Device Model User Guide

Chia-Jen Liang, Edward Yeuan

Contents

- Device Types
- Model Setup

Pre-simulation

Post-simulation

Model Comparison Results

THz_NMOS_CS

MOS_BGDSGB_CG

MOS_SGDGS_CS

MOS_BSGGDB_Gilbert

PowerM_CSAr

PowerM_CCAr_longL

Device Types

- THz MOS THz_NMOS_CS
- Analog MOS
 MOS_BGDSGB_CG
 MOS_SGDGS_CS
 MOS_BSGGDB_Gilbert
- Power MOS
 PowerM_CSAr
 PowerM CCAr longL

Pre-simulation

 Add library path: /home/liangkyle/OA65/MOS_model

Use custom symbol for simulation

- Parameter PEX_Parasitics are used to estimate the effect of increasing or decreasing parasitics in pre-simulation (default is 1), they will all be neglected in post-simulation
- Example: 20% increase in Cgs, PEX CGS = 1.2

Add model file in ADE model libraries:
 /home/liangkyle/OA65/Codes/MOS_model_scs/DeviceName.scs

Post-simulation

Use custom layout

• Use LVS rule file:

/home/PDKs/OA65/Calibre/lvs/rfvlsi_debug.lvs

• Use PEX rule file:

/home/PDKs/OA65/Calibre/rcx/rfvlsi_debug.rcx

 Extract C+CC with modeled parasitic resistances for better simulation performance

Use Cellmap file:

/home/PDKs/OA65/Calibre/rcx/calview_debug.cellmap

Model Comparison Result

- THz MOS
 - THz_NMOS_CS
- Analog MOS
 - MOS_BGDSGB_CG
 - MOS_SGDGS_CS
 - MOS_BSGGDB_Gilbert
- Power MOS
 - PowerM_CSAr
 - PowerM_CCAr_longL

S11 (wr400n nr12)

S12 (wr400n_nr12)

S21 (wr400n nr12)

S22 (wr400n_nr12)

fmax wr400n nr12

Model Comparison Result

- THz MOS
 - THz_NMOS_CS
- Analog MOS
 - MOS_BGDSGB_CG
 - MOS_SGDGS_CS
 - MOS_BSGGDB_Gilbert
- Power MOS
 - PowerM_CSAr
 - PowerM_CCAr_longL

S11

S12

S21

S22

- R + C + CC : Id = 12.38 mA
- C + CC with model : Id = 12.11 mA
- model : Id = 12.11 mA

MOS_BGDSGB_CG @ (60n/1u/50) 2Rg*3.2

MOS_BGDSGB_CG @ (60n/1u/50) 2Rg*2

MOS_BGDSGB_CG @ (60n/1u/50) 2Rg*3.2

MOS_BGDSGB_CG @ (60n/1u/50) 2Rg*2

S21

- R + C + CC : Id = 29.18 mA
- C + CC with model : Id = 28.32 mA
- model : Id = 28.32 mA

MOS_BGDSGB_CG @ (60n/2u/10) 2Rg*3.2

MOS_BGDSGB_CG @ (60n/2u/10) 2Rg*2

MOS_BGDSGB_CG @ (60n/2u/10) 2Rg*3.2

S12

MOS_BGDSGB_CG @ (60n/2u/10) 2Rg*2

S21

MOS_BGDSGB_CG @ (60n/2u/10)

MOS_BGDSGB_CG @ (60n/2u/10)

- R + C + CC : Id = 12.35 mA
- C + CC with model : Id = 12.09 mA
- model : Id = 12.09 mA

MOS_BGDSGB_CG @ (60n/1.5u/20) 2Rg*3.2

MOS_BGDSGB_CG @ (60n/1.5u/20) 2Rg*2

MOS_BGDSGB_CG @ (60n/1.5u/20) 2Rg*3.2

MOS_BGDSGB_CG @ (60n/1.5u/20) 2Rg*2

S12

MOS_BGDSGB_CG @ (60n/1.5u/20)

MOS_BGDSGB_CG @ (60n/1.5u/20) 2Rg*3.2

MOS_BGDSGB_CG @ (60n/1.5u/20)

- R + C + CC : Id = 18.58 mA
- C + CC with model : Id = 18.1 mA
- model : Id = 18.1 mA

MOS_BGDSGB_CG @ (60n/2u/50) 2Rg*3.2

MOS_BGDSGB_CG @ (60n/2u/50) 2Rg*2

MOS_BGDSGB_CG @ (60n/2u/50) 2Rg*3.2

MOS_BGDSGB_CG @ (60n/2u/50) 2Rg*2

S12

MOS_BGDSGB_CG @ (60n/2u/50)

S21

MOS_BGDSGB_CG @ (60n/2u/50)

MOS_BGDSGB_CG @ (60n/2u/50)

- R + C + CC : Id = 59.97 mA
- C + CC with model : Id = 57.58 mA
- model : Id = 57.58 mA

Model Comparison Result

- THz MOS
 - THz_NMOS_CS
- Analog MOS
 - MOS_BGDSGB_CG
 - MOS_SGDGS_CS
 - MOS_BSGGDB_Gilbert
- Power MOS
 - PowerM CSAr
 - PowerM_CCAr_longL

S11

S12

S21

S22

- R + C + CC : Id = 12.63 mA
- C + CC with model : Id = 12.31 mA
- model : Id = 12.31 mA

MOS_SGDGS_CS @ (60n/1u/50) 2Rg*3.2

MOS_SGDGS_CS @ (60n/1u/50) 2Rg*2

MOS_SGDGS_CS @ (60n/1u/50) 2Rg*3.2

S12

MOS_SGDGS_CS @ (60n/1u/50) 2Rg*2

S12

S21

- R + C + CC : Id = 31.24 mA
- C + CC with model : Id = 30.35 mA
- model : Id = 30.35 mA

MOS_SGDGS_CS @ (60n/5u/10) 2Rg*3.2

MOS_SGDGS_CS @ (60n/5u/10) 2Rg*2

MOS_SGDGS_CS @ (60n/5u/10) 2Rg*3.2

S12

MOS_SGDGS_CS @ (60n/5u/10) 2Rg*2

S21

- R + C + CC : Id = 30.07 mA
- C + CC with model : Id = 29.71 mA
- model : Id = 30.07 mA

MOS_SGDGS_CS @ (60n/2u/20)2Rg*3.2

MOS_SGDGS_CS @ (60n/2u/20)2Rg*2

MOS_SGDGS_CS @ (60n/2u/20) 2Rg*3.2

S12

MOS_SGDGS_CS @ (60n/2u/20) 2Rg*2

MOS_SGDGS_CS @ (60n/2u/20)

S21

MOS_SGDGS_CS @ (60n/2u/20)

MOS_SGDGS_CS @ (60n/2u/20)

- R + C + CC : Id = 25.15 mA
- C + CC with model : Id = 24.44 mA
- model : Id = 24.44 mA

MOS_SGDGS_CS @ (60n/5u/50) 2Rg*3.2

MOS_SGDGS_CS @ (60n/5u/50) 2Rg*2

MOS_SGDGS_CS @ (60n/5u/50) 2Rg*3.2

S12

MOS_SGDGS_CS @ (60n/5u/50) 2Rg*2

MOS_SGDGS_CS @ (60n/5u/50)

S21

MOS_SGDGS_CS @ (60n/5u/50)

MOS_SGDGS_CS @ (60n/5u/50)

- R + C + CC : Id = 142.2 mA
- C + CC with model : Id = 137.8 mA
- model : Id = 137.8 mA

Model Comparison Result

- THz MOS
 - THz_NMOS_CS
- Analog MOS
 - MOS BGDSGB CG
 - MOS_SGDGS_CS
 - MOS_BSGGDB_Gilbert
- Power MOS
 - PowerM CSAr
 - PowerM_CCAr_longL

S11

S12

S21

S22

- R + C + CC : Id = 12.32 mA
- C + CC with model : Id = 12.24 mA
- model : Id = 12.24 mA

MOS_BSGGDB_Gilbert @ (60n/1u/50) Rg*3.2

MOS_BSGGDB_Gilbert @ (60n/1u/50) Rg*3.2

S12

S12

S21

- R + C + CC : Id = 27.7 mA
- C + CC with model : Id = 26.63 mA
- model : Id = 26.63 mA

MOS_BSGGDB_Gilbert @ (60n/5u/10) Rg*3.2

MOS_BSGGDB_Gilbert @ (60n/5u/10) Rg*2

MOS_BSGGDB_Gilbert @ (60n/5u/10) Rg*3.2

S12

MOS_BSGGDB_Gilbert @ (60n/5u/10) Rg*2

S21

- R + C + CC : Id = 29.25 mA
- C + CC with model : Id = 29.25 mA
- model : Id = 29.25 mA

MOS_BSGGDB_Gilbert @ (60n/2u/20) Rg*3.2

MOS_BSGGDB_Gilbert @ (60n/2u/20) Rg*3.2

MOS_BSGGDB_Gilbert @ (60n/2u/20) Rg*2

S12

MOS_BSGGDB_Gilbert @ (60n/2u/20)

S21

MOS_BSGGDB_Gilbert @ (60n/2u/20)

MOS_BSGGDB_Gilbert @ (60n/2u/20)

- R + C + CC : Id = 24.02 mA
- C + CC with model : Id = 24.12mA
- model : Id = 24.12 mA

MOS_BSGGDB_Gilbert @ (60n/5u/50) Rg*3.2

MOS_BSGGDB_Gilbert @ (60n/5u/50) Rg*2

MOS_BSGGDB_Gilbert @ (60n/5u/50) Rg*3.2

S12

MOS_BSGGDB_Gilbert @ (60n/5u/50) Rg*2

S12

MOS_BSGGDB_Gilbert @ (60n/5u/50)

S21

MOS_BSGGDB_Gilbert @ (60n/5u/50)

MOS_BSGGDB_Gilbert @ (60n/5u/50)

- R + C + CC : Id = 92.08 mA
- C + CC with model : Id = 91.66 mA
- model : Id = 91.66 mA

Model Comparison Result

- THz MOS
 - THz NMOS CS
- Analog MOS
 - MOS_BGDSGB_CG
 - MOS_SGDGS_CS
 - MOS_BSGGDB_Gilbert
- Power MOS
 - PowerM_CSAr
 - PowerM_CCAr_longL

S11(wr1.5u_nr100)

S12(wr1.5u nr100)

S21(wr1.5u_nr100)

S22(wr1.5u_nr100)

(wr1.5u_nr100)

R+C+CC : Id = 83.7mA

C+CC+MODEL: Id = 87.6mA

MODEL : Id = 87.6mA

S11(wr1u_nr10)

S12(wr1u nr10)

S21(wr1u nr10)

S22(wr1u_nr10)

(wr1u_nr10)

R+C+CC : Id = 15.61mA

C+CC+MODEL: Id = 15.25mA

MODEL : Id = 15.25mA

S11(wr1.5u nr50/M4)

S12(wr1.5u_nr50/M4)

S21(wr1 5u nr50/m4)

S22(wr1.5u nr50/M4)

(wr1.5u_nr50/M4)

R+C+CC : Id = 180.4mA

C+CC+MODEL : Id = 175.6mA

MODEL : Id = 175.6mA

Model Comparison Result

- THz MOS
 - THz_NMOS_CS
- Analog MOS
 - MOS_BGDSGB_CG
 - MOS_SGDGS_CS
 - MOS_BSGGDB_Gilbert
- Power MOS
 - PowerM_CSAr
 - PowerM_CCAr_longL

S11(wr3.2u_wrby1.52u_nr100)

S12(wr3.2u wrbv1.52u nr100)

S21(wr3.2u wrbv1.52u nr100)

S22(wr3.2u wrbv1.52u nr100)

(wr3.2u_wrby1.52u_nr100)

R+C+CC: Id = 50.52mA

C+CC+MODEL: Id = 60.3mA

S11(wr3.2u_wrby1.52u_nr32/M4)

S12(wr3.2u wrbv1.52u nr32/M4)

S21(wr3.2u wrbv1.52u nr32/M4)

S22(wr3.2u wrbv1.52u nr32/M4)

(wr3.2u_wrby1.52u_nr32/M4)

R+C+CC: Id = 32.08mA

C+CC+MODEL: Id = 39.59mA