THE BEST ACT PREP COURSE EVER

COMPLEX AND RATIONAL NUMBERS

ACT Math: Problem Set

- 1. i is a complex number and n is an integer. Which of the following is not a possible value of i^{n+1} ?
 - **A.** 1
 - **B.** *i*
 - \mathbf{C} , $\mathbf{0}$
 - D. -1
 - $\mathbf{E}_{\bullet} i$
- **2.** Maria is finding the zeroes of a polynomial, and the quadratic formula gives $x = 9 \pm \sqrt{-16c^2}$. If c is a nonnegative number, what is x written as a complex number?
 - **A.** $9 \pm 4c$
 - **B.** $9 \pm 4ci$
 - **C.** 9+4c
 - **D.** 9–4*ci*
 - **E.** 9 + 4ci
- 3. If $i = \sqrt{-1}$, then what does $\frac{1-i}{1+i} * \frac{-1}{1-i} = ?$
 - A. $\frac{1+i}{2}$
 - **B.** 1-i
 - C. $\frac{-1-i}{2}$
 - **D.** $\frac{i-1}{2}$
 - E. -1+i
- **4.** For all pairs of nonzero real numbers X and y, the product of the complex number X yi and which of the following complex numbers is a real number?
 - A. x + yi
 - **B.** x yi
 - C. xyi
 - D. y xi
 - E. X + i
- **5.** The product of two numbers is 41. One of the numbers is the complex number 5+4i. What is the other number?
 - A. 5-4i
 - **B.** 5 + 4i
 - C. -5-4i
 - **D.** -5+4i
 - E. $\frac{41}{5-4i}$

6. Which equation given in factored form has the roots

$$\frac{1}{4}, \frac{2}{3}, i$$
, and $-i$?

- A. $(4x-1)(3x-2)(x^2-1)$
- **B.** $(4x+1)(3x-2)(x^2-1)$
- C. $(4x-1)(3x-2)(x^2+1)$
- **D.** $(4x-1)(3x+2)(x^2+1)$
- E. $(4x-1)(3x+2)(x^2-1)$
- 7. For the complex number i such that $i^2 = -1$, what is the value of $i^8 2i^2 1$?
 - **A.** −4
 - **B.** -2
 - **C.** 0
 - D. 2
 - E. 4
- **8.** What is the sum of $\sqrt{-20}$ and $\sqrt{-125}$?
 - **A.** $-7i\sqrt{5}$
 - **B.** $7i\sqrt{5}$
 - C. $-21i\sqrt{5}$
 - **D.** $21i\sqrt{5}$
 - E. $i\sqrt{105}$
- **9.** What is the square of the complex number (2i-4)?
 - **A.** 12-16i
 - **B.** 20-16i
 - **c.** -20
 - **D.** 12
 - **E.** 20
- **10.** For $i^2 = -1$, $(3-i)^2 = ?$
 - **A.** 8
 - B. 10
 - C. 8-6i
 - **D.** 8+6i
 - E. 10-6i

- 11. The solution set for the equation $3^{x^2+3}-1=0$ contains:
 - A. Only 1 imaginary numbers
 - **B.** Only 2 imaginary number
 - C. 1 imaginary and 1 real number
 - **D.** 1 negative real number and 1 imaginary number
 - **E.** 1 real number, which is 0.
- **12.** For all x < 0, which of the following expressions is equivalent to $\frac{\sqrt{x}}{\sqrt{x} i}$?
 - $A. \quad \frac{x \sqrt{x}}{x 1}$
 - $\mathbf{B.} \quad \frac{X + \sqrt{X}}{X 1}$
 - $C. \quad \frac{-X \sqrt{X}}{-X + 1}$
 - $\mathbf{D.} \quad \frac{X + \sqrt{-X}}{X + 1}$
 - E. $\frac{\left(x-\sqrt{x}\right)}{x+1}$
- 13. Which of the following expressions is equivalent to

$$9x^2 + 169$$
?

- **A.** $(3x+13)^2$
- $\mathbf{B.} \quad \left(3x + 13i\right)^2$
- C. $(3x-13i)^2$
- **D.** (3x-13)(3x+13)
- E. (3x-13i)(3x+13i)
- **14.** What complex number equals $(3-4i)(\pi+3i)$?
 - **A.** $(12+3\pi)i+(9-4\pi)$
 - **B.** $(12-3\pi)+(9-4\pi)i$
 - C. $(12+3\pi)+(9+4\pi)i$
 - **D.** $(12+3\pi)+(9-4\pi)i$
 - E. $(12-3\pi)i+(9-4\pi)i$

15. The figure below depicts a complex plane with the horizontal axis representing real values and the vertical axis representing imaginary values. The modulus of a complex number a+bi is $\sqrt{a^2+b^2}$. By looking at the points below, which point has the smallest modulus?

- **A.** A
- **B.** B
- C. C
- D. D
- **E.** E

ANSWER KEY

1. C 2. B 3. D 4. A 5. A 6. C 7. D 8. B 9. A 10. C 11. B 12. E 13. D 14. D 15. D

ANSWER EXPLANATIONS

- 1. C. By definition, i is the complex number equal to $\sqrt{-1}$, and when taken to a power, equals one of four possible answers (i, -1, -i, or 1). For A. $i^4 = \sqrt{-1}\sqrt{-1}\sqrt{-1} = (-1)(-1) = 1$. B. is wrong because $i^1 = \sqrt{-1} = i$; D. $i^2 = \sqrt{-1}\sqrt{-1} = -1$ E. $i^3 = \sqrt{-1}\sqrt{-1}\sqrt{-1} = -1\sqrt{-1} = -i$. As such, the answer is C. Also, the only number that can equal 0 when taken to any power is zero. Therefore, 0 cannot be the answer.
- 2. B. $x = 9 \pm \sqrt{-16c^2} = 9 \pm 4c\sqrt{-1}$. Since $i^2 = -1$, we can rewrite $\sqrt{-1} = i$. This gives us $x = 9 \pm 4ci$.
- **3. D.** Canceling out 1-i from the numerator and denominator, we get $-\frac{1}{1+i}$. To get the i term out of the denominator, we multiply the fraction by the conjugate on the top and bottom to get $-\frac{1}{1+i}\left(\frac{1-i}{1-i}\right) = -\frac{1-i}{1+i-i+1} = -\frac{1-i}{2} = \frac{i-1}{2}$.
- **4. A.** The product of a complex number and its conjugate is a real number because the + and in front of the imaginary terms cancel out when foiled. So, (x yi)(x + yi) will be equal to a real number. To verify this, we foil the factors and get $x^2 xyi + xyi y^2i^2 = x^2 (-1)y^2 = x^2 + y^2$. This is a real number because x and y are real numbers.
- **5. A.** The product of a complex number and its conjugate is a real number because the + and in front of the imaginary terms cancel out when foiled. So, the only way (5-4i) multiplied by something can yield a real number will be when it is multiplied by its conjugate. To verify, we multiply (5-4i)(5+4i) and get $25-4i(5)+5(4i)-16i^2=25-(-1)16$ $\rightarrow 25+16 \rightarrow 41$.
- **6. C.** If a polynomial has roots equal to $\frac{1}{4}$, $\frac{2}{3}$, i, and -i, it means that these terms make the polynomial equal to zero when plugged in. So, the following equations must be true: $x \frac{1}{4} = 0 \rightarrow 4x 1 = 0$, $x \frac{2}{3} = 0 \rightarrow 3x 2 = 0$, x i = 0, and x + i = 0. So, the polynomial can be written as (4x 1)(3x 2)(x i)(x + i). Multiplying the last two factors by foil, we get $(4x 1)(3x 2)(x^2 xi + xi 1) = (4x 1)(3x 2)(x^2 + 1)$.
- 7. **D.** The first term, $i^8 = (i^2)^4 = (-1)^4 = 1$. The second term, $-2i^2 = -2(-1) = 2$. By substituting these into the equation, we get 1+2-1, which equals 2.
- **8. B.** We can break down the square roots to $\sqrt{(-1)(4)(5)}$ and $\sqrt{(-1)(25)(5)}$. The $\sqrt{-1}$'s become i, and the perfect squares become their square roots. Thus, we get $2i\sqrt{5}$ and $5i\sqrt{5}$. Their sum is $7i\sqrt{5}$.
- **9. A.** By FOILing, we get $(2i-4)^2 = 2i * 2i 8i 8i + 16$. 2i * 2i is equal to 4*-1=-4, so simplifying, we get -4-16i+16. We combine the integers to get 12-16i.

- **10.** C. By FOILing, we get $(3-i)^2 = 3*3-3i-3i-i*i$. Simplifying gets us $9-6i+i^2$. We are given that $i^2 = -1$, so plugging that in: 9-6i-1=8-6i.
- 11. A. In order to satisfy the equation, 3^{x^2+3} must equal 1. An exponential function only equals 1 when its exponent is equal to 0. Solve for $x^2+3=0$. This becomes $x^2=-3$. x must then be equal to $i\sqrt{3}$ and $-i\sqrt{3}$. There are 2 imaginary numbers in the solution set.
- 12. D. In order to simplify the expression, we multiply the top and bottom of the fraction by the conjugate of the denominator.

Since the denominator is $\sqrt{X} - i$, its conjugate is $\sqrt{X} + i$. Our expression now becomes $\frac{\sqrt{X}(\sqrt{X} + i)}{(\sqrt{X} - i)(\sqrt{X} + i)}$. Distributing the top and FOILing the bottom gives us $\frac{X + i\sqrt{X}}{X + i\sqrt{X} - i\sqrt{X} - i^2}$, which we can simplify to $\frac{X + \sqrt{-X}}{X + 1}$.

- 13. E. $9x^2 + 169$ can be expressed as the product of complex conjugates. The first term is the square of 3x, and the second term is the product of 13i and -13i. Thus, we can set up our equation as (3x + 13i)(3x 13i). The 'O' and 'I' of FOILing cancel each other out, leaving us with $9x^2 + 169$.
- 14. D. Multiplying the expression out using foil, we get $(3-4i)(\pi+3i)=3\pi-4i\pi+9i-(-1)$ 12. Now, separating the real and imaginary terms, we get $3\pi+12-4\pi i+9i=(12+3\pi)+(9-4\pi)i$.
- **15. D.** The modulus of the complex number is essentially the distance from the origin to the point. This can be seen since the value of the modulus, $\sqrt{a^2 + b^2}$, is the Pythagorean theorem, which is used to find the distance of a point from the origin. Thus, we can tell what the smallest modulus is by seeing which point is the closest to the origin. In this case, it's D.