Weighted Model Counting/Integration from the Perspective of Boolean Algebras

Paulius Dilkas

22nd March 2020

1 Introduction

Previous/related work:

- Hailperin's approach to probability logic [10]
- Nilsson's (somewhat successful) probabilistic logic [17]
- Semiring programming [3]
- WMI [2]
- Measures on Boolean algebras: overview articles (from most cited to least cited)
 - Horn and Tarski [11]
 - Concerning measures on Boolean algebras [7]
 - Jech Measures on Boolean algebras (arXiv) [13]
- Measures on Boolean algebras: more specific articles
 - On possibility and probability measures in finite Boolean algebras [4]
 - Representation of conditional probability measures [15]

2 Preliminaries

Definition 1. A Boolean algebra (BA) is a tuple $(\mathbf{B}, \wedge, \vee, \neg, 0, 1)$ consisting of a set \mathbf{B} with binary operations meet \wedge and join \vee , unary operation \neg and elements $0, 1 \in \mathbf{B}$ such that the following axioms hold for all $a, b, \in \mathbf{B}$:

- both \wedge and \vee are associative and commutative;
- $a \lor (a \land b) = a$, and $a \land (a \lor b) = a$;
- 0 is the identity of \vee , and 1 is the identity of \wedge ;
- ∨ distributes over ∧ and vice versa;
- $a \vee \neg a = 1$, and $a \wedge \neg a = 0$.

For clarity and succinctness, we will occasionally use three other operations that can be defined using the original three¹:

$$\begin{split} a &\to b = \neg a \vee b, \\ a &\leftrightarrow b = (a \wedge b) \vee (\neg a \wedge \neg b), \\ a + b &= (a \wedge \neg b) \vee (\neg a \wedge b). \end{split}$$

We can also define a partial order \leq on \mathbf{B} as $a \leq b$ if $a = b \wedge a$ (or, equivalently, $a \vee b = b$) for $a, b \in \mathbf{B}$. Furthermore, let a < b denote $a \leq b$ and $a \neq b$. For the rest of this paper, let \mathbf{B} refer to the BA $(\mathbf{B}, \wedge, \vee, \neg, 0, 1)$. For any $S \subseteq \mathbf{B}$, we write $\bigvee S$ for $\bigvee_{x \in S} x$ and call it the *supremum* of S. Similarly, $\bigwedge S = \bigwedge_{x \in S} x$ is the *infimum*. By convention, $\bigwedge \emptyset = 1$ and $\bigvee \emptyset = 0$.

Definition 2 ([12, 16]). An element $a \neq 0$ of **B** is an *atom* if, for all $x \in \mathbf{B}$, either $x \wedge a = a$ or $x \wedge a = 0$. Equivalently, $a \neq 0$ is an atom if there is no $x \in \mathbf{B}$ such that 0 < x < a. A BA **B** is *atomic* if for every $a \in \mathbf{B} \setminus \{0\}$, there is an atom x such that $x \leq a$.

Lemma 1 ([8]). For any two distinct atoms $a, b \in \mathbf{B}$, $a \wedge b = 0$.

Lemma 2 ([9]). The following are equivalent:

- B is atomic.
- For any $x \in \mathbf{B}$,

$$x = \bigvee_{atoms \ a \le x} a.$$

• 1 is the supremum of all atoms.

Lemma 3 ([9]). All finite BAs are atomic.

Definition 3 ([7, 12]). A measure on **B** is a function $m: \mathbf{B} \to \mathbb{R}_{>0}$ such that:

- m(0) = 0:
- $m(x \lor y) = m(x) + m(y)$ for all $x, y \in \mathbf{B}$ whenever $x \land y = 0$.

If m(1) = 1, we call m a probability measure. Also, if m(x) > 0 for all $x \neq 0$, then m is strictly positive.

Definition 4.

3 WMC as a Measure

Definition 5. Let \mathcal{L} be a propositional (or first-order) logic, and let Δ be a theory in \mathcal{L} . We can define an equivalence relation on formulas in \mathcal{L} as

$$\alpha \sim \beta$$
 if and only if $\Delta \vdash \alpha \leftrightarrow \beta$

for all $\alpha, \beta \in \mathcal{L}$. Let $[\alpha]$ denote the equivalence class of $\alpha \in \mathcal{L}$ with respect to \sim . We can then let $B(\Delta) = \{ [\alpha] \mid \alpha \in \mathcal{L} \}$ and define the structure of a BA on $B(\Delta)$ as

$$[\alpha] \vee [\beta] = [\alpha \vee \beta],$$

$$[\alpha] \wedge [\beta] = [\alpha \wedge \beta],$$

$$\neg [\alpha] = [\neg \alpha],$$

$$1 = [\alpha \to \alpha],$$

$$0 = [\alpha \wedge \neg \alpha]$$

for all $\alpha, \beta \in \mathcal{L}$. Then $B(\Delta)$ is the *Lindenbaum-Tarski algebra* of Δ [14, 19].

Figure 1: Two BAs from Example 1: $B(\mathcal{L})$ at the top and $B(\Delta)$ at the bottom. An edge between elements a and b (with a positioned lower than b) means that a < b. Each element of $B(\Delta)$ is an equivalence class of elements of $B(\mathcal{L})$, and the colours show which elements of $B(\mathcal{L})$ belong to which class. In both algebras, atoms have borders around them.

Example 1. Let \mathcal{L} be a propositional logic with p and q as its only atoms. Then $L = \{p, q, \neg p, \neg q\}$ is its set of literals. Let $w : L \to \mathbb{R}_{>0}$ be the weight function defined by

$$w(p) = 0.3,$$

 $w(\neg p) = 0.7,$
 $w(q) = 0.2,$
 $w(\neg q) = 0.8.$

Let Δ be a theory in \mathcal{L} with a sole axiom p. Then Δ has two models, i.e., $\{p,q\}$ and $\{p,\neg q\}$. The weighted model count (WMC) [5] of Δ is then

$$\sum_{\omega \models \Delta} \prod_{\omega \models l} w(l) = w(p)w(q) + w(p)w(\neg q) = 0.3.$$

The corresponding BA $B(\Delta)$ can then be constructed using Definition 5. Alternatively, one can first construct the free BA generated by the set $\{p,q\}$ —this corresponds to $B(\mathcal{L})$ in Fig. 1—and then take a quotient with respect to either the filter generated by p or the ideal² generated by $\neg p$. In any case, the resulting BA is pictured at the bottom of Fig. 1.

Each element of $B(\mathcal{L})$ can also be seen as a subset of the set of all models of \mathcal{L} , with 0 representing \emptyset , 1 representing the set of all (four) models, each atom representing a single model, and each edge going upward representing a subset relation. Thus, the Boolean-algebraic way of calculating the WMC of Δ consists of:

- 1. Identifying an element $a \in B(\mathcal{L})$ that corresponds to Δ .
- 2. Finding all atoms of $B(\mathcal{L})$ that are 'dominated' by a according to the partial order.
- 3. Using w to calculate the weight of each such atom.
- 4. Adding the weights of these atoms.

This motivates the following definition of WMC generalised to BAs.

Definition 6. Let **B** be an atomic BA, and let $M \subset \mathbf{B}$ be its set of atoms. Let $L \subset \mathbf{B}$ be such that every atom $m \in M$ can be uniquely expressed as $m = \bigwedge L'$ for some $L' \subseteq L$, and let $w : L \to \mathbb{R}_{\geq 0}$ be arbitrary. The weighted model count $\mathrm{WMC}_w \colon \mathbf{B} \to \mathbb{R}_{\geq 0}$ is defined as

$$WMC_w(x) = \begin{cases} 0 & \text{if } x = 0\\ \prod_{l \in L'} w(l) & \text{if } M \ni x = \bigwedge L'\\ \sum_{\text{atoms } a \le x} WMC_w(a) & \text{otherwise} \end{cases}$$

for any $x \in \mathbf{B}$. Furthermore, we define the normalised weighted model count $\mathrm{NWMC}_w \colon \mathbf{B} \to [0,1]$ as $\mathrm{NWMC}_w(x) = \frac{\mathrm{WMC}_w(x)}{\mathrm{WMC}_w(1)}$ for all $x \in \mathbf{B}$. For both WMC_w and NWMC_w , we will drop the subscript when doing so results in no potential confusion.

Proposition 1. WMC is a measure, and NWMC is a probability measure.

Proof. First, note that WMC is non-negative and WMC(0) = 0 by definition. Next, let $x, y \in \mathbf{B}$ be such that $x \wedge y = 0$. We want to show that

$$WMC(x \lor y) = WMC(x) + WMC(y). \tag{1}$$

If, say, x = 0, then Eq. (1) becomes

$$WMC(y) = WMC(0) + WMC(y) = WMC(y)$$

¹We use + to denote symmetric difference because it is the additive operation of a Boolean ring.

²More details on these concepts can be found in many books on BAs [9, 14].

(and likewise for y=0). Thus we can assume that $x \neq 0 \neq y$ and use Lemma 2 to write

$$x = \bigvee_{i \in I} x_i$$
 and $y = \bigvee_{j \in J} y_j$

for some sequences of atoms $(x_i)_{i\in I}$ and $(y_j)_{j\in J}$. If $x_{i'}=y_{j'}$ for some $i'\in I$ and $j'\in J$, then

$$x \wedge y = \bigvee_{i \in I} \bigvee_{j \in J} x_i \wedge y_j = x_{i'} \wedge y_{j'} \neq 0,$$

contradicting the assumption. This is enough to show that

$$WMC(x \lor y) = WMC\left(\left(\bigvee_{i \in I} x_i\right) \lor \left(\bigvee_{j \in J} y_j\right)\right) = \sum_{i \in I} WMC(x_i) + \sum_{j \in J} WMC(y_j)$$
$$= WMC(x) + WMC(y),$$

finishing the proof that WMC is a measure. This immediately shows that NWMC is a probability measure since, by definition, NWMC(1) = 1.

Given a theory Δ in a logic \mathcal{L} , the usual way of using WMC to compute the probability of a query q is [1, 18]

$$\Pr_{\Delta, w}(q) = \frac{\text{WMC}_w(\Delta \wedge q)}{\text{WMC}_w(\Delta)}.$$

In our algebraic formulation, this can be computed in two different ways:

- as $\frac{\mathrm{WMC}_w(\Delta \wedge q)}{\mathrm{WMC}_w(\Delta)}$ in $B(\mathcal{L})$,
- and as $\text{NWMC}_w([q])$ in $B(\Delta)$.

But how does the measure defined on $B(\mathcal{L})$ transfer to $B(\Delta)$?

Lemma 4. Let **B** be a BA, and let F be a filter in **B** generated by $p \in \mathbf{B}$. Then, for any $a, b \in \mathbf{B}$, if a/F = b/F, then $a \wedge p = b \wedge p$.

Definition 7 (Measures on quotients). Let **B** be a BA with a measure $m : \mathbf{B} \to \mathbb{R}_{\geq 0}$, and let F be a filter in **B** generated by some $p \in \mathbf{B}$. We can define a measure m^* on \mathbf{B}/F as

$$m^*([a]) = m(a \wedge p).$$

Proposition 2. The function m^* in Definition 7 is well-defined. Furthermore, if m is a WMC measure, then so is m^* .

Proof.

4 What Measures Are WMC-Computable?

4.1 WMC Requires Independent Literals

Proposition 3. Let **B** be a finite measure algebra with measure $m: \mathbf{B} \to \mathbb{R}_{>0}$. Let $L \subset \mathbf{B}$ be defined as

$$L = \{l_i \mid i \in [n]\} \cup \{\neg l_i \mid i \in [n]\}$$

for some $n \in \mathbb{N}$. Finally, assume that **B** has 2^n atoms, where each atom $a \in \mathbf{B}$ is an infimum

$$a = \bigwedge_{i=1}^{n} a_i$$

such that $a_i \in \{l_i, \neg l_i\}$ for $i \in [n]$. Then there exists a weight function $w: L \to \mathbb{R}_{\geq 0}$ that makes m a WMC measure if and only if

$$m(l \wedge l') = m(l)m(l') \tag{2}$$

for all distinct $l, l' \in L$ such that $l \neq \neg l'$.

Remark. Note that if n = 1, then Eq. (2) is vacuously satisfied and so any valid measure can be expressed as WMC.

Proof. Let us begin with the 'if' part of the statement. Let $w: L \to \mathbb{R}_{\geq 0}$ be defined by

$$w(l) = m(l) \tag{3}$$

for all $l \in L$. We are going to show that NWMC = m. First, note that NWMC(0) = 0 = m(0) by the definitions of both NWMC and m. Second, let

$$a = \bigwedge_{i=1}^{n} a_i \tag{4}$$

be an atom in **B** such that $a_i \in \{l_i, \neg l_i\}$ for all $i \in [n]$. Then

$$NWMC(a) = \frac{WMC(a)}{WMC(1)} = \frac{1}{WMC(1)} \prod_{i=1}^{n} w(a_i) = \frac{1}{WMC(1)} \prod_{i=1}^{n} m(a_i) = \frac{1}{WMC(1)} m \left(\bigwedge_{i=1}^{n} a_i \right) = \frac{m(a)}{WMC(1)}$$

by Definition 6 and Eqs. (2) to (4). Now we just need to show that WMC(1) = 1. Indeed,

$$WMC(1) = \sum_{\text{atoms } a \in \mathbf{B}} WMC(a) = \sum_{\text{atoms } a \in \mathbf{B}} \prod_{i=1}^{n} w(a_i) = \sum_{\text{atoms } a \in \mathbf{B}} \prod_{i=1}^{n} m(a_i)$$
$$= \sum_{\text{atoms } a \in \mathbf{B}} m\left(\bigwedge_{i=1}^{n} a_i\right) = \sum_{\text{atoms } a \in \mathbf{B}} m(a) = m\left(\bigvee_{\text{atoms } a \in \mathbf{B}}\right) = m(1) = 1.$$

Finally, note that if NWMC and m agree on all atoms, then they must also agree on all other non-zero elements of the Boolean algebra.

For the other direction, we are given a weight function $w: L \to \mathbb{R}_{\geq 0}$ that induces a measure $m = \text{NWMC}: \mathbf{B} \to \mathbb{R}_{\geq 0}$, and we want to show that Eq. (2) is satisfied. Let $k_i, k_j \in L$ be such that $k_i \in \{l_i, \neg l_i\}$, $k_j \in \{l_j, \neg l_j\}$, and $i \neq j$. We will first prove an auxiliary result that

$$m(k_i \wedge k_j) = m(k_i)m(k_j) \tag{5}$$

is equivalent to

$$m(k_i \wedge k_j) \cdot m(\neg k_i \wedge \neg k_j) = m(k_i \wedge \neg k_j) \cdot m(\neg k_i \wedge k_j). \tag{6}$$

First, note that k_i can be expressed as

$$k_i = (k_i \wedge k_i) \vee (k_i \wedge \neg k_i)$$

with the condition that

$$(k_i \wedge k_j) \wedge (k_i \wedge \neg k_j) = 0,$$

so, by properties of a measure,

$$m(k_i) = m(k_i \wedge k_j) + m(k_i \wedge \neg k_j). \tag{7}$$

Applying Eq. (7) and the equivalent expression for $m(k_j)$ allows us to rewrite Eq. (5) as

$$m(k_i \wedge k_j) = [m(k_i \wedge k_j) + m(k_i \wedge \neg k_j)] \cdot [m(k_i \wedge k_j) + m(\neg k_i \wedge k_j)]$$

= $m(k_i \wedge k_j)^2 + m(k_i \wedge k_j)[m(k_i \wedge \neg k_j) + m(\neg k_i \wedge k_j)] + m(k_i \wedge \neg k_j)m(\neg k_i \wedge k_j)$

Dividing both sides by $m(k_i \wedge k_i)$ gives

$$1 = m(k_i \wedge k_j) + m(k_i \wedge \neg k_j) + m(\neg k_i \wedge k_j) + \frac{m(k_i \wedge \neg k_j)m(\neg k_i \wedge k_j)}{m(k_i \wedge k_j)}.$$
 (8)

Since $k_i \wedge k_j \wedge k_i \wedge \neg k_j = 0$, and

$$(k_i \wedge k_j) \vee (k_i \wedge \neg k_j) = k_i \wedge (k_i \vee \neg k_j) = k_i \wedge 1 = k_i$$

we have that

$$m(k_i \wedge k_j) + m(k_i \wedge \neg k_j) = m(k_i).$$

Similarly, $k_i \wedge \neg k_i \wedge k_j = 0$, and

$$k_i \vee (\neg k_i \wedge k_j) = (k_i \vee \neg k_i) \wedge (k_i \vee k_j) = k_i \vee k_j$$

so

$$m(k_i) + m(\neg k_i \wedge k_j) = m(k_i \vee k_j).$$

Finally, note that

$$(k_i \vee k_j) \wedge \neg (k_i \vee k_j) = 0,$$

and

$$(k_i \vee k_j) \vee \neg (k_i \vee k_j) = 1,$$

so

$$m(k_i \vee k_i) + m(\neg(k_i \vee k_i)) = m(1) = 1.$$

This allows us to rewrite Eq. (8) as

$$\frac{m(k_i \wedge \neg k_j)m(\neg k_i \wedge k_j)}{m(k_i \wedge k_j)} = 1 - m(k_i \vee k_j) = m(\neg(k_i \vee k_j)) = m(\neg k_i \wedge \neg k_j)$$

which immediately gives us Eq. (6).

Now recall that m = NWMC and note that Eq. (6) can be multiplied by WMC(1)² to turn the equation into one for WMC instead of NWMC. Then

$$\begin{aligned} \operatorname{WMC}(k_i \wedge k_j) &= \sum_{\text{atoms } a \leq k_i \wedge k_j} \operatorname{WMC}(a) = \sum_{\text{atoms } a \leq k_i \wedge k_j} \prod_{m \in [n]} w(a_m) \\ &= \sum_{\text{atoms } a \leq k_i \wedge k_j} w(a_i) w(a_j) \prod_{m \in [n] \setminus \{i,j\}} w(a_m) = \sum_{\text{atoms } a \leq k_i \wedge k_j} w(k_i) w(k_j) \prod_{m \in [n] \setminus \{i,j\}} w(a_m) \\ &= w(k_i) w(k_j) \sum_{\text{atoms } a \leq k_i \wedge k_j} \prod_{m \in [n] \setminus \{i,j\}} w(a_m) = w(k_i) w(k_j) C, \end{aligned}$$

where C denotes the part of WMC $(k_i \wedge k_j)$ that will be the same for WMC $(\neg k_i \wedge k_j)$, WMC $(k_i \wedge \neg k_j)$, and WMC $(\neg k_i \wedge \neg k_j)$ as well. But then Eq. (6) becomes

$$w(k_i)w(k_j)w(\neg k_i)w(\neg k_j)C^2 = w(k_i)w(\neg k_j)w(\neg k_i)w(k_j)C^2$$

which is trivially true. By showing that WMC satisfies Eq. (6), we also showed that it satisfies Eq. (5), finishing the second part of the proof.

4.2 Extending the Algebra

A well-known way to overcome this limitation of independence is by adding more literals [5], i.e., extending the set L covered by the WMC weight function $w: L \to \mathbb{R}_{\geq 0}$. Let us translate this idea to the language of Boolean algebras.

Theorem 1. Let **B** be a finite Boolean algebra freely generated by some set of 'literals' L, and let $m: \mathbf{B} \to \mathbb{R}_{\geq 0}$ be an arbitrary measure. We know that **B** has $n = 2^{|L|}$ atoms. Let $(a_i)_{i=1}^n$ denote those atoms in some arbitrary order. Let $L' = L \cup \{\phi_i \mid i \in [n]\} \cup \{\neg \phi_i \mid i \in [n]\}$ be the set L extended with 2n new literals. Let \mathbf{B}' be the unique Boolean algebra with

$$\{\phi_i \land a_i \mid i \in [n]\} \cup \{\neg \phi_i \land a_i \mid i \in [n]\}$$

as its set of atoms. Let $\iota: \mathbf{B} \to \mathbf{B}'$ be the inclusion homomorphism (i.e., $\iota(a) = a$ for all $a \in \mathbf{B}$). Let $w: L' \to \mathbb{R}_{>0}$ be defined by

$$w(l) = \begin{cases} \frac{m(a_i)}{2} & \text{if } l = \phi_i \text{ or } l = \neg \phi_i \text{ for some } i \in [n] \\ 1 & \text{otherwise} \end{cases}$$

for all $l \in L'$, and note that this defines a WMC measure $m' : \mathbf{B}' \to \mathbb{R}_{>0}$. Then

$$m(a) = (m' \circ \iota)(a)$$

for all $a \in \mathbf{B}$.

In simpler terms, any measure can be computed using WMC by extending the Boolean algebra with more literals. More precisely, we are given the red part in

$$\begin{array}{ccc}
\mathbb{R}_{\geq 0} & & \\
 & \stackrel{\longleftarrow}{\mathbf{m}} & \stackrel{\longleftarrow}{\overset{\longleftarrow}{\mathbf{m}'}} & \\
 & \mathbf{B} & \stackrel{\iota}{\longrightarrow} & \mathbf{B}' & \\
 & \cup & & \cup & \\
 & L & \subset & L' & \stackrel{w}{\longrightarrow} & \mathbb{R}_{\geq 0}
\end{array}$$

and construct the black part in such a way that the triangle commutes.

Proof. Since **B** is freely generated by L, each atom $a_i \in \mathbf{B}$ is an infimum of elements in L, i.e.,

$$a_i = \bigwedge_{j \in J} a_{i,j}$$

for some $\{a_{i,j}\}_{j\in J}\subset L$. Moreover, each atom $b\in \mathbf{B}'$ can be represented as either

$$b = \phi_i \wedge a_i$$
 or $b = \neg \phi_i \wedge a_i$

for some atom $a_i \in \mathbf{B}$, also making it an infimum over a subset of L'. Then, for any $b \in \mathbf{B}$,

$$(m' \circ \iota)(b) = \sum_{\substack{\text{atoms } a_i \in \mathbf{B}: \\ \phi_i \wedge a_i \le \iota(b)}} (w(\phi_i) + w(\neg \phi_i)) \prod_{j \in J} w(a_{i,j}),$$

recognising that, for any $\iota(b)$, any atom $a_i \in \mathbf{B}$ satisfies

$$\phi_i \wedge a_i \leq \iota(b)$$

if and only if it satisfies

$$\neg \phi_i \land a_i \le \iota(b).$$

Then, according to the definition of w,

$$(m' \circ \iota)(b) = \sum_{\substack{\text{atoms } a_i \in \mathbf{B}:\\ \phi_i \wedge a_i \le \iota(b)}} (w(\phi_i) + w(\neg \phi_i)) = \sum_{\substack{\text{atoms } a_i \in \mathbf{B}:\\ \phi_i \wedge a_i \le \iota(b)}} m(a_i) = m(b),$$

provided that

$$\phi_i \wedge a_i \leq \iota(b)$$
 if and only if $a_i \leq b$,

but this is equivalent to

$$\phi_i \wedge a_i = \phi_i \wedge a_i \wedge b$$
 if and only if $a_i = a_i \wedge b$

which is true because $\phi_i \notin L$.

Now we can show that the construction in Theorem 1 is smallest possible.

Conjecture 1. Let \mathbf{B} and \mathbf{B}' be Boolean algebras, and $\iota \colon \mathbf{B} \to \mathbf{B}'$ be the inclusion map such that \mathbf{B} is freely generated by L, all atoms of \mathbf{B}' can be expressed as meets of elements of L', and the following subset relations are satisfied:

$$\mathbf{B} \xrightarrow{\iota} \mathbf{B}'$$

$$\cup \qquad \qquad \cup$$

$$L \quad \subset \quad L'$$

If, for any measure $m: \mathbf{B} \to \mathbb{R}_{\geq 0}$, one can construct a weight function $w: L' \to \mathbb{R}_{\geq 0}$ such that the WMC measure WMC: $\mathbf{B}' \to \mathbb{R}_{> 0}$ with respect to w satisfies

$$m = \text{WMC} \circ \iota$$

then $|L' \setminus L| \geq 2^{|L|+1}$.

Let us note how our lower bound on the number of added literals compares to two methods of translating a discrete probability distribution into a WMC problem over a propositional knowledge base proposed by Darwiche [6] and Sang et al. [18]. Suppose we have a discrete probability distribution with n variables, and the ith variable has v_i values, for each $i \in [n]$. Interpreted as a logical system, it has $\prod_{i=1}^{n} v_i$ models. My expansion would then use

$$\sum_{i=1}^{n} v_i + 2 \prod_{i=1}^{n} v_i$$

variables, i.e., a variable for each possible variable-value assignment, and two additional variables for each model. Without making any independence assumptions, the encoding by Darwiche [6] would use

$$\sum_{i=1}^{n} v_i + \sum_{i=1}^{n} \prod_{j=1}^{i} v_j$$

variables, while for the encoding by Sang et al. [18],

$$\sum_{i=1}^{n} v_i + \sum_{i=1}^{n} (v_i - 1) \prod_{j=1}^{i-1} v_j$$

variables would suffice.

References

- [1] Vaishak Belle. Weighted model counting with function symbols. In Gal Elidan, Kristian Kersting, and Alexander T. Ihler, editors, *Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence*, UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press, 2017.
- [2] Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. Probabilistic inference in hybrid domains by weighted model integration. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 2770–2776. AAAI Press, 2015.
- [3] Vaishak Belle and Luc De Raedt. Semiring programming: A framework for search, inference and learning. CoRR, abs/1609.06954, 2016.
- [4] Elena Castiñeira, Susana Cubillo, and Enric Trillas. On possibility and probability measures in finite Boolean algebras. *Soft Comput.*, 7(2):89–96, 2002.
- [5] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. *Artif. Intell.*, 172(6-7):772–799, 2008.
- [6] Adnan Darwiche. A logical approach to factoring belief networks. In Dieter Fensel, Fausto Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams, editors, Proceedings of the Eights International Conference on Principles and Knowledge Representation and Reasoning (KR-02), Toulouse, France, April 22-25, 2002, pages 409-420. Morgan Kaufmann, 2002.
- [7] Haim Gaifman. Concerning measures on Boolean algebras. *Pacific Journal of Mathematics*, 14(1):61–73, 1964.
- [8] M. Ganesh. Introduction to fuzzy sets and fuzzy logic. PHI Learning Pvt. Ltd., 2006.
- [9] Steven Givant and Paul R. Halmos. *Introduction to Boolean algebras*. Springer Science & Business Media, 2008.
- [10] Theodore Hailperin. Probability logic. Notre Dame Journal of Formal Logic, 25(3):198-212, 1984.
- [11] Alfred Horn and Alfred Tarski. Measures in Boolean algebras. Transactions of the American Mathematical Society, 64(3):467–497, 1948.
- [12] Thomas Jech. Set theory, Second Edition. Perspectives in Mathematical Logic. Springer, 1997.
- [13] Thomas Jech. Measures on Boolean algebras. arXiv preprint arXiv:1705.01006, 2017.
- [14] Sabine Koppelberg, Robert Bonnet, and James Donald Monk. Handbook of Boolean algebras, volume 384. North-Holland Amsterdam, 1989.
- [15] Peter H. Krauss. Representation of conditional probability measures on Boolean algebras. Acta Mathematica Hungarica, 19(3-4):229–241, 1968.
- [16] Ken Levasseur and Al Doerr. Applied Discrete Structures. Lulu.com, 2012.
- [17] Nils J. Nilsson. Probabilistic logic. Artif. Intell., 28(1):71–87, 1986.
- [18] Tian Sang, Paul Beame, and Henry A. Kautz. Performing Bayesian inference by weighted model counting. In Manuela M. Veloso and Subbarao Kambhampati, editors, Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 475–482. AAAI Press / The MIT Press, 2005.
- [19] Alfred Tarski. Logic, semantics, metamathematics: papers from 1923 to 1938. Hackett Publishing, 1983.