

รายงาน

เรื่อง

Assignment 2: สรุปการนำเสนอ, คะแนนการนำเสนอ, และแบบฝึกหัด

จัดทำโดย

นายกฤษณพงษ์ เพ็งบุญ 6330300038 นายจิรเมธ สุทธาวาณิชย์ 6330300119 นายชญานนท์ พูลวาสน์ 6330300151 นายชญานิน ตลับเงิน 6330300160

เสนอ

ผศ.ดร.กุลวดี สมบูรณ์วิวัฒน์

รายงานนี้เป็นส่วนหนึ่งของรายวิชา
03603351 วิทยาศาสตร์ข้อมูลเบื้องต้นหมู่เรียนบรรยาย 800
ภาคต้น ปีการศึกษา 2565
มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตศรีราชา

คำนำ

รายงานเล่มนี้เป็นส่วนหนึ่งของรายวิชา 03603351 วิทยาศาสตร์ข้อมูลเบื้องต้นเพื่อใช้ในการ สรุปผลการศึกษา library สำหรับวิทยาศาสตร์ข้อมูล

ผู้จัดทำ

นายกฤษณพงษ์ เพ็งบุญ 6330300038

นายจิรเมธ สุทธาวาณิชย์ 6330300119

นายชญานนท์ พูลวาสน์ 6330300151

นายชญานิน ตลับเงิน 6330300160

สารบัญ

คำนำ	b
สารบัญ	d
สรุปการนำเสนอ	1
Numpy	1
Scipy	1
Matplotlib	1
Seaborn	1
Pandas	1
Scikit-supervise	1
Scikit-unsupervise	2
การนำเสนอ	2
Numpy	2
Scipy	2
Matplotlib	2
Seaborn	2
Pandas	3
Scikit-supervise	3
Scikit-unsupervise	3
การบ้าน	3
Numpy	3
Scipy	4
Matplotlib	4
Seaborn	5
Pandas	7
Scikit-supervise	8
Scikit-unsupervise	9

สรุปการนำเสนอ

Numpy

เป็น library สำหรับเก็บข้อมูลตัวเลขในรูปแบบของ array มีความสามารถในการทำงานที่รวดเร็วและ ประหยัด memory กว่า python list เนื่องจากมีขนาดที่ตายตัวโดยที่ข้อมูลทุกตัวเป็นข้อมูลชนิดดียวกันและเป็น library ที่เขียนขึ้นมาจากภาษา C

Scipy

scipy เป็นlibary ที่สร้างมาให้ป็นส่วนขยายของ numpy โดยมีฟังก์ชันสำหรับการทำงานระดับสูงทาง คณิตศาสตร์ วิทยาศาสตร์ วิศวกรรม และการคำนวนทางเทคนิค

Matplotlib

เป็น library พื้นฐานสำหรับการสร้างกราฟเพื่อใช้สำหรับการวิเคราะห์ข้อมูล

Seaborn

เป็น library ที่พัฒนามาจาก matplotlib เพื่อให้การสร้างกราฟมีความสะดวกมากขึ้น เช่น การสร้าง กราฟที่มีการทำ linear regression และแสดงผลออกมา

Pandas

เป็น library ที่มีความโดดเด่นในการทำ data analysis, data cleaning เก็บข้อมูลในลักษณะ dictionary + list ช้ากว่า numpy แต่สามารถเก็บข้อมูลที่ไม่ใช่ตัวเลขได้ สามารถใช้งานกับวิทยาศาสตร์ข้อมูลได้ ดีกว่า Excel เนื่องจากสามารถจัดการกับข้อมูลจำนวนมากได้

Scikit-supervise

เป็นการใช้ library scikit สำรับสร้างโมเดล ML แบบ supervise ที่มีความง่ายในการใช้งาน และมี dataset ที่เตรียมไว้สำหรับฝึกใช้งาน

supervise learning สามารถแบ่งได้ 2 แบบคือ classification และ regresstion

Algorithm สำหรับ supervise learning -> KNN, decision tree, linear regression, logistic regression, SVM ๆลๆ

Scikit-unsupervise

เป็นการใช้ library scikit สำรับสร้างโมเดล ML แบบ unsupervise ที่มีความง่ายในการใช้งาน และมี dataset ที่เตรียมไว้สำหรับฝึกใช้งาน

unsupervised learning แบ่งได้ 2 แบบคือ Clustering, Dimensionality reduction

Algorithm สำหรับ supervise learning -> KNN, decision tree, linear regression, logistic regression, SVM ๆลๆ

การนำเสนอ

Numpy

9

จุดแข็ง ข้อมูลมีความละเอียดครบถ้วน จุดอ่อน อ่านสไลด์เป็นส่วนมาก

Scipy

8.5

จุดแข็ง ข้อมูลมีความครบถ้วน จุดอ่อน ขาดตัวอย่างการใช้งานที่มากพอและมีบางจุดที่อ่านยาก

Matplotlib

9.5

จุดแข็ง ข้อมูลมีความละเอียดครบถ้วน จุดอ่อน สไลด์มีบางจุดที่อ่านยาก

Seaborn

9

จุดแข็ง ข้อมูลมีความครบถ้วน จุดอ่อน มีการอ่านสไลด์

Pandas

8.5

จุดแข็ง ข้อมูลค่อนข้างมีความละเอียด จุดอ่อน ไม่มีการเตรียมความพร้อม

Scikit-supervise

10

จุดแข็ง ข้อมูลมีความละเอียดครบถ้วน จุดอ่อน -

Scikit-unsupervise

8.5

จุดแข็ง ข้อมูลมีความละเอียดครบถ้วน จุดอ่อน มีข้อมูลบางส่วนที่มีความผิดพลาด อ่านสไลด์

การบ้าน

Numpy

สร้างอาเรย์ต่อไปนี้

ขนาด 10×10 ทุกช่องมีค่า -3 ขนาด 10×10 แถวคู่เป็น 6ทุกตัว แถวคี่เป็น 9ทุกตัว ขนาด 10×10 ทุกช่องเป็น 0 ยกเว้นในแนวทแยงมุมจากซ้ายบนลงมาขวาล่างเป็น 1

- one((10,10)) เป็นการสร้าง array 10*10 ที่มีค่าภายในทุกตัว คือ 1 แล้วนำไปคูณกับลบ 3 เพื่อให้ทุกค่ามีค่าเป็น -3

- full((10,10),[6,9]*5) เป็นการสร้าง array 10*10 ที่มีค่าแถวแรก(แถวที่ 0)๖๗เป็น 6 แถวต่อมาเป็น 9 แล้วก็ 6 เป็นจำนวน 5
- identity เป็นการสร้างอาเรย์ เมตริกเอกลักษณ์

```
import numpy as np
first = np.ones((10,10))*-3
print(first)

second = np.full((10,10),[6,9]*5)
print(second)

third = np.identity(10)
print(third)
```

Scipy

จงสร้างอาเรย์ 1-40และเก็บไฟล์เป็น .MATLABFrom

scipy.io import savemat

```
import numpy as np
from scipy.io import savemat
a = np.arange(1,41)
savemat('onetoforty.mat',{'a':a})
```

Matplotlib

1)จงสร้างกราฟเส้น(Line Plot)

ylabel ชื่อHomework

xlabel ชื่อDay

Titleชื่อMyHomework

y1 = [5,15,15,20,10]

y2 = [15,20,10,5,15]

y3 = [10,5,15,15,20]

```
x = [1,2,3,4,5]
```

กราฟเป็นแบบกริด(grid),สีGreen,alpha=0.1,lw=2,linestyle='--'

1ลักษณะเส้นเป็นเส้นประสลับจุด,markerเป็นดาว,เส้นกราฟเป็นสีMagenta

- 2.ลักษณะเส้นเป็นเส้นประ,markerเป็นวงกลม,เส้นกราฟเป็นสีGreen
- 3.ลักษณะเส้นเป็นเส้นจุดประ,markerเป็นสามเหลี-ยม,เส้นกราฟเป็นสีRed
- เซตกราฟโดย ใช้คำสั่ง plt.grid(True,color='green',alpha=0.1,lw=2,linestyle= '--')
- เซตลักษณะเส้นแรกโดย ใช้คำสั่ง plt.plot(x,y1,linestyle= '-.',marker='*',color='Magenta')
- เซตลักษณะเส้นสองโดย ใช้คำสั่ง plt.plot(x,y2,linestyle= '--',marker='o',color='green')
- เซตลักษณะเส้นสามโดย ใช้คำสั่ง plt.plot(x,y3,linestyle= ':',marker='^',color='red')
- .show() เพื่อแสดงผลลัพธ์

```
import matplotlib.pyplot as plt

y1 = [5,15,15,20,10]
y2 = [15,20,10,5,15]
y3 = [10,5,15,15,20]
x = [1,2,3,4,5]

plt.title('My homework')
plt.xlabel('Day')
plt.ylabel('Homework')
g = plt.grid('rue,color='green',alpha=0.1,lw=2,linestyle= '--')
plt.plot(x,y1,linestyle= '--',marker='*',color='Magento')
plt.plot(x,y2,linestyle= '--',marker='^-',color='green')
plt.plot(x,y3,linestyle= ':',marker='^-',color='green')
plt.show()
```

Seaborn

- 1. กราฟ scatter โดย
- 1.1) ความหนาของจุดบนกราฟเท่ากับ 100
- 1.2) ตั้ง title ตามชื่อกลุ่มของตัวเอง
- 1.3) set แกน x และy
 - arrange ให้ x = 0-99
 - random y 100

- กำหนดชนิดกราฟด้วย .scatterplot() และ set หัวข้อด้วย .set(title = "name")

- 2. กราฟ histrogram 2รูป โดย
- 2.1) รุปที่ 1 ให้พล็อตตามข้อมูลคอลลัมน์ tip เป็นแกนx และข้อมูลของคอลลัมน์smoker เป็นแกน y โดยใชค้า สั่ง facetgrid
- 2.3) รูปที่ 2 หาเส้นตรงที่เหมาะสมกับข้อมูลโดยใชค้า สั่ง regplot
 - load data set tips
 - สั่งสร้าง facegrid
 - สั่ง plot กราฟลงแต่ละช่อง
 - regplot + facetgrid = lmplot ใช้คำสั่ง .lmplot และกำหนดค่าตามข้อก่อนหน้า

```
import seaborn as sb
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(100)
y = np.random.randint(0,20,100)
sb.scatterplot(x=x,y=y,s = 20).set(title = "hoke pip")

t = sb.load_dataset('tips')
g = sb.FacetGrid(t,col = "smoker")
g.map(plt.hist, "tip")

sb.lmplot(x="total_bill", y="tip", col="smoker", data=t)
```


Pandas

4.ให้ทำการอัพเดทข้อมูล

```
จาก โค้ดนี้
import pandas as pd
city = {"name": ["Bangkok", "Chonburi", "Ayuthaya", "Samuthprakarn", "Lopburi", "Korat"],
"population": [19191919,28282828,37373737,46464646,5555555,12345678], "hospital":[100,20,10,35,69,56]}
cities = pd.DataFrame(city,columns = ["population","hospital"],index =city["name"])
1.แสดงจังหวัดที่มีจำนวนโรงพยาบาลที่มีมากกว่า 50
        Code -> cities[cities["hospital"] > 50]
        Mysql -> select * from cities where hospital > 50;(สมมุติให้ตารางนี้ชื่อ cites)
2.ให้ลบคอลลัมชื่อ 'population และแถวของ 'Chonburi' ออก
        Code -> cities = cities.drop(columns=['population'],index='Chonburi')
        Mysql -> alter table cities drop column population;
                delete from Department where name='chonburi';
3.ให้ทำการ insert column population คืนให้อยู่ตำแหน่ง เดิมโดยกำหนดให้
population = [19191919,37373737,46464646,5555555,12345678]
        Code -> cities.insert(loc=0, column="population",value= population)
        Mysql -> alter table cities add column population int;
                 update cities set population=19191919 where name='Bangkok';
                 update cities set population=37373737 where name='Ayuthaya';
                 update cities set population=46464646 where name= 'Samuthprakarn';
                 update cities set population=5555555 where name= 'Lopburi';
                 update cities set population=12345678 where name='Korat';
```

นำข้อมูลดังต่อไปนี้และตอบคำถาม.จากข้อมูลข้างต้นให้เขียนคำสั่งของ python และ SQL ให้ได้ผลดังนี้โดยสร้าง data frame

Code -> cities["hospital"].replace({ 100:123, 10:45}, inplace=True)

Mysql -> update cities set hospital=123 where hospital=100;

update cities set hospital=45 where hospital=10;

Scikit-supervise

1.จากโค้ดlinear Regressionให(ทดลองเปลี่ยนจำนวนสินค้าที่ขายเป็น 20,45,37,48,65,52,70,85,75,90,88,79แล้วรันโค้ด โดย ต้องแสดงผลกราฟให้ดู(codeต้องไม่error)

- 2. จากโค้ดของ Logistic Regresstion ให้ลองเปลี่ยนค่าตรง predict จากที่ predict เป็น สายพันธุ์ versicolor ให้เป็นสายพันธ์ setosa และ virginica แล้วนำรูปภาพมาแสดง
- เปลี่ยนค่า X_new ให้ใกล้เคียงกับสายพันธ์นั้นๆ ดังนี้ Setosa -> [1,2,3,1.5], Virginica -> [1,2,6,2.5]

```
[9]: # Make a prediction
    #X_new = np.array([[sepal length, sepal width ,petal length, petal width]])
    X_new = np.array([[6, 2.5, 4 ,1.2]])
    y_pred = logreg.predict(X_new)
    y_pred_prob = logreg.predict_proba(X_new)
    print("Prediction:", y_pred, "with the probability array:", y_pred_prob)
    print("Predicted target name:", iris["target_names"][y_pred])
    #setosa[1, 2, 3 ,1.5] versicolor[6, 2.5, 4 ,1.2] virginica[1, 2, 6 ,2.5]

Prediction: [1] with the probability array: [[0.0153178 0.95081079 0.03387141]]
    Predicted target name: ['versicolor']
```

Scikit-unsupervise

- 1. ชุดข้อมูลแบบใดเหมาะกับการใช้ วิธีการ unsupervised learning
- ชุดข้อมูลที่เราต้องการเห็นภาพลักษณะรูปแบบการจับกลุ่มของข้อมูลหรือข้อมูลที่มีมิติของข้อมูลมาก
- 2. จากตัวอย่าง K-means clustering(ในสไลด์หน้า 28 เป็นต้นไป)จงแสดงตัวอย่างข้อมูล 15 รายการแรก

```
[[1.4 0.2]
[1.4 0.2]
[1.4 0.2]
[1.3 0.2]
[1.5 0.2]
[1.5 0.2]
[1.7 0.4]
from sklearn import datasets
from sklearn.cluster import KMeans
iris = datasets.load_iris()
x = iris.data[:,2:]
y = iris.target
print(x[:15,:])
[1.6 0.2]
[1.4 0.1]
[1.1 0.1]
[1.2 0.2]]
```

3. จากตัวอย่าง (ในสไลด์หน้า 28 เป็นต้นไป)ให้จัดกลุ่มข้อมูลออกเป็น 10 กลุ่ม (โดยใช้วิธี K-meansclustering)


```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
iris = datasets.load_iris()
x = iris.data[:,2:]
y = iris.target
print(x[:15,:])
plt.scatter(x[:,0],x[:,1],cmap='Paired_r')
plt.xlabel(iris.feature_names[2])
plt.ylabel(iris.feature_names[3])
plt.show()

km = KMeans(n_clusters=10).fit(x)
y_clustered = km.labels_
g=plt.scatter(x[:,0],x[:,1],c=y_clustered,cmap='tab10')
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1], s=100,c='red')
plt.xlabel(iris.feature_names[2])
plt.ylabel(iris.feature_names[3])
plt.show()
```