Discrete Mathematics

Formal Languages — Spring 2025

Konstantin Chukharev

§1 Formal Languages

Basic Terminology

Definition 1: *Alphabet* Σ is a finite non-empty set of symbols.

Examples: $\Sigma_1 = \{a, b, c\}, \Sigma_2 = \{0, 1\}, \Sigma_3 = \{\clubsuit, \ref{prop}, \ref{prop}, \ref{prop}, \ref{prop}, \ref{prop}\}.$

Definition 2: A *word*, or a *string*, over Σ is a *finite* sequence of symbols from Σ .

Examples: "abacaba", "10110001", "i am a word", "" (empty word ε).

Definition 3: The set of *all* finite words over the alphabet Σ is called the *Kleene star*, $\Sigma^* = \bigcup_{k=0}^{\infty} \Sigma^k$.

Definition 4: A *formal language* $L \subseteq \Sigma^*$ is a set of finite words over a finite alphabet.

 $\textit{Examples: } L_1 = \{0,001,0001,\ldots\}, L_2 = \{\texttt{a},\texttt{aba},\texttt{ababa},\texttt{abababa},\ldots\}, L_3 = \emptyset, L_4 = \{\varepsilon,\texttt{ricercar}\}.$

Operations of Languages

- A formal language, $L \subseteq \Sigma^*$, can be defined by:
 - a enumeration of words, e.g. $L = \{w_1, w_2, ..., w_n\}$
 - a regular expression, e.g. $L \triangleq 01*$
 - a formal grammar, e.g. $L \cong G$
- *Set-theoretic* operations:
 - $L_1 \cup L_2 = \{ w \mid w \in L_1 \lor w \in L_2 \}$, the *union* of L_1 and L_2
 - $\overline{L} = \{w \mid w \notin L\} = \Sigma^* \setminus L$, the complement of L
 - \blacktriangleright |*L*| is the *cardinality* of *L*
- Concatenation:
 - $L_1 \cdot L_2 = \{ab \mid a \in L_1, b \in L_2\}$, where ab is the concatenation of words a and b.
- $L^k = \underbrace{L \cdot \dots \cdot L} = \{\underbrace{ww \dots w} \mid w \in L\}$ $L^0 = \{\varepsilon\}$ k times k words
- Kleene star: $L^* = \bigcup_{k=0}^{\infty} L^k$

Regular Languages

Definition 5: A class of regular languages REG is defined inductively:

- $\operatorname{Reg}_0 = \{\emptyset, \{\varepsilon\}\} \cup \{\{a\} \mid a \in \Sigma\}$, the *empty* and *singleton* languages.
- $\operatorname{Reg}_{i+1} = \operatorname{Reg}_i \cup \{A \cup B \mid A, B \in \operatorname{Reg}_i\} \cup \{A \cdot B \mid A, B \in \operatorname{Reg}_i\} \cup \{A^* \mid A \in \operatorname{Reg}_i\}$, the inductively extended (i+1)-th *generation* of regular languages.
- REG = $\bigcup_{k=0}^{\infty} \text{Reg}_k$, the *class* of all regular languages.

Theorem 1: REG is closed under union, concatenation, and Kleene star operations.

Proof: Let $A \in \operatorname{Reg}_i$, $B \in \operatorname{Reg}_j$.

- $(A \cup B) \in \left(\operatorname{Reg}_i \cup \operatorname{Reg}_j \right) \in \operatorname{Reg}_{\max(i,j)+1} \subseteq \operatorname{REG}$
- $(A \cdot B) \in (\text{Reg}_i \cdot \text{Reg}_j) \in \text{Reg}_{\max(i,j)+1} \subseteq \text{REG}$
- $A^* \in \text{Reg}_{i+1} \subseteq \text{REG}$

Regular Expressions

Language	Expression	Description	
Ø		Empty language	
$\{arepsilon\}$	arepsilon	Language with a single empty word	
$\{a\}$	a	Singleton language with a literal character "a"	
A	α	Language A denoted by regex α	
B	β	Language B denoted by regex β	
$A \cup B$	$\alpha \mid \beta$	Union of languages A and B	
$A \cdot B$	lphaeta	Concatenation of languages \boldsymbol{A} and \boldsymbol{B}	
A^*	$lpha^*$	Kleene star of language A	
A^+	$lpha^+$	Kleene plus of language A	

 $\textit{Example} \colon (\texttt{a} \mid \texttt{bc})^* = \{\varepsilon, \texttt{a}, \texttt{aa}, \texttt{aaa}, ..., \texttt{bc}, \texttt{bcbc}, \texttt{bcbcbc}, ..., \texttt{abc}, \texttt{bca}, \texttt{abca}, \texttt{abcbc}, \texttt{bcabc}, ...\}$

See also: PCRE □

§2 Automata

Deterministic Finite Automata

Definition 6: Deterministic Finite Automaton (DFA) is a 5-tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ where:

- Q is a *finite* set of states,
- Σ is an *alphabet* (finite set of input symbols),
- $\delta: Q \times \Sigma \longrightarrow Q$ is a transition function,
- $q_0 \in Q$ is the *start* state,
- $F \subseteq Q$ is a set of *accepting* states.

DFAs recognize regular languages (Type 3).

Example: Automaton \mathcal{A} recognizing strings with an even number of 0s, $\mathcal{L}(\mathcal{A}) = \{0^n \mid n \text{ is even}\}.$

	0	1
q0	q1	q0
q1	q0	q1

Here, q_0 is the *start* (denoted by an arrow) and also the *accepting* (denoted by double circle) state.

Exercises

For each language below (over the alphabet $\Sigma = \{0,1\}$), draw a DFA recognizing it:

- **1.** $L_1 = \{101, 110\}$
- **2.** $L_2 = \Sigma^* \setminus \{101, 110\}$
- 3. $L_3 = \{w \mid w \text{ starts and ends with the same bit}\}$
- **4.** $L_4 = \{110\}^* = \{\varepsilon, 110, 110110, 110110110, \ldots\}$
- 5. $L_5 = \{w \mid w \text{ contains } 110 \text{ as a substring}\}$

Recognizers vs Transducers

There are two main types of finite-state machines:

1. Acceptors (or recognizers), automata that produce a binary yes/no answer, indicating whether or not the recieved input word $w \in \Sigma^*$ is accepted, i.e., belongs to the language L recognized by the automaton.

- 1. *Transducers*, machines that produce an output action *for each* symbol of an input.
 - Moore machines (1956)
 - Mealy machines (1955)

Computation

Definition 7: A process of *computation* by a finite-state machine \mathcal{A} is a finite sequence of *configurations*, or *snapshots*. A set of all possible configurations is denoted SNAP = $Q \times \Sigma^*$.

Definition 8: A *reachability relation* \vdash is a binary relation over configurations:

$$\langle q, \alpha \rangle \vdash \langle r, \beta \rangle$$
 iff
$$\begin{cases} \alpha = c\beta & \text{where } c \in \Sigma \\ r = \delta(q, c) \end{cases}$$

- $c_1 \vdash c_2$ means "configuration c_2 is reachable in *one step* from c_1 ".
- \vdash *, the reflexive-transitive closure of \vdash , denotes "reachable in *any* number of steps".

Automata Languages

Definition 9: A word $w \in \Sigma^*$ is accepted by an automaton \mathcal{A} if the computation, starting in the initial configuration at state q_0 with input w, can reach the final configuration $\langle f, \varepsilon \rangle$, where $f \in F$ is any accepting state, and ε denotes that the input has been fully consumed.

Formally, \mathcal{A} accepts $w \in \Sigma^*$ if $\langle q_0, w \rangle \vdash^* \langle f, \varepsilon \rangle$ for some $f \in F$.

Definition 10: The language *recognized* by an automaton \mathcal{A} is a set of all words accepted by \mathcal{A} .

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \langle q_0, w \rangle \vdash^* \langle f, \varepsilon \rangle \text{ where } f \in F \}$$

Definition 11: The class of *automaton languages* recognized by DFAs is denoted AUT.

$$AUT = \{X \mid \exists \mathcal{A} \text{ such that } \mathcal{L}(\mathcal{A}) = X\}$$

Kleene's Theorem

Theorem 2: REG = AUT.

Proof (REG \subseteq AUT): For every regular language, there is a DFA that accepts it.

Proof by induction over the *generation index k*. Show that $\forall k$. Reg_k \subseteq AUT.

Base: k=0, construct automata for $\operatorname{Reg}_0=\{\emptyset,\{\varepsilon\},\{c\} \text{ for } c\in\Sigma\}$:

Induction step: k > 0, already have automata for languages $L_1, L_2 \in \text{Reg}_{k-1}$.

TODO

§3 Extra slides

Chomsky Hierarchy

Definition 12 (Formal language): A set of strings over an alphabet Σ , closed under concatenation.

Formal languages are classified by *Chomsky hierarchy*:

- Type 0: Recursively Enumerable Turing Machines
- Type 1: Context-Sensitive Linear TMs
- Type 2: Context-Free Pushdown Automata
- Type 3: Regular Finite Automata

Recursively Enumerable Context-Sensitive Context-Free Regular

Noam Chomsky

Examples:

- $L = \{a^n \mid n \ge 0\}$
- $L = \{a^n b^n \mid n \ge 0\}$
- $L = \{a^n b^n c^n \mid n \ge 0\}$
- $L = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$