K-Means Clustering Analysis Report

Executive Summary

A K-means clustering analysis was performed using GridSearchCV to determine optimal parameters. The analysis resulted in 10 distinct clusters with moderate internal cohesion and separation between clusters.

Optimal Parameters

Number of clusters (n_clusters): 10Initialization method: k-means++

- Maximum iterations: 200

- Number of initializations (n_init): 10

Clustering Quality Metrics

1. Silhouette Score: 0.2741

- This score indicates a moderate level of cluster cohesion and separation
- The positive score suggests that the clustering structure is valid, though not strongly defined
 - Scale: -1 (poor) to +1 (excellent)
- 2. Davies-Bouldin Index: 1.2458
 - This score indicates moderate cluster separation
 - Lower values indicate better clustering (0 is the lowest possible score)
 - The score suggests some overlap between clusters

Cluster Distribution Analysis

Technical Implementation Details

- Random state was set to 42 for reproducibility

- GridSearchCV was implemented with the following parameter grid:

- n_clusters: 2 to 10

- init: k-means++ and random

- n_init: 10, 20, 30

- max_iter: 200, 300, 500

- Custom scorer using silhouette_score was implemented for optimization

Conclusions

- 1. The clustering solution shows moderate effectiveness with a positive but modest silhouette score
- 2. The Davies-Bouldin Index suggests reasonable cluster separation
- 3. The cluster sizes are relatively well-balanced, ranging from 8 to 24 members
- 4. The k-means++ initialization method was selected as optimal, which typically provides more stable results than random initialization