

Let's Talk About the Weather

Jill Lundell, Brennan Bean, Jürgen Symanzik - Department of Mathematics and Statistics, Utah State University

Clusters

Seasonality

Trends & Outliers

Importance & Correlations

Conclusions

Motivation

How do different regions of the United States experience forecast error? (click on images or tabs for details)

Clusters

Southeast Midwest

Northeast

Southwest

Seasonality San Francisco, CA Great Lakes

Can we cluster the U.S. into regions based on weather measurements?

Overview

Clusters

Seasonality

Trends & Outliers

Importance & Correlations

Conclusions

Cluster Analysis

- Hierarchical clustering using
 Ward's method and Euclidean
 distance.
- Weather stations cleanly cluster into 6 weather regions:
- Cali-Florida
- Southeast
- Northeast
- Intermountain West
- Midwest
- Southwest
- Parallel coordinate plot of weather variables shows distinct weather patterns within each region (See the app).

How does forecast error change by cluster and by season?

Error Variables

Global Trends

Local Trends

- Absolute Maximum Temperature Error
- Absolute Minimum Temperature Error
- 1 Brier Skill Score (BSS) for Precipitation
- Distinct seasonality in forecast accuracy.
- Max temp usually more accurate than min temp.
- Forecast accuracy improves north to south.
- "The coldest winter I ever spent was a summer in San Francisco."
- attr. Mark Twain

- The worst precip predictions are in the Great Lakes in winter.
- San Francisco, CA, predicts max temp well only in winter.
- Austin, NV, has the worst forecasts for both max and min temp.

Who are the winners and losers in terms of overall forecast accuracy?

Clusters

Seasonality

Trends & Outliers

Importance & Correlations

Conclusions

Trends & Outliers

- Previously seen poor forecasts for precip in the **Great Lakes** area and in min and max temp in **Austin**, **NV**, are apparent in these plots.
- Precip forecasts improve considerably as forecast lag decreases.
- Cali-Florida predicts min temp exceptionally well regardless of forecast lag.
- See the app for further interaction with forecast lag and trends.

Which variables are important in determining forecast error? How do error variables correlate?

Overview

Clusters

Seasonality

Trends & Outliers

Importance & Correlations

Conclusions

Northeast Midwest Intermountain West Southwest

Importance and Correlation

- Random Forests used to determine importance of each weather variable to forecast errors.
- Forecast lag most important in precip and important for max temp error with the exception of **Cali-Florida**, but not very important for min temp error.
- Important variables vary largely for each region with min temp error, but also differ with max temp error.
- Correlations between error variables differ for each region.

What did we learn?

Clusters

Seasonality

Trends & Outliers

Importance & Correlations

Conclusions

Conclusions

- United States cleanly clusters into weather regions.
- Forecast error patterns differ by region, by season, and are related to regional climate characteristics.
- Forecasting anomalies exist within each region (Great Lakes; San Francisco, CA; Austin, NV).
- Forecast lag is the most important variable for precip across all regions, but important variables for max and min temp vary across regions.
- Correlations between error variables differ for each region.

Cali-Florida

Output

References and Tools

erview Clusters

Seasonality

Trends & Outliers

Importance & Correlations

Conclusions

References

- [1] A. Unwin, "Requirements for interactive graphics software for exploratory data analysis," Computational Statistics, vol. 14, no. 1, pp. 7–22, 1999.
- [2] H. Wickham, H. Hofmann, C. Wickham, and D. Cook, "Glyph-maps for visually exploring temporal patterns in climate data and models," *Environmetrics*, vol. 23, no. 5, pp. 382–393, 2012.
- [3] C. Nolte, "The story of the San Francisco summer is a bit foggy." https://www.sfchronicle.com, August 2016.
- [4] R. W. Scott and F. A. Huff, "Impacts of the Great Lakes on regional climate conditions," *Journal of Great Lakes Research*, vol. 22, no. 4, pp. 845–863, 1996.

- [5] N. Silver and R. Fischer-Baum, "Which city has the most unpredictable weather?." https://fivethirtyeight.com, December 2014.
- [6] J. Cohen, K. Pfeiffer, and J. A. Francis, "Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States," *Nature Communications*, vol. 9, no. 1, p. 869, 2018.
- [7] "Austin, Nevada: So much to do.." http://austinnevada.com.
- [8] A. P. Weigel, M. A. Liniger, and C. Appenzeller, "The discrete Brier and ranked probability skill scores," *Monthly Weather Review*, vol. 135, no. 1, pp. 118–124, 2007.
- [9] D. Murdoch and E. Chow, "A graphical display of large correlation matrices," *The American Statistician*, vol. 50, no. 2, pp. 178–180, 1996.

R Tools

- fields (D. Nychka et al. 2015)
- fiftystater (W. Murphy 2016)
- geosphere (R. Hijmans, 2016)
- ggforce (T. Pedersen 2018)
- gridExtra (A. Baptiste, 2017)
- latex2exp (S. Meschiari, 2015)

- reshape2 (H. Wickham, 2007)
- mapproj (D. McIlroy et al. 2017)
- randomForest (A. Liaw and M. Wiener, 2002)
- RColorBrewer (W. Neuwirth, 2014)
- reshape2 (H. Wickham, 2007)

- rgbif (S. Chamberlain, 2017)
- rgdal (R. Bivand et al. 2018)
- sp (E. Pebesma and R. Bivand, 2013)
- tidyverse (H. Wickham, 2017)
- weatherData (R. Narasimhan, 2017)