Вопрос 10 (ВМ)

Ориентация в пространстве: правые и левые тройки векторов. Векторное произведение: определение, свойства, механический смысл. Выражение векторного произведения через координаты. Выражение площадей параллелограмма и треугольника через векторное произведение.

Ориентация в пространстве: правые и левые тройки векторов.

Пусть векторы \vec{a}, \vec{b} и \vec{c} в пространстве не являются компланарными, и их начала помещены в общую точку О (рис. 9.1)

Упорядоченная тройка векторов $(\vec{a}, \vec{b}, \vec{c})$ называется **правой**, если при наблюдении из конца вектора \vec{c} поворот вектора \vec{a} к вектору \vec{b} виден против часовой стрелки (тройка **левая**, если поворот - по часовой стрелке)

Тройка базисных векторов $(\vec{i}, \vec{j}, \vec{k})$ всегда предполагается правой

Векторное произведение

Векторным произведением вектора \vec{a} на вектор \vec{b} называется вектор, обозначаемый $\vec{a} \times \vec{b}$ и однозначно определяемый следующими условиями.

1. Его длина

$$|ec{a} ext{ x } ec{b}| = |ec{a}| |ec{b}| \sin(\widehat{ec{a}, ec{b}})$$

Если $\vec{a}||\vec{b}$, то из (9.1) следует, что $|\vec{a} \ge \vec{b}| = 0$, и потому $\vec{a} \ge \vec{b} = 0$ Если $\vec{a}||\vec{b}$, то требуется чтобы (рис. 9.2)

- 2. Вектор $ec{a}$ х $ec{b}$ был перпендикулярен к $ec{a}$ и $ec{b}$
- 3. Тройка векторов $\vec{a}, \vec{b}, \vec{a}$ х \vec{b} являлась правой

Свойства векторного произведения:

Для любых векторов $\vec{a}, \vec{b}, \vec{c}$ и для любого числа λ :

1.
$$\vec{b} \times \vec{c} = -(\vec{a} \times \vec{b})$$

2.
$$(\vec{\lambda}a) \times \vec{b} = \vec{a} \times (\vec{\lambda}b) = \lambda(\vec{a} \times \vec{b})$$

3.
$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}, \ \vec{c} \times (\vec{a} + \vec{b}) = \vec{c} \times \vec{a} + \vec{c} \times \vec{b}$$

Механических смысл

В механике и электродинамике векторное произведение один из основных "инструментов". Момент \vec{M} силы \vec{F} , приложенной в точке P твердого тела, относительно точки O равен векторному произведению радиус-вектора \vec{OP} точки P на вектор силы \vec{F} :

$$\vec{M} = \vec{OP} \times \vec{F}$$

Выражение векторного произведения через координаты.

Выражение векторного произведение в ортонормированном правом базисе можно записать в виде формального определителя, разложенного по элементам первой строки:

$$\overline{a} \times \hat{b} = \begin{vmatrix} \overline{i} & \overline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \overline{i} \begin{vmatrix} a_1 & a_3 \\ b_2 & b_3 \end{vmatrix} - \overline{i} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \overline{k} \begin{vmatrix} a_1 & a_1 \\ b_1 & b_2 \end{vmatrix} =$$

$$= (\alpha_1 b_3 - \alpha_3 b_2) \overline{i} - (a_1 b_3 - a_3 b_1) \overline{j} + (a_1 b_2 - a_2 b_1) \overline{k}$$
 (9.2)

Выражение площадей параллелограмма и треугольника через векторное произведение.

Площадь S_\square параллелограмма ABCD, "построенного на векторах" $\vec{a} = \vec{AB}$ и $\vec{b} = \vec{AC}$, равна модулю их векторного произведения:

$$S_{\Box} = |ec{a} \ge ec{b}|$$

Площадь S_{\triangle} треугольника ABC, "построенного на векторах" $\vec{a} = \vec{AB}$ и $\vec{b} = \vec{AC}$, равна половине модуля их векторного произведения:

$$S_{ riangle} = rac{1}{2} |ec{a} \ge ec{b}|$$

Пример:

4. Найти векторное произведение векторов $\vec{a}=-\vec{j}+2\vec{k}$ и $\vec{b}=2\vec{i}-\vec{j}-2\vec{k}$.