Homework 2

Due: 20.03

1 Hermite Interpolation

For $i \in \{1, \dots, n\}$, let $(x_i, y_i, z_i) \in \mathbb{K}^3$ with x_i pairwise distinct. An Hermite interpolating polynomial for (x_i, y_i, z_i) is a polynomial P of degree $\leq 2n - 1$ such that $P(x_i) = y_i$ and $P'(x_i) = z_i$.

- 1. Show that such a P exists and is unique.
- 2. Use the exercise about fast CRT (TD4) to give a quasi-linear time algorithm to find P (Hint: try to express the constraints $P(x_i) = y_i$ and $P'(x_i) = z_i$ as a unique constraint of the form $P \equiv Q_i \mod (X x_i)^2$ for some polynomial Q_i of degree 1).
- 3. Can you state a generalization to higher order derivatives? With a different order at each point?

2 Hensel-type strategy for solving linear system

In this exercise, we study algorithms to solve Mx = b, $M \in \mathcal{M}_n(K[X])$, $b \in K[X]^n$. We shall assume that the degree of all coordinates of M, b is $\leq d$.

Cramer's formulas show that if x is a solution to Mx = b, $(\det M) \cdot x \in K[X]^n$, and the coefficients of $(\det M) \cdot x$ have degree $\leq nd$. We'll also assume that $\det M(u) \neq 0$ for all $u \in K$.

- 1. What is the complexity of computing $B := (M \mod X)^{-1}$? Let $y_i \in K[X]^n$ be a solution of $My_i = b \mod X^i$, and define $r_i = b - My_i$.
- 2. Prove that $r_i = \lambda_i X^i$ for some $\lambda_i \in K[X]^n$. If $z_i = B\lambda_i \mod X$, prove that $y_{i+1} = y_i + X^i z_i$ and $r_{i+1} = r_i X^i M z_i$.
- 3. What is the complexity of computing y_{nd+1} using this method? Assuming that det M is given as input or precomputed, deduce an algorithm for solving Mx = b.
- 4. If we need to compute $\det M$ beforehand, then this computation is going to dominate the complexity of linear system solving. Can we avoid computing the determinant? (Hint: use rational reconstruction.)