SMA

For exhaustive content, read: http://faculty.ucr.edu/~hanneman/nettext/

- Customer Network Lifetime Value = Customer Lifetime Value + Customer
 Influence Value
 - b/c Customer brings in more business (Influence Value) than just
 'his' business and that should be catered

- Clustering coefficient of a user:

 Probability that two randomly selected friends of the user are friends with each other.

- Degree Centrality:

- Number of edges connected to a node
- Normalised Degree Centrality: DegreeCentrality/ (n-1) [where n = # nodes]
- In Degree / Out Degree (similar concepts) for directed networks
- A large degree centrality does not imply strong ties. Strength of ties flattens out

- Degree Centrality Metric for Overall Network

- d* = highest degree in the network
- di = degree of Node i
- -N = # nodes
- $xi = d^* di$
- x_max = Theoretical Max of xi (edge node of StarNetwork)
 - $x_max = [(n-1) (n-1)] + (n-1)*[(n-1) 1]$
 - $x_max = 0 + (n-1)*(n-2)$
 - $x_max = (n-2)*(n-2)$
- Network Degree Centrality
 - $(Cd = (sum[i = 1 -> N](xi))/x_max)$

- Betweenness Centrality:

- 'Interaction and exchange of information between two groups/ communities/clusters
- Nodes with high betweenness are important in transmitting new information, ideas & opportunities to a wide audience
- Local Bridge
 - A-B is a local bridge of span 'X' iff the second shortest route between A-B (should the A-B link be severed) is of length 'X'

- DEFINITION. ????
- SIGNIFICANCE ????
- See video?

- Betweenness Centrality of a Node:

$$b_{i} = \sum_{s, t (s \neq i \neq t)} \frac{g_{st}(i)}{g_{st}}$$

- Betweenness Centrality of a Network:
 - $yi = b^* bi$
 - y_max = Theoretical max vale of numerator (for a star network)

$$Cb = \frac{\sum_{i=1}^{N} y_i}{y_{max}}$$

- Closeness Centrality:

- How close a node is to all others
- = 1/(Sum of shortest distance from a node to all others
- In a Star Network:
 - Closeness of central node (c*): 1/(n-1)
 - Closeness of peripheral node (ci): 1/[1 + 2*(n-2)] = 1/ (2n - 3)
 - $c_{max} = (c^* ci) = [1/(n-1) 1/(n-1)] + (n-1)^*[1/(n-1) 1/(2n-3)]$
 - $c_max = 0 + (n-1)*[2n 3 (n-1)]/(n-1)(2n-3)$
 - $c_max = (n-2)/(2n 3)$
- Thus, Denominator of any Network level Closeness:
 - $c_max = (n-2)/(2n 3)$

Closeness centrality of node
$$i$$
: $c_i = \frac{1}{\sum_{j \ (j \neq i)} l_{ij}} = \frac{1}{(N-1)\bar{d}_i}$

Where l_{ij} is the distance between nodes i and j.

 \bar{d}_i is the average geodesic length from node i to all other nodes.

- Eigenvector Centrality:

- One's importance is partly determined by "the company one keeps"
- If one has many important friends, s/he should be importantJ
- Eigenvector centrality considers not only your degree, but your friends' degree

- Eg: PageRank
 - In order to ensure we don't reach 0-vectors when transitions matrices are disconnected, we transition Matrix
 - $A^* = (1-p)A + p^*B$ [B = np.ones(shape of A)]
 - Indicates there's a small probability that people start randomly no matter what

- Community Detection

- Cluster similar users together
- Girvan-Newman Algo (Divisive Algo) [Uni-variate Network]
 - Cut link with Highest betweenness centrality
 - Recalculate Betweenness for all remaining links
 - Repeat till network completely disjoint
- Clustering in Bi-partite network
 - Cut links with lowest clustering coefficient.
 - Aliter, Separate into 2 uni-modal networks and apply Girvan-Newman
 - Easier but information Loss

For a pair of nodes, i and j, let m and n be neighbors of i and j respectively $q_{ijmn} = 1$ if m and n are connected, 0 otherwise. θ_{ijmn} has the opposite definition. Edge clustering coefficient C(i, j) =

squares that currently include *i-j* / possible # squares that include *i-j*

$$\sum_{m=1}^{k_i} \sum_{n=1}^{k_j} q_{ijmn}$$

$$\frac{\sum_{m=1}^{k_i} \sum_{n=1}^{k_j} \theta_{ijmn} + \sum_{m=1}^{k_i} (k_m - 1) + \sum_{n=1}^{k_j} (k_n - 1) - \sum_{m=1}^{k_i} \sum_{n=1}^{k_j} q_{ijmn}}{\sum_{m=1}^{k_i} \sum_{n=1}^{k_j} q_{ijmn}}$$

- Cliques / Cores

- N Clique
 - A network on n fully connected nodes

Usually spammers/fake accounts are all densely/fully connected

- K - Cores

- A node must be connected to all but k other actors in the group
- Feeling of belongingness depends on number of connections
- If an actor has ties to a sufficient number of members of a group, they may feel tied to that group -- even if they don't know many, or even most members.
- It may be that identity depends on connection, rather than on immersion in a sub-group.
- Hypothesis: Spammers have larger k-cores than non spammers
- Hypothesis: Spammers have larger n-cliques than non spammers
- Hypothesis: Spammers have higher network density

- Homophily (Similarity)

- Connect similar people together
- Social Influence v/s Homophily
 - If sales driven by Influence
 - Invest big money in small set of Influencers
 - If sales driven by homophily
 - Invest small money in big set of grass-roots
- Tests for Homophility:
 - p(Becoming friends in t+1 where attributes were same in t) > p(Becoming friends in t+1 where attributes were different in t)
 - p(Break friendships in t+1 where attributes were same in t) < p(Break friendships in t+1 where attributes were different in t)
- Checking which is dominant:

Homophily: $C(X_t, G_{t+1}) > C(X_t, G_t)$

Social influence: $C(X_{t+1}, G_t) > C(X_t, G_t)$

Relational autocorrelation $C(X,G) = \chi^2 = \frac{N.(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$

	Improved Outcome	Didn't improve	Total
Treatment	36	14	50
No Treatment	30	25	55
Total	66	39	105

$$\chi^{2} = ?$$

$$\chi^2 = \frac{105*(36*25-30*14)^2}{50*55*66*39} = 3.42$$