1. Laufschrift und andere Tricks

Wir sind immer noch beim Modul **LED & KEY**. In zwei weiteren Sketches wird eine Laufschrift initiiert sowie die kombinierte Darstellung von Text und Zahl-Variable gezeigt. Diese Sketche verwenden wir als fertige Programme.

Damit haben wir die wichtigsten Anwendungs-Möglichkeiten des TM1638-Moduls ausgeschöpft.

Kurzinfo zu den Sketchen:

Laufschrift: Der Text kann im Prinzip beliebig lang sein. Die Blank's vor und hinter dem Text löschen die Anzeigen. Das wirkt besser, muss aber nicht sein.

Text + Variable: Das Display kann eigentlich entweder nur Text oder nur Zahlen anzeigen. Um beides gleichzeitig anzuzeigen muss die Variable (Zahlen) in formatierten Text umgewandelt werden. **SECS** steht hier als Beispiel für 4 Textzeichen. **%03d** ist eine Formatierungsanweisung für die Variable. Die **0** besagt, dass führende Nullen angezeigt werden, **3** steht für 3 Ziffern, **d** für dezimale Darstellung. **millis()** ist eine innere Zeitbasis des Arduino, die mit dem Start die Zeit in Millisekunden angibt. Diese wird mit Reset wieder auf Null gesetzt. Sie dient hier als "Beispielvariable".

- c) Ändere diesen so ab, dass bei Rechtsdrehung (im Uhrzeigersinn) hoch- und bei Linksdrehung runtergezählt wird. Die Zahl soll in der TM1637-Anzeige zu sehen sein. Zusatz: Bei Betätigung des Buttons soll die Anzeige auf Null zurückgesetzt werden.
- **d) Für Profis**: Gestalte den Sketch so, dass beim Drehen im Seriellen Monitor nacheinander das Alphabet (nur Großbuchstaben) angezeigt wird. Zum Kopieren: caracterFont[26] = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}

Beginn des Roboter-Aufbaus

Da die Motoren nicht absolut gleich laufen, müssen wir den Bewegungszustand feststellen können. Dazu dient ein **Encoder**. Was ist das?

Zwischeninfo, Begriffe klären:

Code (codieren): Verfahren, welches die Symbole einer Nachricht in eine andere Form bringt ohne den Informationsgehalt einzuschränken. Bsp. Binärcode, ASCII-Code usw. Decoder: Gerät zur Entschlüsselung codierter Signale.

Encoder: Ist ein Sensor für Drehwinkel, der in der Regel digitale Ausgangssignale liefert, die am anderen Ende der Sensorleitung im Auswertegerät decodiert werden müssen. Das macht hier unser Arduino.

2. Der Rotary-Encoder

Nach diesem Prinzip funktioniert auch das Scroll-Rad einer Maus. Abhängig von der Raddrehung werden Impulse abgegeben aus denen man die Drehrichtung und den

Drehwinkel bestimmen kann. Siehe Extrablatt.

- **a)** Verbinde den Encoder mit der Betriebsspannung und die Ausgänge **CLK** und **DT** jeweils mit einer LED (z.B. 3-Farben-LED). Beobachte, ob bei ganz langsamen Drehen eine Zeitverzögerung (z.B. grün-rot) zu erkennen ist.
- **b)** Lade den Sketch **Rotary-Encoder** (ist auf dem Stick) und teste ihn.