CURRENT PLACEHOLDER, SOME SUM-MARY HAS EMOJI PLEASE HELP REMOVING THEM

	# Que	es-	
Category	tion	${f sDescription}$	Typical Questions
Side Ques- tions (Con- cep- tual The-	13	Key oral theory concepts: phase center, grating lobes, mutual coupling, miniaturization, and CEM methods.	- What is the phase center? - What are grating lobes? - What's the Wheeler-Chu limit? - What's the difference between DE and IE methods? - Why is miniaturizing antennas difficult? - What is mutual coupling?
ory) Antenna Funda- men- tals $(\lambda,$ f, Friis, Gain)	6	Core topics: frequency- wavelength, Friis, gain, effective area.	- What is the wavelength at 3GHz? - Derive and explain the Friis equation How can $\Pr > \Pr$ be explained? - Can aperture efficiency exceed 1?
Scatterin & Electromagnetic The-	ıgi	Modeling materials in EM fields, relation of scattered and total fields.	- What happens when a scatterer is a PEC or dielectric? - Solve E_tot = E_inc + E_scat Describe the role of induced currents.
ory Slot and Mi- crostrip Anten-	5	Radiation from slots, patch resonance, equivalence use.	- Explain how a microstrip antenna works What resonates and in which direction? - Use equivalence theorem to analyze a slot.
nas Dipole and PEC Image Prob- lems	4	Image theory and PECs affecting dipole fields.	- Draw the image of a dipole over PEC What is the far field of a dipole near PEC? - What height gives optimal directivity?

# Que	es- nsDescription	Typical Questions
Far 4 Field Radiation & An-	Calculate radiated E and H fields from simple sources.	- Use elementary dipole formulas to find far field What is the pattern in the phi $= \pi/2$ plane? - Derive $F(r)$ for a radiating dipole.
tenna Pat- terns		
Nulls 4 and Direc- tivity	Placing nulls, shaping beam with geometry and phase.	 Find smallest h to get a null at θ = 60° How can antenna placement create nulls? Optimize h for main lobe targeting.
Equivalence Theo- rems & Bound-	Use of surface equivalence and physical meaning of boundary conditions.	What does the equivalence theorem state? - Explain surface currents at PECWhy must E and H fields be continuous?
ary Condi- tions		
Uniform 2 Linear Array (ULA) The-	Element count vs pattern shaping, gain, and aperture.	- What happens to main lobe as $N\to\infty$? - How do grating lobes appear? - Prove scaling laws for gain and aperture.