Variables aléatoires et modèles de probabilité

Antonio Falcó

Variables aléatoires

Hypothèse

- f O Soit f O l'ensemble des individus associé à une expérience scientifique et
- ② Pr la loi de probabilité associé à cette expérience:

Pr : Événements dans $\Omega : \longrightarrow [0,1]$.

La mesure quantitative

Soit $X:\Omega\longrightarrow\mathbb{R}$ une grandeur qu'on utilise pour étudier les individus de Ω et qu'on appelle **variable aléatoire** si pour chaque pair des mesures $x,x'\in X(\Omega)$ avec $x\leq x'$, qu'on peut observer dans quelque expérience réalisé à Ω , l'ensemble

$$\{\omega \in \Omega : x < X(\omega) \le x'\}$$

est un évément à Ω.

Taille

Exemple

Soit Ω une population d'individus, et

Taille :
$$\Omega \longrightarrow \mathbb{R}$$

la mesure de la taille en cm sur chaque individu dans la population.

• Soit x' = 0 et x = -120, alors

$$\{\omega \in \Omega : -120 < \mathsf{Taille}(\omega) \le 0\} = \emptyset,$$

• Soit x = 0 et x' = 160.5, alors

$$\{\omega \in \Omega : 0 < \mathsf{Taille}(\omega) \le 160.5\}.$$

Est-ce qu'on peut calculer

$$Pr(\{\omega \in \Omega : 0 < Taille(\omega) \le 160.5\})$$
?

L'âge

Exemple

Soit Ω une population d'individus, et

$$\mathsf{Age}:\Omega\longrightarrow\mathbb{R}$$

la mesure de l'âge en années (nombres entiers non négatives) sur chaque individu dans la population.

• Soit x' = 0 et x = -12, alors

$$\{\omega \in \Omega : -12 < \mathsf{Age}(\omega) \leq 0\} = \emptyset,$$

• Soit x = 0 et x' = 16, alors

$$\{\omega \in \Omega : 0 < \mathsf{Age}(\omega) \leq 16\}.$$

Est-ce qu'on peut calculer

$$\Pr(\{\omega \in \Omega : 0 < Age(\omega) \leq 160\})$$
?

Caractéristiques

- On travaille avec des variables quantitatives,
- ② Taille(Ω) \subset [0,1000] cm, alors il est une variable continue.
- **3** Age(Ω) $\subset \{1, 2, ..., 1000\}$ années, alors il est une variable discrète.

Conséquence

Si X est une variable alèatoire continue on peut calculer

$$\Pr(\{\omega \in \Omega : x < X(\omega) \le x'\}) \equiv \Pr(x < X \le x')$$

pour tout $x, x' \in \mathbb{R}$.

Si X est une variable alèatoire discrete on peut calculer

$$\Pr(\{\omega \in \Omega : X(\omega) = k\}) \equiv \Pr(X = k)$$

pour tout
$$k \in \mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$
.