Artificial Intelligence for Business Research @Antai

Course Summary

Renyu (Philip) Zhang

1

Homework Assignments

All due at 11:59pm, June 2, 2024, Sunday

- If you have taken the 1st-Half, you should submit Problem Sets 1 & 2, and Replication Project 1.
- If you have taken the 2nd-Half, you should submit Problem Sets 3 & 4, and Replication Project 2.
- You also need to evaluate your teammate(s).
- Each Problem Set is worth 20% and each Replication Project is worth 60% of the final grade.

2

Session	Date & Time	Торіс	Key Words	What Happened in
1	May 8, 2:00pm- 5:40pm	AI/ML in a Nutshell	Course Intro, ML Models, DL	 the Past 2 Weeks? A lot of Natural Language Processing. Some Computer Vision. Some Unsupervised Learning. Decent amount of their applications in biz/econ research.
2	May 10, 6:00pm- 9:05pm	Prediction and Traditional NLP	Prediction in Biz Research, Pre-processing, $\it N$ -gram, Naïve Bayes	
3	May 11, 6:00pm- 9:05pm	NLP (II): Deep Learning	Word2Vec, RNN, Seq2Seq, Attention, Transformer	
4	May 12, 2:00pm- 5:40pm	NLP (III): LLM	BERT, GPT, Emergent Abilities, Chain-of- Thought, In-context Learning, GenAl in Business Research	
5	May 15, 2:00pm- 5:40pm	CV (I): Image Classification	CNN, AlexNet, ResNet, ViT	
6	May 16, 6:00pm- 9:05pm	CV (II): Image Segmentation and Video Analysis	R-CNN, YOLO, 3D-CNN	
7	May 17, 6:00pm- 9:05pm	Unsupervised Learning (I): Clustering & Topic Modeling	GMM, EM Algorithm, LDA	
8	May 18, 2:00pm- 5:40pm	Unsupervised Learning (II): Diffusion Models	VAE, DDPM, LDM, DiT	3

Our Goal

- 1. Have a basic understanding of the fundamental concepts/methods in machine learning (ML) and artificial intelligence (AI) that are used (or potentially useful) in business research.
- 2. Understand how business researchers have utilized ML/AI and what managerial questions have been addressed by ML/AI in the recent decade.
- 3. Nurture a taste of what the state-of-the-art AI/ML technologies can do in the ML/AI community and, potentially, in your own research field.

5

Course Takeaways

- The necessary knowledge of AI/ML that could help you:
 - Keep up with the literature development in the relevant domains in both CS and business;
 - Develop the necessary sense to do rigorous business research using the relevant methods;
 - Identify important and interesting questions in your own field where AI technologies are useful;
 - Invent new applied methods (most likely without any theoretical guarantee) in your own research.

Impact of a CS Paper = Problem Importance * Technical Novelty * Performance Improvement

Impact of a Business Paper = Problem Importance * Identification Rigor * Insight Novelty

- · Academic research is a kind of craft: You can only learn by doing it on your own.
 - · So, take your Replication Projects seriously!

6

When Will Things Go Wrong?

· Most AI applications are only useful if actionable insights can be derived:

$$\frac{d\pi(X_0,Y)}{dX_0} = \frac{\partial\pi}{\partial X_0} \underbrace{(Y)}_{\text{prediction}} + \frac{\partial\pi}{\partial Y} \underbrace{\frac{\partial Y}{\partial X_0}}_{\text{causation}}.$$

Your prediction of Y is not accurate.

Your causal identification is not clean.

- · You should be able to judge whether you should seek for accurate prediction and/or clean identification.
- Empirical model: $Y = a + b \cdot D + g(X) + \epsilon$
 - Key parameter of interest: b
 - If D is predicted by a ML model, the prediction error is likely to be correlated with ϵ , giving rise to the bias to estimate b.

7

The Bitter Lesson

- Reference: http://www.incompleteideas.net/IncIdeas/BitterLesson.html
- The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective, and by a large margin.
- · Leveraging domain knowledge (short-term & specific) vs. Leveraging computation (long-term & general).
- Bitter lesson: Leveraging domain knowledge is self-satisfying and intellectually inspiring, but plateaus in the long-run or even inhibits further progress.
- Are you ready to control the machine intelligence to create great knowledge?

8

Want to Learn More?

- This course will be offered again in the next AY at CUHK Business School (and maybe at Antai as well).
 - Feel free to join it (online).
- · What to expect:
 - · Deep Dive into Generative AI
 - Use AI to (a) generate strategies/content valuable to business; and (b) simulate human behaviors in response to business strategies.
 - AI/ML-based Causal Inference (https://causalml-book.org/)
 - · Reinforcement Learning
 - AI Ethics/Safety/Society (Ilya left OpenAI on May 15; not sure whether AI will become a new species then.....; https://www.aisafetybook.com/)
- · Stay tuned and hope to see you all again!

Ç

Keep in Touch

- Stay in contact and keep me posted of your academic and career successes.
- Feel free to send me an email/WeChat message. I am always happy to discuss topics related to AI research and business. We may work on something interesting together ©
- Let me know if you need a job referral from me to comment on your academic/career potential.

10

Finally

Thank You & All the Best!

Renyu (Philip) Zhang 张任宇

谢谢! 祝前程似锦! philipzhang@cuhk.edu.hk https://rphilipzhang.github.io/rphilipzhang/index.html WeChat: rphilip_zhang WhatsApp: 85246828057

Hope to see you all again!