Documentação Trabalho Prático 02 de Algorítimos e Estruturas de Dados III

Paulo Cirino Ribeiro Neto Engenharia de Sistemas UFMG

17 de novembro de 2015

1 Introdução

Segundo a wikipedia "Um paradigma de programação fornece e determina a visão que o programador possui sobre a estruturação e execução do programa.". Esse trabalho têm o intuito exatamente de fomentar e exercitar as diferentes ópticas em que um programador pode planejar e formalizar a resolução de um problema algorítmico.

A questão desse trabalho é resolver o mesmo problema utilizando ferramentas e linhas de pensamento diferentes com o intuito de obter uma solução ideal ou próxima dela. Nesse caso em específico serão implementadas 3 soluções utilizando os paradigmas de **Força Bruta, Dinâmico**, e **Guloso**.

Iremos mostrar nesse trabalho as diferentes abordagens e as vantagens e desvantagens de cada solução.

2 O Problema

O problema a ser selecionado é dado um caminho que sai de um ponto inicial específico e chega a um ponto final diferente passando obrigatoriamente por ${\bf N}$ pontos e parando em ${\bf M}$ quaisquer um deles, de forma a minimizar a maior distância entre 2 pontos conectados.

3 A Solução

3.1 Força Bruta

O paradigma de programação de Força Bruta consiste em uma técnica de solução de problemas trivial, porém muito geral que trabalho no sentido de enumerar todos os possíveis candidatos da solução e checar cada candidato para saber se ele satisfaz a resolução do problema e se ele é uma solução ótima.

No caso desse problema em específico para gerar todas as possíveis combinações utilizamos 2 conceitos :

- Arranjo Básico
- Andar com Arranjo

O arranjo básico é a primeira combinação possível, para esse problema isso significa escolher \mathbf{M} valores seguidos, que representam os planetas escolhidos para conquistar. No caso se $\mathbf{M}=4$, o caso básico seria $\{1,2,3,4\}$ que representa escolher os planetas $\{$ **P1**, **P2**, **P3**, **P4** $\}$.

E o conceito de andar que é alterar a escolha para próxima candidata a solução possível, no caso sitado seria $\{P1, P2, P3, P5\}$. E no mesmo exemplo se o número de planetas for N = 5 teríamos que se o mesmo andasse novamente seria $\{P1, P2, P4, P5\}$, e isso continuaria até que se fosse atingida o ultimo arranjo possível que é $\{P2, P3, P4, P5\}$.

Fica obvio que o número de possibilidades é um arranjo de ${\bf N}$ planetas e ${\bf M}$ escolhas, de forma matemática isso é :

$$\frac{\prod_{i=N-M}^{N} i}{M}$$

Além desses dois conceitos utilizamos também uma função que calcula o maior sub-caminho de um arranjo de planetas.

De forma resumida esse algorítimo funciona de forma a percorrer todas as distâncias de um sub-caminho desde o seu planeta inicial até o seu planeta final e soma-las de forma a comparar essa soma com a maior distância já previamente obtida.

De forma geral então podemos dizer que o força bruta funciona de modo a gerar todas as possibilidades com a função anda e calcular o maior sub-caminho do arranjo fornecido pela função calcMaiorDistCaminho e depois escolher o menor maior sub-caminho.

3.2 Pseudo-Código

O programa todo funciona como o pseudo-código abaixo:

A função já mencionada que calcula o maior sub-caminho de um determinado arranjo de planetas segue abaixo:

```
Input: distVet[1:N+1], Caso[1:M], N
int maiorDist = -\infty;
int i = 0;
int planeta = 0;
while i = M \operatorname{do}
   int distSubCaminho = 0;
   while planeta \le Caso[i] do
      distSubCaminho += distVet[planeta];
   end
   if distSubCaminho >= maiorDist then
      maiorDist = distSubCaminho;
   end
   i++;
end
Output: maiorDist
      Algorithm 2: Pseudo-Código calcMaiorDistCaminho()
E a função que anda funciona como o pseudo-código abaixo:
Input: Caso[1:M], N
int flag=1;
int cont=0;
int maxPos = N - 1;
int pos = M - 1;
while Caso[pos] < maxPos do
   \max Pos --;
   pos--;
end
Caso[pos - 1] ++;
while pos < M do
   pos++;
   Caso[pos] = Caso[pos-1];
end
Output: Caso[1:M]
               Algorithm 3: Pseudo-Código anda()
```

4 Guloso

A solução que utiliza a estratégia gulosa para esse problema funciona de forma a **minimizar o erro em relação a distância ideal**. A distância ideal é um

conceito criado que indica a distância que todos os sub-caminhos deveriam ter para o maior sub-caminho fosse mínimo, essa distância é obviamente a distância $\bf D$ total do caminho todo dividido pelos $\bf M+1$ sub-caminhos, ou seja $\bf Id=D/(M+1)$.

Nem sempre será possível criar um sub-caminho com a exata distância ideal, assim devemos criar uma decisão de quanto queremos errar, para isso sempre mantemos 2 distâncias guardadas uma atual e a outra é a distância imediatamente anterior para que possamos escolher o sub-caminho que incorre menor erro quando comparamos com a distância ideal. Além do mais devemos lembrar de sempre de manter a distância ideal atualizada diminuindo a distância percorrida da distância total e fazendo $\mathbf{M} = \mathbf{M-1}$, de forma para que a nova distância ideal é sempre real ao seu novo caminho.

De forma resumida o algorítimo funciona de forma a encontrar um sub-vetor que inicia na primeira posição do vetor de distâncias que é o mais próximo da distância ideal possível, essa distância percorrida é removida do vetor inicial e temos então um novo problema que é o vetor de onde o sub-caminho passado parou até o final. Assim resolvemos esse novo problema da mesma forma só que atualizando a distância total e \mathbf{M} e recalculando a distância ideal.

A implementação da estratégia gulosa escolhida para a solução desse problema mesmo funcionando para todos os casos testes fornecidos no moodle **não** é ótima.

4.1 Pseudo - Códigos

O método funciona como uma única função, que segue abaixo:

Algorithm 4: Pseudo-Código Guloso()

5 Programação Dinâmica

5.1 Pseudo - Códigos

Temos que o algorítimo de programação dinâmica assim como o de força bruta funciona com 3 partes, andar, calcular distância, e algorítimo principal.

No caso, a função de andar é praticamente igual a do método de força bruta, a única diferença é que essa retorna uma flag com a posição a partir de qual o vetor de planetas escolhidos foi alterado. Assim não irei mostrar esse pseudocódigo aqui

Segue então o pseudo-código do metodo principal:

Algorithm 5: Pseudo-Código Guloso()

Segue o método que calcula o vetor de sub-caminho máximo até a última posição que ficou intacta:

6 Complexidade

6.1 Complexidade Temporal

A complexidade temporal é o problema mais serio das soluções de programação dinâmica e de força bruta, temos que para ambos a solução foi fatorial.

O problema maior para mim foi evitar de gerar todas as possíveis soluções, que são:

$$\frac{N!}{M!(N-M)!} = \binom{N}{M} \tag{1}$$

A diferença básica é a forma com que os métodos calculam a distância máxima de cada caminho, no caso do **PD** a complexidade é no pior caso O(N) e no caso médio log(N) já no força bruta a mesma função é feita com complexidade $O(N^2)$.

Já o guloso têm complexidade de O(N).

Segue abaixo as tabelas com complexidades das funções e métodos:

CaminhaFb	$\max Dist Calc Fb$	CaminhaDinamico	maxDistCalcDinamico
O(M)	O(M*N)	O(M)	O(N)

Força Bruta	Dinâmico	Guloso
$O(M*N*(\frac{N!}{M!(N-M)!}))$	$O(N*(\frac{N!}{M!(N-M)!}))$	O(N)

Temos que considerar também o fato de que mesmo a diferença no pior caso não ser muito diferente entre o algorítimo força bruta e o guloso, a verdade é que a complexidade θ é muito diferente, só não será demonstrada aqui por conta das dificuldades matemáticas.

6.2 Complexidade Espacial Teórica

Para nenhum dessas soluções a complexidade espacial é um problema, temos que para todos os casos ela é linear.

No algorítimo de força bruta, temos que é utilizado 2 vetores, um de tamanho \mathbf{M} e outro de tamanho $\mathbf{M}+\mathbf{1}$ além é claro de algumas variáveis atômicas.

O PD é utiliza as mesma variáveis que o força bruta só que com a adição de 2 vetores de tamanho N+1.

Já no guloso é utilizado apenas um vetor, que é o vetor de distâncias com tamanho $\mathbf{N+1}$ e algumas variáveis atômicas.

Temos então o seguinte gráfico:

	Força Bruta	Programação Dinâmica	Guloso
1	O(N+M)	O(3N+M)	O(N)

Figura 1: Alterando apenas número total de planetas.

7 Testes Práticos

Os testes forma conduzidos de forma a c compilar o tempo médio de 3 testes iguais, cada qual com 3 instâncias a serem testadas.

Quando observamos a figura 1 fica obvio o crescimento exponencial da complexidade do força bruta. podemos observar que a cada mudança no número total de planetas N temos que a inclinação da curva é inclinada em alguns graus.

Além disso fica um tanto quando obvio a diferença entre a complexidade dos métodos, percebemos que o força bruta é muitas vezes mais lento que os outros 2, o dinâmico é muito mais rápido que o força bruta, mas pela necessidade de analisar todas as possíveis combinações o mesmo é muito mais lento que o algorítimo guloso.

Além do mais percebemos que a complexidade do algorítimo de PD aumenta de forma muito mais suave com o número de planetas quando comparamos ao FB, enquanto ele aumenta o grau da inclinação de forma constante, o FB aumente o grau desse crescimento a cada incremento do total de planetas.

Agora quando observando a figura 2 podemos perceber uma característica interessante dos métodos dinâmico e força bruta, na qual eles se comportam de forma que a complexidade do problema aumenta de forma exponencial quando alteramos o número de planetas a serem escolhido até a metade do total de planetas, e depois essa complexidade decai na mesma proporção.

O motivo das complexidades descritas na análise teórica, onde os algorítimos

Figura 2: Alterando apenas Número de Planetas Conquistados.

não foram colocados exatamente como exponenciais, mas sim na forma de um equação que mostra que existe essa curva.

Como já foi descrito o pior caso para os algorítimos de Fb e Pd é quando o número de planetas conquistado é a metade do número total de planetas.

Assim fiz também uma compilação que mostra como a complexidade do algorítimo altera de acordo com o pior caso:

Percebemos pelo gráfico 3 e também pelos outros que existe uma discrepância muito grande entre o tempo de execução dos métodos.

O força bruta é absurdamente lento quando comparamos com programação dinâmica, mesmo para esses casos razoavelmente pequenos, mas isso não significa que o programação dinâmica teve um bom desempenho. Na realidade quando observamos realmente o Pd, ele é extremamente lento e têm crescimento exponencial da complexidade, apenas o guloso cresce de forma linear com a entrada.

Segue abaixo a tabela $1~{\rm com}$ os dados que geraram os gráficos para melhor entendimento:

8 Conclusão

Figura 3: Pior Caso.

Num Planetas	NumEscolhas	Tempo Guloso	Tempo Dinamico	Tempo Força Bruta
4	2	0,172	0,156	0,151
8	4	$0,\!172$	$0,\!156$	0,17
12	6	0,203	$0,\!156$	0,16
16	8	$0,\!172$	$0,\!156$	0,196
20	10	0,213	0,281	0,57
22	11	0,222	$0,\!563$	1,698
24	12	$0,\!156$	0,656	6,126
26	13	$0,\!156$	6,101	24,407
28	14	0,141	22,439	$120,\!217$
30	15	$0,\!156$	103,276	473,178
32	16	0,141	372,3	524,319
34	17	0,156	402,438	2117,378
36	18	0,188	1593,838	8655,461

Tabela 1: Tabela de Dados