AE 737: Mechanics of Damage Tolerance

Lecture 17 - Crack Growth

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

29 March 2022

1

schedule

- 29 Mar Crack Growth
- 31 Mar Boeing Method, HW 6 Due
- 5 Apr Cycle counting
- 7 Apr Crack Retardation, HW 7 Due, HW 6 Self-grade Due

outline

- crack growth rate
- crack growth rate equations
- factors affecting crack propagation
- numerical algorithm

crack growth rate

fracture surface

fracture surface

Fatigue Fracture with Beachmarks

.

crack growth rate

- We can observe that fatigue damage occurs through crack propagation
- "cracks" and fracture mechanics have been omitted from all our fatigue discussion thus far
- It would be beneficial to predict at what rate a crack will extend

6

crack growth rate

- Crack growth rate can be measured experimentally
- Using a center-crack specimen, a fatigue load is applied
- The crack length is measured and plotted vs. the number of cycles
- The slope of this curve $(\frac{da}{dN})$ is then plotted vs. either K_{lmax} or ΔK_{l} on a log-log scale
- This chart is then commonly divided into three regions

8

region I

- In Region I crack growth is very slow and/or difficult to measure
- In many cases, da/dN corresponds to the spacing between atoms!
- The point at which the da/dN curve intersects the x-axis (usually with a relatively vertical slope) is called the fatigue threshold
- Typically 3-15 ksi√in for steel
- 3-6 ksi√in for aluminum

region II

- Most important region for general engineering analysis
- Once a crack is present, most of the growth and life occurs in Region II
- Generally linear in the log-log scale

10

region III

- Unstable crack growth
- Usually neglected (we expect failure before Region III fully develops in actual parts)
- Can be significant for parts where we expect high stress and relatively short life

crack growth rate curve

- The crack growth rate curve is considered a material property
- The same considerations for thickness apply as with fracture toughness (K_c vs. K_{lc})
- Is also a function of the load ratio, $R = \sigma_{min}/\sigma_{max}$

10

R effects

- While the x-axis can be either ΔK or K_{max}, the shape of the data is the same
- When we look at the effects of load ratio, R, the axis causes some differences on the plot
- With \(\Delta K \) on the x-axis, increasing \(R \) will shift the curve up
 and to the left, shifting the fatigue threshold and fracture
 toughness on the graph as well

R effects

- With K_{max} on the x-axis, increasing R shifts the curve down and to the right, but fatigue threshold and fracture toughness keep same values
- In general, R dependence vanishes for R > 0.8 or R < -0.3. This effect is known as the band width</p>

14

crack growth rate equations

crack growth rate equations

- There are many crack growth rate equations of varying complexity
- The "best" form to use will depend on design needs

15

growth equations

- The important features in curve-fit equations are
 - 1. Region II curve fit (linear on log-log scale)
 - 2. Region I curve fit (fatigue threshold)
 - 3. Region III curve fit (critical stress intensity)
 - 4 Stress ratio effects
 - 5. Band width of R-curves

paris law

- The original
- Fits the linear portion (Region II)
- Does not fit Region I, Region III, or have R-dependence

$$\frac{da}{dN} = C(\Delta K)^n$$

Note: this assumes the x-axis is ΔK , but $\Delta K = (1 - R)K_{max}$, so we can easily convert

17

walker

- Region II is usually all that is needed for engineering, but R-dependence is often an important effect to capture
- Walker modified the Paris law to account for R-dependence

$$\frac{da}{dN} = C \left[(1 - R)^m K_{max} \right]^n$$

 Gives a good fit for Region II with R-dependence and band width

- The Forman equation was developed to capture the effects of Region II and Region III
- Also includes the effects of R, but does not control the band width of R effects

$$\frac{da}{dN} = \frac{C\left[(1-R)K_{max}\right]^n}{(1-R)K_c - (1-R)K_{max}}$$

19

modified forman

 The Forman equation can be modified to include the effect of band width

$$\frac{da}{dN} = \frac{C \left[(1 - R)^m K_{max} \right]^n}{\left[(1 - R)^m K_c - (1 - R)^m K_{max} \right]^L}$$

 The Collipriest equation fits Regions I, II and III, but has no R-dependence

$$\frac{da}{dN} = C_1 + C_2 \tanh^{-1} \left[\frac{\log \left(\frac{K_{max}^2}{K_0 K_c} \right)}{\log (K_c / K_o)} \right]$$

21

modified collipriest

 Following the same methods as before, we can modify the Collipriest equation for R-dependence and band width control

$$\frac{da}{dN} = C_1 + C_2 \tanh^{-1} \left\lceil \frac{\log \left(\frac{(1-R)^m K_{max}^2}{K_o K_c} \right)}{\log (K_c/K_o)} \right\rceil$$

 For a cleaner graph, experimental data at different R-values is sometimes plotted vs. K_{eff}

$$K_{eff} = (1 - R)^m K_{max}$$

nasgrow growth rate equation

 A very complicated curve fit is provided in the NASGROW growth rate equation

$$\frac{da}{dN} = C \left[\frac{1-f}{1-R} \Delta K \right]^n \frac{\left[1 - \frac{\Delta K_{th}}{\Delta K} \right]}{\left[1 - \frac{K_{max}}{K_{ext}} \right]}$$

 The curve fit parameters can be found in p. 307 of your text (or the NASGROLW/AFGROW documentation)

23

boeing-walker growth rate equation

• The Boeing-Walker growth equation is given as (for R>0)

$$\frac{da}{dN} = 10^{-4} \left(\frac{1}{mT}\right)^p \left[K_{max}(1-R)^q\right]^p$$

conversion of constants

- Much of the data available to us is from Boeing, and given in terms of the Boeing-Walker equation
- We can re-write some other equations to more easily convert parameters between the various equations
- Walker-Boeing:

$$\frac{da}{dN} = 10^{-4} \left(\frac{1}{mT}\right)^p \left[\Delta K (1-R)^{q-1}\right]^p$$

25

conversion of constants

Walker-AFGROW:

$$\frac{da}{dN} = C_w \left[\Delta K (1 - R)^{m-1} \right]^{n_w}$$

Forman:

$$\frac{da}{dN} = \frac{C_F}{(1-R)K_c - \Delta K} (\Delta K)^{n_f}$$

Walker-Boeing	Walker-AFGROW	Forman
$10^{-4} \left(\frac{1}{mT}\right)^p$	$C_w = 10^{-4} \left(\frac{1}{mT}\right)^p$	$C_F =$
		$C_F = (K_c - 1)10^{-4} \left(\frac{1}{mT}\right)^p$
q	m = q	
p	$n_w = p$	$n_f = p$

27

paris example

- A wide center-cracked panel with $C = 6.75 \times 10^{-10}$ and n = 3.89 (with units in ksi and inches)
- If the crack is initially 1 inch long, find the crack length after 5,000 cycles of 15 ksi loading
- What if the load cycles varied from 5 ksi to 15 ksi? (m = 0.6)

factors affecting crack propagation

factors affecting crack propagation

- thickness
- stress ratio
- temperature
- environment

- frequency
- crack orientation
- manufacturer
- heat treatment

thickness

- We already discussed the effects of thickness on fracture toughness
- The same effects are important in crack propagation
- In thin (plane stress) plates, cracks can be treated as through cracks
- In thick plates (plain strain), we generally need to consider the crack shape

30

thickness

- Cyclic life is primarily a function of K_i/K_c where K_i is the stress intensity factor in the first cycle
- Other experiments indicate a relationship between $\frac{d(a/Q)}{dN}$ and K_{max}
- Q is a shape parameter for elliptical flaws

temperature

- In general (for most aluminum alloys) cracks propagate more slowly with a decrease in temperature
- This trend is exactly opposite the trend for K_c
- The effect varies in different materials.
- Most materials benefit from slightly lower temperatures, but as temperatures are further decreased the crack growth rate increases again

32

temperature

Fig. 2 Mid-range fatigue crack-growth rates with elternatin stress intensity factor for 18%Cr-Nb ferritic stainless steel a room temperature, 475, 500, 600, 700 and 800°C; R = 0.1 - 15 Lb.

temperature

- In general, temperature effects can not be predicted well
- Instead, materials should be tested at a range of temperatures to establish a range of operating temperatures with corresponding crack growth data

34

environment

- There are many conditions in the environment that can affect crack growth
- Moisture greatly increases the crack growth rate
- Salt water increases crack growth rate even further
- These effects have varying strength depending on the material used

environment

36

environment

- Further, the shape of the applied load curve has a significant effect when combined with adverse environments
- Crack growth is faster when the load increases slowly and decreases rapidly
- Crack growth is slower when the load increases rapidly and decreases slowly

environment

- When the environment is corrosive, the test frequency is of particular importance
- At low frequencies, a corrosive environment increases the threshold. Kth
- However in Region II, crack growth is faster
- This effect can be explained by the corrosive environment blunting the crack tip

38

frequency

- There is conflicting information about the effect of frequency in the absence of a corrosive environment
- Some experiments have found a frequency dependence, while others have not
- Many claim that the frequency dependence is due to small amounts of water in air during frequency dependence experiment

crack orientation

- For rolled plates, a crack will generally propagate faster parallel to the rolling direction
- In many materials, however, the difference between orientations is not significant when compared to scatter, and it is often neglected
- Some materials behave very differently with different crack orientations (i.e. the slope of the paris law curve is different), so care should be taken based on the material used

40

manufacturer

- Different manufacturers of the same material can produce different crack growth rates
- Some reasons for this may be
 - Slight variation in composition
 - Site cleanliness (inclusions)
 - Heat treatment/cold rolling variations

heat and surface treatments

- Different heat and surface treatments are often applied
- They provide various benefits (corrosion resistance, residual stress, residual stress relief)
- But they will also affect the crack growth rate

42

numerical algorithm

numerical algorithm

- While the Paris Law can be integrated directly (for simple load cases), many of the other formulas cannot
- A simple numerical algorithm for determining incremental crack growth is

$$a_{i+1} = a_i + \left(\frac{da}{dN}\right)_i (\Delta N)_i$$

43

numerical algorithm

- This method is quite tedious by hand (need many a_i values for this to be accurate)
- But is simple to do in Excel, MATLAB, Python, or many other codes
- For most accurate results, use ΔN = 1, but this is often unnecessary
- When trying to use large ΔN , check convergence by using larger and smaller ΔN values

boeing-walker example

- Use the Boeing-Walker equation to find the crack length after 20000 cycles of 15 ksi load on a large, center-cracked sheet of bare 2024-T3 in dry air, with an initial crack of 0.5"
- Use the numerical algorithm with $\Delta N = 1000$

45

convergence example

• compare the results from the previous example with $\Delta N = 10,100,1000$ and direct integration

variable load cases

- In practice variable loads are often seen
- The most basic way to handle these is to simply calculate the crack length after each block of loading
- We will discuss an alternate method, which is more convenient for flight "blocks" next class
- We will also discuss "retardation" models next class

47

variable load example

 For the same material as above (2024-T3, center-cracked, dry air), consider 20000 cycles with 15 ksi load followed by 10000 cycles of 5 - 20 ksi.