		May 12, 2015 W. Smith
		Final
		You must justify your answers by showing your work to receive credit. Be very careful with all that you write; please do not make me take off points for statements that you do not mean.
		Part I. Do every problem in this part.
(8)	1.	a. State the Mean Value Theorem.
		b. State the <i>Least Upper Bound Property</i> of real numbers.
(12)	2.	Give definitions of the following: a. An accumulation point of a set of real numbers.
		b. A uniformly continuous function.
		c. A Cauchy sequence of real numbers.
		d. An <i>open</i> set of real numbers.

NAME:

Math 331

- (10) **3.** Suppose that $f(x) \leq g(x)$ for all $x \in [a, b]$ and $f, g \in \mathcal{R}[a, b]$.
 - **a.** Explain why $L(P, f) \leq L(P, g)$ for every partition P of [a, b]. (Your explanation should be based on the definition of lower sum.)

b. Use part **a.** to prove that $\int_a^b f(x) dx \le \int_a^b g(x) dx$. Your proof should be based on the definitions.)

(10) **4.** Suppose that $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are sequences of real numbers, such that $\{a_n\}_{n=1}^{\infty}$ converges to A and $\{b_n\}_{n=1}^{\infty}$ converges to B. Prove that $\{a_n+b_n\}_{n=1}^{\infty}$ converges to A+B. (Your proof should be based on the definition involving ε of a convergent sequence.)

- (40) 5. Indicate by writing **T** or **F** whether each statement is true or false. Give no proofs.
 - **a.** If A is a non-empty and compact set of real numbers, then A contains inf A and $\sup A$.
 - **b.** If $f:(2,10)\to\mathbb{R}$ is uniformly continuous, then f is bounded.
 - **c.** There is a function f that is differentiable on (0,1) with $f'(x) = \frac{7x^2 \sin x}{\sqrt{e^x + 3}}$.
 - **d.** If A and B are compact sets of real numbers, then $A \cup B$ is also a compact set.
 - **e.** If A and B are open sets of real numbers, then $A \cup B$ is also an open set.
 - f. Every monotone sequence of real numbers converges.
 - **g.** If $f \in \mathcal{R}[0,1]$ and K is a compact subset of [0,1], then f(K) is compact.
 - **h.** If f is a continuous function on [0,1] and $g(x) = 3(f(x))^2 + x^5 7$, then $g \in \mathcal{R}[0,1]$.
 - i. Every set of real numbers that is bounded and non-empty has at least one accumulation point.
 - **j.** If $f: \mathbb{R} \to \mathbb{R}$ and f([0,1]) is an open set, then f is not continuous.

Part II. Do any 5 of the 7 problems in this part. Each problem is worth 15 points.

(15) **6.** [Homework problem #1.36] Let $\{a_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers. Prove that $\{a_n\}_{n=1}^{\infty}$ has a convergent subsequence. (*Hint*: You may want to use the Bolzano-Weierstrass Theorem.)

(15) **7.** [Homework problem #5.9] Assume $f:[a,b]\to\mathbb{R}$ is continuous and $f(x)\geq 0$ for all $x\in [a,b]$. Prove that if $\int_a^b f(x)\,dx=0$, then f(x)=0 for all $x\in [a,b]$.

(15) **8.** Prove that a compact set of real numbers is closed. (This is part of the easy direction of the proof of the Heine-Borel Theorem. Do not just quote that theorem; prove this part of it from the definitions.)

(15) **9.** Let $E = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$ and define $f : E \to \mathbb{R}$ by

$$f(x) = \begin{cases} \frac{-1}{n}, & \text{if } x = \frac{1}{n} \text{ where } n \text{ is odd;} \\ \frac{+1}{n}, & \text{if } x = \frac{1}{n} \text{ where } n \text{ is even;} \\ 0, & \text{if } x = 0. \end{cases}$$

a. At what points of E is f continuous? Justify your answer!

b. At what points of E is f differentiable? Justify your answer!

(15) **10.** [Midterm 1 problem **6.**] Suppose that $f: \mathbb{R} \to \mathbb{R}$, f(x) < 0 if x < 0, f(x) > 0 if x > 0 and $\lim_{x \to 0} f(x)$ exists. Prove that $\lim_{x \to 0} f(x) = 0$.

- (15) **11. a.** State a necessary and sufficient condition for $f:[a,b]\to\mathbb{R}$ to be Riemann integrable. (See part **b.** before choosing which condition.)
 - **b.** Use the condition in part **a.** to prove that if $f:[a,b]\to\mathbb{R}$ is monotone, then $f\in\mathcal{R}[a,b]$.

(15) **12.** Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and suppose that f'(x) exists for all $x \neq 0$ and that $\lim_{x\to 0} f'(x) = A$. Prove that f is differentiable at 0, and if possible find f'(0). (Hint: Start with the definition of f'(0) as a limit, and then try to use the Mean Value Theorem.)