"Logic Gates"

Basic Logic Gates

Name	Graphic Symbol	Boolean Algebra	Truth Table
AND	A x	x = A . B or x = A B	A B x 0 0 0 0 0 0 1 0 1 1 1 1
OR	A D x	x = A + B	A B X 0 0 0 0 1 1 1 1 0 1 1 1 1
NOT	A — ×	$x = A$ or $x = \overline{A}$	A x 0 1 1 1 0
NAND	A - x	x = (A B)` or x = (A B)	A B x 0 0 1 1 0 1 1 1 0 1
NOR	A D x	x = (A + B)` or x = (A + B)	A B x 0 0 1 0 1 0 1 0 0 1 1 0
Exclusive – OR (XOR)	A B -x	x = A⊕ B	A B x 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive - NOR	A B	x = (A⊕ B), or x = (A⊕ B),	A B × 0 0 1 0 1 0 1 0 0 1 1 1 1

Basic Logic Gates

- □Functions of Gates can be described by:
 - Logic Diagram (Symbol)
 - Truth Table
 - ❖ Boolean Function (Algebric)

AND Gate

□ Logical Multiplication function

Input		Output
Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

$$F = A \bullet B$$

$$F = A \bullet B \bullet C \bullet \dots \bullet N$$

Truth table

Algebric Function

AND Gate

- ☐ 1 output
- □ 2, 3, 4 inputs
- Multiple inputs

OR Gate

□ Boolean Add function

Input		Output
Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

$$\mathbf{F} = \mathbf{A} + \mathbf{B}$$
$$\mathbf{F} = \mathbf{A} + \mathbf{B} + \mathbf{C} + ... + \mathbf{N}$$

Truth table

Algebric Function

OR Gate

- ☐ 1 output
- □ 2,3 ,4 inputs
- Multiple inputs

NOT Gate

□Invert function

Input	Output
Α	F
0	1
1	0

$$F = \overline{A}$$

Truth table

Algebric Function

NOT Gate

- □1 input
- □1 output

AND Gate Applications

☐ Dual lock save:

Unlock = 1 => save open

key1	key2	unlock
0	0	0
0	1	0
1	0	0
1	1	1

- Electronic door will only open if it detects a person and the switch is set to unlocked.
- ☐ Microwave will only start if the start button is pressed and the door close switch is closed.

OR Gate Applications

□Car door open alarm

OR Gate Applications

□1's Complement

NAND Gate function

□NOT-AND function

A B

Input		Output
Α	В	IL
0	0	1
0	1	1
1	0	1
1	1	0

$$F = \overline{A \bullet B}$$

$$F = \overline{A \bullet B \bullet C \bullet \bullet N}$$

Truth table

Algebric Function

NAND Gate

- □1 output
- □2, 3, 4 inputs
- ☐Multiple inputs

NAND Gate Applications

■ Device Failure Alarm

- Toxic chemicals are removed from the ware house and dispersed in the atmosphere using three exhaust fans
- When all fans are working the input to the NAND gate is 111 and the output is 0
- When any one fan fails the output of NAND gate becomes 1 sounding an alarm connected tot the output of the NAND gate.

Alternate Representations

☐Build NOT function using NAND gates

Input	Output
Α	F
0	1
1	0

Alternate Representations

☐Build AND function using NAND gates

Input			Output
Α	В	F1	F
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

Alternate Representations

☐Build OR function using NAND gates

Inp	out			Output
Α	В	F1	F2	F
0	0	1	1	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

NOR Gate function

□ NOT-OR function

Input		Output
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

$$\mathbf{F} = \overline{\mathbf{A} + \mathbf{B}}$$

$$\mathbf{F} = \overline{\mathbf{A} + \mathbf{B} + \mathbf{C} + \dots + \mathbf{N}}$$

Algebric Function

NOR Gate

- □1 output
- **□**2, 3, 4 inputs
- ☐ Multiple inputs

NOR Gate Applications

■ Washing Machine Controller

- Three sensors check for washing machine
 - √ lid open,
 - ✓ washing tub filled to minimum level and
 - ✓ weight of cloths and water in the tub
- ➤ The appropriate sensor sets its output to 1 and the NOR gate output is set to 0 switching off the washing machine If
 - √ the lid is open or
 - ✓ the water is below the minimum level or
 - ✓ the washing machine has been overloaded

XOR Gate function

□ Logical Add without carry function

Input		Output
Α	В	Œ
0	0	0
0	1	1
1	0	1
1	1	0

$$F = A \oplus B$$

$$F = A \oplus B \oplus C \oplus \oplus N$$

Truth table

Algebric Function

XOR Gate

- □1 output
- □2, 3, 4 inputs
- ☐ Multiple inputs

XOR Gate Applications

☐ Detecting odd number of 1's

- Consider the 4-bit binary number 0000 applied at the inputs A, B, C and D respectively of XOR gates 1 and 2. The output of XOR Gates 1 and 2 is 0 and 0, the output of XOR gate 3 is also zero.
- Consider the binary number 0011 applied at the inputs A, B, C and D respectively. The output of XOR gate 1 with inputs 00 is 0. The output of XOR gate 2 with inputs 11 is 0. The output of gate 3 is 0. Thus the output indicates that the binary number 0011 does not have odd number of 1's.
- ➤ Consider the binary number 1011 applied at the inputs A, B, C and D respectively. The output of XOR gate 1 with inputs 10 is 1. The output of XOR gate 2 with inputs 11 is 0. The output of gate 3 is 1. Thus the output indicates that the binary number 1011 has odd number of 1's

Logic Blocks (Circuits)

☐ Functions of logic Circuits can be described by:

1 - Boolean Function

$$F = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + AB\overline{C} + ABC$$

2- Logic Diagram

3- Truth Table

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Types of Logic Blocks

☐ Combinational Logic Block (Circuit):

Logic Blocks whose output logic value depends only on

the input logic values

Block Diagram of Combinational Circuit

□ Sequential Logic Block (Circuit) :

Logic Blocks whose output logic value depends on the input values and the state (stored information) of the blocks

Designing Combinational Circuits

Designing Combinational Circuits steps:

- Problem description
- Input/output of the circuit
- Define truth table
- □ Simplification for each output
- Draw the circuit (Circuit Implementation)

Designing Combinational Circuits

Example of Designing Combinational Circuits:

Half adder

Half Adder

Problem description

$$0 + 0 = 0$$
;

$$0+1=1$$
;

$$1 + 0 = 1$$
;

$$1 + 1 = 10$$

- Problem description
- Input/output of the circuit
- Define truth table
- □ Simplification for each output
- □ Draw the circuit (Circuit Implementation)

Input/output of the circuit

- Two input variables: *x*, *y*
- Two output variables: C (carry), S (sum)

Half Adder

□ Define truth table

- ☐ Problem description
- ☐ Input/output of the circuit
- Define truth table
- $\hfill \square$ Simplification for each output
- ☐ Draw the circuit (Circuit Implementation)

X	y	С	S
0	0	0	0
0	1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1
1	0	0	1
1	1	1	0

Half Adder

Outputs Simplification

$$S = x'y + xy'$$

$$C = xy$$

Problem description

☐ Input/output of the circuit

Define truth table

Simplification for each output

□ Draw the circuit (Circuit Implementation)

Flexibility of Implementation

$$S = x \oplus y$$

$$S = (x+y)(x'+y')$$

$$S = (C+x'y')'$$

$$C = xy = (x'+y')'$$

X	y	С	S
0	0	0	0
0 0 1	1	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1
1	0	0	1
1	1	1	0

Logic Gates

Half Adder

□ Circuit Implementation

- Problem description
- ☐ Input/output of the circuit
- Define truth table
- ☐ Simplification for each output
- ☐ Draw the circuit (Circuit Implementation)

Sequential Logic Circuits

- ☐ Is a combinational circuit where the output is looped back to the input (Feedback).
- ☐ A simple example of this concept is shown below:

If Q is 0, it will always be 0. If Q is 1, it will always be 1.

Timing Diagrams

- timing diagrams illustrate the idealized response of each gate to the four input signal combinations.
- The horizontal axis of the timing diagram represents the time, and the vertical axis shows the signal as it changes between the two possible voltage levels.

TIMING DIAGRAM

EXAMPLE

 Draw a logic gate circuit of A' +B and get their truth table

A	В	A'	Z= A' +B
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

- Derivation of logical expression from a circuit
 - Trace from the input to output
 - Write down intermediate logical expressions along the path

Half Adder

Problem description

$$0 + 0 = 0$$
;

$$0+1=1$$
;

$$1 + 0 = 1$$
;

$$1 + 1 = 10$$

- Problem description
- Input/output of the circuit
- Define truth table
- □ Simplification for each output
- □ Draw the circuit (Circuit Implementation)

Input/output of the circuit

- Two input variables: *x*, *y*
- Two output variables: C (carry), S (sum)

Half Adder

□ Define truth table

- ☐ Problem description
- ☐ Input/output of the circuit
- Define truth table
- $\hfill \square$ Simplification for each output
- ☐ Draw the circuit (Circuit Implementation)

X	y	С	S
0	0	0	0
0	1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1
1	0	0	1
1	1	1	0

Half Adder

Outputs Simplification

$$S = x'y+xy'$$

$$C = xy$$

Problem description

Input/output of the circuit

Define truth table

Simplification for each output

□ Draw the circuit (Circuit Implementation)

Flexibility of Implementation

$$S = x \oplus y$$

$$S = (x+y)(x'+y')$$

$$S = (C+x'y')'$$

$$C = xy = (x'+y')'$$

X	y	С	S
0	0	0	0
0 0 1	1	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1
1	0	0	1
1	1	1	0

Explain full adder. Design its truth table.

Full Adder is the adder which adds three inputs and produces two outputs. The first two inputs are A and B and the third input is an input carry as C-IN. The output carry is designated as C-OUT and the normal output is designated as S which is SUM.

A full adder logic is designed in such a manner that can take eight inputs together to create a byte-wide adder and cascade the carry bit from one adder to the another.

Full Adder Truth Table:

	Inputs		Out	tputs
Α	В	C-IN	Sum	C-Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder logic circuit.

Implementation of Full Adder using Half Adders

2 Half Adders and a OR gate is required to implement a Full Adder.

Full Subtractor in Digital Logic

A full subtractor is a **combinational circuit** that performs subtraction of two bits, one is minuend and other is subtrahend, taking into account borrow of the previous adjacent lower minuend bit. This circuit **has three inputs and two outputs**. The three inputs A, B and Bin, denote the minuend, subtrahend, and previous borrow, respectively. The two outputs, D and Bout represent the difference and output borrow, respectively.

Truth Table -

	INPUT	U.	OUT	PUT
Α	В	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1
		4		1

Logic Circuit for Full Subtractor –

Implementation of Full Subtractor using Half Subtractors — 2 Half Subtractors and an OR gate is required to implement a Full Subtractor.

Simplify the function to simplify the circuit; why?

$$F_2 = x'y'z + x'yz + xy'$$

$$= x'z(y'+y) + xy'$$

$$= x'z + xy',$$

which has only 4 literals, where a literal is a single variable (complemented or un-complemented).

Less gates (HW) means:

- · low dost.
- low power consumption.
- · simpler implementation.

Simplifying functions is by:

- algebraic manipulation (this chapter)
- K-map (next chapter)
- computer programs for many-input functions

The Map Method

- K-map (named after Karnaugh) is a visual method, utilizing visual power.
- Difficult for more than 5 variables.
- Produces always SOP or POS expressions.

Standard Forms

<u>Standard Sum-of-Products (SOP) form:</u> equations • are written as an OR of AND terms

<u>Standard Product-of-Sums (POS) form:</u> equations • are written as an AND of OR terms

Examples: •

SOP: •

POS: •

These "mixed" forms are neither SOP nor POS •

Two-Variable Map

$m_0 = m_1$ $m_2 = m_3$

Simplify the following functions both algebraically and with K-Map and observe the visual power:

$$F_1 = m_1 + m_2 + m_3 = x'y + xy' + xy$$

 $F_2 = m_3$

$$= xy.$$

$$F_3 = m_0 + m_3 = x'y' + xy.$$

$$= xy + x'y + xy' + xy = y + x.$$

Only one-bit (variable) change for any two adjacent squares!

Description of Kmaps and Terminology

For example, the minterms for a function having • the inputs x and y are: $\overline{x}\overline{y}, \overline{x}y, x\overline{y}$, and xyConsider the Boolean function, • $\mathbf{F}(x,y) = xy + x\overline{y}$ Its minterms are: •

x	Y
0	0
0	1
1	0
1	1
	0 0 1

Similarly, a function • having three inputs, has the minterms that are shown in this diagram.

Minterm	x	Y	Z
ΖŢZ	0	0	0
$\overline{X}\overline{Y}Z$	0	0	1
$\overline{\mathbf{x}}\mathbf{y}\overline{\mathbf{z}}$	0	1	0
- Xyz	0	1	1
$x\overline{Y}\overline{Z}$	1	0	0
ΧŸΖ	1	0	1
ΧΥZ	1	1	0
XYZ	1	1	1

A Kmap has a cell for each • minterm.

This means that it has a cell for • each line for the truth table of a function.

The truth table for the function • F(x,y) = xy is shown at the right along with its corresponding Kmap.

F(X,Y) = XY				
X	Y	XY		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

X	0	1
0	0	0
1	0	1

$$F(x,y) = x + y = \overline{x}y + x\overline{y} + xy$$

The best way of selecting two groups of 1s • form our simple Kmap is shown below.

We see that both groups are powers of two • and that the groups overlap.

The next slide gives guidance for selecting • Kmap groups.

Three-Variable Map

0	0	0	
0	0	1	-;-
0	1	0	
0 0 1	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

· Only one-bit (variable) change for any two adjacent squares! Therefore, e.g.,

$$F = m_5 + m_7 = xy'z + xyz = xz(y' + y) = xz$$

• Make sure of number of variables (e.g., $m_2 + m_3$ for 2 or 3 variables) and their order

Consider the function: •

Its Kmap is given below. $\mathbf{F}(\mathbf{X}, \mathbf{Y}) = \mathbf{X}\mathbf{Y}\mathbf{Z} + \mathbf{X}\mathbf{Y}\mathbf{Z} + \mathbf{X}\mathbf{Y}\mathbf{Z} + \mathbf{X}\mathbf{Y}\mathbf{Z}$ What is the largest group of 1s that is a power of 2? •

X	Z 00	01	11	10
0	0	1	1	0
1	0	1	1	0

Example : Simplify the function $F(x, y, z) = \sum (2, 3, 4, 5)$.

$$F = x'y + xy' = x \oplus y.$$

Example Simplify $F(x, y, z) = \sum (3, 4, 6, 7)$.

Example : Consider the function $F(x, y, z) = \sum (0, 2, 4, 5, 6)$.

- 1. Simplify F_{τ} (Hint: a group should have (2^m) ones and its resulting SOP has (n-m) literals.
- 2. Implement the function using AND, OR, NOT.
- 3. Observe the number of AND and OR gates (ignore inverters for now).

$$m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz'$$
 (z' with the 4 combinations of x, y)
= $(x'y' + x'y + xy' + xy)z'$ ($z' \cdot \sum_{\text{all Minterms of } x, \ y} = z'$)
= $(x'(y' + y) + x(y' + y))z' = (x' + x)z' = z'$.

$$F = xy' + z'.$$

Example Consider the function F = A'C + A'B + AB'C + BC.

- 1. Express the function as a sum of Minterms.
- 2. Find the minimal SOP expression.

Hint: each SOP term missing m literals will be expanded by 2^m Minterms.

$$F(A, B, C) = \sum (1, 2, 3, 5, 7)$$
$$F = C + A'B.$$

Golden Rules to Remember:

- Only one-bit (variable) change for any two adjacent squares!
- The boundaries are adjacent as well.
- A group of ones should be 2^m, where m is the number of removed variables in this group (SOP), and the SOP will have n - m literals.
- Therefore, maximize the number of 1s in each group to minimize the number of literals in the SOP.
- Minimize the number of groups (the SOP terms).
- Therefore, start with the most isolated 1s.
- · Make sure of number of variables and their order
- The number of literals in each group (SOP) is the number of inputs to its AND gate.
- The number of groups is the number of SOP terms is the number of AND gates is the number of inputs to the OR gate.
- All Minterms are covered.

Four-Variable Map

Y WX	Z 00	01	11	10
00	WXYZ	WXYZ	wxyz	WXYZ
01	WXYZ	WXŸZ	WXYZ	WXYZ
11	WXŸZ	WXŸZ	WXYZ	WXYZ
10	WXYZ	WXYZ	WXYZ	WXYZ

\	yz			y		
vx	1	00	01	11	10	
		m_0	m_1	m_3	m_2	
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
		m_4	m_5	m_{γ}	m_6	
-	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'	
ſ		m_{12}	m_{13}	m_{15}	m ₁₄	
1	11	wxy'z'	wxy'z	wxyz	wxyz'	
1		m_{g}	m_9	m_{11}	m_{10}	
	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'	

- Adjacency from top-bottom, right-left, and corners.
- Corners: w and y took their 4 combinations at x = 0, z = 0:

$$m_0 + m_2 + m_8 + m_{10} = w'x'y'z' + w'x'yz' + wx'y'z' + wx'yz'$$

= $(w'y' + w'y + wy' + wy)x'z'$
= $x'z'$.

Example Simplify the function $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Note: w'y'z' + w'yz' = w'z' xy'z' + xyz' = xz'

Y. WX	Z 00	01	11	10
00	1	1		1
01				1
11				
10	1	1		1

$$F(W,X,Y,Z) = \overline{W}\overline{X}\overline{Y}\overline{Z} + \overline{W}\overline{X}\overline{Y}Z + \overline{W}\overline{X}Y\overline{Z} + \overline{W}\overline{X}\overline{X} + \overline{W}\overline{X} + \overline{W}\overline{X}\overline{X} + \overline{W}\overline{X}\overline{X} + \overline{W}\overline{X} + \overline{W}\overline{X$$

$$F(W,X,Y,Z) = \overline{WY} + \overline{XZ} + \overline{WYZ}$$

Y WX	Z	00	01	11	10
00		1		1	
01		1)	1	1
11		1			
10		1			

$$F(W,X,Y,Z) = WY + YZ$$

$$F(W,X,Y,Z) = WZ + YZ$$