Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_şt-nat*

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Arătați că 2(1+i)-i(2-i)=1, unde $i^2=-1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 10. Determinați numărul real a pentru care punctul A(2a,a) aparține graficului funcției f.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2x^2 + 2} = 2x$.
- **5p** | **4.** Determinați câte numere naturale impare, de trei cifre, se pot forma cu elementele mulțimii $A = \{0,1,2,3,4\}$.
- **5p 5.** Determinați numărul real \vec{a} pentru care vectorii $\vec{u} = a\vec{i} + (a-1)\vec{j}$ și $\vec{v} = \vec{i} + 2\vec{j}$ sunt coliniari.
- **5p 6.** Se consideră triunghiul ABC, dreptunghic în A, cu măsura unghiului B egală cu $\frac{\pi}{6}$ și BC = 24. Bisectoarea unghiului C al triunghiului ABC intersectează latura AB în punctul D. Determinați lungimea segmentului CD.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A(x) = \begin{pmatrix} x+1 & -1 & 1 \\ 0 & x & 0 \\ 1 & -1 & x+1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = 3$.
- **5p b)** Determinați numărul real x pentru care $A(0) \cdot A(x) = A(0)$.
- **5p** c) Determinați numerele reale a și b pentru care $(A(1))^{-1} = aA(1) + bI_3$, unde $(A(1))^{-1}$ este inversa matricei A(1).
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x * y = xy + x + y 1 + 2^{xy}$.
- **5p** | **a**) Arătați că 1*2=8.
- **5p b)** Arătați că e = 0 este elementul neutru al legii de compoziție "*".
- **5p** c) Determinați numărul natural nenul *n* pentru care $n*\left(-\frac{1}{n}\right)=0$.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{2x+1+\ln x}{x}$.
- **5p a)** Arătați că $f'(x) = -\frac{\ln x}{x^2}, x \in (0, +\infty).$
- **5p b)** Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că $\frac{\ln y}{v} \frac{\ln x}{x} < \frac{1}{x} \frac{1}{v}$, pentru orice $x, y \in (1, +\infty)$ cu x < y.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x$.
- **5p a)** Arătați că $\int_{3}^{5} (f(x) x^{3}) dx = 8$.

- **5p b)** Arătați că $\int_{0}^{2} \frac{x^2}{f(x) x + 2} dx = \frac{\ln 5}{3}$.
- **5p** c) Se consideră funcția $g:(0,+\infty) \to \mathbb{R}, \ g(x) = \frac{f(x)e^{-x}}{x}$. Arătați că orice primitivă $G:(0,+\infty) \to \mathbb{R}$ a funcției g este concavă.