Processi spontanei

Una **reazione spontanea** avviene senza intervento esterno in opportune condizioni.

Una reazione è **non spontanea** se non avviene senza un intervento esterno in opportune condizioni.

In generale, processi che avvengono spontaneamente in una direzione non sono spontanei nella direzione opposta nelle stesse condizioni

spontaneità = irreversibilità

G. Sotgiu

- Il calore fluisce spontaneamente da un corpo più caldo a uno più freddo, ma il passaggio inverso non avviene spontaneamente.
- L'espansione di un gas in un bulbo vuoto è un processo spontaneo

ma il processo opposto (il ritorno di tutte le molecole in un bulbo) non è spontaneo.

• Un pezzo di sodio reagisce violentemente con acqua per formare idrossido di sodio e idrogeno gassoso, ma l'idrogeno non reagisce con l'idrossido di sodio per formare acqua e sodio metallico.

$$2Na + 2H_2O \longrightarrow 2NaOH + H_2 \longrightarrow 2NaOH + H_2 \xrightarrow{\times} 2Na + 2H_2O$$

• Il ferro a contatto con acqua e ossigeno forma la ruggine, ma la ruggine non forma spontaneamente il ferro.

G. Sotgiu

Criterio di *Berthelot*: Una diminuzione di entalpia significa che la reazione è spontanea

Parigi, 25 ottobre 1827 – Parigi, 18 marzo 1907

Reazioni spontanee

$$CH_4 (g) + 2O_2 (g) \longrightarrow CO_2 (g) + 2H_2O (l) \Delta H^0 = -890.4 \text{ kJ/mol}$$

$$H^{+}$$
 (aq) + OH^{-} (aq) $\longrightarrow H_{2}O$ (l) $\Delta H^{0} = (-56.2)kJ/mol$

Ma

$$NH_4NO_3$$
 (s) $\xrightarrow{H_2O}$ $NH_4^+(aq) + NO_3^-(aq) \Delta H^0 = +25 kJ/mol$

il solo segno del AH non è sufficiente

G. Sotgiu

3

2° Principio della TD

 1° P.TD. afferma che l'energia totale deve conservarsi ($\Delta U = Q - W$)

MA

non pone alcun vincolo al tipo di trasformazioni di energia da una forma all'altra

Si osserva sempre che $Q_2 < 0$ mai che $Q_2 \ge 0$

 Q_1 non viene trasformato totalmente in W; una parte (Q_2) deve essere ceduta alla sorgente a T inferiore

 $W < Q_1$

impossibilità di trasformare integralmente calore in lavoro (mantenendo costante lo stato del STD)

$$\eta = \frac{W_{TOT}}{Q_1}$$

G. Sotgiu

2° Principio della TD

Se il processo <u>non è ciclico</u> si può avere Q = W (es: espansione isoterma di un gas)

MA

questo non è l' unico risultato finale, cioè si ha anche una variazione dello stato del S.TD. $(\Delta U \neq 0)$

Inoltre

tra due S.TD. a T diversa posti a contatto c'è sempre cessione di calore dal S.TD. più caldo a quello più freddo: il calore non passa *MAI* da quello freddo a quello caldo!

ESSENZA

è sempre possibile convertire **completamente** energia "ordinata" in energia "disordinata", l'opposto può essere ottenuto solo a spese di un ulteriore sforzo organizzativo.

G. Sotgiu

2° Principio della TD

Enunciato di KELVIN:

è impossibile realizzare una trasformazione il cui <u>unico</u> risultato finale sia la conversione in lavoro del calore estratto da un sistema che si mantiene a temperatura costante

Enunciato di CLAUSIUS:

è impossibile realizzare una trasformazione il cui *unico* risultato finale sia il trasferimento di calore da un corpo ad una data temperatura ad un altro a temperatura più elevata

Conseguenza: è vietato un *moto perpetuo di seconda specie*, cioè la possibilità di estrarre calore da una sorgente a temperatura T₁ e di trasformarlo in lavoro meccanico senza l'intervento di di una seconda sorgente a temperatura più bassa

5. Sotgiu

CICLO DI CARNOT

- •Energia interna: $\Delta U = 0$ per un ciclo
- •Calore messo in gioco dal S.T.D.:

$$Q_{TOT} = Q_1 + Q_2$$

·Lavoro messo in gioco dal S.T.D.:

$$\mathbf{W}_{\text{TOT}} = \mathbf{W}_1 + \mathbf{W}_2 + \mathbf{W}_3 + \mathbf{W}_4$$
 (area racchiusa dalla curva)

$$Q_{TOT} = W_{TOT}$$

 $\underline{RENDIMENTO}$: si definisce come rendimento η di un ciclo termodinamico il rapporto tra il lavoro compiuto W ed il calore assorbito Q_1

$$\eta = \frac{W_{TOT}}{Q_1} = \frac{Q_1 + Q_2}{Q_1} = 1 - \frac{|Q_2|}{Q_1}$$

$$Q_{2} < 0$$

definizione di rendimento applicabile per qualsiasi S.TD. e per qualsiasi trasformazione reversibile ed irreversibile

G. Sotgiu

8

CICLO DI CARNOT

$$\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$$

 $T_2 < T_1$

per un gas perfetto e trasf. reversibili

Teorema di Carnot (dimostrabile)

Tutte le macchine termiche reversibili che lavorano tra la stessa temperatura superiore T_1 ed inferiore T_2 hanno lo stesso rendimento; il rendimento non dipende quindi nè dal S.TD. nè dalle trasformazioni che compongono il ciclo (ma devono essere reversibili)

lavoro massimo

Per macchine irreversibili dato che dW_{rev} > dW_{irr}

 $\eta_{rev} > \eta_{irr}$ (sempre tra T_1 e T_2)

G. Sotgiu

Temperatura Termodinamica

$$\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$$
 Teorema di Carnot: η non dipende dal S.TD. sono le temperature della sorgente calda e di quella fredda a determinare il η
$$\frac{Q_2}{Q_1} = \frac{T_2}{T_1}$$
 rapporto funzione solo di T_1 e T_2

$$\frac{Q_2}{Q_1} = \frac{T_2}{T_1}$$
 rapporto funzione solo di T₁ e T₂

η utilizzato per definire le temperature delle sorgenti

se $T_2 \rightarrow 0$ allora $\eta \rightarrow 1$

Zero assoluto: temperatura alla quale una trasformazione isoterma avviene senza scambio di calore

11 G. Sotgiu

Funzione Entropia

$$\frac{Q}{T} = S$$
 $\Delta S = \sum_{1} \Delta S_{i} = \frac{Q_{1}}{T_{1}} - \frac{|Q_{2}|}{T_{2}} = 0$

Applicabile a qualsiasi ciclo reversibile (dimostrazione grafica) Per scambi di calore reversibili ma infinitesimi

$$dS = \left(\frac{dQ}{T}\right)_{rev} \qquad \Delta S_{ciclo} = \oint \frac{dQ_{rev}}{T} = 0$$

Funzione di stato ====> **ENTROPIA**

$$S_B - S_A = \int_A^B \frac{dQ_{rev}}{T}$$
 per qualsiasi percorso tra
A e B purchè reversibile

Funzione Entropia

$$dS = \left(\frac{dQ}{T}\right)_{rev} > \left(\frac{dQ}{T}\right)_{irr}$$

Disuguaglianza di Clausius

Per un sistema isolato dQ = 0

$$\Delta S \ge 0$$

per reversibili $\Delta S = 0$ per irreversibili $\Delta S > 0$

G. Sotgiu

13

Definizione statistica di Entropia

Microstati che derivano dalla combinazione di due dadi e i corrispondenti macrostati.

Il macrostato più probabile ha un elevatissimo numero di microstati rispetto agli altri macrostati.

G. Sotgiu

Microstati, Entropia, e il Secondo Principio della Termodinamica

Alcuni modi possibili di distribuire quattro

molecole in due scompartimenti uguali.

Ogni sistema ha tendenza ad evolvere verso uno stato complessivamente più libero e disordinato. L'**entropia** è una misura del numero dei possibili microstati possibili per il sistema per dare un macrostato

$$S = k_{\rm B} \ln W$$

Con k_B = costante di Boltzmann 1.3807·10⁻²³ J K-1 W = n° di microstati differenti che contribuiscono a uno stesso <math>macrostato

Variazione di entropia

$$\Delta S = S_{\rm f} - S_{\rm i}$$

$$\Delta S = k_{\rm B} \ln W_{\rm f} - k_{\rm B} \ln W_{\rm i}$$

$$\Delta S = k_{\rm B} \ln \frac{W_{\rm f}}{W_{\rm i}}$$

G. Sotgiu

15

Terzo principio della termodinamica:

Stabilisce che l'entropia di una sostanza pura nella sua forma termodinamicamente più stabile è zero alla temperatura T = 0 K, indipendentemente dalla pressione.

$$S(T = 0 \text{ K}) = k_{\text{B}} \ln W = k_{\text{B}} \ln (1) = 0$$

$$\lim_{T\to 0} S = 0$$

Variazioni di temperatura

Entropie assolute

$$S(T) = S(T_1) + \int_{T_1}^{T} \frac{C_P}{T} dT \xrightarrow{T_1 = 0 \text{ K}} S(T) = \int_{0}^{T} \frac{C_P}{T} dT$$

Entropie assolute per mole di materiale misurate a pressione normale di 1 bar sono dette **entropie molari standard,** e sono indicate con $\overline{S^o}$.

Dal Secondo Principio della Termodinamica:

L'entropia di un sistema isolato aumenta durante un processo spontaneo e rimane costante durante un processo reversibile (cioè che passa attraverso tutti stati d'equilibrio)

Considerando l'universo come sistema isolato:

Processo spontaneo

$$\Delta S_{\rm univ} = \Delta S_{\rm sist} + \Delta S_{\rm amb} > 0$$

Processo reversibile (o all'equilibrio)

$$\Delta S_{\rm univ} = \Delta S_{\rm sist} + \Delta S_{\rm amb} = 0$$

Se ΔS_{univ} è negativo, il processo **non è spontaneo** nella direzione indicata. *E' invece spontaneo nella direzione opposta*.

G. Sotgiu 20

Spontaneità e Energia libera di Gibbs

Quindi:

$$\begin{split} \Delta S_{\text{univ}} &= \Delta S_{\text{sist}} + \Delta S_{\text{amb}} \geq 0 \\ \Delta S_{\text{amb}} &= q_{\text{amb}} / T \\ \Delta S_{\text{univ}} &= \Delta S_{\text{sist}} + \frac{q_{\text{amb}}}{T} \geq 0 \\ q_{\text{sist}} &= -q_{\text{amb}} \\ \Delta S_{\text{univ}} &= \Delta S_{\text{sist}} - \frac{q_{\text{sist}}}{T} \geq 0 \\ P \cos \tan t e \\ \Delta S_{\text{sist}} - \frac{\Delta H_{\text{sist}}}{T} \geq 0 \end{split}$$

G. Sotgiu

Variazione di entropia nell'ambiente (ΔS_{amb})

$$\Delta H_{\rm sist} - T \Delta S_{\rm sist} \le 0$$

Energia libera di Gibbs

$$G = H - TS$$

$$\Delta G = \Delta H - T \Delta S$$

Criterio di spontaneità

(a P e T costante)

 $\Delta G \leq 0$

G. Sotgiu

Dipendenza dalla temperatura di ΔG

$$\Delta G = \Delta H - T \Delta S$$

ΔH e ΔS entrambe > 0

 ΔG sarà > 0 a basse temperature (dove predomina il fattore entalpico) e diventa < 0 ad alte temperature (dove predomina il fattore entropico). La temperatura alla quale ΔG inverte il segno da + a - (quando ΔH = T ΔS) dipende dai valori di ΔH e ΔS .

$\Delta H > 0 e \Delta S < 0$

 ΔG sarà sempre > 0 indipendentemente dalla temperatura.

$\Delta H < 0 e \Delta S > 0$

 ΔG sarà sempre < 0 indipendentemente dalla temperatura.

$\Delta H < 0 e \Delta S < 0$

 ΔG sarà < 0 a basse temperature (dove predomina il fattore entalpico) e diventa > 0 ad alte temperature (dove predomina il fattore entropico). La temperatura alla quale ΔG inverte il segno da – a + (quando ΔH = T ΔS) dipende dai valori di ΔH e ΔS .

G. Sotgiu

4

$\Delta G < 0$	l'energia libera di Gibbs $\Delta G = 0$	$\Delta G > 0$
processo spontaneo	sistema all'equilibrio	processo non spontaneo
Condizioni che d	eterminano la spontaneità (di una trasformazione
Reazione	Variazione di entropia	Reazione spontanea
Esotermica	Aumento	Sì
$(\Delta H < 0)$	$(\Delta S > 0)$	in ogni caso $\Delta G < 0$
Esotermica	Diminuzione	Sì
$(\Delta H < 0)$	$(\Delta S < 0)$	solo se $ T \Delta S < \Delta H $
Endotermica	Aumento	Sì
$(\Delta H > 0)$	$(\Delta S > 0)$	solo se $ T \Delta S > \Delta H $
Endotermica	Diminuzione	No
$(\Delta H > 0)$	$(\Delta S < 0)$	in ogni caso $\Delta G > 0$

Energia libera

$$\Delta H_{reazione} = \sum \nu_{_{P}} \cdot \overset{-}{H}{}^{o}_{f(Prodotti)} - \sum \nu_{_{R}} \cdot \overset{-}{H}{}^{o}_{f(Reagenti)}$$

$$\Delta S_{reazione} = \sum \nu_{P} \cdot \overline{S}_{Prodotti}^{o} - \sum \nu_{R} \cdot \overline{S}_{Re\,agenti}^{o}$$

$$\Delta G_{reazione} = \Delta H_{reazione} - T\Delta S_{reazione}$$

$$\Delta G_{reazione} = \sum \nu_{P} \cdot \overline{G}_{f(Prodotti)}^{o} - \sum \nu_{R} \cdot \overline{G}_{f(Reagenti)}^{o}$$

$$\Delta \overline{\mathsf{G}}_{f(\mathsf{costituentielementari})}^{\circ} = \mathsf{zero}$$
 $\Delta \overline{\mathsf{H}}_{f(\mathsf{costituentielementari})}^{\circ} = \mathsf{zero}$

08/05/18

Energia libera

$$G = H - TS$$

essendo H = U + PV

G = U + pV - TS

differenziando

$$dG = dU + pdV + Vdp - TdS - SdT$$

Per il I principio della termodinamica U = Q - W \rightarrow dU = dQ - dW

Per il II principio della termodinamica dQ = TdS

$$dU = TdS - dW = TdS - pdV$$
 quindi $dU - TdS + pdV = 0$

$$dG = Vdp - SdT$$

27

Energia libera

Per la reazione

$$2 H_{(g)} = H_{2(g)}$$

- $2~H_{(g)} = H_{2(g)}$ prevedere il segno di ΔH e ΔS
- graficare l'andamento qualitativo di ΔG vs T

 $\Delta H < 0$ (formazione di un legame libera energia)

 $\Delta S < 0$ (diminuiscono i gradi di libertà)

G. Sotgiu