RHODES UNIVERSITY

Submitted in partial fulfilment of the requirements of the degree of

BACHELOR OF SCIENCE (HONOURS)

Creating and Optimizing a Sky Tessellation Algorithm for Direction-Dependent Effects

Antonio Bradley Peters

supervised by

Prof. Karen Bradshaw

Prof. Denis Pollney

project originated by

Dr. Cyril Tasse & Prof. Oleg Smirnov

September 25, 2016

Contents

1	Introduction	2
2	WIP	3
	2.1 Voronoi	3

Chapter 1

Introduction

Chapter 2

WIP

2.1 Voronoi

The current best model uses k-means clustering of of the points to the center points. For every point (the plane is seen as a finite number of pixels) in the plane, p, it finds the seed point, s_i , which is the shortest distance to it, i.e. such that $\sqrt{(p(x) - s_i(x))^2 + (p(y) - s_i(y))^2}$ is minimum. This is suboptimal as the time taken to create the diagram relies on the dimensions of the plane and the number of seed points in it. Instead we seek a method which is invariant of the plane size and relies solely on the seed points, for the sake of increasing the computation time, this method must also be parallelizable.

It was therefore decided that the divide and conquer method (Chapter ??) would be used. The algorithm works by ordering the points, first by their x then their y values. The points are then divided into two subsets, a left and right set. The Voronoi diagrams are then generated for the left and right subsets using the divide and conquer method. The convex hulls of the left and right Voronoi diagrams are then found. The lowest common support line between the hulls is then found and from this a dividing polygonal chain is generated until it intercepts the upper bounds of the plane. The intersecting edges with the polygonal chain are then determined, and cut so that part of the chain is now part of the Voronoi cells edges.

Code for the Divide and Conquer was adapted from that in the git repository pyVoronoi¹. pyVoronoi is an implimentation for the Divide and Conquer Voronoi algorithm written in

¹https://github.com/twmht/pyVoronoi

2.1. VORONOI 4

python 2.7. pyVoronoi uses a simple GUI to generate a voronoi diagram in a fixed plane using sources read in from a textfile. This interface, while simple to use, is constraining as it does not allow the user to specify their own spacial constrains or generate the voronoi as part of a pipleined process. The visualiser and interface were therefore removed and the remaining code refactored so that the process is a function which may be called by the user or used in a larger process.

The Voronoi function is designed to take in three parameters, a list of all source points in the space, the dimensions of the space the points lie in and the intensity threshold. Each elelment of the list of sources has 3 parameters: x, y and z. The x and y parameters define the spatial coordinates of the source while the z parameter is seen as the intensity of the source, the list of n sources are passed into the function as an $n \times 3$ number array of doubles. The spatial dimension parameter takes in a tuple of two values, the width and height of the space the sources are in. The intesity threshold is a single double value which defines the minimum intensity a source needs to be a voronoi cell centre.

Once the sources are read in, they are used to generate the voronoi centres structurally defined as a point. Each point inherits the x, y and z values of the source. Each point also has a circumcentre attribute to determine whether it is the point of intercept of three lines (this is most commonly used in the points at the end of a line), two point parameters to indicate the points on either side of the point if the point lies on the convex hull, these are initialised as None, a list of related structures containing another point and their corresponding bisecting line, this list is set as empty. The point also has a list of all the sources contained in the cell and an error value associated to it, these values are set to an empty list and zero respectively and will only come into use after the voronoi diagram has been generated. Once the list of points is created, it is sorted by the x then the y values of the sources.

Once we have our centre points we can begin generating the voronoi diagram. The function Voronoi takes in the list of points and the range of these points it has access to

References

- Arthur, David, & Vassilvitskii, Sergei. 2007. k-means++: The advantages of careful seeding. Pages 1027–1035 of: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics.
- Aurenhammer, Franz. 1987. Power diagrams: properties, algorithms and applications. SIAM Journal on Computing, 16(1), 78–96.
- Cheng, Jingquan. 2009. Radio Telescope Design. The Principles of Astronomical Telescope Design.
- Fortune, Steven. 1987. A sweepline algorithm for Voronoi diagrams. *Algorithmica*, **2**(1-4), 153–174.
- Green, Peter J, & Sibson, Robin. 1978. Computing Dirichlet tessellations in the plane. *The Computer Journal*, **21**(2), 168–173.
- Hamerly, Greg. Making k-means even faster. SIAM.
- Moore, Gordon E. 2006. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff. *IEEE Solid-State Circuits Newsletter*, **3**(20), 33–35.
- NVIDIA. 2014. GeForce GTX 750 Ti Whitepaper. http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf. Accessed on: 26/04/2016.
- NVIDIA. 2015. CUDA C Programming Guide. http://docs.nvidia.com/cuda/. Accessed on: 03/05/2016.
- NVIDIA. 2016. CUDA. http://www.nvidia.com/object/cuda_home_new.html. Accessed on 26/05/2016.

REFERENCES 6

NVIDIA. 2016a. GeForce GTX 750 Ti. http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-750-ti. Accessed on: 26/04/2016.

- NVIDIA. 2016b. *GPU-Accelerated Libraries*. https://developer.nvidia.com/gpu-accelerated-libraries. Accessed on: 22/05/2016.
- Okabe, Atsuyuki, Boots, Barry, Sugihara, Kokichi, & Chiu, Sung Nok. 2009. Spatial tessellations: concepts and applications of Voronoi diagrams. Vol. 501. John Wiley & Sons.
- Rajan, Krishna. 2013. Informatics for materials science and engineering: data-driven discovery for accelerated experimentation and application. Butterworth-Heinemann.
- Rong, Guodong, & Tan, Tiow-Seng. 2006. Jump flooding in GPU with applications to Voronoi diagram and distance transform. Pages 109–116 of: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games. ACM.
- Sault, RJ, & Wieringa, MH. 1994. Multi-frequency synthesis techniques in radio interferometric imaging. Astronomy and Astrophysics Supplement Series, 108, 585–594.
- Shamos, Michael Ian, & Hoey, Dan. 1975. Closest-point problems. Pages 151–162 of: Foundations of Computer Science, 1975., 16th Annual Symposium on. IEEE.
- Smirnov, Oleg M. 2011. Revisiting the radio interferometer measurement equation-I. A full-sky Jones formalism. *Astronomy & Astrophysics*, **527**, A106.
- Smirnov, OM, & Tasse, Cyril. 2015. Radio interferometric gain calibration as a complex optimization problem. *Monthly Notices of the Royal Astronomical Society*, **449**(3), 2668–2684.
- Steinbach, Michael, Karypis, George, Kumar, Vipin, et al. 2000. A comparison of document clustering techniques. Pages 525–526 of: KDD workshop on text mining, vol. 400. Boston.
- Subhlok, Jaspal, Stichnoth, James M, O'hallaron, David R, & Gross, Thomas. 1993. Exploiting task and data parallelism on a multicomputer. *Pages 13–22 of: ACM SIGPLAN Notices*, vol. 28. ACM.
- Tasse, Cyril. 2014. Applying Wirtinger derivatives to the radio interferometry calibration problem. arXiv preprint arXiv:1410.8706.
- Tasse, Cyril. 2016. DDFacet imager. TBD. Draft in preparation.

REFERENCES 7

Thompson, A Richard, Moran, James M, & Swenson Jr, George W. 2008. *Interferometry and synthesis in radio astronomy*. John Wiley & Sons.

- van Weeren, RJ, Williams, WL, Hardcastle, MJ, Shimwell, TW, Rafferty, DA, Sabater, J, Heald, G, Sridhar, SS, Dijkema, TJ, Brunetti, G, et al. 2016. LOFAR facet calibration. arXiv preprint arXiv:1601.05422.
- Vuduc, Richard, & Choi, Jee. 2013. A brief history and introduction to GPGPU. Pages 9–23 of: Modern Accelerator Technologies for Geographic Information Science. Springer.
- Way, Michael J, Scargle, Jeffrey D, Ali, Kamal M, & Srivastava, Ashok N. 2012. Advances in machine learning and data mining for astronomy. CRC Press.