Multiscale Inference in Nonparametric regression with Time Series Errors

Marina Khismatullina 1 Michael Vogt 1

CFE-CMStatistics 2018

 1 University of Bonn

Introduction

Motivation

Figure 1: Yearly mean temperature in Central England from 1659 to 2017

Motivation

Model

Model

We observe a single time series $\{Y_t : 1 \le t \le T\}$ of length T. The observations come from the following model:

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t$$

- *m* is an unknown trend function on [0, 1];
- $\{\varepsilon_t : 1 \le t \le T\}$ is a zero-mean stationary error process.

Literature

Multiscale approaches for independent data

- SiZer method (Chaudhuri and Marron, 1999, 2000)
- Testing monotonicity of the trend function (Hall and Heckman, 2000)
- Testing qualitative hypotheses (Dümbgen and Spokoiny, 2001)

Literature

Multiscale approaches for independent data

- SiZer method (Chaudhuri and Marron, 1999, 2000)
- Testing monotonicity of the trend function (Hall and Heckman, 2000)
- Testing qualitative hypotheses (Dümbgen and Spokoiny, 2001)

Multiscale methods for dependent data

 Extensions to SiZer method (Park et al. 2004, 2009, Rondonotti et al. 2007)

The multiscale method

Testing

Testing problem:

$$H_0: m' = 0$$

 $H_1: m' \neq 0$

$$H_1: m' \neq 0$$

For a given location $u \in [0,1]$ and bandwidth h we construct the kernel averages

$$\widehat{\psi}_T(u,h) = \sum_{t=1}^T w_{t,T}(u,h)Y_t,$$

where

$$w_{t,T}(u,h) = \frac{\Lambda_{t,T}(u,h)}{\{\sum_{t=1}^{T} \Lambda_{t,T}(u,h)^{2}\}^{1/2}},$$

$$\Lambda_{t,T}(u,h) = K\left(\frac{t/T-u}{h}\right) \left[S_{T,0}(u,h)\left(\frac{t/T-u}{h}\right) - S_{T,1}(u,h)\right]$$

$$S_{T,\ell}(u,h) = \frac{1}{Th} \sum_{t=1}^{T} K\left(\frac{t/T-u}{h}\right) \left(\frac{t/T-u}{h}\right)^{\ell}$$

for $\ell = 0, 1, 2$ and K is a kernel function.

Test statistic is defined as follows

$$\widehat{\Psi}_{T} = \max_{(u,h) \in \mathcal{G}_{T}} \left\{ \left| \frac{\widehat{\psi}_{T}(u,h)}{\widehat{\sigma}} \right| - \lambda(h) \right\},\,$$

where

• $\lambda(h) = \sqrt{2 \log\{1/(2h)\}}$ is an additive correction term;

Test statistic is defined as follows

$$\widehat{\Psi}_T = \max_{(u,h) \in \mathcal{G}_T} \left\{ \left| \frac{\widehat{\psi}_T(u,h)}{\widehat{\sigma}} \right| - \lambda(h) \right\},\,$$

where

- $\lambda(h) = \sqrt{2 \log\{1/(2h)\}}$ is an additive correction term;
- \mathcal{G}_T is the set of points (u, h) that are taken into consideration;

Test statistic is defined as follows

$$\widehat{\Psi}_{T} = \max_{(u,h) \in \mathcal{G}_{T}} \left\{ \left| \frac{\widehat{\psi}_{T}(u,h)}{\widehat{\sigma}} \right| - \lambda(h) \right\},\,$$

where

- $\lambda(h) = \sqrt{2\log\{1/(2h)\}}$ is an additive correction term;
- \mathcal{G}_T is the set of points (u, h) that are taken into consideration;
- $\hat{\sigma}^2$ is an appropriate estimator of the long-run variance σ^2 .

Test procedure

Gaussian version of the test statistic:

$$\Phi_{T} = \max_{(u,h)\in\mathcal{G}_{T}} \left\{ \left| \frac{\phi_{T}(u,h)}{\sigma} \right| - \lambda(h) \right\},\,$$

where

- $\phi_T(u,h) = \sum_{t=1}^T w_{t,T}(u,h) \sigma Z_t$;
- Z_t are independent standard normal random variables;
- $q_T(\alpha)$ is $(1-\alpha)$ quantile of Φ_T .

Test procedure

Gaussian version of the test statistic:

$$\Phi_{\mathcal{T}} = \max_{(u,h)\in\mathcal{G}_{\mathcal{T}}} \left\{ \left| \frac{\phi_{\mathcal{T}}(u,h)}{\sigma} \right| - \lambda(h) \right\},\,$$

where

- $\phi_T(u,h) = \sum_{t=1}^T w_{t,T}(u,h) \sigma Z_t$;
- Z_t are independent standard normal random variables;
- $q_T(\alpha)$ is $(1-\alpha)$ quantile of Φ_T .

Test procedure

For a given significance level $\alpha \in (0,1)$, we reject H_0 if $\widehat{\Psi}_T > q_T(\alpha)$.

 $\mathcal{C}1$ The variables ε_t are weakly dependent.

 $\mathcal{C}1$ The variables ε_t are weakly dependent.

C2 It holds that $\|\varepsilon_t\|_q < \infty$ for some q > 4.

- $\mathcal{C}1$ The variables ε_t are weakly dependent.
- C2 It holds that $\|\varepsilon_t\|_q < \infty$ for some q > 4.
- $\mathcal{C}3$ Standard assumptions on the kernel function K.

- $\mathcal{C}1$ The variables ε_t are weakly dependent.
- C2 It holds that $\|\varepsilon_t\|_q < \infty$ for some q > 4.
- $\mathcal{C}3$ Standard assumptions on the kernel function K.
- C4 Assume that $\hat{\sigma}^2 = \sigma^2 + o_p(\rho_T)$ with $\rho_T = o(1/\log T)$.

- C1 The variables ε_t are weakly dependent.
- C2 It holds that $\|\varepsilon_t\|_q < \infty$ for some q > 4.
- C3 Standard assumptions on the kernel function K.
- C4 Assume that $\hat{\sigma}^2 = \sigma^2 + o_p(\rho_T)$ with $\rho_T = o(1/\log T)$.
- C5 $|\mathcal{G}_T| = O(T^{\theta})$ for some arbitrarily large but fixed constant $\theta > 0$.

- $\mathcal{C}1$ The variables ε_t are weakly dependent.
- C2 It holds that $\|\varepsilon_t\|_q < \infty$ for some q > 4.
- $\mathcal{C}3$ Standard assumptions on the kernel function K.
- C4 Assume that $\hat{\sigma}^2 = \sigma^2 + o_p(\rho_T)$ with $\rho_T = o(1/\log T)$.
- C5 $|\mathcal{G}_T| = O(T^{\theta})$ for some arbitrarily large but fixed constant $\theta > 0$.

$$\mathcal{G}_T = \big\{ (u,h) : u = t/T \text{ for some } 1 \leq t \leq T \text{ and } h \in [h_{\min},h_{\max}] \\$$
 with $h = t/T$ for some $1 \leq t \leq T \big\},$

- $\mathcal{C}1$ The variables ε_t are weakly dependent.
- C2 It holds that $\|\varepsilon_t\|_q < \infty$ for some q > 4.
- C3 Standard assumptions on the kernel function K.
- C4 Assume that $\hat{\sigma}^2 = \sigma^2 + o_p(\rho_T)$ with $\rho_T = o(1/\log T)$.
- C5 $|\mathcal{G}_T| = O(T^{\theta})$ for some arbitrarily large but fixed constant $\theta > 0$.
- C6 $h_{\min} \gg T^{-(1-\frac{2}{q})} \log T$ and $h_{\max} = o(1)$.

Proposition

Under our assumptions and under $H_0:m^\prime=0$ it holds that

$$P(\widehat{\Psi}_T \leq q_T(\alpha)) = (1 - \alpha) + o(1).$$

Proposition

Under our assumptions and under $H_0: m'=0$ it holds that $P(\widehat{\Psi}_T \leq q_T(\alpha)) = (1-\alpha) + o(1).$

Proposition

Under our assumptions and under local alternatives, we have $P(\widehat{\Psi}_T \leq q_T(\alpha)) = o(1).$

Strategy of the proof

• Replace the statistic $\widehat{\Psi}_{\mathcal{T}}$ under $H_0: m=0$ by a statistic $\widetilde{\Phi}_{\mathcal{T}}$ with the same distribution and the property that

$$\left|\widetilde{\Phi}_{T}-\Phi_{T}\right|=o_{p}(\delta_{T}),$$

where $\delta_T = o(1)$. To do so, we make use of strong approximation theory for dependent processes as derived in Berkes et al. (2014)

Strategy of the proof

• Replace the statistic $\widehat{\Psi}_T$ under $H_0: m=0$ by a statistic $\widetilde{\Phi}_T$ with the same distribution and the property that

$$\left|\widetilde{\Phi}_{T}-\Phi_{T}\right|=o_{p}(\delta_{T}),$$

where $\delta_T = o(1)$. To do so, we make use of strong approximation theory for dependent processes as derived in Berkes et al. (2014)

• Using the anti-concentration results for Gaussian random vectors (Chernozhukov et al. 2015), prove that Φ_T does not concentrate too strongly in small regions of the form $[x-\delta_T,x+\delta_T]$, i.e.

$$\sup_{x\in\mathbb{R}} P(|\Phi_T - x| \le \delta_T) = o(1).$$

Strategy of the proof

• Replace the statistic $\widehat{\Psi}_T$ under $H_0: m=0$ by a statistic $\widetilde{\Phi}_T$ with the same distribution and the property that

$$\left|\widetilde{\Phi}_{T}-\Phi_{T}\right|=o_{p}(\delta_{T}),$$

where $\delta_T = o(1)$. To do so, we make use of strong approximation theory for dependent processes as derived in Berkes et al. (2014)

• Using the anti-concentration results for Gaussian random vectors (Chernozhukov et al. 2015), prove that Φ_T does not concentrate too strongly in small regions of the form $[x-\delta_T,x+\delta_T]$, i.e.

$$\sup_{x\in\mathbb{R}}\mathrm{P}\big(|\Phi_T-x|\leq \delta_T\big)=o(1).$$

Show that

$$\sup_{x \in \mathbb{R}} \left| P(\widetilde{\Phi}_{\mathcal{T}} \le x) - P(\Phi_{\mathcal{T}} \le x) \right| = o(1).$$

Define

$$\Pi_{\mathit{T}}^{+} = \big\{\mathit{I}_{\mathit{u},\mathit{h}} = [\mathit{u}-\mathit{h},\mathit{u}+\mathit{h}] : (\mathit{u},\mathit{h}) \in \mathcal{A}_{\mathit{T}}^{+} \text{ and } \mathit{I}_{\mathit{u},\mathit{h}} \subseteq [0,1]\big\}$$

with

$$\mathcal{A}_{T}^{+} = \left\{ (u, h) \in \mathcal{G}_{T} : \frac{\widehat{\psi}_{T}(u, h)}{\widehat{\sigma}} > q_{T}(\alpha) + \lambda(h) \right\}$$

Define

$$\Pi_{T}^{+} = \left\{ I_{u,h} = [u - h, u + h] : (u,h) \in \mathcal{A}_{T}^{+} \text{ and } I_{u,h} \subseteq [0,1] \right\}$$

$$\Pi_{T}^{-} = \left\{ I_{u,h} = [u - h, u + h] : (u,h) \in \mathcal{A}_{T}^{-} \text{ and } I_{u,h} \subseteq [0,1] \right\}$$

with

$$\mathcal{A}_{T}^{+} = \left\{ (u, h) \in \mathcal{G}_{T} : \frac{\widehat{\psi}_{T}(u, h)}{\widehat{\sigma}} > q_{T}(\alpha) + \lambda(h) \right\}$$
$$\mathcal{A}_{T}^{-} = \left\{ (u, h) \in \mathcal{G}_{T} : -\frac{\widehat{\psi}_{T}(u, h)}{\widehat{\sigma}} > q_{T}(\alpha) + \lambda(h) \right\}$$

Proposition

Under our assumptions, for events

$$E_T^+ = \left\{ \forall I_{u,h} \in \Pi_T^+ : m'(v) > 0 \text{ for some } v \in I_{u,h} \right\}$$
 it holds that

$$P(E_T^+) \ge (1 - \alpha) + o(1)$$

Proposition

Under our assumptions, for events $E_T^+ = \left\{ \forall I_{u,h} \in \Pi_T^+ : m'(v) > 0 \text{ for some } v \in I_{u,h} \right\} \text{ and }$ $E_T^- = \left\{ \forall I_{u,h} \in \Pi_T^- : m'(v) < 0 \text{ for some } v \in I_{u,h} \right\} \text{ it holds that }$ $P(E_T^+) \geq (1-\alpha) + o(1)$ $P(E_T^-) \geq (1-\alpha) + o(1)$

Graphical representation

Minimal intervals

An interval $I_{u,h} \in \Pi_T^+$ is called **minimal** if there is no other interval $I_{u',h'} \in \Pi_T^+$ with $I_{u',h'} \subset I_{u,h}$.

Graphical representation

Minimal intervals

An interval $I_{u,h} \in \Pi_T^+$ is called **minimal** if there is no other interval $I_{u',h'} \in \Pi_T^+$ with $I_{u',h'} \subset I_{u,h}$.

Define

$$\begin{split} &\Pi_T^{min,+} = \text{ set of minimal intervals from } \Pi_T^+, \\ &E_T^{min,+} = \left\{ \forall I_{u,h} \in \Pi_T^{min,+} : m'(v) > 0 \text{ for some } v \in I_{u,h} \right\} \end{split}$$

Graphical representation

Minimal intervals

An interval $I_{u,h} \in \Pi_T^+$ is called **minimal** if there is no other interval $I_{u',h'} \in \Pi_T^+$ with $I_{u',h'} \subset I_{u,h}$.

Define

$$\Pi_T^{min,+} = \text{ set of minimal intervals from } \Pi_T^+,$$

$$E_T^{min,+} = \left\{ \forall I_{u,h} \in \Pi_T^{min,+} : m'(v) > 0 \text{ for some } v \in I_{u,h} \right\}$$

Since
$$E_T^{min,+} = E_T^+$$
, we have

$$P(E_T^{min,+}) \geq (1-\alpha) + o(1).$$

Graphical representation, $a_1 = 0.25$

Graphical representation, $a_1 = -0.5$

Application

Conclusion

Conclusion

We developed multiscale methods to test qualitative hypotheses about nonparametric time trends:

- whether the trend is present at all;
- whether the trend function is constant;
- in which time regions there is an upward/downward movement in the trend.

We derived asymptotic theory for the proposed tests.

As an application of our method, we analyzed the behavior of the yearly mean temperature in Central England from 1659 to 2017.

Thank you!

Long-run error variance estimator

Estimate the long-run error variance $\sigma^2 = \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}(\varepsilon_0, \varepsilon_\ell)$ of the error terms $\{\varepsilon_t\}$ in the model

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t,$$

where $\{\varepsilon_t\}$ is a stationary and causal AR(p) process of the form

$$\varepsilon_t = \sum_{j=1}^{p} a_j \varepsilon_{t-j} + \eta_t.$$

Estimate the long-run error variance $\sigma^2 = \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}(\varepsilon_0, \varepsilon_\ell)$ of the error terms $\{\varepsilon_t\}$ in the model

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t,$$

where $\{\varepsilon_t\}$ is a stationary and causal AR(p) process of the form

$$\varepsilon_t = \sum_{j=1}^p \mathsf{a}_j \varepsilon_{t-j} + \eta_t.$$

• $a = (a_1, \ldots, a_p)$ is a vector of the unknown parameters;

Estimate the long-run error variance $\sigma^2 = \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}(\varepsilon_0, \varepsilon_\ell)$ of the error terms $\{\varepsilon_t\}$ in the model

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t,$$

where $\{\varepsilon_t\}$ is a stationary and causal AR(p) process of the form

$$\varepsilon_t = \sum_{j=1}^p \mathsf{a}_j \varepsilon_{t-j} + \eta_t.$$

- $a = (a_1, \dots, a_p)$ is a vector of the unknown parameters;
- η_t are i.i.d. innovations with $\mathbb{E}[\eta_t] = 0$ and $\mathbb{E}[\eta_t^2] = \nu^2$;

Estimate the long-run error variance $\sigma^2 = \sum_{\ell=-\infty}^{\infty} \operatorname{Cov}(\varepsilon_0, \varepsilon_\ell)$ of the error terms $\{\varepsilon_t\}$ in the model

$$Y_t = m\left(\frac{t}{T}\right) + \varepsilon_t,$$

where $\{\varepsilon_t\}$ is a stationary and causal AR(p) process of the form

$$\varepsilon_t = \sum_{j=1}^p a_j \varepsilon_{t-j} + \eta_t.$$

- $a = (a_1, \dots, a_p)$ is a vector of the unknown parameters;
- η_t are i.i.d. innovations with $\mathbb{E}[\eta_t] = 0$ and $\mathbb{E}[\eta_t^2] = \nu^2$;
- p is known.

Yule-Walker equations yield

$$\mathbf{\Gamma}_{q}\mathbf{a}=\boldsymbol{\gamma}_{q}+\nu^{2}\boldsymbol{c}_{q},$$

•
$$c_q = (c_{q-1}, \dots, c_{q-p})^{\top}$$
 are the coefficients from the MA(∞) expansion of $\{\varepsilon_t\}$;

Yule-Walker equations yield

$$\mathbf{\Gamma}_{q}\mathbf{a}=\boldsymbol{\gamma}_{q}+\nu^{2}\boldsymbol{c}_{q},$$

- $c_q = (c_{q-1}, \dots, c_{q-p})^{\top}$ are the coefficients from the MA(∞) expansion of $\{\varepsilon_t\}$;
- $\gamma_q = (\gamma_q(1), \dots, \gamma_q(p))^\top$ with $\gamma_q(\ell) = \operatorname{Cov}(\Delta_q \varepsilon_t, \Delta_q \varepsilon_{t-\ell});$

Yule-Walker equations yield

$$\mathbf{\Gamma}_{q}\mathbf{a}=\boldsymbol{\gamma}_{q}+\nu^{2}\boldsymbol{c}_{q},$$

- $c_q = (c_{q-1}, \dots, c_{q-p})^{\top}$ are the coefficients from the MA(∞) expansion of $\{\varepsilon_t\}$;
- $\gamma_q = (\gamma_q(1), \dots, \gamma_q(p))^{\top}$ with $\gamma_q(\ell) = \text{Cov}(\Delta_q \varepsilon_t, \Delta_q \varepsilon_{t-\ell});$
- and Γ_q is the $p \times p$ covariance matrix $\Gamma_q = (\gamma_q(i-j) : 1 \le i, j \le p)$.

Yule-Walker equations yield

$$\mathbf{\Gamma}_{q}\mathbf{a}=\boldsymbol{\gamma}_{q}+\nu^{2}\mathbf{c}_{q},$$

where

- $c_q = (c_{q-1}, \dots, c_{q-p})^{\top}$ are the coefficients from the MA(∞) expansion of $\{\varepsilon_t\}$;
- $\gamma_q = (\gamma_q(1), \dots, \gamma_q(p))^{\top}$ with $\gamma_q(\ell) = \text{Cov}(\Delta_q \varepsilon_t, \Delta_q \varepsilon_{t-\ell})$;
- and Γ_q is the $p \times p$ covariance matrix $\Gamma_q = (\gamma_q(i-j) : 1 \le i, j \le p)$.

Note

$$oldsymbol{\Gamma}_q oldsymbol{a} pprox oldsymbol{\gamma}_q$$
 for large values of q .

Yule-Walker equations yield

$$\mathbf{\Gamma}_{q}\mathbf{a}=\boldsymbol{\gamma}_{q}+\nu^{2}\boldsymbol{c}_{q},$$

where

- $c_q = (c_{q-1}, \dots, c_{q-p})^{\top}$ are the coefficients from the MA(∞) expansion of $\{\varepsilon_t\}$;
- $\gamma_q = (\gamma_q(1), \dots, \gamma_q(p))^\top$ with $\gamma_q(\ell) = \operatorname{Cov}(\Delta_q \varepsilon_t, \Delta_q \varepsilon_{t-\ell})$;
- and Γ_q is the $p \times p$ covariance matrix $\Gamma_q = (\gamma_q(i-j): 1 \leq i, j \leq p)$.

Note

$$oldsymbol{\Gamma}_q oldsymbol{a} pprox oldsymbol{\gamma}_q$$
 for large values of q .

We construct the first-stage estimator by

$$\widetilde{\pmb{a}}_q = \widehat{\pmb{\Gamma}}_q^{-1} \widehat{\pmb{\gamma}}_q,$$

where $\widehat{\Gamma}_q$ and $\widehat{\gamma}_q$ are constructed from the sample autocovariances $\widehat{\gamma}_q(\ell) = (T-q)^{-1} \sum_{t=q+\ell+1}^T \Delta_q Y_{t,T} \Delta_q Y_{t-\ell,T}$.

Multiscale Inference for Nonparametric Time Trends

Problem

If the trend m is pronounced, the estimator $\widetilde{\boldsymbol{a}}_q$ will have a strong bias.

Problem

If the trend m is pronounced, the estimator $\widetilde{\boldsymbol{a}}_q$ will have a strong bias.

Solution:

ullet Compute estimators \widetilde{c}_k of c_k based on $\widetilde{\boldsymbol{a}}_q$.

Problem

If the trend m is pronounced, the estimator \widetilde{a}_q will have a strong bias.

Solution:

- Compute estimators \widetilde{c}_k of c_k based on \widetilde{a}_q .
- Estimate the innovation variance ν^2 by $\widetilde{\nu}^2 = (2T)^{-1} \sum_{t=p+1}^T \widetilde{r}_{t,T}^2$, where $\widetilde{r}_{t,T} = \Delta_1 Y_{t,T} \sum_{j=1}^p \widetilde{a}_j \Delta_1 Y_{t-j,T}$.

Problem

If the trend m is pronounced, the estimator \widetilde{a}_q will have a strong bias.

Solution:

- Compute estimators \widetilde{c}_k of c_k based on \widetilde{a}_q .
- Estimate the innovation variance ν^2 by $\widetilde{\nu}^2 = (2T)^{-1} \sum_{t=p+1}^T \widetilde{r}_{t,T}^2$, where $\widetilde{r}_{t,T} = \Delta_1 Y_{t,T} \sum_{j=1}^p \widetilde{a}_j \Delta_1 Y_{t-j,T}$.
- Estimate **a** by

$$\widehat{\boldsymbol{a}}_r = \widehat{\boldsymbol{\Gamma}}_r^{-1} (\widehat{\boldsymbol{\gamma}}_r + \widetilde{\boldsymbol{\nu}}^2 \widetilde{\boldsymbol{c}}_r).$$

Problem

If the trend m is pronounced, the estimator \widetilde{a}_q will have a strong bias.

Solution:

- Compute estimators \widetilde{c}_k of c_k based on \widetilde{a}_q .
- Estimate the innovation variance ν^2 by $\widetilde{\nu}^2 = (2T)^{-1} \sum_{t=p+1}^T \widetilde{r}_{t,T}^2$, where $\widetilde{r}_{t,T} = \Delta_1 Y_{t,T} \sum_{j=1}^p \widetilde{a}_j \Delta_1 Y_{t-j,T}$.
- Estimate a by

$$\widehat{\boldsymbol{a}}_r = \widehat{\boldsymbol{\Gamma}}_r^{-1} (\widehat{\boldsymbol{\gamma}}_r + \widetilde{\boldsymbol{\nu}}^2 \widetilde{\boldsymbol{c}}_r).$$

• Average the estimators \hat{a}_r : $\hat{a} = \frac{1}{r} \sum_{r=1}^r \hat{a}_r$.

Problem

If the trend m is pronounced, the estimator \tilde{a}_q will have a strong bias.

Solution:

- Compute estimators \widetilde{c}_k of c_k based on \widetilde{a}_q .
- Estimate the innovation variance ν^2 by $\widetilde{\nu}^2 = (2T)^{-1} \sum_{t=p+1}^T \widetilde{r}_{t,T}^2$, where $\widetilde{r}_{t,T} = \Delta_1 Y_{t,T} \sum_{j=1}^p \widetilde{a}_j \Delta_1 Y_{t-j,T}$.
- Estimate a by

$$\widehat{\boldsymbol{a}}_r = \widehat{\boldsymbol{\Gamma}}_r^{-1} (\widehat{\boldsymbol{\gamma}}_r + \widetilde{\boldsymbol{\nu}}^2 \widetilde{\boldsymbol{c}}_r).$$

- Average the estimators \hat{a}_r : $\hat{a} = \frac{1}{\bar{r}} \sum_{r=1}^{\bar{r}} \hat{a}_r$.
- Estimate the long-run variance σ^2 by

$$\widehat{\sigma}^2 = \frac{\widehat{\nu}^2}{(1 - \sum_{j=1}^p \widehat{a}_j)^2}.$$

Motivation for the estimator

If $\{\varepsilon_t\}$ is an AR(p) process, then the time series $\{\Delta_q\varepsilon_t\}$ of the differences $\Delta_q\varepsilon_t=\varepsilon_t-\varepsilon_{t-q}$ is an ARMA(p,q) process of the form

$$\Delta_q \varepsilon_t - \sum_{i=1}^p a_i \Delta_q \varepsilon_{t-j} = \eta_t - \eta_{t-q}.$$

Motivation for the estimator

If $\{\varepsilon_t\}$ is an AR(p) process, then the time series $\{\Delta_q\varepsilon_t\}$ of the differences $\Delta_q\varepsilon_t=\varepsilon_t-\varepsilon_{t-q}$ is an ARMA(p,q) process of the form

$$\Delta_q \varepsilon_t - \sum_{i=1}^p a_i \Delta_q \varepsilon_{t-i} = \eta_t - \eta_{t-q}.$$

Then $\Delta_q Y_{t,T} = Y_{t,T} - Y_{t-q,T}$ is approximately an ARMA(p,q) process.

Theoretical properties of the estimator

Performance:

• Our estimator \hat{a} produces accurate estimation results even when the AR polynomial $A(z) = 1 - \sum_{j=1}^{p} a_j z^j$ has a root close to the unit circle.

Theoretical properties of the estimator

Performance:

- Our estimator \hat{a} produces accurate estimation results even when the AR polynomial $A(z) = 1 \sum_{j=1}^{p} a_j z^j$ has a root close to the unit circle.
- Our pilot estimator \widetilde{a}_q tends to have a substantial bias when the trend m is pronounced. Our estimator \widehat{a} reduces this bias considerably.

Theoretical properties of the estimator

Performance:

- Our estimator \hat{a} produces accurate estimation results even when the AR polynomial $A(z) = 1 \sum_{j=1}^{p} a_j z^j$ has a root close to the unit circle.
- Our pilot estimator \widetilde{a}_q tends to have a substantial bias when the trend m is pronounced. Our estimator \widehat{a} reduces this bias considerably.

Proposition

Our estimators \tilde{a}_q , \hat{a} and $\hat{\sigma}^2$ are \sqrt{T} -consistent.

Testing for equality of the time trends

Model

We observe
$$n$$
 time series $\mathcal{Y}_i=\{Y_{it}:1\leq t\leq T\}$ of length T for $1\leq i\leq n$
$$Y_{it}=m_i\Big(\frac{t}{T}\Big)+\varepsilon_{it}$$

Model

We observe n time series $\mathcal{Y}_i = \{Y_{it}: 1 \leq t \leq T\}$ of length T for $1 \leq i \leq n$

$$Y_{it} = m_i \left(\frac{t}{T}\right) + \varepsilon_{it}$$

- m_i is an unknown trend function on [0,1], that are Lipschitz continuous and normalized such that $\int_0^1 m_i(u)du = 0$;
- $\mathcal{E}_i = \{ \varepsilon_{it} : 1 \leq t \leq T \}$ is a zero-mean stationary error process;
- \mathcal{E}_i are independent across i.

For a given location $u \in [0, 1]$, bandwidth h and a pair of time series i and j we construct the kernel averages

$$\widehat{\psi}_{ij,T}(u,h) = \sum_{t=1}^{T} w_{t,T}(u,h)(Y_{it} - Y_{jt}),$$

For a given location $u \in [0, 1]$, bandwidth h and a pair of time series i and j we construct the kernel averages

$$\widehat{\psi}_{ij,T}(u,h) = \sum_{t=1}^{T} w_{t,T}(u,h) (Y_{it} - Y_{jt}),$$

where

$$w_{t,T}(u,h) = \frac{\Lambda_{t,T}(u,h)}{\{\sum_{t=1}^{T} \Lambda_{t,T}^{2}(u,h)\}^{1/2}},$$

$$\Lambda_{t,T}(u,h) = K\left(\frac{t/T-u}{h}\right) \left[S_{T,2}(u,h) - S_{T,1}(u,h)\left(\frac{t/T-u}{h}\right)\right],$$

$$S_{T,\ell}(u,h) = \frac{1}{Th} \sum_{t=1}^{T} K\left(\frac{t/T-u}{h}\right) \left(\frac{t/T-u}{h}\right)^{\ell}$$

for $\ell = 0, 1, 2$ and K is a kernel function.

Our multiscale statistic is defined as follows

$$\begin{split} \widehat{\Psi}_{n,T} &= \max_{1 \leq i < j \leq n} \widehat{\Psi}_{ij,T}, \\ \widehat{\Psi}_{ij,T} &= \max_{(u,h) \in \mathcal{G}_T} \Big\{ \Big| \frac{\widehat{\psi}_{ij,T}(u,h)}{(\widehat{\sigma}_i^2 + \widehat{\sigma}_j^2)^{1/2}} \Big| - \lambda(h) \Big\}, \end{split}$$

- $\lambda(h) = \sqrt{2 \log\{1/(2h)\}}$ is an additive correction term;
- \mathcal{G}_T is the set of points (u, h) that are taken into consideration;
- $\hat{\sigma}_i^2$ is an appropriate estimator of the long-run variance σ_i^2 .

Our multiscale statistic is defined as follows

$$\begin{split} \widehat{\Psi}_{n,T} &= \max_{1 \leq i < j \leq n} \widehat{\Psi}_{ij,T}, \\ \widehat{\Psi}_{ij,T} &= \max_{(u,h) \in \mathcal{G}_T} \Big\{ \Big| \frac{\widehat{\psi}_{ij,T}(u,h)}{(\widehat{\sigma}_i^2 + \widehat{\sigma}_j^2)^{1/2}} \Big| - \lambda(h) \Big\}, \end{split}$$

- $\lambda(h) = \sqrt{2 \log\{1/(2h)\}}$ is an additive correction term;
- \mathcal{G}_T is the set of points (u, h) that are taken into consideration;
- $\hat{\sigma}_i^2$ is an appropriate estimator of the long-run variance σ_i^2 .

Test procedure

Testing problem:

$$H_0: m_1 = m_2 = \ldots = m_n$$

Test procedure

Testing problem:

$$H_0: m_1 = m_2 = \ldots = m_n$$

Gaussian version of the test statistic:

$$\begin{split} & \Phi_{n,T} = \max_{1 \leq i < j \leq n} \Phi_{ij,T}, \\ & \Phi_{ij,T} = \max_{(u,h) \in \mathcal{G}_T} \Big\{ \Big| \frac{\phi_{ij,T}(u,h)}{(\widehat{\sigma}_i^2 + \widehat{\sigma}_j^2)^{1/2}} \Big| - \lambda(h) \Big\}, \end{split}$$

where

$$\phi_{ij,T}(u,h) = \sum_{t=1}^{T} w_{t,T}(u,h) \left\{ \widehat{\sigma}_i \left(Z_{it} - \frac{1}{T} \sum_{t=1}^{T} Z_{it} \right) - \widehat{\sigma}_j \left(Z_{jt} - \frac{1}{T} \sum_{t=1}^{T} Z_{jt} \right) \right\};$$

 Z_t are independent standard normal random variables;

$$q_{n,T}(\alpha)$$
 is $(1-\alpha)$ quantile of $\Phi_{n,T}$.

Test procedure

Testing problem:

$$H_0: m_1 = m_2 = \ldots = m_n$$

Gaussian version of the test statistic:

$$\begin{aligned} & \Phi_{n,T} = \max_{1 \le i < j \le n} \Phi_{ij,T}, \\ & \Phi_{ij,T} = \max_{(u,h) \in \mathcal{G}_T} \left\{ \left| \frac{\phi_{ij,T}(u,h)}{(\widehat{\sigma}_i^2 + \widehat{\sigma}_j^2)^{1/2}} \right| - \lambda(h) \right\}, \end{aligned}$$

where

$$\phi_{ij,T}(u,h) = \sum_{t=1}^{T} w_{t,T}(u,h) \left\{ \widehat{\sigma}_i \left(Z_{it} - \frac{1}{T} \sum_{t=1}^{T} Z_{it} \right) - \widehat{\sigma}_j \left(Z_{jt} - \frac{1}{T} \sum_{t=1}^{T} Z_{jt} \right) \right\};$$

 Z_t are independent standard normal random variables;

$$q_{n,T}(\alpha)$$
 is $(1-\alpha)$ quantile of $\Phi_{n,T}$.

Test procedure

Testing problem:

$$H_0: m_1 = m_2 = \ldots = m_n$$

Gaussian version of the test statistic:

$$\Phi_{n,T} = \max_{1 \le i < j \le n} \Phi_{ij,T},$$

$$\Phi_{ij,T} = \max_{(u,h) \in \mathcal{G}_T} \left\{ \left| \frac{\phi_{ij,T}(u,h)}{(\widehat{\sigma}_i^2 + \widehat{\sigma}_i^2)^{1/2}} \right| - \lambda(h) \right\},$$

where

$$\phi_{ij,T}(u,h) = \sum_{t=1}^{T} w_{t,T}(u,h) \left\{ \widehat{\sigma}_i \left(Z_{it} - \frac{1}{T} \sum_{t=1}^{T} Z_{it} \right) - \widehat{\sigma}_j \left(Z_{jt} - \frac{1}{T} \sum_{t=1}^{T} Z_{jt} \right) \right\};$$

 Z_t are independent standard normal random variables;

$$q_{n,T}(\alpha)$$
 is $(1-\alpha)$ quantile of $\Phi_{n,T}$.

Test procedure

For a given significance level $\alpha \in (0,1)$, we reject H_0 if $\widehat{\Psi}_{n,T} > q_{n,T}(\alpha)$.

Theoretical properties

Proposition

Supose that \mathcal{E}_i are independent across i and satisfy $\mathcal{C}1-\mathcal{C}2$ for each i. Under our remaining assumptions and under $H_0: m_1=m_2=\ldots=m_n$ it holds that

$$P(\widehat{\Psi}_{n,T} \leq q_{n,T}(\alpha)) = (1-\alpha) + o(1).$$

Theoretical properties

Proposition

Supose that \mathcal{E}_i are independent across i and satisfy $\mathcal{C}1-\mathcal{C}2$ for each i. Under our remaining assumptions and under $H_0: m_1=m_2=\ldots=m_n$ it holds that

$$P(\widehat{\Psi}_{n,T} \leq q_{n,T}(\alpha)) = (1-\alpha) + o(1).$$

Proposition

Let the conditions of previous proposition be satisfied. Under local alternatives we have

$$P(\widehat{\Psi}_{n,T} \leq q_{n,T}(\alpha)) = o(1).$$

Clustering, group structure

• The null hypothesis $H_0: m_1 = m_2 = \ldots = m_n$ is violated.

Clustering, group structure

- The null hypothesis $H_0: m_1 = m_2 = \ldots = m_n$ is violated.
- There exist sets or groups of time series G_1, \ldots, G_N with $N \leq n$ and $\{1, \ldots, n\} = \bigcup_{\ell=1}^N G_\ell$ such that for each $1 \leq \ell \leq N$ we have $m_i = g_\ell$ for all $i \in G_\ell$, where g_ℓ are group-specific trend functions.

Clustering, group structure

- The null hypothesis $H_0: m_1 = m_2 = \ldots = m_n$ is violated.
- There exist sets or groups of time series G_1, \ldots, G_N with $N \leq n$ and $\{1, \ldots, n\} = \bigcup_{\ell=1}^N G_\ell$ such that for each $1 \leq \ell \leq N$ we have $m_i = g_\ell$ for all $i \in G_\ell$, where g_ℓ are group-specific trend functions.
- For any $\ell \neq \ell'$, the trends $g_{\ell,T}$ and $g_{\ell',T}$ differ in the following sense: There exists $(u,h) \in \mathcal{G}_T$ with $[u-h,u+h] \subseteq [0,1]$ such that $g_{\ell,T}(w) g_{\ell',T}(w) \geq c_T \sqrt{\log T/(Th)}$ for all $w \in [u-h,u+h]$ or $g_{\ell',T}(w) g_{\ell,T}(w) \geq c_T \sqrt{\log T/(Th)}$ for all $w \in [u-h,u+h]$, where $0 < c_T \to \infty$.

Clustering, algorithm

Dissimilarity measure between two sets of time series S and S':

$$\widehat{\Delta}(S, S') = \max_{\substack{i \in S, \\ j \in S'}} \widehat{\Psi}_{ij, T}.$$

Clustering algorithm

Step 0 (Initialization): Let $\widehat{G}_i^{[0]} = \{i\}$ denote the *i*-th singleton cluster for $1 \leq i \leq n$ and define $\{\widehat{G}_1^{[0]}, \ldots, \widehat{G}_n^{[0]}\}$ to be the initial partition of time series into clusters.

Step r (Iteration): Let $\widehat{G}_1^{[r-1]}, \ldots, \widehat{G}_{n-(r-1)}^{[r-1]}$ be the n-(r-1) clusters from the previous step. Determine the pair of clusters $\widehat{G}_{\ell}^{[r-1]}$ and $\widehat{G}_{\ell'}^{[r-1]}$ for which

$$\widehat{\Delta}\big(\widehat{G}_{\ell}^{[r-1]}, \widehat{G}_{\ell'}^{[r-1]}\big) = \min_{1 \leq k < k' \leq n-(r-1)} \widehat{\Delta}\big(\widehat{G}_{k}^{[r-1]}, \widehat{G}_{k'}^{[r-1]}\big)$$

and merge them into a new cluster.

Clustering, theoretical properties

The estimator of the number of groups is

$$\widehat{N} = \min \Big\{ r = 1, 2, \dots \Big| \max_{1 \leq \ell \leq r} \widehat{\Delta} \Big(\widehat{G}_{\ell}^{[n-r]} \Big) \leq q_{n,T}(\alpha) \Big\}.$$

Clustering, theoretical properties

The estimator of the number of groups is

$$\widehat{N} = \min \Big\{ r = 1, 2, \dots \Big| \max_{1 \leq \ell \leq r} \widehat{\Delta} \Big(\widehat{G}_{\ell}^{[n-r]} \Big) \leq q_{n,T}(\alpha) \Big\}.$$

Proposition

Let the conditions of previous propositions be satisfied. Then

$$\mathrm{P}\Big(\big\{\widehat{G}_1,\ldots,\widehat{G}_{\widehat{N}}\big\} = \{G_1,\ldots,G_N\}\Big) \geq (1-\alpha) + o(1)$$

and

$$P(\widehat{N} = N) \ge (1 - \alpha) + o(1).$$

Testing for equality of different temperature time trends

Multiscale Inference for Nonparametric Time Trends

Consider the uncorrected statistic

$$\widehat{\Psi}_{T, \text{uncorrected}} = \max_{(u,h) \in \mathcal{G}_T} \Big| \frac{\widehat{\psi}_T(u,h)}{\widehat{\sigma}} \Big|$$

- the errors ε_i are i.i.d. normally distributed;
- $\widehat{\sigma} = \sigma$;
- $\mathcal{G}_T = \{(u_k, h_l) | u_k = (2k-1)h_l \text{ for } 1 \le k \le 1/2h_l, 1 \le l \le L\}.$

Consider the uncorrected statistic

$$\widehat{\Psi}_{T, \text{uncorrected}} = \max_{(u,h) \in \mathcal{G}_T} \Big| \frac{\widehat{\psi}_T(u,h)}{\widehat{\sigma}} \Big|$$

- the errors ε_i are i.i.d. normally distributed;
- $\widehat{\sigma} = \sigma$;
- $\mathcal{G}_T = \{(u_k, h_l) | u_k = (2k-1)h_l \text{ for } 1 \le k \le 1/2h_l, 1 \le l \le L\}.$

$$\widehat{\Psi}_{\mathcal{T}, \text{uncorrected}} = \max_{1 \leq l \leq L} \max_{1 \leq k \leq 1/2h_l} \Big| \frac{\widehat{\psi}_{\mathcal{T}}(u_k, h_l)}{\sigma} \Big|$$

Consider the uncorrected statistic

$$\widehat{\Psi}_{T, \text{uncorrected}} = \max_{(u,h) \in \mathcal{G}_T} \Big| \frac{\widehat{\psi}_T(u,h)}{\widehat{\sigma}} \Big|$$

- the errors ε_i are i.i.d. normally distributed;
- $\widehat{\sigma} = \sigma$;
- $\mathcal{G}_T = \{(u_k, h_l) | u_k = (2k-1)h_l \text{ for } 1 \le k \le 1/2h_l, 1 \le l \le L\}.$

$$\widehat{\Psi}_{T, \text{uncorrected}} = \max_{1 \leq l \leq L} \max_{1 \leq k \leq 1/2h_l} \Big| \frac{\widehat{\psi}_T(u_k, h_l)}{\sigma} \Big|$$

Consider the uncorrected statistic

$$\widehat{\Psi}_{T, \text{uncorrected}} = \max_{(u,h) \in \mathcal{G}_T} \Big| \frac{\widehat{\psi}_T(u,h)}{\widehat{\sigma}} \Big|$$

- the errors ε_i are i.i.d. normally distributed;
- $\widehat{\sigma} = \sigma$;
- $\mathcal{G}_T = \{(u_k, h_l) | u_k = (2k-1)h_l \text{ for } 1 \le k \le 1/2h_l, 1 \le l \le L\}.$

$$\widehat{\Psi}_{\mathcal{T}, \text{uncorrected}} = \max_{1 \leq l \leq L} \max_{1 \leq k \leq 1/2h_l} \Big| \frac{\widehat{\psi}_{\mathcal{T}}(u_k, h_l)}{\sigma} \Big|$$

$$\Rightarrow \max_k \frac{\widehat{\psi}_T(u_k,h_l)}{\sigma} = \sqrt{2\log(1/2h_l)} + o_P(1) \to \infty \text{ as } h \to 0 \text{ and the stochastic behavior of } \widehat{\Psi}_{T,\text{uncorrected}} \text{ is dominated by } \frac{\widehat{\psi}_T(u_k,h_l)}{\sigma} \text{ for small bandwidths } h_l. \overset{\text{Go back}}{\longrightarrow}$$

Consider the uncorrected statistic

$$\widehat{\Psi}_{T, \text{uncorrected}} = \max_{(u,h) \in \mathcal{G}_T} \Big| \frac{\widehat{\psi}_T(u,h)}{\widehat{\sigma}} \Big|$$

- the errors ε_i are i.i.d. normally distributed;
- $\widehat{\sigma} = \sigma$;
- $\mathcal{G}_T = \{(u_k, h_l) | u_k = (2k-1)h_l \text{ for } 1 \le k \le 1/2h_l, 1 \le l \le L\}.$

$$\widehat{\Psi}_{\mathcal{T}, \text{uncorrected}} = \max_{1 \leq l \leq L} \max_{1 \leq k \leq 1/2h_l} \Big| \frac{\widehat{\psi}_{\mathcal{T}}(u_k, h_l)}{\sigma} \Big|$$

$$\Rightarrow \max_k \frac{\widehat{\psi}_T(u_k,h_l)}{\sigma} = \sqrt{2\log(1/2h_l)} + o_P(1) \to \infty \text{ as } h \to 0 \text{ and the stochastic behavior of } \widehat{\Psi}_{T,\text{uncorrected}} \text{ is dominated by } \frac{\widehat{\psi}_T(u_k,h_l)}{\sigma} \text{ for small bandwidths } h_l.$$