Intermediate Data Structures Algorithms CS 141 - Spring 2020

Discussion 01 - Basics-Proof, Asymptotic Notation and Execution Time.

Sara Abdali, Mayur Patil, AmirAli Darvishzadeh, Elena Strzheletska

University of California, Riverside

March 31, 2020

Outline

Basics

Proof

Asymptotic notation

- ▶ **Proposition:** is a statement that is either true or false.
 - ► EX1. 2+4=6 true
 - \triangleright Ex2. 3+2=7 false
 - Ex3. "it's five o'clock" is not a proposition.
- ▶ **Predicate:** is a proposition whose truth depends on the value of one or more variables.
 - \triangleright Ex. P(n)= "n is a perfect square" n=4 T, n=5 F

Basics

- **Axiom:** Propositions that are simply accepted as true.
 - Ex1. "There is a straight line segment between every pair of points"
 - \triangleright Ex2. Reflective axiom (e.g. a = a).
- ▶ Theorem: is a mathematical statement that is true and can be verified as true.
 - ► Ex1. if $\sum_{k=1}^{\infty} a_k$ converges, then $\lim_{k\to\infty} a_k = 0$

Basics

- ▶ Proof: Is a sequence of logical deductions from axioms and previously-proved statements that concludes with the proposition in question.
 - Contradiction
 - ► Induction
 - Proving an implication

. . .

Outline

Basics

Proof

Asymptotic notation

Proof Examples

► Induction:

Basic outline:

Proof: we want to show that P(n) is true for all n.

Base case: show that P(1) is true.

Induction: Assume that P(k) is true for all $1 \cdots k$, we need to

show that P(k+1) is true.

Induction

Example: for every positive integer $n \ge 4, 2^n < n!$

Solution: "We use induction approach"

Base case: when $n = 4 \ 2^4 < 4! \implies 16 < 24$

Induction: we assume the claim holds for $1 \cdots k$, We need to show

that the claim holds for k+1.

By the induction hypothesis we have: $2^k < k! \implies 2^k \times 2 < k! \times 2$

And we know: $2 < k+1 \implies 2^{k+1} < (k+1)!$

Direct Proof

Begin by assuming that P is true (We don't need to be worry about P being false) and show this forces Q to be true.

Outline of direct proof:

Proposition if P, then Q Proof. Suppose P. ... Therefore Q

Direct Proof

If x and y are integers and $x^2 + y^2$ is even, prove that x + y is even as well.

$$x^{2} + y^{2} = x^{2} + y^{2} + 2xy - 2xy = (x+2)^{2} - 2xy$$

we know that this is even, so:

$$(x+2)^2 - 2xy = 2m$$

$$(x+2)^2 = 2(m+xy)$$

thus (x+2) is even.

Proof by Contradiction

Basic outline:

In order to prove a proposition P by a contradiction:

Write: "We use proof by contradiction"

Write: "Suppose P is false" Deduce something known to be false (a

logical contradiction)

Write: "This is a contradiction. Therefore, P must be true."

Proof by Contradiction

Example: prove that $\sqrt{2}$ is irrational

Solution: Suppose that $\sqrt{2}$ is rational, thus suppose: $\sqrt{2} = \frac{n}{d}$ where $\frac{n}{d}$ is the **lowest term**.

 $2 = \frac{n^2}{d^2}$ or $2d^2 = n^2$ thus n is a multiple of 2.

 $2d^2$ is a multiple of 4, it implies that d is a multiple of 2 So, numerator and denominator have **2** as a common factor.

Outline

Basics

Proof

Asymptotic notation

$Big-\mathcal{O}$ notation

Definition 3.1

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\mathcal{O}(g(x))$ if there are constants C and k such that,

$$|f(x)| \le C|g(x)|$$

whenever x > k. [This is read as "f(x) is big-oh of g(x)."]

Big- Ω notation

Definition 3.2

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Omega(g(x))$ if there are positive constants C and k such that,

$$|f(x)| \ge C|g(x)|$$

whenever x > k. [This is read as "f(x) is big-omega of g(x)."]

Big- Θ notation

Definition 3.3

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Theta(g(x))$ if f(x) is O(g(x)) and f(x) is O(g(x)).

Also note that f(x) is $\Theta(g(x))$ iif there are real numbers C_1 and C_2 and a positive real number k such that,

$$|C_1|g(x)| \le |f(x)| \le C_2|g(x)|$$

whenever x > k. [This is read as "f(x) is big-theta of g(x)."]

Asymptotic notation ¹

Great additional resources at https://tinyurl.com/o5lwvgp

$$T(n) = n^2 + 2n + 1$$

Prove
$$T(n) = O(n^2)$$

Solution 1:

To prove:
$$T(n) \le Cn^2$$

 $n^2 \le n^2$
 $n^2 + 2n \le n^2 + 2n^2$
 $n^2 + 2n + 1 <= n^2 + 2n^2 + n^2 = 4n^2 = O(n^2)$ where $c = 4$ and $n_0 = 1$

$$T(n) = \frac{n^2}{2} - 2n$$

$$ightharpoonup$$
 prove: $T(n) = \Theta(n^2)$

Solution 2:

To prove: $T(n) < (C_1 n^2)$ and $n^2 > (C_2 n^2)$

Part 1:

To prove
$$T(n) \le (C_1 n^2)$$

 $\frac{n^2}{2} \le n^2 \implies \frac{n^2}{2} - 2n \le n^2$

Thus $T(n) < (C_1 n^2)$ where $C_1 = 1$ and $n_0 = 1$

$$T(n) = O(n^2)$$

Part 2:

To prove $T(n) > (C_2 n^2)$

$$\frac{n^2}{2} \ge \frac{n^2}{4}$$

$$\frac{n^2}{2} \ge \frac{n^2}{4}$$

$$\frac{n^2}{2} - 2n \ge \frac{n^2}{4} - \frac{n^2}{8}$$

Thus $T(n) \geq (C_2 n^2)$ where $C_2 = \frac{1}{8}$ and $n_0 = 8$

$$T(n) = \Omega(n^2)$$

To combine part 1 and part 2, we have $C_1 = 1$ and $C_2 = 1/8$ and

$$n_0 = max(1,8) = 8 \text{ and } T(n) = \Theta(n^2)$$

Order Growth

$$logn < n^5 < n! < \sqrt{2}^{logn} < 4^n < n^n$$

Reference

▶ Mathematics for Computer Science" by Eric Lehman, F. Thomson Leighton, Albert R Meyer