第1次应用介绍课 —开关(受控电阻)在电阻电路中的应用 —数字系统的基本单元

纸笔计算器

- 1 数字系统简介
 - 为什么需要数字系统? (课前自学)
 - 表示逻辑的两种方法
- 2 用MOSFET构成逻辑门电路
 - o MOSFET (原理和模型)
 - 用MOSFET构成逻辑门电路
 - MOSFET构成逻辑门电路的功率分析
 - CMOS

体系结构

1	2.21	绪论,变量(L1)
	2.24	元件约束和拓扑约束(L2)
2	2.28	等效变换 (L3)
2	3.3	习题课(R1)
3	3.7	应用介绍: 开关在电阻电路中的应用 (A1)
	3.10	运算放大器 (L4)
4	3.14	二端口网络 (L5)
	3.17	习题课(R2)

本讲重难点

- MOSFET的外特性
- 不同工作区域上, MOSFET的等效电路

Principles of Electric Circuits Application 1 Tsinghua University 2023

如果仅用两个值来表示信号会怎么样?

发送方认为:

- (1) 低于2.5V的信号表示发送0
- (2) 高于2.5V的信号表示发送1

接收方认为:

- (1) 低于2.5V的信号接收0
- (2) 高于2.5V的信号接收1

数字系统的优点:

可以在一定程度上消除噪声的影响!

Principles of Electric Circuits Application 1 Tsinghua University 2023

Į.

最简单数字系统的问题在哪里?

数字系统必须解决的问题:

如何"精确"地表示信号的值?

Principles of Electric Circuits Application 1 Tsinghua University 2023

数字系统精确表示信号的法1

用1根线来表示信号的值 每3个时钟周期显示一个值(信号值域被切成2³=8份)

数字系统精确表示信号的法2

用3根线来表示信号的值(信号值域被切成2³=8份) 每1个时钟周期显示一个值

投票 最多可选1项

前述两种表示方法, 你觉得哪种适用于高速场合?

Principles of Electric Circuits Application 1 Tsinghua University 2023

课后自行网页检索PATA/SATA

Principles of Electric Circuits Application 1 Tsinghua University 2023

觉得太low?

每10个周期显示一个值呢? 每20个周期显示一个值呢? 每1个周期1μs呢? 每1个周期1ns呢?

数字系统所要讨论的问题

- 组合逻辑
 - 输入→输出(安理会表决、加法器)
- 时序逻辑
 - 输入十系统当前状态→输出(计数器)
- 模拟信号与数字信号的转换
 - Analog-Digital-Converter(ADC), DAC
- 时钟信号的获取

计算机

1.2 表示逻辑的两种方法

逻辑表达式

$$Y_1 = \overline{A}$$

Y₁与A相反

$$Y_2 = A \cdot B$$

A、B同为1时Y2为1

$$Y_3 = A + B$$
 $A \setminus B$ 同为 0 时 Y_3 为 0

真值表

A	В	<i>Y</i> ₁	Y ₂	<i>Y</i> ₃
1	1	0	1	1
0	0	1	0	0
1	0	0	0	1
0	1	1	0	1

如何根据逻辑表达式获得真值表?

$$Y = A \cdot (B + C)$$

Step1: 制表

Step2: 写出所有A、B、C的组合

Step3: 根据每个组合写出对应的Y

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

单选题 1分

对于表达式 $Y=\overline{A}\cdot \left(B+\overline{C}\right)$ 来说,有___种使得输出为1的输入ABC的取值组合

- A
- B) 2
- 3

如何根据真值表获得逻辑表达式?

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

怎么才能保证不漏也不多?

一种思路是:

整体: 所有输出为1的子表达式

之"或"就是整个表达式

局部:每一个输出为1的子表达式,

等于所有变量(或其否)为1之"与"

如何根据真值表获得逻辑表达式?

\boldsymbol{A}	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

该思路具体的方法是:

Step1: 写出所有使得Y为1的A、B、C组合方式

$$A\overline{B}C \rightarrow Y = 1$$
 方法不唯一

$$ABC \rightarrow Y = 1$$

Step2: 将这些组合用"或"运算连接起来

$$Y = A\overline{B}C + AB\overline{C} + ABC$$

Step3: 利用某种方式化简得到的逻辑表达式

$$Y = A(B + C)$$

几种最常用的逻辑门

逻辑表达式的逻辑门实现

$$Y = A(B + C)$$

Principles of Electric Circuits Application 1 Tsinghua University 2023

2.1 MOSFET

(Metal-Oxide-Semiconductor Field-Effect Transistor)

小: 线宽10nm

Intel i7 CPU 60亿个晶体管 (双极、MOS)

CPU供电电路 中的MOSFET

吴刚耳机放大器 日立N沟道 2SK214型 MOSFET

承载电压几百V 流通电流几百A的 功率MOSFET

大: 10cm

Principles of Electric Circuits Application 1 Tsinghua University 2023

MOSFET ——n沟道增强型

Metal-Oxide-Semiconductor Field-Effect Transistor

Principles of Electric Circuits Application 1 Tsinghua University 2023

投票 最多可选1项

关于L2课后推送中MOSFET仿真的视频, 你是 (不是问MOSFET原理是否明白, 是外特性是否明白)

- A 没看
- B 看了一遍,没明白
- C 看了一遍/或多遍,大致明白了
- 看了一遍/或多遍,自己也做了仿真,基本明白了

为什么要有一个开路的控制端口? 希望对电路进行无损的电压采样 L3等效变换讨论

怎么才能有一个开路的控制端口? A1 MOSFET、L6运算放大器

Principles of Electric Circuits Application 1 Tsinghua University 2023

MOSFET的性质

- $(u_{GS}-U_{T})>0$ 以后,MOSFET的D、S间开始导通。
- ightharpoonup 写通后 $(u_{GS}-U_{T})< u_{DS}$ 的时候,MOSFET的D、S间呈电流源特性。

$$u_{GS}$$
与 i_{DS} 呈二次方关系
$$i_{DS} = \frac{K(u_{GS} - U_{T})^{2}}{2}$$

ightharpoonup 导通后 $u_{DS} < (u_{GS} - U_{T})$ 的时候,MOSFET的D、S间呈电阻特性。 什么量级?

Principles of Electric Circuits Application 1 Tsinghua University 2023

单选题 1分

N沟道增强型MOSFET,在给定较大的 u_{GS} 下(比如5V),随 u_{DS} 的增加,该元件会先经过___区,再到达___区

B 电流源, 电阻

单选题 1分

N沟道增强型MOSFET,在给定的 u_{DS} 下,(比如2V) 随 u_{GS} 的增加,该元件会从截止区逐渐过渡到 区和 区

- A 电阻, 电流源
- B 电流源,电阻

粗略地说,如何(对于某个给定的 u_{DS} (比如2V))改变 u_{GS} ,使得D-S之间可视为压控开关的开和关?

此处可以有弹幕

总 结

本讲中MOSFET工作于1或3

检验方式见L8

1. 截止区

 $(u_{\rm GS}-U_{\rm T})<0$

2.恒流源区

 $0 < (u_{\rm GS} - U_{\rm T}) < u_{\rm DS}$

3.电阻区

性质

Principles of Electric Circuits Application 1 Tsinghua University 2023

所有信号 都从G级进入

2.2 用MOSFET构成逻辑门

Principles of Electric Circuits Application 1 Tsinghua University 2023

单选题 1分

已知 $R_{\rm ON}$ = 10Ω , $U_{\rm IN}$ 为信号"1"时,该电路(整个电路)消耗的功率为____mW

进一步问题: 为什么计算这个功率的时候, 不考虑 U_{out} 流出的电流?

此处可以有弹幕

与非门(NAND)

我们希望:

- (1) A、B同时为"1"时, Y2为"0";

Principles of Electric Circuits Application 1 Tsinghua University 2023

与非门(NAND)

我们希望:

(1) A、B同时为"1"时, Y2为"0";

Principles of Electric Circuits Application 1 Tsinghua University 2023

或非门 (NOR)

$$Y_3 = \overline{A + B}$$

我们希望:

- (1) A、B同时为"0"时, Y2为"1"
- (2) 其余条件下, Y₂为"0"

下面哪个条件下, 整个电路消耗的功率最大? (最先答对的3位同学有红包)

$$A=1$$
, $B=0$

例子:安理会某投票表决系统

- 能源12班某同学受联合国委托开发一套安理会投票表决系统。要求用5V电源、MOSFET、电阻器、发光二极管和单刀双置开关来构成该系统。
 - 安理会由中、美、俄、法、英5国组成。
 - 每个国家只能有两种投票方式: 赞成、反对。
 - 只有5个国家全部投赞成票, 提案才能通过。

Step 1: 逻辑表达式

法1: 先写真值表, 然后根据真值表得到逻辑表达式。

法2: 直接得到逻辑表达式。

$$Y = X_1 \cdot X_2 \cdot X_3 \cdot X_4 \cdot X_5$$

其中, X_1 、....、 X_5 分别代表5个国家的投票情况,均为逻辑值。

"1"为赞成, "0"为反对。

Principles of Electric Circuits Application 1 Tsinghua University 2023

Step 2: 写成能够用MOSFET 实现的逻辑门的组合

Step 3: 构成最终的投票系统

2.3 用MOSFET构成逻辑 门电路的功率分析

设
$$U_{\rm S}$$
=5V, $R_{\rm L}$ =100k Ω , $R_{\rm ON}$ =10 Ω

$$W_{\text{GATE_ABSORB}} = \frac{U_{\text{S}}^2}{R_{\text{D}} + R_{\text{ON}}} \approx \frac{25}{10^5} = 0.25 \text{mW}$$

Principles of Electric Circuits Application 1 Tsinghua University 2023

- 44/51页 -

$W_{\rm GATE\ ABSORB} \approx 0.25 {\rm mW}$

一颗i7 CPU中大约有10亿个晶体管,如果这些晶体管均为n沟道增强型MOSFET并且构成反相器,则这颗CPU消耗的功率大约为:

25W

25kW

对现在的你来说,这就是个数字 但对于设计i7 CPU的人来说 这意味着什么?

Principles of Electric Circuits Application 1 Tsinghua University 2023

2.4 CMOS

p沟道增强型MOSFET

n沟道增强型MOSFET

Principles of Electric Circuits Application 1 Tsinghua University 2023

U_{IN}为"0"时, S2和D2之间是什么?

- B 受控源
- 开路

Principles of Electric Circuits Application 1 Tsinghua University 2023

CMOS反相器

Principles of Electric Circuits Application 1 Tsinghua University 2023

U_{IN}为"1"时, S2和D2之间是什么?

- B 受控源
- € 开路

Principles of Electric Circuits Application 1 Tsinghua University 2023

CMOS反相器

Principles of Electric Circuits Application 1 Tsinghua University 2023