Announcements:

Midterm 3: Wed. 7:00-8:30pm Noyes 217
Covers through Chapter 5
Final homework (HW9) will be due Wed. 11/29

Prop 6.1.2: Ks and K3,3 are not planar

Def: A subdivision of a graph G is a graph G' obtained by repeated subdivisions of edges

Kuratowski's Theorem (6.2.2): Let G be a graph.

G does not have a subgraph G is planar isomorphic to a subdivision of Ks or K3,3.

For any plane graph G (loops, mult. edges ok!), there is a nice relationship between vertices, edges, and faces.

Def 6.1.7: Let G be a plane graph. The <u>dual graph</u> G* of G is a plane graph whose vertices corresp. to the faces of G. For each edge e in G, we create an edge in G* crossing e, with endpoints at the vertices of G* corresponding to the faces of G bounding e.

Class activity: Find the dual graphs, and count the vertices, edges, and faces of G and G*.

Class activity! Same thing!

Def 6.1.11: The length R(F) of a face F in a plane graph G is the total length of the closed walk(s) in G bounding F.

Prop 6.1.13: Let G be a plane graph.

a) Let F be a face of G, and let $v \in V(G^*)$ be the corresponding vertex in G^* . Then, l(F) = d(v).

b) If $F_{i,1-}$, F_k are the faces of G_i , then $2e(G) = \sum_{i=1}^{k} l(F_i).$

c) The chromatic number $\chi(G)$ is the smallest number of ways to color the faces of G^* such that no faces which share a boundary edge have the same color.

Thm 6.1.14: Let G be a connected graph.

Let $D \subseteq E(G)$, and let $D^* \in E(G^*)$ be the corresponding edges in G^* . Then,

D is the edge \iff D* is a minimal edge cut.

