### **Time Series**

#### Sudipta Das

Assistant Professor,

Department of Computer Science,
Ramakrishna Mission Vivekananda Educational & Research Institute

## Outline I

- Modeling and Forecasting with ARMA Processes
  - Estimation of parameters of ARMA(p, q)
    - Initial Order Selection
    - Maximum Likelihood Estimation
    - Order Selections
  - Forecasting

# Estimation of parameters of ARMA(p, q) I

• Steps to fit a time series  $\{X_n\}$ , by an ARMA(p,q) model as

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}$$
 where  $\{Z_t\} \sim WN(0, \sigma^2)$ 

- Make an initial guess of the orders p and q from the sample ACF and PACF plots
- Perform a preliminary estimation of the parameters  $\phi = (\phi_1, \dots, \phi_p)', \theta = (\theta_1, \dots, \phi_q)'$ , and  $\sigma^2$  from the sample observations  $x_1, \dots, x_n$ .
- Perform the final estimation of the parameters by maximum likelihood estimators
- Recheck the orders p and q by calculating some metrics like AICC
- Diagnostics checking of the residuals



#### Initial Order Selection I

 Behavior of the ACF and PACF for Causal and Invertible ARMA Models

|      | AR(p)                | MA(q)                | ARMA(p, q) |
|------|----------------------|----------------------|------------|
| ACF  | Tails off            | Cuts off after lag q | Tails off  |
| PACF | Cuts off after lag p | Tails off            | Tails off  |

#### Maximum Likelihood Estimation I

- Assume that  $\{X_t\}$  is a Gaussian time series with mean zero and autocovariance function  $\gamma(|i-j|) = E(X_iX_i)$ 
  - We assume that the sample size is large
- From the *n* data sample  $\mathbf{x_n} = (x_1, x_2, \dots, x_n)^r$ , form the likelihood

$$\mathcal{L}(\Gamma_n) = \frac{1}{(2\pi)^{n/2} |\Gamma_n|^{1/2}} \exp\left\{-\frac{1}{2} \mathbf{x_n}' \Gamma_n^{-1} \mathbf{x_n}\right\} = \mathcal{L}(\phi, \theta),$$

where  $\Gamma_n = E[\mathbf{x}_n \mathbf{x}'_n]$ 

Likelihood of a single data point of n dimensional random vector.

## Maximum Likelihood Estimation II

• Matrix inversion  $(\Gamma_n^{-1})$  can be avoided by the use of following identity

$$\mathbf{x_n} = C_n(\mathbf{x_n} - \hat{\mathbf{x}_n}),$$

where  $\hat{\mathbf{x}}_{\mathbf{n}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n)'$  and

$$C_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \theta_{11} & 1 & 0 & \cdots & 0 \\ \theta_{22} & \theta_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \theta_{n-1,n-1} & \theta_{n-1,n-2} & \theta_{n-1,n-3} & \cdots & 1 \end{bmatrix}$$

i.e. for all  $k = 1, \ldots, n$ ,

$$x_k = \sum_{j=0}^{k-1} \theta_{k-1,j} (x_{k-j} - \hat{x}_{k-j}),$$

with  $\theta_{k-1,0} = 1$  and  $\hat{x}_1 = 0$ .



### Maximum Likelihood Estimation III

- Note that,
  - $x_n \hat{x}_n$ , (residuals) is uncorrelated with  $x_1, \dots, x_{n-1}$ , (predictors).
  - It concludes that  $(x_n \hat{x}_n)$  is uncorrelated with the innovations  $(x_1 \hat{x}_1), \dots, (x_{n-1} \hat{x}_{n-1}).$
- As the components of  $\mathbf{x_n} \hat{\mathbf{x}_n}$  are uncorrelated,  $\mathbf{x_n} \hat{\mathbf{x}_n}$  has the diagonal covariance matrix, i.e.,

$$Var(\mathbf{x_n} - \hat{\mathbf{x}_n}) = D_n = diag\{v_0, v_1, \dots, v_{n-1}\},$$

where 
$$v_i = E(x_{i+1} - \hat{x}_{i+1})^2$$
.

Therefore,

$$\Gamma_n = Var(\mathbf{x_n}) = C_n Var(\mathbf{x_n} - \hat{\mathbf{x}_n}) C'_n = C_n D_n C'_n$$

### Maximum Likelihood Estimation IV

Thus,

$$\mathbf{x_n}' \Gamma_n^{-1} \mathbf{x_n} = \mathbf{x_n}' (C_n')^{-1} D_n^{-1} C_n^{-1} \mathbf{x_n}$$

$$= (\mathbf{x_n} - \hat{\mathbf{x}_n})' D_n^{-1} (\mathbf{x_n} - \hat{\mathbf{x}_n})$$

$$= \sum_{j=1}^{n} (x_j - \hat{x}_j)^2 / v_{j-1}$$

and  $|\Gamma_n| = |C_n||D_n||C_n| = v_0v_1\cdots v_{n-1}$ .

Simplified likelihood

$$\mathcal{L}(\phi,\theta) = \frac{1}{(2\pi)^{n/2} \sqrt{v_0 v_1 \cdots v_{n-1}}} \exp \left\{ -\frac{1}{2} \sum_{j=1}^{n} (x_j - \hat{x}_j)^2 / v_{j-1} \right\}$$

#### Maximum Likelihood Estimation V

ullet For more simplification, consider a transformed process  $\{W_t\}$  as

$$W_t = \left\{ \begin{array}{ll} \sigma^{-1} X_t, & t = 1, \dots, m = max(p, q) \\ \sigma^{-1} \phi(B) X_t, & t > m \end{array} \right.,$$

whose MSE

$$r_j = E(W_{j+1} - \hat{W}_{j+1})^2 = \sigma^{-2}E(X_{j+1} - \hat{X}_{j+1})^2 = v_j/\sigma^2$$

• Thus replacing  $v_j$  by  $\sigma^2 r_j$ , we get the Gaussian Likelihood for an ARMA Process as

$$\mathcal{L}(\phi, \theta, \sigma^2) = \frac{1}{\sqrt{(2\pi\sigma^2)^n r_0 r_1 \cdots r_{n-1}}} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{j=1}^n (x_j - \hat{x}_j)^2 / r_{j-1} \right\}$$

### Maximum Likelihood Estimation VI

• Differentiating  $\log \mathcal{L}(\phi, \theta, \sigma^2)$  partially with respect to  $\sigma^2$  and noting that  $\hat{x}_j$  and  $r_j$  are independent of  $\sigma^2$ , we find that the maximum likelihood estimators  $\phi, \theta$  and  $\sigma^2$  from the following equations

$$\hat{\sigma}^2 = n^{-1}S(\hat{\phi},\hat{\theta})$$
 where 
$$S(\hat{\phi},\hat{\theta}) = \sum_{j=1}^n (x_j - \hat{x}_j)^2 / r_{j-1}$$
 and  $\hat{\phi},\hat{\theta}$  are the values of  $\phi$ ,  $\theta$  that minimize 
$$I(\phi,\theta) = \ln(n^{-1}S(\phi,\theta)) + n^{-1}\sum_{j=1}^n \log r_{j-1}$$

### Order Selections I

Akaike Information criterion
 AIC(β, p, q) :=

$$-2 \ln \mathcal{L}_X(\beta, n^{-1}S_X(\beta)) + 2(p+q+1),$$

where  $\beta = [\phi_1, \dots, \phi_p, \theta_1 \dots, \theta_q]'$ 

- It is an estimate of the Kullback-Leibler (KL) index of the fitted model relative to the true model.
- The KL index of  $f(\cdot; \psi)$  relative to  $f(\cdot; \theta)$

$$\Delta(\psi|\theta) = E_{\theta}\left[-2\ln f(\mathbf{x};\psi)\right] = \int_{\mathcal{R}^n} -2\ln \left(f(\mathbf{x};\psi)\right) f(\mathbf{x};\theta) d\mathbf{x}$$

• Note that the KL discrepancy between  $f(\cdot; \psi)$  and  $f(\cdot; \theta)$  is defined as

$$d(\psi|\theta) = \Delta(\psi|\theta) - \Delta(\theta|\theta) = \int_{\mathcal{R}^n} -2 \ln \left(\frac{f(\mathbf{x};\psi)}{f(\mathbf{x};\theta)}\right) f(\mathbf{x};\theta) d\mathbf{x} \overset{\textit{Jensen}}{\geq} 0.$$

#### Order Selections II

Akaike Information criterion corrected
 AICc(β, p, q) :=

$$-2\ln\mathcal{L}_X(\beta,n^{-1}\mathcal{S}_X(\beta))+2(p+q+1)n/(n-p-q-2)$$

• It is a bias-corrected version of the AIC.

#### Order Selections III

#### Note

- Suppose that our observations  $X_1, \ldots, X_n$  are from a Gaussian ARMA process with parameter vector  $\theta = [\beta, \sigma^2]$  and assume for the moment that the true order is (p, q).
- Let  $\hat{\theta} = [\hat{\beta}, \hat{\sigma}^2]$  be the mle of  $\theta$  based on  $X_1, \dots, X_n$  and let  $Y_1, \dots, Y_n$  be an independent realization of the true process (with parameter  $\theta$ ).
- Then,

$$-2 \ln \mathcal{L}_{Y}(\hat{\beta}, \hat{\sigma}^{2}) = -\ln \left[ 2\pi (\hat{\sigma}^{2})^{n} \sum_{j=1}^{n} r_{j-1} \right] + \hat{\sigma}^{-2} S_{Y}(\hat{\beta})$$
$$= -2 \ln \mathcal{L}_{X}(\hat{\beta}, \hat{\sigma}^{2}) + \hat{\sigma}^{-2} S_{Y}(\hat{\beta}) - n$$

Thus,

$$\begin{split} \Delta(\hat{\theta}|\theta) &= E_{\theta} \left[ -2 \ln \mathcal{L}_{Y}(\hat{\beta}, \hat{\sigma}^{2}) \right] \\ &= E_{\theta} \left[ -2 \ln \mathcal{L}_{X}(\hat{\beta}, \hat{\sigma}^{2}) \right] + E_{\theta} \left[ \hat{\sigma}^{-2} S_{Y}(\hat{\beta}) \right] - n \\ &\approx E_{\theta} \left[ -2 \ln \mathcal{L}_{X}(\hat{\beta}, \hat{\sigma}^{2}) \right] + 2(p+q+1)n/(n-p-q-2) \end{split}$$

#### Order Selections IV

#### Comments

- For fitting autoregressive models, Monte Carlo studies the AIC has a tendency to overestimate p.
- The AICC statistic has a more extreme penalty for large-order models, which counteracts the overfitting tendency of the AIC.
- However, the penalty factors for the AICC and AIC statistics are asymptotically equivalent as  $n \to \infty$ .

#### Order Selections V

Bayesian formation criterion BIC(p, q) :=

$$(n-p-q)\ln\left[\frac{n\hat{\sigma}^2}{n-p-q}\right]+n\left(1+\ln\sqrt{2\pi}\right)+(p+q)\ln\left[\left(\sum_{t=1}^nX_t^2-n\hat{\sigma}^2\right)/(p+q)\right],$$

where  $\hat{\sigma}^2$  is the mle of the variance of the white noise process.

 Another criterion that attempts to correct the overfitting nature of the AIC.

#### Order Selections VI

#### Comments

- The BIC is a consistent order-selection criterion, i.e.,
  - If the data  $\{X_1, \dots, X_n\}$  are in fact observations of an ARMA(p, q) process, and if  $\hat{p}$  and  $\hat{q}$  are the estimated orders found by minimizing the BIC, then  $\hat{p} \to p$  and  $\hat{q} \to q$  wp 1 as  $n \to \infty$ .
- The AICC and AIC are not consistent.
- On the other hand, order selection by minimization of the AICC or AIC is asymptotically efficient for autoregressive processes, while order selection by BIC minimization is not.

### Order Selections VII

- In the modeling of real data there is rarely such a thing as the "true order."
  - For the process  $X_t$  there may be many polynomials  $\theta(z)$ ,  $\phi(z)$  such that the coefficients of  $z_{t-j}$  in  $\theta(z)/\phi(z)$  closely approximate  $\psi(j)$  for moderately small values of j.
  - Correspondingly, there may be many ARMA processes with properties similar to {X<sub>t</sub>}.
- The AICC criterion does, however, provide us with a rational criterion for choosing among competing models.
- It has been suggested that models with AIC values within c of the minimum value should be considered competitive (with c=2 as a typical value).
- Selection from among the competitive models can then be based on such factors as whiteness of the residuals and model simplicity.

# Forecasting I

Once, we find the fitted model as

$$X_{t} - \hat{\phi}_{1}X_{t-1} - \dots - \hat{\phi}_{p}X_{t-p} = Z_{t} + \hat{\theta}_{1}Z_{t-1} + \dots + \hat{\theta}_{q}Z_{t-q}$$

with  $Z \sim N(0, \hat{\sigma}^2)$ , we can go for forecasting as mentioned below.

# Forecasting II

One step forecast

$$\hat{X}_{n+1} = \begin{cases} \sum_{j=1}^{n} \theta_{nj} \left( X_{n+1-j} - \hat{X}_{n+1-j} \right), & 1 \leq n < m \\ \phi_1 X_n + \dots + \phi_p X_{n+1-p} + \sum_{j=1}^{q} \theta_{nj} \left( X_{n+1-j} - \hat{X}_{n+1-j} \right), & n \geq m \end{cases}$$

Mean square error

$$E(X_{n+1} - \hat{X}_{n+1})^2 = v_n^2 = \sigma^2 r_n$$

• Parameters  $\phi_i$ s,  $\theta_i$ s and  $\sigma$  will be replaced by the corresponding estimates  $\hat{\phi}_i$ s,  $\hat{\theta}_i$ s and  $\hat{\sigma}$ , respectively.