

KDD 2025 – ACM SIGKDD Conference on Knowledge Discovery and Data Mining

Lost in Sequence: Do Large Language Models Understand **Sequential Recommendation?**

Sein Kim¹*, Hongseok Kang¹*, Kibum Kim¹, Jiwan Kim¹, Donghyun Kim², Minchul Yang², Kwangjin O h², Julian McAuley³, Chanyoung Park¹†

¹KAIST, ²NAVER Corporation, ³University of California San Diego

*: these authors contributed equally to this work

†: corresponding author

LLM-based Recommendation

Table 1: An example prompt for various LLM4Rec models (Next Item Title Generation approach).

	(a) TALLRec	(b) LLaRA	(c) CoLLM/A-LLMRec			
	This user has made a series of purchases	This user has made a series of purchases in the	This is user representation from recommendation models:			
Inputs	in the following order: (History Item List:	following order: (History Item List: [No.# Time:	[User Representation], and this user has made a series of purchases in			
(011)	[No.# Time: YYYY/MM/DD Title: Item Title]).	YYYY/MM/DD Title: Item Title, Item Embedding]).	the following order: (History Item List: [No.# Time: YYYY/			
(\mathcal{P}^u)	Choose one "Title" to recommend for this user	Choose one "Title" to recommend for this user to	MM/DD Title: Item Title, Item Embedding]). Choose one "Title" to			
	to buy next from the following item "Title" set:	buy next from the following item "Title" set:	recommend for this user to buy next from the following			
	[Candidate Item Titles].	[Candidate Item Titles, Item Embeddings].	item "Title" set: [Candidate Item Titles, Item Embeddings].			

LLM-based Recommendation

- Many LLM-based recommendation studies, like TALLRec, LLaRA, and A-LLMRec, <u>leverage</u>
 <u>item metadata and user interaction history</u> to generate effective recommendations.
- These studies typically incorporate <u>user interaction history</u> into the input prompt <u>by</u>
 <u>serializing previous interaction as sentence</u>.

LLM-based Recommendation

Table 1: An example prompt for various LLM4Rec models (Next Item Title Generation approach).

	(a) TALLRec	(b) LLaRA	(c) CoLLM/A-LLMRec		
	This user has made a series of purchases	This is user representation from recommendation models:			
Inputs	in the following order: (History Item List:	following order: (History Item List: [No.# Time:	[User Representation], and this user has made a series of purchases in		
(\mathcal{P}^u)	[No.# Time: YYYY/MM/DD Title: Item Title]).	YYYY/MM/DD Title: Item Title, Item Embedding]).	the following order: (History Item List: [No.# Time: YYYY/		
(\mathcal{F}^{n})	Choose one "Title" to recommend for this user	Choose one "Title" to recommend for this user to	MM/DD Title: Item Title, Item Embedding]). Choose one "Title" to		
	to buy next from the following item "Title" set:	buy next from the following item "Title" set:	recommend for this user to buy next from the following		
	[Candidate Item Titles].	[Candidate Item Titles, Item Embeddings].	item "Title" set: [Candidate Item Titles, Item Embeddings].		

LLM-based Recommendation

- Many LLM-based recommendation studies, like TALLRec, LLaRA, and A-LLMRec, <u>leverage</u>
 <u>item metadata and user interaction history</u> to generate effective recommendations.
- These studies typically incorporate <u>user interaction history</u> into the input prompt <u>by</u>
 <u>serializing previous interaction as sentence</u>.
 - → Question: Do LLMs understand sequential information in user interaction history?

Preliminary Analysis (PA): Shuffle

<Example of **Shuffled** Sequence>

This ...

[Item A(Item A Emb), Item B(Item B Emb), Item C(Item C Emb), ...] ...

Random Shuffle

This ...

[Item B(Item B Emb), Item C(Item C Emb), Item A(Item A Emb), ...] ...

Hypothesis: Performance of models that understand the sequential information would deteriorate when the sequence is disrupted

PA: Prompt Setting

Table 1: An example prompt for various LLM4Rec models (Next Item Title Generation approach).

	(a) TALLRec	(b) LLaRA	(c) CoLLM/A-LLMRec
Inputs (\mathcal{P}^u)	This user has made a series of purchases in the following order: (History Item List: [No.# Time: YYYY/MM/DD Title: Item Title]). Choose one "Title" to recommend for this user to buy next from the following item "Title" set: [Candidate Item Titles].	This user has made a series of purchases in the following order: (History Item List: [No.# Time: YYYY/MM/DD Title: Item Title, Item Embedding]). Choose one "Title" to recommend for this user to buy next from the following item "Title" set: [Candidate Item Titles, Item Embeddings].	This is user representation from recommendation models: [User Representation], and this user has made a series of purchases in the following order: (History Item List: [No.# Time: YYYY/ MM/DD Title: Item Title, Item Embedding]). Choose one "Title" to recommend for this user to buy next from the following item "Title" set: [Candidate Item Titles, Item Embeddings].
Outputs $(\text{Text}(i_{n_u+1}^{(u)}))$	Item Title	Item Title	Item Title

Table 2: An example prompt for various LLM4Rec models (Next Item Retrieval approach).

	(a) TALLRec	(b) LLaRA/LLM-SRec (Ours)	(c) CoLLM/A-LLMRec			
User $(\mathcal{P}_{\mathcal{U}}^u)$	This user has made a series of purchases in the following order: (History Item List: [No.# Time: YYYY/MM/DD Title: Item Title]). Based on this sequence of purchases, generate user representation token: [UserOut].	This user has made a series of purchases in the following order: (History Item List: [No.# Time: YYYY/MM/DD Title: Item Title, Item Embedding]). Based on this sequence of purchases, generate user representation token: [UserOut].	This is user representation from recommendation models: [User Representation], and this user has made a series of purchases in the following order: (History Item List: [No.# Time: YYYY/ MM/DD Title: Item Title, Item Embedding]). Based on this sequence of purchases and user representation, generate user representation token: [UserOut].			
$\begin{array}{c} \textbf{Item} \\ (\mathcal{P}_I^i) \end{array}$	The item title is as follows: "Title": Item Title, then generate item representation token: [ItemOut].	The item title and item embedding are as follows: "T token: [ItemOut]	Title": Item Title, Item Embedding, then generate item representation			

- Recent LLM-based recommendation methods can be broadly categorized into two approaches
 - **Next Item Title Generation**: Given a candidate set, generates the next item title from that set
 - **Next Item Retrieval**: Extract user and item representation using the LLM, and recommendations are made based on the similarity between these representations

$$\mathbf{h}_{\mathcal{U}}^{u} = \mathrm{LLM}(\mathcal{P}_{\mathcal{U}}^{u}, \mathcal{D}'^{u}), \quad \mathbf{h}_{I}^{i} = \mathrm{LLM}(\mathcal{P}_{I}^{i}, \mathcal{D}'^{i}) \qquad \qquad s(u, i) = f_{item}(\mathbf{h}_{I}^{i}) \cdot f_{user}(\mathbf{h}_{\mathcal{U}}^{u})^{T}$$

PA 1: Train Stage - Sequence Shuffling

```
This ...

[Item A(Item A Emb), Item B(Item B Emb), Item C(Item C Emb), ...] ....

<Example of Original Sequence>

This ...

[Item B(Item B Emb), Item C(Item C Emb), Item A(Item A Emb), ...] ...

<Example of Shuffled Sequence>
```

- <u>Train</u> the same model on both the <u>original sequence</u> and <u>shuffled sequence</u>.
- Perform <u>inference</u> on these models, using the <u>original sequence</u>.

The sequential patterns in the original and shuffled sequences are different!

→The model <u>trained on the shuffled sequence</u> did not learn the original sequential pattern, so its <u>performance will be worse</u>!

PA 1: Train Stage – Sequence Shuffling

LLM-based

Collaborative-based

<Next Item Title Generation Task>

- SASRec, which learns the sequential patterns, training on the shuffled sequence leads to a significant performance drop.
- However, LLM-based models show almost no performance drop when trained on a shuffled sequence.

This suggests that LLMs do not effectively capture user-item interaction sequential information.

PA 2: Inference Stage – Sequence Shuffling

```
This ...

[Item A(Item A Emb), Item B(Item B Emb), Item C(Item C Emb), ...] ....

<Example of Original Sequence>

This ...

[Item B(Item B Emb), Item C(Item C Emb), Item A(Item A Emb), ...] ...

<Example of Shuffled Sequence>
```

- <u>Train</u> one model on the <u>original sequence data</u>.
- Perform <u>inference</u> on this model using the <u>original sequence</u> and <u>shuffled sequence</u>.

Since the **shuffled sequence contains different sequential information** compared to what the model has learned.

→There will be a performance difference between those sequences.

PA 2: Inference Stage – Sequence Shuffling

- SASRec, which uses only the sequential pattern (blue), shows a significant performance drop, when performing inference on a shuffled sequence
- In contrast, the LLM-based recommender shows almost the same performance regardless of the shuffled sequence

This suggests that LLMs do not understand the sequential information in the interaction history

PA 3: User Representation Similarity

	Movies	Scientific	Electronics	CDs
SASRec	0.6535	0.7375	0.7083	0.7454
TALLRec	0.9731	0.9326	0.9678	0.9570
LLaRA	0.9639	0.9424	0.9800	0.9624
CoLLM	0.9067	0.9263	0.8921	0.9526
A-LLMRec	0.8872	0.8911	0.8623	0.8706
LLM-SRec	0.6128	0.7852	0.7393	0.8589

LLM-based models exhibit high cosine similarity

LLM-based

- Extract user representations from both original and shuffled sequences and compute their cosine similarity
 - If the model understands sequence information, the representations should differ due to the change in sequential patterns
- While SASRec shows low similarity between the two representations, LLM-based models show high similarity

How to Integrate Sequential Information to LLMs

- <SASRec architecture>
- Collaborative filtering-based sequential recommenders (CF-SRec), such as SASRec, effectively capture sequential patterns
- Using knowledge distillation, we can easily transfer this sequential knowledge from CF-SRec to LLMs

11

How to Integrate Sequential Information to LLMs

 We perform knowledge distillation by aligning the user representations from a pre-trained CF-SRec (e.g., SASRec) with user representations generated by the LLMs

How to Integrate Sequential Information to LLMs

- Using MSE for the distillation can lead to over-smoothing
- We construct uniformity loss to prevent over-smoothing

• Final objective: $\mathcal{L} = \mathcal{L}_{Retrieval} + \mathcal{L}_{Distill} + \mathcal{L}_{Uniform}$

Experiments: Dataset & Baseline

- Four public dataset (AMAZON 2023 dataset)
 - 5-core (All users and items have at least 5 interactions)

Dataset	Movies	Scientific	Electronics	CDs
# Users	11,947	23,627	27,601	18,481
# Items	17,490	25,764	31,533	30,951
# Interactions	144,071	266,164	292,308	284,695

Baseline

- CF-SRec: GRU4Rec, BERT4Rec, NextItNet, SASRec
- LM-based: CTRL, RECFORMER
- LLM-based: TALLRec, LLaRA, CoLLM, A-LLMRec

Experiments: Overall Performance

Dataset	Metric		CF-SI	Rec		I	M-based			LLM4R	ec	
		GRU4Rec	BERT4Rec	NextItNet	SASRec	CTRL	RECFORMER	TALLRec	LLaRA	CoLLM	A-LLMRec	LLM-SRec
	NDCG@10	0.3152	0.2959	0.2538	0.3459	0.2785	0.2068	0.1668	0.1522	0.3223	0.3263	0.3560
Movies	NDCG@20	0.3494	0.3303	0.2879	0.3745	0.3099	0.2337	0.2126	0.1944	0.3577	0.3629	0.3924
Movies	HR@10	0.4883	0.4785	0.4221	0.5180	0.4264	0.3569	0.3234	0.2914	0.5089	0.5127	0.5569
	HR@20	0.6245	0.6213	0.5522	0.6310	0.5429	0.5264	0.5060	0.4599	0.6491	0.6577	0.7010
	NDCG@10	0.2642	0.2576	0.2263	0.2918	0.2152	0.2907	0.2585	0.2844	0.3111	0.2875	0.3388
Scientific	NDCG@20	0.2974	0.2913	0.2657	0.3245	0.2520	0.3113	0.3048	0.3265	0.3489	0.3246	0.3758
Scientific	HR@10	0.4313	0.4437	0.3908	0.4691	0.3520	0.4506	0.4574	0.4993	0.5182	0.4957	0.5532
	HR@20	0.5524	0.5822	0.5356	0.5987	0.4882	0.5710	0.6276	0.6658	0.6676	0.6427	0.6992
	NDCG@10	0.2364	0.1867	0.1712	0.2267	0.1680	0.2032	0.2249	0.2048	0.2565	0.2791	0.3044
Electronica	NDCG@20	0.2743	0.2172	0.2069	0.2606	0.2003	0.2441	0.2670	0.2454	0.2948	0.3173	0.3424
Electronics	HR@10	0.3843	0.3325	0.3017	0.3749	0.2861	0.3586	0.3802	0.3441	0.4236	0.4622	0.4885
	HR@20	0.5196	0.4740	0.4324	0.5096	0.4152	0.5213	0.5476	0.5032	0.5741	0.6137	0.6385
	NDCG@10	0.2155	0.3019	0.2207	0.3451	0.2968	0.3238	0.3100	0.2464	0.3152	0.3119	0.3809
CDs	NDCG@20	0.2530	0.3386	0.2562	0.3795	0.3316	0.3642	0.3493	0.2951	0.3557	0.3526	0.4158
CDS	HR@10	0.3712	0.5018	0.3842	0.5278	0.4574	0.5140	0.5052	0.4665	0.5290	0.5300	0.6085
	HR@20	0.5092	0.6605	0.5422	0.6635	0.5957	0.6739	0.6633	0.6590	0.6895	0.6914	0.7461

- LLM-SRec achieves the superior performance by leveraging textual, collaborative, and sequential information, highlighting the importance of sequential modeling for LLMs
- In LLM4Rec models, incorporating collaborative information is crucial (TALLRec vs. Other LLM4Rec)

Experiments: Transition vs. Non-Transition

- Transition set: Sequences where order matters
- Non-Transition set: Sequence with weak or no sequential patterns
 - Count item-to-item transitions (Item i \rightarrow Item j) across the entire training dataset
 - Based on these counts, compute a transition score (t-score) for each user

t-score^u =
$$(\sum_{t=1}^{n_u-1} Count(i_t^{(u)} \to i_{t+1}^{(u)}))/(n^u-1)$$
.

- Transition set: Users in top 50 % t-score
- Non-Transition set: Remaining users

Experiments: Transition vs. Non-Transition

- LLM-SRec achieves the best overall performance, particularly large performance gap over baselines in the Transition set, where sequential information is matter
- While the performance difference between LLM-SRec and LLM4Rec baselines is small in the Non-Transition Set, it becomes significant in the Transition set
 - This highlights the LLM4Rec baselines struggle to modeling sequential patterns
 - Underscores the importance of effective sequential modeling in LLM-based recommenders

Experiments: Warm/Cold Scenarios

- LLM-SRec shows superior performance in both warm and cold scenarios
 - By leveraging collaborative and textual information, LLM-SRec generalizes across warm/cold scenarios and further improves performance by incorporating sequential signal
- In cold setting, LLM4Rec models perform well, while in warm settings, models that incorporate collaborative knowledge show better results
 - These findings highlight the importance of effectively modeling both textual and collaborative information for recommendation task

Experiments: Ablation Study

Row	Ablation			vies	Scien	Scientific		ronics	CDs	
			NDCG@10	NDCG@20	NDCG@10	NDCG@20	NDCG@10	NDCG@20	NDCG@10	NDCG@20
(a)	w.o. $\mathcal{L}_{ ext{Distill}}$, $\mathcal{L}_{ ext{Uniform}}$	Original Shuffle	0.3204 0.3176	0.3569 0.3557	0.3088	0.3450 0.3379	0.2659 0.2589	0.3066 0.2990	0.2278 0.2224	0.2701 0.2649
	~Omform	Change ratio	(-0.87%)	(-0.34%)	(-2.33%)	(-2.06%)	(-2.63%)	(-2.48%)	(-2.37%)	(-1.92%)
(b)	w.o. $\mathcal{L}_{ ext{Uniform}}$	Original Shuffle	0.3339 0.3089	0.3700 0.3456	0.3283 0.3164	0.3653 0.3536	0.2895 0.2732	0.3285 0.3110	0.3622 0.3478	0.4013 0.3885
		Change ratio	(-7.49%)	(-6.59%)	(-3.62%)	(-3.20%)	(-5.63%)	(-5.33%)	(-3.98%)	(-3.19%)
(c)	LLM-SRec	Original Shuffle	0.3560 0.3263	0.3924 0.3624	0.3388 0.3224	0.3758 0.3591	0.3044 0.2838	0.3424 0.3210	0.3809 0.3614	0.4158 0.3981
		Change ratio	(-8.34%)	(-7.65%)	(-4.84%)	(-4.44%)	(-6.77%)	(-6.25%)	(-5.11%)	(-4.26%)

- Without the distillation loss (a), the model shows little performance difference between original and shuffled sequence, indicating a lack of understanding of sequential information
 - This demonstrates that the distillation loss effectively transfers sequence knowledge to the LLMs
- Without the uniformity loss (b), performance drops due to over-smoothing

Experiments: Train/Inference Time & LLM sizes

	Scient	rific	Electronics			
	Train (min/epoch)	Inference (min)	Train (min/epoch) Inference (r			
TALLRec	194.43	37.04	236.73	29.04		
LLaRA	202.20	38.79	241.17	30.62		
CoLLM	214.12	39.86	251.51	32.58		
A-LLMRec	190.94	35.01	235.02	28.14		
LLM-SRec	185.91	34.17	218.21	27.57		

<Train/Inference Time>

Train/Inference Time

- LLM-SRec achieves the fastest training and inference time since it does not fine-tune the LLMs
- Compared to A-LLMRec, which also does not fine-tune the LLMs, LLM-SRec is more efficient as it consists of a single learning stage and does not use user representations as prompt

Backbone LLM sizes

- LLM-SRec consistently achieves the highest performance across different LLM sizes
- Notably, LLM-SRec with a small 3B model outperforms LLM4Rec baselines using a larger 8B model
 - → This highlights that <u>effectively injecting sequential information is more crucial for recommendation performance than simply increasing LLM size</u>

Experiments: Case Study

- Case: Only LLM-Srec provides the correct recommendation
 - Sequence Info: The user's preference shifts from cables to Apple products
 - Textual Info: Preference for the Apple brand
 - SASRec: Capture the preference shift and stop recommending cable-related items, but fails to identify the brand preference (Apple), recommending items from other brands (Amazon) instead
 - A-LLMRec: Fail to capture the change in preference and continues to recommend only cable-related items
 - LLM-SRec: Successfully captures both the shift in interest and the emerging brand preference, recommending relevant Apple-brand items such as the Apple Pencil

Summary

- Demonstrates that existing LLM-based recommenders struggle to handle sequential information
- Proposes a method for <u>distilling sequential knowledge</u> from a pre-trained Collaborative filtering-based sequential recommender model

$$\mathcal{L}_{\text{Distill}} = \underset{u \in \mathcal{U}}{\mathbb{E}} [\text{MSE}(f_{CF-user}(\mathbf{O}_u), f_{user}(\mathbf{h}_{\mathcal{U}}^u))]$$
User representation from CF-SRec (e.g., SASRec)

User representation from LLM

→ We proposed LLM-based sequential recommender, called **LLM-SRec**

- Through extensive experiments, shows the importance of LLMs understanding sequential information
 - Overall experiments, Transition/Non-Transition, Warm/Cold, Cross-domain, LLM-size and Case study

Thank you!

[KDD' 25] Lost in Sequence: Do Large Language Models Understand Sequential Recommendation?

[Full Paper] https://arxiv.org/abs/2502.13909 [Source Code] https://github.com/Sein-Kim/LLM-SRec

[Lab Homepage] http://dsail.kaist.ac.kr

[Email] rlatpdlsgns@kaist.ac.kr ghdtjr0311@kaist.ac.kr **Paper**

Code

