

Передача и распространение

Электротехническая деятельсность

				□ ПРЕ предварит	ельно	□ ДОК но для ознакомления и комментариев			іев	⊠ дут для утверждения
			ен с замечания	ми	— —			К ИСГ	СП полнению	
						PYCAJI RUSSIAN ENGINEERIN COMPANY	NG			
						ЫЕ СВЯЗИ – УРОВЕНЬ				
G	24/11/10	Э.	ПОНС				Откорректировано во вр			, ,
F	15/12/08	Э.	ПОНС	П. САБУРЭ	П	І. ШАЗАЛЬ				и замечаний
E	08/12/08	Э.	ПОНС	П. САБУРЭ		І. ШАЗАЛЬ	Исправлено Заказчика	на осн	овани	и замечаний
D	08/12/08	Э.	ПОНС	П. САБУРЭ	П	І. ШАЗАЛЬ	Изменение	IP-адре	еса ча	сов GPS
С	08/12/08	Э.	ПОНС	П. САБУРЭ	П	І. ШАЗАЛЬ	Время начала подсчета			
В	08/12/08	Э.	ПОНС	А. КАРБОН	П	І. ШАЗАЛЬ	Исправлено на основании замечаний Заказчика		и замечаний	
Α	01/02/08	Э.	ПОНС	А. КАРБОН	П	І. ШАЗАЛЬ	Исходный док			
Инд	Даты	Cod	тавил	Проверил	3	Утвердил	Изменения в док		кументе	
ТАЗ	№ :				S/C	Название :				
БоАЗ №:				Номер :	T	Полпис	٠ <u>.</u>			
Выпуск		Į	lата	Имя	дат	Дата: Подпись:		. u		
Выпустил		01/02/	08	э. понс		МЕЖ	СИСТЕМНЬ	ІЕ СВЯ	ЗИ (I	MCC)
Проверил		01/02/	08	А. КАРБОН		УРОВЕНЬ 2 – УРОВЕНЬ 3			3	
Утвердил		01/02/	08	П. ШАЗАЛЬ		,,		,. OB		•
Проект N°: 4814 810 / 811							Дон	кумент	N°:	4EZI0009 - G

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙ – 400 кА

БОГУЧАНЫ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙ – 320 кА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В 5 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC **ЗРУ 220 КВ И СН**

ЗРУ 220 КВ И СН

МЕЖСИСТЕМНЫЕ СВЯЗИ (МСС)

УРОВЕНЬ 2 – УРОВЕНЬ 3

4EZI0009 - G

Индекс	Цель изменения
Α	Исходный выпуск
В	Исправлено на основании замечаний Заказчика
С	Страница 9 - 11 : Добавлены подсчеты, задаваемые заказчиком Добавлены значения « START » и « RANGE » для расчета средних значений
D	Изменение IP-адреса часов GPS
E	Исправлено на основании замечаний Заказчика DN120 В разделе 3 – 3.1 речь идет о протоколе OPC-DA, в разделе 3.2 о запросе SQR. Раздел 3.1.1 : В таблице по TA3 текущий диапазон изменен с 400kA на 415kA. Раздел 3.1.2 : Сигналы были удалены
F	Исправлено на основании замечаний Заказчика DN128 Разделы 2.2 и 3.2.1 : добавлены уточнения по OPC TAG и запрос SQL
G	Добавлено L3_NEW_SETPOINT

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 КА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН БОГУЧАНЫ

УРОВЕНЬ 2 - УРОВЕНЬ 3

4EZI0009 - G

<u>Рассылка</u>

Координатор ТАЗ/БоАЗ

Виктор Банщиков

• Управление проектом Тайшет

Юрий Каморников – Менеджер проекта Игорь Аполинский - Инженер

• Управление проектом Богучаны

Дмитрий Бурликов - Менеджер проекта Сергей Кириллов - Инженер

AREVA T&D - SPS

Марк Болз

• AREVA T&D - PEM

Поль Шазаль Патрик Сабурэ

• AREVA T&D - PEB

Уве Майер Стен Гармхаузен

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 кА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 KA - 1500 В DC 3РУ 220 KB И CH

БОГУЧАНЫ

УРОВЕНЬ 2 – УРОВЕНЬ 3

№ стр.

4EZI0009 - G

СОДЕРЖАНИЕ

1.	введение	5
1.1 1.2	ЦЕЛЬСомый документы	5 5
2.	ВСТУПЛЕНИЕ	6
2.1 2.2	Идентификация внешних системОПРЕДЕЛЕНИЕ МЕЖСИСТЕМНОЙ СВЯЗИ	6 7
3.	ОПИСАНИЕ МЕЖСИСТЕМНОЙ СВЯЗИ	8
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.3	Связь между Уровнем 2 и Уровнем 3 через протокол OPC-DA Команды ITS ⇒ КПП Показатели КПП ⇒ ITS Подсчет и средние значения КПП ⇒ ITS Преобразование средних заданных значений Связь между Уровнем 2 и Уровнем 3 через запросы SQL Данные прошедших периодов КПП => ITS Адресация между сетевыми устройствами	9101112
4.	ПРИЛОЖЕНИЕ	14
4.1	Архитектура АС	14

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 КА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН БОГУЧАНЫ

МЕЖСИСТЕМНЫЕ СВЯЗИ (МСС)

УРОВЕНЬ 2 - УРОВЕНЬ 3

4EZI0009 - G

1. ВВЕДЕНИЕ:

1.1 ЦЕЛЬ

В данном документе дано описание связей автоматизированной системы подстанции, проектируемой компанией Арева и внешней системой автоматизации.

Внешние системы автоматизации:

- Системы, которые не входят в проектируемую Аревой АС выпрямительной подстанции.
- Системы, не связанные с проектируемой Аревой АС выпрямительной подстанции.

1.2 ССЫЛОЧНЫЕ ДОКУМЕНТЫ

ld	Обозначение	Ссылка
[SYDD]	Описание системы	4EZH0231
[SL_DIAG]	Однолинейная схема.	3EUH0033
[EQ_LST]	Список оборудования	4ERH0003
[AF_LST]	Список аварийных сигналов и ошибок	
[IO_LST]	Список входящих и исходящих сигналов	
[ISD_HV]	ISD – Внешние интерфейсы Уровня 0/1	
[ISD_L3]	ISD – Интерфейс Уровня 2 и Уровня 3	4EZI0009
[L3_MAP]	ISD – Интерфейс Уровня 2 и Уровня 3	4ELI0001
[MMI_L1]	ISD – ЧМИ 1 Уровня	
[MMI_L2]	ISD – ЧМИ 2 Уровня	4EZH0232
[CASD_SA]	CASD – Системный анализ	
[CASD_RG P]	CASD – Защиты выпрямительной группы	
[CASD_REG]	CASD – Управление стабилизацией тока	
[CASD_AUX]	CASD – Управление питанием CH	
[ESD_HV]	ESD – ВН на входе	
[ESD_TRF]	ESD – Системы трансформаторов	
[ESD_REC]	ESD – Система выпрямителя	
[ESD_CTR]	ESD – Система охлаждения трансформаторов	
[ESD_CRC]	ESD – Система охлаждения выпрямителя	
[ESD_DCS]	ESD – коммутаторы постоянного тока	

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 КА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН БОГУЧАНЫ

УРОВЕНЬ 2 - УРОВЕНЬ 3

4EZI0009 - G

2. ВСТУПЛЕНИЕ

2.1 ИДЕНТИФИКАЦИЯ ВНЕШНИХ СИСТЕМ

В соответствии с архитектурой АС, внешние системы показаны на данной схеме:

Рисунок 1: внешние автоматизированные системы

Только система 3 Уровня (IPS) связана с АСУ Аревы.

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 КА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН

БОГУЧАНЫ

УРОВЕНЬ 2 – УРОВЕНЬ 3

4EZI0009 - G

2.2 ОПРЕДЕЛЕНИЕ МЕЖСИСТЕМНОЙ СВЯЗИ.

Межсистемная связь - это связь по обмену данными. Обмен данными происходит между системой ITS и автоматизированной системой управления КПП Аревы. Обмен данными между системой 3 Уровня и системой КПП происходит двумя способами:

- с помощью системы дистанционного управления через протокол OPC-DA; используемые 3 Уровнем тэги OPC даны в таблицах главы 3.1.1 и далее в колонке "Идентификация OPC";
- с помощью базы данных SQL серверов СДУ посредством запросов SQL; в главе 3.2.1. даны образцы таблицы, считываемой системой 3 Уровня и пример запроса SQL.3.2.1.

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 КА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН БОГУЧАНЫ

УРОВЕНЬ 2 – УРОВЕНЬ 3

4EZI0009 - G

3. ОПИСАНИЕ МЕЖСИСТЕМНОЙ СВЯЗИ

3.1 СВЯЗЬ МЕЖДУ УРОВНЕМ 2 И УРОВНЕМ 3 ЧЕРЕЗ ПРОТОКОЛ ОРС-DA

Эта связь состоит из обмена данными в режиме реального времени между системой выпрямительной подстанции и системой 3 Уровня (IPS).

Эта связь реализована на 2 Уровне системы, которая является системой дистанционного управления и настраивается с помощью прикладной программы PCVUE.

Система ДУ имеет резерв, как и её переменные. Пользовательский интерфейс приложения PCVUE создан на русском языке.

Как только СДУ собирает все данные о КПП, протокол ОРС готов предоставить всю информацию:

Рисунок 2: Описание связи КПП-IPS

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 кА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН

БОГУЧАНЫ

МЕЖСИСТЕМНЫЕ СВЯЗИ (МСС)

УРОВЕНЬ 2 - УРОВЕНЬ 3

4EZI0009 - G

IPS подключается к системе КПП с помощью сервера OPC системы ДУ, с любого компьютера через любое имя пользователя, который имеет следующие параметры авторизации для подключения OPC:

Имена главных машин: SRV1 и SRV2 для всей электролизной серии.

ID сервера OPC: SV.OPCDAServer.1

Логин: SRV1\Supervisor or SRV2\Supervisor

Пароль: Taibog

3.1.1 Команды ITS ⇒ КПП

От IPS поступает три вида информации:

Идентификатор ОРС	ТИП	Диапазон	Комментарий
SERIE.POTLINE. L3_SETPOINT_VALUE	DINT	0-N kA (*)	Уставка постоянного тока электролизной серии должна вводиться оператором СДУ вручную.
SERIE.POTLINE. L3_NEW_SETPOINT	BOOL	0-1	Обновление уставки постоянного тока электролизной серии
SERIE.POTLINE.AVERAGE.DAY.START	DINT	0-23 по умолчанию = 0	Заданный пользователем час начала работы для расчета среднего дневного значения
SERIE.POTLINE.AVERAGE.DAY.RANGE	DINT	2,3,4,6,8,12,24 по умолчанию = 24	Заданная пользователем длина рабочего дня для расчета среднего дневного значения (общее кратное 24)
(*) N = 450 для ТАЗ с 6 доступными групп 350 для БоАЗ с 5 доступными группами,			

3.1.2 Показатели КПП ⇒ ITS

Показатели и состояния, передаваемые групповыми контроллерами:

Идентификатор ОРС	тип	Диапазон	Комментарий
SERIE.G01.DCCURRENT	DINT	0-85 kA	Мгновенный постоянный ток группы 11 или 21
SERIE.G01.DCVOLTAGE	DINT	0-1570 кВ	Мгновенное напряжение постоянного тока группы 11 or

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 КА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН

БОГУЧАНЫ

МЕЖСИСТЕМНЫЕ СВЯЗИ (МСС)

УРОВЕНЬ 2 – УРОВЕНЬ 3

4EZ10009 - G

			21
аналогичные данные по 5 группам	БоА3 G0 ⁻	1 - G05, по 6 гру	ппам ТАЗ G01 - G06

Показатели и состояния, передаваемые контроллерами электролизной серии:

Идентификатор ОРС	ТИП	Диапазон	Комментарий
SERIE.POTLINE.DCCURRENT	DINT	0-450 kA	Мгновенный постоянный ток КПП 1
SERIE.POTLINE.DCVOLTAGE	DINT	0-1570 B	Напряжение мгновенного постоянного тока КПП 1

Дополнительно в приложении (документ excel вкладка [L3_MAP]) даны списки сигналов/ошибок от электролизных серий и групп.

- Сигналы/ошибки от электролизных серий во вкладке "СИГНАЛЫ/ОШИБКИ ЭЛЕКТРОЛИЗНОЙ СЕРИИ".
 Тэги ОРС даны в корневом каталоге ОРС (SERIE.POTLINE).
 Когда появляется сигнал с тэгом ALARM1, полный тэг ОРС будет такой: SERIE.POTLINE.ALARM1
- Сигналы/ошибки от групп находятся во вкладке "СИГНАЛЫ/ОШИБКИ ГРУППЫ".
 Тэги ОРС даны в корневом каталоге ОРС (SERIE.G0x).
 Когда появляется сигнал с тэгом OLTC.ALARM2, полный тэг ОРС будет такой: SERIE.POTLINE.ALARM2

3.1.3 Подсчёт и средние значения КПП ⇒ ITS

Идентификатор ОРС	ТИП	Диапазон	Комментарий
SERIE.POTLINE.COUNT.5MN.CURREN T	DINT	0-450 кА/ч	Подсчет постоянного тока за прошедшие 5 минут
SERIE.POTLINE.COUNT.5MN.VOLTAG	DINT	0-1570 В/ч	Подсчет напряжения постоянного тока за прошедшие 5 минут
SERIE.POTLINE.AVERAGE.HOUR.CUR RENT	DINT	0-450 kA	Среднее значение мгновенного постоянного тока за прошедшие 60 мин
SERIE.POTLINE.AVERAGE.HOUR.VOL TAGE	DINT	0-1570 B	Среднее значение напряжения мгновенного постоянного тока за прошедшие 60 мин
SERIE.POTLINE.AVERAGE.DAY.CURR ENT	DINT	0-450 kA	Среднее значение мгновенного постоянного тока за прошедшие 24 часа, или за заданный пользователем период времени AVERAGE.DAY.RANGE

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 кА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН БОГУЧАНЫ

МЕЖСИСТЕМНЫЕ СВЯЗИ (МСС)

УРОВЕНЬ 2 - УРОВЕНЬ 3

4EZI0009 - G

			Среднее значение напряжения	
SERIE.POTLINE.AVERAGE.DAY.VOLTA			мгновенного постоянного тока за	
GE	DINT	0-1570 B	прошедшие 24 часа, или за	
GL			заданный пользователем период	
			времени AVERAGE.DAY.RANGE	

Эти учетные и средние значения даны только для информации. Точное измерение этих значений не сертифицировано, и поэтому, они не могут быть использованы в расширенных функциях, например в системах контроля за исполнением контрактов о поставке мощности.

3.1.4 Преобразование средних заданных значений

5-минутный подсчет это счётное значение за прошедшие 5 минут. Между 12:15:10 и 12:19:55, значение равно результату счета с 12:10 до 12:15; оно обновляется между 12:20:00: и 12:20:10.

Результаты счета даны в Ач. Например, если постоянный ток равен 120 кА, результаты счета будут следующие:

5-минутный подсчет ⇒ 10 кАч

Средние значения, это значения следующих измерений:

- плавающий период 60 мин это средний час,
- фиксированный период равный "AVERAGE.DAY.RANGE" (24 ч по умолчанию) это средний день.

Таким образом, "средний час" равен среднему значению прошедшего часа, если оно считано в течение 5 минут после окончания часа:

 среднее значение периода с 12:00 до 13:00 может быть считано между 13:00:10 и 13:04:55.

Средний день равен среднему значению прошедшего периода AVERAGE.DAY.RANGE, который начался в момент AVERAGE.DAY.START:

■ если RANGE = 8 и START = 2, то среднее значения "дня", начинающегося в 02:00:00 и заканчивающегося в 10:00:00 может быть считано между 10:00:10 и 17:59:55.

То есть, значение RANGE должно иметь общее кратное 24 (2,3,4,6,8,12,24), чтобы заданный период вмещался в реальный день.

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 КА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН БОГУЧАНЫ

МЕЖСИСТЕМНЫЕ СВЯЗИ (МСС)

УРОВЕНЬ 2 - УРОВЕНЬ 3

4EZI0009 - G

3.2 СВЯЗЬ МЕЖДУ УРОВНЕМ 2 И УРОВНЕМ 3 ЧЕРЕЗ ЗАПРОСЫ SQL

Эта связь состоит из обмена сохраненными данными за прошедшие периоды между системой выпрямительной подстанции и системой 3 Уровня (IPS).

Эта связь реализована с помощью базы данных SQL серверов 2 уровня. Она может обеспечивать почасовой учет тока и напряжения за 2 предыдущие месяца.

Уровень 3 связывается с двумя серверами SRV1 и SRV2 (резервируемые базы данных SQL) при вводе имени пользователя и пароля:

Имена главных машин: SRV1 и SRV2 для всей электролизной серии.

Имя пользователя SQL: sa

SQL пароль:arevatdSQL привязка:sqlserver

3.2.1 Данные прошедших периодов КПП => ITS

Используемая таблица имеет следующие данные:

Имя: HISTORAP

Колонки: HORODATE это обозначение (13) для гггг/мм/дд:чч

COUNT CURRENT для подсчётов тока

COUNT_VOLTAGE для подсчетов напряжения

Пример запроса SQL на считывание данных:

Выбрать * в таблице HISTORAP, где HORODATE = "2009/01/10:12"

В данном примере по запросу SQL считывается значение тока и напряжения для 12 часа (между 12:01 и 13:00).

Примечание: час указан между 00 и 23.

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 КА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН БОГУЧАНЫ

МЕЖСИСТЕМНЫЕ СВЯЗИ (МСС)

УРОВЕНЬ 2 – УРОВЕНЬ 3

4EZI0009 - G

3.3 АДРЕСАЦИЯ МЕЖДУ СЕТЕВЫМИ УСТРОЙСТВАМИ

Устройство	ІР-адрес	Комментарий
КПП: СЕТЬ УРО	ОВНЯ 1 – "*" = Элект	ролизная серия 1 или 2 – для ТАЗ и БоАЗ
MST*_HPC	172.22.81.*10 / 24	КПП* котроллер HPC
G*1_HPC	172.22.81.*11 / 24	Группа G*1 Контроллер HPC
G*2_HPC	172.22.81.*12 / 24	Группа G*2 Контроллер HPC
G*3_HPC	172.22.81.*13 / 24	Группа G*3 Контроллер HPC
G*4_HPC	172.22.81.*14 / 24	Группа G*4 Контроллер HPC
G*5_HPC	172.22.81.*15 / 24	Группа G*5 Контроллер HPC
G*6_HPC	172.22.81.*16 / 24	Группа G*6 Контроллер HPC (только для TA3)
MST*_SW	172.22.81.*20 / 24	КПП * сетевой коммутатор
G*1_SW	172.22.81.*21 / 24	Группа G*1 сетевой коммутатор
G*2_SW	172.22.81.*52 / 24	Группа G*2 сетевой коммутатор
G*3_SW	172.22.81.*23 / 24	Группа G*3 сетевой коммутатор
G*4_SW	172.22.81.*24 / 24	Группа G*4 сетевой коммутатор
G*5_SW	172.22.81.*25 / 24	Группа G*5 сетевой коммутатор
G*6_SW	172.22.81.*26 / 24	Группа G*6 сетевой коммутатор (только для ТАЗ)
L1+S1_SW	172.22.81.*31 / 24	Коммутатор КПП 1 Сервер ДУ 1
L1+S2_SW	172.22.81.*32 / 24	Коммутатор КПП 1 Сервер ДУ 2
SRV1	172.22.81.*41 / 24	Сервер ДУ 1 на сетевом уровне 1
SRV2	172.22.81.*42 / 24	Сервер ДУ 2 на сетевом уровне 1
GPS	172.22.81.*44 / 24	Система часов GPS
КПП: СЕТЬ УРО	ОВНЯ 2 – "*" = Электр	оолизная серия 1 или 2 – для ТАЗ и БоАЗ
SRV1	172.22.82.*41 / 24	Сервер ДУ 1 на сетевом уровне 2
SRV2	172.22.82.*42 / 24	Сервер ДУ 2 на сетевом уровне 2
PRT	172.22.82.*43 / 24	Принтер
L2S1_SW	172.22.82.*21 / 24	Коммутатор сервера ДУ 1
L2S2_SW	172.22.82.*22 / 24	Коммутатор сервера ДУ 2
L3_SW	172.22.82.*23 / 24	Коммутатор Уровня 3
Портативные	компьютеры сервисн	ого обслуживания
L1_MNT_T	172.22.81.200 / 24	Портативный компьютер СО Уровня 1 ТАЗ
L1_MNT_B	172.22.81.201 / 24	Портативный компьютер СО Уровня 1 БоАЗ
L1_TAI	172.22.81.202 / 24	Портативный компьютер Уровня 1 ТАЗ для сервисного
	.=0.00.01.000.15:	обслуживания АРЕВОЙ в г. Масси
L1_BOG	172.22.81.203 / 24	Портативный компьютер Уровня 1 БоАЗ для
		сервисного обслуживания АРЕВОЙ в г. Масси

Примечание *: /24 на конце IP-адреса значит 255.255.255.0

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 кА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН БОГУЧАНЫ

УРОВЕНЬ 2 - УРОВЕНЬ 3

4EZI0009 - G

4. ПРИЛОЖЕНИЕ

4.1 АРХИТЕКТУРА АСУ

Рисунок 3: Архитектура АСУ КПП

ТАЙШЕТ

ПОДСТАНЦИИ ДЛЯ ДВУХ СЕРИЙЙ – 400 КА 6 ВЫПРЯМИТЕЛЬНЫХ ГРУПП - 85 КА – 1500 В DC 3РУ 220 КВ И СН

БОГУЧАНЫ