CH 3 – Function Limits and Continuity

Luke Lu • 2025-09-26

Definitions

If $f: \mathbb{R} \to \mathbb{R}$ is a function and $a \in \mathbb{R}$, $\lim_{x \to a} f(x) = L$ if for all $\varepsilon > 0$ there exists $\delta > 0$ s.t. if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$

Examples:

1)Prove using the $\varepsilon - \delta$ definition that $\lim_{x\to 0} f(x)$ DNE where

$$f(x) = \begin{cases} -2 & \text{if } x < 0\\ 3 & \text{if } x > 0 \end{cases}$$

Domain: $\mathbb{R} \setminus \{0\}$

Take $\varepsilon = 1$. Consider some $\delta > 0$. Whitin $(0 - \delta, 0 + \delta)$

We have both $(-\delta,0)$ where f(x)=-2 and $(0,\delta)$ where f(x)=3. If this δ exists for $\varepsilon=1$ then the limit L would need to be distance 1 or both -2 and 3, where is impossible.

$$\therefore \lim_{x \to 0} f(x) = \text{DNE}$$

2)
$$\lim_{x\to 7} 8x - 3 = 53$$

Let $\varepsilon > 0$ be arbitrary.

We want find δ s.t. if $0<|x-7|<\delta$ then $|8x-3-53|<\varepsilon\to\delta=\frac{\varepsilon}{8}$

Pick $\delta = \frac{\varepsilon}{8}$.

Then if
$$0 < |x-7| < \frac{\varepsilon}{8}, |(8x-3)-53| = |8x-56| = 8|x-7| < 8 \cdot \frac{\varepsilon}{8} = \varepsilon$$

3)
$$\lim_{x\to 1} x^2 + 3x + 4 = 8$$

We want for any $\varepsilon>0$ and $\delta>0:|x-1|<\delta$, then $|f(x)-L|<\varepsilon$

$$\leftrightarrow |x^2 + 3x - 4| < \varepsilon \leftrightarrow |(x+4)(x-1)| < \varepsilon \leftrightarrow |x+4| - |x-1| < \varepsilon$$

I can always make δ smaller if I need to.

take
$$\delta < 1$$
, then $|x-1| < 1 \Longrightarrow 0 < x < 2$ $|x+4| < 6 \to |x+4| x - 1| < 6\delta$, but $6\delta < \varepsilon \leftrightarrow \delta < \frac{\varepsilon}{4}$. Say $\frac{\varepsilon}{7} < \frac{\varepsilon}{6}$ for all epsilon. Take $\delta < \min(1, \frac{\varepsilon}{6})$

Proof

Let $\varepsilon>0$ be given. Take $\delta=\min\left(\frac{1}{2},\frac{\varepsilon}{7}\right)$. Then, if $|x-1|<\delta,|x^2+3x+4-8|=|x^2+3x-4|=|(x+4)(x-1)|=|(x+4)(x-1)|<6\cdot\frac{\varepsilon}{7}<\varepsilon$

Info - Sequential Characterization of Limits Theorem

Let $a \in \mathbb{R}$. let the function f(x) be defined on an open interval containing a, expect possibly at x = a itself. Then the following are equivalent:

- 1. $\lim_{x\to a} f(x) = L$
- 2. For all sequences $\{x_n\}$ satisfying $\lim_{n\to\infty}x_n=a$ and $x_n\neq a \ \forall n\in\mathbb{N}$, we have that $\lim_{n\to\infty}f(x_n)=L$
- ∇ Tip Usage of Sequential Characterization of Limits
- 1. Find a sequence $\{x_n\}$ with $x_n \to a$
- 2. Find two sequences $\{x_n\}, \{y_n\}$ with $x_n, y_n \to a$ and $x_n, y_n \neq a \forall n \in \mathbb{N}$ but which $\{f(x_n)\}, \{f(y-n)\}$ converge to different values

Proof

 $\Longrightarrow : \lim_{x \to a} f(x) = L \text{ means } \forall \varepsilon > 0, \exists \delta > 0 : |x - a| < \delta, \text{ then } |f(x) - L| < \varepsilon.$ Let $\{x_n\}$ be s.t. $x_n \to a \text{(meaning that } \forall \varepsilon > 0, \exists N \in \mathbb{R} : \forall n > \mathbb{N}, |x_n - a| < \varepsilon_2) \text{ and } x_n \neq a \text{ for any } n.$

In particular, let ε for $x_n \to a$ be δ . Then $\forall n > N$, $|x_n - a| < \delta$, and so $|f(x)_n| < \varepsilon_1$. Then $\forall n > N$, $|x_n - a| < \delta$ and so $|f(x_n) - L| < \varepsilon_1$. So by definition, $\lim_{n \to \infty} f(x_n) = L$

Side Question: We saw the limit of a sequence is unique. Is the same true for limits of functions?

ANS: NO, it is like saying $\lim_{x\to a} f(x) = L$ and = M and $L \neq M$ Suppose true. By Sequential Characterization of Limits, $\forall \{x_n\} \to a$ but $x_n \neq a \forall n, f(x_n) \to L$ and $f(x_n) \to M$ but $L \neq M$ Since the limits of sequences are unique, thus there is a contradiction.

Examples:

Prove that $\lim_{x\to 0}\cos\left(\frac{1}{x}\right)$ does not exist

We take sequences of peak points of $\cos(\frac{1}{x})$, that is -1, 1. Then will converge to -1, 1 repeatedly, so by Sequential Characterization, $\lim_{x\to 0}\cos(\frac{1}{x})$ will not exist.

$$\cos\left(\frac{1}{x}\right) = 1 \text{ if } x = \frac{1}{2k\pi}, k \in \mathbb{Z}, \text{ and } \cos\left(\frac{1}{x}\right) = -1 \text{ if } x = \frac{1}{(2k+1)\pi}, k \in \mathbb{Z}.$$

Let $x_n=\frac{1}{2}n\pi$ and $y_n=\frac{1}{2n+1}\pi$. Then $x_n,y_n\to 0, x_n,y_n\neq 0 \forall n$. It converges to both -1 and 1. By Sequential Characterization, the limit DNE.

Limit Laws

 $\mathbf{Info}-\mathrm{Let}\ f,g\ \mathrm{be}\ \mathrm{functions}\ \mathrm{with}\ \mathrm{lim}_{x\to a}\ f(x)=L, \ \mathrm{lim}_{x\to a}\ g(x)=M\ \mathrm{for\ some}\ L,M\in\mathbb{R}$ then:

- 1. For any $c \in \mathbb{R}$, if f(x) = c for all n then L = c
- 2. For any $c \in \mathbb{R}$, if $\lim_{x \to a} cf(x) = cL$
- 3. $\lim_{x\to a} (f(x) + g(x)) = L + M$
- 4. $\lim_{x\to} f(x) \cdot g(x) = LM$
- 5. $\lim_{n\to\infty} \frac{f(x)}{g(x)} = \frac{L}{M}$ if M = 0
- 6. If $\alpha>0$ and L>0, then $\lim_{x>a}f(x)^{\alpha}=L^{\alpha}$

Info — Limit of Polynomial Functions Let $p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ be a polynomial.

Then $\lim_{x\to a} p(x) = p(a)$

Proof

$$\lim_{x \to a} x = a$$

$$\lim_{x \to a} x^i = a^i$$

$$\lim_{x \to a} a_i x^i = a_i a^i$$

$$\lim_{x \to a} \sum_{i=0}^n a_i x^i = \sum_{i=0}^n a_i a^i$$

Info – Limit of Rational Functios

Let $f(x) = \frac{p(x)}{q(x)}$ when p, q be polynomial functions and $a \in \mathbb{R}$

- 1. If $q(a) \neq 0$ then $\lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)}$
- 2. If $\lim_{x\to a} q(a) = 0$ but then $\lim_{x\to a} p(x) \neq 0$ then $\lim_{x\to a} \frac{p(x)}{q(x)}$ is DNE. If $x\to a, x<0$, then the limit diverges to $-\infty$. If $x\to a, x>0$, then the limit diverges to ∞ .
- 3. Otherwise, p(a) = 0 = q(a), so both p(x) and q(x) have (x a) as a factor. Divide it out and then repeat the process.

Examples:

1.
$$\lim_{x\to -3} \frac{x^3+10x^2+13x-24}{x^2-4x-21}$$

$$\Rightarrow \stackrel{\left[\frac{0}{0} \right]}{=} \lim_{x \to -3} \frac{(x+3)(x-1)(x+8)}{(x+3)(x-7)} = \lim_{x \to -3} \frac{(x-1)(x+8)}{(x-7)} = \frac{(-3-1)(-3+8)}{(-3-7)} = \frac{-20}{-10} = 2$$

Info – Squeeze Theorem(Functions):

If $g(x) \le f(x) \le h(x)$ be functions defined in an open interval I around a except possibly at a.

If
$$\forall a \in I \setminus \{a\}$$
 we have $g(x) < f(x) \le h(x)$ and $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} f(x) = L$

- ho ${f Tip}$ When to apply Squeeze Theorem
- 1. Trigonometeric functions with clear bounds and polynomial terms before
- 2. Exponential Functions with constants terms or by defining a certain inverval

2. Evaluate $\lim_{x\to 0} x^2 \cos \left(\frac{1}{x}\right)$

$$-1 \le \cos \left(\frac{1}{x}\right) \le 1$$

$$-x^2 \le x^2 \cos\left(\frac{1}{x}\right) \le x^2$$

Notice that x^2 are polynomial function that is defined in $x \in \mathbb{R}$.

$$\lim_{x \to 0} -x^2 = \lim_{x \to 0} x^2 = 0$$

By Squeeze Theorem, $\lim_{x\to 0} x^2 \cos \left(\frac{1}{x}\right) = 0$