PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-069352

(43) Date of publication of application: 03.03.2000

(51)Int.CI.

5/232 H04N

1/00 G06T

1/387 H04N

5/265 HO4N

(21)Application number: **10-254645**

(71)Applicant: KONICA CORP

(22)Date of filing:

26.08.1998

(72)Inventor:

KO HIROTETSU

(54) METHOD AND DEVICE FOR IMAGE INPUT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an image input method and an image input device thereof by which an image blur is corrected and white flaws are corrected.

SOLUTION: This method is provided with a step, where plural images are photographed timewise and continuously, a step where image data required for the photographed image are stored in a memory, a step where characteristics of the photographed image are extracted based on the image data, a step where the overlapped position of plural images is adjusted based on the extracted characteristics, and a step where the overlapped images are composited to obtain fewer number of images. Thus, the image is formed with proper exposure, regardless of less camera-shake by compositing image data photographed plural number of times with an exposure time shorter than the proper exposure. Moreover, an image having less white flaws is obtained by compositing image data photographed plural number of times with the short exposure time.

LEGAL STATUS

[Date of request for examination]

20.11.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-69352 (P2000-69352A)

(43)公開日 平成12年3月3日(2000.3.3)

	識別記号	FΙ	テーマコード(参考)	
5/232		H 0 4 N 5/232	Z 5B057	
1/00		1/387	5 C 0 2 2	
1/387		5/265	5 C 0 2 3	
5/265		G06F 15/62	380 5C076	
		15/66	470 J	
		審查請求未請求	請求項の数17 FD (全 8 頁)	
-	特膜平10-254645	(71)出願人 000001270 コニカ株式会社		
	平成10年8月26日(1998.8.26)	(72)発明者 洪 博哲東京都戸	東京都新宿区西新宿1丁目26番2号 (72)発明者 洪 博哲 東京都八王子市石川町2970番地 コニカ株 式会社内	
	1/00 1/387	5/232 1/00 1/387 5/265 特膜平10-254645	5/232 1/00 1/387 5/265 5/265 5/265 G 0 6 F 15/62 15/66 審査請求 未請求 特願平10-254645 平成10年8月26日(1998. 8. 26) (71)出願人 0000012 コニカ材 東京都統 (72)発明者 洪 博物 東京都統	

最終頁に続く

(54) 【発明の名称】 画像入力方法及び画像入力装置

(57)【要約】

【課題】画像ブレを補正できると共に、白キズを補正することのできる画像入力方法及び画像入力装置を提供する。

【解決手段】時間的に連続して複数の画像を撮影するステップと、撮影された画像にかかる画像データをメモリに蓄積するステップと、前記画像データに基づき、撮影された画像の特徴量を抽出するステップと、抽出された前記特徴量に基づき、前記複数の画像の重ね位置を調整するステップと、重ねた画像を合成して、より少ない数の画像にするステップとを有するので、たとえば適切な露光時間より短い露光時間で複数回撮影された画像にかかる画像データを合成することにより、手振れが少ないにも関わらず適切な露光量による画像を形成することができる。また、短い露光時間で複数回撮影された画像にかかる画像データを合成することにより、白キズの少ない画像を得ることができるようになっている。

【特許請求の範囲】

【請求項1】 時間的に連続して複数の画像を撮影する 撮影ステップと、

撮影された画像にかかる画像データをメモリに蓄積する 蓄積ステップと、

前記画像データに基づき、撮影された画像の特徴量を抽出する抽出ステップと、

抽出された前記特徴量に基づき、前記複数の画像の重ね位置を調整する位置調整ステップと、

重ねた画像を合成して、より少ない数の画像にする合成 10 ステップとを有することを特徴とする画像入力方法。

【請求項2】 前記撮影における一回の露出時間は、適切な露光量を得るために必要な露出時間に比べて短いととを特徴とする請求項1に記載の画像入力方法。

【請求項3】 前記撮影における一回の露出時間は、適切な露光量を得るために必要な露出時間に対して1/8以上であることを特徴とする請求項1又は2に記載の画像入力方法。

【請求項4】 前記位置調整ステップにおいて、画像の特徴に基づき、撮影した複数の画像の主要被写体が互い 20 に重なるように調整することを特徴とする請求項1乃至 3のいずれかに記載の画像入力方法。

【請求項5】 前記位置調整ステップにおいて、複数の画像を相対的に平行移動することにより、各画像の主要被写体が重なるように調整することを特徴とする請求項4に記載の画像入力方法。

【請求項6】 前記位置調整ステップにおいて、複数の画像を相対的に回転移動することにより、各画像の主要被写体が重なるように調整することを特徴とする請求項4又は5に記載の画像入力方法。

【請求項7】 前記位置調整ステップにおいて、複数の画像を相対的に拡大もしくは縮小することにより、各画像の主要被写体が重なるように調整することを特徴とする請求項4乃至6のいずれかに記載の画像入力方法。

【請求項8】 前記合成ステップにおいて、重なる画像 数が異なる場所で概同一の明るさとなるように調整する ととを特徴とする請求項1万至7のいずれかに記載の画 像入力方法。

【請求項9】 前記合成ステップにおいて、重なる画像数が変わる箇所についてはなだらかに変わるよう重み付 40 けを調整することを特徴とする請求項1乃至8のいずれかに記載の画像入力方法。

【請求項10】 画像が重なった部分を最終出力とする ととを特徴とする請求項1乃至9のいずれかに記載の画 像入力方法。

【請求項11】 レンズの焦点距離及び被写体の明るさの少なくとも一方に応じて、一回撮影と、時間的に連続する複数の撮影とのいずれかを選択するステップを更に有することを特徴とする請求項1乃至10のいずれかに記載の画像入力方法。

【請求項12】 比較的低い画素数の撮像手段を用いて 撮影を行うことを特徴とする請求項1乃至11のいずれ かに記載の画像入力方法。

【請求項13】 複数の画像におけるズレに関する情報を検出することを特徴とする請求項1乃至12のいずれかに記載の画像入力方法。

【請求項14】 合成画像において、前記ズレ方向にエッジ強調をかけることを特徴とする請求項13に記載の画像入力方法。

【請求項15】 前記撮影時における露出時間をコントロールするステップを有することを特徴とする請求項1 乃至14のいずれかに記載の画像入力方法。

【請求項16】 撮像手段を回転させるステップと、 前記撮像手段の回転角度を検出するステップと、

前記回転角度が所定角度になったときに、撮影を行うステップと、

前記撮影により得られた画像の特徴量を抽出し、前記特 徴量に基づき画像合成を行うステップとを有することを 特徴とする画像入力方法。

【請求項17】 請求項1乃至16のいずれかに記載の 画像入力方法を実施する画像入力装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、画像入力技術に関し、特に撮影時における画像のブレ等を防止可能であると共に、画像信号に含まれているノイズを低減させることが可能で有り、更にいわゆるバノラマ画像等の合成も可能な画像入力技術に関する。

[0002]

30 【従来の技術】画像入力装置であるデジタルスチルカメラにおいて、撮影時の手振れ等により画像にブレが生じることがある。かかるブレを防止するためには、速いシャッタ速度(通常、レンズの焦点距離をfとした場合、1/f秒以下)で撮影を行うことが望ましい。ところが、最適なシャッタ速度は、被写界輝度と絞り値との関係から一義的に決まるものであるため、たとえば被写界輝度が低い場合、絞り値を開放としても、必要な露光量を得るためにはシャッタ速度を1/f秒より遅くしなければならない場合もある。このような場合には、ブレ防40 止のため、三脚を用いてカメラを固定するとか、ストロボを用いて被写界輝度を高めるというような方策を採ることが多い。

[0003]

【発明が解決しようとする課題】ところが、撮影者が常に三脚を有しているとは限らず、またストロボを多用した撮影では、電池がすぐに消耗するという不具合が生じる。従って、三脚やストロボを用いることなく、ブレ防止を達成することが望まれている。

【0004】これに対し、たとえばビデオカメラにおけ 50 るブレ防止方法として、実際の出力画素よりも大きい画

2

素数を有する撮像素子を設け、カメラの動きを加速度セ ンサなどで検出し、画像の読み出し位置を変えることに より、フレーム毎に画像に大きなズレが生じないように する方法が知られている。

【0005】ところが、かかる方法においては、フレー ム毎に画像の切り出し位置を変化させ、画面上で画像の 位置が概ね同一となるように処理しているに過ぎないた め、かかる方法を用いて、一枚の画像におけるブレを防 止することはできないといえる。

【0006】更に、特開平3-166869号には、画 10 振れ補正機能付きビデオカメラが開示されている。かか る公開公報においては、画振れ補正を行うスイッチとシ ャッタ速度を連動させ、画像振れを防ぐカメラが提案さ れている。

【0007】しかしながら、かかる従来技術において は、画振れ検出手段が画振れを検出したことに応動し て、最適なシャッタ速度を自動的に選択することが開示 されているだけであり、シャッタ速度が増大したことに 伴う、露光量の減少をいかにして補うかについて何らの 開示もない。また、かかる従来技術はビデオカメラに関 20 するものであって、スチルカメラに関するものではな ひり。

【0008】また、静止画像におけるブレ補正の一態様 として、画像処理において、画像からブレ成分を検出し て、ブレ方向にエッジ強調を強くかける手法が知られて いる。しかしながら、ブレ画像にかかる画像データ内に は、原画を復元するのに必要な情報が既に失われてお り、エッジ強調等の後処理を丁寧に行ったとしても、完 全に復元することは困難であり、特に画像が大きくぶれ ある。尚、デジタルカメラの画像処理については、N. Takizawa他、The development of IM-Pixel Digital Stil l camera, IS&T's 1998 PICS Conference, pp. 64-66 (199 8) に解説されている。

【0009】一方、画像入力装置であるデジタルスチル カメラに備えられた固体撮像素子は、二次元に並んだ多 数の画素により、画素上に結像した被写体の光学像を、 電荷量(電気的信号)に変換して出力する機能を有して 40 み、画像ブレを補正できると共に、白キズを補正すると いる。ところで、かかる画素の中には、ダストの付着や 結晶欠陥等に基づく欠陥(画素欠陥)を有するために、 正常な信号を出力し得ないものもありえる。このような 画素欠陥には、被写体の輝度に対応して出力されるはず の出力信号に対し余分な信号成分を加算した信号を出力 してしまい、画像を白っぽくしてしまう白キズと、被写 体の輝度に対応して出力されるはずの出力信号に対しあ る信号成分を減算した信号を出力してしまい、画像を黒 っぽくしてしまう黒キズとがある。

素子を用いて撮像した画像を再生する場合に、著しく画 質が低下する恐れがある。一方、近年用いられるように なった固体撮像素子は、少なくとも数十万以上の画素を 有するので、全く画素欠陥のない固体撮像素子を製造す ることは、実際には困難といえる。従って、ある程度の 画素欠陥は常に存在するとの前提に立った上で、固体撮 像素子を使用することが要求されている。

【0011】かかる前提に基づき、画素欠陥のある画素 から出力された電気的信号を、後処理により補正する補 正回路を備え、画質の向上を図るようにしたデジタルス チルカメラが既に開発されている。このようなデジタル スチルカメラによれば、デジタルスチルカメラの生産工 程で、画素欠陥検査装置を用いて固体撮像素子の画素欠 陥のある画素(欠陥画素)を検出し、その位置を、たと えばデジタルスチルカメラに搭載したROM内に情報と して記憶させることにより、実際の撮像時に、かかる欠 陥画素からの出力信号を適宜補正するという手法をとっ ている。

【0012】ところが、上述した白キズは結晶欠陥に基 づく画素欠陥であるため、固体撮像素子の使用環境に応 じて増大する場合があることが判明している。たとえ ば、露光時間が長くなることに応じて、白キズは増加す る傾向がある。とのような白キズに基づく画像データ を、画像処理によって補正することも考えられる。しか しながら、かかる画像処理は比較的長い処理時間がかか るため、簡便に白キズを補正する方法が望まれている。 【0013】更に、横幅の広いいわゆるパノラマ画像 は、広大な風景等を表現しやすいため、デジタルスチル カメラで撮影する場合においても、所望されることがあ ている場合には、エッジ強調自体が不可能となる場合も 30 る。しかるに、銀塩フィルムを用いて撮影した画像と異 なり、デジタルスチルカメラの画像は、比較的合成が容 易である。そこで、パソコンにインストールしたソフト ウエアを用いて画像をつなぎ合わせ、パノラマ画像を形 成することが一般的に行われている。しかしながら、か かる手法では、パソコンを有しないユーザーにとって、 パノラマ画像を合成することは一般的に困難であり、よ り簡便にパノラマ画像を撮影できる手法が望まれてい る。

> 【0014】本発明は、かかる従来技術の問題点に鑑 とができ、また簡便にパノラマ画像等を得ることのでき る画像入力方法及び画像入力装置を提供するととを目的 とする。

[0015]

【課題を解決するための手段】上述の目的を達成すべ く、本発明の画像入力方法は、時間的に連続して複数の 画像を撮影するステップと、撮影された画像にかかる画 像データをメモリに蓄積するステップと、前記画像デー タに基づき、撮影された画像の特徴量を抽出するステッ 【0010】画素欠陥が多く生じると、かかる固体撮像 50 プと、抽出された前記特徴量に基づき、前記複数の画像

の重ね位置を調整するステップと、重ねた画像を合成し て、より少ない数の画像にするステップとを有すること を特徴とする。

[0016] 本発明の画像入力方法は、撮像手段を回転 させるステップと、前記撮像手段の回転角度を検出する ステップと、前記回転角度が所定角度になったときに、 撮影を行うステップと、前記撮影により得られた画像の 特徴量を抽出し、前記特徴量に基づき画像合成を行うス テップとを有することを特徴とする。

[0017]

【作用】本発明の画像入力方法によれば、時間的に連続 して複数の画像を撮影するステップと、撮影された画像 にかかる画像データをメモリに蓄積するステップと、前 記画像データに基づき、撮影された画像の特徴量を抽出 するステップと、抽出された前記特徴量に基づき、前記 複数の画像の重ね位置を調整するステップと、重ねた画 像を合成して、より少ない数の画像にするステップとを 有するので、たとえば適切な露光時間より短い露光時間 で複数回撮影された画像にかかる画像データを合成する ことにより、手振れが少ないにも関わらず適切な露光量 20 による画像を形成することができる。また、短い露光時 間で複数回撮影された画像においては、白キズの位置が 重なることはほとんどないため、白キズの生じた画像部 分にかかる画像データを、白キズの生じていない同一画 像部分にかかる画像データに基づき補正することがで き、それにより白キズの少ない画像を得ることができる ようになっている。

【0018】本発明の画像入力方法によれば、撮像手段 を回転させるステップと、前記撮像手段の回転角度を検 出するステップと、前記回転角度が所定角度になったと 30 ては、かかる手法を用いる。 きに、撮影を行うステップと、前記撮影により得られた 画像の特徴量を抽出し、前記特徴量に基づき画像合成を 行うステップとを有するので、たとえばデジタルスチル カメラをユーザーが回転させることにより、自動的にレ リーズを行って、撮影された画像を合成することがで き、それにより後処理で画像をつなぎ合わせる等の手間 をかけることなく、簡便にバノラマ画像等を形成するこ とが可能となる。

[0019]

明を説明する。図1は、本発明の実施の形態にかかる画 像入力装置としてのデジタルスチルカメラのブロック図 である。図1において、被写体の光学像は、レンズ1と 絞り2を経て、撮像手段3 (CCD, C-MOS等)の 結像面に結像する。結像した光学像は光電変換され、一 旦メモリ4に取り込まれる。かかる画像データは演算装 置5により、デモザイク処理、色変換、階調変換処理を 施され、JPEG圧縮などを行い、メモリカードやフロ ッピーディスクのような大容量メモリ装置6に書き込ま れるようになっている。

【0020】次に、本実施の形態にかかるデジタルスチ ルカメラの動作について、以下に説明する。まず、撮影 者が不図示のレリーズボタンを操作するととに応動し て、演算装置5は、被写界輝度及び絞り値から、まず必 要な露光量を求め、ついでレンズの焦点距離から連続撮 影回数を決定する。尚、35mm版換算でのレンズ1の 焦点距離を f m m とすれば、シャッタ速度 1 / f 秒が通 常のユーザーではブレを発生しない限界値(以下、手振 れ限界値とする)であるとされている。

【0021】ととで、レンズ1の焦点距離が35mm版 換算で50mmであり、被写界輝度と現在の絞り値か ら、必要な露光量を得るためのシャッタ速度が1/30 秒であった場合には、MPU5は、手振れ限界値が1/ 50秒になることから、シャッタ速度1/60秒で2回 撮影を行うように決定する。尚、かかる場合、シャッタ 速度1/240秒の撮影を8回行うことによっても、同 等の露光量を得ることができるが、シャッタ速度を早く して露光時間をあまり短くすると、画像にノイズが増 え、後述の特徴抽出が難しくなる恐れがある。従って、 シャッタ速度は、手振れ限界値に対して1/8以上とす ることが望ましい。

【0022】更にデジタルスチルカメラは、かかるシャ ッタ速度で、連続して(たとえば1/60秒間隔で)2 枚の画像を撮影し、画像データをメモリに書き込む。こ のようにして撮影された画像を、図2(a)及び図2 (b) に示す。次に、演算装置5は、メモリ4に記憶さ れた画像の特徴量を検出する。この手法としてはさまざ まな態様が知られているが、画像データを2値化するの が比較的簡単であるとされるため、本実施の形態におい

【0023】演算装置5は、2値化された画像データに 基づき2つの画像を少しずつ動かし、最も重なる点を探 す。画像の移動量は、一般的には画角の1/2~1/8 程度以内と考えられるが、それ以上移動させることもも ちろん可能である。尚、画像の相対移動は、平行移動の みであれば、その処理を迅速に行うことができるが、重 ね合わせにより高精度を求める場合には、画像同士を相 対回転させても良い。更に、移動する被写体に対して は、平行及び回転移動の他に拡大もしくは縮小を加える 【発明の実施の形態】以下、実施の形態を参照して本発 40 ととによって、より高精度な重ね合わせを達成するとと ができる。

> 【0024】演算装置5は、とのようにして2つの画像 の位置合わせを行い、2値化する前の画像データを、重 なった画像部分で平均化する。重なりのない部分は、露 光量を合わせるため画像データ値を倍にして計算する。 合成すべき画像の枚数が多い場合には、平均の明るさが 揃うような処理を行うようにする。尚、このような処理 により、画像の重なった部分と重なっていない部分と で、たとえばノイズ量が異なる(倍増する)等の理由に 50 より明確な境界が現れる恐れがあるが、後述する重み付

け処理によって、そのような不自然さをある程度解消も しくは減少させることができる。

7

【0025】図3は、本実施の形態による重み付け処理 を説明する図である。図3において、画像G1と画像G 2とが位置Aにおいては重なっていないが、位置Bにお いては重なっているものとする。かかる場合、画像G1 のデータ値の重み付けを、位置Aから位置Bに移行する につれ徐々に低めると共に、画像G2のデータ値の重み 付けを、位置Aから位置Bに移行するにつれ徐々に髙め るようになっている。従って、かかる重み付け処理によ 10 って、画像の重なった部分と重なっていない部分とで、 明確な境界が現れないようにほかすことができる。尚、 本実施の形態にかかる処理により、画像の重なっていな い部分(画面周辺部分)については、ある程度画質が低 下する恐れがあるが、通常主要被写体は画面中央に位置 することが多いため、大きな問題は生じないと考えられ る。

【0026】とのようにして形成された画像は、部分部 分で重なり量が異なるため、その切り出し(1枚の画像 理が考えられる。尚、各処理とも良く知られているた め、以下に詳細は記載しない。

- (1)複数の画像全て重なった部分からトリミングして 一枚の画像にする(ただし、撮影有効画素数が減り、重 ならなかった部分の画像は廃却されてしまうため、効率 が悪い)。
- (2)撮影した画像の全範囲で取り出す(ただし、重な らなかった画像部分の画像データ値は、単純に倍増され るので、ノイズが多くなる恐れがある)。
- トリミングする(後述するパノラマ撮影で有効とな る)。

【0027】以上の画像合成処理は、いわゆるデモザイ ク(色補間)処理後が最も適当で、画像を重ね合わせる ことにより画像データ量が減少した後に色処理変換、階 調変換を行えば、効率よく処理を行うことができる。演 算装置5は、このようにして画像処理を行った画像デー タを、大容量記録メディア6に記録するようになってい る。

にブレ方向及びブレ量を求め、かかる量を記憶するると とができる。図2(c)に示す矢印は、ブレ方向及びブ レ量を示している。とのようにして、ブレ方向及びブレ 量が分かれば、合成された画像(図2(c))に対し、 ブレ方向に強くエッジ強調やほかし処理等の空間周波数 処理をかけることで、一とま内の見かけの画像のズレ (ブレ)を減らすことができる。

【0029】以上述べた連続撮影は、被写体の明るさと レンズの焦点距離に応じて、一回撮影との間で自動切り

35mm版換算でfmmとすると、手振れ限界値1/f 秒より遅いシャッター速度を要求されたときには、本実 施の形態の連続撮影のモードに入るようにすればよい。 また、ズームレンズやレンズ交換式カメラの場合には、 焦点距離に関する情報をレンズから受け取って、かかる 情報と被写体の明るさとに基づいて、連続撮影と一回撮 影とを自動的に切り換えるようにしても良い。尚、連続 撮影モードになると、画像の僅かなズレのため、解像力 が低下する場合があり得る。とのため、出力の際、解像 力の低下に見合った画素数にするとメモリを有効に利用 できる。

【0030】一方、要求されたシャッタ速度がn/f秒 であるならば、シャッタ速度をユーザーが任意に設定で きるようなスイッチを設けることで、たとえばシャッタ 速度 1 / f 秒を n 回撮影して、 n 枚の画像を合成すると とも考えられる。それにより、よりS/N比の良好な合 成画像が得られることとなる。更に、この応用例とし て、長時間露光が考えられる。

【0031】夜景の撮影等に用いる長時間露光時には、 を形成する)方法としては、以下のようにいくつかの処 20 三脚等にデジタルスチルカメラを固定して撮影を行うと とが多いため、その場合手振れの恐れはない。従って、 手振れ限界値は理論的には無限大となる。それによりシ ャッタ速度を、露光量に応じた任意の値(たとえば1/ 2秒等)に設定できる。ところが、撮像手段3の画素欠 陥に基づく白キズは、長時間露光時により顕著となる傾 向がある。従来技術によれば、かかる白キズは画像処理 により修正するようにしていた。

【0032】しかるに、シャッタ速度1/2秒では、白 キズとなって画素値を使用できない画素であっても、シ (3)合成された画像の全範囲の全てもしくはその中を 30 ャッタ速度1/8秒では正常な画素として機能すること がある。そとで、本実施の形態の応用例によれば、夜景 等をたとえばシャッタ速度 1 / 8 秒で 4 回撮影すること により、4枚の画像を合成して必要な露光量を得ると共 に、より白キズの少ない画像を得ることが可能となる。 【0033】次に、本実施の形態の変形例について説明 する。図4は、本変形例にかかるデジタルスチルカメラ で撮影を行っている状態を示した図であり、図5は、本 変形例にかかるデジタルスチルカメラの撮影によって得 られた画像を示す図である。図4において、デジタルス 【0028】尚、演算装置5は、画像の重ね位置決定時 40 チルカメラ10は、角速度センサ11を備えている。

【0034】ユーザーは、デジタルスチルカメラ10の レンズを被写体に向けながら、一定速度で水平方向に回 転させてゆく。このとき角速度センサ11は、回転角度 が所定角度になったとき信号を発し、それに応じてレリ ーズ動作がなされるようになっている。本変形例におい ては、3回のレリーズがなされたものとする。

【0035】3回のレリーズから3枚の画像が得られた ので、演算装置5は、これを上述した態様で合成を行う ようになっている。このようにして得られた合成画像

替えするのが望ましい。すなわち、レンズの焦点距離を 50 は、図5に示すように、横幅のあるいわゆるパノラマ画

像となる。尚、デジタルスチルカメラ10を垂直方向に回転させれば、広角レンズ等を用いなくても高層ビル等の撮影が可能となる。また、ユーザーがデジタルスチルカメラ10を回転させていく間に、所定間隔で画像データを取り込んで、画像の特徴量を求め、パノラマ画像を形成するために不要と判断すれば、その画像データは廃却して新たな画像データを取り込むということを繰り返し、パノラマ画像を形成するに必要な画像データが得られたときに、かかる画像データを記憶して画像合成を行うようにすれば、上述したような角速度センサを用いる 10必要はなくなる。

【0036】以上述べた本実施の形態によれば、複数の画像から一つの画像を合成するため、ノイズが減り画質が良くなるという利点がある。また、長焦点レンズで暗い被写体を撮影する場合にも、ブレを防ぐことができる。更に、一枚の画像が極端に暗くならないために、合成の精度を上げることができる。また、画像をそのまま重ね合わせるのではなく、特徴量を求めることで計算が速くなる。

【0037】本実施の形態によれば、撮像手段の画素を 20 全て利用できる。周辺にはノイズが増えるが、主要被写体は少ないので特に問題ないと考えられる。また、重み付け処理により、重なりの少ない部分と多い部分で急激にノイズ量が変化することがない。

【0038】本実施の形態によれば、レンズの焦点距離 【図面の /被写体の明るさに応じてシャッタースピードが自動的 【図1】 に最適化される。また、補間演算のため元画素のままで てのデシ は画質劣化が起きやすいが、画素数を少なめにすること 【図2】 で計算コストと画質のバランスがとれる。更に、画像合 【図3】 成時に画像のズレ方向及びズレ量を求めることで、後処 30 である。 理を容易にすることができる。 【図4】

【0039】本実施の形態によれば、一とま内の画像の 僅かなズレを見かけ上低減できる。また、シャッター速 度を変更できる手段を有することにより、S/N比の良 好な画像を得ることのできる撮影と、本発明のブレ防止 撮影のいずれかをユーザーが選択できることとなる。

【0040】以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更/改良が可能であることはもちろんである。

[0041]

【発明の効果】本発明の画像入力方法によれば、時間的 に連続して複数の画像を撮影するステップと、撮影され た画像にかかる画像データをメモリに蓄積するステップ と、前記画像データに基づき、撮影された画像の特徴量 を抽出するステップと、抽出された前記特徴量に基づき、前記複数の画像の重ね位置を調整するステップと、重ねた画像を合成して、より少ない数の画像にするステップとを有するので、たとえば適切な露光時間より短い露光時間で複数回撮影された画像にかかる画像データを合成することにより、手振れが少ないにも関わらず適切な露光量による画像を形成することができる。また、短い露光時間で複数回撮影された画像においては、白キズの位置が重なることはほとんどないため、白キズの生じていなの像部分にかかる画像データを、白キズの生じていな

い同一画像部分にかかる画像データに基づき補正すると

とができ、それにより白キズの少ない画像を得ることが

10

【0042】本発明の画像入力方法によれば、撮像手段を回転させるステップと、前記撮像手段の回転角度を検出するステップと、前記回転角度が所定角度になったときに、撮影を行うステップと、前記撮影により得られた画像の特徴量を抽出し、前記特徴量に基づき画像合成を行うステップとを有するので、たとえばデジタルスチルカメラをユーザーが回転させることにより、自動的にレリーズを行って、撮影された画像を合成することができ、それにより後処理で画像をつなぎ合わせる等の手間をかけることなく、簡便にバノラマ画像等を形成することが可能となる。

【図面の簡単な説明】

できるようになっている。

【図1】本発明の実施の形態にかかる画像入力装置としてのデジタルスチルカメラのブロック図である。

【図2】画像合成を説明する図である。

【図3】本実施の形態による重み付け処理を説明する図である。

【図4】本変形例にかかるデジタルスチルカメラで撮影 を行っている状態を示した図である。

【図5】本変形例にかかるデジタルスチルカメラの撮影 によって得られた画像を示す図である。

【符号の説明】

- 1 レンズ
- 2 絞り
- 3 撮像手段
- 4 メモリ
- 40 5 演算装置
 - 6 大容量記録メディア
 - 10 デジタルスチルカメラ
 - 11 角速度センサ
 - G1~G3 画像

フロントページの続き

Fターム(参考) 58057 CA01 CA08 CA12 CA16 CB01

CB08 CB12 CB16 CD05 CE02

CE03 CE04 CE08 CH08 DA08

DB02 DB06 DB09 DC05

5C022 AA13 AB01 AB12 AB37 AB55

AB62 AB68 AC69

5C023 AA11 AA37 BA11 BA17 CA03

DAO4 DAO8

5C076 AA02 AA19 AA21 AA22 BA06