Course Notes

Introduction to Probability

Alex Rutar

Contents

1	Fundamentals						
	1.1	Basic 1	Principles				
		1.1.1	Probability Spaces				
		1.1.2	Ω				
		1.1.3	${\mathcal F}$				
		1.1.4	\mathbb{P}				
		1.1.5	Consequences				
		1.1.6	Examples with Finite Uniform Probabilities				
	1.2	Condi	tional Probability				
		1.2.1	Basic Principles				
		1.2.2	Bayes' Formula				
	1.3	Indepe	endent Events				
		1.3.1	Definitions				
		1.3.2	Independent Trials				
		1.3.3	Random Walks				
		1.3.4	Conditional Independence				
2	Random Variables						
	2.1						
		2.1.1	Expected Value				
		2.1.1	Variance				

Chapter 1

Fundamentals

1.1 Basic Principles

1.1.1 Probability Spaces

A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$.

1.1.2 Ω

 Ω is a set, called the sample space, and $\omega \in \Omega$ are called outcomes and $A \subset \Omega$ are called events.

Ex. 1.1.1 A horserace with 3 horses, *a*, *b*, *c*, has $\Omega = \{(a, b, c), (a, c, b), \dots, (c, b, a)\}$. Then $|\Omega| = 6$ and $A = \{a \text{ wins the race}\} = \{(a, b, c), (a, c, b)\}$.

Ex. 1.1.2 Roll two fair dice, a white die and a yellow die. Then $\Omega = \{(1,1), (1,2), \dots, (6,6)\}$ and $|\Omega| = 36$.

Ex. 1.1.3 Continue flipping a coin until there is a head. Then

$$\Omega = \{(H), (T, H), (T, T, H), \ldots\}$$

Then define

 $A = \{\text{there are an even number of rolls}\} = \{(T, H), (T, T, T, H), \ldots\}$

Ex. 1.1.4 Consider $\Omega = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 100\}$. Then $A = \{\text{you score 50 points}\} = \{(x,y) \mid x^2 + y^2 \le 1\}$.

Def'n. 1.1.5 If $A \cap B = \emptyset$, we say that A and B are **mutually exclusive** events. If $A \subset B$, we say that A **implies** B.

Write $A^c = \Omega \setminus A$. Recall distributivity, the deMorgan relations, etc.

1.1.3 \mathcal{F}

 \mathcal{F} is a collection of subsets of Ω , which denote the events that we consider.

- If Ω is countable, then typically \mathcal{F} is just the collection of all subsets of Ω .
- If Ω is a domain in \mathbb{R}^n , then it is a strict subset of \mathbb{R}^n .

In any case, \mathcal{F} has to be closed under the following operations:

- 1. $\Omega \in \mathcal{F}$
- 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$

3. If
$$A_1, A_2, \ldots \in \mathcal{F}$$
, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

in other words, that \mathcal{F} is a σ -algebra.

1.1.4 P

Finally, $\mathbb{P}: \mathcal{F} \to \mathbb{R}$ is a function that satisfies 3 axioms:

- 1. For any $A \in \mathcal{F}$, then $\mathbb{P}(A) \geq 0$
- 2. $\mathbb{P}(\Omega) = 1$
- 3. (σ -additivity) Let A_1, A_2, A_3, \dots be a sequence of mutually exclusive events. Then

$$\mathbb{P}\bigg(\bigcup_{i=1}^{\infty} A_i\bigg) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

1.1.5 Consequences

- $\mathbb{P}(A^c) + \mathbb{P}(A) = \mathbb{P}(A \cup A^c) = \mathbb{P}(\Omega) = 1$.
- If $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$ since $\mathbb{P}(B) = \mathbb{P}((A^c \cap B) \cup (A \cap B)) = \mathbb{P}(A^c \cap B) + \mathbb{P}(A \cap B) = \mathbb{P}(A^c \cap B) + \mathbb{P}(A)$
- For any *A*, *B*, we have

$$\mathbb{P}(A \cup B) = \mathbb{P}((A^c \cap B) \cup (A \cap B) \cup (A \cap B^c)) = \mathbb{P}(A^c \cap B) + \mathbb{P}(A \cap B) + \mathbb{P}(B^c \cap A) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
Similarly,

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

which generlizes arbitrarily:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{r=1}^{n} (-1)^{r+1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{r} \le n} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{r}})$$

PROOF We have already proved the base case for n = 2, so assume the formula holds for a union of n events. Then

$$\mathbb{P}(A_1 \cup \cdots A_n \cup A_{n+1}) = \mathbb{P}(A_1 \cup \cdots \cup A_n) + \mathbb{P}(A_{n+1}) - \mathbb{P}((A_1 \cup \cdots \cup A_n) \cap A_{n+1})$$

We can distribute the first and third terms using the induction hypothesis, and the result follows.

Def'n. 1.1.6 We say $D_1, D_2,...$ is a **decreasing** sequence of events of $D_{k+1} \subset D_k$. We say $D_1, D_2,...$ is a **increasing** sequence of events of $D_{k+1} \supset D_k$.

Let $\lim_{n\to\infty} D_n = \bigcap_{n=1}^{\infty} D_n$ and $\lim_{n\to\infty} I_n = \bigcup_{n=1}^{\infty} I_n$.

Prop. 1.1.7 σ -additivity implies that for any increasing sequence,

$$\mathbb{P}\left(\lim_{n\to\infty}I_n\right) = \lim_{n\to\infty}\mathbb{P}(I_n)$$

and similarly for any decreasing sequence

$$\mathbb{P}\left(\lim_{n\to\infty}D_n\right)=\lim_{n\to\infty}\mathbb{P}(D_n)$$

Proof Note that (2) implies (1): if D_k is a decreasing sequence, then $I_k = D_k^c$ is an increasing sequence and

$$\left(\lim_{n\to\infty} D_n\right)^c = \left(\bigcap_{n=1}^{\infty} D_n\right)^c = \bigcup_{n=1}^{\infty} I_n = \lim_{n\to\infty} I_n$$

and taking probabilities,

$$\mathbb{P}\left(\lim_{n\to\infty} D_n\right) = 1 - \mathbb{P}\left(\lim_{n\to\infty} I_n\right) = 1 - \lim_{n\to\infty} \mathbb{P}(I_n) = \lim_{n\to\infty} \mathbb{P}(D_n)$$

To prove that σ -additivity implies (1), let $I_1, I_2,...$ be increasing. Let $A_1 = I_1$ and for $k \ge 2$ let $A_k = I_k \setminus I_{k-1}$. Then $A_1, A_2,...$ are mutually exclusive and for any $k \ge 1$,

$$\bigcup_{k=1}^{K} A_k = I_k$$

Thus

$$\bigcup_{k=1}^{\infty} A_k = \lim_{n \to \infty} I_n$$

Now note that $\mathbb{P}(I_K) = \sum_{k=1}^K \mathbb{P}(A_k)$ while

$$\mathbb{P}\left(\lim_{n\to\infty} I_n\right) = \mathbb{P}\left(\bigcup_{k=1}^{\infty} A_k\right)$$

$$= \sum_{k=1}^{\infty} \mathbb{P}(A_k)$$

$$= \lim_{K\to\infty} \sum_{k=1}^{K} \mathbb{P}(A_k)$$

$$= \lim_{K\to\infty} \mathbb{P}(I_K)$$

1.1.6 Examples with Finite Uniform Probabilities

We assume that $\Omega = \{\omega_1, \omega_2, ..., \omega_N\}$ and $\mathbb{P}(\{\omega_i\}) = \mathbb{P}(\{\omega_j\})$. Then $\mathbb{P}(\{\omega_i\}) = \frac{1}{N}$ and $\mathbb{P}(A) = |A|/N$.

Ex. 1.1.8 In an urn there are 6 blue balls and 5 red balls. Draw 3 balls out of this 11. What is the change that among the 3 there are exactly 2 blue balls and 1 red ball?

Let us pretend that the balls are labelled, 1 through 11, and set Ω to be all the ordered triples of disjoint elements. Then $A = \{\text{exactly 2 blue and 1 red}\}$, and note that $A = A^1 \cup A^2 \cup A^3$ where A^i has a red in position i and blue in the other two positions. Now, $|A^i| = 5 \cdot 6 \cdot 5$, so $|A| = 3 \cdot 6 \cdot 5 \cdot 6$ and

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{3 \cdot 6 \cdot 5 \cdot 6}{11 \cdot 10 \cdot 9}$$

We now suppose that $\Omega = \{\Lambda \subset \{1, ..., 11\} \mid |\Lambda| = 3\}$, so $|\Omega| = {11 \choose 3}$. Now

$$A = {\Lambda_1 \cup \Lambda_1 | \Lambda_1 \subset {1, ..., 6}, |\Lambda_1| = 2, \Lambda_2 \subset {7, ..., 11}, |\Lambda_2| = 1}$$

So
$$|A| = \binom{6}{2} \cdot 5$$
.

Ex. 1.1.9 Consider a group of N people. What is the chance that there is at least one pair amoung them who have the same birthday?

Define $\Omega = \{(i_1, i_2, ..., i_N) \mid i_j \in \{1, ..., 365\}\}$. We want $A = \{\text{there is at least one common birthday}\}$. We can write

$$A^{c} = \{(i_1, \dots, i_n) \in \Omega \mid i_j \neq i_k \forall j \neq k\}$$

Then $|A^c| = 365 \cdot 364 \cdots (365 - N + 1)$ and

$$P_N = \mathbb{P}(A) = 1 - \mathbb{P}(A^c) = 1 - \frac{365 \cdot 364 \cdots (365 - N + 1)}{365^N}$$

Ex. 1.1.10 Suppose we have *N* people at a party. The following day, everyone leaves one after another, and chooses a single phone from a pile. What is the chance that nobody chooses her own phone?

Define $\Omega = \{(i_1, ..., i_N) \mid \text{ permutations of } \{1, ..., N\}\}$, so $\omega = (i_1, ..., i_k)$ means person k chooses phone i_k . Then $|\Omega| = N!$. Fix $B = \{\text{nobody picks her/his phone}\}$. Define $A_1 = \{\text{person 1 picks his phone}\}$, so $|A_1| = (N-1)!$, and similarly for A_2 , etc. Then $B = A_1^c \cap A_2^c \dots \cap A_N^c = (A_1 \cup ... \cup A_N)^c$, and $\mathbb{P}(A_i) = \frac{1}{N}$. Now in general,

$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{(N-k)!}{N!}$$

for i_k distinct. Thus we now have

$$\mathbb{P}(B) = 1 - \mathbb{P}(A_1 \cup A_2 \cup \dots \cup A_n)
= 1 - \sum_{r=1}^{N} (-1)^{r+1} \sum_{1 \le i_1 < i_2 \dots < i_r \le N} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_r})
= \sum_{r=1}^{n} (-1)^{r+1} \binom{N}{r} \frac{(N-r)!}{N!}
= \sum_{r=1}^{N} (-1)^{r+1} \frac{1}{r!}$$

so that

$$\mathbb{P}(B) = 1 + \sum_{r=1}^{N} (-1)^r \frac{1}{r!} = \sum_{r=0}^{N} (-1)^r \frac{1}{r!}$$

Thus $\lim_{N\to\infty} \mathbb{P}(B) = \frac{1}{e}$.

Ex. 1.1.11 (Round table seating) Consider a round table with 20 seats, and 10 married couples sit. What is the change that no couples sit together?

Define $\Omega = \{\text{permutations of } \{1, \dots, 20\} / \sim \}$ where $(i_1, \dots, i_{20}) \sum (i_{20}, i_1, \dots, i_{19})$. Then $|\Omega| = 19!$. Define $B = \{\text{no couples together} = A_1^c \cap A_2^c \cap \dots \cap A_{10}^c \}$, where

 $A_k = \{\text{the 8th woman sits next to her spouse}\}$

so that

$$\mathbb{P}(B) = 1 - \mathbb{P}(A_1 \cup \cdots \cup A_{10})$$

Note that

$$\mathbb{P}(A_i) = \frac{18!2}{19!} = \frac{2}{19!}$$

by "joining" the couple together, arranging them around the table, and permuting the couple internally. Thus generalizes to

$$\mathbb{P}(A_{i_1} \cap \dots \cap \mathbb{P}(a_{i_r}) = \frac{2^r (19 - r)!}{19!}$$

Then by inclusion-exclusion,

$$\mathbb{P}(B) = 1 - \binom{10}{1} \cdot \frac{18!2}{19!} + \binom{10}{2} \frac{17!2^2}{19!} - \binom{10}{3} \frac{16!2^3}{19!} \cdots + \binom{10}{10} \frac{9!2^{10}}{19!} \approx 0.339$$

Ex. 1.1.12 (Poker hand probabilities) A poker hand is a straight if the 5 cards are of increasing value and not all of the same suit, starting with A, 2, 3, 4, ..., 10.

Define $\Omega = \{5 \text{ element subsets of the 52 cards}\}$. Then $|\Omega| = {52 \choose 5}$. Thus

$$\mathbb{P}(straight) = \frac{10 \cdot (4^5 - 4)}{\binom{52}{5}}$$

$$\mathbb{P}(\text{full house}) = \frac{13 \cdot 12 \cdot {4 \choose 3} \cdot {4 \choose 2}}{{52 \choose 5}}$$

Ex. 1.1.13 (Bridge hand probabilities) In bridge, each of the 4 players get 13 cards. Let $\Omega = \{13 \text{ cards that North gets}\}.$

$$\mathbb{P}(\text{North receives all spades}) = \frac{1}{\binom{52}{13}}$$

 $\mathbb{P}(\text{North does not receive all 4 suits of any value}) = 1 - \mathbb{P}(\text{There is some value such that all suits are at N})$

Let $V_k = \{\text{North gets all four suits of value } k\}$. Then

$$\mathbb{P}(V_1) = \frac{\binom{48}{9}}{\binom{52}{13}}$$

$$\mathbb{P}(V_1 \cap V_2) = \frac{\binom{44}{5}}{\binom{52}{13}}$$

$$\mathbb{P}(V_1 \cap V_2 \cap V_4) = \frac{\binom{40}{1}}{\binom{52}{13}}$$

Thus

$$1 - \mathbb{P}(V_1 \cup V_2 \cup \dots \cup V_{13}) = 1 - \frac{\binom{48}{9}}{\binom{52}{13}} \cdot 13 + \binom{13}{2} \frac{\binom{44}{5}}{\binom{52}{13}} - \binom{13}{3} \frac{40}{\binom{52}{5}}$$

What is the change that each player receives one ace? There are

possible hands. There are 4! ways to arrange the aces, which gives

$$\mathbb{P}(E) = \frac{4!\binom{48}{12,12,12,12}}{\binom{52}{13,13,13,13}}$$

1.2 Conditional Probability

1.2.1 Basic Principles

Suppose we roll two fair dice. Then $\mathbb{P}(\text{the sum is }10) = \frac{3}{36} = \frac{1}{12}$. Suppose instead that the white dice is rolled first, and it turns up 6. Now the probability that the sum is 10 is now 1/6.

Def'n. 1.2.1 Given an even E with $\mathbb{P}(E) > 0$, for any event F, let $\mathbb{P}(F|E) = \frac{\mathbb{P}(F \cap E)}{\mathbb{P}(E)}$. We call this the conditional probability of F given E.

Prop. 1.2.2 Fix E with $\mathbb{P}(E) > 0$ and consider $\mathbb{P}(\cdot|E) : \mathcal{F} \to \mathbb{R}$. This function satisfies the axioms of probability.

PROOF 1. $\mathbb{P}(F|E) \ge 0$ for all $F \in \mathcal{F}$.

2.
$$\mathbb{P}(\Omega|E) = \frac{\mathbb{P}(E \cap \Omega)}{\mathbb{P}(E)} = 1$$

3. If F_1, F_2, \ldots are mutually exclusive, then

$$\mathbb{P}(\bigcup_{i=1}^{\infty} F_i | E) = \frac{\mathbb{P}((\bigcup_{i=1}^{\infty} F_i) \cap E)}{\mathbb{P}(E)}$$

$$= \frac{\mathbb{P}(\bigcup_{i=1}^{\infty} (E \cap F_i))}{\mathbb{P}(E)}$$

$$= \sum_{n=1}^{\infty} \frac{\mathbb{P}(F_i \cap E)}{\mathbb{P}(e)}$$

$$= \sum_{n=1}^{\infty} \mathbb{P}(F_n | E)$$

Prop. 1.2.3 We have $\mathbb{P}(E \cap F) = \mathbb{P}(F|E) \cdot \mathbb{P}(E)$, and more generally

$$\mathbb{P}(E_n \cap E_{n-1} \cap \dots \cap E_1) = \mathbb{P}(E_n | E_{n-1} \cap \dots \cap E_1) \dots \mathbb{P}(E_3 | E_2 \cap E_1) \mathbb{P}(E_2 | E_1) \mathbb{P}(E_1)$$

Proof This follows by induction from the definition of conditional probability.

Ex. 1.2.4 Andrew and Bob play for the college basketball team. They get two T-shirts each, in closed bags. Any T-shirt can be black or white, with 50-50 chance. Andrew prefers black, but Bob has no preference. The following day, Andrew shows up with a black shirt on. What is the chance that Andrew's other shirt is black?

Sol'n We have $\Omega = \{(B, B), (B, W), (W, B), (W, W)\}$ which is reduced to $\{(B, B), (B, W), (W, B)\}$, so the answer is 1/3. To make this transparent, consider

 $A_1 = \{ Andrew \text{ has at least one black shirt} \}$

 $A_2 = \{\text{Both of Andrew's shirts are black}\}\$

 $A_3 = \{ \text{Andrew has a black shirt on} \}$

so in Andrew's case, $A_1 = A_3$ and $\mathbb{P}(A_2|A_3) = \mathbb{P}(A_2|A_1)$.

Ex. 1.2.5 (Polya's Urn) Initially, we have two balls, 1 red, 1 blue, in the urn. For the first draw, pick one, check its color, and put it back and put another ball of the same color into the urn.

1. What is $\mathbb{P}(\text{the first three balls are red, blue, red (in this order)}).$

Sol'n 1. Let R_i , B_i denote the i^{th} draw is red or blue respectively. Then

$$\mathbb{P}(R_3 \cap B_2 \cap R_1) = \mathbb{P}(R_3 | B_2 \cap R_1) \mathbb{P}(B_2 | R_1) \mathbb{P}(R_1) = \frac{1}{2} \frac{1}{3} \frac{1}{2} = \frac{1}{2}$$

Ex. 1.2.6 What is $\mathbb{P}(\text{in bridge, each of the players gets one ace})?$

Sol'n Write

 E_4 \cap $E_3 = \{ \text{Aces of spaces, heards, and diamonds are at 3 different players.} \}$ \cap $E_2 = \{ \text{Aces of spaces, hearts, and diamonds are at 2 different players.} \}$ \cap $E_1 = \Omega$

so that $\mathbb{P}(E_4) = \mathbb{P}(E_4 \cap E_3 \cap E_2 \cap E_1) = \mathbb{P}(E_4|E_3)\mathbb{P}(E_3|E_2)\mathbb{P}(E_2|E_1)\mathbb{P}(E_1)$.

1.2.2 Bayes' Formula

Ex. 1.2.7 Consider an insurance compacy, which classifies people into accident prone drivers (30%) and non-accident-prone drivers, (70%). For accident prone drivers, the chance of being involved in an accident within a year is 0.2, while for non-addicent-prone drivers, the chance of being involved in an accident is 0.1. Now suppose we have a new policyholder.

- 1. What is the probability that the policyholder is involved in an accident within a year?
- 2. The policyholder was involved in an accident?

Sol'N 1. $B = \{\text{accident in 2018}\}, A = \{\text{the policyholder is accident prone}\}.$ Then

$$\mathbb{P}(B) = \mathbb{P}(B \cap A) + \mathbb{P}(B \cap A^c) = \mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B|A^c)\mathbb{P}(A^c) = 0.2 \cdot 0.3 + 0.1 \cdot 0.7 = 0.13$$

2. Now

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B|A^c) \cdot \mathbb{P}(A^c)} = \frac{0.2 \cdot 0.3}{0.13} = \frac{6}{13}$$

Prop. 1.2.8 Suppose $A_1, A_2, ..., A_n \in \mathcal{F}$ form a partition of Ω . Given such a partition, for any $B \in \mathcal{F}$,

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{n} \mathbb{P}(B|A_i) \cdot \mathbb{P}(A_i)$$

Then for any $k \in [n]$,

$$\mathbb{P}(A_k|B) = \frac{\mathbb{P}(B \cap A_k)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A_k) \cdot \mathbb{P}(A_k)}{\sum_{i=1}^n \mathbb{P}(B|A_i) \cdot \mathbb{P}(A_i)}$$

Ex. 1.2.9 Roll a fair dice. There is a urn with one white ball in it. If the die turns up 1,3, or 5, put one black ball ito the urn. If it turns up 2 or 4, put 3 black and 5 white, and if it turns up 6, put 5 black and 5 white.

Sol'n Write

$$A_1 = \{1,3 \text{ or } 5 \text{ rolled}\}\$$
 $A_2 = \{2 \text{ or } 4 \text{ rolled}\}\$
 $A_3 = \{6 \text{ rolled}\}B$
= $\{black \text{ ball rolled}\}\$

so that

$$\begin{split} \mathbb{P}(A_3|B) &= \frac{\mathbb{P}(B|A_3)\mathbb{P}(A_3)}{\mathbb{P}(B|A_1) \cdot \mathbb{P}(A_1) + \mathbb{P}(B|A_2) \cdot \mathbb{P}(A_2) + \mathbb{P}(B|A_3) \cdot \mathbb{P}(A_3)} \\ &= \frac{5/6 \cdot 1/6}{1/2 \cdot 1/2 + 3/4 \cdot 1/3 + 5/6 \cdot 1/6} \\ &= \frac{5}{23} \end{split}$$

Ex. 1.2.10 There is a blood test for a rare but serious disease. Only 1/10000 people have this disease. Suppose the test is 100% effective, so if someone is tested ill, it is positive with 100% chance. Suppose there is also a 1% chance of false positive.

A new patient is tested, and tests positive. What are the odds that she has the disease?

Sol'n Let $A = \{\text{the person is ill}\}\$ and $B = \{\text{the test is positive}\}\$. Then

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B|A^c)\mathbb{P}(A^c)} = \frac{1 \cdot 0.0001}{1 \cdot 0.0001 + 0.01 \cdot 0.9999}$$

Ex. 1.2.11 (Monty Hall paradox) There are three doors: one of them hides a prize, and two hide nothing. Pick a door. The announcer then reveals another door not containing a prize. Is it better to stay or switch?

Sol'n Write $A_i = \{\text{door } i \text{ hides the price}\}\$, and $B_2 = \{\text{door 2 is opened}\}\$. Then

$$\mathbb{P}(A_1|B_2) = \frac{\mathbb{P}(B_2|A_1)\mathbb{P}(A_1)}{\mathbb{P}(B_2|A_1)\mathbb{P}(A_1) + \mathbb{P}(B_2|A_2)\mathbb{P}(A_2) + \mathbb{P}(B_2|A_3)\mathbb{P}(A_3)} \\
= \frac{1/2 \cdot 1/3}{1/2 \cdot 1/3 + 0 + 1 \cdot 1/3} = \frac{1}{3}$$

but

$$\mathbb{P}(A_3|B_2) = \frac{\mathbb{P}(B_2|A_3)\mathbb{P}(A_3)}{\mathbb{P}(B_2|A_1)\mathbb{P}(A_1) + \mathbb{P}(B_2|A_2)\mathbb{P}(A_2) + \mathbb{P}(B_2|A_3)\mathbb{P}(A_3)}
= \frac{1 \cdot 1/3}{1/2 \cdot 1/3 + 0 + 1 \cdot 1/3} = \frac{2}{3}$$

so it is better to switch!

Ex. 1.2.12 There is an inspection, which is 60% sure of the guilt of a certain suspect. The suspect is left-handed. There is new evidence: the criminal is left handed. Say 20% of the population is left handed; how certain should the inspector now be?

Sol'n Write $C = \{\text{the suspect is the criminal}\}\$ and $C^c = \{\text{the criminal is someone else}\}\$. Then $\mathbb{P}(C) = 0.6$ and $\mathbb{P}(C^c) = 0.4$. Let $L = \{\text{the criminal is left-handed}\}\$. Then

$$\mathbb{P}(C|L) = \frac{\mathbb{P}(L|C)\mathbb{P}(C)}{\mathbb{P}(L)} \qquad \mathbb{P}(C^c|L) = \frac{\mathbb{P}(L|C^c)\mathbb{P}(C^c)}{\mathbb{P}(L)}$$

Here, we can compute the "odds":

$$\frac{\mathbb{P}(C|L)}{\mathbb{P}(C^c|L)} = \frac{\mathbb{P}(L|C)\mathbb{P}(C)}{\mathbb{P}(L|C^c)\mathbb{P}(C^c)}$$

Now $\mathbb{P}(L|C) = 1$, but $\mathbb{P}(L|C^c) = \mathbb{P}(L) = 0.2$, since the probability is taken a priori. Now a priori, the odds are given by $\mathbb{P}(C)/\mathbb{P}(C^c) = 0.6/0.4$, scaled by the factor $\mathbb{P}(L|C)/\mathbb{P}(L|C^c) = 5$ given updated information. Thus $\mathbb{P}(C|L) = 15/17$.

1.3 Independent Events

1.3.1 Definitions

Def'n. 1.3.1 The events A and B are **independent** if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Ex. 1.3.2 Draw a card from a deck of 52. Let

 $A = \{\text{it is a spade}\}, \quad B = \{\text{it is an ace}\}, \quad C = \{\text{it is a heart}\}$

We have

$$\mathbb{P}(A) = \frac{1}{4}, \quad \mathbb{P}(B) = \frac{1}{13}, \quad \mathbb{P}(A \cap B) = \frac{1}{52}$$

so *A* and *B* are independent. Similarly, *B* and *C* are independent. However, $\mathbb{P}(A \cap C) = 0 \neq 1/4$ so *A* and *C* are not independent.

Rmk. 1.3.3 Exclusive events are quite different than independence: in fact, they are (in a sense) the opposite. Let $\mathbb{P}(A) > 0$. Then A and B are independent iff $\mathbb{P}(B|A) = \mathbb{P}(B)$. Similarly, A and B are exclusive iff $\mathbb{P}(B|A) = 0$.

Ex. 1.3.4 Roll two fair dice, the yellow and the white die. Then

 $A = \{ \text{the sum is 7} \}$

 $B = \{\text{the sum is } 10\}$

 $C = \{\text{the yellow die turns up 6}\}\$

 $D = \{\text{the white die turns up 6}\}\$

We have $\mathbb{P}(A) = 1/6$, $\mathbb{P}(C) = 1/6$. Then $\mathbb{P}(A \cap C) = 1/36 = 1/6 \cdot 1/6$ so A and C are independent. Similarly, C and D are independent and A and D are independent. Thus A, C, D are pairwise independent but not independent as a triple.

Def'n. 1.3.5 The events $A_1, A_2,...$ are **independent** (as a collection) if, for any choice of indices $1 \le i_1 < i_2 < \cdots < i_k \le n$, then

$$\mathbb{P}(A_{i_1}\cap A_{i_2}\cap\cdots\cap A_{i_k})=\mathbb{P}(A_{i_1})\mathbb{P}(A_{i_2})\cdots\mathbb{P}(A_{i_k})$$

1.3.2 Independent Trials

We have two parameters: $n \ge 1$, which is the number of trials, and $p \in (0,1)$, which is the chance of success for an individual trial. Then $A_k = \{\text{the } k^{\text{th}} \text{ trial is a succes}\}$ so that $\mathbb{P}(A_k) = p$ and the events A_1, \ldots, A_n are independent. Our framework is to consider the space $\Omega \times \Omega \times \cdots \times \Omega$.

Ex. 1.3.6 Roll a fair die 10 times. Then $A_k = \{\text{the } k^{\text{th}} \text{ roll is a 6}\}$. Then we have

- $\mathbb{P}(\text{all } n \text{ trials are successful}) = \mathbb{P}(A_1 \cap \cdots \cap A_n) = p^n$
- $\mathbb{P}(\text{there is at least one success}) = 1 (1 p)^n$
- $\mathbb{P}(\text{there are exactly } k \text{ success out of } n \text{ trials}) = \binom{n}{k} p^k (1-p)^{n-k}$

Consider the case now where n is countable (infinite number of trials). Let $S = \{\text{all trials are successful}\}\$ define and $S_n = \{\text{the first } n \text{ trials are successful}\}\$. Then $S = \bigcap_{n=1}^{\infty} S_n$ so

$$\mathbb{P}(S) = \lim_{n \to \infty} \mathbb{P}(S_n) = \lim_{n \to \infty} p^n = 0$$

Ex. 1.3.7 Repeatedly roll two fair dice until the sum is either 5 or 7. What is the probability that the sum is 5 when we stop?

Let $A_i = \{\text{rolls less than } i \text{ are not 5 or 7, roll } i \text{ is 5}\}$. Since $\mathbb{P}(\text{roll is 5 or 7}) = 1/6 + 1/9$, we have $\mathbb{P}(\text{roll is not}) = 13/18$. Thus

$$\mathbb{P}(A_i) = \left(\frac{13}{18}\right)^{i-1} \frac{5}{18}$$

so that

$$\mathbb{P}(A) = \frac{1}{9} \sum_{i=0}^{\infty} \left(\frac{13}{18}\right)^i = \frac{1}{9} \frac{1}{1 - \frac{13}{18}} = \frac{2}{5}$$

We have an alternate solution: note that A_1 , B_1 , C_1 partition the sample space. By the law of total probability,

$$\mathbb{P}(D) = \mathbb{P}(D|A_1)\mathbb{P}(A_1) + \mathbb{P}(D|A_2)\mathbb{P}(A_2) + \mathbb{P}(D|C_1)\mathbb{P}(C_1)$$
$$= \mathbb{P}(B_1) + \mathbb{P}(C_1)\mathbb{P}(D)$$

so that

$$\mathbb{P}(D) = \frac{\mathbb{P}(B_1)}{1 - \mathbb{P}(C_1)} = \frac{\mathbb{P}(B_1)}{\mathbb{P}(A_1) + \mathbb{P}(B_1)}$$

1.3.3 Random Walks

We first see the gambling interpretation. Suppose we have two players, A has initial capital k and B has initial capital N-k. At each round, a coin is flipped. If it is a head, then B gives A 1 dollar, and if it is a tail, A gives B 1 dollar. Repeat this until someone runs out of money.

Let $\mathbb{P}_k^{(N)} = \mathbb{P}(\text{when starting at position } j, \text{ the probability that eventually } A \text{ wins})$. We have $P_0 = 0$, $P_N = 1$. Then for $1 \le k \le N-1$, we have

 $P_k = \mathbb{P}\{\text{ending at } N \text{ when starting at } k | \text{first flip is H}\} \cdot \frac{1}{2} + \mathbb{P}\{\text{end at } N \text{ if start at } k | \text{first flip is T}\} \cdot \frac{1}{2}$ which can be written

$$\P_k = P_{k+1} \frac{1}{2} + P_{k-1} \frac{1}{2} \Rightarrow \frac{1}{2} (P_k - P_{k-1}) = \frac{1}{2} (P_{k+1} - P_k)$$

so, for any $1 \le k \le N$, $P_k - P_{k-1} = d$ and

$$1 = P_N - P_0 = P_n - P_{N-1} + P_{N-1} - P_{N-2} + \dots + (P_1 - P_0) = N \cdot d$$

so d = 1/N and

$$P_k = P_k - P_0 = \sum_{j=1}^k (P_j - P_{j-1}) = kd = \frac{k}{N}$$

1.3.4 Conditional Independence

Def'n. 1.3.8 Given A with $\mathbb{P}(A) > 0$, two events B_1 and B_2 are conditionally independent given A if

$$\mathbb{P}(B_1 \cap B_2 | A) = \mathbb{P}(B_1 | A) \cdot \mathbb{P}(B_2 | A)$$

Ex. 1.3.9 1. We have a medical test for a rare disease, and $A = \{\text{the patient is sick}\}\$ has $\mathbb{P}(A) = 0.005$ so $\mathbb{P}(A^c) = 0.995$. Let $B_1 = \{\text{the first test is positive}\}\$, so $\mathbb{P}(B_1|A) = 0.95$ and $\mathbb{P}(B_1|A^c) = 0.01$. Then $\mathbb{P}(A|B) \approx 0.33$. But now let $B_2 = \{\text{the second test is positive}\}\$. Now what is $\mathbb{P}(A|B_1 \cap B_2)$? Here, the events B_1 and B_2 are not independent, but they are conditionally independent given either A or A^c . Thus

$$\mathbb{P}(A|B_1 \cap B_2) = \frac{\mathbb{P}(B_1 \cap B_2|A)\mathbb{P}(A)}{\mathbb{P}(B_1 \cap B_2)}
= \frac{\mathbb{P}(B_1|A)\mathbb{P}(B_2|A)\mathbb{P}(A)}{\mathbb{P}(B_1|A)\mathbb{P}(B_2|A)\mathbb{P}(A) + \mathbb{P}(B_1|A^c)\mathbb{P}(B_2|A^c)\mathbb{P}(A^c)}
= \frac{(0.95)^2 \cdot 0.005}{(0.95)^2 \cdot 0.005 + (0.01)^2 \cdot 0.995}
\approx 0.98$$

2. Suppose

$$A = \{ \text{accident prone} \}$$
 $\mathbb{P}(A) = 0.3$ $A = \{ \text{not accident prone} \}$ $\mathbb{P}(A^c) = 0.7$

and let $B_Y = \{\text{accident in year } Y\}$. We have seen that $\mathbb{P}(B_{2018}|A) = 0.2$ and $\mathbb{P}(B_{2018}|A^c = 0.1 \text{ so } \mathbb{P}(B_{2018}) = 0.13$. Now

$$\begin{split} \mathbb{P}(B_{2019}|B_{2018}) &= \frac{\mathbb{P}(B_{2018} \cap B_{2019})}{\mathbb{P}(B_{2018}|A)\mathbb{P}(A) + \mathbb{P}(B_{2019}|A)\mathbb{P}(B_{2018}|A^c)\mathbb{P}(A^c)} \\ &= \frac{\mathbb{P}(B_{2019}|A)\mathbb{P}(B_{2018}|A)\mathbb{P}(A) + \mathbb{P}(B_{2019}|A)\mathbb{P}(B_{2018}|A^c)\mathbb{P}(A^c)}{\mathbb{P}(B_{2018}|A)\mathbb{P}(A) + \mathbb{P}(B_{2018}|A^c)\mathbb{P}(A^c)} \\ &= \mathbb{P}(B_{2019}|A) \cdot \mathbb{P}(A|B_{2018}) + \mathbb{P}(B_{2019}|A^c)\mathbb{P}(A^c|B_{2018}) \\ &= 0.2 \cdot \frac{6}{13} + 0.1 \cdot \frac{7}{13} \\ &\approx 0.15 \end{split}$$

Ex. 1.3.10 (Laplace's Rule of Succession) Suppose we have k + 1 coins in a box, and coin i turns up Heads with $\frac{i}{k}$ chance, and Tails with $\frac{k-i}{k}$ chance (for i = 0, ..., k). Pick one coin, and flip the coin n times. Assume it turned Heads every n times. What is the probability that it turns up H on the $(n+1)^{\text{st}}$ flip?

Sol'n Let $H_j = \{\text{the } j^{\text{th}} \text{ flip is H}\}$ for j = 1, 2, ..., n, n + 1. Then the events H_j are not independent, but they are conditionally independent given any of the $C_i = \{\text{the } i^{\text{th}} \text{ coin is initially picke}\}$

for i = 0, ..., k. Moreover, $\mathbb{P}(H_j | C_k) = \frac{i}{k}$. We thus have

$$\mathbb{P}(H_{n+1}|H_1 \cap H_2 \cap \dots \cap H_n) = \frac{\mathbb{P}(H_1 \cap H_2 \cap \dots \cap H_{n+1})}{\mathbb{P}(H_1 \cap \dots \cap H_n)}$$

$$= \frac{\sum_{i=0}^k \mathbb{P}\left(\bigcap_{j=1}^{n+1} H_j | C_i\right) \mathbb{P}(C_i)}{\sum_{i=0}^k \mathbb{P}\left(\bigcap_{j=1}^{n} H_j | C_i\right) \mathbb{P}(C_k)}$$

$$= \frac{\sum_{i=0}^k \prod_{j=1}^{n} \mathbb{P}(H_j | C_i) \mathbb{P}(C_i)}{\sum_{i=0}^k \prod_{j=1}^n \mathbb{P}(H_j | C_i) \mathbb{P}(C_i)}$$

$$= \frac{\sum_{i=0}^k \left(\frac{i}{k}\right)^{n+1} \frac{1}{k+1}}{\sum_{i=0}^k \left(\frac{i}{k}\right)^n \frac{1}{k+1}}$$

$$:= p(k, n)$$

Both the numerator and denominator of p(k,n) are sums of the form $\sum_{i=0}^{k} f(i/k) \cdot 1/k$. Thus as $k \to \infty$,

$$\lim_{k \to \infty} p(k, n) = \frac{\int_0^1 x^{n+1} dx}{\int_0^1 x^n dx} = \frac{\frac{1}{n+2}}{\frac{1}{n+1}} = \frac{n+1}{n+2}$$

Ex. 1.3.11 (Best prize problem) Suppose we have *N* items, each with a distinct real value. Observe them sequentially. After observing a prize, you can take the prize, or can abandon it (and never access it again). How can you maximize the odds that you get the best prize?

Sol'n Define a k-strategy for each k = 1,...,N, in which we observe the first k items, and pick the first of the remaining ones that is better than the first k. Define

$$P_k^{(N)} = \mathbb{P}(\text{choose the best with the } k\text{-strategy})$$

Let B_k denote this event and A_i be the event that the best prize is at the i^{th} position, so $\mathbb{P}(A_i) = 1/N$. Note that $\mathbb{P}(B_k|A_j) = 0$ for $j \leq k$, and $\mathbb{P}(B_k|A_j) = \frac{k}{j+1}$ for j > k. Then

$$\mathbb{P}(B_k) = \sum_{i=1}^n \mathbb{P}(B_k|A_i)\mathbb{P}(A_i)$$
$$= \sum_{i=k}^{N-1} \frac{k}{i} \cdot \frac{1}{N}$$
$$:= P_k^{(N)}$$

We can then compute

$$\lim_{k/N \to x} P_k^{(N)} = \lim_{k/N \to x} \sum_{i=k}^{N-1} \frac{k/N}{i/N} \cdot \frac{1}{N}$$

$$= \lim_{k/N \to x} x \sum_{i=k}^{N-1} \frac{1}{i/N} \frac{1}{N}$$

$$= x \int_x^1 \frac{1}{y} dy$$

$$= -x \ln x := g(x)$$

Then $g'(x) = -\ln x - 1$ and $g''(x) = -\frac{1}{x}$. Then $g'(x) = 0 \Rightarrow \ln x = -1$ so x = 1/e is a maximum since g''(1/e) < 0.

Chapter 2

Random Variables

2.1 Basics

Def'n. 2.1.1 A random variable is a (measurable) function $X : \Omega \to \mathbb{R}$.

For example, fix $a < b \in \mathbb{R}$ and consider the set $\{w \in \Omega \mid \mathbb{X}(w) \in [a, b]\} \in \mathcal{F}$.

Ex. 2.1.2 1. Flip three fair coins. Let *Y* denote the number of Heads. Then $Y : \Omega \rightarrow \{0,1,2,3\}$.

2. Repeatedly roll a fair die until a 6 occurs. Let Z denote the number of rolls necessary. Now $Z: \Omega \to \mathbb{N}$.

Def'n. 2.1.3 A random variable is **discrete** if its range is countable.

For a discrete random variable, the **probability mass function** is $p : \mathbb{R} \to \mathbb{R}$ defined by

$$p(x) = \begin{cases} 0 & \text{if } x \text{ is not taken by } X \\ \mathbb{P}(X = x_i) & x = x_i \text{ is taken by } X \end{cases}$$

In the example $\mathbb{P}(Y=0) = \frac{1}{8}$, $\mathbb{P}(Y=1) = \frac{3}{8}$, $\mathbb{P}(Y=2) = \frac{3}{8}$, $\mathbb{P}(Y=3) = \frac{1}{8}$. Note that $\sum_{i=1}^{\infty} p(x_i) = 1$.

In the dice example, $\mathbb{P}(Z=k) = \left(\frac{5}{6}\right)^{k-1} \frac{1}{6}$ and indeed the geometric series sums to 1.

Ex. 2.1.4 Each item can be one of N different types, with 1/N chance independently of other items. We wish to collect all types. Let X denote the number of items needed to collect all types. We wish to determine the mass funtion for X.

We wish to find $\mathbb{P}(X > n)$ for all n. Then $\mathbb{P}(X = n) = \mathbb{P}(X > n - 1) - \mathbb{P}(X > n)$. Now $\{X > n\} = A_1^{(n)} \cup \cdots \cup A_k^{(n)}$ where $A_k^{(n)}$ is the event that type k has not been collected in n items.

Now

$$\mathbb{P}(X > n) = \mathbb{P}(A_1 \cup A_2 \cup \dots \cup A_N)$$

$$= \sum_{r=1}^n (-1)^{r+1} \binom{N}{r} \mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_r)$$

$$= \sum_{r=1}^n (-1)^{r+1} \binom{N}{r} \frac{(N-r)^n}{N^n}$$

2.1.1 Expected Value

Def'n. 2.1.5 The expected value of a discrete random variable X is given by $\mathbb{E}(X) = \sum_{k=1}^{\infty} x_k \mathbb{P}(X = x_k)$.

Ex. 2.1.6 Consider two games:

- 1. Flip a fair coin, if H get \$100 and if T, lose
- 2. Roll a fair die, if 6 get \$x, otherwise, go home.

Let *X* denote the gain if the order is AB. We have

$$\mathbb{P}(X=0) = \frac{1}{2}$$
, $\mathbb{P}(X=100) = \frac{1}{2} \cdot \frac{5}{6}$, $\mathbb{P}(X=100+x) = \frac{1}{2} \cdot 16$

Let *Y* denote the gain if the order is BA. We have

$$\mathbb{P}(Y=0) = \frac{5}{6}$$
, $\mathbb{P}(Y=x) = \frac{1}{6}\frac{1}{2}$, $\mathbb{P}(Y=100+x) = \frac{1}{2} \cdot \frac{1}{6}$

so

$$\mathbb{E}(X) = 0 \cdot \frac{1}{2} + 100 \cdot \frac{5}{12} + (100 + x) \cdot \frac{1}{12} > \mathbb{E}(Y) = 0 \cdot \frac{1}{6} + x \cdot \frac{1}{12} + (x + 100) \cdot \frac{1}{12}$$

which reduces to 500 > x.

Ex. 2.1.7 Note that $\mathbb{E}(X) = \sum_{k=1}^{\infty} x_k \mathbb{P}(X = x_k)$ if the series is absolutely convergent. For example, define $\mathbb{P}(X = k) = \frac{1}{k(k+1)}$, which sums to 1, but

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} \frac{1}{k+1}$$

is infinite. But now, consider Y with $\mathbb{P}(Y = 0) = 1/3$.

Prop. 2.1.8
$$\mathbb{E}(g(X)) = \sum_{k=1}^{\infty} g(x_k) \mathbb{P}(X = x_k)$$

PROOF Let $x_1, x_2,...$ denote the possible values of X, and $y_1, y_2,...$ denote the possible values of Y. Then

$$\sum_{k=1}^{\infty} g(x_k) \mathbb{P}(X = x_k) = \sum_{l=1}^{\infty} \sum_{x_k : g(x_k) = y_l} g(x_k) \mathbb{P}(X = x_k)$$

$$= \sum_{l=1}^{\infty} y_l \sum_{x_k : g(x_k) = y_l} \mathbb{P}(X = x_k)$$

$$= \sum_{l=1}^{\infty} y_l \mathbb{P}(Y = y_l) = \mathbb{E}(Y)$$

Prop. 2.1.9 $\mathbb{E}(aX + b) = a \mathbb{E}(X) + \mathbb{E}(b)$

Proof Follows from linearity of the sum.

2.1.2 Variance

Consider two random variables defined by $\mathbb{P}(X = 1) = 1/2$ and $\mathbb{P}(X = -1) = 1/2$ vs $\mathbb{P}(X = 100) = 1/2$ and Pr(X = -100) = 1/2. They both have expected value 0, so we want a value to measure the typical amount of fluctuation about the expected value. Let X be a random variable and $\mu = \mathbb{E}(X)$.

Def'n. 2.1.10 We define the variance as $(X) = \mathbb{E}[(X - \mu)^2]$.

Note that $(X - \mu)^2 = X^2 - 2 + \mu^2$. Then

$$x = \mathbb{E}((X - \mu)^{2})$$

$$= \sum_{k=1}^{\infty} (x_{k} - 2\mu x_{k} + \mu^{2}) \mathbb{P}(X = x_{k})$$

$$= \sum_{k=1}^{\infty} x_{k}^{2} \mathbb{P}(X = x_{k}) - 2\mu \sum_{k=1}^{\infty} \mathbb{P}(X = x_{k})$$

$$= \mathbb{E}(X^{2}) - (\mathbb{E}(X))^{2}$$

Prop. 2.1.11 $(aX + b) = a^2X$.