Robust Weighting and Matching Techniques for Causal Inference in Observational Studies with Continuous Treatment

Ioan Scheffel

December 20, 2022

Contents

T	Introduction	3
2	Balancing Weights 2.1 Introduction	4
3	Convex Analysis 3.1 Basic Notions	6
4	Random Matrix Inequalities4.1 Matrix Analysis4.2 Matrix Concentration Inequalities via the Method of Exchangeable Pairs4.3 Matrix Khintchin Inequality4.4 Matrix Moment Inequality4.5 Intrinsic Dimension	10 11 11
5	Empirical Processes	13
6	Simple vet useful Calculations	14

1 Introduction

2 Balancing Weights

2.1 Introduction

2.2 Estimating the Population Mean of Potential Outcomes

2.3 Application of Convex Optimization

Assumption 2.1. Assume that the map $f : \mathbb{R} \to \overline{\mathbb{R}}$ has the following properties.

- (i) f is strictly convex.
- (ii) f is lower-semicontinuous and continuously differentiable on int(dom(f)).
- (iii) The derivative of f on int(dom(f)) is a diffeomorphism.
- (iv) The Legendre transformation f^* of f is finite.
- (v) The function $x \mapsto xt f(x)$ takes its supremum on $\operatorname{int}(\operatorname{dom}(f))$ for all $t \in \mathbb{R}$.

We consider the following optimization problem.

Problem 2.1.

$$\underset{w_1,\dots,w_n\in\mathbb{R}}{\text{minimize}} \qquad \sum_{i=1}^n T_i f(w_i)$$

subject to the constraints

$$w_i T_i \ge 0, \qquad i = 1, \dots, n,$$

$$\sum_{i=1}^n w_i T_i = 1$$

$$\left| \sum_{i=1}^n w_i T_i B_k(X_i) - \frac{1}{n} \sum_{i=1}^n B_k(X_i) \right| \le \delta_k, \qquad k = 1, \dots, K$$

Theorem 2.1. Under Assumption, the dual of the above Problem is the unconstrained optimization problem

$$\underset{\lambda \in \mathbb{R}^K}{\text{minimize}} \qquad \frac{1}{n} \sum_{i=1}^n nT_i f^*(\langle B(X_i), \lambda \rangle) - \langle B(X_i), \lambda \rangle + \langle \delta, |\lambda| \rangle,$$

where $t \mapsto f^*(t) = t(f')^{-1}(t) - f((f')^{-1}(t))$ is the Legendre transformation of f, $B(X_i) = [B_1(X_i), \ldots, B_K(X_i)]^{\top}$ denotes the K basis functions of the covariates of unit $i \in \{1, \ldots, n\}$ and $|\lambda| = [|\lambda_1|, \ldots, |\lambda_K|]^{\top}$, where $|\cdot|$ is the absolute value of a real-valued scalar. Moreover, if λ^{\dagger} is an optimal solution then

$$w_i^* = (f')^{-1}(\langle B(X_i), \lambda^{\dagger} \rangle), \quad i \in \{1, \dots, n\}$$
 (2.1)

are the unique optimal solutions to (P).

Proof. We prove the following Lemma at the end of the section.

Lemma 2.1. The dual of the optimization problem is

$$\underset{\lambda \in \mathbb{R}^{2K}}{\text{minimize}} \qquad \frac{1}{n} \sum_{i=1}^{n} n T_{i} f^{*}(\langle Q_{\bullet i}, \lambda \rangle) - \langle Q_{\bullet i}, \lambda \rangle + \langle d, \lambda \rangle$$

subject to

$$\lambda_k \ge 0 \quad \text{for all } k \in \{1, \dots, K\}, \tag{2.2}$$

where

$$\mathbf{Q} := \begin{bmatrix} \mathbf{I}_n \\ \mathbf{B}(\mathbf{X}) \\ -\mathbf{B}(\mathbf{X}) \end{bmatrix}, \quad \mathbf{B}(\mathbf{X}) := \begin{bmatrix} B(X_1), \dots, B(X_n) \end{bmatrix}, \quad and \quad d := \begin{bmatrix} 0_n \\ \delta \\ \delta \end{bmatrix}. \quad (2.3)$$

2.4 Application of Matrix Concentration Inequalities

3 Convex Analysis

3.1 Basic Notions

3.2 Relative Interior

3.3 Conjugate Calculus

3.4 Tseng Bertsekas

We present the relevant parts of the paper [BT03]. Consider the following optimization problem

$$\underset{x \in \mathbb{R}^m}{\text{minimize}} \qquad f(x)$$

subject to the constraints

$$\mathbf{A}x \ge b,\tag{3.1}$$

Where $f: \mathbb{R}^m \to \overline{\mathbb{R}}$, **A** is a given $n \times m$ matrix, and b is a vector in \mathbb{R}^n .

Assumption 3.1. Assume that the map $f: \mathbb{R}^m \to \overline{\mathbb{R}}$ has the following properties.

- (i) f is strictly convex.
- (ii) f is lower-semicontinuous and continuous dom(f).
- (iii) The convex conjugate f^* of f is finite.

The dual optimization problem associated with (P) is

$$\underset{p \in \mathbb{R}^n}{\text{maximize}} \qquad q(p)$$

subject to the constraints

$$p \ge 0,\tag{3.2}$$

where $q: \mathbb{R}^n \to \overline{\mathbb{R}}$ is the concave function given by

$$q(p) := \min_{x \in \mathbb{R}^m} f(x) + \langle p, b - \mathbf{A}x \rangle = \langle p, b \rangle - f^*(\mathbf{A}^\top p).$$
 (3.3)

The dual problem (D) is a concave program with simple nonnegativity constraints. Furthermore, strong duality holds for (P) and (D), i.e., the optimal value of (P) equals the optimal value of (D).

Since f^* is real-valued and f is strictly convex, f^* and q are continuously differentiable.

Theorem 3.1. [Roc70, Theorem 26.3] A closed proper convex function is (essentially) strictly convex if and only if its conjugate is essentially smooth.

We will denote the gradient of q at p by d(p) and its ith coordinate by $d_i(p)$. Since q is continuously differentiable, $d_i(p)$ is continuous, and since q is concave, $d_i(p)$ as nonincreasing in p_i .

By differentiating and by using the chain rule, we obtain the dual cost gradient

$$d(p) = b - \mathbf{A}x$$
, where $x := \nabla f^*(\mathbf{A}^\top p) = \operatorname{argsup}_{\xi \in \mathbb{R}^m} \langle p, \mathbf{A}\xi \rangle - f(\xi)$. (3.4)

The last equality follows from Danskin's Theorem and [Roc70, Theorem 23.5]

Proposition 3.1. (Danskin's Theorem [BT03, page 649]) Let $Z \subseteq \mathbb{R}^m$ be a non-empty set, and let $\phi : \mathbb{R}^n \times Z \to \mathbb{R}$ be a continuous function such that $\phi(\cdot, z) : \mathbb{R}^n \to \mathbb{R}$, viewed as a function of its first argument, is convex for each $z \in Z$. Then the function

$$f: \mathbb{R}^n \to \mathbb{R}, \qquad x \mapsto \sup_{z \in Z} \phi(x, z)$$
 (3.5)

is convex and has directional derivative given by

$$f'(x;y) = \sup_{z \in Z(x)} \phi'(x,z;y), \tag{3.6}$$

where $\phi'(x,z;y)$ is the directional derivative of the function $\phi(\cdot,z)$ at x in the direction y, and

$$Z(x) := \left\{ \overline{z} \in \mathbb{R}^m : \phi(x, \overline{z}) = \sup_{z \in Z} \phi(x, z) \right\}.$$
 (3.7)

In particular, if Z(x) consists of a unique point \overline{z} and $\phi(\cdot, \overline{z})$ is differentiable at x, and $\nabla f(x) = \nabla_x \phi(x, \overline{z})$, where $\nabla_x \phi(x, \overline{z})$ is the vector with coordinates $(\partial \phi/\partial x_i)(x, \overline{z})$

Note that x is the unique vector satisfying

$$\mathbf{A}p \in \partial f(x). \tag{3.8}$$

From the optimality conditions for (D) it follows that a dual vector is an optimal solution of (D) if and only if

$$p = [p + d(p)]^+,$$
 (3.9)

where $[\cdot]^+$ is the projection onto the positive orthant, i.e., $[y]^+ = [0 \lor y_1, \dots 0 \lor y_n]^\top$.

Given an optimal dual solution p, we may obtain an optimal primal solution from the equation $x = \nabla f^*(\mathbf{A}^\top p)$. To see this, note that

$$\mathbf{A}x \ge b$$
 and $p_i = 0$ for all i such that $\sum_{j=1}^{m} a_{ij}x_j > b_i$. (3.10)

We can show that p and x satisfy the KKT conditions and thus x is an optimal solution to (P).

Definition 3.1. [Roc70, §28] By an **ordinary convex program** (P) we mean an optimization problem of the following form

$$\underset{x \in C}{\text{minimize}} \qquad f_0(x)$$

subject to the constraints

$$f_1(x) \le 0, \dots, f_r(x) \le 0, \qquad f_{r+1}(x) = 0, \dots, f_m(x) = 0,$$
 (3.11)

where $C \subseteq \mathbb{R}^n$ is a non-empty convex set, f_i is a finite convex function on C for $i \in \{1, \ldots, r\}$ and f_i is an affine function on C for $i \in \{r+1, \ldots, m\}$.

Definition 3.2. We define $[\lambda_1, \ldots, \lambda_m] \in \mathbb{R}^m$ to be a **Karush-Kuhn-Tucker (KKT) vector** for (P), if

- (i) $\lambda_i \geq 0$ for all $i \in \{1, \ldots, r\}$.
- (ii) The infimum of the proper convex function $f_0 + \sum_{i=1}^m \lambda_1 f_i$ is finite and equal to the optimal value in (P).

Theorem 3.2. (Karush-Kuhn-Tucker conditions) Let (P) be an ordinary convex program, $\overline{\alpha} \in \mathbb{R}^m$, and $\overline{z} \in \mathbb{R}^n$. Then $\overline{\alpha}$ is a KKT vector for (P) and \overline{z} is an optimal solution to (P) if and only if \overline{z} and the components α_i of $\overline{\alpha}$ satisfy the following conditions.

- (i) $\alpha_i \geq 0$, $f_i(\overline{z}) \leq 0$, and $\alpha_i f_i(\overline{z}) = 0$ for all $i \in \{1, \dots, r\}$.
- (ii) $f_i(\overline{z}) = 0$ for $i \in \{r+1, \ldots, m\}$.
- (iii) $0_n \in [\partial f_0(\overline{z}) + \sum_{\alpha_i \neq 0} \alpha_i \partial f_i(\overline{z})].$

Proof. [Roc70, Theorem 28.3]

Takeaways For strictly convex functions we can derive duality in terms of the optimal solutions.

4 Random Matrix Inequalities

4.1 Matrix Analysis

The **trace** of a square matrix, denoted by tr, is the sum of its diagonal entries, i.e. $\operatorname{tr}(\mathbf{B}) = \sum_{j=1}^{d} b_{jj}$ for $\mathbf{B} \in \mathbb{M}_d$. The trace is unitarily invariant, i.e. $\operatorname{tr}(\mathbf{B}) = \operatorname{tr}(\mathbf{Q}\mathbf{B}\mathbf{Q}^*)$ for all $\mathbf{B} \in \mathbb{M}_d$ for all unitary $\mathbf{Q} \in \mathbb{M}_d$. In particular, the existence of an eigenvalue value decomposition shows that the trace of a Hermitian matrix equals the sum of its eigenvalues. Let $f: I \to \mathbb{R}$ where $I \subseteq \mathbb{R}$ is an interval. Consider a matrix $\mathbf{A} \in \mathbb{H}_d$ whose eigenvalues are contained in I. We define the matrix $f(\mathbf{A}) \in \mathbb{H}_d$ using an eigenvalue decomposition of \mathbf{A} :

$$f(\mathbf{A}) = \mathbf{Q} \begin{bmatrix} f(\lambda_1) & & \\ & \ddots & \\ & & f(\lambda_d) \end{bmatrix} \mathbf{Q}^* \quad \text{where} \quad \mathbf{A} = \mathbf{Q} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_d \end{bmatrix} \mathbf{Q}^*. \quad (4.1)$$

The definition of $f(\mathbf{A})$ does not depend on which eigenvalue decomposition we choose. Any matrix function that arises in this fashion is called a **standard matrix function**.

Proposition 4.1. Let $f, g : I \to \mathbb{R}$ be real-valued functions on an interval $I \subseteq \mathbb{R}$, and let $\mathbf{A} \in \mathbb{H}_d$ be a Hermitian matrix whose eigenvalues are contained in I.

- (i) If λ is an eigenvalue of of \mathbf{A} , then $f(\lambda)$ is an eigenvalue of $f(\mathbf{A})$.
- (ii) $f(a) \le g(a)$ for all $a \in I$ implies $f(\mathbf{A}) \preccurlyeq g(\mathbf{A})$.

Lemma 4.1. (Mean value trace inequality) Let I be an interval of the real line. Suppose that $g: I \to \mathbb{R}$ is a weakly increasing function and that $h: I \to \mathbb{R}$ is a function whose derivative h' is convex. Then for all matrices $\mathbf{A}, \mathbf{B} \in \mathbb{H}_d(I)$ it holds

$$\overline{\operatorname{tr}}[(g(\mathbf{A}) - g(\mathbf{B})) \cdot (h(\mathbf{A}) - h(\mathbf{B}))] \le \frac{1}{2} \overline{\operatorname{tr}}[(g(\mathbf{A}) - g(\mathbf{B})) \cdot (\mathbf{A} - \mathbf{B}) \cdot (h'(\mathbf{A}) + h'(\mathbf{B}))]. \quad (4.2)$$

When $h^{'}$ is concave, the inequality is reversed. The same result holds for the standard trace.

Proof. [MJC⁺14, Lemma 3.4] Fix $a, b \in I$. Since g is weakly increasing, $(g(a) - g(b)) \cdot (a - b) \ge 0$. The fundamental theorem of calculus and the convexity of h' yield the estimate

$$(g(a) - g(b)) \cdot (h(a) - h(b)) = (g(a) - g(b)) \cdot (a - b) \int_{0}^{1} h'(\tau a + (1 - \tau)b) d\tau$$
(4.3)

$$\leq (g(a) - g(b)) \cdot (a - b) \int_{0}^{1} [\tau h'(a) + (1 - \tau)h'(b)] d\tau$$
 (4.4)

$$= \frac{1}{2} [(g(a) - g(b)) \cdot (a - b) \cdot (h'(a) + h'(b))]. \tag{4.5}$$

The inequality is reversed, if h' is concave.

Proposition 4.2. (Generalized Klein inequality) Let u_1, \ldots, u_n and v_1, \ldots, v_n be real-valued functions on an interval I of the real line. Suppose

$$\sum_{k=1}^{n} u_k(a)v_k(b) \ge 0 \qquad \text{for all } a, b \in I.$$

$$(4.6)$$

Then

$$\overline{\operatorname{tr}}\left(\sum_{k=1}^{n} u_k(\mathbf{A}) v_k(\mathbf{B})\right) \ge 0 \quad \text{for all } \mathbf{A}, \mathbf{B} \in \mathbb{H}_d(I).$$
(4.7)

Proof. [Pet94, Proposition 3]

Proposition 4.3. (Hölder inequality for trace) Let p and q be Hölder conjugate indices. Then

$$\operatorname{tr}(\mathbf{BC}) \le \|\mathbf{B}\|_{p} \|\mathbf{C}\|_{q} \quad \text{for all } \mathbf{B}, \mathbf{C} \in \mathbb{M}_{d}.$$
 (4.8)

Proof. [Bha97, Corollary IV.2.6]

4.2 Matrix Concentration Inequalities via the Method of Exchangeable Pairs

Definition 4.1. Let Z and Z' random variables taking values in a Polish space Z. We say that (Z, Z') is an **exchangable pair** if it has the same distribution as (Z', Z). In particular, Z and Z' must share the same distribution.

Definition 4.2. Let (Z, Z') be an exchangable pair of random variables taking values in a Polish space Z, and let $\Psi : Z \to \mathbb{H}_d$ be a measurable function. Define the random Hermitian matrices

$$\mathbf{X} := \mathbf{\Psi}(Z) \quad and \quad \mathbf{X}' := \mathbf{\Psi}(Z').$$
 (4.9)

We say that $(\mathbf{X}, \mathbf{X}')$ is a **matrix Stein pair** if there is a constant $\alpha \in (0, 1]$ for which

$$\mathbf{E}[\mathbf{X} - \mathbf{X}'|Z] = \alpha \mathbf{X} \qquad almost \ surely. \tag{4.10}$$

The constant α is called the **scale factor** of the pair. We always assume $\mathbf{E}\left[\|\mathbf{X}\|^2\right] < \infty$.

Lemma 4.2. Suppose that $(\mathbf{X}, \mathbf{X}')$ is a matrix Stein pair with scale factor α . Let $\mathbf{F} : \mathbb{H}_d \to \mathbb{H}_d$ be a measurable function that satisfies the regularity condition $\mathbf{E} \left[\| (\mathbf{X} - \mathbf{X}') \mathbf{F}(\mathbf{X}) \| \right] < \infty$. Then

$$\mathbf{E}[\mathbf{X} \cdot \mathbf{F}(\mathbf{X})] = \frac{1}{2\alpha} \mathbf{E}[(\mathbf{X} - \mathbf{X}')(\mathbf{F}(\mathbf{X}) - \mathbf{F}(\mathbf{X}'))]. \tag{4.11}$$

Proof. [MJC⁺ 14, Lemma 2.4] Suppose that $(\mathbf{X}, \mathbf{X}')$ constructed from an auxiliary exchangable pair (Z, Z'). The defining property implies

$$\alpha \cdot \mathbf{E}[\mathbf{X} \cdot \mathbf{F}(\mathbf{X})] = \mathbf{E}[\mathbf{E}[\mathbf{X} - \mathbf{X}'|Z] \cdot \mathbf{F}(\mathbf{X})] = \mathbf{E}[(\mathbf{X} - \mathbf{X}')\mathbf{F}(\mathbf{X})]$$
(4.12)

4.3 Matrix Khintchin Inequality

Theorem 4.1. (Matrix BDG inequality) Let p=1 or $p \geq 3/2$. Suppose that $(\mathbf{X}, \mathbf{X}')$ is a matrix Stein pair where $\mathbf{E}[\|\mathbf{X}\|_{2p}^{2p}] < \infty$. Then

$$\mathbf{E}[\|\mathbf{X}\|_{2p}^{2p}]^{1/(2p)} \le \sqrt{2p-1} \ \mathbf{E}[\|\boldsymbol{\Delta}_{\mathbf{X}}\|_{p}^{p}]^{1/(2p)}, \tag{4.13}$$

where $\Delta_{\mathbf{X}}$ is the conditional variance .

Proof. [MJC⁺14, §7.3] Apply method of exchangeable pairs, generalized Klein inequality, trace Hölder \Box

Theorem 4.2. [MJC⁺14, Corollary 7.3] Suppose that p = 1 or $p \geq 3/2$. Consider a finite sequence $(\mathbf{Y}_k)_{k\geq 1}$ of independent, random, Hermitian matrices and a deterministic sequence $(\mathbf{A}_k)_{k\geq 1}$ for which

$$\mathbf{E}[\mathbf{Y}_k] = 0$$
 and $\mathbf{Y}_k^2 \leq \mathbf{A}_k^2$ almost surely for all $k \geq 1$. (4.14)

Then

$$\mathbf{E} \left[\left\| \sum_{k \ge 1} \mathbf{Y}_k \right\|_{2p}^{2p} \right]^{1/(2p)} \le \sqrt{p - \frac{1}{2}} \left\| \left(\sum_{k \ge 1} (\mathbf{A}_k^2 + \mathbf{E}[\mathbf{Y}_k^2]) \right)^{1/2} \right\|_{2p}. \tag{4.15}$$

In particular, when $(\xi_k)_{k\geq 1}$ is an independent sequence of Rademacher random variables,

$$\mathbf{E} \left[\left\| \sum_{k \ge 1} \xi_k \mathbf{A}_k \right\|_{2p}^{2p} \right]^{1/(2p)} \le \sqrt{2p - 1} \left\| \left(\sum_{k \ge 1} \mathbf{A}_k^2 \right)^{1/2} \right\|_{2p}. \tag{4.16}$$

4.4 Matrix Moment Inequality

Theorem 4.3. Assume $n \geq 3$

(i) Suppose that $p \geq 1$, and fix $r \geq p \vee 2\log(n)$. Consider a finite sequence $(\mathbf{S}_k)_{k\geq 1}$ of independent, random, positive-semidefinite matrices with dimension $n \times n$. Then

$$\mathbf{E} \left[\left\| \sum_{k \ge 1} \mathbf{S}_k \right\|^p \right]^{1/p} \le \left[\left\| \sum_{k \ge 1} \mathbf{E}[\mathbf{S}_k] \right\|^{1/2} + 2\sqrt{er} \mathbf{E}[\max_{k \ge 1} \|\mathbf{S}_k\|^p]^{1/(2p)} \right]^2. \tag{4.17}$$

(ii) Suppose that $p \geq 2$, and fix $r \geq p \vee 2\log(n)$. Consider a finite sequence $(\mathbf{Y}_k)_{k\geq 1}$ of independent, symmetric, random, self-adjoint matrices with dimension $n \times n$. Then

$$\mathbf{E}\left[\left\|\sum_{k\geq 1}\mathbf{Y}_{k}\right\|^{p}\right]^{1/p} \leq \sqrt{er}\left\|\left(\sum_{k\geq 1}\mathbf{E}[\mathbf{Y}_{k}^{2}]\right)^{1/2}\right\| + 2er\mathbf{E}[\max_{k\geq 1}\|\mathbf{S}_{k}\|^{p}]^{1/p}.$$
 (4.18)

4.5 Intrinsic Dimension

Definition 4.3. For a positive-semidefinite matrix **S**, the *intrinic dimension* is the quantity

$$\operatorname{intdim}(\mathbf{A}) := \frac{\operatorname{tr} \mathbf{A}}{\|\mathbf{A}\|}.$$

Lemma 4.3. (Intrinsic dimension) Let $\varphi : [0, \infty) \to \mathbb{R}$ be a convex function with $\varphi(0) = 0$. For any positive-semidefinite matrix \mathbf{S} it holds that

$$\operatorname{tr}(\varphi(\mathbf{S})) \leq \operatorname{intdim}(\mathbf{S}) \cdot \varphi(\|\mathbf{S}\|).$$

Proof. [Tro15, Lemma 7.5.1] Since φ is convex on any interval [0, L] with L > 0 and $\varphi(0) = 0$, it holds

$$\varphi(a) \le \left(1 - \frac{a}{L}\right)\varphi(0) + \frac{a}{L}\varphi(L) = \frac{a}{L}\varphi(L) \quad \text{for all } a \in [0, L].$$
 (4.19)

Since **S** is positive-semidefinite, the eigenvalues of **S** fall in the interval [0, L], where $L = ||\mathbf{S}||$.

$$\operatorname{tr}(\varphi(\mathbf{S})) = \sum_{i=1}^{d} \varphi(\lambda_i) \le \frac{\sum_{i=1}^{d} \lambda_i}{\|\mathbf{S}\|} \varphi(\|\mathbf{S}\|) = \frac{\operatorname{tr}(\mathbf{S})}{\|\mathbf{S}\|} \varphi(\|\mathbf{S}\|) = \operatorname{intdim}(\mathbf{S}) \cdot \varphi(\|\mathbf{S}\|). \tag{4.20}$$

5 Empirical Processes

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space and (\mathcal{X}, Σ) a measurable space. Let $X_j : (\Omega, \mathcal{A}, \mathbf{P}) \to (\mathcal{X}, \Sigma), j = 1, \ldots, n$ be independent and identically-distributed (i.i.d.) random variables with probability distribution \mathbf{P}_X and \mathcal{F} a family of measurable functions $f : (\mathcal{X}, \Sigma) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Consider the map

$$f \mapsto G_n f := \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbf{P}_X f \right),$$
 (5.1)

where $\mathbf{P}_X f := \int_{\mathcal{X}} f d\mathbf{P}_X$. We call $(G_n f)_{f \in \mathcal{F}}$ the empirical process indexed by \mathcal{F} . Furthermore

$$||G_n f||_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |G_n f|. \tag{5.2}$$

Lemma 5.1. (Bernstein Inequality for Empirical Processes) For any bounded, measurable function f it holds for all t > 0

$$\mathbf{P}(|G_n f| > t) \le 2 \exp\left(-\frac{1}{4} \frac{t^2}{\mathbf{P}_X(f^2) + t \|f\|_{\infty} / \sqrt{n}}\right)$$
 (5.3)

Proof. By the Markov inequality it holds for all $\lambda > 0$

$$\mathbf{P}(G_n f > t) \le e^{-\lambda t} \mathbf{E} \exp(\lambda G_n f)$$
(5.4)

Lemma 5.2. For any finite class \mathcal{F} of bounded, measurable, square-integrable functions, with $|\mathcal{F}|$ elements, it holds

$$\mathbf{E} \|G_n f\|_{\mathcal{F}} \lesssim \max_{f \in \mathcal{F}} \frac{\|f\|_{\infty}}{\sqrt{n}} \log \left(1 + |\mathcal{F}|\right) + \max_{f \in \mathcal{F}} \|f\|_{\mathbf{P}, 2} \sqrt{\log \left(1 + |\mathcal{F}|\right)}. \tag{5.5}$$

6 Simple yet useful Calculations

Theorem 6.1. (Multivariate Taylor Theorem) Let $f \in C^2(\mathbb{R}^n, \mathbb{R})$. Then for all $x, \Delta \in \mathbb{R}^n$ there exists $\xi \in [0, 1]$ such that it holds

$$f(x + \Delta) = f(x) + \sum_{i=1}^{n} \frac{\partial f(x)}{\partial x_i} \Delta_i + \sum_{\substack{i,j=1\\i \neq j}} \frac{\partial^2 f(x + \xi \Delta)}{\partial x_i \partial x_j} \Delta_i \Delta_j$$

$$+ \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f(x + \xi \Delta)}{\partial x_i^2} \Delta_i^2$$
(6.1)

Corollary 6.1.1. Let $f \in C^2(\mathbb{R})$. Then for all $a, x, \Delta \in \mathbb{R}^n$ there exist $\xi \in [0, 1]$ such that it holds

$$f(a^{T}(x+\Delta)) - f(a^{T}x) = f'(a^{T}x) \Delta^{T}a + \frac{1}{2}f''(a^{T}(x+\xi\Delta)) \Delta^{T}A \Delta,$$
 (6.2)

where $A := aa^T \in \mathbb{R}^{n \times n}$.

Proof. By the chain rule we have for all $a, x, \Delta \in \mathbb{R}^n$ and $\xi \in [0, 1]$

$$\frac{\partial^2 f(a^T(x+\xi\Delta))}{\partial x_i \partial x_i} = f''(a^T(x+\xi\Delta)) a_i a_j.$$
(6.3)

Since $A := aa^T$ is symmetric we have

$$\Delta^T A \ \Delta = 2 \sum_{\substack{i,j=1\\i\neq i}}^n a_i a_j \Delta_i \Delta_j + \sum_{i=1}^n a_i^2 \Delta_i^2.$$
 (6.4)

Plugging (6.3) and (6.4) into (6.1) yields (6.2).

Proposition 6.1. For all $x, y \in \mathbb{R}$ it holds

$$|x+y| - |x| \ge -|y| \tag{6.5}$$

Proof. Checking all 6 combinations of x + y, x, y being nonnegative or negative yields the result.

Notation Index

#A cardinality of the set A

 $\mathbf{E}[X|Y]$ conditional expectation of the random variable X with respect to $\sigma(Y)$

 $\mathbf{E}[X]$ expectation of the random variable X

Var[X] variance of the random variable X

 $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$ extension of the real numbers

 $\xrightarrow{\mathcal{D}}$ convergence of distributions

P generic probability measure

 $\mathbf{P}_X = \mathbf{P} \circ X^{-1}$ distribution of the random variable X

 \mathbb{R} set of real numbers

 $x \vee y, x \wedge y, x^+, x^-$ maximum, minimum, positive part, negative part of real numbers

 $X\sim \mu\,$ the random variable has distribution $\mu\,$

Bibliography

- [Bha97] Rajendra Bhatia. *Matrix Analysis*, volume 169 of *Graduate Texts in Mathematics*. Springer, New York, NY, 1997.
- [BT03] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation:Numerical Methods. November 2003.
- [MJC⁺14] Lester Mackey, Michael I. Jordan, Richard Y. Chen, Brendan Farrell, and Joel A. Tropp. Matrix concentration inequalities via the method of exchangeable pairs. *The Annals of Probability*, 42(3), May 2014.
- [Pet94] Dénes Petz. A survey of certain trace inequalities. Banach Center Publications, 30(1):287–298, 1994.
- [Roc70] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.
- [Tro15] Joel A. Tropp. An Introduction to Matrix Concentration Inequalities, January 2015.