MAT2006 Tutorial #2

- **1.** Show that every nonempty subset A of \mathbb{R} that is bounded below has a greatest lower bound inf A.
- **2.** (a) Show that the Archimedean Property is equivalent to:

"for every positive real numbers x and ϵ , there exits $M \in \mathbb{N}$ such that $M\epsilon > x$."

(b) Recall that the Archimedean Property is a consequence of the AoC. Show that the Archimedean Property is also equivalent to:

"for any positive real number h and any real number x, there exists a unique integer k such that $(k-1)h \le x < kh$."

Note. This is one step we used in lecture for proving \mathbb{Q} is dense in \mathbb{R} . The Archimedean Property is stated as (a) in [Tao] and as (b) in [Zorich].

- 3. Prove that $\bigcap_{n=1}^{\infty}(0,\frac{1}{n})=\emptyset$. Notice that this demonstrates that the intervals in the Nested Interval Property must be closed for the conclusion of the theorem to hold.
- 4. Show that the relation "has the same cardinality" satisfies the following property
 - (i) reflective: $A \sim A$;
 - (ii) symmetric: if $A \sim B$ then $B \sim A$;
 - (iii) transitive: if $A \sim B$ and $B \sim C$, then $A \sim C$.

Note. A binary relation satisfying the above three properties is called an *equivalence relation*.

5. Show that

(i)
$$(a,b) \sim (0,1);$$
 (ii) $(a,b) \sim \mathbb{R};$ (iii) $[0,1] \sim (0,1).$ — End —