Modeling non-Gaussian spatial data

Jeffrey Doser¹ & Andrew Finley² May 15, 2023

¹Department of Integrative Biology, Michigan State University.

²Department of Forestry, Michigan State University.

Non-Gaussian spatial data

- Often data sets preclude Gaussian modeling: y(s) may not even be continuous
- Examples:
 - Binary: presence or absence of a species at location s.
 - Count: abundance of a species at location s.
 - Categorical: counts of trees by size class at location s.
- Replace Gaussian likelihood by exponential family member (Diggle, Tawn, and Moyeed (1998)).

Hierarchical Bayesian approach

• First stage: $y(s_i)$ are conditionally independent given β and $w(s_i)$. Here we use a canonical link function, say $g(E[y(s_i)]) = \eta(s_i) = x(s_i)'\beta + w(s_i)$.

Hierarchical Bayesian approach

- First stage: $y(s_i)$ are conditionally independent given β and $w(s_i)$. Here we use a canonical link function, say $g(E[y(s_i)]) = \eta(s_i) = x(s_i)'\beta + w(s_i)$.
- **Second stage**: Model $w(s_i)$ as a Gaussian process:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{R}(\phi))$$

Hierarchical Bayesian approach

- First stage: $y(s_i)$ are conditionally independent given β and $w(s_i)$. Here we use a canonical link function, say $g(E[y(s_i)]) = \eta(s_i) = x(s_i)'\beta + w(s_i)$.
- **Second stage**: Model $w(s_i)$ as a Gaussian process:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{R}(\phi))$$

Third stage: Priors and hyperpriors.

MCMC sampling for spatial GLMMs

- Additional GLMM flexibility comes at a computational cost: lose conjugacy of β , **w**
- Requires more Metroplis steps. Particularly costly for w
- Practical consequence: slower, less efficient algorithms
- Prediction and interpolation proceed as with the Gaussian case

• General approach for Bayesian (spatial) logistic regression that yields conjugate updates of β (and \mathbf{w})

- General approach for Bayesian (spatial) logistic regression that yields conjugate updates of β (and \mathbf{w})
- Introduce augmented data $\omega(s_i)$ for each $i=1,\ldots,n$, where $\omega(s_i) \sim \mathsf{PG}(N(\mathbf{s}_i),0)$, with $N(\mathbf{s}_i)$ the Binomial weights

- General approach for Bayesian (spatial) logistic regression that yields conjugate updates of β (and \mathbf{w})
- Introduce augmented data $\omega(s_i)$ for each $i=1,\ldots,n$, where $\omega(s_i) \sim \mathsf{PG}(N(\mathbf{s}_i),0)$, with $N(\mathbf{s}_i)$ the Binomial weights
- Define $\kappa(\mathbf{s}_i) = y(\mathbf{s}_i) N(\mathbf{s}_i)/2$

- General approach for Bayesian (spatial) logistic regression that yields conjugate updates of β (and \mathbf{w})
- Introduce augmented data $\omega(s_i)$ for each $i=1,\ldots,n$, where $\omega(s_i) \sim \mathsf{PG}(N(\mathbf{s}_i),0)$, with $N(\mathbf{s}_i)$ the Binomial weights
- Define $\kappa(\mathbf{s}_i) = y(\mathbf{s}_i) N(\mathbf{s}_i)/2$
- Resulting Gibbs sampler is remarkably similar to that of a Gaussian model with response $y(\mathbf{s}_i)^* = \kappa(\mathbf{s}_i)/\omega(\mathbf{s}_i)$ and heteroskedastic variances $\tau^2(\mathbf{s}_i) = 1/\omega(\mathbf{s}_i)$.

- General approach for Bayesian (spatial) logistic regression that yields conjugate updates of β (and \mathbf{w})
- Introduce augmented data $\omega(s_i)$ for each $i=1,\ldots,n$, where $\omega(s_i) \sim \mathsf{PG}(N(\mathbf{s}_i),0)$, with $N(\mathbf{s}_i)$ the Binomial weights
- Define $\kappa(\mathbf{s}_i) = y(\mathbf{s}_i) N(\mathbf{s}_i)/2$
- Resulting Gibbs sampler is remarkably similar to that of a Gaussian model with response $y(\mathbf{s}_i)^* = \kappa(\mathbf{s}_i)/\omega(\mathbf{s}_i)$ and heteroskedastic variances $\tau^2(\mathbf{s}_i) = 1/\omega(\mathbf{s}_i)$.
- See Polson, Scott, Windle (2013) JASA

Example: Binary spatial regression

 Objective: predict the distribution of Loggerhead Shrike across the US

$$y(\mathbf{s}_i) \sim \mathsf{Bernoulli}(\psi(\mathbf{s}_i))$$
 $\mathsf{logit}(\psi(\mathbf{s}_i)) = \mathbf{x}(\mathbf{s}_i)^{\top} \boldsymbol{\beta} + w(\mathbf{s}_i)$
 $\mathbf{w} \sim N(\mathbf{0}, \sigma^2 \mathbf{R}(\phi))$
 $\boldsymbol{\beta} \sim N(\boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}_{\boldsymbol{\beta}})$
 $\sigma^2 \sim IG(a_{\sigma}, b_{\sigma})$
 $\phi \sim \mathsf{Uniform}(I, u)$

 For binomial data, we can use a Pólya-Gamma data augmentation approach

Example: Binary spatial regression

Some practical considerations

- Priors for σ^2 and ϕ may need to be more informative, particularly for binary data.
- Be careful with non-identity link functions when thinking about priors.
- Pólya-Gamma data augmentation works really for binomial data. Computational cost increases as Binomial weights increases.
- Pólya-Gamma data augmentation also applicable for Negative Binomial count data, but slow for large counts and can be unstable.

Software

- spBayes
 - Univariate and multivariate, full GPs or predictive processes
 - Gaussian, Binomial (no Pólya-Gamma data augmentation), Poisson
- spNNGP
 - Univariate, NNGPs
 - Gaussian, Binomial
- sp0ccupancy
 - Univariate and multivariate, focus on modeling wildlife distributions, full GPs or NNGPs
 - Bernoulli
- spAbundance

(https://github.com/doserjef/spAbundance)

- Univariate and multivariate, focus on modeling wildlife/plant abundance, NNGPs
- Gaussian, Poisson, Negative Binomial