Generalized linear models

27 Sep 2023

```
## it's nice to include packages at the top
## (and NOT automatically install them)
## try not to carry over packages you don't use
library(ggplot2); theme_set(theme_bw())
## diagnostics
library(performance)
library(DHARMa)
## downstream model evaluation
library(broom)
library(dotwhisker)
library(emmeans)
library(effects)
library(marginaleffects)
library(parameters)
## library(ggeffects)
```

Basics

- $\bullet \ \ \text{assume} \ \mathbf{y}_i \sim \mathrm{Dist}(g^{-1}((\mathbf{X}\beta)_i))$
- g = link function
- $\eta = X\beta = linear predictor$
- link scale, data or response scale
- ullet GLMs inverse-transform η , they don't transform y
- allows:
 - separate control of heteroscedasticity and nonlinearity
 - almost as convenient/efficient as LMs
 - equivalent to MLE in many cases

- in practice almost all GLMs are logistic (binary data) or Poisson
- lots of inference, diagnostics, etc. inherited from LM framework

Exponential family

- $f(x|\theta) = h(x)g(\theta) \exp(\eta(\theta)T(x))$
- e.g. Poisson: $f(x|\theta) = \theta^x \exp(-\theta)/x! = (1/x!) \exp(-\theta) \exp(x \log(\theta))$
- h(x) = 1/x!; $g(\theta) = \exp(-\theta)$; $\eta(\theta) = \log(\theta)$; T(x)
- η is the **canonical link** function for the family (nice mathematical properties)
- binomial, Poisson, Gamma (inverse Gaussian, von Mises distribution ...)

Mean-variance relations

• can show that all we need for computation is the link function and the variance function $V=f(\mu)$ (may also depend multiplicatively on a scale or dispersion parameter, e.g. $V=\mu$ for Poisson, $V=\sigma^2$

Link functions

- canonical doesn't always work best (e.g. Gamma/inverse link)
- probit vs logit; not much difference
- cloglog; log-hazard scale
- inverse link: linear changes in the rate of events

Computation

- iteratively reweighted least squares
- needs starting values, but almost always robust to them

in R

- "family" functions contain all of the components needed for GLM fitting, prediction, etc.
- some of the components are weird (e.g. \$aic)
- canonical link is used by default

names(binomial)

NULL

Offsets

- allow for differential search effort, ratios, etc.
- typically add log(e)
- e.g. $\mathbf{y} \sim \operatorname{Poisson}(\mathbf{X}\beta + \log(A))$ is equivalent to modeling the response \mathbf{y}/A , but without messing up the mean-variance relationship

Offset/link tricks

- fit an exponential curve with constant variance: family = gaussian(link = "log")
- Ricker function $y = ax \exp(-bx)$: log-link, y ~ x + offset(log(x)
- Michaelis-Menten $y=ax/(b+x) \to 1/y=(b/a)\cdot (1/x)+1/a$: inverse-link, y ~ I (1/x)

Model interpretation, visualization, testing

Parameter interpretation

- log scale: easy
- logit scale: $\approx \log$ for low baseline, $\approx \log(1-x)$ for high baseline, slope $\beta/4$ for intermediate values
- cloglog: **log-hazard** scale

Inference

- Wald tests (no finite-size corrections!)
- approximate Wald CIs (compute then back-transform)
- profile CIs

Overdispersion

- too much variance
- $\bullet \,$ SSQ of Pearson residuals $\sim \chi^2(n-p)$
 - quasi-likelihood (also handles **underdispersion**)
 - compounded models (negative binomial, beta-binomial)
 - observation-level random effects

Extended distributions

• VGAM, glmmTMB packages

Complete separation

Zero-inflation/hurdle models

References