

Tech Saksham

Case Study Report

Data Analytics with Power BI

"POWER BI ENABLED CROP PRODUCTION ANALYSIS"

"GOVERNMENT ARTS COLLEGE(A), KUMBAKONAM"

NM ID	NAME
DE1339C37D67BF4ACE54	I AVANIVA C
841B81E30508	LAVANYA S

Trainer Name

Master Trainer

ABSTRACT

In the digital world, data has become an invaluable asset for the agricultural sector. The proposed project, "Power BI enables crop production of analysis," aims to leverage Power BI, a leading agricultural intelligence tool, to analyze and visualize real-time crop production data. This project will enable agricultural sectors to gain deep insights into farmers expectations and preferences for making crops and enhance crop yield satisfaction every year. The real-time analysis will allow farmers to respond in selecting or preferring crops each year and identify opportunities for making profit. The project will also contribute to the broader goal of digital transformation in the agricultural sector, promoting efficiency and innovation in crop production.

INDEX

Sr. No.	Table of Contents	Page No.
1	Chapter 1: Introduction	4
2	Chapter 2: Services and Tools Required	6
3	Chapter 3: Project Architecture	7
4	Chapter 4: Modeling and Result	9
5	Conclusion	15
6	Future Scope	16
7	References	17
8	Links	18

INTRODUCTION

1.1 Problem Statement

Food is the major source of energy. Every living organism on this planet needs food to stay alive and to continue all other essential life processes. Plants are the main source of food on which both humans and animals depend. We cannot imagine life without food.

With the rapidly growing population, demand for more food, loss of produced crops, and other problems in the agricultural output are the main reasons for the scarcity of food and are the biggest concern in some parts of the world facing today.

1.2 Proposed Solution

The scarcity of food led to an increase in the requirement for strategies that can help in the management of the crops produced. Using the Power BI project, it collects data on crop production each year, analyzes the data, compares data from previous years, and knows the top crops, states, and districts in the data fields. With this project, we can also plan which crops will be profitable in the current year.

1.3 Feature

- **Real-Time Analysis:** The dashboard will provide real-time analysis of crop production data.
- **Segmentation:** It will segment agricultural fields based on various parameters every year, like various crops, states, districts, etc.
- Analysis of crop production: The dashboard will identify and display various parameters every year, like crop yielding profit or loss, yielding area of states and districts, and yielding crops in the fields.
- ♣ Predictive Analysis: It will use historical data to predict future crop production and make decisions.

1.4 Advantages

Using Power BI, we can analyze crop production data and provide some protection for lowlevel crops. We can create crop protection that helps keep plants healthy and maintain sustainable yields. The choice of plant protection strategy depends on the type of culture grown and the threat. At the same time, measures must be timely and, wherever possible, preventive. The factors include

- Technological Factors
- Environmental Factors
- Systematic Factors

1.5 Scope

The scope of this project extends to all Indian agricultural institutions that aim to leverage data to make decisions and increase crop production every year. The project can be further extended to incorporate more data sources and advanced analytics techniques into producing and increasing the level of crops. The project is also useful for various states in India to promote various crops in their fields. Furthermore, the project contributes to the broader goal of digital transformation in the agricultural sector, promoting efficiency, innovation in crop production, and preventing external factors.

SERVICES AND TOOLS REQUIRED

2.1 Services Used

Data collection:

 Gathering crop production data from ICAR, including various parameters like seasons, states, districts, crops, production of years, etc.

Data storage:

• The Power BI storage gives the crop performance report a single location to check on the current, past, and future performance of the crops you grow.

Data Analysis:

- o Power BI provides various tools and charts to analyze data efficiently.
- This analysis explains how to view and explore data and how to interact with it by working with reports.

2.2 Tools and Software used

Tools:

- **Power BI**: The main tool for this project is Power BI, which will be used to create interactive dashboards for real-time data visualization.
- **Power Query**: This is a data connection technology that enables you to discover, connect, combine, and refine data across a wide variety of sources.

Software Requirements:

- Power BI Desktop: This is a Windows application that you can use to create reports and publish them to Power BI.
- **Power BI Service**: This is an online SaaS (Software as a Service) service that you use to publish reports, create new dashboards, and share insights.
- **Power BI Mobile**: This is a mobile application that you can use to access your reports and dashboards on the go.

PROJECT ARCHITECTURE

3.1 Architecture

Here's a high-level architecture for the project:

- **1. Data collection:** Gathering crop production data from ICAR, including various parameters like seasons, states, districts, crops, production of years, etc.
- **2. Data storage:** The Power BI storage gives the crop performance report a single location to check on the current, past, and future performance of the crops you grow.
- **3. Real-time data:** Power BI supports real-time data processing, which means users can view up-to-date data in their dashboards and reports.

- **4. Data visualization:** Using data visualization to make the most of the data on crop production, it needs to be recontextualized. Using graphs, charts, maps, and images, you can reconfigure the way data is presented and use it for strategic decision-making.
- **5. Data Access:** The dashboards created in Power BI can be accessed through Power BI Desktop, Power BI Service (online), and Power BI Mobile.
- **6. Track and Analysis trend:** Power BI tracks the performance of crop production. Power BI has solutions that can display data through a holistic lens that shows how crop production has changed from year to year (period to period).

MODELING AND RESULT

- **1. Data collection:** Gathering crop production data from ICAR, including various parameters like seasons, states, districts, crops, production of years, etc.
- **2. Data Preparation:** Import the collected data into Power BI and prepare it for analysis. This may involve cleaning the data, handling missing values, and formatting the columns appropriately.
- **3. Data Modeling:** Create a data model in Power BI that includes a table for crop production in season, states, districts, years, etc., and differentiate the data column with a pie chart, line chart, bar chart, etc.

ENABLED CROP PRODUCTION OF ANALYSIS

COLLECTION OF CROP PRODUCTION DATA

RowID	State_Name	District_Name	Crop_Year	Season	Crop	Area	Production
0	Bihar	NALANDA	2005	Rabi	Wheat	81934	160425
1	Assam	KARBI ANGLONG	2019	Whole Year	Onion	257	514
2	Gujarat	ANAND	2020	Summer	Maize	100	100
3	Karnataka	UTTAR KANNAD	2013	Rabi	Groundnut	2872	4572
4	Uttar Pradesh	JAUNPUR	2016	Rabi	Onion	110	1290
5	Assam	MARIGAON	2014	Rabi	Rapeseed &Mustard	6535	2719
6	Odisha	SONEPUR	2006	Winter	Rapeseed &Mustard	91	6
7	Rajasthan	DHOLPUR	2017	Whole Year	Garlic	1	1
8	Karnataka	BELGAUM	2018	Whole Year	Coconut	336	3212
9	Bihar	MUNGER	2020	Summer	Moong(Green Gram)	125	78
10	Chhattisgarh	JANJGIR-CHAMPA	2013	Kharif	Other Kharif pulses	223	107
11	Assam	KARBI ANGLONG	2019	Rabi	Rapeseed &Mustard	19337	8652
12	Uttar Pradesh	SHRAVASTI	2005	Kharif	Groundnut	72	58
13	Gujarat	PATAN	2019	Kharif	Moong(Green Gram)	9100	3300
14	Tamil Nadu	KARUR	2008	Whole Year	Sweet potato	20	309
15	Uttar Pradesh	KASGANJ	2019	Rabi	Tobacco	5247	28554
16	Haryana	MAHENDRAGARH	2006	Rabi	Wheat	45074	186000
17	Assam	DHEMAJI	2017	Whole Year	Turmeric	321	211
18	Assam	BAKSA	2015	Kharif	Small millets	284	127
19	Kerala	PATHANAMTHITTA	2008	Whole Year	Sugarcane	224	10950
20	Chhattisgarh	JANJGIR-CHAMPA	2018	Rabi	Linseed	2497	658
21	Chhattisgarh	DHAMTARI	2020	Whole Year	Banana	46	1520
22	Karnataka	BELLARY	2016	Rabi	Maize	3418	7487
23	Assam	TINSUKIA	2020	Autumn	Rice	5806	7964

TOTAL PRODUCTION

The production column is used to calculate the sum of production and give the result.

SUM OF PRODUCTION BY CROP YEAR

The crop year column and production column are used to calculate the sum of production by crop year.

RowID	State_Name	District_Name	Crop_Year !	ason	Стор	Area	Production
	0 Bihar	NALANDA	2005	bi	Wheat	8193	160425
	1 Assam	KARBI ANGLONG	2019	hole Year	Onion	25	514
	2 Gujarat	ANAND	2020	mmer	Maize	10	10
	3 Kamataka	UTTAR KANNAD	2013	bi	Groundnut	287	457.
	4 Uttar Pradesh	JAUNPUR	2016	bi	Onion	11	129
	5 Assam	MARIGAON	2014	bi	Rapeseed &Mustard	653	271
	6 Odisha	SOMEPUR	2006	inter	Rapeseed &Mustard	9	
	7 Rajasthan	DHOLFUR	2017	hole Year	Garlic		
	8 Kamataka	BELGAUM	2018	hole Year	Coconut	33	321
	9 Bihar	MUNGER	2020	mmer	Moong(Green Gram)	12	7
	10 Chhattisgarh	JANJGIR-CHAMPA	2013	arif	Other Kharif pulses	22	10
	11 Assam	KARBI ANGLONG	2019	bi	Rapeseed &Mustard	1983	865
	12 Uttar Pradesh	SHRAVASTI	2005	arif	Groundnut	7	5
	13 Gujarat	PATAN	2019	arif	Moong(Green Gram)	910	330
	14 Temil Nadu	KARUR	2008	hole Year	Sweet potato	2	30
	15 Uttar Pradesh	KASGANI	2019	bi	Tobacco	524	2855
	16 Haryana	MAHENDRAGARH	2006	bi	Wheat	4507	18600
	17 Assam	DHEMAJI	2017	hole Year	Turmeric	32	21
	18 Assam	BAKSA	2015	arif	Small millets	28	12
	19 Kerala	PATHANAMTHITTA	2008	hole Year	Sugarcane	22	1095
	20 Chhattisgarh	JANJGIR-CHAMPA	2018	bi	Linseed	249	65
	21 Chhattisgarh	DHAMTARI	2020	hole Year	Banana	4	152
	22 Kamataka	BELLARY	2016	bi	Maize	341	748
	23 Assam	TINSUKIA	2020	tumn	Rice	580	796

Dashboard

CONCLUSION

The project "Power BI enabled crop production analysis" using Power BI has successfully demonstrated the potential of data analytics in the agricultural sector. The crop performance report in Power BI gives a single location to check on the current, past, and future performance of the crops you grow.

Performance is measured in the form of a gross margin per area and a total gross margin. In the various seasons, an estimation is based on your plan and the yield and price you set in Power BI. At the end of the season, this will be the total gross margin for that crop (including all fields growing the same crop) based on the recorded yield and the price forecast in Power BI.

FUTURE SCOPE

This dataset is a comprehensive collection of information on agricultural activities, including crop production. The data covers a wide range of crops and provides detailed information on factors such as yield, acreage, and prices. This dataset is vital for informing policy decisions related to agriculture, and for understanding the sector's impact on the economy and the environment.

Moreover, the data can be used by farmers to make informed decisions about their production strategies, including crop selection, fertilization, and irrigation practices. Additionally, this data can help researchers develop innovative solutions to address challenges facing the agricultural sector, such as climate change and resource depletion.

REFERENCES

1. Michael Hart, 2017, "Quick Insights with Power

BI", Accessed online at https://

powerbi.microsoft.com/en-us/documentation/

powerbi-service-auto-insights/

2. Michele Hart, 2017, "Create a new Power BI

report", Accessed online at https://

powerbi.microsoft.com/en-us/documentation/

powerbi-service-create-a-new-report/

3. Ajayan, 2017, "How should I collaborate on &

share dashboards and reports?", Accessed

online at https://powerbi.microsoft.com/en-us/

documentation/powerbi-service-how-should-ishare-my-dashboard/

LINK

https://github.com/Lavanyasubu