1	- Not-only-linear correlation coefficients might	1	+ Not-only-linear correlation coefficients may
	also be helpful in the field of genetic		be <mark>useful</mark> in genetic studies.
	studies.		
2	- In this context, genome-wide association	2	+ Genome-wide association studies (GWAS) have
	studies (GWAS) have been successful in		been successful in understanding the
	understanding the molecular basis of common		connection between genotype and phenotype, but
	diseases by estimating the association between		the estimated effect sizes of the identified
	genotype and phenotype		genes are usually small, and they explain only
	[@doi:10.1016/j.ajhg.2017.06.005].		a small part of the phenotype variance
	[@do111011010/j1dj//g1201/1001000]1		[@doi:10.1016/j.ajhg.2017.06.005;
			@doi:10.1038/s41576-019-0127-1].
3	- However, the estimated effect sizes of genes	3	+ This has hindered the clinical translation of
3		3	
	identified with GWAS are generally modest, and		these findings.
	they explain only a fraction of the phenotype		
	variance, hampering the clinical translation		
	of these findings [@doi:10.1038/s41576-019-		
	0127-1].		
4	- Recent theories, like the omnigenic model for	4	+ The omnigenic model for complex traits
	complex traits [@pmid:28622505;		[@pmid:28622505; @pmid:31051098] suggests that
	@pmid:31051098], argue that these observations		highly-interconnected gene regulatory networks
	are explained by highly-interconnected gene		could explain this, with some core genes
	regulatory networks, with some core genes		having a more direct effect on the phenotype
	having a more direct effect on the phenotype		than others.
	than others.		
5	- Using this omnigenic perspective, we and	5	+ We and others [@doi:10.1101/2021.07.05.450786;
	others [@doi:10.1101/2021.07.05.450786;		@doi:10.1186/s13040-020-00216-9;
	@doi:10.1186/s13040-020-00216-9;		@doi:10.1101/2021.10.21.21265342] have
	@doi:10.1101/2021.10.21.21265342] have shown		demonstrated that integrating gene co-
	that integrating gene co-expression networks		expression networks in genetic studies could
	in genetic studies could potentially identify		potentially identify core genes that are not
	core genes that are missed by linear-only		found with linear-only models such as GWAS.
	models <mark>alone like</mark> GWAS.		
6	- Our results <mark>suggest</mark> that <mark>building these</mark>	6	+ Our results indicate that using more advanced
	networks with more advanced and efficient		and efficient correlation coefficients to
	correlation coefficients could better estimate		build these networks could better estimate
	gene co-expression profiles and thus more		gene co-expression profiles and thus more
	accurately identify these core genes.		accurately identify these core genes.
7	- Approaches like CCC could <mark>play</mark> a significant	7	+ Approaches like CCC could <mark>have</mark> a significant
	role in the precision medicine field by		role in precision medicine by providing the
	providing the computational tools to focus on		computational tools to focus on more promising
	more promising genes representing potentially		genes, which may represent better candidate
	better candidate drug targets		drug targets.
	better candidate drug targets.		drug targets.