

Estatística

2018/2019

LEEC

C6 – Teste de ajuste do Qui-quadrado

O teste do qui-quadrado para a avaliação da qualidade de ajuste baseia-se na comparação da distribuição dos dados amostrais com a distribuição teórica à qual se supõe pertencer uma amostra. Pretende assim testar a hipótese dos dados da amostra serem consistentes com o facto população ter uma dada distribuição.

A metodologia que se adota neste teste, traduz-se num teste não paramétrico unilateral à direita.

1. Formulação das hipóteses.

H₀: A população tem uma distribuição teórica proposta vs.

H₁: A população não segue a distribuição proposta

Considera-se um nível de significância α

2. Construção do quadro comparativo.

Este método requer a recolha e classificação de uma amostra aleatória de tamanho **n**, em **k** classes C_i: i=1,..,k, de variação dos valores amostra contendo a seguinte informação:

Classe	C ₁	C ₂	C ₃	•••	$C_{\mathbf{k}}$
Frequência absoluta observada - n _i	n_1	n_2	n_3		n _k
Frequência esperada – e _i (De acordo com H _o)	e ₁	$\mathbf{e_2}$	e ₃		$\mathbf{e}_{\mathbf{k}}$

De acordo com H0 (a população tem uma determinada distribuição) calculam-se as frequência teóricas esperadas:

$$e_i = n \times P(X|_{Ho} \in C_i) = n \times p_i : i = 1, 2, ..., k.$$

onde,

$$n = \sum_{i=1}^k n_k = \sum_{i=1}^k e_k$$

(Devem unir-se classes adjacentes se e_i<5)

3. Identificação da estatística teste

Pode mostrar-se que a estatística teste

$$Q = \sum_{i=0}^{k} \frac{(N_i - e_i)^2}{e_i} \sim \chi^2 (k - m - 1)$$

é uma v.a. que se aproxima de uma distribuição Qui-quadrado com *k-m-1* graus de liberdade. Considera-se que a qualidade da aproximação é suficientemente boa se n≥30 e e_i ≥ 5.

 k – número total de classes ou valores individuais considerados na amostra (após reformulação do quadro comparativo).

m – número de parâmetros que foi necessário estimar para definir H_0

4. Região crítica

$$RC_{\chi} = [c, +\infty[,$$

onde

$$P(Q_{H0} > c) = \alpha,$$

$$c = inv.chi(\alpha; k1 - m - 1)$$
 : Excel versão PT

5. Decisão

Calcular
$$q_0 = \sum_{i=0}^{k_1} \frac{(n_i - e_i)^2}{e_i}$$

Se q_0 < c H0 não deve ser rejeitada, aceitando-se o ajuste ao nível de α *100%.

Se q₀ ≥ c H0 é rejeitada - a distribuição teórica proposta é rejeitada.

Procedimento geral:

1 - Formulação das Hipóteses

H0: X tem uma distribuição proposta

H1: X não segue a distribuição proposta

- 2 Construção do quadro comparativo das frequências observadas versus as frequências esperadas. Modificação do quadro (enquanto algum e_i<5).
- 3 Determinação dos graus de liberdade a partir do passo 2. e identificação da estatística teste.
- 4 Cálculo da região crítica, $RC = [c, +\infty[$
- 5 Calcular o qui-quadrado observado, q_0 , e decidir comparando esse valor com a região crítica:
- Se q_0 < c, aceita-se o ajuste (H0) ao nível de significância $\alpha \times 100\%$
- Se q₀ ≥ c a distribuição proposta é rejeitada.

Exemplo de aplicação I

O registo do número de aviões que aterraram num aeródromo em 60 dias escolhidos aleatoriamente produziu o quadro seguinte:

Número de aviões	0	1	2	3	4	5
Nº de dias	10	18	17	10	4	1

Ajuste uma distribuição teórica aos dados observados verificando a qualidade do ajuste ao nível de 5%

Exemplo de aplicação II

Numa inspeção alimentar foi analisada a quantidade de corantes presente por cada 100 ml de uma dada bebida. Os dados registados para 55 bebidas foram os seguintes:

Quantidade (ml)	[7,2-7,6[[7,6 -8,0[[8,0-8,4[[8,4-8,8[[8,8-9,2[[9,2-9,6]
Nº de bebidas	2	7	18	15	9	4

Ajuste uma distribuição teórica aos dados observados verificando a qualidade do ajuste ao nível de 5%