Application of First Order ODE (변수분리형과 선형방정식의 응용)

1계 미방을 이용한 모델링 문제

1) 인구 성장 모델

배양기에 있는 박테리아 수가 시간에 따라 증가한다. 성장 모델을 이용하여 언제 박테리아 수가 4000 마리가 되는지 예측하라. 최초의 박테리아수는 400이었다.

$$\frac{dP}{dt} = kP$$

변수 분리형 $\int \frac{1}{P} dP = \int k dt$

$$\ln |P| = kt + C$$

$$|P| = e^{kt + C}$$

$$P = (\pm e^{C})e^{kt}$$
Set $\pm e^{C} \equiv A$

$$P = Ae^{kt}$$

A = P(0) 초기 박테리아 수 주어진 정보로부터 P_0 와 K값을 구해보자.

$$A = P(0) = 400$$

$$P(10) = 400 e^{10k} = 2000$$

$$e^{10k} = 5, \quad 10k = \ln 5, \quad k = (1/10)\ln 5$$

$$P(t) = 400e^{kt} = 4000$$
 $e^{kt} = 10, \quad kt = \ln 10$ $t = (1/k)\ln 10 = 10 (\ln 10/\ln 5) \approx 10(2.3/1.6) \approx 14$

2) 뉴턴의 냉각 가열 법칙

초기 온도가 T_0 인 뜨거운 물체를 훨씬 온도가 낮은 공간 (이 곳의 온도를 A라 하자)에 두었다. 시간이 지남에 따라 이 물체의 온도는 감소하게 된다. 이 물체의 온도 변화를 설명하라.

$$T(t) = 시간 t(분)후물체의온도$$

뉴턴의 냉각 법칙에 따르면 물체의 온도 변화율(이 경우 감소율)은 물체의 온도와 주변 온도의 차이에 비례한다.

식으로 써보면 아래와 같다.

$$\frac{dT}{dt} = -K(T-A)$$

여기서 K는 양의 비례상수이다.

$$T(0) = T_0$$
 초기조건

변수 분리한 미분 방정식임을 알 수 있다. 따라서 해는 다음과 같이 구할 수 있다.

$$\int \frac{1}{T-A} dT = \int -Kdt$$

$$\ln |T-A| = -Kt + C$$

$$T-A = \pm e^{c} e^{-Kt}$$

$$T(t) = A + Ce^{-Kt}$$

Ex) 오븐에서 구운 케이크를 꺼낸다. 온도는 $300\,^{\circ}F$ 이다. 케이크를 두 방의 온도는 $70\,^{\circ}F$ 이다. 3분 후 온도는 $200\,^{\circ}F$ 이라면 얼마나 더 기다려야 온도가 $90\,^{\circ}F$ 이 되겠는가?

Sol)

$$\frac{dT}{dt} = -k(T - 70)$$

$$\int \frac{dT}{T - 70} = \int (-k)dt$$

$$\ln(T - 70) = -kt + C$$

$$T - 70 = Be^{-kt}$$

$$T(t) = 70 + Be^{-kt}$$

$$T(0) = 70 + B = 300, \quad B = 230$$

To decide k,
$$T(3)=200=70+Be^{-3k}$$

$$e^{-3k}=13/23$$

$$-3k=\ln{(13/23)}$$

$$k=(1/3)\ln{(23/13)}\approx 0.57/3=0.19$$

$$T(t) = 90 = 70 + 230e^{-kt}$$

 $20/230 = e^{-kt}$
 $kt = \ln(23/2)$
 $t = (1/k)\ln(23/2) \approx 2.44/0.19 = 12.8 \text{(min)}$

3) 1계 선형 미분방정식을 이용한 모델링의 예

Mixing problem

200갤런의 소금 용액이 담긴 탱크가 있다. 이 용액에는 100파운드의 소금이 용해되어있다. 탱크 안으로 농도가 1/8 파운드/갤런의 용액이 분당 3갤런의 속도로 유입되고 있다. 용액은 탱크 안에서 계속 잘 섞이고 있다. 동시에 탱크 안의 용액은 분당 3갤런의 속도로 탱크 밖으로 유출된다. t분 후의 탱크 안의 소금의 양은 어떻게 되겠는가?

- Q1. 최초의 소금물의 농도는?
- Q2. 탱크 안의 소금물 농도 (또는 소금의 양)의 변화 패턴을 어떻게 설명할 수 있는가?
- Q3. 오랜 시간이 지난 후 탱크 안의 소금물의 농도에 대해 짐작할 수 있는가?

Q(t) = t분 후 탱크 안의 소금의 양

 $\Delta Q =$ (salt imported during Δt) - (salt exported during Δt) (t에서 $t + \Delta t$ 까지 시간의 구간 동안의 소금양의 변화)

(salt imported during Δt) = (Δt 동안 유입된 물의 양) \times (유입되는 소금물의 농도)

(salt exported during Δt) = (Δt 동안 유출된 물의 양) \times (유출되는 소금물의 농도)

(salt imported during Δt) = (3 Δt 갤런) \times (1/8 파운드/갤런) = 3/8 Δt 갤런

(salt exported during Δt) = (3 Δt 갤런) \times (?) (탱크 안의 용액의 농도 $\approx Q(t)/200$ 파운드/갤런) (왜 근사치일까?)

$$\Delta Q \approx (3/8)\Delta t - (3/200)Q \Delta t$$

$$\frac{\Delta Q}{\Delta t} \approx \frac{3}{8} - \frac{3}{200}Q$$

$$\frac{dQ}{dt} = \frac{3}{8} - \frac{3}{200}Q$$

$$Q' + \frac{3}{200} \, Q = \frac{3}{8}$$
 초기조건은? (Q(0)= 100)

Q. 목표로 하는 농도에 이르는 시간을 미리 설정한다면 이 시간과 용액 순환 속도 사이의 관계는 무엇일까? 이 관계에 영향을 주는 요소들은 무엇이며 어떤 방식으로 관계식에 들어갈까?

Ex)

초기에 1천만 갤런의 깨끗한 물이 들어있는 연못이 있다. 원치 않는 화학 물질을 포함한 물은 연못에 500만 gal/yr의 속도로 흘러들어 가고, 연못의 혼합물은 같은 비율로 흘러나온다. 유입된 물의 화학 물질의 농도가 $\gamma(t)=2+\sin(2t)g/gal$ 의 식에 따라 주기적으로 변한다고할 때, 이 유동 과정의 수학적 모델을 세우고 시간에 따른 연못의 화학 물질의 양을 결정하시오. 답을 그래프로 그리고, 유입되는 농도 변화의 효과를 설명하시오.

Concentration of chemical : $\gamma(t) = 2 + \sin(2t) q/qal$

Set Q(t) = Amount of chemical in the pond at any time (t is measured in year),

임의의 순간 t에서 Δt 만큼 시간이 흐르는 동안 연못의 화학 물질의 양의 변화를 살펴보자.

$$\Delta Q = Q(t + \Delta t) - Q(t)$$

= (amount of chemical added) - (amount of chemical lost)

$$\approx (\Delta t \ yr) \times (5 \times 10^6 \ gal/yr) \times (\gamma(t) \ g/gal) - (\Delta t \ yr) \times (5 \times 10^6 \ gal/yr) \times (\frac{Q(t)}{10^7} g/gal)$$

$$\frac{\Delta Q}{\Delta t} \approx 5 \times 10^6 \gamma(t) - 5 \times 10^6 \times 10^{-7} \ Q(t)$$

$$\lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt} = 5 \times 10^6 \, \gamma(t) - \frac{5}{10} \, Q(t)$$

연못 안의 화학물질의 양을 설명하는 미분방정식을 다음과 같이 얻게 된다.

$$\frac{dQ}{dt} + \frac{5}{10}Q(t) = 5 \times 10^{6} (2 + \sin(2t))$$

계산의 편의를 위해 Q를 다음과 같이 치환한다.

$$q = \frac{Q}{10^{6}}$$

$$\frac{dq}{dt} + \frac{1}{2}q(t) = 5(2 + \sin(2t))$$

양변에 적분인자 $e^{\int (1/2)dt} = e^{\frac{1}{2}t}$ 을 곱한다.

$$(e^{\frac{1}{2}t}q)' = 5e^{\frac{1}{2}t}(2+\sin(2t))$$

$$e^{\frac{1}{2}t}q = 5\int (2e^{\frac{1}{2}t} + e^{\frac{1}{2}t}\sin(2t))dt$$

$$=20e^{\frac{1}{2}t}+\frac{5e^{\frac{1}{2}t}}{\frac{1}{4}+4}(\frac{1}{2}\sin{(2t)}-2\cos{(2t)}+C)$$

우변의 적분은 다음 공식을 이용한다.

$$\int e^{at}\sin(bt)dt = \frac{e^{at}}{a^2 + b^2}(a\cos(bt) - b\cos(bt)) + C$$

따라서 미분방정식의 일반해는 다음과 같다.

$$q(t) = 20 + Ce^{-\frac{1}{2}t} + \frac{20}{17}(\frac{1}{2}\sin(2t) - 2\cos(2t))$$

초기 조건으로 부터 C값을 구하면 다음과 같다

$$q(0) = 0$$

$$= 20 + C + \frac{20}{17}(0 - 2)$$

$$C = -20 + \frac{40}{17} = 20 \cdot \frac{2 - 17}{17} = \frac{-15 \times 20}{17} = -\frac{300}{17}.$$

초깃값 문제에 대한 최종 해는 다음과 같다

$$q(t) = 20 - \frac{300}{17}e^{-\frac{1}{2}t} + \frac{10}{17}\sin(2t) - \frac{40}{17}\cos(2t).$$

해에 있는 주기함수의 진폭을 구하기 위해 다음의 합성법을 사용한다.

$$\frac{10}{17}\sin(2t) - \frac{40}{17}\cos(2t)$$

$$= \frac{10}{17}(\sin(2t) - 4\cos(2t))$$

$$= \frac{10}{17}\sqrt{1+16}(\frac{1}{\sqrt{17}}\sin(2t) - \frac{4}{\sqrt{17}}\cos(2t))$$

$$= \frac{10}{\sqrt{17}}(\sin(2t)\cos(\alpha) - \cos(2t)\sin(\alpha))$$

$$= \frac{10}{\sqrt{17}}\sin(2t - \alpha)$$

진폭의 값은 대략 $\frac{10}{\sqrt{17}} \approx \frac{10}{\sqrt{16}} = \frac{10}{4} = \frac{5}{2} = 2.5$ 가 된다.

해의 초기의 변화는 다음과 같은 근사를 통해 짐작할 수 있다. 시간 t가 0에 가까우면

$$q(t) \approx 20 - \frac{40}{17} - \frac{300}{17} e^{-\frac{1}{2}t}$$
$$\approx \frac{300}{17} (1 - e^{-\frac{1}{2}t})$$

그래프를 그려보면 아래와 같다.

시간이 많이 지난 후 해의 변화는 다음과 같다. $t \rightarrow \infty$ 로 놓으면 해는 대략 다음과 같은 모양이다.

$$q(t)\approx 20+\frac{10}{\sqrt{17}}\sin{(2t-\alpha)}$$

연못의 화학 물질의 양의 변화를 그래프로 표현하면 대략 다음과 같음을 알 수 있다.

그림 6

$$Q(t) = 10^6 \times q(t) \approx 10^6 \times (20 + \frac{10}{\sqrt{17}} \sin(2t - \alpha))$$

$$c(t) = \frac{Q(t)}{10^7} g/gal \approx 2 + 0.25\sin(2t - \alpha)g/gal$$

유입되는 오염수의 농도를 기준으로 0.25의 진폭을 갖는다.

(Question) 진폭을 결정하는 것은 무엇인가? $\mu = (연간유입량)/(저수용량)$

=> 진폭=
$$\frac{\mu}{\sqrt{4+\mu^2}}$$
 (μ 가 증가하면 진폭도 증가 1을 넘지 않음)

예제) RL 회로

RL-회로라고 불리는 전기회로는 저항과 코일로 이루어져 있고 전압을 공급하는 전원이 있다.

전원을 켰을 때 회로의 전류가 시간에 따라 어떻게 변하는지가 주 관심이다.

R= 저항값으로 상수

L= 인덕턴스로 상수 (코일이 얼마나 촘촘하게 감겨있는지 나타냄)

V=V(t) 회로에 공급되는 전압

I=I(t) 회로에 흐르는 전류

관계식은 키르히호프(Kirchhoff)의 법칙을 이용하여 얻을 수 있다.

키르히호프의 법칙

닫힌회로에서 공급되는 전원의 전압이 회로의 각 장치에서의 강하되는 전압의 총합과 같다

V R =? and V L=?

(1) 저항에서 강하되는 전압은 옴(Ohm)의 법칙에 따라 V R = RI이 된다.

(2) 코일에서 강하되는 전압은 V_L= $L\frac{dI}{dt}$ 이다.

=>
$$L\frac{dI}{dt} + RI = V$$
 (1계 선형 미분방정식)

미분방정식의 해를 구하기

표준형: $\frac{dI}{dt} + \frac{R}{L}I = \frac{V}{L}$

적분인자 $\mu = e^{\int \frac{R}{L} dt} = e^{\frac{R}{L}t}$

이를 미분방정식 양변에 곱하면

$$e^{\frac{R}{L}t}(\frac{dI}{dt} + \frac{R}{L}I) = \frac{1}{L}e^{\frac{R}{L}t}V$$

$$\frac{d}{dt}(e^{\frac{R}{L}t}I) = \frac{1}{L}e^{\frac{R}{L}t}V$$

양변을 t에 대해 적분하면

$$e^{\frac{R}{L}t}$$
 $I = \frac{1}{L} \int e^{\frac{R}{L}t} V dt = \frac{V}{L} \frac{L}{R} e^{\frac{R}{L}t} + C$

일반해는
$$I(t) = \frac{V}{R} + Ce^{-\frac{R}{L}t}$$

초기조건 $I\!\left(0\right)\!=\!I_{\!0}$ 을 이용하면 $I_{\!0}=V\!/R\!+C$

=> 초깃값 문제에 대한 해는

$$I(t) = \frac{V}{R} + (I_0 - \frac{V}{R})e^{-\frac{R}{L}t}$$

흥미로운 점: 초기전류와 V/R 사이의 관계에 따라 전류의 변화가 다른 패턴을 보여준다.

(1)
$$I_0<rac{V}{R}$$
 인 경우

$$I(t) = \frac{V}{R} + (I_0 - \frac{V}{R})e^{-\frac{R}{L}t}$$
는 증가함수가 된다.

- 아래 그래프의 수평축은 시간을 나타내며 수직축은 전류를 나타낸다.
- 특별히 전류가 궁극적으로 V/R 향해 점점 증가하는 것을 알 수 있다.

(2)
$$I_0>rac{V}{R}$$
 인 경우

$$I\!(t) = rac{V}{R} + (I_0 - rac{V}{R})e^{-rac{R}{L}t}$$
 는 감소함수가 된다.

- -전류는 시간이 지남에 따라서 $\mathit{V/R}$ 향해 점점 감소
- -해가 지수함수로 표현되어 있기 때문에 초기에 전류가 급격히 감소

그림 9