計量経済 II: 宿題 2

村澤 康友

提出期限: 2022年10月11日

注意: すべての質問に解答しなければ提出とは認めない.授業の HP の解答例を正確に再現すること(乱数は除く).グループで取り組んでよいが,個別に提出すること.解答例をコピペしたり,他人の名前で提出した場合は,提出点を0点とし,再提出も認めない.

- 1. gretl のサンプル・データ swisspharma の変数 salesq は, 1971 年第 1 四半期~2011 年第 2 四半期のスイスの医薬品販売額のデータである.
 - (a) salesq の原系列・対数系列・対数階差系列・対数季節階差系列の時系列プロットを並べて比較しなさい.
 - (b) salesq の対数系列を線形トレンドと季節ダミーに回帰し、回帰予測と回帰残差の時系列プロットを描きなさい.
 - ※ gretl のメニューの「追加」 \to 「タイム・トレンド」で 1 次のトレンド項,「追加」 \to 「周期的な ダミー」で季節ダミーを作成できる.分析結果の画面のメニューの「グラフ」 \to 「理論値・実績値 プロット」 \to 「対時間」で回帰予測,「グラフ」 \to 「残差プロット」 \to 「対時間」で回帰残差がプロットできる.
- 2. gretl のサンプル・データ nysewk は,ニューヨーク証券取引所の株価指数(NYSE 総合指数)の 1965 ~2006 年の週次データである.この対数系列について,1 次・2 次・3 次の多項式トレンドと,それぞれに対応する残差(循環変動)の時系列プロットを描きなさい.
 - ※ gretl のメニューの「変数」 \rightarrow 「フィルタ」 \rightarrow 「多項式トレンド」で多項式トレンドと残差がプロットできる.

解答例

1. (a) 原系列・対数系列・対数階差系列・対数季節階差系列

(b) 線形トレンドと季節ダミーへの回帰

モデル 1: 最小二乗法 (OLS), 観測: 1975:1–2011:1 (T=145) 従属変数: l_salesq

	係数	標準誤差		t-ratio	p 値
const	3.34103	0.0153	3757	217.3	0.0000
time	0.0150558	0.0001	37356	109.6	0.0000
dq1	0.142654	0.0162	2055	8.803	0.0000
dq2	0.0921285	0.0163	3179	5.646	0.0000
dq3	0.0199462	0.0163	3161	1.222	0.2236
Mean depender	nt var 4.5	504328	S.D. d	dependent v	var 0.638090
Sum squared re	esid 0.6	570816	S.E. o	f regression	0.069221
R^2	0.9	088559	Adjus	ted R^2	0.988232
F(4, 140)	303	24.077	P-valı	$\mathrm{ie}(F)$	8.7e-135
Log-likelihood	184	4.0135	Akaik	e criterion	-358.0270
Schwarz criteri	on -343	3.1433	Hanna	an–Quinn	-351.9792
$\hat{ ho}$	0.8	312752	Durbi	n-Watson	0.369631

回帰残差 (=観測値 - 理論値: I_salesq)

2. 1次トレンドと残差(循環変動)

2次トレンドと残差(循環変動)

3次トレンドと残差(循環変動)

