CS1026 - Digital Logic Design

More Synchronous Logic

Shane Sheehan 1

¹ADAPT Trinity College Dublin

March 20, 2017

Today's Overview

One more example

- 1 One more example
- 2 How fast can we go
- 3 Adding an Enable

One more example How fast can we go Adding an Enable

Classical Design Revisted [Nelson et al., 1995] I

Example Style Question

Design a synchronous sequential circuit called Div-by-3 having an output Z that divides the system clock frequency f CLK by 3.

- Use an output duty cycle of two-thirds
 - 2 CLK cycle high, 1 cycle low
- Design the circuit using positive-edge-triggered flip-flops

Classical Design Revisted [Nelson et al., 1995] II

Step 1: Start with a timing diagram

Classical Design Revisted [Nelson et al., 1995] III

Step 2: Determine the number of flip-flop based on the number of State

- No. states = 3 ≤ 2
- Assuming Full Coding

Classical Design Revisted [Nelson et al., 1995] IV

Step 3: Assign a unique code to each state

- A 00
- B 01
- C 11

Classical Design Revisted [Nelson et al., 1995] V

Step 4: Write the excitation-input equations

■ The D flip flop excitation equation: D = Y +

Classical Design Revisted [Nelson et al., 1995] VI

More step 4..

We need the composite K-map for each of the desired outputs: Y1, Y2, Z

Classical Design Revisted [Nelson et al., 1995] VII

Step 5: Draw the Circuit Schematic

- We skip steps 6 and 7..
 - But you should do this in the lab/exam!

Classical Design Revisted [Nelson et al., 1995] VIII

The Next Lab

Design a synchronous sequential circuit identical to the previous example, except implement the design using JK flip-flops instead of D flip-flops

Determining the Maximum Clock I

The maximum clock frequency that a system can handle is driven by the set-up, hold and margin times required by the flip flops in the synchronous system.

Determining the Maximum Clock II

We can see that the clock frequency becomes limited by:

$$f_{max} = 1/T_{CLK(min)}$$

Determining the Maximum Clock III

$$T_{CLK(min)} = t_{pff(max)} + t_{pcomb(max)} + t_{h(marg)}) + t_{su} + t_h$$
 where:

- $t_{pff(max)}$ Maximum propagation delay time through flip-flop from the clock tick to Q output
- t_{pcomb(max)} Maximum propagation delay time through combinational logic
- $t_{h(marg)}$ Margin time, it is always a good design practice to allow for tolerances.
- t_{su} Set-up time requirement
- *t_h* − Hold time requirement

Determining the Maximum Clock IV

An Example

Determine the absolute maximum clock frequency for the divide-by-3 synchronous machine

Determining the Maximum Clock V

Remember the Schematic!

Determining the Maximum Clock VI

Going through the ICs:

- 74LS08 AND gate
 - t_{pcomb} : Min at 3 ns and Max. at 18 ns
- 75LS175 D-flip-flop
 - \bullet t_{pff} : Min at 0 ns and Max. at 42 ns
 - t_{su} : Min at 20 ns
 - t_h : Min at 0 ns

Determining the Maximum Clock VII

So let's find the fastest clock speed:

- $T_{CLK(min)} = t_{pff(max)} + t_{pcomb(max)} + t_{h(marg)} + t_{su} = 42 + 18 + 0 + 20 = 80 \text{ ns}$
- $T_{CLK(max)} = 1/T_{CLK(min)} = 1/80 \times 10^{-9} = 12.5 \text{ MHz}$

How does this compare?

- 12.5 MHz ⇒ Slow
 - In comparison to modern tech

Using Enables I

Used to stop the count at times and then continue counting

- Basis of Full-Encoded Stoppable Counter
 - Counter will count up as long as EN high
 - Else STOP counting

Using Enables II

State Diagram for a three-bit (Y1, Y2, Y3)

■ Also called a *Full-Encoded Stoppable Counter*

Using Enables III

Composite K-map for a 3-bit binary up stoppable counter with:

- Enable input EN
- Asynchronous clear input CLR
- Ripple-carry out RCO.

000	001	011	010		100	101		111	110)
000	001	011	010		100	101		111	110		$Y_1^+ Y_2^+ Y_3^+$
001	010	100	011		101	110		000	111		
0	0	0	0		0	0		1	0		RCO
	000	000 001	000 001 011 000 001 011 001 010 100	000 001 011 010 001 010 100 011	000 001 011 010 000 001 011 010 001 010 100 011	000 001 011 010 100 000 001 011 010 100 001 010 100 011 101	000 001 011 010 100 101 000 001 011 010 100 101 001 010 100 011 101 101 110	000 001 011 010 100 101 000 001 011 010 100 101 001 010 100 011 101 101 101	000 001 011 010 100 101 111 000 001 011 010 100 101 111 001 010 100 011 101 110 000	000 001 011 010 100 101 111 110 000 001 011 010 100 101 111 110 001 010 100 011 101 110 000 111	000 001 011 010 100 101 111 110 000 001 011 010 100 101 111 110 001 010 100 011 101 110 000 111

Note: $CLR=1 \rightarrow Y_1Y_2Y_3 = 000$

Using Enables IV

We derive the flip-flop input excitation equation and RCO output equation from the composite K-map or (need 3 flip-flops):

$$D1 = Y1^+ = EN.Y1'.Y2.Y3 + Y1.Y2' + Y1.Y3' + EN'.Y1$$

$$D2 = Y2^{+} = EN.Y2'.Y3 + Y2.Y3' + EN'.Y2$$

$$D3 = Y3^+ = EN.Y3' + EN'.Y3$$

$$RCO = Y1.Y2.Y3$$

Using Enables V

In order to maintain the benefits of a synchronous system (avoiding clock glitches), it is important that the clock to all of the components remains the same.

I.E. NOT TO DO THIS!

Using Enables VI

Instead, if you need to enable a flip-flop, use one with enable capability designed in or use the MUX as shown

Using Enables VII

Moral of the story:

- Flip-flops with enable allows the designers to focus on input/output sync
- Enabled flip-flops simply require a connection to the enable pin

References (Homework) I

Nelson, V. P., Nagle, H. T., Carroll, B. D., and Irwin, J. D. (1995).

Digital logic circuit analysis and design.

Prentice-Hall, Inc.