(i)
$$\{x \in \mathbb{R}^n : Ax \leq b\} = P$$

$$tAx_1 + (1-t)Ax_2 \le tb + (1-t)b = b$$

$$A \left[\pm x_1 + (1-t) x_2 \right] \leq b$$

So a polyhedron is convex

(iii) let
$$x,y \in C$$
, then $x \in C_i$ and $y \in C_i$, $i=1\cdots n$ for any $t \in [0,1]$, $tx+(1-t)y \in C_i$
So $tx+(1-t)y \in \bigcap_{i=1}^n C_i = C$
then C is zonvex

Ciji) convex hull of a closed set need not be closed;

$$C = \{(x,y): y \neq \frac{1}{1+x^2}\}$$

$$Conv(c) = \{(x,y): y>0\}$$

(iv) $A^{-1}(S) = \{x \in \mathbb{R}^n : Ax \in S\}$

let x, y & AT(S), then Ax, Ay & S

- ".' S is convex
- .. tAx + (1-t) Ay ES

$$A(tx + (1-t)y) \in S$$

50 + x + (1-t) y ∈ A-(5)

then A-(S) is also convex

 $(V) A(S) = \{Ax: X \in S\}$

let x, y & S

$$t Ax + (1-t)Ay = A(tx+(1-t)y) \in A(S)$$

So Als) is convex

(vi) S is convex and closed but A(s) need not be closed.

- Ь.
- (i) $P = \{x \in \mathbb{R}^n : Cx \leq d\}$
 - $A(P) = ? A \times ER^m : C \times \leq d?$
 - = { y ERM; y=Ax, Cx Ed}
 - because £(x,y) ERM+n: y=Ax, Cx < d}
 is a polyhedron,
 - according to the property (1),
 - A CP) is a polyhedron.
- (ii) See Part (a.vi)
- C. : {x: x > 0 } is a polyhedron
 - ... C=1 Ax: x ≥ 03 is a polyhedron (b.i)
 - 50, C is convex and closed (a.i)
 - let D = Eb3, or singleton set.
 - 1. b E C , then (1)
 - 2. b & C, there exists a hyperplane the separates b from C.

 $\{x: y^T x = Z\}.$

- \bigcirc $y^Tb < 2$
- 2 4 Ax > Z , for Yx >, o.
- 2: (ATy) X > Z, for Yx > 0, then ATY > 0

(1) if ytb>0

YTAX > Z > YTb 30 for YX30 this is not thue (when X=0, YTAX=0) 50 yTb < 0

a. When
$$xy \ge 0$$
, $-(x,y) = xy + a(x+y)$

f is convex iff $\nabla^2 f(x,y) = \begin{bmatrix} 2a & 1 \\ 1 & 2a \end{bmatrix} \ne 0$

$$\begin{cases} \lambda_1 + \lambda_2 = 4a \ne 0 \\ \lambda_1 \lambda_2 = 4a^2 - 1 \ne 0 \end{cases} \Leftrightarrow a > \frac{1}{2}$$

when xy < 0, $\nabla^2 f(x_1 y_1) = \begin{bmatrix} 2\alpha & -1 \\ -1 & 2\alpha \end{bmatrix} > 0 \Leftrightarrow \alpha > \frac{1}{2}$ So f is convex iff $\alpha > \frac{1}{2}$

Strong convex $\Leftrightarrow \nabla^2 f \neq 0 \Leftrightarrow \alpha \neq \frac{1}{2}$

b

$$i, \quad f(x) = -\sum_{i=1}^{n} \log (x_i)$$

strictly convex (72 fix) > 0)

Not strongly convex $(-\log x_i - \frac{m}{2} x_i^2)$ is not convex)

ii.
$$f(x) = \begin{cases} -\sum_{i=1}^{n} x_i \log(x_i) & \text{if } x>0 \\ 0 & \text{otherwise} \end{cases} \times \mathbb{R}^n, \sum_{i=1}^{n} x_i = 1$$

when $x \in \mathbb{R}_{++}^n$, $\nabla^2 f(x) = \text{diag}(-\frac{1}{x_1}, -\frac{1}{x_2}, -\frac{1}{x_n}) \neq 0$ So f(x) is concave.

C. let x, y & dom (f)

f is convex iff $f(y) > f(x) + \nabla f(x)^{T}(y-x)$ in the same way $f(x) > f(y) + \nabla f(y)^{T}(x-y)$ then $f(x) + f(y) > f(x) + f(y) + (\nabla f(x) - \nabla f(y))^{T}(y-x)$ So $(\nabla f(x) - \nabla f(y))^{T}(x-y) \geq 0$ ۵.

 $i \Leftrightarrow i$

 $\langle \nabla f(x) - \nabla f(y), x - y \rangle \leq ||\nabla f(x) - \nabla f(y)|| ||x - y|| \leq ||x - y||^2$

ii \Leftrightarrow $g(x) = \frac{L}{2} ||x||_2^2 - f(x)$ is convex \Leftrightarrow iii

monotonicity of g

se cond-order convexity

i ⇔iv:

ii ♦ 9 is convex

 $g(y) \geqslant g(x) + \nabla g(x)^{\mathsf{T}} (y - x) \Leftrightarrow i_{\mathsf{V}}$

 $i \leqslant vi$

For any y and Z we have

$$f(z) \leq f(y) + \langle \nabla f(y), z - y \rangle + \frac{1}{2} ||z - y||_{2}^{2}$$
 (*)

Since f is convex we have

$$f(x) - \langle \nabla f(x), \chi \rangle \leq f(z) - \langle \nabla f(x), \chi \rangle$$

$$\leq f(y) - \langle \nabla f(x), y \rangle + \langle \nabla f(y) - \nabla f(x), z - y \rangle + \frac{L}{2} ||z - y||_{2}^{2}$$

$$f(x) - f(y) - \langle \nabla f(x), x-y \rangle \leq \langle \nabla f(y) - \nabla f(x), z-y \rangle + \frac{1}{2} ||z-y||_2^2$$

this is true for any z. Since $\psi(z) \rightarrow \infty$ as $|z| \rightarrow \infty$

the function ψ attains minimum at $\nabla \Psi(z) = 0$

$$Z-y=-\frac{1}{L}(\nabla f(y))-\nabla f(x)$$

with the value of Z we have

$$\psi(z) = -\frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|_{2}^{2}$$

$$f(x) - f(y) + \langle \nabla f(x), y - x \rangle \leq -\frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_{2}^{2}$$

 $||\nabla f(y) - \nabla f(x)|| \leq |||X - y||$

b. Similar to a.

4. Solving Optimization Problem With CVX

a.I.

lambda=0.5623

b.1. 7