Applied Regression Analysis and Other Multivariable Methods Chapter 3-4 outlines

Yi Zhou

2015-10-02

Outline

Chapter 3 Basic Statistics: A Review

- 3-1 Preview
- 3-2 Descriptive Statistics
- 3-3 Random variables and Distributions
- 3-4 Sampling Distributions of t, χ^2 , and F
- 3-5 Statistical Inference: Estimation
- 3-6 Statistical Inference: Hypothesis Testing
- 3-7 Error Rates, Power, and Sample Size

Chapter 4 Introduction to Regression Analysis

- 4-1 Preview
- 4-2 Association vs. Causality
- 4-3 Statistical vs. Deterministic Model

3-1 Preview

- Statistics: methods and procedures for collecting, classifying, summarizing and analyzing data.
- The primary goal of most statistical analysis: making statistical inferences.
- Population, sample, parameter, statistic, descriptive statistics.
- Statistical inferences: estimation and hypothesis testing.

3-2 Descriptive Statistics

- ► Central tendency: average value (e.g. sample mean).
- Central Limit Theorem.
- Variability/dispersion sample variance: S^2 sample standard deviation: S attention:

• Succinct picture of data: $\bar{X} \pm S_X$, $\bar{Y} \pm S_Y$.

3-3 Random variables and Distributions I

- ▶ Random variable: *X*, *Y*, *Z*.
- Possibility distribution of the random variable: relative frequencies associated with the possible values (presented by table, graph, mathematical expression ...).
- ▶ Discrete random variables: Pr(X = a) countable values, gappy distributions graphed as a series of lines (heights of these lines).
 e.g. the number of death/arrivals.
- Continuous random variables: Pr(a < X < b)
 uncountable values, nongappy distributions graphed as
 smooth curves (an area under the curve).
 e.g. the blood pressure/weight.
 note: Pr(X = a) = 0

3-3 Random variables and Distributions II

- ▶ **Binomial distribution**: discrete, $X \sim B(n, p)$.
- ▶ **Normal distribution**: continuous, $X \sim N(\mu_X, \sigma_X^2)$.
 - ▶ Standard normal distribution: $Z \sim N(0, 1)$.
 - ► The conversion formula.
 - ► The normal approximation of the binomial distribution, when n is *moderately* large.

3-4 Sampling Distributions of t, χ^2 , and F I

- ▶ The (student's) t distribution: t(n-1).
 - Symmetric about 0.
 - X is normal distribution.
 - σ^2 is unknown and is estimated by S^2 .
 - ► Estimated standard error of \bar{X} : $\frac{S}{\sqrt{n}}$.
 - ▶ Degree of freedom: n-1. (tabulated percentile)
 - ▶ Pooled sample variance: estimate the common variance. (e.g. $N(\mu_1, \sigma), N(\mu_2, \sigma)$)

$$S_{p}^{2} = \frac{\sum_{i=1}^{k} (n_{i} - 1) S_{i}^{2}}{\sum_{i=1}^{k} (n_{i} - 1)}$$

3-4 Sampling Distributions of t, χ^2 , and F II

- ► The chi-square (χ^2) distribution: $\chi^2(n-1)$.
 - Nonsymmetric distribution.
 - Nonnegative.
 - ▶ Sample variance: S^2
 - ► Sample size is *n* and from a normal distribution.
 - Widespread application in categorical data (e.g. contingency table).

3-4 Sampling Distributions of t, χ^2 , and F III

- ▶ The F distribution: $F(n_1 1, n_2 1)$.
 - Skewed to the right.
 - ▶ The ratio of independent estimators of two populaton variances. (e.g. for $N(\mu_1, \sigma_1), N(\mu_2, \sigma_2)$, we have $S_1, \sigma_1, S_2, \sigma_2$
 - ▶ $T^2 \sim F(1, v)$ if and only if $T \sim t(v)$).

Note: Hotelling's T^2 distribution. Multivariate testing vs. multiple testing.

3-5 Statistical Inference: Estimation

- Specific value of a parameter.
- $\hat{\theta}$ is the **point estimator** of θ . $(\mu, p, \mu_1 \mu_2, \theta_1/\theta_2)$
 - ▶ Method of maximum likelihood estimation
 - Method of moment estimation
- ▶ Procedure. (sample→point estimator→variablity→CI)
- Confidence interval (CI).
 - Two bundary points
 - \triangleright θ is fixed.
 - ▶ 95%CI for $\mu_1 \mu_2$ contains 0 or not.

3-6 Statistical Inference: Hypothesis Testing

- ▶ Making a decision (Reject/accept H_0).
- ► The null hypothesis (H₀) is unlikely to be true. (that is, the estimated value is different enough from the hypothesized value)
- Procedure (seven steps).
- ▶ Type I error, significant level α , type II error, β , power.
- ► Rejection/critical region, acceptance region, critical point
- P-value.

3-7 Error Rates, Power, and Sample Size

- \vdash H_0, H_A, α, β .
- Power of the test.
- Sample size formula.
- Multiple-testing problem.

4-1 Preview

- Regression analysis: one of the methods in multivariate techniques.
 - Wide applicability.
 - Simplest to implement.
 - R package:
- ► Independent variables/predictors (X : X₁, X₂, ...), dependent variable/response (Y).
- Examples. (Variables, relationships and equations)

4-2 Association vs. Causality

- Bias.
- Statistically significant association does not mean a causal relationship.
- Causality.
- Path analysis.
- ▶ The criteria by Bradfor Hill (1971)

4-2 Association vs. Causality

- Association.
- Statistical model:
 - Regression analysis.
 - Discrimination analysis.
 - Factor analysis.
 - Analysis of variance & covariance.
 - **-** ...
- Deterministic model.

Appendices I

Multivariate distribution

Multivariate normal distribution The multivariate normal distribution of a k-dimensional random vector $\mathbf{X} = X_1, X_1, \dots, X_k$ can be written in the following notation:

$$\mathbf{X} \sim \mathcal{N}_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$\mu = [E[X_1], E[X_2], \dots, E[X_k]],$$

 $\Sigma = [Cov[X_i, X_j]], i = 1, 2, \dots, k; j = 1, 2, \dots, k.$

► Hotelling's *T*² distribution Hotelling's T-squared statistic is a generalization of Student's t statistic that is used in multivariate hypothesis testing.

Appendices II

Sample size determination

- ▶ R: samplesize, pwr (for power analysis)
- PASS
- ► Factors increasing the sample size: $\alpha \downarrow$, $(1 \beta) \uparrow$, $\sigma^2 \uparrow$, $\Delta = |\mu_0 \mu_1| \downarrow$

Multiple testing

Bonferroni correction, fixed-sequence, fallback, and gatekeeping procedures.

Appendices III

Bias

- Bias in randomized controlled trials (RCTs).
 - Selection bias
 - Performance bias
 - Detection bias
 - Attrition bias
 - Reporting bias
 - Others

Path analysis

▶ PLS-PM model: package *plspm* in R