Assignment 6 (Due on the week October 26-31)

- 1. Consider the equation $x^3 + 3y^2 + 4xz^2 3z^2y = 1$. Does this equation define z as a function of x and y. If so, compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at this point.
 - (a) In a neighborhood of x = 1, y = 1?
 - (b) In a neighborhood of x = 1, y = 0?
 - (c) In a neighborhood of x = 0.5, y = 0?
- 2. Consider $3x^2yz + xyz^2 = 30$ as defining x as an implicit function of y and z around the point x = 1, y = 3, z = 2. If y increases to 3.2 and z remains at 2, use the Implicit Function Theorem to estimate the corresponding x.
- 3. (a) Find all points (x_0, y_0) , where y' = 0, if y(x) is an implicit function given by an equation $\ln \sqrt{x^2 + y^2} = \operatorname{arctg} \frac{y}{x}$.
 - (b) Calculate y''(x) at these points.
- 4. Prove that $y''(x) \equiv 0$ if y(x) is an implicit function given by an equation $y = 2x \arctan \frac{y}{x}$. Where does y(x) exist?
- 5. Find all partial derivatives of the first and second order of the composite function w = f(x, y), where $x = u^2 + v^2$, y = uv.