

Kyuseok Shim Seoul National University http://kdd.snu.ac.kr/~shim



## Weka

## Data Mining with Weka

- What's Weka?
  - A bird found only in New Zealand?
- Data mining tool
- Machine learning algorithms for data mining tasks
  - 100+ algorithms for classification
  - 75 for data preprocessing
  - 25 to assist with feature selection
  - 20 for clustering, finding association rules, etc

## Getting started with Weka

- Install Weka
- Explore the "Explorer" interface
- Explore some datasets
- Build a classifier
- Interpret the output
- Use filters
- Visualize your data set

#### Download & Install Weka

- Download Weka 3.8
  - https://www.cs.waikato.ac.nz/ml/weka/downloading.html
  - For 64-bit Windows
    - http://prdownloads.sourceforge.net/weka/weka-3-8-3jrex64.exe
  - For 32-bit Windows
    - http://prdownloads.sourceforge.net/weka/weka-3-8-3jre.exe
- The installation is simple
  - Just select 'Next', 'I Agree' or 'Install'



## Download the Additional Dataset

- http://kdd.snu.ac.kr/weka/
  - cluster2.arff

## Getting Started with Weka



## Exploring the Explorer



## Exploring the Explorer



# A Dataset: weather.nominal.arff

#### attributes

instances

3

4

8

10

11

12

13

14

Humidity Outlook Temp Windy Play Hot False Sunny High No Sunny Hot High True Nο High False Yes Overcast Hot Rainy Mild High False Yes Rainy Cool Normal False Yes Rainy Cool Normal True No Overcast Cool Normal True Yes Mild False No Sunny High Normal False Yes Sunny Cool Mild Normal False Rainy Yes Normal Yes Sunny Mild True Overcast Mild High True Yes Hot Normal False Overcast Yes Rainy Mild High True No

Ian H. Witten's slide

#### weather.nominal.arff

C:\Program Files\Weka-3-8\data\weather.nominal.arff

@relation weather.symbolic

The name of the data

The name of an attribute

@attribute outlook {sunny, overcast, rainy}

@attribute temperature {hot, mild, cool}

@attribute humidity {high, normal}

@attribute windy {TRUE, FALSE}

@attribute play {yes, no}

The categories of the attribute

@data
sunny,hot,high,FALSE,no
sunny,hot,high,TRUE,no
overcast,hot,high,FALSE,yes

Generally, the last attribute represents the label to predict

Data instances

. . . . . .

#### Classification Problem



Ian H. Witten's slide

#### weather.numeric.arff

C:\Program Files\Weka-3-8\data\weather.nominal.arff

@relation weather

@attribute outlook {sunny, overcast, rainy}

@attribute temperature numeric

@attribute humidity numeric

@attribute windy {TRUE, FALSE}

@attribute play {yes, no}

@data sunny,85,85,FALSE,no sunny,80,90,TRUE,no overcast,83,86,FALSE,yes

. . . . . .

A numeric attribute

| outlook  | temperate | humidity | windy | play |
|----------|-----------|----------|-------|------|
| sunny    | 85        | 85       | FALSE | no   |
| sunny    | 80        | 90       | TRUE  | no   |
| overcast | 83        | 86       | FALSE | yes  |
|          |           |          |       | •••  |

## Open the Dataset

C:\Program Files\Weka-3-8\data\weather.numeric.arff



#### The Statistics of the Dataset



#### Select the Class



#### The Statistics of the Class



### The Statistics of an Attribute



#### The Statistics of an Attribute





## Weka – Using CSV Files

# CSV Files

#### CSV files could be easily exported from Microsoft Excel or Google Spreadsheet

|   | Α        | В           | С        | D     | Е    |
|---|----------|-------------|----------|-------|------|
| 1 | outlook  | temperature | humidity | windy | play |
| 2 | sunny    | 85          | 85       | FALSE | no   |
| 3 | sunny    | 80          | 90       | TRUE  | no   |
| 4 | overcast | 83          | 86       | FALSE | yes  |
| 5 | rainy    | 70          | 96       | FALSE | yes  |
| 6 | rainy    | 68          | 80       | FALSE | yes  |
| 7 | rainy    | 65          | 70       | TRUE  | no   |

outlook,temperature,humidity,windy,play sunny,85,85,FALSE,no sunny,80,90,TRUE,no overcast,83,86,FALSE,yes rainy,70,96,FALSE,yes rainy,68,80,FALSE,yes rainy,65,70,TRUE,no

## Download a Sample CSV File

- http://kdd.snu.ac.kr/weka/
  - Download the test.csv



IF the test.csv is downloaded in C:\Users\dyhong\Downloads



IF the test.csv is downloaded in C:\Users\dyhong\Downloads



IF the test.csv is downloaded in C:\Users\dyhong\Downloads





## Saving the CSV File as ARFF File





#### Anaconda

- A free and open-source distribution of the Python
  - Includes useful scientific packages
  - Simplifies package management and deployment





https://www.anaconda.com/distribution/



Products

Why Anaconda?

Solutions

Resources

Company

Download

Q Search



Download



2. Click

Python 3.7 version



64-Bit Graphical Installer (614.3 MB) 32-Bit Graphical Installer (509.7 MB)

#### Python 2.7 version

Download

64-Bit Graphical Installer (560.6 MB)

32-Bit Graphical Installer (458.6 MB)

When

https://www.anaconda.com/distribution/ is
not available, please download the file from
http://kdd.snu.ac.kr/python/

- 1. Run the downloaded file
- 2. Select 'Next' and 'I Agree' and 'Install' for all



Installation is in progress



Installation is complete



### **Anaconda Installation**



### **Anaconda Installation**





#### **GRAPHVIZ INSTALLATION**

# Graphviz

- An open source graph visualization tool
- Used to visualize decision trees in this course



- Installation with Conda
- Manual Installation with Conda
- Installation with pip



# GRAPHVIZ INSTALLATION WITH CONDA





Type this command and press Enter

Anaconda Prompt

(base) C:₩Users₩dyhong>conda install python-graphviz

```
(base) C:\Users\dyhong>conda install python-graphviz
Collecting package metadata: done
Solving environment: done
## Package Plan ##
 environment location: C:\Users\dyhong\Anaconda3
 added / updated specs:
   - python-graphviz
                           Type "y" and press Enter
The following NEW packages will be INSTALLED:
 python-graphviz pkgs/main/win-64::python-graphviz-0.8.4
Proceed ([y]/n)? y
```

The installation is complete

```
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

(base) C:\text{WUsers}\text{dyhong}
```



# MANUAL GRAPHVIZ INSTALLATION WITH CONDA



 An alternative installation method when the previous method does not work

- Graphviz
  - o conda
    - Windows 64-Bit
      - conda
      - graphviz
      - python-graphviz
    - OSX 64-Bit
      - conda
      - graphviz
      - python-graphviz
    - Linux 64-Bit
      - conda
      - graphviz
      - python-graphviz

- Download the following files for your OS from
  - http://kdd.snu.ac.kr/python/
    - conda
  - graphviz
  - python-graphviz





Type "conda install [downloaded conda file path]"

Downloaded conda file path

Anaconda Prompt

(base) C:\Users\kddlabO<mark>></mark>conda install<mark></mark> Downloads\conda-4.6.8-py37\_0.tar.bz2

The conda is installed

#### Anaconda Prompt

Repeat for `graphviz' and `python-graphviz'



# GRAPHVIZ INSTALLATION WITH PIP

An alternative installation when Conda is not available

- Download from http://kdd.snu.ac.kr/python/
  - whl file
  - Windows installer

```
    pip
    whl file
    Installer
    Windows
```





**Type this and press Enter** 

The path of the downloaded whl file

Anaconda Prompt

(base) C:\Users\dyhong>pip install Downloads\graphviz-0.10.1-py2.py3-none-any.whl

Successfully installed the whl file

```
Anaconda Prompt

(base) C:\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Use
```

 Run the downloaded Windows installer of Graphviz



Press Next





1. Copy and save the path for further usage















- Write down "[the installed Graphviz path]\bin"
  - In this example, C:\Program Files (x86)\Graphviz2.38\bin



### Graphviz Installation with pip



### Graphviz Installation with pip





#### JUPYTER NOTEBOOK



- An open-source web application that allows you to edit and run python code
- Already installed since it is contained in Anaconda

### Running Jupyter Notebook



### Running Jupyter Notebook



### Running Jupyter Notebook



### Creating a Notebook Document



### Creating a Notebook Document

A Notebook document is created



# Creating a Notebook Document

- You can see the file (Untitled.ipynb) is created in the base directory
  - In this example, the base directory path is C:\Users\dyhong



#### Hello World!



#### Hello World!



#### Hello World!





 Variables always remain in the memory unless you shut down the kernel in the Jupyter Notebook



If you want to start over a computation from scratch (e.g. variables are deleted, open files are closed, etc...), restart the kernel







### Close a Notebook



- Closing the notebook browser tab does not shut down the kernel
- Instead, the kernel keeps running until we explicitly shut down

Shutting Down



 By dividing the code into cells, you can run the code partially



A new cell is created

| File     | Edit     | View     | Insert   | Cell         | Kernel |                 |
|----------|----------|----------|----------|--------------|--------|-----------------|
| <b>+</b> | <b>%</b> | <b>4</b> | <b>↑</b> | <b>N</b> Run | ■ C    | <b>&gt;&gt;</b> |
|          |          |          |          |              |        |                 |
| I        | n [ ]:   |          |          |              |        |                 |
| I        | n [ ]:   |          |          |              |        |                 |

Write down the code as follows







3. Run the next cell



1. You can see that only the first cell is excuted

```
In [1]: print("1st Cell")

1st Cell

2. The next cell is automatically selected

In []: print("2nd Cell")
```

# 4

■ The 2<sup>nd</sup> cell is also executed



The value of the last line in the cell is automatically evaluated and printed

- Download <u>cpu.csv</u> from <u>http://kdd.snu.ac.kr/python/</u>
- Save the csv file in the same directory as the source file (.ipynb)



pandas: A library that supports data analysis Import the pandas library and use alias 'pd' instead of 'pandas'

```
import pandas as pd

df = pd.read_csv("cpu.csv")

df[:5]
```

Read the csv file and store it in a pandas dataframe object

select the rows up to 5th row

| cpu.csv |      |       |      |       |       |       |  |
|---------|------|-------|------|-------|-------|-------|--|
| MYCT    | MMIN | MMAX  | CACH | CHMIN | CHMAX | class |  |
| 125     | 256  | 6000  | 256  | 16    | 128   | 198   |  |
| 29      | 8000 | 32000 | 32   | 8     | 32    | 269   |  |
| 29      | 8000 | 32000 | 32   | 8     | 32    | 220   |  |
| 29      | 8000 | 32000 | 32   | 8     | 32    | 172   |  |
| 29      | 8000 | 16000 | 32   | 8     | 16    | 132   |  |

```
import pandas as pd
df = pd.read_csv("cpu.csv")
df[:5]
```

|   | MYCT | MMIN | MMAX  | CACH | CHMIN | CHMAX | class |
|---|------|------|-------|------|-------|-------|-------|
| 0 | 125  | 256  | 6000  | 256  | 16    | 128   | 198   |
| 1 | 29   | 8000 | 32000 | 32   | 8     | 32    | 269   |
| 2 | 29   | 8000 | 32000 | 32   | 8     | 32    | 220   |
| 3 | 29   | 8000 | 32000 | 32   | 8     | 32    | 172   |
| 4 | 29   | 8000 | 16000 | 32   | 8     | 16    | 132   |

df.values returns an array form of the data

```
print(df.values)
          256
                6000 ...
                              16
                                   128
                                          198]
    125
     29 8000 32000 ...
                                          269]
                               8
                                    32
     29
                                    32
                                          220]
          8000 32000 ...
                               8
         2000
                8000
                                           52]
    125
                                    14
                                           67]
         512
                8000
    480
         1000
                4000 ...
                                           45]]
    480
```



```
In [3]: X = df.values[:, :-1]
    y = df.values[:, -1]
    print(X[:3])
    print(y[:3])
```

**X**[:3]

[[ 125 256 6000 256 16 128] [ 29 8000 32000 32 8 32] [ 29 8000 32000 32 8 32]]

**Y[:3]** 

[198 269 220]

|   | MYCT | MMIN | MMAX  | CACH | CHMIN | СНМАХ | class |
|---|------|------|-------|------|-------|-------|-------|
| 0 | 125  | 256  | 6000  | 256  | 16    | 128   | 198   |
| 1 | 29   | 8000 | 32000 | 32   | 8     | 32    | 269   |
| 2 | 29   | 8000 | 32000 | 32   | 8     | 32    | 220   |

### **Print**

 You can control the formatting of output string by using format() function and {} mark in the string

```
a = 1
b = 2
print("a: {}, b: {}".format(a, b)))
a: 1, b: 2
```

## Shape

 You can check dimensions of array by using the shape attribute

```
print("X.shape: {}, y.shape: {}".format(
    X.shape, y.shape))

X.shape: (209, 6), y.shape: (209,)
```

### For Loop

```
for x in ('A', 'B', 'C'):

print(x)

The body of the for loop
```

A

В

C

## 감사 합니다!

