

Fachbereich Mathematik

Bachelorarbeit

Helmholtz-Zerlegung

Fabian Gabel

16.06.2016

Betreuer: PD. Dr. Robert Haller-Dintelmann

Version vom 28. Juni 2016

Inhaltsverzeichnis

Einleitung							
1	Gru	undlagen					
	1.1	Physikalische Grundlagen					
	1.2	Funktionalanalytische Grundlagen – Distributionen und Sobolevräume					
		1.2.1	Glatte Funktionen	6			
		1.2.2	Topologisierung des Raums der Testfunktionen und ein Stetigkeitsbegriff	7			
		1.2.3	Differentiation von Distributionen – Schwache Differenzierbarkeit und Sobolevräume	7			
2	Lösı	sungen von $ abla p = f$					
	2.1	Lipschitzgebiete und Gebietszerlegungen					
	2.2	Kompakte Einbettungen					
	2.3	Darstellung von Funktionalen					
	2.4	Die Glättungsmethode					
	2.5	Das G	radientenkriterium	8			
3	Heli	nholtz-	Z erlegung in L^2	9			

4 Zusammenfassung und Ausblick	10
Literaturverzeichnis	11
Symbolverzeichnis	12

Einleitung

Grundlagen

1.1 Physikalische Grundlagen

- Physikalische Motivation dieses Gleichungssystems
- Linearisierung der Navier-Stokes-Gleichungen (Motivation der Stokes-Gleichung)
- Schleichende Strömungen z.B. [SA10][S.112,S.489].

1.2 Funktionalanalytische Grundlagen – Distributionen und Sobolevräume

1.2.1 Glatte Funktionen

- [Soh01][S.22ff.]
- glatte / Testfunktionen definieren
- Normfamilien und Teilräume angeben

1.2.2 Topologisierung des Raums der Testfunktionen und ein Stetigkeitsbegriff

- Inhalte ganz zu Beginn von [Soh01][S.34] wiedergeben, zusätzliche (topologische Eigenschaften) beweisen, aus Werner s.u.
- [Wer11][S.430]
- Lemma VIII.5.1 (a)(d), VIII.2.3
- Satz VIII.5.4(iii)
- lokale Integrierbarkeit
- Einbettung von L^1_{loc} in $C^\infty_0(\Omega)'$

1.2.3 Differentiation von Distributionen – Schwache Differenzierbarkeit und Sobolevräume

- [Soh01][S.34ff.]
- [Wer11][S.433f.]
- Differentiation von Distributionen
- Divergenzfreie Test-Funktionen
- Sobolevräume und ihre Normen [Soh01][S.38ff.]

Lösungen von $\nabla p = f$

2.1 Lipschitzgebiete und Gebietszerlegungen

• [Soh01][S.55, Lemma 1.4.1]

2.2 Kompakte Einbettungen

• [Soh01][S.58, Lemma 1.5.4]

2.3 Darstellung von Funktionalen

• [Soh01][S.61, Lemma 1.6.1]

2.4 Die Glättungsmethode

• [Soh01][S.64ff.]

2.5 Das Gradientenkriterium

• [Soh01][Lemma 2.2.1, S.73]

$\ \, \textbf{Helmholtz-Zerlegung in} \,\, L^2$

• Lemma 2.5.1, 2.5.2 [Soh01][S.81ff.]

Zusammenfassung und Ausblick

Literaturverzeichnis

- [SA10] Spurk, J. H.; Aksel, N.: Strömungslehre: Einführung in die Theorie der Strömungen. 8. Auflage. Berlin: Springer, 2010
- [Soh01] SOHR, H.: *The Navier-Stokes Equations: An Elementary Functional Analytic Approach.* Basel: Birkhäuser, 2001
- [Wer11] WERNER, D.: Funktionalanalysis. 7. Auflage. Berlin: Springer, 2011

Symbolverzeichnis

. 6