Chapitre 5:

Structure électronique d'une molécule à un seul électron

Pascal Parneix¹

Institut des Sciences Moléculaires d'Orsay Université Paris-Sud 11, Orsay

October 14, 2018

¹pascal.parneix@u-psud.fr

Plan du cours :

- 1 L'atome d'hydrogène et les systèmes hydrogénoïdes
- **2** Structure électronique d'un atome à n_e électrons
- **3** Calcul des énergies propres pour un atome à n_e électrons
- **S**pin-orbite pour un atome à n_e électrons
- 5 Structure électronique d'une molécule à un seul électron
- **S**tructure électronique d'une molécule à plusieurs électrons
- Interaction d'un atome avec un champ extérieur
- États stationnaires rovibrationnels d'une molécule
- Interaction d'une molécule avec un champ électromagnétique

Généralités

- Une molécule est un assemblage d'atomes stabilisé principalement par les interactions électrostatiques.
- Contrairement au cas des atomes, la présence de plusieurs noyaux apporte une petite difficulté supplémentaire ... chaque noyau est un centre de force pour les électrons, ces différents centres de force n'étant pas localisés spatialement en un même point.
- La symétrie sphérique, point de départ de toutes les approches théoriques en physique atomique, est maintenant perdue.

Dans le cadre de ce cours de physique moléculaire, nous nous restreindrons au cas de molécules diatomiques

Notations

- Précisons tout d'abord les notations que nous utiliserons par la suite. On note \vec{R}_A et \vec{R}_B les vecteurs positions des noyaux A et B, respectivement de masse M_A et M_B et de charge Z_A et Z_B . On note $R = \mid \mid \vec{R}_A \vec{R}_B \mid \mid$ la distance entre les deux noyaux. On parlera de distance internucléaire ou interatomique.
- On note m la masse des électrons, repérés dans l'espace par le vecteur position $\vec{r_i}$.
- Les distances entre l'électron i et les noyaux A et B seront notées respectivement $r_i^{(A)}$ et $r_i^{(B)}$. La distance entre les électrons i et j est notée r_{ij} . Le nombre d'électrons est noté n_e . Dans une molécule neutre, on aura bien évidemment $n_e = Z_A + Z_B$.

Notations

Figure: Molécule diatomique avec deux électrons.

Hamiltonien du système

• L'hamiltonien non relativiste de la molécule, somme des opérateurs d'énergie cinétique et potentielle, peut se mettre sous la forme :

$$H = \underbrace{\left(-\frac{\hbar^{2}}{2M_{A}}\vec{\nabla}_{A}^{2} - \frac{\hbar^{2}}{2M_{B}}\vec{\nabla}_{B}^{2} + \frac{Z_{A}Z_{B}e^{2}}{4\pi\epsilon_{0}R}\right)}_{H_{N}} + \underbrace{\sum_{i=1}^{n_{e}}\left(-\frac{\hbar^{2}}{2m}\vec{\nabla}_{i}^{2} - \frac{e^{2}}{4\pi\epsilon_{0}}\left(\frac{Z_{A}}{r_{i}^{(A)}} + \frac{Z_{B}}{r_{i}^{(B)}}\right)\right)}_{H_{0}} + \underbrace{\sum_{i=1}^{n_{e}-1}\sum_{j=i+1}^{n_{e}}\frac{e^{2}}{4\pi\epsilon_{0}r_{ij}}}_{I}$$
(1)

Hamiltonien du système

- Les états stationnaires, solutions de l'équation de Schrödinger indépendante du temps, seront caractérisés par la fonction d'onde $\Psi(\vec{R}_A, \vec{R}_B, \vec{r_1}, ..., \vec{r_{n_e}})$ qui dépendra dans le cas général des coordonnées nucléaires et des coordonnées électroniques.
- Comme la masse des protons est très grande devant celle de l'électron, nous allons procéder à une approximation fondamentale en physique moléculaire, appelée approximation de Born-Oppenheimer ou approximation adiabatique, qui consiste à traiter les électrons pour une configuration fixe des noyaux.

• Résolvons tout d'abord le problème électronique, c'est-à-dire déterminer la fonction d'onde électronique de la molécule, pour une configuration figée des noyaux. En notant T_N l'opérateur d'énergie cinétique des deux noyaux, l'hamiltonien H peut se scinder en deux termes :

$$H = H^{(0)} + \underbrace{\left(-\frac{\hbar^2}{2M_A}\vec{\nabla}_A^2 - \frac{\hbar^2}{2M_B}\vec{\nabla}_B^2\right)}_{T_N} \tag{2}$$

avec,

$$H^{(0)} = \sum_{i=1}^{n_e} \left[-\frac{\hbar^2}{2m} \vec{\nabla}_i^2 - \frac{e^2}{4\pi\epsilon_0} \left(\frac{Z_A}{r_i^{(A)}} + \frac{Z_B}{r_i^{(B)}} \right) \right] + \sum_{i=1}^{n_e-1} \sum_{i=i+1}^{n_e} \frac{e^2}{4\pi\epsilon_0 r_{ij}} + \frac{Z_A Z_B e^2}{4\pi\epsilon_0 R}$$
(3)

- Comme les noyaux sont figés, nous allons tout d'abord résoudre l'équation de Schrödinger pour l'hamiltonien $H^{(0)}$.
- Notons que la fonction d'onde électronique, solution de l'équation de Schrödinger avec l'hamiltonien Born-Oppenheimer H⁽⁰⁾, dépendra de la distance internucléaire via les distances r_i^(A) et r_i^(B). On parlera de dépendance paramétrique par rapport à la distance internucléaire R. La fonction d'onde électronique du système, solution de H⁽⁰⁾, s'écrira Ψ(r₁,..., r_{ne}; R). Cette fonction d'onde satisfait donc à l'équation de Schrödinger :

$$H^{(0)}\Psi(\vec{r}_1,...,\vec{r}_{n_e};R) = E(R) \ \Psi(\vec{r}_1,...,\vec{r}_{n_e};R)$$
(4)

avec E(R) l'énergie propre associée à l'état stationnaire. Cette énergie dépendra de la distance internucléaire R.

- Étudions tout d'abord le cas d'une molécule possédant un seul électron, permettant ansi de s'affranchir du terme de répulsion entre électrons.
- **N**ous construirons alors un formalisme pour traiter le cas de molécules diatomiques possédant plusieurs électrons.
- **U**n système moléculaire possédant un seul électron ne peut être bien évidemment qu'un système ionisé.
- Partons du système moléculaire le plus simple, à savoir l'ion H₂⁺, composé de deux protons (masse notée M) et d'un électron. Dans ce cas, les deux noyaux sont identiques, on parlera de molécule diatomique homonucléaire. Dans le cas contraire, on parlera de molécule diatomique hétéronucléaire.

• L'hamiltonien Born-Oppenheimer pour l'ion H_2^+ s'écrit alors :

$$H^{(0)} = -\frac{\hbar^2}{2m} \vec{\nabla}_1^2 - \frac{e^2}{4\pi\epsilon_0} \left(\frac{1}{r_1^{(A)}} + \frac{1}{r_1^{(B)}} - \frac{1}{R} \right) \tag{5}$$

• Les fonctions d'onde propres, solutions de H_0 , s'écrivent $\Psi(\vec{r_1}; R)$.

Figure: Représentation schématique de l'ion H_2^+ .

- Regardons tout d'abord les règles de commutation de l'hamiltonien avec les opérateurs de moment cinétique.
- Comme l'hamiltonien non relativiste ne dépend pas du spin, l'hamiltonien commute avec \vec{s} et donc avec \vec{s}^2 et s_7 .

$$[H^{(0)}, s_z] = [H^{(0)}, \vec{s}^2] = 0$$

• Le système physique, du fait de la perte de la symétrie sphérique, ne commute plus avec l'opérateur vectoriel \vec{l} . Prenons l'axe (Oz) coïncidant avec l'axe internucléaire engendré par les deux noyaux. Le système physique est invariant par rapport à une rotation autour de cet axe. L'hamiltonien commute alors avec I_z et donc avec I_z^2 .

$$[H^{(0)}, I_z] = [H^{(0)}, I_z^2] = 0$$

• On note O le milieu du segment reliant les deux noyaux. Considérons l'opérateur d'inversion, noté \mathcal{I} qui transforme le vecteur position de l'électron \vec{r} en $-\vec{r}$.

Figure: Action de l'opérateur d'inversion pour une molécule diatomique.

 Lors de cette transformation, le système physique est inchangé si la molécule est homonucléaire. L'opérateur I commute alors avec l'hamiltonien et les états propres moléculaires devront être états propres de l'opérateur d'inversion.

$$[H^{(0)},\mathcal{I}]=0$$

- Comme \mathcal{I}^2 est égal à l'opérateur identité, les états propres de l'hamiltonien devront être symétriques (valeur propre égale à +1) ou antisymétriques (valeur propre égale à -1) par rapport à l'inversion.
- Pour un état symétrique, on parlera d'états *gerade* (notation *g*) alors que pour un état antisymétrique, on parlera d'états *ungerade* (notation *u*).
- Il apparaît également que l'application de cet opérateur d'inversion transforme $\bar{r}_1^{(A)}$ en $-\bar{r}_1^{(B)}$ et $\bar{r}_1^{(B)}$ en $-\bar{r}_1^{(A)}$, ce qui aura des conséquences importantes.

- Notons également que tous les plans passant par l'axe internucléaire seront plans de symétrie. L'axe (Oz) sera pris le long de l'axe internucléaire.
- Prenons les plans (yz) et (xz) comme plans de symétrie et notons σ_{yz} et σ_{xz} les opérateurs de symétrie par rapport à ces deux plans. Comme le système physique est invariant dans ces deux opérations de symétrie, l'hamiltonien commute avec les opérateurs σ_{yz} et σ_{xz} .

$$[H^{(0)}, \sigma_{vz}] = [H^{(0)}, \sigma_{xz}] = 0$$

• Les états propres moléculaires seront donc symétrique ou antisymétrique par rapport à ces opérations de symétrie. Comme $\sigma_{yz}^2 = \sigma_{xz}^2 = 1$, les valeurs propres seront égales à +1 (état symétrique avec la notation +) ou -1 (état antisymétrique avec la notation -).

- Les fonctions d'onde électroniques connues sont les fonctions d'onde atomiques. Elles seront utilisées pour construire les fonctions d'onde moléculaires.
- La notation générale de la partie spatiale d'une orbitale atomique est $\phi_{nlm}(\vec{r}) = R_{nl}(r) \mathcal{Y}_{lm}(\theta, \varphi)$.
- Analysons l'action des opérateurs commutant avec l'hamiltonien sur une orbitale atomique centrée sur le noyau A, à savoir $\phi_{nlm}(\vec{r}_A)$. En notation de Dirac, nous noterons cet état atomique centré sur A (resp. sur B) comme $|nlm\rangle_A$ (resp. $|nlm\rangle_B$).

Action des opérateurs sur les fonctions d'onde atomiques

• $l_z \phi_{nlm}(\vec{r}^{(A/B)}) = -i \hbar \frac{\partial}{\partial \varphi} \phi_{nlm}(\vec{r}^{(A/B)}) = m\hbar \phi_{nlm}(\vec{r}^{(A/B)})$. Ainsi, nous pouvons écrire :

$$I_z^2 \mid nlm \rangle_{A/B} = \underbrace{\mid m \mid^2}_{A/B} \hbar^2 \mid nlm \rangle_{A/B}$$
 (6)

• $\mathcal{I} \phi_{nlm}(\bar{r}^{(A/B)}) = \phi_{nlm}(-\bar{r}^{(B/A)}) = (-1)^l \phi_{nlm}(\bar{r}^{(B/A)})$. Ainsi, nous pouvons écrire :

$$\mathcal{I} \mid n l m \rangle_{A/B} = (-1)^l \mid n l m \rangle_{B/A} \tag{7}$$

Cet opérateur de symétrie est à considérer uniquement dans le cas des molécules homonucléaires.

Action des opérateurs sur les fonctions d'onde atomiques

• σ_{xz} $\phi_{nlm}(\bar{r}^{(A/B)}) = \sigma_{xz}$ $\phi_{nlm}(r^{(A/B)}, \theta^{(A/B)}, \varphi^{(A/B)}) = \phi_{nlm}(r^{(A/B)}, \theta^{(A/B)}, -\varphi^{(A/B)}) = (-1)^m \phi_{nl-m}(\bar{r}^{(A/B)}).$ Ainsi, nous pouvons écrire :

$$\sigma_{xz} \mid n l m \rangle_{A/B} = (-1)^m \mid n l - m \rangle_{A/B}$$
 (8)

• $\sigma_{yz} \ \phi_{nlm}(\vec{r}^{(A/B)}) = \sigma_{yz} \ \phi_{nlm}(r^{(A/B)}, \theta^{(A/B)}, \varphi^{(A/B)}) = \phi_{nlm}(r^{(A/B)}, \theta^{(A/B)}, \pi - \varphi^{(A/B)}) = (-1)^m \times (-1)^m \ \phi_{nl-m}(\vec{r}^{(A/B)})$ Ainsi, nous pouvons écrire :

$$\sigma_{yz} \mid n l m \rangle_{A/B} = \mid n l - m \rangle_{A/B} \tag{9}$$

ECOC

• On peut noter que l'opérateur I_z ne commute ni avec σ_{xz} ni avec σ_{yz} .

$$I_z \sigma_{yz} \mid nIm \rangle_{A/B} = -m \mid nI - m \rangle_{A/B}$$

et,

$$\sigma_{yz} I_z \mid nIm \rangle_{A/B} = +m \mid nI - m \rangle_{A/B}$$

- Par contre, l'opérateur I_z^2 commute avec σ_{xz} et σ_{yz} .
- Les opérateurs σ_{xz} et σ_{yz} jouent le même rôle. Par convention, on prendra σ_{yz} , noté σ'_V .
- Pour une molécule diatomique homonucléaire, un ECOC sera composé des opérateurs H, I_z^2 , σ_W' et \mathcal{I} .
- Pour une molécule diatomique hétéronucléaire, un ECOC sera composé des opérateurs H, I_z^2 et σ_V' .

- Cherchons à construire des fonctions d'onde moléculaires mono-électroniques pour une molécule diatomique avec un seul électron comme H₂⁺, HeH²⁺... à partir des fonctions d'onde atomiques.
- Comme ce système est composé de deux centres A et B, il est naturel de construire ces états comme combinaison linéaire d'orbitales atomiques (CLOA) centrées sur A et B. Notons $|\varphi_A\rangle$ et $|\varphi_B\rangle$ deux orbitales atomiques normalisées centrées respectivement sur A et B.
- L'état moléculaire va s'écrire dans ce formalisme comme :

$$|\varphi\rangle = c_A |\varphi_A\rangle + c_B |\varphi_B\rangle$$
 (10)

• Les fonctions d'onde atomiques ainsi que les coefficients c_A et c_B seront pris réels .

• L'énergie du système moléculaire va s'écrire comme :

$$E = \frac{\langle \varphi \mid H^{(0)} \mid \varphi \rangle}{\langle \varphi \mid \varphi \rangle} \tag{11}$$

• On en déduit la relation suivante :

$$\underbrace{\left(c_A^2 + c_B^2 + 2c_Ac_B \mathcal{S}_{AB}\right)}_{\langle \varphi | \varphi \rangle} E = c_A^2 \mathcal{H}_{AA} + c_B^2 \mathcal{H}_{BB} + 2c_Ac_B \mathcal{H}_{AB}$$
(12)

• Dans cette dernière expression, on a $\mathcal{H}_{AA} = \langle \varphi_A \mid H^{(0)} \mid \varphi_A \rangle$, $\mathcal{H}_{BB} = \langle \varphi_B \mid H^{(0)} \mid \varphi_B \rangle$, $\mathcal{H}_{AB} = \langle \varphi_A \mid H^{(0)} \mid \varphi_B \rangle$ et finalement $\mathcal{S}_{AB} = \langle \varphi_A \mid \varphi_B \rangle$, appelée l'intégrale de recouvrement entre les orbitales atomiques A et B.

- Notons que $\mathcal{H}_{AB}=H_{BA}$ et $\mathcal{S}_{AB}=\mathcal{S}_{BA}$ dans le cas où les fonctions d'onde sont réelles.
- Notons que $\mathcal{H}_{AA} = H_{BB}$ si les deux fonctions d'onde atomiques sont identiques (molécule homonucléaire et mêmes orbitales).
- L'intégrale de recouvrement dépendra de la distance internucléaire R. Pour s'en convaincre, explicitons cette intégrale à deux centres :

$$S_{AB}(R) = \int \varphi_A^* (\underbrace{\vec{r} - \frac{1}{2}\vec{R}}_{\vec{r}^{(A)}}) \varphi_B(\underbrace{\vec{r} + \frac{1}{2}\vec{R}}_{\vec{r}^{(B)}}) d^3\vec{r}$$
 (13)

• On remarque que $\lim_{R\to\infty} \mathcal{S}_{AB}(R) = 0$ et $\lim_{R\to0} \mathcal{S}_{AB}(R) = 1$ (si les deux fonctions d'onde atomiques sont identiques).

$S_{AB}(R)$ sera une fonction monotone décroissante

- En utilisant les coordonnées elliptiques, cette intégrale à deux centres se calculent facilement.
- Dans ce nouveau système de coordonnées, les 3 coordonnées sont $\eta = (r^{(A)} + r^{(B)})/R$, $\nu = (r^{(A)} r^{(B)})/R$ et l'angle azimutal φ . La coordonnée η varie entre 1 et $+\infty$. La coordonnée ν varie entre -1 et +1 alors que φ est comprise entre 0 et 2π . L'élément de volume $d^3\vec{r}$ est égale à $\frac{1}{8}$ $R^3(\eta^2 \nu^2)$ $d\eta$ $d\nu$ $d\varphi$.
- Dans le cas de deux orbitales 1s, l'intégrale de recouvrement en fonction de la distance R s'écrit :

$$S_{AB}(R) = \frac{1}{\pi a_0^3} \int_0^{2\pi} d\varphi \int_1^{\infty} d\eta \int_{-1}^1 d\nu \, \frac{1}{8} \, R^3 (\eta^2 - \nu^2) e^{-\eta R/a_0}$$
$$= \left[1 + \frac{R}{a_0} + \frac{1}{3} (\frac{R}{a_0})^2 \right] e^{-R/a_0}$$
(14)

Figure: Intégrale de recouvrement entre deux orbitales 1s de l'hydrogène en fonction de la distance internucléaire.

• On peut également expliciter les intégrales de Coulomb \mathcal{H}_{AA} et \mathcal{H}_{BB} qui seront une fonction de la distance R. On a :

$$\mathcal{H}_{AA}(R) = \langle \varphi_A \mid \left(-\frac{\hbar^2}{2m} \vec{\nabla}^2 - \frac{e^2}{4\pi\epsilon_0} \frac{e^2}{r^{(A)}} \right) - \frac{e^2}{4\pi\epsilon_0} \left(\frac{1}{r^{(B)}} - \frac{1}{R} \right) \mid \varphi_A \rangle$$

$$= E_A + \frac{e^2}{4\pi\epsilon_0} \frac{e^2}{R} - \frac{e^2}{4\pi\epsilon_0} \langle \varphi_A \mid \frac{1}{r^{(B)}} \mid \varphi_A \rangle$$

$$= E_A + \frac{e^2}{4\pi\epsilon_0} \frac{e^2}{R}$$

$$- \frac{e^2}{4\pi\epsilon_0} \underbrace{\int \mid \varphi_A(\vec{r} - \frac{1}{2}\vec{R}) \mid^2 \frac{1}{r^{(B)}} d^3 \vec{r}}_{>0}$$
(15)

avec
$$r^{(B)} = ||\vec{r} + \frac{1}{2}\vec{R}||$$
.

- **D**e cette expression, on remarque que \mathcal{H}_{AA} tend vers l'énergie atomique E_A quand R tend vers l'infini.
- L'intégrale, toujours positive, augmente quand R diminue mais moins vite que la repulsion entre les deux noyaux.
- Ainsi $\mathcal{H}_{AA}(R)$ et $\mathcal{H}_{BB}(R)$ sont des fonctions monotones décroissantes.
- Le calcul exact en coordonnées elliptiques entre orbitales 1s de l'hydrogène donne :

$$\mathcal{H}_{AA}(R) = E_A + \frac{e^2}{4\pi\epsilon_0 a_0} \left(1 + \frac{a_0}{R}\right) e^{-2R/a_0} \tag{16}$$

• Finalement, on peut expliciter l'intégrale de résonance \mathcal{H}_{AB} qui sera une fonction de la distance R entre les deux noyaux. On a :

$$\mathcal{H}_{AB}(R) = \langle \varphi_{A} \mid (-\frac{\hbar^{2}}{2m} \vec{\nabla}^{2} - \frac{e^{2}}{4\pi\epsilon_{0}} \frac{1}{r^{(B)}}) - \frac{e^{2}}{4\pi\epsilon_{0}} (\frac{1}{r^{(A)}} - \frac{1}{R}) \mid \varphi_{B} \rangle$$

$$= E_{B} S_{AB} - \frac{e^{2}}{4\pi\epsilon_{0}} \langle \varphi_{A} \mid \frac{1}{r^{(A)}} - \frac{1}{R} \mid \varphi_{B} \rangle$$

$$= (E_{B} + \frac{e^{2}}{4\pi\epsilon_{0}R}) S_{AB}$$

$$- \underbrace{\frac{e^{2}}{4\pi\epsilon_{0}} \int \varphi_{A}^{*} (\vec{r} - \frac{1}{2}\vec{R}) \frac{1}{r^{(A)}} \varphi_{B} (\vec{r} + \frac{1}{2}\vec{R}) d^{3}\vec{r}}_{\mathcal{I}_{AB} > 0 \text{ ou } < 0}$$

$$(17)$$

avec
$$r^{(A)} = ||\vec{r} - \frac{1}{2}\vec{R}||$$
.

- **D**e cette expression, on remarque que cette intégrale de résonance tend vers zéro quand *R* tend vers l'infini.
- L'intégrale \mathcal{I}_{AB} , apparaissant dans l'équation (17), peut être positive ou négative.

Dans le cas d'orbitales atomiques *ns*, cette intégrale sera toujours positive

• Le calcul exact en coordonnées elliptiques entre orbitales 1s de l'hydrogène donne :

$$\mathcal{H}_{AB}(R) = (E_B + \frac{e^2}{4\pi\epsilon_0 R}) \left[1 + \frac{R}{a_0} + \frac{1}{3} (\frac{R}{a_0})^2 \right] e^{-R/a_0} - \frac{e^2}{4\pi\epsilon_0 a_0} \left[(1 + \frac{R}{a_0}) e^{-R/a_0} \right]$$
(18)

$$(c_A^2 + c_B^2 + 2c_Ac_B S_{AB}) E = c_A^2 \mathcal{H}_{AA} + c_B^2 \mathcal{H}_{BB} + 2c_Ac_B \mathcal{H}_{AB}$$

- On a $E(c_A, c_B; R)$
- Afin de déterminer les coefficients c_A et c_B , l'énergie E doit être minimale, c'est-à-dire $\frac{\partial E}{\partial c_A} = \frac{\partial E}{\partial c_B} = 0$.
- On trouve alors deux équations :

$$\begin{cases} (\mathcal{H}_{AA} - E) c_A + (\mathcal{H}_{AB} - E S_{AB}) c_B = 0 \\ (\mathcal{H}_{AB} - E S_{AB}) c_A + (\mathcal{H}_{BB} - E) c_B = 0 \end{cases}$$

• Une solution non-triviale de ce système de deux équations à deux inconnues est obtenue pour :

$$(\mathcal{H}_{AA} - E)(\mathcal{H}_{BB} - E) - (\mathcal{H}_{AB} - ES_{AB})^2 = 0$$
 (19)

• En prenant $\varphi_A = \varphi_B$ (possible uniquement pour une molécule homonucléaire), on aura $\mathcal{H}_{AA} = \mathcal{H}_{BB}$. On en déduit alors deux valeurs pour les énergies propres :

$$\begin{cases} E_1 = \frac{\mathcal{H}_{AA} + \mathcal{H}_{AB}}{1 + \mathcal{S}_{AB}} \\ E_2 = \frac{\mathcal{H}_{AA} - \mathcal{H}_{AB}}{1 - \mathcal{S}_{AB}} \end{cases}$$

avec les vecteurs propres associés donnés par :

$$\begin{cases} |\varphi_{1}\rangle = \frac{1}{\sqrt{2(1+S_{AB})}} [|\varphi_{A}\rangle + |\varphi_{B}\rangle] \\ |\varphi_{2}\rangle = \frac{1}{\sqrt{2(1-S_{AB})}} [|\varphi_{A}\rangle - |\varphi_{B}\rangle] \end{cases}$$

- Examinons les énergies E_1 et E_2 des deux orbitales moléculaires ainsi construites. Dans le cas où $\mathcal{H}_{AB} < 0$, on aura toujours $E_1 < E_2$.
- Quand $R \to +\infty$, les énergies E_1 et E_2 tendent vers \mathcal{H}_{AA} (= \mathcal{H}_{BB}). L'électron se trouve alors soit sur A soit sur B et l'énergie du système est égale à l'énergie de l'atome A ou B.
- Pour l'état moléculaire $| \varphi_2 \rangle$, on constate que l'énergie propre E_2 sera toujours supérieure à \mathcal{H}_{AA} . On parlera d'état moléculaire non-liant. En effet, $S_{AB} \to 1$ quand $R \to 0$, on a $\lim_{R \to 0} E_2 = +\infty$.
- L'énergie de cet état moléculaire est une fonction monotone décroissante quand la distance internucléaire augmente.

- Regardons maintenant le comportement de l'énergie E_1 en fonction de R.
- La fonction $E_1(R)$ est une fonction non monotone, elle passera par un minimum pour une certaine distance R.
- Pour cette distance particulière, l'énergie E_1 sera inférieure à H_{AA} , on parlera d'état moléculaire liant.

Figure: Énergie des états moléculaires $| \varphi_1 \rangle$ et $| \varphi_2 \rangle$ en fonction de la distance interatomique R.

• Comme la molécule est homonucléaire, ces états propres doivent être états propres de l'opérateur d'inversion \mathcal{I} . À partir des résultats obtenus précédemment, nous pouvons écrire :

$$\mathcal{I} \mid \varphi_{1} \rangle = \frac{1}{\sqrt{2(1 + S_{AB})}} \left[\mathcal{I} \mid \varphi_{A} \rangle + \mathcal{I} \mid \varphi_{B} \rangle \right]$$

$$= \frac{1}{\sqrt{2(1 + S_{AB})}} \left[(-1)^{I_{B}} \mid \varphi_{B} \rangle + (-1)^{I_{A}} \mid \varphi_{A} \rangle \right]$$
(20)

et,

$$\mathcal{I} \mid \varphi_{2} \rangle = \frac{1}{\sqrt{2(1 - S_{AB})}} \left[\mathcal{I} \mid \varphi_{A} \rangle - \mathcal{I} \mid \varphi_{B} \rangle \right]$$

$$= \frac{1}{\sqrt{2(1 - S_{AB})}} \left[(-1)^{I_{B}} \mid \varphi_{B} \rangle - (-1)^{I_{A}} \mid \varphi_{A} \rangle \right]$$

- Si $I (=I_A=I_B)$ est pair, les états moléculaires $|\varphi_1\rangle$ et $|\varphi_2\rangle$ seront respectivement symétriques et antisymétriques par rapport à l'opérateur d'inversion \mathcal{I} .
- Par contre, Si $I(=I_A=I_B)$ est impair, les états moléculaires $|\varphi_1\rangle$ et $|\varphi_2\rangle$ seront respectivement antisymétriques et symétriques par rapport à l'opérateur d'inversion \mathcal{I} .
- Considérons le cas de deux orbitales atomiques s (1=0).

$$\mathcal{I} \mid \varphi_1 \rangle = \frac{1}{\sqrt{2(1+S_{AB})}} \left[(-1)^0 \mid \varphi_B \rangle + (-1)^0 \mid \varphi_A \rangle \right] = \mid \varphi_1 \rangle$$
(22)

et,

$$\mathcal{I} \mid \varphi_2 \rangle = \frac{1}{\sqrt{2(1-S_{AB})}} \left[(-1)^0 \mid \varphi_B \rangle - (-1)^0 \mid \varphi_A \rangle \right] = - \mid \varphi_2 \rangle$$

- Dans ce cas, l'état moléculaire liant $| \varphi_1 \rangle$ est symétrique par rapport à l'opérateur \mathcal{I} . Ce sera un état *gerade* (caractère g).
- L'état moléculaire anti-liant $| \varphi_2 \rangle$ sera par contre *ungerade* (caractère u).
- On trouve également que $|\varphi_1\rangle$ et $|\varphi_2\rangle$ sont états propres de l_z^2 avec la valeur propre 0 car |m|=0. On parlera d'états moléculaires σ .
- Comme m=0, on remarque également que $|\ \varphi_1\rangle$ et $|\ \varphi_2\rangle$ sont des états propres de l'opérateur de symétrie σ_{yz} . Ils sont de plus symétriques par rapport à cette opération de symétrie car $\sigma_{yz} \ |\ \varphi_1\rangle = +1 \ |\ \varphi_1\rangle$ et $\sigma_{yz} \ |\ \varphi_2\rangle = +1 \ |\ \varphi_2\rangle$.

$$\sigma_V' \mid \varphi_1 \rangle = +1 \mid \varphi_1 \rangle \text{ et } \sigma_V' \mid \varphi_2 \rangle = +1 \mid \varphi_2 \rangle$$

- Ainsi l'état moléculaire $|\varphi_1\rangle = \frac{1}{\sqrt{2(1+S_{AB})}} \left[|ns\rangle_A + |ns\rangle_B \right]$ sera noté, en notation spectroscopique, σ_g^+ alors que l'état moléculaire $|\varphi_2\rangle = \frac{1}{\sqrt{2(1-S_{AB})}} \left[|ns\rangle_A |ns\rangle_B \right]$ sera noté σ_u^{*+} .
- Par convention, les états anti-liants sont notés avec une étoile.
- ullet Comme les états σ ont automatiquement un caractère +, ce symbole pourra être omis.

Figure: Énergie des états moléculaires σ_g et σ_u^* en fonction de la distance interatomique R.

- Comme E(1s) < E(2s) < E(3s)..., les états moléculaires de plus basse énergie seront formés à partir des orbitales 1s.
- Pour interpréter le caractère liant et anti-liant, nous pouvons analyser la densité électronique liée au module au carré de la fonction d'onde électronique.
- Analysons tout d'abord la symétrie de la fonction d'onde par rapport au plan (xy) passant par le point O, milieu du segment reliant les deux noyaux. Cette opération de symétrie, notée σ_{xy} , s'écrit comme $\sigma_{xy} = \sigma_{xz} \ \sigma_{yz} \ \mathcal{I}$. On obtient :

$$\sigma_{xy} \mid \varphi_1 \rangle = ((+1) \times (+1) \times (+1)) \mid \varphi_1 \rangle$$

$$= \mid \varphi_1 \rangle$$
(24)

et

$$\sigma_{xy} \mid \varphi_2 \rangle = ((+1) \times (+1) \times (-1)) \mid \varphi_2 \rangle$$

= $- \mid \varphi_2 \rangle$ (25)

- On en déduit que $\varphi_1(x, y, z) = \varphi_1(x, y, -z)$ et $\varphi_2(x, y, z) = -\varphi_2(x, y, -z) \ \forall \ x, y \ \text{et} \ z$.
- Pour l'état anti-liant $|\varphi_2\rangle$, la fonction d'onde est donc nulle dans le plan nodal (Oxy), perpendiculaire à l'axe internucléaire.
- Pour cet état anti-liant, la densité électronique dans le plan nodal (Oxy) est nulle

$$\rho_2(x, y, z = 0) = |\varphi_2(x, y, z = 0)|^2 = 0, \forall x, y$$

• Pour un état liant, on aura :

$$\rho_1(x, y, z = 0) = |\varphi_1(x, y, z = 0)|^2 = \rho_0(x, y) \ge 0$$

• À partir du principe d'antisymétrie, chaque état moléculaire σ pourra contenir deux électrons qui diffèreront par la valeur de m_s (= $\pm 1/2$).

Figure: Orbitales liante et anti-liante issues des orbitales atomiques ns_A et ns_B centrées sur les noyaux A et B, respectivement. Cette situation correspond au cas d'une molécule diatomique hétéronucléaire.

- Dans le cas d'une molécule diatomique homonucléaire, pour mener à bien les calculs présentés précédemment, il faut calculer les grandeurs \mathcal{S}_{AB} , \mathcal{H}_{AB} , \mathcal{H}_{AA} (= \mathcal{H}_{BB}).
- Pour les deux états moléculaires de la molécule H_2^+ issus des orbitales atomiques 1s, les fonctions d'onde atomiques peuvent être prises égales aux fonctions d'onde atomiques 1s de l'atome d'hydrogène.
- Le minimum de l'énergie pour l'état liant est obtenu pour R=2,5 a_0 et la profondeur du puits est égale à $D_0=1,76$ eV.
- Un calcul exact donne R=2,0 a_0 et $D_0=2,79$ eV.

- Pour améliorer les performances de ce calcul CLOA, nous pouvons suivre une approche variationnelle.
- En effet quand $R \to 0$, l'électron gravite autour d'un noyau d'hélium et la fonction d'onde électronique devrait tendre vers une fonction d'onde hydrogénoïde de charge Z=2.
- Par contre, quand $R \to +\infty$, l'électron gravite autour d'un noyau d'hydrogène et la fonction d'onde électronique doit tendre vers la fonction d'onde de l'atome d'hydrogène. Ainsi, en fonction de la distance R, la charge effective de la fonction hydrogénoïde évolue.
- On peut ainsi prendre comme fonctions de base des fonctions d'onde hydrogénoïdes de charge Z_{eff} qui sera un paramètre variationnel pour chaque valeur de R. Ces fonctions d'onde 1s s'écrivent :

$$\varphi_{1s}(r^{(A/B)}) = \mathcal{N} e^{-Z_{\text{eff}} r^{(A/B)}/a_0}$$
(26)

avec ${\mathcal N}$ un facteur de normalisation qui dépendra du paramètre variationnel $Z_{\rm eff}$.

- L'énergie E_1 de l'état liant est calculée pour chaque valeur de R pour la valeur de Z_{eff} telle que $\frac{\partial E_1}{\partial Z_{\text{eff}}} = 0$.
- En suivant cette procédure, on trouve R=2,0 a_0 et $D_0=2,25$ eV. On peut encore améliorer ce modèle en remarquant que la présence du proton A va déformer le nuage électronique autour du proton B qui n'aura plus la symétrie sphérique. On parle d'effet de polarisation.
- Ceci peut se prendre en compte d'un point de vue variationnel en écrivant les fonctions d'onde atomique centrées sur A et B comme :

$$\varphi_{1s}(r^{(A/B)}) = \mathcal{N}(1 + \lambda z) e^{-Z_{\text{eff}} r^{(A/B)}/a_0}$$
(27)

avec λ un second paramètre variationnel tel que $\lambda \to 0$ quand $R \to +\infty$. Le facteur de normalisation dépend maintenant de λ et $Z_{\rm eff}$.

- L'énergie E_1 de l'état liant est calculée pour chaque valeur de R pour les valeurs de $Z_{\rm eff}$ et λ telles que $\frac{\partial E_1}{\partial Z_{\rm eff}}=0$ et $\frac{\partial E_1}{\partial \lambda}=0$.
- En suivant cette nouvelle procédure, on trouve R=2,0 a_0 et $D_0=2,6$ eV, ce qui est relativement proche des valeurs exactes R=2,0 a_0 et $D_0=2,79$ eV.

- Considérons maintenant le cas de deux orbitales atomiques *np*, c'est-à-dire caractérisées par *l*=1.
- Dans ce cas, pour une molécule diatomique homonucléaire, l'état moléculaire $\mid \varphi_1 \rangle$ est antisymétrique par rapport à l'opérateur d'inversion \mathcal{I} . Ce sera un état ungerade (symbole u). L'état moléculaire $\mid \varphi_2 \rangle$ sera par contre gerade (symbole g).

$$\begin{cases} \mid \varphi_{1} \rangle = \frac{1}{\sqrt{2(1 + S_{AB})}} \left[\mid \varphi_{A} \rangle + \mid \varphi_{B} \rangle \right] \\ \mid \varphi_{2} \rangle = \frac{1}{\sqrt{2(1 - S_{AB})}} \left[\mid \varphi_{A} \rangle - \mid \varphi_{B} \rangle \right] \end{cases}$$

• Quand l=1, la projection du moment cinétique orbital peut être égale à 0, ± 1 .

• Quand m=0, les orbitales atomiques peuvent se noter np_z et les états moléculaires peuvent se construire comme dans le cas des orbitales ns pour donner des états σ_g et σ_u :

$$|\sigma_u\rangle = \frac{1}{\sqrt{2(1+S_{AB})}} [|np_z\rangle_A + |np_z\rangle_B]$$
 (28)

et,

$$|\sigma_g\rangle = \frac{1}{\sqrt{2(1-S_{AB})}} [|np_z\rangle_A - |np_z\rangle_B]$$
 (29)

- Comme $m{=}0$, ces états moléculaires sont symétriques par rapport à σ_V' .
- Dans le cas d'orbitales moléculaires construites à partir d'orbitales atomiques np_z , l'intégrale d'échange \mathcal{I}_{AB} sera positive pour $\frac{R}{a_0}\gg 1$, contrairement au cas des orbitales ns.

$$\mathcal{I}_{AB} < 0$$
 quand $\frac{R}{a_0} \gg 1$

Figure: Interaction entre deux orbitales $np_z(\propto \cos \theta)$.

$$\left\{egin{array}{l} E_1 = E(\sigma_u^*) = rac{\mathcal{H}_{AA} + \mathcal{H}_{AB}}{1 + \mathcal{S}_{AB}} \ \\ E_2 = E(\sigma_g) = rac{\mathcal{H}_{AA} - \mathcal{H}_{AB}}{1 - \mathcal{S}_{AB}} \end{array}
ight.$$

$$\mathcal{H}_{AB}(R) = (E_B + \frac{e^2}{4\pi\epsilon_0 R}) S_{AB}$$

$$- \underbrace{\frac{e^2}{4\pi\epsilon_0} \int \varphi_A^*(\vec{r} - \frac{1}{2}\vec{R}) \frac{1}{r^{(A)}} \varphi_B(\vec{r} + \frac{1}{2}\vec{R}) d^3\vec{r}}_{\mathcal{I}_{AB}<0}$$

Ainsi l'état σ_g sera liant et l'état σ_u sera non-liant et donc $E(\sigma_g) < E(\sigma_u^*)$.

• Quand $m \neq 0$, les états atomiques $|nlm\rangle$ ne sont plus états propres de l'opérateur de symétrie σ'_V ($\equiv \sigma_{yz}$). On note $\lambda = |m|$.

$$\sigma'_{V} \mid n l m \rangle_{A/B} = \mid n l - m \rangle_{A/B}$$

• Pour construire des états propres de cet opérateur, il suffit de prendre une combinaison linéaire des états $| nlm \rangle$ et $| nl - m \rangle$:

$$\left\{ \begin{array}{l} \mid \varphi_{\lambda}^{+} \rangle_{A/B} = \mid \textit{nlm} \rangle_{A/B} + \mid \textit{nl} - \textit{m} \rangle_{A/B} \\ \mid \varphi_{\lambda}^{-} \rangle_{A/B} = \mid \textit{nlm} \rangle_{A/B} - \mid \textit{nl} - \textit{m} \rangle_{A/B} \end{array} \right.$$

• Pour les états atomiques np, on note :

$$\mid np_{x}\rangle_{A/B} = \mid np1\rangle_{A/B} - \mid np-1\rangle_{A/B} \propto \sin\theta_{A/B} \cos\varphi_{A/B}$$

et

$$|np_{V}\rangle_{A/B} = |np1\rangle_{A/B} + |np-1\rangle_{A/B} \propto \sin\theta_{A/B} \sin\varphi_{A/B}$$

• On trouve alors :

$$\sigma_V' \ \mid \textit{np}_\textit{x}\rangle_\textit{A/B} = - \mid \textit{np}_\textit{x}\rangle_\textit{A/B} \ \text{et} \ \sigma_V' \ \mid \textit{np}_\textit{y}\rangle_\textit{A/B} = \mid \textit{np}_\textit{y}\rangle_\textit{A/B}$$

ullet Analysons maintenant l'action de l'opérateur d'inversion ${\mathcal I}$:

$$\mathcal{I} \mid np_x \rangle_{A/B} = - \mid np_x \rangle_{B/A} \text{ et } \mathcal{I} \mid np_y \rangle_{A/B} = - \mid np_y \rangle_{B/A}$$

• Analysons finalement l'action de I_z^2 :

$$I_z^2 \mid np_x \rangle_{A/B} = \mid np_x \rangle_{A/B}$$
 et $I_z^2 \mid np_y \rangle_{A/B} = \mid np_y \rangle_{A/B}$

- **C**es états sont caractérisés par $\lambda = 1$.
- Des combinaisons linéaires de ces états donneront donc des états moléculaires π .

• À partir de ces états moléculaires, on peut former deux états moléculaires *gerade* tels que :

$$\mid \pi_{g}^{+} \rangle = \frac{1}{\sqrt{2(1 - S_{AB})}} \mid np_{y} \rangle_{A} - \mid np_{y} \rangle_{B}]$$
 (30)

$$|\pi_g^-\rangle = \frac{1}{\sqrt{2(1-S_{AB})}} |np_x\rangle_A - |np_x\rangle_B]$$
 (31)

et deux états moléculaires ungerade :

$$|\pi_u^+\rangle = \frac{1}{\sqrt{2(1+S_{AB})}} [|np_y\rangle_A + |np_y\rangle_B]$$
 (32)

$$|\pi_{u}^{-}\rangle = \frac{1}{\sqrt{2(1+S_{\Delta B})}} \left[|np_{x}\rangle_{A} + |np_{x}\rangle_{B}\right]$$
(33)

• Les deux états moléculaires *gerade* sont dégénérés, c'est-à-dire ont la même énergie. De même pour les états moléculaires *ungerade*.

$$\langle \pi_{\rm g}^+ \mid H \mid \pi_{\rm g}^+ \rangle = \langle \pi_{\rm g}^- \mid H \mid \pi_{\rm g}^- \rangle \text{ et } \langle \pi_{\rm u}^+ \mid H \mid \pi_{\rm u}^+ \rangle = \langle \pi_{\rm u}^- \mid H \mid \pi_{\rm u}^- \rangle$$

- Dans la limite des atomes séparés, les intégrales d'échange H_{AB} entre les orbitales $\mid np_{x/y}\rangle_A$ et $\mid np_{x/y}\rangle_B$ sont négatives. Il s'ensuit que les deux états moléculaires $\mid \pi_g\rangle$ sont des états moléculaires anti-liants alors que les deux états moléculaires $\mid \pi_u\rangle$ sont des états moléculaires liants.
- $\hat{\mathbf{A}}$ partir du principe d'antisymétrie, on en déduit que 4 électrons pourront se placer dans les orbitales π_g (idem pour π_u).

$$\begin{cases} E_1 = E(\pi_u) = \frac{\mathcal{H}_{AA} + \mathcal{H}_{AB}}{1 + \mathcal{S}_{AB}} \\ E_2 = E(\pi_g) = \frac{\mathcal{H}_{AA} - \mathcal{H}_{AB}}{1 - \mathcal{S}_{AB}} \end{cases}$$

$$\mathcal{H}_{AB}(R) = (E_B + \frac{e^2}{4\pi\epsilon_0 R}) S_{AB}$$

$$- \underbrace{\frac{e^2}{4\pi\epsilon_0} \int \varphi_A^*(\vec{r} - \frac{1}{2}\vec{R}) \frac{1}{r^{(A)}} \varphi_B(\vec{r} + \frac{1}{2}\vec{R}) d^3\vec{r}}_{\mathcal{I}_{AB} > 0}$$

Ainsi l'état π_u sera liant et l'état π_g sera non-liant et donc $E(\pi_u) < E(\pi_g)$.

Figure: Interaction entre deux orbitales $np_x(\propto \sin \theta \cos \varphi)$.

Figure: Orbitales moléculaires issues des orbitales atomiques np_A et np_B centrées sur les noyaux A et B, respectivement.

 Analysons la symétrie de ces fonctions d'onde par rapport au plan (xy) passant par le point O. On a vu que σ_{xy} = σ_{xz} σ_{yz} I. On obtient :

$$\sigma_{xy} \mid \pi_u^+ \rangle = ((-1) \times (+1) \times (-1)) \mid \pi_u^+ \rangle$$

$$= \mid \pi_u^+ \rangle$$
(34)

$$\sigma_{xy} \mid \pi_u^- \rangle = ((+1) \times (-1) \times (-1)) \mid \pi_u^- \rangle$$

$$= \mid \pi_u^- \rangle$$
(35)

$$\sigma_{xy} \mid \pi_g^+ \rangle = ((-1) \times (+1) \times (+1)) \mid \pi_g^+ \rangle$$

$$= - \mid \pi_g^+ \rangle$$
(36)

$$\sigma_{xy} \mid \pi_{g}^{-} \rangle = ((+1) \times (-1) \times (+1)) \mid \pi_{g}^{-} \rangle$$

$$= - \mid \pi_{g}^{-} \rangle$$
(37)

- Pour les orbitales atomiques nI, le nombre quantique $\lambda = |m|$ peut prendre les valeurs 0, 1, 2, ... |I|.
 - Pour $\lambda = 0$ (état σ), il y aura un état gerade et un état ungerade.
 - Pour chaque valeur de $\lambda \neq 0$, on aura des états moléculaires *gerade* et *ungerade*, chacun doublement dégénérés.
- Nous avons vu comment les orbitales moléculaires mono-électroniques pouvaient être construites. Cependant les écarts d'énergie entre les états moléculaires dépendent de la distance interatomique et l'ordre énergetique des orbitales peut être affecté.
- Cette approche permet d'ordonner les orbitales moléculaires les unes par rapport aux autres dans la limite des atomes séparés.
- Dans cette approximation dite des atomes séparés, les états moléculaires sont notés par exemple $\pi_u 2p$ (la notation moléculaire à gauche de la notation atomique). L'ordre des orbitales, dans le cas des atomes séparés, est :

```
E(\sigma_{g}1s) < E(\sigma_{u}^{*}1s) < E(\sigma_{g}2s) < E(\sigma_{u}^{*}2s) < E(\sigma_{g}2\rho) < E(\pi_{u}2\rho) < E(\pi_{\sigma}^{*}2\rho) < E(\sigma_{u}^{*}2\rho) < \dots
```

Orbitales moléculaires mono-électroniques

Orbitales	Orbitales	dégénérescence	Nombre maximal d'électrons
atomiques	moléculaires		d ciccirons
ns	$\sigma_{\sf g}$	1	2
	$\sigma_{m{g}} \ \sigma_{m{u}}^*$	1	2
пр		1	2
	σ_{μ}^{*}	1	2
	$\sigma_{ extsf{g}} \ \sigma_{ extsf{u}}^* \ \pi_{ extsf{g}}^*$	2	4
	π_u	2	4
nd	σ_{g}	1	2
	σ_u^*	1	2
	$\sigma_{g} \ \sigma_{u}^* \ \pi_{g}^* \ \pi_{u}$	2	4
	π_u	2	4
	$\delta_{m{g}}$	2	4
	$\delta_{m{g}} \ \delta_{m{\mu}}^*$	2	4

Approximation de l'atome uni

- Considérons l'ion moléculaire H₂⁺. Si la distance entre les deux protons devient négligeable devant la distance caractéristique entre l'électron et les noyaux, le système retrouve sa symétrie sphérique.
- Ce système moléculaire est alors assimilable à un électron gravitant autour d'un noyau de charge Z=2. Ce système coïncide avec l'ion hydrogénoïde He⁺ dans le cas où R=0.
- Les énergies des niveaux sont pris dans l'ordre hydrogénoïde, à savoir E(1s) < E(2s) < E(2p) < E(3s) < E(3p). La parité des orbitales atomiques nl est la parité atomique.
- Comme O coïncide avec le noyau composé de deux protons, l'opérateur d'inversion est équivalent avec l'opérateur de parité atomique. Ainsi le caractère g/u sera donné pour une orbitale nl par la valeur de $(-1)^l$. Si l est pair (resp. l impair), on aura un caractère g (resp. u).

Approximation de l'atome uni

- **S**i nous déformons légèrement le noyau, ce qui revient à imposer une valeur faible mais non nulle de *R*, la symétrie sphérique est brisée au profit d'une symétrie cylindrique.
- L'électron est soumis alors à un champ électrostatique avec une composante non nulle le long de l'axe interatomique (Oz), ce qui peut être vu comme un effet Stark. Ainsi une levée de dégénérescence apparaît et les niveaux d'énergie dépendent maintenant de $\mid m \mid = \lambda$.
- Dans le modèle vectoriel, le moment cinétique orbital précesse autour de l'axe (Oz), la projection m étant conservée. Une orbitale (ns) ne génèrera qu'une orbitale σ_g . On la notera $ns\sigma_g$.
- Cet état moléculaire sera doublement dégenéré (2 valeurs possibles de la projection du spin m_5).

Approximation de l'atome uni

- Pour une orbitale np, les états moléculaires seront de symétrie u car l=1. De plus, le nombre quantique λ peut prendre deux valeurs égales à 0 ou 1. Les étas moléculaires seront donc $np\sigma_u$ (de dégénérescence égale à 2) et $np\pi_u$ (de dégénérescence égale à 4).
- Pour une orbitale nd, les états moléculaires seront de symétrie g car l=2. De plus, le nombre quantique λ peut prendre trois valeurs égales à 0, 1 ou 2. Les étas moléculaires seront donc $nd\sigma_g$ (de dégénérescence égale à 2), $nd\pi_g$ (de dégénérescence égale à 4) et $nd\delta_g$ (de dégénérescence égale à 4).
- Pour tous les états moléculaires tels que $\lambda \neq 0$, la dégénérescence sera égale à 4 ($m_s = \pm 1/2$ et $m_l = \pm \lambda$).

Diagramme de corrélation

- L'ordre des orbitales moléculaires est différente dans les deux cas limites. L'ordre des orbitales moléculaires va donc dépendre de la distance interatomique de la molécule.
- Quand on diminue la distance interatomique, on va passer de la limite "atomes séparés" à la limite "atome uni".
- Pour corréler les orbitales moléculaires, il faut utiliser la règle de non croisement qui impose que des états de même symétrie (caractère u/g et valeur de λ) ne peuvent pas se croiser.
- Ceci revient à "relier" les orbitales de même symétrie les plus basses en énergie. On en déduit un diagramme de corrélation.

Diagramme de corrélation

