ADAMAS UNIVERSITY PURSUE EXCELLENCE	ADAMAS UNIVERSITY END SEMESTER EXAMINATION (Academic Session: 2020 – 21)		
Name of the Program:	M. Tech. – Environmental Engineering	Semester:	II
Paper Title:	Biological Process for Environmental Engineering	Paper Code:	ENV21010
Maximum Marks:	50	Time Duration:	3 Hrs
Total No. of Questions:	17	Total No of Pages:	3
(Any other information for the student may be mentioned here)	 At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. Assumptions made if any, should be stated clearly at the beginning of your answer. 		

	Group A		
	Answer All the Questions $(5 \times 1 = 5)$		
1	Define substrates.	R	CO1
2	Name the building block of protein?	R	CO2
3	What is sloughing?	R	CO3
4	What are the two main process of biological nutrient removal?	U	CO4
5	Define sludge age.	R	CO2
	Group B		
	Answer All the Questions (5 x $2 = 10$)		
6 a)	Differentiate between anabolism and catabolism process.	Analyze	CO1
,	(OR)		
6 b)	Explain any one type of Eukaryotes.	U	CO1
7 a)	What do you understand by aerated lagoons?	U	CO2
	(OR)	,	
7 b)	Mention the drawbacks of mechanical aeration units.	R	CO2
8 a)	Briefly explain the importance of recirculation process in the trickling filter.	U	CO3
	(OR)		
8 b)	Jot down the benefits of high rate filters.	U	CO3
9 a)	What are main objectives of sludge treatment?	R	CO4
	(OR)		
9 b)	How phosphorous removal can be achieved?	Analyze	CO4
10 a)	Illustrate the basic difference between attached growth process and suspended growth process.	Analyze	CO3
	(OR)		
10 b)	What is the function of distribution system in trickling filter?	R	CO3
	Group C		
	Answer All the Questions $(7 \times 5 = 35)$		
11 a)	Explain the various microbial growth phase.	U	CO1
	(OR)	<u> </u>	
11 b)	Differentiate the batch and continuous growth culture of microorganisms.	Analyze	CO1

12 a)	Compare the fine bubble and coarse bubble aerators of diffused air aeration units.	Analyze	CO2
	(OR)		
12 b)	Explain the complete mechanism of activated sludge process with the	Analyze	CO2
12 0)	help of a diagram	7 Mary 2C	002
13 a)	Design a standard rate trickling filter without recirculation for	Create	CO3
•	the following data:		
	i. Sewage flow = 4 MLD		
	ii. BOD of raw sewage = 260 mg/l		
	iii. BOD removal in the primary clarifier = 30%		
	iv. Final effluent BOD desired = 20 mg/l		
	(OR)		
13 b)	Calculate the effluent BOD ₅ of a two stage trickling filter with	Apply	CO ₃
	the following data given:		
	$[Q = 4500 \text{ m}^3/\text{day}]$		
	$BOD_5 = 290 \text{ mg/l}$		
	Volume of primary filter = 830 m ³		
	Volume of secondary filter = 830 m ³		
	Filter depth = 2 m		
	1		
	Recirculation ratio for primary filter = 125 percent Q		
	Recirculation ratio for secondary filter = 100 percent Q		
	Use NRC formula].		
14 a)	Explain in detail about the biological nitrogen removal process.	U	<u>CO4</u>
14 b)	(OR) Explain the various ways by which the sludge disposal can be	U	CO4
14 0)	achieved.	U	CO4
15 a)	A sedimentation tank treats 8 MLD containing 240 mg/l of suspended	Apply	CO4
,	solids. The tank removes 65% of the suspended solids. Compute the	11.	
	weight and volume of the sludge produced yearly if the moisture		
	content is (a) 97% and (b) 94%.		
1.5.1.)	(OR)	A 1	CO4
15 b)	A waste water plant produces 1200 kg of dry solids per day at a moisture content of 95%. The solids are 70% volatile with a specific	Apply	CO4
	gravity of 1.05 and 30% non-volatile with a specific gravity of 2.5.		
	Determine the sludge volume		
	a) As produced		
	b) After digestion which reduces the volatile solid content by 50%		
	and decreases the moisture content to 90%		
16 a)	Explain the domain Bacteria with the help of a diagram.	U	CO1
16 b)	(OR) What are the various nutritional requirements of microbes? Explain	U	CO1
10 0)	their functions.	U	COI
17 a)	Design a secondary clarifier for an activated sludge treatment plant	Create	CO2
. ,	having a MLSS concentration of 3000 mg/l and an average flow rate		
	of 9000 m ³ /day.		
	(OR)		
17 b)	An average operating data for conventional activated sludge treatment	Apply	CO2
	plant is as follows:		
	[Wastewater flow = 35000 m ³ /day Volume of aeration tank = 10900 m ³		
	Influent BOD = 250 mg/l		
	Effluent BOD = 20 mg/l		
	Mixed Liquor Suspended Solids (MLSS) = 2500 mg/l		

Quantity of waste slu	$idge = 220 \text{ m}^3/\text{day}$
Based on the information give	
a) Aeration period (hou	
1 /	
b) F/M ratio (kg BOD p	, ,
c) Percentage efficiency	of BOD removal
d) Sludge age (days).	