INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4014B MSI 8-bit static shift register

Product specification
File under Integrated Circuits, IC04

January 1995

8-bit static shift register

HEF4014B MSI

DESCRIPTION

The HEF4014B is a fully synchronous edge-triggered 8-bit static shift register with eight synchronous parallel inputs (P_0 to P_7), a synchronous serial data input (D_8), a synchronous parallel enable input (PE), a LOW to HIGH edge-triggered clock input (PE) and buffered parallel outputs from the last three stages (P_8) to P_7).

Operation is synchronous and the device is edge-triggered on the LOW to HIGH transition of CP. Each register stage is of a D-type master-slave flip-flop. When PE is HIGH, data is loaded into the register from P_0 to P_7 on the LOW to HIGH transition of CP. When PE is LOW, data is shifted to the first position from D_S , and all the data in the register is shifted one position to the right on the LOW to HIGH transition of CP. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times

HEF4014BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4014BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4014BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

8-bit static shift register

HEF4014B MSI

8-bit static shift register

HEF4014B MSI

PINNING

 $\begin{array}{ll} \text{PE} & \text{parallel enable input} \\ \text{P}_0 \text{ to P}_7 & \text{parallel data inputs} \\ \text{D}_S & \text{serial data input} \end{array}$

CP clock input (LOW to HIGH edge-triggered) O_5 to O_7 buffered parallel outputs from the last three

stages

FUNCTION TABLES

Serial operation

	INPUTS			OUTPUTS			
n	СР	Ds	PE	O ₅	O ₆	07	
1		D ₁	L	Х	Х	Х	
2		D ₂	L	Х	Х	Х	
3		D ₃	L	Х	Х	Х	
6		Х	L	D ₁	Х	Х	
7		Х	L	D ₂	D ₁	Х	
8		Х	L	D ₃	D ₂	D ₁	
		Х	Х	no change			

Parallel operation

	INPUTS			OUTPUTS			
n	СР	Ds	PE	O ₅	O ₆	07	
1		Х	Н	P ₅	P ₆	P ₇	
		Х	х	no change			

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

____ = positive-going transition

= negative-going transition

 D_n = either HIGH or LOW

n = number of clock pulse transitions

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	900 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4 300 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	12 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load cap. (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

8-bit static shift register

HEF4014B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$C_P \to O_n$	5			130	260	ns	103 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
Set-up times	5		40	10		ns	
$PE \to CP$	10	t _{su}	25	5		ns	
	15		15	0		ns	
	5		35	- 5		ns	
$D_S \to CP$	10	t _{su}	25	-5		ns	
	15		25	0		ns	
	5		35	-5		ns	
$P_n \! \to \! CP$	10	t _{su}	25	-5		ns	
	15		25	0		ns	
Hold times	5		25	-5		ns	
$PE \to CP$	10	t _{hold}	20	0		ns	see also waveforms Fig.4
	15		15	0		ns	
	5		30	15		ns	
$D_S \!\to\! CP$	10	t _{hold}	20	10		ns	
	15		15	7		ns	
	5		30	15		ns	
$P_n \! \to \! CP$	10	t _{hold}	20	10		ns	
	15		15	7		ns	
Minimum clock	5		70	35		ns	
pulse width; LOW	10	t _{WCPL}	30	15		ns	
	15		24	12		ns	
Maximum clock	5		6	13		MHz	
pulse frequency	10	f _{max}	15	30		MHz	
	15		20	40		MHz	

Philips Semiconductors

 $\frac{N}{N}$

Product specification

Fig.4 Waveforms showing minimum clock pulse width, and set-up and hold times for PE to CP, D_S to CP, and P to CP. Set-up and hold times are shown as positive values but may be specified as negative values.

APPLICATION INFORMATION

Some examples of applications for the HEF4014B are:

- Parallel-to-serial converter
- Serial data queueing
- General purpose register