Lecture 5

Investigating Motion: Computational Approach

Realistic motion:

- ODE
- Initial condition given
- Euler's method; Finite Difference

Bicycle Racing (goal: to understand what determines speed)

Case 1: simple case (flat surface without friction)

Write down the equation of motion. (Law?)

Newtons second Law of motion

dv/dt=F/m

F \rightarrow force that comes from the effort of the rider

Accurate expression for force??

Alternate approach?

Alternate approach

In terms of power.

Power output over a period of time !!

Write down the previous eqn. in terms of power.

P→ power output of the rider. (~400 watts over ~1hour)

Eqns.

- dE/dt=P; E→ total energy of the combination
- $E=1/2 \text{ (mv}^2)$
- dE/dt=mv(dv/dt)
- dv/dt=P/mv
- If P is constant, write down the Finite Difference form

Analytical soln.

If P is constant, what is the solution

$$\int_{v_0}^v v' dv' = \int_0^t \frac{P}{m} dt'$$

$$v = \sqrt{v_0^2 + 2 P t/m}$$

$$v_{i+1} = v_i + \frac{P}{mv_i} \Delta t$$

Write MATLAB program for the bicycle problem

Recall the algorithm for growth or decay problem.

```
initialize simulationLength
initialize number\_atoms
initialize decay-Rate
initialize length of time step \Delta t
Num\_of\_Iterations \leftarrow simulationLength / \Delta t
```

for *i* going from 1 through *num_of_iterations*

```
do the following:

decay \leftarrow decay-Rate * number\_atoms

number\_atoms \leftarrow number\_atoms (+/-) decay * \Delta t

t \leftarrow i * \Delta t
```

display t, decay, and number_atoms

Result of computation

Take reasonable initial conditions and run the program for different values of time-step.

- Velocity grows indefinitely !!
- Some mechanism of energy loss needs to be included.

Main loss mechanism → atmospheric drag !! How to include.

Physics of air resistance – complex !!

Modify the code and include the drag term !!

Realistic model.

In general; Drag force $\sim - C_1 v - C_2 v^2$

Second term dominates at reasonable velocities; how to approximate C2.

As objects moves, it push the air in front of it.

The mass of air moved in time dt is ~??

This air is given a velocity v, therefore its kinetic energy is $(\frac{1}{2})$ m_{air}v²

This is the work done by the drag force in time dt.

Realistic model

Drag-force x (v x dt) = KE air

m_{air}~ density of air x [frontal area of object x (v x dt)]

$$F_{\rm drag} \approx -C\rho A v^2$$

C- drag coefficient; reasonable estimate in this case .5

 $A \sim .3 \text{ m}^2$

$$v_{i+1} = v_i +$$

 $v_{i+1} = v_i + \frac{P}{mv_i} \Delta t - \frac{C\rho A v_i^2}{m} \Delta t$

New FD eqn. →

Question

Can you explain the following picture and explain your answer using the code with more investigations (numerical experiments)!!

Use of aerobars !! How it helps

Speed with and without aerobars (approximate calculations)