Latent SDEs on Homogeneous Spaces

Sebastian Zeng Florian Graf Roland Kwitt University of Salzburg, Austria

Problem setting

We seek to learn from sequential data, i.e., from a set of N multivariate time series

$$\mathbf{x}^1, \dots, \mathbf{x}^N$$
; e.g.:

We assume:

(1) \mathbf{x}^i to be a **partially observed** continuous path from a **stochastic process**

$$X: \Omega \times [0,T] \to \mathbb{R}^d$$
, and

(2) that this process is governed by some **latent stochastic process** Z (with paths \mathbf{z}^{i}).

We seek to learn X!

Fitting a process to data

We follow a Variational Bayes approach with the following directed graphical model:

- 1 A path \mathbf{z}^i is drawn from a (latent) parametric **prior path distribution** $p_{\theta^*}(\mathbf{z})$.
- An (observed) path \mathbf{x}^i is drawn from the **conditional path distribution** $p_{\theta^*}(\mathbf{x}|\mathbf{z}^i)$.
- Well-explored in the **vector-valued** setting (e.g., $\mathbf{x}^i \in \mathbb{R}^d$).
- ? Less well-explored in the **path-valued** setting (e.g., $\mathbf{x}^i \in \mathcal{C}([0,T], \mathbb{R}^d))$ Ours!

Approximate variational inference

Learning directed probabilistic models in case of intractable posterior path distributions $p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^i)$,

entails the choice of ...

- ... a tractable **prior path distribution** $p_{\theta}(\mathbf{z})$ over latent paths \mathbf{z} ,
- ... a tractable approximate posterior path distribution $q_{\phi}(\mathbf{z}|\mathbf{x}^i)$,

and the maximization of the **evidence lower bound (ELBO)** w.r.t. θ , ϕ :

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}^i) \geq -D_{\mathsf{KL}}\left(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^i) \| p_{\boldsymbol{\theta}}(\mathbf{z})\right) + \mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^i)}\left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^i|\mathbf{z})\right].$$

Model evidence

KL divergence between approximate posterior and the **prior** path distribution Expected log-likelihood of observed path given the latent path

We consider **path distributions** of stochastic processes that are solutions to **SDEs**.

Choice of a latent space

Some **favorable properties** of latent spaces for carrying distributions connected to random dynamics are ...

- ... to offer flexibility for modelling **non-linear structures** (i.e., manifolds),
- ... to include the focus on **geometric features** (e.g., symmetry), and
- ... to **respect the latter under discretization** (e.g., for sampling).

Considering these aspects, choosing SDEs that evolve on a homogeneous space as the consequence of some (matrix) Lie group action appears to be a reasonable choice.

Example: \mathbb{S}^2 with (quadratic) matrix Lie group SO(3).

Dynamics in homogeneous spaces

Example continued: \mathbb{S}^2 with (quatratic) matrix Lie group SO(3).

$$SO(n) = \{ \mathbf{A} \in Mat(n) : \mathbf{A}^{\mathsf{T}} \mathbf{A} = \mathbf{I}_n, \det(\mathbf{A}) = +1 \}$$

$$Mat(n) - \text{space of real } n \times n \text{ matrices}$$
Lie group

 $\mathfrak{so}(n) = \{ \mathbf{A} \in \mathsf{Mat}(n) : \mathbf{A} + \mathbf{A}^{\top} = \mathbf{0}_n \}$

Lie algebra (Vector space together with Lie bracket $[\cdot, \cdot]$)

Sketch for $SO(3) \cong \mathbb{B}^3_{r=\pi}/(x \sim -x \text{ if } x \in \partial \mathbb{B}^3_{r=\pi})$ (3-Ball of radius $r = \pi$ with identified antipodal points on the boundary $\partial \mathbb{B}^3_{r=\pi}$)

- radial component ~ roation angle
- angular component ~ roation axis

Generating a path on the sphere:

SDEs in (quadratic) matrix Lie groups

Leveraging the Lie algebra g, we can define (Itô) SDEs in a (quadratic) matrix **Lie group** \mathcal{G} of the form:

$$dG_t = \left(\mathbf{V}_0(t)dt + \sum_{i=1}^m dw_t^i \mathbf{V}_i\right) G_t, \quad G_0 = \mathbf{I}_n; \quad \mathbf{V}_0(t) = \mathbf{K}(t) + \frac{1}{2} \sum_{i=1}^m \mathbf{V}_i^2.$$

This induces an SDE for $Z = G \cdot Z_0$ in the **homogeneous space** :

$$\mathrm{d}Z_t = \left(\mathbf{V}_0(t)\mathrm{d}t + \sum_{i=1}^m \mathrm{d}w_t^i \mathbf{V}_i\right) Z_t \,, \quad Z_0 \sim \mathcal{P} \,.$$

 \mathcal{P} ... distribution over the initial state.

To implement a drift parameterization depending on x, we realize

$$\mathbf{K}^{\phi}(\mathbf{x})(t):[0,T]\to\mathfrak{g}$$

via Chebyshev polynomials with learnable coefficients.

The prior $p_{\theta}(\mathbf{z})$ and approximate posterior $q_{\theta}(\mathbf{z}|\mathbf{x})$ are determined by an SDE of this form!

The **overall objective** (for our example of latent paths on \mathbb{S}^{n-1}):

Sampling from the approximate posterior: We use a one-step **geometric** Euler-Maryuama SDE solver, that is

of observed path given the latent path

particularly easy to implement! [Marjanovic & Solo 2015; Muniz et al., 2022]

Some results

mTAND-ODE 3.38 ± 0.03 [Shukla & Marlin, 2021] (with added ODE)

 3.11 ± 0.02

Ours