Systems of Equations

- So far we have just looked at a single equation. What if we had a <u>system</u> of equations?
- Suppose we have the set:

$$f_1(x_1, ..., x_n) = 0$$

... or $f(x) = 0$
 $f_n(x_1, ..., x_n) = 0$

Systems of Equations

- We wish to determine $\mathbf{x} = (x_1, ..., x_n)$ such that $\mathbf{f}(\mathbf{x}) = (f_1, f_2, ..., f_n) = \mathbf{0}$
- We shall use Newton's method:
 expand f(x) in a Taylor series about x^(k).
- Note: x^(k) is the kth guess for the root.
- So... (written notes)

or,
$$\int \frac{\partial f_1}{\partial x_1} \frac{\partial f_2}{\partial x_2} \cdots \frac{\partial f_n}{\partial x_n}$$
 $\int \frac{\partial f_n}{\partial x_1} \frac{\partial f_n}{\partial x_2} \cdots \frac{\partial f_n}{\partial x_n}$

We truncate the Taylor series after the linear term f_n set it equal to zero to get the next query!

 $Q = f_n^k + J_n^k (x^{k+1} - x^k)$

Thus:

 $x^{k+1} = x^k - [J_n^k]^{-1} f_n^k$

Actually, this should be solved using Gaussian elimination.

20: $f(\bar{x}) = f(\bar{x}_{(10)}) + \chi f^{(10)} - (\bar{x} - \bar{x}_{(10)}) + \cdots$

the matrix Df is known as the Jacobian of £:

- If the Jacobian is <u>singular</u>, Newton's method will fail to converge.
- This is equivalent to the first deriv. $f'(x_k) = 0$ for a one-dimensional Newton's method problem.
- Let's do a simple example:

$$f_1(x_1,x_2) = x_1x_2 - x_2^3 - 1 = 0$$

 $f_2(x_1,x_2) = x_1^2x_2 + x_2 - 5 = 0$

What is the Jacobian? (handwritten notes...)

- The solution will converge to (2,1) after about 8 iterations.
- Note that it doesn't go straight to the solution!
- We <u>started</u> at x₁ = 2, which was the <u>solution</u>, but we moved <u>away</u> from it at first!
- Why? → because locally the tangent may not point in the correct direction.

- Okay, how do we improve on Newton's method?
- We wish to guard against failure to converge.
- We shall require that:
 - 1. The algorithm makes progress to the solution at every step.
 - 2. The steps are never too large.

Thus we require that:

$$||\mathbf{f}(\mathbf{x}^{(k+1)})||_{2} < ||\mathbf{f}(\mathbf{x}^{(k)})||_{2}$$

and that:

$$||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}||_{2} < \delta$$

where δ is picked by the algorithm.

• If the truncated Taylor series (including the linear term) is a good approximation to the function, we make δ large, if not we reduce δ .

• Suppose we have:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{p}$$
Correction at step k

From Newton's method we expect:

$$p = -(J^{(k)})^{-1} f^{(k)}$$

but this may not satisfy $||\mathbf{p}||_2 < \delta$

- In addition, if J^(k) is singular, p may not exist!
- Instead, let's solve the constrained optimization problem:

```
find p that minimizes ||\mathbf{J}^{(k)}\mathbf{p} + \mathbf{f}^{(k)}||_2 subject to ||\mathbf{p}||_2 < \delta
```

- This works even for singular J^(k)!
- This is a bit different from the linear regression problem. Linear regression is an unconstrained optimization problem, what we have is a constrained problem.
- We'll look into solving this in a later lecture.

- If we have such a solver, we would
- 1. If $f(x^{(k)}) = 0$ then stop
- 2. Calculate **p** via constrained optimization solution.
- 3. If $||\mathbf{f}(\mathbf{x}^{(k)} + \mathbf{p})||_2 < ||\mathbf{f}(\mathbf{x}^{(k)})||_2$ then accept step and go to (1).
 - You may also want to increase δ .
- 4. If not, then reduce δ and go back to step (2).
- This sort of algorithm will reliably find roots, and will be trapped by local minima.
- Key: start closer to the answer!

- In optimization we are trying to <u>minimize</u> or <u>maximize</u> an <u>objective function</u>, usually subject to a set of <u>constraints</u>.
- This is known as a constrained optimization problem.
- If there are no constraints, then we have an unconstrained optimization problem.
- Example: suppose we are designing soup cans. We want to <u>minimize</u> the metal usage for volume enclosed, e.g., minimize surface/volume ratio.
- Obviously a sphere would do this, but it's difficult to make and open.

Instead, we choose a cylindrical shape:

Metal Area =
$$2\pi r^2 + 2\pi rh = A$$

Volume =
$$\pi r^2 h = V$$

- We wish to minimize A subject to the that V = 16 oz (for instance).
- This is a 2-D nonlinear constrained optimization problem.

 We can convert this to a 1-D unconstrained problem by recognizing:

$$h = V/\pi r^2$$

- Therefore, $A = 2\pi r^2 + 2V/r$
- Which has the solution r = 4.22, h = 8.45 cm.
- Thus, $A = 336 \text{ cm}^2$.
- Actually, cans don't fit this ideal, as there are additional constraints such as labeling and packing considerations.

We have the general problem:

```
minimize F(\mathbf{x}) = F(x_1, x_2, ..., x_n)
over some domain S in n-dimensional space.
```

For the can problem,

$$F(x_1,x_2) = 2\pi x_1^2 + 2\pi x_1 x_2$$

subject to $x \in S = \{(x_1,x_2) | 2\pi x_1^2 x_2 = V\}$

- If $S = R_N$ (all space) then problem is unconstrained.
- **x** ε S are the <u>feasible</u> solutions.

- Least squares data fitting is an <u>unconstrained</u> optimization problem.
- If we have some point x such that grad(F) = 0
 then x is a critical point.
- It may be a minimum, maximum, or a saddle point!
- We define a point \mathbf{x}^* to be a <u>local minimum</u> if: $\mathbf{x}^* \in S$ such that $F(\mathbf{x}^*) < F(\mathbf{x}^* + \delta)$

x* is a global minimum if

$$F(x^*) < F(x), x \in S \text{ (for all } x^*)$$

You can't guarantee to find the global minimum!

One-Dimensional Optimization

- There are three basic approaches analogous to the three root finding techniques. They are:
 - 1. Newton's Method
 - 2. Successive Parabolic Interpolation
 - 3. Golden Search (Fibonacci Search)

Q1: Which of the following is NOT needed to begin using the bisection method?

- A. A continuous function f(x)
- B. Endpoints of the interval: [a,b]
- C. f(a)*f(b) < 0
- D. Initial slope of f(x)

Q2: If f(a)f(b) < 0, that indicates the following:

- A. There is one root in the interval.
- B. There are no roots in the interval.
- C. There is at least one root in the interval.
- D. There is a local minimum in the interval.

Q2: If f(a)f(b) < 0, that indicates the following:

- A. There is one root in the interval.
- B. There are no roots in the interval.
- C. There is at least one root in the interval.
- D. There is a local minimum in the interval.

Q3: At which initial value of x will Newton's method fail to find the root?

- A. 0
- B. 2
- C. 3
- D. 6
- E. 7

Q4: How would you use the built-in Matlab function fzero to solve for the root of $f(x) = x^4 + e^x - 4$ that is closest to 2.5?

- A. $fzero(x^4 + exp(x)-4,2.5)$
- B. $fzero('x^4+e^x-4',2.5)$
- C. fzero(' x^4 +exp(x)-4',2.5)
- D. fzero(" x^4 +exp(x)-4",2.5)
- E. $fzero('x^4+e(x)-4',2.5)$

Poiseuille flow

Steady flow in a rigid cylindrical tube

- Pressure gradient $F_p = 2\pi r(p_1 - p_2)\delta r$

$$F_{\rm p} = 2\pi r (p_1 - p_2) \delta r$$

Viscous force

$$F_{\rm v} = -\frac{\partial}{\partial r} (2\pi r L \mu \frac{\partial v}{\partial r}) \delta r$$

The forces are equal and opposite:

$$\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{p_1 - p_2}{\mu L} = 0$$

$$v(r=R)=0$$

$$v(r=0)\neq \infty$$

$$v(r) = -r^2 \frac{p_1 - p_2}{4\mu L} + A \ln r + B$$

$$v(r) = \frac{p_1 - p_2}{4\mu L} (R^2 - r^2)$$

$$Q = \int_{0}^{R} 2\pi v(r) r dr = \pi R^4 \frac{p_1 - p_2}{8\mu L}$$

$$\overline{v} = \frac{Q}{\pi R^2} = R^2 \frac{p_1 - p_2}{8\mu L} = \frac{1}{2} v(r = 0) = \frac{v_{\text{max}}}{2}$$

volume flow average velocity

Physical properties of blood

BLOOD = plasma + blood cells (55%) (45%)

electrolyte solution containing 8% of proteins

Red blood cells (95%)

White blood cells (0.13%)

Platelets (4.9%)

Reference values

	PLASMA	WHOLE BLOOD	
density	1035 kg/m ³	1056 kg/m ³	
viscosity	1.3×10 ⁻³ Pa s	3.5 × 10 ⁻³ Pa s	

January 2008 Blood Flow 24

Viscosity

- Viscosity varies with samples
 - variations in species
 - variations in proteins and RBC
- Temperature dependent
 - decrease with increasing T

a non-Newtonian fluid at low shear rates (the agreggates of RBC)

a Newtonian fluid above shear

rates of 50 s⁻¹

Casson's equation

$$\sqrt{\tau} = \sqrt{\tau_0} + K_c \sqrt{dv/dr}$$

In small tubes the blood viscosity has a very low value because of a cell-free zone near

the wall.

Fahraeus-Lindqvist effect

January 2008 Blood Flow 25

Fahraeus-Lindqvist Effect

Cell-free marginal layer model

- 2 Core region μ_c , ν_c , Ω 2 R2
- ② Cell-free plasma μ_p , ν_p , R-②② R region near the wall

$$-\frac{\Delta p}{L} = \frac{1}{r} \frac{d}{dr} \left(\mu r \frac{dv}{dr} \right)$$

the volume flow

$$Q = \frac{\pi R^4 \Delta p}{8L} \underbrace{\frac{1}{\mu_p} \left(1 - (1 - \delta/R)^4 (1 - \mu_p/\mu_c) \right)}_{1/\mu}$$

The Sigma effect theory

- velocity profile is not continuous
- small tubes (N red blood cells move abreast)

the volume flow is rewritten

$$Q = \frac{\pi \Delta p}{2\mu L} \int_{0}^{R} r^{3} dr$$

N concentric laminae, each of thickness ε

$$Q = \frac{\pi \Delta p}{2\mu L} \sum_{n=1}^{N} (n\varepsilon^{3}) \varepsilon = \frac{\pi \Delta p R^{4}}{8L} \underbrace{\frac{1}{\mu} \left(1 + \frac{\varepsilon}{R}\right)}_{\text{1/}\mu}$$

January 2008 Blood Flow