

# 物联网通信技术

主讲人: 宁 磊

Email: ninglei@sztu.edu.cn





第1章.物联网通信概述 第2章.基带传输技术 第3章.频带传输技术 第4章.链路传输技术 第5章.网络传输技术 第6章.应用传输技术 第7-8章. 无线通信系统

2025/5/5 大数据与互联网学院 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2025/5/2 2000/5/2 20



- 本章主要内容: ZigBee、蓝牙、Wi-Fi 和LoRa 通信系统的基本原 理、协议架构和系统特点。
- 本章学习目标
  - □了解ZigBee、蓝牙、Wi-Fi 和LoRa 通信系统的主要特点;
  - □熟悉上述系统的协议架构:
  - □掌握上述系统的基本原理与使用方法。

大数据与互联网学院 2025/5/5





# 物联网无线传输系统

- ZigBee
- 蓝牙
- Wi-Fi
- LoRa



● ZigBee基于IEEE 802.15.4标准,由ZigBee联盟制定,具有自组网、低速率、低功耗的特点,尤其适合小型设备、节点之间组网的需要



ZigBee网络体系结构简图

2025/5/5 大数据与互联网学院 5



- IEEE 802.15.4协议标准
  - 主要规范了用于低速率无线PAN的物理层和MAC层的协议
  - 支持消耗功率最少并且通信范围在百米量级工作的简单设备
  - 支持两种网络拓扑,即单跳星型网络和超过通信范围的多跳对等拓扑网络



- ZigBee网络架构
  - □ 星形拓扑
    - 星形拓扑是最简单的一种拓扑形式,他包含一个Co-ordinator(协调者) 节点和一系列的 End Device(终端)节点。每一个End Device 节点只能和 Co-ordinator 节点进行通讯。如果需要在两个 End Device 节点之间进行通讯必须通过Co-ordinator 节点进行信息的转发。





- ZigBee网络架构
  - □ 树形拓扑
    - 树形拓扑包括一个Co-ordinator(协调者)以及一系列的 Router(路由器)和 End Device(终端)节点。Co-ordinator连接一系列的 Router和 End Device,他的子节点的 Router也可以连接一系列的 Router和 End Device.这样可以重复多个层级。路由节点之间不可直接通讯。





- ZigBee网络架构
  - □ Mesh拓扑(网状拓扑)
    - 包含一个Co-ordinator和一系列的Router 和End Device。这种网络拓扑形式和树形拓扑相同;请参考上面所提到的树形网络拓扑。但是,网状网络拓扑具有更加灵活的信息路由规则,在可能的情况下,路由节点之间可以直接的通讯。





- ZigBee物理层协议规范
  - ZigBee物理层概述
    - ZigBee工作频率的范围
      - ZigBee所使用的频率范围主要分为868/915MHz和2.4GHz ISM频段

#### 国家和地区ZigBee频率工作范围

| 工作频率范围/MHz  | 频段范围 | 国家和地区 |
|-------------|------|-------|
| 868~868.6   | ISM  | 欧洲    |
| 902~928     | ISM  | 北美    |
| 2400~2483.5 | ISM  | 全球    |



- ZigBee物理层协议规范
  - □ ZigBee物理层概述
    - 信道分配
      - 定义了27个物理信道,信道编号从0到26,在不同的频段其带宽不同
        - 2450MHz频段定义了16个信道,每个信道2MHz带宽; 915MHz频段 定义了10个信道,868MHz频段定义了1个信道
        - 信道k的中心频率为  $f_k$  MHz,满足

$$f_k = \begin{cases} 868.3 & k = 0 \\ 906 + 2(k-1) & k = 1,2,...,10 \\ 2405 + 5(k-11) & k = 11,12,...,26 \end{cases}$$



- ZigBee物理层协议规范
  - ZigBee物理层概述
    - 信道分配
      - 频率和信道分布状况其频率和信道分布如下图所示





- ZigBee物理层协议规范
  - ZigBee物理层概述
    - ZigBee工作频率的范围
      - IEEE 802.15.4规范标准对于不同的频率范围,规定了不同的调制方式,因而 在不同的频率段上,其数据传输速率不同

#### 频段和数据传输率

|             | 扩展参数          |        | 数据参数             |             |
|-------------|---------------|--------|------------------|-------------|
| 频段(MHz)     | 码片速率(kchip/s) | 调制     | 比特速率<br>(kbit/s) | 符号速率(kBaud) |
| 868-868.6   | 300           | BPSK   | 20               | 20          |
| 902-928     | 600           | BPSK   | 40               | 40          |
| 2400-2483.5 | 2000          | O-QPSK | 250              | 62.5        |



- ZigBee物理层协议规范
  - ZigBee物理层概述
    - 发射功率
      - ZigBee的常规发射功率范围为0~+10dBm,通信范围通常为10m,可扩大到约300m
    - 接收灵敏度
      - 在给定接收误码率的条件下,接收设备的最低接收门限值,通常用dBm表示
      - 测量条件:在无干扰条件下,传送长度为20个字节的物理层数据包
      - 误码率小于1%的条件下,在接收天线端所测量的接收功率为ZigBee的接收灵敏度,通常要求为-85dBm



- ZigBee媒体访问控制层规范
  - □ IEE802.15.4定义的MAC层协议提供数据传输服务和MAC层管理服务
    - MAC公共部件子层(MAC Common Part Sublayer, MCPS)保证MPDU在物理 层数据服务中的正确收发,负责MAC帧的传输
    - MAC子层管理实体(MAC sub-Layer Management Entity, MLME)负责从事MAC层的管理工作,并维护一个数据信息库。主要管理信道的访问,PAN的开始和维护,PAN节点的加人和退出,设备间的同步以及传输事务等



- ZigBee媒体访问控制层规范
  - □ MAC层的主要功能
    - 支持PAN的构建与解体,即承担PAN的关联和取消关联操作
    - 为协调器生成并发送信标帧
    - 设备与信标同步
    - 支持信道接入采用CSMA/CA机制
    - 支持时隙保护机制
    - 在两个对等的MAC实体之间提供个<mark>可靠</mark>的通信链路
    - 支持设备的安全机制



- ZigBee媒体访问控制层规范
  - □ IEEE 802.15.4的网络通信模式
    - 有信标网络模式,即信标使能通信
      - 在有信标网络中,采用超时帧的结构,规定将包括信标帧的超时帧分为16个时隙(0~15),协调器定期发送信标帧,信标帧除了作为同步之外,也传送网络的相关信息
    - 无信标网络模式,即信标不使能通信
      - 在无信标网络中,协调器不发送信标,一直处于"听"的状态,设备发送信息 采用CSMA/CA竞争信道



- ZigBee媒体访问控制层规范
  - □ IEEE 802.15.4的网络通信模式
    - 超时帧结构(有信标方式)
      - 超时帧将通信时间分为"活跃"时段和"不活跃"时段两部分
      - 活跃时段分成16个相等的时隙,所有设备只能在特定的时隙中进行数据收发
      - ① 信标发送时段(占用第一个时隙)
      - ② 竞争访问时段
      - ③ 非竞争访问时段





- ZigBee媒体访问控制层规范
  - MAC层帧结构

在说明帧结构时全部用表格的形式列出,表格中的各列为帧的某一部分的组成部分。第一行为该部分的长度,以字节或位为单位用斜线隔开的2个数字,表示在不同情况下其长度的可能取值;第二行为各组成部分的名称

- MAC层帧结构概述
  - 一个完整的 MAC层由帧头(MAC HeadeR, MHR)、帧载荷(MAC Payload)和帧尾(MAC FooteR, MFR)3部分组成

| 2字节   | <b>1</b> 字节 | 0/2字节 | 0/2/8字节 | 0/2字节 | 0/2/8字节 | 可变  | 2字节 |
|-------|-------------|-------|---------|-------|---------|-----|-----|
| 帧控制域  | 帧序列号        | 目的网标识 | 目的地址    | 源网标识  | 源地址     | 帧载荷 | FCS |
|       |             | 地址域   |         |       |         |     |     |
| MAC帧头 |             |       |         |       | MAC载荷   | 帧尾  |     |

MAC层帧结构



- ZigBee媒体访问控制层规范
  - MAC层帧结构
    - 数据传输的可靠性
      - 影响数据可靠性的因素:无线通信误码率和多个设备共享信道而产生的冲突
      - 网络采用CSMA/CA机制、帧确认机制和帧校验机制来保证数据传送的可靠性
      - ① CSMA-CA是带冲突避免的载波多路侦听访问技术,通过随机退避减少数据发送冲突
      - ② 协帧确认机制是一种可选项,发送"帧"的设备可以要求接收"帧"的设备,在成功接收数据后发送确认帧





# 物联网无线传输系统

- ZigBee
- 蓝牙
- Wi-Fi
- LoRa

大数据与互联网学院 21 2025/5/5





#### The global standard for simple, secure device communication and positioning





蓝牙协议采用分层结构,遵循开放系统互联(OSI,Open System Interconnection)参考模型



2025/5/5 大数据与互联网学院 23

#### 传统蓝牙和低功耗蓝牙的技术对比



| 技术规范     | 传统蓝牙        | 低功耗蓝牙                 |
|----------|-------------|-----------------------|
| 无线电频率    | 2.4GHz      | 2.4GHz                |
| 理论通信距离   | 10m/100m    | > 100m                |
| 空中数据率    | 1 ~ 3Mbps   | 1Mbps                 |
| 支持活跃从设备数 | 7           | 未定义(理论最大值为232)        |
| 延迟       | 100ms       | 6ms                   |
| 安全性      | 64/128-bit  | 128-bit AES           |
| 语音能力     | 有           | 无                     |
| 耗电量      | 1W<br>(参考值) | 0.01~0.5W<br>(依赖使用情况) |
| 峰值电流消耗   | < 30mA      | < 15mA                |

#### 不同蓝牙版本对比



| 蓝牙版本         | 发布时间 | 最大传输速度            | 传输距离 |
|--------------|------|-------------------|------|
| 蓝牙5.4        | 2023 | 支持带响应的周期性广播(PAwR) |      |
| 蓝牙5.3        | 2021 | 提高低功耗蓝牙的通讯效率      |      |
| 蓝牙5.2        | 2020 | 低功耗高品质音频传输        |      |
| 蓝牙5.1        | 2019 | 定位增强、降低功耗         |      |
| 蓝牙5.0        | 2016 | 48 Mbit/s         | 300米 |
| 蓝牙4.2        | 2014 | 24 Mbit/s         | 50米  |
| 蓝牙4.1        | 2013 | 24 Mbit/s         | 50米  |
| 蓝牙4.0(引入BLE) | 2010 | 24 Mbit/s         | 50米  |
| 蓝牙3.0        | 2009 | 24 Mbit/s         | 10米  |
| 蓝牙2.1        | 2007 | 3 Mbit/s          | 10米  |
| 蓝牙2.0        | 2004 | 2.1 Mbit/s        | 10米  |
| 蓝牙1.2        | 2003 | 1 Mbit/s          | 10米  |
| 蓝牙1.1        | 2002 | 810 Kbit/s        | 10米  |
| 蓝牙1.0        | 1998 | 723.1 Kbit/s      | 10米  |



























# 物联网无线传输系统

- ZigBee
- 蓝牙
- Wi-Fi
- LoRa

#### 重识Wi-Fi——基本概念





#### 名字含义

WiFi的原意是一种认证标志,

通过认证的设备保障能按照

802.11协议互相兼容,全球

的认证机构是WIFI联盟

(WFA), 其前身是无线以太网

兼容性联盟(WECA)。



Organization becomes
Wi-Fi Alliance®
and introduces
the term "Wi-Fi®"



2000

Wi-Fi delivers
DATA RATES
up to 11 Mbps







#### **Wi-Fi CERTIFIED™ Interoperability Certificate**

This certificate lists the features that have successfully completed Wi-Fi Alliance interoperability testing.

Learn more: www.wi-fi.org/certification/programs



#### Certification ID: WFA97787

Page 1 of 2

Date of Last Certification April 23, 2020

**Company** Huawei Device Co., Ltd.

**Product** Smart Phone

Model Number OXP-AN00

Product Identifier(s)

**Category** Phones

**Subcategory** Smartphone, multi-mode (Wi-Fi and other)

Hardware Version Product: HL2WLZPM/HL2OXFPLM, Wi-Fi Component: Hi1103 V100

**Firmware Version** Product: EMUI10.1.0, Wi-Fi Component: Hi1103 V100C03

**Operating System** Android, version: 10

Frequency Band(s) 2.4 GHz, 5 GHz

#### 重识Wi-Fi——应用领域





#### **Enterprise**



Sensor-based robot control

1. Human to enterprise

2. Robot to enterprise

Comms. use cases

3. Human to robot



Video-based remote operation

4. Robot to Robot



Cooperative tasks

2025/5/5 大数据与互联网学院 33

#### 重识Wi-Fi——网络架构与分层协议





- 以中心网络架构为主,支持节点间通信
- 基于互联网络分层协议设计, Unlicensed频谱
- 半双工时分系统
- 载波侦听多路访问/冲突避免(CSMA/CA) 多用户共享信道

#### 非接入侧

**Application** 

HTTP/FTP/SMTP etc.

DHCP/RTP/TFTP etc.

TCP

**UDP** 

IP

802.2 Logical Link Control (LLC)

802.11 Media Access Control (MAC)

Physical Layer (PHY) (802.11b DSSS/802.11g OFDM/802.11n MIMO etc.)

无线接入侧

#### 重识Wi-Fi——产业链





芯片厂商

模组厂商

设备代工厂

设备厂商

博通、高通、英特尔、联 发科、德州仪器、瑞昱半 导体、乐鑫科技、华为等 村田、环旭电子、TDK、 太阳诱电、三星机电等 共进股份、卓翼科技、智 邦科技、中磊电子、明泰 科技等 思科、华为、新华三、星 网锐捷、网件、华硕、 TP-LINK、UBNT、 LINKSYS等









"Wi-Fi" is added to the Merriam-Webster's Collegiate® Dictionary

Wi-Fi CERTIFIED n **OFFERS** dual-band operation and 150 Mbps





**BILLIONTH** 

Wi-Fi

device

ships

- 100家成员
- 10亿出货量
- "空中"互联网
- 速率突破百兆
- WPA2



www.20yearsofwifi.com















- 500家成员
- 热点部署增长5倍
- 累积出货增长2倍
- 支持P2P
- 支持漫游切换
- 速率突破千兆



www.20yearsofwifi.com









Wi-Fi Alliance introduces
Wi-Fi 6, Wi-Fi 5, and Wi-Fi 4
industry naming

WPA3™
continues Wi-Fi
SECURITY EVOLUTION

Wi-Fi CERTIFICATIONS REACH 45,000



- 累积出货300亿
- "精装"送Wi-Fi
- 引入毫米波通信
- 接近万兆速率
- 正式引入数字区分 版本
- WPA3



20 BILLION

nip S



Home builders integrate
MOVE-IN
READY WI-FI to new home construction



2019

BILLIONTH

Wi-Fi CERTIFIED 6<sup>™</sup> delivers next-generation connectivity

Wi-Fi

device

ships



www.20yearsofwifi.com





Wi-Fi 6 vs 5G





#### 关键技术与指标对比



| 网络类型            | Wi-Fi-1 | Wi-Fi-2 | Wi-Fi-3       | Wi-Fi 4   | Wi-Fi 5         | Wi-Fi 6   | 5G FR1               |
|-----------------|---------|---------|---------------|-----------|-----------------|-----------|----------------------|
| 标准组织            | IEEE    |         |               |           |                 |           |                      |
| 协议 <del>号</del> | 802.11b | 802.11a | 802.11g       | 802.11n   | 802.11ac        | 802.11ax  | TS38 NR              |
| 发布年份            | 1999    | 1999    | 2003          | 2009      | 2013/2016       | 2019      | 2019                 |
| 工作频段            | 2.4 GHz | 5 GHz   | 2.4 GHz       | 2.4/5 GHz | 5 GHz           | 2.4/5 GHz | Sub 6 GHz            |
| 最大频宽            | 20MHz   | 20MHz   | 20MHz         | 40MHz     | 80/160MHz       | 160MHz    | 100MHz*<br>16cc(max) |
| 最高调制            | CCK     | 64QAM   | QPSK          | 64QAM     | 256QAM          | 1024QAM   | 256QAM               |
| 单流带宽            | 11Mbps  | 54Mbps  | 54Mbps        | 150Mbps   | 433/866<br>Mbps | 1.2Gbps   | 10Gbps(总)            |
| 最大空间流           | 1×1     | 1×1     | 1×1           | 4×4       | 8×8             | 8×8       | Massive              |
| MU-MIMO         | N/A     | N/A     | N/A           | 不支持       | 不支持/<br>仅下行     | 上/下行      | 上/下行                 |
| 调制/多址           | DSSS    | OFDM    | DSSS/<br>OFDM | OFDM      | OFDM            | OFDMA     | OFDMA<br>动态SC间隔      |









#### 市场价值与建设成本







3月底中国移动5G SA集采23万站,371亿元中标份额排序:华为、中兴、爱立信、大唐

https://www.wi-fi.org/value-of-wi-fi

#### 下一代Wi-Fi





Relentless
pursuit to
connect
everyone
everything
everywhere

www.20yearsofwifi.com

| 网络类型     | WiGig    | WiGig2?   | Wi-Fi 7     | 5G FR2    | 6G                   |
|----------|----------|-----------|-------------|-----------|----------------------|
| 标准组织     |          | IEEE      | 3GPP        | 3GPP      |                      |
| 协议号      | 802.11ad | 802.11ay  | 802.11be    | TS38 NR   | ?                    |
| 发布年份     | 2016     | 2019      | 2024?       | 2019      | 2030?                |
| 工作频段     | 60 GHz   | 60 GHz    | 2.4/5/6 GHz | 24-52 GHz | 0.1-10THz            |
| 最大频宽     | 2GHz     | 8GHz      | 320MHz      | 400MHz    | 10GHz?               |
| 目标速率(多流) | 7~8Gbps  | 20~40Gbps | 46Gbps      | 20Gbps    | 0.1-1Tbps            |
| 最大空间流    | 1×1      | 4×4       | 16×16       | Massive   | Massive              |
| 其他       | 10米      | 100米      | 低时延         | N/A       | Al<br>无线携能<br>空天地一体化 |

https://www.qualcomm.com/solutions/networking/features/80211ad https://www.qualcomm.com/media/documents/files/5g-nr-mmwave-deployment-strategy-presentation.pdf





#### 物联网无线传输系统

- ZigBee
- 蓝牙
- Wi-Fi
- LoRa

2025/5/5 大数据与互联网学院 44

# LoRa技术特点一扩频跳频技术



• LoRa技术是一种扩频调制技术,这种调制技术是Semtech公司独有的IP。扩频技术是一种用带宽换取 灵敏度的技术,Wi-Fi、Zigbee等技术都使用了扩频技术,但是LoRa调制的特点是可以最大效率的提高 灵敏度,以至于接近香农定理的极限。尤其是在低速率通信系统中,打破了传统的FSK窄带系统的实施

极限



# LoRa技术特点一一远距离



• 现在已经有多家卫星公司把LoRa发射到了近地卫星上,一般近地卫星距离地面600-1600千米

LoRa的最高灵敏度可以到达-149.1dBm,而蓝牙、ZigBee等无线技术的灵敏度为-100dBm左右。
 LoRa灵敏度比他们好50dB,也就是说LoRa可以解调比蓝牙、ZigBee小10万倍的信号。LoRa的超高灵敏度来自于调制本身,不依赖于窄带(Sigfox使用超窄带技术)也不依赖于重传(NB-IoT技术使用

重传技术),也不依赖于编码冗余(ZigBee使用编码翼





## LoRa技术特点——抗干扰能力强



- LoRa具有低于噪声25dB依然可以通信的极限抗干扰技术,这是现有传统通信技术都不具备的
- LoRa针对更强的突发性的随机干扰也有非常好的应对能力。如果面对突发长度< ½ LoRa的符号长度或干扰占空比 <50%的强干扰源,LoRa依然可以稳定解调,且保证其灵敏度恶化<3dB



## LoRa技术特点——低功耗



LoRa具有信道活动检测(Channel Activity Detection, CAD) 功能,即 短时间监听附近是否有指定频率和扩频 因子的LoRa信号,且这个唤醒的信号 可以低于噪声,这样就不会像传统的 FSK经常被误唤醒。LoRa CAD整个过 程仅需要约2个码元(Symbol)时间, 其中约1个Symbol接收 (接收电流为 4.6mA), 1个Symbol的时间计算(电 流为接收模式的50%左右)。







# LoRa技术特点一一大容量



LoRaWAN的网络容量决定因素很多,主要跟以下几个参数相关:

- 节点的发包频次;
- 数据包的长度;
- 信号质量及节点的速率;
- 可用信道数量;
- 基站/网关的密度;
- 信令开销;
- 重传次数。
- LoRaWAN协议中具有根据终端节点状况进行调节的能力,
   叫做自适应速度选择 (Adaptive Data Rate, ADR)



## LoRa技术特点一一按需部署、独立组网



- LoRa就是一个"长Wi-Fi"技术,其部署特点与Wi-Fi非常相似。LoRa部署方便且可以独立组网,哪里 有需要就在哪里建网,类比于哪里需要Wi-Fi信号哪里就放置一个Wi-Fi路由器一样。
- LoRa的部署过程也很简单,只要选择一个网关部署位置,连接网线和电源线即可。在没有网线的连接的 地方可以利用运营商的4G网络或者本地的Wi-Fi无线网络完成LoRa网络部署。





## LoRa应用市场分类



- 智慧表计 Metering;
- 智慧物流 Supply chain & Logistics;
- 智慧医疗 Healthcare;
- 智慧农业 Agriculture;
- 智慧工业 Industrial Control;
- 智慧建筑智慧家庭: Home & Building;
- 智慧社区智慧城市: Cities;
- 智慧环境 Environment;
- LoRa的应用种类还在不断扩充,如手机应用、卫星应用、对讲机应用等层出不穷。相信随着这些应用的逐渐成熟,会有更多新的应用进入LoRa生态之中。



# ZETA (国产)



#### 什么是ZETA?

ZETA是由纵行科技自主研发的低功耗物联网通信技术,通过自研Advanced M-FSK<sup>®</sup>无线通信基带,使ZETA能做到传统LPWAN技术的1/6功耗、1/8频谱占用压缩,同时最高速率提升了6倍。ZETA是全球首个支持分布式组网、首个为嵌入式端智能提供算法升级的LPWAN通讯标准,其愿景是通过持续的技术创新,研发10美分成本、10公里覆盖、10mw功耗甚至无源的窄带通信芯片IP,实现更下沉的LPWAN2.0泛在物联。





- 本章主要内容: ZigBee、蓝牙、Wi-Fi 和LoRa 通信系统的基本原理、协议架构和系统特点。
- 本章学习目标
  - □了解ZigBee、蓝牙、Wi-Fi 和LoRa 通信系统的主要特点;
  - □熟悉上述系统的协议架构;
  - □掌握上述系统的基本原理与使用方法。

2025/5/5 大数据与互联网学院