10/088771 JP00/06375

庁 日 PATENT OFFICE

19.09.00

JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて

いる事項と同一であることを証明する。 This is to certify that the annexed is a true copy of the following application as filed

with this Office.

REC'D 0 6 NOV 2000

出願年月日 Date of Application: 1999年 9月20日

PCT WIPO

顖 Application Number: 平成11年特許顯第266298号

人 出 Applicant (s):

武田薬品工業株式会社

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年10月20日

特許庁長官 Commissioner, Patent Office

【書類名】

特許願

【整理番号】

A99180

【提出日】

平成11年 9月20日

【あて先】

特許庁長官

殿

【国際特許分類】

C07C211/03

【発明の名称】

メラニン凝集ホルモン拮抗剤

【請求項の数】

12

【発明者】

【住所又は居所】

兵庫県川西市丸山台2丁目2番地40

【氏名】

加藤 金芳

【発明者】

【住所又は居所】

大阪府池田市鉢塚3丁目3番5-204号

【氏名】

寺内 淳

【発明者】

【住所又は居所】

茨城県つくば市春日1丁目7番地9 武田春日ハイツ7

02号

【氏名】

森 正明

【発明者】

【住所又は居所】

茨城県つくば市大字谷田部1077番地50

【氏名】

鈴木 伸宏

【発明者】

【住所又は居所】

茨城県つくば市松代3丁目12番地1 武田薬品松代レ

ジデンス605号

【氏名】

下村 行生

【発明者】

【住所又は居所】

茨城県つくば市梅園2丁目5番地3 梅園スクエアB棟

305号

【氏名】

竹河 志郎

【特許出願人】

【識別番号】

000002934

【氏名又は名称】

武田薬品工業株式会社

【代理人】

【識別番号】

100073955

【弁理士】

【氏名又は名称】

朝日奈 忠夫

【選任した代理人】

【識別番号】

100110456

【弁理士】

【氏名又は名称】 内山 務

【手数料の表示】

【予納台帳番号】

005142

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 9000053

【包括委任状番号】 9721047

【プルーフの要否】

【発明の名称】メラニン凝集ホルモン拮抗剤

【特許請求の範囲】

【請求項1】式

【化1】

$$Ar^{1}-X-Ar-Y-N < R^{2}$$
 (1)

[式中、 Ar^1 は置換基を有していてもよい芳香族基を;

XおよびYは同一または異なって主鎖の原子数1ないし6のスペーサーを; Arは4ないし8員非芳香環と縮合していてもよく、さらに置換基を有していてもよ い単環式芳香環を;

 R^1 および R^2 は水素原子または置換基を有していてもよい C_{1-6} アルキルを示すか、 R^1 と R^2 とは隣接する窒素原子ともに置換基を有していてもよい含窒素複素環を形成し、 R^2 はArとともにスピロ環を形成していてもよい]で表される化合物またはその塩を含有してなるメラニン凝集ホルモン拮抗剤。

【請求項2】Ar¹で示される芳香族基が、炭素数6ないし14の単環式または縮合多環式芳香族炭化水素基である請求項1記載の剤。

【請求項3】Ar¹で示される芳香族基が、炭素数6ないし14の単環式または縮合多環式芳香族炭化水素が2または3個単結合で直結した芳香環集合体から任意の水素原子1個を除いた基である請求項1記載の剤。

【請求項4】 Ar^1 が、置換基を有していてもよい C_{7-19} アラルキルオキシ;置換基を有していてもよい C_{6-14} アリールオキシ;置換基を有していてもよい C_{6-14} アリールーカルボニル;置換基を有していてもよい C_{6-14} アリールーカルバモイル;置換基を有していてもよい芳香族複素環カルバモイル;置換基を有していてもよい C_{7-19} アラルキルーカルボキサミド;置換基を有していてもよい芳香族複素環ーカルボキサミド;置換基を有していてもよい芳香族複素環ーカルボキサミド;N-(置換基を有していてもよい C_{6-14} アリールーカルボニル) $-N-C_{1-6}$ アルキルアミノ;置換基を有していてもよい C_{6-14} アリールアミノカルボニルアミノ

;置換基を有していてもよい C_{6-14} アリールスルホニルアミノ;および置換基を有していてもよい C_{6-14} アリールーカルボニルオキシから選ばれる置換基をそれぞれ1または2個有していてもよいフェニルまたはビフェニリルである請求項1記載の剤。

【請求項 5】 X および Y で示される主鎖の原子数 1 ないし 6 のスペーサーが、- 0-、-S-、-C0-、-S0-、 $-S0_2-$ 、 $-NR^8-$ (R^8 は水素原子、ハロゲン化されていてもよい C_{1-6} アルキル、ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル、ハロゲン化されていてもよい C_{1-6} アルキルスルホニル)およびハロゲン化されていてもよい2 価の C_{1-6} 非環式炭化水素基から選ばれる1 ないし3 個からなる2 価基である請求項 1 記載の剤。

【請求項6】Arが式

【化2】

[式中、nは1ないし4の整数を示す]で表される環である請求項1記載の剤。

【請求項7】 R^1 および R^2 がそれぞれ C_{1-6} アルキルである請求項1記載の剤。

【請求項8】メラニン凝集ホルモンに起因する疾患の予防・治療剤である請求項 1記載の剤。

【請求項9】肥満症の予防・治療剤である請求項1記載の剤。

【請求項10】式

[化3]

$$Ar^{1}-CONH-Y-N < R^{1}$$

[式中、 Ar^1 は置換基を有していてもよい芳香族基を;

Yは主鎖の原子数1ないし6のスペーサーを;

 R^1 および R^2 は水素原子または置換基を有していてもよい C_{1-6} アルキルを示すか、 R^1 と R^2 とは隣接する窒素原子ともに置換基を有していてもよい含窒素複素環を形

成していてもよい] で表される化合物(ただし、N-[2-(N,N-i)メチルアミノ)メチル-6-テトラリニル] -4-ピフェニリルカルボキサミドを除く)またはその塩。

【請求項11】請求項10記載の化合物またはその塩を含有してなる医薬組成物

【請求項12】請求項10記載の化合物のプロドラッグ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、肥満症の予防・治療剤などとして有用なメラニン凝集ホルモン拮抗剤に関する。

[0002]

【従来の技術】

摂食行動はヒトを含め、多くの生物にとって、欠くことの出来ない行為である。そのため、摂食行動に異常をきたすと正常な生命活動に狂いが生じ、疾患につながる場合が多い。近年、食事環境の変化に伴い、肥満が社会的な問題になりつつある。肥満はさらに糖尿病、高血圧、動脈硬化症などの生活習慣病の重大なリスクファクターであるだけでなく、体重増加が膝などの関節に過度の負担を与えることにより、関節炎や疼痛をもたらすことも広く知られている。また、ダイエットブームなどにより、減量を望む潜在人口も多い。一方、遺伝的あるいはストレスなどの神経症などが原因で起きる過食症などの摂食障害も多数報告されている。

[0003]

そのため、肥満の予防・治療剤あるいは摂食抑制剤の開発研究が古くから活発 に進められており、中枢性食欲抑制薬としてはマジンドール(mazindol)が市販さ れている。

一方、レプチンに代表される食欲調節因子が最近数多く見いだされつつあり、 これらの食欲調節因子の働きを制御する新たな抗肥満薬あるいは食欲抑制薬の開 発が進められている。なかでもメラニン凝集ホルモン(以下、MCHと略記するこ ともある)は、視床下部由来のホルモンで、食欲亢進作用を有することが知られている。さらに、MCHノックアウトマウスは日常行動が正常であるにもかかわらず、正常マウスと比べて、摂食量が有意に減少し、かつ体重も軽いことが報告されている [ネイチャー (Nature)、396巻、670頁、1998年]。これらのことから、MCH拮抗薬ができれば優れた食欲抑制薬あるいは抗肥満薬になると期待されて

いるが、未だMCH拮抗作用を有する化合物、特に非ペプチド型化合物は知られていない。

[0004]

- 一方、アミン誘導体として、以下の化合物が知られている。
- 1) W098/38156には、βアミロイド蛋白産生・分泌阻害作用を有する式 【化4】

$$Ar - X - A B - Y - N < R^2$$

[式中、Arは置換基を有していてもよい環集合芳香族基または置換基を有していてもよい縮合芳香族基を示し、

Xは結合手などを示し、

Yは酸素原子または硫黄原子を介していてもよく、かつ置換基を有していてもよい 2 価の C_{1-6} 脂肪族炭化水素基を示し、

 R^1 および R^2 はそれぞれ水素原子または置換基を有していてもよい低級アルキルを示し、あるいは R^1 と R^2 は隣接する窒素原子と共に置換基を有していてもよい含窒素複素環を形成し、

A環は式 - X - Ar (式中、各記号は前記と同意義を示す)で表される基の外に置換基をさらに有していてもよいベンゼン環を示し、

B環は、式 - Y - N R R R (式中、各記号は前記と同意義を示す)で表される基の外に置換基をさらに有していてもよい4ないし8 員環を示す。ただし、A環とB環とで形成される縮合環がインドール環のとき、- X - A r (式中、各記号は前記と同意義を示す)で表される基は該インドール環の4 - 、6 - または7 - 位に置換する。]で表される化合物またはその塩が記載されている。

2) W095/32967には、5HT1Dアンタゴニスト活性を有し、食欲不振などの改善が期待される、式

【化5】

[式中、Aは、Rが水素または C_{1-6} アルキルであるCONR;

Qは酸素、窒素または硫黄から選択される1ないし3個のヘテロ原子を含む所望 により置換されていてもよい5ないし7員の複素環;

 R^1 は水素、ハロゲンなど;

 R^2 および R^3 は独立して水素、ハロゲンなど;

 R^4 および R^5 は独立して水素または C_{1-6} アルキル;

 R^6 はハロゲン、ヒドロキシなど;

 R^7 および R^8 は独立して水素、 C_{1-6} アルキルなど;

mは0ないし4:

nは0、1または2である]で示される化合物またはその塩が記載されている。

3) W098/15274には、抗酸化活性を有し、アルツハイマー病などの改善が期待される、式

【化6】

[式中、Arはフェニルなどを;Xは-O-または-S-を;Yは CR^5R^5 '-(R^5 'は Hを、 R^5 は-Hなどを;Zは $-CH_2$ -または-N-を;Rは Hまたは-(C1-C6) アルキルを; R^1 および R^2 は独立して-(C1-C6) アルキルなどを; R^3 は Hなどを; R^4 は水素などを;Rは O ないし 2 の整数を; R^4 は水素などを;Rは O ないし 2 の

いし4の整数を;pは1ないし6の整数を;tは1ないし4の整数を示す]で表される化合物が記載されている。

4) EP533266には、5HT1Dアンタゴニスト活性を有し、食欲不振などの改善が期待される、式

【化7】

$$R^2$$
 A
 $CONH$
 R^3
 R^4

[式中、 R^1 はハロゲンなどを; R^2 はハロゲンなどから選ばれる 1 または 2 個の置換基で置換されていてもよいフェニルを; R^3 は

【化8】

を; R^4 および R^5 は独立して水素、ハロゲンなどを; R^{11} は水素または C_{1-6} アルキルを示す〕で表される化合物が記載されている。

【発明が解決しようとする課題】

肥満症の予防・治療剤などとして有用であり、経口吸収性に優れ、かつ安全なメラニン凝集ホルモン拮抗剤の開発が切望されている。

【課題を解決するための手段】

本発明者らはMCH拮抗作用を有する化合物について鋭意検討を行なった結果、 式

【化9】

$$Ar-Y-N < R^{1}$$

(式中の記号は前記と同意義を示す)で表される化合物に、式:Ar¹-X-(式中

[0007]

すなわち、本発明は、

1) 式

【化10】

$$Ar^{1}-X-Ar-Y-N < R^{1}$$
 (1)

[式中、 Ar^1 は置換基を有していてもよい芳香族基を;

XおよびYは同一または異なって主鎖の原子数1ないし6のスペーサーを; Arは4ないし8員非芳香環と縮合していてもよく、さらに置換基を有していてもよ い単環式芳香環を;

 R^1 および R^2 は水素原子または置換基を有していてもよい C_{1-6} アルキルを示すか、 R^1 と R^2 とは隣接する窒素原子ともに置換基を有していてもよい含窒素複素環を形成し、 R^2 はArとともにスピロ環を形成していてもよい]で表される化合物またはその塩を含有してなるメラニン凝集ホルモン拮抗剤;

- 2) Ar¹で示される芳香族基が、炭素数6ないし14の単環式または縮合多環式 芳香族炭化水素基である前記1)記載の剤;
- 3) Ar¹で示される芳香族基が、炭素数6ないし14の単環式または縮合多環式 芳香族炭化水素が2または3個単結合で直結した芳香環集合体から任意の水素原 子1個を除いた基である前記1) 記載の剤;
- 4) Ar^1 が、置換基を有していてもよい C_{7-19} アラルキルオキシ;置換基を有していてもよい C_{6-14} アリールオキシ;置換基を有していてもよい C_{6-14} アリールーカルボニル;置換基を有していてもよい C_{6-14} アリールーカルバモイル;置換基を有していてもよい芳香族複素環カルバモイル;置換基を有していてもよい C_{6-14} アリールーカルボキサミド;置換基を有していてもよい C_{7-19} アラルキルーカルボキサミド;置換基を有していてもよい芳香族複素環ーカルボキサミド; N ー(置換基を有していてもよい C_{6-14} アリールーカルボニル) $\mathrm{-N}-\mathrm{C}_{1-6}$ アルキルア

ミノ;置換基を有していてもよい C_{6-14} アリールアミノカルボニルアミノ;置換基を有していてもよい C_{6-14} アリールスルホニルアミノ;および置換基を有していてもよい C_{6-14} アリールーカルボニルオキシから選ばれる置換基をそれぞれ1または2個有していてもよいフェニルまたはピフェニリルである前記1)記載の剤;

5) X および Y で示される主鎖の原子数 1 ないし 6 のスペーサーが、-0ー、-Sー、-C0ー、-S02ー、-NR8ー(R8は水素原子、ハロゲン化されていてもよい C_{1-6} アルキル、ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル、ハロゲン化されていてもよい C_{1-6} アルキルスルホニル)およびハロゲン化されていてもよい C_{1-6} 非環式炭化水素基から選ばれる1ないし3個からなる2価基である前記 1)記載の剤;

6) Arが式

【化11】

[式中、nは1ないし4の整数を示す]で表される環である前記1)記載の剤; 7) R^1 および R^2 がそれぞれ C_{1-6} アルキルである前記1)記載の剤;

- 8) メラニン凝集ホルモンに起因する疾患の予防・治療剤である前記1) 記載の 剤;
- 9) 肥満症の予防・治療剤である前記1) 記載の剤;

10)式

【化12】

$$Ar^{1}-CONH-Y-N < R^{1}$$

[式中、 Ar^1 は置換基を有していてもよい芳香族基を;

Yは主鎖の原子数1ないし6のスペーサーを;

 R^1 および R^2 は水素原子または置換基を有していてもよい C_{1-6} アルキルを示すか、

 R^1 と R^2 とは隣接する窒素原子ともに置換基を有していてもよい含窒素複素環を形成していてもよい]で表される化合物(ただし、N-[2-(N,N-i)メチルアミノ)メチル-6-テトラリニル]-4-ビフェニリルカルボキサミドを除く)またはその塩:

- 11) 前記10) 記載の化合物またはその塩を含有してなる医薬組成物;
- 12)前記10)記載の化合物のプロドラッグなどに関する。

[0008]

Ar¹で示される「置換基を有していてもよい芳香族基」における「芳香族基」としては、例えば、単環式芳香族基、縮合芳香族基、環集合芳香族基などが挙げられる。

該単環式芳香族基としては、単環式芳香環から任意の1個の水素原子を除いてできる1価基が挙げられる。該「単環式芳香環」としては、例えばベンゼン環、5または6員芳香族複素環が挙げられる。

[0009]

「5または6員芳香族複素環」としては、例えば、炭素原子以外に窒素原子、硫 黄原子および酸素原子から選ばれるヘテロ原子1個以上(例えば、1~3個)を含む5 または6員芳香族複素環などが挙げられる。具体的には、チオフェン、フラン、ピロール、イミダゾール、ピラゾール、チアゾール、イソチアゾール、オキサゾール、イソオキサゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、1,2,4-オキサジアゾール、1,3,4-オキサジアゾール、1,2,4-チアジアゾール、1,3,4-チアジアゾール、フラザンなどが挙げられる。

[0010]

「単環式芳香族基」の具体例としては、フェニル、2-または3-チエニル、2-3-または4-ピリジル、2-または3-フリル、2-,4-または5-チアゾリル、2-,4-または5-オキサゾリル、1-3-または4-ピラゾリル、2-ピラジニル、2-、4-または5-ピリミジニル、1-,2-または3-ピロリル、1-,2-または4-イミダゾリル、3-または4-ピリダジニル、3-イソチアゾリル、3-イソオキサゾリル、1,2,4-オキサジアゾール-3-イルなどが挙げられる。

201

[0011]

「縮合芳香族基」としては、縮合多環式(好ましくは2ないし4環式、好ましくは2または3環式)芳香環から任意の1個の水素原子を除いてできる1価基を示す。 該「縮合多環式芳香環」としては、縮合多環式芳香族炭化水素、縮合多環式芳香 族複素環などが挙げられる。

該「縮合多環式芳香族炭化水素」としては、例えば、炭素数9ないし14個の縮合多環式(2または3環式)芳香族炭化水素(例、ナフタレン、インデン、フルオレン、アントラセンなど)などが挙げられる。

[0012]

該「縮合多環式芳香族複素環」としては、例えば、炭素原子以外に窒素原子、硫黄原子および酸素原子から選ばれるヘテロ原子を1個以上(例えば、1~4個)を含む9ないし14員、好ましくは9または10員の縮合多環式芳香族複素環などが挙げられる。該「縮合多環式芳香族複素環」の具体例としては、ベンゾフラン、ベンズイミダゾール、ベンズオキサゾール、ベンゾチアゾール、ベンズイソチアゾール、ナフト[2,3-b]チオフェン、イソキノリン、キノリン、インドール、キノキサリン、フェナントリジン、フェノチアジン、フェノキサジン、フタラジン、ナフチリジン、キナゾリン、シンノリン、カルバゾール、βーカルボリン、アクリジン、フェナジン、フタルイミド、チオキサンテンなどが挙げられる。

[0013]

「縮合芳香族基」の具体例としては、1-ナフチル; 2-ナフチル; 2-,3-,4 -,5-または8-キノリル; 1-,3-,4-,5-,6-,7-または8-イソキノリル; 1-,2-,3-,4-,5-,6-または7-インドリル; 1-,2-,4-または5-イソインドリル; 1-,5-まは6-フタラジニル; 2-,3-または5-キノキサリニル; 2-,3-4-,5-または6-ベンゾフラニル; 2-,4-,5-または6-ベンゾチアゾリル; 1-,2-,4-,5-または6-ベンズイミダゾリルなどが挙げられる。

[0014]

「環集合芳香族基」は、2個以上(好ましくは2または3個)の芳香環が単結合で 直結していて、環を直結している結合の数が環系の数より1個少ない芳香環集合 体から任意の水素原子1個を除いた基を意味する。 該芳香環集合体としては、例えば、炭素数 6 ないし1 4 の単環式または縮合多環式芳香族炭化水素 (例、ベンゼン環、ナフタレン環など) および5ないし10員(好ましくは5または6員)芳香族複素環から選ばれる2または3個(好ましくは2個)で形成される芳香環集合体などが挙げられる。

芳香環集合体の好ましい例としては、例えばベンゼン、ナフタレン、ピリジン、

ピリミジン、チオフェン、フラン、チアゾール、イソチアゾール、オキサゾール、1,2,4-オキサジアゾール、1,3,4-オキサジアゾール、1,2,4-チアジアゾール、1,3,4-チアジアゾール、キノリン、インキノリン、インドール、ベンゾチオフェン、ベンズオキサゾール、ベンゾチアゾールおよびベンゾフランから選ばれる2または3個の芳香環からなる芳香環集合体が挙げられる。

[0015]

「環集合芳香族基」の具体例としては、2-,3-または4-ピフェニリル;3-(1ーナフチル)-1,2,4-オキサジアゾール-5-イル;3-(2-ナフチル)-1,2,4-オキサジアゾール-5-イル;3-(2-ナフチル)-1,2,4-オキサジアゾール-5-イル;3-(2-ベンゾフラニル)-1,2,4-オキサジアゾール-5-イル;3-(2-ベンズオキサゾリル)-1,2,4-オキサジアゾール-5-イル;3-(3-インドリル)-1,2,4-オキサジアゾール-5-イル;3-(3-インドリル)-1,2,4-オキサジアゾール-5-イル;3-(2-インドリル)-1,2,4-オキサジアゾール-5-イル;4-フェニルチアゾール-2-イル;4-(2-ベンゾフラニル)チアゾール-2-イル;4-フェニルー1,3-オキサゾール-5-イル;5-フェニルーイソチアゾール-4-イル;5-フェニルオキサゾール-2-イル;4-(2-チェニル)フェニル;4-(3-チェニル)フェニル;3-(3-ピリジル)フェニル;4-(3-ピリジル)フェニル;6-フェニルー3-ピリジル;5-フェニルー1,3,4-オキサジアゾール-2-イル;4-(2-ナフチル)フェニル;4-(2-ベンゾフラニル)フェニル;4,4'ーテルフェニルなどが挙げられる。

[0016]

前記した「芳香族基」のなかでも、「炭素数6ないし14の単環式または縮合多環式芳香族炭化水素基(好ましくはフェニルなど)」および「炭素数6ないし14の単環式または縮合多環式芳香族炭化水素が2または3個単結合で直結した芳香環集合体から任意の水素原子1個を除いた基(好ましくは2-,3-または4-ビ

フェニリルなど)」が好ましい。

[0017]

Ar¹で示される「置換基を有していてもよい芳香族基」における「置換基」としては、例えばオキソ、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、C₁-3アルキレンジオキシ(例、メチレンジオキシ、エチレンジオキシなど)、ニトローシアノ、ハロゲン化されていてもよいC、フルキル、C、フルールオキシーC

、シアノ、ハロゲン化されていてもよい C_{1-6} アルキル、 C_{6-14} アリールオキシーC $_{1-6}$ アルキル(例、フェノキシメチルなど)、 $_{1-6}$ アルキルー $_{6-14}$ アリールー $_{2-6}$ アルケニル(例、メチルフェニルエテニルなど)、ハロゲン化されていてもよい C_3 $_{-6}$ シクロアルキル、ハロゲン化されていてもよい \mathbf{C}_{1-6} アルコキシ、ハロゲン化さ れていてもよい C_{1-6} アルキルチオ、置換基を有していてもよい C_{7-19} アラルキル 、ヒドロキシ、置換基を有していてもよい C_{6-14} アリールオキシ、置換基を有し ていてもよい C_{7-19} アラルキルオキシ、置換基を有していてもよい C_{6-14} アリール ーカルバモイル、アミノ、アミノー C_{1-6} アルキル(例、アミノメチル、アミノエ チル、アミノプロピル、アミノブチルなど)、モノー C_{1-6} アルキルアミノ(例、メ チルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミノ、ブチルアミ ノなど)、ジー C_{1-6} アルキルアミノ(例、ジメチルアミノ、ジエチルアミノ、ジプ ロピルアミノ、ジブチルアミノ、エチルメチルアミノなど)、モノー C_{1-6} アルキ ルアミノー C_{1-6} アルキル(例、メチルアミノメチル、エチルアミノメチル、プロ ピルアミノメチル、イソプロピルアミノエチル、ブチルアミノエチルなど)、ジ $-c_{1-6}$ アルキルアミノー c_{1-6} アルキル(例、ジメチルアミノメチル、ジエチルア ミノメチル、ジプロピルアミノメチル、ジイソプロピルアミノエチル、ジブチル アミノエチルなど)、置換基を有していてもよい5ないし7員飽和環状アミノ、ア シル、アシルアミノ、アシルオキシなどが挙げられる。

Ar¹で示される「芳香族基」は、上記置換基を、芳香族基の置換可能な位置に1ないし5個、好ましくは1ないし3個有していてもよい。また、置換基数が2個以上である場合、各置換基は同一であっても異なっていてもよい。

[0018]

前記「ハロゲン化されていてもよい C_{1-6} アルキル」としては、例えば、1ないし5個、好ましくは1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素

など)を有していてもよい C_{1-6} アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、ヘキシルなど)が挙げられる。具体例としては、メチル、クロロメチル、ジフルオロメチル、トリクロロメチル、トリフルオロメチル、エチル、2ーブロモエチル、2,2-トリフルオロエチル、ペンタフルオロエチル、プロピル、3,3,3-トリフルオロプロピル、イソプロピル、ブチル、4,4,4-トリフルオロブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、5,5-トリフルオロペンチル、ヘキシル、6,6,6-トリフルオロヘキシルなどが挙げられる。

[0019]

前記「ハロゲン化されていてもよいC₃₋₆シクロアルキル」としては、例えば、1ないし5個、好ましくは1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)を有していてもよいC₃₋₆シクロアルキル(例、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなど)などが挙げられる。具体例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロペンチル、4・4ージクロロシクロヘキシル、2,2,3,3ーテトラフルオロシクロペンチル、4ークロロシクロヘキシルなどが挙げられる。

[0020]

前記「ハロゲン化されていてもよい C_{1-6} アルコキシ」としては、例えば、1ないし5個、好ましくは1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)を有していてもよい C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシなど)などが挙げられる。具体例としては、例えば、メトキシ、ジフルオロメトキシ、トリフルオロメトキシ、エトキシ、2,2,2ートリフルオロエトキシ、プロポキシ、イソプロポキシ、ブトキシ、4,4,4ートリフルオロブトキシ、イソブトキシ、secーブトキシ、ペンチルオキシ、ヘキシルオキシなどが挙げられる。

[0021]

前記「ハロゲン化されていてもよい C_{1-6} アルキルチオ」としては、例えば、1ないし5個、好ましくは1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ

素など)を有していてもよいC₁₋₆アルキルチオ(例、メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、secーブチルチオ、tertーブチルチオなど)などが挙げられる。具体例としては、例えばメチルチオ、ジフルオロメチルチオ、トリフルオロメチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、4,4,4-トリフルオロブチルチオ、ペンチルチオ、ヘキシルチオなどが挙げられる。

[0022]

前記「置換基を有していてもよい C_{7-19} アラルキル」における「 C_{7-19} アラルキル」としては、例えば、ベンジル、フェネチル、ジフェニルメチル、トリフェニルメチル、1ーナフチルメチル、2ーナフチルメチル、2,2ージフェニルエチル、3ーフェニルプロピル、4ーフェニルブチル、5ーフェニルペンチルなどが挙げられる。なかでもベンジルなどが好ましい。

[0023]

前記「置換基を有していてもよい C_{7-19} アラルキル」における「置換基」とし ては、例えば、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、 ${
m C}_{1 ext{-}3}$ アル キレンジオキシ(例、メチレンジオキシ、エチレンジオキシなど)、ニトロ、シア ノ、ハロゲン化されていてもよい C_{1-6} アルキル、ハロゲン化されていてもよい C_3 $_{-6}$ シクロアルキル、ハロゲン化されていてもよい C_{1-6} アルコキシ、ハロゲン化さ れていてもよい C_{1-6} アルキルチオ、ヒドロキシ、アミノ、モノー C_{1-6} アルキルア ミノ(例、メチルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミノ 、ブチルアミノなど)、ジー C_{1-6} アルキルアミノ(例、ジメチルアミノ、ジエチル アミノ、ジプロピルアミノ、ジブチルアミノ、エチルメチルアミノなど)、アミ ノー C_{1-6} アルキル(例、アミノメチル、アミノエチル、アミノプロピル、アミノ ブチルなど)、モノーC₁₋₆アルキルアミノーC₁₋₆アルキル(例、メチルアミノメチ ル、エチルアミノメチル、プロピルアミノメチル、イソプロピルアミノエチル、 ブチルアミノエチルなど)、ジー C_{1-6} アルキルアミノー C_{1-6} アルキル(例、ジメチ ルアミノメチル、ジエチルアミノメチル、ジプロピルアミノメチル、ジイソプロ ピルアミノエチル、ジブチルアミノエチルなど)、ホルミル、カルボキシ、カル バモイル、チオカルバモイル、ハロゲン化されていてもよい C_{1-6} アルキルーカル

ボニル、 C_{1-6} アルコキシーカルボニル(例、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、tert-ブトキシカルボニルなど)、モノー C_{1-6} アルキルーカルバモイル(例、メチルカルバモイル、エチルカルバモイルなど)、ジー C_{1-6} アルキルーカルバモイル(例、ジメチルカルバモイル、ジエチルカルバモイル、エチルメチルカルバモイルなど)、ハロゲン化されていてもよい C_{1-6} ア

ルキルスルホニル、ホルミルアミノ、ハロゲン化されていてもよい C_{1-6} アルキルーカルボキサミド、 C_{1-6} アルコキシーカルボキサミド(例、メトキシカルボキサミド、プロポキシカルボキサミド、ブトキシカルボキサミド、プロポキシカルボキサミド、ブトキシカルボキサミド、プロポキシカルボキサミド、ブトキシカルボキサミドなど)、 C_{1-6} アルキルーカルボニルオキシ(例、アセトキシ、プロパノイルオキシなど)、 C_{1-6} アルコキシーカルボニルオキシ(例、メトキシカルボニルオキシ、エトキシカルボニルオキシ、プロポキシカルボニルオキシ、ブトキシカルボニルオキシなど)、モノー C_{1-6} アルキルーカルバモイルオキシ(例、メチルカルバモイルオキシ、ジェチルカルバモイルオキシ、ジェチルカルバモイルオキシなど)などが挙げられる。置換基の数は、例えば1ないし5個、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一であっても異なっていてもよい。

[0024]

ここで、「ハロゲン化されていてもよい C_{1-6} アルキル」、「ハロゲン化されていてもよい C_{3-6} シクロアルキル」、「ハロゲン化されていてもよい C_{1-6} アルコキシ」、「ハロゲン化されていてもよい C_{1-6} アルキルチオ」としては、それぞれ前記「置換基を有していてもよい芳香族基」における「置換基」として例示したものが用いられる。

[0025]

前記「ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル」としては、例えば、1ないし5個、好ましくは1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)を有していてもよい C_{1-6} アルキルーカルボニル(例、アセチル、プロパノイル、ブタノイル、ペンタノイル、ヘキサノイルなど)などが挙げら

れる。具体例としては、例えば、アセチル、モノクロロアセチル、トリフルオロ アセチル、トリクロロアセチル、プロパノイル、ブタノイル、ペンタノイル、ヘ キサノイルなどが挙げられる。

[0026]

前記「ハロゲン化されていてもよいC₁₋₆アルキルスルホニル」としては、例えば、1ないし5個、好ましくは1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)を有していてもよいC₁₋₆アルキルスルホニル(例、メチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、ブチルスルホニル、sec-ブチルスルホニル、tert-ブチルスルホニルなど)などが挙げられる。具体例としては、例えばメチルスルホニル、ジフルオロメチルスルホニル、トリフルオロメチルスルホニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、ブチルスルホニル、ブチルスルホニル、ブナルスルホニル、ブ・リフルオロブチルスルホニル、ペンチルスルホニル、ベンチルスルホニル、ヘキシルスルホニルなどが挙げられる。

[0027]

前記「ハロゲン化されていてもよいC₁₋₆アルキルーカルボキサミド」としては、例えば、1ないし5個、好ましくは1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)を有していてもよいC₁₋₆アルキルーカルボキサミド(例、アセトアミド、プロパンアミド、ブタンアミドなど)などが挙げられる。具体例としては、例えばアセトアミド、トリフルオロアセトアミド、プロパンアミド、ブタンアミドなどが挙げられる。

[0028]

前記「置換基を有していてもよい C_{6-14} アリールオキシ」における「 C_{6-14} アリールオキシ」としては、例えば、フェニルオキシ、1ーナフチルオキシ、2ーナフチルオキシなどが挙げられる。

前記「置換基を有していてもよい C_{7-19} アラルキルオキシ」における「 C_{7-19} アラルキルオキシ」としては、例えば、ベンジルオキシ、フェネチルオキシ、ジフェニルメチルオキシ、トリフェニルメチルオキシ、1-ナフチルメチルオキシ、2-ナフチルメチルオキシ、2,2-ジフェニルエチルオキシ、3-フェニルプロピルオキシ、4-フェニルブチルオキシ、5-フェニルペンチルオキシなどが挙げられ

る。

[0029]

該「置換基を有していてもよいC₆₋₁₄アリールオキシ」、「置換基を有していてもよいC₇₋₁₉アラルキルオキシ」、「置換基を有していてもよいC₆₋₁₄アリールーカルバモイル」における「置換基」としては、前記「置換基を有していてもよいC₇₋₁₉アラルキル」における「置換基」として例示したものが用いられる。置換基の数は、例えば1ないし5個、好ましくは1ないし3個である。また、置換基数が2個以上の場合、各置換基は同一であっても異なっていてもよい。

[0030]

前記「置換基を有していてもよい5ないし7員飽和環状アミノ」における「5ないし7員飽和環状アミノ」としては、例えば、モルホリノ、チオモルホリノ、ピペラジンー1ーイル、ピペリジノ、ピロリジンー1ーイルなどが挙げられる。該「5ないし7員飽和環状アミノ」は、ベンゼン環と縮合していてもよい。

該「置換基を有していてもよい5ないし7員飽和環状アミノ」における「置換基」としては、例えば、オキソ、ハロゲン化されていてもよい C_{1-6} アルキル、ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル、ハロゲン化されていてもよい C_{1-6} アルキルスルホニル、置換基を有していてもよい C_{6-14} アリール、置換基を有していてもよい C_{7-19} アラルキル、置換基を有していてもよい C_{6-14} アリールーカルボニル、置換基を有していてもよい5ないし10員芳香族複素環基などが挙げられる。置換基の数は、例えば1ないし5個、好ましくは1ない13個である。また、置換基数が12個以上の場合、各置換基は同一であっても異なっていてもよい

[0031]

ここで、「ハロゲン化されていてもよい C_{1-6} アルキル」、「置換基を有していてもよい C_{7-19} アラルキル」としては、それぞれ前記「置換基を有していてもよい芳香族基」における「置換基」として例示したものが用いられる。

「ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル」、「ハロゲン化されていてもよい C_{1-6} アルキルスルホニル」としては、前記「置換基を有していてもよい C_{7-19} アラルキル」における「置換基」として例示したものが用いられる

[0032]

「置換基を有していてもよい C_{6-14} アリール」における「 C_{6-14} アリール」としては、例えば、フェニル、1-ナフチル、2-ナフチル、2-インデニル、2-アンスリルなどが挙げられる。なかでも、フェニルなどが好ましい。

該「置換基を有していてもよいC₆₋₁₄アリール」における「置換基」としては、前記「置換基を有していてもよいC₇₋₁₉アラルキル」における「置換基」として例示したものが用いられる。置換基の数は、例えば1ないし5個、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一であっても異なっていてもよい。

[0033]

「置換基を有していてもよい C_{6-14} アリールーカルボニル」における「 C_{6-14} アリールーカルボニル」としては、例えば、ベンゾイル、1ーナフトイル、2ーナフトイルなどが挙げられる。

該「置換基を有していてもよいC₆₋₁₄アリールーカルボニル」における「置換基」としては、前記「置換基を有していてもよいC₇₋₁₉アラルキル」における「置換基」として例示したものが用いられる。置換基の数は、例えば1ないし5個、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一であっても異なっていてもよい。

[0034]

「置換基を有していてもよい5ないし10員芳香族複素環基」における「5ないし10員芳香族複素環基」としては、例えば、炭素原子以外に窒素原子、硫黄原子および酸素原子から選ばれる1または2種、好ましくは、1ないし4個のヘテロ原子を含む5ないし10員の(単環式または2環式)芳香族複素環基が挙げられる。具体的には、例えば、2-または3-チエニル;2-,3-または4-ピリジル;2-または3-フリル;2-,4-または5-オキサゾリル;1-,3

ーまたは4-ピラゾリル;2-ピラジニル;2-,4-または5-ピリミジニル;1-,2-または3-ピロリル;1-,2-または4-イミダゾリル;3-または4-ピリダジニル;3-イソチアゾリル;3-イソオキサゾリル;1,2,4-オキサジアゾール-5-イル;1,2,4-オキサジアゾール-3-イル;2-,3-,4-,5-または8-キノリル;1-,3-,4-,5-,6-,7-または8-イソキノリル;1-,2-,3-,4-,5-,6-または7-インドリル;1-,2-,4-または5-イソインドリル;1-,5-まは6-フタラジニル;2-,3-または5-キノキサリニル;2-,3-,4-,5-または6-ベンゾフラニル;2-,4-,5-または6-ベンゾフラニル;2-,4-,5-または6-ベンズイミダゾリルなどが挙げられる。

[0035]

該「置換基を有していてもよい5ないし10員芳香族複素環基」における「置換基 」としては、例えば、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、C₁ -3アルキレンジオキシ(例、メチレンジオキシ、エチレンジオキシなど)、ニトロ 、シアノ、ハロゲン化されていてもよい C_{1-6} アルキル、 C_{6-14} アリールオキシー C $_{1-6}$ アルキル(例、フェノキシメチルなど)、 $_{1-6}$ アルキルー $_{6-14}$ アリールー $_{2-6}$ アルケニル(例、メチルフェニルエテニルなど)、ハロゲン化されていてもよい C_3 $_{-6}$ シクロアルキル、ハロゲン化されていてもよい C_{1-6} アルコキシ、ハロゲン化さ れていてもよい C_{1-6} アルキルチオ、置換基を有していてもよい C_{7-19} アラルキル 、ヒドロキシ、置換基を有していてもよい C_{6-14} アリールオキシ、置換基を有し ていてもよい C_{7-19} アラルキルオキシ、アミノ、アミノー C_{1-6} アルキル(例、アミ ノメチル、アミノエチル、アミノプロピル、アミノブチルなど)、モノー C_{1-6} ア ルキルアミノ(例、メチルアミノ、エチルアミノ、プロピルアミノ、イソプロピ ルアミノ、ブチルアミノなど)、ジー C_{1-6} アルキルアミノ(例、ジメチルアミノ、 ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、エチルメチルアミノなど)、モノー C_{1-6} アルキルアミノー C_{1-6} アルキル(例、メチルアミノメチル、エチル アミノメチル、プロピルアミノメチル、イソプロピルアミノエチル、ブチルアミ ノエチルなど)、ジー C_{1-6} アルキルアミノー C_{1-6} アルキル(例、ジメチルアミノメ チル、ジエチルアミノメチル、ジプロピルアミノメチル、ジイソプロピルアミノ エチル、ジブチルアミノエチルなど)、置換基を有していてもよい5ないし7員飽

和環状アミノ、アシル、アシルアミノ、アシルオキシなどが挙げられる。置換基の数は、例えば1ないし5個、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一であっても異なっていてもよい。

[0036]

ここで、「ハロゲン化されていてもよい C_{1-6} アルキル」、「ハロゲン化されていてもよい C_{3-6} シクロアルキル」、「ハロゲン化されていてもよい C_{1-6} アルコキシ」、「ハロゲン化されていてもよい C_{1-6} アルキルチオ」、「置換基を有していてもよい C_{7-19} アラルキル」、「置換基を有していてもよい C_{6-14} アリールオキシ」、「置換基を有していてもよい C_{7-19} アラルキルオキシ」、「置換基を有していてもよい C_{7-19} アラルキルオキシ」、「置換基を有していてもよい C_{7-19} アラルキルオキシ」、「置換基を有していてもよい C_{7-19} 0、としては、それぞれ前記「置換基を有していてもよい C_{7-19} 0、としては、それぞれ前記「置換基を有していてもよい

[0037]

前記「アシル」としては、例えば、式: $-co-R^3$ 、 $-co-oR^3$ 、 $-co-oR^3R^4$ 、 $-cs-oR^3R^4$ 、 $-cs-oR^3R^4$ 、 $-so_2-R^{3a}$ 、 $-so-R^{3a}$ 、 $-po(-oR^3)-oR^4$ または $-po_2-R^{3a}$ 〔式中、 R^3 は(i)水素原子、(ii)置換基を有していてもよい炭化水素基、または(iii) 置換基を有していてもよい複素環基; R^3 は(i) 置換基を有していてもよい炭化水素基、または(iii) 置換基を有していてもよい複素環基; R^4 は水素原子または C_{1-6} アルキルを示し; R^3 と R^4 とは隣接する窒素原子と共に置換基を有していてもよい含窒素複素環を形成していてもよい〕で表されるアシルなどが挙げられる。

[0038]

R³またはR^{3a}で示される「置換基を有していてもよい炭化水素基」における「炭化水素基」としては、例えば、鎖状または環状炭化水素基(例、アルキル、アルケニル、アルキニル、シクロアルキル、アリール、アラルキルなど)などが挙げられる。このうち、以下のような炭素数1ないし19個の鎖状または環状炭化水素基などが好ましい。

- a) C_{1-6} アルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、ヘキシルなど);
- $^{\mathbf{b})\mathbf{C}}_{\mathbf{2-6}}$ アルケニル(例えば、ビニル、アリル、イソプロペニル、 $\mathbf{2-7}$ テニルなど

);

- $^{c)C}_{2-6}$ アルキニル(例えば、エチニル、プロパルギル、2-ブチニルなど);
- d) C_{3-6} シクロアルキル(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなど)、該 C_{3-6} シクロアルキルは、1個のベンゼン環と縮合していてもよい;
- e) C_{6-14} アリール(例えば、フェニル、1-ナフチル、2-ナフチル、2-インデニル、2-アンスリルなど)、好ましくはフェニル;
- f) C_{7-19} アラルキル(例えば、ベンジル、フェネチル、ジフェニルメチル、トリフェニルメチル、1-ナフチルメチル、2-ナフチルメチル、2,2-ジフェニルエチル、3-フェニルプロピル、4-フェニルブチル、5-フェニルペンチルなど)、好ましくはベンジル。

「炭化水素基」は、好ましくは C_{1-6} アルキル、 C_{6-14} アリール、 C_{7-19} アラルキルなどである。

[0039]

「置換基を有していてもよい炭化水素基」における「置換基」としては、例えば、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、 C_{1-3} アルキレンジオキシ (例、メチレンジオキシ、エチレンジオキシなど)、ニトロ、シアノ、ハロゲン化されていてもよい C_{1-6} アルコキシ、ハロゲン化されていてもよい C_{1-6} アルコキシ、ハロゲン化されていてもよい C_{1-6} アルキルチオ、ヒドロキシ、アミノ、モノー C_{1-6} アルキルアミノ (例、メチルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミノ、ブチルアミノなど)、ジーC1-6 アルキルアミノ (例、ジメチルアミノ、ジプチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジブチルアミノ、ジブチルアミノ、バジブチルアミノ、エチルメチルアミノなど)、ホルミル、カルボキシ、カルバモイル、チオカルバモイル、ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル、プロポキシカルボニル、はertーブトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、tertーブトキシカルボニルなど)、置換基を有していてもよい C_{6-14} アリールーカルボニル、置換基を有していてもよい C_{6-14} アリールーカルボニル、置換基を有していてもよい C_{7-19} アラルキルオキシーカルボニル、置換基を有していてもよい C_{1-6} アルキルーカルバモイ

 \mathcal{N} (例、メチルカルバモイル、エチルカルバモイルなど)、ジー \mathcal{C}_{1-6} アルキルーカ ルバモイル(例、ジメチルカルバモイル、ジエチルカルバモイル、エチルメチル カルバモイルなど)、置換基を有していてもよいC₆₋₁₄アリールーカルバモイル、 置換基を有していてもよい5ないし6員複素環カルバモイル、ハロゲン化されてい てもよい C_{1-6} アルキルスルホニル、置換基を有していてもよい C_{6-14} アリールス ルホニル、ホルミルアミノ、C₁₋₆アルキルーカルボニルオキシ(例、アセトキシ 、プロパノイルオキシなど)、置換基を有していてもよい C_{6-14} アリールーカルボ ニルオキシ、 C_{1-6} アルコキシーカルボニルオキシ(例、メトキシカルボニルオキ シ、エトキシカルボニルオキシ、プロポキシカルボニルオキシ、ブトキシカルボ ニルオキシなど)、モノー C_{1-6} アルキルーカルバモイルオキシ(例、メチルカルバ モイルオキシ、エチルカルバモイルオキシなど)、ジー C_{1-6} アルキルーカルバモ イルオキシ(例、ジメチルカルバモイルオキシ、ジエチルカルバモイルオキシな ど)、置換基を有していてもよい C_{6-14} アリールーカルバモイルオキシ、ニコチノ イルオキシなどが挙げられる。置換基の数は、例えば1ないし5個、好ましくは1 ないし3個である。置換基数が2個以上の場合、各置換基は同一であっても異なっ ていてもよい。

[0040]

ここで、「ハロゲン化されていてもよい C_{1-6} アルコキシ」、「ハロゲン化されていてもよい C_{1-6} アルキルチオ」、「置換基を有していてもよい C_{6-14} アリールーカルバモイル」としては、それぞれ前記「置換基を有していてもよい芳香族基」における「置換基」として例示したものが用いられる。

「ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル」、「ハロゲン化されていてもよい C_{1-6} アルキルスルホニル」としては、それぞれ前記「置換基を有していてもよい C_{7-19} アラルキル」における「置換基」として例示したものが用いられる。

[0041]

前記「置換基を有していてもよい5ないし10員芳香族複素環基」、「置換基を有していてもよいC₆₋₁₄アリールーカルボニル」としては、それぞれ前記「置換基を有していてもよい5ないし7員飽和環状アミノ」における「置換基」として例示

したものが用いられる。

「置換基を有していてもよい C_{6-14} アリールオキシーカルボニル」における「 C_{6-14} アリールオキシーカルボニル」としては、例えばフェニルオキシカルボニル、1ーナフチルオキシカルボニル、2ーナフチルオキシカルボニルなどが挙げられる

[0042]

「置換基を有していてもよい C_{7-19} アラルキルオキシーカルボニル」における「 C_{7-19} アラルキルオキシーカルボニル」としては、例えば、ベンジルオキシカルボニル、フェネチルオキシカルボニル、ジフェニルメチルオキシカルボニル、トリフェニルメチルオキシカルボニル、1-ナフチルメチルオキシカルボニル、2-ナフチルメチルオキシカルボニル、2-ジフェニルエチルオキシカルボニル、3-フェニルプロピルオキシカルボニル、4-フェニルブチルオキシカルボニル、5-フェニルペンチルオキシカルボニルなどが挙げられる。

前記「置換基を有していてもよい5ないし6員複素環カルボニル」における「5ないし6員複素環カルボニル」としては、例えば、ニコチノイル、イソニコチノイル、2ーテノイル、3ーテノイル、2ーフロイル、3ーフロイル、モルホリノカルボニル、ピペリジノカルボニル、ピロリジン-1ーイルカルボニルなどが挙げられる。

[0043]

前記「置換基を有していてもよい5ないし6員複素環カルバモイル」における「5ないし6員複素環カルバモイル」としては、例えば、モルホリノカルバモニル、ピペリジノカルバモイル、2ーピリジルカルバモイル、3ーピリジルカルバモイル、4ーピリジルカルバモイル、2ーチエニルカルバモイル、3ーチエニルカルバモイルなどが挙げられる。

前記「置換基を有していてもよい C_{6-14} アリールスルホニル」における「 C_{6-14} アリールスルホニル」としては、例えば、フェニルスルホニル、1ーナフチルスルホニル、2ーナフチルスルホニルなどが挙げられる。

[0044]

前記「置換基を有していてもよい C_{6-14} アリールーカルボニルオキシ」におけ

る「 C_{6-14} アリールーカルボニルオキシ」としては、例えば、ベンゾイルオキシ、1ーナフトイルオキシ、2ーナフトイルオキシなどが挙げられる。

前記「置換基を有していてもよい C_{6-14} アリールーカルバモイルオキシ」における「 C_{6-14} アリールーカルバモイルオキシ」としては、例えば、フェニルカルバモイルオキシ、ナフチルカルバモイルオキシなどが挙げられる。

[0045]

前記した「置換基を有していてもよいC₆₋₁₄アリールオキシーカルボニル」、「置換基を有していてもよいC₇₋₁₉アラルキルオキシーカルボニル」、「置換基を有していてもよい5ないし6員複素環カルボニル」、「置換基を有していてもよいC₆₋₁₄アリールスルホニル」、「置換基を有していてもよいC₆₋₁₄アリールスルホニル」、「置換基を有していてもよいC₆₋₁₄アリールーカルボニルオキシ」、「置換基を有していてもよいC₆₋₁₄アリールーカルバモイルオキシ」における「置換基」としては、前記「置換基を有していてもよいC₇₋₁₉アラルキル」における「置換基」として例示したものが挙げられる。置換基の数は、例えば1ないし5個、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一であっても異なっていてもよい。

[0046]

R³またはR^{3a}で示される「置換基を有していてもよい複素環基」における「複素環基」としては、例えば炭素原子以外に窒素原子、硫黄原子および酸素原子から選ばれる1または2種、1ないし4個のヘテロ原子を含む5ないし14員(単環、2環または3環式)複素環、好ましくは(i) 芳香族複素環、(ii)5ないし10員非芳香族複素環または(iii)7ないし10員複素架橋環から任意の1個の水素原子を除いてできる1価基などが挙げられる。

ここで、「芳香族複素環」としては、例えば、炭素原子以外に窒素原子、硫黄原子および酸素原子から選ばれるヘテロ原子1個以上(例えば、1ないし4個)を含む5ないし14員、好ましくは5ないし10員の芳香族複素環などが挙げられる。具体的には、チオフェン、フラン、ピロール、イミダゾール、ピラゾール、チアゾール、イソチアゾール、オキサゾール、イソオキサゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、1,2,4-オキサジアゾール、1,3,4-オキサジアゾール

、1,2,4-チアジアゾール、1,3,4-チアジアゾール、フラザン、ベンゾチオフェン、ベンゾフラン、ベンズイミダゾール、ベンズオキサゾール、ベンゾチアゾール、ベンズイソチアゾール、ナフト[2,3-b]チオフェン、フェノキサチイン、インドール、イソインドール、1H-インダゾール、プリン、4H-キノリジン、イソキノリン、キノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、カルバゾール、β-カルボリン、フェナントリジン、アクリジン、フェナジンフェノチアジン、フェノキサジン、フタルイミドなどの芳香族複素環、またはこれらの環(好ましくは単環)が1ないし複数個(好ましくは1または2個)の芳香環(例、ベンゼン環等)と縮合して形成された環などが挙げられる。

[0047]

「5ないし10員非芳香族複素環」としては、例えば、2-または3-ピロリン、 ピロリジン、2-または3-イミダゾリン、2-オキサゾリン、オキサゾリジン、2 -または3-ピラゾリン、ピラゾリジン、2-チアゾリン、ピペリジン、ピペラジン、ヘキサメチレンイミン、モルホリン、チオモルホリンなどが挙げられる。

「7ないし10員複素架橋環」としては、例えば、キヌクリジン、7-アザビシクロ [2.2.1] ヘプタンなどが挙げられる。

[0048]

該「複素環基」は、好ましくは、炭素原子以外に窒素原子、硫黄原子および酸素原子から選ばれる1または2種、好ましくは、1ないし4個のヘテロ原子を含む5ないし10員の(単環式または2環式)複素環基である。具体的には、例えば、2-または3-チエニル;2-,3-または4-ピリジル;2-または3-フリル;2-,4-または5-チアゾリル;2-,4-または5-オキサゾリル;1-3-または4-ピラゾリル;2-ピラジニル;2-、4-または5-ピリミジニル;1-,2-または3-ピロリル;1-,2-または4-イミダゾリル;3-または4-ピリダジニル;3-イソチアゾリル;3-イソオキサゾリル;1,2,4-オキサジアゾールー5-イル;1,2,4-オキサジアゾールー3-イル;2-,3-,4-,5-または8-キノリル;1-,3-,4-,5-,6-,7-または8-イソキノリル;1-,2-,3-,4-,5-,6-または7-インドリル;1-,2-,4-または5-イソインドリル;1-,5-または6-フタラジニル;2-,3-または5-キノキサリニル;2-,3-,4-,5-または6-ベンゾフラニル;2

-,3-,4-,5-または6-ベンゾチエニル;2-,4-,5-または6-ベンゾチアゾリル;1-,2-,4-,5-または6-ベンズイミダゾリルなどの芳香族複素環基;例えば、1-,2-または3-ピロリジニル;1-,2-4-または5-イミダゾリジニル;2-または4-イミダゾリニル;2-,3-または4-ピラソリジニル;ピペリジノ;2-,3-または4-ピペリジル;1-または2-ピペラジニル;モルホリノなどの非芳香族複素環基などが挙げられる。

[0049]

該「置換基を有していてもよい複素環基」における「置換基」としては、前記「置換基を有していてもよい5ないし10員芳香族複素環基」における「置換基」として例示したものが用いられる。置換基の数は、例えば1ないし5個、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一であっても異なっていてもよい。

[0050]

 R^4 で示される「 C_{1-6} アルキル」としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、 \sec ーブチル、tertーブチル、ペンチル、ヘキシルなどが挙げられる。

[0051]

R³とR⁴とが隣接する窒素原子と共に形成する「置換基を有していてもよい含窒素 複素環」における「含窒素複素環」としては、例えば、炭素原子以外に少なくと も1個の窒素原子を含み、窒素原子、硫黄原子および酸素原子から選ばれる1ない し3個のヘテロ原子を含んでいてもよい5ないし7員含窒素複素環などが挙げられ る。該「含窒素複素環」は、好ましくは、ピペリジン、モルホリン、チオモルホ リン、ピペラジン、ピロリジンなどである。

該「置換基を有していてもよい含窒素複素環」における「置換基」としては、前記「置換基を有していてもよい5ないし10員芳香族複素環基」における「置換基」として例示したものが用いられる。置換基の数は、例えば1ないし5個、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一であっても異なっていてもよい。

[0052]

該「アシル」は、好ましくは、ホルミル、カルボキシ、カルバモイル、ハロゲン 化されていてもよい C_{1-6} アルキルーカルボニル(例、アセチルなど)、 C_{1-6} アル コキシーカルボニル(例、メトキシカルボニル、エトキシカルボニル、プロポキ シカルボニル、tert-ブトキシカルボニルなど)、置換基を有していてもよいC₆₋ ₁₄アリール-カルボニル(例、ベンゾイル、1-ナフトイル、2-ナフトイルなど)、置換基を有していてもよい C_{6-14} アリールオキシーカルボニル(例、フェニ ルオキシカルボニル、1ーナフチルオキシカルボニル、2ーナフチルオキシカルボ ニルなど)、置換基を有していてもよい C_{7-19} アラルキルオキシーカルボニル(例、ベンジルオキシカルボニル、フェネチルオキシカルボニルなど)、置換基を 有していてもよい5ないし6員複素環カルボニル(例、ニコチノイルなど)、モノ $-C_{1-6}$ アルキルーカルバモイル(例、メチルカルバモイル、エチルカルバモイル など)、 \dot{y} - c_{1-6} アルキルーカルバモイル(例、ジメチルカルバモイル、ジエチル カルバモイル、エチルメチルカルバモイルなど)、置換基を有していてもよいC₆₋ $_{14}$ アリールーカルバモイル(例、フェニルカルバモイル、 $_4$ ーメトキシフェニル カルバモイル、3,4-ジメトキシフェニルカルバモイルなど)、置換基を有して いてもよい芳香族複素環カルバモイル(例、2-ピリジニルカルバモイル、2-キノリニルカルバモイルなど)、ハロゲン化されていてもよい C_{1-6} アルキルスル ホニル(例、メチルスルホニルなど)、置換基を有していてもよい C_{6-14} アリー ルスルホニル(例、フェニルスルホニルなど)などである。

[0053]

ここで、「ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル」、「ハロゲン化されていてもよい C_{1-6} アルキルスルホニル」としては、それぞれ前記「置換基を有していてもよい C_{7-19} アラルキル」における「置換基」として例示したものが用いられる。

「置換基を有していてもよいC₆₋₁₄アリールーカルボニル」としては、前記「置換基を有していてもよい5ないし7員飽和環状アミノ」における「置換基」として例示したものが用いられる。

[0054]

「置換基を有していてもよいC₆₋₁₄アリールオキシーカルボニル」、「置換基を有していてもよいC₇₋₁₉アラルキルオキシーカルボニル」、「置換基を有していてもよい芳香族複でもよい5ないし6員複素環カルボニル」、「置換基を有していてもよい芳香族複素環カルバモイル」、「置換基を有していてもよいC₆₋₁₄アリールスルホニル」としては、それぞれ前記「置換基を有していてもよい炭化水素基」における「置換基」として例示したものが用いられる。

「置換基を有していてもよいC₆₋₁₄アリールーカルバモイル」としては、前記「置換基を有していてもよい芳香族基」における「置換基」として例示したものが用いられる。

[0055]

前記「アシルアミノ」としては、例えば、前記「アシル」で1ないし2個置換されたアミノが挙げられ、好ましくは、式: $-NR^5-COR^6$ 、 $-NR^5-COOR^{6a}$ 、 $-PO(-OR^5)-OR^6$ または $-PO_2-R^6$ 〔式中、 R^5 は水素原子または C_{1-6} アルキル; R^6 は前記 R^3 と同意義; R^{6a} は前記 R^{3a} と同意義; R^{6b} は R^4 と同意義を示す〕で表されるアシルアミノなどが挙げられる。

 \mathbb{R}^5 で示される「 \mathbb{C}_{1-6} アルキル」としては、前記 \mathbb{R}^4 で示される「 \mathbb{C}_{1-6} アルキル」と同様のものが挙げられる。

[0056]

該「アシルアミノ」は、好ましくは、ホルミルアミノ、ハロゲン化されていてもよい C_{1-6} アルキルーカルボキサミド(例、メチルカルボキサミドなど)、置換基を有していてもよい C_{6-14} アリールーカルボキサミド(例、フェニルカルボキサミド、2ーメトキシフェニルカルボキサミド、4ーメトキシフェニルカルボキサミドなど)、Nー(置換基を有していてもよい C_{6-14} アリールーカルボニル)ー Nー C_{1-6} アルキルアミノ(例、Nー4ーメトキシベンゾイルーNーメチルアミノなど)、置換基を有していてもよい C_{7-19} アラルキルーカルボキサミド(例、ベンジルカルボキサミドなど)、置換基を有していてもよい芳香族複素環ーカルボキサミド(例、ベンジ・オフェンー2ーイルカルボキサミドなど)、ハロゲン化されていてもよい C_{1-6} アルコキシーカルボキサミド(例、メトキシカルボキサミ

ド、エトキシカルボキサミド、プロポキシカルボキサミド、ブトキシカルボキサミドなど)、置換基を有していてもよいC₆₋₁₄アリールアミノカルボニルアミノ (例、フェニルアミノカルボニルアミノなど)、ハロゲン化されていてもよいC₁₋₆アルキルスルホニルアミノ(例、メチルスルホニルアミノ、トリフルオロメチルスルホニルアミノ、エチルスルホニルアミノなど)、置換基を有していてもよいC₆₋₁₄アリールスルホニルアミノ (例、4-メトキシフェニルスルホニルアミノなど)などである。

ここで、「置換基を有していてもよい C_{6-14} アリールーカルボキサミド」、「N-(置換基を有していてもよい C_{6-14} アリールーカルボニル $)-N-C_{1-6}$ アルキルアミノ」、「置換基を有していてもよい C_{7-19} アラルキルーカルボキサミド」、「置換基を有していてもよい芳香族複素環ーカルボキサミド」、「置換基を有していてもよい C_{6-14} アリールアミノカルボニルアミノ」および「置換基を有していてもよい C_{6-14} アリールスルホニルアミノ」における「置換基」としては、前記「置換基を有していてもよい C_{7-19} アラルキル」における「置換基」として例示したものが挙げられる。置換基の数は、例えば1ないし5個、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一であっても異なっていてもよい。

[0057]

前記「アシルオキシ」としては、例えば、前記「アシル」1個で置換されたオキシが挙げられ、好ましくは、式: $-0-\text{COR}^7$ 、 $-0-\text{COOR}^7$ 、 $-0-\text{CONHR}^7$ 、-PO $(\text{OH})-\text{OR}^7$ または $-\text{PO}_2-\text{R}^7$ [式中、 R^7 は前記 R^3 と同意義を示す] で表されるアシルオキシなどが挙げられる。

該「アシルオキシ」は、好ましくは、ハロゲン化されていてもよい C_{1-6} アルキルーカルボニルオキシ(例、アセトキシ、プロパノイルオキシなど)、置換基を有していてもよい C_{6-14} アリールーカルボニルオキシ(例、ベンゾイルオキシ、4-メトキシベンゾイルオキシなど)、ハロゲン化されていてもよい C_{1-6} アルコキシーカルボニルオキシ(例、メトキシカルボニルオキシ、トリフルオロメトキシカルボニルオキシ、エトキシカルボニルオキシ、プロポキシカルボニルオキシ、ブトキシカルボニルオキシ、ブトキシカルボニルオキシ、グリスカルボニルオキシ、グリスカルボニルオキシ、グリスカルボニルオキシ(例、

メチルカルバモイルオキシ、エチルカルバモイルオキシなど)、ジー C_{1-6} アルキルーカルバモイルオキシ(例、ジメチルカルバモイルオキシ、ジエチルカルバモイルオキシなど)、置換基を有していてもよい C_{6-14} アリールーカルバモイルオキシ(例、フェニルカルバモイルオキシ、ナフチルカルバモイルオキシなど)、ニコチノイルオキシなどである。

[0058]

なお、「置換基を有していてもよいC₆₋₁₄アリールーカルボニルオキシ」、「 置換基を有していてもよいC₆₋₁₄アリールーカルバモイルオキシ」における「置 換基」としては、前記「置換基を有していてもよいC₇₋₁₉アラルキル」における 「置換基」として例示したものが挙げられる。置換基の数は、例えば1ないし5個 、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一で あっても異なっていてもよい。

[0059]

Ar¹で示される「置換基を有していてもよい芳香族基」における「置換基」である「アシル」、「アシルオキシ」、「アシルアミノ」としては、ぞれぞれ前記「置換基を有していてもよい5ないし10員芳香族複素環基」における「置換基」として例示したものが用いられる。

[0060]

Ar¹で示される芳香族基は、好ましくは、「炭素数 6 ないし 1 4 の単環式または縮合多環式芳香族炭化水素基(好ましくはフェニルなど)」、「炭素数 6 ないし 1 4 の単環式または縮合多環式芳香族炭化水素基が 2 または 3 個単結合で直結した芳香環集合体から任意の水素原子1個を除いた基(好ましくは2-,3-または4-ビフェニリルなど)」などである。

[0061]

 Ar^1 で示される「置換基を有していてもよい芳香族基」における「置換基」は、好ましくは、ハロゲン原子(好ましくは塩素など);ニトロ; C_{1-3} アルキレンジオキシ(好ましくはメチレンジオキシなど);ハロゲン化されていてもよい C_{1-6} アルキル(好ましくは、エチルなど);ハロゲン化されていてもよい C_{1-6} アルコキシ(好ましくは、メトキシなど);ハロゲン化されていてもよい C_{1-6} アルキル

チオ(好ましくは、メチルチオなど);置換基を有していてもよいC₇₋₁₉アラルキルオキシ(好ましくはベンジルオキシ、4-メトキシベンジルオキシなど); 置換基を有していてもよいC₆₋₁₄アリールオキシ(好ましくはフェニルオキシなど);アミノ;置換基を有していてもよく、ベンゼン環と縮合していてもよい5ないし7員飽和環状アミノ(好ましくは1,3-ジオキソ-1,3-ジヒドロ-2H-イソイ

ンドール-2-イルなど);カルボキシ;置換基を有していてもよい C_{6-14} アリール ーカルボニル(好ましくはベンゾイルなど);置換基を有していてもよい C_{6-14} アリールーカルバモイル(好ましくはフェニルカルバモイル、4-メトキシフェ ニルカルバモイル、3,4-ジメトキシフェニルカルバモイルなど);置換基を 有していてもよい芳香族複素環カルバモイル(例、2-ピリジニルカルバモイル 、 2-キノリニルカルバモイルなど); c_{1-6} アルコキシーカルボニル(好ましく は、メトキシカルボニルなど);ハロゲン化されていてもよい C_{1-6} アルキルーカ ルボキサミド(好ましくはメチルカルボキサミドなど);置換基を有していても よい C_{6-14} アリールーカルボキサミド(好ましくはフェニルカルボキサミド、2 ーメトキシフェニルカルボキサミド、4-メトキシフェニルカルボキサミドなど);置換基を有していてもよい C_{7-19} アラルキルーカルボキサミド(好ましくは ベンジルカルボキサミドなど);置換基を有していてもよい芳香族複素環-カル ボキサミド(好ましくはベンゾチオフェン-2-イルカルボキサミドなど);N-(置換基を有していてもよい C_{6-14} アリールーカルボニル)- N - C_{1-6} アルキ ルアミノ(好ましくはN-4-メトキシベンゾイル-N-メチルアミノなど); 置換基を有していてもよい C_{6-14} アリールアミノカルボニルアミノ(好ましくは フェニルアミノカルボニルアミノなど);置換基を有していてもよいC₆₋₁₄アリ ールスルホニルアミノ(好ましくは4-メトキシフェニルスルホニルアミノなど);置換基を有していてもよいC₆₋₁₄アリールーカルボニルオキシ(好ましくは 4-メトキシベンゾイルオキシなど) などである。

[0062]

 Ar^1 は、好ましくは、ハロゲン原子(好ましくは塩素など);ニトロ; C_{1-3} アルキレンジオキシ(好ましくはメチレンジオキシなど);ハロゲン化されていてもよい C_{1-6} アルキル(好ましくは、エチルなど);ハロゲン化されていてもよい C_1

-6アルコキシ(好ましくは、メトキシなど); ハロゲン化されていてもよい C_{1-6} アルキルチオ(好ましくは、メチルチオなど); 置換基を有していてもよい C_{7-1} $_{9}$ アラルキルオキシ(好ましくはベンジルオキシ、 $_{4}$ $_{7$

もよい5ないし7員飽和環状アミノ(好ましくは1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イルなど);カルボキシ;置換基を有していてもよい C_{6-14} ア リールーカルボニル(好ましくはベンゾイルなど);置換基を有していてもよい C_{6-14} アリールーカルバモイル(好ましくはフェニルカルバモイル、4-メトキ シフェニルカルバモイル、3, 4 - ジメトキシフェニルカルバモイルなど) ;置 換基を有していてもよい芳香族複素環カルバモイル(例、2-ピリジニルカルバ モイル、2-キノリニルカルバモイルなど); C_{1-6} アルコキシーカルボニル(好 ましくは、メトキシカルボニルなど);ハロゲン化されていてもよいC₁₋₆アルキ ルーカルボキサミド(好ましくはメチルカルボキサミドなど);置換基を有して いてもよい C_{6-14} アリールーカルボキサミド(好ましくはフェニルカルボキサミ ド、2-メトキシフェニルカルボキサミド、4-メトキシフェニルカルボキサミ ドなど); 置換基を有していてもよいC₇₋₁₉アラルキルーカルボキサミド (好ま しくはベンジルカルボキサミドなど);置換基を有していてもよい芳香族複素環 ーカルボキサミド(好ましくはベンゾチオフェンー2ーイルカルボキサミドなど);N-(置換基を有していてもよい C_{6-14} アリールーカルボニル) $-N-C_{1-6}$ **アルキルアミノ(好ましくはN-4-メトキシベンゾイル-N-メチルアミノな** ど);置換基を有していてもよい C_{6-14} アリールアミノカルボニルアミノ(好ま しくはフェニルアミノカルボニルアミノなど);置換基を有していてもよいC₆₋₁ $_4$ アリールスルホニルアミノ(好ましくは $_4$ ーメトキシフェニルスルホニルアミ ノなど);置換基を有していてもよい C_{6-14} アリールーカルボニルオキシ(好ま しくは4-メトキシベンゾイルオキシなど)などから選ばれる置換基をそれぞれ 1または2個有していてもよいフェニルまたはビフェニリル(好ましくは4ービ フェニリル)である。

[0063]

 Ar^1 は、さらに好ましくは、置換基を有していてもよい C_{7-19} アラルキルオキシ(好ましくはベンジルオキシ、4-メトキシベンジルオキシなど);置換基を有していてもよい C_{6-14} アリールオキシ(好ましくはフェニルオキシなど);置換基を有していてもよい C_{6-14} アリールーカルボニル(好ましくはベンゾイルなど)

;置換基を有していてもよい C_{6-14} アリールーカルバモイル(好ましくはフェニ ルカルバモイル、4-メトキシフェニルカルバモイル、3,4-ジメトキシフェ ニルカルバモイルなど);置換基を有していてもよい芳香族複素環カルバモイル (例、2-ピリジニルカルバモイル、2-キノリニルカルバモイルなど);置換 基を有していてもよいC₆₋₁₄アリールーカルボキサミド(好ましくはフェニルカ ルボキサミド、2-メトキシフェニルカルボキサミド、4-メトキシフェニルカ ルボキサミドなど);置換基を有していてもよいC₇₋₁₉アラルキルーカルボキサ ミド(好ましくはベンジルカルボキサミドなど);芳香族複素環-カルボキサミ ド(好ましくはベンゾチオフェン-2-イルカルボキサミドなど);N-(置換 基を有していてもよい C_{6-14} アリールーカルボニル)- $N-C_{1-6}$ アルキルアミノ (好ましくはN-4-メトキシベンソイル-N-メチルアミノなど);置換基を 有していてもよい C_{6-14} アリールアミノカルボニルアミノ(好ましくはフェニル アミノカルボニルアミノなど);置換基を有していてもよい C_{6-14} アリールスル ホニルアミノ(好ましくは4-メトキシフェニルスルホニルアミノなど);およ び置換基を有していてもよい C_{6-14} アリールーカルボニルオキシ(好ましくは4ーメトキシベンゾイルオキシなど)から選ばれる置換基をそれぞれ1または2個 有していてもよいフェニルまたはピフェニリル(好ましくは4-ビフェニリル) である。

[0064]

XおよびYで示される「主鎖の原子数1ないし6のスペーサー」とは、主鎖の原子が1ないし6個連なっている間隔を意味する。ここで、「主鎖の原子数」は、主鎖の原子が最小となるように数えるものとする。例えば1,2-シクロペンチレンの原子数を2個、1,3-シクロペンチレンの原子数を3個として数える。「主鎖の原子数1ないし6のスペーサー」としては、例えば-0-、-S-、-CO

-、-SO-、-SO $_2$ -、-NR 8 - (R^8 は水素原子、ハロゲン化されていてもよい C_1 -6アルキル、ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル、ハロゲン化されていてもよい C_{1-6} アルキルスルホニル)、ハロゲン化されていてもよい2 価の C_{1-6} 非環式炭化水素基、および2 価の C_{5-8} 単環式非芳香族炭化水素基から選ばれる1ないし3個からなる2価基などが挙げられる。

[0065]

ここで、「ハロゲン化されていてもよいC₁₋₆アルキル」としては、前記「置換基を有していてもよい芳香族基」における「置換基」として例示したものが用いられる。

「ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル」、「ハロゲン化されていてもよい C_{1-6} アルキルスルホニル」としては、それぞれ前記「置換基を有していてもよい C_{7-19} アラルキル」における「置換基」として例示したものが用いられる。

[0066]

「ハロゲン化されていてもよい2価の C_{1-6} 非環式炭化水素基」における「2価の C_{1-6} 非環式炭化水素基」としては、例えば、1ないし5個、好ましくは1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)をそれぞれ有していてもよい

$$(1)$$
C₁₋₆アルキレン(例えば、 $-$ CH₂ $-$ 、 $-$ (CH₂)₂ $-$ 、 $-$ (CH₂)₃ $-$ 、 $-$ (CH₂)₄ $-$ 、 $-$ (CH₂)₅ $-$ 、 $-$ (CH₂)₆ $-$ 、 $-$ CH(CH₃) $-$ 、 $-$ C(CH₃)₂ $-$ 、 $-$ CH(CF₃) $-$ 、 $-$ (CH(CH₃))₂ $-$ 、 $-$ CH(CH₃)₂ $-$ 、 $-$ CH(CH₃)₂ $-$ 、 $-$ CH(CH₃)₂ $-$ 、 $-$ CH(CH₃)₂ $-$ など); (2)C₂₋₆アルケニレン(例えば、 $-$ CH=CH $-$ 、 $-$ CH₂ $-$ CH=CH $-$ CH₂ $-$ CH₂ $-$ CH=CH $-$ CH(CH₂); (3)C₂₋₆アルキニレン、(例えば、

【化13】

$$-C = C - \cdot - CH_2 - C = C - \cdot - CH_2 - C = C - CH_2 - CH$$

など)などが挙げられる。

[0067]

該「2価の C_{5-8} 単環式非芳香族炭化水素基」としては、例えば C_{5-8} シクロアルカン、 C_{5-8} シクロアルケンから任意の2個の水素原子を除いてできる2価基が挙げられる。具体例としては、例えば1, 2-シクロペンチレン;1, 3-シクロペンチレン;1, 2-シクロペキシレン;1,

4-シクロヘキシレン; 1, 2-シクロヘプチレン; 1, 3-シクロヘプチレン; 1, 4-シクロヘプチレン; 3-シクロヘキセン-1, 4-イレン; 3-シクロヘキセン-1, 2-イレン; 2, 5-シクロヘキサジエン-1, 4-イレンなどが挙げられる。なかでも5-8シクロアルキレンが好ましい。

[0068]

XおよびYで示される「主鎖の原子数 1 ないし6 のスペーサー」は、好ましくは-0-、-S-、-C0-、-S0-、 $-S0_2-$ 、 $-NR^8-$ (R^8 は前記と同意義)、およびハロゲン化されていてもよい2価の C_{1-6} 非環式炭化水素基から選ばれる1ないし3個からなる2価基である。

[0069]

該「主鎖の原子数1ないし6のスペーサー」の好適な例としては、

$$(1)$$
C₁₋₆アルキレン(例えば、 $-$ CH₂ $-$ 、 $-$ (CH₂)₂ $-$ 、 $-$ (CH₂)₃ $-$ 、 $-$ (CH₂)₄ $-$ 、 $-$ (CH₂)₅ $-$ 、 $-$ (CH₂)₆ $-$ 、 $-$ CHCH₃ $-$ 、 $-$ C(CH₃)₂ $-$ 、 $-$ CH(CF₃) $-$ 、 $-$ (CH(CH₃)) $-$ CH(CH₃) $-$ CH(CF₂)₂ $-$ C(CH₂)₂ $-$ C(CH₃)₂ $-$ C(CH₃)₂ $-$ C(CH₃)₂ $-$ CH(CH₃) $-$ CH(CH₃

(3)C₂₋₆アルキニレン、(例えば、

【化14】

$$-C \equiv C - \cdot - CH_2 - C \equiv C - \cdot - CH_2 - C \equiv C - CH_2 - CH$$

など);

(4)
$$-(CH_2)_{w1}O(CH_2)_{w2}-, -(CH_2)_{w1}S(CH_2)_{w2}-, -(CH_2)_{w1}SO(CH_2)_{w2}-, -(CH_2)_{w1}SO(CH_2)_{w2}-,$$

$$-(CH_{2})_{w1}SO_{2}(CH_{2})_{w2}-, -(CH_{2})_{w1}NR^{8}(CH_{2})_{w2}-;$$

$$(5) -(CH_{2})_{w3}CONR^{8}(CH_{2})_{w4}-, -(CH_{2})_{w3}NR^{8}CO(CH_{2})_{w4}-,$$

$$-(CH_{2})_{w3}SO_{2}NR^{8}(CH_{2})_{w4}-, -(CH_{2})_{w3}NR^{8}SO_{2}(CH_{2})_{w4}-,$$

$$-(CH_{2})_{w3}COO(CH_{2})_{w4}-;$$

$$(6) -(CH_{2})_{w5}NR^{8}CONR^{8b}(CH_{2})_{w6}-;$$

(R⁸は前記と同意義を;R^{8b}はR⁸と同意義を;w1およびw2は0ないし5の整数を、かつw1+w2が0ないし5を;w3およびw4は0ないし4の整数を、かつw3+w4が0ないし4を;w5およびw6は0ないし3の整数を、かつw5+w6が0ないし3を示す)などが挙げられる。

[0070]

Xで示される「主鎖の原子数 1 ないし 6 のスペーサー」は、さらに好ましくは $-(CH_2)_{w1}^{}$ 0 $(CH_2)_{w2}^{}$ - (記号は前記と同意義を示す)、-CONH-などである。 Y で示される「主鎖の原子数 1 ないし 6 のスペーサー」は、さらに好ましくは C_1 -3 アルキレン (例えば、 $-CH_2^{}$ -、 $-(CH_2^{}$) $_2$ -、 $-(CH_2^{}$) $_3$ -など)、 $-(CH_2^{}$) $_w3$ CONH $(CH_2^{})_{w4}^{}$ -、 $-(CH_2^{})_{w3}^{}$ COO($(CH_2^{})_{w4}^{}$ - (記号は前記と同意義を示す)などである

[0071]

Arで示される「4ないし8員非芳香環と縮合していてもよく、さらに置換基を有していてもよい単環式芳香環」における「置換基」および「単環式芳香環」としては、前記Ar¹で示される「置換基を有していてもよい芳香族基」における「置換基」および「芳香族基」としてそれぞれ例示したものが用いられる。置換基の数は、例えば1ないし5個、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一であっても異なっていてもよい。

[0072]

該置換基は、好ましくはホルミル、ハロゲン化されていてもよい C_{1-6} アルキルーカルボニルホルミル、ハロゲン化されていてもよい C_{1-6} アルキルスルホニルなどである。

ここで、「ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル」および「ハロゲン化されていてもよい C_{1-6} アルキルスルホニル」としては、それぞれ前記「

置換基を有していてもよい C_{7-19} アラルキル」における「置換基」として例示したものが用いられる。

[0073]

「4ないし8員非芳香環と縮合していてもよく、さらに置換基を有していてもよい 単環式芳香環」における「4ないし8員非芳香環」としては、C₄₋₈単環式非芳香 族炭化水素環、4ないし8員単環式非芳香族複素環などが挙げられる。

該「 C_{4-8} 単環式非芳香族炭化水素環」としては、例えば C_{4-8} シクロアルカン、 C_{4-8} シクロアルケンなどが挙げられる。具体例としては、例えばシクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロペンテン、シクロヘキセン、シクロヘプテンなどが挙げられる。なかでも、シクロペンタン、シクロヘキサン、シクロヘプタンなどが好ましい。

該「4ないし8員単環式非芳香族複素環」としては、例えばアゼチジン、ピロリジン、ピロリン、ピラゾリジン、2-または3-ピラゾリン、イミダゾリン、ピペリジン、ピペラジン、アゼピン、アゾカン、オキサン、オキシン、オキセパン、オキサゾリジン、2-オキサゾリン、チアゾリジン、2-チアゾリン、モルホリン、チオモルホリンなどが挙げられる。

[0074]

Arに関し、「4ないし8員非芳香環と縮合し、さらに置換基を有していてもよい単環式芳香環」の具体例としては、例えば

【化15】

などが挙げられる。

[0075]

Arは、好ましくは、ベンゼン、ピリジン、または式

【化16】

[式中、mおよびnはそれぞれ1ないし4の整数を示す]で表される環である。 Arは、さらに好ましくは、ベンゼン、ピリジン、

【化17】

などである。

[0076]

 R^1 および R^2 で示される「置換基を有していてもよい C_{1-6} アルキル」における「 C_{1-6} アルキル」としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、ヘキシルなどが挙げられる。なかでもメチル、エチル、プロピルなどが好ましい。

該「置換基を有していてもよい C_{1-6} アルキル」における「置換基」としては、例えば、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、 C_{1-3} アルキレンジオキシ(例、メチレンジオキシ、エチレンジオキシなど)、ニトロ、シアノ、ハロゲン化されていてもよい C_{3-6} シクロアルキル、ハロゲン化されていてもよい C_{1-6} アルコキシ、ハロゲン化されていてもよい C_{1-6} アルキルチオ、ヒドロキシ、アミノ、モノー C_{1-6} アルキルアミノ(例、メチルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミノ、ブチルアミノなど)、ジー C_{1-6} アルキルアミノ(例、ジメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、エチルメチルアミノ、ジエチルスミノ、ジプロピルアミノ、ジブチルアミノ、エチルスチルアミノ、ジエチルストル、カルボキシ、カルバモイル、チオカルバモイル、ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル、 C_{1-6} アルコキシーカ

ルボニル(例、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニ ル、tert-ブトキシカルボニルなど)、モノー C_{1-6} アルキルーカルバモイル(例、 メチルカルバモイル、エチルカルバモイルなど)、ジー C_{1-6} アルキルーカルバモ イル(例、ジメチルカルバモイル、ジエチルカルバモイル、エチルメチルカルバ モイルなど)、ハロゲン化されてい $_{\mathsf{T-6}}$ アルキルスルホニル、ホルミル アミノ、ハロゲン化されていてもよい C_{1-6} アルキルーカルボキサミド、 C_{1-6} アル コキシーカルボキサミド(例、メトキシカルボキサミド、エトキシカルボキサミ ド、プロポキシカルボキサミド、ブトキシカルボキサミドなど)、 C_{1-6} アルキル スルホニルアミノ(例、メチルスルホニルアミノ、エチルスルホニルアミノなど) 、 C_{1-6} アルキルーカルボニルオキシ(例、アセトキシ、プロパノイルオキシなど) 、 C_{1-6} アルコキシ-カルボニルオキシ(例、メトキシカルボニルオキシ、エトキ シカルボニルオキシ、プロポキシカルボニルオキシ、ブトキシカルボニルオキシ など)、モノー C_{1-6} アルキルーカルバモイルオキシ(例、メチルカルバモイルオキ シ、エチルカルバモイルオキシなど)、ジー C_{1-6} アルキルーカルバモイルオキシ(例、ジメチルカルバモイルオキシ、ジエチルカルバモイルオキシなど)、置換基 を有していてもよい芳香族基などが挙げられる。置換基の数は、例えば1ないし5 個、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一 であっても異なっていてもよい。

[0077]

ここで、「ハロゲン化されていてもよい C_{3-6} シクロアルキル」、「ハロゲン化されていてもよい C_{1-6} アルコキシ」、「ハロゲン化されていてもよい C_{1-6} アルキルチオ」としては、前記「置換基を有していてもよい芳香族基」における「置換基」として例示したものが用いられる。

「ハロゲン化されていてもよい C_{1-6} アルキルーカルボニル」、「ハロゲン化されていてもよい C_{1-6} アルキルスルホニル」、「ハロゲン化されていてもよい C_{1-6} アルキルーカルボキサミド」としては、前記「置換基を有していてもよい C_{7-19} アラルキル」における「置換基」として例示したものが用いられる。

「置換基を有していてもよい芳香族基」としては、前記Ar¹として例示したものが用いられる。

[0078]

R¹とR²とが隣接する窒素原子と共に形成する「置換基を有していてもよい含窒素複素環」における「含窒素複素環」としては、例えば、炭素原子以外に少なくとも1個の窒素原子を含み、窒素原子、硫黄原子および酸素原子から選ばれる1ないし3個のヘテロ原子をさらに含んでいてもよい3ないし8員含窒素複素環が挙げ

られる。具体例としては、例えば、アジリジン、アゼチジン、モルホリン、チオモルホリン、ピペリジン、ピペラジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ヘキサヒドロピリミジン、1,4-ジアゼパン、およびこれらの不飽和環状アミン(例、1,2,5,6-テトラヒドロピリジンなど)などが挙げられる。なかでもモルホリン、ピペリジン、ピペラジン、ピロリジンなどが好ましい。

該「置換基を有していてもよい含窒素複素環」における「置換基」としては、例 えば、前記「置換基を有していてもよい5ないし7員飽和環状アミノ」における「 置換基」として例示したものが用いられる。置換基の数は、例えば1ないし5個、 好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一であ っても異なっていてもよい。

[0079]

 \mathbf{R}^1 および \mathbf{R}^2 は、好ましくは、 \mathbf{C}_{1-6} アルキルであり、さらに好ましくは、メチル、エチル、プロピルなどである。

また、 R^1 と R^2 とが隣接する窒素原子と共にピペリジノ、ピロリジン-1-イルなどを形成する場合も好ましい。

また、 \mathbf{R}^1 および \mathbf{R}^2 の少なくとも一方が、置換基を有していてもよい \mathbf{C}_{1-6} アルキルを示す場合が好ましく、特に、 \mathbf{R}^1 および \mathbf{R}^2 が共に置換基を有していてもよい \mathbf{C}_1 - $\mathbf{6}$ アルキルを示す場合が好適である。

[0080]

 R^2 は、Arとともにスピロ環を形成していてもよい。例えばArが式

(式中、nは1ないし4の整数を示す)で表される環であり、Yがメチレンであ

る場合、R²はArとともにスピロ環を形成することができ、該スピロ環としては、 例えば

【化19】

$$Ar^{1}$$

(式中、k (Ar環とNとを-(CH_2)k -で連結する)は1ないし4の整数を、その他の記号は前記と同意義を示す)などが挙げられる。

[0081]

式(I)において、部分構造式: $Ar-Y-N(R^1)R^2$ (式中の記号は前記と同意義を示す)の好適な例としては、例えば

【化20】

などが挙げられる。

[0082]

式(I)で表される化合物のうち、XがCONHであり、Arが式

【化21】

(式中、nは 1 ないし 4 の整数を示す)で表される環である化合物(ただし、N - [2-(N,N-i)メチルアミノ)メチル-6-Fトラリニル]-4-iフェニリルカルボキサミドを除く)、すなわち、式(I')で表される化合物(ただし、N-[2-(N,N-i)メチルアミノ)メチル-6-Fトラリニル]-4-i

ビフェニリルカルボキサミドを除く)は、新規化合物である。

[0083]

化合物(I)または(I')の塩としては、例えば、無機塩基との塩、アンモニウム塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性または酸性アミノ酸との塩などが挙げられる。

無機塩基との塩の好適な例としては、例えば、ナトリウム塩、カリウム塩などの アルカリ金属塩;カルシウム塩、マグネシウム塩、バリウム塩などのアルカリ土 類金属塩;アルミニウム塩などが挙げられる。

有機塩基との塩の好適な例としては、例えば、トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、N,N-ジベンジルエチレンジアミンなどとの塩が挙げられる。

無機酸との塩の好適な例としては、例えば、塩酸、臭化水素酸、硝酸、硫酸、リン酸などとの塩が挙げられる。

有機酸との塩の好適な例としては、例えば、ギ酸、酢酸、トリフルオロ酢酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸などとの塩が挙げられる。

塩基性アミノ酸との塩の好適な例としては、例えば、アルギニン、リジン、オルニチンなどとの塩が挙げられ、酸性アミノ酸との塩の好適な例としては、例えば、アスパラギン酸、グルタミン酸などとの塩が挙げられる。

これらの塩のなかでも、薬学的に許容し得る塩が好ましい。例えば、化合物 (I) または (I') は、酸性官能基を有する場合、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩など)、アルカリ土類金属塩(例えば、カルシウム塩、マグネシウム塩、バリウム塩など)などの無機塩、アンモニウム塩などを形成していてもよい。また、化合物 (I) または (I') は、塩基性官能基を有する場合、

塩酸塩、硫酸塩、リン酸塩、臭化水素酸塩などの無機塩;または酢酸塩、マレイン酸塩、フマル酸塩、コハク酸塩、メタンスルホン酸塩、pートルエンスルホン酸塩、クエン酸塩、酒石酸塩などの有機塩を形成していてもよい。

[0084]

化合物(I)および(I')(以下、本発明化合物と略記することがある)は、無水物、水和物のいずれであってもよい。水和物の場合、0.5ないし3個の水分子を有していてもよい

さらに、本発明化合物は、同位元素(例、 3 H、 14 C、 35 Sなど)で標識されていてもよい。

[0085]

本発明化合物が、光学異性体、立体異性体、位置異性体、回転異性体を含有する場合には、これらも本発明化合物として含有されるとともに、自体公知の合成手法、分離手法によりそれぞれを単品として得ることができる。例えば、本発明化合物に光学異性体が存在する場合には、該化合物から分割された光学異性体も本発明化合物に包含される。

該光学異性体は、自体公知の方法により製造することができる。具体的には、 光学活性な合成中間体を用いる、または、最終物のラセミ体の混合物を常法に従って光学分割することにより光学異性体を得る。

[0086]

光学分割法としては、自体公知の方法、例えば、以下に詳述する分別再結晶法 、キラルカラム法、ジアステレオマー法等が用いられる。

1)分別再結晶法

ラセミ体と光学活性な化合物(例えば、(+)-マンデル酸、(-)-マンデル酸、(+)-酒石酸、(-)-酒石酸、(+)-1-フェネチルアミン、(-)-1-フェネチル

2)キラルカラム法

[0087]

ラセミ体またはその塩を光学異性体分離用カラム(キラルカラム)にかけて分離する方法。例えば液体クロマトグラフィの場合、ENANTIO-OVM(トーソー社製)あるいは、ダイセル社製 CHIRALシリーズなどのキラルカラムに光学異性体の混合物を添加し、水、種々の緩衝液(例えば、リン酸緩衝液)、有機溶媒(例えば、エタノール、メタノール、イソプロパノール、アセトニトリル、トリフルオロ酢酸、ジエチルアミンなど)を単独あるいは混合した溶液として展開させることにより、光学異性体を分離する。また、例えば、ガスクロマトグラフィーの場合、CPーChirasil-DeX CB(ジーエルサイエンス社製)などのキラルカラムを使用して分離する。

3)ジアステレオマー法

ラセミ体の混合物を光学活性な試薬と化学反応によってジアステレオマーの混合物とし、これを通常の分離手段(例えば、分別再結晶、クロマトグラフィ法等)などを経て単一物質とした後、加水分解反応などの化学的な処理により光学活性な試薬部位を切り離すことにより光学異性体を得る方法。例えば、本発明化合物が分子内にヒドロキシまたは1,2級アミノを有する場合、該化合物と光学活性な有機酸(例えば、MPTA [αーメトキシーαー(トリフルオロメチル)フェニル酢酸]、(一)ーメントキシ酢酸等)などとを縮合反応に付すことにより、それぞれエステル体またはアミド体のジアステレオマーを得ることができる。一方、本発明化合物がカルボン酸基を有する場合、該化合物と光学活性アミンまたはアルコール試薬とを縮合反応に付すことにより、それぞれアミド体またはエステル体のジアステレオマーが得られる。分離されたジアステレオマーは、酸加水分解あるいは塩基性加水分解反応に付すことにより、元の化合物の光学異性体に変換される

化合物(I') のプロドラッグは、生体内における生理条件下で酵素や胃酸等 による反応により化合物 (I') に変換する化合物、すなわち酵素的に酸化、還 元、加水分解等を起こして化合物(I')に変化する化合物、胃酸等により加水 分解などを起こして化合物(I')に変化する化合物をいう。化合物(I')のプ ロドラッグとしては、化合物(I')のアミノ基がアシル化、アルキル化、りん 酸化された化合物 [例、化合物(Ι')のアミノ基がエイコサノイル化、アラニ ル化、ペンチルアミノカルボニル化、(5-メチル-2-オキソ-1,3-ジオ キソレン-4-イル)メトキシカルボニル化、テトラヒドロフラニル化、ピロリ ジルメチル化、ピバロイルオキシメチル化、tert-ブチル化された化合物な ど];化合物(I')の水酸基がアシル化、アルキル化、りん酸化、ほう酸化さ れた化合物(例、化合物(I')の水酸基がアセチル化、パルミトイル化、プロ パノイル化、ピバロイル化、サクシニル化、フマリル化、アラニル化、ジメチル アミノメチルカルボニル化された化合物など);化合物(I')のカルボキシル 基がエステル化、アミド化された化合物 [例、化合物 (I') のカルボキシル基 がエチルエステル化、フェニルエステル化、カルボキシメチルエステル化、ジメ チルアミノメチルエステル化、ピバロイルオキシメチルエステル化、エトキシカ ルボニルオキシエチルエステル化、フタリジルエステル化、(5ーメチルー2ー オキソー 1 , 3 -ジオキソレン- 4 -イル)メチルエステル化、シクロヘキシル オキシカルボニルエチルエステル化、メチルアミド化された化合物など] などが 挙げられる。これらの化合物は自体公知の方法によって化合物 (I ') から製造 することができる。

また、化合物(I')のプロドラッグは、広川書店1990年刊「医薬品の開発」第7巻分子設計163頁から198頁に記載されているような、生理的条件で化合物(I')に変化するものであってもよい。

[0089]

本発明化合物は、自体公知の方法、例えばW09838156、W09532967、EP92202804などに記載の方法、あるいはこれに準する方法にしたがって製造することができる。

例えば、本発明化合物は、以下に詳述する [製造法 1] ないし [製造法 6]、 あるいはこれに準ずる方法によって製造することができる。

なお、原料化合物として用いられる化合物(II)ないし(XI)は、それぞれ塩として用いてもよい。このような塩としては、前記した化合物(I)または(I')の塩として例示したものが用いられる。

[0090]

下記の [製造法1] ないし [製造法6] において、アルキル化反応、加水分解反応、アミノ化反応、エステル化反応、アミド化反応、エステル化反応、エーテル化反応、酸化反応、還元反応などを行う場合、これらの反応は、自体公知の方法にしたがって行われる。このような方法としては、例えばオーガニック ファンクショナル グループ プレパレーションズ (ORGANIC FUNCTIONAL GROUP PREPARATIONS) 第2版、アカデミックプレス社 (ACADEMIC PRESS, INC.) 1989年刊;コンプリヘンシブ・オーガニック・トランスフォーメーション (Comprehensive Organic Transf rmations) VCII Publishers Inc., 1989年刊等に記載の方法などが挙げられる

[0091]

[製造法1]

式(I)においてXが $-(CH_2)_{w3}CONR^{8a}(CH_2)_{w4}$ -である化合物(I a)は、例えば下記アミド化反応によって製造される。

(アミド化反応)

【化22】

$$R^{8a}$$
| R^{1}
| R^{1}
| R^{2}
| R^{1}
| R^{2}
| R^{2}
| R^{2}

[式中、 R^{8a} は水素原子またはハロゲン化されていてもよい C_{1-6} アルキルを;その他の記号は前記と同意義を示す]

該「ハロゲン化されていてもよいC₁₋₆アルキル」としては、前記「置換基を有 していてもよい芳香族基」における「置換基」として例示したものが用いられる

該「アミド化反応」には、下記の「脱水縮合剤を用いる方法」と「カルボキシの反応性誘導体を用いる方法」が含まれる。

[0092]

i) 脱水縮合剤を用いる方法

化合物(III)、1ないし5当量の化合物(II)、および1ないし2当量の脱水縮合剤を、不活性溶媒中で反応させる。必要に応じ、1ないし1.5当量の1ーヒドロキシベンゾトリアゾール(HOBT)および(または)触媒量ないし5当量の塩基の共存下に反応を行ってもよい。

該「脱水縮合剤」としては、例えばジシクロヘキシルカルボジイミド(DCC)、1 -エチル-3-(3-ジメチルアミノプロピル)カルボジイミド 塩酸塩(WSC)などが 挙げられる。なかでもWSCが好ましい。

「不活性溶媒」としては、例えば、ニトリル系溶媒(好ましくはアセトニトリル)、アミド系溶媒(好ましくはDMF)、 ハロゲン化炭化水素系溶媒(好ましくはジクロロメタン)、エーテル系溶媒(好ましくはTHF)などが挙げられる。これらは、二種以上を適宜の割合で混合して用いてもよい。

[0093]

「塩基」としては、例えば

- 1) 例えばアルカリ金属またはアルカリ土類金属の水素化物(例、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウムなど)、アルカリ金属またはアルカリ土類金属のアミド類(例、リチウムアミド、ナトリウムアミド、リチウムジイソプロピルアミド、リチウムジシクロヘキシルアミド、リチウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジドなど)、アルカリ金属またはアルカリ土類金属の低級アルコキシド(例、ナトリウムメトキシド、ナトリウムエトキシド、カリウム tertーブトキシドなど)などの強塩基;
- 2) 例えば、アルカリ金属またはアルカリ土類金属の水酸化物(例、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化バリウムなど)、アルカリ金属またはアルカリ土類金属の炭酸塩(例、炭酸ナトリウム、炭酸カリウム、炭酸セシウムなど)、アルカリ金属またはアルカリ土類金属の炭酸水素塩(例、炭酸水素ナトリウム、炭酸水素カリウムなど)などの無機塩基;および
- 3) 例えば、トリエチルアミン、ジイソプロピルエチルアミン、Nーメチルモルホリン、ジメチルアミノピリジン、DBU(1,8-ジアザビシクロ[5.4.0] ウンデス-7-エン)、DBN(1,5-ジアザビシクロ[4.3.0] ノン-5-エン) などのアミン類;例えばピリジン、イミダゾール、2,6-ルチジンなどの塩基性複素環化合物などの有機塩基などが挙げられる。

上記した塩基のなかでも、トリエチルアミン、4-ジメチルアミノピリジンなどが好ましい。

反応温度は、通常室温(0ないし30℃、以下同様)である。反応時間は、例えば10ないし24時間である。

[0094]

ii)カルボキシの反応性誘導体を用いる方法

化合物(II)の反応性誘導体と1ないし5当量(好ましくは1ないし3当量)の化合物 (III)とを、不活性溶媒中で反応させる。必要に応じ、1ないし10当量、好ましくは1ないし3当量の塩基の共存下に反応を行ってもよい。

化合物(II)の「反応性誘導体」としては、例えば酸ハライド(例、酸クロリド、酸プロミドなど)、混合酸無水物(例、 C_{1-6} アルキルーカルボン酸、 C_{6-10} アリールーカルボン酸または C_{1-6} アルキル炭酸との酸無水物など)、活性エステル(例、置換基を有していてもよいフェノール、1-ヒドロキシベンゾトリアゾールまたはN-ヒドロキシスクシンイミドとのエステルなど)などが挙げられる。

該「置換基を有していてもよいフェノール」における「置換基」としては、例えばハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、ハロゲン化されていてもよい C_{1-6} アルキル、ハロゲン化されていてもよい C_{1-6} アルコキシが挙げられる。置換基の数は、例えば1ないし5個である。

該「ハロゲン化されていてもよいC₁₋₆アルキル」、「ハロゲン化されていてもよいC₁₋₆アルコキシ」としては、前記「置換基を有していてもよい芳香族基」における「置換基」として例示したものが用いられる。

「置換基を有していてもよいフェノール」の具体例としては、例えばフェノール、ペンタクロロフェノール、ペンタフルオロフェノール、pーニトロフェノールなどが挙げられる。反応性誘導体は、好ましくは酸ハライドである。

[0095]

「不活性溶媒」としては、例えばエーテル系溶媒、ハロゲン化炭化水素系溶媒、芳香族系溶媒、ニトリル系溶媒、アミド系溶媒、ケトン系溶媒、スルホキシド系溶媒、水などが挙げられる。これらは、二種以上を適宜の割合で混合して用いてもよい。なかでも、アセトニトリル、THF、ジクロロメタン、クロロホルムなどが好ましい。

「塩基」としては、前記と同様のものが用いられる。該塩基は、好ましくは、 水素化ナトリウム、炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム、水酸化 カリウム、炭酸水素ナトリウム、炭酸水素カリウム、トリエチルアミン、ピリジ ンなどである。

反応温度は、通常-20℃ないし50℃、好ましくは室温である。反応時間は、通常5分間ないし40時間、好ましくは1ないし18時間である。

[0096]

化合物(III)は、自体公知の方法により製造することができる。例えば、6-アミ

ノー2-(N,N-i)メチルアミノ)メチルテトラリンまたはその塩は、W09838156に記載の方法にしたがって製造することができる。また、6-アミノ2,3-ジヒドロ-1-(2-i)メチルアミノエチル)-1H-インドール、6-アミノ-3,4-ジヒドロ-4-(2-i)メチルアミノエチル)-2H-1,4-ベンゾオキサジンなどは、<math>W09532967に記載の方法にしたがって製造することができる。

上記「カルボキシの反応性誘導体を用いる方法」は、式: $Ar^1 - (CH_2)_{w3} - SO_20$ H (式中の基号は前記と同意義を示す)で表されるスルホン酸、または式: $Ar^1 - (CH_2)_{w3} - SOOH$ (式中の基号は前記と同意義を示す)で表されるスルフィン酸から、それぞれ対応するスルホンアミド誘導体またはスルフィンアミド誘導体を製造する場合にも適応することができる。

[0097]

[製造法2]

式(I)においてXが $-(CH_2)_{w3}COO(CH_2)_{w4}$ -である化合物(I b)は、例えば下記エステル化反応によって製造される。

(エステル化反応)

【化23】

$$Ar^{1}-(CH_{2})_{w3}-COOH + HO-(CH_{2})_{w4}-Ar-y-N$$
(11)
(1V)

$$Ar^{1} - (CH_{2})_{W3} - C00 - (CH_{2})_{W4} - Ar - Y - N < R^{1}$$
(1b)

[式中の記号は前記と同意義を示す]

化合物(II)の反応性誘導体と1ないし5当量(好ましくは1ないし3当量)の化合物(IV)とを、不活性溶媒中で反応させる。本反応は、通常、1ないし10当量、好ましくは1ないし3当量の塩基の共存下に行われる。

化合物(II)の「反応性誘導体」としては、前記と同様のものが用いられる。な

[0098]

「不活性溶媒」としては、例えばエーテル系溶媒、ハロゲン化炭化水素系溶媒、芳香族系溶媒、ニトリル系溶媒、アミド系溶媒、ケトン系溶媒、スルホキシド系溶媒などが挙げられる。これらは、二種以上を適宜の割合で混合して用いてもよい。なかでも、アセトニトリル、ジクロロメタン、クロロホルムなどが好ましい。

「塩基」としては、前記と同様のものが用いられる。該塩基は、好ましくは、 水素化ナトリウム、炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム、水酸化 カリウム、炭酸水素ナトリウム、炭酸水素カリウム、トリエチルアミン、ピリジ ンなどである。

反応温度は、通常−20℃ないし50℃、好ましくは室温である。反応時間は、通常5分間ないし40時間、好ましくは1ないし18時間である。

[0099]

[製造法3]

式(I)においてXが $-(CH_2)_{w1}$ $0(CH_2)_{w2}$ -である化合物(I c)は、例えば下記エーテル化反応によって製造される。

(エーテル化反応)

【化24】

$$Ar^{1}-(CH_{2})_{W1}-L$$
 + $H0-(CH_{2})_{W2}-Ar-Y-N < R^{1}$
(V) (1V')

$$Ar^{1} - (CH_{2})_{W1} - 0 - (CH_{2})_{W2} - Ar - Y - N < R^{1}$$
(1c)

[式中、 L は脱離基を、その他の記号は前記と同意義を示す]

Lで示される「脱離基」としては、例えばハロゲン原子(例、塩素、臭素、ヨウ

素など)、ハロゲン化されていてもよい C_{1-6} アルキルスルホニルオキシ(例、メタンスルホニルオキシ、エタンスルホニルオキシ、トリフルオロメタンスルホニルオキシなど)、置換基を有していてもよい C_{6-10} アリールスルホニルオキシ、ヒドロキシなどが挙げられる。

該「置換基を有していてもよいC₆₋₁₀アリールスルホニルオキシ」における「置換基」としては、例えばハロゲン原子(例、塩素、臭素、ヨウ素など)、ハロゲン化されていてもよいC₁₋₆アルキルまたはC₁₋₆アルコキシなどが挙げられる。置換基の数は、例えば1ないし3個である。「置換基を有していてもよいC₆₋₁₀アリールスルホニルオキシ」の具体例としては、ベンゼンスルホニルオキシ、pートルエンスルホニルオキシ、1ーナフタレンスルホニルオキシ、2ーナフタレンスルホニルオキシなどが挙げられる。

該「脱離基」は、好ましくは、ハロゲン原子(例、クロロ、ブロモ、ヨードなど)、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ、pートルエンスルホニルオキシなどである。

[0100]

化合物(IV)と約1ないし5当量(好ましくは1ないし2当量)の化合物(V)とを、塩基の共存下、不活性溶媒中で反応させる。

「塩基」としては、前記と同様のものが用いられる。該塩基は、好ましくは、 炭酸カリウム、炭酸水素ナトリウム、トリエチルアミン、Nーメチルモルホリン 、ピリジンなどである。

塩基の使用量は、通常化合物(V)に対して約1ないし5当量である。

[0101]

「不活性溶媒」としては、例えば、アルコール系溶媒、エーテル系溶媒、ハロゲン化炭化水素系溶媒、芳香族系溶媒、ニトリル系溶媒、アミド系溶媒、ケトン系溶媒、スルホキシド系溶媒、水などが挙げられる。これらは、二種以上を適宜の割合で混合して用いてもよい。なかでも、アセトニトリル、N, Nージメチルホルムアミド(DMF)、アセトン、エタノール、ピリジンなどが好ましい。

反応温度は約-20Cないし100C、好ましくは室温ないし80Cである。 反応時間は、例えば約0.5時間ないし1日である。

[0102]

上記製造法において、脱離基がヒドロキシである場合は、通常、光延反応を用 いることができる。

該光延反応では、化合物(V)と0.5ないし5当量(好ましくは1ないし1.5当量)の 化合物(IV)とを、0.5ないし5当量(好ましくは1ないし1.5当量)のアセチルジカル ボン酸エチルの共存下に、不活性溶媒中で反応させる。

不活性溶媒としては、例えばエーテル系溶媒、ハロゲン化炭化水素系溶媒、芳香族系溶媒、ニトリル系溶媒、アミド系溶媒、ケトン系溶媒、スルホキシド系溶媒などが挙げられる。これらは、二種以上を適宜の割合で混合して用いてもよい。なかでも、アセトニトリル、ジクロロメタン、クロロホルムなどが好ましい。 反応温度は、通常−20℃ないし50℃、好ましくは室温である。反応時間は、通常5分間ないし40時間、好ましくは1ないし18時間である。

[0103]

化合物(IV)は、自体公知の方法により製造することができる。例えば、3-(N,N-ジメチルアミノ)メチル-1,2,3,4-テトラヒドロ-7-キノリノール,2-(N,N-ジメチルアミノ)メチル-6-ヒドロキシテトラリン,6-ヒドロキシー2-ピペリジノメチルテトラリン,2-[2-(N,N-ジメチルアミノ)エチル]-6-ヒドロキシテトラリン,2-(N,N-ジメチルアミノ)メチル-7-ヒドロキシテトラリン,6-ヒドロキシテトラリン,6-ヒドロキシテトラリン,6-ヒドロキシー2-(N-メチルアミノ)メチルテトラリンなどは、W09838156に記載された方法にしたがって製造することができる。

[0104]

[製造法4]

式(I)においてXが一 $(CH_2)_{w3}$ NR 8a CO $(CH_2)_{w4}$ 一である化合物(I d)は、例えば下記アミド化反応によって製造される。

(アミド化反応)

[化25]
$$Ar^{1}-(CH_{2})_{w3}-NH + H00C-(CH_{2})_{w4}-Ar-Y-N$$
(VII)
$$R^{3}$$

$$= \frac{R^{8} a}{R^{2} - (CH_{2})_{w3} - NCO - (CH_{2})_{w4} - Ar - Y - N} = \frac{R^{1}}{R^{2}}$$
(1d)

[式中の記号は前記と同意義を示す]

本製造法は、前記した製造法1に準じて行われる。

[0105]

[製造法5]

式(I)においてXが $-(CH_2)_{w5}^{NHCONR}$ $^{8a}(CH_2)_{w6}^{}-$ である化合物(I e)は、例えば下記ウレア化反応によって製造される。

(ウレア化反応)

【化26】

[式中の記号は前記と同意義を示す]

化合物(IX)と1ないし5当量(好ましくは1ないし1.5当量)化合物(VIII)とを、 塩基の共存下、不活性溶媒中で反応させる。

「塩基」としては、前記と同様のものが用いられる。該塩基は、好ましくは、 炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、炭酸水素 ナトリウム、炭酸水素カリウム、トリエチルアミン、ピリジンなどである。

「不活性溶媒」としては、例えば、アルコール系溶媒、エーテル系溶媒、ハロゲン化炭化水素系溶媒、芳香族系溶媒、ニトリル系溶媒、アミド系溶媒、ケトン系溶媒、スルホキシド系溶媒、水などが挙げられる。これらは、二種以上を適宜の割合で混合して用いてもよい。なかでも、アセトニトリル、DMF、アセトン、エタノール、ピリジンなどが好ましい。

反応温度は、通常約-20Cないし100C、好ましくは室温ないし80Cである。反応時間は、例えば約0.5時間ないし1日である。

[0107]

[製造法6]

式(I)において Ar^1 が置換基を有していてもよい環集合芳香族基 (Ar^2-Ar^3) である化合物(I f)は、例えば下記アリールカップリング反応によって製造することもできる。

(アリールカップリング反応)

【化27】

$$Ar^{2} - B - L^{1} + L^{2} - Ar^{3} - X - Ar - Y - N R^{2}$$

$$(X) \qquad (XI)$$

$$R^{2} - Ar^{3} - X - Ar - Y - N R^{2}$$

$$(If) \qquad R^{2}$$

[式中、 ${\rm Ar}^2$ および ${\rm Ar}^3$ は、それぞれ置換基を有していてもよい単環式芳香族基または縮合芳香族基を; ${\rm L}^1$ はヒドロキシあるいは ${\rm C}_{1-6}$ アルキルを; ${\rm L}^2$ はハロゲン(

好ましくは塩素、臭素)あるいはトリフルオロメタンスルホニルオキシを;その 他の記号は前記と同意義を示す]

[0108]

 Ar^2 および Ar^3 で示される「置換基を有していてもよい単環式芳香族基または縮合芳香族基」において、「置換基」、「単環式芳香族基」、「縮合芳香族基」としては、前記 Ar^1 として例示したものが用いられる。とりわけ、 Ar^2 および Ar^3 が、ともに置換基を有していてもよいフェニルであり、 Ar^2-Ar^3 が置換基を有していてもよいフェニルであり、 Ar^2-Ar^3 が置換基を有していてもよいビフェニリルである場合が好ましい。

アリールカップリング反応は、自体公知の方法、例えば、アクタ ケミカ スカンジナビア (Acta. Chemica Scandinavia), 221-230頁、1993年 等に記載の方法、あるいはこれに準ずる方法に従って行うことができる。

[0109]

化合物(X)と1ないし3当量(好ましくは1ないし1.5当量)の化合物(XI)とを、 塩基および遷移金属触媒の存在下、不活性溶媒中で反応させる。

該「塩基」としては、前記と同様のものが用いられる。該塩基は、好ましくは 、炭酸ナトリウム、炭酸水素ナトリウムなどである。

「塩基」の使用量は、例えば化合物 (XI) に対して、約1ないし10当量である。

「遷移金属触媒」としては、例えば、パラジウム触媒、ニッケル触媒などが挙 げられる。該「パラジウム触媒」としては、例えば、テトラキス(トリフェニル ホスフィン)パラジウム(0)、酢酸パラジウム、ビス(トリフェニルホスフィ ン)パラジウム(II)クロリド、パラジウムー炭素などが挙げられる。該「ニ ッケル触媒」としては、例えば、テトラキス(トリフェニルホスフィン)ニッケ ル(0)などが挙げられる。

該「遷移金属触媒」の使用量は、化合物(XI)に対して、約0.01ないし1 当量、好ましくは約0.01ないし0.5当量である。

反応温度は、室温ないし150 $\mathbb C$ 、好ましくは約80 $\mathbb C$ ないし150 $\mathbb C$ である。反応時間は、例えば約1 ないし48 時間である。

該「不活性溶媒」としては、例えば、水、アルコール系溶媒、芳香族系溶媒な

どが挙げられる。これらは、二種以上を適宜の割合で混合して用いてもよい。なかでも、水、エタノール、トルエンなどの単独またはこれら二種以上の混合溶媒が好ましい。

[0110]

前記「アルコール系溶媒」としては、例えば、メタノール、エタノール、イソプロパノール、tertーブタノールなどが用いられる。

前記「エーテル系溶媒」としては、例えば、ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン、1,2-ジメトキシエタンなどが用いられる。

前記「ハロゲン化炭化水素系溶媒」としては、例えば、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、四塩化炭素などが用いられる。

前記「芳香族系溶媒」としては、例えば、ベンゼン、トルエン、キシレン、ピリ ジンなどが用いられる。

前記「炭化水素系溶媒」としては、例えば、ヘキサン、ペンタン、シクロヘキサンなどが用いられる。

前記「アミド系溶媒」としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチルピロリドンなどが用いられる。

前記「ケトン系溶媒」としては、例えば、アセトン、メチルエチルケトンなどが 用いられる。

前記「スルホキシド系溶媒」としては、例えば、ジメチルスルホキシド(DMSO)などが用いられる。

前記「ニトリル系溶媒」としては、例えば、アセトニトリル、プロピオニトリル などが用いられる。

[0111]

かくして得られた本発明化合物において、分子内の官能基は、自体公知の化学 反応を組み合わせることにより目的の官能基に変換することもできる。該化学反 応の例としては、酸化反応、還元反応、アルキル化反応、加水分解反応、アミノ 化反応、エステル化反応、アリールカップリング反応、脱保護反応などが挙げら れる。

[0112]

前記の各反応において、原料化合物が置換基としてアミノ、カルボキシ、ヒドロキシ、カルボニルを有する場合、これらの基にペプチド化学などで一般的に用いられるような保護基が導入されていてもよく、反応後に必要に応じて保護基を除去することにより目的化合物を得ることができる。

アミノの保護基としては、例えば、ホルミル、 C_{1-6} アルキルーカルボニル(例、アセチル、プロピオニルなど)、 C_{1-6} アルコキシーカルボニル(例、メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニルなど)、ベンゾイル、 C_{7-10} アラルキルーカルボニル(例、ベンジルカルボニルなど)、 C_{7-14} アラルキルオキシーカルボニル(例、ベンジルオキシカルボニル、9-フルオレニルメトキシカルボニルなど)、トリチル、フタロイル、N,N-ジメチルアミノメチレン、シリル(例、トリメチルシリル、トリエチルシリル、ジメチルフェニルシリル、tert-ブチルジメチルシリル、tert-ブチルジメチルシリルなど)、 C_{2-6} アルケニル(例、1-アリルなど)などが用いられる。これらの基は、1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシなど)またはニトロなどで置換されていてもよい。

[0113]

カルボキシの保護基としては、例えば、 C_{1-6} アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチルなど)、 C_{7-11} アラルキル(例、ベンジルなど)、フェニル、トリチル、シリル(例、トリメチルシリル、トリエチルシリル、ジメチルフェニルシリル、tert-ブチルジメチルシリル、tert-ブチルジエチルシリルなど)、 C_{2-6} アルケニル(例、1-アリルなど)などが用いられる。これらの基は、1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシなど)またはニトロなどで置換されていてもよい。

[0114]

ヒドロキシの保護基としては、例えば、 C_{1-6} アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチルなど)、フェニル、トリチル、 C_{7-10} アラルキル(例、ベンジルなど)、ホルミル、 C_{1-6} アルキルーカルボニル(例

、アセチル、プロピオニルなど)、ベンゾイル、 C_{7-10} アラルキルーカルボニル(例、ベンジルカルボニルなど)、2-テトラヒドロピラニル、2-テトラヒドロフラニル、シリル(例、トリメチルシリル、トリエチルシリル、ジメチルフェニルシリル、tert-ブチルジメチルシリル、tert-ブチルジエチルシリルなど)、 C_{2-6} アルケニル(例、1-アリルなど)などが用いられる。これらの基は、1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキル(例、メチル、エチル、1-プロピルなど)、1-0のパロポキシなど)。1-1のポキシなど)。1-1のポキシなど)またはニトロなどで置換されていてもよい。

カルボニルの保護基としては、例えば、環状アセタール(例、1,3-ジオキサンなど)、非環状アセタール(例、5-C $_{1-6}$ アルキルアセタールなど)などが用いられる。

[0115]

上記した保護基の除去方法は、自体公知の方法、例えば、プロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、 John Wiley and Sons 刊(1980)に記載の方法などに準じて行うことができる。例えば、酸、塩基、紫外光、ヒドラジン、フェニルヒドラジン、Nーメチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウムフルオリド、酢酸パラジウム、トリアルキルシリルハライド(例えば、トリメチルシリルヨージド、トリメチルシリルブロミドなど)などを使用する方法、還元法などが用いられる。

[0116]

本発明化合物は、公知の手段、例えば、溶媒抽出、液性変換、転溶、晶出、再結晶、クロマトグラフィーなどによって単離精製することができる。また、本発明化合物の原料化合物またはその塩は、前記と同様の公知の手段などによって単離精製することができるが、単離することなくそのまま反応混合物として次の工程の原料として供されてもよい。

[0117]

本発明化合物は、優れたMCH受容体拮抗作用を有するため、MCHに起因する疾患の予防・治療剤として有用である。 また、本発明化合物は、毒性も低く、経口吸

収性および脳内移行性に優れている。

したがって、本発明化合物を含有するメラニン凝集ホルモン拮抗剤(以下、MC H拮抗剤と略記することがある)は、哺乳動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ウマ、ブタ、ウシ、サル、ヒトなど)に対し、MCHに起因する疾患の予防・治療剤などとして安全に投与される。

ここで、MCHに起因する疾患としては、例えば肥満症 [例、悪性肥満細胞症(malignant mastocytosis)、外因性肥満 (exogenous obesity)、過インシュリン性肥満症 (hyperinsulinar obesity)、過血漿性肥満 (hyperplasmic obesity)、下垂体性肥満 (hypophyseal adiposity)、減血漿性肥満症 (hypoplasmic obesity)、甲状腺機能低下肥満症 (hypothyroid obesity)、視床下部性肥満 (hypothalamic obesity)、症候性肥満症 (symptomatic obesity)、小児肥満 (infantile obesity)、上半身肥満 (upper body obesity)、食事性肥満症 (alimentary obesity)、性機能低下性肥満 (hypogonadal obesity)、全身性肥満細胞症 (systemic mastocytosis)、単純性肥満 (simple obesity)、中心性肥満 (central obesity)など]、摂食亢進症 (hyperphagia)、情動障害、性機能障害などが挙げられる。

[0118]

本発明化合物は、糖尿病、糖尿病合併症(例、糖尿病性網膜症、糖尿病性神経症、糖尿病性腎症など)、動脈硬化症、膝関節炎などの生活習慣病の予防・治療薬としても有用である。

さらに、本発明化合物は、摂食抑制薬としても有用である。

本発明のMCH拮抗剤および医薬組成物は、食事療法(例、糖尿病の食事療法など) 、運動療法と併用することもできる。

[0119]

本発明のMCH拮抗剤および医薬組成物は、それぞれ化合物(I)または(I')を、そのままあるいは薬理学的に許容される担体とともに、自体公知の手段に従って製剤化することによって製造される。

[0120]

ここで、薬理学的に許容される担体としては、製剤素材として慣用の各種有機 あるいは無機担体物質、例えば、固形製剤における賦形剤、滑沢剤、結合剤、崩 壊剤;被状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛 化剤などが挙げられる。また、製剤化の際に、必要に応じて、防腐剤、抗酸化剤 、着色剤、甘味剤、吸着剤、湿潤剤などの添加物を用いることもできる。

賦形剤としては、例えば、乳糖、白糖、D-マンニトール、デンプン、コーンスターチ、結晶セルロース、軽質無水ケイ酸などが挙げられる。

滑沢剤としては、例えば、ステアリン酸マグネシウム、ステアリン酸カルシウム、タルク、コロイドシリカなどが挙げられる。

結合剤としては、例えば、結晶セルロース、白糖、D-マンニトール、デキストリン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、デンプン、ショ糖、ゼラチン、メチルセルロース、カルボキシメチルセルロースナトリウムなどが挙げられる。

崩壊剤としては、例えば、デンプン、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、低置換度ヒドロキシプロピルセルロース(LーHPC)などが挙げられる。

[0121]

溶剤としては、例えば、注射用水、アルコール、プロピレングリコール、マクロゴール、ゴマ油、トウモロコシ油などが挙げられる。

溶解補助剤としては、例えば、ポリエチレングリコール、プロピレングリコール、D-マンニトール、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウムなどが挙げられる。

懸濁化剤としては、例えば、ステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリンなどの界面活性剤;例えばポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどの親水性高分子などが挙げられる

[0122]

等張化剤としては、例えば、ブドウ糖、D-ソルビトール、塩化ナトリウム、グリセリン、D-マンニトールなどが挙げられる。

緩衝剤としては、例えば、リン酸塩、酢酸塩、炭酸塩、クエン酸塩などの緩衝 液などが挙げられる。

無痛化剤としては、例えば、ベンジルアルコールなどが挙げられる。

防腐剤としては、例えば、パラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸などが挙げられる。

抗酸化剤としては、例えば、亜硫酸塩、アスコルビン酸などが挙げられる。

[0123]

本発明のMCH拮抗剤および医薬組成物の剤型としては、例えば、錠剤(糖衣錠、フィルムコーティング錠を含む)、散剤、顆粒剤、カプセル剤(ソフトカプセルを含む)、液剤などの経口剤;注射剤(例、皮下注射剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤など)、外用剤(例、経鼻投与製剤、経皮製剤、軟膏剤など)、坐剤(例、直腸坐剤、膣坐剤など)、徐放剤(例、徐放性マイクロカプセルなど)、ペレット、点滴剤などの非経口剤などとして、経口的または非経口的(例、局所、直腸、静脈投与等)に安全に投与することができる。

[0124]

本発明のMCH拮抗剤中の化合物(I)の含有量、および本発明の医薬組成物中の化合物(I')の含有量は、例えば、それぞれMCH拮抗剤または医薬組成物全体の約0.1ないし100重量%である。

本発明のMCH拮抗剤および医薬組成物の投与量は、投与対象、投与ルート、疾患などにより適宜選択される。

例えば、本発明のMCH拮抗剤または医薬組成物を、肥満症の成人患者(体重約60kg)に経口投与する場合の1日当たりの投与量は、それぞれ有効成分である化合物 (I)または (I')として、約0.1ないし約500mg、好ましくは約1ないし約100mg、さらに好ましくは約5ないし約100mgであり、この量を1日1ないし数回に分けて投与することができる。

[0125]

本発明のMCH拮抗剤および医薬組成物は、例えば「肥満症の治療効果の増強」、「MCH拮抗剤の使用量の低減」などを目的として、本発明のMCH拮抗剤および医薬組成物に悪影響を及ぼさない併用用薬剤を用いることができる。このような併用用薬剤としては、例えば「糖尿病治療薬」、「糖尿病合併症治療薬」、「MCH拮

抗剤以外の抗肥満薬」、「高血圧治療薬」、「高脂血症治療薬」、「関節炎治療薬」、「抗不安薬」、「抗うつ薬」などが挙げられる。これらの併用用薬剤は、 2種以上を適宜の割合で組合わせて用いてもよい。

[0126]

上記「糖尿病治療薬」としては、例えばインスリン抵抗性改善薬、インスリン 分泌促進薬、ビグアナイド剤、インスリン、αーグルコシダーゼ阻害薬、β3ア ドレナリン受容体作動薬などが挙げられる。

インスリン抵抗性改善薬としては、例えばピオグリタゾンまたはその塩(好ましくは塩酸塩)、トログリタゾン、ロシグリタゾンまたはその塩(好ましくはマレイン酸塩)、JTT-501、GI-262570、MCC-555、YM-440、DRF-2593、BM-13-1258、KRP-297、R-119702などが挙げられる。

インスリン分泌促進薬としては、例えばスルフォニル尿素剤が挙げられる。該 スルフォニル尿素剤の具体例としては、例えばトルブタミド、クロルプロパミド 、トラザミド、アセトヘキサミド、 グリクロピラミドおよびそのアンモニウム 塩、グリベンクラミド、グリクラジド、グリメピリドなどが挙げられる。

上記以外にも、インスリン分泌促進剤としては、例えばレパグリニド、ナテグリニド、KAD-1229、JTT-608などが挙げられる。

[0127]

ビグアナイド剤としては、例えばメトホルミン、ブホルミンなどが挙げられる

インスリンとしては、例えばウシ,ブタの膵臓から抽出された動物インスリン;ブタの膵臓から抽出されたインスリンから酵素的に合成された半合成ヒトインスリン;大腸菌,イーストを用い遺伝子工学的に合成したヒトインスリンなどが

挙げられる。インスリンとしては、0.45から0.9 (w/w)%の亜鉛を含むインスリン亜鉛;塩化亜鉛,硫酸プロタミンおよびインスリンから製造されるプロタミンインスリン亜鉛なども用いられる。さらに、インスリンは、そのフラグメントあるいは誘導体(例、INS-1など)であってもよい。

なお、インスリンには、超速効型、速効型、二相型、中間型、持続型など種々 のものが含まれるが、これらは患者の病態により適宜選択できる。

αーグルコシダーゼ阻害薬としては、例えばアカルボース、ボグリボース、ミグリトール、エミグリテートなどが挙げられる。

β3アドレナリン受容体作動薬としては、例えばAJ-9677、BMS-196085、SB-226552などが挙げられる。

上記以外にも、「糖尿病治療薬」としては、例えばエルゴセット、プラムリンタイド、レプチン、BAY-27-9955などが挙げられる。

[0128]

上記「糖尿病合併症治療薬」としては、例えばアルドース還元酵素阻害薬、グリケーション阻害薬、プロテインキナーゼC阻害薬などが挙げられる。

アルドース還元酵素阻害剤としては、例えばトルレスタット;エパルレスタット;イミレスタット;ゼナレスタット;SNK-860;ゾポルレスタット;ARI-509;AS-3201などが挙げられる。

グリケーション阻害薬としては、例えばピマゲジンなどが挙げられる。

プロテインキナーゼC阻害薬としては、例えばNGF、LY-333531などが挙げられる。

上記以外にも、「糖尿病合併症治療薬」としては、例えばアルプロスタジル、塩酸チアプリド、シロスタゾール、塩酸メキシレチン、イコサペント酸エチル、メマンチン (memantine)、ピマゲドリン (pimagedline; ALT-711) などが挙げられる。

[0129]

上記「MCH拮抗剤以外の抗肥満薬」としては、例えばリパーゼ阻害薬、食欲抑 制薬などが挙げられる。

リパーゼ阻害薬としては、例えばオルリスタットなどが挙げられる。

食欲抑制薬としては、例えばマジンドール、デクスフェンフラミン、フルオキセチン、シブトラミン、バイアミンなどが挙げられる。

上記以外にも、「MCH拮抗剤以外の抗肥満薬」としては、例えばリプスタチンなどが挙げられる。

[0130]

上記「高血圧治療薬」としては、例えばアンジオテンシン変換酵素阻害薬、カルシウム拮抗薬、カリウムチャンネル開口薬、アンジオテンシンII拮抗薬などが挙げられる。

アンジオテンシン変換酵素阻害薬としては、例えばカプトプリル、エナラプリル、アラセプリル、(塩酸) デラプリル、リジノプリル、イミダプリル、ベナゼプリル、シラザプリル、テモカプリル、トランドラプリル、(塩酸) マニジピンなどが挙げられる。

カルシウム拮抗薬としては、例えばニフェジピン、アムロジピン、エホニジピン、ニカルジピンなどが挙げられる。

カリウムチャンネル開口薬としては、例えばレブクロマカリム、L-27152、AL 0671、NIP-121などが挙げられる。

アンジオテンシンII拮抗薬としては、例えばロサルタン、カンデサルタンシレキシチル、バルサルタン、イルベサルタン、CS-866、E4177などが挙げられる。

[0131]

上記「高脂血症治療薬」としては、例えばHMG-CoA還元酵素阻害薬、フィブラート系化合物などが挙げられる。

HMG-CoA還元酵素阻害薬としては、例えばプラバスタチンおよびそのナトリウム塩、シンバスタチン、ロバスタチン、アトルバスタチン、フルバスタチン、リパンチルなどが挙げられる。

フィブラート系化合物としては、例えばベザフィブラート、クリノフィブラート、クロフィブラート、シンフィブラートなどが挙げられる。

[0132]

上記「関節炎治療薬」としては、例えばイブプロフェンなどが挙げられる。

上記「抗不安薬」としては、例えばクロルジアゼポキシド、ジアゼパム、オキサ

ゾラム、メダゼパム、クロキサゾラム、ブロマゼパム、ロラゼパム、アルプラゾ ラム、フルジアゼパムなどが挙げられる。

上記「抗うつ薬」としては、例えば、フルオキセチン、フルボキサミン、イミプラミン、パロキセチン、サートラリンなどが挙げられる。

[0133]

前記した併用用薬剤の投与時期は限定されず、MCH拮抗剤または医薬組成物と 併用用薬剤とを、投与対象に対し、同時に投与してもよいし、時間差をおいて投 与してもよい。併用用薬剤の投与量は、臨床上用いられている投与量に準ずれば よく、投与対象、投与ルート、疾患、組み合わせ等により適宜選択することがで きる。

併用用薬剤の投与形態は、特に限定されず、投与時に、MCH拮抗剤または医薬組成物と併用用薬剤とが組み合わされていればよい。このような投与形態としては、例えば、1)MCH拮抗剤または医薬組成物と併用用薬剤とを同時に製剤化して得られる単一の製剤の投与、2)MCH拮抗剤または医薬組成物と併用用薬剤とを別々に製剤化して得られる2種の製剤の同一投与経路での同時投与、3)MCH拮抗剤または医薬組成物と併用用薬剤とを別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、4)MCH拮抗剤または医薬組成物と併用用薬剤とを別々に製剤の異なる投与経路での同時投与、5)MCH拮抗剤または医薬組成物と併用用薬剤とを別々に製剤化して得られる2種の製剤の異なる投与経路での同時投与、5)MCH拮抗剤または医薬組成物と併用用薬剤とを別々に製剤化して得られる2種の製剤の異なる投与経路での時間差をおいての投与(例えば、MCH拮抗剤または医薬組成物;併用用薬剤の順序での投与、あるいは逆の順序での投与)などが挙げられる。

MCH拮抗剤または医薬組成物と併用用薬剤との配合比は、投与対象、投与ルート、疾患等により適宜選択することができる。

[0134]

【発明の実施の形態】

本発明は、さらに以下の参考例、実施例、製剤例、実験例によって詳しく説明 されるが、これらは本発明を限定するものではなく、また本発明の範囲を逸脱し ない範囲で変化させてもよい。 以下の参考例、実施例中の「室温」は0ないし30℃を示し、有機層の乾燥には無水硫酸マグネシウムまたは無水硫酸ナトリウムを用いた。「%」は特記しない限り重量パーセントを意味する。

赤外吸収スペクトルは、フーリエ変換形赤外分光光度計を用い、拡散反射法で 測定した。

[0135]

本文中で用いられているその他の略号は下記の意味を示す。

s : シングレット (singlet)

d : ダブレット (doublet)

t : トリプレット(triplet)

q : クァルテット (quartet)

m : マルチプレット (multiplet)

br : ブロード (broad)

J : カップリング定数 (coupling constant)

Hz: ヘルツ (Hertz)

CDC13: 重クロロホルム

 $DMSO-d_6$: 重ジメチルスルホキシド

THF: テトラヒドロフラン

DMF : N, N-ジメチルホルムアミド

DMSO : ジメチルスルホキシド

WSCD: 1-エチル-3-(3-ジメチルアミノプロピル) カルボジ

イミド

WSC: 1-エチル-3-(3-ジメチルアミノプロピル) カルボジイ

ミド 塩酸塩

¹H-NMR :プロトン核磁気共鳴

(通常フリー体をCDC13中で測定した。)

IR : 赤外吸収スペクトル

Me : メチル

Et: エチル

HOBt:1-ヒドロキシー1H-ベンソトリアゾール

IPE:ジイソプロピルエーテル

DMAP : 4-ジメチルアミノピリジン

[0136]

本明細書および図面において、塩基やアミノ酸などを略号で表示する場合、I

UPAC-IUB Commision on Biochemical Nomenclatureによる略号あるいは当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければ上体を示すものとする。

DNA :デオキシリボ核酸

c D N A : 相補的デオキシリボ核酸

A:アデニン

T: チミン

G: グアニン

こ :シトシン

RNA :リボ核酸

mRNA :メッセンジャーリボ核酸

dATP :デオキシアデノシン三リン酸

d T T P : デオキシチミジン三リン酸

d G T P : デオキシグアノシン三リン酸

dCTP:デオキシシチジン三リン酸

ATP:アデノシン三リン酸

EDTA :エチレンジアミン四酢酸

SDS :ドデシル硫酸ナトリウム

EIA :エンザイムイムノアッセイ

Gly: ゲリシン

Ala:アラニン

Val :バリン

Leu :ロイシン

I 1 e

: イソロイシン

Ser

: セリン

Thr

:スレオニン

Суs

: システイン

Met

:メチオニン

G l u

:グルタミン酸

Asp

: アスパラギン酸

Lуs

:リジン

Arg

: アルギニン

His

:ヒスチジン

Phe

: フェニルアラニン

Tyr

: チロシン

Trp

: トリプトファン

Pro

:プロリン

Asn

: アスパラギン

Gln

:グルタミン

pG1

: ピログルタミン酸

Ме

:メチル基

Εt

:エチル基

Вu

:ブチル基

Ρh

:フェニル基

TC

: チアゾリジン-4 (R) -カルボキサミド基

[0137]

また、本明細書中で繁用される置換基、保護基および試薬を下記の記号で表記 する。

Tos

: p - トルエンスルホニル

CHO

:ホルミル

B z 1

: ベンジル

C1₂Bz1 : 2, 6 - ジクロロベンジル

Bom

: ベンジルオキシメチル

Z

: ベンジルオキシカルボニル

C1-Z

:2-クロロベンジルオキシカルボニル

Br-Z

:2-ブロモベンジルオキシカルボニル

Вос

: t ープトキシカルボニル

DNP

: ジニトロフェノール

Trt

: トリチル

Bum

:t-ブトキシメチル

Fmoc

: N-9-フルオレニルメトキシカルボニル

HOBt

:1-ヒドロキシベンズトリアゾール

HOOBt

:3,4-ジヒドロ-3-ヒドロキシ-4-オキソー

1, 2, 3-ベンゾトリアジン

HONB

:1-ヒドロキシ-5-ノルボルネン-2, 3-ジカル

ボジイミド

DCC

: N, N' -ジシクロヘキシルカルボジイミド

[0138]

本願明細書の配列表の配列番号は、以下の配列を示す。

〔配列番号:1〕

ラットSLC-1をコードするcDNAのスクリーニングに使用した合成DNAを示す。

〔配列番号:2〕

ラットSLC-1をコードするcDNAのスクリーニングに使用した合成DNAを示す。

〔配列番号:3〕

ラットSLC-1の全アミノ酸配列を示す。

〔配列番号:4〕

5' 側にSal I認識配列が付加され、また3' 側にSpe I認識配列が付加されたラットSLC-1cDNAの全塩基配列を示す。

〔配列番号:5〕

ラットSLC-1発現CHO細胞の各クローンにおけるSLC-1mRNAの発現量を測定するために使用したリボプローブ (riboprobe) を示す。

〔配列番号:6〕

ヒトSLC-1をコードするcDNAを取得するために使用した合成DNAを示す。

〔配列番号:7〕

ヒトSLC-1をコードするcDNAを2本鎖にするために使用したプライマーを示す。

〔配列番号:8〕

ヒトSLC-1をコードするcDNA全塩基配列を示す。

[配列番号:9]

ヒトSLC-1の全アミノ酸配列を示す。

[配列番号:10]

ヒトSLC-1(S)をコードするcDNAのスクリーニングに使用した合成DNAを示す。

〔配列番号:11〕

ヒトSLC-1(S)をコードするcDNAのスクリーニングに使用した合成DNAを示す。

[配列番号:12]

ヒトSLC-1(L)をコードするcDNAのスクリーニングに使用した合成DNAを示す。

[配列番号:13]

ヒトSLC-1(L)をコードするcDNAのスクリーニングに使用した合成DNAを示す。

[配列番号:14]

5' 側にSal I認識配列が付加され、また3' 側にSpe I認識配列が付加されたヒト SLC-1(S) cDNAの全塩基配列を示す。

[配列番号:15]

5' 側にSal I認識配列が付加され、また3' 側にSpe I認識配列が付加されたヒト SLC-1(L) cDNAの全塩基配列を示す。

[配列番号:16]

ヒトSLC-1(S) 発現CHO細胞およびヒトSLC-1(L) 発現CHO細胞の各クローンにおけるSLC-1mRNAの発現量を測定するために使用したリボプローブ (riboprobe) を示す。

[0139]

参考例1-6で得られた配列番号:9で表される塩基配列をコードするDNAを含むプラスミドによる形質転換体 Escherichia coli DH10B/phSLC1L8は、平成1

1年2月1日から通商産業省工業技術院生命工学工業技術研究所(NIBH)に 寄託番号FERM BP-6632として、平成11年1月21日から財団法人 ・発酵研究所(IFO)に寄託番号IFO 16254として寄託されている。

[0140]

【実施例】

参考例1

2-(R)-[2-(N,N-ジメチルアミノ)エチル]-6-{4-[(4-メトキシフェニル)カルボニルオキシ] ベンジルオキシ} テトラリン

【化28】

2-(R)-[2-(N,N-ジメチルアミノ)エチル]-6-ヒドロキシテトラリン(300 mg)、4-(ヒドロキシメチル)フェニル 4-メトキシベンゾエート(530 mg)、トリフェニルホスフィン(430 mg)のTHF溶液(6 ml)に、アゾジカルボン酸ジエチル(40%トルエン溶液,0.95 g)を氷冷下滴下した。反応液を室温で2時間撹拌後濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;ヘキサン~ヘキサン:酢酸エチル=10:1)で精製し、再結晶(酢酸エチル-ヘキサン)を経て、標題化合物(320 mg)を得た。

融点: 111-114℃.

[a]_D²⁰ = +44.4° (c = 0.502,
$$\[\[\] \] \]$$
 [0 1 4 1]

参考例2

N-フェニル-4- { [2-(2-ピペリジノエチル) -6-テトラニリル] オキシメチル} ベンズ アミド

4-{[2-(2-ピペリジノエチル)-6-テトラニリル]オキシメチル}安息香酸(300 mg)のTHF懸濁液(3 ml)にトリエチルアミン(0.11 ml)を加え、塩化トリメチルアセチル(92 mg)のTHF溶液(0.5 ml)を氷冷下滴下し、30分間撹拌した。反応液を室温まで昇温し、1時間撹拌後、氷冷下、アニリン(85 mg)のTHF溶液(0.5 ml)を滴下し、1時間撹拌した。更に、反応液を室温で24時間撹拌後、飽和重曹水を加え、酢酸エチルとTHFの混合液で抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをTHF-メタノール-IPEより再結晶し、標題化合物(150 mg)を得た。

融点: 183-185℃.

[0142]

参考例3

4-{[2-(2-ピペリジノエチル)-6-テトラニリル]オキシメチル}-N-(2-ピリジニル)ベンズアミド

【化30】

4-{[2-(2-ピペリジノエチル)-6-テトラニリル]オキシメチル}安息香酸(300 mg)のTHF懸濁液(6 ml)にトリエチルアミン(0.11 ml)を加えた。得られる懸濁液に、塩化トリメチルアセチル(0.095 ml)を氷冷下滴下し、30分間撹拌した。反応液を室温まで昇温し、1時間撹拌後、2-アミノピリジン(110 mg)のTHF溶液(1.0 mg)

1)を氷冷下滴下し、1時間撹拌した。さらに、反応液を室温で6時間、60℃で12時間撹拌し、6時間加熱還流した。反応液に飽和重曹水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;THF)で精製し、再結晶(酢酸エチル-IPE)を経て、標題化合物(30 mg)を得た。

融点: 139-143℃.

[0143]

参考例4

4-{[2-(2-ピペリジノエチル)-6-テトラニリル]オキシメチル}-N-(2-キノリニル)ベンズアミド

【化31】

4-{[2-(2-ピペリジノエチル)-6-テトラニリル]オキシメチル} 安息香酸(300 mg)のTHF懸濁液(6 ml)にトリエチルアミン(0.22 ml)を加え、塩化トリメチルアセチル(0.095 ml)を氷冷下滴下し、30分間撹拌した。反応液を室温まで昇温し、1時間撹拌後、2-アミノキノリン(170 mg)のTHF溶液(1.0 ml)を氷冷下滴下し、室温で12時間撹拌した。反応液に飽和重曹水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒; THF)で精製し、再結晶(酢酸エチル-ジイソプロピルエーテル)を経て、標題化合物(45 mg)を得た。

融点: 135-138℃.

[0144]

参考例5

N-(4-メトキシフェニル)-4- {[2-(2-ピペリジノエチル)-6-テトラニリル]オキシメチル} ベンズアミド

【化32】

4-{[2-(2-ピペリジノエチル)-6-テトラニリル]オキシメチル}安息香酸(170 mg)、4-メトキシアニリン(53 mg)、HOBt(70 mg)およびDMAP(60 mg)のDMF溶液(2 ml)に、WSCD(0.11 ml)を室温で加え、12時間撹拌した。反応液に10%炭酸カリウム水溶液および水を加え、THFと酢酸エチルの混合液で抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;THF)で精製後、再結晶(THF-IPE)を経て、標題化合物(140 mg)を得た。

融点: 193-196℃

[0145]

参考例6

N-(3,4-ジメトキシフェニル)-4-{[2-(2-ピペリジノエチル)-6-テトラニリル]オ キシメチル} ベンズアミド

【化33】

4-{[2-(2-ピペリジノエチル)-6-テトラニリル]オキシメチル} 安息香酸(300 mg)、3,4-ジメトキシアニリン(120 mg)、HOBt(120 mg)およびDMAP(100 mg)のDMF 溶液(3 ml)のに、WSCD(フリー体、0.2 ml)を室温で加え、12時間撹拌した。反応液に10%炭酸カリウム水溶液を加え、生じた結晶をろ取し、結晶を水で洗浄後乾燥した。結晶をアルミナカラムクロマトグラフィー(展開溶媒;THF)で精製後、

再結晶(THF-IPE)を経て、標題化合物(330 mg)を得た。

融点: 178-180℃.

[0146]

参考例7

6-[4-(ベンゾイルアミノ)ベンジルオキシ]-2-(2-ピペリジノエチル)テトラリ

ン

【化34】

6-ヒドロキシ-2-(2-ピペリジノエチル)テトラリン(500 mg)のDMF溶液(5 ml)に、水素化ナトリウム(60%油状,85 mg)を室温で加え、1時間撹拌した。反応液にN-[4-(ブロモメチル)フェニル]ベンズアミド(670 mg)を室温で加え、1時間撹拌した。反応液に水を加えて、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;TIF)で精製後、再結晶(酢酸エチル)を経て、標題化合物(200 mg)を得た。

融点: 176-179℃.

[0147]

参考例8

2-[(N,N-ジメチルアミノ)メチル]-6-テトラリニル 4-ビフェニリルカルボキシレート

【化35】

2-[(N,N-ジメチルアミノ)メチル]-6-ヒドロキシテトラリン(300 mg)のピリジ

融点: 85-86℃.

[0148]

参考例9

2-[(N,N-i)メチルアミノ)メチル]-6- $\{4-[(4-x)++i)$ フェニル)カルボニルオキシ] ベンジルオキシ $\}$ テトラリン

【化36】

2-[(N,N-ジメチルアミノ)メチル]-6-ヒドロキシテトラリン(150 mg)、4-(ヒドロキシメチル)フェニル 4-メトキシベンゾエート(570 mg)、トリフェニルホスフィン(574 mg)のTHF溶液(3 ml)に、アゾジカルボン酸ジエチル(40%トルエン溶液,950 mg)を室温で滴下し、3時間撹拌した。反応液を濃縮し、残さをアルミナカラムクロマトグラフィー(展開溶媒;ヘキサン~ヘキサン:酢酸エチル=6:1)で精製し、再結晶(酢酸エチル-ヘキサン)を経て、標題化合物(175 mg)を得た。

[0149]

融点: 119-121℃.

参考例10

 $2-[(N,N-ジメチルアミノ)メチル]-6-{4-[(4-メトキシベンジル)オキシ] ベンジルオキシ} テトラリン$

2-[(N,N-ジメチルアミノ)メチル]-6-ヒドロキシテトラリン(300 mg)、4-[(4-メトキシベンジル)オキシ]ベンジルアルコール(1.07 g)、トリフェニルホスフィン(1.15 g)のTHF溶液(6 ml)に、アゾジカルボン酸ジエチル(40%トルエン溶液,1.91 g)を室温下滴下し12時間撹拌した。反応液を濃縮し、残さをアルミナカラムクロマトグラフィー(展開溶媒;ヘキサン~ヘキサン:酢酸エチル=10:1)で精製し、再結晶(酢酸エチル-ヘキサン)を経て、標題化合物(260 mg)を得た。

融点: 106-111℃.

[0150]

参考例11

 $6-{4-[(1-ベンゾチオフェン-2-イル)カルボニルアミノ] ベンジルオキシ} -2-[(N, N-ジメチルアミノ)メチル] テトラリン$

【化38】

1-ベンゾチオフェン-2-カルボン酸(230 mg)のTHF溶液(4 ml)にDMFを1滴加え、オキサリルクロリド(0.23 ml)を氷冷下加え、室温で30分間撹拌した。反応液を濃縮後THF(1 ml)に溶解し、6-(4-アミノベンジルオキシ)-2-[(N,N-ジメチルアミノ)メチル]テトラリン(300 mg)のピリジン溶液(6 ml)に氷冷下滴下し、15分間撹拌した。更に、反応液を室温で15分間撹拌後、10%炭酸カリウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製し、再結晶(THF-IPE)を経て、標題化合物(250 mg)を得た。

融点: 165-169℃.

[0151]

参考例12

2-[(N,N-ジメチルアミノ)メチル]-6-{4-[(4-メトキシフェニル)スルホニルアミノ] ペンジルオキシ} テトラリン

【化39】

6-[(4-アミノベンジル)オキシ]-2-[(N,N-ジメチルアミノ)メチル]テトラリン(300 mg)のピリジン溶液(6 ml)に塩化4-メトキシベンゼンスルホニル(270 mg)のT HF溶液(1 ml)を氷冷下滴下し、15分間撹拌した。更に、反応液を室温で、15分間撹拌後、10%炭酸カリウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製し、再結晶(酢酸エチル-IPE)を経て、標題化合物(260 mg)を得た。

融点: 137-140℃.

[0152]

参考例13

6-[4-(ベンジルカルボニルアミノ)ベンジルオキシ]-2-[(N,N-ジメチルアミノ)メチル]テトラリン

【化40】

6-[(4-アミノベンジル)オキシ]-2-[(N,N-ジメチルアミノ)メチル]テトラリン(300 mg)のピリジン溶液(6 ml)に塩化フェニルアセチル(200 mg)のTHF溶液(1 ml)を氷冷下滴下し、15分間撹拌した。更に、反応液を室温で、15分間撹拌後、飽和

重曹水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥 後濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;ヘキサン〜 ヘキサン:酢酸エチル=2:1)で精製後、再結晶(酢酸エチル-ヘキサン)を経て、 標題化合物(175 mg)を得た。

融点: 130-135℃.

[0153]

参考例14

6-[4-(ベンゾイルアミノ)ベンジルオキシ]-2-[(N,N-ジメチルアミノ)メチル]テトラリン

【化41】

6-[(4-アミノベンジル)オキシ]-2-[(N,N-ジメチルアミノ)メチル]テトラリン(300 mg)のピリジン溶液(6 ml)に塩化ベンゾイル(0.14 ml)を氷冷下滴下し、室温で30分間撹拌した。反応液に10%炭酸カリウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製後、再結晶(THF-IPE)を経て、標題化合物(240 mg)を得た。

融点: 128-133℃.

[0154]

参考例15

2-[(N,N-ジメチルアミノ)メチル]-6-{4-[(4-メトキシベンゾイル)アミノ] ベンジルオキシ} テトラリン

【化42】

6-[(4-アミノベンジル)オキシ]-2-[(N,N-ジメチルアミノ)メチル]テトラリン(300 mg)のピリジン溶液(6 ml)に塩化p-アニソイル(0.20 ml)を氷冷下滴下し、室温で30分間撹拌した。反応液に10%炭酸カリウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製後、再結晶(THF-IPE)を経て、標題化合物(300 mg)を得た。

融点: 155-159℃.

[0155]

参考例16

2-[(N,N-ジメチルアミノ)メチル]-6-{4-[(2-メトキシベンゾイル)アミノ] ベンジルオキシ} テトラリン

【化43】

6-[(4-アミノベンジル)オキシ]-2-[(N,N-ジメチルアミノ)メチル]テトラリン(200 mg)のピリジン溶液(4 ml)に、o-アニソイルクロリド(0.15 ml)を氷冷下滴下し、室温で30分間撹拌した。反応液に10%炭酸カリウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;THF)で精製後、再結晶(酢酸エチルーヘキサン)を経て、標題化合物(200 mg)を得た。

融点: 106-108℃.

[0156]

参考例17

 $6-\{4-[N-(4-メトキシベンゾイル)-N-メチルアミノ] ベンジルオキシ\}-2-[(N,N-ジメチルアミノ)メチル] テトラリン$

【化44】

2-[(N,N-ジメチルアミノ)メチル]-6-ヒドロキシテトラリン(150 mg)、N-[4-(ヒドロキシメチル)フェニル]-4-メトキシ-N-メチルベンズアミド(600 mg)、トリフェニルホスフィン(570 mg)のTHF溶液(3 m1)に、アゾジカルボン酸ジエチル(40%トルエン溶液,960 mg)を室温下滴下し、12時間撹拌した。反応液を濃縮し、残さをシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン~酢酸エチル~酢酸エチル・メタノール=1:2)で精製した後アルミナカラムクロマトグラフィー(展開溶媒;ヘキサン~ヘキサン:酢酸エチル=2:1)で精製し、標題化合物(185 mg)を得た。

¹H-NMR (CDCl₃) d:1.20-1.50(1H, m), 1.80-2.46(5H, m), 2.25(6H, s), 2.68-2 .86(3H, m), 3.47(3H, s), 3.74(3H, s), 4.95(2H, s), 6.52-6.76(4H, m), 6.8 4-7.14(3H, m), 7.22-7.38(4H, m).

[0157]

参考例18

N-[4-($\{[2-(ジェチルアミノ)ェチル]アミノ\}カルボニル)フェニル] 4-ピフェニリルカルボキサミド$

【化45】

4-ビフェニリルカルボン酸 (0.879g) のTHF (15ml) 溶液に氷冷下、オキサリルクロリド (0.46ml) およびDMF (1滴) を加えた。反応液を室温で30分間 撹拌後濃縮した。残さをTHF (10ml) に溶解し、プロカインアミド塩酸塩 (1.078g) とトリエチルアミン (1.4ml) のTHF (20ml) 懸濁液に0℃で滴下した。0℃で30分間撹拌後、反応液に10%炭酸カリウム水溶液を加え、酢酸エチルで抽出し

た。有機層を飽和食塩水で洗浄し、乾燥後、濃縮した。残さをメタノールから再結晶し、標題化合物 (1.147g) を得た。

融点:237-240℃ (分解).

[0158]

参考例19

4-(4-ビフェニリル)メトキシ)-N-[2-(イソプロピルアミノ)エチル] ベンズアミド 【化46】

4-(4-ビフェニリルメトキシ)安息香酸(1.007g)のTHF(30 ml)およびアセトニトリル (30 ml)の混合溶液にWSC(0.708 g)、HOBt(0.521g)、N-イソプロピルエチレンジアミン(0.353g)およびトリエチルアミン(1 ml)を加えた。室温で18時間撹拌後、反応液に水を加え、酢酸エチルで抽出した。有機層を10%炭酸カリウム水溶液および飽和食塩水で洗浄し、乾燥後濃縮した。残さをエタノールから再結晶して、標題化合物(0.806 g)を得た。

融点:150-154℃.

[0159]

参考例20

2-(N,N-i)エチルアミノ)エチル 4-[(4-i)フェニリル) カルボニルアミノ] ベンゾエート

4-ビフェニリルカルボン酸(1.091g)のTHF(15ml)溶液に氷冷下、オキサリルクロリド(0.39ml)およびDMF(1滴)を加えた。反応液を室温で30分間撹拌後濃縮した。残さをTHF(10ml)に溶解し、プロカイン塩酸塩(1.091g)とトリエチルアミン(0.67ml)のTHF(30ml)懸濁液に0℃で滴下した。0℃で30分間撹拌後、反応液に10%炭酸カリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、乾燥後、濃縮した。残さを酢酸エチル/ヘキサンから再結晶し、標題化合物(0.728g)を得た。

融点:146-149℃.

[0160]

参考例21

N-[4-({[2-(ジメチルアミノ)エチル] アミノ} カルボニル)フェニル] 4-ビフェニ リルカルボキサミド

【化48】

4-(4-ピフェニリルカルボニルアミノ)安息香酸(0.323g)のTHF(15 ml)およびアセトニトリル (15 ml)の混合溶液にWSC(0.248 g)、HOBt(0.156g)、N,N-ジメチルエチレンジアミン(0.097g)およびトリエチルアミン(0.21 ml)を加えた。室温で18時間撹拌後、反応液に水を加え、酢酸エチルで抽出した。有機層を10%炭酸カリウム水溶液および飽和食塩水で洗浄し、乾燥後濃縮した。残さをメタノール/

融点:261-264℃ (分解)

[0161]

以下の参考例22ないし25に記載の化合物は、参考例21と同様にして製造 した。

参考例22

N-[4-{[2-(ピペリジノエチル)アミノ] カルボニル} フェニル] 4-ビフェニリルカルボキサミド

【化49】

融点;247-252℃ (分解)

参考例23

N- [4-{[2-(1-ピロリジニル)エチル] アミノ} カルボニル} フェニル] 4-ピフェニリルカルボキサミド

【化50】

融点:241-245℃ (分解)

[0162]

参考例24

N-[2-(N,N-ジメチルアミノ)メチル-6-テトラリニル]-4-ビフェニリルカルボキサミド

【化51】

融点:164-166℃.

参考例25

N-[2-(N,N-ジメチルアミノ)メチル-6-テトラリニル] -4-ビフェニリルカ ルボキサミド 塩酸塩

【化52】

融点:>250℃

1HNMR;d:

1.24-1.54 (1H,m), 1.84-2.10 (2H, m), 2.20-2.50 (3H, m), 2.26 (6H, s), 2. 79-3.01 (3H, m), 7.10 (1H, d, J=8Hz), 7.28-7.54 (5H, m), 7.60-7.82 (5H, m), 7.94 (2H, d, J=8Hz)

IR(KBr)

3028, 2910, 2640, 1658, 1538, 1417, 746, 701 cm⁻¹

参考例26

 $N-{3-[(N,N-ジメチルアミノ)メチル]-1,2,3,4-テトラヒドロ-7-キノリニル}-4-ビフェニリルカルボキサミド$

【化53】

4-ピフェニリルカルボン酸(145 mg)のTHF溶液(3 ml)にDMFを1滴加え、氷冷下オキサリルクロリド(0.1 ml)を滴下し、室温で30分間撹拌した。反応液を濃縮後THF(1 ml)に溶解し、7-アミノ-3-[(N,N-ジメチルアミノ)メチル]-1,2,3,4-テトラヒドロキノリン(150 mg)のピリジン溶液(1.5 ml)に氷冷下滴下し、30分間撹拌した。反応液を室温に昇温した後、10%炭酸カリウム水溶液を加え、THFと酢酸エチルの混合液で抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。洗浄後乾燥した。溶媒を減圧留去し残さをTHF-IPEより再結晶し、標題化合物(180 mg)を得た。

融点: 206-211℃.

[0164]

参考例27

 $4-\{N-[(ベンジルオキシ)カルボニル]-N-メチルアミノ\}-N-\{3-[(N,N-ジメチルアミノ)メチル]-1,2,3,4-テトラヒドロ-7-キノリニル<math>\}$ ベンズアミド

【化54】

4-{N-[(ベンジルオキシ)カルボニル]-N-メチルアミノ} 安息香酸(210 mg)のTHF 溶液(2 m1)にDMFを1滴加え、氷冷下オキサリルクロリド(0.1 ml)を滴下し、室温で30分間撹拌した。反応液を濃縮後THF(1 ml)に溶解し、7-アミノ-3-[(N,N-ジメチルアミノ)メチル]-1,2,3,4-テトラヒドロキノリン(150 mg)のピリジン溶液(1.5 ml)に氷冷下滴下し、30分間撹拌した。反応液を室温に昇温した後、10%炭酸カリウム水溶液を加え、THFと酢酸エチルの混合液で抽出した。有機層を水、飽和

食塩水で洗浄し、乾燥後濃縮した。残さをTHF-IPEより再結晶し、標題化合物(22 0 mg)を得た。

融点: 167-172℃.

[0165]

参考例28

N-{3-[(N,N-ジメチルアミノ)メチル]-1-ホルミル-1,2,3,4-テトラヒドロ-7-キノリニル}-4-ピフェニリルカルボキサミド

【化55]

ギ酸(1 ml)に無水酢酸(0.1 ml)を加え、55℃で2時間撹拌した。反応液に、N-{3-[(N,N-ジメチルアミノ)メチル]-1,2,3,4-テトラヒドロ-7-キノリニル}-4-ピフェニリルカルボキサミド(80 mg)を氷冷下加え、室温で72間撹拌した。反応液に10%炭酸カリウム水溶液を加えてアルカリ性とし、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをTHF-IPEより再結晶し、標題化合物(80 mg)を得た。

融点: 134-138℃.

[0166]

参考例29

 $N-\{1-Pセチル-3-[(N,N-ジメチルアミノ)メチル]-1,2,3,4-テトラヒドロ-7-キノリニル\}-4-ピフェニリルカルボキサミド$

【化56】

N-{3-[(N,N-ジメチルアミノ)メチル]-1,2,3,4-テトラヒドロ-7-キノリニル}-4

-ビフェニリルカルボキサミド(80 mg)のピリジン溶液(1 ml)に、塩化アセチル(0.02 ml)を氷冷下加え、15分間撹拌後、室温で15分間撹拌した。反応液に10%炭酸カリウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをTHF-IPEより再結晶し、標題化合物(64 mg)を得た。融点: 167-173℃.

[0167]

参考例30

 $N-{3-[(N,N-ジメチルアミノ)メチル]-1-メチルスルホニル-1,2,3,4-テトラヒドロ-7-キノリニル}-4-ピフェニリルカルボキサミド$

【化57】

N-{3-[(N,N-ジメチルアミノ)メチル]-1,2,3,4-テトラヒドロ-7-キノリニル}-4-ビフェニリルカルボキサミド(80 mg)のピリジン溶液(1 ml)に、塩化メタンスルホニル(0.02 ml)を氷冷下加え、室温で1時間撹拌した。更に、反応液に塩化メタンスルホニル(0.02 ml)を氷冷下加え、室温で12時間撹拌した。反応液に10%炭酸カリウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをTHF-IPEより再結晶し、標題化合物(64 mg)を得た。融点: 184-188℃.

[0168]

参考例31

2-(R)-[2-(N,N-ジメチルアミノ)エチル]-6-(4-ヒドロキシフェニル)メトキシテトラリン

水素化リチウムアルミニウム(60 mg)のTHF懸濁液(4 ml)に、氷冷下、2-(R)-[2-(N,N-ジメチルアミノ)エチル]-6-[4-(4-メトキシフェニルカルボニルオキシ)フェニルメトキシ]テトラリン(330 mg)のTHF溶液(2 ml)を滴下した。反応液に1N水酸化ナトリウム水溶液を加えて塩基性とし、沈殿物をセライトろ過して除いた。ろ液を濃縮し、残さをシリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル~メタノール)で精製し、再結晶(酢酸エチル-ヘキサン)を経て、標題化合物(70 mg)を得た。

融点: 132-135℃.

[a]_D²⁰ = +56.9° (c = 0.505,
$$\beta \beta J - \mu$$
).

参考例32

2-(6-メトキシ-2-テトラリニル)-1-ピペリジノ-1-エタノン

【化59】

2-(6-メトキシ-2-テトラリニル)酢酸(8.8 g)をTHF(150 ml)とアセトニトリル(50 ml)の混合液に溶解し、ピペリジン(5.2 g)、WSC(12 g)、HOBt(6.0 g)およびトリエチルアミン(17 ml)を加え、室温で12時間撹拌した。反応液に水を加えて、酢酸エチルで抽出し、有機層を1N塩酸、水、飽和重曹水、水、飽和食塩水で洗浄し、乾燥後濃縮した。洗浄後乾燥した。溶媒を減圧留去し残さをシリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製し、標題化合物(10.3 g)を得た。ヘキサンより再結晶した結晶は以下の融点を示した。

融点: 59-61℃.

[0170]

参考例33

6-メトキシ-2-(2-ピペリジノエチル)テトラリン 塩酸塩

【化60】

水素化リチウムアルミニウム(1.94 g)のTHF懸濁液(100 ml)に、2-(6-メトキシ-2-テトラリニル)-1-ピペリジノ-1-エタノン(9.80 g)のTHF溶液(50 ml)を氷冷下 商下した。反応液を30分間かけて60℃まで昇温し、30分間撹拌した。反応液を室 温まで冷却後、1N水酸化ナトリウム水溶液を加えて塩基性とし、沈殿物をセライトろ過して除いた。ろ液を濃縮し、残さを塩酸塩とし、エタノール-IPEより再結 晶し、標題化合物(9.80 g)を得た。

融点: 189-191℃.

[0171]

参考例34

6-ヒドロキシ-2-(2-ピペリジノエチル)テトラリン

【化61】

48%臭化水素酸(50 ml)に6-メトキシ-2-(2-ピペリジノエチル)テトラリン 塩酸塩(9.3 g)を加え、4時間加熱還流した。反応液を減圧下濃縮後、残さに飽和重曹水を加えて、水層をアルカリ性とし、水層をTHFと酢酸エチルの混合液で抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。生じた結晶をIPEで洗浄し、標題化合物(5.8 g)を得た。

融点: 154-157℃.

[0172]

参考例35

4-{[2-(2-ピペリジノエチル)-6-テトラニリル]オキシメチル} 安息香酸メチル 塩酸塩

【化62】

6-ヒドロキシ-2-(2-ピペリジノエチル)テトラリン(1.50 g)、4-(ヒドロキシメチル)安息香酸メチル(1.44 g)、トリフェニルホスフィン(2.60 g)のTHF溶液(15 ml)に、アゾジカルボン酸ジエチル(40%トルエン溶液,5.10 g)を室温で滴下し、12時間撹拌後、濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;ヘキサン~ヘキサン:酢酸エチル=15:1)で精製後、塩酸塩とし、再結晶(メタノール-IPE)を経て、標題化合物(1.36 g)を得た。

融点: 190-193℃.

[0173]

参考例36

4-{[2-(2-ピペリジノエチル)-6-テトラニリル] オキシメチル} 安息香酸 【化63】

4-{[2-(2-ピペリジノエチル)-6-テトラニリル] オキシメチル} 安息香酸メチル 塩酸塩(1.06 g)のメタノール溶液(20 ml)に、3N水酸化ナトリウム水溶液(1.8 ml)を加え、6時間加熱還流した。反応液を濃縮後、水を加え、さらに1N塩酸を加え、液性を約pH=7とした。生じた結晶をろ取し、標題化合物(0.93 g)を得た。エタノールより再結晶した結晶は以下の融点を示した。

融点: 105-108℃.

[0174]

参考例37

4-[N-(4-メトキシベンゾイル)-N-メチルアミノ] 安息香酸

【化64】

4-(メチルアミノ)安息香酸(5.0 g)のTHF溶液(50 ml)に炭酸ナトリウム(23 g) の水溶液(50 ml)を加え、p-アニソイルクロリド(5.6 g)を氷冷下滴下し、15分間 撹拌後、室温で30分間撹拌した。反応液に氷冷下濃塩酸を加えて水層を酸性とし、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン~ヘキサン:酢酸エチル=1:2)で精製後、再結晶(酢酸エチル-ヘキサン)を経て、標題化合物(4.8 g)を得た。

融点: 157-160℃.

[0175]

参考例38

N-[4-(ヒドロキシメチル)フェニル]-4-メトキシ-N-メチルベンズアミド

【化65】

4-[N-(4-メトキシベンソイル)-N-メチルアミノ]安息香酸(1.14 g)のTHF溶液(1 0 ml)にボランのTHF溶液(1M, 16 ml)を氷冷下滴下し、15分間撹拌後、室温で1時間撹拌した。反応液に水を加えた後、1N塩酸を加え、酢酸エチルで抽出した。有機層を水、飽和重曹水、飽和食塩水で洗浄し、乾燥後濃縮した。残さをシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン~ヘキサン:酢酸エチル=1:2

)で精製後、再結晶(酢酸エチル-ヘキサン)を経て、標題化合物(770 mg)を得た。

融点: 85-90℃.

[0176]

参考例39

4-(4-ピフェニリルカルボニルアミノ)安息香酸メチル

【化66】

4-ピフェニリルカルボン酸 (2.184g) のTHF (30ml) 溶液に氷冷下、オキサリルクロリド (1.2ml) およびDMF (0.04ml) を加えた。反応液を室温で30分間撹拌後濃縮した。残さをTHF (15ml) に溶かし、4-アミノ安息香酸メチル (1.512g) とトリエチルアミン (2.1ml) のTHF (30ml) 溶液に0℃で滴下した。0℃で30分間撹拌後、反応液に10%クエン酸水溶液を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、乾燥後、濃縮した。得られた粗結晶をジエチルエーテルで洗浄し、標題化合物 (2.179g) を得た。

融点:247-251℃.

[0177]

参考例40

4-(4-ビフェニリルカルボニルアミノ)安息香酸

【化67]

4-(4-ビフェニリルカルボニルアミノ)安息香酸メチル (1.998g) のTHF (60ml

)およびメタノール (20ml) の混合溶液に1N水酸化ナトリウム水溶液 (8ml) を加え、室温で18時間撹拌した。反応液に1N塩酸 (10ml) を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、乾燥後、濃縮した。得られた粗結晶をジエチルエーテルで洗浄し、標題化合物 (1.760g) を得た。

融点:>320℃.

 $^{\mathrm{T}}$ HNMR(DMSO-d₆);d:7.37-7.57 (3H,m), 7.77 (2H,d), 7.85 (2H,d), 7.95 (4H,s), 8.08 (2H,d), 10.56 (1H,s)

[0178]

参考例41

2-[(N,N-ジメチルアミノ)メチル]-6-(4-ニトロベンジルオキシ)テトラリン 【化 6 8】

2-[(N,N-ジメチルアミノ)メチル]-6-ヒドロキシテトラリン(1.5 g)、4-ニトロベンジルアルコール(3.35 g)、トリフェニルホスフィン(5.74 g)のTHF溶液(15 m 1)に、アゾジカルボン酸ジエチル(40%トルエン溶液,9.53 g)を室温で齎下し、2 4時間撹拌した。反応液を濃縮し、残さをアルミナカラムクロマトグラフィー(展開溶媒;ヘキサン~ヘキサン:酢酸エチル=8:1)で精製し、再結晶(酢酸エチル-ヘキサン)を経て、標題化合物(1.29 g)を得た。

融点: 83-89℃.

[0179]

参考例42

6-(4-アミノベンジルオキシ)-2-[(N,N-ジメチルアミノ)メチル]テトラリン

【化691

2-[(N,N-ジメチルアミノ)メチル]-6-(4-ニトロベンジルオキシ)テトラリン(1.

91 g)のTHF溶液(12 ml)に、氷冷下酢酸(6 ml)を加えた後、亜鉛粉末(3.67 g)を加え、6時間撹拌した。反応液をろ過し、ろ液を濃縮した。残さに10%炭酸カリウム水溶液および酢酸エチルを加え、析出物をセライトろ過して除き、ろ液を酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、乾燥濃縮した。残さをアルミナカラムクロマトグラフィー(展開溶媒;ヘキサン~ヘキサン:酢酸エチル=

4:1)で精製し、標題化合物(1.05 g)を得た。

非晶状粉末: ¹H-NMR (CDCl₃) d:1.18-1.50(1H, m), 1.70-2.50(5H, m), 2.24(6 H, s), 2.72-2.86(3H, m), 3.68(2H, brs), 4.88(2H, s), 6.58-6.82(4H, m), 6.99(1H, s), 7.14-7.30(2H, m).

[0180]

参考例43

4-アニリノカルボニル安息香酸メチル

【化70】

4-メトキシカルボニル安息香酸(540 mg)、アニリン(0.27 ml)、WSC(863 mg)、およびトリエチルアミン(0.84 ml)をTHF(20 ml)に加えた。反応液を室温で20時間撹拌後、水にあけ、酢酸エチルーTHF(1:1)で抽出した。有機層を水、飽和重曹水および飽和食塩水で洗浄し、乾燥後、濃縮した。得られた粗結晶を酢酸エチルーへキサンで再結晶し、標題化合物(659 mg)を得た。

融点:189-190℃.

[0181]

参考例44

4-アニリノカルボニル安息香酸

4-アニリノカルボニル安息香酸メチル(511 mg)のメタノール(16 ml)-THF(6 ml)溶液に、8 mol 水酸化ナトリウム水溶液(8 ml)を加え、室温で1時間撹拌した 。反応溶液に1 mol 塩酸を加え、pH=5にした後、酢酸エチルーTHF(1:1)で抽出し た。有機層を水、飽和食塩水で洗浄し、乾燥後、濃縮して得られた残さをヘキサ ンで洗浄し、標題化合物(480 mg)を得た。

融点:305-307℃.

[0182]

参考例45

4-(2-ベンゾ[b] フラニル)安息香酸

【化72】

4-プロモ安息香酸エチル(2.3 g)のトルエン(40 ml)-エタノール(10 ml)溶液 に、ベンゾフラニル-2-ボロン酸(2.1 g)、テトラトリフェニルホスフィンパラ ジウム(200 mg)、および2M 炭酸ナトリウム水溶液を加え、アルゴン雰囲気下、8 0 ℃で5時間還流させた。反応液を水で希釈し、酢酸エチルで抽出した。有機層 を水、飽和食塩水で洗浄し、乾燥後、濃縮した。得られた残さをシリカゲルカラ ムクロマトグラフィーで精製した(展開溶媒;酢酸エチル:ヘキサン=1:4)。 精製物を濃縮後、メタノール(10 ml)ーTHF(10 ml)に溶解した。得られる溶液に 、室温で、8 mol 水酸化ナトリウム水溶液(8 ml)を加え、2時間撹拌した。反応 溶液に1 mol 塩酸を加えて酸性にした後、酢酸エチルーTHF(1:1)で抽出した。有 機層を水、飽和食塩水で洗浄し、乾燥後、濃縮した。得られた残さをヘキサンで 洗浄し、標題化合物(2.272 g)を得た。

融点:292-294 ℃.

[0183]

参考例46

3'-アセチルアミノ-4-ビフェニリルカルボン酸

【化73】

参考例45と同様にして標題化合物を製造した。

融点:300-301℃.

[0184]

実施例1

N-[2-(N,N-ジメチルアミノ)メチル-6-テトラリニル]-(4'-メトキシビフェニル-4-イル) カルボキサミド

【化74】

6-アミノ-2-(N,N-ジメチルアミノ)メチルテトラリン(0.139g)および4-(4-メトキシフェニル)安息香酸(0.118g)のDMF溶液(3ml)に、2M HOBtのDMF溶液(0.25ml)、2M WSCDのDMF溶液(0.30ml)、トリエチルアミン(0.14ml)およびDMAP(0.132g)を加えた。反応液を室温で12時間撹拌した後、10%炭酸カリウム水溶液を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、乾燥後、濃縮した。得られた粗結晶をジエチルエーテルで洗浄後、酢酸エチルーへキサンより再結晶して、標題化合物(0.124 g)を得た。

融点:170-175℃.

[0185]

以下の実施例2および3に記載の化合物は、実施例1と同様にして製造した。

実施例2

4-ベンゾイル−N−[2-(N,N−ジメチルアミノ)メチル−6−テトラリニル] ベンズアミド

【化75】

融点:193-196℃ (再結晶溶媒:酢酸エチル-ヘキサン).

実施例3

N- [2-(N,N-ジメチルアミノ)メチル-6-テトラリニル] -4-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル) ベンズアミド

【化76】

融点:235-240℃ (ジエチルエーテルで洗浄).

[0186]

実施例4

4-(ベンゾイルアミノ)-N-[2-(N, N-ジメチルアミノ<math>) メチルー6-テトラリニル] ベンズアミド

【化77]

6-アミノ-2-(N,N-ジメチルアミノ)メチルテトラリン塩酸塩(139 mg)、<math>4-ベンゾイルアミノ安息香酸(121 mg), WSCD(0.13 ml)、HOBt(92 mg)、トリエチル

アミン(0.14 ml)、およびDMAP(61 mg)をDMF(4 ml)に加えた。反応液を室温で振 とう機を用いて20時間振とう後、水にあけ、酢酸エチルーTHF(1:1)で抽出した。 有機層を水、飽和重曹水および飽和食塩水で洗浄し、乾燥後、濃縮した。得られ た粗結晶をヘキサンで洗浄し、標題化合物(181 mg)を得た。

融点: 241-242 ℃.

洗浄溶媒:ヘキサン.

[0187]

以下の実施例5ないし14に記載の化合物は、実施例4と同様にして製造した

実施例5

4-(ベンジルオキシ)-N-[2-(N,N-ジメチルアミノ)メチルー<math>6-テトラリニル] ベンズアミド

【化78】

融点:135-136 ℃

洗浄溶媒:ヘキサン.

実施例6

N-[2-(N, N-ジメチルアミノ) メチルー<math>6-テトラリニル] -9-オキソー9H-フルオレン-2-カルボキサミド

【化79】

融点:224-226 ℃.

洗浄溶媒:ヘキサン.

[0188]

実施例7

N- [2-(N, N-ジメチルアミノ) メチル-6-テトラリニル] -9,10,10 -トリオキソ-9,10-ジヒドロ -101^6 -チオキサンテン-3-カルボキサミド 【化 8 0】

融点:222-223 ℃(分解).

洗浄溶媒:ヘキサン.

実施例8

(4-P-U) (4-

【化81】

融点:216-217 ℃(分解).

洗浄溶媒:ヘキサン.

[0189]

実施例9

N-[2-(N, N-ジメチルアミノ) メチル<math>-6-テトラリニル] -4-フェノキシベンズアミド

【化82】

融点:137-139℃.

洗浄溶媒:ヘキサン.

実施例10

 $N^{1}-[2-(N, N-i)] + N^{4}-i$ $N^{1}-[2-(N, N-i)] + N^{4}-i$ $N^{1}-[2-(N, N-i)] + N^{4}-i$

【化83】

融点:238-240 ℃(分解)。

洗浄溶媒:ヘキサン.

[0190]

実施例11

【化84】

融点:137-138 ℃.

洗浄溶媒:ヘキサン.

実施例12

(4'-クロロピフェニル-4-イル) -N-[2-(N,N-ジメチルアミノ)メチル-6-テトラリニル] カルボキサミド

【化85】

融点:187-189℃.

洗浄溶媒:ヘキサン.

[0191]

実施例13

(4'-Pセチルアミノビフェニル-4-イル)-N-[2-(N,N-ジメチルアミノ)メチル-6-テトラリニル] カルボキサミド

【化86】

融点:183-186℃.

洗浄溶媒:ヘキサン

実施例14

4-(1,3-ベンゾジオキソール-5-イル) -N-[2-(N,N-ジメチルアミノ)メチル-6-テトラリニル] ベンズアミド

【化87】

融点:174-176 ℃.

洗浄溶媒:ヘキサン.

[0192]

製剤例1

(1) 参考例25で得られた化合物

5 0 mg

(2) ラクトース

3 4 mg

(3) トウモロコシ澱粉

10.6 mg

(4) トウモロコシ澱粉 (のり状)

5 mg

(5) ステアリン酸マグネシウム

0.4 mg

(6) カルボキシメチルセルロースカルシウム 20 mg

計 120mg

常法に従い上記(1)~(6)を混合し、錠剤機を用いて打錠することにより、 錠剤が得られる。

[0.193]

製剤例2

(1) 実施例1で得られた化合物

5 0 mg

(2) ラクトース

3 4 mg

(3) トウモロコシ澱粉

10.6 mg

(4) トウモロコシ澱粉 (のり状)

5 mg

(5) ステアリン酸マグネシウム

 $0.4 \, \mathrm{mg}$

(6) カルボキシメチルセルロースカルシウム 20 mg

計 120 mg

常法に従い上記(1)~(6)を混合し、錠剤機を用いて打錠することにより、 錠剤が得られる。

[0194]

参考例1-1 ラット脳由来cDNAを用いたPCR法によるラットSLC-1 受容体cDNAの増幅

ラット脳由来poly(A) ⁺RNA(クローンテック社)を鋳型とし、ランダムプライマーを用いて逆転写反応を行なった。逆転写反応は、タカラRNA PCR ver. 2キットの試薬を使用した。次にこの逆転写生成物を鋳型として用い、配列番号:1 および2の合成DNAプライマーを用いてPCR法による増幅を行なった。合成DNAプ ライマーは受容体蛋白に翻訳される領域の遺伝子が増幅されるように構築したが、その際に遺伝子の5'側に制限酵素Sal Iの認識する塩基配列が付加され、また3'側に制限酵素Spe Iの認識する塩基配列が付加されるように、5'側および3'側にそれぞれの制限酵素の認識配列を付加した。反応液の組成は、cDNA鋳型5 μ1、合成DNAプライマー各0.4μM、0.25 mM dNTPs、pfu (ストラタジーン社) DNAポリメラーゼ0.5 μ1および酵素に付属のバッファーで、総反応量は50 μ1とした。増幅のためのサイクルはサーマルサイクラー (パーキンエルマー社)を用い、94℃・60秒の加熱の後、94℃・60秒、60℃・30秒、72℃・150秒のサイクルを35回繰り返し、最後に72℃で10分間反応させた。増幅産物の確認は、0.8%アガロースゲル電気泳動の後、エチジウムブロマイド染色によって行なった。

[0195]

参考例1-2 PCR産物のプラスミドベクターへのサブクローニングおよび挿入c DNA部分の塩基配列の解読による増幅cDNA配列の確認

参考例1-1で行なったPCR後の反応産物は0.8 %の低融点アガロースゲルを 用いて分離し、バンドの部分をカミソリで切り出した後、細片化、フェノール抽 出、フェノール・クロロホルム抽出、エタノール沈殿を行なってDNAを回収した 。PCR-ScriptTM Amp SK(+)クローニングキット(ストラタジーン社)の処方に従 い、回収したDNAをプラスミドベクターpCR-Script Amp SK(+)へサブクローニン グした。これをエシェリヒア コリ (Escherichia coli) XL-1 Blue (ストラタ ジーン)に導入して形質転換した後、cDNA挿入断片を持つクローンをアンピシリ ンおよびX-galを含むLB寒天培地中で選択し、白色を呈するクローンのみを滅菌 したつま楊枝を用いて分離し、形質転換体E. coli XL-1 Blue/ラットSLC-1を得 た。個々のクローンをアンピシリンを含むLB培地で一晩培養し、QIA prep8 mini prep(キアゲン社)を用いてプラスミドDNAを調製した。調製したDNAの一部を 用いて制限酵素Sal IおよびSpe Iによる切断を行ない、挿入されている受容体cD NA断片の大きさを確認した。塩基配列の決定のための反応はDyeDeoxy Terminato r Cycle Sequence Kit (パーキンエルマー社) を用いて行ない、蛍光式自動シー ケンサーを用いて解読した。得られた3クローンの配列を解析し全ての配列が報 告されているラットSLC-1タンパク質(配列番号:3)をコードするcDNA配列(L

akaye, B. et al. Biochim. Biophys. Acta, V l. 1401, pp. 216-220 (1998), accessi n No. AF08650) の5'側にSal I認識配列が付加し、3'側にSpe I認識配列が付加した遺伝子配列と一致することを確認した(配列番号:4)。

[0196]

参考例1-3 ラットSLC-1発現CHO細胞の作製

参考例 1 - 2で配列が確認されたラット脳由来のSLC-1の全長アミノ酸配列をコードし、5'側にSal I認識配列が付加し、また3'側にSpe I認識配列を付加した遺伝子が導入されたプラスミドによって形質転換されたE. coliのクローンよりPlasmid Midi Kit (キアゲン社)を用いてプラスミドを調製し、制限酵素Sal IおよびSpe Iで切断してインサート部分を切り出した。インサートDNAは電気泳動後、アガロースゲルからカミソリで切り出し、次に細片化、フェノール抽出、フェノール・クロロホルム抽出、エタノール沈殿を行なって回収した。このインサートDNAをSal IおよびSpe Iで切断した動物細胞発現用ベクタープラスミドpAK KO-111H (Hinuma, S. et al. Biochim. Biophys. Acta, Vol. 1219, pp. 251-259 (1994)記載のpAKKO1.11Hと同一のベクタープラスミド)に加え、T4ライゲース(宝酒造)を用いてライゲーションを行ない、蛋白発現用プラスミドpAKKO-SLC-1を構築した。

PAKKO- SLC-1で形質転換したE. coli DH5 (トーヨーボー)を培養後、Plasmid Midi Kit (キアゲン社)を用いてPAKKO- SLC-1のプラスミドDNAを調製した。これをCellPhect Transfection Kit (アマシャムファルマシアバイオテク社)を用い添付のプロトコルに従ってCHO dhfr⁻細胞に導入した。10 μgのDNAをリン酸カルシウムとの共沈懸濁液とし、24時間前に5 x 10⁵または1 x 10⁶個のCHO dhfr⁻細胞を播種した10 cmシャーレに添加した。10%ウシ胎児血清を含むMEM α 培地で1日間培養した後、継代し、選択培地である10%透析ウシ胎児血清を含む核酸不含MEM α 培地で培養した。選択培地中で増殖してくるSLC-1発現CHO細胞である形質転換細胞のコロニー56クローンを選択した。

[0197]

参考例 1 - 4 全長ラットSLC-1レセプター蛋白質 mRNAの発現量の高いCHO/ SLC-1 mlb株の選択

参考例 1 - 3 で樹立されたCHO/ SLC-1株56クローンの全長ラットSLC-1レセプター蛋白質mRNAの発現量をCytostar T Plate (アマシャムファルマシアバイオテク社)を用い、添付のプロトコルに従って以下のように測定した。CHO/ SLC-1株の各クローンをCytostar T Plateの各wellに2.5 x 10⁴個ずつ播種して24時間培養した後、10%ホルマリンによって細胞を固定した。各wellに0.25% Triton X-100を添加して細胞の透過性をあげた後、³⁵Sラベルした配列番号:5のriboprobeを加えてハイブリダイズさせた。20 mg/mlのRNaseAを各wellに加えて遊離のriboprobeを消化し、プレートをよく洗浄した後、ハイブリダイズしたriboprobeの放射活性をTopcounterで測定した。放射活性の高い株がmRNA発現量が高い。mRNA発現量の高い3クローンの中から、特にクローン番号44を主に用いた。

[0198]

参考例1-5 ヒトSLC-1 cDNAを含むプラスミドの単離

ヒト胎児脳由来cDNA library (SUPERSCRIPTTM cDNA Library; GIBCOBRL社)を、Genetrapper cDNA positive selection system (GIBCOBRL社)のマニュアルに従って、ファージ F1 エンドヌクレアーゼを用いて、DNAにnickを入れた後、エシェリヒア コリ エキソヌクレアーゼ IIIで消化することにより、1本鎖ヒト胎児脳由来cDNA libraryを調製した。

Kolakowski Jr.ら (Kolakowski Jr., et al (1996) FEBS Lett. Vol. 398, pp. 253-258) の報告に基づいて作製した配列番号:6の合成オリゴヌクレオチド (accession No. U71092の1434-1451に相当)の3、末端にbiotin-14-dCTPをTerminal Deoxynucleotidyl Transferaseを用いて付加し、biotin化オリゴヌクレオチドを調製した。反応液の組成、反応時間はマニュアルに従った。

1本鎖ヒト胎児脳由来cDNA library 4μgを95℃で1分保温した後、氷上で急冷し、biotin化オリゴヌクレオチド20 ngを加え、37℃で1時間、添付ハイブリダイゼーションバッファーでハイブリダイズした。ストレプトアビジンビーズを加え、MAGNA-SEP Magnetic Particle Separator (GIBCOBRL社)を用いて、biotin化オリゴヌクレオチドにハイブリダイズした1本鎖ヒト胎児脳由来cDNAを単離し、Kolakowski Jr.らの報告 (Kolak wski Jr., et al (1996) FEBS Lett. Vol. 398, pp. 253-258) に基づいて作製した配列番号: 7の合成オリゴヌクレオチド (acce

ssion No. U71092の1011-1028に相当) 50ngをプライマーにしてマニュアルに従って相補鎖を合成し、2本鎖プラスミドとした。

[0199]

参考例1-6 単離したヒトSLC-1 cDNAを含むプラスミドの塩基配列の決定 参考例1-5で得られたプラスミドをELECTROMAXTMDH10BTMCellsにエレクトロ ポレーション法で導入して形質転換した後、cDNA挿入断片を持つクローンをアン ピシリン及びX-galを含むLB寒天培地中で選択し、白色を呈するクローンのみを 滅菌したつま楊枝でつついて分離し、形質転換体E. coli. DH10B/hSLC-1を得た 。個々のクローンをアンピシリンを含むLB培地で一晩培養し、QIA prep8 mini p rep (キアゲン社)を用いてプラスミドDNAを精製した。塩基配列決定のための反 応は、DyeDeoxy Terminator Cycle Sequence Kit (パーキンエルマー社) を用 いて行ない、蛍光式自動シーケンサーを用いて解読した。その結果、配列番号: 8に示す配列が得られた。ここに得られた塩基配列がコードするアミノ酸配列 (配列番号:9)は、Lakayeらの報告(Lakaye, B. et al. (1998) Biochem. Biop hys. Acta, vol. 1401, pp. 216-220) において、ヒトSLC-1の配列を含むヒト染 色体DNA配列 (accession number: Z86090) をもとにしてラットSLC-1から類推さ れた配列として推定されていたヒトSLC-1アミノ酸配列とは異なっており、推定 配列のさらに69及び64アミノ酸上流に開始コドンであるATGがmRNA上で存在する ことを示している。この配列をコードするDNAを含むプラスミドによる形質転換 体Escherichia coli DH10B/phSLC1L8をIFOおよびNIBHに寄託した。

[0200]

参考例1-7 ヒト胎児脳由来cDNAを用いたPCR法によるヒトSLC-1cDNAの増幅 ジーントラップ法によりクローニングされたヒトSLC-1DNA配列を含むプラ スミドを鋳型とし、配列番号:10および11の合成DNAプライマーと配列番号 :12および13の合成DNAプライマーを用いてPCR法による増幅をそれぞれ行な った。前者の増幅DNAをヒトSLC-1(S)と、後者の増幅DNAをヒトSLC-1(L)と 命名した。合成DNAプライマーは受容体蛋白に翻訳される領域の遺伝子が増幅さ れるように構築したが、その際に遺伝子の5'側に制限酵素Sal Iの認識する塩基 配列が付加され、また3'側に制限酵素Spe Iの認識する塩基配列が付加されるよ

 $\mathbb{C} \cdot 60$ 秒、 $57\mathbb{C} \cdot 60$ 秒、 $72\mathbb{C} \cdot 150$ 秒のサイクルを25回繰り返し、最後に $72\mathbb{C} \cdot 10$ 0分保温した。また、ヒトSLC-1(L)増幅の反応液の組成は、ヒトSLC-1DNA配列を含むプラスミド鋳型5 μ l、合成DNAプライマー各0.4 μ M、0.2 μ M dNTPs、pfuDNAポリメラーゼ0.5 μ lおよび酵素に付属のバッファーで、総反応量は50 μ lとした。増幅のためのサイクルはサーマルサイクラー(パーキンエルマー社)を用い、 $94\mathbb{C} \cdot 60$ 秒の加熱の後、 $94\mathbb{C} \cdot 60$ 0秒、 $60\mathbb{C} \cdot 60$ 0秒、 $72\mathbb{C} \cdot 3$ 分のサイクルを25回繰り返し、最後に $72\mathbb{C} \cdot 10$ 分保温した。増幅産物の確認は、0.8%アガロースゲル電気泳動の後、エチジウムブロマイド染色によって行なった。

[0201]

参考例1-8 PCR産物のプラスミドベクターへのサブクローニングおよび挿入c DNA部分の塩基配列の解読による増幅cDNA配列の確認

参考例1-7で行なったPCR後の反応産物は0.8 %の低融点アガロースゲルを用いて分離し、バンドの部分をカミソリで切り出した後、細片化、フェノール抽出、フェノール・クロロホルム抽出、エタノール沈殿を行なってDNAを回収した。PCR-ScriptTM Amp SK([†])クローニングキット(ストラタジーン社)の処方に従い、回収したDNAをプラスミドベクターpCR-Script Amp SK([†])ヘサブクローニングした。これをエシェリヒア コリ(Escherichia coli)DH5 a competent cell (トーヨーボー)に導入して形質転換した後、cDNA挿入断片を持つクローンをアンピシリンおよびX-galを含むLB寒天培地中で選択し、白色を呈するクローンのみを滅菌したつま楊枝を用いて分離し、ヒトSLC-1 (S)の形質転換体E. coli DH5 a /hSLC-1(S)とヒトSLC-1 (L)の形質転換体E. coli DH5 a /hSLC-1(L)を得た。個々のクローンをアンピシリンを含むLB培地で一晩培養し、QIA prep8 mini prep (キアゲン社)を用いてプラスミドDNAを調製した。調製したDNAの一部を用いて制限酵素Sal IおよびSpe Iによる切断を行ない、挿入されている受容体cDNA断片

の大きさを確認した。塩基配列の決定のための反応はDyeDeoxy Terminat r Cycle Sequence Kit (パーキンエルマー社)を用いて行ない、蛍光式自動シーケンサーを用いて解読した。得られたクローンの配列は、ヒトSLC-1遺伝子を鋳型として配列番号:10および11の合成DNAプライマーで増幅されるべきDNA配列(配列番号:14)およびヒトSLC-1遺伝子を鋳型として配列番号:12および13の合成DNAプライマーで増幅されるべきDNA配列(配列番号:15)にそれぞれ一致した。

[0202]

参考例 1 - 9 ヒトSLC-1(S)発現CHO細胞およびヒトSLC-1(L)発現CHO細胞の作製 参考例 1 - 8 で配列が確認されたヒトSLC-1(S)と、ヒトSLC-1(L)が導入された プラスミドによって形質転換されたE. coliのクローンよりPlasmid Midi Kit (キアゲン社)を用いてプラスミドを調製し、制限酵素Sal IおよびSpe Iで切断してインサート部分を切り出した。インサートDNAは電気泳動後、アガロースゲルからカミソリで切り出し、次に細片化、フェノール抽出、フェノール・クロロホルム抽出、エタノール沈殿を行なって回収した。このインサートDNAをSal IおよびSpe Iで切断した動物細胞発現用ベクタープラスミドpAKKO-111H(Hinuma, S. et al. Biochim. Biophys. Acta, Vol. 1219, pp. 251-259 (1994)記載のPAKKO1.11Hと同一のベクタープラスミド)に加え、T4ライゲース(宝酒造)を用いてライゲーションを行ない、蛋白発現用プラスミドpAKKO-hSLC-1(S)とPAKKO-hSLC-1(L)を構築した。

pAKKO-hSLC-1(S)およびpAKKO-hSLC-1(L)で形質転換したE. coli $DH5 \alpha$ (トーヨーボー)を培養後、Plasmid Midi Kit (キアゲン社)を用いてpAKKO-hSLC-1(S)とpAKKO-hSLC-1(L)のプラスミドDNAを調製した。これをCellPhect Transfection <math>Kit (アマシャムファルマシアバイオテク社)を用い添付のプロトコルに従ってCHO dhfr 細胞に導入した。10 μg $mathemath{m}$ $mathemath{m}$ mathemat

[0203]

参考例 1 - 1 0 ヒトSLC-1(S)およびヒトSLC-1(L) mRNAの発現量の高い遺伝子 導入細胞株の選択

参考例 1 — 9で樹立されたCHO/hSLC-1(S)株56クローンおよびCHO/hSLC-1(L)株61クローンのmRNAの発現量をCytostar T Plate (アマシャムファルマシアバイオテク社)を用い、添付のプロトコルに従って以下のように測定した。CHO/hSLC-1(S)株およびCHO/hSLC-1(L)株の各クローンをCytostar T Plateの各wellに2.5 × 10⁴個ずつ播種して24時間培養した後、10%ホルマリンによって細胞を固定した。各wellに0.25% Triton X-100を添加して細胞の透過性をあげた後、³⁵Sラベルした配列番号: 16のriboprobeを加えてハイブリダイズさせた。20 mg/mlのR NaseAを各wellに加えて遊離のriboprobeを消化し、プレートをよく洗浄した後、ハイブリダイズしたriboprobeの放射活性をTopcounterで測定した。放射活性の高い株がmRNA発現量が高い。 mRNA発現量の高い7クローンの中から、特にクローン番号57を主に用いた。

[0204]

実験例 1 被験化合物のGTPgSバインディングアッセイを用いたアンタゴニスト 活性の測定

参考例 1 - 1 0 で得られたヒトSLC-1発現CHO細胞クローン57および参考例 1 - 4 で得られたラットSLC-1発現CHO細胞クローン44を用いて、以下の方法により膜画分を調製した。5 mM EDTA(エチレンジアミン四酢酸)を添加したリン酸緩衝生理食塩水 (pH 7.4) にヒト、およびラットSLC-1発現CHO細胞(1x10⁸個)を浮遊させ、遠心した。細胞のペレットにホモジネートバッファー(10 mM NaHCO3、5 mM EDTA、pH 7.5)を10 ml加え、ポリトロンホモジナイザーを用いてホモジネートした。400×gで15分間遠心して得られた上清をさらに100,000×gで1時間遠心し、膜画分の沈澱物を得た。この沈澱物を2 mlのアッセイバッファー[50 mM Tris-HC1(pH 7.5)、1 mM EDTA、0.1% BSA(ウシ血清アルブミン)、10 mM MgC12、100 mM NaC1、1mM GDP(グアノシン5' -二リン酸)、0.25 mM PMSF(フェニルメチル

スルホニルフルオライド)、1mg/ml ペプスタチン、20 mg/ml ロイペプチン、10 mg/ml フォスフォラミドン]に懸濁し、100,000×gで1時間遠心した。沈澱物として回収された膜画分を再び20 mlのアッセイ バッファーに懸濁し、分注後 -80° Cで保存し、使用の都度解凍して用いた。

被験化合物のアンタゴニスト活性の測定は以下の通り実施した。ポリプロピレン製の96穴プレートに、アッセイバッファーで希釈したSLC-1発現CHO細胞膜画分17 1μ1を分注した後、DMSO溶液で希釈した3x10⁻¹⁰M MCH 2 ml、種々の濃度に希釈した被験化合物溶液 2 ml、および[³⁵S]-Guanosine5'-(g-thio) triphosphate(第一化学薬品 社製) 25 mlを、それぞれ添加した(細胞膜終濃度:20mg/ml、[³⁵S]-Guanosine5'-(g-thio)triphosphate終濃度:0.33nM)。この反応液を25℃で1時間、攪拌しながら反応させた後、グラスフィルター(GF-C)を用いて吸引ろ過し、さらに洗浄液(50mM Tris-HC1緩衝液 pH7.5)300 mlで3回洗浄した。グラスフィルターに液体シンチレーターを50 ml添加し、残った放射活性を液体シンチレーションカウンターで測定した。

結合阻害率 (%) = (化合物と MCHを添加したときの放射活性-DMSO溶液を添加したときの放射活性)/ (MCHを添加したときの放射活性-DMSO溶液を添加したときの放射活性) x100として、 結合阻害率 (%) から化合物のIC₅₀値を算出した

[0205]

結果を以下に示す。

化合物番号	阻害活性(IC ₅₀ 値:nM)
参考例25	9 0
<u> </u>	4 0

_

[0206]

【発明の効果】

化合物(I)、(I')およびそれらの塩は、優れたMCH受容体拮抗作用を有しており、肥満症などの予防・治療剤として有用である。

[0207]

【配列表】

[SEQUENCE LISTING]

<110> Takeda Chemical Industries, Ltd.

<120> Melanin Concentrating Hormone Antagonist

<130> A99180

<160> 16

<210> 1

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

⟨223⟩

<400> 1

GTCGACATGG ATCTGCAAAC CTCGTTGCTG TG 32

<210> 2

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

⟨223⟩

<400> 2

ACTAGTTCAG GTGCCTTTGC TTTCTGTCCT CT 32

<210> 3

<211> 353

<212> PRT

<213> Rat

<400> 3

M t Asp Leu Gln Thr Ser Leu Leu Ser Thr Gly Pro Asn Ala Ser Asn

Ile Ser Asp Gly Gln Asp Asn Leu Thr Leu Pro Gly Ser Pr Pr Arg Thr Gly Ser Val Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly Thr lle Cys Leu Leu Gly lle Val Gly Asn Ser Thr Val lle Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Ser Asn Val Pro Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Thr Ile Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Met Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr Pr Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile Thr Ala Ala Tyr Val Lys Ile Leu Gln Arg Met Thr Ser Ser Val Ala

特平11-266298

Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg 245 250 255 Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr 260 265 270 Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr 275 280 285 Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser 290 295 300 Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys 305 310 315 320 Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Thr 325 330 335 Val Ser Asn Ala Gin Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly 340 345 350 Thr <210> 4 <211> 1074 <212> DNA <213> Rat <400> 4 GTCGACATGG ATCTGCAAAC CTCGTTGCTG TCCACTGGCC CCAATGCCAG CAACATCTCC 60 GATGGCCAGG ATAATCTCAC ATTGCCGGGG TCACCTCCTC GCACAGGGAG TGTCTCCTAC 120 ATCAACATCA TTATGCCTTC CGTGTTTGGT ACCATCTGTC TCCTGGGCAT CGTGGGAAAC TCCACGGTCA TCTTTGCTGT GGTGAAGAAG TCCAAGCTAC ACTGGTGCAG CAACGTCCCC 240 GACATCTTCA TCATCAACCT CTCTGTGGTG GATCTGCTCT TCCTGCTGGG CATGCCTTTC 300 ATGATCCACC AGCTCATGGG GAACGGCGTC TGGCACTTTG GGGAAACCAT GTGCACCCTC 360 ATCACAGCCA TGGACGCCAA CAGTCAGTTC ACTAGCACCT ACATCCTGAC TGCCATGACC 420 ATTGACCGCT ACTTGGCCAC CGTCCACCCC ATCTCCTCCA CCAAGTTCCG GAAGCCCTCC 480

ATGGCCACCC TGGTGATCTG CCTCCTGTGG GCGCTCTCCT TCATCAGTAT CACCCCTGTG

特平11-266298

TGGCTCTACG	CCAGGCTCAT	TCCCTTCCCA	GGGGGTGCTG	TGGGCTGTGG	CATCCGCCTG	600
CCAAACCCGG	ACACTGACCT	CTACTGGTTC	ACTCTGTACC	AGTTTTTCCT	GGCCTTTGCC	660
CTTCCGTTTG	TGGTCATTAC	CGCCGCATAC	GTGAAAATAC	TACAGCGCAT	GACGTCTTCG	720
GTGGCCCCAG	CCTCCCAACG	CAGCATCCGG	CTTCGGACAA	AGAGGGTGAC	CCGCACGGCC	780
ATTGCCATCT	GTCTGGTCTT	CTTTGTGTGC	TGGGCACCCT	ACTATGTGCT	GCAGCTGACC	840
CAGCTGTCCA	TCAGCCGCCC	GACCCTCACG	TTTGTCTACT	TGTACAACGC	GGCCATCAGC	900
TTGGGCTATG	CTAACAGCTG	CCTGAACCCC	TTTGTGTACA	TAGTGCTCTG	TGAGACCTTT	960
CGAAAACGCT	TGGTGTTGTC	AGTGAAGCCT	GCAGCCCAGG	GGCAGCTCCG	CACGGTCAGC	1020
AACGCTCAGA	CAGCTGATGA	GGAGAGGACA	GAAAGCAAAG	GCACCTGAAC	TAGT	1074
<210> 5		•				
<211> 262						
<212> RNA						
<213> Rat			•			
<400> 5						
GCGAAUUGGG	UACCGGGCCC	CCCCUCGAGG	UCGACGGUAU	CGAUAAGCUU	GAUAUCGAAU	60
UCCUGCAGCC	CGGGGGAUCC	GCCCACUAGU	UCAGGUGCCU	UUGCUUUCUG	nccacaccac	120
AUCAGCUGUC	UGAGCGUUGC	UGACCGUGCG	GAGCUGCCCC	UGGGCUGCAG	GCUUCACUGA	180
CAACACCAAG	CGUUUUCGAA	AGGUCUCACA	GAGCACUAUG	UACACAAAGG	GGUUCAGGCA	240
GCUGUUAGCA	UAGCCCAAGC	UG				262
<210> 6						
<211> 18						
<212> DNA						
<213> Artif	icial Seque	nce				
<220>						
<223>						
<400> 6						
CAACAGCTGC (CTCAACCC	18				
<210> 7					•	
<211> 18						

<212> DNA <213> Artificial Sequence <220> **<223>** <400> 7 CCTGGTGATC TGCCTCCT 18 <210> 8 <211> 1275 <212> DNA <213> Human <400> 8 TAGGTGATGT CAGTGGGAGC CATGAAGAAG GGAGTGGGGA GGGCAGTTGG GCTTGGAGGC 60 GGCAGCGGCT GCCAGGCTAC GGAGGAAGAC CCCCTTCCCA ACTGCGGGGC TTGCGCTCCG 120 GGACAAGGTG GCAGGCGCTG GAGGCTGCCG CAGCCTGCGT GGGTGGAGGG GAGCTCAGCT CGGTTGTGGG AGCAGGCGAC CGGCACTGGC TGGATGGACC TGGAAGCCTC GCTGCTGCCC 240 ACTGGTCCCA ACGCCAGCAA CACCTCTGAT GGCCCCGATA ACCTCACTTC GGCAGGATCA 300 CCTCCTCGCA CGGGGAGCAT CTCCTACATC AACATCATCA TGCCTTCGGT GTTCGGCACC 360 ATCTGCCTCC TGGGCATCAT CGGGAACTCC ACGGTCATCT TCGCGGTCGT GAAGAAGTCC 420 AAGCTGCACT GGTGCAACAA CGTCCCCGAC ATCTTCATCA TCAACCTCTC GGTAGTAGAT 480 CTCCTCTTTC TCCTGGGCAT GCCCTTCATG ATCCACCAGC TCATGGGCAA TGGGGTGTGG 540 CACTTTGGGG AGACCATGTG CACCCTCATC ACGGCCATGG ATGCCAATAG TCAGTTCACC 600 AGCACCTACA TCCTGACCGC CATGGCCATT GACCGCTACC TGGCCACTGT CCACCCCATC 660 TCTTCCACGA AGTTCCGGAA GCCCTCTGTG GCCACCCTGG TGATCTGCCT CCTGTGGGCC 720 CTCTCCTTCA TCAGCATCAC CCCTGTGTGG CTGTATGCCA GACTCATCCC CTTCCCAGGA 780 GGTGCAGTGG GCTGCGGCAT ACGCCTGCCC AACCCAGACA CTGACCTCTA CTGGTTCACC 840 CTGTACCAGT TTTTCCTGGC CTTTGCCCTG CCTTTTGTGG TCATCACAGC CGCATACGTG 900 AGGATCCTGC AGCGCATGAC GTCCTCAGTG GCCCCCGCCT CCCAGCGCAG CATCCGGCTG 960

CGGACAAAGA GGGTGACCCG CACAGCCATC GCCATCTGTC TGGTCTTCTT TGTGTGCTGG 1020

GCACCCTACT ATGTGCTACA GCTGACCCAG TTGTCCATCA GCCGCCCGAC CCTCACCTTT 1080

GTCTACTTAT ACAATGCGGC CATCAGCTTG GGCTATGCCA ACAGCTGCCT CAACCCCTTT 1140 GTGTACATCG TGCTCTGTGA GACGTTCCGC AAACGCTTGG TCCTGTCGGT GAAGCCTGCA 1200 GCCCAGGGGC AGCTTCGCGC TGTCAGCAAC GCTCAGACGG CTGACGAGGA GAGGACAGAA 1260 AGCAAAGGCA CCTGA <210> 9 **<211> 422** <212> PRT <213> Human **<400> 9** MeT Ser Val Gly Ala MeT Lys Lys Gly Val Gly Arg Ala Val Gly Leu Gly Gly Gly Ser Gly Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asn Cys Gly Ala Cys Ala Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro Gln Pro Ala Trp Val Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala Thr Gly Thr Gly Trp MeT Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly 5 Pr Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala

Gly Ser Pro Pro Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile MeT

Pr Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser

Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn

Asn Val Pr Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu

Pho	e Lei	u Lei	u Gly	y Me]	r Pro) Phe	Me]	Ile	His	Gli	ı Let	ı Mel	Gly	/ Asn	Gly
				165	5				170)				175	ı
Va I	l Tr	His	s Phe	Gly	Glu	ı Thr	Mel	Cys	Thr	Let	ı Ile	Thr	Ala	ı MeT	Asp
			180)				185	;				190		
Ala	A Ası	sei	Gln	Phe	Thr	Ser	Thr	Tyr	Ile	Lev	ı Thr	Ala	Mel	Ala	Ile
		195	5				200)				205	;		
Asp	Arg	y Tyr	Leu	ιAla	Thr	Val	His	Pro	Ile	Ser	Ser	Thr	Lys	Phe	Arg
	210)				215					220				
Lys	Pro	Ser	Val	Ala	Thr	Leu	Val	Ile	Cys	Leu	Leu	Trp	Ala	Leu	Ser
225					230					235					240
Phe	Ile	Ser	Ile	Thr	Pro	Val	Trp	Leu	Tyr	Ala	Arg	Leu	Ile	Pro	Phe
				245		•			250					255	
Pro	Gly	Gly	Ala	Val	Gly	Cys	Gly	Ile	Arg	Leu	Pro	Asn	Pro	Asp	Thr
			260		·			265					270		
Asp	Leu	Tyr	Trp	Phe	Thr	Leu	Tyr	Gln	Phe	Phe	Leu	Ala	Phe	Ala	Leu
		275					280					285			
Pro	Phe	Val	Val	Ile	Thr	Ala	Ala	Tyr	Val	Arg	Ile	Leu	Gln	Arg	MeT
	290					295					300				
Thr	Ser	Ser	Val	Ala	Pro	Ala	Ser	Gln	Arg	Ser	Ile	Arg	Leu	Arg	Thr
305					310					315					320
Lys	Arg	Va 1	Thr	Arg	Thr	Ala	Ile	Ala	Ile	Cys	Leu	Val	Phe	Phe	Val
				325					330					335	
Cys	Trp	Ala	Pro	Tyr	Tyr	Val	Leu	Gln	Leu	Thr	Gln	Leu	Ser	Ile	Ser
			340					345					350		
Arg	Pro	Thr	Leu	Thr	Phe	Val	Tyr	Leu	Tyr	Asn	Ala	Ala	Ile	Ser	Leu
		355					360					365			
Gly	Tyr	Ala	Asn	Ser	Cys	Leu	Asn	Pro	Phe	Val	Tyr	Ile	Val	Leu	Cys
	370					375					380				
Glu	Thr	Ph	Arg	Lys	Arg	Leu	Val	Leu	Ser	Val	Lys	Pro	Ala	Ala	Gln

395

400

415

385 390 Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg 405 410 Thr Glu Ser Lys Gly Thr 420 <210> 10 **<211> 31** <212> DNA <213> Artificial Sequence <220> ⟨223⟩ <400> 10 GTCGACaTGG aCCTGGaaGC CTCGCTGCTG C 31 <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220> ⟨223⟩ **<400> 11** ACTAGTTCAG GTGCCTTTGC TTTCTGTCCT C 31 <210> 12 <211> 33 <212> DNA <213> Artificial Sequence

AGTCGACATG TCAGTGGGAG CCATGAAGAA GGG

<220>

<223>

<400> 12

120

33

⟨210⟩ 13 <211> 33 <212> DNA <213> Artificial Sequence <220> ⟨223⟩ **<400> 13** AACTAGTTCA GGTGCCTTTG CTTTCTGTCC TCT 33 <210> 14 **<211> 1074** <212> DNA <213> Human **<400> 14** GTCGACATGG ACCTGGAAGC CTCGCTGCTG CCCACTGGTC CCAACGCCAG CAACACCTCT 60 GATGGCCCCG ATAACCTCAC TTCGGCAGGA TCACCTCCTC GCACGGGGAG CATCTCCTAC 120 ATCAACATCA TCATGCCTTC GGTGTTCGGC ACCATCTGCC TCCTGGGCAT CATCGGGAAC TCCACGGTCA TCTTCGCGGT CGTGAAGAAG TCCAAGCTGC ACTGGTGCAA CAACGTCCCC 240 GACATCTTCA TCATCAACCT CTCGGTAGTA GATCTCCTCT TTCTCCTGGG CATGCCCTTC 300 ATGATCCACC AGCTCATGGG CAATGGGGTG TGGCACTTTG GGGAGACCAT GTGCACCCTC 360 ATCACGGCCA TGGATGCCAA TAGTCAGTTC ACCAGCACCT ACATCCTGAC CGCCATGGCC 420 ATTGACCGCT ACCTGGCCAC TGTCCACCCC ATCTCTTCCA CGAAGTTCCG GAAGCCCTCT 480 GTGGCCACCC TGGTGATCTG CCTCCTGTGG GCCCTCTCCT TCATCAGCAT CACCCCTGTG 540 TGGCTGTATG CCAGACTCAT CCCCTTCCCA GGAGGTGCAG TGGGCTGCGG CATACGCCTG 600 CCCAACCCAG ACACTGACCT CTACTGGTTC ACCCTGTACC AGTTTTTCCT GGCCTTTGCC 660 CTGCCTTTTG TGGTCATCAC AGCCGCATAC GTGAGGATCC TGCAGCGCAT GACGTCCTCA 720 GTGGCCCCCG CCTCCCAGCG CAGCATCCGG CTGCGGACAA AGAGGGTGAC CCGCACAGCC 780 ATCGCCATCT GTCTGGTCTT CTTTGTGTGC TGGGCACCCT ACTATGTGCT ACAGCTGACC 840 CAGTTGTCCA TCAGCCGCCC GACCCTCACC TTTGTCTACT TATACAATGC GGCCATCAGC 900 TTGGGCTATG CCAACAGCTG CCTCAACCCC TTTGTGTACA TCGTGCTCTG TGAGACGTTC 960

CGCAAACGCT TGGTCCTGTC GGTGAAGCCT GCAGCCCAGG GGCAGCTTCG CGCTGTCAGC 1020

AACGCTCAGA CGGCTGACGA GGAGAGGACA GAAAGCAAAG GCACCTGAAC TAGT 1074

<210> 15

<211> 1283

<212> DNA

<213> Human

<400> 15

(400) 10						
AGTCGACATG	TCAGTGGGAG	CCATGAAGAA	GGGAGTGGGG	AGGGCAGTTG	GGCTTGGAGG	60
CGGCAGCGGC	TGCCAGGCTA	CGGAGGAAGA	CCCCCTTCCC	AACTGCGGGG	CTTGCGCTCC	120
GGGACAAGGT	GGCAGGCGCT	GGAGGCTGCC	GCAGCCTGCG	TGGGTGGAGG	GGAGCTCAGC	180
TCGGTTGTGG	GAGCAGGCGA	CCGGCACTGG	CTGGATGGAC	CTGGAAGCCT	CGCTGCTGCC	240
CACTGGTCCC	AACGCCAGCA	ACACCTCTGA	TGGCCCCGAT	AACCTCACTT	CGGCAGGATC	300
ACCTCCTCGC	ACGGGGAGCA	TCTCCTACAT	CAACATCATC	ATGCCTTCGG	TGTTCGGCAC	360
CATCTGCCTC	CTGGGCATCA	TCGGGAACTC	CACGGTCATC	TTCGCGGTCG	TGAAGAAGTC	420
CAAGCTGCAC	TGGTGCAACA	ACGTCCCCGA	CATCTTCATC	ATCAACCTCT	CGGTAGTAGA	480
TCTCCTCTTT	CTCCTGGGCA	TGCCCTTCAT	GATCCACCAG	CTCATGGGCA	ATGGGGTGTG	540
GCACTTTGGG	GAGACCATGT	GCACCCTCAT	CACGGCCATG	GATGCCAATA	GTCAGTTCAC	600
CAGCACCTAC	ATCCTGACCG	CCATGGCCAT	TGACCGCTAC	CTGGCCACTG	TCCACCCCAT	660
CTCTTCCACG	AAGTTCCGGA	AGCCCTCTGT	GGCCACCCTG	GTGATCTGCC	TCCTGTGGGC	720
CCTCTCCTTC	ATCAGCATCA	CCCCTGTGTG	GCTGTATGCC	AGACTCATCC	CCTTCCCAGG	780
AGGTGCAGTG	GGCTGCGGCA	TACGCCTGCC	CAACCCAGAC	ACTGACCTCT	ACTGGTTCAC	840
CCTGTACCAG	TTTTTCCTGG	CCTTTGCCCT	GCCTTTTGTG	GTCATCACAG	CCGCATACGT	900
GAGGATCCTG	CAGCGCATGA	CGTCCTCAGT	GGCCCCCGCC	TCCCAGCGCA	GCATCCGGCT	960
GCGGACAAAG	AGGGTGACCC	GCACAGCCAT	CGCCATCTGT	CTGGTCTTCT	TTGTGTGCTG	1020
GGCACCCTAC	TATGTGCTAC	AGCTGACCCA	GTTGTCCATC	AGCCGCCCGA	CCCTCACCTT	1080
TGTCTACTTA	TACAATGCGG	CCATCAGCTT	GGGCTATGCC	AACAGCTGCC	TCAACCCCTT	1140
TGTGTACATC	GTGCTCTGTG	AGACGTTCCG	CAAACGCTTG	GTCCTGTCGG	TGAAGCCTGC	1200
AGCCCAGGGG	CAGCTTCGCG	CTGTCAGCAA	CGCTCAGACG	GCTGACGAGG	AGAGGACAGA	1260
AAGCAAAGGC	ACCTGAACTA	GTT				1283

特平11-266298

<210>	16
<211>	420
<212>	RNA
<213>	Human
<400>	16

CAAAAGCUGG	AGCUCCACCG	CGGUGGCGGC	CGCUCUAGCC	CACUAGUUCA	GGUGCCUUUG	60
CUUUCUGUCC	UCUCCUCGUC	AGCCGUCUGA	GCGUUGCUGA	CAGCGCGAAG	CUGCCCCUGG	120
GCUGCAGGCU	UCACCGACAG	GACCAAGCGU	UUGCGGAACG	UCUCACAGAG	CACGAUGUAC	180
ACAAAGGGGU	UGAGGCAGCU	GUUGGCAUAG	CCCAAGCUGA	UGGCCGCAUU	GUAUAAGUAG	240
ACAAAGGUGA	GGGUCGGGCG	GCUGAUGGAC	AACUGGGUCA	GCUGUAGCAC	AUAGUAGGGU	300
GCCCAGCACA	CAAAGAAGAC	CAGACAGAUG	GCGAUGGCUG	UGCGGGUCAC	CCUCUUUGUC	360
CGCAGCCGGA	UGCUGCGCUG	GGAGGCGGGG	GCCACUGAGG	ACGUCAUGCG	CUGCAGGAUC	420

【書類名】要約書

【要約】

【課題】肥満症の予防・治療剤などとして有用なメラニン凝集ホルモン拮抗剤を 提供する。

【解決手段】式

【化1】

$$Ar^{1}-X-Ar-Y-N < R^{1}$$

[式中、 Ar^1 は置換基を有していてもよい芳香族基を;

XおよびYは同一または異なって主鎖の原子数1ないし6のスペーサーを; Arは4ないし8員非芳香環と縮合していてもよく、さらに置換基を有していてもよい単環式芳香環を;

 R^1 および R^2 は水素原子または置換基を有していてもよい C_{1-6} アルキルを示すか、 R^1 と R^2 とは隣接する窒素原子ともに置換基を有していてもよい含窒素複素環を形成し、 R^2 はArとともにスピロ環を形成していてもよい]で表される化合物またはその塩を含有してなるメラニン凝集ホルモン拮抗剤。

【選択図】なし

€3 • ≈ ~

出願人履歷情報

識別番号

[000002934]

1. 変更年月日 1992年 1月22日

[変更理由] 住所変更

住 所 大阪府大阪市中央区道修町四丁目1番1号

氏 名 武田薬品工業株式会社