# Implementación de reguladores digitales

#### **CONTROL AUTOMÁTICO**

ESCUELA DE ELECTRÓNICA

II SEMESTRE 2020

ING. LUIS MIGUEL ESQUIVEL SANCHO

#### Contenido

- Esquema del control digital
- Discretización a partir de la FT en tiempo continuo
  - Por respuesta invariante al impulso
  - Por retenedor de orden cero (ZOH)
  - Por Tustin o transformación bilineal
  - Por mapeo de polos (solo para SISO)
- Implementación Digital

# Esquema del control digital





## Esquema del control digital



#### Escogencia del periodo de muestreo

El periodo de muestreo  $T_s$  debe ser escogido para que sea menor que una décima parte de la constante de tiempo dominante, del sistema que se espera en **lazo cerrado** 

$$T_s < \frac{1}{10} T_{dom.}$$

- Recomendaciones para escoger el periodo de muestreo T o frecuencia de muestreo f<sub>T</sub>.
  - En lazo cerrado:  $\frac{t_r}{20} < T < \frac{t_r}{10}$ ; tiempo de subida

$$\frac{t_s}{75} < T < \frac{t_s}{25}$$
, tiempo de estabilización

 $20BW < f_T < 40BW$ , ancho de banda [Hz]

 $30\omega_d < \omega_T < 60\omega_d$ , frecuencia amortiguada [rad/s]

■ En lazo abierto:

 $40\omega_{cg} < \omega_T < 80\omega_{cg}$ , frecuencia de cruce de g. [rad/s]

#### Condiciones de la conversión

Dos funciones continuas son discretizadas y se encuentran en cascada

$$X(t) \longrightarrow X(t) \longrightarrow$$

Dos funciones continuas en cascada son discretizadas;  $G(s) = G_1(s)G_2(s)$ 

#### Condiciones de la conversión

#### **Procedimiento:**

Combinar todos los elementos continuos que se encuentren directamente conectados en cascada en una única función G(s)



Considerar como si la función G(s), tiene además, paralelamente a su salida continua, una salida muestreada. G(z) = Y(z)/U(z)

#### El sistema híbrido de control



$$T(z) = \frac{Y(z)}{R(z)} = \frac{K(z)G(z)}{1 + K(z)GH(z)} = \frac{K(z)Z\{G(s)\}}{1 + K(z)Z\{G(s)H(s)\}}$$

# Transformada Z

|    | f(t)                  | F(s)                                         | F(z)                                                                         | f(kT)                   |
|----|-----------------------|----------------------------------------------|------------------------------------------------------------------------------|-------------------------|
| 1. | u(t)                  | $\frac{1}{s}$                                | $\frac{z}{z-1}$                                                              | u(kT)                   |
| 2. | t                     | $\frac{1}{s^2}$                              | $\frac{Tz}{(z-1)^2}$                                                         | kT                      |
| 3. | $t^n$                 | $\frac{n!}{s^{n+1}}$                         | $\lim_{a\to 0} (-1)^n \frac{d^n}{da^n} \left[ \frac{z}{z - e^{-aT}} \right]$ | $(kT)^n$                |
| 4. | $e^{-at}$             | $\frac{1}{s+a}$                              | $\frac{z}{z - e^{-aT}}$                                                      | $e^{-akT}$              |
| 5. | $t^n e^{-at}$         | $\frac{n!}{(s+a)^{n+1}}$                     | $(-1)^n \frac{d^n}{da^n} \left[ \frac{z}{z - e^{-aT}} \right]$               | $(kT)^n e^{-akT}$       |
| 6. | $\sin \omega t$       | $\frac{\omega}{s^2 + \omega^2}$              | $\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$                             | $\sin \omega kT$        |
| 7. | $\cos \omega t$       | $\frac{s}{s^2 + \omega^2}$                   | $\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$                             | $\cos \omega kT$        |
| 8. | $e^{-at}\sin\omega t$ | $\frac{\omega}{\left(s+a\right)^2+\omega^2}$ | $\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$        | $e^{-akT}\sin\omega kT$ |
| 9. | $e^{-at}\cos\omega t$ | $\frac{s+a}{(s+a)^2+\omega^2}$               | $\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$  | $e^{-akT}\cos\omega kT$ |

# **Transformada Z (Teoremas)**

|    | Theorem                                        | Name                    |
|----|------------------------------------------------|-------------------------|
| 1. | $z\{af(t)\} = aF(z)$                           | Linearity theorem       |
| 2. | $z\{f_1(t) + f_2(t)\} = F_1(z) + F_2(z)$       | Linearity theorem       |
| 3. | $z\{e^{-aT}f(t)\} = F(e^{aT}z)$                | Complex differentiation |
| 4. | $z\{f(t-nT)\} = z^{-n}F(z)$                    | Real translation        |
| 5. | $z\{tf(t)\} = -Tz\frac{dF(z)}{dz}$             | Complex differentiation |
| 6. | $f(0) = \lim_{z \to \infty} F(z)$              | Initial value theorem   |
| 7. | $f(\infty) = \lim_{z \to 1} (1 - z^{-1}) F(z)$ | Final value theorem     |

#### Transformación por respuesta invariante al impulso

- Combinar todos los elementos continuos que se encuentren directamente conectados en cascada en una única función G(s)
- > Representar G(s) en fracciones parciales
- Convertir cada fracción parcial a su forma en Z usando la transformada Z de la función exponencial muestreada y con ayuda de tablas.

$$L\left\{e^{-at}\right\} = \frac{1}{(s+a)}$$

Tiene problemas de aliasing dependiente de T

$$Z\{e^{-at}\} = Z\{e^{-akT}\} = \frac{1}{1 - e^{-aT}z^{-1}}$$

#### Transformación por respuesta invariante al impulso

#### Para raíces simples

$$G(z) = T \sum_{i=1}^{n} \frac{R_i}{(1 - e^{p_i T} z^{-1})}$$

Donde:  $R_i$  = residuo del polo i-ésimo;  $p_i$  = polo i-ésimo; T = periodo de muestreo

#### Para raíces repetidas

$$G(z) = T \sum_{i=1}^{j} \sum_{l=1}^{m_i} \frac{(-1)^{l-1} R_{il}}{(l-1)!} \frac{\partial^{l-1}}{\partial p_i^{l-1}} \left[ \frac{1}{(1 - e^{p_i T} z^{-1})} \right]$$

Donde:  $R_{il}$  = residuo de la repetición / del polo i-ésimo;  $p_i$  = polo i-ésimo;

T = periodo de muestreo

## Ejemplo 1: Discretización por respuesta invariante al impulso

Encuentre el modelo en tiempo discreto para la planta P(s) mostrada, con T = 0.1s

$$P(s) = \frac{4}{(s+1)(s+4)}$$

Evaluando los residuos para los polos

$$P = [-4 - 1]$$

$$R = [-4/3 \ 4/3]$$

#### Ejemplo 1: Discretización por respuesta invariante al impulso

Evaluando T= 0.1s

$$P(z) = 0.1* \sum_{i=1}^{2} \frac{R_i}{(1 - e^{p_i T} z^{-1})} = \frac{-4/3}{(1 - e^{-4*0.1} z^{-1})} + \frac{4/3}{(1 - e^{-1*0.1} z^{-1})}$$

$$P(z) = 0.1* \left[ \frac{-4/3*z}{(z-0.6703)} + \frac{4/3*z}{(z-0.9048)} \right]$$

$$P(z) = \frac{0.031269z}{(z - 0.6703)(z - 0.9048)}$$

#### Ejemplo 1: Discretización por respuesta invariante al impulso



#### Código Matlab:

#### Retenedor de orden cero (ZOH)

Se combina la función de transferencia del retenedor de orden cero con la de la planta.



$$Z\left\{\frac{1-e^{-sT}}{s} * G(s)\right\} = (1-z^{-1}) * Z\left\{\frac{G(s)}{s}\right\}$$

Método preferible para sistemas con tiempo muerto

El resultado se descompone en fracciones parciales y cada fracción se transforma a Z.

## Ejemplo 2: Discretización de una planta por ZOH

Encuentre el modelo en tiempo discreto para la planta P(s) mostrada, con T = 0.1s

$$P(s) = \frac{4}{(s+1)(s+4)}$$

## Ejemplo 2: Discretización de una planta por ZOH

Descomponiendo en fracciones parciales P(s)/s los residuos y polos son:

$$R = [0.3333 -1.3333 1.0000]$$
  
 $P = [-4 -1 0]$ 

Después de transformar cada fracción parcial aplicando el periodo de muestreo T = 0.1s

$$P(z) = (1 - z^{-1}) \left[ \frac{0.33}{(1 - e^{-(4*0.1)}z^{-1})} - \frac{1.33}{(1 - e^{-(1*0.1)}z^{-1})} + \frac{1}{(1 - e^{0}z^{-1})} \right]$$

Sumamos, aplicamos el factor  $(1 - z^1)$ , factorizamos y simplificamos:

$$P(z) = \frac{0.01699 (z + 0.8466)}{(z - 0.9048)(z - 0.6703)}, T = 0.1s$$

#### Ejemplo 2: Discretización de una planta por ZOH



```
syszoh =
    0.01699 (z+0.8466)
    ------
    (z-0.9048) (z-0.6703)

Sample time: 0.1 seconds
Discrete-time zero/pole/gain model.
```

#### Código Matlab:

#### Método de Tustin o transformación bilineal

Partimos de la relación de definición de z

$$z = e^{sT}$$

Despejamos s y desarrollamos la serie de potencias del logaritmo

$$s = \frac{1}{T} \ln z$$

$$s = \frac{2}{T} \frac{(z-1)}{(z+1)} + \frac{2}{3T} \frac{(z-1)^3}{(z+1)^3} + \frac{2}{5T} \frac{(z-1)^5}{(z+1)^5} + \cdots$$

No tiene problemas de *aliasing* dependiente de T

Finalmente aproximamos al primer término:

$$s \approx \frac{2}{T} \frac{(z-1)}{(z+1)}$$

## **Ejemplo 3: Discretización de una planta por Tustin**

Encuentre el modelo en tiempo discreto para la planta P(s) mostrada, con T = 0.1s

$$P(s) = \frac{4}{(s+1)(s+4)}$$

## Ejemplo 3: Discretización de una planta por Tustin

Sustituyendo

$$P(s) = \frac{4}{(s+1)(s+4)}$$

$$P(z) = \frac{4}{(\frac{2}{0.1}\frac{(z-1)}{(z+1)} + 1)(\frac{2}{0.1}\frac{(z-1)}{(z+1)} + 4)}$$

$$P(z) = \frac{0.0079365(z+1)^2}{(z-0.6667)(z-0.9048)}$$

#### **Ejemplo 3: Discretización de una planta por Tustin**



```
sysdT =
     0.0079365 (z+1)^2
     ------
     (z-0.9048) (z-0.6667)

Sample time: 0.1 seconds
Discrete-time zero/pole/gain model.
```

#### Código Matlab:

#### Mapeo de polos y ceros

Solo para sistemas SISO. Se sustituye cada polo de la forma (s - pi) por  $(z - e^{piT})$  y cada cero de la forma  $(s - z_i)$  por  $(z - e^{ziT})$ . Finalmente se ajusta la ganancia K' para una respuesta igual, típicamente a frecuencia cero.

$$G(s)|_{s=0} = G(z)|_{z=1}$$

$$G(s) = K \frac{\prod_{i=1}^{q} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)} \qquad G(z) = K^1 (z + 1)^{(n-q-1)} \frac{\prod_{i=1}^{q} (z - e^{z_i T})}{\prod_{i=1}^{n} (z - e^{p_i T})}$$

#### Mapeo de polos y ceros

La ganancia K' se calcula como

Se satisface exactamente la relación

$$z = e^{sT}$$

## Ejemplo 4: Discretización de una planta por mapeo $z = e^{sT}$

Encuentre el modelo en tiempo discreto para la planta P(s) mostrada, con T = 0.1s

$$P(s) = \frac{4}{(s+1)(s+4)}$$

Los datos del sistema continuo son:

$$P = [-4 -1]$$
  
 $n = 2$ ;  $q = 0$   
 $K_B = P(0) = 1$ 

#### Ejemplo 4: Discretización de una planta por mapeo $z = e^{sT}$



#### Código Matlab:

# Respuesta al impulso



# Respuesta al escalón



#### Respuesta ante rampa



Se puede implementar directamente mediante cálculos en el computador



Considere un compensador de segundo orden  $G_c(z)$ 

$$G_c(z) = \frac{X(z)}{E(z)} = \frac{a_3 z^3 + a_2 z^2 + a_1 z + a_0}{b_2 z^2 + b_1 z + b_0}$$

Se multiplica en cruz de forma:

$$(b_2z^2 + b_1z + b_0)X(z) = (a_3z^3 + a_2z^2 + a_1z + a_0)E(z)$$

Se despeja el termino de mayor orden de z en la salida X(z)

$$b_2 z^2 X(z) = (a_3 z^3 + a_2 z^2 + a_1 z + a_0) E(z) - (b_1 z + b_0) X(z)$$

Se dividen los términos del lado derecho entre el coeficiente de X(z)

$$X(z) = \left(\frac{a_3}{b_2}z + \frac{a_2}{b_2} + \frac{a_1}{b_2}z^{-1} + \frac{a_0}{b_2}z^{-2}\right)E(z) - \left(\frac{b_1}{b_2}z^{-1} + \frac{b_0}{b_2}z^{-2}\right)X(z)$$

Se se obtiene la transformada inversa de z para X(z)

$$x^{*}(t) = \frac{a_{3}}{b_{2}}e^{*}(t+T) + \frac{a_{2}}{b_{2}}e^{*}(t) + \frac{a_{1}}{b_{2}}e^{*}(t-T) + \frac{a_{0}}{b_{2}}e^{*}(t-2T)$$
$$-\frac{b_{1}}{b_{2}}x^{*}(t-T) - \frac{b_{0}}{b_{2}}x^{*}(t-2T)$$

Se puede ver que en esta ecuación que la muestra actual de la salida del compensador, x(t), es una función de las muestras del futuro e(t+T) presente e(t) y pasado e(t-T) y e(t-2T) de e(t), junto con los valores pasados de la salida, x(t-T) y x(t-2T). Si vamos a realizar físicamente este compensador, la salida no puede depender de valores futuros de la entrada. Por lo tanto, para ser físicamente realizable,  $a_3$  debe ser igual a cero para que el valor futuro de e(t) sea cero.

Por lo tanto, la muestra de salida es una función de las muestras de entrada actuales y pasadas de la entrada, así como de las muestras pasadas de la salida.

$$x^{*}(t) = \frac{a_{2}}{b_{2}}e^{*}(t) + \frac{a_{1}}{b_{2}}e^{*}(t-T) + \frac{a_{0}}{b_{2}}e^{*}(t-2T) - \frac{b_{1}}{b_{2}}x^{*}(t-T) - \frac{b_{0}}{b_{2}}x^{*}(t-2T)$$



#### **Ejemplo 5: Implementación Digital**

Desarrolle el compensador digital implementable para el compensador descrito por la siguiente función de transferencia.

$$G_c(z) = \frac{X(z)}{E(z)} = \frac{z + 0.5}{z^2 - 0.5z + 0.7}$$

#### **Ejemplo 5: Implementación Digital**

Solución.

$$G_c(z) = \frac{X(z)}{E(z)} = \frac{z + 0.5}{z^2 - 0.5z + 0.7}$$

$$(z^2 - 0.5z + 0.7)X(z) = (z + 0.5)E(z)$$

$$z^{2}X(z) = (z + 0.5)E(z) - (-0.5z + 0.7)X(z)$$

$$X(z) = (z^{-1} + 0.5z^{-2})E(z) - (-0.5z^{-1} + 0.7z^{-2})X(z)$$

## **Ejemplo 5: Implementación Digital**



#### Referencias

- ☐ Ogata, Katsuhiko. Ingeniería de Control Moderna, 5a. Ed. Prentice Hall, 2010, México.
- □ Nise, Norman. Control Systems Engineering, Sixth Edition.