MATH 308 D200, Fall 2019

12. Non-canonical LP problems - unconstrained variables (based on notes from Dr. J. Hales, Dr. L. Stacho, and Dr. L. Godyyn)

Dr. Masood Masjoody

SFU Burnaby

Non-canonical LP Problems

Simplex algorithm solves only canonical maximization and canonical minimization problems:

- all initial (real) variables (variables that come from an LP formulation) are non-negative
- · all constraints have inequality form

If we find a way how to tackle these restrictions we will be able to solve a broader class of problems:

- problems with unconstrained initial variables
- problems with equations as main constraints

Unconstrained Variables

Definition (unconstrained variable)

A real variable in an LP problem is said to be *unconstrained* if there is no non-negativity constraint on the variable.

Definition refers to the initial variables of the problem; all **slack variables are required to be non-negative**.

Method I: Replacing an unconstrained variable by two constrained variables.

Example 1

Maximize
$$f(x,y) = x + 3y$$
, subject to
$$x + 2y \leqslant 10$$

$$-3x - y \leqslant -15$$

Both variables are unconstrained!

$$x = x^{+} - x^{-}, \quad x^{+}, x^{-} \ge 0$$

 $y = y^{+} - y^{-}, \quad y^{+}, y^{-} \ge 0$

We get new LP problem (equivalent to the original one) which is a canonical maximization LP problem.

Replace every occurrence of x by $x^+ - x^-$ and every occurrence of y by $y^+ - y^-$:

Maximize
$$f(x^+,x^-,y^+,y^-)=x^+-x^-+3y^+-3y^-$$
, subject to
$$x^+-x^-+2y^+-2y^-\leqslant 10$$

$$-3x^++3x^--y^++y^-\leqslant -15$$

$$x^+,x^-,y^+,y^-\geqslant 0$$

		-	-	-1							-1	
1	-1	2	-2	10	$=-t_1$		-5	5	2	0	-20	$= -t_1$
-3	3	-1	1	-15	$\begin{vmatrix} =-t_1\\ =-t_2 \end{vmatrix}$	\rightarrow	3	-3	-1	-1	15	$= -y^{+}$
1	-1	3	-3	0	= f		-8	8	3	0	-45	= f

t_1	x ⁻	t_2	<i>y</i> -	-1
-1/5	-1	-2/5	0	4
3/5	0	1/5	-1	3
-8/5	0	-1/5	0	-13

$$= -x^+$$
$$= -y^+$$
$$= f$$

	optimal solution		optimal solution
	$x^- = y^- = 0$		x = 4
\rightarrow	$x^{+} = 4$	\rightarrow	y = 3
	$y^{+} = 3$		f = 13
	f = 13		

Maximize subject to

$$f(x,y)=x+3y$$

$$x + 2y \leqslant 10$$
$$3x + y \leqslant 15$$

Both variables are unconstrained. Use the substitutions

$$x = x^{+} - x^{-}, \quad x^{+}, x^{-} \ge 0$$

 $y = y^{+} - y^{-}, \quad y^{+}, y^{-} \ge 0$

to the the canonical maximization LP.

Maximize subject to

$$f(x,y) = x^{+} - x^{+} + 3y^{+} - 3y^{-}$$

$$x^{+} - x^{-} + 2y^{+} - 2y^{-} \le 10$$

$$3x^{+} - 3x^{-} + y^{+} - y^{-} \le 15$$

$$x^{+}, x^{-}, y^{+}, y^{-} > 0$$

Apply simplex algorithm.

The optimal solution is $(x^+, x^-, y^+, y^-) = (0, 0, 5, 0)$, which corresponds to (x, y) = (0, 5).

Method II: Pivoting unconstrained variables into the basis.

Example 1'

Maximize
$$f(x, y) = x + 3y$$
, subject to $x + 2y \le 10$ $-3x - y \le -15$

- 1) Write a TT, but circle every unconstrained variable.
- 2) Pivot down unconstrained variable x

Record the equation $t_1 + 2y - 10 = -x$, then delete the row from the TT.

3) Pivot down unconstrained variable y

Record equation $\frac{3}{5}t_1 + \frac{1}{5}t_2 - 3 = -y$, then delete the row.

Here there is nothing to do. We have no main constraints, and an optimum has be reached. Solve for x and y, by setting the independent variables t_1 , t_2 to zero in the recorded equations: 0 + 2y - 10 = -x, $0 + 0 - 3 = -y \implies (x, y) = (0, 5)$.

Example 2'

Maximize f(x, y) = x + 3y, subject to

Record $3x + t_2 - 15 = -y$, delete row.

3) We now run the SA. Again, there are no main constraints so the SA is finished.

Here, the t_2 entry is positive, so the LP is unbounded!

Example 2'

Maximize f(x, y) = x + 3y, subject to

Record $3x + t_2 - 15 = -y$, delete row.

Record $-\frac{1}{5}t_1 + \frac{2}{5}t_2 - 4 = -x$, delete row to get t_1 t_2 -1 -8/5 1/5 -13

3) We now run the SA. Again, there are no main constraints so the SA is finished. Here, the t_2 entry is positive, so the LP is unbounded! For $t_1=0$ and any number $t_2\geq 0$ we solve the recorded equations to find $x=4-\frac{2}{\epsilon}\,t_2$ and

 $x + 2v \leq 10$

$$y = 15 - t_2 - 3x = 15 - t_2 - 3\left(4 - \frac{2}{5}t_2\right) = 3 - \frac{1}{5}t_2.$$

As $t_2 \to \infty$ the point $(x,y) = (4 - \frac{2}{5}t_2, 3 - \frac{1}{5}t_2)$ remains feasible, with unbounded objective

$$f(x,y) = \left(4 - \frac{2}{5}t_2\right) + 3\left(3 - \frac{1}{5}t_2\right) = \frac{1}{5}t_2 + 13 \to \infty$$