КОМП'ЮТЕРНА ОБРОБКА ЗОБРАЖЕНЬ

Digital Image Processing - DIP

Фільтрація зображень

- 1. Загальні відомості з цифрової фільтрації двовимірних сигналів. Базові маніпуляції
- 2. Лінійні фільтри. Фільтр Гауса.
- 3. Лінійні фільтри. Фільтр Лапласа
- 4. Нелінійні фільтри

1. Фільтрація зображень

Інформація, що міститься в зображенні:

- корисна інформація низького і високого рівня;
- помилкова інформація (шум, що виникає через недосконалість сканерів і зберігання і передачі зображень з втратами).

Види шуму на зображенні:

- «сіль і перець»: випадкові чорні і білі пікселі;
- імпульсний: випадкові білі пікселі;
- гаусів: коливання яскравості, розподілені за нормальним законом.

Інформація, що міститься в зображенні:

Корисна інформація високого рівня містить дані про об'єкти зображення (метаінформація)

Корисна інформація низького рівня:

- низькочастотні складові (несуть інформацію про області зображення, однорідні за певною ознакою);
- високочастотні складові (відповідають за колірні перепади контури зображення);
- текстури зображення (характеристики ділянок в контурах зображення).

Види шуму на зображенні:

- «сіль і перець»: випадкові чорні і білі пікселі;
- імпульсний: випадкові білі пікселі;
- гаусів: коливання яскравості, розподілені за нормальним законом.

Мета фільтрації зображення

- 1) Подавлення і усунення шуму типу «сіль і перець» і малих областей;
- 2) посилення і виділення корисної інформації (корекція яскравості, виділення областей, однорідних за кольором, виділення кордонів різких змін кольору).

Фільтрація зображень

Фільтрація зображень являє собою операцію, що має своїм результатом зображення того ж розміру, отримане з вихідного за деякими правилами. Інтенсивність (колір) кожного пікселя результуючого зображення обумовлена інтенсивністями (кольорами) пікселів, розташованих в деякому його околі в вихідному зображенні.

Приклади околів

Окіл

Каузальний окіл - (і обробка, що використовує його) - обидві координати (номер рядка і номер стовпця) всіх точок околу не перевищують відповідних координат поточної точки.

Напівкаузальний — серед точок околу є точки, координати яких не перевищують робочу точку в одному напрямку, але перевищують її в іншому.

Некаузальний — серед точок околу ε точки, координати яких перевищують робочу точку в обох напрямках.

Фільтрація – просторова операція згортки

Математично це згортка двовимірної функції g по функції f у дискретному випадку:

$$\langle g * f \rangle (i,j) = \sum_{l=n_0}^{n_1} \sum_{k=m_0}^{m_1} g(i-l,j-k) * f(l,k)$$

l, k - координати околу.

Для всіх

$$0 \le i \le N-1, 0 \le j \le M-1$$

Фільтр – просторова операція згортки

$$\hat{I}(i,j) = \frac{1}{D} \sum_{l=-L}^{L} \sum_{k=-K}^{K} I(i-l,j-k) * F(k,l)$$

I(i,j) - яскравість i,j —го пікселю до фільтрації.

 $\hat{I}(i,j)$ - яскравість i,j—го пікселю після фільтрації.

 $ar{F}(k, l)$ - матриця згортки - вагові коефіцієнти фільтру.

 ${\it l,k}$ - координати околу, ${\it D}$ - деякий коефіцієнт.

Фільтр — просторова операція згортки

Матриця згортки — квадратна (не обов'язково) матриця, елементи якої помножуються на елементи вихідного зображення.

Наприклад, фільтр розмірності 3 * 3 в загальному випадку:

$$F = \begin{bmatrix} f_{-1,-1} & f_{-1,0} & f_{-1,1} \\ f_{0,-1} & f_{0,0} & f_{0,1} \\ f_{1,-1} & f_{1,0} & f_{1,1} \end{bmatrix}$$

ядро (kernel), вікно

Приклади околів

Некаузальна фільтрація (3 х 3)

Приклади околів

Некаузальна фільтрація (5 х 5)

Порушення кордонів зображення

- Зменшення розміру зображення
- Додавання пікселів на межах (екстраполяція)
- Дзеркальне відображення

Порушення меж яскравостей

Обчислення інтенсивності пікселя виходить за межи

$$\widehat{I}(i,j) < 0,$$

 $\widehat{I}(i,j) > L-1$

Масштабувати отримані значення при позитивних відгуках фільтра $\hat{I}(i,j)$ - звузити діапазон.

При негативному відгуку $\hat{I}(i,j) < 0$ брати або абсолютне значення (по модулю), або приводити до нуля.

2. Лінійні фільтри. Середньоарифметичний фільтр. Фільтр Гауса

Лінійний фільтр

Лінійні фільтри - фільтри, вихід Y яких формується перемноженням вагових множників маски F 3 елементами зображення I.

Фільтри розмивання (згладжування) — фільтри для усунення деталей (зазвичай малорозмірних), що заважають сприйняттю корисних об'єктів на зображеннях (так звана генералізація зображення).

Загальне співвідношення для обчислення лінійного фільтру усереднення:

$$\hat{I}(i,j) = \frac{1}{N_w} \sum_{l=-L}^{L} \sum_{k=-K}^{K} I(i-l,j-k)$$

Найпростіший фільтр розмивання (**box filter**) \rightarrow лінійний фільтр усереднення значень пікселів \rightarrow згортка по константній функції. Наприклад, для вікна 3*3 (K=L=1)

$$F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Тобто: $f_{k,l} = 1$, $N_w = K*L = 9$ — загальна кількість пікселів вікна

Результат

Лінійний середньоарифметичний фільтр Зменшення шуму

Зменшення шуму Line Filter Original Image

Лінійний середньоарифметичний фільтр Інші варіанти:

1. Вікно **5*5** (*K=L=2*);
$$N_w = 25$$

2. Зважене середнє. Вікно **3*3** (*K=L=1*)

$$F = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$N_w = 16$$

Фільтр Гауса для розмивання:

Лінійний зважений фільтр

$$\hat{I}(i,j) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{l=-L}^{L} \sum_{k=-K}^{K} I(i-l,j-k) e^{-\frac{d^2}{2\sigma^2}}$$

 σ — радіус розмивання,

$$d = \sqrt{l^2 + k^2}$$

Пів розміру маски фільтру приблизно 3σ

Фільтр Гауса для розмивання:

$$\sigma = 1$$
 0.003
 0.013
 0.059
 0.097
 0.059
 0.013
 0.022
 0.013
 0.059
 0.097
 0.059
 0.097
 0.022
 0.013
 0.013
 0.059
 0.097
 0.059
 0.097
 0.059
 0.013
 0.003
 0.003
 0.013
 0.0097
 0.059
 0.013
 0.003
 0.003
 0.013
 0.002
 0.013
 0.003
 0.003
 0.013
 0.002
 0.013
 0.003
 0.003
 0.000789
 0.006581
 0.05491
 0.111345
 0.05491
 0.006581
 0.000789
 0.006581
 0.000789
 0.006581
 0.000789
 0.006581
 0.000789
 0.006581
 0.000789
 0.006581
 0.000789
 0.006581
 0.000789

Фільтр Гауса для розмивання:

σ=1

Original Image

Blur Image

Фільтр Гауса для розмивання:

σ=1

Original Image

Blur Image

Фільтр усереднення. Приклад

Фільтр Гауса. Приклад

Фільтр: розмивання

Лінійні фільтри

Застосовується для вирішення наступних завдань:

- зменшення шуму, який утворюється через різкі перепади значень яскравості;
- зменшення деталей, які не несуть смислового навантаження, розміри яких малі в порівнянні з розмірами маски фільтра;
- згладжування помилкових контурів, що виникають через дискретизацію або перетворень з використанням недостатню кількість рівнів яскравості (похибки квантизації).

Мінуси: розмиття корисних контурів, які також мають різкі перепади значень яскравості.

Застосування фільтру на практиці часто обумовлено його прийнятним згладжуванням шуму зображень за умови його дуже високої обчислювальної ефективністі.

Рекомендована ЛІТЕРАТУРА

- Вовк С.М., Гнатушенко В.В., Бондаренко М.В. Методи обробки зображень та комп'ютерний зір: навчальний посібник. Д.: Ліра, 2016 148 с.
- **Красильников Н.Н.** Цифровая обработка 2D- и 3D-изображений: учеб.пособие.- СПб.: БХВ-Петербург, 2011.- 608 с.: ил.
- Гонсалес Р.С., Вудс Р.Э. Цифровая обработка изображений. М.: Техносфера, 2005. -1070 с.
- Визильтер Ю.В., Желтов С.Ю. и др. Обработка и анализ зображений в задачах машинного зрения.-М.: Физматкнига, 2010.-672 с.

Рекомендована ЛІТЕРАТУРА

- Ватолин Д., Ратушняк А., Смирнов М., Юкин В. Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео. М.: ДИАЛОГ-МИФИ, 2002. 384 с.
- **Творошенко І.С.** Конспект лекцій з дисципліни «Цифрова обробка зображень» / І.С.Творошенко : І.С. Творошенко ; Харків. нац. ун-т міськ. госп-ва ім. О. М. Бекетова. Харків : ХНУМГ ім. О. М. Бекетова, 2017. 75 с.
- Методи компьютерной обработки изображений: Учебное пособие для ВУЗов/ Под ред.: Сойфер В.А.. 2-е изд., испр. М.: Физматлит, 2003. 780 с.
- Фисенко В.Т., Фисенко Т.Ю. Компьютерная обработка и распознавание изображений: учеб. пособие. СПб: СПбГУ ИТМО, 2008. 192 с.

Додаткова ЛІТЕРАТУРА

- **Грузман И.С.**, Киричук В.С. Цифровая обработка зображений в информационных системах. Новосибирск: Изд-во НГУ, 2002. 352 с.: ил.
- Solomon C., Breckon T. Fundamentals of Digital Image Processing. Willey-Blackwell, 2011 344 p.
- Павлидис Т. Алгоритмы машинной графики и обработки изображений: Пер. с англ. М.: Радио и связь, 1986. 400 с.
- Яншин В. В., Калинин Г. А. Обработка изображений на языке Си для IBM РС: Алгоритмы и программы. М.: Мир, 1994. 240 с.

Інформаційні ресурси

- Компьютерная обработка изображений. Конспект лекций. http://aco.ifmo.ru/el_books/image_processing/
- Цифрова обробка зображень [Електронний ресурс]: методичні рекомендації до виконання лабораторних робіт / НТУУ «КПІ»; уклад.: В. С. Лазебний, П. В. Попович. Електронні текстові дані (1 файл: 1,41 Мбайт). Київ: НТУУ «КПІ», 2016. 73 с. https://ela.kpi.ua/handle/123456789/21035
- https://www.youtube.com/watch?v=CZ99Q0DQq3Y
- https://www.youtube.com/watch?v=FKTLW8GAdu4

The END 05