PROBLEM SET #10 Due Tuesday, December 6 (Problems are from $Vector\ Calculus$ by Marsden and Tromba, sixth edition.)

1

Let B be the unit ball, i.e., $B = \{(x,y,z): x^2 + y^2 + z^2 \le 1\}$, and let $\vec{F}(x,y,z) = -y\vec{i} + x\vec{j} + z\vec{k}$. Without using Gauss's theorem, compute $\iint_{\partial B} \vec{F} \cdot d\vec{S}$ and $\iiint_B (\nabla \cdot \vec{F}) \, dV$.

$\mathbf{2}$

Let $\vec{F}(x, y, z) = x^3 \vec{i} + y^3 \vec{j} + z^3 \vec{k}$. Compute (using Gauss's theorem if you feel like it) the surface integral of \vec{F} over the unit sphere S.

3

Let $W \subset \mathbb{R}^3$ be the solid enclosed by the surfaces $x=y^2, \ x=9, \ z=0,$ and x=z. Use Gauss's theorem to compute the flux $\iint_{\partial W} \vec{F} \cdot d\vec{S}$ where $\vec{F}(x,y,z) = (3x-5y)\vec{i} + (4z-2y)\vec{j} + (8yz)\vec{k}$.

4

Let W be the solid cylinder $W = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \quad 0 \le z \le 1\}$. Compute $\iint_{\partial W} \vec{F} \cdot \vec{n} \, dS$ where $\vec{F}(x, y, z) = \vec{i} + \vec{j} + z(x^2 + y^2)^2 \vec{k}$.