INTO323 — THÈNTE 1 ÉVALUATION DES REQUÊTES

Nadia Tahiri, Ph. D. Professeure adjointe Université de Sherbrooke

Nadia.Tahiri@USherbrooke.ca

Robert Godin (2012)

CONCEPTS DE BASE

REQUÊTE INTERNE

WHERE

SELECT titre, descripteur FROM Livre, Catégorie

ISBN = 1-111-1111-1 AND Livre.code = Catégorie.code

SCHÉMA INTERNE

PLAN D'EXECUTION 1

Coût total = 2 558 090 *ms*

PLAN D'EXECUTION 2

Coût total = 36 260 *ms*

PLAN D'EXECUTION 3

Coût total = 80,8 ms

ESTIMATION DU COÛT DES OPÉRATIONS PHYSIQUES

- TempsES: temps accès à mémoire secondaire (MS)
- TempsUCT
 - souvent négligeable
- TailleMC: espace mémoire centrale
- TailleMS: espace mémoire secondaire

MODÈLE DU COÛT D'UNE ENTRÉE-SORTIE EN MÉMOIRE SECONDAIRE

Paramètre	Signification
TempsESDisque(n)	Temps de total transfert (lecture ou écriture) de <i>n</i> octets du disque
TempsTrans(n)	Temps de transfert des <i>n</i> octets sans repositionnement
TempsPosDébut	Temps de positionnement au premier octet à transférer (ex : 10 ms)
TempsRotation	Délai de rotation (ex : 4 ms)
TempsDépBras	Temps de déplacement du bras (ex : 6 <i>ms</i>)
TauxTransVrac	Taux de transfert en vrac (ex : 40MB/sec)
TempsESBloc	Temps de transfert d'un bloc (ex : 10,1 <i>ms</i>)
TempsTrans	Temps de transfert d'un bloc sans repositionnement (ex : 0,1 ms)
TailleBloc	Taille d'un bloc (ex : 4K octets)

TempsESBloc = TempsESDisque(TailleBloc) = TempsPosDébut + TempsTrans (TailleBloc)TempsTrans (TailleBloc) = TailleBloc / TauxTransVrac

STATISTIQUES AU SUJET DES TABLES

Statistique	Signification
N_T	Nombre de lignes de la table T
$TailleLigne_{T}$	La taille d'un ligne de la table T
FB_T	Facteur de blocage moyen de T
FBM_T	Facteur de blocage maximal de T
	Estimation:
	$\lfloor (Taille Bloc-Taille Descripteur Bloc) / Taille Ligne_{T} \rfloor$.
B_T	Nombre de blocs de la table T
	Estimation : $\lceil N_T / FB_T \rceil$

STATISTIQUES (SUITE)

Statistique	Signification			
$FacteurS$ électivité $_{T}$ (Colonne)	Facteur de sélectivité de la colonne			
	Estimation:			
	$1/Card_T$ (Colonne) ou			
	1/10 (constante arbitraire)			
$FacteurS$ électivité $_T$ (Expression)	Facteur de sélectivité de l'expression			
	Estimation:			
	$FacteurSélectivité_{T}(Colonne \in [Valeur_1Valeur_2].) =$			
	$((Valeur_2-Valeur_1)/(Max_T(Colonne)-Min_T(Colonne)))$			
	pour $Valeur_1, Valeur_2 \in [Min_T(Colonne)Max_T(Colonne)]$ ou			
	1/2 (constante arbitraire)			
Sel_T (Expression de sélection)	Nombre de lignes (cardinalité) de T sélectionnées par			
	l'expression de sélection.			
	Estimation:			
	$Sel_T(Colonne = Valeur) = FacteurSélectivité(Colonne) * N_T$			

STATISTIQUES (SUITE)

Statistique	Signification				
$Card_T$ (Colonne):	Nombre de valeurs distinctes (cardinalité) de la colonne pour la table T				
Min_T (Colonne):	Valeur minimum de la colonne dans la table T				
Max_T (Colonne):	Valeur maximum de la colonne dans la table T				
$Hauteur_I$	Nombre de niveaux dans l'index I				
$TailleEntrée_I$	Taille d'une entrée dans un bloc interne de l'index				
Approximation : taille de la clé d'index + taille pointeur de bloc					
$Ordre_I$ Nombre maximum de fils pour un bloc interne de l'index I					
	Estimation:				
	$\lfloor (TailleBloc-TailleDescripteurBloc)/TailleEntrée_{I} \rfloor$.				
$Ordre Moyen_I$	Nombre moyen de fils				
$FBM_{\rm f}$	Nombre maximum de clés qui peuvent être insérées dans une feuille d'un				
	index arbre-B ⁺				
F_I	Nombre de blocs au niveau des feuilles de l'index I				
TH_T	Taille de l'espace d'adressage pour la fonction de hachage				
M	Taille de mémoire centrale disponible en nombre de blocs				

BALAYAGE (BAL)

• $TempsES(BAL) = B_T * TempsTrans + NombrePos * TempsPosDébut$

EXEMPLE: TEMPSES (BALEDITEUR)

$N_{\it Editeur}$	50
$FBM_{ ext{Editeur}}$	60

Allocation sérielle sans fragmentation interne

•
$$FB_{Editeur} = FBM_{Editeur} = 60$$

■
$$B_{Editeur} = \lceil N_{Editeur} / FB_{Editeur} \rceil = \lceil 50 / 60 \rceil = 1 \text{ bloc}$$

•
$$TempsES$$
 ($BAL_{Editeur}$) = $B_{Editeur}$ * $TempsTrans$ + $NombrePos$ * $TempsPosDébut$

•
$$TempsES(BAL_{Editeur}) = 10,1 ms$$

EXEMPLE: TEMPSES (BALCATÉGORIE)

N _{Catégorie}	4 000
$FBM_{ extit{Catégorie}}$	40

- Allocation sérielle sans fragmentation interne
- $FB_{Catégorie} = FBM_{Catégorie} = 40$
- $B_{Catégorie} = \lceil N_{Catégorie} / FB_{Catégorie} \rceil = \lceil 4\ 000/\ 40\ \rceil = 100\ blocs$
- Meilleur cas:
 - TempsES ($BAL_{Catégorie}$) = $B_{Catégorie}$ * TempsTrans + NombrePos * TempsPosDébut
 - = 100 * 0.1 ms + 1 * 10 ms = 20 ms
- Pire cas:
 - $TempsES (BAL_{Catégorie}) = 100 * 0,1 ms + 100 * 10 ms = 1010 ms$

EXEMPLE: TEMPSES (BALLIVRE)

N_{Livre}	1 000 000
FBM_{Livre}	20

Allocation sérielle sans fragmentation interne

•
$$FB_{Livre} = FBM_{Livre} = 20$$

■
$$B_{Livre} = \lceil N_{Livre} / FB_{Livre} \rceil = \lceil 1 000 000 / 20 \rceil = 50 000 blocs$$

• Meilleur cas:

•
$$TempsES(BAL_{Livre}) = 5,01 secs$$

• Pire cas:

• $TempsES(BAL_{Livre}) = 8,42 minutes$

EXEMPLE: TEMPSES (BALLIVRE)

N_{Livre}	1 000 000
FBM_{Livre}	20

- Arbre-B⁺ primaire sur la clé primaire *ISBN*
- $FB_{Livre} = \lfloor 2/3 \ FBM_{Livre} \rfloor = 13$
- $B_{Livre} = \lceil N_{Livre} / FB_{Livre} \rceil = \lceil 1\ 000\ 000 / \ 13 \rceil = 76\ 924\ blocs$
- Pire cas (consécutivité des feuilles non assurée)!
 - $TempsES(BAL_{Livre}) = B_{Livre}* TempsTrans + NombrePos * TempsPosDébut$
 - = 76 924* 0,1ms + 76 924 * 10ms = 848 164 ms = 12,94 minutes

SÉLECTION PAR ÉGALITÉ DANS UN INDEX ARBRE-B+ PRIMAIRE (S=IP)

- TempsES (S=IP) =
 - Parcours des niveaux d'index
 - $(Hauteur_I 1) * TempsESBloc +$
 - Parcours des feuilles
 - $\lceil Sel_T (Cl\'eIndex = Valeur) / FB_T \rceil * TempsESBloc$

SUITE

- Cas d'une clé candidate
 - TempsES (S=IP sur clé candidate) = Hauteur, * TempsESBloc
- •Estimation de Hauteur_I
 - $1 + \lceil \log_{OrdreMoyenI} (Card_T (Cl\'eIndex) / FB_T) \rceil$ $OrdreMoyen_I = \lfloor 2/3 \ Ordre_I \rfloor$

 - $\blacksquare FB_T = \lfloor 2/3 \ FBM_T \rfloor$

INDEX PRIMAIRE CODE DE LA TABLE CATÉGORIE (CLÉ PRIMAIRE)

$N_{\mathit{Catégorie}}$	4 000
$FBM_{ extit{Catégorie}}$	40
Card _{Catégorie} (code)	4 000
$Ordre_I$	100

•
$$OrdreMoyen_I = \lfloor 2/3 \ Ordre_I \rfloor = 66$$

•
$$FB_{Catégorie} = \lfloor 2/3 \ FBM_{Catégorie} \rfloor = 26$$

•
$$Hauteur_I = 1 + \lceil log_{OrdreMoyenI} (Card_{Catégorie} (code) / FB_{Catégorie}) \rceil$$

$$= 1 + \lceil \log_{66} (4\ 000 / 26) \rceil = 3$$

• $TempsES(S=IP) = Hauteur_I * TempsESBloc = 30,3 ms$

20

4 000

100

 $FBM_{I,inv}$

 $Ordre_{\tau}$

 $Card_{Livre}(code)$

INDEX PRIMAIRE SUR CODE DE LA TABLE LIVRE (CLÉ ÉTRANGÈRE)

■ OrdreMoyen _I =	$\lfloor 2/3 \ Ordre_I \rfloor$	= 66
-----------------------------	---------------------------------	------

• <i>FB</i>	Livre =	2/3	$FBM_{I,i}$	$\begin{bmatrix} v_{re} \end{bmatrix} = \begin{bmatrix} v_{re} \end{bmatrix}$	13
-------------	---------	-----	-------------	---	----

- FacteurSélectivité_{Livre} (code) = 1/ Card_{Livre} (code) = 1/4 000
- Sel_{Livre} (code = Valeur) = = 1 000 000/4000 = 250 lignes
- TempsES(S=IP) =
 - ($Hauteur_I 1$) * $TempsESBloc + \lceil Sel_{Livre} \mid (code = Valeur) / FB_{Livre} \rceil$ * $TempsESBloc = Valeur / FB_{Livre}$
 - $= 2*10,1 ms + \lceil (250/13) \rceil *10,1 ms = 20,2 ms + 20*10,1 ms = 222,2 ms$

INDEX PRIMAIRE SUR ISBN DE LIVRE (CLÉ PRIMAIRE)

$N_{\it Livre}$	1 000 000
FBM_{Livre}	20
$Card_{Livre}$ (ISBN)	1 000 000
$Ordre_I$	100

•
$$OrdreMoyen_I = \lfloor 2/3 \ Ordre_I \rfloor = 66$$

•
$$FB_{Livre} = \lfloor 2/3 \ FBM_{Livre} \rfloor = 13$$

•
$$Hauteur_I = 1 + \lceil log_{OrdreMoyenI} (Card_{Livre} (ISBN) / FB_{Livre}) \rceil = 4$$

• TempsES (S=IP) = Hauteur_I *TempsESBloc =
$$40,4 ms$$

TAILLE DE L'INDEX PRIMAIRE

- $TailleMS(IP) = TailleIndexInterne + B_{livre}$
 - $FB_T = \lfloor 2/3 \ FBM_T \rfloor$
 - $B_T = \lceil N_T / FB_T \rceil$
 - $TailleIndexInterne \leq \lceil Card_T(Cl\'eIndex) / OrdreMoyen_I \rceil$

10.3.3.3 SÉLECTION PAR ÉGALITÉ DANS UN INDEX ARBRE-B+ SECONDAIRE (S=IS)

ESTIMATION DE TEMPSES (S=IS)

- Niveaux d 'index
 - (Hauteur, -1) * TempsESBloc
- Feuilles de l'index
 - $\lceil Sel_T (Cl\'eIndex = Valeur) / OrdreMoyen_1 \rceil *TempsESBloc$
- Blocs de l'organisation primaire
 - Sel_T (CléIndex = Valeur)*TempsESBloc
- TempsES (S=IS sur clé candidate)
 - (Hauteur_I +1)*TempsESBloc

ESTIMATION SANS RELECTURE DE BLOCS

- Éviter de relire les blocs de données de l'organisation primaire
- Nombre moyen de blocs à lire :
 - $\lceil (1 (1 FacteurS\'{e}lectivit\'{e}_T (Cl\'{e}Index))^{FB}) * B_T \rceil$

ESTIMATION DE HAUTEUR, POUR INDEX SECONDAIRE

- Hypothèses
 - clés répétées
 - -OrdreMoyen = FB
- $-Hauteur_I = \lceil log_{OrdreMoyenI} (N_T) \rceil$

SÉLECTION PAR INTERVALLE DANS UN INDEX ARBRE-B+ PRIMAIRE (S>IP)

- ~ clé non unique
- CléIndex ∈ [Valeur₁...Valeur₂]
- TempsES (S>IP) =
 - (Hauteur_I -1) * TempsESBloc +
 - $\lceil Sel_T(Cl\'eIndex \in [Valeur_1..Valeur_2]) / FB_T \rceil * TempsESBloc$

SÉLECTION PAR ÉGALITÉ AVEC HACHAGE (S=H)

Hachage statique + chaînage

• TempsES (S=H) = $\lceil N_T / (TH_T * FB_T) \rceil * TempsESBloc$

TRI D'UNE TABLE (TRI)

- Utilité
 - •jointure par tri-fusion
 - élimination des doubles (DISTINCT)
 - opérations d'agrégation (GROUP BY)
 - résultats triés (ORDER BY)
- •Tri externe si *M* est petit
 - tri-fusion

TRI FUSION EXTERNE

- Étape tri
 - nombre de groupes = $\lceil B_T / M \rceil = \lceil 12 / 3 \rceil = 4$
 - Coût = $2 * (\lceil B_T/M \rceil * TempsPosDébut + B_T * TempsTrans) = 82,4 ms$

ÉTAPE FUSION

Coût des passes de fusion

$$= B_T * (2* \lceil log_{M-1} (B_T / M) \rceil - 1) * TempsESBloc$$

$$= 12*(2*\lceil log_2(12/3)\rceil-1)*11ms = 363,6 ms$$

JOINTURE PAR BOUCLES IMBRIQUÉES

Boucles imbriquées par lignes (BI)

```
POUR chaque ligne I_R de R
POUR chaque ligne I_S de S
SI \theta sur I_R et I_S est satisfait
Produire la ligne concaténée à partir de I_R et I_S
FINSI
FINPOUR
FINPOUR
```

- TempsES (BI) =
 - B_R * $TempsESBloc + N_R$ * $(B_S$ * TempsTrans + TempsPosDébut)
- Meilleur cas (antémémoire suffisamment grande) :
 - TempsES (BI) = TempsES (BAL_R) + TempsES (BAL_S) =
 - $(B_R + B_S) * TempsTrans + 2*TempsPosDébut$

BOUCLES IMBRIQUÉES PAR BLOCS (BIB)

```
POUR chaque bloc b_R de R
POUR chaque bloc b_S de S
POUR chaque ligne I_R de b_R
POUR chaque ligne I_S de b_S
SI \theta sur I_R et I_S est satisfait
Produire la ligne concaténée à partir de I_R et I_S
FINSI
FINPOUR
FINPOUR
FINPOUR
FINPOUR
```

- TempsES (BIB) =
 - B_R * TempsESBloc +
 - B_R * (B_S * TempsTrans + TempsPosDébut)

BOUCLES IMBRIQUÉES MULTI-BLOCS (BIM)

```
POUR chaque tranche de M-2 blocs de R
POUR chaque bloc b_S de S
POUR chaque ligne l_R de la tranche
POUR chaque ligne l_S de b_S
SI \theta sur l_R et l_S est satisfait
Produire la ligne concaténée à partir de l_R et l_S
FINSI
FINPOUR
FINPOUR
FINPOUR
```

- TempsES (BIM) =
 - B_R * TempsTrans + $\lceil B_R/(M-2) \rceil$ * TempsPosDébut + $\lceil B_R/(M-2) \rceil$ * $(B_S$ * TempsTrans + TempsPosDébut)

JOINTURE PAR BOUCLES IMBRIQUÉES AVEC INDEX SUR LA TABLE INTERNE (BIA)

```
POUR chaque ligne I_R de R

POUR chaque ligne I_S de S satisfaisant \theta (sélection en utilisant un index)

Produire la ligne concaténée à partir de I_R et I_S

FINPOUR

FINPOUR
```

- TempsES (BII) =
 - B_R * TempsESBloc +
 - *N_R* * *TempsES* (Sélection par index)

CONTEXTE AVANTAGEUX POUR BII

Jointure sélective

II titre, descripteur (Balayage) (Boucle imbriquée avec index secondaire sur code de la table interne Catégorie) σ ISBN = 1-11-111-1111-1 Catégorie (Sélection par index secondaire sur ISBN) Livre

• Peu de mémoire vive

10.3.3.14.3 JOINTURE PAR BOUCLES IMBRIQUÉES AVEC HACHAGE SUR LA TABLE INTERNE (BIH)

```
POUR chaque ligne I_R de R
POUR chaque ligne I_S de S satisfaisant \theta (sélection en utilisant le hachage)
Produire la ligne concaténée à partir de I_R et I_S
FINPOUR
FINPOUR
```

- TempsES (BIH) =
 - B_R * TempsESBloc +
 - N_R * TempsES(Sélection par hachage)

JOINTURE PAR TRI-FUSION (JTF)

```
Trier R et S par tri externe et réécrire dans des fichiers temporaires
Lire groupe de lignes G_R(c_R) de R pour la première valeur c_R de clé de jointure
Lire groupe de lignes G_S(c_S) de S pour la première valeur c_S de clé de jointure
TANT QUE il reste des lignes de R et S à traiter
       SI c_R = c_S
              Produire les lignes concaténées pour chacune des combinaisons de
                             lignes de G_R(c_R) et G_S(c_S);
              Lire les groupes suivants G_R(c_R) de R et G_S(c_S) de S;
        SINON
              SI c_R < c_S
                      Lire le groupe suivant G_R(c_R) de R
              SINON
                      SI c_R > c_S
                             Lire le groupe G_S(c_S) suivant dans S
                      FINSI
              FINSI
       FINSI
FIN TANT QUE
```

[•] $TempsES(JTF) = TempsES(TRI_R) + TempsES(TRI_S) + 2*(B_R + B_S) * TempsESBloc$

JOINTURE PAR HACHAGE (JA)

- Égalité seulement
- 1- Partition des tables (Si $h \in [0..n-1], M \ge n$)

```
{Partitionner R par hachage}
POUR chaque ligne I_R de R
       Ajouter I_R au tampon de R_i où i = h(v) et v est la valeur de l'attribut de jointure de I_R
       SI le tampon de Ri devient plein
              Evacuer le tampon de R_i et le chaîner au paquet correspondant
       FINSI
FINPOUR
{Partitionner S par hachage}
POUR chaque ligne Is de S
       Ajouter I_S au tampon de S_i où i = h(v) et v est la valeur de l'attribut de jointure de t_S
       SI le tampon de S_i devient plein
              Evacuer le tampon de S_i et le chaîner au paquet correspondant
       FINSI
FINPOUR
```

S42

COMPARAISON DES MÉTHODES DE JOINTURE

- BIM Boucles imbriquées multi-blocs
 - une des deux tables est petite
- JTF Jointure par Tri Fusion
 - 2 grandes tables
 - nombre de passes de tri dépend de la plus grande table
 - ordre intéressant
- JH Jointure par hachage
 - 2 grandes tables
 - nombre de passes ne dépend que de la plus petite table
- BII ou BIH Boucles imbriquées avec index sur la table interne (BII) utilisation partielle d'une des deux tables
- PJ Jointure par jointure
 - optimal pour jointure si peu de fragmentation interne
 - pénalise opérations sur une table

OPTIMISATION

- Chercher le meilleur plan d'exécution?
 - coût excessif
- Solution approchée à un coût raisonnable
 - Générer les alternatives
 - heuristiques
 - Choisir la meilleure
 - estimation approximative du coût

10.4.1 PLANS D'EXÉCUTIONS ÉQUIVALENTS

Plusieurs arbres algébriques équivalents

• etc.

PLUSIEURS PLANS D'EXÉCUTION POUR UN ARBRE ALGÉBRIQUE

- Pour chaque opération logique
 - plusieurs choix d'opérations physiques

EURISTIQUES D'OPTIMISATION

- Élaguer l'espace des solutions
 - solutions non applicables
- Exemples d'heuristiques
 - sélections le plus tôt possible
 - projections le plus tôt possible
 - arbres biaisés à gauche seulement
 - les jointures plus restrictives en premier
 - jointures supportées par index, hachage ou grappe en premier

EURISTIQUE : ARBRES BIAISÉS À GAUCHE SEULEMENT

- Jointure de *n* tables
 - (2*(n-1))!/(n-1)! ordres différents pour n tables
 - n! biaisés à gauche

Arbre biaisé à gauche

Arbre équilibré

Arbre biaisé à droite

OPTIMISATION PAR COÛT

- Minimiser le coût
- Stratégies
 - programmation dynamique
 - amélioration itérative
 - recuit simulé
 - algorithme génétique

ESTIMATION DU COÛT D'UN PLAN D'EXÉCUTION

Coût total = 3 358 125 ms

TempsES(Plan avec pipeline) = $TempsES(JTF_{Livre!Catégorie}) = 2$ 558 090 ms