

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Компьютерный практикум по учебному курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ»

ЗАДАНИЕ № 2.

Численные методы решения дифференциальных уравнений

ОТЧЕТ

о выполненном задании

студента 205 учебной группы факультета ВМК МГУ Фазылова Рамазана Рамилевича

гор. Москва

Содержание

Решение задачи Коши для систем ОДУ первого порядка	2
Постановка задачи	2
Цели и задачи практической работы	2
Описание алгоритмов решения	3
Метод Рунге-Кутты 2го порядка	3
Метод Рунге-Кутты 4го порядка	4
Описание программы	5
Вспомогательные функции	5
Реализация метода Рунге-Кутты 2го порядка	6
Реализация метода Рунге-Кутты 4го порядка	7
Тестирование программы	8
Решение краевой задачи для ОДУ 2го порядка	12
Постановка задачи	12
Цели и задачи практической работы	
Описание алгоритмов решения	13
Описание программы	14
Тестирование программы	16

Решение задачи Коши для систем ОДУ первого порядка

Постановка задачи

Рассматривается обыкновенное дифференциальное уравнение первого порядка, разрешенное относительно производной и имеющее вид:

$$\frac{dy}{dx} = f(x, y), \ x > x_0,$$

с дополнительным начальным условием, заданным в точке $x = x_0$:

$$y(x_0) = y_0$$

Преполагается, что функция f=f(x,y) такова, что гарантирует существование и единственность решения задачи Коши.

Для системы ОДУ первого порядка, разрешенных относительно производных неизвестных функций, соотвествующая задача Коши имеет следующий вид:

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2), \\ \frac{dy_2}{dx} = f(x, y_1, y_2), \\ y_1(x_0) = y_1^{(0)}, \\ y_2(x_0) = y_2^{(0)}, \\ x > x_0. \end{cases}$$

Также предполагается, что функции f_1 , f_2 заданы так, что гарантируется существование и единственность решения задачи Коши для данной системы ОДУ.

Цели и задачи практической работы

- 1. Решить задачу Коши методом Рунге-Кутта второго и четвертого порядка точности, аппроксимировав дифференциальную задачу соответствующей разностной схемой на равномерной сетке. Полученное конечно-разностное уравнение (или уравнения) просчитать численно
- 2. Найти численное решение задачи и построить его график
- 3. Найденное численное решение сравнить с точным решением дифференциального уравнения

Описание алгоритмов решения

Метод Рунге-Кутты 2го порядка

Для того, чтобы получить значения функции решения задачи Коши на отрезке [a,b], разобьем его на n равномерных отрезков. Таким образом, получим следующее разбиение:

$$h = \frac{b-a}{n}$$
$$x_i = a + h * i$$
$$y_i = y(x_i)$$

Воспользуемся следующим рекуррентым соотношением для ОДУ 1го порядка:

$$y_{i+1} = y_i + rac{f(x_i, y_i) + f(x_{i+1}, \widetilde{y}_{i+1})}{2}h,$$
 где $\widetilde{y}_{i+1} = y_i + f(x_i, y_i)h$

Для системы ОДУ 1го порядка:

$$y_{1,i+1} = y_{1i} + \frac{f_1(x_i, y_{1i}, y_{2i}) + f_1(x_{i+1}, y_{1i} + f_1(x_i, y_{1i}, y_{2i})h, y_{2i} + f_2(x_i, y_{1i}, y_{2i})h)}{2}h,$$

$$y_{2,i+1} = y_{2i} + \frac{f_2(x_i, y_{1i}, y_{2i}) + f_2(x_{i+1}, y_{1i} + f_1(x_i, y_{1i}, y_{2i})h, y_{2i} + f_2(x_i, y_{1i}, y_{2i})h)}{2}h$$

Метод Рунге-Кутты 4го порядка

В методе Рунге-Кутты 4го порядка точности соотношение для ОДУ 1го порядка будет следующим:

$$y_{i+1}=y_i+rac{h(k_1+2k_2+2k_3+k_4)}{6}$$
, где $k_1=f(x_i,y_i)$ $k_2=f(x_i+rac{h}{2},y_i+rac{h}{2}k_1)$ $k_3=f(x_i+rac{h}{2},y_i+rac{h}{2}k_2)$ $k_4=f(x_i+h,y_i+hk_3)$

Для системы ОДУ 1го порядка будут справедливы следующие соотношения:

$$\begin{cases} k_{j1} = f_j(x_i, y_{1,i}, y_{2,i}) \\ k_{j2} = f_j(x_i + \frac{h}{2}, y_{1,i} + \frac{h}{2}k_{11}, y_{2,i} + \frac{h}{2}k_{21}) \\ k_{j3} = f_j(x_i + \frac{h}{2}, y_{1,i} + \frac{h}{2}k_{12}, y_{2,i} + \frac{h}{2}k_{22}) \qquad j = 1, 2 \\ k_{j4} = f_j(x_i + h, y_{1,i} + hk_{13}, y_{2,i} + hk_{23}) \\ y_{j,i+1} = y_{j,i} + \frac{k_{j,1} + 2k_{j,2} + 2k_{j,3} + k_{j,4}}{6} h \end{cases}$$

Описание программы

Вспомогательные функции

```
# некоторые элементарные функции
   from math import exp, sqrt, tan, atan, cos, sin, log
   # библиотека для вывода графиков функции
   import matplotlib.pyplot as plt
   # разбить [start, stop) на п точек
   def arange(start, stop, n):
       step = (stop - start) / n
       return [round(x*step, 10) for x in range(int(start/step), int(stop/step))]
10
    # нарисовать график функции
11
   def draw(X, Y, marker='', cl=None, lw=1):
12
       plt.plot(X, Y, marker, color=cl, linewidth = lw)
13
14
   # правая часть дифф. уравнения (таблица 1-3)
15
   def f(x, y):
       return -y-x**2
17
18
    # точное решение дифф. уравнения
19
   def ans1(x):
20
       return -x**2+2*x-2+12*exp(-x)
21
22
   # функции, опсиывающие систему ОДУ 1го порядка(таблица 2-12)
23
   def f1(x, u, v):
24
       return -2*x*u**2+v**2-x-1
25
26
   def f2(x, u, v):
       return 1/(v**2)-u-x/u
28
```

Реализация метода Рунге-Кутты 2го порядка

```
# метод Рунге-Кутты 2го порядка для обыкновенного дифф. уравнения
   def runge_2(f, a, b, y0, n):
       h = (b - a)/n # диаметр разбиения
       x = a \# x0
       у = у0 # начальное условие
       X = [x] \# \textit{вектор } x, сетка
       Y = [y] # вектор y, сеточная функция
        # рекуррентное вычисление функции
       for i in range(0, n):
            x = a + h*i
10
            y = y + h/2*(f(x,y)+f(x+h, y+f(x,y)*h))
11
            X.append(x+h)
12
            Y.append(y)
13
        return X, Y
14
15
    # метод Рунге-Кутты 2го порядка для системы ОДУ
   def runge_2s(f1, f2, a, b, y01, y02, n):
       h = (b - a)/n # диаметр разбиения
18
        x = a \# x0
19
       у1 = у01 # начальные условия
20
       у2 = у02 # начальные условия
21
       Y1 = [y1] # сеточная функция y1
22
       Y2 = [y2] # сеточная функция y2
23
       X = [x] \# cem \kappa a
24
        # реализация рекуррентного соотношения
25
        for i in range(0, n):
26
            x = a + h*i
27
            y1_n = y1 + h/2*(f1(x, y1, y2)+f1(x+h, y1+f1(x,y1,y2)*h, y2+f2(x,y1,y2)*h))
28
            y2_n = y2 + h/2*(f2(x, y1, y2)+f2(x+h, y1+f1(x,y1,y2)*h, y2+f2(x,y1,y2)*h))
29
            y1 = y1_n
30
            y2 = y2_n
31
            X.append(x+h)
32
            Y1.append(y1)
33
            Y2.append(y2)
        return X, Y1, Y2
```

Реализация метода Рунге-Кутты 4го порядка

```
# метод Рунге-Кутты 4го порядка для обыкновенного дифф. уравнения
    def runge_4(f, a, b, y0, n):
        h = (b - a)/n \# \partial uamemp
        x = a
        у = у0 # начальное условие
        Y = [y] # сеточная функция
        X = [x] \# cem \kappa a
        # рекурентное вычисление функции
        for i in range(0, n):
            x = a + h*i
10
            k1 = f(x, y)
11
            k2 = f(x+h/2,y+h/2*k1)
12
            k3 = f(x+h/2,y+h/2*k2)
13
            k4 = f(x+h,y+h*k3)
14
            y = y + h/6*(k1+2*k2+2*k3+k4)
15
            X.append(x+h)
            Y.append(y)
        return X, Y
18
19
    # метод Рунге-Кутты 4го порядка для системы ОДУ
20
    def runge_4s(f1, f2, a, b, y01, y02, n):
21
        h = (b - a)/n # диаметр разбиения
22
        у1 = у01 # начальные условия
23
        y2 = y02
24
        Y1 = [y1] # сеточная функция y1
25
        Y2 = [y2] # сеточная функция y2
26
        X = [a] \# cem \kappa a
27
        for i in range(0, n-1):
28
            x = a + h*i
29
            k11 = f1(x, y1, y2)
30
            k12 = f2(x, y1, y2)
31
            k21 = f1(x+h/2, y1+h/2*k11, y2+h/2*k12)
32
            k22 = f2(x+h/2, y1+h/2*k11, y2+h/2*k12)
33
            k31 = f1(x+h/2, y1+h/2*k21, y2+h/2*k22)
            k32 = f2(x+h/2, y1+h/2*k21, y2+h/2*k22)
35
            k41 = f1(x+h, y1+h*k31, y2+h*k32)
36
            k42 = f2(x+h, y1+h*k31, y2+h*k32)
37
            y1 = y1 + h/6*(k11+2*k21+2*k31+k41)
38
            y2 = y2 + h/6*(k12+2*k22+2*k32+k42)
39
            X.append(x+h)
40
            Y1.append(y1)
41
            Y2.append(y2)
42
        return X, Y1, Y2
```

Тестирование программы

1. Таблица 1-3

$$\begin{cases} \frac{dy}{dx} = -y - x^2, \\ y(0) = 10 \end{cases}$$

Точное решение: $y = -x^2 + 2x - 2 + 12e^{-x}$

2. Таблица 2-1

$$\begin{cases} \frac{du}{dx} = \frac{u - v}{x}, & u(1) = 1\\ \frac{dv}{dx} = \frac{u + v}{x}, & v(1) = 1 \end{cases}$$

Точное решение: $\begin{cases} u = x(\cos(\log(x)) - \sin(\log(x))) \\ v = x(\cos(\log(x)) + \sin(\log(x))) \end{cases}$

Метод Рунге-Кутты 2 порядка, n = 200

Метод Рунге-Кутта 4 порядка, n=40

3. Таблица 2-10

$$\begin{cases} \frac{du}{dx} = v - \cos(x), & u(0) = 0 \\ \frac{dv}{dx} = u + \sin(x), & v(0) = 0 \end{cases}$$

 Точное решение:
$$\begin{cases} u = -\sin(x) \\ v = 0 \end{cases}$$

Метод Рунге-Кутты 2 порядка, n = 10000

Метод Рунге-Кутта 4 порядка, n = 80

4. Таблица 2-12

$$\begin{cases} \frac{du}{dx} = -2xy^2 - x - 1, & u(0) = 1\\ \frac{dv}{dx} = \frac{1}{v^2} - u - \frac{x}{u}, & v(0) = 1 \end{cases}$$

Решение краевой задачи для ОДУ 2го порядка

Постановка задачи

Рассматривается линейное дифференциальное уравнение второго порядка вида:

$$y'' + p(x) \cdot y' + q(x) \cdot y = -f(x), b < x < a$$

с дополнительными условиями в граничных точках:

$$\begin{cases} \sigma_1 y(a) + \gamma_1 y'(a) = \delta_1, \\ \sigma_2 y(b) + \gamma_2 y'(b) = \delta_2 \end{cases}$$

Цели и задачи практической работы

- 1. Решить кравевую задачу методом конечных разностей, аппроксимимровав её разностной схемой второго порядка точности на равнморной сетке. Полученную систему конечно-разностных уравнений решить методом прогонки
- 2. Найти разностное решение задачи и построить его график
- 3. Найденное разностное решение сравнить с точным решением дифференциального уравнения

Описание алгоритмов решения

Используя разностные приближения первой и второй производной

$$\begin{cases} y_i' = \frac{y_{i+1} - y_{i-1}}{2h}, \\ y_i'' = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} \end{cases}$$

заменим исходное дифференциальное уравнение его разностным аналогом, при этом сгруппируем коэффициенты при слагаемыех y_{i-1}, y_i, y_{i+1} . Получим следующую систему:

$$\begin{cases} y_0 \left(\sigma_1 - \frac{\gamma_1}{h} \right) + y_1 \frac{\gamma_1}{h} = \delta_1 \\ y_{i-1} \left(1 - \frac{p_i h}{2} \right) + y_i \left(-2 + q_i h^2 \right) + y_{i+1} \left(1 + \frac{p_i h}{2} \right) = f_i h^2 , \qquad i = \overline{1, n-1} \\ y_{n-1} \frac{\gamma_2}{h} + y_n \left(\sigma_2 + \frac{\gamma_2}{h} \right) = \delta_2 \end{cases}$$

Заметим, что данная система является трехдиагональной. Заменим коэффициенты матрицы следующим образом:

$$\begin{cases} C_0 y_0 + B_0 y_1 = F_0 \\ A_i y_{i-1} + B_i y_i + C_i y_{i+1} = F_i , & i = \overline{1, n-1} \\ A_n y_{n-1} + C_n y_n = F_n \end{cases}$$

Полученную систему решим методом прогонки. Сначала найдем прогоночные коэффициенты:

$$\begin{cases} \alpha_0 = \frac{-B_0}{C_0} \\ \beta_0 = \frac{F_0}{C_0} \\ \alpha_i = \frac{-B_i}{A_i \alpha_{i-1} + C_i} \end{cases} \qquad i = \overline{1, n-1}$$

$$\beta_i = \frac{F_i - A_i \beta_{i-1}}{A_i \alpha_{i-1} + C_i}$$

Затем вычислим корни уравнения, используя следующее рекуррентное соотношение:

$$\begin{cases} y_n = \frac{F_n - A_n \beta_{n-1}}{A_n \alpha_{n-1} + C_n} \\ y_i = \alpha_i y_{i+1} + \beta_i, \quad i = \overline{0, n-1} \end{cases}$$

Описание программы

```
# функция формирует и решает трехдиагональную систему краевой задачи
    def boundary(p, q, f, sigma, gamma, delta, n, a = 1, b = 1.3):
        h = (b-a)/n
        def A_func(x):
            return 1 - p(x)*h/2
        def C_func(x):
            return -2 + q(x)*(h**2)
        def B_func(x):
            return 1 + p(x)*h/2
        def F_func(x):
10
            return f(x)*(h**2)
11
        # формирование коэффициентов трехдиагональной матрицы
12
        A = [A_func(a+i*h) \text{ for i in range(0, n+1)}]
13
        B = [B_func(a+i*h) \text{ for } i \text{ in } range(0, n+1)]
14
        C = [C_func(a+i*h) \text{ for } i \text{ in } range(0, n+1)]
15
        F = [F_func(a+i*h) \text{ for } i \text{ in } range(0, n+1)]
        # задание краевых условий
        F[0] = delta[0]
18
        F[n] = delta[1]
19
        C[0] = sigma[0]-gamma[0]/h
20
        B[0] = gamma[0]/h
21
        A[n] = -gamma[1]/h
22
        C[n] = sigma[1] + gamma[1]/h
23
        # инициализация прогоночных коэффициентов
24
        alpha = [0]*n
25
        beta = [0]*n
26
        alpha[0] = -B[0]/C[0]
27
        beta[0] = F[0]/C[0]
28
29
        # рекуррентное вычисление всех прогоночных коэффициентов
30
        for i in range(1, n):
31
             alpha[i] = -B[i]/(A[i]*alpha[i-1]+C[i])
32
             beta[i] = (F[i]-A[i]*beta[i-1])/(C[i]+A[i]*alpha[i-1])
33
        # инициализация вектора неизвестных
        y = [0]*(n+1)
36
        y[n] = (F[n]-A[n]*beta[n-1])/(C[n]+A[n]*alpha[n-1])
37
38
        # рекуррентное вычисление неизвестных
39
        for i in reversed(range(0, n)):
40
            y[i] = alpha[i]*y[i+1]+beta[i]
41
42
        return y
```

Функции, описывающие дифференциальное уравнение варианта 9

$$y'' - \frac{y'}{2} + 3y = 2x^2$$

И его точное решение для заданных начальных условий, полученное с помощью Wolfram Alpha:

$$C_1e^{\dfrac{x}{4}}\sin\dfrac{\sqrt{47}x}{4}+C_2e^{\dfrac{x}{4}}\cos\dfrac{\sqrt{47}x}{4}+\dfrac{2x^2}{3}+\dfrac{2x}{9}+\dfrac{11}{27},$$
 где
$$C_1=0.469645$$

$$C_2=0.618165$$

```
# точное решение данного дифференциального решения
   def ans(x):
       c_1 = 0.469645
       c_2 = 0.618165
       y = c_1*exp(x/4)*sin((sqrt(47)*x)/4) +
            c_2*exp(x/4)*cos((sqrt(47)*x)/4) +
            (2*(x**2))/3 + (2*x)/9 - 11/27
       return y
   # функции, описывающие данное дифференциальное уравнение
   def p(x):
       return -1/2
12
   def q(x):
       return 3
14
   def f(x):
15
       return 2*(x**2)
16
```

Тестирование программы

1. Вариант 9

2. Вариант 13

$$\begin{cases} y'' + \frac{2y'}{x} - 3y = 2 \\ y'(0.8) = 1.5 \\ 2y(1.1) - y'(1.1) = 3 \end{cases}$$
 Точное решение:
$$y = \frac{-0.0426075 \exp(-\sqrt{3}x)}{x} + \frac{0.606253 \exp(\sqrt{3}x)}{x} - 0.666667$$
 Краевая задача, $n = 50$
3.0

— у точное
— у численное

2.9

2.8

2.7

3.0

Краевая задача, $n = 75$

3.0

У точное
— у численное

2.9

2.8

2.7

2.6

2.5

2.4

0.95

1.00

1.05

1.10

0.90

0.80

0.85

3. Дифференциальное уравнение:

$$\begin{cases} y'' + y' = 1\\ y'(0) = 0\\ y(1) = 1 \end{cases}$$

Точное решение: $y = x + e^{-x} - \frac{1}{e}$

Краевая задача, n = 20

Краевая задача, n = 100

