# **Analysis of Spotify Dataset**

Akai Kaeru Professor Klaus Mueller June 2022 ~ September 2022 JeongYoon Lee

#### Introduction

In this project I tried to find some interesting insights about songs in Spotify which is the biggest music streaming service through the AK Analyst, and make sure to check the software with making some test cases.

#### **Experimental Setup**

I used google colab to use python for this project and used AK Analyst for data preprocessing and analyzing.

#### **Extract Dataset**

- 1. Log in to Spotify for Developer (<a href="https://developer.spotify.com/dashboard/login">https://developer.spotify.com/dashboard/login</a>).
- 2. Push the "Create an App" Button and get the Client ID and Client Secret.
- 3. We can approach with these ID and Password in python.

```
import spotipy
!pip install urllib3 --upgrade
!pip install requests --upgrade
!pip install spotipy --upgrade
!pip install spotipy --upgrade
!pip install spotipy --upgrade

artist_name =[]
track_poolarity =[]
track_poolarity =[]
artist_name =[]
track_poolarity =[]
artist_none =[]
track_poolarity =[]
artist_none =[]
track_poolarity = []
artist_poolarity = []
artist_poo
```

#### >>Extract released tracks (1000)



#### >>Extract Audio features



# Merge genres

→ Since there are too many genres, I tried to group them into a small number of genres

```
total_idx = 0
idx = 0
for i_list in grouping_genre["artist_genre"]:
  for j in i_list:
    if "korean pop" in j:
     grouping_genre['artist_genre'][total_idx][idx] = "k-pop"
    elif "korean electropop" in j:
     grouping_genre['artist_genre'][total_idx][idx] = "k-pop"
    elif "k-pop girl group" in j:
     grouping_genre['artist_genre'][total_idx][idx] = "k-pop"
    elif "k-pop boy group" in j:
     grouping_genre['artist_genre'][total_idx][idx] = "k-pop"
    elif "britpop" in j:
     grouping genre['artist genre'][total idx][idx] = "uk-pop"
    elif "classic uk pop" in j:
     grouping_genre['artist_genre'][total_idx][idx] = "uk-pop"
    elif "british alternative rock" in j:
     grouping_genre['artist_genre'][total_idx][idx] = "uk-pop"
    elif "pop rock" in i:
     grouping_genre['artist_genre'][total_idx][idx] = "rock"
    elif "alternative pop rock" in j:
     grouping_genre['artist_genre'][total_idx][idx] = "rock"
    elif "country pop" in j:
     grouping_genre['artist_genre'][total_idx][idx] = "country"
    elif "latin pop" in j:
     grouping_genre['artist_genre'][total_idx][idx] = "latin"
    elif "pop r&b" in i:
     grouping_genre['artist_genre'][total_idx][idx] = "r&b"
```

[Code for grouping genres]

```
freq_new ×
 1 Genre,Freq
 2 pop,1764
 3 edm, 1041
 4 rap.1025
 5 etc,939
 6 hip hop,654
 7 rock,593
 8 ,480
 9 folk, 434
10 r&b, 232
11 indie,197
12 latin, 127
13 blues, 101
14 dance, 93
15 techno, 84
16 k-pop,75
17 reggae, 73
18 metal.72
19 funk,60
20 punk,58
21 classic,50
22 uk-pop, 43
23 jazz.40
24 Lo-ft.36
25 country, 28
26 band, 27
27 lo-fi beats, 26
28 singer-songwriter,24
29 soundtrack,20
```

[The number of tracks per each genres]

# **Final Input Dataset Overview**

| artist name               | track name                                                  | track id               | album id               | artist id              | track popularity | artiet nonularity | artiet genre                                 | duration me |            | release date preci |
|---------------------------|-------------------------------------------------------------|------------------------|------------------------|------------------------|------------------|-------------------|----------------------------------------------|-------------|------------|--------------------|
| Steve Lacy                | Dark Red                                                    | 37y7iDayfwm3WXn5BiAoRk | 5fvUFzqVEni3L7769OabqQ | 57vWlmR43h4CaDao012Ofp | 87               | 76                | ['etc', 'pop']                               | 173104      | 2017-02-20 | day                |
| Otmar Eros                | Year 2016:,<br>Pt. 4                                        | 1sUxW2zAmXA7IXHC8Dxu4s | 21AA25PUsBnGgzLmiCFhX6 | 5XY9JN9PcQ41KQTZqtyhsL | 26               | 22                |                                              | 69839       | 2021-03-09 | day                |
| Tyler, The<br>Creator     | See You<br>Again (feat.<br>Kali Uchis)                      | 7KA4W4McWYRpgf0fWsJZWB | 2nkto6YNI4rUYTLqEwWJ3o | 4V8LLVI7PbaPR0K2TGSxFF | 85               | 84                | ['hip hop',<br>'rap']                        | 180386      | 2017-07-21 | day                |
| Mark Ronson               | Uptown<br>Funk                                              | 4rmFRTmHa2bWUmMLIRVEXQ | 6ndaa5yzks3YifHX1u5EsI | 3hv9jJF3adDNsBSIQDqcjp | 49               | 74                | ['pop']                                      | 269666      | 2017-12-22 | day                |
| Lil Uzi Vert              | 20 Min                                                      | 0uxSUdBrJy9Un0EYoBowng | 0zicd2mBV8HTzSubByj4vP | 4O15NlyKLIASxsJ0PrXPfz | 84               | 84                | ['rap']                                      | 220586      | 2017-11-17 | day                |
| Dark.D                    | Year 2017                                                   | 4PNPLAWzF3qCF2Z8Xur1pc | 7jX3f3rXHx5PWSIXL48U64 | 13fEC4mCM6Ddu07ydQRcRq | 0                | 0                 | ["]                                          | 348754      | 2017-07-05 | day                |
| Ruth B.                   | Dandelions                                                  | 2eAvDnpXP5W0cVtiI0PUxV | 6FgtuX3PtiB5civjHYhc52 | 2WzaAvm2bBCf4pEhyuDgCY | 91               | 75                | ['r&b', 'pop']                               | 233720      | 2017-05-05 | day                |
| Otmar Eros                | Year 2016:,<br>Pt. 1                                        | 48Mk9nvXiHZ9eSDqkX8sSZ | 21AA25PUsBnGgzLmiCFhX6 | 5XY9JN9PcQ41KQTZqtyhsL | 22               | 22                | ["]                                          | 59443       | 2021-03-09 | day                |
| A Boogie Wit da<br>Hoodie | Drowning<br>(feat. Kodak<br>Black)                          | 1f5cbQtDrykjarZVrShaDI | 3HHp5l6Q6SEyU5bkvoCtnV | 31W5EY0aAly4Qieq6OFu6I | 81               | 80                | ['rap']                                      | 209269      | 2017-09-29 | day                |
| Ten Years After           | 50,000 Miles<br>Beneath My<br>Brain - 2017<br>Remaster      | 0CflMLPy8lYSdgjuoLTMtq | 1WQORrTyf78zuJCBziHfQg | 7nkLRaWHImCvWGHdNGnhVE | 41               | 52                | ['rock',<br>'blues', 'folk']                 | 457449      | 1970-04-01 | day                |
| XXXTENTACION              | Revenge                                                     | 5TXDeTFVRVY7Cvt0Dw4vWW | 5VdyJkLe3yvOs0I4xXbWp0 | 15UsOTVnJzReFVN1VCnxy4 | 87               | 87                | ['hip hop',<br>'rap']                        | 120026      | 2017-08-25 | day                |
| Schoolgirl<br>Byebye      | Year,2015                                                   | 0UsmyJDsst2xhX1ZiFF3JW | 5gWxh24iphqQ8WDh8MBMfe | 6kfcndVsu8F9Y5gL5xc717 | 24               | 34                | ['pop', 'etc',<br>'indie']                   | 74301       | 2020-09-16 | day                |
| Drake                     | Passionfruit                                                | 5mCPDVBb16L4XQwDdbRUpz | 1IXY618HWkwYKJWBRYR4MK | 3TVXtAsR1Inumwj472S9r4 | 84               | 95                | ['hip hop',<br>'pop', 'rap']                 | 298940      | 2017-03-18 | day                |
| Billy Joel                | Miami 2017<br>(Seen the<br>Lights Go<br>Out On<br>Broadway) | 5Bgs8sHxL7zbNMyEAiSkMq | 4nFLLh5qSlp2z2FuLpVERX | 6zFYqv1mOsgBRQbae3JJ9e | 33               | 75                | ['rock', 'folk',<br>'singer-<br>songwriter'] | 314620      | 2022-04-08 | day                |

# [new\_with\_genre\_final.csv]

| danceability | energy | key | loudness | mode | speechiness | acousticness | instrumentalness | liveness | valence | tempo   | type           | id                     | uri                                  |                      |
|--------------|--------|-----|----------|------|-------------|--------------|------------------|----------|---------|---------|----------------|------------------------|--------------------------------------|----------------------|
| 0.603        | 0.783  | 6   | -4.023   | 1    | 0.062       | 0.449        | 7.96E-06         | 0.119    | 0.775   | 172.041 | audio_features | 37y7iDayfwm3WXn5BiAoRk | spotify:track:37y7iDayfwm3WXn5BiAoRk | https://api.spotify. |
| 0.241        | 0.064  | 5   | -24.272  | 1    | 0.0602      | 0.994        | 0.95             | 0.0715   | 0.0372  | 141.739 | audio_features | 1sUxW2zAmXA7IXHC8Dxu4s | spotify:track:1sUxW2zAmXA7IXHC8Dxu4s | https://api.spotify. |
| 0.558        | 0.559  | 6   | -9.222   | 1    | 0.0959      | 0.371        | 7.49E-06         | 0.109    | 0.62    | 78.558  | audio_features | 7KA4W4McWYRpgf0fWsJZWB | spotify:track:7KA4W4McWYRpgf0fWsJZWB | https://api.spotify. |
| 0.856        | 0.609  | 0   | -7.223   | 1    | 0.0824      | 0.00801      | 8.15E-05         | 0.0344   | 0.928   | 114.988 | audio_features | 4rmFRTmHa2bWUmMLIRVEXQ | spotify:track:4rmFRTmHa2bWUmMLIRVEXQ | https://api.spotify. |
| 0.773        | 0.75   | 8   | -4.009   | 0    | 0.117       | 0.109        | 0                | 0.174    | 0.783   | 123.426 | audio_features | 0uxSUdBrJy9Un0EYoBowng | spotify:track:0uxSUdBrJy9Un0EYoBowng | https://api.spotify. |
| 0.885        | 0.494  | 3   | -8.004   | 0    | 0.0565      | 0.00107      | 0.664            | 0.0514   | 0.432   | 128.005 | audio_features | 4PNPLAWzF3qCF2Z8Xur1pc | spotify:track:4PNPLAWzF3qCF2Z8Xur1pc | https://api.spotify. |
| 0.609        | 0.692  | 1   | -2.958   | 1    | 0.0259      | 0.0157       | 0                | 0.0864   | 0.454   | 116.959 | audio_features | 2eAvDnpXP5W0cVtil0PUxV | spotify:track:2eAvDnpXP5W0cVtiI0PUxV | https://api.spotify. |
| 0.314        | 0.0855 | 9   | -15.775  | 1    | 0.0342      | 0.969        | 0.795            | 0.16     | 0.161   | 69.893  | audio_features | 0UsmyJDsst2xhX1ZiFF3JW | spotify:track:0UsmyJDsst2xhX1ZiFF3JW | https://api.spotify. |
| 0.839        | 0.81   | 5   | -5.274   | 0    | 0.0568      | 0.501        | 0                | 0.117    | 0.814   | 129.014 | audio_features | 1f5cbQtDrykjarZVrShaDI | spotify:track:1f5cbQtDrykjarZVrShaDI | https://api.spotify. |
| 0.344        | 0.83   | 9   | -7.67    | 1    | 0.0569      | 0.0133       | 0.036            | 0.101    | 0.435   | 116.883 | audio_features | 0CflMLPy8IYSdgjuoLTMtq | spotify:track:0CflMLPy8IYSdgjuoLTMtq | https://api.spotify. |

[final\_audio\_feature.csv]

# **Final Input File Feature Details**

## 1) new\_with\_genre\_final.csv

artist name: The name of artist

track\_name : The name of track (music)
track id : Track's id number (\*unique value)

album id: Album's id number

track\_popularity : Popularity of track
artist popularity :Popularity of artist

artist\_genre : A list of the genres the artist is associated with.

duration\_ms: The track length in milliseconds. release date: The date the album was first released.

release date precision: The precision with which "realese date" value is known.

## 2) final audio feature.csv

danceability: Describes how suitable a track is for dancing based on a combination of musical elements including tempo, rhythm stability, beat strength, and overall regularity.

energy: Represents a perceptual measure of intensity and activity.

key: The key the track is in.

loundness: The overall loudness of a track in decibels (dB).

mode: Mode indicates the modality (major or minor) of a track.

speechiness: Detects the presence of spoken words in a track.

acousticness: A confidence measure from 0.0 to 1.0 of whether the track is acoustic. 1.0

represents high confidence the track is acoustic.

instrumentalness: Predicts whether a track contains no vocals.

liveness: Detects the presence of an audience in the recording

valence: A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track. 1.0 is the most positive, and 0.0 is the most negative.

tempo: The overall estimated tempo of a track in beats per minute (BPM).

type: The object type

id: Track ID

uri: The Spotify URI for the track.

track herf: A link to the Web API endpoint providing full details of the track.

analysis url: A URL to access the full audio analysis of this track.

duration ms: The duration of the track in milliseconds.

time signatiure: An estimated time signature.

## \*More details:

https://developer.spotify.com/documentation/web-api/reference/#/operations/get-track

## **Pipeline**



#### **Use of Software**

1. Import Data

Can import the data using the green icon on the left bar.

File I/O



2. Clean and Transform Data

Can drop columns or change the column's name or transform lots of columns with this icon.



3. Aggregate Dataset Rows

Using this icon, we can aggregate the datasets to make one column a unique value.



4. Merge Datasets

Can join two tables with each data column.



5. AK Miner

Can do data mining using this icon. Select the miner method between FP Miner and Bayesian miner, and it will result in some pattern of the data.



6. AK Pattern Browser

It will show the result of the analysis based on the pattern that was already found using AK Miner.

Or, it will recommend some feature combination when clicking "Launch Feature Explorer".



7. Visualize Data

It will show the plot of the dataset. We can select X and Y and the type of the plot.



# **Analysis of Track Popularity**

- Dataset Preprocessing
  - 1. Drop the non-numerical columns
  - 2. Aggregate the rows to make the key column as unique value.
  - 3. Inner Join two tables with music track's id to analyze with music features.
  - 4. Drop the meaningless columns
- Using Bayesian Miner and finding Pattern





- Insight
  - 1. When we see the feature importance and groups, it is shown that the track popularity and the artist popularity have big positive correlation, and the artist popularity is the most important feature.



When click the group at the top of right side, the instrumentalness is also important in the other attribute section.



It is showed that this group contains low instrumentalness, and high track popularity. But we cannot say that most of tracks which has small instrumentalness are mostly popular tracks.



When we look at the entire track points, there are many tracks that have small instrumentalness but low track popularity. But still we can say that most of the popular tracks have small instrumentalness since there are not many tracks for the big instrumentalness with high track popularity.

#### 2. This group has small track popularity and large energy.



What I found in this group detail is that these tracks have high energy and the valence is less the medium value, which means that those tracks sounds more negative (sad, depressed, angry).



So, I was wondering that the valence can affect to the track popularity, and the result is not actually.



When I click the valence in the feature importance, the groups seem that there are no big correlation between track popularity and valence. However, most of the tracks with high popularity don't have low valence value, so I can guess that tracks with low valence are difficult to be popular tracks.

# **Analysis of Artist Genre**

- Dataset Preprocessing
  - 1. Drop the non-numerical columns
  - 2. Aggregate the rows to make the key column as unique value.
  - 3. Inner Join two tables with music track's id to analyze with music features.
  - 4. Drop the meaningless columns and artist name columns
  - 5. Make it as one columns for each genre using Cell Split.
- Using Bayesian Miner and find Pattern

Target: Artist Popularity



- Insight
  - 1. Firstly, the instrumentalness feature has the highest importance with artist popularity. When I choose the biggest positive group in the groups section, this group is shown having high relativeness with liveness, and medium relativeness with instrumentalness. So, it can be said that most of the tracks from popular artist has low instrumentalness with medium importance and medium range of liveness with high importance.



2. This group contains rap music.



And then, I choose the feature "genre\_artist\_hiphop" which is hip hop music. And I can find there are both hip-hop music and non-hip-hop music.



When I check the first check box, which is about genre\_artist\_rap, the artist popularity for the non-hip-hop group increased, and the hip-hop points don't have any change. In this group, the track which has hip-hop and rap genre at the same time are mostly popular. And also, the track with non-hip-hop and rap is much popular than hip-hop non-rap tracks.



3. When select the loudness feature, it is showed that the group with large loudness usually has high popularity. Unfortunately, for the left two red circle group don't have any special features, so I'm trying to select the highest popularity circle with high importance.



In the group detail, this group almost don't have any instrumentalness and have large loudness since instrumentalness means that predicting whether a track contains no vocals. So we can guess those points contain rap music or acapella musics.



In the other attributes section, it is shown that this group contains rap, pop, hip-hop, rock and etc group. One thing I surprised is that there are rock music in this group even though these tracks barely have instrumentalness.

I guess there's some rock music only with voice without instruments.

## Code

https://github.com/JeongYoon-L/Spotify-Analysis/blob/main/Spotify\_dataset.ipynb

#### **Conclusions**

I was trying to check what kind of genres there are in the tracks, but it was difficult since there are too many specific genres per track. Also, the result could have been biased since genres are focused on popular genres such as pop genre.

While doing my project, I realized that the distribution of data should be even, but my dataset was distorted in terms of genre. I made the genres as categorical variables, so it was hard to find results and make visualization results. For future analysis, I want to analyze specific genre like pop or edm or soundtrack and find something interesting within them.

#### References

https://developer.spotify.com/documentation/web-api/reference/#/

Attached Files

Pipeline: 0902.aka

Google Colab ipynb file: Spotify\_dataset.ipynb

Input Dataset: new with genre final.csv, final audio feature.csv