Question 1 - Air Stripper Tower Design

Kea for benieve in 3.5-inch plastic tripacks = 0.011 sec-

Per Lecture 10 notes, pg. 9 - $\frac{Q_W}{A} \le 20 \text{ gpm}$ use $\frac{Q_W}{A} = 20 \text{ gpm}$

 $\frac{Q_W}{A} = \frac{20}{F\xi^2} = \frac{0.014}{5}$

 $Q_W = 0.1 \text{ m}^3/\text{s} = 1585 \text{ gpm}$ $\Rightarrow A = 7.4 \text{ m}^2 = 79 \text{ ft}^2 (= 7.3 \text{ m}^2)$

HTU = $\frac{Q_W}{A K_L a} = \frac{0.1 \text{ m}^3/\text{s}}{7.3 \text{ m}^2 \cdot 0.011 \text{ sec}^{-1}} = 1.25 \text{ m}$

Cut = 100 µg/L Cout = MCL = 5 µg/L

5. = 3.5

 $NTU = \frac{s}{s-1} \left[\ln \left(\frac{c_{in}}{s} \right) + \frac{1}{s} \right]$

= 3.15

L = 3.75 x 1.25 m = 4.7 m ≈ 5 m

Question 2

- a. See graph at right
- b. See computed Chlorine demand column below
- c. See labeled breakpoint on graph

Sample	Chlorine Dosage (mg/L)	Residual chlorine after 10 minutes of contact (mg/L)	Chlorine demand (mg/L) = Dosage - residual
1	0.2	0.19	0.01
2	0.4	0.37	0.03
3	0.6	0.51	0.09
4	0.8	0.5	0.3
5	1	0.2	0.8
6	1.2	0.4	0.8
7	1.4	0.6	0.8
8	1.6	0.8	0.8

Dosage vs. dosage curve:

0 0 2

Question 3 - Proportional Weir Design

$$U = \frac{a}{\Delta} = \frac{a}{W_{i}H}$$

$$\frac{H}{ave} = \frac{0.0176}{0.3 \cdot 0.3} = 0.2 \text{ m} = 20 \text{ cm}$$

$$H_{\text{max}} = \frac{Q_{\text{max}}}{W \cdot U} = \frac{0.028}{0.3 \cdot 0.3} = 0.31 \,\text{m} = 30 \,\text{cm}$$

$$L = \frac{HU}{V_S} = 4.06 \text{ m} \approx 4 \text{ m}$$

Proportional weir - design for are, check at min and max

$$\frac{Q}{h} = \sqrt{2g} \, CK = constant$$
 from Lecture 13

$$2x = \frac{R}{\sqrt{R}}$$

Question 3 - Proportional weir design

$$2x = k/h^{1/2}$$

 $k = 0.0135 \text{ m}^{3/2}$

First try:

h	h	2x	2x	Q	Q	
(cm)	(m)	(m)	(cm)	(m ³ /s)	(L/s)	
0	0	0.135	13.5	0	0	
1	0.01	0.135	13.5	0.0006	0.6	
2	0.02	0.095	9.5	0.0012	1.2	
5	0.05	0.060	6.0	0.0029	2.9	
10	0.1	0.043	4.3	0.0059	5.9	
20	0.2	0.030	3.0	0.0117	11.7	
30	0.3	0.025	2.5	0.0176	17.6	
40	0.4	0.021	2.1	0.0234	23.4	< Not enough for max flow

Trial-and-error solution for k value: Increase k to: 0.017

h	h	2x	2x	Q	Q	
(cm)	(m)	(m)	(cm)	(m ³ /s)	(L/s)	
0	0	0.135	13.5	0	0	
1	0.01	0.135	13.5	0.000738	0.7	
2	0.02	0.095	9.5	0.001475	1.5	
5	0.05	0.060	6.0	0.003688	3.7	
10	0.1	0.043	4.3	0.007376	7.4	
20	0.2	0.030	3.0	0.014751	14.8	
30	0.3	0.025	2.5	0.022127	22.1	
40	0.4	0.021	2.1	0.029503	29.5	< OK for max flow

x1	h
(cm)	(cm)
6.75	0
6.75	1
4.77	2
3.02	5
2.13	10
1.51	20
1.23	30
1.07	40
-1.07	40.00
-1.23	30.00
-1.51	20.00
-2.13	10.00
-3.02	5.00
-4.77	2.00
-6.75	1.00
-6.75	0

Question 4

overall reaction:

$$C_8H_{16}O + \frac{13}{2}O_2 + NH_3 - C_5H_7NO_2 + 3CO_2 + 6H_2O_3$$

Oxidation of FOG

$$C_{8}H_{16}O + \frac{23}{2}O_{2} \rightarrow 8CO_{2} + 8H_{2}O$$

$$\frac{g \ COD}{g \ FOG} = \frac{g \ O_{2}}{g \ FOG} = \frac{\frac{23}{2}(32)}{(8 \cdot 12 + 16 \cdot 1 + 1 \cdot 16)}$$

$$= \frac{\frac{23}{2} \cdot 32}{128}$$

$$= 2 \cdot 88 \quad \underline{g} \ COD \quad \underline{g} \ FOG$$

Cell yield based on overall reaction

$$Y = \frac{5.12 + 7.1 + 1.14 + 2.16}{128} = \frac{113}{128}$$

$$= 0.88 \text{ g cells / g FOG}$$

Interms of COD

$$\Upsilon = \frac{0.88 \text{ g cells/g FoG}}{2.88 \text{ g coD/g FoG}} = 0.31 \frac{\text{g cells}}{\text{g FoG}}$$