revocationTime

GeneralizedTime,

revocationReason

EXPLICIT CRLReason OPTIONAL }

UnknownInfo ::= NULL -- this can be replaced with an enumeration

[0]

16.1.2 SOCSP

由于 OCSP 请求包和响应包需要数字签名,从而导致其执行效率不高。为提高 OCSP 的响应速度,采用 MAC 算法代替数字签名,形成简化版的 OCSP,称作 SOCSP (Simple Online Certificate Status Protocol)。

1. SOCSP 请求包

SOCSP 请求包格式用 ASN.1 描述如下:

```
OCSPThinRequest
                   ::= SEQUENCE {
                                        --请求信息
    tbsThinRequest
                   TBSThinRequest,
                                             --请求信息的 MAC 值
    mac
                       MacData
TBSThinRequest ::= SEQUENCE {
              [0] EXPLICIT Version DEFAULT v1,
    version
                                                  --版本号
    random
              BIT STRING.
                                                  -- 随机数
    serialList
                   SEOUENCE OF CertificateSerialNumber --请求查询证书的序列号
MacData ::= SEQUENCE {
                   DigestInfo,
    mac
    macSalt
                       OCTET STRING.
    iterations
                       INTEGER DEFAULT 1 --默认为 1, HASH 的反复次数
DigestInfo ::= SEQUENCE {
    digestAlgorithm
                                DigestAlgorithmIdentifier,
    digest
                                Digest
Digest ::= OCTET STRING
```

与 OCSP 不同,SOCSP 的请求数据需要进行基于对称密钥的 MAC 计算而不是基于公私钥对的数字签名。为了提高系统的效率,SOCSP 没有设置扩展,所以用随机数来防止重放攻击,随机数以 random 字段出现在请求数据中,random 的长度≥128 位。

MAC 计算是基于 TBSThinRequest 结构的 DER 编码,加上共享密钥与 macSalt 的模 2 加进行的,macSalt 保证相同数据 MAC 的结果不相同。MAC 算法由 digestAlgorithm 标识,支持符合国家规定的 HMAC 算法。

2. SOCSP响应包

SOCSP响应包格式用 ASN.1 描述如下:

```
OCSPThinResponse ::=SEQUENCE { --响应数据 tbsThinResponse TBSThinResponse, --响应信息 Mac MacData --响应信息的 MAC 值
```

```
TBSThinResponse
                   ::= SEQUENCE {
    version
                        [0] EXPLICIT Version DEFAULT v1.
                                                                   --版本号
    random
                        BIT STRING.
                                                                   --随机数
    thinResponseStatus
                             SEQUENCE OF OCSPThinResponseStatus --响应状态
OCSPThinResponseStatus ::= ENUMERATED {
    successful
                      (0), --Response has valid confirmations --响应被有效确认
                      (1), --Illegal confirmation request
                                                           --不完整的请求
    malformedRequest
    internalError
                      (2), --Internal error in issuer
                                                           --内部错误
    unauthorized
                      (3), -- Request unauthorized
                                                           --未授权
```

从响应数据定义来看,响应包含了两个信息:响应信息和对响应信息进行 MAC 计算的值。响应数据包含:版本号、随机数、响应状态。随机数 random 与请求中的 random 相同;响应状态有 4 种:响应被有效确认、不完整的请求、内部错误、未授权。MacData 数据定义与请求中一致。

16.2 CRL 服务

CRL 是证书作废列表,也称作黑名单。CA 系统通过 CRL 机制定期对外发布已作废(或已冻结)的证书序列号列表。用户端将最新的 CRL 下载到本地,通过解析 CRL 就可获得已作废证书的序列号、作废原因及作废时间等。

CRL 包含每个已作废证书的序列号、作废原因、作废时间等信息,但不含证书的具体内容。CA 系统定期生成新的 CRL,并将已过期证书从 CRL 中删除。

CRL 可以发布到 LDAP 中,也可以文件形式发布到网站上。

IETF RFC 3280 规定了 X.509 CRL 的格式,包括基本域组成、CRL 内容和扩展项。

16.2.1 基本域组成 (CertificateList)

CRL 由 3 个域组成, 具体见表 16-1。

表 16-1 CRL 基本域组成

分类	标识	说明
CRL 内容 (待签名)	tbsCertList	包含签发者信息、签发时间、已作废证书等
签名算法	signatureAlgorithm	包括摘要算法和公钥算法,如 shal WithRSAEncryption,由算法标识和算法参数组成
签名值	signatureValue	使用签名算法,对 CRL 内容 tbsCertList 进行签名后的结果

CRL 基本域格式用 ASN.1 描述如下:

```
CertificateList ::= SEQUENCE {
   tbsCertList TBSCertList,
   signatureAlgorithm AlgorithmIdentifier,
```

```
signatureValue BIT STRING }
AlgorithmIdentifier ::= SEQUENCE {
   Algorithm OBJECT IDENTIFIER,
   Parameters ANY DEFINED BY algorithm OPTIONAL }
```

16.2.2 CRL 内容 (tbsCertList)

CRL 内容见表 16-2。

表 16-2 CRL 内容

分类	标识	说明
版本号	version	用于区分证书格式版本,最新版本为 v2
签名算法	signature	必须与基本域中的签名算法相同
CRL 签发者	issuer	用于区分 CRL 签发者,包含 CRL 签发者身份信息
本次签发时间	thisUpdate	本次 CRL 签发时间
下次签发时间	nextUpdate	下次 CRL 签发时间
作废证书集	revokedCertificates	包含已作废证书相关信息
扩展项 crlExtensions		包含其他可扩展信息

CRL 内容格式用 ASN.1 描述如下:

```
TBSCertList ::= SEQUENCE {
               Version OPTIONAL,
                                     -- if present, MUST be v2
    version
    signature
                    AlgorithmIdentifier,
    issuer
                     Name,
    thisUpdate
                     Time,
                    Time OPTIONAL,
    nextUpdate
    revokedCertificates
                       SEQUENCE OF RevokedCertificate OPTIONAL,
    crlExtensions
                       [0] EXPLICIT Extensions OPTIONAL
                             -- if present, MUST be v2
```

1. 版本号 version

version 用于区分 CRL 格式版本,最新版本为 v2。当使用扩展项 crlExtensions 时, version=v2。当 revokedCertificates 使用 crlEntryExtensions 属性时, version=v2。

version 格式用 ASN.1 描述如下:

```
Version ::= INTEGER { v1(0), v2(1) }
```

2. 签名算法 signature

signature 必须与基本域中签名算法相同,即: signature= CertificateList→signatureAlgorithm。 signature 格式用 ASN.1 描述如下:

3. CRL 签发者 issuer

issuer 用于区分 CRL 签发者,必须包含一个 X.500 DN 项。DN 是 Distinguished Name 的缩写,表示可识别的名称,且 DN 项被定义为 X.501 规范中的 Name 类型。

CRL 签发者编码规则与证书签发者相同(具体参见"第9章")。

issuer 格式用 ASN.1 描述如下:

4. 本次签发时间 thisUpdate 和下次签发时间 nextUpdate

AttributeValue ::= ANY DEFINED BY AttributeType

thisUpdate 表示当前 CRL 的签发时间。

nextUpdate 表示下次 CRL 的最晚签发时间,即:下次 CRL 的实际签发时间可以早于nextUpdate,但不能晚于 nextUpdate。同时,nextUpdate 不能早于已有 CRL 的签发时间。

thisUpdate 和 nextUpdate 均可以采用两种格式: UTCTime 和 GeneralizedTime。UTCTime 用 2 位数字表示年份,GeneralizedTime 用 4 位数字表示年份。2049 年以前的时间可采用 UTCTime 格式,但 2050 年及以后的时间必须采用 GeneralizedTime 格式。当采用 UTCTime 格式时,如 2 位年份数字 YY 小于 50 时,则年份应该解释为 20YY 年;当 YY 大于或等于50 时,年份应该解释为 19YY 年。

5. 作废证书集 revokedCertificates

revokedCertificates 包含所有已作废证书的相关信息。当没有作废证书时,该字段不应出现。

revokedCertificates 格式用 ASN.1 描述如下:

CertificateSerialNumber ::= INTEGER

其中,revokedCertificates 由多个 CRL 条目组成。每个 CRL 条目包含单个作废证书的信息,其格式定义为 RevokedCertificate 类型,包括证书序列号 userCertificate、作废时间 revocationDate 和 CRL 条目扩展项 crlEntryExtensions。

6. 扩展项 crlExtensions 和 crlEntryExtensions

crlExtensions 用于 CRL 信息扩展,可包含多项扩展信息。

crlEntryExtensions 用于 CRL 条目信息扩展,可包含多项扩展信息。crlExtensions 和 crlEntryExtensions 格式用 ASN.1 描述如下:

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING }

crlExtensions 和 crlEntryExtensions 只能出现在版本 v2 格式中。

每个扩展项都可设置为关键项(critical=TRUE)或非关键项(critical=FALSE)。如果遇到未知的关键扩展项,则必须拒绝该 CRL;如果遇到未知的非关键扩展项,可以忽略该扩展项。

每个扩展项由一个 OID 和一个 ASN.1 结构组成。OID 赋值给 extnID, ASN.1 编码后的结构赋值给 extnValue。

16.2.3 CRL 扩展项 crlExtensions

CRL 扩展项见表 16-3。

扩展项 OID 是否关键项 说明 1 AuthorityKeyIdentifier id-ce 35 **FALSE** CRL 签发者密钥标识 2 IssuerAltName id-ce 18 FALSE CRL 签发者别名 3 CRLNumber id-ce 20 **FALSE** CRL 编号 4 DeltaCRLIndicator id-ce 27 TRUE 增量 CRL 指示器 id-ce 28 TRUE CRL 发布点 5 **Issuing Distribution Point** 6 FreshestCRL id-ce 46 FALSE 最新 CRL 或增量 CRL

表 16-3 CRL 扩展项

注: id-ce OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) ds(5) 29 }

authorityKeyIdentifier

authorityKeyIdentifier 扩展项用于区分 CRL 签发者的公钥。当 CRL 签发者拥有多个公私钥对用于签发 CRL 时,必须使用该扩展项。

该扩展项必须设置为非关键项(critical=FALSE)。

authorityKeyIdentifier 格式用 ASN.1 描述如下:

id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }

AuthorityKeyIdentifier ::= SEQUENCE {

keyIdentifier

[0] Keyldentifier

OPTIONAL,

authorityCertIssuer

[1] GeneralNames

OPTIONAL,

authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }

KeyIdentifier ::= OCTET STRING

authorityKeyIdentifier 基于 CRL 签发者证书中的内容生成,主要有两种生成方式: 基于 subjectKeyIdentifier、基于 issuer 和 serialNumber。当基于 subjectKeyIdentifier 生成时,