Primeira Lista de Linguagens Formais

- 1. (0.2 cada) Seja Σ um alfabeto. Definamos o operador de reversão R da seguinte forma: se $w = \epsilon$, então $w^R = \epsilon$; se w = ax, onde $a \in \Sigma$ e $x \in \Sigma^*$, então $w^R = x^R a$. Finalmente, se $L \subseteq \Sigma^*$, definamos $L^R = \{w^R : w \in L\}$. Dadas L_1 e L_2 linguagens sobre o alfabeto Σ , determine as seguintes linguagens em função de L_1^R e L_2^R :

 (a) $(L_1 \cdot L_2)^R$

 - (b) $(L_1 \cup L_2)^R$
 - (c) $(L_1 \cap L_2)^R$ (d) $\overline{L_1}^R$

 - (e) $(L_1^*)^R$
- 2. (0,5) Determine a expressão regular da linguagem aceita pelo AFD a seguir, usando o algoritmo de substituição e o Lema de Arden. O conjunto de estados é $\{q_1,\ldots,q_6\}$, o estado inicial é q_1 , o conjunto de estados finais é $\{q_4\}$, e a função de transição é dada por:

δ	0	1
q_1	q_5	q_2
q_2	q_5	q_3
q_3	q_4	q_3
q_4	q_4	q_4
q_5	q_6	q_2
q_6	q_6	q_4

3. Considere o AFD dado pela função de transição abaixo $(q_2 \text{ \'e o estado final})$:

$$\begin{array}{c|cccc} \delta & c & d \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_2 & q_1 \\ \end{array}$$

- (a) (0,5) Descreva a computação deste autômato que tem início na configuração $(q_1, ccddc)$. Esta palavra é aceita pelo autômato?
- (b) (0.5) Descreva a computação deste autômato que tem início na configuração $(q_1, cdcdcd)$. Esta palavra é aceita pelo autômato?
- (c) (0,5) Descreva em português a linguagem aceita por este autômato.
- 4. (0,5) Represente a seguinte linguagem por uma expressão regular: "o conjunto das palavras sobre $\{0,1\}$ que contêm uma seqüência de 1s, onde o número de 1s na seqüência é congruente a 2 modulo 3, seguida de um número par de 0s." Invente um AFD que reconheça esta linguagem.
- 5. (0,5) Invente um AFD que reconheça a seguinte linguagem: "o conjunto dos palíndromos sobre $\{a,b\}$ de comprimento igual a 6."
- 6. (0,5) Sejam L e L' linguagens tais que: L é regular, $L \cup L'$ é regular e $L \cap L' = \emptyset$. Mostre que L'é regular.

- 7. (0,5) Dê exemplo de uma linguagem que é aceita por um AFD com mais de um estado final, mas que não é aceita por nenhum AFD com apenas um estado final. Justifique cuidadosamente sua resposta!
- 8. (0,5 cada) Quais linguagens abaixo são regulares e quais não são? Justifique cuidadosamente suas respostas! Utilize o Lema do Bombeamento convenientemente, quando for o caso.
 - (a) $\{0^i 1^{2i} : i \ge 1\}$
 - (b) $\{(01)^i : i \ge 1\}$
- 9. (0,5) Prove que se L contém uma palavra w onde $|w| \geq n$, e L é aceita por um AFD com n estados, então L é infinita.
- 10. (0,5) O posto de uma linguagem regular L é o menor k para o qual existe um AFD M com k estados tal que L(M) = L. Verdadeiro ou falso (?): "Se L_1 e L_2 são linguagens regulares e $L_1 \subseteq L_2$, então $posto(L_1) \leq posto(L_2)$." Justifique cuidadosamente sua resposta!
- 11. (0,5) Seja M um AFD com um único estado final. Considere o AFND M' obtido invertendo-se os papéis dos estados inicial e final, e invertendo também a direção de cada seta no diagrama de estados. Descreva L(M') em função de L(M).
- 12. (0,5 cada) Determine AFNDs que aceitem as linguagens cujas expressões regulares são dadas abaixo (use o algoritmo de construção recursiva):
 - (a) $(1 \cup 0)*00101$
 - (b) $((0 \cdot 0) \cup (0 \cdot 0 \cdot 0))^*$
- 13. (0,25 cada) Converta cada um dos AFNDs do exercício anterior em AFDs, utilizando o algoritmo de construção de subconjuntos.
- 14. (0,25 cada) Construa GLDs a partir dos AFNDs do exercício 12.
- 15. Seja G=(T,V,S,R) assim definida: $T=\{0,1\},\ V=\{X,Y,Z\},\ S=X,\ R=\{\ X\to 1^2Y,\ X\to 01Z,\ Y\to 10Y,\ Y\to 0^2Z,\ Z\to 01\}.$
 - (a) (0,25) Construa G' tal que L(G') = L(G) e as regras de G' sejam da forma $A \to \sigma B$ ou $A \to \epsilon$, onde $\sigma \in \{0,1\}$.
 - (b) (0,25) Construa um AFND M a partir de G' tal que L(M) = L(G').