Gov 51: Binary and Categorical Predictors

Matthew Blackwell

Harvard University

Political effects of gov't programs

- Progesa: Mexican conditional cash transfer program (CCT) from ~2000
 - Welfare \$\$ given if kids enrolled in schools, get regular check-ups, etc.
- Do these programs have political effects?
 - Program had support from most parties.
 - Was implemented in a nonpartisan fashion.
 - Would the incumbent presidential party be rewarded?

The data

- Randomized roll-out of the CCT program:
 - treatment: receive CCT 21 months before 2000 election
 - control: receive CCT 6 months before 2000 election
- Does having CCT longer mobilize voters for incumbent PRI party?

Name	Description		
treatment	early Progresa (1) or late Progresa (0)		
pri2000s	PRI votes in the 2000 election as a share of adults		
	in precinct		
t2000	turnout in the 2000 election as share of adults in		
	precinct		

cct <- read.csv("data/progresa.csv")</pre>

Difference in means estimates

· Does CCT affect turnout?

```
mean(cct$t2000[cct$treatment == 1]) -
    mean(cct$t2000[cct$treatment == 0])
```

```
## [1] 4.27
```

· Does CCT affect PRI (incumbent) votes?

```
mean(cct$pri2000s[cct$treatment == 1]) -
    mean(cct$pri2000s[cct$treatment == 0])
```

```
## [1] 3.62
```

Binary independent variables

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- When independent variable X_i is **binary**:
 - Intercept $\hat{\alpha}$ is the average outcome in the X=0 group.
 - Slope $\hat{\beta}$ is the difference-in-means of Y between X=1 group and X=0 group.

$$\hat{\beta} = \overline{Y}_{\text{treated}} - \overline{Y}_{\text{control}}$$

 If there are other independent variables, this becomes the difference-in-means controlling for those covariates.

Linear regression for experiments

• Under randomization, we can estimate the ATE with regression:

```
mean(cct$pri2000s[cct$treatment == 1]) -
 mean(cct$pri2000s[cct$treatment == 0])
## [1] 3.62
lm(pri2000s ~ treatment, data = cct)
##
## Call:
## lm(formula = pri2000s ~ treatment, data = cct)
##
## Coefficients:
## (Intercept) treatment
## 34.49
                     3.62
```

Categorical variables in regression

- We often have categorical variables:
 - · Race/ethnicity: white, Black, Latino, Asian.
 - · Partisanship: Democrat, Republican, Independent
- Strategy for including in a regression: create a **series of binary variables**

Unit	Party	Democrat	Republican	Independent
1	Democrat	1	0	0
2	Democrat	1	0	0
3	Independent	0	0	1
4	Republican	0	1	0
÷	:	:	:	:

• Then include all but one of these binary variables:

$$turnout_i = \alpha + \beta_1 Republican_i + \beta_2 Independent_i + \varepsilon_i$$

Interpreting categorical variables

$$turnout_i = \alpha + \beta_1 Republican_i + \beta_2 Independent_i + \epsilon_i$$

- $\hat{\alpha}$: average outcome in the **omitted group/baseline** (Democrats).
- \cdot \hat{eta} coefficients: average difference between each group and the baseline.
 - \cdot \hat{eta}_1 : average difference in turnout between Republicans and Democrats
 - \cdot \hat{eta}_2 : average difference in turnout between Independents and Democrats