Summary

This document collects the various personal notes from the course "Formal Languages and Compilers" (2012), prof. Silvano Rivoira. The LATEX source code is available in a dedicated GitHub repository.

Contents

Summary			Ι
Ι	Fo	rmal Languages	1
1	Classification (FLC)		2
	1.1	Grammars	2
	1.2	Types of Grammars	2
	1.3	Linear Grammars	3
2	Reg	gular Languages (RL)	4
	2.1	Deterministic Finite Automata (DFA)	4
		2.1.1 Transition Table	4
		2.1.2 Transition Diagram	4
	2.2	Non-Deterministic Finite Automata (NFA)	4
	2.3	Equivalence of NFA and DFA	5
	2.4	From Finite Automata to Regular Expression	6
	2.5	From Regular Expression to Finite Automata	6
		2.5.1 Regular Sets	6
	2.6	Non-Deterministic Finite State Automata with ε -transition (ε -NFA)	8
		2.6.1 Equivalence of ε -NFA and DFA	8
	2.7	Finite Automaton \equiv Regular Languages	8
	2.8	Minimum-State DFA	9
		2.8.1 Complement of a Regular Language	9
3	Cor	ntext-Free Languages (CFL)	10
4	4 Turing Machines (TM)		11
II	C	ompilers	12
5	Cor	npiler Structure (CS)	13

6	Lexical Analysis (LA)	14
7	Syntax Analysis (SA)	15
8	Syntax-Directed Translation (SDT)	16
9	Semantic Analysis and Intermediate-Code Generation (SA/ICG)	17

Part I Formal Languages

Classification (FLC)

1.1 Grammars

A grammar is a 4-tuple G = (N, T, P, S) where:

N: alphabet of <u>non-terminal</u> symbols;

T: alphabet of <u>terminal</u> symbols:

- $N \cap T = 0$ (two alphabets are disjoined),
- $V = N \cup T$ (alphabet of the grammar);

P: finite set of rules (productions);

S: start (non-terminal) symbol.

A language produced by G = (N, T, P, S) is:

$$L(G) = \{ w | w \in T^*; S \Rightarrow^* w \}$$

Grammars that produce the same languages are said "equivalent".

1.2 Types of Grammars

Type 0 grammars (phase-structure)

$$P = \left\{ \alpha \to \beta \middle| \alpha \in V^+; \alpha \notin T^+; \beta \in V^* \right\}$$

Type 1 grammars (context-sensitive)

$$P = \{\alpha \to \beta | \alpha \in V^+; \alpha \notin T^+; \beta \in V^+; |\alpha| \le |\beta| \}$$

Type 2 grammars (context-free)

$$P = \left\{ A \to \beta \middle| A \in N; \beta \in V^+ \right\}$$

1.3 Linear Grammars

$$P = \left\{ A \to xBy, A \to x \middle| A, B \in N; x, y \in T^+ \right\}$$

Type 3 grammars (right/left - linear)

 \bullet Right-Linear grammars

$$P = \left\{ A \to xB, A \to x \middle| A, B \in N; x \in T^+ \right\}$$

• Left-Linear grammars

$$P = \left\{ A \to Bx, A \to x \middle| A, B \in N; x \in T^+ \right\}$$

 $\mathbf{Type} \ \mathbf{3} \ \mathbf{grammars} \ (\mathrm{right/left} \ \text{-} \ \mathrm{regular})$

 $\bullet \;$ Right-Regular grammars

$$P = \{A \to aB, A \to a | A, B \in N; a \in T\}$$

ullet Left-Regular grammars

$$P = \{A \to Ba, A \to a | A, B \in N; a \in T\}$$

Regular Languages (RL)

2.1 Deterministic Finite Automata (DFA)

A DFA is a 5-tuple $A = (Q, \Sigma, \delta, q_0, F)$ where:

Q: finite (non-empty) set of states;

 Σ : alphabet of input symbols;

 δ : transition function:

$$\delta:Q\times\Sigma\to Q$$

 q_0 : start state:

 $q_0 \in Q$

F: set of final states:

 $F \subseteq Q$

2.1.1 Transition Table

Transitional Table is a tabular representation of this transition function.

2.1.2 Transition Diagram

Transitional Diagram is a graph where:

- for each state in the automaton there a node;
- for each transition $\delta(p, a) = q$ there is an arc from p to q labelled a.

The start state has an entering non-labelled arc and the final states are marked by a double circle.

2.2 Non-Deterministic Finite Automata (NFA)

An NFA is a 5-tuple $A = (Q, \Sigma, \delta, q_0, F)$ where:

Q: finite (non-empty) set of states;

 Σ : alphabet of input symbols;

 δ : transition function:

$$\delta: Q \times \Sigma \to \mathscr{P}(Q)$$

 $\mathscr{P}(Q)$: powerset of Q (the set of all subsets)

$$\|\mathscr{P}(Q)\| = 2^{\|Q\|}$$

 q_0 : start state:

$$q_0 \in Q$$

F: set of final states:

$$F \subseteq Q$$

NB: a DFA is a special case of NFA.

2.3 Equivalence of NFA and DFA

$$Q_1 = \{q_2, q_3, q_4\}$$

$$Q_2 = \{q_5, q_6, q_7, q_8, q_9\}$$

Let $N=(Q_n, \Sigma, \delta_n, q_0, F_n)$ be an NFA; let us construct a DFA $D=(Q_d, \Sigma, \delta_d, \{q_0\}, F_d)$ where:

- $Q_d \subseteq \mathscr{P}(Q_n)$;
- $\delta_d(S, a) = \bigcup_i \delta_n(p_1, a)$ where $p_i \in S \in Q_d$;
- $F_d = \{ S | S \in Q_d; S \cap F_n \neq 0 \}.$

By construction L(D) = L(N), so $NFA \equiv DFA$

2.4 From Finite Automata to Regular Expression

It is possible to eliminate states in a Finite Automata by maintaining all the paths and by labelling the transitions with regular expressions:

Given a finite state automaton $FA = (Q, \Sigma, \delta, q_0, F)$, add an initial state A and a final state Ω :

- eliminate all the states in FA;
- the union of the labels on the transitions from A to Ω gives the regular expression of the language L(FA).

2.5 From Regular Expression to Finite Automata

2.5.1 Regular Sets

The regular sets: 0, $\{\varepsilon\}$, $\{a\}$, $a \in \Sigma$ are accepted by finite state automata.

$$L(A_1) = 0$$

$$L(A_2) = \{\varepsilon\}$$

$$L(A_3) = \{a\}, a \in \Sigma$$

Let $A_1=(Q_1,\Sigma,\delta_1,q_{01},F_1)$ and $A=(Q_2,\Sigma,\delta_2,q_{02},F_2)$ be finite state automata; the language $L(A_1)\cup L(A_2)$ is accepted by a finite state automaton A_4 :

The language $L(A_1)L(A_2)$ is accepted by a finite state automaton A_5 :

The language $L(A_1)^*$ is accepted by a finite state automaton A_6 :

2.6 Non-Deterministic Finite State Automata with ε -transition $(\varepsilon$ -NFA)

In the construction of a Finite State Automaton from regular expressions, the ε -transitions make the automata non-deterministic. The function ε -closure(q) gives the set of states that can be reached (recursively) from state q with empty string.

2.6.1 Equivalence of ε -NFA and DFA

Let $N = (Q_n, \Sigma, \delta_n, q_0, F_n)$ be an ε -NFA; let us construct a DFA $D = (Q_d, \Sigma, \delta_d, \varepsilon$ -closure $(q_0), F_d)$ where:

- $Q_d \subseteq \mathscr{P}(Q_n)$;
- $\delta_d(S, a) = \varepsilon$ -closure $(\bigcup_i \delta_n(p_i, a))$ where $p_i \in S \in Q_d$;
- $F_d\{S|S\in Q_d;S\cap F_n\neq 0\}$

By construction L(D) = L(N).

2.7 Finite Automaton \equiv Regular Languages

- Let G = (N, T, P, S) be a Right-Regular grammar; let us construct an FA $A = (Q, T, \delta, S, F)$ where:
 - $-Q = N \cup \{\Omega\} \text{ with } \Omega \in N;$
 - $F = {\Omega};$

$$-\delta = \begin{cases} \delta(A, a) = B & \text{if} \quad A \to aB \in P \\ \delta(A, a) = \Omega & \text{if} \quad A \to a \in P \end{cases}$$

By construction L(G) = L(A).

- Let G=(N,T,P,S) be a <u>Left-Regular</u> grammar; let us construct an FA $A=(Q,T,\delta,I,\{S\})$ where:
 - $-\ Q = N \cup \{I\} \quad \text{with} \quad I \not \in N;$
 - $F = \{S\};$

$$-\delta = \begin{cases} \delta(B, a) = B & \text{if} \quad A \to Ba \in P \\ \delta(I, a) = \Omega & \text{if} \quad A \to a \in P \end{cases}$$

By construction L(G) = L(A).

2.8 Minimum-State DFA

Let $DFA = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton, then:

- two states p and q of DFA are distinguishable if there is a string $w \in \Sigma^*$ such that $\delta(p, w) \in F$ and $\delta(q, w) \in F$;
- two states p and q of DFA are equivalent $(p \equiv q)$ if they are non-distinguishable for any string $w \in \Sigma^*$.

A DFA is *minimum-state* if it does not contain equivalent states.

Two states p and q of a DFA are m-equivalent ($p \equiv_m q$) if they are non-distinguishable for all strings $w \in \Sigma^*$ with $||w|| \leq m$. The equivalent states can be determined by partitioning the set Q in classes of m-equivalent states, for $m0, 1, \ldots, ||Q|| - 2$.

2.8.1 Complement of a Regular Language

The complement of a regular language is a regular language.

Let

Context-Free Languages (CFL)

Turing Machines (TM)

Part II Compilers

Compiler Structure (CS)

Lexical Analysis (LA)

Syntax Analysis (SA)

Syntax-Directed Translation (SDT)

Semantic Analysis and Intermediate-Code Generation (SA/ICG)