ELC 2137 Lab 9: ALU

Jake Simmons

March 31, 2020

Summary

Type the summary of your experiment and results here.

Q&A

Answer questions posed in the lab assignment here.

Results

Time (ns):	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40 - 45	45-50	50-55
D (hex)	0	0				3		0	$0\rightarrow 6$	6	6
clk	0	1	0	1	0	1	0	1	0	1	0
en	0	0	1	1	$1\rightarrow0$	$0\rightarrow 1$	$1\rightarrow0$	0	$0 \rightarrow 1$	1	1
rst	0	$0\rightarrow 1$	0	0	0	0	0	0	0	0	0
Q (hex)	X	$X\rightarrow 0$	0	A	A	A	A	A	A	6	6

Figure 1: ERT and Simultion Waveforms of Register

Time (ns):	0-10	10-20	20-30	30-40	40-50	50-60
in0 (dec)	5	A	1	3	5	F
in1 (dec)	5	5	2	4	6	\mathbf{C}
op (dec)	0	1	2	3	4	5
out (dec)	A	5	0	7	3	F

Name	Value	0 ns	40 ns	20 ns 25 ns	30. ns	35 ns	40 ns	50 ns55 ns60 ns
> Win0[7:0]	03	05	0a	01		03	05	Of
> Win1[7:0]	04		02		04	06	0e	
> V op[7:0]	03	00	01	02		03	04	05
> V out[7:0]	07	0a	05	00		07	03	0£

Figure 2: ERT and Simulation Waveforms of ALU

Code

Listing 1: Register Module

```
'timescale 1ns / 1ps
//ELC 2137 Jake Simmons 2020-3-26
module register_2 #(parameter N=1)
   input clk, rst, en,
   input [N-1:0] D,
   output reg [N-1:0] Q
   always @(posedge clk, posedge rst)
      begin
         if (rst==1)
            Q <= 0'b0;
         else if (en==1)
            Q \le D;
   end
   // Notes: // - Reset is asynchronous , so this
  // block needs to execute when rst
   // goes high.
  // - We want enable to be synchronous
  // (i.e. only happens on rising
   // edge of clk), so it is left out
   // of "sensitivity" list.
endmodule
```

Listing 2: ALU Module

```
'timescale 1ns / 1ps
//ELC 2137 Jake Simmons 2020-3-29
module ALU#(parameter N=8)
   output reg[N-1:0] out,
   input [N-1:0] in0,
   input [N-1:0] in1,
   input [3:0] op
   );
   // Local parameters
   parameter ADD=0;
   parameter SUB=1;
   parameter AND=2;
  parameter OR=3;
   parameter XOR=4;
   always @*
      begin
         case(op)
            ADD: out = in0 + in1;
            SUB: out = in0 - in1;
            AND: out = in0 & in1;
            OR: out = in0 | in1;
```

```
XOR: out = in0 ^ in1;
    default: out = in0;
    endcase
    end
endmodule
```

Listing 3: Lab 9 Top Module

```
'timescale 1ns / 1ps
//ELC 2137 Jake Simmons 2020-3-30
module top_lab9(
   input btnU,
   input btnD,
   input [11:0] sw,
   input clk,
   input btnC,
   output [15:0] led
   );
   wire [7:0] W1;
   wire [7:0] W2;
   register_2 #(.N(8)) r1( .D(sw[7:0]), .en(btnD), .clk(clk), .Q(W1), .rst
      (btnC)
   );
   ALU alu( .in1(W1), .in0(sw[7:0]), .op(sw[11:8]), .out(W2)
   register_2 #(.N(8)) r2( .D(W2), .en(btnU), .clk(clk), .rst(btnC), .Q(
      led[15:8])
   );
   assign led [7:0] = W1;
endmodule
```

Listing 4: Register Module Test Bench Code

```
'timescale 1ns / 1ps
//ELC 2137 Jake Simmons 2020-3-26

module register_2_test();

   reg [3:0] D;
   reg clk, en, rst;
   wire [3:0] Q;
   register_2 #(.N(4)) r(.D(D), .clk(clk),
      .en(en), .rst(rst), .Q(Q) );

// clock runs continuously
   always begin
      clk = ~clk; #5;
   end
```

```
// this block only runs once
initial begin
    clk = 0; en = 0; rst = 0; D = 4'h0; #7;
    rst = 1; #3; // reset
    D = 4'hA; en = 1; rst = 0; #10;
    D = 4'h3; #2;
    en = 0; #5;
    en = 1; #3;
    D = 4'h0; #2;
    en = 0; #10;
    en = 1; #2;
    D = 4'h6; #11;
    $finish;
end
endmodule
```

Listing 5: ALU Module Test Bench Code

```
'timescale 1ns / 1ps
//ELC 2137 Jake Simmons 2020-3-29
module ALU_Test();
  reg [7:0] in0;
  reg [7:0] in1;
  reg [7:0] op;
   wire [7:0] out;
   ALU alu(
   .in0(in0), .in1(in1), .op(op), .out(out)
  );
   initial
      begin
         in0 = 8'd5; in1 = 8'd5; op = 0; #10;
         in0 = 8'd10; in1 = 8'd5; op = 1; #10;
         in0 = 8'd1; in1 = 8'd2; op = 2; #10;
         in0 = 8'd3; in1 = 8'd4; op = 3; #10;
         in0 = 8'd5; in1 = 8'd6; op = 4; #10;
         in0 = 8'd15; in1 = 8'd12; op = 5; #10;
      end
endmodule
```