Modelio

Arquitectura del Software

Escuela de Ingeniería Informática

Grupo SemEs2-02

Lozana Cueto, Alfonso Leiva Martínez, Guillermo Mouloud Larbi, Adnane Santos Neila, Diego Vaz Sánchez, Adrián

¿Qué es Modelio?

- Herramienta de modelado open source
- O Basada en estándares
- O Desarrolladores de software, arquitectos de software, analistas...

Features

- Extensibilidad
- Modelos y diagramas UML, BPMN integrado con UML
- Exportado (publicación) en HTML ayudándose de un módulo
- Importa/exporta XMI (XML Metadata Interchange)
- Soporte de lenguajes de script (Jython)
- O Generación de código Java, Javadoc y técnicas de ingeniería inversa

Integración UML, BPMN

Principales Stakeholders

Desarrolladores Software

Arquitectos del sistema

Business Architects

Arquitectos del Software

Analistas

Principales atributos de calidad

- Características no funcionales deseables en sistema software.
- Principales en Modelio:

Funcionalidad, Usabilidad, Portabilidad y Mantenibilidad.

Funcionalidad

- Modelado multitud estándares: UML2, BPMN, XMI, SysML...
- O Generador código Java y a la inversa.
- Importar/exportar mediante XML.
- O Publicar mediante HTML.
- Instalar o desarrollar módulos propios.

Usabilidad

- Interfaz gráfica sencilla, fácil de aprender a utilizar.
- Rápidamente puedes empezar a modelar.

Portabilidad

- O Disponible en principales SO.
- Windows, MacOS X, Ubuntu, Debian, CentOS.
- O Instalabilidad en MacOS X no tan desarrollada.

Download Modelio [Latest version: 4.0.1]

The latest version of Modelio 4.0.1 (Build 202001232131) is now available (Last update on February 3rd, 2020).

Please select the right file for your system.

Platform	Architect	Architecture File	
		Modelio	
<i>≹</i> Windows 7/8/10	64-bit	Modelio 4.0.1 - Windows 64-bit (319.04 MB)	
RedHat/CentOS 8	64-bit	Modelio 4.0.1 - Red Hat/centOS 8 64-bit (316.74 MB)	
RedHat/CentOS 7	64-bit	Modelio 4.0.1 - Red Hat/centOS 7 64-bit (316.74 MB)	
O Debian 9/10	64-bit	Modelio 4.0.1 - Debian 64-bit (303.89 MB)	
Q Ubuntu 16.04/18.04	64-bit	Modelio 4.0.1 - Ubuntu 64-bit (303.88 MB)	
	64-bit	Modelio 4.0.1 - MacOS X (174.78 MB)	
		'	

Mantenibilidad

EXTENDER FUNCIONALIDAD FÁCILMENTE.

ES UN PROYECTO COLABORATIVO.

PROGRAMA DE CORRECCIÓN DE BUGS.

FOROS DE AYUDA Y DE DESARROLLADORES.

Restricciones

REGLAS Y CONVENCIONES PARA ESCALAR SOFTWARE DE FORMA MANTENIBLE.

CONSERVAR MANTENIBILIDAD Y CALIDAD DEL SOFTWARE.

Restricciones

- Modelio esta desarrollado en Java
- O Disponible para principales SO
- Utiliza convención en su API de desarrollo: Model API naming rules

```
mirror object to mirror
mirror_object
peration == "MIRROR_X":
irror_mod.use_x = True
irror_mod.use_y = False
irror_mod.use_z = False
 _operation == "MIRROR_Y"
"Irror_mod.use_x = False
lrror_mod.use_y = True
"Irror_mod.use_z = False
  operation == "MIRROR_Z"
### Irror_mod.use_x = False
### Irror_mod.use_y = False
### Irue
### Irue
election at the end -add
 ob.select= 1
 Mer ob.select=1
 mtext.scene.objects.active
  "Selected" + str(modifier
 irror ob.select = 0
 bpy.context.selected_obje
 mata.objects[one.name].sele
int("please select exaction
  - OPERATOR CLASSES ----
 X mirror to the selected
  vpes.Operator):
 ject.mirror_mirror_x"
 Fror X"
 ext.active_object is not
```

Restricciones

- Se proporciona manual para desarrollar el core y Módulos.
- Diagramas de clases e interfaces a utilizar según funcionalidad a realizar.
- Multitud de apartados para desarrolladores en el manual.

Aspectos de desarrollo

Sirve para desarrollar los diferentes diseños de clases y relaciones para el software.

Aspectos de desarrollo

Con los distintos módulos Que sirve para modificar tanto la configuración como la funcionalidad

Módulos y componentes

Como hemos mencionado antes los diferentes módulos y componentes los podemos usar para configurar Modelio tanto a nuestro gusto personal como a nuestras necesidades.

Módulos y componentes

Y aquí tenemos varios ejemplos:

 Aparte de esto, Modelio nos deja desarrollar nuestros propios módulos con la documentación necesaria para su desarrollo.

- Java Designer: Support of UML2 and Java 6, providing Java code generation and reverse functionalities, Javadoc generation and Java automation.
- XSD Designer: Graphical modeling of XML schemas (XSD models), transformation of UML class diagrams into XSD models and generation of XSD documents from an XML model.
- WSDL Designer: Graphical modeling of web services (WSDL models) and generation of WSDL code from a WSDL model.
- Togaf Architect: Support of the TOGAF Enterprise Architecture Framework, with dedicated editors for use in enterprise architecture modeling and TOGAF catalog and matrix production.
- SysML Architect: Support of the Systems Modeling Language - SysML for short - used to specify, analyze, design and validate systems and systems-of-systems.
- UML Testing Profile: Support of the OMG's standard test modeling language, providing test-specific concepts, dedicated artifacts and sequence diagram generation templates.
- SoaML Designer: Support of SoaML, the SOA architecture modeling standard, with specific editors dedicated to SOA architecture modeling and architecture implementation model generation.

RCP architecture

RCP (Rich client platform) : se ocupa de la interfaz de la aplicación.

GEF (Graphical Editing Framework): se utiliza para la generación de diagrmas.

MDA (Model Driven Architecture)

- Desarrollado por el Object Management Group (OMG) en 2001
- Proporciona pautas para estructurar especificaciones de software que se expresan como modelos.
- Generar código a partir de modelos visuales UML (UML2, BPMN2, extensions)

CIM (Computation Indepent Model)

Nivel de abstracción más alto

Contiene información sobre los procesos comerciales

El modelo CIM generalmente no se implementa en las herramientas MDA

PIM (Platform Independent Model)

Diagrama UML (UML2, BPMN2, extensions)

Es independiente de la plataforma.

Puede adaptarse a múltiples plataformas

PMS (Paltform Specific Models)

SON LOS MODELOS DERIVADOS DE LA CATEGORÍA ANTERIOR.

CONTIENEN LOS DETALLES DE LA PLATAFORMA O TECNOLOGÍA.

Ventajas y desventajas

PREGUNTAS