Pulsary

Opis poszczególnych kolumn w pulsar_data_test.csv i pulsar_train_test.csv:

- Mean of the integrated profile (Średnia z profilu zintegrowanego) oznacza średnią wartość intensywności sygnału w profilu zintegrowanym, który reprezentuje całkowitą moc sygnału zarejestrowanego w danym czasie.
- Standard deviation of the integrated profile (Odchylenie standardowe z profilu zintegrowanego) mierzy, jak bardzo wartości intensywności sygnału w profilu zintegrowanym różnią się od średniej. Wyższa wartość wskazuje na większą zmienność sygnału.
- Excess kurtosis of the integrated profile (Kurtoza z profilu zintegrowanego) wskaźnik "spiczastości" profilu zintegrowanego. Wyższe wartości kurtozy sugerują większą liczbę ekstremalnych wartości (pików) w profilu.
- Skewness of the integrated profile (Skośność z profilu zintegrowanego) mierzy asymetrię rozkładu intensywności sygnału w profilu zintegrowanym. Dodatnia skośność oznacza przewagę wyższych wartości, ujemna niższych.
- Num Planets (Średnia krzywej DM-SNR) odnosi się do średniej wartości stosunku sygnału do szumu (SNR) dla krzywej dyspersji DM (ang. Dispersion Measure), co pozwala ocenić jakość sygnału pulsara.
- **Mean of the DM-SNR curve** (Odchylenie standardowe krzywej DM-SNR) mierzy zmienność stosunku sygnału do szumu (SNR) w krzywej DM, wskazując, jak stabilny jest ten stosunek.
- Standard deviation of the DM-SNR curve (Kurtoza krzywej DM-SNR) określa "spiczastość" rozkładu stosunku sygnału do szumu (SNR) w krzywej DM, co może świadczyć o obecności skrajnych wartości w sygnale.
- Excess kurtosis of the DM-SNR curve obserwatorium lub placówka, która dokonała odkrycia planety.
- **Skewness of the DM-SNR curve** (Skośność krzywej DM-SNR) mierzy asymetrię w rozkładzie stosunku sygnału do szumu (SNR) w krzywej DM. Dodatnia skośność oznacza przewagę wysokich wartości, a ujemna niskich.
- **target_class** (Klasa docelowa) wartość binarna oznaczająca, czy dany sygnał pochodzi od pulsara (1), czy nie (0).

Kolumny mogące pełnić funkcje zmiennej decyzyjnej (target)

Tutaj już jest kolumna, która została do tego odpowiednio stworzona. Mowa tutaj o **target_class**, która przyjmuje wartości 1 co oznacza pulsar oraz 0 oznaczając inne sygnały.

Kolumny mogące być odpowiednie do wizualizacji w stosunku do innych

- Mean_of_the_integrated_profile (Srednia_profili_zintegrowanego):
 - Użycie tutaj kolumny target_class do wizualizacji pozwoli określić średnią intensywność profilu dla różnych wartości (0/1), czyli czy pulsary 1 mają wyraźnie wyższe lub niższe wartości średnie niż zakłócenia
 - Czy wyższa średnia intensywność profilu zintegrowanego zwiększa prawdopodobieństwo, że sygnał pochodzi od pulsara?
- Standard_deviation_of_the_DM-SNR_curve (Odchylenie_standardowe_krzywej_DM-SNR):
 - Wykres z użyciem target_class pokaże rozkład stabilności sygnału w zależności od klasy sygnału (pulsar czy zakłócenie)
 - Czy sygnały o bardziej stabilnym stosunku sygnału do szumu (niższe odchylenie standardowe) są bardziej prawdopodobne, że pochodzą od pulsarów?
- Skewness_of_the_integrated_profile (Skosnosc_profili_zintegrowanego):
 - Ponowne użycie kolumny target_class pokaże wartości skośności profilu zintegrowanego, co może wskazywać, czy sygnały od pulsarów mają większą lub mniejsza asymetrię
 - Czy asymetria w rozkładzie intensywności sygnału jest charakterystyczna dla pulsarów?