PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-229503

(43) Date of publication of application: 05.09.1997

(51)Int.Cl.

F25B

F25B 9/14

(21)Application number: 08-032061

(71)Applicant: DAIKIN IND LTD

(22)Date of filing:

20.02.1996

(72)Inventor: KURIHARA TOSHIYUKI

TOMIOKA KEIJI

OKAMOTO MASAKAZU TANETANI SHOICHI MIURA KATSUYA

(54) CRYOGENIC FREEZER DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To enable a freezing capability of a pre-freezing device and a shield freezing device to be adjusted while the same freezing devices are being operated without changing a capacity or a specification of each of the freezing devices in the case that the pre-freezing device and the shield freezing device for a JT (Joule-Thomson) freezer connected in parallel with a compressor are operated in multi-mode. SOLUTION: In the case that a displacer driving frequency of each of freezers 26, 40 is made variable and an inner pressure of a buffer tank Tb acting as a freezing load of a JT(Joule-Thomson) freezer 51 is decreased lower than a set value, the displacer driving frequency of the pre-cooling freezer 26 is decreased and a displacer driving frequency of the shield freezer 40 is increased to reduce a freezing capability of the Joule-Thomson freezer 51, and in turn in the case that an inner pressure in the tank Tb is decreased lower than the set value, the displacer driving frequency of the pre-

cooling freezer 26 is increased and the displacer driving frequency of the shield freezer 40 is decreased to cause a freezing capability of the Joule-Thomson freezer 40 to be increased.

LEGAL STATUS

[Date of request for examination]

31.01.2001

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

[Date of registration]

09.07.2004

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-229503

(43)公開日 平成9年(1997)9月5日

(51) Int.Cl. ⁶		饑別記号	庁内整理番号	FΙ			技術表示箇所
F 2 5 B	9/00	395		F 2 5 B	9/00	395A	
	9/14	530			9/14	5 3 0 Z	

審査請求 未請求 請求項の数25 OL (全 22 頁)

(21)出願番号	特顯平8-32061	(71)出願人 000002853	
		ダイキン工業株式会社	
(22)出顧日	平成8年(1996)2月20日	大阪府大阪市北区中崎西2丁目4番12	号
		梅田センタービル	
		(72)発明者 栗原 利行	
		大阪府堺市金岡町1304番地 ダイキン	工業
		株式会社堺製作所金岡工場内	
		(72)発明者 富岡 計次	
		大阪府堺市金岡町1304番地 ダイキン	工業
		株式会社堺製作所金岡工場内	
		(74)代理人 弁理士 前田 弘 (外1名)	
		·	
		最終百に	焼く

(54) 【発明の名称】 極低温冷凍装置

(57)【要約】

【課題】 圧縮機 5,8に対し並列に接続されたJT冷凍機 51用の予冷冷凍機 26とシールド冷凍機 40とをマルチ運転する場合に、各冷凍機 26,40の容量変更や仕様変更を行うことなく、同じ冷凍機 26,40を使用しながら各々の冷凍能力を調整できるようにして、JT冷凍機 51の幅広い能力制御を行う。

【解決手段】 各冷凍機26,40のディスプレーサ駆動周波数を可変とし、JT冷凍機51の冷凍負荷としてのバッファタンクTbの内圧が設定値よりも低下したとき、予冷冷凍機26のディスプレーサ駆動周波数を下げかつシールド冷凍機40のディスプレーサ駆動周波数を上げてJT冷凍機51の冷凍能力を低下させ、タンクTbの内圧が設定値よりも低下したときに、予冷冷凍機26のディスプレーサ駆動周波数を上げかつシールド冷凍機40のディスプレーサ駆動周波数を下げてJT冷凍機51の冷凍能力を上げる。

【特許請求の範囲】

【請求項1】 冷媒ガスを圧縮する少なくとも1台の圧 縮機と、該圧縮機に並列に接続され、圧縮機からの冷媒 ガスをディスプレーサの往復動により膨張させて極低温 を発生させる複数台の冷凍機(26),(40)とを備 えた極低温冷凍装置において、

上記少なくとも1台の冷凍機(26), (40)のディ スプレーサの往復動の駆動周波数を可変とするディスプ レーサ駆動周波数可変手段(72)を設けたことを特徴 とする極低温冷凍装置。

【請求項2】 請求項1記載の極低温冷凍装置におい て、

複数台の冷凍機(26), (40)は、圧縮機からの高 圧冷媒ガスのJT弁(58)でのジュールトムソン膨張 により極低温を発生させる J T 冷凍機 (51) に付設さ れかつ上記ジュールトムソン膨張する前の冷媒ガスを予 冷する予冷冷凍機(26)と、

少なくとも上記JT冷凍機(51)による極低温冷却部 分を外部から熱シールドするシールド冷凍機(40)と からなることを特徴とする極低温冷凍装置。

【請求項3】 請求項2記載の極低温冷凍装置におい て、

圧縮機は、冷媒ガスを圧縮する低段圧縮機 (5) と、該 低段圧縮機(5)から吐出された冷媒ガスを圧縮する高 段圧縮機(8)とからなり、

予冷及びシールド冷凍機(26),(40)は、上記髙 段圧縮機(8)から吐出された冷媒ガスを膨張させるよ うに構成されていることを特徴とする極低温冷凍装置。

【請求項4】 請求項2記載の極低温冷凍装置におい て、

圧縮機は、予冷及びシールド冷凍機(26), (40) に冷媒ガスを供給する冷凍機用圧縮機(18)と、 JT弁(58)に冷媒ガスを供給するJT用圧縮機(1 9) とからなることを特徴とする極低温冷凍装置。

【請求項5】 請求項3記載の極低温冷凍装置におい

低段及び高段圧縮機(5),(8)の運転周波数が独立 して可変とされていることを特徴とする極低温冷凍装

【請求項6】 請求項4記載の極低温冷凍装置におい て、

冷凍機用及びJT用圧縮機(18),(19)の運転周 波数が独立して可変とされていることを特徴とする極低 温冷凍装置。

【請求項7】 冷媒ガスを圧縮する少なくとも1台の圧 縮機と、該圧縮機に並列に接続され、圧縮機からの冷媒 ガスを膨張させて極低温を発生させる複数台の冷凍機 (26), (40) とを備えた極低温冷凍装置におい

上記少なくとも1台の冷凍機(26), (40)に対す 50 荷検出手段(74)と、

る冷媒ガスの流量を調整する冷媒流量調整手段(46) を設けたことを特徴とする極低温冷凍装置。

【請求項8】 請求項7記載の極低温冷凍装置におい て、

複数台の冷凍機(26), (40)は、圧縮機からの高 圧冷媒ガスのJT弁(58)でのジュールトムソン膨張 により極低温を発生させるJT冷凍機 (51) に付設さ れかつ上記ジュールトムソン膨張する前の高圧冷媒ガス を予冷する予冷冷凍機(26)と、

10 少なくとも上記 J T 冷凍機 (51) による極低温冷却部 分を外部から熱シールドするシールド冷凍機(40)と であることを特徴とする極低温冷凍装置。

【請求項9】 請求項8記載の極低温冷凍装置におい て、

圧縮機は、冷媒ガスを圧縮する低段圧縮機(5)と、該 低段圧縮機(5)から吐出された冷媒ガスを圧縮する高 段圧縮機(8)とからなり、

予冷及びシールド冷凍機(26), (40)は、上記高 段圧縮機(8)から吐出された冷媒ガスを膨張させるよ うに構成されていることを特徴とする極低温冷凍装置。 20

【請求項10】 請求項8記載の極低温冷凍装置におい て、

圧縮機は、予冷及びシールド冷凍機(26), (40) に冷媒ガスを供給する冷凍機用圧縮機(18)と、

JT弁(58)に冷媒ガスを供給するJT用圧縮機(1 9) とからなることを特徴とする極低温冷凍装置。

【請求項11】 請求項9記載の極低温冷凍装置におい

低段及び高段圧縮機(5),(8)の運転周波数が独立 30 して可変とされていることを特徴とする極低温冷凍装

【請求項12】 請求項10記載の極低温冷凍装置にお

冷凍機用及びJT用圧縮機(18), (19)の運転周 波数が独立して可変とされていることを特徴とする極低 温冷凍装置。

【請求項13】 請求項1記載の極低温冷凍装置におい て、

各冷凍機(26),(40)は、ディスプレーサを冷媒 40 ガスの圧力で駆動するガス圧駆動型の冷凍機であって、 かつ上記ディスプレーサに対する冷媒ガス圧を変えてデ ィスプレーサの動きを調整する可変オリフィスを備えて おり、

上記可変オリフィスの開度をディスプレーサ駆動周波数 の変化に応じて制御するように構成したことを特徴とす る極低温冷凍装置。

【請求項14】 請求項3又は4記載の極低温冷凍装置 において、

JT冷凍機 (51) の冷凍負荷を検出するJT冷凍機負

-2-

上記JT冷凍機負荷検出手段(74)により検出されるJT冷凍機(51)の冷凍負荷が設定値よりも低下したときに、予冷冷凍機(26)のディスプレーサ駆動周波数の低下又はシールド冷凍機(40)のディスプレーサ駆動周波数の上昇の少なくとも一方が行われる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに、予冷冷凍機(26)のディスプレーサ駆動周波数の上昇又はシールド冷凍機(40)のディスプレーサ駆動周波数の低下の少なくとも一方が行われるようにディスプレーサ駆動周波数可変手段(72)を制御する制御手段(71)とを設けたことを特徴とする極低温冷凍装置。

3

【請求項15】 請求項14記載の極低温冷凍装置において、

予冷及びシールド冷凍機(26), (40) に高圧冷媒ガスを供給する圧縮機(8)の運転周波数が可変とされており、

制御手段(71)は、上記予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに圧縮機(8)の運転周波数が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに圧縮機(8)の運転周波数が上がるように制御する構成とされていることを特徴とする極低温冷凍装置。

【請求項16】 請求項14又は15記載の極低温冷凍 装置において、

J T弁(58) に対する冷媒ガスの圧力を調整するJ T 高圧調整手段(13)を設け、

制御手段(71)は、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに、JT弁(58)への冷媒ガス圧が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに、JT弁(58)への冷媒ガス圧が上がるように上記JT高圧調整手段(13)を制御する構成とされていることを特徴とする極低温冷凍装置。

【請求項17】 請求項16記載の極低温冷凍装置において、

低段圧縮機(5)及びJT用圧縮機(19)の運転周波 数が可変されており、

制御手段(71)は、上記圧縮機(5), (19)の運転周波数を、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに圧縮機(5), (19)の運転周波数が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに圧縮機(5), (19)の運転周波数が上がるように制御する構成とされていることを特徴とする極低温冷凍装置。

【請求項18】 請求項9又は10記載の極低温冷凍装置において、

J T冷凍機 (51) の冷凍負荷を検出する J T冷凍機負

荷検出手段(74)と、

上記JT冷凍機負荷検出手段(74)により検出されるJT冷凍機(51)の冷凍負荷が設定値よりも低下したときに、予冷冷凍機(26)に対する冷媒ガス流量が低下する一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに、シールド冷凍機(40)に対する冷媒ガス流量が低下するように冷媒流量調整手段(46)を制御する制御手段(71)とを設けたことを特徴とする極低温冷凍装置。

10 【請求項19】 請求項18記載の極低温冷凍装置において、

予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数が可変されており、

制御手段(71)は、上記予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに圧縮機(8)の運転周波数が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに圧縮機(8)の運転周波数が上がるように制御する構成とされていることを特徴とする極低温冷凍装置。

【請求項20】 請求項19記載の極低温冷凍装置において、

JT弁(58)に対する冷媒ガスの圧力を調整するJT 高圧調整手段(13)を設け、

制御手段(71)は、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに、JT弁(58)への冷媒ガス圧が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに、JT弁(58)への冷媒ガス圧が上がるように上記JT高圧調整手段(13)を制御する構成とされていることを特徴とする極低温冷凍装置。

【請求項21】 請求項20記載の極低温冷凍装置において、

低段圧縮機 (5) 及び J T 用圧縮機 (19) の運転周波 数が可変されており、

制御手段(71)は、上記圧縮機(5), (19)の運転周波数を、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに圧縮機(5), (19)の運転周波数が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに圧縮機(5), (19)の運転周波数が上がるように制御する構成とされていることを特徴とする極低温冷凍装置。

【請求項22】 請求項3又は4記載の極低温冷凍装置 において、

シールド冷凍機(40)の冷凍負荷を検出するシールド冷凍機負荷検出手段(76)と、

上記シールド冷凍機負荷検出手段(76)により検出さ 50 れる冷凍負荷が設定値よりも下がったときに、予冷冷凍

機(26)のディスプレーサ駆動周波数の上昇又はシールド冷凍機(40)のディスプレーサ駆動周波数の低下の少なくとも一方が行われる一方、冷凍負荷が設定値よりも上がったときに、予冷冷凍機(26)のディスプレーサ駆動周波数の低下又はシールド冷凍機(40)のディスプレーサ駆動周波数の上昇の少なくとも一方が行われるようにディスプレーサ駆動周波数可変手段(72)を制御する制御手段(71)とを設けたことを特徴とする極低温冷凍装置。

【請求項23】 請求項22記載の極低温冷凍装置にお 10 いて、

予冷及びシールド冷凍機(26), (40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数が可変とされており、

制御手段(71)は、上記予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を、シールド冷凍機(40)の冷凍負荷が設定値よりも低下したときに圧縮機(8)の運転周波数が下がる一方、冷凍負荷が設定値よりも増大したときに圧縮機(8)の運転周波数が上がるように制御する構成とされていることを特徴とする極低温冷凍装置。

【請求項24】 請求項9又は10記載の極低温冷凍装置において、

シールド冷凍機(40)の冷凍負荷を検出するシールド冷凍機負荷検出手段(76)と、

上記シールド冷凍機負荷検出手段(76)により検出される冷凍負荷が設定値よりも低下したときに、上記シールド冷凍機(40)に対する冷媒ガス流量が低下する一方、冷凍負荷が設定値よりも増大したときに、上記予冷冷凍機(26)に対する冷媒ガス流量が低下するように冷媒流量調整手段(46)を制御する制御手段(71)とを設けたことを特徴とする極低温冷凍装置。

【請求項25】 請求項24記載の極低温冷凍装置において、

予冷及びシールド冷凍機(26), (40) に高圧冷媒ガスを供給する圧縮機(8) の運転周波数が可変とされており、

制御手段(71)は、上記予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を、シールド冷凍機(40)の冷凍負荷が設定値よりも低下したときに圧縮機(8)の運転周波数が下がる一方、冷凍負荷が設定値よりも増大したときに圧縮機(8)の運転周波数が上がるように制御する構成とされていることを特徴とする極低温冷凍装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、圧縮機に対し膨張 機からなる複数台の冷凍機が接続された極低温冷凍装置 に関し、特に、その各冷凍機の能力を個別に可変制御す るようにしたものの技術分野に属する。

[0002]

【従来の技術】従来より、この種の極低温冷凍装置として、冷媒ガスを圧縮する1台の圧縮機に対し、該圧縮機からの冷媒ガスをディスプレーサの往復動により断熱膨張させて極低温を発生させる複数台の冷凍機(膨張機)を並列に接続し、これら冷凍機を同時にマルチ運転させるようにしたマルチ型のものが知られている(例えば特開平3-15677号、特開平1-210765号、特開平5-87414号、特公平6-68422号及び実開平5-47761号の各公報参照)。

б

【0003】また、この他、冷凍機におけるディスプレーサの往復動の駆動周波数を可変とすることにより、冷凍装置の能力を変えるようにすることが知られている(例えば特開平2-261094号、特公昭3-50956号、特開昭63-306361号、特開平6-101917号、特開平3-152353号及び実開昭62-112074号の各公報参照)。さらに、特公昭61-60348号公報に示されるものでは、ディスプレーサに対する冷媒ガス圧により該ディスプレーサを往復動させるガス圧駆動型の冷凍機において、開度変化によって上記ディスプレーサへの冷媒ガス圧を変える可変オリフィスを設け、この可変オリフィスの開度制御によってディスプレーサの往復動の動きを調整するようになされている。

[0004]

30

【発明が解決しようとする課題】ところで、上記前者の 従来例のように、複数台の冷凍機を圧縮機に接続してマ ルチ運転する場合、各冷凍機の冷凍能力は他の冷凍機と の組合わせに応じて一律に決定されてしまい、個々の冷 凍機の冷凍能力が異なるときには、予め、冷凍機の仕様 を変更しておく必要があり、また、冷凍機の冷凍能力を 変えるときには、その都度、冷凍機の容量変更を行わね ばならない。

【0005】本発明は斯かる点に鑑みてなされたもので、その目的は、圧縮機に複数台の冷凍機を並列に接続してマルチ運転する場合に、上記後者の従来技術の考え方を押し進めることで、各冷凍機の容量変更や仕様変更を行うことなく、同じ冷凍機を使用しながら各々の冷凍能力を調整できるようにすることにある。

0 [0006].

【課題を解決するための手段】上記の目的を達成するために、この発明では、複数台の冷凍機を圧縮機に接続してマルチ運転するマルチ型の極低温冷凍装置に対し、その少なくとも1台の冷凍機のディスプレーサ駆動周波数や冷凍機に対する冷媒流量等を可変とするようにした。【0007】具体的には、図1に示すように、請求項1の発明では、冷媒ガスを圧縮する少なくとも1台の圧縮機と、該圧縮機に並列に接続され、圧縮機からの冷媒ガスをディスプレーサの往復動により膨張させて極低温を50 発生させる複数台の冷凍機(26),(40)とを備え

7

た極低温冷凍装置において、上記少なくとも1台の冷凍機(26), (40)のディスプレーサの往復動の駆動 周波数を可変とするディスプレーサ駆動周波数可変手段 (72)を設ける。

【0008】上記の構成により、複数台のうちの少なくとも1台の冷凍機(26),(40)のディスプレーサ駆動周波数可変手段(72)によって可変とされているので、その冷凍機(26),(40)のディスプレーサ駆動周波数を変えることで、該冷凍機(26),(40)の冷凍能力を変えることができる。このことで、複数台の冷凍機(26),(40)間の能力配分を変更でき、個々の冷凍機(26),(40)の冷凍能力に応じて、その容量変更を要することなく幅広い調整を行うことができる。

【0009】請求項2の発明では、請求項1の発明の極低温冷凍装置において、複数台の冷凍機(26),(40)は、圧縮機からの高圧冷媒ガスのJT弁(58)でのジュールトムソン膨張により極低温を発生させるJT冷凍機(51)に付設されかつ上記ジュールトムソン膨張する前の高圧冷媒ガスを予冷する予冷冷凍機(26)と、少なくとも上記JT冷凍機(51)による極低温冷却部分を外部から熱シールドするシールド冷凍機(40)とからなるものとする。

【0010】このことで、JT冷凍機(51)の予冷冷 凍機(26)及びシールド冷凍機(40)をマルチ運転 する場合でも、予冷冷凍機(26)つまりJT冷凍機 (51)の冷凍能力とシールド冷凍機(40)の冷凍能 力との能力配分を同じ仕様の冷凍機(26),(40) を用いて調整することができ、冷凍機(26),(4 0)の仕様変更を要することなく、種々の冷凍能力の要 30 求に対応させることができる。

【0011】請求項3の発明では、請求項2の発明の極低温冷凍装置において、圧縮機は、冷媒ガスを圧縮する低段圧縮機(5)と、該低段圧縮機(5)から吐出された冷媒ガスを圧縮する高段圧縮機(8)とからなるものとし、予冷及びシールド冷凍機(26),(40)は、上記高段圧縮機(8)から吐出された冷媒ガスを膨張させるように構成されているものとする。また、請求項4の発明では、圧縮機は、予冷及びシールド冷凍機(26),(40)に冷媒ガスを供給する冷凍機用圧縮機(18)と、JT弁(58)に冷媒ガスを供給するJT用圧縮機(19)とからなる構成とする。これらの発明によれば、予冷及びシールド冷凍機(26),(40)に接続される圧縮機の接続構造を具体化することができる。

【0012】請求項5の発明では、請求項3の発明の極低温冷凍装置において、低段及び高段圧縮機(5).

(8)の運転周波数を独立して可変とする。また、請求項6の発明では、請求項4の発明の極低温冷凍装置において、冷凍機用及びJT用圧縮機(18), (19)の

運転周波数を独立して可変とする。これら発明のようにすると、冷凍機(26), (40)のディスプレーサ駆動周波数のみならず、圧縮機の運転周波数についても可変であるので、両者を変更することで、予冷冷凍機(26)(JT冷凍機(51))の冷凍能力とシールド冷凍機(40)の冷凍能力との能力配分をさらに広い範囲に亘り調整して、大幅な冷凍能力の要求に対応させることができる。

【0013】請求項7の発明では、図5に示す如く、上記請求項1の発明と同様に、冷媒ガスを圧縮する少なくとも1台の圧縮機と、該圧縮機に並列に接続され、圧縮機からの冷媒ガスを膨張させて極低温を発生させる複数台の冷凍機(26),(40)とを備えた極低温冷凍装置が前提である。そして、上記少なくとも1台の冷凍機(26),(40)に対する冷媒ガスの流量を調整する冷媒流量調整手段(46)を設ける。

【0014】この構成により、冷媒流量調整手段(46)により、複数台のうちの少なくとも1台の冷凍機(26),(40)に対する冷媒ガスの流量が可変とされるので、その冷凍機(26),(40)への冷媒ガス流量を変えることで、その冷凍能力を変えることができ、よって、請求項1の発明と同様に、複数台の冷凍機(26),(40)間の能力配分を変更し、個々の冷凍機(26),(40)の冷凍能力に応じて容量変更を要することなく幅広い調整を行うことができる。

【0015】請求項8の発明では、請求項7の発明の極低温冷凍装置において、請求項2の発明と同様に、複数台の冷凍機(26),(40)は、圧縮機からの高圧冷媒ガスのJT弁(58)でのジュールトムソン膨張により極低温を発生させるJT冷凍機(51)に付設されかつ上記ジュールトムソン膨張する前の高圧冷媒ガスを予冷する予冷冷凍機(26)と、少なくとも上記JT冷凍機(51)による極低温冷却部分を外部から熱シールドするシールド冷凍機(40)とからなす。よって、請求項2の発明と同様の作用効果が得られる。

【0016】請求項9の発明では、請求項8の発明の極低温冷凍装置において、請求項3の発明と同様に、圧縮機を、冷媒ガスを圧縮する低段圧縮機(5)と、該低段圧縮機(5)から吐出された冷媒ガスを圧縮する高段圧縮機(8)とからなし、予冷及びシールド冷凍機(26),(40)は、上記高段圧縮機(8)から吐出された冷媒ガスを膨張させるように構成されているものとする。この場合でも、請求項3の発明と同様の作用効果が得られる。

【0017】請求項10の発明では、請求項8の発明の極低温冷凍装置において、請求項4の発明と同様に、圧縮機を、予冷及びシールド冷凍機(26),(40)に冷媒ガスを供給する冷凍機用圧縮機(18)と、JT弁(58)に冷媒ガスを供給するJT用圧縮機(19)と50を備えている構成とする。この発明では、請求項4の発

明と同様の作用効果が得られる。

【0018】請求項11の発明では、請求項9の発明の極低温冷凍装置において、請求項5の発明と同様に、低段及び高段圧縮機(5),(8)の運転周波数を独立して可変とする。また、請求項12の発明では、請求項10の発明の極低温冷凍装置において、請求項6の発明と同様に、冷凍機用及びJT用圧縮機(18),(19)の運転周波数を独立して可変とする。これら発明によれば、請求項4又は5の発明と同様の作用効果を奏することができる。

【0019】請求項13の発明では、図1及び図4に示すように、上記請求項1の発明の極低温冷凍装置において、各冷凍機(26),(40)は、ディスプレーサを冷媒ガスの圧力で駆動するガス圧駆動型の冷凍機として、上記ディスプレーサに対する冷媒ガス圧を変えてディスプレーサの動きを調整する可変オリフィスを備えたものとする。そして、この可変オリフィスの開度をディスプレーサ駆動周波数の変化に応じて制御するように構成する。

【0020】この構成とすることで、冷凍機(26),(40)のディスプレーサ駆動周波数の変化に応じて可変オリフィスの開度を最適開度に制御することができ、冷凍機(26),(40)のディスプレーサ駆動周波数のみならず、ディスプレーサに対する冷媒ガス圧も適正圧に変えて、予冷冷凍機(26)の冷凍能力とシールド冷凍機(40)の冷凍能力との能力配分をさらに広い範囲に亘り調整して、大幅な冷凍能力の要求に対応させることができる。

【0021】請求項14以下の発明は、冷凍機のディス プレーサ駆動周波数や冷凍機への冷媒流量等の制御態様 を具体化したものである。すなわち、請求項14の発明 では、図1に示すように、上記請求項3又は4の発明の 極低温冷凍装置において、JT冷凍機(51)の冷凍負 荷を検出するJT冷凍機負荷検出手段(74)と、この JT冷凍機負荷検出手段(74)により検出されるJT 冷凍機(51)の冷凍負荷が設定値よりも低下したとき に、予冷冷凍機(26)のディスプレーサ駆動周波数の 低下又はシールド冷凍機(40)のディスプレーサ駆動 周波数の上昇の少なくとも一方が行われる一方、JT冷 凍機(51)の冷凍負荷が設定値よりも増大したとき に、予冷冷凍機(26)のディスプレーサ駆動周波数の 上昇又はシールド冷凍機(40)のディスプレーサ駆動 周波数の低下の少なくとも一方が行われるようにディス プレーサ駆動周波数可変手段(72)を制御する制御手 段(71)とを設ける。

【0022】この構成により、JT冷凍機(51)の冷凍負荷がJT冷凍機負荷検出手段(74)により検出され、このJT冷凍機(51)の冷凍負荷に応じてディスプレーサ駆動周波数可変手段(72)が制御手段(71)で制御されて冷凍機のディスプレーサ駆動周波数が50

10

変えられ、JT冷凍機 (51) の冷凍負荷が設定値より も低下したときには、予冷冷凍機(26)のディスプレ ーサ駆動周波数の低下又はシールド冷凍機(40)のデ ィスプレーサ駆動周波数の上昇の少なくとも一方が行わ れ、予冷冷凍機(26)つまりJT冷凍機(51)の冷 凍能力が下げられる。一方、JT冷凍機(51)の冷凍 負荷が設定値よりも増大したときに、予冷冷凍機(2) 6) のディスプレーサ駆動周波数の上昇又はシールド冷 凍機(40)のディスプレーサ駆動周波数の低下の少な くとも一方が行われ、JT冷凍機(51)の冷凍能力が 10 上げられる。こうすれば、極低温冷凍装置のマルチ運転 中にJT冷凍機(51)の負荷が変わっても、全ての冷 凍機の冷凍能力が一律に同じように変わることはなく、 その負荷に応じて冷凍能力を変更させることができ、例 えばシールド冷凍機(40)の冷凍能力を略一定に保ち ながら、JT冷凍機(51)の冷凍能力を変化させるこ ともでき、JT冷凍機(51)の幅広い能力制御を行う ことができる。

【0023】請求項15の発明では、請求項14の発明の極低温冷凍装置において、予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を可変とする。そして、制御手段(71)は、予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに圧縮機(8)の運転周波数が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに圧縮機(8)の運転周波数が上がるように制御する構成とする。

【0024】こうすることで、制御手段(71)において、予冷及びシールド冷凍機(26), (40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数がJT冷凍機(51)の冷凍負荷に応じて制御されて変えられ、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに、上記圧縮機(8)の運転周波数が下げられる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに、圧縮機(8)の運転周波数が上げられる。このように冷凍機(26), (40)のディスプレーサ駆動周波数のみならず圧縮機(8)の運転周波数も変えられるので、冷凍装置のマルチ運転中のJT冷凍機(51)の負荷の変化に応じて冷凍能力を大きく変更させることができ、JT冷凍機(51)のより一層幅広い能力制御を行うことができる。

【0025】請求項16の発明では、請求項14又は15の発明の極低温冷凍装置において、JT弁(58)に対する冷媒ガスの圧力を調整するJT高圧調整手段(13)を設け、制御手段(71)は、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに、JT弁(58)への冷媒ガス圧が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに、JT弁(5

8) への冷媒ガス圧が上がるように上記JT高圧調整手段(13)を制御する構成とする。

【0026】この発明では、制御手段(71)により」 T冷凍機(51)の冷凍負荷に応じてJT高圧調整手段 (13)が制御されて、JT弁(58)に対する冷媒ガ スの圧力が調整され、JT冷凍機(51)の冷凍負荷が 設定値よりも低下したときに、JT弁(58)への冷媒 ガス圧が下がり、JT冷凍機(51)の冷凍負荷が設定値より も増大したときに、JT弁(58)への冷媒ガス圧が上 がり、JT冷凍機(51)の冷凍負荷が設定値より も増大したときに、JT弁(58)への冷媒ガス圧が上 がり、JT冷凍機(51)の冷凍能力が増大する。よっ て、この場合でもJT冷凍機(51)の負荷の変化に応 じて冷凍能力を大きく変更させることができ、JT冷凍 機(51)のより一層幅広い能力制御を行うことができ る。

【0027】請求項17の発明では、請求項16の発明の極低温冷凍装置において、低段圧縮機(5)又はJT用圧縮機(19)の運転周波数を可変とする。そして、制御手段(71)は、上記圧縮機(5),(19)の運転周波数を、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに圧縮機(5),(19)の運転周波数が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに圧縮機(5),(19)の運転周波数が上がるように制御する構成とする。

【0028】このことで、制御手段(71)によりJT冷凍機(51)の冷凍負荷に応じて低段圧縮機(5)又はJT用圧縮機(19)の運転周波数が制御され、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに、圧縮機(51)の冷凍能力が低下する一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに、圧縮機(5),(19)の運転周波数が上がり、JT冷凍機(51)の冷凍能力が増大する。よって、この場合でもJT冷凍機(51)の負荷の変化に応じて冷凍能力を大きく変更して、JT冷凍機(51)のより一層幅広い能力制御を行うことができる。

【0029】請求項18の発明では、図5に示す如く、請求項9又は10の発明の極低温冷凍装置において、請求項14の発明と同様に、JT冷凍機(51)の冷凍負荷を検出するJT冷凍機負荷検出手段(74)と、JT冷凍機負荷検出手段(74)により検出されるJT冷凍機(51)の冷凍負荷が設定値よりも低下したときに、予冷冷凍機(26)に対する冷媒ガス流量が低下する一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに、シールド冷凍機(40)に対する冷媒ガス流量が低下するように冷媒流量調整手段(46)を制御する制御手段(71)とを設ける。

【0030】この構成により、JT冷凍機(51)の冷凍負荷がJT冷凍機負荷検出手段(74)により検出されて、このJT冷凍機(51)の冷凍負荷に応じて冷媒 50

12

流量調整手段(46)が制御手段(71)で制御され、 JT冷凍機(51)の冷凍負荷が設定値よりも低下した ときには、予冷冷凍機(26)に対する冷媒ガス流量が 低下してJT冷凍機(51)の冷凍負荷が設定値よりも増大 したときには、シールド冷凍機(40)に対する冷媒ガス流量が低下してその冷凍能力が下げられ、その分、予 冷冷凍機(26)への冷媒流量が増加して、その冷凍能力が増大する。従って、この場合でも、請求項14の発 明と同様に、JT冷凍機(51)の冷凍能力の幅広い能力制御を行うことができる。

【0031】請求項19の発明では、請求項18の発明の極低温冷凍装置において、請求項15の発明と同様に、予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を可変とする。そして、制御手段(71)は、上記予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに圧縮機(8)の運転周波数が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに圧縮機(8)の運転周波数が上がるように制御する構成とする。

【0032】こうすると、JT冷凍機(51)の冷凍負荷に応じて圧縮機(8)の運転周波数が制御手段(71)で制御され、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに、予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数が下げられる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに、圧縮機(8)の運転周波数が上げられる。よって、請求項15の発明と同様の作用効果を奏することができる。

【0033】請求項20の発明では、請求項19の発明の極低温冷凍装置において、JT弁(58)に対する冷媒ガスの圧力を調整するJT高圧調整手段(13)を設け、制御手段(71)は、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに、JT弁(58)への冷媒ガス圧が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに、JT弁(58)への冷媒ガス圧が上がるように上記JT高圧調整手段(13)を制御する構成とする。

【0034】この発明でも、制御手段(71)により」 T冷凍機(51)の冷凍負荷に応じてJT高圧調整手段 (13)が制御されて、JT弁(58)に対する冷媒ガスの圧力が調整され、JT冷凍機(51)の冷凍負荷が 設定値よりも低下したときに、JT弁(58)への冷媒ガス圧が下がり、冷凍能力が低下する一方、JT冷凍機 (51)の冷凍負荷が設定値よりも増大したときに、J T弁(58)への冷媒ガス圧が上がり、冷凍能力が増大する。よって、請求項16の発明と同様の作用効果が得 5れる。

20

13

【0035】請求項21の発明では、請求項20の発明の極低温冷凍装置において、請求項17の発明と同様に、低段圧縮機(5)又はJT用圧縮機(19)の運転周波数を可変とし、制御手段(71)は、上記圧縮機(5),(19)の運転周波数を、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに圧縮機

(5), (19)の運転周波数が下がる一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに圧縮機(5), (19)の運転周波数が上がるように制御する構成とする。

【0036】この場合、JT冷凍機(51)の冷凍負荷が設定値よりも低下したときに、低段圧縮機(5)又はJT用圧縮機(19)の運転周波数が下がり、JT冷凍機(51)の冷凍能力が低下する一方、JT冷凍機(51)の冷凍負荷が設定値よりも増大したときに、圧縮機(5),(19)の運転周波数が上がり、JT冷凍機(51)の冷凍能力が増大する。よって、請求項17の発明と同様の作用効果が得られる。

【0037】請求項22の発明では、図10に示すように、請求項3又は4の発明の極低温冷凍装置において、シールド冷凍機(40)の冷凍負荷を検出するシールド冷凍機負荷検出手段(76)と、このシールド冷凍機負荷検出手段(76)により検出される冷凍負荷が設定値よりも下がったときに、予冷冷凍機(26)のディスプレーサ駆動周波数の上昇又はシールド冷凍機(40)のディスプレーサ駆動周波数の低下の少なくとも一方が行われる一方、上記冷凍負荷が設定値よりも上がったときに、予冷冷凍機(26)のディスプレーサ駆動周波数の低下又はシールド冷凍機(40)のディスプレーサ駆動周波数の上昇の少なくとも一方が行われるようにディスプレーサ駆動周波数の上昇の少なくとも一方が行われるようにディスプレーサ駆動周波数可変手段(71)とを設ける。

【0038】この構成により、シールド冷凍機(40) の冷凍負荷がシールド冷凍機負荷検出手段(76)によ り検出され、この冷凍負荷に応じてディスプレーサ駆動 周波数可変手段(72)が制御手段(71)で制御され て、冷凍機(26), (40)のディスプレーサ駆動周 波数が変えられ、シールド冷凍機(40)の冷凍負荷が 設定値よりも低下したときには、予冷冷凍機(26)の ディスプレーサ駆動周波数の上昇又はシールド冷凍機 (40)のディスプレーサ駆動周波数の低下の少なくと も一方が行われ、シールド冷凍機(40)の冷凍能力が 下げられる。一方、シールド冷凍機(40)の冷凍負荷 が設定値よりも増大したときに、予冷冷凍機(26)の ディスプレーサ駆動周波数の低下又はシールド冷凍機 (40)のディスプレーサ駆動周波数の上昇の少なくと も一方が行われ、同冷凍機(40)の冷凍能力が上げら れる。こうすれば、極低温冷凍装置のマルチ運転中にシ ールド冷凍機(40)の負荷が変わっても、全ての冷凍

機の冷凍能力が一律に同じように変わることはなく、そ

14

の負荷に応じて冷凍能力を変更させることができ、例えばJT冷凍機(51)の冷凍能力を略一定に保ちながら、シールド冷凍機(40)の冷凍能力を変化させることもでき、よってシールド冷凍機(40)の幅広い能力制御を行うことができる。

【0039】請求項23の発明では、請求項22の発明の極低温冷凍装置において、請求項15の発明と同様に、予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を可変とする。そして、制御手段(71)は、上記予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を、シールド冷凍機(40)の冷凍負荷が設定値よりも低下したときに圧縮機(8)の運転周波数が下がる一方、上記冷凍負荷が設定値よりも増大したときに圧縮機(8)の運転周波数が上がるように制御する構成とする。

【0040】こうすることで、シールド冷凍機(40)の冷凍負荷に応じて圧縮機(8)の運転周波数が制御手段(71)で制御され、シールド冷凍機(40)の冷凍負荷が設定値よりも低下したときに、予冷及びシールド冷凍機(26)、(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数が下げられる一方、シールド冷凍機(40)の冷凍負荷が設定値よりも増大したときに、圧縮機(8)の運転周波数が上げられる。このように冷凍機(26)、(40)のディスプレーサ駆動周波数のみならず圧縮機(8)の運転周波数も変えられるので、冷凍装置のマルチ運転中のシールド冷凍機(40)の負荷の変化に応じて冷凍能力を大きく変更させることができ、シールド冷凍機(40)のより一層幅広い能力制御を行うことができる。

【0041】請求項24の発明では、図11に示すよう に、請求項9又は10の発明の極低温冷凍装置におい て、シールド冷凍機(40)の冷凍負荷を検出するシー ルド冷凍機負荷検出手段(76)と、このシールド冷凍 機負荷検出手段(76)により検出される冷凍負荷が設 定値よりも下がったときに、上記シールド冷凍機(4 0) に対する冷媒ガス流量が低下する一方、冷凍負荷が 設定値よりも上がったときに、上記予冷冷凍機(26) に対する冷媒ガス流量が低下するように冷媒流量調整手 段(46)を制御する制御手段(71)とを設ける。 【0042】この構成により、シールド冷凍機(40) の冷凍負荷がシールド冷凍機負荷検出手段(76)によ り検出されて、このシールド冷凍機(40)の冷凍負荷 に応じて冷媒流量調整手段(46)が制御手段(71) で制御され、シールド冷凍機(40)の冷凍負荷が設定 値よりも低下したときには、シールド冷凍機(40)に 対する冷媒ガス流量が低下してその冷凍能力が下げら れ、一方、シールド冷凍機(40)の冷凍負荷が設定値 よりも増大したときには、予冷冷凍機(26)に対する 50 冷媒ガス流量が低下してシールド冷凍機(40)の冷凍

(9)

能力が下げられる。従って、この場合でも、請求項22 の発明と同様に、シールド冷凍機(40)の冷凍能力の 幅広い能力制御を行うことができる。

【0043】請求項25の発明では、請求項24の発明の極低温冷凍装置において、予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を可変とし、制御手段(71)は、予冷及びシールド冷凍機(26),(40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数を、シールド冷凍機(40)の冷凍負荷が設定値よりも下がったときに圧縮機(8)の運転周波数が下がる一方、冷凍負荷が設定値よりも上がったときに圧縮機(8)の運転周波数が上がるように制御する構成とする。

【0044】こうすると、シールド冷凍機(40)の冷凍負荷に応じて圧縮機(8)の運転周波数が制御手段(71)で制御されて変えられ、シールド冷凍機(40)の冷凍負荷が設定値よりも低下したときに、予冷及びシールド冷凍機(26), (40)に高圧冷媒ガスを供給する圧縮機(8)の運転周波数が下げられる一方、シールド冷凍機(40)の冷凍負荷が設定値よりも増大 20したときに、圧縮機(8)の運転周波数が上げられる。よって、請求項23の発明と同様の作用効果を奏することができる。

[0045]

【発明の実施の形態】

(実施形態1)図1は本発明の実施形態1に係る極低温冷凍装置(R)の全体構成を示し、この冷凍装置(R)は超電導磁石(M)をその超電導コイルが極低温レベルになるように冷却するためのもので、液体へリウム(冷媒)を貯溜する液体へリウムタンク(Th)に付設され 30 ている。そして、このへリウムタンク(Th)内に超電導磁石(M)が液体へリウムにより浸漬されて収容され、この液体へリウムにより磁石(M)の超電導コイルが臨界温度以下に冷却保持される。

【0046】冷凍装置(R)は圧縮機ユニット(1)と 冷凍機ユニット(21)とからなる。上記圧縮機ユニッ ト(1)には、低圧ガス吸入口(2)からの低圧ヘリウ ムガスを、逆止弁(3)を有する低圧配管(4)を介し て吸い込んで圧縮する低段圧縮機 (5) と、この低段圧 縮機(5)から吐出されたヘリウムガスを、中間圧ガス 吸入口(6)から中間圧配管(7)を介して吸入された 中間圧のヘリウムガスと共に吸い込んでさらに高圧に圧 縮する高段圧縮機(8)とが配設され、この高段圧縮機 (8) の吐出側は冷凍機用高圧配管(9)を介して冷凍 機用高圧ガス吐出口(10)に、また上記冷凍機用高圧 配管(9)から分岐した」T用高圧配管(11)を介し てJT用高圧ガス吐出口(12)にそれぞれ接続されて いる。上記高段圧縮機(8)は運転周波数可変のインバ ータ式圧縮機からなり、その運転周波数が独立して可変 とされている。

【0047】上記JT用高圧配管(11)は途中で第1 及び第2の2つの分岐配管(11a), (11b)に並 列に分岐され、第1分岐配管(11a)には流量調整用 の絞り固定式の第1流量調整弁(V1)と、この第1流 園主

園主

「V1)の圧縮機吐出側に電磁弁からなる第1 開閉弁(AV1)とが配設されている。一方、第2分岐 配管(11b)には同様の第2流量調整弁(V2)と第 2開閉弁(AV2)とがそれぞれ配設され、この第2流 **園調整弁(∀2)の開度は第1流量調整弁(∀1)と異** なり、例えば第1流量調整弁(V1)よりも小さい開度 に設定されている。この実施形態では、上記第1及び第 2流量調整弁(V1), (V2)並びに第1及び第2開 閉弁(AV1), (AV2)により、高段圧縮機(8) から後述のJT弁(58) へ至る髙圧配管(11)の開 度を変えてJT弁(58)に対するヘリウムガス圧(J T高圧)を調整するJT高圧調整機構(13)が構成さ れ、例えば第1開閉弁(AV1)を開きかつ第2開閉弁 (AV2)を閉じたときにはヘリウムガスの流量を多く してJT高圧を低くする一方、逆に第1開閉弁(AV 1)を閉じかつ第2開閉弁(AV2)を開いたときには ヘリウムガスの流量を少なくしてJT髙圧を高くするよ うになっている。

【0048】さらに、(Tb)はヘリウムガスを貯蔵するパッファタンクで、このパッファタンク(Tb)にはヘリウムガス給排配管(15)の一端部が接続されている。このヘリウムガス給排配管(15)の他端側は圧縮機ユニット(1)内でヘリウムガス供給配管(16)とヘリウムガス戻し配管(17)とに分岐され、ヘリウムガス供給配管(16)の端部は、上記低段圧縮機(5)の吸込側と低圧ガス吸入口(2)との間の低圧配管

(4)に接続され、このヘリウムガス供給配管(16)には低圧制御弁(LPR)が配設されている。この低圧制御弁(LPR)は、低圧配管(4)でのヘリウムガスの圧力が設定圧以下に低下したときにそれをパイロット圧として自動的に開くもので、この低圧制御弁(LPR)の開弁に伴いバッファタンク(Tb)内のヘリウムガスが低圧配管(4)(冷媒回路)に供給される。

【0049】一方、ヘリウムガス戻し配管(17)の端部は上記冷凍機用高圧配管(9)(JT用高圧配管(11))に接続され、このヘリウムガス戻し配管(17)の途中には高圧制御弁(HPR)が配置されている。この高圧制御弁(HPR)は、冷凍機用高圧配管(9)でのヘリウムガスの圧力が設定圧以上に上昇したときにそれをパイロット圧として自動的に開くもので、この高圧制御弁(HPR)の開弁により冷凍機用高圧配管(9)及びJT用高圧配管(11)(冷媒回路)のヘリウムガスがバッファタンク(Tb)内に戻される。

【0050】これに対し、上記冷凍機ユニット(21) は真空デュワー(D)を有し、この真空デュワー(D) 50 内部に上記液体へリウムタンク(Th)が熱シールド板

17

(S)により外部から熱シールドされた状態で収容され ており、この熱シールド板(S)の内部が、後述のJT 冷凍機(51)により極低温レベルに冷却される極低温 冷却部分とされている。

【0051】また、真空デュワー(D)の内部には液体 窒素を貯溜する液体窒素タンク (Tn) が配設されてい る。この液体窒素タンク(Tn)の底部には窒素配管

(22)の一端部が接続され、この窒素配管(22)の 他端部は同じ液体窒素タンク(Tn)内の上部に開口さ れていて、窒素配管(22)及び液体窒素タンク(T n)により閉回路の窒素回路が構成されている。

【0052】そして、上記窒素配管(22)の途中には 上記熱シールド板(S)に伝熱可能に接触したシールド 板熱交換器(23)が配設されており、液体窒素タンク (Tn)内の液体窒素を窒素配管(22)を介してシー ルド板熱交換器(23)に供給し、その熱交換器(2 3) での熱交換により熱シールド板(S) を液体窒素の 温度(約80K)に冷却して、熱シールド板(S)内の 液体ヘリウムタンク(Th)等を外部から熱シールドす るとともに、シールド板熱交換器(23)での熱交換に よって蒸発した窒素ガスを窒素タンク(Tn)内に戻す ようにしている。尚、(24)は窒素配管(22)に接 続された大気放出弁で、液体窒素タンク(Tn)内の余 剰の窒素を真空デュワー(D)外部に放出するためのも のである。

【0053】上記冷凍機ユニット(21)は、圧縮機ユ ニット(1)の高段圧縮機(8)に対し互いに並列に閉 回路に接続された予冷冷凍機(26)、シールド冷凍機 (40) 及びJT冷凍機(51) からなる。上記予冷冷 凍機(26)は、JT冷凍機(51)におけるヘリウム ガス(冷媒)を予冷するためにヘリウムガスを圧縮及び 膨張させるもので、ディスプレーサ(図示せず)に対す るヘリウムガス圧により該ディスプレーサを往復動させ るガス圧駆動型のG-M(ギフォード・マクマホン)サ イクルの膨張機で構成されている。

【0054】この予冷冷凍機(26)は上記真空デュワ ー (D) の外部に配置される密閉状のモータヘッド (2 7) と、該モータヘッド(27) に連設された大小2段 構造のシリンダ(28)とを有する。上記モータヘッド (27)には高圧ガス入口(29)及び低圧ガス出口 (30) が開口され、高圧ガス入口(29) は予冷側分 岐高圧配管(31)及び集合高圧配管(33)を介して

上記圧縮機ユニット(1)の冷凍機用高圧ガス吐出口 (10)に、また低圧ガス出口(30)は予冷側分岐中 間圧配管(34)及び集合中間圧配管(36)を介して 圧縮機ユニット(1)の中間圧ガス吸入口(6)にそれ ぞれ接続されている。

【0055】一方、シリンダ(28)の先端部は真空デ ュワー(D)の側壁を貫通してその内部の熱シールド板 (S) 内に延びており、その大径部の先端部は所定温度 18

レベルに冷却保持される第1ヒートステーション(3 7) に、また小径部の先端部は上記第1ヒートステーシ ョン(37)よりも低い温度レベルに冷却保持される第 2ヒートステーション(38)にそれぞれ形成されてい

【0056】すなわち、ここでは図示しないが、シリン ダ(28)内には、上記各ヒートステーション(3 7), (38)に対応する位置にそれぞれ膨張空間を区 画形成するフリータイプのディスプレーサ(置換器)が 往復動可能に嵌挿されている。一方、モータヘッド(2 7)内には、回転する毎に開閉するロータリバルブと、 該ロータリバルブを駆動するバルブモータとが収容され ている。ロータリバルブは、上記高圧ガス入口(29) から流入したヘリウムガスをシリンダ(28)内の各膨 張空間に供給し、又は各膨張空間内で膨張したヘリウム ガスを低圧ガス出口(30)から排出するように切り換 わる。また、モータヘッド(27)には、シリンダ(2 8) 内の膨張空間に対し外部から開度調整可能な可変オ リフィスを介して連通する中間圧室が設けられており、 ロータリバルブの切換えにより膨張空間と中間圧室との 間に圧力差を生じさせ、この圧力差によりディスプレー サを往復駆動するとともに、可変オリフィスの開度を変 えることで、ディスプレーサの動きを調整するようにし ている(尚、可変オリフィスはヘリウムガスの低圧又は 高圧配管の途中に設けられたものであってもよい)。そ して、ロータリバルブの開閉により圧縮機ユニット (1) の高段圧縮機(8) からの高圧へリウムガスをシ リンダ(28)内の各膨張空間でサイモン膨張させて、 その膨張に伴う温度降下により極低温レベルの寒冷を発 生させ、その寒冷をシリンダ(28)における第1及び 第2ヒートステーション(37), (38)にて保持す る。つまり、予冷冷凍機(26)では、高段圧縮機 (8) から吐出された高圧のヘリウムガスを断熱膨張さ せてヒートステーション(37)、(38)の温度を低 下させ、JT冷凍機(51)における後述の予冷器(5 6), (57)を予冷するとともに、膨張した中間圧の ヘリウムガスを圧縮機(8)に戻して再圧縮するように なされている。

【0057】一方、シールド冷凍機(40)は上記予冷 40 冷凍機(26)と同じ構造のガス圧駆動型のもので、真 空デュワー(D)の外部に配置されるモータヘッド(4 1) と、該モータヘッド(41)に連設され、真空デュ ワー(D)の側壁を貫通してその内部に延びるシリンダ (42) とを有する。上記モータヘッド(41) には高 圧ガス入口(44)及び低圧ガス出口(45)が開口さ れ、高圧ガス入口(44)はシールド側分岐高圧配管 (32)を介して上記集合高圧配管(33)、つまり圧 縮機ユニット(1)の冷凍機用高圧ガス吐出口(10) に、また低圧ガス出口(45)はシールド側分岐中間圧 配管(35)を介して上記集合中間圧配管(36)、つ

まり圧縮機ユニット(1)の中間圧ガス吸入口(6)にそれぞれ接続されている。一方、シリンダ(42)の先端部は所定温度レベルに冷却保持されるヒートステーション(43)に形成されていて、このヒートステーション(43)は上記液体窒素タンク(Tn)内部に臨んでいる。そして、シールド冷凍機(40)により、高段圧縮機(8)から吐出された高圧のヘリウムガスを断熱膨張させてヒートステーション(43)の温度を低下させ、液体窒素タンク(Tn)内の蒸発窒素ガスを冷却して液化するとともに、膨張した中間圧ヘリウムガスを圧縮機(8)に戻して再圧縮するようになされている。

【0058】上記JT冷凍機(51)は、約4Kレベルの寒冷を発生させるためにヘリウムガスをジュールトムソン膨張させる冷凍機であって、この冷凍機(51)は上記真空デュワー(D)内で熱シールド板(S)の外側に配置された第1JT熱交換器(52)と、熱シールド板(S)の内側に配置された第2及び第3JT熱交換器(53),(54)とを備えている。この各JT熱交換器(52)~(54)は1次側及び2次側をそれぞれ通過するヘリウムガス間で互いに熱交換させるもので、第1JT熱交換器(52)の1次側は圧縮機ユニット

(1)のJT用高圧ガス吐出口(12)にJT側高圧配 管(55)を介して接続されている。また、第1及び第 2 J T熱交換器 (52), (53) の各1次側同士は、 上記予冷冷凍機(26)におけるシリンダ(28)の第 1ヒートステーション(37)外周に配置した第1予冷 器(56)を介して接続されている。同様に、第2及び 第3 J T 熱交換器 (53), (54) の各1次側同士 は、第2ヒートステーション(38)外周に配置した第 2予冷器(57)を介して接続されている。さらに、上 記第3JT熱交換器(54)の1次側は、高圧のヘリウ ムガスをジュールトムソン膨張させるJT弁(58)に 吸着器(59)を介して接続されている。上記JT弁 (58) は真空デュワー(D)外側から操作ロッド(5 8a) によって開度が調整される。このJT弁(58) は、液体へリウム戻し配管(60)を介して上記液体へ リウムタンク(Th)内に連通されている。また、この ヘリウムタンク (Th)内は、ヘリウムガス吸入配管 (61)を介して上記第3JT熱交換器(54)の2次 側に接続されている。そして、この第3JT熱交換器 (54)の2次側は第2JT熱交換器(53)の2次側

(54)の2次側は第2JT熱交換器(53)の2次側を経て第1JT熱交換器(52)の2次側に接続され、この第1JT熱交換器(52)の2次側は低圧配管(62)を介して圧縮機ユニット(1)の低圧ガス吸入口(2)に接続されている。

【0059】すなわち、JT冷凍機(51)は圧縮機ユニット(1)の両圧縮機(5),(8)に対し高低圧配管(55),(62)を介して直列に接続された冷媒回路をなし、その冷媒回路の一部が液体へリウム戻し配管(60)及びヘリウムガス吸入配管(61)を介してへ

20

リウムタンク(Th)内に開放されており、このヘリウ ムタンク(Th)内で蒸発したヘリウムガスをガス吸入 配管(61)から冷媒回路に吸い込んで第3~第1JT 熱交換器(54)~(52)の各2次側を通して圧縮機 ユニット(1)の低段及び高段圧縮機(5), (8) に 吸入圧縮する。また、この高段圧縮機(8)により圧縮 された高圧へリウムガスを第1~第3 J T 熱交換器 (5 2)~(54)において、圧縮機ユニット(1)側に向 かう低温低圧のヘリウムガスと熱交換させるとともに、 10 第1及び第2予冷器(56), (57)でそれぞれ予冷 冷凍機(26)の第1及び第2ヒートステーション(3 7), (38)で冷却(予冷)した後、JT弁(58) でジュールトムソン膨張させて約4Kの液状態のヘリウ ムとなし、この液体へリウムを液体へリウム戻し配管 (60) を経由してタンク(Th) 内に戻すようになさ れている。

【0060】上記低段及び高段圧縮機(5), (8) と、予冷冷凍機(26)及びシールド冷凍機(40)の 各バルブモータと、JT髙圧調整機構(13)の第1及 び第2開閉弁(AV1), (AV2)とは制御装置(7 1)に接続されていて、該制御装置(71)からの制御 信号によって作動制御されるようになっている。上記制 御装置(71)には、ヘリウムガス給排配管(15)内 の圧力(バッファタンク(Tb)の内圧)を検出するバ ッファタンク圧センサ (74)の検出信号が少なくとも 入力されている。上記バッファタンク(Tb)の内圧は JT冷凍機(51)の冷凍負荷に応じて変化するもの で、タンク圧力が下がったときに冷凍負荷が低下し、一 方、タンク圧力が上がると冷凍負荷が増大する。従っ て、このバッファタンク(Tb)の内圧を検出するバッ ファタンク圧センサ (74) は、JT冷凍機 (51) の 冷凍負荷を検出するJT冷凍機負荷検出手段を構成して いる。

【0061】この発明の特徴の1つとして、予冷冷凍機(26)及びシールド冷凍機(40)のロータリバルブ駆動用バルブモータの回転数を制御するディスプレーサ駆動周波数可変手段としてのバルブモータ周波数制御器(72)が設けられ、このバルブモータ周波数制御器(72)は上記制御装置(71)により作動制御されるようになっており、バルブモータ周波数制御器(72)により予冷及びシールド冷凍機(26),(40)の各ディスプレーサの往復動の駆動周波数が可変とされている。

【0062】そして、制御装置(71)では、上記バッファタンク(Tb)の内圧に応じて、各冷凍機(26), (40)におけるディスプレーサ駆動周波数、高段圧縮機(8)の運転周波数、並びにJT高圧調整機構(13)によるJT高圧を変え、バッファタンク(Tb)の内圧が設定値よりも下がったとき(JT冷凍機(51)の冷凍負荷が設定値よりも下がったとき)に、

される。

予冷冷凍機(26)のディスプレーサ駆動周波数を低下させかつシールド冷凍機(40)のディスプレーサ駆動 周波数を上昇させ、予冷及びシールド冷凍機(26),

(40)に高圧へリウムガスを供給する高段圧縮機(8)の運転周波数を下げ、さらに、JT高圧調整機構(13)の第1開閉弁(AV1)を開きかつ第2開閉弁(AV2)を閉じてJT弁(58)へのJT高圧を低くする一方、バッファタンク(Tb)の内圧が設定値よりも上がったとき(JT負荷が設定値よりも上がったとき)には、逆に、予冷冷凍機(26)のディスプレーサ駆動周波数を上昇させかつシールド冷凍機(40)のディスプレーサ駆動周波数を低下させ、高段圧縮機(8)の運転周波数を上げ、さらに、JT高圧調整機構(13)の第1開閉弁(AV1)を閉じかつ第2開閉弁(AV2)を開いてJT弁(58)へのJT高圧を高くするようになされている。

【0063】次に、上記実施形態の作用について説明する。超電導磁石(M)が作動する定常状態では、その超電導コイルがヘリウムタンク(Th)内の液体ヘリウムにより臨界温度以下に冷却保持される。また、上記ヘリウムタンク(Th)内で蒸発したヘリウムガスは、タンク(Th)内に開口するヘリウムガス吸入配管(61)から吸い込まれて極低温冷凍装置(R)の冷媒回路に供給され、そこで圧縮及び膨張により冷却されて液化する。この液体ヘリウムは液体ヘリウム戻し配管(60)を経てタンク(Th)内に液体ヘリウムが所定量以上貯溜されて、超電導コイルが臨界温度以下に安定して冷却される。

【0064】一方、液体窒素タンク(Tn)内の液体窒素が窒素配管(22)を介してシールド板熱交換器(23)により熱シールド板(S)が約80Kに冷却保持され、この冷却によって熱シールド板(S)内の液体へリウムタンク(Th)やその内部の超電導磁石(M)、予冷冷凍機(26)の各ヒートステーション(37)、(38)等が外部から熱シールドされる。また、上記シールド板熱交換器(23)で熱シールド板(S)との熱交換により液体窒素が蒸発して窒素ガスとなり、この窒素ガスは窒素配管(22)を経て液体窒素タンク(Tn)内の上部に戻る。

【0065】上記冷凍装置(R)の運転についてさらに詳しく説明すると、圧縮機ユニット(1)の高段圧縮機(8)から供給された高圧のヘリウムガスの一部が予冷冷凍機(26)におけるシリンダ(28)内の各膨張空間で膨張し、このガスの膨張に伴う温度降下により第1ヒートステーション(37)が所定温度レベルに、また第2ヒートステーション(38)が第1ヒートステーション(37)よりも低い温度レベルにそれぞれ冷却される。膨張空間で膨張したヘリウムガスは圧縮機ユニット

22 (1) に戻り、その中間圧配管(7) を経由して上記高 段圧縮機(8) に吸い込まれて圧縮される。

【0066】また、上記圧縮機ユニット(1)の高段圧縮機(8)から供給された高圧のヘリウムガスの残りの一部がシールド冷凍機(40)におけるシリンダ(42)内の膨張空間で膨張し、このガスの膨張に伴う温度降下により上記液体窒素タンク(Tn)内のヒートステーション(43)が所定温度レベルに冷却される。このことで、液体窒素タンク(Tn)内上部の窒素ガスが冷却されて液化し、液体窒素に戻る。尚、このシールド冷凍機(40)のシリンダ(42)内の膨張空間で膨張したヘリウムガスも、上記予冷冷凍機(26)のガスと同様に圧縮機ユニット(1)に戻り、その中間圧配管(7)を経由して高段圧縮機(8)に吸い込まれて圧縮

【0067】一方、圧縮機ユニット(1)におけるJT 用高圧配管(11)の両分岐配管(11a), (11 b) における第1及び第2開閉弁(AV1), (AV 2) のいずれかが開弁しており、高段圧縮機(8) から 吐出された高圧のヘリウムガスの残部はJT用高圧配管 (11)を経由してJT冷凍機(51)の第1JT熱交 換器(52)の1次側に入り、そこで圧縮機ユニット (1) 側へ向かう2次側の低圧へリウムガスと熱交換さ れて常温300Kから例えば約50Kまで冷却され、そ の後、上記予冷冷凍機 (26) の第1ヒートステーショ ン (37) 外周の第1予冷器 (56) に入ってさらに冷 却される。この冷却されたガスは第2 J T 熱交換器 (5 3) の1次側に入って、同様に2次側の低圧へリウムガ スとの熱交換により例えば約15Kまで冷却された後、 予冷冷凍機(26)の第2ヒートステーション(38) 外周の第2予冷器(57)に入ってさらに冷却される。 この後、ガスは第3JT熱交換器(54)の1次側に入 って2次側の低圧ヘリウムガスとの熱交換によりさらに 冷却され、しかる後にJT弁(58)に至る。このJT 弁(58)では高圧ヘリウムガスは絞られてジュールト ムソン膨張し、約4Kの液状態のヘリウムとなり、この 液体へリウムは液体へリウム戻し配管(60)を経由し て液体へリウムタンク(Th)へ供給される。また、こ の液体ヘリウムタンク(Th)内で蒸発したヘリウムガ スは、ヘリウムガス吸入配管(61)を介して第3JT 熱交換器 (54) の2次側に吸入され、第2及び第1J T熱交換器(53), (52)の各2次側を経由して低 段圧縮機(5)に吸い込まれて圧縮される。

【0068】そして、このような極低温冷凍装置(R)の運転中、JT冷凍機(51)の冷凍負荷としてバッファタンク(Tb)内部の圧力がバッファタンク圧センサ(74)により検出され、このバッファタンク圧センサ(74)からの信号を受けた制御装置(71)により、上記各冷凍機(26),(40)のディスプレーサ駆動50 周波数、高段圧縮機(8)の運転周波数、並びにJT高

24

圧調整機構(13)の開閉弁(AV1), (AV2)に よるJT高圧がバッファタンク(Tb)の内圧に応じて 制御される。すなわち、バッファタンク(Tb)の内圧 が設定値よりも下がってJT負荷が下がったときには、 予冷冷凍機(26)のディスプレーサ駆動周波数が低下 しかつシールド冷凍機(40)のディスプレーサ駆動周 波数が上昇し、高段圧縮機(8)の運転周波数が下げら れ、さらに、JT髙圧調整機構(13)の第1開閉弁 (AV1)が開かれかつ第2開閉弁(AV2)が閉じら れてJT弁(58)へのJT高圧が低くなる。このこと でJT冷凍機(51)の冷凍能力が下げられる。

【0069】一方、バッファタンク(Tb)の内圧が設 定値よりも上がったとき(JT冷凍機(51)の冷凍負 荷が上がったとき)には、予冷冷凍機(26)のディス プレーサ駆動周波数が上昇しかつシールド冷凍機(4 0) のディスプレーサ駆動周波数が低下し、高段圧縮機 (8)の運転周波数が上げられ、さらに、JT髙圧調整 機構(13)の第1開閉弁(AV1)が閉じかつ第2開 閉弁(AV2)が開かれてJT弁(58)へのJT高圧 が高くなり、以上によりJT冷凍機(51)の冷凍能力 が上げられる。

【0070】したがって、この実施形態では、極低温冷 凍装置(R)におけるJT冷凍機(51)の予冷冷凍機 (26) 及びシールド冷凍機(40) のディスプレーサ 駆動周波数が可変であるので、その両冷凍機(26), (40)の冷凍能力を独立して変えることができ、予冷 冷凍機(26)及びシールド冷凍機(40)をマルチ運 転する場合でも、予冷冷凍機(26)つまりJT冷凍機 (51) の冷凍能力とシールド冷凍機(40)の冷凍能 力との能力配分を同じ仕様の冷凍機を用いて調整するこ 30 とができ、冷凍機(26),(40)の仕様変更を要す ることなく、種々の冷凍能力の要求に対応させることが できる。因みに、図2は予冷冷凍機(26)のディスプ レーサ駆動周波数を変えたときの予冷及びシールド冷凍 機(26), (40)の冷凍能力の変化を例示したもの であり、予冷冷凍機(26)のディスプレーサ駆動周波 数の上昇に応じて予冷冷凍機(26)の冷凍能力が増大 しかつシールド冷凍機(40)の冷凍能力が低下する。 【0071】また、バッファタンク(Tb)の内圧(J T冷凍機(51)の冷凍負荷)に応じて各冷凍機(2 6), (40)のディスプレーサ駆動周波数を変えるの で、極低温冷凍装置(R)のマルチ運転中にバッファタ ンク(Tb)の内圧が変化してJT冷凍機(51)の負 荷が変わっても、2台の冷凍機(26), (40)の冷 凍能力が一律に同じように変わらず、その負荷に応じて 冷凍能力を変更させることができ、例えばシールド冷凍 機(40)の冷凍能力を略一定に保ちながら、 JT冷凍 機(51)の冷凍能力を変化させることもでき、よって JT冷凍機(51)の幅広い能力制御を行うことができ る。

【0072】また、圧縮機ユニット(1)の高段圧縮機 (8) の運転周波数が低段圧縮機(5) と独立して可変 であり、この高段圧縮機(8)の運転周波数がバッファ タンク(Tb)の内圧(JT冷凍機(51)の冷凍負 荷)に応じて変えられるので、冷凍機(26), (4 0) のディスプレーサ駆動周波数のみならず高段圧縮機 (8) の運転周波数をもJT冷凍機(51)の負荷に応 じて変えることができ、冷凍装置(R)のマルチ運転中 のJT冷凍機(51)の負荷の変化に応じて冷凍能力を 大きく変更させることができ、JT冷凍機(51)のよ り一層幅広い能力制御を行うことができる。図3は、図 2に示す予冷及びシールド冷凍機(26), (40)の 能力特性において、高段圧縮機(8)の運転周波数を上 昇させたものを示し、その運転周波数の上昇分だけ予冷 及びシールド冷凍機(26), (40)の双方の冷凍能 力が増大している。

【0073】さらに、上記バッファタンク(Tb)の内 圧(JT冷凍機(51)の冷凍負荷)に応じてJT高圧 調整機構(13)が制御されてJT弁(58)に対する ヘリウムガスの圧力が調整されるので、JT冷凍機 (5 1) の負荷の変化に応じて冷凍能力を大きく変更させる ことができ、JT冷凍機(51)のさらに幅広い能力制 御を行うことができる。

【〇〇74】尚、上記実施形態では、バッファタンク (Tb) の内圧が設定値よりも下がったときに、予冷冷 凍機(26)のディスプレーサ駆動周波数を低下させか つシールド冷凍機(40)のディスプレーサ駆動周波数 を上昇させる一方、バッファタンク(Tb)の内圧が設 定値よりも上がったとき、予冷冷凍機(26)のディス プレーサ駆動周波数を上昇させかつシールド冷凍機(4 0) のディスプレーサ駆動周波数を低下させるようにし ているが、バッファタンク(Tb)の内圧の低下時に、 予冷冷凍機(26)のディスプレーサ駆動周波数の低下 又はシールド冷凍機(40)のディスプレーサ駆動周波 数の上昇の少なくとも一方を行い、バッファタンク(T b)の内圧の上昇時に、予冷冷凍機(26)のディスプ レーサ駆動周波数の上昇又はシールド冷凍機(40)の ディスプレーサ駆動周波数の低下の少なくとも一方を行 うようにしてもよい。

【0075】また、上記実施形態では、バッファタンク (Tb) の内圧に応じて、各冷凍機(26), (40) のディスプレーサ駆動周波数、高段圧縮機(8)の運転 周波数、並びにJT高圧調整機構(13)の開閉弁(A V1), (A V 2) によるJT高圧を制御するようにし ているが、冷凍機(26)、(40)のディスプレーサ 駆動周波数の可変制御のみを行うようにしてもよい。し かし、JT冷凍機(51)の冷凍能力を広くすることが できる点で、上記実施形態のように、冷凍機(26), (40)のディスプレーサ駆動周波数の制御に加え、髙

50 段圧縮機(8)の運転周波数並びにJT高圧調整機構

(13)によるJT高圧を可変制御するのが好ましい。 【0076】さらに、上記予冷及びシールド冷凍機(2 6), (40) の各々に内蔵されている可変オリフィス の開度調整を行って、各冷凍機(26), (40)のデ ィスプレーサに対するヘリウムガス圧を変えるようにし てもよい。すなわち、制御装置(71)において、上記 可変オリフィスの開度をディスプレーサ駆動周波数の変 化に応じて制御し、図4に示す如く、該駆動周波数が高 くなるほどオリフィス開度が大きくなるように制御す る。こうすれば、予冷及びシールド冷凍機(26),

(40)のディスプレーサ駆動周波数のみならず、この 各冷凍機(26),(40)のディスプレーサ駆動周波 数の変化に応じて可変オリフィスの開度が最適開度に制 御されてディスプレーサに対するヘリウムガス圧も変わ るので、予冷冷凍機 (26) の冷凍能力とシールド冷凍 機(40)の冷凍能力との能力配分をさらに広い範囲に 亘り調整して、大幅な冷凍能力の要求に対応させること ができる。

【0077】また、上記実施形態では、バッファタンク (Tb) の内圧に応じて、各冷凍機(26), (40) のディスプレーサ駆動周波数、高段圧縮機(8)の運転 周波数、並びにJT高圧調整機構(13)の開閉弁(A V1), (AV2) によるJT高圧を制御するようにし ているが、低段圧縮機(5)の運転周波数を可変とし て、この圧縮機(5)の運転周波数をJT高圧と共にバ ッファタンク (Tb) の内圧に応じて制御装置 (71) により制御し、圧縮機(5)の運転周波数を、バッファ タンク(Tb)の内圧(JT冷凍機(51)の冷凍負 荷)が設定値よりも低下したときに下げる一方、バッフ ァタンク (Tb) の内圧が設定値よりも増大したときに 上げるようにすることもできる。こうすれば、バッファ タンク(Tb)の内圧が下がってJT冷凍機(51)の 冷凍負荷が設定値よりも低下したとき、低段圧縮機

(5)の運転周波数が下がってJT冷凍機(51)の冷 凍能力が低下する一方、バッファタンク (Tb)の内圧 が上がってJT冷凍機(51)の冷凍負荷が設定値より も増大したとき、圧縮機(5)の運転周波数が上がり、 JT冷凍機(51)の冷凍能力が増大することとなり、 JT冷凍機(51)の負荷の変化に応じて冷凍能力を大 きく変更して、JT冷凍機(51)のより一層幅広い能 力制御が行える。

【0078】(実施形態2)図5は本発明の実施形態2 を示し(尚、以下の各実施形態において図1と同じ部分 については同じ符号を付してその詳細な説明は省略す る)、上記実施形態では、バッファタンク(Tb)の内 圧に応じて予冷及びシールド冷凍機(26), (40) のディスプレーサ駆動周波数を可変制御するようにして いるのに対し、各冷凍機(26),(40)に対するへ リウムガス流量を可変制御するようにしたものである。 【0079】すなわち、この実施形態では、圧縮機ユニ 50 能力が増大する。よって、この実施形態でも、上記実施

ット(1)の高圧ヘリウムガスを予冷冷凍機(26)に 供給する予冷側分岐高圧配管(31)の途中に開度調整 可能な電磁弁からなる予冷側流量調整弁(AV3)が、 また高圧へリウムガスをシールド冷凍機(40)に供給 するシールド側分岐高圧配管(32)の途中に同様のシ ールド側流量調整弁(AV4)がそれぞれ配設されてお り、これらの流量調整弁(AV3), (AV4)によ り、2台の冷凍機(26), (40) に対するヘリウム ガスの流量を調整するヘリウム流量調整機構(46)が 10 構成されている。

【0080】そして、上記両流量調整弁(AV3), (AV4)は制御装置(71)により作動制御するよう になされており、制御装置(71)は、バッファタンク (Tb)の内圧(JT冷凍機(51)の冷凍負荷)に応 じて、高段圧縮機(8)及びJT高圧調整機構(13) を上記実施形態 1 と同様に作動制御するのに加え、予冷 側及びシールド側流量調整弁(AV3), (AV4)の 開度を制御して各冷凍機(26), (40)に対するへ リウムガス流量を変化させ、バッファタンク(Tb)の 内圧が設定値よりも下がって J T 冷凍機 (51) の冷凍 負荷が低下したときに、予冷冷凍機(26)に対するへ リウムガス流量を低下させる一方、バッファタンク(T b) の内圧が設定値よりも上昇してJT冷凍機(51) の冷凍負荷が増大したときには、シールド冷凍機(4 0) に対するヘリウムガス流量を低下させるようにして いる。その他の構成は実施形態1と同様である。

【0081】したがって、この実施形態では、バッファ タンク (Tb) の内圧 (JT冷凍機 (51) の冷凍負 荷)に応じて、予冷側及びシールド側流量調整弁(AV 3), (AV4)の開度が制御されて予冷及びシールド 冷凍機(26)、(40)に対するヘリウムガス流量が 調整されるとともに、高段圧縮機(8)の運転周波数及 びJT高圧調整機構(13)が制御され、バッファタン ク(Tb)の内圧が設定値よりも下がってJT冷凍機 (51) の冷凍負荷が低下したときに、予冷冷凍機(2 6) に対するヘリウムガス流量が低下するように両流量 調整弁(AV3),(AV4)の開度が制御される。ま た、高段圧縮機(8)の運転周波数が下げられ、さらに JT弁(58)へのヘリウムガス圧が下がるようにJT 高圧調整機構(13)が調整される。このことでJT冷 凍機(51)の冷凍能力が下げられる。

【0082】一方、バッファタンク(Tb)の内圧が設 定値よりも上昇してJT冷凍機(51)の冷凍負荷が増 大したときには、シールド冷凍機(40)に対するヘリ ウムガス流量が低下するように両流量調整弁(AV 3), (AV4)の開度が制御され、同時に、高段圧縮 機(8)の運転周波数が上昇し、JT弁(58)へのへ リウムガス圧が上がるようにJT高圧調整機構(13) が調整され、このことでシールド冷凍機(40)の冷凍

形態1と同様の作用効果を奏することができる。

【0083】尚、図6は予冷冷凍機(26)に対応する 予冷側流量調整弁(AV3)の開度を変えたときの予冷 及びシールド冷凍機(26), (40)の冷凍能力の変 化を例示したものであり、予冷側流量調整弁 (AV3) の開度を大きくして予冷冷凍機(26)へのヘリウムガ ス流量が増加するのに応じ、予冷冷凍機(26)の冷凍 能力が増大しかつシールド冷凍機(40)の冷凍能力が 低下している。そして、図7に示すように、図6に示す 予冷及びシールド冷凍機(26), (40)の能力特性 において、髙段圧縮機(8)の運転周波数を上昇させた ときには、その運転周波数の上昇分だけ予冷及びシール ド冷凍機(26). (40)の双方の冷凍能力が増大す

【0084】また、この実施形態2では、予冷側及びシ ールド側分岐高圧配管(31),(32)の途中にそれ ぞれ予冷側及びシールド側流量調整弁(AV3), (A V4)を配設して、2台の冷凍機(26), (40) に 対するヘリウムガスの流量を調整するようにしている が、予冷側分岐中間圧配管(34)及びシールド側分岐 中間圧配管(35)の途中にそれぞれ同様の流量調整弁 を配設してもよい。また、上記実施形態のように、開度 調整可能な電磁弁からなる流量調整弁(AV3), (A V4)を設けるのに代え、一定の絞り開度を持つ絞り弁 と全閉及び全開状態を採る電磁弁からなる開閉弁との組 合わせを各配管(31), (32)(又は(34),

(35)) に並列に接続し、この各開閉弁の開閉制御に よってガス流量を調整することもできる。要は両冷凍機 (26), (40) に対するヘリウムガスの流量を調整 できるようにすればよい。

【0085】また、この実施形態2においても、低段圧 縮機(5)の運転周波数をバッファタンク(Tb)の内 圧(JT冷凍機(51)の冷凍負荷)に応じて可変制御 し、この圧縮機(5)の運転周波数を、バッファタンク (Tb)の内圧が低下したときに下げる一方、バッファ タンク(Tb)の内圧が増大したときに上げるようにし てもよく、JT冷凍機(51)の冷凍能力を負荷の変化 に応じて大きく変更して、JT冷凍機(51)のより一 層幅広い能力制御を行うことができる。

【0086】(実施形態3)図8は実施形態3を示し、 上記実施形態1では低段及び高段圧縮機(5), (8) を直列に接続し、高段圧縮機(8)から吐出された高圧 ヘリウムガスを予冷及びシールド冷凍機(26), (4 0) 並びにJT弁(58) に供給するようにしているの に対し、この実施形態1における圧縮機ユニット(1) の構造を変え、予冷及びシールド冷凍機(26), (4 0)とJT冷凍機(51)とでそれぞれ圧縮機を独立さ せたものである。

【0087】この実施形態では、圧縮機ユニット(1)

28

用及びJT用圧縮機(18), (19)が独立して設け られ、冷凍機用圧縮機(18)の吐出側は高圧配管(3 3), (31), (32) を介して予冷及びシールド冷 凍機(26), (40)の各高圧ガス入口(29),

(44) に、また吸込側は低圧配管 (36′), (3 4'), (35')を介して両冷凍機(26), (4 0) の低圧ガス出口(30), (45) にそれぞれ接続 されており、1台の冷凍機用圧縮機(18)により2台 の予冷及びシールド冷凍機(26), (40)に高圧へ リウムガスを供給するようにしている。

【0088】一方、JT用圧縮機(19)の吐出側は高 圧配管(55)を介して第1 J T 熱交換器(52)の1 次側に、また吸込側は低圧配管(62)を介して第1 J T熱交換器 (52) の2次側にそれぞれ接続されてお り、JT用圧縮機(19)によりJT冷凍機(51)の JT弁(58)に高圧ヘリウムガスを供給するようにし ている。

【0089】そして、上記予冷及びシールド冷凍機(2 6), (40) に高圧ヘリウムガスを供給する冷凍機用 圧縮機(18)の運転周波数がJT用圧縮機(19)に 対し独立して可変とされており、制御装置(71)にお いて、バッファタンク(Tb)の内圧(JT冷凍機(5 1)の冷凍負荷)が設定値よりも低下したときに、予冷 及びシールド冷凍機(26),(40)に髙圧ヘリウム ガスを供給する冷凍機用圧縮機(18)の運転周波数を 下げる一方、バッファタンク(Tb)の内圧が大きくな ってJT冷凍機(51)の冷凍負荷が設定値よりも増大 したときに、上記冷凍機用圧縮機(18)の運転周波数 を上げるように構成とされている。その他は上記実施形 態1と同様の構成である。したがって、この実施形態で は、実施形態1と同様の作用効果を得ることができる。 【0090】尚、この実施形態3においても、JT用圧 縮機(19)の運転周波数をパッファタンク(Tb)の 内圧(JT冷凍機(51)の冷凍負荷)に応じて可変制 御し、この圧縮機(19)の運転周波数を、バッファタ ンク(Tb)の内圧が低下したときに下げる一方、バッ ファタンク(Tb)の内圧が増大したときに上げるよう にすれば、JT冷凍機(51)の冷凍能力を負荷の変化 に応じて大きく変更して、JT冷凍機(51)のより一 40 層幅広い能力制御を行うことができる。

【0091】(実施形態4)図9は実施形態4を示し、 上記実施形態2のように、予冷及びシールド冷凍機(2 6), (40) に対するヘリウムガス流量をバッファタ ンク (Tb) の内圧 (JT冷凍機 (51) の冷凍負荷) に応じて可変制御するようにした構成において、実施形 態3と同様に、予冷及びシールド冷凍機(26), (4 0) にヘリウムガスを供給する冷凍機用圧縮機(18) と、JT冷凍機(51)のJT弁(58)にヘリウムガ スを供給するJT用圧縮機(19)とを設けたものであ に、各々制御装置(71)により作動制御される冷凍機 50 る。この実施形態でも、実施形態2と同様の作用効果を

奏することができる。

【0092】(実施形態5)図10は実施形態5を示し、上記実施形態1では、予冷及びシールド冷凍機(26),(40)の各ディスプレーサ駆動周波数をバッファタンク(Tb)の内圧つまりJT冷凍機(51)の冷凍負荷に応じて制御するようにしているのに対し、シールド冷凍機(40)の冷凍負荷に応じて可変制御するようにしたものである。

【0093】すなわち、この実施形態では、大気放出弁側の窒素配管(22)に、液体窒素タンク(Tn)内の圧力を検出するシールド冷凍機負荷検出手段としての窒素タンク圧センサ(76)が配置されており、このセンサ(76)により検出された窒素タンク(Tn)の内圧により、シールド冷凍機(40)の冷凍負荷を検出するようにしている(尚、この他、シールド冷凍機(40)のヒートステーション(43)の冷却温度を上記冷凍負荷として直接検出するようにしてもよい)。

【0094】そして、上記窒素タンク圧センサ(76) は制御装置(71)に接続されており、この制御装置

(71)の制御部(73)においてバルブモータ周波数 制御器(72)を制御し、上記検出される窒素タンク

(Tn)の内圧が設定値よりも低下してシールド冷凍機(40)の冷凍負荷が下がったときに、予冷冷凍機(26)のディスプレーサ駆動周波数の上昇又はシールド冷凍機(40)のディスプレーサ駆動周波数の上昇の両方(又は一方)を行う一方、窒素タンク(Tn)の内圧が設定値よりも上昇してシールド冷凍機(40)の冷凍負荷が上がったときに、予冷冷凍機(26)のディスプレーサ駆動周波数の低下又はシールド冷凍機(40)のディスプレーサ駆動周波数の上昇の両方(又は一方)を行うようにしている。

【0095】また、制御装置(71)は上記実施形態1と同様に、高段圧縮機(8)の運転周波数も制御し、窒素タンク(Tn)の内圧(シールド冷凍機(40)の冷凍負荷)が設定値よりも低下したときに、予冷及びシールド冷凍機(26),(40)に高圧へリウムガスを供給する高段圧縮機(8)の運転周波数を下げる一方、上記荷窒素タンク(Tn)の内圧が設定値よりも上昇したときに、高段圧縮機(8)の運転周波数を上げるようにしている。

【0096】この実施形態の場合、窒素タンク(Tn)の内圧(シールド冷凍機(40)の冷凍負荷)が窒素タンク圧センサ(76)により検出され、この窒素タンク(Tn)の内圧に応じて予冷及びシールド冷凍機(26),(40)のディスプレーサ駆動周波数が変えられ、窒素タンク(Tn)の内圧が下がってシールド冷凍機(40)の冷凍負荷が設定値よりも低下したときには、予冷冷凍機(26)のディスプレーサ駆動周波数が上昇しかつシールド冷凍機(40)のディスプレーサ駆動周波数が低下し、このことでシールド冷凍機(40)

30

の冷凍能力が下げられる。

【0097】一方、窒素タンク(Tn)の内圧が上がってシールド冷凍機(40)の冷凍負荷が設定値よりも増大したときに、予冷冷凍機(26)のディスプレーサ駆動周波数が低下しかつシールド冷凍機(40)のディスプレーサ駆動周波数が上昇し、シールド冷凍機(40)の冷凍能力が上げられる。従って、極低温冷凍装置(R)のマルチ運転中にシールド冷凍機(40)の冷凍負荷が変わっても、その負荷に応じてシールド冷凍機

負荷が変わっても、その負荷に応じてシールド冷凍機 (40)の冷凍能力を変更することができ、JT冷凍機 (51)の冷凍能力を略一定に保ちながら、シールド冷 凍機 (40)の冷凍能力を変化させることもでき、シールド冷凍機 (40)の幅広い能力制御を行うことができる

【0098】また、窒素タンク(Tn)の内圧(シール ド冷凍機(40)の冷凍負荷)に応じて高段圧縮機

(8) の運転周波数が変えられ、シールド冷凍機(4 0) の冷凍負荷の設定値よりも低下したときに高段圧縮 機(8) の運転周波数が下がり、冷凍負荷が設定値より も増大したときに、高段圧縮機(8) の運転周波数が上 がるので、極低温冷凍装置(R) のマルチ運転中のシー ルド冷凍機(40)の負荷の変化に応じて冷凍能力を大 きく変更させることができ、シールド冷凍機(40)の より一層幅広い能力制御を行うことができる。

【0099】(実施形態6)図11は実施形態6を示し、上記実施形態2のように予冷及びシールド冷凍機(26),(40)へのヘリウムガスの流量を可変制御するに当たり、両冷凍機(26),(40)のディスプレーサ駆動周波数を、シールド冷凍機(40)の冷凍負荷に応じて可変制御するようにしたものである。

【0100】この実施形態では、実施形態2の構成にお いて、制御装置(71)に上記実施形態5と同様の窒素 タンク圧センサ(76)の出力信号が入力されており、 この窒素タンク圧センサ(76)により検出された窒素 タンク (Tn)の内圧(シールド冷凍機(40)の冷凍 負荷) に応じて各冷凍機(26), (40) へのヘリウ ムガスの流量を可変制御し、窒素タンク(Tn)の内圧 が低下してシールド冷凍機(40)の冷凍負荷が設定値 よりも下がったときに、シールド冷凍機(40)に対す るヘリウムガス流量が低下する一方、窒素タンク(T n)の内圧が上昇してシールド冷凍機(40)の冷凍負 荷が設定値よりも上がったときに、予冷冷凍機(26) に対するヘリウムガス流量が低下するようにヘリウム流 量調整機構(46)を制御する。その他は実施形態6と 同様の構成である。したがって、この実施形態でも、上 記実施形態6と同様の作用効果が得られる。

[0101]

【発明の効果】以上説明したように、請求項1の発明では、少なくとも1台の圧縮機と、該圧縮機に並列に接続 された複数台の冷凍機とを備えた極低温冷凍装置におい

31

て、少なくとも1台の冷凍機のディスプレーサの往復動の駆動周波数を可変とするようにした。また、請求項7の発明では、上記と同様の前提の極低温冷凍装置において、少なくとも1台の冷凍機に対する冷媒ガスの流量を調整するようにした。従って、これらの発明によると、複数台のうちの少なくとも1台のディスプレーサ駆動周波数又は冷媒ガス流量を変えて、その冷凍能力を変えることができ、冷凍機間の能力配分を変更して、個々の冷凍機の容量変更を要することなく、その冷凍能力に応じた幅広い調整を行うことができる。

【0102】請求項2又は8の発明によると、複数台の冷凍機は、JT冷凍機における予冷冷凍機と、このJT冷凍機による極低温冷却部分を熱シールドするシールド冷凍機とからなるものとしたことにより、JT冷凍機の予冷冷凍機及びシールド冷凍機をマルチ運転する場合に、JT冷凍機及びシールド冷凍機の各冷凍能力の能力配分を各冷凍機の仕様変更を要することなく調整して、種々の冷凍能力の要求に対応させることができる。

【0103】請求項3又は9の発明では、圧縮機を直列に接続された低段及び高段圧縮機とし、予冷及びシールド冷凍機は、高段圧縮機から吐出された冷媒ガスを膨張させるように構成されているものとした。また、請求項4又は10の発明では、圧縮機は、予冷及びシールド冷凍機に冷媒ガスを供給する冷凍機用圧縮機と、JT弁に冷媒ガスを供給するJT用圧縮機とで構成した。これらの発明によると、予冷及びシールド冷凍機に対する圧縮機の接続構造の具体化を図ることができる。

【0104】請求項5又は11の発明では、上記低段及び高段圧縮機の運転周波数を独立して可変とした。また、請求項6又は12の発明では、冷凍機用及びJT用圧縮機の運転周波数を独立して可変とした。これら発明によると、冷凍機のディスプレーサ駆動周波数に加えて、圧縮機の運転周波数についても変更することで、予冷冷凍機の冷凍能力とシールド冷凍機の冷凍能力との能力配分をさらに広い範囲に亘り調整して、大幅な冷凍能力の要求に対応させることができる。

【0105】請求項13の発明によると、請求項1の発

明において、各冷凍機は、ディスプレーサに対する冷媒ガス圧を変えてその駆動周波数を調整する可変オリフィスを備えたガス圧駆動型の冷凍機とし、可変オリフィスの開度をディスプレーサ駆動周波数の変化に応じて可変制御するようにしたことにより、冷凍機のディスプレーサ駆動周波数及びそのディスプレーサに対する冷媒ガス圧も変えて、予冷冷凍機の冷凍能力とシールド冷凍機の冷凍能力との能力配分をさらに広い範囲に亘り調整して、大幅な冷凍能力の要求に対応させることができる。【0106】請求項14の発明では、上記JT冷凍機の冷凍負荷を検出し、このJT冷凍機の冷凍負荷が設定値よりも低下したときに、予冷冷凍機のディスプレーサ駆動周波数の低下又はシールド冷凍機のディスプレーサ駆動周波数の低下又はシールド冷凍機のディスプレーサ駆

32

動周波数の上昇の少なくとも一方を行う一方、JT冷凍機の冷凍負荷が設定値よりも増大したときに、予冷冷凍機のディスプレーサ駆動周波数の低下の少なくとも一方を行うようにした。また、請求項18の発明では、JT冷凍機の冷凍負荷が設定値よりも低下したときに、上記予冷冷凍機に対する冷媒ガス流量を低下させる一方、ノールド冷凍機に対する冷媒ガス流量を低下させるようにした。従って、これらの発明によると、極低温冷凍装のや凍化ででき、シールド冷凍機の冷凍能力を変更させることができ、JT冷凍機の冷凍能力を略一定に保ちながら、JT冷凍機の冷凍能力を変化させることができ、JT冷凍機の冷凍能力を変化させることができ、JT冷凍機の冷凍能力を変化させることができる。

【0107】請求項15又は19の発明によると、請求項14又は18の発明において、予冷及びシールド冷凍機に対応する圧縮機の運転周波数を可変とし、JT冷凍機の冷凍負荷が設定値よりも低下したときに、予冷及びシールド冷凍機に高圧冷媒ガスを供給する圧縮機の運転周波数を下げる一方、JT冷凍機の冷凍負荷が設定値よりも増大したときに、上記圧縮機の運転周波数を上げるようにしたことにより、JT冷凍機の冷凍負荷に応じて冷凍機のディスプレーサ駆動周波数のみならず圧縮機の運転周波数も変えることができ、冷凍装置のマルチ運転中のJT冷凍機の負荷の変化に応じて冷凍能力を大きく変更させて、JT冷凍機のより一層幅広い能力制御を行うことができる。

【0108】請求項16又は20の発明によると、請求項14(もしくは15)又は19の発明において、JT冷凍機の冷凍負荷が設定値よりも低下したときに、JT弁への冷媒ガス圧を下げる一方、JT冷凍機の冷凍負荷が設定値よりも増大したときに、JT弁への冷媒ガス圧を上げるようにしたことにより、JT冷凍機の負荷の変化に応じて冷凍能力を大きく変更させて、JT冷凍機のより一層幅広い能力制御を行うことができる。

【0109】請求項17又は21の発明では、請求項16又は20の発明において、低段圧縮機又はJT用圧縮機の運転周波数を可変とし、この圧縮機の運転周波数を、JT冷凍機の冷凍負荷が設定値よりも低下したときに下げる一方、JT冷凍機の冷凍負荷が設定値よりも増大したときに上げるようにしたことにより、低段又はJT用圧縮機の運転周波数の変更によりJT冷凍機の負荷の変化に応じて冷凍能力を大きく変更してJT冷凍機の幅広い能力制御を行うことができる。

【0110】請求項22の発明では、請求項3又は4の 発明の極低温冷凍装置において、シールド冷凍機の冷凍 負荷を検出し、この検出されるシールド冷凍機の冷凍負 荷が設定値よりも下がったときに、予冷冷凍機のディス プレーサ駆動周波数の上昇又はシールド冷凍機のディス

プレーサ駆動周波数の低下の少なくとも一方を行う一 方、冷凍負荷が設定値よりも上がったときに、予冷冷凍 機のディスプレーサ駆動周波数の低下又はシールド冷凍 機のディスプレーサ駆動周波数の上昇の少なくとも一方 を行うようにした。また、請求項24の発明では、請求 項9又は10の発明において、同様に、シールド冷凍機 の冷凍負荷を検出し、この冷凍負荷が設定値よりも下が ったときに、シールド冷凍機に対する冷媒ガス流量を、 また冷凍負荷が設定値よりも上がったときに、予冷冷凍 機に対する冷媒ガス流量をそれぞれ低下させるようにし た。従って、これらの発明によると、極低温冷凍装置の マルチ運転中にシールド冷凍機の負荷が変わっても、そ のシールド冷凍機の負荷に応じて冷凍能力を変更させ、 JT冷凍機の冷凍能力を略一定に保ちながら、シールド 冷凍機の冷凍能力を変化させることができ、シールド冷 **凍機の幅広い能力制御を行うことができる。**

【0111】請求項23又は25の発明によると、請求項22又は24の発明において、シールド冷凍機の冷凍負荷が設定値よりも低下したときに、予冷及びシールド冷凍機に高圧冷媒ガスを供給する運転周波数可変の圧縮 20機の運転周波数を下げる一方、上記冷凍負荷が設定値よりも増大したときに、上記圧縮機の運転周波数を上げるようにしたことにより、冷凍機のディスプレーサ駆動周波数のみならず圧縮機の運転周波数も変えて、冷凍装置のマルチ運転中のシールド冷凍機の負荷の変化に応じて冷凍能力を大きく変更させることができ、シールド冷凍機のより一層幅広い能力制御を行うことができる。

【図面の簡単な説明】

【図1】本発明の実施形態1に係る極低温冷凍装置の全体構成を示す図である。

【図2】予冷冷凍機のディスプレーサ駆動周波数に応じた予冷及びシールド冷凍機の冷凍能力の変化を示す特性図である。

【図3】実施形態1において高段圧縮機の運転周波数を 上昇させたときの予冷及びシールド冷凍機の冷凍能力の 変化を示す図2相当図である。

【図4】実施形態1においてディスプレーサ駆動周波数 に応じたオリフィス開度の特性を示す特性図である。

【図5】実施形態2を示す図1相当図である。

【図6】予冷冷凍機に対するヘリウムガス流量に応じた 40

34 予冷及びシールド冷凍機の冷凍能力の変化を示す図2相 当図である。

【図7】実施形態2において高段圧縮機の運転周波数を 上昇させたときの予冷及びシールド冷凍機の冷凍能力の 変化を示す図1相当図である。

【図8】実施形態3を示す図1相当図である。

【図9】実施形態4を示す図1相当図である。

【図10】実施形態5を示す図1相当図である。

【図11】実施形態6を示す図1相当図である。

10 【符号の説明】

(R) 極低温冷凍装置

(1) 圧縮機ユニット

(5) 低段圧縮機

(8) 高段圧縮機

(13) JT高圧調整機構(JT高圧調整手段)

(18) 冷凍機用圧縮機

(19) JT用圧縮機

(V1), (V2) 流量調整弁

(AV1), (AV2) 電磁開閉弁

20 (21) 冷凍機ユニット

(26) 予冷冷凍機

(37), (38) ヒートステーション

(40) シールド冷凍機

(43) ヒートステーション

(46) ヘリウムガス流量調整機構(冷媒流量調整手段)

(51) JT冷凍機

(58) JT弁

(71) 制御装置(制御手段)

30 (72) バルブモータ周波数制御器(ディスプレーサ 駆動周波数可変手段)

(74) バッファタンク圧センサ(JT冷凍機負荷検出手段)

(76) 窒素タンク圧センサ(シールド冷凍機負荷検 出手段)

(Tb) バッファタンク

(Tb) 液体ヘリウムタンク

(D) 真空デュワー

(Tn) 液体窒素タンク

) (S) 熱シールド板

[図1]

[図2]

【図3】

【図4】

[図6]

【図5】

【図7】

[図8]

[図9]

【図10】

【図11】

フロントページの続き

(72)発明者 岡本 昌和

大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 種谷 昭一

大阪府堺市築港新町 3丁12番地 ダイキン

工業株式会社堺製作所臨海工場内

(72)発明者 三浦 克哉

大阪府堺市金岡町1304番地 ダイキン工業

株式会社堺製作所金岡工場内