으로 Artificial Intelligence

문제와 탐색 (chap3)

2022.03.24

인공지능 이론

의료 빅데이터

문제와 문제해결

- 문제: 현재 상태와 목표 상태간의 간격

- 문제해결: 문제공간(problem space)에서 <u>목표하는 결과를 찾을 때까지 탐색</u>하는 과정

- 문제해결 확인 : 초기 상태와 목표 상태의 일치 여부

컴퓨팅 사고 = 문제해결

추상화

추상화(abstraction)는

1. 여러 사물이나 개념에서 공통된 속성들을 추출하여 **문제 해결에 필요한 속성들만으로 간단하게 정리**하기

필요한 것을 정의 하는 것 → 필요한 데이터와 기능을 찿고 구성하는 것

2. 컴퓨터가 이해할 수 있는 논리로 재해석하기

프로그래머 관점에서 스프라이트 행동 조작에 필요한 정보들만 블록 형태로 제공한다.

추상화

1~10사이의 임의의 수 2개를 만들어 덧셈문제를 출제하고 사용자가 입력한 답이 맞으면 '맞았습니다' 틀리면 문제와 답을 알려주는 프로그램

데이터: 수 2개, 사용자가 입력한 답, 정답

기능: 덧셈문제출제, 사용자 입력, 정답 확인, 결과 출력

분해

분해(decomposition)는 문제를 해결하기 쉬운 작은 단위의 문제로 나누는 것이다.

<u>작은 독립적인 문제로 분해하는 사고 → 모듈화</u>

패턴인식

패턴인식(pattern recognition)은

- 1. 특징별로 나누어 <u>이미 알고 있는 방법(패턴)과 매칭</u>하는 과정
 - → 어떤 문제를 이미 해결 방법을 알고 있는 다른 문제와 연관시켜 응용
- 2. **반복되어 나타나거나 쓰이는 것을 발견하여** 패턴을 정의하는 과정
 - → 반복적으로 순차처리 되는 부분을 패턴화

알고리즘

알고리즘(algorithm)은 어떤 문제를 해결하기 위한 절차나 방법을 의미한다.

누군가 해결한 검증된 방법을 적용하는 것

유클리드의 최대 공약수 구하기 알고리즘

두 정수 a, b의 최대공약수 구하기 알고리즘

(가정 : 두 정수 a와 b는 0 이상의 값이고 a가 b보다 크거나 같다.)

1단계: b가 0이면 a를 최대공약수로 정하고 알고리즘을 종료한다.

2단계: b가 0이 아니라면 a에서 b를 빼고 그 결과값을 c로 정한다.

3단계: b와 c 중 큰 값을 a로, 작은 값을 b로 정하여 위 작업을 1단계부터 다시 수행한다

문제의 추상화

컴퓨터가 이해할 수 있는 논리로 재해석하기

휴리스틱(경험적) 알고리즘:

적당한 탐색(모든 방법을 다 확인해 보지 않고)을 통해 문제를 해결 하는 방법

- 해당 문제를 해결할 수 있는 방법이 증명되지 않았을 때, 시행착오를 거쳐가며 충분히 효율적인 해답을 유수해 나가는 기법을 의미합니다.
- 유전자 알고리즘(Genetic Algorithm)은 정말 대표적인 휴리스틱 알고리즘

- 시행 : 한 칸씩 이동

- 착오확인 : 목적지까지 남은 거리로 확인

→ 충분한 결과인지 확인: 평가함수

길찿기에서 휴리스틱 : 일반적으로 가장 짧은 거리를 찿으려고 한다는 특징을 응용

길찿기의 경우 격자로 추상화

판단(평가함수)으로 방향과 지점을 결정

지능 만들기 - 논리설계 실습

다음 블록프로그램을 보고 출력결과를 써 보시오. (펜더가 하는 말)

덧셈게임: 3주차 실습 덧셈 게임을 확장해서 총 10문제를 내고 정답을 맞춘 점수를 출력하는 프로그램

- 덧셈 문제 10문제를 출제
- 사용자 답을 받아 답이 맞으면 점수를 증가시킴
- 점수가 6점이상이면 '훌륭합니다' / 6점미만이면 '노력이 필요합니다' 출력

- **y** (a)
- ans
- **D**
- score

```
📜 클릭했을 때
        0 로(으로) 설정하기
                                                                  묻고 기다리기
             로(으로) 설정하기
           이(가) 참이면
훌륭합니다 을(를) 말하기
노력이 필요합니다 을(를) 말하기
```

MBlock 실습

스프라이트 동작 제어 블럭

블록	설명
10 만큼 움직이기	설정된 값만큼 움직인다. 양수이면 전진, 음수이면 후진한다.
C* 방향으로 15 도 회전하기	설정된 각도만큼 시계 방향으로 회전한다.
) 방향으로 15 도 회전하기	설정된 각도만큼 시계 반대 방향으로 회전한다.
무작위 위치 ▼ (으)로 이동하기	마우스 포인터나 다른 스프라이트 위치 또는 무작위 위치로 이동한다.
x: 0 y: 0 (으)로 이동하기	좌표(x, y)로 이동한다.
1 초 동안 무작위 위치 ▼ (으)로 아동하기	설정된 시간 동안 마우스 포인터, 다른 스프라이트, 무작위 위치로 이동한다.
1 초 동안 x 0 y: 0 (으)로 이동하기	설정된 시간 동안 좌표(x, y)로 이동한다.
90 도 병향 보기	설정된 방향으로 향한다. 0 : 위쪽, 90 : 오른쪽, 180 : 아래쪽, -90 : 왼쪽

스프라이트 동작 제어 블럭

블록	설명
마우스 포인터 ▼ 쪽 보기	마우스 포인터나 다른 스프라이트 위치로 향한다.
x 좌표를 10 만큼 바꾸기	x좌표를 설정한 값만큼 변경한다.
x 좌표를 -98 (으)로 정하기	x좌표를 설정한 값으로 변경한다.
y 좌표를 10 만큼 바꾸기	y좌표를 설정한 값만큼 변경한다.
y 좌표를 26 (으)로 정하기	y좌표를 설정한 값으로 변경한다.
벽에 닿으면 튕기기	벽에 닿으면 반대 방향으로 전환한다.
x 좌표	각각 x좌표 값, y좌표 값, 방향 값이다.

위치 이동

마우스 포인터 위치로 이동

다른 스프라이트 위치로 이동

무작위 위치로 이동

좌표에 의한 이동

방향 회전 방식

회전할 각도를 정해줌

회전 방식 모드 옵션

키, 마우스 반응

객체를 특정 키에 계속 반응하게 함

화살표키 방향에 따라 펜더가 한 걸음씩 이동하는 프로그램 구현

스프라이트 감지 이벤트

	블록	설명	
*	마우스 포인터 ▼ 에 닿았는가?	스프라이트가 마우스 포인터, 벽, 다른 스프라이트 등에 닿았는지 확인한다.	
*	색에 닿았는가?	스프라이트가 설정한 색에 닿았는지 확인한다.	
	색이 색에 닿았는가?	스프라이트에 있는 왼쪽에 설정한 색이 오른쪽에 설정한 색에 닿았는지 확인한다.	
	마우스 포인터 ▼ 까지의 거리	선택한 스프라이트나 마우스 포인터까지의 거리를 확인한다.	
	너 이름이 뭐니? 라고 묻고 기다리기	묻고 사용자가 답할 때까지 기다린다.	
	대답	사용자가 답한 내용을 저장한다.	객체가 다른 객체에 닿을 때
*	스페이스 ▼ 키를 눌렸는가?	설정한 키가 눌렸는지 확인한다.	클릭했을 때
	마우스를 클릭했는가?	마우스를 클릭했는지 확인한다.	계속 반복하기 만약
	마우스의 x좌표	마우스 포인터의 x좌표를 확인한다.	

실습1에 이어서, 펜더가 고양이에 닿으면 고양이는 '아야!'하고 말하고 펜더는 '미안 ' 하고 말하기

오른쪽 화살표 ▼ 키를 눌렀을 때

