

lycee.hachette-education.com/pc/tle

INFO

En chimie, l'ion hydrogène H⁺ est parfois appelé proton.

Le passage d'un acide à sa base conjuguée, et inversement, se fait par transfert d'un ion hydrogène. AH représente un acide comme par exemple : CH₃CO₂H; NH₄⁺; H₃O⁺; etc.

INFO

 CO_2 , $H_2O(aq)$ peut parfois s'écrire $H_2CO_3(aq)$.

Les acides et les bases

a. Acide et base selon BRØNSTED

Selon la théorie de Joannes BRØNSTED, chimiste danois (1879-1947), un transfert d'ion hydrogène H⁺ a lieu entre un acide et une base.

Un acide est une espèce chimique capable de céder au moins un ion hydrogène H⁺. L'acide AH se transforme alors en sa base A⁻ conjuguée.

$$AH(aq) \rightarrow A^{-}(aq) + H^{+}$$
Acide Base lon hydrogène

Exemple: En cédant un ion hydrogène H^+ , l'acide éthanoïque $CH_3CO_2H(aq)$ se transforme en ion éthanoate $CH_3CO_2(aq)$:

$$CH_3CO_2H(aq) \rightarrow CH_3CO_2^-(aq) + H^+$$

Acide Base Ion hydrogène

Une base est une espèce chimique capable de **capter** au moins un ion hydrogène H⁺. La base A⁻ se transforme alors en son acide AH conjugué.

Exemple: En captant un ion hydrogène H^+ , l'ion éthanoate $CH_3CO_2(aq)$ se transforme en acide éthanoïque $CH_3CO_2H(aq)$:

$$CH_3CO_2^-(aq) + H^+ \rightarrow CH_3CO_2H(aq)$$

Base lon hydrogène Acide

b. Couple acide-base

• L'acide AH et la base A⁻ conjuguée forment un couple acide-base noté AH / A⁻ s'il est possible de passer de l'un à l'autre par transfert d'un ion hydrogène. La demi-équation du couple s'écrit :

$$AH(aq) \rightleftharpoons A^{-}(aq) + H^{+}$$

$$AH(aq) \rightarrow A^{-}(aq) + H^{+}$$

ou bien
 $A^{-}(aq) + H^{+} \rightarrow AH(aq)$

- Quelques couples acide-base conjugués à connaître :
- acide carboxylique / ion carboxylate : RCO₂H(aq) / RCO₂(aq)
- ion ammonium / amine : $RNH_3^+(aq) / RNH_2(aq)$
- $\hbox{-acide carbonique / ion hydrogénocarbonate:} CO_2, H_2O(aq) \, / \, HCO_3^-(aq) \\$
- ion hydrogénocarbonate / ion carbonate : HCO₃ (aq) / CO₃²⁻ (aq)
- Une espèce amphotère est à la fois l'acide d'un couple et la base d'un autre couple.

Exemple: L'eau est une espèce amphotère. Selon le couple, elle peut se comporter comme :

- une base : $H_3O^+(aq) / H_2O(\ell)$; $H_2O(\ell) + H^+ \rightleftharpoons H_3O^+(aq)$
- un acide: $H_2O(\ell)$ / $HO^-(aq)$; $H_2O(\ell) \rightleftharpoons HO^-(aq) + H^+$

B Ion ammonium / Amine

Le doublet non liant de l'atome d'azote est un site donneur de doublet d'électrons permettant de se lier à l'ion hydrogène.

INFO

En solution, l'ion hydrogène H⁺ s'associe à une molécule d'eau pour former l'ion oxonium H₃O⁺.

Mesure du pH

Pour donner une valeur fiable du pH, le pH-mètre doit être étalonné. Le pH est exprimé avec une seule décimale : pH = 5,0.

Point maths

La fonction logarithme décimal notée log est différente de la fonction logarithme népérien noté ln.

C'est la fonction réciproque de la fonction $f(x) = 10^x$:

$$\log(10^x) = x$$

ou
$$10^{\log(x)} = x$$
, pour $x > 0$.

 La concentration standard c° (en mol·L⁻¹) assure une cohérence dimensionnelle au sein des relations. Cependant, on écrit aussi:

 $pH = -log [H_3O^+]$

pH d'une solution d'acide sulfurique

L'équation de la réaction de l'acide sulfurique $H_2SO_4(\ell)$ avec l'eau est :

$$H_2SO_4(\ell) + 2 H_2O(\ell)$$

 $\rightarrow 2 H_3O^+(aq) + SO_4^{2-}(aq)$

C est la concentration en acide sulfurique $H_2SO_4(\ell)$, soluté apporté.

$$[H_3O^+] = 2C \text{ et } [SO_4^{2^-}] = C.$$

 $pH = -log(\frac{2C}{c^\circ}).$

• La formule semi-développée ou le schéma de Lewis de l'entité acide ou basique permet de comprendre son processus de formation (doc. 3).

Exemple : Dans une molécule d'acide carboxylique, le départ de l'atome d'hydrogène lié à l'atome d'oxygène est favorisé par la différence d'électronégativité entre l'oxygène ($\chi = 3,4$) et l'hydrogène ($\chi = 2,2$).

c. Solutions aqueuses acides et basiques

Solutions aqueuses acides

• Acide éthanoïque :

Acide chlorhydrique:

$$H_3O^+(aq) + C\ell^-(aq)$$

· Acide nitrique:

$$H_3O^+(aq) + NO_3^-(aq)$$

Solutions aqueuses basiques

• Hydroxyde de sodium :

$$Na^+(aq) + HO^-(aq)$$

• Ammoniac :

Dans les exemples ci-dessus $C\ell^-(aq)$, $NO_3^-(aq)$ et $Na^+(aq)$ sont des ions spectateurs. Ils n'ont aucun caractère acide ou basique.

2 La réaction acide-base

Au cours d'une **réaction acide-base**, l'acide d'un couple réagit avec la base d'un autre couple.

L'équation s'écrit avec une double flèche \rightleftharpoons si la transformation est non totale, avec une simple flèche \rightarrow si la transformation est totale.

Exemple: La réaction entre l'acide hypochloreux $HC\ell O(aq)$ et l'ammoniac met en jeu les couples $HC\ell O(aq) / C\ell O^-(aq)$ et $NH_4^+(aq) / NH_3(aq)$. L'équation s'écrit :

$$HC\ell O(aq) \rightleftharpoons C\ell O^{-}(aq) + H^{+}$$
 (1)

$$NH_3(aq) + H^+ \rightleftharpoons NH_4^+(aq)$$
 (2)

$$HC\ell O(aq) + NH_3(aq) \rightleftharpoons C\ell O^-(aq) + NH_4^+(aq)$$
 (1) + (2)

3 Le pH d'une solution

- Le pH (potentiel Hydrogène) est un indicateur d'acidité lié à la présence des ions oxonium H₃O⁺ (aq) en solution.
 - Pour une solution aqueuse diluée, $[H_3O^+] < 0.05 \text{ mol} \cdot L^{-1}$, le **pH** est défini par :

pH sans unité
$$pH = -log(\frac{[H_3O^+]}{c^\circ})$$
 $[H_3O^+]$ en mol·L⁻¹

c° est appelée concentration standard : c° = 1 mol· L^{-1} .

- Le pH d'une solution est mesuré avec un pH-mètre (doc. C).
- Le pH augmente si [H₃O⁺] diminue et inversement.
- Le pH permet de déterminer la concentration en ions oxonium :

$$[H_3O^+] = c^\circ \times 10^{-pH}$$

• La concentration en soluté apporté est le quotient de la quantité de matière de soluté introduit par le volume de solution. Elle est notée C et s'exprime généralement en mol·L⁻¹ (doc. \square).

L'essentiel

- VIDÉO DE COURS
 - Les acides et les bases
- QCM
 Version interactive

1 Les acides et les bases

Acide

Un acide AH cède au moins un ion hydrogène :

 $AH(aq) \rightarrow A^{-}(aq) + H^{+}$

Base

Une base A capte au moins un ion hydrogène :

 $A^{-}(aq) + H^{+} \rightarrow AH(aq)$

Couple acide/base

Demi-équation du couple AH (aq) / A-(aq):

$$AH(aq) \rightleftharpoons A^{-}(aq) + H^{+}$$

Exemples

- Acide éthanoïque :
 - CH₃CO₂H(aq)
- Acide chlorhydrique :
- $H_3O^+(aq) + C\ell^-(aq)$
- Acide nitrique :
 H₃O⁺(aq) + NO₃⁻(aq)

Exemples

- Ammoniac :
 - NH₃ (aq)
- Hydroxyde de sodium :
 Na⁺(aq) + HO⁻(aq)

Couples à connaître

- Acide carboxylique / Ion carboxylate
 RCO₂H(aq) / RCO₂(aq)
- Ion ammonium / Amine
 RNH₃⁺(aq) / RNH₂(aq)
- Acide carbonique / Ion hydrogénocarbonate
 CO₂, H₂O(aq) / HCO₃(aq)
- lon hydrogénocarbonate / lon carbonate
 HCO₃⁻ (aq) / CO₃²⁻ (aq)

Espèce amphotère

Espèce à la fois acide d'un couple et base d'un autre

Exemple des couples de l'eau :

 $H_3O^+(aq) / H_2O(\ell)$

 $H_2O(\ell)/HO^-(aq)$

2 La réaction acide-base

Réaction entre l'acide d'un couple $AH(aq) / A^{-}(aq)$ et la base d'un autre couple $BH(aq) / B^{-}(aq)$.

$$\begin{array}{c} AH(aq) \rightleftharpoons A^{-}(aq) + H^{+} \\ B^{-}(aq) + H^{+} \rightleftharpoons BH(aq) \end{array}$$

$$AH(aq) + B^{-}(aq) \rightleftharpoons A^{-}(aq) + BH(aq)$$

3 Le pH d'une solution

Le pH

 $[H_3O^+] = c^\circ \times 10^{-pH}$

pH-mètre

Pour mesurer le pH, on utilise un pH-mètre étalonné.