Preliminaries

Contents

1	Basics	2
2	Properties of Integers	3
3	$\mathbb{Z}/n\mathbb{Z}$: The integers modulo n	4

1 Basics

Definition. (Functions) Let $f: A \to B$

- 1. (injection) $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$
- 2. (surjection) image of f is all of B, i.e. $\forall b \in B \ \exists a \in A \ f(a) = b$
- 3. (left inverse) a function $g: B \to A$ such that $g \circ f: A \to A$ is the identity map on A
- 4. (right inverse) a function $h: B \to A$ such that $f \circ h: B \to B$ is the identity map on B

Proposition. Let $f: A \to B$

- 1. f is injective if and only if f has a left inverse
- 2. f is surjective if and only if f has a right inverse
- 3. f is bijective if exists $g: B \to A$ such that $f \circ g$ is identity map on B and $g \circ f$ is identity map on A (g is the two-sided inverse)
- 4. If A, B are finite sets and |A| = |B|, then f is bijective iff f is injective iff it is surjective

Definition. (Permutation, Restriction, Extension)

- 1. (permutation) of set A is a bijection from A to itself
- 2. (restriction) If $A \subset B$ and $f : B \to C$, $f|_A$ is restriction of f to A.
- 3. (extension) If $A \subset B$ and $g: A \to C$ and there is a function $f: B \to C$ such that $f|_A = g$, then f is an extension of g to B

Definition. (Equivalence Relation & Partition)

- 1. (binary relation) on a set A is a subset R of $A \times A$ and we write $a \sim b$ if $(a, b) \in R$
- 2. (relation) \sim on A is an equivalence relation if it is
 - $(reflexive) \ a \sim a \ for \ all \ a \in A$
 - (symmetric) $a \sim b$ implies $b \sim a$, for all $a, b \in A$
 - (transitive) $a \sim b$ and $b \sim c$ implies $a \sim c$ for all $a, b, c \in A$
- 3. (equivalence class) Given \sim on A, the equivalence class of $a \in A$ is $\{x \in A \mid x \sim a\}$. If C is any equivalence class, any element of C is a representative to class C
- 4. (partition) of A is any collection $\{A_i \mid i \in I\}$ of nonempty subsets of A, for some indexing set I such that
 - $A = \bigcup_{i \in I} A_i$
 - $A_i \cap A_j = \emptyset$ for all $i, j \in I$ with $i \neq j$

Proposition. (Equivalence relation and partition are the same) Let A be nonempty set

- 1. If \sim is an equivalence relation on A then the set of equivalence classes of \sim forms a partition of A
- 2. If $\{A_i \mid i \in I\}$ is a partition of A then there is an equivalence relation on A whose equivalence classes are precisely the sets A_i , $i \in I$

2 Properties of Integers

Definition. (Properties of \mathbb{Z})

- 1. (well ordering of \mathbb{Z}) If $A \subset \mathbb{Z}^+$, exists $m \in A$ such that $m \leq a$ for all $a \in A$ (m is minimal element of A)
- 2. (divides) If $a, b \in \mathbb{Z}$ and $a \neq 0$, $a \mid b$ if there is an element $c \in \mathbb{Z}$, such that b = ac. Otherwise, $a \nmid b$
- 3. (g.c.d.) If $a, b \in \mathbb{Z} \{0\}$, there is unique $d \in \mathbb{Z}^+$, the greatest common divisor (a, b) of a, b satisfying
 - (a) d is a common divisor of a, b ($d \mid a$ and $d \mid b$)
 - (b) d is greatest such divisor (If $e \mid a$ and $e \mid b$, then $e \mid d$)

Intuitively, an a-by-b rectangle can be covered with square tiles of side-length c only if c is a common divisor of a and b. gcd of a and b is the largest of such c

- 4. (relative prime) If (a,b) = 1, then a,b are relative prime
- 5. (l.c.m) If $a, b \in \mathbb{Z} \{0\}$. there is unique $l \in \mathbb{Z}^+$, the least common multiple of a, b satisfying
 - (a) l is a common multiple of a and n ($a \mid l$ and $b \mid l$)
 - (b) l is least of such multiple (If $a \mid m$ and $b \mid m$, then $l \mid m$)
- 6. (Relation between g.c.d. and l.c.m) Let $a, b \in \mathbb{Z} \{0\}$, let d = (a, b) and l = l.c.m.(a, b), then dl = ab
- 7. (The Division Algorithm) If $a, b \in \mathbb{Z} \{0\}$ there exist unique $q, r \in \mathbb{Z}$ such that a = qb + r and $0 \le r < |b|$, where q is the quotient and r is the reminder.
- 8. (Euclidean Algorithm) is a procedure that generates g.c.d. of two integers by iterating the division algorithm. Idea is g.c.d. of a, b where a > b is same as g.c.d. of b, a b. Or equivalently.

$$a = q_0b + r_0$$

$$b = q_1r_0 + r_1$$

$$r_0 = q_2r_1 + r_2$$

$$\vdots$$

$$r_{n-2} = q_nr_{n-1} + r_n$$

$$r_{n-1} = q_{n+1}r_n$$

where $r_n = (a, b)$ is the last nonzero reminder

9. (Consequence of Euclidean Algorithm) If $a, b \in \mathbb{Z} - \{0\}$, then exists $x, y \in \mathbb{Z}$ such that

$$(a,b) = ax + by$$

by reversing steps of Euclidean algorithm

3 $\mathbb{Z}/n\mathbb{Z}$: The integers modulo n

Definition. (Integer Modulo n)

- 1. (modulo relation) Define $a \sim b$ iff $n \mid (b-a)$. \sim satisfies axioms for a relation
- 2. (congruence) a is congruent to b mod n iff $a \equiv b \pmod{n}$ iff $a \sim b$
- 3. (congruence/residue class of a mod n) is the equivalence class by congruent modulo n, consisting of integers which differ from a by an integral multiple of n, i.e.

$$\overline{a} = \{a + kn \mid k \in \mathbb{Z}\}\$$

There are n distanct equivalence classes $\mod n$, i.e. $\{\overline{0},\overline{1},\cdots,\overline{n-1}\}$. Specifically. \overline{i} are integers which leave a reminder of i when divided by n

- 4. (integer modulo n group) $\mathbb{Z}/n\mathbb{Z} = (\{\overline{0}, \overline{1}, \dots, \overline{n-1}\}, \sim)$
- 5. (reducing $a \mod n$) is the process of finding the equivalence class mod n of some integer a. Specifically, this is referring to finding the smallest nonnegative integer congruent to $a \mod n$
- 6. (modular arithmetic) Let $\overline{a}, \overline{b} \in \mathbb{Z}/n\mathbb{Z}$, define sum and product by $\overline{a} + \overline{b} = \overline{a+b}$ and $\overline{a} \cdot \overline{b} = \overline{ab}$.
- 7. **(theorem)** Modular Arithmetic on $\mathbb{Z}/n\mathbb{Z}$ is well defined; the sum/product of the residue classes does not depend on the choice of representatives chosen. Specifically, if $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ with $\overline{a_1} = \overline{b_1}$ and $\overline{a_2} = \overline{b_2}$ then $\overline{a_1 + a_2} = \overline{b_1 + b_2}$ and $\overline{a_1 a_2} = \overline{b_1 b_2}$.
- $(\mathbb{Z}/n\mathbb{Z})^{\times} \subset \mathbb{Z}/n\mathbb{Z}$ are residue classes which have a multiplicative inverse

$$\left(\mathbb{Z}/n\mathbb{Z}\right)^{\times} = \left\{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid \exists \ \overline{c} \in \mathbb{Z}/n\mathbb{Z} \ \overline{a} \cdot \overline{c} = \overline{1} \right\} = \left\{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid (a,n) = 1 \right\}$$