DIALOG(R)File 352:Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

Image available 012247368 WPI Acc No: 1999-053475/199905

XRPX Acc No: N99-040296

Golf ball with optimum hardness balance - has core coated with intermediate layer and cover with dimples, in which cover hardness is higher than hardness of core and intermediate layer while dimples are formed with different diameters and depths

Patent Assignee: BRIDGESTONE SPORTS KK (BRID); BRIDGESTONE SPORTS CO LTD

Inventor: HAYASHI J; HIGUCHI H; ICHIKAWA Y; YAMAGISHI H

Number of Countries: 002 Number of Patents: 002

Patent Family:

Kind Date Date Applicat No Patent No Kind A 19981117 JP 97136101 A 19991019 US 9869280 19970509 199905 B A 19981117 Α JP 10305114 199950 19980429 Α IIS 5967908

Priority Applications (No Type Date): JP 97136101 A 19970509

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

9 A63B-037/00 Α JP 10305114 A63B-037/06 Α US 5967908

Abstract (Basic): JP 10305114 A

The golf ball (1) consists of a solid core (2) coated with an intermediate layer (3) and a cover (4). Several dimples are formed on the surface of the cover. The surface hardness of the core is set at 48 or less, while the hardness of the intermediate layer is set between 53 to 60.

The cover hardness is higher than the core surface by 8 or more and is set between 55 to 65. The dimples are formed with different diameters and depths, and have a total of 370 to 450 pieces. The total surface area of the dimples is 63 percent or more of the golf ball area

and has an index value of 4 or more. ADVANTAGE - Ensures satisfactory hits since flying distance of golf

ball increases rapidly regardless of height of golf head speed.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-305114

(43)公開日 平成10年(1998)11月17日

FΙ 識別記号 (51) Int.Cl.6 A 6 3 B 37/00 A 6 3 B 37/00 37/12 37/12

審査請求 未請求 請求項の数3 FD (全 9 頁)

(71)出願人 592014104 特願平9-136101 (21)出願番号 プリヂストンスポーツ株式会社 東京都品川区南大井6丁目22番7号 平成9年(1997)5月9日 (22)出願日 (72)発明者 山岸 久 埼玉県秩父市大野原20番地 プリヂストン スポーツ株式会社内 (72)発明者 樋口 博士 埼玉県秩父市大野原20番地 ブリデストン スポーツ株式会社内 (72)発明者 市川 八州史 埼玉県秩父市大野原20番地 ブリヂストン スポーツ株式会社内 (74)代理人 弁理士 小島 隆司 (外1名) 最終頁に続く

(54) 【発明の名称】 ゴルフボール

(57)【要約】

【解決手段】 ソリッドコアと中間層とカバーとからな り、該カバーの表面に多数のディンプルを形成してなる ゴルフボールにおいて、上記コアの表面硬度がショアD で48以下であり、中間層硬度がショアDで53以上6 0以下で、かつコア表面硬度より8以上高く、カバー硬 度がショアDで55以上65以下で、かつ中間層硬度よ り高く形成されると共に、上記ディンプルが直径及び/ 又は深さの異なる少なくとも2種類からなり、ディンプ ル総数が370~450個、ディンプル表面占有率が6 3%以上、ディンプル総表面積指数Dst値が4以上で あることを特徴とするゴルフボール。

【効果】 コアと中間層とカバーとの間の硬度バランス を最適化し、ディンプル要素を適正化することにより、 ヘッドスピードの高低にかかわらず、飛距離が飛躍的に 増大し、打感が良好なものである。

【特許請求の範囲】

【請求項1】 ソリッドコアと中間層とカバーとからなり、該カバーの表面に多数のディンプルを形成してなるゴルフボールにおいて、上記コアの表面硬度がショアDで48以下であり、中間層硬度がショアDで53以上60以下で、かつコア表面硬度より8以上高く、カバー硬度がショアDで55以上65以下で、かつ中間層硬度より高く形成されると共に、上記ディンプルが直径及び/又は深さの異なる少なくとも2種類からなり、ディンプル総数が370~450個、ディンプル表面占有率が63%以上、ディンプル総表面積指数Dst値が4以上であることを特徴とするゴルフボール。

【請求項 2】 ディンプル断面形状係数 V_0 値が0.37 ~ 0.55 である請求項1記載のゴルフボール。

【請求項3】 カバーがアイオノマー樹脂を主材とする 熱可塑性樹脂である請求項2又は3記載のゴルフボー ル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ソリッドコアと中間層とカバーとからなり、該カバーの表面に多数のディンプルを形成してなるゴルフボールに関し、更に詳述すると、コアと中間層とカバーとの間の硬度パランスを最適化すると共に、ディンプル要素を適正化することにより、ヘッドスピードに拘わりなく打感及び飛び性能が向上したゴルフボールに関する。

[0002]

【従来の技術及び発明が解決しようとする課題】近年、 ゴルフ人口の増大により、プレーヤーのゴルフボールに 対する要望も多様かつ個性化してきており、特に、ゴル 30 フボールには飛距離のアップと打感の向上が強く望まれ ている。かかる要望に応えるべくボール構造及びディン プル要素などについて様々な検討が試みられている。

【0003】例えば、ゴルフボールの構造については、現在、種々の構造のゴルフボールが市場にでているが、中でもゴムを基材とするコアをアイオノマー樹脂等からなるカバーで被覆したツーピースソリッドゴルフボールと、ソリッド又はリキッドセンターに糸ゴムを巻回した糸巻きコアをカバーで被覆した糸巻きゴルフボールとが市場の大半を占めている。

【0004】上記ツーピースソリッドゴルフボールは、優れた飛び性能及び耐久性を有することから、多くの一般ゴルファーに使用されているが、打感が非常に硬く感じられ、また、打撃時の球離れの速さからコントロール性能に劣るという欠点を有し、このためプロゴルファーや上級者は、ツーピースソリッドゴルフボールよりも糸巻きゴルフボールを使用する人が多い。一方、糸巻きゴルフボールは、フィーリング、コントロール性に優れる反面、飛距離、耐久性の点でツーピースソリッドゴルフボールに劣るという欠点がある。

2

【0005】このようにツーピースソリッドゴルフボールと糸巻きゴルフボールとは、互いに相反する性能を有しており、プレーヤーは自分の技倆や好みにより使用するゴルフボールを選択しているのが現状である。

【0006】このため、ソリッドゴルフボールにおいて、糸巻きゴルフボールに近いフィーリングを実現するため、軟らかいタイプのツーピースソリッドゴルフボールが種々提案されている。このような軟らかいタイプのツーピースソリッドゴルフボールを得るためには、軟らかいコアを用いることになるが、コアを軟らかくすると、反発性が低下して飛び性能が劣化すると共に、耐久性も著しく低下し、ツーピースソリッドゴルフボールの特徴である優れた飛び性能及び耐久性が得られないばかりでなく、実際の使用に耐え難くなってしまう場合もある。

【0007】更に、これらのゴルフボールは通常、高へッドスピードのプロ、上級アマチュアプレーヤーに適合するように作られており、かかるボールを初心者、シニア、レディースなどの低ヘッドスピードのプレーヤーが使用した場合には、飛距離、打感ともに満足し得るものではなかった。

【0008】他方、ディンプル要素、例えば形状(深さ、直径等)、ディンプル配列態様、各種ディンプルパラメーターなどについても種々検討が試みられているが、なお改良の余地を残しており、多様かつ個性化するプレーヤーの要望には十分に応えきれていない。

【0009】本発明は、上記事情に鑑みなされたもので、ソリッドコアと中間層とカバーとからなり、該カバーの表面に多数のディンプルを形成してなるゴルフボールにおいて、コアと中間層とカバーとの間の硬度バランスを最適化すると共に、ディンプル要素を適正化することにより、ヘッドスピードに拘わりなく打感、飛び性能が向上したゴルフボールを提供することを目的とする。

[0010]

【課題を解決するための手段及び発明の実施の形態】本発明者は、上記目的を達成するために鋭意検討を重ねた結果、ソリッドコアと中間層とカバーとからなり、該カバーの表面に多数のディンプルを形成してなるゴルフボールにおいて、ボール構造、特にコアと中間層とカバールにおいて、ボール構造、特にコアと中間層とカバーとの間の硬度バランスを最適化すると共に、ディンプル要素、特にディンプル総数、ディンプル表面占有率、ディンプル総表面積指数Dst値などを適正化することにより、ヘッドスピードに拘わりなく飛距離が増大し、打感が良好になることを知見した。

【0011】即ち、ソリッドコアと中間層とカバーとからなり、該カバーの表面に多数のディンプルを形成してなるゴルフボールにおいて、上記コアの表面硬度をショアDで48以下とし、中間層硬度をショアDで53以上60以下で、かつコア表面硬度より8以上高く、カバー50 硬度をショアDで55以上65以下で、かつ中間層硬度

より高く形成することにより、ヘッドスピードにかかわらず最適な硬度バランスを有するボール構造が得られると共に、上記ボール構造のボール表面に直径及び/又は深さの異なる少なくとも2種類のディンプルを形成し、これらディンプルの総数を370~450個、ディンプル表面占有率を63%以上、ディンプル総表面積指数Dst値を4以上とし、更にディンプル断面形状係数V。値を0.37~0.55とすることにより、ディンプル要素が適正化され、上記最適なボール構造と相俟って、ヘッドスピードの高低にかかわらず飛距離が飛躍的に増大し、打感も良好なゴルフボールが得られることを見出し、本発明を完成したものである。

【0012】従って、本発明は、(1)ソリッドコアと 中間層とカバーとからなり、該カバーの表面に多数のデ ィンプルを形成してなるゴルフボールにおいて、上記コ アの表面硬度がショアDで48以下であり、中間層硬度 がショアDで53以上60以下で、かつコア表面硬度よ り8以上高く、カバー硬度がショアDで55以上65以 下で、かつ中間層硬度より高く形成されると共に、上記 ディンプルが直径及び/又は深さの異なる少なくとも2 種類からなり、ディンプル総数が370~450個、デ ィンプル表面占有率が63%以上、ディンプル総表面積 指数Dst値が4以上であることを特徴とするゴルフボ ール、(2)ディンプル断面形状係数V₀値が0.37 ~ 0. 55である(1)記載のゴルフボール、及び (3)カバーがアイオノマー樹脂を主材とする熱可塑性 樹脂である(1)又は(2)記載のゴルフボールを提供 する。

【0013】以下、本発明につき更に詳しく説明すると、本発明のゴルフボール1は、図1に示すように、軟らかく形成されたソリッドコア2と、このコア2の表面より硬い中間層3と、この中間層3より硬いカバー4とからなり、このカバー4の表面には多数のディンプル(図示せず)が形成されている。

【0014】上記ソリッドコアの表面硬度は、ショアD 硬度計での測定(以下、ショアDという)で48以下であり、特に45以下が好ましく、少なくとも30以上である。表面硬度が48を超えると、コアが硬くなりすぎ、特に低ヘッドスピードのプレーヤーにおいて飛距離がのびず、打感が硬くなる。この場合、ソリッドコアの40表面硬度とはソリッドコアの表面、具体的にはコア球状表面の5点測定の平均値である。

【0015】また、コアの外径、比重、重量などは、本発明の目的を達成し得る範囲で適宜調整することができ、コアの外径は好ましくは $30\sim39$ mm、より好ましくは $33\sim38$ mm、コアの比重は好ましくは1.10 ~1.30 、より好ましくは $1.13\sim1.25$ 、コアの重量は好ましくは $25\sim35$ g、より好ましくは $26\sim33$ gである。

【0016】本発明においてソリッドコアを形成するた *50*

めのコア用組成物としては、特に制限されず、通常ソリッドコアの形成に用いられる基材ゴム、架橋剤、共架橋剤、不活性充填剤等を用いて形成することができる。この場合、基材ゴムとしては従来からソリッドゴルフボールに用いられている天然ゴム及び/又は合成ゴムを使用することができるが、本発明においては、シス構造を少なくとも40%以上有する1、4-シスーポリブタジンが特に好ましい。この場合、所望により該ポリブタジンンに天然ゴム、ポリイソプレンゴム、スチレンブタジエンに天然ゴム、ポリイソプレンゴム、スチレンブタジエンゴム等を適宜配合してもよい。また、架橋剤としてはジクミルバーオキサイドやジーtーブチルバーオキサイドなどのような有機過酸化物等が例示される。この架橋剤の配合量は通常、基材ゴム成分100重量部に対して通常0.5~1.8重量部程度とされる。

【0017】上記共架橋剤としては、特に制限されず、 不飽和脂肪酸の金属塩、特に、炭素原子数3~8の不飽 和脂肪酸(例えばアクリル酸、(メタ)アクリル酸等) の亜鉛塩やマグネシウム塩が例示されるが、アクリル酸 亜鉛が特に好適である。なお、架橋剤の配合量は適宜設 20 定され、通常は基材ゴム成分100重量部に対して、 0. 5~3重量部程度とされる。更に、不活性充填剤と しては酸化亜鉛、硫酸バリウム、シリカ、炭酸カルシウ ム及び炭酸亜鉛等が例示されるが、酸化亜鉛、硫酸パリ ウムが一般的であり、その配合量はコアとカバーの比 重、ボールの重量規格等に左右され、特に制限されない が、通常は基材ゴム100重量部に対して40重量部以 下である。なお、本発明においては上記架橋剤や酸化亜 鉛、硫酸バリウム等の充填剤の配合割合を適宜調整する ことにより、コア全体の硬度及び重量を最適値に調整す ることができる。

【0018】上記成分を配合して得られるコア用組成物は通常の混練機、例えばバンバリーミキサーやロール等を用いて混練し、コア用金型を用いて上記硬度のソリッドコアを形成することができる。

【0019】上記コア2を被覆する中間層3は、その硬度がショアDで53以上60以下であり、より好ましくは $54\sim59$ である。中間層硬度が53未満では反発性を損ない、60を超えると打感が悪くなる。この場合、中間層硬度は上記コアの表面硬度よりショアDで8以上高く形成され、より好ましくは $9\sim30$ 高く形成される。この硬度差が8未満では打感が悪くなり、反発性を十分得ることができない。

【0020】中間層の厚み、比重等は、本発明の目的を 達成し得る範囲で適宜調整することができ、厚みは好ま しくは $0.5\sim2.5$ mm、より好ましくは $1.0\sim2.3$ mm、比重は好ましくは $0.90\sim1.18$ 、よ り好ましくは $0.91\sim1.16$ である。なお、中間層 は1層に限られず、2層以上の複数層に形成することも できる。

【0021】上記中間層3は、軟らかく形成したコアの

10

6

反発性の低下を補うためのものであり、上述した硬度範 囲内で、反発性に優れた材料、例えばハイミラン(三井 ・デュポンポリケミカル社製)、サーリン(米国デュポ ン社製) 等のアイオノマー樹脂が好適に用いられ、上記 アイオノマー樹脂以外の熱可塑性樹脂としては、エチレ ンー不飽和カルボン酸アルキル共重合体の無水マレイン 酸変性物 (HPR AR201 (三井・デュポンポリケ ミカル社製)等)、エチレン-不飽和カルボン酸-不飽 和カルボン酸アルキルエステルの三元共重合体(ニュー クレルAN4311、同AN4307(三井・デュポン ポリケミカル社製)等)、ポリエステルエラストマー (ハイトレル4047 (東レ・デュポン社製)等)、ポ リアミドエラストマー(PEBAX3533(アトケム 社製)等)、及び結晶性ポリエチレンプロックを有する 熱可塑性エラストマー(ダイナロンE6100P、同E 4600P (日本合成ゴム(株)製)等)などが挙げら れ、これらの1種を単独で又は2種以上を混合して用い ることができる。この場合、上記アイオノマー樹脂を1 0~100重量%、好ましくは30~95重量%、アイ オノマー樹脂以外の熱可塑性樹脂を0~90重量%、好 ましくは5~70重量%の割合で配合することが好まし

【0022】なお、中間層には、上記樹脂組成物に加えて重量調整剤として酸化亜鉛、硫酸バリウム等の無機充填剤や着色のために二酸化チタン等の添加剤を添加することができる。

【0023】この中間層3をコア2に被覆する方法は、制限されず、予め半殻球状に成形した2枚のハーフカップでコアを包み加熱加圧成形するか、中間層用組成物を射出成形によりコアを包みこんでもよい。

【0024】上記中間層3を被覆するカバー4は、中間層よりも硬く形成され、その硬度はショアDで55以上65以下であり、より好ましくは56~63である。カバー硬度が55、未満では十分な反発性を得られず、65を超えると打感、コントロール性が劣ってくる。この場合、カバーと中間層との硬度差はショアDで好ましくは1~10、より好ましくは2~8である。カバー硬度が中間層硬度より軟らかいと十分な反発性が得られなくなったり、打感が悪くなったりする。

【0025】なお、カバーの厚み、比重等は、本発明の 40目的を達成し得る範囲で適宜調整することができ、厚みは $0.5\sim3.0$ mm、特に $1.0\sim2.3$ mm、比重は $0.90\sim1.18$ 、特に $0.91\sim1.15$ であることが好ましい。なお、カバーは1 層に限られず、2 層以上の複数層に形成することもできる。

【0026】上記カバー組成物としては特に制限されず、ゴルフボールのカバー材として好適な性能を有する公知の材料で形成することができ、特にアイオノマー樹脂を主材とする熱可塑性樹脂を用いることが好ましい。 具体的には、ハイミラン1557、同1605、同18 55、同1856(三井・デュポンポリケミカル社製) などが挙げられ、これらの1種を単独で又は2種以上を 混合して用いることができる。

【0027】更に、上記カバー組成物には必要に応じて UV吸収剤、酸化防止剤、金属石鹸等の分散助剤などを 添加することもできる。なお、中間層の周囲にカバーを 被覆する方法は特に制限されず、通常は予め半殻球状に 成形した2枚のカバーで中間層を包み加熱加圧成形する か、カバー用組成物を中間層の周囲に射出成形してもよ い。

【0028】このようにして得られたゴルフボールは、通常のゴルフボールと同様に多数のディンプルを表面に形成してなるものである。これらディンプルは直径及び/又は深さが異なる少なくとも2種類以上であり、好ましくは2~6種類である。ディンプル直径は好ましくは2.2~4.5 mm、ディンプル深さは好ましくは0.10~0.28 mm、より好ましくは0.11~0.25 mmである。またディンプル総数は370~450個であり、好ましくは380~440個である。なお、ディンプル形状は、平面円形状が好ましいが、特に制限されず楕円、長円、花びら、多角形などの非円形ディンプルとすることもできる。

【0029】本発明のゴルフボールは、ゴルフボールを球状とみなして仮想球面とした際、個々のディンプルの縁部によって囲まれる仮想球面の表面積が仮想球面の全面積に対する割合であるディンプル表面占有率が63%以上であり、好ましくは65~79%である。ディンプル表面占有率が63%未満では十分な飛距離が得られな30い。

【0030】本発明において上記ディンプルは、各ディンプルの縁部によって囲まれる平面下のディンプル空間体積を、前記平面を底面としかつこの底面からの各ディンプルの最大深さを高さとする円柱体積で除した値の平均値であるディンプル断面形状係数 V_0 値が好ましくは0.37 \sim 0.55、より好ましくは0.39 \sim 0.53となるように形成する。

【0031】このV。値は個々のディンプルのゴルフボールに占める実質的な体積の割合を示すものであり、更に詳しく説明すると、ディンプル平面形状が円形状の場合、図2に示したようにディンプル5上にボール直径の仮想球面6を設定すると共に、ボール直径より0.16mm小さい直径の球面7を設定し、この球面7の円周とディンプル5との交点8を求め、該交点8における接線9と前記仮想球面6との交点10の連なりをディンプル縁部11とする。この場合、上述したディンプル縁部の正確なため、このような設定がないとディンプル縁部の正確なため、このような設定がないとディンプル縁部の正確な位置がわからないためである。そして、図3、4に示したように前記縁部11によって囲まれる平面(円:直径D

7

。) 12下のディンプル空間 13の体積 V_1 を下記式より 求める。一方、前記平面 12 を底面とし、この平面 12 からのディンプル最大深さ D_1 を高さとする円柱 14 の 体積 V_0 を下記式より求める。これにより、円柱体積 V_0 に対するディンプル空間体積 V_1 の比を算出し、ボール 表面の全ディンプルについての平均値を求めこれを V_0 値とする。

【0032】なお、ディンブルの平面形状が円形状でない場合は、このディンブルの最大直径(若しくは平面最大長さ)を求め、ディンブル平面がこの最大直径(最大長さ)を有する円形状であると仮定し、以下上記と同様にして V_0 値を算出することができる。また、直径及び/又は深さの異なる複数種類のディンブルの場合は、各種類ごとの V_0 値を求め、これらを平均してディンブル断面形状係数 V_0 値とする。

[0033]

【数1】

$$V_{P} = \int_{0}^{\frac{D_{o}}{2}} 2\pi xy dx$$

$$V_{Q} = \frac{\pi D_{m}^{2} D_{P}}{4}$$

$$V_{0} = \frac{V_{P}}{V_{Q}}$$

【0034】更に、本発明のゴルフボールはボール表面に形成されるディンプル種類数をnとし、各種ディンプルの径を D_{Fix} 、最大深さを D_{Fix} 、個数をNkとした場合(但し、 $k=1, 2, 3, \cdots n$)、下記式で示されるディンプル総表面積指標Dst値を4.0以上、より好ましくは $4.2\sim10.0$ に形成することが好ましい。このDst値は種々のディンプルバラメータを適正化するものであり、Dst値が4.0未満では本発明の狙いとする最適なボール構造とディンプル要素の適正化による相乗効果が得られず、飛び性能が劣る。

[0035]

【数2】

$$Dst = \frac{n \sum_{k=1}^{n} [(D_{mk}^{2} + D_{pk}^{2}) \times V_{0}k \times Nk]}{4R^{2}}$$

ここで、式中Rはボール半径、 V_0 は上記ディンプル断 40 面形状係数 V_0 値と同義であり、 N_k はディンプルkの 個数である。

【0036】以上説明したように、本発明のゴルフボールは、ボール構造、特にコアと中間層とカバーとの間の硬度バランスを最適化すると共に、上記ボール構造のボール表面に形成されるディンプルのディンプル要素、特にディンプル総数、ディンプル表面占有率、ディンプル総表面積指数Dst値などを適正化することにより、へ

ッドスピードに関わらず、飛距離が飛躍的に増大し、打 感が良好となるものである。

[0037]

【発明の効果】本発明によれば、コアと中間層とカバーとの間の硬度バランスを最適化し、ディンプル要素を適正化することにより、ヘッドスピードの高低にかかわらず、飛距離が飛躍的に増大し、打感が良好なものである。

[0038]

【実施例】以下、実施例と比較例を示し、本発明を具体 的に説明するが、本発明は下記実施例に制限されるもの ではない。

【0039】 [実施例、比較例] 表 1 に示したコア組成物を混練し、モールド内で155 でにおいて約20 分間加硫することにより $a\sim f$ のソリッドコアを得た。なお、コアの表面硬度はコア表面の任意の5 点をショア D硬度計で測定した平均値である。

【0040】次に、表2に示したA~Hの中間層材料、カバー材料を、表4に示したコア、中間層、カバーの組 み合わせに従って、コアの表面に中間層を、該中間層の周囲にカバーを順次射出成形した。この場合、カバー表面には表3に示した態様のディンプルが形成されている。得られた実施例1~4、比較例1~5のゴルフポールの性状及び諸性能を調べた。結果を表4に示す。なお、表4中、飛距離、打感は下記の方法で評価した。得られた製品ボールの重量は45.20±0.20g、ボール直径は42.70±0.05mmの範囲内にすべて入っていた。

飛距離

70 ツルー・テンパー社製の打撃ロボットを用いて、ドライバー (#W1)にてヘッドスピード45m/sec(HS45)、35m/sec(HS35)でショットした時の落下距離(キャリー)、到達距離(トータル)を測定した。なお、ドライバーは、HS45の場合、PRO230チタン、ロフト角10°、HS35の場合、PRO230チタンLD、ロフト角13°(いずれもブリデストンスポーツ株式会社製)を用いた。

打感

ヘッドスピード45m/sec (HS45)、35m/ sec (HS35)のプレーヤー各3名に実打してもら い、下記基準により判定した。

◎: 軟らかい

○:やや軟らかい

△:やや硬い

×:硬い

[0041]

【表1】

9						10
コア配合 (重量部)	a	b	С	đ	e	f
1.4 - シスーポリブタジエン	100	100	100	100	100	100
アクリル酸亜鉛	25	21.5	19.5	18.5	34	41
ジクミルパーオキサイド	0.6	0.6	0.6	0.6	0.6	0.6
シャッカイ剤	1	1	1	1	1	1
老化防止剤	0.1	0.1	0.1	0.1	0.1	0.1
酸化亜鉛	29.7	31	31.8	34.5	26.3	23.7

[0042]

* *【表2】

中間層・カバー材料 (強量部)	А	В	С	D	E	F	G	H
ハイミラン 1557*¹						50		
ハイミラン 1605*¹	35		42			50		50
ハイミラン 1650*1							75	
ハイミラン 1706**	35		42				25	50
ハイミラン 1855**					50			
ハイミラン 1856*'					50			
ハイミラン AM7311*1				37				
サーリン 7930**				37		;		
サーリン 8511**		35						
サーリン 8512**		35						
ダイナロンE6100P**		30	16					
ダイナロンE4600P**	30							
ニュークレル AN4311**				26				

*1:三井・デュポンポリケミカル社製のアイオノマー樹脂

*2:米国デュポン社製のアイオノマー樹脂

*3:日本合成ゴム(株)製のブロックコポリマーポリブタジエンの水素添加物 E-EB-E系

*4:三井・デュポンポリケミカル社製のエチレン・メタクリル酸・アクリル酸 エステルの三元共重合体

[0043]

【表3】

ディンプル 型類	直径 (mm)	深さ (mm)	V。值	数	総数	表面占有率 (%)	Dst 値	
	4.00	0.175	0.51	276			6.3	
_	3.60	0.150	0.51	24	396	7 6 .5		
I	3,25	0.140	0,51	60	555			
	2.45	0.125	0.51	36				
	3.80	0.175	0.52	264		72.8	4.5	
п	3,20	0.150	0.49	120	432			
	2.35	0.125	0.48	48				
	4.10	0.185	0.48	72		78.5	4.5	
m	3.90	0.175	0.48	200	392			
	3.50	0.155	0.48	120				
IV	3.40	0.195	0.49	360	500	68.6	2.7	
	2.45	0.195	0.49	140	500	00.0		
77	3.95	0.240	0.40	240	360	67.2	2.2	
V	3.10	0.240	0.40	. 120	300	Oran V		

[0044]

【表4】

	実施例			比較例						
		1	2	3	4	1.	2	3	4	5
_	種類	B.	Ъ	С	đ	đ	е	a	d	f
	外径 (mm)	36.5	36.5	36.5	36.7	35.7	36.5	36.5	36.5	36.5
3	比重	1,22	1.22	1,22	1.23	1,23	1,22	1,22	1.23	1,22
	表面硬度① (ショアD)	48	42	38	35	35	55	48	35	60
	種類	С	В	В	С	С	D	С	Н	В
中間層	便度② (ショアD)	58	55	55	58	58	60	58	65	55
	摩み (mm)	1.6	1.6	1.6	2.0	2.0	1.6	1.6	1.6	1.6
硬度差 (2-0)		10	13	17	23	23	5	10	30	- 5
	種類	F	E	F	F	F	G	н	A	F
カバー	硬度③ (ショアD)	60	58	60	60	60	61	65	53	60
	厚み (mm)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
硬度差 (3)-(2)		2	3	5	2	2	1	7	- 12	5
ディンフ	ル種類	I	п	ш	П	ľV	п	v	IV	٧
HS45	キャリー (m)	213.0	211.0	212.0	210.0	208.0	211.5	207.0	206.5	207.5
# W 1	トータル (m)	230.0	228.5	228.0	227,0	222,0	227.5	220,0	221.0	222,5
HS35 # W1	キャリー (m)	148.0	149.0	149.5	150.0	147.0	145.0	146.0	147.0	144.0
	トータル (m)	155.0	156.0	156.0	156.5	152.0	148.5	149.0	151.0	148.0
打感	HS45	0	0	0	0	0	0	0	Δ	×
	HS35	0	0	0	0	0	Δ	Ø	Δ	×

【0045】表4の結果から、比較例1は、実施例4とディンプル要素以外は共通し、打感は良好であるが、ディンプル総数が多すぎ、Dst値が小さいために飛距離が十分にでないものである。比較例2は、コアの表面硬度が高く、コアと中間層との硬度差が小さいために、特に低ヘッドスピードの場合の飛距離、打感が劣るものである。比較例3は、Dst値が極端に小さい以外は本願発明の条件を満たしているため打感は良好であるが、飛距離が十分でないものである。比較例4は、中間層が極端に硬く、中間層がカバーよりも硬い上に、ディンプル要素もディンプル総数が多く、Dst値が小さいために飛距離、打感共に劣るものである。比較例5は、コアが極端に硬く、コアが中間層よりも硬い上に、Dst値も小さいために飛距離が十分でず、打感が硬いものである。

【0046】これに対して、本発明のゴルフボールは、 ヘッドスピードによらず飛距離が十分にでて、打感も良 好なものである。

【図面の簡単な説明】

【図1】本発明の一実施例にかかるゴルフボールの概略 断面図である。

【図2】ディンプル断面形状係数 V_0 値の計算方法を説明するための説明図である。

【図3】同斜視図である。

【図4】同概略断面図である。

【符号の説明】

- 1 ゴルフボール
- 2 コア
- 3 中間層
- 4 カバー
- 5 ディンプル
- 6 仮想球面
- 7 球面
- 8 交点
- 9 接線
- 10 交点
- 11 ディンプル縁部
- 50 12 平面

13 ディンプル空間

【図1】

15

【図2】

[図3]

【図4】

フロントページの続き

(72)発明者 林 淳二

埼玉県秩父市大野原20番地 プリヂストン スポーツ株式会社内