- **18.1.** Для каждого из следующих операторов T найдите их (гильбертово) сопряженные:
- 1) диагональный оператор в ℓ^2 ;
- 2) оператор умножения на ограниченную измеримую функцию в $L^2(X,\mu)$;
- 3) операторы левого и правого сдвига в ℓ^2 ;
- 4) оператор двустороннего сдвига в $\ell^2(\mathbb{Z})$;
- 5) интегральный оператор Гильберта–Шмидта в $L^2(X,\mu)$ (см. задачу 2.7);
- 6) оператор T в $L^2[0,1]$, действующий по формуле

$$(Tf)(x) = \int_0^x f(t) dt.$$

18.2. Какие из операторов предыдущей задачи самосопряженные? унитарные? нормальные? являются ортогональными проекторами?

18.3. Докажите, что

- 1) каждый непустой компакт $K\subset \mathbb{C}$ является спектром некоторого нормального оператора в сепарабельном гильбертовом пространстве;
- 2) каждый непустой компакт $K \subset \mathbb{R}$ является спектром некоторого самосопряженного оператора в сепарабельном гильбертовом пространстве;
- 3) каждый непустой компакт $K \subseteq \mathbb{T}$ является спектром некоторого унитарного оператора в сепарабельном гильбертовом пространстве.
- 18.4-b. Что можно сказать про спектр изометрии в гильбертовом пространстве?
- 18.5. Вычислите норму оператора из п. 6 задачи 18.1.

Указание: оператор T^*T компактен и самосопряжен.

- **18.6.** Докажите, что следующие свойства оператора V в гильбертовом пространстве H эквивалентны:
 - (i) $VV^*V = V$;
 - (ii) V^*V проектор;
 - (iii) ограничение V на $(\operatorname{Ker} V)^{\perp}$ изометрия.

Оператор V с такими свойствами называется *частичной изометрией*.

- **18.7.** Пусть V частичная изометрия в гильбертовом пространстве H.
- 1) Докажите, что V^* частичная изометрия.
- 2) Положим $H_0 = (\operatorname{Ker} V)^{\perp}$ и $H_1 = \operatorname{Im} V$. Докажите, что операторы $V|_{H_0} \colon H_0 \to H_1$ и $V^*|_{H_1} \colon H_1 \to H_0$ обратные друг другу изометрические изоморфизмы, V^*V ортогональный проектор на H_0 , а VV^* ортогональный проектор на H_1 . Эти проекторы называются, соответственно, начальным и конечным проекторами частичной изометрии V.
- **18.8. 1)** Докажите, что оператор $T \in \mathcal{B}(H)$ нормален тогда и только тогда, когда $||Tx|| = ||T^*x||$ для всех $x \in H$.
- **2)** Докажите, что если оператор $T \in \mathcal{B}(H)$ нормален, то $\operatorname{Ker} T = \operatorname{Ker} T^*$ и $H = \operatorname{Ker} T \oplus \overline{\operatorname{Im} T}$ (ортогональная прямая сумма).
- **18.9.** Пусть $T \in \mathcal{B}(H)$ нормальный оператор, $x \in H$ и $Tx = \lambda x$ для некоторого $\lambda \in \mathbb{C}$. Докажите, что $T^*x = \bar{\lambda}x$.
- **18.10.** Докажите, что собственные векторы нормального оператора, отвечающие разным собственным значениям, ортогональны.

18.11. Пусть T — нормальный оператор в гильбертовом пространстве H (или нормальный элемент любой C^* -алгебры). Докажите, что $r(T) = \|T\|$.

Указание: оператор T^*T самосопряжен.

- 18.12. Докажите, что остаточный спектр нормального оператора пуст.
- **18.13.** Пусть $T \in \mathcal{B}(H)$ нормальный оператор и $H_0 \subseteq H$ замкнутое T-инвариантное подпространство. Обязательно ли H_0^{\perp} T-инвариантно?
- 18.14. Обобщите теорему Гильберта-Шмидта на случай компактных нормальных операторов.
- **18.15-b.** Введем инволюцию на $C^n[a,b]$ формулой $f^*(t) = \overline{f(t)}$. Докажите, что $C^n[a,b]$ инволютивная банахова алгебра, но не C^* -алгебра при $n \ge 1$.
- **18.16-b.** Введем инволюцию на дисковой алгебре $\mathscr{A}(\overline{\mathbb{D}})$ формулой $f^*(z) = \overline{f(\bar{z})}$. Докажите, что $\mathscr{A}(\overline{\mathbb{D}})$ инволютивная банахова алгебра, но не C^* -алгебра.
- **18.17-b. 1)** Докажите, что спектр любого самосопряженного элемента унитальной C^* -алгебры A содержится в \mathbb{R} .
- **2)** Верно ли это, если A инволютивная банахова алгебра?

Указание. 1) Для всех $\lambda \in \sigma(a)$ и всех t > 0 справедливо неравенство $|\lambda \pm it|^2 \leqslant ||a||^2 + t^2$.

18.18-b. Пусть A — унитальная C^* -алгебра, $B \subseteq A$ — замкнутая *-подалгебра, причем $1_A \in B$. Докажите, что B спектрально инвариантна в A.

Указание. Возьмите самосопряженный элемент $a \in B$, обратимый в A, рассмотрите a+it1 при $t \in \mathbb{R}$ и воспользуйтесь предыдущей задачей.

- **18.19.** Найдите все λ , при которых на отрезке $[0,\pi]$ имеет нетривиальное решение задача Штурма–Лиувилля
 - 1) $-u'' = \lambda u$, $u(0) = u(\pi) = 0$;
 - 2) $-u'' = \lambda u$, $u'(0) = u'(\pi) = 0$.

Найдите соответствующие решения.

- **18.20.** Из предыдущей задачи выведите тотальность тригонометрической системы в $L^2[-\pi,\pi]$.
- **18.21.** Пусть (X, μ) пространство с мерой, $K \in L^2(X \times X, \mu \times \mu)$ и T_K интегральный оператор Гильберта—Шмидта в пространстве $L^2(X, \mu)$ (компактный в силу задачи 15.8). Представим оператор T_K в виде

$$T_K f = \sum_n \lambda_n \langle f, e_n \rangle f_n, \tag{1}$$

где (e_n) и (f_n) — ортонормированные системы в $L^2(X,\mu)$; такое разложение всегда возможно в силу теоремы Шмидта. Докажите, что $\sum_n |\lambda_n|^2 < \infty$.

- **18.22.** Пусть X метризуемый компакт, μ регулярная борелевская мера на X, и пусть $K \in C(X \times X)$. Представим оператор Гильберта–Шмидта T_K в виде (1), где $\lambda_n \neq 0$ для всех n. Докажите, что
- 1) $f_n \in C(X)$ для всех n;
- **2)** ряд (1) сходится равномерно и абсолютно для каждой $f \in L^2(X, \mu)$;
- 3) $g = \sum_{n} \langle g, f_n \rangle f_n$ для любой $g \in \text{Im } T_K$, причем этот ряд сходится равномерно и абсолютно.

Указание. 1) Воспользуйтесь задачей 15.9. 2) Сначала убедитесь, что $\sup_{x} \sum_{n} |\lambda_{n} f_{n}(x)|^{2} < \infty$.

18.23-b. Выведите из задач 18.19–18.22 равномерную и абсолютную сходимость рядов Фурье достаточно гладких периодических функций на прямой.