РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Лабораторная работа №7. Дискретное логарифмирование в конечном поле

Дисциплина: Математические основы защиты информации и информационной безопасности

Студентка: Царитова Нина Аведиковна

Группа: НФИмд-02-23

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Содержание

1	Цель работы	5	
2	Задание	6	
3	Теоретическое введение 3.1 Ро-метод Полларда	7 7 7 8 8	
4	Выполнение лабораторной работы 4.1 Ро-метод Полларда	9 9	
5	Выводы	12	
Сп	Список литературы		

List of Figures

3.1	Постановка задачи дискретного логарифмирования	7
3.2	Алгоритм Ро-метода Полларда. 1	8
3.3	Алгоритм Ро-метода Полларда. 2	8
4.1	Вспомогательная функция, зависящая от с,и, у	9
4.2	Вспомогательная функция. Расширенный алгоритм Евклида	10
4.3	Реализация алгоритма Ро-метода Полларда для логарифмирования	10
4.4	Реализация алгоритма Ро-метода Полларда для логарифмирования	11
4.5	Результат реализации Ро-метода Полларда на примере	11

List of Tables

1 Цель работы

Целью данной лабораторной работы является ознакомление с алгоритмом, реализующим Ро-метод Полларда для дискретного логарифмирования, а также программное воплощение данного алгоритма.

2 Задание

- 1. Реализовать рассмотренный в инструкции к лабораторной работе алгоритм программно.
- 2. Подставить численное значение из примера в программный код, проверить правильность полученного ответа.

3 Теоретическое введение

В данной лабораторной работе предметом нашего изучения стал Ро-метод Полларда для задач дискретного логарифмирования.

3.1 Ро-метод Полларда

Ро-метод Полларда для дискретного логарифмирования (*ρ* -метод) — алгоритм дискретного логарифмирования в кольце вычетов по простому модулю, имеющий экспоненциальную сложность. Предложен британским математиком Джоном Поллардом в 1978 году, основные идеи алгоритма очень похожи на идеи ро-алгоритма Полларда для факторизации чисел. Данный метод рассматривается для группы ненулевых вычетов по модулю р, где р — простое число, большее 3.

3.2 Постановка задачи дискретного логарифмирования

Постановка задачи дискретного логарифмирования представлена следующим образом:

Для заданного простого числа p и двух целых чисел a и b требуется найти целое число x, удовлетворяющее сравнению:

$$a^x \equiv b \pmod{p}$$
,

где b является элементом циклической группы G, порожденной элементом a.

Figure 3.1: Постановка задачи дискретного логарифмирования

3.3 Алгоритм Ро-метода Полларда

Исходя из теоретических сведений, алгоритм Ро-метода Полларда представлен ниже.

Рассматриваются последовательность пар $\{u_i,\ v_i\}$ целых чисел по модулю p-1 и последовательность $\{z_i\}$ целых чисел по модулю p, определенные следующим образом :

$$\{u_i\}, \{v_i\}, \{z_i\}, \ i \in N,$$

$$u_0 = v_0 = 0, \ z_0 = 1;$$

$$u_{i+1} = \begin{cases} u_i + 1 \bmod (p-1), & 0 < z_i < \frac{p}{3}; \\ 2u_i \bmod (p-1), & \frac{p}{3} < z_i < \frac{2}{3}p; \\ u_i \bmod (p-1), & \frac{2}{3}p < z_i < p; \end{cases}$$

$$v_{i+1} = \begin{cases} v_i \bmod (p-1), & 0 < z_i < \frac{p}{3}; \\ 2v_i \bmod (p-1), & \frac{p}{3} < z_i < \frac{2}{3}p; \\ v_i + 1 \bmod (p-1), & \frac{2}{3}p < z_i < \frac{2}{3}p; \end{cases}$$

$$v_{i+1} \equiv b^{u_{i+1}}a^{v_{i+1}} \pmod{p} = \begin{cases} bz_i \bmod p, & 0 < z_i < \frac{p}{3}; \\ z_i^2 \bmod p, & \frac{p}{3} < z_i < \frac{2}{3}p; \\ az_i \bmod p, & \frac{2}{3}p < z_i < p; \end{cases}$$

Figure 3.2: Алгоритм Ро-метода Полларда. 1.

При этом, важно учесть следующие замечания [mind:pol?]:

```
Замечание: везде рассматривается наименьшие неотрицательные вычеты.  
Далее рассматриваются наборы (z_i,\ u_i,\ v_i,\ z_{2i},\ u_{2i},\ v_{2i}) и ищется номер i, для которого z_i=z_{2i} . Для такого i выполнено b^{u_{2i}-u_i}\equiv a^{v_i-v_{2i}}\mod p. Если при этом (u_{2i}-u_i,\ p-1)=1 . To x\equiv \log_a b\equiv (u_{2i}-u_i)^{-1}(v_i-v_{2i})\mod p-1.
```

Figure 3.3: Алгоритм Ро-метода Полларда. 2.

3.4 Сложность алгоритма

Эвристическая оценка сложности составляет $O(p^{1/2})$.

4 Выполнение лабораторной работы

В соответствии с заданием, была написана программа по воплощению алгоритма Ро-метода Полларда для задач дискретного логарифмирования.

Программный код и результаты выполнения программ представлен ниже.

4.1 Ро-метод Полларда

Figure 4.1: Вспомогательная функция, зависящая от с, u, v

```
def rasshir algorithm Evklida(a,b):
  расширенный алгоритм Евклида
  \mathbf{1}\cdot\mathbf{1}\cdot\mathbf{1}
  r=[]
  x=[]
  y=[]
  r.append(a)
  r.append(b)
  x.append(1)
  x.append(0)
  y.append(0)
  y.append(1)
  i=1
  while r[i]!=0:
    i+=1
    r.append(r[i-2]%r[i-1])
    if r[i]==0:
      d=r[i-1]
      x=x[i-1]
      y=y[i-1]
    else:
       x.append(x[i-2]-((r[i-2]//r[i-1])*x[i-1]))
       y.append(y[i-2]-((r[i-2]//r[i-1])*y[i-1]))
  return d,x,y
```

Figure 4.2: Вспомогательная функция. Расширенный алгоритм Евклида

```
      def Pollard(p,a,r,b,u,v):

      <td rowspan="2"
```

Figure 4.3: Реализация алгоритма Ро-метода Полларда для логарифмирования

```
while c%p!=d%p:

ycловие работы цикла

c,uc,vc=f(c,uc,vc)

c%=p
d,ud,vd=f(*f(d,ud,vd))
d%=p

v=vc-vd
u=ud-uc

d,x,y=rasshir_algorithm_Evklida(v,r)

while d!=1:

v/=d
u/=d
r/=d
d,x,y=rasshir_algorithm_Evklida(v,r)

return x*u%r
```

Figure 4.4: Реализация алгоритма Ро-метода Полларда для логарифмирования

```
Pollard(107,10,53,64,2,2)
```

Figure 4.5: Результат реализации Ро-метода Полларда на примере

5 Выводы

Таким образом, была достигнута цель, поставленная в начале лабораторной работы: в результате выполнения данной лабораторной работы нам удалось изучить алгоритм Ро-Полларда осуществить программно алгоритм, рассмотренный в описании к лабораторной работе на языке Python 3. А также получить ответ, совпадающий с ответом из инструкции.

Список литературы

1. https://ru.wikipedia.org/wiki/Po-метод_Полларда_для_дискретного_логариф-мирования