Analisi – Ordinamento funzioni

Ordinare le seguenti funzioni in accordo alla loro complessità asintotica. Si scriva f(n) < g(n) se $O(f(n)) \subset O(g(n))$. Si scriva f(n) = g(n) se O(f(n)) = O(g(n)), ovvero se $f(n) = \Theta(g(n))$.

$$\begin{array}{llll} f_1(n) & = & 2^{n+2} & & \text{O(a^n)} \\ f_2(n) & = & \log^2 n & & \text{O(log(n))} \\ f_3(n) & = & \log_n (n \cdot (\sqrt{n})^2) + \frac{1}{n^2} & & \text{O(1)} \\ f_4(n) & = & 3n^{0.5} & & \text{O(n^a)} \\ f_5(n) & = & 16^{n/4} & & \text{O(n^a)} \\ f_6(n) & = & 2\sqrt{n} + 4n^{1/4} + 8n^{1/8} + 16n^{1/16} & \text{O(n^a)} \\ f_7(n) & = & \sqrt{(\log n)(\log n)} & & \text{O(log(n))} \\ f_8(n) & = & \frac{n^3}{(n+1)(n+3)} & & \text{O(n)} \\ f_9(n) & = & 2^n & & \text{O(a^n)} \end{array}$$

Si consideri una variante di MergeSort chiamata MergeSortK che, invece di suddividere l'array da ordinare in 2 parti, lo suddivide in k parti, ri-ordina ognuna di esse applicando ricorsivamente MergeSortK, e le riunifica usando un'opportuna variante MergeK di Merge, che fonde k sottoarray invece di 2.

- (1) Abbozzate il codice di MergeSortK e di MergeK (fatevi solo un'idea, ci sono molti dettagli nella gestione degli indici)
- (2) Scrivete la relazione di ricorrenza di MergeSortK

Ripasso

Ripasso del metodo dell'albero di ricorsione

Albero di ricorsione su MergeSortK

Calcolate la complessità computazionale delle seguenti funzioni, utilizzando il metodo dell'albero di ricorsione

$$T(n) = \begin{cases} 2T(n/2) + 2n & n > 1\\ 1 & n = 1 \end{cases}$$

$$T(n) = \begin{cases} 3T(n/3) + 3n & n > 1\\ 1 & n = 1 \end{cases}$$

$$T(n) = \begin{cases} kT(n/k) + kn & n > 1\\ 1 & n = 1 \end{cases}$$

Analisi – Cicli for

Si consideri il seguente spezzone di codice:

```
\begin{array}{l} \mathbf{for} \ i = 1 \ \mathbf{to} \ n \ \mathbf{do} \\ \big| \ \mathsf{invoke}(i) \end{array}
```

dove l'invocazione invoke(i) ha costo $O(i^h)$. Si dimostri, per induzione su h, che $\sum_{i=1}^{n} i^h$ è $O(n^{h+1})$.

Schema dimostrazione

- Dimostrate che è vero per h = 0 (caso base)
- Assumete sia vero per qualunque valore k < h (ipotesi induttiva)
- ullet Dimostrate allora che è vero per h

Crazy

Trovare un limite superiore e inferiore al costo computazionale del seguente algoritmo, dando una dimostrazione formale.

```
int crazy(int n)
if n \le 1 then
     return n \cdot n
else
     int b=1
     for i = 1 to n do
          for j = i to n do
           b = (b + i * j) \bmod 1007
     return b + \operatorname{crazy}(\lfloor n/4 \rfloor) + \operatorname{crazy}(\lfloor n/2 \rfloor) + \operatorname{crazy}(\lfloor n/4 \rfloor)
```

Spoiler alert!

Analisi – Ordinamento funzioni

Le funzioni da ordinare:

$$f_{1}(n) = 2^{n+2} = 4 \cdot 2^{n} = \Theta(2^{n})$$

$$f_{2}(n) = \log^{2} n = \Theta(\log^{2} n)$$

$$f_{3}(n) = \log_{n}(n \cdot (\sqrt{n})^{2}) + \frac{1}{n^{2}} = (\log_{n} n^{2}) + 1/n^{2} = 2 + 1/n^{2} = \Theta(1)$$

$$f_{4}(n) = 3n^{0.5} = \Theta(n^{1/2})$$

$$f_{5}(n) = 16^{n/4} = (2^{4})^{n/4} = 2^{4n/4} = \Theta(2^{n})$$

$$f_{6}(n) = 2\sqrt{n} + 4n^{1/4} + 8n^{1/8} + 16n^{1/16} = \Theta(n^{1/2})$$

$$f_{7}(n) = \sqrt{(\log n)(\log n)} = \Theta(\log n)$$

$$f_{8}(n) = \frac{n^{3}}{(n+1)(n+3)} = \Theta(n)$$

$$f_{9}(n) = 2^{n} = \Theta(2^{n})$$

Una volta stabilito l'ordine Θ delle funzioni, è abbastanza semplice stabilire l'ordine corretto:

$$f_3 < f_7 < f_2 < f_4 = f_6 < f_8 < f_1 = f_5 = f_9$$

```
mergeK(ITEM A[], int[] start, int k)
int[] index = new int[1...k] % Indici scansione sottovettori
for i = 1 to k do
   index[i] = start[i]
int \ subvectors = k % Numero di sottovettori non vuoti
int j = start[1]
                       % Indice del vettore di appoggio
while subvectors > 0 do
   int m=1
   for i = 2 to k do
      if index[i] < start[i+1] and A[index[i]] < A[index[m]] then
```

```
mergeK(ITEM A[], int[] start, int k)
while subvectors > 0 do
   B[j] = A[index[m]]
   i = i + 1
   index[m] = index[m] + 1
   if index[m] == start[m+1] then
      subvectors = subvectors - 1
for j = start[j] to start[k+1] do
  A[j] = B[j]
```

La funzione di ricorrenza per MergeSortK è la seguente:

$$T(n) = \begin{cases} k \cdot T(n/k) + kn & n > 1\\ 1 & n = 1 \end{cases}$$

$$T(n) = 2T(n/2) + 2n$$

Livello	Dimensione	Costo chiamata	N. chiamate	Costo livello
0	n	$2 \cdot (n)$	1	$2 \cdot n$
1	n/2	$2 \cdot (n/2)$	2	$2 \cdot 2 \cdot (n/2)$
2	$n/2^2$	$2 \cdot (n/2^2)$	2^{2}	$2 \cdot 2^2 \cdot (n/2^2)$
		• • •		• • •
i	$n/2^i$	$2 \cdot (n/2^i)$	2^i	$2 \cdot 2^i \cdot (n/2^i)$
		• • •	•••	• • •
$\ell-1$	$n/2^{\ell-1}$	$2 \cdot (n/2^{\ell-1})$	$2^{\ell-1}$	$2 \cdot 2^{\ell-1} \cdot (n/2^{\ell-1})$
$\ell = \log n$	1	T(1) = 1	$2^{\log n}$	$2^{\log n}$

$$\begin{split} T(n) &= \left(\sum_{i=0}^{\log n - 1} 2 \cdot 2^i \cdot (n/2^i)\right) + 2^{\log n} = \left(2n \sum_{i=0}^{\log n - 1} \frac{2^i}{2^i}\right) + n \\ &= 2n \left(\sum_{i=0}^{\log n - 1} 1\right) + n = 2n \log n + n = \Theta(n \log n) \end{split}$$

$$T(n) = 3T(n/3) + 3n$$

Livello	Dimensione	Costo chiamata	N. chiamate	Costo livello
0	n	$3 \cdot (n)$	1	$3 \cdot n$
1	n/3	$3 \cdot (n/3)$	3	$3 \cdot 3 \cdot (n/3)$
2	$n/3^2$	$3 \cdot (n/3^2)$	3^{2}	$3 \cdot 3^2 \cdot (n/3^2)$
		• • •	• • •	•••
i	$n/3^i$	$3 \cdot (n/3^i)$	3^i	$3 \cdot 3^i \cdot (n/3^i)$
	• • •	• • •		• • •
$\ell-1$	$n/3^{\ell-1}$	$3 \cdot (n/3^{\ell-1})$	$3^{\ell-1}$	$3 \cdot 3^{\ell-1} \cdot (n/3^{\ell-1})$
$\ell = \log_3 n$	1	T(1) = 1	$3^{\log_3 n}$	$3^{\log_3 n}$

$$\begin{split} T(n) &= \left(\sum_{i=0}^{\log_3 n - 1} 3 \cdot 3^i \cdot (n/3^i)\right) + 3^{\log_3 n} = \left(3n \sum_{i=0}^{\log_3 n - 1} \frac{3^i}{3^i}\right) + n \\ &= 3n \left(\sum_{i=0}^{\log_3 n - 1} 1\right) + n = 3n \log_3 n + n = \Theta(n \log n) \end{split}$$

$$T(n) = kT(n/k) + kn$$

Livello	Dimensione	Costo chiamata	N. chiamate	Costo livello
0	n	$k \cdot (n)$	1	$k \cdot n$
1	n/k	$k \cdot (n/k)$	k	$k \cdot k \cdot (n/k)$
2	n/k^2	$k \cdot (n/j^2)$	k^2	$k \cdot k^2 \cdot (n/k^2)$
		• • •		
i	n/k^i	$k \cdot (n/k^i)$	k^i	$k \cdot k^i \cdot (n/k^i)$
• • •	• • •	•••	• • •	•••
$\ell-1$	$n/k^{\ell-1}$	$k \cdot (n/k^{\ell-1})$	$k^{\ell-1}$	$k \cdot k^{\ell-1} \cdot (n/k^{\ell-1})$
$\ell = \log_k n$	1	T(1) = 1	$k^{\log_k n}$	$k^{\log_k n}$

$$\begin{split} T(n) &= \left(\sum_{i=0}^{\log_k n - 1} k \cdot k^i \cdot (n/k^i)\right) + k^{\log_k n} = \left(kn \sum_{i=0}^{\log_k n - 1} \frac{k^i}{k^i}\right) + n \\ &= kn \left(\sum_{i=0}^{\log_k n - 1} 1\right) + n = kn \log_k n + n = \Theta(n \log n) \end{split}$$

Analisi – Cicli For

• Caso base (h = 0):

$$\sum_{i=1}^{n} i^{0} = \sum_{i=1}^{n} 1 = n = n^{h+1}$$

• Passo induttivo. Supponiamo che la proprietà sia vera per ogni k < h; vogliamo dimostrare che la proprietà è vera per h:

$$\sum_{i=1}^{n} i^h = \sum_{i=1}^{n} i^{h-1} i \le \sum_{i=1}^{n} i^{h-1} n = n \sum_{i=1}^{n} i^{h-1} = nO(n^h) = O(n^{h+1})$$

Crazy

L'equazione di ricorrenza della funzione crazy() è la seguente:

$$T(n) = \begin{cases} 2T(\lfloor n/4 \rfloor) + T(\lfloor n/2 \rfloor) + n^2 & n > 1 \\ 1 & n \le 1 \end{cases}$$

E' facile vedere che $T(n) = \Omega(n^2)$; proviamo a dimostrare che $T(n) = O(n^2)$.

- Caso base: n = 1, $T(n) = 1 \le cn^2 = c$, ovvero $c \ge 1$.
- Ipotesi induttiva: $\forall n' < n : T(n') \le c(n')^2$
- Passo induttivo:

$$T(n) = 2T(\lfloor n/4 \rfloor) + T(\lfloor n/2 \rfloor) + n^{2}$$

$$\leq 2c\lfloor n/4 \rfloor^{2} + c\lfloor n/2 \rfloor^{2} + n^{2}$$

$$\leq 2cn^{2}/16 + cn^{2}/4 + n^{2}$$

$$= 3/8cn^{2} + n^{2} < cn^{2}$$

L'ultima disequazione è vera per $c \ge 8/5$.

Abbiamo quindi dimostrato che $T(n) = \Theta(n^2)$, con $c \ge 8/5$ e m = 1.