Smart Social Network Projet de Master 2 SSI

Zakaria Addi Baptiste Dolbeau Yicheng Gao Florian Guilbert Giovanni Huet Emmanuel Mocquet Maxence Péchoux Romain Pignard

Université de Rouen

3 mars 2013

Plan

- Introduction
- 2 Carte à puce
- 3 Une protection vis-à-vis de Facebook
- 4 Démonstration
- Conclusion

- Introduction
 - Présentation
 - Gestion de projet
- 2 Carte à puc
 - Introduction
 - Java Card
 - Les applications développées
 - L'aspect sécurité
 - Démonstration
- Une protection vis-à-vis de Facebook
 - Les besoins et exigences
 - Présentation des composants
 - Présentation des composants
 - Facecrypt
- 4 Démonstration
- Conclusion
 - Difficultés rencontrées
 - Améliorations possibles
 - Apports

Contexte

 ${\sf SmartCard}$

titi

Secure Social Network

toto

Gestion de projet

- Introduction
 - Présentation
 - Gestion de projet
- Carte à puce
 - Introduction
 - Java Card
 - Les applications développées
 - L'aspect sécurité
 - Démonstration
- Une protection vis-à-vis de Facebook
 - Les besoins et exigences
 - Présentation des composants
 - Présentation des composants
 - Facecrypt
- 4 Démonstration
- Conclusion
 - Difficultés rencontrées
 - Améliorations possibles
 - Apports

Introduction

Besoins

- Authentification forte
- Contenir des informations confidentielles

Technologies étudiées

- Génération de nombres aléatoires
- Chiffrement/Déchiffrement
- Signature/Vérification
- Code PIN/PUK
- SoftCard

2.1 Introduction Smart Social Network 7 / 30

Présentation

Rappel sur la carte à puce

- Dispose d'un processeur pour du traitement d'informations.
- Permet de stocker des données cachées.
- Assure l'authentification de l'utilisateur.

Qu'est-ce que "Java Card"?

- Désigne la technologie permettant de développer des applets
 « sécurisées » sur carte à puce.
- Mais c'est aussi une carte à puce :
 - programmable
 - multi-applications
 - interopérable

Fonctionnement

Les APDU

- Application Protocol Data Unit.
- Unité de communication entre le lecteur et la carte.

TABLE : Structures d'une commande et d'une réponse

Exemple

Commande : 0xB0 0x00 0x00 0x00 0x01 0x05

Réponse : 0x02 0xf2 0x23 0x42 0xcf 0x90 0x00

2.2 Java Card Smart Social Network 9 / 30

Abstraction

L'API Java Card

- Permet de s'abstraire de l'assembleur → Java
- Fournit un certain nombres d'objets : PIN, clefs RSA...

Exemple

Todo

Principales contraintes

Les limitations de l'API Java Card

- types : boolean, byte, short, tableaux associés
- pas de « garbage collector »

2.2 Java Card Smart Social Network 11 / 30

Les applications développées

L'aspect sécurité

Démonstration

L'interface entre SSN et la carte

Actuellement

- Applications de chiffrement, déchiffrement, signature, stockage...
- Client testant ces applications.

Mais par rapport à Facebook?

L'interface entre SSN et la carte

Un serveur vis-à-vis de SSN

- Une application (SoftCardServer) se met en attente de connexions.
- Pour chaque requête reçue, une action est transmise à une seconde application : SoftCard.
- SoftCardServer renvoie le résultat de SoftCard au client.

Un client vis-à-vis de la carte

- Une unique instance se connecte au lecteur puis à la carte.
- Différentes méthodes permettent de déchiffrer, signer...
- Pour certaines, sensibles, la carte devra être déverrouillée.

- Introduction
 - Présentation
 - Gestion de projet
- 2 Carte à puce
 - Introduction
 - Java Card
 - Les applications développées
 - L'aspect sécurité
 - Démonstration
- Une protection vis-à-vis de Facebook
 - Les besoins et exigences
 - Présentation des composants
 - Présentation des composants
 - Facecrypt
- 4 Démonstration
- Conclusion
 - Difficultés rencontrées
 - Améliorations possibles
 - Apports

Les besoins et exigences

Protection des données utilisateur vis-à-vis de tiers Authentification forte par carte à puce

Présentation des composants

Base de données

Moteur SQLite

Base de données locale Accessible depuis Java et l'extension

Stockage des liens d'amitié dans la base

Listes d'amis

Clés publiques

La communication

Composition

Six classes java

- ASymCypher
- SymCypher
- ServerSSL
- Client
- Dataprocess
- CacheManager

Exemple de cycle

- Received from Facecrypt : {"action" :"getID"}
- Sent to Softcard: 47
- Received from Softcard : 666f6f2e6261722e33333434393133 20 726f6f74726f6f74

login password

Sent to Facecrypt: {"action": "getID" ,"login": "foo.bar.3344913","firstConnection": false, "pass": "rootroot"}

- Introduction
 - Présentation
 - Gestion de projet
- 2 Carte à puc
 - Introduction
 - Java Card
 - Les applications développées
 - L'aspect sécurité
 - Démonstration
- Une protection vis-à-vis de Facebook
 - Les besoins et exigences
 - Présentation des composants
 - Présentation des composants
 - Facecrypt
- 4 Démonstration
- Conclusion
 - Difficultés rencontrées
 - Améliorations possibles
 - Apports

Démonstration

schéma

- Introduction
 - Présentation
 - Gestion de projet
- 2 Carte à puce
 - Introduction
 - Java Card
 - Les applications développées
 - L'aspect sécurité
 - Démonstration
- Une protection vis-à-vis de Facebook
 - Les besoins et exigences
 - Présentation des composants
 - Présentation des composants
 - Facecrypt
- 4 Démonstration
- Conclusion
 - Difficultés rencontrées
 - Améliorations possibles
 - Apports

Conclusion

Difficultés rencontrées

- SmartCard :
 - taille des données;
 - communications sécurisées entre la carte à puce et l'application cliente;
 - installations des lecteurs;
 - stockage "caché";
 - algorithmes implantés sur la carte;
- Secure Social Network :
 - manipulation de la page Facebook;
 - communications sécurisées entre SSNExt et FaceCrypt;
 - fonctionnement d'une extension.

Conclusion

Améliorations possibles

- SmartCard :
 - ► IHM pour entrer le code PIN;
 - Gestion de l'arrachage de la carte;
 - communications sécurisées entre la carte à puce et l'application cliente;
 - One Time Password :
 - prendre en compte les attaques (canaux cachés);
 - algorithmes implantés sur la carte;
- Secure Social Network :
 - finalisation pour mise en production;
 - étudier le tatouage d'images.

Conclusion

Ce que cela nous a apporté

- SmartCard :
 - manipulation d'une carte à puce;
- Secure Social Network :
 - gestion d'une communication sécurisées entre plusieurs composants;
- utilisation concrête de la cryptographie.

5.3 Apports Smart Social Network 29 / 30

Merci pour votre attention.

Questions?