INCIDENT CONTRIBUTION OF A MANY TO A		8	7	6	5	4	3	2	1
B. FLY MATTING CHAIL BY ADMINISTRATION OF THE MATTING CONTROL COPPER OF ADMINISTRATION OF ADMINISTR	F	RIGID-FLEX TO RIGID-FLEX CIFAND 2 LAYERS MATERIALS: A. RIGID MATE	RCUIT CONTAINS UP TO 8 LAYERS IN FLEXIBLE SECTIONS. ERIAL SHALL BE EPOXY GLASS LA	S IN RIGID SECTIONS	 MAT'L: Copper clad plated sheet per MIL-P-13949/4, Type GFM, A. Copper Weight: a) Outer Layers 1.5 OZ. b) Inner Plane Layers 1 OZ. 				F
S. Maritar Manager Care And Separation S. Apply solder make (Qual price) integrated) over been coppered.	E	B. FLEX MATE LAMINATE C. COVERLAY 4. COPPER STAR ADDITIONAL PL 5. RIGID-FLEX CIF 6 APPLY STRAIN TRANSITION AF	ERIAL SHALL BE ADHESIVELESS F ER TO BE .001" POLYIMIDE WITH TING WEIGHT TO BE 1/2 OZ. ON A LATING OF .001" MIN. COPPER ON RCUIT IS A MULTIPLE BEND TYPE RELIEF OF ECCOBOND 45/15 IN F REA APPROXIMATELY AS SHOWN	.001" ADHESIVE LLL LAYERS WITH AN I OUTER LAYERS. RIGID-FLEX TO FLEX I.			Ty 2. Overal 3. Unless platting copper 4. All hole Layer i surrou Tange 5. Condu	pe PC-GF. Tg minimum 170 deg C. Il Board thickness to be .093 +/009. Is otherwise specified all hole dimensiog. All plated through holes to have a nr. es shall be located within .003 diamet to layer registration shall be within .00 nded by land shall have a minimum a ncy on holes with breakout is acceptated to widths and spacing shall be within to to the control of the contro	ons apply after minimum of .001 ter of true position. 5. All holes mular ring of .001. able.
16. ALL BOARD DIMENSIONS SPECIFIED BY DIVIG IN ATTACHED FILE TEST. POF. (RIMENSIONS IN GERBERS FOR REFERENCE ONLY.) 17. FOR ANY DIMENSIONS NOT IN DWG TEST POF USE GERBER DATA. SEE TENTED. 18. VENDOR TO PRIMARY DRILL ALL HOLES (NON-PLATED HOLES SHALL BE TENTED.) 19. MAXIMUM OF 1 X-OUTS ALLOWED IN ARRAY. C 2 0.015	D	9. MINIMUM ANNU IPC-6012, CLAS 10. UNLESS OTHEI 11. FINISH: AFTER 12. SOLDER MASK MASK OVER BA 13. ROHS MATERIA 14. OVERALL THIC	JLAR RING REQUIREMENTS IN AC SS 2, TANGENCY WITH NO BREAK RWISE SPECIFIED HOLE TOLERAI COPPER PLATING PLATE ENIG, F RIGID SECTION BOTH SIDES LPIS ARE COPPER). ALS REQUIRED. KNESS OF FLEX LAYERS SHALL I	CCORDANCE WITH OUT. NCES ARE +/003". PER IPC-4552. SM GREEN (SOLDER NOT EXCEED .009".			solder Transp solder 7. Ware of Qty Si 68	mask to be per IPC-SM-84D, Type B barent Green. All exposed conductive coated. or twist of board shall not exceed .007 Drill Chart	75 inch per inch.
PARTIC MIRE	С	16. ALL BOARD DIM PDF. (DIMENSION 17. FOR ANY DIME 18. VENDOR TO PE BE TENTED.)	MENSIONS SPECIFIED BY DWG IN ONS IN GERBERS FOR REFEREN NSIONS NOT IN DWG TEST.PDF L RIMARY DRILL ALL HOLES (NON-F	AATTACHED FILE TEST. CE ONLY.) JISE GERBER DATA. PLATED HOLES SHALL			582 56 10 2 12 4 54 8	0.009	+0/-0.009 +0/-0.010 +0/-0.012 +0/-0.015 +0/-0.020 +/-0.003 +0/-0.040 +/-0.002
APPLICATION APPLICATION APPLICATION Babriki CHECKED Holganov A.A. REV DESCRIPTION DATE APPROVED APPROVED N/A REV Babriki CHECKED DATE Babriki CHECKED DATE Babriki CHECKED DATE BABROVED DATE C C A A A A A A A A A A A A	В	XAPAKTEPUCTUKM ПЛАТЫ ВВОДЯТСЯ TOLERANCE 1% MATL N/A HARD 1 CLASS DEP	ПЕЧАТНОЙ ВРУЧНУЮ ON: 1%				8 10 4 4 8 8	0.082	+0/-0.082 +0/-0.098 +0/-0.113 +0/-0.115 +0/-0.126
	Α	APPLICATIO	REVISIONS	APPROVED		ENGINEEL Babriki CHECKEE MOIGGT APPROVE N/A ISSUED	26.06.24 R DATE DATE DOV A.A. DATE DATE DATE DATE	CODE DWG YES	A

