ST 705 Linear models and variance components Homework problem set 3

February 3, 2021

1. Prove that all norms on a finite-dimensional vector space V over \mathbb{C} are equivalent. That is, show that for any two norms, say $\|\cdot\|_a$ and $\|\cdot\|_b$, defined on V, there exists real-valued positive constants c_1 and c_2 such that for every $x \in V$,

$$c_1||x||_b \le ||x||_a \le c_2||x||_b.$$

- (a) First, show that it is without loss of generality to consider $\|\cdot\|_b = \|\cdot\|_1$.
- (b) Second, demonstrate that it suffices to only consider $x \in V$ with $||x||_1 = 1$.
- (c) Next, prove that any norm $\|\cdot\|_a$ is a continuous function under $\|\cdot\|_1$ -distance.
- (d) Finally, apply a result from calculus such as the Bolzano-Weierstrass theorem or the extreme value theorem to finish your argument that all norms on a finite-dimensional vector space are *equivalent*..

This notion of *equivalence* is in reference to the fact that if a sequence is convergent in *some* norm, then it is convergent in *all* norms. Note the assumption of a *finite*-dimensional vector space.

- 2. Let $A \in \mathbb{R}^{n \times p}$.
 - (a) Prove that if A^g is a generalized inverse of A (i.e., only satisfying $AA^gA = A$), then $(A^g)'$ is a generalized inverse of A'. Conclude from this fact that $P_X := X(X'X)^gX'$ is symmetric.
 - (b) Prove the existence **and** uniqueness of the Moore-Penrose generalized inverse, usually denoted A^+ , of A.
 - (c) Show that if A has full column rank, then $A^+ = (A'A)^{-1}A'$.
 - (d) Show that if A has full row rank, then $A^+ = A'(AA')^{-1}$.
- 3. Let S be a nonempty subset of an inner product space V. The orthogonal complement to the set S is defined as

$$S^{\perp} := \{x \in V : \langle x, y \rangle = 0 \text{ for every } y \in S\}.$$

- (a) Show that S^{\perp} is a subspace of V for any $S \subseteq V$.
- (b) Let $W \subseteq V$ be a finite-dimensional subspace, and let $y \in V$. Show that there exist **unique** vectors $u \in W$ and $z \in W^{\perp}$ such that y = u + z.
- (c) Let $X \in \mathbb{R}^{n \times p}$. Verify that $\operatorname{col}(X)$ and $\operatorname{null}(X')$ are orthogonal complements.
- 4. Let $G: \mathbb{R}^p \to \mathbb{R}$ defined by $G(\beta) := (y X\beta)'W(y X\beta)$. Derive an expression for $\nabla_{\beta}G(\beta)$.
- 5. Let $x_i, y_i \in \mathbb{R}$ for $i \in \{1, ..., n\}$, and show that

$$\frac{1}{n}\sum_{i=1}^{n}\sum_{j< i}(x_i-x_j)(y_i-y_j)=\sum_{i=1}^{n}(x_i-\bar{x}_n)y_i=\sum_{i=1}^{n}(x_i-\bar{x}_n)(y_i-\bar{y}_n).$$

Note the particular case when $x_i = y_i$ for every i.