

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09048771 A

(43) Date of publication of application: 18 . 02 . 97

(51) Int. CI **C07D277/34**

A61K 31/425

A61K 31/425

C07C 67/347

C07C 69/76

C07C 69/84

C07C 69/92

C07D417/12

//(C07D417/12

, C07D277:34

C07D317:48)

(21) Application number: 08153139

(22) Date of filing: 24 . 05 . 96

(30) Priority:

02 . 06 . 95 JP 07159781

(71) Applicant:

KYORIN PHARMACEUT CO LTD

(72) Inventor:

MAEDA TOSHIO NOMURA MASAHIRO AWANO KATSUYA KINOSHITA SUSUMU SATO HIROYA MURAKAMI KOJI TSUNODA MASAKI

(54) N-BENZYLDIOXOTHIAZOLIDYL BENZAMIDE DERIVATIVE AND ITS PRODUCTION

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a new compound improved in insulin resistance, having potent hypoglycemic and hypolipemic effect, and high in safety, thus useful as e.g. a hypoglycemic agent.

SOLUTION: This new compound (salt) is expressed by formula I [R1 and R2 are each H, a 1-4C alkyl, 1-3C (halo)alkoxyl, 1-3C haloalkyl, a halogen, OH, NO2, (1-3C alkyl-substituted) amino, heterocycle, or combined into methylenedioxy; R3 is a 1-3C alkoxyl, OH or a halogen; dotted line is a single or double bond in combination N-(4-trifluoromethylwith solid line], e.g. benzyl)-5-(2,4-dioxothiazolidin-5-yl)methyl-2--methoxyben zamide. The compound of formula 1 is obtained by reaction between a compound of formula II and a compound of formula III.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-48771

(43)公開日 平成9年(1997)2月18日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ					技術表示箇所
C 0 7 D 2	77/34			C 0	7 D	277/34			
A61K	31/425	ADN		A 6	1 K	31/425		ADN	
		ADP						ADP	
C07C	67/347			CO	7 C	67/347			
ı	69/76		9546-4H			69/76		Z	
			審査請求	未請求	請才	マダイ で	FD	(全 14 頁)	最終頁に続く
(21)出顧番号		特顧平8-153139		(71)	出願人	人 000001	395		
						杏林製	薬株式	会社	
(22)出願日		平成8年(1996)5月	124日			東京都	千代田	区神田駿河台	2丁目5番地
				(72)	発明者	新 前田 :	敏夫		
(31)優先権主	摄番号	特願平7-159781				栃木県	下都賀	郡野木町友沼色	6096
(32)優先日		平7 (1995) 6月2日	3	(72)	発明す	野村	昌弘		
(33)優先権主張	援国	日本(JP)				栃木県	下都賀	郡野木町友沼(5096
				(72) §	発明者	東野)	勝也		
						栃木県	小山市	喜沢352-22	
				(72) §	発明者	木下	進		
						埼玉県	有埼玉	郎白岡町新白服	聞 3 -10-10
				(74) 1	人野分	、 弁理士	箕浦	清	

(54) 【発明の名称】 Nーベンジルジオキソチアゾリジルベンズアミド誘導体及びその製造法

(57)【要約】

【目的】 インスリン抵抗性を改善し、強力な血糖低下作用と脂質低下作用を有する新規なN-ベンジルジオキ

ソチアゾリジルベンズアミド誘導体及びそれらの製造法 を提供する。

最終頁に続く

【構成】 一般式(1)

[式中、R¹, R²は同一又は異なって、水素、炭素数 1~4の低級アルキル基、炭素数 1~3の低級アルコキシ基、炭素数 1~3の低級ハロアルキル基、炭素数 1~3の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 1~3の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R¹と R²が

結合レメチレンジオキシ基を、R³は炭素数1~3の低級アルコキシ基、水酸基、ハロゲン原子を、点線は実線との組み合せで二重結合又は単結合を示す〕で表されることを特徴とするN-ベンジルジオキソチアゾリジルベンズアミド誘導体及びそれらの製造法に関する。

【特許請求の範囲】

【請求項1】 一般式(1) (1)

20

[式中、R1, R2は同一又は異なって、水素、炭素数 1~4の低級アルキル基、炭素数1~3の低級アルコキ シ基、炭素数1~3の低級ハロアルキル基、炭素数1~ 3の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニ トロ基、炭素数1~3の低級アルキル基で置換されても 良いアミノ基、及びヘテロ環を、あるいはR¹とR²が 結合しメチレンジオキシ基を、R3は炭素数1~3の低 級アルコキシ基、水酸基、ハロゲン原子を、点線は実線 との組み合せで二重結合又は単結合を示す] で表される N-ベンジルジオキソチアゾリジルベンズアミド誘導体 及びその薬理学的に許容しうる塩。

【請求項2】 化合物がN-(4-トリフルオロメチル ベンジル) -5-(2, 4-ジオキソチアゾリジン-5 ーイル) メチルー2ーメトキシベンズアミドである、請 求項1記載のN-ベンジルジオキソチアゾリジルベンズ アミド誘導体及びその薬理学的に許容しうる塩。

【請求項3】 化合物がN-(4-トリフルオロメチル ベンジル) -5-(2, 4-ジオキソチアゾリジン-5 ーイル) メチルー2ーイソプロポキシベンズアミドであ る、請求項1記載のN-ベンジルジオキソチアゾリジル ベンズアミド誘導体及びその薬理学的に許容しうる塩。

【請求項4】 化合物がN- (4-トリフルオロメチル ベンジル) -5-(2, 4-ジオキソチアゾリジン-5 ーイル) メチルー 2 - エトキシベンズアミドである、請 30 求項1記載のN-ベンジルジオキソチアゾリジルベンズ アミド誘導体及びその薬理学的に許容しうる塩。

【請求項5】 化合物がN- (4-トリフルオロメチル ベンジル) -5-(2, 4-ジオキソチアゾリジン-5 ーイル) メチルー2-フルオロベンズアミドである、請 求項1記載のN-ベンジルジオキソチアゾリジルベンズ アミド誘導体及びその薬理学的に許容しうる塩。

【請求項6】 一般式 (2)

[式中、R³は炭素数1~3の低級アルコキシ基、水酸 基、ハロゲン原子を、R*は水素、炭素数1~3の低級 アルキル基を示す]で表される化合物に式(3)

で表される化合物を作用させることを特徴とする一般式 (4)***** 50

$$R^4O_2C$$

$$NH$$

$$(4)$$

* [式中、R³, R⁴は前述の通り] で表される化合物の

【請求項7】 一般式(4)

$$R^4O_2C$$
 NH (4)

[式中、R³は炭素数1~3の低級アルコキシ基、水酸 基、ハロゲン原子を、R⁴は水素、炭素数1~3の低級 アルキル基を示す]で表される化合物を還元することを 特徴とする一般式 (5)

[式中、R³, R⁴は前述の通り] で表される化合物の 製造法。

【請求項8】 一般式 (6)

[式中、R³は炭素数1~3の低級アルコキシ基、水酸 基、ハロゲン原子を示し、R⁵は炭素数1~3の低級ア ルキル基を、点線は実線との組み合せで二重結合又は単 結合を示す〕で表される化合物を加水分解することを特 徴とする一般式 (7)

[式中、R³、点線は前述の通り]で表される化合物の 製造法。

【請求項9】 一般式(8)

[式中、 R^3 は炭素数 $1\sim3$ の低級アルコキシ基、水酸基、ハロゲン原子を、 R^5 は炭素数 $1\sim3$ の低級アルキル基を示す]で表される化合物をハロゲン化水素の存在下にジアゾニウム塩とした後に一般式 (9)

[式中、 R^6 は炭素数 $1\sim3$ の低級アルキル基を示す] で表される化合物を作用させることを特徴とする一般式 (10)

$$R^3$$
 X CO_2R^6 (10)

[式中、 R^3 , R^6 , R^6 は前述の通りであり、Xはハロゲン原子を示す] で表される化合物の製造法。

【請求項10】 一般式 (10)

$$R^3$$
 X CO_2R^6 (10)

[式中、 R^s は炭素数 $1\sim3$ の低級アルコキシ基、水酸基、ハロゲン原子を、 R^s は炭素数 $1\sim3$ の低級アルキル基を、 R^s は炭素数 $1\sim3$ の低級アルキル基を示し、Xはハロゲン原子を示す〕で表される化合物にチオ尿素 *30

※導体の製造法。

20

[式中、R¹, R², R³、点線は前述の通り]で表されるN-ベンジルジオキソチアグリジルベンズアミド誘※

プリジルベンズアミド誘※ 【請求項12】 一般式 (la)
R! S NH (la)

[式中、R¹, R²は同一又は異なって、水素、炭素数 1~4の低級アルキル基、炭素数 1~3の低級アルコキシ基、炭素数 1~3の低級ハロアルキル基、炭素数 1~3の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 1~3の低級アルキル基で置換されても★

*を作用させた後、加水分解することを特徴とする一般式 (7a)

[式中、R³は前述の通り]で表される化合物の製造 法。

[式中、R³は炭素数1~3の低級アルコキシ基、水酸基、ハロゲン原子を、点線は実線との組み合せで二重結合又は単結合を示す]で表される化合物に一般式 (11)

$$R^2$$
 CH_2NH_2 (11)

[式中、 R^1 , R^2 は同一又は異なって、水素、炭素数 $1\sim 4$ の低級アルキル基、炭素数 $1\sim 3$ の低級アルコキシ基、炭素数 $1\sim 3$ の低級ハロアルキル基、炭素数 $1\sim 3$ の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 $1\sim 3$ の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R^1 と R^2 が結合しメチレンジオキシ基を示す]で表される化合物を作用させることを特徴とする一般式 (1)

★良いアミノ基、及びヘテロ環を、あるいはR¹とR²が 結合しメチレンジオキシ基を、R³は炭素数1~3の低

結合しメチレンジオキシ基を、R³は炭素数1~3の低級アルコキシ基、水酸基、ハロゲン原子を示す]を還元することを特徴とする一般式(1b)

[式中、R¹, R², R³は前述通り] で表されるNー ベンジルジオキソチアゾリジルベンズアミド誘導体の製* * 浩法。

【請求項13】 一般式(1c)

[式中、R¹, R²は同一又は異なって、水素、炭素数 1~4の低級アルキル基、炭素数 1~3の低級アルコキシ基、炭素数 1~3の低級ハロアルキル基、炭素数 1~3の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 1~3の低級アルキル基で置換されても※

※良いアミノ基、及びヘテロ環を、あるいはR¹とR²が 結合しメチレンジオキシ基を、点線は実線との組み合せ で二重結合又は単結合を示す]で表される化合物にルイ ス酸を作用させることを特徴とする一般式(1d)

[式中、R¹, R²、点線は前述の通り]で表されるN ーベンジルジオキソチアゾリジルベンズアミド誘導体の★ ★製造法。

【請求項14】 一般式(1)

[式中、R¹, R³は同一又は異なって、水素、炭素数 1~4の低級アルキル基、炭素数 1~3の低級アルコキシ基、炭素数 1~3の低級ハロアルキル基、炭素数 1~3の低級ハロアルキル基、炭素数 1~3の低級アルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 1~3の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R¹と R²が結合しメチレンジオキシ基を、R³は炭素数 1~3の低級アルコキシ基、水酸基、ハロゲン原子を、点線は実線との組み合せで二重結合又は単結合を示す〕で表されるNーベンジルジオキソチアゾリジルベンズアミド誘導体及びその薬理学的に許容しうる塩の少なくとも 1種類以 40上を有効成分とする血糖降下薬。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、糖尿病及び高脂血症を 改善する新規なNーベンジルジオキソチアプリジルベン ズアミド誘導体及びそれらの製造法に関する。

[0002]

【従来の技術】従来より経口糖尿病治療薬としては、ビ グアナイド系及びスルホニルウレア系化合物が用いられ ている。しかしながらビグアナイド系化合物では、乳酸 50 アシドーシスあるいは低血糖を、スルホニルウレア系化合物では重篤かつ遷延性の低血糖を引き起こし、その副作用が問題となっており、このような欠点のない新しい糖尿病治療剤の出現が望まれている。またチアゾリジンー2、4ージオン誘導体のあるものが血糖低下及び血中脂質低下作用を示すことが知られているが(Journal of Medicinal Chemistry,第35巻.P.1853(1992),特開平1-272573号公報)、これらの化合物はいずれも、チアゾリジンー2、4ージオン環と芳香環を結ぶ中間のベンゼン環の置換位置がパラ位であり、中間のベンゼン環に置換基がなく、更に前者は芳香環がオキサゾール環であり、後者は結合がスルホンアミドである等、本発明化合物であるNーベンジルジオキンチアプリジルベンズアミド誘導体とは構造的に異なるものである。

[0003]

【発明が解決しようとする課題】糖尿病患者の大多数を 占めるインスリン非依存型糖尿病 (NIDDM) におい てはインスリン抵抗性を改善し、安全性の高い有効な血 糖低下薬が強く望まれる。

[0004]

【課題を解決するための手段】本発明者らは、インスリ

ン抵抗性を改善し、強力な血糖低下作用を有する安全性 の高い薬物に関して鋭意研究を重ねた結果、下記一般式

(1) で表される新規N-ベンジルジオキソチアゾリジ*

作用を有することを見出し本発明を完成した。

[式中、 R^1 , R^2 は同一又は異なって、水素、炭素数 $1\sim 4$ の低級アルキル基、炭素数 $1\sim 3$ の低級アルコキシ基、炭素数 $1\sim 3$ の低級ハロアルキル基、炭素数 $1\sim 3$ の低級ハロアルキル基、炭素数 $1\sim 3$ の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 $1\sim 3$ の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R^1 と R^2 が結合しメチレンジオキシ基を、 R^3 は炭素数 $1\sim 3$ の低級アルコキシ基、水酸基、ハロゲン原子を、点線は実線との組み合せで二重結合又は単結合を示す]で表されるN-ベンジルジオキソチアゾリジルベンズアミド誘導体及びその薬理学的に許容しうる塩である。

【0006】本発明における一般式(1)で表される化合物の塩類は慣用のものであって、金属塩例えばアルカリ金属塩(例えばナトリウム塩、カリウム塩など)、アルカリ土類金属塩(例えばカルシウム塩、マグネシウム塩など)、アルミニウム塩等薬理学的に許容しうる塩が挙げられる。

【0007】また、本発明における一般式(1)には、 二重結合に基づく立体異性体及びチアゾリジン部分に基 づく光学異性体が含まれることがあるが、そのような異 性体及びそれらの混合物はすべてこの発明の範囲内に包 含されるものとする。

【0008】本発明の一般式(1)において、「低級アルキル基」とは、メチル、エチル、プロピル、ブチル ※

※等、直鎖もしくは分岐した炭素数 $1\sim4$ のものが挙げら 10 れる。

【0009】「低級アルコキシ基」とは、メトキシ、エトキシ、プロポキシ等、直鎖もしくは分岐した炭素数1~3のものが挙げられる。

【0010】「低級ハロアルキル基」とは、トリフルオロメチル等、直鎖もしくは分岐した炭素数1~3のものが挙げられる。

【0011】「低級ハロアルコキシ基」とは、トリフルオロメトキシ等、直鎖もしくは分岐した炭素数1~3のものが挙げられる。

【0012】「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

【0013】「低級アルキル基で置換されても良いアミノ基」とは、アミノ基又は、メチル、エチル、プロピル等、直鎖もしくは分岐した炭素数1~3の低級アルキル基で1又は2置換されたメチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等が挙げられる。

【0014】本発明によれば上記一般式(1)である化 合物は以下の方法により製造することができる。

【0015】一般式 (1) である化合物は一般式 (7) の化合物に一般式 (11) の化合物を作用させることにより製造することができる。

[式中、R¹, R²は同一又は異なって、水素、炭素数 1~4の低級アルキル基、炭素数 1~3の低級アルコキシ基、炭素数 1~3の低級ハロアルキル基、炭素数 1~3の低級ハロアルコキシ基、ハロゲン原子、水酸基、ニトロ基、炭素数 1~3の低級アルキル基で置換されても良いアミノ基、及びヘテロ環を、あるいは R¹と R²が結合しメチレンジオキシ基を、R³は炭素数 1~3の低級アルコキシ基、水酸基、ハロゲン原子を、点線は実線との組み合せで二重結合又は単結合を示す]

★ [式中、R³、点線は前述の通り]

$$R^1$$
 CH_2NH_2 (11)

[式中、R¹, R²は前述の通り]

【0016】反応は有機溶媒、例えばジメチルスルホキ 50 シド、N, N-ジメチルホルムアミド等中で、縮合剤、

10

例えば1-エチル-3-(3'-ジメチルアミノプロピル)カルボジイミド、シアノリン酸ジエチル等で処理することにより行うことができる。また必要ならば有機塩基、例えばトリエチルアミン等を添加しても良い。反応*

【0017】一般式 (1b) である化合物は、一般式 (1a) の化合物を還元することにより製造することができる。

* 温度としては氷冷~室温で行うことができる。

[式中、R¹, R², R³は前述の通り]

[式中、R¹, R², R³は前述の通り]

【0018】反応は有機溶媒、例えばエタノール、酢酸エチル、N, Nージメチルホルムアミド等中、あるいはそれらの混合溶媒中で、室温~加熱下、パラジウム/炭素等の触媒存在下に常圧~4kg/cm²で水素添加することにより行うことができる。あるいは有機溶媒、例えば※

※エタノール等のアルコール中、又は水との混合溶媒中で、室温~加熱下にナトリウムアマルガムと処理することにより行うことができる。

【0019】下記一般式 (1d) である化合物は一般式 (1c) にルイス酸を作用させることにより製造することができる。

[式中、R¹, R²、点線は前述の通り]

40

★ 50

[式中、R¹, R²、点線は前述の通り]

【0020】反応は有機溶媒、例えばジクロロメタン、 クロロホルム等中、-78℃~室温下でルイス酸、例えば 三臭化ホウ素、三塩化ホウ素等で処理することにより行 うことができる。

【0021】一般式(7)である化合物は下記一般式(6)の化合物を加水分解することにより製造できる。

[式中、R³、点線は前述の通りであり、R⁵は炭素数 1~3の低級アルキル基を示す]

【0022】反応は酸性、又はアルカリ性条件下で、反応温度としては冷却下~溶媒還流で行うことができ、例えば、酢酸と濃塩酸の混合溶媒中で加熱還流することが好ましい。

★【0023】一般式(4)である化合物は下記一般式 (2)の化合物に式(3)の化合物を作用させることに より製造できる。

$$R^4O_2C$$
 NH (4)

[式中、 R^3 は前述の通りであり、 R^4 は水素、炭素数 $1 \sim 3$ の低級アルキル基を示す]

[式中、R3及びR4は前述の通り]

10

【0024】反応は有機溶媒、例えばベンゼン、トルエン、キシレン等中で、反応温度としては室温~溶媒還流温度で行うことができるが、溶媒還流温度が好ましい。また触媒として、二級アミン(ピペリジン等)あるいは酢酸塩類(酢酸アンモニウム等)と酢酸の添加も好適である。また無溶媒で塩基(酢酸ナトリウム、ピペリジン等)と共に加熱することによっても行うことができる。【0025】一般式(5)である化合物は、一般式(4)の化合物を還元することにより製造することがで

(4) の化合物を還元することにより製造することができる。

[式中、R³, R⁴は前述の通り]

【0026】反応は有機溶媒、例えばエタノール、酢酸 20 エチル、N, N-ジメチルホルムアミド等中、あるいは それらの混合溶媒中で、室温~加熱下、パラジウム/炭素等の触媒存在下に常圧~4kg/cm²で水素添加することにより行うことができる。あるいは有機溶媒、例えば エタノール等のアルコール中、又は水との混合溶媒中で、室温~加熱下にナトリウムアマルガムと処理することにより行うことができる。

【0027】一般式(7a)である化合物は下記一般式(10)の化合物にチオ尿素を作用させた後、加水分解することによっても製造できる。

[式中、R³は前述の通り]

[式中、R³、R⁵は前述の通りであり、R⁵は炭素数 1~3の低級アルキル基を、Xはハロゲン原子を示す] 【0028】一般式(10)の化合物とチオ尿素との反応は有機溶媒、例えばエタノール等のアルコール中で室温~溶媒還流温度で行うことができるが、溶媒還流温度が好ましい。必要ならば塩基(酢酸ナトリウム等)を添加しても良い。次の加水分解反応は酸性条件下で行うことができ、例えば塩酸、あるいは塩酸と有機溶媒(スルホラン等)の混合溶媒中で加熱還流することが好ましい。【0029】一般式(10)である化合物は一般式(8)

の化合物をジアゾニウム塩とした後に一般式 (9) の化合物とメイルバイン アリレイション (Meerwein Aryla tion) を行うことにより製造できる。

[式中、R³, R⁵は前述の通り]

$$CO_2R^6$$
 (9)

[式中、R⁶は前述の通り]

【0030】反応は有機溶媒、例えばメタノール、エタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、水及びこれらの混合溶媒中、塩酸、臭化水素酸等のハロゲン化水素存在下、一般式(8)である化合物を亜硝酸ナトリウム等の亜硝酸塩類によりジアゾ化した後、一般式(9)である化合物の存在下に触媒量の酸化第一銅、塩化第一銅等の第一銅塩類を作用させることにより行うことができる。

[0031]

【実施例】次に本発明を具体例によって説明するがこれ らの例によって本発明が限定されるものではない。実施 例で使用する略号は以下の意味を表す。

¹H NMR プロトン核磁気共鳴スペクトル

MS 質量スペクトル

CDC1。 重水素化クロロホルム

DMF N, N-ジメチルホルムアミド

DMSO ジメチルスルホキシド

30 THF テトラヒドロフラン

d₆-DMSO 重水素化ジメチルスルホキシド 【0032】実施例<u>1</u>

5-(2, 4-ジオキソチアゾリジン-5-イリデン)メチル-2-メトキシ安息香酸メチル

【0033】5 - ホルミル-2-メトキシ安息香酸メチル (490mg)、チアゾリジン-2, 4-ジオン (358mg)、

(10ml) の混合物をディーンスターク脱水装置を付して 4時間加熱還流した。冷後、析出した結晶を濾取し、ベンゼン、20%アセトン水溶液で洗浄した後、乾燥し、目 的化合物を結晶として 634mg (86%) 得た。

酢酸アンモニウム (401mg)、酢酸 (0.8ml)、ベンゼン

[0034] 1H NMR (d₆-DMSO), δ : 3.83 (3H, s), 3.90 (3H, s), 7.34 (1H, d, J=9.3Hz), 7.79 (1H, s), 7.76-7.83 (1H, m), 7.87-7.92 (1H, m), 12.59 (1H, s)

【0035】実施例2~3

実施例1と同様にして表1の化合物を得た。

[0036]

50 【表1】

実施例	R³	R ⁴	性状	MS (m/z) : M*
2	EtO	Εt	結晶	_
3	i-PrO	н	結晶	307

【0037】実施例4

5-(2, 4-ジオキソチアゾリジン-5-イル) メチルー2-メトキシ安息香酸メチル

【0038】5-(2,4-ジオキソチアゾリジン-5-イリデン)メチル-2-メトキシ安息香酸メチル(9.52g)をDMF(250ml)に懸濁し、室温、3.5kg/cm²に水素加圧下10%パラジウム/炭素(10.0g)で水素化した。反応後、溶液を濾過、濃縮し、残留物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗い、無水硫酸ナトリウムで乾燥し、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィー(展開溶媒

塩化メチレン:アセトン=50:1) で精製し、目的化 合物をアモルファスとして5.88g (61%) 得た。MS (m/z): 295 (M^{*})

【0039】 実施例5

5- (2, 4-ジオキソチアゾリジン-5-イリデン) メチル-2-メトキシ安息香酸

【0040】5-(2,4-ジオキソチアゾリジン-5 30 -イリデン)メチル-2-メトキシ安息香酸メチル(62*

*9mg)の酢酸ー濃塩酸(1:1,18.0ml) 懸濁液を6時間 加熱還流した。冷後、水(36ml)を加え、結晶を濾取 し、水洗後、乾燥し、目的化合物を結晶として599mg(100%)得た。

[0 0 4 1] ¹H NMR (d₆-DMSO), δ : 3.89 (3 H, s), 7.31 (1 H, d, J=8.8 Hz), 7.76 (1 H, d d, J=2.4, 8.8Hz), 7.79 (1 H, 20 s), 7.89 (1 H, d, J=2.4Hz), 12.58 (1 H, s), 12.91 (1 H, b r)

【0042】<u>実施例6~7</u>

実施例5と同様にして表2の化合物を得た。

[0043]

【表2】

実施例	R ⁸	点線部分	性状	MS (m/z) : M*
6	MeO	単結合	結晶	
7	EtO	二重結合	結晶	293

【0044】実施例8

2-プロモ-3-(3-メトキシカルボニル-4-フル オロフェニル) プロピオン酸メチル

【0045】5-アミノ-2-フルオロ安息香酸メチル(4.12g)の47%臭化水素酸(11.4nl)、メタノール(20ml)、アセトン(50ml)溶液に塩-氷冷却攪拌下、亜硝酸ナトリウム(1.88g)を水(3ml)に溶解して、内温-5℃以下を保つようにゆっくり滴下した。そのまま30分間攪拌した後、氷浴をはずし、アクリル酸メチル(13.3ml)を加え、激しく攪拌しながら酸化第一銅(225mg)を少量ずつ加えた。窒素が発生しなくなった後、反応液を減圧下濃縮した。残留物を酢酸エチルに溶解し、

水、飽和炭酸水素ナトリウム水溶液、水の順で洗い、無水硫酸ナトリウムで乾燥し、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィー(展開溶媒 n-ヘキサン:酢酸エチル=10:1)で精製し、目的化合物を油状物として3.48g(45%)得た。

[0 0 4 6] ¹H NMR (CDC1₃), δ : 3.25 (1 H, d d, J=7.3, 14.6Hz), 3.46 (1 H, d d, J=7.8, 14.2Hz), 3.75 (3 H, s), 3.93 (3 H, s), 4.38 (1 H, t, J=7.8Hz), 7.09 (1 H, d d, J=8.8, 10.8Hz), 7.38 (1 H, d d d, J=2.4, 4.4, 8.8Hz), 7.80 (1 H, d d, J=2.4, 6.3Hz) MS (m/z) : 318, 320 (M^{*})

*【0048】 【表3】

【0047】実施例9~10

実施例8と同様にして表3の化合物を得た。

実施例	R ⁸	R ⁵	R ⁶	性状	MS (m/z) : M ⁺
9	6 - M e O	Εt	Ме	油状物	3 4 4
10	2-MeO	Ме	Ме	油状物	330, 332

【0049】 実施例11

5-(2,4-ジオキソチアゾリジン-5-イル)メチル-2-フルオロ安息香酸

【0050】2ープロモー3ー(3ーメトキシカルボニルー4ーフルオロフェニル)プロピオン酸メチル(1.22g)のエタノール(40ml)溶液にチオ尿素(356mg)を加え、11時間加熱還流した。冷後、減圧下濃縮し、残留物に水(50ml)を加え、攪拌下飽和炭酸水素ナトリウム水溶液でpH8程度とした後、エーテル(20ml)、nーへキサン(40ml)を加えてそのまま10分間攪拌した。結晶を濾取し、水洗後乾燥した。得られた固体をスルホラン(10ml)に溶解し、6N塩酸(20ml)を加えて8時間加熱還流した。冷後、氷水に注ぎ析出した結晶を濾取、水洗後乾燥し、目的化合物を結晶として403mg(39%)を得た。

[0051] ^{1}H NMR (d₆-DMSO), δ : 3.22 (1H, dd, J=8.3, 14.2Hz), 3.51 (1H, d%

% d, J=4.4, 14.2Hz), 4.95 (1 H, d d, J=4.4, 8.3Hz), 7.27 (1 H, d d, J=8.3, 10.8Hz), 7.51 (1 H, d d d, J=2.5, 4.9,8.3Hz), 7.74 (1 H, d d, J=2.5, 6.8Hz), 12.05 (1 H, s), 13.28 (1 H, s)

16

 $MS (m/z) : 269 (M^{+})$

【0052】実施例12~13

実施例11と同様にして表4の化合物を得た。

[0053]

【表4】

実施例	R ⁸	性状	MS (m/z) : M*
1 2	4-MeO	結晶	281
1 3	2-MeO	結晶	2 8 1

30

【0054】実施例14

N-(4-hリフルオロメチルベンジル)-5-(2,4-i)オキソチアゾリジン-5-4リデン)メチル-2-メトキシベンズアミド

【0055】5-(2,4-ジオキソチアゾリジン-5-イリデン)メチル-2-メトキシ安息香酸(1.00g)、4-トリフルオロメチルベンジルアミン(627mg)のDMF(10ml)溶液にアルゴン雰囲気、室温攪拌下シアノリン酸ジエチル(615mg)、トリエチルアミン(370mg)を加え、そのまま5時間攪拌した。反応液を氷水に注ぎ、析出する結晶を濾取、水洗後乾燥し目的化合物を結★50

★晶として1.31g (84%) 得た。更にこのものをエタノー ルから再結晶し、黄色プリズム晶として精製した目的化 合物を得た。融点 210.0~211.5 ℃

[0056]

元素分析値 (%): C₂₀ H₁₅ F₈ N₂ O₄ Sとして

C H N

計算値 55.04 3.46 6.42

実測値 55.30 3.36 6.48

【0057】<u>実施例15~38</u>

実施例14と同様にして表5及び表6の化合物を得た。

[0058]

【表5】

実施例	R ¹ , R ²	R ²	点線部分	職 点 (°C) (再結晶溶媒)	組成式	元素分析值 (%) 計算值/実測值 C H N
15	Н	6 – M e O	単結合	アモルファス	C 19 H 18 N 2 O4 S	61. 61 4. 90 7. 56 61. 94 5. 10 7. 35
16	Н	6 – M e O	二重粒合	209.0~212.0 (ヘキサン製剤)	C11 H16 N2 O4 S	61. 94 4. 38 7. 61 62. 32 4. 50 7. 48
17	3-CF3	6 - M e O	単結合	145.0~147.0 (酢酸エチルーヘキサン)	C 21 H 17 F 3 N 2 O	54. 79 3. 91 6. 39 54. 68 3. 85 6. 27
18	3-CF ₁	6-MeO	二重結合	188. 0 ~ 190. 0 (エタノール)	с ₂₁ н ₁₅ г ₃ и ₂ о ₄ s - н ₂ о	52. 86 3. 77 6. 17 52. 78 3. 72 6. 18
19	2-CF ₁	6 – M e O	単結合	179.0~181.0 (酢酸エチルーヘキサン)	CMHI7F3 N, O S	54. 79 3. 91 6. 39 54. 58 3. 98 6. 30
20	2-CF1	6 – M e O	二重結合	197. 0 ~ 199. 0 (エタノール)	с ₂₀ н ₁₅ г, и, о, s - 1/4 н, о	54. 47 3. 55 6. 35 54. 60 3. 42 6. 37
21	3, 5-CF	6 – M e O	二氢糖合	237. 0 ~ 239. 0 (DMF-エチノール)	C ₂₁ H ₁₄ F ₆ N ₂ O ₁ S 1/2H, O	49. 12 2. 95 5. 46 49. 04 3. 01 5. 43
22	4 – t – B u	6 -M e O	単結合	135.0~136.0 (酢酸エチルーヘキサン)	С ₂₃ н ₂₆ N ₂ О ₄ В	84. 77 8. 14 6. 57 84. 97 6. 31 6. 32
23	4-t-Bu	6-MeO	二重結合	185. 0 ~ 188. 0 (エタノール)	с ¹³ н ¹⁴ и ² о ⁴ г	62. 62 5. 92 6. 33 62. 85 5. 94 6. 15
24	4-CF3 0	6-MeO	二重結合	166. 0 ~ 168. 0 (エタノール)	CHH ₁₅ F ₃ N ₂ O ₅ S	53. 09 3. 34 6. 19 52. 83 3. 68 5. 88
25	4 M e O	6-MeO	二重結合	209. 0 ~ 211. 0 (DMF-x9/-L)	C20H18N2 O5 S	60. 29 4. 55 7. 03 60. 35 4. 55 7. 03
26	3, 4-MeO	6-MeO	単結合	アモルファス	С ₂₁ н ₂₂ N ₂ О ₆ S • 1/4 н ₁ О	57. 99 5. 21 6. 44 58. 02 5. 44 6. 15

[0059]

【表6】

20

実施例	R ^l , R ²	R ³	点糠部分	融 点 (℃) (再結晶溶媒)	租成式	計算值。	チ値 (%) /実調値 H N
27	3. 4-methy- lenedioxy	6 - M e O	二重結合	238. 0 ~ 241. 0 (DMF-エタノール)	c20H12N2O6 8	58. 24 3. 58. 17 3.	
28	4 – F	6 – M e O	単結合	アモルファス	C ₁₉ H ₁₇ FN ₂ O ₄ S • 1/2H ₄ O	57. 41 4. 57. 12 4.	
29	4-CF	4-Me0	単結合	204. 0 ~ 207. 0 (アセトニトリル)	C20H17F3 N2 O4 S	54. 79 3. 54. 76 3.	
30	3.4-methy- lenedioxy	4-MeC	単結合	134.0~137.0 (塩化メチレン)	с ³⁰ н ¹⁸ и ⁵ о ⁸ з	57. 96 4. 57. 78 4.	
31	Ħ	4-Me0	単結合	95.0~ 98.0 (エタノール)	с ₁₉ н ₁₈ и, о s • 3/5н, о	59. 85 5. 59. 79 5.	
32	4-CF3	2 - M e O	単結合	197. 0 ~ 199. 0 (エタノール)	C20H ₁₇ F ₃ N ₂ O ₁ S	54. 79 3. 54. 70 3.	
33	4-CF3	6-E t 0	二重結合	227. 0 ~ 229. 0 (DMF-エタノール)	C ₂₁ H ₁₇ F ₂ N ₂ O ₄ S • 1/2H, O	54. 90 3. 54. 83 3.	
34	3, 4-methy- lenedioxy	6-E t 0	二重結合	213.0~215.0 (DMF-エタノール)	CHIBN O S	59. 14 4. 58. 99 4.	
35	4-CF ₁	6-i-Pr0	二重結合	231. 0 ~ 232. 0 (エタノール)	C22H19F3 N2 O4 S	56.89 4. 56.68 4.	
36	4-CF ₁	6 – F	単結合	145.0~146.0 (進化メチレン)	C ₁₉ H ₁₄ F ₄ N ₂ O ₁ S	53. 52 3. 53. 36 3.	
37	4- (Me) 1 N	6-Me0	二重結合	203.0~208.0 (エタノール洗浄)	C ₂₁ H ₂₁ N ₃ O ₄ S	*	¢
38	4 -M c	6-MeO	二重結合	170.0~172.0 (エタノール)	C ₂₀ H ₁₈ N ₂ O ₄ S	MS (m/2)	382 (M [†])

* ¹H NMR (d_6 -DMSO), δ : 2.86 (6 H, s), 3.94 (3 H, s), 4.38 (2 H, d, J=5.9Hz), 6.69 (2 H, d, J=8.8Hz), 7.18 (2 H, d, J=8.8Hz), 7.28 (1 H, d, J=7.9Hz), 7.74 (1 H, d d, J=2.2,7.9Hz), 7.78 (1 H, s), 7.95 (1 H, d, J=2.2Hz), 8.59 (1 H, t, J=5.9Hz), 12.30 (1 H, b r)

【0060】実施例39

N-(4-)リフルオロメチルベンジル) -5-(2,4-)ジオキソチアゾリジン-5-イル) メチル-2-メトキシベンズアミド

【0061】N-(4-トリフルオロメチルベンジル) -5-(2,4-ジオキソチアゾリジン-5-イリデン)メチル-2-メトキシベンズアミド(500mg)をエタノール(70ml)に懸濁し、室温、3.0kg/cm²に水素加圧下10%パラジウム/炭素(500mg)で水素化した。反応*

* 液を濾過、濃縮し残留物をシリカゲルカラムクロマトグ 30 ラフィー (展開溶媒 塩化メチレン:メタノール=50: 1)で精製し、目的化合物を結晶として 403mg (80%) 得た。更にこのものを酢酸エチルから再結晶し、無色粉

得た。更にこのものを酢酸エチルから再結晶し、無色粉末晶として精製した目的化合物を得た。融点 176.0~17 7.5 ℃

[0062]

元素分析値(%): C₂₀ H₁₇ F₈ N₂ O₄ Sとして

C H N

計算值 54.79 3.91 6.39

実測値 54.75 3.84 6.40

40 【0 0 6 3】 実施例40~48

実施例39と同様にして表7の化合物を得た。

[0064]

【表7】

実施例	R ¹ . R ²	R ³	融 点 (°C)	組成式	元素分析值(%) 計算值/実測值 C H N
40	3. 5-CF ₃	6 -M e O	167.0~169.0 (エタノール)	C21H16F, N2 O4 S	49. 80 3. 19 5. 53 50. 00 3. 06 5. 54
41	4-Me	6 - M e O	アモルファス	C20H20N2 O4 S	62. 48 5. 24 7. 29 62. 20 5. 23 7. 30
42	4-CF ₃ 0	6 - M e O	アモルファス	С ₂₀ Н ₁₇ F ₃ N ₂ O ₅ S	52. 86 3. 77 6. 17 52. 68 3. 80 6. 45
43	4-MeO	6 -M e O	アモルファス	C ₂₀ H ₂₀ N ₂ O ₅ S • 1/4H, O	59. 31 5. 11 6. 92 59. 24 5. 03 6. 94
44	3.4-methy- lenedioxy	6 -M e O	アモルファス	C ₂₁ H ₁₈ N ₂ O ₆ S · · · · · · · · · · · · · · · · · ·	57. 33 4. 46 6. 69 57. 10 4. 38 6. 89
45	4-(Me), N	6 – M e O	アモルファス	C ₂₁ H ₂₃ N ₃ O ₄ S' - 1/4H ₂ O	60. 33 5. 68 10. 05 60. 48 5, 66 10. 13
46	4-CF;	6-EtO	159.0~162.0 (エタノール)	C21H19F3 N2 O4 S	55. 74 4. 23 6. 19 55. 65 4. 25 6. 34
47	3.4-methy- lenedioxy	6 - E t 0	アモルファス	C21H28N2 O6 8	58. 87 4. 71 6. 54 58. 59 4. 85 6. 72
48	4-CF ₃	6-i-PrO	158.0~158.5 (酢酸エチルーヘキサン)	C23H21F3 N2 O4 S	56. 65 4. 54 6. 01 56. 70 4. 44 5. 98

【0065】実施例49

N- (4-トリフルオロメチルベンジル) -5- (2, 4-ジオキソチアゾリジン-5-イル) メチル-2-ヒ ドロキシベンズアミド

【0066】N-(4-トリフルオロメチルベンジル) -5-(2,4-ジオキソチアゾリジン-5-イル)メ チル-2-メトキシベンズアミド(800mg)の無水塩化メ チレン(30ml) 懸濁液にアルゴン雰囲気、ドライアイス -アセトン冷却攪拌下、1.0N三臭化ホウ素 -塩化メチ レン溶液(2.20ml)をゆっくり滴下した。室温で6時間 攪拌した後、3日間放置した。水を加え、30分間攪拌し た後、減圧下濃縮した。残留物に酢酸エチルを加え、水 洗後無水硫酸ナトリウムで乾燥した。減圧下濃縮し残留 物をシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=40:1)で精製し、目的化 合物を結晶として618mg(80%)得た。このものをエタ ノールー水から再結晶し、淡褐色粉末晶として精製した 目的化合物を得た。融点 146.0~148.0 ℃

[0067]

元素分析値(%): C18H16F8 N2 O4 Sとして

C H N

計算値 53.77 3.56 6.60

実測値 53.92 3.88 6.49

【0068】<u>実施例50</u>

- * (-) -N- (4-トリフルオロメチルベンジル) -5 - (2, 4-ジオキソチアゾリジン-5-イル) メチル -2-メトキシベンズアミド
- 30 【0069】実施例39で得られた(±) -N-(4-トリフルオロメチルベンジル) -5-(2, 4-ジオキソチアグリジン-5-イル) メチル-2-メトキシベンズアミド1.00gを酢酸エチル20mlに加熱溶解した。冷却後、L(-)-フェネチルアミン 0.276gを加え、一週間室温放置した。析出した結晶を濾過、酢酸エチルで洗浄後乾燥し、0.753gのL(-)-フェネチルアミン塩を白色鱗片状晶として得た。更に酢酸エチルで再結晶を行い、二番晶 0.142gおよび三番晶0.0908gを得た。融点 191~193 ℃、旋光度 [α],=-87°(C=0.24, 40 THF)

[0070]

元素分析値(%): C28 H28 F3 N8 O4 Sとして

C H N

計算値 60.10 5.04 7.51

実測値 60.24 5.05 7.43

【0071】一番晶として得られた 0.753gを氷冷下、 1 N塩酸20m1に加え、5分間攪拌後濾過、結晶を水洗、 加熱乾燥した。得られた結晶をエタノールで再結晶し、 白色粉末晶として目的物 0.532gを得た。融点 194~19 *50 5℃、 旋光度 [α]。=-100° (C=0.24, TH

元素分析値 (%): C28 H28 F8 N8 O4 Sとして

5.04 7.51

*【0077】実施例50と同様一番晶 0.742gを1N塩酸

で処理、エタノールで再結晶、白色粉末晶として目的物

F)

[0072]

元素分析値(%): C₂₀ H₁, F₃ N₂ O₄ Sとして

H С

54.79 3.91 6.39 計算値

54.72 3.90 6.35 実測値

【0073】光学純度測定のため得られた結晶の一部 (約1mg) を採取、メタノール3mlに溶解、氷冷下、ジ アゾメタン-エーテル溶液 0.2mlを加え、5分間室温攪 拌後、溶媒を減圧留去した。更に減圧蒸留用ポンプで1 時間残留溶媒を留去した後、残渣をメタノールに溶解、 液体クロマトグラフィー(カラム;キラルセルAD(ダ イセル)、溶出溶媒;ヘキサン:イソプロパノール=7 0:30、流速; 1.0ml/min, 測定波長; λ = 230nm、保 持時間;22.31min)にて光学純度を測定99.2%eeであっ た。

【0074】 実施例51

(+) -N- (4-トリフルオロメチルベンジル) -5 - (2,4-ジオキソチアゾリジン-5-イル)メチル -2-メトキシベンズアミド

【0075】実施例39で得られた(土)-N-(4-ト リフルオロメチルベンジル)-5-(2,4-ジオキソ チアソリジン-5-イル)メチル-2-メトキシベンズ アミド1.00gをD(+)-フェネチルアミンにて実施例 50と同様光学分割を行い、D (+) -フェネチルアミン 塩として一番晶 0.742g、二番晶 0.143g、三番晶0.05 87gを白色鱗片状晶として得た。融点 191~ 193℃、旋 光度 [α],=87° (C=0.24, THF)

[0076]

30

血糖低下率(%)=

((ビヒクル対照群のグルコース投与0分、30分及び60分の血糖値の触和) - 各群のグルコース投与()分、30分及び69分の血糖値の触和)}

(ビヒクル対照群のグルコース投与()分、計分及び引分の血精値の絶和)

【0082】結果を表8に示す。これらの結果より、本 発明化合物は強力な血糖低下作用を有することが示され た。

[0083]

【表8】

血糖低下率 用量 (mg/kg) (%) 10 43 実施例36 10 47 実施例39 37 実施例46 10 10 45 実施例48

-×100

【0084】試験例2

50 遺伝性肥満マウス (C57BL ob/ob) を用い、

計算値

実測値

0.510gを得た。融点 194~ 195℃、旋光度 [α]。= 100° (C=0.24, THF)

Н

59, 95 5, 19 7, 49

С

60.10

[0078]

元素分析値 (%): C20H17F3 N2 O4 Sとして

Н С

3.91 6.39 54.79 計算値

4.03 6.42 54.88 実測値

【0079】光学純度測定のため、実施例50と同様にジ アゾメタンでNーメチル化後、液体クロマトグラフィー (カラム;キラルセルAD (ダイセル)、溶出溶媒;へ キサン:イソプロパノール=70:30、流速; 1.0ml/mi n、測定波長; $\lambda = 230$ nm、保持時間; 30.64min) にて 光学純度を測定99.2%eeであった。

【0080】試験例1 20

遺伝性肥満マウス(C57BL ob/ob)を用い、 試験前に尾静脈より採血して血糖値を測定した。血糖値 に差がないように群分けし、実施例36、39、46及び48の 化合物を10mg/kgの用量で5日間経口投与した。耐糖能 試験は一晩絶食した後、グルコースの2g/kgを経口投 与し、0分、30分及び60分の血糖値を測定した。血糖低 下率は下記式より求めた。

[0081]

40

- ×100

試験前に尾静脈より採血して血中トリグリセリド値およ び血中遊離脂肪酸値を測定し、群分けした。実施例39の 化合物を下記の用量で2週間経口投与した後、血中トリ*

* グリセリド値及び血中遊離脂肪酸値を測定した。各パラ メーターの低下率は下記式より求めた。

[0085]

{(ビヒクル対照群の測定値) - (各化合物投与群の測定値)}

低下率 (%) = -

(ビヒクル対照群の測定値)

【0086】結果を表9に示す。これらの結果より、本 ※【0087】

発明化合物は強力な脂質低下作用を有することが示され

【表9】

た。

化合物	用量 (mg/kg)	血中トリグリセリド 低下率 (%)	血中遊離脂肪酸低下率(%)
Halfe for a	1	2 8	2 6
実施例39	3	4 2	2 9

フロントページの続き

技術表示箇所 FΙ 庁内整理番号 (51) Int. Cl. 6 識別記号 C07C 69/84 CO7C 69/84 69/92 69/92 C 0 7 D 417/12 3 1 7 C 0 7 D 417/12 3 1 7 //(C 0 7 D 417/12

277:34 317:48)

(72)発明者 佐藤 浩也

栃木県下都賀郡野木町友沼4660-4

★(72)発明者 村上 浩二

栃木県下都賀郡野木町丸林386-2 プレ

シーン野木ハイランズ704

(72)発明者 角田 雅樹

栃木県下都賀郡野木町友沼5932