

A1+: Rationale Approximation durch Kettenbrüche

Lernziele: bedingte Anweisungen / einfache Schleifen

Aufgabenstellung

Um eine (nicht-ganzzahlige) reelle Zahl $X \in \mathbb{R}$ durch eine rationale Zahl $\tilde{X} \in \mathbb{Q}$ zu approximieren — wie z.B. $X = \pi$ durch $\tilde{X} = \frac{22}{7}$ —, approximiert man X zunächst durch einen Kettenbruch. Zu einer ganzzahligen Folge a_0, a_1, \ldots mit Folgengliedern $a_i \in \mathbb{Z}$ gehört der Kettenbruch

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

Um nun die reelle Zahl X bis auf eine vorgegebene Toleranz durch einen Kettenbruch zu approximieren, wollen wir die Folge a_0, a_1, \ldots erzeugen und dabei den Wert $\tilde{X} \in \mathbb{Q}$ des zugehörigen Kettenbruches mit der gegebenen reellen Zahl $X \in \mathbb{R}$ vergleichen.

Dazu benötigen wir eine Methode, um einen Kettenbruch "von vorne" sukzessive auszuwerten. Der folgende Algorithmus¹ berechnet einen Zähler Z_k und einen Nenner N_k so, dass

$$\tilde{X}_k = Z_k/N_k$$

den Wert des Kettenbruches zu a_0, a_1, \ldots, a_k ergibt:

$$Z_{-1} \equiv 1,$$
 $N_{-1} \equiv 0,$ $Z_0 \equiv a_0,$ $N_0 \equiv 1,$ $Z_k = a_k \cdot Z_{k-1} + Z_{k-2},$ $N_k = a_k \cdot N_{k-1} + N_{k-2}$ für $k \ge 1.$

Die Folge a_k der Kettenbruchglieder erzeugt man gemäß²

$$r_0 \equiv X,$$

$$a_k = \lfloor r_k \rfloor, \qquad r_{k+1} = \frac{1}{r_k - a_k} \qquad \text{für } k \geq 0.$$

Aufgaben

- 1) Lesen Sie eine reelle Zahl X und eine Toleranz Tol ein. Geben Sie die Folge a_0, a_1, \ldots, a_k der Kettenbruchglieder aus, bis $|\tilde{X}_k X| \leq \text{Tol}$ gilt. Geben Sie abschließend die gefundene rationale Approximation $\tilde{X}_k = Z_k/N_k$ aus, indem Sie Zähler und Nenner angeben.
- 2) Implementieren Sie eine verbesserte Variante des Algorithmus zur Berechnung der a_k wie in Fußnote 2 beschrieben.
- 3) Stellen Sie sicher, dass Sie den Bruch Z_k/N_k vor der Ausgabe ggf. kürzen.

Wer will, kann dies per Induktion beweisen: man beachte, dass sich der Kettenbruch zu $a_0, \ldots a_{k+1}$ aus dem zu $a_0, \ldots a_k$ ergibt, indem man bei Letzterem a_k durch $a_k + \frac{1}{a_{k+1}}$ ersetzt.

²besser ersetzt man $a_k = \lfloor r_k \rfloor$ durch $a_k = \lceil r_k \rceil$, falls dadurch $\lceil r_k - a_k \rceil$ kleiner wird.

Wintersemester 2015/16

Hinweise

Aufgrund der Rekursion $Z_k = a_k \cdot Z_{k-1} + Z_{k-2}$ und analog für N_k könnte man vermuten, dass man in der C++-Implementierung Vektoren benötigt. Man kommt aber *ohne* Vektoren aus, sondern benötigt nur drei skalare Werte, um Z_k , Z_{k-1} und Z_{k-2} im k-ten Schleifendurchlauf zu repräsentieren. Mit Hilfe der drei ganzen Zahlen Z_{new} , Z und Z_{old} berechnet man also

$$Z_{\text{new}} \equiv a_k * Z + Z_{\text{old}}, \qquad Z_{\text{old}} \equiv Z, \qquad Z \equiv Z_{\text{new}}.$$

Für die Berechnung des Nenners geht man analog vor.

Testdaten

X = 3.14159265358979

Toleranz	Kettenbruchglieder	rationale Approx. Z_k / N_k
1E-2	3, 7	22 / 7
1E-6	3, 7, 15, 1	355 / 113
1E-11	3, 7, 15, 1, 292, 1, 1, 1, 2	833719 / 265381
oder besser		
1E-11	3, 7, 16, -294, 3, -4	1146408 / 364913