

Lista de Exercícios – Lógica de Programação Estruturas de Decisão

1. Considere as variáveis abaixo, inicializadas como segue:

- a. numero1 = numero3
- b. numero1 > numero3
- c. numero2 < numero3
- d. numero1 = string1
- e. numero1 = "Um"
- f. numero1 = "Trezentos"
- g. numero1 = "300"
- h. string2 = "Dois"
- i. string1 = "Rinoceronte"
- j. string3 <> "Rinoceronte"
- k. string3 <> "Rinoceronte" OU numero1 > 1000
- 1. $numero2 \le numero1 / 3$
- m. numero1 >= 200
- n. numero1 >= numero2 + numero3
- o. numero1 > numero2 E numero1 < numero3
- p. numero1 = 100 OU numero1 > numero3
- q. numero1 < 10 OU numero3 > 10
- r. numero1 = 30 E numero2 = 100 OU numero3 = 100
- 2. Escreva um algoritmo que leia dois números fornecidos pelo usuário e, conforme o valor deles, exiba uma das seguintes mensagens: "O primeiro número informado é o maior", "O segundo número é o maior" ou "Ambos os números são iguais".
- 3. Um brechó revende produtos usados, e fixa o preço de venda de cada produto conforme o valor de sua aquisição: se o preço de aquisição de um produto é menor do de R\$ 50.00, ele deve ser vendido por um preço 45% maior; caso contrário, o lucro será de 30%. Sabendo disso, construa um algoritmo que leia o valor de aquisição de um produto e mostre o seu valor de venda.
- 4. Escreva um algoritmo que leia três números fornecidos pelo usuário e mostre se a soma de dois deles resulta no terceiro.

- 5. O programa de fidelidade de uma determinada livraria premia seus clientes de acordo com o número de livros comprados a cada mês. Os pontos são atribuídos da seguinte forma:
 - Se um cliente comprar 0 livros, ele ganhará 0 pontos.
 - Se um cliente comprar um livro, ele ganhará 5 pontos.
 - Se um cliente comprar dois livros, ele ganhará 15 pontos.
 - Se um cliente comprar 3 livros, ele ganhará 30 pontos.
 - Se um cliente comprar 4 ou mais livros, ele ganhará 60 pontos.

Crie um algoritmo que leia o número de livros comprado por um usuário e exiba o número de pontos correspondentes.

6. Crie um algoritmo para uma empresa de transportes que, a partir do peso de uma encomenda fornecida pelo usuário, calcule o preço da remessa conforme a seguinte tabela:

Peso da encomenda	Valor
500 gramas ou menos	R\$ 1,10
Mais de 500 gramas, mas não mais que	R\$ 2,20
2 quilos	
Mais de 2 quilos, mas não mais de 10	R\$ 3,70
quilos	
Mais de 10 quilos	R\$ 5,00 mais R\$ 3,80/kg pelo peso
	que ultrapassar 10 Kg

- 7. Uma certa operadora de telefonia móvel cobra R\$ 5,00 mensais pelo seu plano básico de transmissão de SMS (mensagens de texto), sendo que taxas adicionais são cobradas conforme as regras abaixo:
 - a. As primeiras 60 mensagens estão incluídas no plano básico;
 - b. Se o usuário mandar mais de 60 mensagens, cada mensagem adicional custará R\$ 0.05, até o limite de 180 mensagens;
 - c. Acima de 180 mensagens, o valor de cada uma delas passa a R\$ 0,10;
 - d. A soma dos impostos estaduais e federais amonta a 12% do valor de cada fatura.

Com base nessas informações, crie um algoritmo para ler o número total de mensagens enviadas por um usuário. Ao final, calcule o valor da conta e mostre todos os dados, incluindo o valor da conta com e sem impostos.

8. "Jogo do Dolar" – Construa um algoritmo onde o usuário informa o valor do dólar no câmbio atual e um certo número de moedas de 1, 5, 10, 25 e 50 centavos de real. Se o valor total das moedas for o necessário para comprar exatamente um dolar, o programa deve parabenizar o usuário por ganhar o jogo. Caso contrário, o programa deve exibir uma mensagem indicando se o valor inserido foi maior ou menor do que o necessário.

Exemplo: se o dólar estiver a R\$ 3.78, e o usuário informar 3 moedas de 1 centavo, uma de 5 centavos, duas de 10 centavos, duas de 25 centavos e 6 de 50 centavos, ele ganha o jogo. O mesmo aconteceria se ele informasse 3 moedas de 1 centavo, 13 de 25 centavos e uma de cinquenta centavos.

9. Os cientistas medem a massa de um objeto em quilogramas e seu peso em newtons. O peso em Newtons de um objeto pode ser calculado a partir de sua massa por meio da seguinte fórmula:

Peso = Massa
$$\times$$
 9,8

Crie um algoritmo que leia a massa de um objeto e, em seguida, calcule seu peso. Se o objeto pesar mais de 1.000 Newtons, exiba uma mensagem indicando que é muito pesado. Se o objeto pesar menos de 10 Newtons, exiba uma mensagem indicando que está muito leve.

10. Uma loja de jogos vende cada jogo por R\$ 150.00, mas concede descontos conforme a quantidade comprada, conforme a tabela a seguir:

Quantidade de jogos comprados	Desconto
10–19	20%
20–49	30%
50 a 99	40%
100 ou mais	50%

Crie um algoritmo que leia o número de jogos comprados, o valor original da compra, o valor do desconto (se houver) e o valor total da compra após o desconto.

- 11. Sabendo que há 60 segundos em um minuto, 3.600 segundos em uma hora e 86.400 segundo em um dia, crie um algoritmo que a partir de uma determinada quantidade de segundos fornecida pelo usuário, converte-a da seguinte maneira:
 - Se a quantidade de segundos for maior ou igual a 60, o programa deverá exibir o número de minutos equivalente;
 - Se a quantidade de segundos for maior ou igual a 3.600, o programa deverá exibir o número de horas equivalente;
 - Se a quantidade de segundos for maior ou igual a 86.400, será exibir o número de dias equivalente.
- 12. Um certo petshop também funciona como um hotel para cães. De acordo com a tabela de preços desse estabelecimento, a taxa semanal para hospedagem é de R\$ 50.00 para cães com menos de 8 kg, R\$ 70.00 para cães que pesem entre 8 e 15 kg inclusive, R\$ 100.00 para cães entre 15 e 40 kg e R\$ 125.00 para cães com mais de 40 kg. Construa um algoritmo que leia o RG do proprietário de um cão, bem como o nome, raça, idade e peso desse cão e, de posse desses dados, exiba

um orçamento contendo todos os dados de entrada e o custo para hospedar o animal por uma semana.

- 13. Escreva um algoritmo que leia um número e exiba as seguintes opções na tela, para o usuário escolher uma operação:
 - 1. Elevar ao quadrado;
 - 2. Raiz quadrada;
 - 3. Seno;
 - 4. Exponencial.

Depois que o usuário escolher uma opção digitando um número entre 1 e 4, efetue a função matemática correspondente. O algoritmo deve verificar se a escolha fornecida pelo usuário é válida (ou seja, é um número entre 1 e 4); se não for, então deverá emitir uma mensagem de erro e finalizar.

Assumindo que a variável que você utilizará para armazenar o número que o usuário informar seja chamada de *vlNumero*, as seguintes funções para lhe permitem calcular as funções pedidas:

- **sqr**(*vlNumero*) para elevar ao quadrado;
- **sqrt**(*vlNumero*) para tirar a raiz quadrada;
- **sin**(*vlNumero*) para calcular o seno;
- **exp**(*vlNumero*) para calcular uma exponencial.

Após você criar seu algoritmo, modifique-o para incluir a seguinte opção no menu do usuário:

- 0. Sair do programa.
- 14. Uma data no formato dd/mm/yy (ano representado por dois dígitos) é considerada "mágica" quando o dia multiplicado pelo mês resulta no ano. Esse é o caso de datas como 9/02/18, 2/09/18, 13/04/52 ou 2/10/20, por exemplo. Sabendo disso, crie um algoritmo que leia um dia (em formato numérico), mês e ano com dois dígitos, informando se é uma "data mágica" ou não.
- 15. Faça um algoritmo para ler a temperatura atual e conforme leitura, imprima o resultado de acordo com a tabela abaixo.

Temperatura	Resultado
até 15°	Muito frio
de 16° a 23°	Frio
de 23° a 26°	Agradável
de 26° a 30°	Quente
acima de 31°	Muito quente

- 16. Uma seguradora comercializa apólices de seguro para automóveis. Crie um algoritmo para essa seguradora para ler os dados de uma apólice de seguro, incluindo o número da apólice, sobrenome do cliente, nome do cliente, idade, data de vencimento do prêmio (mês, dia e ano) e número de acidentes de motorista nos últimos três anos. Se um número da apólice inserido não estiver entre 1000 e 9999, defina-a como sendo 0. Se o mês do vencimento não estiver entre 1 e 12 inclusive, ou o dia não estiver correto para o mês (por exemplo, não entre 1 e 31 para Janeiro ou 1 e 29 para fevereiro), defina o mês, dia e ano como 0. Após essas críticas, exiba os dados da apólice.
- 17. Crie um algoritmo que leia um número entre 1 e 10 e exiba o correspondente em números romanos. Se o número estiver fora do intervalo de 1 a 10, uma mensagem de erro deverá ser exibida.
- 18. Sabendo que a área de um retângulo é o comprimento de sua base multiplicada pela sua altura, construa um algoritmo que leia a base e a altura de dois retângulos e informe ao usuário qual deles tem a área maior ou se ambas as áreas são iguais.
- 19. Faça um algoritmo que leia dois números inteiros e os armazene em duas variáveis inteiras, digamos, *nrA* e *nrB*. Após compará-las, o algoritmo tem que garantir que o menor valor fique armazenado em *nrA* e o maior em *nrB*.
- 20. Construa um algoritmo que, a partir do valor do comprimento dos três lados de um triângulo, classifique-o em *equilátero*, *isósceles* ou *escaleno*. Lembre, um triângulo é *equilátero* quando o comprimento de todos os seus lados for igual, é *isósceles* quando apenas um dos lados tiver comprimento diferente e é *escaleno* quando todos os lados tiverem comprimentos diferentes dos demais lados.
- 21. Construa um algoritmo que, a partir de duas cores primárias fornecidas pelo usuário determine qual cor seria obtida pela mistura delas. Para tanto, considere as informações fornecidas abaixo:

As cores vermelho, azul e amarelo são chamadas de cores primárias porque não podem ser obtidas a partir de outras cores e, quando misturadas, resultam numa cor secundária, de acordo com as seguintes regras:

- vermelho + azul = roxo;
- *vermelho* + *amarelo* = *laranja*;
- azul + amarelo = verde.

Se o usuário inserir algo diferente de "vermelho", "azul" ou "amarelo", o programa deverá exibir uma mensagem de erro. Caso contrário, o programa deve exibir o nome da cor secundária resultante.

- 22. Numa determinada escola, os critérios de aprovação são os seguintes:
 - O aluno deve ter, no máximo, 25% de faltas;
 - A nota final deve ser igual ou superior a 7,00.

Construa um algoritmo para ler as notas que um aluno tirou nos 4 bimestres, o número total de aulas e o número de faltas, mostrando ao final a situação do aluno como sendo "Aprovado", "Reprovado por Faltas" e "Reprovado por média", considerando que a reprovação por faltas se sobrepõe a reprovação por nota.

Após construir esse algoritmo, crie mais duas versões dele para prever as seguintes situações:

- Um aluno pode ficar em recuperação se possuir frequência suficiente (superior a 75%) e média superior a 5 mas inferior a 7;
- Caso um aluno reprove por média e faltas, sua situação deve ser "Reprovado por Média e Faltas" (ao invés de simplesmente "Reprovado por Faltas" como antes).
- 23. Um carpinteiro esculpe placas personalizadas para estabelecimentos comerciais e deseja um programa que faça orçamentos das placas que produz, considerando as seguintes informações:
 - a. O valor mínimo de qualquer placa é de R\$ 300,00;
 - b. Placas de angelim custam R\$ 150,00 adicionais, mas placas de pinus não possuem nenhum custo extra;
 - c. Frases com até 12 caracteres estão incluídas no valor mínimo; para frases maiores, são cobrados R\$ 15,00 por caractere;
 - d. Para placas com dizeres brancos ou pretos não se cobra adicional, mas se ele contiver letras douradas, cobra-se R\$ 60,00 a mais.

Baseado nessas informações, construa um algoritmo que leia o número de um orçamento, o nome do cliente, tipo de madeira (angelim ou pinus), número de caracteres da mensagem e a cor dos caracteres (branco, preto ou dourado). Ao final, imprima todos os dados de entrada e o preço da placa orçada.

Após construir esse este algoritmo, tente modificá-lo para que o usuário informe a mensagem que deverá ser esculpida ao invés do número de caracteres dessa mensagem. Assim, para que o orçamento seja emitido, o próprio algoritmo deverá contar quantos caracteres a mensagem contém, o que pode ser feito com a função **length**. Por exemplo, se você armazenar a mensagem numa variável chamada strMensagem, o número de caracteres será dado por **length**(*strMensagem*).

24. Uma loja deseja recompensar os seus empregados de acordo com o número de vendas que eles realizaram num determinado mês. Crie um algoritmo que leia o número de vendas de um empregado e calcule o seu bônus, conforme a seguir:

- a. Se o número de vendas for menor que 30, o bônus é de R\$ 250,00;
- b. Se o número de vendas for maior que 31 e menor que 80, o bônus é de R\$ 500.00;
- c. Se o número de vendas for maior que 80 e menor que 200, o bônus é de R\$ 1.000,00;
- d. Se o número de vendas for 200 ou maior, o bônus é de R\$ 2.000,00.
- 25. Escreva um programa que peça ao usuário para fornecer um dia, mês e o ano arbitrários e determine se esses dados correspondem a uma data válida. Não deixe de considerar que existem meses com 30 e 31 dias, e que fevereiro pode ter 28 ou 29 dias, dependendo se o ano for bissexto. Considere que um ano é bissexto quando for divisível por 4, com exceção dos anos centenários (aqueles que são divisíveis por 100, como 1700, 1800, etc).
- 26. Construa um algoritmo que leia uma data qualquer (dia, mês e ano) e calcule a data do próximo dia. Lembre-se que em anos bissextos o mês de fevereiro tem 29 dias. Lembre-se que um ano é bissexto quando for divisível por 4.
- 27. Crie um algoritmo para um jogo de adivinhação, onde o usuário tenta adivinhar um número aleatório gerado pelo computador. Esse número aleatório é inteiro e não negativo, e deve ser escolhido dentro de uma faixa estabelecida pelo usuário (por exemplo, o usuário pode estipular que esse número varie entre 0 e 10 ou entre 22 e 48, por exemplo). Após o usuário tentar adivinhar qual foi o número gerado, o algoritmo deve escrever esse número e dizer se indicar se o palpite do jogador estava correto, muito alto ou muito baixo.

Dica: Para gerar um número aleatório maior ou igual a zero e menor do que "x", utilize a função *random*(x).

- 28. Crie um algoritmo que funcione como um jogo de loteria, conforme as seguintes regras:
 - a. O algoritmo deve gerar três números aleatórios entre 0 e 9;
 - b. O usuário deve fornecer um palpite com três números, também entre 0 e
 9;
 - c. Cada um dos palpites do usuário deve ser comparado com os números aleatórios, de acordo com a tabela abaixo:

Números Correspondentes	Número de pontos
Nenhum número coincidente	0
Acertar um número	10
Acertar dois números	100
Acertar os três números, mas não na	1000
mesma ordem em que foram	
gerados	

Acertar três números na mesma	1.000.000
ordem que os números aleatórios	

Ao final, exiba uma mensagem que inclua os chutes do usuário, os três números sorteados aleatoriamente e a quantidade de pontos que o usuário ganhou.

- 29. As provas de vestibular de uma determinada universidade são constituídas por questões de múltiplas escolhas, com 5 alternativas. A primeira alternativa vale 1 ponto, a segunda 10 pontos, a terceira 100 pontos, a quarta 1000 pontos e a quinta 10.000 pontos. Cada candidato deve assinalar as alternativas que considerar corretas, somando os pontos correspondentes e escrever essa soma como sendo a resposta no gabarito da prova. Por exemplo, se numa questão um determinado candidato assinalou as alternativas 1, 2 e 3 como sendo as corretas, então sua resposta seria 1+10+100 = 111; se tivesse assinalado as alternativas 1, 3 e 5 a resposta seria 1+100+10.000 = 10.101. Se nenhuma alternativa for assinalada, então a resposta seria 0; se forem assinaladas todas as alternativas, a resposta seria 1 + 10 + 100 + 1000 + 10.000 = 11.111. Crie um programa que leia a resposta fornecida pelo candidato na prova e diga quais foram as alternativas que ele assinalou.
 - 30. **Fatura da Sanepar** as regras que a Sanepar utiliza para cobrar a fatura de água e esgoto de clientes residenciais estão expressas na tabela abaixo. Repare que existem 6 faixas de consumo e que cada uma possui uma franquia de consumo e um valor diferente para cada metro cúbico (m³) consumido.

	Faixas de Consumo			Totais (R\$)	
Faixa	Volume da Faixa	Franquia de consumo	Valor (R\$/m³)	Água	Esgoto
1ª	Mínimo (até 5 m³)	5 m ³	R\$ 37,47	37,47	29,97
2ª	de 6 m³ a 10 m³	5 m ³	R\$ 1,16	5,80	4,64
3ª	de 11 m³ a 15 m³	5 m ³	R\$ 6,46	32,30	25,84
4ª	de 16 m³ a 20 m³	5 m ³	R\$ 6,49	32,45	25,96
5 <u>ª</u>	de 21 m³ a 30 m³	10 m ³	R\$ 6,55	65,50	52,40
6ª	acima de 30 m³	Livre	R\$ 11,08		

O valor de uma fatura é calculado distribuindo-se o consumo total de água de água pelas faixas de consumo. Caso um cliente tenha consumido menos de 5 m³, deve pagar a tarifa mínima (R\$ 37,47) mas se consumiu digamos, 12 m³ de água, 5 m³ são cobrados pela 1ª faixa, outros 5 m³ pela 2ª faixa e os 2 m³ restantes são cobrados pela 3ª faixa. O valor do esgoto é calculado como sendo 80% do valor cobrado pela água. A coluna "Totais" mostra quanto seria cobrado de um cliente que tenha consumido toda a franquia das faixas correspondentes (com exceção da última faixa, que não possui franquia de consumo).

Com base nessas informações, elabore um programa que calcule o valor da fatura de um cliente com base em seu consumo de água, utilizando o exemplo a seguir para auxiliar na compreensão do problema.

Exemplo: Assuma que que um determinado domicílio consumiu 37 m³ de água num determinado mês. Para o cálculo da respectiva fatura, deve-se distribuir esse volume pelas faixas de consumo da tabela, como explicado abaixo:

- (1) **1ª faixa** (franquia de 5 m³) O consumo dos primeiros 5 (cinco) m³ de água são faturados pela tarifa mínima, que é de R\$ 37,47. Dos 37 m³ consumidos, restam 32 m³ para serem faturados pelas demais faixas de consumo;
- (2) **2ª faixa** (franquia de 5 m³) Os próximos 5 (cinco) m³ que ultrapassam o consumo da 1ª faixa são cobrados pelo valor de excedente da 2ª faixa de consumo da tabela abaixo (5 m³ × R\$ 1,16 = R\$ 5,80). Dos 37 m³ consumidos, 5 foram faturados pela 1ª faixa e outros 5 pela 2ª faixa restando, portanto, 27 m³ para serem faturados;
- (3) 3^a faixa (franquia de 5 m³) Os próximos 5 (cinco) m³ que ultrapassam o consumo da 2^a faixa são cobrados pelo valor de excedente da 3^a faixa de consumo (5 m³ × R\$ 6,46 = R\$ 32,30). Até essa faixa, foram faturados 15 m³ e restam ainda 22 m³ para serem faturados;
- (4) **4ª faixa** (franquia de 5 m³) Os próximos 5 (cinco) m³ que ultrapassam o consumo da 3ª faixa são cobrados pelo valor de excedente da 4ª faixa de consumo (5 m³ × R\$ 6,49 = R\$ 32,45). Até essa faixa, foram faturados 20 m³ e restam ainda 17 m³ para serem faturados;
- (5) **5ª faixa** (franquia de 10 m³) Os próximos 10 (dez) m³ que ultrapassam o consumo da 4ª faixa são cobrados pelo valor de excedente da 5ª faixa de consumo (10 m³ × R\$ 6,55 = R\$ 65,50). Até essa faixa, foram faturados 30 m³ e restam ainda 7 m³ para serem faturados;
- (6) **6ª faixa** (franquia livre) Os próximos 7 (sete) m³ que ultrapassam o consumo da 5ª faixa são cobrados pelo valor de excedente da 6ª faixa de consumo (7 m³ × R\$ 11,08 = R\$ 77,56). Até essa faixa, foram faturados 37 m³, que foi o valor consumido pelo cliente;
- (7) Para obter o valor da água consumida, deve-se somar o consumo em cada faixa, ou seja, R\$ 37,47 + R\$ 5,80 + R\$ 32,30 + R\$ 32,45 + R\$ 65,50 + R\$ 77,56 = R\$ 251, 08;
- (8) O valor referente ao esgoto corresponde a 80% do valor da água, ou seja, R\$ 251,08 × 0,8 = R\$ 200,86;
- (9) O valor da fatura é dado pela soma do consumo de água pela do esgoto, ou seja, R\$ 251,08 + R\$ 200,86 = R\$ 451,94.
- 31. **Máquina de café** Uma máquina de vender café funciona da seguinte forma: o usuário seleciona um tipo de café, insere algumas notas ou moedas na máquina e, se a quantia paga for suficiente para pagar o face desejado, a máquina enche um copo descartável com o tipo de café selecionado e dá o troco em moedas. Faça um programa para imitar esse comportamento: o usuário informa qual é o tipo de café desejado e o valor pago, e o seu programa deve dizer qual deve ser o valor do

troco e quantas moedas são necessárias para pagar esse troco. Considere a existência de moedas com os seguintes valores: R\$ 1.00, R\$ 0.50, R\$ 0.25, R\$ 0.10, R\$ 0.05 e R\$ 0.01. A tabela de preços é dada abaixo:

Tipo de Café	Preço
Café normal	R\$ 1,05
Café expresso	R\$ 1,52
Capuccino	R\$ 2,17
Mocaccino	R\$ 2,36