Bigdata Project Report

June 9, 2021

Team #1

+		-+		+_		-+
	Name		SEC		BN	1
+		-+		+-		-+
1	Abdulrahman Khalid Hassan		1		30	
1	Mahmoud Othman Adas		2		19	
}	Yosry Mohamed Yosry		2		33	1
1	Ahmad Mahmoud AbdElMen'em Afifi		1		5	
+		-+.		+_		_+

1 Introduction

LendingClub is a US peer-to-peer lending company, headquartered in San Francisco, California. It was the first peer-to-peer lender to register its offerings as securities with the Securities and Exchange Commission, and to offer loan trading on a secondary market. LendingClub is the world's largest peer-to-peer lending platform, Given historical data on loans given out with information on whether or not the borrower defaulted (charge-off), we can build a model that can predict if a borrower will pay back their loan. This way in the future when we get a new potential customer, we can assess if they are likely to pay back the loan.

Objectives of this notebook is: - To show step-by-step how to visualize the dataset. - Data cleaning and preprocessing. - Assess whether or not a new customer is likely to pay back the loan.

Univariant Visualization

1.1 Loan Status Distribution

+			+	+
			•	count
+			+	+
		Full	ly Paid	1076751
		Ι	Default	40
			null	33
	Ιn	Grace	Period	8436
Does	not	meet	the	1988

```
| Charged Off| 268558|
| Oct-2015| 1|
| Late (31-120 days)| 21467|
| Current| 878317|
|Does not meet the...| 761|
| Late (16-30 days)| 4349|
```


We filter the loan status to be only fully paid and charged off

+	+-		+
loan_stat	tus	cou	nt
+	+-		+
Fully Pa	aid 1	0767	51
Charged (Off	2685	58
+	+ -		+

1.2 Handling Null Values

- Get columns which has the most number of null values and sort them
- Visualize the most 50 columns with null values

The first most 50 columns with highest numbers of null values (Almost all the values are null as number of rows are 1345309 initially) So we have to drop them all as deletion of the rows means the deletion of most of the data and I can't replace it mean value as most of the values are null it won't be the best option, and also if these columns are important they would be filled, so We will drop them

• Next, We visualize the next most 50 columns have null values count

- From the previous graph the first 95 columns has lots of nulls so I will drop them
- Next, We will drop the rows which has null values they will have a small number of rows
- Now the Number Of Columns = 56, Number Of Rows = 1340812

1.3 Loan Amount Distribution

• Most of loan amount 10,000 to 11,000 usd

From the above graphs, We can deduce that we have duplicates information for example, Drop the followin columns as they are constant columns and doesn't contribute to our prediction of loan_status

Bivariant Visualization

From the previous Correlation Matrix (policy_code, out_prncp, out_prncp_inv) don't have any correlation with any other columns so drop them

Next, Check for redundant information columns: check pairs of features which has correlation value above $0.8\,$

[42]:		feature1	feature2	corr
	1	fico_range_high	${ t fico_range_low}$	1.000000
	2	loan_amnt	${ t funded_amnt}$	0.999567
	3	${ t total_pymnt_inv}$	${ t total_pymnt}$	0.999548
	4	${ t funded_amnt_inv}$	${ t funded_amnt}$	0.999447
	5	${ t funded_amnt_inv}$	loan_amnt	0.998929
	6	collection_recovery_fee	recoveries	0.972815
	7	total_rec_prncp	total_pymnt	0.967105
	8	total_rec_prncp	${ t total_pymnt_inv}$	0.966732
	9	${ t funded_amnt}$	installment	0.954036
	10	installment	${\tt funded_amnt_inv}$	0.953455
	11	installment	loan_amnt	0.953388
	12	${ t total_pymnt_inv}$	${ t funded_amnt_inv}$	0.857143
	13	${ t total_pymnt}$	${ t funded_amnt}$	0.856896
	14	${ t funded_amnt}$	${ t total_pymnt_inv}$	0.856674
	15	${ t total_pymnt}$	loan_amnt	0.856653
	16	${ t total_pymnt}$	${ t funded_amnt_inv}$	0.856447
	17	loan_amnt	${ t total_pymnt_inv}$	0.856354
	18	${ t last_fico_range_low}$	last_fico_range_high	0.829738
	19	installment	total_pymnt	0.818284
	20	${ t total_pymnt_inv}$	installment	0.818049

It seems that the data have many duplicated information represented by multiple columns, so let's drop these duplicated columns

- fico_range_low = (fico_range_high)
- funded_amnt = funded_amnt_inv = installment = total_pymnt_inv = total_rec_prncp = total_pymnt = (loan_amnt)
- collection_recovery_fee = (recoveries)
- last_fico_range_low = (last_fico_range_high)

Drop them all except the columns between brackets () to avoid information redundancy

After dropping these columns

(1340812, 41)

Preprocessing

1.3.1 loan_status Column

Map loan_status to new column called loan_is_paid has 1 and 0 values only, 1 for Fully Paid and 0 for Charged Off, and then drop the old loan_status column

```
+------+-----+
| 1|1074961|
| 0| 265851|
```

New Correlation matrix:

Correlation between loan_is_paid and all other numeric columns

1.3.2 term Column

map term column to new term_months columns with mapped values from ' 36 months' to 36 and from ' 60 months' to 60, and then drop the old term column

```
[44]: [' 36 months', ' 60 months']

+----+
|term_months|
+----+
| 60|
| 36|
```

1.3.3 home_ownership Column

We can merge NONE with ANY in one category

+	+-	+
home_c	ownership	count
+		+
	OWN :	144179
1	RENT 5	532381
1	MORTGAGE 6	663782
1	ANY	328
1	OTHER	142
+	+	+

1.3.4 grade And sub_grade Columns

From the above graphs and analysis we can deduce that:

- grade is part of sub_grade, so let's drop it
- Date columns: issue_d, last_pymnt_d, last_credit_pull_d are not important to the analysis
- earliest_cr_line which is the month when reported credit line was opened is not important to the analysis
- url for LC page with listing data is not important to the analysis
- addresses: zip_code, addr_state are not important to the analysis

1.4 Handle Categorical Features

1.4.1 Spark Pipeline

- 1. Categorical columns to string indexer to change categories to numbers
- 2. OneHotEncode these new numbers to (#num of column 1) new column every column value with has 1 whenever this category happens to be in this row
- 3. Assemble all the features the onehotencoded and the numeric columns in one vector columns used as feature column
- 4. Get scaled_feature column by scaling feature column using MinMaxcaler

Select now the two important columns used in building the model: - scaled_features - loan_is_paid

Schema:

```
root
```

```
|-- scaled_features: vector (nullable = true)
|-- loan_is_paid: integer (nullable = true)
```

First Row Of the dataframe:

From previous table the number of scaled_features are 81 feature

Deeplearning Model

- 1. Build the following deeplearning model with this output shapes consists of 6 fully connected layer with relu function as the activation function and the final activation function is a sigmoid
- 2. Compile the model with adam optimizer with accuracy metrics and binary_crossentropy loss function

Model: "sequential_1"

Layer (type)	Output	Shape	Param #
dense_6 (Dense)	(None,	78)	6396
dense_7 (Dense)	(None,	39)	3081
dense_8 (Dense)	(None,	19)	760
dense_9 (Dense)	(None,	8)	160
dense_10 (Dense)	(None,	4)	36
dense_11 (Dense)	(None,	1)	5
m · 3	:		

Total params: 10,438 Trainable params: 10,438 Non-trainable params: 0

- 3. Transform to the dataframe to pandas dataframe before training
- 4. Split data 80% training set and 20% testing set
- 5. Finally, Train the model

Loss Graph:

[71]: <AxesSubplot:>

Accuracy Graph:

[72]: <AxesSubplot:>

Accuracy = 98.94%

6. Saving the model ...

INFO:tensorflow:Assets written to: loan_prediction_model/assets

Gradient Boosting Tree (spark)

- 1. Using the map reduce machine learning models of pyspark and spark dataframe we can build model using HDFS
- 2. Split data 80% training set and 20% testing set
- 3. Train the Gradient Boosting Tree Classifier using the training data
- 4. Finally, Saving the model . . .

Some Predictions:

++	+_	+	+		
scaled_features	loan_is_paid p		<u>-</u>		
++	+-	+	+		
(81,[0,1,2,3,4,5,	1	1.0	[0.05270399993585		
(81,[0,1,2,3,4,5,	1	1.0	[0.05443185145658		
(81,[0,1,2,3,4,5,	0	0.0	[0.95635347857271		
(81,[0,1,2,3,4,5,	0	0.0	[0.95635347857271		
(81,[0,1,2,3,4,5,	0	0.0	[0.95635347857271		
(81,[0,1,2,3,4,5,	0	0.0	[0.95635347857271		
(81,[0,1,2,3,4,5,	0	0.0	[0.95635347857271		
(81,[0,1,2,3,4,5,	1	1.0	[0.04368680010337		
(81,[0,1,2,3,4,5,	1	1.0	[0.08128007245037		
(81,[0,1,2,3,4,5,	0	1.0	[0.27032648846438		
++	+-	+	+		
only showing top 10 rows					

Test Area Under ROC: 0.9524807005159022

Test f1 score: 0.9744686686161473 Test accuracy: 0.9746691093995363

 Previous table has False Positive, False Negative, True Positive and True Negative values

Accuracy = 97.46%

2 Conclusion

- We visualized the dataset using univarient and multivarient visualization and deduced some information from it
- We've done some Data cleaning and preprocessing to prepare the data to build our models
- We using HDFS for both data visualizing, data preprocessing and building gradient boosing tree classifier with accuracy 97.46%
- We also made a deeplearning model with accuracy 98.94%
- Both models assess whether or not a new customer is likely to pay back the loan, so this analysis is very important for decision making.