## ${\tt COMPARISON\_MediaPipe+CNN}$

June 21, 2025

Paper Reference: https://j-innovative.org/index.php/Innovative/article/download/15199/10372/26113

```
[1]: import os
     from modules.SignLanguageProcessor import load_and_preprocess_data,parse_frame
[2]: ROOT PATH = ''
     sequences,labels,label_map = load_and_preprocess_data(os.path.
      ⇔join(ROOT_PATH, 'data'))
[3]: num_classes = len(label_map)
[4]: len(labels)
[4]: 2155
[5]:
     sequences.shape
[5]: (2155, 3, 61, 3)
[6]: from sklearn.model_selection import train_test_split
     X_train, X_temp, y_train, y_temp = train_test_split(
         sequences, labels, test_size=0.4, stratify=labels, random_state=42
     )
     X_val, X_test, y_val, y_test = train_test_split(
         X_temp, y_temp, test_size=0.5, stratify=y_temp, random_state=42
[7]: import numpy as np
     def normalize_landmark_data(X):
         Normalize the landmark features (x, y) to have zero mean and unit variance \sqcup
      \hookrightarrowacross the training set.
         Assumes X shape is (N, F, L, T), where F=3 (x, y, vis).
         11 11 11
         X = X.copy()
         # Flatten across all samples, landmarks, and frames
```

```
x_vals = X[:, 0, :, :].flatten()
         y_vals = X[:, 1, :, :].flatten()
         # Compute mean and std
         x_mean, x_std = np.mean(x_vals), np.std(x_vals)
         y_mean, y_std = np.mean(y_vals), np.std(y_vals)
         # Normalize
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X, (x_mean, x_std), (y_mean, y_std)
     def apply_normalization(X, x_mean, x_std, y_mean, y_std):
         X = X.copv()
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X
[8]: def reshape_frames_for_cnn(X, y):
         Reshape a dataset of (N, F, L, T) into (N*T, L, F, 1) for Conv2D,
         where each frame becomes its own sample.
         Parameters:
         - X: np.ndarray of shape (N, F, L, T)
         - y: np.ndarray of shape (N,)
         Returns:
         - reshaped_X: np.ndarray of shape (N*T, L, F, 1)
         - reshaped_y: np.ndarray of shape (N*T,)
         reshaped_X = []
         reshaped_y = []
         for sample, label in zip(X, y):
             T = sample.shape[-1]
             for t in range(T):
                 frame = sample[:, :, t].T[..., np.newaxis]
                 reshaped_X.append(frame)
                 reshaped_y.append(label)
```

reshaped\_X = np.array(reshaped\_X)
reshaped\_y = np.array(reshaped\_y)
return reshaped\_X, reshaped\_y

```
[9]: X_train_norm, (x_mean, x_std), (y_mean, y_std) =__
       →normalize_landmark_data(X_train)
      X_val_norm = apply_normalization(X_val, x_mean, x_std, y_mean, y_std)
      X_test_norm = apply_normalization(X_test, x_mean, x_std, y_mean, y_std)
      X_train_cnn, y_train_cnn = reshape_frames_for_cnn(X_train_norm, y_train)
      X_val_cnn, y_val_cnn = reshape_frames_for_cnn(X_val_norm, y_val)
      X_test_cnn, y_test_cnn = reshape_frames_for_cnn(X_test_norm, y_test)
      print(X_train_cnn.shape)
      print(y_train_cnn.shape)
     (3879, 61, 3, 1)
     (3879.)
[10]: input_shape = X_train_cnn.shape[1:]
      print(input_shape)
     (61, 3, 1)
[11]: import tensorflow as tf
      train_ds = tf.data.Dataset.from_tensor_slices((X_train_cnn, y_train_cnn))
      train_ds = train_ds.shuffle(buffer_size=1000).batch(64).prefetch(tf.data.
       →AUTOTUNE)
      val_ds = tf.data.Dataset.from_tensor_slices((X_val_cnn, y_val_cnn))
      val_ds = val_ds.batch(64).prefetch(tf.data.AUTOTUNE)
      test_ds = tf.data.Dataset.from_tensor_slices((X_test_cnn, y_test_cnn))
      test_ds = test_ds.batch(64).prefetch(tf.data.AUTOTUNE)
[12]: from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, L
       →Dense, BatchNormalization,Input
      cnn_model = Sequential([
          Input(input_shape),
          Conv2D(32, (3, 2), activation='relu', padding='same'),
          MaxPooling2D((2, 1)),
          Dropout(0.25),
          Conv2D(64, (3, 2), activation='relu', padding='same'),
          MaxPooling2D(pool_size=(2, 1)),
          Dropout(0.25),
          Flatten(),
          Dense(128, activation='relu'),
          Dropout(0.2),
          Dense(num_classes, activation='softmax')
```

```
])
      cnn_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',_
       →metrics=['accuracy'])
[13]: history = cnn_model.fit(train_ds,validation_data=val_ds, epochs=50,
       ⇒batch_size=64)
     Epoch 1/50
     61/61
                       2s 11ms/step -
     accuracy: 0.0944 - loss: 3.1221 - val accuracy: 0.1462 - val loss: 2.9218
     Epoch 2/50
     61/61
                       1s 8ms/step -
     accuracy: 0.1402 - loss: 2.8520 - val_accuracy: 0.1895 - val_loss: 2.6704
     Epoch 3/50
     61/61
                       1s 8ms/step -
     accuracy: 0.1794 - loss: 2.6196 - val_accuracy: 0.2390 - val_loss: 2.5055
     Epoch 4/50
     61/61
                       1s 8ms/step -
     accuracy: 0.2369 - loss: 2.4423 - val_accuracy: 0.2962 - val_loss: 2.3516
     Epoch 5/50
     61/61
                       1s 8ms/step -
     accuracy: 0.2607 - loss: 2.2877 - val_accuracy: 0.3364 - val_loss: 2.2037
     Epoch 6/50
     61/61
                       1s 8ms/step -
     accuracy: 0.3066 - loss: 2.1756 - val accuracy: 0.3735 - val loss: 2.1106
     Epoch 7/50
     61/61
                       1s 8ms/step -
     accuracy: 0.3574 - loss: 2.0495 - val_accuracy: 0.4269 - val_loss: 1.9843
     Epoch 8/50
     61/61
                       1s 8ms/step -
     accuracy: 0.3685 - loss: 1.9700 - val_accuracy: 0.4408 - val_loss: 1.9089
     Epoch 9/50
     61/61
                       1s 8ms/step -
     accuracy: 0.3962 - loss: 1.9152 - val_accuracy: 0.4493 - val_loss: 1.8546
     Epoch 10/50
     61/61
                       1s 8ms/step -
     accuracy: 0.4177 - loss: 1.8193 - val_accuracy: 0.4671 - val_loss: 1.7835
     Epoch 11/50
     61/61
                       1s 8ms/step -
     accuracy: 0.4361 - loss: 1.7723 - val accuracy: 0.4803 - val loss: 1.7292
     Epoch 12/50
     61/61
                       1s 9ms/step -
     accuracy: 0.4513 - loss: 1.6990 - val_accuracy: 0.4849 - val_loss: 1.7000
     Epoch 13/50
                       1s 8ms/step -
     61/61
     accuracy: 0.4745 - loss: 1.6528 - val_accuracy: 0.5012 - val_loss: 1.6480
     Epoch 14/50
     61/61
                       1s 8ms/step -
```

```
accuracy: 0.4690 - loss: 1.6392 - val_accuracy: 0.5135 - val_loss: 1.6139
Epoch 15/50
61/61
                  1s 9ms/step -
accuracy: 0.4832 - loss: 1.6249 - val_accuracy: 0.5189 - val_loss: 1.6078
Epoch 16/50
61/61
                  1s 8ms/step -
accuracy: 0.4776 - loss: 1.5888 - val accuracy: 0.5244 - val loss: 1.5700
Epoch 17/50
61/61
                  1s 8ms/step -
accuracy: 0.5168 - loss: 1.4998 - val_accuracy: 0.5406 - val_loss: 1.5525
Epoch 18/50
61/61
                  1s 8ms/step -
accuracy: 0.5208 - loss: 1.4861 - val_accuracy: 0.5375 - val_loss: 1.5221
Epoch 19/50
61/61
                  1s 8ms/step -
accuracy: 0.5174 - loss: 1.4808 - val_accuracy: 0.5561 - val_loss: 1.5189
Epoch 20/50
                  1s 8ms/step -
61/61
accuracy: 0.5272 - loss: 1.4402 - val_accuracy: 0.5568 - val_loss: 1.4875
Epoch 21/50
61/61
                  1s 8ms/step -
accuracy: 0.5294 - loss: 1.4544 - val_accuracy: 0.5398 - val_loss: 1.5042
Epoch 22/50
61/61
                  1s 8ms/step -
accuracy: 0.5390 - loss: 1.4122 - val_accuracy: 0.5584 - val_loss: 1.4737
Epoch 23/50
61/61
                  1s 8ms/step -
accuracy: 0.5441 - loss: 1.3911 - val_accuracy: 0.5746 - val_loss: 1.4269
Epoch 24/50
61/61
                  1s 8ms/step -
accuracy: 0.5494 - loss: 1.3830 - val_accuracy: 0.5692 - val_loss: 1.4396
Epoch 25/50
61/61
                  1s 8ms/step -
accuracy: 0.5576 - loss: 1.3429 - val_accuracy: 0.5816 - val_loss: 1.4305
Epoch 26/50
61/61
                  1s 8ms/step -
accuracy: 0.5617 - loss: 1.3373 - val_accuracy: 0.5947 - val_loss: 1.3913
Epoch 27/50
61/61
                  1s 8ms/step -
accuracy: 0.5638 - loss: 1.3204 - val_accuracy: 0.5831 - val_loss: 1.4120
Epoch 28/50
61/61
                  1s 9ms/step -
accuracy: 0.5560 - loss: 1.3466 - val_accuracy: 0.5800 - val_loss: 1.3849
Epoch 29/50
61/61
                  1s 8ms/step -
accuracy: 0.5674 - loss: 1.2905 - val_accuracy: 0.5770 - val_loss: 1.4030
Epoch 30/50
61/61
                  1s 9ms/step -
```

```
accuracy: 0.5755 - loss: 1.2993 - val_accuracy: 0.5924 - val_loss: 1.3725
Epoch 31/50
61/61
                 1s 9ms/step -
accuracy: 0.5853 - loss: 1.2582 - val_accuracy: 0.5955 - val_loss: 1.3694
Epoch 32/50
61/61
                 1s 9ms/step -
accuracy: 0.5836 - loss: 1.2562 - val_accuracy: 0.5932 - val_loss: 1.3765
Epoch 33/50
61/61
                 1s 10ms/step -
accuracy: 0.5913 - loss: 1.2813 - val_accuracy: 0.5839 - val_loss: 1.3677
Epoch 34/50
61/61
                 1s 9ms/step -
accuracy: 0.5907 - loss: 1.2530 - val_accuracy: 0.5963 - val_loss: 1.3554
Epoch 35/50
61/61
                 1s 9ms/step -
accuracy: 0.5895 - loss: 1.2547 - val_accuracy: 0.5978 - val_loss: 1.3670
Epoch 36/50
61/61
                 1s 9ms/step -
accuracy: 0.6120 - loss: 1.2001 - val_accuracy: 0.5878 - val_loss: 1.3552
Epoch 37/50
61/61
                 1s 9ms/step -
accuracy: 0.6060 - loss: 1.2010 - val_accuracy: 0.5847 - val_loss: 1.3560
Epoch 38/50
61/61
                 1s 9ms/step -
accuracy: 0.5953 - loss: 1.2255 - val_accuracy: 0.5963 - val_loss: 1.3282
Epoch 39/50
61/61
                 1s 9ms/step -
accuracy: 0.5986 - loss: 1.2088 - val_accuracy: 0.6118 - val_loss: 1.3377
Epoch 40/50
61/61
                 1s 9ms/step -
accuracy: 0.6094 - loss: 1.1641 - val_accuracy: 0.6063 - val_loss: 1.3134
Epoch 41/50
61/61
                 1s 9ms/step -
accuracy: 0.6177 - loss: 1.1788 - val_accuracy: 0.5978 - val_loss: 1.3250
Epoch 42/50
61/61
                  1s 10ms/step -
accuracy: 0.6157 - loss: 1.1529 - val_accuracy: 0.6040 - val_loss: 1.3198
Epoch 43/50
61/61
                 1s 9ms/step -
accuracy: 0.6213 - loss: 1.1615 - val_accuracy: 0.6025 - val_loss: 1.3356
Epoch 44/50
61/61
                  1s 9ms/step -
accuracy: 0.6175 - loss: 1.1525 - val_accuracy: 0.6071 - val_loss: 1.3095
Epoch 45/50
61/61
                 1s 9ms/step -
accuracy: 0.6311 - loss: 1.1417 - val_accuracy: 0.6094 - val_loss: 1.3121
Epoch 46/50
61/61
                 1s 9ms/step -
```

```
accuracy: 0.6288 - loss: 1.1348 - val_accuracy: 0.6179 - val_loss: 1.3005
     Epoch 47/50
     61/61
                       1s 8ms/step -
     accuracy: 0.6262 - loss: 1.1252 - val_accuracy: 0.6094 - val_loss: 1.3085
     Epoch 48/50
     61/61
                       1s 9ms/step -
     accuracy: 0.6340 - loss: 1.1144 - val accuracy: 0.6195 - val loss: 1.3133
     Epoch 49/50
     61/61
                       1s 9ms/step -
     accuracy: 0.6289 - loss: 1.1444 - val_accuracy: 0.6195 - val_loss: 1.2926
     Epoch 50/50
     61/61
                       1s 9ms/step -
     accuracy: 0.6447 - loss: 1.0889 - val_accuracy: 0.6125 - val_loss: 1.3092
[14]: test_loss, test_accuracy = cnn_model.evaluate(test_ds)
      print(f"Test Accuracy: {test_accuracy:.4f}")
      print(f"Test Loss: {test_loss:.4f}")
     21/21
                       Os 3ms/step -
     accuracy: 0.6347 - loss: 1.4002
     Test Accuracy: 0.6326
     Test Loss: 1.2936
[15]: import matplotlib.pyplot as plt
      from sklearn.metrics import classification_report, confusion_matrix
      import seaborn as sns
[16]: plt.figure(figsize=(12, 4))
      plt.subplot(1, 2, 1)
      plt.plot(history.history['accuracy'])
      plt.plot(history.history['val_accuracy'])
      plt.title('Model accuracy')
      plt.ylabel('Accuracy')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      # Plot training & validation loss values
      plt.subplot(1, 2, 2)
      plt.plot(history.history['loss'])
      plt.plot(history.history['val_loss'])
      plt.title('Model loss')
      plt.ylabel('Loss')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      plt.show()
```



```
[17]: y_true, y_pred = [], []
      target_names = [label_map[i] for i in range(len(label_map))]
      for X_batch, y_batch in test_ds:
          y_true.append(y_batch.numpy())
          batch_pred = cnn_model.predict(X_batch, verbose=0)
          y_pred.append(np.argmax(batch_pred, axis=1))
      y_true = np.concatenate(y_true)
      y_pred = np.concatenate(y_pred)
      print(classification_report(
          y_true, y_pred,
          digits=3,
          target_names=target_names
      ))
      cm = confusion_matrix(y_true, y_pred, labels=range(len(label_map)))
      labels = [label_map[i] for i in range(len(label_map))]
      plt.figure(figsize=(10, 8))
      sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
                  xticklabels=labels, yticklabels=labels)
      plt.xlabel("Predicted Label")
      plt.ylabel("True Label")
      plt.title("Confusion Matrix - Test Set")
      plt.show()
```

|       | precision | recarr | 11-20016 | support |
|-------|-----------|--------|----------|---------|
| baca  | 0.623     | 0.688  | 0.653    | 48      |
| bantu | 0.811     | 0.769  | 0.789    | 39      |

| bapak         | 0.730 | 0.600 | 0.659 | 45   |
|---------------|-------|-------|-------|------|
| buangairkecil | 0.625 | 0.625 | 0.625 | 24   |
| buat          | 0.895 | 0.667 | 0.764 | 51   |
| halo          | 0.507 | 0.617 | 0.556 | 60   |
| ibu           | 1.000 | 0.389 | 0.560 | 18   |
| kamu          | 0.660 | 0.530 | 0.588 | 66   |
| maaf          | 0.683 | 0.651 | 0.667 | 63   |
| makan         | 0.765 | 0.510 | 0.612 | 51   |
| mau           | 0.720 | 0.857 | 0.783 | 63   |
| nama          | 0.614 | 0.680 | 0.646 | 75   |
| pagi          | 0.566 | 0.653 | 0.606 | 72   |
| paham         | 0.455 | 0.880 | 0.600 | 75   |
| sakit         | 1.000 | 0.500 | 0.667 | 12   |
| sama-sama     | 0.761 | 0.607 | 0.675 | 84   |
| saya          | 0.737 | 0.359 | 0.483 | 39   |
| selamat       | 0.725 | 0.587 | 0.649 | 63   |
| siapa         | 0.676 | 0.479 | 0.561 | 48   |
| tanya         | 0.640 | 0.533 | 0.582 | 60   |
| tempat        | 0.769 | 0.417 | 0.541 | 24   |
| terima-kasih  | 0.615 | 0.561 | 0.587 | 57   |
| terlambat     | 0.611 | 0.647 | 0.629 | 51   |
| tidak         | 0.613 | 0.745 | 0.673 | 51   |
| tolong        | 0.470 | 0.722 | 0.569 | 54   |
|               |       |       |       |      |
| accuracy      |       |       | 0.633 | 1293 |
| macro avg     | 0.691 | 0.611 | 0.629 | 1293 |
| weighted avg  | 0.664 | 0.633 | 0.632 | 1293 |

