(试卷 I)

一、填空题

$$(1)x - y + z = 0.$$
 $(2) - \frac{1}{\ln 2}.$ $(3) \frac{3}{2}.$ $(4) - 18\pi.$ $(5)(1,1,-1).$

 $\Delta_a = 4, b = 1.$

$$\equiv (1)(1+y)g' \cdot (f'_1+yf'_2). \quad (2)\begin{pmatrix} 5 & -2 & -2 \\ 4 & -3 & -2 \\ -2 & 2 & 3 \end{pmatrix}.$$

四、 $y = Y + y^* = C_1 + e^{-3x} (C_2 \cos ax + C_3 \sin a^x) + \frac{x}{9 + a^2}$,其中 C_1, C_2, C_3 为任意常数.

五、选择题

$$(1)^{\circ}C.$$
 ()D. (3)B. (4)C.

六、收敛域为[-2,2),
$$S(x) = \begin{cases} \frac{1}{x} \ln \frac{2}{2-x}, & x \in [-2,0) \cup (0,2), \\ \frac{1}{2}, & x = 0. \end{cases}$$

七、34π.

八、证明略. (可考虑函数 F(x) = f(x) - x,对 F(x) 使用零点定理.)

九、① 当 $a \neq 1$ 时,方程组有唯一解;② 当 a = 1 时,(i) 当 $b \neq -1$ 时,方程组无解;(ii) 当 b = -1 时,方程组有无穷多解,通解为 $(x_1, x_2, x_3, x_4)^{\mathsf{T}} = k_1(1, -2, 1, 0)^{\mathsf{T}} + k_2(1, -2, 0, 1)^{\mathsf{T}} + (-1, 1, 0, 0)^{\mathsf{T}}$,其中 k_1 , k_2 为任意常数.

十、填空题

$$(1)1 - (1-p)^n; (1-p)^n + np(1-p)^{n-1}.$$
 $(2)\frac{53}{120}; \frac{20}{53}.$ $(3)1; \frac{1}{2}.$

+-,
$$f_z(z) = \begin{cases} 0, & z \leq 0, \\ \frac{1}{2}(1 - e^{-z}), & 0 < z \leq 2, \\ \frac{1}{2}(e^2 - 1)e^{-z}, & z > 2. \end{cases}$$

(试卷 Ⅱ)

$$= \int_{11}^{11} \cdot x e^{2y} + f_{13}^{"} e^{y} + f_{1}^{"} \cdot e^{y} + f_{21}^{"} x e^{y} + f_{23}^{"}$$
 四、【同试卷 I 第四题】.

淘宝店铺:筑梦教育

(试卷 I)

$$-(1)[0,6).$$
 $(2)\varphi(x) = \sqrt{\ln(1-x)}, x \le 0.$ $(3)\frac{12\pi}{5}.$

二、填空题

$$(1)(1+2t)e^{2t}$$
. $(2)\frac{3}{2}$. $(3)\frac{1}{12}$. $(4)40$.

三、选择题

四、0. 五、
$$y = (1 - 2x) e^x$$
. 六、 $W = k \left(1 - \frac{1}{\sqrt{5}}\right)$.

$$\mathcal{N}_{\bullet}(1)x = 0, y = 1; (2)P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

九、证明略.

十、填空题

$$(1)$$
 $\frac{1}{3}$. (2) $\frac{17}{25}$ ($\not \equiv 0.68$). (3) 0.987 6.

$$+-, f_{\gamma}(\gamma) = \frac{3(1-\gamma)^2}{\pi[1+(1-\gamma)^6]}.$$

(试卷 Ⅱ)

-、【同试卷 I 第一题】.

二、【同试卷 I 第二题】.

三、【同试卷 I 第三题】.

四、(1)【同试卷 I 第四题】.

第四题】. (2) $\frac{4}{\pi^3}(2+\pi)$. (3) x+2z=7 和 x+4y+6z=21.

五、【同试卷 I 第五题】.

六、【同试卷 I 第六题】.

七、【同试卷 I 第七题】.

八【同试卷 [第八题].

九、【同试卷 I 第九题】.

(试卷 I)

一、填空题

(1) -1.
$$(2)x - 1$$
. $(3)\pi$. $(4)2$. $(5)\begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

二、选择题

$$(1)$$
A. (2) C. (3) D. (4) B. (5) C.

$$\equiv (1) \frac{\partial^2 z}{\partial x \partial y} = -2f'' + xg''_{uv} + xyg''_{vv} + g'_{v}.$$
 (2) $\frac{1}{2}$. (3) $\frac{\pi}{8}$.

$$\square \sqrt{\frac{\pi}{4}} + \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, (-1 \le x < 1).$$

$$\Xi_{3}\frac{1}{2}\sin x + \frac{x}{2}\cos x.$$

六、证明略. (可利用零点定理.)

七、 $\lambda = 1$ 时,方程组有解;解为 $x = k(-1, 2, 1)^{T} + (1, -1, 0)^{T}$,其中 k 为任意常数. 八、证明略. (根据特征值与特征向量的定义.)

九、
$$\frac{4}{3}a$$
.

十、填空题

$$(1)0.7.$$
 $(2)0.75.$ $(3)\frac{4}{5}.$

$$+-, f_Z(z) = \frac{1}{3\sqrt{2\pi}}e^{-\frac{(z-5)^2}{18}}, -\infty < z < +\infty.$$

(试卷 Ⅱ)

一、【同试卷 I 第一题】.

二、【同试卷 I 第二题】.

三、【同试卷 I 第三题】.

四、(1)【同试卷 I 第四题】. (2) $\left(\frac{4R}{3\pi}, \frac{4R}{3\pi}, \frac{4R}{3\pi}\right)$. (3) 证明略. (可利用高斯公式.)

五、【同试卷 I 第五题】.

六、【同试卷 I 第六题】.

七、【同试卷 I 第七题】.

八、【同试卷 【 第八题】.

九、【同试卷 I 第九题】.

淘宝店铺: 筑梦教育

(试卷 I)

一、填空题

$$(1)x - 3y - z + 4 = 0.$$
 $(2)e^{2a}$. $(3)1$. $(4)\frac{1}{2}(1 - e^{-4})$. $(5)2$.

(1)A. (2)A. (3)C. (4)D. (5)B. 二、选择题

$$(3)y = (C_1 + C_2x)e^{-2x} + \frac{x^2}{2}e^{-2x}$$
,其中 C_1 , C_2 为任意常**数**.

四、收敛域
$$(-1,1)$$
; $S(x) = \frac{1+x}{(1-x)^2}$, $-1 < x < 1$.

六、证明略.(可利用拉格朗日中值定理.)

八、在正交变换
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & \frac{4}{3\sqrt{2}} & \frac{1}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & -\frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{3\sqrt{2}} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
下,二次型为 $f = 9y_3^2$.

九、 $2(\pi - 1)$.

十、填空题

$$(1)\begin{cases} \frac{1}{2}e^{x}, & x < 0, \\ -1 & (2)0.3. \\ 1 - \frac{1}{2}e^{-x}, & x \ge 0. \end{cases}$$
 (2)0.3. (3)4.

+一、
$$f_X(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

(试卷 Ⅱ)

一、【同试卷 I 第一题】.

二、【同试卷 I 第二题】.

三、【同试卷 I 第三题】.

四、(1)【同试卷 I 第四题】. (2)
$$\frac{1}{2} \left(\ln x + \frac{1}{\ln x} \right)$$
. (3) $\frac{\pi}{6}$.

五、【同试卷 I 第五题】.

六、【同试卷 I 第六题】.

七、【同试卷 I 第七题】.

八、【同试卷 I 第八题】.

九、【同试卷 I4 第九题】.

淘宝店铺:筑梦教育

(试卷 I)

一、填空题

$$(1) \frac{\sin t - t\cos t}{4t^3}. \quad (2) dx - \sqrt{2} dy. \quad (3)x - 3y + z + 2 = 0. \quad (4) - \frac{3}{2}.$$

$$(5) \begin{pmatrix} 1 & -2 & 0 & 0 \\ -2 & 5 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & -\frac{1}{3} & \frac{1}{3} \end{pmatrix}.$$

二、选择题

(1) D. (2) B. (3) C. (4) A. (5) D.

$$\equiv (1)e^{-\frac{\pi}{2}}$$
. (2) $\frac{11}{7}$. (3) $\frac{256}{3}\pi$.

 $\square y = \sin x (0 \le x \le \pi).$

$$\Xi_{2} + |x| = \frac{5}{2} - \frac{4}{\pi^{2}} \sum_{n=0}^{\infty} \frac{\cos(2n+1)\pi x}{(2n+1)^{2}}, x \in [-1,1]; \sum_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6}.$$

六、证明略. (可利用积分中值定理和罗尔定理.)

$$\pm \sqrt{1}a = -1, b \neq 0.$$
(2) $a \neq -1, \beta = -\frac{2b}{a+1}\alpha_1 + \frac{a+b+1}{a+1}\alpha_2 + \frac{b}{a+1}\alpha_3 + 0 \cdot \alpha_4.$

八、证明略. 九、 $y = \frac{1}{2}(e^{x-1} + e^{-(x-1)}).$

十、填空题

$$(1)0.2.$$
 $(2)\frac{1}{2}+\frac{1}{\pi}.$

+-,
$$F_Z(z) = \begin{cases} 0, & z \leq 0, \\ 1 - e^{-z} - z e^{-z}, & z > 0. \end{cases}$$

(试卷 Ⅱ)

一、【同试卷 I 第一题】.

二、【同试卷 I 第二题】.

三、【同试卷 I 第三题】.

四、(1) $\frac{2}{3}$ $-\frac{3\sqrt{3}}{8}$. (2) -8π . (3)【同试卷 I 第四题】.

五、【同试卷 I 第五题】.

六、【同试卷 I 第六题】.

七、【同试卷 I 第七题】.

八、【同试卷 【 第八题】.

九、【同试卷 I 第九题】.

5

淘宝店铺: 筑梦教育

(试卷 I)

一、填空题

$$(1) \frac{y \sin(xy) - e^{x+y}}{e^{x+y} - x \sin(xy)}. \qquad (2) \left\{ \frac{2}{9}, \frac{4}{9}, -\frac{4}{9} \right\}. \qquad (3) \frac{\pi^2}{2}.$$

 $(4)(x+C)\cos x$,其中 C 为任意常数. (5)1.

二、选择题 (1)D. (2)C. (3)B. (4)C. (5)A.

 $(3) \frac{7}{3} - \frac{1}{e}$.

四、 $y = C_1 e^x + C_2 e^{-3x} - \frac{1}{4} x e^{-3x}$,其中 C_1 , C_2 为任意常数.

 $\pm \sqrt{\frac{29}{20}} \pi a^5$.

六、证明略. (可考虑函数 $F(x) = f(x + x_2) - f(x)$, 计算 F'(x), 并利用 F(x) 的单调性.)

七、
$$\xi = \frac{a}{\sqrt{3}}, \ \eta = \frac{b}{\sqrt{3}}, \ \zeta = \frac{c}{\sqrt{3}}; \ W_{\text{max}} = \frac{\sqrt{3}}{9}abc.$$

八、(1) α_1 能由 α_2 , α_3 线性表示,证明略. (2) α_4 不能由 α_1 , α_2 , α_3 线性表示,证明略.

$$\hbar_{\bullet}(1)\boldsymbol{\beta} = 2\boldsymbol{\xi}_{1} - 2\boldsymbol{\xi}_{2} + \boldsymbol{\xi}_{3}. \quad (2)\boldsymbol{A}^{n}\boldsymbol{\beta} = \begin{pmatrix} 2 - 2^{n+1} + 3^{n} \\ 2 - 2^{n+2} + 3^{n+1} \\ 2 - 2^{n+3} + 3^{n+2} \end{pmatrix}.$$

十、填空题 $(1)\frac{3}{8}$. $(2)\frac{4}{3}$.

+一、
$$f_Z(z) = \frac{1}{2\pi} \left[\Phi\left(\frac{z+\pi-\mu}{\sigma}\right) - \Phi\left(\frac{z-\pi-\mu}{\sigma}\right) \right]$$
,其中 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$.

(试卷 Ⅱ)

一、【同试卷 I 第一题】.

二、【同试卷 I 第二题】.

三、(1)【同试卷 I 第三、(1) 题】. (2)【同试卷 I 第三、(2) 题】. (3)
$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$
.

6

四、(1)【同试卷 I 第四题】. (2) $2x\int_{0}^{x^{2}} f(t) dt$. (3) $\frac{3}{8}e - \frac{1}{2}\sqrt{e}$.

五、【同试卷 【 第五题】.

六、【同试卷 I 第六题】.

七、【同试卷 I 第七题】.

八、【同试卷 I 第八题】.

九、【同试卷 I 第九题】.

淘宝店铺:筑梦教育

(试卷 I)

一、填空题

$$(1)\left(0,\frac{1}{4}\right)$$
. $(2)\left\{0,\frac{\sqrt{2}}{\sqrt{5}},\frac{\sqrt{3}}{\sqrt{5}}\right\}$. $(3)\frac{2}{3}\pi$. $(4)\frac{1}{x^2+y^2+z^2}$. $(5)k(1,1,\cdots,1)^T$,其中 k 为任意常数.

二、选择题

(1) B. (2) A. (3) C. (4) B. (5) C.

三、(1) e^2 . (2) $2x \sqrt{e^x - 1} - 4 \sqrt{e^x - 1} + 4 \arctan \sqrt{e^x - 1} + C$,其中 C 为任意常数.

$$(3)y = \frac{2x}{1 + x^2}.$$

(2) 证明略. (可考虑函数 $f(x) = x \ln a - a \ln x$, 计算 f'(x), 并利用 f(x) 的单调性.)

七、
$$a = 2$$
;正交矩阵 $P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$.

八、证明略. (可证明 r(B) = n.)

九、
$$x \frac{d^2 y}{dx^2} + \frac{1}{2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = 0$$
,初始条件为 $y(-1) = 0$, $y'(-1) = 1$.

十、填空题

(1)
$$\frac{1}{6}$$
. (2) $\frac{1}{4\sqrt{y}}$.

+-、(1) E(X) = 0, D(X) = 2. (2) Cov(X, |X|) = 0, X 和 |X| 不相关.

(3) X 和 |X| 不独立,证明略.

(试卷 Ⅱ)

一、【同试卷 [第一题]. 二、【同试卷 [第二题]. 三、【同试卷 [第三题].

$$\square_{\bullet}(1) \frac{\partial z}{\partial y} = x^4 f_1' + x^2 f_2', \ \frac{\partial^2 z}{\partial y^2} = x^5 f_{11}'' + 2x^3 f_{12}'' + x f_{22}'', \ \frac{\partial^2 z}{\partial x \partial y} = 4x^3 f_1' + 2x f_2' + x^4 y f_{11}'' - y f_{22}''.$$

(2)【同试卷 I 第四题】. (3)
$$P = \begin{pmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$$
.

七、【同试卷 【 第七题】.

| 第字店铺:筑梦教育 五、【同试卷 I第五题】.六、【同试卷 I第六题】.八、【同试卷 I第八题】.九、【同试卷 I第九题】.

(试卷 I)

一、填空题

$$(1) \frac{1}{6}. \quad (2) \ 2x + y - 4 = 0. \quad (3) \left(\frac{\pi}{e}\right)^{2}. \quad (4) \ \frac{\pi R^{4}}{4} \left(\frac{1}{a^{2}} + \frac{1}{b^{2}}\right). \quad (5) \ 3^{n-1} \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \end{pmatrix}.$$

二、选择题

(1) D. (2) D. (3) C. (4) D. (5) C.

$$\Xi_{\bullet}(1) \left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{t=\sqrt{\frac{\pi}{2}}} = \sqrt{\frac{\pi}{2}}, \left. \frac{\mathrm{d}^2y}{\mathrm{d}x^2} \right|_{t=\sqrt{\frac{\pi}{2}}} = -\frac{1}{\sqrt{2\pi}}. \quad (2) f(x) = \sum_{n=1}^{\infty} \frac{x^{4n+1}}{4n+1} (-1 < x < 1).$$

(3)
$$\frac{1}{8} \tan^2 \frac{x}{2} + \frac{1}{4} \ln \left| \tan \frac{x}{2} \right| + C$$
,其中 C 为任意常数.

四、
$$\frac{1}{2}\pi^2 R$$
.

五、 $f(x) = 2\cos x + \sin x + x^2 - 2$,通解为 $-2y\sin x + y\cos x + \frac{x^2y^2}{2} + 2xy = C$,其中 C 为任意常数.

六、证明略. (可写出 f(x) 在 x = 0 处的一阶泰勒展开式,并证明 $\left| f\left(\frac{1}{n}\right) \right| \le \frac{M}{2} \cdot \frac{1}{n^2}$,其中 M 为一正常数.)

七、 $\frac{2}{3}\pi$.

八、(1)(0,0,1,0), (-1,1,0,1). (2) 有非零公共解 k(-1,1,1,1),其中 k 为任意非零常数. 九、证明略. (反证法.)

十、填空题

+一、(1) $E(Z) = \frac{1}{3}$, D(Z) = 3. (2) $\rho_{XZ} = 0$. (3) X 和 Z 相互独立,证明略.

(试卷 Ⅱ)

五、【同试卷 I 第五题】. 六、【同试卷 I 第六题】. 七、【同<u>试卷 I 第</u>七题】. 八、(1) – [(2n-3)!!]. (2)【同试卷 I 第八题】. 九、【同试卷 I 第九题】.

(试卷 I)

一、填空题

(1)
$$e^6$$
. (2) $-\int_0^{x^2} \cos(t^2) dt - 2x^2 \cos(x^4)$. (3) 4. (4) $\sqrt{3}$. (5) $\begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

二、选择题

(1) C. (2) B. (3) A. (4) C. (5) C.

$$\equiv (1) \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cos x - \frac{\partial f}{\partial z} \frac{1}{\varphi_3'} (2x\varphi_1' + \mathrm{e}^{\sin x} \cos x \cdot \varphi_2').$$
 (2) $\frac{1}{2}A^2$.

$$\square_{\bullet}(1) \frac{32}{9} \sqrt{2}. \quad (2) f(x) = -\frac{8}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \cos \frac{(2k-1)\pi x}{2}, x \in [0, 2].$$

$$\Xi_{x}y = \sqrt{3x - x^{2}}(0 < x < 3).$$
 $\Rightarrow_{x}Q(x, y) = x^{2} + 2y - 1.$

七、(1) 证明略.(反证法.)

(2) 证明略. (可考虑函数 $\varphi(x) = f(x)g'(x) - f'(x)g(x)$, 对 $\varphi(x)$ 使用罗尔定理.)

ハ、
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
. 九、 0 .

十、填空题 (1) 18.4. (2) $\frac{5}{7}$.

+-,
$$f_{Y}(y) = \begin{cases} 0, & y < 1, \\ \frac{1}{y^{2}}, & y \ge 1. \end{cases}$$

(试卷 Ⅱ)

一、【同试卷 [第一题]. 二、【同试卷 [第二题].

三、(1)【同试卷 I 第三、(1) 题】. (2)2x + 2y - z - 3 = 0. (3) $\frac{2}{15}(4\sqrt{2} - 1)$.

四、【同试卷 I 第四题】. 五、【同试卷 I 第五题】. 六、【同试卷 I 第六题】. 七、【同试卷 I 第七题】.

八、 $(1)a \neq 2$ 时,方程组有解,其通解为 $x = k(-3,0,1,1)^{\mathrm{T}} + \left(\frac{7a-10}{a-2},\frac{2-2a}{a-2},\frac{1}{a-2},0\right)^{\mathrm{T}}$,其中 k为任意常数.

(2)【同试卷 I 第八题】.

九、【同试卷 I 第九题】.

(试卷 I)

一、填空题

(1)
$$\ln 2$$
. (2) $2x + 2y - 3z = 0$.

(3)
$$y = e^x (C_1 \cos x + C_2 \sin x + 1)$$
,其中 C_1 , C_2 为任意常数. (4) $\frac{1}{2}$. (5) 2.

二、选择题

 $\Xi_{\bullet}(1) 8a.$

(2) 证明略(可用数学归纳法证明 $\{x_n\}$ 单调减少,再由单调有界准则知 $\lim_{n\to\infty} x_n$ 存在). $\lim_{n\to\infty} x_n = 3$.

四、
$$(1) - \frac{1}{2}\pi$$
. (2) 3.

$$\pm \frac{5}{8} - \frac{3}{4} \ln 2$$
.

六、 $f(x) = C_1 \ln x + C_2$,其中 C_1 , C_2 为任意常数.

七、(1)
$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(\xi)}{2!}(x - c)^2$$
,其中 $\xi = c + \theta(x - c)$, $0 < \theta < 1$.

(2) 证明略. (利用 f(x) 的一阶泰勒公式.)

八、(1) 证明略. (2) 证明略. (反证法.)

九、(1)c = 3, $\lambda_1 = 0$, $\lambda_2 = 4$, $\lambda_3 = 9$. (2) 椭圆柱面.

十、填空题 (1)
$$\frac{3}{7}$$
. (2) $\sqrt{\frac{2}{\pi}}$.

	Y	1	2	3
+-,(1)	1	1/9	2/9	2/9
	2	0	1/9	2/9
_	3	0	0	1/9

(2)
$$E(X) = \frac{22}{9}$$
.

淘宝店铺: 筑梦教育

(试卷 Ⅱ)

一、【同试卷 I 第一题】. 二、【同试卷 I 第二题】.

 $\Xi_{\bullet}(1) \frac{10}{9} \sqrt{2}$. (2)【同试卷 I 第三、(1) 题】. (3)【同试卷 I 第三、(2) 题】.

四、【同试卷 I 第四题】. 五、【同试卷 I 第五题】. 六、【同试卷 I 第六题】.

七、【同试卷 I 第七题】.

八、(1) 基础解系为 $\boldsymbol{\xi}_1 = (-1, 0, -1, 0, 1)^T$, $\boldsymbol{\xi}_2 = (1, -1, 0, 0, 0)^T$.

(2)【同试卷 I 第八题】.

九、【同试卷 I 第九题】.

一、填空题

(1)
$$\frac{3}{2}$$
. (2) (-2, 4). (3) $x + y = e^{\frac{\pi}{2}}$. (4) -3. (5) $\frac{2}{5}$.

二、冼择题

$$\equiv (1) \frac{1024}{3} \pi. \quad (2) - 2\pi. \quad (3) x = \frac{N x_0 e^{kNt}}{N - x_0 + x_0 e^{kNt}}.$$

四、(1)
$$a = -5$$
, $b = -2$. (2) $f(u) = C_1 e^u + C_2 e^{-u}$,其中 C_1 , C_2 为任意常数.

五、
$$\varphi'(x) = \begin{cases} \frac{xf(x) - \int_0^x f(u) du}{x^2}, & x \neq 0, \\ \frac{A}{2}, & x = 0, \end{cases}$$
 $\varphi'(x)$ 在 $x = 0$ 处连续.

六、(1) 证明略. (证明数列 $\{a_n\}$ 单调递减且有下界.)

(2) 证明略. (级数
$$\sum_{n=1}^{\infty} (a_n - a_{n+1})$$
 收敛,可使用比较审敛法.)

七、(1) 标准正交基为
$$\boldsymbol{\varepsilon}_1 = \frac{1}{\sqrt{15}} (1, 1, 2, 3)^{\mathrm{T}}, \boldsymbol{\varepsilon}_2 = \frac{1}{\sqrt{39}} (-2, 1, 5, -3)^{\mathrm{T}}.$$

(2)(I)
$$a = -3$$
, $b = 0$, $\lambda = -1$. (Ⅱ) A 不能相似于对角阵,证明略.

八、(1) 证明略. $(2)\boldsymbol{E}_{ii}$

九、X 的分布律为

X	0	1	2	3
p	$\frac{27}{125}$	$\frac{54}{125}$	$\frac{36}{125}$	$\frac{8}{125}$

$$X$$
的分布函数为 $F(x) = P\{X \le x\} = \begin{cases} 0, & x < 0, \\ \frac{27}{125}, & 0 \le x < 1, \\ \frac{81}{125}, & 1 \le x < 2, \\ \frac{117}{125}, & 2 \le x < 3, \\ 1, & x \ge 3. \end{cases}$

X的数学期望为 $E(X) = \frac{6}{5}$.

$$X$$
 的数字期望为 $E(X) = \frac{1}{5}$.
+、 θ 的矩估计量为 $\hat{\theta} = \frac{2\overline{X} - 1}{1 - \overline{X}}$, θ 的极大似然估计量为 $\hat{\theta} = -1 - \frac{n}{\sum_{i=1}^{n} \ln X_i}$.

一、填空题

$$(1) -\frac{1}{4}. \quad (2) yf''(xy) + \varphi'(x+y) + y\varphi''(x+y). \quad (3) 12a. \quad (4) \left(\frac{|A|}{\lambda}\right)^2 + 1. \quad (5) \frac{1}{4}.$$

二、选择题

$$= \[\] l_0$$
的方程为 $\begin{cases} x - y + 2z - 1 = 0, \\ x - 3y - 2z + 1 = 0. \end{cases}$

曲面的方程为 $4x^2 - 17y^2 + 4z^2 + 2y - 1 = 0$.

四、
$$u(x, y) = -\arctan \frac{y}{x^2} + C$$
,其中 C 为任意常数.

$$\Xi_{\bullet} m v \frac{\mathrm{d}v}{\mathrm{d}y} = mg - B\rho - kv; y = -\frac{m}{k}v - \frac{m(mg - B\rho)}{k^2} \ln \frac{mg - B\rho - kv}{mg - B\rho}.$$

$$\dot{\Lambda}$$
, $-\frac{\pi}{2}a^3$.

七、
$$\frac{2}{\pi}$$
.

八、收敛,证明略.

九、(1) 证明略. (2) 证明略.

$$+ \cdot a = 3, b = 1; \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{pmatrix}.$$

十一、证明略.

十二、(II) 的通解为 $y = c_1(a_{11}, a_{12}, \cdots, a_{1,2n})^{\mathsf{T}} + c_2(a_{21}, a_{22}, \cdots, a_{2,2n})^{\mathsf{T}} + \cdots + c_n(a_{n1}, a_{n2}, \cdots, a_{n,2n})^{\mathsf{T}},$ 其中 c_1 , c_2 , \cdots , c_n 为任意常数,理由略.

$$+ \equiv 1 - \frac{2}{\pi}$$
.

十四、n至少应取35.

十五、可以认为这次考试全体考生的平均成绩为70分,检验过程略.

一、填空题

$$(1) \frac{1}{3}. \quad (2)\sin(x^2).$$

(3)
$$C_1 e^{-2x} + \left(C_2 + \frac{x}{4}\right) e^{2x}$$
,其中 C_1 , C_2 为任意常数.

$$(5) \frac{1}{4}$$
.

二、选择题

$$= \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{(f + xf')F'_y - xf'F'_x}{F'_y + xf'F'_z},$$
 这里的 f 指 $f(x + y), (F'_y + xf'F'_z \neq 0).$

四、
$$\left(\frac{\pi}{2}+2\right)a^2b-\frac{\pi}{2}a^3$$
.

$$\Xi_y = e^x$$
.

六、证明略. (可考虑函数 $\varphi(x) = (x^2 - 1) \ln x - (x - 1)^2$, 计算 $\varphi'(x)$, 并利用 $\varphi(x)$ 的单调性.) 七、91500 J.

八、
$$\frac{3}{2}\pi$$
.

九、(1) 1. (2) 证明略. (证明
$$\frac{a_n}{n^{\lambda}} < \frac{1}{n^{\lambda+1}}$$
,并利用比较审敛法.)

$$+a = 2, b = -3, c = 2, \lambda_0 = 1.$$

十一、证明略.

Y X	${\mathcal Y}_1$	y_2	y_3	$P\{X = x_i\} = p_i.$
x_1	$\frac{1}{24}$	1/8	$\frac{1}{12}$	$\frac{1}{4}$
x_2	1/8	3/8	1/4	3/4
$P\{Y = y_j\} = p_{.j}$	1/6	1/2	1/3	1

13

十三、(1) θ 的矩估计量为 $\hat{\theta} = 2\bar{X}$.

(2)
$$\hat{\theta} = 2\overline{X}$$
的方差为 $D(\hat{\theta}) = \frac{\theta^2}{5n}$.

一、填空题

(1)
$$\frac{\pi}{4}$$
. (2) $\frac{x-1}{1} = \frac{y+2}{-4} = \frac{z-2}{6}$. (3) $y = C_1 + \frac{C_2}{x^2}$, 其中 C_1 , C_2 为任意常数.

$$(4) - 1.$$
 $(5) \frac{2}{3}.$

二、选择题

Ξ,1.

五、π

$$; f(x) = \frac{e^x}{r} (e^x - 1).$$

七、收敛区间为(-3,3). 当x = 3 时,原级数发散,当x = -3 时,原级数收敛.

八、以所考虑的球体的球心为原点,射线 OP_0 为 x 轴正向建立直角坐标系,球体 Ω 的重心位置为 $\left(-\frac{R}{4},0,0\right)$.

九、证明略. (可考虑函数 $F(x) = \int_0^x f(t) dt$, 对 F(x) 使用罗尔定理.)

$$+ \begin{pmatrix} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 6 & 0 & 6 & 0 \\ 0 & 3 & 0 & -1 \end{pmatrix}.$$

+一、(1) 关系式为
$$\begin{cases} x_{n+1} = \frac{9}{10}x_n + \frac{2}{5}y_n, \\ y_{n+1} = \frac{1}{10}x_n + \frac{3}{5}y_n, \end{cases}$$
 矩阵形式为 $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix}.$

(2) $A\eta_1 = \eta_1, \eta_1$ 对应的特征值为 $\lambda_1 = 1; A\eta_2 = \frac{1}{2}\eta_2, \eta_2$ 对应的特征值为 $\lambda_2 = \frac{1}{2}$.

14

$$(3) \ \frac{1}{10} \binom{8 - 3\left(\frac{1}{2}\right)^n}{2 + 3\left(\frac{1}{2}\right)^n}.$$

$$+ = E(X) = \frac{1}{p}, D(X) = \frac{1-p}{p^2}.$$

$$+ \Xi \hat{\theta} = \min\{x_1, x_2, \dots, x_n\}.$$

一、填空题

$$(1) y'' - 2y' + 2y = 0. \quad (2) \frac{2}{3}. \quad (3) \int_{1}^{2} dx \int_{0}^{1-x} f(x, y) dy. \quad (4) \frac{1}{2} (A + 2E). \quad (5) \frac{1}{2}.$$

二、选择题

(1) D. (2) C. (3) B. (4) A. (5) A.

三、
$$-\frac{1}{2}$$
(e^{-2x} arctan $e^x + e^{-x} + arctan e^x) + C ,其中 C 为任意常数.$

四、51.

$$\Xi_{\bullet} f(x) = 1 + 2 \sum_{n=1}^{\infty} \frac{(-1)^n}{1 - 4n^2} x^{2n}, x \in [-1, 1]; \sum_{n=1}^{\infty} \frac{(-1)^n}{1 - 4n^2} = \frac{\pi}{4} - \frac{1}{2}.$$

六、- 24.

七、(1) 证明略. (可利用拉格朗日中值定理.)

(2) 证明略. (可利用 f(x) 在 x = 0 处的泰勒公式.)

八、100 小时.

九、当 s 为偶数, $t_1 \neq \pm t_2$; s 为奇数, $t_1 \neq -t_2$ 时, β_1 , β_2 , …, β_s 也是 Ax = 0 的一个基础解系.

$$+ (1)\mathbf{B} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 3 \\ 0 & 1 & -2 \end{pmatrix}. \quad (2) - 4.$$

 $+-(1)C_n^m p^m (1-p)^{n-m}, 0 \le m \le n, n = 0, 1, 2, \cdots$

$$(2)P\{X=n, Y=m\} = C_n^m p^m (1-p)^{n-m} \cdot \frac{e^{-\lambda}}{n!} \lambda^n, 0 \le m \le n, n=0, 1, 2, \cdots.$$

 $+ \equiv E(Y) = 2(n-1)\sigma^2$.

一、填空题

(1) 1. (2) -2. (3) $y = \sqrt{x+1}$. (4) 2. (5) 4.

二、选择题

(1) A. (2) C. (3) B. (4) B. (5) D.

$$\Xi_a = 2, b = -1.$$

四、2.

五e-1.

六、(1) 证明略. (证明
$$\frac{\partial}{\partial y} \left\{ \frac{1}{y} [1 + y^2 f(xy)] \right\} = \frac{\partial}{\partial x} \left\{ \frac{x}{y^2} [y^2 f(xy) - 1] \right\}$$
.)

$$(2) \frac{c}{d} - \frac{a}{b}.$$

七、(1) 证明略. (分别计算 y', y'',代入所证等式.)

$$(2)y(x) = \frac{2}{3}e^{-\frac{x}{2}}\cos\frac{\sqrt{3}}{2}x + \frac{1}{3}e^{x}(-\infty < x < + \infty).$$

八、(1) 当函数 h(x, y) 以及点 $M(x_0, y_0)$ 给定时,h(x, y) 在点 M 处的各个方向的方向导数的最大值为 $g(x_0, y_0) = \sqrt{5x_0^2 + 5y_0^2 - 8x_0y_0}$.

(2) 点 $M_1(5, -5)$ 或点 $M_2(-5, 5)$ 可作为攀登的起点.

九、 $x = (0, 3, 0, 1)^{T} + k(1, -2, 1, 0)^{T}$,其中 k 为任意常数.

十、(1) 证明略. (利用 $P^{-1}AP = B$.)

$$(2)\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

(3) 证明略.

+-,5.

+二、 θ 的矩估计值为 $\frac{1}{4}$, θ 的极大似然估计值为 $\frac{1}{12}$ (7 – $\sqrt{13}$).

一、填空题

$$(1) \frac{1}{\sqrt{e}}. \quad (2) \ 2x + 4y - z - 5 = 0. \quad (3) \ 1. \quad (4) \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}. \quad (5) \ \frac{1}{4}. \quad (6) \ (39.51, 40.49).$$

二、选择题

- (1) C. (2) D. (3) A. (4) D. (5) B. (6) C.
- $\Xi_{\bullet}(1)$ 面积 $A = \frac{1}{2}e 1$.

(2) 体积
$$V = \frac{\pi}{6} (5e^2 - 12e + 3)$$
.

$$\square, \tilde{f}(x) = \frac{\pi}{4} - 2\sum_{n=0}^{\infty} \frac{(-1)^n 4^n}{2n+1} x^{2n+1}, x \in \left(-\frac{1}{2}, \frac{1}{2}\right]; \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}.$$

- 五、(1) 证明略.
 - (2) 证明略.

$$\overrightarrow{h}$$
 (1) $\sqrt{1+r+r^2}a$ m.

$$(2) \frac{a}{\sqrt{1-r}} \, \mathrm{m}.$$

七、
$$(1)y'' - y = \sin x$$
.

$$(2)y = e^x - e^{-x} - \frac{1}{2}\sin x.$$

- 八、(1) 当 $t \in (0, +\infty)$ 时,F(t) 严格单调增加.
 - (2) 证明略.
- 九、特征值分别为9,9,3. 属于二重特征值9的全体特征向量为 $k_1(-1,1,0)^T + k_2(-2,0,1)^T$,其中 k_1 , k_2 为不同时为零的任意常数;属于特征值3的全体特征向量为 $k_3(0,1,1)^T$,其中 k_3 为任意非零常数.
- **十、**证明略. (三条平面直线交于一点的充分必要条件为联立三条直线方程所得线性方程组有唯一解.)

17

$$+-$$
,(1) $\frac{3}{2}$. (2) $\frac{1}{4}$.

$$+ = (1)F(x) = \begin{cases} 0, & x \leq \theta, \\ 1 - e^{-2(x-\theta)}, & x > \theta. \end{cases}$$

$$(2)F_{\hat{\theta}}(x) = \begin{cases} 0, & x \leq \theta, \\ 1 - e^{-2n(x-\theta)}, & x > \theta. \end{cases}$$

 $(3)\theta$ 的估计量不具有无偏性.

一、填空题

(1)
$$y = x - 1$$
. (2) $\frac{1}{2} (\ln x)^2$. (3) $\frac{3}{2} \pi$. (4) $y = \frac{C_1}{x} + \frac{C_2}{x^2}$,其中 C_1 , C_2 为任意常数.

$$(5) \frac{1}{9}$$
. $(6) \frac{1}{e}$.

二、选择题

三、解答题

- (15) 证明略. (可考虑函数 $\varphi(x) = \ln^2 x \frac{4}{e^2}x$, 计算 $\varphi'(x)$, 并利用 $\varphi(x)$ 的单调性.)
- (16) 1.05 km.
- $(17) \pi$.
- (18) 证明略. (证明 $x_n^{\alpha} < \left(\frac{1}{n}\right)^{\alpha}$,使用比较审敛法.)
- (19) 点(9,3) 是函数z(x,y) 的极小值点,极小值为3,点(-9,-3) 是函数z(x,y) 的极大值点,极大值为 -3.
- (20) 当 a = 0 或 $a = -\frac{n(n+1)}{2}$ 时,方程组有非零解.

当 a = 0 时,方程组的通解为

$$k_1(1, -1, 0, \dots, 0)^{\mathrm{T}} + k_2(1, 0, -1, \dots, 0)^{\mathrm{T}} + \dots + k_{n-1}(1, 0, 0, \dots, -1)^{\mathrm{T}},$$

其中 $k_1, k_2, \cdots, k_{n-1}$ 为任意常数.

当
$$a = -\frac{n(n+1)}{2}$$
 时,方程组的通解为 $k(1,2,3,\dots,n)^{\mathrm{T}}$,其中 k 为任意常数.

- (21) 当 a = -2 和 $a = -\frac{2}{3}$ 时,矩阵 A 有二重特征值,当 a = -2 时, A 可相似对角化,当 $a = -\frac{2}{3}$ 时, A 不可相似对角化.
- (22) (I)

Y X	0	1
0	$\frac{2}{3}$	1/12
1	1/6	$\frac{1}{12}$

淘宝店铺: 筑梦教育

$$(II) \frac{\sqrt{15}}{15}.$$

(23) (\hat{I}) β 的矩估计量为 $\hat{\beta} = \frac{X}{X-1}$.

$$(\ II \) \beta$$
 的最大似然估计量 $\hat{\beta} = \frac{n}{\sum\limits_{i=1}^{n} \ln X_i}$. 18

一、填空题

$$(1) \ y = \frac{1}{2}x - \frac{1}{4}. \quad (2) \ y = \frac{x}{3} \left(\ln x - \frac{1}{3} \right). \quad (3) \ \frac{\sqrt{3}}{3}. \quad (4) \ (2 - \sqrt{2}) \pi R^3. \quad (5) \ 2. \quad (6) \ \frac{13}{48}.$$

二、选择题

(7) C. (8) A. (9) B. (10) D. (11) B. (12) C. (13) B. (14) D.

三、解答题

- $(15) \frac{3}{8}$.
- (16) 收敛区间为(-1,1); $f(x) = 2x \arctan x \ln(1+x^2) + \frac{x^2}{1+x^2}, x \in (-1,1).$
- (17) 20.
- (18)(I)证明略.(考虑函数 g(x) = f(x) + x 1,可利用介值定理.) (Ⅱ)证明略.(可利用拉格朗日中值定理.)
- (19) (I) 证明略. (II) $\varphi(y) = -y^2$.
- (20) (I)0. $(II) f(x_1, x_2, x_3) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2 = 2y_1^2 + 2y_2^2.$ (III) $\mathbf{x} = k(-1, 1, 0)^{\mathrm{T}}$,其中 k 为任意常数.
- (21) 当 $k \neq 9$ 时, $\mathbf{x} = k_1(1, 2, 3)^T + k_2(3, 6, k)^T$,其中 k_1 , k_2 为任意常数. 当 k = 9 时,若 \mathbf{A} 的秩为 2,则通解为 $\mathbf{x} = k_1(1, 2, 3)^T$,其中 k_1 为任意常数;若 \mathbf{A} 的秩为 1,则通解为 $\mathbf{x} = k_1(-b, a, 0)^T + k_2(-c, 0, a)^T$,其中 k_1 , k_2 为任意常数.
- (22) (I) $f_X(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & 其他, \end{cases}$ $f_Y(y) = \begin{cases} 1 \frac{y}{2}, & 0 < y < 2, \\ 0, & 其他. \end{cases}$ ($\overline{\mathbb{I}}$) $f_Z(z) \equiv \begin{cases} 1 \frac{z}{2}, & 0 < z < 2, \\ 0, & 其他. \end{cases}$
- (23) (I) $\frac{n-1}{n}$, ($i = 1, 2, \dots, n$). (II) $-\frac{1}{n}$.

一、填空题

(1) 2. (2) $y = Cxe^{-x}$,其中 C 为任意常数. (3) 2π. (4) $\sqrt{2}$. (5) 2. (6) $\frac{1}{9}$.

二、选择题

(7) A. (8) C. (9) D. (10) D. (11) A. (12) B. (13) C. (14) A.

三、解答题

- $(15) \frac{\pi}{2} \ln 2.$
- (16) (I) 证明略(可利用数学归纳法证明 $\{x_n\}$ 单调下降且有界), $\lim_{n\to\infty}x_n=0$. (II) $\mathrm{e}^{-\frac{1}{6}}$.

$$(17)f(x) = \frac{1}{3} \sum_{n=0}^{\infty} \left[\frac{1}{2^n} - (-1)^n \right] x^n, |x| < 1.$$

- (18) (I) 证明略. (II) f(u) = ln u.
- (19) 证明略.(可利用格林公式.)
- (20) (I) 证明略. (分别证明 $r(A) \ge 2$ 和 $r(A) \le 2$.) (II) a = 2, b = -3, 通解为 $x = k_1(-2, 1, 1, 0)^T + k_2(4, -5, 0, 1)^T + (2, -3, 0, 0)^T$, 其中 k_1 , k_2 为任意常数.
- (21) (I) A 的特征值为0,0,3,对应于特征值0的全体特征向量为 k_1 $\alpha_1 + k_2$ α_2 ,其中 k_1 , k_2 为不全为零的任意常数,对应于特征值3的全体特征向量为 k_3 (1,1,1) $^{\mathrm{T}}$,其中 k_3 为任意非零常数.

(22) (I)
$$f_{Y}(y) = \begin{cases} \frac{3}{8\sqrt{y}}, & 0 < y < 1, \\ \frac{1}{8\sqrt{y}}, & 1 \leq y < 4, \\ 0, & \sharp \text{.} \end{cases}$$

$$(II) F(-\frac{1}{2}, 4) = \frac{1}{4}.$$

$$(23) \hat{\theta} = \frac{N}{n}.$$

一、选择题

(1) B. (2) D. (3) C. (4) D. (5) D. (6) B. (7) A. (8) B. (9) C. (10) A.

二、填空题

$$(11) \frac{1}{2} e^{\frac{1}{2}}. \quad (12) f'_{1} \cdot yx^{y-1} + f'_{2} \cdot y^{x} \ln y. \quad (13) C_{1} e^{x} + C_{2} e^{3x} - 2e^{2x}. \quad (14) \frac{4}{3} \sqrt{3}.$$

 $(15)1. (16) \frac{3}{4}.$

三、解答题

- (17) f(x,y) 在 D 上的最大值为 8,最小值为 0.
- $(18)I = \pi.$
- (19) 证明略.
- (20) (I) 证明略; (II) $y(x) = xe^{x^2}$.
- (21) 当a = 1时,公共解为 $x = c(-1,0,1)^{T}$,c为任意常数;当a = 2时,公共解为 $x = (0,1,-1)^{T}$.
- (22)(I)**B** 的全部特征值为 $-2,1,1,\mathbf{B}$ 的对应于特征值 -2 的特征向量为 $c_1\begin{pmatrix} 1\\ -1\\ 1\end{pmatrix}$, c_1 为任意非零

常数, \boldsymbol{B} 的对应于特征值 1 的特征向量为 $c_2\begin{pmatrix}1\\1\\0\end{pmatrix}+c_3\begin{pmatrix}-1\\0\\1\end{pmatrix}$, c_2 , c_3 为任意常数且不同时为 0;

21

$$(\text{ II }) \mathbf{B} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}.$$

(23) (1) $P\{X > 2Y\} = \frac{7}{24};$

$$(\ \, II \,)f_Z(z) \ = \begin{cases} 2z-z^2\,, & 0 < z \leq 1\,, \\ z^2-4z+4\,, & 1 < z \leq 2\,, \\ 0\,, & 其他. \end{cases}$$

(24) (I) $\hat{\theta} = 2\overline{X} - \frac{1}{2}$;

 $(II)4X^2$ 不是 θ^2 的无偏估计量.

一、选择题

(1)B. (2)A. (3)D. (4)B. (5)C. (6)B. (7)A. (8)D.

二、填空题

(9) $\frac{1}{x}$. (10) y = x + 1. (11) (1,5]. (12) 4π . (13) 1. (14) $\frac{1}{2e}$.

三、解答题

 $(15) \frac{1}{6}$.

$$(16) - \frac{\pi^2}{2}$$
.

(17) 曲线 C 上距离 xOy 面最远的点为(-5,-5,5),最近的点为(1,1,1).

(18) 证明略.

$$(19)f(x) = 1 - \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{4}{n^2} \cos nx, 0 \le x \le \pi; \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}.$$

(20) 证明略.

(21)(I)证明略;

$$(II) a \neq 0, x_1 = \frac{n}{(n+1)a};$$

$$(III) a = 0, \mathbf{x} = c(1,0,\cdots,0)^{\mathrm{T}} + (0,1,0,\cdots,0)^{\mathrm{T}}, c$$
 为任意常数.

(22) (I)
$$P\{Z \le \frac{1}{2} \mid X = 0\} = \frac{1}{2};$$

(II)
$$f_{z}(z) = \begin{cases} \frac{1}{3}, & -1 \leq z < 2, \\ 0, & 其他. \end{cases}$$

(23)(I)证明略;

一、选择题

(1) A. (2) A. (3) D. (4) C. (5) A. (6) B. (7) C. (8) B.

二、填空题

$$(9)xf''_{12} + f'_{2} + xyf''_{22}$$
. $(10) - xe^{x} + x + 2$. $(11)\frac{13}{6}$. $(12)\frac{4}{15}\pi$. $(13)2$. $(14) -1$.

三、解答题

(15)极小值
$$f\left(0,\frac{1}{e}\right) = -\frac{1}{e}$$
.

$$(16)S_1 = \frac{1}{2}, S_2 = 1 - \ln 2.$$

(17)(
$$I$$
) 椭球面 S_1 的方程为 $\frac{x^2}{4} + \frac{y^2 + z^2}{3} = 1$, 圆锥面 S_2 的方程为 $y^2 + z^2 = \frac{1}{4}(x - 4)^2$; (II) $V = \pi$.

- (18)证明略.
- $(19)I = 4\pi$.

(20)(I)
$$\xi_2 = \left(-\frac{1}{2}, \frac{1}{2}, 0\right)^T + c\left(\frac{1}{2}, -\frac{1}{2}, 1\right)^T$$
,或 $\xi_2 = \left(-\frac{1}{2} + \frac{1}{2}c, \frac{1}{2} - \frac{1}{2}c, c\right)^T$, c为任意常数.
$$\xi_3 = \left(-\frac{1}{2}, 0, 0\right)^T + c_1(-1, 1, 0)^T + c_2(0, 0, 1)^T$$
,或 $\xi_3 = \left(-\frac{1}{2} - c_1, c_1, c_2\right)^T$, c_1, c_2 为任意常数. (II)证明略.

(21)(
$$I$$
) $\lambda_1 = a, \lambda_2 = a + 1, \lambda_3 = a - 2;$ (II) $a = 2.$

(22) (I)
$$P\{X=1 \mid Z=0\} = \frac{4}{9}$$
;

(Ⅱ)二维随机变量(X,Y)的概率分布为

Y	0	1	2
0	$\frac{1}{4}$	$\frac{1}{6}$	<u>1</u> 36
1	$\frac{1}{3}$	$\frac{1}{9}$	0
2	$\frac{1}{9}$	0	0

23

(23)(I) λ 的矩估计量为 $\hat{\lambda} = \frac{2}{\overline{X}}$; (II) λ 的最大似然估计量为 $\hat{\lambda} = \frac{2}{\overline{X}}$.