CS 35L

Week 6

TA: Tomer Weiss Feb-09-2016

goo.gl/hTokZ1

Slides

Announcements

- Student presentations today:
 - Google DeepMind's AlphaGo Program defeats
 European Champion in Go
 - Robots Learn by Watching "How To" Videos

web.cs.ucla.edu/classes/winter16/cs35L/assign/assign10.html

- Next week:
 - Write your topic <u>here</u>
 - Not registering you topic beforehand may result in rescheduling of your presentation
 - For reference on presentation, grading, please refer to this <u>rubric</u>.

SSH - Secure Shell

Week 6

Communication Over the Internet

- What type of guarantees do we want?
 - Confidentiality
 - Message secrecy
 - Data integrity
 - Message consistency
 - Authentication
 - Identity confirmation
 - Authorization
 - Specifying access rights to resources

Cryptography

- Plaintext actual message
- Ciphertext encrypted message (unreadable gibberish)
- Encryption converting from plaintext to ciphertext
- Decryption converting from ciphertext to plaintext
- Secret key
 - part of the mathematical function used to encrypt\decrypt
 - Good key makes it hard to get back plaintext from cipherte**

Symmetric-key Encrption

- Same secret key used for encryption and decryption
- **Example**: Data Encryption Standard (**DES**)
- · Caesar's cipher
 - Map the alphabet to a shifted version
 - **ABCDEFGHIJKLMNOPQRSTUVWXYZ**
 - . DEFGHIJKLMNOPQRSTUVWXYZABC
 - Plaintext SECRET. Ciphertext VHFUHW
 - Key is 3 (number of shifts of the alphabet)
- Key distribution is a problem
 - The secret key has to be delivered in a safe way to the recipient
 - Chance of key being compromised

Image Source: wikipedia

Image Source: gpgtools.org

Public-Key Encryption (Asymmetric)

- Uses a pair of keys for encryption
 - Public Key published and well known to everyone
 - Private Secret key known only to the owner
- Encryption
 - Use public key to encrypt messages
 - Anyone can encrypt message, but they cannot decrypt the ciphertext
- Decryption
 - Use private key to decrypt messages
- In what scheme is this encryption useful?

Public-Key Encryption (Asymmetric)

- Example: RSA (Rivest, Shamir & Adelman)
 - Property used: Difficulty of factoring large integers to prime numbers
 - -N=p*q
 - M is a large integer.
 - p,q are prime numbers
 - N is part of the public key

en.wikipedia.
org/wiki/RSA Factoring Challenge

Encryption Types Comparison

Symmetric Key Encryption

- a.k.a shared/secret key
- Key used to encrypt is the same as key used to decrypt
- Asymmetric Key Encryption: Public/Private
 - 2 different (but related) keys: public and private
 - Only creator knows the relation. Private key cannot be derived from public key
 - Data encrypted with public key can only be decrypted by private key and vice versa
 - Public key can be seen by anyone
 - Never publish private key!!!

Secure Shell (SSH)

Telnet

- Remote access
- Not encrypted
- Packet sniffers can intercept sensitive information (username/password)

SSH

- run processes remotely
- encrypted session
- Session key (secret key)
 used for encryption during
 the session

What is SSH?

- Secure Shell
- Used to remotely access shell
- Successor of telnet
- Encrypted and better authenticated session

An unencrypted login session such as through telnet username: password: client The client types: jsmith Colts06! As seen on the network

CONFIDENTIAL

Session Encryption

- Client and server agree on a symmetric encryption key (session key)
- All messages sent between client and server
 - encrypted at the sender with session key
 - decrypted at the receiver with session key
- anybody who doesn't know the session key (hopefully, no one but client and server) doesn't know any of the contents of those messages

High-Level SSH Protocol

- Client ssh's to remote server
 - \$ ssh username@somehost
 - If first time talking to server -> host validation

The authenticity of host 'somehost (192.168.1.1)' can't be established. RSA key fingerprint is 90:9c:46:ab:03:1d:30:2c:5c:87:c5:c7:d9:13:5d:75. Are you sure you want to continue connecting (yes/no)? **yes** Warning: Permanently added 'somehost' (RSA) to the list of known hosts.

- ssh doesn't know about this host yet
- shows hostname, IP address and fingerprint of the server's public key,
 so you can be sure you're talking to the correct computer
- After accepting, public key is saved in ~/.ssh/known_hosts

Secure Shell (SSH) - Client Authentication

- Password login
 - ssh username@ugrad.seas.ucla.edu
- Passwordless login with keys
 - Use private/public keys for authentication (server and client authentication)
 - ssh-keygen
 - Passphrase (longer version of a password/more secure)
 - Passphrase for protecting the private key
 - Passphrase needed whenever the keys are accessed
 - ssh-copy-id username@ugrad.seas.ucla.edu
 - Copies the public key to the server (~/.ssh/authorized_keys)
 - Login without password
 - ssh username@ugrad.seas.ucla.edu
 - Run scripts/commands on the remote machine
 - ssh username@ugrad.seas.ucla.edu ls
 - But you need to provide a passphrase to use a private key

Secure Shell (SSH) - Client Authentication

- Passphrase-less authentication
 - ssh-agent → authentication agent
 - Manages private key identities for SSH
 - To avoid entering the passphrase whenever the key is used
 - ssh-add
 - Registers the private key with the agent
 - Passphrase asked only once
 - ssh will ask the ssh-agent whenever the private keys are needed

Secure Shell (SSH) - Client Authentication

Session Encryption

- Symmetric encryption
- Exchange secret key (Example Diffie-Hellman)

Host/Client Validation

- Public-key Encryption
- Challenge-Response
 - Host sends a "challenge" that has to be answered by the client
 - Similarly, client sends a "challenge" that has to be answered by the host

Account Administration

- Install OpenSSH (should be done on both server and client)
 - sudo apt-get update
 - sudo apt-get install openssh-server
 - sudo apt-get install openssh-client
- Server
 - sudo useradd -d /home/<username> -m <UserName>
 - sudo passwd <username>
 - cd /home/<username>
 - sudo mkdir .ssh
 - sudo chown -R <username> .ssh
 - sudo chmod 700 .ssh
 - ifconfig (this will give you the IP address of the server.
 Give this to your partner).
 - ps aux | grep ssh
 - This will give you the
 - or alternatively pgrep -lf ssh

Account Administration

Client

- Password login
 - ping server_ip_addr (just to check if the server responds)
 - ssh <username>@server_ip_addr
- Password-less login
 - ssh-keygen
 - ssh-copy-id -i <username>@server_ip_addr
 - ssh <username>@server_ip_addr (should not ask for login password)
- Passphrase-less login
 - ssh-add
 - ssh -X <username>@server_ip_addr (should not ask for key's passphrase)
- X session forwarding running programs with GUI
 - ssh -X <UserName>@server_ip_addr
 - xterm
 - firefox

X session forwarding

- X is the windowing system for GUI apps on linux
- X is a network-based system. It is based upon a network protocol such that a program can run on one computer but be displayed on another
 - i.e. you want to run such apps remotely, but the GUI should show up on the local machine
- Windowing system forms the basis for most GUIs on UNIX
 - ssh -X username@ugrad.seas.ucla.edu
 - gedit
 - gimp

Secure copy (scp)

- Based on secure shell (ssh)
- Used for transferring files between hosts in a secure way (encrypted)
- Usage similar to cp
 - scp [source] [destination]
- Transferring to remote host
 - scp /home/username/doc.txt username@ugrad.seas.ucla.edu: /home/user/docs
 - Transferring from remote host
 - scp username@ugrad.seas.ucla.edu:/home/user/docs/foo.txt /home/username

Digital signature

- Protect integrity of the documents
 - Receiver received the document that the sender intended
- Digital signature is extra data attached to the document that can be used to check tampering
- Message digest
 - Shorter version of the document
 - Generated using hashing algorithms
 - Even a slight change in the original document will change the message digest with high probability

Digital signature

Verifies document integrity, but does it prove origin? and who is the Certificate Authority?

> gpg [option]

GNU privacy guard

--gen key

generating new keys

--armor

ASCII format

--export

exporting public key

--import

import public key

--detach-sign

creates a file with just the signature

--verify

verify signature with a public key

--encrypt

encrypt document

--decrypt

decrypt document

--list-keys

list all keys in the keyring

--send-keys

register key with a public server/-keyserver option

--search-keys

search for someone's key

Client Authentication

Password-based authentication

- Prompt for password on remote server
- If username specified exists and remote password for it is correct then the system lets you in

Key-based authentication

- Generate a key pair on the client
- Copy the public key to the server (~/.ssh/authorized_keys)
- Server authenticates client if it can demonstrate that it has the private key
- The private key can be protected with a passphrase
- Every time you ssh to a host, you will be asked for the passphrase (inconvenient!)

ssh-agent (passphrase-less ssh)

- A program used with OpenSSH that provides a secure way of storing the private key
- ssh-add prompts user for the passphrase once and adds it to the list maintained by ssh-agent
- Once passphrase is added to ssh-agent, the user will not be prompted for it again when using SSH
- OpenSSH will talk to the local ssh-agent daemon and retrieve the private key from it automatically

Lab 6

- Securely login to each others' computers
 - Use ssh (OpenSSH)
- Use key-based authentication
 - Generate key pairs
- Make logins convenient
 - type your passphrase once and be able to use ssh to connect to any other host without typing any passwords or passphrases
- Use port forwarding to run a command on a remote host that displays on your host

Lab Environment Setup

Ubuntu

- Make sure you have openssh-server and opensshclient installed
- \$ dpkg --get-selections | grep openssh
 should output:
 - openssh-server install
 - openssh-client install
- If not:
 - \$ sudo apt-get install openssh-server
 - •\$ sudo apt-get install openssh-client

Server Steps

- Generate public and private keys
 - \$ssh-keygen (by default saved to ~/.ssh/is_rsa and id_rsa.pub) don't change the default location
- Create an account for the client on the server
 - \$ sudo useradd -d /home/<homedir_name> -m
 <username>
 - \$ sudo passwd <username>
- Create .ssh directory for new user
 - \$ cd /home/<homedir name>
 - \$ sudo mkdir .ssh
- Change ownership and permission on .ssh directory
 - \$ sudo chown -R username .ssh
 - \$ sudo chmod 700 .ssh
- Optional: disable password-based authentication
 - \$ emcas /etc/ssh/sshd_config
 - change PasswordAuthentication option to no

Client Steps

- Generate public and private keys
 - -\$ssh-keygen
- Copy your public key to the server for key-based authentication (~/.ssh/authorized_keys)
 - \$ ssh-copy-id -i UserName@server_ip_addr
- Add private key to authentication agent (ssh-agent)
 - -\$ssh-add
- SSH to server
 - \$ ssh UserName@server_ip_addr
 - \$ ssh -X UserName@server_ip_addr (X11 session forwarding)
- Run a command on the remote host
 - \$ xterm, \$ gedit, \$ firefox, etc.

How to Check IP Addresses

- \$ ifconfig
 - configure or display the current network interface configuration information (IP address, etc.)
- \$ping <ip_addr>(packet internet groper)
 - Test the reachability of a host on an IP network
 - measure round-trip time for messages sent from a source to a destination computer
 - Example: \$ ping 192.168.0.1, \$ ping google.com

Lab

web.cs.ucla.edu/classes/winter16/cs35L/assign/assign6.html