

DIGITAL EMC CO., LTD.

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATIO OF COMPLIANCE

SEOWON INTECH CO., LTD.

689-47, Kumjung-Dong, Kunpo-City, Kyunggi-Do, 435-862, Korea

Dates of Tests: December 9 ~ 16, 2009 Test Report S/N: DR50110912K

Test Site: DIGITAL EMC CO., LTD.

FCC ID.

V7MSWC-5100

APPLICANT

SEOWON INTECH CO., LTD.

Classification : Licensed Non-Broadcast Station Transmitter(TNB)

FCC Rule Part(s) : §27(M), §2
EUT Type : WIMAX CPE
Model Name : SWC-5100
Add Model Name : BWX320-252

Serial number : Identical prototype

TX Frequency Range : 2498.5 ~ 2687.5MHz (5MHz OBW)

2501.0 ~ 2685.0MHz (10MHz OBW)

RX Frequency Range : 2498.5 ~ 2687.5MHz (5MHz OBW)

2501.0 ~ 2685.0MHz (10MHz OBW)

Max. RF Output Power : OBW: 5MHz – 0.499W Conducted (26.98 dBm)

OBW: 10MHz – 0.412W Conducted(26.15 dBm)

Emission Designators: : 4M72G7D(QPSK)

4M72W7D(16QAM) 9M35G7D(QPSK) 9M37W7D(16QAM)

Date of Issue : December 17, 2009

TABLE OF CONTENTS

♦ MEASUREMENT REPORT

1.1	SCOPE	3
2.1	GENERAL INFORMATION	4
3.1	DESCRIPTION OF TESTS	5
3	3.1.1 OCCUPIED BANDWIDTH EMISSION LIMITS	5
3	3.1.2 SPURIOUS AND HARMONICS EMISSIONS AT ANTENNA TERMINAL	5
3	3.1.3 RADIATED SPURIOUS AND HARMONIC EMISSIONS	5
3	3.1.4 FREQUENCY STABILITY / TEMPERATURE CARIATION	6
3.1	SUMMARY OF TESTS	7
4.1	TEST DATA	8
	4.1.1 TRANSMITTER OUTPUT POWER	8
	4.1.2 RADIATED SPURIOUS EMISSIONS	9
	4.1.3 FREQUENCY STABILITY	21
5.1	PLOTS OF EMISSIONS	29
	5.1.1 OCCUPIED BANDWIDTH	29
	5.1.2 BAND EDGE	35
	5.1.3 CONDUCTED SPURIOUS EMISSIONS	47
	5.1.4 TRANSMITTER OUTPUT POWER	59
6.1	LIST OF TEST EQUIPMENT	83
7. 1	EMISSION DESIGNATOR	85
Q 1	CONCLUSION	86

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033 General Information

Applicant: **SEOWON INTECH CO., LTD.**

Address: 689-47, Kumjung-Dong, Kunpo-City, Kyunggi-Do, 435-862, Korea

Attention: CHOUN-SUP, KIM

• FCC ID: V7MSWC-5100

• Quantity: Quantity production is planned

• Emission Designators: 4M72G7D(QPSK), 4M72W7D(16QAM)

9M35G7D(QPSK), 9M37W7D(16QAM)

• Tx Freq. Range: 2498.5 ~2687.5 MHz (5MHz OBW)

2501.0 ~2685.0 MHz (10MHz OBW)

• Rx Freq. Range: 2498.5 ~2687.5 MHz (5MHz OBW)

2501.0 ~2685.0 MHz (10MHz OBW)

• Max. Power Rating: OBW: 5MHz – 0.499W Conducted (26.98 dBm)

OBW: 10MHz – 0.412W Conducted(26.15 dBm)

• FCC Classification(s): Licensed Non-Broadcast Station Transmitter(TNB)

• Equipment (EUT) Type: WIMAX CPE

• Modulation(s): QPSK, 16QAM

• Data rates: QPSK1/2, QPSK3/4, 16QAM1/2, 16QAM3/4

• FCC Rule Part(s): §27(M), §2

• Dates of Tests: December 9 ~ 16, 2009

Place of Tests: DIGITAL EMCTest Report S/N: DR50110912K

2.1. GENERAL INFORMATION

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 http://www.digitalemc.com E-mail : harveysung@digitalemc.com

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

Tested by: Engineer

December 17, 2009 Won-Jung LEE

Data Name Signature

Reviewed by: Technical Director

December 17, 2009 Harvey Sung

Data Name Signature

Ordering party:

Company name : SEOWON INTECH CO., LTD.

Address : 689-47, Kumjung-Dong

Zipcode : 435-862

City/town : Kunpo-City, Kyunggi-Do

Country : Korea

Date of order : November 30, 2009

3.1 DESCRIPTION OF TESTS

3.1.1 Occupied Bandwidth Emission Limits

- Part §2.1049, §27.53.(m)(2)(V), (6)
- (a) For fixed and temporary fixed digital stations, the attenuation shall be not less than 43 + 10 log (P) dB, unless a documented interference complaint is received from an adjacent channel licensee.
- (b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

3.1.2 Spurious and Harmonic Emissions at Antenna Terminal

- Part§2.1051, §27.53.(m)(2)(V), (6)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

3.1.3 Radiation Spurious and Harmonic Emissions

- Part §2.1053, §27.53.(m)(2)(V), (6)

Spurious and harmonic emissions between the lowest frequency generated in this device and up to 10th harmonic of the highest generated in this device are measured at 3-meter OATS. The equipment under test is placed on a wooden turntable located at 3-meters from the receive antenna. The receive antenna height and turntable rotations are adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole is substituted in place of the EUT. This dipole antenna is driven by a vector signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using the horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

3.1.4 Frequency Stability/Temperature Variation.

- Part §2.1055, §27.54

The frequency stability of the transmitter is measured by:

- a) **Temperature**: The temperature is varied from -30°C to + 50°C using an environmental chamber with 10°C increments.
- b) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the nominal voltage at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature. (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10° C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

3.2 SUMMARY OF TESTS

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)					
I. Transmitter Te	I. Transmitter Test Items								
2.1049 27.53(m)(6)	Occupied Bandwidth	N/A		C note 2					
2.1051 27.53(m)(2)(V),(6)	Band Edge	< 43+ 10log ₁₀ (P)	Conducted	C note 2					
2.1051 27.53(m)(2)(V),(6)	Conducted Spurious Emissions	< 43+ 10log ₁₀ (P)		C note 2					
2.1046 27.50(h)(2)	Transmitter Output Power	< 2 Watts max.		C					
2.1055 27.54	Frequency Stability	Fundamental emissions must stay within the authorized bands of operation.		C note 2					
2.1051 27.53(m)(2)(V),(6)	Radiated Spurious Emissions	$< 43+\ 10log_{10}(P)$ for all out-of-band emissions	Radiated	C note 2					
II. Additional Te	II. Additional Test Results for JBP portion								
15.107	AC Conducted Emissions	< FCC 15.107 limits	Radiated	Cnote 3					
15.109	General Field Strength Limits	< FCC 15.109 limits	Line Conducted	C note 3					

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: According to the transmitter output power measurement data, basically these test were performed with the AMC zone format and QPSK 1/2, 16QAM 1/2.

Note 3: The JBP (Computing device peripheral) portion of this device was tested and approved by FCC DOC Procedure.

4.1 TEST DATA

4.1.1 Transmitter Output Power

A vector signal generator was used to supply the WiMAX signal sources to a EUT and an external trigger source to a spectrum analyzer. The trigger was set in such a way that the analyzer recorded power measurements only during the times in which the EUT was transmitting. The WiMAX conducted powers are reported below as well as a test setup diagram.

A PC(or Notebook) controlled EUT to transmit rated output power under appropriate transmission mode and specific frequency.

- Measurement data

Bandwidth	Zone Format	Frequency (MHz)	QPSK 1/2 (dBm)	QPSK 3/4 (dBm)	16QAM 1/2 (dBm)	16QAM 3/4 (dBm)
		2498.5	25.21	25.19	25.20	24.92
	PUSC	2593.0	25.69	25.64	25.63	25.32
5MHz		2687.5	25.98	25.95	26.09	25.92
SMHZ	AMC	2498.5	25.80	25.72	25.78	25.61
		2593.0	26.23	26.13	26.22	26.3
		2687.5	26.96	26.92	26.98	26.84
		2501.0	25.46	25.41	25.34	25.01
	PUSC	2593.0	25.74	25.63	25.67	25.27
10MHz		2685.0	25.72	25.64	25.71	25.35
TOMEZ		2501.0	25.82	25.74	25.75	25.47
	AMC	2593.0	26.13	25.97	26.03	25.75
		2685.0	26.15	26.10	26.11	25.85

Figure 1. Test Setup Diagram of WiMAX Coducted Power

4.1.2 Radiated Spurious Emissions

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY: 2498.5 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
4997.0	V	-35.60	10.92	-24.68	11.68
7495.5	V	-26.61	11.50	-15.11	2.11
9994.0	V	-51.05	11.86	-39.19	26.19
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.2 Radiated Spurious Emissions

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY : 2498.5 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
4997.0	V	-35.48	10.92	-24.56	11.56
7495.5	V	-25.95	11.50	-14.45	1.45
9994.0	V	-50.46	11.86	-38.60	25.60
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator for spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.2 Radiated Spurious Emissions

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY: 2593.0 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
5186.0	V	-31.07	10.99	-20.08	7.08
7779.0	V	-26.10	11.36	-14.74	1.74
10372.0	V	-34.54	12.09	-22.45	9.45
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.2 Radiated Spurious Emissions

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY: 2593.0 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
5186.0	V	-30.49	10.99	-19.50	6.50
7779.0	V	-25.54	11.36	-14.18	1.18
10372.0	V	-34.03	12.09	-21.94	8.94
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.2 Radiated Spurious Emissions

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY : 2687.5 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
5375.0	V	-34.37	11.06	-23.31	10.31
8062.5	V	-26.46	11.27	-15.19	2.19
10750.0	V	-32.44	12.33	-20.11	7.11
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.2 Radiated Spurious Emissions

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY : 2687.5 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
5375.0	V	-33.47	11.06	-22.41	9.41
8062.5	V	-25.54	11.27	-14.27	1.27
10750.0	V	-31.85	12.33	-19.52	6.52
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator for spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi. This spurious level was recorded.

Copyright © 2009, DIGITAL EMC Co., Ltd.

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.2 Radiated Spurious Emissions

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY: 2501 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
5002.0	V	-36.77	10.92	-25.85	12.85
7503.0	V	-31.77	11.49	-20.28	7.28
10004.0	V	-53.45	11.86	-41.59	28.59
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.2 Radiated Spurious Emissions

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY: 2501 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
5002.0	V	-36.55	10.92	-25.63	12.63
7503.0	V	-31.26	11.50	-19.76	6.76
10004.0	V	-53.18	11.86	-41.32	28.32
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator for spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.2 Radiated Spurious Emissions

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY : 2593 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
5186.0	V	-32.28	10.99	-21.29	8.29
7779.0	V	-29.71	11.36	-18.35	5.35
10372.0	V	-42.49	12.09	-30.40	17.40
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator for spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.2 Radiated Spurious Emissions

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY: 2593 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
5186.0	V	-31.85	10.99	-20.86	7.86
7779.0	V	-29.26	11.36	-17.90	4.90
10372.0	V	-41.84	12.09	-29.75	16.75
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator for spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.2 Radiated Spurious Emissions

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY: 2685 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
5370.0	V	-34.53	11.05	-23.48	10.48
8055.0	V	-31.85	11.26	-20.59	7.59
10740.0	V	-35.82	12.33	-23.49	10.49
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator for spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.2 Radiated Spurious Emissions

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WIMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY: 2685 MHz

DISTANCE: 3 m

LIMIT : $43 + 10 \log_{10} (W) = -13 dBm$

Freq.	POL	LEVEL@	SUBSTITUTE	RESULT	Margin
(MHz)	(H/V)	ANTENNA	ANTENNA	LEVEL	(dBc)
		TERMINALS	GAIN	(dBm)	
		(dBm)	(dBi)		
5370.0	V	-34.27	11.05	-23.22	10.22
8055.0	V	-31.14	11.26	-19.88	6.88
10740.0	V	-34.95	12.33	-22.62	9.62
-	-	-	-	-	-

⁻ RESULT LEVEL(dBm) = LEVEL@ ANTENNA TERMINALS(dBm) +SUBSTITUTE ANTENNA GAIN(dBi)

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

⁻ MARGIN(dB) = -13dBm - RESULT LEVEL(dBm)

4.1.3 Frequency Stability

BANDWIDTH: 5 MHZ

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

OPERATING FREQUENCY : 2,592,999,966 Hz

REFERENCE VOLTAGE : 120 V $_{AC}$

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(℃)	(Hz)	(ppm)
100%	120	+20(Ref)	2,592,999,966	0.000
100%		-30	2,592,999,969	0.001
100%		-20	2,592,999,970	0.002
100%		-10	2,592,999,969	0.001
100%		0	2,592,999,962	-0.002
100%		+10	2,592,999,964	-0.001
100%		+20	2,592,999,967	0.000
100%		+30	2,592,999,964	-0.001
100%		+40	2,592,999,959	-0.003
100%		+50	2,592,999,957	-0.003
85%	102	+20	2,592,999,954	-0.005
115%	138	+20	2,592,999,956	-0.004
BATT.ENDPOINT	-	-	-	-

4.1.3 Frequency Stability

(Continued...)

4.1.3 Frequency Stability

(Continued...)

BANDWIDTH: 5 MHZ

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

OPERATING FREQUENCY : 2,592,999,970 Hz

REFERENCE VOLTAGE : 120 V $_{AC}$

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(℃)	(Hz)	(ppm)
100%	120	+20(Ref)	2,592,999,970	0.000
100%		-30	2,592,999,967	-0.001
100%		-20	2,592,999,964	-0.002
100%		-10	2,592,999,962	-0.003
100%		0	2,592,999,969	0.000
100%		+10	2,592,999,980	0.004
100%		+20	2,592,999,973	0.001
100%		+30	2,592,999,977	0.003
100%		+40	2,592,999,959	-0.004
100%		+50	2,592,999,962	-0.003
85%	102	+20	2,592,999,964	-0.002
115%	138	+20	2,592,999,961	-0.003
BATT.ENDPOINT	-	-	-	-

4.1.3 Frequency Stability

(Continued...)

4.1.3 Frequency Stability

(Continued...)

BANDWIDTH: 10 MHZ

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

OPERATING FREQUENCY : 2,592,999,963 Hz

REFERENCE VOLTAGE : 120 V $_{AC}$

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(℃)	(Hz)	(ppm)
100%	120	+20(Ref)	2,592,999,963	0.000
100%		-30	2,592,999,962	0.000
100%		-20	2,592,999,961	-0.001
100%		-10	2,592,999,972	0.003
100%		0	2,592,999,968	0.002
100%		+10	2,592,999,967	0.002
100%		+20	2,592,999,970	0.003
100%		+30	2,592,999,965	0.001
100%		+40	2,592,999,958	-0.002
100%		+50	2,592,999,964	0.000
85%	102	+20	2,592,999,957	-0.002
115%	138	+20	2,592,999,963	0.000
BATT.ENDPOINT	-	-	-	-

4.1.3 Frequency Stability

(Continued...)

4.1.3 Frequency Stability

(Continued...)

BANDWIDTH: 10 MHZ

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

OPERATING FREQUENCY : 2,592,999,968 Hz

REFERENCE VOLTAGE : 120 V $_{AC}$

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(℃)	(Hz)	(ppm)
100%	120	+20(Ref)	2,592,999,968	0.000
100%		-30	2,592,999,963	-0.002
100%		-20	2,592,999,960	-0.003
100%		-10	2,592,999,962	-0.002
100%		0	2,592,999,965	-0.001
100%		+10	2,592,999,964	-0.002
100%		+20	2,592,999,967	0.000
100%		+30	2,592,999,964	-0.002
100%		+40	2,592,999,958	-0.004
100%		+50	2,592,999,965	-0.001
85%	102	+20	2,592,999,958	-0.004
115%	138	+20	2,592,999,964	-0.002
BATT.ENDPOINT	-	-	-	-

4.1.3 Frequency Stability

(Continued...)

5.1 PLOTS OF EMISSIONS

5.1.1 Occupied Bandwidth(BW: 5MHz)

- Lowest Channel(2498.5MHz) & AMC Mode & QPSK 1/2

- Lowest Channel(2498.5MHz) & AMC Mode & 16QAM 1/2

5.1.1 Occupied Bandwidth(BW: 5MHz)

(Continued...)

- Middle Channel(2593.0MHz) & AMC Mode & QPSK 1/2

- Middle Channel(2593.0MHz) & AMC Mode & 16QAM 1/2

5.1.1 Occupied Bandwidth(BW: 5MHz)

(Continued...)

- Highest Channel (2687.5MHz) & AMC Mode & QPSK 1/2

- Highest Channel(2687.5MHz) & AMC Mode & 16QAM 1/2

5.1.1 Occupied Bandwidth(BW: 10MHz)

(Continued...)

- Lowest Channel(2501MHz) & AMC Mode & QPSK 1/2

- Lowest Channel (2501MHz) & AMC Mode & 16QAM 1/2

5.1.1 Occupied Bandwidth(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & QPSK 1/2

- Middle Channel (2593MHz) & AMC Mode & 16QAM 1/2

5.1.1 Occupied Bandwidth(BW: 10MHz)

(Continued...)

- Highest Channel(2685MHz) & AMC Mode & QPSK 1/2

- Highest Channel(2685MHz)& AMC Mode & 16QAM 1/2

5.1.2 Band Edge(BW: 5MHz)

- Low Channel (2498.5MHz) & AMC Mode & QPSK 1/2

5.1.2 Band Edge(BW: 5MHz)

(Continued...)

- Lowest Channel (2498.5MHz) & AMC Mode & 16QAM 1/2

5.1.2 Band Edge(BW: 5MHz)

(Continued...)

- Middle Channel(2593.0MHz) & AMC Mode & QPSK 1/2

5.1.2 Band Edge(BW: 5MHz)

(Continued...)

- Middle Channel(2593.0MHz) & AMC Mode & 16QAM 1/2

5.1.2 Band Edge(BW: 5MHz)

(Continued...)

- Highest Channel(2687.5MHz) & AMC Mode & QPSK 1/2

5.1.2 Band Edge(BW: 5MHz)

(Continued...)

- Highest Channel(2687.5MHz) & AMC Mode & 16QAM 1/2

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- Low Channel(2501MHz) & AMC Mode & QPSK 1/2

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- Lowest Channel(2501MHz) & AMC Mode & 16QAM 1/2

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & QPSK 1/2

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & 16QAM 1/2

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- Highest Channel (2685MHz) & AMC Mode & QPSK 1/2

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- Highest Channel(2685MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

- Low Channel(2498.5MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

(Continued...)

- Low Channel(2498.5MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

(Continued...)

- Middle Channel(2593.0MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

- Middle Channel(2593.0MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

(Continued...)

- High Channel(2687.5MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

(Continued...)

- High Channel(2687.5MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- Low Channel(2501MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- Low Channel(2501MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & 16QAM 1/2

5.1.4 Transmitter Output Power(BW: 5MHz)

- Low Channel (2498.5MHz) & PUSC Mode & QPSK 1/2

- Low Channel (2498.5MHz) & PUSC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 5MHz)

(Continued...)

- Low Channel(2498.5MHz) & PUSC Mode & 16QAM 1/2

- Low Channel (2498.5MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Transmitter Output Power(BW: 5MHz)

(Continued...)

- Low Channel(2498.5MHz) & AMC Mode & QPSK 1/2

- Low Channel (2498.5MHz) & AMC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 5MHz)

(Continued...)

- Low Channel(2498.5MHz) & AMC Mode & 16QAM 1/2

- Low Channel(2498.5MHz) & AMC Mode & 16QAM 3/4

5.1.4 Transmitter Output Power(BW: 5MHz)

(Continued...)

- Middle Channel(2593.0MHz) & PUSC Mode & QPSK 1/2

- Middle Channel(2593.0MHz) & PUSC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 5MHz)

(Continued...)

- Middle Channel(2593.0MHz) & PUSC Mode & 16QAM 1/2

- Middle Channel(2593.0MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Transmitter Output Power(BW: 5MHz)

(Continued...)

- Middle Channel(2593.0MHz) & AMC Mode & QPSK 1/2

- Middle Channel(2593.0MHz) & AMC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 5MHz)

(Continued...)

- Middle Channel(2593.0MHz) & AMC Mode & 16QAM 1/2

- Middle Channel(2593.0MHz) & AMC Mode & 16QAM 3/4

5.1.4 Transmitter Output Power(BW: 5MHz)

(Continued...)

- High Channel(2687.5MHz) & PUSC Mode & QPSK 1/2

- High Channel(2687.5MHz) & PUSC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 5MHz)

(Continued...)

- High Channel(2687.5MHz) & PUSC Mode & 16QAM 1/2

- High Channel(2687.5MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Transmitter Output Power(BW: 5MHz)

(Continued...)

- High Channel(2687.5MHz) & AMC Mode & QPSK 1/2

- High Channel(2687.5MHz) & AMC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 5MHz)

(Continued...)

- High Channel(2687.5MHz) & AMC Mode & 16QAM 1/2

- High Channel (2687.5MHz) & AMC Mode & 16QAM 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- Low Channel(2501MHz) & PUSC Mode & QPSK 1/2

- Low Channel(2501MHz) & PUSC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- Low Channel(2501MHz) & PUSC Mode & 16QAM 1/2

- Low Channel(2501MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- Low Channel(2501MHz) & AMC Mode & QPSK 1/2

- Low Channel(2501MHz) & AMC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- Low Channel(2501MHz) & AMC Mode & 16QAM 1/2

- Low Channel(2501MHz) & AMC Mode & 16QAM 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & PUSC Mode & QPSK 1/2

- Middle Channel (2593MHz) & PUSC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & PUSC Mode & 16QAM 1/2

- Middle Channel (2593MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & QPSK 1/2

- Middle Channel(2593MHz) & AMC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & 16QAM 1/2

- Middle Channel(2593MHz) & AMC Mode & 16QAM 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & PUSC Mode & QPSK 1/2

- High Channel(2685MHz) & PUSC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & PUSC Mode & 16QAM 1/2

- High Channel(2685MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & QPSK 1/2

- High Channel (2685MHz) & AMC Mode & QPSK 3/4

5.1.4 Transmitter Output Power(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & 16QAM 1/2

- High Channel(2685MHz) & AMC Mode & 16QAM 3/4

6.1 LIST OF TEST EQUIPMENT

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
\boxtimes	Spectrum Analyzer	Agilent	E4440A	25/09/09	25/09/10	MY45304199
\boxtimes	Spectrum Analyzer	Rohde Schwarz	FSQ26	02/02/09	02/02/10	200347
	Power Meter	H.P	EMP-442A	02/07/09	02/07/10	GB37170413
	Power Sensor	H.P	8481A	02/07/09	02/07/10	3318A96332
\boxtimes	Power Divider	Agilent	11636B	13/10/09	13/10/10	56471
	Power Splitter	Anritsu	K241B	13/10/09	13/10/10	020611
	Frequency Counter	H.P	5342A	13/07/09	13/07/10	2119A04450
\boxtimes	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	10/10/09	10/10/10	30604493/021031
\boxtimes	Digital Multimeter	H.P	34401A	13/03/09	13/03/10	3146A13475
	Multifuction Synthesizer	HP	8904A	06/10/09	06/10/10	3633A08404
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	13/03/09	13/03/10	101251
	Signal Generator	H.P	ESG-3000A	02/07/09	02/07/10	US37230529
\boxtimes	Vector Signal Generator	Rohde Schwarz	SMJ100A	02/02/09	02/02/10	100148
	Vector Signal Generator	Rohde Schwarz	SMJ100A	08/18/09	18/08/10	100698
	Audio Analyzer	H.P	8903B	02/07/09	02/07/10	3011A09448
	Modulation Analyzer	H.P	8901B	02/07/09	02/07/10	3028A03029
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	02/07/09	02/07/10	GB43461134
	Universal Radio communication Tester	Rohde Schwarz	CMU 200	19/05/09	19/05/10	106760
	WIMAX Communication Tester	Rohde Schwarz	CMU270	15/06/09	15/06/10	100386
	Thermo hygrometer(SAR)	BODYCOM	BJ5478	06/02/09	06/02/10	090205-3
\boxtimes	Thermo hygrometer(RF)	BODYCOM	BJ5478	06/02/09	06/02/10	090205-2
	Thermo hygrometer(RSE)	BODYCOM	BJ5478	06/02/09	06/02/10	090205-4
\boxtimes	AC Power supply	DAEKWANG	5KVA	13/03/09	13/03/10	20060321-1
	DC Power Supply	HP	6622A	13/03/09	13/03/10	3448A03760
	DC Power Supply	HP	6633A	13/03/09	13/03/10	3524A06634
	BAND Reject Filter	Microwave Circuits	N0308372	06/10/09	06/10/10	3125-01DC0352
	BAND Reject Filter	Wainwright	WRCG1750	06/10/09	06/10/10	2
	High-pass filter	Wainwright	WHKX2.1	N/A	N/A	1
\boxtimes	High-Pass Filter	Wainwright	WHKX3.0	N/A	N/A	9
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	10
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40-10SSK	N/A	N/A	27
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	7
\boxtimes	HORN ANT	ETS	3115	17/06/09	17/06/10	6419
	HORN ANT	ETS	3115	23/09/09	23/09/10	21097
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	154
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	155
	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2116
\boxtimes	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2117

6.1 LIST OF TEST EQUIPMENT

(Continued...)

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
\boxtimes	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2261
\boxtimes	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2262
\boxtimes	Coaxial Fixed Attenuators	Agilent	8491B	02/07/09	02/07/10	MY39260700
	Coaxial Fixed Attenuators	Agilent	8491B	02/07/09	02/07/10	MY39260699
\boxtimes	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/09	01/10/10	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	19/01/09	19/01/10	BP4387
	Attenuator (20dB)	WEINSCHEL	86-20-11	06/10/09	06/10/10	432
	Attenuator (10dB)	WEINSCHEL	86-10-11	06/10/09	06/10/10	446
	Attenuator (10dB)	WEINSCHEL	86-10-11	06/10/09	06/10/10	408
	Attenuator (40dB)	WEINSCHEL	57-40-33	01/10/09	01/10/10	NN837
	Attenuator (30dB)	JFW	50FH-030-300	13/03/09	13/03/10	060320-1
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	02/07/09	02/07/10	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	02/07/09	02/07/10	790
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	02/07/09	02/07/10	112
\boxtimes	Amplifier (30dB)	Agilent	8449B	10/10/09	10/10/10	3008A01590
	Amplifier	EMPOWER	BBS3Q7ELU	02/02/09	02/02/10	1020
	RF Power Amplifier	OPHIRRF	5069F	02/07/09	02/07/10	1006
	EMI TEST RECEIVER	R&S	ESU	02/02/09	02/02/10	100014
	BILOG ANTENNA	SCHAFFNER	CBL6112B	02/06/09	02/06/10	2737
	Amplifier (22dB)	H.P	8447E	05/02/09	05/02/10	2945A02865
	EMI TEST RECEIVER	R&S	ESCI	12/05/09	12/05/10	100364
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A	30/05/09	30/05/10	590
	BICONICAL ANT.	Schwarzbeck	VHA 9103	02/06/09	02/06/10	2233
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP 9108- A1	07/10/09	07/10/10	1098
	BICONICAL ANT.	Schwarzbeck	VHA 9103	06/10/09	06/10/10	91031946
	Low Noise Pre Amplifier	TSJ	MLA-100K01- B01-2	13/03/09	13/03/10	1252741
\boxtimes	Amplifier (25dB)	Agilent	8447D	12/05/09	12/05/10	2944A10144
	Amplifier (25dB)	Agilent	8447D	03/07/09	03/07/10	2648A04922
	Spectrum Analyzer(CE)	H.P	8591E	26/04/09	26/04/10	3649A05889
	LISN	Kyoritsu	KNW-407	03/07/09	03/07/10	8-317-8
	LISN	Kyoritsu	KNW-242	13/10/09	13/10/10	8-654-15
	CVCF	NF Electronic	4420	N/A	N/A	304935/337980
	DC BLOCK	Hyuplip	KEL-007	N/A	N/A	7-1581-5
	50 ohm Terminator	НМЕ	CT-01	22/01/09	22/01/10	N/A
	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	03/07/09	03/07/10	4N-170-3

7.1 EMISSION DESIGNATOR

A. Emission Designator

- Bandwidth: 5MHz

QPSK Modulation

16QAM Modulation

Emission Designator = 4M72G7D Emission Designator = 4M72W7D

WiMAX BW = 4.7175 MHz WiMAX BW = 4.7154 MHz

G = Phase Modulation W = Composite - Quadrature Amplitude Modulation

7 = Quantized/Digital Information 7 = Quantized/Digital Information

D = Data Transmission D = Data Transmission

- Bandwidth: 10MHz QPSK Modulation

16QAM Modulation

Emission Designator = 9M33G7D Emission Designator = 9M37W7D

WiMAX BW = 9.3485 MHz WiMAX BW = 9.3744 MHz

G = Phase Modulation W = Composite – Quadrature Amplitude Modulation

7 = Quantized/Digital Information 7 = Quantized/Digital Information

D = Data Transmission D = Data Transmission

8.1 CONCLUSION

The data collected shows that the **SEOWONINTECH CO., LTD.** WIMAX CPE (**FCC ID: V7MSWC-5100**) complies with all the requirements of Parts 2 and 27 of the FCC rules.