Infinite Computations - WS 2015/2016

Exercises – Series 6

November 27, 2015

Exercise 26. (Bachelor)

2+2 points

Consider the following Muller automaton \mathcal{M} with the acceptance component $\mathcal{F} = \{\{2\}, \{0,2\}\}$.

- (a) Present a deterministic Büchi automaton recognizing $L(\mathcal{M})$ or show that no such automaton exists.
- (b) Present a deterministic co-Büchi automaton recognizing $L(\mathcal{M})$ or show that no such automaton exists.

Exercise 27. (Bachelor + Master)

1+2+1 *points*

Consider the ω -language $L = aa^*b^\omega + bb^*a^\omega$.

- (a) Show that *L* is deterministically Büchi and co-Büchi recognizable.
- (b) Show that *L* is not E-recognizable and not A-recognizable.
- (c) Show that $L' = ab^{\omega} + ba^{\omega}$ is A-recognizable.

Exercise 28. (Bachelor + Master)

2+2 points

Construct deterministic Staiger-Wagner automata for the following ω -languages:

- (a) $L_1 = \{ \alpha \in \{a, b, c\}^{\omega} \mid \text{if } b \text{ occurs in } \alpha, \text{ then also } c \text{ occurs in } \alpha \}$
- (b) $L_2 = \{\alpha \in \{a, b, c\}^{\omega} \mid \alpha \text{ contains } b \text{ at least once, but does not contain the infix } ac\}$

Exercise 29. (Bachelor + Master)

3 points

Show that for every $n \geq 1$, the ω -language $L_n = a_1^{\omega} + \ldots + a_n^{\omega}$ over the alphabet $\Sigma_n = \{a_1, \ldots, a_n\}$ can be recognized by a deterministic Staiger-Wagner automaton $\mathcal{A} = (\mathcal{Q}, \Sigma_n, q_0, \delta, \mathcal{F})$ with $|\mathcal{F}| = n$, but not by one with $|\mathcal{F}| < n$.

Let $\mathcal{M} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ be a deterministic Muller automaton with the following properties:

- 1. \mathcal{F} is closed under superloops and
- 2. for any k loops $S_1, \ldots, S_k \subseteq Q$ with $S_1, \ldots, S_k \notin \mathcal{F}$, the union $\bigcup_{i=1}^k S_i$ is also not in \mathcal{F} .

Show that there exists a set $F \subseteq Q$ such that the Büchi automaton $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ recognizes $L(\mathcal{M})$.

Hint: Show that in each accepting loop, there exists a state that does not appear in any non-accepting loop.

Exercise 31. $(Bachelor + Master)^*$

1+1 *points**

Recall that an elementary Muller automaton as defined in exercise 20 (series 4) has an acceptance component $\mathcal{F} = \{F_1, \dots, F_k\}$ where each F_i is a singleton (that means, each F_i contains exactly one state).

- (a) When we discussed exercise 20 in the tutorial, the following question was raised: Is every ω -language that is recognized by a (deterministic) elementary Muller automaton also recognized by a deterministic Büchi automaton? Prove or disprove this.
- (b) Prove or disprove the following statement: Every ω -language that is recognized by a (deterministic) elementary Muller automaton is also recognized by a deterministic co-Büchi automaton.

Please always consider announcements made in the L^2P course room.

For solutions to the exercise marked with an asterisk (*), bonus points will be awarded.

You can hand in your solutions until **12:15 on Friday, December 4, 2015** at the drop box at the Chair i7.