0.1 Q.049

 $n \ge 1$ とする. $Y_{n+1} = X_{n+1} + \frac{1}{Y_n}$ がその不等式を満たすために X_{n+1} がどう出るべきか、ということについて考えたい.それを考えるためには Y_n の大きさに関する場合分けが必要である.

まず Y_n は帰納的に有理数であるため、不等式の等号は実現することがない。そこで、 $\frac{1+\sqrt{3}}{2} < Y_n < 1+\sqrt{3}$ を満たす確率を p_n 、事象を P_n $(n \ge 1)$ とおく。n+1 回目でこの不等式が成り立っていたとしよう。すると、 $\frac{1}{\sqrt{3}+1} = \frac{\sqrt{3}\mp 1}{2}$ により

$$\frac{1+\sqrt{3}}{2} < Y_{n+1} < 1+\sqrt{3}$$

$$\iff \frac{\sqrt{3}-1}{2} < \frac{1}{Y_{n+1}} < \sqrt{3}-1$$

$$\iff \frac{\sqrt{3}-1}{2} - \frac{1}{Y_n} < X_{n+1} < \sqrt{3}-1 - \frac{1}{Y_n}$$

よって、最後の不等号の両側の数がどうであるかによって X_n が どうあるべきかが以下のように分かる:

- (i) $2 \le \sqrt{3} + 1 \frac{1}{Y_n}$ かつ $\frac{1+\sqrt{3}}{2} \frac{1}{Y_n} > 1$; すなわち $Y_n > \sqrt{3} + 1$ であるとき, 事象 P_{n+1} が起こるのは $X_n = 2$ のときである.
- (ii) $2 \le \sqrt{3} + 1 \frac{1}{Y_n}$ かつ $\frac{1+\sqrt{3}}{2} \frac{1}{Y_n} \le 1$; すなわち $Y_n > \sqrt{3} + 1$ であるとき,事象 P_{n+1} が起こるのは $X_{n+1} = 1, 2$ のときである.
- (iii) $2>\sqrt{3}+1-\frac{1}{Y_n}$ かつ $\frac{1+\sqrt{3}}{2}-\frac{1}{Y_n}<1$; すなわち $Y_n<\frac{\sqrt{3}+1}{2}$ であるとき,事象 P_{n+1} が起こるのは $X_{n+1}=1$ のときである.

そこで、 $Y_n>\sqrt{3}+1$ を満たす確率を q_n 、事象を Q_n とおき、 $Y_n<\frac{\sqrt{3}+1}{2}$ を満たす確率を r_n 、事象を R_n とおく、このとき $P_n\cup Q_n\cup R_n$ は全事象であるから $p_n+q_n+r_n=1$. そして、上の考察により P_{n+1} であるのは「 P_n と $X_{n+1}=1$,2 が起こるとき」と「 Q_n と $X_{n+1}=2$ が起こるとき」と「 R_n と $X_{n+1}=1$ が起こるとき」である、これらは排反であるから、

 $p_{n+1}=\frac{2}{6}p_n+\frac{1}{6}q_n+\frac{1}{6}r_n=\frac{2}{6}p_n+\frac{1}{6}(1-p_n)=\frac{1}{6}p_n+\frac{1}{6}$ となる. $Y_1=X_1$ が不等式を満たすのは $X_1=2$ のときであるから $p_1=\frac{1}{6}$. よって漸化式を解く事で p_{n+1} $(n\geq 1)$ が求まる:

$$p_{n+1} - \frac{1}{5} = \frac{1}{6} \left(p_n - \frac{1}{5} \right)$$

$$= \frac{1}{6^n} \left(p_1 - \frac{1}{5} \right)$$

$$= -\frac{1}{5 \cdot 6^{n+1}}$$

$$\therefore p_{n+1} = \frac{1}{5} \left(1 - \frac{1}{6^{n+1}} \right) \quad (n \ge 1)$$

これは n=0 でも正しいので

$$p_n = \frac{1}{5} \left(1 - \frac{1}{6^n} \right)$$

0.2 Q.263

10 進法の任意の有限列 $a_1a_2 \dots a_r$ $(1 \le a_i \le 9, a_1 \ne 0)$ を考える. 2^n の 10 進表記がこの列から始まるための必要十分条件は, n に対してある自然数 m(n) が存在して

$$10^{m(n)} \times \overline{a_1 a_2 \dots a_r} \le 2^n < 10^{m(n)} \times (\overline{a_1 \dots a_r} + 1)$$

となることである. ただし上線はこの列を数字とみなす記号である. この式は

$$\overline{a_1 \dots a_r} \le 2^n \cdot 10^{-m(n)} < (\overline{a_1 \dots a_r} + 1)$$

と同値で、log₁₀(·) を取り

$$\log_{10}\left(\overline{a_1 \dots a_r}\right) \le n \log_{10} 2 - m(n) < \log_{10}\left(\overline{a_1 \dots a_r} + 1\right)$$

である. $a = \log_{10}(\overline{a_1 \dots a_r}), b = \log_{10}(\overline{a_1 \dots a_r} + 1)$ として、示すべきことは、ある自然数 m, n が存在して

$$a \le n \log_{10} 2 - m < b$$

を満たすということである.ここで b-a>0 であるが, $0<\delta< b-a$ を満たすような正数 δ を一つ取る.このとき, $\log_2 10$ が無理数であるから,Kronecker の稠密定理によって,ある自然数 k が存在して $k\log_{10} 2$ の小数部分は δ 未満である.つまり, $l=[k\log_{10} 2]$ としたときに $0< k\log_{10} 2-l<\delta$ を満たす. $\epsilon=k\log_{10} 2-l$ とおく.このとき ϵ の整数倍全体の集合 $S:=\{N\epsilon\mid N\in\mathbb{Z}\}$ は,数直線上で幅 ϵ を空けながら並ぶので,幅 $\delta(>\epsilon)$ である開区間 (a,b) 上には必ず S の点が少なくとも一つ含まれる.それを $N_0\epsilon$ とすれば, $N_0\epsilon\in(a,b)$ である.すなわち,

$$a < N_0 k \log_{10} 2 - N_0 l < b$$

である. よって $n=N_0k$, $m=N_0l$ を構成すればよい.

$0.3 \quad Q.264$

(1): 鳩ノ巣原理より a^{m_1}, a^{m_2} の n で割った余りが同じであるような異なる自然数 $m_1 < m_2$ がある. すなわち $k = m_2 - m_1$ として, $a^{m_2} - a^{m_1} = a^{m_1}(a^k - 1)$ は n の倍数. a^{m_1} は n と互いに素だから $a^k - 1$ は n の倍数. よって $a^k \equiv 1 \pmod{n}$ より示せた.

(2): $a^k \equiv 1 \pmod n$ なる自然数 k を任意に取る. k を d で割って k = dq + r とおく $(0 \le r < d)$. このとき $a^k = a^{dq} \cdot a^r = (a^d)^q \cdot a^r \equiv 1^q \cdot a^r = a^r$ だから $a^r \equiv 1 \pmod n$ となる. $0 \le r < d$ と自然数 d の最小性より r > 0 では矛盾. よって r = 0. つまり k = dq は d の倍数.

2021 は"素晴らしい数"である. 正の正数 m に対して集合

 $\{m, 2m+1, 3m\}$

のある要素が素晴らしいならばそのすべての要素も素晴らしい. このとき 2021²⁰²¹ は素晴らしいか.

ある自然数 n が素晴らしいとする.

- (1) もし $n \equiv 0 \pmod{3}$ なら, $n/3 \in \mathbb{Z}$ も素晴らしい.
- (2) もし $n \equiv 1 \pmod{3}$ なら, 2n + 1 が素晴らしい 3 の倍数な ので $(2n + 1)/3 \in \mathbb{Z}$ も素晴らしい.
- (3) もし $n \equiv 2 \pmod{3}$ なら、3n が素晴らしく、6n+1 が素晴らしく、12n+3 が素晴らしく、(12n+3)/3 = 4n+1 が素晴らしく、 $(4n+1)/3 \in \mathbb{Z}$ が素晴らしい、そして、 $2 \cdot \frac{2n-1}{3} + 1$ だから $(2n-1)/3 \in \mathbb{Z}$ は素晴らしい、

そしてこれの「逆導出」が可能であることに注意せよ。つまり, $n\equiv 0\pmod 3$ のとき, $n/3\in\mathbb{Z}$ が素晴らしいならば n も素晴らしい、その他についても同様である。つまり,自然数 n に対して次は同値である。

- n は素晴らしい。
- n/3, (2n+1)/3, (2n-1)/3 のどれかが素晴らしい.

よってここから従うことは「任意の自然数nに対して、(2n+1)/3以下のある自然数n'が存在して、nが素晴らしいこととn'が素晴らしいことは同値」ということである。このn'に対しても(2n'+1)/3以下のある自然数n''が存在して「n'が素晴らしい $\Leftrightarrow n''$ が素晴らしい」ということも分かる。さて、このように $n \to n' \to n'' \to \cdots$ という対応を続けると、ある所からは1がずっと並ばざるを得ない (問:これはなぜか?)。よって、nが素晴らしいことと1が素晴らしいことは同値である。これは任意の自然数に対して言えているから、n=2021とすることで1は素晴らしい。よって $n=2021^{2021}$ とすることで 2021^{2021} も素晴らしい。