Analisi Matematica

Giovanni Spadaccini

Settembre 2021

Contents

1	1. Introduzione 1.1. Requisiti	5 5 6 6
2	2. Insiemi numerici, e le loro proprietà 2.1. Notazioni	7 7
3	3. Insiemistica	9
4	4. Logica	11
5	5. Funzioni 5.1. Cardinalità	13 14 14
6	6. Calcolo Combinatorio 6.1. Coefficente Binomiale	17 17 19
7	Teorema di pitagora	21
8	L'insieme dei numeri razionali	23
	 1. Introduzione 1.1. Requisiti 1.2. Modulo 1 1.3. Modulo 2 1.4. Esame – 1.4.1. Sessioni 2. Insiemi numerici, e le loro proprietà 2.1. Notazioni 3. Insiemistica 	

4 CONTENTS

- 4. Logica5. Funzioni
- 5.1. Cardinalità
- 5.2. Numberailità
- 6. Calcolo Combinatorio
- 6.1. Coefficente Binomiale
- Il binomio di Newton
- Teorema di pitagora
- L'insieme dei numeri razionali

1. Introduzione

Insegnante: Marco Maghetti marco.maghetti@unibi.it

Materiale

1.1. Requisiti

- algebra elementare
- equazioni algebriche
- disequazioni di primo e secondo grado
- disequazioni frazionarie
- equazioni e disequazioni goniometriche elementari
- equazioni e disequazioni logaritmiche e esponenziali
- elementi di geometria analitica

1.2. Modulo 1

- Insiemi numerici, e le loro proprietà
- Funzioni elementari (esponenziali,logaritmi,trigonometria)
- successioni numeriche
- Limiti
- Funzioni per la cardinalità
- funzioni derivabili
- grafico di una funzione
- formula ti Taylor per le funzioni regolare

1.3. Modulo 2

1.4. Esame

- 1. prova scritta (che serve per entrare all'orale) esercizi + alcune domande di teoria
- 2. prova orale (deve essere passata nella stessa sessione ma anche in appelli differenti)

1.4.1. Sessioni

ci sono quattro sessioni ed ogni sessione ha un gruppo d'appelli (esistono sessioni estive, autunnali e invernali).

il primo analisi ci sarà in giugno 2022.

2. Insiemi numerici, e le loro proprietà

```
numeri naturiali : N=\{1,2,3,4...\} numeri interi : i numeri interi hanno la proprietà di avere l'opposto, Z=\{..-2,-1,0,1,2,...\} numeri razionali : ogni unmero ha l'opposto e l'inverso, Q=\{\frac{p}{q}|p\in N,q\in Z,p\neq 0\} numeri reali : R
```

2.1. Notazioni

symbolo	spiegazione
\in	Indica che un elemento appartiene ad un insieme
∉	non appartiene
A	per tutti gli elementi di un insieme
: oppure	tale che
∃ .	Esiste almeno un elemento
∄	Non esiste neanche un elemento
∃!	Esiste un solo elemento
\subseteq	$A \subseteq B$ indica che A è un sottoinsieme o uguale a B
⊈	$A \nsubseteq B$ c'è almeno un elemento in A che non è in B
Ú	unione tra due iniemi
\cap	crea un insieme con gli elementi comuni dei due insiemi
Ø	insieme vuoto (è un subset di tutti gli insiemi)
\	differenza tra insiemi (non è commutativa)

symbolo	spiegazione
\overline{v}	inisme universo è un insieme definito per fare il complementare
C(A)	diffrerenza tra un insieme universo e l'insieme A
^	E logioco (and)
\vee	O logioco (or)
\rightarrow	è il simbolo di implicazione logica
$ar{p}$	è la negazione della preposizione p
$\sum_{i=0}^{n} a_i = a_0 + a_1 + a_2 + \dots + a_n$	sommatoria

TODO:finire di aggiungere le notazioni viste

3. Insiemistica

un insieme è definito dai suoi elementi, e non dal loro ordine operazioni

TODO: da finire di aggiungere le operazioni e scrivere la loro definizione

Unione Insiemi: crea un insieme contenente tutti gli elementi comuni a A e B A,B sono insiemi

 $A \cap B = \{x | x \in A \land x \in B\}$

Moltiplicazione Insiemi(prodotto cartesiano): associa ogni elemento dell'insieme A tutti gli elementi dell'insieme B creando delle coppie ordinate A,B sono insiemi

 $A\ge B=\{(a,b)|a\in A\lor b\in B\}$

 $A \times B \neq B \times A$

4. Logica

```
p = proposizione (è un affermazione che può essere o vera o falsa) \bar{p} = "non p", è la negazione di p attezione : - la negazione di tutti è esiste almeno un elemento \bar{\forall}=\exists - la negazioni di esiste almeno un elementeo è tutti \bar{\exists}=\forall esempi es. p = ogni elemento di A è un numero pari \forall a \in A: a è pari \bar{p}=\exists a \in A: a non è pari p \to q= "p implica q" (p si chiama ipotesi e q si chiama tesi) tabella di verità e equivalenza p \leftrightarrow q= "p implica q" significa che (p \to q) \land (q \to q) "è sufficiente p affinché q" tabella di verità | p | q | p \leftrightarrow q | |-|-|-|-|-| | |V|V|V|V|V|F|F
```

5. Funzioni

 $f:A\to B$ $x\overrightarrow{f}f(x)$: - A è il dominio di f - B è il codominio di f - f è la legge di associazione

f è la legge d'associazione che associa un elemento nell'insieme A in un insieme B (la funzione è definita dal: dominio,codominio e legge di associazione (A,B,f))

$$\forall x \in A, \exists! b \in B : f(x) = b$$

f(a) = b, b è l'immagine di a tramite f

due funzioni sono uguali se e solo se il dominio il codominio e la legge di associazione sono uguali: $f:A\to B$

$$f': A' \to B'$$

$$\begin{cases} A = A' \\ B = B' \\ f = f' \end{cases}$$

prioprietà iniettiva (1-1): tutti gli elementi del codominio sono associati a un elemento del codominio diverso $f:A\to B$ se $\forall a\in A, \forall a'\in A: a\neq a'\to f(a)\neq f(a')$

l'inniettività dipenda dal dominio

esempio

 $f(n)=n^2$ non è (1-1) perchè f(-1)=1=f(1) ma la si può far diventare mettendo come dominio R+

$$f(n) = n^3$$
è (1-1)

surrettiva (su) ogni elemento del codominio deve avere un elemento del dominio per cui $f(a)=b \ \forall b \in B, \exists a \in A: f(a)=b$

la surrettività dipenda dal codominio

esempio

$$f: A \to B$$

$$f(n) = n^2$$
 non è (su) perché $\forall b \in B, \nexists a \in A : f(a) = b$ ma la si può far diventare mettendo come codominio R+

$$f(n) = n^3$$
è (su)

l'immagine di una funzione sono tutti gli elementi di b che sono associati con a

$$\operatorname{Img} f = \{b \in B | \exists a \in A : f(a) = b\}$$
$$\operatorname{Img} f \subseteq B$$

Una funzione sia surrettiva che invettiva è detta biunivoca e quindi è invertibile

$$f:A\to B$$
 è invertibile $f^{-1}:A\to B$ e vuol dire che: - $\forall a\in A:f^{-1}(f(a))=a$ - $\forall b\in B:f(f^{-1}(b))=b$

fè ivertibile $\leftrightarrow f$ è biunivoca

5.1. Cardinalità

perchè vengono estesi i numeri razionali a quelli reali

la cardinalità di un insieme è il numero di elementi di un insieme due insiemi sono equipotenti solo se i due insiemi hanno la stessa cardinaltà due insiemi sono equipotenti se c'è una corrispondenza biunivoca

due insiemi infiniti hanno la stessa cardinalità se hanno una corrispondenza biunivoca

Ne Zsono inifiniti $N\subsetneqq Z$

N e Z sono equipotenti

TODO: esercizio

$$f(n) = \begin{cases} n/2 \text{se n è pari} \\ -\frac{n+1}{2} \text{se n è pari} \end{cases}$$

5.2. Numberailità

un insieme è numberabile se esiste una funzione $f:N\to A$ è biunivoca

lemma: è un piccolo teorema

(Lemma) A è numerabile se è solo se $f_1:A\to\mathbb{N}$ è surrettiva $f_2:\mathbb{N}\frac{n!}{k!(n-k)!}=\binom{n}{k}={}^nC_k=C_n^k\to A$ è surrettiva

si può provare che l'insieme dei numeri razionali è numerabile?

$$Q=\{\tfrac{n}{m}|n\in N, m\in Z\backslash\{0\}, MCD(n,|m|)=1\}$$

6. Calcolo Combinatorio

fattoriale di un numero

permutazioni: contano l'ordine degli elementi

combinazioni: contano il numero di set diversi

$$n! = 1 * 2 * 3 * 4 * 5 * \dots * (n-1) * n, n \in \mathbb{N}$$
, $0! = 1$

il fattoriale si usa per contare le permutazioni di una lista di elementi diversi.

6.1. Coefficente Binomiale

 $n \in \mathbb{N}, m \in \mathbb{N}$

$$\frac{n!}{k!(n-m)!} = \binom{n}{m} = {}^nC_m = C_n^m$$

siamo $n, m \in \mathbb{N} : m <= n$, il binomiale riponde quanti sottoinsiemi partendo di m
 elementi posso formare partendo da un insieme di n
(non contano gli ordini,combinazioni).

Proprietà:

1.
$$\binom{n}{k} = \binom{n}{n-k}$$

2. $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

Prova coefficiente binomiale

TODO: spiegare il perchè di entrambe le proprietà

Il binomio di Newton

Come si calcola il binomio $(a+b)^n = ?$

TODO: spiegare con parole tue come si calcola il coefficente di ogni binomio

Formula del binomio di newton

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} * b^k$$

Teorema di pitagora

dipende dall'assioma che dice che gli angoli del triangolo rettangolo misurano 180°

Figure 7.1:

L'insieme dei numeri razionali

Domanda: esistono tanti numeri razinali quanti punti sulla retta, c'p una funzione biunivoca tra Q e i punti di una retta?

 $\sqrt{2} \in \mathbb{Q}$

Dimostrazione per assurdo: TODO: da completare