(1)

2 Mar = 120 C(0) 2 Mar = 120 metres	LACC + 40° = 180° ((wint 2) LACC = 140° 2 20° - 140° 2 20° (L) at LACC = 210° (L) at 1 min t 100° (wint 2 70° AD C	a) $1 = 3^{3} - (k+i) + 3k + 1$ $= 3^{3} - (k+i) + 3k + 1$ $= 30 - 6k$ $0 = 30 - 6k$ $k = 5$ $(11) P(x) = x^{3} - 6x^{2} + 5x + 12$ $x^{2} - 3x - 4$	$x-3 / x^{3} - 6x^{4} + 5x + 11$ $x^{2} - 3x^{2}$ $-3x^{2} + 7x$ $-3x^{2} + 7x$ $-4x + 11$ $-4x + 12$ $-4x + 12$ $-6x + 13$ $(x^{2} - 5x + 4)$ $= (x - 3) (x^{2} - 3x - 4)$ $= (x - 3) (x - 4) (x + 1)$ $2x^{2} + 2x^{2} + 3x + 4$ $x^{2} + x^{2} + x^{2} + 3x + 4$
dy dy dh ath ath ath ath ath ath ath ath ath at	13 19 13 tong = 15 1 10 (c) 1	Horizontal Mation 1 = C, 1 = C, 1 = C, 1 = 120 1 = 1	y = -10 y = -10 + ε, y = -10 + ε, y = -10 + ε, y = -10 + ε, y = -5 + ε, whire = ε ε ε ε ε ε ε y = -5 + ε ε ε ε ε ε y = -5 + ε ε ε ε ε ε y = -5 + ε ε ε ε ε y = -5 + ε ε ε ε ε ε y = -5 + ε ε ε ε ε ε y = -5 + ε ε ε ε ε ε y = -5 + ε ε ε ε ε ε y = -5 + ε ε ε ε ε ε y = -5 + ε y =
1 y = 2 (p+q)	= \$\frac{2}{\(\beta\)} \big[(\beta + q)^2 - \lambda \rangle \) \\ = \frac{2}{\(\beta\)} \big[(\frac{2}{\Bar})^2 - \lambla \rangle \] \\ \ = \frac{2}{\(\beta\)} \big[(\frac{2}{\Bar})^2 - \lambla) \lambda \lambda \rangle	(A) Let dehth be he the the the the the the the the the	ルニ まれたれ ニ まれ(語)た 二 計 1 (語)とれ 二 計 1 (語)とれ 一 記 1 (語)とれ 正 1
1) CS. S. W. S. P. A. A. M.	$= \frac{2}{5} \left[(p+q)^{2} - \lambda pq_{3} \right]$ $= \frac{2}{5} \left[(\frac{2}{5})^{2} - \lambda pq_{3} \right]$ $= \frac{2}{5} \left[(\frac{2}{5})^{3} - (\lambda)(\lambda)(p+q_{3}) \right]$ $= \frac{2}{5} \left[(\frac{2}{5})^{3} - 4(p+p_{3}) \right]$ $= \frac{2}{5} \left[(\frac{2}{5})^{3} - 4(p+p_{3}) \right]$ or $\lambda_{\alpha y} = \chi^{2} - 4\alpha \chi$ or $(\chi_{-}\chi_{\alpha})^{2} = \chi_{\alpha} (y+\chi_{\alpha})$	() 以=-1, 以= 高 1, : m,=-1, m= 音 +4, 0= m,-m; 1+min, =(-1-含)÷(1-含) 0=85°54!	a) $y = \log_{2} \left(\frac{3+x}{3-x} \right)$ $= \log_{2}(3+x) - \log_{2}(3-x)$ $\frac{dy}{dx} = \frac{1}{3+x} - \frac{1}{3-x}$ $= \frac{1}{3+x} + \frac{1}{3-x}$ $= \frac{L}{(3-x)(3+x)}$

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	X X 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(ii) Period T = 2T when n = 2 - T = 2T = T haid = 17 secs Marght wale: 15 from outer to and 18 from 3 to 8	(ii) $x = -5sui at + 3$ $26(aut 4)$ $x = 5sui (at) + 3$ $26(aut 4)$	x=5cos(24-3/2)+3 The sec x + tanx x=5cos(24-3/2)+3 The sec x . Sec x dx = [ln (sec x + tanx) - ln (sec x + tanx)	$= 2m \left(\frac{1}{42} + 1 \right) - 2m \left(\frac{1}{4} + 0 \right)$ $= 2m \left(\frac{1}{42} + 1 \right) - 2m \left(\frac{1}{4} + 0 \right)$ $= 2m \left(\frac{1}{42} + 1 \right) - 2m \left(\frac{1}{4} + 0 \right)$ $= 2m \left(\frac{1}{42} + 1 \right) - 2m \left(\frac{1}{4} + 0 \right)$ $= 2m \left(\frac{1}{42} + 1 \right) - 2m \left(\frac{1}{4} + 0 \right)$ $= 2m \left(\frac{1}{42} + 1 \right) - 2m \left(\frac{1}{4} + 0 \right)$ $= 2m \left(\frac{1}{42} + 1 \right) - 2m \left(\frac{1}{4} + 0 \right)$ $= 2m \left(\frac{1}{42} + 1 \right) - 2m \left(\frac{1}{4} + 0 \right)$ $= 2m \left(\frac{1}{42} + 1 \right)$
30 lothing solars Solar statement is thus for m=1, it is thus for n=2. Solar thus for n=3, and is on for all positive integers.	1-25.2 x 0 5.2 x 1-25.2 x 0 5.2 x 25.2 x + 5.1 x - 1 0 0 (25.2 x - 1)(5.2 x + 1) = 0 5.2 x x 1 x + (-1) x 1.2 2 0 x x 1 x x + (-1) x 1.2 2 0 x x 1 x x + (-1) x 1.2 2 0	in $x = n + (-1)^n \left(\frac{\pi}{n^n}\right)$ or $n + (-1)^n \left(-\frac{\pi}{n^n}\right)$ (3) $(-1)^n + (-1)^n \left(-\frac{\pi}{n^n}\right)$ (3) $(-1)^n + (-1)^n + (-1)^n \left(\frac{\pi}{n^n}\right)$ $(-1)^n + (-1)^n $	$= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2}$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2}$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^{2} = 2 \left[\sin^{-1} x \right]^{2} = 0$ $= 2 \left[\sin^{-1} x \right]^$		Costr Costr = tan x. sec x + see?
w S Laga 30 ho	b) $y = 4r + 4r + r + r + r + r + r + r + r + r$	Question 6. Step: Venty for n=1 chisble by 3	Stp2.0) Assume true for $n=k$ if $7^{k}+2=3P$ (P integer) 3) Prove true for $n=k+1$ $7^{k+1}=7^{k}$ 7 +2	= 7(3P-2)+2 (from) = 21P-14+2 = 3(7P-4) Since Pis an Integra, (7P-4)	1/4 + 2 is divisible by 3 1/4 the assumption is true. Thus for w= k+1 if true.

(1) 30 5010 31-12 when x=100 Kn. 9 = -0.1715 0.00 (360) .. x.dx = 25 th O. Sec 20, db \$ 0 = 340°32' 25+12=25+25/h.20 $= 255et^{2}\Theta.$ $(25+ht^{3})^{\frac{3}{4}} = /255et^{3}\Theta.$ がから dr = 5sec 20, do when the 1 0,000 <300, 614 R=5 KO. - t = 2(1.1/2) od t = 1-1/2 x 1-1/2 t= 2/2-3 12(1+12)-24+(1-12)=0 ... x= 2±[4-4(1212)(1-12) (1) Now (2 cos 0 + 5m 0 = 1. Josep + sin laga 7= 5 / cos6. do. · /2(1-4")+24 12(1-40) +24= 1+42 J= /25 xec 30. 2(14/2) 12 - 1242 +24 = 1+12 .; 3 /2. (1-4) + 24 / 1+4 · 1- 1- (4-4(1-1) I = - 1 cos O + C (25 + x. dn. = Vr(1-x")+2x 5= 5 / tan 0. do