Microcontroladores

Sesión Teoría Semana 3 Profesor: Kalun Lau

1

Preguntas previas:

- PC1: martes 26 de enero 19:00, contenido hasta lo analizado el día anterior a al evaluación, desarrollo manual a mano en hoja bond y posteriormente escaneado o fotografiado, evaluación individual.
- LB1: jueves 28 de enero 10:00, desarrollado según procedimiento e implementado, trabajo individual

Agenda

- El Timer 0
- Interrupciones

3

El módulo Timer 0

- (Ref. Item 11 de la hoja técnica del microcontrolador PIC18F4550)
- Temporizador de cuenta ascendente
- Resolución 8 bits (0-255) ó 16 bits (0-65535)
- Las cuentas del Timer0 se alojan en:
 - TMR0H:TMR0L (16 bits)
 - TMROL (8 bits)
- Tener en consideración el procedimiento estricto sobre el tratamiento de la cuenta en modo 16 bits.
- Diversas fuentes de reloj (interno o externo)
- Divisor de frecuencia al reloj de entrada (1:2 1:256)
- Al desbordarse puede emitir interrupción (TMR0IF = 1), revisar interrupciones y sus 10 registros implicados
- Se usa el registro TOCON (SFR 0xFD5) para configurar el Timer0 (por defecto TOCON=0xFF)

Timer 0 – Modos de trabajo

- Modo temporizador (reloj interno)
 - Ej. Generador de ondas cuadradas, base de tiempo para la multiplexación de los displays de siete segmentos
 - No se usa para aplicaciones en tiempo real (relojes, cronómetros)
- Modo contador (empleando pin TOCKI)
 - Ej. Velocímetro para bicicleta

5

El Timer 0

• Diagrama de bloques:

Código y simulación en Proteus org 0x0000 RC0/T10S0/T1CKI RC1/T10SI/CCP2/UOE RC2/CCP1/P1A RC4/D-/VM RC5/D+/VP JT RC6/TX/CK goto init conf 22 3 4 5 6 7 = 23 ; Aquí se pueden declarar las 24 CLK CE RST 25 26 org 0x0020 RA6/OSC2/CLKO OSC1/CLKI RC7/RX/DT/SDO 27 init_conf: RB0/AN12/INT0/FLT0/SDI/SDA RB1/AN10/INT1/SCK/SCL RB2/AN8/INT2//MO RB3/AN9/CCP2/VPO RB4/AN11/KB10/CSSPP RB5/KB1/PGM RB6/KB1/PGC RB7/KB13/PGD RD0/SPP0 RD1/SPP1 RD2/SPP2 RD3/SPP3 RD4/SPP4 RD5/SPP5/P1B RD6/SPP6/P1C RD7/SPP7/P1D 28 bcf TRISD, 2 movlw 0xC8 29 30 movwf TOCON 31 32 33 movlw .100 Digital Oscilloscope RE0/AN5/CK1SPP RE1/AN6/CK2SPP 34 movwf TMR0L 35 RE2/AN7/OESPP RE3/MCLR/VPP VUSB 36 btfss INTCON, TMR0IF PIC18F4550 37 goto aunno btg LATD, 2 38 39 bcf INTCON, TMR0IF 40 goto loop 41 end

Procedimiento para ingresar una cuenta inicial al Timer 0 en modo 16 bits

- 1. Si por ejemplo se quiere ingresar el número 5536 como cuenta inicial, convertirlo a hexadecimal (DEC 5536 = HEX 0x15A0)
- 2. Se ingresa el dato de 8 bit mas significativo a TMR0H, en el ejemplo 0x15 hacia TMR0H.
- 3. Se ingresa el dato de 8 bit menos significativo a TMROL, haciendo esto se sube en simultáneo el TMROH al registo de cuentas del TimerO, en el ejemplo 0xAO hacia TMROL.
- 4. Recordar que luego del desborde se deberá ingresar nuevamente la cuenta inicial para preservar el temporizado de manera contínua.

11

Interrupciones:

- Las interrupciones son eventualidades que detienen el flujo normal de operación del microcontrolador.
- En el PIC18F4550 tenemos dos vectores de interrupción:
 - Alta Prioridad (0x0008)
 - Baja Prioridad (0x0018)
- Las prioridades están desactivadas por defecto, si están desactivadas, todas van al 0x0008)
- La interrupción externa INTO solo es alta prioridad
- Todos los periféricos internos del microcontrolador (Timers, INTs externas, CCP, EUSART, A/D, comparadores analógicos, etc) pueden emitir interrupciones al CPU.
- Son 10 registros de configuración del sistema de interrupciones
- Las banderas que indican la fuente de interrupción deberán de bajarse una vez activados.

Los diez registros para configurar las interrupciones:

- INTCON (están las interrupciones primarias incluyendo los habilitadores globales)
- INTCON2 (configuración de flancos de las ints. exts., prioridad en TMRO y RB)
- INTCON3 (prioridades, habilitadores y banderas de INT1 e INT2)
- PIE1 (habilitadores de interrupciones de periféricos parte 1)
- PIE2 (habilitadores de interrupciones de periféricos parte 2)
- PIR1 (banderas de interrupciones de periféricos parte 1)
- PIR2 (banderas de interrupciones de periféricos parte 2)
- IPR1 (configuración de prioridades de interrupciones de periféricos parte 1)
- IPR2 (configuración de prioridades de interrupciones de periféricos parte 2)
- RCON (registro de control de reset del CPU, incluye el IPEN habilitador de prioridades)

13

Configuración del registro INTCON para habilitar la interrupción por desborde del TimerO

15

Código mejorado con interrupciones org 0x0000 goto init conf 22 23 | RC0/T1OSO/T1CK| | #15 | RC1/T1OSICCP2/UGE | #16 | RC2/CCP1/P1A | #17 | RC4/D-VM | #23 | RC5/D+V/P | #25 | RC6/TX/CK | #25 org 0x0008 RA0/AN0 RA1/AN1 RA2/AN2/VREF-/CVREF RA3/AN3/VREF+ RA4/T0CKI/C1OUT/RCV RA5/AN4/SS/LVDIN/C2OUT goto TMR0_ISR 26 CLK CE RST 28 ;Aquí se pueden declarar las RA6/OSC2/CLKO OSC1/CLKI 29 RB0/AN12/INT0/FLT0/SDI/SDA RB1/AN10/INT1/SCK/SCL RB2/AN8/INT2//MO RB3/AN9/CCP2/VPO RB4/AN11/KBI0/CSSPP RB5/KB1/PGM RB6/KB12/PGC RB7/KBI3/PGD org 0x0020 30 31 init conf: 32 bof TRISD, 2 33 movlw 0xC8 34 movwf TOCON movlw 0xA0 36 movwf INTCON ; Hab 37 38 loop: PIC18F4550 39 goto loop

40

41 42

45

46

TMR0 ISR:

btg LATD, 2 movlw .100 movwf TMROL

retfie end

bcf INTCON, TMR0IF

Fin de la sesión

- Links adicionales:
 - Microchip Timer0 Tutorial part1: http://ww1.microchip.com/downloads/en/devicedoc/51682a.pdf
 - Microchip Timer0 Tutorial part2: http://ww1.microchip.com/downloads/en/DeviceDoc/51702a.pdf
- Ejercicio: Desarrollar un generador de PWM 2KHz con dos salidas complementarias y con opciones de dutycycle siguientes: 0%, 10%, 25%, 65%, 85% y 100%

