Date: 2024/08/12 ~ 2024/08/19

	Progress	To-do(short term)	Goal(long term)
김지윤	 FP32/INT8 모델 T-BFA, FGSM, PGD 공격 수행 후 정확도 비교(베이스 코드) 	 Parametric noise injection: Trainable randomness to improve deep neural network robustness against adversarial attack 리뷰 및 코드 분석 	 INT8 QNN Adversarial Robustness 연구(~11.30) BFA / Adversarial attack Defense Method 분석 각 Method 별 성능 비교 및 한계점 분석
박형동	 Reparameterization 3~5장 Figure 작성 Breaking a monotonicity in Rowhammer (가제) 논문 Intro 작성 	 Reparameterization 3~5장 Figure 작성 완료 Breaking a monotonicity in Rowhammer (가제) 논문 Intro 작성완료 	 Reparameterization 논문 완성 (~08.31) Breaking a monotonicity in Rowhammer (가제) 논문 완성 (~08.31) BNN 에 majority voter 적용(~9.30)
여인국	 Reparameterization 3~5장 Figure 작성 Breaking a monotonicity in Rowhammer (가제) 논문 Intro 작성 	 Reparameterization 3~5장 Figure 작성 완료 Breaking a monotonicity in Rowhammer (가제) 논문 Intro 작성완료 	 Aliasing현상에 효과적인 in dram ecc 작성 (~09.30) Reparameterization 논문 완성 (~08.31) Breaking a monotonicity in Rowhammer (가제) 논문 완성 (~08.31)
이수학	 Nonhomogeneous LDPC codes and their application to encrypted communication (2011) 리뷰 Security analysis 정리(진행중) 	 Design of LDPC-based error correcting cipher(2008) 세부 분석 Physical layer error correction based cipher (2010) 리뷰 	● joint LDPC encoding and AES 논문 초안 작성 (~9.30)
여희주	 LDPC ECC(Error Correcting Cipher) 차분 전파 비율 계산 과정 분석 LDPC ECC 입력-출력 상관관계 계산 과정 분석 	● AES-128 encryption C code 분석 ● LDPC ECC 방식 ITU-T PON LDPC에 적용	● joint LDPC encoding and AES 논문 초안 작성 (~9.30)
이수현	● NeuroSim V1.0 manual 리뷰	CiMLoop: A Flexible, Accurate, and Fast Compute-In-Memory Modeling Tool 리뷰	● NeuroSim을 활용한 XNOR-Net++ 구현 (~8.31)
이성현	 NeuroSim V1.0 manual 리뷰 Partition SRAM and RRAM based Synaptic Arrays for Neuro-inspired Computing 논문 리뷰 	Optimizing Weight Mapping and Data Flow for Convolutional Neural Networks on RRAM based Processing-In-Memory Architecture 논문 리뷰	● NeuroSim을 활용한 XNOR-Net++ 구현 (~8.31)