INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH, MOHALI CHM201: SPECTROSCOPIC AND OTHERR PHYSICAL METHODS

Constants: $N = 6.023*10^{23} \text{ mol}^{-1}$; $k = 1.381*10^{-23} \text{ JK}^{-1}$; $h = 6.626*10^{-34} \text{ Js}$; $c = 3*10^8 \text{ ms}^{-1}$; Rel. atomic weight of H = 1.000; absolute mass of H-atom = 1.67343*10⁻²⁷ kg.

1. An experimental Rotation-Vibration spectrum of ${}^{1}\text{H}$ - ${}^{35}\text{Cl}$ for v=0 to v=1 transition is shown in Figure 1 and the corresponding band positions are given below:

 $P_0 = 8.60^*10^{13}\;Hz\;;\; R_1 = 8.70^*10^{13}\,Hz$

(a). Calculate the (i) rotational constant (in cm⁻¹), (ii) equilibrium bond length (nm), (iii) anharmonicity constant and (iv) force-constant (pN/nm) of $^1H^{-35}CI$ from the spectrum. [Given the equilibrium oscillation frequency, $\overline{w_e}$ =2990 cm⁻¹]

2.5 + 2.5 + 2.5 + 2.5 = 10

b. If the equilibrium oscillation frequency of CO is, $\overline{w_e} = 2990 \text{ cm}^{-1}$, $\overline{w_e}^* x_e = 52 \text{ cm}^{-1}$ and the equilibrium dissociation energy (D_e) is 35486 cm⁻¹. Calculate the experimental dissociation energy (D_o).

c. Draw schematically the pure rotational energy levels of rigid $^{12}C^{16}O$ and compare it with $^{13}C^{16}O$. Extend this comparison for non-rigid $^{13}C^{16}O$ on the same energy diagram.

2. Each question contains (+2) marks for correct answer and (-2) marks for wrong answer. Fill the correct circle with pen of any color.

a)	$10^*2 = 20$ In Figure 1, we observe doublets for P and R bands and these doublets are due to the fact that:
	O ¹H-³5Cl is a non-rigid rotor;
	O The transition is associated with vibrational transition;
	O The sample of ¹ H- ³⁵ Cl is naturally mixed with ¹ H- ³⁷ Cl;
	O ¹ H- ³⁵ Cl is a rigid rotor;
b)	In FT-IR spectroscopy, we do Fourier transform of the data as
	O Temporal function to frequency function
	O Interferrogram to frequency function
	O Frequency function to Interferrogram
	O Temporal function to wavelength function
c)	The lifetime of a state that gives rise to a line of width 1 cm ⁻¹ is
	O 5 ps
	O 5 ns
	O 10 ns
	O 1 ns
d)	Role of a grating in a spectrometer is to
	O Steer monochromatic beam in different directions
	O Disperse white light into different wavelengths
	O Count no of photons falling on detector
	O Focus the incident radiation to sample
e)	The peak maxima for any rotational spectrum
	O appears at $J=0$ to $J=1$ transition always
	O Is dependent on molecules under probe
	O Is dependent on the ground state of <i>v</i>
	O Is random
f)	The molecule ¹⁶ O- ¹⁸ O is microwave-active,
	O Always
	O Only when associated with vibrational transitions
	O Never
	O Only when the incident radiation is along the principle rotational axis of the molecule
g)	The peak maxima for any vibrational spectrum
	O appears at $v = 0$ to $v = 1$ transition always

	O Is dependent on molecules under probe
	O Is random
	O None of the above
h)	Blue sky is fact of
	O Mie scattering
	O Raman scattering
	O Rayleigh scattering
	O Tyndall effect
i)	Absorbance (A) higher than 2 is
	O Desirable as it makes the measurement more efficient
	O Not desirable as only a small fraction of light transmitted to detector
	O Desirable otherwise detector cannot detect molecules
	O Not desirable as detector goes blind with such a high intensity of light
j)	A biker is approaching a traffic light at a speed of $6.4*10^7$ m/s and as a consequence he sees a red light (660 nm) as a green (520 nm). This is because of
	O Doppler effect
	O Line-broadening
	O It is not possible to see red as green
	O Red and green are kept so closely in the traffic light

ROUGH WORK