$N^{\otimes} = 50 \, p.p.r.$ number of physical teeth on wheel sensor

 $N^{\ominus} = \frac{N^{\otimes}}{5} = 10 \, v.p.r.$ number of virtual teeth on wheel sensor

 $N^{\bullet} = 10$ number of odo cycles in a smoothing window

 $\tau^{\star} = 1 \,\mu s \,\operatorname{clock} \,\operatorname{tick}$

 $\tau^{\circ} = 50 \, ms$ odo cycle

 $\tau^{\bullet} = N^{\bullet}\tau^{\circ} = 10 \cdot \tau^{\circ} = 500 \, ms$ averaging window size

 $\Delta_n^{\circ} x$ increment of quantity x during interval τ° of odo cycle n

 $\Delta_n^\circ\theta=\theta_{n^\circ}$ increment of (wheel) angle during one odo cycle n of size τ°

 $\Delta_n^{\circ} N^{\otimes} = N_{n^{\circ}}^{\otimes}$ increment of physical teeth during interval τ° on odo cycle n

 $\Delta_n^{\circ} N^{\ominus} = N_{n^{\circ}}^{\ominus}$ increment of virtual teeth on odo cycle n of size τ° (n. of samples collected)

 $\Delta_n^{\circ}\theta = \left(\frac{2\pi}{N^{\ominus}}\right)\Delta_n^{\circ}N^{\ominus} = 0.2\pi\Delta_n^{\circ}N^{\ominus} = \left(\frac{2\pi}{N^{\odot}}\right)\Delta_n^{\circ}N^{\odot}$

 $N_{n^{\circ}}^{\ominus} \sim N_{n}^{\ominus}$ number of virtual teeth counted in odo cycle n

 $N_{n^{\circ}}^{\otimes} \sim N_{n}^{\otimes}$ number of physical teeth counted in odo cycle n

 $\delta_k^{\otimes} \theta = \theta_{,k^{\otimes}}$ increment of (wheel) angle from tooth k-1 to tooth k (fixed quantity)

 $\delta_k^{\ominus}\theta = \theta_{.k^{\ominus}}$ increment of (wheel) angle from virtual tooth k-1 to tooth k (fixed quantity)

 $\delta^\ominus_{\iota.}\theta = \left(\tfrac{2\pi}{N\ominus}\right)\cdot\delta^\ominus_{\iota.}N^\ominus = \left(\tfrac{2\pi}{N\ominus}\right)\cdot 1 = 0.314 = 0.2\pi\,\mathrm{rad}\,\,(\mathrm{constant})$

 $\delta_k^{\otimes} \lambda_{n^{\circ}}^{\star} = \lambda_{n^{\circ} \ k^{\otimes}}^{\star} \sim \lambda_{n \ k^{\otimes}}^{\star} \text{ clock sample in cycle n from physical tooth } k-1 \text{ to tooth } k$

 $\delta_k^{\ominus} \lambda_{n^{\circ}}^{\star} = \lambda_{n^{\circ},k^{\ominus}}^{\star} \sim \lambda_{n,k^{\ominus}}^{\star}$ clock sample in cycle n from virtual tooth k-1 to tooth k

$$\Delta^{\bullet} N^{\ominus} = \sum_{n=-1}^{N^{\bullet}-1} \Delta_{n-j}^{\circ} N^{\ominus}$$
 Number of samples (teeth) over N^{\bullet} odo cycles (500 ms

$$\Delta^{\bullet}N^{\ominus} = \sum_{j=0}^{N^{\bullet}-1} \Delta_{n-j}^{\circ}N^{\ominus} \text{ Number of samples (teeth) over } N^{\bullet} \text{ odo cycles (500 ms)}$$

$$\left[\Delta^{\bullet}N^{\ominus}\right]_{W} = N^{\ominus} \begin{vmatrix} \sum_{j=0}^{N^{\bullet}-1} \Delta_{n-j}^{\circ}N^{\ominus} \\ N^{\ominus} \end{vmatrix} \text{ Number of samples (teeth) over } N^{\bullet} \text{ odo cycles (500 ms)}$$
and completing a number of full wheel turns

$$\langle v \rangle_n^{\bullet} = \frac{1}{N^{\bullet}} \sum_{i=0}^{N^{\bullet}-1} v_{n-i}$$

moving average over N^{\bullet} cycles trailing and including current cycle n.

 $\widetilde{v}_n^{\bullet}$ speed smoothed over a window τ^{\bullet} trailing odo cycle n

$$T_{\kappa}(v) = \delta_{\kappa}^{\ominus} \lambda \tau^{\star}$$
 Time interval between tooth $k-1$ and tooth k

$$\frac{\delta^{\otimes} x}{\delta_k^{\otimes} \lambda \tau^{\star}} \approx \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)_{\mathrm{tooth}k}$$

$$\frac{\delta^{\ominus} x}{\delta_k^{\ominus} \lambda \tau^{\star}} \approx \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)_{\mathrm{tooth}k}$$

 $\frac{\Delta_n^{\circ} x}{\tau^{\circ}} \approx \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)_{t=t_n}$

 $\frac{\Delta_n^{\bullet} x}{\tau^{\bullet}} \approx \left\langle \frac{\mathrm{d}x}{\mathrm{d}t} \right\rangle_{t=t_n-\tau^{\bullet}/2}$

increment of
$$x$$
 over sampling interval n of fixed size τ° over interval between detection of tooth $k-1$ and k of variable size $\lambda_k^{\star} \cdot \tau^{\star}$ where λ_k is the count of clock pulses between the two physical teeth detections