

Effectiveness of Non-Pharmaceutical Interventions

By R_0 & R_t computation

Ikgyu Tom Shin

Abstract

- What is NPI?
 - Non-Pharmaceutical Interventions are actions individuals, communities, and nations could take in order to prevent, retain, or alleviate pandemic besides any medical treatments.
- Examples?
 - Suppression
 - Mitigation
- South Korea?
- How?
 - Daily Trend of R_t : Effective Reproduction Number
 - Monthly Trend of Mortality

Date NPI	Policy Level	Phase	Notation	Group #	Closing Hour	ES & MS	HS	office	social event	miltary
03/22/2020 suppression	3	1	3_1	N/I	N/I	2/3 of all	2/3 of all	Flex	N/A	allowed
11/01/2021 mitigation	N/A	N/A	N/A	4	21	N/A	N/A	N/A	N/A	N/A

Methods & Models

- Deriving R_0
 - Next Generation Method

$$|F \cdot V^{-1}| = R_0 = \frac{\beta}{\gamma}$$

Deterministic Model: Growth rate (Jeong, 2020)

$$i(t) = i_0 \exp(rt)$$
 $\hat{r} = \arg\min_r \left[\sum_{t=0}^T |i_t^{Data} - i(t)|^2 \right] = \arg\min_r \left[\sum_{t=0}^T |i_t^{Data} - i_0 \exp(rt)|^2 \right]$

- Deriving R_t

 - Bayes rule & Gaussian distribution (Bettencourt & Ribero)

$$P(k|R_t) = \frac{\lambda^k e^{-\lambda}}{k!}$$

- Mortality
 - Covid-19 Mortality / General Mortality * 10 (Monthly)

Visualization & Results

2020/02/14~2020/03/13

```
i <- dt$i[24:52]
t <- c(0:28)
i0 <- 1
targetf <- function(r) sum(i - i0*exp(r*t))^2
rs <- seq(0,0.35,0.001)
plot(rs, sapply(rs, targetf))</pre>
```


Discussion & Future note

- Thumbs up for Suppression
- Question mark for Mitigation
- R_0
 - Plausible but can be more accurate
 - "The World is Stochastic"
- R_t
 - As for trend? Plausible. As for number? Not sure
 - Better assumptions, better dataset (i.e. Heterogeneity)
- Mortality
 - Look for better model!!!
 - Extreme generalization (larger scope of mortality data)