Отчет по исследованию алгоритма топологической сортировки

Величко Кирилл

7 декабря 2020 г.

Содержание

1	Введение	2
	1.1 Постановка задачи	2
	1.2 Неформальное описание алгоритма:	2
	1.3 Формальное описание алгоритма	2
	1.4 Применение	3
2	Математическое обоснование алгоритма	3
	2.1 Обоснование корректности алгоритма	3
	2.2 Оценка сложности алгоритма	3
3	Характеристики входных данных	4
	3.1 Структура входных данных алгоритма	4
	3.2 Генерация входных данных	4
4	Вычислительный эксперимент	5
	4.1 Цели	Ę
	4.2 Методология	5
5	Результаты	6
	5.1 Выводы	7
6	Список литературы	7

Резюме

Введение

Топологическая сортировка (Topological sort) — один из основных алгоритмов на графах, который применяется для решения множества более сложных задач. Задача топологической сортировки графа состоит в следующем: указать такой линейный порядок на его вершинах, чтобы любое ребро вело от вершины с меньшим номером к вершине с большим номером. Очевидно, что если в графе есть циклы, то такого порядка не существует. Представленный далее алгоритм был придуман Тарьяном в 1976 году.

Постановка задачи

Пусть задан ориентированный граф G = (V, E), где:

- \bullet V множество вершин графа.
- $E \subset V \times V$ множество ребер графа.
- G(V, E) не содержит циклов

Требуется найти такое отображение $\phi: V \to \{1..n\}, uv \in E \to \phi(u) < \phi(v)$

Неформальное описание алгоритма:

Для каждой вершины V графа G(V, E) мы вызываем алгоритм поиска в глубину. После завершения работы над вершиной мы кладём её в начало связного списка всех вершин. Утверждается, что полученный связный список, является тем самым отображением $\phi: V \to \{1..n\}$, удовлетворяющий условию $uv \in E \to \phi(u) < \phi(v)$

Формальное описание алгоритма

Ниже приведен псевдокод реализующий алгоритм топологической сортировки:

```
Topological Sort(G):
1 Fill(visited, False)
2 \quad V \coloneqq G.V
3 for v \in V
4
     if not visited[v]
        DFS(v)
6 ans.reverse()
7 return ans
DFS(v):
1 visited[v] := True
2 for vu \in E
3
     if not visited[u]
        DFS(u)
4
5 ans.pushback(v)
```

Алгоритм предполагает, что на вход подаётся ориентированный граф G без циклов.

Пояснения к процедурам:

Процедура Fill принимает массив **visited** и устанавливает для всех вершин стандартное значение **False** Процедура DFS принимает принимает вершину $v \in V$ и выполняет поиск в глубину из этой вершины Процедура Pushback добавляет вершину v в конец массива.

Процедура Reverse выполняет перестановку элементов массива в обратном порядке.

Применение

Топологическая сортировка применяется в самых разных ситуациях, например при создании параллельных алгоритмов, когда по некоторому описанию алгоритма нужно составить граф зависимостей его операций и, отсортировав его топологически, определить, какие из операций являются независимыми и могут выполняться параллельно (одновременно). Примером использования топологической сортировки может служить создание карты сайта, где имеет место древовидная система разделов. Также топологическая сортировка применяется при обработке исходного кода программы в некоторых компиляторах и IDE, где строится граф зависимостей между сущностями, после чего они инициализируются в нужном порядке, либо выдается ошибка о циклической зависимости.

Математическое обоснование алгоритма

Обоснование корректности алгоритма

Лемма 2.1. G - ациклический ориентированный граф, тогда $uv \in E \to \text{leave}[u] > \text{leave}[v]$, где leave - массив времени выхода из вершины при обходе в глубину.

Доказательство. Введём следующую терминологию. Вершина $v \in V$ при обходе поиском в глубину называется:

- белой, если она еще не была рассмотрена алгоритмом
- серой, если она находится в текущем дереве вызовов процедуры DFS
- черной, если работа с ней уже закончена

Рассмотрим произвольное ребро (u,v), исследуемое процедурой DFS. При исследовании вершина v не может быть серой, так как серые вершины в процессе работы DFS всегда образуют простой путь в графе, и факт попадания в серую вершину v означает, что в графе есть цикл из серых вершин, что противоречит условию утверждения. Следовательно, вершина v должна быть белой либо черной. Если вершина v — белая, то она становится потомком u, так что leave[u] > leave[v]. Если v — черная, значит, работа v ней уже завершена v значение leave[u] уже установлено. Поскольку мы все еще работаем v вершиной v значение leave[u] еще не определено, так что, когда это будет сделано, будет выполняться неравенство leave[u] > leave[v]. Следовательно, для любого ребра v0 ориентированного ациклического графа выполняется условие leave[u] > leave[v].

Теорема 2.2. G - ациклический ориентированный граф, тогда $\exists \phi: V \to \{1..n\}, uv \in E \to \phi(u) < \phi(v)$

Доказательство. Определим leave[u] как порядковый номер окраски вершины u в черный цвет в результате работы процедуры DFS. Рассмотрим функцию $\phi = n + 1$ – leave[u]. Очевидно, что такая функция подходит под критерий функции ϕ из условия теоремы, так как выполнена предыдущая лемма.

Следствие 2.3. Представленный выше алгоритм топологической сортировки работает корректно.

Оценка сложности алгоритма

Если структуры visited, G.V, G.E, ans устроены как массивы, то сложность процедур следующая:

- Сложность процедуры Fill $\Theta(V)$.
- Количество итераций цикла for $-\Theta(V)$
- Суммарная сложность процедуры DFS $\Theta(V+E)$ (в сумме по всем итерациям цикла).
- Сложность процедуры pushback $\Theta(1)$.
- Сложность процедуры reverse $\Theta(V)$.

Итоговая сложность

$$\Theta(V) + \Theta(V) + \Theta(V + E) + \Theta(V) \cdot \Theta(1) + \Theta(V) = \Theta(V + E)$$

Характеристики входных данных

Структура входных данных алгоритма

Входные данные должны содержать описание графа. Не теряя общности, положим что вершинами графа являются натуральные числа, а сам граф не содержит кратных ребер и петель.

Первая строка содержит два числа n и m — количество вершин и ребер в графе

Следующие m строк содержат три числа (u, v) — означающие что в графе есть ребро (u, v).

Рис. 1: Иллюстрация: Слева дан ациклический ориентированный граф, справа дано его формальное описание

Генерация входных данных

Числа n и m выбираются из фиксированного диапазона , причем $\max(m) \leqslant \frac{n(n-1)}{2}$. После чего генерируется m чисел из диапазона $[0; \frac{n(n-1)}{2})$. Каждое число соответствует ребру (u,v) по следующему правилу:

$$x \mapsto (x \operatorname{div} n, x \operatorname{mod} n)$$

Далее нам необходимо проверить граф на ацикличность, это можно сделать простым обходом в глубину. Для этого нам необходимо проверить, что в дереве обхода нет обратных ребёр.

Формальная процедура генерации выглядит так:

```
\begin{aligned} &\operatorname{GenGraph}(N): \\ &1 \quad M \coloneqq \operatorname{GetRandomInt}\left(\left[N^{\frac{1}{2}}, \frac{N(N-1)}{2}\right]\right) \\ &2 \quad E \coloneqq \operatorname{GetRandomSeq}\left(\left[0; \frac{N(N-1)}{2} - 1\right], M\right) \\ &3 \quad Edges \coloneqq \{\varnothing\} \\ &4 \quad \text{for } e \in E: \\ &5 \quad E = E \ \cup \ \left(\text{e div N, e mod N}\right)\right) \\ &6 \quad V = \{1..n\} \\ &7 \quad \text{if } Acyclic(V, E): \\ &8 \quad Write(N, M) \\ &9 \quad \text{for } u, v \in Edges: \\ &10 \quad Write(u, v) \end{aligned}
```

Ребра ограничены снизу, чтобы граф был не слишком разряжённым и сверху, так как при большем количнстве ребёр граф, очевидно, имеет циклы.

Вычислительный эксперимент

Цели

- Установить эмпирическую зависимость времени исполнения программы-алгоритма при росте параметра N от 5 вершин до 100;
- Полученные результаты сравнить с теоретическими оценками;

Методология

Для каждого $n \in [5;100]$ кратного 5 сгенерировать 300 тестовых случаев, и сравнить время работы программы на параметрах n и m с теоретическими следующим образом:

- Рассмотреть медианное значение $\mathcal{T}(n)$
- \bullet Рассмотреть медианное отношение $\frac{T(n+m)}{n+m}$

Здесь $\mathcal{T}(n)$ — среднее работы программы для теста с n вершинами, $\mathcal{T}(n+m)$ — время работы программы для теста с n вершинами и m рёбрами.

Результаты

Численные результаты представлены в таблице 1

N	$\mathcal{T}(n)$	$\frac{T(N+M)}{N+M}$
5	1.0	0.11
10	2.0	0.14
15	3.0	0.18
20	4.0	0.11
25	4.0	0.11
30	5.0	0.11
35	5.0	0.09
40	6.0	0.11
45	6.0	0.10
50	7.0	0.11
55	7.0	0.11
60	8.0	0.10
65	9.0	0.11
70	9.0	0.09
75	10.0	0.10
80	10.0	0.10
85	11.0	0.10
90	12.0	0.11
95	12.0	0.14
100	13.0	0.10
Арифмит.	7.2	0.11
Медиана	7.0	0.11

Таблица 1: Результаты эксперимента

Рис. 2: $\mathcal{T}(n)$

Зависимость $\mathcal{T}(n)$ представлена на рисунке 2:

Рис. 3: $\frac{T(n+m)}{n+m}$

Зависимость $\frac{T(n+m)}{n+m}$ представлена на рисунке 3:

Выводы

Эмпирически полученная зависимость $\mathcal{T}(n+m)$, несмотря на небольшие отклонения, в среднем отличается от теоретически полученной оценки на константу 0.11. Отсюда можно сделать вывод, что данный алгоритм на самом деле имеет сложность работы $\Theta(V+E)$.

Список литературы

- Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. Алгоритмы: Построение и анализ [2005]
- Бьерн Страуструп. Язык программирования С++. Зе Издание [1985]