ข้อเสนอโครงงานวิศวกรรมไฟฟ้า วิชา 2102490

อิเล็กทรอนิกส์กำลังสำหรับระบบเก็บเกี่ยวพลังงานชนิดเครื่องจักรกลไฟฟ้า Power Electronics for Electromechanical Energy-Harvesting System

> นายณัฐพล กาบแก้ว เลขประจำตัว 6130176521 นายสันติ ว่องประเสริฐ เลขประจำตัว 613XXXXX21 อาจารย์ที่ปรึกษา รศ.ดร. สุรพงศ์ สุวรรณกวิน

ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2564

สารบัญ

1	บทนำ		1
	1.1	บทคัดย่อ	1
	1.2	ที่มาและความสำคัญของโครงงาน	1
	1.3	วัตถุประสงค์ของโครงงาน	1
	1.4	ขอบเขตของโครงงาน	2
	1.5	ผลลัพธ์ที่คาดหวังจากโครงงาน	2
2	หลักกา	รและทฤษฎีที่เกี่ยวข้อง	2
	2.1	การลดกำลังสูญเสียในอินเวอร์เตอร์ ด้วยอัลกอริทึมการมอดูเลตแบบสองแขน และการติดตามการทำงานในจตุภาค	
		ที่หนึ่ง (Two Arm Modulation and First Quadrant Tracking Algorithm)	2
		2.1.1 กำลังสญเสียในสวิตช์ของอินเวอร์เตอร์	2
		2.1.2 การมอดูเลตแบบ SPWM และ อินเวอร์เตอร์โหมดแรงดันแบบสามเฟส	3
		2.1.3 การนำกระแสในจตุภาคที่ 3 ของทรานซิสเตอร์สนามไฟฟ้าแบบ GaN	3
		2.1.4 การลดกำลังสูญเสียในการมอดูเลตแบบ SPWM ด้วยการมอดูเลตแบบสองแขน	3
		2.1.5 การเพิ่มประสิทธิภาพให้กับการมอดูเลตแบบสองแขนด้วยการติดตามการทำงานในจตุภาคที่ 1	3
	2.2	การเพิ่มประสิทธิภาพของแผ่นพื้นเก็บพลังานด้วย [้] อัลกอริทึมการติดตามจุดทำงานที่ให้กำลังสูงสุด (Maximum Power	
		Point Tracking Algorithm; MPPT)	3
3	200	์จากการดำเนินการเบื้องต้น	4
)	ผสสพ	ง แนก เวช เหนนก เวชบองตน	4
4	บทสรุเ		5
	4.1	สรุปผลการดำเนินการ	5
	4.2	แผ่นการดำเนินงาน	5
	4.3	ปัญหา อุปสรรค และแนวทางแก้ไข (ถ้ามี)	5
5	เอกสาร	อ้างอิง	5
6	ภาคเม	วก (ถ้ามี)	5

1 บทน้ำ

1.1 บทคัดย่อ

แผ่นพื้นเก็บเกี่ยวพลังงานด้วยเครื่องจักรกลไฟฟ้าได้ถูกพัฒนาขึ้น โดยมีความสามารถในการจ่ายกำลังไฟฟ้าให้กับอุปกรณ์ที่ใช้พลังงานต่ำ ได้ โครงงานฉบับนี้ มีจุดประสงค์ในการพัฒนาแผ่นพื้นเก็บเกี่ยวพลังงานด้วยเครื่องจักรกลไฟฟ้าซิงโครนัส ประเภทแม่เหล็กถาวร (Permanent Magnet Synchronous Motor) โดยใช้โปรแกรม MATLABTM/SimulinkTM โดยโปรแกรม จะช่วยในการทดสอบ (Test) ทวนสอบ (Verify) ออกแบบให้ได้ผลดีที่สุด (Optimize design) และใช้โปรแกรมในการสร้างโค๊ดภาษาซี และซีพลัสพลัส ที่ถูกออกแบบสำหรับระบบฝั่งตัว (Generate C/C++ Code Optimized for Embedded Systems) จากแบบจำลองที่ได้ออกแบบไว้ และใช้เทคนิคในการลดกำลังสูญเสียใน อินเวอร์เตอร์ คืออัลกอริทึมในการมอดูเลตแบบสองแขน (Two Arm Modulation Algorithm) และการติดตามการทำงานในจตุภาคที่หนึ่ง (First Quadrant Tracking Algorithm) และได้เพิ่มประสิทธิภาพของระบบโดยรวมด้วยการนำอัลกอริทึมในการติดตามจุดทำงานที่ให้กำลัง สูงสุด (Maximum Power Point Tracking Algorithm; MPPT) มาใช้งาน

1.2 ที่มาและความสำคัญของโครงงาน

การเก็บเกี่ยวพลังงานจากการเคลื่อนไหวของมนุษย์นั้น เป็นเรื่องที่น่าสนใจ สามารถนำมาทำให้เกิดขึ้นจริงได้ และได้มีการศึกษามาแล้ว ในหลายๆ ครั้ง [1] [2] ซึ่งในการศึกษาดังกล่าว ได้ค้นพบว่า พลังงานที่ได้ในแต่ละการเหยียบแต่ละครั้งนั้น มีค่าน้อยมาก นั่นคือประมาณ 1-5 จูล เท่านั้น ดังนั้น หัวใจในการเก็บเกี่ยวพลังงานจากระบบดังกล่าว คือการมีประสิทธิภาพที่ดี จึงจะสามารถเก็บพลังงานได้เพียงพอกับการใช้ งานต่อไป ดังนั้น การศึกษาในโครงงานฉบับนี้ จึงได้ม่งเน้นในการเพิ่มประสิทธิภาพให้กับระบบเก็บพลังงานเป็นหลัก

แผ่นพื้นเก็บพลังงานนั้น ประกอบไปด้วยหลายส่วนที่สำคัญคือ ชิ้นส่วนเชิงกล บอร์ดอินเวอร์เตอร์ มอเตอร์ไฟฟ้า และระบบควบคุมที่อยู่ ในระบบฝั่งตัว ดังที่แสดงไว้ในรูปที่ 1

รูป 1: โทโพโลยีของระบบแผ่นพื้นเก็บพลังงาน

ในส่วนของอุปกรณ์เชิงกลของแผ่นพื้นเก็บพลังงานนั้น เนื่องจากโครงงานฉบับนี้ จะให้น้ำหนักกับการวิเคราะห์และออกแบบระบบไฟฟ้า เป็นสำคัญ จึงได้มีการนำอุปกรณ์เชิงกลที่ได้มีการวิเคราะห์และออกแบบไว้แล้วในโครงงานวิศวกรรมในปีก่อนๆ [2] มาใช้งาน

1.3 วัตถุประสงค์ของโครงงาน

- 1. เพื่อศึกษาแบบจำลองทางคณิตศาสตร์และสร้างแบบจำลองพลวัตของระบบแผ่นพื้นเก็บพลังงานด้วยโปรแกรม MATLAB $^{\text{TM}}$ /Simulink $^{\text{TM}}$ เพื่อตรวจสอบผลลัพธ์ที่ได้ก่อนนำไปใช้กับอุปกรณ์จริง
- 2. เพื่อหาแนวทางในการลดพลังงานสูญเสียในระบบขับเคลื่อนเครื่องจักรกลไฟฟ้าซิงโครนัสประเภทแม่เหล็กถาวร และพัฒนาชุดอัลกอ ริทึมในการเพิ่มประสิทธิภาพให้กับระบบแผ่นพื้นเก็บพลังงาน
- 3. เพื่อสร้างต้นแบบอุปกรณ์ แผ่นพื้นเก็บพลังงาน ที่สามารถใช้งานได้จริง

1.4 ขอบเขตของโครงงาน

- 1. โครงงานฉบับนี้จะใช้เครื่องจักรกลไฟฟ้าชนิดแม่เหล็กถาวร เป็นตัวกำเนิดไฟฟ้า
- 2. โครงงานฉบับนี้จะใช้ไมโครคอนโทรลเลอร์ TI^{TM} F280049C ที่อยู่บนชุดทดลอง Picolo LaunchPad LaunchPad เป็นระบบฝั่งตัวแกนกลาง ในคำนวนอัลกอริทีมต่างๆ
- 3. โครงงานฉบับนี้จะใช้บอร์ดอินเวอร์เตอร์ TITM BOOSTXL-3PHGaNINV เป็นสวิตช์สำหรับวงจรอินเวอร์เตอร์
- 4. โครงงานฉบับนี้จะโปรแกรมระบบฝั่งตัวดังกล่าวผ่านการสร้างโค๊ดบนแพลตฟอร์ม Simulink $^{\mathsf{TM}}$ Embedded Coder $^{\mathsf{TM}}$

1.5 ผลลัพธ์ที่คาดหวังจากโครงงาน

- 1. แผ่นพื้นเก็บพลังงานต้นแบบที่มีประสิทธิภาพสูง และสามารถใช้งานได้จริง
- 2. อัลกอริทึมในการลดกำลังสูญเสียในอินเวอร์เตอร์ ที่สามารถนำไปใช้กับระบบแผ่นพื้นเก็บพลังงาน และยังสามารถนำไปใช้กับอินเวอร์ เตอร์ใดๆ นอกเหนือจากระบบแผ่นพื้นเก็บพลังงานได้อีกด้วย
- 3. อัลกอริทึมในการติดตามจุดทำงาน ที่ให้กำลังไฟฟ้าสูงสุด ที่สามารถนำไปใช้กับระบบแผ่นพื้นเก็บพลังงาน

2 หลักการและทฤษฎีที่เกี่ยวข้อง

2.1 การลดกำลังสูญเสียในอินเวอร์เตอร์ ด้วยอัลกอริทึมการมอดูเลตแบบสองแขน และการติดตามการทำงานในจตุภาค ที่หนึ่ง (Two Arm Modulation and First Quadrant Tracking Algorithm)

2.1.1 กำลังสูญเสียในสวิตช์ของอินเวอร์เตอร์

กำลังสูญเสียในสวิตช์ของอินเวอร์เตอร์มีอยู่ด้วยกันสองประเภท คือ กำลังสูญเสียระหว่างสวิตช์ (Switching Loss) และกำลังสูญเสียระหว่าง นำกระแส (Conduction Loss)

$$P_{loss} = P_{sw} + P_{cond}$$

รูป 2: แรงดัน และกระแสของสวิตช์ ในขณะที่กำลังเปิดสวิตช์

จากรูปที่ 2 จะเห็นได้ว่า ในขณะที่กำลังเปิดสวิตช์ กระแสในสวิตช์จะเพิ่มขึ้นก่อน และแรงดันตกคร่อมสวิตช์จะค่อยลดลงทีหลัง คุณลักษณะ ดังกล่าว ทำให้เกิดกำลังงานสูญเสียในขณะที่สวิตช์กำลังเปิด ซึ่งจะคำนวณได้จาก

$$P_{sw} = v_{sw}i_{sw}$$

แต่เมื่อพอสวิตช์เปิดเต็มที่แล้ว สวิตช์จะมีแรงดันตกคร่อมอยู่เล็กน้อย ทำให้เกิดกำลังสูญเสียในขณะนำกระแส

$$P_{cond} = v_{sw,(on)}i_{sw,(on)}$$

กำลังสูญเสียระหว่างสวิตช์นั้น ขึ้นอยู่กับคุณลักษณะสมบัติของสวิตช์ที่เลือกใช้ และจำนวนครั้งในการสวิตช์ นั้นคือ ถ้าหากสวิตช์ที่เลือกใช้มี คุณลักษณะสมบัติที่ทำให้อยู่ในย่านกำลังสวิตช์นาน หรือมีจำนวนครั้งในการสวิตช์มาก ก็จะทำให้กำลังสูญเสียขณะสวิตช์สูงตามไปด้วย

กำลังสูญเสียขณะนำกระแสนั้น ขึ้นอยู่กับคุณลักษณะสมบัติของสวิตช์ที่เลือกใช้ ว่าในขณะนำกระแสนั้นมีแรงดันตกคร่อมสวิตช์มากแค่ไหน ถ้าหากแรงดันตกคร่อมสวิตช์มาก ก็จะทำให้กำลังสูญเสียขณะนำกระแสมากขึ้นตามมา

2.1.2 การมอดูเลตแบบ SPWM และ อินเวอร์เตอร์โหมดแรงดันแบบสามเฟส

ในการขับเคลื่อนเครื่องจักรกลไฟฟ้าโดยทั่วไปนั้นอาศัยการสร้างสนามแม่เหล็กหมุน มาเหนี่ยวนำให้เกิดแรงบิด ซึ่งในกรณีของเครื่องงจักร กลไฟฟ้าซิงโครนัสแบบแม่เหล็กถาวรนั้นอาศัยการสร้างสนามแม่เหล็กหมุนโดยใช้ไฟฟ้ากระแสสลับ อินเวอร์เตอร์ จึงเป็นอุปกรณ์ที่จำเป็นต่อ ระบบขับเคลื่อนเครื่องจักรกลไฟฟ้าซิงโครนัสแบบแม่เหล็กถาวรด้วยแหล่งจ่ายไฟฟ้ากระแสตรง ในโครงงานฉบับนี้ได้นำเครื่องจักรกลไฟฟ้าซิง โครนัสแบบแม่เหล็กถาวรสามเฟส มาเป็นเครื่องกำเนิดไฟฟ้า สำหรับระบบแผ่นพื้นเก็บพลังงาน โดยจะเก็บพลังงานที่ผลิตได้ไว้กับแบตเตอร์รี ในโครงงานฉบับนี้ จึงเลือกใช้อินเวอร์เตอร์สามเฟสที่มีทอพอโลยีดังรูปที่ 3

รูป 3: ทอพอโลยีของอินเวอร์เตอร์สามเฟส

อินเวอร์เตอร์ทอพอโลยีที่ได้นำเสนอมาข้างต้น สามารถสร้างแรงดันออกที่แต่ละขั้วทั้งสามได้เพียงแค่ 2 ค่าเท่านั้นคือ

$$V_x = \begin{cases} V_{DC}, & if \ S_u \ \& \ !S_l \\ 0, & if \ !S_u \ \& \ S_l \end{cases}$$

และถ้าหากพิจารณาให้กึ่งกลางบัสแรงดันไฟฟ้ากระแสตรงเป็นจุดอ้างอิงแรงดัน จะได้ว่า

$$V_x = \begin{cases} V_{DC}/2, & \text{if } S_u \& !S_l \\ -V_{DC}/2, & \text{if } !S_u \& S_l \end{cases}$$

แต่เนื่องจากกระขับเคลื่อนเครื่องจักรกลไฟฟ้าชิงโครนัสสามเฟสประเภทแม่เหล็กถาวรนั้น จำเป็นต้องใช้ไฟฟ้ากระแสสลับคลื่นรูปไซน์ ดังนั้น เทคนิคการมอดูเลตความกว้างพัลส์แบบไซน์ (Sinusoidal Pulse Width Modulation; SPWM) จึงได้ถูกนำมาใช้ โดยการมอดูเลตความกว้าง พัลส์แบบไซน์มีหลักการในการทำงานคือ นำสัญญาณพาห์รูปสามเหลี่ยม มาเปรียบเทียบกับสัญญาณคำสั่ง โดยผลลัพธ์ของการเปรียบเทียบ นั้น จะได้เป็นสัญญาณขับนำของสวิตซ์ ดังรูปที่ 2.1.2 ซึ่งจะส่งผลให้ แรงดันที่ขั้วของอินเวอร์เตอร์ มีค่าเฉลี่ยเท่ากับแรงดันคำสั่ง จากรูปข้าง ต้น จะเห็นได้ว่าความกว้างพัลส์ของสัญญาณขับนำนั้น เปลี่ยนไปตามขนาดของสัญญาณ

- 2.1.3 การนำกระแสในจตุภาคที่ 3 ของทรานซิสเตอร์สนามไฟฟ้าแบบ GaN
- 2.1.4 การลดกำลังสูญเสียในการมอดูเลตแบบ SPWM ด้วยการมอดูเลตแบบสองแขน
- 2.1.5 การเพิ่มประสิทธิภาพให้กับการมอดูเลตแบบสองแขนด้วยการติดตามการทำงานในจตุภาคที่ 1
- 2.2 การเพิ่มประสิทธิภาพของแผ่นพื้นเก็บพลังานด้วยอัลกอริทึมการติดตามจุดทำงานที่ให้กำลังสูงสุด (Maximum Power Point Tracking Algorithm; MPPT)

รูป 4: การมอดูเลตความกว้างพัลส์แบบไซน์

3 ผลลัพธ์จากการดำเนินการเบื้องต้น

รูป 5: 50Hz

4 บทสรุป

- 4.1 สรุปผลการดำเนินการ
- 4.2 แผนการดำเนินงาน
- 4.3 ปัญหา อุปสรรค และแนวทางแก้ไข (ถ้ามี)

5 เอกสารอ้างอิง

- [1] R. Riemer and A. Shapiro, "Biomechanical energy harvesting from human motion: theory, state of the art,design guidelines, and future directions." https://pubmed.ncbi.nlm.nih.gov/21521509/, 2011.
- [2] T. Jintanawan, G. Phanomchoeng, S. Suwankawin, P. Kreepoke, P. Chetchatree, and C. U-viengchai, "Design of kinetic-energy harvesting floors." https://doi.org/10.3390/en13205419, 2020.

6 ภาคผนวก (ถ้ามี)