COMP90042 Web search and text analysis

Workshop Week 5

xudong.han@unimelb.edu.au https://github.com/HanXudong/COMP90042 Workshops

Review

Logarithmic index layout I/Os

This workshop

- Text classification
- N-gram language model
- Back-off and interpolation

What is text classification? Give some examples.

- Topic classification
- Sentiment analysis
- Authorship attribution
- Native-language identification
- Automatic fact-checking

Why is text classification generally a difficult problem? What are some hurdles that need to be overcome?

- 1. Identify a task of interest
- 2. Collect an appropriate corpus
- 3. Carry out annotation
- 4. Select features
- 5. Choose a machine learning algorithm
- 6. Tune hyper-parameters using held-out development data
- 7. Repeat earlier steps as needed
- 8. Train final model
- 9. Evaluate model on held-out test data

1-b Consider some (supervised) text classification problem, and discuss whether the following (supervised) machine learning models would be suitable

- 1. K-Nearest Neighbour using Euclidean distance
- 2. K-Nearest Neighbour using Cosine similarity
- 3. Decision Trees using information Gain
- 4. Naive Bayes
- 5. Logistic Regression
- 6. Support Vector Machine

KNN

• Euclidean distance

• Cosine similarity

Decision tree

- Nodes correspond to features and leaves are final decision.
- The feature set is very large, and we might find spurious correlations.
- Information Gain is a poor choice because it tends to prefer rare features.

Decision tree

 https:// www.saedsayad.com/ decision_tree.htm

 $Entropy = -p \log_2 p - q \log_2 q$

Gain(T, X) = Entropy(T) - Entropy(T, X)

Logistic Regression

Naive Bayes

In machine learning, Naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features.

 $Posterior \propto Prior \times Likelihood$

$$P(\theta \mid x) = \frac{p(x \mid \theta)p(\theta)}{p(x)}$$

Support Vector Machines

maximum-margin classifier

- -Hard margin
- -Soft margin
- -Kernel

Q2

- 2. For the following "corpus" of two documents:
 - 1. how much wood would a wood chuck chuck if a wood chuck would chuck wood
 - 2. a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood
 - (a) Which of the following sentences: a wood could chuck; wood would a chuck; is more probable, according to:
 - i. An unsmoothed uni-gram language model?
 - ii. A uni-gram language model, with Laplacian ("add-one") smoothing?
 - iii. An unsmoothed bi-gram language model?
 - iv. A bi-gram language model, with Laplacian smoothing?
 - v. An unsmoothed tri-gram language model?
 - vi. A tri-gram language model, with Laplacian smoothing?

- how much wood would a wood chuck chuck if a wood chuck would chuck wood
- a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood
- <s> = sentence start; </s> = sentence end
- Q: Which of the following sentences:
 A: a wood could chuck; B: wood would a chuck;
 is more probable, according to: an uni-gram language model?

$$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^{m} P(w_i)$$

$$P(w_i) = \frac{C(w_i)}{\sum_{j=1}^{m} C(w_j)}$$

- how much wood would a wood chuck chuck if a wood chuck would chuck wood
- 2. a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood

$$P(w_i) = \frac{C(w_i)}{\sum_{j=1}^{m} C(w_j)}$$

W	а	chuck	could	he	how	if	much	the	wood	would		Total
Count												
Р												

- how much wood would a wood chuck chuck if a wood chuck would chuck wood
- 2. a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood

$$P(w_i) = \frac{C(w_i)}{\sum_{j=1}^{V} C(w_j)}$$

W	а	chuck	could	he	how	if	much	the	wood	would		Total
Count	4	9	1	1	1	2	1	1	8	4	2	34
Р	4/34	9/34	1/34	1/34	1/34	2/34	1/34	1/34	8/34	4/34	2/34	1

W	а	chuck	could	he	how	if	much	the	wood	would		Total
Count	4	9	1	1	1	2	1	1	8	4	2	34
Р	4/34	9/34	1/34	1/34	1/34	2/34	1/34	1/34	8/34	4/34	2/34	1

$$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^{m} P(w_i)$$

Q: Which of the following sentences:

A: a wood could chuck; B: wood would a chuck; is more probable, according to: an uni-gram language model?

$$P(A) = P(a)P(wood)P(could)P(chuck)P()$$

$$P(B) = P(wood)P(would)P(a)P(chuck)P(< /s >)$$

What if Count(a)==0?

W	а	chuck	could	he	how	if	much	the	wood	would		Total
Count	4	9	1	1	1	2	1	1	8	4	2	34
Р	5/45	10/45	2/45	2/45	2/45	3/45	2/45	2/45	9/45	5/45	3/45	1

$$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^m P(w_i) \qquad P_{add1}(w_i) = \frac{C(w_i) + 1}{\sum_{j=1}^V [C(w_j) + 1]}$$

Q: Which of the following sentences:

A: a wood could chuck; B: wood would a chuck; is more probable, according to: an uni-gram language model with add-one smoothing?

$$P(A) = P(a)P(wood)P(could)P(chuck)P(< /s >)$$

$$P(B) = P(wood)P(would)P(a)P(chuck)P(< /s >)$$

- how much wood would a wood chuck chuck if a wood chuck would chuck wood
- a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood
- <s> = sentence start; </s> = sentence end
- Q: Which of the following sentences:
 A: a wood could chuck; B: wood would a chuck;
 is more probable, according to: an bi-gram language model?

$$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^m P(w_i | w_{i-1})$$

$$P(w_i | w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

- how much wood would a wood chuck chuck if a wood chuck would chuck wood
- 2. a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood

$$P(w_i | w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

W_1,W_2	<s>a</s>	<s>wood</s>	chuck
Count(w_1,w_2)	1	0	0
Count(w_1)	2	8	9
P(w_2 w_1)	1/2	0	0

$$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^m P(w_i | w_{i-1})$$

A: a wood could chuck;

B: wood would a chuck;

- 1. <s> how much wood would a wood chuck chuck if a wood chuck would chuck wood </s>
- 2. <s> a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood </s>
- <s> = sentence start; </s> = sentence end
- Q: Which of the following sentences:

A: a wood could chuck; B: wood would a chuck; is more probable, according to: an bi-gram language model with add-one smoothing?

$$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^m P(w_i | w_{i-1})$$

$$P_{add1}(w_i | w_{i-1}) = \frac{C(w_{i-1} | w_i) + 1}{\sum_{j=1}^{V} [C(w_{i-1} | w_j) + 1]} = \frac{C(w_{i-1} | w_i) + 1}{C(w_{i-1}) + V}$$

- <s> <s> how much wood would a wood chuck chuck if a wood chuck would chuck wood </s>
- <s> <s> a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood </s>
- <s> = sentence start; </s> = sentence end
- Q: Which of the following sentences:

A: a wood could chuck; B: wood would a chuck; is more probable, according to: an tri-gram language model with add-one smoothing?

$$P(w_1, w_2, \dots, w_m) = \prod_{i=1}^m P(w_i | w_{i-2} | w_{i-1})$$

$$P_{add1}(w_i | w_{i-2} | w_{i-1}) = \frac{C(w_{i-2} | w_{i-1} | w_i) + 1}{C(w_{i-2} | w_{i-1}) + V}$$

Q3: What does back-off mean, in the context of smoothing a language model? What does interpolation refer to?

- The idea in a Backoff model is to build an Ngram model based on an (N-1) model
- https://en.wikipedia.org/wiki/Katz%27s_back-off_model
- Interpolation: instead of just backing off to the non-zero Ngram, it is possible to take into account all Ngrams.
- Estimate lambdas from held-out dataset.