Készítsünk bővíthető 5-ről az 1-re multiplexert az alábbi elemek felhasználásával:

- az adatbemenetekhez alacsony szinttel engedélyezett, ponált kimenetű tri-state kaput,
- vezérlő áramkörnek ÉS-NEM kaput használjunk
- az engedélyező jel magas szinten aktív!

Megoldás: A bővíthetőség azt jelenti, hogy van engedélyező jel. Mivel a multiplexernek 5 bemenete van, ezért ezek egyértelmű kiválasztásához 3 szelekciós bemenetre van szükség, ezek a C, B, A. Nézzük az igazságtáblát:

Е	С	В	A	Y	vezérlés
1	0	0	0	I_0	$\overline{E * \overline{C} * \overline{B} * \overline{A}}$
1	0	0	1	I_1	$\overline{E * \overline{C} * \overline{B} * A}$
1	0	1	0	I_2	$\overline{E * \overline{C} * B * \overline{A}}$
1	0	1	1	I_3	$\overline{E * \overline{C} * B * A}$
1	1	0	0	I_4	$\overline{E * C * \overline{B} * \overline{A}}$
0	X	X	X	Z	

Az Y azért Z az utolsó sorban, mert a tristate kimeneten, ha az nincs engedélyezve nagyimpedanciás állapot alakul ki, és ennek jelölésére használjuk a Z-t. Az adatbemenethez használt tri-state kapu alacsony szinten engedélyezett a vezérléshez használt ÉS-NEM kapu kimenetén pedig egyszer van 0, ha minden bemenete 1-es, ezt használjuk a vezérlés

megvalósítására. Ebből következik, hogy az ÉS-NEM kapuk kijáratát közvetlenül ráköthetjük a tri-state kapuk engedélyező bemenetére.

- Vegyük az első ÉS-NEM kaput, amely az I₀ adatbemenetet választja ki. Ha ez a bemenet van kiválasztva, akkor az E=1, C, B és A pedig 0. Mivel az ÉS-NEM kapu minden bemenetére 1-es kell vezérlésnél, ezért amelyik bemenet 1-es azt ponáltan, amelyik 0 azt negáltan kell az ÉS-NEM kapu bemenetére kötni. Ebből következik, hogy az E jel ponáltan, míg a C, B, A jelek negáltan kerülnek az ÉS-NEM kapu bemenetére.

- Nézzük az I₁-es adatbemenetet kiválasztó ÉS-NEM kaput. I₁-nél E=A=1, C=B=0, ezért E és A jeleket ponáltan, míg a C, B jeleket negáltan visszük az ÉS-NEM kapu bemenetére.
- Hasonlóan járunk el a többi adatbemenetnél is. Az I₂-t kiválasztó ÉS-NEM kapu bejáratára az E, B jeleket ponáltan, míg a C, A jeleket negáltan kötjük. Az I₃-t kiválasztó ÉS-NEM kapu be-

járatára az E, B, A jeleket ponáltan, míg a C jelet negáltan kötjük. Az I₄-t kiválasztó ÉS-NEM kapu bejáratára az E, C jeleket ponáltan, míg a B, A jeleket negáltan kötjük. Már csak a rajz hiányzik. A tri-state kimenetek összeköthetőek, csak biztosítani kell a kizáró vagy vezérlést. Ezt a kritériumot a feladat megoldása magában foglalja, így nincs külön más teendőnk.

Készítsünk bővíthető 5-ről az 1-re multiplexert az alábbi elemek felhasználásával:

- az adatbemenetekhez nyitott kollektoros ÉS-NEM kaput (nyitott kollektoros esetben csak ÉS-NEM kapuk lehetnek a kimenetek),
- vezérlő áramkörnek VAGY kaput használjunk!
- Az engedélyező jelünk legyen magas szinten aktív.

Megoldás: Az 5 bemenet kiválasztásához 3 szelekciós bemenetre van szükség, ezek a C, B, A. Az adatbemenetekhez használt ÉS-NEM kapu két bemenetű, az egyik bemenetére a megfelelő indexű I bemenet jele kerül, míg a másikra a vezérléshez használt VAGY kapu kimenetét kötjük ponáltan, vagy negáltan. A VAGY kapu kimenetén egyszer van 0, ha minden bemenete 0, ezt használjuk vezérlésre. Az ÉS-NEM kapu egyik bemenetén engedélyezzük a másik bemenetére kötött I adatbemenetet, ehhez az engedélyezésre szánt bemenetre 1-es kell. A vezérléshez használt VAGY kapu kimenetén vezérléskor 0 van, viszont az ÉS-NEM kapu bemenetére engedélyezéskor 1-es kell, ezért a VAGY kapu kimenetét negáltan kötjük az ÉS-NEM kapu bemenetére. A VAGY kapu bemenetére vezérléskor 0 kell, ezért az E, C, B, A jeleket, ha a kiválasztott bemenetnél 0 értékűek ponáltan, ha 1-es értékűek akkor negáltan kell bevezetni a VAGY kapuba. Nézzük az igazságtáblát, és a sorok mellé beírjuk, hogy a jeleket, hogyan kell bevezetni az adott bemenetet engedélyező VAGY kapuba.

Е	C	В	Α	Y	vezérlés
1	0	0	0	$\overline{I_0}$	$\bar{E} + C + B + A$
1	0	0	1	$\overline{I_1}$	$\bar{E} + C + B + \bar{A}$
1	0	1	0	$\overline{I_2}$	$\bar{E} + C + \bar{B} + A$
1	0	1	1	$\overline{I_3}$	$\bar{E} + C + \bar{B} + \bar{A}$
1	1	0	0	$\overline{I_4}$	$\bar{E} + \bar{C} + B + A$
0	X	X	X	1	a felhúzóellenállás miatt 1-es

Már csak a rajz van hátra, és azt se felejtsük el, hogy a nyitott kollektoros kimenetek összeköthetőek, és ehhez kell a felhúzó ellenállás.

Készítsünk bővíthető 4-ről az 1-re multiplexert az alábbi elemek felhasználásával:

- I₀, I₃ adatbemenetekhez két bemenetű nyitott kollektoros ÉS-NEM kaput,
- I₁, I₂ adatbemenetekhez alacsony szinttel engedélyezett, ponált kimenetű tri-state alapkaput,
- vezérléshez VAGY kapukat használjunk!
- Az engedélyező jelünk legyen magas szinten aktív.

Megoldás: A 4 bemenet egyértelmű kiválasztásához 2 szelekciós bemenetre (B, A) van szükség. A VAGY kapu kimenetén egyszer van 0, ha minden bemenete 0, ezt használjuk vezérlésre. Az ÉS-NEM kapu bemenetére vezérléskor 1 kell, hogy az I adatbemenet határozza meg a kimenetét. Viszont vezérléskor a VAGY kapu kimenetén 0 van, ezért negáltan kötjük az ÉS-NEM kapu bemenetére. Az alacsony szinttel engedélyezett tri-state kapu engedélyező bemenetére 0 kell engedélyezéskor, a VAGY kapu kijáratán 0 van vezérléskor így ponáltan köthetjük a tri-state kapu engedélyező bemenetére. Írjuk fel az igazságtáblát, és a sorok mellé felírjuk, hogy a jeleket hogyan kötjük a VAGY kapu bemenetére.

Е	В	A	Y	
1	0	0	$\overline{I_0}$	$\bar{E} + B + A$
1	0	1	I_1	$\bar{E} + B + \bar{A}$
1	1	0	I_2	$\bar{E} + \bar{B} + A$
1	1	1	$\overline{I_3}$	$\bar{E} + \bar{B} + \bar{A}$
0	X	X	1	a felhúzóellenállás miatt 1-es

Már csak a kapcsolási rajzot kell elkészíteni. Figyelnünk kell a kimenetek összeköthetőségére. Tri-state, illetve nyitott kollektoros kimenetek összeköthetőek, ha biztosítjuk a nyitott kollektoros kimenethez szükséges felhúzó ellenállást, illetve a tri-state kapu esetén szükséges kizáró vagy vezérlést. A kizáró vagy vezérlést a feladat megoldása már biztosítja, így külön más dolgunk ezzel nem lesz.

Készítsünk bővíthető 5-ről az 1-re multiplexert az alábbi elemek felhasználásával:

- magas szinttel engedélyezett, ponált kimenetű tri-state kaput a páros,
- két bemenetű nyitott kollektoros ÉS-NEM kaput a páratlan sorszámú adatbemenetekhez,
- vezérlő áramkörnek VAGY-NEM kaput használjunk!
- Az engedélyező jelünk legyen magas szinten aktív.

Megoldás: Az 5 bemenet egyértelmű kiválasztásához 3 szelekciós bemenetre (C,B, A) van szükség. Az engedélyező jel legyen továbbra is magas szinten aktív. A VAGY-NEM kapu kimenetén egyszer van 1-es, ha minden bemenete 0, ezt használjuk vezérlésre. Az ÉS-NEM kapu bemenetére vezérléskor 1 kell, hogy az I adatbemenet határozza meg a kimenetét. Vezérléskor a VAGY-NEM kapu kimenetén 1 van, ezért ponáltan kötjük az ÉS-NEM kapu bemenetére. A magas szinttel engedélyezett tri-state kapu, engedélyező bemenetére 1 kell engedélyezéskor, a VAGY-NEM kapu kijáratán 1 van vezérléskor, így ponáltan kötjük a tri-state kapu engedélyező bemenetére. Adjuk meg az igazságtáblát, és a sorok mellé felírjuk, hogy a jeleket hogyan kötjük a VAGY-NEM kapu bemenetére.

Е	C	В	A	Y	
1	0	0	0	I_0	$\overline{E} + C + B + A$
1	0	0	1	$\overline{I_1}$	$\overline{E} + C + B + \overline{A}$
1	0	1	0	I_2	$\overline{E} + C + \overline{B} + A$
1	0	1	1	$\overline{I_3}$	$\overline{E} + C + \overline{B} + \overline{A}$
1	1	0	0	I_4	$\overline{E} + \overline{C} + B + A$
0	X	X	X	1	a felhúzóellenállás miatt 1-es

Már csak a kapcsolási rajzot kell elkészíteni. Figyelnünk kell a kimenetek összeköthetőségére. Tri-state, illetve nyitott kollektoros kimenetek összeköthetőek, ha biztosítjuk a nyitott kollektoros kimenethez szükséges felhúzó ellenállást, illetve a tristate kapu esetén szükséges kizáró vagy vezérlést. A kizáró vagy vezérlést a feladat megoldása már biztosítja, így külön más dolgunk ezzel nem lesz.

Készítsünk bővíthető 7-ről az 1-re multiplexert az alábbi elemek felhasználásával:

- az összes adatbemenethez 2-ről 1-re alacsony szinttel engedélyezett multiplexert,
- vezérlő áramkörnek ÉS-NEM kaput használjunk!
- Az engedélyező jelünk legyen magas szinten aktív.

Megoldás: A 7 bemenet egyértelmű kiválasztásához 3 szelekciós bemenetre van szükség, ezek C, B, A. A vezérléshez használt ÉS-NEM kapu kimenetén egyszer van 0, ha minden bemenete 1-es. Ezt használjuk vezérlésre. Az adatbemenetekhez használt 2-ről 1-re multiplexerek engedélyező bemenetei alacsony szinten aktívak, és mivel az ÉS-NEM kapu kimenetén 0 van vezérléskor, ezért az ÉS-NEM kapu kijáratát ponáltan köthetjük a multiplexerek engedélyező bemenetére. Ezután felírjuk az igazságtáblát és sorok mellé beírjuk, hogy az E, C, B, A jeleket hogyan kötjük az ÉS-NEM kapu bemenetére. A vezérléshez használt ÉS-NEM kapu bemenetére 1-esként kell bekötni a jeleket, ezért amelyik az igazságtáblában 1-es értékű azt ponáltan, amelyik 0 azt negáltan kötjük az ÉS-NEM kapuba.

Е	C	В	A	Y
1	0	0	0	I_0
1	0	0	1	I_1
1	\bigcirc	1	0	I_2
1	0	1	1	I_3
1	\bigcap	0	Ð	I_4
1	1	0	_1	I_5
1	1	1	0	I_6
0	X	X	X	Z

a 2-ről 1-re mux szelekciós bemenetére az A jelet kötjük, a vezérléshez használt ÉS-NEM kapuba pedig: $\overline{E*\overline{C}*\overline{B}}$ a 2-ről 1-re mux szelekciós bemenetére az A jelet kötjük, a vezérléshez használt ÉS-NEM kapubaedig: $\overline{E*\overline{C}*B}$ a 2-ről 1-re mux szelekciós bemenetére az A jelet kötjük, a vezérléshez használt ÉS-NEM kapuba pedig: $\overline{E*\overline{C}*\overline{B}}$ a 2-ről 1-re mux szelekciós bemenetére az A jelet kötjük, a vezérléshez használt ÉS-NEM kapuba pedig: $\overline{E*\overline{C}*\overline{B}}$ nagyimpedanciás állapot

A vezérléshez használt ÉS-NEM kapuba azért elegendő csak a C, B jeleket (E jelen kívül) bevezetni, mert az igazságtáblából is látszik, hogy ez a 2 bemenet egyértelműen kiválasztja, az adott 2-ről 1-re multiplexert. Nézzük példaként az I₀, I₁ adatbemeneteket, amiket egyszerre

kell engedélyeznünk, mivel ugyanazon multiplexer két bemenetét jelölik. C és B az első két esetben, de csak ott 00, tehát ez elegendő lesz az engedélyezésre. A 2-ről 1-re multiplexer szelekciós bemenetére olyan jelet kell vezetnünk, ami a két adatbemenet esetén eltérő értékű, egyiknél 0 a másiknál 1-es. Ennek a feltételnek az A jel felel meg. Már csak a kapcsolási rajzot kell elkészíteni. A 2-ről 1-re multiplexerek kimenetei legyenek tri-state kimenetek, így összeköthetőek, ha biztosítjuk a kizáró vagy vezérlést, vagyis hogy egyszerre mindig csak 1 multiplexer van engedélyezve. Ezt a feladat megoldása önmagában biztosítja, így nincs külön más teendőnk.

Készítsünk bővíthető 7-ről az 1-re multiplexert az alábbi elemek felhasználásával:

- I₀, I₁, I₂, I₃ adatbemenetekhez 2-ről az 1-re alacsony szinttel engedélyezett multiplexert,
- a többi adatbemenethez nyitott kollektoros ÉS-NEM kaput,
- vezérlő áramkörnek ÉS kaput használjunk!
- Az engedélyező jelünk legyen magas szinten aktív.

Megoldás: A 7 bemenet egyértelmű kiválasztásához 3 szelekciós bemenetre van szükség, ezek C, B, A. A vezérléshez használt ÉS kapu kimenetén egyszer van 1-es, ha minden bemenete 1-es. Ezt használjuk vezérlésre. Az adatbemenetekhez használt 2-ről 1-re multiplexerek engedélyező bemenetei alacsony szinten aktívak, és mivel az ÉS kapu kimenetén 1 van vezérléskor, ezért az ÉS kapu kijáratát negáltan kötjük a multiplexerek engedélyező bemenetére. A többi adatbemenethez használt ÉS-NEM kapu bejáratára 1-es kell, hogy az I adatbemenet határozza meg a kimenetét, ezért a vezérléshez használt ÉS kapu kijáratát ponáltan kötjük az ÉS-NEM kapukba. Ezután felírjuk az igazságtáblát és sorok mellé beírjuk, hogy az E, C, B, A jeleket hogyan kötjük az ÉS kapu bemenetére. A vezérléshez használt ÉS kapu bemenetére 1-esként kell bekötni a jeleket, ezért amelyik az igazságtáblában 1-es értékű azt ponáltan, amelyik 0 azt negáltan kötjük az ÉS kapuba.

Е	C	В	A	Y	
1	$\overline{0}$	0	0	I_0	a 2-ről 1-re mux szelekciós bemenetére az A jelet kötjük, a
1	0	0	1	I_1	vezérléshez használt ÉS kapuba pedig: $E * \bar{C} * \bar{B}$
1	0	1	0	I_2	a 2-ről 1-re mux szelekciós bemenetére az A jelet kötjük, a
1	0	1	1	I_3	vezérléshez használt ÉSkapuba pedig: $E * \bar{C} * B$
1	1	0	0	$\overline{I_4}$	$E * C * \overline{B} * \overline{A}$
1	1	0	1	$\overline{I_5}$	$E * C * \overline{B} * A$
1	1	1	0	$\overline{I_6}$	$E*C*B*\bar{A}$
0	X	X	X	1	a felhúzóellenállás miatt 1-es

A vezérléshez használt ÉS kapuba azért elegendő csak a C, B jeleket bevezetni (E jelen kívül) a 2-ről 1-re multiplexerek esetében, mert az igazságtáblából is látszik, hogy ez a 2 bemenet egyértelműen kiválasztja, az adott 2-ről 1-re multiplexert. Nézzük az I₂, I₃ adatbemeneteket, amiket egyszerre kell engedélyeznünk, mivel ugyanazon multiplexer két bemenetét jelölik. C és B ebben a két esetben, de csak itt 01, tehát ez elegendő lesz az engedélyezésre. A 2-ről 1-re multiplexer szelekciós bemenetére olyan jelet kell vezetnünk, ami a két adatbemenet esetén eltérő értékű, tehát egyiknél 0 a másiknál 1-es. Ennek a feltételnek az A jel felel meg. Már csak a kapcsolási rajzot kell elkészíteni. A 2-ről 1-re multiplexerek kimenetei legyenek tristate kimenetek, így összeköthetőek, ha biztosítjuk a kizáró vagy vezérlést, vagyis hogy egyszerre mindig csak 1 kapu van engedélyezve. Ezt a feladat megoldása magában biztosítja, így nincs külön más teendőnk. Ehhez a nyitott kollektoros kimeneteket is beköthetjük, csak a felhúzó ellenállásról kell gondoskodnunk.

Készítsünk bővíthető 8-ről az 1-re multiplexert az alábbi elemek felhasználásával:

- I₀, I₁, I₆, I₇ adatbemenetekhez 4-ről az 1-re multiplexert,
- a többi adatbemenethez magas szinttel engedélyezett, ponált kimenetű tri-state kaput,
- vezérlő áramkörnek VAGY kaput használjunk!
- Az engedélyező jelünk legyen megint magas szinten aktív.

Megoldás: A 8 bemenet egyértelmű kiválasztásához 3 szelekciós bemenetre van szükség, ezek C, B, A. A vezérléshez használt VAGY kapu kimenetén egyszer van 0, ha minden bemenete 0. Ezt használjuk vezérlésre. Az adatbemenetekhez használt 4-ről 1-re multiplexer engedélyező bemenete alacsony szinten aktív, és mivel a VAGY kapu kimenetén 0 van vezérléskor, ezért a kapu kijáratát ponáltan köthetjük a multiplexer engedélyező bemenetére. A többi bemenethez használt tri-state kapuknak magas szinten aktív az engedélyező bemenetük, ezért ide negáltan kötjük a vezérléshez használt VAGY kapuk kijáratát. Ezután felírjuk az igazságtáblát és sorok mellé beírjuk, hogy az E, C, B, A jeleket hogyan kötjük a VAGY kapu bemenetére. A vezérléshez használt VAGY kapu bemenetére 0-ként kell bekötni a jeleket, ezért amelyik az igazságtáblában 1-es értékű azt negáltan, amelyik 0 azt ponáltan kötjük a VAGY kapuba.

++	0) (0) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	3	A 0 1 0 1 0 1 0 1 X	$\begin{array}{c c} Y & I_0 \\ I_0 & I_1 \\ I_2 & I_3 \\ I_4 & I_5 \\ I_6 & I_7 \\ Z & Z \end{array}$	a 4-ről 1-re mux szelekciós bemeneteire az A, B jeleket kötjük, a vezérléshez pedig: $E*(C*B+\bar{C}*\bar{B})$ $\bar{E}+C+\bar{B}+A$ $\bar{E}+C+\bar{B}+\bar{A}$ $\bar{E}+\bar{C}+B+A$ $\bar{E}+\bar{C}+B+\bar{A}$ átírva az egyenletet VAGY kapcsolatokra: $\bar{E}+\bar{C}+\bar{B}+\bar{E}+C+\bar{B}$ nagyimpedanciás állapot
----	---	---	--	---	---

A vezérléshez használt VAGY kapuba azért elegendő csak a C, B jeleket bevezetni (E jelen kívül), mert az igazságtáblából is látszik, hogy ez a 2 bemenet egyértelműen kiválasztja, a 4-ről 1-re multiplexert. Nézzük az I₀, I₁, I₆, I₇ adatbemeneteket, amiket egyszerre kell engedélyeznünk, mivel ugyanazon multiplexer 4 bemenetét jelölik. C és B I₀, I₁ esetén, de csak ott 00, míg I₆, I₇ esetén 11, de csak ott, tehát ez elegendő lesz az engedélyezésre. A 4-ről 1-re multiplexer szelekciós bemeneteire olyan jeleket kell vezetnünk, amelyek a 4 adatbemenet esetén eltérő értékűek. Ennek a feltételnek a B és az A jelek felelnek meg, mivel a 4 adatbemenet esetén 00, 01, 10, 11 értékűek. Már csak a kapcsolási rajzot kell elkészíteni. A 4-ről 1-re multiplexer kimenete legyen tri-state kimenet, így összeköthetőek a többi tri-state kimenettel, ha biztosítjuk a kizáró vagy vezérlést, vagyis hogy egyszerre mindig csak 1 kapu van engedélyezve. Ezt a feladat megoldása magában biztosítja, így más teendőnk nincs.

8. Feladat: Kombinációs hálózat megvalósítása multiplexerrel.

Adott a logikai függvény diszjunktív szabályos alakja számjegyes formában:

$$Z = \sum m_i^3$$
 ($i = 2,4,6$ $X = 0,5,7$). Valósítsuk meg a függvényt multiplexerrel!

Megoldás: A diszjunktív alakból látható, hogy hány változós a függvény, ez itt 3. A legegyszerűbb megvalósítási mód az, hogy ugyanennyi címző bemenettel rendelkező multiplexert használunk a megvalósításhoz. A címző bemenetekre kötjük a függvény változóit (A, B, C). Azokra az adatbemenetekre 0-t kötünk, amelyek nem szerepelnek a függvény leírásában, azokra pedig 1-t, amelyek szerepelnek a függvényben. A közömbös értéknél (X) mi döntjük el, hogy oda 0-át vagy 1-et kötünk. Itt a 0 azt jelenti, hogy földre kötjük a multiplexer bemenetét, 1-nél pedig tápra. Most már csak fel kell rajzolni a kapcsolást.

Demultiplexer kidolgozott feladatok

1. Feladat

Készítsünk bővíthető 1-ről az 5-re demultiplexert az alábbi elemek felhasználásával:

- a kimenetekhez VAGY-NEM kapukat,
- vezérléshez ÉS kapukat használjunk!
- Az engedélyező jel legyen magas szinten aktív!

Megoldás: Az 5 kimenet egyértelmű kiválasztásához 3 szelekciós bemenetre van szükség, C, B, A, amelyek súlyozása rendre 2^2 , 2^1 , 2^0 . A VAGY-NEM kapu kijáratán egyszer van 1-es, ha minden bemenete 0, ezt használjuk a vezérlésnél. A vezérléshez használt ÉS kapu kijáratán egyszer van 1-es, ha minden bemenete 1-es, ezért ezt használjuk. A VAGY-NEM kapu bejáratára 0 kell vezérlésnél, az ÉS kapu kijáratán 1 van vezérléskor, ezért az ÉS kapu kimenetét negáltan kötjük a VAGY-NEM kapu bemenetére. Az ÉS kapu bemenetére 1-esként kell a jeleket bevezetni (E, C, B, A), ezért amelyik 0 azt negáltan, amelyik 1 azt ponáltan kötjük az ÉS kapuba. Az engedélyező jel legyen magas szinten aktív. Írjuk fel az igazságtáblát:

Е	C	В	A	Y_0	\mathbf{Y}_1	Y_2	\mathbf{Y}_3	Y_4	vezérlés
1	0	0	0	Ī	0	0	0	0	$E * \bar{C} * \bar{B} * \bar{A}$
1	0	0	1	0	Ī	0	0	0	$E * \bar{C} * \bar{B} * A$
1	0	1	0	0	0	Ī	0	0	$E*\bar{C}*B*\bar{A}$
1	0	1	1	0	0	0	Ī	0	$E * \bar{C} * B * A$
1	1	0	0	0	0	0	0	Ī	E * C * B * A
0	X	X	X	0	0	0	0	0	

Ezután fel kell rajzolni a feladatot megvalósító kombinációs hálózatot.

Készítsünk bővíthető 1-ről az 5-re demultiplexert az alábbi elemek felhasználásával:

- a kimenetekhez ÉS-NEM kapukat,
- vezérléshez VAGY kapukat használjunk!
- Az engedélyező legyen magas szinten aktív!

Megoldás: Az 5 kimenet egyértelmű kiválasztásához 3 szelekciós bemenetre van szükség, C, B, A, amelyek súlyozása rendre 2², 2¹, 2⁰. Az ÉS-NEM kapu kijáratán egyszer van 0, ha minden bemenete 1-es, ezt használjuk a vezérlésnél. A vezérléshez használt VAGY kapu kijáratán egyszer van 0, ha minden bemenete 0, ezért ezt használjuk. Az ÉS-NEM kapu bejáratára 1-es kell vezérlésnél, a VAGY kapu kijáratán 0 van vezérléskor, ezért a VAGY kapu kimenetét negáltan kötjük az ÉS-NEM kapu bemenetére. A VAGY kapu bemenetére 0-ként kell a jeleket bevezetni (E, C, B, A), ezért amelyik 0 azt ponáltan, amelyik 1 azt negáltan kötjük a VAGY kapuba. Írjuk fel az igazságtáblát:

Е	С	В	A	\mathbf{Y}_0	Y_1	Y_2	Y ₃	Y_4	vezérlés
1	0	0	0	\bar{I}	1	1	1	1	$\bar{E} + C + B + A$
1	0	0	1	1	Ī	1	1	1	$\bar{E} + C + B + \bar{A}$
1	0	1	0	1	1	Ī	1	1	$\bar{E} + C + \bar{B} + A$
1	0	1	1	1	1	1	Ī	1	$\bar{E} + C + \bar{B} + \bar{A}$
1	1	0	0	1	1	1	1	Ī	$\bar{E} + \bar{C} + B + A$
0	X	X	X	1	1	1	1	1	

Ezután fel kell rajzolni a feladatot megvalósító kombinációs hálózatot.

