



















# FLEXICOKING Process Description

## Gasifier

- 900 - 950 °C, 7 meter high fluidized bed, 16 meter diameter
- Coke gasification / combustion
  - $C + \frac{1}{2}O_2 \rightarrow CO$  exo
  - $C + H_2O \rightarrow CO + H_2$  endo
  - $C + CO_2 \rightarrow 2CO$  endo
- Gasifies approx. 85-90% of reactor coke production
  - Low Joule Gas contains 50% nitrogen and H<sub>2</sub>, CO, CO<sub>2</sub>, H<sub>2</sub>S and NH<sub>3</sub>
  - Temperature control with steam
- Coke circulation for heat transfer and prevents too small coke particles



A decorative horizontal border consisting of a repeating pattern of stylized, symmetrical motifs. Each motif appears to be a combination of a central circle and surrounding geometric shapes like triangles and lines, creating a floral or abstract design. The pattern is rendered in a light, off-white color on a dark, textured background.







# Hot spots









# FLEXICOKING Process Description

## Coke Transfer lines

Guess how many ?

- Rx-Hx 3x
- Hx-Qx 2x
- Hx-Qx 1x

How can you transfer coke against the pressure ?



## Transport in Fluidized State

- Transfer line terminology



# Transport in Fluidized State

- Transfer line terminology



- Pressure balance

- static pressure build-up in standpipe provides driving force for coke transport
- flow control by slide valve or riser aerations



# Transport in Fluidized State

- Transfer line terminology



- Pressure balance

- static pressure build-up in standpipe provides driving force for coke transport
- flow control by slide valve or riser aerations

- Limitations to aeration

- under-aeration in standpipes results in too low pressure build-up
- too little aeration in risers results in slugging
- too much aeration in standpipes results in too low density and may cause bubbles
- too much aeration in risers causes excessive wear

- "Bubbles up" or "bubbles down"

- is determined by velocity differences between gas and particles
- is important for standpipe aeration

# Transport in Fluidized State

- Transfer line terminology



- Pressure balance

- static pressure build-up in standpipe provides driving force for coke transport
- flow control by slide valve or riser aeration

- Limitations to aeration

- under-aeration in standpipes results in too low pressure build-up
- too little aeration in risers results in slugging
- too much aeration in standpipes results in too low density and may cause bubbles
- too much aeration in risers causes excessive wear

- "Bubbles up" or "bubbles down"

- is determined by velocity differences between gas and particles
- is important for standpipe aeration

# **Successes and Disappointments over 17 years**

- Significant (33%) capacity creep at low cost
  - Runlength doubled; reliability is high priority
  - 6 out of 7 runs completed as scheduled
- 
- Air Blower problems 1 year after initial start-up
  - Severe fouling in Heater Overhead Exchangers
  - Gasifier Hot Spots
  - Heater maintenance challenges



# Reliability and thruput history

| Run | Ton/hr | Days on oil |
|-----|--------|-------------|
| 1   | 202    | 591         |
| 2   | 229    | 608         |
| 3   | 254    | 570         |
| 4   | 258    | 684         |
| 5   | 262    | 1048        |
| 6   | 265    | 1063        |
| 7   | 269    | 1195        |

# **Reliability and thruput history**

## **Reliability increases effective thruput!**

- Good process follow-up and stable operation key to success
- DMC controller installed in 2001
- Some hardware changes essential too:  
spare heat exchangers, material upgrading,  
instrumentation upgrading, design changes  
to reduce turnaround time
- Plan for current run is to increased from 3.5 to 4 years

## **1988-2003 debottlenecks**

- minor Fluid Solids changes
- 2½ new distillation towers
- replaced a number of pumps
- diverted LPG from LPG/coker naphtha hydrofiner



# Stretch run length with care : Unplanned turnaround has high debits

|                                                                                    | MEuro |
|------------------------------------------------------------------------------------|-------|
| • contractors ask more money for ± same scope                                      | 1.5   |
| • contractors need 14 days to mobilize<br>result is additional downtime            | 4     |
| • turnaround cost spread over shorter run                                          | 3.5   |
| • coker down means Pipestill down<br>jet and diesel to be purchased on spot market | 3.5   |
| • next run more conservative approach                                              | 2.5   |
| • total additional cost of unplanned turnaround                                    | 15    |

Partial reactor bog terminated run 2 prematurely

# Air Blower problems 1 year after initial start-up

*High bearing temperature reading  
made entire organization nervous*

- Serious problem or not ?
- Repair required or do we reach turnaround ?
- How to operate the coker and rest of the refinery ?
- How to minimize risk and costs ?
- 2 day case study chemical + mechanical engineers



# FLEXICOKING

• Questions ?

