Machine Learning Gravitational Waveforms for Binary Neutron Star mergers

Jacopo Tissino

2021-06-10

GW170817: the first BNS merger detection

Time-frequency representation of the chirping waveform (Abbott et al. 2017).

BNS waveforms are much longer than BBH ones: they only depend on t/M (or fM), where $M=m_1+m_2$ is the total mass.

GW data analysis

- Signal from detector: s(t) = h(t) + n(t), with noise PSD $S_n(f)$;
- Theoretical waveforms $h_{\theta}(t)$:
 - Numerical Relativity;
 - Effective One Body;
 - Post-Newtonian;
- Signal searches;
- Parameter estimation and model comparison.

The parameters θ are divided into

- intrinsic ones: masses m_i , spins $\vec{\chi}_i$, tidal deformabilities Λ_i ;
- extrinsic ones: luminosity distance D_L , source inclination ι , sky position (α, δ) , polarization angle ψ , reference time t_0 and phase ϕ_0 .

The Wiener distance

The likelihood used in parameter estimation reads (Maggiore 2007):

$$\Lambda(s|\theta) \propto \exp\left((h_{\theta}|s) - \frac{1}{2}(h_{\theta}|h_{\theta})\right),$$
 (1)

where (a|b) is the Wiener product:

$$(a|b) = 4 \operatorname{Re} \int_0^\infty \frac{\widetilde{a}^*(f)\widetilde{b}(f)}{S_n(f)} \, \mathrm{d}f \ . \tag{2}$$

We need a fast way to compute accurate theoretical waveforms h_{θ} in the frequency domain! Typical EOB evaluation times are $\sim 100 \, \mathrm{ms}$ for $f_0 = 20 \, \mathrm{Hz}$, $\sim 1 \, \mathrm{s}$ for $f_0 = 10 \, \mathrm{Hz}$.

Frequency domain waveforms: amplitude

Frequency domain waveforms: phase

MLGW_BNS

A fast generator of frequency-domain waveforms, currently varying the mass ratio q and the tidal deformabilities Λ_1 , Λ_2 .

- A training dataset is generated: residuals of Effective One Body waveforms from the corresponding Post-Newtonian ones;
- dimensionality is reduced through Principal Component Analysis;
- a feed-forward Neural Network learns the map from the parameters to the principal components: $\theta \to \{PC_i\}_i$.

Reconstruction accuracy is evaluated through a distance induced by the Wiener product:

$$\mathcal{F}[a, b] = 1 - \max_{t_0, \phi_0} \frac{(a|b)}{\sqrt{(a|a)(b|b)}}.$$
 (3)

Reconstruction with PCA

Reconstruction with MLGW_BNS: mismatches

Reconstruction with MLGW_BNS: time domain

Technologies

- Python wrapper for TEOBResumS for EOB waveform generation;
- python with standard scientific libraries (numpy, scipy, matplotlib) and pycbc;
- Neural Network implemented with scikit-learn, hyperparameters optimized with optuna;
- automated testing with pytest and hypothesis.

Bibliography

Maggiore, Michele (Nov. 24, 2007). *Gravitational Waves: Volume*1: Theory and Experiments. 1 edition. Oxford: Oxford University
Press. 576 pp.