EE263 Autumn 2012–13 Stephen Boyd

Lecture 17 Example: Quantum mechanics

- wave function and Schrodinger equation
- discretization
- preservation of probability
- eigenvalues & eigenstates
- example

Quantum mechanics

ullet single particle in interval [0,1], mass m

• potential $V:[0,1]\to \mathbf{R}$

 $\Psi:[0,1]\times \mathbf{R}_+\to \mathbf{C}$ is (complex-valued) wave function

interpretation: $|\Psi(x,t)|^2$ is probability density of particle at position x, time t

(so
$$\int_0^1 |\Psi(x,t)|^2 dx = 1$$
 for all t)

evolution of Ψ governed by *Schrodinger* equation:

$$i\hbar\dot{\Psi} = \left(V - \frac{\hbar^2}{2m}\nabla_x^2\right)\Psi = H\Psi$$

where H is Hamiltonian operator, $i = \sqrt{-1}$

Discretization

let's discretize position x into N discrete points, k/N, $k=1,\ldots,N$ wave function is approximated as $vector\ \Psi(t)\in \mathbf{C}^N$

 ∇_x^2 operator is approximated as matrix

$$\nabla^2 = N^2 \begin{bmatrix} -2 & 1 \\ 1 & -2 & 1 \\ & 1 & -2 & 1 \\ & & \ddots & \ddots & \ddots \\ & & & 1 & -2 \end{bmatrix}$$

so $w = \nabla^2 v$ means

$$w_k = \frac{(v_{k+1} - v_k)/(1/N) - (v_k - v_{k-1})(1/N)}{1/N}$$

(which approximates $w = \partial^2 v / \partial x^2$)

discretized Schrodinger equation is (complex) linear dynamical system

$$\dot{\Psi} = (-i/\hbar)(V - (\hbar/2m)\nabla^2)\Psi = (-i/\hbar)H\Psi$$

where V is a diagonal matrix with $V_{kk} = V(k/N)$

hence we analyze using linear dynamical system theory (with complex vectors & matrices):

$$\dot{\Psi} = (-i/\hbar)H\Psi$$

solution of Shrodinger equation: $\Psi(t) = e^{(-i/\hbar)tH}\Psi(0)$

matrix $e^{(-i/\hbar)tH}$ propogates wave function forward in time t seconds (backward if t<0)

Preservation of probability

$$\frac{d}{dt} \|\Psi\|^2 = \frac{d}{dt} \Psi^* \Psi$$

$$= \dot{\Psi}^* \Psi + \Psi^* \dot{\Psi}$$

$$= ((-i/\hbar) H \Psi)^* \Psi + \Psi^* ((-i/\hbar) H \Psi)$$

$$= (i/\hbar) \Psi^* H \Psi + (-i/\hbar) \Psi^* H \Psi$$

$$= 0$$

(using
$$H = H^T \in \mathbf{R}^{N \times N}$$
)

hence, $\|\Psi(t)\|^2$ is constant; our discretization preserves probability exactly

 $U = e^{-(i/\hbar)tH}$ is unitary, meaning $U^*U = I$

unitary is extension of *orthogonal* for complex matrix: if $U \in \mathbf{C}^{N \times N}$ is unitary and $z \in \mathbf{C}^N$, then

$$||Uz||^2 = (Uz)^*(Uz) = z^*U^*Uz = z^*z = ||z||^2$$

Eigenvalues & eigenstates

H is symmetric, so

- its eigenvalues $\lambda_1, \ldots, \lambda_N$ are real $(\lambda_1 \leq \cdots \leq \lambda_N)$
- its eigenvectors v_1, \ldots, v_N can be chosen to be orthogonal (and real)

from $Hv = \lambda v \Leftrightarrow (-i/\hbar)Hv = (-i/\hbar)\lambda v$ we see:

- ullet eigenvectors of $(-i/\hbar)H$ are same as eigenvectors of H, $i.e.,\ v_1,\ldots,v_N$
- ullet eigenvalues of $(-i/\hbar)H$ are $(-i/\hbar)\lambda_1,\ldots,(-i/\hbar)\lambda_N$ (which are pure imaginary)

- ullet eigenvectors v_k are called eigenstates of system
- ullet eigenvalue λ_k is *energy* of eigenstate v_k
- for mode $\Psi(t)=e^{(-i/\hbar)\lambda_k t}v_k$, probability density

$$|\Psi_m(t)|^2 = \left| e^{(-i/\hbar)\lambda_k t} v_k \right|^2 = |v_{mk}|^2$$

doesn't change with time $(v_{mk} \text{ is } m \text{th entry of } v_k)$

Example

Potential Function V(x)

- potential bump in middle of infinite potential well
- (for this example, we set $\hbar=1$, m=1 . . .)

lowest energy eigenfunctions

- ullet potential V shown as dotted line (scaled to fit plot)
- four eigenstates with lowest energy shown (i.e., v_1, v_2, v_3, v_4)

now let's look at a trajectory of Ψ , with initial wave function $\Psi(0)$

- particle near x = 0.2
- ullet with momentum to right (can't see in plot of $|\Psi|^2$)
- (expected) kinetic energy half potential bump height

- ullet top plot shows initial probability density $|\Psi(0)|^2$
- ullet bottom plot shows $|v_k^*\Psi(0)|^2$, *i.e.*, resolution of $\Psi(0)$ into eigenstates

time evolution, for $t=0,40,80,\dots,320$: $|\Psi(t)|^2$

cf. classical solution:

- particle rolls half way up potential bump, stops, then rolls back down
- reverses velocity when it hits the wall at left (perfectly elastic collision)
- then repeats

plot shows probability that particle is in left half of well, i.e., $\sum_{k=1}^{N/2} |\Psi_k(t)|^2$, versus time t