Szakítódiagram órai munkát segítő

Szakitódiagram

$$R_m = \frac{F_m}{S_0} \quad \frac{N}{mm^2}$$

Szakítódiagram fogalma

Szakítószilárdság fogalma:

A szakítószilárdság: A szakítószilárdság az anyagnak csak az állandó terheléssel szembeni szilárdságára ad felvilágosítást, dinamikus igénybevételt csak jóval kisebb terhelésnél bír ki az anyag. A szakítószilárdság a hőmérséklet függvényében változik (általában csökken), magasabb hőmérsékleten állandó terhelés alatt az anyag állandóan növekvő alakváltozást szenved (tartósfolyás).

A szakítószilárdság: megállapítására az anyagból szabvány szerint elkészített próbatesten statikus szakítóvizsgálatot végeznek, ami azt jelenti, hogy lassan növelik a húzóerőt és közben a gép felveszi a feszültség-alakváltozás diagramját. Az anyag tönkremenetel többféleképpen értelmezhető.

Szakítódiagram A mérés elve

A mérés elve

Az S_0 kiinduló keresztmetszetű és L_0 kezdeti hosszúságú próbatestet egytengelyű húzó igénybevétellel adott sebesség mellett addig nyújtunk, ameddig be nem következik a szakadás.

A vizsgálat során mérjük a terhelés változását a darab nyúlásának függvényében.

Szakító próbatest kialakítás

Szakítóvizsgálat

I. Rugalmas alakváltozás

A terhelés megszűnése után a darab visszanyeri eredeti alakját.

II. Egyenletes alakváltozás

A képlékeny deformáció a mérőhossz minden egyes pontján azonos.

III. Kontrakció

A képlékeny deformáció egy szűk tartományra korlátozódik.

Szakítóvizsgálat fogalmak:

Szakítóvizsgálat fogalmak:

Folyáshatár (Re): az a feszültség, melyet az anyag maradó alakváltozás nélkül elvisel. Ez a pont nem mindig pontosan meghatározható, ezért helyette némely anyagnál azt a feszültséget tekintik folyáshatárnak, melynél a maradó alakváltozás 0,2%.

Folyáshatár
$$R_{eH} = \frac{F_{eH}}{S_o}$$

Szakítószilárdság (Rm): az anyag által törés nélkül kibírt legnagyobb feszültség

Szakítószilárdság
$$R_m = \frac{F_m}{S_a}$$

Szakadás: A szakítódiagramról leolvasható feszültség, ahol az anyag elszakad.

Nyúlás
$$A = \frac{L_u - L_o}{L_o} 100$$
 Kontrakció $Z = \frac{S_o - S_u}{S_o} 100$

Szakítódiagram anyagfajták szerint

Szakítódiagram anyagfajták szerint:

Kis széntartalmú szénacél szakítódiagramja: nevezetes pontjai

- 1. Szakítószilárdság, Rm.
- 2. Folyáshatár, Re.
- 3. Szakadás
- 4. Felkeményedés
- 5. Kontrakció (keresztmetszet összehúzódás)

Szakítódiagram anyagfajták szerint

Alumínium szakítódiagramja Nevezetes pontjai

- 1.Szakítószilárdság, Rm
- 2. 0,2%-os határ, R0,2
- 3. Arányossági határ
- 4. Szakadás
- 5. 0,2% fajlagos nyúlás

Különleges rideg anyag Szakítódiagramja Nevezetes pontjai

- 1. Szakítószilárdság, Rm
- 2. Szakadás

Szakítóvizsgálat eszközei

Szakítóvizsgálat berendezései:

Szakítógép: számítógéppel összekötve

Szakítógép: mechanikus

Elvégzendő feladatok:
Szakítás
Hengeres próbatest szakítása
Valódi feszültség-valódi nyúlás
görbe felvétele
A szabványos mérőszámok
meghatározása

Szakítógépek típusai

Szakítógépek típusai

Hidraulikus szakítógép

Mechanikus szakítógép

Elektromechanikus szakítógép

Szakítóvizsgálat

A szakítóvizsgálat elve

Szakítóvizsgálat

A szakítóvizsgálat során kapott eredményeket befolyásoló tényezők:

- ⇒a próbatest alakja, mérete, felületi minősége
- ⇒a terhelés növelésének sebessége
- ⇒a vizsgálati körülmények pl. a hőmérséklet

Az acél viselkedése magasabb hőmérsékleten:

Jellegzetes szakítódiagramok

Jellegzetes szakítódiagramok

Szabványos mérőszámok: Szilárdsági jellemzők:

Alsó folyáshatár

$$R_{eL} = \frac{F_{eL}}{S_0} \frac{N}{mm^2}$$

Felső folyáshatár:

$$R_{eH} = \frac{F_{eH}}{S_0} \frac{N}{mm^2}$$

ahol So a próbatest eredeti keresztmetszete

Szakítódiagram Feladatok

Feladatok: (Klikk a feladat típusra)

Szóbeli kérdések:

<u>Írásbeli feladatok:</u>

Szakítódiagram vizsgálata

Saját készítésű ábrák, képek Órai munkát segítő tananyag 2009.10.hó.

Szerző: Karczub Béla

A tananyag felhasználásának minden joga a Szily Tiszk tulajdonában van.

