- \mathbb{F} Ordered scalar field, \mathbb{R} or \mathbb{C} when not specified
- a_n , $(a)_n$ Sequence
- $((a)_k)_n$ Sequence of sequences
- \mathbf{x} , x^{μ} Vector
- $\mathbf{x} \wedge \mathbf{y}$, $\epsilon^{\mu}_{\nu\gamma} x^{\nu} y^{\gamma}$ Cross product of \mathbf{x} , \mathbf{y}
- ∇f , $\partial_{\mu} f$, $\frac{\partial f}{\partial x^{\mu}}$ Gradient of **f**
- $\langle \nabla, \mathbf{f} \rangle$, div(\mathbf{f}), $\partial_{\mu} f^{\mu}$, $\frac{\partial f^{\mu}}{\partial x^{\mu}}$ Divergence of \mathbf{f}
- $\nabla \wedge \mathbf{f}$, $\operatorname{rot}(\mathbf{f})$, $\epsilon^{\mu}_{\nu\gamma} \partial^{\nu} f^{\gamma}$ Rotor of \mathbf{f}
- $\mathbf{Jf}(\mathbf{x}), \, \partial_{\mu}f^{\nu}, \, \frac{\partial f^{\mu}}{\partial x^{\nu}}$ Jacobian matrix of \mathbf{f}
- $\mathbf{H}_f(\mathbf{x})$, $\partial_{\mu}\partial_{\nu}f$, $\partial^2_{\mu\nu}f$, $\frac{\partial^2 f}{\partial x^{\mu}\partial x^{\nu}}$ Hessian matrix of the function f
- \forall^{\dagger} For almost all
- $C_c^{\infty}(\mathbb{R}) = \mathcal{K}$ Space of test functions, (smooth with compact support)
- Z_f^m , S_f , P_f^m Sets of zeros of order m, singularities or poles of order m of a function f
- $a_n \to a$ Simple convergence
- $a_n \rightrightarrows a$ Uniform convergence
- $a_n \xrightarrow{A} a$ Absolute convergence
- $a_n \xrightarrow{\mathrm{T}} a$ Total convergence
- $a_n \rightharpoonup_{\mathbf{w}} a$ Weak convergence
- $a_n \rightharpoonup_{\mathcal{K}} a \ \mathcal{K}$ -convergence
- $a_n \rightharpoonup_{\star} a \mathcal{K}^{\star}$ -convergence