Departamento de Matemática Aplicada

Annu

Métodos multipasos implícitos

1.1 Práctica 4 BDF

Implementa el método **BDF**

$$y_{n+2} - \frac{4}{3}y_{n+1} + \frac{1}{3}y_n = \frac{2}{3}hf_{n+2}.$$
 (1)

Observación:

- Inicializa el método con un método implícito del mismo orden.
- En cada paso tienes que resolver una ecuación implícita z = g(h, x, z). Usa la idea de iteración tipo Newton.

1.2 Caso rígido

$$y'(t) = Ay(t) + B(t) \quad t \in [0, 10]$$
(2)

$$\begin{pmatrix} A = \begin{array}{cc} -2 & 1\\ 998 & -999 \end{pmatrix} \quad B(t) = \begin{pmatrix} 2\sin(t)\\ 999(\cos(t) - \sin(t)) \end{pmatrix} \qquad B(t) = \begin{pmatrix} 2\sin(t)\\ 2(\cos(t) - \sin(t)) \end{pmatrix} \tag{3}$$

$$y(0) = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{4}$$

La solución exacta es:

$$y = 2e^{-t} \begin{pmatrix} 1\\1 \end{pmatrix} + \begin{pmatrix} \sin(t)\\\cos(t) \end{pmatrix} \tag{5}$$

Haz un diagrama de eficiencia (solo para h) en la misma manera como en la practica anterior

h _{vect}	0.05	0.025	0.0125	0.00625	0.003125	0.0015625	0.00078125	0.000390625
$\mathrm{err}_{\mathrm{bdf2nwt}}$	0.00347881	0.000898149	0.000228864	5.78409e-05	1.45767e-05	3.65718e-06	9.13143e-07	2.28519e-07
$err_{trapnwt}$	0.000258794	6.47017e-05	1.61746e-05	4.04363e-06	1.01091e-06	2.52727e-07	6.31817e-08	1.57954e-08

$$y'(t) = Ay(t) + B(t) \quad t \in [0,10] \quad A = \begin{pmatrix} -2 & 1 \\ 998 & -999 \end{pmatrix} \quad B(t) = \begin{pmatrix} 2\sin(t) \\ 999(\cos(t) - \sin(t)) \end{pmatrix}$$
 Error maximo vs h met= mibdfnwt, intv=[0 10] y0=[2 3],N=200 M=8 OrdenBDF=2.00182 OrdenTpNw=2.000000

Figure 1: Diagrama de Trapecio y BDF2 (sistema rígida).