Лабораторная работа №2 – Реализация звуковых эффектов на основе применения модуляции

Цель: Реализация эффекта тремоло в системе Matlab, поиск наилучших параметров для повышения естественности звучания.

1.1 Теоретические сведения

1.1.1 Звуковой эффект «тремоло»

Тре моло в переводе с итальянского означает «дрожащий». Это приём игры на струнных, клавишных, смычковых и духовых музыкальных инструментах, при котором делается быстрое повторение одного звука либо быстрое чередование двух не соседних звуков, двух созвучий (интервалов, аккордов), отдельного звука и созвучия. На смычковых инструментах преимущественно применяется тремоло на одной ноте, происходящее от быстрого движения смычка вверх и вниз. Тремоло из двух чередующихся нот, называется тремоло-легато. Тремоло является основным приемом игры на мандолине, домре и балалайке. На слух этот эффект воспринимается как дрожание звука.

В электронной музыке тремоло рассматривается как частный случай амплитудного вибрато и имитируется с помощью амплитудной модуляции. В отличие от вибрато, у тремоло относительно высокая частота вибрации (10...12 Гц), максимальная глубина модуляции достигает 1, а модулированное колебание имеет импульсный характер.

При *амплитудной модуляции* (АМ) амплитуда A_O периодического колебания с частотой F, называемого несущим, изменяется по времени под воздействием другого периодического колебания с более низкой частотой F_{md} и меньшей амплитудой A_{md} . В радиосвязи несущее колебание всегда является синусоидальной функцией с частотой значительно выше, чем максимальная частота спектра модулирующего сигнала. В аудиотехнике при создании звуковых эффектов широкополосный периодический звуковой сигнал выполняет функцию несущей частоты и модулируется низкочастотным периодическим звуковым колебанием с частотой обычно ниже звукового диапазона.

Если оба колебания синусоидальные, то АМ сигнал записывается в виде $a(t) = A_o[1+m\cdot\cos(2\pi F_{md}t)]\cdot\cos(2\pi Ft),$

где m — глубина модуляции,

Рисунок 1.1 – Сигнал АМ модуляции (m=0.9)

Спектр такого колебания может быть представлен в виде

$$a(t) = A_0 \left[\cos(2\pi F t) + \frac{m}{2} \cos\left(2\pi (F + F_{md})t + \frac{m}{2} \cos(2\pi (F - F_{md})t)\right) \right]$$

Из этого равенства следует, что в спектре АМ сигнала присутствуют только три составляющие: F, $F+F_{md}$ и $F-F_{md}$. Глубина модуляции может меняться от 0 до 1. При максимальной глубине модуляции амплитуда боковых составляющих спектра вдвое меньше амплитуды несущего колебания. В зависимости от идеологии исполнения модулятора в спектре может быть еще и составляющая спектра модулирующего колебания F_{md} .

Амплитудная модуляция в аудиотехнике отличается тем, что слышны все составляющие спектра модулированного колебания, и ее слуховое восприятие существенно зависит от особенностей слуха человека. При частоте модуляции ниже 20 Гц составляющие спектра АМ из-за нелинейности слуха воспринимаются как биения нескольких частот (рис. 1.1). Поэтому одновременно слышны тоны с частотами F_{md} , $2F_{md}$ и несущая частота F. Частота F_{md} возникает как разность звуковых колебаний $(F+F_{md})-F$ и $F-(F-F_{md})$, частота $2F_{md}=(F+F_{md})-(F-F_{md})$ и эти колебания всегда попадают в одну критическую полосу слуха (W_{kb}) .

Из графика на рис. 1.2 следует, что звучание биений является консонансным, если разность между частотами, их создающими , меньше 0,1 W_{kb} . Оно становится диссонансным, когда разность частот приближается к величине 0,25 W_{kb} , они звучат в унисон, когда разность между этими частотами меньше 0,03 W_{kb} . В диапазоне от 20 до 500 Гц W_{kb} примерно равна 100 Гц, поэтому консонансное звучание АМ возможно при частотах модуляции ниже 15 Гц, и выше 3...4 Гц.

Например, если 4-я критическая полоса занимает диапазон $[300\ 400]$ Гц. Консонантное звучание в ней можно достигнуть, если $F_{md}<0.1W_{kb}$, следовательно $F_{md}<10$ Гц. Диссонантное звучание достигается при $F_{md}=0.25W_{kb}$, т.е. в рассматриваемом примере: $F_{md}=25$ Гц, поскольку ширина полосы W_{kb} =100 Гц.

Рисунок 1.2 – Консонансное и диссонансное звучание

1.2 Реализация эффекта тремоло

Схема на рис. 1.3 поясняет принцип формирования звукового эффекта «тремоло». В этой схеме на вход подается звуковой сигнал и далее он разделяется на два канала. В каждом из них можно регулировать уровень с помощью регулятора уровня (РУ). Канал, в котором производится амплитудная модуляция звукового сигнала, при описании программных модулей называется wet out. Канал, в котором сигнал проходит без изменений, — называется dry out. Для создания эффекта «тремоло» в канале wet out производится почти 100% АМ звукового сигнала, при которой спектральные составляющие боковых полос максимальны. При суммировании сигналов обоих каналов их уровни подбираются таким образом, чтобы глубина АМ выходного сигнала сумматора не превышала 5...10%.

Рисунок 1.3 – Схема формирования звукового эффекта «тремоло»

При цифровой реализации модулятора его передаточная функция определяется равенством в дискретно-временной области

$$y(n) = [1 + m \times m(n)] \times x(n),$$

где n - номера выборок, x(n) – входной звуковой сигнал, y(n) – АМ сигнал, m(n) - модулирующий сигнал, m – глубина модуляции, предполагается, что пиковое значение m(n)=1.

2 Задание

Лабораторная работа включает выполнение практических заданий в среде Matlab в соответствии с вариантом (таблица 2.1).

Таблица 2.1 – Варианты заданий

Вариант	Задание				
1	А) Сформировать сигнал для получения эффекта биения с консонантным звучанием в критической полосе 9, для этого определите несущую частоту F и модулирующую частоту F_{md} . Б) Реализовать эффект тремоло, используя в качестве модулирующего сигнала периодический треугольный сигнал.				
2	А) Сформировать сигнал для получения эффекта биения с диссонансным звучанием в критической полосе 11 , для этого определите несущую частоту F и модулирующую частоту F_{md} . Б) Реализовать эффект тремоло, используя в качестве модулирующего сигнала периодический треугольный сигнал.				

Вариант	Задание				
3	А) Сформировать сигнал для получения эффекта биения с консонантным звучанием в критической полосе 10, для этого определите несущую частоту F и модулирующую частоту F_{md} . Б) Реализовать эффект тремоло, используя в качестве модулирующего сигнала синусоиду.				
4	А) Сформировать сигнал для получения эффекта биения с диссонансным звучанием в критической полосе 8, для этого определите несущую частоту F и модулирующую частоту F_{md} . Б) Реализовать эффект тремоло, используя в качестве модулирующего сигнала периодический прямоугольный сигнал (меандр).				

Таблица 2.2 — Критические полосы

Номер	Частотный диапазон, Гц	Номер	Частотный диапазон, Гц
полосы		полосы	
1	0-100	13	1720-2000
2	100-200	14	2000-2320
3	200-300	15	2320-2700
4	300-400	16	2700-3150
5	400-510	17	3150-3700
6	510-630	18	3700-4400
7	630-770	19	4400-5300
8	770-920	20	5300-6400
9	920-1080	21	6400-7700
10	1080-1270	22	7700-9500
11	1270-1480	23	9500-12000
12	1480-1720	24	12000-15500

2.1 Порядок выполнения работы

- 1. Изучить теоретические сведения по теме лабораторной работы.
- 2. Получить у преподавателя задание для выполнения практической части работы.
 - 3. Реализовать в Matlab задание.
 - 4. Показать результат работы устройства преподавателю.

5. Оформить и защитить отчет по лабораторной работе.

2.2 Содержание отчета

- 1. Цель работы.
- 2. Краткие теоретические сведения.
- 3. Matlab-описание заданий.
- 4. Графики из задания по пункту А, содержащие временное и частотное представление полученных сигналов. Расчет, подтверждающий, что сигнал имеет консонантное/ диссонансное звучание. Графики, содержащие временное представление и спектрограмму сигнала, полученного в задание по пункту Б.
 - 5. Выводы по работе.