Sage Reference Manual: Groups

Release 8.5

The Sage Development Team

CONTENTS

1	Examples of Groups	1
2	Base class for groups	3
3	Set of homomorphisms between two groups.	7
4	Group homomorphisms for groups with a libGAP backend	9
5	LibGAP-based Groups	13
6	Generic LibGAP-based Group	19
7	Mix-in Class for libGAP-based Groups	21
8	PARI Groups	31
9	Miscellaneous generic functions	33
10	Free Groups	47
11	Finitely Presented Groups	55
12	Named Finitely Presented Groups	73
13	Braid groups	79
14	Indexed Free Groups	99
15	Right-Angled Artin Groups	103
16	Functor that converts a commutative additive group into a multiplicative group.	107
17	Semidirect product of groups	111
18	Miscellaneous Groups	117
19	Semimonomial transformation group	119
20	Elements of a semimonomial transformation group.	123
21	Class functions of groups.	127
22	Conjugacy classes of groups	139

23	Abelian Groups 23.1 Multiplicative Abelian Groups	157
	23.4 Multiplicative Abelian Groups With Values	
	23.5 Dual groups of Finite Multiplicative Abelian Groups	
	23.6 Base class for abelian group elements	
	23.7 Abelian group elements23.8 Elements (characters) of the dual group of a finite Abelian group.	
	23.9 Homomorphisms of abelian groups	
	23.10 Additive Abelian Groups	
	23.11 Wrapper class for abelian groups	
24	Permutation Groups	191
	24.1 Catalog of permutation groups	
	24.2 Permutation groups	
	24.4 Permutation group elements	
	24.5 Permutation group homomorphisms	
	24.6 Rubik's cube group functions	
	24.7 Conjugacy Classes Of The Symmetric Group	
25	Matrix and Affine Groups	295
	25.1 Library of Interesting Groups	
	25.2 Base classes for Matrix Groups	
	25.3 Matrix Group Elements	
	25.4 Finitely Generated Matrix Groups	
	25.6 Matrix Group Homsets	
	25.7 Binary Dihedral Groups	
	25.8 Coxeter Groups As Matrix Groups	
	25.9 Linear Groups	
	25.10 Orthogonal Linear Groups	
	25.11 Groups of isometries	
	25.12 Symplectic Linear Groups	342
	25.13 Unitary Groups $GU(n,q)$ and $SU(n,q)$	
	25.14 Heisenberg Group	
	25.15 Affine Groups	
	25.16 Euclidean Groups	
	25.17 Elements of Affine Groups	358
26	Lie Groups	363
	26.1 Nilpotent Lie groups	363
27	Doublik on Dofin on out	275
21	Partition Refinement 27.1 Canonical augmentation	375 375
	27.1 Canonical augmentation	377
	27.3 Graph-theoretic partition backtrack functions	
	27.4 Partition backtrack functions for lists – a simple example of using partn_ref	
	27.5 Partition backtrack functions for matrices	
•-		
28	Internals 28.1 Proceedings of the Control of the C	389
	28.1 Base for Classical Matrix Groups	389
29	Indices and Tables	393

Bibliography	395
Python Module Index	397
Index	399

EXAMPLES OF GROUPS

The groups object may be used to access examples of various groups. Using tab-completion on this object is an easy way to discover and quickly create the groups that are available (as listed here).

Let <tab> indicate pressing the tab key. So begin by typing groups.<tab> to the see primary divisions, followed by (for example) groups.matrix.<tab> to access various groups implemented as sets of matrices.

- Permutation Groups (groups.permutation.<tab>)
 - groups.permutation.Symmetric
 - groups.permutation.Alternating
 - groups.permutation.KleinFour
 - groups.permutation.Quaternion
 - groups.permutation.Cyclic
 - groups.permutation.Dihedral
 - groups.permutation.DiCyclic
 - groups.permutation.Mathieu
 - groups.permutation.Suzuki
 - groups.permutation.PGL
 - groups.permutation.PSL
 - groups.permutation.PSp
 - groups.permutation.PSU
 - groups.permutation.PGU
 - groups.permutation.Transitive
 - groups.permutation.RubiksCube
- Matrix Groups (groups.matrix.<tab>)
 - groups.matrix.QuaternionGF3
 - groups.matrix.GL
 - groups.matrix.SL
 - groups.matrix.Sp
 - groups.matrix.GU
 - groups.matrix.SU

- groups.matrix.GO
- groups.matrix.SO
- Finitely Presented Groups (groups.presentation.<tab>)
 - groups.presentation.Alternating
 - groups.presentation.Cyclic
 - groups.presentation.Dihedral
 - groups.presentation.DiCyclic
 - groups.presentation.FGAbelian
 - groups.presentation.KleinFour
 - groups.presentation.Quaternion
 - groups.presentation.Symmetric
- Affine Groups (groups.affine.<tab>)
 - groups.affine.Affine
 - groups.affine.Euclidean
- Lie Groups (groups.lie.<tab>)
 - groups.lie.Nilpotent
- Miscellaneous Groups (groups.misc.<tab>)
 - Coxeter, reflection and related groups
 - * groups.misc.Braid
 - * groups.misc.CoxeterGroup
 - * groups.misc.ReflectionGroup
 - * groups.misc.RightAngledArtin
 - * groups.misc.WeylGroup
 - other miscellanous groups
 - * groups.misc.AdditiveAbelian
 - * groups.misc.AdditiveCyclic
 - * groups.misc.Free
 - * groups.misc.SemimonomialTransformation

CHAPTER

TWO

BASE CLASS FOR GROUPS

```
class sage.groups.group.AbelianGroup
    Bases: sage.groups.group.Group
    Generic abelian group.
    is_abelian()
         Return True.
         EXAMPLES:
         sage: from sage.groups.group import AbelianGroup
         sage: G = AbelianGroup()
         sage: G.is_abelian()
         True
class sage.groups.group.AlgebraicGroup
    Bases: sage.groups.group.Group
class sage.groups.group.FiniteGroup
    Bases: sage.groups.group.Group
    Generic finite group.
    is_finite()
         Return True.
         EXAMPLES:
         sage: from sage.groups.group import FiniteGroup
         sage: G = FiniteGroup()
         sage: G.is_finite()
         True
class sage.groups.group.Group
    Bases: sage.structure.parent.Parent
    Base class for all groups
    is_abelian()
         Test whether this group is abelian.
         EXAMPLES:
         sage: from sage.groups.group import Group
         sage: G = Group()
         sage: G.is_abelian()
         Traceback (most recent call last):
                                                                           (continues on next page)
```

(continued from previous page)

```
...
NotImplementedError
```

is_commutative()

Test whether this group is commutative.

This is an alias for is_abelian, largely to make groups work well with the Factorization class.

(Note for developers: Derived classes should override is_abelian, not is_commutative.)

EXAMPLES:

```
sage: SL(2, 7).is_commutative()
False
```

is finite()

Returns True if this group is finite.

EXAMPLES:

```
sage: from sage.groups.group import Group
sage: G = Group()
sage: G.is_finite()
Traceback (most recent call last):
...
NotImplementedError
```

is_multiplicative()

Returns True if the group operation is given by * (rather than +).

Override for additive groups.

EXAMPLES:

```
sage: from sage.groups.group import Group
sage: G = Group()
sage: G.is_multiplicative()
True
```

order()

Return the number of elements of this group.

This is either a positive integer or infinity.

EXAMPLES:

```
sage: from sage.groups.group import Group
sage: G = Group()
sage: G.order()
Traceback (most recent call last):
...
NotImplementedError
```

quotient(H)

Return the quotient of this group by the normal subgroup H.

```
sage: from sage.groups.group import Group
sage: G = Group()
sage: G.quotient(G)
Traceback (most recent call last):
...
NotImplementedError
```

sage.groups.group.is_Group(x)

Return whether x is a group object.

INPUT:

• x - anything.

OUTPUT:

Boolean.

```
sage: F.<a,b> = FreeGroup()
sage: from sage.groups.group import is_Group
sage: is_Group(F)
True
sage: is_Group("a string")
False
```

CHAPTER

THREE

SET OF HOMOMORPHISMS BETWEEN TWO GROUPS.

CHAPTER

FOUR

GROUP HOMOMORPHISMS FOR GROUPS WITH A LIBGAP BACKEND

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2, 4])
sage: F.<a,b> = FreeGroup()
sage: f = F.hom([g for g in A.gens()])
sage: K = f.kernel()
sage: K
Group(<free, no generators known>)
```

AUTHORS:

• Simon Brandhorst (2018-02-08): initial version

```
 \textbf{class} \texttt{ sage.groups.libgap\_morphism.GroupHomset\_libgap} (G, \quad H, \quad \textit{category=None}, \\ \textit{check=True})
```

Bases: sage.categories.homset.HomsetWithBase

Homsets of groups with a libgap backend.

Do not call this directly instead use Hom().

INPUT:

- G a libgap group
- H − a libgap group
- category a category

OUTPUT:

The homset of two libgap groups.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2,4])
sage: H = A.Hom(A)
sage: H
Set of Morphisms from Abelian group with gap, generator orders (2, 4)
to Abelian group with gap, generator orders (2, 4)
in Category of finite enumerated commutative groups
```

Element

alias of GroupMorphism_libgap

 $Bases: \verb|sage.categories.morphism.Morphism|\\$

This wraps libGAP group homomorphisms.

Checking if the input defines a group homomorphism can be expensive if the group is large.

INPUT:

- homset the parent
- gap_hom a sage.libs.gap.element.GapElement consisting of a group homomorphism
- check (default: True) check if the gap_hom is a group homomorphism; this can be expensive

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2, 4])
sage: A.hom([g^2 for g in A.gens()])
Group endomorphism of Abelian group with gap, generator orders (2, 4)
```

Homomorphisms can be defined between different kinds of libGAP groups:

```
sage: G = MatrixGroup([Matrix(ZZ, 2, [0,1,1,0])])
sage: f = A.hom([G.0, G(1)])
sage: f
Group morphism:
From: Abelian group with gap, generator orders (2, 4)
To: Matrix group over Integer Ring with 1 generators (
[0 1]
[1 0]
)
sage: G.<a,b> = FreeGroup()
sage: H = G / (G([1]), G([2])^3)
sage: f = G.hom(H.gens())
sage: f
Group morphism:
From: Free Group on generators {a, b}
To: Finitely presented group < a, b | a, b^3 >
```

gap()

Return the underlying LibGAP group homomorphism.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2,4])
sage: f = A.hom([g^2 for g in A.gens()])
sage: f.gap()
[ f1, f2 ] -> [ <identity> of ..., f3 ]
```

image(J, *args, **kwds)

The image of an element or a subgroup.

INPUT:

• J – a subgroup or an element of the domain of self

OUTPUT:

The image of J under self.

Note: pushforward is the method that is used when a map is called on anything that is not an element of its domain. For historical reasons, we keep the alias image () for this method.

EXAMPLES:

```
sage: G.<a,b> = FreeGroup()
sage: H = G / (G([1]), G([2])^3)
sage: f = G.hom(H.gens())
sage: S = G.subgroup([a.gap()])
sage: f.pushforward(S)
Group([ a ])
sage: x = f.image(a)
sage: x
a
sage: x.parent()
Finitely presented group < a, b | a, b^3 >
```

kernel()

Return the kernel of self.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A1 = AbelianGroupGap([6, 6])
sage: A2 = AbelianGroupGap([3, 3])
sage: f = A1.hom(A2.gens())
sage: f.kernel()
Subgroup of Abelian group with gap, generator orders (6, 6)
generated by (f1*f2, f3*f4)
sage: f.kernel().order()
4
```

lift(h)

Return an element of the domain that maps to h.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2,4])
sage: f = A.hom([g^2 for g in A.gens()])
sage: a = A.gens()[1]
sage: f.lift(a^2)
f2
```

If the element is not in the image, we raise an error:

```
sage: f.lift(a)
Traceback (most recent call last):
...
ValueError: f2 is not an element of the image of Group endomorphism
  of Abelian group with gap, generator orders (2, 4)
```

preimage(S)

Return the preimage of the subgroup S.

INPUT:

• S – a subgroup of this group

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: A = AbelianGroupGap([2,4])
sage: B = AbelianGroupGap([4])
sage: f = A.hom([B.one(), B.gen(0)^2])
sage: S = B.subgroup([B.one()])
sage: f.preimage(S) == f.kernel()
True
```

pushforward(J, *args, **kwds)

The image of an element or a subgroup.

INPUT:

• J – a subgroup or an element of the domain of self

OUTPUT:

The image of J under self.

Note: pushforward is the method that is used when a map is called on anything that is not an element of its domain. For historical reasons, we keep the alias image () for this method.

```
sage: G.<a,b> = FreeGroup()
sage: H = G / (G([1]), G([2])^3)
sage: f = G.hom(H.gens())
sage: S = G.subgroup([a.gap()])
sage: f.pushforward(S)
Group([a])
sage: x = f.image(a)
sage: x
a
sage: x.parent()
Finitely presented group < a, b | a, b^3 >
```

CHAPTER

FIVE

LIBGAP-BASED GROUPS

This module provides helper class for wrapping GAP groups via libgap. See *free_group* for an example how they are used.

The parent class keeps track of the libGAP element object, to use it in your Python parent you have to derive both from the suitable group parent and ParentLibGAP

Note how we call the constructor of both superclasses to initialize Group and ParentLibGAP separately. The parent class implements its output via LibGAP:

```
sage: FooGroup()
<pc group of size 3 with 1 generators>
sage: type(FooGroup().gap())
<type 'sage.libs.gap.element.GapElement'>
```

The element class is a subclass of Multiplicative Group Element. To use it, you just inherit from ElementLibGAP

```
sage: element = FooGroup().an_element()
sage: element
f1
```

The element class implements group operations and printing via LibGAP:

```
sage: element._repr_()
'f1'
sage: element * element
f1^2
```

AUTHORS:

· Volker Braun

```
\begin{tabular}{ll} \textbf{class} & \texttt{sage.groups.libgap\_wrapper.ElementLibGAP} \\ \textbf{Bases:} & \texttt{sage.structure.element.MultiplicativeGroupElement} \\ \end{tabular}
```

A class for LibGAP-based Sage group elements

INPUT:

- parent the Sage parent
- libgap_element the libgap element that is being wrapped

EXAMPLES:

```
sage: from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
sage: from sage.groups.group import Group
sage: class FooElement(ElementLibGAP):
         pass
sage: class FooGroup(Group, ParentLibGAP):
....: Element = FooElement
         def __init__(self):
              lg = libgap(libgap.CyclicGroup(3))
                                                     # dummy
. . . . :
              ParentLibGAP.__init__(self, lg)
. . . . :
             Group.__init__(self)
. . . . :
sage: FooGroup()
<pc group of size 3 with 1 generators>
sage: FooGroup().gens()
(f1,)
```

gap()

Returns a LibGAP representation of the element

OUTPUT:

A GapElement

EXAMPLES:

```
sage: G.<a,b> = FreeGroup('a, b')
sage: x = G([1, 2, -1, -2])
sage: x
a*b*a^-1*b^-1
sage: xg = x.gap()
sage: xg
a*b*a^-1*b^-1
sage: type(xg)
<type 'sage.libs.gap.element.GapElement'>
```

inverse()

Return the inverse of self.

is_one()

Test whether the group element is the trivial element.

OUTPUT:

Boolean.

```
sage: G.<a,b> = FreeGroup('a, b')
sage: x = G([1, 2, -1, -2])
sage: x.is_one()
False
sage: (x * ~x).is_one()
True
```

```
class sage.groups.libgap_wrapper.ParentLibGAP (libgap_parent, ambient=None)
    Bases: sage.structure.sage_object.SageObject
```

A class for parents to keep track of the GAP parent.

This is not a complete group in Sage, this class is only a base class that you can use to implement your own groups with LibGAP. See <code>libgap_group</code> for a minimal example of a group that is actually usable.

Your implementation definitely needs to supply

• __reduce__(): serialize the LibGAP group. Since GAP does not support Python pickles natively, you need to figure out yourself how you can recreate the group from a pickle.

INPUT:

- libgap_parent the libgap element that is the parent in GAP.
- ambient A derived class of *ParentLibGAP* or None (default). The ambient class if libgap_parent has been defined as a subgroup.

EXAMPLES:

```
sage: from sage.groups.libgap wrapper import ElementLibGAP, ParentLibGAP
sage: from sage.groups.group import Group
sage: class FooElement(ElementLibGAP):
. . . . :
         pass
sage: class FooGroup(Group, ParentLibGAP):
         Element = FooElement
         def __init__(self):
. . . . :
              lg = libgap(libgap.CyclicGroup(3))
                                                       # dummy
. . . . :
              ParentLibGAP.__init__(self, lg)
. . . . :
              Group.__init__(self)
. . . . :
sage: FooGroup()
<pc group of size 3 with 1 generators>
```

ambient()

Return the ambient group of a subgroup.

OUTPUT:

A group containing self. If self has not been defined as a subgroup, we just return self.

EXAMPLES:

```
sage: G = FreeGroup(3)
sage: G.ambient() is G
True
```

gap ()

Returns the gap representation of self

OUTPUT:

A GapElement

EXAMPLES:

```
sage: G = FreeGroup(3); G
Free Group on generators {x0, x1, x2}
sage: G.gap()
<free group on the generators [ x0, x1, x2 ]>
sage: G.gap().parent()
```

(continues on next page)

(continued from previous page)

```
C library interface to GAP
sage: type(G.gap())
<type 'sage.libs.gap.element.GapElement'>
```

This can be useful, for example, to call GAP functions that are not wrapped in Sage:

```
sage: G = FreeGroup(3)
sage: H = G.gap()
sage: H.DirectProduct(H)
<fp group on the generators [ f1, f2, f3, f4, f5, f6 ]>
sage: H.DirectProduct(H).RelatorsOfFpGroup()
[ f1^-1*f4^-1*f1*f4, f1^-1*f5^-1*f1*f5, f1^-1*f6^-1*f1*f6, f2^-1*f4^-1*f2*f4, f2^-1*f5^-1*f2*f5, f2^-1*f6^-1*f2*f6, f3^-1*f4^-1*f3*f4, f3^-1*f5^-1*f3*f5, f3^-1*f6^-1*f3*f6 ]
```

We can also convert directly to libgap:

```
sage: libgap(GL(2, ZZ))
GL(2,Integers)
```

qen(i)

Return the *i*-th generator of self.

Warning: Indexing starts at 0 as usual in Sage/Python. Not as in GAP, where indexing starts at 1.

INPUT:

• i – integer between 0 (inclusive) and ngens () (exclusive). The index of the generator.

OUTPUT:

The i-th generator of the group.

EXAMPLES:

```
sage: G = FreeGroup('a, b')
sage: G.gen(0)
a
sage: G.gen(1)
b
```

generators()

Returns the generators of the group.

EXAMPLES:

```
sage: G = FreeGroup(2)
sage: G.gens()
(x0, x1)
sage: H = FreeGroup('a, b, c')
sage: H.gens()
(a, b, c)
```

generators () is an alias for gens ()

```
sage: G = FreeGroup('a, b')
sage: G.generators()
(a, b)
sage: H = FreeGroup(3, 'x')
sage: H.generators()
(x0, x1, x2)
```

gens()

Returns the generators of the group.

EXAMPLES:

```
sage: G = FreeGroup(2)
sage: G.gens()
(x0, x1)
sage: H = FreeGroup('a, b, c')
sage: H.gens()
(a, b, c)
```

generators () is an alias for gens ()

```
sage: G = FreeGroup('a, b')
sage: G.generators()
(a, b)
sage: H = FreeGroup(3, 'x')
sage: H.generators()
(x0, x1, x2)
```

is_subgroup()

Return whether the group was defined as a subgroup of a bigger group.

You can access the containing group with ambient ().

OUTPUT:

Boolean.

EXAMPLES:

```
sage: G = FreeGroup(3)
sage: G.is_subgroup()
False
```

ngens()

Return the number of generators of self.

OUTPUT:

Integer.

EXAMPLES:

```
sage: G = FreeGroup(2)
sage: G.ngens()
2
```

one()

Returns the identity element of self

```
sage: G = FreeGroup(3)
sage: G.one()
1
sage: G.one() == G([])
True
sage: G.one().Tietze()
()
```

subgroup (generators)

Return the subgroup generated.

INPUT:

• generators – a list/tuple/iterable of group elements.

OUTPUT:

The subgroup generated by generators.

EXAMPLES:

```
sage: F.<a,b> = FreeGroup()
sage: G = F.subgroup([a^2*b]); G
Group([a^2*b])
sage: G.gens()
(a^2*b,)
```

Checking that trac ticket #19270 is fixed:

```
sage: gens = [w.matrix() for w in WeylGroup(['B', 3])]
sage: G = MatrixGroup(gens)
sage: import itertools
sage: diagonals = itertools.product((1,-1), repeat=3)
sage: subgroup_gens = [diagonal_matrix(L) for L in diagonals]
sage: G.subgroup(subgroup_gens)
Matrix group over Rational Field with 8 generators
```

CHAPTER

SIX

GENERIC LIBGAP-BASED GROUP

This is useful if you need to use a GAP group implementation in Sage that does not have a dedicated Sage interface. If you want to implement your own group class, you should not derive from this but directly from <code>ParentLibGAP</code>.

EXAMPLES:

```
sage: F.<a,b> = FreeGroup()
sage: G_gap = libgap.Group([ (a*b^2).gap() ])
sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(G_gap); G
Group([ a*b^2 ])
sage: type(G)
<class 'sage.groups.libgap_group.GroupLibGAP_with_category'>
sage: G.gens()
(a*b^2,)
```

class sage.groups.libgap_group.GroupLibGAP(*args, **kwds)

Bases: sage.groups.group.Group, sage.groups.libgap_wrapper.ParentLibGAP

Group interface for LibGAP-based groups.

INPUT:

Same as ParentLibGAP.

Element

alias of ElementLibGAP

MIX-IN CLASS FOR LIBGAP-BASED GROUPS

This class adds access to GAP functionality to groups such that parent and element have a gap () method that returns a libGAP object for the parent/element.

If your group implementation uses libgap, then you should add <code>GroupMixinLibGAP</code> as the first class that you are deriving from. This ensures that it properly overrides any default methods that just raise <code>NotImplementedError</code>.

```
class sage.groups.libgap_mixin.GroupMixinLibGAP
    Bases: object
    cardinality()
        Implements EnumeratedSets.ParentMethods.cardinality().
```

EXAMPLES:

```
sage: G = Sp(4, GF(3))
sage: G.cardinality()
51840
sage: G = SL(4,GF(3))
sage: G.cardinality()
12130560
sage: F = GF(5); MS = MatrixSpace(F, 2, 2)
sage: gens = [MS([[1,2],[-1,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: G.cardinality()
480
sage: G = MatrixGroup([matrix(ZZ, 2, [1, 1, 0, 1])])
sage: G.cardinality()
+Infinity
sage: G = Sp(4, GF(3))
sage: G.cardinality()
51840
sage: G = SL(4,GF(3))
sage: G.cardinality()
12130560
sage: F = GF(5); MS = MatrixSpace(F, 2, 2)
sage: gens = [MS([[1,2],[-1,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: G.cardinality()
```

(continues on next page)

(continued from previous page)

```
sage: G = MatrixGroup([matrix(ZZ,2,[1,1,0,1])])
sage: G.cardinality()
+Infinity
```

center()

Return the center of this linear group as a subgroup.

OUTPUT:

The center as a subgroup.

EXAMPLES:

```
sage: G = SU(3, GF(2))
sage: G.center()
Matrix group over Finite Field in a of size 2^2 with 1 generators (
[a 0 0]
[0 a 0]
[0 0 a]
sage: GL(2,GF(3)).center()
Matrix group over Finite Field of size 3 with 1 generators (
[2 0]
[0 2]
)
sage: GL(3,GF(3)).center()
Matrix group over Finite Field of size 3 with 1 generators (
[2 0 0]
[0 2 0]
[0 0 2]
sage: GU(3,GF(2)).center()
Matrix group over Finite Field in a of size 2^2 with 1 generators (
[a + 1 0 0]
    0 a + 1
    0
         0 a + 1
sage: A = Matrix(FiniteField(5), [[2,0,0], [0,3,0], [0,0,1]])
sage: B = Matrix(FiniteField(5), [[1,0,0], [0,1,0], [0,1,1]])
sage: MatrixGroup([A,B]).center()
Matrix group over Finite Field of size 5 with 1 generators (
[1 0 0]
[0 1 0]
[0 0 1]
```

character (values)

Returns a group character from values, where values is a list of the values of the character evaluated on the conjugacy classes.

INPUT:

• values – a list of values of the character

OUTPUT: a group character

```
sage: G = MatrixGroup(AlternatingGroup(4))
sage: G.character([1]*len(G.conjugacy_classes_representatives()))
Character of Matrix group over Integer Ring with 12 generators
```

```
sage: G = GL(2,ZZ)
sage: G.character([1,1,1,1])
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups
```

character_table()

Returns the matrix of values of the irreducible characters of this group G at its conjugacy classes.

The columns represent the conjugacy classes of G and the rows represent the different irreducible characters in the ordering given by GAP.

OUTPUT: a matrix defined over a cyclotomic field

EXAMPLES:

```
sage: MatrixGroup(SymmetricGroup(2)).character_table()
[ 1 -1]
[ 1 1]
sage: MatrixGroup(SymmetricGroup(3)).character_table()
[1 1 -1]
[ 2 -1 0]
[1 1 1]
sage: MatrixGroup(SymmetricGroup(5)).character_table()
[ 1 -1 -1 1 -1 1 1]
[ 4 0 1 -1 -2 1 0 ]
[5 1 -1 0 -1 -1 1]
[6 0 0 1 0 0 -2]
[5-1 1 0 1-1 1]
[ 4 0 -1 -1 2 1 0]
[ 1 1 1 1 1 1
                  1]
```

class_function(values)

Return the class function with given values.

INPUT:

• values – list/tuple/iterable of numbers. The values of the class function on the conjugacy classes, in that order.

EXAMPLES:

```
sage: G = GL(2,GF(3))
sage: chi = G.class_function(range(8))
sage: list(chi)
[0, 1, 2, 3, 4, 5, 6, 7]
```

$conjugacy_class(g)$

Return the conjugacy class of g.

OUTPUT:

The conjugacy class of g in the group self. If self is the group denoted by G, this method computes the set $\{x^{-1}gx \mid x \in G\}$.

```
sage: G = SL(2, QQ)
sage: g = G([[1,1],[0,1]])
sage: G.conjugacy_class(g)
Conjugacy class of [1 1]
[0 1] in Special Linear Group of degree 2 over Rational Field
```

conjugacy_class_representatives(*args, **kwds)

Deprecated: Use $conjugacy_classes_representatives()$ instead. See trac ticket #22783 for details.

conjugacy_classes()

Return a list with all the conjugacy classes of self.

EXAMPLES:

```
sage: G = SL(2, GF(2))
sage: G.conjugacy_classes()
(Conjugacy class of [1 0]
  [0 1] in Special Linear Group of degree 2 over Finite Field of size 2,
  Conjugacy class of [0 1]
  [1 0] in Special Linear Group of degree 2 over Finite Field of size 2,
  Conjugacy class of [0 1]
  [1 1] in Special Linear Group of degree 2 over Finite Field of size 2)
```

```
sage: GL(2,ZZ).conjugacy_classes()
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups
```

conjugacy_classes_representatives()

Return a set of representatives for each of the conjugacy classes of the group.

EXAMPLES:

```
sage: G = SU(3,GF(2))
sage: len(G.conjugacy_classes_representatives())
16

sage: G = GL(2,GF(3))
sage: G.conjugacy_classes_representatives()
(
[1 0] [0 2] [2 0] [0 2] [0 1] [0 1] [2 0]
[0 1], [1 1], [0 2], [1 2], [1 0], [1 2], [1 1], [0 1]
)

sage: len(GU(2,GF(5)).conjugacy_classes_representatives())
36
```

```
sage: GL(2,ZZ).conjugacy_classes_representatives()
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups
```

intersection (other)

Return the intersection of two groups (if it makes sense) as a subgroup of the first group.

```
sage: A = Matrix([(0, 1/2, 0), (2, 0, 0), (0, 0, 1)])
sage: B = Matrix([(0, 1/2, 0), (-2, -1, 2), (0, 0, 1)])
sage: G = MatrixGroup([A,B])
sage: len(G) # isomorphic to S_3
sage: G.intersection(GL(3,ZZ))
Matrix group over Rational Field with 1 generators (
[ 1 0 0]
[-2 -1 2]
[ 0 0 1]
sage: GL(3,ZZ).intersection(G)
Matrix group over Integer Ring with 1 generators (
[ 1 0 0]
[-2 -1 2]
[ 0 0 1]
sage: G.intersection(SL(3,ZZ))
Matrix group over Rational Field with 0 generators ()
```

irreducible_characters()

Return the irreducible characters of the group.

OUTPUT:

A tuple containing all irreducible characters.

EXAMPLES:

```
sage: G = GL(2,2)
sage: G.irreducible_characters()
(Character of General Linear Group of degree 2 over Finite Field of size 2,
   Character of General Linear Group of degree 2 over Finite Field of size 2,
   Character of General Linear Group of degree 2 over Finite Field of size 2)
```

```
sage: GL(2,ZZ).irreducible_characters()
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups
```

is_abelian()

Test whether the group is Abelian.

OUTPUT:

Boolean. True if this group is an Abelian group.

EXAMPLES:

```
sage: SL(1, 17).is_abelian()
True
sage: SL(2, 17).is_abelian()
False
```

is finite()

Test whether the matrix group is finite.

OUTPUT:

Boolean.

EXAMPLES:

```
sage: G = GL(2,GF(3))
sage: G.is_finite()
True
sage: SL(2,ZZ).is_finite()
False
```

$is_isomorphic(H)$

Test whether self and H are isomorphic groups.

INPUT:

• H − a group.

OUTPUT:

Boolean.

EXAMPLES:

```
sage: m1 = matrix(GF(3), [[1,1],[0,1]])
sage: m2 = matrix(GF(3), [[1,2],[0,1]])
sage: F = MatrixGroup(m1)
sage: G = MatrixGroup(m1, m2)
sage: H = MatrixGroup(m2)
sage: F.is_isomorphic(G)
True
sage: G.is_isomorphic(H)
True
sage: F.is_isomorphic(H)
True
sage: F-is_isomorphic(H)
True
sage: F-is_isomorphic(H)
```

list()

List all elements of this group.

OUTPUT:

A tuple containing all group elements in a random but fixed order.

EXAMPLES:

```
sage: F = GF(3)
sage: gens = [matrix(F,2, [1,0,-1,1]), matrix(F, 2, [1,1,0,1])]
sage: G = MatrixGroup(gens)
sage: G.cardinality()
24
sage: v = G.list()
sage: len(v)
24
sage: v[:5]
(
[0 1] [0 1] [0 1] [0 2] [0 2]
[2 0], [2 1], [2 2], [1 0], [1 1]
)
sage: all(g in G for g in G.list())
True
```

An example over a ring (see trac ticket #5241):

```
sage: M1 = matrix(ZZ,2,[[-1,0],[0,1]])
sage: M2 = matrix(ZZ,2,[[1,0],[0,-1]])
sage: M3 = matrix(ZZ,2,[[-1,0],[0,-1]])
sage: MG = MatrixGroup([M1, M2, M3])
sage: MG.list()
(
[-1 0] [-1 0] [1 0] [1 0]
[0 -1], [0 1], [0 -1], [0 1]
)
sage: MG.list()[1]
[-1 0]
[0 1]
sage: MG.list()[1].parent()
Matrix group over Integer Ring with 3 generators (
[-1 0] [1 0] [-1 0]
[0 1], [0 -1], [0 -1]
)
```

An example over a field (see trac ticket #10515):

```
sage: gens = [matrix(QQ,2,[1,0,0,1])]
sage: MatrixGroup(gens).list()
(
[1 0]
[0 1]
)
```

Another example over a ring (see trac ticket #9437):

```
sage: len(SL(2, Zmod(4)).list())
48
```

An error is raised if the group is not finite:

```
sage: GL(2,ZZ).list()
Traceback (most recent call last):
...
NotImplementedError: group must be finite
```

order()

Implements EnumeratedSets.ParentMethods.cardinality().

EXAMPLES:

```
sage: G = Sp(4,GF(3))
sage: G.cardinality()
51840

sage: G = SL(4,GF(3))
sage: G.cardinality()
12130560

sage: F = GF(5); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,2],[-1,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: G.cardinality()
480
```

(continues on next page)

(continued from previous page)

```
sage: G = MatrixGroup([matrix(ZZ, 2, [1, 1, 0, 1])])
sage: G.cardinality()
+Infinity
sage: G = Sp(4, GF(3))
sage: G.cardinality()
51840
sage: G = SL(4,GF(3))
sage: G.cardinality()
12130560
sage: F = GF(5); MS = MatrixSpace(F, 2, 2)
sage: gens = [MS([[1,2],[-1,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: G.cardinality()
480
sage: G = MatrixGroup([matrix(ZZ, 2, [1, 1, 0, 1])])
sage: G.cardinality()
+Infinity
```

random_element()

Return a random element of this group.

OUTPUT:

A group element.

EXAMPLES:

```
sage: G = Sp(4, GF(3))
sage: G.random_element() # random
[2 1 1 1]
[1 0 2 1]
[0 1 1 0]
[1 0 0 1]
sage: G.random_element() in G
True
sage: F = GF(5); MS = MatrixSpace(F, 2, 2)
sage: gens = [MS([[1,2],[-1,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: G.random_element() # random
[1 3]
[0 3]
sage: G.random_element() in G
True
```

trivial_character()

Returns the trivial character of this group.

OUTPUT: a group character

```
sage: MatrixGroup(SymmetricGroup(3)).trivial_character()
Character of Matrix group over Integer Ring with 6 generators
```

```
sage: GL(2,ZZ).trivial_character()
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups
```

CHAPTER

EIGHT

PARI GROUPS

See pari:polgalois for the PARI documentation of these objects.

```
class sage.groups.pari_group.PariGroup(x, degree)
     Bases: object
```

EXAMPLES:

```
sage: PariGroup([6, -1, 2, "S3"], 3)
PARI group [6, -1, 2, S3] of degree 3
sage: R.<x> = PolynomialRing(QQ)
sage: f = x^4 - 17*x^3 - 2*x + 1
sage: G = f.galois_group(pari_group=True); G
PARI group [24, -1, 5, "S4"] of degree 4
```

cardinality()

Return the order of self.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: f1 = x^4 - 17*x^3 - 2*x + 1
sage: G1 = f1.galois_group(pari_group=True)
sage: G1.order()
24
```

degree()

Return the degree of self.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: f1 = x^4 - 17*x^3 - 2*x + 1
sage: G1 = f1.galois_group(pari_group=True)
sage: G1.degree()
4
```

order()

Return the order of self.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: f1 = x^4 - 17*x^3 - 2*x + 1
sage: G1 = f1.galois_group(pari_group=True)
sage: G1.order()
24
```

permutation_group()

CHAPTER

NINE

MISCELLANEOUS GENERIC FUNCTIONS

A collection of functions implementing generic algorithms in arbitrary groups, including additive and multiplicative groups.

In all cases the group operation is specified by a parameter 'operation', which is a string either one of the set of multiplication_names or addition_names specified below, or 'other'. In the latter case, the caller must provide an identity, inverse() and op() functions.

```
multiplication_names = ( 'multiplication', 'times', 'product', '*')
addition_names = ( 'addition', 'plus', 'sum', '+')
```

Also included are a generic function for computing multiples (or powers), and an iterator for general multiples and powers.

EXAMPLES:

Some examples in the multiplicative group of a finite field:

• Discrete logs:

```
sage: K = GF(3^6,'b')
sage: b = K.gen()
sage: a = b^210
sage: discrete_log(a, b, K.order()-1)
210
```

• Linear relation finder:

```
sage: F.<a>=GF(3^6,'a')
sage: a.multiplicative_order().factor()
2^3 * 7 * 13
sage: b=a^7
sage: c=a^13
sage: linear_relation(b,c,'*')
(13, 7)
sage: b^13==c^7
True
```

• Orders of elements:

```
sage: from sage.groups.generic import order_from_multiple, order_from_bounds
sage: k.<a> = GF(5^5)
sage: b = a^4
sage: order_from_multiple(b,5^5-1,operation='*')
781
```

```
sage: order_from_bounds(b, (5^4,5^5), operation='*')
781
```

Some examples in the group of points of an elliptic curve over a finite field:

• Discrete logs:

```
sage: F = GF(37^2,'a')
sage: E = EllipticCurve(F,[1,1])
sage: F.<a> = GF(37^2,'a')
sage: E = EllipticCurve(F,[1,1])
sage: P = E(25*a + 16 , 15*a + 7 )
sage: P.order()
672
sage: Q = 39*P; Q
(36*a + 32 : 5*a + 12 : 1)
sage: discrete_log(Q,P,P.order(),operation='+')
39
```

· Linear relation finder:

```
sage: F. <a>=GF(3^6, 'a')
sage: E=EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a, a^4 + a^3 + 2*a + 1])
sage: P=E(a^5 + a^4 + a^3 + a^2 + a + 2, 0)
sage: Q=E(2*a^3 + 2*a^2 + 2*a, a^3 + 2*a^2 + 1)
sage: linear_relation(P,Q,'+')
(1, 2)
sage: P == 2*Q
True
```

• Orders of elements:

```
sage: from sage.groups.generic import order_from_multiple, order_from_bounds
sage: k.<a> = GF(5^5)
sage: E = EllipticCurve(k,[2,4])
sage: P = E(3*a^4 + 3*a , 2*a + 1 )
sage: M = E.cardinality(); M
3227
sage: plist = M.prime_factors()
sage: order_from_multiple(P, M, plist, operation='+')
3227
sage: Q = E(0,2)
sage: order_from_multiple(Q, M, plist, operation='+')
7
sage: order_from_bounds(Q, Hasse_bounds(5^5), operation='+')
7
```

sage.groups.generic.bsgs (a, b, bounds, operation='*', identity=None, inverse=None, op=None)
Totally generic discrete baby-step giant-step function.

Solves na = b (or $a^n = b$) with $b \le n \le ub$ where bounds== (1b, ub), raising an error if no such n exists.

a and b must be elements of some group with given identity, inverse of x given by inverse (x), and group operation on x, y by op (x, y).

If operation is '*' or '+' then the other arguments are provided automatically; otherwise they must be provided by the caller.

INPUT:

- a group element
- b group element
- bounds a 2-tuple of integers (lower, upper) with 0<=lower<=upper
- operation string: "*, "+", "other"
- identity the identity element of the group
- inverse () function of 1 argument x returning inverse of x
- op () function of 2 arguments x, y returning x*y in group

OUTPUT:

An integer n such that $a^n = b$ (or na = b). If no such n exists, this function raises a ValueError exception.

NOTE: This is a generalization of discrete logarithm. One situation where this version is useful is to find the order of an element in a group where we only have bounds on the group order (see the elliptic curve example below).

ALGORITHM: Baby step giant step. Time and space are soft $O(\sqrt{n})$ where n is the difference between upper and lower bounds.

EXAMPLES:

```
sage: from sage.groups.generic import bsgs
sage: b = Mod(2,37); a = b^20
sage: bsgs(b, a, (0,36))
20
sage: p=next_prime(10^20)
sage: a=Mod(2,p); b=a^{(10^25)}
sage: bsgs(a, b, (10^25-10^6, 10^25+10^6)) == 10^25
True
sage: K = GF(3^6, 'b')
sage: a = K.gen()
sage: b = a^210
sage: bsgs(a, b, (0, K.order()-1))
210
sage: K.<z>=CyclotomicField(230)
sage: w=z^500
sage: bsgs(z, w, (0, 229))
```

An additive example in an elliptic curve group:

```
sage: F. <a> = GF(37^5)
sage: E = EllipticCurve(F, [1,1])
sage: P = E.lift_x(a); P
(a : 28*a^4 + 15*a^3 + 14*a^2 + 7 : 1)
```

This will return a multiple of the order of P:

```
sage: bsgs(P,P.parent()(0),Hasse_bounds(F.order()),operation='+')
69327408
```

AUTHOR:

• John Cremona (2008-03-15)

sage.groups.generic.discrete_log(a, base, ord=None, bounds=None, operation='*', identity=None, inverse=None, op=None)

Totally generic discrete log function.

INPUT:

- · a group element
- base group element (the base)
- ord integer (multiple of order of base, or None)
- bounds a priori bounds on the log
- operation string: "*, "+", "other"
- identity the group's identity
- inverse () function of 1 argument x returning inverse of x
- op () function of 2 arguments x, y returning x*y in group

a and base must be elements of some group with identity given by identity, inverse of x by inverse (x), and group operation on x, y by op (x, y).

If operation is '*' or '+' then the other arguments are provided automatically; otherwise they must be provided by the caller.

OUTPUT: Returns an integer n such that $b^n = a$ (or nb = a), assuming that ord is a multiple of the order of the base b. If ord is not specified, an attempt is made to compute it.

If no such n exists, this function raises a ValueError exception.

Warning: If x has a log method, it is likely to be vastly faster than using this function. E.g., if x is an integer modulo n, use its log method instead!

ALGORITHM: Pohlig-Hellman and Baby step giant step.

EXAMPLES:

```
sage: b = Mod(2,37); a = b^20
sage: discrete_log(a, b)
20
sage: b = Mod(2,997); a = b^20
sage: discrete_log(a, b)
20

sage: K = GF(3^6,'b')
sage: b = K.gen()
sage: a = b^210
sage: discrete_log(a, b, K.order()-1)
210

sage: b = Mod(1,37); x = Mod(2,37)
sage: discrete_log(x, b)
Traceback (most recent call last):
...
ValueError: No discrete log of 2 found to base 1
sage: b = Mod(1,997); x = Mod(2,997)
sage: discrete_log(x, b)
Traceback (most recent call last):
```

```
...
ValueError: No discrete log of 2 found to base 1
```

See trac ticket #2356:

```
sage: F.<w> = GF(121)
sage: v = w^120
sage: v.log(w)
0

sage: K.<z>=CyclotomicField(230)
sage: w=z^50
sage: discrete_log(w,z)
50
```

An example where the order is infinite: note that we must give an upper bound here:

```
sage: K.<a> = QuadraticField(23)
sage: eps = 5*a-24  # a fundamental unit
sage: eps.multiplicative_order()
+Infinity
sage: eta = eps^100
sage: discrete_log(eta,eps,bounds=(0,1000))
100
```

In this case we cannot detect negative powers:

```
sage: eta = eps^(-3)
sage: discrete_log(eta,eps,bounds=(0,100))
Traceback (most recent call last):
...
ValueError: No discrete log of -11515*a - 55224 found to base 5*a - 24
```

But we can invert the base (and negate the result) instead:

```
sage: - discrete_log(eta^-1,eps,bounds=(0,100))
-3
```

An additive example: elliptic curve DLOG:

```
sage: F=GF(37^2,'a')
sage: E=EllipticCurve(F,[1,1])
sage: F.<a>=GF(37^2,'a')
sage: E=EllipticCurve(F,[1,1])
sage: P=E(25*a + 16 , 15*a + 7 )
sage: P.order()
672
sage: Q=39*P; Q
(36*a + 32 : 5*a + 12 : 1)
sage: discrete_log(Q,P,P.order(),operation='+')
39
```

An example of big smooth group:

```
sage: F.<a>=GF(2^63)
sage: g=F.gen()
```

```
sage: u=g**123456789
sage: discrete_log(u,g)
123456789
```

AUTHORS:

- William Stein and David Joyner (2005-01-05)
- John Cremona (2008-02-29) rewrite using dict () and make generic

```
sage.groups.generic.discrete_log_generic(a, base, ord=None, bounds=None, oper-
ation='*', identity=None, inverse=None,
op=None)
```

Alias for discrete_log.

Pollard Lambda algorithm for computing discrete logarithms. It uses only a logarithmic amount of memory. It's useful if you have bounds on the logarithm. If you are computing logarithms in a whole finite group, you should use Pollard Rho algorithm.

INPUT:

- a a group element
- base a group element
- bounds a couple (lb,ub) representing the range where we look for a logarithm
- operation string: '+', '*' or 'other'
- hash function having an efficient hash function is critical for this algorithm

OUTPUT: Returns an integer n such that $a = base^n$ (or a = n * base)

ALGORITHM: Pollard Lambda, if bounds are (lb,ub) it has time complexity O(sqrt(ub-lb)) and space complexity O(log(ub-lb))

EXAMPLES:

```
sage: F.<a> = GF(2^63)
sage: discrete_log_lambda(a^1234567, a, (1200000,1250000))
1234567

sage: F.<a> = GF(37^5)
sage: E = EllipticCurve(F, [1,1])
sage: P = E.lift_x(a); P
(a : 28*a^4 + 15*a^3 + 14*a^2 + 7 : 1)
```

This will return a multiple of the order of P:

AUTHOR:

- Yann Laigle-Chapuy (2009-01-25)

Pollard Rho algorithm for computing discrete logarithm in cyclic group of prime order. If the group order is very small it falls back to the baby step giant step algorithm.

INPUT:

- a a group element
- base a group element
- ord the order of base or None, in this case we try to compute it
- operation a string (default: '*') denoting whether we are in an additive group or a multiplicative one
- hash_function having an efficient hash function is critical for this algorithm (see examples)

OUTPUT: an integer n such that $a = base^n$ (or a = n * base)

ALGORITHM: Pollard rho for discrete logarithm, adapted from the article of Edlyn Teske, 'A space efficient algorithm for group structure computation'.

EXAMPLES:

```
sage: F. <a> = GF(2^13)
sage: g = F.gen()
sage: discrete_log_rho(g^1234, g)
1234

sage: F. <a> = GF(37^5)
sage: E = EllipticCurve(F, [1,1])
sage: G = (3*31*2^4)*E.lift_x(a)
sage: discrete_log_rho(12345*G, G, ord=46591, operation='+')
12345
```

It also works with matrices:

Beware, the order must be prime:

```
sage: I = IntegerModRing(171980)
sage: discrete_log_rho(I(2), I(3))
Traceback (most recent call last):
...
ValueError: for Pollard rho algorithm the order of the group must be prime
```

If it fails to find a suitable logarithm, it raises a ValueError:

```
sage: I = IntegerModRing(171980)
sage: discrete_log_rho(I(31002),I(15501))
Traceback (most recent call last):
...
ValueError: Pollard rho algorithm failed to find a logarithm
```

The main limitation on the hash function is that we don't want to have hash(x * y) = hash(x) + hash(y):

If this happens, we can provide a better hash function:

AUTHOR:

• Yann Laigle-Chapuy (2009-09-05)

```
sage.groups.generic. \textbf{linear\_relation} (P, Q, operation='+', identity=None, inverse=None, op=None)
```

Function which solves the equation a*P=m*Q or $P^a=Q^m$.

Additive version: returns (a,m) with minimal m>0 such that aP=mQ. Special case: if $\langle P\rangle$ and $\langle Q\rangle$ intersect only in $\{0\}$ then (a,m)=(0,n) where n is Q.additive_order().

Multiplicative version: returns (a,m) with minimal m>0 such that $P^a=Q^m$. Special case: if $\langle P\rangle$ and $\langle Q\rangle$ intersect only in $\{1\}$ then (a,m)=(0,n) where n is Q.multiplicative_order().

ALGORITHM:

Uses the generic bsgs () function, and so works in general finite abelian groups.

EXAMPLES:

An additive example (in an elliptic curve group):

```
sage: F.<a>=GF(3^6,'a')
sage: E=EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a, a^4 + a^3 + 2*a + 1])
sage: P=E(a^5 + a^4 + a^3 + a^2 + a + 2, 0)
sage: Q=E(2*a^3 + 2*a^2 + 2*a, a^3 + 2*a^2 + 1)
sage: linear_relation(P,Q,'+')
(1, 2)
sage: P == 2*Q
True
```

A multiplicative example (in a finite field's multiplicative group):

```
sage: F.<a>=GF(3^6,'a')
sage: a.multiplicative_order().factor()
2^3 * 7 * 13
sage: b=a^7
sage: c=a^13
sage: linear_relation(b,c,'*')
(13, 7)
sage: b^13==c^7
True
```

Returns a group element whose order is the lcm of the given elements.

INPUT:

- P1 a pair (g_1, n_1) where g_1 is a group element of order n_1
- P2 a pair (g_2, n_2) where g_2 is a group element of order n_2
- operation string: '+' (default) or '*' or other. If other, the following must be supplied:
 - identity: the identity element for the group;
 - inverse (): a function of one argument giving the inverse of a group element;
 - op (): a function of 2 arguments defining the group binary operation.

OUTPUT:

A pair (g_3, n_3) where g_3 has order $n_3 = \text{lcm}(n_1, n_2)$.

EXAMPLES:

```
sage: from sage.groups.generic import merge_points
sage: F. <a>=GF(3^6, 'a')
sage: b = a^7
sage: c = a^13
sage: ob = (3^6-1)//7
sage: oc = (3^6-1)/13
sage: merge_points((b,ob),(c,oc),operation='*')
(a^4 + 2*a^3 + 2*a^2, 728)
sage: d, od = merge_points((b, ob), (c, oc), operation='*')
sage: od == d.multiplicative_order()
sage: od == lcm(ob,oc)
True
sage: E=EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a, a^4 + a^3 + 2*a + 1])
sage: P=E(2*a^5 + 2*a^4 + a^3 + 2, a^4 + a^3 + a^2 + 2*a + 2)
sage: P.order()
sage: Q=E(2*a^5 + 2*a^4 + 1 , a^5 + 2*a^3 + 2*a + 2 )
sage: Q.order()
sage: R,m = merge_points((P,7),(Q,4), operation='+')
sage: R.order() == m
True
sage: m == lcm(7,4)
True
```

sage.groups.generic.multiple(a, n, operation='*', identity=None, inverse=None, op=None)

Returns either na or a^n , where n is any integer and a is a Python object on which a group operation such as addition or multiplication is defined. Uses the standard binary algorithm.

INPUT: See the documentation for discrete_logarithm().

EXAMPLES:

```
sage: multiple(2,5)
32
sage: multiple(RealField()('2.5'),4)
39.0625000000000
sage: multiple(2,-3)
1/8
sage: multiple(2,100,'+') == 100*2
```

```
True
sage: multiple(2,100) == 2**100
True
sage: multiple(2,-100,) == 2**-100
True
sage: R.<x>=ZZ[]
sage: multiple(x,100)
x^100
sage: multiple(x,100,'+')
100*x
sage: multiple(x,-10)
1/x^10
```

Idempotence is detected, making the following fast:

```
sage: multiple(1,10^1000)
1

sage: E=EllipticCurve('389a1')
sage: P=E(-1,1)
sage: multiple(P,10,'+')
(645656132358737542773209599489/22817025904944891235367494656 :
→525532176124281192881231818644174845702936831/
→3446581505217248068297884384990762467229696 : 1)
sage: multiple(P,-10,'+')
(645656132358737542773209599489/22817025904944891235367494656 : -
→528978757629498440949529703029165608170166527/
→3446581505217248068297884384990762467229696 : 1)
```

class sage.groups.generic.multiples(P, n, P0=None, indexed=False, operation='+', op=None)

Return an iterator which runs through PO+i*P for i in range (n).

P and P0 must be Sage objects in some group; if the operation is multiplication then the returned values are instead $P0 \star P \star \star i$.

EXAMPLES:

```
sage: list(multiples(1,10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: list(multiples(1,10,100))
[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]
sage: E=EllipticCurve('389a1')
sage: P=E(-1,1)
sage: for Q in multiples(P,5): print((Q, Q.height()/P.height()))
((0:1:0), 0.000000000000000)
((-1 : 1 : 1), 1.000000000000000)
((10/9 : -35/27 : 1), 4.00000000000000)
((26/361 : -5720/6859 : 1), 9.00000000000000)
((47503/16641 : 9862190/2146689 : 1), 16.0000000000000)
sage: R.<x>=ZZ[]
sage: list(multiples(x,5))
[0, x, 2*x, 3*x, 4*x]
sage: list(multiples(x, 5, operation='*'))
[1, x, x^2, x^3, x^4]
```

```
sage: list(multiples(x,5,indexed=True))
[(0, 0), (1, x), (2, 2*x), (3, 3*x), (4, 4*x)]
sage: list(multiples(x,5,indexed=True,operation='*'))
[(0, 1), (1, x), (2, x^2), (3, x^3), (4, x^4)]
sage: for i,y in multiples(x,5,indexed=True): print("%s times %s = %s"%(i,x,y))
0 	 times x = 0
1 times x = x
  times x = 2*x
3 times x = 3*x
4 times x = 4 * x
sage: for i,n in multiples(3,5,indexed=True,operation='*'): print("3 to the...
\rightarrowpower %s = %s" % (i,n))
3 to the power 0 = 1
3 to the power 1 = 3
3 to the power 2 = 9
3 to the power 3 = 27
3 to the power 4 = 81
```

next()

Returns the next item in this multiples iterator.

Generic function to find order of a group element, given only upper and lower bounds for a multiple of the order (e.g. bounds on the order of the group of which it is an element)

INPUT:

- P a Sage object which is a group element
- bounds a 2-tuple (lb, ub) such that m*P=0 (or P**m=1) for some m with $lb \le m \le b$.
- d (optional) a positive integer; only m which are multiples of this will be considered.
- operation string: '+' (default) or '*' or other. If other, the following must be supplied:
 - identity: the identity element for the group;
 - inverse (): a function of one argument giving the inverse of a group element;
 - op (): a function of 2 arguments defining the group binary operation.

Note: Typically 1b and ub will be bounds on the group order, and from previous calculation we know that the group order is divisible by d.

EXAMPLES:

```
sage: from sage.groups.generic import order_from_bounds
sage: k.<a> = GF(5^5)
sage: b = a^4
sage: order_from_bounds(b,(5^4,5^5),operation='*')
781
sage: E = EllipticCurve(k,[2,4])
sage: P = E(3*a^4 + 3*a , 2*a + 1 )
sage: bounds = Hasse_bounds(5^5)
sage: Q = E(0,2)
sage: order_from_bounds(Q, bounds, operation='+')
```

```
sage: order_from_bounds(P, bounds, 7, operation='+')
3227

sage: K.<z>=CyclotomicField(230)
sage: w=z^50
sage: order_from_bounds(w,(200,250),operation='*')
23
```

```
sage.groups.generic.order\_from\_multiple (P, m, plist=None, factorization=None, check=True, operation='+')
```

Generic function to find order of a group element given a multiple of its order.

INPUT:

- P a Sage object which is a group element;
- m a Sage integer which is a multiple of the order of P, i.e. we require that m*P=0 (or P**m=1);
- check a Boolean (default:True), indicating whether we check if m really is a multiple of the order;
- factorization the factorization of m, or None in which case this function will need to factor m;
- plist a list of the prime factors of m, or None kept for compatibility only, prefer the use of factorization;
- operation string: '+' (default) or '*'.

Note: It is more efficient for the caller to factor m and cache the factors for subsequent calls.

EXAMPLES:

```
sage: from sage.groups.generic import order_from_multiple
sage: k. < a > = GF(5^5)
sage: b = a^4
sage: order_from_multiple(b, 5^5-1, operation='*')
sage: E = EllipticCurve(k, [2, 4])
sage: P = E(3*a^4 + 3*a , 2*a + 1)
sage: M = E.cardinality(); M
3227
sage: F = M.factor()
sage: order_from_multiple(P, M, factorization=F, operation='+')
3227
sage: Q = E(0,2)
sage: order_from_multiple(Q, M, factorization=F, operation='+')
sage: K.<z>=CyclotomicField(230)
sage: w=z^50
sage: order_from_multiple(w, 230, operation='*')
23
sage: F=GF(2^1279,'a')
sage: n=F.cardinality()-1 # Mersenne prime
sage: order_from_multiple(F.random_element(),n,factorization=[(n,1)],operation='*
→ ') ==n
True
```

```
sage: K.<a> = GF(3^60)
sage: order_from_multiple(a, 3^60-1, operation='*', check=False)
42391158275216203514294433200
```

```
sage.groups.generic.structure_description(G, latex=False)
```

Return a string that tries to describe the structure of G.

This methods wraps GAP's StructureDescription method.

Requires the optional database_gap package.

For full details, including the form of the returned string and the algorithm to build it, see GAP's documentation.

INPUT:

• latex – a boolean (default: False). If True return a LaTeX formatted string.

OUTPUT:

string

Warning: From GAP's documentation: The string returned by StructureDescription is **not** an isomorphism invariant: non-isomorphic groups can have the same string value, and two isomorphic groups in different representations can produce different strings.

EXAMPLES:

```
sage: G = CyclicPermutationGroup(6)
sage: G.structure_description()  # optional - database_gap
'C6'
sage: G.structure_description(latex=True) # optional - database_gap
'C_{6}'
sage: G2 = G.direct_product(G, maps=False)
sage: LatexExpr(G2.structure_description(latex=True)) # optional - database_gap
C_{6} \times C_{6}
```

This method is mainly intended for small groups or groups with few normal subgroups. Even then there are some surprises:

```
sage: D3 = DihedralGroup(3)
sage: D3.structure_description() # optional - database_gap
'S3'
```

We use the Sage notation for the degree of dihedral groups:

```
sage: D4 = DihedralGroup(4)
sage: D4.structure_description() # optional - database_gap
'D4'
```

Works for finitely presented groups (trac ticket #17573):

```
sage: F.<x, y> = FreeGroup()
sage: G=F / [x^2*y^-1, x^3*y^2, x*y*x^-1*y^-1]
sage: G.structure_description() # optional - database_gap
'C7'
```

And matrix groups (trac ticket #17573):

```
sage: groups.matrix.GL(4,2).structure_description() # optional - database_gap
'A8'
```

CHAPTER

TEN

FREE GROUPS

Free groups and finitely presented groups are implemented as a wrapper over the corresponding GAP objects.

A free group can be created by giving the number of generators, or their names. It is also possible to create indexed generators:

```
sage: G.<x,y,z> = FreeGroup(); G
Free Group on generators {x, y, z}
sage: FreeGroup(3)
Free Group on generators {x0, x1, x2}
sage: FreeGroup('a,b,c')
Free Group on generators {a, b, c}
sage: FreeGroup(3,'t')
Free Group on generators {t0, t1, t2}
```

The elements can be created by operating with the generators, or by passing a list with the indices of the letters to the group:

EXAMPLES:

```
sage: G.<a,b,c> = FreeGroup()
sage: a*b*c*a
a*b*c*a
sage: G([1,2,3,1])
a*b*c*a
sage: a * b / c * b^2
a*b*c^-1*b^2
sage: G([1,1,2,-1,-3,2])
a^2*b*a^-1*c^-1*b
```

You can use call syntax to replace the generators with a set of arbitrary ring elements:

```
sage: g = a * b / c * b^2
sage: g(1,2,3)
8/3
sage: M1 = identity_matrix(2)
sage: M2 = matrix([[1,1],[0,1]])
sage: M3 = matrix([[0,1],[1,0]])
sage: g([M1, M2, M3])
[1 3]
[1 2]
```

AUTHORS:

- Miguel Angel Marco Buzunariz
- · Volker Braun

Construct a Free Group.

INPUT:

- n integer or None (default). The number of generators. If not specified the names are counted.
- names string or list/tuple/iterable of strings (default: 'x'). The generator names or name prefix.
- index_set (optional) an index set for the generators; if specified then the optional keyword abelian can be used
- abelian (default: False) whether to construct a free abelian group or a free group

Note: If you want to create a free group, it is currently preferential to use Groups ().free (...) as that does not load GAP.

EXAMPLES:

```
sage: G.<a,b> = FreeGroup(); G
Free Group on generators {a, b}
sage: H = FreeGroup('a, b')
sage: G is H
True
sage: FreeGroup(0)
Free Group on generators {}
```

The entry can be either a string with the names of the generators, or the number of generators and the prefix of the names to be given. The default prefix is 'x'

```
sage: FreeGroup(3)
Free Group on generators {x0, x1, x2}
sage: FreeGroup(3, 'g')
Free Group on generators {g0, g1, g2}
sage: FreeGroup()
Free Group on generators {x}
```

We give two examples using the index_set option:

```
sage: FreeGroup(index_set=ZZ)
Free group indexed by Integer Ring
sage: FreeGroup(index_set=ZZ, abelian=True)
Free abelian group indexed by Integer Ring
```

```
{\tt class} \  \, {\tt sage.groups.free\_group.FreeGroupElement} \, (\textit{parent}, x)
```

Bases: sage.groups.libgap_wrapper.ElementLibGAP

A wrapper of GAP's Free Group elements.

INPUT:

- x something that determines the group element. Either a GapElement or the Tietze list (see Tietze()) of the group element.
- parent the parent FreeGroup.

EXAMPLES:

```
sage: G = FreeGroup('a, b')
sage: x = G([1, 2, -1, -2])
sage: x
a*b*a^-1*b^-1
sage: y = G([2, 2, 2, 1, -2, -2, -2])
sage: y
b^3*a*b^-3
sage: x*y
a*b*a^-1*b^2*a*b^-3
sage: y*x
b^3*a*b^-3*a*b*a^-1*b^-1
sage: x^(-1)
b*a*b^-1*a^-1
sage: x == x*y*y^(-1)
True
```

Tietze()

Return the Tietze list of the element.

The Tietze list of a word is a list of integers that represent the letters in the word. A positive integer i represents the letter corresponding to the i-th generator of the group. Negative integers represent the inverses of generators.

OUTPUT:

A tuple of integers.

EXAMPLES:

```
sage: G.<a,b> = FreeGroup()
sage: a.Tietze()
(1,)
sage: x = a^2 * b^(-3) * a^(-2)
sage: x.Tietze()
(1, 1, -2, -2, -2, -1, -1)
```

fox_derivative (gen, im_gens=None, ring=None)

Return the Fox derivative of self with respect to a given generator gen of the free group.

Let F be a free group with free generators x_1, x_2, \ldots, x_n . Let $j \in \{1, 2, \ldots, n\}$. Let a_1, a_2, \ldots, a_n be n invertible elements of a ring A. Let $a: F \to A^{\times}$ be the (unique) homomorphism from F to the multiplicative group of invertible elements of A which sends each x_i to a_i . Then, we can define a map $\partial_j: F \to A$ by the requirements that

$$\partial_i(x_i) = \delta_{i,i}$$
 for all indices i and j

and

$$\partial_i(uv) = \partial_i(u) + a(u)\partial_i(v)$$
 for all $u, v \in F$.

This map ∂_i is called the *j*-th Fox derivative on F induced by (a_1, a_2, \dots, a_n) .

The most well-known case is when A is the group ring $\mathbf{Z}[F]$ of F over \mathbf{Z} , and when $a_i = x_i \in A$. In this case, ∂_j is simply called the j-th Fox derivative on F.

INPUT:

• gen – the generator with respect to which the derivative will be computed. If this is x_j , then the method will return ∂_i .

- im_gens (optional) the images of the generators (given as a list or iterable). This is the list (a_1, a_2, \ldots, a_n) . If not provided, it defaults to (x_1, x_2, \ldots, x_n) in the group ring $\mathbf{Z}[F]$.
- ring (optional) the ring in which the elements of the list (a_1, a_2, \dots, a_n) lie. If not provided, this ring is inferred from these elements.

OUTPUT:

The fox derivative of self with respect to gen (induced by im_gens). By default, it is an element of the group algebra with integer coefficients. If im_gens are provided, the result lives in the algebra where im gens live.

EXAMPLES:

```
sage: G = FreeGroup(5)
sage: G.inject_variables()
Defining x0, x1, x2, x3, x4
sage: (~x0*x1*x0*x2*~x0).fox_derivative(x0)
-x0^-1 + x0^-1*x1 - x0^-1*x1*x0*x2*x0^-1
sage: (~x0*x1*x0*x2*~x0).fox_derivative(x1)
x0^-1
sage: (~x0*x1*x0*x2*~x0).fox_derivative(x2)
x0^-1*x1*x0
sage: (~x0*x1*x0*x2*~x0).fox_derivative(x3)
0
```

If im_gens is given, the images of the generators are mapped to them:

```
sage: F=FreeGroup(3)
sage: a=F([2,1,3,-1,2])
sage: a.fox_derivative(F([1]))
x1 - x1*x0*x2*x0^-1
sage: R.<t>=LaurentPolynomialRing(ZZ)
sage: a.fox_derivative(F([1]),[t,t,t])
t - t^2
sage: S.<t1,t2,t3>=LaurentPolynomialRing(ZZ)
sage: a.fox_derivative(F([1]),[t1,t2,t3])
-t2*t3 + t2
sage: R.<x,y,z>=QQ[]
sage: a.fox_derivative(F([1]),[x,y,z])
-y*z + y
sage: a.inverse().fox_derivative(F([1]),[x,y,z])
(z - 1)/(y*z)
```

The optional parameter ring determines the ring A:

```
sage: u = a.fox_derivative(F([1]), [1,2,3], ring=QQ)
sage: u
-4
sage: parent(u)
Rational Field
sage: u = a.fox_derivative(F([1]), [1,2,3], ring=R)
sage: u
-4
sage: parent(u)
Multivariate Polynomial Ring in x, y, z over Rational Field
```

syllables()

Return the syllables of the word.

Consider a free group element $g = x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k}$. The uniquely-determined subwords $x_i^{e_i}$ consisting only of powers of a single generator are called the syllables of g.

OUTPUT:

The tuple of syllables. Each syllable is given as a pair (x_i, e_i) consisting of a generator and a non-zero integer.

EXAMPLES:

```
sage: G.<a,b> = FreeGroup()
sage: w = a^2 * b^-1 * a^3
sage: w.syllables()
((a, 2), (b, -1), (a, 3))
```

```
class sage.groups.free_group.FreeGroup_class(generator_names,
```

lib-

gap_free_group=None)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.groups.group.Group, sage.groups.libgap_wrapper.ParentLibGAP

A class that wraps GAP's FreeGroup

See FreeGroup () for details.

Element

alias of FreeGroupElement

abelian invariants()

Return the Abelian invariants of self.

The Abelian invariants are given by a list of integers $i_1 \dots i_j$, such that the abelianization of the group is isomorphic to

$$\mathbf{Z}/(i_1) \times \cdots \times \mathbf{Z}/(i_j)$$

EXAMPLES:

```
sage: F.<a,b> = FreeGroup()
sage: F.abelian_invariants()
(0, 0)
```

quotient (relations)

Return the quotient of self by the normal subgroup generated by the given elements.

This quotient is a finitely presented groups with the same generators as self, and relations given by the elements of relations.

INPUT:

• relations – A list/tuple/iterable with the elements of the free group.

OUTPUT:

A finitely presented group, with generators corresponding to the generators of the free group, and relations corresponding to the elements in relations.

EXAMPLES:

```
sage: F.<a,b> = FreeGroup()
sage: F.quotient([a*b^2*a, b^3])
Finitely presented group < a, b | a*b^2*a, b^3 >
```

Division is shorthand for quotient ()

```
sage: F / [a*b^2*a, b^3]
Finitely presented group < a, b | a*b^2*a, b^3 >
```

Relations are converted to the free group, even if they are not elements of it (if possible)

```
sage: F1.<a,b,c,d>=FreeGroup()
sage: F2.<a,b>=FreeGroup()
sage: r=a*b/a
sage: r.parent()
Free Group on generators {a, b}
sage: F1/[r]
Finitely presented group < a, b, c, d | a*b*a^-1 >
```

rank()

Return the number of generators of self.

Alias for ngens ().

OUTPUT:

Integer.

EXAMPLES:

```
sage: G = FreeGroup('a, b'); G
Free Group on generators {a, b}
sage: G.rank()
2
sage: H = FreeGroup(3, 'x')
sage: H
Free Group on generators {x0, x1, x2}
sage: H.rank()
3
```

sage.groups.free_group.is_FreeGroup(x)

Test whether x is a FreeGroup_class.

INPUT:

• x - anything.

OUTPUT:

Boolean.

EXAMPLES:

```
sage: from sage.groups.free_group import is_FreeGroup
sage: is_FreeGroup('a string')
False
sage: is_FreeGroup(FreeGroup(0))
True
sage: is_FreeGroup(FreeGroup(index_set=ZZ))
True
```

```
sage.groups.free_group.wrap_FreeGroup(libgap_free_group)
```

Wrap a LibGAP free group.

This function changes the comparison method of libgap_free_group to comparison by Python id. If you want to put the LibGAP free group into a container (set, dict) then you should understand the implications

of $_set_compare_by_id()$. To be safe, it is recommended that you just work with the resulting Sage $FreeGroup_class$.

INPUT:

• libgap_free_group - a LibGAP free group.

OUTPUT:

A Sage FreeGroup_class.

EXAMPLES:

First construct a LibGAP free group:

```
sage: F = libgap.FreeGroup(['a', 'b'])
sage: type(F)
<type 'sage.libs.gap.element.GapElement'>
```

Now wrap it:

```
sage: from sage.groups.free_group import wrap_FreeGroup
sage: wrap_FreeGroup(F)
Free Group on generators {a, b}
```

CHAPTER

ELEVEN

FINITELY PRESENTED GROUPS

Finitely presented groups are constructed as quotients of free_group:

```
sage: F.<a,b,c> = FreeGroup()
sage: G = F / [a^2, b^2, c^2, a*b*c*a*b*c]
sage: G
Finitely presented group < a, b, c | a^2, b^2, c^2, (a*b*c)^2 >
```

One can create their elements by multiplying the generators or by specifying a Tietze list (see Tietze()) as in the case of free groups:

```
sage: G.gen(0) * G.gen(1)
a*b
sage: G([1,2,-1])
a*b*a^-1
sage: a.parent()
Free Group on generators {a, b, c}
sage: G.inject_variables()
Defining a, b, c
sage: a.parent()
Finitely presented group < a, b, c | a^2, b^2, c^2, (a*b*c)^2 >
```

Notice that, even if they are represented in the same way, the elements of a finitely presented group and the elements of the corresponding free group are not the same thing. However, they can be converted from one parent to the other:

```
sage: F.<a,b,c> = FreeGroup()
sage: G = F / [a^2,b^2,c^2,a*b*c*a*b*c]
sage: F([1])
a
sage: G([1])
a
sage: F([1]) is G([1])
False
sage: F([1]) == G([1])
False
sage: F([1]) == G([1])
False
sage: G(a*b/c)
a*b*c^-1
```

Finitely presented groups are implemented via GAP. You can use the gap () method to access the underlying LibGAP object:

```
sage: G = FreeGroup(2)
sage: G.inject_variables()
```

```
Defining x0, x1

sage: H = G / (x0^2, (x0*x1)^2, x1^2)

sage: H.gap()

<p
```

This can be useful, for example, to use GAP functions that are not yet wrapped in Sage:

```
sage: H.gap().LowerCentralSeries()
[ Group(<fp, no generators known>), Group(<fp, no generators known>) ]
```

The same holds for the group elements:

```
sage: G = FreeGroup(2)
sage: H = G / (G([1, 1]), G([2, 2, 2]), G([1, 2, -1, -2])); H
Finitely presented group < x0, x1 | x0^2, x1^3, x0*x1*x0^-1*x1^-1 >
sage: a = H([1])
sage: a
x0
sage: a.gap()
x0
sage: a.gap().Order()
2
sage: type(_)  # note that the above output is not a Sage integer
<type 'sage.libs.gap.element.GapElement_Integer'>
```

You can use call syntax to replace the generators with a set of arbitrary ring elements. For example, take the free abelian group obtained by modding out the commutator subgroup of the free group:

```
sage: G = FreeGroup(2)
sage: G_ab = G / [G([1, 2, -1, -2])]; G_ab
Finitely presented group < x0, x1 | x0*x1*x0^-1*x1^-1 >
sage: a,b = G_ab.gens()
sage: g = a * b
sage: M1 = matrix([[1,0],[0,2]])
sage: M2 = matrix([[0,1],[1,0]])
sage: g(3, 5)
15
sage: g(M1, M1)
[1 0]
[0 4]
sage: M1*M2 == M2*M1 # matrices do not commute
False
sage: g(M1, M2)
Traceback (most recent call last):
ValueError: the values do not satisfy all relations of the group
```

Warning: Some methods are not guaranteed to finish since the word problem for finitely presented groups is, in general, undecidable. In those cases the process may run until the available memory is exhausted.

REFERENCES:

- Wikipedia article Presentation_of_a_group
- Wikipedia article Word problem for groups

AUTHOR:

• Miguel Angel Marco Buzunariz

A class that wraps GAP's Finitely Presented Groups.

Warning: You should use quotient () to construct finitely presented groups as quotients of free groups.

EXAMPLES:

```
sage: G. <a, b> = FreeGroup()
sage: H = G / [a, b^3]
sage: H
Finitely presented group < a, b | a, b^3 >
sage: H.gens()
(a, b)
sage: F.<a,b> = FreeGroup('a, b')
sage: J = F / (F([1]), F([2, 2, 2]))
sage: J is H
True
sage: G = FreeGroup(2)
sage: H = G / (G([1, 1]), G([2, 2, 2]))
sage: H.gens()
(x0, x1)
sage: H.gen(0)
x0
sage: H.ngens()
sage: H.gap()
<fp group on the generators [ x0, x1 ]>
sage: type(_)
<type 'sage.libs.gap.element.GapElement'>
```

Element

alias of FinitelyPresentedGroupElement

abelian_invariants()

Return the abelian invariants of self.

The abelian invariants are given by a list of integers (i_1, \ldots, i_j) , such that the abelianization of the group is isomorphic to $\mathbf{Z}/(i_1) \times \cdots \times \mathbf{Z}/(i_j)$.

EXAMPLES:

```
sage: G = FreeGroup(4, 'g')
sage: G.inject_variables()
Defining g0, g1, g2, g3
sage: H = G.quotient([g1^2, g2*g1*g2^(-1)*g1^(-1), g1*g3^(-2), g0^4])
sage: H.abelian_invariants()
(0, 4, 4)
```

ALGORITHM:

Uses GAP.

alexander_matrix (im_gens=None)

Return the Alexander matrix of the group.

This matrix is given by the fox derivatives of the relations with respect to the generators.

• im_gens – (optional) the images of the generators

OUTPUT:

A matrix with coefficients in the group algebra. If im_gens is given, the coefficients will live in the same algebra as the given values. The result depends on the (fixed) choice of presentation.

EXAMPLES:

If we introduce the images of the generators, we obtain the result in the corresponding algebra.

```
sage: G.<a,b,c,d,e> = FreeGroup()
sage: H = G.quotient([a*b/a/b, a*c/a/c, a*d/a/d, b*c*d/(c*d*b), b*c*d/
\hookrightarrow (d*b*c)])
sage: H.alexander_matrix()
             1 - a*b*a^-1
                                   a - a*b*a^{-1}*b^{-1}
                            0
[
              1 - a*c*a^-1
                                                            a - a*c*a^-
                                                          0]
[
             1 - a*d*a^{-1}
             a - a*d*a^{-1}*d^{-1}
                                                       0.1
                    0
                                                      b - b*c*d*b^{-1}*d^{-}
                                      1 - b*c*d*b^{-1}
             b*c - b*c*d*b^-1*d^-1
                                                          0]
                       0 	 1 - b*c*d*c^{-1}*b^{-1}
                                                               b -_
\rightarrowb*c*d*c^-1 b*c - b*c*d*c^-1*b^-1*d^-1
                                                              0]
sage: R.<t1,t2,t3,t4> = LaurentPolynomialRing(ZZ)
sage: H.alexander_matrix([t1,t2,t3,t4])
    -t2 + 1 t1 - 1 0
                                                        01
             0
    -t3 + 1
                                            0
                                                        01
                           t1 - 1
          0]
    -t4 + 1
                                                        0]
          0
              -t4 + 1 -t2*t4 + t2 t2*t3 - 1
                                                        0]
```

as_permutation_group (limit=4096000)

Return an isomorphic permutation group.

The generators of the resulting group correspond to the images by the isomorphism of the generators of the given group.

INPUT:

 limit – integer (default: 4096000). The maximal number of cosets before the computation is aborted.

OUTPUT:

A Sage PermutationGroup (). If the number of cosets exceeds the given limit, a ValueError is returned.

EXAMPLES:

```
sage: G.<a,b> = FreeGroup()
sage: H = G / (a^2, b^3, a*b*~a*~b)
sage: H.as_permutation_group()
Permutation Group with generators [(1,2)(3,5)(4,6), (1,3,4)(2,5,6)]

sage: G.<a,b> = FreeGroup()
sage: H = G / [a^3*b]
sage: H.as_permutation_group(limit=1000)
Traceback (most recent call last):
...
ValueError: Coset enumeration exceeded limit, is the group finite?
```

ALGORITHM:

Uses GAP's coset enumeration on the trivial subgroup.

Warning: This is in general not a decidable problem (in fact, it is not even possible to check if the group is finite or not). If the group is infinite, or too big, you should be prepared for a long computation that consumes all the memory without finishing if you do not set a sensible limit.

cardinality(limit=4096000)

Compute the cardinality of self.

INPUT:

• limit – integer (default: 4096000). The maximal number of cosets before the computation is aborted.

OUTPUT:

Integer or Infinity. The number of elements in the group.

EXAMPLES:

```
sage: G.<a,b> = FreeGroup('a, b')
sage: H = G / (a^2, b^3, a*b*~a*~b)
sage: H.cardinality()
6

sage: F.<a,b,c> = FreeGroup()
sage: J = F / (F([1]), F([2, 2, 2]))
sage: J.cardinality()
+Infinity
```

ALGORITHM:

Uses GAP.

Warning: This is in general not a decidable problem, so it is not guaranteed to give an answer. If the group is infinite, or too big, you should be prepared for a long computation that consumes all the memory without finishing if you do not set a sensible limit.

direct product (H, reduced=False, new names=True)

Return the direct product of self with finitely presented group H.

Calls GAP function DirectProduct, which returns the direct product of a list of groups of any representation.

From [Joh1990] (pg 45, proposition 4): If G, H are groups presented by $\langle X \mid R \rangle$ and $\langle Y \mid S \rangle$ respectively, then their direct product has the presentation $\langle X, Y \mid R, S, [X, Y] \rangle$ where [X, Y] denotes the set of commutators $\{x^{-1}y^{-1}xy \mid x \in X, y \in Y\}$.

INPUT:

- H a finitely presented group
- reduced (default: False) boolean; if True, then attempt to reduce the presentation of the product group
- new_names (default: True) boolean; If True, then lexicographical variable names are assigned to the generators of the group to be returned. If False, the group to be returned keeps the generator names of the two groups forming the direct product. Note that one cannot ask to reduce the output and ask to keep the old variable names, as they may change meaning in the output group if its presentation is reduced.

OUTPUT:

The direct product of self with H as a finitely presented group.

EXAMPLES:

```
sage: G = FreeGroup()
sage: C12 = ( G / [G([1,1,1,1])] ).direct_product( G / [G([1,1,1])]); C12
Finitely presented group < a, b | a^4, b^3, a^-1*b^-1*a*b >
sage: C12.order(), C12.as_permutation_group().is_cyclic()
(12, True)
sage: klein = ( G / [G([1,1])] ).direct_product( G / [G([1,1])]); klein
Finitely presented group < a, b | a^2, b^2, a^-1*b^-1*a*b >
sage: klein.order(), klein.as_permutation_group().is_cyclic()
(4, False)
```

We can keep the variable names from self and H to examine how new relations are formed:

```
sage: F = FreeGroup("a"); G = FreeGroup("g")
sage: X = G / [G.0^12]; A = F / [F.0^6]
sage: X.direct_product(A, new_names=False)
Finitely presented group < g, a | g^12, a^6, g^-1*a^-1*g*a >
sage: A.direct_product(X, new_names=False)
Finitely presented group < a, g | a^6, g^12, a^-1*g^-1*a*g >
```

Or we can attempt to reduce the output group presentation:

```
sage: F = FreeGroup("a"); G = FreeGroup("g")
sage: X = G / [G.0]; A = F / [F.0]
sage: X.direct_product(A, new_names=True)
Finitely presented group < a, b | a, b, a^-1*b^-1*a*b >
sage: X.direct_product(A, reduced=True, new_names=True)
Finitely presented group < | >
```

But we cannot do both:

```
sage: K = FreeGroup(['a','b'])
sage: D = K / [K.0^5, K.1^8]
sage: D.direct_product(D, reduced=True, new_names=False)
Traceback (most recent call last):
...
ValueError: cannot reduce output and keep old variable names
```

AUTHORS:

• Davis Shurbert (2013-07-20): initial version

epimorphisms(H)

Return the epimorphisms from sel f to H, up to automorphism of H.

INPUT:

• H – Another group

EXAMPLES:

```
sage: F = FreeGroup(3)
sage: G = F / [F([1, 2, 3, 1, 2, 3]), F([1, 1, 1])]
sage: H = AlternatingGroup(3)
sage: G.epimorphisms(H)
[Generic morphism:
From: Finitely presented group < x0, x1, x2 \mid (x0*x1*x2)^2, x0^3 >
To: Alternating group of order 3!/2 as a permutation group
Defn: x0 \mid --> ()
     x1 \mid --> (1,2,3)
      x2 \mid --> (1,3,2), Generic morphism:
From: Finitely presented group < x0, x1, x2 \mid (x0*x1*x2)^2, x0^3 >
To: Alternating group of order 3!/2 as a permutation group
Defn: x0 \mid --> (1,2,3)
     x1 |--> ()
      x2 \mid --> (1,3,2), Generic morphism:
From: Finitely presented group < x0, x1, x2 \mid (x0*x1*x2)^2, x0^3 >
    Alternating group of order 3!/2 as a permutation group
Defn: x0 \mid --> (1,2,3)
     x1 \mid --> (1,2,3)
     x2 \mid --> (1,2,3), Generic morphism:
From: Finitely presented group < x0, x1, x2 \mid (x0*x1*x2)^2, x0^3 >
    Alternating group of order 3!/2 as a permutation group
Defn: x0 \mid --> (1,2,3)
      x1 \mid --> (1,3,2)
      x2 \mid --> ()
```

ALGORITHM:

Uses libgap's GQuotients function.

free_group()

Return the free group (without relations).

OUTPUT:

A FreeGroup ().

EXAMPLES:

```
sage: G.<a,b,c> = FreeGroup()
sage: H = G / (a^2, b^3, a*b*~a*~b)
```

```
sage: H.free_group()
Free Group on generators {a, b, c}
sage: H.free_group() is G
True
```

order (limit=4096000)

Compute the cardinality of self.

INPUT:

 limit – integer (default: 4096000). The maximal number of cosets before the computation is aborted.

OUTPUT:

Integer or Infinity. The number of elements in the group.

EXAMPLES:

```
sage: G.<a,b> = FreeGroup('a, b')
sage: H = G / (a^2, b^3, a*b*~a*~b)
sage: H.cardinality()
6

sage: F.<a,b,c> = FreeGroup()
sage: J = F / (F([1]), F([2, 2, 2]))
sage: J.cardinality()
+Infinity
```

ALGORITHM:

Uses GAP.

Warning: This is in general not a decidable problem, so it is not guaranteed to give an answer. If the group is infinite, or too big, you should be prepared for a long computation that consumes all the memory without finishing if you do not set a sensible limit.

relations()

Return the relations of the group.

OUTPUT:

The relations as a tuple of elements of free_group().

EXAMPLES:

```
sage: F = FreeGroup(5, 'x')
sage: F.inject_variables()
Defining x0, x1, x2, x3, x4
sage: G = F.quotient([x0*x2, x3*x1*x3, x2*x1*x2])
sage: G.relations()
(x0*x2, x3*x1*x3, x2*x1*x2)
sage: all(rel in F for rel in G.relations())
True
```

rewriting_system()

Return the rewriting system corresponding to the finitely presented group. This rewriting system can be used to reduce words with respect to the relations.

If the rewriting system is transformed into a confluent one, the reduction process will give as a result the (unique) reduced form of an element.

EXAMPLES:

```
sage: F. <a, b> = FreeGroup()
sage: G = F / [a^2, b^3, (a*b/a)^3, b*a*b*a]
sage: k = G.rewriting_system()
sage: k
Rewriting system of Finitely presented group < a, b \mid a^2, b^3, a*b^3*a^-1,...
\hookrightarrow (b*a)^2 >
with rules:
    a^2
           --->
    b^3
           --->
              ---> 1
    (b*a)^2
    a*b^3*a^-1
sage: G([1,1,2,2,2])
a^2*b^3
sage: k.reduce(G([1,1,2,2,2]))
sage: k.reduce(G([2,2,1]))
b^2*a
sage: k.make_confluent()
sage: k.reduce(G([2,2,1]))
```

semidirect_product (H, hom, check=True, reduced=False)

The semidirect product of self with H via hom.

If there exists a homomorphism ϕ from a group G to the automorphism group of a group H, then we can define the semidirect product of G with H via ϕ as the Cartesian product of G and H with the operation

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, \phi(g_2)(h_1)h_2).$$

INPUT:

- H Finitely presented group which is implicitly acted on by self and can be naturally embedded as a normal subgroup of the semidirect product.
- hom Homomorphism from self to the automorphism group of H. Given as a pair, with generators of self in the first slot and the images of the corresponding generators in the second. These images must be automorphisms of H, given again as a pair of generators and images.
- check Boolean (default True). If False the defining homomorphism and automorphism images are not tested for validity. This test can be costly with large groups, so it can be bypassed if the user is confident that his morphisms are valid.
- reduced Boolean (default False). If True then the method attempts to reduce the presentation of the output group.

OUTPUT:

The semidirect product of self with H via hom as a finitely presented group. See PermutationGroup_generic.semidirect_product for a more in depth explanation of a semidirect product.

AUTHORS:

• Davis Shurbert (8-1-2013)

EXAMPLES:

Group of order 12 as two isomorphic semidirect products:

```
sage: D4 = groups.presentation.Dihedral(4)
sage: C3 = groups.presentation.Cyclic(3)
sage: alpha1 = ([C3.gen(0)], [C3.gen(0)])
sage: alpha2 = ([C3.gen(0)], [C3([1,1])])
sage: S1 = D4.semidirect_product(C3, ([D4.gen(1), D4.gen(0)], [alpha1, alpha2]))
sage: C2 = groups.presentation.Cyclic(2)
sage: Q = groups.presentation.DiCyclic(3)
sage: a = Q([1]); b = Q([-2])
sage: alpha = (Q.gens(), [a,b])
sage: S2 = C2.semidirect_product(Q, ([C2.0], [alpha]))
sage: S1.is_isomorphic(S2)
True
```

Dihedral groups can be constructed as semidirect products of cyclic groups:

```
sage: C2 = groups.presentation.Cyclic(2)
sage: C8 = groups.presentation.Cyclic(8)
sage: hom = (C2.gens(), [ ([C8([1])], [C8([-1])]) ])
sage: D = C2.semidirect_product(C8, hom)
sage: D.as_permutation_group().is_isomorphic(DihedralGroup(8))
True
```

You can attempt to reduce the presentation of the output group:

```
sage: D = C2.semidirect_product(C8, hom); D
Finitely presented group < a, b | a^2, b^8, a^-1*b*a*b >
sage: D = C2.semidirect_product(C8, hom, reduced=True); D
Finitely presented group < a, b | a^2, (a*b)^2, b^8 >

sage: C3 = groups.presentation.Cyclic(3)
sage: C4 = groups.presentation.Cyclic(4)
sage: hom = (C3.gens(), [(C4.gens(), C4.gens())])
sage: C3.semidirect_product(C4, hom)
Finitely presented group < a, b | a^3, b^4, a^-1*b*a*b^-1 >
sage: D = C3.semidirect_product(C4, hom, reduced=True); D
Finitely presented group < a, b | a^3, b^4, a^-1*b*a*b^-1 >
sage: D.as_permutation_group().is_cyclic()
True
```

You can turn off the checks for the validity of the input morphisms. This check is expensive but behavior is unpredictable if inputs are invalid and are not caught by these tests:

```
sage: C5 = groups.presentation.Cyclic(5)
sage: C12 = groups.presentation.Cyclic(12)
sage: hom = (C5.gens(), [(C12.gens(), C12.gens())])
sage: sp = C5.semidirect_product(C12, hom, check=False); sp
Finitely presented group < a, b | a^5, b^12, a^-1*b*a*b^-1 >
sage: sp.as_permutation_group().is_cyclic(), sp.order()
(True, 60)
```

simplification_isomorphism()

Return an isomorphism from self to a finitely presented group with a (hopefully) simpler presentation.

EXAMPLES:

ALGORITHM:

Uses GAP.

simplified()

Return an isomorphic group with a (hopefully) simpler presentation.

OUTPUT:

A new finitely presented group. Use <code>simplification_isomorphism()</code> if you want to know the isomorphism.

EXAMPLES:

```
sage: G.<x,y> = FreeGroup()
sage: H = G / [x ^5, y ^4, y*x*y^3*x ^3]
sage: H
Finitely presented group < x, y | x^5, y^4, y*x*y^3*x^3 >
sage: H.simplified()
Finitely presented group < x, y | y^4, y*x*y^-1*x^-2, x^5 >
```

A more complicate example:

structure_description (G, latex=False)

Return a string that tries to describe the structure of G.

This methods wraps GAP's StructureDescription method.

Requires the optional database_gap package.

For full details, including the form of the returned string and the algorithm to build it, see GAP's documentation.

INPUT:

• latex – a boolean (default: False). If True return a LaTeX formatted string.

OUTPUT:

· string

Warning: From GAP's documentation: The string returned by StructureDescription is **not** an isomorphism invariant: non-isomorphic groups can have the same string value, and two isomorphic groups in different representations can produce different strings.

EXAMPLES:

This method is mainly intended for small groups or groups with few normal subgroups. Even then there are some surprises:

```
sage: D3 = DihedralGroup(3)
sage: D3.structure_description() # optional - database_gap
'S3'
```

We use the Sage notation for the degree of dihedral groups:

```
sage: D4 = DihedralGroup(4)
sage: D4.structure_description() # optional - database_gap
'D4'
```

Works for finitely presented groups (trac ticket #17573):

```
sage: F.<x, y> = FreeGroup()
sage: G=F / [x^2*y^-1, x^3*y^2, x*y*x^-1*y^-1]
sage: G.structure_description() # optional - database_gap
'C7'
```

And matrix groups (trac ticket #17573):

```
sage: groups.matrix.GL(4,2).structure_description() # optional - database_gap
'A8'
```

```
Bases: sage.groups.free_group.FreeGroupElement
```

A wrapper of GAP's Finitely Presented Group elements.

The elements are created by passing the Tietze list that determines them.

EXAMPLES:

```
sage: G = FreeGroup('a, b')
sage: H = G / [G([1]), G([2, 2, 2])]
sage: H([1, 2, 1, -1])
a*b
sage: H([1, 2, 1, -2])
a*b*a*b^-1
sage: x = H([1, 2, -1, -2])
sage: x
a*b*a^-1*b^-1
sage: y = H([2, 2, 2, 1, -2, -2, -2])
sage: y
b^3*a*b^-3
sage: x*y
a*b*a^-1*b^2*a*b^-3
sage: x^(-1)
b*a*b^-1*a^-1
```

Tietze()

Return the Tietze list of the element.

The Tietze list of a word is a list of integers that represent the letters in the word. A positive integer i represents the letter corresponding to the i-th generator of the group. Negative integers represent the inverses of generators.

OUTPUT:

A tuple of integers.

EXAMPLES:

```
sage: G = FreeGroup('a, b')
sage: H = G / (G([1]), G([2, 2, 2]))
sage: H.inject_variables()
Defining a, b
sage: a.Tietze()
(1,)
sage: x = a^2*b^(-3)*a^(-2)
sage: x.Tietze()
(1, 1, -2, -2, -2, -1, -1)
```

class sage.groups.finitely_presented.GroupMorphismWithGensImages

Bases: sage.categories.morphism.SetMorphism

Class used for morphisms from finitely presented groups to other groups. It just adds the images of the generators at the end of the representation.

EXAMPLES:

```
sage: F = FreeGroup(3)
sage: G = F / [F([1, 2, 3, 1, 2, 3]), F([1, 1, 1])]
sage: H = AlternatingGroup(3)
sage: HS = G.Hom(H)
sage: from sage.groups.finitely_presented import GroupMorphismWithGensImages
sage: GroupMorphismWithGensImages(HS, lambda a: H.one())
Generic morphism:
From: Finitely presented group < x0, x1, x2 | (x0*x1*x2)^2, x0^3 >
To: Alternating group of order 3!/2 as a permutation group
Defn: x0 |--> ()
```

```
x1 |--> ()
x2 |--> ()
```

```
class sage.groups.finitely_presented.RewritingSystem(G)
Bases: object
```

A class that wraps GAP's rewriting systems.

A rewriting system is a set of rules that allow to transform one word in the group to an equivalent one.

If the rewriting system is confluent, then the transformed word is a unique reduced form of the element of the group.

Warning: Note that the process of making a rewriting system confluent might not end.

INPUT:

• G − a group

REFERENCES:

• Wikipedia article Knuth-Bendix_completion_algorithm

EXAMPLES:

```
sage: F.<a,b> = FreeGroup()
sage: G = F / [a*b/a/b]
sage: k = G.rewriting_system()
sage: k
Rewriting system of Finitely presented group < a, b | a*b*a^-1*b^-1 >
with rules:
   a*b*a^-1*b^-1 ---> 1
sage: k.reduce(a*b*a*b)
(a*b)^2
sage: k.make_confluent()
sage: k
Rewriting system of Finitely presented group < a, b | a*b*a^-1*b^-1 >
with rules:
   b^{-1}*a^{-1} ---> a^{-1}*b^{-1}
   b^-1*a ---> a*b^-1
   b*a^-1 ---> a^-1*b
        ---> a*b
   h*a
sage: k.reduce(a*b*a*b)
a^2*b^2
```

Todo:

- Include support for different orderings (currently only shortlex is used).
- Include the GAP package kbmag for more functionalities, including automatic structures and faster compiled functions.

AUTHORS:

Miguel Angel Marco Buzunariz (2013-12-16)

finitely_presented_group()

The finitely presented group where the rewriting system is defined.

EXAMPLES:

```
sage: F = FreeGroup(3)
sage: G = F / [[1,2,3], [-1,-2,-3], [1,1], [2,2]]
sage: k = G.rewriting_system()
sage: k.make_confluent()
sage: k
Rewriting system of Finitely presented group < x0, x1, x2 | x0*x1*x2, x0^-
\hookrightarrow 1 \times x1^{-1} \times x2^{-1}, x0^{2}, x1^{2}
with rules:
           --->
   x0^{-1}
                     x0
   x1^-1
            --->
                     x1
   x2^-1 --->
                    x2
   x0^2 --->
                    1
   x0*x1 --->
                    x2
   x0*x2 --->
                    x1
            --->
   x1*x0
                    x2
           --->
   x1^2
                   1
   x1*x2 --->
                    \times 0
          --->
   x2*x0
                     x1
   x2*x1 --->
                     χO
           --->
   x2^2
sage: k.finitely_presented_group()
Finitely presented group < x0, x1, x2 \mid x0*x1*x2, x0^-1*x1^-1*x2^-1, x0^2, x1^-
→2 >
```

free_group()

The free group after which the rewriting system is defined

EXAMPLES:

```
sage: F = FreeGroup(3)
sage: G = F / [[1,2,3], [-1,-2,-3]]
sage: k = G.rewriting_system()
sage: k.free_group()
Free Group on generators {x0, x1, x2}
```

gap()

The gap representation of the rewriting system.

EXAMPLES:

```
sage: F.<a,b>=FreeGroup()
sage: G=F/[a*a,b*b]
sage: k=G.rewriting_system()
sage: k.gap()
Knuth Bendix Rewriting System for Monoid([a, A, b, B]) with rules
[[a^2, <identity ...>], [a*A, <identity ...>],
  [A*a, <identity ...>], [b*2, <identity ...>],
  [b*B, <identity ...>], [B*b, <identity ...>]
```

is_confluent()

Return True if the system is confluent and False otherwise.

```
sage: F = FreeGroup(3)
sage: G = F / [F([1,2,1,2,1,3,-1]),F([2,2,2,1,1,2]),F([1,2,3])]
sage: k = G.rewriting_system()
sage: k.is_confluent()
False
sage: k
Rewriting system of Finitely presented group < x0, x1, x2 \mid (x0*x1)^{\circ}
\rightarrow 2 \times x0 \times x2 \times x0^{-1}, x1^3 \times x0^2 \times x1, x0 \times x1 \times x2 > x1
with rules:
   x0*x1*x2
   x1^3*x0^2*x1 ---> 1
   (x0*x1)^2*x0*x2*x0^{-1}
                          --->
sage: k.make_confluent()
sage: k.is_confluent()
True
sage: k
Rewriting system of Finitely presented group < x0, x1, x2 \mid (x0*x1)^{\circ}
\rightarrow2*x0*x2*x0^-1, x1^3*x0^2*x1, x0*x1*x2 >
with rules:
   x0^-1
          ---> x0
   x1^-1 ---> x1
   x0^2 ---> 1
   x0*x1 --->
                   x2^-1
   x0*x2^-1 --->
          --->
                   x2
   x1*x0
          --->
                  1
   x1^2
   x1*x2^-1 --->
                      x0*x2
                   \times 0
   x1*x2 --->
   x2^-1*x0 ---> x0*x2
   x2^-1*x1 --->
                      x0
   x2^-2 ---> x2
   x2*x0 ---> x1
   x2*x1 ---> x0*x2
   x2^2 ---> x2^-1
```

make_confluent()

Applies Knuth-Bendix algorithm to try to transform the rewriting system into a confluent one.

Note that this method does not return any object, just changes the rewriting system internally.

Warning: This algorithm is not granted to finish. Although it may be useful in some occasions to run it, interrupt it manually after some time and use then the transformed rewriting system. Even if it is not confluent, it could be used to reduce some words.

ALGORITHM:

Uses GAP's MakeConfluent.

EXAMPLES:

```
with rules:
   a^2
         ---> 1
   b^3
       ---> 1
   (b*a)^2 --->
   a*b^3*a^-1 --->
sage: k.make_confluent()
sage: k
Rewriting system of Finitely presented group < a, b \mid a^2, b^3, a*b^3*a^-1, 
\hookrightarrow (b*a)^2 >
with rules:
   a^-1 ---> a
   a^2 ---> 1
   b^-1*a ---> a*b
   b^-2 ---> b
         ---> a*b^-1
   h*a
   b^2
       ---> b^-1
```

reduce (element)

Applies the rules in the rewriting system to the element, to obtain a reduced form.

If the rewriting system is confluent, this reduced form is unique for all words representing the same element.

EXAMPLES:

```
sage: F.<a,b> = FreeGroup()
sage: G = F/[a^2, b^3, (a*b/a)^3, b*a*b*a]
sage: k = G.rewriting_system()
sage: k.reduce(b^4)
b
sage: k.reduce(a*b*a)
a*b*a
```

rules(

Return the rules that form the rewriting system.

OUTPUT:

A dictionary containing the rules of the rewriting system. Each key is a word in the free group, and its corresponding value is the word to which it is reduced.

EXAMPLES:

```
(a*b^-1, b), (b^-1*a^-1, a*b), (b^-1*a, b), (b^-2, a^-1), (b*a^-1, b^-1), (b*a, a*b), (b^2, a)]
```

sage.groups.finitely_presented.wrap_FpGroup(libgap_fpgroup)

Wrap a GAP finitely presented group.

This function changes the comparison method of <code>libgap_free_group</code> to comparison by Python <code>id</code>. If you want to put the <code>LibGAP</code> free group into a container (<code>set</code>, <code>dict</code>) then you should understand the implications of <code>_set_compare_by_id()</code>. To be safe, it is recommended that you just work with the resulting <code>Sage FinitelyPresentedGroup</code>.

INPUT:

• libgap_fpgroup - a LibGAP finitely presented group

OUTPUT:

A Sage FinitelyPresentedGroup.

EXAMPLES:

First construct a LibGAP finitely presented group:

```
sage: F = libgap.FreeGroup(['a', 'b'])
sage: a_cubed = F.GeneratorsOfGroup()[0] ^ 3
sage: P = F / libgap([ a_cubed ]); P
<fp group of size infinity on the generators [ a, b ]>
sage: type(P)
<type 'sage.libs.gap.element.GapElement'>
```

Now wrap it:

```
sage: from sage.groups.finitely_presented import wrap_FpGroup
sage: wrap_FpGroup(P)
Finitely presented group < a, b | a^3 >
```

CHAPTER

TWELVE

NAMED FINITELY PRESENTED GROUPS

Construct groups of small order and "named" groups as quotients of free groups. These groups are available through tab completion by typing groups.presentation.<tab> or by importing the required methods. Tab completion is made available through Sage's *group catalog*. Some examples are engineered from entries in [TW1980].

Groups available as finite presentations:

- Alternating group, A_n of order n!/2 groups.presentation.Alternating
- Cyclic group, C_n of order n groups.presentation.Cyclic
- Dicyclic group, nonabelian groups of order 4n with a unique element of order 2 groups.presentation. DiCyclic
- Dihedral group, D_n of order 2n groups.presentation.Dihedral
- Finitely generated abelian group, $\mathbf{Z}_{n_1} imes \mathbf{Z}_{n_2} imes \cdots imes \mathbf{Z}_{n_k}$ groups.presentation.FGAbelian
- Finitely generated Heisenberg group groups.presentation.Heisenberg
- Klein four group, $C_2 \times C_2$ groups.presentation.KleinFour
- Quaternion group of order 8 groups.presentation.Quaternion
- Symmetric group, S_n of order n! groups.presentation.Symmetric

AUTHORS:

• Davis Shurbert (2013-06-21): initial version

EXAMPLES:

```
sage: groups.presentation.Cyclic(4)
Finitely presented group < a | a^4 >
```

You can also import the desired functions:

```
sage: from sage.groups.finitely_presented_named import CyclicPresentation
sage: CyclicPresentation(4)
Finitely presented group < a | a^4 >
```

sage.groups.finitely_presented_named.**AlternatingPresentation** (n) Build the Alternating group of order n!/2 as a finitely presented group.

INPUT:

• n – The size of the underlying set of arbitrary symbols being acted on by the Alternating group of order n!/2.

OUTPUT:

Alternating group as a finite presentation, implementation uses GAP to find an isomorphism from a permutation representation to a finitely presented group representation. Due to this fact, the exact output presentation may not be the same for every method call on a constant n.

EXAMPLES:

```
sage: A6 = groups.presentation.Alternating(6)
sage: A6.as_permutation_group().is_isomorphic(AlternatingGroup(6)), A6.order()
(True, 360)
```

$sage.groups.finitely_presented_named.BinaryDihedralPresentation (n)$

Build a binary dihedral group of order 4n as a finitely presented group.

The binary dihedral group BD_n has the following presentation (note that there is a typo in [Sun]):

$$BD_n = \langle x, y, z | x^2 = y^2 = z^n = xyz \rangle.$$

INPUT:

• n – the value n

OUTPUT:

The binary dihedral group of order 4n as finite presentation.

EXAMPLES:

```
sage: groups.presentation.BinaryDihedral(9)
Finitely presented group < x, y, z | x^-2*y^2, x^-2*z^9, x^-1*y*z >
```

sage.groups.finitely_presented_named.CyclicPresentation(n)

Build cyclic group of order n as a finitely presented group.

INPUT:

• n – The order of the cyclic presentation to be returned.

OUTPUT:

The cyclic group of order n as finite presentation.

EXAMPLES:

```
sage: groups.presentation.Cyclic(10)
Finitely presented group < a | a^10 >
sage: n = 8; C = groups.presentation.Cyclic(n)
sage: C.as_permutation_group().is_isomorphic(CyclicPermutationGroup(n))
True
```

$sage.groups.finitely_presented_named.DiCyclicPresentation(n)$

Build the dicyclic group of order 4n, for $n \geq 2$, as a finitely presented group.

INPUT:

• n – positive integer, 2 or greater, determining the order of the group (4n).

OUTPUT:

The dicyclic group of order 4n is defined by the presentation

$$\langle a, x \mid a^{2n} = 1, x^2 = a^n, x^{-1}ax = a^{-1} \rangle$$

Note: This group is also available as a permutation group via groups.permutation.DiCyclic.

EXAMPLES:

```
sage: D = groups.presentation.DiCyclic(9); D
Finitely presented group < a, b | a^18, b^2*a^-9, b^-1*a*b*a >
sage: D.as_permutation_group().is_isomorphic(groups.permutation.DiCyclic(9))
True
```

sage.groups.finitely_presented_named.DihedralPresentation(n)

Build the Dihedral group of order 2n as a finitely presented group.

INPUT:

• n – The size of the set that D_n is acting on.

OUTPUT:

Dihedral group of order 2n.

EXAMPLES:

```
sage: D = groups.presentation.Dihedral(7); D
Finitely presented group < a, b | a^7, b^2, (a*b)^2 >
sage: D.as_permutation_group().is_isomorphic(DihedralGroup(7))
True
```

sage.groups.finitely_presented_named.**FinitelyGeneratedAbelianPresentation** (*int_list*)
Return canonical presentation of finitely generated abelian group.

INPUT:

• int_list - List of integers defining the group to be returned, the defining list is reduced to the invariants of the input list before generating the corresponding group.

OUTPUT:

Finitely generated abelian group, $\mathbf{Z}_{n_1} \times \mathbf{Z}_{n_2} \times \cdots \times \mathbf{Z}_{n_k}$ as a finite presentation, where n_i forms the invariants of the input list.

EXAMPLES:

```
sage: groups.presentation.FGAbelian([2,2])
Finitely presented group < a, b | a^2, b^2, a^-1*b^-1*a*b >
sage: groups.presentation.FGAbelian([2,3])
Finitely presented group < a | a^6 >
sage: groups.presentation.FGAbelian([2,4])
Finitely presented group < a, b | a^2, b^4, a^-1*b^-1*a*b >
```

You can create free abelian groups:

```
sage: groups.presentation.FGAbelian([0])
Finitely presented group < a | >
sage: groups.presentation.FGAbelian([0,0])
Finitely presented group < a, b | a^-1*b^-1*a*b >
sage: groups.presentation.FGAbelian([0,0,0])
Finitely presented group < a, b, c | a^-1*b^-1*a*b, a^-1*c^-1*a*c, b^-1*c^-1*b*c >
```

And various infinite abelian groups:

Outputs are reduced to minimal generators and relations:

```
sage: groups.presentation.FGAbelian([3,5,2,7,3])
Finitely presented group < a, b | a^3, b^210, a^-1*b^-1*a*b >
sage: groups.presentation.FGAbelian([3,210])
Finitely presented group < a, b | a^3, b^210, a^-1*b^-1*a*b >
```

The trivial group is an acceptable output:

```
sage: groups.presentation.FGAbelian([])
Finitely presented group < | >
sage: groups.presentation.FGAbelian([1])
Finitely presented group < | >
sage: groups.presentation.FGAbelian([1,1,1,1,1,1,1,1,1])
Finitely presented group < | >
```

Input list must consist of positive integers:

```
sage: groups.presentation.FGAbelian([2,6,3,9,-4])
Traceback (most recent call last):
...
ValueError: input list must contain nonnegative entries
sage: groups.presentation.FGAbelian([2,'a',4])
Traceback (most recent call last):
...
TypeError: unable to convert 'a' to an integer
```

sage.groups.finitely_presented_named.FinitelyGeneratedHeisenbergPresentation (n=1, p=0)

Return a finite presentation of the Heisenberg group.

The Heisenberg group is the group of $(n+2) \times (n+2)$ matrices over a ring R with diagonal elements equal to 1, first row and last column possibly nonzero, and all the other entries equal to zero.

INPUT:

- n the degree of the Heisenberg group
- p (optional) a prime number, where we construct the Heisenberg group over the finite field ${\bf Z}/p{\bf Z}$

OUTPUT:

Finitely generated Heisenberg group over the finite field of order p or over the integers.

See also:

HeisenbergGroup

EXAMPLES:

```
sage: H = groups.presentation.Heisenberg(); H
Finitely presented group < x1, y1, z |
   x1*y1*x1^-1*y1^-1*z^-1, z*x1*z^-1*x1^-1, z*y1*z^-1*y1^-1 >
sage: H.order()
```

```
+Infinity
sage: r1, r2, r3 = H.relations()
sage: A = matrix([[1, 1, 0], [0, 1, 0], [0, 0, 1]])
sage: B = matrix([[1, 0, 0], [0, 1, 1], [0, 0, 1]])
sage: C = matrix([[1, 0, 1], [0, 1, 0], [0, 0, 1]])
sage: r1(A, B, C)
[1 0 0]
[0 1 0]
[0 0 1]
sage: r2(A, B, C)
[1 0 0]
[0 1 0]
[0 0 1]
sage: r3(A, B, C)
[1 0 0]
[0 1 0]
[0 0 1]
sage: p = 3
sage: Hp = groups.presentation.Heisenberg(p=3)
sage: Hp.order() == p**3
sage: Hnp = groups.presentation.Heisenberg(n=2, p=3)
sage: len(Hnp.relations())
13
```

REFERENCES:

• Wikipedia article Heisenberg_group

```
sage.groups.finitely_presented_named.KleinFourPresentation()
```

Build the Klein group of order 4 as a finitely presented group.

OUTPUT:

Klein four group $(C_2 \times C_2)$ as a finitely presented group.

EXAMPLES:

```
sage: K = groups.presentation.KleinFour(); K
Finitely presented group < a, b | a^2, b^2, a^-1*b^-1*a*b >
```

```
sage.groups.finitely_presented_named.QuaternionPresentation()
```

Build the Quaternion group of order 8 as a finitely presented group.

OUTPUT:

Quaternion group as a finite presentation.

EXAMPLES:

```
sage: Q = groups.presentation.Quaternion(); Q
Finitely presented group < a, b | a^4, b^2*a^-2, a*b*a*b^-1 >
sage: Q.as_permutation_group().is_isomorphic(QuaternionGroup())
True
```

```
\verb|sage.groups.finitely_presented_named.Symmetric \verb|Presentation|| (n)
```

Build the Symmetric group of order n! as a finitely presented group.

INPUT:

• n – The size of the underlying set of arbitrary symbols being acted on by the Symmetric group of order n!.

OUTPUT:

Symmetric group as a finite presentation, implementation uses GAP to find an isomorphism from a permutation representation to a finitely presented group representation. Due to this fact, the exact output presentation may not be the same for every method call on a constant n.

```
sage: S4 = groups.presentation.Symmetric(4)
sage: S4.as_permutation_group().is_isomorphic(SymmetricGroup(4))
True
```

CHAPTER

THIRTEEN

BRAID GROUPS

Braid groups are implemented as a particular case of finitely presented groups, but with a lot of specific methods for braids.

A braid group can be created by giving the number of strands, and the name of the generators:

```
sage: BraidGroup(3)
Braid group on 3 strands
sage: BraidGroup(3,'a')
Braid group on 3 strands
sage: BraidGroup(3,'a').gens()
(a0, a1)
sage: BraidGroup(3,'a,b').gens()
(a, b)
```

The elements can be created by operating with the generators, or by passing a list with the indices of the letters to the group:

```
sage: B.<s0,s1,s2> = BraidGroup(4)
sage: s0*s1*s0
s0*s1*s0
sage: B([1,2,1])
s0*s1*s0
```

The mapping class action of the braid group over the free group is also implemented, see <code>MappingClassGroupAction</code> for an explanation. This action is left multiplication of a free group element by a braid:

```
sage: B.<bo,b1,b2> = BraidGroup()
sage: F.<f0,f1,f2,f3> = FreeGroup()
sage: B.strands() == F.rank()  # necessary for the action to be defined
True
sage: f1 * b1
f1*f2*f1^-1
sage: f0 * b1
f0
sage: f1 * b1
f1*f2*f1^-1
sage: f1 * b1
f1*f2*f1^-1
```

AUTHORS:

- Miguel Angel Marco Buzunariz
- · Volker Braun

- Søren Fuglede Jørgensen
- Robert Lipshitz
- Thierry Monteil: add a __hash__ method consistent with the word problem to ensure correct Cayley graph computations.
- Sebastian Oehms (July and Nov 2018): add other versions for burau_matrix (unitary + simple, see trac ticket #25760 and trac ticket #26657)

```
class sage.groups.braid.Braid(parent, x, check=True)
    Bases: sage.groups.artin.FiniteTypeArtinGroupElement
```

An element of a braid group.

It is a particular case of element of a finitely presented group.

EXAMPLES:

```
sage: B. <s0, s1, s2> = BraidGroup(4)
sage: B
Braid group on 4 strands
sage: s0*s1/s2/s1
s0*s1*s2^-1*s1^-1
sage: B((1, 2, -3, -2))
s0*s1*s2^-1*s1^-1
```

LKB_matrix (variables='x, y')

Return the Lawrence-Krammer-Bigelow representation matrix.

The matrix is expressed in the basis $\{e_{i,j} \mid 1 \le i < j \le n\}$, where the indices are ordered lexicographically. It is a matrix whose entries are in the ring of Laurent polynomials on the given variables. By default, the variables are 'x' and 'y'.

INPUT:

 variables – string (default: 'x, y'). A string containing the names of the variables, separated by a comma.

OUTPUT:

The matrix corresponding to the Lawrence-Krammer-Bigelow representation of the braid.

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: b = B([1, 2, 1])
sage: b.LKB_matrix()
             0 -x^4 + y + x^3 + y
                                       -x^4*y]
                       -x^3*y
                                             0 ]
Γ
        -x^2*y x^3*y - x^2*y
                                             01
sage: c = B([2, 1, 2])
sage: c.LKB_matrix()
[
            0 -x^4*y + x^3*y
                                       -x^4*y
[
             0
                        -x^3*y
                                             01
[
         -x^2*y x^3*y -x^2*y
                                             01
```

REFERENCES:

• [Big2003]

TL matrix (drain size, variab=None, sparse=True)

Return the matrix representation of the Temperley-Lieb-Jones representation of the braid in a certain basis.

The basis is given by non-intersecting pairings of (n+d) points, where n is the number of strands, d is given by drain_size, and the pairings satisfy certain rules. See $TL_basis_with_drain()$ for details.

We use the convention that the eigenvalues of the standard generators are 1 and $-A^4$, where A is a variable of a Laurent polynomial ring.

When d = n - 2 and the variables are picked appropriately, the resulting representation is equivalent to the reduced Burau representation.

INPUT:

- drain_size integer between 0 and the number of strands (both inclusive)
- variab variable (default: None); the variable in the entries of the matrices; if None, then use a default variable in $\mathbf{Z}[A,A^{-1}]$
- sparse boolean (default: True); whether or not the result should be given as a sparse matrix

OUTPUT:

The matrix of the TL representation of the braid.

The parameter sparse can be set to False if it is expected that the resulting matrix will not be sparse. We currently make no attempt at guessing this.

EXAMPLES:

Let us calculate a few examples for B_4 with d=0:

Test of one of the relations in B_8 :

```
sage: B = BraidGroup(8)
sage: d = 0
sage: B([4,5,4]).TL_matrix(d) == B([5,4,5]).TL_matrix(d)
True
```

An element of the kernel of the Burau representation, following [Big1999]:

```
sage: B = BraidGroup(6)
sage: psi1 = B([4, -5, -2, 1])
sage: psi2 = B([-4, 5, 5, 2, -1, -1])
sage: w1 = psi1^(-1) * B([3]) * psi1
```

```
sage: w2 = psi2^(-1) * B([3]) * psi2
sage: (w1 * w2 * w1^(-1) * w2^(-1)).TL_matrix(4)
[1 0 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
```

REFERENCES:

- [Big1999]
- [Jon2005]

alexander_polynomial(var='t', normalized=True)

Return the Alexander polynomial of the closure of the braid.

INPUT:

- var string (default: 't'); the name of the variable in the entries of the matrix
- normalized boolean (default: True); whether to return the normalized Alexander polynomial

OUTPUT:

The Alexander polynomial of the braid closure of the braid.

This is computed using the reduced Burau representation. The unnormalized Alexander polynomial is a Laurent polynomial, which is only well-defined up to multiplication by plus or minus times a power of t.

We normalize the polynomial by dividing by the largest power of t and then if the resulting constant coefficient is negative, we multiply by -1.

EXAMPLES:

We first construct the trefoil:

```
sage: B = BraidGroup(3)
sage: b = B([1,2,1,2])
sage: b.alexander_polynomial(normalized=False)
1 - t + t^2
sage: b.alexander_polynomial()
t^-2 - t^-1 + 1
```

Next we construct the figure 8 knot:

```
sage: b = B([-1,2,-1,2])
sage: b.alexander_polynomial(normalized=False)
-t^-2 + 3*t^-1 - 1
sage: b.alexander_polynomial()
t^-2 - 3*t^-1 + 1
```

Our last example is the Kinoshita-Terasaka knot:

```
sage: B = BraidGroup(4)
sage: b = B([1,1,1,3,3,2,-3,-1,-1,2,-1,-3,-2])
sage: b.alexander_polynomial(normalized=False)
-t^-1
sage: b.alexander_polynomial()
1
```

REFERENCES:

• Wikipedia article Alexander_polynomial

burau_matrix (var='t', reduced=False)

Return the Burau matrix of the braid.

INPUT:

- var string (default: 't'); the name of the variable in the entries of the matrix
- reduced boolean (default: False); whether to return the reduced or unreduced Burau representation, can be one of the following:
 - True or 'increasing' returns the reduced form using the basis given by e_1-e_i for $2\leq i\leq n$
 - 'unitary' the unitary form according to Squier [Squ1984]
 - 'simple' returns the reduced form using the basis given by simple roots $e_i e_{i+1}$, which yields the matrices given on the Wikipedia page

OUTPUT:

The Burau matrix of the braid. It is a matrix whose entries are Laurent polynomials in the variable var. If reduced is True, return the matrix for the reduced Burau representation instead in the format specified. If reduced is 'unitary', a triple M, Madj, H is returned, where M is the Burau matrix in the unitary form, Madj the adjoined to M and H the hermitian form.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: B.inject_variables()
Defining s0, s1, s2
sage: b = s0*s1/s2/s1
sage: b.burau_matrix()
                           t - t^2
                                           t^2]
       1 - t
                           0
         1
                      0
                                              0 ]
[
          0
                  t^{-2} - t^{-2} + t^{-1}
         0
sage: s2.burau_matrix('x')
   1 0 0
                    0]
             0
         1
    0
                     0]
         0 \ 1 - x
    0
                    x]
    0
         0
             1
sage: s0.burau_matrix(reduced=True)
[-t 0 0]
[-t 1 0]
[-t \ 0 \ 1]
```

Using the different reduced forms:

```
-t^{-2}
             -t^-1
                             0]
sage: Madj
[ 1 - t^2 - t^-1 + t
                         -t^2]
     t^-1 - t^-2 + 1
                           -t]
     t^-2
             -t^-3
                            0]
sage: H
[t^{-1} + t]
      -1 t^-1 + t
                        -1]
       0
              -1 t^-1 + t
sage: M * H * Madj == H
True
```

REFERENCES:

- Wikipedia article Burau_representation
- [Squ1984]

centralizer()

Return a list of generators of the centralizer of the braid.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: b = B([2, 1, 3, 2])
sage: b.centralizer()
[s1*s0*s2*s1, s0*s2]
```

components_in_closure()

Return the number of components of the trace closure of the braid.

OUTPUT:

Positive integer.

EXAMPLES:

```
sage: B = BraidGroup(5)
sage: b = B([1, -3])  # Three disjoint unknots
sage: b.components_in_closure()
3
sage: b = B([1, 2, 3, 4])  # The unknot
sage: b.components_in_closure()
1
sage: B = BraidGroup(4)
sage: K11n42 = B([1, -2, 3, -2, 3, -2, -2, -1, 2, -3, -3, 2, 2])
sage: K11n42.components_in_closure()
1
```

conjugating braid (other)

Return a conjugating braid, if it exists.

INPUT:

• other - the other braid to look for conjugating braid

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1])
```

```
sage: b = B([2, 1, 2, 1])
sage: c = b * a / b
sage: d = a.conjugating_braid(c)
sage: d * c / d == a
True
sage: d
s1*s0
sage: d * a / d == c
False
```

gcd (other)

Return the greatest common divisor of the two braids.

INPUT:

• other - the other braid with respect with the gcd is computed

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: b = B([1, 2, -1, -2, -2, 1])
sage: c = B([1, 2, 1])
sage: b.gcd(c)
s0^-1*s1^-1*s0^-2*s1^2*s0
sage: c.gcd(b)
s0^-1*s1^-1*s0^-2*s1^2*s0
```

is_conjugated(other)

Check if the two braids are conjugated.

INPUT:

• other - the other breaid to check for conjugacy

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1])
sage: b = B([2, 1, 2, 1])
sage: c = b * a / b
sage: c.is_conjugated(a)
True
sage: c.is_conjugated(b)
False
```

is_periodic()

Check weather the braid is periodic.

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1, 2, 2])
sage: b = B([2, 1, 2, 1])
sage: a.is_periodic()
False
sage: b.is_periodic()
True
```

is_pseudoanosov()

Check if the braid is pseudo-anosov.

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1, 2, 2])
sage: b = B([2, 1, 2, 1])
sage: a.is_pseudoanosov()
True
sage: b.is_pseudoanosov()
False
```

is_reducible()

Check weather the braid is reducible.

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: b = B([1, 2, -1])
sage: b.is_reducible()
True
sage: a = B([2, 2, -1, -1, 2, 2])
sage: a.is_reducible()
False
```

jones_polynomial(variab=None, skein_normalization=False)

Return the Jones polynomial of the trace closure of the braid.

The normalization is so that the unknot has Jones polynomial 1. If skein_normalization is True, the variable of the result is replaced by a itself to the power of 4, so that the result agrees with the conventions of [Lic1997] (which in particular differs slightly from the conventions used otherwise in this class), had one used the conventional Kauffman bracket variable notation directly.

If variab is None return a polynomial in the variable A or t, depending on the value skein_normalization. In particular, if skein_normalization is False, return the result in terms of the variable t, also used in [Lic1997].

INPUT:

- variab variable (default: None); the variable in the resulting polynomial; if unspecified, use either a default variable in $ZZ[A, A^{-1}]$ or the variable t in the symbolic ring
- skein_normalization boolean (default: False); determines the variable of the resulting polynomial

OUTPUT:

If skein_normalization if False, this returns an element in the symbolic ring as the Jones polynomial of the closure might have fractional powers when the closure of the braid is not a knot. Otherwise the result is a Laurant polynomial in variab.

EXAMPLES:

The unknot:

```
sage: B = BraidGroup(9)
sage: b = B([1, 2, 3, 4, 5, 6, 7, 8])
sage: b.jones_polynomial()
1
```

Two unlinked unknots:

```
sage: B = BraidGroup(2)
sage: b = B([])
sage: b.jones_polynomial()
-sqrt(t) - 1/sqrt(t)
```

The Hopf link:

```
sage: B = BraidGroup(2)
sage: b = B([-1,-1])
sage: b.jones_polynomial()
-1/sqrt(t) - 1/t^(5/2)
```

Different representations of the trefoil and one of its mirror:

```
sage: B = BraidGroup(2)
sage: b = B([-1, -1, -1])
sage: b.jones_polynomial(skein_normalization=True)
-A^{-16} + A^{-12} + A^{-4}
sage: b.jones_polynomial()
1/t + 1/t^3 - 1/t^4
sage: B = BraidGroup(3)
sage: b = B([-1, -2, -1, -2])
sage: b.jones_polynomial(skein_normalization=True)
-A^{-16} + A^{-12} + A^{-4}
sage: R.<x> = LaurentPolynomialRing(GF(2))
sage: b.jones_polynomial(skein_normalization=True, variab=x)
x^{-16} + x^{-12} + x^{-4}
sage: B = BraidGroup(3)
sage: b = B([1, 2, 1, 2])
sage: b.jones_polynomial(skein_normalization=True)
A^4 + A^12 - A^16
```

K11n42 (the mirror of the "Kinoshita-Terasaka" knot) and K11n34 (the mirror of the "Conway" knot):

```
sage: B = BraidGroup(4)
sage: b11n42 = B([1, -2, 3, -2, 3, -2, -2, -1, 2, -3, -3, 2, 2])
sage: b11n34 = B([1, 1, 2, -3, 2, -3, 1, -2, -2, -3, -3])
sage: bool(b11n42.jones_polynomial() == b11n34.jones_polynomial())
True
```

lcm (other)

Return the least common multiple of the two braids.

INPUT:

other – the other braid with respect with the lcm is computed

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: b = B([1, 2, -1, -2, -2, 1])
sage: c = B([1, 2, 1])
sage: b.lcm(c)
(s0*s1)^2*s0
```

markov trace (variab=None, normalized=True)

Return the Markov trace of the braid.

The normalization is so that in the underlying braid group representation, the eigenvalues of the standard generators of the braid group are 1 and $-A^4$.

INPUT:

- variable variable (default: None); the variable in the resulting polynomial; if None, then use the variable A in $\mathbf{Z}[A, A^{-1}]$
- normalized boolean (default: True); if specified to be False, return instead a rescaled Laurent polynomial version of the Markov trace

OUTPUT:

If normalized is False, return instead the Markov trace of the braid, normalized by a factor of $(A^2 + A^{-2})^n$. The result is then a Laurent polynomial in variab. Otherwise it is a quotient of Laurent polynomials in variab.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: b = B([1, 2, -3])
sage: mt = b.markov_trace(); mt
A^4/(A^12 + 3*A^8 + 3*A^4 + 1)
sage: mt.factor()
A^4 * (A^4 + 1)^-3
```

We now give the non-normalized Markov trace:

```
sage: mt = b.markov_trace(normalized=False); mt
A^-4 + 1
sage: mt.parent()
Univariate Laurent Polynomial Ring in A over Integer Ring
```

permutation()

Return the permutation induced by the braid in its strands.

OUTPUT:

A permutation.

EXAMPLES:

```
sage: B.<s0,s1,s2> = BraidGroup()
sage: b = s0*s1/s2/s1
sage: b.permutation()
[4, 1, 3, 2]
sage: b.permutation().cycle_string()
'(1,4,2)'
```

plot (color='rainbow', orientation='bottom-top', gap=0.05, aspect_ratio=1, axes=False, **kwds)
Plot the braid

The following options are available:

- color (default: 'rainbow') the color of the strands. Possible values are:
 - 'rainbow', uses rainbow() according to the number of strands.
 - a valid color name for bezier_path() and line(). Used for all strands.
 - a list or a tuple of colors for each individual strand.

- orientation (default: 'bottom-top') determines how the braid is printed. The possible values are:
 - 'bottom-top', the braid is printed from bottom to top
 - 'top-bottom', the braid is printed from top to bottom
 - 'left-right', the braid is printed from left to right
- gap floating point number (default: 0.05). determines the size of the gap left when a strand goes under another.
- aspect_ratio floating point number (default: 1). The aspect ratio.
- **kwds other keyword options that are passed to bezier_path() and line().

EXAMPLES:

```
sage: B = BraidGroup(4, 's')
sage: b = B([1, 2, 3, 1, 2, 1])
sage: b.plot()
Graphics object consisting of 30 graphics primitives
sage: b.plot(color=["red", "blue", "red", "blue"])
Graphics object consisting of 30 graphics primitives

sage: B.<s,t> = BraidGroup(3)
sage: b = t^-1*s^2
sage: b.plot(orientation="left-right", color="red")
Graphics object consisting of 12 graphics primitives
```

plot3d(color='rainbow')

Plots the braid in 3d.

The following option is available:

- color (default: 'rainbow') the color of the strands. Possible values are:
 - 'rainbow', uses rainbow() according to the number of strands.
 - a valid color name for bezier3d(). Used for all strands.
 - a list or a tuple of colors for each individual strand.

EXAMPLES:

```
sage: B = BraidGroup(4, 's')
sage: b = B([1, 2, 3, 1, 2, 1])
sage: b.plot3d()
Graphics3d Object
sage: b.plot3d(color="red")
Graphics3d Object
sage: b.plot3d(color=["red", "blue", "red", "blue"])
Graphics3d Object
```

right_normal_form()

Return the right normal form of the braid.

```
sage: B = BraidGroup(4)
sage: b = B([1, 2, 1, -2, 3, 1])
sage: b.right_normal_form()
(s1*s0, s0*s2, 1)
```

rigidity()

Return the rigidity of self.

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: b = B([2, 1, 2, 1])
sage: a = B([2, 2, -1, -1, 2, 2])
sage: a.rigidity()
6
sage: b.rigidity()
0
```

sliding_circuits()

Return the sliding circuits of the braid.

OUTPUT:

A list of sliding circuits. Each sliding circuit is itself a list of braids.

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1, 2, 2])
sage: a.sliding_circuits()
[[(s0^{-1}*s1^{-1}*s0^{-1})^2*s1^3*s0^2*s1^3],
 [s0^{-1}*s1^{-1}*s0^{-2}*s1^{-1}*s0^{2}*s1^{2}*s0^{3}]
 [s0^{-1}*s1^{-1}*s0^{-2}*s1^{-1}*s0^{3}*s1^{2}*s0^{2}],
 [(s0^{-1}*s1^{-1}*s0^{-1})^2*s1^4*s0^2*s1^2],
 [(s0^{-1}*s1^{-1}*s0^{-1})^2*s1^2*s0^2*s1^4],
 [s0^{-1}*s1^{-1}*s0^{-2}*s1^{-1}*s0*s1^{2}*s0^{4}],
 [(s0^-1*s1^-1*s0^-1)^2*s1^5*s0^2*s1],
 [s0^{-1}*s1^{-1}*s0^{-2}*s1^{-1}*s0^{4}*s1^{2}*s0],
 [(s0^{-1}*s1^{-1}*s0^{-1})^{2}*s1*s0^{2}*s1^{5}],
[s0^{-1}*s1^{-1}*s0^{-2}*s1*s0^{5}],
[(s0^{-1}*s1^{-1}*s0^{-1})^{2}*s1*s0^{6}*s1],
[s0^-1*s1^-1*s0^-2*s1^5*s0]]
sage: b = B([2, 1, 2, 1])
sage: b.sliding_circuits()
[[s0*s1*s0^2, (s0*s1)^2]]
```

strands()

Return the number of strands in the braid.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: b = B([1, 2, -1, 3, -2])
sage: b.strands()
4
```

super_summit_set()

Return a list with the super summit set of the braid

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: b = B([1, 2, -1, -2, -2, 1])
sage: b.super_summit_set()
[s0^-1*s1^-1*s0^-2*s1^2*s0^2,
```

```
($0^-1*$1^-1*$0^-1)^2*$1^2*$0^3*$1,
($0^-1*$1^-1*$0^-1)^2*$1*$0^3*$1^2,
$0^-1*$1^-1*$0^-2*$1^-1*$0*$1^3*$0]
```

thurston_type()

Return the thurston_type of self.

OUTPUT:

One of 'reducible', 'periodic' or 'pseudo-anosov'.

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: b = B([1, 2, -1])
sage: b.thurston_type()
'reducible'
sage: a = B([2, 2, -1, -1, 2, 2])
sage: a.thurston_type()
'pseudo-anosov'
sage: c = B([2, 1, 2, 1])
sage: c.thurston_type()
'periodic'
```

tropical_coordinates()

Return the tropical coordinates of self in the braid group B_n .

OUTPUT:

• a list of 2n tropical integers

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: b = B([1])
sage: tc = b.tropical_coordinates(); tc
[1, 0, 0, 2, 0, 1]
sage: tc[0].parent()
Tropical semiring over Integer Ring

sage: b = B([-2, -2, -1, -1, 2, 2, 1, 1])
sage: b.tropical_coordinates()
[1, -19, -12, 9, 0, 13]
```

REFERENCES:

- [DW2007]
- [Deh2011]

ultra summit set()

Return a list with the orbits of the ultra summit set of self

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: a = B([2, 2, -1, -1, 2, 2])
sage: b = B([2, 1, 2, 1])
sage: b.ultra_summit_set()
[[s0*s1*s0^2, (s0*s1)^2]]
```

```
sage: a.ultra_summit_set()
[[(s0^-1*s1^-1*s0^-1)^2*s1^3*s0^2*s1^3,
(s0^-1*s1^-1*s0^-1)^2*s1^2*s0^2*s1^4,
(s0^-1*s1^-1*s0^-1)^2*s1*s0^2*s1^5,
s0^-1*s1^-1*s0^-2*s1^5*s0,
(s0^-1*s1^-1*s0^-1)^2*s1^5*s0^2*s1,
(s0^-1*s1^-1*s0^-1)^2*s1^4*s0^2*s1^2],
[s0^-1*s1^-1*s0^-2*s1^-1*s0^2*s1^2*s0^3,
s0^-1*s1^-1*s0^-2*s1^-1*s0*s1^2*s0^4,
s0^-1*s1^-1*s0^-2*s1*s0^5,
(s0^-1*s1^-1*s0^-2*s1*s0^6*s1,
s0^-1*s1^-1*s0^-2*s1^-1*s0^4*s1^2*s0,
s0^-1*s1^-1*s0^-2*s1^-1*s0^4*s1^2*s0,
s0^-1*s1^-1*s0^-2*s1^-1*s0^3*s1^2*s0^2]]
```

sage.groups.braid.BraidGroup(n=None, names='s')

Construct a Braid Group

INPUT:

- n integer or None (default). The number of strands. If not specified the names are counted and the group is assumed to have one more strand than generators.
- names string or list/tuple/iterable of strings (default: 'x'). The generator names or name prefix.

EXAMPLES:

```
sage: B.<a,b> = BraidGroup(); B
Braid group on 3 strands
sage: H = BraidGroup('a, b')
sage: B is H
True
sage: BraidGroup(3)
Braid group on 3 strands
```

The entry can be either a string with the names of the generators, or the number of generators and the prefix of the names to be given. The default prefix is 's'

```
sage: B=BraidGroup(3); B.generators()
(s0, s1)
sage: BraidGroup(3, 'g').generators()
(g0, g1)
```

Since the word problem for the braid groups is solvable, their Cayley graph can be locally obtained as follows (see trac ticket #16059):

```
sage: def ball(group, radius):
    ret = set()
    ret.add(group.one())
    for length in range(1, radius):
        for w in Words(alphabet=group.gens(), length=length):
        ret.add(prod(w))
    return ret
sage: B = BraidGroup(4)
sage: GB = B.cayley_graph(elements=ball(B, 4), generators=B.gens()); GB
Digraph on 31 vertices
```

Since the braid group has nontrivial relations, this graph contains less vertices than the one associated to the free group (which is a tree):

```
sage: F = FreeGroup(3)
sage: GF = F.cayley_graph(elements=ball(F, 4), generators=F.gens()); GF
Digraph on 40 vertices
```

class sage.groups.braid.BraidGroup_class(names)

Bases: sage.groups.artin.FiniteTypeArtinGroup

The braid group on n strands.

EXAMPLES:

```
sage: B1 = BraidGroup(5)
sage: B1
Braid group on 5 strands
sage: B2 = BraidGroup(3)
sage: B1==B2
False
sage: B2 is BraidGroup(3)
True
```

Delta(*args, **kwds)

Deprecated: Use delta() instead. See trac ticket #24664 for details.

Element

alias of Braid

TL_basis_with_drain(drain_size)

Return a basis of a summand of the Temperley–Lieb–Jones representation of self.

The basis elements are given by non-intersecting pairings of n+d points in a square with n points marked 'on the top' and d points 'on the bottom' so that every bottom point is paired with a top point. Here, n is the number of strands of the braid group, and d is specified by drain_size.

A basis element is specified as a list of integers obtained by considering the pairings as obtained as the 'highest term' of trivalent trees marked by Jones-Wenzl projectors (see e.g. [Wan2010]). In practice, this is a list of non-negative integers whose first element is $drain_size$, whose last element is 0, and satisfying that consecutive integers have difference 1. Moreover, the length of each basis element is n+1.

Given these rules, the list of lists is constructed recursively in the natural way.

INPUT:

• drain_size - integer between 0 and the number of strands (both inclusive)

OUTPUT:

A list of basis elements, each of which is a list of integers.

EXAMPLES:

We calculate the basis for the appropriate vector space for B_5 when d=3:

```
sage: B = BraidGroup(5)
sage: B.TL_basis_with_drain(3)
[[3, 4, 3, 2, 1, 0],
      [3, 2, 3, 2, 1, 0],
      [3, 2, 1, 2, 1, 0],
      [3, 2, 1, 0, 1, 0]]
```

The number of basis elements hopefully corresponds to the general formula for the dimension of the representation spaces:

```
sage: B = BraidGroup(10)
sage: d = 2
sage: B.dimension_of_TL_space(d) == len(B.TL_basis_with_drain(d))
True
```

TL_representation (*drain_size*, *variab=None*)

Return representation matrices of the Temperley–Lieb–Jones representation of standard braid group generators and inverses of self.

The basis is given by non-intersecting pairings of (n+d) points, where n is the number of strands, and d is given by $drain_size$, and the pairings satisfy certain rules. See $TL_basis_with_drain()$ for details. This basis has the useful property that all resulting entries can be regarded as Laurent polynomials.

We use the convention that the eigenvalues of the standard generators are 1 and $-A^4$, where A is the generator of the Laurent polynomial ring.

When d = n - 2 and the variables are picked appropriately, the resulting representation is equivalent to the reduced Burau representation. When d = n, the resulting representation is trivial and 1-dimensional.

INPUT:

- drain_size integer between 0 and the number of strands (both inclusive)
- variable variable (default: None); the variable in the entries of the matrices; if None, then use a default variable in $\mathbf{Z}[A, A^{-1}]$

OUTPUT:

A list of matrices corresponding to the representations of each of the standard generators and their inverses.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: B.TL_representation(0)
[ (
   1
       0] [ 1
 [A^2 -A^4], [A^-2 -A^-4]
),
 [-A^4 A^2] [-A^-4 A^-2]
       1], [ 0
   0
                       1]
 [
),
       0] [ 1
    1
 [A^2 -A^4], [A^-2 -A^-4]
) ]
sage: R.<A> = LaurentPolynomialRing(GF(2))
sage: B.TL_representation(0, variab=A)
 [ 1 0] [ 1 0]
 [A^2 A^4], [A^-2 A^-4]
),
 [A^4 A^2] [A^-4 A^-2]
 [ 0 1], [ 0 1]
 [ 1 0] [ 1 0]
 [A^2 A^4], [A^-2 A^-4]
```

```
sage: B = BraidGroup(8)
sage: B.TL_representation(8)
[([1], [1]),
  ([1], [1]),
  ([1], [1]),
  ([1], [1]),
  ([1], [1]),
  ([1], [1]),
```

an_element()

Return an element of the braid group.

This is used both for illustration and testing purposes.

EXAMPLES:

```
sage: B=BraidGroup(2)
sage: B.an_element()
s
```

as_permutation_group()

Return an isomorphic permutation group.

OUTPUT:

Raises a ValueError error since braid groups are infinite.

cardinality()

Return the number of group elements.

OUTPUT:

Infinity.

dimension_of_TL_space (drain_size)

Return the dimension of a particular Temperley-Lieb representation summand of self.

Following the notation of *TL_basis_with_drain()*, the summand is the one corresponding to the number of drains being fixed to be drain_size.

INPUT:

• drain_size - integer between 0 and the number of strands (both inclusive)

EXAMPLES:

Calculation of the dimension of the representation of B_8 corresponding to having 2 drains:

```
sage: B = BraidGroup(8)
sage: B.dimension_of_TL_space(2)
28
```

The direct sum of endomorphism spaces of these vector spaces make up the entire Temperley-Lieb algebra:

```
sage: import sage.combinat.diagram_algebras as da
sage: B = BraidGroup(6)
sage: dimensions = [B.dimension_of_TL_space(d)**2 for d in [0, 2, 4, 6]]
sage: total_dim = sum(dimensions)
sage: total_dim == len(list(da.temperley_lieb_diagrams(6)))  # long time
True
```

$mapping_class_action(F)$

Return the action of self in the free group F as mapping class group.

This action corresponds to the action of the braid over the punctured disk, whose fundamental group is the free group on as many generators as strands.

In Sage, this action is the result of multiplying a free group element with a braid. So you generally do not have to construct this action yourself.

OUTPUT:

A MappingClassGroupAction.

EXAMPLES

```
sage: B = BraidGroup(3)
sage: B.inject_variables()
Defining s0, s1
sage: F.<a,b,c> = FreeGroup(3)
sage: A = B.mapping_class_action(F)
sage: A(a,s0)
a*b*a^-1
sage: a * s0 # simpler notation
a*b*a^-1
```

order()

Return the number of group elements.

OUTPUT:

Infinity.

some_elements()

Return a list of some elements of the braid group.

This is used both for illustration and testing purposes.

EXAMPLES:

```
sage: B = BraidGroup(3)
sage: B.some_elements()
[s0, s0*s1, (s0*s1)^3]
```

strands()

Return the number of strands.

OUTPUT:

Integer.

EXAMPLES:

```
sage: B = BraidGroup(4)
sage: B.strands()
4
```

```
class sage.groups.braid.MappingClassGroupAction (G, M)
```

```
Bases: sage.categories.action.Action
```

The right action of the braid group the free group as the mapping class group of the punctured disk.

That is, this action is the action of the braid over the punctured disk, whose fundamental group is the free group on as many generators as strands.

This action is defined as follows:

$$x_j \cdot \sigma_i = \begin{cases} x_j \cdot x_{j+1} \cdot x_j^{-1} & \text{if } i = j \\ x_{j-1} & \text{if } i = j-1 \\ x_j & \text{otherwise} \end{cases}$$

where σ_i are the generators of the braid group on n strands, and x_i the generators of the free group of rank n.

You should left multiplication of the free group element by the braid to compute the action. Alternatively, use the mapping_class_action() method of the braid group to construct this action.

```
sage: B.\langles0,s1,s2\rangle = BraidGroup(4)
sage: F. < x0, x1, x2, x3 > = FreeGroup(4)
sage: x0 * s1
x0
sage: x1 * s1
x1*x2*x1^-1
sage: x1^-1 * s1
x1*x2^-1*x1^-1
sage: A = B.mapping_class_action(F)
sage: A
Right action by Braid group on 4 strands on Free Group on generators \{x0, x1, x2, ...\}
~x3}
sage: A(x0, s1)
sage: A(x1, s1)
x1*x2*x1^-1
sage: A(x1^-1, s1)
x1*x2^-1*x1^-1
```

CHAPTER

FOURTEEN

INDEXED FREE GROUPS

Free groups and free abelian groups implemented using an indexed set of generators.

AUTHORS:

• Travis Scrimshaw (2013-10-16): Initial version

An indexed free abelian group.

EXAMPLES:

```
sage: G = Groups().Commutative().free(index_set=ZZ)
sage: G
Free abelian group indexed by Integer Ring
sage: G = Groups().Commutative().free(index_set='abcde')
sage: G
Free abelian group indexed by {'a', 'b', 'c', 'd', 'e'}
```

class Element (F, x)

 $Bases: sage.monoids.indexed_free_monoid.IndexedFreeAbelianMonoidElement, sage.groups.indexed_free_group.IndexedFreeGroup.Element$

gen(x)

The generator indexed by x of self.

EXAMPLES:

```
sage: G = Groups().Commutative().free(index_set=ZZ)
sage: G.gen(0)
F[0]
sage: G.gen(2)
F[2]
```

one()

Return the identity element of self.

```
sage: G = Groups().Commutative().free(index_set=ZZ)
sage: G.one()
1
```

Bases: sage.groups.indexed_free_group.IndexedGroup, sage.groups.group.Group

An indexed free group.

EXAMPLES:

```
sage: G = Groups().free(index_set=ZZ)
sage: G
Free group indexed by Integer Ring
sage: G = Groups().free(index_set='abcde')
sage: G
Free group indexed by {'a', 'b', 'c', 'd', 'e'}
```

class Element (F, x)

Bases: sage.monoids.indexed_free_monoid.IndexedFreeMonoidElement

length()

Return the length of self.

EXAMPLES:

```
sage: G = Groups().free(index_set=ZZ)
sage: a,b,c,d,e = [G.gen(i) for i in range(5)]
sage: elt = a*c^-3*b^-2*a
sage: elt.length()
7
sage: len(elt)
7
sage: G = Groups().free(index_set=ZZ)
sage: a,b,c,d,e = [G.gen(i) for i in range(5)]
sage: elt = a*c^-3*b^-2*a
sage: elt.length()
7
sage: len(elt)
7
```

to_word_list()

Return self as a word represented as a list whose entries are the pairs (i, s) where i is the index and s is the sign.

EXAMPLES:

```
sage: G = Groups().free(index_set=ZZ)
sage: a,b,c,d,e = [G.gen(i) for i in range(5)]
sage: x = a*b^2*e*a^-1
sage: x.to_word_list()
[(0, 1), (1, 1), (1, 1), (4, 1), (0, -1)]
```

gen(x)

The generator indexed by x of self.

EXAMPLES:

```
sage: G = Groups().free(index_set=ZZ)
sage: G.gen(0)
F[0]
```

```
sage: G.gen(2)
F[2]
```

one()

Return the identity element of self.

EXAMPLES:

```
sage: G = Groups().free(ZZ)
sage: G.one()
1
```

Bases: sage.monoids.indexed_free_monoid.IndexedMonoid

Base class for free (abelian) groups whose generators are indexed by a set.

```
sage: G = Groups().Commutative().free(index_set=ZZ)
sage: G.is_finite()
False
sage: G = Groups().Commutative().free(index_set='abc')
sage: G.is_finite()
False
sage: G = Groups().Commutative().free(index_set=[])
sage: G.is_finite()
True
```

gens()

Return the group generators of self.

EXAMPLES:

```
sage: G = Groups.free(index_set=ZZ)
sage: G.group_generators()
Lazy family (Generator map from Integer Ring to
  Free group indexed by Integer Ring(i))_{i in Integer Ring}
sage: G = Groups().free(index_set='abcde')
sage: sorted(G.group_generators())
[F['a'], F['b'], F['c'], F['d'], F['e']]
```

group generators()

Return the group generators of self.

EXAMPLES:

```
sage: G = Groups.free(index_set=ZZ)
sage: G.group_generators()
Lazy family (Generator map from Integer Ring to
   Free group indexed by Integer Ring(i))_{i in Integer Ring}
sage: G = Groups().free(index_set='abcde')
sage: sorted(G.group_generators())
[F['a'], F['b'], F['c'], F['d'], F['e']]
```

order()

Return the number of elements of self, which is ∞ unless this is the trivial group.

```
sage: G = Groups().free(index_set=ZZ)
sage: G.order()
+Infinity
sage: G = Groups().Commutative().free(index_set='abc')
sage: G.order()
+Infinity
sage: G = Groups().Commutative().free(index_set=[])
sage: G.order()
1
```

rank()

Return the rank of self.

This is the number of generators of self.

```
sage: G = Groups().free(index_set=ZZ)
sage: G.rank()
+Infinity
sage: G = Groups().free(index_set='abc')
sage: G.rank()
3
sage: G = Groups().free(index_set=[])
sage: G.rank()
0
```

```
sage: G = Groups().Commutative().free(index_set=ZZ)
sage: G.rank()
+Infinity
sage: G = Groups().Commutative().free(index_set='abc')
sage: G.rank()
3
sage: G = Groups().Commutative().free(index_set=[])
sage: G.rank()
0
```

RIGHT-ANGLED ARTIN GROUPS

A *right-angled Artin group* (often abbreviated as RAAG) is a group which has a presentation whose only relations are commutators between generators. These are also known as graph groups, since they are (uniquely) encoded by (simple) graphs, or partially commutative groups.

AUTHORS:

- Travis Scrimshaw (2013-09-01): Initial version
- Travis Scrimshaw (2018-02-05): Made compatible with ArtinGroup

class sage.groups.raag.RightAngledArtinGroup (G, names) Bases: sage.groups.artin.ArtinGroup

Dases. sage.groups.arcin.Arcingroup

The right-angled Artin group defined by a graph G.

Let $\Gamma = \{V(\Gamma), E(\Gamma)\}$ be a simple graph. A *right-angled Artin group* (commonly abbreviated as RAAG) is the group

$$A_{\Gamma} = \langle g_v : v \in V(\Gamma) \mid [g_u, g_v] \text{ if } \{u, v\} \notin E(\Gamma) \rangle.$$

These are sometimes known as graph groups or partially commutative groups. This RAAG's contains both free groups, given by the complete graphs, and free abelian groups, given by disjoint vertices.

Warning: This is the opposite convention of some papers.

Right-angled Artin groups contain many remarkable properties and have a very rich structure despite their simple presentation. Here are some known facts:

- The word problem is solvable.
- They are known to be rigid; that is for any finite simple graphs Δ and Γ , we have $A_{\Delta} \cong A_{\Gamma}$ if and only if $\Delta \cong \Gamma$ [Dro1987].
- They embed as a finite index subgroup of a right-angled Coxeter group (which is the same definition as above except with the additional relations $g_v^2 = 1$ for all $v \in V(\Gamma)$).
- In [BB1997], it was shown they contain subgroups that satisfy the property FP_2 but are not finitely presented by considering the kernel of $\phi: A_{\Gamma} \to \mathbf{Z}$ by $g_v \mapsto 1$ (i.e. words of exponent sum 0).
- A_{Γ} has a finite $K(\pi, 1)$ space.
- A_{Γ} acts freely and cocompactly on a finite dimensional CAT(0) space, and so it is biautomatic.
- Given an Artin group B with generators s_i , then any subgroup generated by a collection of $v_i = s_i^{k_i}$ where $k_i \ge 2$ is a RAAG where $[v_i, v_j] = 1$ if and only if $[s_i, s_j] = 1$ [CP2001].

The normal forms for RAAG's in Sage are those described in [VW1994] and gathers commuting groups together.

INPUT:

- G a graph
- names a string or a list of generator names

EXAMPLES:

```
sage: Gamma = Graph(4)
sage: G = RightAngledArtinGroup(Gamma)
sage: a,b,c,d = G.gens()
sage: a*c*d^4*a^-3*b
v0^-2*v1*v2*v3^4
sage: Gamma = graphs.CompleteGraph(4)
sage: G = RightAngledArtinGroup(Gamma)
sage: a,b,c,d = G.gens()
sage: a*c*d^4*a^-3*b
v0*v2*v3^4*v0^-3*v1
sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G
Right-angled Artin group of Cycle graph
sage: a,b,c,d,e = G.gens()
sage: d*b*a*d
v1*v3^2*v0
sage: e^{-1} \cdot c \cdot b \cdot e \cdot b^{-1} \cdot c^{-4}
v2^-3
```

We create the previous example but with different variable names:

```
sage: G.<a,b,c,d,e> = RightAngledArtinGroup(Gamma)
sage: G
Right-angled Artin group of Cycle graph
sage: d*b*a*d
b*d^2*a
sage: e^-1*c*b*e*b^-1*c^-4
c^-3
```

REFERENCES:

- [Cha2006]
- [BB1997]
- [Dro1987]
- [CP2001]
- [VW1994]
- Wikipedia article Artin_group#Right-angled_Artin_groups

class Element (parent, lst)

Bases: sage.groups.artin.ArtinGroupElement

An element of a right-angled Artin group (RAAG).

Elements of RAAGs are modeled as lists of pairs [i, p] where i is the index of a vertex in the defining graph (with some fixed order of the vertices) and p is the power.

gen(i)

Return the i-th generator of self.

EXAMPLES:

```
sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.gen(2)
v2
```

gens()

Return the generators of self.

EXAMPLES:

```
sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.gens()
(v0, v1, v2, v3, v4)
sage: Gamma = Graph([('x', 'y'), ('y', 'zeta')])
sage: G = RightAngledArtinGroup(Gamma)
sage: G.gens()
(vx, vy, vzeta)
```

graph()

Return the defining graph of self.

EXAMPLES:

```
sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.graph()
Cycle graph: Graph on 5 vertices
```

ngens()

Return the number of generators of self.

EXAMPLES:

```
sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.ngens()
5
```

one()

Return the identity element 1.

EXAMPLES:

```
sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.one()
1
```

one_element()

Return the identity element 1.

```
sage: Gamma = graphs.CycleGraph(5)
sage: G = RightAngledArtinGroup(Gamma)
sage: G.one()
1
```

CHAPTER

FUNCTOR THAT CONVERTS A COMMUTATIVE ADDITIVE GROUP INTO A MULTIPLICATIVE GROUP.

AUTHORS:

• Mark Shimozono (2013): initial version

```
class sage.groups.group_exp.GroupExp
    Bases: sage.categories.functor.Functor
```

A functor that converts a commutative additive group into an isomorphic multiplicative group.

More precisely, given a commutative additive group G, define the exponential of G to be the isomorphic group with elements denoted e^g for every $g \in G$ and but with product in multiplicative notation

$$e^g e^h = e^{g+h}$$
 for all $g, h \in G$.

The class GroupExp implements the sage functor which sends a commutative additive group G to its exponential.

The creation of an instance of the functor *GroupExp* requires no input:

```
sage: E = GroupExp(); E
Functor from Category of commutative additive groups to Category of groups
```

The GroupExp functor (denoted E in the examples) can be applied to two kinds of input. The first is a commutative additive group. The output is its exponential. This is accomplished by $_{apply_functor}()$:

```
sage: EZ = E(ZZ); EZ
Multiplicative form of Integer Ring
```

Elements of the exponentiated group can be created and manipulated as follows:

```
sage: x = EZ(-3); x
-3
sage: x.parent()
Multiplicative form of Integer Ring
sage: EZ(-1)*EZ(6) == EZ(5)
True
sage: EZ(3)^(-1)
-3
sage: EZ.one()
0
```

The second kind of input the <code>GroupExp</code> functor accepts, is a homomorphism of commutative additive groups. The output is the multiplicative form of the homomorphism. This is achieved by <code>_apply_functor_to_morphism()</code>:

```
sage: L = RootSystem(['A',2]).ambient_space()
sage: EL = E(L)
sage: W = L.weyl_group(prefix="s")
sage: s2 = W.simple_reflection(2)
sage: def my_action(mu):
         return s2.action(mu)
sage: from sage.categories.morphism import SetMorphism
sage: from sage.categories.homset import Hom
sage: f = SetMorphism(Hom(L, L, CommutativeAdditiveGroups()), my_action)
sage: F = E(f); F
Generic endomorphism of Multiplicative form of Ambient space of the Root system,
of type ['A', 2]
sage: v = L.an_element(); v
(2, 2, 3)
sage: y = F(EL(v)); y
(2, 3, 2)
sage: y.parent()
Multiplicative form of Ambient space of the Root system of type ['A', 2]
```

class sage.groups.group_exp.GroupExpElement (parent, x)

 $Bases: \verb| sage.structure.element_wrapper.ElementWrapper|, \verb| sage.structure.element|. \\ \verb| MultiplicativeGroupElement| \\$

An element in the exponential of a commutative additive group.

INPUT:

- self the exponentiated group element being created
- parent the exponential group (parent of self)
- x the commutative additive group element being wrapped to form self.

EXAMPLES:

```
sage: G = QQ^2
sage: EG = GroupExp()(G)
sage: z = GroupExpElement(EG, vector(QQ, (1,-3))); z
(1, -3)
sage: z.parent()
Multiplicative form of Vector space of dimension 2 over Rational Field
sage: EG(vector(QQ, (1,-3))) == z
True
```

inverse()

Invert the element self.

EXAMPLES:

```
sage: EZ = GroupExp()(ZZ)
sage: EZ(-3).inverse()
3
```

```
class sage.groups.group_exp.GroupExp_Class(G)
```

 $\begin{array}{ll} \textbf{Bases:} & \texttt{sage.structure.unique_representation.UniqueRepresentation}, & \texttt{sage.} \\ \textbf{structure.parent.Parent} \end{array}$

The multiplicative form of a commutative additive group.

INPUT:

• G: a commutative additive group

OUTPUT:

• The multiplicative form of G.

EXAMPLES:

```
sage: GroupExp()(QQ)
Multiplicative form of Rational Field
```

Element

alias of GroupExpElement

an_element()

Return an element of the multiplicative group.

EXAMPLES:

```
sage: L = RootSystem(['A',2]).weight_lattice()
sage: EL = GroupExp()(L)
sage: x = EL.an_element(); x
2*Lambda[1] + 2*Lambda[2]
sage: x.parent()
Multiplicative form of Weight lattice of the Root system of type ['A', 2]
```

group_generators()

Return generators of self.

EXAMPLES:

```
sage: GroupExp()(ZZ).group_generators()
(1,)
```

one()

Return the identity element of the multiplicative group.

EXAMPLES:

```
sage: G = GroupExp()(ZZ^2)
sage: G.one()
(0, 0)
sage: x = G.an_element(); x
(1, 0)
sage: x == x * G.one()
True
```

product (x, y)

Return the product of x and y in the multiplicative group.

```
sage: G = GroupExp()(ZZ)
sage: G.product(G(2),G(7))
9
sage: x = G(2)
sage: x.__mul__(G(7))
9
```


SEMIDIRECT PRODUCT OF GROUPS

AUTHORS:

• Mark Shimozono (2013) initial version

class sage.groups.group_semidirect_product.GroupSemidirectProduct(G,

twist=None, act_to_right=True, prefix0=None, prefix1=None, print_tuple=False, category=Category of groups)

 $Bases: \verb|sage.sets.cartesian_product.Cartesian| Product$

Return the semidirect product of the groups G and H using the homomorphism twist.

INPUT:

- G and H multiplicative groups
- twist (default: None) a function defining a homomorphism (see below)
- act_to_right True or False (default: True)
- prefix0 (default: None) optional string
- prefix1 (default: None) optional string
- print_tuple True or False (default: False)
- category A category (default: Groups())

A semidirect product of groups G and H is a group structure on the Cartesian product $G \times H$ whose product agrees with that of G on $G \times 1_H$ and with that of H on $1_G \times H$, such that either $1_G \times H$ or $G \times 1_H$ is a normal subgroup. In the former case the group is denoted $G \ltimes H$ and in the latter, $G \rtimes H$.

If act_to_right is True, this indicates the group $G \ltimes H$ in which G acts on H by automorphisms. In this case there is a group homomorphism $\phi \in \text{Hom}(G, \text{Aut}(H))$ such that

$$ghg^{-1} = \phi(g)(h).$$

The homomorphism ϕ is specified by the input twist, which syntactically is the function $G \times H \to H$ defined by

$$twist(g, h) = \phi(g)(h).$$

The product on $G \ltimes H$ is defined by

$$(g_1, h_1)(g_2, h_2) = g_1 h_1 g_2 h_2$$

= $g_1 g_2 g_2^{-1} h_1 g_2 h_2$
= $(g_1 g_2, twist(g_2^{-1}, h_1)h_2)$

If act_to_right is False, the group $G \rtimes H$ is specified by a homomorphism $\psi \in \operatorname{Hom}(H,\operatorname{Aut}(G))$ such that

$$hgh^{-1} = \psi(h)(g)$$

Then twist is the function $H \times G \to G$ defined by

$$twist(h, q) = \psi(h)(q).$$

so that the product in $G \times H$ is defined by

$$(g_1, h_1)(g_2, h_2) = g_1 h_1 g_2 h_2$$

= $g_1 h_1 g_2 h_1^{-1} h_1 h_2$
= $(g_1 twist(h_1, g_2), h_1 h_2)$

If prefix0 (resp. prefix1) is not None then it is used as a wrapper for printing elements of G (resp. H). If print_tuple is True then elements are printed in the style (g,h) and otherwise in the style g*h.

EXAMPLES:

```
sage: G = GL(2,QQ)
sage: V = QQ^2
sage: EV = GroupExp()(V) \# make a multiplicative version of V
sage: def twist(g,v):
         return EV(g*v.value)
sage: H = GroupSemidirectProduct(G, EV, twist=twist, prefix1 = 't'); H
Semidirect product of General Linear Group of degree 2 over Rational Field acting,
→on Multiplicative form of Vector space of dimension 2 over Rational Field
sage: x = H.an_element(); x
t[(1, 0)]
sage: x^2
t[(2, 0)]
sage: cartan_type = CartanType(['A',2])
sage: W = WeylGroup(cartan_type, prefix="s")
sage: def twist(w, v):
         return w*v*(~w)
sage: WW = GroupSemidirectProduct(W,W, twist=twist, print_tuple=True)
sage: s = Family(cartan_type.index_set(), lambda i: W.simple_reflection(i))
sage: y = WW((s[1], s[2])); y
(s1, s2)
sage: y^2
(1, s2*s1)
sage: y.inverse()
(s1, s1*s2*s1)
```

Todo:

- Functorial constructor for semidirect products for various categories
- Twofold Direct product as a special case of semidirect product

Element

alias of GroupSemidirectProductElement

act_to_right()

True if the left factor acts on the right factor and False if the right factor acts on the left factor.

EXAMPLES:

group_generators()

Return generators of self.

EXAMPLES:

```
sage: twist = lambda x,y: y
sage: import __main__
sage: __main__.twist = twist
sage: EZ = GroupExp()(ZZ)
sage: GroupSemidirectProduct(EZ,EZ,twist,print_tuple=True).group_generators()
((1, 0), (0, 1))
```

one()

The identity element of the semidirect product group.

EXAMPLES:

opposite_semidirect_product()

Create the same semidirect product but with the positions of the groups exchanged.

EXAMPLES:

(continues on next page)

(continued from previous page)

```
[0 1]
[1 0] * t[(1, 0)]

sage: Hop = H.opposite_semidirect_product(); Hop

Semidirect product of Multiplicative form of Vector space of dimension 2 over_

→Rational Field acted upon by General Linear Group of degree 2 over Rational_

→Field

sage: hop = h.to_opposite(); hop

t[(0, 1)] * [0 1]
[1 0]

sage: hop in Hop

True
```

product(x, y)

The product of elements x and y in the semidirect product group.

EXAMPLES:

```
sage: G = GL(2,QQ)
sage: V = QQ^2
sage: EV = GroupExp()(V) \# make a multiplicative version of V
sage: def twist(g,v):
         return EV(g*v.value)
sage: S = GroupSemidirectProduct(G, EV, twist=twist, prefix1 = 't')
sage: g = G([[2,1],[3,1]]); g
[2 1]
[3 1]
sage: v = EV.an_element(); v
(1, 0)
sage: x = S((g,v)); x
[2 1]
[3 1] * t[(1, 0)]
sage: x*x # indirect doctest
[7 3]
[9 \ 4] * t[(0, 3)]
```

class sage.groups.group_semidirect_product.GroupSemidirectProductElement

Bases: sage.sets.cartesian_product.CartesianProduct.Element

Element class for GroupSemidirectProduct.

inverse()

The inverse of self.

EXAMPLES:

```
sage: L = RootSystem(['A',2]).root_lattice()
sage: from sage.groups.group_exp import GroupExp
sage: EL = GroupExp()(L)
sage: W = L.weyl_group(prefix="s")
sage: def twist(w,v):
....: return EL(w.action(v.value))
sage: G = GroupSemidirectProduct(W, EL, twist, prefix1='t')
sage: g = G.an_element(); g
s1*s2 * t[2*alpha[1] + 2*alpha[2]]
sage: g.inverse()
s2*s1 * t[2*alpha[1]]
```

to_opposite()

Send an element to its image in the opposite semidirect product.

```
sage: L = RootSystem(['A',2]).root_lattice(); L
Root lattice of the Root system of type ['A', 2]
sage: from sage.groups.group_exp import GroupExp
sage: EL = GroupExp()(L)
sage: W = L.weyl_group(prefix="s"); W
Weyl Group of type ['A', 2] (as a matrix group acting on the root lattice)
sage: def twist(w, v):
         return EL(w.action(v.value))
sage: G = GroupSemidirectProduct(W, EL, twist, prefix1='t'); G
Semidirect product of Weyl Group of type ['A', 2] (as a matrix group acting,
→on the root lattice) acting on Multiplicative form of Root lattice of the
→Root system of type ['A', 2]
sage: mu = L.an_element(); mu
2*alpha[1] + 2*alpha[2]
sage: w = W.an_element(); w
s1*s2
sage: g = G((w,EL(mu))); g
s1*s2 * t[2*alpha[1] + 2*alpha[2]]
sage: g.to_opposite()
t[-2*alpha[1]] * s1*s2
sage: g.to_opposite().parent()
Semidirect product of Multiplicative form of Root lattice of the Root system,
→of type ['A', 2] acted upon by Weyl Group of type ['A', 2] (as a matrix_
→group acting on the root lattice)
```

_		•	-	
C	н	Δ	P.	 ĸ

EIGHTEEN

MISCELLANEOUS GROUPS

This is a collection of groups that may not fit into some of the other infinite families described elsewhere.

CHAPTER

NINETEEN

SEMIMONOMIAL TRANSFORMATION GROUP

The semimonomial transformation group of degree n over a ring R is the semidirect product of the monomial transformation group of degree n (also known as the complete monomial group over the group of units R^{\times} of R) and the group of ring automorphisms.

The multiplication of two elements $(\phi, \pi, \alpha)(\psi, \sigma, \beta)$ with

- $\phi, \psi \in R^{\times n}$
- $\pi, \sigma \in S_n$ (with the multiplication $\pi\sigma$ done from left to right (like in GAP) that is, $(\pi\sigma)(i) = \sigma(\pi(i))$ for all i.)
- $\alpha, \beta \in Aut(R)$

is defined by

$$(\phi, \pi, \alpha)(\psi, \sigma, \beta) = (\phi \cdot \psi^{\pi, \alpha}, \pi\sigma, \alpha \circ \beta)$$

where $\psi^{\pi,\alpha} = (\alpha(\psi_{\pi(1)-1}), \dots, \alpha(\psi_{\pi(n)-1}))$ and the multiplication of vectors is defined elementwisely. (The indexing of vectors is 0-based here, so $\psi = (\psi_0, \psi_1, \dots, \psi_{n-1})$.)

Todo: Up to now, this group is only implemented for finite fields because of the limited support of automorphisms for arbitrary rings.

AUTHORS:

• Thomas Feulner (2012-11-15): initial version

EXAMPLES:

```
sage: S = SemimonomialTransformationGroup(GF(4, 'a'), 4)
sage: G = S.gens()
sage: G[0]*G[1]
((a, 1, 1, 1); (1,2,3,4), Ring endomorphism of Finite Field in a of size 2^2
    Defn: a |--> a)
```

 $\textbf{class} \texttt{ sage.groups.semimonomial_transformations.semimonomial_transformation_group.} \textbf{Semimonomial_transformations.semimonomial_transformation}.$

Bases: sage.categories.action.Action

The left action of SemimonomialTransformationGroup on matrices over the same ring whose number of columns is equal to the degree. See SemimonomialActionVec for the definition of the action on the row vectors of such a matrix.

class sage.groups.semimonomial_transformations.semimonomial_transformation_group.Semimonom.

Bases: sage.categories.action.Action

The natural left action of the semimonomial group on vectors.

The action is defined by: $(\phi, \pi, \alpha) * (v_0, \dots, v_{n-1}) := (\alpha(v_{\pi(1)-1}) \cdot \phi_0^{-1}, \dots, \alpha(v_{\pi(n)-1}) \cdot \phi_{n-1}^{-1})$. (The indexing of vectors is 0-based here, so $\psi = (\psi_0, \psi_1, \dots, \psi_{n-1})$.)

class sage.groups.semimonomial_transformations.semimonomial_transformation_group.Semimonom.

Bases: sage.groups.group.FiniteGroup, sage.structure.unique_representation. UniqueRepresentation

A semimonomial transformation group over a ring.

The semimonomial transformation group of degree n over a ring R is the semidirect product of the monomial transformation group of degree n (also known as the complete monomial group over the group of units R^{\times} of R) and the group of ring automorphisms.

The multiplication of two elements $(\phi, \pi, \alpha)(\psi, \sigma, \beta)$ with

- $\phi, \psi \in R^{\times n}$
- $\pi, \sigma \in S_n$ (with the multiplication $\pi\sigma$ done from left to right (like in GAP) that is, $(\pi\sigma)(i) = \sigma(\pi(i))$ for all i.)
- $\alpha, \beta \in Aut(R)$

is defined by

$$(\phi, \pi, \alpha)(\psi, \sigma, \beta) = (\phi \cdot \psi^{\pi, \alpha}, \pi\sigma, \alpha \circ \beta)$$

where $\psi^{\pi,\alpha} = (\alpha(\psi_{\pi(1)-1}), \dots, \alpha(\psi_{\pi(n)-1}))$ and the multiplication of vectors is defined elementwisely. (The indexing of vectors is 0-based here, so $\psi = (\psi_0, \psi_1, \dots, \psi_{n-1})$.)

Todo: Up to now, this group is only implemented for finite fields because of the limited support of automorphisms for arbitrary rings.

EXAMPLES:

```
sage: F. <a> = GF(9)
sage: S = SemimonomialTransformationGroup(F, 4)
sage: g = S(v = [2, a, 1, 2])
sage: h = S(perm = Permutation('(1,2,3,4)'), autom=F.hom([a**3]))
sage: g*h
((2, a, 1, 2); (1,2,3,4), Ring endomorphism of Finite Field in a of size 3^2_
→Defn: a |--> 2*a + 1)
sage: h*g
((2*a + 1, 1, 2, 2); (1,2,3,4), Ring endomorphism of Finite Field in a of size 3^
→2 Defn: a |--> 2*a + 1)
sage: S(g)
((2, a, 1, 2); (), Ring endomorphism of Finite Field in a of size 3^2 Defn: a |-->
→ a)
sage: S(1)
((1, 1, 1, 1); (), Ring endomorphism of Finite Field in a of size 3^2 Defn: a |-->
→ a)
```

Element

alias of SemimonomialTransformation

base_ring()

Returns the underlying ring of self.

EXAMPLES:

```
sage: F.<a> = GF(4)
sage: SemimonomialTransformationGroup(F, 3).base_ring() is F
True
```

degree()

Returns the degree of self.

EXAMPLES:

```
sage: F.<a> = GF(4)
sage: SemimonomialTransformationGroup(F, 3).degree()
3
```

gens()

Return a tuple of generators of self.

EXAMPLES:

order()

Returns the number of elements of self.

ELEMENTS OF A SEMIMONOMIAL TRANSFORMATION GROUP.

The semimonomial transformation group of degree n over a ring R is the semidirect product of the monomial transformation group of degree n (also known as the complete monomial group over the group of units R^{\times} of R) and the group of ring automorphisms.

The multiplication of two elements $(\phi, \pi, \alpha)(\psi, \sigma, \beta)$ with

- $\phi, \psi \in R^{\times n}$
- $\pi, \sigma \in S_n$ (with the multiplication $\pi\sigma$ done from left to right (like in GAP) that is, $(\pi\sigma)(i) = \sigma(\pi(i))$ for all i.)
- $\alpha, \beta \in Aut(R)$

is defined by

$$(\phi, \pi, \alpha)(\psi, \sigma, \beta) = (\phi \cdot \psi^{\pi, \alpha}, \pi\sigma, \alpha \circ \beta)$$

with $\psi^{\pi,\alpha} = (\alpha(\psi_{\pi(1)-1}), \dots, \alpha(\psi_{\pi(n)-1}))$ and an elementwisely defined multiplication of vectors. (The indexing of vectors is 0-based here, so $\psi = (\psi_0, \psi_1, \dots, \psi_{n-1})$.)

The parent is SemimonomialTransformationGroup.

AUTHORS:

- Thomas Feulner (2012-11-15): initial version
- Thomas Feulner (2013-12-27): trac ticket #15576 dissolve dependency on Permutations.options.mul

EXAMPLES:

```
sage: S = SemimonomialTransformationGroup(GF(4, 'a'), 4)
sage: G = S.gens()
sage: G[0]*G[1]
((a, 1, 1, 1); (1,2,3,4), Ring endomorphism of Finite Field in a of size 2^2
Defn: a |--> a)
```

class sage.groups.semimonomial_transformations.semimonomial_transformation.SemimonomialTrans
Bases: sage.structure.element.MultiplicativeGroupElement

An element in the semimonomial group over a ring R. See SemimonomialTransformationGroup for the details on the multiplication of two elements.

The init method should never be called directly. Use the call via the parent SemimonomialTransformationGroup. instead.

```
sage: F. <a> = GF(9)
sage: S = SemimonomialTransformationGroup(F, 4)
sage: g = S(v = [2, a, 1, 2])
sage: h = S(perm = Permutation('(1,2,3,4)'), autom=F.hom([a**3]))
sage: g*h
((2, a, 1, 2); (1,2,3,4), Ring endomorphism of Finite Field in a of size 3^2_
→Defn: a |--> 2*a + 1)
sage: h*g
((2*a + 1, 1, 2, 2); (1,2,3,4), Ring endomorphism of Finite Field in a of size 3^
→2 Defn: a |--> 2*a + 1)
sage: S(g)
((2, a, 1, 2); (), Ring endomorphism of Finite Field in a of size 3^2 Defn: a |-->
→ a)
sage: S(1) # the one element in the group
((1, 1, 1, 1); (), Ring endomorphism of Finite Field in a of size 3^2 Defn: a |-->
→ a)
```

get_autom()

Returns the component corresponding to Aut(R) of self.

EXAMPLES:

```
sage: F.<a> = GF(9)
sage: SemimonomialTransformationGroup(F, 4).an_element().get_autom()
Ring endomorphism of Finite Field in a of size 3^2 Defn: a |--> 2*a + 1
```

get_perm()

Returns the component corresponding to S_n of self.

EXAMPLES:

```
sage: F.<a> = GF(9)
sage: SemimonomialTransformationGroup(F, 4).an_element().get_perm()
[4, 1, 2, 3]
```

$\mathtt{get}_\mathtt{v}\left(\right)$

Returns the component corresponding to R^{imes^n} of self.

EXAMPLES:

```
sage: F.<a> = GF(9)
sage: SemimonomialTransformationGroup(F, 4).an_element().get_v()
(a, 1, 1, 1)
```

get_v_inverse()

Returns the (elementwise) inverse of the component corresponding to R^{imes^n} of self.

EXAMPLES:

```
sage: F.<a> = GF(9)
sage: SemimonomialTransformationGroup(F, 4).an_element().get_v_inverse()
(a + 2, 1, 1, 1)
```

invert_v()

Elementwisely invert all entries of self which correspond to the component R^{imes^n} .

The other components of self keep unchanged.

CHAPTER

TWENTYONE

CLASS FUNCTIONS OF GROUPS.

This module implements a wrapper of GAP's ClassFunction function.

NOTE: The ordering of the columns of the character table of a group corresponds to the ordering of the list. However, in general there is no way to canonically list (or index) the conjugacy classes of a group. Therefore the ordering of the columns of the character table of a group is somewhat random.

AUTHORS:

- Franco Saliola (November 2008): initial version
- Volker Braun (October 2010): Bugfixes, exterior and symmetric power.

```
sage.groups.class_function.ClassFunction(group, values)
Construct a class function.
```

INPUT:

- group a group.
- values list/tuple/iterable of numbers. The values of the class function on the conjugacy classes, in that order.

EXAMPLES:

```
sage: G = CyclicPermutationGroup(4)
sage: G.conjugacy_classes()
[Conjugacy class of () in Cyclic group of order 4 as a permutation group,
   Conjugacy class of (1,2,3,4) in Cyclic group of order 4 as a permutation group,
   Conjugacy class of (1,3)(2,4) in Cyclic group of order 4 as a permutation group,
   Conjugacy class of (1,4,3,2) in Cyclic group of order 4 as a permutation group]
sage: values = [1, -1, 1, -1]
sage: chi = ClassFunction(G, values); chi
Character of Cyclic group of order 4 as a permutation group
```

```
class sage.groups.class_function.ClassFunction_gap(G, values)

Bases: sage.structure.sage_object.SageObject
```

A wrapper of GAP's ClassFunction function.

Note: It is *not* checked whether the given values describes a character, since GAP does not do this.

EXAMPLES:

```
sage: G = CyclicPermutationGroup(4)
sage: values = [1, -1, 1, -1]
sage: chi = ClassFunction(G, values); chi
```

(continues on next page)

(continued from previous page)

```
Character of Cyclic group of order 4 as a permutation group sage: loads(dumps(chi)) == chi
True
```

adams_operation(k)

Return the k-th Adams operation on self.

Let G be a finite group. The k-th Adams operation Ψ^k is given by

$$\Psi^k(\chi)(g) = \chi(g^k).$$

The Adams operations turn the representation ring of G into a λ -ring.

EXAMPLES:

```
sage: G = groups.permutation.Alternating(5)
sage: chars = G.irreducible_characters()
sage: [chi.adams_operation(2).values() for chi in chars]
[[1, 1, 1, 1, 1],
[3, 3, 0, -zeta5^3 - zeta5^2, zeta5^3 + zeta5^2 + 1],
[3, 3, 0, zeta5^3 + zeta5^2 + 1, -zeta5^3 - zeta5^2],
[4, 4, 1, -1, -1],
[5, 5, -1, 0, 0]]
sage: chars[4].adams_operation(2).decompose()
((1, Character of Alternating group of order 5!/2 as a permutation group),
(-1, Character of Alternating group of order 5!/2 as a permutation group),
(2, Character of Alternating group of order 5!/2 as a permutation group))
```

REFERENCES:

• Wikipedia article Adams operation

central_character()

Returns the central character of self.

EXAMPLES:

```
sage: t = SymmetricGroup(4).trivial_character()
sage: t.central_character().values()
[1, 6, 3, 8, 6]
```

decompose()

Returns a list of the characters that appear in the decomposition of chi.

EXAMPLES:

degree()

Returns the degree of the character self.

```
sage: S5 = SymmetricGroup(5)
sage: irr = S5.irreducible_characters()
sage: [x.degree() for x in irr]
[1, 4, 5, 6, 5, 4, 1]
```

determinant_character()

Returns the determinant character of self.

EXAMPLES:

```
sage: t = ClassFunction(SymmetricGroup(4), [1, -1, 1, 1, -1])
sage: t.determinant_character().values()
[1, -1, 1, 1, -1]
```

domain()

Returns the domain of the self.

OUTPUT:

The underlying group of the class function.

EXAMPLES:

```
sage: ClassFunction(SymmetricGroup(4), [1,-1,1,1,-1]).domain()
Symmetric group of order 4! as a permutation group
```

exterior power(n)

Returns the anti-symmetrized product of self with itself n times.

INPUT:

• n - a positive integer.

OUTPUT:

The n-th anti-symmetrized power of self as a ClassFunction.

EXAMPLES:

induct(G)

Return the induced character.

INPUT:

• G – A supergroup of the underlying group of self.

OUTPUT:

A ClassFunction of G defined by induction. Induction is the adjoint functor to restriction, see restrict().

irreducible_constituents()

Returns a list of the characters that appear in the decomposition of chi.

EXAMPLES:

```
sage: S5 = SymmetricGroup(5)
sage: chi = ClassFunction(S5, [22, -8, 2, 1, 1, 2, -3])
sage: irr = chi.irreducible_constituents(); irr
(Character of Symmetric group of order 5! as a permutation group,
Character of Symmetric group of order 5! as a permutation group)
sage: list(map(list, irr))
[[4, -2, 0, 1, 1, 0, -1], [5, -1, 1, -1, -1, 1, 0]]
sage: G = GL(2,3)
sage: chi = ClassFunction(G, [-1, -1, -1, -1, -1, -1, -1, -1])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [1, 1, 1, 1, 1, 1, 1, 1])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [2, 2, 2, 2, 2, 2, 2])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [-1, -1, -1, -1, 3, -1, -1, 1])
sage: ic = chi.irreducible_constituents(); ic
(Character of General Linear Group of degree 2 over Finite Field of size 3,
Character of General Linear Group of degree 2 over Finite Field of size 3)
sage: list(map(list, ic))
[[2, -1, 2, -1, 2, 0, 0, 0], [3, 0, 3, 0, -1, 1, 1, -1]]
```

is_irreducible()

Returns True if self cannot be written as the sum of two nonzero characters of self.

EXAMPLES:

```
sage: S4 = SymmetricGroup(4)
sage: irr = S4.irreducible_characters()
sage: [x.is_irreducible() for x in irr]
[True, True, True, True, True]
```

norm()

Returns the norm of self.

```
sage: A5 = AlternatingGroup(5)
sage: [x.norm() for x in A5.irreducible_characters()]
[1, 1, 1, 1]
```

restrict (H)

Return the restricted character.

INPUT:

• H – a subgroup of the underlying group of self.

OUTPUT:

A ClassFunction of H defined by restriction.

EXAMPLES:

scalar_product (other)

Returns the scalar product of self with other.

EXAMPLES:

```
sage: S4 = SymmetricGroup(4)
sage: irr = S4.irreducible_characters()
sage: [[x.scalar_product(y) for x in irr] for y in irr]
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1]]
```

symmetric power(n)

Returns the symmetrized product of self with itself n times.

INPUT:

• n - a positive integer.

OUTPUT:

The n-th symmetrized power of self as a ClassFunction.

EXAMPLES:

```
sage: chi = ClassFunction(SymmetricGroup(4), [3, 1, -1, 0, -1])
sage: p = chi.symmetric_power(3)
sage: p
Character of Symmetric group of order 4! as a permutation group
sage: p.values()
[10, 2, -2, 1, 0]
```

tensor_product (other)

```
sage: S3 = SymmetricGroup(3)
sage: chi1, chi2, chi3 = S3.irreducible_characters()
sage: chi1.tensor_product(chi3).values()
[1, -1, 1]
```

values()

Return the list of values of self on the conjugacy classes.

EXAMPLES:

```
sage: G = GL(2,3)
sage: [x.values() for x in G.irreducible_characters()] #random
[[1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, -1, -1],
       [2, -1, 2, -1, 2, 0, 0, 0],
       [2, 1, -2, -1, 0, -zeta8^3 - zeta8, zeta8^3 + zeta8, 0],
       [2, 1, -2, -1, 0, zeta8^3 + zeta8, -zeta8^3 - zeta8, 0],
       [3, 0, 3, 0, -1, -1, -1, 1],
       [3, 0, 3, 0, -1, 1, 1, -1],
       [4, -1, -4, 1, 0, 0, 0, 0]]
```

class sage.groups.class_function.ClassFunction_libgap(G, values)

Bases: sage.structure.sage_object.SageObject

A wrapper of GAP's ClassFunction function.

Note: It is not checked whether the given values describes a character, since GAP does not do this.

EXAMPLES:

```
sage: G = SO(3,3)
sage: values = [1, -1, -1, 1, 2]
sage: chi = ClassFunction(G, values); chi
Character of Special Orthogonal Group of degree 3 over Finite Field of size 3
sage: loads(dumps(chi)) == chi
True
```

$adams_operation(k)$

Return the k-th Adams operation on self.

Let G be a finite group. The k-th Adams operation Ψ^k is given by

$$\Psi^k(\chi)(g) = \chi(g^k).$$

The Adams operations turn the representation ring of G into a λ -ring.

EXAMPLES:

```
sage: G = GL(2,3)
sage: chars = G.irreducible_characters()
sage: [chi.adams_operation(2).values() for chi in chars]
[[1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1],
       [2, -1, 2, -1, 2, 2, 2, 2],
       [2, -1, 2, -1, -2, 0, 0, 2],
       [2, -1, 2, -1, -2, 0, 0, 2],
       [3, 0, 3, 0, 3, -1, -1, 3],
```

(continues on next page)

(continued from previous page)

REFERENCES:

• Wikipedia article Adams_operation

central_character()

Return the central character of self.

EXAMPLES:

```
sage: t = SymmetricGroup(4).trivial_character()
sage: t.central_character().values()
[1, 6, 3, 8, 6]
```

decompose()

Return a list of the characters that appear in the decomposition of self.

EXAMPLES:

```
sage: S5 = SymmetricGroup(5)
sage: chi = ClassFunction(S5, [22, -8, 2, 1, 1, 2, -3])
sage: chi.decompose()
((3, Character of Symmetric group of order 5! as a permutation group),
  (2, Character of Symmetric group of order 5! as a permutation group))
```

degree()

Return the degree of the character self.

EXAMPLES:

```
sage: S5 = SymmetricGroup(5)
sage: irr = S5.irreducible_characters()
sage: [x.degree() for x in irr]
[1, 4, 5, 6, 5, 4, 1]
```

determinant_character()

Return the determinant character of self.

EXAMPLES:

```
sage: t = ClassFunction(SymmetricGroup(4), [1, -1, 1, 1, -1])
sage: t.determinant_character().values()
[1, -1, 1, 1, -1]
```

domain()

Return the domain of self.

OUTPUT:

The underlying group of the class function.

EXAMPLES:

```
sage: ClassFunction(SymmetricGroup(4), [1,-1,1,1,-1]).domain()
Symmetric group of order 4! as a permutation group
```

exterior_power(n)

Return the anti-symmetrized product of self with itself n times.

INPUT:

• n - a positive integer

OUTPUT:

The n-th anti-symmetrized power of self as a ClassFunction.

EXAMPLES:

gap()

Return the underlying LibGAP element.

EXAMPLES:

```
sage: G = CyclicPermutationGroup(4)
sage: values = [1, -1, 1, -1]
sage: chi = ClassFunction(G, values); chi
Character of Cyclic group of order 4 as a permutation group
sage: type(chi)
<class 'sage.groups.class_function.ClassFunction_gap'>
sage: gap(chi)
ClassFunction( CharacterTable( Group( [ (1,2,3,4) ] ) ), [ 1, -1, 1, -1 ] )
sage: type(_)
<class 'sage.interfaces.gap.GapElement'>
```

induct(G)

Return the induced character.

INPUT:

 \bullet G – A supergroup of the underlying group of self.

OUTPUT:

A ${\it ClassFunction}$ of G defined by induction. Induction is the adjoint functor to restriction, see ${\it restrict}$ ().

irreducible_constituents()

Return a list of the characters that appear in the decomposition of self.

EXAMPLES:

```
sage: S5 = SymmetricGroup(5)
sage: chi = ClassFunction(S5, [22, -8, 2, 1, 1, 2, -3])
sage: irr = chi.irreducible_constituents(); irr
(Character of Symmetric group of order 5! as a permutation group,
Character of Symmetric group of order 5! as a permutation group)
sage: list(map(list, irr))
[[4, -2, 0, 1, 1, 0, -1], [5, -1, 1, -1, -1, 1, 0]]
sage: G = GL(2,3)
sage: chi = ClassFunction(G, [-1, -1, -1, -1, -1, -1, -1, -1])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [1, 1, 1, 1, 1, 1, 1])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [2, 2, 2, 2, 2, 2, 2])
sage: chi.irreducible_constituents()
(Character of General Linear Group of degree 2 over Finite Field of size 3,)
sage: chi = ClassFunction(G, [-1, -1, -1, -1, 3, -1, -1, 1])
sage: ic = chi.irreducible_constituents(); ic
(Character of General Linear Group of degree 2 over Finite Field of size 3,
Character of General Linear Group of degree 2 over Finite Field of size 3)
sage: list(map(list, ic))
[[2, -1, 2, -1, 2, 0, 0, 0], [3, 0, 3, 0, -1, 1, 1, -1]]
```

is_irreducible()

Return True if self cannot be written as the sum of two nonzero characters of self.

EXAMPLES:

```
sage: S4 = SymmetricGroup(4)
sage: irr = S4.irreducible_characters()
sage: [x.is_irreducible() for x in irr]
[True, True, True, True, True]
```

norm()

Return the norm of self.

```
sage: A5 = AlternatingGroup(5)
sage: [x.norm() for x in A5.irreducible_characters()]
[1, 1, 1, 1, 1]
```

restrict(H)

Return the restricted character.

INPUT:

• H – a subgroup of the underlying group of self.

OUTPUT:

A ClassFunction of H defined by restriction.

EXAMPLES:

```
sage: G = SymmetricGroup(5)
sage: chi = ClassFunction(G, [3, -3, -1, 0, 0, -1, 3]); chi
Character of Symmetric group of order 5! as a permutation group
sage: H = G.subgroup([(1,2,3), (1,2), (4,5)])
sage: chi.restrict(H)
Character of Subgroup of (Symmetric group of order 5! as a permutation group)
→generated by [(4,5), (1,2), (1,2,3)]
sage: chi.restrict(H).values()
[3, -3, -3, -1, 0, 0]
```

scalar_product (other)

Return the scalar product of self with other.

EXAMPLES:

```
sage: S4 = SymmetricGroup(4)
sage: irr = S4.irreducible_characters()
sage: [[x.scalar_product(y) for x in irr] for y in irr]
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1]]
```

symmetric power(n)

Return the symmetrized product of self with itself n times.

INPUT:

• n - a positive integer

OUTPUT:

The n-th symmetrized power of self as a ClassFunction.

EXAMPLES:

```
sage: chi = ClassFunction(SymmetricGroup(4), [3, 1, -1, 0, -1])
sage: p = chi.symmetric_power(3)
sage: p
Character of Symmetric group of order 4! as a permutation group
sage: p.values()
[10, 2, -2, 1, 0]
```

tensor_product (other)

Return the tensor product of self and other.

```
sage: S3 = SymmetricGroup(3)
sage: chi1, chi2, chi3 = S3.irreducible_characters()
sage: chi1.tensor_product(chi3).values()
[1, -1, 1]
```

values()

Return the list of values of self on the conjugacy classes.

```
sage: G = GL(2,3)
sage: [x.values() for x in G.irreducible_characters()] #random
[[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, -1, -1, -1],
[2, -1, 2, -1, 2, 0, 0, 0],
[2, 1, -2, -1, 0, -zeta8^3 - zeta8, zeta8^3 + zeta8, 0],
[2, 1, -2, -1, 0, zeta8^3 + zeta8, -zeta8^3 - zeta8, 0],
[3, 0, 3, 0, -1, -1, -1, 1],
[3, 0, 3, 0, -1, 1, 1, -1],
[4, -1, -4, 1, 0, 0, 0, 0]]
```

CONJUGACY CLASSES OF GROUPS

This module implements a wrapper of GAP's ConjugacyClass function.

There are two main classes, <code>ConjugacyClass</code> and <code>ConjugacyClassGAP</code>. All generic methods should go into <code>ConjugacyClass</code>, whereas <code>ConjugacyClassGAP</code> should only contain wrappers for GAP functions. <code>ConjugacyClass</code> contains some fallback methods in case some group cannot be defined as a GAP object.

Todo:

- Implement a non-naive fallback method for computing all the elements of the conjugacy class when the group is not defined in GAP, as the one in Butler's paper.
- Define a sage method for gap matrices so that groups of matrices can use the quicker GAP algorithm rather than the naive one.

EXAMPLES:

Conjugacy classes for groups of permutations:

```
sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: G.conjugacy_class(g)
Conjugacy class of cycle type [4] in Symmetric group of order 4! as a permutation_
→group
```

Conjugacy classes for groups of matrices:

```
sage: F = GF(5)
sage: gens = [matrix(F,2,[1,2, -1, 1]), matrix(F,2, [1,1, 0,1])]
sage: H = MatrixGroup(gens)
sage: h = H(matrix(F,2,[1,2, -1, 1]))
sage: H.conjugacy_class(h)
Conjugacy class of [1 2]
[4 1] in Matrix group over Finite Field of size 5 with 2 generators (
[1 2] [1 1]
[4 1], [0 1]
)
```

```
class sage.groups.conjugacy_classes.ConjugacyClass(group, element)
    Bases: sage.structure.parent.Parent
```

Generic conjugacy classes for elements in a group.

This is the default fall-back implementation to be used whenever GAP cannot handle the group.

```
sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: ConjugacyClass(G,g)
Conjugacy class of (1,2,3,4) in Symmetric group of order 4! as a
permutation group
```

an_element()

Return a representative of self.

EXAMPLES:

```
sage: G = SymmetricGroup(3)
sage: g = G((1,2,3))
sage: C = ConjugacyClass(G,g)
sage: C.representative()
(1,2,3)
```

is_rational()

Check if self is rational (closed for powers).

EXAMPLES:

```
sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: c = ConjugacyClass(G,g)
sage: c.is_rational()
False
```

is_real()

Check if self is real (closed for inverses).

EXAMPLES:

```
sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: c = ConjugacyClass(G,g)
sage: c.is_real()
True
```

list()

Return a list with all the elements of self.

EXAMPLES:

Groups of permutations:

```
sage: G = SymmetricGroup(3)
sage: g = G((1,2,3))
sage: c = ConjugacyClass(G,g)
sage: L = c.list()
sage: Set(L) == Set([G((1,3,2)), G((1,2,3))])
True
```

representative()

Return a representative of self.

```
sage: G = SymmetricGroup(3)
sage: g = G((1,2,3))
sage: C = ConjugacyClass(G,g)
sage: C.representative()
(1,2,3)
```

set()

Return the set of elements of the conjugacy class.

EXAMPLES:

Groups of permutations:

```
sage: G = SymmetricGroup(3)
sage: g = G((1,2))
sage: C = ConjugacyClass(G,g)
sage: S = [(2,3), (1,2), (1,3)]
sage: C.set() == Set(G(x) for x in S)
True
```

Groups of matrices over finite fields:

```
sage: F = GF(5)
sage: gens = [matrix(F,2,[1,2, -1, 1]), matrix(F,2, [1,1, 0,1])]
sage: H = MatrixGroup(gens)
sage: h = H(matrix(F,2,[1,2, -1, 1]))
sage: C = ConjugacyClass(H,h)
sage: S = [[[3, 2], [2, 4]], [[0, 1], [2, 2]], [[3, 4], [1, 4]],\
        [[0, 3], [4, 2]], [[1, 2], [4, 1]], [[2, 1], [2, 0]],\
        [[4, 1], [4, 3]], [[4, 4], [1, 3]], [[2, 4], [3, 0]],\
        [[1, 4], [2, 1]], [[3, 3], [3, 4]], [[2, 3], [4, 0]],\
        [[0, 2], [1, 2]], [[1, 3], [1, 1]], [[4, 3], [3, 3]],\
        [[4, 2], [2, 3]], [[0, 4], [3, 2]], [[1, 1], [3, 1]],\
        [[2, 2], [1, 0]], [[3, 1], [4, 4]]]
sage: C.set() == Set(H(x) for x in S)
True
```

It is not implemented for infinite groups:

```
sage: a = matrix(ZZ,2,[1,1,0,1])
sage: b = matrix(ZZ,2,[1,0,1,1])
sage: G = MatrixGroup([a,b])  # takes 1s
sage: g = G(a)
sage: C = ConjugacyClass(G, g)
sage: C.set()
Traceback (most recent call last):
...
NotImplementedError: Listing the elements of conjugacy classes is not
→implemented for infinite groups! Use the iter function instead.
```

```
\verb|class| sage.groups.conjugacy_classes.ConjugacyClassGAP| (|group|, element|)
```

 $Bases: sage.groups.conjugacy_classes.ConjugacyClass$

Class for a conjugacy class for groups defined over GAP.

Intended for wrapping GAP methods on conjugacy classes.

INPUT:

• group - the group in which the conjugacy class is taken

• element – the element generating the conjugacy class

EXAMPLES:

```
sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: ConjugacyClassGAP(G,g)
Conjugacy class of (1,2,3,4) in Symmetric group of order 4! as a
permutation group
```

cardinality()

Return the size of this conjugacy class.

EXAMPLES:

```
sage: W = WeylGroup(['C',6])
sage: cc = W.conjugacy_class(W.an_element())
sage: cc.cardinality()
3840
sage: type(cc.cardinality())
<type 'sage.rings.integer.Integer'>
```

set()

Return a Sage Set with all the elements of the conjugacy class.

By default attempts to use GAP construction of the conjugacy class. If GAP method is not implemented for the given group, and the group is finite, falls back to a naive algorithm.

Warning: The naive algorithm can be really slow and memory intensive.

EXAMPLES:

Groups of permutations:

```
sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4))
sage: C = ConjugacyClassGAP(G,g)
sage: S = [(1,3,2,4), (1,4,3,2), (1,3,4,2), (1,2,3,4), (1,4,2,3), (1,2,4,3)]
sage: C.set() == Set(G(x) for x in S)
True
```

CHAPTER

TWENTYTHREE

ABELIAN GROUPS

23.1 Multiplicative Abelian Groups

This module lets you compute with finitely generated Abelian groups of the form

$$G = \mathbf{Z}^r \oplus \mathbf{Z}_{k_1} \oplus \cdots \oplus \mathbf{Z}_{k_t}$$

It is customary to denote the infinite cyclic group \mathbf{Z} as having order 0, so the data defining the Abelian group can be written as an integer vector

$$\vec{k} = (0, \dots, 0, k_1, \dots, k_t)$$

where there are r zeroes and t non-zero values. To construct this Abelian group in Sage, you can either specify all entries of \vec{k} or only the non-zero entries together with the total number of generators:

```
sage: AbelianGroup([0,0,0,2,3])
Multiplicative Abelian group isomorphic to Z x Z x Z x C2 x C3
sage: AbelianGroup(5, [2,3])
Multiplicative Abelian group isomorphic to Z x Z x Z x C2 x C3
```

It is also legal to specify 1 as the order. The corresponding generator will be the neutral element, but it will still take up an index in the labelling of the generators:

```
sage: G = AbelianGroup([2,1,3], names='g')
sage: G.gens()
(g0, 1, g2)
```

Note that this presentation is not unique, for example $\mathbf{Z}_6 = \mathbf{Z}_2 \times \mathbf{Z}_3$. The orders of the generators $\vec{k} = (0, \dots, 0, k_1, \dots, k_t)$ has previously been called invariants in Sage, even though they are not necessarily the (unique) invariant factors of the group. You should now use $gens_orders()$ instead:

```
sage: J = AbelianGroup([2,0,3,2,4]); J
Multiplicative Abelian group isomorphic to C2 x Z x C3 x C2 x C4
sage: J.gens_orders()  # use this instead
(2, 0, 3, 2, 4)
sage: J.invariants()  # deprecated
(2, 0, 3, 2, 4)
sage: J.elementary_divisors()  # these are the "invariant factors"
(2, 2, 12, 0)
sage: for i in range(J.ngens()):
...:  print((i, J.gen(i), J.gen(i).order()))  # or use this form
(0, f0, 2)
(1, f1, +Infinity)
```

```
(2, f2, 3)
(3, f3, 2)
(4, f4, 4)
```

Background on invariant factors and the Smith normal form (according to section 4.1 of [C1]): An abelian group is a group A for which there exists an exact sequence $\mathbf{Z}^k \to \mathbf{Z}^\ell \to A \to 1$, for some positive integers k, ℓ with $k \le \ell$. For example, a finite abelian group has a decomposition

$$A = \langle a_1 \rangle \times \cdots \times \langle a_\ell \rangle,$$

where $ord(a_i)=p_i^{c_i}$, for some primes p_i and some positive integers c_i , $i=1,...,\ell$. GAP calls the list (ordered by size) of the $p_i^{c_i}$ the *abelian invariants*. In Sage they will be called *invariants*. In this situation, $k=\ell$ and $\phi: \mathbf{Z}^\ell \to A$ is the map $\phi(x_1,...,x_\ell)=a_1^{x_1}...a_\ell^{x_\ell}$, for $(x_1,...,x_\ell)\in \mathbf{Z}^\ell$. The matrix of relations $M:\mathbf{Z}^k\to \mathbf{Z}^\ell$ is the matrix whose rows generate the kernel of ϕ as a **Z**-module. In other words, $M=(M_{ij})$ is a $\ell \times \ell$ diagonal matrix with $M_{ii}=p_i^{c_i}$. Consider now the subgroup $B\subset A$ generated by $b_1=a_1^{f_{1,1}}...a_\ell^{f_{\ell,1}},\ldots,b_m=a_1^{f_{1,m}}...a_\ell^{f_{\ell,m}}$. The kernel of the map $\phi_B:\mathbf{Z}^m\to B$ defined by $\phi_B(y_1,...,y_m)=b_1^{y_1}...b_m^{y_m}$, for $(y_1,...,y_m)\in \mathbf{Z}^m$, is the kernel of the matrix

$$F = \begin{pmatrix} f_{11} & f_{12} & \dots & f_{1m} \\ f_{21} & f_{22} & \dots & f_{2m} \\ \vdots & & \ddots & \vdots \\ f_{\ell,1} & f_{\ell,2} & \dots & f_{\ell,m} \end{pmatrix},$$

regarded as a map $\mathbf{Z}^m \to (\mathbf{Z}/p_1^{c_1}\mathbf{Z}) \times ... \times (\mathbf{Z}/p_\ell^{c_\ell}\mathbf{Z})$. In particular, $B \cong \mathbf{Z}^m/ker(F)$. If B = A then the Smith normal form (SNF) of a generator matrix of ker(F) and the SNF of M are the same. The diagonal entries s_i of the SNF $S = diag[s_1, s_2, s_3, ... s_r, 0, 0, ... 0]$, are called *determinantal divisors* of F. where r is the rank. The {it invariant factors} of A are:

$$s_1, s_2/s_1, s_3/s_2, ...s_r/s_{r-1}$$

Sage supports multiplicative abelian groups on any prescribed finite number $n \geq 0$ of generators. Use the AbelianGroup() function to create an abelian group, and the gen() and gens() methods to obtain the corresponding generators. You can print the generators as arbitrary strings using the optional names argument to the AbelianGroup() function.

EXAMPLE 1:

We create an abelian group in zero or more variables; the syntax T(1) creates the identity element even in the rank zero case:

```
sage: T = AbelianGroup(0,[])
sage: T
Trivial Abelian group
sage: T.gens()
()
sage: T(1)
```

EXAMPLE 2:

An Abelian group uses a multiplicative representation of elements, but the underlying representation is lists of integer exponents:

```
sage: F = AbelianGroup(5,[3,4,5,5,7],names = list("abcde"))
sage: F
Multiplicative Abelian group isomorphic to C3 x C4 x C5 x C7
```

```
sage: (a,b,c,d,e) = F.gens()
sage: a*b^2*e*d
a*b^2*d*e
sage: x = b^2*e*d*a^7
sage: x
a*b^2*d*e
sage: x.list()
[1, 2, 0, 1, 1]
```

REFERENCES:

- [C1] H. Cohen Advanced topics in computational number theory, Springer, 2000.
- [C2] —, A course in computational algebraic number theory, Springer, 1996.
- [R] J. Rotman, An introduction to the theory of groups, 4th ed, Springer, 1995.

Warning: Many basic properties for infinite abelian groups are not implemented.

AUTHORS:

- William Stein, David Joyner (2008-12): added (user requested) is_cyclic, fixed elementary_divisors.
- David Joyner (2006-03): (based on free abelian monoids by David Kohel)
- David Joyner (2006-05) several significant bug fixes
- David Joyner (2006-08) trivial changes to docs, added random, fixed bug in how invariants are recorded
- David Joyner (2006-10) added dual_group method
- David Joyner (2008-02) fixed serious bug in word_problem
- David Joyner (2008-03) fixed bug in trivial group case
- David Loeffler (2009-05) added subgroups method
- Volker Braun (2012-11) port to new Parent base. Use tuples for immutables. Rename invariants to gens_orders.

Create the multiplicative abelian group in n generators with given orders of generators (which need not be prime powers).

INPUT:

- n integer (optional). If not specified, will be derived from gens_orders.
- gens_orders a list of non-negative integers in the form $[a_0, a_1, \ldots, a_{n-1}]$, typically written in increasing order. This list is padded with zeros if it has length less than n. The orders of the commuting generators, with 0 denoting an infinite cyclic factor.
- names (optional) names of generators

Alternatively, you can also give input in the form AbelianGroup (gens_orders, names="f"), where the names keyword argument must be explicitly named.

OUTPUT:

Abelian group with generators and invariant type. The default name for generator A.i is fi, as in GAP.

```
sage: F = AbelianGroup(5, [5,5,7,8,9], names='abcde')
sage: F(1)

1
sage: (a, b, c, d, e) = F.gens()
sage: mul([a, b, a, c, b, d, c, d], F(1))
a^2*b^2*c^2*d^2
sage: d * b**2 * c**3
b^2*c^3*d
sage: F = AbelianGroup(3,[2]*3); F
Multiplicative Abelian group isomorphic to C2 x C2 x C2
sage: H = AbelianGroup([2,3], names="xy"); H
Multiplicative Abelian group isomorphic to C2 x C3
sage: AbelianGroup(5)
Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z
sage: AbelianGroup(5).order()
+Infinity
```

Notice that 0's are prepended if necessary:

```
sage: G = AbelianGroup(5, [2,3,4]); G
Multiplicative Abelian group isomorphic to Z x Z x C2 x C3 x C4
sage: G.gens_orders()
(0, 0, 2, 3, 4)
```

The invariant list must not be longer than the number of generators:

```
sage: AbelianGroup(2, [2,3,4])
Traceback (most recent call last):
...
ValueError: gens_orders (=(2, 3, 4)) must have length n (=2)
```

Bases: sage.structure.unique_representation.UniqueRepresentation, sage. groups.group.AbelianGroup

The parent for Abelian groups with chosen generator orders.

Warning: You should use AbelianGroup () to construct Abelian groups and not instantiate this class directly.

INPUT:

- generator_orders list of integers. The orders of the (commuting) generators. Zero denotes an infinite cyclic generator.
- names names of the group generators (optional).

EXAMPLES:

```
sage: Z2xZ3 = AbelianGroup([2,3])
sage: Z6 = AbelianGroup([6])
sage: Z2xZ3 is Z2xZ3, Z6 is Z6
(True, True)
sage: Z2xZ3 is Z6
False
sage: Z2xZ3 == Z6
```

```
False
sage: Z2xZ3.is_isomorphic(Z6)
True

sage: F = AbelianGroup(5,[5,5,7,8,9],names = list("abcde")); F
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9
sage: F = AbelianGroup(5,[2, 4, 12, 24, 120],names = list("abcde")); F
Multiplicative Abelian group isomorphic to C2 x C4 x C12 x C24 x C120
sage: F.elementary_divisors()
(2, 4, 12, 24, 120)

sage: F.category()
Category of finite enumerated commutative groups
```

Element

alias of AbelianGroupElement

cardinality()

Return the order of this group.

EXAMPLES:

```
sage: G = AbelianGroup(2,[2,3])
sage: G.order()
6
sage: G = AbelianGroup(3,[2,3,0])
sage: G.order()
+Infinity
```

dual_group (names='X', base_ring=None)

Return the dual group.

INPUT:

- names string or list of strings. The generator names for the dual group.
- base_ring the base ring. If None (default), then a suitable cyclotomic field is picked automatically.

OUTPUT:

The ~sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class

EXAMPLES:

elementary_divisors()

This returns the elementary divisors of the group, using Pari.

Note: Here is another algorithm for computing the elementary divisors d_1, d_2, d_3, \ldots , of a finite abelian group (where $d_1|d_2|d_3|\ldots$ are composed of prime powers dividing the invariants of the group in a way described below). Just factor the invariants a_i that define the abelian group. Then the biggest d_i is the product of the maximum prime powers dividing some a_j . In other words, the largest d_i is the product of p^v , where $v = max(ord_p(a_j) \text{forall } j)$. Now divide out all those p^v 's into the list of invariants a_i , and get a new list of "smaller invariants". Repeat the above procedure on these ""smaller invariants" to compute d_{i-1} , and so on. (Thanks to Robert Miller for communicating this algorithm.)

OUTPUT:

A tuple of integers.

EXAMPLES:

```
sage: G = AbelianGroup(2, [2, 3])
sage: G.elementary_divisors()
(6,)
sage: G = AbelianGroup(1, [6])
sage: G.elementary_divisors()
sage: G = AbelianGroup(2, [2, 6])
sage: G
Multiplicative Abelian group isomorphic to C2 x C6
sage: G.gens_orders()
(2, 6)
sage: G.elementary_divisors()
sage: J = AbelianGroup([1,3,5,12])
sage: J.elementary_divisors()
(3, 60)
sage: G = AbelianGroup(2, [0, 6])
sage: G.elementary_divisors()
sage: AbelianGroup([3,4,5]).elementary_divisors()
(60,)
```

exponent()

Return the exponent of this abelian group.

EXAMPLES:

```
sage: G = AbelianGroup([2,3,7]); G
Multiplicative Abelian group isomorphic to C2 x C3 x C7
sage: G.exponent()
42
sage: G = AbelianGroup([2,4,6]); G
Multiplicative Abelian group isomorphic to C2 x C4 x C6
sage: G.exponent()
12
```

gen(i=0)

The i-th generator of the abelian group.

EXAMPLES:

```
sage: F = AbelianGroup(5,[],names='a')
sage: F.0
```

```
a0
sage: F.2
a2
sage: F.gens_orders()
(0, 0, 0, 0, 0)

sage: G = AbelianGroup([2,1,3])
sage: G.gens()
(f0, 1, f2)
```

gens()

Return the generators of the group.

OUTPUT:

A tuple of group elements. The generators according to the chosen gens_orders().

EXAMPLES:

```
sage: F = AbelianGroup(5,[3,2],names='abcde')
sage: F.gens()
(a, b, c, d, e)
sage: [ g.order() for g in F.gens() ]
[+Infinity, +Infinity, +Infinity, 3, 2]
```

gens_orders()

Return the orders of the cyclic factors that this group has been defined with.

Use elementary_divisors() if you are looking for an invariant of the group.

OUTPUT:

A tuple of integers.

EXAMPLES:

```
sage: Z2xZ3 = AbelianGroup([2,3])
sage: Z2xZ3.gens_orders()
(2, 3)
sage: Z2xZ3.elementary_divisors()
(6,)

sage: Z6 = AbelianGroup([6])
sage: Z6.gens_orders()
(6,)
sage: Z6.elementary_divisors()
(6,)

sage: Z2xZ3.is_isomorphic(Z6)
True
sage: Z2xZ3 is Z6
False
```

identity()

Return the identity element of this group.

```
sage: G = AbelianGroup([2,2])
sage: e = G.identity()
sage: e
1
sage: g = G.gen(0)
sage: g*e
f0
sage: e*g
f0
```

invariants()

Return the orders of the cyclic factors that this group has been defined with.

For historical reasons this has been called invariants in Sage, even though they are not necessarily the invariant factors of the group. Use <code>gens_orders()</code> instead:

```
sage: J = AbelianGroup([2,0,3,2,4]); J
Multiplicative Abelian group isomorphic to C2 x Z x C3 x C2 x C4
sage: J.invariants()  # deprecated
(2, 0, 3, 2, 4)
sage: J.gens_orders()  # use this instead
(2, 0, 3, 2, 4)
sage: for i in range(J.ngens()):
....: print((i, J.gen(i), J.gen(i).order()))  # or this
(0, f0, 2)
(1, f1, +Infinity)
(2, f2, 3)
(3, f3, 2)
(4, f4, 4)
```

Use elementary_divisors() if you are looking for an invariant of the group.

OUTPUT:

A tuple of integers. Zero means infinite cyclic factor.

EXAMPLES:

```
sage: J = AbelianGroup([2,3])
sage: J.invariants()
(2, 3)
sage: J.elementary_divisors()
(6,)
```

is_commutative()

Return True since this group is commutative.

EXAMPLES:

```
sage: G = AbelianGroup([2,3,9, 0])
sage: G.is_commutative()
True
sage: G.is_abelian()
True
```

is_cyclic()

Return True if the group is a cyclic group.

```
sage: J = AbelianGroup([2,3])
sage: J.gens_orders()
(2, 3)
sage: J.elementary_divisors()
(6,)
sage: J.is_cyclic()
sage: G = AbelianGroup([6])
sage: G.gens_orders()
(6,)
sage: G.is_cyclic()
True
sage: H = AbelianGroup([2,2])
sage: H.gens_orders()
(2, 2)
sage: H.is_cyclic()
False
sage: H = AbelianGroup([2,4])
sage: H.elementary_divisors()
sage: H.is_cyclic()
False
sage: H.permutation_group().is_cyclic()
False
sage: T = AbelianGroup([])
sage: T.is_cyclic()
True
sage: T = AbelianGroup(1,[0]); T
Multiplicative Abelian group isomorphic to Z
sage: T.is_cyclic()
True
sage: B = AbelianGroup([3,4,5])
sage: B.is_cyclic()
True
```

is_isomorphic(left, right)

Check whether left and right are isomorphic

INPUT:

• right - anything.

OUTPUT:

Boolean. Whether left and right are isomorphic as abelian groups.

EXAMPLES:

```
sage: G1 = AbelianGroup([2,3,4,5])
sage: G2 = AbelianGroup([2,3,4,5,1])
sage: G1.is_isomorphic(G2)
True
```

is_subgroup (left, right)

Test whether left is a subgroup of right.

```
sage: G = AbelianGroup([2,3,4,5])
sage: G.is_subgroup(G)
True

sage: H = G.subgroup([G.1])
sage: H.is_subgroup(G)
True

sage: G.<a, b> = AbelianGroup(2)
sage: H.<c> = AbelianGroup(1)
sage: H < G
False</pre>
```

is_trivial()

Return whether the group is trivial

A group is trivial if it has precisely one element.

EXAMPLES:

```
sage: AbelianGroup([2, 3]).is_trivial()
False
sage: AbelianGroup([1, 1]).is_trivial()
True
```

list()

Return tuple of all elements of this group.

EXAMPLES:

```
sage: G = AbelianGroup([2,3], names = "ab")
sage: G.list()
(1, b, b^2, a, a*b, a*b^2)
```

```
sage: G = AbelianGroup([]); G
Trivial Abelian group
sage: G.list()
(1,)
```

ngens()

The number of free generators of the abelian group.

EXAMPLES:

```
sage: F = AbelianGroup(10000)
sage: F.ngens()
10000
```

order()

Return the order of this group.

```
sage: G = AbelianGroup(2,[2,3])
sage: G.order()
6
sage: G = AbelianGroup(3,[2,3,0])
sage: G.order()
+Infinity
```

permutation_group()

Return the permutation group isomorphic to this abelian group.

If the invariants are q_1, \ldots, q_n then the generators of the permutation will be of order q_1, \ldots, q_n , respectively.

EXAMPLES:

```
sage: G = AbelianGroup(2,[2,3]); G
Multiplicative Abelian group isomorphic to C2 x C3
sage: G.permutation_group()
Permutation Group with generators [(3,4,5), (1,2)]
```

random element()

Return a random element of this group.

EXAMPLES:

```
sage: G = AbelianGroup([2,3,9])
sage: G.random_element()
f1^2
```

subgroup (gensH, names='f')

Create a subgroup of this group. The "big" group must be defined using "named" generators.

INPUT:

• gensH – list of elements which are products of the generators of the ambient abelian group G = self

EXAMPLES:

```
sage: G.\langle a,b,c\rangle = AbelianGroup(3, [2,3,4]); G
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: H = G.subgroup([a*b,a]); H
Multiplicative Abelian subgroup isomorphic to C2 x C3 generated by \{a*b, a\}
sage: H < G</pre>
True
sage: F = G.subgroup([a,b^2])
Multiplicative Abelian subgroup isomorphic to C2 \times C3 generated by \{a, b^2\}
sage: F.gens()
(a, b^2)
sage: F = AbelianGroup(5,[30,64,729],names = list("abcde"))
sage: a,b,c,d,e = F.gens()
sage: F.subgroup([a,b])
Multiplicative Abelian subgroup isomorphic to Z \times Z generated by \{a, b\}
sage: F.subgroup([c,e])
Multiplicative Abelian subgroup isomorphic to C2 x C3 x C5 x C729 generated.
→by {c, e}
```

subgroup_reduced (elts, verbose=False)

Given a list of lists of integers (corresponding to elements of self), find a set of independent generators for the subgroup generated by these elements, and return the subgroup with these as generators, forgetting the original generators.

This is used by the subgroups routine.

An error will be raised if the elements given are not linearly independent over QQ.

```
sage: G = AbelianGroup([4,4])
sage: G.subgroup( [ G([1,0]), G([1,2]) ])
Multiplicative Abelian subgroup isomorphic to C2 x C4
generated by {f0, f0*f1^2}
sage: AbelianGroup([4,4]).subgroup_reduced( [ [1,0], [1,2] ])
Multiplicative Abelian subgroup isomorphic to C2 x C4
generated by {f1^2, f0}
```

subgroups (check=False)

Compute all the subgroups of this abelian group (which must be finite).

Todo: This is *many orders of magnitude* slower than Magma.

INPUT:

• check: if True, performs the same computation in GAP and checks that the number of subgroups generated is the same. (I don't know how to convert GAP's output back into Sage, so we don't actually compare the subgroups).

ALGORITHM:

If the group is cyclic, the problem is easy. Otherwise, write it as a direct product A x B, where B is cyclic. Compute the subgroups of A (by recursion).

Now, for every subgroup C of A x B, let G be its *projection onto* A and H its *intersection with* B. Then there is a well-defined homomorphism f: G -> B/H that sends a in G to the class mod H of b, where (a,b) is any element of C lifting a; and every subgroup C arises from a unique triple (G, H, f).

EXAMPLES:

```
sage: AbelianGroup([2,3]).subgroups()
[Multiplicative Abelian subgroup isomorphic to C2 x C3 generated by {f0*f1^2},
Multiplicative Abelian subgroup isomorphic to C2 generated by {f0},
Multiplicative Abelian subgroup isomorphic to C3 generated by {f1},
Trivial Abelian subgroup]
sage: len(AbelianGroup([2,4,8]).subgroups())
81
```

Bases: sage.groups.abelian_gps.abelian_group.AbelianGroup_class

Subgroup subclass of AbelianGroup_class, so instance methods are inherited.

Todo: There should be a way to coerce an element of a subgroup into the ambient group.

ambient_group()

Return the ambient group related to self.

OUTPUT:

A multiplicative Abelian group.

```
sage: G.<a,b,c> = AbelianGroup([2,3,4])
sage: H = G.subgroup([a, b^2])
sage: H.ambient_group() is G
True
```

equals (left, right)

Check whether left and right are the same (sub)group.

INPUT:

• right - anything.

OUTPUT:

Boolean. If right is a subgroup, test whether left and right are the same subset of the ambient group. If right is not a subgroup, test whether they are isomorphic groups, see <code>is_isomorphic()</code>.

EXAMPLES:

```
sage: G = AbelianGroup(3, [2,3,4], names="abc"); G
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: a,b,c = G.gens()
sage: F = G.subgroup([a,b^2]); F
Multiplicative Abelian subgroup isomorphic to C2 x C3 generated by {a, b^2}
sage: F<G</pre>
True
sage: A = AbelianGroup(1, [6])
sage: A.subgroup(list(A.gens())) == A
True
sage: G.<a,b> = AbelianGroup(2)
sage: A = G.subgroup([a])
sage: B = G.subgroup([b])
sage: A.equals(B)
False
sage: A == B
                    # sames as A.equals(B)
False
sage: A.is_isomorphic(B)
True
```

gen(n)

Return the nth generator of this subgroup.

EXAMPLES:

```
sage: G.<a,b> = AbelianGroup(2)
sage: A = G.subgroup([a])
sage: A.gen(0)
a
```

gens()

Return the generators for this subgroup.

OUTPUT:

A tuple of group elements generating the subgroup.

```
sage: G.<a,b> = AbelianGroup(2)
sage: A = G.subgroup([a])
sage: G.gens()
(a, b)
sage: A.gens()
(a,)
```

 $\verb|sage.groups.abelian_gps.abelian_group.is_{--} \verb|AbelianGroup| (x) \\$

Return True if x is an Abelian group.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group import is_AbelianGroup
sage: F = AbelianGroup(5,[5,5,7,8,9],names = list("abcde")); F
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9
sage: is_AbelianGroup(F)
True
sage: is_AbelianGroup(AbelianGroup(7, [3]*7))
True
```

sage.groups.abelian_gps.abelian_group.word_problem(words, g, verbose=False)

G and H are abelian, g in G, H is a subgroup of G generated by a list (words) of elements of G. If g is in H, return the expression for g as a word in the elements of (words).

The 'word problem' for a finite abelian group G boils down to the following matrix-vector analog of the Chinese remainder theorem.

Problem: Fix integers $1 < n_1 \le n_2 \le ... \le n_k$ (indeed, these n_i will all be prime powers), fix a generating set $g_i = (a_{i1},...,a_{ik})$ (with $a_{ij} \in \mathbf{Z}/n_j\mathbf{Z}$), for $1 \le i \le \ell$, for the group G, and let $d = (d_1,...,d_k)$ be an element of the direct product $\mathbf{Z}/n_1\mathbf{Z} \times ... \times \mathbf{Z}/n_k\mathbf{Z}$. Find, if they exist, integers $c_1,...,c_\ell$ such that $c_1g_1 + ... + c_\ell g_\ell = d$. In other words, solve the equation cA = d for $c \in \mathbf{Z}^\ell$, where A is the matrix whose rows are the g_i 's. Of course, it suffices to restrict the c_i 's to the range $0 \le c_i \le N-1$, where N denotes the least common multiple of the integers $n_1,...,n_k$.

This function does not solve this directly, as perhaps it should. Rather (for both speed and as a model for a similar function valid for more general groups), it pushes it over to GAP, which has optimized (non-deterministic) algorithms for the word problem. Essentially, this function is a wrapper for the GAP function 'Factorization'.

EXAMPLES:

```
sage: G.<a,b,c> = AbelianGroup(3,[2,3,4]); G
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: w = word_problem([a*b,a*c], b*c); w #random
[[a*b, 1], [a*c, 1]]
sage: prod([x^i for x,i in w]) == b*c
True
sage: w = word_problem([a*c,c],a); w #random
[[a*c, 1], [c, -1]]
sage: prod([x^i for x,i in w]) == a
True
sage: word_problem([a*c,c],a,verbose=True) #random
a = (a*c)^1*(c)^-1
[[a*c, 1], [c, -1]]
```

```
sage: A.<a,b,c,d,e> = AbelianGroup(5,[4, 5, 5, 7, 8])
sage: b1 = a^3*b*c*d^2*e^5
sage: b2 = a^2*b*c^2*d^3*e^3
sage: b3 = a^7*b^3*c^5*d^4*e^4
```

```
sage: b4 = a^3*b^2*c^2*d^3*e^5
sage: b5 = a^2*b^4*c^2*d^4*e^5
sage: w = word_problem([b1,b2,b3,b4,b5],e); w #random
[[a^3*b*c*d^2*e^5, 1], [a^2*b*c^2*d^3*e^3, 1], [a^3*b^3*d^4*e^4, 3], [a^2*b^4*c^4]
$\times_2 \times_2 \times_4 \times_4 \times_6 \time
```

Warning:

- 1. Might have unpleasant effect when the word problem cannot be solved.
- 2. Uses permutation groups, so may be slow when group is large. The instance method word_problem of the class AbelianGroupElement is implemented differently (wrapping GAP's 'EpimorphismFrom-FreeGroup' and 'PreImagesRepresentative') and may be faster.

23.2 Finitely generated abelian groups with GAP.

This module provides a python wrapper for abelian groups in GAP.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: AbelianGroupGap([3,5])
Abelian group with gap, generator orders (3, 5)
```

For infinite abelian groups we use the GAP package Polycyclic:

```
sage: AbelianGroupGap([3,0]) # optional - gap_packages
Abelian group with gap, generator orders (3, 0)
```

AUTHORS:

• Simon Brandhorst (2018-01-17): initial version

Bases: sage.groups.libgap_wrapper.ElementLibGAP

An element of an abelian group via libgap.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([3,6])
sage: G.gens()
(f1, f2)
```

exponents()

Return the tuple of exponents of this element.

OUTPUT:

· a tuple of integers

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([4,7,9])
sage: gens = G.gens()
sage: g = gens[0]^2 * gens[1]^4 * gens[2]^8
sage: g.exponents()
(2, 4, 8)
sage: S = G.subgroup(G.gens()[:1])
sage: s = S.gens()[0]
sage: s
f1
sage: s.exponents()
(1,)
```

It can handle quite large groups too:

```
sage: G = AbelianGroupGap([2^10, 5^10])
sage: f1, f2 = G.gens()
sage: g = f1^123*f2^789
sage: g.exponents()
(123, 789)
```

```
Warning: Crashes for very large groups.
```

Todo: Make exponents work for very large groups. This could be done by using Pcgs in gap.

order()

Return the order of this element.

OUTPUT:

· an integer or infinity

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([4])
sage: g = G.gens()[0]
sage: g.order()
4
sage: G = AbelianGroupGap([0])  # optional - gap_packages
sage: g = G.gens()[0]  # optional - gap_packages
sage: g.order()  # optional - gap_packages
+Infinity
```

class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupElement_polycyclic(parent,

x, check=True)

Bases: sage.groups.abelian_gps.abelian_group_gap.AbelianGroupElement_gap

An element of an abelian group using the GAP package Polycyclic.

exponents()

Return the tuple of exponents of self.

OUTPUT:

· a tuple of integers

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([4,7,0])  # optional - gap_packages
sage: gens = G.gens()  # optional - gap_packages
sage: g = gens[0]^2 * gens[1]^4 * gens[2]^8 # optional - gap_packages
sage: g.exponents()  # optional - gap_packages
(2, 4, 8)
```

Efficiently handles very large groups:

```
sage: G = AbelianGroupGap([2^30,5^30,0]) # optional - gap_packages
sage: f1, f2, f3 = G.gens() # optional - gap_packages
sage: (f1^12345*f2^123456789).exponents() # optional - gap_packages
(12345, 123456789, 0)
```

class sage.groups.abelian_gps.abelian_group_gap.AbelianGroupGap (generator_orders)
 Bases: sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap

Abelian groups implemented using GAP.

INPUT:

• generator_orders – a list of nonnegative integers where 0 gives a factor isomorphic to Z

OUTPUT:

· an abelian group

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: AbelianGroupGap([3,6])
Abelian group with gap, generator orders (3, 6)
sage: AbelianGroupGap([3,6,5])
Abelian group with gap, generator orders (3, 6, 5)
sage: AbelianGroupGap([3,6,0]) # optional - gap_packages
Abelian group with gap, generator orders (3, 6, 0)
```

Warning: Needs the GAP package Polycyclic in case the group is infinite.

Bases: sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap

Subgroups of abelian groups with GAP.

INPUT:

- ambient the ambient group
- gens generators of the subgroup

Note: Do not construct this class directly. Instead use subgroup ().

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: gen = G.gens()[:2]
sage: S = G.subgroup(gen)
```

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.groups.libgap_mixin.GroupMixinLibGAP, sage.groups.libgap_wrapper.ParentLibGAP, sage.groups.group.AbelianGroup

Finitely generated abelian groups implemented in GAP.

Needs the gap package Polycyclic in case the group is infinite.

INPUT:

- G a GAP group
- category a category
- ambient (optional) an AbelianGroupGap

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([3, 2, 5])
sage: G
Abelian group with gap, generator orders (3, 2, 5)
```

Element

alias of AbelianGroupElement_gap

all_subgroups()

Return the list of all subgroups of this group.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2, 3])
sage: G.all_subgroups()
[Subgroup of Abelian group with gap, generator orders (2, 3) generated by (1,
→),
Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f1,
→),
Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f2,
→),
Subgroup of Abelian group with gap, generator orders (2, 3) generated by (f1,
→),
```

aut()

Return the group of automorphisms of self.

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2, 3])
sage: G.aut()
Full group of automorphisms of Abelian group with gap, generator orders (2, 3)
```

automorphism_group()

Return the group of automorphisms of self.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2, 3])
sage: G.aut()
Full group of automorphisms of Abelian group with gap, generator orders (2, 3)
```

elementary_divisors()

Return the elementary divisors of this group.

See sage.groups.abelian_gps.abelian_group_gap.elementary_divisors().

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: G.elementary_divisors()
(2, 60)
```

exponent()

Return the exponent of this abelian group.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,7])
sage: G
Abelian group with gap, generator orders (2, 3, 7)
sage: G = AbelianGroupGap([2,4,6])
sage: G
Abelian group with gap, generator orders (2, 4, 6)
sage: G.exponent()
12
```

gens_orders()

Return the orders of the generators.

Use elementary_divisors() if you are looking for an invariant of the group.

OUTPUT:

• a tuple of integers

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: Z2xZ3 = AbelianGroupGap([2,3])
sage: Z2xZ3.gens_orders()
(2, 3)
sage: Z2xZ3.elementary_divisors()
(6,)
sage: Z6 = AbelianGroupGap([6])
```

```
sage: Z6.gens_orders()
(6,)
sage: Z6.elementary_divisors()
(6,)
sage: Z2xZ3.is_isomorphic(Z6)
True
sage: Z2xZ3 is Z6
False
```

identity()

Return the identity element of this group.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([4,10])
sage: G.identity()
1
```

is subgroup of (G)

Return if self is a subgroup of G considered in the same ambient group.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: gen = G.gens()[:2]
sage: S1 = G.subgroup(gen)
sage: S1.is_subgroup_of(G)
True
sage: S2 = G.subgroup(G.gens()[1:])
sage: S2.is_subgroup_of(S1)
False
```

is_trivial()

Return True if this group is the trivial group.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([])
sage: G
Abelian group with gap, generator orders ()
sage: G.is_trivial()
True
sage: AbelianGroupGap([1]).is_trivial()
True
sage: AbelianGroupGap([1,1,1]).is_trivial()
True
sage: AbelianGroupGap([2]).is_trivial()
False
sage: AbelianGroupGap([2]).is_trivial()
False
```

subgroup (gens)

Return the subgroup of this group generated by gens.

INPUT:

• gens – a list of elements coercible into this group

OUTPUT:

· a subgroup

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: gen = G.gens()[:2]
sage: S = G.subgroup(gen)
sage: S
Subgroup of Abelian group with gap, generator orders (2, 3, 4, 5)
generated by (f1, f2)
sage: q = G.an_element()
sage: s = S.an_element()
sage: g * s
f2^2*f3*f5
sage: G = AbelianGroupGap([3,4,0,2])
                                     # optional - gap_packages
sage: gen = G.gens()[:2]
                                         # optional - gap_packages
sage: S = G.subgroup(gen)
                                         # optional - gap_packages
sage: g = G.an_element()
                                         # optional - gap_packages
sage: s = S.an_element()
                                         # optional - gap_packages
                                         # optional - gap_packages
sage: g * s
g1^2*g2^2*g3*g4
```

23.3 Automorphisms of abelian groups

This implements groups of automorphisms of abelian groups.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,6])
sage: autG = G.aut()
```

Automorphisms act on the elements of the domain:

```
sage: g = G.an_element()
sage: f = autG.an_element()
sage: f
Pcgs([ f1, f2, f3 ]) -> [ f1, f1*f2*f3^2, f3^2 ]
sage: (g, f(g))
(f1*f2, f2*f3^2)
```

Or anything coercible into its domain:

```
sage: A = AbelianGroup([2,6])
sage: a = A.an_element()
sage: (a, f(a))
(f0*f1, f2*f3^2)
sage: A = AdditiveAbelianGroup([2,6])
sage: a = A.an_element()
sage: (a, f(a))
((1, 0), f1)
```

```
sage: f((1,1))
f2*f3^2
```

We can compute conjugacy classes:

```
sage: autG.conjugacy_classes_representatives()
(1,
   Pcgs([ f1, f2, f3 ]) -> [ f2*f3, f1*f2, f3 ],
   Pcgs([ f1, f2, f3 ]) -> [ f1*f2*f3, f2*f3^2, f3^2 ],
   [ f3^2, f1*f2*f3, f1 ] -> [ f3^2, f1, f1*f2*f3 ],
   Pcgs([ f1, f2, f3 ]) -> [ f2*f3, f1*f2*f3^2, f3^2 ],
   [ f1*f2*f3, f1, f3^2 ] -> [ f1*f2*f3, f1, f3 ])
```

the group order:

```
sage: autG.order()
12
```

or create subgroups and do the same for them:

```
sage: S = autG.subgroup(autG.gens()[:1])
sage: S
Subgroup of automorphisms of Abelian group with gap, generator orders (2, 6)
generated by 1 automorphisms
```

Only automorphism groups of finite abelian groups are supported:

```
sage: G = AbelianGroupGap([0,2])  # optional gap_packages
sage: autG = G.aut()  # optional gap_packages
Traceback (most recent call last):
...
ValueError: only finite abelian groups are supported
```

AUTHORS:

• Simon Brandhorst (2018-02-17): initial version

Bases: sage.groups.libgap_wrapper.ElementLibGAP

Automorphisms of abelian groups with gap.

INPUT:

- x a libgap element
- parent the parent AbelianGroupAutomorphismGroup_gap
- check bool (default:True) checks if x is an element of the group

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: f = G.aut().an_element()
```

matrix()

Return the matrix defining self.

The *i*-th row is the exponent vector of the image of the *i*-th generator.

OUTPUT:

• a square matrix over the integers

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4])
sage: f = G.aut().an_element()
sage: f
Pcgs([ f1, f2, f3, f4 ]) -> [ f1*f4, f2^2, f1*f3, f4 ]
sage: f.matrix()
[1 0 2]
[0 2 0]
[1 0 1]
```

Compare with the exponents of the images:

```
sage: f(G.gens()[0]).exponents()
(1, 0, 2)
sage: f(G.gens()[1]).exponents()
(0, 2, 0)
sage: f(G.gens()[2]).exponents()
(1, 0, 1)
```

The full automorphism group of a finite abelian group.

INPUT:

• AbelianGroupGap - an instance of AbelianGroup_gap

EXAMPLES:

Equivalently:

```
sage: aut1 = AbelianGroupAutomorphismGroup(G)
sage: aut is aut1
True
```

Element

alias of AbelianGroupAutomorphism

class sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_gap(domain,

```
gap_group,
cat-
e-
gory,
am-
bi-
ent=None)
```

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.groups.libgap_mixin.GroupMixinLibGAP, sage.groups.group.Group, sage.groups.libgap_wrapper.ParentLibGAP

Base class for groups of automorphisms of abelian groups.

Do not construct this directly.

INPUT:

- domain AbelianGroup_gap
- libgap_parent the libgap element that is the parent in GAP
- category a category
- ambient an instance of a derived class of *ParentLibGAP* or None (default); the ambient group if libgap_parent has been defined as a subgroup

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: from sage.groups.abelian_gps.abelian_aut import_

→ AbelianGroupAutomorphismGroup_gap
sage: domain = AbelianGroupGap([2,3,4,5])
sage: aut = domain.gap().AutomorphismGroupAbelianGroup()
sage: AbelianGroupAutomorphismGroup_gap(domain, aut, Groups().Finite())
<group with 6 generators>
```

Element

alias of AbelianGroupAutomorphism

covering_matrix_ring()

Return the covering matrix ring of this group.

This is the ring of $n \times n$ matrices over **Z** where n is the number of (independent) generators.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: aut = G.aut()
sage: aut.covering_matrix_ring()
Full MatrixSpace of 4 by 4 dense matrices over Integer Ring
```

domain()

Return the domain of this group of automorphisms.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: aut = G.aut()
sage: aut.domain()
Abelian group with gap, generator orders (2, 3, 4, 5)
```

$is_subgroup_of(G)$

Return if self is a subgroup of G considered in the same ambient group.

```
sage: from sage.groups.abelian_gps.abelian_group_gap import AbelianGroupGap
sage: G = AbelianGroupGap([2,3,4,5])
sage: aut = G.aut()
sage: gen = aut.gens()
sage: S1 = aut.subgroup(gen[:2])
sage: S1.is_subgroup_of(aut)
True
sage: S2 = aut.subgroup(aut.gens()[1:])
sage: S2.is_subgroup_of(S1)
False
```

class sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_subgroup(ambient,

generators)

Bases: sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_gap

Groups of automorphisms of abelian groups.

They are subgroups of the full automorphism group.

```
Note: Do not construct this class directly; instead use sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap.subgroup().
```

INPUT:

- ambient the ambient group
- generators a tuple of gap elements of the ambient group

EXAMPLES:

Element

alias of AbelianGroupAutomorphism

23.4 Multiplicative Abelian Groups With Values

Often, one ends up with a set that forms an Abelian group. It would be nice if one could return an Abelian group class to encapsulate the data. However, <code>AbelianGroup()</code> is an abstract Abelian group defined by generators and relations. This module implements <code>AbelianGroupWithValues</code> that allows the group elements to be decorated with values.

An example where this module is used is the unit group of a number field, see sage.rings.number_field.
unit_group. The units form a finitely generated Abelian group. We can think of the elements either as abstract

Abelian group elements or as particular numbers in the number field. The AbelianGroupWithValues() keeps track of these associated values.

Warning: Really, this requires a group homomorphism from the abstract Abelian group to the set of values. This is only checked if you pass the check=True option to AbelianGroupWithValues().

EXAMPLES:

Here is \mathbb{Z}_6 with value -1 assigned to the generator:

```
sage: Z6 = AbelianGroupWithValues([-1], [6], names='g')
sage: q = Z6.qen(0)
sage: g.value()
-1
sage: g*g
g^2
sage: (g*g).value()
sage: for i in range(7):
....: print((i, g^i, (g^i).value()))
(0, 1, 1)
(1, g, -1)
(2, g^2, 1)
(3, g^3, -1)
(4, g^4, 1)
(5, g^5, -1)
(6, 1, 1)
```

The elements come with a coercion embedding into the *values_group()*, so you can use the group elements instead of the values:

```
sage: CF3.<zeta> = CyclotomicField(3)
sage: Z3.<g> = AbelianGroupWithValues([zeta], [3])
sage: Z3.values_group()
Cyclotomic Field of order 3 and degree 2
sage: g.value()
zeta
sage: CF3(g)
zeta
sage: g + zeta
2*zeta
sage: zeta + g
2*zeta
```

Construct an Abelian group with values associated to the generators.

INPUT:

- values a list/tuple/iterable of values that you want to associate to the generators.
- n integer (optional). If not specified, will be derived from gens_orders.
- gens_orders a list of non-negative integers in the form $[a_0, a_1, \ldots, a_{n-1}]$, typically written in increasing order. This list is padded with zeros if it has length less than n. The orders of the commuting generators, with 0 denoting an infinite cyclic factor.

- names (optional) names of generators
- values_group a parent or None (default). The common parent of the values. This might be a group, but can also just contain the values. For example, if the values are units in a ring then the values_group would be the whole ring. If None it will be derived from the values.

EXAMPLES:

```
sage: G = AbelianGroupWithValues([-1], [6])
sage: g = G.gen(0)
sage: for i in range(7):
...:     print((i, g^i, (g^i).value()))
(0, 1, 1)
(1, f, -1)
(2, f^2, 1)
(3, f^3, -1)
(4, f^4, 1)
(5, f^5, -1)
(6, 1, 1)
sage: G.values_group()
Integer Ring
```

The group elements come with a coercion embedding into the values_group(), so you can use them like their value()

```
sage: G.values_embedding()
Generic morphism:
   From: Multiplicative Abelian group isomorphic to C6
   To:   Integer Ring
sage: g.value()
-1
sage: 0 + g
-1
sage: 1 + 2*g
-1
```

 ${\tt class} \ \, {\tt sage.groups.abelian_gps.values.} \\ {\tt AbelianGroupWithValuesElement} \ ({\it parent},$

exponents, value=None)

Bases: sage.groups.abelian_gps.abelian_group_element.AbelianGroupElement

An element of an Abelian group with values assigned to generators.

INPUT:

- exponents tuple of integers. The exponent vector defining the group element.
- parent the parent.
- value the value assigned to the group element or None (default). In the latter case, the value is computed as needed.

EXAMPLES:

```
sage: F = AbelianGroupWithValues([1,-1], [2,4])
sage: a,b = F.gens()
sage: TestSuite(a*b).run()
```

inverse()

Return the inverse element.

```
sage: G.<a,b> = AbelianGroupWithValues([2,-1], [0,4])
sage: a.inverse()
a^-1
sage: a.inverse().value()
1/2
sage: a.__invert__().value()
1/2
sage: (~a).value()
1/2
sage: (a*b).value()
-2
sage: (a*b).inverse().value()
```

value()

Return the value of the group element.

OUTPUT:

The value according to the values for generators, see <code>gens_values()</code>.

EXAMPLES:

```
sage: G = AbelianGroupWithValues([5], 1)
sage: G.0.value()
5
```

Bases: sage.categories.morphism.Morphism

The morphism embedding the Abelian group with values in its values group.

INPUT:

- domain a AbelianGroupWithValues_class
- codomain the values group (need not be in the category of groups, e.g. symbolic ring).

EXAMPLES:

```
sage: Z4.<g> = AbelianGroupWithValues([I], [4])
sage: embedding = Z4.values_embedding(); embedding
Generic morphism:
   From: Multiplicative Abelian group isomorphic to C4
   To: Symbolic Ring
sage: embedding(1)
1
sage: embedding(g)
I
sage: embedding(g^2)
-1
```

Bases: sage.groups.abelian_gps.abelian_group.AbelianGroup_class

The class of an Abelian group with values associated to the generator.

INPUT:

ues_group)

- generator_orders tuple of integers. The orders of the generators.
- names string or list of strings. The names for the generators.
- values Tuple the same length as the number of generators. The values assigned to the generators.
- values_group the common parent of the values.

EXAMPLES:

```
sage: G.<a,b> = AbelianGroupWithValues([2,-1], [0,4])
sage: TestSuite(G).run()
```

Element

 $alias \ of \ \textit{AbelianGroupWithValuesElement}$

gen(i=0)

The *i*-th generator of the abelian group.

INPUT:

• i – integer (default: 0). The index of the generator.

OUTPUT:

A group element.

EXAMPLES:

```
sage: F = AbelianGroupWithValues([1,2,3,4,5], 5,[],names='a')
sage: F.0
a0
sage: F.0.value()
1
sage: F.2
a2
sage: F.2.value()
3
sage: G = AbelianGroupWithValues([-1,0,1], [2,1,3])
sage: G.gens()
(f0, 1, f2)
```

gens_values()

Return the values associated to the generators.

OUTPUT:

A tuple.

EXAMPLES:

```
sage: G = AbelianGroupWithValues([-1,0,1], [2,1,3])
sage: G.gens()
(f0, 1, f2)
sage: G.gens_values()
(-1, 0, 1)
```

values_embedding()

Return the embedding of self in values_group().

OUTPUT:

A morphism.

EXAMPLES:

```
sage: Z4 = AbelianGroupWithValues([I], [4])
sage: Z4.values_embedding()
Generic morphism:
   From: Multiplicative Abelian group isomorphic to C4
   To: Symbolic Ring
```

values_group()

The common parent of the values.

The values need to form a multiplicative group, but can be embedded in a larger structure. For example, if the values are units in a ring then the *values_group()* would be the whole ring.

OUTPUT:

The common parent of the values, containing the group generated by all values.

EXAMPLES:

```
sage: G = AbelianGroupWithValues([-1,0,1], [2,1,3])
sage: G.values_group()
Integer Ring

sage: Z4 = AbelianGroupWithValues([I], [4])
sage: Z4.values_group()
Symbolic Ring
```

23.5 Dual groups of Finite Multiplicative Abelian Groups

The basic idea is very simple. Let G be an abelian group and G^* its dual (i.e., the group of homomorphisms from G to \mathbb{C}^{\times}). Let g_j , j=1,...,n, denote generators of G - say g_j is of order $m_j>1$. There are generators X_j , j=1,...,n, of G^* for which $X_j(g_j)=\exp(2\pi i/m_j)$ and $X_i(g_j)=1$ if $i\neq j$. These are used to construct G^* .

Sage supports multiplicative abelian groups on any prescribed finite number n>0 of generators. Use AbelianGroup() function to create an abelian group, the $dual_group()$ method to create its dual, and then the gen() and gens() methods to obtain the corresponding generators. You can print the generators as arbitrary strings using the optional names argument to the $dual_group()$ method.

EXAMPLES:

AUTHORS:

- David Joyner (2006-08) (based on abelian_groups)
- David Joyner (2006-10) modifications suggested by William Stein
- Volker Braun (2012-11) port to new Parent base. Use tuples for immutables. Default to cyclotomic base ring.

```
\begin{tabular}{ll} {\bf class} & {\tt sage.groups.abelian\_gps.dual\_abelian\_group.DualAbelianGroup\_class} (G, \\ & {\it names}, \\ & {\it base\_ring}) \end{tabular}
```

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.groups.group.AbelianGroup

Dual of abelian group.

EXAMPLES:

```
sage: F = AbelianGroup(5,[3,5,7,8,9], names="abcde")
sage: F.dual_group()
Dual of Abelian Group isomorphic to Z/3Z x Z/5Z x Z/7Z x Z/8Z x Z/9Z
over Cyclotomic Field of order 2520 and degree 576
sage: F = AbelianGroup(4,[15,7,8,9], names="abcd")
sage: F.dual_group(base_ring=CC)
Dual of Abelian Group isomorphic to Z/15Z x Z/7Z x Z/8Z x Z/9Z
over Complex Field with 53 bits of precision
```

Element

alias of DualAbelianGroupElement

base ring()

Return the scalars over which the group is dualized.

EXAMPLES:

```
sage: F = AbelianGroup(3,[5,64,729], names=list("abc"))
sage: Fd = F.dual_group(base_ring=CC)
sage: Fd.base_ring()
Complex Field with 53 bits of precision
```

gen(i=0)

The *i*-th generator of the abelian group.

```
sage: F = AbelianGroup(3,[1,2,3],names='a')
sage: Fd = F.dual_group(names="A")
sage: Fd.0
1
sage: Fd.1
A1
sage: Fd.gens_orders()
(1, 2, 3)
```

gens()

Return the generators for the group.

OUTPUT:

A tuple of group elements generating the group.

EXAMPLES:

```
sage: F = AbelianGroup([7,11]).dual_group()
sage: F.gens()
(X0, X1)
```

gens orders()

The orders of the generators of the dual group.

OUTPUT:

A tuple of integers.

EXAMPLES:

```
sage: F = AbelianGroup([5]*1000)
sage: Fd = F.dual_group()
sage: invs = Fd.gens_orders(); len(invs)
1000
```

group()

Return the group that self is the dual of.

EXAMPLES:

```
sage: F = AbelianGroup(3,[5,64,729], names=list("abc"))
sage: Fd = F.dual_group(base_ring=CC)
sage: Fd.group() is F
True
```

invariants()

The invariants of the dual group.

You should use gens_orders () instead.

EXAMPLES:

```
sage: F = AbelianGroup([5]*1000)
sage: Fd = F.dual_group()
sage: invs = Fd.gens_orders(); len(invs)
1000
```

is_commutative()

Return True since this group is commutative.

```
sage: G = AbelianGroup([2,3,9])
sage: Gd = G.dual_group()
sage: Gd.is_commutative()
True
sage: Gd.is_abelian()
True
```

list()

Return tuple of all elements of this group.

EXAMPLES:

```
sage: G = AbelianGroup([2,3], names="ab")
sage: Gd = G.dual_group(names="AB")
sage: Gd.list()
(1, B, B^2, A, A*B, A*B^2)
```

ngens()

The number of generators of the dual group.

EXAMPLES:

```
sage: F = AbelianGroup([7]*100)
sage: Fd = F.dual_group()
sage: Fd.ngens()
100
```

order()

Return the order of this group.

EXAMPLES:

```
sage: G = AbelianGroup([2,3,9])
sage: Gd = G.dual_group()
sage: Gd.order()
54
```

random_element()

Return a random element of this dual group.

EXAMPLES:

```
sage: G = AbelianGroup([2,3,9])
sage: Gd = G.dual_group(base_ring=CC)
sage: Gd.random_element()
X1^2

sage: N = 43^2-1
sage: G = AbelianGroup([N], names="a")
sage: Gd = G.dual_group(names="A", base_ring=CC)
sage: a, = G.gens()
sage: A, = Gd.gens()
sage: X = A*Gd.gens()
sage: X = A*Gd.random_element(); X
A^615
sage: len([a for a in [x,y,z] if abs(X(a)-1)>10^(-8)])
2
```

 $\verb|sage.groups.abelian_gps.dual_abelian_group.is_DualAbelianGroup|(x)$

Return True if x is the dual group of an abelian group.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.dual_abelian_group import is_DualAbelianGroup
sage: F = AbelianGroup(5,[3,5,7,8,9], names=list("abcde"))
sage: Fd = F.dual_group()
```

```
sage: is_DualAbelianGroup(Fd)
True
sage: F = AbelianGroup(3,[1,2,3], names='a')
sage: Fd = F.dual_group()
sage: Fd.gens()
(1, X1, X2)
sage: F.gens()
(1, a1, a2)
```

23.6 Base class for abelian group elements

This is the base class for both abelian_group_element and dual_abelian_group_element.

As always, elements are immutable once constructed.

Bases: sage.structure.element.MultiplicativeGroupElement

Base class for abelian group elements

The group element is defined by a tuple whose i-th entry is an integer in the range from 0 (inclusively) to G.gen(i).order() (exclusively) if the i-th generator is of finite order, and an arbitrary integer if the i-th generator is of infinite order.

INPUT:

- exponents 1 or a list/tuple/iterable of integers. The exponent vector (with respect to the parent generators) defining the group element.
- parent Abelian group. The parent of the group element.

EXAMPLES:

```
sage: F = AbelianGroup(3,[7,8,9])
sage: Fd = F.dual_group(names="ABC")
sage: A,B,C = Fd.gens()
sage: A*B^-1 in Fd
True
```

exponents()

The exponents of the generators defining the group element.

OUTPUT

A tuple of integers for an abelian group element. The integer can be arbitrary if the corresponding generator has infinite order. If the generator is of finite order, the integer is in the range from 0 (inclusive) to the order (exclusive).

EXAMPLES:

```
sage: F.<a,b,c,f> = AbelianGroup([7,8,9,0])
sage: (a^3*b^2*c).exponents()
(3, 2, 1, 0)
sage: F([3, 2, 1, 0])
a^3*b^2*c
sage: (c^42).exponents()
```

```
(0, 0, 6, 0)
sage: (f^42).exponents()
(0, 0, 0, 42)
```

inverse()

Returns the inverse element.

EXAMPLES:

```
sage: G.<a,b> = AbelianGroup([0,5])
sage: a.inverse()
a^-1
sage: a.__invert__()
a^-1
sage: a^-1
a^-1
sage: ~a
a^-1
sage: (a*b).exponents()
(1, 1)
sage: (a*b).inverse().exponents()
(-1, 4)
```

is_trivial()

Test whether self is the trivial group element 1.

OUTPUT:

Boolean.

EXAMPLES:

```
sage: G.<a,b> = AbelianGroup([0,5])
sage: (a^5).is_trivial()
False
sage: (b^5).is_trivial()
True
```

list()

Return a copy of the exponent vector.

Use exponents () instead.

OUTPUT:

The underlying coordinates used to represent this element. If this is a word in an abelian group on n generators, then this is a list of nonnegative integers of length n.

EXAMPLES:

```
sage: F = AbelianGroup(5,[2, 3, 5, 7, 8], names="abcde")
sage: a,b,c,d,e = F.gens()
sage: Ad = F.dual_group(names="ABCDE")
sage: A,B,C,D,E = Ad.gens()
sage: (A*B*C^2*D^20*E^65).exponents()
(1, 1, 2, 6, 1)
sage: X = A*B*C^2*D^2*E^-6
sage: X.exponents()
(1, 1, 2, 2, 2)
```

multiplicative_order()

Return the order of this element.

OUTPUT:

An integer or infinity.

EXAMPLES:

```
sage: F = AbelianGroup(3,[7,8,9])
sage: Fd = F.dual_group()
sage: A,B,C = Fd.gens()
sage: (B*C).order()
72

sage: F = AbelianGroup(3,[7,8,9]); F
Multiplicative Abelian group isomorphic to C7 x C8 x C9
sage: F.gens()[2].order()
9
sage: a,b,c = F.gens()
sage: (b*c).order()
72
sage: G = AbelianGroup(3,[7,8,9])
sage: type((G.0 * G.1).order()) == Integer
True
```

order()

Return the order of this element.

OUTPUT:

An integer or infinity.

EXAMPLES:

```
sage: F = AbelianGroup(3,[7,8,9])
sage: Fd = F.dual_group()
sage: A,B,C = Fd.gens()
sage: (B*C).order()
72

sage: F = AbelianGroup(3,[7,8,9]); F
Multiplicative Abelian group isomorphic to C7 x C8 x C9
sage: F.gens()[2].order()
9
sage: a,b,c = F.gens()
sage: (b*c).order()
72
sage: G = AbelianGroup(3,[7,8,9])
sage: type((G.0 * G.1).order()) == Integer
True
```

23.7 Abelian group elements

AUTHORS:

- David Joyner (2006-02); based on free_abelian_monoid_element.py, written by David Kohel.
- David Joyner (2006-05); bug fix in order

- David Joyner (2006-08); bug fix+new method in pow for negatives+fixed corresponding examples.
- David Joyner (2009-02): Fixed bug in order.
- Volker Braun (2012-11) port to new Parent base. Use tuples for immutables.

EXAMPLES:

Recall an example from abelian groups:

```
sage: F = AbelianGroup(5, [4,5,5,7,8], names = list("abcde"))
sage: (a,b,c,d,e) = F.gens()
sage: x = a*b^2*e*d^20*e^12
sage: x
a*b^2*d^6*e^5
sage: x = a^10*b^12*c^13*d^20*e^12
sage: x
a^2*b^2*c^3*d^6*e^4
sage: y = a^13*b^19*c^23*d^27*e^72
sage: y
a*b^4*c^3*d^6
sage: x*y
a^3*b*c*d^5*e^4
sage: x.list()
[2, 2, 3, 6, 4]
```

 ${\bf class} \ \, {\bf sage.groups.abelian_gps.abelian_group_element.} {\bf \textit{AbelianGroupElement}} \ \, (\textit{parent}, \textit{ex-})$

ponents)

Bases: sage.groups.abelian_gps.element_base.AbelianGroupElementBase

Elements of an AbelianGroup

INPUT:

- x list/tuple/iterable of integers (the element vector)
- parent the parent AbelianGroup

EXAMPLES:

```
sage: F = AbelianGroup(5, [3,4,5,8,7], 'abcde')
sage: a, b, c, d, e = F.gens()
sage: a^2 * b^3 * a^2 * b^-4
a*b^3
sage: b^-11
b
sage: a^-11
a
sage: a*b in F
True
```

as_permutation()

Return the element of the permutation group G (isomorphic to the abelian group A) associated to a in A.

EXAMPLES:

```
sage: G = AbelianGroup(3,[2,3,4],names="abc"); G
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: a,b,c=G.gens()
```

```
sage: Gp = G.permutation_group(); Gp
Permutation Group with generators [(6,7,8,9), (3,4,5), (1,2)]
sage: a.as_permutation()
(1,2)
sage: ap = a.as_permutation(); ap
(1,2)
sage: ap in Gp
True
```

word_problem(words)

TODO - this needs a rewrite - see stuff in the matrix_grp directory.

G and H are abelian groups, g in G, H is a subgroup of G generated by a list (words) of elements of G. If self is in H, return the expression for self as a word in the elements of (words).

This function does not solve the word problem in Sage. Rather it pushes it over to GAP, which has optimized (non-deterministic) algorithms for the word problem.

Warning: Don't use E (or other GAP-reserved letters) as a generator name.

EXAMPLES:

```
sage: G = AbelianGroup(2,[2,3], names="xy")
sage: x,y = G.gens()
sage: x.word_problem([x,y])
[[x, 1]]
sage: y.word_problem([x,y])
[[y, 1]]
sage: v = (y*x).word_problem([x,y]); v #random
[[x, 1], [y, 1]]
sage: prod([x^i for x,i in v]) == y*x
True
```

sage.groups.abelian_gps.abelian_group_element.is_AbelianGroupElement(x)
Return true if x is an abelian group element, i.e., an element of type AbelianGroupElement.

EXAMPLES: Though the integer 3 is in the integers, and the integers have an abelian group structure, 3 is not an AbelianGroupElement:

23.8 Elements (characters) of the dual group of a finite Abelian group.

To obtain the dual group of a finite Abelian group, use the dual_group() method:

```
sage: F = AbelianGroup([2,3,5,7,8], names="abcde")
sage: F
```

```
Multiplicative Abelian group isomorphic to C2 x C3 x C5 x C7 x C8

sage: Fd = F.dual_group(names="ABCDE")

sage: Fd

Dual of Abelian Group isomorphic to Z/2Z x Z/3Z x Z/5Z x Z/7Z x Z/8Z

over Cyclotomic Field of order 840 and degree 192
```

The elements of the dual group can be evaluated on elements of the original group:

```
sage: a,b,c,d,e = F.gens()
sage: A,B,C,D,E = Fd.gens()
sage: A*B^2*D^7
A*B^2
sage: A(a)
-1
sage: B(b)
zeta840^140 - 1
sage: CC(_)
          # abs tol 1e-8
sage: A(a*b)
-1
sage: (A*B*C^2*D^20*E^65).exponents()
(1, 1, 2, 6, 1)
sage: B^{(-1)}
B^2
```

AUTHORS:

- David Joyner (2006-07); based on abelian_group_element.py.
- David Joyner (2006-10); modifications suggested by William Stein.
- Volker Braun (2012-11) port to new Parent base. Use tuples for immutables. Default to cyclotomic base ring.

 $Bases: \ sage.groups.abelian_gps.element_base. Abelian Group Element Base$

Base class for abelian group elements

```
word_problem (words, display=True)
```

This is a rather hackish method and is included for completeness.

The word problem for an instance of DualAbelianGroup as it can for an AbelianGroup. The reason why is that word problem for an instance of AbelianGroup simply calls GAP (which has abelian groups implemented) and invokes "EpimorphismFromFreeGroup" and "PreImagesRepresentative". GAP does not have duals of abelian groups implemented. So, by using the same name for the generators, the method below converts the problem for the dual group to the corresponding problem on the group itself and uses GAP to solve that.

EXAMPLES:

```
sage: G = AbelianGroup(5,[3, 5, 5, 7, 8],names="abcde")
sage: Gd = G.dual_group(names="abcde")
sage: a,b,c,d,e = Gd.gens()
sage: u = a^3*b*c*d^2*e^5
sage: v = a^2*b*c^2*d^3*e^3
```

```
sage: w = a^7*b^3*c^5*d^4*e^4
sage: x = a^3*b^2*c^2*d^3*e^5
sage: y = a^2*b^4*c^2*d^4*e^5
sage: e.word_problem([u,v,w,x,y],display=False)
[[b^2*c^2*d^3*e^5, 245]]
```

The command e.word_problem([u,v,w,x,y],display=True) returns the same list but also prints $e=(b^2*c^2*d^3*e^5)^245$.

```
sage.groups.abelian\_gps.dual\_abelian\_group\_element.add\_strings(x, z=0)
```

This was in sage.misc.misc but commented out. Needed to add lists of strings in the word_problem method below.

Return the sum of the elements of x. If x is empty, return z.

INPUT:

- x iterable
- z the 0 that will be returned if x is empty.

OUTPUT:

The sum of the elements of x.

EXAMPLES:

```
sage: from sage.groups.abelian_gps.dual_abelian_group_element import add_strings
sage: add_strings([], z='empty')
'empty'
sage: add_strings(['a', 'b', 'c'])
'abc'
```

sage.groups.abelian_gps.dual_abelian_group_element.is_DualAbelianGroupElement(x)
Test whether x is a dual Abelian group element.

INPUT:

• x – anything.

OUTPUT:

Boolean.

EXAMPLES:

23.9 Homomorphisms of abelian groups

Todo:

- · there must be a homspace first
- there should be hom and Hom methods in abelian group

AUTHORS:

• David Joyner (2006-03-03): initial version

```
\begin{tabular}{ll} \textbf{class} & sage.groups.abelian\_gps.abelian\_group\_morphism. \textbf{AbelianGroupMap} (\textit{parent}) \\ & Bases: sage.categories.morphism. Morphism \\ \end{tabular}
```

A set-theoretic map between AbelianGroups.

```
 \begin{array}{c} \textbf{class} \text{ sage.groups.abelian\_gps.abelian\_group\_morphism.AbelianGroupMorphism}(G, \\ H, \\ genss, \\ imgss) \end{array}
```

Bases: sage.categories.morphism.Morphism

Some python code for wrapping GAP's GroupHomomorphismByImages function for abelian groups. Returns "fail" if gens does not generate self or if the map does not extend to a group homomorphism, self - other.

EXAMPLES:

```
sage: G = AbelianGroup(3,[2,3,4],names="abc"); G
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: a,b,c = G.gens()
sage: H = AbelianGroup(2,[2,3],names="xy"); H
Multiplicative Abelian group isomorphic to C2 x C3
sage: x,y = H.gens()

sage: from sage.groups.abelian_gps.abelian_group_morphism import_
→ AbelianGroupMorphism
sage: phi = AbelianGroupMorphism(H,G,[x,y],[a,b])
```

AUTHORS:

• David Joyner (2006-02)

image(S)

Return the image of the subgroup S by the morphism.

This only works for finite groups.

INPUT:

• S - a subgroup of the domain group G

EXAMPLES:

```
sage: G = AbelianGroup(2,[2,3],names="xy")
sage: x,y = G.gens()
sage: subG = G.subgroup([x])
sage: H = AbelianGroup(3,[2,3,4],names="abc")
sage: a,b,c = H.gens()
sage: phi = AbelianGroupMorphism(G,H,[x,y],[a,b])
sage: phi.image(subG)
Multiplicative Abelian subgroup isomorphic to C2 generated by {a}
```

kernel()

Only works for finite groups.

Todo: not done yet; returns a gap object but should return a Sage group.

EXAMPLES:

```
sage: H = AbelianGroup(3,[2,3,4],names="abc"); H
Multiplicative Abelian group isomorphic to C2 x C3 x C4
sage: a,b,c = H.gens()
sage: G = AbelianGroup(2,[2,3],names="xy"); G
Multiplicative Abelian group isomorphic to C2 x C3
sage: x,y = G.gens()
sage: phi = AbelianGroupMorphism(G, H, [x, y], [a, b])
sage: phi.kernel()
'Group([ ])'
sage: H = AbelianGroup(3,[2,2,2],names="abc")
sage: a,b,c = H.gens()
sage: G = AbelianGroup(2,[2,2],names="x")
sage: x,y = G.gens()
sage: phi = AbelianGroupMorphism(G, H, [x, y], [a, a])
sage: phi.kernel()
'Group([ f1*f2 ])'
```

 $sage.groups.abelian_gps.abelian_group_morphism.is_AbelianGroupMorphism(f)$

23.10 Additive Abelian Groups

Additive abelian groups are just modules over **Z**. Hence the classes in this module derive from those in the module sage.modules.fg_pid. The only major differences are in the way elements are printed.

Construct a finitely-generated additive abelian group.

INPUT:

- invs (list of integers): the invariants. These should all be greater than or equal to zero.
- remember_generators (boolean): whether or not to fix a set of generators (corresponding to the given invariants, which need not be in Smith form).

OUTPUT:

The abelian group $\bigoplus_i \mathbf{Z}/n_i\mathbf{Z}$, where n_i are the invariants.

EXAMPLES:

```
sage: AdditiveAbelianGroup([0, 2, 4])
Additive abelian group isomorphic to Z + Z/2 + Z/4
```

An example of the remember_generators switch:

```
sage: G = AdditiveAbelianGroup([0, 2, 3]); G
Additive abelian group isomorphic to Z + Z/2 + Z/3
sage: G.gens()
```

(continues on next page)

ber_generators=True)

```
((1, 0, 0), (0, 1, 0), (0, 0, 1))
sage: H = AdditiveAbelianGroup([0, 2, 3], remember_generators = False); H
Additive abelian group isomorphic to Z/6 + Z
sage: H.gens()
((0, 1, 2), (1, 0, 0))
```

There are several ways to create elements of an additive abelian group. Realize that there are two sets of generators: the "obvious" ones composed of zeros and ones, one for each invariant given to construct the group, the other being a set of minimal generators. Which set is the default varies with the use of the remember_generators switch.

First with "obvious" generators. Note that a raw list will use the minimal generators and a vector (a module element) will use the generators that pair up naturally with the invariants. We create the same element repeatedly.

```
sage: H=AdditiveAbelianGroup([3,2,0], remember_generators=True)
sage: H.gens()
((1, 0, 0), (0, 1, 0), (0, 0, 1))
sage: [H.O, H.1, H.2]
[(1, 0, 0), (0, 1, 0), (0, 0, 1)]
sage: p=H.0+H.1+6*H.2; p
(1, 1, 6)
sage: H.smith_form_gens()
((2, 1, 0), (0, 0, 1))
sage: q=H.linear_combination_of_smith_form_gens([5,6]); q
(1, 1, 6)
sage: p==q
True
sage: r=H(vector([1,1,6])); r
(1, 1, 6)
sage: p==r
True
sage: s=H(p)
sage: p==s
```

Again, but now where the generators are the minimal set. Coercing a list or a vector works as before, but the default generators are different.

```
sage: G=AdditiveAbelianGroup([3,2,0], remember_generators=False)
sage: G.gens()
((2, 1, 0), (0, 0, 1))
sage: [G.0, G.1]
[(2, 1, 0), (0, 0, 1)]
sage: p=5*G.0+6*G.1; p
(1, 1, 6)

sage: H.smith_form_gens()
((2, 1, 0), (0, 0, 1))
sage: q=G.linear_combination_of_smith_form_gens([5,6]); q
(1, 1, 6)
sage: p==q
True
```

check=

lations)

```
sage: r=G(vector([1,1,6])); r
(1, 1, 6)
sage: p==r
True

sage: s=H(p)
sage: p==s
True
```

 $Bases: \verb|sage.modules.fg_pid.fgp_element.FGP_Element|$

An element of an AdditiveAbelianGroup class.

 $Bases: \quad \texttt{sage.modules.fg_pid.fgp_module.FGP_Module_class}, \quad \texttt{sage.groups.old.} \\ AbelianGroup$

An additive abelian group, implemented using the **Z**-module machinery.

INPUT:

- cover the covering group as **Z**-module.
- relations the relations as submodule of cover.

Element

alias of AdditiveAbelianGroupElement

exponent()

Return the exponent of this group (the smallest positive integer N such that Nx = 0 for all x in the group). If there is no such integer, return 0.

EXAMPLES:

```
sage: AdditiveAbelianGroup([2,4]).exponent()
4
sage: AdditiveAbelianGroup([0, 2,4]).exponent()
0
sage: AdditiveAbelianGroup([]).exponent()
1
```

is_cyclic()

Returns True if the group is cyclic.

EXAMPLES:

With no common factors between the orders of the generators, the group will be cyclic.

```
sage: G=AdditiveAbelianGroup([6, 7, 55])
sage: G.is_cyclic()
True
```

Repeating primes in the orders will create a non-cyclic group.

```
sage: G=AdditiveAbelianGroup([6, 15, 21, 33])
sage: G.is_cyclic()
False
```

A trivial group is trivially cyclic.

```
sage: T=AdditiveAbelianGroup([1])
sage: T.is_cyclic()
True
```

is_multiplicative()

Return False since this is an additive group.

EXAMPLES:

```
sage: AdditiveAbelianGroup([0]).is_multiplicative()
False
```

order()

Return the order of this group (an integer or infinity)

EXAMPLES:

```
sage: AdditiveAbelianGroup([2,4]).order()
8
sage: AdditiveAbelianGroup([0, 2,4]).order()
+Infinity
sage: AdditiveAbelianGroup([]).order()
1
```

short name()

Return a name for the isomorphism class of this group.

EXAMPLES:

```
sage: AdditiveAbelianGroup([0, 2,4]).short_name()
'Z + Z/2 + Z/4'
sage: AdditiveAbelianGroup([0, 2, 3]).short_name()
'Z + Z/2 + Z/3'
```

class sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_fixed_gens(

```
Bases: sage.groups.additive_abelian.additive_abelian_group. AdditiveAbelianGroup class
```

A variant which fixes a set of generators, which need not be in Smith form (or indeed independent).

gens()

Return the specified generators for self (as a tuple). Compare self.smithform_gens().

EXAMPLES:

```
sage: G = AdditiveAbelianGroup([2,3])
sage: G.gens()
((1, 0), (0, 1))
sage: G.smith_form_gens()
((1, 2),)
```

identity()

Return the identity (zero) element of this group.

EXAMPLES:

```
sage: G = AdditiveAbelianGroup([2, 3])
sage: G.identity()
(0, 0)
```

permutation_group()

Return the permutation group attached to this group.

EXAMPLES:

```
sage: G = AdditiveAbelianGroup([2, 3])
sage: G.permutation_group()
Permutation Group with generators [(3,4,5), (1,2)]
```

sage.groups.additive_abelian.additive_abelian_group.cover_and_relations_from_invariants (invariants (i

Given a list of integers, this routine constructs the obvious pair of free modules such that the quotient of the two free modules over \mathbf{Z} is naturally isomorphic to the corresponding product of cyclic modules (and hence isomorphic to a direct sum of cyclic groups).

EXAMPLES:

23.11 Wrapper class for abelian groups

This class is intended as a template for anything in Sage that needs the functionality of abelian groups. One can create an AdditiveAbelianGroupWrapper object from any given set of elements in some given parent, as long as an <code>_add_</code> method has been defined.

EXAMPLES:

We create a toy example based on the Mordell-Weil group of an elliptic curve over Q:

```
sage: E = EllipticCurve('30a2')
sage: pts = [E(4,-7,1), E(7/4, -11/8, 1), E(3, -2, 1)]
sage: M = AdditiveAbelianGroupWrapper(pts[0].parent(), pts, [3, 2, 2])
sage: M
Additive abelian group isomorphic to Z/3 + Z/2 + Z/2 embedded in Abelian
group of points on Elliptic Curve defined by y^2 + x*y + y = x^3 - 19*x + 26
over Rational Field
sage: M.gens()
((4 : -7 : 1), (7/4 : -11/8 : 1), (3 : -2 : 1))
sage: 3*M.0
(0 : 1 : 0)
```

```
sage: 300000000000000 * M.0
(4 : -7 : 1)
sage: M == loads(dumps(M)) # known bug, see http://trac.sagemath.org/sage_trac/
→ ticket/11599#comment:7
True
```

We check that ridiculous operations are being avoided:

TODO:

- Implement proper black-box discrete logarithm (using baby-step giant-step). The discrete_exp function can also potentially be speeded up substantially via caching.
- Think about subgroups and quotients, which probably won't work in the current implementation some fiddly adjustments will be needed in order to be able to pass extra arguments to the subquotient's init method.

class sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper(uni

Bases: sage.groups.additive_abelian.additive_abelian_group. AdditiveAbelianGroup_fixed_gens

The parent of AdditiveAbelianGroupWrapperElement

Element

alias of AdditiveAbelianGroupWrapperElement

generator_orders()

The orders of the generators with which this group was initialised. (Note that these are not necessarily a minimal set of generators.) Generators of infinite order are returned as 0. Compare self. invariants(), which returns the orders of a minimal set of generators.

EXAMPLES:

```
sage: V = Zmod(6)**2
sage: G = AdditiveAbelianGroupWrapper(V, [2*V.0, 3*V.1], [3, 2])
sage: G.generator_orders()
(3, 2)
sage: G.invariants()
(6,)
```

universe()

The ambient group in which this abelian group lives.

EXAMPLES:

var ant class sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapperElem

An element of an AdditiveAbelianGroupWrapper.

element()

Return the underlying object that this element wraps.

EXAMPLES:

class sage.groups.additive_abelian.additive_abelian_wrapper.UnwrappingMorphism(domain)
 Bases: sage.categories.morphism.

The embedding into the ambient group. Used by the coercion framework.

CHAPTER

TWENTYFOUR

PERMUTATION GROUPS

24.1 Catalog of permutation groups

Type groups.permutation.<tab> to access examples of groups implemented as permutation groups.

24.2 Permutation groups

A permutation group is a finite group G whose elements are permutations of a given finite set X (i.e., bijections $X \longrightarrow X$) and whose group operation is the composition of permutations. The number of elements of X is called the degree of G.

In Sage, a permutation is represented as either a string that defines a permutation using disjoint cycle notation, or a list of tuples, which represent disjoint cycles. That is:

```
(a,...,b) (c,...,d)...(e,...,f) <--> [(a,...,b), (c,...,d),..., (e,...,f)]
() = identity <--> []
```

You can make the "named" permutation groups (see permgp_named.py) and use the following constructions:

- permutation group generated by elements,
- direct_product_permgroups, which takes a list of permutation groups and returns their direct product.

JOKE: Q: What's hot, chunky, and acts on a polygon? A: Dihedral soup. Renteln, P. and Dundes, A. "Foolproof: A Sampling of Mathematical Folk Humor." Notices Amer. Math. Soc. 52, 24-34, 2005.

24.2.1 Index of methods

Here are the method of a PermutationGroup ()

as_finitely_presented_	Return a finitely presented group isomorphic to self.		
blocks_all()	Returns the list of block systems of imprimitivity.		
cardinality()	Return the number of elements of this group. See also: G.degree()		
center()	Return the subgroup of elements that commute with every element of this group.		
centralizer()	Returns the centralizer of g in self.		
character()	Returns a group character from values, where values is a list of the values		
	of the character evaluated on the conjugacy classes.		
character_table()	Returns the matrix of values of the irreducible characters of a permutation group		
	G at the conjugacy classes of G .		

Continued on next page

Table 1 – continued from previous page

	rable 1 – continued from previous page	
cohomology()	Computes the group cohomology $H^n(G, F)$, where $F = \mathbf{Z}$ if $p = 0$ and $F = \mathbf{Z}$	
	$\mathbf{Z}/p\mathbf{Z}$ if $p>0$ is a prime.	
cohomology_part()	Compute the p-part of the group cohomology $H^n(G,F)$, where $F={\bf Z}$ if $p=0$	
	and $F = \mathbf{Z}/p\mathbf{Z}$ if $p > 0$ is a prime.	
commutator()	Returns the commutator subgroup of a group, or of a pair of groups.	
composition_series()	Return the composition series of this group as a list of permutation groups.	
conjugacy_class()	Return the conjugacy class of g inside the group self.	
conjugacy_classes()	Return a list with all the conjugacy classes of self.	
conjugacy_classes_repre	Returns a complete list of representatives of conjugacy classes in a permutation	
	group G .	
conjugacy_classes_subg	Returns a complete list of representatives of conjugacy classes of subgroups in	
	a permutation group G .	
conjugate()	Returns the group formed by conjugating self with g.	
construction()	Return the construction of self.	
cosets()	Returns a list of the cosets of S in self.	
degree()	Returns the degree of this permutation group.	
derived_series()	Return the derived series of this group as a list of permutation groups.	
direct_product()	Wraps GAP's DirectProduct, Embedding, and Projection.	
domain()	Returns the underlying set that this permutation group acts on.	
exponent()	Computes the exponent of the group.	
fitting_subgroup()	Returns the Fitting subgroup of self.	
fixed_points()	Return the list of points fixed by self, i.e., the subset of .domain() not	
	moved by any element of self.	
frattini_subgroup()	Returns the Frattini subgroup of self.	
gen()	Returns the i-th generator of self; that is, the i-th element of the list self.	
	gens().	
gens()	Return tuple of generators of this group. These need not be minimal, as they are	
	the generators used in defining this group.	
gens_small()	For this group, returns a generating set which has few elements. As neither	
	irredundancy nor minimal length is proven, it is fast.	
group_id()	Return the ID code of this group, which is a list of two integers. Requires	
	"optional" database_gap package.	
<pre>group_primitive_id()</pre>	Return the index of this group in the GAP database of primitive groups.	
has_element()	Returns boolean value of item in self - however <i>ignores</i> parentage.	
holomorph()	The holomorph of a group as a permutation group.	
homology()	Computes the group homology $H_n(G, F)$, where $F = \mathbf{Z}$ if $p = 0$ and $F = \mathbf{Z}$	
	$\mathbf{Z}/p\mathbf{Z}$ if $p>0$ is a prime. Wraps HAP's GroupHomology function, written	
	by Graham Ellis.	
homology_part()	Computes the p-part of the group homology $H_n(G, F)$, where $F = \mathbf{Z}$ if $p = 0$	
	and $F = \mathbf{Z}/p\mathbf{Z}$ if $p > 0$ is a prime. Wraps HAP's Homology function, written	
	by Graham Ellis, applied to the p -Sylow subgroup of G .	
id()	(Same as self.group_id().) Return the ID code of this group, which is a	
	list of two integers. Requires "optional" database_gap package.	
identity()	Return the identity element of this group.	
intersection()	Returns the permutation group that is the intersection of self and other.	
irreducible_characters	(Returns a list of the irreducible characters of self.	
is_cyclic()	Return True if this group is cyclic.	
is_elementary_abelian(,	Return True if this group is elementary abelian. An elementary abelian group	
	is a finite abelian group, where every nontrivial element has order p , where p is	
	a prime.	
is_isomorphic()	Return True if the groups are isomorphic.	
	Continued on next nage	

Continued on next page

Table 1 – continued from previous page

1 7 ()	De la continued nom previous page	
is_monomial()	Returns True if the group is monomial. A finite group is monomial if every	
	irreducible complex character is induced from a linear character of a subgroup.	
is_nilpotent()	Return True if this group is nilpotent.	
is_normal()	Return True if this group is a normal subgroup of other.	
is_perfect()	Return True if this group is perfect. A group is perfect if it equals its derived	
	subgroup.	
is_pgroup()	Returns True if this group is a <i>p</i> -group. A finite group is a <i>p</i> -group if its order	
	is of the form p^n for a prime integer p and a nonnegative integer n .	
is_polycyclic()	Return True if this group is polycyclic. A group is polycyclic if it has a sub-	
	normal series with cyclic factors. (For finite groups, this is the same as if the	
	group is solvable - see is_solvable.)	
is_primitive()	Returns True if self acts primitively on domain. A group \$G\$ acts primi-	
	tively on a set \$S\$ if	
is_regular()	Returns True if self acts regularly on domain. A group \$G\$ acts regularly	
	on a set \$S\$ if	
is_semi_regular()	Returns True if self acts semi-regularly on domain. A group \$G\$ acts	
	semi-regularly on a set \$S\$ if the point stabilizers of \$S\$ in \$G\$ are trivial.	
is_simple()	Returns True if the group is simple. A group is simple if it has no proper	
	normal subgroups.	
is_solvable()	Returns True if the group is solvable.	
is_subgroup()	Returns True if self is a subgroup of other.	
is_supersolvable()	Returns True if the group is supersolvable. A finite group is supersolvable if it	
	has a normal series with cyclic factors.	
is_transitive()	Returns True if self acts transitively on domain. A group \$G\$ acts transi-	
	tively on set \$S\$ if for all $x, y \in S$ there is some $g \in G$ such that $x^g = y$.	
isomorphism_to()	Return an isomorphism from self to right if the groups are isomorphic,	
	otherwise None.	
isomorphism_type_info_	s If the group is simple, then this returns the name of the group.	
iteration()	Return an iterator over the elements of this group.	
largest_moved_point()	Return the largest point moved by a permutation in this group.	
list()	Return list of all elements of this group.	
lower_central_series()	Return the lower central series of this group as a list of permutation groups.	
minimal_generating_set	()Return a minimal generating set	
molien_series()	Return the Molien series of a permutation group. The function	
ngens()	Return the number of generators of self.	
non_fixed_points()	Return the list of points not fixed by self, i.e., the subset of self.	
	domain() moved by some element of self.	
normal_subgroups()	Return the normal subgroups of this group as a (sorted in increasing order) list	
	of permutation groups.	
normalizer()	Returns the normalizer of g in self.	
normalizes()	Returns True if the group other is normalized by self. Wraps GAP's	
	IsNormal function.	
poincare_series()	Return the Poincaré series of $G \mod p$ ($p \ge 2$ must be a prime), for n large.	
random_element()	Return a random element of this group.	
representative_action(Return an element of self that maps x to y if it exists.	
semidirect_product()	The semidirect product of self with N.	
socle()	Returns the socle of self. The socle of a group \$G\$ is the subgroup generated	
	by all minimal normal subgroups.	
solvable_radical()	Returns the solvable radical of self. The solvable radical (or just radical) of a	
	group \$G\$ is the largest solvable normal subgroup of \$G\$.	
	Continued on next page	

Continued on next page

エーレー・オー		f	· ·	
I anie 1	continued	tr∩m	nrevinis	nage
i abic i	COLITICICA	11 0111	picvious	page

stabilizer()	Return the subgroup of self which stabilize the given position. self and its		
	stabilizers must have same degree.		
strong_generating_syste	erReturn a Strong Generating System of self according the given base for the		
	right action of self on itself.		
structure_description(Return a string that tries to describe the structure of G.		
subgroup()	Wraps the PermutationGroup_subgroup constructor. The argument		
	gens is a list of elements of self.		
subgroups()	Returns a list of all the subgroups of self.		
sylow_subgroup()	Returns a Sylow p -subgroup of the finite group G , where p is a prime. This is a		
	p-subgroup of G whose index in G is coprime to p .		
transversals()	If G is a permutation group acting on the set $X = \{1, 2,, n\}$ and H is the		
	stabilizer subgroup of <integer>, a right (respectively left) transversal is a set</integer>		
	containing exactly one element from each right (respectively left) coset of H.		
	This method returns a right transversal of self by the stabilizer of self on		
	<integer> position.</integer>		
trivial_character()	Returns the trivial character of self.		
upper_central_series()	Return the upper central series of this group as a list of permutation groups.		

AUTHORS:

- David Joyner (2005-10-14): first version
- David Joyner (2005-11-17)
- William Stein (2005-11-26): rewrite to better wrap Gap
- David Joyner (2005-12-21)
- William Stein and David Joyner (2006-01-04): added conjugacy_class_representatives
- David Joyner (2006-03): reorganization into subdirectory perm_gps; added __contains__, has_element; fixed _cmp_; added subgroup class+methods, PGL,PSL,PSp, PSU classes,
- David Joyner (2006-06): added PGU, functionality to SymmetricGroup, AlternatingGroup, direct_product_permgroups
- David Joyner (2006-08): added degree, ramification_module_decomposition_modular_curve and ramification_module_decomposition_hurwitz_curve methods to PSL(2,q), MathieuGroup, is_isomorphic
- Bobby Moretti (2006)-10): Added KleinFourGroup, fixed bug in DihedralGroup
- David Joyner (2006-10): added is_subgroup (fixing a bug found by Kiran Kedlaya), is_solvable, normalizer, is_normal_subgroup, Suzuki
- David Kohel (2007-02): fixed __contains__ to not enumerate group elements, following the convention for __call__
- David Harvey, Mike Hansen, Nick Alexander, William Stein (2007-02,03,04,05): Various patches
- Nathan Dunfield (2007-05): added orbits
- David Joyner (2007-06): added subgroup method (suggested by David Kohel), composition_series, lower_central_series, upper_central_series, cayley_table, quotient_group, sylow_subgroup, is_cyclic, homology, homology_part, cohomology_part, poincare_series, molien_series, is_simple, is_monomial, is_supersolvable, is_nilpotent, is_perfect, is_polycyclic, is_elementary_abelian, is_pgroup, gens_small, isomorphism_type_info_simple_group. moved all the"named" groups to a new file.
- Nick Alexander (2007-07): move is isomorphic to isomorphism to, add from gap list
- William Stein (2007-07): put is isomorphic back (and make it better)

- David Joyner (2007-08): fixed bugs in composition_series, upper/lower_central_series, derived_series,
- David Joyner (2008-06): modified is normal (reported by W. J. Palenstijn), and added normalizes
- David Joyner (2008-08): Added example to docstring of cohomology.
- Simon King (2009-04): __cmp__ methods for PermutationGroup_generic and PermutationGroup_subgroup
- Nicolas Borie (2009): Added orbit, transversals, stabiliser and strong_generating_system methods
- Christopher Swenson (2012): Added a special case to compute the order efficiently. (This patch Copyright 2012 Google Inc. All Rights Reserved.)
- Javier Lopez Pena (2013): Added conjugacy classes.
- Sebastian Oehms (2018): added _coerce_map_from_ in order to use isomorphism coming up with as_permutation_group method (Trac #25706)
- Christian Stump (2018): Added alternative implementation of strong_generating_system directly using GAP.

REFERENCES:

- Cameron, P., Permutation Groups. New York: Cambridge University Press, 1999.
- Wielandt, H., Finite Permutation Groups. New York: Academic Press, 1964.
- Dixon, J. and Mortimer, B., Permutation Groups, Springer-Verlag, Berlin/New York, 1996.

Note: Though Suzuki groups are okay, Ree groups should *not* be wrapped as permutation groups - the construction is too slow - unless (for small values or the parameter) they are made using explicit generators.

Return the permutation group associated to x (typically a list of generators).

INPUT:

- gens list of generators (default: None)
- gap_group a gap permutation group (default: None)
- canonicalize bool (default: True); if True, sort generators and remove duplicates

OUTPUT:

• A permutation group.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: G
Permutation Group with generators [(3,4), (1,2,3)(4,5)]
```

We can also make permutation groups from PARI groups:

```
sage: H = pari('x^4 - 2*x^3 - 2*x + 1').polgalois()
sage: G = PariGroup(H, 4); G
PARI group [8, -1, 3, "D(4)"] of degree 4
sage: H = PermutationGroup(G); H  # optional - database_gap
Transitive group number 3 of degree 4
sage: H.gens()  # optional - database_gap
[(1,2,3,4), (1,3)]
```

We can also create permutation groups whose generators are Gap permutation objects:

```
sage: p = gap('(1,2)(3,7)(4,6)(5,8)'); p
(1,2)(3,7)(4,6)(5,8)
sage: PermutationGroup([p])
Permutation Group with generators [(1,2)(3,7)(4,6)(5,8)]
```

Permutation groups can work on any domain. In the following examples, the permutations are specified in list notation, according to the order of the elements of the domain:

```
sage: list(PermutationGroup([['b','c','a']], domain=['a','b','c']))
[(), ('a','c','b'), ('a','b','c')]
sage: list(PermutationGroup([['b','c','a']], domain=['b','c','a']))
[()]
sage: list(PermutationGroup([['b','c','a']], domain=['a','c','b']))
[(), ('a','b')]
```

There is an underlying gap object that implements each permutation group:

```
sage: G = PermutationGroup([[(1,2,3,4)]])
sage: G._gap_()
Group( [ (1,2,3,4) ] )
sage: gap(G)
Group( [ (1,2,3,4) ] )
sage: gap(G) is G._gap_()
True
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: current_randstate().set_seed_gap()
sage: G._gap_().DerivedSeries()
[ Group( [ (3,4), (1,2,3)(4,5) ] ), Group( [ (1,5)(3,4), (1,5)(2,4), (1,5,3) ] ) ]
```

Bases: sage.groups.group.FiniteGroup

A generic permutation group.

EXAMPLES:

Element

alias of PermutationGroupElement

as_finitely_presented_group(reduced=False)

Return a finitely presented group isomorphic to self.

This method acts as wrapper for the GAP function IsomorphismFpGroupByGenerators, which yields an isomorphism from a given group to a finitely presented group.

INPUT:

• reduced – Default False, if True FinitelyPresentedGroup.simplified is called, attempting to simplify the presentation of the finitely presented group to be returned.

OUTPUT:

Finite presentation of self, obtained by taking the image of the isomorphism returned by the GAP function, IsomorphismFpGroupByGenerators.

ALGORITHM:

Uses GAP.

EXAMPLES:

GAP algorithm is not guaranteed to produce minimal or canonical presentation:

```
sage: G = PermutationGroup(['(1,2,3,4,5)', '(1,5)(2,4)'])
sage: G.is_isomorphic(DihedralGroup(5))
True
sage: K = G.as_finitely_presented_group(); K
Finitely presented group < a, b | b^2, (b*a)^2, b*a^-3*b*a^2 >
sage: K.as_permutation_group().is_isomorphic(DihedralGroup(5))
True
```

We can attempt to reduce the output presentation:

AUTHORS:

• Davis Shurbert (2013-06-21): initial version

base (seed=None)

Returns a (minimum) base of this permutation group. A base B of a permutation group is a subset of the domain of the group such that the only group element stabilizing all of B is the identity.

The argument *seed* is optional and must be a subset of the domain of *base*. When used, an attempt to create a base containing all or part of *seed* will be made.

EXAMPLES:

```
sage: G = PermutationGroup([(1,2,3),(6,7,8)])
sage: G.base()
[1, 6]
sage: G.base([2])
[2, 6]
sage: H = PermutationGroup([('a','b','c'),('a','y')])
sage: H.base()
['a', 'b', 'c']
sage: S = SymmetricGroup(13)
sage: S.base()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
sage: S = MathieuGroup(12)
sage: S.base()
[1, 2, 3, 4, 5]
sage: S.base([1,3,5,7,9,11]) # create a base for M12 with only odd integers
[1, 3, 5, 7, 9]
```

blocks_all (representatives=True)

Returns the list of block systems of imprimitivity.

For more information on primitivity, see the Wikipedia article on primitive group actions.

INPUT:

• representative (boolean) – whether to return all possible block systems of imprimitivity or only one of their representatives (the block can be obtained from its representative set S by computing the orbit of S under self).

This parameter is set to True by default (as it is GAP's default behaviour).

OUTPUT:

This method returns a description of *all* block systems. Hence, the output is a "list of lists" or a "list of lists" depending on the value of representatives. A bit more clearly, output is:

- A list of length (#number of different block systems) of
 - block systems, each of them being defined as
 - * If representatives = True: a list of representatives of each set of the block system
 - * If representatives = False: a partition of the elements defining an imprimitivity block.

See also:

• is_primitive()

EXAMPLES:

Picking an interesting group:

```
sage: g = graphs.DodecahedralGraph()
sage: g.is_vertex_transitive()
True
sage: ag = g.automorphism_group()
sage: ag.is_primitive()
False
```

Computing its blocks representatives:

```
sage: ag.blocks_all()
[[0, 15]]
```

Now the full block:

cardinality()

Return the number of elements of this group. See also: G.degree()

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: G.order()
12
sage: G = PermutationGroup([()])
sage: G.order()
1
sage: G = PermutationGroup([])
sage: G.order()
1
```

cardinality is just an alias:

```
sage: PermutationGroup([(1,2,3)]).cardinality()
3
```

center()

Return the subgroup of elements that commute with every element of this group.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3,4)]])
sage: G.center()
Subgroup of (Permutation Group with generators [(1,2,3,4)]) generated by [(1, \rightarrow2,3,4)]
sage: G = PermutationGroup([[(1,2,3,4)], [(1,2)]])
sage: G.center()
Subgroup of (Permutation Group with generators [(1,2), (1,2,3,4)]) generated_
\rightarrowby [()]
```

centralizer(g)

Returns the centralizer of g in self.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: g = G([(1,3)])
sage: G.centralizer(g)
Subgroup of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)])
\hookrightarrow generated by [(2,4), (1,3)]
sage: g = G([(1,2,3,4)])
sage: G.centralizer(g)
Subgroup of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)])
\hookrightarrow generated by [(1,2,3,4)]
```

character (values)

Returns a group character from values, where values is a list of the values of the character evaluated on the conjugacy classes.

EXAMPLES:

```
sage: G = AlternatingGroup(4)
sage: n = len(G.conjugacy_classes_representatives())
sage: G.character([1]*n)
Character of Alternating group of order 4!/2 as a permutation group
```

character_table()

Returns the matrix of values of the irreducible characters of a permutation group G at the conjugacy classes of G.

The columns represent the conjugacy classes of G and the rows represent the different irreducible characters in the ordering given by GAP.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2),(3,4)],[(1,2,3)]])
sage: G.order()
12
sage: G.character_table()
        1 1
                             1
                                       11
         1 -zeta3 - 1 zeta3
                                       1]
         1
            zeta3 -zeta3 - 1
                                       1]
         3
                             0
                                       -11
sage: G = PermutationGroup([[(1,2),(3,4)],[(1,2,3)]])
sage: CT = gap(G).CharacterTable()
```

Type print (gap.eval("Display(%s)"%CT.name())) to display this nicely.

Again, type print (gap.eval ("Display (%s) "%CT.name())) to display this nicely.

```
sage: SymmetricGroup(2).character_table()
[ 1 -1]
[ 1 1]
sage: SymmetricGroup(3).character_table()
[ 1 -1 1]
[ 2 0 -1]
```

Suppose that you have a class function f(g) on G and you know the values v_1,\ldots,v_n on the conjugacy class elements in <code>conjugacy_classes_representatives(G) = [g_1,\ldots,g_n]</code>. Since the irreducible characters ρ_1,\ldots,ρ_n of G form an E-basis of the space of all class functions (E a "sufficiently large" cyclotomic field), such a class function is a linear combination of these basis elements, $f = c_1\rho_1 + \cdots + c_n\rho_n$. To find the coefficients c_i , you simply solve the linear system <code>character_table_values(G)</code> $[v_1,\ldots,v_n] = [c_1,\ldots,c_n]$, where $[v_1,\ldots,v_n] = character_table_values(G)$

AUTHORS:

• David Joyner and William Stein (2006-01-04)

cohomology (n, p=0)

Computes the group cohomology $H^n(G, F)$, where $F = \mathbf{Z}$ if p = 0 and $F = \mathbf{Z}/p\mathbf{Z}$ if p > 0 is a prime.

Wraps HAP's GroupHomology function, written by Graham Ellis.

REQUIRES: GAP package HAP (in gap_packages-*.spkg).

EXAMPLES:

```
sage: G = SymmetricGroup(4)
sage: G.cohomology(1,2)
                                                    # optional - gap_packages
Multiplicative Abelian group isomorphic to C2
sage: G = SymmetricGroup(3)
                                                    # optional - gap_packages
sage: G.cohomology(5)
Trivial Abelian group
sage: G.cohomology(5,2)
                                                    # optional - gap_packages
Multiplicative Abelian group isomorphic to C2
sage: G.homology(5,3)
                                                    # optional - gap_packages
Trivial Abelian group
sage: G.homology(5,4)
                                                    # optional - gap_packages
Traceback (most recent call last):
ValueError: p must be 0 or prime
```

This computes $H^4(S_3, \mathbf{Z})$ and $H^4(S_3, \mathbf{Z}/2\mathbf{Z})$, respectively.

AUTHORS:

• David Joyner and Graham Ellis

REFERENCES:

- G. Ellis, 'Computing group resolutions', J. Symbolic Computation. Vol.38, (2004)1077-1118 (Available at http://hamilton.nuigalway.ie/).
- D. Joyner, 'A primer on computational group homology and cohomology', http://front.math.ucdavis.edu/0706.0549.

$cohomology_part(n, p=0)$

Compute the p-part of the group cohomology $H^n(G, F)$, where $F = \mathbf{Z}$ if p = 0 and $F = \mathbf{Z}/p\mathbf{Z}$ if p > 0 is a prime.

Wraps HAP's Homology function, written by Graham Ellis, applied to the p-Sylow subgroup of G.

REQUIRES: GAP package HAP (in gap_packages-*.spkg).

EXAMPLES:

```
sage: G = SymmetricGroup(5)
sage: G.cohomology_part(7,2)  # optional - gap_packages
Multiplicative Abelian group isomorphic to C2 x C2 x C2
sage: G = SymmetricGroup(3)
sage: G.cohomology_part(2,3)  # optional - gap_packages
Multiplicative Abelian group isomorphic to C3
```

AUTHORS:

· David Joyner and Graham Ellis

commutator(other=None)

Returns the commutator subgroup of a group, or of a pair of groups.

INPUT:

• other - default: None - a permutation group.

OUTPUT:

Let G denote self. If other is None then this method returns the subgroup of G generated by the set of commutators,

$$\{[g_1,g_2]|g_1,g_2\in G\}=\{g_1^{-1}g_2^{-1}g_1g_2|g_1,g_2\in G\}$$

Let H denote other, in the case that it is not None. Then this method returns the group generated by the set of commutators,

$$\{[g,h]|g\in G\,h\in H\}=\{g^{-1}h^{-1}gh|g\in G\,h\in H\}$$

The two groups need only be permutation groups, there is no notion of requiring them to explicitly be subgroups of some other group.

Note: For the identical statement, the generators of the returned group can vary from one execution to the next.

EXAMPLES:

```
sage: G = DiCyclicGroup(4)
sage: G.commutator()
Permutation Group with generators [(1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,
\rightarrow16)]
```

```
sage: G = SymmetricGroup(5)
sage: H = CyclicPermutationGroup(5)
sage: C = G.commutator(H)
sage: C.is_isomorphic(AlternatingGroup(5))
True
```

An abelian group will have a trivial commutator.

```
sage: G = CyclicPermutationGroup(10)
sage: G.commutator()
Permutation Group with generators [()]
```

The quotient of a group by its commutator is always abelian.

```
sage: G = DihedralGroup(20)
sage: C = G.commutator()
sage: Q = G.quotient(C)
sage: Q.is_abelian()
True
```

When forming commutators from two groups, the order of the groups does not matter.

```
sage: D = DihedralGroup(3)
sage: S = SymmetricGroup(2)
sage: C1 = D.commutator(S); C1
Permutation Group with generators [(1,2,3)]
sage: C2 = S.commutator(D); C2
Permutation Group with generators [(1,3,2)]
sage: C1 == C2
True
```

This method calls two different functions in GAP, so this tests that their results are consistent. The commutator groups may have different generators, but the groups are equal.

```
sage: G = DiCyclicGroup(3)
sage: C = G.commutator(); C
Permutation Group with generators [(5,7,6)]
sage: CC = G.commutator(G); CC
Permutation Group with generators [(5,6,7)]
sage: C == CC
True
```

The second group is checked.

```
sage: G = SymmetricGroup(2)
sage: G.commutator('junk')
Traceback (most recent call last):
...
TypeError: junk is not a permutation group
```

composition_series()

Return the composition series of this group as a list of permutation groups.

EXAMPLES:

These computations use pseudo-random numbers, so we set the seed for reproducible testing.

```
sage: set_random_seed(0)
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: G.composition_series() # random output
[Permutation Group with generators [(1,2,3)(4,5), (3,4)], Permutation Group
with generators [(1,5)(3,4), (1,5)(2,3), (1,5,4)], Permutation Group with
penerators [()]]
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: CS = G.composition_series()
sage: CS[3]
Subgroup of (Permutation Group with generators [(1,2), (1,2,3)(4,5)])
penerated by [()]
```

conjugacy_class(g)

Return the conjugacy class of g inside the group self.

INPUT

• g – an element of the permutation group self

OUTPUT:

The conjugacy class of g in the group self. If self is the group denoted by G, this method computes the set $\{x^{-1}gx \mid x \in G\}$

EXAMPLES:

```
sage: G = DihedralGroup(3)
sage: g = G.gen(0)
sage: G.conjugacy_class(g)
Conjugacy class of (1,2,3) in Dihedral group of order 6 as a permutation group
```

conjugacy_classes()

Return a list with all the conjugacy classes of self.

EXAMPLES:

conjugacy_classes_representatives()

Returns a complete list of representatives of conjugacy classes in a permutation group G.

The ordering is that given by GAP.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: cl = G.conjugacy_classes_representatives(); cl
[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3)(2,4)]
sage: cl[3] in G
True
```

```
sage: G = SymmetricGroup(5)
sage: G.conjugacy_classes_representatives()
[(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3)(4,5), (1,2,3,4), (1,2,3,4,5)]
```

```
sage: S = SymmetricGroup(['a','b','c'])
sage: S.conjugacy_classes_representatives()
[(), ('a','b'), ('a','b','c')]
```

AUTHORS:

• David Joyner and William Stein (2006-01-04)

conjugacy_classes_subgroups()

Returns a complete list of representatives of conjugacy classes of subgroups in a permutation group G.

The ordering is that given by GAP.

EXAMPLES:

AUTHORS:

• David Joyner (2006-10)

conjugate(g)

Returns the group formed by conjugating self with g.

INPUT:

• g - a permutation group element, or an object that converts to a permutation group element, such as a list of integers or a string of cycles.

OUTPUT:

If self is the group denoted by H, then this method computes the group

$$g^{-1}Hg = \{g^{-1}hg | h \in H\}$$

which is the group H conjugated by g.

There are no restrictions on self and g belonging to a common permutation group, and correspondingly, there is no relationship (such as a common parent) between self and the output group.

EXAMPLES:

```
sage: G = DihedralGroup(6)
sage: a = PermutationGroupElement("(1,2,3,4)")
sage: G.conjugate(a)
Permutation Group with generators [(1,4)(2,6)(3,5), (1,5,6,2,3,4)]
```

The element performing the conjugation can be specified in several ways.

```
sage: G = DihedralGroup(6)
sage: strng = "(1,2,3,4)"
sage: G.conjugate(strng)
Permutation Group with generators [(1,4)(2,6)(3,5), (1,5,6,2,3,4)]
sage: G = DihedralGroup(6)
sage: lst = [2,3,4,1]
sage: G.conjugate(lst)
Permutation Group with generators [(1,4)(2,6)(3,5), (1,5,6,2,3,4)]
sage: G = DihedralGroup(6)
sage: cycles = [(1,2,3,4)]
sage: G.conjugate(cycles)
Permutation Group with generators [(1,4)(2,6)(3,5), (1,5,6,2,3,4)]
```

Conjugation is a group automorphism, so conjugate groups will be isomorphic.

```
sage: G = DiCyclicGroup(6)
sage: G.degree()
11
sage: cycle = [i+1 for i in range(1,11)] + [1]
sage: C = G.conjugate(cycle)
sage: G.is_isomorphic(C)
True
```

The conjugating element may be from a symmetric group with larger degree than the group being conjugated.

```
sage: G = AlternatingGroup(5)
sage: G.degree()
5
sage: g = "(1,3)(5,6,7)"
sage: H = G.conjugate(g); H
Permutation Group with generators [(1,4,6,3,2), (1,4,6)]
sage: H.degree()
6
```

The conjugating element is checked.

```
sage: G = SymmetricGroup(3)
sage: G.conjugate("junk")
Traceback (most recent call last):
...
TypeError: junk does not convert to a permutation group element
```

construction()

Return the construction of self.

EXAMPLES:

```
sage: P1 = PermutationGroup([[(1,2)]])
sage: P1.construction()
(PermutationGroupFunctor[(1,2)], Permutation Group with generators [()])
sage: PermutationGroup([]).construction() is None
True
```

This allows us to perform computations like the following:

```
sage: P1 = PermutationGroup([[(1,2)]]); p1 = P1.gen()
sage: P2 = PermutationGroup([[(1,3)]]); p2 = P2.gen()
sage: p = p1*p2; p
(1,2,3)
sage: p.parent()
Permutation Group with generators [(1,2), (1,3)]
sage: p.parent().domain()
{1, 2, 3}
```

Note that this will merge permutation groups with different domains:

```
sage: g1 = PermutationGroupElement([(1,2),(3,4,5)])
sage: g2 = PermutationGroup([('a','b')], domain=['a', 'b']).gens()[0]
sage: g2
('a','b')
sage: p = g1*g2; p
(1,2)(3,4,5)('a','b')
```

cosets (S, side='right')

Returns a list of the cosets of S in self.

INPUT:

- S a subgroup of self. An error is raised if S is not a subgroup.
- side default: 'right' determines if right cosets or left cosets are returned. side refers to where the representative is placed in the products forming the cosets and thus allowable values are only 'right' and 'left'.

OUTPUT:

A list of lists. Each inner list is a coset of the subgroup in the group. The first element of each coset is the smallest element (based on the ordering of the elements of self) of all the group elements that have not yet appeared in a previous coset. The elements of each coset are in the same order as the subgroup elements used to build the coset's elements.

As a consequence, the subgroup itself is the first coset, and its first element is the identity element. For each coset, the first element listed is the element used as a representative to build the coset. These representatives form an increasing sequence across the list of cosets, and within a coset the representative is the smallest element of its coset (both orderings are based on of the ordering of elements of self).

In the case of a normal subgroup, left and right cosets should appear in the same order as part of the outer list. However, the list of the elements of a particular coset may be in a different order for the right coset versus the order in the left coset. So, if you check to see if a subgroup is normal, it is necessary to sort each individual coset first (but not the list of cosets, due to the ordering of the representatives). See below for examples of this.

Note: This is a naive implementation intended for instructional purposes, and hence is slow for larger groups. Sage and GAP provide more sophisticated functions for working quickly with cosets of larger

groups.

EXAMPLES:

The default is to build right cosets. This example works with the symmetry group of an 8-gon and a normal subgroup. Notice that a straight check on the equality of the output is not sufficient to check normality, while sorting the individual cosets is sufficient to then simply test equality of the list of lists. Study the second coset in each list to understand the need for sorting the elements of the cosets.

```
sage: G = DihedralGroup(8)
sage: quarter_turn = G('(1,3,5,7)(2,4,6,8)'); quarter_turn
(1,3,5,7) (2,4,6,8)
sage: S = G.subgroup([quarter_turn])
sage: rc = G.cosets(S); rc
[[(), (1,3,5,7)(2,4,6,8), (1,5)(2,6)(3,7)(4,8), (1,7,5,3)(2,8,6,4)],
  [(2,8)(3,7)(4,6), (1,7)(2,6)(3,5), (1,5)(2,4)(6,8), (1,3)(4,8)(5,7)],
  [(1,2)(3,8)(4,7)(5,6), (1,8)(2,7)(3,6)(4,5), (1,6)(2,5)(3,4)(7,8), (1,4)(2,5)(3,8)(4,7)(5,6), (1,8)(2,7)(3,6)(4,5), (1,6)(2,5)(3,4)(7,8), (1,4)(2,5)(4,5)
\rightarrow3) (5,8) (6,7)],
 [(1,2,3,4,5,6,7,8), (1,4,7,2,5,8,3,6), (1,6,3,8,5,2,7,4), (1,8,7,6,5,4,3,2)]]
sage: lc = G.cosets(S, side='left'); lc
[(1, 3, 5, 7), (2, 4, 6, 8), (1, 5), (2, 6), (3, 7), (4, 8), (1, 7, 5, 3), (2, 8, 6, 4)],
  [(2,8)(3,7)(4,6), (1,3)(4,8)(5,7), (1,5)(2,4)(6,8), (1,7)(2,6)(3,5)],
 [(1,2)(3,8)(4,7)(5,6), (1,4)(2,3)(5,8)(6,7), (1,6)(2,5)(3,4)(7,8), (1,8)(2,5)(3,4)(7,8), (1,8)(2,5)(3,8)(4,7)(5,6), (1,4)(2,3)(5,8)(6,7), (1,6)(2,5)(3,4)(7,8), (1,8)(2,5)(3,8)(4,7)(5,6), (1,4)(2,3)(5,8)(6,7), (1,6)(2,5)(3,4)(7,8), (1,8)(2,5)(3,8)(4,7)(5,8)(6,7), (1,8)(2,5)(3,8)(6,7), (1,8)(2,5)(3,8)(4,7)(5,8)(6,7), (1,8)(2,5)(3,8)(6,7), (1,8)(2,5)(3,8)(6,7), (1,8)(2,5)(3,8)(6,7), (1,8)(2,5)(3,8)(6,7), (1,8)(2,5)(3,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7), (1,8)(6,7
 \rightarrow7) (3,6) (4,5)],
  [(1,2,3,4,5,6,7,8), (1,4,7,2,5,8,3,6), (1,6,3,8,5,2,7,4), (1,8,7,6,5,4,3,2)]]
sage: S.is_normal(G)
True
sage: rc == lc
False
sage: rc_sorted = [sorted(c) for c in rc]
sage: lc_sorted = [sorted(c) for c in lc]
sage: rc_sorted == lc_sorted
True
```

An example with the symmetry group of a regular tetrahedron and a subgroup that is not normal. Thus, the right and left cosets are different (and so are the representatives). With each individual coset sorted, a naive test of normality is possible.

```
sage: A = AlternatingGroup(4)
sage: face_turn = A('(1,2,3)'); face_turn
(1, 2, 3)
sage: stabilizer = A.subgroup([face_turn])
sage: rc = A.cosets(stabilizer, side='right'); rc
[[(), (1,2,3), (1,3,2)],
 [(2,3,4), (1,3)(2,4), (1,4,2)],
 [(2,4,3), (1,4,3), (1,2)(3,4)],
 [(1,2,4), (1,4)(2,3), (1,3,4)]]
sage: lc = A.cosets(stabilizer, side='left'); lc
[[(), (1,2,3), (1,3,2)],
[(2,3,4), (1,2)(3,4), (1,3,4)],
[(2,4,3), (1,2,4), (1,3)(2,4)],
[(1,4,2), (1,4,3), (1,4)(2,3)]
sage: stabilizer.is_normal(A)
False
sage: rc_sorted = [sorted(c) for c in rc]
```

```
sage: lc_sorted = [sorted(c) for c in lc]
sage: rc_sorted == lc_sorted
False
```

AUTHOR:

• Rob Beezer (2011-01-31)

degree()

Returns the degree of this permutation group.

EXAMPLES:

```
sage: S = SymmetricGroup(['a','b','c'])
sage: S.degree()
3
sage: G = PermutationGroup([(1,3),(4,5)])
sage: G.degree()
5
```

Note that you can explicitly specify the domain to get a permutation group of smaller degree:

```
sage: G = PermutationGroup([(1,3),(4,5)], domain=[1,3,4,5])
sage: G.degree()
4
```

derived series()

Return the derived series of this group as a list of permutation groups.

EXAMPLES:

These computations use pseudo-random numbers, so we set the seed for reproducible testing.

```
sage: set_random_seed(0)
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: G.derived_series() # random output
[Permutation Group with generators [(1,2,3)(4,5), (3,4)], Permutation Group_
with generators [(1,5)(3,4), (1,5)(2,4), (2,4)(3,5)]]
```

direct_product (other, maps=True)

Wraps GAP's DirectProduct, Embedding, and Projection.

Sage calls GAP's DirectProduct, which chooses an efficient representation for the direct product. The direct product of permutation groups will be a permutation group again. For a direct product D, the GAP operation Embedding (D, i) returns the homomorphism embedding the i-th factor into D. The GAP operation Projection (D, i) gives the projection of D onto the i-th factor. This method returns a 5-tuple: a permutation group and 4 morphisms.

INPUT:

• self, other-permutation groups

OUTPUT:

- D a direct product of the inputs, returned as a permutation group as well
- iotal an embedding of self into D
- iota2 an embedding of other into D
- pr1 the projection of D onto self (giving a splitting 1 other D self 1)

• pr2 - the projection of D onto other (giving a splitting 1 - self - D - other - 1)

EXAMPLES:

```
sage: G = CyclicPermutationGroup(4)
sage: D = G.direct_product(G,False)
sage: D
Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
sage: D,iota1,iota2,pr1,pr2 = G.direct_product(G)
sage: D; iotal; iota2; pr1; pr2
Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
Permutation group morphism:
 From: Cyclic group of order 4 as a permutation group
 To: Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
 Defn: Embedding( Group( [ (1,2,3,4), (5,6,7,8) ] ), 1 )
Permutation group morphism:
 From: Cyclic group of order 4 as a permutation group
 To: Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
 Defn: Embedding( Group( [ (1,2,3,4), (5,6,7,8) ] ), 2 )
Permutation group morphism:
 From: Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
 To: Cyclic group of order 4 as a permutation group
 Defn: Projection (Group ([(1,2,3,4),(5,6,7,8)]), 1)
Permutation group morphism:
 From: Permutation Group with generators [(5,6,7,8), (1,2,3,4)]
       Cyclic group of order 4 as a permutation group
 Defn: Projection (Group ([(1,2,3,4), (5,6,7,8)]), 2)
sage: g=D([(1,3),(2,4)]); g
(1,3)(2,4)
sage: d=D([(1,4,3,2),(5,7),(6,8)]); d
(1,4,3,2)(5,7)(6,8)
sage: iotal(g); iota2(g); pr1(d); pr2(d)
(1,3)(2,4)
(5,7)(6,8)
(1, 4, 3, 2)
(1,3)(2,4)
```

domain()

Returns the underlying set that this permutation group acts on.

EXAMPLES:

```
sage: P = PermutationGroup([(1,2),(3,5)])
sage: P.domain()
{1, 2, 3, 4, 5}
sage: S = SymmetricGroup(['a', 'b', 'c'])
sage: S.domain()
{'a', 'b', 'c'}
```

exponent()

Computes the exponent of the group.

The exponent e of a group G is the LCM of the orders of its elements, that is, e is the smallest integer such that $g^e = 1$ for all $g \in G$.

EXAMPLES:

```
sage: G = AlternatingGroup(4)
sage: G.exponent()
6
```

fitting_subgroup()

Returns the Fitting subgroup of self.

The Fitting subgroup of a group G is the largest nilpotent normal subgroup of G.

EXAMPLES:

fixed points()

Return the list of points fixed by self, i.e., the subset of .domain() not moved by any element of self.

EXAMPLES:

```
sage: G = PermutationGroup([(1,2,3)])
sage: G.fixed_points()
[]
sage: G = PermutationGroup([(1,2,3),(5,6)])
sage: G.fixed_points()
[4]
sage: G = PermutationGroup([[(1,4,7)],[(4,3),(6,7)]])
sage: G.fixed_points()
[2, 5]
```

frattini subgroup()

Returns the Frattini subgroup of self.

The Frattini subgroup of a group G is the intersection of all maximal subgroups of G.

EXAMPLES:

```
sage: G=PermutationGroup([[(1,2,3,4)],[(2,4)]])
sage: G.frattini_subgroup()
Subgroup of (Permutation Group with generators [(2,4), (1,2,3,4)]) generated_
    →by [(1,3)(2,4)]
sage: G=SymmetricGroup(4)
sage: G.frattini_subgroup()
Subgroup of (Symmetric group of order 4! as a permutation group) generated by_
    →[()]
```

gen (i=None)

Returns the i-th generator of self; that is, the i-th element of the list self.gens().

The argument i may be omitted if there is only one generator (but this will raise an error otherwise).

EXAMPLES:

We explicitly construct the alternating group on four elements:

```
sage: A4 = PermutationGroup([[(1,2,3)],[(2,3,4)]]); A4
Permutation Group with generators [(2,3,4), (1,2,3)]
sage: A4.gens()
```

```
[(2,3,4), (1,2,3)]
sage: A4.gen(0)
(2,3,4)
sage: A4.gen(1)
(1,2,3)
sage: A4.gens()[0]; A4.gens()[1]
(2,3,4)
(1,2,3)
sage: P1 = PermutationGroup([[(1,2)]]); P1.gen()
(1,2)
```

gens()

Return tuple of generators of this group. These need not be minimal, as they are the generators used in defining this group.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3)], [(1,2)]])
sage: G.gens()
[(1,2), (1,2,3)]
```

Note that the generators need not be minimal, though duplicates are removed:

```
sage: G = PermutationGroup([[(1,2)], [(1,3)], [(2,3)], [(1,2)]])
sage: G.gens()
[(2,3), (1,2), (1,3)]
```

We can use index notation to access the generators returned by self.gens:

```
sage: G = PermutationGroup([[(1,2,3,4), (5,6)], [(1,2)]])
sage: g = G.gens()
sage: g[0]
(1,2)
sage: g[1]
(1,2,3,4)(5,6)
```

gens_small()

For this group, returns a generating set which has few elements. As neither irredundancy nor minimal length is proven, it is fast.

EXAMPLES:

```
sage: R = "(25,27,32,30) (26,29,31,28) ( 3,38,43,19) ( 5,36,45,21) ( 8,33,48,24) "

→## R = right

sage: U = "(1,3,8,6) (2,5,7,4) (9,33,25,17) (10,34,26,18) (11,35,27,19) "

→## U = top

sage: L = "(9,11,16,14) (10,13,15,12) (1,17,41,40) (4,20,44,37) (6,22,46,35) "

→## L = left

sage: F = "(17,19,24,22) (18,21,23,20) (6,25,43,16) (7,28,42,13) (8,30,41,11) "

→## F = front

sage: B = "(33,35,40,38) (34,37,39,36) (3,9,46,32) (2,12,47,29) (1,14,48,27) "

→## B = back or rear

sage: D = "(41,43,48,46) (42,45,47,44) (14,22,30,38) (15,23,31,39) (16,24,32,40) "

→## D = down or bottom

sage: G = PermutationGroup([R,L,U,F,B,D])
```

```
sage: len(G.gens_small())
2
```

The output may be unpredictable, due to the use of randomized algorithms in GAP. Note that both the following answers are equally valid.

```
sage: G = PermutationGroup([[('a','b')], [('b', 'c')], [('a', 'c')]])
sage: G.gens_small() # random
[('b','c'), ('a','c','b')] ## (on 64-bit Linux)
[('a','b'), ('a','c','b')] ## (on Solaris)
sage: len(G.gens_small()) == 2
True
```

group_id()

Return the ID code of this group, which is a list of two integers. Requires "optional" database_gap package.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: G.group_id()  # optional - database_gap
[12, 4]
```

group_primitive_id()

Return the index of this group in the GAP database of primitive groups.

Requires "optional" database_gap package.

OUTPUT:

A positive integer, following GAP's conventions. A ValueError is raised if the group is not primitive.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3,4,5)], [(1,5),(2,4)]])
sage: G.group_primitive_id() # optional - database_gap
2
sage: G.degree()
```

From the information of the degree and the identification number, you can recover the isomorphism class of your group in the GAP database:

```
sage: H = PrimitiveGroup(5,2) # optional - database_gap
sage: G == H # optional - database_gap
False
sage: G.is_isomorphic(H) # optional - database_gap
True
```

has_element (item)

Returns boolean value of item in self-however ignores parentage.

EXAMPLES:

```
sage: G = CyclicPermutationGroup(4)
sage: gens = G.gens()
sage: H = DihedralGroup(4)
sage: g = G([(1,2,3,4)]); g
(1,2,3,4)
```

```
sage: G.has_element(g)
True
sage: h = H([(1,2),(3,4)]); h
(1,2)(3,4)
sage: G.has_element(h)
False
```

has_regular_subgroup (return_group=False)

Return whether the group contains a regular subgroup.

INPUT:

• return_group (boolean) – If return_group = True, a regular subgroup is returned if there is one, and None if there isn't. When return_group = False (default), only a boolean indicating whether such a group exists is returned instead.

EXAMPLES:

The symmetric group on 4 elements has a regular subgroup:

But the automorphism group of Petersen's graph does not:

```
sage: G = graphs.PetersenGraph().automorphism_group()
sage: G.has_regular_subgroup()
False
```

holomorph()

The holomorph of a group as a permutation group.

The holomorph of a group G is the semidirect product $G \rtimes_{id} Aut(G)$, where id is the identity function on Aut(G), the automorphism group of G.

See Wikipedia article Holomorph (mathematics)

OUTPUT:

Returns the holomorph of a given group as permutation group via a wrapping of GAP's semidirect product function.

EXAMPLES:

Thomas and Wood's 'Group Tables' (Shiva Publishing, 1980) tells us that the holomorph of C_5 is the unique group of order 20 with a trivial center.

```
sage: C5 = CyclicPermutationGroup(5)
sage: A = C5.holomorph()
sage: A.order()
20
sage: A.is_abelian()
False
sage: A.center()
Subgroup of (Permutation Group with generators
```

```
[(5,6,7,8,9), (1,2,4,3)(6,7,9,8)]) generated by [()]

sage: A

Permutation Group with generators [(5,6,7,8,9), (1,2,4,3)(6,7,9,8)]
```

Noting that the automorphism group of D_4 is itself D_4 , it can easily be shown that the holomorph is indeed an internal semidirect product of these two groups.

```
sage: D4 = DihedralGroup(4)
sage: H = D4.holomorph()
sage: H.gens()
[(3,8)(4,7), (2,3,5,8), (2,5)(3,8), (1,4,6,7)(2,3,5,8), (1,8)(2,7)(3,6)(4,5)]
sage: G = H.subgroup([H.gens()[0],H.gens()[1],H.gens()[2]])
sage: N = H.subgroup([H.gens()[3], H.gens()[4]])
sage: N.is_normal(H)
True
sage: G.is_isomorphic(D4)
True
sage: N.is_isomorphic(D4)
True
sage: G.intersection(N)
Permutation Group with generators [()]
sage: L = [H(x) *H(y) \text{ for } x \text{ in } G \text{ for } y \text{ in } N]; L.sort()
sage: L1 = H.list(); L1.sort()
sage: L == L1
True
```

Author:

• Kevin Halasz (2012-08-14)

homology(n, p=0)

Computes the group homology $H_n(G, F)$, where $F = \mathbf{Z}$ if p = 0 and $F = \mathbf{Z}/p\mathbf{Z}$ if p > 0 is a prime. Wraps HAP's GroupHomology function, written by Graham Ellis.

REQUIRES: GAP package HAP (in gap_packages-*.spkg).

AUTHORS:

· David Joyner and Graham Ellis

The example below computes $H_7(S_5, \mathbf{Z})$, $H_7(S_5, \mathbf{Z}/2\mathbf{Z})$, $H_7(S_5, \mathbf{Z}/3\mathbf{Z})$, and $H_7(S_5, \mathbf{Z}/5\mathbf{Z})$, respectively. To compute the 2-part of $H_7(S_5, \mathbf{Z})$, use the homology_part function.

EXAMPLES:

```
sage: G = SymmetricGroup(5)
sage: G.homology(7)  # optional - gap_packages
Multiplicative Abelian group isomorphic to C2 x C2 x C4 x C3 x C5
sage: G.homology(7,2)  # optional - gap_packages
Multiplicative Abelian group isomorphic to C2 x C2 x C2 x C2 x C2
sage: G.homology(7,3)  # optional - gap_packages
Multiplicative Abelian group isomorphic to C3
sage: G.homology(7,5)  # optional - gap_packages
Multiplicative Abelian group isomorphic to C5
```

REFERENCES:

• G. Ellis, "Computing group resolutions", J. Symbolic Computation. Vol.38, (2004)1077-1118 (Available at http://hamilton.nuigalway.ie/.

 D. Joyner, "A primer on computational group homology and cohomology", http://front.math.ucdavis. edu/0706.0549

$homology_part(n, p=0)$

Computes the p-part of the group homology $H_n(G, F)$, where $F = \mathbf{Z}$ if p = 0 and $F = \mathbf{Z}/p\mathbf{Z}$ if p > 0 is a prime. Wraps HAP's Homology function, written by Graham Ellis, applied to the p-Sylow subgroup of G.

REQUIRES: GAP package HAP (in gap_packages-*.spkg).

EXAMPLES:

AUTHORS:

• David Joyner and Graham Ellis

id()

(Same as self.group_id().) Return the ID code of this group, which is a list of two integers. Requires "optional" database_gap package.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: G.group_id()  # optional - database_gap
[12, 4]
```

identity()

Return the identity element of this group.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3),(4,5)]])
sage: e = G.identity()
sage: e
()
sage: g = G.gen(0)
sage: g*e
(1,2,3)(4,5)
sage: e*g
(1,2,3)(4,5)
sage: S = SymmetricGroup(['a','b','c'])
sage: S.identity()
()
```

intersection (other)

Returns the permutation group that is the intersection of self and other.

INPUT:

• other - a permutation group.

OUTPUT:

A permutation group that is the set-theoretic intersection of self with other. The groups are viewed as subgroups of a symmetric group big enough to contain both group's symbol sets. So there is no strict notion of the two groups being subgroups of a common parent.

EXAMPLES:

```
sage: H = DihedralGroup(4)

sage: K = CyclicPermutationGroup(4)
sage: H.intersection(K)
Permutation Group with generators [(1,2,3,4)]

sage: L = DihedralGroup(5)
sage: H.intersection(L)
Permutation Group with generators [(1,4)(2,3)]

sage: M = PermutationGroup(["()"])
sage: H.intersection(M)
Permutation Group with generators [()]
```

Some basic properties.

```
sage: H = DihedralGroup(4)
sage: L = DihedralGroup(5)
sage: H.intersection(L) == L.intersection(H)
True
sage: H.intersection(H) == H
True
```

The group other is verified as such.

```
sage: H = DihedralGroup(4)
sage: H.intersection('junk')
Traceback (most recent call last):
...
TypeError: junk is not a permutation group
```

irreducible_characters()

Returns a list of the irreducible characters of self.

EXAMPLES:

```
sage: irr = SymmetricGroup(3).irreducible_characters()
sage: [x.values() for x in irr]
[[1, -1, 1], [2, 0, -1], [1, 1, 1]]
```

is_abelian()

Return True if this group is abelian.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_abelian()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_abelian()
True
```

is_commutative()

Return True if this group is commutative.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_commutative()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_commutative()
True
```

is cyclic()

Return True if this group is cyclic.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_cyclic()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_cyclic()
True
```

is_elementary_abelian()

Return True if this group is elementary abelian. An elementary abelian group is a finite abelian group, where every nontrivial element has order p, where p is a prime.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_elementary_abelian()
False
sage: G = PermutationGroup(['(1,2,3)','(4,5,6)'])
sage: G.is_elementary_abelian()
True
```

is_isomorphic(right)

Return True if the groups are isomorphic.

INPUT:

- self this group
- right a permutation group

OUTPUT:

• boolean; True if self and right are isomorphic groups; False otherwise.

EXAMPLES:

```
sage: v = ['(1,2,3)(4,5)', '(1,2,3,4,5)']
sage: G = PermutationGroup(v)
sage: H = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_isomorphic(H)
False
sage: G.is_isomorphic(G)
True
sage: G.is_isomorphic(PermutationGroup(list(reversed(v))))
True
```

is_monomial()

Returns True if the group is monomial. A finite group is monomial if every irreducible complex character is induced from a linear character of a subgroup.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_monomial()
True
```

is_nilpotent()

Return True if this group is nilpotent.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_nilpotent()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_nilpotent()
True
```

is_normal(other)

Return True if this group is a normal subgroup of other.

EXAMPLES:

```
sage: AlternatingGroup(4).is_normal(SymmetricGroup(4))
True
sage: H = PermutationGroup(['(1,2,3)(4,5)'])
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: H.is_normal(G)
False
```

is_perfect()

Return True if this group is perfect. A group is perfect if it equals its derived subgroup.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_perfect()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_perfect()
False
```

is_pgroup()

Returns True if this group is a p-group. A finite group is a p-group if its order is of the form p^n for a prime integer p and a nonnegative integer n.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3,4,5)'])
sage: G.is_pgroup()
True
```

is_polycyclic()

Return True if this group is polycyclic. A group is polycyclic if it has a subnormal series with cyclic factors. (For finite groups, this is the same as if the group is solvable - see is_solvable.)

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: G.is_polycyclic()
False
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_polycyclic()
True
```

is primitive(domain=None)

Returns True if self acts primitively on domain. A group G acts primitively on a set S if

- 1. G acts transitively on S and
- 2. the action induces no non-trivial block system on S.

INPUT:

• domain (optional)

See also:

• blocks_all()

EXAMPLES:

By default, test for primitivity of self on its domain:

```
sage: G = PermutationGroup([[(1,2,3,4)],[(1,2)]])
sage: G.is_primitive()
True
sage: G = PermutationGroup([[(1,2,3,4)],[(2,4)]])
sage: G.is_primitive()
False
```

You can specify a domain on which to test primitivity:

```
sage: G = PermutationGroup([[(1,2,3,4)],[(2,4)]])
sage: G.is_primitive([1..4])
False
sage: G.is_primitive([1,2,3])
True
sage: G = PermutationGroup([[(3,4,5,6)],[(3,4)]]) #S_4 on [3..6]
sage: G.is_primitive(G.non_fixed_points())
True
```

is_regular (domain=None)

Returns True if self acts regularly on domain. A group G acts regularly on a set S if

- 1. G acts transitively on S and
- 2. G acts semi-regularly on S.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3,4)]])
sage: G.is_regular()
True
sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]])
sage: G.is_regular()
False
```

You can pass in a domain on which to test regularity:

```
sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]])
sage: G.is_regular([1..4])
True
sage: G.is_regular(G.non_fixed_points())
False
```

is_semi_regular(domain=None)

Returns True if self acts semi-regularly on domain. A group G acts semi-regularly on a set S if the point stabilizers of S in G are trivial.

domain is optional and may take several forms. See examples.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3,4)]])
sage: G.is_semi_regular()
True
sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]])
sage: G.is_semi_regular()
False
```

You can pass in a domain to test semi-regularity:

```
sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]])
sage: G.is_semi_regular([1..4])
True
sage: G.is_semi_regular(G.non_fixed_points())
False
```

is_simple()

Returns True if the group is simple. A group is simple if it has no proper normal subgroups.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_simple()
False
```

is_solvable()

Returns True if the group is solvable.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_solvable()
True
```

is_subgroup(other)

Returns True if self is a subgroup of other.

EXAMPLES:

```
sage: G = AlternatingGroup(5)
sage: H = SymmetricGroup(5)
sage: G.is_subgroup(H)
True
```

is_supersolvable()

Returns True if the group is supersolvable. A finite group is supersolvable if it has a normal series with

cyclic factors.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.is_supersolvable()
True
```

is transitive(domain=None)

Returns True if self acts transitively on domain. A group G acts transitively on set S if for all $x, y \in S$ there is some $g \in G$ such that $x^g = y$.

EXAMPLES:

```
sage: G = SymmetricGroup(5)
sage: G.is_transitive()
True
sage: G = PermutationGroup(['(1,2)(3,4)(5,6)'])
sage: G.is_transitive()
False
```

```
sage: G = PermutationGroup([[(1,2,3,4,5)],[(1,2)]]) #S_5 on [1..5]
sage: G.is_transitive([1,4,5])
True
sage: G.is_transitive([2..6])
False
sage: G.is_transitive(G.non_fixed_points())
True
sage: H = PermutationGroup([[(1,2,3)],[(4,5,6)]])
sage: H.is_transitive(H.non_fixed_points())
False
```

Note that this differs from the definition in GAP, where IsTransitive returns whether the group is transitive on the set of points moved by the group.

```
sage: G = PermutationGroup([(2,3)])
sage: G.is_transitive()
False
sage: gap(G).IsTransitive()
true
```

isomorphism to (right)

Return an isomorphism from self to right if the groups are isomorphic, otherwise None.

INPUT:

- self this group
- right a permutation group

OUTPUT:

• None or a morphism of permutation groups.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: H = PermutationGroup(['(1,2,3)(4,5)'])
sage: G.isomorphism_to(H) is None
True
```

```
sage: G = PermutationGroup([(1,2,3), (2,3)])
sage: H = PermutationGroup([(1,2,4), (1,4)])
sage: G.isomorphism_to(H) # not tested, see below
Permutation group morphism:
   From: Permutation Group with generators [(2,3), (1,2,3)]
   To: Permutation Group with generators [(1,2,4), (1,4)]
   Defn: [(2,3), (1,2,3)] -> [(2,4), (1,2,4)]
```

isomorphism_type_info_simple_group()

If the group is simple, then this returns the name of the group.

EXAMPLES:

```
sage: G = CyclicPermutationGroup(5)
sage: G.isomorphism_type_info_simple_group()
rec(
  name := "Z(5)",
  parameter := 5,
  series := "Z")
```

iteration (algorithm='SGS')

Return an iterator over the elements of this group.

INPUT:

- algorithm (default: "SGS") either
 - "SGS" using strong generating system
 - "BFS" a breadth first search on the Cayley graph with respect to self.gens()
 - "DFS" a depth first search on the Cayley graph with respect to self.gens()

Note: In general, the algorithm "SGS" is faster. Yet, for small groups, "BFS" and "DFS" might be faster.

Note: The order in which the iterator visits the elements differs in the algorithms.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2)], [(2,3)]])

sage: list(G.iteration())
[(), (1,2,3), (1,3,2), (2,3), (1,2), (1,3)]

sage: list(G.iteration(algorithm="BFS"))
[(), (2,3), (1,2), (1,3,2), (1,2,3), (1,3)]

sage: list(G.iteration(algorithm="DFS"))
[(), (1,2), (1,3,2), (1,3), (1,2,3), (2,3)]
```

largest_moved_point()

Return the largest point moved by a permutation in this group.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: G.largest_moved_point()
4
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.largest_moved_point()
10
```

```
sage: G = PermutationGroup([[('a','b','c'),('d','e')]])
sage: G.largest_moved_point()
'e'
```

```
Warning: The name of this function is not good; this function should be deprecated in term of degree:

sage: P = PermutationGroup([[1,2,3,4]])
sage: P.largest_moved_point()
4
sage: P.cardinality()
1
```

list()

Return list of all elements of this group.

EXAMPLES:

lower_central_series()

Return the lower central series of this group as a list of permutation groups.

EXAMPLES:

These computations use pseudo-random numbers, so we set the seed for reproducible testing.

```
sage: set_random_seed(0)
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: G.lower_central_series() # random output
[Permutation Group with generators [(1,2,3)(4,5), (3,4)], Permutation Group_with generators [(1,5)(3,4), (1,5)(2,3), (1,3)(2,4)]]
```

minimal_generating_set()

Return a minimal generating set

EXAMPLES:

```
sage: g = graphs.CompleteGraph(4)
sage: g.relabel(['a','b','c','d'])
```

```
sage: mgs = g.automorphism_group().minimal_generating_set(); len(mgs)
2
sage: mgs # random
[('b','d','c'), ('a','c','b','d')]
```

molien_series()

Return the Molien series of a permutation group. The function

$$M(x) = (1/|G|) \sum_{g \in G} \det(1 - x * g)^{-1}$$

is sometimes called the "Molien series" of G. GAP's MolienSeries is associated to a character of a group G. How are these related? A group G, given as a permutation group on n points, has a "natural" representation of dimension n, given by permutation matrices. The Molien series of G is the one associated to that permutation representation of G using the above formula. Character values then count fixed points of the corresponding permutations.

EXAMPLES:

```
sage: G = SymmetricGroup(5)
sage: G.molien_series()
-1/(x^15 - x^14 - x^13 + x^10 + x^9 + x^8 - x^7 - x^6 - x^5 + x^2 + x - 1)
sage: G = SymmetricGroup(3)
sage: G.molien_series()
-1/(x^6 - x^5 - x^4 + x^2 + x - 1)
```

Some further tests (after trac ticket #15817):

```
sage: G = PermutationGroup([[(1,2,3,4)]])
sage: S4ms = SymmetricGroup(4).molien_series()
sage: G.molien_series() / S4ms
x^5 + 2*x^4 + x^3 + x^2 + 1
```

This works for not-transitive groups:

```
sage: G = PermutationGroup([[(1,2)],[(3,4)]])
sage: G.molien_series() / S4ms
x^4 + x^3 + 2*x^2 + x + 1
```

This works for groups with fixed points:

```
sage: G = PermutationGroup([[(2,)]])
sage: G.molien_series()
1/(x^2 - 2*x + 1)
```

ngens()

Return the number of generators of self.

EXAMPLES:

```
sage: A4 = PermutationGroup([[(1,2,3)], [(2,3,4)]]); A4
Permutation Group with generators [(2,3,4), (1,2,3)]
sage: A4.ngens()
2
```

non_fixed_points()

Return the list of points not fixed by self, i.e., the subset of self.domain() moved by some element of self.

EXAMPLES:

```
sage: G = PermutationGroup([[(3,4,5)],[(7,10)]])
sage: G.non_fixed_points()
[3, 4, 5, 7, 10]
sage: G = PermutationGroup([[(2,3,6)],[(9,)]]) # note: 9 is fixed
sage: G.non_fixed_points()
[2, 3, 6]
```

normal_subgroups()

Return the normal subgroups of this group as a (sorted in increasing order) list of permutation groups.

The normal subgroups of $H = PSL(2,7) \times PSL(2,7)$ are 1, two copies of PSL(2,7) and H itself, as the following example shows.

EXAMPLES:

```
sage: G = PSL(2,7)
sage: D = G.direct_product(G)
sage: H = D[0]
sage: NH = H.normal_subgroups()
sage: len(NH)
4
sage: NH[1].is_isomorphic(G)
True
sage: NH[2].is_isomorphic(G)
```

normalizer(g)

Returns the normalizer of q in self.

EXAMPLES:

normalizes (other)

Returns True if the group other is normalized by self. Wraps GAP's IsNormal function.

A group G normalizes a group U if and only if for every $g \in G$ and $u \in U$ the element u^g is a member of U. Note that U need not be a subgroup of G.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: H = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: H.normalizes(G)
False
```

```
sage: G = SymmetricGroup(3)
sage: H = PermutationGroup( [ (4,5,6) ] )
sage: G.normalizes(H)
True
sage: H.normalizes(G)
True
```

In the last example, G and H are disjoint, so each normalizes the other.

orbit (point, action='OnPoints')

Return the orbit of a point under a group action.

INPUT:

- point can be a point or any of the list above, depending on the action to be considered.
- action string. if point is an element from the domain, a tuple of elements of the domain, a tuple of tuples [...], this variable describes how the group is acting.

The actions currently available through this method are "OnPoints", "OnTuples", "OnSets", "OnSets", "OnSetsSets", "OnSetsDisjointSets", "OnSetsTuples", "OnTuplesSets", "OnTuplesTuples". They are taken from GAP's list of group actions, see gap.help('Group Actions').

It is set to "OnPoints" by default. See below for examples.

OUTPUT:

The orbit of point as a tuple. Each entry is an image under the action of the permutation group, if necessary converted to the corresponding container. That is, if action='OnSets' then each entry will be a set even if point was given by a list/tuple/iterable.

EXAMPLES:

```
sage: G = PermutationGroup([ [(3,4)], [(1,3)] ])
sage: G.orbit(3)
(3, 4, 1)
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.orbit(3)
(3, 4, 10, 1, 2)
sage: G = PermutationGroup([ [('c','d')], [('a','c')] ])
sage: G.orbit('a')
('a', 'c', 'd')
```

Action of S_3 on sets:

```
sage: S3 = groups.permutation.Symmetric(3)
sage: S3.orbit((1,2), action = "OnSets")
({1, 2}, {2, 3}, {1, 3})
```

On tuples:

```
sage: S3.orbit((1,2), action = "OnTuples")
((1, 2), (2, 3), (2, 1), (3, 1), (1, 3), (3, 2))
```

Action of S_4 on sets of disjoint sets:

```
sage: S4 = groups.permutation.Symmetric(4)
sage: S4.orbit(((1,2),(3,4)), action = "OnSetsDisjointSets")
({{1, 2}, {3, 4}}, {{2, 3}, {1, 4}}, {{1, 3}, {2, 4}})
```

Action of S_4 (on a nonstandard domain) on tuples of sets:

```
sage: S4 = PermutationGroup([ [('c','d')],  [('a','c')],  [('a','b')] ])
sage: S4.orbit((('a','c'), ('b','d')), "OnTuplesSets")
(({'a', 'c'}, {'b', 'd'}),
  ({'a', 'd'}, {'c', 'b'}),
  ({'c', 'b'}, {'a', 'd'}),
  ({'b', 'd'}, {'a', 'c'}),
  ({'c', 'd'}, {'a', 'b'}),
  ({'a', 'b'}, {'c', 'd'}))
```

Action of S_4 (on a very nonstandard domain) on tuples of sets:

orbits()

Returns the orbits of the elements of the domain under the default group action.

EXAMPLES:

```
sage: G = PermutationGroup([ [(3,4)], [(1,3)] ])
sage: G.orbits()
[[1, 3, 4], [2]]
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.orbits()
[[1, 2, 3, 4, 10], [5], [6], [7], [8], [9]]

sage: G = PermutationGroup([ [('c','d')], [('a','c')], [('b',)]])
sage: G.orbits()
[['a', 'c', 'd'], ['b']]
```

The answer is cached:

```
sage: G.orbits() is G.orbits()
True
```

AUTHORS:

· Nathan Dunfield

order()

Return the number of elements of this group. See also: G.degree()

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: G.order()
12
sage: G = PermutationGroup([()])
sage: G.order()
1
```

```
sage: G = PermutationGroup([])
sage: G.order()
1
```

cardinality is just an alias:

```
sage: PermutationGroup([(1,2,3)]).cardinality()
3
```

poincare_series (p=2, n=10)

Return the Poincaré series of $G \mod p$ ($p \ge 2$ must be a prime), for n large.

In other words, if you input a finite group G, a prime p, and a positive integer n, it returns a quotient of polynomials f(x) = P(x)/Q(x) whose coefficient of x^k equals the rank of the vector space $H_k(G, \mathbf{Z}/p\mathbf{Z})$, for all k in the range $1 \le k \le n$.

REQUIRES: GAP package HAP (in gap_packages-*.spkg).

EXAMPLES:

AUTHORS:

• David Joyner and Graham Ellis

quotient(N)

Returns the quotient of this permutation group by the normal subgroup N, as a permutation group.

Wraps the GAP operator "/".

EXAMPLES:

```
sage: G = PermutationGroup([(1,2,3), (2,3)])
sage: N = PermutationGroup([(1,2,3)])
sage: G.quotient(N)
Permutation Group with generators [(1,2)]
sage: G.quotient(G)
Permutation Group with generators [()]
```

random_element()

Return a random element of this group.

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]])
sage: a = G.random_element()
sage: a in G
True
sage: a.parent() is G
True
```

```
sage: a^6
()
```

representative_action (x, y)

Return an element of self that maps x to y if it exists.

This method wraps the gap function RepresentativeAction, which can also return elements that map a given set of points on another set of points.

INPUT:

• x, y – two elements of the domain.

EXAMPLES:

```
sage: G = groups.permutation.Cyclic(14)
sage: g = G.representative_action(1,10)
sage: all(g(x) == 1+((x+9-1)%14) for x in G.domain())
True
```

semidirect product(N, mapping, check=True)

The semidirect product of self with N.

INPUT:

- N A group which is acted on by self and naturally embeds as a normal subgroup of the returned semidirect product.
- mapping A pair of lists that together define a homomorphism, ϕ : self \rightarrow Aut(N), by giving, in the second list, the images of the generators of self in the order given in the first list.
- check A boolean that, if set to False, will skip the initial tests which are made on mapping. This may be beneficial for large N, since in such cases the injectivity test can be expensive. Set to True by default.

OUTPUT:

The semidirect product of self and N defined by the action of self on N given in mapping (note that a homomorphism from A to the automorphism group of B is equivalent to an action of A on the B's underlying set). The semidirect product of two groups, H and N, is a construct similar to the direct product in so far as the elements are the Cartesian product of the elements of H and the elements of N. The operation, however, is built upon an action of H on N, and is defined as such:

$$(h_1, n_1)(h_2, n_2) = (h_1 h_2, n_1^{h_2} n_2)$$

This function is a wrapper for GAP's SemidirectProduct command. The permutation group returned is built upon a permutation representation of the semidirect product of self and N on a set of size $\mid N \mid$. The generators of N are given as their right regular representations, while the generators of self are defined by the underlying action of self on N. It should be noted that the defining action is not always faithful, and in this case the inputted representations of the generators of self are placed on additional letters and adjoined to the output's generators of self.

EXAMPLES:

Perhaps the most common example of a semidirect product comes from the family of dihedral groups. Each dihedral group is the semidirect product of C_2 with C_n , where, by convention, $3 \le n$. In this case, the nontrivial element of C_2 acts on C_n so as to send each element to its inverse.

```
sage: C2 = CyclicPermutationGroup(2)
sage: C8 = CyclicPermutationGroup(8)
sage: alpha = PermutationGroupMorphism_im_gens(C8,C8,[(1,8,7,6,5,4,3,2)])
sage: S = C2.semidirect_product(C8,[[(1,2)],[alpha]])
sage: S == DihedralGroup(8)
False
sage: S.is_isomorphic(DihedralGroup(8))
True
sage: S.gens()
[(3,4,5,6,7,8,9,10), (1,2)(4,10)(5,9)(6,8)]
```

A more complicated example can be drawn from [TW1980]. It is there given that a semidirect product of D_4 and C_3 is isomorphic to one of C_2 and the dicyclic group of order 12. This nonabelian group of order 24 has very similar structure to the dicyclic and dihedral groups of order 24, the three being the only groups of order 24 with a two-element center and 9 conjugacy classes.

```
sage: D4 = DihedralGroup(4)
sage: C3 = CyclicPermutationGroup(3)
sage: alpha1 = PermutationGroupMorphism_im_gens(C3,C3,[(1,3,2)])
sage: alpha2 = PermutationGroupMorphism_im_gens(C3,C3,[(1,2,3)])
sage: S1 = D4.semidirect_product(C3,[[(1,2,3,4),(1,3)],[alpha1,alpha2]])
sage: C2 = CyclicPermutationGroup(2)
sage: Q = DiCyclicGroup(3)
sage: a = Q.gens()[0]; b=Q.gens()[1].inverse()
sage: alpha = PermutationGroupMorphism_im_gens(Q,Q,[a,b])
sage: S2 = C2.semidirect_product(Q,[[(1,2)],[alpha]])
sage: S1.is_isomorphic(S2)
True
sage: S1.is_isomorphic(DihedralGroup(12))
False
sage: S1.is_isomorphic(DiCyclicGroup(6))
False
sage: S1.center()
Subgroup of (Permutation Group with generators
[(5,6,7), (1,2,3,4)(6,7), (1,3)]) generated by [(1,3)(2,4)]
sage: len(S1.conjugacy_classes_representatives())
```

If your normal subgroup is large, and you are confident that your inputs will successfully create a semidirect product, then it is beneficial, for the sake of time efficiency, to set the check parameter to False.

```
sage: C2 = CyclicPermutationGroup(2)
sage: C2000 = CyclicPermutationGroup(500)
sage: alpha = PermutationGroupMorphism(C2000,C2000,[C2000.gen().inverse()])
sage: S = C2.semidirect_product(C2000,[[(1,2)],[alpha]],check=False)
```

AUTHOR:

• Kevin Halasz (2012-8-12)

smallest_moved_point()

Return the smallest point moved by a permutation in this group.

EXAMPLES:

```
sage: G = PermutationGroup([[(3,4)], [(2,3,4)]])
sage: G.smallest_moved_point()
2
```

```
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.smallest_moved_point()
1
```

Note that this function uses the ordering from the domain:

```
sage: S = SymmetricGroup(['a','b','c'])
sage: S.smallest_moved_point()
'a'
```

socle()

Returns the socle of self. The socle of a group G is the subgroup generated by all minimal normal subgroups.

EXAMPLES:

solvable_radical()

Returns the solvable radical of self. The solvable radical (or just radical) of a group G is the largest solvable normal subgroup of G.

EXAMPLES:

stabilizer (point, action='OnPoints')

Return the subgroup of self which stabilize the given position. self and its stabilizers must have same degree.

INPUT:

- point a point of the domain (), or a set of points depending on the value of action.
- action (string; default "OnPoints") should the group be considered to act on points (action="OnPoints") or on sets of points (action="OnSets")? In the latter case, the first argument must be a subset of domain().

EXAMPLES:

```
sage: G.stabilizer(3)
Subgroup of (Permutation Group with generators [(3,4), (1,3)]) generated by \rightarrow [(1,4)]
```

The stabilizer of a set of points:

```
sage: s10 = groups.permutation.Symmetric(10)
sage: s10.stabilizer([1..3], "OnSets").cardinality()
30240
sage: factorial(3)*factorial(7)
30240
```

```
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.stabilizer(10)
Subgroup of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4,10)])
\rightarrowgenerated by [(2,3,4), (1,2)(3,4)]
sage: G.stabilizer(1)
Subgroup of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4,10)])
\rightarrowgenerated by [(2,3)(4,10), (2,10,4)]
sage: G = PermutationGroup([[(2,3,4)],[(6,7)]])
sage: G.stabilizer(1)
Subgroup of (Permutation Group with generators [(6,7), (2,3,4)]) generated by
\rightarrow [ (6,7), (2,3,4)]
sage: G.stabilizer(2)
Subgroup of (Permutation Group with generators [(6,7), (2,3,4)]) generated by...
\hookrightarrow [(6,7)]
sage: G.stabilizer(3)
Subgroup of (Permutation Group with generators [(6,7), (2,3,4)]) generated by
\rightarrow [ (6,7)]
sage: G.stabilizer(4)
Subgroup of (Permutation Group with generators [(6,7), (2,3,4)]) generated by
\hookrightarrow [ (6,7)]
sage: G.stabilizer(5)
Subgroup of (Permutation Group with generators [(6,7), (2,3,4)]) generated by...
\hookrightarrow [ (6,7), (2,3,4)]
sage: G.stabilizer(6)
Subgroup of (Permutation Group with generators [(6,7), (2,3,4)]) generated by
\hookrightarrow [(2,3,4)]
sage: G.stabilizer(7)
Subgroup of (Permutation Group with generators [(6,7), (2,3,4)]) generated by
\hookrightarrow [(2,3,4)]
sage: G.stabilizer(8)
Traceback (most recent call last):
ValueError: 8 does not belong to the domain
```

```
sage: G = PermutationGroup([ [('c','d')], [('a','c')] ], domain='abcd')
sage: G.stabilizer('a')
Subgroup of (Permutation Group with generators [('c','d'), ('a','c')])

generated by [('c','d')]
sage: G.stabilizer('b')
Subgroup of (Permutation Group with generators [('c','d'), ('a','c')])

generated by [('c','d'), ('a','c')]
sage: G.stabilizer('c')
Subgroup of (Permutation Group with generators [('c','d'), ('a','c')])

generated by [('a','d')]
```

```
sage: G.stabilizer('d')
Subgroup of (Permutation Group with generators [('c','d'), ('a','c')])

→generated by [('a','c')]
```

strong_generating_system(base_of_group=None, implementation='sage')

Return a Strong Generating System of self according the given base for the right action of self on itself.

base_of_group is a list of the positions on which self acts, in any order. The algorithm returns a list of transversals and each transversal is a list of permutations. By default, base_of_group is $[1, 2, 3, \ldots, d]$ where d is the degree of the group.

For base_of_group = $[pos_1, pos_2, \dots, pos_d]$ let G_i be the subgroup of G = self which stabilizes $pos_1, pos_2, \dots, pos_i$, so

$$G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n = \{e\}$$

Then the algorithm returns $[G_i.transversals(pos_{i+1})]_{1 \le i \le n}$

INPUT:

- base_of_group (optional) (default: [1, 2, 3, ..., d]) a list containing the integers 1, 2, ..., d in any order, where d is the degree of self
- implementation (default: "sage") either
 - "sage" use the direct implementation in Sage
 - "gap" if used, the base_of_group must be None and the computation is directly performed in GAP

OUTPUT:

A list of lists of permutations from the group, which form a strong generating system.

Warning: The outputs for implementations "sage" and "gap" differ: First, the output is reversed, and second, it might be that "sage" does not contain the trivial subgroup while "gap" does.

Also, both algorithms might yield different results based on the order in which base_of_group is given in the first situation.

EXAMPLES:

```
sage: G = PermutationGroup([[(7,8)],[(3,4)],[(4,5)]])
sage: G.strong_generating_system()
[[()], [()], [(), (3,4,5), (3,5)], [(), (4,5)], [()], [()], [()], [(), (7,8)], [()]]
sage: G = PermutationGroup([[(1,2,3,4)],[(1,2)]])
sage: G.strong_generating_system()
[[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)],
[(), (2,3,4), (2,4,3)], [(), (3,4)], [()]]
sage: G = PermutationGroup([[(1,2,3)],[(4,5,7)],[(1,4,6)]])
sage: G.strong_generating_system()
[[(), (1,2,3), (1,4,6), (1,3,2), (1,5,7,4,6), (1,6,4), (1,7,5,4,6)],
[(), (2,6,3), (2,5,7,6,3), (2,3,6), (2,7,5,6,3), (2,4,7,6,3)],
[(), (3,6,7), (3,5,6), (3,7,6), (3,4,7,5,6)],
[(), (4,5)(6,7), (4,7)(5,6), (4,6)(5,7)],
[(), (5,7,6), (5,6,7)], [()], [()]]
```

```
sage: G = PermutationGroup([[(1,2,3)],[(2,3,4)],[(3,4,5)]])
sage: G.strong_generating_system([5,4,3,2,1])
[[(), (1,5,3,4,2), (1,5,4,3,2), (1,5)(2,3), (1,5,2)],
[(), (1,3)(2,4), (1,2)(3,4), (1,4)(2,3)],
[(), (1,3,2), (1,2,3)], [()], [()]]
sage: G = PermutationGroup([[(3,4)]])
sage: G.strong_generating_system()
[[()], [()], [(), (3,4)], [()]]
sage: G.strong_generating_system(base_of_group=[3,1,2,4])
[[(), (3,4)], [()], [()], [()]]
sage: G = TransitiveGroup(12,17)
                                         # optional - database_gap
sage: G.strong_generating_system()
                                         # optional - database_gap
[[(), (1,4,11,2)(3,6,5,8)(7,10,9,12), (1,8,3,2)(4,11,10,9)(5,12,7,6),
  (1,7) (2,8) (3,9) (4,10) (5,11) (6,12), (1,12,7,2) (3,10,9,8) (4,11,6,5),
  (1,11)(2,8)(3,5)(4,10)(6,12)(7,9), (1,10,11,8)(2,3,12,5)(4,9,6,7),
  (1,3)(2,8)(4,10)(5,7)(6,12)(9,11), (1,2,3,8)(4,9,10,11)(5,6,7,12),
  (1,6,7,8)(2,3,4,9)(5,10,11,12),(1,5,9)(3,11,7),(1,9,5)(3,7,11)],
 [(), (2,6,10)(4,12,8), (2,10,6)(4,8,12)],
 [()], [()], [()], [()], [()], [()], [()], [()], [()]]
sage: A = PermutationGroup([(1,2),(1,2,3,4,5,6,7,8,9)])
sage: X = A.strong_generating_system()
sage: Y = A.strong_generating_system(implementation="gap")
sage: [len(x) for x in X]
[9, 8, 7, 6, 5, 4, 3, 2, 1]
sage: [len(y) for y in Y]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
```

structure_description(G, latex=False)

Return a string that tries to describe the structure of G.

This methods wraps GAP's StructureDescription method.

Requires the optional database_gap package.

For full details, including the form of the returned string and the algorithm to build it, see GAP's documentation.

INPUT:

• latex – a boolean (default: False). If True return a LaTeX formatted string.

OUTPUT:

string

Warning: From GAP's documentation: The string returned by StructureDescription is **not** an isomorphism invariant: non-isomorphic groups can have the same string value, and two isomorphic groups in different representations can produce different strings.

EXAMPLES:

```
sage: G = CyclicPermutationGroup(6)
sage: G.structure_description()  # optional - database_gap
'C6'
sage: G.structure_description(latex=True)  # optional - database_gap
'C_{6}'
```

This method is mainly intended for small groups or groups with few normal subgroups. Even then there are some surprises:

```
sage: D3 = DihedralGroup(3)
sage: D3.structure_description() # optional - database_gap
'S3'
```

We use the Sage notation for the degree of dihedral groups:

```
sage: D4 = DihedralGroup(4)
sage: D4.structure_description() # optional - database_gap
'D4'
```

Works for finitely presented groups (trac ticket #17573):

```
sage: F.<x, y> = FreeGroup()
sage: G=F / [x^2*y^-1, x^3*y^2, x*y*x^-1*y^-1]
sage: G.structure_description() # optional - database_gap
'C7'
```

And matrix groups (trac ticket #17573):

```
sage: groups.matrix.GL(4,2).structure_description() # optional - database_gap
'A8'
```

Wraps the PermutationGroup_subgroup constructor. The argument gens is a list of elements of self.

EXAMPLES:

```
sage: G = PermutationGroup([(1,2,3),(3,4,5)])
sage: g = G((1,2,3))
sage: G.subgroup([g])
Subgroup of (Permutation Group with generators [(3,4,5), (1,2,3)]) generated_
\rightarrowby [(1,2,3)]
```

subgroups()

Returns a list of all the subgroups of self.

OUTPUT:

Each possible subgroup of self is contained once in the returned list. The list is in order, according to the size of the subgroups, from the trivial subgroup with one element on through up to the whole group. Conjugacy classes of subgroups are contiguous in the list.

Warning: For even relatively small groups this method can take a very long time to execute, or create vast amounts of output. Likely both. Its purpose is instructional, as it can be useful for studying small groups. The 156 subgroups of the full symmetric group on 5 symbols of order 120, S_5 , can be

computed in about a minute on commodity hardware in 2011. The 64 subgroups of the cyclic group of order $30030 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$ takes about twice as long.

For faster results, which still exhibit the structure of the possible subgroups, use conjugacy_classes_subgroups().

EXAMPLES:

```
sage: G = SymmetricGroup(3)
sage: G.subgroups()
[Subgroup of (Symmetric group of order 3! as a permutation group) generated_
Subgroup of (Symmetric group of order 3! as a permutation group) generated,
\rightarrowby [(2,3)],
Subgroup of (Symmetric group of order 3! as a permutation group) generated_
\rightarrowby [(1,2)],
Subgroup of (Symmetric group of order 3! as a permutation group) generated,
\rightarrowby [(1,3)],
Subgroup of (Symmetric group of order 3! as a permutation group) generated,
\rightarrowby [(1,2,3)],
Subgroup of (Symmetric group of order 3! as a permutation group) generated_
\rightarrowby [(2,3), (1,2,3)]]
sage: G = CyclicPermutationGroup(14)
sage: G.subgroups()
[Subgroup of (Cyclic group of order 14 as a permutation group) generated by...
\hookrightarrow [()]
Subgroup of (Cyclic group of order 14 as a permutation group) generated by
\rightarrow [(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)],
Subgroup of (Cyclic group of order 14 as a permutation group) generated by
\rightarrow [ (1,3,5,7,9,11,13) (2,4,6,8,10,12,14) ],
Subgroup of (Cyclic group of order 14 as a permutation group) generated by,
\hookrightarrow [ (1,2,3,4,5,6,7,8,9,10,11,12,13,14) ] ]
```

AUTHOR:

• Rob Beezer (2011-01-24)

sylow_subgroup (p)

Returns a Sylow p-subgroup of the finite group G, where p is a prime. This is a p-subgroup of G whose index in G is coprime to p.

Wraps the GAP function SylowSubgroup.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)', '(2,3)'])
sage: G.sylow_subgroup(2)
Subgroup of (Permutation Group with generators [(2,3), (1,2,3)]) generated by_
\hookrightarrow[(2,3)]
sage: G.sylow_subgroup(5)
Subgroup of (Permutation Group with generators [(2,3), (1,2,3)]) generated by_
\hookrightarrow[()]
```

transversals (point)

If G is a permutation group acting on the set $X = \{1, 2,, n\}$ and H is the stabilizer subgroup of <integer>, a right (respectively left) transversal is a set containing exactly one element from each right (respectively left) coset of H. This method returns a right transversal of self by the stabilizer of self

on <integer> position.

EXAMPLES:

```
sage: G = PermutationGroup([ [(3,4)], [(1,3)] ])
sage: G.transversals(1)
[(), (1,3,4), (1,4,3)]
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]])
sage: G.transversals(1)
[(), (1,2)(3,4), (1,3,2,10,4), (1,4,2,10,3), (1,10,4,3,2)]

sage: G = PermutationGroup([ [('c','d')], [('a','c')] ])
sage: G.transversals('a')
[(), ('a','c','d'), ('a','d','c')]
```

trivial character()

Returns the trivial character of self.

EXAMPLES:

```
sage: SymmetricGroup(3).trivial_character()
Character of Symmetric group of order 3! as a permutation group
```

upper_central_series()

Return the upper central series of this group as a list of permutation groups.

EXAMPLES:

These computations use pseudo-random numbers, so we set the seed for reproducible testing:

```
class sage.groups.perm_gps.permgroup.PermutationGroup_subgroup(ambient,
```

gens=None,
gap_group=None,
domain=None,
category=None,
canonicalize=True,
check=True)

Bases: sage.groups.perm_gps.permgroup.PermutationGroup_generic

Subgroup subclass of PermutationGroup_generic, so instance methods are inherited.

EXAMPLES:

```
Dihedral group of order 8 as a permutation group sage: K.gens()
[(1,2,3,4)]
```

ambient_group()

Return the ambient group related to self.

EXAMPLES:

An example involving the dihedral group on four elements, D_8 :

```
sage: G = DihedralGroup(4)
sage: H = CyclicPermutationGroup(4)
sage: gens = H.gens()
sage: S = PermutationGroup_subgroup(G, list(gens))
sage: S.ambient_group()
Dihedral group of order 8 as a permutation group
sage: S.ambient_group() == G
True
```

is normal(other=None)

Return True if this group is a normal subgroup of other. If other is not specified, then it is assumed to be the ambient group.

EXAMPLES:

sage.groups.perm_gps.permgroup.direct_product_permgroups(P)

Takes the direct product of the permutation groups listed in P.

EXAMPLES:

```
sage: G1 = AlternatingGroup([1,2,4,5])
sage: G2 = AlternatingGroup([3,4,6,7])
sage: D = direct_product_permgroups([G1,G2,G1])
sage: D.order()
1728
sage: D = direct_product_permgroups([G1])
sage: D==G1
True
sage: direct_product_permgroups([])
Symmetric group of order 0! as a permutation group
```

sage.groups.perm_gps.permgroup.from_gap_list (G, src)

Convert a string giving a list of GAP permutations into a list of elements of G.

EXAMPLES:

```
sage: from sage.groups.perm_gps.permgroup import from_gap_list
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: L = from_gap_list(G, "[(1,2,3)(4,5), (3,4)]"); L
[(1,2,3)(4,5), (3,4)]
```

```
sage: L[0].parent() is G
True
sage: L[1].parent() is G
True
```

```
sage.groups.perm_gps.permgroup.hap_decorator(f)
```

A decorator for permutation group methods that require HAP. It checks to see that HAP is installed as well as checks that the argument p is either 0 or prime.

EXAMPLES:

```
sage: from sage.groups.perm_gps.permgroup import hap_decorator
sage: def foo(self, n, p=0): print("Done")
sage: foo = hap_decorator(foo)
sage: foo(None, 3)  #optional - gap_packages
Done
sage: foo(None, 3, 0) # optional - gap_packages
Done
sage: foo(None, 3, 5) # optional - gap_packages
Done
sage: foo(None, 3, 4) #optional - gap_packages
Traceback (most recent call last):
...
ValueError: p must be 0 or prime
```

sage.groups.perm_gps.permgroup.load_hap()

Load the GAP hap package into the default GAP interpreter interface.

EXAMPLES:

```
sage: sage.groups.perm_gps.permgroup.load_hap() # optional - gap_packages
```

24.3 "Named" Permutation groups (such as the symmetric group, S_n)

You can construct the following permutation groups:

- SymmetricGroup, S_n of order n! (n can also be a list X of distinct positive integers, in which case it returns S_X)
- AlternatingGroup, A_n of order n!/2 (n can also be a list X of distinct positive integers, in which case it returns A X)
- DihedralGroup, D_n of order 2n
- GeneralDihedralGroup, Dih(G), where G is an abelian group
- CyclicPermutationGroup, C_n of order n
- DiCyclicGroup, nonabelian groups of order 4m with a unique element of order 2
- Transitive Group, n^{th} transitive group of degree d from the GAP tables of transitive groups (requires the "optional" package database_gap)
- TransitiveGroups(d), TransitiveGroups(), set of all of the above

- **PrimitiveGroup,** n^{th} **primitive group of degree** d from the GAP tables of primitive groups (requires the "optional" package database_gap)
- PrimitiveGroups(d), PrimitiveGroups(), set of all of the above
- MathieuGroup(degree), Mathieu group of degree 9, 10, 11, 12, 21, 22, 23, or 24.
- KleinFourGroup, subgroup of S_4 of order 4 which is not $C_2 \times C_2$
- QuaternionGroup, non-abelian group of order 8, $\{\pm 1, \pm I, \pm J, \pm K\}$
- SplitMetacyclicGroup, nonabelian groups of order p^m with cyclic subgroups of index p
- SemidihedralGroup, nonabelian 2-groups with cyclic subgroups of index 2
- **PGL(n,q), projective general linear group of** $n \times n$ **matrices over** the finite field GF(q)
- PSL(n,q), projective special linear group of $n \times n$ matrices over the finite field GF(q)
- PSp(2n,q), projective symplectic linear group of $2n \times 2n$ matrices over the finite field GF(q)
- PSU(n,q), projective special unitary group of $n \times n$ matrices having coefficients in the finite field $GF(q^2)$ that respect a fixed nondegenerate sesquilinear form, of determinant 1.
- PGU(n,q), projective general unitary group of $n \times n$ matrices having coefficients in the finite field $GF(q^2)$ that respect a fixed nondegenerate sesquilinear form, modulo the centre.
- SuzukiGroup(q), Suzuki group over GF(q), ${}^2B_2(2^{2k+1}) = Sz(2^{2k+1})$.

AUTHOR:

- David Joyner (2007-06): split from permgp.py (suggested by Nick Alexander)
- **REFERENCES:** Cameron, P., Permutation Groups. New York: Cambridge University Press, 1999. Wielandt, H., Finite Permutation Groups. New York: Academic Press, 1964. Dixon, J. and Mortimer, B., Permutation Groups, Springer-Verlag, Berlin/New York, 1996.
- **NOTE:** Though Suzuki groups are okay, Ree groups should *not* be wrapped as permutation groups the construction is too slow unless (for small values or the parameter) they are made using explicit generators.
- class sage.groups.perm_gps.permgroup_named.AlternatingGroup(domain=None)
 Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_symalt

The alternating group of order n!/2, as a permutation group.

INPUT:

• n - a positive integer, or list or tuple thereof

Note: This group is also available via groups.permutation.Alternating().

EXAMPLES:

```
sage: G = AlternatingGroup(6)
sage: G.order()
360
sage: G
Alternating group of order 6!/2 as a permutation group
sage: G.category()
Category of finite enumerated permutation groups
sage: TestSuite(G).run() # long time

sage: G = AlternatingGroup([1,2,4,5])
```

```
sage: G
Alternating group of order 4!/2 as a permutation group
sage: G.domain()
{1, 2, 4, 5}
sage: G.category()
Category of finite enumerated permutation groups
sage: TestSuite(G).run()
```

class sage.groups.perm_gps.permgroup_named.CyclicPermutationGroup(n)

Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_unique

A cyclic group of order n, as a permutation group.

INPUT:

n – a positive integer

Note: This group is also available via groups.permutation.Cyclic().

EXAMPLES:

```
sage: G = CyclicPermutationGroup(8)
sage: G.order()
8
sage: G
Cyclic group of order 8 as a permutation group
sage: G.category()
Category of finite enumerated permutation groups
sage: TestSuite(G).run()
sage: C = CyclicPermutationGroup(10)
sage: C.is_abelian()
True
sage: C = CyclicPermutationGroup(10)
sage: C.as_AbelianGroup()
Multiplicative Abelian group isomorphic to C2 x C5
```

as_AbelianGroup()

Returns the corresponding Abelian Group instance.

EXAMPLES:

```
sage: C = CyclicPermutationGroup(8)
sage: C.as_AbelianGroup()
Multiplicative Abelian group isomorphic to C8
```

is_abelian()

Return True if this group is abelian.

EXAMPLES:

```
sage: C = CyclicPermutationGroup(8)
sage: C.is_abelian()
True
```

is_commutative()

Return True if this group is commutative.

EXAMPLES:

```
sage: C = CyclicPermutationGroup(8)
sage: C.is_commutative()
True
```

```
{\tt class} \  \, {\tt sage.groups.perm\_gps.permgroup\_named.DiCyclicGroup} \, (n)
```

Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_unique

The dicyclic group of order 4n, for $n \geq 2$.

INPUT:

• n – a positive integer, two or greater

OUTPUT:

This is a nonabelian group similar in some respects to the dihedral group of the same order, but with far fewer elements of order 2 (it has just one). The permutation representation constructed here is based on the presentation

$$\langle a, x \mid a^{2n} = 1, x^2 = a^n, x^{-1}ax = a^{-1} \rangle$$

For n=2 this is the group of quaternions $(\pm 1, \pm I, \pm J, \pm K)$, which is the nonabelian group of order 8 that is not the dihedral group D_4 , the symmetries of a square. For n=3 this is the nonabelian group of order 12 that is not the dihedral group D_6 nor the alternating group A_4 . This group of order 12 is also the semi-direct product of C_2 by C_4 , $C_3 \times C_4$. [Con]

When the order of the group is a power of 2 it is known as a "generalized quaternion group."

IMPLEMENTATION:

The presentation above means every element can be written as $a^i x^j$ with $0 \le i < 2n$, j = 0, 1. We code a^i as the symbol i + 1 and code $a^i x$ as the symbol 2n + i + 1. The two generators are then represented using a left regular representation.

Note: This group is also available via groups.permutation.DiCyclic().

EXAMPLES:

A dicyclic group of order 384, with a large power of 2 as a divisor:

```
sage: n = 3*2^5
sage: G = DiCyclicGroup(n)
sage: G.order()
384
sage: a = G.gen(0)
sage: x = G.gen(1)
sage: a^(2*n)
()
sage: a^n==x^2
True
sage: x^-1*a*x==a^-1
True
```

A large generalized quaternion group (order is a power of 2):

```
sage: n = 2^10
sage: G=DiCyclicGroup(n)
sage: G.order()
4096
```

```
sage: a = G.gen(0)
sage: x = G.gen(1)
sage: a^(2*n)
()
sage: a^n==x^2
True
sage: x^-1*a*x==a^-1
True
```

Just like the dihedral group, the dicyclic group has an element whose order is half the order of the group. Unlike the dihedral group, the dicyclic group has only one element of order 2. Like the dihedral groups of even order, the center of the dicyclic group is a subgroup of order 2 (thus has the unique element of order 2 as its non-identity element).

```
sage: G=DiCyclicGroup(3*5*4)
sage: G.order()
240
sage: two = [g for g in G if g.order()==2]; two
[(1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)]
sage: G.center().order()
2
```

For small orders, we check this is really a group we do not have in Sage otherwise.

```
sage: G = DiCyclicGroup(2)
sage: H = DihedralGroup(4)
sage: G.is_isomorphic(H)
False
sage: G = DiCyclicGroup(3)
sage: H = DihedralGroup(6)
sage: K = AlternatingGroup(6)
sage: G.is_isomorphic(H) or G.is_isomorphic(K)
False
```

AUTHOR:

• Rob Beezer (2009-10-18)

is abelian()

Return True if this group is abelian.

EXAMPLES:

```
sage: D = DiCyclicGroup(12)
sage: D.is_abelian()
False
```

is commutative()

Return True if this group is commutative.

EXAMPLES:

```
sage: D = DiCyclicGroup(12)
sage: D.is_commutative()
False
```

```
{\tt class} \ {\tt sage.groups.perm\_gps.permgroup\_named.DihedralGroup} \ (n)
```

 $\textbf{Bases: } \textit{sage.groups.perm_gps.permgroup_named.PermutationGroup_unique}$

The Dihedral group of order 2n for any integer $n \geq 1$.

INPUT:

• n – a positive integer

OUTPUT:

The dihedral group of order 2n, as a permutation group

Note: This group is also available via groups.permutation.Dihedral().

EXAMPLES:

```
sage: DihedralGroup(1)
Dihedral group of order 2 as a permutation group
sage: DihedralGroup(2)
Dihedral group of order 4 as a permutation group
sage: DihedralGroup(2).gens()
 [(3,4), (1,2)]
sage: DihedralGroup(5).gens()
 [(1,2,3,4,5), (1,5)(2,4)]
sage: sorted(DihedralGroup(5))
 [(), (2,5)(3,4), (1,2)(3,5), (1,2,3,4,5), (1,3)(4,5), (1,3,5,2,4), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3), (1,4)(2,3
 \hookrightarrow 4, 2, 5, 3), (1, 5, 4, 3, 2), (1, 5) (2, 4)
sage: G = DihedralGroup(6)
sage: G.order()
12
sage: G = DihedralGroup(5)
sage: G.order()
10
sage: G
Dihedral group of order 10 as a permutation group
sage: G.gens()
 [(1,2,3,4,5), (1,5)(2,4)]
sage: DihedralGroup(0)
Traceback (most recent call last):
ValueError: n must be positive
```

The Generalized Dihedral Group generated by the abelian group with direct factors in the input list.

INPUT:

• factors - a list of the sizes of the cyclic factors of the abelian group being dihedralized (this will be sorted once entered)

OUTPUT:

For a given abelian group (noting that each finite abelian group can be represented as the direct product of cyclic groups), the General Dihedral Group it generates is simply the semi-direct product of the given group with C_2 , where the nonidentity element of C_2 acts on the abelian group by turning each element into its inverse. In this implementation, each input abelian group will be standardized so as to act on a minimal amount of letters. This

will be done by breaking the direct factors into products of p-groups, before this new set of factors is ordered from smallest to largest for complete standardization. Note that the generalized dihedral group corresponding to a cyclic group, C_n , is simply the dihedral group D_n .

EXAMPLES:

As is noted in [TW1980], $Dih(C_3 \times C_3)$ has the presentation

$$\langle a, b, c \mid a^3, b^3, c^2, ab = ba, ac = ca^{-1}, bc = cb^{-1} \rangle$$

Note also the fact, verified by [TW1980], that the dihedralization of $C_3 \times C_3$ is the only nonabelian group of order 18 with no element of order 6.

```
sage: G = GeneralDihedralGroup([3,3])
Generalized dihedral group generated by C3 x C3
sage: G.order()
18
sage: G.gens()
[(4,5,6), (2,3)(5,6), (1,2,3)]
sage: a = G.gens()[2]; b = G.gens()[0]; c = G.gens()[1]
sage: a.order() == 3, b.order() == 3, c.order() == 2
(True, True, True)
sage: a*b == b*a, a*c == c*a.inverse(), b*c == c*b.inverse()
(True, True, True)
sage: G.subgroup([a,b,c]) == G
True
sage: G.is_abelian()
False
sage: all([x.order() != 6 for x in G])
True
```

If all of the direct factors are C_2 , then the action turning each element into its inverse is trivial, and the semi-direct product becomes a direct product.

```
sage: G = GeneralDihedralGroup([2,2,2])
sage: G.order()
16
sage: G.gens()
[(7,8), (5,6), (3,4), (1,2)]
sage: G.is_abelian()
True
sage: H = KleinFourGroup()
sage: G.is_isomorphic(H.direct_product(H)[0])
True
```

If two nonidentical input lists generate isomorphic abelian groups, then they will generate identical groups (with each direct factor broken up into its prime factors), but they will still have distinct descriptions. Note that If gcd(n,m)=1, then $C_n\times C_m\cong C_{nm}$, while the general dihedral groups generated by isomorphic abelian groups should be themselves isomorphic.

```
sage: G = GeneralDihedralGroup([6,34,46,14])
sage: H = GeneralDihedralGroup([7,17,3,46,2,2,2])
sage: G == H, G.gens() == H.gens()
(True, True)
sage: [x.order() for x in G.gens()]
[23, 17, 7, 2, 3, 2, 2, 2, 2]
sage: G
```

```
Generalized dihedral group generated by C6 x C34 x C46 x C14 sage: H
Generalized dihedral group generated by C7 x C17 x C3 x C46 x C2 x C2 x C2
```

A cyclic input yields a Classical Dihedral Group.

```
sage: G = GeneralDihedralGroup([6])
sage: D = DihedralGroup(6)
sage: G.is_isomorphic(D)
True
```

A Generalized Dihedral Group will always have size twice the underlying group, be solvable (as it has an abelian subgroup with index 2), and, unless the underlying group is of the form C_2^n , be nonabelian (by the structure theorem of finite abelian groups and the fact that a semi-direct product is a direct product only when the underlying action is trivial).

```
sage: G = GeneralDihedralGroup([6,18,33,60])
sage: (6*18*33*60)*2
427680
sage: G.order()
427680
sage: G.is_solvable()
True
sage: G.is_abelian()
False
```

AUTHOR:

• Kevin Halasz (2012-7-12)

```
class sage.groups.perm_gps.permgroup_named.JankoGroup(n)
```

Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_unique

Janko Groups J1, J2, and J3. (Note that J4 is too big to be treated here.)

INPUT:

• n – an integer among $\{1, 2, 3\}$.

EXAMPLES:

```
sage: G = groups.permutation.Janko(1); G # optional - gap_packages internet
Janko group J1 of order 175560 as a permutation group
```

class sage.groups.perm_gps.permgroup_named.KleinFourGroup

Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_unique

The Klein 4 Group, which has order 4 and exponent 2, viewed as a subgroup of S_4 .

OUTPUT:

the Klein 4 group of order 4, as a permutation group of degree 4.

Note: This group is also available via groups.permutation.KleinFour().

```
sage: G = KleinFourGroup(); G
The Klein 4 group of order 4, as a permutation group
sage: sorted(G)
[(), (3,4), (1,2), (1,2)(3,4)]
```

AUTHOR: – Bobby Moretti (2006-10)

```
class sage.groups.perm_gps.permgroup_named.MathieuGroup(n)
```

Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_unique

The Mathieu group of degree n.

INPUT:

n - a positive integer in $\{9, 10, 11, 12, 21, 22, 23, 24\}$.

OUTPUT:

the Mathieu group of degree n, as a permutation group

Note: This group is also available via groups.permutation.Mathieu().

EXAMPLES:

```
sage: G = MathieuGroup(12)
sage: G
Mathieu group of degree 12 and order 95040 as a permutation group
```

```
class sage.groups.perm_gps.permgroup_named.PGL (n, q, name='a')
```

Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_plg

The projective general linear groups over GF(q).

INPUT:

- n positive integer; the degree
- q prime power; the size of the ground field
- name (default: 'a') variable name of indeterminate of finite field GF(q)

OUTPUT:

PGL(n,q)

Note: This group is also available via groups.permutation.PGL().

EXAMPLES:

```
sage: G = PGL(2,3); G
Permutation Group with generators [(3,4), (1,2,4)]
sage: print(G)
The projective general linear group of degree 2 over Finite Field of size 3
sage: G.base_ring()
Finite Field of size 3
sage: G.order()
24
```

```
sage: G = PGL(2, 9, 'b'); G
Permutation Group with generators [(3,10,9,8,4,7,6,5), (1,2,4)(5,6,8)(7,9,10)]
sage: G.base_ring()
Finite Field in b of size 3^2

sage: G.category()
Category of finite enumerated permutation groups
sage: TestSuite(G).run() # long time
```

class sage.groups.perm_gps.permgroup_named.PGU (n, q, name='a')

Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_pug

The projective general unitary groups over GF(q).

INPUT:

- n positive integer; the degree
- q prime power; the size of the ground field
- name (default: 'a') variable name of indeterminate of finite field GF(q)

OUTPUT:

PGU(n,q)

Note: This group is also available via groups.permutation.PGU().

EXAMPLES:

class sage.groups.perm_gps.permgroup_named.PSL(n, q, name='a')

 $\textbf{Bases: } \textit{sage.groups.perm_gps.permgroup_named.PermutationGroup_plg}$

The projective special linear groups over GF(q).

INPUT:

- n positive integer; the degree
- q either a prime power (the size of the ground field) or a finite field
- name (default: 'a') variable name of indeterminate of finite field GF(q)

OUTPUT:

the group PSL(n,q)

Note: This group is also available via groups.permutation.PSL().

```
sage: G = PSL(2,3); G
Permutation Group with generators [(2,3,4), (1,2)(3,4)]
sage: G.order()
12
sage: G.base_ring()
Finite Field of size 3
sage: print(G)
The projective special linear group of degree 2 over Finite Field of size 3
```

We create two groups over nontrivial finite fields:

```
sage: G = PSL(2, 4, 'b'); G
Permutation Group with generators [(3,4,5), (1,2,3)]
sage: G.base_ring()
Finite Field in b of size 2^2
sage: G = PSL(2, 8); G
Permutation Group with generators [(3,8,6,4,9,7,5), (1,2,3)(4,7,5)(6,9,8)]
sage: G.base_ring()
Finite Field in a of size 2^3

sage: G.category()
Category of finite enumerated permutation groups
sage: TestSuite(G).run() # long time
```

ramification_module_decomposition_hurwitz_curve()

Helps compute the decomposition of the ramification module for the Hurwitz curves X (over CC say) with automorphism group G = PSL(2,q), q a "Hurwitz prime" (ie, p is $\pm 1 \pmod{7}$). Using this computation and Borne's formula helps determine the G-module structure of the RR spaces of equivariant divisors can be determined explicitly.

The output is a list of integer multiplicities: [m1,...,mn], where n is the number of conj classes of G=PSL(2,p) and mi is the multiplicity of pi_i in the ramification module of a Hurwitz curve with automorphism group G. Here $IrrRepns(G) = [pi_1,...,pi_n]$ (in the order listed in the output of $self.character\ table()$).

REFERENCE: David Joyner, Amy Ksir, Roger Vogeler, "Group representations on Riemann-Roch spaces of some Hurwitz curves," preprint, 2006.

EXAMPLES:

This means, for example, that the trivial representation does not occur in the ramification module of a Hurwitz curve with automorphism group PSL(2,13), since the trivial representation is listed first and that entry has multiplicity 0. The "randomness" is due to the fact that GAP randomly orders the conjugacy classes of the same order in the list of all conjugacy classes. Similarly, there is some randomness to the ordering of the characters.

If you try to use this function on a group PSL(2,q) where q is not a (smallish) "Hurwitz prime", an error message will be printed.

ramification_module_decomposition_modular_curve()

Helps compute the decomposition of the ramification module for the modular curve X(p) (over CC say) with automorphism group G = PSL(2,q), q a prime > 5. Using this computation and Borne's formula helps determine the G-module structure of the RR spaces of equivariant divisors can be determined explicitly.

The output is a list of integer multiplicities: [m1,...,mn], where n is the number of conj classes of G=PSL(2,p) and mi is the multiplicity of pi_i in the ramification module of a modular curve with automorphism group G. Here $IrrRepns(G) = [pi_1,...,pi_n]$ (in the order listed in the output of $self.character\ table()$).

REFERENCE: D. Joyner and A. Ksir, 'Modular representations on some Riemann-Roch spaces of modular curves \$X(N)\$', Computational Aspects of Algebraic Curves, (Editor: T. Shaska) Lecture Notes in Computing, WorldScientific, 2005.)

EXAMPLES:

This means, for example, that the trivial representation does not occur in the ramification module of X(7), since the trivial representation is listed first and that entry has multiplicity 0. The "randomness" is due to the fact that GAP randomly orders the conjugacy classes of the same order in the list of all conjugacy classes. Similarly, there is some randomness to the ordering of the characters.

```
sage.groups.perm_gps.permgroup_named.PSP
    alias of PSp

class sage.groups.perm_gps.permgroup_named.PSU(n, q, name='a')
    Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_pug
```

INPUT:

- n positive integer; the degree
- q prime power; the size of the ground field

The projective special unitary groups over GF(q).

• name – (default: 'a') variable name of indeterminate of finite field GF(q)

OUTPUT:

PSU(n,q)

Note: This group is also available via groups.permutation.PSU().

EXAMPLES:

```
class sage.groups.perm_gps.permgroup_named.PSp(n, q, name='a')
    Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_plg
```

The projective symplectic linear groups over GF(q).

INPUT:

- n positive integer; the degree
- q prime power; the size of the ground field
- name (default: 'a') variable name of indeterminate of finite field GF(q)

OUTPUT:

PSp(n,q)

Note: This group is also available via groups.permutation.PSp().

EXAMPLES:

```
sage: G = PSp(2,3); G
Permutation Group with generators [(2,3,4), (1,2)(3,4)]
sage: G.order()
12
sage: G = PSp(4,3); G
Permutation Group with generators [(3,4)(6,7)(9,10)(12,13)(17,20)(18,21)(19,
→22) (23,32) (24,33) (25,34) (26,38) (27,39) (28,40) (29,35) (30,36) (31,37), (1,5,14,17,
\rightarrow27,22,19,36,3) (2,6,32) (4,7,23,20,37,13,16,26,40) (8,24,29,30,39,10,33,11,34) (9,
\hookrightarrow15,35) (12,25,38) (21,28,31)]
sage: G.order()
25920
sage: print(G)
The projective symplectic linear group of degree 4 over Finite Field of size 3
sage: G.base_ring()
Finite Field of size 3
sage: G = PSp(2, 8, name='alpha'); G
Permutation Group with generators [(3,8,6,4,9,7,5), (1,2,3)(4,7,5)(6,9,8)]
sage: G.base_ring()
Finite Field in alpha of size 2^3
```

```
class sage.groups.perm_gps.permgroup_named.PermutationGroup_plg (gens=None,
                                                                          gap_group=None,
                                                                          canonical-
                                                                          ize=True,
                                                                          domain=None,
                                                                          cate-
                                                                          gory=None)
```

Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_unique

base ring() **EXAMPLES:**

```
sage: G = PGL(2,3)
sage: G.base_ring()
Finite Field of size 3
sage: G = PSL(2,3)
sage: G.base_ring()
Finite Field of size 3
```

```
matrix_degree()
```

```
sage: G = PSL(2,3)
         sage: G.matrix_degree()
class sage.groups.perm_gps.permgroup_named.PermutationGroup_pug(gens=None,
                                                                         gap_group=None,
                                                                         canonical-
                                                                         ize=True,
                                                                         domain=None.
                                                                         cate-
                                                                         gory=None)
    Bases: sage.groups.perm_qps.permgroup_named.PermutationGroup_plg
    field of definition()
        EXAMPLES:
         sage: PSU(2,3).field_of_definition()
         Finite Field in a of size 3^2
class sage.groups.perm_gps.permgroup_named.PermutationGroup_symalt (gens=None,
                                                                            gap_group=None,
                                                                            canon-
                                                                            ical-
                                                                            ize=True,
                                                                            do-
                                                                            main=None,
                                                                            cate-
                                                                            gory=None)
    Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_unique
    This is a class used to factor out some of the commonality in the SymmetricGroup and AlternatingGroup classes.
class sage.groups.perm_gps.permgroup_named.PermutationGroup_unique(gens=None,
                                                                            gap_group=None,
                                                                            canon-
                                                                            ical-
                                                                            ize=True.
                                                                            do-
                                                                            main=None.
                                                                            cate-
                                                                            gory=None)
              sage.structure.unique_representation.CachedRepresentation,
    groups.perm_gps.permgroup.PermutationGroup_generic
    Todo: Fix the broken hash.
    sage: G = SymmetricGroup(6)
    sage: G3 = G.subgroup([G((1,2,3,4,5,6)),G((1,2))])
    sage: hash(G) == hash(G3) # todo: Should be True!
    False
```

 $\begin{tabular}{ll} \textbf{class} & sage.groups.perm_gps.permgroup_named.PrimitiveGroup (d,n)\\ & Bases: $sage.groups.perm_gps.permgroup_named.PermutationGroup_unique (d,n)\\ & Bases: $sage.groups.perm_gps.permgroup_named.PermutationGroup_unique (d,n)\\ & Bases: $sage.groups.perm_gps.permgroup_named.PermutationGroup_unique (d,n)\\ & Bases: (d,n)\\ &$

The primitive group from the GAP tables of primitive groups.

INPUT:

- d non-negative integer. the degree of the group.
- n positive integer. the index of the group in the GAP database, starting at 1

OUTPUT:

The n-th primitive group of degree d.

EXAMPLES:

```
sage: PrimitiveGroup(0,1)
Trivial group
sage: PrimitiveGroup(1,1)
Trivial group
sage: G = PrimitiveGroup(5, 2); G  # optional - database_gap
D(2*5)
sage: G.gens()  # optional - database_gap
[(2,4)(3,5), (1,2,3,5,4)]
sage: G.category()  # optional - database_gap
Category of finite enumerated permutation groups
```

```
Warning: this follows GAP's naming convention of indexing the primitive groups starting from 1:

sage: PrimitiveGroup(5,0) # optional - database_gap

Traceback (most recent call last):
...

ValueError: Index n must be in {1,...,5}
```

Only primitive groups of "small" degree are available in GAP's database:

```
sage: PrimitiveGroup(2500,1) # optional - database_gap
Traceback (most recent call last):
...
NotImplementedError: Only the primitive groups of degree less
than 2500 are available in GAP's database
```

group_primitive_id()

Return the index of this group in the GAP database of primitive groups.

Requires "optional" database_gap package.

OUTPUT:

A positive integer, following GAP's conventions.

EXAMPLES:

sage.groups.perm_gps.permgroup_named.PrimitiveGroups (d=None)

Return the set of all primitive groups of a given degree d

INPUT:

• d – an integer (optional)

OUTPUT:

The set of all primitive groups of a given degree d up to isomorphisms using GAP. If d is not specified, it returns the set of all primitive groups up to isomorphisms stored in GAP.

Warning: PrimitiveGroups requires the optional GAP database package. Please install it by running sage -i database_gap.

EXAMPLES:

```
sage: PrimitiveGroups(3)
Primitive Groups of degree 3
sage: PrimitiveGroups(7)
Primitive Groups of degree 7
sage: PrimitiveGroups(8)
Primitive Groups of degree 8
sage: PrimitiveGroups()
Primitive Groups
```

The database currently only contains primitive groups up to degree 2499:

```
sage: PrimitiveGroups(2500).cardinality() # optional - database_gap
Traceback (most recent call last):
...
NotImplementedError: Only the primitive groups of degree less
than 2500 are available in GAP's database
```

Todo: This enumeration helper could be extended based on PrimitiveGroupsIterator in GAP. This method allows to enumerate groups with specified properties such as transitivity, solvability, ..., without creating all groups.

```
class sage.groups.perm_gps.permgroup_named.PrimitiveGroupsAll
```

Bases: sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

The infinite set of all primitive groups up to isomorphisms.

EXAMPLES:

```
sage: L = PrimitiveGroups(); L
Primitive Groups
sage: L.category()
Category of facade infinite enumerated sets
sage: L.cardinality()
+Infinity

sage: p = L.__iter__()  # optional - database_gap
sage: (next(p), next(p), next(p), next(p), # optional - database_gap
...: next(p), next(p), next(p), next(p))
(Trivial group, Trivial group, S(2), A(3), S(3), A(4), S(4), C(5))
```

```
 \begin{array}{ll} \textbf{class} & \texttt{sage.groups.perm\_gps.permgroup\_named.PrimitiveGroupsOfDegree} \ (n) \\ \textbf{Bases:} & \texttt{sage.structure.unique\_representation.CachedRepresentation}, & \texttt{sage.structure.parent.Parent} \end{array}
```

The set of all primitive groups of a given degree up to isomorphisms.

EXAMPLES:

```
sage: S = PrimitiveGroups(5); S # optional - database_gap
Primitive Groups of degree 5
sage: S.list() # optional - database_gap
[C(5), D(2*5), AGL(1, 5), A(5), S(5)]
sage: S.an_element() # optional - database_gap
C(5)
```

We write the cardinality of all primitive groups of degree 5:

```
sage: for G in PrimitiveGroups(5): # optional - database_gap
....: print(G.cardinality())
5
10
20
60
120
```

cardinality()

Return the cardinality of self.

OUTPUT:

An integer. The number of primitive groups of a given degree up to isomorphism.

EXAMPLES:

```
sage: PrimitiveGroups(0).cardinality()
                                                             # optional -
→database_gap
sage: PrimitiveGroups(2).cardinality()
                                                             # optional -
→database_gap
1
sage: PrimitiveGroups(7).cardinality()
                                                             # optional -_
→database_gap
sage: PrimitiveGroups(12).cardinality()
                                                             # optional -_
→database_gap
sage: [PrimitiveGroups(i).cardinality() for i in range(11)] # optional -_
→database_gap
[1, 1, 1, 2, 2, 5, 4, 7, 7, 11, 9]
```

The database_gap contains all primitive groups up to degree 2499:

```
sage: PrimitiveGroups(2500).cardinality() # optional -_

→ database_gap
Traceback (most recent call last):
...
NotImplementedError: Only the primitive groups of degree less than
2500 are available in GAP's database
```

```
class sage.groups.perm_gps.permgroup_named.QuaternionGroup
```

Bases: sage.groups.perm_gps.permgroup_named.DiCyclicGroup

The quaternion group of order 8.

OUTPUT:

The quaternion group of order 8, as a permutation group. See the DiCyclicGroup class for a generalization of this construction.

Note: This group is also available via groups.permutation.Quaternion().

EXAMPLES:

The quaternion group is one of two non-abelian groups of order 8, the other being the dihedral group D_4 . One way to describe this group is with three generators, I, J, K, so the whole group is then given as the set $\{\pm 1, \pm I, \pm J, \pm K\}$ with relations such as $I^2 = J^2 = K^2 = -1$, IJ = K and JI = -K.

The examples below illustrate how to use this group in a similar manner, by testing some of these relations. The representation used here is the left-regular representation.

```
sage: Q = QuaternionGroup()
sage: I = Q.gen(0)
sage: J = Q.gen(1)
sage: K = I*J
sage: [I,J,K]
[(1,2,3,4)(5,6,7,8), (1,5,3,7)(2,8,4,6), (1,8,3,6)(2,7,4,5)]
sage: neg_one = I^2; neg_one
(1,3)(2,4)(5,7)(6,8)
sage: J^2 == neg_one and K^2 == neg_one
True
sage: J*I == neg_one*K
True
sage: Q.center().order() == 2
True
sage: neg_one in Q.center()
True
```

AUTHOR:

• Rob Beezer (2009-10-09)

class sage.groups.perm_gps.permgroup_named.SemidihedralGroup(m)

Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_unique

The semidihedral group of order 2^m .

INPUT:

• m - a positive integer; the power of 2 that is the group's order

OUTPUT:

The semidihedral group of order 2^m . These groups can be thought of as a semidirect product of $C_{2^{m-1}}$ with C_2 , where the nontrivial element of C_2 is sent to the element of the automorphism group of $C_{2^{m-1}}$ that sends elements to their $-1 + 2^{m-2}$ th power. Thus, the group has the presentation:

$$\langle x, y \mid x^{2^{m-1}}, y^2, y^{-1}xy = x^{-1+2^{m-2}} \rangle$$

This family is notable because it is made up of non-abelian 2-groups that all contain cyclic subgroups of index 2. It is one of only four such families.

EXAMPLES:

In [Gor1980] it is shown that the semidihedral groups have center of order 2. It is also shown that they have a Frattini subgroup equal to their commutator, which is a cyclic subgroup of order 2^{m-2} .

```
sage: G = SemidihedralGroup(12)
sage: G.order() == 2^12
True
sage: G.commutator() == G.frattini_subgroup()
True
sage: G.commutator().order() == 2^10
sage: G.commutator().is_cyclic()
sage: G.center().order()
sage: G = SemidihedralGroup(4)
sage: len([H for H in G.subgroups() if H.is_cyclic() and H.order() == 8])
sage: G.gens()
[(2,4)(3,7)(6,8), (1,2,3,4,5,6,7,8)]
sage: x = G.gens()[1]; y = G.gens()[0]
sage: x.order() == 2^3; y.order() == 2
True
True
sage: y*x*y == x^{(-1+2^2)}
True
```

AUTHOR:

• Kevin Halasz (2012-8-7)

```
class sage.groups.perm_gps.permgroup_named.SplitMetacyclicGroup(p, m)
Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_unique
```

The split metacyclic group of order p^m .

INPUT:

- p a prime number that is the prime underlying this p-group
- m a positive integer such that the order of this group is the p^m . Be aware that, for even p, m must be greater than 3, while for odd p, m must be greater than 2.

OUTPUT:

The split metacyclic group of order p^m . This family of groups has presentation

$$\langle x, y \mid x^{p^{m-1}}, y^p, y^{-1}xy = x^{1+p^{m-2}} \rangle$$

This family is notable because, for odd p, these are the only p-groups with a cyclic subgroup of index p, a result proven in [Gor1980]. It is also shown in [Gor1980] that this is one of four families containing nonabelian 2-groups with a cyclic subgroup of index 2 (with the others being the dicyclic groups, the dihedral groups, and the semidihedral groups).

EXAMPLES:

Using the last relation in the group's presentation, one can see that the elements of the form $y^i x$, $0 \le i \le p-1$ all have order p^{m-1} , as it can be shown that their p th powers are all $x^{p^{m-2}+p}$, an element with order p^{m-2} . Manipulation of the same relation shows that none of these elements are powers of any other. Thus, there are p cyclic maximal subgroups in each split metacyclic group. It is also proven in [Gor1980] that this family has commutator subgroup of order p, and the Frattini subgroup is equal to the center, with this group being cyclic of order p^{m-2} . These characteristics are necessary to identify these groups in the case that p=2, although the possession of a cyclic maximal subgroup in a non-abelian p-group is enough for odd p given the group's order.

```
sage: G = SplitMetacyclicGroup(2,8)
sage: G.order() == 2**8
True
sage: G.is_abelian()
False
sage: len([H for H in G.subgroups() if H.order() == 2^7 and H.is_cyclic()])
sage: G.commutator().order()
sage: G.frattini_subgroup() == G.center()
True
sage: G.center().order() == 2^6
sage: G.center().is_cyclic()
True
sage: G = SplitMetacyclicGroup(3,3)
sage: len([H for H in G.subgroups() if H.order() == 3^2 and H.is_cyclic()])
sage: G.commutator().order()
sage: G.frattini_subgroup() == G.center()
True
sage: G.center().order()
```

AUTHOR:

• Kevin Halasz (2012-8-7)

```
class sage.groups.perm_gps.permgroup_named.SuzukiGroup(q, name='a')
Bases: sage.groups.perm\_gps.permgroup\_named.PermutationGroup\_unique
The Suzuki group over GF(q), ^2B_2(2^{2k+1}) = Sz(2^{2k+1}).
```

A wrapper for the GAP function SuzukiGroup.

INPUT:

- $q 2^n$, an odd power of 2; the size of the ground field. (Strictly speaking, n should be greater than 1, or else this group os not simple.)
- name (default: 'a') variable name of indeterminate of finite field GF(q)

OUTPUT:

· A Suzuki group.

Note: This group is also available via groups.permutation.Suzuki().

```
sage: print(SuzukiGroup(8))
The Suzuki group over Finite Field in a of size 2^3

sage: G = SuzukiGroup(32, name='alpha')
sage: G.order()
32537600
sage: G.order().factor()
2^10 * 5^2 * 31 * 41
sage: G.base_ring()
Finite Field in alpha of size 2^5
```

REFERENCES:

• Wikipedia article Group_of_Lie_type#Suzuki-Ree_groups

base_ring() EXAMPLES:

```
sage: G = SuzukiGroup(32, name='alpha')
sage: G.base_ring()
Finite Field in alpha of size 2^5
```

```
class sage.groups.perm_gps.permgroup_named.SuzukiSporadicGroup
```

Bases: sage.groups.perm_qps.permgroup_named.PermutationGroup_unique

Suzuki Sporadic Group

EXAMPLES:

```
class sage.groups.perm_gps.permgroup_named.SymmetricGroup(domain=None)
    Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_symalt
```

The full symmetric group of order n!, as a permutation group.

If n is a list or tuple of positive integers then it returns the symmetric group of the associated set.

INPUT:

• n - a positive integer, or list or tuple thereof

Note: This group is also available via groups.permutation.Symmetric().

EXAMPLES:

```
sage: G = SymmetricGroup(8)
sage: G.order()
40320
sage: G
Symmetric group of order 8! as a permutation group
sage: G.degree()
8
sage: S8 = SymmetricGroup(8)
sage: G = SymmetricGroup([1,2,4,5])
sage: G
```

```
Symmetric group of order 4! as a permutation group

sage: G.domain()
{1, 2, 4, 5}

sage: G = SymmetricGroup(4)

sage: G

Symmetric group of order 4! as a permutation group

sage: G.domain()
{1, 2, 3, 4}

sage: G.category()

Join of Category of finite enumerated permutation groups and

Category of finite weyl groups and

Category of well generated finite irreducible complex reflection groups
```

Element

alias of SymmetricGroupElement

algebra (base_ring, category=None)

Return the symmetric group algebra associated to self.

INPUT:

- base_ring a ring
- category a category (default: the category of self)

If self is the symmetric group on $1, \ldots, n$, then this is special cased to take advantage of the features in SymmetricGroupAlgebra. Otherwise the usual group algebra is returned.

EXAMPLES:

```
sage: S4 = SymmetricGroup(4)
sage: S4.algebra(QQ)
Symmetric group algebra of order 4 over Rational Field

sage: S3 = SymmetricGroup([1,2,3])
sage: A = S3.algebra(QQ); A
Symmetric group algebra of order 3 over Rational Field
sage: a = S3.an_element(); a
(2,3)
sage: A(a)
(2,3)
```

We illustrate the choice of the category:

```
sage: A.category()
Join of Category of coxeter group algebras over Rational Field
    and Category of finite group algebras over Rational Field
    and Category of finite dimensional cellular algebras with basis
        over Rational Field

sage: A = S3.algebra(QQ, category=Semigroups())

sage: A.category()
Category of finite dimensional unital cellular semigroup algebras
    over Rational Field
```

In the following case, a usual group algebra is returned:

sage: S = SymmetricGroup([2,3,5]) sage: S.algebra(QQ) Algebra of Symmetric group of order 3! as a permutation group over Rational Field sage: $a = S.an_element()$; a (3,5) sage: S.algebra(QQ)(a) (3,5)

cartan_type()

Return the Cartan type of self

The symmetric group S_n is a Coxeter group of type A_{n-1} .

EXAMPLES:

```
sage: A = SymmetricGroup([2,3,7]); A.cartan_type()
['A', 2]
sage: A = SymmetricGroup([]); A.cartan_type()
['A', 0]
```

$conjugacy_class(g)$

Return the conjugacy class of g inside the symmetric group self.

INPUT:

• q – a partition or an element of the symmetric group self

OUTPUT:

A conjugacy class of a symmetric group.

EXAMPLES:

```
sage: G = SymmetricGroup(5)
sage: g = G((1,2,3,4))
sage: G.conjugacy_class(g)
Conjugacy class of cycle type [4, 1] in
Symmetric group of order 5! as a permutation group
```

conjugacy_classes()

Return a list of the conjugacy classes of self.

EXAMPLES:

```
sage: G = SymmetricGroup(5)
sage: G.conjugacy_classes()
[Conjugacy class of cycle type [1, 1, 1, 1, 1] in
    Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [2, 1, 1, 1] in
    Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [2, 2, 1] in
    Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [3, 1, 1] in
    Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [3, 2] in
    Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [4, 1] in
    Symmetric group of order 5! as a permutation group,
Conjugacy class of cycle type [5] in
    Symmetric group of order 5! as a permutation group]
```

conjugacy_classes_iterator()

Iterate over the conjugacy classes of self.

```
sage: G = SymmetricGroup(5)
sage: list(G.conjugacy_classes_iterator()) == G.conjugacy_classes()
True
```

conjugacy_classes_representatives()

Return a complete list of representatives of conjugacy classes in a permutation group G.

Let S_n be the symmetric group on n letters. The conjugacy classes are indexed by partitions λ of n. The ordering of the conjugacy classes is reverse lexicographic order of the partitions.

EXAMPLES:

```
sage: S = SymmetricGroup(['a','b','c'])
sage: S.conjugacy_classes_representatives()
[(), ('a','b'), ('a','b','c')]
```

coxeter_matrix()

Return the Coxeter matrix of self.

EXAMPLES:

```
sage: A = SymmetricGroup([2,3,7,'a']); A.coxeter_matrix()
[1 3 2]
[3 1 3]
[2 3 1]
```

index_set()

Return the index set for the descents of the symmetric group self.

EXAMPLES:

```
sage: S8 = SymmetricGroup(8)
sage: S8.index_set()
(1, 2, 3, 4, 5, 6, 7)
sage: S = SymmetricGroup([3,1,4,5])
sage: S.index_set()
(3, 1, 4)
```

major index(parameter=None)

Return the *major index generating polynomial* of self, which is a gadget counting the elements of self by major index.

INPUT:

• parameter – an element of a ring; the result is more explicit with a formal variable (default: element q of Univariate Polynomial Ring in q over Integer Ring)

$$P(q) = \sum_{g \in S_n} q^{\text{major index}(g)}$$

```
sage: S4 = SymmetricGroup(4)
sage: S4.major_index()
q^6 + 3*q^5 + 5*q^4 + 6*q^3 + 5*q^2 + 3*q + 1
sage: K.<t> = QQ[]
sage: S4.major_index(t)
t^6 + 3*t^5 + 5*t^4 + 6*t^3 + 5*t^2 + 3*t + 1
```

reflections()

Return the list of all reflections in self.

EXAMPLES:

```
sage: A = SymmetricGroup(3)
sage: A.reflections()
[(1,2), (1,3), (2,3)]
```

simple_reflection(i)

For i in the index set of self, this returns the elementary transposition $s_i = (i, i + 1)$.

EXAMPLES:

```
sage: A = SymmetricGroup(5)
sage: A.simple_reflection(3)
(3,4)

sage: A = SymmetricGroup([2,3,7])
sage: A.simple_reflections()
Finite family {2: (2,3), 3: (3,7)}
```

young_subgroup(comp)

Return the Young subgroup associated with the composition comp.

EXAMPLES:

```
sage: S = SymmetricGroup(8)
sage: c = Composition([2,2,2,2])
sage: S.young_subgroup(c)
Subgroup of (Symmetric group of order 8! as a permutation group)
generated by [(7,8), (5,6), (3,4), (1,2)]

sage: S = SymmetricGroup(['a','b','c'])
sage: S.young_subgroup([2,1])
Subgroup of (Symmetric group of order 3! as a permutation group)
generated by [('a','b')]

sage: Y = S.young_subgroup([2,2,2,2,2])
Traceback (most recent call last):
...
ValueError: The composition is not of expected size
```

class sage.groups.perm_qps.permgroup_named.TransitiveGroup(d, n)

Bases: sage.groups.perm_gps.permgroup_named.PermutationGroup_unique

The transitive group from the GAP tables of transitive groups.

INPUT:

- d non-negative integer; the degree
- n positive integer; the index of the group in the GAP database, starting at 1

OUTPUT:

the n-th transitive group of degree d

Note: This group is also available via groups.permutation.Transitive().

EXAMPLES:

```
sage: TransitiveGroup(0,1)
Transitive group number 1 of degree 0
sage: TransitiveGroup(1,1)
Transitive group number 1 of degree 1
sage: G = TransitiveGroup(5, 2); G  # optional - database_gap
Transitive group number 2 of degree 5
sage: G.gens()  # optional - database_gap
[(1,2,3,4,5), (1,4)(2,3)]
sage: G.category()  # optional - database_gap
Category of finite enumerated permutation groups
```

```
Warning: this follows GAP's naming convention of indexing the transitive groups starting from 1:

sage: TransitiveGroup(5,0)  # optional - database_gap

Traceback (most recent call last):
...

ValueError: Index n must be in {1,...,5}
```

```
Warning: only transitive groups of "small" degree are available in GAP's database:

sage: TransitiveGroup(31,1) # optional - database_gap
Traceback (most recent call last):
...
NotImplementedError: Only the transitive groups of order less than 30 are
→available in GAP's database
```

 $\verb|sage.groups.perm_gps.permgroup_named.TransitiveGroups| (\textit{d=None}) \\ INPUT:$

• d – an integer (optional)

Returns the set of all transitive groups of a given degree d up to isomorphisms. If d is not specified, it returns the set of all transitive groups up to isomorphisms.

Warning: TransitiveGroups requires the optional GAP database package. Please install it with sage -i database_gap.

EXAMPLES:

```
sage: TransitiveGroups(3)
Transitive Groups of degree 3
sage: TransitiveGroups(7)
Transitive Groups of degree 7
sage: TransitiveGroups(8)
Transitive Groups of degree 8
```

```
sage: TransitiveGroups()
Transitive Groups
```

```
Warning: in practice, the database currently only contains transitive groups up to degree 30:

sage: TransitiveGroups(31).cardinality() # optional - database_gap
Traceback (most recent call last):
...
NotImplementedError: Only the transitive groups of order less than 30 are
→available in GAP's database
```

 $\begin{tabular}{ll} \textbf{Class} & \texttt{sage.groups.perm_gps.permgroup_named.TransitiveGroupsAll} \\ \textbf{Bases:} & \texttt{sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets} \\ \end{tabular}$

The infinite set of all transitive groups up to isomorphisms.

EXAMPLES:

The set of all transitive groups of a given (small) degree up to isomorphisms.

EXAMPLES:

We write the cardinality of all transitive groups of degree 5:

```
sage: for G in TransitiveGroups(5): # optional - database_gap
....: print(G.cardinality())
5
10
20
60
120
```

cardinality()

Returns the cardinality of self, that is the number of transitive groups of a given degree.

EXAMPLES:

```
sage: TransitiveGroups(0).cardinality()
                                                              # optional -_
→database_gap
sage: TransitiveGroups(2).cardinality()
                                                              # optional -_
→database_gap
                                                              # optional -
sage: TransitiveGroups(7).cardinality()
→database_gap
                                                              # optional -
sage: TransitiveGroups(12).cardinality()
→database_gap
301
sage: [TransitiveGroups(i).cardinality() for i in range(11)] # optional -..
→database_gap
[1, 1, 1, 2, 5, 5, 16, 7, 50, 34, 45]
```

24.4 Permutation group elements

AUTHORS:

- David Joyner (2006-02)
- David Joyner (2006-03): word problem method and reorganization
- Robert Bradshaw (2007-11): convert to Cython

There are several ways to define a permutation group element:

- \bullet Define a permutation group G, then use ${\tt G.gens}$ () and multiplication \star to construct elements.
- Define a permutation group G, then use, e.g., G([(1,2),(3,4,5)]) to construct an element of the group. You could also use G('(1,2),(3,4,5)')

• Use, e.g., PermutationGroupElement ([(1,2),(3,4,5)]) or PermutationGroupElement ('(1,2),(3,4,5)') to make a permutation group element with parent S_5 .

EXAMPLES:

We illustrate construction of permutation using several different methods.

First we construct elements by multiplying together generators for a group:

```
sage: G = PermutationGroup(['(1,2)(3,4)', '(3,4,5,6)'], canonicalize=False)
sage: s = G.gens()
sage: s[0]
(1,2)(3,4)
sage: s[1]
(3,4,5,6)
sage: s[0]*s[1]
(1,2)(3,5,6)
sage: (s[0]*s[1]).parent()
Permutation Group with generators [(1,2)(3,4), (3,4,5,6)]
```

Next we illustrate creation of a permutation using coercion into an already-created group:

```
sage: g = G([(1,2),(3,5,6)])
sage: g
(1,2)(3,5,6)
sage: g.parent()
Permutation Group with generators [(1,2)(3,4), (3,4,5,6)]
sage: g == s[0]*s[1]
True
```

We can also use a string or one-line notation to specify the permutation:

```
sage: h = G('(1,2)(3,5,6)')
sage: i = G([2,1,5,4,6,3])
sage: g == h == i
True
```

The Rubik's cube group:

```
sage: f = [(17,19,24,22),(18,21,23,20),(6,25,43,16),(7,28,42,13),(8,30,41,11)]
sage: b = [(33,35,40,38),(34,37,39,36),(3,9,46,32),(2,12,47,29),(1,14,48,27)]
sage: l = [(9,11,16,14),(10,13,15,12),(1,17,41,40),(4,20,44,37),(6,22,46,35)]
sage: r = [(25,27,32,30),(26,29,31,28),(3,38,43,19),(5,36,45,21),(8,33,48,24)]
sage: u = [(1,3,8,6),(2,5,7,4),(9,33,25,17),(10,34,26,18),(11,35,27,19)]
sage: d = [(41,43,48,46),(42,45,47,44),(14,22,30,38),(15,23,31,39),(16,24,32,40)]
sage: cube = PermutationGroup([f,b,1,r,u,d])
sage: F, B, L, R, U, D = cube.gens()
sage: cube.order()
43252003274489856000
sage: F.order()
4
```

We create element of a permutation group of large degree:

```
sage: G = SymmetricGroup(30)
sage: s = G(srange(30,0,-1)); s
(1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,
→17)(15,16)
```

class sage.groups.perm_gps.permgroup_element.PermutationGroupElement
 Bases: sage.structure.element.MultiplicativeGroupElement

An element of a permutation group.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: G
Permutation Group with generators [(1,2,3)(4,5)]
sage: g = G.random_element()
sage: g in G
True
sage: g = G.gen(0); g
(1,2,3)(4,5)
sage: print(g)
(1,2,3)(4,5)
sage: g*g
(1,3,2)
sage: g**(-1)
(1,3,2)(4,5)
sage: g**2
(1,3,2)
sage: G = PermutationGroup([(1,2,3)])
sage: g = G.gen(0); g
(1, 2, 3)
sage: g.order()
3
```

This example illustrates how permutations act on multivariate polynomials.

```
sage: R = PolynomialRing(RationalField(), 5, ["x","y","z","u","v"])
sage: x, y, z, u, v = R.gens()
sage: f = x**2 - y**2 + 3*z**2
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)'])
sage: sigma = G.gen(0)
sage: f * sigma
3*x^2 + y^2 - z^2
```

cycle_string(singletons=False)

Return string representation of this permutation.

EXAMPLES:

```
sage: g = PermutationGroupElement([(1,2,3),(4,5)])
sage: g.cycle_string()
'(1,2,3)(4,5)'

sage: g = PermutationGroupElement([3,2,1])
sage: g.cycle_string(singletons=True)
'(1,3)(2)'
```

cycle_tuples (singletons=False)

Return self as a list of disjoint cycles, represented as tuples rather than permutation group elements.

INPUT:

• singletons - boolean (default: False) whether or not consider the cycle that correspond to fixed point

EXAMPLES:

```
sage: p = PermutationGroupElement('(2,6)(4,5,1)')
sage: p.cycle_tuples()
[(1, 4, 5), (2, 6)]
sage: p.cycle_tuples(singletons=True)
[(1, 4, 5), (2, 6), (3,)]
```

EXAMPLES:

```
sage: S = SymmetricGroup(4)
sage: S.gen(0).cycle_tuples()
[(1, 2, 3, 4)]
```

```
sage: S = SymmetricGroup(['a','b','c','d'])
sage: S.gen(0).cycle_tuples()
[('a', 'b', 'c', 'd')]
sage: S([('a', 'b'), ('c', 'd')]).cycle_tuples()
[('a', 'b'), ('c', 'd')]
```

cycle_type (singletons=True, as_list=False)

Return the partition that gives the cycle type of q as an element of self.

INPUT:

- g an element of the permutation group self.parent()
- singletons True or False depending on whether on or not trivial cycles should be counted (default: True)
- as_list True or False depending on whether the cycle type should be returned as a list or as a Partition (default: False)

OUTPUT:

A Partition, or list if is_list is True, giving the cycle type of g

If speed is a concern then as_list=True should be used.

EXAMPLES:

```
sage: G = DihedralGroup(3)
sage: [g.cycle_type() for g in G]
[[1, 1, 1], [3], [3], [2, 1], [2, 1], [2, 1]]
sage: PermutationGroupElement('(1,2,3)(4,5)(6,7,8)').cycle_type()
[3, 3, 2]
sage: G = SymmetricGroup(3); G('(1,2)').cycle_type()
[2, 1]
sage: G = SymmetricGroup(4); G('(1,2)').cycle_type()
[2, 1, 1]
sage: G = SymmetricGroup(4); G('(1,2)').cycle_type(singletons=False)
[2]
sage: G = SymmetricGroup(4); G('(1,2)').cycle_type(as_list=False)
[2, 1, 1]
```

cycles()

Return self as a list of disjoint cycles.

```
sage: G = PermutationGroup(['(1,2,3)(4,5,6,7)'])
sage: g = G.0
sage: g.cycles()
[(1,2,3), (4,5,6,7)]
sage: a, b = g.cycles()
sage: a(1), b(1)
(2, 1)
```

dict()

Returns a dictionary associating each element of the domain with its image.

EXAMPLES:

```
sage: G = SymmetricGroup(4)
sage: g = G((1,2,3,4)); g
(1,2,3,4)
sage: v = g.dict(); v
{1: 2, 2: 3, 3: 4, 4: 1}
sage: type(v[1])
<... 'int'>
sage: x = G([2,1]); x
(1,2)
sage: x.dict()
{1: 2, 2: 1, 3: 3, 4: 4}
```

domain()

Returns the domain of self.

EXAMPLES:

```
sage: G = SymmetricGroup(4)
sage: x = G([2,1,4,3]); x
(1,2)(3,4)
sage: v = x.domain(); v
[2, 1, 4, 3]
sage: type(v[0])
<... 'int'>
sage: x = G([2,1]); x
(1,2)
sage: x.domain()
[2, 1, 3, 4]
```

has_descent (i, side='right', positive=False)

INPUT:

- i: an element of the index set
- side: "left" or "right" (default: "right")
- positive: a boolean (default: False)

Returns whether self has a left (resp. right) descent at position i. If positive is True, then test for a non descent instead.

Beware that, since permutations are acting on the right, the meaning of descents is the reverse of the usual convention. Hence, self has a left descent at position i if self (i) > self (i+1).

```
sage: S = SymmetricGroup([1,2,3])
sage: S.one().has_descent(1)
False
sage: S.one().has_descent(2)
False
sage: s = S.simple_reflections()
sage: x = s[1]*s[2]
sage: x.has_descent(1, side = "right")
False
sage: x.has_descent(2, side = "right")
True
sage: x.has_descent(1, side = "left")
True
sage: x.has_descent(2, side = "left")
False
sage: x.has_descent(2, side = "left")
False
sage: S._test_has_descent()
```

The symmetric group acting on a set not of the form (1, ..., n) is also supported:

```
sage: S = SymmetricGroup([2,4,1])
sage: s = S.simple_reflections()
sage: x = s[2]*s[4]
sage: x.has_descent(4)
True
sage: S._test_has_descent()
```

inverse()

Returns the inverse permutation.

OUTPUT:

For an element of a permutation group, this method returns the inverse element, which is both the inverse function and the inverse as an element of a group.

EXAMPLES:

```
sage: s = PermutationGroupElement("(1,2,3)(4,5)")
sage: s.inverse()
(1,3,2)(4,5)

sage: A = AlternatingGroup(4)
sage: t = A("(1,2,3)")
sage: t.inverse()
(1,3,2)
```

There are several ways (syntactically) to get an inverse of a permutation group element.

```
sage: s = PermutationGroupElement("(1,2,3,4)(6,7,8)")
sage: s.inverse() == s^-1
True
sage: s.inverse() == ~s
True
```

matrix()

Returns deg x deg permutation matrix associated to the permutation self

```
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: g = G.gen(0)
sage: g.matrix()
[0 1 0 0 0]
[0 0 1 0 0]
[1 0 0 0 0]
[0 0 0 0 1]
[0 0 0 0 1 0]
```

multiplicative_order()

Return the order of this group element, which is the smallest positive integer n for which $g^n = 1$.

EXAMPLES:

```
sage: s = PermutationGroupElement('(1,2)(3,5,6)')
sage: s.multiplicative_order()
6
```

order is just an alias for multiplicative_order:

```
sage: s.order()
6
```

orbit (n, sorted=True)

Returns the orbit of the integer n under this group element, as a sorted list.

EXAMPLES:

```
sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: g = G.gen(0)
sage: g.orbit(4)
[4, 5]
sage: g.orbit(3)
[1, 2, 3]
sage: g.orbit(10)
[10]
```

```
sage: s = SymmetricGroup(['a', 'b']).gen(0); s
('a','b')
sage: s.orbit('a')
['a', 'b']
```

sign()

Returns the sign of self, which is $(-1)^s$, where s is the number of swaps.

EXAMPLES:

```
sage: s = PermutationGroupElement('(1,2)(3,5,6)')
sage: s.sign()
-1
```

ALGORITHM: Only even cycles contribute to the sign, thus

$$sign(sigma) = (-1)^{\sum_{c} len(c) - 1}$$

where the sum is over cycles in self.

tuple()

Return tuple of images of the domain under self.

EXAMPLES:

```
sage: G = SymmetricGroup(5)
sage: s = G([2,1,5,3,4])
sage: s.tuple()
(2, 1, 5, 3, 4)

sage: S = SymmetricGroup(['a', 'b'])
sage: S.gen().tuple()
('b', 'a')
```

word problem(words, display=True)

G and H are permutation groups, g in G, H is a subgroup of G generated by a list (words) of elements of G. If g is in H, return the expression for g as a word in the elements of (words).

This function does not solve the word problem in Sage. Rather it pushes it over to GAP, which has optimized algorithms for the word problem. Essentially, this function is a wrapper for the GAP functions "EpimorphismFromFreeGroup" and "PreImagesRepresentative".

EXAMPLES:

```
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]], canonicalize=False)
sage: g1, g2 = G.gens()
sage: h = g1^2*g2*g1
sage: h.word_problem([g1,g2], False)
('x1^2*x2^-1*x1', '(1,2,3)(4,5)^2*(3,4)^-1*(1,2,3)(4,5)')
sage: h.word_problem([g1,g2])
    x1^2*x2^-1*x1
    [['(1,2,3)(4,5)', 2], ['(3,4)', -1], ['(1,2,3)(4,5)', 1]]
('x1^2*x2^-1*x1', '(1,2,3)(4,5)^2*(3,4)^-1*(1,2,3)(4,5)')
```

class sage.groups.perm_gps.permgroup_element.SymmetricGroupElement

Bases: sage.groups.perm_gps.permgroup_element.PermutationGroupElement

An element of the symmetric group.

absolute length()

Return the absolute length of self.

The absolute length is the size minus the number of its disjoint cycles. Alternatively, it is the length of the shortest expression of the element as a product of reflections.

See also:

```
absolute le()
```

EXAMPLES:

```
sage: S = SymmetricGroup(3)
sage: [x.absolute_length() for x in S]
[0, 2, 2, 1, 1, 1]
```

has left descent(i)

Return whether i is a left descent of self.

```
sage: W = SymmetricGroup(4)
sage: w = W.from_reduced_word([1,3,2,1])
sage: [i for i in W.index_set() if w.has_left_descent(i)]
[1, 3]
```

sage.groups.perm_gps.permgroup_element.is_PermutationGroupElement (x) Returns True if x is a PermutationGroupElement.

EXAMPLES:

```
sage.groups.perm_gps.permgroup_element.make_permgroup_element (G, x)
```

Returns a PermutationGroupElement given the permutation group G and the permutation x in list notation.

This is function is used when unpickling old (pre-domain) versions of permutation groups and their elements. This now does a bit of processing and calls <code>make_permgroup_element_v2()</code> which is used in unpickling the current PermutationGroupElements.

EXAMPLES:

```
sage: from sage.groups.perm_gps.permgroup_element import make_permgroup_element
sage: S = SymmetricGroup(3)
sage: make_permgroup_element(S, [1,3,2])
(2,3)
```

```
sage.groups.perm_gps.permgroup_element.make_permgroup_element_v2(G, x, do-
main)
```

Returns a PermutationGroupElement given the permutation group G, the permutation x in list notation, and the domain domain of the permutation group.

This is function is used when unpickling permutation groups and their elements.

EXAMPLES:

```
sage: from sage.groups.perm_gps.permgroup_element import make_permgroup_element_v2
sage: S = SymmetricGroup(3)
sage: make_permgroup_element_v2(S, [1,3,2], S.domain())
(2,3)
```

```
\verb|sage.groups.perm_gps.permgroup_element.standardize_generator|(g, constant)| constant | constant| const
```

vert dict=None)

Standardizes the input for permutation group elements to a list of tuples. This was factored out of the PermutationGroupElement.__init__ since PermutationGroup_generic.__init__ needs to do the same computation in order to compute the domain of a group when it's not explicitly specified.

INPUT:

- q a list, tuple, string, GapElement, PermutationGroupElement, Permutation
- convert_dict (optional) a dictionary used to convert the points to a number compatible with GAP.

OUTPUT:

The permutation in as a list of cycles.

EXAMPLES:

```
sage: from sage.groups.perm_gps.permgroup_element import standardize_generator
sage: standardize_generator('(1,2)')
[(1, 2)]
```

```
sage: p = PermutationGroupElement([(1,2)])
sage: standardize_generator(p)
[(1, 2)]
sage: standardize_generator(p._gap_())
[(1, 2)]
sage: standardize_generator((1,2))
[(1, 2)]
sage: standardize_generator([(1,2)])
[(1, 2)]
sage: standardize_generator(Permutation([2,1,3]))
[(1, 2), (3,)]
```

```
sage: d = {'a': 1, 'b': 2}
sage: p = SymmetricGroup(['a', 'b']).gen(0); p
('a','b')
sage: standardize_generator(p, convert_dict=d)
[(1, 2)]
sage: standardize_generator(p._gap_(), convert_dict=d)
[(1, 2)]
sage: standardize_generator(('a','b'), convert_dict=d)
[(1, 2)]
sage: standardize_generator([('a','b')], convert_dict=d)
[(1, 2)]
```

 $\verb|sage.groups.perm_gps.permgroup_element.string_to_tuples||(g)$

EXAMPLES:

```
sage: from sage.groups.perm_gps.permgroup_element import string_to_tuples
sage: string_to_tuples('(1,2,3)')
[(1, 2, 3)]
sage: string_to_tuples('(1,2,3)(4,5)')
[(1, 2, 3), (4, 5)]
sage: string_to_tuples('(1,2, 3)(4,5)')
[(1, 2, 3), (4, 5)]
sage: string_to_tuples('(1,2)(3)')
[(1, 2), (3,)]
```

24.5 Permutation group homomorphisms

AUTHORS:

- David Joyner (2006-03-21): first version
- David Joyner (2008-06): fixed kernel and image to return a group, instead of a string.

EXAMPLES:

```
sage: G = CyclicPermutationGroup(4)
sage: H = DihedralGroup(4)
sage: g = G([(1,2,3,4)])
sage: phi = PermutationGroupMorphism_im_gens(G, H, map(H, G.gens()))
sage: phi.image(G)
Subgroup of (Dihedral group of order 8 as a permutation group) generated by [(1,2,3,4)]
sage: phi.kernel()
```

```
Subgroup of (Cyclic group of order 4 as a permutation group) generated by [()]

sage: phi.image(g)

(1,2,3,4)

sage: phi(g)

(1,2,3,4)

sage: phi.codomain()

Dihedral group of order 8 as a permutation group

sage: phi.codomain()

Dihedral group of order 8 as a permutation group

sage: phi.domain()

Cyclic group of order 4 as a permutation group
```

$\textbf{class} \texttt{ sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism}$

Bases: sage.categories.morphism.Morphism

A set-theoretic map between PermutationGroups.

image(J)

J must be a subgroup of G. Computes the subgroup of H which is the image of J.

EXAMPLES:

kernel()

Returns the kernel of this homomorphism as a permutation group.

EXAMPLES:

```
sage: G = CyclicPermutationGroup(4)
sage: H = DihedralGroup(4)
sage: g = G([(1,2,3,4)])
sage: phi = PermutationGroupMorphism_im_gens(G, H, [1])
sage: phi.kernel()
Subgroup of (Cyclic group of order 4 as a permutation group) generated by [(1, \( \to 2,3,4) \)]
```

```
sage: G = PSL(2,7)
sage: D = G.direct_product(G)
```

```
sage: H = D[0]
sage: pr1 = D[3]
sage: G.is_isomorphic(pr1.kernel())
True
```

 $\begin{tabular}{ll} \textbf{class} & \texttt{sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism_from_gap} (G, \\ & H, \\ \end{tabular}$

Bases: sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism

This is a Python trick to allow Sage programmers to create a group homomorphism using GAP using very general constructions. An example of its usage is in the direct_product instance method of the Permutation-Group_generic class in permgroup.py.

Basic syntax:

PermutationGroupMorphism_from_gap(domain_group, range_group,'phi:=gap_hom_command;','phi') And don't forget the line: from sage.groups.perm_gps.permgroup_morphism import PermutationGroupMorphism_from_gap in your program.

EXAMPLES:

```
sage: from sage.groups.perm_gps.permgroup_morphism import_
    →PermutationGroupMorphism_from_gap
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: H = G.subgroup([G([(1,2,3,4)])])
sage: PermutationGroupMorphism_from_gap(H, G, gap.Identity)
Permutation group morphism:
    From: Subgroup of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)])
    →generated by [(1,2,3,4)]
    To: Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]
    Defn: Identity
```

class sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism_id
 Bases: sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism

class sage.groups.perm_gps.permgroup_morphism.PermutationGroupMorphism_im_gens (G, H,

gens=None)

gap_hom)

Bases: sage.groups.perm gps.permgroup morphism.PermutationGroupMorphism

Some python code for wrapping GAP's GroupHomomorphismByImages function but only for permutation groups. Can be expensive if G is large. Returns "fail" if gens does not generate self or if the map does not extend to a group homomorphism, self - other.

EXAMPLES:

```
sage: G = CyclicPermutationGroup(4)
sage: H = DihedralGroup(4)
sage: phi = PermutationGroupMorphism_im_gens(G, H, map(H, G.gens())); phi
Permutation group morphism:
  From: Cyclic group of order 4 as a permutation group
  To: Dihedral group of order 8 as a permutation group
  Defn: [(1,2,3,4)] -> [(1,2,3,4)]
sage: g = G([(1,3),(2,4)]); g
(1,3)(2,4)
sage: phi(g)
(1,3)(2,4)
```

```
sage: images = ((4,3,2,1),)
sage: phi = PermutationGroupMorphism_im_gens(G, G, images)
sage: g = G([(1,2,3,4)]); g
(1,2,3,4)
sage: phi(g)
(1,4,3,2)
```

AUTHORS:

• David Joyner (2006-02)

 $\verb|sage.groups.perm_gps.permgroup_morphism.is_PermutationGroupMorphism| (f) \\ Returns True if the argument f is a PermutationGroupMorphism.$

EXAMPLES:

```
sage: from sage.groups.perm_gps.permgroup_morphism import is_
    →PermutationGroupMorphism
sage: G = CyclicPermutationGroup(4)
sage: H = DihedralGroup(4)
sage: phi = PermutationGroupMorphism_im_gens(G, H, map(H, G.gens()))
sage: is_PermutationGroupMorphism(phi)
True
```

24.6 Rubik's cube group functions

Note: "Rubiks cube" is trademarked. We shall omit the trademark symbol below for simplicity.

NOTATION:

B denotes a clockwise quarter turn of the back face, D denotes a clockwise quarter turn of the down face, and similarly for F (front), L (left), R (right), and U (up). Products of moves are read right to left, so for example, $R \cdot U$ means move U first and then R.

See CubeGroup.parse() for all possible input notations.

The "Singmaster notation":

- moves: U, D, R, L, F, B as in the diagram below,
- corners: xyz means the facet is on face x (in R, F, L, U, D, B) and the clockwise rotation of the corner sends x y z
- edges: xy means the facet is on face x and a flip of the edge sends x-y.

AUTHORS:

- David Joyner (2006-10-21): first version
- David Joyner (2007-05): changed faces, added legal and solve
- David Joyner(2007-06): added plotting functions
- David Joyner (2007, 2008): colors corrected, "solve" rewritten (again),typos fixed.
- Robert Miller (2007, 2008): editing, cleaned up display2d
- Robert Bradshaw (2007, 2008): RubiksCube object, 3d plotting.
- David Joyner (2007-09): rewrote docstring for CubeGroup's "solve".
- Robert Bradshaw (2007-09): Versatile parse function for all input types.
- Robert Bradshaw (2007-11): Cleanup.

REFERENCES:

- Cameron, P., Permutation Groups. New York: Cambridge University Press, 1999.
- Wielandt, H., Finite Permutation Groups. New York: Academic Press, 1964.
- Dixon, J. and Mortimer, B., Permutation Groups, Springer-Verlag, Berlin/New York, 1996.
- Joyner, D., Adventures in Group Theory, Johns Hopkins Univ Press, 2002.

```
class sage.groups.perm_gps.cubegroup.CubeGroup
Bases: sage.groups.perm_gps.permgroup.PermutationGroup_generic
```

A python class to help compute Rubik's cube group actions.

Note: This group is also available via groups.permutation.RubiksCube().

EXAMPLES:

If G denotes the cube group then it may be regarded as a subgroup of SymmetricGroup (48), where the 48 facets are labeled as follows.

```
| 46 47 48 | +-----+
```

```
sage: rubik
The Rubik's cube group with generators R, L, F, B, U, D in SymmetricGroup(48).
```

B()

Return the generator B in Singmaster notation.

EXAMPLES:

```
sage: rubik = CubeGroup()
sage: rubik.B()
(1,14,48,27)(2,12,47,29)(3,9,46,32)(33,35,40,38)(34,37,39,36)
```

D()

Return the generator D in Singmaster notation.

EXAMPLES:

```
sage: rubik = CubeGroup()
sage: rubik.D()
(14,22,30,38) (15,23,31,39) (16,24,32,40) (41,43,48,46) (42,45,47,44)
```

F()

Return the generator F in Singmaster notation.

EXAMPLES:

```
sage: rubik = CubeGroup()
sage: rubik.F()
(6,25,43,16)(7,28,42,13)(8,30,41,11)(17,19,24,22)(18,21,23,20)
```

L()

Return the generator L in Singmaster notation.

EXAMPLES:

```
sage: rubik = CubeGroup()
sage: rubik.L()
(1,17,41,40)(4,20,44,37)(6,22,46,35)(9,11,16,14)(10,13,15,12)
```

R()

Return the generator R in Singmaster notation.

EXAMPLES:

```
sage: rubik = CubeGroup()
sage: rubik.R()
(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28)
```

U()

Return the generator U in Singmaster notation.

```
sage: rubik = CubeGroup()
sage: rubik.U()
(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)
```

display2d(mv)

Print the 2d representation of self.

EXAMPLES:

faces (mv)

Return the dictionary of faces created by the effect of the move mv, which is a string of the form $X^a * Y^b * ...$, where X, Y, ... are in $\{R, L, F, B, U, D\}$ and a, b, ... are integers. We call this ordering of the faces the "BDFLRU, L2R, T2B ordering".

EXAMPLES:

```
sage: rubik = CubeGroup()
```

Here is the dictionary of the solved state:

```
sage: sorted(rubik.faces("").items())
[('back', [[33, 34, 35], [36, 0, 37], [38, 39, 40]]),
  ('down', [[41, 42, 43], [44, 0, 45], [46, 47, 48]]),
  ('front', [[17, 18, 19], [20, 0, 21], [22, 23, 24]]),
  ('left', [[9, 10, 11], [12, 0, 13], [14, 15, 16]]),
  ('right', [[25, 26, 27], [28, 0, 29], [30, 31, 32]]),
  ('up', [[1, 2, 3], [4, 0, 5], [6, 7, 8]])]
```

Now the dictionary of the state obtained after making the move R followed by L:

```
sage: sorted(rubik.faces("R*U").items())
[('back', [[48, 26, 27], [45, 0, 37], [43, 39, 40]]),
  ('down', [[41, 42, 11], [44, 0, 21], [46, 47, 24]]),
  ('front', [[9, 10, 8], [20, 0, 7], [22, 23, 6]]),
  ('left', [[33, 34, 35], [12, 0, 13], [14, 15, 16]]),
  ('right', [[19, 29, 32], [18, 0, 31], [17, 28, 30]]),
  ('up', [[3, 5, 38], [2, 0, 36], [1, 4, 25]])]
```

facets (g=None)

Return the set of facets on which the group acts. This function is a "constant".

```
sage: rubik = CubeGroup()
sage: rubik.facets() == list(range(1,49))
True
```

gen_names()

Return the names of the generators.

EXAMPLES:

```
sage: rubik = CubeGroup()
sage: rubik.gen_names()
['B', 'D', 'F', 'L', 'R', 'U']
```

legal (state, mode='quiet')

Return 1 (true) if the dictionary state (in the same format as returned by the faces method) represents a legal position (or state) of the Rubik's cube or 0 (false) otherwise.

EXAMPLES:

```
sage: rubik = CubeGroup()
sage: r0 = rubik.faces("")
sage: r1 = {'back': [[33, 34, 35], [36, 0, 37], [38, 39, 40]], 'down': [[41, 42, 43], [44, 0, 45], [46, 47, 48]], 'front': [[17, 18, 19], [20, 0, 21], 42, 43], 'left': [[9, 10, 11], [12, 0, 13], [14, 15, 16]], 'right': 40, 41, 42, 43], 'left': [[9, 10, 11], [12, 0, 13], [14, 15, 16]], 'right': 40, 42, 43], 'left': [[9, 10, 11], [12, 0, 13], [14, 15, 16]], 'right': 40, 42, 43], 'left': [[9, 10, 11], [12, 0, 13], [14, 15, 16]], 'right': 40, 42, 43], 'left': [[9, 10, 11], [12, 0, 13], [14, 15, 16]], 'right': 40, 43, 43], 'left': 41, 43, 43, 43, 43], 'left': 41, 43, 43, 43, 43], 'left': 41, 43, 43, 43, 43, 4
```

move(mv)

Return the group element and the reordered list of facets, as moved by the list mv (read left-to-right)

INPUT:

• mv - A string of the form Xa*Yb*..., where X, Y, ... are in R, L, F, B, U, D and a, b, ... are integers.

EXAMPLES:

```
sage: rubik = CubeGroup()
sage: rubik.move("")[0]
()
sage: rubik.move("R")[0]
(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28)
sage: rubik.R()
(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28)
```

parse (mv, check=True)

This function allows one to create the permutation group element from a variety of formats.

INPUT:

- my Can one of the following:
 - list list of facets (as returned by self.facets())
 - dict list of faces (as returned by self.faces())

- str either cycle notation (passed to GAP) or a product of generators or Singmaster notation
- perm group element returned as an element of self
- check check if the input is valid

EXAMPLES:

```
sage: C = CubeGroup()
sage: C.parse(list(range(1,49)))
()
sage: g = C.parse("L"); g
(1,17,41,40) (4,20,44,37) (6,22,46,35) (9,11,16,14) (10,13,15,12)
sage: C.parse(str(g)) == g
True
sage: facets = C.facets(g); facets
[17, 2, 3, 20, 5, 22, 7, 8, 11, 13, 16, 10, 15, 9, 12, 14, 41, 18, 19, 44, 21,
→ 46, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 6, 36, 4, 38, 39, 1,...
\rightarrow40, 42, 43, 37, 45, 35, 47, 48]
sage: C.parse(facets)
(1,17,41,40) (4,20,44,37) (6,22,46,35) (9,11,16,14) (10,13,15,12)
sage: C.parse(facets) == q
True
sage: faces = C.faces("L"); faces
{'back': [[33, 34, 6], [36, 0, 4], [38, 39, 1]],
 'down': [[40, 42, 43], [37, 0, 45], [35, 47, 48]],
 'front': [[41, 18, 19], [44, 0, 21], [46, 23, 24]],
 'left': [[11, 13, 16], [10, 0, 15], [9, 12, 14]],
 'right': [[25, 26, 27], [28, 0, 29], [30, 31, 32]],
'up': [[17, 2, 3], [20, 0, 5], [22, 7, 8]]}
sage: C.parse(faces) == C.parse("L")
True
sage: C.parse("L' R2") == C.parse("L^(-1) *R^2")
True
sage: C.parse("L' R2")
(1,40,41,17) (3,43) (4,37,44,20) (5,45) (6,35,46,22) (8,48) (9,14,16,11) (10,12,15,12)
\rightarrow13) (19,38) (21,36) (24,33) (25,32) (26,31) (27,30) (28,29)
sage: C.parse("L^4")
()
sage: C.parse("L^(-1)*R")
(1, 40, 41, 17) (3, 38, 43, 19) (4, 37, 44, 20) (5, 36, 45, 21) (6, 35, 46, 22) (8, 33, 48, 24) (9, 14, 12)
\hookrightarrow16,11) (10,12,15,13) (25,27,32,30) (26,29,31,28)
```

plot3d_cube (mv, title=True)

Displays F, U, R faces of the cube after the given move mv. Mostly included for the purpose of drawing pictures and checking moves.

INPUT:

- mv − A string in the Singmaster notation
- title (Default: True) Display the title information

The first one below is "superflip+4 spot" (in 26q* moves) and the second one is the superflip (in 20f* moves). Type show(P) to view them.

EXAMPLES:

plot_cube (mv, title=True, colors=[(1, 0.63, 1), (1, 1, 0), (1, 0, 0), (0, 1, 0), (1, 0.6, 0.3), (0, 0, 1)])Input the move mv, as a string in the Singmaster notation, and output the 2D plot of the cube in that state.

Type P. show () to display any of the plots below.

EXAMPLES:

repr2d(mv)

Displays a 2D map of the Rubik's cube after the move mv has been made. Nothing is returned.

EXAMPLES:

You can see the right face has been rotated but not the left face.

```
solve (state, algorithm='default')
```

Solves the cube in the state, given as a dictionary as in legal. See the solve method of the RubiksCube class for more details.

This may use GAP's EpimorphismFromFreeGroup and PreImagesRepresentative as explained below, if 'gap' is passed in as the algorithm.

This algorithm

- 1. constructs the free group on 6 generators then computes a reasonable set of relations which they satisfy
- 2. computes a homomorphism from the cube group to this free group quotient
- 3. takes the cube position, regarded as a group element, and maps it over to the free group quotient
- 4. using those relations and tricks from combinatorial group theory (stabilizer chains), solves the "word problem" for that element.
- 5. uses python string parsing to rewrite that in cube notation.

The Rubik's cube group has about 4.3×10^{19} elements, so this process is time-consuming. See http://www.gap-system.org/Doc/Examples/rubik.html for an interesting discussion of some GAP code analyzing the Rubik's cube.

EXAMPLES:

```
sage: rubik = CubeGroup()
sage: state = rubik.faces("R")
sage: rubik.solve(state)
'R'
sage: state = rubik.faces("R*U")
sage: rubik.solve(state, algorithm='gap') # long time
'R*U'
```

You can also check this another (but similar) way using the word_problem method (eg, G = rubik.group(); g = G("(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28)"); $g.word_problem([b,d,f,l,r,u])$, though the output will be less intuitive).

```
class sage.groups.perm_gps.cubegroup.RubiksCube (state=None, history=[], colors=[(1, 0.63, 1), (1, 1, 0), (1, 0, 0), (0, 1, 0), (1, 0.6, 0.3), (0, 0, 1)])
```

Bases: sage.structure.sage_object.SageObject

The Rubik's cube (in a given state).

EXAMPLES:

```
sage: C = RubiksCube().move("R U R'")
sage: C.show3d()
```

cubie (*size*, *gap*, *x*, *y*, *z*, *colors*, *stickers=True*)

Return the cubic at (x, y, z).

INPUT:

- size The size of the cubie
- gap The gap between cubies
- x, y, z The position of the cubie
- colors The list of colors
- stickers (Default True) Boolean to display stickers

EXAMPLES:

```
sage: C = RubiksCube("R*U")
sage: C.cubie(0.15, 0.025, 0,0,0, C.colors*3)
Graphics3d Object
```

facets()

Return the facets of self.

EXAMPLES:

```
sage: C = RubiksCube("R*U")
sage: C.facets()
[3, 5, 38, 2, 36, 1, 4, 25, 33, 34, 35, 12, 13, 14, 15, 16, 9, 10,
8, 20, 7, 22, 23, 6, 19, 29, 32, 18, 31, 17, 28, 30, 48, 26, 27,
45, 37, 43, 39, 40, 41, 42, 11, 44, 21, 46, 47, 24]
```

move(g)

Move the Rubik's cube by g.

EXAMPLES:

```
sage: RubiksCube().move("R*U") == RubiksCube("R*U")
True
```

plot()

Return a plot of self.

EXAMPLES:

```
sage: C = RubiksCube("R*U")
sage: C.plot()
Graphics object consisting of 55 graphics primitives
```

plot3d (stickers=True)

Return a 3D plot of self.

EXAMPLES:

```
sage: C = RubiksCube("R*U")
sage: C.plot3d()
Graphics3d Object
```

scramble (moves=30)

Scramble the Rubik's cube.

EXAMPLES:

show()

Show a plot of self.

EXAMPLES:

```
sage: C = RubiksCube("R*U")
sage: C.show()
```

show3d()

Show a 3D plot of self.

EXAMPLES:

```
sage: C = RubiksCube("R*U")
sage: C.show3d()
```

solve (algorithm='hybrid', timeout=15)

Solve the Rubik's cube.

INPUT:

- algorithm must be one of the following:
 - hybrid try kociemba for timeout seconds, then dietz
 - kociemba Use Dik T. Winter's program (reasonable speed, few moves)
 - dietz Use Eric Dietz's cubex program (fast but lots of moves)
 - optimal Use Michael Reid's optimal program (may take a long time)
 - gap Use GAP word solution (can be slow)

```
sage: C = RubiksCube("R U F L B D")
sage: C.solve()
'R U F L B D'
```

Dietz's program is much faster, but may give highly non-optimal solutions:

```
sage: s = C.solve('dietz'); s
"U' L' L' U L U' L U D L L D' L' D L' D' L D L' U' L D' L' U L' B' U' L' U B

→L D L D' U' L' U L B L B' L' U L U' L' F' L' F L F' L' D' L' D D L D'

→B L B' L B' L B F' L F F B' L F' B D' D' L D B' B' L' D' B U' U' L' B' D' F

→' F' L D F'"

sage: C2 = RubiksCube(s)

sage: C == C2
True
```

undo()

Undo the last move of the Rubik's cube.

EXAMPLES:

```
sage: C = RubiksCube()
sage: D = C.move("R*U")
sage: D.undo() == C
True
```

Return the color the facet has in the solved state.

EXAMPLES:

```
sage: from sage.groups.perm_gps.cubegroup import color_of_square
sage: color_of_square(41)
'blue'
```

 $\verb|sage.groups.perm_gps.cubegroup.create_poly| (\textit{face}, color) \\$

Create the polygon given by face with color color.

EXAMPLES:

```
sage: from sage.groups.perm_gps.cubegroup import create_poly, red
sage: create_poly('ur', red)
Graphics object consisting of 1 graphics primitive
```

sage.groups.perm_gps.cubegroup.cubie_centers(label)

Return the cubic center list element given by label.

EXAMPLES:

```
sage: from sage.groups.perm_gps.cubegroup import cubie_centers
sage: cubie_centers(3)
[0, 2, 2]
```

sage.groups.perm_gps.cubegroup.cubie_colors(label, state0)

Return the color of the cubic given by label at state0.

```
sage: from sage.groups.perm_gps.cubegroup import cubie_colors
sage: G = CubeGroup()
sage: g = G.parse("R*U")
sage: cubie_colors(3, G.facets(g))
[(1, 1, 1), (1, 0.63, 1), (1, 0.6, 0.3)]
```

sage.groups.perm_gps.cubegroup.cubie_faces()

This provides a map from the 6 faces of the 27 cubies to the 48 facets of the larger cube.

-1,-1,-1 is left, top, front

EXAMPLES:

```
sage: from sage.groups.perm_gps.cubegroup import cubie_faces
sage: sorted(cubie_faces().items())
[((-1, -1, -1), [6, 17, 11, 0, 0, 0]),
((-1, -1, 0), [4, 0, 10, 0, 0, 0]),
 ((-1, -1, 1), [1, 0, 9, 0, 35, 0]),
 ((-1, 0, -1), [0, 20, 13, 0, 0, 0]),
 ((-1, 0, 0), [0, 0, -5, 0, 0, 0]),
 ((-1, 0, 1), [0, 0, 12, 0, 37, 0]),
 ((-1, 1, -1), [0, 22, 16, 41, 0, 0]),
 ((-1, 1, 0), [0, 0, 15, 44, 0, 0]),
 ((-1, 1, 1), [0, 0, 14, 46, 40, 0]),
 ((0, -1, -1), [7, 18, 0, 0, 0, 0]),
 ((0, -1, 0), [-6, 0, 0, 0, 0, 0]),
 ((0, -1, 1), [2, 0, 0, 0, 34, 0]),
 ((0, 0, -1), [0, -4, 0, 0, 0, 0]),
 ((0, 0, 0), [0, 0, 0, 0, 0, 0]),
 ((0, 0, 1), [0, 0, 0, 0, -2, 0]),
 ((0, 1, -1), [0, 23, 0, 42, 0, 0]),
 ((0, 1, 0), [0, 0, 0, -1, 0, 0]),
 ((0, 1, 1), [0, 0, 0, 47, 39, 0]),
 ((1, -1, -1), [8, 19, 0, 0, 0, 25]),
 ((1, -1, 0), [5, 0, 0, 0, 0, 26]),
 ((1, -1, 1), [3, 0, 0, 0, 33, 27]),
 ((1, 0, -1), [0, 21, 0, 0, 0, 28]),
 ((1, 0, 0), [0, 0, 0, 0, 0, -3]),
 ((1, 0, 1), [0, 0, 0, 0, 36, 29]),
 ((1, 1, -1), [0, 24, 0, 43, 0, 30]),
 ((1, 1, 0), [0, 0, 0, 45, 0, 31]),
 ((1, 1, 1), [0, 0, 0, 48, 38, 32])]
```

 $\verb|sage.groups.perm_gps.cubegroup.index2singmaster| (facet)$

Translate index used (eg, 43) to Singmaster facet notation (eg, fdr).

EXAMPLES:

```
sage: from sage.groups.perm_gps.cubegroup import index2singmaster
sage: index2singmaster(41)
'dlf'
```

sage.groups.perm_gps.cubegroup.inv_list(lst)

Input a list of ints $1, \ldots, m$ (in any order), outputs inverse perm.

```
sage: from sage.groups.perm_gps.cubegroup import inv_list
sage: L = [2,3,1]
sage: inv_list(L)
[3, 1, 2]
```

sage.groups.perm_gps.cubegroup.plot3d_cubie (cnt, clrs)

Plot the front, up and right face of a cubic centered at cnt and rgbcolors given by clrs (in the order FUR).

Type P. show () to view.

EXAMPLES:

```
sage: from sage.groups.perm_gps.cubegroup import plot3d_cubie, blue, red, green
sage: clrF = blue; clrU = red; clrR = green
sage: P = plot3d_cubie([1/2,1/2,1/2],[clrF,clrU,clrR])
```

sage.groups.perm_gps.cubegroup.polygon_plot3d(points, tilt=30, turn=30, **kwargs)

Plot a polygon viewed from an angle determined by tilt, turn, and vertices points.

Warning: The ordering of the points is important to get "correct" and if you add several of these plots together, the one added first is also drawn first (ie, addition of Graphics objects is not commutative).

The following example produced a green-colored square with vertices at the points indicated.

EXAMPLES:

```
sage: from sage.groups.perm_gps.cubegroup import polygon_plot3d,green
sage: P = polygon_plot3d([[1,3,1],[2,3,1],[2,3,2],[1,3,2],[1,3,1]],rgbcolor=green)
```

sage.groups.perm_gps.cubegroup.rotation_list(tilt, turn)

Return a list $[\sin(\theta), \sin(\phi), \cos(\theta), \cos(\phi)]$ of rotations where θ is tilt and ϕ is turn.

EXAMPLES:

```
sage: from sage.groups.perm_gps.cubegroup import rotation_list
sage: rotation_list(30, 45)
[0.499999999999994, 0.7071067811865475, 0.8660254037844387, 0.7071067811865476]
```

 $\verb|sage.groups.perm_gps.cubegroup.xproj|(x, y, z, r)|$

Return the x-projection of (x, y, z) rotated by r.

EXAMPLES:

```
sage: from sage.groups.perm_gps.cubegroup import rotation_list, xproj
sage: rot = rotation_list(30, 45)
sage: xproj(1,2,3,rot)
0.6123724356957945
```

sage.groups.perm_gps.cubegroup.yproj(x, y, z, r)

Return the y-projection of (x, y, z) rotated by r.

```
sage: from sage.groups.perm_gps.cubegroup import rotation_list, yproj
sage: rot = rotation_list(30, 45)
sage: yproj(1,2,3,rot)
1.378497416975604
```

24.7 Conjugacy Classes Of The Symmetric Group

AUTHORS:

• Vincent Delecroix, Travis Scrimshaw (2014-11-23)

part)

 $\label{lem:bases:sage:groups:perm_gps.symgp_conjugacy_class.SymmetricGroupConjugacyClassMixin, sage.groups.conjugacy_classes.ConjugacyClass$

A conjugacy class of the permutations of n.

INPUT:

- P the permutations of n
- part a partition or an element of P

set (

The set of all elements in the conjugacy class self.

EXAMPLES:

```
sage: G = Permutations(3)
sage: g = G([2, 1, 3])
sage: C = G.conjugacy_class(g)
sage: S = [[1, 3, 2], [2, 1, 3], [3, 2, 1]]
sage: C.set() == Set(G(x) for x in S)
True
```

class sage.groups.perm_gps.symgp_conjugacy_class.SymmetricGroupConjugacyClass(group,

part)

 $\label{eq:bases: bases: sage.groups.perm_gps.symgp_conjugacy_class.SymmetricGroupConjugacyClassMixin, sage.groups.conjugacy_classes.ConjugacyClassGAP$

A conjugacy class of the symmetric group.

INPUT:

- group the symmetric group
- part a partition or an element of group

set ()

The set of all elements in the conjugacy class self.

EXAMPLES:

```
sage: G = SymmetricGroup(3)
sage: g = G((1,2))
sage: C = G.conjugacy_class(g)
sage: S = [(2,3), (1,2), (1,3)]
sage: C.set() == Set(G(x) for x in S)
True
```

Bases: object

Mixin class which contains methods for conjugacy classes of the symmetric group.

partition()

Return the partition of self.

EXAMPLES:

```
sage: G = SymmetricGroup(5)
sage: g = G([(1,2), (3,4,5)])
sage: C = G.conjugacy_class(g)
```

```
\verb|sage.groups.perm_gps.symgp_conjugacy_class.conjugacy_class_iterator| (part, S=None)
```

Return an iterator over the conjugacy class associated to the partition part.

The elements are given as a list of tuples, each tuple being a cycle.

INPUT:

- part partition
- S (optional, default: $\{1, 2, \dots, n\}$, where n is the size of part) a set

OUTPUT:

An iterator over the conjugacy class consisting of all permutations of the set S whose cycle type is part.

EXAMPLES:

In order to get permutations, one just has to wrap:

```
sage: S = SymmetricGroup(5)
sage: for p in conjugacy_class_iterator([3,2]): print(S(p))
(1,2)(3,4,5)
(1,2)(3,5,4)
(1,3)(2,4,5)
(1,3)(2,5,4)
...
(1,4,2)(3,5)
(1,2,3)(4,5)
(1,2,3)(4,5)
```

Check that the number of elements is the number of elements in the conjugacy class:

```
sage: s = lambda p: sum(1 for _ in conjugacy_class_iterator(p))
sage: all(s(p) == p.conjugacy_class_size() for p in Partitions(5))
True
```

It is also possible to specify any underlying set:

```
sage: it = conjugacy_class_iterator([2,2,2], 'abcdef')
sage: next(it)
[('a', 'c'), ('b', 'e'), ('d', 'f')]
sage: next(it)
[('a', 'c'), ('b', 'd'), ('e', 'f')]
```

sage.groups.perm_gps.symgp_conjugacy_class.**default_representative** (part, G) Construct the default representative for the conjugacy class of cycle type part of a symmetric group G.

Let λ be a partition of n. We pick a representative by

$$(1,2,\ldots,\lambda_1)(\lambda_1+1,\ldots,\lambda_1+\lambda_2)(\lambda_1+\lambda_2+\cdots+\lambda_{\ell-1},\ldots,n),$$

where ℓ is the length (or number of parts) of λ .

INPUT:

- part partition
- G a symmetric group

CHAPTER

TWENTYFIVE

MATRIX AND AFFINE GROUPS

25.1 Library of Interesting Groups

Type groups.matrix.<tab> to access examples of groups implemented as permutation groups.

25.2 Base classes for Matrix Groups

Loading, saving, ... works:

```
sage: G = GL(2,5); G
General Linear Group of degree 2 over Finite Field of size 5
sage: TestSuite(G).run()

sage: g = G.1; g
[4 1]
[4 0]
sage: TestSuite(g).run()
```

We test that trac ticket #9437 is fixed:

```
sage: len(list(SL(2, Zmod(4))))
48
```

AUTHORS:

- · William Stein: initial version
- David Joyner (2006-03-15): degree, base_ring, _contains_, list, random, order methods; examples
- William Stein (2006-12): rewrite
- David Joyner (2007-12): Added invariant_generators (with Martin Albrecht and Simon King)
- David Joyner (2008-08): Added module_composition_factors (interface to GAP's MeatAxe implementation) and as_permutation_group (returns isomorphic PermutationGroup).
- Simon King (2010-05): Improve invariant_generators by using GAP for the construction of the Reynolds operator in Singular.

```
class sage.groups.matrix_gps.matrix_group.MatrixGroup_base
    Bases: sage.groups.group.Group
```

Base class for all matrix groups.

This base class just holds the base ring, but not the degree. So it can be a base for affine groups where the natural matrix is larger than the degree of the affine group. Makes no assumption about the group except that its elements have a matrix() method.

as_matrix_group()

Return a new matrix group from the generators.

This will throw away any extra structure (encoded in a derived class) that a group of special matrices has.

EXAMPLES:

```
sage: G = SU(4, GF(5))
sage: G.as_matrix_group()
Matrix group over Finite Field in a of size 5^2 with 2 generators (
            0 0
                        0] [ 1 0 4*a + 3
      а
                                                             01
      0 \ 2*a + 3
                   0
                            0] [
                                      1
                                              0
                                                             01
      0 	 0 	 4*a + 1
                           0] [
                                      0 \ 2*a + 4
                                                     0
                                                             11
ſ
      \cap
             0
                   0
                          3*a], [
                                      0.3*a + 1
                                                     0
                                                             0.1
Γ
sage: G = GO(3, GF(5))
sage: G.as_matrix_group()
Matrix group over Finite Field of size 5 with 2 generators (
[2 0 0] [0 1 0]
[0 3 0] [1 4 4]
[0 0 1], [0 2 1]
```

Bases: sage.groups.libgap_mixin.GroupMixinLibGAP, sage.groups.matrix_gps.matrix_group.MatrixGroup_generic, sage.groups.libgap_wrapper.ParentLibGAP

Base class for matrix groups that implements GAP interface.

INPUT:

- degree integer. The degree (matrix size) of the matrix group.
- base_ring ring. The base ring of the matrices.
- libgap_group the defining libgap group.
- ullet ambient A derived class of ParentLibGAP or None (default). The ambient class if libgap_group has been defined as a subgroup.

```
sage: from sage.groups.matrix_gps.matrix_group import MatrixGroup_gap
sage: MatrixGroup_gap(2, ZZ, libgap.eval('GL(2, Integers)'))
Matrix group over Integer Ring with 3 generators (
[0 1] [-1 0] [1 1]
[1 0], [0 1], [0 1]
)
```

Check that the slowness of GAP iterators and enumerators for matrix groups (cf. http://tracker.gap-system.org/issues/369) has been fixed:

```
sage: i = iter(GL(6,5))
sage: [ next(i) for j in range(8) ]

(continues on next page)
```

```
[1 0 0 0 0 0] [4 0 0 0 0 1] [0 4 0 0 0 0] [0 4 0 0 0 0]
[0 1 0 0 0 0] [4 0 0 0 0 0] [0 0 4 0 0 0] [0 0 4 0 0 0]
[0\ 0\ 1\ 0\ 0\ 0] \quad [0\ 4\ 0\ 0\ 0\ 0] \quad [0\ 0\ 0\ 4\ 0\ 0] \quad [0\ 0\ 0\ 4\ 0\ 0]
[0 0 0 1 0 0] [0 0 4 0 0 0]
                                     [0 0 0 0 4 0]
                                                        [0 0 0 0 4 0]
[0 0 0 0 1 0]
                  [0 0 0 4 0 0]
                                     [0 0 0 0 0 4]
                                                        [0 0 0 0 0 4]
[0\ 0\ 0\ 0\ 0\ 1], [0\ 0\ 0\ 4\ 0], [1\ 4\ 0\ 0\ 0\ 0], [2\ 4\ 0\ 0\ 0\ 0],
 [3 \ 0 \ 0 \ 0 \ 0 \ 1] \quad [4 \ 0 \ 0 \ 1 \ 3 \ 3] \quad [0 \ 0 \ 0 \ 2 \ 0 \ 0] \quad [1 \ 0 \ 0 \ 4 \ 4] 
 [3 \ 0 \ 0 \ 0 \ 0 \ 0] \quad [4 \ 0 \ 0 \ 0 \ 3 \ 3] \quad [0 \ 0 \ 0 \ 0 \ 4 \ 0] \quad [1 \ 0 \ 0 \ 0 \ 4] 
 [0 \ 0 \ 4 \ 0 \ 0 \ 0] \quad [3 \ 0 \ 0 \ 0 \ 0] \quad [1 \ 4 \ 0 \ 0 \ 0 \ 0] \quad [0 \ 1 \ 0 \ 0 \ 0 \ 0] 
[0\ 0\ 0\ 4\ 0\ 0] \quad [0\ 4\ 0\ 0\ 0\ 0] \quad [0\ 2\ 4\ 0\ 0\ 0] \quad [0\ 0\ 1\ 0\ 0\ 0]
[4 0 0 0 2 3], [2 0 3 4 4 4], [0 0 1 4 0 0], [0 0 0 1 0 0]
```

And the same for listing the group elements, as well as few other issues:

```
sage: F = GF(3)
sage: gens = [matrix(F,2, [1,0, -1,1]), matrix(F, 2, [1,1,0,1])]
sage: G = MatrixGroup(gens)
sage: G.cardinality()
24
sage: v = G.list()
sage: len(v)
24
sage: v[:5]
(
[0 1] [0 1] [0 1] [0 2] [0 2]
[2 0], [2 1], [2 2], [1 0], [1 1]
)
sage: all(g in G for g in G.list())
```

An example over a ring (see trac ticket #5241):

```
sage: M1 = matrix(ZZ,2,[[-1,0],[0,1]])
sage: M2 = matrix(ZZ,2,[[-1,0],[0,-1]])
sage: M3 = matrix(ZZ,2,[[-1,0],[0,-1]])
sage: MG = MatrixGroup([M1, M2, M3])
sage: MG.list()
(
[-1  0]  [-1  0]  [1  0]  [1  0]
[  0  -1],  [  0  1],  [  0  -1],  [  0  1]
)
sage: MG.list()[1]
[-1   0]
[  0   1]
sage: MG.list()[1].parent()
Matrix group over Integer Ring with 3 generators (
[-1  0]  [  1   0]  [-1   0]
[  0   1],  [  0  -1],  [  0  -1]
)
```

An example over a field (see trac ticket #10515):

```
sage: gens = [matrix(QQ,2,[1,0,0,1])]
sage: MatrixGroup(gens).list()
```

```
(
[1 0]
[0 1]
)
```

Another example over a ring (see trac ticket #9437):

```
sage: len(SL(2, Zmod(4)).list())
48
```

An error is raised if the group is not finite:

```
sage: GL(2,ZZ).list()
Traceback (most recent call last):
...
NotImplementedError: group must be finite
```

Element

alias of MatrixGroupElement_gap

structure_description (G, latex=False)

Return a string that tries to describe the structure of G.

This methods wraps GAP's StructureDescription method.

Requires the optional database_gap package.

For full details, including the form of the returned string and the algorithm to build it, see GAP's documentation.

INPUT:

• latex – a boolean (default: False). If True return a LaTeX formatted string.

OUTPUT:

· string

Warning: From GAP's documentation: The string returned by StructureDescription is **not** an isomorphism invariant: non-isomorphic groups can have the same string value, and two isomorphic groups in different representations can produce different strings.

EXAMPLES:

This method is mainly intended for small groups or groups with few normal subgroups. Even then there are some surprises:

```
sage: D3 = DihedralGroup(3)
sage: D3.structure_description() # optional - database_gap
'S3'
```

We use the Sage notation for the degree of dihedral groups:

```
sage: D4 = DihedralGroup(4)
sage: D4.structure_description() # optional - database_gap
'D4'
```

Works for finitely presented groups (trac ticket #17573):

```
sage: F.<x, y> = FreeGroup()
sage: G=F / [x^2*y^-1, x^3*y^2, x*y*x^-1*y^-1]
sage: G.structure_description() # optional - database_gap
'C7'
```

And matrix groups (trac ticket #17573):

```
sage: groups.matrix.GL(4,2).structure_description() # optional - database_gap
'A8'
```

class sage.groups.matrix_gps.matrix_group.MatrixGroup_generic(degree,

base_ring, category=None)

Bases: sage.groups.matrix_gps.matrix_group.MatrixGroup_base

Base class for matrix groups over generic base rings

You should not use this class directly. Instead, use one of the more specialized derived classes.

INPUT:

- degree integer. The degree (matrix size) of the matrix group.
- base_ring ring. The base ring of the matrices.

Element

alias of MatrixGroupElement_generic

degree()

Return the degree of this matrix group.

OUTPUT:

Integer. The size (number of rows equals number of columns) of the matrices.

EXAMPLES:

```
sage: SU(5,5).degree()
5
```

matrix_space()

Return the matrix space corresponding to this matrix group.

This is a matrix space over the field of definition of this matrix group.

```
sage: F = GF(5); MS = MatrixSpace(F,2,2)
sage: G = MatrixGroup([MS(1), MS([1,2,3,4])])
sage: G.matrix_space()
Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 5
sage: G.matrix_space() is MS
True
```

 $\verb|sage.groups.matrix_gps.matrix_group.is_MatrixGroup|(x)$

Test whether x is a matrix group.

EXAMPLES:

```
sage: from sage.groups.matrix_gps.matrix_group import is_MatrixGroup
sage: is_MatrixGroup(MatrixSpace(QQ,3))
False
sage: is_MatrixGroup(Mat(QQ,3))
False
sage: is_MatrixGroup(GL(2,ZZ))
True
sage: is_MatrixGroup(MatrixGroup([matrix(2,[1,1,0,1])]))
True
```

25.3 Matrix Group Elements

EXAMPLES:

You cannot add two matrices, since this is not a group operation. You can coerce matrices back to the matrix space and add them there:

```
sage: g + h
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +:
'Matrix group over Finite Field of size 3 with 2 generators (
[1 0] [1 1]
[0 1], [0 1]
)' and
'Matrix group over Finite Field of size 3 with 2 generators (
[1 0] [1 1]
[0 1], [0 1]
)'
```

```
sage: g.matrix() + h.matrix()
[2 0]
[0 2]
```

Similarly, you cannot multiply group elements by scalars but you can do it with the underlying matrices:

AUTHORS:

- David Joyner (2006-05): initial version David Joyner
- David Joyner (2006-05): various modifications to address William Stein's TODO's.
- William Stein (2006-12-09): many revisions.
- Volker Braun (2013-1) port to new Parent, libGAP.
- Travis Scrimshaw (2016-01): reworks class hierarchy in order to cythonize

Element of a matrix group over a generic ring.

The group elements are implemented as wrappers around libGAP matrices.

INPUT:

- M − a matrix
- parent the parent
- check bool (default: True); if True does some type checking
- convert bool (default: True); if True convert M to the right matrix space

list()

Return list representation of this matrix.

EXAMPLES:

```
sage: F = GF(3); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: g = G.0
sage: g
[1 0]
[0 1]
sage: g.list()
[[1, 0], [0, 1]]
```

matrix()

Obtain the usual matrix (as an element of a matrix space) associated to this matrix group element.

```
sage: F = GF(3); MS = MatrixSpace(F, 2, 2)
sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])]
sage: G = MatrixGroup(gens)
sage: m = G.gen(0).matrix(); m
[1 0]
[0 1]
sage: m.parent()
Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 3
sage: k = GF(7); G = MatrixGroup([matrix(k, 2, [1, 1, 0, 1]), matrix(k, 2, [1, 0, 0, 0, 0, 0]))
→2])])
sage: g = G.0
sage: q.matrix()
[1 1]
[0 1]
sage: parent(g.matrix())
Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 7
```

Matrices have extra functionality that matrix group elements do not have:

```
sage: g.matrix().charpoly('t')
t^2 + 5*t + 1
```

multiplicative_order()

Return the order of this group element, which is the smallest positive integer n such that $g^n=1$, or +Infinity if no such integer exists.

EXAMPLES:

```
sage: k = GF(7)
sage: G = MatrixGroup([matrix(k,2,[1,1,0,1]), matrix(k,2,[1,0,0,2])]); G
Matrix group over Finite Field of size 7 with 2 generators (
[1 1]  [1 0]
[0 1], [0 2]
)
sage: G.order()
21
sage: G.gen(0).multiplicative_order(), G.gen(1).multiplicative_order()
(7, 3)
```

order is just an alias for multiplicative_order:

```
General Linear Group of degree 2 over Integer Ring
sage: g = gl.gen(2); g
[1 1]
[0 1]
sage: g.order()
+Infinity
```

word problem(gens=None)

Solve the word problem.

This method writes the group element as a product of the elements of the list gens, or the standard generators of the parent of self if gens is None.

INPUT:

• gens – a list/tuple/iterable of elements (or objects that can be converted to group elements), or None (default). By default, the generators of the parent group are used.

OUTPUT:

A factorization object that contains information about the order of factors and the exponents. A ValueError is raised if the group element cannot be written as a word in gens.

ALGORITHM:

Use GAP, which has optimized algorithms for solving the word problem (the GAP functions EpimorphismFromFreeGroup and PreImagesRepresentative).

EXAMPLES:

```
sage: G = GL(2,5); G
General Linear Group of degree 2 over Finite Field of size 5
sage: G.gens()
(
[2 0] [4 1]
[0 1], [4 0]
)
sage: G(1).word_problem([G.gen(0)])
1
sage: type(_)
<class 'sage.structure.factorization.Factorization'>
sage: g = G([0,4,1,4])
sage: g.word_problem()
([4 1]
[4 0])^-1
```

Next we construct a more complicated element of the group from the generators:

```
sage: s,t = G.0, G.1
sage: a = (s * t * s); b = a.word_problem(); b
([2 0]
  [0 1]) *
([4 1]
  [4 0]) *
([2 0]
  [0 1])
sage: flatten(b)
[
```

```
[2 0] [4 1] [2 0]
[0 1], 1, [4 0], 1, [0 1], 1
]
sage: b.prod() == a
True
```

We solve the word problem using some different generators:

```
sage: s = G([2,0,0,1]); t = G([1,1,0,1]); u = G([0,-1,1,0])
sage: a.word_problem([s,t,u])
([2 0]
      [0 1])^-1 *
([1 1]
      [0 1])^-1 *
([0 4]
      [1 0]) *
([2 0]
      [0 1])^-1
```

We try some elements that don't actually generate the group:

```
sage: a.word_problem([t,u])
Traceback (most recent call last):
...
ValueError: word problem has no solution
```

AUTHORS:

- David Joyner and William Stein
- David Loeffler (2010): fixed some bugs
- Volker Braun (2013): LibGAP

class sage.groups.matrix_gps.group_element.MatrixGroupElement_generic
 Bases: sage.structure.element.MultiplicativeGroupElement

Element of a matrix group over a generic ring.

The group elements are implemented as Sage matrices.

INPUT:

- M a matrix
- parent the parent
- check bool (default: True); if True, then does some type checking
- convert bool (default: True); if True, then convert M to the right matrix space

```
sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: g = W.an_element()
sage: g
[ 0 0 -1]
[ 1 0 -1]
[ 0 1 -1]
```

inverse()

Return the inverse group element

OUTPUT:

A matrix group element.

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: g = W.an_element()
sage: ~g
[-1 \ 1 \ 0]
[-1 \ 0 \ 1]
[-1 \ 0 \ 0]
sage: g * \sim g == W.one()
True
sage: \sim g * g == W.one()
True
sage: W = CoxeterGroup(['B',3])
sage: W.base_ring()
Number Field in a with defining polynomial x^2 - 2
sage: g = W.an_element()
sage: ~g
[-1 \ 1 \ 0]
[-1 \ 0 \ a]
[-a 0 1]
```

is_one()

Return whether self is the identity of the group.

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3])
sage: g = W.gen(0)
sage: g.is_one()
False

sage: W.an_element().is_one()
False
sage: W.one().is_one()
True
```

list()

Return list representation of this matrix.

EXAMPLES:

matrix()

Obtain the usual matrix (as an element of a matrix space) associated to this matrix group element.

One reason to compute the associated matrix is that matrices support a huge range of functionality.

EXAMPLES:

Matrices have extra functionality that matrix group elements do not have:

```
sage: g.matrix().charpoly('t')
t^3 - t^2 - t + 1
```

```
\verb|sage.groups.matrix_gps.group_element.is_{\verb|}{\bf MatrixGroupElement}\,(x)
```

Test whether x is a matrix group element

INPUT:

• x – anything.

OUTPUT:

Boolean.

EXAMPLES:

```
sage: from sage.groups.matrix_gps.group_element import is_MatrixGroupElement
sage: is_MatrixGroupElement('helloooo')
False

sage: G = GL(2,3)
sage: is_MatrixGroupElement(G.an_element())
True
```

25.4 Finitely Generated Matrix Groups

This class is designed for computing with matrix groups defined by a finite set of generating matrices.

EXAMPLES:

```
sage: F = GF(3)
sage: gens = [matrix(F,2, [1,0, -1,1]), matrix(F,2, [1,1,0,1])]
sage: G = MatrixGroup(gens)
sage: G.conjugacy_classes_representatives()
(
[1 0] [0 2] [0 1] [2 0] [0 2] [0 1] [0 2]
[0 1], [1 1], [2 1], [0 2], [1 2], [2 2], [1 0]
)
```

The finitely generated matrix groups can also be constructed as subgroups of matrix groups:

```
sage: SL2Z = SL(2,ZZ)
sage: S, T = SL2Z.gens()
sage: SL2Z.subgroup([T^2])
Matrix group over Integer Ring with 1 generators (
[1 2]
[0 1]
)
```

AUTHORS:

- William Stein: initial version
- David Joyner (2006-03-15): degree, base_ring, _contains_, list, random, order methods; examples
- William Stein (2006-12): rewrite
- David Joyner (2007-12): Added invariant_generators (with Martin Albrecht and Simon King)
- David Joyner (2008-08): Added module_composition_factors (interface to GAP's MeatAxe implementation) and as_permutation_group (returns isomorphic PermutationGroup).
- Simon King (2010-05): Improve invariant_generators by using GAP for the construction of the Reynolds operator in Singular.
- Volker Braun (2013-1) port to new Parent, libGAP.
- Sebastian Oehms (2018-07): Added _permutation_group_element_ (Trac #25706)

class sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap (degree,

base_ring,
libgap_group,
ambient=None,
category=None)

Bases: sage.groups.matrix_gps.matrix_group.MatrixGroup_gap

Matrix group generated by a finite number of matrices.

EXAMPLES:

as_permutation_group (algorithm=None)

Return a permutation group representation for the group.

In most cases occurring in practice, this is a permutation group of minimal degree (the degree being determined from orbits under the group action). When these orbits are hard to compute, the procedure can

be time-consuming and the degree may not be minimal.

INPUT:

• algorithm — None or 'smaller'. In the latter case, try harder to find a permutation representation of small degree.

OUTPUT:

A permutation group isomorphic to self. The algorithm='smaller' option tries to return an isomorphic group of low degree, but is not guaranteed to find the smallest one.

EXAMPLES:

```
sage: MS = MatrixSpace(GF(2), 5, 5)
sage: A = MS([[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]])
sage: G = MatrixGroup([A])
sage: G.as_permutation_group()
Permutation Group with generators [(1,2)]
sage: MS = MatrixSpace( GF(7), 12, 12)
sage: GG = gap("ImfMatrixGroup( 12, 3 )")
sage: GG.GeneratorsOfGroup().Length()
sage: q1 = MS(eval(str(GG.GeneratorsOfGroup()[1]).replace("\n","")))
sage: q2 = MS(eval(str(GG.GeneratorsOfGroup()[2]).replace("\n","")))
sage: g3 = MS(eval(str(GG.GeneratorsOfGroup()[3]).replace("\n","")))
sage: G = MatrixGroup([g1, g2, g3])
sage: G.cardinality()
21499084800
sage: set_random_seed(0); current_randstate().set_seed_gap()
sage: P = G.as_permutation_group()
sage: P.cardinality()
21499084800
sage: P.degree() # random output
144
sage: set_random_seed(3); current_randstate().set_seed_gap()
sage: Psmaller = G.as_permutation_group(algorithm="smaller")
sage: Psmaller.cardinality()
21499084800
sage: Psmaller.degree() # random output
```

In this case, the "smaller" option returned an isomorphic group of lower degree. The above example used GAP's library of irreducible maximal finite ("imf") integer matrix groups to construct the MatrixGroup G over GF(7). The section "Irreducible Maximal Finite Integral Matrix Groups" in the GAP reference manual has more details.

invariant_generators()

Return invariant ring generators.

Computes generators for the polynomial ring $F[x_1, \ldots, x_n]^G$, where G in GL(n, F) is a finite matrix group.

In the "good characteristic" case the polynomials returned form a minimal generating set for the algebra of G-invariant polynomials. In the "bad" case, the polynomials returned are primary and secondary invariants, forming a not necessarily minimal generating set for the algebra of G-invariant polynomials.

ALGORITHM:

Wraps Singular's invariant_algebra_reynolds and invariant_ring in finvar.lib.

```
sage: F = GF(7); MS = MatrixSpace(F, 2, 2)
sage: gens = [MS([[0,1],[-1,0]]),MS([[1,1],[2,3]])]
sage: G = MatrixGroup(gens)
sage: G.invariant_generators()
[x1^7*x2 - x1*x2^7,
x1^12 - 2*x1^9*x2^3 - x1^6*x2^6 + 2*x1^3*x2^9 + x2^12
x1^18 + 2*x1^15*x2^3 + 3*x1^12*x2^6 + 3*x1^6*x2^12 - 2*x1^3*x2^15 + x2^18
sage: q = 4; a = 2
sage: MS = MatrixSpace(QQ, 2, 2)
sage: gen1 = [[1/a, (q-1)/a], [1/a, -1/a]]; gen2 = [[1,0], [0,-1]]; gen3 = [[-1, 0], [0,-1]]; gen3 = [[-1, 0], [0,-1]];
sage: G = MatrixGroup([MS(gen1), MS(gen2), MS(gen3)])
sage: G.cardinality()
12
sage: G.invariant_generators()
[x1^2 + 3*x2^2, x1^6 + 15*x1^4*x2^2 + 15*x1^2*x2^4 + 33*x2^6]
sage: F = CyclotomicField(8)
sage: z = F.gen()
sage: a = z+1/z
sage: b = z^2
sage: MS = MatrixSpace(F,2,2)
sage: g1 = MS([[1/a, 1/a], [1/a, -1/a]])
sage: g2 = MS([[-b, 0], [0, b]])
sage: G=MatrixGroup([g1,g2])
sage: G.invariant_generators()
[x1^4 + 2*x1^2*x2^2 + x2^4]
x1^5*x2 - x1*x2^5
x1^8 + 28/9*x1^6*x2^2 + 70/9*x1^4*x2^4 + 28/9*x1^2*x2^6 + x2^8
```

AUTHORS:

• David Joyner, Simon King and Martin Albrecht.

REFERENCES:

- · Singular reference manual
- [Stu1993]
- S. King, "Minimal Generating Sets of non-modular invariant rings of finite groups", Arxiv math/0703035.

invariants of degree (deg, chi=None, R=None)

Return the (relative) invariants of given degree for this group.

For this group, compute the invariants of degree deg with respect to the group character chi. The method is to project each possible monomial of degree deg via the Reynolds operator. Note that if the polynomial ring R is specified it's base ring may be extended if the resulting invariant is defined over a bigger field.

INPUT:

- degree a positive integer
- chi (default: trivial character) a linear group character of this group
- R (optional) a polynomial ring

OUTPUT: list of polynomials

```
sage: Gr = MatrixGroup(SymmetricGroup(2))
sage: sorted(Gr.invariants_of_degree(3))
[x0^2*x1 + x0*x1^2, x0^3 + x1^3]
sage: R.<x,y> = QQ[]
sage: sorted(Gr.invariants_of_degree(4, R=R))
[x^2*y^2, x^3*y + x*y^3, x^4 + y^4]
```

```
sage: R.<x,y,z> = QQ[]
sage: Gr = MatrixGroup(DihedralGroup(3))
sage: ct = Gr.character_table()
sage: chi = Gr.character(ct[0])
sage: all(f(*(g.matrix()*vector(R.gens()))) == chi(g)*f
...: for f in Gr.invariants_of_degree(3, R=R, chi=chi) for g in Gr)
True
```

```
sage: i = GF(7)(3)
sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]])
sage: G.invariants_of_degree(25)
[]
```

```
sage: G = MatrixGroup(SymmetricGroup(5))
sage: R = QQ['x,y']
sage: G.invariants_of_degree(3, R=R)
Traceback (most recent call last):
...
TypeError: number of variables in polynomial ring must match size of matrices
```

```
sage: S3 = MatrixGroup(SymmetricGroup(3))
sage: chi = S3.character(S3.character_table()[0])
sage: sorted(S3.invariants_of_degree(5, chi=chi))
[x0^3*x1^2 - x0^2*x1^3 - x0^3*x2^2 + x1^3*x2^2 + x0^2*x2^3 - x1^2*x2^3,
x0^4*x1 - x0*x1^4 - x0^4*x2 + x1^4*x2 + x0*x2^4 - x1*x2^4]
```

module_composition_factors (algorithm=None)

Return a list of triples consisting of [base field, dimension, irreducibility], for each of the Meataxe composition factors modules. The algorithm="verbose" option returns more information, but in Meataxe notation.

EXAMPLES:

```
sage: F=GF(3);MS=MatrixSpace(F,4,4)
sage: M=MS(0)
sage: M[0,1]=1;M[1,2]=1;M[2,3]=1;M[3,0]=1
sage: G = MatrixGroup([M])
sage: G.module_composition_factors()
```

```
[(Finite Field of size 3, 1, True),
  (Finite Field of size 3, 1, True),
  (Finite Field of size 3, 2, True)]
sage: F = GF(7); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[0,1],[-1,0]]),MS([[1,1],[2,3]])]
sage: G = MatrixGroup(gens)
sage: G.module_composition_factors()
[(Finite Field of size 7, 2, True)]
```

Type G.module_composition_factors (algorithm='verbose') to get a more verbose version

For more on MeatAxe notation, see http://www.gap-system.org/Manuals/doc/ref/chap69.html

```
molien_series (chi=None, return_series=True, prec=20, variable='t')
```

Compute the Molien series of this finite group with respect to the character chi. It can be returned either as a rational function in one variable or a power series in one variable. The base field must be a finite field, the rationals, or a cyclotomic field.

Note that the base field characteristic cannot divide the group order (i.e., the non-modular case).

ALGORITHM:

For a finite group G in characteristic zero we construct the Molien series as

$$\frac{1}{|G|} \sum_{g \in G} \frac{\chi(g)}{\det(I - tg)},$$

where I is the identity matrix and t an indeterminate.

For characteristic p not dividing the order of G, let k be the base field and N the order of G. Define λ as a primitive N-th root of unity over k and ω as a primitive N-th root of unity over k. For each k define k observed that k is a primitive k to be the positive integer such that k is a primitive k for each eigenvalue k of k. Then the Molien series is computed as

$$\frac{1}{|G|}\sum_{g\in G}\frac{\chi(g)}{\prod_{i=1}^n(1-t\omega^{k_i(g)})},$$

where t is an indeterminant. [Dec1998]

INPUT:

- chi (default: trivial character) a linear group character of this group
- return_series boolean (default: True) if True, then returns the Molien series as a power series, False as a rational function
- prec integer (default: 20); power series default precision
- variable string (default: 't'); Variable name for the Molien series

OUTPUT: single variable rational function or power series with integer coefficients

EXAMPLES:

```
sage: MatrixGroup(matrix(QQ,2,2,[1,1,0,1])).molien_series()
Traceback (most recent call last):
...
NotImplementedError: only implemented for finite groups
sage: MatrixGroup(matrix(GF(3),2,2,[1,1,0,1])).molien_series()
```

```
Traceback (most recent call last):
...
NotImplementedError: characteristic cannot divide group order
```

Tetrahedral Group:

```
sage: K.<i> = CyclotomicField(4)
sage: Tetra = MatrixGroup([(-1+i)/2, (-1+i)/2, (1+i)/2, (-1-i)/2], [0,i, -i,0])
sage: Tetra.molien_series(prec=30)
1 + t^8 + 2*t^12 + t^16 + 2*t^20 + 3*t^24 + 2*t^28 + O(t^30)
sage: mol = Tetra.molien_series(return_series=False); mol
(t^8 - t^4 + 1)/(t^16 - t^12 - t^4 + 1)
sage: mol.parent()
Fraction Field of Univariate Polynomial Ring in t over Integer Ring
sage: chi = Tetra.character(Tetra.character_table()[1])
sage: Tetra.molien_series(chi, prec=30, variable='u')
u^6 + u^14 + 2*u^18 + u^22 + 2*u^26 + 3*u^30 + 2*u^34 + O(u^36)
sage: chi = Tetra.character(Tetra.character_table()[2])
sage: Tetra.molien_series(chi)
t^10 + t^14 + t^18 + 2*t^22 + 2*t^26 + O(t^30)
```

```
sage: S3 = MatrixGroup(SymmetricGroup(3))
sage: mol = S3.molien_series(prec=10); mol
1 + t + 2*t^2 + 3*t^3 + 4*t^4 + 5*t^5 + 7*t^6 + 8*t^7 + 10*t^8 + 12*t^9 + O(t^4)
→10)
sage: mol.parent()
Power Series Ring in t over Integer Ring
```

Octahedral Group:

```
sage: K.<v> = CyclotomicField(8)
sage: a = v-v^3 #sqrt(2)
sage: i = v^2
sage: Octa = MatrixGroup([(-1+i)/2, (-1+i)/2, (1+i)/2, (-1-i)/2], [(1+i)/a,0,0,0,
\hookrightarrow (1-i)/a])
sage: Octa.molien_series(prec=30)
1 + t^8 + t^12 + t^16 + t^18 + t^20 + 2*t^24 + t^26 + t^28 + O(t^30)
```

Icosahedral Group:

```
sage: K.<v> = CyclotomicField(10)
sage: z5 = v^2
sage: i = z5^5
sage: a = 2*z5^3 + 2*z5^2 + 1 #sqrt(5)
sage: Ico = MatrixGroup([[z5^3,0,0,z5^2],[0,1,-1,0],[(z5^4-z5)/a,(z5^2-\div z5^3)/a,(z5^2-z5^3)/a,-(z5^4-z5)/a]])
sage: Ico.molien_series(prec=40)
1 + t^12 + t^20 + t^24 + t^30 + t^32 + t^36 + O(t^40)
```

```
sage: G = MatrixGroup(CyclicPermutationGroup(3))
sage: chi = G.character(G.character_table()[1])
sage: G.molien_series(chi, prec=10)
t + 2*t^2 + 3*t^3 + 5*t^4 + 7*t^5 + 9*t^6 + 12*t^7 + 15*t^8 + 18*t^9 + 22*t^4
→10 + O(t^11)
```

```
sage: K = GF(5)
sage: S = MatrixGroup(SymmetricGroup(4))
sage: G = MatrixGroup([matrix(K, 4, 4, [K(y) for u in m.list() for y in u])for m_
→in S.gens()])
sage: G.molien_series(return_series=False)
1/(t^10 - t^9 - t^8 + 2*t^5 - t^2 - t + 1)
```

```
sage: i = GF(7)(3)
sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]])
sage: chi = G.character(G.character_table()[4])
sage: G.molien_series(chi)
3*t^5 + 6*t^11 + 9*t^17 + 12*t^23 + O(t^25)
```

reynolds_operator (poly, chi=None)

Compute the Reynolds operator of this finite group G.

This is the projection from a polynomial ring to the ring of relative invariants [Stu1993]. If possible, the invariant is returned defined over the base field of the given polynomial poly, otherwise, it is returned over the compositum of the fields involved in the computation. Only implemented for absolute fields.

ALGORITHM:

Let K[x] be a polynomial ring and χ a linear character for G. Let

be the ring of invariants of G relative to χ . Then the Reynold's operator is a map R from K[x] into $K[x]_{\chi}^{G}$ defined by

INPUT:

- poly a polynomial
- chi (default: trivial character) a linear group character of this group

OUTPUT: an invariant polynomial relative to χ

AUTHORS:

Rebecca Lauren Miller and Ben Hutz

EXAMPLES:

```
sage: S3 = MatrixGroup(SymmetricGroup(3))
sage: R.<x,y,z> = QQ[]
sage: f = x*y*z^3
sage: S3.reynolds_operator(f)
1/3*x^3*y*z + 1/3*x*y^3*z + 1/3*x*y*z^3
```

```
sage: G = MatrixGroup(CyclicPermutationGroup(4))
sage: chi = G.character(G.character_table()[3])
sage: K.<v> = CyclotomicField(4)
sage: R.<x,y,z,w> = K[]
sage: G.reynolds_operator(x, chi)
1/4*x + (-1/4*v)*y - 1/4*z + (1/4*v)*w
sage: chi = G.character(G.character_table()[2])
sage: R.<x,y,z,w> = QQ[]
sage: G.reynolds_operator(x*y, chi)
1/4*x*y + (1/4*zeta4)*y*z + (-1/4*zeta4)*x*w - 1/4*z*w
```

```
sage: K.<i> = CyclotomicField(4)
sage: G = MatrixGroup(CyclicPermutationGroup(3))
```

```
sage: K.<i> = CyclotomicField(4)
sage: Tetra = MatrixGroup([(-1+i)/2, (-1+i)/2, (1+i)/2, (-1-i)/2], [0,i, -i,0])
sage: chi = Tetra.character(Tetra.character_table()[4])
sage: L.<v> = QuadraticField(-3)
sage: R.<x,y> = L[]
sage: Tetra.reynolds_operator(x^4)
0
sage: Tetra.reynolds_operator(x^4, chi)
1/4*x^4 + (1/2*v)*x^2*y^2 + 1/4*y^4
sage: R.<x>=L[]
sage: LL.<w> = L.extension(x^2+v)
sage: R.<x,y> = LL[]
sage: Tetra.reynolds_operator(x^4, chi)
Traceback (most recent call last):
...
NotImplementedError: only implemented for absolute fields
```

```
sage: G = MatrixGroup(DihedralGroup(4))
sage: chi = G.character(G.character_table()[1])
sage: R.<x,y> = QQ[]
sage: f = x^4
sage: G.reynolds_operator(f, chi)
Traceback (most recent call last):
...
TypeError: number of variables in polynomial must match size of matrices
sage: R.<x,y,z,w> = QQ[]
sage: f = x^3*y
sage: G.reynolds_operator(f, chi)
1/8*x^3*y - 1/8*x*y^3 + 1/8*y^3*z - 1/8*y*z^3 - 1/8*x^3*w + 1/8*z^3*w +
1/8*x*w^3 - 1/8*z*w^3
```

Characteristic p>0 examples:

```
sage: G = MatrixGroup([[0,1,1,0]])
sage: R.<w,x> = GF(2)[]
sage: G.reynolds_operator(x)
Traceback (most recent call last):
...
NotImplementedError: not implemented when characteristic divides group order
```

```
sage: i = GF(7)(3)
sage: G = MatrixGroup([[i^3,0,0,-i^3],[i^2,0,0,-i^2]])
sage: chi = G.character(G.character_table()[4])
sage: R.<w,x> = GF(7)[]
sage: f = w^5*x + x^6
```

```
sage: K = GF(3^2,'t')
sage: G = MatrixGroup([matrix(K,2,2, [0,K.gen(),1,0])])
sage: R.<x,y> = GF(3)[]
sage: G.reynolds_operator(x^8)
-x^8 - y^8
```

```
sage: K = GF(3^2,'t')
sage: G = MatrixGroup([matrix(GF(3),2,2, [0,1,1,0])])
sage: R.<x,y> = K[]
sage: f = -K.gen()*x
sage: G.reynolds_operator(f)
(t)*x + (t)*y
```

 $\textbf{class} \texttt{ sage.groups.matrix_gps.finitely_generated.} \textbf{FinitelyGeneratedMatrixGroup_generic} (\textit{degree}, \textit{degree}, \textit{degree},$

base_ringengenerator_mat

> egory=N

Bases: sage.groups.matrix_gps.matrix_group.MatrixGroup_generic

gen(i)

Return the i-th generator

OUTPUT:

The *i*-th generator of the group.

EXAMPLES:

```
sage: H = GL(2, GF(3))
sage: h1, h2 = H([[1,0],[2,1]]), H([[1,1],[0,1]])
sage: G = H.subgroup([h1, h2])
sage: G.gen(0)
[1 0]
[2 1]
sage: G.gen(0).matrix() == h1.matrix()
True
```

gens()

Return the generators of the matrix group.

EXAMPLES:

```
sage: F = GF(3); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[1,0],[0,1]]), MS([[1,1],[0,1]])]
```

```
sage: G = MatrixGroup(gens)
sage: gens[0] in G
True
sage: gens = G.gens()
sage: gens[0] in G
True
sage: gens = [MS([[1,0],[0,1]]),MS([[1,1],[0,1]])]

sage: F = GF(5); MS = MatrixSpace(F,2,2)
sage: G = MatrixGroup([MS(1), MS([1,2,3,4])])
sage: G
Matrix group over Finite Field of size 5 with 2 generators (
[1 0] [1 2]
[0 1], [3 4]
)
sage: G.gens()
(
[1 0] [1 2]
[0 1], [3 4]
)
```

ngens()

Return the number of generators

OUTPUT:

An integer. The number of generators.

EXAMPLES:

```
sage: H = GL(2, GF(3))
sage: h1, h2 = H([[1,0],[2,1]]), H([[1,1],[0,1]])
sage: G = H.subgroup([h1, h2])
sage: G.ngens()
2
```

sage.groups.matrix_gps.finitely_generated.MatrixGroup(*gens, **kwds)
Return the matrix group with given generators.

INPUT:

- *gens matrices, or a single list/tuple/iterable of matrices, or a matrix group.
- check boolean keyword argument (optional, default: True). Whether to check that each matrix is invertible.

EXAMPLES:

```
sage: F = GF(5)
sage: gens = [matrix(F,2,[1,2, -1, 1]), matrix(F,2, [1,1, 0,1])]
sage: G = MatrixGroup(gens); G
Matrix group over Finite Field of size 5 with 2 generators (
[1 2] [1 1]
[4 1], [0 1]
)
```

In the second example, the generators are a matrix over \mathbf{Z} , a matrix over a finite field, and the integer 2. Sage determines that they both canonically map to matrices over the finite field, so creates that matrix group there:

```
sage: gens = [matrix(2,[1,2, -1, 1]), matrix(GF(7), 2, [1,1, 0,1]), 2]
sage: G = MatrixGroup(gens); G
Matrix group over Finite Field of size 7 with 3 generators (
[1 2] [1 1] [2 0]
[6 1], [0 1], [0 2]
)
```

Each generator must be invertible:

Some groups are not supported, or do not have much functionality implemented:

sage.groups.matrix_gps.finitely_generated.QuaternionMatrixGroupGF3()

The quaternion group as a set of 2×2 matrices over GF(3).

OUTPUT:

A matrix group consisting of 2×2 matrices with elements from the finite field of order 3. The group is the quaternion group, the nonabelian group of order 8 that is not isomorphic to the group of symmetries of a square (the dihedral group D_4).

Note: This group is most easily available via groups.matrix.QuaternionGF3().

EXAMPLES:

The generators are the matrix representations of the elements commonly called I and J, while K is the product of I and J.

sage.groups.matrix_gps.finitely_generated.normalize_square_matrices (matrices)
Find a common space for all matrices.

OUTPUT:

A list of matrices, all elements of the same matrix space.

EXAMPLES:

25.5 Homomorphisms Between Matrix Groups

Deprecated May, 2018; use sage.groups.libgap_morphisminstead.

```
sage.groups.matrix_gps.morphism.to_libgap(x)
```

Helper to convert x to a LibGAP matrix or matrix group element.

Deprecated; use the x.gap() method or libgap(x) instead.

```
sage: from sage.groups.matrix_gps.morphism import to_libgap
sage: to_libgap(GL(2,3).gen(0))
doctest:...: DeprecationWarning: this function is deprecated.
Use x.gap() or libgap(x) instead.
See https://trac.sagemath.org/25444 for details.
[ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ]
sage: to_libgap(matrix(QQ, [[1,2],[3,4]]))
[ [ 1, 2 ], [ 3, 4 ] ]
```

25.6 Matrix Group Homsets

AUTHORS:

- William Stein (2006-05-07): initial version
- Volker Braun (2013-1) port to new Parent, libGAP

```
\verb|sage.groups.matrix_gps.homset.is_MatrixGroupHomset|(x)
```

Test whether x is a matrix group homset.

EXAMPLES:

```
sage: from sage.groups.matrix_gps.homset import is_MatrixGroupHomset
sage: is_MatrixGroupHomset(4)
doctest:...: DeprecationWarning:
Importing MatrixGroupHomset from here is deprecated.
If you need to use it, please import it directly from
    sage.groups.libgap_morphism
See https://trac.sagemath.org/25444 for details.
False

sage: F = GF(5)
sage: gens = [matrix(F,2,[1,2, -1, 1]), matrix(F,2, [1,1, 0,1])]
sage: G = MatrixGroup(gens)
sage: from sage.groups.matrix_gps.homset import MatrixGroupHomset
sage: M = MatrixGroupHomset(G, G)
sage: is_MatrixGroupHomset(M)
True
```

25.7 Binary Dihedral Groups

AUTHORS:

• Travis Scrimshaw (2016-02): initial version

The binary dihedral group BD_n of order 4n.

Let n be a positive integer. The binary dihedral group BD_n is a finite group of order 4n, and can be considered as the matrix group generated by

$$g_1 = \begin{pmatrix} \zeta_{2n} & 0 \\ 0 & \zeta_{2n}^{-1} \end{pmatrix}, \qquad g_2 = \begin{pmatrix} 0 & \zeta_4 \\ \zeta_4 & 0 \end{pmatrix},$$

where $\zeta_k = e^{2\pi i/k}$ is the primitive k-th root of unity. Furthermore, BD_n admits the following presentation (note that there is a typo in [Sun]):

$$BD_n = \langle x, y, z | x^2 = y^2 = z^n = xyz \rangle.$$

(The x, y and z in this presentations correspond to the g_2 , $g_2g_1^{-1}$ and g_1 in the matrix group avatar.)

REFERENCES:

• Wikipedia article Dicyclic group#Binary dihedral group

cardinality()

Return the order of self, which is 4n.

EXAMPLES:

```
sage: G = groups.matrix.BinaryDihedral(3)
sage: G.order()
12
```

order()

Return the order of self, which is 4n.

EXAMPLES:

```
sage: G = groups.matrix.BinaryDihedral(3)
sage: G.order()
12
```

25.8 Coxeter Groups As Matrix Groups

This implements a general Coxeter group as a matrix group by using the reflection representation.

AUTHORS:

• Travis Scrimshaw (2013-08-28): Initial version

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_generic

A Coxeter group represented as a matrix group.

Let (W, S) be a Coxeter system. We construct a vector space V over \mathbf{R} with a basis of $\{\alpha_s\}_{s\in S}$ and inner product

$$B(\alpha_s, \alpha_t) = -\cos\left(\frac{\pi}{m_{st}}\right)$$

where we have $B(\alpha_s, \alpha_t) = -1$ if $m_{st} = \infty$. Next we define a representation $\sigma_s : V \to V$ by

$$\sigma_s \lambda = \lambda - 2B(\alpha_s, \lambda)\alpha_s.$$

This representation is faithful so we can represent the Coxeter group W by the set of matrices σ_s acting on V. INPUT:

- data a Coxeter matrix or graph or a Cartan type
- base_ring (default: the universal cyclotomic field or a number field) the base ring which contains all values $\cos(\pi/m_{ij})$ where $(m_{ij})_{ij}$ is the Coxeter matrix
- index_set (optional) an indexing set for the generators

For finite Coxeter groups, the default base ring is taken to be **Q** or a quadratic number field when possible.

For more on creating Coxeter groups, see CoxeterGroup ().

Todo: Currently the label ∞ is implemented as -1 in the Coxeter matrix.

EXAMPLES:

We can create Coxeter groups from Coxeter matrices:

```
sage: W = CoxeterGroup([[1, 6, 3], [6, 1, 10], [3, 10, 1]])
sage: W
Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
[ 1 6 3]
[ 6 1 10]
[ 3 10 1]
sage: W.gens()
                     -1 - E(12)^7 + E(12)^11
                                                                     11
                      0
                                                                     0]
                                             1
                      0
                                             0
                                                                     1],
                                             0
[-E(12)^7 + E(12)^1]
                                             -1
                                                    E(20) - E(20)^9
                                            0
                      \cap
                                                                     1],
                 1
                                    0
                                                       0]
                 Ω
                                    1
                                                       0]
                 1 E(20) - E(20)^9
                                                      -1]
sage: m = matrix([[1,3,3,3], [3,1,3,2], [3,3,1,2], [3,2,2,1]])
sage: W = CoxeterGroup(m)
sage: W.gens()
[-1 \ 1 \ 1 \ 1] [1 \ 0 \ 0 \ 0]
                                  [1 0 0 0] [1
[ \ 0 \ \ 1 \ \ 0 \ \ 0] \quad [ \ 1 \ -1 \ \ 1 \ \ 0] \quad [ \ 0 \ \ 1 \ \ 0 \ \ 0] \quad [ \ 0
[ \ 0 \ \ 0 \ \ 1 \ \ 0] \quad [ \ 0 \ \ 0 \ \ 1 \ \ 0] \quad [ \ 1 \ \ 1 \ -1 \ \ 0] \quad [ \ 0 \ \ 0 \ \ 1 \ \ 0]
[ \ 0 \ 0 \ 0 \ 1], \ [ \ 0 \ 0 \ 0 \ 1], \ [ \ 0 \ 0 \ 0 \ 1], \ [ \ 1 \ 0 \ 0 \ -1]
sage: a,b,c,d = W.gens()
sage: (a*b*c)^3
[51-57]
[ 5 0 -4 5]
[4 1 -4 4]
[ 0 0 0 1]
sage: (a*b)^3
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: b*d == d*b
True
sage: a*c*a == c*a*c
True
```

We can create the matrix representation over different base rings and with different index sets. Note that the base ring must contain all $2 * \cos(\pi/m_{ij})$ where $(m_{ij})_{ij}$ is the Coxeter matrix:

```
sage: W = CoxeterGroup(m, base_ring=RR, index_set=['a','b','c','d'])
sage: W.base_ring()

(continues on next page)
```

```
Real Field with 53 bits of precision

sage: W.index_set()
('a', 'b', 'c', 'd')

sage: CoxeterGroup(m, base_ring=ZZ)
Coxeter group over Integer Ring with Coxeter matrix:
[1 3 3 3]
[3 1 3 2]
[3 3 1 2]
[3 2 2 1]

sage: CoxeterGroup([[1,4],[4,1]], base_ring=QQ)
Traceback (most recent call last):
...

TypeError: unable to convert sqrt(2) to a rational
```

Using the well-known conversion between Coxeter matrices and Coxeter graphs, we can input a Coxeter graph. Following the standard convention, edges with no label (i.e. labelled by None) are treated as 3:

Because there currently is no class for $\mathbb{Z} \cup \{\infty\}$, labels of ∞ are given by -1 in the Coxeter matrix:

```
sage: G = Graph([(0,1,None), (1,2,4), (0,2,oo)])
sage: W = CoxeterGroup(G)
sage: W.coxeter_matrix()
[ 1  3 -1]
[ 3  1  4]
[-1  4  1]
```

We can also create Coxeter groups from Cartan types using the implementation keyword:

```
sage: W = CoxeterGroup(['D',5], implementation="reflection")
sage: W
Finite Coxeter group over Integer Ring with Coxeter matrix:
[1 3 2 2 2]
[3 1 3 2 2]
[2 3 1 3 3]
[2 2 3 1 2]
[2 2 3 2 1]
sage: W = CoxeterGroup(['H',3], implementation="reflection")
sage: W
Finite Coxeter group over Number Field in a with defining polynomial
x^2 - 5 with Coxeter matrix:
[1 3 2]
[3 1 5]
[2 5 1]
```

class Element

Bases: sage.groups.matrix_gps.group_element.MatrixGroupElement_generic

A Coxeter group element.

```
action_on_root_indices (i, side='left')
```

Return the action on the set of roots.

The roots are ordered as in the output of the method roots.

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3], implementation="reflection")
sage: w = W.w0
sage: w.action_on_root_indices(0)
11
```

canonical matrix()

Return the matrix of self in the canonical faithful representation, which is self as a matrix.

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3], implementation="reflection")
sage: a,b,c = W.gens()
sage: elt = a*b*c
sage: elt.canonical_matrix()
[ 0  0 -1]
[ 1  0 -1]
[ 0  1 -1]
```

descents (side='right', index_set=None, positive=False)

Return the descents of self, as a list of elements of the index set.

INPUT:

- index_set (default: all of them) a subset (as a list or iterable) of the nodes of the Dynkin diagram
- side (default: 'right') 'left' or 'right'
- positive (default: False) boolean

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3], implementation="reflection")
sage: a,b,c = W.gens()
sage: elt = b*a*c
sage: elt.descents()
[1, 3]
sage: elt.descents(positive=True)
[2]
sage: elt.descents(index_set=[1,2])
[1]
sage: elt.descents(side='left')
[2]
```

first_descent (side='right', index_set=None, positive=False)

Return the first left (resp. right) descent of self, as ane element of index_set, or None if there is none

See descents () for a description of the options.

```
sage: W = CoxeterGroup(['A',3], implementation="reflection")
sage: a,b,c = W.gens()
sage: elt = b*a*c
sage: elt.first_descent()
1
sage: elt.first_descent(side='left')
2
```

has_right_descent(i)

Return whether i is a right descent of self.

A Coxeter system (W,S) has a root system defined as $\{w(\alpha_s)\}_{w\in W}$ and we define the positive (resp. negative) roots $\alpha=\sum_{s\in S}c_s\alpha_s$ by all $c_s\geq 0$ (resp. $c_s\leq 0$). In particular, we note that if $\ell(ws)>\ell(w)$ then $w(\alpha_s)>0$ and if $\ell(ws)<\ell(w)$ then $w(\alpha_s)<0$. Thus $i\in I$ is a right descent if $w(\alpha_{s_i})<0$ or equivalently if the matrix representing w has all entries of the i-th column being non-positive.

INPUT:

• i – an element in the index set

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3], implementation="reflection")
sage: a,b,c = W.gens()
sage: elt = b*a*c
sage: [elt.has_right_descent(i) for i in [1, 2, 3]]
[True, False, True]
```

bilinear form()

Return the bilinear form associated to self.

Given a Coxeter group G with Coxeter matrix $M = (m_{ij})_{ij}$, the associated bilinear form $A = (a_{ij})_{ij}$ is given by

$$a_{ij} = -\cos\left(\frac{\pi}{m_{ij}}\right).$$

If A is positive definite, then G is of finite type (and so the associated Coxeter group is a finite group). If A is positive semidefinite, then G is affine type.

EXAMPLES:

canonical_representation()

Return the canonical faithful representation of self, which is self.

EXAMPLES:

```
sage: W = CoxeterGroup([[1,3],[3,1]])
sage: W.canonical_representation() is W
True
```

coxeter_matrix()

Return the Coxeter matrix of self.

EXAMPLES:

```
sage: W = CoxeterGroup([[1,3],[3,1]])
sage: W.coxeter_matrix()
[1 3]
[3 1]
sage: W = CoxeterGroup(['H',3])
sage: W.coxeter_matrix()
[1 3 2]
[3 1 5]
[2 5 1]
```

$fundamental_weight(i)$

Return the fundamental weight with index i.

See also:

```
fundamental_weights()
```

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3], implementation='reflection')
sage: W.fundamental_weight(1)
(3/2, 1, 1/2)
```

fundamental_weights()

Return the fundamental weights for self.

This is the dual basis to the basis of simple roots.

The base ring must be a field.

See also:

```
fundamental_weight()
```

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3], implementation='reflection')
sage: W.fundamental_weights()
Finite family {1: (3/2, 1, 1/2), 2: (1, 2, 1), 3: (1/2, 1, 3/2)}
```

is_commutative()

Return whether self is commutative.

EXAMPLES:

```
sage: CoxeterGroup(['A', 2]).is_commutative()
False
sage: W = CoxeterGroup(['I',2])
sage: W.is_commutative()
True
```

is_finite()

Return True if this group is finite.

EXAMPLES:

```
sage: [1 for 1 in range(2, 9) if
....: CoxeterGroup([[1,3,2],[3,1,1],[2,1,1]]).is_finite()]
....:
```

```
[2, 3, 4, 5]
sage: [1 for 1 in range(2, 9) if
....: CoxeterGroup([[1,3,2,2],[3,1,1,2],[2,1,1,3],[2,2,3,1]]).is_finite()]
. . . . :
[2, 3, 4]
sage: [l for l in range(2, 9) if
...: CoxeterGroup([[1,3,2,2,2], [3,1,3,3,2], [2,3,1,2,2],
. . . . :
                      [2,3,2,1,1], [2,2,2,1,1]).is_finite()]
. . . . :
[2, 3]
sage: [l for l in range(2, 9) if
\dots: CoxeterGroup([[1,3,2,2,2], [3,1,2,3,3], [2,2,1,1,2],
                      [2,3,1,1,2], [2,3,2,2,1]).is_finite()]
. . . . :
[2, 3]
sage: [l for l in range(2, 9) if
....: CoxeterGroup([[1,3,2,2,2,2], [3,1,1,2,2,2], [2,1,1,3,1,2],
                      [2,2,3,1,2,2], [2,2,1,2,1,3], [2,2,2,2,3,1]]).is_
→finite()]
. . . . :
[2, 3]
```

order()

Return the order of self.

If the Coxeter group is finite, this uses an iterator.

EXAMPLES:

```
sage: W = CoxeterGroup([[1,3],[3,1]])
sage: W.order()
6
sage: W = CoxeterGroup([[1,-1],[-1,1]])
sage: W.order()
+Infinity
```

positive_roots()

Return the positive roots.

These are roots in the Coxeter sense, that all have the same norm. They are given by their coefficients in the base of simple roots, also taken to have all the same norm.

See also:

reflections()

```
sage: W = CoxeterGroup(['A',3], implementation='reflection')
sage: W.positive_roots()
((1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1), (0, 1, 1), (0, 0, 1))
sage: W = CoxeterGroup(['I',5], implementation='reflection')
sage: W.positive_roots()
((1, 0),
    (-E(5)^2 - E(5)^3, 1),
    (-E(5)^2 - E(5)^3, -E(5)^2 - E(5)^3),
    (1, -E(5)^2 - E(5)^3),
    (0, 1))
```

reflections()

Return the set of reflections.

The order is the one given by positive_roots().

EXAMPLES:

```
sage: W = CoxeterGroup(['A',2], implementation='reflection')
sage: list(W.reflections())
[
[-1 1] [ 0 -1] [ 1 0]
[ 0 1], [-1 0], [ 1 -1]
]
```

roots()

Return the roots.

These are roots in the Coxeter sense, that all have the same norm. They are given by their coefficients in the base of simple roots, also taken to have all the same norm.

The positive roots are listed first, then the negative roots in the same order. The order is the one given by roots().

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3], implementation='reflection')
sage: W.roots()
((1, 0, 0),
 (1, 1, 0),
 (0, 1, 0),
 (1, 1, 1),
 (0, 1, 1),
 (0, 0, 1),
 (-1, 0, 0),
 (-1, -1, 0),
 (0, -1, 0),
 (-1, -1, -1),
(0, -1, -1),
(0, 0, -1))
sage: W = CoxeterGroup(['I',5], implementation='reflection')
sage: len(W.roots())
10
```

$simple_reflection(i)$

Return the simple reflection s_i .

INPUT:

• i – an element from the index set

EXAMPLES:

```
[ 0 0 1]
sage: W.simple_reflection(3)
[ 1 0 0]
[ 0 1 0]
[ 0 1 -1]
```

simple_root_index(i)

Return the index of the simple root α_i .

This is the position of α_i in the list of all roots as given be roots().

EXAMPLES:

```
sage: W = CoxeterGroup(['A',3], implementation='reflection')
sage: [W.simple_root_index(i) for i in W.index_set()]
[0, 2, 5]
```

25.9 Linear Groups

EXAMPLES:

```
sage: GL(4,QQ)
General Linear Group of degree 4 over Rational Field
sage: GL(1,ZZ)
General Linear Group of degree 1 over Integer Ring
sage: GL(100,RR)
General Linear Group of degree 100 over Real Field with 53 bits of precision
sage: GL(3,GF(49,'a'))
General Linear Group of degree 3 over Finite Field in a of size 7^2
sage: SL(2, ZZ)
Special Linear Group of degree 2 over Integer Ring
sage: G = SL(2,GF(3)); G
Special Linear Group of degree 2 over Finite Field of size 3
sage: G.is_finite()
sage: G.conjugacy_classes_representatives()
[1 0] [0 2] [0 1] [2 0] [0 2] [0 1] [0 2]
[0 1], [1 1], [2 1], [0 2], [1 2], [2 2], [1 0]
sage: G = SL(6, GF(5))
sage: G.gens()
[2 0 0 0 0 0] [4 0 0 0 0 1]
[0 3 0 0 0 0] [4 0 0 0 0 0]
[0 0 1 0 0 0] [0 4 0 0 0 0]
[0 0 0 1 0 0] [0 0 4 0 0 0]
[0 0 0 0 1 0] [0 0 0 4 0 0]
[0 0 0 0 0 1], [0 0 0 0 4 0]
```

AUTHORS:

• William Stein: initial version

- David Joyner: degree, base_ring, random, order methods; examples
- David Joyner (2006-05): added center, more examples, renamed random attributes, bug fixes.
- William Stein (2006-12): total rewrite
- Volker Braun (2013-1) port to new Parent, libGAP, extreme refactoring.

REFERENCES: See [KL1990] and [Car1972].

```
sage.groups.matrix_gps.linear.GL(n, R, var='a')
Return the general linear group.
```

The general linear group GL(d, R) consists of all $d \times d$ matrices that are invertible over the ring R.

Note: This group is also available via groups.matrix.GL().

INPUT:

- n a positive integer.
- R ring or an integer. If an integer is specified, the corresponding finite field is used.
- var variable used to represent generator of the finite field, if needed.

EXAMPLES:

```
sage: G = GL(6,GF(5))
sage: G.order()
11064475422000000000000000
sage: G.base_ring()
Finite Field of size 5
sage: G.category()
Category of finite groups
sage: TestSuite(G).run()

sage: G = GL(6, QQ)
sage: G.category()
Category of infinite groups
sage: TestSuite(G).run()
```

Here is the Cayley graph of (relatively small) finite General Linear Group:

```
sage: F = GF(3); MS = MatrixSpace(F,2,2)
sage: gens = [MS([[2,0],[0,1]]), MS([[2,1],[2,0]])]
sage: G = MatrixGroup(gens)
sage: G.order()
48
sage: G.cardinality()
48
sage: H = GL(2,F)
```

```
sage: H.order()
48
sage: H == G
True
sage: H.gens() == G.gens()
True
sage: H.as_matrix_group() == H
True
sage: H.gens()
(
[2 0] [2 1]
[0 1], [2 0]
)
```

The general or special linear group in GAP.

```
\verb|class| sage.groups.matrix_gps.linear.LinearMatrixGroup_generic| (\textit{degree},
```

base_ring, special, sage_name, latex_string, category=None, invariant form=None)

Bases: sage.groups.matrix_gps.named_group.NamedMatrixGroup_generic sage.groups.matrix_gps.linear.SL(n, R, var='a')

Return the special linear group.

The special linear group SL(d,R) consists of all $d \times d$ matrices that are invertible over the ring R with determinant one.

Note: This group is also available via groups.matrix.SL().

INPUT:

- n a positive integer.
- R ring or an integer. If an integer is specified, the corresponding finite field is used.
- var variable used to represent generator of the finite field, if needed.

EXAMPLES:

```
sage: SL(3, GF(2))
Special Linear Group of degree 3 over Finite Field of size 2
sage: G = SL(15, GF(7)); G
Special Linear Group of degree 15 over Finite Field of size 7
```

Next we compute generators for $SL_3(\mathbf{Z})$

```
sage: G = SL(3,ZZ); G
Special Linear Group of degree 3 over Integer Ring
sage: G.gens()
(
[0 1 0] [ 0 1 0] [1 1 0]
[0 0 1] [-1 0 0] [0 1 0]
[1 0 0], [ 0 0 1], [0 0 1]
)
sage: TestSuite(G).run()
```

25.10 Orthogonal Linear Groups

The general orthogonal group GO(n, R) consists of all $n \times n$ matrices over the ring R preserving an n-ary positive definite quadratic form. In cases where there are multiple non-isomorphic quadratic forms, additional data needs to be specified to disambiguate. The special orthogonal group is the normal subgroup of matrices of determinant one.

In characteristics different from 2, a quadratic form is equivalent to a bilinear symmetric form. Furthermore, over the real numbers a positive definite quadratic form is equivalent to the diagonal quadratic form, equivalent to the bilinear symmetric form defined by the identity matrix. Hence, the orthogonal group $GO(n, \mathbf{R})$ is the group of orthogonal matrices in the usual sense.

In the case of a finite field and if the degree n is even, then there are two inequivalent quadratic forms and a third parameter e must be specified to disambiguate these two possibilities. The index of SO(e,d,q) in GO(e,d,q) is 2 if q is odd, but SO(e,d,q) = GO(e,d,q) if q is even.)

Warning: GAP and Sage use different notations:

- GAP notation: The optional e comes first, that is, GO([e,] d, q), SO([e,] d, q).
- Sage notation: The optional e comes last, the standard Python convention: GO(d, GF(q), e=0), SO(d, GF(q), e=0).

```
sage: GO(3,7)
General Orthogonal Group of degree 3 over Finite Field of size 7

sage: G = SO(4, GF(7), 1); G
Special Orthogonal Group of degree 4 and form parameter 1 over Finite Field of size 7
sage: G.random_element() # random
[4 3 5 2]
[6 6 4 0]
[0 4 6 0]
[4 4 5 1]
```

AUTHORS:

- David Joyner (2006-03): initial version
- David Joyner (2006-05): added examples, _latex_, __str__, gens, as_matrix_group
- William Stein (2006-12-09): rewrite
- Volker Braun (2013-1) port to new Parent, libGAP, extreme refactoring.
- Sebastian Oehms (2018-8) add invariant_form() (as alias), _OG, option for user defined invariant bilinear form, and bug-fix in cmd-string for calling GAP (see trac ticket #26028)

```
sage.groups.matrix_gps.orthogonal.GO(n, R, e=0, var='a', invariant\_form=None)
Return the general orthogonal group.
```

The general orthogonal group GO(n,R) consists of all $n \times n$ matrices over the ring R preserving an n-ary positive definite quadratic form. In cases where there are multiple non-isomorphic quadratic forms, additional data needs to be specified to disambiguate.

In the case of a finite field and if the degree n is even, then there are two inequivalent quadratic forms and a third parameter e must be specified to disambiguate these two possibilities.

Note: This group is also available via groups.matrix.GO().

INPUT:

- n integer; the degree
- R ring or an integer; if an integer is specified, the corresponding finite field is used
- e +1 or -1, and ignored by default; only relevant for finite fields and if the degree is even: a parameter that distinguishes inequivalent invariant forms
- var (optional, default: 'a') variable used to represent generator of the finite field, if needed
- invariant_form (optional) instances being accepted by the matrix-constructor which define a $n \times n$ square matrix over R describing the symmetric form to be kept invariant by the orthogonal group; the form is checked to be non-degenerate and symmetric but not to be positive definite

OUTPUT:

The general orthogonal group of given degree, base ring, and choice of invariant form.

EXAMPLES:

```
sage: GO( 3, GF(7))
General Orthogonal Group of degree 3 over Finite Field of size 7
sage: GO( 3, GF(7)).order()
672
```

```
sage: GO( 3, GF(7)).gens()
(
[3 0 0] [0 1 0]
[0 5 0] [1 6 6]
[0 0 1], [0 2 1]
)
```

Using the invariant form option:

```
sage: m = matrix(QQ, 3,3, [[0, 1, 0], [1, 0, 0], [0, 0, 3]])
sage: GO3 = GO(3,QQ)
sage: GO3m = GO(3,QQ, invariant_form=m)
sage: GO3 == GO3m
False
sage: GO3.invariant_form()
[1 0 0]
[0 1 0]
[0 0 1]
sage: GO3m.invariant_form()
[0 1 0]
[1 0 0]
[0 0 3]
sage: pm = Permutation([2,3,1]).to_matrix()
sage: g = GO3(pm); g in GO3; g
[0 0 1]
[1 0 0]
[0 1 0]
sage: GO3m(pm)
Traceback (most recent call last):
TypeError: matrix must be orthogonal with respect to the symmetric form
[0 1 0]
[1 0 0]
[0 0 3]
sage: GO(3,3, invariant_form=[[1,0,0],[0,2,0],[0,0,1]])
Traceback (most recent call last):
NotImplementedError: invariant_form for finite groups is fixed by GAP
sage: 5+5
10
```

Bases: sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_generic, sage.groups.matrix_gps.named_group.NamedMatrixGroup_gap, sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap

The general or special orthogonal group in GAP.

invariant bilinear form()

Return the symmetric bilinear form preserved by the orthogonal group.

OUTPUT:

A matrix M such that, for every group element g, the identity $gmg^T=m$ holds. In characteristic different from two, this uniquely determines the orthogonal group.

EXAMPLES:

```
sage: G = GO(4, GF(7), -1)
sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
[0 0 2 0]
[0 0 0 2]
sage: G = GO(4, GF(7), +1)
sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
[0 0 6 0]
[0 0 0 2]
sage: G = SO(4, GF(7), -1)
sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
[0 0 2 0]
[0 0 0 2]
```

invariant form()

Return the symmetric bilinear form preserved by the orthogonal group.

OUTPUT:

A matrix M such that, for every group element g, the identity $gmg^T=m$ holds. In characteristic different from two, this uniquely determines the orthogonal group.

EXAMPLES:

```
sage: G = GO(4, GF(7), -1)
sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
[0 0 2 0]
[0 0 0 2]
sage: G = GO(4, GF(7), +1)
sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
[0 0 6 0]
[0 0 0 2]
sage: G = SO(4, GF(7), -1)
sage: G.invariant_bilinear_form()
[0 1 0 0]
[1 0 0 0]
```

```
[0 0 2 0]
[0 0 0 2]
```

invariant_quadratic_form()

Return the quadratic form preserved by the orthogonal group.

OUTPUT:

The matrix Q defining "orthogonal" as follows. The matrix determines a quadratic form q on the natural vector space V, on which G acts, by $q(v) = vQv^t$. A matrix M is an element of the orthogonal group if q(v) = q(vM) for all $v \in V$.

EXAMPLES:

```
sage: G = GO(4, GF(7), -1)
sage: G.invariant_quadratic_form()
[0 1 0 0]
[0 0 0 0]
[0 0 1 0]
[0 0 0 1]
sage: G = GO(4, GF(7), +1)
sage: G.invariant_quadratic_form()
[0 1 0 0]
[0 0 0 0]
[0 0 3 0]
[0 0 0 1]
sage: G = GO(4, QQ)
sage: G.invariant_quadratic_form()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: G = SO(4, GF(7), -1)
sage: G.invariant_quadratic_form()
[0 1 0 0]
[0 0 0 0]
[0 0 1 0]
[0 0 0 1]
```

class sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_generic(degree,

```
base_ring,
spe-
cial,
sage_name,
la-
tex_string,
cate-
gory=None,
in-
vari-
ant_form=None)
```

Bases: sage.groups.matrix_gps.named_group.NamedMatrixGroup_generic

General Orthogonal Group over arbitrary rings.

EXAMPLES:

```
sage: G = GO(3, GF(7)); G
General Orthogonal Group of degree 3 over Finite Field of size 7
sage: latex(G)
\text{text}(GO)_{3}(\Bold\{F\}_{7})
sage: G = SO(3, GF(5)); G
Special Orthogonal Group of degree 3 over Finite Field of size 5
sage: latex(G)
\text{SO}_{3}(\Bold{F}_{5})
sage: CF3 = CyclotomicField(3); e3 = CF3.gen()
sage: m=matrix(CF3, 3,3, [[1,e3,0],[e3,2,0],[0,0,1]])
sage: G = SO(3, CF3, invariant_form=m)
sage: latex(G)
\text{SO}_{3}(\Bold{Q}(\zeta_{3}))\text{ with respect to non positive definite_
→symmetrc form }\left(\begin{array}{rrr}
1 & \zeta_{3} & 0 \\
\zeta_{3} & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
```

invariant_bilinear_form()

Return the symmetric bilinear form preserved by self.

OUTPUT:

A matrix.

EXAMPLES:

```
sage: GO(2,3,+1).invariant_bilinear_form()
[0 1]
[1 0]
sage: GO(2,3,-1).invariant_bilinear_form()
[2 1]
[1 1]
sage: G = GO(4, QQ)
sage: G.invariant_bilinear_form()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: GO3m = GO(3,QQ, invariant_form=(1,0,0,0,2,0,0,0,3))
sage: GO3m.invariant_bilinear_form()
[1 0 0]
[0 2 0]
[0 0 3]
```

invariant_form()

Return the symmetric bilinear form preserved by self.

OUTPUT:

A matrix.

```
sage: GO(2,3,+1).invariant_bilinear_form()
[0 1]
[1 0]
sage: GO(2,3,-1).invariant_bilinear_form()
[2 1]
[1 1]
sage: G = GO(4, QQ)
sage: G.invariant_bilinear_form()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: GO3m = GO(3,QQ, invariant_form=(1,0,0,0,2,0,0,0,3))
sage: GO3m.invariant_bilinear_form()
[1 0 0]
[0 2 0]
[0 0 3]
```

invariant_quadratic_form()

Return the symmetric bilinear form preserved by self.

OUTPUT:

A matrix.

EXAMPLES:

```
sage: GO(2,3,+1).invariant_bilinear_form()
[0 1]
[1 0]
sage: GO(2,3,-1).invariant_bilinear_form()
[2 1]
[1 1]
sage: G = GO(4, QQ)
sage: G.invariant_bilinear_form()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: GO3m = GO(3,QQ, invariant_form=(1,0,0,0,2,0,0,0,3))
sage: GO3m.invariant_bilinear_form()
[1 0 0]
[0 2 0]
[0 0 3]
```

sage.groups.matrix_gps.orthogonal.SO $(n, R, e=None, var='a', invariant_form=None)$ Return the special orthogonal group.

The special orthogonal group GO(n,R) consists of all $n \times n$ matrices with determinant one over the ring R preserving an n-ary positive definite quadratic form. In cases where there are multiple non-isomorphic quadratic forms, additional data needs to be specified to disambiguate.

Note: This group is also available via groups.matrix.SO().

INPUT:

• n – integer; the degree

- R ring or an integer; if an integer is specified, the corresponding finite field is used
- e +1 or -1, and ignored by default; only relevant for finite fields and if the degree is even: a parameter that distinguishes inequivalent invariant forms
- var (optional, default: 'a') variable used to represent generator of the finite field, if needed
- invariant_form (optional) instances being accepted by the matrix-constructor which define a $n \times n$ square matrix over R describing the symmetric form to be kept invariant by the orthogonal group; the form is checked to be non-degenerate and symmetric but not to be positive definite

OUTPUT:

The special orthogonal group of given degree, base ring, and choice of invariant form.

EXAMPLES:

```
sage: G = SO(3,GF(5))
sage: G
Special Orthogonal Group of degree 3 over Finite Field of size 5

sage: G = SO(3,GF(5))
sage: G.gens()
(
[2 0 0] [3 2 3] [1 4 4]
[0 3 0] [0 2 0] [4 0 0]
[0 0 1], [0 3 1], [2 0 4]
)
sage: G = SO(3,GF(5))
sage: G.as_matrix_group()
Matrix group over Finite Field of size 5 with 3 generators (
[2 0 0] [3 2 3] [1 4 4]
[0 3 0] [0 2 0] [4 0 0]
[0 0 1], [0 3 1], [2 0 4]
)
```

Using the invariant_form option:

```
sage: CF3 = CyclotomicField(3); e3 = CF3.gen()
sage: m=matrix(CF3, 3,3, [[1,e3,0],[e3,2,0],[0,0,1]])
sage: SO3 = SO(3, CF3)
sage: SO3m = SO(3, CF3, invariant_form=m)
sage: SO3 == SO3m
False
sage: SO3.invariant_form()
[1 0 0]
[0 1 0]
[0 0 1]
sage: SO3m.invariant_form()
    1 zeta3
[zeta3
           2
                 0]
    0
           0
                 11
sage: pm = Permutation([2,3,1]).to_matrix()
sage: g = SO3(pm); g in SO3; g
True
[0 0 1]
[1 0 0]
[0 1 0]
sage: SO3m(pm)
Traceback (most recent call last):
```

sage.groups.matrix_gps.orthogonal.normalize_args_e (degree, ring, e)

Normalize the arguments that relate the choice of quadratic form for special orthogonal groups over finite fields.

INPUT:

- degree integer. The degree of the affine group, that is, the dimension of the affine space the group is acting on.
- ring a ring. The base ring of the affine space.
- e integer, one of +1, 0, -1. Only relevant for finite fields and if the degree is even. A parameter that distinguishes inequivalent invariant forms.

OUTPUT:

The integer e with values required by GAP.

25.11 Groups of isometries.

Let $M = \mathbf{Z}^n$ or \mathbf{Q}^n , $b: M \times M \to \mathbf{Q}$ a bilinear form and $f: M \to M$ a linear map. We say that f is an isometry if for all elements x, y of M we have that b(x, y) = b(f(x), f(y)). A group of isometries is a subgroup of GL(M) consisting of isometries.

EXAMPLES:

```
sage: L = IntegralLattice("D4")
sage: O = L.orthogonal_group()
sage: O
Group of isometries with 5 generators (
[-1 0 0 0] [0 0 0 1] [-1 -1 -1 -1] [ 1 1 0 0] [ 1 0 0 0]
[ 0 -1 0 0] [0 1 0 0] [ 0 0 1 0] [ 0 0 1 0] [-1 -1 -1 -1]
[ 0 0 -1 0] [ 0 0 1 0] [ 0 1 0 1] [ 0 1 0 1] [ 0 0 1 0]
[ 0 0 0 -1], [1 0 0 0], [ 0 -1 -1 0], [ 0 -1 -1 0], [ 0 0 0 1]
)
```

Basic functionality is provided by GAP:

```
sage: 0.cardinality()
1152
sage: len(0.conjugacy_classes_representatives())
25
```

AUTHORS:

• Simon Brandhorst (2018-02): First created

class sage.groups.matrix_gps.isometries.GroupActionOnQuotientModule (MatrixGroup, $quo-tient_module$, $is_left=False$)

Bases: sage.categories.action.Action

Matrix group action on a quotient module from the right.

INPUT:

- MatrixGroup the group acting GroupOfIsometries
- submodule an invariant quotient module
- is_left bool (default: False)

EXAMPLES:

Bases: sage.categories.action.Action

Matrix group action on a submodule from the right.

INPUT:

- MatrixGroup an instance of GroupOfIsometries
- submodule an invariant submodule
- is left bool (default: False)

```
sage: from sage.groups.matrix_gps.isometries import GroupOfIsometries
sage: S = span(ZZ,[[0,1]])
sage: g = Matrix(QQ,2,[1,0,0,-1])
sage: G = GroupOfIsometries(2, ZZ, [g], invariant_bilinear_form=matrix.

identity(2), invariant_submodule=S)
sage: g = G.an_element()
sage: x = S.an_element()
sage: x * g
(0, -1)
sage: (x*g).parent()
Free module of degree 2 and rank 1 over Integer Ring
Echelon basis matrix:
[0 1]
```

A base class for Orthogonal matrix groups with a gap backend.

Main difference to OrthogonalMatrixGroup_gap is that we can specify generators and a bilinear form. Following gap the group action is from the right.

INPUT:

- degree integer, the degree (matrix size) of the matrix
- base_ring ring, the base ring of the matrices
- gens a list of matrices over the base ring
- invariant_bilinear_form a symmetric matrix
- category (default: None) a category of groups
- check bool (default: True) check if the generators preserve the bilinear form
- invariant_submodule a submodule preserved by the group action (default: None) registers an action on this submodule.
- invariant_quotient_module a quotient module preserved by the group action (default: None) registers an action on this quotient module.

EXAMPLES:

```
sage: from sage.groups.matrix_gps.isometries import GroupOfIsometries
sage: bil = Matrix(ZZ,2,[3,2,2,3])
sage: gens = [-Matrix(ZZ,2,[0,1,1,0])]
sage: 0 = GroupOfIsometries(2,ZZ,gens,bil)
sage: 0
Group of isometries with 1 generator (
[ 0 -1]
[-1    0]
)
sage: 0.order()
```

Infinite groups are O.K. too:

```
sage: bil = Matrix(ZZ,4,[0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0])
sage: f = Matrix(ZZ,4,[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, -1, 1, 1, 1])
sage: O = GroupOfIsometries(2,ZZ,[f],bil)
sage: O.cardinality()
+Infinity
```

invariant_bilinear_form()

Return the symmetric bilinear form preserved by the orthogonal group.

OUTPUT:

• the matrix defining the bilinear form

EXAMPLES:

```
sage: from sage.groups.matrix_gps.isometries import GroupOfIsometries
sage: bil = Matrix(ZZ,2,[3,2,2,3])
sage: gens = [-Matrix(ZZ,2,[0,1,1,0])]
sage: O = GroupOfIsometries(2,ZZ,gens,bil)
sage: O.invariant_bilinear_form()
[3 2]
[2 3]
```

25.12 Symplectic Linear Groups

EXAMPLES:

```
sage: G = Sp(4,GF(7)); G
Symplectic Group of degree 4 over Finite Field of size 7
sage: g = prod(G.gens()); g
[3 0 3 0]
[1 0 0 0]
[0 1 0 1]
[0 2 0 0]
sage: m = g.matrix()
sage: m * G.invariant_form() * m.transpose() == G.invariant_form()
True
sage: G.order()
276595200
```

AUTHORS:

- David Joyner (2006-03): initial version, modified from special_linear (by W. Stein)
- Volker Braun (2013-1) port to new Parent, libGAP, extreme refactoring.
- Sebastian Oehms (2018-8) add option for user defined invariant bilinear form and bug-fix in invariant_form() (see trac ticket #26028)

```
sage.groups.matrix_gps.symplectic.\mathbf{Sp}(n, R, var='a', invariant\_form=None)
Return the symplectic group.
```

The special linear group GL(d,R) consists of all $d \times d$ matrices that are invertible over the ring R with determinant one.

Note: This group is also available via groups.matrix.Sp().

INPUT:

- n a positive integer
- R ring or an integer; if an integer is specified, the corresponding finite field is used
- var (optional, default: 'a') variable used to represent generator of the finite field, if needed
- invariant_form (optional) instances being accepted by the matrix-constructor which define a $n \times n$ square matrix over R describing the alternating form to be kept invariant by the symplectic group

```
sage: Sp(4, 5)
Symplectic Group of degree 4 over Finite Field of size 5

sage: Sp(4, IntegerModRing(15))
Symplectic Group of degree 4 over Ring of integers modulo 15

sage: Sp(3, GF(7))
Traceback (most recent call last):
...
ValueError: the degree must be even
```

Using the invariant_form option:

```
sage: m = matrix(QQ, 4, 4, [[0, 0, 1, 0], [0, 0, 0, 2], [-1, 0, 0, 0], [0, -2, 0, 0])
→011)
sage: Sp4m = Sp(4, QQ, invariant_form=m)
sage: Sp4 = Sp(4, QQ)
sage: Sp4 == Sp4m
False
sage: Sp4.invariant_form()
[ 0 0 0 1]
[ 0 0 1 0]
[0 -1 0 0]
[-1 \ 0 \ 0 \ 0]
sage: Sp4m.invariant_form()
[ 0 0 1 0]
[ 0 0 0 2]
[-1 \ 0 \ 0 \ 0]
[ 0 -2 0 0]
sage: pm = Permutation([2,1,4,3]).to_matrix()
sage: q = Sp4(pm); q in Sp4; q
True
[0 1 0 0]
[1 0 0 0]
[0 0 0 1]
[0 0 1 0]
sage: Sp4m(pm)
Traceback (most recent call last):
TypeError: matrix must be symplectic with respect to the alternating form
[ 0 0 1 0]
[ 0 0 0 2]
[-1 \ 0 \ 0 \ 0]
[ 0 -2 0 0]
sage: Sp(4,3, invariant_form=[[0,0,0,1],[0,0,1,0],[0,2,0,0], [2,0,0,0]])
Traceback (most recent call last):
NotImplementedError: invariant_form for finite groups is fixed by GAP
```

```
class sage.groups.matrix_gps.symplectic.SymplecticMatrixGroup_gap(degree,
```

base_ring, special, sage_name, latex_string, gap_command_string, cate-

gory=None)
Bases: sage.groups.matrix_gps.symplectic.SymplecticMatrixGroup_generic, sage.
groups.matrix_gps.named_group.NamedMatrixGroup_gap, sage.groups.matrix_gps.

finitely_generated.FinitelyGeneratedMatrixGroup_gap

Symplectic group in GAP.

EXAMPLES:

```
sage: Sp(2,4)
Symplectic Group of degree 2 over Finite Field in a of size 2^2
sage: latex(Sp(4,5))
\text{Sp}_{4}(\Bold{F}_{5})
```

invariant form()

Return the quadratic form preserved by the symplectic group.

OUTPUT:

A matrix.

EXAMPLES:

```
sage: Sp(4, GF(3)).invariant_form()
[0 0 0 1]
[0 0 1 0]
[0 2 0 0]
[2 0 0 0]
```

class sage.groups.matrix_gps.symplectic.SymplecticMatrixGroup_generic(degree,

```
base_ring,
spe-
cial,
sage_name,
la-
tex_string,
cate-
gory=None,
in-
vari-
ant_form=None)
```

 $\textbf{Bases: } \textit{sage.groups.matrix_gps.named_group.NamedMatrixGroup_generic}$

Symplectic Group over arbitrary rings.

EXAMPLES:

```
sage: Sp43 = Sp(4,3); Sp43
Symplectic Group of degree 4 over Finite Field of size 3
sage: latex(Sp43)
```

```
\text{Sp}_{4}(\Bold{F}_{3})
\hookrightarrow 0, 0)); Sp4m
Symplectic Group of degree 4 over Rational Field with respect to alternating.
→bilinear form
[ 0 0 1 0]
[ 0 0 0 2]
[-1 \ 0 \ 0 \ 0]
[ 0 -2 0 0]
sage: latex(Sp4m)
\text{Sp}_{4}(\Bold{Q}) \text{ with respect to alternating bilinear form}
→\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 \\
-1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0
\end{array}\right)
```

invariant_form()

Return the quadratic form preserved by the symplectic group.

OUTPUT:

A matrix.

EXAMPLES:

```
sage: Sp(4, QQ).invariant_form()
[ 0 0 0 1]
[ 0 0 1 0]
[ 0 -1 0 0]
[-1 0 0 0]
```

25.13 Unitary Groups GU(n,q) and SU(n,q)

These are $n \times n$ unitary matrices with entries in $GF(q^2)$.

EXAMPLES:

```
sage: G = SU(3,5)
sage: G.order()
378000
sage: G
Special Unitary Group of degree 3 over Finite Field in a of size 5^2
sage: G.gens()
(
                   0] [4*a 4
            0
                                    1]
      a
      0 \ 2*a + 2
                    0] [ 4 4
                                    0.1
                   3*a], [ 1 0
             0
                                    01
sage: G.base_ring()
Finite Field in a of size 5^2
```

AUTHORS:

- David Joyner (2006-03): initial version, modified from special_linear (by W. Stein)
- David Joyner (2006-05): minor additions (examples, _latex_, __str__, gens)
- William Stein (2006-12): rewrite
- Volker Braun (2013-1) port to new Parent, libGAP, extreme refactoring.
- Sebastian Oehms (2018-8) add _UG, invariant_form(), option for user defined invariant bilinear form, and bug-fix in _check_matrix (see trac ticket #26028)

```
sage.groups.matrix_gps.unitary.GU (n, R, var='a', invariant_form=None)
Return the general unitary group.
```

The general unitary group GU(d,R) consists of all $d \times d$ matrices that preserve a nondegenerate sesquilinear form over the ring R.

Note: For a finite field the matrices that preserve a sesquilinear form over F_q live over F_{q^2} . So GU (n, q) for a prime power q constructs the matrix group over the base ring GF (q^2).

Note: This group is also available via groups.matrix.GU().

INPUT:

- n − a positive integer
- R ring or an integer; if an integer is specified, the corresponding finite field is used
- var (optional, default: 'a') variable used to represent generator of the finite field, if needed
- invariant_form (optional) instances being accepted by the matrix-constructor which define a $n \times n$ square matrix over R describing the hermitian form to be kept invariant by the unitary group; the form is checked to be non-degenerate and hermitian but not to be positive definite

OUTPUT:

Return the general unitary group.

EXAMPLES:

```
sage: G = GU(3, 7); G
General Unitary Group of degree 3 over Finite Field in a of size 7^2
sage: G.gens()
  а
      0 0] [6*a
                     6
                         11
Γ
      1 0] [ 6
                    6
  0
                         0.1
  0
      0 5*a], [ 1
                    0
sage: GU(2,QQ)
General Unitary Group of degree 2 over Rational Field
sage: G = GU(3, 5, var='beta')
sage: G.base_ring()
Finite Field in beta of size 5^2
sage: G.gens()
                   0] [4*beta
                                           1]
  beta
                                    4
     0
            1
                   0 1 [
                                    4
                                           01
```

```
[ 0 0 3*beta], [ 1 0 0]
```

Using the invariant_form option:

```
sage: UCF = UniversalCyclotomicField(); e5=UCF.gen(5)
sage: m=matrix(UCF, 3,3, [[1,e5,0],[e5.conjugate(),2,0],[0,0,1]])
sage: G = GU(3, UCF)
sage: Gm = GU(3, UCF, invariant_form=m)
sage: G == Gm
False
sage: G.invariant_form()
[1 0 0]
[0 1 0]
[0 0 1]
sage: Gm.invariant_form()
[ 1 E(5)
                   0.1
[E(5)^4
          2
                    01
            0
                    11
     0
sage: pm=Permutation((1,2,3)).to_matrix()
sage: g = G(pm); g in G; g
True
[0 0 1]
[1 0 0]
[0 1 0]
sage: Gm(pm)
Traceback (most recent call last):
TypeError: matrix must be unitary with respect to the hermitian form
        E(5)
                   0]
[E(5)^4
         2
                    01
            0
                    1]
sage: GU(3,3, invariant_form=[[1,0,0],[0,2,0],[0,0,1]])
Traceback (most recent call last):
NotImplementedError: invariant_form for finite groups is fixed by GAP
sage: GU(2,QQ, invariant_form=[[1,0],[2,0]])
Traceback (most recent call last):
. . .
ValueError: invariant_form must be non-degenerate
```

sage.groups.matrix_gps.unitary.SU(n, R, var='a', invariant_form=None)

The special unitary group SU(d,R) consists of all $d \times d$ matrices that preserve a nondegenerate sesquilinear form over the ring R and have determinant 1.

Note: For a finite field the matrices that preserve a sesquilinear form over F_q live over F_{q^2} . So SU (n,q) for a prime power q constructs the matrix group over the base ring GF (q^2).

Note: This group is also available via groups.matrix.SU().

INPUT:

- n a positive integer
- R ring or an integer; if an integer is specified, the corresponding finite field is used
- var (optional, default: 'a') variable used to represent generator of the finite field, if needed
- invariant_form (optional) instances being accepted by the matrix-constructor which define a $n \times n$ square matrix over R describing the hermitian form to be kept invariant by the unitary group; the form is checked to be non-degenerate and hermitian but not to be positive definite

OUTPUT:

Return the special unitary group.

EXAMPLES:

```
sage: SU(3,5)
Special Unitary Group of degree 3 over Finite Field in a of size 5^2
sage: SU(3, GF(5))
Special Unitary Group of degree 3 over Finite Field in a of size 5^2
sage: SU(3,QQ)
Special Unitary Group of degree 3 over Rational Field
```

Using the invariant_form option:

```
sage: CF3 = CyclotomicField(3); e3 = CF3.gen()
sage: m=matrix(CF3, 3,3, [[1,e3,0],[e3.conjugate(),2,0],[0,0,1]])
sage: G = SU(3, CF3)
sage: Gm = SU(3, CF3, invariant_form=m)
sage: G == Gm
False
sage: G.invariant_form()
[1 0 0]
[0 1 0]
[0 0 1]
sage: Gm.invariant_form()
                             0]
[ 1 zeta3
               2
[-zeta3 - 1
                             01
0
                   0
                             1]
sage: pm=Permutation((1,2,3)).to_matrix()
sage: G(pm)
[0 0 1]
[1 0 0]
[0 1 0]
sage: Gm(pm)
Traceback (most recent call last):
TypeError: matrix must be unitary with respect to the hermitian form
[ 1 zeta3 0]
              2
[-zeta3 - 1
                              0]
                   0
        0
                             1]
sage: SU(3,5, invariant_form=[[1,0,0],[0,2,0],[0,0,3]])
Traceback (most recent call last):
NotImplementedError: invariant_form for finite groups is fixed by GAP
```

Bases: sage.groups.matrix_gps.unitary.UnitaryMatrixGroup_generic, sage.groups.matrix_gps.named_group.NamedMatrixGroup_gap, sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap

The general or special unitary group in GAP.

invariant_form()

Return the hermitian form preserved by the unitary group.

OUTPUT:

A square matrix describing the bilinear form

EXAMPLES:

```
sage: G32=GU(3,2)
sage: G32.invariant_form()
[0 0 1]
[0 1 0]
[1 0 0]
```

class sage.groups.matrix_gps.unitary.UnitaryMatrixGroup_generic(degree,

base_ring, special, sage_name, latex_string, category=None, invariant_form=None)

 $\textbf{Bases: } \textit{sage.groups.matrix_gps.named_group.NamedMatrixGroup_generic}$

General Unitary Group over arbitrary rings.

```
sage: G = GU(3, GF(7)); G
General Unitary Group of degree 3 over Finite Field in a of size 7^2
sage: latex(G)
\text{text}\{GU\}_{3}(\Bold\{F\}_{7^{2}})
sage: G = SU(3, GF(5)); G
Special Unitary Group of degree 3 over Finite Field in a of size 5^2
sage: latex(G)
\text{text}\{SU\}_{3}(\Bold\{F\}_{5^{2}})
sage: CF3 = CyclotomicField(3); e3 = CF3.gen()
sage: m=matrix(CF3, 3,3, [[1,e3,0],[e3.conjugate(),2,0],[0,0,1]])
sage: G = SU(3, CF3, invariant_form=m)
sage: latex(G)
\text{SU}_{3}(\Bold_{Q}(\zeta_{3}))\text{ with respect to hermitian form }
→\left(\begin{array}{rrr}
1 & \zeta_{3} & 0 \\
-\zeta_{3} - 1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
```

```
invariant form()
```

Return the hermitian form preserved by the unitary group.

OUTPUT:

A square matrix describing the bilinear form

EXAMPLES:

```
sage: SU4 = SU(4,QQ)
sage: SU4.invariant_form()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
```

```
\verb|sage.groups.matrix_gps.unitary.finite_field_sqrt| (\textit{ring}) \\
```

Helper function.

INPUT:

A ring.

OUTPUT:

Integer q such that ring is the finite field with q^2 elements.

EXAMPLES:

```
sage: from sage.groups.matrix_gps.unitary import finite_field_sqrt
sage: finite_field_sqrt(GF(4, 'a'))
2
```

25.14 Heisenberg Group

AUTHORS:

• Hilder Vitor Lima Pereira (2017-08): initial version

```
class sage.groups.matrix_gps.heisenberg.HeisenbergGroup (n=1,R=0) Bases: sage.structure.unique_representation.UniqueRepresentation, sage. groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap
```

The Heisenberg group of degree n.

Let R be a ring, and let n be a positive integer. The Heisenberg group of degree n over R is a multiplicative group whose elements are matrices with the following form:

$$\begin{pmatrix} 1 & x^T & z \\ 0 & I_n & y \\ 0 & 0 & 1 \end{pmatrix},$$

where x and y are column vectors in \mathbb{R}^n , z is a scalar in R, and \mathbb{I}_n is the identity matrix of size n.

INPUT:

- n the degree of the Heisenberg group
- R (default: **Z**) the ring R or a positive integer as a shorthand for the ring $\mathbf{Z}/R\mathbf{Z}$

```
sage: H = groups.matrix.Heisenberg(); H
Heisenberg group of degree 1 over Integer Ring
sage: H.gens()
[1 1 0] [1 0 0] [1 0 1]
[0 1 0] [0 1 1] [0 1 0]
[0\ 0\ 1], [0\ 0\ 1], [0\ 0\ 1]
sage: X, Y, Z = H.gens()
sage: Z * X * Y**-1
[ 1 1 0]
[ 0 1 -1]
[ 0 0 1]
sage: X * Y * X**-1 * Y**-1 == Z
True
sage: H = groups.matrix.Heisenberg(R=5); H
Heisenberg group of degree 1 over Ring of integers modulo 5
sage: H = groups.matrix.Heisenberg(n=3, R=13); H
Heisenberg group of degree 3 over Ring of integers modulo 13
```

REFERENCES:

• Wikipedia article Heisenberg_group

cardinality()

Return the order of self.

EXAMPLES:

```
sage: H = groups.matrix.Heisenberg()
sage: H.order()
+Infinity
sage: H = groups.matrix.Heisenberg(n=4)
sage: H.order()
+Infinity
sage: H = groups.matrix.Heisenberg(R=3)
sage: H.order()
27
sage: H = groups.matrix.Heisenberg(n=2, R=3)
sage: H.order()
243
sage: H = groups.matrix.Heisenberg(n=2, R=GF(4))
sage: H.order()
1024
```

order()

Return the order of self.

EXAMPLES:

```
sage: H = groups.matrix.Heisenberg()
sage: H.order()
+Infinity
sage: H = groups.matrix.Heisenberg(n=4)
sage: H.order()
+Infinity
sage: H = groups.matrix.Heisenberg(R=3)
sage: H.order()
```

```
sage: H = groups.matrix.Heisenberg(n=2, R=3)
sage: H.order()
243
sage: H = groups.matrix.Heisenberg(n=2, R=GF(4))
sage: H.order()
1024
```

25.15 Affine Groups

AUTHORS:

• Volker Braun: initial version

An affine group.

The affine group Aff(A) (or general affine group) of an affine space A is the group of all invertible affine transformations from the space into itself.

If we let A_V be the affine space of a vector space V (essentially, forgetting what is the origin) then the affine group $\mathrm{Aff}(A_V)$ is the group generated by the general linear group $\mathrm{GL}(V)$ together with the translations. Recall that the group of translations acting on A_V is just V itself. The general linear and translation subgroups do not quite commute, and in fact generate the semidirect product

$$Aff(A_V) = GL(V) \ltimes V.$$

As such, the group elements can be represented by pairs (A,b) of a matrix and a vector. This pair then represents the transformation

$$x \mapsto Ax + b$$
.

We can also represent affine transformations as linear transformations by considering $\dim(V) + 1$ dimensional space. We take the affine transformation (A,b) to

$$\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}$$

and lifting $x=(x_1,\ldots,x_n)$ to $(x_1,\ldots,x_n,1)$. Here the (n+1)-th component is always 1, so the linear representations acts on the affine hyperplane $x_{n+1}=1$ as affine transformations which can be seen directly from the matrix multiplication.

INPUT:

Something that defines an affine space. For example

- An affine space itself:
 - A − affine space
- A vector space:
 - V − a vector space
- Degree and base ring:

- degree An integer. The degree of the affine group, that is, the dimension of the affine space the group is acting on.
- ring A ring or an integer. The base ring of the affine space. If an integer is given, it must be a
 prime power and the corresponding finite field is constructed.
- var (default: 'a') Keyword argument to specify the finite field generator name in the case where ring is a prime power.

EXAMPLES:

```
sage: F = AffineGroup(3, QQ); F
Affine Group of degree 3 over Rational Field
sage: F(matrix(QQ,[[1,2,3],[4,5,6],[7,8,0]]), vector(QQ,[10,11,12]))
      [1 2 3]
                  [10]
x \mid -> [4 \ 5 \ 6] \ x + [11]
      [7 8 0]
                  [12]
sage: F([[1,2,3],[4,5,6],[7,8,0]], [10,11,12])
      [1 2 3]
                  [10]
x \mid -> [4 \ 5 \ 6] \ x + [11]
      [7 8 0]
                   [12]
sage: F([1,2,3,4,5,6,7,8,0], [10,11,12])
      [1 2 3]
                 [101
x \mid -> [4 \ 5 \ 6] \ x + [11]
      [7 8 0]
                   [12]
```

Instead of specifying the complete matrix/vector information, you can also create special group elements:

Some additional ways to create affine groups:

```
sage: A = AffineSpace(2, GF(4,'a')); A
Affine Space of dimension 2 over Finite Field in a of size 2^2
sage: G = AffineGroup(A); G
Affine Group of degree 2 over Finite Field in a of size 2^2
sage: G is AffineGroup(2,4) # shorthand
True

sage: V = ZZ^3; V
Ambient free module of rank 3 over the principal ideal domain Integer Ring
sage: AffineGroup(V)
Affine Group of degree 3 over Integer Ring
```

REFERENCES:

Wikipedia article Affine_group

Element

alias of AffineGroupElement

degree()

Return the dimension of the affine space.

OUTPUT:

An integer.

EXAMPLES:

```
sage: G = AffineGroup(6, GF(5))
sage: g = G.an_element()
sage: G.degree()
6
sage: G.degree() == g.A().nrows() == g.A().ncols() == g.b().degree()
True
```

linear(A)

Construct the general linear transformation by A.

INPUT:

• A – anything that determines a matrix

OUTPUT:

The affine group element $x \mapsto Ax$.

EXAMPLES:

linear_space()

Return the space of the affine transformations represented as linear transformations.

We can represent affine transformations Ax + b as linear transformations by

$$\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}$$

and lifting $x = (x_1, ..., x_n)$ to $(x_1, ..., x_n, 1)$.

See also:

• sage.groups.affine_gps.group_element.AffineGroupElement.matrix()

EXAMPLES:

```
sage: G = AffineGroup(3, GF(5))
sage: G.linear_space()
Full MatrixSpace of 4 by 4 dense matrices over Finite Field of size 5
```

matrix_space()

Return the space of matrices representing the general linear transformations.

OUTPUT:

The parent of the matrices A defining the affine group element Ax + b.

```
sage: G = AffineGroup(3, GF(5))
sage: G.matrix_space()
Full MatrixSpace of 3 by 3 dense matrices over Finite Field of size 5
```

random_element()

Return a random element of this group.

EXAMPLES:

```
sage: G = AffineGroup(4, GF(3))
sage: G.random_element() # random
        [2 0 1 2] [1]
        [2 1 1 2] [2]
x |-> [1 0 2 2] x + [2]
        [1 1 1 1] [2]
sage: G.random_element() in G
True
```

reflection(v)

Construct the Householder reflection.

A Householder reflection (transformation) is the affine transformation corresponding to an elementary reflection at the hyperplane perpendicular to v.

INPUT:

• \forall – a vector, or something that determines a vector.

OUTPUT:

The affine group element that is just the Householder transformation (a.k.a. Householder reflection, elementary reflection) at the hyperplane perpendicular to v.

EXAMPLES:

```
sage: G = AffineGroup(3, QQ)
sage: G.reflection([1,0,0])
     [-1 \ 0 \ 0] [0]
x \mid -> [0 \ 1 \ 0] \ x + [0]
     [ 0 0 1]
                   [0]
sage: G.reflection([3,4,-5])
     [ 16/25 -12/25 3/5]
                                 [0]
x \mid -> [-12/25]
              9/25
                       4/5] x + [0]
     [ 3/5
              4/5
                      0]
                                 [0]
```

translation(b)

Construct the translation by b.

INPUT:

• b – anything that determines a vector

OUTPUT:

The affine group element $x \mapsto x + b$.

EXAMPLES:

```
sage: G = AffineGroup(3, GF(5))
sage: G.translation([1,4,8])
       [1 0 0] [1]
```

```
x |-> [0 1 0] x + [4]
[0 0 1] [3]
```

vector_space()

Return the vector space of the underlying affine space.

EXAMPLES:

```
sage: G = AffineGroup(3, GF(5))
sage: G.vector_space()
Vector space of dimension 3 over Finite Field of size 5
```

25.16 Euclidean Groups

AUTHORS:

• Volker Braun: initial version

```
class sage.groups.affine_gps.euclidean_group.EuclideanGroup(degree, ring)
    Bases: sage.groups.affine_gps.affine_group.AffineGroup
    an Euclidean group.
```

The Euclidean group E(A) (or general affine group) of an affine space A is the group of all invertible affine transformations from the space into itself preserving the Euclidean metric.

If we let A_V be the affine space of a vector space V (essentially, forgetting what is the origin) then the Euclidean group $E(A_V)$ is the group generated by the general linear group SO(V) together with the translations. Recall that the group of translations acting on A_V is just V itself. The general linear and translation subgroups do not quite commute, and in fact generate the semidirect product

$$E(A_V) = SO(V) \ltimes V.$$

As such, the group elements can be represented by pairs (A,b) of a matrix and a vector. This pair then represents the transformation

$$x \mapsto Ax + b$$
.

We can also represent this as a linear transformation in $\dim(V) + 1$ dimensional space as

$$\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}$$

and lifting
$$x = (x_1, \dots, x_n)$$
 to $(x_1, \dots, x_n, 1)$.

See also:

• AffineGroup

INPUT:

Something that defines an affine space. For example

- An affine space itself:
 - A affine space
- A vector space:

- V a vector space
- Degree and base ring:
 - degree An integer. The degree of the affine group, that is, the dimension of the affine space the group is acting on.
 - ring A ring or an integer. The base ring of the affine space. If an integer is given, it must be a prime power and the corresponding finite field is constructed.
 - var (default: 'a') Keyword argument to specify the finite field generator name in the case where ring is a prime power.

EXAMPLES:

```
sage: E3 = EuclideanGroup(3, QQ); E3
Euclidean Group of degree 3 over Rational Field
sage: E3(matrix(QQ,[(6/7, -2/7, 3/7), (-2/7, 3/7, 6/7), (3/7, 6/7, -2/7)]),_
→vector(QQ,[10,11,12]))
       [6/7 - 2/7 3/7]
                              [10]
x \mid -> [-2/7 \quad 3/7 \quad 6/7] \quad x + [11]
      [ 3/7 6/7 -2/7]
                              [12]
sage: E3([[6/7, -2/7, 3/7], [-2/7, 3/7, 6/7], [3/7, 6/7, -2/7]], [10,11,12])
      [ 6/7 -2/7 3/7]
                            [10]
x \mid -> [-2/7 \quad 3/7 \quad 6/7] \quad x + [11]
      [3/7 6/7 -2/7]
                             [12]
sage: E3([6/7, -2/7, 3/7, -2/7, 3/7, 6/7, 3/7, 6/7, -2/7], [10,11,12])
      [ 6/7 -2/7 3/7]
                             [10]
x \mid -> [-2/7 \quad 3/7 \quad 6/7] \quad x + [11]
      [ 3/7 6/7 -2/7]
                              [12]
```

Instead of specifying the complete matrix/vector information, you can also create special group elements:

```
sage: E3.linear([6/7, -2/7, 3/7, -2/7, 3/7, 6/7, 3/7, 6/7, -2/7])
                              [0]
      [ 6/7 -2/7 3/7]
x \mid -> [-2/7 \quad 3/7 \quad 6/7] \quad x + [0]
      [ 3/7 6/7 -2/7]
sage: E3.reflection([4,5,6])
      [ 45/77 -40/77 -48/77]
x \mid - > [-40/77 \quad 27/77 \quad -60/77] \quad x + [0]
      [-48/77 -60/77 5/77]
                                       [0]
sage: E3.translation([1,2,3])
       [1 0 0]
                    [1]
x \mid -> [0 \ 1 \ 0] \ x + [2]
       [0 0 1]
                     [3]
```

Some additional ways to create Euclidean groups:

```
sage: A = AffineSpace(2, GF(4, 'a')); A
Affine Space of dimension 2 over Finite Field in a of size 2^2
sage: G = EuclideanGroup(A); G
Euclidean Group of degree 2 over Finite Field in a of size 2^2
sage: G is EuclideanGroup(2,4) # shorthand
True
sage: V = ZZ^3; V
Ambient free module of rank 3 over the principal ideal domain Integer Ring
sage: EuclideanGroup(V)
Euclidean Group of degree 3 over Integer Ring
```

```
sage: EuclideanGroup(2, QQ)
Euclidean Group of degree 2 over Rational Field
```

REFERENCES:

• Wikipedia article Euclidean_group

random_element()

Return a random element of this group.

EXAMPLES:

```
sage: G = EuclideanGroup(4, GF(3))
sage: G.random_element() # random
       [2 1 2 1]       [1]
       [1 2 2 1]       [0]
x |-> [2 2 2 2] x + [1]
       [1 1 2 2]       [2]
sage: G.random_element() in G
True
```

25.17 Elements of Affine Groups

The class in this module is used to represent the elements of AffineGroup () and its subgroups.

EXAMPLES:

```
sage: F = AffineGroup(3, QQ)
sage: F([1,2,3,4,5,6,7,8,0], [10,11,12])
     [1 2 3]
                 [10]
x \mid -> [4 \ 5 \ 6] \ x + [11]
     [7 8 0]
                 [12]
sage: G = AffineGroup(2, ZZ)
sage: g = G([[1,1],[0,1]], [1,0])
sage: h = G([[1,2],[0,1]], [0,1])
sage: g*h
      [1 3]
               [2]
x \mid -> [0 1] x + [1]
sage: h*g
     [1 3]
               [1]
x \mid -> [0 1] x + [1]
sage: g*h != h*g
True
```

AUTHORS:

• Volker Braun

```
class sage.groups.affine_gps.group_element.AffineGroupElement(parent, A, b=0, convert=True, check=True)
```

Bases: sage.structure.element.MultiplicativeGroupElement

An affine group element.

INPUT:

- A an invertible matrix, or something defining a matrix if convert==True.
- b- a vector, or something defining a vector if convert == True (default: 0, defining the zero vector).
- parent the parent affine group.
- convert bool (default: True). Whether to convert A into the correct matrix space and b into the correct vector space.
- check bool (default: True). Whether to do some checks or just accept the input as valid.

As a special case, A can be a matrix obtained from matrix(), that is, one row and one column larger. In that case, the group element defining that matrix is reconstructed.

OUTPUT:

The affine group element $x \mapsto Ax + b$

EXAMPLES:

Conversion from a matrix and a matrix group element:

A()

Return the general linear part of an affine group element.

OUTPUT:

The matrix A of the affine group element Ax + b.

EXAMPLES:

```
sage: G = AffineGroup(3, QQ)
sage: g = G([1,2,3,4,5,6,7,8,0], [10,11,12])
sage: g.A()
[1 2 3]
[4 5 6]
[7 8 0]
```

b()

Return the translation part of an affine group element.

OUTPUT:

The vector b of the affine group element Ax + b.

EXAMPLES:

```
sage: G = AffineGroup(3, QQ)
sage: g = G([1,2,3,4,5,6,7,8,0], [10,11,12])
sage: g.b()
(10, 11, 12)
```

inverse()

Return the inverse group element.

OUTPUT:

Another affine group element.

EXAMPLES:

list()

Return list representation of self.

EXAMPLES:

```
sage: F = AffineGroup(3, QQ)
sage: g = F([1,2,3,4,5,6,7,8,0], [10,11,12])
sage: g
     [1 2 3]
                [10]
x \mid -> [4 \ 5 \ 6] \ x + [11]
     [7 8 0]
                 [12]
sage: g.matrix()
[ 1 2 3|10]
[ 4 5 6|11]
[ 7 8 0|12]
[-----]
[ 0 0 0 1]
sage: g.list()
[[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 0, 12], [0, 0, 0, 1]]
```

matrix()

Return the standard matrix representation of self.

See also:

• AffineGroup.linear_space()

EXAMPLES:

```
sage: G = AffineGroup(3, GF(7))
sage: g = G([1,2,3,4,5,6,7,8,0], [10,11,12])
sage: g
      [1 2 3]
                 [3]
x \mid -> [4 \ 5 \ 6] \ x + [4]
     [0 1 0]
                 [5]
sage: g.matrix()
[1 2 3 | 3]
[4 5 6 4 ]
[0 1 0 | 5 ]
[----+-]
[0 0 0|1]
sage: parent(g.matrix())
Full MatrixSpace of 4 by 4 dense matrices over Finite Field of size 7
sage: g.matrix() == matrix(g)
```

Composition of affine group elements equals multiplication of the matrices:

```
sage: g1 = G.random_element()
sage: g2 = G.random_element()
sage: g1.matrix() * g2.matrix() == (g1*g2).matrix()
True
```

CHAPTER

TWENTYSIX

LIE GROUPS

26.1 Nilpotent Lie groups

AUTHORS:

• Eero Hakavuori (2018-09-25): initial version of nilpotent Lie groups

A nilpotent Lie group.

INPUT:

- L the Lie algebra of the Lie group; must be a finite dimensional nilpotent Lie algebra with basis over a topological field, e.g. Q or R
- name a string; name (symbol) given to the Lie group

Two types of exponential coordinates are defined on any nilpotent Lie group using the basis of the Lie algebra, see $chart_exp1$ () and $chart_exp2$ ().

EXAMPLES:

Creation of a nilpotent Lie group:

```
sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: G = L.lie_group(); G
Lie group G of Heisenberg algebra of rank 1 over Rational Field
```

Giving a different name to the group:

```
sage: L.lie_group('H')
Lie group H of Heisenberg algebra of rank 1 over Rational Field
```

Elements can be created using the exponential map:

```
sage: p,q,z = L.basis()
sage: g = G.exp(p); g
exp(p1)
sage: h = G.exp(q); h
exp(q1)
```

Lie group multiplication has the usual product syntax:

```
sage: k = g*h; k exp(p1 + q1 + 1/2*z)
```

The identity element is given by one ():

```
sage: e = G.one(); e
exp(0)
sage: e*k == k and k*e == k
True
```

The default coordinate system is exponential coordinates of the first kind:

```
sage: G.default_chart() == G.chart_exp1()
True
sage: G.chart_exp1()
Chart (G, (x_0, x_1, x_2))
```

Changing the default coordinates to exponential coordinates of the second kind will change how elements are printed:

```
sage: G.set_default_chart(G.chart_exp2())
sage: k
exp(z)exp(q1)exp(p1)
sage: G.set_default_chart(G.chart_exp1())
sage: k
exp(p1 + q1 + 1/2*z)
```

The frames of left- or right-invariant vector fields are created using left_invariant_frame() and right_invariant_frame():

```
sage: X = G.left_invariant_frame(); X
Vector frame (G, (X_0, X_1, X_2))
sage: X[0]
Vector field X_0 on the Lie group G of Heisenberg algebra of rank 1 over Rational_
→Field
```

A vector field can be displayed with respect to a coordinate frame:

```
sage: exp1_frame = G.chart_exp1().frame()
sage: exp2_frame = G.chart_exp2().frame()
sage: X[0].display(exp1_frame)
X_0 = d/dx_0 - 1/2*x_1 d/dx_2
sage: X[0].display(exp2_frame)
X_0 = d/dy_0
sage: X[1].display(exp1_frame)
X_1 = d/dx_1 + 1/2*x_0 d/dx_2
sage: X[1].display(exp2_frame)
X_1 = d/dy_1 + x_0 d/dy_2
```

Defining a left translation by a generic point:

```
sage: g = G.point([var('a'), var('b'), var('c')]); g
exp(a*p1 + b*q1 + c*z)
sage: L_g = G.left_translation(g); L_g
Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational_
→Field
sage: L_g.display()
```

Verifying the left-invariance of the left-invariant frame:

```
sage: x = G(G.chart_exp1()[:])
sage: L_g.differential(x)(X[0].at(x)) == X[0].at(L_g(x))
True
sage: L_g.differential(x)(X[1].at(x)) == X[1].at(L_g(x))
True
sage: L_g.differential(x)(X[2].at(x)) == X[2].at(L_g(x))
True
```

An element of the Lie algebra can be extended to a left or right invariant vector field:

```
sage: X_L = G.left_invariant_extension(p + 3*q); X_L
Vector field p1 + 3*q1 on the Lie group G of Heisenberg algebra of rank 1 over_
→Rational Field
sage: X_L.display(exp1_frame)
p1 + 3*q1 = d/dx_0 + 3 d/dx_1 + (3/2*x_0 - 1/2*x_1) d/dx_2
sage: X_R = G.right_invariant_extension(p + 3*q)
sage: X_R.display(exp1_frame)
p1 + 3*q1 = d/dx_0 + 3 d/dx_1 + (-3/2*x_0 + 1/2*x_1) d/dx_2
```

The nilpotency step of the Lie group is the nilpotency step of its algebra. Nilpotency for Lie groups means that group commutators that are longer than the nilpotency step vanish:

```
sage: G.step()
2
sage: g = G.exp(p); h = G.exp(q)
sage: c = g*h*~g*~h; c
exp(z)
sage: g*c*~g*~c
exp(0)
```

class Element (parent, **kwds)

 $\begin{array}{ll} \textbf{Bases:} & \texttt{sage.manifolds.point.ManifoldPoint,} & \texttt{sage.structure.element.} \\ \textbf{MultiplicativeGroupElement} \end{array}$

A base class for an element of a Lie group.

EXAMPLES:

Elements of the group are printed in the default exponential coordinates:

```
sage: L.<X,Y,Z> = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: g = G.exp(2*X + 3*Z); g
exp(2*X + 3*Z)
sage: h = G.point([ var('a'), var('b'), 0]); h
exp(a*X + b*Y)
sage: G.set_default_chart(G.chart_exp2())
```

```
sage: g
exp(3*Z)exp(2*X)
sage: h
exp(1/2*a*b*Z)exp(b*Y)exp(a*X)
```

Multiplication of two elements uses the usual product syntax:

```
sage: G.exp(Y)*G.exp(X)
exp(Y)exp(X)
sage: G.exp(X)*G.exp(Y)
exp(Z)exp(Y)exp(X)
sage: G.set_default_chart(G.chart_exp1())
sage: G.exp(X)*G.exp(Y)
exp(X + Y + 1/2*Z)
```

adjoint (g)

Return the adjoint map as an automorphism of the Lie algebra of self.

INPUT:

• q - an element of self

For a Lie group element g, the adjoint map Ad_g is the map on the Lie algebra \mathfrak{g} given by the differential of the conjugation by g at the identity.

If the Lie algebra of self does not admit symbolic coefficients, the adjoint is not in general defined for abstract points.

EXAMPLES:

An example of an adjoint map:

Usually the adjoint map of a symbolic point is not defined:

```
sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: g = G.point([var('a'), var('b'), var('c')]); g
exp(a*X_1 + b*X_2 + c*X_12)
sage: G.adjoint(g)
Traceback (most recent call last):
...
TypeError: unable to convert -b to a rational
```

However, if the adjoint map is independent from the symbolic terms, the map is still well defined:

chart_exp1()

Return the chart of exponential coordinates of the first kind.

Exponential coordinates of the first kind are

$$\exp(x_1X_1 + \dots + x_nX_n) \mapsto (x_1, \dots, x_n).$$

EXAMPLES:

```
sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: G.chart_exp1()
Chart (G, (x_1, x_2, x_12))
```

chart_exp2()

Return the chart of exponential coordinates of the second kind.

Exponential coordinates of the second kind are

$$\exp(x_n X_n) \cdots \exp(x_1 X_1) \mapsto (x_1, \dots, x_n).$$

EXAMPLES:

```
sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: G.chart_exp2()
Chart (G, (y_1, y_2, y_12))
```

conjugation(g)

Return the conjugation by g as an automorphism of self.

The conjugation by g on a Lie group G is the map

$$G \to G$$
, $h \mapsto ghg^{-1}$.

INPUT:

• q - an element of self

EXAMPLES:

A generic conjugation in the Heisenberg group:

```
sage: C_g.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
G --> G
   (x_0, x_1, x_2) |--> (x_0, x_1, -b*x_0 + a*x_1 + x_2)
```

exp(X)

Return the group element exp(X).

INPUT:

• X – an element of the Lie algebra of self

EXAMPLES:

```
sage: L.<X,Y,Z> = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: G.exp(X)
exp(X)
sage: G.exp(Y)
exp(Y)
sage: G.exp(X + Y)
```

gens()

Return a tuple of elements whose one-parameter subgroups generate the Lie group.

EXAMPLES:

```
sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: G = L.lie_group()
sage: G.gens()
(exp(p1), exp(q1), exp(z))
```

left_invariant_extension(X, name=None)

Return the left-invariant vector field that has the value X at the identity.

INPUT:

- X an element of the Lie algebra of self
- name (optional) a string to use as a name for the vector field; if nothing is given, the name of the vector X is used

EXAMPLES:

A left-invariant extension in the Heisenberg group:

Default vs. custom naming for the invariant vector field:

```
sage: Z = H.left_invariant_extension(p + q, 'Z'); Z
Vector field Z on the Lie group H of Heisenberg algebra of rank 1 over_
→Rational Field
```

left invariant frame(**kwds)

Return the frame of left-invariant vector fields of self.

The labeling of the frame and the dual frame can be customized using keyword parameters as described in sage.manifolds.differentiable.manifold.DifferentiableManifold.vector_frame().

EXAMPLES:

The default left-invariant frame:

```
sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: livf = G.left_invariant_frame(); livf
Vector frame (G, (X_1, X_2, X_12))
sage: coord_frame = G.chart_exp1().frame()
sage: livf[0].display(coord_frame)
X_1 = d/dx_1 - 1/2*x_2 d/dx_12
sage: livf[1].display(coord_frame)
X_2 = d/dx_2 + 1/2*x_1 d/dx_12
sage: livf[2].display(coord_frame)
X_12 = d/dx_12
```

Examples of custom labeling for the frame:

```
sage: G.left_invariant_frame(symbol='Y')
Vector frame (G, (Y_1,Y_2,Y_12))
sage: G.left_invariant_frame(symbol='Z', indices=None)
Vector frame (G, (Z_0,Z_1,Z_2))
sage: G.left_invariant_frame(symbol='W', indices=('a','b','c'))
Vector frame (G, (W_a,W_b,W_c))
```

$left_translation(g)$

Return the left translation by q as an automorphism of self.

The left translation by g on a Lie group G is the map

$$G \to G$$
, $h \mapsto gh$.

INPUT:

• g - an element of self

EXAMPLES:

A left translation in the Heisenberg group:

```
G --> G
(x_0, x_1, x_2) |--> (x_0 + 1, x_1, 1/2*x_1 + x_2)
```

Left translation by a generic element:

```
sage: h = G.point([var('a'), var('b'), var('c')])
sage: L_h = G.left_translation(h)
sage: L_h.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
G --> G
    (x_0, x_1, x_2) |--> (a + x_0, b + x_1, -1/2*b*x_0 + 1/2*a*x_1 + c + x_2)
```

lie_algebra()

Return the Lie algebra of self.

EXAMPLES:

```
sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: G.lie_algebra() == L
True
```

livf (**kwds)

Return the frame of left-invariant vector fields of self.

The labeling of the frame and the dual frame can be customized using keyword parameters as described in sage.manifolds.differentiable.manifold.DifferentiableManifold.vector_frame().

EXAMPLES:

The default left-invariant frame:

```
sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: livf = G.left_invariant_frame(); livf
Vector frame (G, (X_1, X_2, X_12))
sage: coord_frame = G.chart_exp1().frame()
sage: livf[0].display(coord_frame)
X_1 = d/dx_1 - 1/2*x_2 d/dx_12
sage: livf[1].display(coord_frame)
X_2 = d/dx_2 + 1/2*x_1 d/dx_12
sage: livf[2].display(coord_frame)
X_12 = d/dx_12
```

Examples of custom labeling for the frame:

```
sage: G.left_invariant_frame(symbol='Y')
Vector frame (G, (Y_1,Y_2,Y_12))
sage: G.left_invariant_frame(symbol='Z', indices=None)
Vector frame (G, (Z_0,Z_1,Z_2))
sage: G.left_invariant_frame(symbol='W', indices=('a','b','c'))
Vector frame (G, (W_a,W_b,W_c))
```

log(x)

370

Return the logarithm of the element x of self.

INPUT:

• x - an element of self

The logarithm is by definition the inverse of exp().

If the Lie algebra of self does not admit symbolic coefficients, the logarithm is not defined for abstract, i.e. symbolic, points.

EXAMPLES:

The logarithm is the inverse of the exponential:

```
sage: L.<X,Y,Z> = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: G.log(G.exp(X)) == X
True
sage: G.log(G.exp(X)*G.exp(Y))
X + Y + 1/2*Z
```

The logarithm is not defined for abstract (symbolic) points:

```
sage: g = G.point([var('a'), 1, 2]); g
exp(a*X + Y + 2*Z)
sage: G.log(g)
Traceback (most recent call last):
...
TypeError: unable to convert a to a rational
```

one()

Return the identity element of self.

EXAMPLES:

```
sage: L = LieAlgebra(QQ, 2, step=4)
sage: G = L.lie_group()
sage: G.one()
exp(0)
```

right_invariant_extension(X, name=None)

Return the right-invariant vector field that has the value X at the identity.

INPUT:

- X an element of the Lie algebra of self
- name (optional) a string to use as a name for the vector field; if nothing is given, the name of the vector X is used

EXAMPLES:

A right-invariant extension in the Heisenberg group:

Default vs. custom naming for the invariant vector field:

```
sage: Y = H.right_invariant_extension(p + q); Y
Vector field p1 + q1 on the Lie group H of Heisenberg algebra of rank 1 over_
→Rational Field
sage: Z = H.right_invariant_extension(p + q, 'Z'); Z
Vector field Z on the Lie group H of Heisenberg algebra of rank 1 over_
→Rational Field
```

right invariant frame (**kwds)

Return the frame of right-invariant vector fields of self.

The labeling of the frame and the dual frame can be customized using keyword parameters as described in sage.manifolds.differentiable.manifold.DifferentiableManifold.vector frame().

EXAMPLES:

The default right-invariant frame:

```
sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: rivf = G.right_invariant_frame(); rivf
Vector frame (G, (XR_1, XR_2, XR_12))
sage: coord_frame = G.chart_exp1().frame()
sage: rivf[0].display(coord_frame)
XR_1 = d/dx_1 + 1/2*x_2 d/dx_12
sage: rivf[1].display(coord_frame)
XR_2 = d/dx_2 - 1/2*x_1 d/dx_12
sage: rivf[2].display(coord_frame)
XR_12 = d/dx_12
```

Examples of custom labeling for the frame:

```
sage: G.right_invariant_frame(symbol='Y')
Vector frame (G, (Y_1,Y_2,Y_12))
sage: G.right_invariant_frame(symbol='Z', indices=None)
Vector frame (G, (Z_0,Z_1,Z_2))
sage: G.right_invariant_frame(symbol='W', indices=('a','b','c'))
Vector frame (G, (W_a,W_b,W_c))
```

right_translation(g)

Return the right translation by g as an automorphism of self.

The right translation by g on a Lie group G is the map

$$G \to G, \qquad h \mapsto hg.$$

INPUT:

• q - an element of self

EXAMPLES:

A right translation in the Heisenberg group:

```
sage: H = lie_algebras.Heisenberg(QQ, 1)
sage: p,q,z = H.basis()
sage: G = H.lie_group()
sage: g = G.exp(p)
sage: R_g = G.right_translation(g); R_g
```

```
Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over → Rational Field

sage: R_g.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())

G --> G

(x_0, x_1, x_2) |--> (x_0 + 1, x_1, -1/2*x_1 + x_2)
```

Right translation by a generic element:

```
sage: h = G.point([var('a'), var('b'), var('c')])
sage: R_h = G.right_translation(h)
sage: R_h.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
G --> G
    (x_0, x_1, x_2) |--> (a + x_0, b + x_1, 1/2*b*x_0 - 1/2*a*x_1 + c + x_2)
```

rivf(**kwds)

Return the frame of right-invariant vector fields of self.

The labeling of the frame and the dual frame can be customized using keyword parameters as described in sage.manifolds.differentiable.manifold.DifferentiableManifold.vector frame().

EXAMPLES:

The default right-invariant frame:

```
sage: L = LieAlgebra(QQ, 2, step=2)
sage: G = L.lie_group()
sage: rivf = G.right_invariant_frame(); rivf
Vector frame (G, (XR_1, XR_2, XR_12))
sage: coord_frame = G.chart_exp1().frame()
sage: rivf[0].display(coord_frame)
XR_1 = d/dx_1 + 1/2*x_2 d/dx_12
sage: rivf[1].display(coord_frame)
XR_2 = d/dx_2 - 1/2*x_1 d/dx_12
sage: rivf[2].display(coord_frame)
XR_12 = d/dx_12
```

Examples of custom labeling for the frame:

```
sage: G.right_invariant_frame(symbol='Y')
Vector frame (G, (Y_1,Y_2,Y_12))
sage: G.right_invariant_frame(symbol='Z', indices=None)
Vector frame (G, (Z_0,Z_1,Z_2))
sage: G.right_invariant_frame(symbol='W', indices=('a','b','c'))
Vector frame (G, (W_a,W_b,W_c))
```

step()

Return the nilpotency step of self.

EXAMPLES:

```
sage: L = LieAlgebra(QQ, 2, step=4)
sage: G = L.lie_group()
sage: G.step()
4
```

CHAPTER

TWENTYSEVEN

PARTITION REFINEMENT

27.1 Canonical augmentation

This module implements a general algorithm for generating isomorphism classes of objects. The class of objects in question must be some kind of structure which can be built up out of smaller objects by a process of augmentation, and for which an automorphism is a permutation in S_n for some n. This process consists of starting with a finite number of "seed objects" and building up to more complicated objects by a sequence of "augmentations." It should be noted that the word "canonical" in the term canonical augmentation is used loosely. Given an object X, one must define a canonical parent M(X), which is essentially an arbitrary choice.

The class of objects in question must satisfy the assumptions made in the module automorphism_group_canonical_label, in particular the three custom functions mentioned there must be implemented:

```
1. refine and return invariant:
```

Signature:

```
int refine_and_return_invariant(PartitionStack *PS, void *S, int
*cells_to_refine_by, int ctrb_len)
```

2. compare_structures:

Signature:

```
int compare_structures(int *gamma_1, int *gamma_2, void *S1, void *S2, int degree)
```

3. all_children_are_equivalent:

Signature:

```
bint all_children_are_equivalent(PartitionStack *PS, void *S)
```

In the following functions there is frequently a mem_err input. This is a pointer to an integer which must be set to a nonzero value in case of an allocation failure. Other functions have an int return value which serves the same purpose. The idea is that if a memory error occurs, the canonical generator should still be able to iterate over the objects already generated before it terminates.

More details about these functions can be found in that module. In addition, several other functions must be implemented, which will make use of the following:

```
ctypedef struct iterator:
   void *data
   void *(*next)(void *data, int *degree, int *mem_err)
```

The following functions must be implemented for each specific type of object to be generated. Each function following which takes a mem_err variable as input should make use of this variable.

4. generate_children:

Signature:

```
int generate_children(void *S, aut_gp_and_can_lab *group, iterator
*it)
```

This function receives a pointer to an iterator it. The iterator has two fields: data and next. The function generate_children should set these two fields, returning 1 to indicate a memory error, or 0 for no error.

The function that next points to takes data as an argument, and should return a (void *) pointer to the next object to be iterated. It also takes a pointer to an int, and must update that int to reflect the degree of each generated object. The objects to be iterated over should satisfy the property that if γ is an automorphism of the parent object S, then for any two child objects C_1, C_2 given by the iterator, it is not the case that $\gamma(C_1) = C_2$, where in the latter γ is appropriately extended if necessary to operate on C_1 and C_2 . It is essential for this iterator to handle its own data. If the next function is called and no suitable object is yielded, a NULL pointer indicates a termination of the iteration. At this point, the data pointed to by the data variable should be cleared by the next function, because the iterator struct itself will be deallocated.

The next function must check mem_err[0] before proceeding. If it is nonzero then the function should deallocate the iterator right away and return NULL to end the iteration. This ensures that the canonical augmentation software will finish iterating over the objects found before finishing, and the mem_err attribute of the canonical_generator_data will reflect this.

The objects which the iterator generates can be thought of as augmentations, which the following function must turn into objects.

5. apply_augmentation:

Signature:

```
void *apply_augmentation(void *parent, void *aug, void *child, int
*degree, bint *mem_err)
```

This function takes the parent, applies the augmentation aug and returns a pointer to the corresponding child object (freeing aug if necessary). Should also update degree[0] to be the degree of the new child.

6. free_object:

Signature:

```
void free_object(void *child)
```

This function is a simple deallocation function for children which are not canonically generated, and therefore rejected in the canonical augmentation process. They should deallocate the contents of child.

7. free_iter_data:

Signature:

```
void free_iter_data(void *data)
```

This function deallocates the data part of the iterator which is set up by generate_children.

8. free_aug:

Signature:

```
void free aug(void *aug)
```

This function frees an augmentation as generated by the iterator returned by generate_children.

9. canonical_parent:

Signature:

```
void *canonical_parent(void *child, void *parent, int
*permutation, int *degree, bint *mem_err)
```

Apply the permutation to the child, determine an arbitrary but fixed parent, apply the inverse of permutation to that parent, and return the resulting object. Must also set the integer degree points to the degree of the returned object.

Note: It is a good idea to try to implement an augmentation scheme where the degree of objects on each level of the augmentation tree is constant. The iteration will be more efficient in this case, as the relevant work spaces will never need to be reallocated. Otherwise, one should at least strive to iterate over augmentations in such a way that all children of the same degree are given in the same segment of iteration.

EXAMPLES:

```
sage: import sage.groups.perm_gps.partn_ref.canonical_augmentation
```

REFERENCE:

• [1] McKay, Brendan D. Isomorph-free exhaustive generation. J Algorithms, Vol. 26 (1998), pp. 306-324.

27.2 Data structures

This module implements basic data structures essential to the rest of the partn_ref module.

REFERENCES:

- [1] McKay, Brendan D. Practical Graph Isomorphism. Congressus Numerantium, Vol. 30 (1981), pp. 45-87.
- [2] Fredman, M. and Saks, M. The cell probe complexity of dynamic data structures. Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 345–354. May 1989.
- [3] Seress, Akos. Permutation Group Algorithms. Cambridge University Press, 2003.

```
sage.groups.perm_gps.partn_ref.data_structures.OP_represent (n, merges, perm)
Demonstration and testing.
```

```
sage.groups.perm_gps.partn_ref.data_structures.PS_represent (partition, splits)
Demonstration and testing.
```

```
sage.groups.perm\_gps.partn\_ref.data\_structures. \textbf{SC\_test\_list\_perms} (L, \quad n, \\ limit, \quad gap, \\ limit\_complain, \\ \end{cases}
```

Test that the permutation group generated by list perms in L of degree n is of the correct order, by comparing with GAP. Don't test if the group is of size greater than limit.

27.2. Data structures 377

27.3 Graph-theoretic partition backtrack functions

EXAMPLES:

```
sage: import sage.groups.perm_gps.partn_ref.refinement_graphs
```

REFERENCE:

• [1] McKay, Brendan D. Practical Graph Isomorphism. Congressus Numerantium, Vol. 30 (1981), pp. 45-87.

```
class sage.groups.perm_gps.partn_ref.refinement_graphs.GraphStruct
    Bases: object
```

```
sage.groups.perm_gps.partn_ref.refinement_graphs.all_labeled_graphs (n) Return all labeled graphs on n vertices \{0,1,\ldots,n-1\}.
```

Used in classifying isomorphism types (naive approach), and more importantly in benchmarking the search algorithm.

EXAMPLES:

```
sage: from sage.groups.perm gps.partn ref.refinement graphs import all labeled
sage: st = sage.groups.perm_gps.partn_ref.refinement_graphs.search_tree
sage: Glist = {}
sage: Giso = {}
sage: for n in [1..5]: # long time (4s on sage.math, 2011)
....: Glist[n] = all_labeled_graphs(n)
\dots: Giso[n] = []
....: for g in Glist[n]:
. . . . :
       a, b = st(g, [range(n)])
          inn = False
. . . . :
      for gi in Giso[n]:
. . . . :
. . . . :
              if b == gi:
                   inn = True
. . . . :
if not inn:
Giso[n]
          Giso[n].append(b)
sage: for n in Giso: # long time
....: print("{} {}".format(n, len(Giso[n])))
1 1
2 2
3 4
4 11
5 34
```

```
sage.groups.perm_gps.partn_ref.refinement_graphs.coarsest_equitable_refinement (G, partion, di-coarsest)
```

Return the coarsest equitable refinement of partition for G.

This is a helper function for the graph function of the same name.

DOCTEST (More thorough testing in sage/graphs/graph.py):

sage.groups.perm_gps.partn_ref.refinement_graphs.generate_dense_graphs_edge_addition(n,

loops,
G=Non
depth=l
construct=l
in-

dicate_me

EXAMPLES:

```
sage: for n in [0..6]:
....:     print(generate_dense_graphs_edge_addition(n,1))
1
2
6
20
90
544
5096
```

sage.groups.perm_gps.partn_ref.refinement_graphs.generate_dense_graphs_vert_addition(n,

base_G construct=1 in-

dicate me

EXAMPLES:

```
sage: for n in [0..7]:
....: generate_dense_graphs_vert_addition(n)
1
2
4
8
19
53
209
1253
sage: generate_dense_graphs_vert_addition(8) # long time
13599
```

sage.groups.perm_gps.partn_ref.refinement_graphs.get_orbits(gens, n)

Compute orbits given a list of generators of a permutation group, in list format.

This is a helper function for automorphism groups of graphs.

DOCTEST (More thorough testing in sage/graphs/graph.py):

```
sage: from sage.groups.perm_gps.partn_ref.refinement_graphs import get_orbits
sage: get_orbits([[1,2,3,0,4,5], [0,1,2,3,5,4]], 6)
[[0, 1, 2, 3], [4, 5]]
```

```
sage.groups.perm_gps.partn_ref.refinement_graphs.isomorphic(G1, G2, partn, ordering2, dig, use_indicator_function, sparse=False)
```

Test whether two graphs are isomorphic.

EXAMPLES:

```
sage: from sage.groups.perm_gps.partn_ref.refinement_graphs import isomorphic
sage: G = Graph(2)
sage: H = Graph(2)
sage: isomorphic(G, H, [[0,1]], [0,1], 0, 1)
{0: 0, 1: 1}
sage: isomorphic(G, H, [[0,1]], [0,1], 0, 1)
{0: 0, 1: 1}
sage: isomorphic(G, H, [[0],[1]], [0,1], 0, 1)
{0: 0, 1: 1}
sage: isomorphic(G, H, [[0],[1]], [1,0], 0, 1)
{0: 1, 1: 0}
sage: G = Graph(3)
sage: H = Graph(3)
sage: isomorphic(G, H, [[0,1,2]], [0,1,2], 0, 1)
{0: 0, 1: 1, 2: 2}
sage: G.add_edge(0,1)
sage: isomorphic(G, H, [[0,1,2]], [0,1,2], 0, 1)
False
sage: H.add_edge(1,2)
sage: isomorphic(G, H, [[0,1,2]], [0,1,2], 0, 1)
{0: 1, 1: 2, 2: 0}
```

 partition of the vertex set determined by the orbits of gamma, considered as action on the set 1, 2, ..., n where we take 0 = n. In other words, returns the partition determined by a cyclic representation of gamma.

INPUT:

• list_perm - if True, assumes gamma is a list representing the map $i \mapsto "gamma"[i]$

EXAMPLES:

```
sage: from sage.groups.perm_gps.partn_ref.refinement_graphs import orbit_partition
sage: G = graphs.PetersenGraph()
sage: S = SymmetricGroup(10)
sage: gamma = S('(10,1,2,3,4)(5,6,7)(8,9)')
sage: orbit_partition(gamma)
[[1, 2, 3, 4, 0], [5, 6, 7], [8, 9]]
sage: gamma = S('(10,5)(1,6)(2,7)(3,8)(4,9)')
sage: orbit_partition(gamma)
[[1, 6], [2, 7], [3, 8], [4, 9], [5, 0]]
```

Tests to make sure that C(gamma(G)) == C(G) for random permutations gamma and random graphs G, and that isomorphic returns an isomorphism.

INPUT:

- num run tests for this many graphs
- n max test graphs with at most this many vertices
- perms_per_graph test each graph with this many random permutations

DISCUSSION:

This code generates num random graphs G on at most n_max vertices. The density of edges is chosen randomly between 0 and 1.

For each graph G generated, we uniformly generate perms_per_graph random permutations and verify that the canonical labels of G and the image of G under the generated permutation are equal, and that the isomorphic function returns an isomorphism.

```
sage.groups.perm\_gps.partn\_ref.refinement\_graphs.search\_tree (G\_in, partition, lab=True, dig=False, dict\_rep=False, certificate=False, verbosity=0, use\_indicator\_function=True, sparse=True, base=False, order=False)
```

Compute canonical labels and automorphism groups of graphs.

INPUT:

- G_in a Sage graph
- partition a list of lists representing a partition of the vertices
- lab if True, compute and return the canonical label in addition to the automorphism group

- dig set to True for digraphs and graphs with loops. If True, does not use optimizations based on Lemma 2.25 in [1] that are valid only for simple graphs.
- dict_rep if True, return a dictionary with keys the vertices of the input graph G_in and values elements of the set the permutation group acts on. (The point is that graphs are arbitrarily labelled, often 0..n-1, and permutation groups always act on 1..n. This dictionary maps vertex labels (such as 0..n-1) to the domain of the permutations.)
- certificate if True, return the permutation from G to its canonical label.
- verbosity currently ignored
- use_indicator_function option to turn off indicator function (True is generally faster)
- sparse whether to use sparse or dense representation of the graph (ignored if G is already a CGraph see sage.graphs.base)
- base whether to return the first sequence of split vertices (used in computing the order of the group)
- order whether to return the order of the automorphism group

OUTPUT:

Depends on the options. If more than one thing is returned, they are in a tuple in the following order:

- list of generators in list-permutation format always
- dict if dict_rep
- graph if lab
- dict if certificate
- list if base
- integer if order

EXAMPLES:

```
sage: st = sage.groups.perm_gps.partn_ref.refinement_graphs.search_tree
sage: from sage.graphs.base.dense_graph import DenseGraph
sage: from sage.graphs.base.sparse_graph import SparseGraph
```

Graphs on zero vertices:

```
sage: G = Graph()
sage: st(G, [[]], order=True)
([], Graph on 0 vertices, 1)
```

Graphs on one vertex:

```
sage: G = Graph(1)
sage: st(G, [[0]], order=True)
([], Graph on 1 vertex, 1)
```

Graphs on two vertices:

```
sage: G = Graph(2)
sage: st(G, [[0,1]], order=True)
([[1, 0]], Graph on 2 vertices, 2)
sage: st(G, [[0],[1]], order=True)
([], Graph on 2 vertices, 1)
sage: G.add_edge(0,1)
```

```
sage: st(G, [[0,1]], order=True)
([[1, 0]], Graph on 2 vertices, 2)
sage: st(G, [[0],[1]], order=True)
([], Graph on 2 vertices, 1)
```

Graphs on three vertices:

```
sage: G = Graph(3)
sage: st(G, [[0,1,2]], order=True)
([[0, 2, 1], [1, 0, 2]], Graph on 3 vertices, 6)
sage: st(G, [[0],[1,2]], order=True)
([[0, 2, 1]], Graph on 3 vertices, 2)
sage: st(G, [[0],[1],[2]], order=True)
([[], Graph on 3 vertices, 1)
sage: G.add_edge(0,1)
sage: st(G, [range(3)], order=True)
([[1, 0, 2]], Graph on 3 vertices, 2)
sage: st(G, [[0],[1,2]], order=True)
([[], Graph on 3 vertices, 1)
sage: st(G, [[0,1],[2]], order=True)
([[1, 0, 2]], Graph on 3 vertices, 2)
```

The Dodecahedron has automorphism group of size 120:

```
sage: G = graphs.DodecahedralGraph()
sage: Pi = [range(20)]
sage: st(G, Pi, order=True)[2]
120
```

The three-cube has automorphism group of size 48:

```
sage: G = graphs.CubeGraph(3)
sage: G.relabel()
sage: Pi = [G.vertices()]
sage: st(G, Pi, order=True)[2]
48
```

We obtain the same output using different types of Sage graphs:

```
sage: G = graphs.DodecahedralGraph()
sage: GD = DenseGraph(20)
sage: GS = SparseGraph(20)
sage: for i, j,_ in G.edge_iterator():
....: GD.add_arc(i,j); GD.add_arc(j,i)
....: GS.add_arc(i,j); GS.add_arc(j,i)
sage: Pi=[range(20)]
sage: a,b = st(G, Pi)
sage: asp,bsp = st(GS, Pi)
sage: ade,bde = st(GD, Pi)
sage: bsg = Graph()
sage: bdg = Graph()
sage: for i in range(20):
\dots: for j in range(20):
            if bsp.has_arc(i,j):
. . . . :
                 bsg.add_edge(i,j)
. . . . :
. . . . :
             if bde.has_arc(i,j):
```

Cubes!:

```
sage: C = graphs.CubeGraph(1)
sage: gens, order = st(C, [C.vertices()], lab=False, order=True); order
2
sage: C = graphs.CubeGraph(2)
sage: gens, order = st(C, [C.vertices()], lab=False, order=True); order
8
sage: C = graphs.CubeGraph(3)
sage: gens, order = st(C, [C.vertices()], lab=False, order=True); order
48
sage: C = graphs.CubeGraph(4)
sage: gens, order = st(C, [C.vertices()], lab=False, order=True); order
384
sage: C = graphs.CubeGraph(5)
sage: gens, order = st(C, [C.vertices()], lab=False, order=True); order
3840
sage: C = graphs.CubeGraph(6)
sage: gens, order = st(C, [C.vertices()], lab=False, order=True); order
46080
```

One can also turn off the indicator function (note: this will take longer):

```
sage: D1 = DiGraph({0:[2],2:[0],1:[1]}, loops=True)
sage: D2 = DiGraph({1:[2],2:[1],0:[0]}, loops=True)
sage: a,b = st(D1, [D1.vertices()], dig=True, use_indicator_function=False)
sage: c,d = st(D2, [D2.vertices()], dig=True, use_indicator_function=False)
sage: b==d
True
```

This example is due to Chris Godsil:

```
sage: HS = graphs.HoffmanSingletonGraph()
sage: alqs = [Set(c) for c in (HS.complement()).cliques_maximum()]
sage: Y = Graph([alqs, lambda s,t: len(s.intersection(t))==0])
sage: Y0,Y1 = Y.connected_components_subgraphs()
sage: st(Y0, [Y0.vertices()])[1] == st(Y1, [Y1.vertices()])[1]
True
sage: st(Y0, [Y0.vertices()])[1] == st(HS, [HS.vertices()])[1]
True
sage: st(HS, [HS.vertices()])[1] == st(Y1, [Y1.vertices()])[1]
True
```

Certain border cases need to be tested as well:

27.4 Partition backtrack functions for lists – a simple example of using partn_ref.

EXAMPLES:

```
sage: import sage.groups.perm_gps.partn_ref.refinement_lists
```

sage.groups.perm_gps.partn_ref.refinement_lists.is_isomorphic(self, other)
Return the bijection as a permutation if two lists are isomorphic, return False otherwise.

EXAMPLES:

```
sage: from sage.groups.perm_gps.partn_ref.refinement_lists import is_isomorphic
sage: is_isomorphic([0,0,1],[1,0,0])
[1, 2, 0]
```

27.5 Partition backtrack functions for matrices

EXAMPLES:

```
sage: import sage.groups.perm_gps.partn_ref.refinement_matrices
```

REFERENCE:

- [1] McKay, Brendan D. Practical Graph Isomorphism. Congressus Numerantium, Vol. 30 (1981), pp. 45-87.
- [2] Leon, Jeffrey. Permutation Group Algorithms Based on Partitions, I: Theory and Algorithms. J. Symbolic Computation, Vol. 12 (1991), pp. 533-583.

```
class sage.groups.perm_gps.partn_ref.refinement_matrices.MatrixStruct
    Bases: object
```

automorphism_group()

Returns a list of generators of the automorphism group, along with its order and a base for which the list of generators is a strong generating set.

For more examples, see self.run().

EXAMPLES:

```
sage: from sage.groups.perm_gps.partn_ref.refinement_matrices import_

→MatrixStruct

sage: M = MatrixStruct(matrix(GF(3),[[0,1,2],[0,2,1]]))
sage: M.automorphism_group()
([[0, 2, 1]], 2, [1])
```

canonical_relabeling()

Returns a canonical relabeling (in list permutation format).

For more examples, see self.run().

EXAMPLES:

display()

Display the matrix, and associated data.

EXAMPLES:

is isomorphic(other)

Calculate whether self is isomorphic to other.

EXAMPLES:

```
sage: from sage.groups.perm_gps.partn_ref.refinement_matrices import_

→MatrixStruct
sage: M = MatrixStruct(Matrix(GF(11), [[1,2,3,0,0,0],[0,0,0,1,2,3]]))
sage: N = MatrixStruct(Matrix(GF(11), [[0,1,0,2,0,3],[1,0,2,0,3,0]]))
sage: M.is_isomorphic(N)
[0, 2, 4, 1, 3, 5]
```

run (partition=None)

Perform the canonical labeling and automorphism group computation, storing results to self.

INPUT:

partition – an optional list of lists partition of the columns.

Default is the unit partition.

EXAMPLES:

```
sage.groups.perm\_gps.partn\_ref.refinement\_matrices.random\_tests (n=10, nrows\_max=50, ncols\_max=50, nsym-bols\_max=10, perms\_per\_matrix=5, den-sity\_range=(0.1, 0.9))
```

Tests to make sure that C(gamma(M)) == C(M) for random permutations gamma and random matrices M, and that $M.is_isomorphic(\text{gamma}(M))$ returns an isomorphism.

INPUT:

- n run tests on this many matrices
- nrows_max test matrices with at most this many rows
- ncols_max test matrices with at most this many columns
- perms_per_matrix test each matrix with this many random permutations
- nsymbols_max maximum number of distinct symbols in the matrix

This code generates n random matrices M on at most ncols_max columns and at most nrows_max rows. The density of entries in the basis is chosen randomly between 0 and 1.

For each matrix M generated, we uniformly generate perms_per_matrix random permutations and verify that the canonical labels of M and the image of M under the generated permutation are equal, and that the isomorphism is discovered by the double coset function.

CHAPTER

TWENTYEIGHT

INTERNALS

28.1 Base for Classical Matrix Groups

This module implements the base class for matrix groups that have various famous names, like the general linear group.

EXAMPLES:

```
sage: SL(2, ZZ)
Special Linear Group of degree 2 over Integer Ring
sage: G = SL(2,GF(3)); G
Special Linear Group of degree 2 over Finite Field of size 3
sage: G.is_finite()
True
sage: G.conjugacy_classes_representatives()
[1 0] [0 2] [0 1] [2 0] [0 2] [0 1] [0 2]
[0 1], [1 1], [2 1], [0 2], [1 2], [2 2], [1 0]
sage: G = SL(6, GF(5))
sage: G.gens()
[2 0 0 0 0 0] [4 0 0 0 0 1]
[0 3 0 0 0 0] [4 0 0 0 0 0]
[0 0 1 0 0 0] [0 4 0 0 0 0]
[0 0 0 1 0 0] [0 0 4 0 0 0]
[0 0 0 0 1 0] [0 0 0 4 0 0]
[0 0 0 0 0 1], [0 0 0 0 4 0]
```

```
class sage.groups.matrix_gps.named_group.NamedMatrixGroup_gap(degree,
```

base_ring, special, sage_name, latex_string, gap_command_string, category=None)

Bases: sage.groups.matrix_gps.named_group.NamedMatrixGroup_generic, sage.groups.matrix_gps.matrix_group.MatrixGroup_gap

Base class for "named" matrix groups using LibGAP

INPUT:

- degree integer. The degree (number of rows/columns of matrices).
- base_ring ring. The base ring of the matrices.

- special boolean. Whether the matrix group is special, that is, elements have determinant one.
- latex_string string. The latex representation.
- gap_command_string string. The GAP command to construct the matrix group.

EXAMPLES:

```
sage: G = GL(2, GF(3))
sage: from sage.groups.matrix_gps.named_group import NamedMatrixGroup_gap
sage: isinstance(G, NamedMatrixGroup_gap)
True
```

Base class for "named" matrix groups

INPUT:

• degree – integer; the degree (number of rows/columns of matrices)

groups.matrix_gps.matrix_group.MatrixGroup_generic

- base_ring ring; the base ring of the matrices
- special boolean; whether the matrix group is special, that is, elements have determinant one
- sage_name string; the name of the group
- \bullet latex_string string; the latex representation
- category (optional) a subcategory of sage.categories.groups.Groups passed to the constructor of sage.groups.matrix_gps.matrix_group.MatrixGroup_generic
- invariant_form (optional) square-matrix of the given degree over the given base_ring describing a bilinear form to be kept invariant by the group

EXAMPLES:

```
sage: G = GL(2, QQ)
sage: from sage.groups.matrix_gps.named_group import NamedMatrixGroup_generic
sage: isinstance(G, NamedMatrixGroup_generic)
True
```

See also:

See the examples for GU(), SU(), Sp(), etc. as well.

```
sage.groups.matrix_gps.named_group.normalize_args_invariant_form(R, d, invari-
ant_form)
```

Normalize the input of a user defined invariant bilinear form for orthogonal, unitary and symplectic groups.

Further informations and examples can be found in the defining functions (GU(), SU(), Sp(), etc.) for unitary, symplectic groups, etc.

INPUT:

- R instance of the integral domain which should become the base_ring of the classical group
- d integer giving the dimension of the module the classical group is operating on
- invariant_form (optional) instances being accepted by the matrix-constructor that define a $d \times d$ square matrix over R describing the bilinear form to be kept invariant by the classical group

OUTPUT:

None if invariant_form was not specified (or None). A matrix if the normalization was possible; otherwise an error is raised.

AUTHORS:

• Sebastian Oehms (2018-8) (see trac ticket #26028)

sage.groups.matrix_gps.named_group.normalize_args_vectorspace(*args, **kwds)
Normalize the arguments that relate to a vector space.

INPUT:

Something that defines an affine space. For example

- An affine space itself:
 - A − affine space
- A vector space:
 - V − a vector space
- Degree and base ring:
 - degree integer. The degree of the affine group, that is, the dimension of the affine space the group is acting on.
 - ring a ring or an integer. The base ring of the affine space. If an integer is given, it must be a prime power and the corresponding finite field is constructed.
 - var='a' optional keyword argument to specify the finite field generator name in the case where ring is a prime power.

OUTPUT:

A pair (degree, ring).

CHAPTER

TWENTYNINE

INDICES AND TABLES

- Index
- Module Index
- Search Page

BIBLIOGRAPHY

[Dolgachev09] Igor Dolgachev. *McKay Correspondence*. (2009). http://www.math.lsa.umich.edu/~idolga/McKaybook.pdf

[Sun] Yi Sun. The McKay correspondence. http://www.math.miami.edu/~armstrong/686sp13/McKay_Yi_Sun.pdf

396 Bibliography

PYTHON MODULE INDEX

g

```
sage.groups.abelian gps.abelian aut, 163
sage.groups.abelian_gps.abelian_group, 143
sage.groups.abelian_gps.abelian_group_element, 178
sage.groups.abelian_gps.abelian_group_gap, 157
sage.groups.abelian_gps.abelian_group_morphism, 182
sage.groups.abelian_gps.dual_abelian_group, 172
sage.groups.abelian_gps.dual_abelian_group_element, 180
sage.groups.abelian_gps.element_base, 176
sage.groups.abelian_gps.values, 167
sage.groups.additive_abelian.additive_abelian_group, 184
sage.groups.additive abelian.additive abelian wrapper, 188
sage.groups.affine gps.affine group, 352
sage.groups.affine_gps.euclidean_group, 356
sage.groups.affine_gps.group_element, 358
sage.groups.braid, 79
sage.groups.class_function, 127
sage.groups.conjugacy_classes, 139
sage.groups.finitely_presented,55
sage.groups.finitely_presented_named,73
sage.groups.free_group, 47
sage.groups.generic, 33
sage.groups.group, 3
sage.groups.group exp, 107
sage.groups.group_homset,7
sage.groups.group_semidirect_product, 111
sage.groups.groups catalog, 1
sage.groups.indexed_free_group, 99
sage.groups.libgap_group, 19
sage.groups.libgap_mixin, 21
sage.groups.libgap_morphism,9
sage.groups.libgap_wrapper, 13
sage.groups.lie_gps.nilpotent_lie_group, 363
sage.groups.matrix gps.binary dihedral, 319
sage.groups.matrix_gps.catalog, 295
sage.groups.matrix_gps.coxeter_group, 320
sage.groups.matrix_gps.finitely_generated, 306
```

```
sage.groups.matrix gps.group element, 300
sage.groups.matrix_gps.heisenberg,350
sage.groups.matrix_gps.homset,319
sage.groups.matrix_gps.isometries,339
sage.groups.matrix_gps.linear, 328
sage.groups.matrix_gps.matrix_group, 295
sage.groups.matrix_gps.morphism, 318
sage.groups.matrix_gps.named_group, 389
sage.groups.matrix_gps.orthogonal,331
sage.groups.matrix_gps.symplectic, 342
sage.groups.matrix gps.unitary, 345
sage.groups.misc gps.misc groups, 117
sage.groups.pari_group, 31
sage.groups.perm_gps.cubegroup, 279
sage.groups.perm_gps.partn_ref.canonical_augmentation,375
sage.groups.perm_gps.partn_ref.data_structures, 377
sage.groups.perm_gps.partn_ref.refinement_graphs, 378
sage.groups.perm_gps.partn_ref.refinement_lists, 385
sage.groups.perm_gps.partn_ref.refinement_matrices, 385
sage.groups.perm_gps.permgroup, 191
sage.groups.perm_gps.permgroup_element, 267
sage.groups.perm gps.permgroup morphism, 276
sage.groups.perm_gps.permgroup_named, 240
sage.groups.perm_gps.permutation_groups_catalog, 191
sage.groups.perm_gps.symgp_conjugacy_class, 292
sage.groups.raag, 103
sage.groups.semimonomial_transformations.semimonomial_transformation, 123
sage.groups.semimonomial_transformations.semimonomial_transformation_group, 119
```

398 Python Module Index

INDEX

Α

```
A() (sage.groups.affine gps.group element.AffineGroupElement method), 359
abelian_invariants() (sage.groups.finitely_presented.FinitelyPresentedGroup method), 57
abelian_invariants() (sage.groups.free_group.FreeGroup_class method), 51
AbelianGroup (class in sage.groups.group), 3
AbelianGroup() (in module sage.groups.abelian_gps.abelian_group), 145
AbelianGroup_class (class in sage.groups.abelian_gps.abelian_group), 146
AbelianGroup gap (class in sage.groups.abelian gps.abelian group gap), 160
AbelianGroup subgroup (class in sage.groups.abelian gps.abelian group), 154
AbelianGroupAutomorphism (class in sage.groups.abelian gps.abelian aut), 164
AbelianGroupAutomorphismGroup (class in sage.groups.abelian gps.abelian aut), 165
AbelianGroupAutomorphismGroup gap (class in sage.groups.abelian gps.abelian aut), 165
Abelian Group Automorphism Group subgroup (class in sage.groups.abelian gps.abelian aut), 167
AbelianGroupElement (class in sage.groups.abelian_gps.abelian_group_element), 179
AbelianGroupElement_gap (class in sage.groups.abelian_gps.abelian_group_gap), 157
Abelian Group Element polycyclic (class in sage.groups.abelian gps.abelian group gap), 158
AbelianGroupElementBase (class in sage.groups.abelian_gps.element_base), 176
AbelianGroupGap (class in sage.groups.abelian_gps.abelian_group_gap), 159
AbelianGroupMap (class in sage.groups.abelian_gps.abelian_group_morphism), 183
Abelian Group Morphism (class in sage.groups.abelian gps.abelian group morphism), 183
AbelianGroupSubgroup_gap (class in sage.groups.abelian_gps.abelian_group_gap), 159
AbelianGroupWithValues() (in module sage.groups.abelian gps.values), 168
AbelianGroupWithValues class (class in sage.groups.abelian gps.values), 170
AbelianGroupWithValuesElement (class in sage.groups.abelian gps.values), 169
AbelianGroupWithValuesEmbedding (class in sage.groups.abelian_gps.values), 170
absolute_length() (sage.groups.perm_gps.permgroup_element.SymmetricGroupElement method), 274
act to right() (sage.groups.group semidirect product.GroupSemidirectProduct method), 113
action_on_root_indices() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup.Element method), 323
adams_operation() (sage.groups.class_function.ClassFunction_gap method), 128
adams operation() (sage.groups.class function.ClassFunction libgap method), 132
add strings() (in module sage.groups.abelian gps.dual abelian group element), 182
Additive Abelian Group() (in module sage.groups.additive abelian.additive abelian group), 184
AdditiveAbelianGroup class (class in sage.groups.additive abelian.additive abelian group), 186
AdditiveAbelianGroup fixed gens (class in sage.groups.additive abelian.additive abelian group), 187
AdditiveAbelianGroupElement (class in sage.groups.additive_abelian.additive_abelian_group), 186
AdditiveAbelianGroupWrapper (class in sage.groups.additive_abelian.additive_abelian_wrapper), 189
AdditiveAbelianGroupWrapperElement (class in sage.groups.additive_abelian.additive_abelian_wrapper), 189
```

```
adjoint() (sage.groups.lie gps.nilpotent lie group.NilpotentLieGroup method), 366
AffineGroup (class in sage.groups.affine_gps.affine_group), 352
AffineGroupElement (class in sage.groups.affine_gps.group_element), 358
alexander matrix() (sage.groups.finitely presented.FinitelyPresentedGroup method), 58
alexander_polynomial() (sage.groups.braid.Braid method), 82
algebra() (sage.groups.perm_gps.permgroup_named.SymmetricGroup method), 261
AlgebraicGroup (class in sage.groups.group), 3
all_labeled_graphs() (in module sage.groups.perm_gps.partn_ref.refinement_graphs), 378
all_subgroups() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap method), 160
AlternatingGroup (class in sage.groups.perm_gps.permgroup_named), 241
AlternatingPresentation() (in module sage.groups.finitely presented named), 73
ambient() (sage.groups.libgap wrapper.ParentLibGAP method), 15
ambient_group() (sage.groups.abelian_gps.abelian_group.AbelianGroup_subgroup method), 154
ambient_group() (sage.groups.perm_gps.permgroup.PermutationGroup_subgroup method), 239
an element() (sage.groups.braid.BraidGroup class method), 95
an_element() (sage.groups.conjugacy_classes.ConjugacyClass method), 140
an_element() (sage.groups.group_exp.GroupExp_Class method), 109
as AbelianGroup() (sage.groups.perm gps.permgroup named.CyclicPermutationGroup method), 242
as_finitely_presented_group() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 196
as_matrix_group() (sage.groups.matrix_gps.matrix_group.MatrixGroup_base method), 296
as_permutation() (sage.groups.abelian_gps.abelian_group_element.AbelianGroupElement method), 179
as permutation group() (sage.groups.braid.BraidGroup class method), 95
as_permutation_group() (sage.groups.finitely_presented.FinitelyPresentedGroup method), 58
as_permutation_group() (sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap method),
aut() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap method), 160
automorphism group() (sage.groups.abelian gps.abelian group gap.AbelianGroup gap method), 161
automorphism group() (sage.groups.perm gps.partn ref.refinement matrices.MatrixStruct method), 385
В
b() (sage.groups.affine_gps.group_element.AffineGroupElement method), 359
B() (sage.groups.perm gps.cubegroup.CubeGroup method), 281
base() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 197
base_ring() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class method), 173
base ring() (sage.groups.perm gps.permgroup named.PermutationGroup plg method), 252
base_ring() (sage.groups.perm_gps.permgroup_named.SuzukiGroup method), 260
base_ring() (sage.groups.semimonomial_transformations.semimonomial_transformation_group.SemimonomialTransformationGroup
         method), 121
bilinear_form() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup method), 324
Binary Dihedral Group (class in sage.groups.matrix gps.binary dihedral), 319
BinaryDihedralPresentation() (in module sage.groups.finitely presented named), 74
blocks_all() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 198
Braid (class in sage.groups.braid), 80
BraidGroup() (in module sage.groups.braid), 92
BraidGroup_class (class in sage.groups.braid), 93
bsgs() (in module sage.groups.generic), 34
burau_matrix() (sage.groups.braid.Braid method), 83
C
canonical_matrix() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup.Element method), 323
```

```
canonical relabeling() (sage.groups.perm gps.partn ref.refinement matrices.MatrixStruct method), 386
canonical_representation() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup method), 324
cardinality() (sage.groups.abelian gps.abelian group.AbelianGroup class method), 147
cardinality() (sage.groups.braid.BraidGroup class method), 95
cardinality() (sage.groups.conjugacy_classes.ConjugacyClassGAP method), 142
cardinality() (sage.groups.finitely_presented.FinitelyPresentedGroup method), 59
cardinality() (sage.groups.libgap mixin.GroupMixinLibGAP method), 21
cardinality() (sage.groups.matrix gps.binary dihedral.BinaryDihedralGroup method), 319
cardinality() (sage.groups.matrix_gps.heisenberg.HeisenbergGroup method), 351
cardinality() (sage.groups.pari_group.PariGroup method), 31
cardinality() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 199
cardinality() (sage.groups.perm gps.permgroup named.PrimitiveGroupsOfDegree method), 256
cardinality() (sage.groups.perm_gps.permgroup_named.TransitiveGroupsOfDegree method), 267
cartan type() (sage.groups.perm gps.permgroup named.SymmetricGroup method), 261
center() (sage.groups.libgap mixin.GroupMixinLibGAP method), 22
center() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 199
central_character() (sage.groups.class_function.ClassFunction_gap method), 128
central character() (sage.groups.class function.ClassFunction libgap method), 133
centralizer() (sage.groups.braid.Braid method), 84
centralizer() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 199
character() (sage.groups.libgap_mixin.GroupMixinLibGAP method), 22
character() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 200
character_table() (sage.groups.libgap_mixin.GroupMixinLibGAP method), 23
character_table() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 200
chart_exp1() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup method), 367
chart exp2() (sage.groups.lie gps.nilpotent lie group.NilpotentLieGroup method), 367
class_function() (sage.groups.libgap_mixin.GroupMixinLibGAP method), 23
ClassFunction() (in module sage.groups.class_function), 127
ClassFunction gap (class in sage.groups.class function), 127
ClassFunction libgap (class in sage.groups.class function), 132
coarsest equitable refinement() (in module sage.groups.perm gps.partn ref.refinement graphs), 378
cohomology() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 201
cohomology part() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 202
color_of_square() (in module sage.groups.perm_gps.cubegroup), 289
commutator() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 202
components_in_closure() (sage.groups.braid.Braid method), 84
composition_series() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 203
conjugacy class() (sage.groups.libgap mixin.GroupMixinLibGAP method), 23
conjugacy_class() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 204
conjugacy_class() (sage.groups.perm_gps.permgroup_named.SymmetricGroup method), 262
conjugacy class iterator() (in module sage.groups.perm gps.symgp conjugacy class), 293
conjugacy_class_representatives() (sage.groups.libgap_mixin.GroupMixinLibGAP method), 24
conjugacy_classes() (sage.groups.libgap_mixin.GroupMixinLibGAP method), 24
conjugacy classes() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 204
conjugacy_classes() (sage.groups.perm_gps.permgroup_named.SymmetricGroup method), 262
conjugacy_classes_iterator() (sage.groups.perm_gps.permgroup_named.SymmetricGroup method), 262
conjugacy_classes_representatives() (sage.groups.libgap_mixin.GroupMixinLibGAP method), 24
conjugacy_classes_representatives() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 204
conjugacy_classes_representatives() (sage.groups.perm_gps.permgroup_named.SymmetricGroup method), 263
conjugacy_classes_subgroups() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 205
```

```
ConjugacyClass (class in sage.groups.conjugacy classes), 139
ConjugacyClassGAP (class in sage.groups.conjugacy_classes), 141
conjugate() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 205
conjugating braid() (sage.groups.braid.Braid method), 84
conjugation() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup method), 367
construction() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 206
cosets() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 207
cover and relations from invariants() (in module sage.groups.additive abelian.additive abelian group), 188
covering_matrix_ring() (sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_gap method), 166
coxeter_matrix() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup method), 324
coxeter matrix() (sage.groups.perm gps.permgroup named.SymmetricGroup method), 263
CoxeterMatrixGroup (class in sage.groups.matrix gps.coxeter group), 320
CoxeterMatrixGroup.Element (class in sage.groups.matrix_gps.coxeter_group), 322
create_poly() (in module sage.groups.perm_gps.cubegroup), 289
CubeGroup (class in sage.groups.perm gps.cubegroup), 280
cubie() (sage.groups.perm_gps.cubegroup.RubiksCube method), 287
cubie_centers() (in module sage.groups.perm_gps.cubegroup), 289
cubie colors() (in module sage.groups.perm gps.cubegroup), 289
cubie faces() (in module sage.groups.perm gps.cubegroup), 290
cycle_string() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement method), 269
cycle_tuples() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement method), 269
cycle type() (sage.groups.perm gps.permgroup element.PermutationGroupElement method), 270
cycles() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement method), 270
CyclicPermutationGroup (class in sage.groups.perm_gps.permgroup_named), 242
CyclicPresentation() (in module sage.groups.finitely_presented_named), 74
D
D() (sage.groups.perm_gps.cubegroup.CubeGroup method), 281
decompose() (sage.groups.class_function.ClassFunction_gap method), 128
decompose() (sage.groups.class function.ClassFunction libgap method), 133
default representative() (in module sage.groups.perm gps.symgp conjugacy class), 293
degree() (sage.groups.affine_gps.affine_group.AffineGroup method), 353
degree() (sage.groups.class_function.ClassFunction_gap method), 128
degree() (sage.groups.class_function.ClassFunction libgap method), 133
degree() (sage.groups.matrix gps.matrix group.MatrixGroup generic method), 299
degree() (sage.groups.pari_group.PariGroup method), 31
degree() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 209
degree() (sage.groups.semimonomial transformations.semimonomial transformation group.SemimonomialTransformationGroup
         method), 121
Delta() (sage.groups.braid.BraidGroup class method), 93
derived_series() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 209
descents() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup.Element method), 323
determinant character() (sage.groups.class function.ClassFunction gap method), 129
determinant character() (sage.groups.class function.ClassFunction libgap method), 133
dict() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement method), 271
DiCyclicGroup (class in sage.groups.perm_gps.permgroup_named), 243
DiCyclicPresentation() (in module sage.groups.finitely presented named), 74
DihedralGroup (class in sage.groups.perm_gps.permgroup_named), 244
DihedralPresentation() (in module sage.groups.finitely_presented_named), 75
dimension_of_TL_space() (sage.groups.braid.BraidGroup_class method), 95
```

```
direct product() (sage.groups.finitely presented.FinitelyPresentedGroup method), 59
direct_product() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 209
direct_product_permgroups() (in module sage.groups.perm_gps.permgroup), 239
discrete log() (in module sage.groups.generic), 36
discrete_log_generic() (in module sage.groups.generic), 38
discrete_log_lambda() (in module sage.groups.generic), 38
discrete log rho() (in module sage.groups.generic), 39
display() (sage.groups.perm_gps.partn_ref.refinement_matrices.MatrixStruct method), 386
display2d() (sage.groups.perm_gps.cubegroup.CubeGroup method), 282
domain() (sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_gap method), 166
domain() (sage.groups.class function.ClassFunction gap method), 129
domain() (sage.groups.class function.ClassFunction libgap method), 133
domain() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 210
domain() (sage.groups.perm gps.permgroup element.PermutationGroupElement method), 271
dual group() (sage.groups.abelian gps.abelian group.AbelianGroup class method), 147
DualAbelianGroup_class (class in sage.groups.abelian_gps.dual_abelian_group), 173
DualAbelianGroupElement (class in sage.groups.abelian_gps.dual_abelian_group_element), 181
E
Element (sage.groups.abelian gps.abelian aut.AbelianGroupAutomorphismGroup attribute), 165
Element (sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_gap attribute), 166
Element (sage.groups.abelian_gps.abelian_aut.AbelianGroupAutomorphismGroup_subgroup attribute), 167
Element (sage.groups.abelian gps.abelian group.AbelianGroup class attribute), 147
Element (sage.groups.abelian gps.abelian group gap.AbelianGroup gap attribute), 160
Element (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class attribute), 173
Element (sage.groups.abelian gps.values.AbelianGroupWithValues class attribute), 171
Element (sage.groups.additive abelian.additive abelian group.AdditiveAbelianGroup class attribute), 186
Element (sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper attribute), 189
Element (sage.groups.affine_gps.affine_group.AffineGroup attribute), 353
Element (sage.groups.braid.BraidGroup class attribute), 93
Element (sage.groups.finitely presented.FinitelyPresentedGroup attribute), 57
Element (sage.groups.free_group.FreeGroup_class attribute), 51
Element (sage.groups.group_exp.GroupExp_Class attribute), 109
Element (sage.groups.group semidirect product.GroupSemidirectProduct attribute), 112
Element (sage.groups.libgap group.GroupLibGAP attribute), 19
Element (sage.groups.libgap_morphism.GroupHomset_libgap attribute), 9
Element (sage.groups.matrix gps.matrix group.MatrixGroup gap attribute), 298
Element (sage.groups.matrix gps.matrix group.MatrixGroup generic attribute), 299
Element (sage.groups.perm_gps.permgroup.PermutationGroup_generic attribute), 196
Element (sage.groups.perm_gps.permgroup_named.SymmetricGroup attribute), 261
Element (sage.groups.semimonomial_transformations.semimonomial_transformation_group.SemimonomialTransformationGroup
         attribute), 120
element() (sage.groups.additive abelian.additive abelian wrapper.AdditiveAbelianGroupWrapperElement method),
elementary_divisors() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 147
elementary_divisors() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap method), 161
ElementLibGAP (class in sage.groups.libgap_wrapper), 13
epimorphisms() (sage.groups.finitely presented.FinitelyPresentedGroup method), 61
equals() (sage.groups.abelian gps.abelian group.AbelianGroup subgroup method), 155
EuclideanGroup (class in sage.groups.affine_gps.euclidean_group), 356
```

```
exp() (sage.groups.lie gps.nilpotent lie group.NilpotentLieGroup method), 368
exponent() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 148
exponent() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap method), 161
exponent() (sage.groups.additive abelian.additive abelian group.AdditiveAbelianGroup class method), 186
exponent() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 210
exponents() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroupElement_gap method), 157
exponents() (sage.groups.abelian gps.abelian group gap.AbelianGroupElement polycyclic method), 158
exponents() (sage.groups.abelian gps.element base.AbelianGroupElementBase method), 176
exterior_power() (sage.groups.class_function.ClassFunction_gap method), 129
exterior power() (sage.groups.class function.ClassFunction libgap method), 134
F
F() (sage.groups.perm_gps.cubegroup.CubeGroup method), 281
faces() (sage.groups.perm_gps.cubegroup.CubeGroup method), 282
facets() (sage.groups.perm_gps.cubegroup.CubeGroup method), 282
facets() (sage.groups.perm gps.cubegroup.RubiksCube method), 287
field of definition() (sage.groups.perm gps.permgroup named.PermutationGroup pug method), 253
finite_field_sqrt() (in module sage.groups.matrix_gps.unitary), 350
FiniteGroup (class in sage.groups.group), 3
finitely presented group() (sage.groups.finitely presented.RewritingSystem method), 68
FinitelyGeneratedAbelianPresentation() (in module sage.groups.finitely_presented_named), 75
FinitelyGeneratedHeisenbergPresentation() (in module sage.groups.finitely_presented_named), 76
Finitely Generated Matrix Group gap (class in sage groups matrix gps. finitely generated), 307
FinitelyGeneratedMatrixGroup generic (class in sage.groups.matrix gps.finitely generated), 315
FinitelyPresentedGroup (class in sage.groups.finitely_presented), 57
FinitelyPresentedGroupElement (class in sage.groups.finitely presented), 66
first descent() (sage.groups.matrix gps.coxeter group.CoxeterMatrixGroup.Element method), 323
fitting_subgroup() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 210
fixed_points() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 211
fox_derivative() (sage.groups.free_group.FreeGroupElement method), 49
frattini subgroup() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 211
free_group() (sage.groups.finitely_presented.FinitelyPresentedGroup method), 61
free_group() (sage.groups.finitely_presented.RewritingSystem method), 69
FreeGroup() (in module sage.groups.free group), 47
FreeGroup class (class in sage.groups.free group), 51
FreeGroupElement (class in sage.groups.free_group), 48
from gap list() (in module sage.groups.perm gps.permgroup), 239
fundamental weight() (sage.groups.matrix gps.coxeter group.CoxeterMatrixGroup method), 325
fundamental_weights() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup method), 325
G
gap() (sage.groups.class function.ClassFunction libgap method), 134
gap() (sage.groups.finitely presented.RewritingSystem method), 69
gap() (sage.groups.libgap_morphism.GroupMorphism_libgap method), 10
gap() (sage.groups.libgap wrapper.ElementLibGAP method), 14
gap() (sage.groups.libgap_wrapper.ParentLibGAP method), 15
gcd() (sage.groups.braid.Braid method), 85
gen() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 148
gen() (sage.groups.abelian_gps.abelian_group.AbelianGroup_subgroup method), 155
gen() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class method), 173
```

```
gen() (sage.groups.abelian gps.values.AbelianGroupWithValues class method), 171
gen() (sage.groups.indexed_free_group.IndexedFreeAbelianGroup method), 99
gen() (sage.groups.indexed_free_group.IndexedFreeGroup method), 100
gen() (sage.groups.libgap wrapper.ParentLibGAP method), 16
gen() (sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_generic method), 315
gen() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 211
gen() (sage.groups.raag.RightAngledArtinGroup method), 104
gen_names() (sage.groups.perm_gps.cubegroup.CubeGroup method), 283
GeneralDihedralGroup (class in sage.groups.perm_gps.permgroup_named), 245
generate_dense_graphs_edge_addition() (in module sage.groups.perm_gps.partn_ref.refinement_graphs), 379
generate dense graphs vert addition() (in module sage.groups.perm gps.partn ref.refinement graphs), 379
generator orders() (sage.groups.additive abelian.additive abelian wrapper.AdditiveAbelianGroupWrapper method),
         189
generators() (sage.groups.libgap_wrapper.ParentLibGAP method), 16
gens() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 149
gens() (sage.groups.abelian gps.abelian group.AbelianGroup subgroup method), 155
gens() (sage.groups.abelian gps.dual abelian group.DualAbelianGroup class method), 173
gens() (sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_fixed_gens method), 187
gens() (sage.groups.indexed free group.IndexedGroup method), 101
gens() (sage.groups.libgap_wrapper.ParentLibGAP method), 17
gens() (sage.groups.lie gps.nilpotent lie group.NilpotentLieGroup method), 368
gens() (sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_generic method), 315
gens() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 212
gens() (sage.groups.raag.RightAngledArtinGroup method), 105
gens() (sage.groups.semimonomial_transformations.semimonomial_transformation_group.SemimonomialTransformationGroup
         method), 121
gens_orders() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 149
gens orders() (sage.groups.abelian gps.abelian group gap.AbelianGroup gap method), 161
gens_orders() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class method), 174
gens_small() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 212
gens_values() (sage.groups.abelian_gps.values.AbelianGroupWithValues_class method), 171
get autom() (sage.groups.semimonomial transformations.semimonomial transformation.SemimonomialTransformation
         method), 124
get orbits() (in module sage.groups.perm gps.partn ref.refinement graphs), 380
get_perm() (sage.groups.semimonomial_transformations.semimonomial_transformation.SemimonomialTransformation
         method), 124
        (sage.groups.semimonomial transformations.semimonomial transformation.SemimonomialTransformation
get_v()
         method), 124
get_v_inverse() (sage.groups.semimonomial_transformations.semimonomial_transformation.SemimonomialTransformation
         method), 124
GL() (in module sage.groups.matrix gps.linear), 329
GO() (in module sage.groups.matrix_gps.orthogonal), 332
graph() (sage.groups.raag.RightAngledArtinGroup method), 105
GraphStruct (class in sage.groups.perm gps.partn ref.refinement graphs), 378
Group (class in sage.groups.group), 3
group() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class method), 174
group_generators() (sage.groups.group_exp.GroupExp_Class method), 109
group_generators() (sage.groups.group_semidirect_product.GroupSemidirectProduct method), 113
group generators() (sage.groups.indexed free group.IndexedGroup method), 101
group_id() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 213
```

```
group_primitive_id() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 213
group_primitive_id() (sage.groups.perm_gps.permgroup_named.PrimitiveGroup method), 254
GroupActionOnQuotientModule (class in sage.groups.matrix_gps.isometries), 340
GroupActionOnSubmodule (class in sage.groups.matrix gps.isometries), 340
GroupExp (class in sage.groups.group_exp), 107
GroupExp_Class (class in sage.groups.group_exp), 108
GroupExpElement (class in sage.groups.group exp), 108
GroupHomset() (in module sage.groups.group_homset), 7
GroupHomset_generic (class in sage.groups.group_homset), 7
GroupHomset libgap (class in sage.groups.libgap morphism), 9
GroupLibGAP (class in sage.groups.libgap group), 19
GroupMixinLibGAP (class in sage.groups.libgap mixin), 21
GroupMorphism_libgap (class in sage.groups.libgap_morphism), 9
GroupMorphismWithGensImages (class in sage.groups.finitely presented), 67
GroupOfIsometries (class in sage.groups.matrix gps.isometries), 340
GroupSemidirectProduct (class in sage.groups.group_semidirect_product), 111
GroupSemidirectProductElement (class in sage.groups.group_semidirect_product), 114
GU() (in module sage.groups.matrix gps.unitary), 346
Н
hap_decorator() (in module sage.groups.perm_gps.permgroup), 240
has_descent() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement method), 271
has element() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 213
has_left_descent() (sage.groups.perm_gps.permgroup_element.SymmetricGroupElement method), 274
has_regular_subgroup() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 214
has_right_descent() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup.Element method), 324
HeisenbergGroup (class in sage.groups.matrix gps.heisenberg), 350
holomorph() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 214
homology() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 215
homology_part() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 216
id() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 216
identity() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 149
identity() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap method), 162
identity() (sage.groups.additive abelian.additive abelian group.AdditiveAbelianGroup fixed gens method), 187
identity() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 216
image() (sage.groups.abelian_gps.abelian_group_morphism.AbelianGroupMorphism method), 183
image() (sage.groups.libgap morphism.GroupMorphism libgap method), 10
image() (sage.groups.perm gps.permgroup morphism.PermutationGroupMorphism method), 277
index2singmaster() (in module sage.groups.perm_gps.cubegroup), 290
index_set() (sage.groups.perm_gps.permgroup_named.SymmetricGroup method), 263
IndexedFreeAbelianGroup (class in sage.groups.indexed free group), 99
IndexedFreeAbelianGroup.Element (class in sage.groups.indexed_free_group), 99
IndexedFreeGroup (class in sage.groups.indexed_free_group), 99
IndexedFreeGroup.Element (class in sage.groups.indexed_free_group), 100
IndexedGroup (class in sage.groups.indexed_free_group), 101
induct() (sage.groups.class_function.ClassFunction_gap method), 129
induct() (sage.groups.class_function.ClassFunction_libgap method), 134
intersection() (sage.groups.libgap mixin.GroupMixinLibGAP method), 24
```

```
intersection() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 216
inv_list() (in module sage.groups.perm_gps.cubegroup), 290
invariant_bilinear_form() (sage.groups.matrix_gps.isometries.GroupOfIsometries method), 341
invariant_bilinear_form() (sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_gap method), 333
invariant_bilinear_form() (sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_generic method), 336
invariant_form() (sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_gap method), 334
invariant form() (sage.groups.matrix gps.orthogonal.OrthogonalMatrixGroup generic method), 336
invariant form() (sage.groups.matrix gps.symplectic.SymplecticMatrixGroup gap method), 344
invariant_form() (sage.groups.matrix_gps.symplectic.SymplecticMatrixGroup_generic method), 345
invariant_form() (sage.groups.matrix_gps.unitary.UnitaryMatrixGroup_gap method), 349
invariant form() (sage.groups.matrix gps.unitary.UnitaryMatrixGroup generic method), 349
invariant generators() (sage.groups.matrix gps.finitely generated.FinitelyGeneratedMatrixGroup gap method), 308
invariant_quadratic_form() (sage.groups.matrix_gps.orthogonal.OrthogonalMatrixGroup_gap method), 335
invariant quadratic form() (sage.groups.matrix gps.orthogonal.OrthogonalMatrixGroup generic method), 337
invariants() (sage.groups.abelian gps.abelian group.AbelianGroup class method), 150
invariants() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class method), 174
invariants_of_degree() (sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap method), 309
inverse() (sage.groups.abelian gps.element base.AbelianGroupElementBase method), 177
inverse() (sage.groups.abelian gps.values.AbelianGroupWithValuesElement method), 169
inverse() (sage.groups.affine_gps.group_element.AffineGroupElement method), 360
inverse() (sage.groups.group_exp.GroupExpElement method), 108
inverse() (sage.groups.group semidirect product.GroupSemidirectProductElement method), 114
inverse() (sage.groups.libgap_wrapper.ElementLibGAP method), 14
inverse() (sage.groups.matrix_gps.group_element.MatrixGroupElement_generic method), 304
inverse() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement method), 272
invert v() (sage.groups.semimonomial transformations.semimonomial transformation.SemimonomialTransformation
         method), 124
irreducible characters() (sage.groups.libgap mixin.GroupMixinLibGAP method), 25
irreducible_characters() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 217
irreducible_constituents() (sage.groups.class_function.ClassFunction_gap method), 130
irreducible constituents() (sage.groups.class function.ClassFunction libgap method), 135
is_abelian() (sage.groups.group.AbelianGroup method), 3
is_abelian() (sage.groups.group.Group method), 3
is_abelian() (sage.groups.libgap_mixin.GroupMixinLibGAP method), 25
is abelian() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 217
is_abelian() (sage.groups.perm_gps.permgroup_named.CyclicPermutationGroup method), 242
is_abelian() (sage.groups.perm_gps.permgroup_named.DiCyclicGroup method), 244
is AbelianGroup() (in module sage.groups.abelian gps.abelian group), 156
is AbelianGroupElement() (in module sage.groups.abelian gps.abelian group element), 180
is_AbelianGroupMorphism() (in module sage.groups.abelian_gps.abelian_group_morphism), 184
is_commutative() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 150
is_commutative() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class method), 174
is_commutative() (sage.groups.group.Group method), 4
is_commutative() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup method), 325
is_commutative() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 217
is_commutative() (sage.groups.perm_gps.permgroup_named.CyclicPermutationGroup method), 242
is_commutative() (sage.groups.perm_gps.permgroup_named.DiCyclicGroup method), 244
is_confluent() (sage.groups.finitely_presented.RewritingSystem method), 69
is conjugated() (sage.groups.braid.Braid method), 85
is cyclic() (sage.groups.abelian gps.abelian group.AbelianGroup class method), 150
```

```
is cyclic() (sage.groups.additive abelian.additive abelian group.AdditiveAbelianGroup class method), 186
is_cyclic() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 218
is DualAbelianGroup() (in module sage.groups.abelian gps.dual abelian group), 175
is DualAbelianGroupElement() (in module sage.groups.abelian gps.dual abelian group element), 182
is_elementary_abelian() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 218
is_finite() (sage.groups.group.FiniteGroup method), 3
is finite() (sage.groups.group.Group method), 4
is finite() (sage.groups.libgap mixin.GroupMixinLibGAP method), 25
is_finite() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup method), 325
is FreeGroup() (in module sage.groups.free group), 52
is Group() (in module sage.groups.group), 5
is GroupHomset() (in module sage.groups.group homset), 7
is irreducible() (sage.groups.class function.ClassFunction gap method), 130
is irreducible() (sage.groups.class function.ClassFunction libgap method), 135
is isomorphic() (in module sage.groups.perm gps.partn ref.refinement lists), 385
is_isomorphic() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 151
is_isomorphic() (sage.groups.libgap_mixin.GroupMixinLibGAP method), 26
is isomorphic() (sage.groups.perm gps.partn ref.refinement matrices.MatrixStruct method), 386
is isomorphic() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 218
is_MatrixGroup() (in module sage.groups.matrix_gps.matrix_group), 300
is MatrixGroupElement() (in module sage.groups.matrix gps.group element), 306
is MatrixGroupHomset() (in module sage.groups.matrix gps.homset), 319
is_monomial() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 218
is_multiplicative() (sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_class method), 187
is_multiplicative() (sage.groups.group.Group method), 4
is nilpotent() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 219
is_normal() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 219
is_normal() (sage.groups.perm_gps.permgroup.PermutationGroup_subgroup method), 239
is_one() (sage.groups.libgap_wrapper.ElementLibGAP method), 14
is one() (sage.groups.matrix gps.group element.MatrixGroupElement generic method), 305
is perfect() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 219
is periodic() (sage.groups.braid.Braid method), 85
is PermutationGroupElement() (in module sage.groups.perm gps.permgroup element), 274
is_PermutationGroupMorphism() (in module sage.groups.perm_gps.permgroup_morphism), 279
is pgroup() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 219
is_polycyclic() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 219
is_primitive() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 220
is pseudoanosov() (sage.groups.braid.Braid method), 85
is_rational() (sage.groups.conjugacy_classes.ConjugacyClass method), 140
is real() (sage.groups.conjugacy classes.ConjugacyClass method), 140
is reducible() (sage.groups.braid.Braid method), 86
is_regular() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 220
is_semi_regular() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 221
is simple() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 221
is_solvable() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 221
is_subgroup() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 151
is_subgroup() (sage.groups.libgap_wrapper.ParentLibGAP method), 17
is_subgroup() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 221
is subgroup of() (sage.groups.abelian gps.abelian aut.AbelianGroupAutomorphismGroup gap method), 166
is_subgroup_of() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap method), 162
```

```
is supersolvable() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 221
is_transitive() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 222
is_trivial() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 152
is trivial() (sage.groups.abelian gps.abelian group gap.AbelianGroup gap method), 162
is_trivial() (sage.groups.abelian_gps.element_base.AbelianGroupElementBase method), 177
isomorphic() (in module sage.groups.perm_gps.partn_ref.refinement_graphs), 380
isomorphism_to() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 222
isomorphism_type_info_simple_group() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 223
iteration() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 223
J
JankoGroup (class in sage.groups.perm gps.permgroup named), 247
jones polynomial() (sage.groups.braid.Braid method), 86
K
kernel() (sage.groups.abelian_gps.abelian_group_morphism.AbelianGroupMorphism method), 183
kernel() (sage.groups.libgap_morphism.GroupMorphism_libgap method), 11
kernel() (sage.groups.perm gps.permgroup morphism.PermutationGroupMorphism method), 277
KleinFourGroup (class in sage.groups.perm_gps.permgroup_named), 247
KleinFourPresentation() (in module sage.groups.finitely_presented_named), 77
L
L() (sage.groups.perm_gps.cubegroup.CubeGroup method), 281
largest_moved_point() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 223
lcm() (sage.groups.braid.Braid method), 87
left_invariant_extension() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup method), 368
left invariant frame() (sage.groups.lie gps.nilpotent lie group.NilpotentLieGroup method), 369
left translation() (sage.groups.lie gps.nilpotent lie group.NilpotentLieGroup method), 369
legal() (sage.groups.perm_gps.cubegroup.CubeGroup method), 283
length() (sage.groups.indexed_free_group.IndexedFreeGroup.Element method), 100
lie algebra() (sage.groups.lie gps.nilpotent lie group.NilpotentLieGroup method), 370
lift() (sage.groups.libgap_morphism.GroupMorphism_libgap method), 11
linear() (sage.groups.affine gps.affine group.AffineGroup method), 354
linear_relation() (in module sage.groups.generic), 40
linear space() (sage.groups.affine gps.affine group.AffineGroup method), 354
LinearMatrixGroup gap (class in sage.groups.matrix gps.linear), 330
LinearMatrixGroup_generic (class in sage.groups.matrix_gps.linear), 330
list() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 152
list() (sage.groups.abelian gps.dual abelian group.DualAbelianGroup class method), 174
list() (sage.groups.abelian_gps.element_base.AbelianGroupElementBase method), 177
list() (sage.groups.affine_gps.group_element.AffineGroupElement method), 360
list() (sage.groups.conjugacy classes.ConjugacyClass method), 140
list() (sage.groups.libgap_mixin.GroupMixinLibGAP method), 26
list() (sage.groups.matrix_gps.group_element.MatrixGroupElement_gap method), 301
list() (sage.groups.matrix_gps.group_element.MatrixGroupElement_generic method), 305
list() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 224
livf() (sage.groups.lie gps.nilpotent lie group.NilpotentLieGroup method), 370
LKB_matrix() (sage.groups.braid.Braid method), 80
load_hap() (in module sage.groups.perm_gps.permgroup), 240
log() (sage.groups.lie gps.nilpotent lie group.NilpotentLieGroup method), 370
```

lower_central_series() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 224

M

```
major index() (sage.groups.perm gps.permgroup named.SymmetricGroup method), 263
make confluent() (sage.groups.finitely presented.RewritingSystem method), 70
make permgroup element() (in module sage.groups.perm gps.permgroup element), 275
make_permgroup_element_v2() (in module sage.groups.perm_gps.permgroup_element), 275
mapping class action() (sage.groups.braid.BraidGroup class method), 95
MappingClassGroupAction (class in sage.groups.braid), 96
markov_trace() (sage.groups.braid.Braid method), 87
MathieuGroup (class in sage.groups.perm_gps.permgroup_named), 248
matrix() (sage.groups.abelian gps.abelian aut.AbelianGroupAutomorphism method), 164
matrix() (sage.groups.affine_gps.group_element.AffineGroupElement method), 360
matrix() (sage.groups.matrix_gps.group_element.MatrixGroupElement_gap method), 301
matrix() (sage.groups.matrix_gps.group_element.MatrixGroupElement_generic method), 305
matrix() (sage.groups.perm gps.permgroup element.PermutationGroupElement method), 272
matrix degree() (sage.groups.perm gps.permgroup named.PermutationGroup plg method), 252
matrix_space() (sage.groups.affine_gps.affine_group.AffineGroup method), 354
matrix_space() (sage.groups.matrix_gps.matrix_group.MatrixGroup_generic method), 299
MatrixGroup() (in module sage.groups.matrix gps.finitely generated), 316
MatrixGroup_base (class in sage.groups.matrix_gps.matrix_group), 295
MatrixGroup_gap (class in sage.groups.matrix_gps.matrix_group), 296
MatrixGroup generic (class in sage.groups.matrix gps.matrix group), 299
MatrixGroupElement_gap (class in sage.groups.matrix_gps.group_element), 301
MatrixGroupElement_generic (class in sage.groups.matrix_gps.group_element), 304
MatrixStruct (class in sage.groups.perm gps.partn ref.refinement matrices), 385
merge points() (in module sage.groups.generic), 40
minimal_generating_set() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 224
module composition factors()
                                  (sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap
         method), 310
molien_series() (sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap method), 311
molien series() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 225
move() (sage.groups.perm gps.cubegroup.CubeGroup method), 283
move() (sage.groups.perm_gps.cubegroup.RubiksCube method), 287
multiple() (in module sage.groups.generic), 41
multiples (class in sage.groups.generic), 42
multiplicative_order() (sage.groups.abelian_gps.element_base.AbelianGroupElementBase method), 177
multiplicative_order() (sage.groups.matrix_gps.group_element.MatrixGroupElement_gap method), 302
multiplicative_order() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement method), 273
Ν
NamedMatrixGroup_gap (class in sage.groups.matrix_gps.named_group), 389
NamedMatrixGroup_generic (class in sage.groups.matrix_gps.named_group), 390
natural_map() (sage.groups.group_homset.GroupHomset_generic method), 7
next() (sage.groups.generic.multiples method), 43
ngens() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 152
ngens() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class method), 175
ngens() (sage.groups.libgap_wrapper.ParentLibGAP method), 17
```

410 Index

ngens() (sage.groups.matrix gps.finitely generated.FinitelyGeneratedMatrixGroup generic method), 316

ngens() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 225

```
ngens() (sage.groups.raag.RightAngledArtinGroup method), 105
NilpotentLieGroup (class in sage.groups.lie_gps.nilpotent_lie_group), 363
NilpotentLieGroup.Element (class in sage.groups.lie_gps.nilpotent_lie_group), 365
non fixed points() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 225
norm() (sage.groups.class_function.ClassFunction_gap method), 130
norm() (sage.groups.class_function.ClassFunction_libgap method), 135
normal_subgroups() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 226
normalize args e() (in module sage.groups.matrix gps.orthogonal), 339
normalize_args_invariant_form() (in module sage.groups.matrix_gps.named_group), 390
normalize args vectorspace() (in module sage.groups.matrix gps.named group), 391
normalize square matrices() (in module sage.groups.matrix gps.finitely generated), 318
normalizer() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 226
normalizes() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 226
0
one() (sage.groups.group_exp.GroupExp_Class method), 109
one() (sage.groups.group semidirect product.GroupSemidirectProduct method), 113
one() (sage.groups.indexed free group.IndexedFreeAbelianGroup method), 99
one() (sage.groups.indexed_free_group.IndexedFreeGroup method), 101
one() (sage.groups.libgap_wrapper.ParentLibGAP method), 17
one() (sage.groups.lie gps.nilpotent lie group.NilpotentLieGroup method), 371
one() (sage.groups.raag.RightAngledArtinGroup method), 105
one_element() (sage.groups.raag.RightAngledArtinGroup method), 105
OP_represent() (in module sage.groups.perm_gps.partn_ref.data_structures), 377
opposite_semidirect_product() (sage.groups.group_semidirect_product.GroupSemidirectProduct method), 113
orbit() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 227
orbit() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement method), 273
orbit_partition() (in module sage.groups.perm_gps.partn_ref.refinement_graphs), 380
orbits() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 228
order() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 152
order() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroupElement_gap method), 158
order() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class method), 175
order() (sage.groups.abelian_gps.element_base.AbelianGroupElementBase method), 178
order() (sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_class method), 187
order() (sage.groups.braid.BraidGroup_class method), 96
order() (sage.groups.finitely presented.FinitelyPresentedGroup method), 62
order() (sage.groups.group.Group method), 4
order() (sage.groups.indexed free group.IndexedGroup method), 101
order() (sage.groups.libgap_mixin.GroupMixinLibGAP method), 27
order() (sage.groups.matrix gps.binary dihedral.BinaryDihedralGroup method), 320
order() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup method), 326
order() (sage.groups.matrix_gps.heisenberg.HeisenbergGroup method), 351
order() (sage.groups.pari_group.PariGroup method), 31
order() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 228
order() (sage.groups.semimonomial transformations.semimonomial transformation group.SemimonomialTransformationGroup
         method), 121
order_from_bounds() (in module sage.groups.generic), 43
order_from_multiple() (in module sage.groups.generic), 44
OrthogonalMatrixGroup gap (class in sage.groups.matrix gps.orthogonal), 333
OrthogonalMatrixGroup_generic (class in sage.groups.matrix_gps.orthogonal), 335
```

Р

```
ParentLibGAP (class in sage.groups.libgap wrapper), 14
PariGroup (class in sage.groups.pari group), 31
parse() (sage.groups.perm_gps.cubegroup.CubeGroup method), 283
partition() (sage.groups.perm_gps.symgp_conjugacy_class.SymmetricGroupConjugacyClassMixin method), 292
permutation() (sage.groups.braid.Braid method), 88
permutation_group() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 152
permutation group()
                         (sage.groups.additive_abelian.additive_abelian_group.AdditiveAbelianGroup_fixed_gens
         method), 188
permutation_group() (sage.groups.pari_group.PariGroup method), 31
PermutationGroup() (in module sage.groups.perm gps.permgroup), 195
PermutationGroup generic (class in sage.groups.perm gps.permgroup), 196
PermutationGroup_plg (class in sage.groups.perm_gps.permgroup_named), 252
PermutationGroup_pug (class in sage.groups.perm_gps.permgroup_named), 253
PermutationGroup subgroup (class in sage.groups.perm gps.permgroup), 238
PermutationGroup_symalt (class in sage.groups.perm_gps.permgroup_named), 253
PermutationGroup unique (class in sage.groups.perm gps.permgroup named), 253
PermutationGroupElement (class in sage.groups.perm_gps.permgroup_element), 268
PermutationGroupMorphism (class in sage.groups.perm gps.permgroup morphism), 277
PermutationGroupMorphism from gap (class in sage.groups.perm gps.permgroup morphism), 278
PermutationGroupMorphism_id (class in sage.groups.perm_gps.permgroup_morphism), 278
PermutationGroupMorphism_im_gens (class in sage.groups.perm_gps.permgroup_morphism), 278
PermutationsConjugacyClass (class in sage.groups.perm gps.symgp conjugacy class), 292
PGL (class in sage.groups.perm_gps.permgroup_named), 248
PGU (class in sage.groups.perm_gps.permgroup_named), 249
plot() (sage.groups.braid.Braid method), 88
plot() (sage.groups.perm gps.cubegroup.RubiksCube method), 287
plot3d() (sage.groups.braid.Braid method), 89
plot3d() (sage.groups.perm_gps.cubegroup.RubiksCube method), 287
plot3d cube() (sage.groups.perm gps.cubegroup.CubeGroup method), 284
plot3d cubie() (in module sage.groups.perm gps.cubegroup), 291
plot_cube() (sage.groups.perm_gps.cubegroup.CubeGroup method), 285
poincare_series() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 229
polygon plot3d() (in module sage.groups.perm gps.cubegroup), 291
positive_roots() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup method), 326
preimage() (sage.groups.libgap_morphism.GroupMorphism_libgap method), 11
PrimitiveGroup (class in sage.groups.perm gps.permgroup named), 253
PrimitiveGroups() (in module sage.groups.perm_gps.permgroup_named), 254
PrimitiveGroupsAll (class in sage.groups.perm_gps.permgroup_named), 255
PrimitiveGroupsOfDegree (class in sage.groups.perm_gps.permgroup_named), 255
product() (sage.groups.group exp.GroupExp Class method), 109
product() (sage.groups.group semidirect product.GroupSemidirectProduct method), 114
PS_represent() (in module sage.groups.perm_gps.partn_ref.data_structures), 377
PSL (class in sage.groups.perm_gps.permgroup_named), 249
PSp (class in sage.groups.perm gps.permgroup named), 251
PSP (in module sage.groups.perm_gps.permgroup_named), 251
PSU (class in sage.groups.perm_gps.permgroup_named), 251
pushforward() (sage.groups.libgap_morphism.GroupMorphism_libgap method), 12
```

Q

```
OuaternionMatrixGroupGF3() (in module sage.groups.matrix gps.finitely generated), 317
QuaternionPresentation() (in module sage.groups.finitely_presented_named), 77
quotient() (sage.groups.free group.FreeGroup class method), 51
quotient() (sage.groups.group.Group method), 4
quotient() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 229
R
R() (sage.groups.perm gps.cubegroup.CubeGroup method), 281
ramification_module_decomposition_hurwitz_curve() (sage.groups.perm_gps.permgroup_named.PSL method), 250
ramification_module_decomposition_modular_curve() (sage.groups.perm_gps.permgroup_named.PSL method), 250
random element() (sage.groups.abelian gps.abelian group.AbelianGroup class method), 153
random_element() (sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class method), 175
random_element() (sage.groups.affine_gps.affine_group.AffineGroup method), 355
random_element() (sage.groups.affine_gps.euclidean_group.EuclideanGroup method), 358
random element() (sage.groups.libgap mixin.GroupMixinLibGAP method), 28
random element() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 229
random_tests() (in module sage.groups.perm_gps.partn_ref.refinement_graphs), 381
random_tests() (in module sage.groups.perm_gps.partn_ref.refinement_matrices), 387
rank() (sage.groups.free group.FreeGroup class method), 52
rank() (sage.groups.indexed_free_group.IndexedGroup method), 102
reduce() (sage.groups.finitely_presented.RewritingSystem method), 71
reflection() (sage.groups.affine_gps.affine_group.AffineGroup method), 355
reflections() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup method), 326
reflections() (sage.groups.perm_gps.permgroup_named.SymmetricGroup method), 264
relations() (sage.groups.finitely_presented.FinitelyPresentedGroup method), 62
repr2d() (sage.groups.perm gps.cubegroup.CubeGroup method), 285
representative() (sage.groups.conjugacy_classes.ConjugacyClass method), 140
representative action() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 230
restrict() (sage.groups.class_function.ClassFunction_gap method), 130
restrict() (sage.groups.class_function.ClassFunction libgap method), 135
rewriting system() (sage.groups.finitely presented.FinitelyPresentedGroup method), 62
RewritingSystem (class in sage.groups.finitely_presented), 68
reynolds_operator() (sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap method), 313
right invariant extension() (sage.groups.lie gps.nilpotent lie group.NilpotentLieGroup method), 371
right_invariant_frame() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup method), 372
right normal form() (sage.groups.braid.Braid method), 89
right_translation() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup method), 372
RightAngledArtinGroup (class in sage.groups.raag), 103
RightAngledArtinGroup.Element (class in sage.groups.raag), 104
rigidity() (sage.groups.braid.Braid method), 89
rivf() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup method), 373
roots() (sage.groups.matrix gps.coxeter group.CoxeterMatrixGroup method), 327
rotation_list() (in module sage.groups.perm_gps.cubegroup), 291
RubiksCube (class in sage.groups.perm_gps.cubegroup), 286
rules() (sage.groups.finitely_presented.RewritingSystem method), 71
run() (sage.groups.perm_gps.partn_ref.refinement_matrices.MatrixStruct method), 386
```

QuaternionGroup (class in sage.groups.perm gps.permgroup named), 256

S

```
sage.groups.abelian gps.abelian aut (module), 163
sage.groups.abelian gps.abelian group (module), 143
sage.groups.abelian_gps.abelian_group_element (module), 178
sage.groups.abelian gps.abelian group gap (module), 157
sage.groups.abelian_gps.abelian_group_morphism (module), 182
sage.groups.abelian_gps.dual_abelian_group (module), 172
sage.groups.abelian_gps.dual_abelian_group_element (module), 180
sage.groups.abelian_gps.element_base (module), 176
sage.groups.abelian_gps.values (module), 167
sage.groups.additive_abelian.additive_abelian_group (module), 184
sage.groups.additive abelian.additive abelian wrapper (module), 188
sage.groups.affine gps.affine group (module), 352
sage.groups.affine gps.euclidean group (module), 356
sage.groups.affine_gps.group_element (module), 358
sage.groups.braid (module), 79
sage.groups.class function (module), 127
sage.groups.conjugacy_classes (module), 139
sage.groups.finitely_presented (module), 55
sage.groups.finitely_presented_named (module), 73
sage.groups.free_group (module), 47
sage.groups.generic (module), 33
sage.groups.group (module), 3
sage.groups.group_exp (module), 107
sage.groups.group homset (module), 7
sage.groups.group_semidirect_product (module), 111
sage.groups.groups catalog (module), 1
sage.groups.indexed free group (module), 99
sage.groups.libgap_group (module), 19
sage.groups.libgap_mixin (module), 21
sage.groups.libgap_morphism (module), 9
sage.groups.libgap_wrapper (module), 13
sage.groups.lie gps.nilpotent lie group (module), 363
sage.groups.matrix_gps.binary_dihedral (module), 319
sage.groups.matrix gps.catalog (module), 295
sage.groups.matrix gps.coxeter group (module), 320
sage.groups.matrix_gps.finitely_generated (module), 306
sage.groups.matrix_gps.group_element (module), 300
sage.groups.matrix gps.heisenberg (module), 350
sage.groups.matrix_gps.homset (module), 319
sage.groups.matrix_gps.isometries (module), 339
sage.groups.matrix gps.linear (module), 328
sage.groups.matrix_gps.matrix_group (module), 295
sage.groups.matrix_gps.morphism (module), 318
sage.groups.matrix_gps.named_group (module), 389
sage.groups.matrix gps.orthogonal (module), 331
sage.groups.matrix gps.symplectic (module), 342
sage.groups.matrix_gps.unitary (module), 345
sage.groups.misc_gps.misc_groups (module), 117
```

```
sage.groups.pari group (module), 31
sage.groups.perm_gps.cubegroup (module), 279
sage.groups.perm_gps.partn_ref.canonical_augmentation (module), 375
sage.groups.perm gps.partn ref.data structures (module), 377
sage.groups.perm_gps.partn_ref.refinement_graphs (module), 378
sage.groups.perm_gps.partn_ref.refinement_lists (module), 385
sage.groups.perm_gps.partn_ref.refinement_matrices (module), 385
sage.groups.perm_gps.permgroup (module), 191
sage.groups.perm_gps.permgroup_element (module), 267
sage.groups.perm_gps.permgroup_morphism (module), 276
sage.groups.perm gps.permgroup named (module), 240
sage.groups.perm gps.permutation groups catalog (module), 191
sage.groups.perm_gps.symgp_conjugacy_class (module), 292
sage.groups.raag (module), 103
sage.groups.semimonomial transformations.semimonomial transformation (module), 123
sage.groups.semimonomial_transformations.semimonomial_transformation_group (module), 119
SC_test_list_perms() (in module sage.groups.perm_gps.partn_ref.data_structures), 377
scalar product() (sage.groups.class function.ClassFunction gap method), 131
scalar product() (sage.groups.class function.ClassFunction libgap method), 136
scramble() (sage.groups.perm_gps.cubegroup.RubiksCube method), 288
search tree() (in module sage.groups.perm gps.partn ref.refinement graphs), 381
SemidihedralGroup (class in sage.groups.perm gps.permgroup named), 257
semidirect_product() (sage.groups.finitely_presented.FinitelyPresentedGroup method), 63
semidirect_product() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 230
SemimonomialActionMat (class in sage.groups.semimonomial_transformations.semimonomial_transformation_group),
Semimonomial Action Vec (class in sage.groups.semimonomial transformations.semimonomial transformation group),
SemimonomialTransformation (class in sage.groups.semimonomial_transformations.semimonomial_transformation),
Semimonomial Transformation Group (class in sage.groups.semimonomial transformations.semimonomial transformation group),
set() (sage.groups.conjugacy_classes.ConjugacyClass method), 141
set() (sage.groups.conjugacy classes.ConjugacyClassGAP method), 142
set() (sage.groups.perm_gps.symgp_conjugacy_class.PermutationsConjugacyClass method), 292
set() (sage.groups.perm_gps.symgp_conjugacy_class.SymmetricGroupConjugacyClass method), 292
short name() (sage.groups.additive abelian.additive abelian group.AdditiveAbelianGroup class method), 187
show() (sage.groups.perm gps.cubegroup.RubiksCube method), 288
show3d() (sage.groups.perm_gps.cubegroup.RubiksCube method), 288
sign() (sage.groups.perm_gps.permgroup_element.PermutationGroupElement method), 273
simple_reflection() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup method), 327
simple_reflection() (sage.groups.perm_gps.permgroup_named.SymmetricGroup method), 264
simple_root_index() (sage.groups.matrix_gps.coxeter_group.CoxeterMatrixGroup method), 328
simplification_isomorphism() (sage.groups.finitely_presented.FinitelyPresentedGroup method), 64
simplified() (sage.groups.finitely presented.FinitelyPresentedGroup method), 65
SL() (in module sage.groups.matrix gps.linear), 330
sliding_circuits() (sage.groups.braid.Braid method), 90
smallest moved point() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 231
SO() (in module sage.groups.matrix gps.orthogonal), 337
socle() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 232
```

```
solvable radical() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 232
solve() (sage.groups.perm_gps.cubegroup.CubeGroup method), 285
solve() (sage.groups.perm_gps.cubegroup.RubiksCube method), 288
some elements() (sage.groups.braid.BraidGroup class method), 96
Sp() (in module sage.groups.matrix_gps.symplectic), 342
SplitMetacyclicGroup (class in sage.groups.perm_gps.permgroup_named), 258
stabilizer() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 232
standardize_generator() (in module sage.groups.perm_gps.permgroup_element), 275
step() (sage.groups.lie_gps.nilpotent_lie_group.NilpotentLieGroup method), 373
strands() (sage.groups.braid.Braid method), 90
strands() (sage.groups.braid.BraidGroup class method), 96
string to tuples() (in module sage.groups.perm gps.permgroup element), 276
strong_generating_system() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 234
structure description() (in module sage.groups.generic), 45
structure description() (sage.groups.finitely presented.FinitelyPresentedGroup method), 65
structure_description() (sage.groups.matrix_gps.matrix_group.MatrixGroup_gap method), 298
structure_description() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 235
SU() (in module sage.groups.matrix gps.unitary), 347
subgroup() (sage.groups.abelian gps.abelian group.AbelianGroup class method), 153
subgroup() (sage.groups.abelian_gps.abelian_group_gap.AbelianGroup_gap method), 162
subgroup() (sage.groups.libgap_wrapper.ParentLibGAP method), 18
subgroup() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 236
subgroup_reduced() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 153
subgroups() (sage.groups.abelian_gps.abelian_group.AbelianGroup_class method), 154
subgroups() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 236
super summit set() (sage.groups.braid.Braid method), 90
SuzukiGroup (class in sage.groups.perm_gps.permgroup_named), 259
SuzukiSporadicGroup (class in sage.groups.perm_gps.permgroup_named), 260
syllables() (sage.groups.free group.FreeGroupElement method), 50
sylow subgroup() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 237
symmetric_power() (sage.groups.class_function.ClassFunction_gap method), 131
symmetric power() (sage.groups.class function.ClassFunction libgap method), 136
SymmetricGroup (class in sage.groups.perm gps.permgroup named), 260
SymmetricGroupConjugacyClass (class in sage.groups.perm_gps.symgp_conjugacy_class), 292
SymmetricGroupConjugacyClassMixin (class in sage.groups.perm_gps.symgp_conjugacy_class), 292
SymmetricGroupElement (class in sage.groups.perm_gps.permgroup_element), 274
SymmetricPresentation() (in module sage.groups.finitely_presented_named), 77
SymplecticMatrixGroup gap (class in sage.groups.matrix gps.symplectic), 343
SymplecticMatrixGroup_generic (class in sage.groups.matrix_gps.symplectic), 344
Т
tensor_product() (sage.groups.class_function.ClassFunction_gap method), 131
tensor_product() (sage.groups.class_function.ClassFunction_libgap method), 136
thurston_type() (sage.groups.braid.Braid method), 91
Tietze() (sage.groups.finitely_presented.FinitelyPresentedGroupElement method), 67
Tietze() (sage.groups.free group.FreeGroupElement method), 49
TL basis with drain() (sage.groups.braid.BraidGroup class method), 93
TL_matrix() (sage.groups.braid.Braid method), 80
TL representation() (sage.groups.braid.BraidGroup class method), 94
to_libgap() (in module sage.groups.matrix_gps.morphism), 318
```

```
to opposite() (sage.groups.group semidirect product.GroupSemidirectProductElement method), 114
to_word_list() (sage.groups.indexed_free_group.IndexedFreeGroup.Element method), 100
TransitiveGroup (class in sage.groups.perm_gps.permgroup_named), 264
TransitiveGroups() (in module sage.groups.perm gps.permgroup named), 265
TransitiveGroupsAll (class in sage.groups.perm_gps.permgroup_named), 266
TransitiveGroupsOfDegree (class in sage.groups.perm_gps.permgroup_named), 266
translation() (sage.groups.affine gps.affine group.AffineGroup method), 355
transversals() (sage.groups.perm gps.permgroup.PermutationGroup generic method), 237
trivial_character() (sage.groups.libgap_mixin.GroupMixinLibGAP method), 28
trivial_character() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 238
tropical coordinates() (sage.groups.braid.Braid method), 91
tuple() (sage.groups.perm gps.permgroup element.PermutationGroupElement method), 273
U
U() (sage.groups.perm gps.cubegroup.CubeGroup method), 281
ultra summit set() (sage.groups.braid.Braid method), 91
undo() (sage.groups.perm gps.cubegroup.RubiksCube method), 289
UnitaryMatrixGroup_gap (class in sage.groups.matrix_gps.unitary), 348
UnitaryMatrixGroup_generic (class in sage.groups.matrix_gps.unitary), 349
universe() (sage.groups.additive abelian.additive abelian wrapper.AdditiveAbelianGroupWrapper method), 189
UnwrappingMorphism (class in sage.groups.additive_abelian.additive_abelian_wrapper), 190
upper_central_series() (sage.groups.perm_gps.permgroup.PermutationGroup_generic method), 238
value() (sage.groups.abelian gps.values.AbelianGroupWithValuesElement method), 170
values() (sage.groups.class_function.ClassFunction_gap method), 132
values() (sage.groups.class_function.ClassFunction_libgap method), 137
values embedding() (sage.groups.abelian gps.values.AbelianGroupWithValues class method), 171
values group() (sage.groups.abelian gps.values.AbelianGroupWithValues class method), 172
vector_space() (sage.groups.affine_gps.affine_group.AffineGroup method), 356
W
word problem() (in module sage.groups.abelian gps.abelian group), 156
word problem() (sage.groups.abelian gps.abelian group element.AbelianGroupElement method), 180
word_problem() (sage.groups.abelian_gps.dual_abelian_group_element.DualAbelianGroupElement method), 181
word problem() (sage.groups,matrix gps.group element.MatrixGroupElement gap method), 303
word problem() (sage.groups.perm gps.permgroup element.PermutationGroupElement method), 274
wrap_FpGroup() (in module sage.groups.finitely_presented), 72
wrap_FreeGroup() (in module sage.groups.free_group), 52
X
xproj() (in module sage.groups.perm gps.cubegroup), 291
Υ
young_subgroup() (sage.groups.perm_gps.permgroup_named.SymmetricGroup method), 264
yproj() (in module sage.groups.perm gps.cubegroup), 291
```