화면구현

R 내장함수와 ggplot2 패키지를 활용한 데이터 시각화 및 비교 분석

2023.04.03

B2 팀 서영석, 박용태, 이현호, 전국림

<목차>

1	_	서	로
	•		_

	1) 패키지별 데이터 시각화 비교 배경	p. 2
2.	본론	
	1) 막대그래프	p. 3
	2) 누적 막대그래프	p. 7
	3) 점 차트	p. 9
	4) 원형 차트	p. 11
	5) 상자 그래프	p. 13
	6) 히스토그램	p. 15
	7) 산점도	p. 17
	8) 중첩 자료 시각화	p. 19
	9) 변수간의 비교 시각화	p. 21
	10) 밀도 그래프	p. 23
3.	분석 결과 비교	
	1) 패키지별 상이점, 장/단점 비교	p. 25
		1/26

1. 서론

1) 패키지별 데이터 시각화 비교 배경

데이터 시각화란 데이터 전처리 및 분석 후 사용자 입장에서 쉽게 이해 할 수 있도록 도표, 그래프, 그래픽을 이용하여 시각적으로 표현하고 전달하는 과정이다.

이렇듯 분석을 잘해봤자 사용자 입장에서 쉽게 이해가 되지 않거나 직관적이지 않다면 훌륭한 분석이라고 보기 어려울 것이다.

이 보고서에서는 R 의 내장함수와 시각화 패키지의 대표 중 하나인 ggplot2 를 사용하여 각각 어떠한 장/단점이 있고 사용법과 시각화 결과를 비교해 보고자 한다.

2. 본론

1-1) 막대그래프 (가로)

2018년도 vs 2019년도 매출현항 비교

그림 1. barplot 막대그래프 (가로)

그림 2. ggplot2 막대그래프 (가로)

```
# barplot 데이터셋
chart_data <- c(305, 450, 320, 460, 330, 480, 380, 520)
names(chart_data) <- c("2018 1 분기", "2019 1 분기",
                     "2018 2 분기", "2019 2 분기",
                     "2018 3 분기", "2019 3 분기",
                     "2018 4 분기", "2019 4 분기")
chart_data
# barplot 가로막대그래프
barplot(chart_data, xlim = c(0, 600), horiz = T,
       ylab = "매출액(단위: 만원)",
       xlab = "년도별 분기 현황",
       col = rainbow(8), space = 0.5, cex.names = 0.8,
       main = "2018 년도 vs 2019 년도 매출현항 비교")
# horiz : 수평, 가로 막대 표현 여부 T = 가로, default : 세로
# space 속성 : 막대의 굵기와 간격 지정
# cex.names 속성 : 축 이름의 크기 지정
```

표 1. barplot code

표 2. ggplot2 code

1-2) 막대그래프 (세로)

그림 1. barplot 막대그래프 (세로)

그림 2. ggplot2 막대그래프 (세로)

```
# barplot 데이터셋
chart_data <- c(305, 450, 320, 460, 330, 480, 380, 520)
names(chart_data) <- c("2018 1 분기", "2019 1 분기",
                      "2018 2 분기", "2019 2 분기",
                      "2018 3 분기", "2019 3 분기",
                      "2018 4 분기", "2019 4 분기")
chart_data
# barplot 세로막대그래프
barplot(chart_data, ylim = c(0, 600),
       ylab = "매출액(단위: 만원)",
       xlab = "년도별 분기 현황",
       col = rainbow(8),
       main = "2018 년도 vs 2019 년도 매출현항 비교")
legend(7.8, 210, c("2018 1 분기", "2018 2 분기", "2018 3 분기", "2018 4 분기",
                  "2019 1 분기", "2019 2 분기", "2019 3 분기", "2019 4 분기"),
      cex = 0.7, fill = rainbow(8))
# legend : 범례
```

丑 1. barplot code

표 2. ggplot2 code

2) 누적 막대그래프

그림 1. barplot 개별 / 누적 막대그래프

그림 2. ggplot2 누적 막대그래프

표 1. barplot code

```
# 데이터 가져오기
data("VADeaths")
VADeaths

# ggplot 누적 막대그래프
VADeaths_df <- as.data.frame.table(VADeaths)
ggplot(VADeaths_df, aes(x=Var2, y=Freq, fill = Var1))+
geom_bar(stat = 'identity')
```

표 2. ggplot2 code

3) 점 차트

분기별 판매현황: 점차트 시각화

그림 1. dotchart 점 차트

그림 2. ggplot2 점 차트

```
# dotchart 데이터셋
chart_data <- c(305, 450, 320, 460, 330, 480, 380, 520)
names(chart_data) <- c("2018 1 분기", "2019 1 분기",
                     "2018 2 분기", "2019 2 분기",
                     "2018 3 분기", "2019 3 분기",
                     "2018 4 분기", "2019 4 분기")
# dotchart 점 차트
dotchart(chart_data, color = c("blue", "red"),
        lcolor = "black", pch = 1:2,
        labels = names(chart_data),
        xlab = "매출액",
        main = "분기별 판매현황: 점차트 시각화",
        cex = 1.2)
# col : 레이블과 점 색상 지정
# Icolor: 구분선 색상 지정
# pch : 점 모양
# labels : 점에 대한 레이블 표시
# cex : 확대
```

표 1. dotchart code

표 2. ggplot2 code

4) 원형 차트

그림 1. pie 원형 차트

그림 2. ggplot2 원형 차트

丑 1. pie code

丑 2. ggplot2 code

5) 상자 그래프

그림 1. boxplot 상자 그래프

그림 2. ggplot2 상자 그래프

```
# boxplot 데이터셋 data("VADeaths")
VADeaths

# boxplot 상자 그래프
boxplot(VADeaths, range = 0)

# notch = TRUE
boxplot(VADeaths, range = 0, notch = T)
abline(h = 37, lty = 3, col = "red")
# h : 선 그을 위치
# notch = T : 중위수 기준 허리선 추가
```

丑 1. boxplot code

```
# ggplot2 데이터셋
data("VADeaths")
VADeaths

# ggplot2 상자 그래프
VADeaths_df <- as.data.frame.table(VADeaths)
box <- ggplot(VADeaths_df, aes(x = Var2, y = Freq))
box <- box + geom_boxplot(notch = F) +
    geom_abline(intercept = 37, slope = 0, color = 2, linetype = 'dashed')
box

VADeaths_df <- as.data.frame.table(VADeaths)
box <- ggplot(VADeaths_df, aes(x = Var2, y = Freq))
box <- box + geom_boxplot(notch = T) +
    geom_abline(intercept = 37, slope = 0, color = 2, linetype = 'dashed')
box
```

丑 2. ggplot2 code

6) 히스토그램

그림 1. hist 히스토그램

그림 2. ggplot2 히스토그램

```
# hist 데이터셋 data(iris)

# 빈도수에 의해서 히스토그램 그리기 par(mfrow = c(1, 2))
hist(iris$Sepal.Width, xlab = "iris$Sepal.Width", col = "green", main = "iris 꽃받침 너비 Histogram: 빈도수", xlim = c(2.0, 4.5))

# 확률 밀도에 의해서 히스토그램 그리기 hist(iris$Sepal.Width, xlab = "iris.$Sepal.Width", col = "mistyrose", freq = F, main = "iris 꽃받침 너비 Histogram: 확률 밀도", xlim = c(2.0, 4.5))

# 밀도를 기준으로 line 추가하기 lines(density(iris$Sepal.Width), col = "red")
```

丑 1. hist code

```
# ggplot2 데이터셋
data(iris)

# ggplot2 히스토그램
hist2 <- ggplot(data = iris, aes(x = Sepal.Width))
hist2 + geom_histogram(fill = 7, color = 2)
# fill : 막대 색 채우기
# color : 막대 테두리 색
```

丑 2. ggplot2 code

7) 산점도

그림 1. xyplot 산점도 (y 축 변수 1 개 / 2 개)

그림 2. ggplot2 산점도 (y 축 변수 1개 / 2개)

丑 1. xyplot code

```
# ggplot2 데이터셋
data("airquality")

# ggplot2 산점도
air <- ggplot(data = airquality, aes(x = Wind, y = Ozone, color = Month))
air <- air+ geom_point(shape=1, size=4)
air

# shape : 점 모양
# size : 점 크기

# y 축 변수 2 개 합
air <- ggplot(data = airquality, aes(x = Wind, y = Ozone + Solar.R, color = Month))
air <- air+ geom_point(shape = 1, size = 3)
air
```

표 2. ggplot2 code

8) 중첩 자료 시각화

그림 1. plot 중첩 자료 시각화

그림 2. ggplot2 중첩 자료 시각화

표 1. plot code

```
# ggplot2 데이터셋
data(galton)
galtonData <- as.data.frame(table(galton$child, galton$parent))

# ggplot2 중첩 자료 시각화
names(galtonData) = c("child", "parent", "freq")
galton2 <- ggplot(data = galtonData)
galton2 + aes(x = parent, y = child, colour = freq) +
geom_point(mapping = aes(size = 0.3 * freq)) +
scale_color_gradient() + theme_minimal()
```

표 2. ggplot2 code

9) 변수 간의 비교 시각화

그림 1. pairs 변수 간의 비교 시각화

그림 2. ggplot2 변수 간의 비교 시각화

```
# pairs 데이터셋 data(iris)

# pairs 변수 간의 비교 시각화 pairs(iris[iris$Species == "virginica", 1:4]) pairs(iris[iris$Species == "setosa", 1:4]) pairs(iris[iris$Species == "versicolor", 1:4]) # pairs() : numeric 컬럼 대상 변수들 사이 # 비교 결과를 행렬구조의 분산된 그래프로 제공
```

丑 1. pairs code

```
# ggplot2 데이터셋
library(ggplot2)
data(iris)

# ggplot2 변수 간의 비교 시각화
ggplot() +
geom_point(mapping = aes(x = Sepal.Length, y = Sepal.Width,
color = Species, shape = Species), data=iris)
```

표 2. ggplot2 code

10) 밀도 그래프

그림 1. density 밀도 그래프

그림 2. ggplot2 밀도 그래프 (성별 / 점수 0~10 점)

```
# densityplot 데이터셋
library(lattice)
library(mlmRev)
data("Chem97")
# densityplot 밀도 그래프
densityplot(~gcsescore | factor(score), data = Chem97,
groups = gender, plot.Points = T,
auto.key = T)
```

丑 1. densityplot code

```
# ggplot2 데이터셋
library(lattice)
library(mlmRev)
data("Chem97")
# score 기준 데이터 분리
chem97_0<-subset(Chem97, score == 0)
chem97_2<-subset(Chem97, score == 2)</pre>
chem97_4<-subset(Chem97, score == 4)</pre>
chem97_6<-subset(Chem97, score == 6)</pre>
chem97_8<-subset(Chem97, score == 8)</pre>
chem97_10<-subset(Chem97, score == 10)</pre>
# ggplot2 밀도 그래프(점수 / 성별)
ggplot(data = chem97_0) + geom_density(mapping = aes(x = gcsescore, colour = gender))
ggplot(data = chem97_2) + geom_density(mapping = aes(x = gcsescore, colour = gender))
ggplot(data = chem97_4) + geom_density(mapping = aes(x = gcsescore, colour = gender))
ggplot(data = chem97_6) +
                           geom_density(mapping = aes(x = gcsescore, colour = gender))
ggplot(data = chem97_8) +
                           geom_density(mapping = aes(x = gcsescore, colour = gender))
ggplot(data = chem97_10) + geom_density(mapping = aes(x = gcsescore, colour = gender))
```

표 2. ggplot2 code

3. 분석 결과 및 결론

1) 패키지별 상이점, 장/단점 비교

R 의 내장함수와 ggplot2 패키지로 시각화를 진행 후 어떤 식으로 시각화가 되는지 비교해보았다.

R 의 내장함수는 별도의 패키지를 사용하지 않아도 된다는 장점과 변수를 직접적으로 지정해주어 직관성이 뛰어 나다는 느낌을 받았다. 하지만 이러한 방식들로 볼 때 대량의 데이터에서보다는 소량의 데이터에서 효과적이고 편하게 사용 할 수 있을 것 같다.

ggplot2 패키지는 사용 할 수 있는 옵션이 너무 많아 처음 사용 시 일일이 찾아보고 이해해야 할게 많아 사용이 어려웠지만, 이를 모두 사용할 정도로 능숙해진다면 어느 패키지보다 세세하고 직관적으로 시각화가 가능할 것이다.

R 의 내장함수와 ggplot2 패키지 각각의 장단점이 있지만, 딱 어떤 패키지가 더 좋다고 정하지 않고 시각화 대상이 되는 데이터셋에 따라 적절한 패키지를 사용하여 사용자 입장에서 쉽게 이해할 수 있고 직관적으로 표현하는 것이 빅데이터 분석가의 임무이자 실력이 될 것이다.

참고 자료

- 1) VADeaths 데이터셋
- 2) Iris 데이터셋
- 3) Airquality 데이터셋
- 4) Galton 데이터셋