CHIMIE NIVEAU MOYEN ÉPREUVE 1

Mardi 18 mai 2004 (après-midi)

45 minutes

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé.
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.

224-170 13 pages

103 **Lr** (260)

101 **Md** (258)

99 **Es** (254)

98 Cf (251)

95 **Am** (243)

94 **Pu** (242)

92 U 238,03

91 **Pa**

++

Le tableau de la classification périodique des éléments

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)		
7		9 F 19,00 2	17 Cl 35,45 3	35 Br 79,90 8	53 I 126,90 II	85 At (210) (71 Lu 174,97
9		8 O 16,00	16 S 32,06 3	34 Se 78,96 7	52 Te 127,60 13	84 Po (210)		70 Yb 173,04
vo		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19 2		68 Er 167,26
ဗ		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93
				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50
				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92
				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25
				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96
				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92
	Numéro atomique	Masse atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24
	Numéro Élér	Masse a		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91
				22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)	
-	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)	

- 1. Combien d'atomes d'hydrogène contient une mole d'éthanol, C₂H₅OH?
 - A. 5
 - B. 6
 - C. $1,0 \times 10^{23}$
 - D. $3,6 \times 10^{24}$
- 2. Le pourcentage en masse de éléments constitutifs d'un composé est

$$C = 72 \%$$
, $H = 12 \%$, $O = 16 \%$.

Que vaut le rapport du nombre de moles C : H dans la formule empirique (formule brute) de ce composé ?

- A. 1:1
- B. 1:2
- C. 1:6
- D. 6:1
- 3. Quel est le coefficient de $O_2(g)$ dans l'équation suivante, une fois qu'elle est pondérée (équilibrée) ?

$$_C_3H_8(g) + _O_2(g) \rightarrow _CO_2(g) + _H_2O(g)$$

- A. 2
- B. 3
- C. 5
- D. 7

- 4. Quelle quanitié de NaCl (en moles) faut-il pour préparer 250 cm³ d'une solution 0, 200 mol dm⁻³?
 - A. 50,0
 - B. 1,25
 - C. 0,800
 - D. 0,0500
- **5.** Des électrons sont envoyés dans un champ électrique, de la gauche vers la droite, comme indiqué par la fléche sur le schéma ci-dessous. Quelle est la trajectoire la plus probable de ces électrons ?

- A. 1
- B. 2
- C. 3
- D. 4
- **6.** Combien d'électrons de valence possède l'atome d'un élément dont le numéro atomique vaut 16 ?
 - A. 2
 - B. 4
 - C. 6
 - D. 8

7.	Pour	r quel élément le numéro de groupe et le numéro de période sont-ils les mêmes ?			
	A.	Li			
	B.	Be			
	C.	В			
	D.	Mg			
8.		mi les propriétés physiques mentionnées ci-dessous, quelle(s) est (sont) celle(s) qui diminue(nt) sque le numéro atomique augmente, à la fois pour les métaux alcalins et pour les halogènes ?			
		I. Le rayon atomique			
		II. L'énergie d'ionisation			
		III. La température de fusion			
	A.	I uniquement			
	B.	II uniquement			
	C.	III uniquement			
	D.	I et III uniquement			
9.	Que	elle est la formule d'un composé ionique formé des éléments X (groupe 2) et Y (groupe 6) ?			
	A.	X_3Y			
	B.	X_2Y			

C.

D.

 XY_2

XY

- 10. Sur la base des valeurs de l'électronégativité, quelle est la liaison la plus polaire ?
 - A. B—C
 - В. С—О
 - C. N—O
 - D. O—F
- 11. Quelle est la structure de Lewis (électrons symbolisés par des points) du dioxyde de soufre ?
 - A. :Ö:S::Ö:
 - B. :Ö:S:Ö:
 - C. :Ö::S::Ö:
 - D. :Ö::Ë:Ö:
- 12. Quelle est la substance la plus soluble dans l'eau (en mol dm⁻³) à 298 K?
 - A. CH₃CH₃
 - B. CH₃OCH₃
 - C. CH₃CH₂OH
 - D. CH₃CH₂CH₂CH₂OH
- 13. Dans quelles conditions de température et de pression, précisées ci-dessous, une masse déterminée d'un gaz idéal occupe-t-elle le plus grand volume ?

	Température	Pression
A.	basse	basse
B.	basse	élevée
C.	élevée	élevée
D.	élevée	basse

- **14.** Parmi les grandeurs suivantes, quelle(s) est (sont) celle(s) qui est (sont) modifiée(s) lorsqu'un liquide à sa température d'ébullition est transformé en gaz à la même température ?
 - I. La taille des molécules.
 - II. La distance entre les molécules.
 - III. L'énergie cinétique moyenne des molécules.
 - A. I uniquement
 - B. II uniquement
 - C. III uniquement
 - D. I et II uniquement
- 15. Quand on mélange $Ba(OH)_2$ et NH_4SCN , tous deux à l'état solide, on obtient une solution et on observe un abaissement de température.

$$Ba(OH)_2(s) + 2NH_4SCN(s) \rightarrow Ba(SCN)_2(aq) + 2NH_3(g) + 2H_2O(l)$$

Parmi les propositions suivantes, laquelle est correcte en ce qui concerne les phénomènes énergétiques accompagnant cette réaction ?

- A. La réaction est endothermique et ΔH est négative.
- B. La réaction est endothermique et ΔH est positive.
- C. La réaction est exothermique et ΔH est négative.
- D. La réaction est exothermique et ΔH est positive.

16. Sur la base des équations ci-dessous

$$Cu(s) + \frac{1}{2}O_2(g) \rightarrow CuO(s) \qquad \Delta H^{\ominus} = -156 \text{ kJ}$$

$$2Cu(s) + \frac{1}{2}O_2(g) \rightarrow Cu_2O(s) \qquad \Delta H^{\ominus} = -170 \text{ kJ}$$

quelle est la valeur de ΔH^{\ominus} (en kJ) de la réaction suivante ?

$$2CuO(s) \rightarrow Cu_2O(s) + \frac{1}{2}O_2(g)$$

- A. 142
- B. 15
- C. -15
- D. -142
- 17. Quelle est la réaction qui s'accompagne de la plus grande augmentation d'entropie ?
 - A. $Pb(NO_3)_2(s) + 2KI(s) \rightarrow PbI_2(s) + 2KNO_3(s)$
 - B. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - C. $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$
 - D. $H_2(g) + I_2(g) \rightarrow 2HI(g)$
- 18. Pour une réaction déterminée ΔH^{\ominus} et ΔS^{\ominus} sont toutes deux positives. Parmi les propositions suivantes, quelle est celle qui est correcte en ce qui concerne la spontanéité de cette réaction à différentes températures ?
 - A. La réaction sera spontanée, quelle que soit la température.
 - B. La réaction sera spontanée à haute température mais pas à basse température.
 - C. La réaction sera spontanée à basse température mais pas à haute température.
 - D. La réaction ne sera pas spontanée, quelle que soit la température.

- **19.** En vertu de la définition de la vitesse de réaction, quelles sont les unités utilisées pour exprimer une vitesse ?
 - A. $mol dm^{-3}$
 - B. mol temps⁻¹
 - C. dm³ temps⁻¹
 - D. mol dm⁻³ temps⁻¹
- **20.** Parmi celles qui sont illustrées sur le diagramme d'enthalpie ci-dessous, quelle(s) grandeur(s) est (sont) influencée(s) par l'utilisation d'un catalyseur?

- A. I uniquement
- B. III uniquement
- C. I et II uniquement
- D. II et III uniquement
- 21. Quelle proposition, relative à une réaction chimique à l'équilibre, n'est pas correcte?
 - A. Les concentrations des réactifs et des produits restent constantes.
 - B. L'équilibre peut être atteint dans les deux sens de la réaction.
 - C. La vitesse de la réaction dans le sens direct est égale à celle de la réaction inverse.
 - D. La réaction s'arrête.

22. Soit la réaction

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ}$

quelle(s) modification(s) aura (auront) pour effet d'augmenter la quantité d'ammoniac présente à l'équilibre dans la réaction ci-dessus ?

- I. Augmentation de la pression
- II. Augmentation de la température
- III. Addition d'un catalyseur
- A. I uniquement
- B. II uniquement
- C. I et II uniquement
- D. II et III uniquement
- **23.** Quelle substance peut être dissoute dans l'eau pour fournir une solution 0,1 mol dm⁻³ ayant un pH élevé et une conductivité électrique élevée ?
 - A. HCl
 - B. NaCl
 - C. NH₃
 - D. NaOH

- **24.** Laquelle (Lesquelles) des solutions suivantes peut-on ajouter à 50 cm³ de CH₃COOH(aq) 0,10 mol dm⁻³ pour préparer une solution tampon ?
 - I. 50 cm³ de CH₃COONa(aq) 0,10 mol dm⁻³
 - II. 25 cm³ et NaOH(aq) 0,10 mol dm⁻³
 - III. 50 cm³ de NaOH(aq) 0,10 mol dm⁻³
 - A. I uniquement
 - B. I et II uniquement
 - C. II et III uniquement
 - D. I, II et III
- **25.** Quelles transformations l'ion $Cr^{3+}(aq)$ subit-il lorsqu'il est converti en $CrO_4^{2-}(aq)$?
 - A. Son nombre d'oxydation diminue et il subit une réduction.
 - B. Son nombre d'oxydation diminue et il subit une oxydation.
 - C. Son nombre d'oxydation augmente et il subit une réduction.
 - D. Son nombre d'oxydation augmente et il subit une oxydation.

Tournez la page

26. Les réactions suivantes sont spontanées dans le sens indiqué.

$$Fe(s) + Cd^{2+}(aq) \to Fe^{2+}(aq) + Cd(s)$$

$$Cd(s) + Sn^{2+}(aq) \to Cd^{2+}(aq) + Sn(s)$$

$$\operatorname{Sn}(s) + \operatorname{Pb}^{2+}(aq) \to \operatorname{Sn}^{2+}(aq) + \operatorname{Pb}(s)$$

Laquelle (Lesquelles) des paires suivantes réagira (réagiront) spontanément ?

- I. $\operatorname{Sn}(s) + \operatorname{Fe}^{2+}(aq)$
- II. $Cd(s) + Pb^{2+}(aq)$
- III. $Fe(s) + Pb^{2+}(aq)$
- A. I uniquement
- B. II uniquement
- C. III uniquement
- D. II et III uniquement
- **27.** Quelles sont les espèces chimiques produites aux électrodes positive et négative lors de l'électrolyse du chlorure de sodium fondu ?

	Électrode positive	Électrode négative
A.	Na ⁺ (l)	$\text{Cl}_2(g)$
B.	Cl ⁻ (l)	Na ⁺ (l)
C.	Na(l)	$Cl_2(g)$
D.	Cl ₂ (g)	Na(l)

- 28. Quelle proposition est correcte à propos de représentants voisins dans toute série homologue ?
 - A. Ils ont la même formule empirique (formule brute).
 - B. Ils diffèrent par un groupe CH₂.
 - C. Ils possèdent des groupes fonctionnels différents.
 - D. Ils diffèrent par leur degré d'insaturation.

29.	Quel	uel type de composé doit contenir au minimum trois atomes de carbone ?		
	A.	Un aldéhyde		
	B.	Un acide carboxylique		
	C.	Un ester		
	D.	Une cétone		
30.	Quel	nel est le nom conventionnel (IUPAC) de CH ₃ CH ₂ CH(CH ₃) ₂ ?		
	A.	1,1-diméthylpropane		
	B.	2-méthylbutane		
	C.	isopentane		

éthyldiméthylméthane

D.