Generation as Computation Generalised Computation in the Set-theoretic Universe and Beyond (Thesis Proposal)

Desmond Lau

National University of Singapore

October 13, 2025

- Introduction
 - Background: Infinitary Computation
 - Background: Formulas as Programs
 - Overview
- 2 Generalised Computation Within V
 - Generalised Sequential Algorithms
 - Comparisons with Other Notions
- Generalised Computation Beyond V
 - Degrees of Small Extensions
 - Local Method Definitions

- Introduction
 - Background: Infinitary Computation
 - Background: Formulas as Programs
 - Overview
- 2 Generalised Computation Within V
 - Generalised Sequential Algorithms
 - Comparisons with Other Notions
- Generalised Computation Beyond V
 - Degrees of Small Extensions
 - Local Method Definitions

- Introduction
 - Background: Infinitary Computation
 - Background: Formulas as Programs
 - Overview
- 2 Generalised Computation Within V
 - Generalised Sequential Algorithms
 - Comparisons with Other Notions
- Generalised Computation Beyond V
 - Degrees of Small Extensions
 - Local Method Definitions

- Introduction
 - Background: Infinitary Computation
 - Background: Formulas as Programs
 - Overview
- 2 Generalised Computation Within V
 - Generalised Sequential Algorithms
 - Comparisons with Other Notions
- 3 Generalised Computation Beyond V
 - Degrees of Small Extensions
 - Local Method Definitions

Overview Chart

- Introduction
 - Background: Infinitary Computation
 - Background: Formulas as Programs
 - Overview
- 2 Generalised Computation Within V
 - Generalised Sequential Algorithms
 - Comparisons with Other Notions
- Generalised Computation Beyond V
 - Degrees of Small Extensions
 - Local Method Definitions

Upshot

- All reasonable transfinite abstract algorithms are expressible as GSeqAPs.
- Here reasonable means satisfying the boundedness and locality conditions.

Upshot

- All reasonable transfinite abstract algorithms are expressible as GSeqAPs.
- Here reasonable means satisfying the boundedness and locality conditions.

Upshot

- All reasonable transfinite abstract algorithms are expressible as GSeqAPs.
- Here *reasonable* means satisfying the boundedness and locality conditions.

- Introduction
 - Background: Infinitary Computation
 - Background: Formulas as Programs
 - Overview
- 2 Generalised Computation Within V
 - Generalised Sequential Algorithms
 - Comparisons with Other Notions
- Generalised Computation Beyond V
 - Degrees of Small Extensions
 - Local Method Definitions

Summary Table

In the following table we compare various relative computability relations when they are restricted to subsets of admissible ordinals lpha.

Relation Property				
Oracle-analogue?	✓	√	X	Х
Transitive?	✓	X	1	/
Upward consistent?	X	✓	/	/
Appears in	α-recursion	α-computability		

Summary Table

In the following table we compare various relative computability relations when they are restricted to subsets of admissible ordinals α .

Relation Property				
Oracle-analogue?	√	√	X	Х
Transitive?	√	X	1	1
Upward consistent?	Х	✓	/	/
Appears in	α-recursion	α-computability		

Summary Table

In the following table we compare various relative computability relations when they are restricted to subsets of admissible ordinals α .

Relation Property	$\leq \alpha$	$\preceq \alpha$	\leq^P_{α}	$\leq^{P,s}_{\alpha}$
Oracle-analogue?	/	✓	Х	Х
Transitive?	1	Х	1	✓
Upward consistent?	Х	✓	1	1
Appears in	lpha-recursion	lpha-computability		

- Introduction
 - Background: Infinitary Computation
 - Background: Formulas as Programs
 - Overview
- 2 Generalised Computation Within V
 - Generalised Sequential Algorithms
 - Comparisons with Other Notions
- Generalised Computation Beyond V
 - Degrees of Small Extensions
 - Local Method Definitions

Generators over V

- Going further in the direction of generalised computation, can we maintain the definition of constructibility degrees, but swop L for V?
- In essence, we want to group sets outside V based on their power as generators over V.

Generators over V

- Going further in the direction of generalised computation, can we maintain the definition of constructibility degrees, but swop L for V?
- In essence, we want to group sets outside V based on their power as generators over V.

Generators over V

- Going further in the direction of generalised computation, can we maintain the definition of constructibility degrees, but swop L for V?
- In essence, we want to group sets outside V based on their power as generators over V.

- What do we mean by "sets outside V"?
- Step out of V and treat V as a countable transitive model of ZFC (henceforth denoted CTM).
- Look at those sets that can be adjoined to V to give a nice CTM.
- What do we mean by "a nice CTM"?

- What do we mean by "sets outside V"?
- Step out of V and treat V as a countable transitive model of ZFC (henceforth denoted CTM).
- Look at those sets that can be adjoined to V to give a nice CTM.
- What do we mean by "a nice CTM"?

- What do we mean by "sets outside V"?
- Step out of V and treat V as a countable transitive model of ZFC (henceforth denoted CTM).
- Look at those sets that can be adjoined to V to give a nice CTM.
- What do we mean by "a nice CTM"?

- What do we mean by "sets outside V"?
- Step out of V and treat V as a countable transitive model of ZFC (henceforth denoted CTM).
- Look at those sets that can be adjoined to V to give a nice CTM.
- What do we mean by "a nice CTM"?

- What do we mean by "sets outside V"?
- Step out of V and treat V as a countable transitive model of ZFC (henceforth denoted CTM).
- Look at those sets that can be adjoined to V to give a nice CTM.
- What do we mean by "a nice CTM"?

- Let U_1 and U_2 be CTMs. U_2 is an outer model of U_1 iff
 - \circ $U_1 \subset U_2$, and
 - $\circ ORD^{U_1} = ORD^{U_2}.$
- The binary relation "being an outer model of" is transitive.

Definition

$$\mathbf{M}(V) := \{W : W \text{ is an outer model of } V\}.$$

- ullet Let U_1 and U_2 be CTMs. U_2 is an outer model of U_1 iff
 - $\circ U_1 \subset U_2$, and $\circ ORD^{U_1} = ORD^{U_2}$.
- The binary relation "being an outer model of" is transitive.

Definition

$$\mathbf{M}(V) := \{W : W \text{ is an outer model of } V\}.$$

- ullet Let U_1 and U_2 be CTMs. U_2 is an outer model of U_1 iff
 - \circ $U_1 \subset U_2$, and
 - $\circ ORD^{U_1} = ORD^{U_2}$.
- The binary relation "being an outer model of" is transitive.

Definition

$$\mathbf{M}(V) := \{W : W \text{ is an outer model of } V\}.$$

- ullet Let U_1 and U_2 be CTMs. U_2 is an outer model of U_1 iff
 - \circ $U_1 \subset U_2$, and
 - $\circ ORD^{U_1} = ORD^{U_2}.$
- The binary relation "being an outer model of" is transitive.

Definition

$$\mathbf{M}(V) := \{W : W \text{ is an outer model of } V\}.$$

- Let U_1 and U_2 be CTMs. U_2 is an outer model of U_1 iff
 - \circ $U_1 \subset U_2$, and
 - $\circ ORD^{U_1} = ORD^{U_2}.$
- The binary relation "being an outer model of" is transitive.

Definition

$$\mathbf{M}(V) := \{W : W \text{ is an outer model of } V\}.$$

- Let U_1 and U_2 be CTMs. U_2 is an outer model of U_1 iff
 - \circ $U_1 \subset U_2$, and
 - $\circ ORD^{U_1} = ORD^{U_2}.$
- The binary relation "being an outer model of" is transitive.

Definition

$$\mathbf{M}(V) := \{W : W \text{ is an outer model of } V\}.$$

- Let U_1 and U_2 be CTMs. U_2 is an outer model of U_1 iff
 - \circ $U_1 \subset U_2$, and
 - $\circ ORD^{U_1} = ORD^{U_2}.$
- The binary relation "being an outer model of" is transitive.

Definition

$$\mathbf{M}(V) := \{W : W \text{ is an outer model of } V\}.$$

Definition (L.)

Let U_1 and U_2 be CTMs. U_2 is a small extension of U_1 iff

- U_2 is an outer model of U_1 , and
- there is $x \in U_2$ such that U_2 is the smallest outer model of U_1 containing x.

In this case we call x a generator of U_2 over U_1 , and denote U_2 as $U_1[x]$.

The binary relation "being a small extension of" is transitive.

Definition

$$\mathbf{M}_{S}(V) := \{W : W \text{ is a small extension of } V\}.$$

Definition (L.)

Let U_1 and U_2 be CTMs. U_2 is a small extension of U_1 iff

- U_2 is an outer model of U_1 , and
- there is $x \in U_2$ such that U_2 is the smallest outer model of U_1 containing x.

In this case we call x a generator of U_2 over U_1 , and denote U_2 as $U_1[x]$.

The binary relation "being a small extension of" is transitive.

Definition

$$\mathbf{M}_{S}(V) := \{W : W \text{ is a small extension of } V\}.$$

Definition (L.)

Let U_1 and U_2 be CTMs. U_2 is a small extension of U_1 iff

- U_2 is an outer model of U_1 , and
- there is x ∈ U₂ such that U₂ is the smallest outer model of U₁ containing x.

In this case we call x a generator of U_2 over U_1 , and denote U_2 as $U_1[x]$.

The binary relation "being a small extension of" is transitive.

Definition

$$\mathbf{M}_{S}(V) := \{W : W \text{ is a small extension of } V\}.$$

Definition (L.)

Let U_1 and U_2 be CTMs. U_2 is a small extension of U_1 iff

- U_2 is an outer model of U_1 , and
- there is x ∈ U₂ such that U₂ is the smallest outer model of U₁ containing x.

In this case we call x a *generator of* U_2 *over* U_1 , and denote U_2 as $U_1[x]$.

The binary relation "being a small extension of" is transitive.

Definition

$$\mathbf{M}_{S}(V) := \{W : W \text{ is a small extension of } V\}.$$

Definition (L.)

Let U_1 and U_2 be CTMs. U_2 is a small extension of U_1 iff

- U_2 is an outer model of U_1 , and
- there is x ∈ U₂ such that U₂ is the smallest outer model of U₁ containing x.

In this case we call x a generator of U_2 over U_1 , and denote U_2 as $U_1[x]$.

The binary relation "being a small extension of" is transitive.

Definition

$$\mathbf{M}_S(V) := \{W : W \text{ is a small extension of } V\}.$$

Definition (L.)

Let U_1 and U_2 be CTMs. U_2 is a small extension of U_1 iff

- U_2 is an outer model of U_1 , and
- there is x ∈ U₂ such that U₂ is the smallest outer model of U₁ containing x.

In this case we call x a generator of U_2 over U_1 , and denote U_2 as $U_1[x]$.

The binary relation "being a small extension of" is transitive.

Definition

$$\mathbf{M}_S(V) := \{W : W \text{ is a small extension of } V\}.$$

Small Extensions

Definition (L.)

Let U_1 and U_2 be CTMs. U_2 is a small extension of U_1 iff

- U_2 is an outer model of U_1 , and
- there is x ∈ U₂ such that U₂ is the smallest outer model of U₁ containing x.

In this case we call x a generator of U_2 over U_1 , and denote U_2 as $U_1[x]$.

The binary relation "being a small extension of" is transitive.

Definition

Let V be a CTM. The small outward multiverse centred at V is the set

 $\mathbf{M}_S(V) := \{W : W \text{ is a small extension of } V\}.$

Small Extensions

Definition (L.)

Let U_1 and U_2 be CTMs. U_2 is a small extension of U_1 iff

- U_2 is an outer model of U_1 , and
- there is x ∈ U₂ such that U₂ is the smallest outer model of U₁ containing x.

In this case we call x a generator of U_2 over U_1 , and denote U_2 as $U_1[x]$.

The binary relation "being a small extension of" is transitive.

Definition

Let V be a CTM. The small outward multiverse centred at V is the set

$$\mathbf{M}_{S}(V) := \{W : W \text{ is a small extension of } V\}.$$

Due to Jensen's result on "coding the universe", we have the following theorem.

```
Theorem (Jensen)
```

Given a CTM V, $(\mathbf{M}_S(V), \subset)$ is a cofinal subposet of $(\mathbf{M}(V), \subset)$.

Due to Jensen's result on "coding the universe", we have the following theorem.

```
Theorem (Jensen)
```

Given a CTM V, $(\mathbf{M}_S(V), \subset)$ is a cofinal subposet of $(\mathbf{M}(V), \subset)$.

Due to Jensen's result on "coding the universe", we have the following theorem.

Theorem (Jensen)

Given a CTM V, $(\mathbf{M}_S(V), \subset)$ is a cofinal subposet of $(\mathbf{M}(V), \subset)$.

The next proposition is easy to see

Proposition

$$\mathbf{M}_{S}(V) = \{V[x] : x \in \bigcup \mathbf{M}(V) \cap \bigcup \{\mathscr{P}(\alpha) : \alpha \in ORD^{V}\}\}.$$

The next proposition is easy to see.

Proposition

$$\mathbf{M}_{S}(V) = \{V[x] : x \in \bigcup \mathbf{M}(V) \cap \bigcup \{\mathscr{P}(\alpha) : \alpha \in ORD^{V}\}\}.$$

The next proposition is easy to see.

Proposition

$$\mathbf{M}_{S}(V) = \{V[x] : x \in \bigcup \mathbf{M}(V) \cap \bigcup \{\mathscr{P}(\alpha) : \alpha \in ORD^{V}\}\}\$$

The next proposition is easy to see.

Proposition

$$\mathbf{M}_{S}(V) = \{V[x] : x \in \bigcup \mathbf{M}(V) \cap \bigcup \{\mathscr{P}(\alpha) : \alpha \in ORD^{V}\}\}.$$

- Given a CTM V, we want to define a degree structure on generators of small extensions of V, analogous to the constructibility degrees on sets in V.
- By the previous proposition, it suffices to consider equivalence classes arising from the natural reducibility relation on

$$\mathscr{G}(V) := \bigcup \mathbf{M}(V) \cap \bigcup \{\mathscr{P}(\alpha) : \alpha \in \mathit{ORD}^V\}.$$

- Given a CTM V, we want to define a degree structure on generators of small extensions of V, analogous to the constructibility degrees on sets in V.
- By the previous proposition, it suffices to consider equivalence classes arising from the natural reducibility relation on

$$\mathscr{G}(V) := \bigcup \mathbf{M}(V) \cap \bigcup \{\mathscr{P}(\alpha) : \alpha \in ORD^V\}.$$

- Given a CTM V, we want to define a degree structure on generators of small extensions of V, analogous to the constructibility degrees on sets in V.
- By the previous proposition, it suffices to consider equivalence classes arising from the natural reducibility relation on

$$\mathscr{G}(V) := \bigcup \mathbf{M}(V) \cap \bigcup \{\mathscr{P}(\alpha) : \alpha \in ORD^V\}.$$

- Given a CTM V, we want to define a degree structure on generators of small extensions of V, analogous to the constructibility degrees on sets in V.
- By the previous proposition, it suffices to consider equivalence classes arising from the natural reducibility relation on

$$\mathscr{G}(V) := \bigcup \mathbf{M}(V) \cap \bigcup \{\mathscr{P}(\alpha) : \alpha \in ORD^V\}.$$

 \bullet Specifically, define the binary relation \leq^S on $\mathscr{G}(V)$ by

$$x \leq^S y \iff V[x] \subset V[y].$$

- \leq^S partially orders $\mathscr{G}(V)$, so we can define the equivalence relation \equiv^S the usual way.
- Call $(\mathscr{G}/\equiv^S, \leq^S/\equiv^S)$ the degrees of small extensions of V with its standard partial ordering.
- Observe that

$$(\{\text{small extensions of }V\},\subset)\cong(\mathscr{G}/\equiv^S,\leq^S/\equiv^S),$$

so "small extension(s)" and "degree(s) of small extensions" are often used interchangeably.

 \bullet Specifically, define the binary relation \leq^{S} on $\mathscr{G}(V)$ by

$$x \leq^S y \iff V[x] \subset V[y].$$

- \leq^S partially orders $\mathscr{G}(V)$, so we can define the equivalence relation \equiv^S the usual way.
- Call $(\mathscr{G}/\equiv^S, \leq^S/\equiv^S)$ the degrees of small extensions of V with its standard partial ordering.
- Observe that
 - $(\{\text{small extensions of }V\},\subset)\cong(\mathscr{G}/\equiv^S,\leq^S/\equiv^S),$

so "small extension(s)" and "degree(s) of small extensions" are often used interchangeably.

ullet Specifically, define the binary relation \leq^S on $\mathscr{G}(V)$ by

$$x \leq^S y \iff V[x] \subset V[y].$$

- \leq^S partially orders $\mathscr{G}(V)$, so we can define the equivalence relation \equiv^S the usual way.
- Call $(\mathscr{G}/\equiv^S, \leq^S/\equiv^S)$ the degrees of small extensions of V with its standard partial ordering.
- Observe that
 - $(\{\text{small extensions of }V\},\subset)\cong(\mathscr{G}/\equiv^S,\leq^S/\equiv^S),$ so "small extension(s)" and "degree(s) of small extensions" are often used interchangeably.

ullet Specifically, define the binary relation \leq^S on $\mathscr{G}(V)$ by

$$x \leq^S y \iff V[x] \subset V[y].$$

- \leq^S partially orders $\mathscr{G}(V)$, so we can define the equivalence relation \equiv^S the usual way.
- Call $(\mathscr{G}/\equiv^S, \leq^S/\equiv^S)$ the degrees of small extensions of V with its standard partial ordering.
- Observe that
 - ({small extensions of V}, \subset) \cong (\mathscr{G}/\equiv^S , \leq^S/\equiv^S), so "small extension(s)" and "degree(s) of small extensions" are often used interchangeably.

ullet Specifically, define the binary relation \leq^S on $\mathscr{G}(V)$ by

$$x \leq^S y \iff V[x] \subset V[y].$$

- \leq^S partially orders $\mathscr{G}(V)$, so we can define the equivalence relation \equiv^S the usual way.
- Call $(\mathscr{G}/\equiv^S, \leq^S/\equiv^S)$ the degrees of small extensions of V with its standard partial ordering.
- Observe that
 - ({small extensions of V}, \subset) \cong (\mathscr{G}/\equiv^S , \leq^S/\equiv^S), so "small extension(s)" and "degree(s) of small extensions" are often used interchangeably.

• Specifically, define the binary relation \leq^S on $\mathscr{G}(V)$ by

$$x \leq^S y \iff V[x] \subset V[y].$$

- \leq^S partially orders $\mathscr{G}(V)$, so we can define the equivalence relation \equiv^S the usual way.
- Call $(\mathscr{G}/\equiv^S, \leq^S/\equiv^S)$ the degrees of small extensions of V with its standard partial ordering.
- Observe that

$$(\{\text{small extensions of }V\},\subset)\cong (\mathscr{G}/\equiv^S,\leq^S/\equiv^S),$$

so "small extension(s)" and "degree(s) of small extensions" are often used interchangeably.

ullet Specifically, define the binary relation \leq^S on $\mathscr{G}(V)$ by

$$x \leq^S y \iff V[x] \subset V[y].$$

- \leq^S partially orders $\mathscr{G}(V)$, so we can define the equivalence relation \equiv^S the usual way.
- Call $(\mathscr{G}/\equiv^S, \leq^S/\equiv^S)$ the degrees of small extensions of V with its standard partial ordering.
- Observe that

({small extensions of
$$V$$
}, \subset) \cong (\mathscr{G}/\equiv^S , \leq^S/\equiv^S),

so "small extension(s)" and "degree(s) of small extensions" are often used interchangeably.

Drawing Parallels

Drawing Parallels

Figure: comparison between conventional notions of relative computability (left) and our generalised notions (right).

Definition

Let V be a CTM. The *outward generic multiverse centred at* V is the set

$$\mathbf{M}_F(V) := \{W : W \text{ is a forcing extension of } V\}.$$

The following fact is basic.

Fact

Every generic extension is a small extension. Equivalently,

$$\mathbf{M}_F(V) \subset \mathbf{M}_S(V)$$
.

Definition

Let V be a CTM. The outward generic multiverse centred at V is the set

$$\mathbf{M}_F(V) := \{W : W \text{ is a forcing extension of } V\}.$$

The following fact is basic.

Fact

Every generic extension is a small extension. Equivalently,

$$\mathbf{M}_F(V) \subset \mathbf{M}_S(V)$$

Definition

Let V be a CTM. The outward generic multiverse centred at V is the set

$$\mathbf{M}_F(V) := \{W : W \text{ is a forcing extension of } V\}.$$

The following fact is basic.

Fact

Every generic extension is a small extension. Equivalently

$$\mathbf{M}_F(V) \subset \mathbf{M}_S(V)$$
.

Definition

Let V be a CTM. The outward generic multiverse centred at V is the set

$$\mathbf{M}_F(V) := \{W : W \text{ is a forcing extension of } V\}.$$

The following fact is basic.

Fact

Every generic extension is a small extension. Equivalently,

$$\mathbf{M}_F(V) \subset \mathbf{M}_S(V)$$
.

Definition

Let V be a CTM. The outward generic multiverse centred at V is the set

$$\mathbf{M}_F(V) := \{W : W \text{ is a forcing extension of } V\}.$$

The following fact is basic.

Fact

Every generic extension is a small extension. Equivalently,

$$\mathbf{M}_F(V) \subset \mathbf{M}_S(V)$$
.

The following is a rephrasing of a well-known result on intermediate models of forcing extensions.

Fact

 $\mathbf{M}_F(V)$ is downward-closed in $\mathbf{M}(V)$, and thus also in $\mathbf{M}_S(V)$

On the other hand, the next fact can be derived from arguments using class forcing.

Fact

The following is a rephrasing of a well-known result on intermediate models of forcing extensions.

Fact

 $\mathbf{M}_F(V)$ is downward-closed in $\mathbf{M}(V)$, and thus also in $\mathbf{M}_S(V)$

On the other hand, the next fact can be derived from arguments using class forcing.

Fact

The following is a rephrasing of a well-known result on intermediate models of forcing extensions.

Fact

 $\mathbf{M}_F(V)$ is downward-closed in $\mathbf{M}(V)$, and thus also in $\mathbf{M}_S(V)$.

On the other hand, the next fact can be derived from arguments using class forcing.

Fact

The following is a rephrasing of a well-known result on intermediate models of forcing extensions.

Fact

 $\mathbf{M}_F(V)$ is downward-closed in $\mathbf{M}(V)$, and thus also in $\mathbf{M}_S(V)$.

On the other hand, the next fact can be derived from arguments using class forcing.

Fact

The following is a rephrasing of a well-known result on intermediate models of forcing extensions.

Fact

 $\mathbf{M}_F(V)$ is downward-closed in $\mathbf{M}(V)$, and thus also in $\mathbf{M}_S(V)$.

On the other hand, the next fact can be derived from arguments using class forcing.

Fact

Accessibility of Forcing

- The previous two facts tell us there are many objects inaccessible by forcing.
- Do these objects have "local first-order properties" not shared by any set in any forcing extension?

Accessibility of Forcing

- The previous two facts tell us there are many objects inaccessible by forcing.
- Do these objects have "local first-order properties" not shared by any set in any forcing extension?

Accessibility of Forcing

- The previous two facts tell us there are many objects inaccessible by forcing.
- Do these objects have "local first-order properties" not shared by any set in any forcing extension?

Outline

- Introduction
 - Background: Infinitary Computation
 - Background: Formulas as Programs
 - Overview
- 2 Generalised Computation Within V
 - Generalised Sequential Algorithms
 - Comparisons with Other Notions
- Generalised Computation Beyond V
 - Degrees of Small Extensions
 - Local Method Definitions

- Often it is useful to refer to small extensions of V within V.
- Such references in general cannot isolate any non-trivial small extension.
- Think of them as descriptions in V picking out sets of small extensions of V, when evaluated outside V.
- We want the evaluations of these descriptions to be reasonably absolute.
- A straightforward way to ensure absoluteness is to make evaluations local to the parameters given in the descriptions

- Often it is useful to refer to small extensions of V within V.
- Such references in general cannot isolate any non-trivial small extension.
- Think of them as descriptions in V picking out sets of small extensions of V, when evaluated outside V.
- We want the evaluations of these descriptions to be reasonably absolute.
- A straightforward way to ensure absoluteness is to make evaluations local to the parameters given in the descriptions

- Often it is useful to refer to small extensions of V within V.
- Such references in general cannot isolate any non-trivial small extension.
- Think of them as descriptions in V picking out sets of small extensions of V, when evaluated outside V.
- We want the evaluations of these descriptions to be reasonably absolute.
- A straightforward way to ensure absoluteness is to make evaluations local to the parameters given in the descriptions

- Often it is useful to refer to small extensions of V within V.
- Such references in general cannot isolate any non-trivial small extension.
- Think of them as descriptions in V picking out sets of small extensions of V, when evaluated outside V.
- We want the evaluations of these descriptions to be reasonably absolute.
- A straightforward way to ensure absoluteness is to make evaluations local to the parameters given in the descriptions

- Often it is useful to refer to small extensions of V within V.
- Such references in general cannot isolate any non-trivial small extension.
- Think of them as descriptions in V picking out sets of small extensions of V, when evaluated outside V.
- We want the evaluations of these descriptions to be reasonably absolute.
- A straightforward way to ensure absoluteness is to make evaluations local to the parameters given in the descriptions.

- Often it is useful to refer to small extensions of V within V.
- Such references in general cannot isolate any non-trivial small extension.
- Think of them as descriptions in V picking out sets of small extensions of V, when evaluated outside V.
- We want the evaluations of these descriptions to be reasonably absolute.
- A straightforward way to ensure absoluteness is to make evaluations local to the parameters given in the descriptions.

- Theories with constraints in Interpretation (TCIs), and their models, are a formalisation of this idea.
- TCIs were used as a convenient means of defining state spaces of restricted abstract state machines.
- They also naturally capture the intuition behind forcing.
- A TCl in V describes potential generators of small extensions of V.
- Models of this TCI in $\mathbf{M}_{\mathcal{S}}(V)$ carve out the set of small extensions it describes.

- Theories with constraints in Interpretation (TCIs), and their models, are a formalisation of this idea.
- TCIs were used as a convenient means of defining state spaces of restricted abstract state machines.
- They also naturally capture the intuition behind forcing.
- A TCl in V describes potential generators of small extensions of V.
- Models of this TCI in $\mathbf{M}_{\mathcal{S}}(V)$ carve out the set of small extensions it describes.

- Theories with constraints in Interpretation (TCIs), and their models, are a formalisation of this idea.
- TCIs were used as a convenient means of defining state spaces of restricted abstract state machines.
- They also naturally capture the intuition behind forcing.
- A TCl in V describes potential generators of small extensions of V.
- Models of this TCI in $M_S(V)$ carve out the set of small extensions it describes.

- Theories with constraints in Interpretation (TCIs), and their models, are a formalisation of this idea.
- TCIs were used as a convenient means of defining state spaces of restricted abstract state machines.
- They also naturally capture the intuition behind forcing.
- A TCl in V describes potential generators of small extensions of V.
- Models of this TCl in $M_S(V)$ carve out the set of small extensions it describes.

- Theories with constraints in Interpretation (TCIs), and their models, are a formalisation of this idea.
- TCIs were used as a convenient means of defining state spaces of restricted abstract state machines.
- They also naturally capture the intuition behind forcing.
- A TCl in V describes potential generators of small extensions of V.
- Models of this TCI in $M_S(V)$ carve out the set of small extensions it describes.

- Theories with constraints in Interpretation (TCIs), and their models, are a formalisation of this idea.
- TCIs were used as a convenient means of defining state spaces of restricted abstract state machines.
- They also naturally capture the intuition behind forcing.
- A TCl in V describes potential generators of small extensions of V.
- Models of this TCI in $M_S(V)$ carve out the set of small extensions it describes.

- TCIs provide bounds to the interpretation of a theory T over a signature σ.
- A TCI \mathscr{T} expands on T by specifying additional requirements on a possible model \mathfrak{M} of T.
- These requirements include
 - \circ a set upper bound (under \subset) to the base set M of \mathfrak{M} ,
 - \circ a set upper bound to $\dot{X}^{\mathfrak{M}}$, for each $\dot{X} \in \sigma$, and
 - whether each $\dot{X}^{\mathfrak{M}}$ depends entirely on its upper bound and M.

- TCIs provide bounds to the interpretation of a theory T over a signature σ .
- A TCI \mathscr{T} expands on T by specifying additional requirements on a possible model \mathfrak{M} of T.
- These requirements include
 - \circ a set upper bound (under \subset) to the base set M of \mathfrak{M} ,
 - \circ a set upper bound to $X^{\mathfrak{M}}$, for each $X \in \sigma$, and
 - whether each $\dot{X}^{\mathfrak{M}}$ depends entirely on its upper bound and M.

- TCIs provide bounds to the interpretation of a theory T over a signature σ .
- A TCI \mathscr{T} expands on T by specifying additional requirements on a possible model \mathfrak{M} of T.
- These requirements include
 - \circ a set upper bound (under \subset) to the base set M of \mathfrak{M} ,
 - \circ a set upper bound to $\dot{X}^{\mathfrak{M}}$, for each $\dot{X} \in \sigma$, and
 - whether each $\dot{X}^{\mathfrak{M}}$ depends entirely on its upper bound and M.

- TCIs provide bounds to the interpretation of a theory T over a signature σ .
- A TCI \mathscr{T} expands on T by specifying additional requirements on a possible model \mathfrak{M} of T.
- These requirements include
 - \circ a set upper bound (under \subset) to the base set M of \mathfrak{M} ,
 - \circ a set upper bound to $\dot{X}^{\mathfrak{M}}$, for each $\dot{X} \in \sigma$, and
 - whether each $\dot{X}^{\mathfrak{M}}$ depends entirely on its upper bound and M.

- TCIs provide bounds to the interpretation of a theory T over a signature σ .
- A TCI \mathscr{T} expands on T by specifying additional requirements on a possible model \mathfrak{M} of T.
- These requirements include
 - \circ a set upper bound (under \subset) to the base set M of \mathfrak{M} ,
 - \circ a set upper bound to $X^{\mathfrak{W}}$, for each $X \in \sigma$, and
 - whether each $\dot{X}^{\mathfrak{M}}$ depends entirely on its upper bound and M.

- TCIs provide bounds to the interpretation of a theory T over a signature σ .
- A TCI \mathscr{T} expands on T by specifying additional requirements on a possible model \mathfrak{M} of T.
- These requirements include
 - \circ a set upper bound (under \subset) to the base set M of \mathfrak{M} ,
 - \circ a set upper bound to $\dot{X}^{\mathfrak{M}}$, for each $\dot{X} \in \sigma$, and
 - whether each X^{20} depends entirely on its upper bound and M.

- TCIs provide bounds to the interpretation of a theory T over a signature σ .
- A TCI \mathscr{T} expands on T by specifying additional requirements on a possible model \mathfrak{M} of T.
- These requirements include
 - \circ a set upper bound (under \subset) to the base set M of \mathfrak{M} ,
 - \circ a set upper bound to $\dot{X}^{\mathfrak{M}}$, for each $\dot{X} \in \sigma$, and
 - whether each $\dot{X}^{\mathfrak{M}}$ depends entirely on its upper bound and M.

Definition (L.)

A TCI is *consistent* iff it has a model in some outer model of V.

By examining a suitable forcing notion in V, we can decide if a TCl in V is consistent.

Proposition

Let $\mathscr T$ be a TCI. Then for all sufficiently large cardinals λ ,

 $\Vdash_{Col(\omega,\lambda)} \exists \mathfrak{M} \ (\text{``}\mathfrak{M} \ \text{is a model of } \mathscr{T}\text{''}) \iff \mathscr{T} \ \text{is consistent}.$

Definition (L.)

A TCI is consistent iff it has a model in some outer model of V.

By examining a suitable forcing notion in V, we can decide if a TCl in V is consistent.

Proposition

Let ${\mathscr T}$ be a TCI. Then for all sufficiently large cardinals λ ,

 $\Vdash_{Col(\omega,\lambda)} \exists \mathfrak{M} \text{ ("}\mathfrak{M} \text{ is a model of } \mathcal{T}\text{"}) \iff \mathcal{T} \text{ is consistent.}$

Definition (L.)

A TCI is consistent iff it has a model in some outer model of V.

By examining a suitable forcing notion in V, we can decide if a TCI in V is consistent.

Proposition

Let ${\mathscr T}$ be a TCI. Then for all sufficiently large cardinals λ ,

 $\Vdash_{Col(\omega,\lambda)} \exists \mathfrak{M} \text{ ("}\mathfrak{M} \text{ is a model of } \mathscr{T}\text{"}) \iff \mathscr{T} \text{ is consistent.}$

Definition (L.)

A TCI is consistent iff it has a model in some outer model of V.

By examining a suitable forcing notion in V, we can decide if a TCI in V is consistent.

Proposition

Let $\mathscr T$ be a TCI. Then for all sufficiently large cardinals λ ,

 $\Vdash_{Col(\omega,\lambda)} \exists \mathfrak{M} \; (``\mathfrak{M} \; \text{is a model of } \mathscr{T}") \iff \mathscr{T} \; \text{is consistent}$

Definition (L.)

A TCI is *consistent* iff it has a model in some outer model of *V*.

By examining a suitable forcing notion in V, we can decide if a TCI in V is consistent.

Proposition

Let \mathscr{T} be a TCI. Then for all sufficiently large cardinals λ ,

 $\Vdash_{Col(\omega,\lambda)} \exists \mathfrak{M} \ (\text{``}\mathfrak{M} \ \text{is a model of } \mathscr{T}\text{''}) \iff \mathscr{T} \ \text{is consistent}.$

Definition (L.)

A local method definition of V is a non-empty class of TCls definable in V.

• In the meta-theory, define a function Eval^V from the set of TCIs $\mathscr{T} \in V$ into the set of small extensions of V, such that

$$\mathrm{Eval}^V(\mathscr{T}) = \{V[\mathfrak{M}] \in \mathbf{M}_S(V) : \mathfrak{M} \text{ is a model of } \mathscr{T}\}.$$

Definition (L.)

A local method definition of V is a non-empty class of TCIs definable in V.

• In the meta-theory, define a function Eval^V from the set of TCIs $\mathscr{T} \in V$ into the set of small extensions of V, such that

$$\mathrm{Eval}^V(\mathscr{T}) = \{V[\mathfrak{M}] \in \mathbf{M}_S(V) : \mathfrak{M} \text{ is a model of } \mathscr{T}\}.$$

Definition (L.)

A local method definition of V is a non-empty class of TCIs definable in V.

• In the meta-theory, define a function Eval^V from the set of $\mathsf{TCIs}\ \mathscr{T} \in V$ into the set of small extensions of V, such that

$$\mathrm{Eval}^V(\mathscr{T}) = \{V[\mathfrak{M}] \in \mathbf{M}_S(V) : \mathfrak{M} \text{ is a model of } \mathscr{T}\}.$$

Definition (L.)

A local method definition of V is a non-empty class of TCIs definable in V.

• In the meta-theory, define a function Eval^V from the set of $\mathsf{TCIs}\ \mathscr{T} \in V$ into the set of small extensions of V, such that

$$\mathrm{Eval}^V(\mathscr{T}) = \{V[\mathfrak{M}] \in \mathbf{M}_S(V) : \mathfrak{M} \text{ is a model of } \mathscr{T}\}.$$

Definition (L.)

A local method definition of V is a non-empty class of TCIs definable in V.

• In the meta-theory, define a function Eval^V from the set of $\mathsf{TCIs}\ \mathscr{T} \in V$ into the set of small extensions of V, such that

$$\mathrm{Eval}^V(\mathscr{T}) = \{V[\mathfrak{M}] \in \mathbf{M}_S(V) : \mathfrak{M} \text{ is a model of } \mathscr{T}\}.$$

Definition (L.)

If X and Y are local method definitions of V, $X \leq^M Y$ denotes the statement

"there is a function $F: X \longrightarrow Y$ definable in V such that $\emptyset \neq \operatorname{Eval}^V(F(\mathscr{T})) \subset \operatorname{Eval}^V(\mathscr{T})$ for all consistent $\mathscr{T} \in X$ ".

- Intuitively, $X \leq^M Y$ if V can see that Y provides non-trivial refinements to all consistent descriptions in X.
- \leq^M partially orders local method definitions, so we can define the equivalence relation \equiv^M the usual way.

Observation

Let X,Y be local method definitions. If $X \subset Y$, then $X \leq^M Y$

Definition (L.)

If X and Y are local method definitions of V, $X \leq^M Y$ denotes the statement

"there is a function $F: X \longrightarrow Y$ definable in V such that $\emptyset \neq \operatorname{Eval}^V(F(\mathscr{T})) \subset \operatorname{Eval}^V(\mathscr{T})$ for all consistent $\mathscr{T} \in X$ ".

- Intuitively, $X \leq^M Y$ if V can see that Y provides non-trivial refinements to all consistent descriptions in X.
- \leq^M partially orders local method definitions, so we can define the equivalence relation \equiv^M the usual way.

Observation

Let X,Y be local method definitions. If $X \subset Y$, then $X \leq^M Y$

Definition (L.)

If X and Y are local method definitions of V, $X \leq^M Y$ denotes the statement

"there is a function $F: X \longrightarrow Y$ definable in V such that $\emptyset \neq \operatorname{Eval}^V(F(\mathscr{T})) \subset \operatorname{Eval}^V(\mathscr{T})$ for all consistent $\mathscr{T} \in X$ ".

- Intuitively, $X \leq^M Y$ if V can see that Y provides non-trivial refinements to all consistent descriptions in X.
- \leq^M partially orders local method definitions, so we can define the equivalence relation \equiv^M the usual way.

Observation

Let X,Y be local method definitions. If $X \subset Y$, then $X <^M Y$

Definition (L.)

If X and Y are local method definitions of V, $X \leq^M Y$ denotes the statement

"there is a function $F: X \longrightarrow Y$ definable in V such that $\emptyset \neq \operatorname{Eval}^V(F(\mathscr{T})) \subset \operatorname{Eval}^V(\mathscr{T})$ for all consistent $\mathscr{T} \in X$ ".

- Intuitively, $X \leq^M Y$ if V can see that Y provides non-trivial refinements to all consistent descriptions in X.
- \leq^M partially orders local method definitions, so we can define the equivalence relation \equiv^M the usual way.

Observation

Let X,Y be local method definitions. If $X \subset Y$, then $X <^M Y$.

Definition (L.)

If X and Y are local method definitions of V, $X \leq^M Y$ denotes the statement

"there is a function $F: X \longrightarrow Y$ definable in V such that $\emptyset \neq \operatorname{Eval}^V(F(\mathscr{T})) \subset \operatorname{Eval}^V(\mathscr{T})$ for all consistent $\mathscr{T} \in X$ ".

- Intuitively, $X \leq^M Y$ if V can see that Y provides non-trivial refinements to all consistent descriptions in X.
- \leq^M partially orders local method definitions, so we can define the equivalence relation \equiv^M the usual way.

Observatior

Let X,Y be local method definitions. If $X \subset Y$, then $X \leq^M Y$.

Definition (L.)

If X and Y are local method definitions of V, $X \leq^M Y$ denotes the statement

"there is a function $F: X \longrightarrow Y$ definable in V such that $\emptyset \neq \operatorname{Eval}^V(F(\mathscr{T})) \subset \operatorname{Eval}^V(\mathscr{T})$ for all consistent $\mathscr{T} \in X$ ".

- Intuitively, $X \leq^M Y$ if V can see that Y provides non-trivial refinements to all consistent descriptions in X.
- \leq^M partially orders local method definitions, so we can define the equivalence relation \equiv^M the usual way.

Observation

Let X,Y be local method definitions. If $X \subset Y$, then $X \leq^M Y$.

Comparing Local Methods

Figure: Visual representation of a function F witnessing $X \leq^M Y$, where X and Y are local method definitions.

- We can also define the complexity of a TCI by just looking at its first-order theory.
- For example, a Σ_n TCl has a first-order theory containing only Σ_n sentences.
- The classes of Σ_n and Π_n TCIs denoted Σ_n^M and Π_n^M respectively then form a hierarchy under the relation \leq^M , called the local method hierarchy.

- We can also define the complexity of a TCI by just looking at its first-order theory.
- For example, a Σ_n TCl has a first-order theory containing only Σ_n sentences.
- The classes of Σ_n and Π_n TCIs denoted Σ_n^M and Π_n^M respectively then form a hierarchy under the relation \leq^M , called the local method hierarchy.

- We can also define the complexity of a TCI by just looking at its first-order theory.
- For example, a Σ_n TCl has a first-order theory containing only Σ_n sentences.
- The classes of Σ_n and Π_n TCIs denoted Σ_n^M and Π_n^M respectively then form a hierarchy under the relation \leq^M , called the local method hierarchy.

- We can also define the complexity of a TCI by just looking at its first-order theory.
- For example, a Σ_n TCl has a first-order theory containing only Σ_n sentences.
- The classes of Σ_n and Π_n TCIs denoted Σ_n^M and Π_n^M respectively then form a hierarchy under the relation \leq^M , called the local method hierarchy.

Theorem (L.)

Let $1 \leq n < \omega$. Then for every $\mathcal{T} \in \Pi_{n+1}^M$ there is $\mathcal{T}' \in \Sigma_n^M$ such that

$$\mathrm{Eval}^V(\mathscr{T}) = \mathrm{Eval}^V(\mathscr{T}').$$

$$\Pi_{\mathsf{n}+1}^{\mathsf{M}} \leq^{M} \Sigma_{\mathsf{n}}^{\mathsf{M}}$$
 for all $1 \leq n < \omega$.

Theorem (L.)

Let $1 \le n < \omega$. Then for every $\mathscr{T} \in \Pi^M_{n+1}$ there is $\mathscr{T}' \in \Sigma^M_n$ such that

$$\mathrm{Eval}^{V}(\mathscr{T}) = \mathrm{Eval}^{V}(\mathscr{T}').$$

$$\prod_{n=1}^{M} \leq^M \Sigma_n^M$$
 for all $1 \leq n < \omega$.

Theorem (L.)

Let $1 \le n < \omega$. Then for every $\mathscr{T} \in \Pi^M_{n+1}$ there is $\mathscr{T}' \in \Sigma^M_n$ such that

$$\mathrm{Eval}^V(\mathscr{T}) = \mathrm{Eval}^V(\mathscr{T}').$$

$$\prod_{n=1}^{M} \leq^M \Sigma_n^M$$
 for all $1 \leq n < \omega$.

Theorem (L.)

Let $1 \le n < \omega$. Then for every $\mathscr{T} \in \Pi_{n+1}^M$ there is $\mathscr{T}' \in \Sigma_n^M$ such that

$$\mathrm{Eval}^V(\mathscr{T}) = \mathrm{Eval}^V(\mathscr{T}').$$

$$\prod_{n+1}^{M} \leq^M \Sigma_n^M$$
 for all $1 \leq n < \omega$.

- There is an obvious way of representing any forcing notion as a Π_2 TCI.
- Thus set forcing, as a technique of accessing small extensions of V, can be represented by a local method definition, denoted Fg.
- We want to see if Fg fits nicely in the local method hierarchy.
- From what we know so far, $\operatorname{Fg} \leq^M \Sigma_1^M$.

- There is an obvious way of representing any forcing notion as a Π_2 TCI.
- Thus set forcing, as a technique of accessing small extensions of V, can be represented by a local method definition, denoted Fg.
- We want to see if Fg fits nicely in the local method hierarchy.
- From what we know so far, $\operatorname{Fg} \leq^M \Sigma_1^M$.

- There is an obvious way of representing any forcing notion as a Π_2 TCI.
- Thus set forcing, as a technique of accessing small extensions of V, can be represented by a local method definition, denoted Fg.
- We want to see if Fg fits nicely in the local method hierarchy.
- From what we know so far, $\operatorname{Fg} \leq^M \Sigma_1^M$.

- There is an obvious way of representing any forcing notion as a Π_2 TCI.
- Thus set forcing, as a technique of accessing small extensions of V, can be represented by a local method definition, denoted Fg.
- We want to see if Fg fits nicely in the local method hierarchy.
- From what we know so far, $\operatorname{Fg} \leq^M \Sigma_1^M$.

- There is an obvious way of representing any forcing notion as a Π_2 TCI.
- Thus set forcing, as a technique of accessing small extensions of V, can be represented by a local method definition, denoted Fg.
- We want to see if Fg fits nicely in the local method hierarchy.
- From what we know so far, $\operatorname{Fg} \leq^M \Sigma_1^M$.

Theorem (L.)

$$\operatorname{Fg} \equiv^M \Sigma_1^{\mathsf{M}}.$$

Proof Idea

By adapting our framework for constructing forcing notions to the context of TCIs, we associate with each Π_2 TCI $\mathscr T$ a forcing notion $\mathbb P(\mathscr T)$, such that a unique model of $\mathscr T$ can be read off every $\mathbb P(\mathscr T)$ -generic filter over V.

This allows us to define a class function witnessing $\Pi_2^{\mathsf{M}} \leq^{\mathsf{M}} \mathsf{Fg}$.

Theorem (L.)

$$\mathsf{Fg} \equiv^M \Sigma_1^\mathsf{M}$$
.

Proof Idea

By adapting our framework for constructing forcing notions to the context of TCIs, we associate with each Π_2 TCI $\mathscr T$ a forcing notion $\mathbb P(\mathscr T)$, such that a unique model of $\mathscr T$ can be read off every $\mathbb P(\mathscr T)$ -generic filter over V.

This allows us to define a class function witnessing $\Pi_2^M \leq^M Fg$.

Theorem (L.)

 $\operatorname{\mathsf{Fg}} \equiv^M \Sigma_1^{\mathsf{M}}$.

Proof Idea.

By adapting our framework for constructing forcing notions to the context of TCIs, we associate with each Π_2 TCI $\mathscr T$ a forcing notion $\mathbb P(\mathscr T)$, such that a unique model of $\mathscr T$ can be read off every $\mathbb P(\mathscr T)$ -generic filter over V.

This allows us to define a class function witnessing $\Pi_2^{M} \leq^M Fg$.

Theorem (L.)

$$\operatorname{\mathsf{Fg}} \equiv^M \Sigma_1^{\mathsf{M}}$$
.

Proof Idea.

By adapting our framework for constructing forcing notions to the context of TCIs, we associate with each Π_2 TCI $\mathscr T$ a forcing notion $\mathbb P(\mathscr T)$, such that a unique model of $\mathscr T$ can be read off every $\mathbb P(\mathscr T)$ -generic filter over V.

This allows us to define a class function witnessing $\Pi_2^{\mathrm{M}} \leq^M \mathrm{Fg}$.

Further Results

- We can refine the function witnessing $\Pi_2^M \leq^M Fg$ by iteratively pruning the $\mathbb{P}(\mathscr{T})s$.
- We can also prove in V a few results linking 1-generic reals with models of certain countable Π_2 TCIs.

Further Results

- We can refine the function witnessing $\Pi_2^M \leq^M Fg$ by iteratively pruning the $\mathbb{P}(\mathcal{T})s$.
- We can also prove in V a few results linking 1-generic reals with models of certain countable Π_2 TCls.

Further Results

- We can refine the function witnessing $\Pi_2^M \leq^M Fg$ by iteratively pruning the $\mathbb{P}(\mathcal{T})s$.
- We can also prove in V a few results linking 1-generic reals with models of certain countable Π_2 TCIs.

- (Q1) What structural properties of $(\mathbf{M}_F(L), \subset)$ also hold for $(\mathbf{M}_S(L), \subset)$?
- (Q2) For example, is $(\mathbf{M}_S(L), \subset)$ downward directed?
- (Q3) Are there $m, n < \omega$ for which $\sum_{m}^{M} \not\equiv^{M} \sum_{n}^{M}$?
- (Q4) Is there a TCI $\mathscr T$ such that $\{\mathscr T\} \not\leq^M \mathsf{Fg} ?$

- (Q1) What structural properties of $(\mathbf{M}_F(L), \subset)$ also hold for $(\mathbf{M}_S(L), \subset)$?
- (Q2) For example, is $(\mathbf{M}_S(L),\subset)$ downward directed?
- (Q3) Are there $m, n < \omega$ for which $\Sigma_{\rm m}^{\rm M} \not\equiv^M \Sigma_{\rm n}^{\rm M}$?
- (Q4) Is there a TCI \mathscr{T} such that $\{\mathscr{T}\} \not\leq^M \operatorname{Fg}$?

- (Q1) What structural properties of $(\mathbf{M}_F(L), \subset)$ also hold for $(\mathbf{M}_S(L), \subset)$?
- (Q2) For example, is $(\mathbf{M}_S(L), \subset)$ downward directed?
- (Q3) Are there $m, n < \omega$ for which $\Sigma_{\rm m}^{\rm M} \not\equiv^{\rm M} \Sigma_{\rm n}^{\rm M}$?
- (Q4) Is there a TCI \mathscr{T} such that $\{\mathscr{T}\} \not\leq^M \operatorname{Fg}$?

- (Q1) What structural properties of $(\mathbf{M}_F(L), \subset)$ also hold for $(\mathbf{M}_S(L), \subset)$?
- (Q2) For example, is $(\mathbf{M}_{S}(L), \subset)$ downward directed?
- (Q3) Are there $m, n < \omega$ for which $\Sigma_{\rm m}^{\rm M} \not\equiv^M \Sigma_{\rm n}^{\rm M}$?
- (Q4) Is there a TCI \mathscr{T} such that $\{\mathscr{T}\} \not\leq^M \operatorname{Fg}$?

- (Q1) What structural properties of $(\mathbf{M}_F(L), \subset)$ also hold for $(\mathbf{M}_S(L), \subset)$?
- (Q2) For example, is $(\mathbf{M}_{S}(L), \subset)$ downward directed?
- (Q3) Are there $m, n < \omega$ for which $\Sigma_m^M \not\equiv^M \Sigma_n^M$?
- (Q4) Is there a TCI \mathscr{T} such that $\{\mathscr{T}\} \not\leq^M \mathsf{Fg}$?

References

Thank You!