ISTITUZIONI DI ALGEBRA

ESTENSIONI INTERE

- (Equivalenze di Intero) Sia $A \subseteq B$ un'estensione di anelli e sia $b \in B$. Allora le seguenti sono equivalenti:
 - 1. b è intero su A
 - 2. A[b] (come sottoanello) è un A-modulo finito
 - 3. $\exists C \subseteq B$ sottoanello tale che $A[b] \subseteq C$ e C è un A-modulo finito
 - 4. $\exists M, A[b]$ -modulo fedele (ovvero Ann (M) = 0) che sia finito come A-modulo.
- (Hamilton-Cayley) Se M è un A-modulo finito e $I \subseteq A$ ideale, $\phi: M \to M$ mappa di A-moduli tale che $\phi(M) \subseteq IM$, allora $\exists a_1, \dots, a_n \in I$ tali che $\phi^n + a_1\phi^{n-1} + \dots + a_n$ id = 0 (in Hom A(M,M))
- Valgono quindi le seguenti cose:
 - 1. Se b_1, \ldots, b_n sono interi su A, allora $A[b_1, \ldots, b_n]$ è un A-modulo finito
 - 2. $\overline{A}^B = \{b \in B \mid b \text{ intero su } A\}$ è un sottoanello di B.
 - 3. (Transitività Integrale) Se B è intero su A e C è intero su B, allora C è intero su A
 - 4. (Transitività Finita) Se B è finito su A e C è finito su B, allora C è finito su A
 - 5. (Idempotenza della Chiusura Integrale) Sia $A\subseteq B$ e $C=\overline{A}^B$. Allora $\overline{C}^B=C$
- (Stabilità per Localizzazione e Quoziente) Sia $A\subseteq B$ intera, S parte moltiplicativa di A e $I\subseteq B$ ideale. Allora si ha che:
 - 1. $S^{-1}A \rightarrow S^{-1}B$ è intera
 - 2. $A/I^c \rightarrow B/I$ è intera
- (Relazioni con estensioni di campi) Supponiamo A dominio e K= Frac (A) suo campo delle frazioni e consideriamo $A\subseteq K\subseteq L$ dove $^L/\!\!\!/K$ è algebrica. Definiamo $B=\overline{A}^L$.
 - 1. Sia $x \in L$ e μ_x suo polinomio minimo su K. Se $\mu_x \in A[t]$ allora x è intero su A.
 - 2. Se A è normale vale anche il viceversa, ovvero si ha x è intero su $A \Leftrightarrow \mu_x \in A[t]$.
- (UFD \implies normale) Se A è un UFD allora è normale.
- (estensioni intere di campi) Sia $A \subseteq B$ un'estensione intera di domini. Allora A è un campo $\Leftrightarrow B$ è un campo. Ne segue che:
 - 1. Sia $\mathfrak{q} \subseteq B$ un ideale. Allora \mathfrak{q} è massimale $\Leftrightarrow \mathfrak{q}^c$ è massimale
 - 2. Se prendo \mathfrak{p} primo di A e $\mathfrak{q}_1, \mathfrak{q}_2 \in \operatorname{Spec} B$ tali che $\mathfrak{q}_1^c = \mathfrak{q}_2^c = \mathfrak{q}$ e $\mathfrak{q}_1 \subseteq \mathfrak{q}_2$ allora vale che $\mathfrak{q}_1 = \mathfrak{q}_2$.
- (Lying Over) Se $A \subseteq B$ è intera, allora $\forall \mathfrak{p} \in \operatorname{Spec} A \ \exists \mathfrak{q} \in \operatorname{Spec} B$ tale che $\mathfrak{q}^c = \mathfrak{p}$, ovvero f^* : Spec $B \to \operatorname{Spec} A$ è surgettiva.
- (**Going Up**) Se $A \subseteq B$ è intera, allora ha la proprietà del going up, ovvero se $\forall \mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq A$ primi e $\forall \mathfrak{q}_1 \subseteq B$ primo tale che $\mathfrak{q}_1^c = \mathfrak{p}_1$ allora $\exists \mathfrak{q}_2 \supseteq \mathfrak{q}_1$ primo tale che $\mathfrak{q}_2^c = \mathfrak{p}_2$
- (Going Down) $A \subseteq B$ estensione intera di domini, con A normale allora vale la proprietà del going down, ovvero $\forall \mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq A$ primi e $\forall \mathfrak{q}_2 \subseteq B$ primo tale che $\mathfrak{q}_2 \cap A = \mathfrak{p}_2$ si ha che $\exists \mathfrak{q}_1 \subseteq \mathfrak{q}_2$ primo tale che $\mathfrak{q}_1 \cap A = \mathfrak{p}_1$.
 - Da notare che serve sia la condizione di dominio che la normalità di A per far funzionare tutto ciò.
- Se A è un dominio normale, $K = \operatorname{Frac} A$ ed L/K è un'estensione algebrica di campi, $B = \overline{A}^L$, $I \subseteq A$ ideale, ed $x \in L$ allora x è intero su $I \Leftrightarrow \mu_{L/K,x} \in \sqrt{I}[t]$

- (Simil-Galois) Sia A normale e $K=\operatorname{Frac} A\subseteq L$ con L/K estensione di Galois finita e $B=\overline{A}^L$ e sia $G=\operatorname{Gal} L/K$. Allora si ha che:
 - 1. $g(B) \subseteq B \quad \forall g \in G$
 - 2. Fissato un primo $\mathfrak{p} \in \operatorname{Spec} A$ si ha $\mathcal{F}_{\mathfrak{p}} = \{ \mathfrak{q} \in \operatorname{Spec} B \, | \, \mathfrak{q} \cap A = \mathfrak{p} \}$ Allora G agisce transitivamente su $\mathcal{F}_{\mathfrak{p}}$
- (Chiusura integrale di A[x]) Sia $A \subseteq B$ e sia $C = \overline{A}^B$. Allora la chiusura integrale di A[x] in B[x] è C[x].
- (Interezza e Nötherianità) $A\subseteq B$ con A Nötheriano e B finito su A. Allora B è Nötheriano come anello.

Attenzione che $A \subseteq B$ con A Nötheriano ed estensione intera NON implica che B sia Nötheriano.

- Sia A dominio, $K = \operatorname{Frac} A$, L/K un'estensione finita di campi e sia $B = \overline{A}^L$. Allora si ha:
 - 1. È FALSO che se A è Nötheriano allora B lo sia.
 - 2. Se A è normale ed L/K è un'estensione separabile allora si ha che se A è Nötheriano allora B diventa un A-modulo finito e quindi è Nötheriano.
- A noetheriano e dominio, con $K=\operatorname{Frac} A\subseteq L$ campi e vorremmo poter dire qualcosa anche se A non è normale. Ci sono due casi significativi nei quali si ha che in queste ipotesi \overline{A}^K (la normalizzazione di A) è Nötheriana:
 - 1. $\dim A = 1$
 - 2. A è una K-algebra finitamente generata
- (Normalizzazione di Nöther) A K-algebra f.g. allora $\exists x_1, \dots, x_n \in A$ algebricamente indipendenti tali che A è finita (come modulo) su $K[x_1, \dots, x_n]$
- (Lemmi generici e fatti vari) Le seguenti cose valgono:
 - 1. E campo e sia A una E-algebra finitamente generata. Allora $\forall I \subseteq A$ si ha che

$$\sqrt{I} = \bigcap_{\mathfrak{m} \text{ massimali}} \quad \mathfrak{m} \supseteq I$$

- 2. A e B due K-algebre finitamente generate con K campo algebricamente chiuso ed A dominio. Se f^* : Max $B \to \text{Max } A$ è suriettiva allora f è iniettiva.
- 3. Per un modulo sono proprietà locali (e massimali) essere piatto, essere normale, essere nullo.
- 4. Per un modulo NON sono proprietà locali essere Noetheriano, essere dominio.
- 5. Per una sequenza di moduli essere esatta in un punto è una proprietà locale (e massimale)

Teoria della Dimensione e Grado di Trascendenza

- (Dimensione in estensioni intere) Se $A \subseteq B$ è intera allora dim $A = \dim B$ (è compreso il caso in cui entrambe le dimensione siano infinite)
- (Dimensione delle K-algebre f.g.) Sia K un campo e $f \in K[x_1, \ldots, x_n]$ con $f \neq 0$. Allora si ha dim $K[x_1, \ldots, x_n]_f = n$
- (Relazione con il grado di trascendenza) Sia A K-algebra f.g. e A dominio. Allora dim A = trdeg $_{K}A$
- (**Cardinalità di una base di trascendenza**) *A* dominio e *K*-algebra f.g. Allora tutte le basi di trascendenza hanno la stessa cardinalità.

Inoltre, se A è un dominio, E una K-algebra e sia $L=\operatorname{Frac} A$

1. $x_i \in A$ è una base di trascendenza di $A \Leftrightarrow lo$ è di L

- 2. Se y_1, \ldots, y_n è base di trascendenza di L su K allora $\exists b \in A$ tali che by_1, \ldots, by_n è una base di trascendenza di A.
- (Particolarità delle *K*-algebre) Per le *K*-algebre f.g. valgono le seguenti cose:
 - 1. Sono anelli catenari.
 - 2. Se A è dominio, preso un primo p di altezza uno si ha dim $A/p = \dim A 1$
 - 3. $\mathfrak{p} \in \operatorname{Spec} A \implies \operatorname{ht} \mathfrak{p}, \operatorname{coht} p < +\infty$
 - 4. Se A è dominio si ha $\forall \mathfrak{p} \in \operatorname{Spec} A$ vale che dim $A = \operatorname{ht} \mathfrak{p} + \operatorname{coht} \mathfrak{p}$
- (Artinianità e Nötherianità) A artiniano se e solo se A Nötheriano e di dimensione zero.
- (Richiami di Decomposizione Primaria) Sia $I \subseteq A$ un ideale. Una decomposizione primaria di I è una scrittura $I = \bigcap_i Q_i$ dove i Q_i sono un numero finito di ideali primari. Se A è Nötheriano valgono:
 - 1. Primi associati ad I: Ass $I = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \exists x \in A \text{ t.c. } \mathfrak{p} = (I : x) \}$
 - 2. Gli zero divisori di A sono l'unione dei primi associati a zero:

$$\mathcal{D}(A) = \cup_{\mathfrak{p} \in \mathrm{Ass} \ 0} \mathfrak{p}$$

- 3. Ass $S^{-1}AS^{-1}I = \text{Ass } AI \cap \text{Spec } S^{-1}A$
- 4. Ass *I* è finito
- 5. Se \mathfrak{p} è minimale sopra I, allora \mathfrak{p} è associato ad I.
- (Esercizi e Lemmi vari) Valgono le seguenti cose:
 - 1. $\prod_{n=0}^{\infty} \mathbb{Z}$ NON è uno \mathbb{Z} -modulo libero
 - 2. $\prod_{n=0}^{\infty} \to^f \mathbb{Z}$ tale che $f(e_i) = 0 \quad \forall i$ allora deve essere che f = 0
 - 3. $X = \operatorname{Spec} A$ e $X_f := \{ \mathfrak{p} \subseteq A \mid f \notin \mathfrak{p} \} = X \setminus V(f)$ è un aperto di X. Questi sono un sistema fondamentale di aperti di X e si ha $X_f \cong \operatorname{Spec} A_f$
 - 4. K((t)) NON è algebrico su K(t)
 - 5. $X = \operatorname{Spec} A$ è compatto, qualunque sia A.
 - 6. $A \subseteq B$ intera $\implies f^*$ chiusa
 - 7. f^* chiusa \implies vale il Going Up.

DIMENSIONE E ANELLI GRADUATI

- (Serie di Jordan-Hölder) A anello c.u., M un A-modulo. Una serie di Jordan-Hölder per M è una successione crescente di sottomoduli $0 = M_1 \subsetneq \ldots \subsetneq M_n = M$ tali che M_i/M_{i-1} è un A-modulo semplice (ovvero è diverso dal modulo nullo e non ha sottomoduli propri)
- (Lunghezza di un Modulo) Se M ha una serie di JH, diciamo che la lunghezza di M è finita e definiamo $\ell(M) = \min\{n \mid \exists \text{ serie di JH con } n+1 \text{ termini } \}$
- (Lunghezza delle serie di JH) Tutte le serie di JH di uno stesso modulo hanno la stessa lunghezza ed inoltre i fattori M_i/M_{i-1} sono uguali per ogni serie, a meno di permutazioni.
- (Comportamento per sequenze esatte) Sia data una sequenza esatta corta di A-moduli $0 \to X \to Y \to Z \to 0$. Allora vale che:
 - 1. $\ell(X), \ell(Z) < +\infty \Leftrightarrow \ell(Y) < +\infty$
 - 2. $\ell(Y) = \ell(X) + \ell(Z)$

Inoltre si ha che per un generico modulo M vale $\ell(M) < \infty \Leftrightarrow M$ è artiniano e Nötheriano.

• (Anelli graduati noetheriani) A anello graduato, allora A è noetheriano se e solo se A_0 è noetheriano ed A è f.g. come A_0 -algebra.

- (Funzione e Serie di Hilbert) Preso A graduato, A_0 artiniato, A noetheriano, M graduato e f.g. (ovvero M noetheriano) definiamo:
 - 1. $n \mapsto \ell_{A_0}(M_n)$ funzione di Hilbert
 - 2. $P_M(t) := \sum_n t^n \ell_{A_0}(M_n)$ serie di Hilbert

Inoltre in queste ipotesi se si ha una sequenza esatta corta con morfismi graduati di grado zero: $0 \to X \to^{\phi} Y \to^{\psi} Z \to 0$ allora sono definiti i polinomi di hilbert e vale che $P_Y = P_X + P_Z$

• (Teorema di Hilbert) A graduato, M graduato, A_0 artiniano e A noetheriano, M f.g. e si chiamino a_1, \ldots, a_k i generatori omogenei di A come A_0 -algebra e $d_i := \deg a_i$. Allora $\exists f \in \mathbb{Z}[t, t^{-1}]$ polinomio di Laurent tale che

$$P_M(t) = \frac{f(t)}{\prod_{i=1}^{k} (1 - t^{d_i})}$$

- (funzione di Hilbert e grado) Se A è generato in grado 1 allora la funzione di Hilbert (nelle ipotesi precedenti) per n grandi coincide con i valori assundi da un polinomio di grado d(M) 1 (dove d(M) è l'ordine di polo in 1 della funzione razionale P_M)
- (Analogo di Nakyama) A graduato, M graduato f.g. e supponiamo che $A_+M=M$ allora M=0