MATH 100A: Homework #7

Due on November 21, 2023 at 12:00pm

 $Professor\ McKernan$

Section A02 5:00PM - 5:50PM Section Leader: Castellano

Source Consulted: Textbook, Lecture, Discussion

Ray Tsai

A16848188

If G_1 and G_2 are groups, prove that $G_1 \times G_2 \simeq G_2 \times G_1$.

Proof. Define $\phi: G_1 \times G_2 \to G_2 \times G_1$ as $\phi(a,b) = (b,a)$. ϕ is obviously a well-defined. Define $\psi: G_2 \times G_1 \to G_1 \times G_2$ as $\psi(b,a) = (a,b)$. Since $\phi(\psi(b,a)) = \phi(a,b) = (b,a)$ and $\psi(\phi(a,b)) = \psi(b,a) = (a,b)$, ψ is an inverse of ϕ , so ϕ is bijective. Since $\phi(a,b)\phi(a',b') = (bb',aa') = \phi(aa',bb')$, ϕ is an isomorphism, and thus $G_1 \times G_2 \simeq G_2 \times G_1$.

If G_1 and G_2 are cyclic groups of orders m and n, respectively, prove that $G_1 \times G_2$ is cyclic if and only if m and n are relatively prime.

Proof. Suppose that $G_1 \times G_2$ is cyclic. Then $G_1 \times G_2 = \{(a^i, b^i) \mid i \in \mathbb{Z}\}$, for some $a \in G_1$, $b \in G_2$. Since $G_1 \times G_2$ is of order mn, we know m, n is relatively prime, otherwise we can find k < mn such that $(a^k, b^k) = (e_1, e_2)$, which contradicts that $G_1 \times G_2$ is of order mn. Suppose that m, n are relatively prime. Let $c \in G_1, d \in G_2$ each be the generator of their respective group. Let $(x, y) = (c^j, d^l) \in G_1 \times G_2$, and let d = l - j. Since m, n are relatively prime, there exists $m\alpha + n\beta = 1$. Multiplying both sides by d, we get $md\alpha + nd\beta = l - j$, and so there exists $x = (d\alpha)m + j = (-d\beta)n + l$. Thus, $(x, y) = (c^j, d^l) = (c^x, d^x)$, and so $G_1 \times G_2$ is cyclic.

Let G be a group, $A = G \times G$. In A let $T = \{(g, g) | g \in G\}$.

(a) Prove that $T \simeq G$.

Proof. Let $\phi: T \to G$ be the natural projection. Then, ϕ is well-defined and surjective. Since $\phi(g,g)\phi(g',g')=gg'=\phi(gg',gg')$, ϕ is a homomorphism. Let $(a,a)\in \mathrm{Ker}\ \phi$. $\phi(a,a)=a=e$, and so $\mathrm{Ker}\ \phi$ is trivial. Therefore, ϕ is an isomorphism, and thus $T\simeq G$.

(b) Prove that $T \triangleleft A$ if and only if G is abelian.

Proof. Suppose that $T \triangleleft A$. For $(g,h) \in A$, $(g,h)(g,g)(g^{-1},h^{-1}) = (g,hgh^{-1}) \in T$. This implies that for all $g,h \in G$, $g=hgh^{-1}$. Rearranged, we get gh=hg, which makes G abelian. Suppose that G is abelian. Let $(g,g) \in T$, $(a,b) \in A$. Since $(a,b)(g,g)(a^{-1},b^{-1}) = (aga^{-1},bgb^{-1}) = (g,g) \in T$, T is normal in A.

Let H and K be two normal subgroups of a group G, whose intersection is the trivial subgroup. Prove that every element of H commutes with every element of K.

Proof. Let $h \in H$, $k \in K$. Since H is normal, $h^{-1}k^{-1}hk = h^{-1}h'k^{-1}k = h^{-1}h' \in H$. By symmetry, $h^{-1}k^{-1}hk \in K$, which makes $h^{-1}k^{-1}hk \in H \cap K = \{e\}$. Thus, we know $h^{-1}k^{-1}hk$ must be the identity element, and thus hk = kh.

Problem 5

Prove that a group G is isomorphic to the product of two groups H' and K' if and only if G contains two normal subgroups H and K, such that

- 1. H is isomorphic to H' and K is isomorphic to K'.
- 2. $H \cap K = \{e\}$.
- 3. $G = H \vee K$.

Proof. Suppose that $G \simeq H' \times K'$. Let $\phi: H' \times K' \to G$ be an isomorphism, $G_{H'} = \{(h, e_{k'}) \mid h \in H'\}$, and $G_{K'} = \{(e_{h'}, k) \mid k \in K'\}$, where $e_{h'} \in H', e_{k'} \in K'$ are the identity element of their corresponding groups. Let $H = \phi(G_{H'})$ and $K = \phi(G_{K'})$. From Homework 6 question 2.7.4, we have shown that $H' \simeq G_{H'}$ and $K' \simeq G_{K'}$, and $G_{H'}, G_{K'}$ are normal subgroups of $H' \times K'$. Thus, we know $H \simeq G_{H'} \simeq H'$ and $K \simeq G_{K'} \simeq K'$ are both normal subgroups of G. Let $\psi: G \to H' \times K'$ be the inverse of ϕ . Then, $\psi(H \cap K) = G_{H'} \cap G_{K'} = \{(e_{h'}, e_{k'})\}$, which contains only the identity element of $H' \times K'$. Since ψ is an isomorphism, $H \cap K = \{e\}$. Note that for all $x \in H' \times K', x = ab$, for some $a \in G_{H'}, b \in G_{K'}$. Thus, $\phi(x) = \phi(ab) = \phi(a)\phi(b) = hk$, where $h \in H$ and $k \in K$. This implies that G = HK, and so $G = H \vee K$, by the Second Isomorphism Theorem.

We now suppose that conditions 1-3 hold. Since H, K are normal, by the Second Isomorphism Theorem, $G = H \vee K = HK$. Let $\alpha : H \to H'$ and $\beta : K \to K'$ be isomorphisms. Define $\varphi : G \to H' \times K'$ as $\varphi(hk) = (\alpha(h), \beta(k))$, for $h \in H$, $k \in K$. Suppose $hk = h_0k_0 \in G$, for $h, h_0 \in H$ and $k, k_0 \in K$. Then, $\varphi(hk) = (\alpha(h), \beta(k)) = (\alpha(h_0), \beta(k_0)) = \varphi(h'k')$, so φ is well-defined. Define $\theta : H' \times K' \to G$ as $\theta(h', k') = \alpha^{-1}(h')\beta^{-1}(k')$, where α^{-1}, β^{-1} are the inverses of α, β , respectively. We then get $\varphi(\theta(h', k')) = \varphi(\alpha^{-1}(h')\beta^{-1}(k')) = (\alpha(\alpha^{-1}(h')), \beta(\beta^{-1}(k'))) = (h', k')$ and $\theta(\varphi(hk)) = \theta(\alpha(h), \beta(k)) = \alpha^{-1}(\alpha(h))\beta^{-1}(\beta(k)) = hk$. Thus, θ is the inverse of φ , so φ is a bijective mapping. Finally, we check that φ is a homomorphism. Let $m = hk, n = h_1k_1 \in G$, where $h, h_1 \in H$ and $k, k_1 \in K$. Note that since H, K are both normal and $H \cap K = \{e\}$, every element of H commutes with every element of K, by result we obtained in the previous problem. Thus,

$$\varphi(mn) = \varphi(hkh_1k_1)$$

$$= \varphi(hh_1kk_1)$$

$$= (\alpha(hh_1), \beta(kk_1))$$

$$= (\alpha(h)\alpha(h_1), \beta(k)\beta(k_1))$$

$$= (\alpha(h), \beta(k))(\alpha(h_1), \beta(k_1))$$

$$= \varphi(hk)\varphi(h_1k_1)$$

$$= \varphi(m)\varphi(n).$$

Therefore, φ is an isomorphism, and so $G \simeq H' \times K'$.