

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный унирерситет» $(\Box B\Phi Y)$

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Департамент математического и компьютерного моделирования

ДОКЛАД

о практическом задании по дисциплине АИСД «Алгоритм сжатия цветков»

Направление подготовки 09.03.03 «Прикладная информатика»

профиль «Прикладная информатика в компьютерном дизайне»

Выполнил студент гр. Б9121-09.03.03пикд Яцевич К.А. (ФИО) (подпись)

« 2 » Февраля ____ 20<u>23</u> г.

г.Владивосток 2023

Содержание

Глоссарий	3
Введение	4
Историческая справка	4
Описание алгоритма	5
Идея алгоритма	5
Оценка сложности	5
Нахождение дополняющего(увеличивающего) пути	5
Сжатие цветка	6
Теорема Эдмондса	6
Общая схема алгоритма	7
Пример работы алгоритма	8
Реализация	13
Поиск дополняющего пути	13
Список литературы	17

Глоссарий

Вершина(узел) — структурная единица графа

Ребро — соединяет вершины графа

 $\Gamma pa \varphi$ — математическая система, объекты которой обладают парными связями

Паросочетание — набор несмежных ребер

Свободная вершина — вершина графа, не покрытая паросочетанием

Не инцидентные ребра — отношение между рёбрами, в котором существует соединяющая их вершина.

Чередующаяся цепь — путь в графе, в котором для любых двух соседних рёбер верно, что одно из них принадлежит паросочетанию M, а другое нет.

Дополняющий (увеличивающий) путь — чередующаяся цепь, которая начинается и кончается свободными вершинами.

Цветок(соцветие/бутон) — нечетный цикл графа

Стебель — чередующаяся цепь чётной длины

База — вершина графа, которая пренадлежит стеблю и является частю цикла

Введение

Историческая справка

Алгоритмы поиска максимальных совпадений достаточно сложны. Джек Эдмондс сообщил о первом эффективном подходе в 1960-х годах, что стало важной вехой в истории компьютерных наук. Его «Blossom algorithm» вдохновил на многочисленные вариации и альтернативы за последние несколько десятилетий. Эдмондс разработал алгоритм в 1961 году и опубликовал в 1965 году.

Основной причиной, почему алгоритм сжатия цветков важен, является то, что он дал первое доказательство возможности нахождения наибольшего паросочетания за полиномиальное время.

Описание алгоритма

Идея алгоритма

Алгоритм сжатия цветков (англ. Blossom algorithm) — это алгоритм в теории графов для построения наибольших паросочетаний на графах.

Если дан граф G=(V,E) общего вида, алгоритм находит паросочетание M такое, что каждая вершина из V инцидентна не более чем одному ребру из M и |M| максимально. Паросочетание строится путем итеративного улучшения начального пустого паросочетания вдоль увеличивающих путей графа.

В отличие от двудольного паросочетания ключевой новой идеей было сжатие нечетного цикла в графе (цветка) в одну вершину с продолжением поиска итеративно по сжатому графу.

Оценка сложности

Пусть n — общее количество вершин, n_1 — количество цветков, n_2 — количество вершин в цветке, m — количество ребер.

Всего имеется n итераций, на каждой из которых выполняется обход в ширину за O(m) кроме того, могут происходить операции сжатия цветков — их может быть $O(n_1)$. Сжатие соцветий работает за $O(n_2)$, стоит отметить $n_1 \equiv n_2$, то есть общая асимптотика алгоритма составит $O(n(m+n^2)) = O(n^3)$.

Нахождение дополняющего (увеличивающего) пути

Пусть зафиксировано некоторое паросочетание M. Тогда простая цепь $P=(v_1,v_2,\ldots,v_k)$ называется чередующейся цепью, если в ней рёбра по очереди принадлежат — не принадлежат паросочетанию M. Чередующаяся цепь называется увеличивающей, если её первая и последняя вершины не принадлежат паросочетанию. Иными словами, простая цепь P является увеличивающей тогда и только тогда, когда вершина $v_1 \not\in M$, ребро $(v_2,v_3)\in M$, ребро $(v_4,v_5)\in M$, ..., ребро $(v_{k-2},v_{k-1})\in M$, и вершина $v_k\not\in M$.

Мы сможем найти максимальное паросочитание путем инверсии дополняющего пути.

Основная проблема заключается в том, как находить увеличивающий путь. Если в графе имеются циклы нечётной длины, то просто обход в глубину/ширину будет работать некорректно — при попадании в цикл нечётной длины обход может пойти по циклу в неправильном направлении.

Сжатие цветка

Сжатие цветка — это сжатие всего нечётного цикла в одну псевдовершину (соответственно, все рёбра, инцидентные вершинам этого цикла, становятся инцидентными псевдо-вершине).

Теорема Эдмондса

Пусть граф \overline{G} был получен из графа G сжатием одного цветка. Тогда в графе \overline{G} существует увеличивающая цепь тогда и только тогда, когда существует увеличивающая цепь в G.

Доказательство.

Обозначим через В цикл цветка, и через \overline{B} соответствующую сжатую вершину. Вначале заметим, что достаточно рассматривать случай, когда база цветка является свободной вершиной (не принадлежащей паросочетанию). Действительно, в противном случае в базе цветка оканчивается чередующийся путь чётной длины, начинающийся в свободной вершине. Начиная со свободной вершины, помечаем не инцидентные ребра. Мощность паросочетания не изменится, а база цветка станет свободной вершиной. Итак, при доказательстве можно считать, что база цветка является свободной вершиной.

Пусть путь P является увеличивающим в графе G. Если он не проходит через B, то тогда, очевидно, он будет увеличивающим и в графе \overline{G} . Пусть P проходит через B. Тогда можно считать, что путь P представляет собой некоторый путь P_1 , не проходящий по вершинам B, плюс некоторый путь P_2 , проходящий по вершинам B и, возможно, другим вершинам. Но тогда путь $P_1 + \overline{B}$ будет являться увеличивающим путём в графе \overline{G} , что и требовалось доказать.

Общая схема алгоритма

N- количество вершин i- вершина

Рис. 1: Общая схема алгоритма

Пример работы алгоритма

Рис. 2: Исходный граф

Начинаем рассматривать граф со свободной вершины 7. Двигаясь по ребрам обнаруживаем стебель: ребра 7-2 и 2-9. Следовательно, предполагаемый дополняющий путь будет начинаться со свободной вершины 7, ребро 2-9 — паросочетание. Тогда вершина 9 является базой. С помощию BFS идем дальшне по графу: ребро 9-5, ребро 5-4, ребро 4-9 — составляют нечетный цикл — цветок.

Рис. 3: Нахождение первого цветка

Вершины цикла сжимаем в базу. Получаем следующий граф, который продолжаем обрабатывать по тому же алгоритму. С помощию BFS идем дальше по графу: ребро 9-3, ребро 3-1, ребро 1-9 — составляют нечетный цикл — цветок.

Рис. 4: Нахождение второго цветка

Вершины цикла сжимаем в базу. Новый граф снова обрабатываем. Ребра 9-8 8-0 и 0-9 — составляют нечетный цикл — цветок.

Рис. 5: Нахождение третьего цветка

Сжимаем цветок и продолжаем анализировать граф. После базы 9 идет только одно ребро 9-6, окончание которого — свободная вершина 6. Следовательно можем утверждать, что мы нашли дополняющий путь: 7-2, 2-9, 9-6.

Рис. 6: Дополняющий путь

Обращаемся к теореме Эдмондса:

В графе \overline{G} существует увеличивающая цепь тогда и только тогда, когда существует увеличивающая цепь в G.

Значит мы можем приступить к восстановлению графа путем последовательного возвращения цветков. Для нахождения максимального паросочетания начнём с инверсии дополняющего пути. Начинаем восстановление с последнего сжатия цветка, инвертируя путь. При этом инвертрование пути подразумевает переопределение паросочетания. В цветке мы определяем паросочетание "в обратной последовательности": начиная с 9-0, переходя к 0-8. Так как в дополняющем пути база 9 была соединена с вершиной 6, то дойдя до узла, соединенного с вершиной 6, мы продолжаем переопределять паросочетание в направлении вершины 6.

На данном этапе паросочетание составляет следующие не инцидентные ребра: 7-2, 9-0, 8-6

Рис. 7: Восстановление третьего цветка

Запоминаем проставленное паросочетание и продолжаем восстановление графа. Ребро 7-2 уже инвертированно, поэтому переходим сразу к базе: в цветке определяем паросочетание "в обратной последовательности". База уже относится к ребру паросочетания, поэтому мы не можем пометить ребро 9-1. Значит помечаем следующее ребро 1-3. Аналогично с ребром 3-9.

На данном этапе паросочетание составляет следующие не инцидентные ребра: 7-2, 9-0, 8-6, 3-1

Рис. 8: Восстановление второго цветка

Восстанавливаем последний цветок: аналогично помечаем ребра, начиная с базы. Ребро 9-4 — не помечаем, ребро 4-5 — помечаем, ребро 5-9 — не помечаем.

Рис. 9: Восстановление первого цветка

Мы закончили восстановление графа и нашли максимальное паросочетание.

Реализация

Написана библиотека *blossom.h* для нахождения максимального паросочетания, в которой реализованы следующие функции:

```
#pragma once
#include <vector>
#include <iostream>

int get_match(std::vector<std::vector<int>>&, std::vector<int>&);

void print_match(std::vector<int>&);
```

Поиск дополняющего пути

Функция $get_match()$ принимает список инцидентности и вектор, куда будет записано паросочетание. В результате работы помещает в переменную a паросочетание.

```
1 int get match(std::vector<std::vector<int>>& g, std::vector<int>&
       match) {
2
     match.clear();
3
     match.resize(g.size(), -1);
4
     std::vector < int > p;
5
     p.resize(g.size(), -1);
6
7
     for (int i = 0; i < g.size(); i++) {
8
       if (match[i] == -1) {
9
          \mathbf{int}\ v = find\_path(i,\,g,\,match,\,p);
10
          while (v != -1) \{
11
            int pv = p[v], ppv = match[pv];
12
            match[v] = pv, match[pv] = v;
13
            v = ppv;
14
15
16
17
     return 0;
18
19
```

Для реализации функции $get_match()$ были написаны вспомогательные функции:

Функция lca() находит общего ближайшего предка для вершин цветка — базу.

```
int lca(int a, int b, std::vector<int>& base, std::vector<int>& match,
      std::vector < int > \& p)  {
     std::vector<br/>bool> used;
2
     used.resize(base.size(), false);
3
     for (;;) {
4
       a = base[a];
5
       used[a] = true;
6
       if (match[a] == -1) break; // äîøëèäîêîíÿ
7
       a = p[match[a]];
8
9
10
     for (;;) {
11
       b = base[b];
12
       if (used[b]) return b;
13
       b = p[match[b]];
14
15
16
         Функция mark path() помечает чередующийся путь.
void mark path(int v, int b, int children, std::vector<int>& base, std::
      vector<int>& match, std::vector<int>& p, std::vector<bool>&
      blossom) {
     while (base[v] != b) {
2
       blossom[base[v]] = blossom[base[match[v]]] = true;
3
       p[v] = children;
4
       children = match[v];
5
       v = p[match[v]];
6
7
8
         Функция find path() ищет дополняющий путь из каждой верши-
   ны. Результатом работы функции является последняя вершина допол-
   няющего пути.
1 int find path(int root, std::vector<std::vector<int>> &g, std::vector<
      int> &match, std::vector<int>& p) {
     p.clear();
2
     p.resize(g.size(), -1);
3
```

```
4
     std::vector<bool> used;
5
     used.resize(g.size(), false);
6
     std::vector<bool> blossom;
7
     std::vector < int > q;
8
     q.resize(g.size(), 0);
9
     std::vector<int> base;
10
11
     for (int i = 0; i < g.size(); i++)
12
        base.push back(i);
13
14
     used[root] = true;
15
     int qh = 0, qt = 0;
16
     q[qt++] = root;
17
     while (qh < qt) {
18
       int v = q[qh++];
19
       for (size t i = 0; i < g[v].size(); i++) {
20
          int to = g[v][i];
21
         if (base[v] == base[to] || match[v] == to) continue;
22
          if (to == root || match[to] != -1 \&\& p[match[to]] != -1) {
23
            int curbase = lca(v, to, base, match, p);
24
25
            blossom.clear();
26
            blossom.resize(g.size(), false);
27
28
            mark_path(v, curbase, to, base, match, p, blossom);
29
            mark path(to, curbase, v, base, match, p, blossom);
30
            for (int i = 0; i < g.size(); i++)
31
              if (blossom[base[i]]) {
32
                base[i] = curbase;
33
                if (!used[i]) {
34
                  used[i] = true;
35
                  q[qt++]=i;
36
37
38
39
          else if (p[to] == -1) {
40
            p[to] = v;
41
            if (match[to] == -1)
42
              return to;
43
            to = match[to];
44
            used[to] = true;
45
```

Также была реализована функция $print_match()$ принимает паросочетание и выводит его в консоль.

```
void print_match(std::vector<int>& a) {
    for (int i = 0; i < a.size(); i++) {
        if (i < a[i]) {
            std::cout << i << `-' << a[i] << "\setminus n";
        }
        }
    }
}
```

Список литературы

- [1] Jack Edmonds. Paths, trees, and flowers // Can. J. Math.. 1965. T. 17. C. 449–467. URL: https://archive.org/details/sim_canadian-journal-of-mathematics_1965_17_3/page/448/mode/2up
- [2] Denth-First Edmonds' Blossom Algorithm Part 1: Cast of Characters. URL: https://depth-first.com/articles/2020/09/28/edmonds-blossom-algorithm-part-1-cast-of-characters/
- [3] MAXimal Алгоритм Эдмондса нахождения наибольшего паросочетания в произвольных графах. 6 декабря 2012. URL: https://e-maxx.ru/algo/matching_edmonds
- [4] Энциклопедии Руниверсалис Алгоритм сжатия цветков. 28 ноября 2022. URL: https://pyhu.pd/index.php/Алгоритм_сжатия_цветков#Цветки_и_стягивание
- [5] Единый центр по исследованию искусственного интеллекта "ЕЦИ-ИИ— Алгоритм вырезания соцветий и сжатия цветков. URL: https://pyhu.pd/index.php/Алгоритм сжатия цветков#Цветки и стягивание
- [6] ИТМО, Викиконспекты Алгоритм вырезания соцветий. 4 сентября 2022. URL: https://neerc.ifmo.ru/wiki/index.php?title=Алгоритм вырезания соцветий
- [7] TUM. The Entrepreneurial University —Edmonds's Blossom Algorithm. 2016 URL: https://algorithms.discrete.ma.tum.de/graphalgorithms/matchings-blossom-algorithm/index $_en.html$
- [8] Infogalactic: the planetary knowledge core Blossom algorithm. 19 February 2015. URL: https://infogalactic.com/info/Blossom_algorithm