Théo Guyard ML-MTP workshop - December 9th, 2024

Optimization methods for ℓ_0 -problems

Sparse optimization

Compressed sensing

Feature selection

Tabular ML dataset

	Feature 1	Feature 2		Feature n	Target
Sample 1	$a_{1,1}$	a _{1,2}		$a_{1,n}$	<i>y</i> ₁
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	a _{3,1}	$A \in R^{m}$	≺ n	a _{3,n}	$\mathbf{y} \in \mathbf{R}^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \text{weights } \mathbf{x} \in \mathbf{R}^n \Longrightarrow \text{Target } \mathbf{y} = \phi(\mathbf{A}\mathbf{x})$$

Network design

Max. capacity per edge: 10 Edge construction cost: 5

Which edges to build to transport units from source to sink nodes?

Minimized, constrained, or regularized problem?

Sparse optimization

Minimize a function with a sparse solution

Quantify cost

 $f(\mathbf{x})$

Expression to minimize

Constrained problem

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x})$ subject to $\|\mathbf{x}\|_0 < s$

Quantify sparsity

 $\|\mathbf{x}\|_0$

Count non-zeros

Minimized problem

 $\mathsf{min}_{\mathbf{x} \in \mathbf{R}^n} \quad \|\mathbf{x}\|_0$

subject to $f(\mathbf{x}) \leq \epsilon$

Regularized problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0$$

A bit of history

Problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0$ NP-hard to solve

Complexity-tractability balance

[Slide, tell what's my point with this talk]

Mixed-Integer Programming

MIP - Pipeline

MIP - Problem formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Lifted formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + h(\mathbf{x}) \\ \text{s.t. } x_i = 0 \implies z_i = 0, \ \forall i \\ \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \end{cases}$$

MIP formulation

$$\begin{cases} \min \ f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + \mathbf{h}_{\min}(\mathbf{x}, \mathbf{z}) \\ \text{s.t. } \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

Penalty term

Separable h, either application-based or introduced on purpose

Lifted ℓ_0 -norm formulation

$$\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$$
 with $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0, 1\}^n$
if $x_i = 0 \iff z_i = 0$ for all $i \in [1, n]$

Logical constraint standardization

h(x)	$h_{\min}(\mathbf{x}, \mathbf{z})$
$Ind(\ \mathbf{x}\ _{\infty} \leq M)$	$Ind(-Mz \le x \le Mz)$
$\beta \ \mathbf{x}\ _2^2$	$\sum_{i=1}^{n} \beta \frac{x_i^2}{z_i}$

MIP - Hands-on with cvxpy

\$ pip install cvxpy

Sparse regression

Find x sparse such that $y \simeq Ax$

Optimization problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $g(\mathbf{x}) = \operatorname{Ind}(\|\mathbf{x}\|_{\infty} \leq M)$

MIP formulation

$$\left\{ egin{aligned} &\min f(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} \ & ext{s.t.} \quad - M \mathbf{z} \leq \mathbf{x} \leq M \mathbf{z} \ &\mathbf{x} \in \mathbf{R}^n, \mathbf{z} \in \{0,1\}^n \end{aligned}
ight.$$

```
import cvxpy as cp
from sklearn.datasets import make_regression
# Generate sparse regression data
A, y = make_regression()
# Define variables
n = A.shape[1]
x = cp. Variable(n)
z = cp. Variable(n, boolean=True)
# Define objective and constraints
objective = cp.Minimize(
  cp.sum_squares(A @ x - y) + 10 * cp.sum(z)
constraints = [-M * z \le x, x \le M * z]
# Solve the problem using Gurobi
problem = cp.Problem(objective, constraints)
problem.solve(solver=cp.GUROBI)
```

MIP – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1) Introduce binary variable
- 2) Establish MIP formulation
- 3) Use generic MIP solvers

Pros

- ✓ Rich MIP literature
- ✓ Black-box solvers
- ✓ Convenient for practitioners

Cons

- X Mostly commercial solvers
- X Unable to exploit structure
- **X** Performance issues

Branch-and-Bound Algorithms

BnB – Pipeline

Application

ML, Stats, Signal, Operation Research, ...

Specialized BnB solver

 ${\tt sbnb} o {\tt G}.$ Samain et al. (2020) ${\tt 10bnb} o {\tt H}.$ Hazimeh et al. (2021) ${\tt el0ps} o {\tt T}.$ Guyard et al. (2024)

Why using elops? [blabla]

Explore regions in the feasible space and prune those that cannot contain any optimal solution.

Branching step – Region design and exploration **Bounding step** – Pruning test evaluation

BnB – Branching step

BnB – Branching step

BnB – Branching step

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Problem

$$p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p^{\nu} > p^{\star}$$

restrict to ν

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Easy task

Compute an upper bound on p^*

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

restrict to ν

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine $p_{\rm ub}^{\star}$

$$p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine $p_{\rm ub}^{\star}$

Main challenge

Compute a lower bound on $p^{
u}$

$$p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine p_{ub}^{\star}

Main challenge

Compute a lower bound on $p^{
u}$

Construct and solve a relaxation

BnB – Building relaxations

Region
$$\nu \equiv (S_0, S_1, S_{\bullet})$$
 with
$$\begin{cases} x_i = 0 & \text{if } i \in S_0 \\ x_i \neq 0 & \text{if } i \in S_1 \\ x_i \in \mathbf{R} & \text{if } i \in S_{\bullet} \end{cases}$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + g(\mathbf{x})$$
reformulation

 $p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + g(\mathbf{x})$ with $g(\mathbf{x}) = \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$

Restriction to region ν

$$p^{
u}=\min_{\mathbf{x}\in\mathbf{R}^n}f(\mathbf{x})+g^{
u}(\mathbf{x})$$
 with $g^{
u}$ proper and closed $g^{
u}_{\mathrm{lb}}\leq g$, $g^{
u}_{\mathrm{lb}}$ convex

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \min_{\mathbf{x} \in \mathsf{R}^n} f(\mathbf{x}) + g_{\mathsf{lb}}^{\nu}(\mathbf{x})$$

 $p_{lb}^{\nu} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \mathbf{g}_{lb}^{\nu}(\mathbf{x})$ set g_{lb}^{ν} as the convex envelope of g^{ν}

BnB – **Solving relaxations**

Relaxation for region ν

$$\min_{\mathbf{x}\in\mathbf{R}^n} f(\mathbf{x}) + g_{\mathsf{lb}}^{\nu}(\mathbf{x})$$

Convex problem

$$\min_{x \in R^n} f(x) + \tilde{g}(x)$$

First-order methods

Proximal gradient Coordinate descent Splitting methods

...

with g_{lb}^{ν} proper, closed, convex, and non-differentiable at $\mathbf{x}=\mathbf{0}$

lasso-like problem

Acceleration strategies

Working set Screening tests Homotopy

...

Guarantee of numerical efficiency

Best upper bound $p_{\mathrm{ub}}^{\star} = +\infty$

Best upper bound $p_{\mathrm{ub}}^{\star} = +\infty$

Best upper bound $p_{\mathrm{ub}}^{\star} = +\infty$

$$\frac{p_{\text{ub}}^{\star} = +\infty}{p_{\text{ub}}^{\star} = 5.5}$$

$$\frac{p_{\text{ub}}^{\star} - +\infty}{p_{\text{ub}}^{\star} = 5.5}$$

$$\frac{p_{\text{ub}}^{\star} - + \infty}{p_{\text{ub}}^{\star} = 5.5}$$

BnB – Simultaneous pruning

[Slide]

BnB - **Hands-on with** el0ps

Sparse regression

$$\mathbf{y} = \mathbf{A}\mathbf{x}^\dagger + \boldsymbol{\epsilon}$$
 Recover \mathbf{x}^\dagger from (\mathbf{y}, \mathbf{A}) \mathbf{x}^\dagger sparse density ρ $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma \mathbf{I})$ \mathbf{MAP} estimator

$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$

- $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- $\bullet \ g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + \beta \|\mathbf{x}\|_2^2$
- (λ, β) depends on (ρ, σ)

\$ pip install el0ps

```
from sklearn.datasets import make_regression
from elOps.datafits import Leastsquares
from elOps.penalties import L2norm
from elOps.solvers import BnbSolver
# Generate sparse regression data
A, y = make_regression()
# Instantiate the loss and penalty
f = Leastsquares(y)
h = L2norm(beta=0.1)
# Solve the problem with elOps' BnB solver
solver = BnbSolver()
result = solver.solve(f. h. A. lmbd=0.01)
```

BnB – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1) Use specialized BnB
- 2) Solve the problem

Pros

- ✓ Numerical efficiency
- ✓ Open-source softwares
- ✓ Convenient for practitioners

Cons

- X Assumptions on f/h
- X f/h proper, closed, convex
- X h separable, coercive

Conclusion

People working with ℓ_0 -problems

MIT D. Bertsimas, R. Mazmuder, ... MIP tools for ℓ_0 -problems **Lund University** Google Deep Mind M. Carlsson, C. Olsson... H. Hazimeh, A. Dedieu, ... Quadratic envelope MIP-based heuristics Frankfurt / Wurzburg Universities C. Kanzow, A. Tillmann, ... Optimality conditions London Business School Berkley J. Pauphilet, R. Cory-Wright, ... A. Atamtürk, A. Gomès, ... Healthcare applications Convex-based acceleration Ponts ParisTech M. De Lara, P. Chancelier, A. Parmentier, Non-convex analysis for ℓ_0 -norm, ML appli. Centrale Nantes / ENSTA Bretagne S. Bourguignon, J. Ninin, ... Branch-and-Bound for ℓ_0 -problems Inria / CentraleSupélec IRIT / I3S C. Herzet, C. Elvira, A. Arslan, ... E. Soubies, L. Blanc-Féraud, Generalization, acceleration Strong relax. of ℓ_0 -norm 22/23

Take-home messages

- ullet Although NP-hard, ℓ_0 -problems are relevant for many applications
- There exists MIP methods to tackle them
 - Generic MIP solvers
 - Specialized BnB algorithms (e10ps)
 - Structure-exploitation is key
- It's an active research area
 - Theoretical/methodological developments still needed
 - Help us diffusing to practitioners:)

Question time!

