вар.	ф. номер	гр.	пот.	к.	сп.	име
1						
_						

ПИСМЕН ИЗПИТ ПО АЛГЕБРИЧНИ СТРУКТУРИ 1 спец. Информационни системи, I курс $26.01.2008~\mathrm{r.}$

Задача 1. Пресметнете колко са естествените числа ненадминаващи 2008, които се делят на 3 и на 4, но не се делят на 7 и на 8?

Задача 2. Намерете обратната матрица на квадратната матрица от ред n

$$A = \left(\begin{array}{c} 5 & 1 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 1 & 5 & 1 & \dots & 1 & 1 & 1 \\ \vdots & \vdots \\ 1 & 1 & 1 & 1 & \dots & 1 & 1 & 5 & 1 \\ 1 & 1 & 1 & 1 & \dots & 1 & 1 & 5 & 1 \end{array} \right).$$

Задача 3. Да се представи чрез р и q изразът $\Sigma=\frac{1}{x_1^3}+\frac{1}{x_2^3}+\frac{1}{x_3^3}+(x_1+x_2+2)(x_1+x_3+2)(x_2+x_3+2),$ където x_1,x_2,x_3 са корените на полинома $f(x)=x^3+px+q,$ когато този израз има смисъл.

Задача 4. Да се докаже, че системата

$$\begin{vmatrix} \lambda_1 & + & \lambda_2 & + & \cdots & + & \lambda_n & = & 0 \\ \lambda_1^2 & + & \lambda_2^2 & + & \cdots & + & \lambda_n^2 & = & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_1^n & + & \lambda_2^n & + & \cdots & + & \lambda_n^n & = & 0 \end{vmatrix}$$

има само нулево решение $\lambda_1=\lambda_2=\cdots=\lambda_n=0$, където λ_i е комплексна променлива за всяко i.

вар.	ф. номер	гр.	пот.	к.	сп.	име
3						

ПИСМЕН ИЗПИТ ПО АЛГЕБРИЧНИ СТРУКТУРИ 1 спец. Информационни системи, I курс $26.01.2008~\mathrm{r.}$

Задача 1. Пресметнете колко са естествените числа ненадминаващи 2008, които се делят на 7 и на 4, но не се делят на 3 и на 8?

Задача 2. Намерете обратната матрица на квадратната матрица от ред n

$$A = \left(\begin{array}{c} 3 & 1 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 1 & 3 & 1 & \dots & 1 & 1 & 1 \\ \vdots & \vdots \\ 1 & 1 & 1 & 1 & \dots & 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 & \dots & 1 & 1 & 3 & 1 \end{array}\right).$$

Задача 3. Да се представи чрез р и q изразът $\Sigma=rac{1}{x_1^3}+rac{1}{x_2^3}+rac{1}{x_3^3}+(x_1+x_2+1)(x_1+x_3+1)(x_2+x_3+1),$ където x_1,x_2,x_3 са корените на полинома $f(x)=x^3+px+q,$ когато този израз има смисъл.

Задача 4. Да се докаже, че системата

$$\begin{vmatrix} \lambda_1 & + & \lambda_2 & + & \cdots & + & \lambda_n & = & 0 \\ \lambda_1^2 & + & \lambda_2^2 & + & \cdots & + & \lambda_n^2 & = & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_1^n & + & \lambda_2^n & + & \cdots & + & \lambda_n^n & = & 0 \end{vmatrix}$$

има само нулево решение $\lambda_1=\lambda_2=\cdots=\lambda_n=0$, където λ_i е комплексна променлива за всяко i.

вар.	ф. номер	гр.	пот.	ĸ.	сп.	име
2						
_						

ПИСМЕН ИЗПИТ ПО АЛГЕБРИЧНИ СТРУКТУРИ 1 спец. Информационни системи, I курс $26.01.2008~\mathrm{r.}$

Задача 1. Пресметнете колко са естествените числа ненадминаващи 2008, които се делят на 3 и на 7, но не се делят на 4 и на 9?

Задача 2. Намерете обратната матрица на квадратната матрица от ред n

$$A = \left(\begin{array}{c} 6 & 1 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 6 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 1 & 6 & 1 & \dots & 1 & 1 & 1 \\ \vdots & \vdots \\ 1 & 1 & 1 & 1 & \dots & 1 & 1 & 6 & 1 \\ 1 & 1 & 1 & 1 & \dots & 1 & 1 & 6 & 1 \end{array} \right) .$$

Задача 3. Да се представи чрез р и q изразът $\Sigma=\frac{1}{x_1^3}+\frac{1}{x_2^3}+\frac{1}{x_3^3}+(x_1+x_2-2)(x_1+x_3-2)(x_2+x_3-2),$ където x_1,x_2,x_3 са корените на полинома $f(x)=x^3+px+q,$ когато този израз има смисъл.

Задача 4. Да се докаже, че системата

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = 0$$

$$\lambda_1^2 + \lambda_2^2 + \cdots + \lambda_n^2 = 0$$

$$\vdots$$

$$\lambda_1^n + \lambda_2^n + \cdots + \lambda_n^n = 0$$

има само нулево решение $\lambda_1=\lambda_2=\cdots=\lambda_n=0,$ където λ_i е комплексна променлива за всяко i.

1	вар.	ф.	номер	гр.	пот.	ĸ.	сп.	име
	4							

ПИСМЕН ИЗПИТ ПО АЛГЕБРИЧНИ СТРУКТУРИ 1 спец. Информационни системи, I курс 26.01.2008 г.

Задача 1. Пресметнете колко са естествените числа ненадминаващи 2008, които се делят на 3 и на 5, но не се делят на 7 и на 9?

Задача 2. Намерете обратната матрица на квадратната матрица от ред n

$$A = \left(\begin{array}{c} 4 & 1 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 1 & 4 & 1 & \dots & 1 & 1 & 1 \\ \vdots & \vdots \\ 1 & 1 & 1 & 1 & \dots & 1 & 4 & 1 \\ 1 & 1 & 1 & 1 & \dots & 1 & 1 & 4 \end{array} \right) \ .$$

Задача 3. Да се представи чрез р и q изразът $\Sigma = \frac{1}{x_1^3} + \frac{1}{x_2^3} + \frac{1}{x_3^3} + (x_1+x_2+3)(x_1+x_3+3)(x_2+x_3+3),$ където x_1, x_2, x_3 са корените на полинома $f(x) = x^3 + px + q$, когато този израз има смисъл.

Задача 4. Да се докаже, че системата

$$\begin{vmatrix} \lambda_1 & + & \lambda_2 & + & \cdots & + & \lambda_n & = & 0 \\ \lambda_1^2 & + & \lambda_2^2 & + & \cdots & + & \lambda_n^2 & = & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_1^n & + & \lambda_2^n & + & \cdots & + & \lambda_n^n & = & 0 \end{vmatrix}$$

има само нулево решение $\lambda_1=\lambda_2=\cdots=\lambda_n=0,$ където λ_i е комплексна променлива за всяко i.