Exercise 1:

Cochez la(les) bonne(s) réponse(s):

1. L'ensemble des nombres entiers plus petit ou égal à 2 peut s'écrire

- $\exists \{x \in \mathbb{Z} | x \le 2 \}$
- $\square \{y \in \mathbb{Z} | x \le 2\}$
- $\square \{y \in \mathbb{Z} | y \le 2\}$
- $\square \{x \leq 2\}$

2. On sait que $\mathbb{Q}=\left\{x=\dfrac{p}{q} \middle| p\in\mathbb{Z},\, q\in\mathbb{Z}, \text{ tel que } q\neq 0\right\}$. A-t-on aussi:

- $\square \mathbb{Q} = \left\{ y = \frac{a}{b} \middle| a \in \mathbb{Z}, b \in \mathbb{Z}, \text{ tel que } b \neq 0 \right\}$
- $\square \mathbb{Q} = \left\{ x = \frac{p}{q} \middle| p \in \mathbb{Z}, q \in \mathbb{N}, \text{ tel que } q \neq 0 \right\}$
- $\square \mathbb{Q} = \left\{ x = \frac{p}{q} \middle| p \in \mathbb{Z}, q \in \mathbb{Z}^* \right\}$
- $\square \mathbb{Q} = \left\{ x = \frac{p}{q} \middle| p \in \mathbb{Z}, q \in \mathbb{R}, \text{ tel que } q \neq 0 \right\}$

3. Comment peut-on traduire, pas nécessairement littéralement, que : $\pi \notin \mathbb{Q}$

- $\square \ \forall x, y \in \mathbb{Z}, \ \pi \neq \frac{x}{y}.$
- $\square \ \forall x, y \in \mathbb{Z}, \ \pi \neq \frac{y}{x}.$
- $\square \ \forall x, y \in \mathbb{Z}, \ y\pi \neq x.$

4. Quelle(s) phrase(s) transcrivent (i.e. traduisent littéralement) :

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, xy = yx.$$

- \square Pour tout x et pour tout y, le produit xy égal le produit yx.
- \square il existe x appartenant à \mathbb{R} et pour tout y appartenant à \mathbb{R} , le produit xy égal le produit yx.
- \square Pour tout y appartenant à $\mathbb R$ et pour tout x appartenant à $\mathbb R$, le produit xy égal le produit yx.
- \square Pour tout x appartenant à $\mathbb R$ et pour tout y appartenant à $\mathbb R$, le produit xy égal le produit yx.

5. Quelle(s) phrase(s) transcrivent (i.e. traduisent littéralement) :

$$\exists x \in \mathbb{N}, \exists y \in \mathbb{Z} \text{ tel que } 0.246 = \frac{x}{y}.$$

 \Box Il existe deux entiers naturel x et y tel que 0.246 égale $\frac{x}{y}.$

	□ Il existe un entier naturel x et un entier relatif y tel que 0.246 égale $\frac{x}{y}$. □ Il existe un entier relatif x et un entier relatif y tel que 0.246 égale $\frac{x}{y}$. □ Il n'existe qu'un seul entier naturel x et un seul entier relatif y tel que 0.246 égale $\frac{x}{y}$.
6.	 □ {1} est un nombre, □ {1} est un ensemble, □ {1} est un nombre et ensemble,
7.	□ {1} n'est rien de tout ça. Supposons que $x = \frac{a}{b}$ avec $a \in \mathbb{Q}$ et $b \in \mathbb{Q}^*$. Peut-on conclure que $x \in \mathbb{Q}$? □ Vrai
8.	□ Faux Supposons que $x = \frac{a}{b}$ avec $a \in \mathbb{Q}$ et $b \in \mathbb{R}^*$. Peut-on conclure que $x \notin \mathbb{Q}$? □ Vrai
9.	□ Faux Supposons que $x \in \mathbb{Q}$. Peut-on conclure que $\sqrt{x} \in \mathbb{R}$? □ Vrai

- 10. Supposons que $x \in \mathbb{Q}$. Peut-on conclure que $x^2 \in \mathbb{R}$?
 - □ Vrai

☐ Faux

- □ Faux
- 11. $\mathbb{R} = \left\{ x = \frac{p}{q} \middle| p \in \mathbb{Z}, q \in \mathbb{R}, \text{ tel que } q \neq 0 \right\}$?
 - □ Vrai
 - ☐ Faux
- 12. $0 = \left\{ x = \frac{p}{q} \middle| p = 0, q \in \mathbb{R}, \text{ tel que } q \neq 0 \right\}$?
 - $\hfill\Box$ Vrai
 - ☐ Faux
- 13. $\{0\} = \left\{ x = \frac{p}{q} \middle| p = 0, q \in \mathbb{R}, \text{ tel que } q \neq 0 \right\}$?
 - $\hfill\Box$ Vrai
 - ☐ Faux
- 14. Supposons que r=2y+1 avec $y\in\mathbb{N}$. Peut-on conclure que r est un entier impair?
 - □ Vrai

	□ Faux
15.	Supposons que $r=2y+1$ avec $x\in\mathbb{N}$. Peut-on conclure que y est un entier?
	□ Vrai □ Faux
16.	Supposons que $r^2=2y^2$ avec $r\in\mathbb{N}$ et $y\in\mathbb{N}$. Peut-on conclure que r est un entier pair?
	□ Vrai □ Faux
17.	Supposons que $r^2=2y^2$ avec $r\in\mathbb{N}$ et $y\in\mathbb{N}$. Peut-on conclure que y est un entier pair?
	□ Vrai □ Faux

Exercise 2:

Supposons qu'il existe un nombre $S\in\mathbb{R}$ tel que

$$S = 1 - 1 + 1 - 1 + 1 - 1 + \dots$$

Montrer que $S = \frac{1}{2}$.

Indication: Que vaut 1 - S?

Exercise 3:

Démontrer que $\sqrt{2} \notin \mathbb{Q}$.