

Evaluation Criteria for Deep Clustering Algorithms

Jayanth Regatti * 1, Aniket Deshmukh * 2, Eren Manavoglu 2, Urun Dogan 2

¹ The Ohio State University, ²Microsoft

Introduction

- Evaluating clustering algorithms is a hard problem
- For the task of deep clustering/ representation learning + clustering, the existing criteria may be insufficient
- We propose additional criteria to evaluate deep clustering algorithms
- 1. Distribution of accuracies across the hyperparameter set
- 2. Cross model accuracy

Max-performance

Table: Clustering with max-performance i.e., best result among the set of hyperparameters used

Method	STL-10			ImageNet-10			ImageNet-Dogs			CIFAR-10			CIFAR100-20		
	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI
PICA [1]	0.713	0.611	0.531	0.870	0.802	0.761	0.352	0.352	0.201	0.696	0.591	0.512	0.337	0.310	0.171
CC [2]	0.850	0.746	0.726	0.893	0.859	0.822	0.429	0.445	0.274	0.790	0.705	0.637	0.429	0.431	0.266
ID[3]	0.726	0.64	0.526	0.937	0.867	0.865	0.476	0.47	0.335	0.776	0.682	0.616	0.409	0.392	0.243
IDFD[3]	0.756	0.643	0.575	0.954	0.898	0.901	0.591	0.546	0.413	0.815	0.711	0.663	0.425	0.426	0.264
ConCURL	0.749	0.636	0.566	0.958	0.907	0.909	0.695	0.63	0.531	0.846	0.762	0.715	0.479	0.468	0.3034

Distribution of accuracies for hyperparameter set

 We use the ID[3] algorithm as a baseline and compare the accuracy of ConCURL for different hyperparameters

Figure: STL10

Figure: CIFAR100-20

Cross model accuracy

Model trained on ImageNet-10 evaluated on random subsets of ImageNet

Figure: ConCURL trained on ImageNet-10

Figure: ID baseline trained on ImageNet-10

Model trained on ImageNet-Dogs evaluated on random subsets of ImageNet

Figure: ConCURL trained on ImageNet-Dogs

Figure: ID baseline trained on ImageNet-Dogs

Model trained on one dataset and evaluated on other dataset

Table: ImageNet-10 vs ImageNet-Dogs

Model Trained on	lma	ageNet	-10	ImageNet-Dogs				
Model Hained on	ACC	NMI	ARI	ACC	NMI	ARI		
					0.127			
ImageNet-Dogs	0.356	0.298	0.184	0.695	0.630	0.532		

Conclusion

- Proposed new criteria to evaluate deep clustering algorithms emphasizing on robustness to hyperparameter choices, performance on out of distribution data.
- Evaluated ConCURL and other deep clustering algorithms using the proposed criteria.

References

- J. Huang, S. Gong, and X. Zhu, "Deep semantic clustering by partition confidence maximisation," in CVPR, June 2020.
- Y. Li, P. Hu, Z. Liu, D. Peng, J. T. Zhou, and X. Peng, "Contrastive clustering," in AAAI, 2021.
- Y. Tao, K. Takagi, K. Nakata, and C. R. Center, "Clustering-friendly representation learn-ing via instance discrimination and feature decorrelation,"