실험계획

2수준 요인배치법

서울시립대학교 통계학과 이용희 2021년 5월 10일

2수준 배치법

목적

- ullet 요인배치법은 요인이 k개, 각 요인의 수준 수가 모두 2개인 요인배치법.
- 여러 가지 다양한 요인들의 효과를 탐색하기 위한 초기 실험에 적합한 계획법이다.
- 결과에 영향을 미치는 중요한 요인을 알이내기 위한 계획법

개요

- ullet 처리의수는 $2 imes 2 imes \cdots imes 2=2^k$
- ullet 2^k 요인배치법에서 주효과와 상호작용효과가 중요한 관심 사형
- 각 효과와 변동은 전체 실험자료를 1그룹과 0그룹으로 반반씩 나누어서 두 그룹간의 실험자료의 평균 차이인 대비(contrast)를 이용
- 각 효과의 크기에 대한 반정규확률그림(HALF-NORMAL PROBABILITY PLOT)에 의해 핵심요인효과 선별
- 2^k 요인배치법부터는 반응변수를 y 로 표시

2^2 요인배치법

- 먼저 반복이 없는 경우를 고려
- 2^2 요인배치법은 요인의 수가 2개, 각 요인의 수준수가 2인 이원배치법 각각의 수준을 낮은 수준은 0 또는 -, 높은 수준은 1 또는 + 로 표시

< 표 7.2 > 2²요인배치법의 자료의 배열

	$A_{\mathcal{O}}$	A_I	$T_{\cdot j}$
B_0	<i>y</i> 00	y 10	T.0
B_{I}	У 01	<i>y</i> ₁₁	T. ₁
T_{i} .	$T_{\mathcal{O}}$.	T_1 .	T

먼저 반복이 없는 2^2 요인배치법

< 그림 $7.1 > 2^2 요인배치법 실험자료의 시각적 표현$

• 먼저 반복이 없는 $\mathbf{2}^2$ 요인배치법에서 반응변수 관측값 y_{ij} 를 다음과 같이 표시한다.

반응변수	요인 A	요인 B	요인의 조합	처리 표시
y_{00}	-	-	a^0b^0	(1)
y_{10}	+	-	a^1b^0	a
y_{01}	-	+	a^0b^1	b
y_{11}	+	+	a^1b^1	ab

- 소문자 알파벳이 나타나면 해당 요인은 높은 수준(+)으로 실험한 것
- 나타나지 않는 요임은 낮은 수준(-)에서 실험된 것

먼저 반복이 없는 2^2 요인배치법 - 효과 크기 추정

• 주효과 A 의 크기

$$egin{aligned} A &= ar{y}_{A+} - ar{y}_{A-} \ &= rac{y_{11} + y_{10}}{2} - rac{y_{01} + y_{00}}{2} \ &= rac{1}{2}[(y_{11} + y_{10}) - (y_{01} + y_{00})] \ &= rac{1}{2}[ab + a - b - (1)] \ &= rac{1}{2}(T_{1.} - T_{0.}) \end{aligned}$$

• 주효과 A 에 대한 대비

$$L=ab+a-b-(1)=y_{11}+y_{10}-y_{01}-y_{00}=T_{1.}-T_{0.}$$

• 주효과 A 에 대한 제곱합 (자유도 = 1)

$$SS_A = rac{(T_{1.} - T_{0.})^2}{4}$$

먼저 반복이 없는 2^2 요인배치법 - 효과 크기 추정

• 주효과 B 의 크기

$$egin{aligned} B &= ar{y}_{B+} - ar{y}_{B-} \ &= rac{y_{11} + y_{01}}{2} - rac{y_{10} + y_{00}}{2} \ &= rac{1}{2}[(y_{11} + y_{01}) - (y_{10} + y_{00})] \ &= rac{1}{2}[ab + b - a - (1)] \ &= rac{1}{2}(T_{.1} - T_{.0}) \end{aligned}$$

• 주효과 B 에 대한 대비

$$L = ab + b - a - (1) = y_{11} + y_{01} - y_{10} - y_{00} = T_{.1} - T_{.0}$$

• 주효과 B 에 대한 제곱합 (자유도 = 1)

$$SS_B = rac{(T_{.1} - T_{.0})^2}{4}$$

먼저 반복이 없는 2^2 요인배치법 - 효과 크기 추정

-상호작용 효과 A imes B 의 크기

$$egin{align} A imes B &= rac{y_{11} - y_{10}}{2} - rac{y_{01} - y_{00}}{2} \ &= rac{1}{2}[(y_{11} + y_{00}) - (y_{10} + y_{01})] \ &= rac{1}{2}[ab - a - b + (1)] \ \end{array}$$

ullet 상호작용 효과 A imes B 에 대한 대비

$$L=ab-a-b+(1)=y_{11}-y_{01}-y_{10}+y_{00}$$

ullet 상호작용 효과 A imes B 에 대한 제곱합 (자유도 = 1)

$$SS_{A imes B} = rac{(y_{11} - y_{01} - y_{10} + y_{00})^2}{4}$$

먼저 반복이 없는 2^2 요인배치법 - 대비의 계산

• 각 요인 효과에 대한 대비는 다음과 같은 인수분해의 형태를 이용할 수 있다.

$$A=(a-1)(b+1)=ab+a-b-(1) \ B=(a+1)(b-1)=ab-a+b-(1) \ A imes B=(a-1)(b-1)=ab-a-b+(1)$$

<표 7.3> 2 ² 요인배치법에서 주효과와 상호작용효과를 구하는 표					
취기 ㅈ하	요인효과				
처리조합	A	В	AB		
(1)	-1	-1	+1		
a	+1	-1	-1		
b	-1	+1	-1		
ab	+1	+1	+1		

반복이 없는 2^2 요인배치법 - 분산분석표

• 제곱합의 분해

$$SS_T = SS_A + SS_B + SS_{A imes B}$$

ullet 상호작용 A imes B와 오차가 교락

반복이 있는 2^2 요인배치법 - 자료의 구조

• 각 처리조합에서 r 번의 반복 측정이 있다.

반복이 있는 2^2 요인배치법 - 효과의 추정과 제곱합

• 효과의 추정

$$egin{align} A &= rac{1}{2r}(T_{1..} - T_{0..}) \ B &= rac{1}{2r}(T_{.1.} - T_{.0.}) \ A imes B &= rac{1}{2r}[(T_{11.} + T_{00.}) - (T_{10.} + T_{01.})] \ \end{align}$$

• 제곱합

$$SS_A = rac{(T_{1..} - T_{0..})^2}{4r} \ SS_B = rac{(T_{.1.} - T_{.0.})^2}{4r} \ SS_{A imes B} = rac{[(T_{11.} + T_{00.}) - (T_{10.} + T_{01.})]^2}{4r}$$

반복이 있는 2^2 요인배치법 - 분산분석표

• 제곱합의 분해

$$SS_T = SS_A + SS_B + SS_{A \times B} + SS_E$$

• $SS_T = \sum_i \sum_j \sum_k y_{ijk}^2 - T^2/4r$

<표 7.6> 반복이 있는 2²요인배치법의 분산분석표

요인	제곱합	자유도	평균제곱	F_0
A	SS_A	1	MS_A	MS_A/MS_E
В	SS_B	1	MS_B	MS_B/MS_E
$A \times B$	$SS_{A \times B}$	1	$MS_{A\times B}$	$MS_{A\times B}/MS_E$
E	$SS_{A \times B}$	4(r-1)	MS_E	
T	SS_T	4r - 1		

2^3 요인배치법 - 개요

- 2^3 요인배치법은 요인의 수가 3개, 각 요인의 수준수가 2인 이원배치법 각각의 수준을 낮은 수준은 0 또는 -, 높은 수준은 1 또는 + 로 표시
- 처리의 조합은 8개
- 각 처리에 r의 반복이 없는 경우를 고려

		Factor	
Run	\boldsymbol{A}	B	C
1	_	_	_
2	+	_	_
2 3	_	+	_
4	+	+	_
4 5 6	_	_	+
6	+	_	+
7	_	+	+
8	+	+	+

(b) Design matrix

2^3 요인배치법 - 개요

- ullet 2^3 요인배치법은 요인의 수가 3개, 각 요인의 수준수가 2인 이원배치법 각각의 수준을 낮은 수준은 0 또는 -, 높은 수준은 1 또는 + 로 표시
- 처리의 조합은 8개
- 각 처리에 r의 반복이 없는 경우를 고려

A	Factor B	C
_	_	_
+	_	_
_	+	_
+	+	_
_	_	+
+	_	+
_	+	+
+	+	+
	A - + - + - + + - + + - + + - + + - + + - + + - + + - + + - + - +	

(b) Design matrix

2^3 요인배치법 - 개요

- ullet ullet
- 처리의 조합은 8개
- 각 처리에 r의 반복이 없는 경우를 고려

Run	\boldsymbol{A}	В	\boldsymbol{C}	Labels	\boldsymbol{A}	В	C
1	_	_	_	(1)	0	0	0
2	+	_	_	a	1	0	0
3	_	+	_	b	0	1	0
4	+	+	_	ab	1	1	0
5	_	_	+	c	0	0	1
6	+	_	+	ac	1	0	1
7	_	+	+	bc	0	1	1
8	+	+	+	abc	1	1	1

$oldsymbol{2}^3$ 요인배치법 - 효과의 대비

• 효과의 대비 계산

$$A = (a-1)(b+1)(c+1) = (a+ab+ac+abc) - (b+c+bc+(1))$$
 $B = (a+1)(b-1)(c+1)$
 $C = (a+1)(b+1)(c-1)$
 $A \times B = (a-1)(b-1)(c+1)$
 $A \times C = (a-1)(b+1)(c-1)$
 $B \times C = (a+1)(b-1)(c-1)$
 $A \times B \times C = (a-1)(b-1)(c-1)$

• 효과의 추정

$$egin{align} A &= rac{1}{4r}(a-1)(b+1)(c+1) \ &= rac{1}{4r}[(a+ab+ac+abc)-(b+c+bc+(1))] \ &= rac{1}{4r}(T_{1..}-T_{0..}) \ \end{gathered}$$

2^3 요인배치법 - 효과의 대비

<표 7.8> 23요인배치법에서 주효과와 상호작용효과를 구하는 표

요인효과 처리조합	A	В	AB	С	AC	BC	ABC
(1)	-1	-1	+1	-1	+1	+1	-1
a	+1	-1	-1	-1	-1	+1	+1
b	-1	+1	-1	-1	+1	-1	+1
ab	+1	+1	+1	-1	-1	-1	-1
С	-1	-1	+1	+1	-1	-1	+1
ac	+1	-1	-1	+1	+1	-1	-1
bc	-1	+1	-1	+1	-1	+1	-1
abc	+1	+1	+1	+1	+1	+1	+1

2^3 요인배치법 - 효과의 대비

2^3 요인배치법 - 효과의 대비

반복 r인 2^3 요인배치법에서 요인 효과와 변동을 축자적으로 계산하는 Yates 계산법

처				요인효과	변동
리	(1)	(2)	(3)		/->0
조	(-/	(2)	(0)	(3) /4r	$(3)^2 / 8r$
합					
(1)	a+(1)	ab+b+a+(1)	abc+bc+ac+c+ab	M	CT
			+b+a+(1)		
a	ab+b	abc+bc+ac+c	abc-bc+ac-c+ab	A	SSA
			-b+a-(1)		
b	ac+c	ab-b+a-(1)	abc+bc-ac-c+ab	В	SSB
		ab b a (1)	+b-a-(1)	2	
ab	abc+bc	abc-bc+ac-c	abc-bc-ac+c+ab	AB	SS _{AXB}
ab	abc bc	abe berae e	<i>-b-a+</i> (1)	AD	SOAXB
C	a-(1)	ab+b-a-(1)	abc+bc+ac+c-ab	С	SSc
	a (1)	$ab^{\dagger}b^{\dagger}a^{\dagger}(1)$	-b-a-(1)	C	336
0.0	ah h	ahaiha aa a	abc-bc+ac-c-ab	AC	CC
ac	ab-b	abc+bc-ac-c	+b-a+(1)	AC	SS _{A×C}
,		-1 1 - (1)	abc+bc-ac-c-ab	D.C.	00
bc	ac-c	<i>ab-b-a+</i> (1)	-b+a+(1)	BC	SS_{BXC}
ab		abc-bc-ac+c			
C	abc-bc	abc-bc-ac+c	+b+a-(1)	ABC	$SS_{A\times B\times C}$

단 M은 (3)/8r

핵심 요인 효과의 선별

- ullet 반복이 없는 2^3 요인배치법의 분산분석
- 귀무가설은 모든 요인효과가 존재하지 않는다. 귀무가설이 참인 경우에 다음믜 각 처리에서 관측된 8개의 관측치는 $N(0,\sigma_E^2)$ 로부터 관측된 확률표본(random sample) 이다.

- 7개의 각 효과의 추정치인 ${ar y}_1-{ar y}_0$ 분포는 귀무가설이 참인 경우에 평균이 0이고 분산이 $\sigma_E^2/2$ 인 정규분포를 따르고 서로 직교한다.
- ullet 각 효과의 추정치는 $N(0,\sigma_E^2/2)$ 분포를 따르는 모집단에서 뽑힌 확률표본이다.
- 그런데, 7개 요인효과의 변동을 크기 순서로 나열하는 것은 7개 요인효 과의 추정치의 절대값인 $|ar{y}_1 ar{y}_0|$ 를 크기 순서로 나열하는 것과 동치.
- 선별하고 싶은 유의한 효과의 후보는 효과의 추정치의 절대값이 큰 효과.

핵심 요인 효과의 선별

- 요인효과의 추정치의 절대값인 $|ar{y}_1 ar{y}_0|$ 에 대한 반정규확률 그림 그리기
 - \circ 우선 7개 요인효과를 $|ar{y}_1 ar{y}_0|$ 크기순서로 나열,
 - $\circ~X$ 축에는 요인효과들의 $|ar{y}_1 ar{y}_0|$ 값을,
 - \circ Y축은 해당되는 요인효과의 경험적 누적확률에 대응되는 반 정규확률분포의 값인 백분위수을 기록하여 반정규확률 그림을 그리기.
- 요인효과들의 반정규확률 그림에서 원점을 지나는 선형패턴을 대략적으로 그린 후, 선형패턴을 벗어나 있는 요인효과들의 $|\bar{y}_1 \bar{y}_0|$ 큰 즉, 오른쪽 에 있는 효과들을 핵심효과로 선별

