HW3_Writting assignment

110652012 施品光

Lemma3.1

Statement:

Lemma 3.1. Let $k \in \mathbb{N}_0$ and $s \in 2\mathbb{N} - 1$. Then it holds that for all $\epsilon > 0$ there exists a shallow tanh neural network $\Psi_{s,\epsilon} : [-M,M] \to \mathbb{R}^{\frac{s+1}{2}}$ of width $\frac{s+1}{2}$ such that

$$\max_{\substack{p \le s, \\ p \text{ odd}}} \left\| f_p - (\Psi_{s,\epsilon})_{\frac{p+1}{2}} \right\|_{W^{k,\infty}} \le \epsilon, \tag{17}$$

Moreover, the weights of $\Psi_{s,\epsilon}$ scale as $O\left(\epsilon^{-s/2}(2(s+2)\sqrt{2M})^{s(s+3)}\right)$ for small ϵ and large s.

Main idea:

- Polynomials are simple but essential test functions.
- This lemma proves that tanh networks can reproduce them accurately.
- The key point is that we don't need an extremely large network; the size grows only with sss.

Intuition/example:

Think of the polynomial x3x^3x3. Normally, you would draw it using its formula.

Lemma 3.1 says: even without knowing the exact formula, we can set up a small tanh network that "draws" the curve of x3x^3x3 almost perfectly.

Lemma3.2

Statement:

Lemma 3.2. Let $k \in \mathbb{N}_0$, $s \in 2\mathbb{N} - 1$ and M > 0. For every $\epsilon > 0$, there exists a shallow tanh neural network $\psi_{s,\epsilon} : [-M,M] \to \mathbb{R}^s$ of width $\frac{3(s+1)}{2}$ such that

$$\max_{p \le s} \|f_p - (\psi_{s,\epsilon})_p\|_{W^{k,\infty}} \le \epsilon.$$
 (26)

Furthermore, the weights scale as $O\left(\epsilon^{-s/2}(\sqrt{M}(s+2))^{3s(s+3)/2}\right)$ for small ϵ and large s.

Main idea:

- Lemma 3.1 gave us one network for one polynomial.
- Lemma 3.2 gives us a more powerful result: one network can handle the whole family of polynomials up to a certain degree.

Intuition/example:

It's like having a "universal tool" instead of many separate tools. Instead of building one network for x2x^2x2, another for x3x^3x3, etc., Lemma 3.2 guarantees there is one tanh network that can approximate all of them (up to degree sss).

Backgrounds

- Since smooth functions can be approximated by polynomials (via Taylor's theorem), and tanh networks can approximate polynomials, it follows that tanh networks can approximate smooth functions very well.
- 2. These lemmas also show that the required network size and weights grow in a controlled way, which is important for practical use.

Unanswered Questions

Could these results be extended to other activation functions, such as ReLU or sigmoid?