Importing Libaries

```
In [115]:
           1 import pandas as pd
           2 import numpy as np
           3 import seaborn as sns
           4 import matplotlib.pyplot as plt
           5 pd.options.display.max_columns=150
           6 pd.options.display.max_columns=200
           7 from scipy import stats
           8 import statsmodels.api as sm
           9 from statsmodels.stats.outliers influence import variance inflation factor
          10 from scipy.stats import chi2_contingency
          11 from scipy.stats import chi2
          12 from sklearn.model selection import train test split
          13 from sklearn import metrics
          14 import warnings
          15 warnings.filterwarnings("ignore")
          16 %matplotlib inline
          17
```

Retreving dataset

```
In [116]: 1 test=pd.read_csv(r"C:\DsTraining\five dataset for clening\house price\test.csv")
2 train_data=pd.read_csv(r"C:\DsTraining\five dataset for clening\house price\train.csv")
3 test_sample=pd.read_csv(r"C:\DsTraining\five dataset for clening\house price\sample_submission.csv")
4 test=pd.merge(test,test_sample,on="Id")
5 data=pd.concat([train_data,test],ignore_index=True)
6 data
```

Out[116]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighb
0	1	60	RL	65.0	8450	Pave	NaN	Reg	LvI	AllPub	Inside	GtI	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	AllPub	FR2	Gtl	,
2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	AllPub	Inside	GtI	
3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI	AllPub	Corner	GtI	
4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	AllPub	FR2	Gtl	1
2914	2915	160	RM	21.0	1936	Pave	NaN	Reg	LvI	AllPub	Inside	GtI	М
2915	2916	160	RM	21.0	1894	Pave	NaN	Reg	LvI	AllPub	Inside	GtI	М
2916	2917	20	RL	160.0	20000	Pave	NaN	Reg	LvI	AllPub	Inside	Gtl	
2917	2918	85	RL	62.0	10441	Pave	NaN	Reg	LvI	AllPub	Inside	GtI	
2918	2919	60	RL	74.0	9627	Pave	NaN	Reg	LvI	AllPub	Inside	Mod	

2919 rows × 81 columns

Data Preprocessing and EDA.

```
In [117]:
            1 data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 2919 entries, 0 to 2918
          Data columns (total 81 columns):
                               Non-Null Count Dtype
                Column
           0
                Ιd
                               2919 non-null
                                               int64
           1
               MSSubClass
                               2919 non-null
                                               int64
                                               object
            2
               MSZoning
                               2915 non-null
               LotFrontage
            3
                               2433 non-null
                                               float64
                                               int64
               LotArea
                               2919 non-null
           5
               Street
                               2919 non-null
                                               object
            6
               Alley
                                               object
                               198 non-null
               LotShape
                               2919 non-null
                                               object
           7
               LandContour
                               2919 non-null
                                               object
                                               object
               Utilities
                               2917 non-null
                               2919 non-null
           10 LotConfig
                                               object
               LandSlope
                               2919 non-null
                                               object
               Neighborhood
                               2919 non-null
                                               object
               Condition1
                               2919 non-null
                                               object
```

Step-1 find missing values.

2040

C 1:1: 0

```
In [118]:
            1 rows=train_data.shape[0]
            2 rows
              r_rows=train_data.isnull().sum()
            4 r rows
            5 a=r rows/rows*100
Out[118]: Id
                            0.000000
          MSSubClass
                            0.000000
          MSZoning
                            0.000000
          LotFrontage
                           17.739726
          LotArea
                            0.000000
          MoSold
                            0.000000
          YrSold
                            0.000000
          SaleType
                            0.000000
          SaleCondition
                            0.000000
          SalePrice
                            0.000000
          Length: 81, dtype: float64
```

Step-2 Drop variables having more than 25% missing values, and less than 25% missing values will be fill by using appropriate central tendencies

```
In [119]: 1 data=data.drop(columns=["Alley","FireplaceQu","PoolQC","Fence","MiscFeature"],axis=1)
```

```
In [120]:
            1 #numerical data we used to fill mean.
              | data["LotFrontage"]=data["LotFrontage"].fillna(data["LotFrontage"].mean())
              data["GarageYrBlt"]=data["GarageYrBlt"].fillna(data["GarageYrBlt"].mean())
              data["MasVnrArea"]=data["MasVnrArea"].fillna(data["MasVnrArea"].mean())
              data["BsmtFinSF1"]=data["BsmtFinSF1"].fillna(data["BsmtFinSF1"].mean())
              data["BsmtUnfSF"]=data["BsmtUnfSF"].fillna(data["BsmtUnfSF"].mean())
              data["TotalBsmtSF"]=data["TotalBsmtSF"].fillna(data["TotalBsmtSF"].mean())
              data["BsmtFinSF2"]=data["BsmtFinSF2"].fillna(data["BsmtFinSF2"].mean())
              data["BsmtFullBath"]=data["BsmtFullBath"].fillna(data["BsmtFullBath"].mean())
             data["BsmtHalfBath"]=data["BsmtHalfBath"].fillna(data["BsmtHalfBath"].mean())
           data["GarageCars"]=data["GarageCars"].fillna(data["GarageCars"].mean())
           12 data["GarageArea"]=data["GarageArea"].fillna(data["GarageArea"].mean())
In [121]:
            1 #chracteries data we used to mode or so on.
            2 data["Electrical"]=data["Electrical"].fillna(data["Electrical"].mode()[0])
              data["MSZoning"]=data["MSZoning"].fillna(data["MSZoning"].mode()[0])
              data["Utilities"]=data["Utilities"].fillna(data["Utilities"].mode()[0])
              data["Exterior1st"]=data["Exterior1st"].fillna(data["Exterior1st"].mode()[0])
              data["Exterior2nd"]=data["Exterior2nd"].fillna(data["Exterior2nd"].mode()[0])
              data["MasVnrType"]=data["MasVnrType"].fillna(data["MasVnrType"].mode()[0])
              data["BsmtQual"]=data["BsmtQual"].fillna(data["BsmtQual"].mode()[0])
              data["BsmtCond"]=data["BsmtCond"].fillna(data["BsmtCond"].mode()[0])
           10 data["BsmtExposure"]=data["BsmtExposure"].fillna(data["BsmtExposure"].mode()[0])
           data["BsmtFinType1"]=data["BsmtFinType1"].fillna(data["BsmtFinType1"].mode()[0])
           data["BsmtFinType2"]=data["BsmtFinType2"].fillna(data["BsmtFinType2"].mode()[0])
           data["KitchenQual"]=data["KitchenQual"].fillna(data["KitchenQual"].mode()[0])
           14 data["Functional"]=data["Functional"].fillna(data["Functional"].mode()[0])
           data["GarageType"]=data["GarageType"].fillna(data["GarageType"].mode()[0])
              data["GarageQual"]=data["GarageQual"].fillna(data["GarageQual"].mode()[0])
              data["GarageCond"]=data["GarageCond"].fillna(data["GarageCond"].mode()[0])
             data["SaleType"]=data["SaleType"].fillna(data["SaleType"].mode()[0])
           19 data["GarageFinish"]=data["GarageFinish"].fillna(data["GarageFinish"].mode()[0])
```

EDA


```
In [129]: 1 sns.countplot(x="SaleType", data=train_data)
2 plt.title("Diffrentn SaleTypes")
3 plt.show()
```


Multicollinary(using VIF method)

Outlier Detection(Extream end outliers will be removed.)

```
In [135]: 1 data=data.drop(columns=['LotArea','MasVnrArea','WoodDeckSF','OpenPorchSF','EnclosedPorch','ScreenPorch'],ax
```

In [137]: 1 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2919 entries, 0 to 2918
Data columns (total 50 columns):

#	Column	Non-Null Count	Dtype
0	Id	2919 non-null	int64
1	MSSubClass	2919 non-null	int64
2	MSZoning	2919 non-null	object
3	Street	2919 non-null	object
4	LotShape	2919 non-null	object
5	LandContour	2919 non-null	object
6	Utilities	2919 non-null	object
7	LotConfig	2919 non-null	object
8	LandSlope	2919 non-null	object
9	Neighborhood	2919 non-null	object
10	Condition1	2919 non-null	object
11	Condition2	2919 non-null	object
12	BldgType	2919 non-null	object
13	HouseStyle	2919 non-null	object
14	OverallCond	2919 non-null	int64
1 5	RoofStyle	2919 non-null	object
16	RoofMatl	2919 non-null	object
17	Exterior1st	2919 non-null	object
18	Exterior2nd	2919 non-null	object
19	MasVnrType	2919 non-null	object
20	ExterQual	2919 non-null	object
21	ExterCond	2919 non-null	object
22	Foundation	2919 non-null	object
23	BsmtQual	2919 non-null	object
24	BsmtCond	2919 non-null	object
25	BsmtExposure	2919 non-null	object
26	BsmtFinType1	2919 non-null	object
27	BsmtFinType2	2919 non-null	object
28	Heating	2919 non-null	object
29	HeatingQC	2919 non-null	object
30	CentralAir	2919 non-null	object
31	Electrical	2919 non-null	object
32	BsmtFullBath	2919 non-null	float64
33	BsmtHalfBath	2919 non-null	float64
34	HalfBath	2919 non-null	int64

```
35 KitchenQual
                                   object
                   2919 non-null
                                   object
 36 Functional
                   2919 non-null
 37 Fireplaces
                   2919 non-null
                                   int64
 38 GarageType
                                   object
                   2919 non-null
 39 GarageFinish
                   2919 non-null
                                   object
 40 GarageQual
                                   object
                   2919 non-null
 41 GarageCond
                                   object
                   2919 non-null
                                   object
 42 PavedDrive
                   2919 non-null
 43 3SsnPorch
                                   int64
                   2919 non-null
 44 PoolArea
                   2919 non-null
                                   int64
                                   int64
 45 MiscVal
                   2919 non-null
 46 MoSold
                   2919 non-null
                                   int64
47 SaleType
                   2919 non-null
                                   object
 48 SaleCondition 2919 non-null
                                  object
 49 SalePrice
                   2919 non-null
                                  float64
dtypes: float64(3), int64(9), object(38)
memory usage: 1.1+ MB
```

Fill appropriate outlier using z_score method.

```
In [138]:
               upper limit=data['MSSubClass'].mean()+3*data['MSSubClass'].std()
               lower limit=data['MSSubClass'].mean()-3*data['MSSubClass'].std()
               data['MSSubClass'] = np.where(
                   data['MSSubClass']>upper limit,
            6
                   upper limit,
            7
                   np.where(
            8
                       data['MSSubClass']<0,</pre>
            9
           10
                       data['MSSubClass']
           11
                   )
           12 )
```

```
In [139]:
            1 upper limit=data['BsmtFullBath'].mean()+3*data['BsmtFullBath'].std()
            3 lower_limit=data['BsmtFullBath'].mean()-3*data['BsmtFullBath'].std()
               data['BsmtFullBath'] = np.where(
                   data['BsmtFullBath']>upper_limit,
            5
            6
                   upper_limit,
            7
                   np.where(
                       data['BsmtFullBath']<0,</pre>
            8
            9
                       0,
                       data['BsmtFullBath']
           10
           11
           12 )
In [140]:
            1 upper_limit=data['BsmtHalfBath'].mean()+3*data['BsmtHalfBath'].std()
              lower_limit=data['BsmtHalfBath'].mean()-3*data['BsmtHalfBath'].std()
              data['BsmtHalfBath'] = np.where(
                   data['BsmtHalfBath']>upper limit,
            5
            6
                   upper_limit,
            7
                   np.where(
                       data['BsmtHalfBath']<0,</pre>
            8
            9
                       0,
                       data['BsmtHalfBath']
           10
           11
           12 )
In [141]:
               upper limit=data['Fireplaces'].mean()+3*data['Fireplaces'].std()
            2
              lower limit=data['Fireplaces'].mean()-3*data['Fireplaces'].std()
               data['Fireplaces'] = np.where(
                   data['Fireplaces']>upper limit,
            6
                   upper limit,
            7
                   np.where(
            8
                       data['Fireplaces']<0,</pre>
                       data['Fireplaces']
           10
           11
           12 )
```

```
In [142]:
            1 | upper_limit=data['3SsnPorch'].mean()+3*data['3SsnPorch'].std()
            3 lower_limit=data['3SsnPorch'].mean()-3*data['3SsnPorch'].std()
              data['3SsnPorch'] = np.where(
                   data['3SsnPorch']>upper_limit,
            5
            6
                   upper_limit,
            7
                   np.where(
                       data['3SsnPorch']<0,</pre>
            8
            9
                       0,
                       data['3SsnPorch']
           10
           11
           12 )
In [143]:
            1 upper_limit=data['PoolArea'].mean()+3*data['PoolArea'].std()
              lower_limit=data['PoolArea'].mean()-3*data['PoolArea'].std()
              data['PoolArea'] = np.where(
                   data['PoolArea']>upper_limit,
            5
            6
                   upper limit,
            7
                   np.where(
                       data['PoolArea']<0,</pre>
            8
            9
                       data['PoolArea']
           10
           11
           12 )
In [144]:
            1 upper limit=data['MiscVal'].mean()+3*data['MiscVal'].std()
              lower_limit=data['MiscVal'].mean()-3*data['MiscVal'].std()
               data['MiscVal'] = np.where(
                   data['MiscVal']>upper limit,
            5
            6
                   upper_limit,
            7
                   np.where(
                       data['MiscVal']<0,</pre>
            8
            9
                       0,
                       data['MiscVal']
           10
           11
           12 )
```

All object converted into integers.

Train-Test-Spliting

Linear Regression

XGBOOST Modeling.

In []: