AMATH 514 Assignment 3

Tyler Chen

AMATH 514 Chen 2

Exercise 2.16 (Stiemke's theorem)

Prove that there exists a vector x > 0 such that Ax = 0 if and only if for each y satisfying $y^T A \ge 0$ one has $y^T A = 0$.

The problem is show exactly one of the following is true,

$$\exists x > 0 : Ax = 0$$
$$\exists y : y^T A \ge 0, y^T A \ne 0$$

Denote the j-th column of A by A_j . Denote the vector of all ones by e. Then,

$$y^T A e = \sum_{j=1}^n y^T A_j$$

We first prove a few useful equivalences.

Suppose $y^T A \ge 0$, then $y^j A_k \ge 0$ for all j = 1, 2, ..., n so $y^T A e$ is the sum of non-negative terms. If $y^T A \ne 0$ at least one term is nonzero (positive). Thus,

$$y^T A \neq 0 \iff y^T (-Ae) = -(y^T Ae) < 0$$

Suppose $\exists x > 0$ with Ax = 0. We can scale x so that all entries are at least one. Then $z = x/(\min_i x_i) - e \ge 0$ and Az = -Ae.

Suppose $\exists z \geq 0$ with Az = -Ae. Then A(z + e) = 0 so x = z + e > 0 solves Ax = 0.

Thus,

$$\exists x > 0 : Ax = 0 \iff \exists z \ge 0 : Az = -Ae$$

We can now apply Farkas Theorem. Indeed, start with,

$$\exists y: y^T A \geq 0, y^T A \neq 0$$

As explained above this is equivalent to,

$$\exists y : y^T A \ge 0, y^T (-Ae) < 0$$

Applying Farkas Theorem, this is equivalent to,

$$\nexists z > 0 : Az = -Ae$$

Again, as explained above this is equivalent to,

$$\nexists x > 0 : Ax = 0$$

This is the desired result. \Box

AMATH 514 Chen 3

Exercise 2.26

Give an example of a matrix A and vectors b and c for which both $\{x \mid Ax \leq b\}$ and $\{y \mid y \geq 0; y^TA = c^T\}$ are empty.

Trivially we can pick A = [0], b = c = [-1]. Then $Ax = 0 \nleq -1$ and $y^T A = 0 \neq -1$.

We can easily characterize all matrices $A \in \mathbb{R}^{2 \times 2}$, $b \in \mathbb{R}^{2 \times 1}$, $c \in \mathbb{R}^{1 \times 2}$ such that these sets are empty.

Visually, $\{x \mid Ax \leq b\}$ corresponds to the intersection of two half planes in \mathbb{R}^2 .

Suppose $a_1x_1 + a_2x_2 \le b_1$ is one of the half planes. Then we require the other half plane to have the form $a_1x_1 + a_2x_2 \ge b_2$, where $b_2 > b_1$ so that their intersection is empty.

That is, $\{x \mid Ax = b\}$ will be empty if and only if,

$$A = \begin{bmatrix} a_1 & a_2 \\ -a_1 & -a_2 \end{bmatrix}, \qquad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ -b_2 \end{bmatrix}, \qquad b_2 < -b_1$$

Now observe,

$$y^T A = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}^T \begin{bmatrix} a_1 & a_2 \\ -a_2 & -a_2 \end{bmatrix} = \begin{bmatrix} a_1 y_1 - a_1 y_2 \\ a_2 y_1 - a_2 y_2 \end{bmatrix}^T = \begin{bmatrix} a_1 (y_1 - y_2) \\ a_2 (y_1 - y_2) \end{bmatrix}^T$$

Finally, pick $c = [c_1 \ c_2]$ such that $a_1/a_2 \neq c_1/c_2$ (for instance, pick $c_1 = a_1, c_2 \neq a_2$. As an example,

$$A = \left[\begin{array}{cc} 4 & 3 \\ -4 & -3 \end{array} \right], \qquad \qquad b = \left[\begin{array}{c} 3 \\ -6 \end{array} \right], \qquad \qquad c^T = \left[\begin{array}{c} 3 \\ 3 \end{array} \right]$$

The intersection of the regions in Figures 1a and ?? show $\{x \mid Ax \leq b\}$ and $\{y \mid y \geq 0, y^TA = c^T\}$. As we showed above, these intersections are both empty.

AMATH 514 Chen 4

Exercise 2.27

Let \tilde{x} be a feasible solution of $\max\{c^Tx \mid Ax \leq b\}$ and let \tilde{y} be a solution of $\min\{y^Tb \mid y \geq 0; y^TA = c^T\}$. Prove that \tilde{x} and \tilde{y} are the optimum solutions of the minimum and maximum, respectively if and only if for each i = 1, 2, ..., m one has: $\tilde{y}_i = 0$ or $a_i\tilde{x} = b_i$.

Denote the *i*-th row of A by a_i .

First, note that if y is feasible, we have $y^T A = c^T$ so that $y^T A x = c^T x$.

Second, note also that for any $i=1,2,\ldots,m$, if x is feasible, we have $a_ix \leq b$ so that $a_ix-b \geq 0$ and if y is feasible we have $y_i \geq 0$. Thus, $y_i(a_ix-b) \geq 0$.

We prove both directions at once. Indeed, suppose \tilde{x} and \tilde{y} are feasible.

By duality, \tilde{x} and \tilde{y} are the optimum solutions of the maximum and minimum respectively if and only if $\tilde{y}^T b = c^T \tilde{x}$ which by the first note above is equivalent to,

$$\tilde{y}^T A x = c^T x = \tilde{y}^T b$$

We can rearrange to find $\tilde{y}^T(A\tilde{x}-b)=0$. Written in sum notation using the definition of matrix/vector multiplication we have,

$$\sum_{i=1}^{m} \tilde{y}_i \left(a_i \tilde{x} - b \right) = 0$$

Every term in this sum is non-negative by the second note above. Thus, the sum is zero if and only if each term is zero. That is, if and only if,

$$y_i(a_i\tilde{x} - b) = 0 \qquad \forall i = 1, 2, ..., m$$

Equivalently, for each i = 1, 2, ..., m one has: $\tilde{y}_i = 0$ or $a_i \tilde{x} = b_i$.