1 In-Lab Data Collection

1.1 Standard Downward Characteristics

 $R_B = 10.16\Omega$

 $R_C = 287.7\Omega$

Here we will study I_C vs V_{BE} characteristics and β versus I_C characteristics.

V_{BE} (mV)	I_B	V_{CE} (V)	I_C	
500	$0.027~\mu A$	1.500	$0.14~\mu A$	
<i>550</i>	$0.088~\mu A$	1.500	$0.92~\mu A$	
600	$0.280~\mu A$	1.499	$6.02~\mu A$	
<i>650</i>	$0.956~\mu A$	1.500	$39.76~\mu A$	
700	$3.541~\mu A$	1.500	$259.0~\mu A$	
750	$0.01295~\mathrm{mA}$	1.503	$1.3666~\mathrm{mA}$	
800	$0.03919~\mathrm{mA}$	1.503	$4.6170~\mathrm{mA}$	
850	$0.09654~\mathrm{mA}$	1.523	$9.1807~\mathrm{mA}$	

Table 1: Standard Downward Characteristics for transistor 1

1.2 Upwards Operation

Here we look at the upwards gain of transistor 1 as a function of voltage.

V_{BE} (mV)	I_B	V_{CE} (V)	I_C	β
550	$0.237~\mu A$	1.500	$1.24~\mu A$	5.232
600	$1.465~\mu A$	1.500	$7.82~\mu A$	5.337
650	$9.675~\mu A$	1.501	$54.82~\mu A$	5.666
700	$44.564~\mu A$	1.504	$274.16~\mu A$	6.152
750	$0.17097~\mathrm{mA}$	1.507	$1.0551~\mathrm{mA}$	6.171
800	$0.52758~\mathrm{mA}$	1.500	$2.7671~\mathrm{mA}$	5.244

Table 2: Standard Upwards Characteristics for transistor 1

1.3 Base Resistance

Total Resistance between X and Y in pattern 1 is: $5.021k\Omega$ Total Resistance between X and Y in pattern 2 is: $61.7k\Omega$

1.4 Lateral pnp Devices

We can measure the gain of the lateral pnp transistor by taking the current values of $I_B = 0.1007 \text{ mA} \& I_C = 1.0460 \text{ mA}$ at values of $V_C E = -1.50 \text{ V}$. This gives a gain of 10.4526.

We can also measure the gain of the lateral pnp transistor where the outer p diffusion is used as an emitter and the center p diffusion is used as the collector. The value of gain that we get with the currents of $I_B = 0.1000$ mA& $I_C = 0.0404$ mA at values of $V_C E = -1.50$ V. Giving us a gain of 0.404.