Crypto news?

Blockchain Structure

What is blockchain?

- A blockchain is an append-only data structure that records information in history
 - Append-only items can be added, but cannot be changed or removed at any time
- A blockchain is split into blocks that chain together to make the entire structure, hence the name

Why is an append-only blockchain important for Bitcoin?

- To prevent fraudulent transactions
- Prevent people from creating their own coins
- Keep people from reversing transactions or double-spending their currency

How does bitcoin's blockchain achieve append-only?

• SHA-256

- SHA-256 is a powerful one-way hash function used to give a unique identifier to each block on the blockchain
- One-way easy to hash x to y, but nearly impossible to retrieve the original value x from given hash value y

Key properties of SHA-256

- Pre-image resistance given hash value h, difficult to find data d such that hash(d) = h
- Collision resistance given data d_1 , difficult to find data d_2 such that hash (d_1) = hash (d_2) (also known as second-preimage resistance)
- Bitcoin uses SHA-256 applied twice to achieve this

Why use SHA-256?

- Security It's nearly impossible to break SHA-256, which keeps transactions safe and secure on the network
- Difficulty takes a lot of computing power to find the right hash for a block, since similar inputs give vastly different hashes
- Verification anyone can verify the validity of a block by simply re-computing the hash of that block
 - Keeps network efficient and secure because running the block through SHA-256 with the published information is easy and quick.
 - Why does this contribute to network efficiency?

Transactions Hashed in a Merkle Tree

- Three main parts
 - There are other smaller parts of metadata that we won't discuss here
- Previous block hash
- List of Transactions
- Nonce (also known as the "winning" nonce)

- Previous block hash
 - The previous block will have a hash that has been published to the network
 - Why does including the previous hash increase security?
 - O How to choose a previous block hash?
 - More on this next week when we discuss miners

- List of Transactions
 - Arguably most important part of the block (and the whole reason people are using bitcoin)
 - Transactions are included in the block
 - Merkle Tree hash-based binary tree of transactions
 - Including every transaction would take up a huge amount of space how to fix this?
 - Pruning does bitcoin actually do this?

Nonce

- o 32-bit integer that is included in the block
- The nonce will hash together with the previous block hash and merkle root to create the block's hash
- A block hash is valid if it is less than a certain target, which usually means starting with a certain number of 0-bits (i.e., the hash must look like 0x000000023FB23..., **not** 0x12FD23A123...)
 - Small exceptions to this
- o If the block has the correct hash, we call that nonce the "winning" nonce
- O How hard is it to find a nonce?
- Nonces will come up more next week when we talk about proof-of-work

How does Bitcoin use blocks to create a ledger?

- Each block is linked to the block immediately before it using the previous block hash
 - Allows for the creation of a chain of confirmed transactions, which we call the ledger
 - Allows storage of a shortened version of the blockchain
 - Why?
- What does Bitcoin's blockchain look like?

Longest Proof-of-Work Chain

Block #503123

Summary	
Number Of Transactions	1843
Output Total	25,998.372202 BTC
Estimated Transaction Volume	827.6475434 BTC
Transaction Fees	3.84366596 BTC
Height	503123 (Main Chain)
Timestamp	2018-01-08 05:29:24
Difficulty	1,931,136,454,487.72
Bits	402690497
Size	1346.127 kB
Weight	3992.547 kWU
Version	0x20000000
Nonce	2012100985
Block Reward	12.5 BTC

Hashes	
Hash	000000000000000000625fd5bca9257adaa35322d5b80f19bfe220afed2a5e2f
Previous Block	000000000000000000055de8b682750c3e19fd9ea037ef166d9d95332b7801465
Next Block(s)	00000000000000000002dec13df128d2f543d5f52a7386c4bedd4783a861c5b80
Merkle Root	2e1f51c92493079c00432ca9db5cebf7e1e260175b10485b637b6421d4a4415a

Blockchain Structure Summary

- A valid block consists of three main parts, the previous block's hash, the list of transactions, and the 'winning' nonce
- Blocks, and the transactions that they contain, are verified and confirmed using the SHA-256 hashing algorithm
- These confirmed blocks are strung together in a deliberate structure to form a ledger known as the 'blockchain'

Codelab 1

- Codelab 1 out tonight
- Due 11:59 PM on 09/21
- Project is to build a valid block based on a previous block hash and list of transactions
- You will need to build a merkle tree in order to do this!
- Valid block hashes will need 2 leading zeros, which can be achieved by using a nonce between 1 and 100,000 (in the case of this codelab)
- More details will be on the github page when we release the project

Questions?