

TITLE

2.4GHZ MID SMT ANTENNA

TABLE OF CONTENTS

- 1.0 SCOPE
- 2.0 PRODUCT DESCRIPTION
- 3.0 APPLICABLE DOCUMENTS
- 4.0 GENERAL SPECIFICATION
- 5.0 ANTENNA SPECIFICATION
- 6.0 MECHANICAL REQUIREMENTS
- 7.0 ENVIRONMENTAL SPECIFICATION
- 8.0 RECOMMENDED REFLOW CONDITION
- 9.0 RECOMMENDED FOOTPRINT ON PCB FOR SOLDERING
- 10.0 PACKING

PS	5-479480001	Kang Cheng 2020/05/11	Cooper Zhou 2020/05/11	Stary Son	g 2020/05/11
DOCUMEN	T NUMBER:	CREATED / REVISED BY:	CHECKED BY:	<u>APPR</u> (OVED BY:
F	DATE: 2020/05/11	Specification		1 of 10	
_	EC No: 637286	2.4GHZ N	AID SMT Antenna Pro	duct	4 (40
REVISION:	ECR/ECN INFORMATION:				SHEET No.

2.4GHZ MID SMT ANTENNA

1.0 SCOPE

This product specification covers the mechanical, electrical and environmental performances specification for 2.4GHz MID SMT antenna.

2.0 PRODUCT DESCRIPTION

2.1 PRODUCT NAME AND SERIES NUMBER (S)

Product name: 2.4GHz MID SMT antenna

Series Number: 479480001

2.2 DESCRIPTION

This is a high-performance antenna implemented using SMD option to meet the customer needs. It has low profile as the size of this antenna. It is designed to cover the frequency 2.4GHz-2.5GHz.

2.3 FEATURES

- 2.4GHz, monopole,
- SMT embedded, PCB corner mounting
- High efficiency over 70% on 2.4-2.5GHz
- Antenna size 3x4x4mm
- RoHS Compliant

ANTENNA PICTURE

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHZ MID SMT Antenna Product Specification		2 of 10	
DOCUMEN	T NUMBER:	CREATED / REVISED BY:	CHECKED BY:	<u>APPR</u>	OVED BY:
PS	5-479480001	Kang Cheng 2020/05/11	Cooper Zhou 2020/05/11	Stary Son	g 2020/05/11

2.4 PRODUCT STRUCTURE INFORMATION

MECHANICAL STRUCTURE INFORMATION FOR 479480001

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHZ MID SMT Antenna Product Specification		3 of 10	
DOCUMEN	T NUMBER:	CREATED / REVISED BY:	CHECKED BY:	APPR(OVED BY:
PS-479480001		Kang Cheng 2020/05/11	Cooper Zhou 2020/05/11	Stary Son	g 2020/05/11

3.0 APPLICABLE DOCUMENTS

DOCUMENT	NUMBER	DESCRIPTION
Sale Drawing (SD)	SD-479480001	Mechanical Dimension of the product
Application Guide (AS)	AS-479480001	Antenna Application and surrounding
Packing Drawing (PK)	PK-479480001	Product packaging specifications

4.0 GENERAL SPECIFICATION

PRODUCT NAME	2.4GHZ MID SMT antenna
PART NUMBER	479480001
FREQUENCY RANGE(+/-3MHz)	2.4~2.5GHz
POLARIZATION	Linear
IMPEDANCE WITH MATCHING	50 Ohms
OPERATION TEMPERATURE	-40°C to 85°C
STORAGE TEMPERATURE	-40°C to 85°C
AVERAGE TOTAL EFFICIENCY	>70%
RF POWER	2 Watts
NET WEIGHT	0.042g/PCS
ANTENNA TYPE	Plastics

^{*}If you plan to re-use the products that be taken out from packaging. Suggest to repacked them within 48 hours by re-seal to prevent oxidation!

FEVISION:	EC No: 637286 DATE: 2020/05/11		IID SMT Antenna Pro Specification	duct	4 of 10
DOCUMEN	T NUMBER:	CREATED / REVISED BY:	CHECKED BY:	<u>APPR</u>	OVED BY:
PS	5-479480001	Kang Cheng 2020/05/11	Cooper Zhou 2020/05/11	Stary Son	g 2020/05/11

5.0 ANTENNA SPECIFICATION

All measurements are done of the antenna mounted on reference PCB (100*40*0.8mm Molex p/n:479489001) with VNA Agilent E5071C and Over-The-Air (OTA) chamber.

DESCRIPTION	EQUIPMENT	REQUIREMENT
Frequency Range	VNA E5071C	2.4~2.5GHz
Return Loss	VNA E5071C	< -6 dB
Peak Gain (Max)	OTA Chamber	3.7dBi
Average Total Efficiency	OTA Chamber	>70%
Polarization	OTA Chamber	Linear
Input Impedance	VNA E5071C	50 Ohms

Note that the above antenna performance is measured with just the antenna mounted on a recommended PCB to similar a free-space condition. When implement into the system, the frequency resonant might be off-tune due to the loading of surrounding components especially metal plane. This off-tune can be compensated through matching. Although module manufacturers specify a peak gain limit, it is based on free-space conditions. The peak gain will be degraded by 1 to 2dBi in the actual implementation as the radiation pattern will change due to the surround components. As such, during selection of antenna, you can select one with high peak gain to compensate for the loss. Molex can offer assistant to choose the best location and best tuning in-order to meet this peak gain requirement.

<u> </u>	REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHZ N	MID SMT Antenna Pro Specification	duct	5 of 10
	DOCUMEN	T NUMBER:	CREATED / REVISED BY:	CHECKED BY:	<u>APPR</u>	OVED BY:
	PS	5-479480001	Kang Cheng 2020/05/11	Cooper Zhou 2020/05/11	Stary Son	g 2020/05/11

6.0 MECHANICAL REQUIREMENTS

DESCRIPTION	SPECIFICATION
Shear Force	Apply three axial peeling force on parts soldered on the PCB at the speed rate of 25±3 mm/minute. Shear force:15N Min.
Solder-Ability Test	Dip solder pad in flux then immerse in solder bath at 245+/-50°C for 4~5seconds,95% of immersed area mush show no voids

7.0 ENVIRONMENTAL SPECIFICATION

DESCRIPTION	SPECIFICATION
Temperature Cycling Test	 The device under test is kept for 30 mins in an environment with a temperature of -40 °C. Kept for 4 Hours in an environment with a temperature of 85 degrees. Kept for 2 Hours in an environment with a temperature of 125 degrees. The cycle is repeated until a total of 40 cycles have been completed. Hereafter the conditions are stabilized at room temperature. No cosmetic problem (No bubble issue. No plating peeling off issue. No mechanical damage.)
Temperature Shock Test	 The device under test at -40 °C ⇔125 °C by 100 cycles, Dwell of 30 mins, transition time between Dwell 30 secs (61 mins / cycle) and each item should be measured after exposing them in normal temperature and humidity for 24 h. No cosmetic problem (No bubble issue. No plating peeling off issue. No mechanical damage.)

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11		MID SMT Antenna Pro Specification	duct	6 of 10
DOCUMEN	IT NUMBER:	CREATED / REVISED BY:	CHECKED BY:	APPRO	OVED BY:
PS	S-479480001	Kang Cheng 2020/05/11	Cooper Zhou 2020/05/11	Stary Son	g 2020/05/11

DESCRIPTION	SPECIFICATION
High Temperature	 Temperature:125°C, time:1008 hours. There is no substantial obstruction to air flow across and around the samples, and the samples are not touching each other. No visible corrosion.
Salt Mist Test	 The device under test is exposed to a spray of a 5% (by volume) resolution of NACL in water for 2 hours. Thereafter the device under test is left for 1 week in room temperature at a relative humidity of 95%. The cycle is repeated until a total of 2 cycles have been completed. Here after the conditions are stabilized at room temperature. No visible corrosion. Discoloration acceptable.

8.0 RECOMMENDED REFLOW CONDITION

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHZ MID SMT Antenna Product Specification		7 of 10	
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPR(OVED BY:
PS-479480001		Kang Cheng 2020/05/11	Cooper Zhou 2020/05/11	Stary Son	q 2020/05/11

Recommended IR reflow times: 1 time.

Recommended solder paste: ALPHA CAP-390 SAC305(Ag%≥3%)

For mechanically challenging applications Molex recommends using surface mount adhesive (e.g. Loctite 3611) before reflow soldering process, to ensure increased mechanical retention on the PCB. (Figure 8.1)

FIGURE 8.1 PCB BOARD SCHEMATIC PICTURE

9.0 RECOMMENDED FOOTPRINT ON PCB FOR SOLDERING 9.1 RECOMMENDED PCB PADS AREA

RECOMMENDED PCB LAYOUT

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHZ MID SMT Antenna Product Specification		8 of 10	
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPRO	OVED BY:
PS-479480001		Kang Cheng 2020/05/11	Cooper Zhou 2020/05/11	Stary Son	g 2020/05/11

9.2 RECOMMENDED STENCIL OPENING DESIGN

Recommended Stencil Thickness > 0.1mm

9.3 RECOMMENDED PCB CLEARANCE KEEP OUT AREA

RECOMMENDED PCB CLEARANCE KEEP OUT AREA

REVISION:	ECR/ECN INFORMATION:	TITLE:			SHEET No.
F	EC No: 637286	2.4GHZ MID SMT Antenna Product Specification		duct	0 - (10
Г	DATE: 2020/05/11		9 of 10		
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPR	OVED BY:
PS-479480001		Kang Cheng 2020/05/11	Cooper Zhou 2020/05/11	Stary Son	g 2020/05/11

10.0 PACKING

P/N	Q'TY/REEL	REEL/SMALL BOX	SMALL BOX/BIG BOX	SPQ
479480001	1800	1	5	1800

1.PRODUCTS MUST BE PACKED IN CARTONS AND SEALED UP WITH TAPE.

2.STICK LABEL WITH PART NUMBER AND DATE CODE 3.STANDARD PACKAGING QUANTITY:SEE TABLE 4.THIS PACKAGINGSPECIFICATION TO BE USED FOR

"2.4GHz MID SMT ANTENNA".

PACKAGING INFORMATION FOR 4794800001

REVISION	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHZ MID SMT Antenna Product Specification		duct	10 of 10
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:	
PS-479480001		Kang Cheng 2020/05/11	Cooper Zhou 2020/05/11	Stary Son	a 2020/05/11

TITLE

2.4GHZ MID SMT ANTENNA

TABLE OF CONTENTS

- 1.0 SCOPE
- 2.0 PRODUCT DESCRIPTION
- 3.0 APPLICABLE DOCUMENTS
- **4.0 ANTENNA PERFORMANCE**
- 5.0 RECOMMENDED REFLOW CONDITION
- **6.0 MATCHING NETWORK DESRICPTION**
- 7.0 RF PERFORMANCE AS A FUNCTION OF IMPLEMENTATION

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHz MID SMT Antenna Application Specification		1 of 16	
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	<u>APPROV</u>	'ED BY:
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11

2.4GHZ MID SMT ANTENNA

1.0 SCOPE

This specification describes the antenna application and recommended PCB layout for the Molex 2.4GHz SMD Antenna. The information in this document is for reference and benchmark purposes only. The user is responsible for validating antenna RF performance based on users own PCB and matching circuits.

All measurements are done of the antenna mounted on the recommended PCB with VNA Agilent 5071C and OTA chamber.

Antenna illustrations in this document are generic representations. They are not intended to be an image of any antenna listed in the scope.

2.0 PRODUCT DESCRIPTION

2.1 PRODUCT NAME AND SERIES NUMBER (S)

Product name: 2.4GHz MID SMT Antenna

Series Number: 479480001

2.2 DESCRIPTION

This is a high-performance antenna implemented using SMD option to meet the customer needs. It has low profile as the size of this antenna. It is designed to cover the frequency 2.4GHz-2.5GHz.

2.3 PRODUCT STRUCTURE INFORMATION

Please refer to PS-479480001 for full information.

FIGURE 2.3 DIMENSION OF THE 2.4GHZ SMD ANTENNA

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHz MID SMT Antenna Application Specification		lication	2 of 16
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	<u>APPROV</u>	'ED BY:
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11

3.0 APPLICABLE DOCUMENTS

DOCUMENT	NUMBER	DESCRIPTION
Sale Drawing (SD)	Sale Drawing (SD) SD-479480001 Mechanical Dimension of the pro-	
Product Specification (PS)	Product Specification (PS) PS-479480001 Product Specification	
Packing Drawing (PK)	PK-479480001	Product packaging specifications

4.0 ANTENNA PERFORMANCE

4.1 RF TEST CONDITIONS

The reference design is based on a recommended double side PCB size of 100 mm*40 mm*0.8 mm. There are one feeding pad and three fixing pads.(PCB molex p/n:479489001)

FIGURE 4.1.1 REFERENCE ANTENNA LOCATION

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHz MID SMT Antenna Application Specification			3 of 16
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:	
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11

FIGURE4.1.2 ANTENNA IN FREE SPACE WITH VNA AGILENT E5071C

FIGURE4.1.3 ANTENNA IN FREE SPACE WITH OTA CHAMBER

F ECN	<u>VECN INFORMATION:</u> <u>No:</u> 637286 <u>TE:</u> 2020/05/11	2.4GHz MID SMT Antenna Application Specification		lication	4 of 16
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	<u>APPROV</u>	'ED BY:
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11

4.2 ANTENNA PERFORMANCE

DESCRIPTION	EQUIPMENT	REQUIREMENT
Frequency Range	VNA E5071C	2.4~2.5GHz
Return Loss	VNA E5071C	< -6 dB
Peak Gain (Max)	OTA Chamber	3.7dBi
Average Total Efficiency	OTA Chamber	>70%
Polarization	OTA Chamber	Linear
Input Impedance	VNA E5071C	50 Ohms

Note that the above antenna performance is measured with just the antenna mounted on a recommended PCB to similar a free-space condition. When implement into the system, the frequency resonant might be off-tune due to the loading of surrounding components especially metal plane. This off-tune can be compensated through matching. Although module manufacturers specify a peak gain limit, it is based on free-space conditions. The peak gain will be degraded by 1 to 2dBi in the actual implementation as the radiation pattern will change due to the surround components. As such, during selection of antenna, you can select one with high peak gain to compensate for the loss. Molex can offer assistant to choose the best location and best tuning in-order to meet this peak gain requirement.

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHz MID SMT Antenna Application Specification		5 of 16	
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	<u>APPROV</u>	/ED BY:
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11

4.3 RETURN LOSS PLOT

All measurements in this document are done of the antenna mounted on the recommended PCB.

FIGURE 4.3 RETURN LOSS OF ANTENNA IN FREE SPACE

4.4 EFFICIENCY PLOT

All measurements in this document are done of the antenna mounted on the recommended PCB.

FIGURE 4.4 EFFICIENCY OF ANTENNA IN FREE SPACE

DOCUMENT NUMBER: AS-479480001		CREATED / REVISED BY: Liu Hai 2020/05/11	CHECKED BY: Cheng Kang 2020/05/11	APPROVED BY: 1 Andy Zhang 2020/05	
F	EC No: 637286 DATE: 2020/05/11	2.40112 14110	6 of 16		
REVISION:		IITLE: 2.4GHz MID SMT Antenna Application			SHEET No.

4.5 RADIATION PATTERN

All measurements in this document are done of the antenna mounted on the recommended PCB.

FIGURE 4.5.1 2D RADIATION PATTERN OF ANTENNA AT 2.45GHZ IN FREE SPACE

REVISION:	ECR/ECN INFORMATION:				SHEET No.	
F	EC No: 637286	2.4GHz MID SMT Antenna Application		lication	7 of 16	
Г	DATE: 2020/05/11		Specification			
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPRO\	/ED BY:	
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11	

FIGURE 4.5.2 3D RADIATION PATTERN OF ANTENNA AT 2.45GHZ IN FREE SPACE

REVISION:	ECR/ECN INFORMATION:	TITLE:			SHEET No.
_	EC No: 637286	2.4GHz MID SMT Antenna Application Specification		lication	0 (40
F	DATE: 2020/05/11		8 of 16		
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:	
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11

5.0 RECOMMENDED REFLOW CONDITION

Recommended solder paste: ALPHA CAP-390 SAC305 For mechanically challenging applications Molex recommends using surface mount adhesive (e.g. Loctite 3611) before reflow soldering process, to ensure increased mechanical retention on the PCB.

AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11	
DOCUMEN	NT NUMBER:	CREATED / REVISED BY:	CHECKED BY:	APPRO\	/ED BY:	
F	DATE: 2020/05/11		Specification			
F	EC No: 637286	2.4GHz MID SMT Antenna Application			9 of 16	
REVISION:	ECR/ECN INFORMATION:				SHEET No.	

6.0 MATCHING NETWORK DESRICPTION

The "L" type matching circuit is recommended to be applied for this antenna at the recommended position on reference PCB. The sequence of series element and parallel element depends on the impedance of antenna in smith chart. Figure 6.1 shows the matching network for this antenna at 2.4GHz at the recommended position on reference PCB. (PCB molex p/n:479489001)

FIGURE 6.1 RECOMMENDED MATCHING CIRCUIT FOR 2.4GHZ BAND

Component					
C1	4.3nH				
	Murata (PN: LQG15HS4N3B02)				
C2	0 Ω				
C3	NA				

REVISION:	ECR/ECN INFORMATION:	2.4GHz MID SMT Antenna Application			SHEET No.	
F	EC No: 637286			10 of 16		
Г	DATE: 2020/05/11		Specification			
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPRO\	/ED BY:	
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11	

7.0 RF PERFORMANCE AS A FUNCTION OF IMPLEMENTATION

7.1 ANTENNA RF PERFORMANCE AS A FUNCTION OF DIFFERENT LOCATIONS WITH PARALLEL PLANE GROUND

Four locations with parallel plane ground have been evaluated and these locations are shown in figure 7.1. The plane ground size is 90mm*90mm and we move the plane ground to four locations for each test.

The distance between antenna and parallel plane ground affect the antenna performance slightly. We still suggest the minimum distance between antenna and plane ground is recommended to be 5mm.

FIGURE 7.1 FOUR LOCATIONS WITH PARALLEL PLANE GROUND

Ground Size: 90mm*90mm;

Location 1: Distance between antenna and plane ground (GAP) is about 5mm; Location 2: Distance between antenna and plane ground (GAP) is about 10mm; Location 3: Distance between antenna and plane ground (GAP) is about 15mm; Location 4: Distance between antenna and plane ground (GAP) is about 20mm

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11		SMT Antenna App Specification	lication	11 of 16
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:	
Δ <i>S</i> _479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11

FIGURE 7.1.1 RETURN LOSS OF ANTENNA AT FOUR LOCATIONS
WITH PARALLEL PLANE GROUND

FIGURE 7.1.2 EFFICIENCY OF ANTENNA AT FOUR LOCATIONS WITH PARALLEL PLANE GROUND

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHz MID SMT Antenna Application Specification			12 of 16
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:	
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	1 Andy Zhang 2020/05/1	

7.2 ANTENNA RF PERFORMANCE AS A FUNCTION OF DIFFERENT LOCATIONS WITH VERTICAL PLANE GROUND

Four locations with vertical plane ground have been evaluated and these locations are shown in figure 7.2. The plane ground size is 90mm*90mm and we move the plane ground to four locations for each test.

The distance between antenna and vertical plane ground affect the antenna performance slightly. We still suggest the minimum distance between antenna and plane ground is recommended to be 5mm

FIGURE 7.2 FOUR LOCATIONS WITH VERTICAL PLANE GROUND

Ground Size: 90mm*90mm;

Location 1: Distance between antenna and plane ground (GAP) is about 5mm; Location 2: Distance between antenna and plane ground (GAP) is about 10mm; Location 3: Distance between antenna and plane ground (GAP) is about 15mm; Location 4: Distance between antenna and plane ground (GAP) is about 20mm.

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11		SMT Antenna App Specification	lication	13 of 16
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY	
A G_470490001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11

FIGURE 7.2.1 RETURN LOSS OF ANTENNA AT FOUR LOCATIONS
WITH VERTICAL PLANE GROUND

FIGURE 7.2.2 EFFICIENCY OF ANTENNA AT FOUR LOCATIONS WITH VERTICAL PLANE GROUND

REVISION:	ECR/ECN INFORMATION: EC No: 637286	2.4GHz MID SMT Antenna Application			SHEET No.
F	DATE: 2020/05/11		Specification		
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPRO\	/ED BY:
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11

7.3 ANTENNA RF PERFORMANCE AS A FUNCTION OF DIFFERENT LOCATIONS WITH PARALLEL PLANE GROUND

Four locations with parallel plane ground have been evaluated and these locations are shown in figure 7.3. The plane ground size is 90mm*90mm and we move the plane ground to four locations for each test.

The distance between antenna and parallel plane ground affect the antenna performance slightly. We still suggest the minimum distance between antenna and plane ground is recommended to be 5mm.

FIGURE 7.3 FOUR LOCATIONS WITH VERTICAL PLANE GROUND

Ground Size: 90mm*90mm;

Location 1: Distance between antenna and plane (GAP) ground is about 5mm; Location 2: Distance between antenna and plane (GAP) ground is about 10mm; Location 3: Distance between antenna and plane (GAP) ground is about 15mm; Location 4: Distance between antenna and plane (GAP) ground is about 20mm.

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHz MID	lication	15 of 16	
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:	
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	1 Andy Zhang 2020/05	

FIGURE 7.3.1 RETURN LOSS OF ANTENNA AT FOUR LOCATIONS WITH PARALLEL PLANE GROUND

FIGURE 7.3.2 EFFICIENCY OF ANTENNA AT FOUR LOCATIONS
WITH PARALLEL PLANE GROUND

REVISION:	ECR/ECN INFORMATION: EC No: 637286 DATE: 2020/05/11	2.4GHz MID	lication	16 of 16	
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:	
AS-479480001		Liu Hai 2020/05/11	Cheng Kang 2020/05/11	Andy Zhang	2020/05/11