Electronica digitala 2021-2022 Tema de casa

Am ales sa studiez:

1. un circuit integrat din seria 74LS00: 74HC08 Quad 2-input AND Gate

2. circuitul omolog din seria 74HC00: 74LS08 Quad 2-input AND Gate

Link datasheet:

74LS08: https://www.futurlec.com/74LS/74LS08.shtml 74HC08: https://www.futurlec.com/74HC/74HC08.shtml

Piesele sunt in fabricate pe scara larga de multipli producători, acestea ne fiind considerate depasite.

Cateva particularitati ale lor sunt:

- 74LS00 : LS = Low Power Schottky Transistor-Transistor Logic
- 74HC08 : HC = High-Speed Complementary Metal-Oxide-Semiconductor
- Alcatuite din 4 porti AND independente
- Configuratia pinilor este standard
- Timp rapid de comutatie
- Suporta temperaturi de pana la 70°C

Exercitiul 1.

Compar cele doua dispozitive din perspectiva principalilor parametri electrici:

	74LS08	74HC08
Tensiunea de alimentare	Min.: 4.75V	Min. : 2V
	Norm. : 5V Max. : 5.25V	Norm. : 4.5V Max. : 6V
Nivelele logice pe iesire	Von:	Von:
	Min.: 2.7V	Min.: 1.9V
	Norm. : 3.4V	Norm.: 4.4V
	Vol:	Max. : 5.9V
	Norm. :0.25V	Vol:
	Max.: 0.4V	Min.: 0.1V
		Norm.: 0.1V
		Max.: 0.1V

	74LS08	74HC08
Nivelele logice pe intrare	VIL: Max.: 0.8V VIH: Min.: 2V	VIL: Min.: 0.5V Norm.: 1.35V Max.: 1.8V VIH: Min.: 1.5V Norm.: 3.15V Max.: 4.2V
Marginile de zgomot	ML = VIL - VOL Max. : 0.8V - 0.4V = 0.4V MH = VOH - VIH Min. : 2.7V - 2V = 0.7V	ML = VIL - VOL Min. = 0.5V - 0.1V = 0.4V Norm. = 1.35V - 0.1V = 1.25V Max. = 1.8V - 0.1V = 1.7V MH = VOH - VIH Min. = 1.9V - 1.5V = 0.4V Norm. = 4.4V - 3.15V = 1.25V Max. = 5.9V - 4.2V = 1.7V
Curentul de iesire	Iон: Max. : -0.4 mA IoL: Max. : 8 mA	Iон: Norm. : 4 mA Max. : 5.2 mA IoL: Norm. : 4 mA Max. : 5.2 mA
Curentul de intrare	I iH: Max. : 20 μA I iL: Max. : -0.36 mA ~ -0.4 mA	TA = 25°C IIN: +- 0.1 μ A TA = -15 to 125°C IIN: +- 1.0 μ A
Timpii de crestere / cadere		TA = 25°C ttlh, tthl: Min.: 74 ns Norm.: 15 ns Max.: 13 ns TA = -15 to 125°C ttlh, tthl: Min.: 110 ns Norm.: 22 ns Max.: 19 ns

	74LS08	74HC08
Timpii de propagare	$RL = 2 k\Omega$, $CL = 15 pF$	TA = 25°C
	tplh:	tplh:
	Min.: 4 ns	Min.: 90 ns
	Max. : 13 ns	Norm.: 18 ns
	tphl:	Max. : 15 ns
	Min.: 3 ns	tphl:
	Max. : 11 ns	Min.: 121 ns
		Norm.: 24 ns
	$RL = 2 k\Omega$, $CL = 50 pF$	Max. : 20 ns
	tplh:	
	Min.: 5 ns	$TA = -15 \text{ to } 125^{\circ}C$
	Max. : 18 ns	tplh:
	tphl:	Min.: 175 ns
	Min.: 6 ns	Norm.: 35 ns
	Max. : 18 ns	Max. : 30 ns
		tphl:
		Min.: 135 ns
		Norm.: 27 ns
		Max. : 23 ns

Legenda:

VOH -- Minimum OUTPUT Voltage level a TTL device will provide for a HIGH signal.

Vol -- Maximum OUTPUT Voltage level a device will provide for a LOW signal.

VIH -- Minimum INPUT Voltage level to be considered a HIGH.

VIL -- Maximum INPUT Voltage level to still be considered a LOW.

Iон -- HIGH Level Output Current

Iol -- LOW Level Output Current

IIH -- HIGH Level Input Current

IIL -- LOW Level Input Current

tplh -- Propagation Delay Time LOW-to-HIGH Level Output

tphl -- Propagation Delay Time HIGH-to-LOW Level Output

ttlh, tthl -- Maximum Output Rise and Fall Time

Exercitiul 2.

• Conditiile in care o iesire TTL LS poate comanda corect o intrate CMOS.

Conditiile legate de tesiunea de alimentare care trebuie satisfacute pentru a interconecta 2 module unde 1 - TTL LS si 2 - CMOS:

 $V_{OH1} > V_{IH2}$

 $V_{OL1} < V_{IL2}$

Avem intervalele:

 $V_{OH1} = [2.7V, 3.4V]$

 $V_{IH2} = [1.5V, 4.2V]$

 $V_{OL1} = [0.25V, 0.4V]$

 $V_{1L2} = [0.5V, 1.8V]$

Se observa faptul ca conditiile nu sunt satisfacute mereu.

Exemplu: 3.4V > 4.2V Fals 0.5V < 0.4V Fals

Folosim tensiunea nominala de Vcc1 = 5V.

Din relatia de mai sus rezulta ca avem ca limitarile $V_{OH1} = 3.4V$ si $V_{OL1} = 0.4V$.

Putem lua cazurile (conditie ca Vcc1 <= Vcc2 pentru a nu distruge dispozitivul 2) :

1)
$$Vcc2 = 6V$$
, $V_{OH1} = 3.4V$, $V_{IH2} = 4.2V$, $V_{OL1} = 0.4V$, $V_{IL2} = 1.8V$

De unde rezulta : 5V <= 6V Adevarat

3.4V > 4.2V Fals

0.4V < 1.8V Adevarat

Conditiile nu sunt indeplinite.

2)
$$Vcc2 = 4.5V$$
, $Voh1 = 3.4V$, $Vih2 = 3.15V$, $Vol1 = 0.4V$, $Vil2 = 1.35V$

De unde rezulta : 5V <= 4.5V Aproape adevrat (interval tipic)

3.4V > 3.15V Adevarat

0.4V < 1.35V Adevarat

Conditiile sunt indeplinite.

3)
$$Vcc2 = 2V$$
, $VoH1 = 3.4V$, $VIH2 = 1.5V$, $VoL1 = 0.4V$, $VIL2 = 0.5V$

De unde rezulta : 5V <= 2V Fals => poarta 2 se poate distruge

3.4V > 1.5V Adevarat

 $0.4V \le 0.5V$ Adevarat

Conditiile sunt indeplinite. Solutie pentru conditia $Vcc1 \le Vcc2$: utilizam un level shifter care sa limiteze iesirea la intervalul [0V, 2V].

• Conditiile in care o iesire CMOS poate comanda corect o intrare TTL LS.

Conditiile legate de tesiunea de alimentare care trebuie satisfacute pentru a interconecta 2 module unde 1 - CMOS si 2 - TTL LS:

 $V_{OH1} > V_{IH2}$

 $V_{OL1} < V_{IL2}$

Avem intervalele:

 $V_{OH1} = [1.9V, 5.9V]$

 $V_{IH2} = 2V$

 $V_{OL1} = 0.1V$

 $V_{IL2} = 0.8V$

Se observa faptul ca conditiile nu sunt satisfacute mereu.

Exemplu: 5.9V > 2V Fals

Folosim tensiunea nominala de Vcc2 = 5V.

Putem lua cazurile (conditie ca Vcc1 <= Vcc2):

1)
$$Vcc2 = 6V$$
, $V_{OH1} = 5.9V$, $V_{IH2} = 2V$, $V_{OL1} = 0.1V$, $V_{IL2} = 0.8V$

De unde rezulta : 6V <= 5V Fals

5.9V > 2V Adevarat

0.1V < 0.8V Adevarat

Conditiile sunt indeplinite. Solutie pentru conditia Vcc1 <= Vcc2 : utilizam un level shifter pentru a nu depasi tensiunea maxima a intrarii.

2)
$$Vcc2 = 4.5V$$
, $Voh1 = 4.4V$, $Vih2 = 2V$, $Vol1 = 0.1V$, $Vil2 = 0.8V$

De unde rezulta : 4.5V <= 5V Aproape adevrat (interval tipic)

4.4V > 2V Adevarat

0.1V < 0.8V Adevarat

Conditiile sunt indeplinite.

Numarul maxim de intrari TTL LS care pot fi conectate este:

N = min(|IOL1/IIL2|, |IOH1/IIH2|)

$$N = min (| 4mA / (-0.4)mA |, | (-4)mA / 20 \mu A |) = min (10, 200) = 10$$

3)
$$Vcc2 = 2V$$
, $V_{OH1} = 1.9V$, $V_{IH2} = 2V$, $V_{OL1} = 0.1V$, $V_{IL2} = 0.8V$

De unde rezulta : 2V <= 5V Adevarat

1.9V > 2V Fals

0.1V < 0.8V Adevarat

Conditiile nu sunt indeplinite.

• Numarul de intrari TTL ce pot fi comandate in paralel de o poarta CMOS este 10.