James Smith

Atlanta, GA | jamessealesmith at gatech dot edu | [Webpage] | [Google Scholar]

RESEARCH FOCUS I want to build vision systems which learn from data that is from multiple sources and distributions, while protecting data privacy concerns. To work towards this goal, I look at problems such as: lifelong/continual learning, knowledge distillation, federated learning, and low-label classification.

EDUCATION

PhD in Machine Learning, Georgia Institute of Technology (current)

Advisor: Dr. Zsolt Kira

Enrolled: August 2018 | Expected Graduation Date: December 2022

Master of Science in Electrical Engineering, Auburn University (May 2018)

Advisor: Dr. Bogdan Wilamowski

Thesis: "Deep Learning Methods Using Levenberg-Marquardt with Weight Compression and Discrete Cosine

Transform Spectral Pooling"

Bachelor of Electrical Engineering, Auburn University (May 2017)

Minors in Computer Science, Political Science

PUBLICATIONS

- [1] James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen, Hongxia Jin, Zsolt Kira. "Always [Paper] Be Dreaming: A New Approach for Data-Free Class-Incremental Learning", arXiv preprint arXiv:2106.09701, 2021.
- [2] James Smith, Cameron Taylor, Seth Baer, Constantine Dovrolis. "Unsupervised Progressive [Paper] Learning and the STAM Architecture", International Joint Conference on Artificial [Code] Intelligent (IJCAI), 2021. (13.9% acceptance rate)
- [3] James Smith, Yen-Chang Hsu, Jonathan Balloch, Zsolt Kira. "Memory-Efficient Semi-[Paper] Supervised Continual Learning: The World is its Own Replay Buffer", International Joint [Code] Conference on Neural Networks (IJCNN), 2021.
- [4] James Smith, Bo Wu, Bogdan Wilamowski. "Neural Network Training with Levenberg-[Paper] Marquardt and Adaptable Weight Compression", IEEE Transactions on Neural Networks and Learning Systems, 30(2), 580-587, 2019.
- [5] James Smith, Michael Baginski. "Thin-Wire Antenna Design Using a Novel Branching [Paper] Scheme and Genetic Algorithm Optimization", IEEE Transactions on Antennas and *Propagation*, 67(5), 2934-2941, 2019.
- [6] Bo Wu, James Smith, Bogdan Wilamowski, Mark Nelms. "DCMDS: Density-Concentrated [Paper] Multi-Dimensional Scaling Algorithm for Data Visualization", Journal of Visualization, 22, 341-357, 2019.
- [7] James Smith, Bogdan Wilamowski. "Discrete Cosine Transform Spectral Pooling Layers for [Paper] Convolutional Neural Networks", International Conference on Artificial Intelligence and Soft Computing (ICAISC), Zakopane, Poland, 2018.

Smith, J. (cont.)

Page 2 of 3

WORKSHOPS

[8] James Smith, Seth Baer, Cameron Taylor, Constantine Dovrolis. "Unsupervised Progressive Learning and the STAM Architecture", Lifelong Learning Workshop at ICML, 2020.

[9] James Smith, Seth Baer, Zsolt Kira, Constantine Dovrolis. "Unsupervised Continual Learning and Self-Taught Associate Memory Hierarchies", Learning with Limited Labeled Data Workshop at ICLR, 2019.

EXPERIENCE

SRI International Princeton, NJ (virtual from Atlanta) Computer Vision Research Intern, PhD	Since May 2021
Georgia Tech Atlanta, GA Graduate Research Assistant, College of Computing	Since August 2018
Radiance Technologies Huntsville, AL Machine Learning Intern	May 2018 – August 2018
Auburn University Auburn, AL Graduate Research Assistant, Department of Electrical and Computer Engineering	May 2017 – May 2018
Auburn University Auburn, AL Undergraduate Research Fellow	July 2016 – May 2017
Naval Research Laboratories Washington, DC	May 2015 –

RESEARCH

Data-Free Class-Incremental Learning [1]

Research Intern

PROJECTS

 We contribute a novel incremental distillation strategy which does not store training data, achieving stateof-the-art performance on data-free class-incremental learning benchmarks

August 2015

• Impact: reduce memory budget and eliminate private data storage for incremental learning applications (healthcare, autonomous vehicles, etc.)

Unsupervised Progressive Learning [2,8,9]

- We formalize the Unsupervised Progressive Learning (UPL) setting: learning representations for downstream tasks (such as classification) from a non-stationary stream of unlabeled data in which the number of object classes increases with time
- We contribute a neuro-inspired architecture for UPL which involves an online clustering modules, called Self-Taught Associative Memory (STAM)
- Impact: enable fast and efficient low-label streaming applications such as facial recognition

Semi-Supervised Continual Learning [3]

- We formalize the realistic Semi-Supervised Continual Learning (SSCL) setting, where data distributions reflect object class correlations between, and among, the labeled and unlabeled data distributions
- We contribute a novel learning approach that works within this realistic, memory-constrained continual learning setting, DistillMatch, notably outperforming closest prior art
- Impact: enable SSCL for on-device learning that is robust to several realistic data SSCL distributions

Deep Learning for Object Classification and Image Compression [4,7]

- We contribute the Levenberg-Marquardt with Weight Compression (LMWC) algorithm to combat diminishing gradients in second-order neural network optimization
- We contribute a new spectral pooling techniques for convolutional neural networks using discrete cosine transformations

Smith, J. (cont.)

Page 3 of 3

Multi-bend Antenna Optimization by Genetic Algorithms [5]

• We show Genetic Algorithms and the Method of Moments (MoM) can optimize arbitrarily branching antenna structures capable of producing complex radiation patterns that cannot be designed

HONORS

- NSF Graduate Research Fellowship Program Honorable Mention (2018)
- Alton B. Zerby and Carl T. Koerner National Outstanding Electrical and Computer Engineering Student Award, L.A. Alumni Chapter IEEE/HKN (2017)
- President's Award, Samuel Ginn College of Engineering (2016 2017)
- SGA Student of the Year, Auburn University Honors College (2016 2017)
- Electrical and Computer Engineering Outstanding Student of the Year, Auburn University (2016 2017)
- Auburn University Nominee for Rhodes and Marshall Scholarships (Fall 2016)