CS171: Cryptography

Lecture 21

Sanjam Garg

Plan for today

- ► Saw zero-knowledge protocol for the graph three coloring problem.
- ► Today: zero-knowledge protocol for graph hamiltonicity.
- Extending to arbitrary computation NP-complete.
- Succinct Arguments.

Zero-Knowledge Proof System

- Syntax: Two algorithms, $P(1^n, x, \mathbf{w})$ and $V(1^n, x)$.
- ► Completeness: Honest prover convinces an honest verifier with *overwhelming* probability.

$$\Pr[V \text{ outputs 1 in the interaction } P(1^n, x, \mathbf{w}) \leftrightarrow V(1^n, x)] = 1 - \operatorname{neg}(n)$$

▶ Soundness: A PPT cheating prover P^* cannot make a Verifier accept a false statement. For all PPT P^* , x such that $\forall w$, C(x, w) = 0then we have that

$$Pr[V \text{ outputs } 1 \text{ in the interaction } P^*(1^n, x) \leftrightarrow V(1^n, x)] = neg(n)$$

▶ Zero-Knowledge: The proof doesn't leak any information about the witness w. \exists a PPT simulator S that for all PPT V^* , x, w such that C(x, w) = 1, we have that \forall PPT D:

$$\left| \Pr[D(V^* \text{'s view in } P(1^n, x, \textcolor{red}{\mathbf{w}}) \leftrightarrow V^*(1^n, x)) = 1] - \Pr[D(\mathcal{S}^{V^*}(1^n, x)) = 1] \right| \leq \frac{1}{2} + \mathsf{neg}(n)$$

Graph Hamiltonian Cycle Problem

- ▶ Graph G = (V, E) with $V = \{1, ... n\}$.
- ▶ Represent as a $n \times n$ matrix M such that $M_{i,j} = 1$ if $(i,j) \in E$ and $M_{i,j} = 0$ otherwise.
- ▶ Task: Does these exist a cycle $C \subseteq E$ in G that visits each vertex exactly once?

Figuring out whether a graph has a Hamiltonian Cycle is believed to be computationally hard.

Zero-Knowledge Proof System for Graph Hamiltonicity Problem

 $\exists C \subseteq E$ — a Hamiltonian Cycle in G.

Zero-Knoweldge: Cropping Argument. Like Graph 3 Coloring.

probability at least $\frac{1}{2}$. Amplification by repetition.

the committed graph doesn't have a cycle. Verifier rejects with

cycle.

Extending to any computation

- ▶ Give C, x we can construct a graph G = (V, E).
- ▶ Such that: \exists a hamiltonian cycle in G if and only if $\exists w$ such that C(x, w) = 1.
- ► Very useful!

Succinct Non-Interactive Argument System (SNARG)

- Completeness: An honest prover should be able to convince an honest verifier with overwhelming probability.
- Soundness: A PPT cheating prover cannot generate an accepting proof for a false statement.
- ► Zero-Knowledge: The proof doesn't leak any information about the witness w.
 - Not all applications need zero knowledge, e.g. zk-rollups.

Polynomial equality check

- ▶ Alice has a string $A = (a_0, \dots a_{n-1})$ and Bob has $B = (b_0, \dots b_{n-1})$ where each $a_i, b_i \in \{0, 1\}$.
- ▶ They want to check if $A \stackrel{?}{=} B$ with minimal communication.
- Let q be large prime.
- Alice computes polynomial $a(x) = \sum_i a_i \cdot x^i \mod q$ at a random point $r \in \{0, \dots, q-1\}$ and sends y = a(r) to Bob.
- bob computes polynomial $b(x) = \sum_i b_i \cdot x^i \mod q$ at point r and checks that y = b(r). If yes, then Bob assertains that A = B and no otherwise.
- ▶ If $a(x) \neq b(x)$ then

$$\Pr_r[A(r) = B(r)] \le \frac{n-1}{q}$$

Verifying Matrix Multiplication

- ▶ Given two input matrices $A, B \in \mathbb{F}^{n \times n}$ we want to compute $A \cdot B$.
- Let's say $\mathbb{F} = \{0, \dots p-1\}$ and addition, multiplication and division are modulo p.
- ▶ Fastest know algorithm takes time $n^{2.37}$.
- ► Can a prover *P* who knows the answer *C* convince a verifier *V* that the answer is correct in less time?
- Yes, here is the protocol.
- ▶ Both P and V get A, B, C and P wants to convince V that $C = A \cdot B$.
- ▶ Verifier picks random $r \in \mathbb{F}$.
- ▶ Let $x = (r, r^2, ..., r^n)$.
- ▶ *V* checks if $C \cdot x \stackrel{?}{=} A \cdot B \cdot x$.
- ▶ Takes time $O(n^2)$.
- ▶ If $A \cdot B = C$ then V accepts with probability 1.
- ▶ If $A \cdot B \neq C$ then V accepts with probability $\leq n/|\mathbb{F}|$.

Check the roots of a polynomial

- P wants to prove that a given poylonomial f(x) evalutes to 0 on inputs $H = \{0, 1, \dots n-1\}.$
- ▶ Note that $\prod_{i \in H} (x i) \mid f(x)$.
- ▶ Or, $f(x) = g(x) \cdot Z_H(x)$, where $Z_H(x) = \prod_{i \in H} (x i)$.
- ightharpoonup P commits to f(x) and g(x).
- ightharpoonup V samples a random challenge r and sends to P.
- ightharpoonup P opens f(r) and g(r).
- ▶ V checks that $f(r) = g(r) \cdot Z_H(r)$.
- ▶ What is V's running time? Grows with |H|. Can we make it smaller?

Choice of H

- ▶ Using $H = \{0, 1...n 1\}$ is inefficient.
- Instead we use $H = \{\omega, ...\omega^n\}$ the n^{th} (where $n = 2^k$) roots of unity $\omega^n = 1$ and $\omega^{n/2} \neq 1$. The exponent space needs to be such that 2^k divides p 1, which is the case for BLS12-381 for k = 32.
- ▶ How do we find these roots of unity?
- ▶ By Fermat's Littel Theorem for all $\alpha \in \mathbb{Z}_p$ we have $\alpha^{p-1} = 1$.
- For a random α , set $\omega=\alpha^{\frac{p-1}{n}}$ is one of the n^{th} roots of unity in \mathbb{F} . Check if $\omega^n=1$ and $\omega^{n/2}\neq 1$. If not true, then repeat. Have to do it only once.

What do we gain?

- $ightharpoonup Z_H(x) = (x \omega)(x \omega^2)...(x 1) = (x^n 1)$
- $L_i(x) = L_{\omega^i}(x) = \frac{\prod_{j \neq i} (x \omega^j)}{\prod_{j \neq i} (\omega^i \omega^j)} = \frac{\omega^i}{n} \cdot \frac{x^n 1}{x \omega^i}.$

KZG Polynomial Commitment/Pairing Curve BLS12-381

- ▶ Gives groups $G_1 = \langle g_1 \rangle$, $G_2 = \langle g_2 \rangle$ and G_T (of the same prime order p) along with a bilinear pairing operation e.
- ▶ For every $\alpha, \beta \in \mathbb{Z}_p^*$, we have that $e(g_1^{\alpha}, g_2^{\beta}) = e(g_1, g_2)^{\alpha\beta}$.
- **Setup:** srs generation that supports committing to degree d-1 polynomials:
 - ▶ Sample $\tau \leftarrow \mathbb{Z}_p^*$.
 - ightharpoonup srs = $(h_0 = g_1, h_1 = g_1^{\tau}, g_1^{\tau^2}, h_d = g_1^{\tau^{d-1}}, g_2, h' = g_2^{\tau})$
- **Commitment:** Given srs and a polynomial $f(x) = c_0 + c_1 x + ... c_{d-1} x^{d-1}$ of degree d-1, we can compute Com(f) as:

$$F = \mathsf{Com}(f) = g_1^{f(au)} = \prod_{i=0}^{d-1} h_i^{c_i}$$

- ▶ **Opening:** Show that f(z) = s. In this case, g(x) = f(x) s is such that g(z) = 0. Or, x z divides f(x) s.
- ▶ Sender computes $T(x) = \frac{f(x) f(z)}{x z}$ and sends W = Com(T).
- ▶ Receiver Accepts if: $e\left(\frac{F}{g_1^5}, g_2\right) = e\left(W, \frac{h'}{g_2^2}\right)$.

Permutation Check: How to Prove — Warmup!

Permutation Check: How to check that $\sigma(\zeta_1...\zeta_n) = (\zeta_1...\zeta_n)$.

How to test?

▶ Check two multisets $(\zeta_1, \zeta_2...\zeta_n)$ and $(\zeta'_1, \zeta'_2...\zeta'_n)$ are the same. How about a check:

$$\prod_i \zeta_i \stackrel{?}{=} \prod_i \zeta_i'$$

How about this instead over polynomials?

$$\prod_{i}(\zeta_{i}+x)\stackrel{?}{=}\prod_{i}(\zeta'_{i}+x)$$

▶ How about a specific permutation σ ?

$$\prod_{i=1}^{n}(\zeta_{i}+iy+x)\stackrel{?}{=}\prod_{i=1}^{n}(\zeta_{i}+\sigma(i)y+x)$$