Généralisation de la notion d'intégrale

$$\alpha 8 - MP^*$$

1 Intégrabilité des fonctions positives

1.1 Définition

Soit I un intervalle de \mathbb{R} , $f:I \xrightarrow{C_m^0} \mathbb{R}^+$. f est $int\acute{e}grable$ sur I si il existe $M \in \mathbb{R}$ tel que pour tout segment $J \subset I$, $\int_J f \leqslant M$. Si f est intégrable, on définit $\int_I f = \sup(\int_I f)$. Si I est un segment, toute fonction $C_m^0: I \longrightarrow \mathbb{R}^+$ est intégrable.

1.2 Intégrabilité et limite

Si I est un intervalle, on appelle suite croissante exhaustive de segments (SCES) de I toute suite de segments emboîtés $J_0 \subset J_1 \subset \ldots \subset J_n \subset \ldots$ telle que $\bigcup_{n \in \mathbb{N}} J_n = I$. Avec les notations précédentes, la suite $n \longmapsto \int_{J_n} f$ croît. f est alors intégrable ssi cette suite est majorée, auquel cas $\int_I f = \lim_{n \to +\infty} \int_{J_n} f$.

 $\begin{array}{c} \textit{Utilisation de la formule de Chasles}: \ f: I \xrightarrow{C_{\infty}^0} \mathbb{R}^+, \ I = (a,b) \ (\text{on ne précise pas l'ouverture aux bornes de } I); \ \text{soit} \ c \in]a,b[, f \text{ est intégrable sur } I \text{ ssi } f|_{(a,c]} \text{ et } f|_{[c,b)} \text{ le sont sur } (a,c] \text{ et } [c,b] \text{ respectivement. Dans ce cas } \int_I f = \int_{(a,c)} f + \int_{[c,b)} f. \end{array}$

Corollaire : si I et I' sont deux intervalles de mêmes bornes $I' \subset I$ et $f: I \xrightarrow{C_0^0} \mathbb{R}^+$, alors f est intégrable sur I ssi f est intégrable sur I'. Dans ce cas $\int_I f = \int_{I'} f$.

1.3 Opérations et estimations

- $f: I \xrightarrow{\mathcal{C}_m^0} \mathbb{R}^+$; soit $\lambda \in \mathbb{R}^{+*}$. f est intégrable ssi λf l'est, auquel cas $\int_I \lambda f = \lambda \int_I f$.
- $f,g:I \xrightarrow{\mathcal{C}_m^0} \mathbb{R}^+$; f+g est intégrable ssi f et g le sont, auquel cas $\int_I (f+g) = \int_I f + \int_I g$.
- $f,g:I \xrightarrow{\mathcal{C}_m^0} \mathbb{R}^+$; si $\exists M \geqslant 0/f \leqslant Mg$ et g intégrable alors f est intégrable et $\int_I f \leqslant M \int_I g$.

2 Fonctions complexes intégrables

2.1 Définitions et modes de calcul

 $f:I \xrightarrow{C_m^0} \mathbb{C}$ est intégrable sur I si |f| l'est. En particulier si $|f| \leqslant \varphi$ où $\varphi:I \xrightarrow{C_m^0} \mathbb{R}^+$ intégrable, alors f est intégrable.

- Soit $f: I \xrightarrow{\mathcal{C}_m^0} \mathbb{R}$ intégrable, alors f^+ et f^- sont \mathcal{C}_m^0 intégrables
- Soit $f: I \xrightarrow{\mathcal{C}_m^0} \mathbb{C}$ intégrable, alors $\mathrm{Re}(f)$ et $\mathrm{Im}(f)$ sont \mathcal{C}_m^0 intégrables

2.2 Linéarité

Si I est un intervalle de \mathbb{R} , et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , $l^1(I,\mathbb{K})$ désigne l'ensemble des fonctions intégrables $I \stackrel{\mathcal{C}'_m}{\longrightarrow} \mathbb{K}$. C'est un sev de $\mathcal{C}^0_m(I,\mathbb{K})$, et \int_I est une forme linéaire sur ce sev. $l^2(I,\mathbb{K})$ désigne l'ensemble des fonctions de carré intégrable.

- 1. Si $f, g \in l^2(I, \mathbb{K})$ alors $fg \in l^1(I, \mathbb{K})$.
- 2. Si $\mathbb{K} = \mathbb{R}$, $(f,g) \in (l^2(I,\mathbb{K}))^2 \longmapsto \int_I fg$ est un produit scalaire : $l^2(I,\mathbb{K})$ est préhilbertien.
- 3. Si $\mathbb{K} = \mathbb{C}$, $(f, q) \in (l^2(I, \mathbb{K}))^2 \longmapsto \int_I \overline{f} q$ est un produit scalaire hermitien.
- 4. Si $(f,g) \in (l^2(I,\mathbb{K}))^2$, on a l'inégalité de Cauchy-Schwarz : $|\int_I fg| \leqslant \sqrt{\int_I |f|^2 \int_I |g|^2}$.

2.3 Règles de calcul sur les intégrales

- Règle du changement de variable : soit $I,\ I'$ deux intervalles, $f:I \xrightarrow{\mathcal{C}_m^0} \mathbb{C}$ intégrable, $\varphi:I' \longrightarrow I$ une bijection de classe \mathcal{C}^1 . Alors $f \circ \varphi \cdot \varphi'$ est intégrable sur I' et $\int_I f = \int_{I'} f \circ \varphi \cdot \varphi'$.
- Règle d'intégration par parties : Soit I un intervalle, $I=(a,b),\ f,g:I\stackrel{\mathcal{C}^0,\mathcal{C}^1_{a}}{\longrightarrow}\mathbb{C}.$ Si fg' et f'g sont intégrables, alors $\int_I f'g=[fg]_a^b-\int_I fg',$ où $[fg]_a^b=\lim_{x\stackrel{\sim}{\to}b}(fg)(x)-\lim_{x\stackrel{\sim}{\to}a}(fg)(x).$

3 Théorèmes de convergence

3.1 Définitions

Soit \mathcal{A} un ensemble, on appelle suite de fonctions de \mathcal{A} dans \mathbb{K} une famille d'applications de \mathcal{A} dans \mathbb{K} indexée par \mathbb{N} ; on la note $f_n:\mathcal{A}\longrightarrow\mathbb{K}$. Avec ces notations, on dit que (f_n) converge simplement vers f si $\forall x\in\mathcal{A}$, $f(x)=\lim_{n\to+\infty}f_n(x)$. Si $(u_n)\in(\mathbb{K}^{\mathcal{A}})^{\mathbb{N}}$, on dit que $\{u_n\}$ converge simplement sur \mathcal{A} si $\forall x\in\mathcal{A}$, la série de terme général $u_n(x)$ est convergente. On peut alors définir une fonction-somme $u:\mathcal{A}\longrightarrow\mathbb{K}$

$$x \longmapsto \sum_{n=0}^{+\infty} u_n(x)$$

3.2 Théorème de convergence dominée (théorème de Lebesgue)

I un intervalle de \mathbb{R} , (f_n) une suite de fonctions \mathcal{C}_m^0 $I \longrightarrow \mathbb{C}$. On suppose :

- 1. (f_n) converge simplement vers une fonction $f \mathcal{C}_m^0$
- 2. domination : $\exists \varphi : I \xrightarrow{\mathcal{C}_m^0} \mathbb{R}^+$ intégrable telle que $\forall n \in \mathbb{N}, \forall x \in I, |f_n(x)| \leq \varphi(x)$.

Alors:

- 1. Les fonctions f_n et f sont intégrables
- 2. $\int_I f_n(x) dx \xrightarrow{n \to +\infty} \int_I f(x) dx$.

3.3 Théorème d'intégration terme à terme

Si $u: I \xrightarrow{\mathcal{C}_{m}^{0}} \mathbb{C}$, intégrable, on définit la norme-un de u et on note $||u||_{1}$ la quantité : $||u||_{1} = \int_{I} |u(t)| dt$.

 $Th\'{e}or\`{e}me$: Soit (u_n) une série de fonctions $I \xrightarrow{\mathcal{C}_m^0} \mathbb{C}$ intégrable. Hypothèses:

- 1. Cette série converge simplement sur I et la fonction-somme u est \mathcal{C}_m^0
- 2. La série numérique $\{\|u_n\|_1\}$ est convergente.

Alors:

- 1. u est intégrable sur I
- 2. $\int_{I} \sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} \int_{I} u_n$, soit : $\int_{I} u = \sum_{n=0}^{+\infty} \int_{I} u_n$.
- 3. $||u||_1 \leqslant \sum_{n=0}^{+\infty} ||u_n||_1$.

4 Intégrales à paramètres

4.1 Théorème de continuité

Énoncé 1 : Soit I,J deux intervalles de $\mathbb{R},$ et $f:I\times J\longrightarrow \mathbb{C}.$ Hypothèses :

- 1. Pour tout $x \in J$ fixé, $t \in I \longrightarrow f(t,x)$ est \mathcal{C}_m^0 et intégrable
- 2. Pour tout $t \in I$ fixé, $x \in J \longmapsto f(t, x)$ est \mathcal{C}^0

3. $\exists \varphi : I \xrightarrow{\mathcal{C}_m^0} \mathbb{R}^+$ intégrable telle que $\forall (t, x) \in I \times J, |f(t, x)| \leq \varphi(t)$

Alors la fonction $F: x \in J \longmapsto \int_I f(t,x) dt$ est bien définie et continue.

Énoncé 2 : A une partie d'un espace métrique, $f: I \times A \longrightarrow \mathbb{C}$. Si :

- 1. $\forall x \in A, t \in I \longmapsto f(t,x) \text{ est } \mathcal{C}_m^0 \text{ et intégrable}$
- 2. $\forall t \in I, x \in A \longmapsto f(t, x) \text{ est } \mathcal{C}^0 \text{ sur } A$
- 3. $\exists \varphi : I \xrightarrow{\mathcal{C}_m^0} \mathbb{R}^+$ intégrable telle que $\forall (t, x) \in I \times A, |f(t, x)| \leq \varphi(t)$

Alors la fonction $F: x \in A \longmapsto \int_I f(t,x) \mathrm{d}t$ est bien définie et continue sur A. On peut se limiter à établir la domination sur tous les $I \times K$ où K est un compact inclus dans A.

4.2 Théorème de dérivabilité (théorème de Leibniz)

Soit I, J deux intervalles de \mathbb{R} , et $f: I \times J \longrightarrow \mathbb{C}$. Hypothèses :

- 1. $\forall x \in J, f(\bullet, x) \text{ est } \mathcal{C}_m^0 \text{ et intégrable}$
- 2. il existe une application $\frac{\partial f}{\partial x}(t,x)$ définie en tout point de $I \times J$
- 3. $\forall x \in J, \frac{\partial f}{\partial x}(\bullet, x) \text{ est } \mathcal{C}_m^0 \text{ et intégrable}$
- 4. $\forall t \in I, \frac{\partial f}{\partial x}(t, \bullet) \text{ est } \mathcal{C}^0 \text{ sur } J$
- 5. Domination : $\exists \varphi : I \xrightarrow{\mathcal{C}_m^0} \mathbb{R}^+$ intégrable telle que $\forall (t, x) \in I \times J, |\frac{\partial f}{\partial x}(t, x)| \leqslant \varphi(t)$

Dans ces conditions, $F: x \in J \longmapsto \int_I f(t,x) dt$ est C^1 sur J et $\forall x \in J$, $F'(x) = \int_I \frac{\partial f}{\partial x}(t,x) dt$.

4.3 Étude de la fonction Γ

On définit : $\Gamma : x \in \mathbb{R}^{+*} \longmapsto \int_0^{+\infty} e^{-t} t^{x-1} dt$. Γ est bien définie et \mathcal{C}^{∞} sur \mathbb{R}^{+*} et $\forall k \in \mathbb{N}, \forall x \in \mathbb{R}^{+*}, \Gamma^{(k)}(x) = \int_0^{+\infty} t^{x-1} e^{-t} \ln^k(t) dt$. On a de plus :

- $\forall x > 0, \ \Gamma(x+1) = x\Gamma(x)$
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}$; $\Gamma(1) = 1$; $\forall n \in \mathbb{N}^*$, $\Gamma(n) = (n-1)!$
- En 0, $\Gamma(x) \sim \frac{1}{x}$.

Variations:

x	0	1	c	2	$+\infty$
$\Gamma'(x)$		_	0	+	
$\Gamma(x)$	$+\infty$				$+\infty$
		>		7	
			> 0		

3