### Computer Systems II

Li Lu

Room 605, CaoGuangbiao Building li.lu@zju.edu.cn

https://person.zju.edu.cn/lynnluli



### **Understand How Pipelined Datapath Work**

Through Load Instruction and Store Instruction



### **Load Instruction**



### IF Stage of Load Instruction



### **ID Stage of Load Instruction**



### **EX Stage of Load Instruction**



### **MEM Stage of Load Instruction**



### WB Stage of Load Instruction



### **Store Instruction**



### IF Stage of Store Instruction



### **ID Stage of Store Instruction**



### **EX Stage of Store Instruction**



### **MEM Stage of Store Instruction**



### **WB Stage of Store Instruction**



#### **Review of Store Instruction**



To pass something from an early pipe stage to a later pipe stage, the information must be placed in a pipeline register.



### Review of Load Instruction in WB Stage



#### Review of Load Instruction in WB Stage



Let's uncover a bug in the design of the load instruction

### Review the Load Instruction in WB Stage

Write Back to the Register

MEM/WB

Supplies data

ID/EX Register

Supplies the write register number



### Review the Load Instruction in WB Stage

Write Back to the Register

MEM/WB

Supplies data

ID/EX Register

Supplies the write register number

Question: Is it the right write register number?

### Review the Load Instruction in WB Stage

Write Back to the Register

MEM/WB

Supplies data

ID/EX Register

Supplies the Meritan Supplies the ID/EX Register has been modified by another instruction

# The Corrected Pipelined Datapath to Handle the Load Instruction Properly



## The Corrected Pipelined Datapath to Handle the Load Instruction Properly



### Graphically Representing Pipelines



## Multiple-Clock-Cycle Pipeline Diagram of Five Instructions





### **Traditional Multiple-Clock-Cycle Pipeline Diagram**



Now draw the Single-clock-cycle pipeline diagram at CC5

### Single-Clock-Cycle Pipeline Diagram at CC5



### Single-Clock-Cycle Pipeline Diagram at CC5

Question: Write name and stage of instructions



### Single-Clock-Cycle Pipeline Diagram at CC5



### Pipelined Control



### **Pipelined Datapath with Control Signals**



### No Extra Design at Instruction Fetch and Instruction Decode



### **Control Signals at Execution Stage**



### **Signals Related to ALU Operations**

| Instruction | ALUOp | operation        | Funct7<br>field | Funct3<br>field | Desired<br>ALU action | ALU control<br>input |  |
|-------------|-------|------------------|-----------------|-----------------|-----------------------|----------------------|--|
| ld          | 00    | load doubleword  | XXXXXXX         | XXX             | add                   | 0010                 |  |
| sd 00       |       | store doubleword | XXXXXXX         | XXX             | add                   | 0010                 |  |
| beq         | 01    | branch if equal  | XXXXXXX         | XXX             | subtract              | 0110                 |  |
| R-type      | 10    | add              | 0000000         | 000             | add                   | 0010                 |  |
| R-type      | 10    | sub              | 0100000         | 000             | subtract              | 0110                 |  |
| R-type      | 10    | and              | 0000000         | 111             | AND                   | 0000                 |  |
| R-type      | 10    | or               | 0000000         | 110             | OR                    | 0001                 |  |

| Signal name                                                                 | Effect when deasserted                                                           | The register on the Write register input is written with the value on the Write data input.             |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| RegWrite                                                                    | None.                                                                            |                                                                                                         |  |  |
| ALUSrc                                                                      | The second ALU operand comes from the second register file output (Read data 2). | The second ALU operand is the sign-extended, 12 bits of the instruction.                                |  |  |
| PCSrc                                                                       | The PC is replaced by the output of the adder that computes the value of PC + 4. | hat The PC is replaced by the output of the adder that compute<br>the branch target.                    |  |  |
| MemRead                                                                     | None.                                                                            | Data memory contents designated by the address input are put on the Read data output.                   |  |  |
| MemWrite                                                                    | None.                                                                            | Data memory contents designated by the address input are replaced by the value on the Write data input. |  |  |
| MemtoReg The value fed to the register Write data input comes from the ALU. |                                                                                  | The value fed to the register Write data input comes from the data memory.                              |  |  |

# These signals select the ALU operations



### **Control Signals at Memory Access Stage**



# Signals Related to Branch If Equal, Load, and Store Instructions

| Signal name    | Effect when deasserted                                                           | The register on the Write register input is written with the value on the Write data input.  The second ALU operand is the sign-extended, 12 bits of the instruction. |  |  |  |
|----------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| RegWrite       | None.                                                                            |                                                                                                                                                                       |  |  |  |
| ALUSrc         | The second ALU operand comes from the second register file output (Read data 2). |                                                                                                                                                                       |  |  |  |
| PCSrc          | The PC is replaced by the output of the adder that computes the value of PC + 4. | The PC is replaced by the output of the adder that computes<br>the branch target.                                                                                     |  |  |  |
| MemRead        | None.                                                                            | Data memory contents designated by the address input are put on the Read data output.                                                                                 |  |  |  |
| MemWrite None. |                                                                                  | Data memory contents designated by the address input are replaced by the value on the Write data input.                                                               |  |  |  |
| MemtoReg       | The value fed to the register Write data input comes from the ALU.               | The value fed to the register Write data input comes from the data memory.                                                                                            |  |  |  |



### **Control Signals at Write Back Stage**



### Signals Related to the Write Operation

| Signal name | Effect when deasserted                                                           | The register on the Write register input is written with the value on the Write data input.                                                                                                                                                                                    |  |  |  |  |
|-------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| RegWrite    | None.                                                                            |                                                                                                                                                                                                                                                                                |  |  |  |  |
| ALUSrc      | The second ALU operand comes from the second register file output (Read data 2). | 있는 사람들은 사용 전에 가는 보이 하는 사람들은 사람들이 되었다면 가장 없었다면 하는데 보고 있다면 하는데 하는데 보고 있다면 하는데 되었다면 하는데 되었다면 하는데 보고 있다면 보고 있다면 보고 있다면 하는데 되었다면 하는데 되었다면 하는데 보고 있다면 보고 있다면 보고 있다면 하는데 하는데 보고 있다면 보고 있다면 하는데 하는데 보고 있다면 보고 있다면 보고 있다면 하는데 하는데 보고 있다면 보고 있다면 하는데 |  |  |  |  |
| PCSrc       | The PC is replaced by the output of the adder that computes the value of PC + 4. | The PC is replaced by the output of the adder that computes the branch target.                                                                                                                                                                                                 |  |  |  |  |
| MemRead     | None.                                                                            | Data memory contents designated by the address input are put on the Read data output.                                                                                                                                                                                          |  |  |  |  |
| MemWrite    | None.                                                                            | Data memory contents designated by the address input are replaced by the value on the Write data input.                                                                                                                                                                        |  |  |  |  |
| MemtoReg    | The value fed to the register Write data input comes from the ALU.               | The value fed to the register Write data input comes from the data memory.                                                                                                                                                                                                     |  |  |  |  |

#### **Review of 7 Control Lines**



### **Seven Control Lines in Last Three Stages**

| Instruction | Execution/address calculation stage control lines |        | Memory access stage control lines |              |               | Write-back stage<br>control lines |               |
|-------------|---------------------------------------------------|--------|-----------------------------------|--------------|---------------|-----------------------------------|---------------|
|             | ALUOp                                             | ALUSTC | Branch                            | Mem-<br>Read | Mem-<br>Write | Reg-<br>Write                     | Memto-<br>Reg |
| R-format    | 10                                                | 0      | 0                                 | 0            | 0             | 1                                 | 0             |
| ld          | 00                                                | 1      | 0                                 | 1            | 0             | 1                                 | 1             |
| sd          | 00                                                | 1      | 0                                 | 0            | 1             | 0                                 | X             |
| beq         | 01                                                | 0      | 1                                 | 0            | 0             | 0                                 | X             |



### **Extend Pipeline Registers to Include Control Information**





### **Pipelined Datapath with the Control Signals**



