多模态大模型与语言模型困惑度 ——从 RWKV-7 到 Qwen 2.5-VL 的技术札记

徐善若

May 23, 2025

Abstract

归纳 RWKV-7 "Goose" 快权重机制、Qwen 2.5-VL 技术细节与文档解析实验,补充 **困惑度 PPL** 理论与降解策略,面向博客读者展现一套条理清晰、公式完备的技术笔记。

Contents

1	对话主题概觉	2		
2	RWKV-7 "Goose" 权重更新公式 2.1 七类核心向量	2 2 2		
3	Qwen 2.5-VL 技术解析 3.1 主要贡献	2		
4	文档解析实测与成本			
5	语言模型困惑度 (PPL) 5.1 定义			
6	综合选型建议	3		

1 对话主题概览

三大核心议题

- 1) RWKV-7: Removal / Replacement Key 解耦 + 通道学习率门,线性时空复杂度。
- 2) **Qwen 2.5-VL**: Window Attention、Dynamic FPS、时间域 MRoPE、4.1T Token 预训等。
- 3) **困惑度 (PPL)**: 定义、作用、降低路径与实践组合。

2 RWKV-7 "Goose" 权重更新公式

2.1 七类核心向量

Table 1: RWKV-7 核心变量 (序号同 Peng et al. 2025)

变量	作用	公式
x_t^{\square} (3)	Token-shift 输入	$x_t^{\square} = \operatorname{lerp}(x_t, x_{t-1}, \mu_{\square})$
a_t (4)	学习率门	$a_t = \sigma(\text{MLP}(x_t^a))$
k_t (5)	Key precursor	$k_t = x_t^k W_k$
κ_t (6)	Removal Key	$\kappa_t = k_t \odot \xi$
\tilde{k}_t (7)	Replacement Key	$\tilde{k}_t = k_t \odot \operatorname{lerp}(1, a_t, \alpha)$
$v_t \ (10)$	Value	层间插值
$w_t (12)$	衰减门	$w_t = \exp[-0.5\sigma(d_t)]$

2.2 快权重更新

$$S_t = S_{t-1} \left[\operatorname{diag}(w_t) - \hat{\kappa}_t^{\mathsf{T}}(a_t \odot \hat{\kappa}_t) \right] + v_t^{\mathsf{T}} \tilde{k}_t, \quad \hat{\kappa}_t = \frac{\kappa_t}{\|\kappa_t\|_2}.$$
 (1)

示例: 当需"快速遗忘"时令 $w_{t,i} \rightarrow 0$,学习率门 $a_{t,i} \rightarrow 1$ 即可一拍即忘;相反可长期保留。

3 Qwen 2.5-VL 技术解析

3.1 主要贡献

- 1) Window Attention: $O(N^2) \rightarrow O(Nh^2)$.
- 2) Dynamic FPS Sampling: 跨帧率泛化 + 长视频降采样。
- 3) **时间域 MRoPE**: 绝对时间索引 τ + 多尺度旋转编码。
- 4) **4.1 T Token 预训练**:数据量翻 3.4×Team 2025。

3.2 算法框架

3.3 视觉-语言预训练三阶段

阶段 I: 冻结 LM, 仅训 ViT 对齐;

阶段 II: 解冻全参数,混合文档/图像;

阶段 III: 加入视频 +Agent, 序列至 8 K。

4 文档解析实测与成本

Table 2: 本地推理显存与延迟

	1 70	31 hrs-7-35-11	1 ~~
模型	显存	A4 延迟	稳定性
3 B	$6~\mathrm{GB}$	12 s	漏框
$7\mathrm{B}$	16 GB	18 s	框错位
$32\mathrm{B}$	$40~\mathrm{GB}$	30 s	\checkmark
$72\mathrm{B}$	80 GB	$55 \mathrm{\ s}$	最佳

结论: 若只需结构化抽取,OCR + Layout Parser 更经济;若需跨模态推理或 GUI Agent, 32 B↑ 才显优势。

5 语言模型困惑度 (PPL)

5.1 定义

$$PPL = \exp\left[-\frac{1}{N}\sum_{t=1}^{N}\log p_{\theta}(x_t \mid x_{< t})\right].$$

5.2 降低 PPL 四条路径

PPL 优化清单

1) 数据: 高质语料、Tokenizer 重训

2) 架构: 增宽增深、RoPE/ALiBi、显式长上下文

3) 训练: Cosine LR、R-Drop、Curriculum

4) 蒸馏: Teacher logits \rightarrow Student

6 综合选型建议

应用场景 → 推荐方案

• 纯 OCR/表格抽取: PaddleOCR + LayoutParser

• 文档 QA / 语义检索: Qwen 2.5-VL 7 B + RAG

• 复杂跨模态 Copilot: Qwen 2.5-VL 32 BF72 B

References

Peng, H. et al. (2025). "RWKV-7 Goose: Efficient Receptance-Weighted Key-Value Language Modeling". In: arXiv preprint arXiv:2501.01234.

Team, Alibaba Cloud Qwen (2025). Qwen 2.5-VL: Technical Report. Tech. rep. URL: https://github.com/QwenLM/Qwen2.5-VL. Alibaba Cloud.