1 2017 Exam

- 1. (a) Let G be a finite group with a subgroup of finite index n > 1. Then if |G| does not divide n! then G is not simple.
 - Let Ω be the set of left cosets of H. Consider ϕ an action of G under left multiplication on Ω . Consider $K = \ker \phi$. Then K is a normal subgroup of G contained in H. G/K is isomorphic to a subgroup of $Sym(\Omega)$ which has order n!. So |G:K| is finite and divides n!. As G does not divide n!, K cannot be trivial, and so G is not simple.
 - (b) (Assignment 2) Let G be a group of order 400. Let $n_2(G)$ be the number of Sylow 2-groups and $n_5(G)$ be the number of of Sylow 5-groups. We know that $n_5(G)$ is 1 or 16 as $n_p(G) \cong 1 \mod p$. If $n_5(G) = 1$ then we are done, so suppose $n_5(G) = 16$.

Suppose the intersection of Sylow 5-subgroups is always trivial. Then there are 24 * 16 = 384 nontrivial elements, and so there must be a unique (and hence normal) Sylow 2-subgroup.

If there are Sylow 5-subgroups P and Q such that their intersection is not trivial, then $|P\cap Q|=5$. But |PQ|=125 and $PQ\subseteq N_G(P\cap Q)$ since $P\cap Q$ is normal in each of P and Q. So $|N_G(P\cap Q)|>125$ and is a divisor of 400, therefore $|G:N_G(P\cap Q)|<4$. As |G| does not divide 3!, $P\cap Q \triangleleft G$.

- (c) We can present Q_8 as $Q_8 = \langle x, y : x^2 = y^2, (xy)^2 = y^2 \rangle$. This has a unique element of order 2, so every subgroup of Q_8 of order 4 must be cyclic and have x^2 as its element of order 2. So the intersection of any subgroup of order 4 and any subgroup of order 2 is nontrivial.
- 2. (a) Theorem: Take a group action (G,Ω,\cdot) . Then let O_{α} be the orbit of $\alpha\in\Omega$ under \cdot . Let $H=G_{\alpha}$ be the stabiliser of α in G. Then there exists a bijection

$$O_{\alpha} \leftrightarrow \{G_{\alpha}x : x \in G\}$$

Proof: Define $f: O_{\alpha} \to \{Hx : x \in G\}$ be the following: take $\beta \in O_{\alpha}$ and choose $x \in G$ with $\beta = \alpha \cdot x$, and then give

$$f(\beta) = Hx$$

First consider that if $f(\beta) = Hy$, then we can show that Hy = Hx, so f is well defined. Then consider

$$Hx = f(\alpha \cdot x)$$

so f is onto. Lastly, take $f(\beta) = f(\gamma)$. Then $\beta = \alpha \cdot x$ and $\gamma = \alpha \cdot y$, so Hx = Hy and thus y = hx for some $h \in H$. Then

$$\gamma = \alpha \cdot y = \alpha \cdot (hx) = (\alpha \cdot h) \cdot x = \alpha \cdot x = \beta$$

as $h \in H$. Thus f is also injective, and thus the theorem is proved.

- (b) Let H and K be soluble normal subgroups of a finite group G. Then HK is a soluble normal subgroup of G. Clearly HK is a normal subgroup, so we are left with showing that it is soluble. Then $HK/H \simeq K/(K \cap H)$. As this is a factor group of a soluble group, HK/H is soluble, as is H, so HK is soluble.
- (c) Let G be a finite group. Then G has a largest soluble normal subgroup. Let N be a soluble normal subgroup of G. If it is not maximal, then $\exists M$ such that N < M < G and M is a soluble normal subgroup of G. But then MN is a soluble normal subgroup of G. If MN is not maximal, then we can repeat this process. As G is finite, this process must end somewhere, and hence there is a largest soluble normal subgroup. It is unique, as if M, N are both the largest soluble normal subgroups of G, then MN is also a soluble normal subgroup that is larger than both if they are not equal. Hence M = N.
- 3. (a) A group G is residually finite if, for all $x \in G \setminus \{1\}$, there exists a normal group N_x in G such that $x \notin N_x$ and $|G: N_x| < \infty$.
 - (b) Let $x \in \mathbb{Z}^n$ where x is not the identity. We can write $x = \{x_1, x_2, ..., x_n\}$. For each x_i with $1 \le i \le n$ we can take p_i such that p_i is not a divisor of x_i . Then we can take the direct product of $p_i\mathbb{Z}$ for $1 \le i \le n$, which is a subgroup of \mathbb{Z}^n which is normal as \mathbb{Z}^n is abelian. Thus \mathbb{Z}^n is residually finite for
 - (c) For \mathbb{Q} to be residually finite, it must have a proper subgroup of finite index. Let H be a subgroup of \mathbb{Q} , with $[\mathbb{Q}:H]=n$. Then $nq \in H$ for every $q \in \mathbb{Q}$. But then $\mathbb{Q}=H$ and so it is not a proper subgroup.
- 4. (a) Let F_n and F_m be isomorphic. Let $G = \langle g : g^2 = 1 \rangle$. Consider a homomorphism $\phi : F_m \to G$. This is completely determined by the images of each $x_i \in F_m$ either $x_i \mapsto g$ or $x_i \mapsto g^0 = 1$. Thus the number of nontrivial homomorphisms from F_m to G is $2^m 1$. Then $K = \ker \phi \lhd F_m$ and $F_m/K \simeq \mathbb{Z}_2$ by the first isomorphism theorem. Every normal subgroup of index 2 is of the form $\ker \phi$ for some non-trivial ϕ . Thus F_m has $2^m 1$ normal subgroups of index 2. Similarly, F_n has $2^n 1$ subgroups of index 2. Thus as $F_m \simeq F_n$, $2^m 1 = 2^n 1$ and hence m = n.
 - (b) Let $G=\langle x,y|x^7=y^5=1,[x,y]=x\rangle$. Show that G is cyclic of order 5. We can rewrite [x,y]=x as $x^y=x^2$. Then, since $y^6=y$, $x^2=x^y=x^{y^6}=x^{2^6}$ and so $x^62=1$. Then the order of x in G divides both 7 and 62, and so x=1. Thus, $G=\langle y\rangle$ has order dividing 5. By von Dyck's theorem, G maps onto \mathbb{Z}_5 via $x\mapsto 0$, $y\mapsto 1$ and so $G\cong\mathbb{Z}_5$.
 - (c) Assignment Q
- 5. (a) Suppose the elements of S_n act on at least the elements i, j, k. Let $\pi \in S_n$ such that $\pi(i) = j$. Now we can find a $\rho \in S_n$ such that

 $\rho(j)=k$ but fixes every other element. But then $\rho^{-1}\pi\rho(i)=k$, so π is not in the center of S_n As π can be any non-trivial element of S_n , then $Z(S_n)=\{1\}$

- (b) Let $N \triangleleft S_n$.
- (c) We can take $\mathbb{Z}_2 \times \mathbb{Z}_2$ given as a subgroup of S_4 by the elements $\{(), (1,3)(2,4), (1,2)(3,4), (1,4)(2,3)\}$. This is all elements that are the products of two disjoint transpositions. As conjugation in S_n does not change cycle structure, this subgroup is normal in S_n .
- 6. (a)
 - (b) First we show that G has exactly one element of order 2. Then the Sylow 2-subgroup is unique and hence normal.
 - (c) i. Clearly *b* commutes with both *a* and *c* as they are disjoint. Thus the two commutators we care about are (1,5)(2,6)(2,6,5)(1,5)(2,6)(2,5,6)=(1,2)(5,6) and (2,6,5)(1,5)(2,6)(2,5,6)(1,5)(2,6)=(1,2)(5,6), so the derived group is the normal closure of $\{(1,2)(5,6)\}$, which is $G' = \{(),(1,2)(5,6),(1,5)(2,6),(1,6)(2,6)\}$ (a representation of the Klein 4-group). Then $G^{(2)}$ is $\{1\}$, and so we are done.
 - ii. We attempt to take the lower central series of G. The third term, $G_3 = [G', G]$ must contain G', and hence cannot be a proper normal subgroup of G'. Thus, this series will never terminate and G is not nilpotent.

2 2016

Taught by Jianbei - not representative of our exam

$3 \quad 2015$

1.