Geoffrey Parker - grp352 HW 23: 4.27, 4.31 - 4.35 M328K April 24th, 2012

4.27 Question. The numbers 1, 5, 7, and 11 are all the natural numbers less than or equal to 12 that are relatively prime to 12, so $\phi(12) = 4$.
1. What is $\phi(7)$?
2. What is $\phi(15)$?
3. What is $\phi(21)$?
4. What is $\phi(35)$?
Answer. \Box
4.31 Theorem. Let n be a natural number and let $x_1, x_2, \ldots, x_{\phi(n)}$ be the distinct natural numbers less than or equal to n that are relatively prime to n . Let a be a non-zero integer relatively prime to n and let i and j be different natural numbers less than or equal to $\phi(n)$. Then $ax_i \not\equiv ax_j \pmod{n}$.
Proof.
4.32 Theorem (Euler's Theorem). If a and n are integers with $n > 0$ and $(a, n) = 1$, then
$a^{\phi(n)} \equiv 1 \pmod{n}$.
Proof.
4.33 Corollary (Fermat's Little Theorem). If p is a prime and a is an integer relatively prime to p , then $a^{(p-1)} \equiv 1 \pmod{p}$.
Proof.
4.34 Exercise. Compute each of the following without the aid of a calculator or computer.
1. $12^{49} \pmod{15}$.

$2. 139^{112} \pmod{27}$.	
Solution.	
4.35 Exercise. Find the last digit in the	base 10 representation of the integer 13 ⁴⁷⁴ .
Solution.	