

54VCXH162373

Rad hard low voltage CMOS 16-bit D-type latch (3-state) with 3.6 V tolerant inputs and outputs

Features

- 1.65 to 3.6 V inputs and outputs
- High speed:
 - t_{PD} = 3.3 ns (Max.) at V_{CC} = 3.0 to 3.6 V
 - t_{PD} = 4.5 ns (Max.) at V_{CC} = 2.3 to 2.7 V
- Symmetrical impedance outputs:
 - $II_{OH}I = I_{OL} = 12 \text{ mA (Min.)}$ at $V_{CC} = 3.0 \text{ V}$
 - $II_{OH}I = I_{OL} = 8 \text{ mA (Min.)}$ at $V_{CC} = 2.3 \text{ V}$
- Power down protection on inputs and outputs
- \blacksquare 26 Ω serie resistors in outputs
- Operating voltage range:
 - $V_{CC}(Opr) = 1.65 V to 3.6 V$
- Pin and function compatible with 54 series HR162373
- Bus hold provided on both sides
- Cold spare function
- Latch-up performance exceeds 300 mA (JESD 17)
- ESD performance:
 - HBM > 2000 V (MIL STD 883 method 3015); MM > 200 V
- 300 krad Mil1019.6 condition A, (RHA QML qualification extension undergone)
- No SEL, no SEUand no SET under 110 Mev/cm2/mg LET heavy ions irradiation
- QML qualified product
- Device fully compliant with DSCC SMD 5962-05211
- 100 mV typical input hysteresis

Description

The 54VCXH162373 is a low voltage CMOS 16 bit d-type latch with 3 state outputs non inverting fabricated with sub-micron silicon gate and fivelayer metal wiring C2MOS technology. It is ideal for low power and very high speed 1.65 to 3.6 V applications; it can be interfaced to 3.6 V signal environment for both inputs and outputs. These 16 bit D-type latches are bite controlled by two latch enable inputs (nLE) and two output enable inputs (OE). While the nLE input is held at a high level, the nQ outputs will follow the data input precisely. When the nLE is taken low, the nQ outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state. Bus hold on data inputs is provided in order to eliminate the need for external pull-up or pull-down resistor. The device circuits is including 26 Ω series resistance in the outputs. These resistors permit to reduce line noise in high speed applications. All inputs and outputs are equipped with protection circuits against static discharge, giving them 2 kV ESD immunity and transient excess voltage.

Contents 54VCXH162373

Contents

1 Logic symbols and I/O equivalent circuit				
2	Pin settings	5		
	2.1 Pin connection	5		
	2.2 Pin description	6		
	2.3 Truth table	6		
3	Maximum rating	7		
	3.1 Recommended operating conditions	7		
4	Electrical characteristics	8		
5	Test circuit	1		
6	Waveforms	2		
7	Package mechanical data1	4		
8	Order codes	6		
9	Revision history 1	7		

1 Logic symbols and I/O equivalent circuit

Figure 1. IEC logic symbols

Figure 2. Input and output equivalent circuit

Figure 3. Logic diagram

Note: This logic diagram has not to be used to estimate propagation delays

54VCXH162373 Pin settings

2 Pin settings

2.1 Pin connection

Figure 4. Pin connection (top through view)

Pin settings 54VCXH162373

2.2 Pin description

Table 1. Pin description

Pin n°	Symbol	Name and function
1	1 OE	3 state output enable input (active LOW)
2, 3, 5, 6, 8, 9, 11, 12	1Q0 to 1Q7	3-state outputs
13, 14, 16, 17, 19, 20, 22, 23	2Q0 to 2Q7	3-state outputs
24	2 OE	3 state output enable input (active LOW)
25	2LE	Latch enable input
36, 35, 33, 32, 30, 29, 27, 26	2D0 to 2D7	Data inputs
47, 46, 44, 43, 41, 40, 38, 37	1D0 to 1D7	Data inputs
48	1LE	Latch enable input
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0 V)
7, 18, 31, 42	V _{CC}	Positive supply voltage

2.3 Truth table

Table 2. Truth table

	Output		
OE	LE	D	Q
Н	Х	Х	Z
L	L	Х	No change ⁽¹⁾
L	Н	L	L
L	Н	Н	Н

^{1.} $\,$ Q outputs are latched at the time when the LE input is taken low logic level.

Note: $X = Do \ not \ care; Z = High \ impedance$

54VCXH162373 Maximum rating

3 Maximum rating

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	-0.5 to +4.6	V
V _I	DC input voltage	-0.5 to +4.6	V
Vo	DC output voltage (OFF state)	-0.5 to +4.6	V
Vo	DC output voltage (High or low state) (1)	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC input diode current	- 50	mA
lok	DC output diode current (2)	- 50	mA
I _O	DC output current	± 50	mA
I _{CC} or I _{GND}	DC V _{CC} or ground current per supply pin	± 100	mA
P _D	Power dissipation	400	mW
T _{stg}	Storage temperature	-65 to +150	°C
T _L	Lead temperature (10 sec)	260	°C

^{1.} I_O absolute maximum rating must be observed

3.1 Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	1.8 to 3.6	V
VI	Input voltage	-0.3 to 3.6	V
V _O	Output voltage (OFF state)	0 to 3.6	٧
Vo	Output voltage (high or low state)	0 to V _{CC}	٧
I _{OH} , I _{OL}	High or low level output current (V _{CC} = 3.0 to 3.6 V)	± 12	mA
I _{OH} , I _{OL}	High or low level output current (V _{CC} = 2.3 to 2.7 V)	± 8	mA
T _{op}	Operating temperature	-55 to 125	°C
dt/dv	Input rise and fall time (1)	0 to 10	ns/V

^{1.} V_{IN} from 0.8 V to 2 V at V_{CC} = 3.0 V

^{2.} $V_O < GND, V_O > V_{CC}$

Electrical characteristics 54VCXH162373

4 Electrical characteristics

 $2.7 \text{ V} < \text{V}_{\text{CC}} < 3.6 \text{ V}$ unless otherwise specified

Table 5. DC specifications

		Test condition		Value		
Symbol	Parameter	v _{cc}		-55 to 125°C		Unit
		(V)		Min.	Max.	
V _{IH}	High level input voltage	2.7 to 3.6		2.0		V
V _{IL}	Low level input voltage	2.7 10 3.0			0.8	V
		2.7 to 3.6	I _O =-100 μA	V _{CC} -0.2		
V.	High level output	2.7	I _O =-6 mA	2.2		V
V _{OH}	voltage	3.0	I _O =-8 mA	2.4		V
		3.0	I _O =-12 mA	2.2		
		2.7 to 3.6	I _O =100 μA		0.2	
V.	Low level output	2.7	I _O =6 mA		0.4	V
V _{OL}	voltage	0.0	I _O =8 mA		0.55	
		3.0	I _O =12 mA		0.8	
I _I	Input leakage current	2.7 to 3.6	$V_1 = 0 \text{ to } 3.6 \text{ V}$		± 5	μА
		3.0	V _I = 0.8 V	75		
I _{I(HOLD)}	Input hold current	3.0	V _I = 2 V	-75		μΑ
		3.6	$V_{I} = 0 \text{ to } 3.6 \text{ V}$		± 500	
I _{off}	Power Off leakage current	0	V_{I} or $V_{O} = 0$ to 3.6 V		10	μΑ
I _{OZ}	High impedance output leakage current	2.7 to 3.6	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 0 \text{ to } 3.6 \text{ V}$		± 10	μΑ
	Quiescent supply	0.745.0.0	$V_I = V_{CC}$ or GND		20	^
I _{CC}	current	2.7 to 3.6	V_I or $V_O = V_{CC}$ to 3.6 V		± 20	μΑ
Δl _{CC}	I _{CC} incr. per Input	2.7 to 3.6	V _{IH} = V _{CC} - 0.6 V		750	μΑ

2.3 V < $\ensuremath{\mbox{V}_{\mbox{CC}}}\xspace <$ 2.7 V unless otherwise specified

Table 6. DC specifications

	-	To	est condition	Val	lue	
Symbol	Parameter	v _{cc}	V _{CC}		-55 to 125 °C	
		(V)		Min.	Max.	
V _{IH}	High level input voltage	2.3 to 2.7		1.6		V
V_{IL}	Low level input voltage	2.0 to 2.7			0.7	
		2.3 to 2.7	I _O = -100 μA	V _{CC} -0.2		
V _{OH}	High level output voltage		I _O = -4 mA	2.0		V
VOH	Trigit level output voltage	2.3	I _O = -6 mA	1.8		
			I _O = -8 mA	1.7		
		2.3 to 2.7	I _O = 100 μA		0.2	
V_{OL}	Low level output voltage	2.3	I _O = 6 mA		0.4	V
		2.0	I _O = 8 mA		0.6	
I _I	Input leakage current	2.3 to 2.7	$V_I = V_{CC}$ or GND		± 5	μА
lianor ex	Input hold current	2.3	$V_{I} = 0.7 \text{ V}$	45		μА
I _{I(HOLD)}	input noid current	2.0	V _I = 1.7 V	-45		μΑ
I _{off}	Power Off leakage current	0	V_I or $V_O = 0$ to 3.6 V		10	μА
I _{OZ}	High impedance output leakage current	2.3 to 2.7	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 0 \text{ to } 3.6 \text{ V}$		± 10	μА
	Quiescent supply		$V_I = V_{CC}$ or GND		20	
I _{CC}	current	2.3 to 2.7	V _I or V _O = V _{CC} to 3.6 V		± 20	μΑ

 $\rm T_A$ = 25 °C, Input $\rm t_r$ = $\rm t_f$ = 2.0 ns, $\rm C_L$ = 30 pF, $\rm R_L$ = 500 $\rm \Omega$

Table 7. Dynamic switching characteristics

		Test	condition		Value		
Symbol	Parameter	V _{cc}		Т	_A = 25 °	С	Unit
		(V)		Min.	Тур.	Max.	
V	Dynamic valley low voltage	2.5	$V_{IL} = 0 V$	-	0.25	-	V
V _{OLV}	quiet output (1) (2)	3.3	$V_{IH} = V_{CC}$	-	0.35	-	V
V.	Dynamic valley high voltage	2.5	V _{IL} = 0 V	-	-0.25	-	V
V _{OHV}	quiet output (2) (3)	3.3	$V_{IH} = V_{CC}$	-	-0.35	-	V
V	Dynamic valley high voltage quiet output ⁽²⁾ (3)	2.5	V _{IL} = 0 V	-	2.05	-	V
V _{OHV}	quiet output ^{(2) (3)}	3.3	$V_{IH} = V_{CC}$	-	2.65	-	, v

Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

^{2.} Parameters guaranteed by design.

^{3.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the HIGH state.

 C_L = 30 pF, R_L = 500 Ω , Input t_r = t_f = 2.0 ns

Table 8. AC electrical characteristics

		Test condition	Va	lue	
Symbol	Parameter	V _{cc}	-55 to	Unit	
		(V)	Min.	Max.	
	Propagation delay	2.3 to 2.7	1.0	5.2	no
t _{PLH} t _{PHL}	time Dn to Qn	3.0 to 3.6	0.8	4.0	ns
	Propagation delay	2.3 to 2.7	1.0	5.7	no
t _{PLH} t _{PHL}	time LE to Qn	3.0 to 3.6	0.8	4.2	ns
	Output anable time	2.3 to 2.7	1.0	6.2	ns
t _{PZL} t _{PZH}	Output enable time	3.0 to 3.6	0.8	4.7	115
	Output disable time	2.3 to 2.7	1.0	5.1	no
t _{PLZ} t _{PHZ}	Output disable time	3.0 to 3.6	0.8	4.8	ns
+	Setup tlme, HIGH or	2.3 to 2.7	1.0		no
t _s	LOW level Dn to LE	3.0 to 3.6	1.0		ns
+	Hold time HIGH or	2.3 to 2.7	1.5		no
t _h	LOW level Dn to LE	3.0 to 3.6	1.5		ns
+	LE pulco width LICL	2.3 to 2.7	1.5		nc
t _w	LE pulse width, HIGH	3.0 to 3.6	1.5		ns
	Output to output skew	2.3 to 2.7		0.5	no
toslh toshl	time ^{(1) (2)}	3.0 to 3.6		0.5	ns

Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (t_{OSLH} = | t_{PLHm} - t_{PLHn}|, t_{OSHL} = | t_{PHLm} - t_{PHLn}|)

Table 9. Capacitive characteristics

		Test	condition		Value		
Symbol	Parameter	v _{cc}	V _{CC}	T _A = 25 °C			Unit
		(V)		Min.	Тур.	Max.	
C _{IN}	Input capacitance	2.5 or 3.3	$V_{IN} = 0$ or V_{CC}	-	6	-	pF
C _{OUT}	Output capacitance	2.5 or 3.3	$V_{IN} = 0$ or V_{CC}	-	7	-	pF
C _{PD}	Power dissipation capacitance ⁽¹⁾	2.5 or 3.3	$f_{IN} = 10MHz$ $V_{IN} = 0 \text{ or } V_{CC}$	ı	20	ı	pF

C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. I_{CC(opr)} = C_{PD} x V_{CC} x f_{IN} + I_{CC}/16 (per circuit)

10/18 Doc ID 10653 Rev 7

^{2.} Parameter guaranteed by design

54VCXH162373 Test circuit

5 Test circuit

Figure 5. Test circuit

Table 10. Test circuit

Test	Switch
t _{PLH} , t _{PHL}	Open
t_{PZL} , t_{PLZ} ($V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$)	6 V
$t_{PZL}, t_{PLZ} (V_{CC} = 2.3 \text{ to } 2.7 \text{ V})$	2 V _{CC}
t _{PZH} , t _{PHZ}	GND

 $C_L = 30 \text{ pF}$ or equivalent (includes jig and probe capacitance)

 $R_L = R_1 = 500 \,\Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Waveforms 54VCXH162373

6 Waveforms

Table 11. Waveform symbol value

Symbol	V _{CC}				
Symbol	3.0 to 3.6 V	2.3 to 2.7 V			
V _{IH}	2.7 V	V _{CC}			
V _M	1.5 V	V _{CC} /2			
V _X	V _{OL} +0.3 V	V _{OL} +0.15 V			
V _Y	V _{OH} -0.3 V	V _{OH} -0.15 V			

Figure 6. Waveform - LE TO Qn propagation delays, LE minimum pulse width, Dn to LE setup and hold times (f = 1 MHz; 50% duty cycle)

54VCXH162373 Waveforms

Figure 7. Waveform - output enable and disable time (f = 1 MHz; 50% duty cycle)

7 Package mechanical data

54VCXH162373 products are supplied into ceramic body / metal lid hermetic Flat 48-pin space package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 12. Flat-48 (MIL-STD-1835) mechanical data

Dim	mm			inch		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.18	2.47	2.72	0.086	0.097	0.107
b	0.20	0.254	0.30	0.008	0.010	0.012
С	0.12	0.15	0.18	0.005	0.006	0.007
D	15.57	15.75	15.92	0.613	0.620	0.627
Е	9.52	9.65	9.78	0.375	0.380	0.385
E2	6.22	6.35	6.48	0.245	0.250	0.255
E3	1.52	1.65	1.78	0.060	0.065	0.070
е		0.635			0.025	
f		0.20			0.008	
L	6.85	8.38	9.40	0.270	0.330	0.370
Q	0.66	0.79	0.92	0.026	0.031	0.036
S1	0.25	0.43	0.61	0.010	0.017	0.024

Figure 9. Package dimension

Note:

The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package. Connecting unused pins or metal lid to ground or to the power supply will not affect the electrical characteristics.

Order codes 54VCXH162373

8 Order codes

Table 13. Ordering information

	Package	Min op.	Lead	Radiation	Flight models Engineering model		Packing	
rackage	voltage	finish	level	QML-V	Linginieering model			
	48-pin flat	1.8 V	Gold plated	300 krad	RHFXH162373K03V	RHRXH162373K1	Conductive strip pack	

54VCXH162373 Revision history

9 Revision history

Table 14. Document revision history

Date	Revision	Changes
09-Jul-2004	1	First release
17-May-2005	2	SMD qualified
19-Jun-2006	3	300 krad bullet updated, new template, mechanical data updated
30-Jul-2007	4	Typo in Table 12 on page 14.
17-Sep-2008	5	Updated cover page
23-Sep-2009	6	Updated Table 13 on page 16
02-Aug-2011	7	Added <i>Note: on page 15</i> and in the "Pin connections" diagram on the coverpage

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

18/18 Doc ID 10653 Rev 7

