

WINDTUNNEL

Maarten Espeel Wolf Vierbergen

Kobe Vlasselaer

Mentor: Ludo Verluyten

GIP

2019-2020

Inhoud

- 1. Onderzoeksvragen
- 2. Theorie
 - 2.1 Turbulente/laminaire stroming
 - 2.2 Wet van Bernouilli
- 3. Praktische proef
 - 3.1 Windtunnel
 - 3.2 Experimenten
- 4. Algemeen besluit

1. Onderzoeksvragen

Hoe kunnen we een windtunnel bouwen waarin we laminaire stroming kunnen opwekken, die we vervolgens kunnen gebruiken om aerodynamische experimenten uit te voeren?

1. Onderzoeksvragen

- 1. Wat heb je nodig om een windtunnel te bouwen?
- 2. Hoe wek je laminaire stroming op?
- 3. Hoe kan ik laminaire stroom zichtbaar maken?
- 4. Hoe meet je de luchtsnelheid?
- 5. Wat is de luchtsnelheid in de windtunnel?
- 6. Wat is de beste invalshoek om lift op een vleugel te creëren?

Inhoud

- 1. Onderzoeksvragen
- 2. Theorie
 - 2.1 Turbulente/laminaire stroming
 - 2.2 Wet van Bernouilli
- 3. Praktische proef
 - 3.1 Windtunnel
 - 3.2 Experimenten
- 4. Algemeen besluit

2. Theorie

2.1 Turbulente stroming

- Luchtstroom komt los
- Botsing
- Kolkende baan
- Stroomscheiding

2. Theorie

2.1 Laminaire stroming

- Druppelvorm
- Blijven plakken
- Geen botsing
- Geen stroomscheiding

2. Theorie

2.2 Wet van Bernouilli

- Sneller -> lagere druk
- Langere afstand
- Zelfde tijd
- Liftkracht omhoog:

$$L = \frac{1}{2} \times v^2 \times S \times C_L(\alpha)$$

L = lift

 ρ = de dichtheid van lucht in kg/m³

v = luchtsnelheid (m/s)

 $S = oppervlakte van de vleugel in m^2$

 $C_L(\alpha)$ = liftcoëfficiënt ten opzichte van de invalshoek α

Inhoud

- 1. Onderzoeksvragen
- 2. Theorie
 - 2.1 Turbulente/laminaire stroming
 - 2.2 Wet van Bernouilli
- 3. Praktische proef
 - 3.1 Windtunnel
 - 3.2 Experimenten
- 4. Algemeen besluit

3. Praktische proef3.1 open windtunnel

- zelf ontworpen: na bezoek aan BikeValley (Beringen)
- zelf gemaakt
- 6 verschillende delen
 - 1. honingraat
 - 2. schermen
 - 3. trechter
 - 4. testsectie
 - 5. diffuser
 - 6. ventilatoren

3.1.1 De honingraat

- lucht -> laminair
- vermindert laterale turbulentie
 - vermindert op- en neerbeweging
- plastic rietjes (6600)
- diameter: 6 mm
- lengte: 60 mm

3.1.2 De schermen

- 2 schermen (Harm Ubbens van BikeValley)
- verminderen axiale turbulentie
 - verminderen drukververschil in doorsnede
- muggengaas
- 64% opening
- 45 mm apart

3.1.3 De trechter

- luchtstroomversnelling
- efficiënt
 - geen stroomscheiding
- polynoom van de 5de orde
- 5,09:1 (A_{inlaat}:A_{uitlaat}) met A= oppervlakte

3.1.4 De testsectie

- alle tests
- 18,0x19,0x58,0 cm
- raam
- 2mm plexiglas

3.1.5 De diffuser

- luchtstroomvertraging
- meer oppervlakte
 - meer ventilatoren
 - -> minder snel laten draaien
- 9.9° openingshoek
- 574,0 mm

3.1.6 De ventilatoren

- borstelloze motoren 210 Watt
- driebladpropeller
- ESC (electronic speed controller)
- accu
- servotester
- 840 Watt

Inhoud

- 1. Onderzoeksvragen
- 2. Theorie
 - 2.1 Turbulente/laminaire stroming
 - 2.2 Wet van Bernouilli
- 3. Praktische proef
 - 3.1 Windtunnel
 - 3.2 Experimenten
- 4. Algemeen besluit

3.2 Praktische proef: experimenten

3.2.1 Zichtbaar maken van laminaire stroom

Bij maximale snelheid, doormiddel van een externe rookmachine

3.2.2 Bepalen van de luchtsnelheid

Via Pitotbuis met vloeistofmanometer

$$v = \sqrt{\frac{2 \cdot \Delta h. \rho_{gin}.g}{\rho_{lucht}}}$$

 $\Delta h = hoogteverschil$

 ρ_{gin} = dichtheid van gin (930 kg/m³)

 $G = \text{valversnelling } (9.81 \text{ m/s}^2)$

 ρ_{lucht} = dichtheid van lucht (1,225 kg/m³)

3.2.2 Bepalen van de luchtsnelheid

A. Bij maximale stand van de ventilator

Luchtsnelheid op verschillende posities

Km/h Links Midden **Rechts** 34 32 34 Boven Midden 33 33 34 Onder 35 33 34

B. Bij vooraf bepaalde instellingen van de ventilator

Ventilator- stand	v (in m/s)	v (in km/u)
1	0,0	0,0
2	1,7	6,2
3	5,5	20
4	7,7	28
5	9,2	33

Besluit:

- 1. Maximale snelheid is 34 km/u (Gemiddelde: = 9,3 m/s of 33 km/u)
- 2. Luchtsnelheid homogeen verdeeld

3.2.3 Bepaling van lift op een vleugel bij verschillende invalshoeken

Proefopstelling bepaling lift op de vleugel

Bepaling van de invalshoek

3.2.3 Bepaling van lift op een vleugel bij verschillende invalshoeken

Resultaten

Liftkracht = blauwe curve

 $F = \Delta m \cdot g$

C_{lift}= rode curve

$$C_{Lift}(\alpha) = \frac{2.F_{Lift}}{\rho_{Lucht}. v^2. S}$$

Besluit:

- Liftkracht neemt toe tot een kritische invalshoek van 30° en daalt opnieuw
- Liftcoëfficiënt geeft analoge curve

3.2.4 Liftkracht en liftcoëfficiënt in functie van de luchtsnelheid

Liftkracht (exp) = blauwe curve

$$F_{lift} = \Delta m \cdot g$$

F_{lift} (theor) = rode curve

$$F_{Lift} = \frac{1}{2} \cdot \rho_{Lucht} \cdot v^2 \cdot S \cdot C_L (\alpha)$$

Besluit:

- Theoretische curve vertoont een kwadratisch verband
- Sommige experimentele waarden stemmen goed overeen met de verwachte theoretische waarden.

Inhoud

- 1. Onderzoeksvragen
- 2. Theorie
 - 2.1 Turbulente/laminaire stroming
 - 2.2 Wet van Bernouilli
- 3. Praktische proef
 - 3.1 Windtunnel
 - 3.2 Experimenten
- 4. Algemeen besluit

4. Algemeen besluit

- belang laminaire stroom
- ontwerp en bouw windtunnel
- genereren van laminaire stroom
- bepaling van de windsnelheid: 33 km/u
- bepaling van de liftkracht bij verschillende invalshoeken:
 neemt toe tot 30° daarna afname
- kwadratisch verband tussen liftkracht en windsnelheid:
 Sommige experimentele waarden stemmen goed overeen met de verwachte theoretische waarden.

Bedankt voor jullie aandacht!

