

Компьютерные сети

Сетевой уровень. Часть 1

Классовая IPv4 - адресация. Протокол ARP: связь IPадреса и MAC-адреса. Формат IPv4-пакета. Статическая маршрутизация. Диагностика сетевого уровня.

Вопросы к аудитории

- 1. Проверка домашних работ.
- 2. Есть ли проблемы?

План урока

- IPv4-адреса и классовая адресация.
- Связь сетевого и канального уровня.
- Статическая маршрутизация.

Классовая адресация

Класс А

Класс В

Класс С

Класс D

Класс Е

0 адрес с	ети (7 бит)	адрес хоста (24 бита)										
10	адрес сети (14 бит)	адрес хоста (16 бит)										
110	адрес сети	(21 бит) адрес хоста (8 бит)										
1110	Адр	Адрес многоадресной рассылки										
1111		Зарезервировано										

Классовая адресация

Класс	Число возможных адресов сетей	Число возможных адресов хостов	Маска подсети	Начальный адрес	Конечный адрес
Α	128	16 777 214	255.0.0.0	0.0.0.0	127.255.255.255
В	16 384	65 534	255.255.0.0	128.0.0.0	191.255.255.255
С	2 097 152	254	255.255.255.0	192.0.0.0	223.255.255.255
D	Групп	овой адрес		224.0.0.0	239.255.255.255
Е	Зарез	ервировано		240.0.0.0	255.255.255.255

Маска сети

IP-адрес: 192.168.100.1

Маска: **255.255.255.**0

Адрес сети:192.168.100.0

Серые или частные адреса

Диапазон	Маска	Кол-во узлов
10.0.0.010.255.255.255.	255.0.0.0	≈16,5 млн
172.16.0.0172.31.255.255	255.240.0.0	≈ 65,5 тыс
192.168.0.0192.168.255.255.	255.255.255.0	254

anycast

Типы ІР адресов и рассылок

- Сетевой адрес (network address)
- Широковещательный адрес / broadcast
- Узловой адрес / unicast
- Групповой адрес / multicast
- Ближайшая группа / anycast

multicast

unicast

Internet Protocol (IPv4)

Internet Protocol (IP, Интернет протокол или межсетевой протокол) — является маршрутизируемым протоколом сетевого уровня. На основе протокола IP работает большинство современных сетей.

Октет	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0		Версия IHL Тип обслуживания										ия	Длина пакета																			
4	Идентификатор													Флаги Смещение фрагмента																		
8		Время жизни (TTL) Протокол											Контрольная сумма заголовка																			
12														IP-a	др	ec c	тпр	ави	тел	я												
16														IP-	адр	ec i	пол	уча	тел	я												
20										ſ	Тар	аме	трь	ı (oı	0,	до	10-и	32	-х б	итн	ых	сло	ов)									
																Даг	ны	e														

ARP – Address Resolution Protocol

Word Offset	Byte 0	Byte 1	Byte 2	Byte 3											
0x0000	Hardware 1	Гуре (0х01)	Protocol Type (0x80)												
0x0010	HLEN (0x06)	PLEN (0x04)	Operation												
0x0020	Sender Hardware Address														
0x0030			Sender Protocol Address												
0x0040															
0x0050		Target Hardv	vare Address												
0x0060			Target Proto	ocol Address											
0x0070															

ICMP – Internet Control Message Protocol

Offsets	Octet		0											1				2								3								
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
0	0		Type Code									Checksum																						
4	32															Re	est o	f He	ader	9														

Тип=8. Эхо-запрос.

Тип=0. Эхо-ответ.

Тип=3. Код=0. Сеть недостижима

Тип=3. Код=1. Узел недостижим

Тип=3. Код=3. Порт недостижим

Тип=3. Код=4. Необходима фрагментация, но установлен флаг её запрета (DF)

Тип=11. TTL истекло

и т.д.

Routing and Forwarding

- •Маршрутизаторы выполняют задачи.
 - ❖Routing маршрутизация поиск маршрута для IP-пакета.
 - ❖Forwarding продвижение пересылка пакета в нужный шлюз/сетевой интерфейс.
- •Маршрутизация бывает
 - Статическая (таблицы настраиваются

на каждом маршрутизаторе)

Динамическая (маршрутизаторы сами обмениваются таблицами)

Важно. Маршрутизация выполняется на каждом компьютере, даже на обычной рабочей станции имеется таблица маршрутизации, как правило из одно (устройство) или двух (устройство и маршрут по умолчанию)

Классификация протоколов

Маршрутизируемые протоколы:

- IP (Internet protocol)
- ICMP (Internet Control Message Protocol)
- IGMP (Internet Group Management Protocol)

Маршрутизирующие протоколы:

- •Interior Routing Protocols (внутри AS)
 - ❖RIP, RIP2 (Routing Information Protocol)
 - OSPF (Open Shortest Path First)
 - ❖(IS-IS, IGRP, EIGRP и д.р.)
- •Exterior Routing Protocols (между AS)
 - EGP (Exterior Gateway Protocol)
 - **♦BGP** (Border Gateway Protocol)

AS – автономной системой называют область IP-сетей и роутеров, управляемых одним или несколькими операторами (RFC 1930).

Утилита tracert

Практическое задание

Работа в РТ.

Объедините предложенные в файле сети с помощью статической маршрутизации

Вопросы?

На следующем занятии... Сетевой уровень. Часть 2

Бесклассовая адресация.

Динамическая маршрутизация

