Písomná skúška predmetu "Algebra a diskrétna matematika" konaná dňa 5. 6. 2007

1. príklad. Aký záver vyplýva z množiny výrokov:

"Ja som chytrý alebo mám šťastie", "nemám šťastie", "ak mám šťastie, potom zvíťazím v lotérii"?

2. príklad. Zostrojte potenčné množiny $\mathcal{P}(A)$ a $\mathcal{P}(\mathcal{P}(A))$ pre $A = \{a\}$.

3. príklad.

Zistite, či relácia R je reflexívna, symetrická, antisymetrická, alebo tranzitívna, pričom $(x, y) \in R$ vtedy a len vtedy, ak

- (a) $x \le y$,
- (b) x má rovnaké krstné meno ako y, km(x) = km(y),
- (c) x je deliteľné 2 a y je deliteľné 2 a 4.

4. príklad. Zostrojte množinu usporiadaných dvojíc pre reláciu $R = \{(x, y); x \text{ je deliteľné } y\}$ pre $X = \{1, 2, 3, 4, 5, 6\}$, znázornite túto reláciu pomocou orientovaného grafu a zostrojte jej reprezentáciu pomocou binárnej matice.

5. príklad.

Koľko existuje permutácií nad reťazcom ABCDEFG, ktoré obsahujú dva podreťazce BA a GF.

6. príklad.

Nech na turnaji je 2^k družstiev, turnaj prebieha eliminačným spôsobom, t. j. do ďalšieho kola postupujú len víťazi z predchádzajúceho kola. Zostrojte funkciu pre počet vzájomných zápasov v turnaji.

7. príklad. Pomocou Quinovej a McCluskeyho metódy nájdite optimálne výrazy k Boolovým funkciám

$$wxyz + wxy\overline{z} + wx\overline{y}z + w\overline{x}\overline{y}z + w\overline{x}\overline{y}\overline{z} + w\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z}$$
.

8. príklad. Riešte pomocou Gaussovej eliminačnej metódy lineárnu sústavu rovníc

$$2x_{1} -x_{2} +5x_{3} +3x_{4} = 5$$

$$x_{1} +x_{2} +4x_{3} +3x_{4} = 7$$

$$x_{1} +3x_{3} +2x_{4} = 4$$

$$x_{2} +x_{3} +x_{4} = 3$$

9. príklad. Vypočítajte determinant matice pomocou jej transformácie na trojuholníkový tvar

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 & -1 \\ 4 & 2 & 5 & -1 \\ 3 & 1/2 & -1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

10. príklad. Vyriešte problém obchodného cestujúceho pre graf

pomocou úplného stromu riešení tak, aby celkový súčet váh bol pre uzavretú cestu (hamiltonovskú kružnicu) minimálny.

11. príklad. Koľko rozdielnych možných interpretácií má každý z nasledujúcich výrazov, keď predpokladáme asociatívnosť operácie \otimes a keď ju nepredpokladáme?

- (a) $x \otimes y \otimes z$
- (b) $t \oplus x \otimes y \otimes z$
- (c) $t \otimes x \oplus y \otimes z$

Poznámka: Každý príklad je hodnotený 5 bodmi, maximálny počet bodov je 55. Nezabudnite na písomku napísať meno a priezvisko, číslo krúžku a ročník. Čas na písomku je 90 min.

Riešenie

1. príklad. Aký záver vyplýva z množiny výrokov?

"Ja som chytrý alebo mám šťastie", "nemám šťastie", "ak mám šťastie, potom zvíťazím v lotérii".

 $p = \text{som chytr} \acute{y}$

q = mám šťastie

r = zvíťazím v lotérii

$\begin{vmatrix} p \lor q \\ \neg q \end{vmatrix}$	predpoklad ₁ predpoklad ₂
$q \Rightarrow r$	predpoklad ₃
p	dôsledok disjunkt. sylogizmu aplik. na predpoklad ₁ a predpoklad ₂

záver: som chytrý

2. príklad. Zostrojte potenčné množiny $\mathcal{P}(A)$ a $\mathcal{P}(\mathcal{P}(A))$ pre $A = \{a\}$.

$$\mathcal{P}(A) = \{\emptyset, \{a\}\},\$$

$$\mathcal{P}(\mathcal{P}(A)) = \{\emptyset, \{\emptyset\}, \{\{a\}\}, \{\emptyset, \{a\}\}\}\}$$

3. príklad.

Zistite, či relácia R je reflexívna, symetrická, antisymetrická, alebo tranzitívna, pričom $(x, y) \in R$ vtedy a len vtedy, ak

- (a) $x \le y$,
- (b) x má rovnaké krstné meno ako y, km(x) = km(y),
- (c) x je deliteľné 2 a y je deliteľné 2 a 4.

(a) je reflexívna,
$$x \le x$$
, nio is symptrické na

nie je symetrická, neplatí implikácia $x \le y \Rightarrow y \le x$,

je antisymetrická, platí implikácia $(x \le y) \land (y \le x) \Rightarrow x = y$,

je tranzitívna, platí implikácia $(x \le y) \land (y \le z) \Rightarrow (x \le z)$.

(b)

je to relácia ekvivalencie (čiže je reflexívna, je symetrická, nie je antisymetrická, a je tranzitívna)

je reflexívna, platí km(x) = km(x),

je symetrická, platí implikácia $(km(x) = km(y)) \Rightarrow (km(y) = km(x))$,

nie je antisymetrická (môžu byť rôzni ľudia x a y s rovnakým krstným menom $\neg ((km(x) = km(y)) \land (km(y) = km(x)) \Rightarrow x = y)$

je tranzitívna, platí implikácia $(km(x) = km(y)) \land (km(y) = km(z)) \Rightarrow (km(x) = km(z))$.

(c) nie je reflexívna, nie každé číslo *x* je súčasne deliteľné 2 a 4,

nie je symetrická, nie každá dvojica x a y je taká, že keď x je deliteľné 2 a y je deliteľné 2 a 4 potom y je deliteľné 2 a x je deliteľné 2 a 4, kontrapríkladom je napr. x=2 a y=4

nie je antisymetrická, existujú také dvojice x a y, že x je deliteľné 2 a y je deliteľné 4 a súčasne y je deliteľné 2 a x je deliteľné 4 a pritom x≠y (napríklad 4 a 8),

je tranzitívna, ak máme dve dvojice x,y a y,z, ktoré vyhovujú podmienkam relácie, potom tieto podmienky musia platiť aj pre dvojicu x,z.

4. príklad. Zostrojte množinu usporiadaných dvojíc pre reláciu $R = \{(x, y); x \text{ je deliteľné } y\}$ pre $X = \{1, 2, 3, 4, 5, 6\}$, znázornite túto reláciu pomocou orientovaného grafu a zostrojte je reprezentáciu pomocou binárnej matice.

$$R = \{(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,4),(5,1),(5,5),(6,1),(6,2),(6,3),(6,6)\}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

5. príklad

Cvičenie 4.15. Koľko existuje permutácií nad reťazcom ABCDEFG, ktoré obsahujú dva podreťazce BA a GF,

Celkový počet reťazcov je $2\times24+4\times18=120$.

6. príklad.

Nech na turnaji je 2^k družstiev, turnaj prebieha eliminačným spôsobom, t. j. do ďalšieho kola postupujú len víťazi z predchádzajúceho kola. Zostrojte funkciu pre počet vzájomných zápasov v turnaji.

- kolo: pre 2^k družstiev existuje 2^{k-1} zápasov.
 kolo: pre 2^{k-1} družstiev existuje 2^{k-2} zápasov.

(k-1). kolo: pre 2^1 družstiev existuje 2 zápasy (semifinále).

k. kolo: pre 2⁰ existuje 1 zápas (finále)

Celkový počet zápasov je teda
$$2^{k-1} + 2^{k-2} + ... + 2 + 1 = \frac{2^k - 1}{2 - 1} = \boxed{2^k - 1}$$

7. príklad. Pomocou Quinovej a McCluskeyho metódy nájdite optimálne výrazy k Boolovým funkciám

$$wxyz + wxy\overline{z} + wx\overline{y}z + w\overline{x}\overline{y}z + w\overline{x}\overline{y}\overline{z} + \overline{w}x\overline{y}z + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}y\overline{z}$$
.

0. etapa		1. etapa				2. etapa		
1	(1111)	1	(1,2)	(111#)		1	(3,7)	(##01)
2	(1110)	2	(1,3)	(11#1)		2	(4,6)	(##01)
3	(1101)	3	(3,4)	(1#01)				
4	(1001)	4	(3,6)	(#101)				
5	(1000)	5	(4,5)	(100#)				
6	(0101)	6	(4,8)	(#001)				
7	(0010)	7	(6,8)	(0#01)				
8	(0001)							

$$\tilde{V} = \left\{ (111\#), (\#\#01), (100\#), (0010) \right\}$$

$$f(w, x, y, z) = wxy + \overline{y}z + w\overline{x} \overline{y} + \overline{w} \overline{x} y\overline{z}$$

8. príklad. Riešte pomocou Gaussovej eliminačnej metódy lineárnu sústavu rovníc

$$2x_{1} -x_{2} +5x_{3} +3x_{4} = 5$$

$$x_{1} +x_{2} +4x_{3} +3x_{4} = 7$$

$$x_{1} +3x_{3} +2x_{4} = 4$$

$$x_{2} +x_{3} +x_{4} = 3$$

$$A' = \begin{pmatrix} 2 & -1 & 5 & 3 & 5 \\ 1 & 1 & 4 & 3 & 7 \\ 1 & 0 & 3 & 2 & 4 \\ 0 & 1 & 1 & 1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 3 & 2 & 4 \\ 1 & 1 & 4 & 3 & 7 \\ 2 & -1 & 5 & 3 & 5 \\ 0 & 1 & 1 & 1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 3 & 2 & 4 \\ 0 & 1 & 1 & 1 & 3 \\ 0 & -1 & 1 & -1 & 3 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 3 & 2 & 4 \\ 0 & 1 & 1 & 1 & 3 \end{pmatrix}$$

$$x_4 = l$$
, $x_3 = k$, $x_2 = 3 - k - l$, $x_1 = 4 - 3k - 2l$, kde $k, l \in \mathbb{R}$,

$$x = \begin{pmatrix} 4 - 3k - 2l \\ 3 - k - l \\ k \\ l \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 0 \\ 0 \end{pmatrix} + k \begin{pmatrix} -3 \\ -1 \\ 1 \\ 0 \end{pmatrix} + l \begin{pmatrix} -2 \\ -1 \\ 0 \\ 1 \end{pmatrix},$$

9. príklad. Vypočítajte determinant matice pomocou jej transformácie na trojuholníkový tvar

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 & -1 \\ 4 & 2 & 5 & -1 \\ 3 & 1/2 & -1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$|\mathbf{A}| = \begin{vmatrix} 2 & 1 & 0 & -1 \\ 4 & 2 & 5 & -1 \\ 3 & 1/2 & -1 & 2 \\ 0 & 0 & 1 & 1 \end{vmatrix} = - \begin{vmatrix} -1 & 1 & 0 & 2 \\ -1 & 2 & 5 & 4 \\ 2 & 1/2 & -1 & 3 \\ 1 & 0 & 1 & 0 \end{vmatrix} = \begin{vmatrix} -1 & 2 & 0 & 1 \\ -1 & 4 & 5 & 2 \\ 2 & 3 & -1 & 1/2 \\ 1 & 0 & 1 & 0 \end{vmatrix} = \begin{vmatrix} -1 & 2 & 0 & 1 \\ 0 & 2 & 5 & 1 \\ 0 & 7 & -1 & 5/2 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \frac{7}{2} \begin{vmatrix} -1 & 2 & 0 & 1 \\ 0 & 2 & 5 & 1 \\ 0 & -2 & 2/7 & -5/7 \\ 0 & -2 & -1 & -1 \end{vmatrix} = \frac{7}{2} \begin{vmatrix} -1 & 2 & 0 & 1 \\ 0 & 2 & 5 & 1 \\ 0 & 0 & 37/7 & 2/7 \\ 0 & 0 & 4 & 0 \end{vmatrix} = -\frac{7}{2} \begin{vmatrix} -1 & 2 & 1 & 0 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2/7 & 37/7 \\ 0 & 0 & 0 & 4 \end{vmatrix}$$

$$= -\frac{7}{2}(-1)2\frac{2}{7}4 = 8$$

10. príklad. Vyriešte problém obchodného cestujúceho pre graf

pomocou úplného stromu riešení tak, aby celkový súčet váh bol pre uzavretú cestu (hamiltonovskú kružnicu) minimálny.

Minimálna hamiltonovská kružnica je a-d-b-c-a (prípadne reprezentovaná v opačnej orientácii) s dĺžkou 17.

11. príklad. Koľko rozdielnych možných interpretácií má každý z nasledujúcich výrazov, keď predpokladáme asociatívnosť operácie \otimes a keď ju nepredpokladáme?

- (a) $x \otimes y \otimes z$
- (b) $t \oplus x \otimes y \otimes z$
- (c) $t \otimes x \oplus y \otimes z$

Riešenie:

Keď predpokladáme asociatívnosť operácie ⊗

- (a) 1 interpretácia, $x \otimes y \otimes z$
- (b) 3 interpretácie, $(t \oplus x) \otimes y \otimes z$, $t \oplus (x \otimes y \otimes z)$, $(t \oplus (x \otimes y)) \otimes z$
- (c) 4 interpretácie, $(t \otimes x) \oplus (y \otimes z)$, $((t \otimes x) \oplus y) \otimes z$, $(t \otimes (x \oplus y)) \otimes z$, $t \otimes (x \oplus (y \otimes z))$

Keď nepredpokladáme asociatívnosť operácie ⊗

- (a) 2 interpretácie, $(x \otimes y) \otimes z$, $x \otimes (y \otimes z)$
- (b) 5 interpretácií, $(t \oplus x) \otimes (y \otimes z)$, $t \oplus ((x \otimes y) \otimes z)$, $t \oplus (x \otimes (y \otimes z))$, $(t \oplus (x \otimes y)) \otimes z$, $((t \oplus x) \otimes y) \otimes z$
- (c) 5 interpretácií, $(t \otimes x) \oplus (y \otimes z)$, $((t \otimes x) \oplus y) \otimes z$, $(t \otimes (x \oplus y)) \otimes z$, $(t \otimes (x$