# Are noisy sentences useless for distant supervised relation extraction?

Yu-Ming Shang, He-Yan Huang, Xian-Ling Mao, Xin Sun, Wei Wei

### 1. Problem Statement

- Noisy labeling problem has been one of the major drawbacks for relation extraction task.
  - relation extraction?
- Are noisy sentences truly useless?
  - Not caused by a lack of useful information, but the missing credible relation labels
- How do we solve this?
  - By implementing unsupervised deep clustering to generate reliable labels for noisy sentences

### **Relation Extraction**

- Relation Extraction (RE) is the task of extracting semantic relationships from text, which usually occur between two or more entities.
- The task can be done via rule-based/weakly supervised/distantly supervised/unsupervised learning.

| Sentence                                                                 | Relation  |
|--------------------------------------------------------------------------|-----------|
| 1. Steve Jobs and Wozniak co-founded Apple in 1976.                      | Founder   |
| 2. Michael Jordan is an American retired professional basketball player. | Career    |
| 3. Washington D.C. is the capital of United states.                      | CapitalOf |
| ******                                                                   |           |

# **Distant Supervision**

It utilizes an existing Knowledge Base (KB), such as Wikipedia, DBpedia, Wikidata, Freebase, Yago, to automatically construct training data.

| Relation name                           | Size    | Example                                 |
|-----------------------------------------|---------|-----------------------------------------|
| /people/person/nationality              | 281,107 | John Dugard, South Africa               |
| /location/location/contains             | 253,223 | Belgium, Nijlen                         |
| /people/person/profession               | 208,888 | Dusa McDuff, Mathematician              |
| /people/person/place_of_birth           | 105,799 | Edwin Hubble, Marshfield                |
| /dining/restaurant/cuisine              | 86,213  | MacAyo's Mexican Kitchen, Mexican       |
| /business/business_chain/location       | 66,529  | Apple Inc., Apple Inc., South Park, NC  |
| /biology/organism_classification_rank   | 42,806  | Scorpaeniformes, Order                  |
| /film/film/genre                        | 40,658  | Where the Sidewalk Ends, Film noir      |
| /film/film/language                     | 31,103  | Enter the Phoenix, Cantonese            |
| /biology/organism_higher_classification | 30,052  | Calopteryx, Calopterygidae              |
| /film/film/country                      | 27,217  | Turtle Diary, United States             |
| /film/writer/film                       | 23,856  | Irving Shulman, Rebel Without a Cause   |
| /film/director/film                     | 23,539  | Michael Mann, Collateral                |
| /film/producer/film                     | 22,079  | Diane Eskenazi, Aladdin                 |
| /people/deceased_person/place_of_death  | 18,814  | John W. Kern, Asheville                 |
| /music/artist/origin                    | 18,619  | The Octopus Project, Austin             |
| /people/person/religion                 | 17,582  | Joseph Chartrand, Catholicism           |
| /book/author/works_written              | 17,278  | Paul Auster, Travels in the Scriptorium |
| /soccer/football_position/players       | 17,244  | Midfielder, Chen Tao                    |
| /people/deceased_person/cause_of_death  | 16,709  | Richard Daintree, Tuberculosis          |
| /book/book/genre                        | 16,431  | Pony Soldiers, Science fiction          |
| /film/film/music                        | 14,070  | Stavisky, Stephen Sondheim              |
| /business/company/industry              | 13,805  | ATS Medical, Health care                |



# **Distant supervision**

Assumption: if two entities (e1, e2) have a relationship r in knowledge graph, then any sentence that mentions the two entities might express the relation r

|     | Sentence                                                                                                   | Bag Label    | Noise? | Correct Label |
|-----|------------------------------------------------------------------------------------------------------------|--------------|--------|---------------|
| Bag | #1: Barack Obama was born in the United States.                                                            | president of | Yes    | born in       |
|     | #2: Barack Obama was the first<br>African American to be elected to the<br>president of the United States. |              | No     | president of  |
|     | #3: <b>Barack Obama</b> served as the 44th president of the <b>United States</b> from 2009 to 2017.        |              | No     | president of  |

### 2. Method

- The paper proposes a Deep Clustering based Relation Extraction model (DCRE) that could generate reliable labels for nosity sentences.
- DCRE consists of three Modules: a sentence encoder, a noise detector and a label generator.
- Perks of a DCRE model?
  - The model can convert the noisy sentences into meaningful training data, which also leads to the increase of the number of useful sentences

### 2. Method: a sentence encoder

- Transform sentences into low-dimensional vectors with word embeddings and position embeddings
  - Position embeddings: make the model pay more attention to the words close to the target entities by calculating a series of relative distances from the current word to the two entities

### 2. Employ PCNN as a feature extractor

each feature map Mi is divided into three parts {
 Mi1, Mi2, Mi3 } by the position of two entities.
 Then, the max-pooling operation is performed on the three parts separately.



### 2. Method: a noise detector

 Calculates a coefficient value with a simple dot product between the sentence representation and relation label matrix

$$a_i = oldsymbol{h}_i oldsymbol{l}_j^T.$$

If the coefficient is smaller than a threshold
 -> noisy/ The sentence with best coefficient
 score -> valid / The remaining -> ignore



# 2. Method: a label generator

- Employs an unsupervised deep clustering and measures the similarity between the feature vector and cluster centers via t-distribution
- Implements a threshold for validation and introduces a scaling factor, the calculated similarity measures, as weight to scale the cross-entropy loss function

$$egin{aligned} \mathcal{J}\left( heta
ight) &= -\sum_{(x_i,y_i) \in \mathbb{V}} logp(y_i|x_i;oldsymbol{\Theta}) \ &- \lambda \sum_{(x_i,y_i) \in \mathbb{N}} q_{ij} logp(y_j|x_i;oldsymbol{\Theta}), \end{aligned}$$



## 3. Experiments

- Dataset: NYT-10 which was constructed by aligning relation facts in Freebase with the New York Times corpus
  - it contains 522,611 sentences, 281,270 entity pairs in the training data; and 172,448 sentences,
     96,678 entity pairs in the test data; 53 relations in total
- employed k-means for clustering, obtain multiple clustering results and determine its final category by voting
- For evaluation, the relations extracted from testing data are automatically compared with those in Freebase
- Compared the performance with 7 different baseline models with precision-recall curves

### 4. Results

Soft methods (place soft weights on sentences to reduce the impact of noisy sentences) vs Hard methods (removes all the noisy sentences)





## 4. Results

- Manually tested accuracy of threshold value ranging from {0.15, 0.1, 0.05, 0}
- 0.1 demonstrates the best performance



# 4. results

set the number of clusters as 47, excluding 6 long-tail relations which appear less than 2 times in training data



# 4. Results

Correct label for a 1st pair is /location/country/capital and a 4th pair is people/person/place lived

| ID | Entity pair              | Sentence                                                                                                                                                                                                            | Original label                            | Generated label                   | Correct? |
|----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------|----------|
| 1  | (China,Beijing)          | <b>Beijing</b> has tried to enlist the support of Uzbekistan in fighting Islamic separatism in <b>China</b> 's western region of Xinjiang, while also lining up secure supplies of oil and gas.                     | /location/location/contains               | /location/cn province<br>/capital | No       |
| 2  | (Italy, Rome)            | Mr. Tomassetti's companies are named after L'Aquila, <b>Italy</b> , his birthplace 58 miles northeast of <b>Rome</b> .                                                                                              | /location/country/capital                 | /location/location/contains       | Yes      |
| 3  | (Saddam Hussein, Iraq)   | As national journal reported in April, it was Senator Roberts who stated as the <b>Iraq</b> war began that the U.S. had "human intelligence that indicated the location of <b>Saddam Hussein</b> ."                 | /people/deceased<br>person/place of death | /people/person/place lived        | Yes      |
| 4  | (Edith Sitwell, England) | His first book was published privately in his own country and then by a major publisher in <b>England</b> , where he had many supporters in the literary world, most notably <b>Edith Sitwell</b> and Angus Wilson. | /people/person/nationality                | /people/person/place of birth     | No       |
| 5  | (Louisiana, New Orleans) | The book, by a <b>New Orleans</b> resident, John M. Barry, describes the history and politics behind a flood that killed 1,000 people and displaced 900,000 from <b>Louisiana</b> to Illinois.                      | /location/location/contains               | <u>NA</u>                         | Yes      |

# 5. Future work

- multi-class clustering
- automated noisy sentence selection

# **Thanks**