Dos tipos de datos astronómicos: imágenes y espectros.

Las láminas de la presentación están disponibles en https://github.com/sundarjhu/UACJ_Jornada2021

Parte3y4_20210422.pdf

Espectro de luz.

Tipos de espectros.

Espectro de emisión y de absorción.

About Filters

Colored-Glass Window

A colored-glass window allows only its particular color of light to pass through — it filters out the other colors of the spectrum. Hubble's filters work the same way, allowing only a specific color of light to pass through.

Black-and-White Images Taken of Filtered Light

_

Colors Assigned to Black-and-White Images

Final Image After Combining the Colored Images

http://hubble.stsci.edu/gallery/behind_the_pictures/meaning_of_color/hubble.php

Los telescopios e instrumentos empleados para obtener los datos.

Se obtuvieron imágenes con el telescopio espacial Hubble y espectros con el telescopio terrestre del Sloan Digital Sky Survey.

El telescopio de la Fundación Sloan en. (Apache Point Observatory, Nuevo México, EUA, a 2800 m de altura)

Tiene instrumentos para tomar imagenes y espectros.

Puede tomar espectros de múltiples objetos simultáneamente. Para esto usa placas con agujeros en donde van los objetos proyectados en el cielo.

Una fibra óptica va conectada a acada agujero para llevar la luz del objeto al espectrógrafo.

Tiene un diámetro de 2.5 m

Tiene un campo de visión de 3º sin distorición.

Magnificando una imagen del SDSS.

Imagen del SDSS de KISSR 298.

El Telescopio espacial Hubble.

Le da una vuelta a la Tierra en 97 min.

Estar por encima de la atmósfera permite evitar la turbulencia de la atmósfera, que afecta la nitidez de las imágenes.

Además, permite detectar longitudes de onda que la atmósfera no deja pasar.

Los intrumentos abordo del Hubble.

Imagenes vs. espectros.

Espectros de galaxias.

Gracias

Extra

Ondas mecánicas, ej. ondas de sonido.

Ondas electromagnéticas, ej. ondas de radio

$$f = c / \lambda$$

f = frecuencia

c = velocidad de la luz

λ = longitud de onda

Efecto Doppler.

