

DPP: 1

Subject: Mathematics

Topic: Quadratic Equations

- The values of x satisfying the equation $(5 + 2\sqrt{6})^{x^2 3} + (5 2\sqrt{6})^{x^2 3} = 10$, is/are 1.
 - $(A) \pm \sqrt{3}$
- $(C) \pm 3$
- (D) $\pm \sqrt{2}$

- There is no real x such that $e^{\sin x} e^{-\sin x} 4 = 0$. 2.
- (True/False)

- Solve for 'x': $2^{2x^2} + 2^{x^2+2x+2} = 2^{5+4x}$ 3.
- The number of real solutions of the equation $27^{1/x} + 12^{1/x} = 2(8^{1/x})$ is 4.
 - (A) 0
- (B) 1

- (D) none of these
- One real solution of the equation $(x^2 + 2)^2 + 8x^2 = 6x (x^2 + 2)$ is 5.
 - (A) 2 + $\sqrt{2}$
- (B) $2 \sqrt{2}$
- (C) $3 + \sqrt{3}$ (D) $3 \sqrt{3}$
- Number of roots of the equation $\cos^2 x + \frac{\sqrt{3}+1}{2}\sin x \frac{\sqrt{3}}{4} 1 = 0$ which lie in the interval **6.**
 - $[-\pi, \pi]$ is 2 (A) 2
- (B) 4

- The number of real roots of $\sqrt{x^2+4x-21} + \sqrt{x^2-x-6} = \sqrt{6x^2-5x-39}$ is 7.
 - (A) 1

- Set of all values of x satisfying the inequality $\sqrt{x^2 7x + 6} > x + 2$ is 9.

- (A) $x \in \left(-\infty, \frac{2}{11}\right)$ (B) $x \in \left(\frac{2}{11}, \infty\right)$ (C) $x \in (-\infty, 1] \cup [6, \infty)$ (D) $x \in [6, \infty)$ The roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ are 10.
 - (a) $\frac{c-a}{b}$,1

- (b) $\frac{a-b}{b-c}$, 1 (c) $\frac{b-c}{a-b}$, 1 (d) $\frac{c-a}{a-b}$, 1
- The roots of the quadratic equation $(a+b-2c)x^2-(2a-b-c)x+(a-2b+c)=0$ are: 11.
 - (a) (a+b+c), (a-b+c)

(b) $\frac{1}{2}$, (a-2b+c)

(c) $\frac{1}{(a-b+c)}$, (a-2b+c)

- (d) 1, $\frac{(a-2b+c)}{(a+b-2c)}$
- Find the solution set of the equation, $3^x + 1 |3^x 1| = 2 \log_5 |6 x|$ 12.
- If $7^{\log_7(x^2-4x+5)} = x 1$, x may have values 13.
 - (a) 2, 3

- (c) -2, -3
- (d) 2, -3
- The equation, $\log_2(2x^2) + \log_2 x$. $x^{\log_x(\log_2 x + 1)} + \frac{1}{2} \log_4^2 x^4 + 2^{-3\log_{1/2}(\log_2 x)} = 1$ has: 14.
 - (a) exactly one real solution
- (b) two real solutions

(c) 3 real solutions

(d) no solution.

15.	Consider the inequality, $(x + 3)^n (x - 2) < 0$, $n \in \mathbb{N}$. Then the correct statement(s) is/are (a) the largest integral x satisfying the inequality is 1, if n is even (b) the least integral x satisfying the inequality is -2, if n is odd (c) number of integral x satisfying the inequality is 3, if n is odd (d) number of positive integral x satisfying the inequality is 1, if n is even									
16.	The largest interval in which $x^{12} - x^9 + x^4 - x + 1 > 0$ is:									
	(a) $[0,\infty)$	() (,]	,	(d) N.O.T						
17.	If $a > b > 0$ are t	wo real numbers, the va	lue of,	e of,						
$\sqrt{a b + (a - b) \sqrt{a b + (a - b) \sqrt{a b + (a - b) \sqrt{a b + \dots}}}}$ is:										
	(A) independent of b (C) independent of both a & b			(B) independent of a(D) dependent on both a & b.						
18.	The value of the	expreesion $x^4 - 8x^3 + 18$		$-8x + 2$ when $x = 2 + \sqrt{3}$ is						
	(A) 0	(B) 1	(C) 2	(D) 3						
19.	If $x = \sqrt[3]{7 + 5\sqrt{2}} - \frac{1}{\sqrt[3]{7 + 5\sqrt{2}}}$, then the value of $x^3 + 3x - 14$ is equal to									
	(A) 1	(B) 0	(C) $\frac{1}{2}$	(D) - 1						
20.	If $(a^2 + b^2)^3 = (a^3 + b^3)^2$ and $ab \ne 0$ then the numerical value of $\frac{a}{b} + \frac{b}{a}$ is equal to:									
21.	(A) greater than 2 (B) smaller than -2 (C) equal to $3/2$ (D) is equal to $2/3$ Ordered pair $(x, y) x, y \in R$ satisfying the equation $x^2 + y^2 - 2x - 4y - 4 + (a^2 + b^2 + c^2)$									
	$\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) = 0$ (where a, b, c, \in R) is.									
22.	(A) (1,2) (B) (2,1) (C) (2,3) (D) None of these If the number A 3 6 4 0 5 4 8 9 8 1 2 7 0 6 4 4 B is divisible by 99 then the ordered pair of digits (A, B) is [Hint: $S_0 = A + 37$; $S_E = B + 34 \implies A - B + 3 = 0$ or 11 and $A + B + 71$ is a multiple of $9 \implies A - B = -3$ or 8 and $A + B = 1$ or 10; The inequalities $y(-1) \ge -4$, $y(1) \le 0$ & $y(3) \ge 5$ are known to hold for									
23.	$y = ax^2 + bx + c$	then the least value of 'a	ı' is:							
24	[Hint: $a - b + c$ and $a + b + c$ and $9a + 3b$ $(i) + (ii) \Rightarrow -2b$	$c \le 0 \implies -a - b - c$ + $c \ge 5$ ≥ -4 (iv); (ii) + (iii)	$+(iv) \Rightarrow 8a \ge 1 \Rightarrow a \ge 1$	(D) 1/8 Foundation ≥1/8]						
24.		inct real numbers, then s $\frac{(b+x)^2}{(b-c)(b-a)} + \frac{(c+x)^2}{(c-a)(c-a)}$	•							
25.	If $n(x+1)^2 + a($	$x^2 - 3x - 2 + x + 1 = 0$ b	e an identity in vothen	n a are						
23.	(a) 2, -2	*	(c) 0, 0	(d) none						
26.	Statement-1: The number of values of 'a' for which (a² – 3a + 2) x² + (a² – 5a + 6) x + a² – 4 = 0 is an identity in x, is 2. Statement-2: If a = b = c = 0, then equation ax² + bx + c = 0 is an identity in x. (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct a explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True; STatement-2 is NOT a correct explanation for Statement-1.									
	Statement	•								

2

- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- 27. Let $P(x) = ax^3 + 5x^2 bx + 1$. If P(x) is divided by (2x + 1) leaves remainder 5 & (3x - 1) in a factor of P'(x) find a and b.
- 28. A polynomial in x of degree greater than 3 leaves the remainder 2, 1 and -1 when divided by (x-1); (x+2) & (x+1) respectively. Find the remainder, if the polynomial is divided by, $(x^2-1)(x+2)$.

ANSWER KEY

1.bd	2. True	3. $x = 1 \pm \sqrt{3}$	4.c	5.ab	6. b	7.a
8. $4(a - b)$	9.a	10.B	11.d	12. {1, 11},	for $x < 0$,	no solution
13.A	14.d	15.abd	16.c	17.a	18.b	19.b
20.d	21.a	22. (9, 1)	23.d	24. Identity	25.D	26.d

27. a = 2b, b = 12 **28.**
$$\frac{7}{6}$$
 x² + $\frac{3x}{2}$ - $\frac{2}{3}$

IIT-JEE | NEET | Pre-Foundation