```
In [1]:
```

```
import pandas as pd
```

In [2]:

```
df = pd.read_csv('network_security.txt', sep = "," , encoding = 'utf-8')
```

In [3]:

```
df.head()
```

Out[3]:

	0	tcp	ftp_data	SF	491	0.1	0.2	0.3	0.4	0.5	 0.17	0.03	0.17.1	0.00.6	0.00.7
0	0	udp	other	SF	146	0	0	0	0	0	 0.00	0.60	0.88	0.00	0.00
1	0	tcp	private	S0	0	0	0	0	0	0	 0.10	0.05	0.00	0.00	1.00
2	0	tcp	http	SF	232	8153	0	0	0	0	 1.00	0.00	0.03	0.04	0.03
3	0	tcp	http	SF	199	420	0	0	0	0	 1.00	0.00	0.00	0.00	0.00
4	0	tcp	private	REJ	0	0	0	0	0	0	 0.07	0.07	0.00	0.00	0.00

5 rows × 43 columns

→

In [4]:

```
df.tail()
```

Out[4]:

	0	tcp	ftp_data	SF	491	0.1	0.2	0.3	0.4	0.5	 0.17	0.03	0.17.1	0.00.6	0.0
125967	0	tcp	private	S0	0	0	0	0	0	0	 0.10	0.06	0.00	0.0	
125968	8	udp	private	SF	105	145	0	0	0	0	 0.96	0.01	0.01	0.0	(
125969	0	tcp	smtp	SF	2231	384	0	0	0	0	 0.12	0.06	0.00	0.0	(
125970	0	tcp	klogin	S0	0	0	0	0	0	0	 0.03	0.05	0.00	0.0	1
125971	0	tcp	ftp_data	SF	151	0	0	0	0	0	 0.30	0.03	0.30	0.0	(

5 rows × 43 columns

←

In [5]:

df.shape

Out[5]:

(125972, 43)

In [6]:

```
df.columns
```

Out[6]:

In [7]:

```
df.duplicated().sum()
```

Out[7]:

0

In [8]:

```
df.isnull().sum()
```

Out[8]:

0	0
tcp	0
ftp_dat	
SF	0
491	0
0.1	0
0.2	0
0.3	0
0.4	0
0.5	0
0.6	0
0.7	0
0.8	0
0.9	0
0.10	0
0.11	0
0.12	0
0.13	0
0.14	0
0.15	0
0.16	0
0.18	0
2	0
2.1	0
0.00	0
0.00.1	0
0.00.2	0
0.00.3	0
1.00	0
0.00.4	0
0.00.5	0
150 25	0
0.17	0 0
0.03	0
0.03	0
0.00.6	0
0.00.7	0
0.00.8	0
0.05	0
0.00.9	0
normal	0
20	0
dtype:	

In [9]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 125972 entries, 0 to 125971 Data columns (total 43 columns): Column Non-Null Count # Dtype ----0 0 125972 non-null int64 1 125972 non-null tcp object 2 ftp data 125972 non-null object 3 SF 125972 non-null object 4 491 125972 non-null int64 5 0.1 125972 non-null int64 6 0.2 125972 non-null int64 7 0.3 125972 non-null int64 8 0.4 125972 non-null int64 9 0.5 125972 non-null int64 10 0.6 125972 non-null int64 125972 non-null 11 0.7 int64 12 0.8 125972 non-null int64 13 0.9 125972 non-null int64 14 0.10 125972 non-null int64 15 0.11 125972 non-null int64 16 0.12 125972 non-null int64 17 0.13 125972 non-null int64 0.14 125972 non-null 18 int64 19 0.15 125972 non-null int64 20 0.16 125972 non-null int64 21 0.18 125972 non-null int64 22 2 125972 non-null int64 23 2.1 125972 non-null int64 24 0.00 125972 non-null float64 25 0.00.1 125972 non-null float64 26 0.00.2 125972 non-null float64 0.00.3 float64 27 125972 non-null 28 1.00 125972 non-null float64 29 0.00.4 125972 non-null float64 0.00.5 30 125972 non-null float64 125972 non-null 31 150 int64 32 25 125972 non-null int64 33 0.17 125972 non-null float64 34 0.03 125972 non-null float64 35 0.17.1 125972 non-null float64 36 0.00.6 125972 non-null float64 37 0.00.7 125972 non-null float64 38 0.00.8 125972 non-null float64 39 0.05 125972 non-null float64 40 125972 non-null 0.00.9 float64 125972 non-null 41 normal object 42 20 125972 non-null int64 dtypes: float64(15), int64(24), object(4) memory usage: 41.3+ MB

localhost:8888/notebooks/Network Security.ipynb

In [10]:

df.describe()

Out[10]:

	0	491	0.1	0.2	0.3	
count	125972.000000	1.259720e+05	1.259720e+05	125972.000000	125972.000000	125972.000
mean	287.146929	4.556710e+04	1.977927e+04	0.000198	0.022688	0.000
std	2604.525522	5.870354e+06	4.021285e+06	0.014086	0.253531	0.014
min	0.000000	0.000000e+00	0.000000e+00	0.000000	0.000000	0.000
25%	0.000000	0.000000e+00	0.000000e+00	0.000000	0.000000	0.000
50%	0.000000	4.400000e+01	0.000000e+00	0.000000	0.000000	0.000
75%	0.000000	2.760000e+02	5.160000e+02	0.000000	0.000000	0.000
max	42908.000000	1.379964e+09	1.309937e+09	1.000000	3.000000	3.000

8 rows × 39 columns

localhost:8888/notebooks/Network Security.ipynb

In [11]:

```
df.nunique()
```

Out[11]:

0 tcp ftp_dat SF 491 0.1 0.2 0.3 0.4 0.5	ta :	2981 3 70 11 3341 9326 2 3 4 28
0.6 0.7 0.8 0.9 0.10		6 2 88 2 3
0.11 0.12 0.13 0.14 0.15		82 35 3 10 1
0.16 0.18 2 2.1 0.00		2 2 512 509 89
0.00.1 0.00.2 0.00.3 1.00 0.00.4		86 82 62 101
0.00.4 0.00.5 150 25 0.17		95 60 256 256 101
0.03 0.17.1 0.00.6 0.00.7 0.00.8		101 101 75 101 100
0.05 0.00.9 normal 20		101 101 23 22
dtype:	int64	

In [12]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [13]:
```

```
import warnings
warnings.filterwarnings('ignore')
```

In [14]:

```
df['tcp'].unique()
```

Out[14]:

```
array(['udp', 'tcp', 'icmp'], dtype=object)
```

In [15]:

```
df['tcp'].value_counts()
```

Out[15]:

```
tcp 102688
udp 14993
icmp 8291
```

Name: tcp, dtype: int64

In [16]:

```
plt.figure(figsize=(15,6))
sns.countplot(df['tcp'], data = df, palette = 'hls')
plt.show()
```


In [17]:

TCP


```
In [18]:
```

```
df['ftp_data'].unique()

Out[18]:
array(['other', 'private', 'http', 'remote_job', 'ftp_data', 'name',
```

In [19]:

```
df['ftp_data'].value_counts()
```

Out[19]:

```
http
             40338
             21853
private
domain_u
              9043
smtp
              7313
              6859
ftp_data
                 3
tftp_u
http_8001
                 2
aol
                 2
harvest
                 2
http_2784
Name: ftp_data, Length: 70, dtype: int64
```

In [20]:

```
plt.figure(figsize=(15,6))
sns.countplot(df['ftp_data'], data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [21]:

```
df['SF'].unique()
```

Out[21]:

```
array(['SF', 'S0', 'REJ', 'RSTR', 'SH', 'RSTO', 'S1', 'RSTOS0', 'S3', 'S2', 'OTH'], dtype=object)
```

In [22]:

```
df['SF'].value_counts()
```

Out[22]:

SF	74944	
SØ	34851	
REJ	11233	
RSTR	2421	
RSTO	1562	
S1	365	
SH	271	
S2	127	
RSTOS0	103	
S3	49	
OTH	46	
Namo. SE	dtyne.	÷

Name: SF, dtype: int64

In [23]:

```
plt.figure(figsize=(15,6))
sns.countplot(df['SF'], data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [24]:

SF

In [25]:

```
num_cols = df.select_dtypes(include='number')
```

In [26]:

```
obj_cols = df.select_dtypes(include='object')
```

In [27]:

```
for i in num_cols.columns:
    plt.figure(figsize=(15,6))
    sns.histplot(num_cols[i], kde = True, bins = 20, palette = 'hls')
    plt.xticks(rotation = 90)
    plt.show()
  0.50
  0.25
  0.00
                       0.2
                                      0.4
                                                     9.0
                                                                     0.8
                                                                                    10
  300000
  250000
  200000
5
150000
  100000
  50000
```

In [28]:

```
for i in num_cols.columns:
    plt.figure(figsize=(15,6))
    sns.distplot(num_cols[i], kde = True, bins = 20)
    plt.xticks(rotation = 90)
    plt.show()
```


In [29]:

```
for i in num_cols.columns:
    plt.figure(figsize=(15,6))
    sns.violinplot(num_cols[i], palette = 'hls')
    plt.xticks(rotation = 90)
    plt.show()
```

In [30]:

In [31]:

```
for i in num_cols.columns:
    for j in num_cols.columns:
        plt.figure(figsize=(15,6))
        sns.lineplot(x = num_cols[i], y = num_cols[j], ci = None,
                     palette = 'hls')
        plt.xticks(rotation = 90)
        plt.show()
5.0
 30
 20
                     10000
 4.0
 3.5
 3.0
 2.5
9 2.0
 1.5
In [32]:
Columns = (['duration','protocol_type','service','flag','src_bytes','dst_bytes','land','
             'num_failed_logins','logged_in','num_compromised','root_shell','su_attempted
            'num_shells', 'num_access_files', 'num_outbound_cmds', 'is_host_login', 'is_gues
            'serror_rate','srv_serror_rate','rerror_rate','srv_rerror_rate','same_srv_ra
            'dst_host_count','dst_host_srv_count','dst_host_same_srv_rate','dst_host_dif
            'dst_host_srv_diff_host_rate','dst_host_serror_rate','dst_host_srv_serror_ra
            'dst_host_srv_rerror_rate', 'attack', 'level'])
```

In [33]:

```
df.columns = Columns
```

In [34]:

df

Out[34]:

	duration	protocol_type	service	flag	src_bytes	dst_bytes	land	wrong_fragment
0	0	udp	other	SF	146	0	0	0
1	0	tcp	private	S0	0	0	0	0
2	0	tcp	http	SF	232	8153	0	0
3	0	tcp	http	SF	199	420	0	0
4	0	tcp	private	REJ	0	0	0	0
125967	0	tcp	private	S0	0	0	0	0
125968	8	udp	private	SF	105	145	0	0
125969	0	tcp	smtp	SF	2231	384	0	0
125970	0	tcp	klogin	S0	0	0	0	0
125971	0	tcp	ftp_data	SF	151	0	0	0

125972 rows × 43 columns

localhost:8888/notebooks/Network Security.ipynb

In [35]:

df.max()

Out[35]:

duration	42908
protocol_type	udp
service	whois
flag	SH
src_bytes	1379963888
dst_bytes	1309937401
land	1
wrong_fragment	3
urgent	3
hot	77
<pre>num_failed_logins</pre>	5
logged_in	1
num_compromised	7479
root_shell	1
su_attempted	2
num_root	7468
num_file_creations	43
num shells	2
num_access_files	9
num_outbound_cmds	0
is_host_login	1
is_guest_login	1
count	511
srv_count	511
serror_rate	1.0
srv_serror_rate	1.0
rerror_rate	1.0
srv_rerror_rate	1.0
same_srv_rate	1.0
diff_srv_rate	1.0
srv_diff_host_rate	1.0
dst_host_count	255
dst_host_srv_count	255
dst_host_same_srv_rate	1.0
dst_host_diff_srv_rate	1.0
dst_host_same_src_port_rate	1.0
dst_host_srv_diff_host_rate	1.0
dst_host_serror_rate	1.0
dst_host_srv_serror_rate	1.0
dst_host_rerror_rate	1.0
dst_host_srv_rerror_rate	1.0
attack	warezmaster
level	21
dtype: object	21
acype. Object	

In [36]:

```
df['attack'].unique()
```

Out[36]:

In [37]:

```
df['attack'].value_counts()
```

Out[37]:

normal	67342
neptune	41214
satan	3633
ipsweep	3599
portsweep	2931
smurf	2646
nmap	1493
back	956
teardrop	892
warezclient	890
pod	201
guess_passwd	53
buffer_overflow	30
warezmaster	20
land	18
imap	11
rootkit	10
loadmodule	9
ftp_write	8
multihop	7
phf	4
perl	3
spy	2
Name: attack, dtyp	oe: int6

```
In [38]:
```

```
plt.figure(figsize=(15,6))
sns.countplot(df['attack'], data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [39]:

```
Trained_attack = df.attack.map(lambda a: 0 if a == 'normal' else 1)
```

In [40]:

```
df['attack_state'] = Trained_attack
```

In [41]:

```
df['attack_state'].unique()
```

Out[41]:

array([0, 1], dtype=int64)

In [42]:

```
df['attack_state'].value_counts()
```

Out[42]:

6734258630

Name: attack_state, dtype: int64

In [43]:

```
plt.figure(figsize=(15,6))
sns.countplot(df['attack_state'], data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [44]:

In [45]:

from sklearn.preprocessing import LabelEncoder

In [46]:

```
LE = LabelEncoder()
attack_LE= LabelEncoder()
df['attack'] = attack_LE.fit_transform(df["attack"])
```

In [47]:

from sklearn.model_selection import train_test_split

In [48]:

```
X = df.drop(['attack', 'level', 'attack_state'], axis = 1)
y = df['attack_state']
```

In [49]:

```
In [50]:
```

```
from sklearn.preprocessing import RobustScaler
```

```
In [51]:
```

```
Ro_scaler = RobustScaler()
X_train = Ro_scaler.fit_transform(X_train)
X_test= Ro_scaler.transform(X_test)
```

In [52]:

```
import statsmodels.api as sm
```

In [53]:

```
A = sm.add_constant(X_train)
Est1 = sm.GLM(Y_train, A)
Est2 = Est1.fit()
Est2.summary()
```

Out[53]:

Generalized Linear Model Regression Results

Dep. Variable:attack_stateNo. Observations:94479Model:GLMDf Residuals:94361

Model Family: Gaussian Df Model: 117

Link Function: identity Scale: 0.030102

Method: IRLS Log-Likelihood: 31488.

Date: Fri, 24 Mar 2023 **Deviance:** 2840.4

Time: 19:22:05 **Pearson chi2:** 2.84e+03

Pseudo R-squ. (CS):

Covariance Type: nonrobust

No. Iterations:

coef std err z P>|z| [0.025 0.975]

In [54]:

```
from sklearn.linear_model import LogisticRegression
```

In [55]:

```
LR= LogisticRegression()
LR.fit(X_train , Y_train)
```

0.9993

Out[55]:

```
LogisticRegression
LogisticRegression()
```

In [56]:

```
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
```

In [57]:

```
y_pred = LR.predict(X_test)
```

In [58]:

```
print("Accuracy:", accuracy_score(Y_test, y_pred))
```

Accuracy: 0.8534594989362716

In [60]:

```
cm = confusion_matrix(Y_test, y_pred)
```

In [61]:

 cm

Out[61]:

```
array([[13508, 3212], [ 1403, 13370]], dtype=int64)
```

In [62]:

```
sns.heatmap(cm, annot = True)
plt.show()
```


In [63]:

```
print(classification_report(Y_test, y_pred))
```

	precision	recall	f1-score	support
0	0.91	0.81	0.85	16720
1	0.81	0.91	0.85	14773
accuracy			0.85	31493
macro avg	0.86	0.86	0.85	31493
weighted avg	0.86	0.85	0.85	31493

In [64]:

```
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(X_train, Y_train)
```

Out[64]:

```
• DecisionTreeClassifier
DecisionTreeClassifier()
```

In [65]:

```
y_pred = dt.predict(X_test)
```

In [66]:

```
print("Accuracy:", accuracy_score(Y_test, y_pred))
```

Accuracy: 0.9983170863366463

In [67]:

```
cm = confusion_matrix(Y_test, y_pred)
```

In [68]:

 cm

Out[68]:

```
array([[16694, 26], [ 27, 14746]], dtype=int64)
```

In [69]:

```
sns.heatmap(cm, annot = True)
plt.show()
```


In [70]:

print(classification_report(Y_test, y_pred))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	16720
1	1.00	1.00	1.00	14773
accuracy			1.00	31493
macro avg	1.00	1.00	1.00	31493
weighted avg	1.00	1.00	1.00	31493

In [78]:

from sklearn.naive_bayes import GaussianNB

In [79]:

```
gnb = GaussianNB()
gnb.fit(X_train, Y_train)
```

Out[79]:

```
▼ GaussianNB
GaussianNB()
```

In [80]:

```
y_pred = gnb.predict(X_test)
```

In [81]:

```
accuracy = accuracy_score(Y_test, y_pred)
print('Accuracy:', accuracy)
```

Accuracy: 0.9175372304956657

In [82]:

```
cm = confusion_matrix(Y_test, y_pred)
```

In [83]:

cm

Out[83]:

In [84]:

```
sns.heatmap(cm, annot = True)
plt.show()
```


In [85]:

print(classification_report(Y_test, y_pred))

	precision	recall	f1-score	support
0	0.91	0.94	0.92	16720
1	0.93	0.90	0.91	14773
accuracy			0.92	31493
macro avg	0.92	0.92	0.92	31493
weighted avg	0.92	0.92	0.92	31493