

THER UNITED STATES OF AVERROA

TO ALL TO WHOM THESE PRESENTS SHAVE COME?

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office

July 07, 2003

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/398,860

FILING DATE: *July 25, 2002*

RELATED PCT APPLICATION NUMBER: PCT/US03/18129

By Authority of the COMMISSIONER OF PATENTS AND TRADEMARKS

E. BORNETT Certifying Officer

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

PTO/SB/16 (8/96) Approved for use through 01/31/98. OMB 0651-0037

PROVISI	ONAL APPLICATIO	N FOR PATENT COVER SHEET
ttorney Docket No.	001340.P086Z2	Type a plus sign (+) inside this box [+]
Under the Paperwork	Reduction Act of 1895, no persons are requ	Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCEA. stred to respond to a collection of information unless it displays a valid OMB control number.

This is a request for filing	g a PROVISIONAL APPLICA	ATION FOR PAI	ENT under 37 CFR 1.53 (c).				
INVENTOR(s)/APPLICANT(s) RESIDENCE (CITY AND							
LAST NAME	FIRST NAME	MIDDLE NAME	EITHER STATE OR				
Tsatsanis	Michail						
Erickson	Mark						
Kanellakopoulos	loannis						
A METHOD AND SYSTE	TITLE OF THE INVENTION OF THE TRANSMENT	ON (280 charac	cters max) MMUNICATIONS SYSTEM				
CORRES	SPONDENCE ADDRESS (in	cluding countr	y if not United States)				
BLAKELY, SOKOLOFI 12400 Wilshire Boulev	F, TAYLOR & ZAFMAN, LLP)					
Los Angeles, California	a 90025-1026						
Telephone: (408) 720-	8598 FAX: (408) 720-9397					
<u>!</u>	ENCLOSED APPLICATION	PARTS (check	all that apply)				
X Specification	Number of Pages114		Small Entity Statement				
Drawing(s)	Number of Sheets	x	Other (specify) Express Mail Certification				
METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT (check one)							
X A check or mone	y order is enclosed to cover the f	iling fees					
The Commissione filing fees and cre	er is hereby authorized to charge edit Deposit Account No. <u>02-266</u>	6	-				
Filing Fee Amount (\$)	160.00						
Government	an agency of the United States Gov		ontract with an agency of the United States				
Respectfully submitted,							
SIGNATURE	em & No Par	<u>//</u>	DATE July 25, 2002				
TYPED or PRINTED NAM	IE: Glenn E. Von Tersch		REGISTRATION NO. 41,364 (If appropriate)				
X Additional inver	ntors are being named on sep	parately numbere	d sheets attached hereto				

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

Address to: Box Provisional Application, Assistant Commissioner for Patents, Washington, D. C. 20231

-1-

12/01/97

PTO/SB/05 (12/97)

arm other

PROVISIONAL APPLICATION COVER SHEET

Additional Page

Attorney Docket No.

001340.P086Z2

Type a plus sign (+) inside this box [+]

INVENTOR(s)/APPLICANT(s)								
<u>LAST NAME</u>	FIRST NAME	MIDDLE NAME/ INITIAL	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)					
Gudmundsson	Thorkell							
Gu	Ming							
Shah	Sunil							
Hench	John							
Yuen	Norman							
Satoor	Satish							
Lin	Di							
Overby	Johan							
Tan	Yaolong							
Waite								
Yu	Robert							
Mukherjee	Aditya							
Torres	Adrian							
Cardanha	Brian							
	Parameter Section 1							

PTO/SB/17(09/00)

Approved for use through 10/31/2002. OMB 0651-0032

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

				FEE TRANSMITTAL FOR FY 200	2	
				TOTAL AMOUNT OF PAYMENT (\$) \$1	60.00	
	lete If Kno					
	ation No.	<u>Ne</u>		sional Patent Application	•	
	Date		He]
First N	Named Inv	entor		hail Tsatsanis		l
Group	Art Unit _		Not	Yet Assigned		1
	ner Name		NOT	Yet Assigned 340.P086Z2		
	ey Docket					
ME17	HOD OF F		•	oner is hereby authorized to charge indicate	d fees and c	redit
	-	any ove	er paym	ents to:		
 				nt Number 02-2666 nt Name Blakely, Sokoloff, Taylor & Zat	man	
	[x]	Charge	Any Ad	ditional Fee Required Under 37 CFR 1.16 an	id 1.17	
	[]	Applica	nt clain	ns small entity status. See 37 CFR 1.27		
2.	X	Paymei	nt Encic	Money Order		
_				Other		
FEE (CALCULA	ATION		·		
1.	BASIC F	ILING F	<u>EE</u>		•	-
	Entity	Small E				
Fee	Fee	Fee	Fee			Fee Paid
Code		Code	(\$)	Fee Description		ree raiu
101	740	201	370	Utility application filing fee		
106	330	206	165	Design application filing fee		
107	510	207	255	Plant filing fee		
108	740	208 214	370 80	Reissue filing fee Provisional application filing fee		160.00
114	160	214	80	Provisional application liting lee		
				SUI	BTOTAL (1)	\$ <u>160.00</u>
2.	EXTRA	CLAIM F	EES		Fee from	
				Extra Claims	<u>below</u>	Fee Paid
l					,	_
	Claims			-20** = X		. =
	pendent (-3** =X	·	
Multi	ple Depe	ndent		and the second s		-
**Or	number p	revious	ly paid	, if greater; For Reissues, see below.		
	Entity	Small E				
Fee	Fee	Fee	Fee	Ess Description		
Code		Code	(\$)	Fee Description Claims in excess of 20		
103	18	203	9	Independent claims in excess of 3		
102 104	84 280	202 204	42 140	Multiple dependent claim, if not paid		
104	280 84	204	42	**Reissue independent claims over origina	i patent	
1109	18	209 210	42 9	**Reissue claims in excess of 20 and over	original pate	ent
1	10	2.0	•			
				S	SUBTOTAL (2	2) \$_0

3. ADDITIONAL FEES

الله نسبه

Fee	Fee	Fee	Fee	Pag Burnel office	
Code	(\$)	Code	(\$) CF	Fee Description	Fee Pa
105	130	205	65 25	Surcharge - late filing fee or oath	
127	50 430	227 139	25	Surcharge - late provisional filing fee or cover sheet	
139	130		130	Non-English specification	
147	2,520	147	2,520	For filing a request for ex parte reexamination	
099	8,800	099	8,800	Request for inter parties reexamination Requesting publication of SIR prior to Examiner action	
112	920*	112	920*	Requesting publication of SIR prior to Examiner action	
113	1,840*	113	1,840*	Requesting publication of SIR after Examiner action	
115	110	215	55	Extension for reply within first month	
116	400	216	200	Extension for reply within second month	
117	920	217	460	Extension for reply within third month	
118		.218_	720		
128	1,960	228	980	Extension for reply within fifth month	
119	320	219	160	Notice of Appeal	
120	320	220	160	Filing a brief in support of an appeal	
121	280	221	140	Request for oral hearing	
138	1,510	138	1,510	Petition to institute a public use proceeding	
140	110	240	55	Petition to revive – unavoldable	
141	1,280	241	640	Petition to revive - unintentional	
142	1,280	242	640	Utility issue fee (or reissue)	
143	460	243	230	Design Issue fee	
144	620	244	310	Plant issue fee	
122	130	122	130	Petitions to the Commissioner	
123	50	123	50	Processing fee under 37 CFR 1.17(q)	
126	180	126	180	Submission of Information Disclosure Stmt	
581	40	581	40	Recording each patent assignment per	
				property (times number of properties)	
146	740	246	370	For filing a submission after final rejection	
1				(see 37 CFR 1.129(a))	
148	110	248	55	Statutory Disclaimer	
149	740	249	370	For each additional invention to be examined (see 37 CFR 1.129(b))	
179	740	279	370	Request for Continued Examination (RCE)	
169	900	169	900	Request for expedited examination of a design	
				application	
195	300	195	300	Publication fee for early, voluntary, or normal pub.	
196	300	196	300	Publication fee for republication	
194	130	194	130	Request for voluntary publication or republication	
098	130	098	130	Processing fee under 37 CFR 1.17(i) (except provisionals)	
091	1,280	091	1,280	Acceptance of unintentionally delayed claim for priority	,
			•		
Other	ree (specif	у)			
				SUBTOTAL (3) \$ 0	
*Reduc	ed by Basic	Filing Fee	Paid	300101AL (3) \$ <u>0</u>	
	ITTED B				
		_			
Typed	or Printe	d Name:	Glenn	E. Von Tersch	

Reg. Number:

41,364

Telephone Number: <u>(408) 720-8300</u>

PROVISIONAL PATENT

UNITED STATES PROVISIONAL PATENT APPLICATION

FOR

A METHOD AND SYSTEM FOR MULTI-LINE TRANSMISSION

5	IN A COMMUNICATIONS SYSTEM
	Inventors:
	MICHAIL TSATSANIS
	MARK ERICKSON
•	IOANNIS KANELLAKOPOULOS
10.	THORKELL GUDMUNDSSON
	MING GU
	SUNIL SHAH
	JOHN HENCH
	NORMAN YUEN
15	SATISH SATOOR
	DI LIN
	JOHAN OVERBY
	YAOLONG TAN
	. JIM WAITE
20	ROBERT YU
	ADITYA MUKHERJEE
	ADRIAN TORRES
	BRIAN CARDANHA
	Prepared By:
25	Blakely, Sokoloff, Taylor & Zafman llp
	12400 Wilshire Boulevard
	SEVENTH FLOOR
	Los Angeles, CA 90025-1026
30	(408) 720-8300
30	ATTORNEY DOCKET NO. 001340.P086Z2
	EXPRESS MAIL CERTIFICATE OF MAILING
	EXTRESS MAIL CERTIFICATE OF MAILING
	"Express Mail" mailing label number EL867637900US
	Date of Deposit July 25, 2002
	I hereby certify that I am causing this paper or fee to be deposited with the United States Postal Service "Express Mail Post Office to
	Addressee" service on the date indicated above and is addressed to
	the Commissioner of Patents and Trademarks, Washington, D.C.
	20231
	Carrie Boccaccini
	Apped or printed name of person mailing paper or fee)
	7-25-2002
	(Signature of person mailing paper or fee) Date
	. 5

Trademark Notice

Various trademarks used herein are registered to Voyan Technology, or otherwise owned by Voyan Technology. Voyan Technology does not object to copying these trademarks as part of any related patent including these trademarks, but otherwise reserves all rights with respect to these trademarks.

Increasing Customer Demand Broadband in the Last Mile

Bandwidth expansion has been bipolar

Enterprise Networks

- 10 Mbps -> 100 Mbps -> Gigabits
- Optical Core Network
- -> 40 Gbps
- immense available capacity
- Access & Metro Networks have NOT kept pace
 - 1.5Mbps is the fastest available service offered to most businesses today

Growing Demand for Bandwidth Market Drivers

Access bandwidth demand is growing

- 25% 50% CAGR for the average enterprise¹
- Much higher for some applications² Demand for broadband access is widespread geographically

Backbone traffic has grown at > 70% CAGR

- 1999: 1,000,000 terabits / month³
- 2001: 3,000,000 terabits / month³

Source: SEC & Edgar Filings, Computer Industry Almanac, Intel

1 Gartner Group; Look Out WAN – The Ethernet Roadkill Machine is Coming; Research note COM-12-9201; Jay Pultz and Mark Fabb; February 6, 2001 2 Lehman Brothers; Enterprise Storage Takes Center Stage; February 12,

3 Sources: SEC & Edgar Filings, Computer Industry Almanac, Intel

Market Inhibitors

Copper Performance/Fiber Availability and Cost

Copper infrastructure is ubiquitous but

current technology delivers only

limited performance

Fiber penetration is low relative to all

businesses and is limited to certain

geographic areas

fiber based services are \sim 12x the cost Based on high costs for deployment, Together, these conditions have of copper based services

Source: Frost & Sullivan

Introducing OptiFusion

Solving the "Access Gap" Problem

A chipset solution offering fiber-like performance levels to be achieved using the existing copper infrastructure

Bridges the gap between copper-based and fiber-based services in a cost effective way Delivers T1, FT3, T3 and multi-megabit packet services for a wide variety of carrier applications

OptiFusion" enables Broadband Broadband in the Last Mile

OptiFusion™ fills the Bandwidth Gap

- Maximizes potential of existing copper access network Increases the average throughput per pair
 - Operates over the full CSA range
 - 9000ft 26AWG
- 12000ft 24AWG
- Enables service offerings previously only available over costly fiber
 - 10Mbps over 4 copper pairs (Ethernet service)
 - 45Mbps over 10 copper pairs (T3 service)
 - Requires no access line grooming
- Robust performance in the presence of other co-located services (even same binder) Spectrally friendly to other co-located services (even same binder)

OptiFusion Value Proposition

Maximize carrier revenue and penetration by enabling high speed, high tariff services to be delivered cost effectively and ubiquitously with the existing copper infrastructure.

Operates on existing copper	Minimizes capital investment widespread deployment potential
Intrastructure	
Delivers high symmetrical speeds	Greater customer penetration
to full CSA	Significant revenue growth
Scalability	Flexible service definitions and provisioning
	50
Onick service activation	Fast revenue recognicion
	Satisfied customers
S. Daniel B. C.	Operates w/ other services in binder
Spectrally Interiory	Will not impact other services in binder

OptiFusion Technology Components

Symmetric	Enables business service delivery
DMT Line Code	Proven
	Widely deployed
	Cost effective
G.SHDSL Spectral Mask	Industry standard
	Deployable today
	Symmetric
Vectored multi-line	Proven in wireless applications
	Characterizes and mitigates crosstalk
signal processing	Bonding at the physical layer
techniques	 No overhead
	 Reduced latency
DMT – Discrete Multitone Transmission MIMO – Multiple Input Multiple Output	

Copper Transmission Systems

Single Line

Single Input Single Output system (SISO)

2

Examples: ADSL, VDSL, G.SHDSL

Fraditional Multi-line

- Collection of individual SISO's
- Each SISO acts independently

XX

Essentially a multiple SISO system

Vectored Multi-line

- Multiple Input Multiple Output system (MIMO)
- Transmission across individual lines is coordinated

Crosstalk in Single Line Systems

Basics

Crosstalk is the major cause of performance impairment in copper transmission systems

In copper binders all lines interfere with one another

SISO transmission throughput is restricted to compensate for unknown crosstalk

Crosstalk in Multi-line Systems

Traditional Technologies

Traditional multi-line transmission aggregates multiple SISO systems together

Crosstalk remains unchecked

- In-domain crosstalk
 Between the individual SISO lines
 themselves
- Out-of-domain crosstalk
 From other services in the binder

Throughput still restricted to compensate for unknown impairments

Crosstalk in Multi-line Systems

The OptiFusion Approach

Vectored multi-line transmission

- Characterize and mitigate for indomain crosstalk
- Characterize and mitigate for out-ofdomain crosstalk

Enables dramatic improvement in performance

Removing the Constraints of Crosstalk OptiFusion Technology

OptiFusionBonding at the Physical Layer

Single line bonding

- Unpacking & repacking data at either end of each single transmission line incurs
- Overhead
- Latency
- The aggregate throughput is less than the sum of the parts

Vectored Multi-line transmission

- Bonding at the physical layer
- without frames/cells with minimal delay
- Maximum use of the available bandwidth

The OptiFusion Difference

Vectored multi-line transmission ...

- Treating multiple lines together as one system rather than treating the lines individually
- Vectored the mathematical concept introduced by processing signals across multiple lines

... using MIMO signal processing techniques

Signaling techniques for obtaining an understanding of what is occurring within a complex system involving many inputs and outputs

OptiFusionTM Adaptation Gains

avg. 8dB over 300kHz bandwidth / 3dB per bps per Hz $8/3 \times 300k \times 8$ Channels = 6.4Mbps

OptiFusionThe Next Level in Performance

Proposed improvements are for short loops and offer only incremental gains SISO techniques have essentially reached their practical performance limits Multi-line SISO implementations do not offer performance gains The SISO Approach (ADSL, VDSL, G.SHDSL)

Technology Demonstration

What Will Be Demonstrated?

Voyan's OptiFusion Technology

- A novel vectored multi-line transmission method leveraging MIMO signal processing techniques
- performance of the existing copper infrastructure Dramatically increases achievable rate and reach

Foday

The first hardware demonstration ever of vectored MIMO technology in a wireline application

MIMO = Multi Input Multi Output

Technology Demonstration

Lab Setup

OptiFusion™ Demonstration Performance Targets

	Disturber set	er set
	Scenario A	Scenario B
01/ft 26AWG		
ור בסאמם		
nairs		

	Disturber Set	er Set
Disturber Services	Scenario A	Scenario B
ADSL	3	. 1
SDSL (HDSL)	4	. 2
HDSL2	2	. 1
VDSL	1	1
DDS	4	0
IDSL	1	0
# ext. disturber pairs	13	<u>.</u>
# SELF disturber pairs	7	7
Total disturbers	20	12

Technology Demonstration Timeline

Training Stages

Echo Cancellation Clock Acquisition (Downstream side only)

Time Equalizers

Frequency Equalizers

MIMO Processing Parameters

Bit-loading Calculation

OptiFusion Product Plans

Three Speed/Service Classes

T3 solution

Delivers T3 and fractional service over 10 pairs (at TDM performance levels)

Ethernet solution

Delivers 10 Mbps packet service over 3-4 pairs

n x T1/E1 solution

Deliver up to $7 \times T1$ over 4 pairs (at TDM performance levels)

OptiFusion Applications

	OptiFusion Network Applications Access Affordable T3, FT3, n x T1, Ethernet private line and packet services Pair Gain n x T1 for copper constrained routes and next generation packet services such as IMA and multilink Frame Relay Wireless Base station backhaul for supporting 2.5G and 3G wireless data services DLC Digital Loop Carrier (DLC) backhaul for enabling broadband services on the customer side
(2)	which cannot be handled by traditional methods

10 Mbps Ethernet

OptiFusion vs. G.SHDSL

7 x T1 Bonded System

- Multiple SISO systems offer no synergistic performance gains
- Higher overhead and latency
- 7 copper pairs required for 10 Mbps service

OptiFusion System

- Vectored MIMO system offers substantial performance gains
- Minimal overhead and latency
- 4 copper pairs required for 10 Mbps service

Better Performance & Fewer Pairs

10 Mbps Ethernet OptiFusion vs. VDSL

VDSL Solution

- Limited reach too many systems
 Higher capital and operating costs
- Higher capital and operating costs for systems, infrastructure, support and logistics

OptiFusion Solution

- Great reach fewer systems
- Minimal capital and operating cost impact

Broad Coverage & Lower Cost

Product Features T3 over Copper

Applications

- T3 Access Equipment
- **DLC Backhaul**
- **Next Generation (3G) Base Stations**

Features

- Line Interface Unit (LIU) chipset
- T3 (44.7Mbps) / E3 (34.368 Mbps)
- over 10 twisted copper pair
- at CSA range
- Fractional T3 services supported
- Scalable provisioning -
- service can be provisioned over fewer
- to T1.417 Spectral compatibility according pairs at shorter range
- **Full toll voice service**
- End to end latency: 1ms
- On-chip training and adaptation

What's WhiteSail?

WhiteSail in POC System

>Fast Track Purchase Orders !! (Cristine)

>Timing, P&R (Johan)

>Test Plans & Bring-up Collateral (Brian)

>SURF (Norm)

WAVE ARCHITECTURE DOCUMENT

TABLE OF CONTENTS

l	IS/IS	NOT List	5
2	Funct	ronal Description	5
	2.1	Interface Diagram	5
	2.2	Block Diagram	7
	2.3	Parallel to Serial Converter (P2SC)	7
	2.4	Serial to Parallel Converter (S2P)	8
	2.5	TX Filter	9
	2.6	RX Filter	9
	2.7	Serial Interface	9
	2.8	Clocking	9
	2.8.1	Data Path	
•	2.8.2		10
	2.9	Power Up, Reset, and Configuration	
	2.9.1	Power Up	
	2.9.2	Reset	10
	2.9.3	Configuration	10
3	Progr	ramming Model	i l
	3.1	Register Map	11
	3.2	Register Definitions	12
	3.2.1	GLOBAL Segment	13
4	Pin L	ust	14
	4.1	Interface timing	15
	4.2	Signal List	15
	4.2.1	FPGA-1 Interface (up to 35.328 MHz)	15
	4.2.2	Si3100/3101 Interface (35.328 MHz)	15
	4.2.3	Reset, Test and Misc. Signals	15

1 IS /-IS NOT List

IS	IS NOT.
 Supports Nibble Data interface @35.328MHz from/to the SILAB (Si3100/Si3101) chips Supports Nibble Data interface @35.328 MHz from/to FPGA-1 Up-samples and does a LPF on the data coming from FPGA-1 (TX-Filter) Does a LPF and Down-samples data coming from the SILAB chips (RX-Filter) Interfaces to Eight SILAB chips and has 8 corresponding pairs of RX & TX Filters Supports a Serial Interface @ 8.832 MHz from FPGA-1 for register read/writes A feed-through (from FPGA-1 to the SILAB chips) for the MODE inputs of the SILAB chips A feed-through (from FPGA-1 to the SILAB chips) for the Reset inputs of the SILAB chips < 1W of power < 250 pins XILINX VIRTEX-II XC2V1000 -5 FPGA BG575 Package 	Serial/Control Interface to the SILAB chips Reset Control of the SILAB chips Control for the Mode inputs to the SILAB chips chips

2 Functional Description

The WHITESAIL FPGA provides the following functionality

- Performs Serial to Parallel (S2P) conversion of the nibble data coming from the SILAB chips (Si3100/3101) and feeds it to the RX-Filter (LPF + Down-Sampler)
- Performs Parallel to Serial (P2S) conversion of the data from the RX-Filter and sends it to FPGA-
- Performs Serial to Parallel (S2P) conversion of the nibble data coming from FPGA-1 and feeds it to the TX-Filter (Up-Sampler + LPF)
- Performs Parallel to Serial (P2S) conversion of the data from the TX-Filter and sends it to the SILAB chips

2.1 Interface Diagram

WHITESAIL FPGA Interface Diagram

2.2 Block Diagram

SINGLE CHANNEL BLOCK DIAGRAM

2.3 Parallel to Serial Converter (P2SC)

The parallel-to-serial converter takes the 16-bit wide data and converts it into 4 nibbles (nibble = 4bits). The P2SC on the Si3100/3101 interface is slightly different than the P2SC on the FPGA-1 interface.

The P2SC on the S13100/3101 interface is initiated when WCLK is asserted. 16-bits of data are read from the TX ASYNC FIFO-2 every 8 clocks by the P2SC. At steady state this interface bandwidth is 70.656Mbps (a nibble every 2 MCLK's).

The timing diagram for this interface is given below

The P2SC on the FPGA-1 interface is initiated whenever the RX ASYNC FIFO-1 is not empty. The RX Filter will-write 16-bits of parallel data to this FIFO once every 32 clocks and thus interface bandwidth is 17.664Mbps.

The timing diagram for this interface is given below.

2.4 Serial to Parallel Converter (S2P)

The Serial-to-Parallel converter (S2PC) does exactly the reverse of what the P2SC does. The S2PC takes 4 nibbles of data from one interface and writes 16-bit parallel data to the other interface. The S2PC on the FPGA-1 interface and the Si3100/3101 interface differ slightly.

The S2PC at the Si3100/3101 interface is initiated when WCLK is asserted. A nibble of data is received from Si3100/3101 every 2 MCLK. The S2PC converts 4 nibbles of data to 16-bit parallel data and writes it to RX ASYNC FIFO-2. This interface bandwidth is 70.656Mbps (4 nibbles every 8 MCLK).

The timing diagram for this interface is given below

The S2PC at the FPGA-1 interface is initiated when TX_SYNC is asserted. The TX_SYNC signal is asserted once every 32 FCLK. The S2PC converts 4 nibbles of serial data to 16-bits of parallel data and writes it to the TX ASYNC FIFO-1. This interface bandwidth is 17.664Mbps (4 nibbles every 32 FCLK).

The timing diagram for this interface is given below

2.5 TX Filter

2.6 RX Filter

2.7 Serial Interface

This interface is used to read/write registers inside the WHITESAIL FPGA. The serial interface has 4 signals, SCLK (I), SCI (I), SCO (O) and SEN#(I). SCLK, SCI and SCO are shared by the WHITESAIL-FPGA and the 8 SILAB chips. However each of these slave targets has its individual enable (SEN#). The slave target will drive SCO only when a read cycle is issued by FPGA-1 to that particular target else it is tri-stated.

The timing diagram for the serial transfer is as shown below

ADD FIG.

2.8 Clocking

2.8.1 Data Path

The WHITESAIL FPGA gets 8 clocks from 8 different SILAB chips. All of these clocks (MCLK_IN [7:0]) have a fixed frequency of 35.328 MHz. These clocks are used by the 8 P2SC and S2PC pairs at the Si3100/3101 interface respectively.

The master MCLK (coming from Si3100/3101 number-0) is multiplied by a factor of 9/4 in the FPGA DCM. This clock is used by ALL of the TX/RX filters.

The P2SC at the FPGA-1 interface uses the master MCLK (MCLK_IN0).

The S2PC at the FPGA-1 interface uses FCLK (coming from FPGA-1).

2.8.2 Control Path

The control path in the WHITESAIL FPGA is clocked by SCLK, coming from FPGA-1. This clocks frequency is 8.832 MHz.

2.9 Power Up, Reset, and Configuration

2.9.2 Reset

The WHITESAIL FPGA has the following resets

- Global Hard Reset (RST_L): This signal is generated by ANDing the power-on-reset (PO_RST_L), generated by the WHITESAIL board and the FPGA reset (FPGA_RST_L), generated by FPGA-1.
- Global Soft Reset (SRST). This reset is issued by software when it writes to the ??? register.
- Channel Resets (RST_DSL_L [7:0]): These are individual channel resets.

2.9.3 Configuration

The WHITESAIL FPGA is configured, using JTAG by the EPROM on the WHITESAIL board. The DONE signal of the FPGA will be connected to a LED on the board to indicate if the FPGA has been programmed successfully or not.

3 Programming Model

3.1 Register Map

The WHITESAIL FPGA address space is 128 Bytes (7 bits). All accesses are 16 bits.

Starting Address	Size	Segment Name	Data Direction	Description	
0x00	128 Bytes	GLOBAL Segment	N/A	Revision, Mode, Global Space, Reset, etc.	

	VHITESAIL FPGA Register Map (all accesses 16-bits)								
Address	Page # Name	Description							
	GLOBAL Segment								
0x00	FPGA_ID	FPGA ID Register							
0x01	FPGA_REV	FPGA Revision Register							
0×02	FPGA_SCRATCH	FPGA Scratch Pad Register							
0x03-0x7F		Reserved							

3.2 Register Definitions

Each register is given a plain English name, as well as a unique identifier. Note that all addresses are always in hex.

Register bits may be labeled as read-only, read-write, or reserved. The default access is read-write unless otherwise noted.

- Read-only (RO): Reads will return the value of the register. Writes will be ignored.
- Write-only(WO): Only writes allowed. Read data should be ignored.
- Read-Write (RW): Both reads and writes are allowed.
- Read and Clear (RC): The register bits are reset whenever the software reads the register
- Reserved: Software should ignore anything read from these bits, and it is illegal to change the value of these bits. Changing the value of reserved bits will result in undefined operation.

Registers at reserved addresses must never be read or written. Unless otherwise stated, all of the registers are read/writeable.

3.2.1 GLOBAL Segment

					egister	(20)					234205	*********
			F	PGA_I	D (0x0	0)						
13	12 11	10	9	_8	7	6	5	4	· 3	2	L	0
	13	13 12 11	13 12 11 10	13 12 11 10 9	13 12 11 10 9 8	13 12 11 10 9 8 7		13 12 11 10 9 8 7 6 5	13 12 11 10 9 8 7 6 5 4	13 12 11 10 9 8 7 6 5 4 3	13 12 11 10 9 8 7 6 5 4 3 2	

Namë .	Bit#	Description
FPGA_ID [15:0]	15:0	16-bit read-only value uniquely identifying the WHITESAIL FPGA. Default=0x?????

• • •	27.7	FPGA Revision Register (RO)										 1 18 Care		
						FP	GA_R	EV (0x	01)					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	0
			Мајо	orRov							Min	orRev		

Name	Bit#	Description
MinorRev[7:0]	7.0	8-bit BCD value indicating the minor revision of the chip. Default = 0x0
MajorRev[7:0]	15.8	8-bit BCD value indicating the major revision of the chip. Default = 0x0

16 bit Scratch Pad Register															
		-				FPGA	SCR.	ATCH	(0x02)						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1.3	12		10		Constal	h [15:0]		1				1	1

Name	Bit #	Description	
Scratch [15:0]	15:0	16-bit scratch register. Default = 0x0000	

4 Pin List

All signals are LVTTL (3.3V) signaling levels unless otherwise noted.

Pin count summary:

FPGA-1 Interface: 93 Si3100/3101 Interface: 80 Reset, Test and Misc.: 43

Total 216

4.1 Interface timing

4.2 Signal List

4.2.1 FPGA-1 Interface (up to 35.328 MHz)

Signal Name	Location	Direction	Total	· Signal Description
FCLK		I	1	Clock from FPGA-1
TX[7:0]_OUT[3:0]		I	32	TX Nibble Data (8 Channels)
TX_SYNC [7:0]		I	8	SYNC for the TX data (8 Channels)
RX[7:0]_OUT[3:0]		0	32	RX Nibble Data (8 Channels)
RX_SYNC [7:0]		0.	8	. SYNC for the RX data (8 Channels)
MCLK[7:2]_OUT		0	8	MCLK (Channels 2 to 8)
SCLK		I	i	Serial Interface Clock
SCI		1	1	Serial Data In
SCO		0	1	Serial Data Out
SEN_L		I	1	Serial Enable
		TOTAL:	93	

4.2.2 Si3100/3101 Interface (35.328 MHz)

Signal Name	Location	Direction	Total	Signal Description	
MCLK[7:0]_IN		I	8	MCLK (8 Channels)	
WCLK[7:0]		I	8	Frame Sync for Data transfer	
TX[7:0]_IN[3:0]		0	32	TX Nibble Data (8 Channels)	
RX[7:0]_IN[3:0]		I	32	RX Nibble Data (8 Channels)	
		Total:	80		

4.2.3 Reset, Test and Misc. Signals

Signal Name	Location	Direction	Total	Signal Description
RST_L		I	I	Reset
RST_DSL_L [7:0]		i	8	Individual Resets for the 8 Channels
MODE_MST_IN [2:0]		I	3	SILAB Chips Mode
MODE_SLV_IN [2:0]		I	3	SILAB Chips Mode
MODE_MST_OUT [2:0]		0	3	SILAB Chips Mode
MODE_SLV_OUT [2:0]		0	3	SILAB Chips Mode
DEBUG [21:0]		ΙΛΟ	22	Debug Signals
		Total:	43	

WhiteSail AFE Requirements

1. Purpose

This document identifies key requirements of the WhiteSail AFE design, and associated tests used to verify compliance to these requirements.

2. Assumptions

These assumptions have been made in this requirements document:

1) The Silicon Laboratories Si3101 AFE is used in the circuit.

2) Voyan's analog circuit design (transformer through Si3101) is incorporated in the design.

- 3) The WhiteSail board will interface through a 152 pin Mictor connector to an Alpha Data ADM-XRC-II PCI Mezzanine Card (PMC). Voyan's digital transceiver processing is resident on this board. The ADM-XRC-II product manual (including connector pinout) is included as an appendix to this document.
- 4) The WhiteSail board vendor is responsible for a detailed specification of the custom digital interface to the board. The WhiteSail digital interface is inclusive of:

a) the board level circuitry on the digital side of the SiLabs AFE.

the connector pinout and signal definition between the Alpha Data FPGA PMC.

c) the VHDL interface module residing in the Alpha Data FPGA PMC.

- 5) The WhiteSail board vendor will provide a VHDL testbench for the board. When implemented on the Alpha Data PMC, this testbench will exercise all required operation modes of the AFE. Voyan will complement this testbench with a host-based program to send and receive test vectors to/from the WhiteSail board.
- 6) The maximum word clock rate to/from the AFE board is 1.104 MHz.

3. Block Diagram - Digital side

Deliverable

Deliverable

Figure 1 delineates the separation of responsibility between the vendor deliverables and what is developed by Voyan:

Voyan requires a register based interface to the AFE board, such that two 16-bit registers per channel (one Tx, one Rx) exists for the DSP to write/read to the AFE). A channel specific control port should exist to set/get AFE parameters. The WhiteSail board vendor has freedom to implement the actual interface in the most appropriate way, as long as the DSP access is via registers.

4. Detailed Block Diagram - Analog side

A detailed block diagram of the analog portion of the AFE board is shown in Figure 2. Only 1-channel of a total of 8 per board are shown in the block diagram:

Figure 2. AFE block diagram and test points

5. Deliverables

The project deliverables from the WhiteSail board vendor to Voyan are listed as follows, in the order of their delivery:

- 1. AFE Digital Interface Specification includes Mictor pinout and timing specification of the bank of registers that Voyan DSP writes/reads to access the AFE data.
- 2. AFE Digital Interface VHDL for inclusion by Voyan into the logic of the AlphaData ADM-XRC-II FPGA.
- 3. AFE Digital Interface Testbench for inclusion by Voyan into the logic of the AlphaData ADM-XRC-II FPGA. Subsequent Voyan development
- 4. WhiteSail AFE board schematic -
- 5. WhiteSail AFE board layout Gerber files and artwork.
- 6. WhiteSail AFE board blanks Quantity 8.
- 7. Loaded and tested WhiteSail AFE board Quantity 8.
- 8. Custom cable to connect WhiteSail board to Alpha Data board Quantity 8.

6. Specifications and Test Requirements

The following specifications assume use of the Silicon Laboratories Si3101 AFE. Those specifications related to the test of the WhiteSail board are included below:

Noise Dynamic Range

- 1. D must have input noise dynamic range < -90 dBFS, with A=0 (zero transmitter output).
- 2. B must have output noise dynamic range < -80 dBFS, with A=0.

THD

- 3. D must have THD < -85 dBFS, for A=0, F=1/4 power tone at 150 kHz.
- 4. B must have THD < -75 dBFS, for A=1/4 power tone at 150 kHz.

MTPR

- 5. D must have MTPR < -85 dB, for A=multi-tone test signal (supplied).
- 6. B must have MTPR < -75 dB, for A= multi-tone test signal (supplied).

Hybrid Rejection

7. C/B: -25 dB overall rejection (this can be tuned to the worst case loop (CSA #6) at 9000 feet) Per Figure 3, the rejection as a function of frequency requirement is:

• -18 dB to -28 dB (linear slope in dB) from 10 kHz to 130 kHz

–28 dB from 125 kHz to 400 kHz

-28 dB to -18 dB (linear slope in dB) from 400 kHz to 550 kHz

For loops shorter than CSA6, the rejection requirement is lessened. For example, in Figure 3, the flat part of the rejection curve can be 6 dB higher (-22 dB) for CSA6-1 (7500 feet). For this case the rejection requirement is only -19 dB (aggregate over all frequencies).

Measurement #1:

A off, F on (broadband noise), measure the transfer function C/E. If measurement point C is not accessible, infer from the digital word at point D.

Measurement #2:

A on (broadband noise), F off, measure C/B.

The noise injected at A and F must be at the same level. Verify that Measurement #2 divided by Measurement #1 <= -25 dB, and further that the transfer function ratio conforms to the Figure 3 frequency requirement.

Figure 3. Overall hybrid rejection of -25 dB, stated as a function of frequency, per specification 5.8. Loops other than CSA6 have reduced requirements.

7. DAC-driven VCXO

The maximum sample rate of the system is 1.104 MHz, and is the same for the DAC and ADC. A VCXO clock is required either on the device or the AFE board, that has these characteristics:

- The VCXO circuit should present a register based interface from the FPGA that allows Voyan to implement clock recovery and tracking in software.
- 2. The maximum VCXO update rate is specified at 8192 Hz.

VCXO frequency stability (maximum deviation from nominal frequency) = 25 ppm.

- 4. The VCXO should be tunable via a 12-bit DAC over a frequency range of +/- 50 ppm from the nominal clock frequency.
- 5. VCXO clock jitter should be less than -85 dBc at 10 Hz away from the VCXO nominal frequency.

Project White Sail

8-channel AFE Line Card

Functional Specification

This document describes the functional specifications for the Voyan OptlFusion line card called White Sail.

Figure 1 - Block Diagram

Clocking:

We need all of the AFE chips to be synchronized if we do not want to build a synchronizer into the receiving chip. To do this, we need to disable the internal VCXO and derive the clock externally. The internal VCXO has a step size of between 0.03 and 0.34 ppm, depending on where it is in the range.

Questions:

Project White Sail

8-channel AFE Line Card

Functional Specification

- Does the SCLK have to be exactly 4x the MCLK? Or is there an internal synchronizer?
- What is the delay from XIN to MCLK out?
- The clock variation is to accommodate variations in the CO's DSL clock. If all of the AFEs are running off the same clock, that assumes that all of the inputs are from one CO. Is this a valid assumption?

HSSI Interface

The HSSI interface is driven at ECL levels to a 50pin high density connector with the following pinout:

Signal Name	Dir.	Pin # (+side)	Pin # (-side)
SG - Signal Ground		1	26
RT - Receive Timing	<	2	27
CA - DCE Available	<	3	28
RD - Receive Data	<	4	29
- reserved	<	5	30
ST - Send Timing	<	6	31
SG - Signal Ground		7	32
TA - DTE Available	>	8	33
TT - Terminal Timing	>	9	34
LA - Loopback circuit A	>	10	35
SD - Send Data	>	11	36
LB - Loopback circuit B	>	12	37
SG - Signal Ground		13	38
5 ancillary to DCE	>	14 - 18	39 - 43
SG - Signal Ground		19	44
5 ancillary from DCE	<	20 - 24	45 - 49
SG - Signal Ground		25	50

Pin pairs 5&30, 14&39 to 18&43, and 20&45 to 24&49 are reserved for future use. To allow future backward compatibility, no signals or receivers of any kind should be connected to these pins.

White Sail Functional Specification

Table of Contents

1		
	1.1 References	1
	1.2 Scope	I
	1.3 Overview	1
2	Design Specification and Implementation	1
	2.1 Design Objectives	1
	2.2 Block Diagram	2
	2.3 Power and Hot Swap	2
	2.4 Clock Distribution	3
	2.4.1 Nibble Interface (MCLK)	3
-	2.4.2 Serial Interface (SCLK)	4
	2.4.3 JTAG Interface (TCK)	4
	2.5 Reset Strategy	
	2.6 WAVE	.4
	2.7 External Interfaces	. 5
	2.7.1 DSL Channel Connectors	. 5
	2.7.2 Power Interface	. 5
	2.7.3 Front Panel Switches	. 5
	2.7.4 LED Indicators	.5
	2.7.4.1 Front Panel Indicators	
	2.7.4.2 Board Level Indicators	.6
3	Mechanical	.7
	3.1 Board Fabrication Information	.7
	3.1.1 Physical Dimensions	.7
	3.1.2 Stack-Up	
	3.2 Placement	.7
	3.3 Front Panel	.9
4	Electrical	
	4.1 Timing Information	
	4.1.1 Wave – AFE Interface (a.k.a. Nibble Interface)	
	4.1.2 Wave/FPGA1 Interface (Mictor™ Interface)	.9
	4.1.3 Power Estimates	
	4.1.4 Clock Distribution Skews and Jitter	
5	Test and Debug	11
	5.1.1 Board Assembly	11
	5.1.2 Board level features	11
	5.1.2.1 Debug Mictor™ 1	
	5.1.2.2 Debug Mictor TM 2	11
	5.1.2.3 Test points	
	5.1.2.4 Bring-up Checklist	
P	APPENDIX A: Bill of Materials	
	APPENDIX R. Component to Schematica Cross Reference	

List of Figures

Figure 2-1: White Sail Block Diagram	2
Figure 2-2: MCLK Distribution	
Figure 2-3: ROBO Clock Skew Control	
Figure 2-4: Reset Distribution	
Figure 2-5: DSL Interface	
Figure 2-6: Power Harness Assembly	5
Figure 2-7: Functional behavior for LED on 406549-1	6
Figure 2-8: Functional behavior for LED on 406549-7	6
Figure 2-9: Board level LED descriptions	
Figure 3-1: Component Locations Highlighting Key Devices	
Figure 3-2: Front Panel Cut Outs	
Figure 4-1: Timing Analysis for the Mictor Cable Assembly	
List of Tables	
Table 3-1: Board Construction (Stack-up)	7
Table 4-1: 5.0V, 3.3V, and 1.5V Power Estimates	10
Table 4-2: Device Skew and Jitter Specifications	

***** .--

White Sail Card Functional Specification

1 Introduction

1.1 References

- Component Data Sheets
- IEEE 1011.1
- IEEE 1011.10
- IEEE 1011.11
- IEEE 1149.1
- PICMG 2.0 R3.0 CompactPCI Specification
- Wave Functional Specification
- White Sail Layout Guidelines
- White Sail Schematics

1.2 Scope

The purpose of this document is to present the high-level design aspects of the White Sail board. The reader should refer to the schematics for the actual implementation of the concepts presented in this document.

1.3 Overview

The White Sail board is part of a communications system based on DSL technology. The design utilizes eight synchronized, DSL channels to transport aggregated data for the system. Part of the data aggregation and data processing is performed on board using an FPGA, code-named Wave. The Wave chip then transports the data to the system where data is handled by other elements.

The design primarily uses 3.3V and 5.0V to power the circuitry. The voltage rails are provided by the power subsystem in a CompactPCI chassis or through an external power supply if the board is in stand-alone operation. In either case, the data interface to the system consists of a high-speed ribbon cable.

2 Design Specification and Implementation

2.1 Design Objectives

The design is based on the Silicon Labs' DSL ASIC, Si3101-KQ, and the respective evaluation platform. The following is a list of the objectives:

- Conform to the specifications for a CompactPCI 6U, rear I/O form factor
- Provide eight DSL channels, where one is master and seven are slaves
- Synchronize each slave channel to the master channel
- Hot swap capable at the hardware level
- Provide for two sources of power and condition the rails accordingly
- Provide test features such as logic analyzer taps, test points, and visual indicators
- Incorporate an FPGA and its supporting circuitry for data processing and control
- Use a reset strategy based on power-up sequencing which then relinquishes control to the system reset inputs
- Design the board to be backwards compatible with Si3100-KQ (Rev C) AFE's

The following is a list of design considerations that shall not be incorporated:

Hot swap capable at the software level

- Meets all compliance standards for safety
- Designed for surge immunity, i.e. lightning strikes, wet line shorts, etc.
- Provide for an alternate data path to the system in essence bypassing Wave

2.2 Block Diagram

Figure 2-1: White Sail Block Diagram

2.3 Power and Hot Swap

As shown in the block diagram, power originates from one of two sources, either the back plane in a CompactPCI chassis or from external power supplies connected through the external power plug on the board. These voltage rails, 3.3V and 5.0V, feed through a hot swap controller to carefully ramp the rails for the rest of the circuitry. There is also a voltage regulator that uses the 3.3V rail as a source of power to generate the 1.5V rail used by Wave.

The hot swap controller monitors the primary rails, 3.3V and 5V, for under-voltage and short-circuit conditions. The design also uses independent, precision voltage monitors for each of the three voltage rails. The monitors and the hot swap controller tie into the reset circuitry.

-

White Sail Card Functional Specification

2.4 Clock Distribution

2.4.1 Nibble Interface (MCLK)

Figure 2-2: MCLK Distribution

The primary channel (DSL1) is the root for all other devices on the board. DSL1 uses an external crystal with its internal VCXO to generate the MCLK signal for the nibble interface. A copy of the MCLK output is used to fan out the clock inputs to the other DSL channels through a series of zero delay buffers. The goal is to minimize skew and jitter while providing a synchronous clock to all devices.

For the purposes of debug or fine tuning, the clock inputs to the slave channels may be skewed with respect to the clock for the master channel. This is accomplished by manipulating control switches that are connected to the ROBO clock device. Note that the skews introduced by these controls are not symmetric across all outputs.

Figure 2-3: ROBO Clock Skew Control

2.4.2 Serial Interface (SCLK)

The clock for the serial interface to all Silicon Laboratories chips originates from FPGA1 in the main system. This signal is buffered on the board using a Motorola one to nine, fan-out buffer with a non-zero delay of approximately nine nanoseconds. Therefore each device receives a single ended copy of the original SCLK signal except for the FPGA, which shares its input with a debug Mictor™ connector.

2.4.3 JTAG Interface (TCK)

The JTAG clock is used for the programming of the serial EEPROM and the FPGA. The clock originates from the Xilinx programmer and is buffered on the White Sail board. The general-purpose buffer is used to create a single ended duplicate of the original signal.

2.5 Reset Strategy.

Once the 3.3V and 5V voltage levels have reached their appropriate thresholds, the hot swap controller releases its reset signal to the reset block. The reset block consists of three voltage monitors or sensors and some reset logic. Each sensor along with the hot swap controller asserts an independent signal that gates the power-on reset signal. Once the respective voltage level is reached, the monitor delays the release of power-on reset for 150ms. The power-on reset signal shall assert if any of the voltage rails fail to achieve or maintain their appropriate level. The power-on reset signal can also be asserted manually via the push-button signal feeding the hot swap controller.

Figure 2-4: Reset Distribution

2.6 WAVE

Wave is an FPGA designed to manage the data between the eight DSL channels and the main system.

2.7 External Interfaces

2.7.1 DSL Channel Connectors

Each DSL channel employs a single RJ-45 style connector with dual integrated light emitting diodes. Only pins 5 and 7 are used as the line side interface to the user. Note that this connector does not provide sufficient protection against high potential conditions such as a lightning strike. Based on the product specification this design limitation was deemed acceptable and thus for convenience this connector is employed.

Figure 2-5: DSL Interface

2.7.2 Power Interface

The board shall provide a means of applying external power when not plugged into the chassis. This is accomplished through the use of a two by two header (4 pin) that is keyed to avoid incorrect insertion. The mating plug houses the crimped pins that connect to wires leading to the external power supply. This wire assembly shall serve as the power harness as shown in the following diagram.

Figure 2-6: Power Harness Assembly

2.7.3 Front Panel Switches

2.7.4 LED Indicators

2.7.4.1 Front Panel Indicators

The front panel shall have a single light emitting diode to indicate the condition of the power subsystem, where ON (green) denotes a "power good" condition and OFF indicates a problem with the power subsystem.

Each DSL channel shall have a minimum of two light emitting diodes with the ability to support up to four light emitting diodes. These diodes are controlled directly by the WAVE chip with no buffering mechanism on the board. This implies that the appropriate drivers should be chosen for the WAVE chip to handle the drive requirements of the diodes. The operating current may range anywhere between 5.5mA to 7.5mA. The recommended drivers for these diodes are LVTTL24.

The following tables serve as truth tables for controlling the light emitting diodes under each available option. The columns LEDxA and LEDxB represent the driving signals from the FPGA, where x represents either LED 1 or LED 2 for a given DSL channel.

LEDXA	LEDxB	State
LO	LO	Off
LO	HI	Green/Yellow ¹
HI	LO	Off
н	Н	Off

Figure 2-7: Functional behavior for LED on 406549-1

LEDxA	LEDxB	State
LO	LO	Off
LO	HI	Green
HI	LO	Orange
HI	HI	Off

Figure 2-8: Functional behavior for LED on 406549-7

2.7.4.2 Board Level Indicators

The design shall incorporate light emitting diodes to indicate board level events that are useful in a laboratory bring-up environment. The following table highlights the LED indicators that are included in the design.

Label	State Description						
- Luber	ON	OFF	Color				
DONE	FPGA programming completed	FPGA is not programmed	Green				
PWR_RST	Reset is asserted due to user interrupt or voltage rail outside the specified range	All voltage rails are within the specified range	Red				
PWR_GOOD	All voltage rails are within the specified range	Reset is asserted due to user interrupt or voltage rail outside the specified range	Green ²				
5.0V	5.0V rail is enabled through the hot swap controller	Hot swap controller has not released the 5.0V rail	Green				
3.0V	3.3V rail is enabled through the hot swap controller	Hot swap controller has not released the 3.3V rail	Green				

Figure 2-9: Board level LED descriptions

¹ LED1 is green while LED2 is yellow, refer to figure 2-2 for relative positions on the RJ-45 connector ² This LED is visible through the front panel as stated in section 2.7.4.1

3 Mechanical

3.1 Board Fabrication Information

3.1.1 Physical Dimensions

The board's form factor shall conform to the CompactPCI specification for a 6U, rear I/O card. The mechanical drawings can be found in the CompactPCI specification, PICMG 2.0 R3.0 that is also governed by IEEE specifications 1011.1, 1011.10, and 1011.11.

3.1.2 Stack-Up

Board	颖明			
Thick	#	CU oz	Dielect.	Comments
S	1	0.6		.0065 traces=50,8chms or .005 traces=57.6
		ZHIRRER BENEFIT	4	7.0
P	2	0.6		
	1.47	THE CORE SHEET	5	
S	3	0.6	****	.004 traces = 49 ohms
P		PREPREGISTRE	5	
l ,	4	0.6	2000	
P	r	·····································	5	
	5	0.6		
l ¦		PREPREG等電等。電管公	5	
S	6	0.6	5	.004 traces = 49 ohms
P	***	COREshade		
[]	7	0.6		
s		"PREPREGE AND SET	5	
ì	8	0.6	1.75	.004 traces = 49 ohms
P	1 7	0.6	5	
	9	0.6	#	
s	1,,	、二:PREPREG 选择是通过		
	10	0.6	FEETER	.004 traces = 49 ohms
P	11°	是一:ACORE,图形是数据的	5	
' '		0.6	********	
s	12	の。 PREPREG 1000年 0.6	4	
TOTAL	AXA		********	.0065 traces=50.8chms or .005 traces=57.6
ICIAL	r wast	NATION THICKNESS: 7.20	53	Total thickness .062

Table 3-1: Board Construction (Stack-up)

3.2 Placement

The following diagram highlights the placement of key functional blocks in the design. The diagram is not to scale, although the diagram was extracted from the manufacturing CAD tools.

Figure 3-1: Component Locations Highlighting Key Devices

3.3 Front Panel

The front panel features openings for each of the eight DSL channels. The "power good" indicator should be visible from a 120 degree viewing angle. There are also two small openings to access the "power cycle" and "reset" switches using a small poking implement, such as a plastic stylus. The front panel also features two ergonomic, latching handles, which facilitate insertion and/or extraction from the chassis.

Figure 3-2: Front Panel Cut Outs

4 Electrical

4.1 Timing Information

4.1.1 Wave – AFE Interface (a.k.a. Nibble Interface)

The nibble interface should adhere to the timing diagrams specified in the Si3101-KQ (AFE) data sheet. There is not enough timing margin to perform transactions on a single clock edge based on the "hold" requirements specified in the data sheet.

4.1.2 Wave/FPGA1 Interface (Mictor™ Interface)

The interface between the main system and the White Sail board shall consist of a high-speed cable assembly. This cable assembly is a significant variable when determining the timing budget between the FPGA devices on each end of the cable interface. Based on the timing diagram that follows, the recommended cable length is thirty inches.

The signals F1_WV_TX and WV_F1_RX represent the data busses, which go between FPGA1 in the system and WAVE on the White Sail board. The signal F1_WV_TX represents the data passing from FGPA1 to WAVE while WV_F1_RX represents the data passing from WAVE to FPGA1.

The large skew between FPGA1_MCLK and WAVE_MCLK is largely attributed to the propagation delay across the cable, where both clocks originate on the White Sail board yet FPGA1 must receive its clock across the cable.

Figure 4-1: Timing Analysis for the Mictor Cable Assembly

4.1.3 Power Estimates

	Pow	er:Estimate:	s (based on	MAX rating	s) .	~ 5. h/s			
4 7 4		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,	Voltage	Rail (V):	I a savida, e n			
		"原政部等日	:5.	. 3.	3				
Device.	QTY	.lmax-(A):	- Total	lmax (A)	Total	· lmax (A)	Total		
RoboClock Core	1	-	N/A	0.095	0.095	-	N/A		
RoboClock Output Pair	4		N/A	0.019	0.076	-	N/A		
RoboClock Biasing	8	-	N/A	0.009	0.072	-	N/A		
Si3101	8	-	N/A	0.11	0.88	0.4	3.2		
MPC947 core	1	-	N/A	0.028	0.028	-	N/A		
MPC947 outputs	9	-	N/A	0.01	0.09	-	N/A		
XC2V1000 quiescent	1	0.075	0.075	0.085	0.085	-	N/A		
XC2V1000 core	1	0.4	0.4		N/A	•	N/A		
XC2V1000 output	1	-	N/A	0.015	0.015	-	N/A		
XC2V1000 aux	1	-	N/A	0.005	0.005	-	N/A		
XC18V04	1	-	N/A	0.025	0.025	-	N/A		
CY2304 Core	1		N/A	0.018	0.018	-	N/A		
CY2304 Output	4		N/A	0.004	0.016	-	N/A		
Power Regulator	1		N/A	-	N/A	0.25	0.25		
HotSwap	1	-	N/A	-	N/A	0.025	0.025		
Totals (A)			0.475	ļ	1.405		3.475		
Power Dissipation (W)			0.7125	L	4.6365		17.375		

Table 4-1: 5.0V, 3.3V, and 1.5V Power Estimates

4.1.4 Clock Distribution Skews and Jitter

Based on discussions with the technical staff, the design may tolerate a reasonable amount of skew (on the order of several nanoseconds) and less than 900ps of jitter. This is made possible by the correction algorithms that are used to recover and maintain clock synchronization with respect to the master DSL channel in the system. The following table highlights the component specifications that are outlined in the respective data sheets.

Device	Part to Part Skew	·Output to Output Skew	Jitter	
ROBO Clock	1.2ns	250ps	200ps	
Cy2304	500ps	200ps	180ps	
Si3101-KQ	Not Applicable	Not Applicable	Negligible	

Table 4-2: Device Skew and Jitter Specifications

Assuming that jitter is cumulative and that the devices are operating at opposite extremes, the worst-case condition for the slave DSL channels with respect to the master channel is a clock skew of 950ps with a jitter of 380ps. At the system level with two White Sail boards communicating to each other, the worst-case condition between two slave DSL channels is a clock skew of 1.7ns with a peak to peak jitter of 720ps.

5 Test and Debug

5.1.1 Board Assembly

There will not be an in-circuit test (ICT) fixture designed for this board due to the limited quantity that will be assembled over the life of this product. As a result and in the interest of schedule only minimal effort will be spent on adding circuit-side test points to support such a fixture. Consequently, this will also limit the ability to perform tests on a flying-probe machine. Therefore, the assembly house will employ a 5DX x-ray machine to validate component placement and the quality of the soldering process. Normally, component values and type can be validated using a flying-probe machine (FPM). In lieu of the FPM, both the engineer and the assembly house will perform a visual inspection to validate the assembly of the board. It was deemed more critical to validate the quality of the solder joints with 5DX rather than component values with FPM, especially because the BGA cannot be inspected with the naked eye. This is made possible due to the nature of the design, i.e. there are a relatively small number of unique parts and the fact that there are eight typical circuits.

5.1.2 Board level features

5.1.2.1 Debug MictorTM 1

The Mictor™ (38-pin connector) provides the user with visibility on specific signals using a logic analyzer. This particular Mictor™ allows the user to capture waveforms for: DEBUG [24:0] and the serial interface specified in the Silicon Laboratories' data sheet. In addition to the aforementioned signals, the serial enable signals for the master channel (channel 1) and Wave are available. The DEBUG bus is a general-purpose bus that runs between Wave and the FPGA in the system.

5.1.2.2 Debug MictorTM 2

The MictorTM (38-pin connector) provides the user with visibility on specific signals using a logic analyzer. This particular MictorTM allows the user to capture waveforms

for: the nibble interface between Wave and the master DSL channel as well as the corresponding nibble interface between Wave and the FPGA in the main system. It also includes the reset signal for channel 1.

5.1.2.3 Test points

There are various test points to access the power rails and ground. These test points are strategically placed on the board and are labeled appropriately. There are no other test points in the design due to the compactness of the physical design.

5.1.2.4 Bring-up Checklist

The reader is deferred to the test plan and bring-up plan documents.

APPENDIX A: Bill of Materials

T		Helerance	Pest	Manufacturer	Part Number	IStudi?
	118	टा.टर.टर,टर,टरा,टरर,टरर	0.1uF	Venkel	C0805X7R250-104KNE	
		C24,C25,C26,C27,C29,C37,				
1 1	1	C38,C48,C508,C515,C516,	1 1		i	1
1 1			1 1			1
	1	C517,C518,C519,C524,C526,			1	1
§		C534,C535,C536,C537,C538,	1 1		į.	1
1 1		C539,C540,C543,C545,C553,				1
1 1	1	C554,C555,C556,C557,C558,	1 1			1
		C559,C565,C566,C573,C574,	1			1
1 1		CS75,CS78,CS77,CS78,C580,	}			
1 1		C584,C588,C587,C589,C590.	1 1		i .	1
1 1		CS91,CS93,CS94,CS96,CS97,				1
1 1	-	C598,C599,C602,C603,C605,	1			
	1	C608,C607,C609,C610,C611,	i I			1 1
1 1		C612,C615,C616,C619,C620,	1 1		i i	
1 1		C621,C623,C625,C626,C627,	1 1		i	1
1 !					i	
		C629,C630,C631,C633,C634,	1 1		1	
1 1		C635,C644,C645,C848,C647,	L I			1
1 1	i	C648,C649,C652,C654,C662,	1		1	1
•		C663,C664,C665,C666,C667,	i l		ł.	1
		C868.C672,C674,C682,C683,	1 1		I	
1 1		C684,C685,C686,C687,C689,	1		i	
1 1	- 1	C694,C696,C697,C702,C703,	1		1	1
		C704,C705,C706,C707,C708			i	1 1
2	16	CS,C8,C9,C10,C14,C15,C19,	2,2nF	Venkel	C0805C0G250-222JNE	
1 1		C20,C36,C41,C42,C43,C46,				1
1 I		C47,C51,C52				1
3	16	C7,C12,C17,C34,C39,C44,	100u	AVX	TPSC107M010R0200	
1		C49.C501,C504,C525,C544.			3010/10/0200	1
1 1		C567,C636,C653,C673,C695			1	
1	12	C8,C13,C18,C35,C40,C45,	10uF	Version	0.0.0000	_
<u> </u> "	13		1005	Venkel	C1210X7R160-106KNE	
		C50,C505,C514,C521,C583,	1		1	1
 -		C595,C608,C613,C614				J
5		C11,C16,C28	680u	Panasonic	EEV-FK1C681P	
- 6	2	C30,C32	33u	AVX	TPSB336K006R0600	
1 7	18	C31,C33,C520,C541,C560.	1u	TAIYO YUDEN	LMK212BJ105MG	
		C579,C585,C588,C592,C600,	1		1	1
1 }		C601,C604,C622,C828,C655,			1	1
		C669,C688,C709				
В	2	C502,C503	8 2pF	AVX	08055A8R2JAT2A	
9		C507,C508,C527,C528,C546,	18hF	Venkel	C1812C0G500-183JNE	1
1 1	- 5	C547,C561,C569,C637,C638,	1	TOUNGS	L'GIECOSONIOSINE	1
1 1		C656,C657,C675,C676,C690	1		ľ	1
1 1		C698	1		1	i
1			 		I	
10	16	C509,C522,C523,C529,C542,	3.9nF	Venkel	C0805C0G250-392JNE	1
1 1		C548.C562,C570,C639,C650,				į .
1 1		C651,C670,C671,C677,C691,			1	
		C699				
111	17	C510,C513,C532,C533,C551,	470pF	Venkel	C0805C0G500-471JNE	
1 1		C552,C564,C571,C618,C640,				i
1 1		C843,C659,C660,C678,C681,	1			1
		C693,C701	1			1
12	16	C511,C512,C530,C531,C549,	3.3nF	Venkal	C0805C0G250-332JNE	
1 7		C550,C563,C572,C641,C642,	1		I WOULD SOUTH	1
1 1		C658,C661,C679,C680,C692,	1		I	1
1 1		C700	1			I
13		C568,C581,C582,C624,C632	0.016	Vanhat	Conscience	
14		C617	0 01uF	Venkel	C0805X7R250-103KNE	
15		D1	GREEN	AVX	08055A470JAT2A	<u> </u>
				Oralight	550-0205	
16	3	D2,D3,D4	GREEN	Dialight	597-3301-102	
17		DS	RED	Dialight	597-3001-102	1
18		DS01,DS02	Zener	Philips Semiconductor	BZX84-C6V2	
19	8	11,13,14,15,111,112,113,	RJ45LED2	Tyco-AMP	406549-1	
		J14	1	<u> </u>	1	
20	1	J2	CPCI_RJ5			1
21	1	J2	CPCI_RJ5	Tyco-AMP	646489-1	T
22	. 1	J6	CON4	Tyco-AMP	770968-2	1
23	2	J8,J7	2-767004-2	TYCO-AMP	2-767004-2	1
24		J9	2-767004-5	Tyco-AMP	2-767004-5	
25		Jio	Heador6	Tyco-AMP	103148-6	
26		Ľ1	1 2u	COLCRAFT	D01606T-102	+
27		M501,M502	MMDF3N02HD	On Semiconductor	mmdi3n02hdr2	
28		R1,R2,R16,R17,R31,R32		Venkel		
11		R45.R46.R70.R71.R85.R86.	1 2/4	76,46	CR0805-8W-27R4FT	1
		R100,R101,R120,R121	1	l		1
29	12		 		100000000000000000000000000000000000000	
29	10	R3,R4,R18,R19,R33,R34,	0	Venkel	CR1210-2W-000FT	1
		R47,R48,R72,R73,R87,R88,	1			l .
لمحا		R102,R103,R122,R123		l	1	
30	16	A5,R8,R22,R23,R37,R38,	60 4	Venkel	CR0805-8W-60R4FT	
1 1		R50,R51,R74,R77,R90,R91,	1	i		1
1		R104,R107,R126,R127	1	1		1
	16	R6,R7,R20,R21,R35,R36,	1	Venket	CR0805-8W-1R0FT	1
31					1	
31		R49,R52,R75,R76,R89,R92, R105,R106,R124,R125	1	l .		1

321	79	R9.R10.R24.R25.R39.R40.	2001	Venkel	CR0805-8W-2000FT	
		RS3,R54,R60,R64,R66,R78,				
- 1	1					
- 1		R79,R93,R94,R108,R109.				
- 1		R114,R115,R116,R117,R118,				V
- 1	- 1	R128,R129,R134,R135,R138,				
- 1		R137,R138,R509,R512,R521,	1 1			
		R523,R526,R530,R534,R538,	1 1			
- 1	- 1	R539.R545.R548.R551.R555.	1			
			1 1			
		R558,R559,R571,R576,R579,			P. I. and I	
- 1		R582,R595,R604.R606,R608,	1 1			
		R610,R611,R617,R619,R623,				1
- 1		R524,R625,R626,R627,R628,	1			
- 1		R829,R630,R631,R635,R636,	1			ł
- 1		R637,R638,R639,R640,R642,	1			i .
- 1		R643.R644.R645.R646.R647.	1 1			
- 1			1			•
1_		R650,R658	<u> </u>			
33	16	R11,R12,R26,R27,R41,R42,	2 43	Venkel	CR1206-4W-2R43FT	
		R55,R56,R80,R81,R95,R96,	1			
- 1		R110,R111,R130,R131	1			
अ	16	R13,R14,R28,R29,R43,R44,	49.0	Venkel	CR0805-8W-49R9FT	
۳1		R57,R58,R82,R97,R98,R99,	1 33	· ·	0.10000 0.1.40.10.1	
			1 1			.
		R112,R113,R132,R133	1			<u> </u>
35	29	R15,R61,R65,R119,R517,	1 15k	Venkel	CR0805-8W-1151FT	1
- 1		R518,R520,R527,R556,R557,				I .
- 1		R560,R574,R578,R580,R585,	j !			l .
- 1		R586,R587,R607,R616,R653,	1 1			I
1			1			l
ļ		R654,R655,R656,R657,R667,	1			l
		R668,R669,R670,R671	11			
36	6	A30,R511,R515,A516,A525,	200	Venkel	CR0805-8W-2000FT	NO_LOAD
{		R602				
37	31	R59,R62,R63,R552,R553,	43	Venkel	CR0805-8W-43R0FT	
- 1		R554,R561,R562,R563,R564,	1		I	l .
- 1			1		1	1
- 1		R565,R566,R567,R568,R569,	1		1	1
- 1		R570,R572,R573,R575,R577,	1 1			1
1		R581,R583,R584,R597,R598,	1			1
- 1		R599,R600,R612,R613,R614,	1 1		j	1
- 1		R615			1	l .
38	3	R67.R593.R601	4 02k	Venkel	CR0805-8W-4021FT	1
39		R68	7 68k	Venkei	ICR0805-8W-7681FT	
40						
		R69	100k	Venkel	CR0805-8W-1003FT	ļ
41		R83,R594	73 2k	Venkel	CR0805-8W-7322FT	
42		R84	1 43k	Venkel	CR0805-8W-1431FT	J
43	- 16	IR501,R502,R503,R504,R505,	1035	Venkel	CR0805-8W-106JT	
		R506,R507,R508,R659,R660,			·	1
- E		R661,R662,R663,R664,R665,	1 :			
- 1		R688			1	1
-,1				.,,	CONTROL BUILDING	
44	16	R510,R513,R514,R522,R524,	4 99k	Venkel	CR0805-8W-4991FT	
- 1		R531,R540,R546,R618,R620,			Į.	l l
- 1		R621,R632,R633,R641,R648,	1		1	ı
- 1		R651		1	į .	1
45		R519,R529,R532,R547,R622,	21k	Vankel	CR0805-8W-2102FT	
73	•		1218	AGUIKER	C/10003-014-21027 1	
		R634,R649,R652		.,		1
46		R528	1 15k	Venkel	CR0805-8W-1151FT	NO_LOAD
47		R533,R535,R596	2 21k	Vankel	CR0805-8W-2211FT	
48		R537.R538	10	Vankel	CR0805-8W-10R0FT	1
49	- 3	R541,R543,R544	1k	Venkel	CR0805-8W-1001FT	1
501		R542,R550		Vishay-Date	WSL1206R026	
51		R549	10k	Venkel	CR0805-8W-1002F1	+
52		R588		Venkel	CR0805-8W-000FT	<u> </u>
53		R589	15k	Venkel	CR0805-8W-1502FY	
54	- 2	2 R590,R592	174k	Venkel	CR0805-8W-1743FT	1
55		1R591	200k	Venkel	CR0805-8W-2003FT	1
56		1 R603	39 2k	Venkel	CR0805-8W-3922FT	+
- 37 				Venkel	CR0805-8W-2612FT	+
		2 R609,R605	26 1k			
58		2 SW2,SW1	SPST_MOM	ITT Cannon	KT11B1SAM	
59		2 SW4,SW3	DIP_SW8	ITT Industries, Cannon	tda08h0sk1	
60	1	1 TP1, TP2, TP3, TP4, TP5, TP6,	TestPoint			NO_LOAD
- 1	,	TP7.TP8.TP9.TP10.TP11		1	1	
61		8 T1,T2,Y3,T4,Y5,T6,T7,T8	Midcom_51572	Midcom	51572 rev2	+
		BU1,U2,U3,U4,U15,U17,U18,	Si3101_RevE			
ea.	•		SIS IOI_HEVE	Silicon Laboratories	si3101-KQ	1
62		U21		I		
_ 1		2 U5,U6	CY2304-1	Cypress	CY2304SC-1	
63		1 07	74LV1244AV1SO	Fairchild Semiconductor	74LVYH244MTC	
63 64		1 U8	TinyAND3	Fairchild Semiconductor	NC7SZ11P6X	T
63 64		/1U0	XC2V1000			+
63 64 65				toware	XC2V1000-5BG575C	
63 64 65 66		109			IAUZVIUMDBUD/5C	
63 64 65 66 67		1 U9 1 U9	XC2V1000	Xilinx		
63 64 65 66 67 68		1 U9 1 U9 2 U20,U10	XC2V1000 LVC1G04	Yexas Instruments	SN74LVC1G04DBVA	
63 64 65 66 67 68 69		1 U9 1 U9 2 U20,U10 1 U11	XC2V1000 LVC1G04 CY78991V	Yexas Instruments Cypress	SN74LVC1G04DBVR cy7b991v-2jo	
63 64 65 66 67 68		1 U9 1 U9 2 U20,U10	XC2V1000 LVC1G04	Yexas Instruments	SN74LVC1G04DBVA cy7b991v-2jo MiC2778-1BM5	+
63 64 65 66 67 68 69 70		1 U9 1 U9 1 U20,U10 1 U11 3 U12,U13,U16	XC2V1000 LVC1G04 CY78991V MIC2778_1BM5	Yexas Instruments Cypress Micrel	SN74LVC1G04DBVA cy7b991v-2jo MiC2778-1BM5	
63 64 65 66 67 68 69 70		1(U9 1(U9 2(U20,U10 1(U1) 1(U1) 1(U1) 1(U1)	XC2V1000 LVC1G04 CY78991V MIC2778_18M5 LYC3411	Yexas Instruments Cypress Micrel Unear Technology	SN74LVC1G04DBVA cy7b991v-2io MiC2778-1BMS LTC3411EMS	
63 64 65 66 67 68 69 70 71		109 109 2020,010 1011 3012,013,016 1014 2019,0504	XC2V1000 LVC1G04 CY78991V MIC2778_1BM5 LTC3411 QS3VH861	Texas Instruments Cypress Micrel Unear Technology IDT	SN74LVC1G04DBVR cy7b991v-2jo MiC2778-1BM5 LTC3411EMS IDYOS3VH881Q	
63 64 65 66 67 68 69 70 71 72 73		1109 1109 21020,010 11011 31012,013,016 11014 21019,0504 110501	XC2V1000 LVC1G04 CY7B991V MIC2Y78_1BM5 LYC3411 CS3VH861 LYC1646	Yexas Instruments Cypress Micrel Unear Technology IDY Unsar Yechnology	SN74LVC1G04DBVR cy7b991v-2p Mic2778-1BM5 LTC3411EMS IDTGS3VH881Q Ito1646cgn	
63 64 65 66 67 68 69 70 71 72 73		1109 1109 21020,010 11011 31012,013,016 11014 21019,0504 110501 110502	XC2V1000 LVC1G04 CY78991V MIC2778_1BM5 LYC3411 CS3VH861 LYC1646 MPC947	Yexas Instruments Cypress Micrel Unear Technology IDT Unear Yechnology Motorola	SN74LVC1G04DBVR cy7b991v-2jo Mic2y78-1BMS LYC3411EMS IDYCS3VR84TQ IIs1646cgn mpc947ta	
63 64 65 66 67 68 69 70 71 72 73		1109 1109 21020,010 11011 31012,013,016 11014 21019,0504 110501	XC2V1000 LVC1G04 CY7B991V MIC2Y78_1BM5 LYC3411 CS3VH861 LYC1646	Yexas Instruments Cypress Micrel Unear Technology IDY Unsar Yechnology	SN74LVC1G04DBVR cy7b991v-2p Mic2778-1BM5 LTC3411EMS IDTGS3VH881Q Ito1646cgn	

APPENDIX B: Component to Schematics Cross Reference

Rel Dea	Part	Page	Ref Dom	Pert	Paga	Ref Dos	Pert	Page	Rai Ooo	Part	Page	Ref Dea	Part	Pege	Ref Dea	Pert	Page	
CI	0 tuF	1	C559	0 1uF	•	C689	10	10	R45	27 4	7	R518	1 15k	4	R828	200	3	l
~	0 tuF	2	C580	tu	6	C870	3 Onf	9	R47	0	7	FIS19	212	4	R829	200	3	ı
α α	0 tuF 0 tuF	2 2	C581 C582	187F 3 9nF	7	C871	3 9mF O tuF	10 10	R48 R49	0	7	R520 R521	1 15k 200	5	R831	200	10	Į.
cs	2 2nF	1	C583	3 3nF	7	C873	100a	10	RSO	60 4	7	R522	4 99k	5	R832	4 09k	9	ı
Co	2 2nF	4	C584	470pF	7	C574	0 1uF	٥	R\$1	60 4	7	R523	200	5	R833	4 96k	10	ı
C7 C8	100u 10uF	10 5	CS85 CS88	0 tuF 0 tuF	7	C875	18nF 18nF	10	R52 R53	200	7 7	RS24 RS25	4 99k 200	6	R834 R835	21k 200	3	ı
G	2 2nF	5	CS67	1000	7	C877	3 9nF	10	RSA	200	;	R526	200	5	R538	200	3	ı
C10	2 Sul	5	C568	001dF	15	C878	470pF	10	A55	2 43	7	R527	1 15k	5	R837	200	3	l
Cts	68Du	15	C589	18nF	7	C879	3 InF	10	A58	2 43	7	A528	1 15k	5	R838	200	3	l
C12 C13	100u 10uF	8	C570	3 9nF 470pF	7 7	C680 C681	3 3mF 470pF	10	R57 RS8	49 9 49 9	7	R529 R530	21k 200	5	R639 R640	200 200	3	l
C14	2 2nF -		CS72	3 3nF	;	C882	01uF -	10	R59	43	3	RS31	4 99k -	ŏ	R841	4 99k	10	ı
C15	2 2nF	٥	C573	0 tuF	7	CBB3	0 1uF	10	RBO	200	3	R532	21k	6	R842	200	3	ı
C18	680u	15	C574	0 tuF	7	C684	0 tuF	10	RBI	1 15k	3	R533	2 21k	15	R843	200	3	ł
C17	100u 10uF	8 7	C575 C576	0 1นF 0 1นF	7	C685 C688	0 tuF 0 tuF	10	R62 R63	43 43	3	RS34 RS35	200 2 2 1 k	15 15	R844 R845	200 200	3	l
CIS	2 2nF	,	C577	0 tuF	;	C687	0 1uF	10	RB4	200	13	R530	500	15	R848	200	11	ı
Caso	2 2nF	7	C578	0 1uF	7	C0888	tu	8	Ras	1 15k	14	R537	10	15	R847	200	10	l
(21	O tuF	3	C579	1u	7	C689	0 tuF	15	RSS	200	13	R538	10	15	R848	4 99k	"	۱
CZZ	0 1ω ² 0 1ω ²	3	C580 C581	0 1นF 0 01นF	15	C690 C691	18nF 3 9nF	31	R87	4 02k 7 68k	13	R539 R540	200 4 99k	8 7	R849 R850	21k 200	10	ı
C24	0 tuF	3	CS82	0 01uF	15	C892	3 3nF	11	R89	100k	15	R541	114	15	R651	4 99k	;;	ı
C25	0 tuF	3	CS83	10uF	12	C693	470pF	11	R70	27 4	8	R542	0 028	15	R852	21k	11	ı
(28	0 tuF	3	C584	0 tuF	12	C694	0 tuF	11	R71	27 4	8	R543	1k	15	RBS3	1 15k	15	ł
C27	0 1uF 680u	15	C585 C588	1u O tuF	12	C895 C898	100u 0 1uF	11	R72	0	8	R544 R545	1k 200	15	R854 R855	1 15k 1 15k	15 15	ı
C29	0 1uF	15	CS87	0 tuF	12	C697	0 1uf	15	R74	604	l e	R548	4 99k	1 ;	R656	1 15k	15	
C30	33u	15	C588	10	12	C698	18nF	11	R75	1	8	R547	214	7	R857	1 15k	15	
COI	ານ	15	C589	0 tuF	12	C699	3 9nF	11	F178	1	8	R548	500	15	F1858	200	15	ł
C32	330	15	C590 C591		12	C700	3 3nF	11	R77	60 4	8	R549 R550	10k	15	RG59	10M	2	ı
C34	100u	15	CS91	0 tuF	12	C701 C702	470բF 0 tшF	11	A78 A79	200	8	H550 R551	0 028 200	15 7	R660 R681	10M	2 2	ı
C35	10uF	В	CS93		12	C703	O tuF	111	RBO	2 43	a	R552	43	3	R862	10M	2	١
C38	2 2nF	В	C594	O tuF	12	C704	0 tuF	11	RB1	2 43	a	R553	43	3	R683	1044] 2	i
C37	0 tuF	15	C585		12	C705	0 tuF	11	R82	499	8	R554	43	3	R664	10M	2	ı
COS	0 tuF 100u	15	C598	0 tuF O tuF	12	C708 C707	0 tuF	111	RB3 RB4	73 2k 1 43k	15	R555 R558	200 1 15k	13	R665 R868	10M 10M	2 2	1
Cuo	10uF	9	C598	6	12	C708	0 tuF	1 ;;	R85	274	9	R557	1 15k	13	R887	1 15k	15	1
Cui	2 2nF		C589		12	C709	1u	11	R86	27 4	8	R558	200	13	R888	1 15k	15	
C42	2 2nF	9	C600	1	12	Di	GREEN	15	R87	•	9	R559	200	3	R869	1 15k	15	
CH		9	C601	tu O tuf	12	D2 D3	GREEN GREEN	15	R88 R89	l °	9	R560 R561	1 15k	3	R870	1 15k	15	
C45		10	CGGG		12	04	GREEN	13	R90	604	9	RS62	43	1 3	SW1	SPST_MOM	15	1
C46	2 2nF	10	C604	tu tu	12	D5	RED	15	A91	604	9	R563	40	3	SW2	SPST_MOM	15	. 1
C47		10	C605	1	14	0501	Zoner	15	R92	1	9	R584	43	3	SW3	DIP_SW8] 3	
CAS		15	C606		14	D502 J1	Zener RJ4SLED2	15	R93	200	9	RS65	43	3	SW4	OIP_SW8 TestPoint	14	- 1
CSC	L .	1.	C808	1	12	J2	CPCI_RIS	2	R95	243	9	R507	43	3	TP2	TestPoint	14	- 6
CSI	2 2nF	l ii	C609	010=	12	J3	RJ4SLED2	5	R98	243	9	R568	43	3	TP3	TestPoint	14	١
C52		113	C810		12	J4	RJ45LED2	8	R97	499	8	A569	1	3	TP4	TestPoint	14	
C50		1:	C811		12	JS JO	RASLED2 CON4	7	A98 R99	49 9	9	R570	•] 3	TPS TP8	TestPoint TestPoint	14	
CSO		;	C613		12	J7	2-707004-2	15	H99	49 9 27 4	9	R572	1	14	•	TestPoint	1 14	
CSO		11			3	JB	2-787004 2	13	Rioi	27 4	10	R573		3	TP8	TestPoint	14	
C50		2	C81	•	13	.19	2-767004-5	14	A102		10	R574		14	TP9	TestPoint	14	
CSO	1	2	C81		13	J10	Header6	13	RICO		10	A575	1	1 14	TP10	1	1:4	
CSO		1:	CB1		1 15	112	RJ45LEDZ RJ45LED2	8	R104		10	R570		14	TP11	Mideom_61572	1 7	١
CSO		14	C81		15	J13	RJ45LED2	10		•	10			14	T2	Midcom_51572	5	.
CSI		1 4	C82		12		RJ45LED2	11	R107		10			13		Midcom_51572		
CSI	1	1 4	C82		3	LI	1 2u	15			10			13		Midcom_51572	8	
CSI		:	C82		12		MMDF3N02HD MMDF3N02HD	15		1	10			14		Midcom_51572 Midcom_51572		
CSI		1.	C62		3		27 4	"	Rill		10			14		Madcom_51572		
CS1		4		1	12		27 4	14	Rita	49 9	10	R58		14		Mndcom_51572		
CS		1 4	C82		3		0	1 4	RH		10			13		SJ101_RevE	1 4	
CSI		1 4		1	12		60 4	1:	RIII		15			13		S:3101_RevE S:3101_RevE	1 3	
CS		4			3		1	1 7	Ait		15			15		Si3101_RavE	7	
CS	10 10	4	C03	o] oւտ⊬	13		1 1	4	Riti		15			15			3) [

CS22	3 9nF	1 4	C832	0 01 tdF	1 3	RD	200	1 4	R119	1 15k	1 15	RS91	200k	1 15	I U7	74LVT244A/TSO	1 14 1
C523	3 9nF	5	Cesss	0 tu/F	3	Rto	200	4	R120	27 4	1 11	RS02	174	15	Ua	ThryANDO	14
C524	0 tuF	4	C634	0 tuF	3	Rin	243	4	R121	27 4	1 11	RSSS	4 02k	15	Up	XC2V1000	12,13
C525	toou	5	C835	0 tuF	13	R12	243	4	R122	0	1 11	R594	73 Zk	15	Uto	LVC1GD4	13
CS28	O tuf	4	C638	1000	8	RIS	499	4	R123	0	111	R595	200	15	Utt	CY7B291V	3
C527	ten#	5	C637	18m₽	8	R14	499	4	R124	1	1 11	R596	2 21k	15	Ut2	MIC2778_18M5	15
C528	t@nF	5	C838	18nF	8	R15	1 15k	5	R125	1	111	R597	43	3	U13	MCC2778_18M5	15
CSZ9	3 9nF	5	C9239	3 9nF	8	Rie	27 4	5	B125	60 4	1 11	AS98	43	3	U14	LTC3411	15
C230	3 3nF	5	C840	470pF	8	R17	27 4	5	R127	60 4	1 11	R599	43	3	UIS	Si3101_RevE	ا ، ا
CS31	3 3nF	5	C841	3 3aF	8	RIA	0	5	R128	200	1 11	R800	49	3	UIB	M0C2778_1BMS	15
C2235	470pF	5	C842	3 3nF	8	RID	0	5	R129	200	1 11	R501	4 02k	13	U17	SESTOT_PANE	1 6
CSSS	470pF	5	C843	470pF	8	F20	1	5	R130	2 43	111	R802	200	15	UIB	SG101_RevE	10
C534	O teF	5	C844	0 tuF	8	R21	1	5	R131	2 43	111	R503	39 2k	15	UID	QS3VH881	15
CS35	0 tuF	5	C845	O tuF	8	R22	60 4	5	R152	49.9	111	R504	200	15	1220	LVCIGO	15
CSSta	0 luF	5	C848	0 tuF	а	R23	604	5	R133	499	11	R505	28 1k	15	U21	\$13101_RevE	11
CS37	0 luF	5	C847	0 tuF	8	R24	200	5	R134	200	15	R806	200	15	U501	LTC1848	15
C238	O luP	5	C848	0 tuF	8	R25	200	5	R135	200	15	R807	1 15k	15	USO2	MPC947	3
C539	O 1±F	5	C849	0 tuF	8	R26	2 43	5	R138	200	15	Rece	200	15	USCO	XCIBVOLVOALC	13
C240	O tuF	5	Coso	3 9nF	8	R27	2 43	5	R137	200	15	R809	28 th	15	US04	QS3VH861	15
C541	lu	5	C851	3 9nF	9	RZB	49 9	5	R138	200	15	Rato	200	15	Yı	Crystal	17
C542	3 9nF	6	C852	0 tuF	а	R29	499	5	RS01	10M	2	R811	200	3		-,	1
CS43	O tuf	a	C653	100u	9	R30	200	5	R502	LOM	2	RB12	43	3			
CS44	100u	8	C854	Otuf '	8	R31	27 4	0	R503	1084	2	R813	43	3			
C545	O tuF	5	CBSS	tu	8	R32	27 4	8	R504	10M	2	R814	43	3			1 1
C548	1 BruF	8	C658	18nF	9	R33	0	6	R505	10M	2	R815	43	3			
C547	18nF	8	C657	18nF	9	R34	0	8	R506	10M	2	R810	1 15k	13	1		
C548	3 9nF	6	C 858	3 3nF	9	R35	1	8	R507	10M	2	R817	200	В			
C549	3 3nF	8	C859	470pF	9	R38	1	0	R508	10M	2	RB18	4 99h	8			1 1
C550	3 3nF	6	C860	470pF	8	R37	60 4	6	R509	200	4	R819	200	8	1		1 1
C\$51	470pF	8	C881	3 JnF	9	R38	60 4	8	R\$10	4 99k	4	R820	4 99k	8			1
C552	470pF	6	C682	0 tuF	9	R39	200	6	RSII	200	1 .	R821	4 99k	9		01	
C5S3	O luF	6	Coss	0 tuF	8	R40	200	6	R512	200	1	R822	21k	8			1
C554	0 luf	6	C884	0 tuF	8	R41	2 43	8	R513	4 99k	4	FI823	200	3	•		1
C555	0 luF	1 8	C685	O tuF	9	F142	2 43	8	R514	4 99k	5	R524	200	3	1		1
CSS6	0 luF	0	C668	o tuF	9	RAS	499	8	R515	200	4	R825	200	9	•		1 1
C557	0 luF	6	C687	0 tuF	9	R44	499	8	R518	200		R826	200	3			
C558	0 tuF	6	C688	0 tuF	9	R45	27 4	7	R517	1 15k	1 4	R627	200	3	1		

WhiteSail Layout Guidelines

Table of Contents

1	Intro	oduction	1						
2	Boar	oard Construction							
	2.1	Mechanical Specifications							
	2.2	Stack Up	, J						
	2.3	Plane Cutouts and Shapes							
	2.4	Additional Ground Shielding							
3	Place	ement	ر م						
	3.1	Test Points	٠.						
	3.2	Placement Diagram	. 4						
	3.3	Analog Circuit	, 4						
	3.4	Power and Hot Swap	. ~						
	3.5	External Interfaces	٠ -						
	3.5.1	Secondary Power Connecter							
	3.5.2	FPGA Programming Header	5						
	3.5.3	B DSL channel interfaces	ح د						
4	Sign	al Guidelines	-						
	4.1	Clocks and Resets	6						
	4.1.1	Group1: Match to 5.5"	6						
	4.1.2	2 Group 2: Match to 2.0"	6						
	4.1.3	Group 3: Match to 6.0"	6						
	4.1.4	Group 4: Match to longest trace in the group	6						
	4.1.5	Group 5: Match to longest trace in the group	6						
	4.1.6	Group 6: Match to longest trace in the group	6						
	4.1.7	Group 7: Match to longest trace in the group	6						
	4.1.8	Group 8: Match to longest trace in the group	6						
	4.2	Single Nets	7						
	4.2.1	Signal I: Length of 4.5"	7						
	4.3	Data busses	7						
	4.3.1	Group 1: Match to longest trace in the group	7						
	4.3.2	Croup 2: Match to longest trace in the group	7						
	4.3.3	Group 3: Match to longest trace in the group	7						
	4.3.4	Group 4: Match to longest trace in the group	7						
	4.3.5	Group 5: Match to longest trace in the group	7						
	4.3.6	Group 6: Match to longest trace in the group	7						
	4.3.7	Group 7: Match to longest trace in the group	8						
	4.3.8	Group 8: Match to longest trace in the group	8						
	4.4	Analog Signals	8						
	4.4.1	Group 1: Match to longest trace in the group	8						
	4.4.2	Group 2: Match to longest trace in the group	8						
	4.4.3	Group 3: Match to longest trace in the group	8						
_	4.4.4	Replicate groups I through 3	8						
5	Silks	Screen	a						

1 Introduction

This document presents guidelines for use during the layout phase of the WhiteSail board lifecycle. The layout guidelines should be applied in conjunction with any notes or remarks that may be found in the corresponding schematics. Any information in this document that is inconsistent with the notes in the schematics should be brought to the attention of the designer. However, the schematics shall override the instructions in this document.

2 Board Construction

2.1 Mechanical Specifications

This board is a standard Compact PCI, 6U, rear I/O card. Therefore, the board's form factor shall conform to the Compact PCI specification 2.0, which also refers to IEEE specifications 1101.10 and 1101.11.

2.2 Stack Up

The fabrication vendor according to the following specifications shall design the board's layer construction:

- Target impedance = 50 Ohms +/- 10%
- Board thickness = 1.6mm +/- 0.2 mm
- Layer count = 12

2.3 Plane Cutouts and Shapes

The following diagram/table highlights the plane cutouts

GND

VD1P5

VD3P3

VD3P3_BP

VA5P0

VA5P0_BP

ESD_STRIP LI

ESD_STRIP_L2

ESD_STRIP_L3

ESD_STRIP RI

ESD_STRIP_R2

ESD_STRIP_R3

2.4 Additional Ground Shielding

The surfaces should be filled with ground shapes primarily to isolate the channels from each other. Also, all clock buffers and Silicon Laboratories devices should have a ground shape directly beneath the physical package. These buffers include: CY2304, CY7B991, and MPC947.

3 Placement

3.1 Test Points

There shall be several test points strategically placed on the board. Refer to the following table for the placement of certain test points. Note that the X-Y coordinates that are listed serve as a marker. Due to the presence of signals and devices the actual placement of the test point can deviate from the marker by 0.5".

Test Point	X-Coor	Y-Coor	Label
TP11	1.0"	0.0"	GND
TP10	1.0"	2.0"	GND
TP9	2.0"	2.0"	GND
TP4	1.0"	4.0"	GND
TP5	2.0"	4.0"	GND
TP1	1.0"	6.0"	GND
TP7	1.0"	3.0"	3.3V
TP2	1.0"	6.0"	3.3V
TP8	1.25"	3.0"	5.0V
TP3	1.25"	6.0"	5.0V
TP6	Flexible	Flexible	1.5V

3.2 Placement Diagram

The following figure shows how the majority of the components or blocks of circuits should be placed. This is a general guideline thus the layout designer has the liberty of optimizing placement for ease of routing. There are eight typical circuits in the design which implies that the layout should only be done for one circuit and then replicated to produce the remaining circuits. This suggests that placement should be duplicated exactly as in the first circuit such that routing can then be replicated as well.

3.3 Analog Circuit

There are a total of eight channels in the design each of which uses the analog circuit shown below. This circuit requires particular attention during layout as described below.

Figure 1: Typical Analog Circuit

The following diagram shows some suggested ways of placing the components that make up the analog circuit. The characteristics of the layout consist of the following:

- Exact symmetry during placement
- As compact as possible without compromising manufacturability
- Share surface shapes to minimize the number of vias used
- Matched traces at the different circuit nodes
- Ground flooding around the circuit

Figure 2: Placement Examples

The transformer and user interface lies on the other end of the analog circuit. All voltage planes and ground planes should be cut away from beneath these two components except near the analog to transformer interface. These cutouts should be 50 mils larger than the external dimensions of the components.

3.4 Power and Hot Swap

Both the power regulator and the hot swap controller should be implemented as described in the respective data sheets. In addition to these instructions, the following guidelines should be referenced for the power regulator.

Figure 3

The shapes or etchings shown in the figure above are for reference only and can be formed in any compact manner to accommodate the via count. The actual layout may deviate slightly due to other components and traces that are not related to this circuitry. There will also be deviations due to the fact that this drawing is not to scale.

The traces off of pins 1, 2, 8, 9, 10 may be as wide or wider than the minimum trace width for the respective routing layer. The traces off of pins 3 and 4 should be routed as wide as physically possible from the device pad. Pins 5, 6, and 7 should use shapes in a similar manner as shown above. The passives connected to pin 10 should be placed as close as possible to the pad.

3.5 External Interfaces

3.5.1 Secondary Power Connecter

The 2x2 power connecter (AMP 770968-2) should be placed along the back plane interface without hanging over the edge of the board. This should also be located near the associated hot swap circuitry.

3.5.2 FPGA Programming Header

The 1x6 header (AMP 103148-6) should be placed along the front of the card without hanging over the edge of the board.

3.5.3 DSL channel interfaces

Each DSL channel interface consists of an RJ45 connector with integrated LED devices. The RJ45 shall hang over the edge of the board so that it protrudes through the faceplate.

4 Signal Guidelines

4.1 Clocks and Resets

The proceeding groups of signals shall have the following characteristics:

Impedance: 50 Ohms

Matching Tolerance: +/- 100 mil Routing Layer: Inner layer stripe-line Trace separation: 15 mil spacing

4.1.1 Group1: Match to 5.5"

- ROBO_DSL*_MINCLK35M
- BUF4B_DMR*
- BUF4B_FG_DSL1_MCLK

4.1.2 Group 2: Match to 2.0"

- BUF4A_ROBO_MCLK35M
- DSL1_BUF4A_MR_MCLK
- BUF4A_BUF4B_MCLK

4.1.3 Group 3: Match to 6.0"

- BUF4A_FDBK_MCLK35M
- BUF4B_FDBK_MCLK35M
- ROBO_FDBK

4.1.4 Group 4: Match to longest trace in the group

Note: +/- 250 mil tolerance

- BUF_DSL*_SCLK
- BUF_FPGA_SCLK
- BUF_DMR2_SCLK

4.1.5 Group 5: Match to longest trace in the group

Note: +/- 400 mil tolerance

- BUF_EPRM_TCK
- BUF_FPGA_TCK

4.1.6 Group 6: Match to longest trace in the group

Note: +/- 200 mil tolerance; minimum spacing allowed

QS_FG_*_RST_L

4.1.7 Group 7: Match to longest trace in the group

Note: +/- 200 mil tolerance; minimum spacing allowed

MR_QS_*_RST_L

4.1.8 Group 8: Match to longest trace in the group

Note: +/- 200 mil tolerance; minimum spacing allowed

FG_DSL*_RST_L

4.2 Single Nets

The proceeding signals shall have the following characteristics:

Impedance: 50 Ohms

Matching Tolerance: +/- 100 mil Routing Layer: Inner layer stripe-line Trace separation: 15 mil spacing

4.2.1 Signal 1: Length of 4.5"

DSL1_SI_BUF_MCLK

4.3 Data busses

The proceeding groups of signals shall have the following characteristics:

Impedance: 50 Ohms

Matching Tolerance: +/- 100 mil Routing Layer: Inner layer stripe-line

Trace separation: 15 mil spacing preferred, 10 mil spacing allowed

4.3.1 Group 1: Match to longest trace in the group

Note: +/- 200 mil matching tolerance

- DSL1_SI_FG_*
- DSL1_FG_SI_*

4.3.2 Group 2: Match to longest trace in the group

Note: +/- 200 mil matching tolerance

- DSL2_SI_FG_*
- DSL2_FG_SI *

4.3.3 Group 3: Match to longest trace in the group

Note: +/- 200 mil matching tolerance

- DSL3_SI_FG_*
- DSL3_FG_SI *

4.3.4 Group 4: Match to longest trace in the group

Note: +/- 200 mil matching tolerance

- DSL4_SI_FG_*
- DSLA_FG_SI_*

4.3.5 Group 5: Match to longest trace in the group

Note: +/- 200 mil matching tolerance

- DSL5_SI_FG_*
- DSL5_FG_SI *

4.3.6 Group 6: Match to longest trace in the group

Note: +/- 200 mil matching tolerance

DSL6_SI_FG_*

DSL6_FG_SI_*

4.3.7 Group 7: Match to longest trace in the group

Note: +/- 200 mil matching tolerance

- DSL7_SI_FG_*
- DSL7 FG SI *

4.3.8 Group 8: Match to longest trace in the group

Note: +/- 200 mil matching tolerance

- DSL8_SI_FG_*
- DSL8_FG_SI_*

4.4 Analog Signals

4.4.1 Group 1: Match to longest trace in the group

Note: +/- 5 mil matching tolerance

DSL8 DEV RX*

4.4.2 Group 2: Match to longest trace in the group

Note: +/- 5 mil matching tolerance

DSL8_DEV_HYB*

4.4.3 Group 3: Match to longest trace in the group

Note: +/- 5 mil matching tolerance

DSL8_DEV_TX*

4.4.4 Replicate groups 1 through 3

Each analog channel comprises of groups 1 through 3 above. Since there are eight channels total, the differential signals in the analog layout will be replicated seven more times.

5 Silkscreen

- All reference designators are to be renumbered in ascending order using the top, left-hand corner of the form factor as a reference point. Also, devices on the backside (circuit side) should start their numbering sequence at 500 (i.e. R500, C500, U500, etc).
- Polarized capacitors should include a marker to denote the polarity.
- Diodes and LED's should include a marker to denote cathode versus anode
- The DIP-switch settings should be included as shown in the proceeding figure. A
 representation of the device can be drawn elsewhere on the board if the text
 cannot be placed near the actual device.

• Assembly information should be included as shown in the proceeding figure.

- BGA numbering should also be shown on the bottom side of the board
- Labels should be added according to the following table:

Label
VDD
TCK
TMS
TDI
TDO
GND
DONE
PWR_RST
PWR_GOOD
5.0V
3.3V
PWR_CYCLE
RESET
5.0V_
GND
3.3V
GND

- Each DSL channel should be labeled near the RJ45 connector using the text "DSLx", where x denotes the channel number
- Test points should also be labeled as discussed above. The table is repeated here for convenience.

Test Point	X-Coor	Y-Coor	Label
TP11	1.0"	0.0"	GND
TP10	1.0"	2.0"	GND
TP9	2.0"	2.0"	GND
TP4	1.0"	4.0"	GND
TP5	2.0"	4.0"	GND
TP1	1.0"	6.0"	GND
TP7	1.0"	3.0"	3.3V
TP2	1.0"	6.0"	3.3V

TP8	1.25"	3.0"	5.07
TP3	1.25"	6.0"	5.0V
TP6	Flexible	Flexible	1.5V

WHITE SAIL SCHEMATICS

Table of Contents Sheet

Back Plane Interfæe Sheet

Clock Distribution Sheet

(Master) DSL Channel 1 Sheet

(Slave) DSL Channel 2 Sheet

(Slave) DSL Channel

(Slawe) Channel DSL

Sheet

Sheet Sheet

Sheet

(Slawe) (Slave) വ Channel DSL Channel DSL

(Slawe) (Slave) DSL Channel 8 DSL Channel 7 Sheet Sheet

Wave Transmit/Receive Sheet

Wave Miscellanecus Sheet

Mictor Interface Sheet

Power and Reset Sheet 'oyan Tachnology 2557 8 cod 83rd Sarts Clen CA 95054 Occured Number Occur

SUZZETO, DEZEND

603 GD60.072502

10 10 10 10 10 10 10 10	Sarta Clera, CA 9004 Size Document Humber B GOcco	Voyan Technology Tass 18 cod Bird Bars Can. CA 9204	000	ar ar		STEEL WOOK AND	BY WEST COLUMN BY WES	BSL6 STR4 MCK NT NT STR4 MCK NT	SYES, MCJK. HISA. STR. STR. STR. STR. STR. STR. STR. STR	BY B	M. Od-Figo. Who can see a see	STRZ MCM HIV	### STRING THE	
18		10 to	# + Com + Co	- CSP - CSB	•	14 0518 MFG 720 0512 FG S T 720 11 14 0516 MFG 720 0512 FG S T 720 11 14 0516 MFG 770 0512 FG S T 720 11 14 0516 MFG 770 0512 FG S T 720 11 14 0516 MFG 770 11 11 11 11 11 11 11 11 11 11 11 11 11	### COST OF SHIP OF SH	14 DSIG MRFG. TX0 14 DSIG MRFG. TX0 14 DSIG MRFG. TX1 15 14 DSIG MRFG. TX1 15 14 DSIG MRFG. TX2 14 DSIG JRF 16 TX3 14 DSIG JRF	DSL5 FG SI TX0 8 14 DSL5 MR FG TX0 8 4004 DSL5 FG SI TX1 8 14 DSL5 MR FG TX2 8 4004 DSL5 FG SI TX2 8 14 DSL5 MR FG TX2 8 4004 14 DSL5 FG TX3 8 14 DSL5 MR FG TX3 8 4004	14 DSL4 MR FG TX0		14 DS12 MRTG TX0 \$	DSL FG St TX0 4.13 13.14 DSL LMFG TX0 13.14 DSL LMF	•
200 1 1 1 1 1 1 1 1 1	2001	11, 21.2 u. 11, 20.3 u. 12, 10. Thomas pin fortings 11, 21.2 u. 11, 20.3 u. 12, 17. 72, 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	016 016 016 016 016 016 016 016 016 016	10 cf 511 A11, 12 514 cf 51 20 f 72 A21 A21 A21 A21 A21 A21 A21 A21 A21 A2	pro locations RTI , anni, KRI ANNI ACTI LII	107 C4. (1947 C4	20 AE' MCX 21 AE' MCX 21 AE' MCX 21 AE' AN 21 AE' AC	10.51.5.3. MCUK \ \times \\ \text{TAT_097} \ \text{CAT_097} \ \	FEB MEN FEB PRO FEB PR	F64 MCJX F64.WCJX F64.RXD F64.RXD F64.RX1 F64.RX1 F64.RX1 F64.RX2 F64.RX2 F64.RX2	051.3 S. E. MCLK	DS12_S1_R0_MCLK	MAC INTERFACE TILIT ALL ACE, MCAC ALL ACE, MCAC ALL SCEN ACE, CON ACE,	

- छर्न

ANT ARED DYREOR

-91-

Test 1 - Register Access:

Differences to hardware:

Clocking is provided by master SiLabs part, instead of external VCXO

Register access to AFE chips is directly from FPGA1 to AFE chip through Mictor cable, instead of going through filter FPGA

Test 2 - SNR Test with Digital Loopback

Digital Loop Back (LB2 = 1) 69 kHz sinusoid, full scale Settings: Input:

Output processing:

1024 length FFT

Differences to hardware:

Clocking is provided by master SiLabs part, instead of external VCXO.

Test 3 - Noise Characteristic Test

Settings:

Input:

Nominal, RxGain = 26dB DC (all 0's)

1024 length FFT, with appropriate scaling (line-referenced) Output processing:

Check noise characteristic with spec (< -140dBm/Hz)

Differences to hardware:

Clocking is provided by master SiLabs part, instead of external VCXO.

Test 4 - Harmonic Distortion Test

Nominal, RxGain = 12dB Settings:

Input:

69 kHz sinusoid, 1/4 full scale

Output processing: 1024 length FFT, with appropriate scaling (line-referenced)

Check to make sure harmonic distortion is within spec (< 80dB)

Differences to hardware:

Clocking is provided by master SiLabs part, instead of external VCXO.

Test 5 - Final Echo Rejection Test

Nominal Settings:

Run gsafixed script (GSA = Geodesic Search Algorithm) Script:

Reverb signal specified by script

Output processing: Input:

Check to make sure final echo rejection is within spec: -18 dB to -28 dB (linear slope in dB) from 10 kHz to 130 Several - FFT, Variance, etc. (all Matlab routines)

kHz, -28 dB from 125 kHz to 400 kHz, -28 dB to -18 dB (linear slope in dB) from 400 kHz to 550 kHz

Differences to hardware:

Clocking is provided by master SiLabs part, instead of external VCXO.

Test 6 - Internal VCXO Clock Jitter Test and Master Clock Adjustment

Single WhiteSail Board Hardware:

Only the script that sets FPGA1 register value for VCXO. Script:

Input:

Equipment:

Selected VCXO control register values from 0x000 to 0xFFF Spectrum Analyzer

Differences to hardware:

- Clocking is provided by master SiLabs part, instead of external VCXO.
 - Data interface for VCXO control loop is different.

Test 7 - VCXO Closed-loop Performance Test

Two WhiteSail Boards (Master and Slave) connected through 9kft loop. Settings:

Script: Run the clock recovery DSP and Matlab routine in Build 5 (Simplex)

Reverb signal specified by script for clock recovery

Input:

Several - Phase Noise, Clock Jittering, etc. (all Matlab routines) Output processing:

Check to make sure the closed-loop clock jittering falls within the specification: 1e-3, of sample period.

Differences to hardware:

Clock recovery uses internal VCXO on SiLab Chip.

No DAC, external VCXO, etc.

Differences to software:

 DSP Mapping function. DSP clock recovery code needs to be updated to reflect the mapping relation for the internal VCXO control: 0x000-0xFFF corresponding to -100 to 100 ppm (with capacitor = 8.2pF).

WhiteSail Clocks

Notes:

- D AFE device is a Silicon Labs Si3101. There are 8 of these devices on the board.
 - Board form factor is Compact PCI 6U rear-board (80 mm \times 220 mm). 0
- AFE channel 1 MCLK (master clock output) is used to source the MIN (master clock input) for all other channels. Channel 1 VCXO is internal, Channels 2-8 are external through Robo MCLK. 0
- SCLK is common to all AFE channels. o
- MCLK #1-8 must interface to XIIinx clock input lines. 0
- Connector is Mictor 146 pin. Voyan to provide mapping of these signals (14*8+1) to pinout. O

Demonstration Hardware

Table of Contents

1.	DO	CUMENT CONTROL	
1	1.1	DOCUMENT HISTORY	
1	1.2	RELATED DOCUMENTS	ä
2.	НА	RDWARE ELEMENTS	
	2.1	SYSTEM OVERVIEW	
2	2.2	LOOP PLANT	
2	2.3	PATCH PANELS	3
2	2.4	DISTURBER SOURCES	
2	2.5	HDSL DISTURBANCE	<u> </u>
4	2.6	ADSL DISTURBANCE	
2	2.7	DDS DISTURBANCE	
2	2.8	. HDSL2 DISTURBANCE	
2	2.9	VDSL DISTURBANCE	
	3.0	DEMONSTRATION	
•		DEMONSTRATION	11

2. Hardware Elements

2.1 System overview

Fig. 1 System overview

The Demonstration system consists of two demonstration platform which communicate over eight copper pair of an actual 26AWG binder. Cable of lengths of 9000 feet of 26AWG can be connected. In order to prove system performance under a variety of real-world conditions, a number of disturbance services can be introduced into the same binder, in order.

This document will outline the hardware available in the lab to create these disturbance conditions.

2.2 Loop Plant

Fig. 2: 26AWG Cable

The following lengths of real cable are available in the lab:

- 26AWG loops (9kft in total).
 - o 1kft x 2 loops.
 - o 3kft.
 - o 4kft.
- 24AWG.
 - o 1kft x 2 loops.

The focus of the demonstration is on CSA range of 26AWG cable.

2.3 Patch Panels

There are two patch panels systems in the lab one for each type of cable. These allow for various lengths of smaller cable may be linked together to form longer cable reaches. Of these the 26AWG patch panel is the most utilized. Fig. 2 illustrates the 26AWG patch panel

Fig. 2: 26AWG patch panel

Fig. 3 illustrates how the various loops of cable are wired to the patch panel. It is easy to see that by daisy chaining the twisted pair from each loop together, up to 9000kft of cable can be formed.

Fig. 3; 26AWG patch panel wiring

It is easy to see how a daisy chain arrangement on the patch panel allows for the concatenation of individual loops of cable up to a maximum length of 9000 feet. It also allows for the addition of bridge taps at intervals corresponding to the patch panel intervals.

A similar but much simpler patch panel exists for the 24AWG cable, basically allowing the connection of the two 1kft loops of cable.

2.4 Disturber sources

The disturber scenarios are realized by activating disturber services within the loop plant. A variety of equipment is used to each type of disturbance.

2.5 HDSL Disturbance

Fig. 4: Copper Mountain CopperEdge DSLAM

The is SDSL DSLAM is adjustable to different rates, thereby enabling emulation of different services such as HDSL and ISDN. Currently we use SDSL to mimic the power spectrum of HSDL.

- DSLAM: Copper Mountain: CopperEdge.
 - o 24 SDSL ports (currently 5 used).
 - Currently use 5 system ports.
 - 1 to mimic ISDN.
 - 4 to generate a power spectrum compatible to HDSL.
 - o 24 ADSL ports (currently not used).
 - o 24 G.lite ports (currently not used).
- Modem: CopperRocket SDSL modem.
 - o 5 units used as counterparts to 5 DSLAM ports.
 - o A further 7 units are in-house but unused.

2.6 ADSL Disturbance

Fig. 5: AVIDIA 8000 DSLAM

- DSLAM: AVIDIA 8000 (Fig. 5).
 - o 12 ADSL ports (currently 3 used).
 - o 48 SDSL ports (proprietary SDSL power spectrum not compatible to HDSL).
- Modem: Pairgain MEGABIT MODEM 600F.
 - o 3 units.

ADSL service is run at 640 kbps downstream / 64 kbps upstream.

2.7 DDS Disturbance

- DDS terminal: Multitech MultiDSU64K.
 - o 2 units run point to point.
 - o Run in "PRBS test-mode" which mimics a real-world data transmission conditions.

2.8 HDSL2 Disturbance

Fig. 6: CPE modems, including Pairgain HDSL2 remote enclosure (bottom right)

The HDSL2 disturbance is realized using a Pairgain system which consists of DSU and CSU

- DSU: Pairgain HiGain Solitare
 - o 2 linecards 1 port per card
- CSU: Pairgain HRE 204 (Fig. 6)
 - o 2 ports

2.9 VDSL Disturbance

Fig. 7: Infineon IVES VDSL chipset evaluation boards

- Infineon IVES 22812 evaluation system (Fig. 7)
 - o Contains Infineon's 2nd generation VDSL chipset.
 - o Consists of two boards, one in Line Termination mode, one in Remote Terminal mode connected point to point to realize the VDSL connection.
 - o connected over 1kft of cable (at the CPE end of the cable).

3.0 Demonstration

The focus of this demonstration is on raw throughput over various reaches in the presence of various disturber scenarios. As such the demonstration system doesn't not

Performance under four disturbance scenarios will be demonstrated. These disturbance scenarios are detailed in the following table.

Disturbance source	Zero	Light	Medium	Heavy
ADSL	0	1	2	3
HDSL	Ö	1	2	3
HDSL2	Ö	1	2	2
VDSL	Ö	- 1	1 - 1	1
DDS	0	0	1 1	- 1
ISDN	0	0	<u>'</u>	1
# External Disturbers	0	5	111	13

Fig. 8: Disturbance Scenarios

CLAIMS

What is claimed is that which has been described in the foregoing and equivalents thereof.

ABSTRACT

A method and system are disclosed using multi-lines to deliver ultra high speeds in a communications system.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.