II. Mechanistic Model of Receptive Fields

→ The Question: How are receptive fields constructed using the neural circuitry of the visual cortex?

How are these *oriented* receptive fields obtained from *center-surround* receptive fields?

II. Mechanistic Model of Receptive Fields: V1

II. Mechanistic Model of Receptive Fields: V1

Model suggested by

<u>Hubel & Wiesel</u> in the

1960s: V1 RFs are

created from converging

LGN inputs

Center-surround LGN RFs are displaced along preferred orientation of V1 cell

This simple model is still controversial!

→ The Question: Why are receptive fields in V1 shaped in this way?

What are the computational advantages of such receptive fields?

- ★ Efficient Coding Hypothesis: Suppose the goal is to represent images as faithfully and efficiently as possible using neurons with receptive fields RF₁, RF₂, etc.
- → Given image I, we can reconstruct I using neural responses $r_1, r_2 ...$:

$$\hat{\mathbf{I}} = \sum_{i} \mathbf{R} \mathbf{F}_{i} r_{i}$$

→ *Idea*: What are the \mathbf{RF}_i that *minimize* the total squared pixelwise errors between \mathbf{I} and $\hat{\mathbf{I}}$ and are as *independent* as possible?

 \mathbf{RF}_1

 \mathbf{RF}_2

 \mathbf{RF}_3

 \mathbf{RF}_4

◆ Start out with random **RF**_i and run your efficient coding algorithm on natural image patches

Natural Images

Receptive Field Size

Sparse coding

ICA

Predictive coding

(Olshausen & Field, 1996; Bell & Sejnowski, 1997; Rao & Ballard, 1999)

Receptive Fields in V1

Conclusion: The brain may be trying to find *faithful and* efficient representations of an animal's natural environment

We will explore a variety of *Descriptive*, *Mechanistic*, and *Interpretive* models throughout this course.

But before we do that...

Neurobiology 101: Introduction to neurons, synapses, and brain regions

[Next Lecture]