Cmpe-300

Ahmet Hacıoğlu

November 2023

1 Introduction

$\mathbf{Q3}$

First, check $\log(n!)$.

$$\log(n!) = \log(1 \cdot 2 \cdot 3 \cdot \ldots \cdot n) = \log 1 + \log 2 + \log 3 + \ldots + \log n \le \underbrace{\log n + \log n + \ldots + \log n}_{nterms} \le n \cdot \log n$$

Now, check $n^{\cos n}$.

$$1 \ge \cos n$$
 so $n^1 \ge n^{\cos n}$, for $n \ge 1$

Next, compare n and $\log(n!)$.

$$\lim_{n \to \infty} \frac{n}{n \cdot \log n} = \lim_{n \to \infty} \frac{1}{\log n} = 0 \quad so, according to this, n^{\cos n} \le n \le \log(n!)$$

Compare $\log(n!)$ and $3^{\log n}$.

$$\lim_{n \to \infty} \frac{n \cdot \log n}{3^{\log n}} = \lim_{n \to \infty} \frac{n \cdot \log n}{n^{\log 3}} = \lim_{n \to \infty} \frac{\log n}{n^{\log 3 - 1}}$$

Apply L'Hôpital's Rule:

$$= \lim_{n \to \infty} \frac{(1/n)}{(\log 3 - 1) \cdot n^{\log 3 - 2}} = \lim_{n \to \infty} \frac{1}{(\log 3 - 1) \cdot n^{\log 3 - 1}} = 0 \quad since(\log_2 3 - 1) > 0.$$

Therefore, as n goes to infinity, $\log(n!)$ grows at a slower rate than $3^{\log n}$. Now, compare $3^{\log n}$ and $n^{\log n}$.

$$\lim_{n\to\infty}\frac{3^{\log n}}{n^{\log n}}=\lim_{n\to\infty}\frac{n^{\log 3}}{n^{\log n}}=\lim_{n\to\infty}\frac{1}{n^{\log n-\log 3}}=0$$

Therefore, as n goes to infinity, $3^{\log n}$ grows at a slower rate than $n^{\log n}$. Compare $n^{\log n}$ and $(\log n)^n$.

$$\lim_{n\to\infty}\frac{n^{\log n}}{(\log n)^n}=\lim_{n\to\infty}\frac{\log(n^{\log n})}{\log((\log n)^n)}=\lim_{n\to\infty}\frac{\log n\cdot \log n}{n\cdot \log(\log n)}\leq \lim_{n\to\infty}\frac{(\log n)^2}{n}\quad (n\log(\log n)\geq n)$$

Apply L'Hôpital's Rule:

$$= \lim_{n \to \infty} \frac{2 \cdot \log n \cdot (1/n)}{1} = \lim_{n \to \infty} \frac{2 \cdot \log n}{n}$$

Apply L'Hôpital's Rule:

$$\lim_{n\to\infty} 2\cdot \frac{1}{n} = 0$$

Therefore, as n goes to infinity, $n^{\log n}$ grows at a slower rate than $(\log n)^n$. Thus, the order from the lowest to highest grow rate is: The list of functions is as follows:

- 1. $n^{\cos n}$
- 2. n
- 3. $\log(n!)$
- 4. $3^{\log n}$
- 5. $n^{\log n}$
- 6. $(\log n)^n$