

考试科目: _ 高等数学(下) A ______数 学 系 _____数 学 系 ____

考试时长: 120 分钟 **命题教师:** ______

题 号	1	2	3	4	5	6	7	8	9
分值	15 分	15 分	10 分						

本试卷共9道大题,满分100分.(考试结束后请将试卷、答题本、草稿纸一起交给监考老师)

注意:本试卷里的中文为直译(即完全按英文字面意思直接翻译),所有数学词汇的定义请参照教材(Thomas' Calculus,13th Edition)中的定义。如果其中有些数学词汇的定义不同于中文书籍(比方说同济大学的高等数学教材)里的定义,以教材(Thomas' Calculus,13th Edition)中的定义为准。

- 1. (15pts) Multiple Choice Questions: (only one correct answer for each of the following questions.)
 - (1) If f is differentiable, and z=z(x,y) is determined by f(x-az,y-bz)=0, then $a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=$
 - (A) 1. (B) -1. (C) a (D) b.
 - (2) Let $a_n > 0$ for all n. Which of the following statements must be **true**?
 - (A) If $\lim_{n\to\infty} na_n = 0$, then the series $\sum_{n=1}^{\infty} a_n$ converges.
 - (B) If $\lim_{n\to\infty} na_n = l$ and $l\neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ converges.
 - (C) If $\lim_{n\to\infty} na_n = l$ and $l \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.
 - (D) None of the above statements is correct.
 - (3) Identify the surface of $2x^2 + y^2 = z^2$.
 - (A) Hyperboloid of two sheets. (B) Elliptical Cone.
 - (C) Hyperboloid of one sheet.
- (D) Elliptical paraboloid.
- (4) If $f(x,y) = \varphi(x+y) + \varphi(x-y) + \int_{x-y}^{x+y} \psi(t)dt$, where φ and ψ are twice differentiable functions, then

(A)
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x^2}$$
.

(B)
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y^2}$$
.

(C)
$$\frac{\partial^2 f}{\partial x^2} = -\frac{\partial^2 f}{\partial y^2}$$
.

(D)
$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2}$$
.

(5)
$$\lim_{(x,y)\to(0,0)} (1+xy)^{\frac{1}{x^2+y^2}} =$$

(A) 0.

(B)
$$1$$
.

(C) e.

(D) does not exist.

- 2. (15 pts) Fill in the blanks.
 - (1) If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are unit vectors and $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$, then $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a} = \underline{\hspace{1cm}}$.
 - (2) If the vector \mathbf{c} is perpendicular to $\mathbf{a} = \langle \mathbf{1}, \mathbf{2}, \mathbf{1} \rangle$ and $\mathbf{b} = \langle -\mathbf{1}, \mathbf{1}, \mathbf{1} \rangle$ and $\mathbf{c} \cdot (\mathbf{i} 2\mathbf{j} + \mathbf{k}) = \mathbf{16}$, then $\mathbf{c} =$
 - (3) If $\sum_{n=2}^{\infty} \left(\tan \frac{1}{n} k \ln \left(1 \frac{1}{n} \right) \right)$ converges, then $k = \underline{\hspace{1cm}}$.
 - (4) The maximum curvature κ of function $y(x) = \sin x$ is _____.
 - (5) If $(z+y)^x = xy$, then $\frac{\partial z}{\partial x}(1,2) =$ _____.
- 3. (10 pts) Given a cardioid $r = a(1 + \cos \theta), a > 0$ and a circle r = a.
 - (1) Find the area of the region that lies inside the cardioid and outside the circle.
 - (2) Find the area of the region that lies inside the cardioid and inside the circle.
- 4. (10 pts) Assume $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where

$$f(t) = \int_0^t \cos(x^2) dx$$
, $g(t) = -t \cos t$, $h(t) = \sum_{n=1}^\infty \frac{t^n}{n}$.

Calculate $\mathbf{r}'(0)$.

5. (10 pts) Let
$$f(x,y) = \begin{cases} y \sin \frac{1}{x^2 + y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$

- (1) Is f(x,y) is continuous at (0,0)?
- (2) Find $f_x(0,0)$ and $f_y(0,0)$, if they exist.
- 6. (10 pts) Find the limit, if it exists, or show that the limit does not exist.
 - (1) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$.
 - (2) $\lim_{(x,y)\to(0,0)} \frac{xy^3 + 2x^2y^4}{x^2 + y^6}$.

7. (10 pts) For the power series
$$f(x) = \sum_{n=1}^{\infty} \frac{n+2}{n(n+1)} x^n$$
,

- (1) For what values of x does the power series converge?
- (2) Find the sum of the series within the interval of convergence.
- 8. (10 pts) Determine if the series, $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n^p(\ln n)^2} (p > 0)$, converges absolutely, or converges conditionally, or diverges. Give reasons for your answer.
- 9. (10 pts) Find $\lim_{n \to \infty} \left((n^2 n)e^{\frac{1}{n}} \sqrt{n^4 + 1} \right)$.

一、 (15分) 单项选择题:

- (1) 设二元函数 f 可微,且 z=z(x,y) 由方程 f(x-az,y-bz)=0 确定,则 $a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=$
 - (A) 1.
- (B) -1.
- (C) a (D) b.
- (2) 已知对任意 n > 0 都满足 $a_n > 0$,则下列哪一个结论一定成立?
 - (A) 若 $\lim_{n\to\infty} na_n = 0$, 则级数 $\sum_{n=1}^{\infty} a_n$ 一定收敛.
 - (B) 若 $\lim_{n\to\infty} na_n = l$, 这里 $l \neq 0$, 则级数 $\sum_{n=1}^{\infty} a_n$ 一定收敛.
 - (C) 若 $\lim_{n\to\infty} na_n = l$, 这里 $l \neq 0$, 则级数 $\sum_{n=1}^{\infty} a_n$ 一定发散.
 - (D) 以上结论都不对.
- (3) 曲面 $2x^2 + y^2 = z^2$ 是一个
 - (A) 双叶双曲面.

(B) 椭圆锥.

(C) 单叶双曲面.

- (D) 椭圆抛物面.
- (4) 若 $f(x,y) = \varphi(x+y) + \varphi(x-y) + \int_{x-y}^{x+y} \psi(t)dt$, 其中 φ 和 ψ 二阶可导函数,则
 - (A) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x^2}$.

(B) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y^2}$.

(C) $\frac{\partial^2 f}{\partial x^2} = -\frac{\partial^2 f}{\partial y^2}$.

- (D) $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2}$.
- (5) $\lim_{(x,y)\to(0,0)} (1+xy)^{\frac{1}{x^2+y^2}} =$
 - (A) 0.

(B) 1.

(C) e.

(D) 极限不存在.

二、 (15分) 填空题:

- (1) 若 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ 为单位向量且满足 $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$,则 $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a} = \underline{\qquad}$.
- (2) 向量 \mathbf{c} 垂直于向量 $\mathbf{a}=\langle \mathbf{1},\mathbf{2},\mathbf{1}\rangle$ 和向量 $\mathbf{b}=\langle -\mathbf{1},\mathbf{1},\mathbf{1}\rangle$,且满足 $\mathbf{c}\cdot(\mathbf{i}-\mathbf{2j}+\mathbf{k})=\mathbf{16}$,那么 $\mathbf{c}=$
- (3) 若 $\sum_{n=2}^{\infty} \left(\tan \frac{1}{n} k \ln \left(1 \frac{1}{n} \right) \right)$ 收敛,则 $k = \underline{\qquad}$.
- (4) 曲线 $y(x) = \sin x$ 的曲率 κ 的最大值为 _____.
- 三、 (10分)设 a > 0, 方程 $r = a(1 + \cos \theta)$ 和 r = a 分别表示一条心形线和一个圆周的方程.
 - (1) 求心形线所围成的区域中在圆外的部分的面积.
 - (2) 求心形线与圆相交的区域面积.
- 四、 (10分) 设 $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, 其中

$$f(t) = \int_0^t \cos(x^2) dx$$
, $g(t) = -t \cos t$, $h(t) = \sum_{n=1}^\infty \frac{t^n}{n}$.

计算 $\mathbf{r}'(0)$.

考试科目: 高等数学(下) A

五、 (10分) 令
$$f(x,y) = \begin{cases} y \sin \frac{1}{x^2 + y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$

- (1) f(x,y)在(0,0)处是否连续?
- (2) 若 $f_x(0,0)$ 和 $f_y(0,0)$ 存在,求其值.
- 六、 (10分) 若下列极限存在, 求其极限值; 若否, 证明其极限不存在.

(1)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$
.

(2)
$$\lim_{(x,y)\to(0,0)} \frac{xy^3 + 2x^2y^4}{x^2 + y^6}$$
.

七、 (10分) 设幂级数
$$f(x) = \sum_{n=1}^{\infty} \frac{n+2}{n(n+1)} x^n$$
,

- (1) 求幂级数 f(x) 的收敛域.
- (2) 求幂级数 f(x) 的和函数.
- 八、 (10分)判断级数 $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n^p(\ln n)^2} (p>0)$ 是否为绝对收敛、条件收敛或者发散,请给出你的理由.

九、 (10分) 求
$$\lim_{n\to\infty} \left((n^2 - n)e^{\frac{1}{n}} - \sqrt{n^4 + 1} \right).$$