ENSAO / MAS COURSE

Oujda 18 October 2019

MAS Course 04

Yves Demazeau

Yves.Demazeau@imag.fr

CNRS Laboratoire d'Informatique de Grenoble

VVOS DEMAZEALL - 1

CONTENTS

APPLICATION: CALENDARS & CITIZEN AGENTS

COGNITIVE COORDINATION

NEGOTIATION

ORGANISATIONS

NETWORKS

APPLICATION: AGENTCITIES

COMPLEMENTARY REFERENCES

CNRS Laboratoire d'Informatique de Grenoble

DECENTRALIZED CALENDARS

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEALL - 1

DECENTRALIZED CALENDARS [Demazeau 06]

An internal project, to support every day's life of every citizen.

VOWELS approach

- One personal assistant per life domain, being the A
- Environment E : Temporal environment mainly
- Interactions | : Sharing, Trusting, Negotiating
- Groups O : Family, Team, Consortium
- User U: Importance and urgency are subjective

Y. Demazeau, D. Melaye, M.-H. Verrons, "A Decentralized Calendar System Featuring Sharing, Trusting and Negotiating", 19th IEA/AIE'06, Annecy, 2006.

CNRS Laboratoire d'Informatique de Grenoble

DECENTRALIZED CALENDARS

Decentralized Calendars

- Negotiating meetings and sharing eventsImportance and urgency as subjective features
- Local storage of the calendars and partial mutual knowledge

Approach

- Individual interactions: Sharing, Trusting, Negotiating
- Full sharing: CSP-like solution
 Partial sharing: introduction of trust
 No sharing: negotiation is necessary!
 Broadcasting to groups: Family, Team, Consortium

CNRS Laboratoire d'Informatique de Grenoble

Sharing Timetables

When timetables are shared, the meetings can be scheduled by well-known CSP techniques...

Groups

- Social organization of the agents
- Groups are structured in a hierarchy with subsumption relation

Sharing and groups

- An event can be public or private or...
- ...shared by several agents, but not all of them
- Sharing information or not according to the groups the agent belongs to
- If an agent belongs to several groups, its sharing capability is the logical combination of the sharing capability of its groups

CNRS Laboratoire d'Informatique de Grenoble

Importance and Urgency

Addition of an event

- Importance and urgency: two common dimensions of time handling, used by all agents,
- Each agent has a subjective vision of the combined priorities. Usually:

	High urgency	Low urgency
High importance	1	II
Low importance	III	IV

Checking consistency

- A higher priority task cannot be scheduled after a less priority one
- This is the responsibility of the user! The system only checks the constraint

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 7

Trust in Agents

Why trust?

- Trust is a central mechanism of coordination in situation of ignorance
- Trust can compensate the absence of information due to absence of sharing
- Individual trust supports dynamics

Sharing with trust

- A trust model calculates a trust capability in an agent permitting the sharing with this agent
- The trust model is based on several sources of trust (reputation, experiences, categorization, etc.)
- Which sources of trust to choose? It depends to the context, all sources are not necessarily at disposal

Negotiating a meeting (1)

In absence of sharing, negotiation is necessary

Negotiation level

- Several rounds of negotiation
- Proposition, counter-proposition, confirmation and retraction of meetings

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 9

Negotiating a meeting (2)

Strategic level

Negotiation a meeting inside a time interval of possible solutions

 These intervals are built from the tasks and according to the different importance/urgency priorities

CNRS Laboratoire d'Informatique de Grenoble

CITIZEN AGENTS

To support every day's life of every citizen

VOWELS approach

- One personal assistant per life domain, being the A
- Environment E : Temporal environment mainly
- Interactions I: Sharing, Trusting, Negotiating
- Groups O : Family, Team, Consortium
- User U: Importance and urgency are subjective

Applications

- Leisure : citizen as a consumer
- Finance : citizen as a partner
- Administration : citizen as a provider

CNRS Laboratoire d'Informatique de Grenoble

CNRS Laboratoire d'Informatique de Grenoble Yves DEMAZEAU - 16

TA Centralized allocation

Advantages

- Simple to realize
- System coherence (the broker knows every agent)
- More or less easy to add or suppress agents (check in, check out protocol)

Drawbacks

- Sensitive to broker failure
- Bottleneck for messages (in O(N²))
- Useless for very large networks (use many brokers)

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 19

TA Acquaintance networks

Each agent "knows" the skills of a set of agents

Direct allocation

 An agent request a service to agents it directly knows

Indirect allocation

- Speech acts are propagated through the network
- Uses algorithms adapted from distributed operating systems classics

CNRS Laboratoire d'Informatique de Grenoble

TA Acquaintance networks

Advantages

- Not sensitive to failures or shut down of agents
- Good performances due to parallelism
- Can introduce learning methods to increase performances

Drawbacks

- Problem of reorganization of acquaintance network when an agent is suppressed (see the problem of management of URL links in the WWW)
- More difficult to implement (due to parallelism).
- Subject to incoherencies

CNRS Laboratoire d'Informatique de Grenoble

YVAS DEMAZEALL - 21

TA Contract Net [Smith 80]

The most widely known algorithm in DAI

Uses the protocol of state markets and two types of agents (two roles)

Managers and Bidders

It is realized in 4 steps: Call for offer, Offers (bids), Awarding contract, Contracting and work

Problems with the Contract Net

- Subcontractors and commitment
- Deadlines
- Multiple managers and optimality

CNRS Laboratoire d'Informatique de Grenoble

SYNCHRONIZATION The Cyclist example

The cyclist example

CNRS Laboratoire d'Informatique de Grenoble

YVAS DEMAZEALL - 25

SYNCHRONIZATION The resource access example

behavior Tim
go to the machine
places metal in
machine
makes a nut
carry nut to stock

behavior Tom
go to the machine
places metal in
machine
makes a bolt
carry bolt to stock

Pb: conflict between Tim and Tom to access the machine

CNRS Laboratoire d'Informatique de Grenoble

SYNCHRONIZATION The resource access example

Consider the machine as an agent (at least as a process) which gives access to one agent at one time

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 27

AD Multi-Agent Planning [Grosz 96]

Find a sequence of operators Oi such that Sfin = On(... O2(O1(Sinit)) ...). Each operator is seen as a transition in a state space. The solution is obtained by finding a path from initial state to final state.

Centralized planning for multiple agents Centralized coordination for partial plans Distributed coordination for partial plans

CNRS Laboratoire d'Informatique de Grenoble

AD Centralized planning

Coordination = resource allocation

+

synchronization

Each arm is considered as a resource and is represented as a token in the Petri net

CNRS Laboratoire d'Informatique de Grenoble

YVAS DEMAZEAU - 31

AD Centralized coordination

The planning process is distributed but coordination of partial plan is centralized. The preferred approach.

CNRS Laboratoire d'Informatique de Grenoble

AD Distributed Coordination

The planning process is distributed but coordination of partial plan is centralized. The most difficult.

Partial Global Planning as the main result so far.
Assumption-based planning algorithms since then.

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEALL - 37

AD Distributed coordination [Durfee 91]

Each agent produces a partial plan. Existence of possible conflicts between the different plans (more difficult situation, non exhaustively solved by now)

Possible solutions

- One agent receives all the partial plans (centralizing, merging, synchronizing partial plans)
- Every agent sends its partial plans to everybody (each agent analyses the potential conflicts and identifies the conflicts with its own plans)
- The partial plans are executed. As soon as some conflict occurs during the execution, it is identified and handled (which means that dynamic re-planning and execution is possible) (example PGP: Partial Global Planning)

AD Distributed coordination

Two questions:

- Find the other agents with whom one should coordinate its plan
 When does it have to be coordinated

Problems

- Detect conflict and synergiesConvergence of plans
- See for instance: PGP (Lesser, Durfee, Decker,..)

CNRS Laboratoire d'Informatique de Grenoble

AD Assumption-Based Planning

Agents interact collaboratively in the dialog in order to co-construct a plan without assumption

Agents have a dialogue based on speech acts

Agents can refine, refute, repair a conjecture. The plan is produced and revised through conjecture / refutation cycles

As in argumentation, the current plan is acceptable when the conjecture / refutation cycles end and no more objection remains

AD Assumption-Based Planning [Pellier 05]

Ideas

- Planning expressed as a problem where agents exchange proposals and counter-proposals
- Agents are able to formulate plan steps on hypothetical states of the world (conjectures)

Advantages

- The approach merges the three steps : collaborative plan
- generation, composition, coordination

 The uncertainty as taken into account in the agents reasoning allows the agents to make conjectures and to compose their heterogeneous competences

An agent can

- Elaborate plans under partial knowledge
- Produce plans that partially contradicts its knowledge

CNRS Laboratoire d'Informatique de Grenoble

NEGOTIATION [Davis 83]

Conflict Resolution

Agents pursuing similar or different goals will have to face conflicts: • resource accessibility • alternative solutions • conflicting interests or goals

Example of conflict resolution techniques:

A priori solution using strength, authority, ...

CNRS Laboratoire d'Informatique de Grenoble

Conflict Resolution

Agents pursuing similar or different goals will have to face conflicts: • resource accessibility • alternative solutions • conflicting interests or goals

Example of conflict resolution techniques:

- A priori solution using strength, authority, ...
- Mediation by a third agent which knows about the different points of view, and tries to solve the conflict

Example of mediation on the net [Koning 95]

J.-L. Koning, M. Occello, N. Ferrand, Y. Demazeau, F. Van Aeken & Ch. Baeijs, "A Multi-Agent Approach for Mediation Support on the Net", 1st Int. Workshop on Decentralized Intelligent and MAS, DIMAS'95, pp. 251-258, Krakow, 1995.

CNRS Laboratoire d'Informatique de Grenoble

Conflict Resolution

Agents pursuing similar or different goals will have to face conflicts: • resource accessibility • alternative solutions • conflicting interests or goals

Example of conflict resolution techniques:

- A priori solution using strength, authority, ...
- Mediation by a third agent which knows about the different points of view, and tries to solve the conflict
- Negotiation agents in conflict enter a transactional phase (exchanges, compromises, persuasive arguments, disagreement with the compromise or argument, requests for additional information, reasons for disagreement, utilities / preferences for the disagreed-upon issues) in order to reach an agreement, i.e. an equilibrium state

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 4!

Negotiation Structure

Negotiation structure

- step 1 : A propose a solution
- step 2 : B evaluates the solution, determines its satisfaction
- step 3: If B is satisfied, ok, otherwise B propose another solution with regards to its own goals and constraints
- step 4 : goto step 1 exchanging A and B roles

Negotiation control

Negotiation structure

- step 1 : A propose a solution
- step 2 : B evaluates the solution, determines its satisfaction
- step 3: If B is satisfied, ok, otherwise B propose another solution with regards to its own goals and constraints
- step 4 : goto step 1 exchanging A and B roles

Negotiation control

- Consensus (zero cost as summary): the solution is found without additional cost for either of one or the other agent
- Compromise: (negative utility as summary) each party relaxes its weakest constraints. The solution is found as soon as every constraint is satisfied
- Integration: (positive utility as summary) each part tries to induce the deep goals of the others and then tries to find a solution which will satisfy these deep goals, even not the fully surface solutions

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 47

Conflict resolution

Agents pursuing similar or different goals will have to face conflicts: • resource accessibility • alternative solutions • conflicting interests or goals

Example of conflict resolution techniques:

- A priori solution using strength, authority, ...
- Mediation by a third agent which knows about the different points of view, and tries to solve the conflict
- Negotiation agents enter a transactional phase in order to reach an agreement, i.e. an equilibrium state
- Flip a coin

Conflict resolution

Agents pursuing similar or different goals will have to face conflicts: • resource accessibility • alternative solutions • conflicting interests or goals

Example of conflict resolution techniques:

- A priori solution using strength, authority, ...
- Mediation by a third agent which knows about the different points of view, and tries to solve the conflict
- Negotiation agents enter a transactional phase in order to reach an agreement, i.e. an equilibrium state
- Flip a coin

CNRS Laboratoire d'Informatique de Grenoble

VVOS DEMAZEALL - 40

TRUST

Trust in MAS

Expansion of the distributed systems such as electronic trade, services for citizens, or BtoB applications

- Act in an open, unpredictable, dynamic environment
- Need for guaranteeing security
- Need for providing the best services for other services and users

Trust: mechanism of social integration and mechanism of coordination

CNRS Laboratoire d'Informatique de Grenoble

YVAS DEMAZEAU - 51

Trust model based [Melaye 05]

Trust is regarded as a mental state and consists of beliefs in the behaviour of the other, in connection with something in a precise field or context.

CNRS Laboratoire d'Informatique de Grenoble

Bayesian trust network: first approach

- Beliefs: ability, willingness, danger, opportunity...
- Each component is associated with a probability of satisfaction. The subjective certainty of the beliefs is derived from the credibility of their sources

- Computation by Bayesian inference: influences between the components are supported by conditional probabilities
- Dynamics using Kalman filtering

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 53

Dynamic trust model: first experiments

Simple instantiation of our model

- Two beliefs and only one source
- Bernoulli distribution
- A priori distribution: uniform
- Common sense inertia: the decrease is faster than the increase
- No belief is privileged

Erosion: in the absence of information, trust drifts towards a default value corresponding to an increase of the uncertainty

CNRS Laboratoire d'Informatique de Grenoble

YVAS DEMAZEAU - 55

Experiment: impact of a negative observation

Only one negative observation corresponds to a contradiction perceived in regard to the previous positive observations

CNRS Laboratoire d'Informatique de Grenoble

Experiment: impact of a positive observation

Only one positive observation has a weak impact on trust

CNRS Laboratoire d'Informatique de Grenoble

YVAS DEMAZEAU - 57

Experiment: versatile behaviour

Inertia of trust and distrust: speed to swing to one to the other

CNRS Laboratoire d'Informatique de Grenoble

ORGANISATIONS

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 59

History (1)

-> 1992 : Introducing the concept

- 77 : Distributed Interpretation Hearsay-II [Lesser 80]
- 80 : Contract Net [Smith 80]
- 83 : Organizational Self-Design DVMT [Corkill 83]
- 87 : Organizational Structures [Pattison 87]
- 89 : Organization Knowledge MACE [Gasser 89]
- 90 : Roles and Social Structure [Werner 89]

1990 -> 2000 : Settling the concept

- 92 : Organizations and Coordination [Bouron 92]
- 92 : Social Laws [Shoham 92]
- 93 : ASIC [Boissier 93][Ricordel 99]
- 93 : Conventions [Jennings 93]
- 94 : Dependence Networks [Sichman 94]
- 95 : AEİO [Demazeau 95]

History (2)

1990 -> 2000 : Setting the concept

- 96 : PopOrgs [Demazeau 96][Costa 96]
- 96 : Norms [Dignum 96] [Conte 99]
- 96 : Learning [Prasad 96] [Camps 98]
- 98 : Agents, Groups, Roles [Gutknecht 98]
- 98 : Roles [Kendall 98] [Stone 98]
- 99 : Dynamics [Baeijs 98] [Van Aeken 99] [Kozlak 00]

1998 -> : Exploiting the concept

- 98 : Organization Oriented Programming [Lemaitre 98]
- 98 : MADKIT platform (AGR) [Gutknecht 98]
- 99 : Institutions [Sergot 99] [Esteva 01]
- 01 : VOLCANO platform (AEIO) [Ricordel 01]
- 01 : MESSAGE methodology [Garijo 01]
- 01 : VOWELS [Demazeau 01]

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 61

Definitions (1)

An arrangement of relationships between components, which results into an entity, a system, that has unknown skills at the level of the individuals [Morin 77]: emergence

An organization is characterized by: a division of tasks, a distribution of roles, authority systems, communication systems, contribution-retribution systems [Bernoux 85]: norms

A decision and communication schema which is applied to a set of actors that together fulfil a set of tasks in order to satisfy goals while guarantying a global coherent state [Malone 87]: design

CNRS Laboratoire d'Informatique de Grenoble

Vyes DEMAZEALL - 62

Definitions (2)

Tools to solve complex problems in order to overcome the individual limitations (cognitive, physical, temporal, institutional, ...) [Gasser 01]: problem solving

Models and tools to define a social order and to guarantee a social control [Castefranchi 01]: sociopsychology

Organizations (O) as a ground brick of MAS just like the Agents (A), the Environment (E), and the Interactions (I), Organizations (O) as elements for structuring sets of entities within the MAS [Demazeau 95 97 02]: computer engineering

CNRS Laboratoire d'Informatique de Grenoble

VVOS DEMAZEALL - 6

Types and Classes [Baeijs 96]

Types

- Teams: shared environment in which agents interact
- Communities of practice: formation of groups independently of predefined schemas
- SIGs: gathering of agents sharing some interest
- Markets: common value sharing
- Groups: goal sharing, heterarchical decision
- Hierarchies: system sharing, hierarchical decision

Types and Classes [Baeijs 96]

Types

- **Teams**: shared environment in which agents interact
- Communities of practice: formation of groups independently of predefined schemas
- SIGs: gathering of agents sharing some interest
- Markets : common value sharing
- Groups : goal sharing, heterarchical decision
- Hierarchies: system sharing, hierarchical decision

Classes

- Centralized: simple hierarchies, multi-level hierarchies, recursive structures, ...
- Decentralized : multiple hierarchies, Markets, Markets, ...
- Unstructured: groups, teams, SIGs, communities of practice, ...

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 69

Types and Classes [Baeijs 96]

Types

- Teams: shared environment in which agents interact
- Communities of practice: formation of groups independently of predefined schemas
- SIGs: gathering of agents sharing some interest
- Markets: common value sharing
- Groups: goal sharing, heterarchical decision
- Hierarchies: system sharing, hierarchical decision

Classes

- Centralized: simple hierarchies, multi-level hierarchies, recursive structures, ...
- Decentralized : multiple hierarchies, Markets, Markets, ...
- Unstructured: groups, teams, SIGs, communities of practice, ...

Inspiration sources (1) [Demazeau 02]

Mathematics

- [Corkill 83], [Bouron 92], [Boissier 93], [Ricordel 99]
- Orders, to improve convergence issues.
- O as predefined authorities or shared social laws, that translate the controller-controlled relationships between possible pairs of agents.
- O are implemented as explicit rules, usually external.

CNRS Laboratoire d'Informatique de Grenoble

VVOS DEMAZEALL - 67

Inspiration sources (1) [Demazeau 02]

Mathematics

- [Corkill 83], [Bouron 92], [Boissier 93], [Ricordel 99]
- Orders, to improve convergence issues.
- O as predefined authorities or shared social laws, that translate the controller-controlled relationships between possible pairs of agents.
- O are implemented as explicit rules, usually external.

Economics

- [Carley 99], [Kozlak 00]
- Markets, to educate users and to preserve resources.
- O as types and roles of agents sharing a common value, limiting their interactions with the environment and other agents.
- O are entirely embedded in migrating agents.

CNRS Laboratoire d'Informatique de Grenoble

Inspiration sources (1) [Demazeau 02]

Mathematics

- [Corkill 83], [Bouron 92], [Boissier 93], [Ricordel 99]
- Orders, to improve convergence issues.
- O as predefined authorities or shared social laws, that translate the controller-controlled relationships between possible pairs of agents.
- O are implemented as explicit rules, usually external.

Economics

- [Carley 99], [Kozlak 00]
- Markets, to educate users and to preserve resources.
- O as types and roles of agents sharing a common value, limiting their interactions with the environment and other agents.
- O are entirely embedded in migrating agents.

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 69

Inspiration sources (2) [Demazeau 02]

Mechanics

- [Baeijs 98]
- Forces, to extract solutions of unsolved problems.
- O as global structures to emerge from local interactions between agents of different classes, locally organized as groups sharing common features of interest.
- O are implemented as neighborhood graphs.

Inspiration sources (2) [Demazeau 02]

Mechanics

- [Baeijs 98]
- Forces, to extract solutions of unsolved problems.
- O as global structures to emerge from local interactions between agents of different classes, locally organized as groups sharing common features of interest.
- O are implemented as neighborhood graphs.

Social Psychology

- [Sichman 94], [Hannoun 99]
- Graphs, to compute the Human and Social Sciences models
- O express social dependences wrt actions and resources, enable to build dependence networks forming coalitions.
- O is represented as a network of acquaintances and links.

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 71

Inspiration sources (2) [Demazeau 02]

Mechanics

- [Baeijs 98]
- Forces, to extract solutions of unsolved problems.
- O as global structures to emerge from local interactions between agents of different classes, locally organized as groups sharing common features of interest.
- O are implemented as neighborhood graphs.

Social Psychology

- [Sichman 94], [Hannoun 99]
- Graphs, to compute the Human and Social Sciences models
- O express social dependences wrt actions and resources, enable to build dependence networks forming coalitions.
- O is represented as a network of acquaintances and links.
- J. Sichman, R. Conte, Y. Demazeau & C. Castelfranchi, "A Social Reasoning Mechanism based on Dependence Networks", 12th Eur. Conference on AI, ECAl'94, pp. 188-192, 1994.

CNRS Laboratoire d'Informatique de Grenoble

Inspiration sources (3) [Demazeau 02]

Sociology

- [Costa 96], [Demazeau 96]
- Relationships, to maintain functional integrity of systems.
- O as states of organizations, to be matched with the set of interacting agents (population).
- O are implemented as autonomous structures composed of organizational roles and organizational links.

CNRS Laboratoire d'Informatique de Grenoble

VVAS DEMAZEALL - 7

Inspiration sources (3) [Demazeau 02]

Sociology

- [Costa 96], [Demazeau 96]
- Relationships, to maintain functional integrity of systems.
- O as states of organizations, to be matched with the set of interacting agents (population).
- O are implemented as autonomous structures composed of organizational roles and organizational links.

Thermodynamics

- [Van Aeken 99]
- MAS in WWW, to dynamically structure it, to optimize its social organization.
- O as recursive pairs of agents looking like the same, to be permanently restructured to optimize balance and entropy.
- O are represented by non-ordered binary trees.

CNRS Laboratoire d'Informatique de Grenoble

VVAS DEMAZEALL - 74

Inspiration sources (3) [Demazeau 02]

Sociology

- [Costa 96], [Demazeau 96]
- Relationships, to maintain functional integrity of systems.
- O as states of organizations, to be matched with the set of interacting agents (population).
- O are implemented as autonomous structures composed of organizational roles and organizational links.

Thermodynamics

- [Van Aeken 99]
- MAS in WWW, to dynamically structure it, to optimize its social organization.
- O as recursive pairs of agents looking like the same, to be permanently restructured to optimize balance and entropy.
- O are represented by non-ordered binary trees.

CNRS Laboratoire d'Informatique de Grenoble

Minimal Multi-Agent Systems (1) [Van Aeken 98]

Atomic agents and more complex agents

$$\Lambda = \{ S \mid S = \Delta \text{ or } S = (G D) = (D G) \text{ with } G, D \in \Lambda \}$$

Agents behavior

« qui se ressemble, s'assemble »

MAS behavior

- Size of a closed SMAM is constant over time
 Equilibrium of a closed SMAM is maximizing over time
 Entropy of a closed SMAM is maximizing over time

Minimal Multi-Agent Systems (2) [Van Aeken 98]

Measuring SMAMs: Size, EQuilibrium, Entropy

$$EQ(S) = \frac{E(S)}{\log_2(TR(S))}$$

$$EQ(D) = 1$$

$$E(S) = \sum \frac{N(A)}{2^{N(A)}}$$

Francis Van Aeken & Yves Demazeau, "Minimal Multi-Agent Systems" (poster), 3rd International Conference on Multi-Agent Systems, ICMAS'98, IEEE, pp. 471-472, Paris, July 1998.

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 77

FRIENDS (industrial project)

A joint project between INPG and France Telecom

Vowels Approach

- Agents and Organizations as basic design bricks
- Dynamics principle : « qui se ressemble, s'assemble »
- Size of a closed SMAM is constant over time
- Equilibrium of a closed SMAM is maximizing over time
- Entropy of a closed SMAM is maximizing over time

Applications

- Augmented SMAMs vs. pure SMAMs
 - introduction of symbols
 - Adding attributes
- Friends
 - Off-Line (users and keywords)
 - On-Line (communityware, testing at ICMAS 98)
 - Numbercruncher (clustering, France Telecom QuiQuoiOù)

FRIENDS (industrial project) / Numbercruncher

QuiQuoiOù Data (France Telecom)

- 4997 services
- 146674 keywords, 16384 being different
- 70337 seconds (19.5 hours)
- 128 identified groups at level 7, and 18 at level 6

Identified Groups at level 6

- RELIGION LINGUISTIQUE SPORT POLITIQUE ALIMENTATION ZOOLOGIE LITTERATURE MUSIQUE
 COMMERCE MEDIA DROIT MEDECINE
 ART TRANSPORTS EDUCATION TELECOM MEDECINE

INFORMATIQUE GEOGRAPHIE

Example of the GEOGRAPHIE subgroups

CANADA FRANCE BELGIQUE AGRICULTURE
TRANSPORTS ...

CNRS Laboratoire d'Informatique de Grenoble

Self-organisation

Firstly mentioned in the domain of physics

Definition: Changes to the internal order or organisation of a system without guidance or management from an outside source

Examples: Natural section (characteristics that support survival become more common in the species), evolutionary computation, brain plasticity, neural networks, flocking behaviour

Often confused with emergence, but...

- there are instances of self-organisation without emergence
- there are instances of emergence without self-organisation

PopOrgs (1): Populations [Demazeau 96]

The **Population** structure is the set of agents, the set of possible behaviors of the agents, and the set of all interaction processes between agents

Pop = (Ag, Bh, Ip; bc, ic)

- Ag set of Agents
- set of Behaviors agents are able to perform
- Ip set of interaction processes
- bcAg ---> P(Bh), behavioral capability
 bc(a), set of behaviors a is able to perform
- ic Ag x Ag ---> P(Ip), interaction capability ic(a1,a2), set of interaction processes agents a1 and a2 may perform together

CNRS Laboratoire d'Informatique de Grenoble

VVAS DEMAZEALL - 81

PopOrgs (2): Organisations

The Organization structure is composed of organizational roles and organizational links

Org = (Ro; Li)

Ro is defined in a relational way

- e.g. Ro ⊆ Lp x Gp : global processes (Gp) and local processes (Lp), the role is the part of agent's behavior that is integrated in the global process.
- e.g. Ro ⊆ Fo x Lv : foci of interest (Fo), representation levels (Lv), the role is the agent's behavior for a given focus at a given level.

Li ⊂ Ro x Ro

PopOrgs (3): Pop ℜ Org

The suitable relation between the Pop and the Org is the system's organization implementation

It is any relation imp = Pop \Re Org, on (Ro x Ag) \cup (Li x Ip), Pop = (Ag, Bh, Ip; bc, ic), Org = (Ro; Li).

- if (r,a) ∈ imp, r is said to implemented by a
- if (l,p) ∈ imp, l is said to implemented by p

imp is said "proper" iff ℜ is an homomorphism.

- ∀ r ∈ Ro, ∃ a ∈ Ag / (r,a) ∈ imp, and r is properly implemented by some behavior b ∈ bc(a)
- ∀ | = (|1,|2) ∈ Li, ∃ ip ∈ |p / { (|,ip) ∈ imp, A ∃ (a1,a2) ∈ Ag x Ag / ip ∈ ic(a1,a2), (r1,a1) ∈ imp, (r2,a2) ∈ imp, and r1, r2 are properly implemented by the behaviors of a1 and a2, respectively }

CNRS Laboratoire d'Informatique de Grenoble

VVOS DEMAZEALL - 83

PopOrgs (4): Pop R Org [Demazeau 96]

The Interior (= Population + Organization) of a timeinvariant multi-agent system is captured by a population-organization structure PopOrg = (Pop, Org; imp), where

- Pop = (Ag, Bh, Ip; bc, ic) is a population structure
- Org = (Ro; Li) is a organization structure
- imp ⊆ (Ro x Ag) ∪ (Li x Ip) is an organization implementation relation as defined previously

Y. Demazeau & A. Rocha Costa, "Populations and Organizations in Open MAS", 1st Nat. Symposium on Parallel and Distributed AI, PDAI'96, Hyderabad, 1996.

CNRS Laboratoire d'Informatique de Grenoble

VVOS DEMAZEALL - 84

NETWORKS CNRS Laboratoire d'Informatique de Grenoble Yves DEMAZEAU - 85

Dependency Networks [Sichman 94]

Each agent evaluates its social (goals or resource) dependencies from the external description of other agents, in terms of goals, actions, and resources

social-autonomy (g) = action-autonomy (a,g) and resource-autonomy (r,g)

social-dependency (g) = action-dependency (a,g) or resource-dependency (r,g)

J. Sichman, R. Conte, Y. Demazeau & C. Castelfranchi, "A Social Reasoning Mechanism based on Dependence Networks", 12th Eur. Conference on AI, ECAl'94, pp. 188-192, 1994.

CNRS Laboratoire d'Informatique de Grenoble

YVAS DEMAZEALL - 94

Dependency Networks [Sichman 94]

Dependency Relationships between two agents

- Independency (IND)
- Unilateral dependency (UD)
- Mutual dependency (MD)
 - For the same goal
- Reciprocal dependency (RD)
 For different goals
- Locally believed dependency (LB)
- A1 cannot infer the dependency from A2's description
- Mutually believed dependency (MB)
 A1 can infer the dependency from A2's description

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 96

Trust Networks [Melaye 05]

Beliefs: ability, willingness, danger, opportunity... Each component is associated with a probability of satisfaction. The subjective certainty of the beliefs is derived from the credibility of their sources

D. Melaye, Y. Demazeau & Th. Bouron, "Which Adequate Trust Model for Trust Networks?", 3rd IFIP Conference on Artificial Intelligence Applications and Innovations, AIAI'2006, IFIP, Athens, June 2006.

CNRS Laboratoire d'Informatique de Grenoble

YVAS DEMAZEALL - 99

Trust Networks / Statics [Melaye 05]

CNRS Laboratoire d'Informatique de Grenoble Yves DEMAZEAU - 102

AGENTCITIES Project [Willmott 03]

100+ organizations involved worldwide

- Including Industry giants: HP, Fujitsu, Motorola, ...
- Participating in an open test environment
- Long term deployment, evolution and integration of technologies

Key technology issues

- Service interaction / semantics
- Service composition
- Automating service components

Concrete terms most groups work on:

- Particular technology trials
- Particular application focus

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 105

AGENTCITIES Network

160 nodes registered

- 70 or so active
- 30-50 "up" at any moment

Each service platform is connected live to the internet

- FIPA Agent standard implementation
- DAML-OIL/OWL processing
- Local directories and services
- HTTP / XML communication

Now moving towards use by some major projects

Each working on different applications

AGENTCITIES Demo [Jul. 03]

Agent Based Service Components

- From simple representatives to personal agents to complex federated markets, hosting and infrastructure
- More than 25 service types, nearly 200 agents

Business as Usual?

- Hosted by 14 companies and Universities
- Deployment on at least 5 different platform (JADE, FIPA-OS, AAP, ATOMIK Agent Shell, ZEUS) Dynamic application creation
- Fully specified communication interfaces
- Coherent frameworks for all aspects of the environment
- Automated process in many areas

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 107

AGENTCITIES Demo [Jul. 03] Fevent Oganiser Federated Market Federated Market Federated Market Finder Fin

COMPLEMENTARY REFERENCES

CNRS Laboratoire d'Informatique de Grenoble

Complementary references

Traditional description of negotiation mechanisms

R. Davis & R. Smith, "Negotiation as a metaphor for distributed problem solving". Artificial Intelligence, 20, 63-109, 1983

The high-performing PGP, nothing better since!

E. Durfee & V. Lesser, "Partial global planning: A coordination framework for distributed hypothesis formation", IEEE Transactions on Systems, Man, and Cybernetics, 21, 1167-1183, 1991.

Traditional approaches to collaborative planning

B. Grosz & S. Kraus, S., "Collaborative plans for complex group action", Artificial Intelligence, 86, 269-357, 1996.

The strangely so recent Contract Net Protocol...
R. Smith, "The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver", IEEE Trans. on Computers, Vol C-29, n° 12, 1980.

CNRS Laboratoire d'Informatique de Grenoble