CMSC 141 Automata and Language Theory Context-Free Languages

Mark Froilan B. Tandoc

October 15, 2014

■ Chomsky Normal Form

- Chomsky Normal Form
 - $V \rightarrow (T + VV)$

- Chomsky Normal Form
 - $V \rightarrow (T + VV)$
- Greibach Normal Form

- Chomsky Normal Form
 - $V \rightarrow (T + VV)$
- Greibach Normal Form
 - V → TV*

- Chomsky Normal Form
 - $V \rightarrow (T + VV)$
- Greibach Normal Form
 - $V \rightarrow TV^*$
- Elimination of unit productions $(V \to W)$, and empty productions $(V \to \varepsilon)$ except for the start state

A context-free grammar in Chomsky Normal Form (CNF) have rules of the form:

A context-free grammar in Chomsky Normal Form (CNF) have rules of the form:

$$A \rightarrow BC$$

 $A \rightarrow a$

Chomsky Normal Form

A context-free grammar in Chomsky Normal Form (CNF) have rules of the form:

$$A \rightarrow BC$$

 $A \rightarrow a$

where a is any terminal and A, B, C are any variables - except that B and C may not be the start variable. Also, only the start variable (say S), can have the rule $S \to \varepsilon$

Convert the grammar to CNF

Convert the grammar to CNF

Grammar

 $B \rightarrow b \mid \varepsilon$

$$S \rightarrow ASA \mid aB$$

 $A \rightarrow B \mid S$

Add a new start variable (say S_0) and have the rule $S_0 \to S$ where S is the original start state

$$\begin{array}{ccc} S & \rightarrow ASA \mid aB \\ A & \rightarrow B \mid S \\ B & \rightarrow b \mid \varepsilon \end{array}$$

Add a new start variable (say S_0) and have the rule $S_0 \to S$ where S is the original start state

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \varepsilon$

Remove the ε rules. $B \to \varepsilon$

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \varepsilon$$

Remove the ε rules. $B \to \varepsilon$

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a$$

$$A \rightarrow B \mid S \mid \varepsilon$$

$$B \rightarrow b$$

Remove the ε rules. $A \to \varepsilon$

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a$$

$$A \rightarrow B \mid S \mid \varepsilon$$

$$B \rightarrow b$$

Remove the ε rules. $A \to \varepsilon$

```
S_0 \rightarrow S

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S

A \rightarrow B \mid S

B \rightarrow b
```

Remove unit rules. $S \rightarrow S$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

Remove unit rules. $S \rightarrow S$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

Remove unit rules. $S_0 \rightarrow S$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

Remove unit rules. $S_0 \rightarrow S$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

Remove unit rules. $A \rightarrow B$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

Remove unit rules. $A \rightarrow B$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow S \mid b$
 $B \rightarrow b$

Remove unit rules. $A \rightarrow S$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow S \mid b$
 $B \rightarrow b$

Remove unit rules. $A \rightarrow S$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $B \rightarrow b$

Convert the remaining rules into proper form by adding additional variables and rules

Gramm<u>ar</u>

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS

B \rightarrow b
```

Convert the remaining rules into proper form by adding additional variables and rules

CONVERT TO CNF

 $S \rightarrow ab$

 $S \rightarrow aSb$

CONVERT TO CNF

 $S \rightarrow ab$ $S \rightarrow aSb$

 $B \rightarrow b$

CNF

 $S \rightarrow AB \mid XB$ $X \rightarrow AY$ $Y \rightarrow AB \mid XB$ $A \rightarrow a$

A context-free grammar in Greibach Normal Form (GNF) have rules of the form:

A context-free grammar in Greibach Normal Form (GNF) have rules of the form:

$$V \rightarrow TV^*$$

A context-free grammar in Greibach Normal Form (GNF) have rules of the form:

$$V \rightarrow TV^*$$

where V can be any variable and T can be any terminal. Only the start variable (say S), can have the rule $S \to \varepsilon$

CONVERT THE GRAMMAR TO GNF

$$S \rightarrow a \mid S + S$$

CONVERT THE GRAMMAR TO GNF

$$S \rightarrow a \mid S + S$$

GNF

$$egin{array}{ll} S &
ightarrow a \ S &
ightarrow a PS \end{array}$$
 (this makes $+$ right-associative) $P &
ightarrow +$

CONVERT THE GRAMMAR TO GNF

$$S \rightarrow a \mid S + S$$

GNF

$$\begin{array}{ccc} S & \rightarrow a \\ S & \rightarrow aPS \end{array}$$
 (this makes + right-associative)

$$P \rightarrow +$$

When in GNF, an input string of length n can always be derived in n steps

EQUIVALENCE OF PDAs AND CFGs

EQUIVALENCE OF PDAS AND CFGS

THEOREM

Every CFG can be converted into an equivalent PDA, and vice versa

EQUIVALENCE OF PDAS AND CFGS

THEOREM

Every CFG can be converted into an equivalent PDA, and vice versa

Note that we are referring to non-deterministic PDA (NPDA) because deterministic PDA are weaker than NPDA

Idea:

■ Use a single state q, with stack alphabet $\Gamma = V \cup T$, and the PDA is accepting by empty stack

- Use a single state q, with stack alphabet $\Gamma = V \cup T$, and the PDA is accepting by empty stack
- Initial stack symbol is the start variable

- Use a single state q, with stack alphabet $\Gamma = V \cup T$, and the PDA is accepting by empty stack
- Initial stack symbol is the start variable
- For every terminal symbol a in Σ , add the transition $\delta(q, a, a) = (q, pop)$

- Use a single state q, with stack alphabet $\Gamma = V \cup T$, and the PDA is accepting by empty stack
- Initial stack symbol is the start variable
- For every terminal symbol a in Σ , add the transition $\delta(q, a, a) = (q, pop)$
- For every empty production $A \to \varepsilon$, add the transition $\delta(q, \varepsilon, A) = (q, pop)$

- Use a single state q, with stack alphabet $\Gamma = V \cup T$, and the PDA is accepting by empty stack
- Initial stack symbol is the start variable
- For every terminal symbol a in Σ , add the transition $\delta(q, a, a) = (q, pop)$
- For every empty production $A \to \varepsilon$, add the transition $\delta(q, \varepsilon, A) = (q, pop)$
- For every rule $A \to B_1 B_2 \dots B_n$, add the transition $\delta(q, \varepsilon, A) = (q, \{pop; pushB_n; pushB_{n-1}; \dots; pushB_1\})$

$$S \rightarrow \varepsilon \mid aSb$$

$$S \to \varepsilon \mid aSb \Longrightarrow L(G) = \{a^nb^n : n \ge 0\}$$

$$S \to \varepsilon \mid aSb \Longrightarrow L(G) = \{a^nb^n : n \ge 0\}$$

Stack alphabet:

$$\Gamma = \{S, a, b\}$$

Initial stack symbol: S

$$S \to \varepsilon \mid aSb \Longrightarrow L(G) = \{a^nb^n : n \ge 0\}$$

Stack alphabet:

$$\Gamma = \{S, a, b\}$$

Initial stack symbol: S

$$S \to \varepsilon \mid aSb \Longrightarrow L(G) = \{a^nb^n : n \ge 0\}$$

Stack alphabet:

$$\Gamma = \{S, a, b\}$$

Initial stack symbol: S

start
$$\longrightarrow$$
 q ε , S , pop ε , S , pop ε , S , pop , $push b$, $push S$, $push a$

REFERENCES

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org
- Various online LATEX and Beamer tutorials