IMPROVING BERT FINE-TUNING VIA STABILIZING CROSS-LAYER MUTUAL INFORMATION

Jicun Li^{1,2}, Xingjian Li^{3,6}, Tianyang Wang⁴, Shi Wang^{1,2*}, Yanan Cao⁵, Chengzhong Xu⁶, Dejing Dou³

¹ Key Laboratory of Intelligent Information Processing Institute of Computing Technology, Chinese Academy of Sciences

² University of Chinese Academy of Sciences

³ Big Data Lab, Baidu Research

⁴ University of Alabama at Birmingham

⁵ Institute of Information Engineering, Chinese Academy of Sciences ⁶ State Key Lab of IOTSC, University of Macau

ABSTRACT

Fine-tuning pre-trained language models, such as BERT, has shown enormous success among various NLP tasks. Though

severe instability, i.e. fine-tuning on the same dataset with different seeds often leads to quite different results (in terms of accuracy), some of which generalize very poorly.

To solve this problem, a major idea of existing studies is