Wyatt Kormick - 4932481

Sam Iverson - 4530385

CSCI 1933-11

Project 4

4/27/16

Project 4: Green Line Simulation Data Report

This report details the findings of running a simulation of the Twin Cities Green Light Rail Line. The simulation was created with a few assumptions in mind. First of all, it assumes that passengers concurrently board and depart the train, so that the train is waiting only for whichever process takes longer. Next, it assumes that the train takes three minutes to get from one stop to the next, but, the train doesn't actually leave the old stop until the three minutes is up. This means that a stop will be considered full, even if the train's processes have finished, and because of this the maximum amount of trains on the line is 22. Third, trains will only move to the next stop with that exception that trains that arrive at a full station will skip the stop, and continue on to the next empty stop. Only one train is allowed at each stop. This simulation assumes that passengers arrive at the 10 normal (Furthermore referred to as "other") stops at an average rate of one passenger per 30 seconds, with 10% arriving exactly at 30 seconds, 50% arriving within 6 seconds of the average, 80% arriving within 15 seconds of the average, and with 100% arriving within 23 seconds of the average. At the 10 downtown stops, passengers arrive 10 seconds on average faster than the other stops, and at the 3 UMN Campus stops, passengers arrive 5 seconds faster. When passengers arrive at a stop, their destination is five

times more likely than the other stops to be a downtown stop, and 3 times more likely to be a campus stop.

The data recorded here is from the simulation running at 15,000 seconds. The simulation is believed to be in equilibrium, so the graphs should have a similar shape for any amount of time. The raw data collected can be found in the appendix of this report. Figure 1 is a graph depicting the maximum and average passenger wait times, average passenger existence time, and total number of passengers processed. Figure 2 is the table of raw data used to make the graph in figure 1. It also contains columns for the average passengers waiting at the average downtown, campus, and other stops.

The data found has some interesting points. The general shape of each line are either very similar or are very close to the inverse. Each line can be divided into three distinct sections, one for each number of train cars. For one and two train cars, the data reaches a clear maximum/minimum at 22 trains. For three cars, however, the data seems to flatline starting at around 14 trains until 21 trains. The raw numbers themselves are within a few hundred between each of them. This means that 14 trains with three cars performs about the same as 21 trains with three cars. It is also interesting to note the dip in performance at 22 trains with three cars each. A possible cause of this is because at this point only one train can move at a time.

Performance-wise, it can be seen that 22 trains with one car each (22 cars) is similar to 10 trains with two cars each (20 cars), or 6 trains with three cars each (18 cars). Likewise, 22 trains with two cars each (44 cars) is similar in performance to 12 trains with three cars each (36 cars). Three train cars on 14-21 trains outperforms and other combination of train, based when comparing based on the data collected here.

Referring to the average waiting passengers at stops in figure 2, there is another point of interest. It can be seen that, on average, campus stops have the largest amount of waiting passengers, with downtown stops having the next largest, and other stops having the smallest. What is interesting here is that downtown stops have the high rate of passenger arrival, higher than the campus stops, and both are higher than the other stops. A possible reason for this trend is the spread of the downtown stops. Downtown stops are grouped up and located at the beginning and the end of the line, and there are a large number of them. 10 out of every 23 stops that the average train will make will be downtown stops, Downtown stops are usually right next to each other, and the most common destination will be a downtown stop. It is likely for a passenger to be getting on the train to go to a downtown stop, even starting from a downtown stop, meaning that the train will be more likely to be empty at these stops and will pick up passengers.

The average amount of passengers waiting at a stop seems to be more heavily affected by the number of trains rather than the number of cars, but the number of cars does seem to help some. This is because train cars, on average, aren't completely full all of the time. Trains, however, are coming and going, and going in different directions. Passengers only want to get on the train that is going in the same direction as they are. The more trains there are, the more likely that a train that has space that is going in the direction that the passenger is will arrive at the stop.

Appendix

Figure 1 (graph to the right): A graph of the simulation results. Along the x-axis is the parameters of the simulation. It is divided by train and by train car. The y-axis counts both the seconds recorded by passengers and the total amount of passengers. The orange line represents the average time of existence for the passengers. The grey line represents the average waiting time for the passengers. The light blue line represents the total amount of passengers processed in each run. The dark blue line represents the maximum wait time in seconds for the passengers under those parameters. All data should be assumed to be an estimate with a small margin of error. These results were gathered under a run time of 15000 seconds.

Figure 2 (data table below): A data table reporting the data gathered for each train/train car combination. It contains data columns for the total passengers processed, average passenger existence time, average passenger wait time, maximum passenger wait time, and the average passengers waiting at the average downtown, campus, and other stops.

228	238.9	225.3	227.3	0.122	220.3	2.422	2.22.2	07	210.6	212	202.7	201.9	190.5	136.1	191.4	161.4	174.8	172.6	0.695	1514	135.3	1200	236.3	230.2	740.1	213	274.4	206.5	202.5	187	182.9	178.8	<u> </u>	1/3.5	156.9	153.5	142.5	129	190	107.2	5 S	678	000	40.0	00.7	233	C177	203.0	1907	168.2	172.1	35	145	132.9	127	60 60 60 60 60 60 60 60 60 60 60 60 60 6	m m m	7.55 6.05	30.5	787	17.1	12.1	4 6		72
281	259	269	249.7	- 6 2 2 2 3 3	230.0	7.147	230.7	7.967	233.7	2553	7.88.7	200.3	205	189.7	168.3	186.7	184.3	165.7	148	1617	169.7	100.1	200.	7647	242.2	243.3	220.3	214.7	504	208.3	193.7	152.7	99	TIES	124.3	709.7	2	80.3	ကျ ထုံး	(3.7	6233	50.3	919	0000	0.000	253.3	242	223.1	275	200	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	139.3	140.3	38.7	74	57.3	46.3	50.3 33	2000	2007	17.7	- Ç	25.5	21.7	24.7
231	223.2	216.3	203.9	194.9	7.401	001.7	4007	000,000	1,00	53.1	152.4	144.4	145.4	127.9	135.7	146.1	74	116.9	784	151	183	1415	0.000 0.0000	253.2	212	193.7	1/7.3	169.2	746	131.1	128	7.70	101.7	ω (Σ)	94.3 5.1	<u>ب</u>	98.	68.4	65.3	97.8	200	01.0	0.70	9000	200.0	220.5	0.402	000.00 A AAA	130	123.6	112	91.7	74.5	67.5	65.7	64.5 5.15	95.5	က တို့တို့ ကို	23.5	500	7.69	78.5	0.00	7000	η α Θ' δ
12924	14420	13728	12651	1365	0000	12320	13014	5000	13282	13012	13396	13496	12798	12340	12678	10557	11918	11699	11811	11203	12217	13527	1200	0700	C02C+	12703	13687	12093	13525	12193	12604	11567	12608	12351	11344	11408	11463	10364	9361	3435	3484	7612	10304	10003	10027	13700	12880	12501	12021	12401	11887	10283	10056	10956	11013	11133	8834	7531	1351	6355	4172	5114	5041	2041	3582 9039
5061	4470	4449	4118	4101	TOI+	0 80	3461	2532	0040	3023	7887	2815	2714	2621	2721	2862	2166	7000	2288	2116	2137	1512	000	2022	700 0	335	3484	3570	2823	2565	2425	1902	2002	1/80	1825	1329	12/3	1241	1133	9101	1023	9701	1000	E/E	470 <u>0</u>	4007	+10+ +000	0350	2200	2349	2263	1804	1448	1339	1213	9119	7055	729	671	020	2.5.	487	-04	25	DIO 1409
	7315	7175	6701	0101	0130	0273	0770	0100	9030	5807	5801	5638	5546	5319	5475	5397	4950	5038	5035	4844	4774	4114	1904	47C)	5017	67.73	6727 6666	6382	5555	5380	5337	4640	4882	4562	4632	4110	4062	4043	3366	3888	3.63	3892	2040	2340	7400	7350	2717	0310	5416	5263	5229	4610	4271	4178	4075	3882	4046	3467	2401	3449	3192	3244	2204	4000	3375
202	395	644	923	1007	1001	907	1401	2000	248	920	2000	2297	2347	2758	2836	2909	3197	3240	3326	3549	3823	3833	2000	7401	- ¢	1264	1532	1870	5234	2738	2881	3434	3617	3857	41/1	4555	4917	4884	5208	5447	5840	5/34	0300	6207	2000	0,00	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	2188	2541	3330	3580	4387	4603	5062	5223	5912	6052	674F	704	7258	7273	7341	7254	407)	7336 6482
-	1 2	e -	4	- T	n u	0110	- (00	n (2;	= :	1 2	- ည	7	ក ស	1 16	1 17	: œ) g		7.5	17 17																																											2 27