EE150 Signals and Systems

- Part 1: Overview

 \downarrow Week 1, Tue, 20180227

Introduction to Signals

Signal:

a function of one or more independent variables; typically contains information about the behaviour or nature of some physical phenomena.

e.g. Voice (audio), TV (audio + video), light, voltage, current, stock price, etc.

Introductions to Systems

System:

responds to a particular signal input by producing another signal (output).

e.g. Biological sensory system, electronic circuits, automobile, etc.

Objectives

System characterization

how it responds to input signal (e.g. human auditory system)

System design

to process signal in a particular way (e.g. signal restoration, signal identification, image processing)

Examples of Signals

Audio (intensity vs. time) characteristics: volume, rhythm, pitch

TV signal (voltage vs. time) modulated picture signal + audio signal; carrier signal; system involves: antenna, tuner, CRT


```
Biomedical signal (voltage vs. time)
e.g. Electrocardiogram

Traffic flow (quantity vs. time)
volume, composition, pattern, mobility;
system involved: traffic lights, roads, junctions

Network throughput
# of packets/sec., pattern
```

Stock price (index vs. time; \$ vs. time)


```
Picture (intensity vs. space)
on film – continuous space, continuous tone
on newspaper – half-tone
on computer – discrete, quantized

Image (measurement over space)
medical images – X-ray, CT, ultrasound, MRI
satellite images – weather map
seismic image – earthquake
```

Continuous vs. Discrete Signal

x[n] is also referred as a <u>sequence</u>. Any particular one in x[n] is called a sample.

Transformation of independent variable

(1). Reflection

$$x(t) \longleftrightarrow x(-t)$$

 $x[n] \longleftrightarrow x[-n]$

Transformation of independent variable cont.

(2). Scaling

$$x(t) \longleftrightarrow x(ct)$$

Transformation of independent variable cont.

(3). Time-shift

$$x(t) \longleftrightarrow x(t-t_0)$$

 $x[n] \longleftrightarrow x[n-n_0]$

Transformation of independent variable cont.

To perform transformation $x(t) \rightarrow x(\alpha t + \beta)$, You have to do time-shifting then scaling.

Why this order?

$$y(t) = x(1.5t + 1)$$

Work out a few points:
 $y(0) = x(1)$
 $y(1) = x(2.5)$
 $y(2) = x(4)$

To get from y to x, we first scale t, then shift.

Therefore, to get from x to y, we first shift and then scale.

Q: What if we first scale and then shift?

Even and Odd functions

A signal is called an even signal (function) if

$$x(t) = x(-t), \quad x[n] = x[-n].$$

A signal is called an odd signal (function) if

$$x(t) = -x(-t), \quad x[n] = -x[-n].$$

Any signal can be broken into sum of one even and one odd signal.

$$x(t) = Evenx(t) + Oddx(t)$$

How?

Any signal can be broken into sum of one even and one odd signal.

$$x(t) = Evenx(t) + Oddx(t)$$

How?

$$x(t) = Evenx(t) + Oddx(t),$$

 $x(-t) = Evenx(-t) + Oddx(-t) = Evenx(t) - Oddx(t),$

Any signal can be broken into sum of one even and one odd signal.

$$x(t) = Evenx(t) + Oddx(t)$$

How?

$$x(t) = Evenx(t) + Oddx(t),$$

 $x(-t) = Evenx(-t) + Oddx(-t) = Evenx(t) - Oddx(t),$

$$\implies Evenx(t) = \frac{1}{2}(x(t) + x(-t)),$$

$$Oddx(t) = \frac{1}{2}(x(t) - x(-t)).$$

Example:

Periodic and Aperiodic Signal

```
IF x(t) is periodic with period T, then x(t) = x(t + mT); m any integer IF x[n] is periodic with period N, then x[n] = x[n + mN]; m any integer
```

Fundamental period (T_0 or N_0): the <u>smallest positive</u> value of (T or N) for which the above equation holds.

Aperiodic is also called Non-periodic

↑ Week 1, Tue, 20180227

↓ Week 1, Thu, 20180301

Periodic and Aperiodic Signal cont.

- Q: What is the fundamental period of
- (1) a constant function
- (2) Dirichlet function (defined on \mathbb{R})

Exponential Signal

Real exponential: $x(t) = ce^{at}$

positive a:

negative a:

Imaginary exponential: $x(t) = e^{j(\omega_0 t + \Phi)}$

Periodic and Sinusoidal Signal

Euler's Formula:

$$e^{j\omega_0t} = \cos(\omega_0t) + j \cdot \sin(\omega_0t)$$

Is $x(t)=e^{j\omega_0t}$ periodic? Suppose the period is T, then

$$x(t) = x(t+T), \implies e^{j\omega_0 t} = e^{j\omega_0(t+T)}.$$

Periodic and Sinusoidal Signal

Euler's Formula:

$$e^{j\omega_0t}=\cos(\omega_0t)+j\cdot\sin(\omega_0t)$$

Is $x(t) = e^{j\omega_0 t}$ periodic? Suppose the period is T, then

$$x(t) = x(t+T), \implies e^{j\omega_0 t} = e^{j\omega_0(t+T)}.$$

Hence $e^{j\omega_0T}=1$.

Fundamental period:

$$T_0=2\pi/|\omega_0|.$$

Periodic and Sinusoidal Signal cont.

```
Sinusoidal signal: x(t) = A\cos(\omega_0 t + \phi)
unit \omega_0: radians/sec; \phi: radians
phase: \omega_0 t + \phi
```

General Complex Exponential

$$egin{aligned} x(t) &= c \cdot e^{(r+j\omega_0)t}, \ & c &= |c|e^{j heta}, \quad r, \omega_0 \in \mathbb{R} \ \\ & \Longrightarrow \ x(t) &= |c|e^{rt}e^{j(\omega_0t+ heta)} \end{aligned}$$

Unit Step and Unit Impulse function

Unit Step function u(t), and Unit Impulse function $\delta(t)$:

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}, \qquad \delta(t) = \frac{d}{dt}u(t).$$

$$u(t) = \int_{-\infty}^{t} \delta(s) ds.$$

A system can be characterized by its unit step response or unit impulse response.

Discrete Time Unit Step and Unit Impulse Sequence

Unit Step function u[n], and Unit Impulse function $\delta[n]$:

$$u[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}, \qquad \delta[n] = \begin{cases} 0, & n \ne 0 \\ 1, & n = 0 \end{cases}$$

Note: u[n] at n = 0 is defined.

Discrete Time Unit Step and Unit Impulse Sequence cont.

 $\delta[n] = u[n] - u[n-1]$: first difference of unit step running sum of unit sample:

$$u[n] = \sum_{m=-\infty}^{n} \delta[m] = \sum_{k=0}^{+\infty} \delta[n-k]$$

Periodic Properties of Discrete-time Complex Exponential

For continuous-time complex exponential $x(t) = e^{j\omega_0 t}$

- (1) the larger the ω_0 , the higher the rate of oscillation
- (2) $e^{j\omega_0 t}$ is periodic for any value of ω_0

Are the above two statements still valid for the discrete case

$$x[n] = e^{j\Omega_0 n}$$
?

(1) oscillation

Periodic Properties of Discrete-time Complex Exponential

- (1) For Ω_0 within an interval $0 \leq \Omega_0 \leq 2\pi$, the frequency \uparrow as $\Omega_0 \uparrow$ for $0 \leq \Omega_0 \leq \pi$, the frequency \downarrow as $\Omega_0 \uparrow$ for $\pi \leq \Omega_0 \leq \pi$.
- (2) $e^{j\Omega_0 n}$ might be non-periodic:

$$e^{j\Omega_0(n+N)}=e^{j\Omega_0n}$$

implies $e^{j\Omega_0N}=1$, hence Ω_0N needs to be a multiple of 2π :

$$\frac{\Omega_0}{2\pi} = \frac{m}{N}$$
 is rational.

Overview of System

System: any process that results in the transformation of signal

A system is continuous-time if both input and output are continuous-time.

A system is discrete-time if both input and output are discrete-time.

Interaction of Multiple Systems

(1) Cascade (Series)

(2) Parallel

Interaction of Multiple Systems

(3) Series/Parallel

Ex.
$$y[n] = (2x[n] - x[n]^2)^2$$

Interaction of Multiple Systems cont.

(4) Feedback

Properties of System

Properties of System

- Memory/Memoryless
- 2 Invertibility and Inverse System
- Causality
- Stability
- Time-invariance
- Linearity

(1). Memory and Memoryless

A system is memoryless if the output only depends on input at the same time.

- Ex. (i) Resister is a memoryless component: v(t) = Ri(t).
 - (ii) With memory: e.g. $y[n] = \sum_{k=-\infty}^{n} x[k]$.

Capacitor has memory (why?)

(2). Invertibility and Inverse System

A system is invertible if distinct inputs lead to distinct outputs.

If z(t) = x(t), then system #2 is the inverse system of system #1.

E.g.
$$y(t) = 2x(t)$$
, then $z(t) = 0.5y(t)$
 $y[n] = \sum_{k=-\infty}^{n} x[k]$, then $z[n] = y[n] - y[n-1]$

(3). Causality

A system is causal if the output at any time only depends on the input at the present time and before.

E.g.
$$y[n] = x[n] - x[n-1]$$
: causal $y(t) = x(t+1)$: non-causal

Q: Causal and Memoryless

(3). Causality

A system is causal if the output at any time only depends on the input at the present time and before.

E.g.
$$y[n] = x[n] - x[n-1]$$
: causal $y(t) = x(t+1)$: non-causal

Q: Causal and Memoryless

Causal property is more important for real-time processing.

But for some applications, such as image-processing, no need to process the data causally.

$$y[n] = \frac{1}{2M+1} \sum_{k=-M}^{M} x[n-k].$$

(4). Stability

A system is stable if bounded input gives bounded output.

BIBO stable

E.g. x(t): the horizontal force; y(t): vertical displacement

↑ Week 2, Thu, 20180301

 \downarrow Week 2, Tue, 20180306

(5). Time-invariance

A system is time-invariant if a time shift in the input only causes a time shift in the output.

i.e. If
$$x[n] o y[n]$$
, then $x[n-n_0] o y[n-n_0]$

Ex.
$$1 y(t) = \sin(x(t))$$

Let
$$y_1(t) = sin(x_1(t))$$
, $x_2(t) = x_1(t - t_0)$
Then $y_2(t) = sin(x_2(t)) = sin(x_1(t - t_0)) = y_1(t - t_0)$

Hence time-invariant (T.I.)

(5). Time-invariance cont.

Ex.
$$2 \ y[n] = nx[n]$$

Let $y_1[n] = nx_1[n], \ x_2[n] = x_1[n - n_0]$
Then $y_2[n] = nx_2[n] = nx_1[n - n_0]$
However $y_1[n - n_0] = (n - n_0)x_1[n - n_0]$
 $\neq y_2[n]$

Hence not time-invariant (T.I.)

(6). Linearity

A system is linear if

- 1. the response to $x_1(t) + x_2(t)$ is $y_1(t) + y_2(t)$
 - additivity
- 2. the response to $a \cdot x_1(t)$ is $a \cdot y_1(t)$, where a is any complex constant.
 - scaling

Combine the above two properties, we can conclude

$$ax_1(t) + bx_2(t) \implies ay_1(t) + by_2(t)$$

— superposition property

For discrete-time: $ax_1[n] + bx_2[n] \implies ay_1[n] + by_2[n]$

(6). Linearity cont.

If linear, zero input gives zero output.

Q: Is y[n] = 2x[n] + 3 linear?

A: No, because it violates zero-in zero-out property.

However, this system is an "incremental linear system": difference of output is a linear function of difference of input.

$$y_1[n] - y_2[n] = 2x_1[n] + 3 - (2x_2[n] + 3) = 2(x_1[n] - x_2[n])$$

Exercise

- (1). $y[n] = x^2[n]$ non-linear; time-invariant
- (2). y[n] = nx[n] memoryless; causal; linear; not time-invariant; not stable
- (3). $y(t) = x(\frac{t}{3})$
- $(4). \ y(t) = \frac{d}{dt}x(t)$
- (5). $y(t) = \int_{-\infty}^{2t} x(\tau) d\tau$
- (6). y(t) = x(t-2) + x(2-t)

Exercise cont.

(7).
$$y(t) = x(t)\cos(8t)$$

(8). $y(t) = x[n-3] - 8x[n-5]$
(9). $y[n] = x[3n]$
(10). $y(t) = \sin(x(t))$

Why LTI is so important?

So we can represent any input by a summation of basic signal $(\delta(t))$ or $\delta[n]$ and its time-shifted version. Then by using LTI property, the output can be found from the summation of the individual output of each basic signal and its times-shifted.