Discrete Mathematics

The Backbone of Mathematics and Computer Science

Sets WorkBook

- 1 List the elements in the following sets:
 - a. $\{x \mid x \text{ is a real number such that } x^2 = 4\}$
 - b. {x | x is a positive integer less than 8}
 - c. {x | x is the largest positive integer whose square is less than 100}
- 2 Suppose that A = {2, 4, 6, 8}, B = {4, 6}, C = {4, 6, 8}. Determine which of the sets are subsets of which other of these sets.
- 3 For the following sets, determine if 1 is an element of that set.
 - a. $\{x \in \mathbb{R} \mid x \text{ is an integer greater or equal to 1}\}$
 - b. {1, 1}
 - c. {1, {1}}
 - d. {{1}, {1, {1}}}}
- 4 Determine whether each of the following is true or false.
 - a. $0 \in \emptyset$
 - b. $\emptyset \in \{0\}$
 - c. $\{\emptyset\} \subseteq \{0\}$
 - d. $\{\emptyset\} \subseteq \{\emptyset\}$
 - e. $\emptyset \in \{0, \emptyset\}$
- 5 Use set builder notation to describe the given sets:
 - a. {0, 2, 4, 6, 8}
 - b. {1/2, 1/4, 1/6, 1/8, 1/10, ...}
 - c. {-2, -1, 0, 1, 2}
- 6 How many elements are in the set {5, {5}, {5, 5}, {{5}}?
- 7 Let A = $\{x \in Z \mid x = 5a \text{ for some integer a}\}$, B = $\{y \in Z \mid y = 2b 1 \text{ for some integer b}\}$, and C = $\{z \in Z \mid z = c + 4 \text{ for some integer c}\}$. Clarify which set is a subset of which other set.
- 8 What is the cardinality of each of these sets?
 - a. ø
 - b. {ø, ø}
 - c. {ø, {ø, {ø}}}}
 - d. $P(P(\emptyset))$
- 9 Find the power set of each of these sets:
 - a. {1}
 - b. {1, 2}
 - c. {1, {1}}
- 10 Determine whether each of these sets is the power set of a set.
 - a. ø
 - b. {ø, {1}, {1, ø}}
 - c. {ø, {1}}
- 11 Let $A = \{1, 2, 3\}$, $B = \{x, y\}$, and $C = \{0, 1\}$. Find:
 - a. AxB
 - b. BxC
 - c. AxBxC

12 Let A = {1, 2, 3, 4} and B = {2, 4, 6}. Find:

- a. AÙB
- b. A∩B
- c. A B
- d. B A

13 Find the set A and B if A - B = $\{1, 7, 8\}$, B - A = $\{2, 4\}$, and A \cap B = $\{3, 6, 9\}$.

14 Draw the Venn Diagrams for the following set combinations:

- a. A ∩ (B U C)
- b. A \(\Omega\) B \(\Omega\) C
- c. (A B) U (A C) U (B C)

15 Let the universal set be the Real Numbers. Let $A = \{x \in \mathbb{R} \mid -1 \le x \le 0\}$, $B = \{x \in \mathbb{R} \mid -3 \le x \le 2\}$, and $C = \{x \in \mathbb{R} \mid 0 \le x \le 4\}$. Find each of the following:

- a. AUB
- b. A∩B
- c. Ac
- d. (AUC)c
- e. A^c ∩ B

16 Let A = $\{0, 2, 4, 6, 8, 10\}$, B = $\{0, 1, 2, 3, 4, 5, 6, 7\}$, and C = $\{4, 5, 6, 7, 8, 9, 10, 11\}$. Find:

- a. (AUB) ∩ C
- b. (A \cap B) U C
- c. ANBNC

17 Draw the Venn Diagrams for the following set combination:

- a. A (B C)
- b. (A ∩ B) U (A ∩ C)

18 Let A, B and C be sets. Using Venn Diagrams, show if the following is equal or not. (A - B) - C =? (A - C) - (B - C).

19 Complete the following sentence without suing the symbols N, U or -.

- a. $x \notin A \cup B$ if, and only if,____.
- b. $x \notin A \cap B$ if, and only if,____.
- c. $x \notin A B$ if, and only if,____.

20 Consider the following collections of subsets of R = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. State which one is a partition of S:

- a. [{0, 1, 3, 5, 7}, {4, 6, 8, 9}]
- b. [{0, 1}, {2, 3, 4, 5}, {5, 6, 7, 8, 9}]
- c. [{0}, {1, 2, 3}, {4, 5}, {6, 7, 8, 9}]

21 Which of the followings are an example of the empty set:

- a. The set of odd natural numbers divisible by 2
- b. $\{x : x \in \mathbb{N}, 9 < x < 10\}$
- c. $A = \{\emptyset\}$

22 State which of the followings are true and which are false:

- a. $7,747 \in \{x \mid x \text{ is a multiple of } 37\}$
- b. A U $\emptyset = \{A, \emptyset\}$

23 Given that A = {1, 2, 3, 4, 5}. If x represents any member of A, then find the following sets containing all the numbers represented by:

- b. x²
- 24 Let A = $\{a \mid a \text{ can be divided by 2 with no remainder}\}$, and B = $\{b \mid b \text{ can be divided by 3 with no remainder}\}$. Then determine if the following is true or false. A \cap B = \emptyset .
- 25 For all sets, A, B and C, is $(A B) \cap (C B) = (A \cap C) B$?
- 26 Are \mathbb{N} and \mathbb{Z} disjoint?
- 27 Show if the following statement is equal or not. (A \cap B') U (A \cap B) =? A. Use Venn Diagrams.
- 28 Is {{1, 5}, {4, 7}, {2, 8, 6, 3}} a partition of {1,2,3,4,5,6,7,8}?
- 29 Let E be the set of the even integers and O the set of the odd integers. Is {E, O} a partition of Z (the set of all integers)?
- 30 Let $A = \{1, 2\}$ and $B = \{2, 3\}$. What is $P(A \cup B)$, where P is the power set?

ANSWERS

- 1 List the elements in the following sets:
 - a. $\{x \mid x \text{ is a real number such that } x^2 = 4\}$ The square of 2 and -2 is 4. Hence the elements of the set $\{x \mid x \text{ is a real number such that } x^2 = 4\}$ is $\{2, -2\}$.
 - b. {x | x is a positive integer less than 8}
 The list of positive integers = {1, 2, 3, 4, ...}.
 The positive integers less than 8 = 1, 2, 3, 4, 5, 6 and 7.
 Hence the elements of the set { x | x is a positive integer less than 8} is {1, 2, 3, 4, 5, 6, 7}.
 - c. {x | is the largest positive integer whose square is less than 100}
 The square of 10 is 100. The positive integer less than 10 is 9. The square of 9 is 81. Hence the elements of the set { x | x is a positive integer whose square is less than 100} is {9}.
- 2 Suppose that A = {2, 4, 6, 8}, B = {4, 6}, C = {4, 6, 8}. Determine which of the sets are subsets of which other of these sets.
 Set Q is a subset of set P if all the elements of set Q is in set P, and every set is a subset of itself.
 Hence, B ⊆ A, B ⊆ C, and C ⊆ A.
- 3 For the following sets, determine if 1 is an element of that set.
 - a. $\{x \in \mathbf{R} \mid x \text{ is an integer greater or equal to 1}\}$ The set $\{x \in \mathbf{R} \mid x \text{ is an integer greater or equal to 1}\}$ is the set that contains all the integer that are greater or equal to 1. Meaning $\{1, 2, 3...\}$. Thus 1 is an element of $\{x \in \mathbf{R} \mid x \text{ is an integer greater or equal to 1}\}$.
 - b. {1, 1}1 is an element of the set {1, 1}.
 - c. {1, {1}}
 The set {1, {1}} has two elements: 1, and {1}. The second element is a set in itself. Hence 1 is an element of {1, {1}}.
 - d. {{1}, {1, {1}}}

 The set {{1}, {1, {1}}} has two elements: {1}, and {1, {1}}. Both these elements are sets and non of these elements are equal to 1. Therefore 1 is not an element of the set {{1}, {1, {1}}}.

4 Determine whether each of the following is true or false.

a. 0 ∈ ø

False. The empty set has no elements, hence 0 can't be an element of the empty set.

b. $\emptyset \in \{0\}$

False. The empty set is a subset of every set but one can't use "an element of" notation instead of "a subset of". Thus the element \emptyset doesn't belong to the set $\{0\}$.

c. $\{\emptyset\} \subseteq \{0\}$

False. $\{\emptyset\} = \{\{\}\}$. The set $\{\emptyset\}$ is a set that has one element which is an empty set; however the set $\{0\}$ doesn't have an element that is a set that has an empty set inside it. Hence $\{\emptyset\}$ can't be a subset of $\{0\}$.

 $d. \{\emptyset\} \subseteq \{\emptyset\}$

True. Every set is a subset of itself hence the set containing the empty set is a subset of itself.

e. $\emptyset \in \{0, \emptyset\}$

True. The left hand side is a set that contains 0, and the empty set. Hence the empty set is an element of the set $\{0, \emptyset\}$.

- 5 Use set builder notation to describe the given sets:
 - a. {0, 2, 4, 6, 8}

All the elements in the set are on the form of 2n such that n is an integer between 0 - 4 including both 0 and 4. Hence the set builder notation for $\{0, 2, 4, 6, 8\}$ is $\{2n \mid n \in \mathbf{Z}, 0 \le n \le 4\}$.

b. {1/2, 1/4, 1/6, 1/8, 1/10, ...}

All the elements in the set are on the form of 1/2n such that n is an integer between 1 and ∞ including 1 but not ∞ . Hence the set builder notation for $\{1/2, 1/4, 1/6, 1/8, 1/10, ...\}$ is $\{1/2n \mid n \in \mathbb{Z}, 1 \le n < \infty\}$.

c. {-2, -1, 1, 2}

The elements in the set are integers between -2 and 2 including both -2 and 2, but not including 0. Hence the set builder notation for $\{-2, -1, 1, 2\}$ is $\{n \mid n \in \mathbf{Z}, -2 \le n \le 2, n \ne 0\}$.

6 How many elements are in the set {5, {5}, {5, 5}, {{5}}?

The set {5, {5}, {5, 5}, {{5}}} has 4 elements. They are: 5, {5}, {5, 5}, {{5}}}

7 Let A = $\{x \in Z \mid x = 5a \text{ for some integer a}\}$, B = $\{y \in Z \mid y = 2b - 1 \text{ for some integer b}\}$, and C = $\{z \in Z \mid z = c + 4 \text{ for some integer c}\}$. Clarify which set is a subset of which other set.

The set $\{x \in Z \mid x = 5a \text{ for some integer a}\}\$ is all the integers that are on the from of 5a such that a is also an integer. Therefore, set A contains all the multiples of 5, meaning $\{..., -15, -10, -5, 0, 5, 10, 15, ...\}$.

The set $\{y \in Z \mid y = 2b - 1 \text{ for some integer b} \}$ contains all the odd integers .

The set $\{z \in Z \mid z = c + 4 \text{ for some integer c}\}$ contains all the integers since an integer + 4 (another integer) will create another integer. Using this formula, you can create all the integers.

Hence, $A \subseteq C$, $B \subseteq C$.

- 8 What is the cardinality of each of these sets?
 - a. ø

The number of distinct elements of a set is called cardinality of the set. ø, is a set with 0 elements, hence its cardinality is 0.

b. {ø, ø}

Event though the set $\{\emptyset, \emptyset\}$ seems to have 2 elements, but based on the definition, the cardinality of the set $\{\emptyset, \emptyset\}$ is 1 because it only has 1 distinct element.

c. {ø, {ø, {ø}}}}

The cardinality of the set $\{\emptyset, \{\emptyset, \{\emptyset\}\}\}\$ is 2 because it has two elements and they are \emptyset and a set which is $\{\emptyset, \{\emptyset\}\}\$.

 $d. P(P(\emptyset))$

The empty set has 0 elements; therefore $P(\emptyset) = 2^0 = 1$. Hence the power set of a set with one element is $P(1) = 2^1 = 2$. Therefore the number of the elements that are in the set $P(P(\emptyset))$ is 2.

Another way to think about the problem is this: the power set of the empty set is the set, A, that contains the set it self, \emptyset , and the empty set.

 $A = \{\emptyset, \emptyset\} = \{\emptyset\}$

 $P(\{\emptyset\}) = \{\{\emptyset\}, \emptyset\}$. Hence the cardiaiality is 2.

- 9 Find the power set of each of these sets:
 - a. {1}

The power set of any set is the set of all the subsets, including the empty set and the set itself. Hence the power set of $\{1\}$ is $\{\{1\}, \emptyset\}$.

b. {1, 2}

The subsets of the set $\{1, 2\}$ is $\{1\}$, $\{2\}$, $\{1, 2\}$ and \emptyset . Hence the power set of the set $\{1, 2\}$ is $\{\{1\}, \{2\}, \{1, 2\}, \emptyset\}$.

c. {1, {1}}

The subsets of the set $\{1, \{1\}\}\$ is $\{1\}, \{\{1\}\}\}$, $\{1, \{1\}\}\}$ and \emptyset . Hence the power set of the set $\{1, \{1\}\}\}$ is $\{\{1\}, \{\{1\}\}\}$, $\{1, \{1\}\}\}$, \emptyset .

- 10 Determine whether each of these sets is the power set of a set.
 - a. ø

The power set of a set contains subsets; however ø is not a set containing subsets. Hence ø is not the power set of any set.

b. {ø, {1}, {1, ø}}

The number of subsets in a powers is 2^n where n is the number of distinct elements in the original set. Based on this, a power set will have 1, 2, 4, 8, 16, 32, ... elements. The set $\{\emptyset, \{1\}, \{1, \emptyset\}\}$ has 3 elements; therefore it can't be the power set of any set.

c. {ø, {1}}

The subsets of the set $\{1\}$ is $\{1\}$ and \emptyset . Hence $\{\emptyset, \{1\}\}$ is the power set of the set $\{1\}$.

- 11 Let $A = \{1, 2, 3\}, B = \{x, y\}, and C = \{0, 1\}.$ Find:
 - a. AxB

$$A \times B = \{(1,x), (1, y), (2, x), (2, y), (3, x), (3, y)\}.$$

b. BxC

B x C =
$$\{(x, 0), (x, 1), (y, 0), (y, 1)\}.$$

c. AxBxC

$$A \times B \times C = \{(1, x, 0), (1, y, 0), (2, x, 0), (2, y, 0), (3, x, 0), (3, y, 0), (1, x, 1), (1, y, 1), (2, x, 1), (2, y, 1), (3, x, 1), (3, y, 1)\}.$$

- 12 Let A = {1, 2, 3, 4} and B = {2, 4, 6}. Find:
 - a. AUB

The union of two sets is the set that contains all the elements in both sets. Hence, $A \cup B = \{1, 2, 3, 4, 6\}$.

b. A \cap B

The intersection of two sets is the set that contains all the elements that are in both sets. Hence, $A \cap B = \{2, 4\}$.

c. A - B

The difference between set A and set B is the set that contains all the elements that are in A but not in B. Hence, $A - B = \{1, 3\}$.

- d. B A
 - $B A = \{6\}$

13 Find the set A and B if A - B = $\{1, 7, 8\}$, B - A = $\{2, 4\}$, and A \cap B = $\{3, 6, 9\}$.

If A - B = $\{1, 7, 8\}$, then we know that A at least has 1, 7 and 8. We Also know that A \cap B = $\{3, 6, 9\}$, which means 3, 6 and 9 are both in A and B. Hence A = $\{1, 3, 6, 7, 8, 9\}$.

 $B - A = \{2, 4\}$. Hence $B = \{2, 3, 4, 6, 9\}$.

14 Draw the Venn Diagrams for the following set combinations: a. A ∩ (B U C)

b. A \cap B \cap C

c. (A - B) U (A - C) U (B - C)

- 15 Let the universal set be the Real Numbers. Let $A = \{x \in \mathbb{R} \mid -1 \le x \le 0\}$, $B = \{x \in \mathbb{R} \mid -3 \le x \le 2\}$, and $C = \{x \in \mathbb{R} \mid 0 \le x \le 4\}$. Find each of the following:
 - a. AUB

The Universal Set is set to be all the Real Numbers. Set A contains all the Real Numbers that are great or equal to -1 and smaller or equal to 0. Set B contains all the Real Numbers that are greater than -3 and less than 2. The set A U B = $\{x \in \mathbf{R} \mid -3 < x < 2\}$

b. A \cap B

The set A \cap B contains all the Real Numbers that are in the set A and B. Hence the set A \cap B = $\{x \in \mathbb{R} \mid -1 \le x \le 0\}$.

c. Ac

A complement is the set that contains all the Real Numbers except the elements that are in A. Hence $A^c = \{x \in \mathbb{R} \mid -1 > x \text{ or } x > 0\}$.

- d. $(A \cup C)^c$ $A \cup C = \{x \in \mathbb{R} \mid -1 \le x \le 4\}$. Hence, $(A \cup C)^c = \{x \in \mathbb{R} \mid -1 > x \text{ or } x > 4\}$
- e. Ac∩ B

 $A^{\circ} = \{x \in \mathbf{R} \mid -1 > x \text{ or } x > 0\}$ $B = \{x \in \mathbf{R} \mid -3 < x < 2\} = \{x \in \mathbf{R} \mid -3 < x \text{ and } x < 2\}$ Hence $A^{\circ} \cap B = \{x \in \mathbf{R} \mid 0 < x < 2, \text{ or } -3 < x < -1\}$

- 16 Let A = {0, 2, 4, 6, 8,10}, B = {0, 1, 2, 3, 4, 5, 6, 7}, and C = {4, 5, 6, 7, 8, 9, 10,11}. Find:
 - a. (A U B) ∩ C A U B = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10}. Hence (A U B) ∩ C = {4, 5, 6, 7, 8, 10}
 - b. (A ∩ B) U C A ∩ B = {0, 2, 4, 6}. Hence, (A ∩ B) U C = {0, 2, 4, 5, 6, 7, 8, 9, 10, 11}
 - c. A ∩ B ∩ C A ∩ B ∩ C = {4, 6}.

17 Draw the Venn Diagrams for the following set combinations:

B - C = all those elements that are in B but not in C, as shown bellow.

Hence A - (B - C) = all those elements that are in A but not in (B - C), as shown bellow.

b. (A ∩ B) U (A ∩ C)

 $(A \cap B) \cup (A \cap C)$ is the set that contains all the elements that are in $(A \cap B)$ or $(A \cap C)$, as shown bellow. The previous statement wouldn't be true if it was "...is the set that contains all the elements that are in $(A \cap B)$ and $(A \cap C)$ ", since that implies intersection rather than union.

18 Let A, B and C be sets. Using Venn Diagrams, show if the following is equal or not. (A - B) - C =? (A - C) - (B - C).

For the left hand side:

A - B is the set that contains all the elements that are in A but not in B.

(A - B) - C is the set that contains all the elements that are in (A - B) but not in C.

For the right hand side:

(A - B) - (B - C) is the set that contains all the elements that are in (A - B) but not in (B - C).

Therefore the right hand side equals the left hand side.

- 19 Complete the following sentence without suing the symbols N, U or -.
 - a. x ∉ A U B if, and only if,
 - $x \notin A \cup B$ means x is not in the union of A and B. Hence the completed sentence is: $x \notin A \cup B$ if, and only if, $x \notin A$ and $x \notin B$.
 - b. $x \notin A \cap B$ if, and only if,
 - $x \notin A \cap B$ means x is not in the intersection of A and B. Hence the completed sentence is: $x \notin A \cup B$ if, and only if, $x \notin A$ or $x \notin B$.
 - c. $x \notin A B$ if, and only if,
 - $x \in A$ B means x is in A but not in B. $x \notin A$ B means x is not in A but it is in B. Hence the completed sentence is: $x \notin A$ B if, and only if, $x \notin A$, or $x \in B$.
- 20 Consider the following collections of subsets of R = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. State which one is a partition of R:
 - a. [{0, 1, 3, 5, 7}, {4, 6, 8, 9}]

A finite or infinite collection of nonempty sets {A1, A2, A3 ...} is a partition of a set A if, and only if: A is the union of all the subsets, and the subsets are disjoint.

- (a) is not a partition of R since 2 in R doesn't belong to any of the subsets.
- b. [{0, 1}, {2, 3, 4, 5}, {5, 6, 7, 8, 9}]
- (b) is not a partition of R since {2, 3, 4, 5} and {5, 6, 7, 8, 9} are not disjoint.
- c. [{0}, {1, 2, 3}, {4, 5}, {6, 7, 8, 9}]
- (c) is a partition of R based on the definition above.
- 21 Which of the followings are an example of the empty set:
 - a. The set of odd natural numbers divisible by 2
 - (a) is an example of the empty set since non of the odd natural numbers can be divided by 2.
 - b. $\{x : x \in \mathbb{N}, 9 < x < 10\}$
 - $\{x: x \in \mathbb{N}, 9 < x < 10\}$ is an example of the empty set since $\{x: x \in \mathbb{N}, 9 < x < 10\}$ is the set of all the natural number that are greater than 9 and less than 10, but no natural number is greater than 9 and less than 10.
 - c. $A = \{\emptyset\}$

A = $\{\emptyset\}$ is NOT an example of the empty set since A = $\{\emptyset\}$ is a set that has an element which is \emptyset .

- 22 State which of the followings are true and which are false:
 - a. $7,747 \in \{x \mid x \text{ is a multiple of } 37\}$

 $7,747 \in \{x \mid x \text{ is a multiple of } 37\}$ is false since 7,747 is not a multiple of 37.

b. A U $\emptyset = \{A, \emptyset\}$

A U $\emptyset = \{A, \emptyset\}$ is false since the union between a set and the empty set is the set itself.

23 Given that A = {1, 2, 3, 4, 5}. If x represents any member of A, then find the following sets containing all the numbers represented by:

Let B = $\{b \mid b = x + 1, x \in A\}$. Thus for x = 1, b = 2, x = 5, b = 6. Hence B = $\{2, 3, 4, 5, 6\}$.

Let B = $\{b \mid b = x^2, x \in A\}$. Thus for x = 2, b = 4, x = 5, b = 25. Hence B = $\{1, 4, 9, 16, 25\}$

24 Let A = $\{a \mid a \text{ can be divided by 2 with no remainder}\}$, and B = $\{b \mid b \text{ can be divided by 3 with no remainder}\}$. Then determine if the following is true or false. A \cap B = \emptyset .

False. A is the set of all those numbers that can be divided by 2, thus A = $\{2, 4, 6, 8, ...\}$. B is the set of all those numbers that can be divided by 3, thus B = $\{3, 6, 9, 12, ...\}$. The Intersection between A and B is not the empty set, but at least it has on element and that is 6.

25 For all sets, A, B and C, is $(A - B) \cap (C - B) = (A \cap C) - B$? Yes. You can use Venn Diagrams to show that the left hand side equals to the right hand side. But suppose:

if $x \in (A - B) \cap (C - B)$, then $x \in (A - B)$ and $x \in (C - B)$. This means $x \in A$ and $x \in C$, but $x \notin B$. If x is in both A and C but not B, then $x \in A \cap C$ and $x \notin B$. Meaning $x \in (A \cap C) - B$.

26 Are N and Z disjoint?

No. By definition, two sets are disjoint if their intersection is the empty set. The intersection of the set of the Natural Numbers and the Integers is not the empty set. For example, 1 is in both $\bf N$ and $\bf Z$.

27 Show if the following statement is equal or not. $(A \cap B) \cup (A \cap B) = A$. Use Venn Diagrams.

For the set A and B, B' has all those elements that are in A but not in B, as shown bellow.

The Venn Diagram for $A \cap B$ is as bellow.

The Venn Diagram for $(A \cap B)$ U $(A \cap B)$ is as bellow and it equals to A. Hence the left hand side equals to the right hand side.

- 28 Is {{1, 5}, {4, 7}, {2, 8, 6, 3}} a partition of {1,2,3,4,5,6,7,8}? By definition, the set {{1, 5}, {4, 7}, {2, 8, 6, 3}} is a portion of the set {1,2,3,4,5,6,7,8}.
- 29 Let E be the set of the even integers and O the set of the odd integers. Is {E, O} a partition of Z (the set of all integers)?
 No even integer is odd. The intersection of E and O = Ø. The Union of E and O = Z. Hence by definition, {E, O} is a partition of Z.
- 30 Let A = {1, 2} and B = {2, 3}. What is P(A U B), where P is the power set of a set?

 A U B = {1, 2, 3}. P(A U B) is the set of all the subsets of {1, 2, 3}.

 Hence P(A U B) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}