(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 10 January 2002 (10.01.2002)

PCT

(10) International Publication Number WO 02/03757 A1

(51) International Patent Classification7: H04R 25/00

(21) International Application Number: PCT/US01/20522

(22) International Filing Date: 28 June 2001 (28.06.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/215,001 29 June 2000 (29.06.2000) US 09/892,137 26 June 2001 (26.06.2001) US

- (71) Applicant: BELTONE ELECTRONICS CORPORA-TION [US/US]; 4201 West Victoria Street, Chicago, IL 60646 (US).
- (72) Inventors: STONIKAS, Paul, R.; 1809 71st Street, Darien, IL 60561 (US). HANNIBAL, Steven, C.; 553

Dover Court, Buffalo Grove, IL 60089 (US). PRUT-NIKOV, Gregory; 9851 Robin Road, Niles, IL 60714 (US). KLYACHMAN, Roman; #E, 9345 Hamilton Street, DesPlaines, IL 60016 (US). BLANCAFLOR, Manolo, J.; 1822 Krowka Drive, Des Plaines, IL 60018 (US).

- (74) Agent: VARGO, Paul, M.; Rockey, Milnamow & Katz, Ltd., 47th Floor, Two Prudential Plaza, 180 N. Stetson, Chicago, IL 60601 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

[Continued on next page]

(54) Title: COMPRESSIBLE HEARING AID

(57) Abstract: A compressible hearing aid includes an exterior deformable skin (12) which bounds an internal region which is filled, at least in part, with an open-cell foam (18), the foam can be wrapped around or molded to contain an audio output transducer (16a-2). The skin is not self-supporting and in response to applied forces from user's ear canal, the skin and the foam both deform and readily compress exhibiting a reduced volume. Though compressed, the foam exerts an outward force against the skin thereby continuing to form an elongated seal between the skin and the external periphery of the user's dynamically changing ear canal. As the volume of the ear canal increases, the skin and open-cell foam expand, exhibiting an increased internal volume, while maintaining a comfortable seal with the ear canal. A plurality of external ribs (12'-1) carried on the skin not only reduces feedback but promotes drying of the ear canal and promotes retention of the hearing aid in the ear canal.

VO 02/03757 A1

BEST AVAILABLE COPY

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

 before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

COMPRESSIBLE HEARING AID

Field of the Invention:

5

10

15

20

25

30

The invention pertains to hearing aids. More particularly, the invention pertains to hearing aids with deformable plastic housings that have variable internal volumes.

Background of the Invention:

Hearing aid housings have long been molded using acrylic resins which when cured are rigid, and hard. These housings often require extensive after the fact adjusting in response to user complaints of poor fit and/or poor performance. Complaints with this type of housing substantially increase overall production costs. Each unsatisfactory hearing aid must be reworked, replaced or the charge refunded to the user.

One of the disadvantages of rigid shell aids is that they are non-compliant and may force the user's ear canal to assume an unnatural shape in the cartilaginous region of the canal in order to achieve a seal. This in time can cause user discomfort and discourage usage of the aid.

It has now been recognized that dynamic changes in the shape of a user's ear canal as the user talks, breaths or swallows produce a situation where a rigid hearing aid housing conforms to the shape of the user's ear canal in only one state. This is the state the ear canal was in when an ear impression was taken. All other states will produce an uncomfortable fit or one that does not seal properly thereby producing feedback. Some of these issues have been addressed in a publication, <u>CIC Handbook</u>, Chasin, Singular Publishing Group, Inc., San Diego, 1997, pg 1-55.

A variety of solutions have addressed the fitting problem. One solution is disclosed in Yoest Patent No. 6,167,141, based on S.N. 09/070,124 filed April 30, 1998, assigned to the assignee hereof and incorporated herein by reference. In Yoest, protrusions on a compliant body contribute to a comfortable seal with the respective ear canal.

Another prior solution combined deformable ear tips with rigid standardized housings that are to be inserted into the tips. These solutions rely on the deformable tips to compensate for differences between the user's ear canal and the shape of the housing contained within the tip.

The ear tip solution has had only limited success The thickness of the tip relative to the size of the ear canal and the size of the housing carried therein have resulted in a structure which has limited bendability when inserted into or removed from the ear canal. Thus, this solution can not be used with convoluted ear canals.

5

Another attempted solution uses a solid elastomeric housing which carries the audio processing circuitry and the battery. Elastomers, when cured, while solid are soft and deformable.

10

Known solid elastomeric housings, while deformable, are substantially incompressible. Such housings exhibit a substantially constant volume. This results in a situation where portions of the ear canal may push against portions of the elastomeric housing, deforming same. However the elastomeric material pushes back against the adjacent periphery of the ear canal, since it is substantially incompressible. This process is known to produce ear pain at times. This will come about if part of the elastomeric material is adjacent to soft tissue in the ear canal.

15

Solid elastomeric housings require balancing softness of material with strength. Softer elastomers have lower tensile strengths and tend to rip where they are thin. While exhibiting softness, solid elastomeric housings must still have enough strength to protect internal electrical/electronic components.

20

It has also been known to combine a gas containing bladder with a housing for a hearing aid. The bladder is deformable and compressible. The bladder is filed with a fluid such as ambient air.

The bladder can be filled before or after insertion. When the ear canal applies compression force to the bladder, the fluid therein will also be compressed. This compression in turn will increase the pressure applied by the fluid to the interior of the bladder, and the adjacent tissue of the user's ear canal.

25

For a constant temperature, reducing bladder volume by 50% produces a corresponding increase in expansion pressure within the bladder and ultimately, an increased force is applied to the ear canal. This becomes uncomfortable and unacceptable to the users.

30

In another attempted solution, a hollow deformable hearing aid housing has been formed of a semi-rigid material with thick enough side walls to be insertable into an ear

canal without buckling. One known hearing aid with a housing as described above has been publicly marketed in the U.S.A. since 1996. In this hearing aid, the internal components, such as the output transducer, a receiver, were positioned in a gas filled interior. For example, the internal volume could be filled with ambient air.

5

10

When the housing is deformed, ambient air therein is forced from the interior. This solution provides only limited flexibility in the housing, due to the thickness of the housing. Insertion rigidity is achieved with this hearing aid as a result of the thickness of the housing. Beyond the limited flexibility, no protection was provided for the receiver and other electronic components. Hence, it was possible to easily damage these components. Finally, except for the tendency of the material to return to its initial shape, the memory of the molded housing, the housing, which was relatively thick, incorporated no force applying structure which tended to force it outward when inserted in the ear canal to provide a feedback reducing seal with the canal.

15

There continues to be a need for more comfortable hearing aids. Since ear canals are known to change shape and volume in response to jaw movement, it would be preferable if such changes could be responded to dynamically. In addition to comfort, there continues to be a need for hearing aids which effectively seal with the respective ear canal. It would be desirable to provide such improved functionality in either custom or standard sizes of hearing aids.

20 Summary of the Invention:

A deformable hearing aid housing has a pliable exterior plastic skin or sheath. The skin bounds, at least in part, an interior volume. The skin is very deformable and has a non-porous, solid exterior periphery. The periphery can be smooth or can exhibit one or more outwardly extending ridges or protrusions.

25

The skin is relatively thin, and buckles readily in response to an applied axial force. In addition, it exhibits very limited restoration forces when deformed. The skin can be formed of silicone, polyurethane, latex, polyvinyl chloride or other plastics. Thin thermoplastic sheet can be formed into skins of an appropriate shape.

30

An open cell-type matrix, such as an open cell foam, can be positioned inside the skin in the interior volume. The matrix is positioned, at least in part, in contact with an interior periphery of the skin and occupies a portion of the interior volume of the skin.

The matrix applies an outwardly directed restoring force to the skin. This pre-loading or restoring force tends to cause the skin to exhibit a fully expanded state if no external compressing forces are applied. The matrix need not exert very much pre-loading force since the skin is thin and very compliant.

5

When the skin is deformed by an externally applied deformation force, for example such as due to insertion in an ear canal, both the skin and the internal matrix collapse in response to that force. Thereupon, some of the ambient atmosphere contained in the skin is forced from the interior volume of the skin. This produces a reduced interior volume.

10

Since the reduced volume has been achieved by expulsion of internal ambient air, the magnitudes of the outwardly oriented shape restoring forces do not significantly increase. When the external deformation force is removed, the skin attempts to return to its original shape in response to the restoring forces applied by the matrix. The present invention enables the respective hearing aid to be compressed over a larger range of volume changes than heretofore possible without creating uncomfortably high pressures in the respective ear canal.

15

When the housing is inserted into a user's ear canal, the skin will collapse and deform in response to the shape of the user's canal. This will in turn compress the internal matrix and force some of the ambient air therein from the housing resulting in a reduced internal volume. As the housing slides through the bends in the ear canal, it will deflect in accordance therewith.

20

When the housing is fully inserted into the user's canal, the internal matrix will apply expansion forces to the internal periphery causing the skin to expand and fill the adjacent volume of the ear canal. The interaction between the interior periphery of the ear canal and the exterior periphery of the skin will produce an elongated, convoluted feedback minimizing seal therebetween. The matrix tends to apply pressure evenly to the compliant elastomeric skin which in turn presses against the respective ear canal.

30

25

Subsequently, when the user talks, eats or breathes, and in the process changes the shape and/or volume of the ear canal, the housing will deform in accordance therewith. Its volume can increase and decrease in accordance with the changes in shape of the canal. The interior matrix continuously maintains an externally directed

restorative force to mold the exterior periphery of the skin to the adjacent exterior periphery of the user's ear canal.

While the matrix continually attempts to expand the skin or sheath, it decompresses in accordance with its own physical characteristics. Hence, as the ear canal changes shape and/or volume, the response time of the matrix can result in short intervals where portions of the elongated seal with the canal may be broken. This provides a transient opportunity for air flow in/out of the canal which should contribute to both user comfort and health.

5

10

15

20

25

30

The reformation force of the skin alone is not sufficient to seal with the ear canal so as to block the passage of sound between the exterior of the skin and the ear canal. The compressible matrix creates enough outwardly directed reformation forces to provide an elongated seal with the ear canal, over a substantial portion of the length of the skin in the canal. This seal blocks the passage of sound. Hence, the sound will be unable to travel unabated through the canal, along the exterior of the skin, to the outer ear end of the aid and into the microphone thereby causing feedback.

In one embodiment the elastomeric skin can have a thickness on the order of less than 50 thousandths of an inch. The skin can exhibit a hardness parameter in a range of 4-40 Shore A. The internal matrix can exhibit a hardness parameter on the order of less than twenty Shore A.

In one aspect, to insure that the elastomeric skin will conform to the shape of the respective ear canal when volume of the canal increases, the skin can be pre-loaded by the foam matrix creating a tendency to expand. The foam matrix is as a result, slightly compressed when in the skin.

In a further aspect, the skin can be formed of a strong, tear resistant plastic. Since the skin is very compliant, size and shape are less critical than is the case with rigid shells.

The matrix can be tailored to improve user comfort. The respective hearing aid can exhibit multiple zones of softness, stiffness and compressibility. In some regions, compressibility can be maximized. In other regions, more rigidity can be provided to assist insertion. Additionally, the matrix and the matrix/skin interface absorb unwanted

transient energy or vibrations in the hearing aid. Alternately, multiple foams with different characteristics can be used in a single skin.

The foam minimizes shock to the internal electronics. The preferred foam is a slow recovery foam which resists dynamic fatigue and compression set.

5

10

Open or closed cell foams can be used depending on desired characteristics. For example, recovery rate can be altered by selection of foam with a slower recovery rate, for example. With such foams, the time that the seal between the skin and the respective ear canal is broken can be increased. This may promote air flow and drying in the canal.

A layered structure can be used to absorb and reflect unwanted mechanical energy from the output transducer, the receiver. A layered structure, skin and matrix, decouples unwanted vibrational energy from the exterior surface of the skin. This enables the use of higher output power without undesired feedback.

In another aspect, the exterior periphery of the skin can carry a plurality of integrally molded, relatively short, outwardly oriented ribs. These ribs, after insertion, directly contact the periphery of the ear canal. They tend to attenuate acoustic energy which is internally generated and is radiating outward toward the ear canal. This reduces feedback enabling the respective hearing aid to be operated at a higher gain than previously possible.

20

15

The ribs also provide spaces between the ear canal and the deformable housing. these spaces facilitate drying of the user's ear canal. They also assist in holding the housing in place.

An electronic module can be attached to the skin, at a standardized modular opening, using an adhesive such as rubberized cyanoacrylate alone or in combination with silicone RTV-type adhesive.

25

30

Since the skin is very compliant, axial rigidity is provided to facilitate insertion. In one embodiment, at least one semi-rigid vent tube, or, spine can be used to provide stiffness for insertion. The vent tube extends axially along the interior periphery of the skin. It can be integrally molded into, glued to or welded to the skin at one or more regions along its length. It thus provides venting and stiffening functions. One or more ribs or spines an be used.

6

In yet another embodiment, an ultra-thin skin can be formed of one to three thousandths thick thermoformed thermoplastic sheet stock, or, injection molded thermoplastic. A plurality of standardized skins of different sizes can be formed of injection molded thermoplastic with a thickness on the order of ten thousandths of an inch.

Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims and from the accompanying drawings.

Brief Description of the Drawings:

5

10

20

25

- Fig. 1 is a side view of a human head illustrating selected anatomical features;
- Figs. 2A,B together illustrate anatomical features as the mandible opens and closes;
 - Fig. 3 is a section taken along plane 3-3 of Fig. 1;
- Figs. 4 illustrates anatomical details of a human ear canal with closed and open mandibles;
 - Fig. 5 is a side sectional view of a hearing aid in accordance with the present invention;
 - Fig. 5A-1 is a sectional view as in Fig. 5 illustrating outflow of ambient atmosphere in response to applied exterior forces;
 - Fig. 5A-2 is a side sectional view illustrating inflow of ambient atmosphere in response to release of applied exterior forces;
 - Fig. 5A-3 is a side sectional view as in Fig. 5 without a vent tube, or spine, illustrating collapse in response to axial insertion forces;
 - Fig. 5A-4 is a side sectional view as in Fig. 5 with a vent tube illustrating resistance to axial insertion forces;
 - Fig. 5B is a side sectional view of a sheath in accordance with the present invention positioned in an ear canal and containing a compressible matrix in accordance with the present invention;
- Fig. 5C is a sectional view of a sheath in accordance with the present invention positioned in an ear canal without an interior compressible matrix;

Figs. 6-9 taken together illustrate details of insertion of the aid of Fig. 5 into an ear canal;

Fig. 10 is a side sectional view illustrating compression and distortion of the aid of Fig. 5A subsequent to insertion;

Fig. 11 is an anterior sectional view illustrating the aid of Fig. 5A after insertion;
 Figs. 12A,B,C taken together illustrate expansion and compression of the aid of
 Fig. 5A, after insertion into an ear canal and in response to mandibular movement;

5

10

15

20

25

30

Figs. 13A-13E taken together illustrate premolding steps of a method in accordance with the present invention;

Figs. 14A-14C taken together illustrate molding steps of a method in accordance with the present invention;

Figs. 15A-15E illustrate various assembly steps of a method in accordance with the present invention;

Fig. 16 illustrates aspects of a system of off-the-shelf, stock, modular hearing aids in accordance with the present invention;

Figs. 17A and 17B illustrate behind-the-ear hearing aid earpieces in accordance with the present invention;

Figs. 18A, 18B illustrate other earpieces in accordance with the present invention;

Fig. 19 illustrates steps of an alternate method in accordance with the present invention; and

Figs. 20A-20D illustrate alternate views of another embodiment of the invention.

<u>Detailed Description of the Preferred Embodiments:</u>

While this invention is susceptible of embodiment in many different forms, there are shown in the drawing and will be described herein in detail specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.

Figs. 1-4B illustrate several aspects of the human anatomy relevant to the hearing aid of the present invention. Fig. 1 is a side view of a human head with an ear E, mandible, jaw bone, M and temporomandibular joint J. Fig. 1 also illustrates the location of transverse section 3-3, discussed subsequently. It has now been recognized that

movement of the mandible M while talking, eating, or breathing must be taken into account in the design and fitting of hearing aids.

Figs 2A, 2B illustrate relative positions of the mandible M relative to ear E in a closed, Fig. 2A, position and in an open, Fig. 2B position. Mandible M both translates, arrow A and rotates when going from the closed to the open position. When mandible M recloses, the motions reverse.

5

10

15

20

25

30

Fig. 3 the section through plan 3-3 of Fig. 1 illustrates the relative positions of the left ear E-R, right ear E-R and the mandibular joints J-L, J-R. Associated with each of the ears is a respective, multi-bend ear canal C-L and C-R. The convoluted nature of ear canals, as illustrated in Fig. 3 imposes a requirement on any hearing aid, which is intended to extend even partly into the canal that it be flexible and soft enough to comfortably pass through both bends in the respective canal. In addition, the inserted aid must be canal friendly and not irritate or press against the canal in any way which will cause discomfort for the user. As noted above, there have been various prior attempts to address these requirements which have been only partly successful.

Fig. 4 illustrates an enlarged section of Fig. 3 for the closed mandible and open mandible positions. The canal is bounded by cartilage in the vicinity of bend B1. A transitional region is present in the vicinity of bend B2. This region includes the end of the cartilage, the boundary to bend B1, an articulated region AR which moves in response to movement of the mandible M, and the beginning of the bony portion of the canal which extends to the tympanic membrane. Beyond the second bend B2 is the bony section of the canal. As illustrated in Fig. 4, while speaking or eating, as the mandible translates and rotates back and forth, the articulated region changes shape and goes from a smaller cross section, with mouth closed (illustrated in solid in Fig. 4) to a larger cross section, (illustrated in phantom, the region AR) and back again.

Fig. 5 illustrates a compressible hearing aid 10 which is insertable into the respective canal, such as canal C-R, past the bends B1 and B2 and into the bony section of the canal. In addition, the aid 10 is very soft and comfortable resides in the bony section of the canal. In the articulation region, the aid 10 decreases and increases in cross section in response to movement of mandible M and the respective joints J-R, J-L.

Finally, aid 10 provides an elongated sealing region which dynamically follows the changes in canal cross section to maintain an acoustic seal and minimize feedback.

The aid 10 includes a thin, elastomeric skin or sheath 12 which exhibits little or no resistance to either axially or laterally applied forces. In one embodiment, for example the skin 12 can be so soft as to not be capable of supporting itself against the force of gravity.

5

10

15

20

25

30

The skin 12 can have a thickness on the order of less than 50 thousands of an inch. Softness corresponds to a range on the order of 5 to 40 Shore A. The skin 12 is deformable and soft enough that it can not be inserted into the respective ear canal without being stiffened axially.

The skin 12 has a substantially closed canal end 12a and an open outer ear end 12b. The skin 12 bounds an interior region 14 which includes electronic components including a receiver 16a electrically coupled to processing circuitry 16b of a type which would be known to those of skill in the art. The audio output from receiver 16a is coupled to an output port 16a-1, which might include a wax guard 16c. A microphone 16a-2 receives audio signals incident on outer ear end 12b and converts same to an electrical input to circuitry 16b.

The region 14 is at least partly filled with a compressible matrix 18 which might be an open cell foam, a fabric or other compressible material. The foam can be in one or more pieces. The pieces of foam can be attached together with an elastomer.

The foam can be pre-cast in a desired shape. For example part of the foam can be cast in the shape of a receiver support. The receiver 16a can then be inserted therein during assembly.

Preferably, the skin 12 is not attached to matrix 18. As such, the skin can move relative to matrix 18 on insertion or in response to changes of shape of the ear canal. The skin has a nominal wall thickness 12c which could be on the order of one thousandth of an inch. A modular faceplate structure 20 which could include a battery compartment and microphone 16a-2 closes end 12b.

Faceplate 20 is attached to skin 12 by one or more of adhesive, heat sealing, fusing, mechanically, ultrasonic or radio frequency welding, or by any other process

5

10

15

20

25

30

which will reliably couple the two elements together. Attachment details are not a limitation of the present invention.

With respect to Figs. 5A-1, -2, the matrix 18 is compressible such that air in the matrix can be expelled A-1 from within the sheath 12 on insertion and in response to forces F1, F2 due to movement of the mandible M, best seen in Fig. 5A-1. The matrix 18 continually imposes expansive forces, generally indicated as F3, F4 in Fig. 5A-2, on the skin 12 which create a seal between the exterior periphery 12d of the skin 12 and the adjacent ear canal. While easily deformable in response to movement of mandible M, the skin 12 is continually pushed against the canal by the matrix 18 to maintain this seal. As the skin 12 expands, air A2 flows back into the interior thereof.

The ability to compress the internal volume of skin 12 and expel air A1 therefrom is especially beneficial in that there is no substantial increase in restorative forces due to air trapped in shell 12. Inflowing air A2 contributes to resealing against the ear canal, discussed below.

Sealing takes place along the exterior periphery 12d of the skin 12 and is not limited to one particular part of the skin. This sealing characteristic is unlike the typical seal formed by a rigid shell aid where seals are usually formed in the cartilage of the ear canal, in the vicinity of the first bend.

With respect to Fig. 5B, the elongated seal created by the expansive forces of the matrix 18 is effective to attenuate sound waves which have been initiated by receiver 16a. These waves are incident on the membrane and are then reflected off of that tympanic membrane back to the end 12a, see Fig. 5B. Attenuating these waves minimizes feedback problems.

In the absence of these expansive forces, as illustrated in Fig. 5C, these acoustic waves are not attenuated or blocked to the same degree and can propagate, via slit leaks, between the wall of the canal and the exterior periphery 12d of the skin or sheath 12 to the outer ear end 12b. These waves can be detected by the respective microphone and amplified contributing to a feedback problem.

To provide axial stiffening forces, a spine 22 can be positioned in region 14 extending axially adjacent to interior surface 12c. The spine 22 can be bonded to skin 12 by ultrasonic welding, adhesive, heat or any other process. One or more spines can be

molded into the interior of the skin. In a preferred embodiment, spine 22 can be implemented as a flexible vent tube.

Spine, vent tube, 22 is laterally flexible but provides axially directed forces which oppose canal generated distorting forces during insertion. As illustrated in Fig. 5A-3, when a user pushes on aid 10, force FU, to insert it into his or her ear canal, such as canal C-R, interaction with the canal generates a resistive force FC.

5

10

15

20

25

30

In the absence of spine or vent tube 22, hearing aid 10 will be difficult to insert into the ear canal. Soft shell 12 and matrix 18 deform causing receiver 16a to move toward modular faceplate 20 and abut microphone 16a-2, see Fig. 5A-3. This distorts the shape of skin 12 and stresses wiring 16a-3 between processing circuits 16b and the output transducer, receiver 16a. Hence, the shell 12, even in the presence of matrix 18 and internal components such as receiver 16a and processing circuits 16b readily deforms in the presence of forces FU, FC.

Unlike the circumstance of Fig. 5A-3, in Fig. 5A-4 the vent tube 22, shown in phantom behind receiver 16a and microphone 16a-2, provides axial stiffening forces which resist canal induced forces FC-1. On insertion, as the user slides aid 10 into his/her ear canal, C-R, via force FU-1, the vent tube 22 stiffens shell 12 axially thereby opposing resistive canal forces FC-1. The axial stiffness of the spine or vent tube 22 overcomes the deformability of the shell 12 and matrix 18 so that the aid 10 can be slid into position in the canal without the type of distortion and stress imposed on the structure as illustrated in Fig. 5A-3.

The vent tube 22 is soft, laterally deformable and bendable. Hence, vent tube 22 does not interfere with ease of insertion nor does it compromise collapsibility of matrix 18 and shell 12.

Figs. 6-9 illustrate insertion of the aid 10 into a representative ear canal, such as C-R as in Fig. 4. The aid 10 is moved in direction I into the cartilaginous entrance to the canal, Fig. 6. As the end 12a of the skin 12 enters the first bend, B1, the skin 12 comes into contact with adjacent portions of the canal, Fig. 7. The shape of the canal, closed mandible, distorts and compresses the skin 12 and internal matrix 18.

Air A1 in the matrix 18 and elsewhere in the region 14 is expelled from the skin 12 as the skin 12 and matrix 18 collapse due to forces applied in passing through bend

B1, see Fig. 8. While the volume of the aid 10 decreases during this process, none of the electronic components, such as the receiver 16a, or processing circuitry 16b are distorted but they may be moved relative to one another from their uncompressed relative positions. The matrix 18 collapses but protects those components at the same time.

5

As the aid 10 is inserted into its final position, see Fig 9, and passes through the second bend, B2, the shell 12 and matrix 18 continue to change shape in response to the forces applied by the canal. The soft and compressible structure of the aid 10 not only make insertion comfortable but the end 12a of the skin 12 is compatible with the physiological characteristics of the bony portion of the canal, in the vicinity of and past bend B2. Hence, users will not experience pain or discomfort due to contact with the thin layer of tissue in the bony portion of the canal.

10

15

Fig. 10 illustrates aid 10 fully inserted into the canal. The skin 12 and matrix 18 are distorted by the shape of the canal due to a closed mandible M. As discussed above relative to Fig. 5B, the matrix 18 exerts a gentle expansive force which maintains the external periphery 12d of the skin 12 in contact along a substantial portion of the canal. The length of contact, or seal region, of the skin 12 with the canal will substantially exceed the contact area of a rigid shell aid with the canal. Hence, aid 10 can be expected to need smaller sealing forces, along the canal, due to the greater length along which the skin 12 seals against the canal.

20

Fig. 11 a front, anterior, view illustrates aid 10 inserted in the canal C-R from a plane perpendicular to the plane 3-3. The view of Fig. 11 does not reflect the two bends in the canal that the aid 10 must traverse during insertion and extraction. As a result, this view might suggest that relatively stiff, solid elastomeric structures could be successfully inserted into and retrieved from the canal. Such structures generate unacceptably high restoration forces when deformed as they may be deformable but they are not compressible.

25

Figs. 12A,B, C and D illustrate a dynamic sequence starting from a mandible closed state, and going to a mandible open state. A momentary loss of seal in some regions along the length of the skin 12 and the canal, generally indicated at L1, see Fig. 12A, may be experienced. This condition, which will exist for a very short period of

30

time, promotes ventilation and drying of the canal The aid 10 will reseal as discussed below.

Fig. 12B illustrates the matrix 18 in the aid 10 exerting restorative forces F3 to expand the skin 12 to fill the enlarged portion of the canal in response to the mandible M moving to an open position due to talking or eating. The characteristics of the matrix 18 can be selected to optimize performance in resealing the canal and user comfort. For example, where the matrix 18 includes a foam, a slow recovery foam can be chosen. During the process of Fig. 12B, as the matrix 18 expands, it also expands the internal region 14. Ambient air A2 is drawn into the region 14 and into the matrix 18. As the sheath 12 expands, in response to inflowing air, it reseals against the canal.

5

10

15

20

25

30

Fig. 12C illustrates aid 10, partly in section, with matrix 18 expanded to reseal the exterior periphery 12c along the ear canal. In this state, matrix 18 is less compressed.

Fig. 12D illustrates the mandible M moving to a closed position. The aid 10 is now subjected to compression forces as the canal changes shape and exhibits a smaller cross section. In this circumstance, the matrix 18 is compressed and the volume of the region 14 decreases. However, pressure against the ear canal, from the matrix 18 does not substantially increase as air A1 in the skin 12 is expelled therefrom. When the mandible M again moves to an open state, the process repeats.

The compressible characteristics of the matrix 18 and the expulsion of air from skin 12 limit forces applied to the canal to those generated by the matrix 18. No forces are generated as would be exhibited by the deformation of a solid elastomeric body nor due to reduction in volume of trapped gases, as in a sealed bladder.

To manufacture a hearing aid in accordance with the present invention an ear impression is made of the ear canal of the ear of the expected user as is conventionally done when fitting hearing aids. Then, using known methods, a thin, rigid acrylic shell is formed. This shell has an exterior periphery substantially identical to the exterior periphery of the of the ear impression. Such steps are well known to those of skill in the art and need not be discussed further.

Figs. 13A-13E illustrate steps preparatory to molding in accordance with the present invention starting from the availability of a rigid shell 50 based on the user's ear

impression. The shell 50 has an inner ear end 50-1 with a receiver output port 50a and a vent port 50b.

In the step of Fig. 13A a dummy electronic module 52a is inserted into one of several standard modular face plate blanks, such as blank 52b which has one of several standardized module receiving openings 52c. Faceplate blank 52b can then be optimally positioned on outer ear end 50-2 of the shell 50. It can then be attached thereto with adhesive and trimmed to become a master 52b' for a standardized opening 52c in the soft shell which can receive a selected modular faceplate assembly, see Fig. 13C.

5

10

15

20

25

30

In Fig. 13D the receiver output port 50a and vent port 50b are closed with removable pins 54a,b. In Fig. 13E the shell 50 is removably attached to a keyed molding plate 56a using the opening 52c. The plate 56a is keyed for rotary alignment with openings 56a-1,-2. Using the opening 52c provides appropriate axial positioning as illustrated subsequently.

Figs. 14A-14D illustrate molding steps in accordance with the present invention. In Fig. 14A plate 56a is illustrated in molding container 56b. The container 56b has been filled with a commercially available silicone molding material thus forming a cured female impression of the shell 50.

Fig. 14B illustrates the female mold 56c turned over, plate 56a has been removed. Silicon molding material has been poured into the shell 50 thereby forming a silicone male mold thereof. The mold 58a is rotatably keyed to the mold 56c by locating posts 56c-1,-2 formed in the female mold 56c. The mold 58a is axially keyed to the mold 56c by the surface 56c-3.

In Fig. 14C the rigid shell 50 has been removed from between the male and female molds, 58a, 56c. The space therebetween, in female mold 56c, can then be filled with a curable elastomer such as elastomer 50-1. The male mold 58a is reassembled with the female mold 56c forcing the excess elastomeric material 50-1 therefrom.

A deformable, elastomeric counterpart 50-2, see Fig. 14D, of the rigid shell 50 is then formed in the space between the molds 58a, 56c. The elastomeric counterpart 50-2 corresponds to skin 12 when cured. The skin or sheath 12 is then removed from between the molds 58a, 56c.

Once the skin 12 has been formed, an electro-mechanical core or module for

5

10

15

20

25

30

insertion therein can be formed. The receiver 16a, processing circuits 16b, microphone 16d and related components and wiring along with matrix 18 can be inserted into soft shell 12.

Preferably the core and matrix 18 will be formed to a shape compatible with the interior region of the soft shell 12. As illustrated in Fig. 15A the rigid shell 50 is preferably first perforated, for example by drilling various holes therein. Then, as illustrated in Fig. 15B a pre-formed faceplate 20 with an alignment surface which matches opening 52c, see Fig. 13D, is inserted into shell 50. The receiver 16a, processing circuitry 16b, and microphone 16d are all interconnected by a connection system of a type disclosed in PCT patent application No.______ filed June 26, 2001, by the applicant hereof, entitled "Hearing Aid Connection System" and incorporated herein by reference.

Prior to insertion, the receiver 16a can be enclosed in compressible matrix 16a-1 which could for example be implemented as a pre-molded open cell foam. Other foam fillers can be inserted so as to be adjacent to processing circuits 16b and microphone 16d.

As illustrated in Fig. 15C, additional foam pieces can be inserted into the shell 50 through holes therein to fill some of the remaining spaces inside of shell 50. Then, as illustrated in Fig. 15D, additional elastomeric material can be injected, via holes in shell 50 which when cured will connect the various pieces of foam to form a unitary electromechanical core or modular structure 10-1, see Fig. 15E, at least partly enclosed by the foam.

The modular structure 10-1 can then be extracted from the shell 50 by breaking same apart. As illustrated in Fig. 15E the module 10-1 can then be inserted into the skin 12. Alignment is achieved in that the opening 12b-1 at the outer ear end 12b has a selected shape and orientation corresponding to the form factor of opening 52c, see Fig. 13C, which orients the faceplate 20 and the remainder of module 10-1.

The faceplate 20 of the module 10-1 can be glued, welded to or clamped to the outer ear end 12b of the skin 12. Adhesive such as rubberized cyanoacrylate can be used, alone or in combination with silicone RTV-type adhesive. It will be understood that the specific way in which the faceplate 20 is bonded to the skin 12 is not a limitation of the present invention.

It will also be understood that the way the foam is configured about the receiver 16a, processing circuitry 16b, or microphone 16d can be varied without departing from the spirit and scope of the present invention. For example, those circuits could be inserted into shell 50 and a foaming elastomer injected thereinto and cured. This will produce an integrally formed module, similar to module 10-1, but not formed of discrete foam pieces. Other variations are possible without departing from the spirit and scope of the present invention. As discussed above, the application of a deforming force to the skin 12 will compress the matrix 14 expelling air from the skin 12 permitting the skin 12 and the matrix 14 to collapse and not apply increased forces to the adjacent part of the user's ear canal.

Fig. 16 illustrates elements of an off-the-shelf, stock, modular hearing aid system 60. With a limited number of components, system 60 can be expected to produce compressible hearing aids to meet the needs of numerous members of the public without a need to create a customized aid.

15

10

5

The system 60 includes a plurality of faceplates with attached microphones, vent tubes, electronic systems and receivers such as 62a,b,c. The elements 62a,b,c can be mechanically identical with different electronic processing characteristics achieved by programming the signal processing circuitry. Alternately, the signal processing circuitry can be physically as well as electrically different.

20

So long as the faceplates each exhibit a common form factor, the elements 62a,b,c can be combined with premolded foam support elements 64a,b,c of different sizes and then inserted into deformable elastomeric skins, of different sizes, 66a,b,c. Then respective faceplate of the selected element 62i can be bonded to the respective skin 66i to form a complete hearing aid.

25

The respective aid can be programmed to set the processing characteristics in accordance with the user's needs. However, no physical construction or modification will be necessary to create a hearing aid to fulfill the physical and audio needs of most users.

30

While three exemplary sets of modular elements have been illustrated in Fig. 16 it will be understood that systems having additional modular elements come within the spirit and scope of the present invention.

5

10

15

20

25

30

Figs. 17A,B illustrate earpieces for behind-the-ear hearing aid in accordance with the present invention. An earpiece 70, Fig. 17A, has a compressible matrix body 72a which is covered by a thin elastomeric skin or coating 72b of the type discussed above. The skin 72b exhibits at least one outflow port, such as port 74i which permits an outflow of air from matrix 72a as it is being compressed when inserted into the user's ear.

A tube 76a is provided and extends through the matrix 72a for coupling audio signals from the electronic package, located outside of the user's ear, to the ear canal. To increase user comfort, a vent 76b is provided.

Fig. 17B illustrates a behind-the-ear earpiece 80 which incorporates a receiver 86a for converting electrical signals from the external ear circuitry to audio for injection into the user's ear canal. It will be understood that the earpiece 80 collapses on insertion into the ear canal as does the earpiece 70. Air forced from the matrix 82a is expelled via ports 84i.

Figs. 18A,B illustrate non-hearing aid communication devices in accordance with the present invention. These devices are usable with other types of electronic products such as wired or wireless telephones, RF communications equipment, portable CD players and the like.

Fig. 18A illustrates a snap-on device 90 which includes a compressible matrix 92a which is coated with an elastomer or enclosed in an elastomeric sheath 92b. Outflow ports 92c in the sheath 92b provide egress regions for air being forced from matrix 92a in response to being inserted into the user's ear canal.

An audio path 94a extends through body 92a into the ear canal end of the earpiece. The outer ear end of the body 92b can slidably engage, for example by a snap fit, a small speaker 94c. Alternate forms of attachment could also be used. The speaker 94c can in turn be coupled via to cable 94c-1 to a remote source of electrical signals. The body 92a can be removed from the speaker 94c and replaced as convenient. The unit 90 exhibits the same compressibility as discussed above and can be expected to fit comfortably in the user's ear canal.

Fig. 18B illustrates a version 98 of the device 90 with a microphone 90-1 carried by the speaker 90-2. The body 92a slidably engages the speaker 90-2 with an interference fit and can readily be replaced.

5

10

15

20

Fig. 19 illustrates steps of an alternate method in accordance with the present invention. In step 200 an electro-mechanical core for a hearing aid, surrounded by a foam matrix which could be configured from the standardized component parts previously discussed in connection with Fig. 16, is provided. In step 202 the core is coated with an elastomeric layer.

Coating can be accomplished a variety of ways including dipping, illustrated, spraying or by any other method whereby a substantially constant thickness layer of elastomeric material is applied to the foam of the core. When the elastomeric layer is cured, the respective unit will be ready for insertion into a users ear canal. The method of Fig. 19 will rapidly and inexpensively provide a thin elastomeric outer layer around the compressible foam.

Figs. 20A-20D illustrate several views of a deformable, soft shell 12' with an internally located spine 12'-1. The spine 12'-1 can be hollow, functioning as a vent tube, or solid. It can be integrally molded into an interior region 12'-2 of shell 12', or attached to the shell 12' by adhesive, heat, or ultrasonic or RF-type welding. Alternately, a plurality of spines, corresponding to spine 12'-1, can be incorporated into soft shell 12'.

From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred. It is intended to cover by the appended claims all such modifications as fall within the scope of the claims.

What is Claimed:

A deformable hearing aid, for insertion into a user's ear canal, comprising:

 a plastic skin having a bounding wall which defines an internal,
 component receiving volume wherein the skin is compliant;

5

at least one electrical component, surrounded by an open cell deformable matrix and positioned in the volume wherein the matrix exerts expansive forces on an internal periphery of the skin causing same to assume an expanded state in the absence of compressive forces whereupon the skin and matrix assume a deformed state while being inserted into the user's ear canal due to compressive forces exerted thereon by the ear canal whereupon ambient air is forced from the volume reducing same.

10 ear canal whe

- 2. A hearing aid as in claim 1 wherein the component is not distorted while the housing is being inserted.
- 3. A hearing aid as in claim 1 whereupon, when inserted in the ear canal, the matrix applies expansive forces to the skin forcing same into contact with the periphery of the ear canal thereby creating a flexible, feedback reducing seal.

15

- 4. A hearing aid as in claim 3 which, when inserted, exhibits a smaller internal volume than prior to insertion.
- 5. A hearing aid as in claim 4 which includes a flow port, coupled to the internal volume, from which internal ambient air can be expelled during insertion.

20

- 6. A hearing aid as in claim 5 wherein the matrix can increase the internal volume and external ambient air can flow thereinto, via the port, in response to changes in the shape of the ear canal.
- 7. A hearing aid as in claim 1 wherein the matrix is selected from a class which includes an open cell foam, a fabric and a porous solid.

25

- 8. A hearing aid as in claim 1 wherein the skin carries a plurality of molded protrusions on an exterior periphery.
- 9. A hearing aid as in claim 8 wherein spaces between protrusions facilitate drying of the ear canal.

30

- 10. A hearing aid as in claim 1 wherein the skin comprises an elastomer selected from a class which includes silicone, polyurethane, latex and polyvinyl-chloride.
 - 11. A hearing aid as in claim 1 wherein the skin has a thickness less than

0.050 inches.

5

10

15

20

25

12. A hearing aid as in claim 1 wherein the skin exhibits a hardness parameter in a range on the order of 10 ShoreA to 40 Shore A.

- 13. A hearing aid as in claim 1 wherein the electrical component comprises an audio output transducer.
- 14. A hearing aid as in claim 13 which includes an audio input transducer coupled to and to the output transducer.
- 15. A hearing aid as in claim 14 which includes a faceplate attached to the skin.
- 16. A hearing aid as in claim 15 wherein the faceplate is rigid and is attached to the skin, at least in part, with one of adhesive, sonic welding, and heat staking..
- 17. A hearing aid as in claim 1 wherein the wall has a substantially constant thickness.
- 18. A hearing aid as in claim 3 wherein as the ear canal changes shape, the skin deforms with the internal volume decreasing and increasing in accordance with forces applied by the ear canal.
- 19. A hearing aid as in claim 18 wherein the volume of the matrix decreases and increases in response to changes in the shape of the ear canal.
- 20. A hearing aid as in claim 18 which includes a plurality of ribs integrally attached to an exterior periphery of the skin.
 - 21. A hearing aid comprising:
- a deformable skin which bounds an internal region and wherein the skin does not exhibit sufficient rigidity to be insertable into a user's ear canal; and
- at least one spine which extends axially along an interior surface of the skin and is attached thereto sufficiently so as to provide insertion rigidity when inserted into the user's ear canal.
 - 22. A hearing aid as in claim 21 wherein the skin is formed of an elastomer selected from a class which includes silicone, polyurethane, latex, and polyvinyl-chloride.
- 30 23. A hearing aid as in claim 21 which includes an output transducer wherein the skin and spine, but not the output transducer, are distorted on insertion into the ear

canal.

5

10

15

20

25

24. A hearing aid as in claim 21 wherein the spine comprises a vent tube that is attached to the skin substantially along its length.

- 25. A hearing aid as in claim 21 which includes a deformable matrix in the region wherein the matrix applies expansive forces to the skin.
- 26. A hearing aid as in claim 21 wherein the at least one spine is integrally molded with the shell.
- 27. A hearing aid as in claim 25 wherein the matrix is compressible in response to forces applied by the ear canal whereby a volume parameter of the internal region is dynamically alterable in response to applied ear canal forces.
- 28. A hearing aid as in claim 26 which includes a plurality of ribs formed on an exterior periphery of the skin.
- 29. A hearing aid as in claim 21 which includes an audio output transducer in the internal region wherein the transducer is surrounded, at least in part, by a compressible matrix.
- 30. A hearing aid as in claim 29 wherein the matrix pre-loads the skin with outwardly directed expansive forces.
- 31. A hearing aid as in claim 29 wherein the matrix comprises at least one of an open cell foam, a closed cell foam, and a fabric.
- 32. A hearing aid as in claim 25 wherein the expansive forces contribute to the skin forming a seal with the user's ear canal, wherein as the shape of the ear canal changes, due to movement of the user's jaw, the seal is broken, permitting air flow into the canal, and reforms as the matrix continues to apply expansive forces to the skin.
 - 33. A hearing aid as in claim 27 wherein the expansive forces contribute to the skin forming a seal with the user's ear canal, wherein as the shape of the ear canal changes, due to movement of the user's jaw, the seal is broken, permitting air flow into the canal, and reforms as the matrix continues to apply expansive forces to the skin.
 - 34. A hearing aid as in claim 27 which includes a faceplate attached to the skin.
- 35. A compressible hearing aid housing comprising:a deformable exterior plastic sheath with a bounding side wall and a

5

10

15

20

25

30

substantially closed end which define an interior region and wherein the sheath exhibits an undistorted shape with a maximal internal volume in the absence of exterior compressive forces wherein the sheath is not self-supporting;

an air containing matrix formed of a deformable plastic wherein the matrix is positioned in at least part of the interior region, wherein the matrix defines at least one component receiving region whereby the matrix at least in part, displaces the component receiving region from the sheath, wherein the matrix exerts an outward biasing force relative to the sheath to cause said sheath to expand toward its undistorted shape in the absence of external compressive forces whereupon air contained in the sheath is expelled therefrom in response to externally applied compressive forces reducing the internal volume of the sheath thereupon limiting atmospherically induced expansive forces.

- 36. A housing as in claim 35 wherein the volumes of both the sheath and the matrix are reduced in response to applied external compressive forces.
- 37. A housing as in claim 35 wherein the matrix comprises an open cell foam which fills the interior region of the sheath, at least in part.
- 38. A housing as in clam 35 wherein the sheath is selected from a class which includes polyurethane, silicon, and polyvinyl chloride.
 - 39. A housing as in claim 35 wherein the sheath comprises an elastomer.
- 40. A housing as in claim 35 wherein the sheath exhibits a nominal wall thickness in a range on the order of 1 thousand to 60 thousandths of an inch.
- 41. A housing as in claim 35 wherein the sheath exhibits a hardness comparable to fleshier portions of an human ear canal.
- 42. A housing as in claim 35 wherein the sheath exhibits a hardness in a range of the order of four to forty Shore A.
- 43. A housing as in claim 35 wherein the sheath exhibits axial stretchability in a range on the order of two to five times its nominal, unstretched length.
 - 44. A housing as in claim 35 wherein the matrix exhibits a first, restorative time constant comparable to a time constant of a human ear canal exhibiting a change of shape.
- 45. A housing as in claim 35 which includes at least one electronic component contained within the matrix.

46. A housing as in claim 35 wherein the sheath is formed of a first plastic material and the matrix is formed of a second, different plastic material.

- 47. A housing as in claim 35 wherein the sheath is, at least in part, movable relative to the matrix.
- 5 48. A housing as in claim 47 wherein the sheath is formed of a first plastic material and the matrix is formed of a second, different plastic material.
 - 49. A housing as in claim 35 wherein the matrix contacts the sheath so as to minimize transfer of vibrations therebetween.
 - 50. A housing as in claim 35 which includes an axially oriented spine, coupled to the sheath for minimizing axial compression of the sheath in response to insertion of the sheath in a human ear canal.

10

15

20

25

30

- 51. A housing as in claim 50 wherein the spine includes an atmospheric flow path.
- 52. A housing as in claim 51 wherein the flow path extends between first and second spaced apart ends of the sheath such that venting is provided between the ends when inserted into the ear canal.
- 53. A housing as in claim 35 which includes first and second coupled electronic components wherein at least one component is carried at least partly surrounded by the matrix with the other component displaced therefrom and coupled thereto by at least one flexible conductor whereby deforming the sheath in response to externally applied forces, changes the positions of the components relative to one another thereby changing the position of the conductor, at least in part relative to the sheath.
- 54. A housing as in claim 53 wherein one end of the sheath is deflectable relative to the other end through an angle in a range on the order of ninety to one hundred thirty-five degrees.
- 55. A housing as in claim 54 wherein the sheath is deflectable simultaneously with the matrix being compressed.
 - 56. A housing as in claim 54 wherein the matrix comprises an open cell foam.
- 57. A housing as in claim 35 wherein one end of the sheath is open and including a faceplate coupled to the one end closing same.
 - 58. A housing as in claim 57 wherein the faceplate is coupled to the one end

in part mechanically.

5

10

15

20

25

59. A housing as in claim 57 wherein the faceplate is coupled to the one end at least in part by adhesive.

- 60. A housing as in claim 54 wherein one end of the sheath is open and including a faceplate coupled to the one end closing same and wherein the faceplate is coupled to the one end at least in part by adhesive.
- 61. A housing as in claim 60 which includes a port, adjacent the faceplate, for exhausting air from the sheath.
 - 62. A housing as in claim 57 which includes a spine to facilitate insertion.
- 63. A housing as in claim 62 wherein the spine comprises an axially oriented vent tube.
- 64. A housing as in claim 63 wherein the vent tube is attached, at least intermittently to the sheath.
 - 65. A method of audio processing comprising:
- inserting a hearing aid into an ear canal so as to locate an audio output port past at least one bend in the canal, the step of inserting including compressing parts of the aid and expelling air therein in response to sliding the audio output port past the bend in the ear canal.
- 66. A method as in claim 65 which includes bending the aid in response to the shape of the ear canal while inserting same.
 - 67. A method as in claim 66 which includes applying an internally produced expansive force to portions of the aid causing same to contact the ear canal forming a feedback minimizing seal and permitting air to flow into the aid.
- 68. A method as in claim 67 wherein in response to a change of cross section of the ear canal, the aid changes shape correspondingly to provide a seal with the changed cross section wherein, air flows in and out of the aid in accordance therewith.
- 69. A method as in claim 67 which includes sensing an incident audio signal, processing same and reproducing same in the canal at the audio output port.
- 70. A method as in claim 67 which includes providing axial forces to facilitate30 insertion.
 - 71. A method as in claim 65 which includes locating at least one electronic

component within the aid within a deformable cushion wherein the cushion deforms, but not the component, during the inserting step.

72. A method of manufacturing a hearing aid comprising:

5

10

. 15

25

30

forming a hollow flexible plastic sheath having a sidewall thickness in a range on the order of 1 to 50 thousandths of an inch and a closed end with at least one audible output port formed therein;

providing axially directed forces for stiffening the sheath to facilitate insertion into a user's ear canal;

loading the interior of the sheath, at least in part, with sound processing circuitry, an output transducer, and deformable foam with the foam being compressible; and

providing an outflow from the sheath for air from the foam enabling the sheath to be compressed.

- 73. A method as in claim 72 which includes, prior to the loading step, forming a coupled combination of the circuitry, the output transducer and the foam in a shape corresponding to the interior of the sheath whereby during the loading step the sheath is not substantially deformed.
- 74. A method as in claim 72 wherein the providing step includes incorporating a spine into the sheath.
- 20 75. A method as in claim 72 wherein the providing step includes incorporating at least one of a deformable vent tube and a spine into the sheath.
 - 76. A method as in claim 72 wherein the forming step includes forming an ear mold of a selected ear canal;

forming a compliant female impression of the ear mold; removing the ear mold and forming a rigid shell in the female impression; removing the rigid shell and attaching a modular interface plate thereto; forming a compliant female impression of the exterior of the rigid shell; forming a compliant male impression of the interior of the rigid shell;

combining the compliant female impression of the exterior of the rigid shell with the compliant male impression of the interior of the rigid shell, in the absence of the rigid shell and filling the void therebetween with a plastic which when cured has

a hardness in a range on the order of 10 to 30 Shore A; curing the plastic thereby forming the soft deformable sheath; and removing the sheath from the mold.

5

10

15

20

25

30

- 77. A method as in claim 72 wherein the forming step includes forming a soft sheath with a hardness parameter less than 30 Shore A.
 - 78. A method as in claim 72 which includes coupling a faceplate to the sheath.
- 79. A method as in claim 78 wherein the coupling step includes at least one of heat sealing, ultrasonic welding, adhesively attaching, mechanically attaching, radio frequency sealing.
 - 80. A method of manufacturing a compressible hearing aid comprising; making an impression of a user's ear canal;

creating a rigid, hollow shell with an exterior periphery in accordance with the impression of the ear canal and with an outer ear opening sized in accordance with a modular faceplate;

forming an elastomeric female mold about the exterior periphery of the rigid shell;

forming an elastomeric male mold of the interior of the rigid shell wherein the male and female molds are rotatably and axially keyed to one another;

removing the rigid shell from between the male and female molds;

forming an elastomeric skin, corresponding to the rigid shell, in the space between coupled male and female molds;

removing the elastomeric skin from the molds and filling same, in part, with a compressible matrix and, in part, with at least a receiver; and

attaching a modular element to the opening in the outer ear opening of the skin including inserting a correspondingly shaped protrusion on the element into that opening.

- 81. A method as in claim 80 which includes inserting at least one axially oriented spine into the skin to facilitate insertion into the user's ear canal.
- 82. A method as in claim 80 which includes inserting at least one axially oriented, deformable vent tube into the skin to facilitate insertion into the user's ear canal.
 - 83. A method as in claim 80 wherein the skin forming step includes forming

a skin with a sidewall having a thickness in a range on the order of 1 thousand to 30 thousandths of an inch.

- 84. A method as in claim 80 wherein the skin forming step includes forming a skin with a thickness less than 40 thousandths of an inch.
- 85. A method as in claim 80 wherein the filling step includes at least partly filling available, unoccupied volume in the skin with the compressible matrix whereby any remaining volume contains expellable ambient atmosphere.
 - 86. A method as in claim 80 wherein the forming step includes forming a skin having a hardness parameter in a range on the order of 10 Shore A to 40 Shore A.
- 10 87. A method as in claim 80 wherein the forming step includes forming a skin having a hardness parameter with a value on the order of less than 30 Shore A.
 - 88. A method as in claim 80 wherein the attaching step includes at least one of chemical bonding, adhesive bonding, mechanical bonding, ultrasonic bonding, heat bonding and radiant energy bonding.
- 15 89. A method as in claim 80 which includes bonding a deformable vent tube to the skin.
 - 90. A hearing aid system comprising:

20

25

30

a plurality of differently sized, flexible standardized elastomeric skins with each skin having a wall thickness in a range on the order of 1 to 50 thousandths of an inch and wherein each skin has a substantially closed, canal end and an open outer ear end;

a plurality of compressible, physically standardized electro-mechanical inserts wherein at least some of the inserts exhibit different audio processing characteristics than others and wherein each insert includes a faceplate wherein a hearing aid for a respective individual can be assembled by selecting an appropriately sized skin from the plurality and by selecting an appropriate insert whereby the insert can be positioned in the selected skin and including a region on the selected faceplate for attachment to the open outer ear end of the skin.

- 91. A system as in claim 90 wherein the selected faceplate is attached to the selected skin by at least one of adhesive, mechanical connection, ultraviolet activated plastic, heat, ultraviolet radiant energy, radio frequency-type radiant energy.
 - 92. A compressible hearing aid comprising:

a non-permeable, flexible elastomeric skin which substantially bounds an interior region with a closed end having at least an acoustic output port therein and a displaced open end;

a core which includes a faceplate which carries a battery compartment, a microphone, processing circuitry coupled to the microphone, an output transducer coupled to the processing circuitry, for generating an audio output,

and a compressible matrix wherein the core substantially occupies the interior region, with the faceplate attached to the skin at the open end closing same and with the audio output of the transducer directed toward the acoustic output port whereby the skin and matrix are compressible by externally applied forces whereupon ambient atmosphere in the skin is expelled therefrom with ambient atmosphere being drawn into the skin in response to removal of the applied forces and an expansion of the matrix and the skin.

- 93. A hearing aid as in claim 92 which includes a deformable spine coupled to the skin, for providing stiffening, axially directed, insertion resisting forces.
- 94. A hearing aid as in claim 92 wherein the skin has a wall thickness, exclusive of the ends, in a range on the order of less than 50 thousandths of an inch, a hardness parameter on the order of less than thirty Shore A and is formed from one of silicone, polyethylene, polyurethane, polyvinyl chloride and latex.
- 20 95. A compressible earpiece comprising:

5

10

15

25

a cellular matrix from which air can be expelled on compression;

an elastomeric overlay which encloses the matrix except for at least one air exhaust region whereby compressing the foam expels air therein through at least the one region.

- 96. An earpiece as in claim 95 wherein the matrix comprises an open cell foam.
- 97. An earpiece as in claim 95 wherein the overlay comprises at least one of an applied coating and a sheath.
- 98. An earpiece as in claim 97 wherein the overlay exhibits a thickness less than fifty thousandths of an inch.
 - 99. An earpiece as in claim 97 wherein the overlay comprises one of a

silicone, a polyurethane, a latex, polyvinyl chloride; and a thermoplastic.

5

- 100. An earpiece as in claim 95 which includes an audio output transducer.
- 101. An earpiece as in claim 95 which includes a vent channel which extends through the matrix.
- 102. An earpiece as in claim 95 which includes an audio channel which extends through the matrix.
 - 103. A hearing aid as in claim 92 which includes at least one protruding rib formed on an exterior periphery of the elastomeric skin.

1/38

3/38

SUBSTITUTE SHEET (RULE 26)

FIG. 5A-4

FIG. 5A-3

.16/38

FIG. 13A

FIG. 13B

FIG. 13D

FIG. 13E

FIG. 14A

FIG. 14B

56c-2

50

56c-3

58a

FIG. 14D

28/38

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

30/38

FIG. 15C

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 18A

FIG. 18B

FIG. 19

FIG. 20B

FIG. 20D

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/20522

A. CLASSIFICATION OF SUBJECT MATTER IPC(7) : H04R 25/00				
US ČĹ : 381/323, 328				
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols) U.S.: 381/323, 328, 324				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched N/A				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Continuation Sheet				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where a		Relevant to claim No.	
Х	US 5,467,775 A (CALLAHAN et al) 21 November	1995 (21.11.95), see Fig. 3A	95-103	
х —	US 6,022,311 A (JUNEAU et al) 08 February 2000 (08.02.00), see Figs. 1 and 8.		21-30, 32-36, 38-55, 57-71 and 90-94	
A			1-20, 31, 37, 56 and 72-89	
X,P US 6,228,020 B1 (JUNEAU et al) 08 May 2001 (08		.05.01), see Figs. 9-17.	21-30, 32-36, 38-55, 57-71 and 90-94	
A,P			1-20, 31, 37, 56 and 72-89	
Further	documents are listed in the continuation of Box C.	See patent family annex.		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "A" later document published after the international filing date or particular relevance "T" later document published after the international filing date or particular values of particular relevance "T" later document published after the international filing date or particular relevance of particular relevance		ation but cited to understand the ation		
"E" carlier application or patent published on or after the international filing date		"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone		
"L." document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		considered to involve an inventive step	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination	
"O" document referring to an oral disclosure, use, exhibition or other means		being obvious to a person skilled in the		
"P" document published prior to the international filing date but later than the "&" document priority date claimed				
Date of the actual completion of the international search 31 August 2001 (31.08.2001) Date of mailing of the international search 16 NOV 2001			2001	
	ailing address of the ISA/US	Authorized officer		
Commissioner of Patents and Trademarks Box PCT Sinh Tran			201	
Washington, D.C. 20231		Telephone No. (703) 305 4700	WU	
Lecounite Mo. (1993-999-999)				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/20522

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)			
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:			
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet			
 As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 			
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:			
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.			

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/20522

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

I. Claims 1-64 and 90-103, drawn to a hearing aid structure, classified in H04R 25/00 (US class 381, subclass 322).

- II. Claims 65-71, drawn to a method of audio processing, classified in H04B 15/00(US class 381, subclass 93).
- III. Claims 72-89, drawn to a method of manufacturing a hearing aid, classified in H04R 31/00 (US class 29, subclass 594).
- 1. This International Searching Authority considers that the international application does not comply with the requirements of unity of invention (Rules 13.1 and 13.3) for the reason indicated below:

The inventions listed as Groups I, II, and III do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the special technical features of the Group I invention is the hearing aid structure, the special technical feature of Group II invention is the method of audio processing and the special technical feature of Group III invention is the method of manufacturing a hearing aid. Since the special technical feature of the Group I invention is not present in the Group II or Group III invention being claimed and the special technical feature of Group II invention is not present in the Group I or Group III invention being claimed and the special technical feature of the Group III invention is not present in the Group I or II invention being claimed, unity of invention is lacking.

Continuation of B. FIELDS SEARCHED Item 3:

East

foam, porous, cell\$4

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)