Root-Squaring for Root-Finding

Pedro Soto The Graduate Center, CUNY New York, New York, USA psoto@gradcenter.cuny.edu

Figure 1: The upper tree depicts the steps of Circle_Roots_Rational_Form(p,q,l) in Alg.1 for l=2, p=1, and q=1. The lower tree depicts the steps of Roots(r,t,u,l) in Alg.2 for r=2, l=2, p=1, and q=1

Figure 2: The steps of DLG_RATIONAL_RORM(p, p', r, t, u, l) in Alg.3 for r = 2, l = 2, t = 1, and u = 1.

Soo Goo The Graduate Center, CUNY New York, New York, USA sgo@gradcenter.cuny.edu

Algorithm 1 CIRCLE_ROOTS_RATIONAL_FORM(p, q, l)

```
if p\%q == 0 then
  r, s := (1,1)
else
  r, s := (p, 2q)
end if
if r\%s == 0 then
  t, u := (1,2)
else
  t, u := (2r + s, 2s)
end if
if l == 1 then
  return [(r, s), (t, u)]
else if l = 0 then
  left := Circle\_Roots\_Rational\_Form(r, s, l - 1)
  right := CIRCLE_ROOTS_RATIONAL_FORM(t, u, l - 1)
  return left ∪ right
  return [(p,q)]
end if
```

Algorithm 2 Roots(r, t, u, l)

```
root_tree = CIRCLE_ROOTS_RATIONAL_FORM(p, q, l) circ_root = [exp (2 \cdot \pi \cdot i \cdot \frac{r}{s}) for r, s in root_tree] roots = [\sqrt[2l]{r}·root for root in circ_root]
```

ABSTRACT

We revisited the classical root-squaring formula of Dandelin-Lobachevsky-Graeffe for polynomials and found new interesting applications to root-finding.

CCS CONCEPTS

 $\bullet \ Computing \ methodologies \rightarrow Hybrid \ symbolic-numeric \ methods.$

KEYWORDS

symbolic-numeric computing, root finding, polynomial algorithms, computer algebra

ACM Reference Format:

Soto and Go, et al.

Algorithm 3 DLG_RATIONAL_FORM(p, p', r, t, u, l)

```
root := Roots(r, t, u, l)

for r_i \in \text{root do}

base_step[i] := \frac{p'(r_i)}{p(r_i)}

end for

diff[0] := \text{base\_step}

for i \leq l do

for j \leq 2^{l-i-1} do

diff[i+1][j] := \frac{1}{2} \frac{\text{diff}[i][2j] - \text{diff}[i][2j+1]}{\text{root}[2j]}

root = roots(r, t, u, l-1-i)

end for

end for

return derivs[l][0]
```

Algorithm 4 DLG (p, p', l, x, ϵ)

```
angle := \frac{1}{2\pi i} \log(x)

Set t, u := angle_as_integer_ratio(angle, \epsilon)

r := |x|

return DLG_RATIONAL_RORM(p, p', r, t, u, l)
```

- 1 INTRODUCTION
- 2 RELATED WORKS
- 3 BACKGROUND
- 4 MOTIVATING EXAMPLE
- 5 ALGORITHM DESIGN
- **6 THEORETICAL ANALYSIS**
- 7 EXPERIMENTAL RESULTS
- 8 CONCLUSION

REFERENCES

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ISSAC '22, July 04–07, 2022, Lille, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00
https://doi.org/XXXXXXXXXXXXXXX