

Indice

1	Semigruppi, monoidi e gruppi								
	1.1	Semigruppi							
	1.2	0 11							
	1.3 Gruppi								
		1.3.1 Alcuni esempi di gruppi	11						
		1.3.2 La legge di cancellazione in un gruppo	16						
		1.3.3 Potenze, il commutatore e l'ordine di un elemento	17						
	1.4	Esercizi	23						
2	Due gruppi importanti: D_n e S_n								
	2.1	Il gruppo diedrale	27						
	2.2	Il gruppo delle permutazioni	35						
	2.3	I cicli e il teorema fondamentale delle permutazioni	37						
	2.4								
	2.5	Esercizi	48						
3	Sottogruppi e classi laterali								
	3.1	Sottogruppi	51						
	3.2	Intersezione di sottogruppi	54						
	3.3	Unione di sottogruppi	58						
	3.4	Prodotto di sottogruppi	60						
	3.5	Classi laterali e il teorema di Lagrange	64						
		3.5.1 Ordine del prodotto di due elementi	70						
	3.6	Esercizi	71						
4	Sottogruppi normali e quozienti								
	4.1	Sottogruppi normali	75						
	4.2	Operazioni con i sottogruppi normali	78						
	4.3	Sottogruppi del gruppo lineare	80						

	4.4	Quozienti	85				
	4.5	Esercizi	87				
5	Omomorfismi e isomorfismi						
	5.1	Omomorfismi ed isomorfismi	89				
	5.2	Il primo teorema di isomorfismo e il teorema di corrispondenza	93				
	5.3	Gruppo degli automorfismi di un gruppo	98				
	5.4	Il teorema di Cayley	101				
	5.5	Esercizi	103				
6	6 Prodotto diretto di gruppi						
	6.1	Prodotto diretto di Gruppi	107				
	6.2	Classificazione di alcuni gruppi finiti	112				
	6.3	Sottogruppi del prodotto diretto di due gruppi	115				
	6.4	Automorfismi del prodotto diretto di due gruppi	116				
	6.5	Esercizi	119				
7	Gru	Gruppi abeliani finiti					
	7.1	Classificazione dei gruppi ciclici e dei loro sottogruppi	123				
	7.2	Prodotti diretti di gruppi ciclici	127				
	7.3	Il gruppo degli automorfismi di un gruppo ciclico	128				
	7.4	Il teorema di Frobenius-Stickelberger	129				
	7.5	Il Lemma e il Teorema di Gauss	134				
	7.6	Esercizi	139				
Bi	bliog	grafia	143				

Capitolo 1

Semigruppi, monoidi e gruppi

1.1 Semigruppi

Sia X un insieme diverso dal vuoto. Un' operazione binaria \cdot su X è un'applicazione

$$\cdot: X \times X \to X, (x, y) \mapsto x \cdot y.$$

Diremo che un'operazione binaria \cdot su un insieme X è associativa se

$$(x \cdot y) \cdot z = x \cdot (y \cdot z), \forall x, y, z \in X.$$

Osservazione 1.1.1 Indicheremo con xy il prodotto $x \cdot y$ rta due elementi x, y quando l'operazione binaria \cdot sarà chiara dal contesto. Inoltre se vale la proprietà associativa, dati tre elementi x, y, z potremo scrivere senza ambiguità xyz per indicare (xy)z = x(yz)

Definizione 1.1.2 *Un* semigruppo è una coppia (S, \cdot) , dove $S \neq \emptyset$ $e \cdot$ è un'operazione binaria su S associativa.

Dato un semigruppo (S, \cdot) diremo che S è il *supporto* del semigruppo (S, \cdot) e indichieremo la sua cardinalità con |S|. A volte chiameremo |S| l' *ordine* del semigruppo (S, \cdot) . Diremo anche che un semigruppo è *finito* (risp. *infinito*) se il suo ordine è finito (risp. infinito).

Un'operazione binaria su un insieme $X \neq \emptyset$ è detta *commutativa* se

$$x \cdot y = y \cdot x, \forall x, y \in X.$$

Un semigruppo (S, \cdot) nel quale l'operazione binaria \cdot è commutativa verrà chiamato *semigruppo abeliano o commutativo*.

Esempio 1.1.3 Le coppie (S, +) dove $S = \mathbb{N}$, \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , dove + è la somma usuale sono semigruppi abeliani infiniti.

Esempio 1.1.4 Le coppie $(S^+, +)$ dove $S^+ = \mathbb{N}^+$, \mathbb{Z}^+ , \mathbb{Q}^+ , \mathbb{R}^+ sono semigruppi abeliani infiniti. In quest'esempio $S^+ = \{x \in S \mid x > 0\}$.

Esempio 1.1.5 Le coppie (S, \cdot) dove $S = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, dove \cdot è la moltiplicazione usuale sono semigruppi abeliani infiniti.

Esempio 1.1.6 Le coppie (S, \cdot) dove $S = \mathbb{N}^*$, \mathbb{Z}^* , \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* sono semigruppi abeliani infiniti. In queste note indicheremo con $S^* = S \setminus \{0\}$ se S è un insieme numerico contenente 0 (si noti che $\mathbb{N}^+ = \mathbb{N}^*$).

Esempio 1.1.7 Sia P l'insieme dei numeri interi pari allora (P,+), $(P^+,+)$, (P,\cdot) , e (P^*,\cdot) sono semigruppi abeliani infiniti, dove la somma e la motiplicazione sono quelle usuali.

Esempio 1.1.8 Sia $m \ge 2$ un numero naturale allora $(\mathbb{Z}_m, +)$ e (\mathbb{Z}_m, \cdot) con le operazioni definite sulle classi modulo m come

$$[x]_m + [y]_m = [x + y]_m (1.1)$$

e

$$[x]_m \cdot [y]_m = [xy]_m \tag{1.2}$$

sono semigruppi abeliani di ordine m.

Esempio 1.1.9 Sia P(X) l'insieme delle parti di un insieme $X \neq \emptyset$. Sia \cup (risp. \cap) l'operazione binaria su P(X) che a due elementi $A, B \in P(X)$ ($A, B \subset X$) associa la loro unione (risp. intersezione) $A \cup B$ (risp. $A \cap B$). Allora ($P(X), \cup$) (risp. $(P(X), \cap)$) è un semigruppo abeliano. L'ordine di P(X) è finito se e solo se X ha cardinalità finita.

Esempio 1.1.10 Sia X un insieme, $X \neq \emptyset$. Definiamo un'operazione binaria su X come

$$x \cdot y = x, \forall x, y \in X. \tag{1.3}$$

Si verifica immediatamente che (X,\cdot) è un semigruppo. non abeliano se X ha almeno due elementi. Analogamente possiamo definire su X l'operzione binaria

$$x \cdot y = y, \forall x, y \in X. \tag{1.4}$$

1.1. SEMIGRUPPI 3

Esempio 1.1.11 Sia X un insieme, $X \neq \emptyset$. Consideriamo l'insieme $S = X^X$ costituito da tutte le applicazioni da X in se stesso con operazione binaria

$$f \circ g, \forall f, g \in S$$
,

dove \circ denota la composizione di applicazioni. Si verifica immediatamente che (S, \circ) è un semigruppo. Inoltre questo semigruppo non è abeliano se X ha almeno due elementi. Infatti se $a, b \in X$, $a \neq b$ allora le applicazioni (costanti) $f, g \in S$ definite da f(x) = a e g(x) = b, per ogni $x \in X$, sono tali che f(g(a)) = a e g(f(a)) = b e quindi $f \circ g \neq g \circ f$.

Sia · un'operazione binaria su un insieme $X \neq \emptyset$. Diremo che $x \in X$ è cancellabile a sinistra (risp. a destra) se

$$x \cdot y = x \cdot z \implies y = z, \ \forall y, z \in X \tag{1.5}$$

(risp.
$$y \cdot x = z \cdot x \Rightarrow y = z, \forall y, z \in X$$
). (1.6)

Un'operazione binaria \cdot su un insieme X soddisfa la *legge di cancellazione a sinistra (risp. a destra)* se ogni elemento di X è cancellabile a sinistra (risp. a destra), cioè

$$x \cdot y = x \cdot z \implies y = z, \ \forall x, y, z \in X \tag{1.7}$$

(risp.
$$y \cdot x = z \cdot x \Rightarrow y = z, \forall x, y, z \in X$$
). (1.8)

Diremo che un'operazione binaria su $X \neq \emptyset$ soddisfa la *legge di cancellazione* se soddisfa la legge di cancellazione sia a sinistra che a destra.

Osservazione 1.1.12 Se l'operazione binaria è commutativa allora ogni $x \in X$ è cancellabile a sinistra se e solo se è cancellabile a destra e quindi vale la legge di cancellazione a sinistra se e solo se vale la legge di cancellazione a destra se e solo se vale la legge di cancellazione.

Esempi 1.1.13 Il lettore è invitato a convincerci fornendo se necessario una dimostrazione della validità delle affermazioni seguenti.

- 1. nei semigruppi abeliani (S, +) e $(S^+, +)$ degli Esempi 1.1.3 e 1.1.4 vale la legge di cancellazione.
- 2. Nei semigruppi (S, \cdot) dell'Esempio 1.1.5 non vale la legge di cancellazione: infatti $0 \cdot 2 = 0 \cdot 3$ ma $2 \neq 3$. Un elemento è cancellabile se e solo se è diverso da 0.

- 3. nei semigruppi (S, \cdot) dell'Esempio 1.1.6 vale la legge di cancellazione.
- 4. nei semigruppi abeliani (P, +), $(P^+, +)$ e (P^*, \cdot) dell'Esempio 1.1.7 vale la legge di cancellazione. Mentre nel semigruppo abeliano (P, \cdot) dello stesso esempio non vale la legge di cancellazione (un elemento è cancellabile se e solo se è diverso da 0).
- 5. l'operazione binaria (1.1) soddisfa la legge di cancellazione. Mentre l'operazione binaria (1.2) non la soddisfa. Infatti $[0]_m[0]_m = [0]_m[1]_m = [0]_m$ ma $[0]_m \neq [1]_m$. Lo studio degli elementi cancellabili nel semigruppo (\mathbb{Z}_m, \cdot) è legato ai divisori dello zero nell'anello (\mathbb{Z}_m, \cdot) , argomento non trattato in queste note.
- 6. il semigruppo abeliano $(P(X), \cup)$ (risp. $(P(X), \cap)$) non soddisfa la legge di cancellazione. Per esempio se $A \subset B$ e $A \subset C$ e $B \neq C$ allora $A = A \cap B = A \cap C$ non implica B = C.
- 7. sia *X* un insieme con almeno due elementi. Allora l'operazione binaria (1.3) (risp. (1.4)) soddisfa la legge di cancellazione a destra (risp. sinistra) ma non a sinistra (risp. destra).
- 8. nel semigruppo (S, \circ) dell'Esempio 1.1.11 un elemento $f \in S$ è cancellabile a sinistra (risp. a destra) se e solo se f è iniettiva (risp. suriettiva).

Sia · un'operzaione binaria su un insime $X \neq \emptyset$. Diremo che $b \in X$ è *idempotente* se

$$b^2 := b \cdot b = b$$
.

Esempi 1.1.14 Il lettore è invitato a convincersi fornendo se necessario una dimostrazione della validità delle affermazioni seguenti.

- 1. nei semigruppi (S, +) dell' Esempio 1.1.3 l'unico elemento idempotente è 0.
- 2. nei semigruppi $(S^+,+)$ dell' Esempio 1.1.4 non ci sono elementi idempotenti.
- 3. nei semigruppi (S, \cdot) dell'Esempio 1.1.5 ci sono due elementi idempotenti, 0 e 1.
- 4. nei semigruppi (S, \cdot) dell'Esempio 1.1.6 l'unico elemento idempotente è 0.

1.1. SEMIGRUPPI 5

5. nei semigruppo (P,+) e (P,\cdot) l'unico elemento idempotente è 0. Nei semigruppo $(P^+,+)$ e (P^*,\cdot) non ci sono elementi idempotenti.

- 6. nel semigruppo $(\mathbb{Z}_m, +)$, $[0]_m$ è l'unico elemento idempotente se m è dispari. Cosa succede se m è pari?
- 7. nei semigruppi degli Esempi 1.1.9 e 1.1.10 tutti gli elementi sono idempotenti.

Osservazione 1.1.15 Nel semigruppo (S, \circ) dell'Esempio 1.1.11 ci possono essere tanti elementi idempotenti e la loro classificazione varia al variare dell'insieme X. Il lettore è inviato a riflettere sul caso $X = \mathbb{R}$.

Concludiamo questa sezione dimostrando l'esistenza di un elemento idempotente in un semigruppo finito.

Proposizione 1.1.16 *Sia* (S, \cdot) *un semigruppo finito. Allora esiste almeno un elemento idempotente di S.*

Dimostrazione: Sia $x \in S$ un elemento arbitrario. Per la proprietà associativa dell'operazione binaria · possiamo definire

$$x^n := \underbrace{x \cdot x \cdot \cdot \cdot x}_{n \text{ volte}}, \ \forall n \in \mathbb{N}^+.$$

Segue che

$$x^{n+1} = x^n x = x x^n, \ \forall n \in \mathbb{N}^+$$
 (1.9)

e, per induzione su n (fissato m) si ha:

$$x^{m+n} = x^n x^m = x^m x^n, \ \forall m, n \in \mathbb{N}^+.$$
 (1.10)

La (1.10) segue facilmente fissando $m \in \mathbb{N}_+$, usando l'induzione su n e la (1.9). Sia

$$C(x) = \{x^n \mid n \in \mathbb{N}^+\}.$$

Poichè $C(x) \subset S$ e $|S| < \infty$ anche $|C(x)| < \infty$. Consideriamo ora l'applicazione

$$f: \mathbb{N}^+ \to C(x), \ n \mapsto x^n.$$

Poiche la cardinalità di \mathbb{N}^+ è infinita, l'applicazione f non è iniettiva. Esisteranno quindi $i, j \in \mathbb{N}^+$, con i > j tali che:

$$x^i = x^j. (1.11)$$

Dalla (1.10) segue allora che

$$x^i = x^{i-j}x^j = x^j. (1.12)$$

Inoltre, abbiamo che

$$x^{i} = x^{n(i-j)}x^{j}, \forall n \in \mathbb{N}^{+}. \tag{1.13}$$

La (1.13) si dimostra per induzione come segue. Per n=1 è vera per la (1.12). Supponiamola vear per n, cioè supponiamo la validità di (1.13). Allora da (1.10), (1.11) e (1.12) si ottiene

$$x^{(n+1)(i-j)}x^{j} = x^{n(i-j)+(i-j)}x^{j} = x^{n(i-j)}x^{i-j}x^{j} =$$

$$= x^{n(i-j)}x^{j}x^{i-j} = x^{i}x^{i-j} = x^{j}x^{i-j} = x^{i},$$

che mostra la validità di (1.13) per n + 1.

Scegliamo ora $k \in \mathbb{N}^+$ tale che k(i-j) > j e definiamo $b \in S$ come

$$b := x^{k(i-j)}.$$

Mostriamo che b è un elemento idempotente. Infatti

$$b^{2} = b \cdot b = x^{k(i-j)} x^{k(i-j)} = x^{k(i-j)} x^{k(i-j)-j} x^{j} = x^{k(i-j)} x^{j} x^{k(i-j)-j} = x^{i} x^{k(i-j)-j} = x^{j} x^{k(i-j)-j} = x^{k(i-j)} = b.$$

Osservazione 1.1.17 I semigruppi $(S^+,+)$ dell' Esempio 1.1.4 mostrano che l'ipotesi che S sia finito è necessaria per la validità della proposizione precedente.

1.2 Monoidi

Sia · un'operazione binaria su un insieme $X \neq \emptyset$. Un elemento $1 \in M$ si dice *elemento neutro a destra (risp. sinistra)* per l'operazione binaria ·, se

$$x \cdot 1 = x$$
 (risp. $1 \cdot x = x$), $\forall x \in X$.

Diremo che 1 é un elemento neutro per l'operazione binaria \cdot se 1 é un elemento neutro sia a destra che a sinistra.

Se l'operazione binaria è chiara dal constesto, parleremo di elemento neutro (a destra oppure sinistra) senza specificare l'operazione binaria.

1.2. MONOIDI 7

Osservazione 1.2.1 Se l'operazione binaria su un insieme X è commutativa allora 1 é un elemento neutro a destra se e solo se 1 é un elemento neutro a sinistra se e solo se 1 è un elemento neutro.

Osserviamo che se esiste un elemento neutro 1 per un'operazione binaria su un insieme X, allora 1 é l'unico elemento neutro, e parleremo quindi di 1 come l'elemento neutro. Infatti, se $\tilde{1} \in X$ é un altro elemento neutro allora

$$\tilde{1} = \tilde{1} \cdot 1 = 1$$
,

dove nella prima uguaglianza stiamo usando il fatto che 1 é un elemento neutro a destra, mentre nella seconda che $\tilde{1}$ é un elemento neutro a sinistra.

Definizione 1.2.2 *Un semigruppo* (M, \cdot) *é un* monoide *se esiste l'elemento neutro* $1 \in M$.

Equivalentemente, un monoide è un tripletta $(M, \cdot, 1)$, dove (M, \cdot) é un semigruppo ed 1 é l'elemento neutro. Un monoide $(M, \cdot, 1)$ é detto *abeliano o commutativo* se il semigruppo (M, \cdot) é abeliano.

Notazione 1.2.3 Nel caso di un monoide abeliano scriveremo l'operazione binaria con + e l'elemento neutro con 0. Quindi un monoide abeliano sará indicato con (M, +, 0). Un monoide arbitrario sará indicato con $(M, \cdot, 1)$.

Esempio 1.2.4 Le coppie (S, +) dell' Esempio 1.1.3 sono monoidi abeliani infiniti dove l'elemento neutro é lo 0.

Esempio 1.2.5 Nessuna delle coppie $(S^+, +)$ dell'Esempio 1.1.4 é un monoide.

Esempio 1.2.6 Le coppie (S, \cdot) dell'Esempio 1.1.5 sono monoidi abeliani infiniti con elemento neutro 1.

Esempio 1.2.7 Le coppie (S, \cdot) dell'Esempio 1.1.6 sono monoidi sabeliani infiniti con elemento neutro 1.

Esempio 1.2.8 Sia P l'insieme dei numeri interi pari come nell'Esempio 1.1.7. Allora (P, +, 0) è un monoide abeliano infinito. Mentre nessuna delle coppie $(P^+, +)$, (P, \cdot) e (P^*, \cdot) é un monoide.

Esempio 1.2.9 In riferimento all'Esempio 1.1.8, $(\mathbb{Z}_m, +, [0]_m)$ e $(\mathbb{Z}_m, \cdot, [1]_m)$ sono entrambi monoidi abeliani di ordine m.

Esempio 1.2.10 In riferimento all'Esempio 1.1.9 $(P(X), \cup, \emptyset)$ (risp. $(P(X), \cap, X)$) sono monoidi abeliani.

Esempio 1.2.11 In riferimento all'Esempio 1.2.11, (X, \cdot) non é mai un monoide per $|X| \ge 2$.

Esempio 1.2.12 In riferimento all'Esempio 1.1.11, $(S = X^X, \circ)$ é un monoide con elemento neutro $\mathrm{id}_X(\mathrm{id}_X(x) = x \text{ per ogni } x \in X)$.

Dato un monoide $(M, \cdot, 1)$ allora l'elemento neutro è chiaramente un elemento idempotente $(1 \cdot 1 = 1)$.

Proposizione 1.2.13 Sia $(M, \cdot, 1)$ un monoide dove vale la legge di cancellazione a destra oppure a sinistra. Allora 1 é l'unico elemento idempotente.

Dimostrazione: Supponiamo che $b \in M$ sia un idempotente e che valga la legge di cancellazione a destra. Allora dalla relazione

$$b \cdot b = b^2 = b = 1 \cdot b$$

si ottiene (b é cancellabile a destra) b=1. Analogamente, se vale la legge di cancellazione a sinistra da

$$b \cdot b = b^2 = b = b \cdot 1$$

П

si ottiene (b é cancellabile a sinistra) b = 1.

Senza l'ipotesi della legga di cancellazione la proposizione precedente non è valida come mostra il monoide dell'Esempio 1.2.10, dove tutti gli elementi sono idempotenti. La Proposizione 1.2.13 non si estende a semigruppi. Si pensi, per esempio, ad un insieme X con operazione binaria $x \cdot y = x$ (cf. Esempio 1.1.10). Come abbiamo osservato in quest'esempio vale la legge di cancellazione a destra ma non a sinistra e tutti gli elementi sono idempotenti.

D'altra parte la Proposizione 1.2.13 si estende a semigruppi se si richiede che valga la legge di cancellazione (sia a destra che a sinistra).

Proposizione 1.2.14 Sia (S, \cdot) un semigruppo dove vale la legge di cancellazione e sia $b \in S$ un elemento idempotente. Allora b é l'elemento neutro e quindi (S, \cdot, b) é un monoide.

Dimostrazione: Supponiamo che $b \in M$ sia un idempotente. Allora

$$b \cdot b \cdot x = b^2 x = bx, \ \forall x \in S.$$

Usando la legge di cancellazione a sinistra si ottiene quindi che $b \cdot x = x$ per ogni $x \in S$ e quindi b é un elemento neutro a sinistra. In modo analogo, dalla relazione

$$x \cdot b \cdot b = x \cdot b^2 = x \cdot b, \ \forall x \in S$$

e usando la legge di cancellazione a destra si ottiene $b \cdot x = x$ per ogni $x \in S$. Quindi b é l'elemento neutro e (S, \cdot, b) é un monoide.

Combinando la Proposizione 1.1.16 con la Proposizione 1.2.14 si ottiene:

Corollario 1.2.15 Un semigruppo finito dove vale la legge di cancellazione è un monoide.

1.3 Gruppi

Sia $(M, \cdot, 1)$ un monoide e sia $x \in M$. Diremo che $a \in M$ é un inverso destro di x se

$$x \cdot a = 1. \tag{1.14}$$

Diremo che $a \in M$ é un inverso sinistro di x se

$$a \cdot x = 1. \tag{1.15}$$

Diremo che a è un'inverso di x se, a é sia inverso destro che inverso sinistro. Se x ha un'inverso allora diremo che x é invertibile.

Proposizione 1.3.1 Sia x un elemento di un monoide $(M, \cdot, 1)$. Se x é invertibile allora il suo inverso è unico.

Dimostrazione: Siano a e b due inversi di x. Per la proprietá associativa possiamo scrivere

$$a = a \cdot 1 = a \cdot (x \cdot b) = (a \cdot x) \cdot b = 1 \cdot b = b$$

dove nella seconda uguaglianza abbiamo usato il fatto che b é l'inverso destro di x e nella terza che a é l'inverso sinistro di x.

In virtú della proposizione precedente dato un elemento inveritibile $x \in M$ parleremo *del* suo inverso che indicheremo (momentaneamente) con i(x).

Definizione 1.3.2 *Una tripletta* $(G, \cdot, 1)$ *é un* gruppo *se é un monoide e tutti gli elementi di G sono invertibili.*

Quindi un gruppo é una tripletta $(G,\cdot,1)$ dove (G,\cdot) é un semigruppo (cioé l'operazione binaria $\cdot: G \times G \to G$ é associativa) tale che:

$$x \cdot 1 = x, \forall x \in G$$
 (1 è elemento neutro a destra); (1.16)

$$1 \cdot x = x, \forall x \in G$$
 (1 è elemento neutro a sinistra); (1.17)

e per ogni $x \in G$ esiste i(x) tale che:

$$x \cdot i(x) = 1$$
 ($i(x)$ è inverso destro di x); (1.18)

$$i(x) \cdot x = 1$$
 ($i(x)$ è inverso sinistro di x). (1.19)

Osservazione 1.3.3 Come conseguenza dell'esistenza di un inverso per ogni elemento otteniamo che ogni equazione di primo grado in un gruppo G ha sempre un'unica soluzione: dati $a,b \in G$. esiste un unico $x \in G$ che soddisfa l'equazione.

$$ax = b. (1.20)$$

Infatti moltiplicando a sinistra (risp. destra) per a^{-1} l'equazione precedente si ottiene $a^{-1} \cdot (a \cdot x) = (a^{-1} \cdot a) \cdot x = x$ (risp. $a^{-1}b$). E quindi l'unica soluzione dell'equazione (1.20) è $x = a^{-1}b$.

Notiamo che alcune delle proprietá nella definizione di gruppo sono ridondanti. Infatti, come mostra la seguente proposizione, basta richiedere la validitá del'esistenza di un elemento neutro a destra (risp. sinistra) e di un inverso destro (risp. sinistro) per ogni elemento di un semigruppo per essere sicuri che il semigruppo sia in effetti un gruppo.

Proposizione 1.3.4 Sia (S, \cdot) un semigruppo. Supponiamo che le (1.16) e (1.18) (risp. (1.17) e (1.19)) siano soddisfatte. Allora $(S, \cdot, 1)$ é un gruppo.

Dimostrazione: Sia $x \in S$. Per la (1.18) esiste $i(x) \in S$ tale che $x \cdot i(x) = 1$. Vogliamo mostrare che i(x) é anche inverso sinistro di x. Osserviamo che

$$b := i(x) \cdot x$$

é idempotente. Infatti

$$b^2 = b \cdot b = (i(x) \cdot x) \cdot (i(x) \cdot x) = i(x) \cdot (x \cdot i(x)) \cdot x = (i(x) \cdot 1) \cdot x = i(x) \cdot x = b,$$

dove nella penultima uguaglianza abbiamo usato la (1.16). Sia ora i(b) l'inverso destro di b che esiste sempre per la (1.18). Allora

$$1 = b \cdot i(b) = b^2 \cdot i(b) = b \cdot (b \cdot i(b)) = b \cdot 1 = b$$

e quindi $i(x) \cdot x = 1$ e i(x) é inverso sinistro di x. Inoltre 1 è un elemento neutro a sinistra. Infatti

$$1 \cdot x = (x \cdot i(x)) \cdot x = x \cdot (i(x) \cdot x) = x \cdot 1 = x.$$

In modo analogo si dimostra che un semigruppo dove valgono le (1.17) e (1.19) é un gruppo.

Osservazione 1.3.5 Le conclusioni della Proposizione 1.3.4 non sono valide se si richiede che valgano le (1.16) e (1.19) (risp. (1.17) e (1.18)). Per esempio sia (X, \cdot) il semigruppo dato da un insieme $X \neq \emptyset$ con operazione binaria $x \cdot y = x$ per ogni $x, y \in X$ (si veda l'Esempio 1.1.10). Allora ogni elemento di X è un elemento neutro a destra e ogni elemento di X ha un inverso sinistro e come abbiamo già osservato (X, \cdot) non é un monoide (si veda Esempio 1.2.11). Un altro esempio è fornito dal semigruppo (\mathbb{R}^*, \cdot) con operazione binaria

$$x \cdot y = |x| y$$
,

dove |x| denota il valore assoluto di $x \in \mathbb{R}^*$. In questo caso 1 é un elemento neutro sinistro (ma non destro $|x| = x \cdot 1 \neq x$, se x < 0) e ogni elemento x ha inverso destro dato da $|x|^{-1}$. D'altra parte, un qualunque $y \in \mathbb{R}^*$, con y < 0 non ha inverso sinistro. Notiamo che in questo esempio esistono due elementi neutri a sinistra ± 1 e se si fosse scelto -1 come elemento neutro sinistro allora ogni $y \in \mathbb{R}^*$ con y > 0 non avrebbe avuto inverso sinistro.

Notazione 1.3.6 Nel resto di queste note indicheremo con G invece che con $(G,\cdot,1)$ un gruppo, quando l'operazione binaria e l'elemento neutro saranno chiari dal contesto. Inoltre indicheremo con x^{-1} l'inverso di un elemento $x \in G$ $(x \cdot x^{-1} = x^{-1} \cdot x = 1)$. Se il gruppo G é abeliano useremo anche la notazione + per l'operazione binaria, 0 per l'elemento neutro e -x per l'inverso di $x \in G$ (e scrivermo x + (-x) = x - x = 0).

1.3.1 Alcuni esempi di gruppi

Il lettore è invitato a convincersi che gli esempi che seguono sono effettivamente gruppi e di capire perchè alcuni dei monoidi degli Esempi 1.2.4-1.2.12 non appartengono a questa lista.

Esempio 1.3.7 Le coppie (S, +, 0), dove $S = \mathbb{Z}$, \mathbb{Q} , \mathbb{R} , \mathbb{C} e + è la somma usuale sono gruppi abeliani infiniti.

Esempio 1.3.8 Le coppie $(S, \cdot, 1)$, dove $S = \mathbb{Q}^*$, \mathbb{R}^* , \mathbb{C}^* e · è la moltiplicazione usuale sono gruppi abeliani infiniti.

Esempio 1.3.9 (il cerchio unitario) L'insieme

$$S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}$$

è un gruppo abeliano infinito con la moltiplicazione · usuale tra numeri complessi. Ricordiamo che se z=x+iy allora il suo modulo è definito come $|z|=\sqrt{x^2+y^2}$. Infatti, il prodotto di due numeri complessi di modulo unitario è un numero complesso di modulo unitario, in quanto

$$|zw| = |z||w| = 1, \forall z, w \in S^1,$$

e quindi la moltiplicazione è un'operazione binaria su S^1 . (S^1, \cdot) è un semigruppo perchè la legge associativa vale in \mathbb{C}^* e a fortiori in S^1 . Inoltre $1 \in S^1$ è l'elemento neutro in \mathbb{C}^* e quindi in S^1 . Segue che $(S^1, \cdot, 1)$ è un monoide abeliano. Infine se $z \in S^1$ allora $z^{-1} \in S^1$. Infatti

$$z^{-1} = \frac{\bar{z}}{|z|^2} = \bar{z} \in S^1,$$

dove \bar{z} è il coniugato di z (se z = x + iy allora $\bar{z} = x - iy$).

Per descrivere altri esempi di gruppi definiamo il concetto di campo. Una cinquina $\mathbb{K} = (\mathbb{K}, +, \cdot, 0, 1), 0, 1 \in \mathbb{K}, 0 \neq 1$, è un campo se $(\mathbb{K}, +, 0)$ e $(\mathbb{K}^*, \cdot, 1)$ $(K^* = \mathbb{K} \setminus \{0\})$ sono gruppi abeliani e vale la seguente proprietè distributiva del prodotto \cdot rispetto alla somma +:

$$x \cdot (y+z) = x \cdot y + x \cdot z, \ \forall x, y, x \in \mathbb{K}.$$

Segue dagli Esempi 1.3.7 e 1.3.8 che Q, \mathbb{R} e C con le operazioni usuali di somma e prodotto sono campi infniti. Esistono anche campi finiti. Quello a cui siamo interessati in questo corso è il campo $\mathbb{Z}_p = (\mathbb{Z}_p, +, \cdot, [0]_p, [1]_p)$ degli interi modulo p, con p numero primo, con somma e moltiplicazione definite da (1.1) e (1.2). Il fatto che \mathbb{Z}_p sia un campo (con p elementi) segue dal fatto che $(\mathbb{Z}_p, +, [0]_p)$ è un gruppo abeliano (cf. l'Esempio 1.1.8), che $(\mathbb{Z}_p, +, [1]_p)$ è un monoide (cf. l'Esempio 1.2.9) e ogni $[a]_p \neq [0]_p$ è invertibile. Quest'ultimo fatto si dimostra come segue: per il teorema di Bezout essendo a coprimo con p esistono a, b e b tali che a0 e b1. Segue che

$$[ua]_p = [a]_p \cdot [u]_p = [u]_p \cdot [a]_p = [1]_p$$

e quindi $[u]_p$ è l'inverso di $[a]_p$.

Si noti che un campo ha almeno 2 elementi (0 \neq 1) e che \mathbb{Z}_2 è un campo con 2 elementi.

Esempio 1.3.10 (il gruppo lineare) Sia $n \in \mathbb{N}^+$ un intero positivo e sia \mathbb{K} un campo. Definiamo $M_n(\mathbb{K})$ come l'insieme delle matrici quadrate di ordine n, ovvero $n \times n$, a coefficienti in \mathbb{K} . Un elemento $A \in M_n(\mathbb{K})$ può essere scritto come

$$A = (a_{ij}), i, j = 1, ..., n,$$

dove $a_{ij} \in \mathbb{K}$ rappresenta l'elemento della i-esima riga e j-esima colonna.

Possiamo definire una somma tra due matrici: se $A=(a_{ij})$ e $B=(b_{ij})$ sono due matrici in $M_n(\mathbb{K})$, la matrice somma $C:=A+B\in M_n(\mathbb{K})$ è definita come

$$C = (c_{ij}), \quad c_{ij} = a_{ij} + b_{ij}, \quad i, j = 1, ..., n.$$

Questa operazione è una somma componente per componente.

Inoltre, $(M_n(\mathbb{K}), +, O_n)$ è un *monoide*, dove O_n denota la *matrice nulla*, cioè la matrice $n \times n$ le cui entrate sono tutte uguali a 0, ossia:

$$O_n = (0_{ij}), \quad 0_{ij} = 0, \ \forall i, j = 1, \ldots, n.$$

Possiamo anche definire il prodotto tra due matrici: se $A = (a_{ik})$ e $B = (b_{kj})$ sono due matrici in $M_n(\mathbb{K})$, la matrice prodotto $C := A \cdot B \in M_n(\mathbb{K})$ è definita mediante il prodotto righe per colonne, ossia:

$$C = (c_{ij}), \quad c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \quad i, j = 1, \dots, n.$$

Anche questa è un'operazione binaria. Inoltre, $(M_n(\mathbb{K}), \cdot, I_n)$ è un *monoide* rispetto al prodotto, dove I_n denota la *matrice identità*, definita come:

$$I_n = (\delta_{ij}), \quad \delta_{ij} = \begin{cases} 1, & \text{se } i = j, \\ 0, & \text{se } i \neq j. \end{cases}$$

La matrice identità ha 1 su tutta la diagonale principale e 0 altrove.

La dimostrazione che $(M_n(\mathbb{K}), \cdot, I_n)$ è un monoide segue gli stessi passaggi visti nei corsi di algebra lineare, con l'ipotesi che il campo \mathbb{K} sia \mathbb{R} o \mathbb{C} .

Per $n \in \mathbb{N}^+$, il *gruppo lineare generale* su un campo \mathbb{K} è definito come

$$GL_n(\mathbb{K}) = \{ A \in M_n(\mathbb{K}) \mid A \text{ è invertibile} \},$$

dove una matrice $A \in M_n(\mathbb{K})$ è detta *invertibile* se esiste una matrice $B \in M_n(\mathbb{K})$ tale che

$$AB = BA = I_n$$
.

Una tale matrice B è chiamata *inversa* di A ed è anch'essa un elemento di $GL_n(\mathbb{K})$, ossia invertibile. La condizione che A sia invertibile è equivalente al fatto che il suo *determinante*, $\det(A)$, sia diverso da 0, dove $0 \in \mathbb{K}$ è l'elemento nullo del campo. Il determinante di una matrice quadrata A su un campo \mathbb{K} si definisce nello stesso modo che per $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$.

Si invitano i lettori a verificare che tutte le proprietà del determinante viste nei corsi di algebra lineare si estendono al caso generale di un campo arbitrario. Ad esempio, la formula di Binet, che afferma che

$$\det(AB) = \det(A) \det(B), \forall A, B \in M_n(\mathbb{K}),$$

vale in qualsiasi campo K.

Usando la formula di Binet, si può concludere che $(GL_n(\mathbb{K}), \cdot, I_n)$ è un *grup*po, che in generale non è abeliano per $n \geq 2$. Tuttavia, è un gruppo abeliano per n = 1, poiché $GL_1(\mathbb{K}) = \mathbb{K}^*$.

Concludiamo questa sezione mostrando come, a partire da un monoide, si possa costruire un gruppo considerando i suoi elementi invertibili.

Proposizione 1.3.11 Sia $M = (M, \cdot, 1)$ un monoide. Definiamo l'insieme degli elementi invertibili di M come:

$$U(M) = \{x \in M \mid x \text{ è invertibile}\}.$$

Allora $(U(M), \cdot, 1)$ è un gruppo.

Dimostrazione: Siano $x, y \in U(M)$, cioè x e y sono invertibili. Dimostriamo che anche il loro prodotto è invertibile. In particolare, mostriamo che l'inverso di $x \cdot y$ è dato da:

$$(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}. \tag{1.21}$$

Infatti:

$$(x \cdot y) \cdot (y^{-1} \cdot x^{-1}) = x \cdot (y \cdot y^{-1}) \cdot x^{-1} = x \cdot 1 \cdot x^{-1} = x \cdot x^{-1} = 1,$$

e, analogamente:

$$(y^{-1} \cdot x^{-1}) \cdot (x \cdot y) = y^{-1} \cdot (x^{-1} \cdot x) \cdot y = y^{-1} \cdot 1 \cdot y = y^{-1} \cdot y = 1.$$

Pertanto, $x \cdot y$ è invertibile e l'inverso è $y^{-1} \cdot x^{-1}$. Da ciò si deduce che la moltiplicazione definita su M induce un'operazione binaria su U(M). Ora, osserviamo che $(U(M), \cdot)$ è un semigruppo, poiché la proprietà associativa vale in

M e, quindi, anche nel sottoinsieme U(M). Inoltre, $(U(M), \cdot, 1)$ è un monoide, in quanto 1 è invertibile (essendo il suo stesso inverso). Infine, per costruzione, tutti gli elementi di U(M) sono invertibili, il che dimostra che $(U(M), \cdot, 1)$ è un gruppo.

Osservazione 1.3.12 Segue immediatamente dalla definizione di gruppo che, se G è un gruppo, allora U(G) = G, poiché per definizione tutti gli elementi di un gruppo sono invertibili.

Osservazione 1.3.13 La formula (1.21) si estende facilmente a più elementi: se $x_1, \ldots, x_k, k \ge 2$ sono elementi di G, allora

$$(x_1 \cdots x_k)^{-1} = x_k^{-1} \cdots x_1^{-1}.$$

Non è detto che il gruppo U(M) sia sempre interessante. Ad esempio, nel caso del monoide $(\mathbb{Z},+,0)$ (rispettivamente $(\mathbb{Z},\cdot,1)$), l'insieme degli elementi invertibili è costituito solo da 0 (rispettivamente 1). Un altro esempio è dato dal monoide $(\mathbb{Q},\cdot,1)$ (rispettivamente $(\mathbb{R},\cdot,1)$ e $(\mathbb{C},\cdot,1)$), in cui l'insieme degli elementi invertibili è \mathbb{Q}^* (rispettivamente \mathbb{R}^* e \mathbb{C}^*).

Un esempio rilevante è dato da $U(M_n(\mathbb{K}), \cdot, I_n) = GL_n(\mathbb{K})$, l'insieme delle matrici invertibili di ordine n su un campo \mathbb{K} .

Esempio 1.3.14 Consideriamo il monoide $(\mathbb{Z}_m, \cdot, [1]_m)$, dove \mathbb{Z}_m sono gli interi modulo m e $[1]_m$ è l'elemento neutro rispetto alla moltiplicazione modulo m. L'insieme degli elementi invertibili di (\mathbb{Z}_m, \cdot) è dato da:

$$U(\mathbb{Z}_m, \cdot) = \{ [a]_m \in \mathbb{Z}_m \mid (a, m) = 1 \}, \tag{1.22}$$

dove (a, m) indica il massimo comun divisore tra a e m. Infatti, se a è coprimo con m, esistono $u, v \in \mathbb{Z}$ tali che ua + vm = 1. Questo implica che:

$$[ua]_m = [a]_m \cdot [u]_m = [u]_m \cdot [a]_m = [1]_m, \tag{1.23}$$

e quindi $[u]_m$ è l'inverso di $[a]_m$. Viceversa, se $[a]_m \in U(\mathbb{Z}_m, \cdot)$, esiste $[u]_m \in \mathbb{Z}_m$ tale che valga la relazione (1.23), il che implica che au + km = 1 per un intero k, e quindi (a, m) = 1. Osserviamo che questo ragionamento mostra che \mathbb{Z}_m è un campo se e solo se m è un numero primo.

1.3.2 La legge di cancellazione in un gruppo

Un risultato fondamentale nei gruppi è espresso dalla seguente proposizione.

Proposizione 1.3.15 *In un gruppo G vale la legge di cancellazione.*

Dimostrazione: Siano $x,y,z \in G$ tali che xy = xz. Moltiplicando a sinistra per x^{-1} (l'inverso di x) il primo e secondo membro di quest'equazione si ottiene $x^{-1}(xy) = x^{-1}(xz)$. Per la proprietà associativa il primo (risp. secondo) membro si scrive come $x^{-1}(xy) = (x^{-1}x)y = 1y = y$ (risp. $x^{-1}(xz) = (x^{-1}x)z = 1z = z$). Segue dunque che y = z, il che mostra la validità dellla legge di cancellazione a sinistra. Analogamente da yx = zx si ottiene y = z moltiplicando a destra per x^{-1} .

A questo punto sorge spontanea una domanda: in un semigruppo o in un monoide in cui vale la legge di cancellazione, l'insieme è necessariamente un gruppo? Le due proposizioni seguenti esplorano questa questione.

Proposizione 1.3.16 Sia M un monoide finito. Se vale la legge di cancellazione a destra o a sinistra, allora M è un gruppo.

Dimostrazione: Sia $x \in M$. Dimostriamo che x è invertibile. Se vale la legge di cancellazione a sinistra consideriamo la *traslazione a sinistra* definita da:

$$L_x: M \to M, y \mapsto xy.$$

Questa funzione è iniettiva: se $L_x(y) = L_x(z)$ allora xy = xz e, cancellando x a sinistra si ottiene y = z. Poichò M è finito, L_x è anche suriettiva. Quindi esiste un elemento $i(x) \in M$ tale che $= x \cdot i(x) = L_x(i(x)) = 1$, dimostrando che i(x) è un inverso destro di x. Dal momento che 1 è l'elemento neutro a destra, segue dalla Proposizione 1.3.4 che i(x) è anche inverso sinistro di x e quindi x è invertibile. Se invece vale la legge di cancellazione a destra, consideriamo la traslazione a destra:

$$R_x: M \to M, y \mapsto yx$$

che si dimostra essere iniettiva, e quindi suriettiva, da cui si deduce che x è invertibile.

Osservazione 1.3.17 Il fatto che M sia finito è essenziale per la validità della proposizione precedente. Consideriamo, infatti, l'insieme infinito X e il monoide $(\operatorname{Inj}(X), \circ, id_X)$ delle applicazioni iniettive da X in se stesso, con l'operazione di composizione. In questo monoide vale la legge di cancellazione a

sinistra, ma non è un gruppo poiché esistono applicazioni iniettive non invertibili. Analoghe considerazioni valgono per il monoide $(Surj(X), \circ, id_X)$ delle applicazioni suriettive, dove vale la legge di cancellazione a destra ma non si tratta di un gruppo.

Corollario 1.3.18 Sia S un semigruppo finito. Se vale la legge di cancellazione, allora S è un gruppo.

Dimostrazione: Dal Corollario 1.2.15 (S, \cdot, b) è un monoide, e quindi la conclusione segue dalla Proposizione 1.3.16.

Osservazione 1.3.19 Anche nel caso del Corollario 1.3.18, la finitezza di S è fondamentale. Ad esempio, $(\mathbb{N}^+,+)$ è un semigruppo con infiniti elementi in cui vale la legge di cancellazione, ma non è un monoide e tantomeno un gruppo.

Osservazione 1.3.20 Nel Corollario 1.3.18, l'ipotesi della legge di cancellazione non può essere indebolita richiedendo solo la validità della legge di cancellazione a destra (o a sinistra), anche se il semigruppo è finito. Infatti, se X è un insieme finito con almeno due elementi, l'operazione binaria (1.3) (rispettivamente, (1.4)) soddisfa la legge di cancellazione a destra (rispettivamente, a sinistra), ma (X, \cdot) non è un monoide e tantomeno un gruppo.

1.3.3 Potenze, il commutatore e l'ordine di un elemento

Sia $(G, \cdot, 1)$ un gruppo, $x \in G$ e $m \in \mathbb{Z}$. Definiamo

- (a) $x^0 := 1$;
- (b) $x^n := \underbrace{x \cdot x \cdot \cdots x}_{n \text{ volte}}$, se n > 0 (definizione per induzione);

(c)
$$x^n := (x^{-1})^{-n}$$
, se $n < 0$.

Osservazione 1.3.21 La relazione (c) con n = -1, mostra che x alla potenza -1 è proprio x^{-1} , l'inverso di x. Inoltre la (c) vale anche se n > 0. Infatti, applicando la (3) si ottiene

$$(x^{-1})^{-n} = (x^{-1})^{-1})^n = x^n,$$

dove si è usato il fatto che

$$(x^{-1})^{-1} = x.$$

La seguente proposizione descrive le proprietà delle potenze con esponente intero in un gruppo.

Proposizione 1.3.22 Sia G un gruppo. Allora per ogni $x \in G$ e per ogni $m, n \in \mathbb{Z}$ si ha:

(1)
$$x^n = x^{n-1}x = xx^{n-1}$$
;

(2)
$$x^{m+n} = x^n x^m = x^m x^n$$
;

(3)
$$(x^n)^{-1} = x^{-n}$$
;

(4)
$$x^{mn} = (x^m)^n = (x^n)^m$$
.

Dimostrazione: Se n è un numero naturale la formula

$$x^n = x^{n-1}x = xx^{n-1} (1.24)$$

ossia la (1) per $n \ge 0$, segue dalla proprietà associativa. Se n < 0:

$$x^{n} = (x^{-1})^{-n} = (x^{-1})^{-n} \cdot 1 = (x^{-1})^{-n} x^{-1} x = (x^{-1})^{-n+1} x = x^{n-1} x$$

dove nella penultima uguaglianza si è usato la (1.24) in quanto -n > 0 e nella prima e ultima uguaglianza la (c). Analogamente

$$x^{n} = (x^{-1})^{-n} = 1 \cdot (x^{-1})^{-n} = xx^{-1}(x^{-1})^{-n} = x(x^{-1})^{-n+1} = xx^{n-1}.$$

Per dimostare la (2) è sufficiente dimostrare la prima uguaglianza $x^m x^n = x^{m+n}$, poiché m+n=n+m. Fissiamo m e supponiamo innanzitutto che n sia un numero naturale. Procediamo per induzione su n. Se n=0, l'uguaglianza è vera. Supponiamo che sia vera per n-1, allora usando la (1), si ha:

$$x^{m}x^{n} = x^{m}x^{n-1}x = x^{m+n-1}x = x^{m+n-1+1} = x^{m+n}$$
 (1.25)

ossia la (2) quando n>0. Se invece n<0, allora dalla (c) e dalla (1.25) (-n>0) si ha:

$$x^{m}x^{n} = (x^{-1})^{-m}(x^{-1})^{-n} = (x^{-1})^{-m-n} = x^{m+n}$$

Dalla (2) e dalla (a) si ottiene:

$$x^{n}x^{-n} = x^{n-n} = x^{0} = 1$$

dalla quale segue la (3) per l'unicità dell'inverso. Infine, per dimostare la (4), è sufficiente dimostrare la prima uguaglianza $(x^m)^n = x^{mn}$, poiché mn = nm.

Fissiamo m e supponiamo inizialmente che n sia un numero naturale. Procediamo per induzione su n. Se n=0, l'uguaglianza è vera. Supponiamo che sia vera per n-1, ossia $(x^m)^{n-1}=x^{m(n-1)}$, allora, usando la (1) otteniamo:

$$(x^m)^n = (x^m)^{n-1} x^m = x^{m(n-1)} x^m = x^{mn-m+m} = x^{mn},$$
 (1.26)

ossia la (4) quando n > 0.

Se invece n < 0, allora:

$$(x^m)^n = ((x^m)^{-1})^{-n} = (x^{-m})^{-n} = x^{(-m)(-n)} = x^{mn}$$

dove nella prima uguaglianza si è usata la (c), nella seconda la (3) e nella terza la (1.26). \Box

Notazione 1.3.23 Supponiamo G abeliano e usiamo la notazione additiva G = (G, +, 0). Allora le (a), (b), (c), (1), (2), (3), (4) si scrivono come segue.

- $0 \cdot x = 0$;
- $nx = \underbrace{x + \dots + x}_{n \text{ yolte}}$, se n > 0;
- nx = (-n)(-x) se n < 0;
- nx = (n-1)x + x = x + (n-1)x;
- (m+n)x = nx + mx = mx + nx;
- \bullet -(nx) = (-n)x:
- (mn)x = n(mx) = m(nx).

Definizione 1.3.24 *Sia G un gruppo. Diremo che* $x,y \in G$ commutano *o sono* permutabili se

$$xy = yx$$
.

Dati due elementi qualunque $x,y \in G$, chiameremo il commutatore tra x e y il seguente elemento di G:

$$[x, y] = xyx^{-1}y^{-1}.$$

Segue immediatamente che $x,y \in G$ sono permutabili se e solo se [x,y]=1. Chiaramente l'elemento neutro commuta con ogni altro elemento del gruppo.

Proposizione 1.3.25 Siano $x,y \in G$ due elementi permutabili, cioè [x,y] = 1. Allora, per ogni $m,n \in \mathbb{Z}$, valgono i seguenti fatti:

(*i*)
$$[x^n, y^m] = 1$$
;

(ii)
$$(xy)^n = x^n y^n$$
.

Dimostrazione: La (i) per n=-1 e m=1 e per n=m=-1 e cioè

$$[x^{-1}, y] = 1 (1.27)$$

e

$$[x^{-1}, y^{-1}] = 1 (1.28)$$

seguono facilmente da [x, y] = 1 e sono lasciate come semplice verifica.

Per dimostrare la (i) supponiamo prima $n \in \mathbb{N}$ e lavoriamo per induzione su n. La base dell'induzione è chiara: se n=0 allora $[x^0,y^m]=[1,y^m]=1$. Supponiamo che la (i) sia vera per tutti i naturali strettamente minori di $n \geq 1$. In particolare

$$[x^{n-1}, y^m] = 1 (1.29)$$

e

$$[x, y^m] = 1 (1.30)$$

Allora

$$x^{n}y^{m} = xx^{n-1}y^{m} = xy^{m}x^{n-1} = y^{m}xx^{n-1} = y^{m}x^{n},$$

dove nella seconda uguaglianza si è usata la (1.29), nella terza la (1.30) e nella prima e ultima la (1) della Proposizione 1.3.22. La (i) è quindi dimostrata quando $n \in \mathbb{N}$.

Se n < 0 allora essendo -n > 0 possiamo scrivere

$$x^{n}y^{m} = (x^{-1})^{-n}y^{m} = y^{m}(x^{-1})^{-n} = y^{m}x^{n}$$

dove nella seconda uguaglianza abbiamo usato la (1.27).

Per dimostrare la (ii), supponiamo $n \in \mathbb{N}$ e lavoriamo per induzione su n. Se n=0: $(xy)^0=1=1\cdot 1=x^0y^0$. Supponiamo la (ii) valga per n-1 e cioè $(xy)^{n-1}=x^{n-1}y^{n-1}$. Allora

$$(xy)^n = (xy)^{n-1}xy = x^{n-1}y^{n-1}xy = x^{n-1}xy^{n-1}y = x^ny^n,$$

dove nella prima e nell'ultima uguaglianza abbiamo usato la la (1) della Proposizione 1.3.22 e nella terza uguaglianza abbiamo usato $[x, y^{n-1}] = 1$ la cui validità segue dalla (i). Se n < 0 allora

$$(xy)^n = ((xy)^{-1})^{-n} = (x^{-1}y^{-1})^{-n} = (x^{-1})^{-n}(y^{-1})^{-n} = x^ny^n$$

dove nella seconda uguaglianza abbiamo usato la (1.28) e nella terza la (ii) per -n>0.

Osservazione 1.3.26 In un gruppo abeliano G le (i) e (ii) valgono per ogni coppia di elementi e in effetti si dimostra che se $x_1, \ldots, x_k, x_j \in G$ e $[x_l, x_m] = 1$ per ogni $l, m = 1, \ldots, k$, allora

$$(x_1 \cdots x_k)^n = x_1^n \cdots x_k^n. \tag{1.31}$$

Osservazione 1.3.27 Se in gruppo *G* vale che

$$(xy)^2 = x^2y^2$$

per ogni coppia di elementi $x,y\in G$. Allora il gruppo è abeliano. Infatti

$$xyxy = (xy)^2 = x^2y^2 = xxyy$$

e cancelando x a sinistra e y a destra si ottiene xy = yx. Essendo x e y arbitrari segue che il gruppo è abeliano. Viene spontaneo chiedersi: se in gruppo G vale

$$(xy)^3 = x^3 y^3, (1.32)$$

per ogni coppia di elementi $x,y \in G$. Possiamo affermare che il gruppo G è abeliano? La risposta è negativa in generale (si veda l'Esercizio 1.8).

Concludiamo questo paragrafo (e questo capitolo) definendo l'ordine di un elemento in un gruppo e le sue principali proprietà.

Sia dunque G un gruppo e sia $x \in G$.

Consideriamo l'insieme

$$A_x = \{ n \in \mathbb{N}^+ \mid x^n = 1 \}.$$

Se $A_x \neq \emptyset$ allora, per il principio del buon ordinamento, esiste $o(x) \in \mathbb{N}^+$ tale che o(x) è il più piccolo naturale tale che

$$x^{o(x)} = 1.$$

Definizione 1.3.28 Sia $A_x \neq \emptyset$. Chiameremo o(x) l'ordine dell'elemento x. Se invece $A_x = \emptyset$ diremo che l'ordine di x è infinito e scriveremo $o(x) = \infty$.

Esempio 1.3.29 Se $G=(\mathbb{Z},+,0)$ e $x\in\mathbb{Z}$. Allora $o(x)=\infty$ per ogni $x\neq 0$. Mentre o(x)=1 se x=0.

Esempio 1.3.30 Se $G = (\mathbb{Z}_m, +, [0]_m)$. Allora $o([1]_m) = m$.

Osservazione 1.3.31 In un gruppo arbitrario o(x) = 1 se e solo se x = 1.

Osservazione 1.3.32 Se G ha ordine finito, allora $o(x) < \infty$ per ogni $x \in G$. Infatti l'applicazione

$$f: \mathbb{N}^+ \to G, d \mapsto x^d$$

non può essere iniettiva ed esistono quindi $u, v \in \mathbb{N}^+$, u > v tali che $x^u = x^v$. Se u = v + n, $n \in \mathbb{N}^+$, possiamo scrivere $x^u = x^{v+n} = x^v$ da cui $x^n = 1$ e quindi l'insieme $A_x \neq \emptyset$.

Ricordiamo che il massimo comun divisore tre due interi a e b si denota con (a,b).

Proposizione 1.3.33 *Sia G un gruppo, x* \in *G tale che* $o(x) = m \in \mathbb{N}^+$ *. Allora*

- (i) $x^k = 1$ se e solo se $m \mid k$;
- (ii) $x^k = x^n$ se e solo se $n k \equiv 0 \mod m$;
- (iii) $o(x^k) = \frac{m}{(m,k)}$;
- (iv) $o(x^{-1}) = m$.

Dimostrazione: dimostrazione della (i): se $m \mid k$ allora k = mq, $q \in \mathbb{Z}$. Quindi

$$x^k = x^{mk} = (x^m)^k = 1^k = 1$$

Viceversa, se supponiamo $x^k = 1$. Per la divisione euclidea possiamo scrivere

$$k = mq + r, \ 0 \le r < m.$$

Segue che

$$x^{k} = x^{mq+r} = x^{mq}x^{r} = (x^{m})^{q}x^{r}1 \cdot x^{r} = x^{r}.$$

Essendo m=o(x) il più piccolo naturale positivo tale che $x^m=1$ si ottiene r=0 e quindi k=mq, ossia $m\mid q$.

Dimostrazione della (ii): $x^k = x^n$ se e solo se $x^{k-n} = 1$. Quindi, per la (i), $m \mid k-n$ e quindi la tesi.

Dimostrazione della (iii): siano $s := o(x^k)$ e d = (m, k). Quindi $d \mid m$ e $d \mid k$, ossia $m = dm_1$ e $k = dk_1$. Inoltre $(m_1, k_1) = 1$. La dimostrazione sarà conclusa se mostriamo che $m_1 = s$. Sfruttando prima la condizione che $(x^k)^s = 1$ si ottiene

$$1 = (x^k)^s = x^{ks} = x^{dk_1s}$$

Per la (i) segue che $m=dm_1\mid dk_1s$, cioè $m_1\mid k_1s$. Essendo $(m_1,k_1)=1$ si ottiene

$$m_1 \mid s. \tag{1.33}$$

1.4. ESERCIZI 23

D'altra parte

$$(x^k)^{m_1} = x^{km_1} = x^{dk_1m_1} = x^{dm_1k_1} = x^{mk_1} = (x^m)^{k_1} = 1^{k_1} = 1.$$

Sempre dalla (i) si deduce che

$$s \mid m_1.$$
 (1.34)

Mettendo insieme le (1.33) e la (1.34) si ottiene $s=m_1$. La (iv) segue dalla (iii) per k=-1.

Esempio 1.3.34 Calcoliamo l'ordine di $[15]_{24}$ in \mathbb{Z}_{24} . Osserviamo che $o([1]_{24}) = 24$ e $[15]_{24} = 15[1]_{24}$. Dalla (iii) della Proposizione 1.3.25 si deduce dunque che:

$$o([15]_{24}) = \frac{24}{(15,24)} = \frac{24}{3} = 8.$$

Esempio 1.3.35 Calcoliamo l'ordine di $[4]_9$ in $U(\mathbb{Z}_9,\cdot)$ Osserviamo

$$U(\mathbb{Z}_9) = \{[1]_9, [2]_9, [4]_9, [5]_9, [7]_9, [8]_9\}$$

 $([2]_9)^2 = [4]_9$, $([2]_9)^3 = [8]_9$, $([2]_9)^4 = [7]_9$, $([2]_9)^5 = [5]_9$, $([2]_9)^6 = [1]_9$ quindi $o([2]_9) = 6$. Analogamente si verifica facilmente o con un calcolo diretto che $o([4]_9) = 3$, oppure suando la (iii) della Proposizione 1.3.25

$$o([4]_9) = o([2]_9^2) = \frac{6}{(6,2)} = \frac{6}{2} = 3.$$

1.4 Esercizi

Esercizio 1.1 Si dica quali delle seguenti operazioni binarie sull'insieme indicato é associativa e commutativa. Si dica inoltre per quali di queste operazioni esiste un elemento neutro e quali $x \in \mathbb{R}$ sono invertibili. In particolare si identifichino i semigruppi, i monoidi e i gruppi.

- 1. $x \cdot y = x + y + k$, $x, y \in \mathbb{R}$ e $k \in \mathbb{R}$ una costante fissata;
- 2. $x \cdot y = \sqrt{x^2 + y^2}$, $x, y \in \mathbb{R}$;
- 3. $x \cdot y = |x + y|, x, y \in \mathbb{R};$
- 4. $x \cdot y = x y$, $x, y \in \mathbb{R}$;
- 5. $x \cdot y = \max\{x, y\}, x, y \in \mathbb{R};$
- 6. $x \cdot y = \frac{xy}{2}, x, y \in \mathbb{R}^*$;

7.
$$x \cdot y = x + y + xy$$
, , $x \in \mathbb{R} \setminus \{-1\}$;

8.
$$x \cdot y = \frac{x+y}{x+y+1}, x \in (0,1) = \{x \in \mathbb{R} \mid 0 < x < 1\}.$$

Esercizio 1.2 Sia G il prodotto cartesiano $\mathbb{Q} \times \mathbb{Z}^*$. Definiamo un'operazione su G nel modo seguente:

$$(q,m) \cdot (q',m') = (q + mq',mm').$$

Si provi che (G, \cdot) é un monoide e si calcolino gli elementi invertibili. Si dica se G é un gruppo e se G é abeliano.

Esercizio 1.3 Sia G il prodotto cartesiano $\mathbb{Q}^* \times \mathbb{Q}$. Definiamo un'operazione su G nel modo seguente:

$$(a,b)\cdot (a',b') = (aa',ab' + \frac{b}{a'}).$$

Si provi che *G* é un gruppo e si dica se *G* é abeliano.

Esercizio 1.4 Si dica quali delle seguenti applicazioni definisce un'operazione binaria e quale di queste definisce un' operazione di gruppo sull'insieme indicato.

1.
$$(a,b) \cdot (c,d) = (ad + bc,bd) \text{ su } \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid y \neq 0\};$$

2.
$$(a,b) \cdot (c,d) = (ac,bc+d) \text{ su } \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x \neq 0\};$$

3.
$$(a,b) \cdot (c,d) = (ac,bc+d)$$
 su $\mathbb{R} \times \mathbb{R}$;

4.
$$(a,b)\cdot(c,d)=(ac-bd,ad+bc)$$
 su $\mathbb{R}^*\times\mathbb{R}^*$;

5.
$$(a,b) \cdot (c,d) = (ac - bd, ad + bc) \operatorname{su} \mathbb{R} \times \mathbb{R}$$
.

Esercizio 1.5 Sia $A = \{a, b\}$ un insieme con due elementi. Descrivere tutte le operazioni binarie su A. In particolare si dica quali di queste operazioni é commutativa e associativa. Si dica inoltre per quali di queste operazioni esiste un elemento neutro e quali elementi di A sono invertibili. Mostrare infine che ci sono 8 strutture di semigruppo di cui 6 non abeliane e 2 abeliane e che di queste solo 2 risultano un gruppo.

Esercizio 1.6 Sia $(M, \cdot, 1)$ un monoide e sia S un sottoinsieme di M tale che (S, \cdot) risulta un semigruppo e $1 \notin S$. Si puó affermare che (S, \cdot) non é un monoide?

1.4. ESERCIZI 25

Esercizio 1.7 Sia G un gruppo finito e sia S l'insieme degli elementi di G diversi dal proprio inverso $S = \{x \in G | | x \neq x^{-1}\}$. Dimostrare che:

- 1. *S* ha un numero pari di elementi;
- 2. $|G| \equiv |G \setminus S| \mod 2$;
- 3. se *G* ha un numero pari di elementi allora esiste $x \in G \setminus S$, $x \neq 1$ (quindi un gruppo di ordine pari ha almeno un elemento di ordine 2).

Esercizio 1.8

1. Sia G il gruppo costituito dalle matrici a entrate in \mathbb{Z}_3 della forma

$$\begin{bmatrix} [1]_3 & [a]_3 & [b]_3 \\ 0 & [1]_3 & [c]_3 \\ 0 & 0 & [1]_3 \end{bmatrix}$$

Si dimostri che *G* è un gruppo non abeliano dove tutti gli elementi diversi dall'elemento neutro hanno ordine 3.

2. Sia *G* un gruppo che non ha elementi di ordine 3. Supponiamo che

$$(xy)^3 = x^3y^3, \forall x, y \in G. \tag{1.35}$$

Dimostrare che *G* é abeliano.

(Suggerimento per la seconda parte: si osservi che

$$[x,y]^3 = ((xyx^{-1})y^{-1})^3 \stackrel{\text{(1.35)}}{=} xy^3x^{-1}y^{-3} = [x,y^3], \ \forall x,y \in G$$
 (1.36)

e che

$$xy^3x^{-1} = (xyx^{-1})^3 = ((xy)x^{-1})^3 \stackrel{\text{(1.35)}}{=} (xy)^3x^{-3} \stackrel{\text{(1.35)}}{=} x^3y^3x^{-3}, \ \forall x, y \in G$$

dalla quale segue

$$[x^2, y^3], \ \forall x, y \in G, \tag{1.37}$$

la quale ci dice che i quadrati sono permutabili con tutti i cubi. Dalla (1.8) e dalla (1.36) si ottiene dunque

$$[x^2, y], \ \forall x, y \in G, \tag{1.38}$$

la quale ci dice che i quadrati sono permutabili con ogni elemento del gruppo. Dalla (1.36) e dalla (1.37) si ottiene

$$[x,y]^3 = [x,y^3] = xy^3x^{-1}y^{-3} = xyx^{-1}y^{-1} = [x,y], \ \forall x,y \in G$$

e quindi

$$1 = [x, y]^{2} = xyx^{-1}y^{-1}xyx^{-1}y^{-1} \stackrel{\text{(1.37)}}{=} xyxyxyx^{-3}y^{-3} = (xy)^{3}x^{-3}y^{-3} \stackrel{\text{(1.38)}}{=} xyx^{-1}y^{-1} = [x, y].$$

Esercizio 1.9 Sia $n \in \mathbb{N}_+$ e p un primo. Si dimostri che

$$|GL_n(\mathbb{Z}_p)| = (p^n - 1)(p^n - p)(p^n - p^2) \cdots (p^n - p^{n-1}).$$

(Suggerimento: le righe di una matrice di $GL_n(\mathbb{Z}_p)$ sono linearmente indipendenti. Quindi la prima riga r_1 di una tale matrice puó essere qualsiasi cosa tranne il vettore nullo, quindi ci sono p^n-1 possibilitá per la prima riga. Per ognuna di queste possibilitá, la seconda riga r_2 puó essere qualsiasi cosa tranne un multiplo della prima riga, il che dá p^n-p possibilitá. Per qualsiasi scelta di r_1 e r_2 delle prime due righe, la terza riga puó essere qualsiasi cosa trana combinazione lineare di r_1 e r_2 . Il numero di combinazioni lineari $\lambda_1 r_1 + \lambda_2 r_2$ é p^2 cioé il numero di scelte per la coppie λ_1 e λ_2 . Ne consegue che per ogni r_1 e r_2 ci sono p^n-p^2 possibilitá per la terza riga. Procedendo allo stesso modo sulle rimanenti righe si ottiene il risultato).

Esercizio 1.10 Dieci uomini vengono condannati a morte e rinchiusi nella stessa cella la notte precedente all'esecuzione. Gli viene data peró una possibilità per salvarsi la vita. La mattina dell'esecuzione i dieci condannati verranno messi in fila indiana e verrá messo sulla testa di ognuno di essi un cappello di colore o bianco o nero. Nessuno dei condannati potrá vedere il colore del proprio cappello (quello che ha nella propria testa) ma solo, eventualmente, quello dei condannati che si trovano di fronte a lui. Per salvarsi, ognuno di loro, a turno potrá dire la parola "nero" oppure la parola "bianco". Se la parola detta da un condannato corrisponde al colore del proprio cappello allora il condannato sará graziato e quindi liberato. In caso contrario sará ucciso. Quale é la strategia che i dieci condannati dovranno escogitare la notte prima dell'esecuzione per essere sicuri che almeno 9 di loro siano graziati? Generalizzare a n condannati e k colori.

Capitolo 2

Due gruppi importanti: D_n e S_n

Questo capitolo è dedicato a due gruppi di ordine finito che rivestono un ruolo importante nella teoria dei gruppi: il gruppo diedrale e il gruppo simmetrico.

2.1 Il gruppo diedrale

Sia $n \ge 3$ e sia P_n un poligono regolare di n lati in un piano euclideo \mathcal{E} . Consideriamo l'insieme D_n costituito dalle isometrie f di \mathcal{E} che lasciano invariato P_n , cioè $f(P_n) = P_n$.

Possiamo allora definire un'operazione binaria associativa su D_n data dalla composizione ($f \circ g$, per ogni $f, g \in D_n$) che rende $D_n = (D_n, \circ, 1)$ un monoide, dove 1 denota l'applicazione identità da \mathcal{E} in se stesso.

Essendo le isometrie di \mathcal{E} applicazioni invertibili deduciamo anche che D_n è un gruppo, chiamato il *gruppo diedrale*. Infatti l'inverso f^{-1} di un isometria f di \mathcal{E} soddisfa $f^{-1}(P_n) = P_n$.

Per capire meglio la natura del gruppo diedrale D_n , analizziamo in dettaglio i casi n=3 e n=4.

Il gruppo D_3

In questo caso il poligono regolare P_3 è un triangolo equilatero di vertici A, B e C che possiamo pensare centrato nell'origine degli assi di un sistema di riferimento cartesiano e tale che il vertice A appartenga all'asse positiva delle ordinate.

Le isometrie distinte del piano che fissano il triangolo sono 6:

- l'applicazione identica, denotata con 1;
- la rotazione $r_{\frac{2\pi}{3}}$ in senso antiorario intorno all'origine di angolo $\frac{2\pi}{3} = 120^{\circ}$;
- la rotazione $r_{\frac{4\pi}{3}}$ in senso antiorario intorno all'origine di angolo $\frac{4\pi}{3} = 240^{\circ}$;
- la riflessione s_A rispetto alla bisettrice dell'angolo A;
- la riflessione s_B rispetto alla bisettrice dell'angolo B;
- la riflessione *s*_C rispetto alla bisettrice dell'angolo *C*.

Le bisettrici sono rappresentati in figura.

Quindi D_3 è un gruppo di ordine 6. sSe indichiamo con $r=r_{\frac{2\pi}{3}}$ allora $r_{\frac{4\pi}{3}}=r^2=r\circ r,\,r^3=r\circ r\circ r=1$ (osserviamo che le rotazioni in senso antiorario di angolo $\frac{\pi}{3}$ e $\frac{4\pi}{3}$ sono date rispettivamente da r^2 e r). Possiamo quindi scrivere

$$D_3 = \{1, r, r^2, s_A, s_B, s_C\}$$

29

Vediamo più a fondo la struttura di gruppo. Chiaramente

$$r^3 = s_A^2 = s_B^2 = s_C^2 = 1.$$

Quindi r ha ordine 3 e le riflessioni hanno ordine 2. Si può facilmente verificare che che $r \circ s_A = s_C$, $r^2 \circ s_A = s_B$, come mostrato dai seguenti disegni:

Possiamo quindi esprimere gli elementi di D_3 in funzione di r e di $s:=s_A$ come

$$D_3 = \{1, r, r^2, s, r \circ s, r^2 \circ s\}$$

Osserviamo anche che la rotazione r e la riflessione s non commutano. Più precisamente

$$s \circ r = r^2 \circ s = s_B, \tag{2.1}$$

come si evince dal seguente disegno e da quello precedente:

Quindi D_3 è un gruppo non abeliano. Usando la relazione (2.1) possiamo quindi calcolare i prodotti in D_3

Per esempio

$$s \circ r^2 = s \circ r \circ r = r^2 \circ s \circ r = r^4 \circ s = r \circ s$$

e analogamente per gli altri elementi.

Si ottiene quindi facilmente la seguente tavola moltiplicativa per il gruppo D_3 .

	1	r	r^2	s	rs	r^2s
1	1	r	r^2	S	rs	r^2s
r	r	r^2	1	rs	r^2s	S
r^2	r^2	1	r	r^2s	S	rs
s	S	r^2s	rs	1	r^2	r
rs	rs	S	r^2s	r	1	r^2
r^2s	r^2s	rs	S	s rs r ² s 1 r r ²	r	1

Il gruppo D_4

In questo caso il poligono regolare P_4 è un quadrato di vertici A, B, C e D come in figura, che possiamo pensare centrato nell'origine degli assi di un sistema di riferimento cartesiano xy e simmetrico rispetto all'asse delle ordinate.

Le isometrie distinte del piano che fissano il quadrato sono 8:

- l'applicazione identica, denotata con 1;
- la rotazione $r_{\frac{\pi}{2}}$ in senso antiorario intorno all'origine di angolo $\frac{\pi}{2}$;
- la rotazione r_{π} in senso antiorario intorno all'origine di angolo π ;
- la rotazione $r_{\frac{3\pi}{2}}$ in senso antiorario intorno all'origine di angolo $\frac{3\pi}{2}$;
- la riflessione s_{AC} rispetto alla diagonale AC;
- la riflessione *s*_{BD} rispetto alla diagonale *BD*;
- la riflessione s_x rispetto all'asse delle ascisse;
- la riflessione s_y rispetto all'asse delle ordinate.

2.1. IL GRUPPO DIEDRALE

31

Gli assi di simmetria sono rappresentati come segue.

Quindi D_4 è un gruppo di ordine 8. Se indichiamo con $r=r_{\frac{\pi}{2}}$ allora $r_{\pi}=r^2$, $r^3=r_{\frac{3\pi}{2}}$ e $r^4=1$. Possiamo quindi scrivere

$$D_4 = \{1, r, r^2, r^3, s_{AC}, s_{BD}, s_x, s_y\}$$

Osserviamo che

$$r^4 = s_{AC}^2 = s_{BD}^2 = s_x^2 = s_y^2 = 1$$

e che $r \circ s_y = s_{BD}$, $r^2 \circ s_y = s_x$, $r^3 \circ s_y = s_{AC}$ come mostrano i seguenti disegni:

Possiamo quindi esprimene gli elementi di D_4 in funzione di r e di $s:=s_y$ come

$$D_4 = \{1, r, r^2, r^3, s, r \circ s, r^2 \circ s, r^3 \circ s\}$$

Osserviamo anche che la rotazione r e la riflessione s non commutano. Più precisamente

$$s \circ r = r^3 \circ s = s_{AC}, \tag{2.2}$$

come si evince dal seguente disegno e dal disegno precedente:

Quindi D_4 è un gruppo non abeliano. Usando la relazione (2.2) possiamo quindi calcolare i prodotti in D_4 e ottenere la seguente tavola moltiplicativa per questo gruppo.

•]	L	r	r^2	r^3	s	rs	r^2s	r^3s
1	1	L	r	r^2	r^3	S	rs	r^2s	r^3s
r	1	•	r^2	r^3	1	rs	r^2s	r^3s	s
					r				
r^3	r	3	1	r	r^2	r^3s	s	rs	r^2s
S	8	3	r^3s	r^2s	rs	1	r^3	r^2	r
rs	r	s	S	r^3s	r^2s	r	1	r^3	r^2
					r^3s				
					S				

Il caso generale

Assumiamo che il poligono regolare P_n sia centrato nell'origine di un sistema di riferiemento cartesiano. Come osservato nei casi n=3 e n=4 gli assi di simmetria del poligono P_n sono disposti in maniera diversa, a seconda che il numero dei suoi lati sia pari (metá degli assi passano per i vertici opposti e metá passano per il centro dei lati opposti) oppure dispari (ogni asse passa per un vertice e il centro del lato opposto). Ovviamente tutti gli assi di simmetria passano per l'origine.

Quindi

$$D_n = \{1, r, \ldots, r^{n-1}, s_1, \ldots, s_n\},\$$

dove r é la rotazione intorno all'origine in senso antiorario di angolo $\frac{2\pi}{n}$, $r^n=1$ e s_h , $h=1,\ldots,n$ é la riflessione rispetto al h-esimo asse di simmetria del

poligono, $s_h^2 = 1$. Dunque D_n è un gruppo di ordine 2n. Il seguente lemma segue dai corsi di geometria (si veda anche l'Osservazione 2.1.5).

Lemma 2.1.1 Sia O un punto fissato del piano. Sia \mathcal{R} l'insieme delle rotazioni piane intorno a O e sia \mathcal{S} l'insieme delle riflessioni piane rispetto a rette passanti per O. Allora

- 1. $r_1 \circ r_2 \in \mathcal{R}$, $\forall r_1, r_2 \in \mathcal{R}$;
- 2. $s \circ t \in \mathcal{R}$, $\forall s, t \in \mathcal{S}$:
- 3. $r \circ s \in \mathcal{S}$, $s \circ r \in \mathcal{S}$, $\forall r \in \mathcal{R}$, $\forall s \in \mathcal{S}$.

A parole: la composizione di due rotazioni o di due riflessioni è una rotazione, mentre la composizione di una riflessione e di una rotazione o di una rotazione e di una riflessione è una riflessione.

Teorema 2.1.2 D_n , $n \ge 3$ è un gruppo non abeliano di ordine 2n. Sia s una qualunque riflessione in D_n , alllora

$$D_n = \{1, r, \dots, r^{n-1}, s, r \circ s, \dots, r^{n-1} \circ s\}.$$
 (2.3)

Inoltre,

$$s \circ r = r^{n-1} \circ r. \tag{2.4}$$

Dimostrazione: Abbiamo già osservato che D_n è un gruppo con 2n elementi. Per il lemma precedente, $\{r, \ldots, r^{n-1}\}$ sono tutte rotazioni distinte e conseguentemente $r^k \circ s$ sono n riflessioni distinte per $k = 1, \ldots, n-1$. Segue che $\{s, r \circ s, \ldots, r^{n-1} \circ s\} = \{s_1, \ldots, s_n\}$ e quindi vale la (2.3). Osserviamo ora che $s \circ r$ è una riflessione per il Lemma 2.1.1. Quindi

$$s \circ r \circ s \circ r = (s \circ r)^2 = 1$$

che implica $s \circ r = r^{-1} \circ s^{-1} = r^{n-1} \circ s$ ossia la (2.4) la quale mostra anche che D_n non è abeliano.

Per induzione su n dalla (2.4) si ottiene facilmente il seguente corollario

Corollario 2.1.3 Siano r e s come nel Teorema 2.1.2. Allora

$$s \circ r^{n-k} = r^k \circ s, \ \forall k = 1, \dots, n-1.$$
 (2.5)

Notazione 2.1.4 Per esprimere in maniera concisa il gruppo diedrale si usa la notazione

$$D_n = \langle r, s \mid r^n = s^2 = 1, sr = r^{n-1}s \rangle$$

che viene chiamata una presentazione del gruppo diedrale con generatori r e s (non tratteremo le presentazioni di gruppi in queste note). Questa scrittura significa semplicemente che gli elementi del gruppo D_n si ottengono moltiplicando gli elementi di r e di s e tenendo conto del fatto che r ha ordine n, s ha ordine 2 e che vale la relazione $sr = r^{n-1}s = r^{-1}s$.

Osservazione 2.1.5 Sia P_n un poligono regolare inscritto nella circonferenza unitaria e simmetrico rispetto all'asse delle ascisse. Sia r la rotazione di angolo $\frac{2\pi}{n}$ in senso antiorario rispetto all'origine; allora

$$r^{k} = \begin{bmatrix} \cos\frac{2\pi k}{n} & -\sin\frac{2\pi k}{n} \\ \sin\frac{2\pi k}{n} & \cos\frac{2\pi k}{n} \end{bmatrix}, \qquad k = 1, \dots, n-1.$$

Le n riflessioni del gruppo diedrale si descrivono in modo uniforme come riflessioni rispetto alle rette che formano un angolo $\alpha = \frac{h\pi}{n}$ con l'asse positivo delle ascisse, per $h = 0, 1, \ldots, n-1$. Ponendo $s_h := s_{h\pi}$, si ha

$$s_h = \begin{bmatrix} \cos \frac{2\pi h}{n} & \sin \frac{2\pi h}{n} \\ \sin \frac{2\pi h}{n} & -\cos \frac{2\pi h}{n} \end{bmatrix}, \qquad h = 0, 1, \dots, n-1.$$

Scegliamo in particolare

$$s := s_0 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

cioè la riflessione rispetto all'asse delle ascisse. Con questa scelta, le relazioni fondamentali del gruppo diedrale (come, ad esempio, $r^n = I$, $s^2 = I$ e $srs = r^{-1}$) si verificano direttamente per moltiplicazione di matrici.

Più in generale, per $\alpha \in \mathbb{R}$ la rotazione r_{α} in senso antiorario intorno all'origine di angolo α è data da

$$r_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix},$$

mentre la riflessione s_{α} rispetto alla retta passante per l'origine che forma un angolo α con l'asse positivo delle ascisse è

$$s_{\alpha} = \begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{bmatrix}.$$

Usando le usuali identità trigonometriche si ottengono facilmente le seguenti composizioni:

- 1. $r_{\alpha} \circ r_{\beta} = r_{\alpha+\beta}$ (in particulare $r_{\alpha}r_{\beta} = r_{\beta}r_{\alpha}$);
- 2. $s_{\alpha} \circ s_{\beta} = r_{2(\alpha-\beta)}$ (quindi $s_{\beta} \circ s_{\alpha} = r_{2(\beta-\alpha)}$);
- 3. $r_{\alpha} \circ s_{\beta} = s_{\beta + \frac{\alpha}{2}}$ e simmetricamente $s_{\beta} \circ r_{\alpha} = s_{\beta \frac{\alpha}{2}}$.

2.2 Il gruppo delle permutazioni

Sia X un insieme non vuoto. Definiamo

$$S_X = \{ f : X \to X \mid f \text{ è invertibile} \}$$

e consideriamo l'operazione binaria \circ su S_X , data dalla composizione di funzioni. Si tratta effettivamente di un'operazione binaria, in quanto la composizione di due funzioni invertibili è ancora invertibile. Inoltre, è immediato verificare che $(S_X, \circ, \mathrm{id}_X)$ risulta essere un gruppo, chiamato *gruppo delle permutazioni* dell'insieme X. Usando la notazione del capitolo precedente posssiamo scrivere che $U((X^x, \circ)) = S_X$. Nel caso in cui X sia finito con $|X| = n \in \mathbb{N}^+$, indicheremo S_X con S_n , chiamato anche *gruppo simmetrico su n elementi*. Il suo ordine è $|S_n| = n!$. Osserviamo che se $|X| \geq 3$, allora S_X è un gruppo non abeliano. Infatti, se $x, y, z \in X$ sono tre elementi distinti, le due permutazioni $f, g \in S_X$, definite come segue:

$$f(x) = y$$
, $f(y) = x$, $f(t) = t$ per ogni $t \neq x$, y

e

$$g(x) = z$$
, $g(z) = x$, $g(t) = t$ per ogni $t \neq x$, z

non commutano tra loro. Infatti, abbiamo:

$$(f \circ g)(x) = f(g(x)) = f(z) = z$$
, mentre $(g \circ f)(x) = g(f(x)) = g(y) = y$ e poiché $y \neq z$, concludiamo che $f \circ g \neq g \circ f$.

Dato $f \in S_X$, definiamo il *supporto di f* come

$$\operatorname{supp}(f) = \{ x \in X \mid f(x) \neq x \},\$$

ovvero il sottoinsieme di X costituito dagli elementi che vengono "mossi" dalla permutazione f. Chiaramente $\operatorname{supp}(f)=\emptyset$ se e solo se $f=\operatorname{id}_X$. Vediamo alcune proprietà del supporto.

Proposizione 2.2.1 *Sia* $f \in S_X$. *Allora:*

- 1. $supp(f^{-1}) = supp(f);$
- 2. $f(x) \in supp(f)$, per ogni $x \in supp(f)$.

Dimostrazione. La (1) si dimostra sfruttando il fatto che f^{-1} è iniettiva:

$$x \in \text{supp}(f) \iff f(x) \neq x \iff x = f^{-1}(f(x)) \neq f^{-1}(x) \iff x \in \text{supp}(f^{-1}).$$

Per dimostrare la (2), supponiamo per assurdo che esista $x \in \operatorname{supp}(f)$ tale che $f(x) \notin \operatorname{supp}(f)$. Allora f(f(x)) = f(x) e applicando l'inversa a entrambi i membri si ottiene f(x) = x, in contraddizione con il fatto che $x \in \operatorname{supp}(f)$. \square

Due permutazioni $f,g \in S_X$ si dicono *disgiunte* se

$$supp(f) \cap supp(g) = \emptyset$$
.

Proposizione 2.2.2 *Se* f, $g \in S_X$ *sono disgiunte, allora* f e g *commutano tra loro.*

Dimostrazione. Scriviamo *X* come unione di tre insiemi disgiunti:

$$X = \operatorname{supp}(f) \sqcup \operatorname{supp}(g) \sqcup (X \setminus (\operatorname{supp}(f) \sqcup \operatorname{supp}(g))).$$

Consideriamo i seguenti casi:

• Se $x \in \text{supp}(f)$, allora:

$$(g \circ f)(x) = g(f(x)) = f(x) = f(g(x)) = (f \circ g)(x),$$

dove nella seconda e terza uguaglianza abbiamo usato il fatto che x, $f(x) \in \text{supp}(f)$ e l'ipotesi che f e g siano disgiunte, quindi $f(x) \notin \text{supp}(g)$ (per la (2) della Proposizione 2.2.1);

• Se $x \in \text{supp}(g)$, ragionando in modo analogo, otteniamo:

$$(g \circ f)(x) = (f \circ g)(x).$$

• Se $x \in X \setminus (\operatorname{supp}(f) \sqcup \operatorname{supp}(g))$, allora f(x) = g(x) = x, e quindi:

$$(g \circ f)(x) = (f \circ g)(x) = x.$$

2.3. I CICLI E IL TEOREMA FONDAMENTALE DELLE PERMUTAZIONI 37

Segue che $(g \circ f)(x) = (f \circ g)(x)$ per ogni $x \in X$, e quindi $f \circ g = g \circ f$. \square Per rappresentare una permutazione $f \in S_n$ possiamo usare una matrice 2×1 della forma

$$f = \left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{array}\right),$$

dove nella prima riga compaiono i numeri da 1 a n e nella seconda riga le loro immagini tramite f (la seconda riga consiste di tutti e solo i numeri da 1 a n essendo f una bigezione).

Esempio 2.2.3 I 6 elementi di S_3 possono quindi essere descritti come segue.

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \ \tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \ \tau_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
$$\tau_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \ \sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$$

Con questa notazione possiamo anche calcolare il prodotto (composizione) di due permutazioni in modo agevole.

Esempio 2.2.4 Siano

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$
, $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix} \in S_5$.

Allora, siccome f(1) = 3 e g(3) = 4, possiamo scrivere 4 come primo elemento della seconda riga; siccome f(2) = 2 e g(2) = 3 possiamo scrivere 3 come secondo elemento della seconda riga e così via ottenendo la permutazione

$$g \circ f = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{array}\right) \circ \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{array}\right) = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{array}\right).$$

2.3 I cicli e il teorema fondamentale delle permutazioni

Sia $f \in S_X$ e $a \in \text{supp}(f)$. Definiamo l'*orbita di a tramite f* come

$$\operatorname{orb}_{f}(a) = \{ f^{j}(a) \mid j \in \mathbb{Z} \}. \tag{2.6}$$

Per comprendere meglio come sia fatto questo insieme, definiamo una relazione d'equivalenza su *X*:

$$a \sim_f b \iff \exists j \in \mathbb{Z} \text{ tale che } b = f^j(a).$$

Si verifica immediatamente che \sim_f è effettivamente una relazione d'equivalenza:

- **Riflessività**: $a \sim_f a$ in quanto $a = f^0(a) = \mathrm{id}_X(a) = a$;
- Simmetria: se $a\sim_f b$, allora esiste $j\in\mathbb{Z}$ tale che $b=f^j(a)$, quindi $a=f^{-j}(b)$, cioè $b\sim_f a$;
- Transitività: siano $a \sim_f b$, cioè $b = f^j(a)$ per qualche $j \in \mathbb{Z}$, e $b \sim_f c$, cioè $c = f^k(b)$ per qualche $k \in \mathbb{Z}$. Allora $c = f^k(b) = f^k(f^j(a)) = f^{j+k}(a)$, per cui $a \sim_f c$.

Si deduce allora che se $a \in \text{supp}(f)$ si ha

$$\operatorname{orb}_f(a) = [a]_{\sim_f},$$

dove $[a]_{\sim_f}$ denota la classe d'equivalenza dell'elemento a rispetto alla relazione d'equivalenza \sim_f . Se il supporto di f è finito, l'orbita di un suo elemento può essere descritta come segue.

Proposizione 2.3.1 *Sia* $f \in S_X$ *tale che* $|supp(f)| < \infty$ *e sia* $a \in supp(f)$. *Allora esiste un naturale* $d \ge 2$ *tale che*

$$f^d(a) = a$$

е

$$orb_f(a) = \{a, f(a), f^2(a), \dots, f^{d-1}(a)\}.$$
 (2.7)

Dimostrazione: Consideriamo l'applicazione

$$F: \mathbb{N}^+ \to \operatorname{orb}_f(a) = [a]_{\sim_f}, \quad i \mapsto f^i(a).$$

Quest'applicazione non può essere iniettiva, in quanto

$$\operatorname{orb}_f(a)| \le |\operatorname{supp}(f)| < \infty = |\mathbb{N}^+|.$$

Esistono quindi $i, j \in \mathbb{N}^+$, con i > j, tali che $f^i(a) = f^j(a)$, e quindi

$$f^{i-j}(a) = a, \quad i-j > 0.$$

Segue che l'insieme

$$A := \{ n \in \mathbb{N}^+ \mid f^n(a) = a \} \neq \emptyset$$

2.3. I CICLI E IL TEOREMA FONDAMENTALE DELLE PERMUTAZIONI 39

e, per il principio del buon ordinamento, esiste $d \in \mathbb{N}^+$ tale che $f^d(a) = a$ e per ogni $h \in A$ con $h \neq d$ si ha d < h. Segue allora che gli elementi $a, f(a), f^2(a), \ldots, f^{d-1}(a)$ sono tutti distinti e che

$${a, f(a), f^{2}(a), \dots, f^{d-1}(a)} \subseteq {f^{j}(a) \mid j \in \mathbb{Z}} = \operatorname{orb}_{f}(a)$$

(infatti, se $f^p(a) = f^q(a)$ con p > q, $0 \le p, q \le d-1$, allora $f^{p-q}(a) = a$, con $0 < p-q \le d-1$, in contrasto con la minimalità di d). Osserviamo anche che $d \ge 2$; altrimenti, se d = 1, allora f(a) = a, in contrasto con la scelta di $a \in \text{supp}(f)$. Resta quindi da dimostrare che

$$\operatorname{orb}_f(a) \subseteq \{a, f(a), f^2(a), \dots, f^{d-1}(a)\}.$$

Sia dunque $f^j(a) \in \text{orb}_f(a)$, $j \in \mathbb{Z}$. Dividendo j per d possiamo scrivere

$$j = dq + r$$
, $0 \le r \le d - 1$

e ottenere

$$f^{j}(a) = f^{dq+r}(a) = f^{r}(f^{dq}(a)) = f^{r}(a) \in \{a, f(a), f^{2}(a), \dots, f^{d-1}(a)\},$$

il che mostra l'inclusione desiderata e conclude la dimostrazione. (Nell'ultima uguaglianza abbiamo usato il fatto che $f^{dq}(a) = a$ per ogni $q \in \mathbb{Z}$. Questa si può dimostrare prima per induzione su q, supponendo $q \in \mathbb{N}$ e usando $f^d(a) = a$; se invece q < 0 allora $f^{dq}(a) = f^{(-d)(-q)}(a) = a$ che si ottiene dal caso precedente e da $f^{-d}(a) = a$).

Siano $a \in X$ e $f \in S_X$ come nella proposizione precedente. Usando la notazione precedente, deduciamo che se restringiamo f all'orbita $\operatorname{orb}_f(a) = \{a, f(a), f^2(a), \dots, f^{d-1}(a)\}$ di a possiamo scrivere

$$f_{|\mathbf{orb}_f(a)} = \begin{pmatrix} a & f(a) & f^2(a) & \cdots & f^{d-1}(a) \\ f(a) & f^2(a) & f^3(a) & \cdots & a \end{pmatrix}.$$

Chiameremo una tale permutazione un *ciclo di lunghezza d* o *d-ciclo*. Useremo anche la notazione

$$(a f(a) f^{2}(a) \dots f^{d-1}(a))$$

per indicare un tale ciclo. Più in generale un l-ciclo, $l \in \mathbb{N}^+$, $l \geq 2$, è una permutazione di l elementi $\{a_1, \ldots, a_l\}$ della forma

$$(a_1 \ a_2 \cdots a_l) := \begin{pmatrix} a_1 \ a_2 \ \cdots \ a_l \\ a_2 \ a_3 \ \cdots \ a_1 \end{pmatrix}.$$
 (2.8)

Un ciclo di lunghezza 2 è chiamato *trasposizione*. Si osservi che usando questa notazione possiamo cambiare l'ordine degli elementi *ciclicamente* per descrivere lo stesso elemento. Quindi

$$(a_1 \ a_2 \cdots a_l) = (a_i \ a_{i+1} \cdots a_1), \forall i = 1, \dots, l.$$
 (2.9)

Esempio 2.3.2 Le trasposizioni e i 3-cicli di S_3 (cfr. Esempio 2.2.3) sono:

$$\tau_1 = (12), \ \tau_2 = (13), \ \tau_3 = (23), \ \sigma_1 = (123), \ \sigma_2 = (132).$$

La notazione (2.9) è molto utile per calcolare il prodotto di due cicli come mostrano i seguenti esempi.

Esempio 2.3.3 Si considerino in S_4 i due cicli g=(1234) e f=(123). Allora il loro prodotto (composizione) $g\circ f$ si calcola come segue. Osserviamo che $(g\circ f)(1)=3$, $(g\circ f)(3)=2$, $(g\circ f)(2)=4$ e $(g\circ f)(4)=1$. Siamo giunti al punto iniziale 1 e quindi

$$g \circ f = (1324)$$

che è ancora un ciclo.

Esempio 2.3.4 Non sempre la composizione di cicli è un ciclo. Per esempio siano g=(12345) e f=(13) in S_5 . Allora $(g\circ f)(1)=4$, $(g\circ f)(4)=5$, $(g\circ f)(5)=1$ siamo tornati all'elemento 1 e quindi $g\circ f$ ristretta all'insieme $\{1,4,5\}$ è il ciclo (145). Osserviamo che $(g\circ f)(2)=3$, $(g\circ f)(3)=2$ siamo tornati all'elemento 2 e quindi $g\circ f$ ristretta all'insieme $\{2,3\}$ è la trasposizione (23). Quindi

$$g \circ f = (145)(23) = (23)(145),$$

in accordo con l'Esempio 2.2.4.

Descriviamo ora alcune proprietà dei cicli.

Proposizione 2.3.5 (alcune proprietà dei cicli) Sia $\sigma = (a_1 a_2 \cdots a_l)$ un ciclo di lunghezza l, allora:

- (*i*) $supp(\sigma) = \{a_1, ..., a_l\};$
- (ii) $o(\sigma) = l$:
- (iii) $\sigma^{-1} = (a_1 \dots a_2 a_1);$
- (iv) se esiste $j \in \mathbb{Z}$ tale che $\sigma^j \neq id$, allora supp $(\sigma^j) = supp(\sigma)$.

2.3. I CICLI E IL TEOREMA FONDAMENTALE DELLE PERMUTAZIONI 41

Dimostrazione: La (i) segue direttamente dalla definizione di ciclo. Osserviamo che se $0 < h \le l-1$, $\sigma^h(a_1) = a_{1+h} \ne a_1$, mentre $\sigma^l(a_j) = a_j$ per ogni j. Quindi la (ii) segue dalla definizione di ordine di un elemento. Sia $\tilde{\sigma} = (a_l \dots a_2 \ a_1)$ allora: $\tilde{\sigma}(a_1) = a_l \ \mathrm{e} \ \tilde{\sigma}(a_j) = a_{j-1}$ per ogni $1 < j \le l$. Segue che $\tilde{\sigma} \circ \sigma = \sigma \circ \tilde{\sigma} = \mathrm{id} \ \mathrm{e} \ \mathrm{la}$ (iii) è dimostrata. Infine, per dimostrare la (iv) osserviamo che $\mathrm{supp}(\sigma^j) \subseteq \mathrm{supp}(\sigma)$: infatti se $x \notin \mathrm{supp}(\sigma)$ allora $\sigma(x) = x \ \mathrm{e} \ \mathrm{quindi}$ $\sigma^j(x) = x \ \mathrm{che} \ \mathrm{implica} \ x \notin \mathrm{supp}(\sigma^j)$. Per dimostrare $\mathrm{supp}(\sigma) \subseteq \mathrm{supp}(\sigma^j)$ possiamo supporre 0 < j < l. Infatti dividendo j per l si ottiene:

$$j = lq + r, q \in \mathbb{Z}, 0 < r < l,$$

dove $r \neq 0$ altrimenti $\sigma^j = id$ e

$$\sigma^j = \sigma^{lq+r} = \sigma^{lq}\sigma^r = id \circ \sigma^r = \sigma^r.$$

Sia dunque $x \in \operatorname{supp}(\sigma)$ allora $\sigma(x) \neq x$. Per la (i) $x = a_i$ per un certo $i = 1, \ldots, l$. D'altra parte

$$\sigma^{j}(a_{i}) = \begin{cases} a_{i+j} & \text{se } i+j \leq l, \\ a_{i+j-l} & \text{se } i+j > l. \end{cases}$$

In entrambi i casi, sfruttando il fatto che 0 < j < l, si deduce che $\sigma^j(a_i) \neq a_i$. Allora $x = a_i \in \operatorname{supp}(\sigma^j)$ e quindi $\operatorname{supp}(\sigma) \subseteq \operatorname{supp}(\sigma^j)$.

Osservazione 2.3.6 La potenza di un ciclo non è un ciclo in generale. Per esempio se $\sigma=(1234)\in S_4$ allora $\sigma^2=(13)(24)$, che è il prodotto di due trasposizioni (si veda l'Esercizio 2.9).

Concludiamo questo paragrafo con il seguente teorema che evidenzia l'importanza dei cicli come elementi fondamentali per esprimere qualsiasi permutazione con supporto finito come una composizione di cicli.

Teorema 2.3.7 (il teorema fondamentale delle permutazioni) Sia X un insieme non vuoto, e sia $f \in S_X$ tale che $f \neq id_X$ e $|supp(f)| < \infty$. Allora, esistono cicli disgiunti $\sigma_1, \ldots, \sigma_t$, con t > 1, tali che

$$f = \sigma_1 \circ \cdots \circ \sigma_t. \tag{2.10}$$

Inoltre la scomposizione (2.10) è unica a meno dell'ordine dei cicli σ_j . Infine, l'ordine di f è dato da:

$$o(f) = (l_1, \dots, l_t), \tag{2.11}$$

dove $l_j = o(\sigma_j)$ per j = 1, ..., t, $e(l_1, ..., l_t)$ rappresenta il minimo comune multiplo degli l_j .

Dimostrazione: Dalla Proposizione 2.3.1, esistono $t \ge 1$, elementi distinti $a_1, a_2, \ldots, a_t \in \text{supp}(f)$, e interi d_1, d_2, \ldots, d_t , con $d_i \ge 2$, tali che

$$\operatorname{supp}(f) = [a_1]_{\sim_f} \sqcup [a_2]_{\sim_f} \sqcup \cdots \sqcup [a_t]_{\sim_f},$$

dove

$$[a_j]_{\sim_f} = \operatorname{orb}_f(a_j) = \{a_j, f(a_j), \dots, f^{d_j-1}(a_j)\}, \quad j = 1, \dots, t.$$

Definiamo la permutazione $g \in S_X$ come la composizione dei seguenti cicli disgiunti:

$$g = \left(a_1 f(a_1) \dots f^{d_1-1}(a_1)\right) \circ \left(a_2 f(a_2) \dots f^{d_2-1}(a_2)\right) \circ \dots \circ \left(a_t f(a_t) \dots f^{d_t-1}(a_t)\right).$$

Poiché $\operatorname{supp}(f) = \operatorname{supp}(g)$ e f(x) = g(x) per ogni $x \in \operatorname{supp}(f)$, si deduce che f = g. Pertanto, possiamo scrivere:

$$f = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_t$$

dove $\sigma_j = (a_j, f(a_j), \dots, f^{d_j-1}(a_j))$ per $j = 1, \dots, t$. Poiché i cicli σ_j commutano tra loro, ne consegue che tale scomposizione è unica a meno dell'ordine. Per dimostrare la (2.11) sia d = o(f). Allora

$$id_X = f^d = (\sigma_1 \circ \sigma_2 \circ \dots \circ \sigma_t)^d = \sigma_1^d \circ \sigma_2^d \circ \dots \circ \sigma_t^d, \tag{2.12}$$

dove abbiamo utilizzato il fatto che i cicli σ_j commutano, cioè $[\sigma_j, \sigma_k] = 1$ per ogni $j \neq k$, e l'Osservazione 1.3.26. Dimostriamo ora che questa uguaglianza implica che:

$$\sigma_j^d = \mathrm{id}_X \quad \forall j = 1, \dots, t. \tag{2.13}$$

Supponiamo per assurdo che esista un $k=1,\ldots,t$ tale che $\sigma_k^d \neq \mathrm{id}_X$. In particolare, dalla Proposizione 2.3.5, sappiamo che:

$$\operatorname{supp}(\sigma_k^d) = \operatorname{supp}(\sigma_k), \tag{2.14}$$

e che esiste $x \in X$ tale che:

$$\sigma_k^d(x) \neq x. \tag{2.15}$$

Mostriamo ora che:

$$\sigma_j^d(x) = x \quad \forall j \neq k. \tag{2.16}$$

Se $\sigma_j^d = \mathrm{id}_X$, la (2.16) è immediata. Altrimenti, se $\sigma_j^d \neq \mathrm{id}_X$, dalla Proposizione 2.3.5 segue che supp $(\sigma_j^d) = \mathrm{supp}(\sigma_j)$. Dato che σ_j e σ_k sono disgiunti, lo stesso vale per σ_j^d e σ_k^d , e quindi $\sigma_j^d(x) = x$. Abbiamo così dimostrato la (2.16).

A questo punto, combinando la (2.12), la (2.15) e la (2.16), otteniamo:

$$x = \mathrm{id}_X(x) = f^d(x) = (\sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_t)^d(x) = \sigma_k^d(x) \neq x$$

che fornisce la contraddizione desiderata.

Poiché $o(\sigma_j)=l_j$, segue dalla Proposizione 1.3.33 che $l_j\mid d$ per ogni j; quindi d è un multiplo comune di l_1,\ldots,l_t . Sia ora h un altro multiplo comune. Allora $l_j\mid h$ per ogni j, perciò $\sigma_j^h=\operatorname{id}_X$ e

$$f^h = \sigma_1^h \circ \cdots \circ \sigma_t^h = \mathrm{id}_X.$$

Ancora per la Proposizione 1.3.33 si ha $d \mid h$. Ne segue che d è il minimo comune multiplo di l_1, \ldots, l_t , e la (2.11) é dimostrata.

Corollario 2.3.8 Sia $f \in S_X$ con $|supp(f)| < \infty$ sia p un numero primo. Allora o(f) = p se e solo se f si può scrivere come prodotto di cicli disgiunti ognuno dei quali ha ordine p.

2.4 Il segno di una permutazione

Sia X un insieme non vuoto, sia $f \in S_X$ tale che $f \neq \mathrm{id}_X$, $|\operatorname{supp}(f)| < \infty$, e sia

$$f = \sigma_1 \circ \cdots \circ \sigma_t$$

la scomposizione (2.10) in cicli disgiunti $\sigma_1, \ldots, \sigma_t$, con $t \ge 1$, la cui esistenza è garantita dal teorema fondamentale delle permutazioni.

Definiamo il numero naturale positivo

$$N(f) = (l_1 - 1) + (l_2 - 1) + \cdots + (l_t - 1) = \sum_{j=1}^{t} l_j - t,$$

dove $l_j = o(\sigma_j)$ è la lunghezza del ciclo σ_j , con j = 1, ..., t. Definiamo il *segno di f* come

$$sign(f) := (-1)^{N(f)} \in \{-1, +1\}.$$
(2.17)

Si deduce immediatamente dal fatto che i cicli σ_j nella scomposizione di f commutano che questa definizione è ben posta.

Definizione 2.4.1 *Diremo che f è di* classe pari se sign(f) = +1 (ossia N(f) è pari), mentre diremo che f è di classe dispari se sign(f) = -1 (ossia N(f) è dispari).

Lemma 2.4.2 *Ogni* $f \in S_X$ *con* $f \neq id_X$ $e \mid supp(f) \mid < \infty$ *si scrive come prodotto di* N(f) *trasposizioni.*

Dimostrazione: Osserviamo preliminarmente che un ciclo di lunghezza l, si può scrivere come prodotto di l-1 trasposizioni. Infatti

$$(a_1 a_2 \cdots a_l) = (a_1 a_2)(a_2 a_3) \cdots (a_{l-1} a_l).$$
 (2.18)

Quindi, per ogni $j=1,\ldots,t$, ogni σ_j nella scomposizione $f=\sigma_1\circ\cdots\circ\sigma_t$ in cicli disgiunti si può scrivere come prodotto di l_j-1 trasposizioni. Ne segue che f si può scrivere come prodotto di $N(f)=(l_1-1)+\cdots+(l_t-1)$ trasposizioni.

Osservazione 2.4.3 Il lemma non afferma né che la scomposizione è unica, né che le trasposizioni sono disgiunte. Per esempio, un l-ciclo può essere anche scritto come prodotto di l-1 trasposizioni

$$(a_1 \ a_2 \ \cdots \ a_l) = (a_1 \ a_l)(a_1 \ a_{l-1}) \cdots (a_1 \ a_3)(a_1 \ a_2),$$

che differisce dalla scomposizione (2.18).

Teorema 2.4.4 (moltiplicatività della funzione segno) Siano $f, g \in S_X$ tali che $f, g \neq id_X e |supp(f)| < \infty, |supp(g)| < \infty$. Allora

$$sign(f \circ g) = sign(f) sign(g). \tag{2.19}$$

Dimostrazione: La dimostrazione procede analizzando vari casi.

 $\underline{\mathsf{CASO}\,1}:\mathsf{supp}(f)\cap\mathsf{supp}(g)=\varnothing$

Siano $f = \sigma_1 \circ \cdots \circ \sigma_t$ e $g = \rho_1 \circ \cdots \circ \rho_u$ la scomposizione di f e g in cicli disgiunti. Notiamo che l'ipotesi supp $(f) \cap \text{supp}(g) = \emptyset$ è equivalente a

$$supp(\sigma_i) \cap supp(\rho_k), \forall j = 1, ..., t, \forall k = 1, ..., u.$$

Segue che

$$f \circ g = \sigma_1 \circ \cdots \circ \sigma_t \circ \rho_1 \circ \cdots \circ \rho_u$$

è la scomposizione di $f\circ g$ in cicli disgiunti. Se quindi $o(\sigma_j)=l_j, j=1,\ldots,t$ e $o(\rho_k)=m_k, k=1,\ldots u$, allora

$$N(f \circ g) = \sum_{i=1}^{t} l_{i} - t + \sum_{k=1}^{u} m_{k} - u = N(f) + N(g).$$

Dalla quale

$$sign(f \circ g) = (-1)^{N(f \circ g)} = (-1)^{N(f) + N(g)} = (-1)^{N(f)} (-1)^{N(g)} = sign(f) \operatorname{sign}(g).$$

CASO 2: $|\operatorname{supp}(f) \cap \operatorname{supp}(g)| = 1$, $f \in g$ cicli.

Senza ledere alla generalità possiamo supporre

$$f = (a_1 \cdots a_m), g = (a_m b_1 \cdots b_l), a_i \neq b_k, \forall j = 1, ..., m, \forall k = 1, ..., l.$$

Quindi N(f) = m - 1 e N(g) = l. D'altra parte

$$f \circ g = (a_1 \cdots a_m) \circ (a_m \ b_1 \cdots b_l) = (a_1 \cdots a_m \ b_1 \cdots b_l)$$

e quindi

$$N(f \circ g) = l + m - 1 = N(f) + N(g)$$

 $e \operatorname{sign}(f \circ g) = \operatorname{sign}(f) \operatorname{sign}(g).$

<u>CASO 3</u>: $|\operatorname{supp}(f) \cap \operatorname{supp}(g)| = 2$, f ciclo e g trasposizione. Analizziamo i due sottocasi seguenti.

CASO 3A: I due elementi comuni di f e g sono consecutivi.

Possiamo supporre senza ledere alla generalità che

$$f = (a_1 \ a_2 \ \cdots \ a_{m-1} \ a_m), \ g = (a_{m-1} \ a_m).$$

Segue che

$$f \circ g = (a_1 a_2 \cdots a_{m-1} a_m) (a_{m-1} a_m)$$

= $(a_1 a_2 \cdots a_{m-1}) (a_{m-1} a_m) (a_{m-1} a_m)$
= $(a_1 a_2 \cdots a_{m-1}).$

Osserviamo che

$$N(f) = m - 1$$
, $N(g) = 1$, $N(f \circ g) = m - 2 = N(f) + N(g) \pmod{2}$.

Quindi

$$\operatorname{sign}(f \circ g) = (-1)^{N(f \circ g)} = (-1)^{N(f) + N(g)} = (-1)^{N(f)} (-1)^{N(g)} = \operatorname{sign}(f) \operatorname{sign}(g).$$

CASO 3B: I due elementi comuni di f e g non sono consecutivi.

Possiamo supporre che

$$f = (a_1 \ a_2 \ \cdots \ a_{m-1} \ a_m), \ g = (a_i \ a_m), \ 1 < i < m-1.$$

Segue che

$$f \circ g = (a_1 \ a_2 \cdots a_{m-1} \ a_m)(a_i \ a_m)$$

$$= (a_1 \ a_2 \cdots a_i)(a_i \ a_{i+1} \cdots a_m)(a_i \ a_m)$$

$$= (a_1 \ a_2 \cdots a_i)(a_{i+1} \cdots a_m \ a_i)(a_i \ a_m)$$

$$= (a_1 \ a_2 \cdots a_i)(a_{i+1} \cdots a_m)(a_m \ a_i)(a_i \ a_m)$$

$$= (a_1 \ a_2 \cdots a_i)(a_{i+1} \cdots a_m).$$

Osserviamo che

$$N(f \circ g) = (i-1) + (m-i-1) = m-2 = N(f) + N(g) \pmod{2}.$$

Quindi si deduce, come prima, che

$$sign(f \circ g) = sign(f) sign(g).$$

<u>CASO 4</u>: *f* permutazione qualunque e *g* trasposizione. Distinguiamo i due sottocasi seguenti.

<u>CASO 4A</u>: $|\operatorname{supp}(f) \cap \operatorname{supp}(g)| = 1$. Per il teorema fondamentale delle permutazioni, possiamo scrivere $f = \sigma_1 \circ \cdots \circ \sigma_t$ con σ_j cicli disgiunti. Senza ledere alla generalità possiamo assumere che $|\operatorname{sup}(\sigma_t) \cap \operatorname{supp} g| = 1$ e quindi $\operatorname{supp}(\sigma_k) \cap \operatorname{supp}(g) = \emptyset$ per ogni $k \neq j, k = 1, \ldots, t-1$. Consideriamo il ciclo $\sigma = \sigma_t \circ g$, allora

$$f \circ g = \sigma_1 \circ \cdots \circ \sigma_t \circ g = \sigma_1 \circ \cdots \circ \sigma_{t-1} \circ \sigma.$$

Per il CASO 1 essendo supp $(\sigma_1 \circ \cdots \circ \sigma_{t-1}) \cap \text{supp}(\sigma) = \emptyset$ possiamo scrivere

$$sign(f \circ g) = sign(\sigma_1 \circ \cdots \circ \sigma_{t-1}) sign(\sigma) = sign(\sigma_1 \circ \cdots \circ \sigma_{t-1}) sign(\sigma_t \circ g).$$

D'altra parte $sign(\sigma_t \circ g) = sign(\sigma_t) sign(g)$, per il CASO 2. Segue che

$$sign(f \circ g) = sign(\sigma_1 \circ \cdots \circ \sigma_{t-1}) sign(\sigma_t) sign(g)$$

= sign(\sign(\sign(\sign(g) \cdot \cdot \cdot \sign(g)) sign(g) = sign(f) sign(g),

dove nella seconda uguaglianza stiamo abbiamo usato ancora il CASO 1.

CASO 4B:
$$|\operatorname{supp}(f) \cap \operatorname{supp}(g)| = 2$$
.

Se $f = \sigma_1 \circ \cdots \circ \sigma_t$ con σ_j cicli disgiunti, allora, senza perdere di generalità, possiamo considerare i due sottocasi seguenti.

CASO $4B_1$: $|\operatorname{supp}(\sigma_{t-1}) \cap \operatorname{supp}(g)| = 1$ e $|\operatorname{supp}(\sigma_t) \cap \operatorname{supp}(g)| = 1$. Consideriamo il ciclo $\sigma = \sigma_t \circ g$. Allora $|\operatorname{supp}(\sigma_{t-1}) \cap \operatorname{supp}(\sigma)| = 1$ allora per il CASO 2

$$\operatorname{sign}(\sigma_{t-1} \circ \sigma) = \operatorname{sign}(\sigma_{t-1}) \operatorname{sign}(\sigma) = \operatorname{sign}(\sigma_{t-1}) \operatorname{sign}(\sigma_t) \operatorname{sign}(\sigma_t).$$

Usando il CASO 1 e la precedente si ottiene:

$$sign(f \circ g) = sign(\sigma_1 \circ \cdots \circ \sigma_{t-1} \circ \sigma)
= sign(\sigma_1 \circ \cdots \circ \sigma_{t-2}) sign(\sigma_{t-1} \circ \sigma)
= sign(\sigma_1 \circ \cdots \circ \sigma_{t-2}) sign(\sigma_{t-1}) sign(\sigma_t) sign(g)
= sign(\sigma_1 \circ \cdots \circ \sigma_t) sign(g) = sign(f) sign(g).$$

CASO $4B_2$: $|\operatorname{supp}(\sigma_t) \cap \operatorname{supp}(g)| = 2$.

Se $f = \sigma_1 \circ \cdots \circ \sigma_t$ con σ_j cicli disgiunti, allora, senza perdere di generalità, possiamo supporre $|\operatorname{supp}(\sigma_t) \cap \operatorname{supp}(g)| = 2$. Allora, usando il CASO 1 e il CASO 3 si ottiene

$$\begin{aligned} \operatorname{sign}(f \circ g) &= \operatorname{sign}(\sigma_1 \circ \dots \circ \sigma_{t-1}) \operatorname{sign}(\sigma_t \circ g) \\ &= \operatorname{sign}(\sigma_1 \circ \dots \circ \sigma_{t-1}) \operatorname{sign}(\sigma_t) \operatorname{sign}(g) \\ &= \operatorname{sign}(\sigma_1 \circ \dots \circ \sigma_t) \operatorname{sign}(g) = \operatorname{sign}(f) \operatorname{sign}(g). \end{aligned}$$

<u>CASO 5</u> (caso generale): *f* , *g* permutazioni arbitrarie.

Per il Lemma 2.4.2 possiamo scrivere $g = \tau_1 \circ \cdots \circ \tau_{N(g)}$, con τ_j , $j = 1, \ldots, N(g)$, trasposizioni. Dimostriamo la (2.19) ossia

$$sign(f \circ g) = sign(f) sign(g) = sign(f) sign(\tau_1 \circ \cdots \circ \tau_{N(g)})$$
 (2.20)

per induzione su N(g). Se N(g)=1 allora la (2.20) segue dal CASO 4. Supponiamo, per ipotesi induttiva, che la (2.20) valga per N(g)-1 cioè che

$$\operatorname{sign}(f \circ \tau_1 \circ \cdots \circ \tau_{N(g)-1}) = \operatorname{sign}(f) \operatorname{sign}(\tau_1 \circ \cdots \circ \tau_{N(g)-1}).$$

Allora, sempre per il CASO 4 e l'ipotesi induttiva si ha

$$\begin{split} \operatorname{sign}(f \circ \tau_1 \circ \cdots \circ \tau_{N(g)}) &= \operatorname{sign}(f \circ \tau_1 \circ \cdots \circ \tau_{N(g)-1}) \operatorname{sign}(\tau_{N(g)}) \\ &= \operatorname{sign}(f) \operatorname{sign}(\tau_1 \circ \cdots \circ \tau_{N(g)-1}) \operatorname{sign}(\tau_{N(g)}) \\ &= \operatorname{sign}(f) \operatorname{sign}(\tau_1 \circ \cdots \circ \tau_{N(g)}) = \operatorname{sign}(f) \operatorname{sign}(g). \end{split}$$

Corollario 2.4.5 Sia $f \in S_n$. Allora $f \wr di$ classe pari se e solo se si scrive come composizione di un numero pari di trasposizioni.

Dimostrazione: Se f è di classe pari allora, per il Lemma 2.4.2, $f = \tau_1 \circ \cdots \circ \tau_{N(f)}$, con N(f) pari.

Viceversa se $f= au_1\circ\cdots\circ au_{2s}$ allora per il Teorema

$$\operatorname{sign}(\tau_1 \circ \cdots \circ \tau_{2s}) = \operatorname{sign}(\tau_1) \cdots \operatorname{sign}(\tau_{2s}) = (-1)^{2s} = 1.$$

Alla luce del corollario, visto che id $_X = \tau \circ \tau$, dove τ è una trasposizione, definiamo il segno di id $_X$ uguale a 1, ossia id $_X$ è di classe pari.

Osservazione 2.4.6 Osserviamo che non è restrittivo supporre che nel Teorema 2.4.4 f, g siano elementi di S_n per un qualche n. Infatti essendo i supporti di f e g finiti possiamo prendere $n = |\operatorname{supp}(f)| + |\operatorname{supp}(g)|$ e considerare $f_{|S_n}, g_{|S_n} \in S_n$ che soddisfano $\operatorname{sign}(f_{|S_n}) = \operatorname{sign}(g)$ e $\operatorname{sign}(g)$.

2.5 Esercizi

Esercizio 2.1 Si descrive il gruppo dell'isometrie del piano che fissano un rettangolo (che non sia un quadrato).

Esercizio 2.2 Sia $G = D_n$, $n \ge 3$, il gruppo diedrale. Determinare il sottoinsieme $S \subset G$ costituito da tutti gli elementi di ordine 2.

Esercizio 2.3 Sia f la permutazione di S_{12} data da

Si scriva la decomposizione in cicli disgiunti di f, f^2 , f^3 e f^5 e si calcolino gli ordini di queste permutazioni.

Esercizio 2.4 Siano f e g la permutazioni di S_{10} definite come segue:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 4 & 5 & 7 & 9 & 8 & 10 & 6 & 3 & 1 \end{pmatrix} e g = (23).$$

Si trovi la decomposizione in cicli disgiunti delle permutazioni f, g, $f \circ g$ e $g \circ f$ e si calcolino gli ordini di queste permutazioni.

Esercizio 2.5 Dimostrare che due cicli σ e τ della stessa lunghezza sono coniugati, cioé esiste una permutazione f tale che $f^{-1} \circ \sigma \circ f = \tau$.

2.5. *ESERCIZI* 49

Esercizio 2.6 Sia σ un ciclo di lunghezza l e $k \in N_+$ tale che $\sigma^k \neq id$. Mostrare che esistono t cicli disgiunti $\sigma_1, \ldots, \sigma_t$ tutti della stessa lunghezza m, tali che l = mt e

$$\sigma^k = \sigma_1 \circ \cdots \circ \sigma_t. \tag{2.21}$$

Mostrare, inoltre che $m=\frac{l}{(k,l)}$ e t=(k,l). (Suggerimento: usare il fatto che $\operatorname{supp}(\sigma^k)=\operatorname{supp}(\sigma)$ e il teorema fondamentale delle permutazioni Per l'ultima parte si calcolino gli ordini di σ^k e $\sigma_1 \circ \cdots \circ \sigma_t$).

Esercizio 2.7 Mostrare che se $\sigma_1, \ldots, \sigma_t$ sono cicli disgiunti tutti della stessa lunghezza m allora esiste un ciclo σ di lunghezza l=mt e $k\in N_+$ tali che $\sigma^k=\sigma_1\circ\cdots\circ\sigma_t$. (Suggerimento: se $\sigma_j=(a_{j1}\cdots a_{jm}), j=1,\ldots,t$, si definisca

$$\sigma = (a_{11}a_{21} \dots a_{t1}a_{12}a_{22} \cdots a_{t2} \cdots a_{1m}a_{2m} \cdots a_{tm})$$

e si verifichi che $\sigma^t = \sigma_1 \circ \cdots \circ \sigma_t$.).

Esercizio 2.8 Dimostrare che S_n é generato da $\{A_n, \tau\}$ dove τ é una trasposizione arbitraria.

Esercizio 2.9 Sia σ un ciclo di lunghezza l. Dimostrare che

- 1. σ^2 é un ciclo se e solo se *l* é dispari;
- 2. se l é dispari allora σ é il quadrato di un ciclo di lunghezza l;
- 3. se *l* é pari, l = 2m, allora σ^2 é il prodotto di due cicli di lunghezza m;
- 4. se l = tm, allora σ^t é il prodotto di t cicli di lunghezza m;
- 5. se l é un numero primo allora ogni potenza di σ é un ciclo.

(Suggerimento: usare l'Esercizio 2.6).

Esercizio 2.10 Il cubo di Rubik puó essere visto come un gruppo algebrico \mathcal{R} , dove le operazioni sono rappresentate dalle mosse che si possono eseguire sulle facce del cubo (si veda anche wikipedia) Piú precisamente, ogni elemento di \mathcal{R} può essere scritto come prodotto di un numero finito delle seguenti mosse di base o delle loro inverse.

- *U*: Rotazione di 90 gradi della faccia superiore (Upper) in senso orario;
- D: Rotazione di 90 gradi della faccia inferiore (Down) in senso orario;
- L: Rotazione di 90 gradi della faccia sinistra (Left) in senso orario;

- R: Rotazione di 90 gradi della faccia destra (Right) in senso orario;
- *F*: Rotazione di 90 gradi della faccia frontale (Front) in senso orario;
- *B*: Rotazione di 90 gradi della faccia posteriore (Back) in senso orario.
- 1. Calcolare l'ordine di ogni mossa di base;
- 2. Calcolare l'ordine degli elementi $R^{-1}D$ e $R^{-1}D^{-1}$;
- 3. Dimostrare che la permutazione dei 20 cubetti del cubo di Rubik (8 angoli e 12 spigoli) indotta da una qualunque mossa é di classe pari.

Capitolo 3

Sottogruppi e classi laterali

3.1 Sottogruppi

Definizione 3.1.1 *Sia* G *un gruppo e sia* $H \subseteq G$, $H \neq \emptyset$. *Diremo che* H *è un* sottogruppo *di* G *se valgono le seguenti proprietà:*

- (S1): Stabilità, ovvero per ogni $x, y \in H$, anche il prodotto $x \cdot y \in H$.
- (S2): Esistenza dell'inverso, ovvero per ogni $x \in H$, anche l'inverso $x^{-1} \in H$.

Osservazione 3.1.2 La condizione (S1), chiamata anche di *chiusura*, è equivalente ad affermare che che l'operazione binaria \cdot ristretta ad $H \subseteq G$ definisce un'operazione binaria su H.

Notazione 3.1.3 Useremo la notazione $H \leq G$ per indicare che H è un sottogruppo di G.

Proposizione 3.1.4 Se H è un sottogruppo di G, allora 1, l'elemento neutro di G appartiene a H.

Dimostrazione: Consideriamo un qualsiasi elemento $x \in H$ che esiste in quanto $H \neq \emptyset$. Dall'esistenza dell'inverso (S2) abbiamo che $x^{-1} \in H$ e dalla stabilità (S1), abbiamo che $x \cdot x^{-1} = 1 \in H$. Quindi, l'elemento neutro 1 appartiene a H.

Osservazione 3.1.5 Ogni gruppo G possiede sempre almeno due sottogruppi: il *sottogruppo banale* $\{e\}$, che contiene solo l'elemento neutro, e il gruppo G stesso. Un sottogruppo H di G è *proprio* se $H \neq G$, ossia se H è strettamente contenuto in G.

Osservazione 3.1.6 Se H è un sottogruppo di G, allora H è a sua volta un gruppo rispetto alla stessa operazione di G. In particolare se G è abeliano allora ogni suo sottogruppo è abeliano.

Esempi 3.1.7 Si verifica facilmente che i seguenti sottoinsiemi già incontrati nel Capitolo 1 sono sottogruppi.

$$(\mathbb{Z},+) < (\mathbb{Q},+) < (\mathbb{R},+) < (\mathbb{C},+)$$
$$(\mathbb{Q}^*,\cdot) < (\mathbb{R}^*,\cdot) < (\mathbb{C}^*,\cdot)$$
$$(S^1,\cdot) < (\mathbb{C}^*,\cdot).$$

Esempio 3.1.8 Sia *a* un elemento di un insieme *X* e sia

$$H_a = \{ f \in S_X \mid f(a) = a \}.$$

l'insieme delle permutazioni di un insieme X che fissano a. Allora H_a è un sottogruppo di S_X . Infatti

- $H_a \neq \emptyset$: La permutazione identità $\mathrm{id}_X \in S_X$ fissa ogni elemento di X, quindi in particolare $\mathrm{id}_X(a) = a$, cioè $\mathrm{id}_X \in \mathrm{Stab}(a)$.
- (S1): Se $f,g \in H_a$, allora f(a) = a e g(a) = a. Dunque, per la composizione $f \circ g$, si ha $(f \circ g)(a) = f(g(a)) = f(a) = a$, quindi $f \circ g \in H_a$.
- (S2): Sia $f \in H_a$, allora f(a) = a. Sia $f^{-1} \in S_X$. Allora $f^{-1}(a) = a$ e quindi $f^{-1} \in H_a$.

Essendo soddisfatte le proprietà (S1) e (S2) allora $H_a \subset S_X$.

Esempio 3.1.9 (il gruppo alterno A_n) Sia X un insieme con n elementi e sia S_n il gruppo simmetrico delle permutazioni di X. Definiamo il *gruppo alterno* A_n come l'insieme delle permutazioni di classe pari di S_n :

$$A_n = \{ f \in S_n \mid \operatorname{sign}(f) = 1 \}.$$

Allora A_n è un sottogruppo di S_n e $|A_n| = \frac{n!}{2}$.

• $A_n \neq \emptyset$ in quanto sign(id_x) = 1.

• (S1): Siano $f,g \in A_n$, allora sign(f) = sign(g) = 1. Quindi per il Teorema 2.4.4,

$$sign(f \circ g) = sign(f) sign(g) = 1 \cdot 1 = 1.$$

Quindi, $f \circ g \in A_n$.

• (S2): Sia $f \in A_n$, allora

$$1=\mathrm{sign}(\mathrm{id}_x)=\mathrm{sign}(f\circ f^{-1})=\mathrm{sign}(f)\,\mathrm{sign}(f^{-1})=\mathrm{sign}(f^{-1})$$
e quindi $f^{-1}\in A_n.$

Dunque, $A_n < S_n$. Per dimostrare A_n ha $\frac{n!}{2}$ elementi consideriamo l'applicazione

$$A_n \to S_n \setminus A_n : f \mapsto f \circ \tau$$
,

dove τ è una trasposizione fissata. Quest'applicazione è ben definita in quanto $\operatorname{sign}(f \circ \tau) = \operatorname{sign}(f)\operatorname{sign}(\tau) = 1 \cdot -1 = -1$. Inoltre è invertibile con inversa $S_n \setminus A_n \to A_n, \ g \mapsto g \circ \tau$. Dal momento che S_n è l'unione digiunta di A_n e $S_n \setminus A_n$ segue che

$$|A_n|=|S_n\setminus A_n|=\frac{|S_n|}{2}=\frac{n!}{2}.$$

Le due proposizioni seguenti sono a volte utili per dimostrare che in sottoinsieme di un gruppo è un sottogruppo.

Proposizione 3.1.10 Sia G un gruppo e $H \subseteq G$, con $H \neq \emptyset$. Se l'ordine di H, è finito e H è stabile (cioè soddisfa la condizione (S1) nella definizione di sottogruppo), allora H è un sottogruppo di G.

Dimostrazione: Resta da verificare la condizione (S2), cioè che l'inverso di ogni elemento di H appartiene ancora a H. Sia $a \in H$. Se a = 1, allora il suo inverso è $a^{-1} = 1 \in H$. Supponiamo ora che $a \neq 1$ e definiamo l'applicazione

$$f: \mathbb{N}^+ \to H$$
, $n \mapsto a^n$.

Questa applicazione è ben definita perché vale la condizione (S1). Poiché $|H| < \infty$, f non è iniettiva. Esisteranno quindi $m, n \in \mathbb{N}^+$, con m > n, tali che $f(m) = a^m = a^n = f(n)$. Poiché m = n + k per qualche k > 0, otteniamo $a^{n+k} = a^n a^k = a^n$, e quindi $a^k = 1$. Segue che:

$$a^k = a^{k-1}a = 1.$$

Ora, $k-1 \ge 1$, altrimenti, se k=1, si avrebbe a=1, che abbiamo escluso. Pertanto, $a^{k-1}=a^{-1}$ è l'inverso di a e, grazie alla condizione (S1), $a^{-1}=a^{k-1} \in H$. Essendo a arbitrario H soddisfa la (S2) e quindi $H \le G$.

Osservazione 3.1.11 In virtù di questa proposizione, nell'Esempio 3.1.9, per dimostrare che A_n è un sottogruppo, si sarebbe potuta evitare la verifica della condizione (S2).

Proposizione 3.1.12 (criterio per i sottogruppi) *Sia G un gruppo e H* \subset *G, con H* \neq \emptyset *. Allora H* \leq *G se e solo se*

$$x^{-1}y \in H, \ \forall x, y \in H. \tag{3.1}$$

Dimostrazione: Supponiamo che $H \leq G$ e siano $x, y \in H$. Allora $x^{-1} \in H$ per la (S2) e, per la (S1), $x^{-1}y \in H$. Quindi, la (3.1) è verificata. Viceversa, supponiamo che valga la (3.1) e siano $x, y \in H$. Allora, per la (3.1), si ha che $x^{-1}x = 1 \in H$. Sempre per la (3.1), si deduce che $x^{-1} \cdot 1 = x^{-1} \in H$, ossia vale la (S2). Inoltre, applicando ancora la (3.1), si ha $(x^{-1})^{-1}y = xy \in H$, quindi vale anche la (S1).

3.2 Intersezione di sottogruppi

La seguente proposizione mostra che l'intersezione di un numero arbitrario di sottogruppi e ancora un sottogruppo

Proposizione 3.2.1 Sia I un insieme di cardinalità qualunque e sia $\{H_i\}_{i\in I}$ una famiglia di sottogruppi di G, $H_i \leq G$, per ogni $i \in I$. Allora la loro intersezione $H = \bigcap_{i \in I} H_i$ è un sottogruppo di G.

Dimostrazione: L'insieme $H \subseteq G$ è non vuoto. Infatti, $1 \in H_i$ per ogni $i \in I$, quindi $1 \in H = \bigcap_{i \in I} H_i$. Siano $x, y \in H$. Allora $x, y \in H_i$ per ogni $i \in I$. Poiché $H_i \leq G$, segue dalla parte "se" della Proposizione 3.1.12 che $x^{-1}y \in H_i$, per ogni $i \in I$, e quindi $x^{-1}y \in H = \bigcap_{i \in I} H_i$. Per la parte "solo se" della Proposizione 3.1.12, si deduce che $H \leq G$.

Sia G un gruppo e sia $X \subseteq G$ un sottoinsieme di G. Consideriamo il sottoinsieme $\langle X \rangle \subseteq G$ ottenuto come l'intersezione di tutti i sottogruppi di G che contengono X:

$$\langle X \rangle = \bigcap_{X \subset H \le G} H$$

Osserviamo che $\langle X \rangle \neq \emptyset$ in quanto stiamo prendendo l'intersezione di una famiglia non vuota di sottoinsiemi di X dato che G è un sottoinsieme di G che contiene X. Inoltre, $\langle X \rangle \leq G$ per la Proposizione 3.2.1.

Definizione 3.2.2 *Chiameremo* $\langle X \rangle$ il sottogruppo di G generato da X.

Notiamo anche che $\langle X \rangle$ è il più piccolo sottogruppo di G che contiene X, nel senso che se $H \leq G$ è tale che $X \subseteq H$ allora $\langle X \rangle \subseteq H$.

Osservazione 3.2.3 Se $X=\emptyset$ allora $\langle X \rangle = \{1\}$, dove 1 è l'elemento neutro di G. Inoltre se $X \leq G$ allora $\langle X \rangle = X$.

La seguente proposizione fornisce una descrizione utile di $\langle X \rangle$ come il sottoinsieme di G costituito dagli elementi che possono essere espressi come prodotto di elementi di X e dei loro inversi.

Proposizione 3.2.4 *Sia G un gruppo e X* \subseteq *G, X* \neq \emptyset *. Allora*

$$\langle X \rangle = \{ x_1^{\epsilon_1} \cdots x_k^{\epsilon_k} \mid k \geq 1, x_j \in X, \epsilon_j \in \{1, -1\} \}.$$

Dimostrazione: Sia

$$A:=\{x_1^{\epsilon_1}\cdots x_k^{\epsilon_k}\mid k\geq 1,\ x_j\in X,\ \epsilon_j\in\{1,-1\}\}.$$

Vogliamo mostrare che $A = \langle X \rangle$. Per prima cosa, se $H \leq G$ è un sottogruppo con $X \subseteq H$, allora, poiché H è chiuso per inversi e prodotti e contiene X, ogni elemento di A appartiene a H. Dunque

$$A \subseteq \bigcap_{X \subset H < G} H = \langle X \rangle.$$

Per l'inclusione opposta, verifichiamo che A è un sottogruppo di G che contiene X. Anzitutto $A \neq \emptyset$: fissato $x \in X$ (possibile perché $X \neq \emptyset$), si ha $xx^{-1} = 1 \in A$ (basta prendere k = 2, $x_1 = x_2 = x$, $\epsilon_1 = 1$, $\epsilon_2 = -1$). Inoltre $X \subseteq A$ perché, per $x \in X$, scegliendo k = 1 e $\epsilon_1 = 1$ si ha $x \in A$.

Siano ora $x, y \in A$ con

$$x = x_1^{\epsilon_1} \cdots x_m^{\epsilon_m}, \qquad y = y_1^{\eta_1} \cdots y_n^{\eta_n},$$

dove $x_i, y_i \in X$ e $\epsilon_i, \eta_i \in \{1, -1\}$. Allora

$$x^{-1}y = x_m^{-\epsilon_m} \cdots x_1^{-\epsilon_1} y_1^{\eta_1} \cdots y_n^{\eta_n}.$$

Scriviamo il prodotto precedente come

$$x^{-1}y=z_1^{\chi_1}\cdots z_{m+n}^{\chi_{m+n}},$$

dove, per $1 \le i \le m$, poniamo $z_i := x_{m-i+1}$ e $\chi_i := -\epsilon_{m-i+1}$, mentre, per $1 \le i \le n$, poniamo $z_{m+i} := y_i$ e $\chi_{m+i} := \eta_i$. Allora $z_\ell \in X$ e $\chi_\ell \in \{1, -1\}$ per ogni ℓ , dunque $x^{-1}y \in A$.

Segue quindi, dalla Proposizione 3.1.12, che A è un sottogruppo di G che contiene X, per cui $\langle X \rangle \subseteq A$. In conclusione $A = \langle X \rangle$.

Un caso particolarmente interessante si verifica quando $X = \{x\}$, $x \in G$. In questo caso, il sottogruppo generato da X si può scrivere come

$$\langle x \rangle = \{ x^n \mid n \in \mathbb{Z} \}. \tag{3.2}$$

Definizione 3.2.5 *Il gruppo* $\langle x \rangle$ *è chiamato* gruppo ciclico generato dall'elemento x.

Osservazione 3.2.6 Si noti che un gruppo ciclico è sempre abeliano per la proprietà delle potenze

$$x^n x^m = x^{n+m} = x^m x^n$$
, $\forall m, n \in \mathbb{Z}$.

Nel caso di un gruppo ciclico $\langle x \rangle$, come mostra le proposizione seguente, l'ordine dell'elemento $x \in G$ è proprio uguale all'ordine (ossia la cardinalità) del gruppo ciclico generato da x.

Proposizione 3.2.7 *Sia G un gruppo e x* \in *G. Allora*

$$|\langle x \rangle| = o(x). \tag{3.3}$$

Dimostrazione: Supponiamo che o(x) = m, con $m \in \mathbb{N}^+$. Mostriamo che

$$\langle x \rangle = \{1, x, \dots, x^{m-1}\},\$$

da cui si ottiene che $m = o(x) = |\langle x \rangle|$. L'inclusione

$$\{1,x,\ldots,x^{m-1}\}\subseteq\langle\ x\ \rangle$$

segue dalla (3.2). Per dimostrare l'inclusione opposta, sia $x^n \in \langle x \rangle$ con $n \in \mathbb{Z}$. Allora, dividendo n per m, possiamo scrivere

$$n = mq + r$$
, $0 \le r < m$.

Dunque

$$x^n = x^{mq+r} = x^{mq}x^r = (x^m)^q x^r = 1 \cdot x^r = x^r.$$

Ma x^r ∈ {1, x, . . . , x^{m-1} }, poiché $0 \le r < m$, e quindi

$$\langle x \rangle \subseteq \{1, x, \ldots, x^{m-1}\}.$$

Viceversa, supponiamo che $|\langle x \rangle| = m$, con $m \in \mathbb{N}^+$. Mostriamo che o(x) = m. Consideriamo l'applicazione

$$f: \mathbb{Z} \to \langle x \rangle$$
, $n \mapsto x^n$.

Poiché $|\mathbb{Z}| = \infty$ e $|\langle x \rangle| < \infty$, segue che f non è iniettiva. Esisteranno quindi $n,k \in \mathbb{Z}$ con n > k tali che $x^n = x^k$, ovvero $x^{n-k} = 1$. Di conseguenza, l'insieme $\{n \in \mathbb{N}^+ \mid x^n = 1\}$ non è vuoto, e quindi o(x) = d per qualche $d \in \mathbb{N}^+$. Dalla prima parte, $d = o(x) = |\langle x \rangle| = m$. Abbiamo dunque dimostrato che o(x) = m se e solo se $|\langle x \rangle| = m$, e quindi la (3.3) è dimostrata.

Proposizione 3.2.8 (classificazione dei sottogruppi di \mathbb{Z}) Sia H un sottogruppo di $\mathbb{Z} = (\mathbb{Z}, +, 0)$. Allora esiste $h \in \mathbb{N}$ tale che

$$H = h\mathbb{Z} = \{hz \mid z \in \mathbb{Z}\}.$$

In particolare, tutti i sottogruppi di **Z** *sono ciclici.*

Dimostrazione: Se $H = \{0\}$, allora $H = 0\mathbb{Z}$, che è il sottogruppo banale. Supponiamo quindi che $H \neq \{0\}$. Allora esiste $a \in H$, con $a \neq 0$. Possiamo assumere che a > 0, poiché se a < 0, il suo opposto $-a \in H$ e -a > 0. Per il principio del buon ordinamento, esiste $h \in H$, h > 0, che è il più piccolo elemento positivo in H. Vogliamo dimostrare che $H = h\mathbb{Z}$. L'inclusione $h\mathbb{Z} \subseteq H$ è immediata: $h \in H$ implica che ogni suo multiplo $hz \in H$, per ogni $z \in \mathbb{Z}$.

Dimostriamo ora l'inclusione opposta, $H\subseteq h\mathbb{Z}$. Sia $z\in H$, dividendo z per h possiamo scrivere

$$z = qh + r$$
, $0 \le r < h$.

Poiché $z \in H$ e $qh \in h\mathbb{Z} \subseteq H$, otteniamo che $z - qh = r \in H$. Dato che h è il più piccolo elemento positivo in H, segue che r = 0, quindi $z = qh \in h\mathbb{Z}$. Essendo z arbitrario, concludiamo che $H \subseteq h\mathbb{Z}$. Infine, l'ultima affermazione segue dal fatto che $h \in \mathbb{Z}$, in notazione additiva, è il generatore del sottogruppo ciclico $\langle h \rangle = h\mathbb{Z}$.

Esempio 3.2.9 Sia G l'insieme di tutte le isometrie di \mathbb{R}^2 che fissano l'origine, cioè le matrici ortogonali di ordine 2. Per ogni $n \geq 3$, il gruppo diedrale D_n , descritto nel Capitolo 2, è un sottogruppo di G generato da una rotazione r intorno all'origine e dalla simmetria rispetto all'asse delle ordinate.

3.3 Unione di sottogruppi

In generale l'unione di sottogruppi non è un sottogruppo come mostra la seguente

Dimostrazione: Se $H \le K$ (risp. $K \le H$), allora $H \cup K = K \le G$ (risp. $H \cup K = H \le G$). Supponiamo ora che $H \cup K \le G$ e dimostriamo che $H \le K$ oppure $K \le H$. Se, per esempio $H \not\subseteq K$ (il caso $K \not\subseteq H$ si tratta in modo analogo scambiando il ruolo di H e K), allora esiste $h \in H$ tale che $h \notin K$. Sia $k \in K$. Allora $hk \in H \cup K$, poiché per ipotesi $H \cup K$ è un sottogruppo di G e soddisfa quindi la proprietà di chiusura (S1). Tuttavia, $hk \notin K$, altrimenti hk = k', per qualche $k' \in K$, e quindi $h = k'k^{-1} \in K$, in contrasto con la scelta di h. Di conseguenza, $hk \in H$. Ma allora, $h^{-1}hk = k \in H$. Essendo k arbitrario, segue che $K \subseteq H$.

Corollario 3.3.2 *Un gruppo G non può essere scritto come unione di due suoi sottogruppi propri.*

Dimostrazione: Supponiamo per assurdo che $G = H \cup K$ con H < G e K < G. Allora per la Proposizione 3.3.1, essendo G un sottogruppo di se stesso si ha $H \le K$ oppure $K \le H$. Quindi $H \cup K = K = G$ oppure $H \cup K = H = G$ in contrasto con il fatto che H e K sono strettamente contenuti in G.

Osservazione 3.3.3 Esistono gruppi che possono essere scritti come unione di tre loro sottogruppi propri. Per esempio, sia $G = (\mathbb{Z}_2 \times \mathbb{Z}_2.+)$ con l'operazione

$$([a]_2, [b]_2) + ([c]_2, [c]_2) = ([a+b]_2, [c+d]_2).$$

Si verifica immediatamente che G è un gruppo abeliano il cui elemento neutro è $([0]_2, [0]_2)$ e l'opposto di un elemento $([a]_2, [b]_2)$ è dato da $([-a]_2, [-b]_2)$. Consideriamo i tre sottogruppi ciclici e propri H, K e L di G generati rispettivamente da $([1]_2, [0]_2)$, $([0]_2, [1]_2$ e $([1]_2, [1]_2)$:

$$H = \langle ([1]_2, [0]_2) \rangle = \{([0]_2, [0]_2, ([1]_2, [0]_2)\}$$

$$K = \langle ([0]_2, [1]_2) \rangle = \{([0]_2, [0]_2, ([0]_2, [1]_2)\}$$

$$L = \langle ([1]_2, [1]_2) \rangle = \{([0]_2, [0]_2, ([1]_2, [1]_2)\}.$$

Allora $G = H \cup K \cup L$.

La Proposizione 3.3.1 può essere generalizzata come segue.

Definizione 3.3.4 *Sia G un gruppo. Una famiglia non vuota* $\{H_i\}_{i\in I}$ *di sottogruppi di G si dice* catena *se per ogni i, j* \in *I vale* $H_i \subseteq H_j$ *oppure* $H_j \subseteq H_i$.

Proposizione 3.3.5 (unione di una catena) Sia G un gruppo e $\{H_i\}_{i\in I}$ una catena non vuota di sottogruppi di G. Allora

$$H = \bigcup_{i \in I} H_i$$

è un sottogruppo di G.

Dimostrazione: Per ogni i si ha $1 \in H_i$, dunque $1 \in H$. Siano $x, y \in H$: esistono i, j tali che $x \in H_i$ e $y \in H_j$. Poiché la famiglia è una catena, senza perdere generalità $H_i \subseteq H_j$; quindi $x, y \in H_j$ e, per il criterio di sottogruppo, $x^{-1}y \in H_j \subseteq H$. Ne segue che H è un sottogruppo di G.

Un corollario immediato è il seguente.

Corollario 3.3.6 Sia $\{H_i\}_{i\in\mathbb{N}}$ una famiglia di sottogruppi di G tali che $H_i\subseteq H_j$ se $i\leq j$. Allora $H=\cup_{i\in\mathbb{N}}H_i\leq G$.

Osservazione 3.3.7 La condizione per cui, per tutti $i, j \in I$, si ha $H_i \subseteq H_j$ oppure $H_j \subseteq H_i$, può essere indebolita. Tutto procede comunque se, per tutti $i, j \in I$, esiste un $k \in I$ tale che $H_i \subseteq H_k$ e $H_j \subseteq H_k$.

I risultati precedenti ci dicono quindi, che in generale l'unione di sottogruppi non è un sottogruppo. La proposizione che segue descrive il gruppo generato dall'unione.

Proposizione 3.3.8 Sia G un gruppo. Sia I un insieme di cardinalità non nulla e sia $\{H_i\}_{i\in I}$ una famiglia di sottogruppi di G. Allora il sottogruppo di G generato dall'unione è

$$\langle \bigcup_{i\in I} H_i \rangle = \{x_1x_2 \dots x_k \mid k \geq 0, x_j \in H_{i_j}, i_j \in I\}.$$

Dimostrazione: Poniamo

$$H:=\Big\langle \bigcup_{i\in I} H_i \Big\rangle, \qquad A:=\Big\{x_1x_2\ldots x_k \mid k\geq 0, \ x_j\in H_{i_j}, \ i_j\in I\Big\}.$$

Dimostrazione prima l' inclusione $A \subseteq H$. Sia $x = x_1 \cdots x_k \in A$. Per definizione di A, ogni x_j appartiene a qualche H_{i_j} , dunque $x_j \in \bigcup_{i \in I} H_i \subseteq H$ (perché H è un sottogruppo che contiene l'unione). Essendo H un sottogruppo, è

chiuso per prodotto: quindi $x = x_1 \cdots x_k \in H$. Nel caso k = 0 il prodotto è per convenzione $1 \in H$, poiché ogni sottogruppo contiene l'identità. Pertanto $A \subseteq H$.

Dimostriamo ora l'inclusione $H \subseteq A$. Mostriamo che $A \leq G$ e che contiene $\bigcup_{i \in I} H_i$. Infatti $1 \in A$ (caso k = 0); se $a = x_1 \cdots x_k \in A$ e $b = y_1 \cdots y_\ell \in A$, allora $ab = x_1 \cdots x_k y_1 \cdots y_\ell \in A$, quindi A è chiuso per prodotto; inoltre $a^{-1} = x_k^{-1} \cdots x_1^{-1} \in A$ perché ogni H_{i_j} è un sottogruppo, dunque chiuso per inversi. Quindi $A \leq G$. Per ogni $i \in I$ e $h \in H_i$ si ha $h \in A$ prendendo k = 1, perciò $\bigcup_{i \in I} H_i \subseteq A$. Per minimalità di $H = \langle \bigcup_{i \in I} H_i \rangle$ tra i sottogruppi che contengono l'unione, segue $H \subseteq A$. Dalle due inclusioni otteniamo H = A. \square

3.4 Prodotto di sottogruppi

Il *prodotto* di due sottogruppi H e K di un gruppo G è l'insieme dei prodotti di tutti gli elementi di H con tutti gli elementi di K. Formalmente, il prodotto di H e K è definito come:

$$H \cdot K = \{h \cdot k \mid h \in H, k \in K\}.$$

In altre parole, si prende ciascun elemento h di H e ciascun elemento k di K e si considera il prodotto $h \cdot k$, dove l'operazione \cdot è quella del gruppo G.

Esempio 3.4.1 Consideriamo il gruppo simmetrico $G = S_3$, ovvero:

$$S_3 = \{1, (12), (13), (23), (123), (132)\}.$$

Siano $H=\langle$ (12) $\rangle=\{1,(12)\}$ e $K=\langle$ (12) $\rangle=\{1,(13)\}$ due sottogruppi di S_3 . Il prodotto $H\cdot K$ è dato da

$$H \cdot K = \{1, (13), (12), (123)\}.$$

Analogamente, possiamo calcolare il prodotto $K \cdot H$ ottenendo

$$K \cdot H = \{1, (12), (13), (132)\}.$$

Come si può vedere, $H \cdot K \neq K \cdot H$, quindi il prodotto di sottogruppi non è commutativo in generale.

Da ora in poi scriveremo $HK = H \cdot K$. Diremo che H e K *commutano* o sono *permutabili* se HK = KH.

Osservazione 3.4.2 Chiaramente G è abeliano, allora due suoi sottogruppi H e K commutano. Nella notazione additiva scriveremo H+K invece che HK.

Nella seguente proposizione mostriamo che se H e K commutano allora HK è un sottogruppo di G. Indichiamo con $\langle H, K \rangle = \langle H \cup K \rangle$ il sottogruppo di G generato dall'unione di H e K.

Proposizione 3.4.3 *Sia G un gruppo e H, K suoi sottogruppi. Le seguenti condizioni sono equivalenti:*

- (i) $HK = \langle H, K \rangle$;
- (ii) HK = KH;
- (iii) $HK \leq G$.

Dimostrazione: (i) \Rightarrow (ii): Supponiamo che $HK = \langle H, K \rangle$, cioè che HK sia il sottogruppo generato da H e K. Vogliamo dimostrare che HK = KH. Ricordiamo che $\langle H, K \rangle$ è il più piccolo sottogruppo di G che contiene sia H che K. In particolare, ciò significa che tutti i prodotti di elementi di K e H appartengono a $\langle H, K \rangle$, e quindi

$$KH \subseteq \langle H, K \rangle = HK.$$

Per dimostrare l'inclusione $HK \subseteq KH$ (e quindi l'uguaglianza HK = KH), sia $hk \in HK$, $h \in H$ e $k \in K$. Allora, visto che $HK = \langle H, K \rangle$ è un gruppo l'inverso di hk appartiene a HK e quindi

$$(hk)^{-1} = h'k', h' \in H, k' \in K.$$

Dal momento che gli inversi di di elementi di *H* e *K* stanno in *H* e *K*, si ha:

$$hk = (h'k')^{-1} = k'^{-1}h'^{-1} \in KH$$
,

la quale mostra $HK \subseteq KH$.

(ii) \Rightarrow (iii): Supponiamo ora che HK = KH. Per dimostrare che HK è un sottogruppo. osserviamo che è diverso dal vuoto. Infatti H che K sono sottogruppi di G, contengono entrambi l'elemento neutro 1 di G e quindi $1 = 1 \cdot 1 \in HK$, e HK contiene l'elemento neutro. Prendiamo due elementi arbitrari $h_1k_1, h_2k_2 \in HK$, dove $h_1, h_2 \in H$ e $k_1, k_2 \in K$. Allora, visto che HK = KH, possiamo scrivere $k_1k_2^{-1}h_2^{-1} = h_3k_3$, con $h_3 \in H$ e $k_3 \in K$ e quindi:

$$(h_1k_1)(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1} = h_1h_3k_3 \in HK.$$

Dunque $HK \leq G$ per la Proposizione 3.1.12.

(iii) \Rightarrow (i): Infine, supponiamo che $HK \leq G$. Per definizione, il sottogruppo generato da H e K, $\langle H, K \rangle$, è il più piccolo sottogruppo di G che contiene sia H che K. Poiché $H \subseteq HK$ e $K \subseteq HK$, e HK è un sottogruppo di G, si ha che:

$$\langle H, K \rangle \subseteq HK$$
.

D'altra parte, siccome $\langle H, K \rangle$ (come abbiamo già osservato) contiene tutti i prodotti di elementi di H e K, abbiamo anche $HK \subseteq \langle H, K \rangle$. Quindi, $HK = \langle H, K \rangle$.

Esempio 3.4.4 Sia $G=(\mathbb{Z},+,0)$ il gruppo degli interi e siano H e K due suoi sottogruppi non banali, cioè diversi dal sottogruppo nullo $\{0\}$. Per la Proposizione 3.2.8, esisteranno $m,n\in\mathbb{N}^+$ tali che $H=m\mathbb{Z}$ e $K=m\mathbb{Z}$. Vogliamo descrivere i sottogruppi $H\cap K$ e $H+K=\langle H,K\rangle$ in funzione di m e n. Notiamo che $H+K=\langle H,K\rangle\leq \mathbb{Z}$, per la Proposizione 3.4.3, essendo \mathbb{Z} abeliano.

Osserviamo preliminarmente che, per ogni $u, v \in \mathbb{N}$ si ha:

$$u\mathbb{Z} \subseteq v\mathbb{Z} \iff v \mid u \tag{3.4}$$

Iniziamo con $H+K=\langle\ H,K\ \rangle$. Per la Proposizione 3.2.8 esiste $d\in\mathbb{N}^+$ tale che

$$H + K = m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z}$$
.

Mostriamo che d è il massimo comun divisore tra m e n, d=(m,n). Infatti visto che $m\mathbb{Z}\subseteq d\mathbb{Z}$ e $n\mathbb{Z}\subseteq d\mathbb{Z}$ segue dalla (3.4) che $d\mid n$ e $d\mid n$. Inoltre se $a\in\mathbb{N}$ è tale che $a\mid m$ e $a\mid n$ allora per la (3.4), si ha $m\mathbb{Z}\subseteq a\mathbb{Z}$ e $n\mathbb{Z}\subseteq a\mathbb{Z}$ e quindi

$$H + K = m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z} \subseteq a\mathbb{Z}.$$

Da questa (ancora per la (3.4)) segue che $a \mid d$, la quale mostra che d è in effetti il massimo comun divisore tra m e n. Abbiamo quindi dimostrato che

$$m\mathbb{Z} + n\mathbb{Z} = (m, n)\mathbb{Z}.$$

Consideriamo ora $H \cap K$. Per la Proposizione 3.2.8 esiste $s \in \mathbb{N}^+$ tale che

$$H \cap K = m\mathbb{Z} \cap n\mathbb{Z} = s\mathbb{Z}.$$

Mostriamo che s è il minimo comune multiplo tra m e n, s = [m, n]. Infatti visto che $s\mathbb{Z} \subseteq m\mathbb{Z}$ e $s\mathbb{Z} \subseteq n\mathbb{Z}$ segue dalla (3.4) che $m \mid s$ e $n \mid s$. Inoltre se $a \in \mathbb{N}$ è tale che $m \mid a$ e $n \mid a$ allora per la (3.4), si ha $a\mathbb{Z} \subseteq m\mathbb{Z}$ e $a\mathbb{Z} \subseteq n\mathbb{Z}$ e quindi

$$a\mathbb{Z} \subseteq m\mathbb{Z} \cap n\mathbb{Z} = s\mathbb{Z}.$$

Da questa (ancora per la (3.4)) segue che $s \mid a$, la quale mostra che d è il minimo comune multiplo tra m e n, ossia Abbiamo quindi dimostrato che

$$m\mathbb{Z} \cap n\mathbb{Z} = [m, n]\mathbb{Z}.$$

Concludiamo questo paragrafo calcolando la cardinalità dell'insieme di HK, per due sottogruppi finiti H e K di un gruppo G.

Proposizione 3.4.5 Siano H e K due sottogruppi finiti di un gruppo G. Allora

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$
 (3.5)

Dimostrazione: Sia $f: H \times K \to HK$, definita da f(h,k) = hk, e consideriamo la seguente relazione di equivalenza \sim_f su $H \times K$: dati $(h_1,k_1), (h_2,k_2) \in H \times K$,

$$(h_1, k_1) \sim_f (h_2, k_2) \iff h_1 k_1 = f(h_1, k_1) = f(h_2, k_2) = h_2 k_2.$$
 (3.6)

Sia $\frac{H\times K}{\sim_f}$ lo spazio quoziente corrispondente e denotiamo con $[(h,k)]_{\sim_f}$ la classe di equivalenza dell'elemento $(h,k)\in H\times K$. Poiché f è suriettiva, l'applicazione

$$\tilde{f}: \frac{H \times K}{\sim_f} \to HK, \quad [(h,k)]_{\sim_f} \mapsto \tilde{f}([(h,k)]_{\sim_f}) = f(h,k) = hk,$$

è una bigezione. Pertanto,

$$\left| \frac{H \times K}{\sim_f} \right| = |HK|. \tag{3.7}$$

Fissiamo ora $(h_0, k_0) \in [(h, k)]_{\sim_f}$, e definiamo l'applicazione

$$g: [(h,k)]_{\sim_f} \to H \cap K, \quad (h_1,k_1) \in [(h,k)]_{\sim_f} \mapsto h_1^{-1}h_0.$$

Quest' appplicazione è ben definita in virtù di (3.6):

$$(h_0, k_0) \sim_f (h_1, k_1) \Rightarrow h_1^{-1} h_0 = k_1 k_0^{-1} \in H \cap K.$$

Inoltre g è invertibile, con inversa

$$g^{-1}: H \cap K \to [(h,k)]_{\sim_f}, \quad s \mapsto (h_0 s^{-1}, sk_0).$$

Segue allora che che

$$|[(h,k)]_{\sim_f}| = |H \cap K|, \quad \forall (h,k) \in H \times K, \tag{3.8}$$

ossia le classi di equivalenza hanno tutte la stessa cardinalità, che è uguale a $|H \cap K|$. Combinando la (3.7) con la (3.8), otteniamo

$$|H||K| = |H \times K| = \left| \frac{H \times K}{\sim_f} \right| \cdot |[(h,k)]_{\sim_f}| = |HK| \cdot |H \cap K|,$$

da cui otteniamo la (3.5).

3.5 Classi laterali e il teorema di Lagrange

Dato un gruppo G la scelta di un suo sottogruppo H e di un elemento $x \in G$ definisce due sottoinsiemi naturali di G, la classe laterale sinistra di x rispetto ad H:

$$xH = \{xh \mid h \in H\} \tag{3.9}$$

la classe laterale destra di x rispetto ad H:

$$Hx = \{hx \mid h \in H\} \tag{3.10}$$

Osservazione 3.5.1 Se G è abeliano e $H \leq G$, adotteremo la notazione additiva: la classe laterale sinistra di x rispetto a H si indica con

$$x + H = \{ x + h \mid h \in H \},\$$

e la classe laterale destra con

$$H + x = \{ h + x \mid h \in H \}.$$

Poiché in G l'operazione è commutativa, le due classi coincidono, cioè x + H = H + x. In tal caso parleremo semplicemente di *classe laterale* di x modulo H.

Esempio 3.5.2 Consideriamo il gruppo summetrico S_3

$$S_3 = \{1, (12), (13), (23), (123), (132)\}$$

e il suo sottogruppo $H = \langle (12) \rangle = \{1, (12)\}$, di ordine 2.

Le classi laterali sinistre sono della forma xH, dove $x \in S_3$:

$$1H = \{1 \cdot 1, 1 \cdot (12)\} = \{1, (12)\},\$$

$$(12)H = \{(12) \cdot 1, (12) \cdot (12)\} = \{(12), 1\},\$$

$$(13)H = \{(13) \cdot 1, (13) \cdot (12)\} = \{(13), (123)\},\$$

$$(23)H = \{(23) \cdot 1, (23) \cdot (12)\} = \{(23), (132)\},\$$

$$(123)H = \{(123) \cdot 1, (123) \cdot (12)\} = \{(123), (13)\},\$$

$$(132)H = \{(132) \cdot 1, (132) \cdot (12)\} = \{(132), (23)\}.$$

Quindi le classi laterali sinistre distinte di H in S_3 sono:

$$\{1, (12)\}, \{(13), (132)\}, \{(23), (123)\}\}.$$

Allo stesso modo, calcoliamo le classi laterali destre Hx per ogni elemento di S_3 :

$$H1 = \{1 \cdot 1, (12) \cdot 1\} = \{1, (12)\},$$

$$H(12) = \{1 \cdot (12), (12) \cdot (12)\} = \{(12), 1\},$$

$$H(13) = \{1 \cdot (13), (12) \cdot (13)\} = \{(13), (132)\},$$

$$H(23) = \{1 \cdot (23), (12) \cdot (23)\} = \{(23), (123)\},$$

$$H(123) = \{1 \cdot (123), (12) \cdot (123)\} = \{(123), (23)\},$$

$$H(132) = \{1 \cdot (132), (12) \cdot (132)\} = \{(132), (13)\}.$$

Quindi le classi laterali destre distinte di H in S_3 sono:

$$\{1, (12)\}, \{(13), (123)\}, \{(23), (132)\}\}.$$

Riassumiamo in una tabella le classi laterali sinistre e destre distinte per il sottogruppo $H = \{1, (12)\}$ in S_3 :

x	Classe laterale sinistra xH	Classe laterale destra <i>Hx</i>
1	{1,(12)}	{1,(12)}
(13)	{(13),(132)}	{(13),(123)}
(23)	{(23),(123)}	{(23),(132)}

Questo esempio mostra che le classi laterali sinistre e destre non coincidono necessariamente.

Dato un gruppo G e un suo sottogruppo H, possiamo definire due relazioni d'equivalenza \sim e \sim ' su G come segue:

$$x \sim y \iff x^{-1}y \in H, \ x, y \in G \tag{3.11}$$

$$x \sim' y \iff xy^{-1} \in H, \ x, y \in G. \tag{3.12}$$

La verifica che si tratti effettivamente di due relazioni d'equivalenza si ottiene immediatamente. Vediamola per la \sim (per la \sim ' è analoga).

- Riflessività: $x \sim x \iff x^{-1}x = 1 \in H$, in quanto H è un sottogruppo di G e l'elemento neutro 1 di G appartiene a H.
- Simmetria: $x \sim y \iff x^{-1}y \in H$; passando agli inversi e usando la (S2) si ottiene $y^{-1}x \in H$ e quindi $y \sim x$.
- Transitività: Supponiamo che $x\sim y$ e $y\sim z$, cioè $x^{-1}y\in H$ e $y^{-1}z\in H$. Osserviamo che:

$$x^{-1}z = (x^{-1}y)(y^{-1}z).$$

Poiché $x^{-1}y \in H$ e $y^{-1}z \in H$ per la Proposizione 3.1.12 e H è chiuso rispetto al prodotto (per la (S1)) si ottiene

$$x^{-1}z = (x^{-1}y)(y^{-1}z) \in H.$$

Pertanto, $x \sim z$, e la transitività è dimostrata.

Il legame tra queste relazioni d'equivalenza e le classi laterali è espresso dalla seguente:

Proposizione 3.5.3 Sia G un gruppo e $H \leq G$ e siano \sim (risp. \sim ') la relazione d'equivalenza (3.11) (risp. (3.12)). Allora la classe d'equivalenza $[x]_{\sim}$ (risp. $[x]_{\sim}$) di un elemento $x \in G$ coincide con la classe laterale sinistra (risp. destra) di x rispetto ad H, ossia

$$[x]_{\sim} = xH \ (risp. \ [x]_{\sim'} = Hx)$$
 (3.13)

Dimostrazione: Dimostriamo la $[x]_{\sim} = xH$ con la doppia inclusione.

 $[x]_{\sim} \subseteq xH$: per definizione, $[x]_{\sim}$ è la classe d'equivalenza di x rispetto alla relazione \sim . La relazione $y \sim x$ implica che $yx^{-1} \in H$, quindi y = xh per qualche $h \in H$. Se $y \in [x]_{\sim}$, allora y = xh per qualche $h \in H$, e quindi $y \in xH$. Dunque, $[x]_{\sim} \subseteq xH$.

 $xH \subseteq [x]_{\sim}$: consideriamo un elemento arbitrario $y \in xH$. Allora y = xh per qualche $h \in H$. Poiché y = xh, abbiamo che $yx^{-1} = h$, e siccome $h \in H$, segue che $y \sim x$. Pertanto, $y \in [x]_{\sim}$. Quindi, $xH \subseteq [x]_{\sim}$.

Poiché entrambe le inclusioni sono verificate, abbiamo che $[x]_{\sim} = xH$. La dimostrazione per $[x]_{\sim'} = Hx$ è analoga e segue lo stesso schema, considerando le classi laterali destre.

La proposizione seguente mostra che le classi laterali sinistre e destre hanno tutte la stessa cardinalità e lo stesso vale per cardinalità degli spazi quoziente G/\sim e G/\sim' rispetto alle relazioni d'equivalenza (3.11) e (3.12).

Proposizione 3.5.4 *Sia G un gruppo e H* \leq *G. Allora*

$$|xH| = |Hy|, \, \forall x, y \in G \tag{3.14}$$

$$|G/\sim| = |G/\sim'|. \tag{3.15}$$

Dimostrazione: Fissato $x \in G$, consideriamo la classe laterale sinistra $xH = \{xh \mid h \in H\}$. Definiamo $f: H \to xH$ ponendo f(h) = xh. L'applicazione f è iniettiva: infatti, se $f(h_1) = f(h_2)$, allora $xh_1 = xh_2$ e, per cancellazione a sinistra, $h_1 = h_2$. È inoltre suriettiva per costruzione, poiché per ogni $z \in xH$

esiste $h \in H$ tale che z = xh = f(h). Dunque f è una biezione e ne segue |xH| = |H|. In modo del tutto analogo, fissato $y \in G$, la mappa $g : H \to Hy$, g(h) = hy, è biettiva; quindi |Hy| = |H|. Concludiamo così che, per ogni $x, y \in G$, vale

$$|xH| = |H| = |Hy|,$$

ossia (3.14). Passiamo ora alla (3.15). Definiamo $F: G/\sim \to G/\sim'$ ponendo

$$F(xH) = Hx^{-1}.$$

Mostriamo anzitutto che F è ben definita. Se xH=yH, allora x=yh per qualche $h\in H$; dunque $x^{-1}=h^{-1}y^{-1}$ e

$$Hx^{-1} = H(h^{-1}y^{-1}) = Hy^{-1},$$

poiché $h^{-1} \in H$ e moltiplicare a sinistra per un elemento di H non cambia la classe laterale destra. Quindi F non dipende dal rappresentante scelto. Infine osserviamo che F è invertibile. L'applicazione

$$F^{-1}: G/\sim' \to G/\sim, \qquad F^{-1}(Hx) = x^{-1}H,$$

è ben definita e soddisfa $F(F^{-1}(Hx)) = H(x^{-1})^{-1} = Hx$ e $F^{-1}(F(xH)) = (x^{-1})^{-1}H = xH$. Pertanto F è una biezione e ne segue

$$|G/\sim| = |G/\sim'|$$

cioè la (3.15). □

Notazione 3.5.5 La cardinalità di $|G/\sim| = |G/\sim'|$ prende il nome di *indice di* H *in* G e si indica con [G:H].

Il seguente teorema, insieme ai suoi corollari, rappresenta senza dubbio i risultati più importanti nella teoria dei gruppi finiti.

Teorema 3.5.6 (teorema di Lagrange) Sia G un gruppo finito e $H \leq G$ un suo sottogruppo. Allora

$$|G| = [G:H] \cdot |H|. \tag{3.16}$$

Dimostrazione: Dalla Proposizione 3.5.4, sappiamo che ogni classe laterale (sinistra o destra) ha la stessa cardinalità, pari a |H|. Le classi laterali forniscono una partizione dell'insieme G. Poiché G è l'unione disgiunta di [G:H] classi laterali, ciascuna delle quali ha cardinalità |H|, otteniamo

$$|G| = [G:H] \cdot |H|.$$

Questo conclude la dimostrazione.

Una conseguenza immediata del teorema di Lagrange è il seguente:

Corollario 3.5.7 Sia G un gruppo finito e $H \leq G$. Allora l'ordine di H divide quello di G

Osservazione 3.5.8 Il teorema di Lagrange afferma che, in un gruppo finito G, ogni sottogruppo ha un ordine che divide l'ordine di G. Tuttavia, il fatto che un intero positivo divida l'ordine di G non implica necessariamente l'esistenza di un sottogruppo di tale ordine. Ad esempio, consideriamo il gruppo alterno A_4 , la cui cardinalità è 12. Nonostante 6 divida 12, non esiste alcun sottogruppo di A_4 con ordine 6, come dimostreremo in seguito (cfr. Corollario 6.2.5).

Corollario 3.5.9 Sia G un gruppo finito. Allora, per ogni $x \in G$, si ha:

- (i) $o(x) \mid |G|$, dove o(x) è l'ordine dell'elemento x;
- (ii) $x^{|G|} = 1$.

Dimostrazione: (i): Dal teorema di Lagrange, sappiamo che l'ordine di ogni sottogruppo di *G* divide l'ordine di *G*. In particolare (cf. (3.3))

$$|\langle x \rangle| = o(x) | |G|.$$

(ii): Poiché, dal punto (i), $o(x) \mid |G|$ l'uguaglianza $x^{|G|} = 1$ segue dalla (i) della Proposizione 1.3.33.

Corollario 3.5.10 Sia G un gruppo finito di ordine p, con p primo. Allora:

- (i) gli unici sottogruppi di G sono quelli banali;
- (ii) G è ciclico ed è generato da qualunque $x \in G$, $x \neq 1$, ossia $G = \langle x \rangle$.

Dimostrazione: (i): Sia $H \leq G$ un sottogruppo di G. Dal Corollario 3.5.7, sappiamo che l'ordine di H deve dividere l'ordine di G. Poiché |G| = p e p è primo, i divisori di p sono solo 1 e p. Quindi, l'ordine di H può essere soltanto 1 o p. Se |H| = 1, allora $H = \{1\}$, il sottogruppo banale. Se |H| = p, allora H = G, poiché l'ordine di H è uguale all'ordine di G. Di conseguenza, gli unici sottogruppi di G sono $\{1\}$ e G stesso.

(ii): Ora dimostriamo che G è ciclico. Poiché |G|=p, per (i) del Corollario 3.5.9, ogni elemento $x \in G$ ha un ordine che divide p. Essendo p primo, l'ordine di x può essere soltanto 1 o p. Se o(x)=1, allora x=1. Se o(x)=p, allora x genera tutto il gruppo G, ossia $G=\langle x\rangle$. Quindi, qualunque elemento $x\in G$ con $x\neq 1$ genera G, il che dimostra che G è ciclico.

Osservazione 3.5.11 Dimostreremo in seguito (cfr. Corollario 7.1.3) che, se un gruppo G non possiede sottogruppi propri diversi da $\{1\}$, allora G ha ordine primo p (e quindi è ciclico per il Corollario 3.5.9).

Usando i Corollari 3.5.7 e 3.5.9 si riottengono alcuni risultati classici sulla teoria elementare dei numeri, reassunti nei due corollari seguenti. Ricordiamo che la funzione di Eulero $\varphi: \mathbb{N}^+ \to \mathbb{N}^+$ conta il numero di interi positivi minori di n che sono coprimi con n, ovvero il numero di interi a tali che (a,n)=1. Formalmente, è definita come:

$$\varphi(n) = |\{a \in \mathbb{N}^+ \mid 1 \le a < n, (a, n) = 1\}|$$

Corollario 3.5.12 (teorema di Eulero-Fermat) Siano $a, n \in \mathbb{N}^+$ con (a, n) = 1. Allora

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Dimostrazione: Indichiamo con $U(\mathbb{Z}_n)$ il gruppo (moltiplicativo) delle classi invertibili modulo n:

$$U(\mathbb{Z}_n) = \{ [x]_n \in \mathbb{Z}_n \mid (x, n) = 1 \}.$$

Per definizione di funzione di Eulero e per la (1.22) si ottiene $|U(\mathbb{Z}_n)| = \varphi(n)$. Poiché (a, n) = 1, la classe $[a]_n$ appartiene a $U(\mathbb{Z}_n)$. Per la (ii) del Corollario 3.5.9 applicato a $G = U(\mathbb{Z}_n)$ e $x = [a]_n$, otteniamo

$$[a]_n^{\varphi(n)} = [1]_n.$$

Questa uguaglianza tra classi equivale alla congruenza $a^{\varphi(n)} \equiv 1 \pmod n$, come voluto.

Corollario 3.5.13 Siano a e n interi positivi. Allora

$$n \mid \varphi(a^n - 1).$$

Dimostrazione: Consideriamo il gruppo $U(\mathbb{Z}_m)$, $m = a^n - 1$. Per la (1.22) il suo ordine è dato da $|U(\mathbb{Z}_m)| = \varphi(a^n - 1)$ e $[a]_m$ appartiene a questo gruppo, in quanto a è coprimo con $a^n - 1$. Osserviamo anche che $o([a]_m) = n$. Infatti $[a]_m^n = [1]_m$ ($m = a^n - 1 \mid a^n - 1$) e $a^d - 1$ non è divisibile per $a^n - 1$ per d < n (e dunque n è il più piccolo intero positivo tale che $[a]_m^n = [1]_m$). Per la (i) del Corollario 3.5.9 si ottiene dunque

$$o([a]_m) = n \mid |U(\mathbb{Z}_m)| = \varphi(a^n - 1).$$

3.5.1 Ordine del prodotto di due elementi¹

Proposizione 3.5.14 Sia G un gruppo e siano $x, y \in G$, con o(x) = m e o(y) = n, tali che (m, n) = 1. Se x e y commutano, allora o(xy) = mn = [m, n], dove [m, n] denota il minimo comune multiplo tra m e n.

Dimostrazione: Poiché *x* e *y* commutano, possiamo scrivere:

$$(xy)^{mn} = x^{mn}y^{mn} = (x^m)^n(y^n)^m = 1.$$

Da ciò segue che l'ordine di xy, denotato con k := o(xy), divide il minimo comune multiplo di m e n, ovvero $k \mid [m, n] = mn$.

Osserviamo ora che (m, n) = 1 implica che i sottogruppi generati da x e y, ovvero $\langle x \rangle$ e $\langle y \rangle$, hanno intersezione banale:

$$\langle x \rangle \cap \langle y \rangle = \{1\}.$$

Infatti, se $z \in \langle x \rangle \cap \langle y \rangle$, allora o(z) divide sia m che n. Poiché (m,n)=1, ciò implica che o(z)=1, quindi z=1. A questo punto, considerando che $(xy)^k=x^ky^k=1$, otteniamo che:

$$x^k = y^{-k} \in \langle x \rangle \cap \langle y \rangle = \{1\},\$$

da cui segue che $x^k = y^k = 1$. Questo implica che $m \mid k$ e $n \mid k$ e quindi $[m, n] \mid k$ e pertanto k = [m, n].

Corollario 3.5.15 Sia G un gruppo e siano $x, y \in G$ con ordini finiti o(x) = m e o(y) = n. Se x e y commutano, allora esiste $z \in G$ tale che o(z) = [m, n].

Dimostrazione: Sia $\mathcal{P} = \{ p \text{ primo } | p | m \text{ oppure } p | n \}$ l'unione dei primi che compaiono nelle fattorizzazioni di m o di n. Per ogni $p \in \mathcal{P}$ indichiamo con $\alpha_p \geq 0$ l'esponente di p in m (ponendo $\alpha_p = 0$ se $p \nmid m$) e con $\beta_p \geq 0$ l'esponente di p in n (ponendo $\beta_p = 0$ se $p \nmid n$). Allora

$$m=\prod_{p\in\mathcal{P}}p^{lpha_p},\qquad n=\prod_{p\in\mathcal{P}}p^{eta_p}.$$

Definiamo

$$m' = \prod_{\substack{p \in \mathcal{P} \ lpha_p \geq eta_p}} p^{lpha_p}, \qquad n' = \prod_{\substack{p \in \mathcal{P} \ eta_p > lpha_p}} p^{eta_p}.$$

¹Questa sezione non rientra nel programma d'esame.

3.6. ESERCIZI 71

È chiaro che $m' \mid m$ e $n' \mid n$. Inoltre (m',n')=1, poiché per ogni $p \in \mathcal{P}$ le condizioni $\alpha_p \geq \beta_p$ e $\beta_p > \alpha_p$ sono mutuamente esclusive, quindi nessun primo compare con esponente positivo in entrambi i prodotti. Inoltre, per ogni $p \in \mathcal{P}$ l'esponente di p in m'n' è

$$\begin{cases} \alpha_p & \text{se } \alpha_p \ge \beta_p, \\ \beta_p & \text{se } \beta_p > \alpha_p, \end{cases} \text{ ossia } \max\{\alpha_p, \beta_p\}.$$

Dunque

$$m'n' = \prod_{p \in \mathcal{P}} p^{\max(\alpha_p, \beta_p)} = [m, n].$$

Poniamo ora $a=x^{m/m'}$ e $b=y^{n/n'}$. Poiché x e y commutano, anche a e b commutano. Per la (iii) della Proposizione 1.3.33, otteniamo

$$o(a) = \frac{m}{(m, m/m')} = \frac{m}{m/m'} = m', \qquad o(b) = \frac{n}{(n, n/n')} = \frac{n}{n/n'} = n'.$$

Poiché (m', n') = 1 e ab = ba, per la Proposizione 3.5.14 segue

$$o(ab) = o(a) o(b) = m'n' = [m, n].$$

Ponendo z = ab si ha dunque o(z) = [m, n], come volevasi dimostrare. \Box

Osservazione 3.5.16 I risultati precedenti non valgono se gli elementi non commutano. Per esempio in S_3 gli elementi x=(12) e y=(123) hanno ordini primi (o(x)=2 e o(y)=3), xy=(23) e $o(xy)=o((23))=2\neq 6=[2,3]$. Anche se gli elementi commutano ma gli ordini non sono primi il risultato non vale. per esempio la classe $[2]_4 \in \mathbb{Z}_4$ ha ordine due, commuta con se stessa ma l'ordine di $[0]_4=[2]_4+[2]_4$ é 1. Si dimostra (noi non lo faremo) che dati m,n,r numeri naturali diversi da 1 esiste sempre un gruppo finito G e $x,y \in G$ tali che o(x)=m, o(y)=n e o(xy)=r.

3.6 Esercizi

Esercizio 3.1 Dire quali dei seguenti insiemi *H* sono sottogruppi del gruppo *G* indicato:

1.
$$G = (\mathbb{R}, +), H = \{\ln a \mid a \in \mathbb{Q}, a > 0\};$$

2.
$$G = (\mathbb{R}, +), H = \{\ln n \mid n \in \mathbb{Z}, n > 0\};$$

3.
$$G = (\mathbb{R}, +), H = \{x \in \mathbb{R} \mid \tan x \in \mathbb{Q}\};$$

4.
$$G = (\mathbb{R}^*, \cdot), H = \{2^n 3^m \mid m, n \in \mathbb{Z}\};$$

5.
$$G = (\mathbb{R} \times \mathbb{R}, +), H = \{(x, y) \mid y = 2x\}.$$

Esercizio 3.2 Si consideri l'insieme $G = \{(a,b) \mid a,b \in \mathbb{Q}, a \neq 0\}$ con l'operazione binaria definita da

$$(a,b)\cdot(c,d)=(ac,ad+b).$$

Dopo aver verificato che (G, \cdot) é un gruppo, si verifichi che $H = \{(a, b) \in G \mid b = 0\} < G$.

Esercizio 3.3 Sia X un insieme e sia Δ_X la differenza simmetrica, cioé l'operazione su $\mathcal{P}(X)$ definita da:

$$A, B \in \mathcal{P}(X), A\Delta_X B = (A \setminus B) \cup (B \setminus A).$$

Si dimostri che $(\mathcal{P}(X), \Delta_X)$ é un gruppo abeliano. Sia $Y \subseteq X$. Si dimostri che $(\mathcal{P}(Y), \Delta_Y) \leq (\mathcal{P}(X), \Delta_X)$.

Esercizio 3.4 Si dimostri che l'insieme G delle funzioni da $\mathbb R$ in $\mathbb R$ con l'operazione definita da

$$(f+g)(x) = f(x) + g(x).$$

é un gruppo abeliano e che i seguenti sottoinsiemi sono sottogruppi di G.

- 1. $C(\mathbb{R}) = \{ \text{funzioni continue } f : \mathbb{R} \to \mathbb{R} \};$
- 2. $D(\mathbb{R}) = \{\text{funzioni derivabili } f : \mathbb{R} \to \mathbb{R}\};$
- 3. $I(\mathbb{R}) = \{ \text{funzioni integrabili } f : \mathbb{R} \to \mathbb{R} \}.$

Esercizio 3.5 In ognuno dei casi seguenti mostrare che H é un sottogruppo di S_X .

1.
$$X = \{x \in \mathbb{R} \mid x \neq 0, 1\}, H = \{id, f, g\}, \text{ dove } f(x) = \frac{1}{1-x}, g(x) = \frac{x-1}{x};$$

2.
$$X = \{x \in \mathbb{R} \mid x \neq 0\}, H = \{id, f, g, h\}, \text{ dove } f(x) = \frac{1}{x}, g(x) = -x h(x) = -\frac{1}{x};$$

3.
$$X = \{x \in \mathbb{R} \mid x \neq 0, 1\}, H = \{id, f, g, h, j, k\}, \text{ dove } f(x) = 1 - x, g(x) = \frac{1}{x}, h(x) = \frac{1}{1-x}, j(x) = \frac{x-1}{x} \text{ e } k(x) = \frac{x}{x-1}.$$

Esercizio 3.6 Per ogni coppia di numeri reali $a, b, a \neq 0$, si definisca la funzione $f_{a,b} : \mathbb{R} \to \mathbb{R}$, $x \mapsto ax + b$. Si dimostri che:

3.6. ESERCIZI 73

- 1. $f_{a,b}$ ∈ S_ℝ;
- 2. $f_{a,b} \circ f_{c,d} = f_{ac,ad+b}$;
- 3. $f_{a,b}^{-1} = f_{a^{-1},-ba^{-1}};$
- 4. $H = \{f_{a,b} \mid a \in \mathbb{R}, a \in \mathbb{R}^*\} < S_{\mathbb{R}}$.

Esercizio 3.7 Sia $G = D_n$, $n \ge 3$, il gruppo diedrale. Dimostrare che G ha esattamente n elementi di ordine 2 se e solo se n é dispari. Nel caso che n sia dispari dimostrare che gli n elementi di G che non hanno ordine 2 formano un sottogruppo abeliano di G.

Esercizio 3.8 Sia X un insieme finito e A un sottoinsieme di X. Sia H il sottoinsieme di S_X che consiste di tutte le permutazioni $f \in S_X$ tale che $f(x) \in A$, per ogni $x \in A$.

- 1. Dimostrare che $H < S_X$;
- 2. Fornire un esempio dove la conclusione del punto precedente non vale se *X* é un insieme infinito.

Esercizio 3.9

- (1) Dimostrare che l'insieme delle trasposizioni di S_n genera S_n ;
- (2) Dimostrare che l'insieme $\{(12), (13), \dots, (1n)\}$ genera S_n ;
- (3) Dimostrare che i cicli di lunghezza 3 generano A_n , for $n \ge 3$;
- (4) Dimostrare che l'insieme $\{(123), (124), \dots, (12n)\}$ genera A_n ;
- (5) Dimostrare che S_n é generato da $\{(12), (12...n)\}$.

(Suggerimento: per (3) usare (13)(12) = (123) e (12)(34) = (321)(134); per (4) usare (abc) = (1ca)(1ab), (1ab) = (1b2)(12a)(12b) e $(1b2) = (12b)^2$; per (5) usare $(1...n)(12)(1...n)^{-1} = (23)$ e (12)(23)(12) = (13)).

Esercizio 3.10 Siano H e K sottogruppi di un gruppo finito G tali che $H \le K \le G$. Si dimostri che [G:H] = [G:K][K:H].

Capitolo 4

Sottogruppi normali e quozienti

4.1 Sottogruppi normali

Definizione 4.1.1 *Sia* G *un gruppo. Un sottogruppo* H *di* G *si dice* normale *se* xH = Hx *per ogni* $x \in G$.

Scriveremo $H \subseteq G$ per intendere che H è un sottogruppo normale di G. Ogni gruppo G ammette almeno due sottogruppi normali: i sottogruppi banali $\{1\}$ e G.

Osservazione 4.1.2 Se G è un gruppo abeliano, allora ogni sottogruppo $H \le G$ è normale. Ciò segue dall'Osservazione 3.5.1: in notazione additiva si ha x + H = H + x per ogni $x \in G$ (e quindi, in notazione moltiplicativa, xH = Hx), da cui $H \le G$. Tuttavia l'abelianità non è necessaria: esistono gruppi non abeliani i cui sottogruppi sono tutti normali; un esempio è il gruppo dei quaternioni Q_8 (cfr. Esempio 4.3.7).

Proposizione 4.1.3 (primo criterio di normalità) Siano G un gruppo ed $H \leq G$. Allora $H \leq G$ se e solo se $x^{-1}hx \in H$, $\forall x \in G$, $\forall h \in H$.

Dimostrazione: Dimostriamo l'implicazione \Rightarrow . Se $H \subseteq G$, allora xH = Hx per ogni $x \in G$. Dunque, fissati $x \in G$ e $h \in H$, esiste $h' \in H$ tale che hx = xh', per cui $x^{-1}hx = h' \in H$. Dimostriamo ora l'implicazione \Leftarrow . Sia $x \in G$. Per $h \in H$, l'ipotesi dà $xhx^{-1} \in H$, ossia esiste $h' \in H$ con $xh = h'x \in Hx$. Per arbitrarietà di h, si ha $xH \subseteq Hx$. Sostituendo x con x^{-1} si ottiene anche $Hx \subseteq xH$, dunque xH = Hx.

Definizione 4.1.4 *Siano G un gruppo ed H* \leq *G. Per ogni x* \in *G e h* \in *H il termine x*⁻¹*hx è detto* coniugato di *h* tramite *x, mentre l'insieme*

$$H^x := \{x^{-1}hx \mid h \in H\}$$

è detto coniugato di *H* tramite *x*.

Lemma 4.1.5 Siano G un gruppo ed $H \leq G$. Allora $H^x \leq G$ per ogni $x \in G$.

Dimostrazione: Per il criterio di sottogruppo (cfr. Proposizione 3.1.12), se $h_1, h_2 \in H$ allora

$$(x^{-1}h_1x)^{-1}(x^{-1}h_2x) = x^{-1}(h_1^{-1}h_2)x \in H^x.$$

Proposizione 4.1.6 (secondo criterio di normalità) Siano G un gruppo ed $H \leq G$. Le seguenti affermazioni sono equivalenti:

- (i) $H \triangleleft G$;
- (ii) $H^x \leq H$, $\forall x \in G$;
- (iii) $H^x = H, \forall x \in G$.

Dimostrazione: L'equivalenza (*i*) \Leftrightarrow (*ii*) segue dalla Proposizione 4.1.3; (*iii*) \Rightarrow (*ii*) è ovvia. Resta (*ii*) \Rightarrow (*iii*): fissato $x \in G$, da $H^{x^{-1}} \leq H$ segue che per ogni $h \in H$ esiste $h' \in H$ con $xhx^{-1} = h'$, cioè $h = x^{-1}h'x \in H^x$. Quindi $H \subseteq H^x$ e $H^x \subseteq H$ (per ipotesi) da cui $H = H^x$.

Esempio 4.1.7 Per ogni $n \ge 1$, $A_n \le S_n$. Infatti, se $\eta \in A_n$ e $f \in S_n$, allora

$$\operatorname{sgn}(f^{-1}\eta\sigma)=\operatorname{sgn}(f^{-1})\operatorname{sgn}(\eta)\operatorname{sgn}(f)=\operatorname{sgn}(f)^2\operatorname{sgn}(\eta)=\operatorname{sgn}(\eta)=1.$$

Osservazione 4.1.8 Se G possiede un unico sottogruppo H di ordine $m \in \mathbb{N}^+$, allora $H \subseteq G$. Infatti per ogni $x \in G$ i sottogruppi H^x ed H hanno lo stesso ordine, quindi $H^x = H$. Quindi $H \subseteq G$ per la (iii) della Proposizione 4.1.6.

Proposizione 4.1.9 *Siano G un gruppo ed H* \leq *G. Se* [G:H] = 2, allora $H \leq G$.

Dimostrazione: Se $x \in G \setminus H$, allora le sole classi laterali di H sono H e xH, e analogamente a destra H e Hx. Poiché $xH \cap H = \emptyset$, necessariamente $xH = G \setminus H = Hx$. Dunque xH = Hx per ogni x, cioè $H \subseteq G$.

Osservazione 4.1.10 Più in generale, se G è finito e p è il più piccolo primo che divide |G|, allora si dimostra (noi non lo faremo) che ogni sottogruppo $H \leq G$ di indice p è normale.

Osservazione 4.1.11 Il risultato della Proposizione 4.1.9 non si estende a tutti gli indici. Per esempio, in S_3 il sottogruppo $H = \langle (1\ 2) \rangle$ ha indice 3 e non è normale.

Mentre è immediato verificare che se $K \le H \le G$, allora $K \le G$, tale fatto non vale per la condizione di normalità, come mostra il seguente esempio.

Osservazione 4.1.12 (la normalità non è transitiva) Consideriamo $G = A_4$ (il sottogruppo delle permutazioni pari di S_4). In G ci sono in totale 12 elementi:

$$G = \{id\} \cup \{(12)(34), (13)(24), (14)(23)\} \cup C_3,$$

dove l'insieme C_3 dei 3-cicli (otto elementi) è

$$C_3 = \{(123), (132), (124), (142), (134), (143), (234), (243)\}.$$

Poniamo

$$H = \{id, (12)(34), (13)(24), (14)(23)\}, K = \{id, (12)(34)\}.$$

Si verifica facilmente che H è abeliano, dunque $K \subseteq H$. Per mostrare che $H \subseteq A_4$, basta verificare, per il primo criterio di normalità, che la coniugazione tramite un 3-ciclo di qualunque elemento di H rimane in H. Sia quindi $\sigma = (123)$ (la verifica con gli altri 3-cicli é analoga). Allora:

$$\sigma^{-1}(12)(34) \sigma = (13)(24) \in H,$$

$$\sigma^{-1}(13)(24) \sigma = (14)(23) \in H,$$

$$\sigma^{-1}(14)(23) \sigma = (12)(34) \in H.$$

dunque $H \leq A_4$. Mostriamo infine che $K \not \subseteq A_4$. Con la stessa $\sigma = (123)$ si ha

$$\sigma^{-1}(12)(34) \sigma = (13)(24) \notin K$$

per cui K non è normale in A_4 . Concludiamo che $K \subseteq H \subseteq A_4$ ma $K \not\subseteq A_4$, ossia la normalità non è transitiva.

Con i criteri di normalità in mano, passiamo a due nozioni cardine: i gruppi semplici e il centro, che misura quanto un gruppo si discosti dall'essere abeliano.

Definizione 4.1.13 *Un gruppo G si dice* semplice *se i suoi unici sottogruppi nor-mali sono quelli banali.*

Esempio 4.1.14 Se p è primo, allora (\mathbb{Z}_p , +, 0) è semplice. Infatti, essendo abeliano, ogni suo sottogruppo è normale e, per il teorema di Lagrange, i suoi sottogruppi hanno ordine 1 o p.

Esempio 4.1.15 Per ogni $n \ge 5$, il gruppo alterno A_n è semplice (la dimostrazione non fa parte di questo corso).

Definizione 4.1.16 *Sia G un gruppo. Il* centro *di G è*

$$Z(G) = \{ x \in G \mid xy = yx, \forall y \in G \}.$$

Proposizione 4.1.17 *Sia G un gruppo. Allora:*

- (i) $Z(G) \triangleleft G$;
- (ii) Z(G) è abeliano;
- (iii) G è abeliano se e solo se G = Z(G).

Dimostrazione: Per (i) si verifica anzitutto che $Z(G) \leq G$: è non vuoto, chiuso per inversi e prodotto. Inoltre, per ogni $x \in G$ e $z \in Z(G)$ si ha $x^{-1}zx = z$ e la normalità segue dal primo criterio di normalità. I punti (ii) e (iii) sono immediati dalla definizione.

Proposizione 4.1.18 Sia G un gruppo semplice non abeliano. Allora Z(G) è banale.

Dimostrazione: Per la Proposizione 4.1.17 il centro è normale. Per semplicità $Z(G) \in \{1, G\}$, ma G non è abeliano, dunque $Z(G) \neq G$ per la (iii) della Proposizione 4.1.17 e quindi $Z(G) = \{1\}$.

4.2 Operazioni con i sottogruppi normali

Proposizione 4.2.1 (prodotto) *Sia G un gruppo e siano H, K* \leq *G. Allora:*

- (i) Se almeno uno tra $H \in K$ è normale in G, allora $HK \leq G$;
- (ii) se $H, K \subseteq G$, allora $HK \subseteq G$.

Dimostrazione: (i) Se $H \subseteq G$, allora per ogni $h \in H$ vale hK = Kh; dunque

$$HK = \bigcup_{h \in H} hK = \bigcup_{h \in H} Kh = KH.$$

Per la Proposizione 3.1.12 ne segue $HK \leq G$. Il caso $K \leq G$ è del tutto analogo. (ii) Da (i) abbiamo $HK \leq G$. Inoltre, per $x \in G$, $h \in H$ e $k \in K$,

$$x^{-1}(hk)x = (x^{-1}hx)(x^{-1}kx) \in HK,$$

poiché $x^{-1}hx \in H$ e $x^{-1}kx \in K$ perchè sia H che K sono normali in G. Segue dal primo criterio di normalità che $HK \leq G$.

Proposizione 4.2.2 (intersezione) Siano G un gruppo ed $(N_i)_{i \in I}$ una famiglia di sottogruppi normali di G. Allora $N := \bigcap_{i \in I} N_i \subseteq G$.

Dimostrazione: Per la Proposizione 3.2.1, $N \leq G$. Se $x \in G$ e $n \in N$, allora $n \in N_i$ per ogni i e, per normalità, $x^{-1}nx \in N_i$ per ogni i, quindi $x^{-1}nx \in N$.

Proposizione 4.2.3 (unione) Siano G un gruppo ed $(N_i)_{i\in I}$ una famiglia di sottogruppi normali di G. Allora $\langle \bigcup_{i \in I} N_i \rangle \subseteq G$.

Dimostrazione: Per la Proposizione 3.3.8,

$$\langle \bigcup_{i \in I} N_i \rangle = \{ n_1 n_2 \dots n_k \mid k \geq 0, n_j \in N_{i_j}, i_j \in I \}.$$

Sia $x \in G$ e $n = n_1 \cdots n_k \in \langle \bigcup_{i \in I} N_i \rangle$. Allora

$$x^{-1}nx = x^{-1}(n_1 \cdots n_k)x = (x^{-1}n_1x) \cdots (x^{-1}n_kx).$$

Ora ciascun coniugato $x^{-1}n_ix$ appartiene a qualche N_i (normalità). Quindi l'intero prodotto è ancora in $\langle \bigcup_i N_i \rangle$ e quindi per il primo criterio di normalità $\langle \bigcup_{i \in I} N_i \rangle \leq G$.

Corollario 4.2.4 (catena di sottogruppi normali) Siano G un gruppo ed $(N_i)_{i \in I}$ una catena di sottogruppi normali di G (per ogni i, j si ha $N_i \subseteq N_j$ oppure $N_i \subseteq N_i$). Allora $\bigcup_{i \in I} N_i \subseteq G$.

Dimostrazione: Dalla Proposizione 3.3.1 otteniamo che $\bigcup_{i \in I} N_i \leq G$. Inoltre, per mostrare che è normale, sia $x \in G$ e sia $n \in \bigcup_{i \in I} N_i$. Allora esiste $i_0 \in I$ tale che $n \in N_{i_0}$; poiché $N_{i_0} \subseteq G$, si ha

$$x^{.1}nx \in N_{i_0} \subseteq \bigcup_{i \in I} N_i.$$

Dal primo criterio di normalità si ottiene dunque che $\bigcup_{i \in I} N_i \subseteq G$.

4.3 Sottogruppi del gruppo lineare

Sia \mathbb{K} un campo, $n \geq 1$ e consideriamo $GL_n(\mathbb{K}) \subseteq M_n(\mathbb{K})$.

Esempio 4.3.1 (il gruppo lineare speciale) Consideriamo l'insieme delle matrici di ordine *n* con determinante uguale a 1, chiamato il *gruppo lineare speciale*:

$$SL_n(\mathbb{K}) = \{A \in GL_n(\mathbb{K}) \mid \det A = 1\}$$

Mostriamo che, per ogni campo \mathbb{K} e ogni $n \geq 1$, vale

$$SL_n(\mathbb{K}) \subseteq GL_n(\mathbb{K}).$$

Infatti $I_n \in SL_n(\mathbb{K})$ perché det $I_n = 1$, se $A, B \in SL_n(\mathbb{K})$, allora $\det(AB) = \det A \cdot \det B = 1 \cdot 1 = 1$, quindi $AB \in SL_n(\mathbb{K})$ e se $A \in SL_n(\mathbb{K})$, allora A è invertibile e $\det(A^{-1}) = (\det A)^{-1} = 1$, dunque $A^{-1} \in SL_n(\mathbb{K})$. Quindi $SL_n(\mathbb{K})$ è un sottogruppo di $GL_n(\mathbb{K})$. Sia ora $B \in GL_n(\mathbb{K})$ e $A \in A \in SL_n(\mathbb{K})$. Allora

$$\det(B^{-1}AB) = \det(B^{-1}) \det(A) \det(B) = \det(B)^{-1} \cdot 1 \cdot \det(B) = 1,$$

dove abbiamo usato le proprietà $\det(AB) = \det A \det B \in \det(B^{-1}) = \det(B)^{-1}$. Pertanto $BAB^{-1} \in SL_n(\mathbb{K})$ per ogni $B \in GL_n(\mathbb{K})$ e ogni $A \in SL_n(\mathbb{K})$ e, per il primo criterio di normalità, segue che $SL_n(\mathbb{K}) \subseteq GL_n(\mathbb{K})$.

Esempio 4.3.2 (le matrici triangolari) Consideriamo l'insieme delle matricri triangolari superiori:

$$T_n^+(\mathbb{K}) = \{ A = (a_{ij}) \mid a_{ij} = 0 \text{ se } i > j \}.$$

Osserviamo innanzitutto che $(T_n^+(\mathbb{K}), +, 0)$ è un \mathbb{K} -sottospazio vettoriale di $M_n(\mathbb{K})$ (somma e prodotto per scalari preservano la triangolarità); una base naturale è $\{E_{ij} \mid 1 \leq i \leq j \leq n\}$, dove E_{ij} é la matrice $n \times n$ con un 1 in posizione (i,j) e 0 altrove. Segue che $\dim_{\mathbb{K}} T_n^+(\mathbb{K}) = \frac{n(n+1)}{2}$. Inoltre $(T_n^+(\mathbb{K}), \cdot, I_n)$ è un monoide. Infatti:

- $I_n \in T_n^+(\mathbb{K});$
- se $A=(a_{ij})$ e $B=(b_{ij})$ appartengono a $T_n^+(\mathbb{K})$, allora per C=AB si ha

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Se i > j, per ogni k o i > k (quindi $a_{ik} = 0$) oppure $k \ge i > j$ (quindi $b_{kj} = 0$); pertanto $c_{ij} = 0$ e $AB \in T_n^+(\mathbb{K})$.

Per la parte moltiplicativa consideriamo il sottogruppo delle triangolari superiori invertibili:

$$U(T_n^+(\mathbb{K})) = \{ A = (a_{ij}) \in T_n^+(\mathbb{K}) \mid a_{11}, \dots, a_{nn} \in \mathbb{K}^* \}.$$

Mostriamo che, per ogni campo \mathbb{K} e ogni $n \geq 1$, vale

$$U(T_n^+(\mathbb{K})) \leq GL_n(\mathbb{K}).$$

Poiché $(T_n^+(\mathbb{K}), \cdot, I_n)$ è già un monoide, per verificare che $U(T_n^+(\mathbb{K}))$ sia un sottogruppo di $GL_n(\mathbb{K})$ basta controllare la presenza degli inversi. Sia $k=1,\ldots,n$ e $S_k=\langle e_1,\ldots,e_k\rangle$ (dove $\{e_1,\ldots,e_n\}$ è la base canonica di \mathbb{K}^n). Una matrice è triangolare superiore se e solo se $A(S_k)\subseteq S_k$ per ogni k. In particolare, se $A\in U(T_n^+(\mathbb{K}))$ ed $s\in S_k$, esiste $s'\in S_k$ tale che As'=s (perché A è invertibile). Allora $A^{-1}s=s'\in S_k$, quindi $A^{-1}(S_k)\subseteq S_k$ per ogni k, e di conseguenza $A^{-1}\in T_n^+(\mathbb{K})$. Mostriamo infine che $U(T_n^+(\mathbb{K}))$ non è normale in $GL_n(\mathbb{K})$ per $n\geq 2$. Per n=2:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \notin U(T_2^+(\mathbb{K})).$$

Per $n \geq 3$ si completano le matrici precedenti a blocchi diagonali diag (\cdot, I_{n-2}) , ottenendo lo stesso controesempio; quindi $U(T_n^+(\mathbb{K})) \not \supseteq GL_n(\mathbb{K})$ per ogni $n \geq 2$ e per ogni campo \mathbb{K} .

In modo analogo si vede che l'insieme delle matrici triangolari *inferiori* invertibili è un sottogruppo del gruppo lineare

$$U(T_n^-(\mathbb{K})) = \{ A = (a_{ij}) \mid a_{ij} = 0 \text{ se } i < j, \ a_{11}, \dots, a_{nn} \in \mathbb{K}^* \} \leq GL_n(\mathbb{K})$$
e che $U(T_n^-(\mathbb{K})) \not \supseteq GL_n(\mathbb{K})$ per ogni $n \geq 2$.

Esempio 4.3.3 (le matrici diagonali) Consideriamo l'insieme delle matrici diagonali di grado n su un campo \mathbb{K} .

$$D_n(\mathbb{K}) = \{ \operatorname{diag}(a_1, \ldots, a_n) \mid a_j \in \mathbb{K}, j = 1, \ldots, n \}$$

dove

$$diag(a_1,...,a_n) = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}.$$

 $(D_n(\mathbb{K}), +, 0)$ è un sottogruppo additivo di $M_n(\mathbb{K})$ e un \mathbb{K} -sottospazio: è chiuso per somma e per scalari; una base è $\{E_{11}, \ldots, E_{nn}\}$, dunque $\dim_{\mathbb{K}} D_n(\mathbb{K}) = n$. Si noti che $(D_n(\mathbb{K}), \cdot, I_n)$ è un monoide. Infatti:

- $I_n \in D_n(\mathbb{K})$;
- se $A = \operatorname{diag}(d_1, \ldots, d_n)$ e $B = \operatorname{diag}(e_1, \ldots, e_n)$ con $d_i, e_i \in \mathbb{K}$, allora $AB = \operatorname{diag}(d_1e_1, \ldots, d_ne_n) \in D_n(\mathbb{K})$;

Sia

$$U(D_n(\mathbb{K})) = \{\operatorname{diag}(a_1,\ldots,a_n) \mid a_j \in \mathbb{K}^*, j = 1,\ldots,n\}$$

l'insieme delle matrici diagonali invertibili. Dal momento che se $A = \text{diag}(d_1, \dots, d_n) \in D_n(\mathbb{K})$, allora

$$A^{-1} = \operatorname{diag}(d_1^{-1}, \dots, d_n^{-1}) \in D_n(\mathbb{K}).$$

segue che $U(D_n(\mathbb{K})) \leq GL_n(\mathbb{K})$. Mostriamo infine che $U(D_n(\mathbb{K}))$ non è normale in $GL_n(\mathbb{K})$ se n=2 e $|\mathbb{K}|\geq 3$. Consideriamo la matrice $M=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ e

sia
$$D = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in U(D_2(\mathbb{K}))$$
 con $a, b \in \mathbb{K}^*$ e $a \neq b$. Allora

$$M^{-1}DM = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} a & 0 \\ b - a & b \end{bmatrix},$$

che non è diagonale quando $a \neq b$, quindi $M^{-1}DM \notin U(D_2(\mathbb{K}))$. Ne segue che $U(D_2(\mathbb{K}))$ non è normale in $GL_2(\mathbb{K})$. Per $n \geq 3$ si completa l'argomento "a blocchi" con diag (M, I_{n-2}) e diag (D, I_{n-2}) , ottenendo la stessa conclusione: $U(D_n(\mathbb{K}))$ non è normale in $GL_n(\mathbb{K})$ se $n \geq 2$ e $|\mathbb{K}| \geq 3$.

Si noti infine che

$$D_n(\mathbb{K}) = T_n^+(\mathbb{K}) \cap T_n^-(\mathbb{K}), \ U(D_n(\mathbb{K})) = U(T_n^+(\mathbb{K})) \cap U(T_n^-(\mathbb{K}))$$

Esempio 4.3.4 (il centro del gruppo lineare) Sia

$$Z_n(\mathbb{K}) = \{ aI_n \mid a \in \mathbb{K}^* \}$$
(4.1)

l'insieme delle matrici scalari. Mostriamo che

$$Z_n(\mathbb{K}) = Z(GL_n(\mathbb{K})) \triangleleft GL_n(\mathbb{K})$$
 (4.2)

L'inclusione $Z_n(\mathbb{K}) \subseteq Z(GL_n(\mathbb{K}))$ è ovvia, come il fatto che

$$Z_n(\mathbb{K}) \leq GL_n(\mathbb{K}).$$

Proviamo l'inclusione opposta $Z(GL_n(\mathbb{K})) \subseteq Z_n(\mathbb{K})$, e la (4.2) segue da (i) dalla Proposizione 4.1.17. Per $i \neq j$ indichiamo con E_{ij} la matrice $n \times n$ con un

1 in posizione (i, j) e 0 altrove. Allora $I_n + E_{ij}$ è invertibile (il determinante è 1 e $(I_n + E_{ij})^{-1} = I_n - E_{ij}$). Se $A \in Z(GL_n(\mathbb{K}))$, poiché A commuta con ogni elemento invertibile, in particolare

$$A(I_n + E_{ij}) = (I_n + E_{ij})A \implies AE_{ij} = E_{ij}A \text{ per ogni } i \neq j.$$

Scriviamo $A=(a_{rs})$. Osserviamo che AE_{rs} è la matrice $n\times n$ con tutte le colonne nulle tranne la colonna s-esima, uguale al vettore colonna (a_{1r},\ldots,a_{nr}) , mentre $E_{rs}A$ è la matrice $n\times n$ con tutte le righe nulle tranne la riga r-esima, uguale al vettore riga (a_{s1},\ldots,a_{sn}) . Segue che $a_{ir}=0$ per ogni $i\neq r$ e $a_{rr}=a_{ss}$ per ogni $r,s=1,\ldots,n$, ossia $A\in Z_n(\mathbb{K})$ e la (4.2) é dimostrata. Quindi, se $n\geq 2$, il centro è proprio $(\neq GL_n(\mathbb{K}))$, da cui $GL_n(\mathbb{K})$ non è abeliano.

Esempio 4.3.5 (il gruppo ortogonale) Consideriamo l'insieme

$$O_n(\mathbb{K}) = \{ A \in GL_n(\mathbb{K}) \mid AA^T = A^TA = I_n \}$$

Mostriamo che, per ogni campo \mathbb{K} e ogni $n \geq 1$, vale

$$O_n(\mathbb{K}) \leq GL_n(\mathbb{K}).$$

Infatti $I_n \in O_n(\mathbb{K})$, ossia $O_n(\mathbb{K})$ é non vuoto. Siano $A, B \in O_n(\mathbb{K})$. Allora $BB^T = I_n$ e quindi

$$(AB)(AB)^T = A(BB^T)A^T = AIA^T = AA^T = I_n,$$

da cui $AB \in O_n(\mathbb{K})$, e la (S1) nella Definizione 3.1.1 é verificata. Inoltre, se $A \in O_n(\mathbb{K})$, allora $A^{-1} = A^T$ e si ha

$$(A^{-1})(A^{-1})^T = A^T(A^T)^T = A^TA = I_n,$$

ossia $A^{-1} \in O_n(\mathbb{K})$: la (S2) é dunque verificata. $O_n(\mathbb{K})$ è chiamato il *gruppo ortogonale* di grado n sul campo \mathbb{K} . Osserviamo che $O_n(\mathbb{K})$ non é normale in $GL_n(\mathbb{K})$ per $n \geq 2$ e per ogni campo \mathbb{K} . Questo lo si vede facilmente per n = 2:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \notin O_2(\mathbb{K}),$$

dunque $O_2(\mathbb{K})$ non é normale in $GL_2(\mathbb{K})$. Per $n \geq 3$ si completano le matrici precedenti a blocchi diagonali diag (\cdot, I_{n-2}) , ottenendo lo stesso controesempio per ogni $n \geq 2$. Quindi $O_n(\mathbb{K}) \not \preceq GL_n(\mathbb{K})$ per ogni $n \geq 2$ e per ogni campo \mathbb{K} .

Esempio 4.3.6 (le matrici simmetriche) Consideriamo l'insieme delle *matrici simmetriche* su un campo K:

$$S_n(\mathbb{K}) = \{ A \in M_n(\mathbb{K}) \mid A^T = A \}.$$

Non è un monoide rispetto al prodotto: pur contenendo l'identità $I_n = I_n^T$, non è chiuso per moltiplicazione. Infatti il prodotto di due simmetriche può non essere simmetrico, ad esempio

$$\underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{\in S_2(\mathbb{K})} \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}}_{\in S_2(\mathbb{K})} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \notin S_2(\mathbb{K}),$$

poiché l'ultima matrice non è uguale alla sua trasposta.

Invece $(S_n(\mathbb{K}),+) \leq (M_n(\mathbb{K}),+)$. Infatti $0 = 0^T \in S_n(\mathbb{K})$, e se $A,B \in S_n(\mathbb{K})$ allora

$$(A+B)^T = A^T + B^T = A + B \in S_n(\mathbb{K}),$$

mentre, per ogni $A \in S_n(\mathbb{K})$, vale $(-A)^T = -A$, dunque $-A \in S_n(\mathbb{K})$. Quindi $S_n(\mathbb{K})$ è un sottogruppo additivo di $M_n(\mathbb{K})$. In effetti $S_n(\mathbb{K})$ uno \mathbb{K} -sottospazio vettoriale di $M_n(\mathbb{K})$, di dimensione $\dim_{\mathbb{K}} S_n(\mathbb{K}) = \frac{n(n+1)}{2}$. Una base è

$$\{ E_{ii} \mid 1 \leq i \leq n \} \cup \{ E_{ij} + E_{ji} \mid 1 \leq i < j \leq n \},$$

dove $E_{ij} \in M_n(\mathbb{K})$ ha 1 in posizione (i, j) e 0 altrove.

Esempio 4.3.7 (il gruppo dei quaternioni unitari) Poniamo

$$Q_8 = \{ \pm I_2, \pm I, \pm J, \pm K \}$$

dove

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad I = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \qquad J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \qquad K = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}.$$

Si ha
$$I^2 = J^2 = K^2 = -I_2$$
 e $IJ = K$, $JK = I$, $KI = J$.

Si verifica facilmente che $Q_8 < GL_2(\mathbb{C})$. La tabella moltiplicativa é la seguente:

Valgono i seguenti fatti che sono lasciati al lettore come semplice verifica.

- Q₈ è il più piccolo gruppo non abeliano potenza di un primo;
- tutti i sottogruppi di Q_8 sono normali (oltre ai banali, $Z(Q_8) = \{\pm I_2\}$, $\langle I \rangle$, $\langle J \rangle$, $\langle K \rangle$, tutti di ordine 4).

Inoltre $Q_8 = \langle I \rangle \cup \langle J \rangle \cup \langle K \rangle$ è un'unione di tre sottogruppi propri, anche se non é il piú piccolo con questa proprietá ($\mathbb{Z}_2 \times \mathbb{Z}_2$ é un altro esempio per l' Osservazione 3.3.3).

4.4 Quozienti

Siano G un gruppo ed $N \subseteq G$. Definiamo su G la relazione d'equivalenza

$$x \sim_N y \iff x^{-1}y \in N \qquad (x, y \in G).$$

Denotiamo con G/N l'insieme delle classi di equivalenza.

Osservazione 4.4.1 Gli elementi di G/N sono le classi laterali sinistre xN che coincidono con le destre Nx, essendo $N \subseteq G$).

Lemma 4.4.2 Siano G un gruppo ed $N \subseteq G$. Se $x_1 \sim_N x_1'$ ed $x_2 \sim_N x_2'$, allora $x_1x_2 \sim_N x_1'x_2'$.

Dimostrazione:

$$(x_1x_2)^{-1}(x_1'x_2') = x_2^{-1}(x_1^{-1}x_1')x_2' = \left(x_2^{-1}(x_1^{-1}x_1')x_2\right)(x_2^{-1}x_2') \in N,$$

poiché N è normale e $x_1 \sim_N x_1'$, $x_2 \sim_N x_2'$.

Definizione 4.4.3 *Siano* $G = (G, \cdot, 1)$ *un gruppo ed* $N \subseteq G$. *Definiamo su* G/N:

$$(x_1N) \cdot_N (x_2N) := (x_1x_2)N \qquad (x_1, x_2 \in G).$$

Proposizione 4.4.4 Siano G un gruppo ed $N \subseteq G$. Allora $(G/N, \cdot_N, N)$ è un gruppo.

Dimostrazione: L'associatività, il neutro N e l'inverso $(xN)^{-1} = x^{-1}N$ discendono da quelli in G; l'operazione è ben definita dal lemma precedente.

Definizione 4.4.5 *Siano G un gruppo ed N* \leq *G. Il* gruppo quoziente *di G rispetto ad N* è $G/N := (G/N, \cdot_N, N)$.

Notazione 4.4.6 Quando non vi è rischio di ambiguità, useremo lo *stesso* simbolo dell'operazione di G per quella di G/N, omettendo il pedice, e scriveremo semplicemente

$$(x_1N)\cdot(x_2N)=(x_1x_2)N.$$

Osservazione 4.4.7 In particolare, per N = G si ha $G/N = \{1\}$, mentre per $N = \{1\}$ si ottiene G/N = G.

Proposizione 4.4.8 *Sia G un gruppo abeliano ed N* \leq *G. Allora G/N è abeliano.*

Dimostrazione: Per $x_1, x_2 \in G$ si ha

$$(x_1N)(x_2N) = (x_1x_2)N = (x_2x_1)N = (x_2N)(x_1N).$$

Osservazione 4.4.9 Il viceversa non vale: ad esempio S_3 non è abeliano, ma $N := \langle (1\,2\,3) \rangle \subseteq S_3$ e S_3/N ha due elementi, dunque è abeliano.

Proposizione 4.4.10 *Siano G un gruppo finito ed N* \leq *G. Allora*

$$|G| = |G/N| |N|. (4.3)$$

Dimostrazione: Per Lagrange $|G| = [G:N] \cdot |N|$. Poiché |G/N| = [G:N] (Osservazione 4.4.1) e quindi vale la (4.3).

4.5. ESERCIZI 87

Esempio 4.4.11 Consideriamo il gruppo abeliano (\mathbb{Z} , +, 0). Ogni suo sottogruppo è normale (cf. Osservazione 4.1.2). Fissato $m \in \mathbb{N}$ con $m \geq 2$ e posto $N := m\mathbb{Z} = \langle m \rangle$, si ha

$$x \sim_N y \iff x - y \in m\mathbb{Z} \iff x \equiv y \pmod{m}.$$

Le classi laterali sono $x + N = x + m\mathbb{Z}$ e l'insieme quoziente è $\mathbb{Z}/m\mathbb{Z}$. L'operazione indotta è

$$(x + N) + (y + N) = (x + y) + N,$$

per cui, identificando $\mathbb{Z}/m\mathbb{Z}$ con \mathbb{Z}_m , otteniamo

$$[x]_m + [y]_m = [x + y]_m.$$

4.5 Esercizi

Esercizio 4.1 Sia $G = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a,b,c \in \mathbb{Z} \}$. Dimostrare che:

1. $G < GL_3(\mathbb{Q})$;

2.
$$Z(G) = \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z}\};$$

3.
$$N = \begin{pmatrix} 1 & 2a & 2b \\ 0 & 1 & 2c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z} \}$$
 è un sottogruppo normale di G .

Esercizio 4.2 Sull'insieme $G = \mathbb{Z}_4 \times \{-1,1\}$ si definisca un'operazione binaria ponendo per ogni $(x,u), (y,v) \in G$

$$(x,u)\cdot(y,v)=(x+uy,uv).$$

- 1. Si dimostri che *G* con questa operazione é un gruppo non abeliano;
- 2. Si trovi un sottogruppo di *G* che non é normale.

Esercizio 4.3 Sia $n \in \mathbb{N}_+$ e p un primo. Si calcolino le cardinalitá di $Z(GL_n(\mathbb{Z}_p))$ e $SL_n(\mathbb{Z}_p)$.

Esercizio 4.4 Sia G un gruppo finito e H un suo sottogruppo di indice p, con p primo. Supponiamo che esista $x \in G \setminus H$ tale che xH = Hx. Dimostrare che H é normale in G. (Suggerimento: si consideri il gruppo $K = \langle x, H \rangle$, si usi l'Esercizio 3.10 per dedurre che K = G e si dimostri che H é normale in K).

Esercizio 4.5 Sia G un gruppo di ordine |G|=2n, $n\geq 2$. Supponiamo che G abbia esattamente n elementi di ordine 2 e che i restanti n elementi formino un gruppo H. Dimostrare che H é un sottogruppo abeliano e normale di G di ordine dispari. (Suggerimento: per dimostrare che H é abeliano, si fissi $s\in G$ di ordine 2, si osservi che sh ha ordine p per ogni p per og

Esercizio 4.6 Sia Z(G) il centro di un gruppo G e $H \leq G$. Si dimostri che

$$Z(G) \cap H \subseteq Z(H)$$

e che l'inclusione puó essere stretta.

Esercizio 4.7 Dimostrare che o(xy) = o(yx) per ogni x, y in un gruppo G. Inoltre se x é l'unico elemento di G che ha ordine k allora $x \in Z(G)$.

Esercizio 4.8 Dimostrare che il centro del gruppo simmetrico S_n é banale per $n \geq 3$. (Suggerimento: sia $f \in S_n$, $f \neq id$. Allora esistono $i, j \in \{1, 2, ..., n\}$ tali che $i \neq j$ e f(i) = j. Sia k = f(j). Allora $j \neq k$. Siccome $n \geq 3$ esiste $l \neq j$ e $l \neq k$ e possiamo scegliere la trasposizione $\tau = (jl)$. Allora $(f \circ \tau)(j) = f(l) \neq f(j) = (\tau \circ f)(j)$.

Esercizio 4.9 Dimostrare che il centro del gruppo alterno A_n é banale per $n \ge 4$. (Suggerimento: sia $f \in A_n$, $f \ne id$. Allora esistono $i, j \in \{1, 2, ..., n\}$ tali che $i \ne j$ e f(i) = j. Siccome $n \ge 4$ esistono $k, l \in \{1, 2, ..., n\}$, distinti e diversi da i e j. Allora $(f \circ (jkl))(i) = f(i) = j \ne k = ((jkl) \circ f)(i)$).

Esercizio 4.10 Sia $D_n = \{1, r, \dots, r^{n-1}, rs, \dots, r^{n-1}s\}$ il gruppo diedrale, $n \ge 3$. Dimostrare che $Z(D_n) = \{1\}$ se n é dispari e $Z(D_n) = \{1, r^{\frac{n}{2}}\}$ se n é pari. (Suggerimento: mostrare preliminarmente che se $x \in Z(D_n)$ allora $x = r^k$ e dedurre che $r^{2k} = \mathrm{id}$).