MPAM3_EL3, MPAM3 Register (EL3)

The MPAM3 EL3 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL3.

Configuration

AArch64 System register MPAM3_EL3 bit [63] is architecturally mapped to AArch64 System register MPAM2_EL2[63] when EL2 is implemented.

AArch64 System register MPAM3_EL3 bit [63] is architecturally mapped to AArch64 System register MPAM1_EL1[63].

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to MPAM3 EL3 are undefined.

Attributes

MPAM3_EL3 is a 64-bit register.

Field descriptions

63	62	61	60	59 58	57	56	55	54 53	52	5150
MPAMEN	TRAPLOWER	SDEFLT	FORCE_	NS RESO	ALTSP_H	HENALTSP_HF	CALTSP_E	L3 RESORT	T_ALTSP_	NS RE
					PART	ID_D				
31	30	29	28	27 26	25	24	23	22 21	20	191

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs are output as their default value in the corresponding ID space.

Values of this field are:

MPAMEN	Meaning
0b0	The default PARTID and
	default PMG are output in
	MPAM information when
	executing at any ELn.

0b1	MPAM information is output based on the MPAMn ELx
	register for ELn according
	the MPAM configuration.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Access to this field is **RW**.

TRAPLOWER, bit [62]

Trap direct accesses to MPAM System registers that are not undefined from all ELn lower than EL3.

TRAPLOWER	Meaning
0b0	Do not force trapping of
	direct accesses of
	MPAM System registers
	to EL3.
0b1	Force direct accesses of
	MPAM System registers
	to trap to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

SDEFLT, bit [61]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMIDR_EL1.HAS_SDEFLT == 1:

SDEFLT overrides the PARTID and PMG with the default PARTID and default PMG when executing in the Secure state.

SDEFLT	Meaning
0b0	The PARTID and PMG are
	determined normally in the
	Secure state.
0b1	When executing in the Secure
	state, the PARTID is always
	PARTID 0, and the PMG is
	always PMG 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

FORCE_NS, bit [60] When FEAT_MPAMv0p1 is implemented and MPAMIDR_EL1.HAS_FORCE_NS == 1:

FORCE NS forces MPAM NS to always be 1 in the Secure state.

FORCE_NS	Meaning
0b0	MPAM_NS is 0 when
	executing in the Secure
	state.
0b1	MPAM NS is 1 when
	executing in the Secure
	state.

An implementation is permitted to have this field as RAO if the implementation does not support generating MPAM NS as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [59:58]

Reserved, res0.

ALTSP HEN, bit [57]

When \overline{FEAT} RME is implemented and MPAMIDR EL1.HAS ALTSP == 1:

Hierarchical enable for alternative PARTID space controls. Alternative PARTID space controls in MPAM2_EL2 have no effect when this field is zero.

ALTSP_HEN	Meaning
0b0	Disable alternative PARTID
	space controls in
	MPAM2 EL2. The PARTID
	space for PARTIDs in
	MPAM2 EL2, MPAM1 EL1,
	and MPAM0 EL1 is selected
	by
	MPAM3_EL3.ALTSP_HFC.

0b1	Enable alternative PARTID space controls in MPAM2_EL2 to control the PARTID space used for PARTIDs in MPAM2_EL2, MPAM1_EL1, and
	MPAMO_EL1.

For more information, see 'Alternative PARTID spaces and selection' in Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ALTSP_HFC, bit [56] When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Hierarchical force of alternative PARTID space controls. When MPAM3_EL3.ALTSP_HEN is 0, the PARTID space for PARTIDs in MPAM2_EL2, MPAM1_EL1, and MPAM0_EL1 is selected by the value of this bit.

ALTSP_HFC	Meaning
0b0	When MPAM3_EL3.ALTSP_HEN is 0, the
	PARTID space of <u>MPAM2_EL2</u> .PARTID,
	MPAM1_EL1.PARTID and
	MPAM0_EL1.PARTID are the primary
	PARTID space for the security state.
0b1	When MPAM3 EL3.ALTSP HEN is 0, the
	PARTID space of MPAM2_EL2.PARTID and
	MPAM1_EL1.PARTID and
	MPAMO_EL1.PARTID are the alternative
	PARTID space for the security state.

For more information, see 'Alternative PARTID spaces and selection' in Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ALTSP_EL3, bit [55]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Select alternative PARTID space for PARTIDs in MPAM3 EL3.

ALTSP_EL3	Meaning
0b0	Selects the primary
	PARTID space of
	MPAM3 EL3.PARTID I
	and
	MPAM3_EL3.PARTID_D.
0b1	Selects the alternative
	PARTID space of
	MPAM3 ĒL3.PARTID I
	and
	MPAM3_EL3.PARTID_D.

For more information, see 'Alternative PARTID spaces and selection' in Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

• On a Warm reset, this field resets to an implementation defined value.

Otherwise:

Reserved, res0.

Bits [54:53]

Reserved, res0.

RT ALTSP NS, bit [52]

When FEAT RME is implemented and MPAMIDR EL1.HAS ALTSP == 1:

Selects whether the alternative PARTID space for the Root security state is the Secure PARTID space or the Non-secure PARTID space.

MPAM3_EL3.RT_ALTSP_NS selects the alternative PARTID space for the Root Security state when MPAM3_EL3.ALTSP_EL3 == 1.

RT_ALTSP_NS	Meaning	

0b0	The alternative PARTID space in the Root
	security state is the
	Secure PARTID space.
0b1	The alternative PARTID
	space in the Root
	security state is the
	Non-secure PARTID
	space.

This field has no effect except in the Root security state (EL3).

The reset behavior of this field is:

• On a Warm reset, this field resets to an implementation defined value.

Otherwise:

Reserved, res0.

Bits [51:48]

Reserved, res0.

PMG_D, bits [47:40]

Performance monitoring group for data accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PMG I, bits [39:32]

Performance monitoring group for instruction accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PARTID I, bits [15:0]

Partition ID for instruction accesses made from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing MPAM3_EL3

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM3_EL3

op0	op1	CRn	CRm	op2
0b11	0b110	0b1010	0b0101	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    X[t, 64] = MPAM3_EL3;
```

MSR MPAM3_EL3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b1010	0b0101	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
```

elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 MPAM3_EL3 = X[t, 64];

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.