Supplementary Material for "Efficient and Scalable Bipartite Matching with Fast Beta Linkage (fabl)"

Brian Kundinger*, Jerome P. Reiter* and Rebecca C. Steorts*

Supplement A: Derivations of Full Conditionals

We provide detailed derivations of the full conditionals provided in Section 3 in the main text. The m and u parameters are updated through standard multinomial-Dirichlet distributions. For a particular m_{fl} , we have

$$\mathcal{L}(m_{fl}|\gamma, \boldsymbol{u}, \boldsymbol{Z}, \pi) \propto \prod_{i=1}^{n_A} \prod_{j=1}^{n_B} m_{fl}^{I(Z_j=i)I(\gamma_{ij}^f=l)I_{obs}(\gamma_{ij}^f)} m_{fl}^{\alpha_{fl}-1} = m_{fl}^{\alpha_{fl}(\boldsymbol{Z})-1}, \quad (1)$$

where $\alpha_{fl}(\boldsymbol{Z}) = \alpha_{fl} + \sum_{i=1}^{n_A} \sum_{j=1}^{n_B} I_{obs}(\gamma_{ij}^f) I(\gamma_{ij}^f = l) I(Z_j = i)$. Analogous procedures lead to $\mathcal{L}(u_{fl}|\gamma, \boldsymbol{m}, \boldsymbol{Z}, \pi) \propto u_{fl}^{\beta_{fl}(\boldsymbol{Z})-1}$, where $\beta_{fl}(\boldsymbol{Z}) = \beta_{fl} + \sum_{i=1}^{n_A} \sum_{j=1}^{n_B} I_{obs}(\gamma_{ij}^f) I(\gamma_{ij}^f = l) I(Z_j \neq i)$. Thus, for the vectors of parameters \boldsymbol{m}_f and \boldsymbol{u}_f , we have

$$\boldsymbol{m}_f^{(s+1)}|\gamma, \boldsymbol{Z}^{(s)}, \boldsymbol{u}^{(s)}, \pi^{(s)} \sim \text{Dirichlet}(\alpha_{f1}(\boldsymbol{Z}^{(s)}), \dots, \alpha_{fL_f}(\boldsymbol{Z}^{(s)})),$$
 (2)

$$\boldsymbol{u}_f^{(s+1)}|\gamma, \boldsymbol{Z}^{(s)}, \boldsymbol{m}^{(s)}, \pi^{(s)} \sim \text{Dirichlet}(\beta_{f1}(\boldsymbol{Z}^{(s)}), \dots, \beta_{fL_f}(\boldsymbol{Z}^{(s)})).$$
 (3)

Since π encodes the rate of matching across the two data files, the full conditional $p(\pi|\gamma, \mathbf{Z}, \mathbf{m}, \mathbf{u}, \alpha_{\pi}, \beta_{\pi})$ depends only on the number of links $n_{AB}(\mathbf{Z}) = \sum_{j=1}^{n_B} I(Z_j \leq n_A)$ encoded by \mathbf{Z} and hyperparameters. We have the full conditional

$$p(\pi|\gamma, \mathbf{Z}, \mathbf{m}, \mathbf{u}) \propto p(\mathbf{Z}|\pi)p(\pi)$$
 (4)

$$\propto \pi^{n_{AB}(\mathbf{Z})} (1-\pi)^{n_B-n_{AB}(\mathbf{Z})} \pi^{\alpha_{\pi}-1} (1-\pi)^{\beta_{\pi}-1}$$
 (5)

$$\propto \pi^{n_{AB}(\mathbf{Z}) + \alpha_{\pi} - 1} (1 - \pi)^{n_A - n_{AB}(\mathbf{Z}) + \beta_{\pi} - 1}.$$
 (6)

- 6 Thus, $\pi^{(s+1)}|\gamma, \mathbf{Z}^{(s)}, \mathbf{m}^{(s+1)}, \mathbf{u}^{(s+1)}$ has a Beta $(n_{AB}(\mathbf{Z}^{(s)}) + \alpha_{\pi}, n_{B} n_{AB}(\mathbf{Z}^{(s)}) + \beta_{\pi})$
- distribution.

Due to the independence in the fast beta prior in (5), we can obtain the full conditional for Z through the full conditionals for each individual Z_j . Let $\Gamma_{.j}$ denote the random matrix of n_A comparison vectors relating to an arbitrary record B_j , and let $\gamma_{.j}$ be a realization of $\Gamma_{.j}$. We have

$$p(\boldsymbol{Z}|\gamma, \boldsymbol{m}, \boldsymbol{u}, \pi) = \prod_{j=1}^{n_B} p(Z_j|\gamma_{.j}, \boldsymbol{m}, \boldsymbol{u}, \pi).$$
 (7)

^{*}Department of Statistical Science, Duke University, P.O. Box 90251, Durham, NC 27708, USA brian.kundinger@duke.edu, jreiter@duke.edu, beka@stat.duke.edu

2 Efficient and Scalable Bipartite Matching with Fast Beta Linkage (fabl)

Following the observation of Wortman (2019), when B_j does not link to any record in A, the contribution to the likelihood is simply a product of u parameters, which we will call c_j :

$$p(\Gamma_{.j}|\boldsymbol{m}, \boldsymbol{u}, \pi, Z_j = n_A + j) = \prod_{i=1}^{n_A} \prod_{f=1}^F \prod_{l=1}^{L_f} u_{fl}^{I(\gamma_{ij}^f = l)I_{obs}(\gamma_{ij}^f)} = c_j.$$
 (8)

When $Z_j = q$ for some $q \leq n_A$, we have

$$p(\Gamma_{.j}|\boldsymbol{m},\boldsymbol{u},\pi,Z_{j}=q) = \prod_{f=1}^{F} \prod_{l=1}^{L_{f}} m_{fl}^{I(\gamma_{qj}^{f}=l)I_{obs}(\gamma_{qj}^{f})} \prod_{i \neq q} \prod_{f=1}^{F} \prod_{l=1}^{L_{f}} u_{fl}^{I(\gamma_{ij}^{f}=l)I_{obs}(\gamma_{ij}^{f})}.$$
 (9)

We multiply and divide by the u parameters for the matching record pair to obtain

$$p(\Gamma_{.j}|\boldsymbol{m},\boldsymbol{u},\pi,Z_{j}=q) = \prod_{f=1}^{F} \prod_{l=1}^{L_{f}} \left(\frac{m_{fl}}{u_{fl}}\right)^{I(\gamma_{qj}^{f}=l)I_{obs}(\gamma_{qj}^{f})} \prod_{i=1}^{n_{A}} \prod_{f=1}^{F} \prod_{l=1}^{L_{f}} u_{fl}^{I(\gamma_{ij}^{f}=l)I_{obs}(\gamma_{ij}^{f})}$$
(10)
= $w_{qj}c_{j}$.

Lastly, we multiply the likelihood by the fast beta prior in (5) in the main text, and divide by c_i to obtain the full conditional

$$p\left(Z_{j}^{(s+1)} = q | \gamma, \boldsymbol{m}^{(s+1)}, \boldsymbol{u}^{(s+1)}, \boldsymbol{\pi}^{(s+1)}\right) \propto \begin{cases} \frac{\pi^{(s+1)}}{n_{A}} w_{qj}^{(s+1)}, & q \leq n_{A}; \\ 1 - \pi^{(s+1)}, & q = n_{A} + j. \end{cases}$$
(12)

Supplement B: Bayes Estimate

We calculate a Bayes estimate \hat{Z} for the linkage parameter Z by assigning different positive losses to different types of errors, and minimizing posterior expected loss. We adopt the loss function proposed in Sadinle (2017) in which $\hat{Z}_j \in \{1, \dots, n_A, n_A + j, R\}$, with R representing the option to leave the matching undetermined by the model. Specifically, we have

$$L(\hat{Z}_{j}, Z_{j}) = \begin{cases} 0, & \text{if } Z_{j} = \hat{Z}_{j}; \\ \theta_{R}, & \text{if } \hat{Z}_{j} = R; \\ \theta_{10}, & \text{if } Z_{j} \leq 1, \hat{Z}_{j} = n_{A} + j; \\ \theta_{01}, & \text{if } Z_{j} = n_{A} + j, \hat{Z}_{j} \leq n_{A}; \\ \theta_{11}, & \text{if } Z_{j} \leq n_{A}, \hat{Z}_{j} \leq n_{A}, Z_{j} \neq \hat{Z}_{j}. \end{cases}$$

$$(13)$$

Here, θ_R is the loss from not making a decision on the linkage status, θ_{10} is the loss from a false nonmatch, θ_{01} is the loss from a false match, and θ_{11} is the loss from the special case of a false match in which the record has a true match other than the one estimated by the model.

In general, we follow Sadinle (2017) and set $(\theta_{10}, \theta_{01}, \theta_{11}, \theta_R) = (1, 1, 2, \infty)$ inducing

$$\hat{Z}_j = \begin{cases} i, & \text{if } p(Z_j = i|\gamma) > \frac{1}{2}; \\ 0, & \text{otherwise.} \end{cases}$$
 (14)

Since fabl does not strictly enforce one-to-one matching, it is possible for this Bayes estimate to link multiple records in B to one record in A. In the event that we have two 14 records B_j and $B_{j'}$ such that both $p(\hat{Z}_j = i|\gamma) > \frac{1}{2}$ and $p(\hat{Z}_{j'} = i|\gamma) > \frac{1}{2}$, we accept the match with the higher posterior probability, and declare the other to have no match. Since each Z_j is independent, this is equivalent to minimizing the expected loss subject to the constraint that $\hat{Z}_j \neq \hat{Z}_{j'}$ for all $j \neq j'$. A similar approach appears in the most probable maximal matching sets used by Steorts et al. (2016) to match records to latent entities.

When we seek a partial estimate of the linkage structure, leaving a portion of record pairs to be classified manually in clerical review, we adopt losses $(\theta_{10}, \theta_{01}, \theta_{11}, \theta_{R}) =$ (1,1,2,1). For a more in-depth explanation of this function and the induced Bayes estimate, see Sadinle (2017).

Supplement C: Traceplots for Simulation Study

15 16

17

19

20

21

24

Figures 1, 2, and 3 are traceplots for one of the 900 linkage tasks that comprise the simulation in Section 5.2 in the main text. It is set up with one error across the linkage fields and 50 duplicates across files. Traceplots across other settings exhibit similar behavior. Note that traceplots for u parameters show very little variation because the overwhelming majority of record pairs are nonmatching.

4 Efficient and Scalable Bipartite Matching with Fast Beta Linkage (fabl)

Figure 1: Representative traceplot of overlap between files from simulation study in Section 5.2 in the main text.

Figure 2: Representative traceplot of \boldsymbol{m} parameters from simulation study in Section 5.2 in the main text.

Figure 3: Representative traceplot of \boldsymbol{u} parameters from simulation study in Section 5.2 in the main text.

Supplement D: Accuracy under Partial Estimates

In this section, we repeat the simulation study in Section 5.2 in the main text, allowing for clerical review rather than forcing all records to have or not have links. Specifically, 33 by leaving $\theta_{10} = \theta_{01} = 1$ and $\theta_{11} = 2$, but setting $\theta_R = 0.1$, we allow the model to decline to decide a match for certain records, with nonassignment being 10% as 35 costly as a false match. In this context, we are no longer focused on finding all true 36 matches, but rather protecting against false matches. Thus, instead of recall, we use the 37 negative predictive value (NPV), defined as the proportion of non-links that are actual nonmatches. Mathematically, NPV = $\sum_{j=1}^{n_B} I(\hat{Z}_j = Z_j = n_A + j) / \sum_{j=1}^{n_B} I(\hat{Z}_j = n_A + j)$. We continue to use the precision, which is renamed the positive predictive value (PPV) 39 40 in this context. Lastly, we also examine the rejection rate (RR), or how often the model 41 declines to make a linkage decision, defined as RR = $\sum_{j=1}^{n_B} I(\hat{Z}_j = R)/n_B$. To convey 42 this information alongside NPV and PPV, for which values close to 1 indicate strong 43 performance, we report the decision rate (DR), defined as DR = 1 - RR. 44

In Figure 4, we see that fabl maintains equivalently strong PPV as BRL across all linkage settings. However, with high amounts of error, and thus fewer accurate and discerning fields of information, the rejection rate under fabl rises, leading to a decrease in NPV. Since fabl does not remove previously matched records from consideration for a new record, posterior probabilities of matches at times can be split across more records; in contrast, BRL is able to maintain higher confidence in matches in this setting. If one wishes to use partial estimates, fabl will possibly leave more linkages for the modeler to match by hand than would be left under BRL, but the decisions made by each method should have nearly equal accuracy.

46

47

48

50

51

52

Figure 4: Negative predictive value (NPV), positive predictive value (PPV), and decision rate (DR) on data files in the simulation in Supplement D. We see poorer performance for fabl only in situations with high overlap.

4 Supplement E: Additional Speed Simulation Study

Figures 5a and 5b illustrate that different constructions of the comparison vectors lead to similar speed gains. We replicate the speed study of Section 5.1 in the main text under different settings. Here, we use four fields of comparison, each with three possible levels of agreement, resulting in $3^4 = 81$ possible patterns. The m and u parameters for this simulation are shown in Table 1.

		m			$oldsymbol{u}$	
	Agree	Partial	Disagree	Agree	Partial	Disagree
Feature 1	9 10	$\frac{9}{100}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{3}{100}$	$\frac{96}{100}$
Feature 2	$\frac{19}{10}$	$\frac{190}{100}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{13}{100}$	$\frac{96}{100}$
Feature 3	$\frac{9}{10}$	$\frac{190}{100}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{130}{100}$	90
Feature 4	$\frac{9}{10}$	$\frac{190}{100}$	$\frac{100}{100}$	$\frac{100}{100}$	$\frac{130}{100}$	$\frac{100}{96}$ $\overline{100}$

Table 1: Probabilities used for m and u distributions in simulation study in Supplement E.

Figure 5: Run-time for BRL and fabl to run 1000 Gibbs iterations in simulations described in Supplement E. In (5a), both n_A and n_B are increasing. We see quadratic growth in BRL and linear growth in fabl. In (5b), only n_A only is increasing. We see linear growth in BRL and approximately constant run-time in fabl.

50 Supplement F: Traceplots for El Salvador Case Study

Figure 6: Traceplots for parameters of interest in El Salvador case study in Section 6.1 in the main text.