Lie Groups PSET 2

Nilay Kumar

Last updated: October 7, 2013

Proposition 1. Kirillov 2.15

Proof. Let us first show that $\operatorname{End}_{\mathbb{H}}\mathbb{H}^n$ is naturally identified with the algebra of $n\times n$ quaternionic matrices. Let $\{e_{\alpha}\}$ be an orthonormal basis for \mathbb{H}^n over \mathbb{H} (the orthonormality condition will be useful later). Then we may write any $\vec{h} = \sum_{\alpha} e_{\alpha} h_{\alpha}$, as we are considering \mathbb{H}^n as a right \mathbb{H} -module. Applying an endomorphism A, we find that $A(\vec{h}) = A(\sum_{\alpha} e_{\alpha} h_{\alpha}) = \sum_{\alpha} A(e_{\alpha} h_{\alpha}) = \sum_{\alpha} A(e_{\alpha}) h_{\alpha}$. Denoting the β component of $A(e_{\alpha})$ by the quaternion $A_{\beta\alpha}$, we can rewrite

$$A(\vec{h}) = \sum_{\alpha,\beta} e_{\beta} A_{\beta\alpha} h_{\alpha}.$$

From this, it is clear that the endomorphism is characterized precisely by this $n \times n$ matrix $A_{\beta\alpha}$ of quaternions.

Now let us define an \mathbb{H} -valued form on \mathbb{H}^n given by

$$(\vec{h}, \vec{h}') = \sum_{i} \bar{h}_i h_i'$$

and let $U(n, \mathbb{H})$ be the group of unitary quaternionic transformations:

$$U(n,\mathbb{H}) = \left\{ A \in \operatorname{End}_{\mathbb{H}} \mathbb{H}^n | (A\vec{h}, A\vec{h}') = (\vec{h}, \vec{h}') \right\}.$$

It's clear that $U(n, \mathbb{H})$ is indeed a group - composing two transformations yields another such transformation, and the identity is contained in the group. The inverses are given by just the matrix inverses (that clearly exist because no $A \in U(n, \mathbb{H})$ has determinant 0):

$$(\vec{h}, \vec{h}') = (AA^{-1}\vec{h}, AA^{-1}\vec{h}') = (A^{-1}\vec{h}, A^{-1}\vec{h}').$$

Using the identification of endomorphisms with matrices that we established in the previous paragraph, let us find a matrix characterization for elements of $U(n, \mathbb{H})$:

$$(A\vec{h}, A\vec{h}') = \left(\sum_{\alpha, \beta} e_{\beta} A_{\beta\alpha} h_{\alpha}, \sum_{\gamma, \delta} e_{\gamma} A_{\gamma\delta} h'_{\delta}\right)$$

$$= \sum_{\beta, \gamma} (e_{\beta}, e_{\gamma}) \left(\overline{\sum_{\alpha} A_{\beta\alpha} h_{\alpha}}\right) \left(\sum_{\delta} A_{\gamma\delta} h'_{\delta}\right)$$

$$= \sum_{\alpha, \beta, \delta} \overline{A_{\beta\alpha} h_{\alpha}} A_{\beta\delta} h'_{\delta} = \sum_{\alpha, \beta, \delta} \overline{h_{\alpha}} \cdot \overline{A_{\beta\alpha}} A_{\beta\delta} h'_{\delta}.$$

But this is precisely (\vec{h}, \vec{h}') if and only if the middle terms sum to the identity, i.e. $A^*A = 1$.

Define now a map $\phi: \mathbb{C}^{2n} \to \mathbb{H}^n$ given by $(z_1, \ldots, z_{2n}) \mapsto (z_1 + jz_{n+1}, \ldots, z_n + jz_{2n})$. If we treat \mathbb{H}^n as a complex vector space via the scalar multiplication $z(h_1, \ldots, h_n) = (h_1z, \ldots, h_nz)$, ϕ is in fact an isomorphism of complex vector spaces. To see this, it suffices to show that ϕ is injective, but this is obvious because $z_i + jz_{n+1} = a_i + ib_i + ja_{n+i} - kb_{n+i} = 0$ implies that the $a_i = a_{n+i} = b_i = b_{n+i} = 0$, and hence that $z_i = z_{n+i} = 0$, i.e. $\ker \phi = \{\vec{0}\}$. Next let us show that this isomorphism identifies $\operatorname{End}_{\mathbb{H}} \mathbb{H}^n$ with $\{A \in \operatorname{End}_{\mathbb{C}} \mathbb{C}^{2n} | \bar{A} = J^{-1}AJ\}$ where

$$J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}.$$

First note that the map $\vec{h} \mapsto \vec{h}j$ is identified with $\vec{z} \mapsto J\vec{z}$, because quaternionic multiplication by j is equivalent to multiplying $(z_i + jz_{n+i})j = z_ij + jz_{n+i}j = -\bar{z}_{n+i} + j\bar{z}_i$.

Under the identification $\mathbb{C}^{2n} \cong \mathbb{H}^n$ above, the quaternionic form simplifies as follows. Let $h_i = z_i + jz_{n+i}$ and $h'_i = z'_i + jz'_{n+1}$. Then, by definition,

$$\begin{split} (\vec{h}, \vec{h}') &= \sum_{l} (\bar{z}_{l} + \overline{jz_{n+l}})(z'_{l} + jz'_{n+l}) \\ &= \sum_{l} \left(\bar{z}_{l}z'_{l} + \bar{z}_{n+l}z'_{n+l} - \bar{z}_{n+l}jz'_{l} + \bar{z}_{l}jz'_{n+l} \right). \end{split}$$

Anti-commuting the j and factoring it out of the last two terms, we see that the first term is the usual Hermitian inner product and the last terms are the standard bilinear skew-symmetric form in \mathbb{C}^{2n} (multiplied by j). For the whole form to be preserved, each form must be preserved, and hence we see that $Sp(n) = Sp(n, \mathbb{C}) \cap SU(2n)$.

Proposition 2. Kirillov 3.16

Proof. We wish to show that $\mathfrak{sp}(n)_{\mathbb{C}} = \mathfrak{sp}(n,\mathbb{C})$. Note that (from Kirillov) $\mathfrak{sp}(n,\mathbb{C})$ is the set of $2n \times 2n$ complex matrices x such that $x + J^{-1}x^tJ = 0$. As Sp(n) is the intersection of $Sp(n,\mathbb{C})$ and SU(2n), it's clear that $\mathfrak{sp}(n)$ is the set of matrices that satisfy this condition in addition to the condition that $x^{\dagger} = -x$. If we now complexify and consider $\mathfrak{sp}(n)_{\mathbb{C}} = \mathfrak{sp}(n) \oplus i\mathfrak{sp}(n)$, the first condition $x + J^{-1}x^tJ = 0$ still holds (by linearity) but the second no longer holds, as $(ix)^{\dagger} = -ix^{\dagger} = ix$ instead of -ix. This is precisely what we wanted to show.

Proposition 3. Kirillov 3.1

Proof. Let $X = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$. Suppose $x \in \mathfrak{sl}(2,\mathbb{R})$ such that $\exp(x) = X$. It's clear that the eigenvalues of x must exponentiate to the eigenvalues of X, as eigenvalues of powers are simply powers of eigenvalues. Hence we see that if $\lambda_1, \lambda_2 \in \mathbb{C}$ are the eigenvalues of x then $e^{\lambda_1} = e^{\lambda_2} = -1$. This yields

$$\lambda_1 = (2n+1)\pi i$$
$$\lambda_2 = (2m+1)\pi i$$

for some $m, n \in \mathbb{Z}$. The condition that $x \in \mathfrak{sl}(2, \mathbb{R})$ requires that $\lambda_1 + \lambda_2 = 0$, i.e. that m = -(n+1). Hence the λ_1, λ_2 must be distinct, i.e. diagonalizable over the complex numbers. In other words, we have that $P^{-1}xP = \lambda$ where λ is diagonal with λ_1, λ_2 . Exponentiating, we find that

$$P^{-1}\exp(x)P = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}.$$

finish this

Moving the P's to the other side, we find that $\exp(x) = -I$, which is clearly not equal to X. Hence we obtain a contradiction - there can exist no such x.