Carlingford High School Mathematics Extension 2 Trial Exam 2018

Solutions

Multiple Choice

1 D 6 D

2 C **7** C

3 A **8** D

4 B **9** B

5 A **10** A

	Solution	Marks	Allocation of marks
(a)	$ z = 2$ and $\arg z = \frac{\pi}{3}$	1	1 mark for correct answer
	(i) $z = 2cis \frac{\pi}{3}$ $z^5 = \left(2cis \frac{\pi}{3}\right)^5$ $= 2^5 \left(cis \frac{5\pi}{3}\right)$ $= 32cis \frac{5\pi}{3}$ $= 32cis \frac{-\pi}{3}$		
	(ii) $z = 2cis \frac{\pi}{3}$ $= 2\left(cos \frac{\pi}{3} + isin \frac{\pi}{3}\right)$ $= 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$ $= 1 + \sqrt{3}i$	1	1 mark for correct answer
	(iii) $\frac{1}{z} = \frac{1}{1+\sqrt{3}i}$ $= \frac{1}{1+\sqrt{3}i} \times \frac{1-\sqrt{3}i}{1-\sqrt{3}i}$ $= \frac{1-\sqrt{3}i}{1+3}$ $= \frac{1-\sqrt{3}i}{4}$	2	2 marks for correct solution with real denominator 1 mark if correct method of realising the denominator is used with an error in calculation

	Solution	Marks	Allocation of marks
	(iv)	1	1 mark for correct answer
	$\omega^2 z = (2 - 3i)^2 \left(1 + \sqrt{3}i \right)$		
	$= (4 - 12i - 9)(1 + \sqrt{3}i)$		
	$= (-5 - 12i)\left(1 + \sqrt{3}i\right)$		
	$= -5 - 5\sqrt{3}i - 12i + 12\sqrt{3}$		
	$= (-5 + 12\sqrt{3}) - (5\sqrt{3} + 12)i$		
(b)	(i) $\frac{x+1}{(x+3)(x+2)^2} = \frac{a}{x+3} + \frac{b}{x+2} + \frac{c}{(x+2)^2}$	2	2 marks for correct values of <i>a</i> , <i>b</i> and <i>c</i>
	$x + 1 = a(x + 2)^{2} + b(x + 2)(x + 3) + c(x + 3)$		1 mark if the correct method
			is used with an error in
	When $x = -2$ $-1 = 0 + 0 + c$ $\therefore c = -1$		calculation
	$x = -3 \qquad -2 = a + 0 + 0 \qquad \qquad \therefore a = -2$		
	Coefficient of x^2 : $0 = -2 + b$ $\therefore b = 2$		
	(ii) $\int \frac{x+1}{(x+3)(x+2)^2} dx = \int \frac{-2dx}{x+3} + \int \frac{2dx}{x+2} - \int \frac{dx}{(x+2)^2}$	2	2 marks for correct solution
	$= -2 \ln(x+3) + 2 \ln(x+2) - \int (x+2)^{-2} dx$		
	$= 2[ln(x+2) - ln(x+3)] - \frac{(x+2)^{-1}}{-1} + c$		1 mark if correct method is used with an error in
	$= 2 \ln \left(\frac{x+2}{x+3} \right) + \frac{1}{x+2} + c$		calculation or algebra
(c)	(i) $\cos x + \cos 3x = 4\cos^3 x - 2\cos x$.	2	2 marks for correct reasoning to achieve
	$LHS = \cos x + \cos 3x$		required result
	$= \cos x + \cos(2x + x)$		
	$= \cos x + \cos 2x \cos x - \sin 2x \sin x$		1 mark if some correct
	$= \cos x + (2\cos^2 x - 1)\cos x - (2\sin x\cos x)\sin x$		working is provided but which does not achieve
	$= \cos x + 2\cos^3 x - \cos x - 2\sin^2 x \cos x$		correct result, or is
	$= 2\cos^3 x - 2(1 - \cos^2 x)\cos x$		incomplete or has an error in calculation, logic or algebra
	$= 2\cos^3 x - 2\cos x + 2\cos^3 x$		
	$=4\cos^3x-2\cos x$		
	= RHS		

	Solution	Marks	Allocation of marks
	(ii) $(\cos x + \cos 3x) = 0$ $4\cos^3 x - 2\cos x = 0$ $2\cos x (2\cos^2 x - 1) = 0$ $2\cos x = 0 \text{ or } 2\cos^2 x = 1$ $\cos x = 0 \text{ or } \cos x = \pm \frac{1}{\sqrt{2}}$ $x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$	2	2 marks for correct solution with all values provided 1 mark if some correct working is shown with an error in calculation, logic or algebra or if not all values are given
(d)	Region in the Argand diagram where $1 < z\bar{z} \le 3 \text{ and } Im(z) \ge 0$ $z\bar{z} = (x+iy)(x-iy) = x^2 + y^2$ So $1 < x^2 + y^2 \le 3$ and $y \ge 0$.	2	2 marks where the correct graphs are shown with the required region shaded with broken and unbroken lines in correct positions. 1 mark if a graph is incorrect or the required region is not shaded or if broken and unbroken lines are not in correct positions.

	Solution	Marks	Allocation of marks
(a)	(i) $\int sec^4x \tan x \ dx$	2	2 marks for correct solution
	Let $u = \sec x$		
	$du = \sec x \tan x$		1 mark if correct method is
	$\int sec^4 x \tan x \ dx = \int sec^3 x sec x tan x dx$		used with an error in calculation or algebra
	$=\int u^3 du$		
	$=\frac{u^4}{4}+c$		
	$= \frac{1}{4} sec^4 x + c$		

Solution	Marks	Allocation of marks
ALTERNATIVE SOLUTION:		
Different but equivalent answer		
$\int \sec^4 x \tan x dx = \int \sec^2 x \sec^2 x \tan x dx$		
$= \int sec^2x(\tan^2x + 1)\tan x dx$		
$= \int sec^2x \tan^3x + \sec^2x \tan x dx$		
$= \frac{1}{4} \tan^4 x + \frac{1}{2} \tan^2 x + c$		
(ii) $\int \frac{dx}{\sqrt{7+4x-x^2}} = \int \frac{dx}{\sqrt{7-(x^2-4x)}}$	2	2 marks for correct solution
$=\int \frac{dx}{\sqrt{7-(x^2-4x+4)+4}}$		1 mark if correct method is
·		used with an error in
$= \int \frac{dx}{\sqrt{11 - (x - 2)^2}}$		calculation or algebra
$= sin^{-1}\left(\frac{x-2}{\sqrt{11}}\right) + c$		
(iii)	3	3 marks for correct solution
$\int \frac{dx}{x^2 \sqrt{9 + x^2}}$		
$x = 3 \tan \theta$		2 marks for working that
$dx = 3sec^2\theta \ d\theta$		includes correct substitution and some correct
$\int \frac{dx}{x^2 \sqrt{9 + x^2}} = \int \frac{3\sec^2\theta \ d\theta}{(3\tan\theta)^2 \sqrt{9 + (3\tan\theta)^2}}$		manipulation toward the required integral
$= \int \frac{3sec^2\theta \ d\theta}{9tan^2\theta \sqrt{9(1+tan^2\theta)}}$		1 moult for way which at hot
•		1 mark for working that includes correct substitution
$= \int \frac{3sec^2\theta \ d\theta}{9tan^2\theta\sqrt{9sec^2\theta}}$		OR some correct manipulation toward the
$= \int \frac{3 \sec^2 \theta \ d\theta}{9 \tan^2 \theta \ 3 \sec \theta}$		required integral
$= \frac{1}{9} \int \frac{\sec \theta}{\tan^2 \theta} d\theta$		
$-9J tan2\theta$		
Since $\frac{\sec \theta}{\tan^2 \theta} = \frac{1}{\cos \theta} \div \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{1}{\cos \theta} \times \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{\cos \theta}{\sin^2 \theta}$		
$tan^2\theta$ $cos\theta$ $cos^2\theta$ $cos\theta$ $sin^2\theta$ $sin^2\theta$		
$1 \cos \theta$		$\sqrt{x^2+9}$
$= \frac{1}{9} \int \frac{\cos \theta}{\sin^2 \theta} d\theta$		
		β θ
$= -\frac{1}{9} \csc \theta + C$		3
$=-\frac{1}{9}\frac{\sqrt{x^2+9}}{x}+C$		<u> </u>
$-\frac{1}{9}\frac{1}{x}+C$		

	Solution	Marks	Allocation of marks
(b)	Use the substitution $u = x^2 + 2x + 5$ $\frac{du}{dx} = 2x + 2$ $0.5du = (x + 1)dx$ When $x = 2$ then $u = 13$ and when $x = 3$ then $u = 20$ $\int_{2}^{3} \frac{x + 1}{\sqrt{x^2 + 2x + 5}} dx = \int_{13}^{20} \frac{0.5du}{u^{\frac{1}{2}}}$ $= \left[u^{\frac{1}{2}}\right]_{13}^{20}$ $= \sqrt{20} - \sqrt{13}$	2	2 marks: Correct answer. 1 mark: Finds the primitive function or sets up the integration using substitution.
(c)	$x^{2} + xy + y^{2} = 7$ Normal at (1, 2) $2x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$	2	2 marks for correct equation of normal
	$(x+2y)\frac{dy}{dx} = -2x - y$ $\frac{dy}{dx} = \frac{-2x - y}{x+2y}$		1 mark for working that includes correct differentiation or gradient found correctly and some correct and relevant algebraic manipulation
	At (1, 2) $m = \frac{dy}{dx} = \frac{-2(1)-2}{1+2(2)} = \frac{-4}{5}$		
	$m(normal) = \frac{5}{4}$		
	$y - y_1 = m(x - x_1)$ $y - 2 = \frac{5}{4}(x - 1)$		
	4y - 8 = 5x - 5 $5x - 4y + 3 = 0$		

	Solution	Marks	Allocation of marks
(d)	$x^{2} + y^{2} = 16$ $y = \sqrt{16 - x^{2}}$ $\therefore 2y = 2\sqrt{16 - x^{2}}$ s	4	4 marks for correct answer
			3 marks for attempting to use correct method for volume with minor error in area or integration
	$Area = \frac{1}{2}s^2 = \frac{1}{2}[2(16 - x^2)]$ $= 16 - x^2$ $V = \int_{-4}^{4} (16 - x^2) dx \qquad OR = 2\int_{0}^{4} (16 - x^2)$		2 marks for finding area or equivalent merit
	$= \left[16x - \frac{x^3}{3}\right]_{-4}^4$ $= \left[\left(64 - \frac{64}{3}\right) - \left(-64 - \frac{-64}{3}\right)\right]$ $= \frac{256}{3} \text{ u}^3$		1 mark for some correct working relevant to the solution

	Solution	Marks	Allocation of marks
(a)	(i) $m(PQ) = \frac{\frac{3}{q} - \frac{3}{p}}{3q - 3p} = \frac{3(p - q)}{pq} \times \frac{1}{3(q - p)} = -\frac{1}{pq}$	2	2 marks for correct equation
	$y - y_1 = m(x - x_1)$ $y - \frac{3}{p} = -\frac{1}{pq}(x - 3p)$ $pqy - 3q = -x + 3p$ $x + pqy = 3(p + q)$		1 mark for working that includes correct gradient and some correct and relevant algebraic manipulation
	(ii) Tangent at $P\left(3p, \frac{3}{p}\right)$ $xy = 9$	2	2 marks for correct equation
	$y + x \frac{dy}{dx} = 0$ $\frac{dy}{dx} = -\frac{y}{x} = -\frac{3}{p} \div 3p = -\frac{3}{p} \times \frac{1}{3p} = -\frac{1}{p^2}$ $y - y_1 = m(x - x_1)$ $y - \frac{3}{p} = -\frac{1}{p^2}(x - 3p)$ $p^2 y - 3p = -x + 3p$ $x + p^2 y = 6p$		1 mark for working that includes correct derivative and some correct and relevant algebraic manipulation

	Solution	Marks	Allocation of marks
	(iii) Tangent at P is $x + p^2y = 6p - (1)$ Tangent at Q is $x + q^2y = 6q - (2)$ (1) - (2) $(p^2 - q^2)y = 6(p - q)$ $y = \frac{6}{p+q}$ $\therefore x + \frac{6p^2}{p+q} = 6p$ $x = 6p - \frac{6p^2}{p+q} = \frac{6p(p+q) - 6p^2}{p+q} = \frac{6p^2 + 6pq - 6p^2}{p+q} = \frac{6pq}{p+q}$ $\therefore T\left(\frac{6pq}{p+q}, \frac{6}{p+q}\right)$	2	2 marks for correct values of <i>x</i> and <i>y</i> 1 mark for working that includes correct value of <i>x</i> or <i>y</i>
	(iv) $T\left(\frac{6pq}{p+q}, \frac{6}{p+q}\right) m = -\frac{1}{pq}$ $y - y_1 = m(x - x_1)$ $y - \frac{6}{p+q} = -\frac{1}{pq}\left(x - \frac{6}{p+q}\right)$ $pqy - \frac{6pq}{p+q} = -x + \frac{6pq}{p+q}$ $x + pqy = \frac{12pq}{p+q}$ Passes through (0, 6) $\therefore 0 + 6pq = \frac{12pq}{p+q}$ $6pq(p+q) = 12pq$ $i.e. p + q = 2$	2	2 marks for correct reasoning to achieve required result 1 mark if some correct working is provided but which does not achieve correct result, or is incomplete or has an error in calculation, logic or algebra
(b)	(i) $\frac{2}{3}$ x	1	Correct graph

Solution	Marks	Allocation of marks
(ii) $\frac{3}{2}$ -2 $+1$ 2 3 3 x	2	2 marks for correct graph, 1 mark for graph with some correct features but some errors Points of discontinuity at -2 and 3 because they existed there in the original graph
(iii) y -2 -1 2 3 x	2	2 marks for correct graph, 1 mark for graph with some correct features but some errors
(iv) $\frac{\sqrt{2}}{3}$ x	2	2 marks for correct graph, 1 mark for graph with some correct features but some errors

	Solution	Marks	Allocation of marks
(a)	(i) $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} = \frac{\beta^2 \gamma^2 + \alpha^2 \gamma^2 + \alpha^2 \beta^2}{\alpha^2 \beta^2 \gamma^2} $ (*)	3	3 marks for correct value
	Now α^2 , β^2 and γ^2 are zeroes of $x^{3/2} - 3x + 4x^{\frac{1}{2}} - 6 = 0$, hence satisfy $ (x^{3/2} + 4x^{\frac{1}{2}})^2 = (3x + 6)^2 $ $ x^3 + 8x^2 + 16x = 9x^2 + 36x + 36 $ $ x^3 - x^2 - 20x - 36 = 0 $		2 marks for significant working toward correct result with minor errors in calculation or algebra.
	$\beta^2 \gamma^2 + \alpha^2 \gamma^2 + \alpha^2 \beta^2 = -20$ and $\alpha^2 \beta^2 \gamma^2 = 36$ Substituting into (*), $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} = -\frac{5}{9}$ Note that we have also found $\alpha^2 + \beta^2 + \gamma^2 = 1$ which can be		1 mark for working that includes a correct sum/product and some correct and relevant algebraic manipulation
	used in (ii).		algebraic manipalation
	(ii) $x^3 - 3x^2 + 4x - 6 = 0 \rightarrow x^3 = 3x^2 - 4x + 6$	2	2 marks for correct value
			1 mark for working that includes a correct sum/product and some correct and relevant algebraic manipulation
(b)	(i) $p(x) = ax^3 + bx^2 + cx + d$	2	2 marks for correct solution.
	$p'(x) = 3ax^2 + 2bx + c$ $\Delta = 4b^2 - 12ac$ $= 4(b^2 - 3ac)$ $< 0 \text{ if } b^2 - 3ac < 0 \text{ as given.}$ $\therefore p'(x) = 0 \text{ has no real solutions hence } p(x) \text{ has no stationary points and is always either increasing or decreasing.}$ Therefore $p(x)$ cuts the x -axis only once.		1 mark for finding $p'(x)$ or equivalent.

	Solution	Marks	Allocation of marks
	(ii) $p\left(-\frac{b}{3a}\right) = 0$	2	2 marks for correct solution.
	$p'\left(-\frac{b}{3a}\right) = 3a\left(-\frac{b}{3a}\right)^2 + 2b\left(-\frac{b}{3a}\right) + c$ $= \frac{b^2}{3a} - \frac{2b^2}{3a} + c$ $= -\frac{1}{3a}(b^2 - 3ac)$ $= 0$ Therefore at least a double root. $p''(x) = 6ax + 2b$ $p''\left(-\frac{b}{3a}\right) = -2b + 2b$ $= 0$ $x = -\frac{b}{3a} \text{ is a triple root of } p(x).$		1 mark for showing $p'\left(-\frac{b}{3a}\right) = 0 \text{ or equivalent.}$
(c)	(i) "	1	1 mark for working to achieve required result
	$z^n = \cos n\theta + i\sin n\theta$		-
	$z^{-n} = \frac{1}{z^n} = \cos n\theta - i\sin n\theta$		
	$z^{n} + \frac{1}{z^{n}} = (\cos n\theta + i\sin n\theta) + (\cos n\theta - i\sin n\theta)$		
	$=2\cos n\theta$		
	(ii)	2	2 marks for correct values
	$(2\cos\theta)^{5} = \left(z + \frac{1}{z}\right)^{5} = z^{5} + 5z^{4}\left(\frac{1}{z}\right) + 10z^{3}\left(\frac{1}{z^{2}}\right) + 10z^{2}\left(\frac{1}{z^{3}}\right) + 5z\left(\frac{1}{z^{4}}\right) + \frac{1}{z^{5}}$ $32\cos^{5}\theta = z^{5} + 5z^{3} + 10z + 10\left(\frac{1}{z}\right) + 5\left(\frac{1}{z^{3}}\right) + \frac{1}{z^{5}}$ $= \left(z^{5} + \frac{1}{z^{5}}\right) + 5\left(z^{3} + \frac{1}{z^{3}}\right) + 10\left(z + \frac{1}{z}\right)$ $= 2\cos 5\theta + 5(2\cos 3\theta) + 10(2\cos\theta)$ $\cos^{5}\theta = \frac{2}{32}\cos 5\theta + \frac{10}{32}\cos 3\theta + \frac{20}{32}\cos\theta$ $\cos^{5}\theta = \frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos\theta$		1 mark for working that includes a correct expansion and some correct and relevant algebraic manipulation
	$\therefore A = \frac{1}{16}, B = \frac{5}{16} \text{ and } C = \frac{5}{8}$ $(iii) \int \cos^5 \theta d\theta = \int \left(\frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos \theta\right) d\theta$ $= \frac{1}{80}\sin 5\theta + \frac{5}{48}\sin 3\theta + \frac{5}{8}\sin \theta + c$	1	1 mark for correct integral

	Solution	Marks	Allocation of marks
(d)	(i) Let $\alpha = 2 - 3i$ and other root be β . $\alpha + \beta = -\frac{b}{a} = -\frac{-(6 - 2i)}{1}$ $\therefore 2 - 3i + \beta = 6 - 2i$ $\therefore \beta = 4 + i$	1	1 mark for finding the other complex root
	(ii) $\alpha\beta = \frac{c}{a} = \frac{k}{1} = k$ $\therefore \alpha\beta = (2 - 3i)(4 + i) = k$ $\therefore k = 8 + 2i - 12i - 3i^{2}$ $k = 11 - 10i$	1	1 mark for correct value for k .

	Solution	Marks	Allocation of marks
(a)	(i) Area of annulus $A = \pi(R^2 - r^2)$ where $r = 2 - x = 2 - y^2$ and $R = 2 - (-1) = 3$ $A = \pi(3^2 - (2 - y^2)^2)$ $= \pi(9 - (4 - 4y^2 + y^4))$ $= \pi(5 + 4y^2 - y^4)$	1	1 mark for correct solution
	$= \pi (5 + 4y^{2} - y^{4})$ (ii) $V = \lim_{\delta y \to 0} \sum_{y=-1}^{1} \pi (5 + 4y^{2} - y^{4})$ $= \pi \int_{-1}^{1} 5 + 4y^{2} - y^{4} dy$ $= 2\pi \left[5y + \frac{4}{3}y^{3} - \frac{1}{5}y^{5} \right]_{0}^{1} \text{by symmetry}$ $= \frac{184\pi}{15} \text{ units}^{3}$	2	
(b)	$x^{4} - 5x^{3} + 17x^{2} + 37x - 50 = 0$ If $3 - 4i$ is a factor then $3 + 4i$ is also a factor. $\therefore divisible \ by \ x^{2} - (\alpha + \beta)x + \alpha\beta = 0$ $\alpha + \beta = 6$ $\alpha\beta = 9 + 16 = 25$ $i.e. \ divisible \ by \ x^{2} - 6x + 25$ By division, $x^{4} - 5x^{3} + 17x^{2} + 37x - 50 = (x^{2} - 6x + 25)(x^{2} + x - 2)$ $x^{4} - 5x^{3} + 17x^{2} + 37x - 50 = (x^{2} - 6x + 25)(x + 2)(x - 1)$ $If \ x^{4} - 5x^{3} + 17x^{2} + 37x - 50 = 0$ Then $x = 3 \pm 4i, -2$ and 1.	3	3 marks for correct factors 2 marks for significant working toward correct result with minor errors in calculation or algebra. 1 mark for working that includes some correct and relevant algebraic manipulation
(c)	(i) $I_n = \int sec^n x dx$ $= \int sec^{n-2} x sec^2 x dx$	2	2 marks for correct use of integration by parts to show required result
	Let $u = sec^{n-2}x$ $v' = sec^2x$ $u' = (n-2)(sec x tan x)sec^{n-3}x$ $v = tan x$		1 mark for working that includes use of integration

Solution	Marks	Allocation of marks
$I_{n} = uv - \int vu'$ $I_{n} = sec^{n-2}x \ tan \ x - (n-2) \int sec^{n-2}x tan^{2}x \ dx$ $= sec^{n-2}x \ tan \ x - (n-2) \int sec^{n-2}x \ (sec^{2}x - 1) dx$ $= sec^{n-2}x \ tan \ x - (n-2) \int sec^{n}x - sec^{n-2}x \ dx$ $\therefore I_{n} + (n-2)I_{n} = sec^{n-2}x \ tan \ x + (n-2)I_{n-2}$ $(n-1)I_{n} = sec^{n-2}x \ tan \ x + (n-2)I_{n-2}$ $\therefore I_{n} = \frac{1}{n-1} sec^{n-2}x tan \ x + \frac{n-2}{n-1} I_{n-2}$		by parts and some correct and relevant algebraic manipulation but does not achieve result or is incomplete
(ii) $\int_{0}^{\frac{\pi}{4}} \sec^{n}x dx = \left[\frac{1}{3} \sec^{2}x \tan x\right]_{0}^{\frac{\pi}{4}} + \frac{2}{3} I_{2}$ $= \left[\frac{1}{3} \sec^{2}x \tan x + \frac{2}{3} \tan x\right]_{0}^{\frac{\pi}{4}}$ $= \left[\frac{1}{3} \sec^{2}\frac{\pi}{4} \tan \frac{\pi}{4} + \frac{2}{3} \tan \frac{\pi}{4}\right] - \left[\frac{1}{3} \sec^{2}(0) \tan(0) + \frac{2}{3} \tan(0)\right]$ $= \left[\frac{1}{3} \left(\sqrt{2}\right)^{2} (1) + \frac{2}{3} (1)\right] - 0$ $= \frac{2}{3} + \frac{2}{3}$ $= 1\frac{1}{3}$	1	1 mark for correct answer
(d) (i) $9x^2 - 16y^2 = 144$ $\frac{x^2}{16} - \frac{y^2}{9} = 1$ $a^2 = 16 \qquad b^2 = 9$ $a = 4 \qquad b = 3$ Eccentricity: $b^2 = a^2(e^2 - 1)$ $9 = 16(e^2 - 1)$ $\frac{9}{16} + 1 = e^2$ $e^2 = \frac{25}{16}$ $e = \frac{5}{4}$ Foci $(\pm ae, 0)$ $ae = 4 \times \frac{5}{4} = 5$ $\therefore S(5, 0)$ $S' = (-5, 0)$	2	2 marks for correct eccentricity and foci 1 mark for working that has either eccentricity or focus correct
(d) (ii) $P(x_{1}, y_{1}) \text{ is an arbitrary point on } 9x^{2} - 16y^{2} = 144$ $\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1$ $\frac{2x}{16} - \frac{2y}{9} \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{2x}{16} \div \frac{2y}{9}$ $= \frac{2x}{16} \times \frac{9}{2y} = \frac{9x}{16y}$ At $P(x_{1}, y_{1})$ $\frac{dy}{dx} = \frac{9x_{1}}{16y_{1}}$ $y - y_{1} = m(x - x_{1})$ $y - y_{1} = \frac{9x_{1}}{16y_{1}}(x - x_{1})$ $16yy_{1} - 16y_{1}^{2} = 9xx_{1} - 9x_{1}^{2}$ $9x_{1}^{2} - 16y_{1}^{2} = 9xx_{1} - 16yy_{1}$	1	1 mark for correct working to achieve required equation of tangent

Solution	Marks	Allocation of marks
$\therefore 9xx_1 - 16yy_1 = 144$		
(iii) Since $9x^2 - 16y^2 = 144$ The tangent cuts the x – axis when $y = 0$ $\therefore 9xx_1 = 144$ $x = \frac{144}{9x_1} = \frac{16}{x_1}$ $G\left(\frac{16}{x_1}, 0\right)$	1	1 mark for coordinates of G
(iv) $P(x_1, y_1)$ S(5,0) $S'(-5,0)$ $G\left(\frac{16}{x_1}, 0\right)$	2	2 marks for working that correctly derives the required result
NOTE: $9x^{2} - 16y^{2} = 144$ $y^{2} = \frac{9x^{2} - 144}{16}$		1 mark for working that includes a correct use of th results proved previously other hyperbola properties
$SG = 5 - \frac{16}{x_1}$ $= \frac{5x_1 - 16}{x_1}$ $= \frac{5x_1 + 16}{x_1}$ $= \frac{5x_1 + 16}{x_1}$		
$SP^{2} = (x_{1} - 5)^{2} + y_{1}^{2}$ $= x_{1}^{2} - 10x_{1} + 25 + \frac{9x^{2} - 144}{16}$ $= \frac{16x_{1}^{2} - 160x_{1} + 400 + 9x_{1}^{2} - 144}{16}$ $= \frac{(5x_{1} - 16)^{2}}{16}$ $\therefore SP = \frac{5x_{1} - 16}{4}$		
Similarily, $S'P = \frac{5x_1 + 16}{4}$ Now, $\frac{SP}{S'P} = \frac{5x_1 - 16}{4} \div \frac{5x_1 + 16}{4} = \frac{5x_1 - 16}{5x_1 + 16}$ $\frac{SG}{S'G} = \frac{5x_1 - 16}{x_1} \div \frac{5x_1 + 16}{x_1} = \frac{5x_1 - 16}{5x_1 + 16}$ Therefore, $\frac{SP}{S'P} = \frac{SG}{S'G}$		

	Solution	Marks	Allocation of marks
(a)	(i) $(a-b)^2 \ge 0$ $\therefore a^2 - 2ab + b^2 \ge 0$ $a^2 + b^2 \ge 2ab$ Add $2ab$ to both sides $a^2 + 2ab + b^2 \ge 4ab$ $(a+b)^2 \ge 4ab$ $a+b \ge 2\sqrt{ab}$ $\therefore a+b-2\sqrt{ab} \ge 0$	1	1 mark for correct working to achieve required result
	(ii) $a+b \ge 2\sqrt{ab}$ $b+c \ge 2\sqrt{bc}$ $c+a \ge 2\sqrt{ac}$ $\therefore (a+b)(b+c)(c+a) \ge 8\sqrt{abbcca}$ $\therefore (a+b)(b+c)(c+a) \ge 8\sqrt{a^2b^2c^2}$ $\therefore (a+b)(b+c)(c+a) \ge 8abc$	2	2 marks for correct working to achieve required result 1 mark for working that includes relevant working toward result showing some knowledge of properties of inequalities
(b)	(i) Let $n=1$. Then $x_1=1$ and $2\left(\frac{1-\frac{1}{3}}{1+\frac{1}{3}}\right)=2\left(\frac{2/3}{4/3}\right)=1$. For n an integer ≥ 2 we need to show that $\frac{4+x_{n-1}}{1+x_{n-1}}=2\left(\frac{1+\alpha^n}{1-\alpha^n}\right), \qquad \alpha=-\frac{1}{3} (*)$ Suppose that $(*)$ holds for some integer $k\geq 1$ and let $n=k+1$.	4	1 mark to check n=1
	Then $LHS = \frac{4 + 2\left(\frac{1 + \alpha^k}{1 - \alpha^k}\right)}{1 + 2\left(\frac{1 + \alpha^k}{1 - \alpha^k}\right)}$ $= \frac{4(1 - \alpha^k) + 2(1 + \alpha^k)}{(1 - \alpha^k) + 2(1 + \alpha^k)}$		1 mark
	$= \frac{6 - 2\alpha^k}{3 + \alpha^k}$ $= \frac{2 + 2\alpha^{k+1}}{1 - \alpha^{k+1}}$		1 mark
	(multiplying top and bottom by $-\alpha = 1/3$) $= RHS$. Therefore since the statement is true for $n = 1$ and $n = 2$, and if it is true for a positive integer $n = k$ then it is also true for $n = k + 1$, by induction it is true for all integers $n \ge 1$.		1 mark
	(ii) As $n \to \infty$, $\alpha^n \to 0$ since $\alpha < 1$. Therefore the limiting value is 2.	1	

