

KONKURS MATEMATYCZNY

dla uczniów gimnazjów województwa mazowieckiego w roku szkolnym 2017/2018

Model odpowiedzi i schematy punktowania

UWAGA 1.

Łącznie uczeń może zdobyć 20 punktów.

Do etapu wojewódzkiego zakwalifikowani będą uczniowie, którzy w etapie rejonowym uzyskają **co najmniej 90%** punktów możliwych do zdobycia **(co najmniej 18 punktów)**.

UWAGA 2.

Za każde poprawne rozwiązanie, inne niż przewidziane w schemacie punktowania rozwiązań zadań, przyznajemy maksymalną liczbę punktów.

ROZWIĄZANIA ZADAŃ ZAMKNIĘTYCH

Nr zadania	1.	2.	3.	4.
Maks. liczba punktów	1 pkt	1 pkt	1 pkt	1 pkt
Prawidłowa odpowiedź	В	В	С	A

ROZWIĄZANIA ZADAŃ OTWARTYCH

Zadanie 5. (2 pkt)

W układzie współrzędnych zaznacz punkty A = (-3; 2), B = (-1; -2), C = (0; -1), D = (2; -1), E = (4; 1). Narysuj odcinki AB, BC, CD, DE. Narysuj figurę symetryczną do otrzymanej względem osi OX.

1. zaznacza punkty A, B, C, D, E i rysuje odcinki AB, BC, CD, DE

1p.

2. rysuje figurę symetryczną do otrzymanej względem osi OX

Zadanie 6. (2 pkt)

Znajdź taką liczbę pierwszą p, dla której liczba p+9 jest kwadratem liczby naturalnej. Ile jest takich liczb? Odpowiedź uzasadnij.

Uczeń:

1. zapisuje liczbę p+9 jako kwadrat liczby naturalnej m i przekształca otrzymane równanie:

1p.

$$p+9=m^2$$

$$p = (m-3)(m+3)$$

2. zauważa, że liczba p jest pierwsza, więc m-3=1 (bo m-3 < m+3) i m+3=p,

1p.

czyli
$$m = 4$$
 i $p = 7$,

zatem tylko liczba 7 spełnia warunki zadania

Zadanie 7. (2 pkt)

Rozwiąż równanie |x-2|-5=3-|2-x|.

Uczeń:

1. zapisuje równość w postaci równoważnej |x-2|=4

1p.

2. znajduje wszystkie liczby spełniające równość: 6, -2.

1p.

Zadanie 8. (2 pkt)

Uzasadnij, że liczba $2017^2 + 4 \cdot 2017 + 4$ jest podzielna przez 3.

Uczeń:

1. zapisuje wyrażenie w postaci $(2017 + 2)^2 = 2019^2$

1p.

2. uzasadnia, że liczba 2019 jest podzielna przez 3

Zadanie 9. (2 pkt)

Trójkąt *ABC* jest wpisany w okrąg o środku *S*, jak na rysunku.

Bok *BC* ma długość 4, kąt *CAB* ma 45°. Oblicz długość odcinka *BS*.

Uczeń:

- 1. zauważa i uzasadnia, że trójkąt *BSC* jest prostokątny równoramienny o przeciwprostokątnej *BC*
- 2. korzysta z twierdzenia Pitagorasa lub wzoru na przekątną kwadratu i oblicza $|BS|=2\sqrt{2}$

1p.

Zadanie 10 (2 pkt)

Punkt S jest środkiem okręgu opisanego na trójkącie CDA, jak na rysunku. Odcinki DA i DC są równe. Oblicz miarę kata ABC.

Uczeń:

1. dorysowuje odcinek CS, zauważa i uzasadnia, że $|\angle DCS| = |\angle DAS| = 55^{\circ}$

1p.

$$|\angle CSD| = |\angle DSA| = 70^{\circ}$$

2. oblicza
$$|\angle CSB| = 180^{\circ} - 2 \cdot 70^{\circ} = 40^{\circ}$$
 i $|\angle ABC| = |\angle DCS| - |\angle CSB| = 15^{\circ}$

drugi sposób:

Uczeń:

1. dorysowuje odcinek CS, zauważa i uzasadnia, że $|\angle CDS| = |\angle ADS| = |\angle DAS| = 55^{\circ}$

2. oblicza
$$|\angle ABC| = 180^{\circ} - |\angle DAB| - |\angle ADB| = 15^{\circ}$$

Zadanie 11. (2 pkt)

Bok kwadratu ABCD ma długość 2.

Punkty T, U, W, Z są środkami boków tego kwadratu, jak na rysunku.

W tym kwadracie umieszczono takie

4 przystające półkola o środkach *T*, *U*, *W*, *Z*, że każde półkole jest styczne do dwóch pozostałych, jak na rysunku.

Oblicz pole ciemniejszego obszaru.

Uczeń:

1. zauważa, że |DU| = |DW| = 1

oraz, że

przeciw
prostokątna UW trójkąta WUD jest równa sumie promieni półkoli i korzystając ze wzoru na długość przekątnej kwadratu oblicza długość r
promienia

$$2r = 1 \cdot \sqrt{2}$$
, $r = \frac{\sqrt{2}}{2}$

2. oblicza pole ciemniejszego obszaru

$$4 - 4 \cdot \frac{1}{2} \pi \left(\frac{\sqrt{2}}{2} \right)^2 = 4 - \pi$$

1p.

1p.

6

Zadanie 12. (2 pkt)

Dane są liczby 2^{600} , $(\sqrt{3})^{480}$, 25^{180} . Uporządkuj te liczby rosnąco. Odpowiedź uzasadnij.

pierwszy sposób:

Uczeń:

1. zauważa, że

$$2^{600} = (2^5)^{120} = 32^{120}$$
$$(\sqrt{3})^{480} = (\sqrt{3})^{4\cdot120} = 9^{120}$$
$$25^{180} = (5^3)^{120} = 125^{120}$$

2. porządkuje liczby rosnąco:

$$\left(\sqrt{3}\right)^{480} < 2^{600} < 25^{180}$$

1p.

1p.

drugi sposób:

Uczeń:

1. zauważa, że

$$2^{600} = (2^{2})^{300} = 4^{300}$$
$$(\sqrt{3})^{480} = ((\sqrt{3})^{2})^{240} = 3^{240}$$
$$25^{180} = (5^{2})^{180} = 5^{360}$$

1p.

2. porządkuje liczby rosnąco:

$$\left(\sqrt{3}\right)^{480} < 2^{600} < 25^{180}$$