Άσκηση 1 [5μ]

Δείξτε γραφικά ποια θα είναι τα δυο πρώτα βήματα εύρεσης της ρίζας της συνάρτησης f(x) που φαίνεται στο παρακάτω γράφημα ξεκινώντας από τις δύο αρχικές τιμές $x_1=-0.5$ και $x_2=0.0$ και χρησιμοποιώντας τη μέθοδο Secant.

Απάντηση:

Η μέθοδος της χορδής μοιάζει με την μέθοδο του Newton και η προσεγγιστική λύση είναι της μορφής:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Όπου τον ρόλο της παραγώγου (κλίση της καμπύλης στο σημείο x_n) το παίζει η κλίση του ευθύγραμμου τμήματος (χορδής) που ορίζεται από δύο σημεία.

Επομένως προεκτείνουμε το ευθύγραμμο τμήμα μέχρι να τέμνει τον x-άξονα. Το σημείο στο οποίο τέμνει τον άξονα, το χρησιμοποιούμε μαζί με το 2° σημείο του πρώτου ευθύγραμμου τμήματος για να ορίσουμε ένα νέο ευθύγραμμο τμήμα το οποίο θα τέμνει τον x-άξονα σε ένα σημείο. Η διαδικασία επαναλαμβάνεται έως ότου το σημείο που θα βρεθεί δίνει είτε f(x)=0 ή η τιμή της |f(x)|<epsi.

Άσκηση 2 [5μ]

Χρησιμοποιείτε τη μέθοδο Newton για να βρείτε μια λύση της f(x) όπου η συνάρτηση $f(x) = x^3 - x^2 + 2$. Αν η αρχική σας υπόθεση για λύση ήταν η $x_0 = 2.0$, ποια θα είναι η πρόβλεψη της μεθόδου Newton για την επόμενη προσεγγιστική λύση.

Απάντηση:

Η μέθοδος Newton δίνει την λύση της εξίσωσης σύμφωνα με τη σχέση:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^3 - x^2 + 2}{3x_n^2 - 2x_n}$$

Όπου αντικαταστήσαμε για $f(x_n) = x_n^3 - x^2 + 2$ και $f'(x_n) = 3x_n^2 - 2x_n$.

Επομένως η πρόβλεψη της μεθόδου Newton για την επόμενη προσεγγιστική λύση, x_{n+1} , όταν η $x_n = 2.0$ θα είναι:

$$x_{n+1} = x_n - \frac{x_n^3 - x^2 + 1}{3x_n^2 - 2x_n} = 2.0 - \frac{8 - 4 + 2}{8} = 2 - \frac{6}{8} = 2 - \frac{3}{4} = \frac{5}{4} \Rightarrow x_{n+1} = 1.25$$

Άσκηση 3 [5μ]

Η απόλυτη τιμή του σχετικού σφάλματος της προσεγγιστικής λύσης μιας εξίσωσης f(x) =0, με τη μέθοδο της bisection δίνεται από την εξίσωση: $|\epsilon_a| = \left| \frac{x_m^n - x_m^0}{x_m^n} \right|$ όπου x_m^n είναι η νέα λύση στο μέσο του διαστήματος και x_m^o είναι η προηγούμενη λύση. Θεωρήστε ότι τα όρια του διαστήματος είναι x_u και x_l . Στο τέλος της διεργασίας εύρεσης της λύσης, το σχετικό προσεγγιστικό σφάλμα στην εκτίμηση της τιμής της λύσης είναι ένα από τα παρακάτω. Δικαιολογήστε πλήρως την απάντησή σας.

(
$$\alpha$$
) $\left| \frac{x_u}{x_u + x_l} \right|$

$$(\beta) \left| \frac{x_l}{x_u + x_l} \right|$$

(a)
$$\left| \frac{x_u}{x_u + x_l} \right|$$
 (b) $\left| \frac{x_l}{x_u + x_l} \right|$ (c) $\left| \frac{x_u - x_l}{x_u + x_l} \right|$ (d) $\left| \frac{x_u + x_l}{x_u - x_l} \right|$

$$(\delta) \left| \frac{x_u + x_l}{x_u - x_l} \right|$$

Απάντηση:

Ξέρουμε ότι η απόλυτη τιμή του σχετικού σφάλματος μιας προσεγγιστικής λύσης είναι: $|\epsilon_a| = \left| \frac{x_m^m - x_m^o}{x_m^m} \right|$. Σύμφωνα με την μέθοδο bisection, η λύση βρίσκεται στο μέσο του διαστήματος: $x_m^n = \frac{x_u + x_l}{2}$, όπου x_u και x_l τα όρια του εκάστοτε διαστήματος που περιέχει τη λύση. Σε κάθε βήμα της διαδικασίας, η προηγούμενη προσεγγιστική λύση x_m^0 αποτελεί είτε το πάνω ή το κάτω όριο του διαστήματος για την επόμενη λύση.

Έστω
$$x_m^o = x_l$$
. Θα έχουμε: $|\epsilon_a| = \left|\frac{\frac{x_l + x_u}{2} - x_l}{\frac{x_l + x_u}{2}}\right| = \left|\frac{(x_l + x_u) - 2x_l}{(x_l + x_u)}\right| = \left|\frac{x_u - x_l}{x_l + x_u}\right|$
Έστω $x_m^o = x_u$. Θα έχουμε: $|\epsilon_a| = \left|\frac{\frac{x_l + x_u}{2} - x_u}{\frac{x_l + x_u}{2}}\right| = \left|\frac{(x_l + x_u) - 2x_u}{(x_l + x_u)}\right| = \left|\frac{x_l - x_u}{x_l + x_u}\right|$

Η απάντηση είναι η ίδια, ανεξάρτητα αν η προηγούμενη λύση αποτελεί το πάνω ή κάτω όριο για το επόμενο διάστημα γιατί η νέα λύση είναι πάντοτε στο μέσο του διαστήματος.