PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-239308

(43) Date of publication of application: 05.09.2000

(51)Int.Cl.

CO8F 2/38 CO8F 2/02 CO8F 20/00 CO8G 18/62 CO8K 5/29 CO8L 33/00 CO9D 5/00 CO9D133/00 CO9D175/04 CO9K 3/10

(21)Application number: 11-046933

(71)Applicant: SOKEN CHEM & ENG CO LTD

(22)Date of filing:

24.02.1999

(72)Inventor: OKAMOTO HIDEJI

UENO HIROSHI

(54) ACRYLIC POLYMER, CURING COMPOSITION, CURED PRODUCT AND THEIR USE (57) Abstract:

PROBLEM TO BE SOLVED: To obtain an acrylic polymer capable of being produced through bulk polymerization difficultly being controlled before and useful as coating materials, sealing materials, film waterproofing materials or the like by including a molecule where a specific group having hydroxy group and sulfur atom is combined with at least one end of a polymer molecule.

SOLUTION: This polymer is obtained by including a molecule where a group of formula I (wherein, R1 to R5 are each H or a 1–12C alkyl; R6 is OH, a 1–12C alkoxy or a 1–12C alkyl) is combined with at least one end of a polymer molecule. The objective polymer is produced e.g. by polymerizing a polymerizable unsaturated compound such as 2–ethylhexyl acrylate in the presence of a compound (e.g. thioglycerol or the like) of formula II as a catalyst. It is preferable that the objective polymer has 1,000–200,000 weight average molecular weight and 5–500 hydroxy value and substantially doesn't contain a solvent.

LEGAL STATUS

[Date of request for examination]

26.09.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Acrylic polymer characterized by containing the molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A] has combined [a];

[Formula 1]
$$R^{2} R^{3} R^{4}$$

$$R^{1} - C - C - R^{4} \cdots [A]$$

$$-S OH R^{6}$$

[, however the above-mentioned formula [in A], R1-R5 are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively, and R6 is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12].

[Claim 2] The acrylic polymer given in the 1st term of a claim with which R6 is characterized by being a hydroxyl group in the above-mentioned formula [A] [a].

[Claim 3] The acrylic polymer given in the 1st term of a claim with which R1-R5 are characterized by being a hydrogen atom in the above-mentioned formula [A] [a].

[Claim 4] above-mentioned polymer [which is characterized by having the repeat unit expressed with the principal chain of the acrylic polymer [a] which the radical expressed with the end of 1 by the above-mentioned formula [A] even if few combined by the degree type [B] / given in the 1st term of a claim / acrylic] [a];

acrylic] [a];

[Formula 2]

$$-CR^{7}R^{6}-CR^{9} C=0$$
 $O-R^{10}$

In [however the above-mentioned formula form

In [, however the above-mentioned formula [B], R7-R9 express the alkyl group of a hydrogen atom, a halogen atom, or carbon numbers 1-3 independently, respectively. R10 A hydrogen atom, an alkali-metal atom, the hydrocarbon group of carbon numbers 1-22 (you may have the side chain, even if this hydrocarbon group is a straight chain-like) Moreover, a part of hydrogen atom in the radical which forms this hydrocarbon group or a side chain - at least one kind of polar group or the halogen atom chosen from the group which consists of OH, -F, -COOH, -Cl, and -NH2 may permute, and this hydrocarbon group may have the double bond, and this hydrocarbon group may have cyclic structure further -- it is --].

[Claim 5] The acrylic polymer given in the 1st term of a claim characterized by the weight average molecular weight of the above-mentioned acrylic polymer [a] being within the limits of 1000-200000 [a]. [Claim 6] The acrylic polymer given in the 1st term of a claim characterized by the hydroxyl value of the above-mentioned acrylic polymer [a] being within the limits of 5-500 [a].

[Claim 7] The acrylic polymer given in the 1st term of a claim with which the above-mentioned acrylic polymer [a] is characterized by not containing the solvent substantially [a].

[Claim 8] Hardenability constituent characterized by containing the acrylic polymer [a] containing the molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A] has combined, and the compound which has two or more isocyanate radicals in intramolecular; [Formula 3]

$$R^{3} \quad R^{3} \quad R^{4} \\
 R^{4} - C - C - R^{5} \quad \cdots \quad [A] \\
 -S \quad OH \quad R^{6}$$

[, however the above-mentioned formula [in A], R1-R5 are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively, and R6 is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12].

[Claim 9] The hardenability constituent given in the 8th term of a claim characterized by blending the compound which has two or more isocyanate radicals in the above-mentioned intramolecular so that the number of mols of an isocyanate radical may become within the limits of 50-200 to the-100 mol number of the hydroxyl groups which exist in the above-mentioned acrylic polymer [a].

[Claim 10] The hardenability constituent given in the 8th term of a claim with which R6 is characterized by being a hydroxyl group in the above-mentioned formula [A].

[Claim 11] The hardenability constituent given in the 8th term of a claim with which R1-R5 are characterized by being a hydrogen atom in the above-mentioned formula [A].

[Claim 12] the above -- given in 8th term of claim hardenability constituent [which is characterized by having the repeat unit expressed with the principal chain of the acrylic polymer [a] which the radical expressed with the end of 1 by the above-mentioned formula [A] even if few combined by the degree type [B]];

[B]];
[Formula 4]

$$-CR^{7}R^{5}-CR^{9}-$$

 $C=0$ [B]
 $O-R^{10}$

In [, however the above-mentioned formula [B], R7-R9 express the alkyl group of a hydrogen atom, a halogen atom, or carbon numbers 1-3 independently, respectively. R10 A hydrogen atom, an alkali-metal atom, the hydrocarbon group of carbon numbers 1-22 (you may have the side chain, even if this hydrocarbon group is a straight chain-like) Moreover, a part of hydrogen atom in the radical which forms this hydrocarbon group or a side chain - at least one kind of polar group or the halogen atom chosen from the group which consists of OH, -F, -COOH, -Cl, and -NH2 may permute, and this hydrocarbon group may have the double bond, and this hydrocarbon group may have cyclic structure further -- it is --]. [Claim 13] The hardenability constituent given in the 8th term of a claim characterized by the weight average molecular weight of the above-mentioned acrylic polymer [a] being within the limits of 1000-200000.

[Claim 14] The hardenability constituent given in the 8th term of a claim characterized by the hydroxyl value of the above-mentioned acrylic polymer [a] being within the limits of 5-500.

[Claim 15] The hardenability constituent given in the 8th term of a claim characterized by some hydroxyl groups which exist in the above-mentioned acrylic polymer [a], and a part of isocyanate radical of the compound which has two or more isocyanate radicals in intramolecular having joined together.

[Claim 16] Hardening constituent characterized by containing the acrylic polymer [a-1] molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A-1] has combined; [Formula 5]

$$R^{2} R^{3} R^{4}$$

$$R^{1} - C - C - C - R^{4} \cdots [A-1]$$

$$-S OH R^{4}$$

In [, however the above-mentioned formula [A-1] R1-R5 They are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively. R6 this formula [it is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12, and] [some hydroxyl groups [at least] in the radical expressed with A-1] combine with -N=C=O radical, and it forms the -NH-COO-radical].

[Claim 17] The hardening constituent given in the 16th term of a claim with which R6 is characterized by

http://www4.ipdl.ncipi.go.jp/cgi-bin/tran web cgi ejje?u=http%3A%2F%2Fwww4.ipdl.ncipi.g... 8/8/2006

being a hydroxyl group in the above-mentioned formula [A-1].

[Claim 18] The hardening constituent given in the 16th term of a claim with which R1-R5 are characterized by being a hydrogen atom in the above-mentioned formula [A-1].

[Claim 19] the above -- given in 16th term of claim hardening constituent [which is characterized by having the repeat unit expressed with the principal chain of the acrylic polymer [a-1] which the radical expressed with the end of 1 by the above-mentioned formula [A-1] even if few combined by the degree type [B]];

with the end of 1 by the above-mentioned [Formula 6]
$$-CR^{7}R^{6}-CR^{9}-$$

$$C=0 \qquad \cdots [B]$$

$$O-R^{10}$$
In [, however the above-mentioned formula formula formula 6]

In [, however the above-mentioned formula [B], R7-R9 express the alkyl group of a hydrogen atom, a halogen atom, or carbon numbers 1-3 independently, respectively. R10 A hydrogen atom, an alkali-metal atom, the hydrocarbon group of carbon numbers 1-22 (you may have the side chain, even if this hydrocarbon group is a straight chain-like) Moreover, a part of hydrogen atom in the radical which forms this hydrocarbon group or a side chain - at least one kind of polar group or the halogen atom chosen from the group which consists of OH, -F, -COOH, -Cl, and -NH2 may permute, and this hydrocarbon group may have the double bond, and this hydrocarbon group may have cyclic structure further -- it is --].

[Claim 20] The hardening constituent given in the 16th term of a claim characterized by the weight average molecular weight of the above-mentioned acrylic polymer [a-1] being within the limits of 1000-200000. [Claim 21] The hardening constituent given in the 16th term of a claim characterized by the hydroxyl value of the above-mentioned acrylic polymer [a-1] being within the limits of 0-200.

[Claim 22] The hardening constituent given in the 16th term of a claim characterized by being in within the limits whose amount of NCO(s) calculated from the amine value about the above-mentioned acrylic polymer [a-1] is 0 - 20 % of the weight.

[Claim 23] The hardening constituent given in the 16th term of a claim characterized by 10% or more of the hydroxyl group which suited the end of the above-mentioned acrylic polymer [a-1] having combined with - N=C=O radical.

[Claim 24] The hardening constituent given in the 16th term of a claim characterized by the above-mentioned hardening constituent hardening by the water absorption condensation reaction.

[Claim 25] Hardenability constituent containing the acrylic polymer [a] containing the molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A] has combined, and the compound which has two or more isocyanate radicals in intramolecular;

[Formula 7]
$$R^{2} R^{3} R^{4}$$

$$R^{1} - C - C - C - R^{4} \cdots [A]$$

$$-S OH R^{6}$$

In [, however the above-mentioned formula [A] R1-R5 They are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively. R6 it is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12 --] -- And/or, hardening constituent containing the acrylic polymer [a-1] molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A-1] has combined; [Formula 8]

$$R^{2} - R^{3} R^{4}$$

$$R^{3} - C - C - R^{4} \cdots [A-1]$$

$$-S OH R^{5}$$

In [, however the above-mentioned formula [A-1] R1-R5 They are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively. R6 It is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12. Some hydroxyl groups [at least] in the radical expressed with this type [A-1] - The hardening object characterized by coming to form the structure of cross linkage into a hardenability

http://www4.ipdl.ncipi.go.jp/cgi-bin/tran_web_cgi_ejje?u=http%3A%2F%2Fwww4.ipdl.ncipi.g... 8/8/2006

constituent and/or a hardening constituent by the intermolecular condensation reaction at least to the bottom of existence of moisture or un-existing using] which combines with N=C=O set and forms the -NH-COO-radical.

[Claim 26] The hardening object given in the 25th term of a claim characterized by blending the compound which has two or more isocyanate radicals in the above-mentioned intramolecular so that the number of mols of an isocyanate radical may become within the limits of 50-200 to the-100 mol number of the hydroxyl groups which exist in an acrylic polymer [a] and an acrylic polymer [a-1], when using the above-mentioned polymerization nature constituent.

[Claim 27] The hardening object given in the 25th term of a claim with which the above-mentioned hardening object is characterized by stiffening a hardenability constituent and/or a hardening constituent under existence of an organic tin system curing catalyst.

[Claim 28] The hardening object given in the 25th term of a claim with which R6 is independently characterized by being a hydroxyl group in the above-mentioned formula [A] and/or [A-1], respectively. [Claim 29] The hardening object given in the 25th term of a claim with which R1-R5 are independently characterized by being a hydrogen atom in the above-mentioned formula [A] and [A-1], respectively. [Claim 30] the above -- given in 25th term of claim hardening object [which is characterized by to have the repeat unit expressed with a degree type [B] in the principal chain of the acrylic polymer [a-1] which the radical expressed with the end of 1 by the acrylic polymer [a] or the above [A-1] which the radical expressed with the above-mentioned formula [A] combined even if few combined];

expressed with the above-mentioned formula [Formula 9]
$$-CR^{7}R^{6}-CR^{9}-$$

$$C=0 \qquad [B]$$

$$O-R^{10}$$
In [however the above-mentioned formula

In [, however the above-mentioned formula [B], R7-R9 express the alkyl group of a hydrogen atom, a halogen atom, or carbon numbers 1-3 independently, respectively. R10 A hydrogen atom, an alkali-metal atom, the hydrocarbon group of carbon numbers 1-22 (you may have the side chain, even if this hydrocarbon group is a straight chain-like) Moreover, a part of hydrogen atom in the radical which forms this hydrocarbon group or a side chain - at least one kind of polar group or the halogen atom chosen from the group which consists of OH, -F, -COOH, -Cl, and -NH2 may permute, and this hydrocarbon group may have the double bond, and this hydrocarbon group may have cyclic structure further -- it is --]. [Claim 31] The hardening object given in the 25th term of a claim characterized by the weight average molecular weight of the acrylic polymer [a-1] which the radical expressed with the acrylic polymer [a] and formula [A-1] which the radical expressed with the above-mentioned formula [A] combined combined

being within the limits of 1000-200000. [Claim 32] The hardening object given in the 25th term of a claim characterized by the hydroxyl value of the acrylic polymer [a] which the radical expressed with the above-mentioned formula [A] combined being within the limits of 5-500.

[Claim 33] The hardening object given in the 25th term of a claim characterized by the hydroxyl value of the acrylic polymer [a-1] which the radical expressed with the above-mentioned formula [A-1] combined being within the limits of 0-200.

[Claim 34] The hardening object given in the 25th term of a claim characterized by being in within the limits whose amount of NCO(s) calculated from the amine value about the acrylic polymer [a-1] which the radical expressed with the above-mentioned formula [A-1] combined is 0 - 20 % of the weight.

[Claim 35] The hardening object given in the 25th term of a claim characterized by 10% or more of the

[Claim 35] The hardening object given in the 25th term of a claim characterized by 10% or more of the hydroxyl group which suited the end of the acrylic polymer [a-1] which the radical expressed with the above-mentioned formula [A-1] combined having combined with -N=C=O radical.

[Claim 36] The coating characterized by using an acrylic polymer, a hardenability constituent, or a hardening constituent given in one term of the 1-35th terms of a claim as a principal component.

[Claim 37] The 1-35th terms of a claim are the sealing materials characterized by using an acrylic polymer, a hardenability constituent, or a hardening constituent given in a term as a principal component either.

[Claim 38] The paint film water blocking material characterized by using an acrylic polymer, a hardenability constituent, or a semi-hardening constituent given in one term of the 1-35th terms of a claim as a principal component.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to the hardening object of hardening constituents and these constituents at the new acrylic polymer which has a hydroxyl group at the molecule end, the hardenability constituent containing this acrylic polymer, the hardenability constituent to which this hardenability constituent denaturalized with the poly isocyanate compound, and a list, and relates to these applications at a list.

[0002]

[Background of the Invention] From the former, a polymerization is possible for the polymerization nature compound which has an acrylic acid, a methacrylic acid, styrene, and a polymerization nature double bond like these derivatives, for example under existence of a radical polymerization initiator by the emulsion-polymerization method, the suspension-polymerization method, the solution polymerization method, and the bulk-polymerization method, and the polymerization object obtained in this way is used for various applications, such as a Plastic solid, a binder, a coating, and fiber. In order to carry out a polymerization using a reaction solvent or a dispersion medium, the polymer manufactured by the emulsion-polymerization method, the suspension-polymerization method, and the solution polymerization method among such polymers tends to control polymerization temperature, and even if it is the case that conversion is high, moreover, it has the advantage that reaction mixture has a fluidity.

[0003] However, the polymer obtained by such emulsion-polymerization method and the suspension-polymerization method needs actuation of the precipitate for separating the polymer generated depending on the application from a reaction solvent or a dispersion medium, filtration, washing, desiccation, etc., and becomes complicated [a process].

[0004] Removal of a solvent is also unnecessary, in order for there to be no mixing of impurities, such as an emulsifier and a dispersant, into the polymer obtained and to obtain the target polymer further for the system of reaction to not only to become brief, but, since a solvent meanwhile is not used for a bulk-polymerization method, and an impurity like the organic solvent which does not need to use an organic solvent, a dispersant, an emulsifier, etc. and participates in a polymerization is not included. Considering such a point, it is an advantageous polymerization method industrially.

[0005] However, it is very difficult for a polymerization reaction rate to be remarkably quick and to control this bulk-polymerization method by such bulk-polymerization method as a matter of fact generally. Moreover, the polymer generated by high temperature, without a rate of polymerization being uncontrollable will be in a condition with the unstable end group of a molecule by disproportionation termination, a low-molecular-weight object is formed, or branching-izing and gelation of a polymer tend to take place by the hydrogen drawing from the polymer which was being generated previously conversely etc. For this reason, it becomes difficult by generation of branching-izing of a polymer, a disproportionation termination end, etc. to design [of the clear molecular structure] that molecular designs, such as molecular weight of a polymer and molecular weight distribution, become difficult from the first. Furthermore, a gelation object may generate rapidly and in large quantities, and when the worst, there is even risk of explosion by the run away reaction.

[0006] Also meanwhile, since styrene and a methyl methacrylate have the property that a rate of polymerization is comparatively slow, also according to the bulk polymerization, reaction control is possible and, as for the controlling method, examination is made for many years, for example. And in bulk polymerizations, such as such styrene and a methyl methacrylate, in order to control molecular weight and molecular weight distribution, a mercaptan may be used.

[0007] For example, while a reaction controls advance of a reaction using a mercaptan on the occasion of the bulk polymerization of a styrene mold unsaturated compound like the styrene which advances quietly comparatively, performing a bulk polymerization is known. Specifically, "the polymerization method characterized by making it contact between the organic mercaptan which has at least one thiol group for the ethylene nature partial saturation monomer which can carry out a polymerization under oxygen existence at the temperature of about 20 to about 200 degrees C, and sufficient time amount to obtain the inversion to the polymer of a perfect monomer substantially" is indicated by JP,55-401,B. In this reaction, it is indispensable, and to the bottom of existence of oxygen, existence of oxygen uses with oxygen the mercaptan which is the only activator, and is performing the bulk polymerization of an ethylene mold partial saturation monomer. Therefore, this reaction does not advance effectively in the ambient atmosphere in which oxygen does not exist. In addition, carrying out copolymerization of a methacrylic acid, methacrylicacid hydroxypropyl, butyl acrylate, and 85 degrees C - the 140 degrees C of the styrene on 140-degree C temperature conditions substantially is indicated, introducing air into the example 6 of this official report using 1-thioglycerol as a mercaptan. However, in the bulk polymerization indicated by this official report, the mercaptan is used with oxygen, namely, a mercaptan and oxygen are shown as an indispensable component in polymerization initiation, and there is no publication about making a mercaptan into the polymerization catalyst of an ethylene mold unsaturated compound independently. However, when the mercaptan and oxygen which are indicated by this official report are used as a polymerization catalyst, in order to blow oxygen into the system of reaction positively, the risk of explosion and a fire becomes large in the case of operation in a large-sized plant. Moreover, even if manufacture of a polymer is safely possible, since the peroxide of a monomer is made by oxygen, these monomer peroxides are introduced into a polymerization initiation intercept, and some polymers obtained have the problem of sufficient control of a polymer end not being performed and the obtained polymer coloring in it. [8000]

[Objects of the Invention] This invention aims at offering the acrylic polymer with which the activity hydroxyl group was introduced into the molecule end.

[0009] Moreover, this invention aims at offering the acrylic polymer with which the hydroxyl group which shows activity to both ** of a molecule to an isocyanate radical was introduced suitably.

[0010] Furthermore, this invention consists of such an acrylic polymer and a compound which has two or more reactant high isocyanate radicals to the hydroxyl group which exists in the end of this acrylic polymer, and aims at offering the hardenability constituent which can form and stiffen the structure of cross linkage under existence of an organic tin system catalyst suitably.

[0011] Moreover, the hydroxyl group and isocyanate compound which exist in the molecule end of the above-mentioned acrylic polymer join together, and this invention aims at absorbing moisture and offering the 1 liquid type hardening constituent which can be hardened.

[0012] This invention aims at offering the hardening object in which an above-mentioned hardenability constituent and/or an above-mentioned hardening constituent carried out full hardening further again.

[0013] Furthermore, this invention aims at offering the application of such an acrylic polymer, a hardenability constituent, or a hardening constituent, and the application of which properties, such as a water resisting property, lightfastness, and flexibility, are required especially.

[0014]

[Summary of the Invention] The acrylic polymer [a] of this invention is characterized by containing the molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A] has combined.

[0015]
[Formula 10]
$$R^{2}$$
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{5}
 R^{5}

[0016] However, in the above-mentioned formula [A], R1-R5 are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively, and R6 is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12.

[0017] The hardenability constituent of this invention is characterized by containing the acrylic polymer [a]

containing the molecule which the radical expressed with the end of at least 1 of a polymer molecule by the above-mentioned formula [A] has combined, and the compound which has two or more isocyanate radicals in intramolecular.

[0018] The hardening constituent (semi-hardening constituent) of this invention is characterized by containing the acrylic polymer [a-1] molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A-1] has combined.

[0019]

[Formula 11]
$$R^{2}$$
 R^{3} R^{4}
 R^{4} $- C - C - R^{5}$... [A-1]
 $- S$ OH R^{5}

[0020] In the above-mentioned formula [A-1] however, R1-R5 They are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively. R6 It is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12, and some hydroxyl groups [at least] in the radical expressed with this type [A-1] combine with -N=C=O radical, and it forms the -NH-COO-radical.

[0021] The hardening object of this invention is a hardenability constituent containing the acrylic polymer [a] containing the molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A] has combined, and the compound which has two or more isocyanate radicals in intramolecular.;

[0022]

[0023] In [, however the above-mentioned formula [A] R1-R5 They are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively. R6 it is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12 --] -- And/or, hardening constituent containing the acrylic polymer [a-1] molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A-1] has combined;

[0024]

[0025] In [, however the above-mentioned formula [A-1] R1-R5 They are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively. R6 It is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12. Some hydroxyl groups [at least] in the radical expressed with this type [A-1] - It is characterized by coming to form the structure of cross linkage into a hardenability constituent and/or a hardening constituent by the intermolecular condensation reaction at least to the bottom of existence of moisture or un-existing using] which combines with a N=C=O radical and forms the -NH-COO-radical. [0026] The coating, sealing material, and paint film water blocking material of this invention are characterized by using the above-mentioned acrylic polymer [a], a hardenability constituent, a hardening constituent, or a hardening object as a principal component.

[0027] It is [in / at this invention / this above-mentioned formula [A] or [A-1]] desirable that R6 is a hydroxyl group and R1-R5 are hydrogen atoms. Moreover, as for the acrylic polymer [a] of this invention, or [a-1], it is desirable to have the repeat unit expressed with a principal chain by the degree type [B].

[Formula 14]

$$-CR^{7}R^{8}-CR^{9}-$$

 $c=0$ [B]
 $O-R^{10}$

[0029] In the above-mentioned formula [B], R7-R9 express the alkyl group of a hydrogen atom, a halogen atom, or carbon numbers 1-3 independently, respectively. However, R10 A hydrogen atom, an alkali-metal atom, the hydrocarbon group of carbon numbers 1-22 (you may have the side chain, even if this hydrocarbon group is a straight chain-like) Moreover, a part of hydrogen atom in the radical which forms this hydrocarbon group or a side chain - at least one kind of polar group or the halogen atom chosen from the group which consists of OH, -F, -COOH, -Cl, and -NH2 may permute, and this hydrocarbon group may have the double bond, and this hydrocarbon group may have cyclic structure further -- it is .

[0030] The radical expressed with the above formulas [A] is introduced into the acrylic polymer [a] of this invention, and such a radical (especially hydroxyl group) has for example, an isocyanate radical etc. and reactivity. And the polymer of this invention can be made to form and harden the intermolecular structure of cross linkage by using the compound which has two or more isocyanate radicals, for example into 1 molecule.

[0031] Moreover, some hydroxyl groups [at least] which exist in the radical expressed with this formula [A] may combine with the isocyanate radical, and the radical [A] which such an isocyanate radical combined is expressed by the formula [A-1] by this invention.

[0032] The acrylic polymer [a] which has at the end the radical expressed with the above-mentioned formula [A] reacts with the poly isocyanate compound, and is hardened. Moreover, in the acrylic copolymer [a-1] which has at the end the radical expressed with a formula [A-1], about the constituent with which all the hydroxyl groups in a molecule were permuted by the NCO radical, it absorbs, and self-condensation of the moisture is carried out and it is hardened.

[0033] In this way, the formed hardening object shows the outstanding water resisting property and flexibility, and has high reinforcement. The acrylic polymer [a] and [a-1], the hardenability constituent, hardening constituent, and hardening object of this invention a binder, adhesives, and sheet mold goods (a permeability sheet, a protection sheet, and a liner sheet --) A vibration-deadening sheet, an imprint sheet, a modulated light sheet, an antistatic sheet, an electric conduction sheet, A care-of-health sheet, a noise insulation sheet, a protection-from-light sheet, a makeup sheet, a marking sheet, a fire-resistant sheet and film mold goods (marking, a protection film, and an ink fixing film --) As a laminate film, foam (hard, elasticity, half rigidity, fire retardancy), the vehicle for ink, a reaction plasticizer, a plasticizer, a diluent, a compatibilizer, and a middle raw material Raw materials for resin, such as polyester resin, polyurethane resin, polycarbonate resin, and various block polymer Or the raw material for reforming, an additive and also a fiber modifier, a fiber finishing agent, A paper processing agent, a paper modifier, a surfactant, a distributed stabilizer, a dispersion medium, a solvent, a viscosity controlling agent, An adsorbent, a hair processing agent, the additive for toners, an electrification control agent, an antistatic agent, a low contraction agent, An antifogger, a stain proofing agent, a hydrophilic grant agent, an oleophilic grant agent, physic support, the support for agricultural chemicals, The compounding agent for cosmetics, lubricant, the additive for polymer alloys, a gel coat agent, the resin for FRP, The additive for FRP resin, the resin for artificial marbles, the resin additive for artificial marbles, the raw material for the resin for impregnation casts, and UV-EV hardening resin, a tackifier, and various binders (a magnetic-recording medium --) The object for casting, the urethane modifier for baking the body and its function and the glass fiber sizing material RIM, The resin for glass laminates, a sound deadener, an insulator, the resin for demarcation membranes, a sound insulating material, acoustic material, Artificial leather, an artificial skin, synthetic leather, various industrial parts, daily necessaries, the cast for toiletries, Although it can be used to acrylic polyurethane rubber, an acrylic polyurethane rubber modifier, an acrylic urethane foam modifier, a polyurethane rubber modifier, a urethane foam plasticizer, a urethane foam modifier, an acrylic rubber modifier, etc. It is desirable to use it effectively as a coating, a sealing material, a paint film water blocking material, etc. especially.

[0034]

[Detailed Description of the Invention] Next, the polymer, the polymer constituents, and these applications of this invention are explained concretely. In addition, especially the word that it "polymer" Comes to set to

this invention shall include both a homopolymer and a copolymer, unless it limits.

[0035] The acrylic polymer [a] of this invention contains the molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A] has combined.

[0036]

[Formula 15]
$$R^{2} R^{3} R^{4}$$

$$R^{1} - C - C - R^{5} \cdots [A]$$

$$-S OH R^{6}$$

[0037] However, in the above-mentioned formula [A], R1-R5 are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively, and R6 is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12.

[0038] Moreover, in this invention, an acrylic polymer [a-1] is an acrylic polymer containing the acrylic polymer [a-1] molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A-1] has combined.

[0039]

[Formula 16]
$$R^{2} R^{3} R^{4}$$

$$R^{4} - C - C - R^{4} \cdots [A-1]$$

$$-S OH R^{4}$$

[0040] In the above-mentioned formula [A-1] however, R1-R5 They are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively. R6 It is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12, and some hydroxyl groups [at least] in the radical expressed with this type [A-1] combine with -N=C=O radical, and it forms the -NH-COO-radical.

[0041] An above radical [A] and above [A-1] can be introduced by carrying out the polymerization of the polymerization nature unsaturated compound, using as a catalyst the compound expressed for example, with a degree type [I].

[0042] First, the acrylic polymer [a] with which the radical expressed with a molecule end by the formula [A] was introduced is explained.

[0043] The catalyst suitably used in case the acrylic polymer [a] of this invention is manufactured is a compound which has at least one thiol group expressed with a degree type [I], and the 2nd class hydroxyl group.

[0045] however, the above-mentioned formula [I] -- setting -- R1-R5 -- respectively -- independent -- a hydrogen atom or the alkyl group of carbon numbers 1-12 -- they are a hydrogen atom or the alkyl group of carbon numbers 1-5 preferably. As a concrete example of such an alkyl group, a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl, an isobutyl radical, and a pentyl radical can be mentioned. As for especially R1-R5, it is desirable also in these that it is a hydrogen atom. Moreover, in a formula [I], R6 is at least one kind of radical chosen from the group which consists of a hydroxyl group, a carbon number 1 - 12 alkoxy groups, and a carbon number 1 - 12 alkyl groups. As an alkoxy group, the alkoxy group of carbon numbers 1-4 is desirable, and can specifically mention a methoxy group, an ethoxy radical, a propoxy group, and a butoxy radical here. As an alkyl group, the alkyl group of carbon numbers 1-5 is desirable, and can specifically mention a methyl group, a propyl group, butyl, and a pentyl radical here. As for these R6, in this invention, it is still more desirable that it is a hydroxyl group.

[0046] therefore, in this invention, as an example of a compound expressed with a formula [I] The 1-mercapto -2, 3-propanediol (thioglycerol), A 2-mercapto-3-butanol, the 2-mercapto -3, 4-butanediol, The 1-mercapto -2, 3-butanediol, 1-mercapto-2-butanol, 2-mercapto - 3, 4, and 4'-butane triol, the 1-mercapto -3, 4-butanediol, 1-mercapto - 3, 4, and 4'-butane triol can be mentioned, these compounds are useful as a catalyst of a bulk polymerization, and the thioglycerol of usefulness is still higher as a bulk-polymerization catalyst also in these.

[0047] The compound expressed with the above-mentioned formula [I] has both thiol group (- SH) and the second class hydroxyl (- OH) in 1 molecule.

[0048] In this invention, in order to use it as a catalyst of a bulk polymerization, it is required for a thiol group and the second class hydroxyl to live [this catalyst] together in 1 molecule. For example, although a thiol group also has being conventionally used for a bulk polymerization in 1 molecule, as for compounds, such as a certain thioglycolic acid octyl, it does not have a hydroxyl group, either. Although it has a thiol group in such a molecule, when the compound which does not have the hydroxyl group is made to live together in the case of the bulk polymerization of for example, an acrylic-acid derivative, such a compound acts in negative catalysis to a bulk-polymerization reaction so that advance of a reaction may be controlled, and there is almost no operation which promotes such a bulk-polymerization reaction independently. Therefore, in the catalyst used by the bulk polymerization, it is very important that the hydroxyl group which exists in intramolecular is the second class hydroxyl group. With the compound with which the second class hydroxyl group and a thiol group coexist in this 1 molecule, what the hydrogen atom which constitutes a thiol group can draw near to the second class hydroxyl group, and a reaction starts is presumed.

[0049] It faces obtaining the acrylic polymer of this invention, and a vinyl group content compound can be mentioned as an example of the polymerization nature unsaturated compound by which a polymerization is carried out with the compound expressed with the above-mentioned formula [I]. Furthermore, the compound shown below can be mentioned as an example of such a polymerization nature unsaturated compound. [0050] salt [, such as an acrylic acid and an acrylic-acid alkali-metal salt,]; -- salt [, such as methacrylic acid and a methacrylic-acid alkali-metal salt,]; -- a methyl acrylate -- An ethyl acrylate, acrylic-acid propyl, butyl acrylate, acrylic-acid pentyl, Acrylic-acid hexyl, 2-ethylhexyl acrylate, acrylic-acid octyl, Acrylic-acid alkyl ester like acrylic-acid nonyl, acrylic-acid DESHIRU, and acrylic-acid dodecyl; Acrylic-acid phenyl, Acrylic-acid aryl ester like acrylic-acid benzyl; Acrylic-acid methoxy ethyl, Acrylic-acid ethoxyethyl, acrylic-acid propoxy ethyl, acrylic-acid butoxy ethyl, Acrylic-acid alkoxy alkyl like acrylic-acid ethoxy propyl; A methyl methacrylate, Ethyl methacrylate, methacrylic-acid propyl, methacrylic-acid butyl, Methacrylic-acid pentyl, methacrylic-acid hexyl, 2-ethylhexyl methacrylate, Methacrylic-acid octyl, methacrylic-acid nonyl, methacrylic-acid DESHIRU, Methacrylic acid alkyl ester like methacrylic-acid dodecyl; Methacrylic-acid phenyl, Methacrylic-acid aryl ester like methacrylic-acid benzyl; Methacrylicacid methoxy ethyl, Methacrylic-acid ethoxyethyl, methacrylic-acid propoxy ethyl, methacrylic-acid butoxy ethyl, Methacrylic-acid alkoxy alkyl like methacrylic-acid ethoxy propyl; The diacylic ester of ethylene glycol, The diacylic ester of a diethylene glycol, the diacylic ester of triethylene glycol, The diacylic ester of a polyethylene glycol, diacrylic acid ESUERU of propylene glycol, Diacrylic acid ESUERU of dipropylene glycol, diacylic ester of alkylene glycol like the diacylic ester (Pori) of tripropylene glycol; The dimethacrylate ester of ethylene glycol, The dimethacrylate ester of a diethylene glycol, the dimethacrylate ester of triethylene glycol, The diacylic ester of a polyethylene glycol, methacrylic acid ESUERU of propylene glycol, The dimethacrylate ester of dipropylene glycol, Like the dimethacrylate ester of tripropylene glycol JIMETA acrylic ester [of alkylene glycol]; (Pori) multiple-valued acrylic ester; like trimethylol propane thoria krill acid ester -- multiple-valued methacrylic ester; like trimethylol propane TORIMETA krill acid ester -- acrylonitrile; -- methacrylonitrile; -- vinyl acetate; -- Vinylidene chloride; Acrylic-acid-2-chloro ethyl, halogenation vinyl compound; like methacrylic-acid-2-chloro ethyl -- acrylic ester [of alicyclic alcohol like acrylic-acid cyclohexyl]; -- methacrylic ester [of alicyclic alcohol like cyclohexyl methacrylate]; -- 2-vinyl-2-oxazoline -- An oxazoline radical content polymerization nature compound like 2-vinyl-5-methyl-2-oxazoline and 2-isopropenyl-2-oxazoline; An acryloyl aziridine, A methacryloyl aziridine, acrylic-acid-2-aziridinyl ethyl, An aziridine radical content polymerization nature compound like methacrylic-acid-2-aziridinyl ethyl; Allyl glycidyl ether, Acrylic-acid glycidyl ether, methacrylic-acid glycidyl ether, Acrylic-acid glycidyl ether, acrylic-acid-2-ethyl glycidyl ether, An epoxy group content vinyl monomer like methacrylic-acid-2-ethyl glycidyl ether; Acrylic-acid-2-hydroxyethyl, Methacrylic-acid-2-hydroxyethyl, 2-hydroxypropyl acrylate, Monoester with an acrylic acid or a methacrylic acid, a polypropylene glycol, or a polyethylene glycol, A hydroxyl content vinyl compound like

an addition product with lactone and acrylic-acid (meta)-2-hydroxyethyl; Fluorine permutation alkyl methacrylate ester, Fluorine-containing vinyl monomers, such as fluorine permutation acrylic-acid alkyl ester; (meta) Remove an acrylic acid. An itaconic acid, a crotonic acid, a maleic acid, unsaturated carboxylic acid like a fumaric acid, These salts, these (part) ester compounds, and an acid anhydride; 2-KURORU ethyl vinyl ether, A reactant halogen content vinyl monomer like monochloroacetic acid vinyl; Methacrylamide, N-methylol methacrylamide, N-methylol methacrylamide, N-methoxy ethyl methacrylamide, An amide group content vinyl monomer like N-butoxy methyl methacrylamide; Vinyltrimetoxysilane, Gamma-methacryloxpropyl trimethoxy silane, allyl compound trimethoxysilane, Trimethoxysilylpropyl allylamine, an organic silicon radical content vinyl compound monomer like 2-methoxyethoxy trimethoxysilane; in a row A diene compound like ethyl DIN norbornene, an isoprene, pentadiene, a vinyl cyclohexene, a chloroprene, a butadiene, methylbutadiene, cyclobutadiene, and methylbutadiene.

[0051] In addition, the macro monomers which have a radical polymerization nature vinyl group at the monomer end which carried out the polymerization of the vinyl group can be illustrated (for example, a fluorine system monomer, a silicon content monomer, a macro monomer, styrene, silicon, etc.).
[0052] these polymerization nature unsaturated compounds are independent -- it is -- it can be combined and used. In a reaction condition, although these polymerization nature unsaturated compounds may be liquids, may be solid-states and may be gases, it is desirable to use the monomer which is a liquid from the simplicity of actuation in the case of a reaction.

[0053] By carrying out the polymerization of the above polymerization nature unsaturated compounds, the repeat unit expressed for example, with a degree type [B] and [B-1] - [B-2] is formed into the principal chain corresponding to the polymerization nature unsaturated compound to be used.

[0054]

[Formula 18]

$$-CR^7R^8-CR^9 c=0$$
 $O-R^{10}$

[0055] In the above-mentioned formula [B]

[0055] In the above-mentioned formula [B], R7-R9 express the alkyl group of a hydrogen atom, a halogen atom, or carbon numbers 1-3 independently, respectively. However, R10 A hydrogen atom, an alkali-metal atom, the hydrocarbon group of carbon numbers 1-22 (you may have the side chain, even if this hydrocarbon group is a straight chain-like) Moreover, a part of hydrogen atom in the radical which forms this hydrocarbon group or a side chain - at least one kind of polar group or the halogen atom chosen from the group which consists of OH, -F, -COOH, -Cl, and -NH2 may permute, and this hydrocarbon group may have the double bond, and this hydrocarbon group may have cyclic structure further -- it is. That is, as this example of R10, an alkyl group, a cycloalkyl radical, an aryl group, an alkenyl radical, a cyclo alkenyl radical, an alkoxy group, and an alkyl ether radical can be mentioned. A part of hydrogen atom [at least] which constitutes this radical R10 may be permuted by the halogen atom, the sulfonic group, the glycidyl group, etc.

[0056]
[Formula 19]

$$-CR^{11}R^{12}-CR^{13}-$$

 R^{14} [B-1]

[0057] However, in a formula [B-1], R11-R13 are the same semantics as said R7-R9, and R14 is one radical of a hydroxyl group, two -CO-NH, -CN radical, a glycidyl group, an alkyl group, an alkoxy group, an alkenyl radical, a cyclo alkenyl radical, an aryl group, an allyl compound ether group, and an alkyl ether radical. A part of hydrogen atom [at least] which constitutes this radical R14 may be permuted by the halogen atom etc. Moreover, this radical R14 may be a radical which has the configuration unit guided from alkylene glycol, an alkoxy silyl radical, an alkyl alkoxy silyl radical, a methylol radical, and an alkoxy amide group.

[0058] [Formula 20]

[0059] However, in a formula [B-2], R15 and R17 are the same semantics as said R7-R9, and R16 and R18 are one radicals of a carboxyl group, a hydroxyl group, two -CO-NH, -CN radical, a glycidyl group, an alkyl group, an alkoxy group, an alkenyl radical, a cyclo alkenyl radical, and an aryl group independently, respectively. A part of hydrogen atom [at least] which constitutes these radicals R16 and R18 may be permuted by the halogen atom etc. Moreover, these radicals R16 and R18 may form cyclic structure in collaboration with two carbon atoms which R15 and R17 combined, and this cyclic structure may have double association.

[0060] The acrylic polymer [a] of this invention can be manufactured by usually carrying out the polymerization (**) of the above-mentioned polymerization nature unsaturated compound to the bottom of the existence of a compound expressed with a formula [I]. Although this reaction may be the solution polymerization, distributed polymerization, or emulsion polymerization which used the reaction solvent, it is desirable that it is the bulk polymerization which does not use a reaction solvent substantially.

[0061] In order to make the whole monomer distribute to homogeneity the compound expressed with the formula [I] which means that a reaction solvent is not used for "not using a solvent substantially" here, for

formula [I] which means that a reaction solvent is not used for "not using a solvent substantially" here, for example, is used as a catalyst, the solvent used in case the solvent of ultralow volume is dissolved or distributed, the solvent which remains in a raw material are not eliminated.

[0062] This bulk-polymerization reaction is usually performed in an inert gas ambient atmosphere, therefore activated gas like oxygen does not exist in this bulk-polymerization system of reaction. As inert gas used here, nitrogen gas, argon gas, gaseous helium, and carbon dioxide gas can be mentioned.

[0063] Although the compound expressed with the above-mentioned formula [I] used as a catalyst can be used in the usual amount of catalysts, in this bulk polymerization, it is preferably used within the limits of 0.5-35 mols 0.1-50 mols as the number of thiol group mols to 100 partial saturation radical mols of the above-mentioned polymerization nature unsaturated compound. When the number of thiol group mols is used in 0.1 or less amount to 100 partial saturation radical mols, it is desirable for sufficient reaction initiation effectiveness not to be accepted but to use the 0.5 mols or more of the numbers of thiol group mols to 100 partial saturation radical mols to a compound with a stable partial saturation radical like especially a styrene mold unsaturated compound. Moreover, when the 50 mols or more of the numbers of thiol group mols are used to 100 partial saturation radical mols, to a polymerization nature unsaturated compound, a rapid addition reaction occurs preferentially and maintenance of a reaction becomes difficult for that a polymer with sufficient polymerization degree is not obtained, and remarkable generation of heat. Moreover, when a compound with the high activity of a partial saturation radical is used and it uses 35 or more [the number of thiol group mols] to 100 partial saturation radical mols like the polymerization nature unsaturated compound of an acrylic ester system, remarkable generation of heat takes place for a rapid reaction, and maintenance of a reaction becomes difficult.

[0064] Although the bulk polymerization of the above-mentioned polymerization nature unsaturated compound advances good by using independently the compound expressed with this formula [I], in addition to the compound expressed with this formula [I], the reaction initiator currently used from the former can also be used together. It can be made to go on smoothly, without making a bulk-polymerization reaction overrun recklessly by using the compound expressed with a formula [I], even if it is the case where such a reaction initiator is used together.

[0065] Although it cannot conclude if the case where the thioglycerol (the 3-mercapto -1, 2-propanediol) is used for the reaction at the time of generating the acrylic polymer [a] of this invention is made into an example and it explains, the reaction using the compound expressed with a formula [I] as a catalyst is presumed to be what advances as follows.

[0066]

[Formula 21]

[0067] That is, in the thioglycerol which has the sulfhydryl group and the hydroxyl group of the 2nd class in intramolecular in the first phase as mentioned above, the hydrogen atom of a thiol group can draw near to the 2nd class hydroxyl group, a thio radical (-S radical) generates, and that to which initiation of an initial polymerization reaction takes place is presumed by the radical addition to the polymerization nature unsaturated compound by this thio radical. Subsequently, that to which the thioglycerol and the chain transfer to an unsaturated compound, and growth reaction advance as mentioned above is presumed. And the termination reaction of this reaction is presumed to be what is depended on a chain transfer halt to the thioglycerol, the recombination termination of growth radicals, and recombination termination with the thioglycerol radical which exists in the state of a thio radical. In this case, the thioglycerol radical carried out by chain transfer in hydrogen drawing is again recombined with the case where monomer addition is carried out as an initiation end, and a growth radical, and is added to a polymer end as a halt agent.

[0068] In this way, a hydroxyl group is introduced into the acrylic polymer [a] of this invention when the radical expressed with a molecule end by said formula [A] joins together.

[0069] this bulk-polymerization reaction -- the class of polymerization nature unsaturated compound -- heating or warming -- although it can also carry out downward, and it can also carry out, cooling, it is desirable to set up this bulk-polymerization reaction temperature within the limits of 0-150 degrees C, and especially the thing to set up within the limits of further 25-120 degrees C is desirable. By setting bulk-polymerization reaction temperature as above-mentioned within the limits, the compound expressed with a formula [I] can be efficiently operated as a forward catalyst. Although based also on the activity of the partial saturation radical of the polymerization nature unsaturated compound to be used, when the polymerization nature unsaturated compound of an acrylic ester system with comparatively high polymerization nature is used and reaction temperature is made into 0 degree C or less, the activity as a catalyst of a compound expressed with a formula [I] becomes low, time amount required in order to attain sufficient conversion becomes long, and effectiveness is bad. Furthermore, sufficient conversion can be attained, if it is conditions 25 degrees C or more even when a compound with low polymerization activity is used like a styrene mold unsaturated compound.

[0070] Moreover, when reaction temperature is made into 150 degrees C or more, the danger of the run away reaction by generation of heat remarkable during a polymerization reaction arises. A smooth advance of a reaction can be maintained without making a reaction overrun recklessly by setting up polymerization temperature with 120 degrees C or less.

[0071] The molecule which the radical expressed with the end of at least 1 of the molecule of the acrylic polymer [a] of this invention by said formula [A] has combined is contained. The radical expressed with this formula [A] had at least one hydroxyl group, and the radical expressed with said this formula [A] is combined with the principal chain through the sulfur atom which constitutes this radical.

[0072] In addition, the radical expressed with the radical expressed with said formula [A] in the acrylic polymer [a] of this invention The end which the radical which the radical expressed with said formula [A] to all the end groups of a polymer molecule may join together that what is necessary is just to have combined with the end of at least 1 of a polymer molecule therefore, and is expressed with said formula [A] in a polymer molecule has not combined may exist.

[0073] Furthermore, since a new radical is generated by the radical which generates the compound expressed with said formula [I] in connection with using it as a reaction initiator, in the system of reaction, the polymerization reaction by these newly generated radicals also advances in coincidence parallel. Therefore, in the acrylic polymer [a] of this invention, the polymer molecule which does not have the end group expressed with the radical expressed with said formula [A] may exist.

[0074] In many cases, the conversion at the time of using as a catalyst the compound expressed with said formula [I] is usually about 50 - 80% 30 to 90%. Therefore, in the reactant obtained using as a catalyst the compound expressed with said formula [I], an unreacted monomer usually remains. It is desirable to face using the acrylic polymer [a] of this invention, and to remove and use such a residual monomer. Although well-known approaches, such as solvent extraction and vacuum distillation, are adopted and such a residual monomer can be dissociated from an acrylic polymer [a], as for the acrylic polymer [a] of this invention, manufacturing according to a bulk polymerization is desirable, and since such a bulk-polymerization object does not contain the reaction solvent substantially, it is desirable [a polymer / an object] to remove by the vacuum distillation which does not have the need of using a solvent in removal of a residual monomer. Although the conditions at the time of such vacuum distillation removing a residual monomer can be set up suitably, the amount of residuals of a residual monomer can usually be carried out to 1 or less % of the weight by heating to the monomer boiling point at -10--40 degree C (temperature lower 10-40 degrees C than the monomer boiling point) within the limits of 1-0.5atm.

[0075] in this way, the number average molecular weight which the acrylic polymer [a] of this invention obtained is usually a liquid in ordinary temperature, and was measured using the gas permeation chromatography (GPC) about this acrylic polymer [a] -- usually -- 500-100000 -- desirable -- within the limits of 1000-10000 -- it is -- weight average molecular weight -- usually -- 1000-200000 -- it is within the limits of 2000-100000 preferably. moreover, a disprsion index -- usually -- 1.2-6 -- it is within the limits of 1.2-3 preferably. As for the polymer which has the above average molecular weight, it is desirable to have the fluidity in ordinary temperature, and to have such an ordinary temperature fluidity, in using the acrylic polymer [a] of this invention as spreading material so that it may mention later. And if number average molecular weight deviates from the above-mentioned range and is small, when blending the poly isocyanate compound etc. with this acrylic polymer [a] and considering as a self-condensation nature constituent, for example, the amount of the poly isocyanate compound used may increase, and it may become disadvantageous in cost.

[0076] moreover, the radical expressed with the formula [A] by which the acrylic polymer [a] of this invention is introduced into a molecule end -- originating -- a hydroxyl value (OHV **) -- having -- **** -- the hydroxyl value (OHV **) of the acrylic polymer [a] of this invention -- usually -- 2-500 -- it is within the limits of 5-500 preferably. This hydroxyl value (OHV **) is well in agreement with the hydroxyl value (OHV **) calculated from the amount of the compound used expressed with the formula [I] used as a catalyst. moreover, the glass transition temperature (Tg) measured about the polymer of this invention -- usually -- 180- there are -90 degrees C within the limits of 20--70 degree C preferably. Thus, the resin with a low glass transition temperature has many which have sufficient ordinary temperature fluidity, even if molecular weight is high.

[0077] The hydroxyl group which exists in the radical expressed with the formula [A] introduced into the end of the acrylic polymer [a] of this invention has an isocyanate radical and good reactivity.

[0078] The hardenability constituent of this invention tends to use the above properties which an acrylic polymerization [A] has, and is characterized by containing the acrylic polymer [a] containing the molecule which the radical expressed with the end of at least 1 of a polymer molecule by the above-mentioned formula [A] has combined, and the compound which has two or more isocyanate radicals in intramolecular.

[0079] The compound which has two or more isocyanate radicals in the intramolecular used here It is specifically the poly isocyanate compound. As an example of such a poly isocyanate compound Toluene

diisocyanate (TDI), KURORU phenylene diisocyanate, Tolylene diisocyanate, G SOSHIA nil diphenylmethane, hexamethylene diisocyanate, Tetramethylen diisocyanate, isophorone diisocyanate, The isocyanate compound and isocyanuration object which added an isocyanate monomer and these isocyanate monomers, such as diphenylmethane diisocyanate by which hydrogenation was carried out, with trimethylol propane etc., The isocyanate of urethane prepolymer molds which carried out the addition reaction, such as a buret mold compound, still better known polyether polyol and polyester polyol, acrylic polyol, polybutadiene polyol, and polyisoprene polyol, etc. can be mentioned. It is desirable to use the compound which especially has 2-3 isocyanate radicals as this poly isocyanate compound by this invention. [0080] 0.1-4 mols of isocyanate radicals are usually used in an amount which becomes 0.5-2 mols preferably to one mol of hydroxyl groups which this poly isocyanate compound has in the acrylic polymer [a] of this invention. Thus, even if there are moisture for example, in air etc. and an isocyanate radical which reacts by using the poly isocyanate compound so that the amount of an isocyanate radical may increase more than the amount of the hydroxyl group which exists in an acrylic copolymer [a] somewhat, it can combine with an isocyanate radical and a tuck etc. produces no hydroxyl groups in an acrylic copolymer [a] on the hardening object acquired.

[0081] The hardenability constituent of this invention consists of an acrylic polymer [a] and a poly isocyanate compound which is a compound which has two or more isocyanate radicals as mentioned above, the hydroxyl group introduced as a radical expressed with a formula [A] by the acrylic polymer [a] and an isocyanate radical react, and it has the property of hardening by forming the structure of cross linkage mainly between the molecules of an acrylic polymer [a].

[0082] Since the reaction of such a hydroxyl group and an isocyanate radical advances even if a catalyst does not exist, with the hardenability constituent of this invention, usually an acrylic polymer [a] and the poly isocyanate compound are packed according to an individual so that it may not contact in the cases, such as migration and preservation, and it is mixed and used before use.

[0083] In the hardenability constituent of this invention, since the reaction of a hydroxyl group and an isocyanate radical advances by mixing an acrylic polymer [a] and the poly isocyanate compound, it is not required to use especially a curing catalyst, but in order to make an acrylic polymer [a] and the poly isocyanate compound react more certainly and quickly, it is desirable to use a curing catalyst.

[0084] As an example of the curing catalyst used here, amine compounds, such as metal chelation objects, such as alkoxy titanium compounds, such as an organic tin compound like dibutyl lauric-acid tin and tetrabutoxytitanium, and thoria SETOA cetyl aluminum, and triethylamine, can be mentioned. Such a curing catalyst is doubled with adjustment of the setting time, or the activity of a catalyst, and can be adjusted suitably. Moreover, such a curing catalyst can also be blended with an acrylic polymer [a], can also be blended with the poly isocyanate compound, and in case it is packed independently and mixes an acrylic polymer [a] and the poly isocyanate compound before use, it may be mixed with an acrylic polymer [a] and the poly isocyanate compound to coincidence.

[0085] Next, the hardening constituent (semi-hardening constituent) of this invention is explained.
[0086] The hardening constituent of this invention is characterized by containing the acrylic polymer [a-1] molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A-1] has combined.

[Formula 22]
$$R^{2} R^{3} R^{4}$$

$$R^{3} - C - C - R^{5} \cdots [A-1]$$

$$-S OH R^{5}$$

[0087]

[0088] In the above-mentioned formula [A-1] however, R1-R5 They are a hydrogen atom or the alkyl group of carbon numbers 1-12 independently, respectively. R6 It is at least one kind of radical chosen from the group which consists of a hydroxyl group, an alkoxy group of carbon numbers 1-12, and an alkyl group of carbon numbers 1-12, and some hydroxyl groups [at least] in the radical expressed with this type [A-1] combine with -N=C=O radical, and it forms the -NH-COO-radical.

[0089] That is, some hydroxyl groups [at least] which exist in the radical expressed with the end of 1 that there is little polymer by the formula [A] of the acrylic polymer [a] with which the radical expressed with said formula [A] was introduced are the denaturation polymers combined with the isocyanate radical, and this hardening constituent indicates such a denaturation acrylic polymer to be an acrylic polymer [a-1] by

this invention.

[0090] In this acrylic polymer [a-1], R1-R5 in the radical [A-1] in an end, and R6 are the semantics same in a formula [A], and the principal chain in this acrylic polymer [a-1] of them is the same as that of an acrylic polymer [a].

[0091] This acrylic polymer [a-1] is set by the denaturation degree of the polymer made into the purpose, and is obtained by making the acrylic polymer [a] and isocyanate compound used as a raw material teach and react to coincidence. That is, compared with the NCO radical mol number of isocyanate compounds, when there are sufficiently many hydroxyl-group mols of an acrylic polymer [a], the acrylic polymer [a-1] which has the hydroxyl group by which chain extension was carried out with the isocyanate compound is obtained. Moreover, when the NCO radical mol number of isocyanate compounds and the number of hydroxyl-group mols of an acrylic polymer [a] are more than tales doses conversely, the acrylic polymer [a-1] which has a NCO radical, or the acrylic polymer [a-1] which has a hydroxyl group and a NCO radical is obtained. Since a possibility of causing gelation is during the reaction of denaturation in such a case, it sets for these reactions. However, suitably Said acrylic polymer [a] is added small quantity every into a superfluous isocyanate compound. The poly isocyanate compound is combined with the hydroxyl group of one in an acrylic polymer [a] at a rate of one molecule. An acrylic polymer [a] can be further added and manufactured to an acrylic polymer [a-1] only with a NCO radical as a reaction radical which was made to complete a reaction or was made by this reaction.

[0092] The poly isocyanate compound used here is the same as the poly isocyanate compound used with an acrylic polymer [a] in the hardenability constituent which used the acrylic polymer [a].

[0093] This poly isocyanate compound is dissolved in the organic solvent which does not have an isocyanate radical and reactivity, and an acrylic polymer [a-1] generates by adding the above-mentioned acrylic polymer [a] in the organic solvent solution of this poly isocyanate compound small quantity every, and making the hydroxyl group in an acrylic polymer [a] combine the poly isocyanate radical with it. [0094] As an organic solvent which does not have an isocyanate radical and reactivity here, a xylene, toluene, the aromatic hydrocarbon of benzene, a hexane, a cyclohexane, a heptane, a tetrahydrofuran, ethyl acetate, butyl acetate, etc. can be mentioned. Moreover, if the acrylic polymer [a] to be used is hypoviscosity, it is not necessary to use a solvent.

[0095] As for this reaction, it is desirable to carry out heating in inert gas. 20-90 degrees C of reaction temperature are usually 40-70 degrees C preferably.

[0096] At this reaction, the poly isocyanate compound is superfluously used to an acrylic polymer [a]. Usually, to one mol of hydroxyl groups in an acrylic polymer [a], 1.9-5 mols of the poly isocyanate compounds are usually used so that it may become 2.2-3 mols preferably. Thus, the acrylic polymer [a-1] which the probability for two or more acrylic polymers [a] to combine with the poly isocyanate compound of one molecule became remarkably low, therefore was generated at this reaction does not gel by moreover performing this reaction in an organic solvent using the superfluous poly isocyanate compound. And an activity isocyanate radical is introduced into the generated acrylic polymer [a-1] by using the poly isocyanate compound which has two or more isocyanate radicals.

[0097] It is desirable to use a catalyst in the case of the above-mentioned reaction. The catalyst used here is the same compound as the curing catalyst which can be blended with the hardenability constituent mentioned above, and, specifically, can mention amine compounds, such as metal chelation objects, such as alkoxy titanium compounds, such as an organic tin compound like dibutyl lauric-acid tin, and tetrabutoxytitanium, and thoria SETOA cetyl aluminum, and triethylamine. Such a curing catalyst is usually doubled with reaction time, adjustment of exoergic control, or the activity of a catalyst, and can be adjusted suitably.

[0098] The acrylic polymer [a-1] generated as mentioned above is obtained as an organic solvent solution, and the unreacted poly isocyanate compound remains in this organic solvent.

[0099] An acrylic polymer [a-1] can be obtained by carrying out vacuum distillation of such an organic solvent and the unreacted poly isocyanate compound, and removing them.

[0100] It can check that the absorption peak resulting from the hydroxyl group of the acrylic polymer [a] dropped as a raw material would disappear with advance of a reaction, and this hydroxyl group and the poly isocyanate compound will have reacted about the hardening constituent of this invention containing the above acrylic polymers [a-1] if for example, a Fourier transform infrared spectrum (FTIR) is measured. [0101] In this way, the amount of -NCO(s) which measured amine ** about the generated acrylic polymer [a-1], and was calculated from this amine ** is usually 0 - 20% preferably 0 to 30%.

[0102] In addition, although almost all hydroxyl groups react with an isocyanate radical by manufacturing

an acrylic polymer [a-1] as mentioned above, in the hardening constituent of this invention, the polymer with which the isocyanate radical and the hydroxyl group which does not react remained may be included. That is, in the usual case, a hydroxyl value is about 0, but with [this hydroxyl value] ten [or less], this acrylic polymer [a-1] can be used as a hardening constituent of this invention.

[0103] in this way, the number average molecular weight which is usually a liquid in ordinary temperature and was measured using gel permeation chromatography (GPC) about this acrylic polymer [a-1] although the acrylic polymer [a-1] of this invention obtained had viscosity higher than the above-mentioned acrylic polymer [a] (source material) -- usually -- 500-200000 -- desirable -- within the limits of 1000-10000 -- it is -- weight average molecular weight -- usually -- 1000-300000 -- it is within the limits of 2000-200000 preferably. moreover, a disprsion index -- usually -- 1.2-6 -- it is within the limits of 1.2-3 preferably. The polymer which has the above average molecular weight has the fluidity in ordinary temperature.

[0104] Since an activity isocyanate radical exists in the hardening constituent obtained as mentioned above, moisture is absorbed and self-condensation hardening is carried out.

[0105] Therefore, this semi-hardening constituent can be used as for example, a 1 liquid mold-curing nature constituent.

[0106] In addition, the curing catalyst which can be blended with the above-mentioned hardenability constituent can also be blended with the semi-hardening constituent of this invention.

[0107] The hardening object of following this invention is explained.

[0108] The hardening object of this invention is a hardening object generated by forming the structure of cross linkage by the intermolecular condensation reaction using the hardening constituent containing the hardenability constituent and/or the acrylic polymer [a-1] which consist of an above-mentioned acrylic polymer [a] and the above-mentioned poly isocyanate compound.

[0109] That is, the hardening object of this invention is a hardenability constituent containing the acrylic polymer [a] containing the molecule which the radical expressed with the end of at least 1 of a polymer molecule by the degree type [A] has combined, and the compound which has two or more isocyanate radicals in intramolecular.;

[0110]

[Formula 23]
$$R^{2} R^{3} R^{4}$$

$$R^{4} - C - C - C - R^{5} \cdots [A]$$

$$-S OH R^{5}$$

[0111] They are [, however a containing [R5 and R6]-R1 in above-mentioned formula [A] - acrylic polymer [a-1] molecule which radical expressed with end of at least 1 of said formula [it is semantics same in A]] and/or polymer molecule by degree type [A-1] has combined hardening constituent.; [0112]

[Formula 24]
$$R^{2} R^{3} R^{4}$$

$$R^{3} - C - C - C - R^{4} \cdots [A-1]$$

$$-S OH R^{4}$$

[0113] R1-R5 in [, however the above-mentioned formula [A-1], and R6 Some hydroxyl groups [at least] in the radical which is the semantics same in said formula [A-1], and is expressed with a formula [A-1] - It is characterized by coming to form the structure of cross linkage into a hardenability constituent and/or a hardening constituent by the intermolecular condensation reaction at least to the bottom of existence of moisture or un-existing using] which combines with a N=C=O radical and forms the -NH-COO-radical. [0114] Moreover, the principal chain in this acrylic polymer [a] and an acrylic polymer [a-1] is the same as that of the above.

[0115] When this hardening object is formed from the hardenability constituent containing an acrylic polymer [a] and the compound (poly isocyanate compound) which has two or more isocyanate radicals in intramolecular, Since an acrylic polymer [a] and the poly isocyanate compound carry out reaction hardening even if water does not exist, it is not necessary to add water especially for a hardening reaction but, and if water exists, both the reactions for which the poly isocyanate compound absorbs and hardens water uniquely will advance.

[0116] Moreover, in making it harden using the hardening constituent containing an acrylic polymer [a-1] independently, for hardening, it is necessary from an acrylic polymer [a-1] absorbing water, and carrying out self-condensation hardening for water to exist. However, even if it does not add this water directly to the hardening system of reaction, moisture is absorbed out of air and a base material etc., and a hardening reaction advances.

[0117] Although it is not necessary to add water especially for hardening when using together the hardenability constituent which consists of an acrylic polymer [a] and a poly isocyanate compound, and the hardening constituent containing an acrylic polymer [a-1], water can be added and the hardening reaction by the reaction of an isocyanate radical and water can also be made to run together.

[0118] Moreover, it faces preparing the hardening object of this invention, and polyols, such as polyether polyol, polyester polyol, acrylic polyol, polybutadiene polyol, and polyisoprene polyol, polyamine, polycarboxylic acid, etc. can be blended with the hardenability constituent which consists of an acrylic polymer [a] and a poly isocyanate compound, and/or the hardening constituent containing an acrylic polymer [a-1]. These compounds and isocyanate radicals can make it able to react, and a urethane bond can be formed.

[0119] Moreover, such a hardening reaction can also be performed to the bottom of existence of the above-mentioned curing catalyst.

[0120] The hardening object of this invention has flexibility and flexibility, and has good gestalt imitation nature. Moreover, this hardening object has rubber elasticity and usually has 100% or more of ductility preferably 10% or more. Furthermore, although the constituent before hardening is a viscous liquid, on a hardening object, it hardly has tuck nature.

[0121] Various additives can be blended with them in order to fit the acrylic polymer [a] of this invention, an acrylic polymer [a-1], a hardenability constituent, and a semi-hardening constituent to the application. As an example of the additive which can be used here, a bulking agent, color material, a weatherproof grant agent, an ultraviolet ray absorbent, a viscosity controlling agent, a hardening auxiliary catalyst, water repellent, a waterproofing agent, a dispersant, a solvent, a defoaming agent, a plasticizer, etc. can be blended. In order to adjust the property of a hardening object, in this invention Moreover, for example, terpene resin, Rosin system resin, low-molecular-weight atactic polypropylene, a chlorination olefin, Low molecular weight polyethylene, a chlorination butadiene, a chlorination isoprene, butyl resin, Polysulfide system resin, urethane system resin, silicon system resin, denaturation silicon system resin, Acrylic resin, EPM resin, EPDM resin, water-repellent resin (example; a silicon polymer, a Teflon particle, polytetrafluoroethylene, polyvinylidene fluoride), hydrophilic resin (example; polyvinyl alcohol, anion system emulsifier), etc. can be blended.

[0122] The acrylic polymer [a], the acrylic polymer [a-1], the hardenability constituent, hardening constituent, and hardening object of this invention a binder, adhesives, and sheet mold goods (a permeability sheet, a protection sheet, and a liner sheet --) A vibration-deadening sheet, an imprint sheet, a modulated light sheet, an antistatic sheet, an electric conduction sheet, A care-of-health sheet, a noise insulation sheet, a protection-from-light sheet, a makeup sheet, a marking sheet, a fire-resistant sheet and film mold goods (marking, a protection film, and an ink fixing film --) As a laminate film, foam (hard, elasticity, half rigidity, fire retardancy), the vehicle for ink, a reaction plasticizer, a plasticizer, a diluent, a compatibilizer, and a middle raw material Raw materials for resin, such as polyester resin, polyurethane resin, polycarbonate resin, and various block polymer Or the raw material for reforming, an additive and also a fiber modifier, a fiber finishing agent, A paper processing agent, a paper modifier, a surfactant, a distributed stabilizer, a dispersion medium, a solvent, a viscosity controlling agent, An adsorbent, a hair processing agent, the additive for toners, an electrification control agent, an antistatic agent, a low contraction agent, An antifogger, a stain proofing agent, a hydrophilic grant agent, an oleophilic grant agent, physic support, the support for agricultural chemicals, The compounding agent for cosmetics, lubricant, the additive for polymer alloys, a gel coat agent, the resin for FRP, The additive for FRP resin, the resin for artificial marbles, the resin additive for artificial marbles, the raw material for the resin for impregnation casts, and UV-EV hardening resin, a tackifier, and various binders (a magnetic-recording medium --) The object for casting, the urethane modifier for baking the body and its function and the glass fiber sizing material RIM, The resin for glass laminates, a sound deadener, an insulator, the resin for demarcation membranes, a sound insulating material, acoustic material, Artificial leather, an artificial skin, synthetic leather, various industrial parts, daily necessaries, the cast for toiletries, Although it can be used to acrylic polyurethane rubber, an acrylic polyurethane rubber modifier, an acrylic urethane foam modifier, a polyurethane rubber modifier, a urethane foam plasticizer, a urethane foam modifier, an acrylic rubber modifier, etc. It is desirable to use it

effectively as a coating, a sealing material, a paint film water blocking material, etc. especially. [0123] For example, in using it as a coating, it adds the component generally blended in coatings. For example, in case a coating is prepared using the hardenability constituent of this invention, a color and/or a pigment are added to the hardenability constituent of this invention. In case such a color and/or a pigment are added, the dispersant of a color and a pigment can be used. Furthermore, in order to improve the viscosity or thixotropy nature of a coating, a viscosity controlling agent, a thixotropy nature regulator, etc. can be blended. Moreover, in using the hardenability constituent of this invention, and a hardening constituent as a coating, it blends an ultraviolet ray absorbent, a light-fast grant agent, an antioxidant, a dripping inhibitor, a defoaming agent, etc.

[0124] Moreover, the viscosity in 25 degrees C of the coating of this invention is usually 500 to 5000 centipoise preferably 100 to 50000 centipoise. Although the coating of this invention does not require blending especially a solvent since the hardenability constituent has the ordinary temperature fluidity, a solvent may be blended as occasion demands.

[0125] The sealing material of this invention is comparatively prepared using a fluid low hardenability constituent and a hardening constituent. In this sealing material, a color and/or a pigment are usually added. In case such a color and/or a pigment are added, the dispersant of a color and a pigment can be used. Furthermore, in order to improve a sealing material's viscosity or thixotropy nature, a viscosity controlling agent, a thixotropy nature regulator, etc. can be blended. Moreover, an ultraviolet ray absorbent, a light-fast grant agent, an antioxidant, a defoaming agent, a plasticizer, an adhesion grant agent, etc. are blended with the sealing material of this invention.

[0126] Moreover, the viscosity in 25 degrees C of the coating of this invention is usually 10000 to 50000 centipoise preferably 5000 to 100000 centipoise.

[0127] If a hardening constituent is used especially as a sealing material of this invention, a 1 liquid type sealing material can be prepared.

[0128] The paint film water blocking material of this invention is prepared using an acrylic polymer [a], an acrylic polymer [a-1], a hardenability constituent, an above-mentioned hardening constituent, and an above-mentioned hardening object. A color and/or a pigment can be added to this paint film water blocking material. In case such a color and/or a pigment are added, the dispersant of a color and a pigment can be used. Furthermore, in order to improve the viscosity or thixotropy nature of a coating, a viscosity controlling agent, a thixotropy nature regulator, etc. can be blended. Moreover, an ultraviolet ray absorbent, a light-fast grant agent, an antioxidant, a dripping inhibitor, a defoaming agent, etc. are blended with the paint film water blocking material of this invention. Furthermore, although it has good waterproofness, this paint film waterproofing agent can blend water repellent and waterproof resin in order to raise this waterproofness further.

[0129] Moreover, the viscosity in 25 degrees C of the paint film waterproofing agent of this invention is usually 5000 to 10000 centipoise preferably 1000 to 50000 centipoise. Although the paint film water blocking material of this invention does not require blending especially a solvent since the hardenability constituent has the ordinary temperature fluidity, a solvent may be blended as occasion demands. [0130] The acrylic polymer [a], the acrylic polymer [a-1], the hardenability constituent, hardening constituent, and hardening object of this invention Besides the coating which gave [above-mentioned] explanation, a sealing material, and a paint film water blocking material, a binder, adhesives, sheet mold goods (a permeability sheet, a protection sheet, a liner sheet, and a vibration-deadening sheet --) An imprint sheet, a modulated light sheet, an antistatic sheet, an electric conduction sheet, a care-of-health sheet, A noise insulation sheet, a protection-from-light sheet, a makeup sheet, a marking sheet, a fire-resistant sheet, As film mold goods (marking, a protection film, an ink fixing film, laminate film), foam (hard, elasticity, half rigidity, fire retardancy), the vehicle for ink, a reaction plasticizer, a plasticizer, a diluent, a compatibilizer, and a middle raw material Raw materials for resin, such as polyester resin, polyurethane resin, polycarbonate resin, and various block polymer Or the raw material for reforming, an additive and also a fiber modifier, a fiber finishing agent, A paper processing agent, a paper modifier, a surfactant, a distributed stabilizer, a dispersion medium, a solvent, a viscosity controlling agent, An adsorbent, a hair processing agent, the additive for toners, an electrification control agent, an antistatic agent, a low contraction agent, An antifogger, a stain proofing agent, a hydrophilic grant agent, an oleophilic grant agent, physic support, the support for agricultural chemicals, The compounding agent for cosmetics, lubricant, the additive for polymer alloys, a gel coat agent, the resin for FRP, The additive for FRP resin, the resin for artificial marbles, the resin additive for artificial marbles, the raw material for the resin for impregnation casts, and UV-EV hardening resin, a tackifier, and various binders (a magnetic-recording medium --) The

object for casting, the urethane modifier for baking the body and its function and the glass fiber sizing material RIM, The resin for glass laminates, a sound deadener, an insulator, the resin for demarcation membranes, a sound insulating material, acoustic material, Artificial leather, an artificial skin, synthetic leather, various industrial parts, daily necessaries, the cast for toiletries, It can also be used as acrylic polyurethane rubber, an acrylic polyurethane rubber modifier, an acrylic urethane foam modifier, a polyurethane rubber modifier, a urethane foam plasticizer, a urethane foam modifier, an acrylic rubber modifier, etc.

[0131]

[Effect of the Invention] The acrylic polymer [a] of this invention contains the molecule which the radical which has the hydroxyl group and sulfur atom which are expressed with the end of at least 1 of a polymer molecule by the specific formula has combined, and this hydroxyl group shows good reactivity for example, to the poly isocyanate compound etc. And this acrylic polymer [a] can be manufactured according to the bulk polymerization which was conventionally difficult to control, therefore this acrylic polymer [a] can be obtained in the condition that a reaction solvent, water, etc. are not included substantially.

[0132] And condensation hardening of the hardenability constituent which blended the poly isocyanate compound with the acrylic polymer [a] of this invention can be carried out, the hardened material is supple, and moreover high reinforcement is shown, and it excels also in waterproofness.

[0133] Moreover, the acrylic polymer [a-1] which has the structure to which the isocyanate radical combined the hardening constituent of this invention with some hydroxyl groups [at least] of the above-mentioned acrylic polymer [a] absorbs moisture, and carries out self-condensation hardening. Therefore, this hardening constituent can be used as a 1 liquid mold-curing nature resin constituent.

[0134] furthermore, the hardening object of this invention from excelling in a water resisting property, flexibility, and flexibility, and having rubber elasticity such a property -- using -- a binder, adhesives, and sheet mold goods (a permeability sheet --) A protection sheet, a liner sheet, a vibration-deadening sheet, an imprint sheet, a modulated light sheet, an antistatic sheet, An electric conduction sheet, a care-of-health sheet, a noise insulation sheet, a protection-from-light sheet, a makeup sheet, a marking sheet, a fire-resistant sheet and film mold goods (marking, a protection film, and an ink fixing film --) A laminate film, foam (hard, elasticity, half rigidity, fire retardancy), the vehicle for ink, A reaction plasticizer, a plasticizer, a diluent, a compatibilizer, an electrification control agent, an antistatic agent, A low contraction agent, a gel coat agent, the resin for FRP, the resin for artificial marbles, the resin additive for artificial marbles, Although it can be used to the resin for impregnation casts, the various urethane modifiers for Binders (baking a magnetic-recording medium, the object for casting, the body and its function, glass fiber sizing material) RIM, a sound deadener, an insulator, a sound insulating material, acoustic material, artificial leather, synthetic leather, various industrial parts, etc. It can consider as a coating, a sealing material, and a paint film water blocking material especially.

[0135] Moreover, a hardened material has flexibility, and the coating of this invention, a sealing material, and a paint film water blocking material have high reinforcement, and are excellent also in waterproofness. Therefore, while excelling in the gestalt imitation nature to the base material which applies these and protecting a base material physically, the waterproofness excellent in the base material can be given.

[0136]

[Example] Next, this invention is not limited by these examples, although an example is shown and this invention is further explained to a detail.

[0137]

[Example 1] The 2-ethylhexyl acrylate 100 weight section was taught, nitrogen gas was introduced in the flask, and nitrogen gas permuted the air in a flask with the flask equipped with stirring equipment, nitrogen gas installation tubing, the thermometer, and the reflux cooling pipe. Furthermore, introducing nitrogen gas, it heated gently so that it might become the temperature whose contents of a flask are 60 degrees C. [0138] Subsequently, the thioglycerol 5 weight section fully permuted with nitrogen gas was added in the flask under stirring as a catalyst.

[0139] It was made to react for 4 hours, performing cooling and warming so that the temperature in the flask after thioglycerol addition and under stirring may be maintained by 60 degrees C.

[0140] The temperature of the reactant after 4-hour progress and in a flask was returned to the room temperature, and the reactant was taken out. Conversion was 75%, when the amount of monomer residuals in this reactant was measured using the gas chromatography and having been asked for conversion.

[0141] In this way, the obtained reactant was moved to the eggplant mold flask, this eggplant mold flask was installed in the rotary evaporator, and the monomer in a reactant was removed, heating gradually at 70

degrees C under reduced pressure.

- [0142] A heating residue [in / in the obtained acrylic polymerization object (1) / 150 degrees C] is 99.7 % of the weight, and most unreacted monomers were removed by this actuation.
- [0143] in this way, the molecular weight measured with gel permeation chromatography (GPC) about the obtained acrylic polymer (1) -- the number of weight average molecular weight -- it was =3700, number-average-molecular-weight =2200, and disprsion-index =1.7. The viscosity in 25 degrees C of this acrylic polymer (1) was 2900 centipoises, and the hydroxyl value (OHV:mgKOH/g) was 48.
- [0144] By computing from these analysis results, it was checked that the component unit guided from the thioglycerol to 100% of the molecule end of this acrylic polymer (1) is introduced.
 [0145]
- [Example 2] In the example 1, as a monomer, the ethyl acrylate 100 weight section was used and the acrylic polymer (2) was similarly manufactured except having made the amount of the thioglycerol used into 8 weight sections.
- [0146] A heating residue [in / in the obtained acrylic polymer (2) / 150 degrees C] is 99.3 % of the weight, and most unreacted monomers were removed by this actuation.
- [0147] In this way, the molecular weight measured with gel permeation chromatography (GPC) about the obtained acrylic polymer (2) was weight-average-molecular-weight =4700, number-average-molecular-weight =2800, and disprsion-index =1.7. The viscosity in 25 degrees C of this acrylic polymer (1) was 11900 centipoises, and the hydroxyl value (OHV:mgKOH/g) was 77.
- [0148] By computing from these analysis results, it was checked that the component unit guided from the thioglycerol to 100% of the molecule end of this acrylic polymer (1) is introduced.

 [0149]
- [The example 1 of a comparison] The 2-ethylhexyl acrylate 90 weight section and the 2-hydroxyethyl acrylate 10 weight section were taught, the butyl-acetate 50 weight section was taught as a solvent, nitrogen gas was introduced in the flask and nitrogen gas permuted the air in a flask with the flask equipped with stirring equipment, nitrogen gas installation tubing, the thermometer, and the reflux cooling pipe.
- [0150] It heated quietly to the temperature of 60 degrees C of contents in a flask, introducing nitrogen gas furthermore.
- [0151] Subsequently, it added in the flask under stirring of the n-butyl mercaptan 8 weight section fully permuted with nitrogen gas, and the azobisisobutyronitril 0.1 weight section was further added in the flask as a polymerization initiator.
- [0152] It was made to react for 4 hours, performing cooling and heating so that whenever [after azobisisobutyronitril addition and under stirring / internal-temperature-in-the-flask] can maintain at 60 degrees C.
- [0153] The temperature of a reactant was returned to the room temperature after 4-hour progress, and contents were taken out.
- [0154] Conversion was 79% when the amount of monomer residuals in the taken-out reactant was calculated for a gauge head and conversion with the gas chromatography.
- [0155] Furthermore, while removing the unreacted monomer in a reactant like the example 1, the butyl acetate which is a reaction solvent was removed.
- [0156] in this way, the molecular weight measured with gel permeation chromatography (GPC) about the obtained acrylic polymer (c-1) -- the number of weight average molecular weight -- it was =4400, number-average-molecular-weight =2300, and disprsion-index =1.9. The viscosity in 25 degrees C of this acrylic polymer was 4200 centipoises, and the hydroxyl value (OHV:mgKOH/g) was 48.

 [0157]
- [Example 3] the flask equipped with the ring current cooling pipe equipped with churning equipment, desiccation nitrogen gas installation tubing, a thermometer, a dropping funnel, and a molecular sieve -- the toluene diisocyanate 16 weight section, the toluene 50 weight section, and a jib -- the CHIRUJI lauric-acid tin 0.05 weight section was taught, and while desiccation nitrogen permuted the air in a flask, it heated at 60 degrees C. Then, the temperature in a flask trickled in the flask the acrylic polymer (1) 100 weight section obtained in the example 1 over 2 hours, performing heating and cooling so that it can maintain within the limits of 60 degrees C 70 degrees C.
- [0158] After the acrylic polymer (1) whole quantity was dropped, the temperature up of the temperature in a flask was carried out to 80 degrees C, the reaction was performed at 80 degrees C as it was for 6 hours, and the reaction was completed. Then, toluene and an unreacted poly isocyanate compound (TDI) were removed by the evaporator, having cooled the reaction solution to the room temperature, having taken out the reactant

in a flask, and heating gradually at 90 degrees C under reduced pressure.

[0159] The heating residue [in / in the obtained poly isocyanate denaturation acrylic polymer object (3) / 150 degrees C] was 99.8%, and the viscosity in 25 degrees C was 78000 centipoises.

[0160] In this way, when the residual hydroxyl group in the obtained poly isocyanate denaturation acrylic polymer (3) was investigated by FT-IR (Fourier transform infrared absorption spectrum), the absorption band resulting from a hydroxyl group had disappeared completely. Moreover, the amount of NCO(s) calculated from the amine value about this poly isocyanate denaturation acrylic polymer (3) was 4.7%. [0161]

[Example 4] In the example 3, the denaturation object was similarly prepared except having used the hexamethylene di-isocyanate 25 weight section instead of the used isocyanate compound.

[0162] The heating residue [in / in the obtained poly isocyanate denaturation acrylic polymer (4) / 150 degrees C] was 99.8%, and the viscosity in 25 degrees C was 38000 centipoises.

[0163] In this way, when the residual hydroxyl group in the obtained poly isocyanate denaturation acrylic polymer (4) was investigated by FT-IR (Fourier transform infrared absorption spectrum), the absorption band resulting from a hydroxyl group had disappeared completely. Moreover, the amount of NCO(s) calculated from the amine value about this denaturation object was 4.7%.

[0164]

[The example 2 of a comparison] In the example 3, although it was going to perform the poly isocyanate denaturation of an acrylic polymer instead of the acrylic polymer (1) obtained in the example 1 using the acrylic polymer prepared in the example 1 of a comparison, 1 hour after the polymer whole quantity was dropped and beginning the temperature up at 80 degrees C, the viscosity of a reactant became remarkably high, a reactant began to gel, and an isocyanate denaturation object was not able to be obtained.

[0165]

[Example 5] The acrylic polymer (1) 100 weight section prepared in the example 1 to the beaker with a capacity of 200ml, the isocyanate compound (trade name; -- duranate 24A-100 and the Asahi Chemical Co., Ltd. make --) of three functionality which carried out BYUU let denaturation of the hexamethylene disocyanate as a poly isocyanate compound 21 NCO=23.5% weight sections -- putting in -- further -- as a hardening accelerator (curing catalyst) -- a jib -- the CHIRUJI lauric-acid tin 0.01 weight section could be added, it mixed, and the uniform hardenability constituent which has a fluidity was prepared.

[0166] On the film made from polyethylene, the bar coating machine was used, the obtained hardenability constituent was applied, it was left for one week on condition that 23 degrees C and 65%RH, and the hardening body membrane of a hardenability constituent was obtained.

[0167] When the obtained hardening body membrane was exfoliated from the film made from polyethylene and finger touch investigated hardenability, there is no feeling of a tuck and having all also hardened smeariness completely on the finger was checked.

[0168]

[Example 6] As opposed to the acrylic polymer (1) 100 weight section manufactured in the example 1 in the example 5 as the isocyanate compound of 15 weight sections -- the high grade flake article (trade name; -- bamboo NETO 300F --) of a diphenylmethane diisocyanate monomer the Takeda Chemical, Ltd. make, NCO=33.6%, and a jib -- except having used the CHIRUJI lauric-acid tin 0.001 weight section, the hardenability constituent was prepared similarly and the hardening body membrane was similarly formed except having used this hardenability constituent.

[0169] When the obtained hardening body membrane was exfoliated from the film made from polyethylene and finger touch investigated hardenability, there is no feeling of a tuck and having all also hardened smeariness completely on the finger was checked.

[0170]

[Example 7] In an example 5, use the acrylic polymer (2) 100 weight section prepared in the example 2 instead of an acrylic polymer (1), and this acrylic polymer (2) 100 weight section is received. as the isocyanate compound of 15 weight sections -- the high grade flake article (trade name; -- bamboo NETO 300F --) of a diphenylmethane diisocyanate monomer the Takeda Chemical, Ltd. make, NCO=33.6%, and a jib -- except having used the CHIRUJI lauric-acid tin 0.001 weight section, the hardenability constituent was prepared similarly and the hardening body membrane was similarly formed except having used this hardenability constituent.

[0171] When the obtained hardening body membrane was exfoliated from the film made from polyethylene and finger touch investigated hardenability, there is no feeling of a tuck and having all also hardened smeariness completely on the finger was checked.

[0172]

[Example 8] In an example 5, use the acrylic polymer (2) 100 weight section prepared in the example 2 instead of an acrylic polymer (1), and this acrylic polymer (2) 100 weight section is received. as the poly isocyanate compound of 41 weight sections -- the hexamethylene di-isocyanate compound (trade name; -- duranate D-101 and the Asahi Chemical Co., Ltd. make --) of two organic functions NCO=19.7% and a jib - except having used the CHIRUJI lauric-acid tin 0.001 weight section, the hardenability constituent was prepared similarly and the hardening body membrane was similarly formed except having used this hardenability constituent.

[0173] When the obtained hardening body membrane was exfoliated from the film made from polyethylene and finger touch investigated hardenability, there is no feeling of a tuck and having all also hardened smeariness completely on the finger was checked.

[0174]

[Example 9] the poly isocyanate denaturation acrylic polymer (3) 100 weight section prepared in the example 3 instead of the acrylic polymer (1) in the example 5 -- using it -- this poly isocyanate denaturation acrylic polymer (3) 100 weight section -- receiving -- a jib -- except having used the CHIRUJI lauric-acid tin 0.001 weight section, the hardenability constituent was prepared similarly and the hardening body membrane was similarly formed except having used this hardenability constituent.

[0175] When the obtained hardening body membrane was exfoliated from the film made from polyethylene and finger touch investigated hardenability, there is no feeling of a tuck and having all also hardened smeariness completely on the finger was checked.

[0176]

[Example 10] the poly isocyanate denaturation acrylic polymer (4) 100 weight section prepared in the example 4 instead of the acrylic polymer (1) in the example 5 -- using it -- this poly isocyanate denaturation acrylic polymer (4) 100 weight section -- receiving -- a jib -- except having used the CHIRUJI lauric-acid tin 0.001 weight section, the hardenability constituent was prepared similarly and the hardening body membrane was similarly formed except having used this hardenability constituent.

[0177] When the obtained hardening body membrane was exfoliated from the film made from polyethylene and finger touch investigated hardenability, there is no feeling of a tuck and having all also hardened smeariness completely on the finger was checked.

[0178]

[Examples 11 and 12 and the example 3 of a comparison] To the beaker with a capacity of 200ml, stirring mixing was carried out by the mixer and the viscous constituent (coating constituent) was obtained until it blended the titanium oxide particle 20 weight section and the poly isocyanate compound as a pigment to various polymers or a constituent, and this base resin as shown in Table 1, and the contents in a beaker became homogeneity as base resin.

[0179] The bar coating machine was used for the griddle front face of 0.5mm thickness, and the obtained constituent was applied to 20 micrometers of coating thickness.

[0180] Furthermore, after leaving at temperature the griddle which applied the constituent in this way at 23 degrees C for 2 hours, it processed by heating for 30 minutes and being burned at 100 degrees C, with a dryer.

[0181] The property of the obtained paint film is as follows.

[0182]

[Table 1]

表 1

	主剤	無料	ポリイソシアネート	硬化性	密着性	可撓性	光沢性
突施例11	アクリル重合体 (1) 100番番番	融化テタン 2位登録	タケネート300F 25重量器	AA	AA	вв	BB
実施例12	ポリイソシアネ ート変数アクリ ル承重合像(4) 100重要第	競化チタン 加重主義	なし	ВВ	вв	AA	AA
比較例 3	アクリン系重合 体 (c-1) 100重量器	政党チラン 四重主義	タケネート3007 25 重量 写	AA	ВВ	ממ	вв

- [0183] In addition, in the above-mentioned table 1, the notation is as follows at hardenability, adherend adhesion, film flexibility, film gloss, and the evaluation approach list.
- [0184] Hardenability: finger touch estimated the feeling of a tuck on the front face of a paint film. [0185]
- AA [... There is a tuck clearly] ... Tuck-less BB ... It is CC with a tuck slightly... DD with a feeling of a tuck
- [0186] Adherend adhesion: observation evaluation of the condition of the float of cover printing and a paint film etc. was carried out for the paint film front face by viewing with the glass rod.
 [0187]
- AA [... A relief is seen by the considerable part of a paint film.] ... The float of a paint film etc. is BB which is not seen at all... It is CC as which a float etc. is slightly regarded by the paint film... It is DD as which a float partial to a paint film is regarded.
- [0188] Film flexibility: observation evaluation of bending and the crack degree of a paint film was carried out by viewing at the field side which has not carried out coating of the steel plate to 90 degrees by using a coating side as a top face.

[0189]

- AA [... There is no steel plate crookedness imitation nature in a paint film, and a considerable crack arises.] ... It is BB which a paint film follows in footsteps of crookedness of a steel plate, and does not produce a crack etc. ... A paint film is CC which a crack produces slightly although followed in footsteps of crookedness of a steel plate... It is DD which the imitation nature to steel plate crookedness of a paint film is low, and a crack produces.
- [0190] Film glossiness: observation evaluation of the gloss degree of a paint film was carried out by viewing.

[0191]

- AA ... BB with very good gloss ... Although it is glossy, as compared with "AA", glossiness is inferior. [0192]
- CC ... Some gloss is a certain DD... It is completely lusterless.
- [0193] The coating of this invention can form the paint film which has the flexibility which was very excellent from contrast with the above-mentioned example and the example of a comparison, and the coating of this invention is a non-solvent.

[0194]

- [Examples 13, 14, and 15 and the example 4 of a comparison] Distributed mixing was fully carried out by the mixer, and viscous resin with thixotropy was prepared until it blended precipitated calcium carbonate (mean particle diameter: 0.2 micrometers) and the poly isocyanate compound, and the polyol curing agent with the beaker with a capacity of 200ml as a bulking agent with each polymer constituent 100 weight section as base resin and the resin in a beaker became homogeneity.
- [0195] It slushed slowly so that air might not be involved in the sample prototype container which put the obtained resin on two polystyrene plates of 2mm thickness which stuck the spacer of 1mm thickness made from polyethylene on three sides.

[0196] The sample plate which put resin was turned in seven days, casting opening was turned up at 23 degrees C, it put, and it was recuperated. After recuperating oneself for seven days at 50 more degrees C in the sample plate which recuperated itself for seven days, the polyethylene plate and the spacer were removed and the sealing material sample of 1mm thickness was obtained.

[0197] The property of the obtained sealing material sample is as follows. [0198]

[Table 2]

t abic 2 j

	主剂	充填剤	硬化剤	硬化性	可携性	延伸率(%)	破断強度 (kg/cm²)
実施例13	下夕早月滿重 合作(1) 10個量器	を変換を表する。 ウム 70重要	ポリイソシアネ ート タケネート3 6 OF 15電量器	AA	AA	500	2 1
実施例14	アクリル英重 合作(3) 100重量器	を見ま を を を を を を を を を を を を を	なし	AA	ВВ	420	2 8
実施例15	ポリイソシア ネート安性ア クリル系派合 体(4) 100重量器	整理支援カルシ ウム 50重量等	ポリオール硬化 体 DC-3000 120重量器	AA	AA	1100	1 2
比較例 4	アクリル系章 合体(c-1) 100重要	を受けるカンウム ウム 7 0 直接等	ポリイソシアネ ート ケケネート30 OF 15重要	ВВ	DД	150	1 5

[0199] In addition, in the above-mentioned table 2, the notation is as follows at hardenability, adherend adhesion, film flexibility, film gloss, and the evaluation approach list.

[0200] - Hardenability: finger touch estimated the feeling of a tuck on the front face of a paint film. [0201]

AA [... There is a tuck clearly] ... Tuck-less BB ... It is CC with a tuck slightly... DD with a feeling of a tuck

[0202] - Film flexibility: observation evaluation of bending (goby chip box) and the crack degree of a paint film was carried out for the paint film by viewing at 180 degrees.

[0203]

AA [... A remarkable crack arises in a paint film.] ... It is BB which does not produce a crack etc. in a paint film... It is CC which a crack produces slightly in a paint film... It is DD which a crack produces in a paint film.

[0204] - The rate of coat extension: the obtained sample was cut off in the No. 3 dumbbell mold, and it was left on 23 degrees C and 65% of conditions for 24 hours.

[0205] Distance until a sample fractures at the rate of hauling rate 200 mm/min. was found, and the stretch from sample length was made into the rate of extension.

[0206] - Coat breaking strength: the obtained sample was cut off in the No. 3 dumbbell mold, and it was left on 23 degrees C and 65% of conditions for 24 hours.

[0207] It asked for the maximum reinforcement at the time of a sample fracturing at the rate of hauling rate 200 mm/min., and considered as decision reinforcement to the cross section to the extension direction of a sample.

[0208] However, the used polyol hardening object is stiffened using the polyether polyol by Nippon Oil & Fats Co., Ltd.

[0209] The sealing agent of flexibility of this invention is very good, and contrast with an example and the

example of a comparison shows excelling in any property of reinforcement and the rate of extension. [0210]

[Examples 16 and 17 and the example 5 of a comparison] Whiting (mean diameter: 5.0 micrometers) and an isocyanate compound were blended with the beaker with a capacity of 200ml as the various polymer constituent 100 weight sections and a bulking agent as base resin, distributed mixing was fully carried out using the mixer until the resin in a beaker became homogeneity, and combination **** with a fluidity was prepared.

[0211] thickness becomes a tray with a depth [made from polyethylene] of 2cm with 5mm about the obtained resin compound -- as -- slushing -- a comb -- coating was carried out so that air might not be involved in using a knife.

[0212] The sample which hardened the tray which slushed resin from the tray made from polyethylene after recuperating itself for seven days at 23 degrees C was taken out, and the paint film water blocking material sample was obtained.

[0213] The property of the obtained paint film waterproofing agent sample is as follows.

[0214]

[Table 3]

表 3

	主剤	充填剤	硬化剤	硬化性	可撓性	延伸率(%)	破断強度 (kg/cm²)
実施例16	アクリル承重 合作(1) 10位遺標	全員民間分から ウム 80重量第	ポリイソシアネ ート タケネート30 0ア 15重量器	AA	AA	450	2 2
実施例17	アタリル承重 会像(2) 10重量等	重要を 力点 80重要	ポリイソシアネート テュラネート d-100 41重要	AA	AA	420	1 5
比較例 5	アクリル承重 合体(c-1) 100重量等	重貨民政治ルシ ウム 10重量第	ポリイソシアネ ート タケネート30 OF 15電量器	AA	DD	120	1 9

[0215] In addition, in the above-mentioned table 3, the notation is as follows at hardenability, adherend adhesion, film flexibility, the rate of extension, breaking strength, and the evaluation approach list.

[0216] - Hardenability: finger touch estimated the feeling of a tuck on the front face of a paint film. [0217]

AA [... There is a tuck clearly] ... Tuck-less BB ... It is CC with a tuck slightly... DD with a feeling of a tuck

[0218] - Film flexibility: observation evaluation of bending (goby chip box) and the crack degree of a paint film was carried out for the paint film by viewing at 180 degrees.
[0219]

AA [... A remarkable crack arises in a paint film.] ... It is BB which does not produce a crack etc. in a paint film... It is CC which a crack produces slightly in a paint film... It is DD which a crack produces in a paint film.

[0220] - The rate of coat extension: the obtained sample was cut off in the No. 3 dumbbell mold, and it was left on 23 degrees C and 65% of conditions for 24 hours.

[0221] Distance until a sample fractures at the rate of hauling rate 200 mm/min. was found, and the stretch from sample length was made into the rate of extension.

[0222] - Coat breaking strength: the obtained sample was cut off in the No. 3 dumbbell mold, and it was left on 23 degrees C and 65% of conditions for 24 hours.

[0223] It asked for the maximum reinforcement at the time of a sample fracturing at the rate of hauling rate 200 mm/min., and considered as decision reinforcement to the cross section to the extension direction of a sample.

[0224] It is the elastic body which whose flexibility was [the paint film water blocking material of this invention] very good, and was excellent in reinforcement and the rate of extension from contrast with an example and the example of a comparison.

[Translation done.]

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-239308

(P2000-239308A)

(43)公開日 平成12年9月5日(2000.9.5)

(51) Int.Cl. ⁷		識別記号		FΙ					テーマコート*(参考)
C08F	2/38			C 0 8	F	2/38			4H017
	2/02					2/02			4 J 0 0 2
	20/00				1	20/00			4 J O 1 1
C 0 8 G	18/62			C 0 8	G	18/62			4 J 0 3 4
C08K	5/29			C 0 8	K	5/29			4J038
			審查請求	未請求	旅館	項の数38	OL	(全 22 頁) 最終頁に続く
(21)出願番号		特願平11-46933	-	(71) 出	願人	. 000202	350		
						綜研化	学株式	会社	
(22)出願日		平成11年2月24日(1999.2.2			東京都	豊島区	高田3丁目2	29番5号	
				(72)発	明者	一一一一一一	秀	=	
						埼玉県	狭山市.	上広瀬130	粽研化学株式会
						社研究	所内		
				(72)発	明者	上 野	浩		
						埼玉県	狭山市	上広瀬130	線研化学株式会
						社研究	所内		
				(74) 48	八野人	1000819	994		
						弁理士	鈴木	俊一郎	(外3名)
									最終頁に続く

アクリル系重合体、硬化性組成物、硬化体およびこれらの用途 (54) 【発明の名称】

(57)【要約】

【解決手段】本発明は、重合体分子の少なくとも1の末 端に、次式 [A]で表される基が結合している分子を含 有するアクリル系重合体 [a]、アクリル系重合体 [a]とポリイソシアネート化合物とからなる硬化性組 成物である。また、本発明は下記式の水酸基にイソシア ネート化合物が結合したイソシアネート変性共重合体 [a-1]を含有する半硬化組成物、さらにとれらの硬 化物をも提供する。式中、R¹~R¹は、水素原子、アル キル基であり、R⁶は、水酸基、アルキル基などであ る。また、本発明の硬化性組成物は、上記アクリル系重 合体と、ポリイソシアネート基を有する化合物を含有す る。さらに、本発明の塗料、シーリング剤、塗膜防水剤 は、上記成分を主成分としている。

【効果】 本発明のアクリル系重合体には、分子末端に 水酸基を有する上記の基が導入されており、この水酸基 はポリイソシアネート化合物と反応性を有する。これら を主成分とすることにより、優れた特性の塗料、シーリ ング材、塗膜防水材を得ることができる。

【化1】

$$R^{1}-C-C-C-R^{4} \cdots [A]$$

$$-S \quad OH \quad R^{4}$$

【特許請求の範囲】

【請求項1】 重合体分子の少なくとも1の末端に、次式[A]で表される基が結合している分子を含有することを特徴とするアクリル系重合体[a];

1

【化1】

$$R^{1} - C - C - C - R^{4}$$
 ... [A]
 $-S = OHR^{6}$

[ただし、上記式 [A] において、 $R^1 \sim R^3$ は、それぞ 10 れ独立に、水素原子または炭素数 $1 \sim 12$ のアルキル基であり、 R^3 は、水酸基、炭素数 $1 \sim 12$ のアルコキシ基および炭素数 $1 \sim 12$ のアルキル基よりなる群から選ばれる少なくとも 1 種類の基である]。

【請求項2】 上記式 [A] においてR⁶が、水酸基であることを特徴とする請求項第1項記載のアクリル系重合体 [a]。

【請求項3】 上記式 [A] において R¹~R¹が、水素原子であることを特徴とする請求項第1項記載のアクリル系重合体 [a]。

【請求項4】 上記少なくとも1の末端に上記式[A] で表される基が結合したアクリル系重合体[a]の主鎖に、次式[B]で表される繰り返し単位を有することを特徴とする請求項第1項記載のアクリル系重合体

[a];

[化2]

$$-CR^{7}R^{8}-CR^{9}-$$

$$C=0 \qquad \cdots [B]$$

$$O-R^{10}$$

[ただし、上記式 [B] において、R'~R'はそれぞれ独立に水素原子、ハロゲン原子または炭素数 1~3のアルキル基を表し、R'"は、水素原子、アルカリ金属原子、炭素数 1~22の炭化水素基(該炭化水素基は直鎖状であっても側鎖を有していてもよく、また、該炭化水素基あるいは側鎖を形成する基中の水素原子の一部が、一〇H、一F、一〇〇H、一〇1、一NH、よりなる群から選ばれる少なくとも一種類の極性基またはハロゲン原子で置換されていてもよく、また該炭化水素基は二重結合を有していてもよく、さらに該炭化水素基は、環40状構造を有していてもよい)である]。

【請求項5】 上記アクリル系重合体 [a]の重量平均分子量が1000~20000の範囲内にあることを特徴とする請求項第1項記載のアクリル系重合体 [a]。

【請求項6】 上記アクリル系重合体 [a]の水酸基価が5~500の範囲内にあることを特徴とする請求項第1項記載のアクリル系重合体 [a]。

【請求項7】 上記アクリル系重合体 [a]が、実質的 に溶媒を含有していないことを特徴とする請求項第1項 50

記載のアクリル系重合体 [a]。

【請求項8】 重合体分子の少なくとも1の末端に、次式[A]で表される基が結合している分子を含有するアクリル系重合体[a]と、分子内に複数のイソシアネート基を有する化合物を含有することを特徴とする硬化性組成物;

【化3】

$$R^{1}-\overset{R^{2}}{c}-\overset{R^{3}}{c}-\overset{R^{4}}{c}-R^{4} \cdots [A]$$

$$-\overset{R}{s} \overset{Q}{OH} \overset{R^{5}}{R^{5}}$$

[ただし、上記式 [A] において、R¹~R¹は、それぞれ独立に、水素原子または炭素数 1~12のアルキル基であり、R゚は、水酸基、炭素数 1~12のアルコキシ基および炭素数 1~12のアルキル基よりなる群から選ばれる少なくとも1種類の基である]。

【請求項9】 上記アクリル系重合体 [a]中に存在する水酸基のモル数100に対してイソシアネート基のモル数が50~200の範囲内になるように上記分子内に20 複数のイソシアネート基を有する化合物を配合することを特徴とする請求項第8項記載の硬化性組成物。

【請求項10】 上記式 [A] においてR⁵が、水酸基 であることを特徴とする請求項第8項記載の硬化性組成 物。

【請求項11】 上記式 [A] においてR¹~R⁵が、水素原子であることを特徴とする請求項第8項記載の硬化性組成物。

【請求項12】 上記少なくとも1の末端に上記式 [A]で表される基が結合したアクリル系重合体[a] の主鎖に、次式[B]で表される繰り返し単位を有する ことを特徴とする請求項第8項記載の硬化性組成物; [化4]

$$-CR^{7}R^{8}-CR^{9}-$$

$$C=0 ... [B]$$

$$O-R^{10}$$

[ただし、上記式 [B] において、R'~R'はそれぞれ独立に水素原子、ハロゲン原子または炭素数 1~3のアルキル基を表し、R'では、水素原子、アルカリ金属原子、炭素数 1~22の炭化水素基(該炭化水素基は直鎖状であっても側鎖を有していてもよく、また、該炭化水素基あるいは側鎖を形成する基中の水素原子の一部が、一〇H、一F、一〇〇H、一〇1、一NH、よりなる群から選ばれる少なくとも一種類の極性基またはハロゲン原子で置換されていてもよく、また該炭化水素基は二重結合を有していてもよく、さらに該炭化水素基は、環状構造を有していてもよい)である] 。

【請求項14】 上記アクリル系重合体[a]の水酸基 価が5~500の範囲内にあることを特徴とする請求項 第8項記載の硬化性組成物。

【請求項15】 上記アクリル系重合体[a]中に存在 する水酸基の一部と、分子内に複数のイソシアネート基 を有する化合物のイソシアネート基の一部とが結合して いることを特徴とする請求項第8項記載の硬化性組成 物。

【請求項16】 重合体分子の少なくとも1の末端に、 次式 [A-1] で表される基が結合しているアクリル系 10 重合体 [a-1] 分子を含有することを特徴とする硬化 組成物;

【化5】

$$R^{2} - C - C - R^{4} - C - C - R^{4} - C - C - R^{5}$$

[ただし、上記式 [A-1] において、R¹~R⁵は、そ れぞれ独立に、水素原子または炭素数1~12のアルキ ル基であり、R゚は、水酸基、炭素数1~12のアルコ キシ基および炭素数1~12のアルキル基よりなる群か ら選ばれる少なくとも1種類の基であり、該式[A-1]で表される基中の水酸基の少なくとも一部は、-N =C=O基と結合して-NH-COO-基を形成してい る]。

【請求項17】 上記式 [A-1] においてR⁶が、水 酸基であることを特徴とする請求項第16項記載の硬化 組成物。

【請求項18】 上記式[A-1]においてR'~R 'が、水素原子であることを特徴とする請求項第16項 記載の硬化組成物。

【請求項19】 上記少なくとも1の末端に上記式[A -1]で表される基が結合したアクリル系重合体 [a-1]の主鎖に、次式[B]で表される繰り返し単位を有 することを特徴とする請求項第16項記載の硬化組成 物;

【化6】

$$-CR^{7}R^{8}-CR^{9} C=0$$
 [B]
 $O-R^{10}$

[ただし、上記式[B] において、R'~R'はそれぞれ 独立に水素原子、ハロゲン原子または炭素数1~3のア ルキル基を表し、R¹⁰は、水素原子、アルカリ金属原 子、炭素数1~22の炭化水素基(該炭化水素基は直鎖 状であっても側鎖を有していてもよく、また、該炭化水 素基あるいは側鎖を形成する基中の水素原子の一部が、 -OH、-F、-COOH、-C1、-NH₂よりなる 群から選ばれる少なくとも一種類の極性基またはハロゲ 重結合を有していてもよく、さらに該炭化水素基は、環 状構造を有していてもよい)である〕。

【請求項20】 上記アクリル系重合体[a-1]の重 量平均分子量が1000~2000の範囲内にある ことを特徴とする請求項第16項記載の硬化組成物。

【請求項21】 上記アクリル系重合体[a-1]の水 酸基価が0~200の範囲内にあることを特徴とする請 求項第16項記載の硬化組成物。

【請求項22】 上記アクリル系重合体[a-1]につ いてアミン値から算定したNCO量が0~20重量%の 範囲内にあることを特徴とする請求項第16項記載の硬 化組成物。

【請求項23】 上記アクリル系重合体[a-1]の末 端にあった水酸基の10%以上が-N=C=O基と結合 していることを特徴とする請求項第16項記載の硬化組 成物。

【請求項24】 上記硬化組成物が水分吸収縮合反応に より硬化することを特徴とする請求項第16項記載の硬 化組成物。

【請求項25】 重合体分子の少なくとも1の末端に、 次式「A」で表される基が結合している分子を含有する アクリル系重合体 [a]と、分子内に複数のイソシアネ ート基を有する化合物を含有する硬化性組成物: 【化7】

[ただし、上記式 [A] において、R'~R'は、それぞ 30 れ独立に、水素原子または炭素数1~12のアルキル基 であり、R⁶は、水酸基、炭素数1~12のアルコキシ 基および炭素数1~12のアルキル基よりなる群から選 ばれる少なくとも1種類の基である]、

および/または重合体分子の少なくとも1の末端に、次 式[A-1]で表される基が結合しているアクリル系重 合体 [a-1] 分子を含有する硬化組成物: 【化8】

[ただし、上記式 [A-1] において、R1~R5は、そ れぞれ独立に、水素原子または炭素数1~12のアルキ ル基であり、R°は、水酸基、炭素数1~12のアルコ キシ基および炭素数1~12のアルキル基よりなる群か ら選ばれる少なくとも 1 種類の基であり、該式 [A -1]で表される基中の水酸基の少なくとも一部は、-N =C=O基と結合して-NH-COO-基を形成してい る〕を用いて、

ン原子で置換されていてもよく、また該炭化水素基は二 50 水分の存在下または不存在下に分子間縮合反応によって

少なくとも硬化性組成物および/または硬化組成物中に架橋構造を形成してなることを特徴とする硬化体。

【請求項26】 上記重合性組成物を用いる場合に、アクリル系重合体 [a] およびアクリル系重合体 [a-1] 中に存在する水酸基のモル数100に対してイソシアネート基のモル数が50~200の範囲内になるように上記分子内に複数のイソシアネート基を有する化合物を配合することを特徴とする請求項第25項記載の硬化体。

【請求項27】 上記硬化体が、有機錫系硬化触媒の存 10 在下に、硬化性組成物および/または硬化組成物を硬化 させたものであることを特徴とする請求項第25項記載 の硬化体。

【請求項28】 上記式[A]および/または[A-1]においてR'が、それぞれ独立に、水酸基であるととを特徴とする請求項第25項記載の硬化体。

【請求項29】 上記式 [A] および [A−1] においてR¹~R¹が、それぞれ独立に、水素原子であることを特徴とする請求項第25項記載の硬化体。

【請求項30】 上記少なくとも1の末端に上記式 [A]で表される基が結合したアクリル系重合体 [a] または上記 [A-1]で表される基が結合したアクリル 系重合体 [a-1]の主鎖中に次式 [B]で表される繰り返し単位を有することを特徴とする請求項第25項記載の硬化体;

【化9】

$$-CR^{7}R^{8}-CR^{9} C=0$$
 \cdots [B]

[ただし、上記式 [B] において、R'~R'はそれぞれ独立に水素原子、ハロゲン原子または炭素数 1~3のアルキル基を表し、R''は、水素原子、アルカリ金属原子、炭素数 1~22の炭化水素基(該炭化水素基は直鎖状であっても側鎖を有していてもよく、また、該炭化水素基あるいは側鎖を形成する基中の水素原子の一部が、一〇H、一F、一〇〇H、一〇1、一NH、よりなる群から選ばれる少なくとも一種類の極性基またはハロゲン原子で置換されていてもよく、また該炭化水素基は二重結合を有していてもよく、さらに該炭化水素基は、環40状構造を有していてもよい)である]。

【請求項31】 上記式 [A] で表される基が結合したアクリル系重合体 [a] および式 [A-1] で表される基が結合したアクリル系重合体 [a-1] の重量平均分子量が1000~20000の範囲内にあることを特徴とする請求項第25項記載の硬化体。

【請求項32】 上記式[A]で表される基が結合したアクリル系重合体[a]の水酸基価が5~500の範囲内にあることを特徴とする請求項第25項記載の硬化体。

【請求項33】 上記式 [A-1] で表される基が結合したアクリル系重合体 [a-1] の水酸基価が0~20 0の範囲内にあることを特徴とする請求項第25項記載の硬化体。

【請求項34】 上記式 [A-1] で表される基が結合したアクリル系重合体 [a-1] についてアミン値から算定したNCO量が $0\sim20$ 重量%の範囲内にあることを特徴とする請求項第25項記載の硬化体。

【請求項35】 上記式 [A-1] で表される基が結合 したアクリル系重合体 [a-1] の末端にあった水酸基 の10%以上が-N=C=O基と結合していることを特 徴とする請求項第25項記載の硬化体。

【請求項36】 請求項第1~35項のいずれかの項に 記載のアクリル系重合体、硬化性組成物または硬化組成 物を主成分とすることを特徴とする塗料。

【請求項37】 請求項第1~35項のいずれか項に記載のアクリル系重合体、硬化性組成物または硬化組成物を主成分とすることを特徴とするシーリング材。

【請求項38】 請求項第1~35項のいずれかの項に 20 記載のアクリル系重合体、硬化性組成物または半硬化組 成物を主成分とすることを特徴とする塗膜防水材。

【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、分子末端に水酸基を有する新規なアクリル系重合体、このアクリル系重合体を含有する硬化性組成物、この硬化性組成物がポリイソシアネート化合物で変性された硬化性組成物、並びに硬化組成物、および、これらの組成物の硬化体、並びにこれらの用途に関する。

30 [0002]

【発明の技術的背景】従来から、例えばアクリル酸、メタクリル酸、スチレンおよびこれらの誘導体のような重合性二重結合を有する重合性化合物は、ラジカル重合開始剤の存在下に乳化重合法、懸濁重合法、溶液重合法および塊状重合法によって重合可能であり、こうして得られる重合物は、成形体、粘着剤、塗料、繊維など種々の用途に利用されている。こうした重合体のうち、乳化重合法、懸濁重合法、溶液重合法によって製造される重合体は、反応溶媒や分散媒を用いて重合させるため、重合温度を制御しやすく、しかも重合率が高い場合であっても反応液が流動性を有するという利点がある。

【0003】しかしながら、こうした乳化重合法、懸濁 重合法によって得られる重合体は、用途によっては生成 した重合体を反応溶媒や分散媒から分離するための沈 殿、濾過、洗浄、乾燥などの操作が必要であり、工程が 煩雑となる。

【0004】こうした中で塊状重合法は、溶媒を使用しないことから有機溶剤、分散剤、乳化剤などを用いる必要がなく、重合に関与する有機溶剤のような不純物を含まないので、反応系が簡潔となるばかりでなく、得られ

る重合体中に乳化剤や分散剤などの不純物の混入がな く、さらには目的の重合体を得るために、溶媒の除去も 不要である。とうした点からすると、工業的に有利な重 合法である。

【0005】しかしながら、一般に、こうした塊状重合 法では、重合反応速度が著しく速く、事実上との塊状重 合法を制御することはきわめて困難である。また、重合 速度が制御できずに髙温度で生成した重合体は、不均化 停止により分子の末端基が不安定な状態となったり、低 水素引き抜きなどにより、重合体の分岐化やゲル化が起 こりやすい。このため重合体の分子量、分子量分布など の分子設計が困難になることはもとより、重合体の分岐 化や不均化停止末端などの生成などにより、明確な分子 構造の設計が困難となる。さらに、ゲル化物が急激にか つ大量に生成するととがあり、最悪の場合、暴走反応に よる爆発の危険すらある。

【0006】こうした中でも、例えば、スチレン、メタ クリル酸メチルは、比較的重合速度が遅いという特性を 有していることから、塊状重合によっても反応制御が可 20 能であり、古くからその制御法は検討がなされている。 そして、こうしたスチレン、メタクリル酸メチル等の塊 状重合において、分子量、分子量分布を制御するため に、メルカプタンが使用されることがある。

【0007】たとえば、比較的反応が穏やかに進行する スチレンのようなスチレン型不飽和化合物の塊状重合に 際して、メルカプタンを用いて反応の進行を制御しなが ら塊状重合を行うことが知られている。具体的には、特 公昭55-401号公報には、「重合し得るエチレン性 不飽和モノマーを酸素存在下で約20℃から約200℃ 30 の温度で少なくとも一つのチオール基を持つ有機メルカ プタンと、実質的に完全なモノマーのポリマーへの転化 を得るのに十分な時間の間、接触させることを特徴とす る重合法。」が開示されている。この反応においては、 酸素の存在が不可欠であり、酸素の存在下に唯一の活性 剤であるメルカプタンを酸素と共に用いてエチレン型不 飽和モノマーの塊状重合を行っている。したがって、こ の反応は、酸素の存在しない雰囲気では有効に進行しな い。なお、この公報の実施例6には、メルカプタンとし て、1-チオグリセロールを用いて空気を導入しながら メタクリル酸、メタクリル酸ヒドロキシプロピル、アク リル酸ブチルおよびスチレンを85℃~140℃、実質 的には140℃の温度条件にて共重合させることが記載 されている。しかしながら、この公報に記載されている 塊状重合においてメルカプタンは酸素と共に使用されて おり、すなわち、メルカプタンと酸素とが重合開始にお ける必須成分として示されており、メルカプタンを単独 でエチレン型不飽和化合物の重合触媒とすることに関す る記載はない。しかし、この公報に記載されているメル カプタンと酸素とを重合触媒として用いた場合、酸素を 50 している分子を含有するアクリル系重合体 [a]と、分

積極的に反応系内に吹き込んでしまうため、大型プラン トでの実施の際、爆発、火災の危険が大きくなる。また 安全に重合体の製造が可能であっても、得られる重合体 の一部は、酸素によりモノマーの過酸化物ができること から、重合開始切片には、これらのモノマー過酸化物が 導入され、重合体末端の充分な制御ができないばかり か、得られた重合体が着色するなどの問題がある。

[0008]

【発明の目的】本発明は、分子末端に活性な水酸基が導 分子量体化したり、逆に先に生成していた重合体からの 10 入されたアクリル系重合体を提供することを目的として いる。

> 【0009】また、本発明は、好適には、分子の両末に イソシアネート基に対して活性を示す水酸基が導入され たアクリル系重合体を提供することを目的としている。 【0010】さらに、本発明は、こうしたアクリル系重 合体と、このアクリル系重合体の末端に存在する水酸基 に対して反応性の高いイソシアネート基を複数有する化 合物とからなり、好適には有機錫系触媒の存在下に架橋 構造を形成して硬化させることが可能な硬化性組成物を 提供することを目的としている。

> 【0011】また、本発明は、上記アクリル系重合体の 分子末端に存在する水酸基とイソシアネート化合物とが 結合して、水分を吸収して硬化可能な 1 液型の硬化組成 物を提供することを目的としている。

> 【0012】さらにまた、本発明は上記の硬化性組成物 および/または硬化組成物が完全硬化した硬化体を提供 することを目的としている。

【0013】さらに、本発明は、こうしたアクリル系重 合体、硬化性組成物あるいは硬化組成物の用途、特に、 耐水性、耐光性、柔軟性等の特性を要求される用途を提 供することを目的としている。

[0014]

【発明の概要】本発明のアクリル系重合体[a]は、重 合体分子の少なくとも1の末端に、次式[A]で表され る基が結合している分子を含有することを特徴としてい る。

[0015]

【化10】

【0016】ただし、上記式[A]において、R1~R5 は、それぞれ独立に、水素原子または炭素数1~12の アルキル基であり、R°は、水酸基、炭素数1~12の アルコキシ基および炭素数1~12のアルキル基よりな る群から選ばれる少なくとも1種類の基である。

【0017】本発明の硬化性組成物は、重合体分子の少 なくとも1の末端に、上記式[A]で表される基が結合

子内に複数のイソシアネート基を有する化合物を含有するとを特徴としている。

【0018】本発明の硬化組成物(半硬化組成物)は、重合体分子の少なくとも1の末端に、次式[A-1]で表される基が結合しているアクリル系重合体[a-1]分子を含有することを特徴としている。

[0019]

【化11】

$$R^{2} - C - C - R^{4} - C - C - R^{4} - C - C - R^{5}$$

【0020】ただし、上記式 [A-1] において、R¹~R¹は、それぞれ独立に、水素原子または炭素数 1~12のアルキル基であり、R゚は、水酸基、炭素数 1~12のアルコキシ基および炭素数 1~12のアルキル基よりなる群から選ばれる少なくとも1種類の基であり、該式 [A-1] で表される基中の水酸基の少なくとも一部は、-N=C=O基と結合して-NH-COO-基を形成している。

【0021】本発明の硬化体は、重合体分子の少なくとも1の末端に、次式[A]で表される基が結合している分子を含有するアクリル系重合体[a]と、分子内に複数のイソシアネート基を有する化合物を含有する硬化性組成物;

[0022]

【化12】

$$R^{2} - C - C - R^{4} - R^{5} - C - R^{5} - C - R^{5}$$
-S OH R⁵

[0023] [ただし、上記式 [A] において、 $R^1 \sim R^1$ は、それぞれ独立に、水素原子または炭素数 $1 \sim 1$ 2のアルキル基であり、 R^1 は、水酸基、炭素数 $1 \sim 1$ 2のアルコキシ基および炭素数 $1 \sim 1$ 2のアルコキシ基および炭素数 $1 \sim 1$ 2のアルキル基よりなる群から選ばれる少なくとも 1 種類の基である [A-1] で表される基が結合しているアクリル系重合体 [a-1] 分子を含有する硬化組成物:

[0024]

【化13】

$$R^{1} - C - C - C - R^{4} \cdots [A-1]$$
 $-S OHR^{6}$

【0025】 [ただし、上記式 [A-1] において、R 1~R'は、それぞれ独立に、水素原子または炭素数 1~12のアルキル基であり、R'は、水酸基、炭素数 1~12のアルコキシ基および炭素数 1~12のアルキル基よりなる群から選ばれる少なくとも1種類の基であり、

該式 [A-1]で表される基中の水酸基の少なくとも一部は、-N=C=O基と結合して-NH-COO-基を形成している]を用いて、水分の存在下または不存在下に分子間縮合反応によって少なくとも硬化性組成物および/または硬化組成物中に架橋構造を形成してなることを特徴としている。

10

【0026】本発明の塗料、シーリング材および塗膜防水材は、上記アクリル系重合体 [a]、硬化性組成物、硬化組成物または硬化体を主成分とすることを特徴としている。

【0027】本発明では、この上記式 [A]または [A] -1] において、 R° は、水酸基、 $R^{1} \sim R^{\circ}$ は、水素原子であることが好ましい。また、本発明のアクリル系重合体 [a] または [a-1] は、主鎖に、次式 [B] で表される繰り返し単位を有することが好ましい。

[0028]

【化14】

20

$$-CR^{7}R^{8}-CR^{9}-$$

$$C=0 \qquad \cdots [B]$$

$$O-R^{10}$$

【0029】ただし、上記式 [B] において、R'~R'はそれぞれ独立に水素原子、ハロゲン原子または炭素数 1~3のアルキル基を表し、R'は、水素原子、アルカリ金属原子、炭素数 1~22の炭化水素基(該炭化水素基は直鎖状であっても側鎖を有していてもよく、また、該炭化水素基あるいは側鎖を形成する基中の水素原子の一部が、-OH、-F、-COOH、-C1、-NH、よりなる群から選ばれる少なくとも一種類の極性基またはハロゲン原子で置換されていてもよく、また該炭化水素基は二重結合を有していてもよく、さらに該炭化水素基は、環状構造を有していてもよい)である。

[0030]本発明のアクリル系重合体 [a]には、上記のような式 [A]で表される基が導入されており、このような基(特に水酸基)は、例えばイソシアネート基等と反応性を有している。そして、例えば1分子中に複数のイソシアネート基を有する化合物を用いることにより、本発明の重合体に分子間架橋構造を形成して硬化させることができる。

40 【0031】また、この式 [A] で表される基中に存在 する水酸基の少なくとも一部は、イソシアネート基と結 合していてもよく、こうしたイソシアネート基が結合し た基 [A] は、本発明では式 [A-1] で表されてい る。

【0032】上記式 [A]で表される基を末端に有するアクリル系重合体 [a]は、ポリイソシアネート化合物と反応して硬化する。また、式 [A-1]で表される基を末端に有するアクリル系共重合体 [a-1]において、分子中の水酸基が全てNCO基に置換された組成物のでで、分子中の水酸基が全てNCO基に置換された組成物のででででは、水分を吸収して自己縮合して硬化する。

【0033】こうして形成された硬化体は、優れた耐水 性、柔軟性を示し、高い強度を有しており、本発明のア クリル系重合体 [a] および [a-1]、硬化性組成 物、硬化組成物および硬化体は、粘着剤、接着剤、シー ト成形品(通気性シート、保護シート、遮水シート、制 振シート、転写シート、調光シート、帯電防止シート、 導電シート、養生シート、遮音シート、遮光シート、化 粧シート、マーキングシート、難燃シート)、フィルム 成形品(マーキング、保護フィルム、インキ定着フィル ム、ラミネートフィルム)、発泡体(硬質、軟質、半硬 10 質、難燃)、インキ用ビヒクル、反応性可塑剤、可塑 剤、希釈剤、相溶化剤、中間原料として、ポリエステル 樹脂、ポリウレタン樹脂、ポリカーボネイト樹脂や各種 ブロックポリマーなどの樹脂用原料または、改質用原 料、添加剤、更には、繊維改質剤、繊維表面処理剤、紙 加工剤、紙改質剤、界面活性剤、分散安定剤、分散媒、 溶剤、粘度調整剤、吸着剤、毛髪処理剤、トナー用添加 剤、帯電制御剤、帯電防止剤、低収縮剤、防暴剤、防汚 剤、親水性付与剤、親油性付与剤、医薬担体、農薬用担 体、化粧品用配合剤、滑剤、ポリマーアロイ用添加剤、 ゲルコート剤、FRP用樹脂、FRP樹脂用添加剤、人 工大理石用樹脂、人工大理石用樹脂添加剤、注入成型品 用樹脂、UV・EV硬化樹脂用原料、粘着付与剤、各種 バインダー(磁気記録媒体、鋳造用、焼成体用、グラス ファイバーサイジング材)RIM用ウレタン改質剤、合 わせガラス用樹脂、制振材、遮音材、分離膜用樹脂、防 音材、吸音材、人工皮革、人工皮膚、合成皮革、各種工 業用部品、日用品、トイレタリー用成型品、アクリルウ レタンゴム、アクリルウレタンゴム改質剤、アクリルウ フォーム可塑剤、ウレタンフォーム改質剤、アクリルゴ ム改質剤などへ使用することができるが、中でも塗料、 シーリング材、塗膜防水材等として有効に使用すること が好ましい。

11

[0034]

【発明の具体的説明】次に、本発明の重合体、重合体組 成物およびとれらの用途について具体的に説明する。な お、本発明において、「重合体」なる語は、特に限定し ない限り、単独重合体および共重合体のいずれをも包含 するものとする。

【0035】本発明のアクリル系重合体 [a]は、重合 体分子の少なくとも1の末端に、次式[A]で表される 基が結合している分子を含有する。

[0036]

【化15】

$$R^{1}-C-C-C-R^{2} \cdots [A]$$

$$-S OH R^{3}$$

は、それぞれ独立に、水素原子または炭素数1~12の アルキル基であり、R⁵は、水酸基、炭素数1~12の アルコキシ基および炭素数1~12のアルキル基よりな る群から選ばれる少なくとも1種類の基である。

【0038】また、本発明において、アクリル系重合体 [a−1]は、重合体分子の少なくとも1の末端に、次 式 [A-1] で表される基が結合しているアクリル系重 合体 [a−1] 分子を含有するアクリル系重合体であ る。

[0039]

【化16】

$$R^{1} - C - C - C - R^{4} - C - C - R^{5}$$
-S OH R⁶

【0040】ただし、上記式[A-1]において、R¹ ~R'は、それぞれ独立に、水素原子または炭素数1~ 12のアルキル基であり、R゚は、水酸基、炭素数1~ 12のアルコキシ基および炭素数1~12のアルキル基 20 よりなる群から選ばれる少なくとも1種類の基であり、 該式 [A-1]で表される基中の水酸基の少なくとも一 部は、-N=C=O基と結合して-NH-COO-基を 形成している。

【0041】上記のような基[A]および[A-1] は、例えば次式[I] で表される化合物を触媒として用 いて、重合性不飽和化合物を重合させることにより導入 することができる。

【0042】まず、分子末端に式[A]で表される基が **導入されたアクリル系重合体 [a] について説明する。** レタンフォーム改質剤、ウレタンゴム改質剤、ウレタン 30 【0043】本発明のアクリル系重合体 [a]を製造す る際に好適に用いられる触媒は、次式〔Ⅰ〕で表される 少なくとも1つのチオール基と2級水酸基とを有する化 合物である。

[0044]

【化17】

$$R^{2}-C-C-R^{4}-C-C$$
SHOHR⁶

40 【0045】ただし、上記式[I]において、R¹~R⁵ は、それぞれ独立に、水素原子または炭素数1~12の アルキル基、好ましくは水素原子または炭素数1~5の アルキル基である。とのようなアルキル基の具体的な例 としては、メチル基、エチル基、プロピル基、イソプロ ピル基、ブチル基、イソブチル基、ペンチル基を挙げる ことができる。特に、これらの中でもR1~R1は、水素 原子であることが好ましい。また、式[1]において、 R°は、水酸基、炭素数1~12アルコキシ基および炭 素数1~12アルキル基よりなる群から選ばれる少なく 【0037】ただし、上記式[A]において、R'~R' 50 とも1種類の基である。ことでアルコキシ基としては、

炭素数1~4のアルコキシ基が好ましく、具体的にはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基を挙げることができる。ここでアルキル基としては炭素数1~5のアルキル基が好ましく、具体的にはメチル基、エチル基、プロピル基、ブチル基、ペンチル基を挙げることができる。さらに本発明では、このR°は、水酸基であることが好ましい。

【0046】従って、本発明において、式[I]で表される化合物の例としては、1-メルカプト-2,3-プロパンジオール(チオグリセロール)、2-メルカプト-3-ブタノール、2-メルカプト-3,4-ブタンジオール、1-メルカプト-2,3-ブタンジオール、1-メルカプト-2-ブタノール、2-メルカプト-3,4,4'-ブタントリオール、1-メルカプト-3,4-ブタンジオール、1-メルカプト-3,4,4'-ブタントリオールを挙げることができ、これらの化合物が塊状重合の触媒として有用であり、さらにこれらの中でもチオグリセロールが塊状重合触媒として最も有用性が高い。

【0047】上記の式[I]で表される化合物は、1分子中にチオール基(-SH)と、二級ヒドロキシル基(-OH)の両者を有している。

【0048】本発明において、塊状重合の触媒として使 用するためには、この触媒がチオール基と二級ヒドロキ シル基とが1分子中に共存していることが必要である。 例えば従来塊状重合に使用されることもあるチオグリコ ール酸オクチルなどの化合物は、1分子中にチオール基 は有するが、水酸基を有しない。このような分子中にチ オール基を有するが水酸基を有していない化合物を、た とえばアクリル酸誘導体の塊状重合の際に共存させる と、こうした化合物は、反応の進行を抑制するように、 すなわち、塊状重合反応に対しては負触媒的に作用し、 単独ではこうした塊状重合反応を促進させる作用はほと んどない。従って、塊状重合で使用する触媒において は、分子内に存在する水酸基が二級水酸基であることが 極めて重要である。この1分子中に二級水酸基とチオー ル基とが共存する化合物では、チオール基を構成する水 素原子が二級水酸基に引き寄せられて反応が開始するも のと推定される。

【0049】本発明のアクリル系重合体を得るに際して、上記式[I]で表される化合物によって重合される重合性不飽和化合物の例としては、ビニル基含有化合物を挙げることができる。さらに、このような重合性不飽和化合物の例としては、以下に示す化合物を挙げることができる。

【0050】アクリル酸およびアクリル酸アルカリ金属塩などの塩;メタアクリル酸およびメタクリル酸アルカリ金属塩などの塩;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸ヘキシル、アクリル酸-2-エチルヘキシル、アクリル酸オクチル、アクリル酸ノニル、

アクリル酸デシル、アクリル酸ドデシルのようなアクリ ル酸アルキルエステル;アクリル酸フェニル、アクリル 酸ベンジルのようなアクリル酸アリールエステル:アク リル酸メトキシエチル、アクリル酸エトキシエチル、ア クリル酸プロポキシエチル、アクリル酸プトキシエチ ル、アクリル酸エトキシプロピルのようなアクリル酸ア ルコキシアルキル:メタクリル酸メチル、メタクリル酸 エチル、メタクリル酸プロピル、メタクリル酸ブチル、 メタクリル酸ペンチル、メタクリル酸ヘキシル、メタク リル酸_2_エチルヘキシル、メタクリル酸オクチル、メ タクリル酸ノニル、メタクリル酸デシル、メタクリル酸 ドデシルのようなメタアクリル酸アルキルエステル;メ タクリル酸フェニル、メタクリル酸ベンジルのようなメ タクリル酸アリールエステル:メタクリル酸メトキシエ チル、メタクリル酸エトキシエチル、メタクリル酸プロ ポキシエチル、メタクリル酸プトキシエチル、メタクリ ル酸エトキシプロピルのようなメタクリル酸アルコキシ アルキル:エチレングリコールのジアクリル酸エステ ル、ジエチレングリコールのジアクリル酸エステル、ト リエチレングリコールのジアクリル酸エステル、ポリエ チレングリコールのジアクリル酸エステル、プロピレン グリコールのジアクリル酸エスエル、ジプロピレングリ コールのジアクリル酸エスエル、トリプロピレングリコ ールのジアクリル酸エステルのような(ポリ)アルキレ ングリコールのジアクリル酸エステル;エチレングリコ ールのジメタクリル酸エステル、ジエチレングリコール のジメタクリル酸エステル、トリエチレングリコールの ジメタクリル酸エステル、ポリエチレングリコールのジ アクリル酸エステル、プロピレングリコールのジメタク 30 リル酸エスエル、ジプロピレングリコールのジメタクリ ル酸エステル、トリプロピレングリコールのジメタクリ ル酸エステルのような(ポリ)アルキレングリコールの ジメタアクリル酸エステル;トリメチロールプロパント リアクリル酸エステルのような多価アクリル酸エステ ル:トリメチロールプロパントリメタクリル酸エステル のような多価メタクリル酸エステル;アクリロニトリ ル;メタクリロニトリル;酢酸ピニル;塩化ビニリデ ン:アクリル酸-2-クロロエチル、メタクリル酸-2-クロ ロエチルのようなハロゲン化ビニル化合物;アクリル酸 シクロヘキシルのような脂環式アルコールのアクリル酸 エステル:メタクリル酸シクロヘキシルのような脂環式 アルコールのメタクリル酸エステル;2-ビニル-2-オキ サゾリン、2-ビニル-5-メチル-2-オキサソリン、2-イソ プロペニル-2-オキサゾリンのようなオキサゾリン基含 有重合性化合物:アクリロイルアジリジン、メタクリロ イルアジリジン、アクリル酸-2-アジリジニルエチル、 メタクリル酸-2-アジリジニルエチルのようなアジリジ ン基含有重合性化合物;アリルグリシジルエーテル、ア クリル酸グリシジルエーテル、メタクリル酸グリシジル 50 エーテル、アクリル酸グリシジルエーテル、アクリル酸

-2-エチルグリシジルエーテル、メタクリル酸-2-エチル グリシジルエーテルのようなエポキシ基含有ビニル単量 体;アクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピ ル、アクリル酸またはメタクリル酸とポリプロピレング リコールまたはポリエチレングリコールとのモノエステ ル、ラクトン類と(メタ)アクリル酸-2-ヒドロキシエ チルとの付加物のようなヒドロキシル基含有ビニル化合 物;フッ素置換メタクリル酸アルキルエステル、フッ素 置換アクリル酸アルキルエステル等の含フッ素ビニル単 10 量体;(メタ)アクリル酸を除く、イタコン酸、クロト ン酸、マレイン酸、フマル酸のような不飽和カルボン 酸、これらの塩並びにこれらの(部分)エステル化合物 および酸無水物;2-クロルエチルビニルエーテル、モノ クロロ酢酸ビニルのような反応性ハロゲン含有ビニル単 量体;メタクリルアミド、N-メチロールメタクリルアミ ド、N-メトキシエチルメタクリルアミド、N-ブトキシメ チルメタクリルアミドのようなアミド基含有ビニル単量 体; ビニルトリメトキシシラン、 ア-メタクリロキシブ ロピルトリメトキシシラン、アリルトリメトキシシラ ン、トリメトキシシリルプロピルアリルアミン、2-メト キシエトキシトリメトキシシランのような有機ケイ素基 含有ビニル化合物単量体;ならびに、エチルデンノルボ ルネン、イソプレン、ペンタジエン、ビニルシクロヘキ

15

【0051】その他、ビニル基を重合したモノマー末端 にラジカル重合性ビニル基を有するマクロモノマー類等 マクロモノマー、スチレン、シリコン等)を例示すると とができる。

セン、クロロプレン、ブタジエン、メチルブタジエン、

シクロブタジエン、メチルブタジエンのようなジエン化

【0052】これらの重合性不飽和化合物は、単独であ るいは組み合わせて使用することができる。これらの重 合性不飽和化合物は、反応条件において、液体であって も固体であってもよく、また気体であってもよいが、操 作の簡便さから反応の際に液体であるモノマーを用いる ことが好ましい。

【0053】上記のような重合性不飽和化合物を重合さ て、その主鎖中には、例えば次式[B]および[B-1]~[B-2]で表される繰り返し単位が形成され る。

[0054] 【化18】

合物。

【0055】ただし、上記式 [B] において、R' \sim R" 50 は、式 [I] で表される化合物の存在下に、上記重合性

はそれぞれ独立に水素原子、ハロゲン原子または炭素数 1~3のアルキル基を表し、R¹⁰は、水素原子、アルカ リ金属原子、炭素数1~22の炭化水素基(該炭化水素 基は直鎖状であっても側鎖を有していてもよく、また、 該炭化水素基あるいは側鎖を形成する基中の水素原子の 一部が、一〇H、一F、一COOH、一CI、一NH』 よりなる群から選ばれる少なくとも一種類の極性基また はハロゲン原子で置換されていてもよく、また該炭化水 素基は二重結合を有していてもよく、さらに該炭化水素 基は、環状構造を有していてもよい)である。即ち、と のR¹゚の例としては、アルキル基、シクロアルキル基、 アリール基、アルケニル基、シクロアルケニル基、アル コキシ基、アルキルエーテル基を挙げることができる。 この基R¹⁰を構成する水素原子の少なくとも一部は、ハ ロゲン原子、スルホン酸基、グリシジル基等で置換され ていてもよい。

[0056]

【化19】

20

$$-CR^{11}R^{12}-CR^{13}- \cdots [B-1]$$

【0057】ただし、式[B-1]において、R¹¹~R 1³は、前記R⁷~R⁸と同じ意味であり、R¹4は、水酸 基、-CO-NH₂基、-CN基、グリシジル基、アル キル基、アルコキシ基、アルケニル基、シクロアルケニ ル基、アリール基、アリルエーテル基、アルキルエーテ ル基のいずれかの基である。この基R11を構成する水素 原子の少なくとも一部は、ハロゲン原子等で置換されて いてもよい。また、この基R¹¹は、アルキレングリコー **(例えば、フッ素系モノマー、シリコン含有モノマー、 30 ルから誘導される構成単位、アルコキシシリル基、アル** キルアルコキシシリル基、メチロール基、アルコキシア ミド基を有する基であってもよい。

[0058]

[化20]

【0059】ただし、式[B-2]において、R¹*およ びR¹'は、前記R'~R'と同じ意味であり、R¹'および せることにより、使用する重合性不飽和化合物に対応し 40 R¹⁸は、それぞれ独立に、カルボキシル基、水酸基、-CO-NH₂基、-CN基、グリシジル基、アルキル 基、アルコキシ基、アルケニル基、シクロアルケニル 基、アリール基のいずれかの基である。この基R16およ びR¹®を構成する水素原子の少なくとも一部は、ハロゲ ン原子等で置換されていてもよい。また、この基R¹⁶お よび R¹゚は R¹゚および R¹¹の結合した 2 個の炭素原子と 共同して環状構造を形成していてもよく、この環状構造 が2重結合を有していてもよい。

【0060】本発明のアクリル系重合体[a]は、通常

不飽和化合物を(共)重合させることにより製造することができる。この反応は、反応溶媒を用いた溶液重合、分散重合あるいは乳化重合であってもよいが、反応溶媒を実質的に使用しない塊状重合であることが好ましい。 【0061】ここで、「実質的に溶媒を使用しない」とは、反応溶媒を使用しないことを意味し、たとえば触媒として使用する式[I]で表される化合物を単量体全体に均一に分散させるために、極微量の溶媒に溶解もしくは分散させる際に使用する溶媒、原材料中に残存する溶媒などをも排除するものではない。

17

【0062】この塊状重合反応は、通常は、不活性ガス雰囲気中で行われ、従って、この塊状重合反応系には、酸素のような活性ガスは存在しない。ここで使用される不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガスおよび炭酸ガスを挙げることができる。

【0063】 この塊状重合において、触媒として使用される上述の式 [1] で表される化合物は、通常の触媒量で使用することができるが、上記重合性不飽和化合物の不飽和基モル数 100に対し、チオール基モル数として0.1~50モル、好ましくは0.5~35モルの範囲内 20で使用される。不飽和基モル数 100に対し、チオール基モル数を0.1以下の量で用いた場合には、充分な反応開始効果が認められず、特にスチレン型不飽和化合物のように不飽和基が安定な化合物に対しては、不飽和基モル数 100に対し、チオール基モル数 20.5モル以上用いることが好ましい。また不飽和基モル数 100に*

*対し、チオール基モル数を50モル以上用いた場合は、 重合性不飽和化合物に対し、急激な付加反応が優先的に 起こり、充分な重合度を有す重合体が得られないばかり か、著しい発熱のため反応の維持が困難となる。また、 アクリル酸エステル系の重合性不飽和化合物のように、 不飽和基の活性が高い化合物を用いた場合、不飽和基モ ル数100に対し、チオール基モル数35以上用いた場合、急激な反応のため著しい発熱が起こり、反応の維持 が困難となる。

10 【0064】との式[I]で表される化合物を単独で使用することにより、上記重合性不飽和化合物の塊状重合は良好に進行するが、この式[I]で表される化合物に加えて、従来から使用されている反応開始剤を併用することもできる。こうした反応開始剤を併用した場合であっても式[I]で表される化合物を用いることにより塊状重合反応を暴走させることなく円滑に進行させることができる。

【0065】本発明のアクリル系重合体 [a]を生成する際の反応をチオグリセロール(3-メルカプト-1,2-プロパンジオール)を用いた場合を例にして説明すると、断定することはできないが、触媒として式[I]で表される化合物を用いた反応は、次のように進行するものと推定される。

[0066] [化21]

【0067】すなわち、上記のように最初の段階で、分 50 子内にあるSH基と2級の水酸基を有するチオグリセロ

19

ールにおいて、チオール基の水素原子が2級水酸基に引 き寄せられ、チオラジカル(・Sラジカル)が生成し、 このチオラジカルによる重合性不飽和化合物へのラジカ ル付加により、初期重合反応の開始が起こるものと推定 される。次いで、上記のようにチオグリセロールおよび 不飽和化合物に対しての連鎖移動、成長反応が進行する ものと推定される。そして、この反応の停止反応は、チ オグリセロールへの連鎖移動停止、成長ラジカル同士の 再結合停止、チオラジカルの状態で存在するチオグリセ ロールラジカルとの再結合停止によるものと推定され る。この場合、連鎖移動により水素引き抜きをされたチ オグリセロールラジカルは、ふたたび、開始末端として モノマー付加する場合と、成長ラジカルと再結合し、停 止剤として重合体末端に付加する。

【0068】こうして分子末端に前記式 [A]で表され る基が結合することにより、本発明のアクリル系重合体 [a] には、水酸基が導入される。

【0069】との塊状重合反応は、重合性不飽和化合物 の種類によって、加熱あるいは加温下に行うこともでき るし、冷却しながら行うこともできるが、この塊状重合 20 反応温度を0~150℃の範囲内に設定することが好ま しく、さらに25~120℃の範囲内に設定することが 特に好ましい。塊状重合反応温度を上記範囲内に設定す ることにより、式[I]で表される化合物を正の触媒と して効率よく機能させることができる。使用する重合性 不飽和化合物の不飽和基の活性にもよるが、比較的重合 性の高いアクリル酸エステル系の重合性不飽和化合物を 用いた場合でも、反応温度を0°C以下とした場合、式

[1]で表す化合物の触媒としての活性が低くなり、充 分な重合率を達成するために必要な時間が長くなり、効 30 率が悪い。さらに、スチレン型不飽和化合物のように重 合活性が低い化合物を用いた場合でも、25℃以上の条 件であれば、充分な重合率を達成することができる。

【0070】また、反応温度を150℃以上とした場合 は重合反応中に著しい発熱による暴走反応の危険性が生 ずる。重合温度を120℃以下と設定することにより反 応を暴走させることなく、反応の円滑な進行を維持する ことができる。

【 0 0 7 1 】本発明のアクリル系重合体 [a] の分子の 少なくとも 1 の末端に、前記式 [A]で表される基が結 40 合している分子を含有する。この式[A]で表される基 は、少なくとも1つの水酸基を有し、この前記式 [A] で表される基は、この基を構成するイオウ原子を介して 主鎖と結合している。

【0072】なお、本発明のアクリル系重合体[a]に おいて、前記式[A]で表される基で表される基は、重 合体分子の少なくとも1の末端に結合していればよく、 従って、重合体分子の全部の末端基に前記式[A]で表 される基が結合していてもよく、また、重合体分子中に 前記式[A]で表される基が結合していない末端が存在 50 して水酸基価(OHV価)を有しており、本発明のアク

していてもよい。

【0073】さらに、前記式[Ⅰ]で表される化合物を 反応開始剤として使用することに伴って生成するラジカ ルによって新たなラジカルが生成されることもあり、反 応系では、これらの新たに生成したラジカルによる重合 反応も同時平行的に進行する。従って、本発明のアクリ ル系重合体[a]中には、前記式[A]で表される基で 表される末端基を有しない重合体分子が存在してもよ 67

【0074】前記式[Ⅰ]で表される化合物を触媒とし て用いた際の重合率は、通常は30~90%、多くの場 合50~80%程度である。従って、前記式[1]で表 される化合物を触媒として用いて得られた反応物中に は、通常は未反応モノマーが残存する。本発明のアクリ ル系重合体 [a]を使用するに際しては、こうした残留 モノマーを除去して使用することが好ましい。こうした 残留モノマーは、溶剤抽出や減圧蒸留など公知の方法を 採用してアクリル系重合体[a]から分離することが可 能であるが、本発明のアクリル系重合体[a]は、塊状 重合により製造することが好ましく、こうした塊状重合 物は、反応溶媒を実質的に含有していないことから、残 留モノマーの除去には、溶剤を用いる必要のない減圧蒸 留により除去することが好ましい。こうした減圧蒸留に よって残留モノマーを除去する際の条件は適宜設定する ことができるが、通常は、1~0.5 atmの範囲内にモ ノマー沸点に対して−10~−40℃(モノマー沸点よ りも10~40℃低い温度)に加熱することにより、残 留モノマーの残留量を1重量%以下にすることができ る。

【0075】とうして得られる本発明のアクリル系重合 体[a]は通常は常温で液体であり、このアクリル系重 合体 [a] についてガスパーミエーションクロマトグラ フィー(GPC)を用いて測定した数平均分子量は、通 常は500~100000、好ましくは1000~10 000の範囲内にあり、重量平均分子量は通常は100 0~200000、好ましくは2000~100000 の範囲内にある。また、分散指数は通常は1.2~6、 好ましくは1.2~3の範囲内にある。上記のような平 均分子量を有する重合体は、常温で流動性を有してお り、後述するように本発明のアクリル系重合体[a]を 塗布材として使用する場合には、こうした常温流動性を 有していることが好ましい。そして、数平均分子量が上 記範囲を逸脱して小さいと、例えば、このアクリル系重 合体[a]にポリイソシアネート化合物等を配合して自 己縮合性組成物とする場合、ポリイソシアネート化合物 の使用量が多くなり、コスト的に不利になることがあ る。

【0076】また、本発明のアクリル系重合体[a] は、分子末端に導入される式[A]で表される基に起因

リル系重合体 [a]の水酸基価(OHV価)は、通常は 2~500、好ましくは5~500の範囲内にある。と の水酸基価(OHV価)は、触媒として使用した式

21

[Ⅰ]で表される化合物の使用量から算定される水酸基 価(〇HV価)とよく一致する。また、本発明の重合体 について測定したガラス転移温度(Tg)は、通常は180 ~-90℃、好ましくは20~-70℃の範囲内にあ る。このようにガラス転移温度が低い樹脂は、分子量が 高くても充分な常温流動性を有しているものが多い。

【 0 0 7 7 】本発明のアクリル系重合体 [a] の末端に 10 導入された式[A]で表される基中に存在する水酸基は イソシアネート基と良好な反応性を有する。

【0078】本発明の硬化性組成物は、アクリル系重合 [A] の有する上記のような特性を利用しようとするも のであり、重合体分子の少なくとも1の末端に、上記式 [A] で表される基が結合している分子を含有するアク リル系重合体[a]と、分子内に複数のイソシアネート 基を有する化合物を含有することを特徴としている。

【0079】ここで使用される分子内に複数のイソシア ネート基を有する化合物は、具体的にはポリイソシアネ 20 ート化合物であり、このようなポリイソシアネート化合 物の例としては、トルエンジイソシアネート(TD 【)、クロルフェニレンジイソシアナート、トリレンジ イソシアナート、ジイソシアニルジフェニルメタン、ヘ キサメチレンジイソシアナート、テトラメチレンジイソ シアナート、イソホロンジイソシアネート、水添された ジフェニルメタンジイソシアネートなどのイソシアネー トモノマー及びこれらイソシアネートモノマーをトリメ チロールプロパンなどと付加したイソシアネート化合物 は公知のポリエーテルポリオールやポリエステルポリオ ール、アクリルポリオール、ポリブタジエンポリオー ル、ポリイソプレンポリオールなど付加反応させたウレ タンプレポリマー型のイソシアネート等を挙げることが できる。特に本発明では、このポリイソシアネート化合 物として、イソシアネート基を2~3個有する化合物を 使用することが好ましい。

【0080】このポリイソシアネート化合物は、本発明 のアクリル系重合体 [a] 中にある水酸基 1 モルに対し て、イソシアネート基が通常は0.1~4モル、好まし 40 くは0.5~2モルとなるような量で使用される。この ようにアクリル系共重合体[a]中に存在する水酸基の 量よりもイソシアネート基の量が多少多くなるようにポ リイソシアネート化合物を用いることにより、例えば空 気中の水分等と反応するイソシアネート基があったとし ても、アクリル系共重合体 [a] 中のすべての水酸基 は、イソシアネート基と結合することができ、得られる 硬化体にタックなどが生ずることがない。

【0081】本発明の硬化性組成物は、上記のようにア

る化合物であるポリイソシアネート化合物からなり、ア クリル系重合体 [a] に式 [A] で表される基として導 入された水酸基と、イソシアネート基とが反応して、主 としてアクリル系重合体 [a] の分子間に架橋構造を形 成することにより硬化するという特性を有する。

22

【0082】このような水酸基とイソシアネート基との 反応は、触媒が存在しなくとも進行することから、本発 明の硬化性組成物では、アクリル系重合体[a]とポリ イソシアネート化合物とは、通常は、移送、保存等の際 には接触しないように個別に包装され、使用前に混合し て使用される。

【0083】本発明の硬化性組成物ではアクリル系重合 体[a]とポリイソシアネート化合物とを混合すること により、水酸基とイソシアネート基との反応が進行する ので、特に硬化触媒を用いることは必要ではないが、よ り確実にかつ迅速にアクリル系重合体 [a] とポリイソ シアネート化合物とを反応させるために、硬化触媒を使 用することが好ましい。

【0084】ここで使用される硬化触媒の例としては、 ジブチルラウリン酸錫のような有機錫化合物やテトラブ トキシチタン等のアルコキシチタン化合物、トリアセト アセチルアルミ等の金属キレート化物、トリエチルアミ ン等のアミン化合物を挙げることができる。このような 硬化触媒は、硬化時間の調整や触媒の活性度に合わせ適 宜調整できる。またこのような硬化触媒は、アクリル系 重合体 [a] に配合することもできるし、ポリイソシア ネート化合物に配合することもできるし、また、アクリ ル系重合体 [a] およびポリイソシアネート化合物とは 別に包装して使用前にアクリル系重合体 [a] とポリイ やイソシアヌレート化物、ビュレット型化合物、さらに 30 ソシアネート化合物とを混合する際に同時に混合しても よい。

> 【0085】次に本発明の硬化組成物(半硬化組成物) について説明する。

【0086】本発明の硬化組成物は、重合体分子の少な くとも1の末端に、次式[A-1]で表される基が結合 しているアクリル系重合体 [a-1]分子を含有するこ とを特徴としている。

[0087]

【化22】

$$R^{2} - C - C - R^{4} - C - C - R^{5} - C - C - R^{5}$$
-S OH R⁵

【0088】ただし、上記式 [A-1] において、R¹ ~R'は、それぞれ独立に、水素原子または炭素数1~ 12のアルキル基であり、R゚は、水酸基、炭素数1~ 12のアルコキシ基および炭素数1~12のアルキル基 よりなる群から選ばれる少なくとも1種類の基であり、 該式 [A-1] で表される基中の水酸基の少なくとも一 クリル系重合体 [a]と複数のイソシアネート基を有す 50 部は、-N=C=O基と結合して-NH-COO-基を

形成している。

【0089】即ち、この硬化組成物は、重合体の少なく との1の末端に前記式 [A]で表される基が導入された アクリル系重合体 [a] の式 [A] で表される基中に存 在する水酸基の少なくとも一部がイソシアネート基と結 合した変性重合体であり、本発明ではこのような変性ア クリル系重合体をアクリル系重合体[a-1]と記載す る。

23

【0090】このアクリル系重合体[a-1]におい て、末端にある基[A-1]におけるR'~R'およびR 10 *は、式 [A] におけるのと同じ意味であり、またこの アクリル系重合体 [a-1] における主鎖も、アクリル 系重合体 [a] と同様である。

【0091】 このアクリル系重合体 [a-1]は、目的 とする重合体の変性度合いに合わせ、原料となるアクリ ル系重合体 [a] およびイソシアネート化合物を同時に 仕込み、反応させることによって得られる。すなわち、 イソシアネート化合物のNCO基モル数に比べ、アクリ ル系重合体[a]の水酸基モル数が、充分多い場合、イ ソシアネート化合物により分子鎖延長された水酸基を有 20 するアクリル重合体 [a-1] が得られる。また、逆に イソシアネート化合物のNCO基モル数とアクリル系重 合体[a]の水酸基モル数が同量以上の場合、NCO基 を有するアクリル重合体 [a - 1]、もしくは水酸基と NCO基を有するアクリル重合体 [a-1] が得られ る。但し、とのような場合は、変性の反応中に、ゲル化 を起こす虞があるため、これらの反応において、好適に は、過剰のイソシアネート化合物中に前記アクリル系重 合体[a]を少量ずつ加えて、アクリル系重合体[a] 中の1の水酸基にポリイソシアネート化合物を1分子の 30 溶媒中には、未反応のポリイソシアネート化合物が残存 割合で結合させ、反応を完結させるか、若しくはこの反 応によりできた反応基としてNCO基のみを有す、アク リル系重合体 [a-1] に、さらにアクリル系重合体 [a]を添加して製造することができる。

【0092】ここで使用されるポリイソシアネート化合 物は、アクリル系重合体[a]を用いた硬化性組成物に おいて、アクリル系重合体[a]と共に用いられるポリ イソシアネート化合物と同一である。

【0093】とのポリイソシアネート化合物を、イソシ アネート基と反応性を有しない有機溶媒に溶解し、この 40 ポリイソシアネート化合物の有機溶媒溶液に、前述のア クリル系重合体 [a]を少量ずつ添加して、アクリル系 重合体 [a]中の水酸基にポリイソシアネート基を結合 させることによりアクリル系重合体 [a-1]が生成す る。

【0094】ことでイソシアネート基と反応性を有しな い有機溶媒としては、キシレン、トルエン、ベンゼンの 芳香族炭化水素、ヘキサン、シクロヘキサン、ヘプタ ン、テトラヒドロフラン、酢酸エチル、酢酸ブチル等を 挙げることができる。また、用いるアクリル重合体

[a] が低粘度であれば溶剤を用いなくてもよい。 【0095】との反応は、不活性ガス中で加熱しながら 行うことが好ましい。反応温度は、通常は20~90 °C、好ましくは40~70°Cである。

【0096】との反応では、ポリイソシアネート化合物 は、アクリル系重合体 [a] に対して過剰に用いられ る。通常はアクリル系重合体 [a] 中の水酸基 1 モルに 対して、通常は1.9~5モル、好ましくは2.2~3 モルになるようにポリイソシアネート化合物を使用す る。このように過剰のポリイソシアネート化合物を用 い、しかもこの反応を有機溶媒中で行うことにより、1 分子のポリイソシアネート化合物に複数個のアクリル系 重合体[a]が結合する確率が著しく低くなり、従っ て、この反応で生成したアクリル系重合体 [a-1]が ゲル化することはない。そして、複数のイソシアネート 基を有するポリイソシアネート化合物を用いることによ り、生成したアクリル系重合体 [a-1] には活**性**なイ ソシアネート基が導入される。

【0097】上記反応の際には、触媒を使用することが 好ましい。ととで使用される触媒は、上述した硬化性組 成物に配合することができる硬化触媒と同一の化合物で あり、具体的には、ジブチルラウリン酸錫のような有機 錫化合物やテトラブトキシチタン等のアルコキシチタン 化合物、トリアセトアセチルアルミ等の金属キレート化 物、トリエチルアミン等のアミン化合物を挙げることが できる。このような硬化触媒は、通常は反応時間や発熱 制御の調整や触媒の活性度に合わせ適宜調整できる。

【0098】上記のようにして生成したアクリル系重合 体[a-1]は、有機溶媒溶液として得られ、この有機 している。

【0099】こうした有機溶剤および未反応のポリイソ シアネート化合物を減圧蒸留して除去することによりア クリル系重合体 [a-1]を得ることができる。

【0100】上記のようなアクリル系重合体 [a-1] を含有する本発明の硬化組成物について、例えばフーリ エ変換赤外線スペクトル(FTIR)を測定すると、原 料として滴下したアクリル系重合体[a]の水酸基に起 因する吸収ピークが、反応の進行と共に消失し、この水 酸基とポリイソシアネート化合物とが反応していること が確認できる。

【0101】こうして生成したアクリル系重合体[a-1] についてアミン価を測定し、このアミン価から求め た-NCO量は、通常は0~30%、好ましくは0~2 0%である。

【0102】なお、上記のようにしてアクリル系重合体 [a-1]を製造することにより、ほとんど全部の水酸 基がイソシアネート基と反応するが、本発明の硬化組成 物では、イソシアネート基と反応しない水酸基が残留し 50 た重合体を含んでいてもよい。即ち、このアクリル系重 合体 [a − 1] は、通常の場合水酸基価はほぼ0であるが、この水酸基価が10以下であれば、本発明の硬化組成物として使用することができる。

【0103】こうして得られる本発明のアクリル系重合体 [a-1]は、前述のアクリル系重合体 [a] (原料物質)よりも高い粘度を有するが、通常は常温で液体であり、このアクリル系重合体 [a-1] についてゲルバーミエーションクロマトグラフィー(GPC)を用いて測定した数平均分子量は、通常は500~20000の、好ましくは1000~1000の範囲内にあり、重量平均分子量は通常は1000~30000、好ましくは2000~20000の範囲内にある。また、分散指数は通常は1.2~6、好ましくは1.2~3の範囲内にある。上記のような平均分子量を有する重合体は、常温で流動性を有している。

【0104】上記のようにして得られた硬化組成物には、活性なイソシアネート基が存在することから、水分を吸収して自己縮合硬化する。

【0105】従って、この半硬化組成物は、例えば1液型硬化性組成物として使用することができる。

【0106】なお、本発明の半硬化組成物には、前述の 硬化性組成物に配合することができる硬化触媒を配合す ることもできる。

【0107】次の本発明の硬化体について説明する。

【0108】本発明の硬化体は、上述のアクリル系重合体 [a] とポリイソシアネート化合物からなる硬化性組成物および/またはアクリル系重合体 [a-1]を含有する硬化組成物を用いて、分子間縮合反応によって架橋構造を形成することにより生成する硬化体である。

【0109】即ち、本発明の硬化体は、重合体分子の少 30 硬化反応は進行する。なくとも1の末端に、次式 [A] で表される基が結合し 【0117】アクリルでいる分子を含有するアクリル系重合体 [a]と、分子 ート化合物とからなる内に複数のイソシアネート基を有する化合物を含有する [a-1]を含有する で化性組成物:

[0110]

【化23】

$$R^{2} R^{3} R^{4}
 R^{3} - C - C - R^{4} \cdots [A]
 -S OH R^{6}$$

【0111】 $[ただし、上記式 [A] におけるR^1 ~R^5$ および R^6 は、前記式 [A] におけるのと同じ意味である] 、および/または重合体分子の少なくとも1の末端に、次式 [A-1] で表される基が結合しているアクリル系重合体 [a-1] 分子を含有すること硬化組成物; [0112]

[化24]

$$R^{2} - C - C - C - R^{4} - C - C - R^{5}$$
-S OH R⁵

26

【0113】 [ただし、上記式 [A-1] におけるR¹~R'およびR゚は、前記式 [A-1] におけるのと同じ意味であり、式 [A-1] で表される基中の水酸基の少なくとも一部は、-N=C=O基と結合して-NH-COO-基を形成している] を用いて、水分の存在下または不存在下に分子間縮合反応によって少なくとも硬化性組成物および/または硬化組成物中に架橋構造を形成してなることを特徴としている。

【0114】また、このアクリル系重合体 [a] およびアクリル系重合体 [a-1] における主鎖も上記と同様である。

【0115】この硬化体が、アクリル系重合体 [a] と、分子内に複数のイソシアネート基を有する化合物 (ポリイソシアネート化合物) とを含有する硬化性組成物から形成される場合、アクリル系重合体 [a] とポリイソシアネート化合物とは、水が存在しなくとも反応硬化することから、硬化反応のために特に水を加える必要はないが、水が存在すれば、ポリイソシアネート化合物が独自に水を吸収して硬化する反応が共に進行する。

【0116】また、アクリル系重合体 [a-1]を含有する硬化組成物を単独で使用して硬化させる場合には、アクリル系重合体 [a-1]が水を吸収して自己縮合硬化することから、硬化のためには水が存在することが必要になる。ただし、この水を硬化反応系に直接添加しなくとも、例えば空気中、基材中などから水分を吸収して硬化反応は進行する

【0117】アクリル系重合体 [a] とボリイソシアネート化合物とからなる硬化性組成物とアクリル系重合体 [a-1] を含有する硬化組成物とを併用する場合には、硬化のために特に水を加える必要はないが、水を添加して、イソシアネート基と水との反応による硬化反応を併走させることもできる。

【0118】また、本発明の硬化体を調製するに際して、アクリル系重合体 [a] およびボリイソシアネート化合物からなる硬化性組成物、および/または、アクリル系重合体 [a-1] を含有する硬化組成物に、ボリエーテルボリオール、ボリエステルボリオール、アクリルボリオール、ボリブタジエンボリオール、ボリイソプレンボリオールなどのボリオールや、ボリアミン、ボリカルボン酸等を配合することができる。これらの化合物とイソシアネート基とが反応させてウレタン結合を形成することができる。

【0119】また、このような硬化反応は、前述の硬化 触媒の存在下に行うこともできる。

【0120】本発明の硬化体は、柔軟性および可撓性を 50 有し、良好な形態追随性を有する。また、この硬化体

28

は、ゴム弾性を有しており、通常は10%以上、好ましくは100%以上の延伸性を有している。さらに、硬化前の組成物が粘稠な液体であるにも拘わらず、硬化体にはほとんどタック性を有していない。

27

【0121】本発明のアクリル系重合体[a]、アクリ ル系重合体[a-1]、硬化性組成物、半硬化組成物に は、その用途に適合させるために種々の添加剤を配合す ることができる。ここで使用することができる添加剤の 例としては、充填剤、色材、耐候性付与剤、紫外線吸収 剤、粘度調整剤、硬化補助触媒、撥水剤、防水剤、分散 10 剤、溶剤、消泡剤、可塑剤等を配合することができる。 また、本発明では、硬化体の特性を調整するために、例 えばテルペン樹脂、ロジン系樹脂、低分子量アタクチッ クポリプロピレン、塩素化オレフィン、低分子量ポリエ チレン、塩素化ブタジエン、塩素化イソプレン、ブチル 樹脂、ポリサルファイド系樹脂、ウレタン系樹脂、シリ コン系樹脂、変性シリコン系樹脂、アクリル系樹脂、E PM樹脂、EPDM樹脂、撥水性樹脂(例:シリコンポ リマー、テフロン粒子、ポリテトラフルオロエチレン、 ポリフッ化ビニリデン)、親水性樹脂(例;ポリビニル 20 アルコール、アニオン系乳化剤)等を配合することがで きる。

【0122】本発明のアクリル系重合体[a]、アクリ ル系重合体[a-1]、硬化性組成物、硬化組成物およ び硬化体は、粘着剤、接着剤、シート成形品(通気性シ ート、保護シート、遮水シート、制振シート、転写シー ト、調光シート、帯電防止シート、導電シート、養生シ ート、遮音シート、遮光シート、化粧シート、マーキン グシート、難燃シート)、フィルム成形品(マーキン グ、保護フィルム、インキ定着フィルム、ラミネートフ 30 ィルム)、発泡体(硬質、軟質、半硬質、難燃)、イン キ用ビヒクル、反応性可塑剤、可塑剤、希釈剤、相溶化 剤、中間原料として、ポリエステル樹脂、ポリウレタン 樹脂、ポリカーボネイト樹脂や各種ブロックポリマーな どの樹脂用原料または、改質用原料、添加剤、更には、 繊維改質剤、繊維表面処理剤、紙加工剤、紙改質剤、界 面活性剤、分散安定剤、分散媒、溶剤、粘度調整剤、吸 着剤、毛髪処理剤、トナー用添加剤、帯電制御剤、帯電 防止剤、低収縮剤、防曇剤、防汚剤、親水性付与剤、親 油性付与剤、医薬担体、農薬用担体、化粧品用配合剤、 滑剤、ポリマーアロイ用添加剤、ゲルコート剤、FRP 用樹脂、FRP樹脂用添加剤、人工大理石用樹脂、人工 大理石用樹脂添加剤、注入成型品用樹脂、UV・EV硬 化樹脂用原料、粘着付与剤、各種バインダー(磁気記録) 媒体、鋳造用、焼成体用、グラスファイバーサイジング 材)RIM用ウレタン改質剤、合わせガラス用樹脂、制 振材、遮音材、分離膜用樹脂、防音材、吸音材、人工皮 革、人工皮膚、合成皮革、各種工業用部品、日用品、ト イレタリー用成型品、アクリルウレタンゴム、アクリル ウレタンゴム改質剤、アクリルウレタンフォーム改質

剤、ウレタンゴム改質剤、ウレタンフォーム可塑剤、ウレタンフォーム改質剤、アクリルゴム改質剤などへ使用することができるが、中でも塗料、シーリング材、塗膜防水材等として有効に使用することが好ましい。

【0123】例えば、塗料として使用する場合には、塗料に一般的に配合される成分を添加する。例えば、本発明の硬化性組成物を用いて塗料を調製する際には、本発明の硬化性組成物に染料および/または顔料を添加する。こうした染料および/または顔料を添加する際には、染料および顔料の分散剤を用いることができる。さらに、塗料の粘度あるいはチクソトロピー性を改善するために粘度調整剤、チクソトロピー性調整剤などを配合することができる。また、本発明の硬化性組成物、硬化組成物を塗料として使用する場合には、紫外線吸収剤、耐光性付与剤、酸化防止剤、タレ防止剤、消泡剤などを配合する。

【0124】また、本発明の塗料の25℃における粘度は、通常は100~5000センチボイズ、好ましくは500~5000センチボイズである。本発明の塗料は、硬化性組成物が、常温流動性を有しているので、特に溶剤を配合することを要しないが、必要により、溶剤を配合してもよい。

【0125】本発明のシーリング材は、比較的流動性の低い硬化性組成物、硬化組成物を用いて調製される。とのシーリング材には、通常は、染料および/または顔料を添加する際には、染料および顔料の分散剤を用いることができる。さらに、シーリング材の粘度あるいはチクソトロピー性を改善するために粘度調整剤、チキソトロピー性調整剤などを配合することができる。また、本発明のシーリング材には、紫外線吸収剤、耐光性付与剤、酸化防止剤、消泡剤、可塑剤、接着付与剤などを配合する。

【0126】また、本発明の塗料の25℃における粘度は、通常は5000~10000センチポイズ、好ましくは10000~50000センチポイズである。

【0127】特に本発明のシーリング材として硬化組成物を使用すれば、一液型シーリング材を調製することができる。

【0128】本発明の塗膜防水材は、上記のアクリル系 重合体 [a]、アクリル系重合体 [a-1]、硬化性組 成物、硬化組成物および硬化体を用いて調製される。この 塗膜防水材には染料および/または顔料を添加することができる。こうした染料および/または顔料を添加する際には、染料および顔料の分散剤を用いることができる。さらに、塗料の粘度あるいはチクソトロピー性を改善するために粘度調整剤、チクソトロピー性調整剤などを配合することができる。また、本発明の塗膜防水材には、紫外線吸収剤、耐光性付与剤、酸化防止剤、タレ防止剤、消泡剤などを配合する。さらに、この塗膜防水剤 50 は良好な防水性を有しているが、この防水性をさらに向 は、ゴム弾性を有しており、通常は10%以上、好ましくは100%以上の延伸性を有している。さらに、硬化前の組成物が粘稠な液体であるにも拘わらず、硬化体にはほとんどタック性を有していない。

27

【0121】本発明のアクリル系重合体[a]、アクリ ル系重合体[a-1]、硬化性組成物、半硬化組成物に は、その用途に適合させるために種々の添加剤を配合す ることができる。ここで使用することができる添加剤の 例としては、充填剤、色材、耐候性付与剤、紫外線吸収 剤、粘度調整剤、硬化補助触媒、撥水剤、防水剤、分散 10 剤、溶剤、消泡剤、可塑剤等を配合することができる。 また、本発明では、硬化体の特性を調整するために、例 えばテルペン樹脂、ロジン系樹脂、低分子量アタクチッ クポリプロピレン、塩素化オレフィン、低分子量ポリエ チレン、塩素化ブタジエン、塩素化イソプレン、ブチル 樹脂、ポリサルファイド系樹脂、ウレタン系樹脂、シリ コン系樹脂、変性シリコン系樹脂、アクリル系樹脂、E PM樹脂、EPDM樹脂、撥水性樹脂(例;シリコンボ リマー、テフロン粒子、ポリテトラフルオロエチレン、 ポリフッ化ビニリデン)、親水性樹脂(例:ポリビニル 20 アルコール、アニオン系乳化剤) 等を配合することがで きる。

【0122】本発明のアクリル系重合体[a]、アクリ ル系重合体[a-1]、硬化性組成物、硬化組成物およ び硬化体は、粘着剤、接着剤、シート成形品(通気性シ ート、保護シート、遮水シート、制振シート、転写シー ト、調光シート、帯電防止シート、導電シート、養生シ ート、遮音シート、遮光シート、化粧シート、マーキン グシート、難燃シート)、フィルム成形品(マーキン グ、保護フィルム、インキ定着フィルム、ラミネートフ 30 ィルム)、発泡体(硬質、軟質、半硬質、難燃)、イン キ用ビヒクル、反応性可塑剤、可塑剤、希釈剤、相溶化 剤、中間原料として、ポリエステル樹脂、ポリウレタン 樹脂、ポリカーボネイト樹脂や各種ブロックポリマーな どの樹脂用原料または、改質用原料、添加剤、更には、 繊維改質剤、繊維表面処理剤、紙加工剤、紙改質剤、界 面活性剤、分散安定剤、分散媒、溶剤、粘度調整剤、吸 着剤、毛髪処理剤、トナー用添加剤、帯電制御剤、帯電 防止剤、低収縮剤、防曇剤、防汚剤、親水性付与剤、親 油性付与剤、医薬担体、農薬用担体、化粧品用配合剤、 滑剤、ボリマーアロイ用添加剤、ゲルコート剤、FRP 用樹脂、FRP樹脂用添加剤、人工大理石用樹脂、人工 大理石用樹脂添加剤、注入成型品用樹脂、UV・EV硬 化樹脂用原料、粘着付与剤、各種バインダー(磁気記録 媒体、鋳造用、焼成体用、グラスファイバーサイジング 材)RIM用ウレタン改質剤、合わせガラス用樹脂、制 振材、遮音材、分離膜用樹脂、防音材、吸音材、人工皮 革、人工皮膚、合成皮革、各種工業用部品、日用品、ト イレタリー用成型品、アクリルウレタンゴム、アクリル ウレタンゴム改質剤、アクリルウレタンフォーム改質

剤、ウレタンゴム改質剤、ウレタンフォーム可塑剤、ウレタンフォーム改質剤、アクリルゴム改質剤などへ使用することができるが、中でも塗料、シーリング材、塗膜防水材等として有効に使用することが好ましい。

【0123】例えば、塗料として使用する場合には、塗料に一般的に配合される成分を添加する。例えば、本発明の硬化性組成物を用いて塗料を調製する際には、本発明の硬化性組成物に染料および/または顔料を添加する。こうした染料および/または顔料を添加する際には、染料および顔料の分散剤を用いることができる。さらに、塗料の粘度あるいはチクソトロビー性を改善するために粘度調整剤、チクソトロビー性調整剤などを配合することができる。また、本発明の硬化性組成物、硬化組成物を塗料として使用する場合には、紫外線吸収剤、耐光性付与剤、酸化防止剤、タレ防止剤、消泡剤などを配合する。

【0124】また、本発明の塗料の25℃における粘度は、通常は100~5000センチポイズ、好ましくは500~5000センチポイズである。本発明の塗料は、硬化性組成物が、常温流動性を有しているので、特に溶剤を配合することを要しないが、必要により、溶剤を配合してもよい。

【0125】本発明のシーリング材は、比較的流動性の低い硬化性組成物、硬化組成物を用いて調製される。とのシーリング材には、通常は、染料および/または顔料を添加する際には、染料および顔料の分散剤を用いることができる。さらに、シーリング材の粘度あるいはチクソトロピー性を改善するために粘度調整剤、チキソトロピー性調整剤などを配合することができる。また、本発明のシーリング材には、紫外線吸収剤、耐光性付与剤、酸化防止剤、消泡剤、可塑剤、接着付与剤などを配合する。

【0126】また、本発明の塗料の25℃における粘度は、通常は5000~10000センチポイズ、好ましくは10000~5000センチポイズである。

【0127】特に本発明のシーリング材として硬化組成物を使用すれば、一液型シーリング材を調製することができる。

【0128】本発明の塗膜防水材は、上記のアクリル系 40 重合体 [a]、アクリル系重合体 [a-1]、硬化性組 成物、硬化組成物および硬化体を用いて調製される。この 塗膜防水材には染料および/または顔料を添加することができる。こうした染料および/または顔料を添加する際には、染料および顔料の分散剤を用いることができる。さらに、塗料の粘度あるいはチクソトロピー性を改善するために粘度調整剤、チクソトロピー性調整剤などを配合することができる。また、本発明の塗膜防水材には、紫外線吸収剤、耐光性付与剤、酸化防止剤、タレ防止剤、消泡剤などを配合する。さらに、この塗膜防水剤 50 は良好な防水性を有しているが、この防水性をさらに向

30

上させるために、撥水剤、防水性樹脂を配合することができる。

【0129】また、本発明の塗膜防水剤の25℃における粘度は、通常は1000~50000センチポイズ、好ましくは5000~10000センチポイズである。本発明の塗膜防水材は、硬化性組成物が、常温流動性を有しているので、特に溶剤を配合することを要しないが、必要により、溶剤を配合してもよい。

【0130】本発明のアクリル系重合体[a]、アクリ ル系重合体 [a-1]、硬化性組成物、硬化組成物およ 10 び硬化体は、上記説明した塗料、シーリング材、塗膜防 水材の他に、粘着剤、接着剤、シート成形品(通気性シ ート、保護シート、遮水シート、制振シート、転写シー ト、調光シート、帯電防止シート、導電シート、養生シ ート、遮音シート、遮光シート、化粧シート、マーキン グシート、難燃シート)、フィルム成形品(マーキン グ、保護フィルム、インキ定着フィルム、ラミネートフ ィルム)、発泡体(硬質、軟質、半硬質、難燃)、イン キ用ビヒクル、反応性可塑剤、可塑剤、希釈剤、相溶化 剤、中間原料として、ポリエステル樹脂、ポリウレタン 20 樹脂、ポリカーボネイト樹脂や各種プロックポリマーな どの樹脂用原料または、改質用原料、添加剤、更には、 繊維改質剤、繊維表面処理剤、紙加工剤、紙改質剤、界 面活性剤、分散安定剤、分散媒、溶剤、粘度調整剤、吸 着剤、毛髪処理剤、トナー用添加剤、帯電制御剤、帯電 防止剤、低収縮剤、防曇剤、防汚剤、親水性付与剤、親 油性付与剤、医薬担体、農薬用担体、化粧品用配合剤、 滑剤、ポリマーアロイ用添加剤、ゲルコート剤、FRP 用樹脂、FRP樹脂用添加剤、人工大理石用樹脂、人工 大理石用樹脂添加剤、注入成型品用樹脂、UV・EV硬 30 化樹脂用原料、粘着付与剤、各種バインダー(磁気記録) 媒体、鋳造用、焼成体用、グラスファイバーサイジング 材)RIM用ウレタン改質剤、合わせガラス用樹脂、制 振材、遮音材、分離膜用樹脂、防音材、吸音材、人工皮 革、人工皮膚、合成皮革、各種工業用部品、日用品、ト イレタリー用成型品、アクリルウレタンゴム、アクリル ウレタンゴム改質剤、アクリルウレタンフォーム改質 剤、ウレタンゴム改質剤、ウレタンフォーム可塑剤、ウ レタンフォーム改質剤、アクリルゴム改質剤などとして 使用することもできる。

[0131]

【発明の効果】本発明のアクリル系重合体 [a]は、重合体分子の少なくとも1の末端に特定の式で表される水酸基およびイオウ原子を有する基が結合している分子を含有しており、この水酸基は、例えばボリイソシアネート化合物等に対して良好な反応性を示す。しかも、このアクリル系重合体 [a]は、従来制御が困難であった塊状重合によって製造することができ、従って、このアクリル系重合体 [a]は、反応溶媒、水などを実質的に含まない状態で得ることができる。

【0132】そして、本発明のアクリル系重合体 [a] にポリイソシアネート化合物を配合した硬化性組成物は、縮合硬化させることができ、その硬化物は、柔軟性があり、しかも高い強度を示し、また防水性にも優れている。

【0133】また、本発明の硬化組成物は、上記アクリル系重合体 [a]の水酸基の少なくとも一部にイソシアネート基が結合した構造を有するアクリル系重合体 [a-1]は、水分を吸収して自己縮合硬化する。従って、この硬化組成物は、一液型硬化性樹脂組成物として使用することができる。

【0134】さらに、本発明の硬化体は、耐水性、柔軟 性、可撓性に優れ、またゴム弾性を有することから、こ うした特性を利用して粘着剤、接着剤、シート成形品 (通気性シート、保護シート、遮水シート、制振シー ト、転写シート、調光シート、帯電防止シート、導電シ ート、養生シート、遮音シート、遮光シート、化粧シー ト、マーキングシート、難燃シート)、フィルム成形品 (マーキング、保護フィルム、インキ定着フィルム、ラ ミネートフィルム)、発泡体(硬質、軟質、半硬質、難 燃)、インキ用ビヒクル、反応性可塑剤、可塑剤、希釈 剤、相溶化剤、帯電制御剤、帯電防止剤、低収縮剤、ゲ ルコート剤、FRP用樹脂、人工大理石用樹脂、人工大 理石用樹脂添加剤、注入成型品用樹脂、各種バインダー (磁気記録媒体、鋳造用、焼成体用、グラスファイバー サイジング材)RIM用ウレタン改質剤、制振材、遮音 材、防音材、吸音材、人工皮革、合成皮革、各種工業用 部品、などへ使用することができるが、中でも塗料、シ ーリング材、塗膜防水材とすることができる。

【0135】また、本発明の塗料、シーリング材、塗膜防水材は、硬化物が柔軟性を有し、強度が高く、防水性にも優れている。従って、これらを塗布する基材に対する形態追随性に優れ、基材を物理的に保護すると共に、基材に優れた防水性を付与することができる。

[0136]

【実施例】次に実施例を示して本発明をさらに詳細に説明するが、本発明は、これら実施例によって限定されるものではない。

[0137]

40 【実施例1】攪拌装置、窒素ガス導入管、温度計および 還流冷却管を備えたフラスコに、2-エチルへキシルア クリレート100重量部を仕込み、フラスコ内に窒素ガ スを導入して、フラスコ内の空気を窒素ガスで置換し た。さらに、窒素ガスを導入しながら、フラスコの内容 物が60℃の温度になるように緩やかに加熱した。 【0138】次いて、触媒として、充分に窒素ガスで置

【0138】次いで、触媒として、充分に窒素ガスで置換したチオグリセロール5重量部を、攪拌下にフラスコ内に添加した。

【0139】チオグリセロール添加後、攪拌中のフラスコ内の温度が60℃に維持されるように冷却および加温

を行いながら、4時間反応させた。

【0140】4時間経過後、フラスコ内の反応物の温度 を室温まで戻し、反応物を取り出した。この反応物中の モノマー残留量をガスクロマトグラフィーを用いて測定 し、重合率を求めたところ、重合率は75%であった。 【0141】とうして得られた反応物をナス型フラスコ に移し、このナス型フラスコをロータリーエバボレータ に設置して、減圧下に70℃に徐々に加熱しながら反応 物中のモノマーを除去した。

31

【0142】得られたアクリル系重合物(1)は、15 10 0℃における加熱残量が99.7重量%であり、この操 作により、未反応モノマーはほとんど除去された。

【0143】こうして得られたアクリル系重合体(1) **についてゲルパーミエーションクロマトグラフィー(G** PC) により測定した分子量は、重量平均分子量数=3 700、数平均分子量=2200、分散指数=1.7で あった。このアクリル系重合体(1)の25℃における 粘度は2900センチポイズであり、水酸基価(OH) V: mgKOH/g) は48であった。

【0144】これらの分析結果から算出することによ り、このアクリル系重合体(1)の分子末端の100% にチオグリセロールから誘導される成分単位が導入され ていることが確認された。

[0145]

【実施例2】実施例1において、モノマーとして、エチ ルアクリレート100重量部を使用し、チオグリセロー ルの使用量を8重量部とした以外は同様にしてアクリル 系重合体(2)を製造した。

【0146】得られたアクリル系重合体(2)は、15 作により、未反応モノマーはほとんど除去された。

【0147】こうして得られたアクリル系重合体(2) についてゲルパーミエーションクロマトグラフィー (G PC)により測定した分子量は、重量平均分子量=47 00、数平均分子量=2800、分散指数=1.7であ った。このアクリル系重合体(1)の25℃における粘 度は11900センチポイズであり、水酸基価(OH V: mqKOH/g) は77であった。

【0148】これらの分析結果から算出することによ り、このアクリル系重合体(1)の分子末端の100% 40 にチオグリセロールから誘導される成分単位が導入され ていることが確認された。

[0149]

【比較例1】攪拌装置、窒素ガス導入管、温度計及び還 流冷却管を備えたフラスコに、2-エチルヘキシルアクリ レート90重量部および2-ヒドロキシエチルアクリレー ト10重量部を仕込み、酢酸ブチル50重量部を溶剤と して仕込み、フラスコ内に窒素ガスを導入してフラスコ 内の空気を窒素ガスで置換した。

【0150】さらに窒素ガスを導入しながら、フラスコ 50 た、このポリイソシアネート変性アクリル系重合体

中の内容物60℃の温度に穏やかに加熱した。

【0151】次いで、充分に窒素ガスで置換したn-ブチ ルメルカプタン8重量部を攪拌下にフラスコ内に添加 し、更に重合開始剤としてアゾビスイソブチロニトリル 0.1 重量部をフラスコ内に添加した。

【0152】アゾピスイソブチロニトリル添加後、攪拌 中のフラスコ内温度が60℃に維持できるように冷却お よび加熱を行いながら、4時間反応させた。

【0153】4時間経過後、反応物の温度を室温までも 戻し、内容物を取り出した。

【0154】取り出した反応物中におけるモノマー残留 量をガスクロマトグラフィーで測定子、重合率を求めた ところ、重合率は79%であった。

【0155】さらに、実施例1と同様にして反応物中の 未反応モノマーを除去すると共に、反応溶媒である酢酸 ブチルを除去した。

【0156】こうして得られたアクリル系重合体(c-1) についてゲルパーミエーションクロマトグラフィー (GPC)により測定した分子量は、重量平均分子量数 20 = 4400、数平均分子量=2300、分散指数=1. 9であった。このアクリル系重合体の25℃における粘 度は4200センチポイズであり、水酸基価(OHV: mgKOH/g) は48であった。

[0157]

【実施例3】撹拌装置、乾燥窒素ガス導入管、温度計、 滴下ロートおよびモレキュラーシーブを装着した環流冷 却管を備えたフラスコに、トルエンジイソシアネート 1 6重量部、トルエン50重量部、ジブチルジラウリン酸 錫0.05重量部を仕込み、フラスコ内の空気を乾燥窒 0℃における加熱残量が99.3重量%であり、この操 30 素で置換しながら60℃に加熱した。その後、フラスコ 内の温度が、60℃~70℃の範囲内に保てるように、 加熱および冷却を行いながら、実施例1で得られたアク リル系重合体(1)100重量部を2時間かけてフラス コ内に滴下した。

> 【0158】アクリル系重合体(1)全量を滴下した 後、フラスコ内の温度を80℃に昇温し、そのまま80 ℃にて6時間反応を行い、反応を完結させた。その後、 反応溶液を室温まで冷却し、フラスコ内の反応物を取り 出し、減圧下に90℃に徐々に加熱しながら、エバポレ ーターで、トルエンおよび未反応ポリイソシアネート化 合物(TDI)を除去した。

> 【0159】得られたポリイソシアネート変性アクリル 系重合体物(3)は、150℃における加熱残分が9 9.8%であり、25℃における粘度が78000セン チポイズであった。

> 【0160】こうして得られたポリイソシアネート変性 アクリル系重合体(3)中の残留水酸基をFT-IR (フーリエ変換赤外線吸収スペクトル)で調べたとこ ろ、水酸基に起因する吸収帯は完全に消失していた。ま

(3)についてアミン値から算定したNCO量は4.7 %であった。

33

$\{0161\}$

【実施例4】実施例3において、使用したイソシアネー ト化合物の代わりにヘキサメチレンジイソシアネート2 5 重量部を使用した以外は同様にして変性物を調製し た。

【0162】得られたポリイソシアネート変性アクリル 系重合体(4)は、150°Cにおける加熱残分が99. 8%であり、25℃における粘度が38000センチポ 10 イズであった。

【0163】とうして得られたポリイソシアネート変性 アクリル系重合体(4)中の残留水酸基をFT-IR (フーリエ変換赤外線吸収スペクトル)で調べたとと ろ、水酸基に起因する吸収帯は完全に消失していた。ま た、この変性物についてアミン値から算定したNCO重 は4.7%であった。

[0164]

【比較例2】実施例3において、実施例1で得られたア クリル系重合体(1)の代わりに、比較例1で調製した 20 アクリル系重合体を使用してアクリル系重合体のポリイ ソシアネート変性を行おうとしたが、重合体全量を滴下 して80℃に昇温を始めてから1時間後に、反応物の粘 度が著しく高くなり、反応物がゲル化し始め、イソシア ネート変性物を得ることはできなかった。

[0165]

【実施例5】容量200ミリリットルのビーカーに実施 例1で調製したアクリル系重合体(1)100重量部 と、ポリイソシアネート化合物として、ヘキサメチレン ソシアネート化合物(商品名;デュラネート24A-1 00、旭化成(株)製、NCO=23.5%)21重量 部とを入れ、さらに硬化促進剤(硬化触媒)としてジブ チルジラウリン酸錫0.01重量部を添加してよく混合 して、流動性を有する均一な硬化性組成物を調製した。 【0166】得られた硬化性組成物をポリエチレン製の フィルム上にバーコーターを用いて塗布し、23℃、6 5%RHの条件で1週間放置し、硬化性組成物の硬化体 膜を得た。

【0167】得られた硬化体膜をポリエチレン製フィル 40 ムから剥離して、指触により硬化性を調べたところ、タ ック感が全くなく、指にベタツキも残らず、完全に硬化 していることが確認された。

[0168]

【実施例6】実施例5において、実施例1で製造したア クリル系重合体(1)100重量部に対して、15重量 部のイソシアネート化合物として、ジフェニルメタンジ イソシアネートモノマーの高純度フレーク品(商品名: タケネート300F、武田薬品(株)製、NCO=3 3.6%)、およびジブチルジラウリン酸スズ0.00

34

1 重量部を使用した以外は同様にして硬化性組成物を調 製し、この硬化性組成物を用いた以外は同様にして硬化 体膜を形成した。

【0169】得られた硬化体膜をポリエチレン製フィル ムから剥離して、指触により硬化性を調べたところ、タ ック感が全くなく、指にベタツキも残らず、完全に硬化 していることが確認された。

[0170]

【実施例7】実施例5において、アクリル系重合体 (1)の代わりに、実施例2で調製したアクリル系重合 体(2)100重量部を使用し、このアクリル系重合体 (2)100重量部に対して、15重量部のイソシアネ ート化合物として、ジフェニルメタンジイソシアネート モノマーの高純度フレーク品(商品名;タケネート30 OF、武田薬品(株)製、NCO=33.6%)、およ びジブチルジラウリン酸スズ0.001重量部を使用し た以外は同様にして硬化性組成物を調製し、この硬化性 組成物を用いた以外は同様にして硬化体膜を形成した。 【0171】得られた硬化体膜をポリエチレン製フィル

ムから剥離して、指触により硬化性を調べたところ、タ ック感が全くなく、指にベタツキも残らず、完全に硬化 していることが確認された。

[0172]

【実施例8】実施例5において、アクリル系重合体 (1)の代わりに、実施例2で調製したアクリル系重合 体(2)100重量部を使用し、このアクリル系重合体 (2) 100重量部に対して、41重量部のポリイソシ アネート化合物として、2官能のヘキサメチレンジイソ シアネート化合物(商品名;デュラネートD-101、 ジイソシアネートをビュウレット変性した3官能性のイ 30 旭化成(株)製、NCO=19.7%)、および、ジブ チルジラウリン酸スズ0.001重量部を使用した以外 は同様にして硬化性組成物を調製し、この硬化性組成物 を用いた以外は同様にして硬化体膜を形成した。

> 【0173】得られた硬化体膜をポリエチレン製フィル ムから剥離して、指触により硬化性を調べたところ、タ ック感が全くなく、指にベタツキも残らず、完全に硬化 しているととが確認された。

[0174]

【実施例9】実施例5において、アクリル系重合体 (1)の代わりに、実施例3で調製したポリイソシアネ ート変性アクリル系重合体(3)100重量部を使用 し、このポリイソシアネート変性アクリル系重合体 (3)100重量部に対して、ジブチルジラウリン酸ス ズ0.001重量部を使用した以外は同様にして硬化性 組成物を調製し、この硬化性組成物を用いた以外は同様 にして硬化体膜を形成した。

【0175】得られた硬化体膜をポリエチレン製フィル ムから剥離して、指触により硬化性を調べたところ、タ ック感が全くなく、指にベタツキも残らず、完全に硬化 50 していることが確認された。

[0176]

【実施例10】実施例5において、アクリル系重合体 (1)の代わりに、実施例4で調製したポリイソシアネ ート変性アクリル系重合体(4)100重量部を使用 し、とのポリイソシアネート変性アクリル系重合体 (4)100重量部に対して、ジブチルジラウリン酸ス ズ0.001重量部を使用した以外は同様にして硬化性 組成物を調製し、この硬化性組成物を用いた以外は同様 にして硬化体膜を形成した。

ムから剥離して、指触により硬化性を調べたところ、タ ック感が全くなく、指にベタツキも残らず、完全に硬化 していることが確認された。

[0178]

【実施例11、12および比較例3】容量200ミリリ*

1 爱

*ットルのビーカーに、主剤として各種重合体あるいは組 成物と、この主剤に対して、顔料として酸化チタン微粒 子20重量部、また、ポリイソシアネート化合物を表1 に示すように配合して、ビーカー内の内容物が均一にな るまで、ミキサーにて攪拌混合して粘稠な組成物(塗料 組成物)を得た。

【0179】得られた組成物を0.5mm厚さの鉄板表面 にバーコーターを用いて、塗布厚20μmに塗布した。

【0180】さらに、こうして組成物を塗布した鉄板を 【0177】得られた硬化体膜をポリエチレン製フィル 10 23℃に温度で2時間放置した後、乾燥機で100℃で 30分間加熱して焼き付け処理を行った。

【0181】得られた塗膜の特性は次の通りである。

[0182]

【表1】

	主剤	資料	ポリイソシアネート	硬化性	密着性	可撓性	光沢性
実施例11	79月 五金 年 (1) 100 年日 第	酸化チタン 加重量等	タケネート304F 25 重量部	AA	AA	ВВ	ВВ
実施例12	ギリイソシアネ ート変換アクリ ル系重合像(4) 100重量第	酸化チタン 加重量数	なし	вв	ВВ	AA	AA
比較例 3	アクリル系重合 体 (c-1) 108重量体	酸化チタン 加重量器	タケネート300F 25重量第	AA	вв	ממ	ВВ

【0183】なお、上記表1において、硬化性、被着体 30 AA・・・塗膜が鋼板の屈曲に追随しひび割れなどは生 密着性、膜可撓性、膜光沢および評価方法並びに記号は 次の通りである。

【0184】・硬化性:塗膜表面のタック感を指触によ り評価した。

[0185]

AA・・・タックなし

BB・・・わずかにタックあり

CC・・・タック感がある

DD・・・明らかにタックがある。

【0186】・被着体密着性:塗膜表面をガラス棒でし 40 【0191】

てき、塗膜の浮き等の状態を目視により観察評価した。

[0187]

AA・・・塗膜の浮き等は全く見られない

BB・・・塗膜にわずかに浮き等が見られる

CC・・・塗膜に部分的な浮きが見られる

DD・・・塗膜の相当部分に浮き上がりがみられる。

【0188】・膜可撓性:塗工面を上面として、鋼板を 90度に塗工していない面側に曲げ、塗膜のひび割れ度 合いを目視により観察評価した。

[0189]

じない

BB・・・塗膜は鋼板の屈曲に追随するが僅かにひび割 れが生ずる

CC・・・塗膜の鋼板屈曲に対する追随性が低くひび割 れが生ずる

DD··・塗膜に鋼板屈曲追随性がなく、相当ひび割れ が生ずる。

【0190】・膜光沢性:塗膜の光沢度合いを目視によ り観察評価した。

AA・・・非常に良好な光沢がある

BB・・・光沢はあるが「AA」と比較すると光沢性は 劣る。

[0192]

CC・・・多少の光沢はある

DD・・・全く光沢がない。

【0193】上記の実施例および比較例との対比から本 発明の塗料は、非常に優れた可撓性を有する塗膜を形成 することができ、また、本発明の塗料は無溶剤である。

50 [0194]

【実施例13、14、15 および比較例4】容量200 ミリリットルのビーカーに、主剤として各重合体組成物 100重量部と、充填剤として軽質炭酸カルシウム(平均粒子径: $0.2 \mu m$)、また、ポリイソシアネート化合物、ポリオール硬化剤を配合してビーカー内の樹脂が均一になるまで、ミキサーにて充分に分散混合し、チクソ性のある粘稠な樹脂を調製した。

37

【0195】得られた樹脂をポリエチレン製の1mm厚さのスペーサーを3辺に貼着した2mm厚さのポリスチレン板に2枚重ねた試料試作容器に、空気を巻き込まないよ*10

*うにゆっくりと流し込んだ。

【0196】樹脂を挟み込んだ試料板を23℃にて7日間、流し込み口を上にして立てかけ養生した。7日間養生した試料板を更に50℃で7日間養生した後、ポリエチレン板とスペーサーを外し、1mm厚のシーリング材試料を得た。

38

【0197】得られたシーリング材試料の特性は次の通りである。

[0198]

【表2】

表 2

32							
	主剂	充填剂	硬化類	硬化性	可携性	延伸率(%)	破断強度 (kg/cm²)
实施例13	アクリル系直 合作(1) 10個連邦	受賞民権カルシ ウム 70重量第	ポリイソシアネ ート タケネート30 OF 15世番	AA	AA	500	2 1
实施例14	アクリル深重 合体(3) 100重量等	委員員歌カルシ ウA 5 0 重量第	なし	AA	ВВ	420	2 8
実施例15	ポリイソシア ネート変性ア クリル采集合 体(4) 100重量値	軽質資理カルシ サム 50重量等	ポリオール硬化 件 DC-3000 120重量器	AA	AA	1100	1 2
比較例 4	アクリル系章 合体(c-1) 100重量器	を受けませた。 ウム 70重量等	ポリイソシアネ ート ケケネート30 OF 15重量施	вв	DD	150	1 5

【0199】なお、上記表2において、硬化性、被着体密着性、膜可撓性、膜光沢および評価方法並びに記号は次の通りである。

【0200】・硬化性:塗膜表面のタック感を指触により評価した。

[0201]

AA・・・タックなし

BB・・・わずかにタックあり

CC・・・タック感がある

DD・・・明らかにタックがある。

【0202】・膜可撓性:塗膜を180度に曲げ(ハゼ 折り)、塗膜のひび割れ度合いを、目視により観察評価 した。

[0203]

AA・・・塗膜にひび割れなどは生じない

BB・・・塗膜に僅かにひび割れが生ずる

CC・・・塗膜にひび割れが生ずる

DD··・塗膜に著しいひび割れが生ずる。

【0204】・被膜延伸率:得られた試料を3号ダンベル型に切り取り、23℃、65%の条件で24時間放置した。

【0205】引っ張り速度200mm/min.の速度で試料が破断するまでの距離を求め、試料長からの延びを延伸率とした。

【0206】・被膜破断強度: 得られた試料を3号ダン 40 ベル型に切り取り、23℃、65%の条件で24時間放 置した。

【0207】引っ張り速度200mm/min.の速度で試料が破断した際の最大強度を求め、試料の延伸方向に対する断面積に対して判断強度とした。

【0208】ただし、使用したポリオール硬化体は、日本油脂(株)製のポリエーテルポリオールを用いて硬化させたものである。

【0209】実施例と比較例との対比から、本発明のシーリング剤が非常に可撓性がよく、強度、延伸率のいず 50 れの特性にも優れていることがわかる。

[0210]

【実施例16、17および比較例5】容量200ミリリ ットルのピーカーに、主剤として各種重合体組成物10 0 重量部と充填剤として重質炭酸カルシウム (平均粒) 径:5.0 μm)、イソシアネート化合物を配合して、 ビーカー内の樹脂が均一になるまでミキサーを用いて充 分に分散混合して、流動性のある配合するを調製した。 【0211】得られた樹脂配合物をポリエチレン製の深 さ2cmのトレイに、膜厚が5mmとなるように流し込み、*

39

*櫛へらを用いて空気を巻き込まないように塗工した。

【0212】樹脂を流し込んだトレイを、23℃で7日 間養生した後、ポリエチレン製トレイから硬化した試料 を取り出し、塗膜防水材試料を得た。

【0213】得られた塗膜防水剤試料の特性は次の通り である。

[0214]

【表3】

表 3

	主剂	充填剂	硬化剂	硬化性	可捷性	延伸率(%)	破断強度 (kg/cm²)
実施例16	アナリル承重 合作(1) 100重要集	重要提供カルシウム タム 80重量器	ポリイソシアネ ート タケネート30 OF 15重量等	AA	AA	450	2 2
实施例17	アナリル承重 合作(2) 10重量等	重要反映カルシウム カム 80重量等	ポリイソシアネート デュラネート d-100 41重量部	AA	AA	420	1 5
比較例 5	アクリル承重 合作(c-1) 100重量等	重質民産カルシウム さん 80重量部	ポリイソシアネ ート タケネート30 OF 15変量等	AA	DD	120	1 9

【0215】なお、上記表3において、硬化性、被着体 密着性、膜可撓性、延伸率、破断強度および評価方法並 30 【0220】・被膜延伸率:得られた試料を3号ダンベ びに記号は次の通りである。

【0216】・硬化性:塗膜表面のタック感を指触によ り評価した。

[0217]

AA・・・タックなし

BB・・・わずかにタックあり

CC・・・タック感がある

DD・・・明らかにタックがある。

【0218】・膜可撓性:塗膜を180度に曲げ(ハゼ 折り)、塗膜のひび割れ度合いを、目視により観察評価 40 した。

[0219]

AA・・・塗膜にひび割れなどは生じない

BB・・・塗膜に僅かにひび割れが生ずる

CC・・・塗膜にひび割れが生ずる

DD・・・塗膜に著しいひび割れが生ずる。

ル型に切り取り、23℃、65%の条件で24時間放置 した。

【0221】引っ張り速度200mm/min.の速度で試料が破 断するまでの距離を求め、試料長からの延びを延伸率と した。

【0222】・被膜破断強度:得られた試料を3号ダン ベル型に切り取り、23℃、65%の条件で24時間放 置した。

【0223】引っ張り速度200mm/min.の速度で試料が破 断した際の最大強度を求め、試料の延伸方向に対する断 面積に対して判断強度とした。

【0224】実施例と比較例との対比から、本発明の塗 膜防水材は、非常に可撓性がよく、強度、延伸率に優れ た弾性体である。

フロントページの続き

(51)Int.Cl.'	識別記号	F I	テーマコート'(参考)
C 0 8 L 33/00		C 0 8 L 33/00	4 J 1 0 0
C 0 9 D 5/00		C O 9 D 5/00	Z
133/00		133/00	
175/04		175/04	
C 0 9 K 3/10		C 0 9 K 3/10	D
			E

Fターム(参考) 4H017 AA04 AA31 AB01 AC16 AC19

4J002 AC031 AC061 AC091 BD101 BE041 BF021 BG011 BG041 BG051 BG061 BG071 BG081

BG091 BG101 BG121 BG131

BH001 BJ001 BL011 BL021

BQ001 CD191 ER006 FD146

GHOO GJO2

4J011 AA05 AA09 AB02 FA03 FA04

FA05 FB05 NA25 NB03 NB04

NB05 NC07

4J034 CE01 DA01 DA03 DA05 DB01

DB04 DB05 DB07 DB08 DD01

DD06 DD07 DD08 DD11 DD12

DF01 DG00 DP02 DP03 DP18

GA05 GA06 GA33 HA01 HA02

HA07 HB07 HB08 HB17 HC03 HC12 HC17 HC22 HC35 HC46

HC52 HC61 HC64 HC67 HC71

HC73 KA01 KB04 KC13 KC17

KD02 KD04 KD08 KD12 KE02

LA08 LA33 QA02 QA03 QA05

QB11 RA01 RA02 RA03 RA07

RA08 RA10 RA14 RA15 RA16

43038 DG191 DG261 GA02 GA03

GA06 GA09 GA10 MA14 NA03

NA04 NA11

4J100 AC04P AG04P AJ02P AK01P

AL03P AL04P AL05P AL08P

AL62P AL65P AM02P BA02P

BAO3H BAO3P BAO4P BAO5P

BA06P BA29P BA51H BB01P

BB07P BC43P CA01 DA30 DA36 HA53 HC08 HC51 HC69

HC85 JA01 JA46