



# Adult human small intestine cell dissociation (on ice) Version 6

#### **Andrew Potter**

#### **Abstract**

Protocol for human small intestine cell dissociation, performed on ice to reduce artifact gene expression.

Citation: Andrew Potter Adult human small intestine cell dissociation (on ice). protocols.io

dx.doi.org/10.17504/protocols.io.rjkd4kw

Published: 09 Jul 2018

#### **Guidelines**

| Reagent                                                    | Storage Condition                                       |
|------------------------------------------------------------|---------------------------------------------------------|
| DPBS (Thermofisher, 14190144)                              | 4°C                                                     |
| 0.5 M EDTA (Ambion, AM9260G)                               | room temp.                                              |
| BSA (Sigma, A8806)                                         | 4°C                                                     |
| Protease from <i>Bacillus Licheniformis</i> (Sigma, P5380) | Store 100 $\mu$ L aliquots (100 mg/mL) in DPBS at -80°C |

#### **Before start**

### **Checklist prior to beginning:**

- -Centrifuges, large and small, set to 4 °C
- -Make enzyme stock; place 2 tubes of enzyme on dry ice.
- -Make 0.04% BSA/PBS (50 mL)
- -Things you need: petri dishes, clean forceps, razor blade, pipets, 30 µM filters, timer.

# Stock solution for enzyme

- 895 μL DPBS
- 5 µL 0.5 M EDTA (2.5 mM final)
- $\rightarrow$ Add 100  $\mu$ L enzyme (100 mg/mL) to 900  $\mu$ L of enzyme stock to make 1X enzyme mix. Add 28 mg of tissue to each 900  $\mu$ L of enzyme mix.

#### **Materials**

✓ Please see Guidelines for required materials by Contributed by users

#### **Protocol**

#### Step 1.

While excluding as much PBS as possible, **weigh out tissue** using Mettler.

## Step 2.

After weighing out tissue, **transfer to petri dish** on ice and **mince tissue** using grinding motion with razorblade for 2-3 minutes.

## Step 3.

After tissue is minced finely, **add 1 mL enzyme mix per 28 mg of tissue** to the petri dish and pipet minced tissue + enzyme into eppendorf tube (on ice).



1 ml Additional info: enzyme mix per 28 mg of tissue

# Step 4.

**Start timer**. Leave tube on ice - **initially shake vigorously to break up the tissue**, 3-5x every 30-45 seconds for 5 minutes.

# Step 5.

Now, when big chunks are broken up, shake every 1 minute while leaving on ice for **5 additional minutes** (10 minutes total time).

#### Step 6.

After 10 minutes total digest time, triturate the digest mix 10X using p1000 set to 700 μL.

## Step 7.

Continue shaking every minute for 5 additional minutes (15 minutes total time).

### Step 8.

**After 15 minutes digest time, triturate digest mix again 10X** and spin digest mix at 90 G for 30 seconds at 4 °C.

- **■** TEMPERATURE
- 4 °C Additional info:

## Step 9.

Remove supernatant (80%) containing single cells and filter using 30  $\mu$ M filter while leaving chucks on bottom; rinse filter with 10 mL PBS/BSA into 50 mL conical (on ice) to save single cells.



10 ml Additional info:

PBS/BSA

#### Step 10.

To residual chunks of tissue add additional 1 mL of enzyme (per 28 mg tissue).

AMOUNT

1 ml Additional info: enzyme (per 28 mg tissue)

# Step 11.

Shake vigorously 3-4X every minute for **10 additional minutes (25 minutes total time)**.

## Step 12.

Triturate again 10X using 1 mL pipet set to 700 µL.

### Step 13.

Continue to shake vigorously every minute for 5 minutes additional time (30 minutes total time).

#### Step 14.

Triturate again 10X and filter using the same 30  $\mu$ M filter and rinse with 10 mL PBS/BSA into the same 50 mL conical (on ice).



10 ml Additional info:

PBS/BSA

## Step 15.

Divide flow-through into 2 15 mL tubes.

# Step 16.

Spin 600 g for 5 minutes at 4 °C.

**▮** TEMPERATURE

4 °C Additional info:

Spinning

### Step 17.

Carefully remove supernatant - re-suspend both pellets in 100  $\mu$ L total PBS/BSA in one of the 15 mL conicals.

# **AMOUNT**

100 µl Additional info:

PBS/BSA

## Step 18.

**Add** 700 μL RBC lysis buffer to 100 μL PBS/BSA (800 μL total). Triturate 20X using 1 mL pipet.

**AMOUNT** 

700 µl Additional info: RBC

lysis buffer

| $\overline{}$  |             |    |     |      |
|----------------|-------------|----|-----|------|
| $\blacksquare$ | $\Lambda$ N | MO | ΝП  | VIT. |
| _              | AI          | ᇄ  | וטי | N I  |

100 μl Additional info:

PBS/BSA

# Step 19.

Incubate for 3 minutes on ice.

# Step 20.

Add 10 mL of PBS/BSA to 15 mL conical to dilute the RBC lysis buffer.



10 ml Additional info:

PBS/BSA

# Step 21.

Spin 600 G for 5 minutes at 4 °C.

**▮** TEMPERATURE

4 °C Additional info:

# Step 22.

Remove supernatant.

## Step 23.

Briefly re-suspend cells in a small volume of PBS/BSA and check to ensure that there are no more RBCs present.

# Step 24.

**Re-suspend** in 10 mL total PBS/BSA in the same 15 mL conical.



10 ml Additional info:

PBS/BSA

# Step 25.

Spin 600 g for 5 minutes at 4 °C.

**■** TEMPERATURE

4 °C Additional info:

Spinning

### Step 26.

Remove supernatant and re-suspend in a small volume of PBS/BSA to check cell concentration.

# Step 27.

Analyze quantity and viability of cells using a hemocytometer with trypan blue: add 10 µL of trypan blue to

10  $\mu$ L of cell suspension, mix by pipeting and pipet into hemocytometer; for Chromium, make concentration to 1 million cells per mL. For DropSeq, make concentration to 100,000 cells/mL.