Teoria da Informação — Exercícios

Miguel Barão (mjsb@uevora.pt)

November 24, 2017

1 Álgebra linear (revisão)

1. Realize os seguintes produtos matriciais:

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \qquad \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix},$$

2. Calcule os seguintes determinantes:

$$\det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \qquad \det \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \qquad \det \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{bmatrix}$$

3. Calcule os valores e vectores próprios das seguintes matrizes:

$$\mathbf{A} = \begin{bmatrix} 11 & -4 \\ 8 & -1 \end{bmatrix}, \qquad \mathbf{B} = \frac{1}{3} \begin{bmatrix} 5 & -4 \\ 4 & -5 \end{bmatrix}$$

4. Calcule as soluções dos seguintes problemas

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

5. Confira os resultados das alíneas anteriores com o interpretador ipython (requer python>=3.5 e numpy):

```
from numpy import array, vstack, hstack, eye, zeros, ones
from numpy.linalg import det, eig, solve
A = array([[1,2],[3,4]]) \# array bidimensional: matriz
B = array([5,6])
                             # array unidimensional: vector linha ou coluna
                             # elemento na linha i, coluna j
A[i,:]
                             # array unidimensional com a linha i
                             # array unidimensional com a coluna j
                             # matriz transposta
                             # soma matricial
                             # produto matricial (B interpretado como coluna)
                             # multiplicação elemento-a-elemento (não é o produto matricial)
                             # determinante
\begin{array}{ll} \text{val} \stackrel{'}{,} \stackrel{'}{\text{vec}} = \text{eig} \left( A \right) \\ \text{val} \left[ 0 \right] \end{array}
                             # valores e vectores proprios
                             # primeiro valor proprio
vec[:,0]
                             # primeiro vector proprio (coluna 0)
x = solve(A, B)
                             \# solucao do sistema de equacoes lineares Ax=B
vstack((A,B))
                             # junta A e B na vertical, fica matriz 3x2
hstack((A,B))
                             # junta A e B na horizontal, fica matriz 2x3
sum(A, 0)
                             \# soma ao longo do indice 0
I = eye(3)
                             # matriz identidade 3x3
Z = zeros((2,3))
                             # matriz de zeros 2x3
O = ones((2,3))
                             \# matriz de uns 2x3
```

2 Probabilidades (revisão)

1. Considere duas variáveis aleatórias X e Y que representam o estado do tempo, chuva e Sol respectivamente. A função de probabilidade conjunta p(x,y) tem as probabilidades indicadas na seguinte tabela:

$X \setminus Y$	Sol	Encoberto
Chove Não chove	0.05	0.3 0.15

- (a) Indique que símbolos compõem os alfabetos \mathcal{X} e \mathcal{Y} .
- (b) Calcule as probabilidades marginais p(x) e p(y).
- (c) Calcule as probabilidades condicionais p(x|y) e p(y|x).
- (d) Verifique que

$$\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) = 1, \qquad \sum_{x \in \mathcal{X}} p(x) = 1, \qquad \sum_{y \in \mathcal{Y}} p(y) = 1, \qquad \sum_{x \in \mathcal{X}} p(x|y) = 1, \qquad \sum_{y \in \mathcal{Y}} p(y|x) = 1.$$

(e) Repita os cálculos das perguntas anteriores usando ipython.

```
from numpy import array, sum

# probabilidades conjuntas. x no indice 0, y no indice 1
Pxy = array([[0.05, 0.3], [0.5, 0.15]])

# marginais
Py = sum(Pxy, 0)  # soma sobre todos os valores de x
Px = sum(Pxy, 1)  # soma sobre todos os valores de y

# condicionais. cada coluna é uma distribuicao de probabilidade
Px_dado_y = Pxy / Py  # usa "broadcasting"
Py_dado_x = Pxy.T / Pxy  # usa "broadcasting"
```

3 Análise (revisão)

- 1. Prove que
 - (a) $\sum_{n=0}^{+\infty} r^n = \frac{1}{1-r}$, para 0 < r < 1.
 - (b) $\sum_{n=1}^{+\infty} nr^n = r/(1-r)^2$, para 0 < r < 1.
- 2. Calcule o resultado das seguintes expressões:

(a)
$$\sum_{n=1}^{+\infty} r^n$$
, com $0 < r < 1$

(b)
$$\sum_{n=1}^{N} r^n$$
, com $0 < r < 1$

(c)
$$\frac{d}{dt} \left(\sin(2t) + 2^{-t} + \log_2(t) + t^2 \right)$$

(d)
$$\int_0^1 t^2 dt$$

(e)
$$\int_0^{+\infty} e^{-2t} dt$$

(f)
$$\lim_{x \to +\infty} \frac{2x+1}{x}$$

(g)
$$\lim_{x\to 0} x \log x$$

3. Confira os resultados anteriores usando ipython (requer sympy).

4 Entropia

1. Considere as variáveis aleatórias X e Y com probabilidades conjuntas indicada na tabela seguinte:

$X \setminus Y$	S	N	
S N	0.05	0.3 0.15	

- (a) Calcule as entropias H(X) e H(Y).
- (b) Calcule a entropia conjunta H(X,Y).
- (c) Confirme os resultados usando ipython.
- (d) Considere uma nova variável Z = X. Qual a distribuição de probabilidade conjunta p(x,z)?
- (e) Calcule a entropia conjunta H(X, Z). Compare com H(X) e H(Z).
- (f) Calcule a entropia condicional H(X|Z). Interprete o resultado.
- (g) Considere uma nova variável W, independente de X, e com probabilidades (0.1, 0.9). Qual a distribuição de probabilidade conjunta p(x, w)?
- (h) Calcule a entropia conjunta H(X, W). Compare com H(X) + H(W).
- (i) Calcule a entropia condicional H(X|W). Interprete o resultado.
- (j) Calcule I(X;Y), I(X;Z) e I(X;W). Interprete o resultado.
- 2. Considere duas variáveis aleatórias independentes X e Y com funções de probabilidade

$$p(x) = \begin{bmatrix} 0.1\\0.3\\0.2\\0.05\\0.35 \end{bmatrix}, \qquad p(y) = \begin{bmatrix} 0.25\\0.3\\0.05\\0.4 \end{bmatrix}. \tag{1}$$

- (a) Calcule a distribuição de probabilidade conjunta p(x, y).
- (b) Calcule as probabilidades condicionais p(x|y) e p(y|x).
- (c) Calcule as entropias H(X), H(Y) e H(X,Y).
- 3. Considere uma fonte em que, para gerar um símbolo, é realizada uma sequência de lançamentos de uma moeda. O número de vezes em que sai cara consecutivamente desde o primeiro lançamento é o símbolo gerado.
 - (a) Qual o alfabeto desta fonte?
 - (b) Determine a distribuição de probabilidade p(x).
 - (c) Verifique que a soma das probabilidades é 1.
 - (d) Calcule a entropia H(X) da fonte.
- 4. Considere um tabuleiro de xadrez de dimensão infinita onde apenas existe um rei que se move aleatoriamente (o rei pode mover-se uma casa em qualquer direcção). Pretende-se determinar a entropia no movimento do rei. Indique qual o alfabeto que deve ser considerado, as probabilidades p(x) e a entropia H(X).

- 5. Considere um jogo de sorte jogado com dois dados. Em cada jogada é somada a pontuação obtida pelo lançamento dos dois dados. Calcule a entropia H(Z) correspondente à soma Z = X + Y, onde X e Y são as pontuações dos dados.
- 6. Sabe-se que uma certa doença afecta 1% da população. Para diagnosticar essa doença pode ser efectuado um teste que não é completamente fiável. Sabe-se que o teste dá 5% de falsos positivos e 10% de falsos negativos.
 - (a) Calcule a probabilidade de estar doente sabendo que um teste deu positivo (use o teorema de Bayes).
 - (b) Calcule a probabilidade de estar doente sabendo que dois testes deram positivos.
 - (c) Calcule a entropia da variável X (estar ou não estar doente) antes dos testes, depois do primeiro teste, e finalmente depois dos dois testes.
 - (d) Calcule a informação mútua entre X e o resultado do teste Y.

5 Cadeias de Markov

7. Considere o processo estocástico descrito pela figura seguinte.

- (a) Este processo é uma cadeia de Markov? (justifique)
- (b) Escreva a matriz das probabilidades de transição correspondente.
- (c) Sabendo que o estado inicial é $X_0 = A$, calcule $\Pr\{X_t = A\}$ para t = 1, ..., 10. (pode usar o computador).
- (d) Determine a distribuição estacionária μ .
- (e) Assumindo regime estacionário, calcule a entropia condicional $H(X_t|X_{t-1})$.
- (f) Partindo da condição inicial $x_0 = A$, determine a evolução da distribuição de probabilidade dos estados ao longo do tempo. *I.e.*, calcule $p(x_0)$, $p(x_1)$, $p(x_2)$, $p(x_n)$.
- 8. Considere o processo estocástico descrito pela cadeia de Markov da figura seguinte:

- (a) Verifique se a cadeia de Markov é irredutível e aperiódica.
- (b) Calcule o ritmo de entropia $H'(\mathcal{X})$.
- 9. Considere um robot móvel que percorre um corredor fechado (ver figura abaixo). Em cada segundo o robot pode avançar ou recuar com probabilidades 0.9 e 0.1, respectivamente. Sabendo que inicialmente o robot está localizado no canto inferior direito, escreva uma função em octave/python que actulize o estado de conhecimento (distribuição de probabilidade) acerca da localização do robot ao longo de um intervalo de 10 minutos.

6 Códigos

1. Considere uma fonte com alfabeto e probabilidades indicadas na tabela seguinte:

\overline{x}	p(x)	$C_1(x)$	$C_2(x)$	$C_3(x)$	$C_4(x)$	$C_5(x)$
A	0.3	0	00 11	110	110	00
B	0.1	1	11	11	0	111
C	0.2	10	00	001	111	110
D	0.4	11	10	00	10	010

- (a) Classifique cada um dos códigos em códigos singulares, não-singulares, univocamente descodificáveis e instantâneos.
- (b) Calcule o comprimento médio de cada código.
- 2. Considere uma fonte descrita pelas seguintes probabilidades:

x	p(x)
A	0.1
В	0.4
\mathbf{C}	0.5

- (a) Construa um código de Shannon para esta fonte.
- (b) Calcule o comprimento médio L(C). Compare com a entropia da fonte H(X).
- (c) Agrupe os símbolos aos pares (x_i, x_{i+1}) , e repita as duas alíneas anteriores.
- (d) Qual o comprimento médio por símbolo original? A compressão obtida é melhor ou pior que a anterior?
- 3. Mostre que o comprimento médio de um código de Shannon satisfaz a desigualdade

$$L(C) < H(X) + 1.$$

- 4. Considere uma fonte com alfabeto $\mathcal{X} = \{0, 1\}$, e probabilidades [0.1, 0.9], respectivamente.
 - (a) Desenhe códigos de Huffman para grupos de 1, 2 e 3 símbolos.
 - (b) Calcule a entropia H(X) da fonte e os comprimentos médios $L(C^1)$, $L(C^2)/2$ e $L(C^3)/3$ por símbolo da fonte. Comente.
- 5. Pretende-se comprimir a string ASCII "AABACCABCCC".
 - (a) Codifique a string usando o código de Huffman adaptativo.
 - (b) Escreva o código obtido em binário, incluindo os símbolos ASCII. (A=0x41, B=0x42, C=0x43).
 - (c) Descodifique a string binária anterior e compare com a mensagem emitida pela fonte.
 - (d) Compare o comprimento (medido em bits) da string original com a obtida depois da compressão.

6. Considere um ficheiro com comprimento de N bytes. Cada byte é considerado como um símbolo do alfabeto. Suponha que um ficheiro de texto ASCII é comprimido usando o código de Huffman Adaptativo, obtendo-se a seguinte sequência de bits:

010000100011000010001101110111010

- (a) Quantos símbolos tem o alfabeto?
- (b) Descomprima e descodifique a sequência de bits acima de modo a obter o texto original.
- 7. Será que, usando o código de Huffman adaptativo, se obtém sempre um ficheiro mais pequeno que o original?
- 8. Será que existe algum esquema de compressão para o qual se consegue sempre comprimir os dados? (*i.e.*, dado um ficheiro original, a aplicação sucessiva de compressão sem perdas resulta sucessivamente em ficheiros mais pequenos.)
- 9. Considere uma fonte com alfabeto $\mathcal{X} = \{0,1\}$ e probabilidades [0.2, 0.8].
 - (a) Desenhe um código Shannon-Fano-Elias para grupos de dois símbolos. Calcule o comprimento médio por símbolo e compare com a entropia.
 - (b) Suponha que foi gerada a sequência de símbolos "110111011111110". Comprima esta mensagem usando:
 - i. Shannon-Fano-Elias (obtido anteriormente)
 - ii. Codificação aritmética
- 10. Considere a string "AABAABBBAAA". Codifique a string usando:
 - (a) LZ77, com buffers de comprimento 8.
 - (b) LZ78
 - (c) LZW
- 11. Considere uma fonte binária com alfabeto $\mathcal{X} = \{0,1\}$, descrita por uma cadeia de Markov em que a probabilidade de dois símbolos iguais se sucederem é de 0.75, i.e. $p(X_{t+1} = a | X_t = a) = 0.75, a \in \mathcal{X}$.
 - (a) Desenhe a cadeia de Markov, indicando todas as probabilidades de transição. Escreva a matriz de transição P respectiva.
 - (b) Calcule a distribuição estacionária μ para este processo.
 - (c) Calcule a entropia condicional $H(X_{t+1}|X_t)$.
 - (d) Supondo que o estado no instante t=0 é $x_0=1$, qual a probabilidade de no instante t=3 o estado ser $x_3=1$?
 - (e) Desenhe um código de Huffman para blocos de 3 bits desta fonte. Calcule o comprimento médio L(C) e compare com o ritmo de entropia $H'(\mathcal{X})$.

7 Capacidade do canal

- 1. Considere um canal binário simétrico onde a probabilidade de um bit ser corrompido é $p_e = 0.1$.
 - (a) Desenho o grafo correspondente indicando todas as probabilidades de transição.
 - (b) Escreva a matriz de transição correspondente.
 - (c) Calcule a capacidade do canal.
- 2. Um canal binário simétrico funciona de acordo com a equação booleana $y=x\oplus 1$, onde \oplus representa a operação XOR (ou exclusivo). Qual é a capacidade deste canal?
- 3. Um canal binário simétrico funciona de acordo com a equação booleana $y=x\oplus e$, onde $\Pr\{E=1\}=0.9$. Qual é a capacidade deste canal?
- 4. Considere um erasure channel onde a probabilidade de um bit ser eliminado é $p_e = 0.2$. Calcule a capacidade deste canal.

5. Considere um canal binário simétrico com $p_e = 0.1$. Suponha que os símbolos x à entrada do canal têm as probabilidades indicadas na tabela seguinte:

$$\begin{array}{c|c}
x & p(x) \\
\hline
0 & 0.3 \\
1 & 0.7
\end{array}$$

Pretende-se calcular a distribuição de probabilidade do símbolo x enviado, dado o símbolo recebido y. Isto é, pretende-se calcular as probabilidades condicionais p(x|y). (Sugestão: lei de Bayes)

6. Uma cadeia de Markov com probabilidades de transição

$$P = \begin{bmatrix} 0.9 & 0.1\\ 0.1 & 0.9 \end{bmatrix} \tag{2}$$

é observada por intermédio de um canal binário simétrico com $p_e = 0.8$. Pretende-se estimar qual o estado da cadeia de Markov ao longo do tempo à medida que são obtidas observações y. Admita conhecido o estado inicial $x_0 = 0$. Calcule a distribuição de probabilidade do estado nos instantes t = 1, 2, 3, sabendo que foi observada a sequência $y_{1:3} = [0, 1, 1]$. Assuma para cada instante de tempo t não é conhecido o futuro (i.e., em t = 2 não se conhece y_3).

Este problema é conhecido como cadeias de Markov escondidas, ou HMM (Hidden Markov Models).

- 7. Supondo que é usado o código de Hamming (7,4), faça a correcção das seguintes palávras recebidas:
 - (a) 0001100
 - (b) 1010101
- 8. Suponha que o código de Hamming (7,4) é usado para transmitir por um canal binário simétrico com $p_e = 0.1$. Calcule a probabilidade de erro na descodificação de uma palavra de código. A probabilidade de erro é igual para todas as palavras de código?
- 9. Suponha que o código de Hamming (7,4) é usado para transmitir por um canal binário

Calcule a probabilidade de erro na descodificação de cada palavra de código.

8 Variáveis Contínuas

- 1. Calcule a entropia diferencial h(X) para as funções densidade de probabilidade seguintes:
 - (a) Uniforme: $X \sim \text{unif}(1 \varepsilon, 1 + \varepsilon)$
 - (b) Mistura de uniformes: $X \sim a \, \text{unif}(1-\varepsilon,1+\varepsilon) + (1-a) \, \text{unif}(2-\varepsilon,2+\varepsilon)$
 - (c) Gaussiana: $X \sim \mathcal{N}(\mu, \sigma^2)$, onde

$$\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- 2. Considere um canal Gaussiano com entrada $X \in [0,5]$, saída Y, e ruído aditivo Gaussiano $Z \sim \mathcal{N}(0,1)$. O canal Gaussiano vai ser usado para transmitir símbolos de um alfabeto binário (valores lógicos True/False).
 - (a) Como deve ser feita a codificação dos valores lógicos?
 - (b) Como deve ser feita a descodificação da saída Y?

- (c) Calcule a probabilidade de erro na descodificação e calcule o canal binário equivalente.
- (d) Calcule a capacidade do canal.
- (e) Generalize a capacidade do canal para $X \in [-X_{\text{max}}, X_{\text{max}}]$ e $Z \sim \mathcal{N}(0, \sigma^2)$.
- 3. Considere um canal Gaussiano com entrada X, saída Y e ruído Gaussiano $Z \sim \mathcal{N}(0,1)$. A entrada X tem "potência" limitada a $P = x^2 \leq 4$.
 - (a) O canal Gaussiano vai ser usado para transmitir símbolos de um alfabeto trenário $X^{\Delta} \in \{0,1,2\}$, pretendendo-se obter à saídas símbolos $Y^{\Delta} \in \{0,1,2\}$. Determine de que modo os símbolos X^{Δ} podem ser codificados e os símbolos Y^{Δ} descodificados.
 - (b) Calcule as probabilidades de erro na descodificação para cada símbolo discreto transmitido.