

DEEP LEARNING & NEURAL NETWORKS

What is Deep Learning?

Deep Learning is a subfield of **Machine Learning** (**ML**) that uses **artificial neural networks** (**ANNs**) with many layers (hence *deep*) to model and solve complex problems — such as image recognition, natural language processing, and game playing.

Deep Learning automatically learns features from data, unlike traditional ML which needs feature engineering.

What is a Neural Network?

A **Neural Network** is a set of algorithms modeled after the human brain that is designed to recognize patterns. It interprets sensory data through a kind of machine perception, labeling, or clustering of raw input.

Neural networks are the backbone of **Deep Learning**.

Input Layer → Hidden Layers → Output Layer

Output = Activation(Weight * Input + Bias)

Components of Neural Networks

Component	Description	
Neuron (Node)	Processes input and applies activation	
Weight	Controls the influence of input data	
Bias	Allows model to fit better	
Activation Function	Adds non-linearity (e.g., ReLU, Sigmoid)	
Layers	Groups of neurons – Input, Hidden, Output	

What is a Perceptron?

A **Perceptron** is the **simplest neural network** model. It's a type of **linear binary classifier** introduced by **Frank Rosenblatt** in 1958.

It maps input features to an output using: output = activation($w \cdot x + b$)

Perceptron Architecture

\Box Components:

- Inputs $(x_1, x_2, ..., x_n)$
- Weights $(w_1, w_2, ..., w_n)$
- Bias (b)
- Activation Function (usually step function for single-layer perceptron)
- Output (y)

Training Process (Step-by-Step)

- 1. **Initialize weights and bias** (randomly or zeros)
- 2. Forward pass: compute output = activation($w \cdot x + b$)
- 3. Error Calculation: error = y_true y_pred
- 4. Weight Update Rule: w_new = w_old + learning_rate * error * x

Python Implementation: Perceptron for AND Gate:

import numpy as np

```
# Step activation function
def step function(x):
  return 1 if x \ge 0 else 0
# Perceptron class
class Perceptron:
  def __init__(self, input_size, learning_rate=0.1):
    self.weights = np.zeros(input_size)
    self.bias = 0
    self.lr = learning rate
  def predict(self, x):
    summation = np.dot(x, self.weights) + self.bias
    return step_function(summation)
  def train(self, X, y, epochs=10):
    for epoch in range(epochs):
       print(f"\nEpoch {epoch+1}")
       for i in range(len(X)):
         y_pred = self.predict(X[i])
         error = y[i] - y_pred
```



```
self.weights += self.lr * error * X[i]
         self.bias += self.lr * error
         print(f"Input: {X[i]}, Predicted: {y_pred}, Error: {error}, Weights: {self.weights}, Bias:
{self.bias}")
# AND gate data
X = np.array([[0,0], [0,1], [1,0], [1,1]])
y = np.array([0, 0, 0, 1])
# Train perceptron
p = Perceptron(input_size=2)
p.train(X, y)
# Test predictions
print("\nFinal Predictions:")
for i in range(len(X)):
  print(f"{X[i]} \longrightarrow {p.predict(X[i])}")
Output:
Epoch 1
Input: [0 0], Predicted: 0, Error: 0, Weights: [0. 0.], Bias: 0.0
Input: [0 1], Predicted: 0, Error: 0, Weights: [0. 0.], Bias: 0.0
Input: [1 0], Predicted: 0, Error: 0, Weights: [0. 0.], Bias: 0.0
Input: [1 1], Predicted: 0, Error: 1, Weights: [0.1 0.1], Bias: 0.1
```


Final Predictions:
[0 0]> 0
[0 1]> 0
[1 0]> 0
[1 1]> 1
What is a Multi-Layer Perceptron (MLP)?
A Multi-Layer Perceptron (MLP) is a feedforward neural network with one or more hidden layers between input and output layers. It can solve non-linearly separable problems like XOR.
MLP Architecture:
Input Layer \rightarrow Hidden Layer(s) \rightarrow Output Layer
Each neuron in one layer is fully connected to the next layer.
Training Process (Using Backpropagation)
 Initialize weights and biases Forward pass: Compute activations layer by layer Loss calculation (e.g., Mean Squared Error) Backward pass: Use chain rule to calculate gradients (backpropagation) Update weights using optimizer (e.g., gradient descent)
Python Code: MLP for XOR (No Libraries):
import numpy as np
Activation functions
def sigmoid(x):

return 1/(1 + np.exp(-x))


```
def sigmoid derivative(x):
  return x * (1 - x)
# XOR dataset
X = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0],[1],[1],[0]]) # XOR output
# Initialize parameters
input_size = 2
hidden size = 2
output size = 1
learning rate = 0.5
epochs = 10000
# Weights and biases
np.random.seed(1)
W1 = np.random.uniform(size=(input_size, hidden_size)) # weights from input to hidden
b1 = np.zeros((1, hidden_size))
                                            # bias for hidden layer
W2 = np.random.uniform(size=(hidden_size, output_size)) # weights from hidden to output
b2 = np.zeros((1, output size))
                                           # bias for output layer
# Training loop
for epoch in range(epochs):
```



```
# Forward pass
z1 = np.dot(X, W1) + b1
a1 = sigmoid(z1)
z2 = np.dot(a1, W2) + b2
a2 = sigmoid(z2)
# Compute error
error = y - a2
loss = np.mean(np.square(error))
# Backpropagation
d output = error * sigmoid derivative(a2)
d_hidden = d_output.dot(W2.T) * sigmoid_derivative(a1)
# Update weights and biases
W2 += a1.T.dot(d_output) * learning_rate
b2 += np.sum(d_output, axis=0, keepdims=True) * learning_rate
W1 += X.T.dot(d_hidden) * learning_rate
b1 += np.sum(d_hidden, axis=0, keepdims=True) * learning_rate
# Print loss occasionally
if epoch % 1000 == 0:
  print(f"Epoch {epoch} - Loss: {loss:.4f}")
```



```
# Final predictions
print("\nPredictions after training:")
for i in range(len(X)):
  z1 = np.dot(X[i], W1) + b1
  a1 = sigmoid(z1)
  z2 = np.dot(a1, W2) + b2
  a2 = sigmoid(z2)
  print(f"Input: {X[i]}) \rightarrow Output: {a2.round(3)}")
Sample Output:
Epoch 0 - Loss: 0.2565
Epoch 9000 - Loss: 0.0013
Epoch 10000 - Loss: 0.0011
Predictions after training:
Input: [0\ 0] \rightarrow \text{Output: } [0.014]
Input: [0\ 1] \rightarrow \text{Output: } [0.986]
Input: [1\ 0] \rightarrow \text{Output: } [0.987]
Input: [1 \ 1] \rightarrow \text{Output: } [0.012]
```


What is an Activation Function?

An **activation function** introduces **non-linearity** into a neural network so it can learn complex patterns and relationships in data.

Without activation functions, a neural network would be just a linear regression model.

Common Activation Functions:

Function	Pros	Cons	
Sigmoid	Smooth, probability output	Vanishing gradient, slow	
Tanh	Zero-centered	Still suffers from gradient issues	
ReLU	Fast, works well in practice	Dying ReLU problem	
Leaky ReLU	Fixes ReLU dying issue	Small slope on negative side	
ELU	Smoother than ReLU	Computationally expensive	
Swish	Smooth, trainable	Slightly slower	
Softmax	Outputs probabilities (multiclass)	Not used in hidden layers	

When to Use What?

Layer Type	Common Activation	
Hidden Layer	ReLU / Leaky ReLU / Swish	
Output (binary)	Sigmoid	
Output (multi-class)	Softmax	
Regression Output	Linear (no activation)	

Python Code to Visualize All:

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(-10, 10, 100)


```
def sigmoid(x):
  return 1/(1 + np.exp(-x))
def tanh(x):
  return np.tanh(x)
def relu(x):
  return np.maximum(0, x)
def leaky_relu(x):
  return np.where(x > 0, x, x * 0.01)
def elu(x, alpha=1.0):
  return np.where(x >= 0, x, alpha * (np.exp(x) - 1))
def swish(x):
  return x * sigmoid(x)
def softmax(x):
  e_x = np.exp(x - np.max(x))
  return e_x / e_x.sum()
# Plotting
plt.figure(figsize=(12, 8))
```



```
plt.subplot(2, 3, 1)
plt.plot(x, sigmoid(x))
plt.title("Sigmoid")
plt.subplot(2, 3, 2)
plt.plot(x, tanh(x))
plt.title("Tanh")
plt.subplot(2, 3, 3)
plt.plot(x, relu(x))
plt.title("ReLU")
plt.subplot(2, 3, 4)
plt.plot(x, leaky_relu(x))
plt.title("Leaky ReLU")
plt.subplot(2, 3, 5)
plt.plot(x, elu(x))
plt.title("ELU")
plt.subplot(2, 3, 6)
plt.plot(x, swish(x))
plt.title("Swish")
plt.tight_layout()
plt.show()
```


Forward & Backward Propagation in Neural Networks

These are the **two core processes** in training a neural network:

- Forward Propagation: Calculates output predictions.
- Backward Propagation: Adjusts weights to reduce error.

```
Python Code: Forward & Backward Propagation (XOR):
import numpy as np
# Sigmoid and its derivative
def sigmoid(x):
  return 1/(1 + np.exp(-x))
def sigmoid_derivative(x):
  return x * (1 - x)
# Input data (XOR)
X = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0],[1],[1],[0]])
# Seed and initialize weights and biases
np.random.seed(0)
W1 = np.random.rand(2, 2)
b1 = np.zeros((1, 2))
W2 = np.random.rand(2, 1)
b2 = np.zeros((1, 1))
```


Hyperparameters Ir = 0.5epochs = 10000 # Training for epoch in range(epochs): # ---- FORWARD ---z1 = np.dot(X, W1) + b1a1 = sigmoid(z1)z2 = np.dot(a1, W2) + b2y_pred = sigmoid(z2) # ---- LOSS ---loss = $np.mean((y - y_pred) ** 2)$ # ---- BACKWARD ---d_y_pred = (y_pred - y) * sigmoid_derivative(y_pred) $d_W2 = np.dot(a1.T, d_y_pred)$ d_b2 = np.sum(d_y_pred, axis=0, keepdims=True) d_hidden = np.dot(d_y_pred, W2.T) * sigmoid_derivative(a1) d_W1 = np.dot(X.T, d_hidden) d_b1 = np.sum(d_hidden, axis=0, keepdims=True)


```
# ---- UPDATE ----
  W2 -= Ir * d_W2
  b2 -= lr * d_b2
  W1 -= Ir * d_W1
  b1 -= lr * d_b1
  if epoch % 1000 == 0:
     print(f"Epoch {epoch} - Loss: {loss:.4f}")
# Final predictions
print("\nPredictions after training:")
for i in range(len(X)):
  output = sigmoid(np.dot(sigmoid(np.dot(X[i], W1) + b1), W2) + b2)
  print(f''\{X[i]\} \rightarrow \{output.round(3)\}'')
Sample Output:
Epoch 0 - Loss: 0.2572
Epoch 9000 - Loss: 0.0012
Predictions after training:
[0\ 0] \rightarrow [0.01]
[0\ 1] \rightarrow [0.99]
[1\ 0] \rightarrow [0.99]
[1\ 1] \rightarrow [0.01]
```


What is a Loss Function?

A loss function is a mathematical function that measures the difference between the predicted output and the actual target value.

In simple terms, loss = errorSmaller loss \rightarrow better model performance

During training, the model:

- 1. Makes predictions (forward pass)
- 2. Calculates **loss**
- 3. Uses backpropagation to adjust weights
- 4. Repeats (over many epochs) to minimize the loss

Categories of Loss Functions

Problem Type	Common Loss Functions	
Regression	MSE, MAE, Huber Loss	
Binary Classification	Binary Cross-Entropy	
Multi-class Classification	Categorical Cross-Entropy	
Multi-label Classification	Binary Cross-Entropy (with sigmoid)	

1. Mean Squared Error (MSE)

Use: Regression problems

- Penalizes large errors
- Differentiable & smooth

from sklearn.metrics import mean_squared_error

loss = mean_squared_error(y_true, y_pred)

2. Mean Absolute Error (MAE)

Use: Regression (less sensitive to outliers)

from sklearn.metrics import mean absolute error

loss = mean_absolute_error(y_true, y_pred)

3. Binary Cross-Entropy (Log Loss)

Use: Binary classification (sigmoid activation)

from sklearn.metrics import log_loss

loss = log_loss(y_true, y_pred)

4. Categorical Cross-Entropy

Use: Multi-class classification (softmax activation)

from tensorflow.keras.losses import CategoricalCrossentropy

loss_fn = CategoricalCrossentropy()

loss = loss_fn(y_true, y_pred).numpy()

5. Sparse Categorical Cross-Entropy

Use: Multi-class classification with integer labels

from tensorflow.keras.losses import SparseCategoricalCrossentropy

loss_fn = SparseCategoricalCrossentropy()

6. Huber Loss

Use: Regression, robust to outliers

from tensorflow.keras.losses import Huber

 $loss_fn = Huber(delta=1.0)$

7. KL Divergence (Relative Entropy)

Use: Measure difference between two probability distributions

from tensorflow.keras.losses import KLDivergence

What is an Optimizer?

An **optimizer** is an algorithm that updates the **model's weights and biases** to **minimize the loss function** during training.

It's the brain behind learning — it guides how the model learns from the errors.

Optimizer Workflow (in training loop)

- 1. Do a **forward pass** to calculate predictions.
- 2. Compute the **loss**.
- 3. Do a **backward pass** to compute gradients.
- 4. **Optimizer uses gradients** to update model parameters (weights & biases).

Popular Optimizers

Optimizer	Туре	Pros	Cons
SGD	Basic	Simple, efficient	Slow, sensitive to learning rate
Momentum	Modified SGD	Faster convergence	Needs tuning of momentum
AdaGrad	Adaptive	Good for sparse data	Learning rate decays too fast
RMSprop	Adaptive	Great for RNNs	Needs tuning
Adam	Adaptive	Fast, widely used	Uses more memory
Nadam	Adaptive	Adam + Nesterov momentum	Slightly slower sometimes
Adadelta	Adaptive	No need to set learning rate	Not as popular anymore

Simple Python Example: Optimizer

import numpy as np

Example: Minimize $f(x) = x^2$


```
x = 10
1r = 0.1
epochs = 20
for epoch in range(epochs):
  grad = 2 * x
  x = x - lr * grad
  print(f"Epoch {epoch+1}: x = \{x:.4f\}, f(x) = \{x**2:.4f\}")
Output:
Epoch 1: x = 8.0000, f(x) = 64.0000
Epoch 2: x = 6.4000, f(x) = 40.9600
...
Epoch 20: x = 0.1220, f(x) = 0.0149
Working Example: Feedforward Neural Network with Keras
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
```

Dummy dataset (X: input features, Y: binary labels)

X = np.array([[0,0], [0,1], [1,0], [1,1]])

Y = np.array([[0], [1], [1], [0]]) # XOR pattern


```
# Build model
model = Sequential()
model.add(Dense(4, input_dim=2, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile and train
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, Y, epochs=100, verbose=0)
# Predict
print(model.predict(X))
Output:
[[0.01]]
[0.98]
[0.97]
[0.05]]
```


Case Study:

Image Classification for Plant Disease Detection

Python Code:

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

import matplotlib.pyplot as plt

import numpy as np

import os

Load dataset

train_path = 'plant_disease_dataset/train'

test_path = 'plant_disease_dataset/test'

Preprocess: Resize and normalize images

 $img_size = (128, 128)$

 $batch_size = 32$

train_datagen = ImageDataGenerator(rescale=1./255)

test_datagen = ImageDataGenerator(rescale=1./255) train_data = train_datagen.flow_from_directory(train_path, target_size=img_size, batch_size=batch_size, class_mode='binary') test_data = test_datagen.flow_from_directory(test_path, target_size=img_size, batch_size=batch_size, class_mode='binary') # Build CNN Model

model = tf.keras.Sequential([

```
byte<sup>XL</sup>
```

```
tf.keras.layers.Conv2D(32, (3,3), activation='relu',
input_shape=(128,128,3)),
  tf.keras.layers.MaxPooling2D(2,2),
  tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
  tf.keras.layers.MaxPooling2D(2,2),
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dense(1, activation='sigmoid') # Binary
classification
])
# Compile
model.compile(optimizer='adam', loss='binary_crossentropy',
metrics=['accuracy'])
# Train
history = model.fit(train_data, validation_data=test_data,
epochs=10)
```



```
# Evaluate
loss, acc = model.evaluate(test_data)
print(f"\nTest Accuracy: {acc:.2f}")
Output:
Found 800 images belonging to 2 classes.
Found 200 images belonging to 2 classes.
Epoch 1/10
Test Accuracy: 0.92
Predict on Custom Image:
import cv2
def predict_image(img_path):
  img = cv2.imread(img_path)
  img = cv2.resize(img, img_size)
  img = img / 255.0
  img = img.reshape(1, 128, 128, 3)
```



```
pred = model.predict(img)[0][0]
class_name = "Diseased" if pred > 0.5 else "Healthy"
print(f"Prediction: {class_name} ({pred:.2f})")

# Try with a custom image
predict_image("sample_leaf.jpg")
```

Output:

Prediction: Diseased (0.94)