Experimental Design

Marc Vaudel

Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway

KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway

- 1- Document
- 2- Uniformize to reduce biases and covariates

- 1- Document
- 2- Uniformize to reduce biases and covariates
- 3- Anonymize

Tip: Think of family controls!

- 1- Document
- 2- Uniformize to reduce biases and covariates
- 3- Anonymize
- 4- Randomize

-> On normal distributions, Student's t-test:

$$n \ge \frac{2\left(\Phi^{-1}\left(1 - \frac{\alpha}{2}\right) + \Phi^{-1}(1 - \beta)\right)^{2}}{\left(\frac{Inter}{Intra}\right)^{2}} \quad \xrightarrow{r = Inter/Intra} \quad n \ge \frac{A}{r^{2}}$$

$$\alpha = 5\% \qquad \alpha = 5\% \qquad \alpha = 1\%
\beta = 20\% \qquad \beta = 5\% \qquad \beta = 1\%$$

$$n \ge \frac{16}{\left(\frac{Inter}{Intra}\right)^2}$$

$$n \ge \frac{26}{\left(\frac{Inter}{Intra}\right)^2}$$

$$n \ge \frac{48}{\left(\frac{Inter}{Intra}\right)^2}$$

Phase 2: Growth velocity (g/kg/day)

	Study 020 Formula N=33		Study 021 Past. milk N=27		020 & 021 Combined N=60	
	rhBSSL	Placebo	rhBSSL	Placebo	rhBSSL	Placebo
LS mean (95% CI) [g/kg/day]	18.1 (16.5 to 19.6) (16.5 to 19.6) 3.1	8 14.3 (12.8 to 15.8)	15.6 (13.8 to 17.3)	13.6 (11.9 to 15.4)	16.9 (15.7 to 17.8)	13.9 (12.8 to 15.1)
Difference (95% CI) [g/kg/day] p-value	3.74 (1.58 to 5.90) p=0.001		1.95 (-0.54 to 4.43) p=0.119		2.93 (1.35 to 4.51) p<0.001	

$$\alpha = 5\% \qquad \alpha = 5\% \qquad \alpha = 1\%
\beta = 20\% \qquad \beta = 5\% \qquad \beta = 1\%$$

$$n \ge \frac{16}{\left(\frac{Inter}{Intra}\right)^2}$$

$$n \ge \frac{26}{\left(\frac{Inter}{Intra}\right)^2}$$

$$n \ge \frac{48}{\left(\frac{Inter}{Intra}\right)^2}$$

Time series:

Time series:

- + Increases sample amount
- + Reduces variability
- Reduces power

Phase 2: Growth velocity (g/kg/day)

	Study 020 Formula N=33		Study 021 Past. milk N=27		020 & 021 Combined N=60	
	rhBSSL	Placebo	rhBSSL	Placebo	rhBSSL	Placebo
LS mean (95% CI) [g/kg/day]	18.1 (16.5 to 19.6)	14.3 (12.8 to 15.8)	15.6 (13.8 to 17.3)	13.6 (11.9 to 15.4)	16.9 (15.7 to 17.8)	13.9 (12.8 to 15.1)
Difference (95% CI) [g/kg/day] p-value	3.74 (1.58 to 5.90) p=0.001		1.95 (-0.54 to 4.43) p=0.119		2.93 (1.35 to 4.51) p<0.001	

Would you do a better job?

