

### **Languages and Machines**

L3: Finite State Machines (Part 1)

Jorge A. Pérez

Bernoulli Institute for Mathematics, Computer Science, and Al University of Groningen, Groningen, the Netherlands

### **Languages and Their Machines**



Regular 
→ Finite State Machines (FSMs)

Context-free 
→ Pushdown Machines

Context-sensitive 
→ Linearly-bounded Machines

 $Semi-decidable \quad \leftrightarrow \quad Turing \ Machines$ 

#### **Notation**



- Given a relation  $\mathcal{R}$ , we write  $\mathcal{R}^*$  to denote its reflexive, transitive closure.
- Given a set Q, we write P(Q) to denote the powerset of Q, i.e., the set of all subsets of Q.
  (The reader uses P(Q) instead of P(Q).)



Consider the regular expression

$$(ca)^*ab^*$$

Strings we want to recognize: a, caa, abbb, cacaa, ...



Consider the regular expression

$$(ca)^*ab^*$$

Strings we want to recognize:

Tasks for a program that recognizes strings denoted by (ca)\*ab\*:

- 1. Scan zero OR multiple occurrences of: c followed by a
- 2. Scan exactly one occurrence of: a
- 3. Scan zero OR multiple occurrences of: b



Consider the regular expression

$$(ca)^*ab^*$$

Strings we want to recognize: Strings we don't want to recognize: a, caa, abbb, cacaa, ... ca, cacab, aabbb, caca, ...

Tasks for a program that recognizes strings denoted by (ca)\*ab\*:

- 1. Scan zero OR multiple occurrences of: c followed by a
- 2. Scan exactly one occurrence of: a
- 3. Scan zero OR multiple occurrences of: b

The program can get stuck!



Consider the regular expression

$$(ca)^*ab^*$$

Strings we want to recognize: Strings we don't want to recognize: a, caa, abbb, cacaa, ... ca, cacab, aabbb, caca, ...

#### A finite state machine:



### **Three Machines for Regular Languages**



#### **Regular Languages**

• Built from  $\emptyset$ ,  $\{\epsilon\}$ , and  $\{a_i\}$  (for every  $a_i \in \Sigma$ ) by applications of union, concatenation, and Kleene star operators

#### The Machines

- 1. DFSMs: Deterministic finite state machines
- 2. NFSMs: Nondeterministic finite state machines
- 3. NeFSMs: Nondeterministic finite state machines with  $\epsilon$ -transitions

#### **DFSMs**



#### A deterministic finite state machine (DFSM) is a quintuple

 $M = (Q, \Sigma, \delta, q_0, F)$  where:

- Q is a set of states
- Σ is the input alphabet
- $\delta: Q \times \Sigma \to Q$  is the *transition function*
- q<sub>0</sub> is the initial state
- $F \subseteq Q$  is a set of *accepting* (or *final*) states

#### Notice:

- When symbol a is read in a state q, the state becomes  $\delta(q, a)$ .
- NFSMs and NεFSMs will arise by generalizing/extending δ

### **DFSMs Process Strings**



- A DFSM  $M=(Q,\Sigma,\delta,q_0,F)$  processes a string  $w\in\Sigma^*$  by
  - start in  $q_0$
  - then traverse the graph based on the symbols of w, following  $\delta$ .
- String w is **accepted** by M if processing w leads to a  $q \in F$ .
- L(M): the set of the strings that are accepted by M.

### **DFSMs Process Strings**



- A DFSM  $M=(Q,\Sigma,\delta,q_0,F)$  processes a string  $w\in\Sigma^*$  by
  - start in  $q_0$
  - then traverse the graph based on the symbols of w, following  $\delta$ .
- String w is **accepted** by M if processing w leads to a  $q \in F$ .
- L(M): the set of the strings that are accepted by M.

### **More formally**, two methods of defining L(M):

• Generalizing  $\delta: Q \times \Sigma \to Q$  into  $\hat{\delta}$  (recursively defined):

$$\hat{\delta}:Q imes\Sigma^* o Q$$

In this case,  $L(M) = \{w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F\}$ 

• A step relation  $\vdash_M$  on *configurations*, is defined by

$$(q, aw) \vdash_M (\delta(q, a), w)$$

In this case, 
$$L(M) = \{ w \in \Sigma^* \mid \exists q_i \in F. (q_0, w) \vdash_M^* (q_i, \epsilon) \}$$









What is  $\Sigma$ ? Is it related to Q?





What is  $\Sigma$ ? Is it related to Q? What is  $\delta$ ?





What is  $\Sigma$ ? Is it related to Q? What is  $\delta$ ?

The two methods for processing and acceptance:

- $\bullet \ \ \hat{\delta}(\mathit{q}_{0},\mathit{caabb})=\mathit{q}_{1}$
- $(q_0, caabb) \vdash_M^* (q_1, \epsilon)$





What is  $\Sigma$ ? Is it related to Q? What is  $\delta$ ?

The two methods for processing and acceptance:

- $\bullet \ \ \hat{\delta}(\mathit{q}_{0}, \mathit{caabb}) = \mathit{q}_{1}$
- $(q_0, caabb) \vdash_M^* (q_1, \epsilon)$

Because  $q_1 \in F$ , we have  $caabb \in L(M)$ 





What is  $\Sigma$ ? Is it related to Q? What is  $\delta$ ?

The two methods for processing and acceptance:

- $\hat{\delta}(q_0, caaab) = q_2$
- $(q_0, caaab) \vdash_M^* (q_2, \epsilon)$





What is  $\Sigma$ ? Is it related to Q? What is  $\delta$ ?

The two methods for processing and acceptance:

- $\bullet \ \hat{\delta}(q_0, \frac{caaab}{}) = q_2$
- $(q_0, caaab) \vdash_M^* (q_2, \epsilon)$

Because  $q_2 \not\in F$ , we have  $caaab \not\in L(M)$ 





| δ                   | 0 | 1 | 2 | 3 |
|---------------------|---|---|---|---|
| $\rightarrow * a_0$ |   |   |   |   |





| δ                   | 0     | 1     | 2     | 3     |
|---------------------|-------|-------|-------|-------|
| $\rightarrow * q_0$ | $q_0$ | $q_1$ | $q_2$ | $q_3$ |
| $q_1$               |       |       |       |       |





| δ          | 0     | 1     | 2     | 3     |
|------------|-------|-------|-------|-------|
| $	o * q_0$ | $q_0$ | $q_1$ | $q_2$ | $q_3$ |
| $q_1$      | $q_1$ | $q_2$ | $q_3$ | $q_0$ |
| $q_2$      |       |       |       |       |





| δ                   | 0     | 1     | 2     | 3     |
|---------------------|-------|-------|-------|-------|
| $\rightarrow * q_0$ | $q_0$ | $q_1$ | $q_2$ | $q_3$ |
| $q_1$               | $q_1$ | $q_2$ | $q_3$ | $q_0$ |
| $q_2$               | $q_2$ | $q_3$ | $q_0$ | $q_1$ |
| $q_3$               | $q_3$ | $q_0$ | $q_1$ | $q_2$ |



#### Consider the machine M:



| δ                   | 0     | 1     | 2     | 3     |
|---------------------|-------|-------|-------|-------|
| $\rightarrow * q_0$ | $q_0$ | $q_1$ | $q_2$ | $q_3$ |
| $q_1$               | $q_1$ | $q_2$ | $q_3$ | $q_0$ |
| $q_2$               | $q_2$ | $q_3$ | $q_0$ | $q_1$ |
| $q_3$               | $q_3$ | $q_0$ | $q_1$ | $q_2$ |

Q: What does this machine determine? Some clues:

- ► Some accepted strings: 12302 and 0130.
- ► Some rejected strings: 0111 and 1112.



#### Consider the machine *M*:



| δ                   | 0     | 1     | 2     | 3     |
|---------------------|-------|-------|-------|-------|
| $\rightarrow * q_0$ | $q_0$ | $q_1$ | $q_2$ | $q_3$ |
| $q_1$               | $q_1$ | $q_2$ | $q_3$ | $q_0$ |
| $q_2$               | $q_2$ | $q_3$ | $q_0$ | $q_1$ |
| $q_3$               | $q_3$ | $q_0$ | $q_1$ | $q_2$ |

Q: What does this machine determine? Some clues:

- ► Some accepted strings: 12302 and 0130.
- ► Some rejected strings: 0111 and 1112.

A: M accepts strings whose sum of their elements is divisible by 4.

### **Yet Another Example**





| δ                | a     | b     |
|------------------|-------|-------|
| $ ightarrow q_0$ | $q_1$ | $q_2$ |
| * q <sub>1</sub> | $q_1$ | $q_3$ |
| * q <sub>2</sub> | $q_4$ | $q_2$ |
| $q_3$            | $q_1$ | $q_3$ |
| $q_4$            | $q_4$ | $q_2$ |

### **Yet Another Example**





| а     | b                                                       |
|-------|---------------------------------------------------------|
| $q_1$ | $q_2$                                                   |
| $q_1$ | $q_3$                                                   |
| $q_4$ | $q_2$                                                   |
| $q_1$ | $q_3$                                                   |
| $q_4$ | $q_2$                                                   |
|       | $\begin{array}{c} q_1 \\ q_1 \\ q_4 \\ q_1 \end{array}$ |

Q: What does this machine determine? Some clues:

- ► Some accepted strings: a a b b a, a a a a, and b a a b.
- ► Some rejected strings: a b a b and b a a a.

### **Yet Another Example**





| δ                       | a     | b     |
|-------------------------|-------|-------|
| $ ightarrow q_0$        | $q_1$ | $q_2$ |
| * <i>q</i> <sub>1</sub> | $q_1$ | $q_3$ |
| * <b>q</b> <sub>2</sub> | $q_4$ | $q_2$ |
| $q_3$                   | $q_1$ | $q_3$ |
| $q_4$                   | $q_4$ | $q_2$ |
| $q_4$                   | $q_4$ | $q_2$ |

Q: What does this machine determine? Some clues:

- ► Some accepted strings: a a b b a, a a a a, and b a a b.
- ► Some rejected strings: a b a b and b a a a.

A: It accepts strings that start and end with the same letter.

### **From Wiktionary**



#### Determinism

The property of having behavior determined only by initial state and input.

#### Nondeterminism

The property of being nondeterministic, involving arbitrary choices; necessitating the choice between various indistinguishable possibilities.

#### Angelic Nondeterminism

A notional ability always to choose the most favorable option, in constant time.





$$\delta(q_n,\,a)=\{\,q_i\}$$
 :  $q_n$   $\longrightarrow q_i$ 



$$\delta(q_n,a)=\{q_i,q_j,q_k\}:$$





$$\delta(q_n,a)=\emptyset$$
:

#### **NFSMs**



# A Nondeterministic finite state machine (NFSM) is a quintuple $M = (Q, \Sigma, \delta, q_0, F)$ where:

- Q is a set of states
- Σ is the input alphabet
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$  is the *transition function*
- q<sub>0</sub> is the *initial state*
- $F \subseteq Q$  is a set of *accepting* (or *final*) states

#### Notice:

- When symbol a is read in q, the next state is in the **set**  $\delta(q, a)$ .
- We can consider a set of starting states (rather than just  $q_0$ )
- We define  $(q, w) \vdash_M (q', w')$  as

$$(\exists a \in \Sigma : w = aw' \wedge q' \in \delta(q,a))$$

### **Example 1**





- Is this an NFSM? Why?
- Q: What language is recognized?

### Example 1





- Is this an NFSM? Why?
- Q: What language is recognized? A:  $L = \{x \in \{0, 1\}^* \mid \text{the second symbol from the right is } 1\}$ .

### Example 2



Consider the set:

$$L' = \{x \in \{a\}^* \mid |x| \text{ is divisible by 3 or 5}\}$$

What would be an NFSM for recognizing L'?



#### Consider the set:

$$L' = \{x \in \{a\}^* \mid |x| \text{ is divisible by 3 or 5}\}$$

What would be an NFSM for recognizing L'?



- The only nondeterminism is in the choice of starting state
- Angelic nondeterminism: the NFSM always guesses right

### N $\epsilon$ FSMs: NFSMs with $\epsilon$ -transitions



An NeFSMs is a quintuple  $M = (Q, \Sigma, \delta, q_0, F)$  where:

- Q is a set of states
- Σ is the input alphabet
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$  is the *transition function*
- q<sub>0</sub> is the *initial state*
- $F \subseteq Q$  is a set of *accepting* (or *final*) states

#### Notice:

- $\delta(q, \epsilon)$ : set of the states reachable from q without reading input.
- We define  $(q, u) \vdash_M (q', v)$  as

$$\underbrace{(\exists a \in \Sigma : u = av \land q' \in \delta(q,a))}_{\text{move by reading } a} \lor \underbrace{(u = v \land q' \in \delta(q,\varepsilon))}_{\text{move without reading}}$$

(L(M)) is defined as before.)





- Some strings that are accepted: a, baa, baba.
- Some strings that are not accepted: b, babba.









Q: What can the machine do in state  $q_1$  with next symbol a?





Q: What can the machine do in state  $q_1$  with next symbol a?

A: It can nondeterministically do one of three things:

- Read a and move to q<sub>2</sub>
  - Slide to  $q_3$  without reading input, then read the a and move to  $q_4$
  - Slide to q<sub>3</sub> without reading input, then slide to q<sub>5</sub> without reading input, then read the a and move to q<sub>6</sub>





Q: What can the machine do in state  $q_1$  with next symbol a?

A: It can nondeterministically do one of three things:

- Read a and move to q<sub>2</sub>
  - Slide to  $q_3$  without reading input, then read the a and move to  $q_4$
- Slide to q<sub>3</sub> without reading input, then slide to q<sub>5</sub> without reading input, then read the a and move to q<sub>6</sub>

What set of strings is accepted by this N∈FSM?

## **Example 2, Revisited**



#### Consider the set:

$$L' = \{x \in \{a\}^* \mid |x| \text{ is divisible by 3 or 5}\}$$

What would be an N $\epsilon$ FSM for recognizing L'?

# Composing Machines with $\epsilon$ -transitions



Consider machines  $M_1$  and  $M_2$ :





Notice:  $L(M_1) = (a|b)^*bb(a|b)^*$  and  $L(M_2) = (b|ab)^*(a|\epsilon)$ .

## Composing Machines with $\epsilon$ -transitions



Consider machines  $M_1$  and  $M_2$ :



Notice:  $L(M_1) = (a|b)^*bb(a|b)^*$  and  $L(M_2) = (b|ab)^*(a|\epsilon)$ .

A composite machine for the concatenation of  $L(M_1)$  and  $L(M_2)$ :



# Regular languages & N∈FSMs (Lem. 3.1)



#### A normal form for $N_{\epsilon}FSMs$

Let  $M = (Q, \Sigma, \delta, q_0, F)$  be an NeFSM. Then there is an equivalent NeFSM M' with:

- (i) The new start state  $q_s$  has no incoming transitions;
- (ii) There is precisely one accepting state  $q_f$ , it differs from  $q_s$ , and it has no outgoing transitions.

### Idea of the proof:

- If needed, add a  $q_s$  with an  $\epsilon$ -transition to  $q_0$
- If needed, add a  $q_f$  with an  $\epsilon$ -transition  $q o q_f$  , for all  $q \in F$



Machine  $M_2$  is *not* in normal form:



Q: What is its normal form?



Machine  $M_2$  is *not* in normal form:



Q: What is its normal form?

A: We add two states with its transitions:



# Regular languages & N∈FSMs (Lem. 3.2)



### Concatenation, Union, and Kleene star for $N_{\epsilon}FSMs$

Let  $M_1$  and  $M_2$  be two NeFSMs.

Then there are N∈FSMs for each of the three languages:

- $L(M_1)L(M_2)$
- $L(M_1) \cup L(M_2)$
- $L(M_1)^*$

### Idea of the proof:

- Assume  $M_1$ ,  $M_2$  are in normal form (thanks to Lemma 3.1), making sure that their state spaces are disjoint
- Machines for each of the three languages can be built easily

# Regular languages & $N \in FSMs$ (Thm. 3.2)



For every regular language L, there is an N<sub> $\epsilon$ </sub>FSM M with L(M) = L.

### Idea of the proof:

- Proof method: Induction on the structure of the regular sets
- Three base cases: construct N $\epsilon$ FSMs for  $\emptyset$ ,  $\{\epsilon\}$ , and  $\{a_i\}$   $(a_i \in \Sigma)$
- The induction step uses Lemma 3.2 (previous slide)

## **Taking Stock**



#### Observe that:

- Every DFSM can be regarded as an equivalent NFSM, and
- Every NFSM can be regarded as an equivalent NεFSM.

#### **Next Lecture**

- We will see that every NεFSM gives rise to an equivalent, but much larger, DFSM. (This is the so-called subset construction.)
- Given an  $N(\varepsilon)$ FSM M, we will determine a regexp for L(M)