$$\gamma(e) = \limsup_{t \to \infty} \frac{1}{t} \log \|A(t)e\|$$

$$\log \det (A(t)e)$$

$$\dot{x}_t = A(\theta_t \omega) x_t$$

$$x_t = \int_{\theta_t}^{\theta_t} A(\theta_t \omega) dt$$

Last time: * Oseletets multiplicative ergodic theorem * Gradient flow + Proof of OMET - Plipped lecture
M/W 26 h, 28 h. -> 26 m (flipped) } sign up poll -> 28 m (regular) } for time Gradient flow $\frac{d\varphi^{t}(x)}{dt} = df(\varphi^{t_{x}})$ differential $\rightarrow f: M \rightarrow \mathbb{R}$ Time-St maps x + gdf(n) $F^{t}(n) =$ time-stop $\in \mathbb{R}^+$. Example: $\mathcal{I} = (\chi_1, \chi_2, \chi_3)$ $f(x) = -x_3$ → Differential (Differential geometry)

f: M > R f ∈ C (M) $df: M \rightarrow \mathbb{R}^d$ (scientific/ $df_n: T_nM \to \mathbb{R}$ Linear functional on target bundle. (df) ≈ ∈ T,*M (Dual of tangent burdle:

cotagngent burdle) v e Tx M $v(f)(x) = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon v(x)) - f(x)}{\varepsilon}$ = $\langle df, v \rangle$ applies to Riemannian marifolds) (Difn $x = (x_1, x_2, ..., x_d)$ $Vf_{x} = \left(\partial_{x_{1}}f, \partial_{x_{2}}f, \dots, \partial_{x_{d}}f\right)$ € Tx*M $df_{x} \cdot v(x)$ v(f)(x) =Tx M Tx M Directional desiration of farlong v = argmax $\lim_{v \in T_x} \frac{f(z+\varepsilon v)-f(z)}{\varepsilon}$ fla)=f3_ +(1)=f2 $f_3 > f_2 > f_1$ for-fi $x = (x_1, x_2, x_3)$ $f(x) = -x_3$ $\frac{d\varphi^{t/x}}{dt} = v(\varphi^{t_x})$ Fixed points: df(x) = 0eig (dv($\phi^{t}x^{*}$))

= eig (d²f($\phi^{t}x^{*}$))

Ly second derivative

|Rd×d| $= df(q^{t_x})$ Example 2 Optimization algorithms $f(x) = \int_{i=1}^{n} ||y_i - h(z_i, x)||^2$ Loss function parameter x: weightsd bioses $\frac{d\varphi^{t}(x)}{dt} = -df(\varphi^{t}x)$ stability of fixed · Generalization $d^{2}f(x) = d\left(\frac{2}{n}\sum_{i=1}^{n}(y_{i}-h(z_{i},x))\right)$ $dh(z_{i},x)$ Stability (how "well" h is learned A symptotically, gradient converge to fixed For any $x \in M$, $X_T := \{\varphi(x)\}_{x,T}$ lim X_T C { critical points of f 3. T->0 Infinite-dimensional gradient flow T = argmin C(T#4, 2)
TEY > cost

class of functions v: target measure µ: known probab dist. $\mu: M, \rightarrow \mathbb{R}^{+}$ $I_{\#}\mu = \mu \circ T^{-1}$ v: M2> R+ T: M, -> M2 $\frac{d}{dt}\varphi^{t}(T) = dc(T_{\mu}, \nu)$ Wasserstein

DMET

Figodic theory: long-time behavior of dynamics (3) ansumble statistical behavior

We say that
$$\mu$$
 is an ergodic distribution for ϕ if any ϕ -invariant set has measure D or D .

A is invariant of D is expedic for D , here D is expedic for D , here D is expedic for D .

Example chaotic system

 D is D invariant D is expedic for D is expedic for D .

Example D is D invariant D is expedic for D is expedic for D is expedic for D is expedic for D is D invariant D is expedic for D in D is expedic for D is expedic for D in D is expedic for D in D i

Uniform measure on [0,1].

 $\left(\sum_{z \sim \mu} f(x) = \int f(z) d\mu dx \right) \\
= \int f(xi) \mu(xi) \\
i = 1$

 $\frac{1}{10}$, $\frac{2}{10} = \frac{1}{5}$, $\frac{2}{5}$, $\frac{4}{5}$, $\frac{8}{5} = \frac{3}{5}$

 $\frac{1}{4}\left(\frac{1}{5} + \frac{2}{5} + \frac{4}{5} + \frac{3}{5}\right) = \frac{2}{4}$

上, 是, 是,

2: dyadie

 $\begin{array}{c}
\bot \leq \varphi^{t_{\chi}} \xrightarrow{T\to\infty} \\
T t \leq T
\end{array}$

Not

Not

Not

Simulatine almost

Every point

according to

Uniform

meanur

 $\int x dx = \frac{1}{2}.$