Dokumentacja projektu "Economic Planning"

Maciej Wrona 117641 Jakub Matłacz 117726

Opis problemu	3
Ogólny opis	3
Wymagania produkcyjne	3
Zwiększenie zdolności produkcyjnych	3
Ograniczenia	3
Cele planowania gospodarczego	4
Wyzwania	4
Model	5
Cel	5
Parametry i Dane Wejściowe	5
Zmienne Decyzyjne	6
Funkcja celu	6
Analiza wyników rozwiązania modelu	7
Podsumowanie rozwiązania	7
Jakość rozwiązania	7
Szczegółowe wyniki	7
Zdolność produkcyjna (cap)	7
Produkcja (output)	8
Wykorzystanie siły roboczej (manpower used)	8
Dodatkowa zdolność produkcyjna (addcap)	8
Zapasy (stock)	8
Interpretacja wyników	9
Zdolność produkcyjna	9
Produkcja	9
Wykorzystanie siły roboczej	9
Dodatkowa zdolność produkcyjna	9
Zapasy	10
Wnioski	10
Instrukcja	10
Github	10
CPLEX	10
Visual Studio	10

Opis problemu

Ogólny opis

Ten problem dotyczy planowania gospodarki składającej się z trzech branż: węgla, stali i transportu, na przestrzeni kolejnych pięciu lat, zgodnie z analizą przedstawioną przez H.P. Williamsa. Obecnie gospodarka dysponuje określonymi zasobami i zdolnościami produkcyjnymi w każdej z branż, które muszą być zarządzane w taki sposób, aby osiągnąć wyznaczone cele ekonomiczne.

Obecnie dostępne zasoby i zdolności produkcyjne to:

- Węgiel: 150 mln £ w zapasach oraz 300 mln £ zdolności produkcyjnej.
- Stal: 80 mln £ w zapasach oraz 350 mln £ zdolności produkcyjnej.
- Transport: 100 mln £ w zapasach oraz 280 mln £ zdolności produkcyjnej.

Wymagania produkcyjne

Aby wyprodukować 1 £ wartości towarów, każda z branż wymaga określonych nakładów z własnej oraz innych branż, jak również nakładów na siłę roboczą:

- **Węgiel:** 0.1 £ węgla, 0.1 £ stali, 0.2 £ transportu, 0.6 £ siły roboczej.
- Stal: 0.5 £ węgla, 0.1 £ stali, 0.1 £ transportu, 0.3 £ siły roboczej.
- Transport: 0.4 £ węgla, 0.2 £ stali, 0.2 £ transportu, 0.2 £ siły roboczej.

Zwiększenie zdolności produkcyjnych

Aby zwiększyć zdolności produkcyjne o 1 £ w każdej branży, potrzebne są określone nakłady, które wpłyną na zdolności produkcyjne w roku t + 2:

- Wegiel: 0.0 £ wegla, 0.1 £ stali, 0.2 £ transportu, 0.4 £ siły roboczej.
- Stal: 0.7 £ węgla, 0.1 £ stali, 0.1 £ transportu, 0.2 £ siły roboczej.
- Transport: 0.9 £ wegla, 0.2 £ stali, 0.2 £ transportu, 0.1 £ siły roboczej.

Ograniczenia

W gospodarce występuje ograniczenie związane z maksymalną roczną zdolnością siły roboczej wynoszącą 470 mln £.

Cele planowania gospodarczego

Planowanie gospodarcze obejmuje następujące cele na przestrzeni pięciu lat:

- 1. **Maksymalizacja całkowitej zdolności produkcyjnej na koniec pięciolecia**, przy jednoczesnym zaspokojeniu rocznego zapotrzebowania na konsumpcję wynoszącego 60 mln £ węgla, 60 mln £ stali i 30 mln £ transportu (z wyjątkiem roku 0).
- 2. **Maksymalizacja całkowitej produkcji w czwartym i piątym roku**, bez uwzględniania zewnętrznego zapotrzebowania w każdym roku.
- 3. **Maksymalizacja całkowitego zapotrzebowania na siłę roboczą**, ignorując ograniczenie zdolności siły roboczej, ale zaspokajając roczne zewnętrzne zapotrzebowanie określone w punkcie 1.

Wyzwania

Kluczowym wyzwaniem jest zarządzanie zasobami i zdolnościami produkcyjnymi w sposób, który pozwoli na osiągnięcie optymalnych wyników zgodnie z wyznaczonymi celami. Planowanie musi uwzględniać ograniczenia związane z siłą roboczą oraz opóźnienia czasowe w produkcji i zwiększaniu zdolności produkcyjnych, aby efektywnie zarządzać zasobami i maksymalizować korzyści ekonomiczne w określonych ramach czasowych.

Model

```
int MAX_YEARS =
range Years = 1. MAX_YEARS;

float INPUT_OUTPUT[INDUSTRIES][INDUSTRIES] = ;
float INPUT_CAPACITY[INDUSTRIES][INDUSTRIES] = ;
float EX_DEMAND[INDUSTRIES] = .;
float MANPOWER_OUTPUT[INDUSTRIES] = ;
float MANPOWER_CAPACITY[INDUSTRIES] = ;
float INIT_CAPACITY[INDUSTRIES] = .;
float INIT_STOCK[INDUSTRIES] = .;
float INPUT_STATIC[INDUSTRIES] = .;
int OBJ1 = 1;
int OBJ2 = 1;
int OBJ3 = 1;
range R = 1. MAX_YEARS+2;
range R1 = 0. MAX_YEARS;

dvar float+ output[i in INDUSTRIES][y in R];
dvar float+ stock[i in INDUSTRIES][y in R];
dvar float+ addcap[INDUSTRIES][R];
dvar float+ cap[INDUSTRIES][Years];
dvar float+ manpower_used[R1];
```

Cel

Celem tego modelu jest optymalizacja produkcji i zdolności produkcyjnych w różnych branżach na przestrzeni określonej liczby lat. Model stara się zmaksymalizować trzy wskaźniki:

- 1. Zdolności produkcyjne na koniec okresu.
- 2. Produkcję w określonych latach (4 i 5).
- 3. Użycie siły roboczej w całym okresie.

Parametry i Dane Wejściowe

- INDUSTRIES: Zbiór branż w modelu.
- MAX_YEARS: Maksymalna liczba lat objętych analizą.
- Years: Zakres lat od 1 do MAX_YEARS.

- INPUT_OUTPUT[INDUSTRIES][INDUSTRIES]: Macierz wejść i wyjść produkcji między branżami.
- INPUT_CAPACITY[INDUSTRIES][INDUSTRIES]: Macierz wejść zdolności produkcyjnych między branżami.
- EX_DEMAND[INDUSTRIES]: Zewnętrzny popyt na produkty z różnych branż.
- MANPOWER_OUTPUT[INDUSTRIES]: Wymagana siła robocza na jednostkę produkcji dla różnych branż.
- MANPOWER_CAPACITY[INDUSTRIES]: Wymagana siła robocza na jednostkę zwiększenia zdolności produkcyjnych.
- MANPOWER_LIMIT: Limit dostępnej siły roboczej.
- INIT_CAPACITY[INDUSTRIES]: Początkowa zdolność produkcyjna w różnych branżach.
- INIT_STOCK[INDUSTRIES]: Początkowy zapas produktów w różnych branżach.
- INPUT_STATIC[INDUSTRIES]: Statyczne zapotrzebowanie na produkcję w ostatnich latach.
- 0BJ1, 0BJ2, 0BJ3: Współczynniki ważności dla poszczególnych celów optymalizacyjnych.

Zmienne Decyzyjne

- output[i in INDUSTRIES][y in R]: Produkcja w branży i w roku y.
- stock[i in INDUSTRIES][y in R]: Zapasy w branży i w roku y.
- addcap[INDUSTRIES][R]: Dodatkowa zdolność produkcyjna w branży i w roku y.
- cap[INDUSTRIES][Years]: Całkowita zdolność produkcyjna w branży i w roku y.
- manpower_used[R1]: Użyta siła robocza w roku y.

Funkcja celu

Model optymalizuje trzy cele jednocześnie:

- 1. **OBJ1:** Maksymalizacja końcowej zdolności produkcyjnej w roku maksymalnym.
- 2. **OBJ2:** Maksymalizacja produkcji w latach 4 i 5.
- 3. **OBJ3:** Maksymalizacja wykorzystania siły roboczej w całym okresie planowania.

Funkcja celu jest zapisana jako:

$$\text{maximize} \quad OBJ1 \times \left(\sum_{i \in \text{INDUSTRIES}} \text{cap}[i][\text{MAX_YEARS}] \right)$$

$$+OBJ2 \times \left(\sum_{i \in \text{INDUSTRIES}, y \in 4..5} \text{output}[i][y]\right)$$

$$+OBJ3 \times \left(\sum_{y \in \text{Years}} \text{manpower_used}[y]\right)$$

Analiza wyników rozwiązania modelu

Podsumowanie rozwiązania

Optymalna wartość funkcji celu: **9297.91893120717**

Jakość rozwiązania

- Brak nieskończoności granic.
- Brak nieskończoności kosztów redukcyjnych.
- Maksymalne resztki (Ax-b): (2.84217×10^{-13})
- Maksymalne resztki $(c-B'\pi)$: (1.05471×10^{-14})
- Maksymalna wartość (|x|): (1682.7)
- Maksymalna wartość (|slack|): (1566.3)
- Maksymalna wartość $(|\pi|)_{:}(27.3197)$
- Maksymalna wartość (|red-cost|): (17.7578)
- Liczba warunkowa niezmniejszonej bazy: (7.8×10^1)

Szczegółowe wyniki

Zdolność produkcyjna (cap)

Przemysł	Rok 1	Rok 2	Rok 3	Rok 4	Rok 5
Coal	300	304.57	324.02	473.92	1526.9
Steel	350	350	350	350	350

Transport 280 280 365.57 365.57 365.57
--

Produkcja (output)

Przemysł	Rok 1	Rok 2	Rok 3	Rok 4	Rok 5	Rok 6	Rok 7
Coal	287.5	304.57	324.02	473.92	1526.9	1682.7	116.4
Steel	110.88	145.69	251.88	260.8	350	105.7	105.7
Transport	152.49	280	365.57	365.57	365.57	92.3	92.3

Wykorzystanie siły roboczej (manpower used)

Rok 1	Rok 2	Rok 3	Rok 4	Rok 5	Rok 6
238.09	298.79	403.05	856.89	1094.2	1059.8

Dodatkowa zdolność produkcyjna (addcap)

Przemysł	Rok 1	Rok 2	Rok 3	Rok 4	Rok 5	Rok 6	Rok 7
Coal	0	4.571	19.449	149.89	1053	0	0
Steel	0	0	0	0	0	0	0
Transport	0	0	85.571	0	0	0	0

Zapasy (stock)

Przemysł	Rok 1	Rok 2	Rok 3	Rok 4	Rok 5	Rok 6	Rok 7
	i voiv i	11011 =		11011	11011	11011	11011

Coal	4.8156	0	0	0	0	0	0
Steel	9.2073	0	0	0	0	0	0
Transport	0	0	86.915	47.917	0	0	0

Interpretacja wyników

Zdolność produkcyjna

- Przemysł C wykazuje znaczny wzrost zdolności produkcyjnej, osiągając wartość 1526.9 w roku 5. Wynika to z dużych inwestycji w dodatkową zdolność produkcyjną.
- Przemysł S utrzymuje stałą zdolność produkcyjną na poziomie 350 przez wszystkie lata.
- Przemysł T zwiększa swoją zdolność produkcyjną w roku 3 do 365.57, co utrzymuje do końca okresu.

Produkcja

- Produkcja w przemyśle C znacząco wzrasta, osiągając szczyt w roku 5 z wartością 1526.9.
- Produkcja w przemyśle S wzrasta do maksymalnej zdolności produkcyjnej w roku 5, po czym pozostaje na stałym poziomie.
- Przemysł T zwiększa produkcję do 365.57 od roku 3 i utrzymuje ją do końca okresu.

Wykorzystanie siły roboczej

- Wykorzystanie siły roboczej stopniowo rośnie, osiągając maksymalną wartość 1094.2 w roku 5, po czym nieznacznie spada.

Dodatkowa zdolność produkcyjna

- Najwięcej inwestycji w dodatkową zdolność produkcyjną występuje w przemyśle C, szczególnie w roku 5 (1053 jednostki).
- Przemysł T dokonuje jednej większej inwestycji w roku 3 (85.571 jednostki).
- Przemysł S nie inwestuje w dodatkową zdolność produkcyjną.

Zapasy

- Przemysł C ma zapasy początkowe, które są zużywane w roku 1.
- Przemysł S również posiada zapasy początkowe zużywane w roku 1.
- Przemysł T przechowuje zapasy w roku 3 i częściowo zużywa je w roku 4.

Wnioski

Model dynamiczny Leontiefa pozwala na optymalne zarządzanie zasobami i produkcją w różnych przemysłach, przy jednoczesnym uwzględnieniu ograniczeń związanych z siłą roboczą i zapasami. Wyniki pokazują, że inwestycje w dodatkową zdolność produkcyjną są kluczowe dla zwiększenia produkcji i osiągnięcia wysokiej wartości funkcji celu. Przemysł C jest liderem pod względem wzrostu zdolności produkcyjnej i produkcji, co jest efektem dużych inwestycji. Przemysł S utrzymuje stałą produkcję bez inwestycji, a przemysł T zwiększa swoją zdolność produkcyjną na początku okresu i utrzymuje ją do końca.

Instrukcja

Github

Klonujemy repozytorium z Github. Kod znajduje się pod linkiem: https://github.com/mcqq1/economy_planning_buisness_model

CPLEX

Kod do CPLEX znajduje się w folderze data. Mamy tam pliki data.dat oraz model.mod. Są to kolejno: plik z danymi i plik z modelem. Z tymi właśnie plikami tworzymy projekt w CPLEX 22.1.1

Visual Studio

Kod napisany w C++ znajduje się w pliku main.cpp. Do jego odpalenia potrzebujemy Visual Studio 2022 oraz zainstalowanego CPLEX (importujemy z niego kod solvera do visuala).

1. Przejdź do "Projekt" > "Projekt właściwości"

"Właściwości konfiguracji" > "C/C++" > "Ogólne"

Zmień wartość "Dodatkowe katalogi zawartości" na:

\$(CPLEX_STUDIO_DIR2211)\opl\include;%(AdditionalIncludeDirect
ories)

2. Przejdź do "Preprocesor"

Zmień wartość "Definicje preprocesora" na:

WIN64; NDEBUG; _CONSOLE; ILCUSEMT; _CRT_SECURE_NO_DEPRECATE; % (Pre processorDefinitions)

3. Przejdź do "Konsolidator" > "Ogólne"

Zmień wartość "Dodatkowe katalogi bibliotek" na:

\$ (CPLEX_STUDIO_DIR2211) \opl\lib\x64_windows_msvc14\stat_mda; %
(AdditionalLibraryDirectories)

4. Przejdź do "Dane wejściowe"

Zmień wartość "Dodatkowe zależności" na:

opl.lib;iljs.lib;concert.lib;cplex2211.lib;ilocplex.lib;cp.li
b;odbc32.lib;odbccp32.lib;wsock32.lib;%(AdditionalDependencie
s)

5. Teraz wreszcie możemy odpalić plik cpp. Kompilujemy go, odpalamy i odczytujemy wynik w konsoli.