Criticalidad celular

Sergio A. Cannas

TREFEMAC 2022

Colaboradores

• Dante R. Chialvo

Universidad Nacional de San Martin, Buenos Aires (CONICET)

Orlando Billoni

Universidad Nacional de Córdoba (IFEG-CONICET)

Nahuel Zamponi

Department of Medicine, Weill Cornell Medicine (USA), Ex INIMEC (CONICET-UNC)

Emiliano Zamponi

University of Colorado-Boulder (USA), Ex INIMEC (CONICET-UNC)

• Conjunto de organelas presentes en la mayoría de las células de organismos eucariotas

- Conjunto de organelas presentes en la mayoría de las células de organismos eucariotas
- Función principal: síntesis de ATP (adenosin trisfosfato)

- Conjunto de organelas presentes en la mayoría de las células de organismos eucariotas
- Función principal: síntesis de ATP (adenosin trisfosfato)
- Origen (teoría endosimbiótica): simbiosis entre una protobacteria y una célula eucariota primitiva, que comenzó hace aproximadamente 2300 millones de años.

- Conjunto de organelas presentes en la mayoría de las células de organismos eucariotas
- Función principal: síntesis de ATP (adenosin trisfosfato)
- Origen (teoría endosimbiótica): simbiosis entre una protobacteria y una célula eucariota primitiva, que comenzó hace aproximadamente 2300 millones de años.
- Otras funciones: participa diversos celulares, tales como apoptosis, síntesis de fosfolípidos, actua como reservorio de calcio, etc..

MORFOLOGIA

MORFOLOGIA

MORFOLOGIA

MITOCHONDRIA

Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics

Valerii M. Sukhorukov^{1,2}*, Daniel Dikov^{3,4}, Andreas S. Reichert^{3,4}, Michael Meyer-Hermann^{1,5}*

Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics

Valerii M. Sukhorukov^{1,2}*, Daniel Dikov^{3,4}, Andreas S. Reichert^{3,4}, Michael Meyer-Hermann^{1,5}*

Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics

Valerii M. Sukhorukov^{1,2}*, Daniel Dikov^{3,4}, Andreas S. Reichert^{3,4}, Michael Meyer-Hermann^{1,5}*

 X_k : # de nodos de grado k = 1,2,3

Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics

Valerii M. Sukhorukov^{1,2}*, Daniel Dikov^{3,4}, Andreas S. Reichert^{3,4}, Michael Meyer-Hermann^{1,5}*

tip-to-tip:

$$+ \longrightarrow \underbrace{a_1}_{b_1}$$

tip-to-side:

$$\begin{array}{c|c} & a_2 \\ \hline & b_2 \end{array}$$

 X_k : # de nodos de grado k = 1,2,3

tip-to-tip fusion (a_1) and fission (b_1) :

tip-to-side fusion
$$(a_2)$$
 and fission (b_2) :

$$2X_1 \xrightarrow[b_1]{a_1} X_2$$

$$X_1 + X_2 \xrightarrow[b_2]{a_2} X_3$$

Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics

Valerii M. Sukhorukov^{1,2}*, Daniel Dikov^{3,4}, Andreas S. Reichert^{3,4}, Michael Meyer-Hermann^{1,5}*

tip-to-tip:

$$+ \longrightarrow \frac{a_1}{b_1}$$

tip-to-side:

$$+$$
 $\left\{\begin{array}{c} a_2 \\ \hline b_2 \end{array}\right\}$

 X_k : # de nodos de grado k = 1,2,3

tip-to-tip fusion
$$(a_1)$$
 and fission (b_1) :

tip-to-side fusion
$$(a_2)$$
 and fission (b_2) :

$$X_1 + X_2 \xrightarrow[b_2]{a_2} X_3$$

$$b_2 = (3/2)b_1 \equiv (3/2)b$$
 $c_1 \equiv a_1/b$ and $c_2 \equiv a_2/b$

$$c_1 \equiv a_1/b$$
 and $c_2 \equiv a_2/b$

Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics

Valerii M. Sukhorukov^{1,2}*, Daniel Dikov^{3,4}, Andreas S. Reichert^{3,4}, Michael Meyer-Hermann^{1,5}*

 X_k : # de nodos de grado k = 1,2,3

tip-to-tip fusion (a_1) and fission (b_1) :

$$2X_1 \xrightarrow[b_1]{a_1} X_2$$

tip-to-side fusion (a_2) and fission (b_2) :

$$X_1 + X_2 \xrightarrow[b_2]{a_2} X_3$$

$$b_2 = (3/2)b_1 \equiv (3/2)b$$
 $c_1 \equiv a_1/b$ and $c_2 \equiv a_2/b$

Dinámica: algoritmo de Gillespie con N_e dimeros (organelas)

$$c_1 = 0.1 - N_e = 3 \times 10^4$$

Ejemplo: percolación de sitios en dos dimensiones

 $p \ll 1$

p grande

p: probabilidad de ocupación de un sitio en una red con $N = L \times L$ sitios

Ejemplo: percolación de sitios en dos dimensiones

 $p \ll 1$

p grande

p: probabilidad de ocupación de un sitio en una red con N = L x L sitios

Parámetro de orden: P_G

 N_g : tamaño (# sitios) del mayor (gigante) cluster

$$P_G = lim_{N \to \infty} N_g/N$$

Ejemplo: percolación de sitios en dos dimensiones

 $p \ll 1$

p grande

p: probabilidad de ocupación de un sitio en una red con N = L x L sitios

Parámetro de orden: P_G

 N_g : tamaño (# sitios) del mayor (gigante) cluster

$$P_G = lim_{N \to \infty} N_g/N$$

 p_c : umbral de percolación

 N_s : # clusters de tamaño s

 $n_s(p) = N_s/N$: distribución de tamaños

 N_s : # clusters de tamaño s

 $n_s(p) = N_s/N$: distribución de tamaños

$$\langle s \rangle = (\sum_{s}^{'} s^2 n_s)/(\sum_{s}^{'} s n_s)$$

$$n_s(p_c) \sim s^{-\tau}$$
 cuando $N \to \infty$

 N_s : # clusters de tamaño s

 $n_s(p) = N_s/N$: distribución de tamaños

$$\langle s \rangle = (\sum_{s}^{n} s^2 n_s)/(\sum_{s}^{n} s n_s)$$

$$n_s(p_c) \sim s^{-\tau}$$
 cuando $N \to \infty$

Percolación: tamaño finito

Percolación: tamaño finito

CCDF(s) =
$$\sum_{s' \ge s} n_{s'}$$
 $n_s \sim s^{-\tau} \exp(-s/s^*)$

$$s^* \sim N^{df/d}$$

Percolación: tamaño finito

CCDF(s) =
$$\sum_{s' \ge s} n_{s'}$$
 $n_{s} \sim s^{-\tau} \exp(-s/s^{*})$

$$s^{*} \sim N^{df/d}$$

$$\max \langle s \rangle \sim N^{\gamma/\nu d}$$

$$\max S_{2} \propto s^{*}$$

$$c_1 = 0.1 - N_e = 3 \times 10^4$$

Modelo basado en agentes

$$N_e = 15000$$

Modelo basado en agentes

$$N_e = 15000$$

En que parte de este diagrama se ubican las mitocondrias reales?

EXPERIMENTOS

- Microscopía confocal en células modificadas genéticamente
- Células: fibroblastos de embriones de ratones

EXPERIMENTOS

- Microscopía confocal en células modificadas genéticamente
- Células: fibroblastos de embriones de ratones

N. Zamponi, E. Zamponi, S.A. Cannas, O.V. Billoni, P. Helguera, D. R. Chialvo, Scientific Reports 8, 363 (2018)

Análisis de estadística de clusters

TRATAMIENTOS

- Paraquat (pqt): promueve la fisión
- Mitofusina (mfn): promueve la fusión

TRATAMIENTOS

- Paraquat (pqt): promueve la fisión
- Mitofusina (mfn): promueve la fusión

N. Zamponi, E. Zamponi, S.A. Cannas, O.V. Billoni, P. Helguera, D. R. Chialvo, Scientific Reports 8, 363 (2018)

Modelo basado en agentes

Modelo basado en agentes

 C_2

1e-2

N. Zamponi, E. Zamponi, S.A. Cannas, O.V. Billoni, P. Helguera, D. R. Chialvo, Scientific Reports 8, 363 (2018)

N. Zamponi, E. Zamponi, S.A. Cannas, O.V. Billoni, P. Helguera, D. R. Chialvo, Scientific Reports 8, 363 (2018)

Los mecanismos de fusión y fisión propuestos:

Los mecanismos de fusión y fisión propuestos:

• Generan realmente criticalidad? Finite size scaling?

Los mecanismos de fusión y fisión propuestos:

- Generan realmente criticalidad? Finite size scaling?
- Que ocurre en dimensión finita?

Los mecanismos de fusión y fisión propuestos:

- Generan realmente criticalidad? Finite size scaling?
- Que ocurre en dimensión finita?
- Clase de universalidad del fenómeno?

Modelo basado en agentes: finite size scaling

$$c_1 = 0.01$$

$$\max < s > \sim N^{\gamma/\nu d}$$

$$\max < N_2 > \sim N^{df/d}$$

$$n_s \sim s^{-\tau} \exp(-s/s^*)$$

$$\text{CCDF(s)} = \Sigma_{s' \ge s} n_{s'}$$

$$CCDF \sim s^{-(\tau-1)} \exp(-s/s^*)$$

Modelo basado en agentes: finite size scaling

$$c_1 = 0.01$$

$$\max \langle s \rangle \sim N^{\gamma/\nu d}$$

$$\max < N_2 > \sim N^{df/d}$$

$$n_s \sim s^{-\tau} \exp(-s/s^*)$$

$$\mathsf{CCDF}(\mathbf{s}) = \Sigma_{\mathbf{s}' \geq \mathbf{s}} \, n_{\mathbf{s}'}$$

$$CCDF \sim s^{-(\tau-1)} exp(-s/s^*)$$

$$\tau = 2.38 \pm 0.04$$
 (perc. campo medio 2.5)

$$\gamma/vd = 0.70 \pm 0.01$$
 (perc. campo medio 1/3)

$$d_{\rm f}/d = 0.82 \pm 0.01$$
 (perc. campo medio 2/3)

$$CCDF(s) \approx 1 + \theta(s - s_0)s^{-\tau + 1} e^{-s/s^*}$$

Modelo espacialmente explícito (2D)

N. Zamponi, E. Zamponi, S.A. Cannas, D. R. Chialvo, Scientific Reports 12, 17074 (2022)

Modelo espacialmente explícito: finite size scaling

$$p_2 = 0.7$$

$$\max < s > \sim N^{\gamma/\nu d}$$

$$\max < N_2 > \sim N^{df/d}$$

$$n_s \sim s^{-\tau} \exp(-s/s^*)$$

$$CCDF \sim s^{-(\tau-1)} \exp(-s/s^*)$$

$$\tau = 2.0 \pm 0.1 \text{ (perc.2D: } 2.055)$$

$$\gamma/vd = 0.86 \pm 0.02$$
 (perc.2D: 0.896)

$$d_f/d = 0.91 \pm 0.02$$
 (perc.2D: 0.948)

N. Zamponi, E. Zamponi, S.A. Cannas, D. R. Chialvo, Scientific Reports 12, 17074 (2022)

	au	γ/vd	d_f/d
Mean field standard perc.	5/2 = 2.5	$1/3 \approx 0.33$	$2/3 \approx 0.66$
Mean field directed perc.	3	1/2	1/2
Mean field model	2.38 ± 0.04	0.7 ± 0.01	0.82 ± 0.01
3D standard perc.	2.15	0.67	0.84
2D standard perc.	$187/91 \approx 2.055$	$43/48\approx0.896$	$91/96 \approx 0.948$
2D directed perc.	≈ 2.66	≈ 1.07	pprox 0.60
2D model	2.0 ± 0.1	0.86 ± 0.02	0.91 ± 0.02
Experiments	2.01 ± 0.01	0.82 ± 0.08	1.01 ± 0.06

Conclusiones

- El balance entre procesos de fusión y fisión en la dinámica microscópica de la mitochondria produce una estructura de red correspondiente al punto crítico de una transición de fase tipo percolación.
- El apartamiento del estado crítico implica estados patológicos para la mitochondria y por ende para la célula.
- El punto crítico mitocondrial se encuentra en la clase de universalidad de la percolación standard.