Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Курс: Практикум Параллельная программа на MPI, которая реализует однокубитное квантовое преобразование с шумами.

Работу выполнил Мокров К.С. 323 группа

Задание

- 1. Реализовать параллельную программу на C++ с использованием MPI, которая выполняет квантовое преобразование n-Адамар с зашумленными вентилями над вектором состояний длины 2^n , где n-количество кубитов.
- 2. Протестировать программу на системе Ломоносов2. Точность EPS=0.01.

Количество кубитов	Количество вычислительных узлов	Количество используемых ядер в узле	Время работы программы
28	1	1	24.9516
		2	13.7892
		4	8.23294
		8	8.03287
	2	1	13.6284
		2	5.21615
		4	4.85119
		8	4.70283
	4	1	3.58350
		2	3.03798
		4	2.83572
		8	2.54778

3. Построить график распределения потерь точности 1 — F при фиксированной точности EPS=0.01 для количества кубитов 24, 25, 26,27,28. Для построения каждого распределения использовать не менее 60 экспериментов. Входной вектор в экспериментах должен генерироваться случайным образом. (Всего должно быть пять распределений, соответствующие разному количеству кубитов)

Количество кубитов	Среднее значение потерь точности	
24	0.002428388	
25	0.002476165	
26	0.002578571	
27	0.002773967	
28	0.002634670	

4. Построить график распределения потерь точности 1-F при фиксированном количестве кубитов n=26 и различных значениях точности: EPS=0.1, EPS=0.01, EPS=0.001. Для построения каждого распределения использовать не менее 60 экспериментов. Входной вектор в экспериментах должен генерироваться случайным образом. (Всего должно быть три распределения, соответствующие разному значению точности, для e=0.01 повторно выполнять эксперименты не требуется).

EPS	Среднее значение потерь точности
0.1	0.2242693
0.01	0.00257857
0.001	0.0000257