el DataFrame por la variable Suma de forma descendente.

#Se crea una tabla con toda la información
kable(a5[0:5,c(1,2)], col.names = c("País","Mortalidad_Prevenible"), caption = "Países con mayor Mortal
```

Table 8: Países con mayor Mortalidad Prevenible en 2011-2017

	País	Mortalidad_Prevenible
11	Germany (until 1990 former territory of the FRG)	86118.30
34	United Kingdom	58783.20
33	Turkey	54471.30
10	France	54285.55
24	Poland	52341.50

• Mortalidad_Tratable

Table 9: Países con mayor Mortalidad Tratable en 2011

	País	Mortalidad_Tratable
5	Germany (until 1990 former territory of the FRG)	74029.0
34	Turkey	50411.0
32	United Kingdom	48861.0
21	Poland	44643.5
12	Italy	41124.5

Table 10: Países con mayor Mortalidad_Tratable en 2012

	País	${\bf Mortalidad_Tratable}$
5	Germany (until 1990 former territory of the FRG)	72005.5
34	Turkey	49912.5
32	United Kingdom	48594.5
21	Poland	44342.0
12	Italy	41222.0

Table 11: Países con mayor Mortalidad_Tratable en 2013

	País	${\bf Mortalidad_Tratable}$
5	Germany (until 1990 former territory of the FRG)	71225.0
34	Turkey	58609.0
32	United Kingdom	48137.5
21	Poland	43734.0
12	Italy	39717.0

Table 12: Países con mayor Mortalidad Tratable en 2014

	País	${\bf Mortalidad_Tratable}$
5	Germany (until 1990 former territory of the FRG)	67489.5
34	Turkey	61678.0
32	United Kingdom	48027.0
21	Poland	40861.5
12	Italy	38732.0

Table 13: Países con mayor Mortalidad_Tratable en 2015

	País	Mortalidad_Tratable
5	Germany (until 1990 former territory of the FRG)	68212.0
34	Turkey	63826.0

	País	Mortalidad_Tratable
32	United Kingdom	49579.5
21	Poland	41704.5
12	Italy	40000.0

Table 14: Países con mayor Mortalidad_Tratable en 2016

	País	${\bf Mortalidad_Tratable}$
34	Turkey	66395.5
5	Germany (until 1990 former territory of the FRG)	65536.5
32	United Kingdom	50951.5
21	Poland	42060.5
12	Italy	37638.0

Table 15: Países con mayor Mortalidad_Tratable en 2017

	País	Mortalidad_Tratable
34	Turkey	65810.0
5	Germany (until 1990 former territory of the FRG)	64417.5
32	United Kingdom	50880.0
21	Poland	43948.0
12	Italy	38040.5

A continuación, se aprupa toda la Mortalidad_Tratable por paises y se crea una tabla con toda la información:

```
a1<-group_by(mortalidad,Pais) #Se agrupa por paises

#Seleccionamos las variables GEO y Mortalidad_Tratable

a2<-select(a1,Pais:Mortalidad_Tratable)

#Se muestra la información por cada país,

#con Value=suma de los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Mortalidad_Tratable/10)))

a4<-data.frame(a3) #Se convierte la información en un dataframe

a5<-a4[with(a4,order(-a4$suma)),] #Se ordena el DataFrame

#por la variable Suma de forma descendente.

#Se crea una tabla con toda la informacion

kable(a5[0:5,c(1,2)], col.names = c("País", "Mortalidad_Tratable"),

caption = "Países con mayor Mortalidad_Tratable en 2011-2017")
```

Table 16: Países con mayor Mortalidad_Tratable en 2011-2017

	País	Mortalidad_Tratable
11	Germany (until 1990 former territory of the FRG)	48291.5
33	Turkey	41664.2
34	United Kingdom	34503.1
24	Poland	30129.4
16	Italy	27647.4

\bullet Mortalidad_A00_B99

Table 17: Países con mayor Mortalidad_A00_B99 en 2011

	País	$Mortalidad_A00_B99$
5	Germany (until 1990 former territory of the FRG)	7411
12	Italy	5423
10	France	5094
8	Greece	3626
9	Spain	2946

Table 18: Países con mayor Mortalidad_A00_B99 en 2012

	País	Mortalidad_A00_B99
5	Germany (until 1990 former territory of the FRG)	8232
12	Italy	6630
10	France	5330
8	Greece	4440
34	Turkey	3343

Table 19: Países con mayor Mortalidad_A00_B99 en 2013

	País	Mortalidad_A00_B99
5	Germany (until 1990 former territory of the FRG)	7901
12	Italy	7163
10	France	5277
8	Greece	4079
34	Turkey	3527

Table 20: Países con mayor Mortalidad A00 B99 en 2014

	País	Mortalidad_A00_B99
5	Germany (until 1990 former territory of the FRG)	8444
12	Italy	7573
10	France	5333
34	Turkey	4053
9	Spain	3224

Table 21: Países con mayor Mortalidad_A00_B99 en 2015

	País	Mortalidad_A00_B99
12	Italy	9656
5	Germany (until 1990 former territory of the FRG)	9189
10	France	5726
34	Turkey	5678
9	Spain	4148

Table 22: Países con mayor Mortalidad_A00_B99 en 2016

	País	Mortalidad_A00_B99
5	Germany (until 1990 former territory of the FRG)	7329
12	Italy	6594
34	Turkey	6056
10	France	4793
9	Spain	3856

Table 23: Países con mayor Mortalidad_A00_B99 en 2017

	País	Mortalidad_A00_B99
12	Italy	7875
34	Turkey	7873
5	Germany (until 1990 former territory of the FRG)	7364
10	France	5333
9	Spain	3754

A continuación, se aprupa toda la Mortalidad_A00_B99 por paises y se crea una tabla con toda la información:

```
a1<-group_by(mortalidad,Pais) #Se agrupa por paises

#Seleccionamos las variables GEO y Mortalidad_A00_B99

a2<-select(a1,Pais:Mortalidad_A00_B99)

#Se muestra la información por cada país,

#con Value=suma de los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Mortalidad_A00_B99/10)))

a4<-data.frame(a3) #Se convierte la información en un dataframe

a5<-a4[with(a4,order(-a4$suma)),] #Se ordena el DataFrame

#por la variable Suma de forma descendente.

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)], col.names = c("País","Mortalidad_A00_B99"),

caption = "Países con mayor Mortalidad_A00_B99 en 2011-2017")
```

Table 24: Países con mayor Mortalidad_A00_B99 en 2011-2017

	País	Mortalidad_A00_B99
11	Germany (until 1990 former territory of the FRG)	5587.0
16	Italy	5091.4
10	France	3688.6
33	Turkey	3319.8
12	Greece	2622.7

• Mortalidad_G00_R50

Table 25: Países con mayor Mortalidad_G00_R50 en 2011

	País	$Mortalidad_G00_R50$
32	United Kingdom	17160
5	Germany (until 1990 former territory of the FRG)	15593
10	France	11842
9	Spain	11834
12	Italy	10691

Table 26: Países con mayor Mortalidad G00 R50 en 2012

	País	Mortalidad_G00_R50
32	United Kingdom	17092
5	Germany (until 1990 former territory of the FRG)	15598
10	France	13153
9	Spain	12611
12	Italy	11116

Table 27: Países con mayor Mortalidad G00 R50 en 2013

	País	Mortalidad_G00_R50
5	Germany (until 1990 former territory of the FRG)	17419
32	United Kingdom	17322
10	France	13122

	País	Mortalidad_G00_R50
9	Spain	12386
12	Italy	10771

Table 28: Países con mayor Mortalidad_G00_R50 en 2014

	País	Mortalidad_G00_R50
32	United Kingdom	19823
5	Germany (until 1990 former territory of the FRG)	16342
9	Spain	13197
10	France	12390
12	Italy	10547

Table 29: Países con mayor Mortalidad_G00_R50 en 2015

	País	$Mortalidad_G00_R50$
32	United Kingdom	21479
5	Germany (until 1990 former territory of the FRG)	18180
10	France	15375
9	Spain	14612
12	Italy	12710

Table 30: Países con mayor Mortalidad_G00_R50 en 2016

	País	Mortalidad_G00_R50
32	United Kingdom	21470
5	Germany (until 1990 former territory of the FRG)	17371
9	Spain	14704
10	France	14303
12	Italy	11993

Table 31: Países con mayor Mortalidad_G00_R50 en 2017

	País	Mortalidad_G00_R50
32	United Kingdom	22501
5	Germany (until 1990 former territory of the FRG)	18690
9	Spain	16445
10	France	14303
12	Italy	13815

A continuación, se aprupa toda la Mortalidad_G00_R50 por paises y se crea una tabla con toda la información:

```
a1<-group_by(mortalidad,Pais) #Se agrupa por paises

#Seleccionamos las variables GEO y Mortalidad_GOO_R5O

a2<-select(a1,Pais:Mortalidad_GOO_R5O)

#Se muestra la información por cada país,

#con Value=suma de los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Mortalidad_GOO_R5O/10)))

a4<-data.frame(a3) #Se convierte la información en un dataframe
a5<-a4[with(a4,order(-a4$suma)),] #Se ordena el DataFrame

#por la variable Suma de forma descendente.

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)], col.names = c("País","Mortalidad_GOO_R5O"),

caption = "Países con mayor Mortalidad_GOO_R5O en 2011-2017")
```

Table 32: Países con mayor Mortalidad_G00_R50 en 2011-2017

	País	$Mortalidad_G00_R50$
34	United Kingdom	13684.7
11	Germany (until 1990 former territory of the FRG)	11919.3
30	Spain	9578.9
10	France	9448.8
16	Italy	8164.3

• Mortalidad_pneumonia

Table 33: Países con mayor Mortalidad_pneumonia en 2011

	País	Mortalidad_pneumonia
32	United Kingdom	27968
5	Germany (until 1990 former territory of the FRG)	18020
10	France	9971
21	Poland	8262
12	Italy	8211

Table 34: Países con mayor Mortalidad_pneumonia en 2012

	País	$Mortalidad_pneumonia$
32	United Kingdom	28945
5	Germany (until 1990 former territory of the FRG)	17776
10	France	11600
21	Poland	9395
12	Italy	9088

Table 35: Países con mayor Mortalidad_pneumonia en 2013

	País	Mortalidad_pneumonia
32	United Kingdom	28936
5	Germany (until 1990 former territory of the FRG)	18820
10	France	11388
21	Poland	11212
12	Italy	8852

Table 36: Países con mayor Mortalidad_pneumonia en 2014

	País	Mortalidad_pneumonia
32	United Kingdom	28011
5	Germany (until 1990 former territory of the FRG)	16019
10	France	10444

	País	Mortalidad_pneumonia
21	Poland	9925
12	Italy	8935

Table 37: Países con mayor Mortalidad_pneumonia en 2015

	País	Mortalidad_pneumonia
32	United Kingdom	31593
5	Germany (until 1990 former territory of the FRG)	19403
10	France	12692
12	Italy	11312
21	Poland	11223

Table 38: Países con mayor Mortalidad_pneumonia en 2016

	País	$Mortalidad_pneumonia$
32	United Kingdom	29746
5	Germany (until 1990 former territory of the FRG)	18044
10	France	12723
34	Turkey	12053
12	Italy	10683

Table 39: Países con mayor Mortalidad_pneumonia en 2017

	País	Mortalidad_pneumonia
32	United Kingdom	29517
5	Germany (until 1990 former territory of the FRG)	19143
12	Italy	13242
34	Turkey	12864
10	France	12692

A continuación, se aprupa toda la Mortalidad_pneumonia por paises y se crea una tabla con toda la información:

```
a1<-group_by(mortalidad,Pais) #Se agrupa por paises

#Seleccionamos las variables GEO y Mortalidad_pneumonia

a2<-select(a1,Pais:Mortalidad_pneumonia)

#Se muestra la información por cada país,

#con Value=suma de los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Mortalidad_pneumonia/10)))

a4<-data.frame(a3) #Se convierte la información en un dataframe

a5<-a4[with(a4,order(-a4$suma)),] #Se ordena el DataFrame

#por la variable Suma de forma descendente.

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)], col.names = c("País","Mortalidad_pneumonia"),

caption = "Países con mayor Mortalidad_pneumonia en 2011-2017")
```

Table 40: Países con mayor Mortalidad_pneumonia en 2011-2017

	País	Mortalidad_pneumonia
34	United Kingdom	20471.6
11	Germany (until 1990 former territory of the FRG)	12722.5
10	France	8151.0
24	Poland	7105.6
16	Italy	7032.3

• Other_sepsis

Table 41: Países con mayor Other sepsis en 2011

	País	Other_sepsis
5	Germany (until 1990 former territory of the FRG)	7411
12	Italy	5423
10	France	5094
8	Greece	3626
9	Spain	2946

Table 42: Países con mayor Other_sepsis en 2012

	País	Other_sepsis
5	Germany (until 1990 former territory of the FRG)	8232
12	Italy	6630
10	France	5330
8	Greece	4440
34	Turkey	3343

Table 43: Países con mayor Other sepsis en 2013

	País	Other_sepsis
5	Germany (until 1990 former territory of the FRG)	7901
12	Italy	7163
10	France	5277
8	Greece	4079
34	Turkey	3527

Table 44: Países con mayor Other_sepsis en 2014

	País	Other_sepsis
5	Germany (until 1990 former territory of the FRG)	8444
12	Italy	7573
10	France	5333
34	Turkey	4053
9	Spain	3224

Table 45: Países con mayor Other_sepsis en 2015

	País	Other_sepsis
12	Italy	9656
5	Germany (until 1990 former territory of the FRG)	9189
10	France	5726
34	Turkey	5678
9	Spain	4148

Table 46: Países con mayor Other_sepsis en 2016

	País	Other_sepsis
5	Germany (until 1990 former territory of the FRG)	7329
12	Italy	6594
34	Turkey	6056
10	France	4793
9	Spain	3856

Table 47: Países con mayor Other_sepsis en 2017

	País	Other_sepsis
12	Italy	7875
34	Turkey	7873
5	Germany (until 1990 former territory of the FRG)	7364
10	France	5333
9	Spain	3754

A continuación, se aprupa toda la Other_sepsis por paises y se crea una tabla con toda la información:

```
a1<-group_by(mortalidad,Pais)#Se agrupa por paises
#Seleccionamos las variables GEO y Other_sepsis
a2<-select(a1,Pais:Other_sepsis)
#Se muestra la información por cada país,
#con Value=suma de los valores de cada país en los 10 años.
a3<-(summarize(a2,suma=sum(Other_sepsis/10)))
a4<-data.frame(a3)#Se convierte la información en un dataframe
a5<-a4[with(a4,order(-a4$suma)),]#Se ordena el DataFrame
#por la variable Suma de forma descendente.

#Se crea una tabla con toda la información
```

Table 48: Países con mayor Other_sepsis en 2011-2017

	País	Other_sepsis
11	Germany (until 1990 former territory of the FRG)	5587.0
16	Italy	5091.4
10	France	3688.6
33	Turkey	3319.8
12	Greece	2622.7

• 1.1.3 Normalidad de la variable "Value" (Mortalidad)

Se comprueba con métodos visuales si la variable tiene una distribución normal.

${\bf Mortalidad_Prevenible}$

```
par(mfrow=c(1,2))
plot(density(mortalidad$Mortalidad_Prevenible_norm) ,main="Density")
qqnorm(mortalidad$Mortalidad_Prevenible_norm)
qqline(mortalidad$Mortalidad_Prevenible_norm)
```


Para estudiar si una muestra proviene de una población con distribución normal, se disponen de tres herramientas:

- Histograma o Densidad
- Gráficos cuantil cuantil (QQplot)
- Pruebas de hipótesis.

Si en la prueba de Densidad se observa sesgo hacia uno de los lados de la gráfica, sería indicio de que la muestra no proviene de una población normal. Si por otra parte, sí se observa simetría, **NO** se garantiza que la muestra provenga de una población normal. En estos casos sería necesario utilizar otras herramientas como **QQplot y pruebas de hipótesis**.

En la gráfica Densidad de la variable "Mortalidad_Prevenible_norm", se observa claramente sesgo hacia la derecha, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico. Si se tuviese una muestra distribuída normalmente, se esperaría que los puntos del gráfico quantil quantil estuviesen perfectamente alineados con la línea de referencia, y observamos que para este caso, "Mortalidad_Prevenible_norm" no se alinea.

Por otro lado, se realizan las pruebas de hipótesis:

- \$h_0: La muestra proviene de una población normal.
- \$h_1: La muestra NO proviene de una población normal.

Se aplica la prueba Shapiro-Wilk:

shapiro.test(mortalidad\$Mortalidad_Prevenible_norm)

```
##
## Shapiro-Wilk normality test
##
## data: mortalidad$Mortalidad_Prevenible_norm
## W = 0.74781, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

Mortalidad Tratable

```
par(mfrow=c(1,2))
plot(density(mortalidad$Mortalidad_Tratable_norm) ,main="Density")
qqnorm(mortalidad$Mortalidad_Tratable_norm)
qqline(mortalidad$Mortalidad_Tratable_norm)
```


En la gráfica Densidad de la variable "Mortalidad_Tratable", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Mortalidad_Tratable".

Tras aplicar la prueba Shapiro-Wilk:

shapiro.test(mortalidad\$Mortalidad_Tratable_norm)

```
##
## Shapiro-Wilk normality test
##
## data: mortalidad$Mortalidad_Tratable_norm
## W = 0.75393, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

$Mortalidad_A00_B99$

```
par(mfrow=c(1,2))
plot(density(mortalidad$Mortalidad_A00_B99_norm) ,main="Density")
qqnorm(mortalidad$Mortalidad_A00_B99_norm)
qqline(mortalidad$Mortalidad_A00_B99_norm)
```


En la gráfica Densidad de la variable "Mortalidad_A00_B99", se observa claramente una figura que no se aproxima a la curva de normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Mortalidad_A00_B99".

Tras aplicar la prueba Shapiro-Wilk:

shapiro.test(mortalidad\$Mortalidad_A00_B99_norm)

```
##
## Shapiro-Wilk normality test
##
## data: mortalidad$Mortalidad_A00_B99_norm
## W = 0.66004, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

$Mortalidad_G00_R50$

```
par(mfrow=c(1,2))
plot(density(mortalidad$Mortalidad_G00_R50_norm) ,main="Density")
qqnorm(mortalidad$Mortalidad_G00_R50_norm)
qqline(mortalidad$Mortalidad_G00_R50_norm)
```


En la gráfica Densidad de la variable "Mortalidad_G00_R50", se observa claramente una figura que no se aproxima a la curva de normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Mortalidad_G00_R50".

Tras aplicar la prueba Shapiro-Wilk:

shapiro.test(mortalidad\$Mortalidad_GOO_R5O_norm)

```
##
## Shapiro-Wilk normality test
##
## data: mortalidad$Mortalidad_G00_R50_norm
## W = 0.72615, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

$Mortalidad_pneumonia$

```
par(mfrow=c(1,2))
plot(density(mortalidad$Mortalidad_pneumonia_norm) ,main="Density")
qqnorm(mortalidad$Mortalidad_pneumonia_norm)
qqline(mortalidad$Mortalidad_pneumonia_norm)
```


En la gráfica Densidad de la variable "Mortalidad_pneumonia", se observa claramente una figura que no se aproxima a la curva de normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Mortalidad_pneumonia".

Tras aplicar la prueba Shapiro-Wilk:

shapiro.test(mortalidad\$Mortalidad_pneumonia_norm)

```
##
## Shapiro-Wilk normality test
##
## data: mortalidad$Mortalidad_pneumonia_norm
## W = 0.64545, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

Other_sepsis

```
par(mfrow=c(1,2))
plot(density(mortalidad$Other_sepsis_norm) ,main="Density")
qqnorm(mortalidad$Other_sepsis_norm)
qqline(mortalidad$Other_sepsis_norm)
```


En la gráfica Densidad de la variable "Other_sepsis", se observa claramente una figura que no se aproxima a la curva de normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Other sepsis". Tras aplicar la prueba Shapiro-Wilk:

shapiro.test(mortalidad\$Other_sepsis_norm)

```
##
## Shapiro-Wilk normality test
##
## data: mortalidad$Other_sepsis_norm
## W = 0.66004, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.