المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم -٢-المدّة: أربع ساعات

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعى تعليق الدروس والتوصيف المعذل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (2 points) Pour chacune des questions suivantes, choisir la réponse juste en justifiant.

Questions	Réponses Proposées		es
Questions	A	В	С
$1) \arccos\left(\sin\frac{18\pi}{5}\right) =$	$\frac{18\pi}{5}$	$\frac{9\pi}{10}$	$\frac{-13\pi}{5}$
2) Si un argument de Z est θ , alors un argument de $\frac{1-i}{\left(\overline{Z}\right)^2}$ est	$2\theta - \frac{\pi}{4}$	$\frac{\pi}{4}$ – 2 θ	$2\theta + \frac{\pi}{4}$
3) $\lim_{x \to 1} \frac{\int_{x}^{x^2} \sqrt{1 + t^2} dt}{x^2 - 1}$	$\frac{\sqrt{2}}{2}$	$\sqrt{2}$	$2\sqrt{2}$
4) Une solution de l'équation différentielle y'-xy = 0 est	$y = e^{x^2}$	$y = e^{\frac{x^2}{2}}$	$y = \frac{x^2}{2}$
$5) \int_{1}^{2} \frac{2x}{x^2 - 2x + 2} dx$	$ln2 + \frac{\pi}{2}$	$ln2 + \frac{\pi}{4}$	$2\ln\!2+\frac{\pi}{4}$

II- (2,5 points)

L'espace est rapporté à un repère orthonormé $(O, \hat{i}, \hat{j}, \hat{k})$.

On considère les points : A (0 ; 0 ; 2), B (0 ; 4 ; 0) et C (2 ; 0 ; 0).

1)

- a) Vérifier qu'une équation du plan (ABC) est : 2x + y + 2z = 4.
- b) Déterminer la nature du triangle ABC.
- 2) On considère (Δ), la hauteur relative à [BC] dans le triangle ABC, et soit \vec{N} le vecteur de coordonnées (2,1,2).
 - a) Montrer $\overrightarrow{N} \wedge \overrightarrow{BC}$ est un vecteur directeur de (Δ) .
 - **b**) Déterminer un système d'équations paramétriques de la droite (Δ) .

3) Soit (Δ') la médiane issue de B dans le triangle ABC.

Montrer qu'une équation paramétrique de (
$$\Delta'$$
) est :
$$\begin{cases} x=t\\y=4-4t&t\in\mathbb{R}\\z=t \end{cases}$$

- 4) Soit H le point d'intersection des droites (Δ) et (Δ ').
 - a) Montrer que le point H est le projeté orthogonal du point O sur le plan (ABC).
 - b) En déduire le volume du tétraèdre OABC.

III- (2,5 points)

Dans la figure ci-contre:

- Le triangle FIH est un triangle rectangle isocèle en I.
- IF = IH = 3.
- N est un point variable de (HI).
- (Δ) est la parallèle menée de N à (IF).
- T, M et S sont trois points de (Δ) tel que NT = TM = MS.
- Le triangle SFT est rectangle en F.

Partie A

- 1) Montrer que M varie sur une ellipse(E) de foyer F, de directrice (Δ) et d'excentricité e = $\frac{1}{2}$.
- 2) A est un point de [IF] tel que IA = 2 et A' est le symétrique de I par rapport à F.
 - a) Montrer que A et A' sont deux sommets de (E).
 - $\mbox{\bf b)} \ \ \mbox{Déterminer le centre O de (E).} \mbox{Montrer que } F \mbox{ est le milieu de [OA].} \mbox{ Déterminer le second foyer } F' \mbox{ .}$
- 3) Le cercle de centre F et rayon OA coupe l'axe non focal de (E) en B et B'. Montrer que B et B' sont deux sommets de (E).
- 4) L est un point tel que $\overrightarrow{FL} = \frac{1}{2}\overrightarrow{IH}$.
 - a) Montrer que L est un point de (E).
 - **b**) Calculer LF + LF', en déduire LF'.

Partie B

Le plan est rapporté au repère orthonormé direct (O; i, j) tel que i = OF.

- 1) Ecrire une équation de (E). Tracer (E).
- 2) (LI) coupe l'axe des ordonnées en G.
 - a) Montrer que (LI) est tangente à (E).
 - **b**) Calculer l'aire du domaine délimité par la région située à l'intérieur du triangle OGI et à l'extérieur de (E).
- 3)
- (C) est l'hyperbole de centre $J(\sqrt{3},0)$ et d'asymptotes (JB) et (JB') ayant A l'un des sommets. Ecrire une équation de (C).

IV- (3 points)

Dans le plan orienté, on considère un triangle rectangle et isocèle ABC tel que AB = AC = 4 cm et

$$(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{2} + 2k\pi$$
. On note D le symétrique de A par rapport à B, O le milieu de [CD] et (T) le

cercle de diamètre [CD].

On désigne par S la similitude directe qui transforme D en B et B en C.

- 1) Déterminer le rapport k et l'angle α de S.
- 2) Soit I le centre de S et h la transformation définie par h = SoS.
 - a) Montrer que h(I) = I et h(D) = C.
 - **b**) En déduire que I est un point du cercle (T) et que IC = 2ID.
 - c) Montrer que ID = 4.
 - d) Déduire que I est le quatrième sommet du rectangle et placer I.
- 3) Soit le repère orthonormé direct (A, \vec{U} , \vec{V}), tels que $\vec{U} = \frac{1}{4} \vec{AB}$, $\vec{V} = \frac{1}{4} \vec{AC}$.

Déterminer la forme complexe de S.

- 4) Pour tout entier naturel n, On considère la suite des points (Dn) définie par $D_0=D$ et $D_{n+1}=S(D_n)$.
 - (U_n) est la suite définie par $U_n = Aire$ du triangle I $D_n D_{n+1}$
 - a) Calculer U_n en fonction de n.
 - **b**) Calculer en fonction de n le produit $P=U_0 \times U_1 \times ... \times U_n$.

V- (3 points)

On désigne par y un réel appartenant à l'intervalle [0; 80].

Une urne contient 100 petits cubes dont 60 sont bleus et les autres rouges.

- Parmi les cubes bleus, 40 % ont leurs faces marquées d'un cercle, 20 % ont leurs faces marquées d'un losange et les autres ont leurs faces marquées d'une étoile.
- Parmi les cubes rouges, 20 % ont leurs faces marquées d'un cercle, y % ont leurs faces marquées d'un losange et les autres ont leurs faces marquées d'une étoile.

Partie A : expérience 1

On tire au hasard un cube de l'urne.

- 1) Démontrer que la probabilité de tirer un cube marqué d'un losange est égale à 0.12 + 0.004y.
- 2) Déterminer y pour que la probabilité de tirer un cube marqué d'un losange soit égale à celle de tirer un cube marqué d'une étoile.
- 3) Déterminer y pour que les évènements « tirer un cube bleu » et « tirer un cube marqué d'un losange » soient indépendants.

Partie B : expérience 2

Dans cette partie on tire au hasard un cube de U.

Si le cube est bleu on le remet dans U et on tire de nouveau un cube.

Sinon on le met à part et on tire de nouveau et simultanément 2 cubes de l'urne U.

- 1) Calculer la probabilité de tirer un seul cube rouge.
- 2) Calculer la probabilité que les cubes tirés soient de la même couleur.

VI- (7 points)

Partie A

- 1) Soit f la fonction définie, sur $]0;+\infty[$, par $f(x)=\frac{1+2\ln x}{x^2}$ et (C) sa courbe représentative. h la fonction définie, sur $]0;+\infty[$, par $h(x)=\frac{1}{x}$ et (C') sa courbe représentative.
 - a) Montrer que la droite d'équation x = 0 est une asymptote verticale à (C).

- **b**) Calculer $\lim_{x \to +\infty} f(x)$. Déduire que (x'x) est une asymptote à (C).
- c) Etudier les variations de f sur $]0;+\infty[$
- 2) Soit g est la fonction définie, sur $[0; +\infty[$, par $g(x)=1-x+2\ln(x)$.
 - a) Etudier les variations de g sur]0;+∞[
 - **b**) Montrer que g(x) = 0 admet 2 racines α et β tel que 3,51 < α < 3,52 .
 - c) Montrer que $f(x) h(x) = \frac{g(x)}{x^2}$.
 - d) En déduire la position relative de (C) et (C').
 - e) Tracer (C) et (C').
- 3) a) Calculer la dérivée de $d(x) = \frac{1 + \ln(x)}{x}$. En déduire la primitive F(x) de f vérifiant F(1) = -3
 - **b**) Montrer que $F(\alpha) F(1) = 2 \frac{2}{\alpha}$, interpréter le résultat graphiquement.

Partie B

On désigne par (I_n) la suite définie pour $n \ge 1$ par $I_n = F(n+1) - F(n)$

- 1) Montrer que $I_1 + I_2 < 2 \frac{2}{\alpha}$.
- 2) Calculer la somme $Sn = I_1 + \dots + I_n$ en fonction de n et calculer sa limite.

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم -٢-المدّة: أربع ساعات

الهيئة الأكاديمية المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

	Question I	Note
1	B: $\arcsin \frac{18\pi}{5}$ = $\arccos \left(\cos \frac{9\pi}{10}\right) = \frac{9\pi}{10}$.	0,25
2	A: $\arg \frac{1-i}{(z)^2} = \frac{-\pi}{4} + 2\theta$.	0,25
3	B: Règle de l'hôpital $\lim_{x\to 1} \frac{\sqrt{1+x^4}.2x}{2x} = \sqrt{2}$	0,5
4	B: $\frac{y'}{y} = x$, $alors \int \frac{y'}{y} = \int x$, $alors \ln y = \frac{x^2}{2} + c'$, $alors y = ce^{\frac{x^2}{2}}$ ou vérification	0,5
5	A: $\int_{1}^{2} \frac{2x-2}{x^{2}-2x+2} dx + \int_{1}^{2} \frac{2}{x^{2}-2x+2} dx = \left[\ln(x^{2}-2x+2) \right]_{1}^{2} + 2\left[\arctan(x-1) \right]_{1}^{2} = \ln 2 + \frac{\pi}{2}$	0,5

	QuestionII	Note
1.a	$2x_A + y_A + 2z_A = 4 \text{ et } 2x_B + y_B + 2z_B = 4 \text{ et } 2x_C + y_C + 2z_C = 4$ ou det $(\overrightarrow{AM}, \overrightarrow{AB}, \overrightarrow{AC}) = 0$	0,25
1.b	$AB=BC=\sqrt{20}$	0,25
2.a	\overrightarrow{N} est un vecteur normal du plan (ABC) $\overrightarrow{N} \wedge \overrightarrow{BC}$ est parallèle à (ABC) et orthogonal à (BC) donc c'est un vecteur directeur de (Δ).	0,25
2.b	(Δ) est une hauteur issue de A son système d'équations est : $\begin{cases} x = 4m \\ y = 2m \\ z = -5m + 2 \end{cases}$	0,5
3.a	$(\Delta') = (BI)$ tel que I est le milieu de [AC].	0,25
3.b	(OH) est la droite d'intersection de 2 plans (OAH) et (OBH) Or (OAH) et (OBH) sont perpendiculaires à (ABC), donc (OH) est perpendiculaire à (ABC).	0,5
4	$H \in \Delta'$ pour $t = \frac{8}{9}$ et $H \in \Delta$ pour $m = \frac{2}{9}$ et H est l'orthocentre du triangle ABC les coordonnées du point H sont $\left(\frac{8}{9}; \frac{4}{9}; \frac{8}{9}\right)$	0,25
5	Aire du triangle ABC = 6 et OH = $\frac{4}{3}$ Le volume du tétraèdre = 8/3.	0,25

	Question III	Note
	Partie A	
		0,25
1	$\frac{MF}{MN} = \frac{1}{2}$, ([FM] médiane dans le triangle STF vaut la moitié de ST) alors M varie sur l'ellipse de foyer F et de directrice (Δ) et d'excentricité $\frac{1}{2}$.	0,25
2.a	A est un point de l'axe focal et $AF = \frac{1}{2}AI$, donc A est un sommet de l'ellipse. De même $A'F = \frac{1}{2}A'I$ alors A' est le deuxième sommet.	0,25
2.b	O est le milieu de [AA'],OF=1 OA=2 donc F milieu de [OA]et F' milieu de OA'.	0,25
3	D'après Pythagore .OB= $\sqrt{3}$ = b car b= $\sqrt{a^2 - c^2}$ = $\sqrt{3}$.	0,25
4.a	$LF = \frac{1}{2}IF = \frac{1}{2}LH'$ tel que H' projection de L sur (Δ). Donc L appartient à l'ellipse.	0,25
4.b	LF +LF'=2a=4 or LF=1,5 donc LF'=2,5.	0,25
	Parie B	
1	$\frac{x^2}{4} + \frac{y^2}{3} = 1$	0,25
2.a	L'équation de la tangente (T)au point L(1,1.5) à (E) est $y=-0.5x+2$ est celle de la droite (IL).	0,25
2.b	Aire du domaine = Aire du triangle OIG - $\frac{\pi ab}{4}$	0,25
3	(JB) perpendiculaire à (JB') alors l'hyperbole est équilatère tel que a= $2-\sqrt{3}$ Son équation est $(x-\sqrt{3})^2$ - $(y)^2$ = $(2-\sqrt{3})^2$	0,25

	Question IV	Note
1	$\frac{BC}{DB} = \frac{4\sqrt{2}}{4} = \sqrt{2} = k \text{ et } \left(\overrightarrow{DB}, \overrightarrow{BC} \right) = -\frac{\pi}{4} + 2k\pi.$	0,25
2.a	$h(I) = SoS(I) = I \text{ et } h(D) = SoS(D) = S(B) = C \text{ et } \alpha + \alpha = -\frac{\pi}{2}; k \times k = 2, \text{ alors}$ h est une similitude de rapport 2 et d'angle $-\frac{\pi}{2}$.	0,25
2.b	$(\overrightarrow{ID},\overrightarrow{IC}) = -\frac{\pi}{2} + 2k\pi$, alors $I \in \text{au cercle}(T)$ de diamètre[CD]. IC = 2ID.	0,25
2.c	$CD^2 = 5ID^2$, donc $ID=4$	0,25
2.d	D'après la géométrie de la figure.	0,25

3	z' = (1-i)z - 4 + 8i.	0,5
4.a	$\frac{Un+1}{Un} = 2 \ donc \ la \ suite \ est \ g\'eom\'etrique \ de \ raison \ 2 \ dont \ le \ premier \ terme$ $U0=8$	0,75
4.b	$P=U_0 \times U_1 \times \times U_n = 8^{n+1} \cdot 2^{1+2+\cdots+n} = 8^{n+1} \cdot 2^{\frac{n(n+1)}{2}}$	0,5

	Question V	Note	
	Partie A		
1	$P(L) = P(L/R) \times P(R) + P(L/B) \times P(B) = \frac{y}{100} \times \frac{40}{100} + \frac{20}{100} \times \frac{60}{100} = 0,004 y + 0,12$	0,5	
2	$P(E) = P(E/B) \times P(B) + P(E/R) \times P(R) = \frac{80 - y}{100} \times \frac{40}{100} + \frac{40}{100} \times \frac{60}{100}$ $P(E) = P(L) \ alors \ 0.008 \ y = 0.44, \ alors \ y = 55.$	0,5	
3	P(L/B) = P(L) = P(L/R), alors y = 20.	0,5	
	Partie B		
1	$P(R) = p(B)x \ p(R) + P(R)x \ P(BB) = \frac{6}{10}x \frac{4}{10} + \frac{4}{10}x \frac{C_{60}^2}{C_{99}^2}$	0,75	
2	P(même couleur)= p(B)x p(B) +P(R)x P(RR)= $\frac{6}{10}x\frac{6}{10}+\frac{4}{10}x\frac{C_{39}^2}{C_{99}^2}$	0,75	

	Question VI	Note
	Partie A	
1.a	$\lim_{x \to 0} f(x) = -\frac{\infty}{0} = -\infty, \ alors \ x = 0 \ A.V.$	0,25
1.b	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} + \frac{1}{x^2} + \frac{2\ln x}{x^2} = 0 + 0 = 0$	0,5
1.c	$f'(x) = \frac{-4x \ln x}{x^4}$ $\begin{array}{c cccc} x & 0 & 1 & +\infty \\ \hline f'(x) & + & 0 & - \\ \hline f(x) & & & 1 \\ \hline \end{array}$	0,5
2.a	$g'(x) \qquad + \qquad 0 \qquad + \infty$ $g(x) = 1 - x + 2 \ln(x)$ $-\infty$	0,5
2.b	g(1)=0, g continue avec g(3,51)x g(3,52)<0 alors l'équation g(x)=0 admet 2 racines α et 1 tel que 3,51 < α < 3,52 .	0,25

2.c	$f(x) - h(x) = \frac{g(x)}{x^2}$	0,25
2.d	$\begin{array}{ c c c c c c }\hline x & 0 & 1 & \alpha & +\infty\\\hline f(x)-h(x) & - & 0 & + & 0 & -\\\hline position & (C') & au-dessus & (C') & au-dessus & (C') & au-dessus & de\\\hline (C) & de & (C) & (C) & (C) & (C) & (C') & (C'$	0,5
2.e		0,75
3.a	d'(x)= -ln(x)/x ² alors f(x) = $\frac{1}{x^2}$ -2 d'(x) donc F(x)= $\frac{-1}{x}$ -2d(x) +K= $\frac{-3-2\ln x}{x}$ +K. or F(1)=-3 alors K= 0 et par suite F(x)= $\frac{-3-2\ln x}{x}$.	0,75
3.b	$F(\alpha)-F(1) = \frac{-3-2\ln\alpha+3\alpha}{\alpha} \text{ or } g(\alpha)=0 \text{ donc } -2\ln(\alpha)=1-\alpha \text{ et par suite}$ $F(\alpha)-F(1) = 2 - \frac{2}{\alpha}.$ $2 - \frac{2}{\alpha} = 1 \text{ 'aire du domaine limité par (C) 1' axe x'x et les deux droites x=1 et x=\alpha}$	0.75
1	Partie B $I_1 + I_2 = F(3) - F(1) = 1' \text{ aire du domaine limité par (C) l'axe x'x et les deux droites } x = 1 \text{ et } x = 3$ or $3 < \alpha$ donc $F(3) - F(1) < F(\alpha) - F(1) = 1' \text{ aire du domaine limité par (C) l'axe x'x et les deux droites } x = 1 \text{ et } x = \alpha$.	1
2	$Sn = I_1 + \dots + I_n = F(2) - F(1) + F(3) - F(2) + \dots + F(n+1) - F(n) =$ $= F(n+1) - F(1) = \frac{-3 - 2\ln(n+1)}{n+1} + 3.$ Lim Sn = 3 quand n \to +\infty.	1