MATHEMATICS-II						
Course Code FE 210 Credits 4						
Scheme of Instruction	L	T	P	TOTAL		
Hours/ Week	3	1	0	39 hrs/sem		
Scheme of Examination	IA	TW	TM	P	O	
TOTAL = 150 marks	25	25	100	0	0	

CO1	Evaluate double & triple integrals & learn its various Engineering applications.
CO2	Explain analytic properties of vector valued functions & the associated results used in engineering.
CO3	Solve first order differential equation & higher order linear differential equations
CO4	Explain the multiple integrals, vector calculus, solve ordinary differential equations.

UNIT -1		
Applications of definite integrals to evaluate length of curves, surface areas.		
Multiple Integration: Double integrals (Cartesian & Polar), change of order of integration	10hrs	
in double integrals. Change of variables (Cartesian to Polar).		
UNIT -2		
Applications of double integrals: Areas , volumes of solid of revolutions, Center		
of Mass and Gravity (constant and variable densities); Triple integrals (Cartesian,	10hrs	
Spherical, Cylindrical), Simple applications involving cubes, sphere and		
rectangular parallelepipeds		
UNIT -3		
Vector Differentiation: Vector differentiation, Scalar and Vector fields, Directional		
Derivatives, Divergence and Curl of Vector fields, Gradient of a Scalar field.	10hrs	
Vector Integration: Vector integration, line integrals and work done by a force,		
surface integrals, Integral Theorems: Green's theorem with proof, Gauss		
Divergence theorem and Stokes theorem only application.		
UNIT -4		
Higher order linear Differential Equation with constant coefficients and with right	9 hrs	
hand side of the form e^{ax} , $\sin ax$, $\cos ax$, $e^{ax} f(x)$, $x^n f(x)$, $e^{ax} x^n f(x)$. Linear equations		
with variable coefficients such as Cauchy's Equation and Lagrange's Equation, D-		
operator and Inverse D- operators, method of Variation of Parameters.		

TEXTBOOKS

- 1 B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
- 2 Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 4 G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

REFERENCES

- D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 3 Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

CHEMISTRY							
Course Code FE120/FE 220 Credits 4							
Scheme of Instruction	L T I		P	TOTAL			
Hours/ Week	3	0	0	39 hrs/sem			
Scheme of Examination	IA	TW	TM	P	О		
TOTAL = 125 marks	25	0	100	0	0		

In survein this of work to.						
CO1	Explain the basic concept of electrochemical system involving different					
	types of energy systems and components involved therein					
CO2	Describe the classification and grading of Hydrocarbon fuels and non-					
	conventional energy systems like solar and Biogas					
CO3	Differentiate various types of corrosion and gain knowledge on control					
	measures associated with corrosion					
CO4	Identify polymeric materials, methods and properties associated with these					
	materials.					

UNIT -1	
Electrochemical Energy Systems: Single electrode potential: concept, sign	
convention, Determination of standard electrode potential, Nernst equation and	10hrs
related numerical. Electrochemical cells: Galvanic and Concentration cells-	
Construction, Representation and related numerical on EMF. Electrodes: Reference	
Electrodes – Calomel and Silver/Silver chloride electrodes; Ion Selective electrodes,	
glass electrode; Construction, representation, pH determination using the	
electrodes. Batteries: Basic concepts, Characteristics, classification. Construction,	
working and applications of Zn-Air Battery and Li-ion polymer battery.	
UNIT -2	
Corrosion: Definition and Mechanism of corrosion- Direct chemical corrosion &	
Electrochemical corrosion. Types of Corrosion: Galvanic corrosion, differential	10hrs
aeration corrosion(with reference to waterline and Pitting corrosion). Factors	
Influencing corrosion: Nature of metal and Environment; Corrosion Control	
Measures: Proper design, Purity and alloying, Cathodic protection, Modifying	
environment, Metal Coatings: Anodized coatings(Aluminium), Electroless	
(Copper) and Electroplating coatings (Chromium Plating)	
UNIT -3	
Stereochemistry and Organic Reactions: chirality, optical activity, enantiomers	
and diastereomers, Projection formulae and geometrical isomerism, Organic	10hrs
Chemical Reactions: Beckmann Rearrangement and Reimer-Tiemann Reaction	
(mechanism and applications)	
Fuels: Definition, Classification with reference to combustible fuels; Crude oil-	
Mining and purification, grading of Gasoline and Diesel.	
Instrumental techniques and applications Principles, Instrumentation and	
Applications of: UV-Vis spectrometry, FTIR and Gas Chromatography	

UNIT -4	
Polymers: Definition, Classification-based on source of availability, structure,	9 hr
number of monomers and their arrangement, type of polymerization and response	
to heat, Basic concepts- monomers, Degree of polymerization, Functionality.	
Methods of Polymerization- Bulk and Suspension. Structure-Property relationships	
in Polymers- chemical, Electrical(conducting polymer e.g. polyacetylene), optical,	
Mechanical and Crystallinity in Polymers (Tg and Tm). Degradation of Polymers-	
Oxidation, weathering, Environmental stress cracking and thermal.	

TE	XTBOOKS
1	Shashi Chawla; A Text Book of Engineering Chemistry; Dhanpat Rai Publishing Co.;
	2011.
2	S. S. Dara; Engineering Chemistry; Chand & Co.;2011.
RE	FERENCES
1	Jain and Jain; Engineering Chemistry; Dhanpat Rai Publishing Co.;2013.
2	M.G. Fontana; Corrosion Engineering; McGraw HillPublication. 2010
3	M.M. Uppal; Engineering Chemistry; KhannaPublication. 2009

COMPUTER PROGRAMMING							
Course Code FE 230 Credits 4							
Scheme of Instruction	L	T	P	TOTAL			
Hours/ Week	3	0	0	39 hrs/	39 hrs/sem		
Scheme of Examination	IA	TW	TM	P	О		
TOTAL = 125 marks	25	0	100	0	0		

CO1	Demonstrate the use of algorithms and flowcharts to plan the solution of a
	computing problem
CO2	Explain the use of formatted and unformatted input and output statements in C
	programs
CO3	Analyse the syntax and semantics of any given data types, data structures and
	programs in C language.
CO4	Design and implement programs using standard C language infrastructure
	regardless of the hardware or software platform

UNIT -1	
Programming Basics: Notions of algorithms, flowcharts and programming, iteration	
and recursion. Features of block-structured languages, Functions and procedures,	10hr
Parameter passing, Top-down style and stepwise-refinement with concrete examples	S
Fundamental algorithms: Exchanging values of two variables, counting, summation	
of a set of numbers, generation of prime numbers, reversal, series.	
UNIT -2	
Overview of Programming language C, constants variables and data types, operators	
and expressions, data input output, decision making and looping: If, If-else, while,	10hr
do- while, for, switch. Function declarations and prototypes, pass by value, and pass	S
by reference. Iterative function and recursive functions	
UNIT -3	
Arrays: One dimension array, array initialization, Searching, Insertion, deletion of	
an element from an array; finding the largest/smallest element in an array, two	10hr
dimension array, addition/multiplication of two matrices, transpose of a square	S
matrix; passing array to function, character array and string. Pointers: Address	
operators, pointer type declaration, pointer assignment, pointer initialization,	
pointer arithmetic, functions and pointers, arrays and pointers, pointer arrays.	
UNIT -4	
Structure & Unions: Defining a structure, declaring structure variables, Accessing	9 hrs
structure members, structure initialization, copying & comparing structure variables,	
operation on individual members, Array of structures, structure & functions, Unions,	
Size of Structure.	
Files management in C: Defining & opening a file, closing a file, I/O operations	
on files, Error handling during I/O files, Random Access to files. Introduction to	
Dynamic Memory Allocation	

TEXTBOOKS Herbert Schildt; C: The Complete Reference, 4th Edition; Tata McGraw Hill;2000 Stephen Prata; C Primer Plus 5th Edition; SAMS Publishing;2005. REFERENCES Brian W. Kernighan and Dennis M. Ritchi; C Programming Language 2nd Edition; Pearson Education;2006. Samuel P. Harbison and Guy L. Steele; C: A Reference Manual, 5th Edition; Prentice Hall;2003. King K.N; C Programming: A Modern Approach, 2nd Edition; W. W. Norton and Company;2008.

INTRODUCTION TO CIVIL ENGINEERING							
Course Code FE 240 Credits 4							
Scheme of Instruction	L	T	P	TOT	A L		
Hours/ Week	3	0	0	39 hrs/	sem		
Scheme of Examination	IA	TW	TM	P	О		
TOTAL = 125 marks	25	0	100	0	0		

CO1	Explain the history and basic disciplines of Civil Engineering and
	building materials.
CO2	Identify various processes involved in building constructions and
	structures.
CO3	Apply the IoT and Computational methods in Civil Engineering.
CO4	Implement safety measures for buildings

'UNIT -1	
Basic Understanding : Broad disciplines of Civil Engineering; Importance of Civil	10
Engineering, Possible scopes for a career and interdisciplinary career options.	Hrs
History of Civil engineering : Early constructions and developments over time;	
Ancient monuments & Modern marvels; Works of Eminent civil engineers	
Fundamentals of Building Materials: Properties and uses of Stones, bricks,	
mortars, sand, Construction Chemicals; Structural Steel, High Tensile Steel, Carbon	
Composites; Cement and different types and properties/Plastics in Construction;	
Recycling of Construction & Demolition wastes.	
UNIT -2	
Basics of Building Construction: Plain cement concrete, Reinforced & Pre-stressed	10
Concrete constructions, Components of building, load bearing and framed	Hrs
structures, types of foundations, bearing capacity of soil, Brick masonry and Stone	
masonry works- types of masonry constructions.3D printing	
Construction Equipment; Different types of constructions equipment's-	
earthmoving, excavating and lifting equipment's and uses. Automation & Robotics	
in Construction; Advent of Lean Construction.	
UNIT -3	
Types of Civil Engineering Structures: Buildings, Bridges, Tunnels, Railways,	10
Port &Harbor, Airport, Dams, Water supply systems, Water tanks,typicaluses and	Hrs
importance of each structure.	
Computational Methods: Typical software's used in Civil Engineering- Building	
Information Modeling; brief introduction and uses, guidelines suggested by NBCon	
Development control rules and general building requirements. Names of IS codes	
for Civil engineering constructions.	
Basic of building drawings : drawing typical plan, section and elevation of simple	
buildings. Different symbols used in building drawing.	

UNIT -4	
Fundamental of Fire Safety: Basic Chemistry and physics of fire, Recognition of	12
possible fire sources and emergency, procedures in the event of a fire, types of	Hı
detecting devices and extinguishing agents and systems, Firefightinginstallations,	
Visit to Fires safety laboratories. Fundamentals of industrial safety, Different types	
of safety systems and equipments, Laws related to safety (Factories ACT 1948	
Explosive ACT, Electricity ACT	
IoT in Civil Engineering: smart buildings, smart street, smart city concepts,	
Significance of IoT in Civil engineering & Construction Industry. Typical	
applications in monitoring and maintenance of Civil Infrastructures.	

TE	XTBOOKS		
1	Elements of Civil Engineering by S S Bhavikatti, New Age International Private Limited,		
	<u>2010.</u>		
2	Basic Civil Engineering BY By Satheesh Gopi, Pearson Education India, 2012		
3	Building Construction and Construction Material, G.S.Birdie and T.D.Ahuja		
	Publisher: Dhanpat Rai Publishing Company, 2010		
RE	REFERENCES		
1	Principles of Fire Safety Engineering: Understanding Fire and Fire Protection by Akhil		
	Kumar Das, Prentice Hall India Learning Private Limited (2014).		
2	The National Building Code, BIS, (2017), RERA Act, (2017)		
3	Building Construction and Construction Material, G.S.Birdie and T.D.Ahuja		
	Publisher: Dhanpat Rai Publishing Company, 2012		

ENGINEERING GRAPHICS					
Course Code	FE 270		Credits	2	
Scheme of Instruction	L	T	P	TOT	AL
Hours/ Week	1	0	2	39 hrs/	/sem
Scheme of Examination	IA	TW	TM	P	0
TOTAL = 100 marks	0	100	0	0	0

CO1	Demonstrate the imagination skills required in converting idea into drawing.
CO2	Explain projection systems in engineering drawing.
CO3	Analyze solids and their cut sections along with development of surfaces.
CO4	Explain Orthographic and Isometric projection of parts.

UNIT -1	
Introduction to Engineering Graphics, different types of lines used in engineering	
graphics. Dimensioning techniques.	8hrs
Orthographic Projection: Introduction, principle planes of projection, four	
quadrants, first angle projection, third angle projection, symbols of projection.	
Projections of points: Points situated in all four quadrants.	
UNIT -2	
Projection of Straight lines(both the end points in first quadrant only)	
Line parallel to one or both the planes, Line contained by one or both the planes,	12hrs
Line perpendicular to one of the planes, Line inclined to one plane and parallel to	
the other plane, line inclined to both the planes, line contained by a plane	
perpendicular to both the reference planes, true lengths and true inclinations	
Projections of Planes: Circle, square, triangle, rectangle, pentagon, hexagon	
UNIT -3	
Projections of Solids: Cube, cylinder, cone, pyramid, prism	9hrs
Orthographic Projection& Sections: Using1stangle projection. Only simple	71115
machine parts and castings	
UNIT -4	
Isometric projection: simple machine parts.	
Free hand sketching: Sketching orthographic views given a three dimensional	10 hrs
view or a simple machine part. Sketching isometric view given the orthographic	
views of a simple machine part.	

TE	TEXTBOOKS	
1	N. D. Bhatt; Engineering Drawing; Charotar Publishing House Pvt. Ltd.;2015	
2	K. R. Gopalkrishna; Engineering Drawing; Subash Publishing House;2012.	
REFERENCES		
1	K. R. Mohan; Engineering Graphics; Dhanpat Rai Publishing Co.;2015.	
2	P. J. Shah; Engineering Drawing; Vol. 1 & 2 – Praveen Shah Publishers;2003.	
3	P. S. Gill; Engineering Drawing; S. K. Kataria& Sons; 2013.	