Discrete-Time Signals and Systems

Lecture 24

Why discrete systems?

- In Discrete systems, time is discrete (storage)
- Discrete-time systems can be stored and processed digitally (using digital electronics)
- Digital electronics is inexpensive!!
- All modern systems are discrete-time systems

Is it that natural occurring signals are continuous-time?

How many pixels per inch (ppi) for a 5.5 inch mobile phone?

- 1. 50 pixels per inch
- 2. 500 pixels per inch
- 3. 5000 pixels per inch
- 4. 50000 pixels per inch

How many pixels per inch (ppi) for a 5.5 inch mobile phone?

- 1. 50 pixels per inch
- 2. 500 pixels per inch
- 3. 5000 pixels per inch
- 4. 50000 pixels per inch

$$\frac{x}{V_d} \approx \theta$$

$$ppi = \frac{1 \text{ inch}}{x} = \frac{1 \text{ inch}}{V_d \times \theta} = \frac{1 \times 2.5 \times 10^{-2}}{0.5 \times 10^{-4}} \approx 500$$

Mobile phone's ppi

Mobile Phones	PPI
Iphone X	498 ppi
Samsung galaxy S9 plus	568 ppi
LG G7	564 ppi
Huawei P20	429 ppi
Nokia 8	554 ppi
Google Pixel 2	537 ppi
Sony Xperia XZ3	537 ppi

Mobile phone's ppi

Mobile Phones	PPI
Iphone X	498 ppi
Samsung galaxy S9 plus	568 ppi
LG G7	564 ppi
Huawei P20	429 ppi
Nokia 8	554 ppi
Google Pixel 2	537 ppi
Sony Xperia XZ3	537 ppi
Sharp's	800 ppi

What about ears?

Minimum sound pressure it can hear: 20 μPascal

Maximum sound pressure it can hear: $10^6 \times 20 \, \mu Pascal$

Frequencies that it can hear: 20 Hz to 20000 Hz

Audio bit depth?

Audio bit depth?

• Audio bit depth = $\log_2 10^6 = 6 \times \log_2 10 = 19$ bits

Audio bit depth?

- 16 bits
- 8 bits
- 4 bits

Audio bit depth = quantization error?

- 16 bits
- 8 bits
- 4 bits

Audio bit depth = quantization error?

- 16 bits
- 8 bits
- 4 bits

Audio bit depth = quantization error?

- 16 bits
- 8 bits
- 4 bits

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$x[n] = z^n y[n] = \sum_{k=-\infty}^{\infty} h[k] z^{n-k}$$

$$y[n] = z^n \sum_{k=-\infty}^{\infty} h[k]z^{-k} = z^n H(z) \qquad H(z) = \sum_{k=-\infty}^{\infty} h[k]z^{-k}$$

$$H(z) = \sum_{k=-\infty}^{\infty} h[k]z^{-k}$$

$$z = re^{j\Omega}$$

$$r = 1$$

$$z = e^{j\Omega}$$

$$H(e^{j\Omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\Omega k}$$

$$H(e^{j(\Omega+2\pi)}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j(\Omega+2\pi)k}$$

$$=\sum_{k=-\infty}^{\infty}h[k]e^{-j\Omega k}e^{-j2\pi k} = H(e^{j\Omega})$$

$$H(e^{j\Omega})$$
 is periodic in 2π $H(\omega)$ is not!!

 Ω has units radians ω has units radians/sec

Arrange the following signals according to their frequency (lowest to highest).

$$x_1(t) = \cos(350t)$$
 $x_2(t) = \cos(500t)$ $x_3(t) = \cos(600t)$

T = 0.01 seconds

(a)
$$x_1[n], x_2[n], x_3[n]$$
 (b) $x_2[n], x_1[n], x_3[n]$

(c)
$$x_2[n], x_1[n], x_3[n]$$
 (d) $x_3[n], x_2[n], x_1[n]$

Arrange the following signals according to their frequency (lowest to highest).

$$T = 0.01$$
 seconds

$$x_1[nT] = \cos[3.5n]$$

$$x_2[nT] = \cos[5n]$$

$$x_3[nT] = \cos[6n]$$

$$\Omega = 0.25$$

 $\Omega = 0.5$

 $\Omega = 1$

 $\Omega = 2$

 $\Omega = 3$

$$\Omega = 4$$

$$\Omega = 5$$

$$\Omega = 6$$

