First Principle 2017-Fall Homework 3 Solution

Kai-Hsin Wu (吳愷訢)*

Department of Physics and Center of Theoretical Sciences, National Taiwan University, Taipei 10607, Taiwan

- 1. The following shows the result of Al and Na:
 - Al
 - (1) a_0 using volume optimization:

$$a_0 = 4.05000$$

(2) Variation with different a_0 :

 $a_0(\text{Å})$ E(eV) 3.90 -14.541085 3.95 -14.665726 4.00 -14.735369 4.05 -14.757538 4.10 -14.738699 4.15 -14.684395 4.20 -14.599834

(3) the following figure shows the energy (E) v.s. V :

FIG. 1. Al-fcc E-V

^{*} r05222003@ntu.edu.tw

By using third order polyfit, and with the following formula, we can get the bulk-modulus B and the minimum a_0 :

$$B = V \frac{\partial^2}{\partial V^2} E$$
$$V = a_0^3$$

$$a_0 = 4.050723 \text{ Å}$$

 $B = 74.608739 \text{ }GPa$

(4) Consider the free electron HF energy density and seek for the minimum of r_s :

$$e^{HF} = \frac{A}{r_s^2} - \frac{\beta}{r_s}$$
$$A = 2.21$$
$$B = 0.916$$

Where the unit of energy is Ry and r_s is in unit of bohr radius (bohr). The minimum is at :

$$r_s^* = \frac{2A}{\beta}(bohr) = 2.553467 \text{ Å}$$

using following relation by which we consider 4 free electrons per unit-cell, we can estimate the lattice constant a_0 :

$$\frac{4\pi}{3}r_s^3 = n^{-1}$$
$$\frac{N_{free}}{a_0^3} = n$$

$$a_0 = \left(\frac{16\pi}{3}\right)^{1/3} r_s$$

$$\approx 6.1737 \text{ Å}$$

For Bulk modulus, we have following relation. by which we express Ω in terms of r_s :

$$\begin{split} \frac{N}{\Omega} &= n = \frac{3}{4\pi r_s^3} \\ B &= \Omega \frac{\partial^2 E}{\partial \Omega^2} \\ &= \frac{1}{12\pi r_s} \left[\frac{-2}{r_s} e^{HF'} + e^{HF''} \right] \\ &= \frac{1}{6\pi r_s^4} \left[\frac{5A}{r_s} - 2\beta \right] \end{split}$$

we have the bulk modulus at r_s^*

$$B = \frac{\beta^4}{6\pi (2A)^4} \frac{\beta}{2} (Ry/bohr^3)$$

 $\approx 18.468GPa$

- Na
 - (1) a_0 using volume optimization:

$$a_0 = 4.04669$$

(2) Variation with different a_0 :

$$a_0(\mathring{A})$$
 $E(eV)$
3.9241059 -1.437731
3.9645606 -1.443730
4.0050153 -1.447706
4.0454700 -1.449866
4.0859247 -1.449972
4.1263794 -1.448133
4.1668341 -1.445039
4.2072888 -1.440498

(3) the following figure shows the energy (E) v.s. V:

FIG. 2. Na-fcc E-V

By using third order polyfit, and with the following formula, we can get the bulk-modulus B and the minimum a_0 :

$$B = V \frac{\partial^2}{\partial V^2} E$$
$$V = a_0^3$$

$$a_0 = 4.06802437 \text{ Å}$$

 $B = 4.83347453 \text{ }GPa$

(4) Consider the free electron HF energy density and seek for the minimum of r_s :

$$e^{HF} = \frac{A}{r_s^2} - \frac{\beta}{r_s}$$
$$A = 2.21$$
$$B = 0.916$$

Where the unit of energy is Ry and r_s is in unit of bohr radius (bohr). The minimum is at :

$$r_s^* = \frac{2A}{\beta}(bohr) = 2.553467 \text{ Å}$$

using following relation by which we consider 2 free electrons per unit-cell, we can estimate the lattice constant a_0 :

$$\frac{4\pi}{3}r_s^3 = n^{-1}$$
$$\frac{N_{free}}{a_0^3} = n$$

$$a_0 = \left(\frac{8\pi}{3}\right)^{1/3} r_s$$

$$\approx 5.186047 \text{ } \mathring{A}$$

For Bulk modulus, we have following relation. by which we express Ω in terms of r_s :

$$\begin{split} \frac{N}{\Omega} &= n = \frac{3}{4\pi r_s^3} \\ B &= \Omega \frac{\partial^2 E}{\partial \Omega^2} \\ &= \frac{1}{12\pi r_s} \left[\frac{-2}{r_s} e^{HF'} + e^{HF''} \right] \\ &= \frac{1}{6\pi r_s^4} \left[\frac{5A}{r_s} - 2\beta \right] \end{split}$$

we have the bulk modulus at r_s^*

$$B = \frac{\beta^4}{6\pi (2A)^4} \frac{\beta}{2} (Ry/bohr^3)$$

$$\approx 18.468GPa$$

- 2. For bcc Fe, doing LDA and GGA method with FM and NM:
 - LDA
 - (1) a_0 using volumn optimization :

$$a_0^{FM} = 2.744294 \ {\mathring A}$$

$$a_0^{NM} = 2.694591 \ {\mathring A}$$

(2) minimization energy with variated a_0 and are showed in figure below:

FM		NM	
$a_0(\mathring{A})$	E(eV)	$a_0(\mathring{A})$	E(eV)
2.60	-8.967318	2.55	-8.672935
2.65	-9.121350	2.60	-8.863644
2.70	-9.206677	2.65	-8.964152
2.75	-9.228247	2.70	-8.988743
2.80	-9.202380	2.75	-8.952579
2.85	-9.135795	2.80	-8.867398
2.90	-9.048763	2.85	-8.742378
2.95	-8.935725	2.90	-8.585827

FIG. 3. Fe-bcc LDA E-V

The minimized a_0 and B of bcc Fe with FM and NM are :

$$a_0^{FM} = 2.746787 \mathring{A} \qquad \qquad B^{FM} = 134.99746 GPa$$

$$a_0^{NM} = 2.694740 \mathring{A} \qquad \qquad B^{NM} = 175.45431 GPa$$

We see that the FM case has minimal energy, which shows the ground state is Ferromagnetic.

• GGA

(1) a_0 using volumn optimization :

$$a_0^{FM} = 2.82214 \text{ Å}$$

 $a_0^{NM} = 2.75412 \text{ Å}$

(2) minimization energy with variated a_0 and are showed in figure below:

FM		NM	
$a_0(A)$	E(eV)	$a_0(A)$	E(eV)
2.70	-8.009989	2.70	-7.724527
2.75	-8.108553	2.75	-7.757336
2.80	-8.151154	2.80	-7.737622
2.85	-8.158445	2.85	-7.674045
2.90	-8.135495	2.90	-7.575350
2.95	-8.077445	2.95	-7.448175
3.00	-8.000995	3.00	-7.298845

FIG. 4. Fe-bcc GGA E-V

The minimized a_0 and B of bcc Fe with FM and NM are :

$$a_0^{FM} = 2.834269 \mathring{A} \qquad \qquad B^{FM} = 93.907626 GPa$$

$$a_0^{NM} = 2.755061 \mathring{A} \qquad \qquad B^{NM} = 124.57160 GPa$$

We see that the FM case has minimal energy, which consist with the GGA results that the ground state is Ferromagnetic.

- 3. GGA band gaps of typical semiconductors, the following experiment value comes from [1]
 - - (1) a_0 using volumn optimization :

$$a_0^{Si} = 5.46078 \text{ Å}$$

(2) The band structure and density of state are shown below:

FIG. 5. Si band-structure

The band gap ${\cal E}_g^{Si}$ is :

$$E_g^{Si}=0.6245\ eV$$

Experiment values:

$$\begin{split} E_g^{exp} &= 1.17 eV \\ a_0^{exp} &= 5.431 \mathring{A} \end{split}$$

$$a_0^{exp} = 5.431 \mathring{A}$$

• Ge

(1) a_0 using volumn optimization :

$$a_0^{Ge} = 5.76822 \ \mathring{A}$$

(2) The band structure and density of state are shown below:

FIG. 6. Ge band-structure

The band gap ${\cal E}_g^{Ge}$ is :

$$E_g^{Ge} = 0.0 \ eV$$

Experiment values:

$$E_g^{exp} = 0.74eV$$
$$a_0^{exp} = 5.658\mathring{A}$$

- GaAs
 - (1) a_0 using volumn optimization :

$$a_0^{GaAs}=5.751291~\mathring{A}$$

(2) The band structure and density of state are shown below:

FIG. 7. GaAs band-structure

The band gap ${\cal E}_g^{GaAs}$ is :

$$E_g^{GaAs} = 0.1755 \ eV$$

Experiment values:

$$E_g^{exp} = 1.52 eV$$

$$a_0^{exp} = 5.65325 {\rm \AA}$$

4. GGA, GGA+U of NiO in AF-II

the structure of NiO in AF-II:

FIG. 8. NiO-AFII lattice structure

• GGA

(1) the band structure and total DOS

FIG. 9. NiO-AFII band-structure

FIG. 10. NiO-AFII density of state

(2) density of state of Ni

FIG. 11. Ni in NiO density of state

Energy gap $E_{\boldsymbol{g}}$,total magnetic moment m and Ni moment m_{Ni} :

$$E_g = 0.8936eV$$

$$m = 0.0000\mu_B$$

$$m_{Ni} = 1.011\mu_B$$

• GGA+U

(1) the band structure and total DOS

FIG. 12. NiO-AFII band-structure GGA+U

FIG. 13. NiO-AFII density of state GGA+U

(2) density of state of Ni

FIG. 14. Ni in NiO density of state GGA+U

Energy gap $E_{\boldsymbol{g}}$,total magnetic moment m and Ni moment m_{Ni} :

$$E_g = 1.0973 eV$$

 $m = 0.0000 \mu_B$
 $m_{Ni} = 1.106 \mu_B$

By apply U_eff on Ni, we decouple the Ni and O energy part, as a result, the AF magnetic property contributed form Ni can be calculate more accurate.

[1] K. C., Introduction to Solid State Physics, 6th Ed. (1986), p. 185. (Wiley).