本周任务

- 1. 读FTRANS
- 2. 确定Compression的Search Space
- 3. 计算稀疏矩阵新建索引之后带来的开销
- 4. 如何修改dense模式下的performance model以得到sparsity模式下的 performance model(没有具体的解决)

任务一: 确定Compression的Search Space

• **BBS**'

把每行分成同样大小的banks, bank内部进行细粒度的剪枝, 同一行的bank内剪枝率是相同的, 不同行的bank剪枝率可以不相同。

		0.2	-0.6		0.4	0.6
0.4	-0.3	0.4		0.2	-0.4	0.5

0.2	0.1	0.2	-0.6	0.1	0.4	-0.1	0.6
0.4	-0.3	0.4	0.1	0.2	-0.4	0.1	0.5
0.7	-0.1	-0.3	0.1	0.5	-0.1	0.5	0.1
-0.1	0.6	-0.5	0.3	-0.4	-0.2	0.3	0.6

(a) Original Dense matrix

		0.2	-0.6		0.4		0.6
0.4		0.4			-0.4		0.5
0.7		-0.3		0.5		0.5	
	0.6	-0.5		-0.4			0.6

(d) Bank-balanced sparse matrix by local pruning inside each 1x4 bank

任务一: 确定Compression的Search Space

- 1. Bank的大小
- 2. 每行的剪枝率

(如何确定?)

	0.2	-0.6		0.4	0.6
0.4 -0.	3 0.4		0.2	-0.4	0.5

任务二: 计算BBS'的存储方式带来的开销

压缩的稀疏矩阵存在BRAM中可以进行并发访问,密集矩阵(input)存在DRAM上进行随机访问。

▶ 存储:

- 1. 减少了被剪枝的数据量: $\sum_{i=0}^{R} C \cdot Rate_i$
- 2. 但是增加了索引值的存储: $\sum_{i=0}^{R} C \cdot (1 Rate_i)$

▶ 时延:

- 1. 数据(ifm, pruning weight)在off-chip/on-chip memory 的传输时延。
- 2. 将要计算的数据Load到buffer中的时延
- 3. 计算
- 4. 将结果输出

(a) Original densely represented matrix

(c) CSB represented matrix

为什么CSB对硬件是友好的?

CSB Format:

n&m: 每个块内非稀疏行和列的个数;

Rowldx&Colldx:每个块非稀疏行和列的索引号

Val:每个块内的非零权重的值

根据n、m、RowIdx、ColIdx就可以构建出一个密集矩阵,且因为计算过程中对这些稀疏块的访问是顺序的,因此省去了任意访问时对偏移量的计算。

下周计划

- 1. 本周未完成任务三,下周需要先建立transformer的performance model,然后建立稀疏之后的performance model
- 2. 如何剪枝?
- 3.