parallel lines can be indicated by a single heavy line with a slash and the number of separate lines in the set. For example, the following notation represents a set of 8 parallel lines:

The address bits A_0 through A_{14} are latched into the Address register on the positive edge of a clock pulse. On the same clock pulse, the state of the write enable (\overline{WE}) line and chip select (\overline{CS}) are latched into the Write register and the Enable register respectively. These are one-bit registers or simply flip-flops. Also, on the same clock pulse the input data are latched into the Data input register for a Write operation, and data in a selected memory address are latched into the Data output register for a Read operation, as determined by the Data I/O control based on inputs from the Write register, Enable register, and the Output enable (\overline{OE}) .

Two basic types of synchronous SRAM are the *flow-through* and the *pipelined*. The flow-through synchronous SRAM does not have a Data output register, so the output data flow asynchronously to the data I/O lines through the output buffers. The **pipelined** synchronous SRAM has a Data output register, as shown in Figure 11–14, so the output data are synchronously placed on the data I/O lines.

The Burst Feature

As shown in Figure 11–14, synchronous SRAMs normally have an address burst feature, which allows the memory to read or write up to four sequential locations using a single address. When an external address is latched in the address register, the two lowest-order address bits, A_0 and A_1 , are applied to the burst logic. This produces a sequence of four internal addresses by adding 00, 01, 10, and 11 to the two lowest-order address bits on successive clock pulses. The sequence always begins with the base address, which is the external address held in the address register.

The address burst logic in a typical synchronous SRAM consists of a binary counter and exclusive-OR gates, as shown in Figure 11–15. For 2-bit burst logic, the internal burst address sequence is formed by the base address bits A_2 – A_{14} plus the two burst address bits A_1' and A_0' .

FIGURE 11-15 Address burst logic.

To begin the burst sequence, the counter is in its 00 state and the two lowest-order address bits are applied to the inputs of the XOR gates. Assuming that A_0 and A_1 are both 0, the internal address sequence in terms of its two lowest-order bits is 00, 01, 10, and 11.

Cache Memory

One of the major applications of SRAMs is in cache memories in computers. **Cache memory** is a relatively small, high-speed memory that stores the most recently used instructions or data from the larger but slower main memory. Cache memory can also use dynamic

RAM (DRAM), which is discussed next. Typically, SRAM is several times faster than DRAM. Overall, a cache memory gets stored information to the microprocessor much faster than if only high-capacity DRAM is used. Cache memory is basically a cost-effective method of improving system performance without having to resort to the expense of making all of the memory faster.

The concept of cache memory is based on the idea that computer programs tend to get instructions or data from one area of main memory before moving to another area. Basically, the cache controller "guesses" which area of the slow dynamic memory the CPU (central-processing unit) will need next and moves it to the cache memory so that it is ready when needed. If the cache controller guesses right, the data are immediately available to the microprocessor. If the cache controller guesses wrong, the CPU must go to the main memory and wait much longer for the correct instructions or data. Fortunately, the cache controller is right most of the time.

Cache Analogy

There are many analogies that can be used to describe a cache memory, but comparing it to a home refrigerator is perhaps the most effective. A home refrigerator can be thought of as a "cache" for certain food items while the supermarket is the main memory where all foods are kept. Each time you want something to eat or drink, you can go to the refrigerator (cache) first to see if the item you want is there. If it is, you save a lot of time. If it is not there, then you have to spend extra time to get it from the supermarket (main memory).

L1 and L2 Caches

A first-level cache (L1 cache) is usually integrated into the processor chip and has a very limited storage capacity. L1 cache is also known as *primary cache*. A second-level cache (L2 cache) may also be integrated into the processor or as a separate memory chip or set of chips external to the processor; it usually has a larger storage capacity than an L1 cache. L2 cache is also known as *secondary cache*. Some systems may have higher-level caches (L3, L4, etc.), but L1 and L2 are the most common. Also, some systems use a disk cache to enhance the performance of the hard disk because DRAM, although much slower than SRAM, is much faster than the hard disk drive. Figure 11–16 illustrates L1 and L2 cache memories in a computer system.

FIGURE 11–16 Block diagram showing L1 and L2 cache memories in a computer system.

Dynamic RAM (DRAM) Memory Cells

Dynamic memory cells store a data bit in a small capacitor rather than in a latch. The advantage of this type of cell is that it is very simple, thus allowing very large memory arrays to be constructed on a chip at a lower cost per bit. The disadvantage is that the

storage capacitor cannot hold its charge over an extended period of time and will lose the stored data bit unless its charge is refreshed periodically. To refresh requires additional memory circuitry and complicates the operation of the DRAM. Figure 11–17 shows a typical DRAM cell consisting of a single MOS transistor (MOSFET) and a capacitor.

FIGURE 11-17 A MOS DRAM cell.

In this type of cell, the transistor acts as a switch. The basic simplified operation is illustrated in Figure 11–18 and is as follows. A LOW on the R/\overline{W} line (WRITE mode) enables the tri-state input buffer and disables the output buffer. For a 1 to be written into the cell, the $D_{\rm IN}$ line must be HIGH, and the transistor must be turned on by a HIGH on the row line. The transistor acts as a closed switch connecting the capacitor to the bit line. This connection allows the capacitor to charge to a positive voltage, as shown in Figure 11–18(a). When a 0 is to be stored, a LOW is applied to the $D_{\rm IN}$ line. If the capacitor is storing a 0, it remains uncharged, or if it is storing a 1, it discharges as indicated in Figure 11–18(b). When the row line is taken back LOW, the transistor turns off and disconnects the capacitor from the bit line, thus "trapping" the charge (1 or 0) on the capacitor.

To read from the cell, the R/\overline{W} (Read/Write) line is HIGH, enabling the output buffer and disabling the input buffer. When the row line is taken HIGH, the transistor turns on and connects the capacitor to the bit line and thus to the output buffer (sense amplifier), so the data bit appears on the data-output line (D_{OUT}) . This process is illustrated in Figure 11-18(c).

For refreshing the memory cell, the R/\overline{W} line is HIGH, the row line is HIGH, and the refresh line is HIGH. The transistor turns on, connecting the capacitor to the bit line. The output buffer is enabled, and the stored data bit is applied to the input of the refresh buffer, which is enabled by the HIGH on the refresh input. This produces a voltage on the bit line corresponding to the stored bit, thus replenishing the capacitor. This is illustrated in Figure 11–18(d).

DRAM Organization

The major application of DRAMs is in the main memory of computers. The difference between DRAMs and SRAMs is the type of memory cell. As you have seen, the DRAM memory cell consists of one transistor and a capacitor and is much simpler than the SRAM cell. This allows much greater densities in DRAMs and results in greater bit capacities for a given chip area, although much slower access time.

Again, because charge stored in a capacitor will leak off, the DRAM cell requires a frequent refresh operation to preserve the stored data bit. This requirement results in more complex circuitry than in a SRAM. Several features common to most DRAMs are now discussed, using a generic $1M \times 1$ bit DRAM as an example.

Address Multiplexing

DRAMs use a technique called *address multiplexing* to reduce the number of address lines. Figure 11–19 shows the block diagram of a 1,048,576-bit (1 Mb) DRAM with a $1M \times 1$

FIGURE 11-18 Basic operation of a DRAM cell.

organization. We will focus on the blue blocks to illustrate address multiplexing. The green blocks represent the refresh logic.

The ten address lines are time multiplexed at the beginning of a memory cycle by the row address select (\overline{RAS}) and the column address select (\overline{CAS}) into two separate 10-bit address fields. First, the 10-bit row address is latched into the row address register. Next, the 10-bit column address is latched into the column address register. The row address and the column address are decoded to select one of the 1,048,576 addresses ($2^{20} = 1,048,576$) in the memory array. The basic timing for the address multiplexing operation is shown in Figure 11–20.

Read and Write Cycles

At the beginning of each read or write memory cycle, \overline{RAS} and \overline{CAS} go active (LOW) to multiplex the row and column addresses into the registers, and decoders. For a read cycle, the R/\overline{W} input is HIGH. For a write cycle, the R/\overline{W} input is LOW. This is illustrated in Figure 11–21.

FIGURE 11–19 Simplified block diagram of a 1M \times 1 DRAM.

FIGURE 11-20 Basic timing for address multiplexing.

Fast Page Mode

In the normal read or write cycle described previously, the row address for a particular memory location is first loaded by an active-LOW \overline{RAS} and then the column address for that location is loaded by an active-LOW \overline{CAS} . The next location is selected by another \overline{RAS} followed by a \overline{CAS} , and so on.

A "page" is a section of memory available at a single row address and consists of all the columns in a row. Fast page mode allows fast successive read or write operations at each column address in a selected row. A row address is first loaded by \overline{RAS} going LOW and remaining LOW while \overline{CAS} is toggled between HIGH and LOW. A single row address is selected and remains selected while \overline{RAS} is active. Each successive \overline{CAS} selects another column in the selected row. So, after a fast page mode cycle, all of the addresses in the

FIGURE 11-21 Timing diagrams for normal read and write cycles.

selected row have been read from or written into, depending on R/\overline{W} . For example, a fast page mode cycle for the DRAM in Figure 11–19 requires \overline{CAS} to go active 1024 times for each row selected by \overline{RAS} .

Fast page mode operation for read is illustrated by the timing diagram in Figure 11–22. When \overline{CAS} goes to its nonasserted state (HIGH), it disables the data outputs. Therefore, the transition of \overline{CAS} to HIGH must occur only after valid data are latched by the external system.

Refresh Cycles

As you know, DRAMs are based on capacitor charge storage for each bit in the memory array. This charge degrades (leaks off) with time and temperature, so each bit must be periodically refreshed (recharged) to maintain the correct bit state. Typically, a DRAM must be refreshed every several milliseconds, although for some devices the refresh period can be much longer.

A read operation automatically refreshes all the addresses in the selected row. However, in typical applications, you cannot always predict how often there will be a read cycle, and so you cannot depend on a read cycle to occur frequently enough to prevent data loss. Therefore, special refresh cycles must be implemented in DRAM systems.

Burst refresh and distributed refresh are the two basic refresh modes for refresh operations. In burst refresh, all rows in the memory array are refreshed consecutively each refresh period. For a memory with a refresh period of 8 ms, a burst refresh of all rows occurs once every 8 ms. The normal read and write operations are suspended during a burst

FIGURE 11–22 Fast page mode timing for a read operation.

refresh cycle. In distributed refresh, each row is refreshed at intervals interspersed between normal read or write cycles. For example, the memory in Figure 11–19 has 1024 rows. As an example, for an 8 ms refresh period, each row must be refreshed every 8 ms/1024 = $7.8 \mu s$ when distributed refresh is used.

The two types of refresh operations are \overline{RAS} only refresh and \overline{CAS} before \overline{RAS} refresh. \overline{RAS} -only refresh consists of a \overline{RAS} transition to the LOW (active) state, which latches the address of the row to be refreshed while \overline{CAS} remains HIGH (inactive) throughout the cycle. An external counter is used to provide the row addresses for this type of operation.

The \overline{CAS} before \overline{RAS} refresh is initiated by \overline{CAS} going LOW before \overline{RAS} goes LOW. This sequence activates an internal refresh counter that generates the row address to be refreshed. This address is switched by the data selector into the row decoder.

Types of DRAMs

Now that you have learned the basic concept of a DRAM, let's briefly look at the major types. These are the *Fast Page Mode (FPM) DRAM*, the *Extended Data Out (EDO) DRAM*, the *Burst Extended Data Out (BEDO) DRAM*, and the *Synchronous (S) DRAM*.

FPM DRAM

Fast page mode operation was described earlier. Recall that a page in memory is all of the column addresses contained within one row address.

The idea of the **FPM DRAM** is based on the probability that the next several memory addresses to be accessed are in the same row (on the same page). Fortunately, this happens a large percentage of the time. FPM saves time over pure random accessing because in FPM the row address is specified only once for access to several successive column addresses whereas for pure random accessing, a row address is specified for each column address.

Recall that in a fast page mode read operation, the \overline{CAS} signal has to wait until the valid data from a given address are accepted (latched) by the external system (CPU) before it can go to its nonasserted state. When \overline{CAS} goes to its nonasserted state, the data outputs are disabled. This means that the next column address cannot occur until after the data from the current column address are transferred to the CPU. This limits the rate at which the columns within a page can be addressed.

EDO DRAM

The Extended Data Out DRAM, sometimes called *hyper page mode DRAM*, is similar to the FPM DRAM. The key difference is that the \overline{CAS} signal in the **EDO DRAM** does not disable the output data when it goes to its nonasserted state because the valid data from the

current address can be held until \overline{CAS} is asserted again. This means that the next column address can be accessed before the external system accepts the current valid data. The idea is to speed up the access time.

BEDO DRAM

The Burst Extended Data Out DRAM is an EDO DRAM with address burst capability. Recall from the discussion of the synchronous burst SRAM that the address burst feature allows up to four addresses to be internally generated from a single external address, which saves some access time. This same concept applies to the **BEDO DRAM**.

SDRAM

Faster DRAMs are needed to keep up with the ever-increasing speed of microprocessors. The Synchronous DRAM is one way to accomplish this. Like the synchronous SRAM discussed earlier, the operation of the **SDRAM** is synchronized with the system clock, which also runs the microprocessor in a computer system. The same basic ideas described in relation to the synchronous burst SRAM, also apply to the SDRAM.

This synchronized operation makes the SDRAM totally different from the other asynchronous DRAM types. With asynchronous memories, the microprocessor must wait for the DRAM to complete its internal operations. However, with synchronous operation, the DRAM latches addresses, data, and control information from the processor under control of the system clock. This allows the processor to handle other tasks while the memory read or write operations are in progress, rather than having to wait for the memory to do its thing as is the case in asynchronous systems.

DDR SDRAM

DDR stands for double data rate. A DDR SDRAM is clocked on both edges of a clock pulse, whereas a SDRAM is clocked on only one edge. Because of the double clocking, a DDR SDRAM is theoretically twice as fast as an SDRAM. Sometimes the SDRAM is referred to as an SDR SDRAM (single data rate SDRAM) for contrast with the DDR SDRAM.

SECTION 11-2 CHECKUP

- 1. List two types of SRAM.
- **2.** What is a cache?
- 3. Explain how SRAMs and DRAMs differ.
- **4.** Describe the refresh operation in a DRAM.
- **5.** List four types of DRAM.

11–3 The Read-Only Memory (ROM)

A ROM contains permanently or semipermanently stored data, which can be read from the memory but either cannot be changed at all or cannot be changed without specialized equipment. A ROM stores data that are used repeatedly in system applications, such as tables, conversions, or programmed instructions for system initialization and operation. ROMs retain stored data when the power is off and are therefore nonvolatile memories.

After completing this section, you should be able to

- List the types of ROMs
- Describe a basic mask ROM storage cell
- Explain how data are read from a ROM
- Discuss internal organization of a typical ROM

The ROM Family

Figure 11–23 shows how semiconductor ROMs are categorized. The mask ROM is the type in which the data are permanently stored in the memory during the manufacturing process. The **PROM**, or programmable ROM, is the type in which the data are electrically stored by the user with the aid of specialized equipment. Both the mask ROM and the PROM can be of either MOS or bipolar technology. The **EPROM**, or erasable PROM, is strictly a MOS device. The **UV EPROM** is electrically programmable by the user, but the stored data must be erased by exposure to ultraviolet light over a period of several minutes. The electrically erasable PROM (**EEPROM** or E²PROM) can be erased in a few milliseconds. The UV EPROM has been largely displaced by the EEPROM.

FIGURE 11-23 The ROM family.

The Mask ROM

The mask ROM is usually referred to simply as a ROM. It is permanently programmed during the manufacturing process to provide widely used standard functions, such as popular conversions, or to provide user-specified functions. Once the memory is programmed, it cannot be changed. Most IC ROMs utilize the presence or absence of a transistor connection at a row/column junction to represent a 1 or a 0.

Figure 11–24 shows MOS ROM cells. The presence of a connection from a row line to the gate of a transistor represents a 1 at that location because when the row line is taken HIGH, all transistors with a gate connection to that row line turn on and connect the HIGH (1) to the associated column lines. At row/column junctions where there are no gate connections, the column lines remain LOW (0) when the row is addressed.

If the row line is not connected to the gate of the transistor and High voltage is available at the row line, the MOS is now OFF and has a open circuit from drain to souce and as a result the VDD from source can not reach the column line and shows a available stored value of zero.

FIGURE 11-24 ROM cells.

To illustrate the ROM concept, Figure 11–25 shows a small, simplified ROM array. The blue squares represent stored 1s, and the gray squares represent stored 0s. The basic read operation is as follows. When a binary address code is applied to the address input lines, the

corresponding row line goes HIGH. This HIGH is connected to the column lines through the transistors at each junction (cell) where a 1 is stored. At each cell where a 0 is stored, the column line stays LOW because of the terminating resistor. The column lines form the data output. The eight data bits stored in the selected row appear on the output lines.

FIGURE 11–25 A representation of a 16×8 -bit ROM array.

As you can see, the example ROM in Figure 11–25 is organized into 16 addresses, each of which stores 8 data bits. Thus, it is a 16×8 (16-by-8) ROM, and its total capacity is 128 bits or 16 bytes. ROMs can be used as look-up tables (LUTs) for code conversions and logic function generation.

EXAMPLE 11-1

Show a basic ROM, similar to the one in Figure 11–25, programmed for a 4-bit binary-to-Gray conversion.

Solution

Review Chapter 2 for the Gray code. Table 11–1 is developed for use in programming the ROM.

The resulting 16×4 ROM array is shown in Figure 11–26. You can see that a binary code on the address input lines produces the corresponding Gray code on the output lines (columns). For example, when the binary number 0110 is applied to the address input lines, address 6, which stores the Gray code 0101, is selected.

Related Problem*

Using Figure 11–26, determine the Gray code output when a binary code of 1011 is applied to the address input lines.

^{*}Answers are at the end of the chapter.

TABLE 11-1									
Binary				Gray					
B_3	B_2	B_1	B_0	G_3	G_2	G_1	G_0		
0	0	0	0	0	0	0	0		
0	0	0	1	0	0	0	1		
0	0	1	0	0	0	1	1		
0	0	1	1	0	0	1	0		
0	1	0	0	0	1	1	0		
0	1	0	1	0	1	1	1		
0	1	1	0	0	1	0	1		
0	1	1	1	0	1	0	0		
1	0	0	0	1	1	0	0		
1	0	0	1	1	1	0	1		
1	0	1	0	1	1	1	1		
1	0	1	1	1	1	1	0		
1	1	0	0	1	0	1	0		
1	1	0	1	1	0	1	1		
1	1	1	0	1	0	0	1		
1	1	1	1	1	0	0	0		

FIGURE 11–26 Representation of a ROM programmed as a binary-to-Gray code converter.

Internal ROM Organization

Most IC ROMs have a more complex internal organization than that in the basic simplified example just presented. To illustrate how an IC ROM is structured, let's use a 1024-bit device with a 256×4 organization. The logic symbol is shown in Figure 11–27. When any one of 256 binary codes (eight bits) is applied to the address lines, four data bits appear on the outputs if the chip select inputs are LOW. (256 addresses require eight address lines.)

FIGURE 11–27 A 256 \times 4 ROM logic symbol. The $A\frac{0}{255}$ designator means that the 8-bit address code selects addresses 0 through 255.

Although the 256×4 organization of this device implies that there are 256 rows and 4 columns in the memory array, this is not actually the case. The memory cell array is actually a 32×32 matrix (32 rows and 32 columns), as shown in the block diagram in Figure 11-28.

The ROM in Figure 11–28 works as follows. Five of the eight address lines (A_0 through A_4) are decoded by the row decoder (often called the Y decoder) to select one of the 32 rows. Three of the eight address lines (A_5 through A_7) are decoded by the column decoder (often called the X decoder) to select four of the 32 columns. Actually, the column decoder consists of four 1-of-8 decoders (data selectors), as shown in Figure 11–28.

The result of this structure is that when an 8-bit address code (A_0 through A_7) is applied, a 4-bit data word appears on the data outputs when the chip select lines (\overline{CS}_0 and \overline{CS}_1) are LOW to enable the output buffers. This type of internal organization (architecture) is typical of IC ROMs of various capacities.

ROM Access Time

A typical timing diagram that illustrates ROM access time is shown in Figure 11–29. The **access time**, t_a , of a ROM is the time from the application of a valid address code on the input lines until the appearance of valid output data. Access time can also be measured from the activation of the chip select (\overline{CS}) input to the occurrence of valid output data when a valid address is already on the input lines.

InfoNote

ROM is used in a computer to store the BIOS (Basic Input/Output System). These are programs that are used to perform fundamental supervisory and support functions for the computer. For example, BIOS programs stored in the ROM control certain video monitor functions, provide for disk formatting, scan the keyboard for inputs, and control certain printer functions.

FIGURE 11–28 A 1024-bit ROM with a 256 \times 4 organization based on a 32 \times 32 array.

FIGURE 11–29 ROM access time (t_a) from address change to data output with chip select already active.

SECTION 11-3 CHECKUP

- 1. What is the bit storage capacity of a ROM with a 512×8 organization?
- 2. List the types of read-only memories.
- 3. How many address bits are required for a 2048-bit memory organized as a 256 \times 8 memory?

11–4 Programmable ROMs

Programmable ROMs (PROMs) are basically the same as mask ROMs once they have been programmed. As you have learned, ROMs are a type of programmable logic device. The difference is that PROMs come from the manufacturer unprogrammed and are custom programmed in the field to meet the user's needs.

After completing this section, you should be able to

- Distinguish between a mask ROM and a PROM
- Describe a basic PROM memory cell
- Discuss EPROMs including UV EPROMs and EEPROMs
- Analyze an EPROM programming cycle

PROMs

A **PROM** uses some type of fusing process to store bits, in which a memory *link* is burned open or left intact to represent a 0 or a 1. The fusing process is irreversible; once a PROM is programmed, it cannot be changed.

Figure 11–30 illustrates a MOS PROM array with fusible links. The fusible links are manufactured into the PROM between the source of each cell's transistor and its column line. In the programming process, a sufficient current is injected through the fusible link to burn it open to create a stored 0. The link is left intact for a stored 1.

FIGURE 11–30 MOS PROM array with fusible links. (All drains are commonly connected to $V_{\rm DD}$.)

Three basic fuse technologies used in PROMs are metal links, silicon links, and pn junctions. A brief description of each of these follows.

1. Metal links are made of a material such as nichrome. Each bit in the memory array is represented by a separate link. During programming, the link is either "blown" open

- or left intact. This is done basically by first addressing a given cell and then forcing a sufficient amount of current through the link to cause it to open.
- 2. Silicon links are formed by narrow, notched strips of polycrystalline silicon. Programming of these fuses requires melting of the links by passing a sufficient amount of current through them. This amount of current causes a high temperature at the fuse location that oxidizes the silicon and forms an insulation around the now-open link.
- 3. Shorted junction, or avalanche-induced migration, technology consists basically of two pn junctions arranged back-to-back. During programming, one of the diode junctions is avalanched, and the resulting voltage and heat cause aluminum ions to migrate and short the junction. The remaining junction is then used as a forwardbiased diode to represent a data bit.

EPROMs

An EPROM is an erasable PROM. Unlike an ordinary PROM, an EPROM can be reprogrammed if an existing program in the memory array is erased first.

An EPROM uses an NMOSFET array with an isolated-gate structure. The isolated transistor gate has no electrical connections and can store an electrical charge for indefinite periods of time. The data bits in this type of array are represented by the presence *logic 1 is represented as presence or absence of a stored gate charge. Erasure of a data bit is a proce

A typical EPROM is represented in Figure 11-31 by a logic diagram. Its operation is representative of that of other typical EPROMs of various sizes. As the logic symbol shows, this device has 2048 addresses ($2^{11} = 2048$), each with eight bits. Notice that the eight outputs are tri-state (∇) .

of charge.

*logic 0 is represented as absence of charge.

FIGURE 11–31 The logic symbol for a 2048×8 EPROM.

To read from the memory, the output enable input (\overline{OE}) must be LOW and the powerdown/program (\overline{CE}/PGM) input LOW.

To program or write to the device, a high dc voltage is applied to V_{PP} and \overline{OE} is HIGH. The eight data bits to be programmed into a given address are applied to the outputs (O_0

FIGURE 11–32 Timing diagram for a 2048 \times 8 EPROM programming cycle, with critical setup times (t_s) and hold times (t_h) indicated.

through O_7), and the address is selected on inputs A_0 through A_{10} . Next, a HIGH level pulse is applied to the \overline{CE}/PGM input. The addresses can be programmed in any order. A timing diagram for the programming is shown in Figure 11–32. These signals are normally produced by an EPROM programmer.

Two basic types of erasable PROMs are, the electrically erasable PROM (EEPROM) and the ultraviolet erasable PROM (UV EPROM). The UV EPROM is much less used than the EEPROM.

EEPROMs

An electrically erasable PROM can be both erased and programmed with electrical pulses. Since it can be both electrically written into and electrically erased, the EEPROM can be rapidly programmed and erased in-circuit for reprogramming. Two types of EEPROMs are the floating-gate MOS and the metal nitride-oxide silicon (MNOS). The application of a voltage on the control gate in the floating-gate structure permits the storage and removal of charge from the floating gate.

UV EPROMs

You can recognize the UV EPROM device by the UV transparent window on the package. The isolated gate in the **FET** of an ultraviolet EPROM is "floating" within an oxide insulating material. The programming process causes electrons to be removed from the floating gate. Erasure is done by exposure of the memory array chip to high-intensity ultraviolet radiation through the UV window on top of the package. The positive charge stored on the gate is neutralized after several minutes to an hour of exposure time.

SECTION 11-4 CHECKUP

- **1.** How do PROMs differ from ROMs?
- **2.** What represents a data bit in an EPROM?
- **3.** What is the normal mode of operation for a PROM?

11–5 The Flash Memory

The ideal memory has high storage capacity, nonvolatility, in-system read and write capability, comparatively fast operation, and cost effectiveness. The traditional memory technologies such as ROM, PROM, EPROM, EEPROM, SRAM, and DRAM individually exhibit one or more of these characteristics. Flash memory has all of the desired characteristics.

After completing this section, you should be able to

- Discuss the basic characteristics of a flash memory
- Describe the basic operation of a flash memory cell
- Compare flash memories with other types of memories
- Discuss the USB flash drive

Flash memories are high-density read/write memories (high-density translates into large bit storage capacity) that are nonvolatile, which means that data can be stored indefinitely without power. High-density means that a large number of cells can be packed into a given surface area on a chip; that is, the higher the density, the more bits that can be stored on a given size chip. This high density is achieved in flash memories with a storage cell that consists of a single floating-gate MOS transistor. A data bit is stored as charge or the absence of charge on the floating gate depending if a 0 or a 1 is stored.

Flash Memory Cell

A single-transistor cell in a flash memory is represented in Figure 11–33. The stacked gate MOS transistor consists of a control gate and a floating gate in addition to the drain and source. The floating gate stores electrons (charge) as a result of a sufficient voltage applied to the control gate. A *0* is stored when there is more charge and a *1* is stored when there is less or no charge. The amount of charge present on the floating gate determines if the transistor will turn on and conduct current from the drain to the source when a control voltage is applied during a read operation.

Many electrons = more charge = stored 0.

Few electrons = less charge = stored 1.

FIGURE 11-33 The storage cell in a flash memory.

Basic Flash Memory Operation

There are three major operations in a flash memory: the *programming* operation, the *read* operation, and the *erase* operation.

a 1 in your cell

Programming (storing data is called programming)

*when you erase, you usually store Initially, all cells are at the 1 state because charge was removed from each cell in a previous erase operation. The programming operation adds electrons (charge) to the floating gate of those cells that are to store a 0. No charge is added to those cells that are to store a 1. Application of a sufficient positive voltage to the control gate with respect to the source during programming attracts electrons to the floating gate, as indicated in Figure 11–34. Once programmed, a cell can retain the charge for up to 100 years without any external power.

To store a 0, a sufficient positive voltage is applied to the control gate with respect to the source to add charge to the floating gate during programming.

To store a 1, no charge is added and the cell is left in the erased condition.

FIGURE 11-34 Simplified illustration of storing a 0 or a 1 in a flash cell during the programming operation.

Read

During a read operation, a positive voltage is applied to the control gate. The amount of charge present on the floating gate of a cell determines whether or not the voltage applied to the control gate will turn on the transistor. If a 1 is stored, the control gate voltage is sufficient to turn the transistor on. If a 0 is stored, the transistor will not turn on because the control gate voltage is not sufficient to overcome the negative charge stored in the floating gate. Think of the charge on the floating gate as a voltage source that opposes the voltage applied to the control gate during a read operation. So the floating gate charge associated with a stored 0 prevents the control gate voltage from reaching the turn-on threshold, whereas the small or zero charge associated with a stored 1 allows the control gate voltage to exceed the turn-on threshold.

When the transistor turns on, there is current from the drain to the source of the cell transistor. The presence of this current is sensed to indicate a 1, and the absence of this current is sensed to indicate a 0. This basic idea is illustrated in Figure 11–35.

When a 0 is read, the transistor remains off because the charge on the floating gate prevents the read voltage from exceeding the turn-on threshold.

When a 1 is read, the transistor turns on because the absence of charge on the floating gate allows the read voltage to exceed the turn-on threshold.

FIGURE 11-35 The read operation of a flash cell in an array.

Erase

During an erase operation, charge is removed from all the memory cells. A sufficient positive voltage is applied to the transistor source with respect to the control gate. This is opposite in polarity to that used in programming. This voltage attracts electrons from the floating gate and depletes it of charge, as illustrated in Figure 11–36. A flash memory is always erased prior to being reprogrammed.

To erase a cell, a sufficient positive voltage is applied to the source with respect to the control gate to remove charge from the floating gate during the erase operation.

FIGURE 11–36 Simplified illustration of removing charge from a cell during erase.

Flash Memory Array

A simplified array of flash memory cells is shown in Figure 11–37. Only one row line is accessed at a time. When a cell in a given bit line turns on (stored 1) during a read operation, there is current through the bit line, which produces a voltage drop across the active load. This voltage drop is compared to a reference voltage with a comparator circuit and an output level indicating a 1 is produced. If a 0 is stored, then there is no current or little current in the bit line and an opposite level is produced on the comparator output.

The memory stick is a storage medium that uses flash memory technology in a physical configuration smaller than a stick of chewing gum. Memory sticks are typically available up to 64 GB capacities and as a kit with a PC card adaptor. Because of its compact design, it is ideal for use in small digital electronics products, such as laptop computers and digital cameras.

Comparison of Flash Memories with Other Memories

Let's compare flash memories with other types of memories with which you are already familiar.

Flash vs. ROM, EPROM, and EEPROM

Read-only memories are high-density, nonvolatile devices. However, once programmed the contents of a ROM can never be altered. Also, the initial programming is a time-consuming and costly process. The EEPROM has a more complex cell structure than either the ROM or UV EPROM and so the density is not as high, although it can be reprogrammed without being removed from the system. Because of its lower density, the cost/bit is higher than ROMs or EPROMs. Although the UV EPROM is a high-density, nonvolatile memory, it can be erased only by removing it from the system and using ultraviolet light. It can be reprogrammed only with specialized equipment.

A flash memory can be reprogrammed easily in the system because it is essentially a READ/WRITE device. The density of a flash memory compares with the ROM and EPROM because both have single-transistor cells. A flash memory (like a ROM, EPROM, or EEPROM) is nonvolatile, which allows data to be stored indefinitely with power off.

FIGURE 11–37 Basic flash memory array.

Flash vs. SRAM

As you have learned, static random-access memories are volatile READ/WRITE devices. A SRAM requires constant power to retain the stored data. In many applications, a battery backup is used to prevent data loss if the main power source is turned off. However, since battery failure is always a possibility, indefinite retention of the stored data in a SRAM cannot be guaranteed. Because the memory cell in a SRAM is basically a flip-flop consisting of several transistors, the density is relatively low.

A flash memory is also a READ/WRITE memory, but unlike the SRAM it is nonvolatile. Also, a flash memory has a much higher density than a SRAM.

Flash vs. DRAM

Dynamic random-access memories are volatile high-density READ/WRITE devices. DRAMs require not only constant power to retain data but also that the stored data must be refreshed frequently. In many applications, backup storage such as hard disk must be used with a DRAM.

Flash memories exhibit higher densities than DRAMs because a flash memory cell consists of one transistor and does not need refreshing, whereas a DRAM cell is one transistor plus a capacitor that has to be refreshed. Typically, a flash memory consumes much less power than an equivalent DRAM and can be used as a hard disk replacement in many applications.

Table 11–2 provides a comparison of the memory technologies.

TABLE 11-2

Comparison of types of memories.

Memory Type	Nonvolatile	High-Density	One-Transistor Cell	In-System Writability
Flash	Yes	Yes	Yes	Yes
SRAM	No	No	No	Yes
DRAM	No	Yes	Yes	Yes
ROM	Yes	Yes	Yes	No
EEPROM	Yes	No	No	Yes
UV EPROM	Yes	Yes	Yes	No

USB Flash Drive

A USB flash drive consists of a flash memory connected to a standard USB connector housed in a small case about the size of a cigarette lighter. The USB connector can be plugged into a port on a personal computer and obtains power from the computer. These memories are usually rewritable and can have a storage capacity up to 512 GB (a number which is constantly increasing), with most ranging from 2 GB to 64 GB. A typical USB flash drive is shown in Figure 11–38(a), and a basic block diagram is shown in part (b).

FIGURE 11-38 The USB flash drive.

The USB flash drive uses a standard USB A-type connector for connection to the computer, as shown in Figure 11–39(a). Peripherals such as printers use the USB B-type connector, which has a different shape and physical pin configuration. The USB icon is shown in part (b).

FIGURE 11-39 Connector and symbol.

SECTION 11-5 CHECKUP

- **1.** What types of memories are nonvolatile?
- 2. What is a major advantage of a flash memory over a SRAM or DRAM?
- 3. List the three modes of operation of a flash memory.