

Division of Algebraic Expressions Ex 8.4 Q24

Answer:

We have to find the value of a if (x+2) is a factor of $(4x^4 + 2x^3 - 3x^2 + 8x + 5a)$. Substituting x = -2 in $4x^4 + 2x^3 - 3x^2 + 8x + 5a$, we get: $4(-2)^4 + 2(-2)^3 - 3(-2)^2 + 8(-2) + 5\mathbf{a} = 0$

$$4(-2)^{2} + 2(-2)^{2} - 3(-2)^{2} + 8(-2) + 5a =$$

or,
$$64 - 16 - 12 - 16 + 5a = 0$$

or,
$$5a = -20$$

or,
$$a = -4$$

:. If
$$(x+2)$$
 is a factor of $(4x^4 + 2x^3 - 3x^2 + 8x + 5a)$, $a = -4$.

Division of Algebraic Expressions Ex 8.4 Q25 Answer:

$$\begin{array}{r}
 x^2 + 1 \\
 x^2 + 2x - 3 \overline{\smash)} x^4 + 2x^3 - 2x^2 + x - 1 \\
 \underline{x^4 + 2x^3 - 3x^2} \\
 \underline{x^2 + x - 1} \\
 x^2 + x - 1 \\
 x^2 + 2x - 3
 \end{array}$$

Thus, (x - 2) should be added to ($x^4+2x^3-2x^2+x-1$) to make the resulting polynomial exactly divisible by $(x^2 + 2x - 3)$.

******* END ******