

☑ my account

🕝 learning center

**Q** patent cart

ાં document ca

help

home

searching v

patents 💀

documents w

toc journal watch w

#### **Format Examples**

**US Patent** 

US6024053 or 6024053

**US Design Patent** 

D0318249

**US Plant Patents** 

PP8901

**US Reissue** 

RE35312

US SIR

H1523

**US Patent Applications** 

20020012233

**World Patents** 

WO04001234 or WO2004012345

European

EP1067252

**Great Britain** 

GB2018332

**German** DE29980239

Nerac Document Number (NDN)

certain NDN numbers can be used

for patents

view examples



### 😂 Patent Ordering

Enter Patent Type and Number: optional reference note

GO

Add patent to cart automatically. If you uncheck this box then you must *click on*Publication number and view abstract to Add to

O Patent(s) in Cart

### **Patent Abstract**

Add to cart

GER 1995-12-21 4420962 Procedure for the treatment of silicon

**INVENTOR(S)**- Benz, Gerhard, Dr. 71032 Boeblingen

DE

INVENTOR(S)- Muenzel, Horst, Dipl.-Phys. Dr. 72770

Reutlingen DE

INVENTOR(S)- Laermer, Franz, Dr. 70437 Stuttgart

DE

**INVENTOR(S)**- Schilp, Andrea 73525 Schwoabisch

GmoOnd DE

**APPLICANT(S)**- Robert Bosch GmbH 70469 Stuttgart

**PATENT NUMBER-** 04420962/DE-A1

**PATENT APPLICATION NUMBER-** 04420962

**DATE FILED-** 1994-06-16

DOCUMENT TYPE- A1, DOCUMENT LAID OPEN (FIRST

PUBLICATION)

**PUBLICATION DATE-** 1995-12-21

**INTERNATIONAL PATENT CLASS-** H01L021308;

C23F00400; G01P01508A

**PATENT APPLICATION PRIORITY-** 4420962, A

PRIORITY COUNTRY CODE- DE, Germany, Ged. Rep. of

PRIORITY DATE- 1994-06-16
FILING LANGUAGE- German

LANGUAGE- German NDN- 203-0339-8248-9

A procedure for the treatment of silicon substrates (1) is envisaged,; with which the silicon substrate is brought into a plasma corroding; annex. A ditch (3) with a side panel





**EXEMPLARY CLAIMS**- is provided and into a plasma corroding plant einge- broke and with a plasma one subject, whereby by treatment with a corrosive gas and a passivating gas a ditch (3) with sides-winding passivation (4) is produced, thus ge-marks that in a further Bearbei tungsschritt in the corroding plant by the corrosive gas, outgoing from the corroding reason (5) of the ditch (3), an underetching (6) is brought in. 2. Procedure according to requirement 1, thus is strengthened gekenn-it draws that before etching the underetching (6 in) by a separating step the Seitenwandpassi-vierung (4). 3. Procedure after one is selected the preceding on- sayings, by the fact characterized that for corrode-gas a fluorine supplying gas (e.g. SFe or NFS). EO 4. Procedure after one the preceding on-sayings, by the fact characterized that as Passi- four-gas a fluorine carbon or fluorine coal which is selected- serstoff (z ex. CHF3, C2F6, C2F4, C4F8) supplying gas. 5. Procedure after one the preceding on-sayings, by the fact characterized that those plasma-energy smaller than 50 electronvolts, preference/advantage-wise is selected smaller than 10 electronvolts. 6. Procedures after one the preceding onsayings, by the fact characterized that to-alternating with corrode - and the passivating gas one works on. 7. Procedure after one of the requirements 1 to 5, by the fact characterized that for bringing in a mixture corrode-and the passivating gas one works on.

**NO-DESCRIPTORS** 

Nerac, Inc. One Technology Drive . Tolland, CT Phone (860) 872-7000 Fax (860) 875-1749 @1995-2003 All Rights Reserved . <u>Privacy Statement</u> . <u>Report a Problem</u>





# BUNDESREPUBLIK @ Offenlegungsschrift

## <sub>10</sub> DE 44 20 962 A 1

(5) Int. Cl.<sup>8</sup>: H 01 L 21/308 C 23 F 4/00

**DEUTSCHLAND** 

**DEUTSCHES PATENTAMT**  Aktenzeichen:

P 44 20 962.2

Anmeldetag:

16. 6.94

Offenlegungstag:

21. 12. 95

(1) Anmelder:

Robert Bosch GmbH, 70469 Stuttgart, DE

© Erfinder:

Benz, Gerhard, Dr., 71032 Böblingen, DE; Muenzel, Horst, Dipl.-Phys. Dr., 72770 Reutlingen, DE; Laermer, Franz, Dr., 70437 Stuttgart, DE; Schilp, Andrea, 73525 Schwäbisch Gmünd, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Verfahren zur Bearbeitung von Silizium
- Es wird ein Verfahren zur Bearbeitung von Siliziumsubstraten (1) vorgesehen, bei dem das Siliziumsubstrat in eine Plasmaätzanlage eingebracht wird. Durch einen ersten Ätzschritt wird ein Graben (3) mit einer Seitenwandpassivierung (4) erzeugt. Durch eine isotrope Plasmaätzung wird dann die Unterätzung (6) erzeugt.





#### Stand der Technik

Die Erfindung geht aus von einem Verfahren zur Bearbeitung von Silizium nach der Gattung des unabhängigen Anspruchs 1. Aus der US-4 784 720 ist bereits ein Verfahren zur Bearbeitung von Silizium in einer Plasmaätzanlage bekannt, bei dem ein Ätzgas und ein Passi- 10 viergas verwendet werden. Durch Anwendung des Ätzgases und des Passiviergases wird ein Graben mit einer Seitenwandpassivierung geschaffen. Als Ätzgas wird ein Chlor- oder Bromlieferant verwendet. Da Chlor und Brom nur bei höheren Ionenenergien im Plasma eine 15 nennenswerte Ätzung von Silizium bewirken, lassen sich mit diesen Ätzgasen nur stark anisotrope Ätzprofile realisieren. Aus der DE 39 27 163 A1 ist ein Verfahren zur Bearbeitung von Silizium bekannt, bei dem ein Ätzgraben mit einer Seitenwandpassivierung erzeugt wird. 20 Durch isotropes Plasmaätzen kann dann ausgehend von den Bodenbereichen der Gräben eine Unterätzung von Strukturen erfolgen. Da als Seitenwandpassivierung ein Niedertemperaturoxid oder -nitrid vorgesehen ist, erfordert das Verfahren mehrere Bearbeitungsschritte in 25 unterschiedlichen Ätzanlagen und Abscheideanlagen (Plasmaätzer, PECVD-oder LPCVD-Anlage).

#### Vorteile der Erfindung

Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des unabhängigen Anspruchs 1 hat demgegenüber den Vorteil, daß in ein und derselben Ätzanlage sowohl ein Graben mit einer Seitenwandpassivierung erzeugt wird, wie auch eine isotrope Unterät- 35 zung der so gebildeten Strukturen erfolgen kann, ohne den Wafer zwischendurch aus der Anlage nehmen zu müssen. Es wird so ein besonders einfaches Verfahren angegeben, mit dem unterätzte Siliziumstrukturen erzeugt werden können.

Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im unabhängigen Anspruch angegebenen Verfahrens möglich. Durch die Verstärkung ständigkeit der Siliziumstrukturen bei der nachfolgenden isotropen Unterätzung verbessert. Durch ein Fluorplasma läßt sich Silizium besonders einfach und mit hohen Ätzraten bearbeiten. Durch fluorkohlenstoff- oder Seitenwandpassivierung aus einem chemisch besonders beständigen Fluorpolymer gebildet. Durch eine geringe Ionenenergie können einfache und dünne Ätzmaskierungen verwendet werden und trotzdem große Unterrungsstoff erzielt werden. Die gilt insbesondere bei hohen Plasmadichten und geringer Ionenenergie. Durch den alternierenden oder gleichzeitigen Einsatz von Ätzund Passiviergas können tiefe und schmale Grabenwerden.

#### Zeichnungen

Ausführungsbeispiele der Erfindung sind in den Figu- 65 ren dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen die Fig. 1 ein Siliziumsubstrat mit einer Atzmaskierung, Fig. 2 darin eingebrachte Atz-



#### Beschreibung der Erfindung

In der Fig. 1 ist ein Siliziumsubstrat 1 mit einer aufgebrachten Ätzmaskierung 2 gezeigt. Die Ätzmaskierung 2 bedeckt in vorgegebenen Bereichen die Oberfläche des Siliziumsubstrats nicht. In diesen Bereichen erfolgt in den weiteren Prozeßschritten ein Ätzangriff auf das Silizium. Als Materialien für die Ätzmaskierung 2 eignet sich beispielsweise eine dünne Schicht aus Fotolack oder Siliziumoxid. Das Siliziumsubstrat 1 wird zur weiteren Bearbeitung in eine Plasmaätzanlage eingebracht.

In der Fig. 2 wird das Siliziumsubstrat 1 nach einem ersten Plasmaätzschritt gezeigt. In den Bereichen, die von der Ätzmaske 2 nicht bedeckt waren, sind Gräben 3 eingeätzt. Die Gräben 3 weisen dabei ein Seitenwandpassivierung 4 auf. Im Bereich des Bodens 5 sind die Gräben 3 nicht mit einer Passivierschicht 4 bedeckt, so daß dort das Silizium des Substrats 1 freiliegt. Das Einätzen der Gräben 3 erfolgt durch Anwendung eines Gases, welches Silizium isotrop ätzt und eines Gases. welches eine Passivierschicht bildet. Als isotrop ätzendes Gas wird ein Gas, welches Fluor liefert, beispielsweise SF6 oder NF3 verwendet. Als Passiviergas wird ein Teflon bildendes Monomer, in der Regel ein Fluorkohlenstoff oder Fluorkohlenwasserstoff (CHF3, C2F6, C<sub>2</sub>F<sub>4</sub>, C<sub>4</sub>F<sub>8</sub>) verwendet. Das Ätz- und Passiviergas kann gleichzeitig in der Plasmaätzanlage in einer geeigneten Mischung verwendet werden. Alternativ ist es möglich, alternierend eine Vielzahl von aufeinanderfolgenden Atz- und Passivierschritten vorzunehmen. Im Plasma können so bereits bei geringen Ionenenergien (wenige Elektronen Volt) unter der Voraussetzung einer hohen Plasmadichte perfekt anisotrop geätzte Gräben 3 von großer Tiefe (einige 10 µm) und geringer Breite (wenige μm) erzielt werden. Aufgrund der geringen Ionenenergie ist der Abtrag der Ätzmaske 2 gering. Der Boden 5 der Gräben 3 bleibt infolge der Ioneneinwirkung frei und wird nicht mit dem teflonartigen Fluorpolymerfilm der Seitenwandpassivierung 4 bedeckt. Weiterhin ist es auch möglich, zusätzliche Gase wie Stickstoff. Sauerder Seitenwandpassivierung wird die seitliche Ätzbe- 45 stoff oder Argon beizumischen, um die Prozeßeigenschaften des Ätzprozesses zu beeinflussen. Um trotz der geringen Ionenenergie eine ausreichende Plasmadichte, d. h. eine ausreichend hohe Konzentration chemisch reaktiver Ionen zu gewährleisten, sollte die Plasmaätzanfluorkohlenwasserstoffhaltige Prozeßgase wird eine 50 lage über eine geeignete Quelle verfügen und beispielsweise eine Mikrowellen- oder Magnetronplasmaanregung aufweisen.

Nachdem die gewünschte Ätztiefe der Gräben 3 erreicht ist, kann das Fluor liefernde eigentliche Atzgas schiede in der Atzrate von Siliziumsubstrat und Maskie- 55 abgestellt werden und nur noch das Teflon bildende Passiviergas zugeführt werden. Durch diesen Prozeß kann die Dicke der Seitenwandpassivierung 4 erhöht werden. Dabei wird durch gleichzeitige Ioneneinwirkung dafür gesorgt, daß sich der Passivierfilm selektiv strukturen mit einer Seitenwandpassivierung gebildet 60 nur auf den Seitenwänden der Gräben 3 bildet und nicht auf dem Ätzgrund 5.

In der Fig. 3 werden die Gräben 3 nach einem weiteren Ätzschritt gezeigt. In diesem weiteren Ätzschritt wird das Siliziumsubstrat 1 ausschließlich mit dem Fluor liefernden Ätzgas bearbeitet. Die Energie des Plasmas wird dabei in der Größenordnung von nur wenigen Elektronenvolt gewählt, so daß die Ätzung nahezu perfekt isotrop erfolgt. Ausgehend von den freiliegenden



Ätzgrund 5 der Gräben 3 bildet sich dann die Unterätzung 6, wie sie in der Fig. 3 gezeigt wird. Die Ionenenergie wird dabei nicht exakt gleich null Elektronenvolt gesetzt, um zufällige mikroskopische Ablagerungen auf den Böden 5 während des isotropen Unterätzens noch 5 entfernen zu können. Aufgrund der geringen Ionenenergie verursachen zufällig auf die Seitenwand treffende Ionen kaum einen Angriff an der Seitenwandpassivierung 4 oder an der Ätzmaske 2. Wenn, wie in der Fig. 3 gezeigt wird, zwei Gräben 3 in unmittelbarer Nachbar- 10 schaft angeordnet sind, so kann durch die isotrope Unterätzung 6 ein Siliziumsteg 7, der zwischen den beiden Gräben 3 angeordnet ist, komplett vom Substrat 1 gelöst werden. Mit derartigen Strukturen lassen sich beispielsweise dünne Biegezungen oder Kammstrukturen 15 realisieren, die als Beschleunigungssensoren genutzt werden können.

An dem in den Fig. 1 bis 3 gezeigten Prozeßablauf ist besonders vorteilhaft, daß alle Ätzprozesse in ein und derselben Plasmaanlage in einem Prozeß ohne Unterbrechung oder Ausschleusen des Wafers erfolgen können. Die angesprochenen Ätz- und Passiviergase können miteinander oder nacheinander in ein und derselben Ätzanlage angewendet werden. Weiterhin erlauben sie die Ausbildung von besonders schmalen und tiefen Gräben 3, die in einem weiteren Prozeßschritt unterätzt werden können. Es können so Strukturen erzeugt werden, die als Sensoren verwendbar sind.

In der Fig. 4 wird schematisch eine Plasmaätzanlage 11 gezeigt. In der Plasmaätzanlage 11 ist das Siliziumsubstrat 1 und ein weiteres Mittel 10 zur Plasmaerzeugung eingebracht. An das Substrat 1 kann eine hochfrequente Spannung angelegt werden, die die Energie, mit der Ionen auf das Substrat 1 auftreffen, bestimmt. Die weiteren Mittel zur Plasmaerzeugung 10 können als einfache Elektrode, Mikrowellengenerator, Magnetron oder jede andere Plasmaquelle die eine hohe Plasmadichte erzeugt ausgebildet sein.

#### Patentansprüche

1. Verfahren zur Bearbeitung von Silizium, bei dem ein Siliziumsubstrat (1) mit einer Ätzmaskierung (2) versehen wird und in eine Plasmaätzanlage eingebracht und mit einem Plasma beaufschlagt wird, 45 wobei durch Bearbeitung mit einem Ätzgas und einem Passiviergas ein Graben (3) mit einer Seitenwandpassivierung (4) erzeugt wird, dadurch gekennzeichnet, daß in einem weiteren Bearbeitungsschritt in der Ätzanlage durch das Ätzgas, 50 ausgehend vom Ätzgrund (5) des Grabens (3), eine Unterätzung (6) eingebracht wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß vor dem Einätzen der Unterätzung (6) durch einen Abscheideschritt die Seitenwandpassivierung (4) verstärkt wird.

3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für das Ätzgas ein Fluor lieferndes Gas (z.Bsp. SF6 oder NF3) ausgewählt wird.

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Passiviergas ein Fluorkohlenstoff oder Fluorkohlenwasserstoff (z Bsp. CHF<sub>3</sub>, C<sub>2</sub>F<sub>6</sub>, C<sub>2</sub>F<sub>4</sub>, C<sub>4</sub>F<sub>8</sub>) lieferndes Gas ausgewählt wird.

Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Plasmaenergie geringer als 50 Elektronenvolt, vorzugs-

weise geringer als 10 Elektronenvolt, gewählt wird. 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zum Einbringen des Grabens (3) das Siliziumsubstrat (1) abwechselnd mit dem Ätz- und dem Passiviergas bearbeitet wird.

7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zum Einbringen des Grabens (3) das Siliziumsubstrat (1) gleichzeitig mit einer Mischung des Ätz- und des Passiviergases bearbeitet wird.

Hierzu 1 Seite(n) Zeichnungen





FIG. 1



FIG. 2



FIG. 3 \*



FIG. 4