Предсказание следующего слова на основе нескольких предыдущих слов

Вознюк Анастасия, Б05-022

vozniuk.ae@phystech.edu

18 апреля 2022 г.

Цель

Цель: Построить модель, которая бы по датасету могла бы генерировать текст в схожей стилистике и со схожей лексикой с тектос, который подается на вход Входные данные: Было взято несколько произведений английских

Входные данные: Было взято несколько произведений английских классиков - Оскара Уайльда и Чарльза Диккенса.

Считаем, что появление слов в нашем тексте - независимые события. Хотим узнать, какова вероятность сгенерировать предложение $w_1...w_n$. Из формулы полной вероятности:

$$P(w_1...w_n) = P(w_1) \times P(w_2|w_1) \times P(w_3|w_1w_2) \times \cdots \cdots \times P(w_n|w_1...w_{n-1}) = \prod_{i=1}^n P(w_i|w_1...w_{i-1})$$
(1)

Пример:

$$\begin{aligned} & \mathsf{P}(\mathsf{capital} \mid \mathsf{London} \; \mathsf{is} \; \mathsf{the}) = \mathsf{P}(\mathsf{London}) \times \mathsf{P}(\mathsf{is} | \mathsf{London}) \times \\ & \times \; \mathsf{P}(\mathsf{the} | \; \mathsf{London} \; \mathsf{is} \; \mathsf{the}) \end{aligned}$$

Основное утверждение - мы можем пренебречь всем контекстом, оставив лишь информацию о самом ближайшем контексте

$$P(w_n|w_1...w_{n-1}) \approx P(w_n|w_{n-1})$$
 (2)

или в общем случае,

$$P(w_n|w_1...w_{n-1}) \approx P(w_n|w_{n-N+1}...w_{n-1})$$
 (3)

где N - размер скользящего окна для нашего контекста Тогда вероятность сгенерировать предложение $w_1...w_n$:

$$P(w_1...w_n) \approx \prod_{i=1}^n P(w_i|w_{i-N+1}...w_{i-1})$$
 (4)

Вероятность 2-граммы:
$$P(w_2|w_1) = \frac{C(w_1w_2) + \alpha}{C(w_1) + \alpha|V|}$$
 Вероятность 3-граммы: $P(w_3|w_1w_2) = \frac{C(w_1,w_2,w_3) + \alpha}{C(w_1,w_2) + \alpha|V|}$

где

- $C(w_1)$: количество появлений слова w_1 (unigram count)
- $C(w_1, w_2)$: количество появлений 2-граммы w_1, w_2
- $C(w_1, w_2, w_3)$: количество появлений 3-граммы w_1, w_2, w_3
- |V|: размер словаря
- $0 \le \alpha \le 1$: сглаживающий гиперпараметр

Вероятность 2-граммы:
$$P(w_2|w_1) = \frac{C(w_1w_2) + \alpha}{C(w_1) + \alpha|V|}$$

Вероятность 3-граммы: $P(w_3|w_1w_2) = \frac{C(w_1, w_2, w_3) + \alpha}{C(w_1, w_2) + \alpha|V|}$

Если $\alpha=0$, то сглаживания нет. В этом случае если в тренировочной выборке не встречалось (w_1,w_2) , то возникает деление на 0.

Формула для сравнения правдоподобности

Чем больше правдоподобность у входного текста, тем больше вероятность того, что модель сгенерировала бы сама подобный текст. Сгенерируем предложение, а также возьмем предложение из тестовой выборки, причем предложения должны быть одной длины. Посяитаем вероятности для обоих предложений, а дальше посмотрим на их отношение (предварительно перейдем в логарифмический масштаб):

$$log_2(P_{test}(w_i^n)) - log_2(P_{rand}(w_i^n))$$
 (5)

- test берем из тестовой выборки
- random генерируем через n-грамму

У хорошей модели данная разность будет стремиться к нулю - т.е модель генерирует такие предложения, которые близки к тестовой выборке.

Гипотеза

Гипотеза

У модели, построенную на 3-граммах, данная метрика будет лучше, чем у модели, построенной на 2-граммах. Модель, построенная на 1-граммах будет иметь самый низкое значение этой метрики

3-граммы

- You must not say these extravagant things to me.
- He is not often wrong about things you don't think, so well he seemed to him how vile and degraded.

2-граммы

- For shame was drawn you to talk to me in this grey sun-bleached pillars loitered upon it
- Every one use your beauty and satisfied.

1-граммы

- That consisted perhaps windows tell hated true he is daughter's good is wore care dominate it his you slowly hubbard grew do he.
- Woman really carefully shall must.

Perplexity

Качество модели будем оценивать по тому, насколько "удивлена" была модель, увидев текст $w_1..w_n$ Введем perplexity - нормализованное обратное значение к вероятности

$$PP(w_1..w_n) = \sqrt[N]{\frac{1}{P(w_1...w_n)}}$$

Это будет критерием качества нашей модели - чем меньше perplexity, тем больше $P(w_1...w_n)$, а значит тем меньше "модель была удивлена увидев наше словосочетание С учетом наших предположений:

$$PP(w_1..w_n) = \sqrt[N]{\frac{1}{\prod_{i=1}^n P(w_i|w_{i-N+1}...w_{i-1})}}$$

Минимизация perplexity

Качество модели

Таким образом, для 2-граммы при a=0.001 достигается минимальное значение perplexity равное 13.644560245452233, а для 3-граммы при a=0.003 достигается минимальное значение равное 9.04139960414555. При увеличении параметра а значение perplexity монотонно увеличивается

Результаты эксперимента

- Из-за того, что данных немного, 2-граммы и 3-граммы вели себя почти одинаково.
- N-граммы для $N \geq 1$ показывают лучше результаты, чем 1-граммы
- При сглаживании нужно брать параметры сглаживания, сильно меньшие чем 1, однако на данной выборке значение perplexity все равно было достаточно большим.