Chapter 1: INTRODUCTION

Manuel Jiménez

EMBEDDED SYSTEMS:

Theory and Applications Using the MSP430

UPRM - Spring 2010

Chapter Outline

- Embedded Systems Overview
 - Early Forms
 - Birth and Evolution of Modern Systems
 - Contemporary Systems
- System Structure
 - Hardware Components
 - Software Components
- System Classification

- Life Cycle of Embedded Designs
- Design Constraints
 - Functionality
 - Cost
 - Performance
 - Power and Energy
 - Time-to-Market
 - Reliability & Maintainability
- Summary

Embedded System Definition

- Electronic systems containing tightly coupled hardware and software components
 - Perform a single function
 - Form part of a larger system
 - Are not intended to be independently programmable by the user
 - Are expected to work with minimal or no human interaction
 - Reactive, Real-time Operation
 - Tightly Constrained

Early Embedded Systems

Colossus Mark II

Apollo Guidance Computer

- Early Computers
 - Similar to an ESYS
 - Single functioned
 - Not user programmable
 - Unlike Today's ESYS
 - Large and power thirsty
 - Not integrated
- First Modern ESYS
 - The Apollo Guidance Computer (AGC)
 - Guidance & Navigation
 - CPU+MEM+I/O
 - Assembly Programmed

- Born with the Microprocessor
 - TMS1000: The first microcontroller
 - Intel 4004: The first commercial microprocessor
 - US Navy CADC: High-performance embedded system

Intel 4004

Tl's TMS1000

Today's MCU Market

- Plenty of Vendors
 - TI (MSP430)
 - Microchip (PIC)
 - Intel (8051, 80x86)
 - Freescale (HC11, HC08)
 - Zilog (Z80, Z8000)
 - ARM Ltd. (ARM7)
 - Natl. Inst (COP)

- · Plenty of Sizes
 - 4-bit, 8-bit, 16-bit, 32-bit, 64-bit
 - CISC Vs. RISC
 - Harvard Vs. vonNeumann
- Wide Market
 - Over 6 Billion chips per year
 - Nearly \$50 billion sales

Copyright (c) 2008

EMBEDDED SYSTEMS: Theory and Applications Using the MSP430

Contemporary Systems

Media Player Example

Copyright (c) 2008

EMBEDDED SYSTEMS: Theory and Applications Using the MSP430

Embedded System Structure

- Hardware Components:
 Electronics Infrastructure
 - CPU
 - Memory
 - I/O Subsystem
- Software Components: System Functionality
 - Firmware
 - Operating System
 - Application Programs

Hardware Components

- Central Processing Unit
 - Registers, ALU, CU
- Memory
 - Program Memory
 - Data Memory
- I/O Devices
 - Communication Ports
 - User Interfaces
 - Sensors & Actuators
 - Diagnostics Support
 - System controllers
 - Dedicated Hardware

Software Components

- System Tasks
 - Actions making use of system resources
- System Kernel
 - Component managing system resources
 - Coordinates task services
- Services
 - Routines performing specific tasks

Types of Embedded Systems

- Small
 - MCU-based, low component count
 - Large volume
 - Single tasked
 - Low-cost, maintenance free
- Distributed
 - Multi-chip, board-level
 - Multi-tasked
 - Medium volume & cost
 - Maintainable, upgradeable

- High-performance
 - Dedicated board-level hardware
 - Task intensive, RTOSbased
 - Low-volume, high cost
 - High maintenance

Embedded Systems Life Cycle

- Birth
 - Need & opportunity
 - Specifications
- Design
 - Proof-of-concept
 - Manufacturing design
- Growth
 - Production & deployment
- Maturity
 - Maintenance & upgrade
- Decline
 - System disposal

Design Constraints

- Functionality
 - System ability to perform the function it was designed for (REQ)
- Cost
 - Amount of resources needed to conceive, design, and produce an embedded system
- Performance
 - System ability to perform its function in time.
 - Affected by both HW & SW factors
- Size
 - Physical space taken by a system solution.
- Power and Energy
 - Energy required by a system to perform its function.
- Time to Market
 - The time it takes from system conception to deployment.
- Maintainability
 - System ability to be kept functional during its mature life.

Functionality

- Functional verification is a difficult task
 - Can consume up to 70% of development time
- Verification Methods
 - Simulation Techniques
 - Behavioral (HDL-based)
 - Logic (Circuit Modeling)
 - Processor (Software)
 - JTAG Debugger
 - Hardware supported through dedicated ports
 - Used also for testing (boundary scan test)
 - Cost effective

MSP430 FET Tool Courtesy of Texas Instruments Inc.

PIC In-circuit Debugger

Functionality (Cont.)

- In-Circuit Emulators
 - Replace MCU in target system
 - A powerful debugger
 - Expensive
- ROM Monitors
 - Monitor functions in ROM
 - Status sent via serial port

ICE Test Pod
Courtesy of Signum Systems

8051 In-circuit Emulator

68HC11 In-circuit Emulator
Courtesy of Nohau Systems

8086 In-circuit Emulator

Copyright (c) 2008

EMBEDDED SYSTEMS: Theory and Applications Using the MSP430

Performance: HW Factors

- Clock Frequency
 - System clock speed: not an absolute performance metric
- Architecture
 - Determines how clock cycles are used
- Component Speed
 - · Response time and access time
- Handshaking
 - Signalization required to complete a transaction
- Low-power Modes
 - Wake-up times might affect application speed
- High speed is expensive!!!
 - Use it wisely

Power & Energy

- Critical parameter for a long chain of design events
 - System reliability
 - Stress, noise, and heat
 - Cooling Costs
 - High power = lot of heat to remove
 - Power Supply Requirements
 - Larger batteries of power supply
 - Size, Weight, and Form
 - Mechanical system parameters affected by heat density

Power & Energy (Cont.)

- Environmental Impact of Embedded Systems
 - Average individual uses 60 microprocessors per day
 - Household electronics accounts for 11% of all energy consumed in the USA
 - 147,000,000,000 KWh (147TWh) per year
 - Excludes digital TVs and large appliances
 - Excludes industry, schools, hospitals, etc
 - Trend continues to grow...
 Is there a limit?

Copyright (c) 2008

EMBEDDED SYSTEMS: Theory and Applications Using the MSP430

Power and Energy (Cont.)

- Save the Planet! Design Power Efficient Embedded Systems
 - Use low-power MCUs and peripherals
 - Activate CPU standby and sleep modes
 - Write power efficient code
 - Every wasted CPU cycle is energy that will never come back
 - Use power management techniques
 - Power and clock gating plus efficient coding techniques

