#### Addition Reactions to C=C and C≡C

- Addition Reactions to Alkenes
- Markovnikov's Rule
- Stereochemistry of Ionic Addition to Alkenes
- H<sub>2</sub>SO<sub>4</sub> Additions to Alkenes
- H<sub>2</sub>O Additions to Alkenes
- Oxymercuration/Demurcuration
- Hydroboration/Oxidation
- Addition of Br<sub>2</sub> and Cl<sub>2</sub> to Alkenes
- Stereochemistry of Dihalide Additions
- Halohydrin Formation
- Divalent Carbon Compounds: Carbenes
- Oxidations of Alkenes
- Additions to Alkynes
- Oxidative Cleavage of Alkynes
- Applications in Synthesis

#### **Addition Reactions: Addition to Alkenes**



- Have Already Looked at Addition of H<sub>2</sub> (Hydrogenation)
- Will Now Add Additional Reagents

> 
$$HX (I, Br, CI)$$
 >  $Br_2$   
>  $H_2SO_4$  >  $Cl_2$   
>  $H_2O$  >  $I_2$ 

#### Why Do Additions to Alkenes Work?

- Conversion of π Bond to 2 σ Bonds Typically Energy Favored
- Two  $\sigma$  Bonds Higher Energy than One  $\pi$  + One  $\sigma$
- Overall Process is thus Typically Exothermic
- π Electrons are Exposed (ABOVE and BELOW sp<sup>2</sup> Plane)
- π Bonds Good at Capturing Electrophiles (H+, Lewis Acids, X<sub>2</sub>)
- Metal Ions With Vacant Orbitals Also Good Electrophiles
- Let's Look at the Addition Reaction of a Hydrogen Halide

#### **Addition Reactions: HX to Alkenes**



General Order of HX Reactivity:

- Usually Dissolved in Solvent (CH<sub>3</sub>CO<sub>2</sub>H, CH<sub>2</sub>Cl<sub>2</sub>)
- Can be Bubbled Through Solution as a Gas

#### **Addition Reactions: HBr to Alkenes**



- $\pi$  Bond (Nucleophile) Protonate  $\rightarrow$  Carbocation Intermediate
- Carbocation Captured by Br<sup>−</sup> (Nucleophile) → HBr Added
- HBr (or other HX) Addition in Two Overall Steps
- H<sup>+</sup> and Carbocation are the Respective Electrophiles
- This is a SYMMETRIC Alkene → ASYMMETRIC ALKEN

#### Markovnikov's Rule: HBr to Alkenes



- 2-Bromopropane is Major Product
- Only Very Small Amount of 1-Bromopropane Observed
- True With Other Alkenes

## Markovnikov's Rule: Why?



- Product Distribution Explained When Looking at Intermediates
- Recall Discussion of Carbocation Stability (2° > 1°)
- Major Product Formed From More Stable C<sup>+</sup> Intermediate



#### Markovnikov's Rule: C+ Stability



- We Know 2° Carbocations More Stable Than 1°
- Major Product Formed From More Stable C<sup>+</sup> Intermediate
- Means TS in 2° Carbocation Pathway Lower in Energy
- Lower Energy of Activation
- Activation Energies in 1° Carbocation Pathways Much Larger

#### Markovnikov's Rule: Summary

#### **MARKOVNIKOV'S RULE:**

In the ionic additions of an unsymmetrical reagent to a double bond, the positive portion of the adding reagent attaches itself to a carbon atom of the double bond so as to yield the MORE STABLE CARBOCATION as an INTERMEDIATE



This Addition "Preference" is Called REGIOSELECTIVITY

#### **Stereochemistry in Ionic Additions**



- Just as we saw in  $S_N1$ : C+ Has TWO FACES
- Top and Bottom Attack Give Two Stereochemical Products
- R and S Enantiomers Formed as a Racemic Mixture (50:50)

## H<sub>2</sub>SO<sub>4</sub> Addition to Alkenes



- Must Add COLD Sulfuric Acid; Form Alkyl Hydrogen Sulfates
- Regioselective Reaction: Obeys Markovnikov's Rule
- Note Mechanistic Similarities w/ HX Addition to Alkenes

## **Alcohols From Alkyl Hydrogen Sulfates**



- HYDROLYSIS Reaction of Alkyl Hydrogen Sulfate
- Simply Heat the Sulfate in Water
- Net Reaction is Markovnikov Addition of H<sub>2</sub>O to Alkene
- Used in One Industrial Ethanol Making Process

# Addition of H<sub>2</sub>O to Alkenes: Hydration

$$C = C$$
 + HOH  $H_{3}O$  H OH

- HYDRATION Reaction of an Alkene
- Acid Catalyzed Addition of H<sub>2</sub>O Across Double Bond
- Net Reaction is Markovnikov Addition of H<sub>2</sub>O to Alkene
- We've Seen a Similar Reaction: Acid Catalyzed Dehydration
- Carbocation Rearrangements Possible w/ Dehydration Reactions

#### **Oxymercuration-Demercuration**

#### **OXYMERCURATION:**

$$C = C + H_2O + Hg(OAc)_2$$
 THF OH HgOAc

#### **DEMERCURATION:**



- Net Reaction: Markovnikov Addition of H<sub>2</sub>O to Alkene
- Both Reactions Quite Rapid; Alcohol Yields Usually > 90%
- NaBH<sub>4</sub>: Sodium Borohydride → "H" Delivering Agent

## Oxymercuration-Demercuration (2)



- Added Benefit of Oxymercuration/Demercuration:
  - C+ REARRANGEMENTS Seldom Observed
  - Consider Example Seen on Next Slide

## Oxymercuration-Demercuration (3)



- Would Expect 2° Carbocation to Rearrange to 3°
- Added C<sup>+</sup> Stabilization from Hg Atom Prevents Rearrangment
- Useful Hydration Process for Avoiding Skeletal Migrations

#### **Hydroboration—Oxidation Reactions**



- Hydroboration: Addition of H and B to Alkene
- Neutral Boron has 3 Coordination Sites
  - Get Trialkyl Boranes as an Intermediate (Tripropylborane)
- Oxidation: H<sub>2</sub>O<sub>2</sub>, NaOH Oxidize to Trialkylborate Ester
- Oxidation Followed by a Hydrolysis, Cleaves Borate Ester
- ANTI-MARKOVNIKOV Product (Good for 1° Alcohols!)

#### **Hydroboration—Oxidation Reactions**

- We Mentioned anti-Markovnikov Regiochemistry
- Reaction also Proceeds with SYN Stereochemistry



H and OH Delivered anti-Markovnikov to the SAME FACE of the  $\pi$  Bond

#### Addition of Cl<sub>2</sub> and Br<sub>2</sub> to Alkenes

$$H_{3}CHC = CHCH_{3} \xrightarrow{Cl_{2}} H_{3}CHC - CHCH_{3}$$

$$H_{3}CH_{2}CHC = CH_{2} \xrightarrow{Cl_{2}} H_{3}CH_{2}CHC - CH_{2}$$

$$H_{3}CH_{2}CHC = CH_{2} \xrightarrow{-9 \text{ °C}} CI \quad CI$$

$$H_{3}CH_{2}CHC - CH_{2}$$

$$CI \quad CI$$

$$CI \quad CI$$

$$H_{3}CH_{2}CHC - CH_{2}$$

$$CI \quad CI$$

$$H_{3}CH_{2}CHC - CH_{2}$$

$$CI \quad CI$$

- Obtain Vicinal Dihalides as Reaction Products
- Want to use a Non-Nucleophilic Solvent (Due to Intermediate)
  - Important to Run Reactions in Dark (Avoid Radicals)

#### **General Mechanism of Dihalide Addition**



- Intermediate is a BROMONIUM ION (in Br<sub>2</sub> Case)
- Nucleophilic Solvents Can Capture (Open) Bromonium Ion
  - **Bromonium Ion Opening is S**<sub>N</sub>2  $\rightarrow$  Anti Addition of Br<sub>2</sub>

# **Stereochemistry of Dihalide Additions**

- Can Open Symmetric Bromonium Ions at Either Carbon
- Always (for now) Anti (Trans) Addition of X<sub>2</sub>
- Reaction Products Are Enantiomers
- Racemic Mixtures (50:50) in Symmetric Bromonium Ions
- Will Get Excess of One Enantiomer in Asymmetric Cases
- Stereospecific Reactions: One Stereoiomeric Form of the Starting Material Reacts in Such a Way to Form a Specific Stereoisomeric Form of the Product

## **Halohydrin Formation**



- Intermediate is Still a BROMONIUM ION (in Br<sub>2</sub> Case)
- Nucleophilic Solvents Can Capture (Open) Bromonium Ion
  - **→** H<sub>2</sub>O Opens the Bromonium Ion; Another H<sub>2</sub>O Deprotonates
  - **Product is Halohydrin** → Net X-OH Addition to Alkene
  - Still Can Get Stereoisomeric Products (Open Either End)

### **Divalent Carbon Compounds: Carbenes**

$$\begin{array}{c|c} \bigcirc \\ : CH_2 \longrightarrow \\ \hline \\ Diazomethane \\ \hline \\ & (A Carbene) \\ \end{array}$$

- Common Way of Generating Carbenes (Divalent Carbon)
- Diazomethane: 3 Resonance Structures (Draw Others??)
- Carbenes are Highly Reactive Species; Short-Lived
- Excellent Utility is in the Synthesis of Cyclopropanes

#### **Divalent Carbon Compounds: Carbenes**



- Halogen Substituted Carbenes from Haloforms (CHCl<sub>3</sub>, etc.)
- Last Reaction is Called the "Simmons-Smith" Reaction

### Oxidation: Syn Dihydroxylation



- C=C is Oxidized by OsO<sub>4</sub>
- Addition of Hydroxyl Groups Proceeds w/ SYN Stereochemistry
- Can Also use KMNO<sub>4</sub> (More Powerful, May Cleave Diol)
- If Using KMNO<sub>4</sub>, need COLD Reaction Temperatures

## **Oxidation: Syn Dihydroxylation**



- Syn Addition Due to 5-membered Transition State
- Transition State Same for KMNO<sub>4</sub> Oxidations
- Cleavage of Osmate Ester Does Not Change C-O Stereochemistry

### Oxidative Cleavage of Alkenes



- Diol is Believed to be Intermediate in Cleavage Reaction
- Unsubstituted Alkene Carbons Oxidized to Carbon Dioxide
- Monosubstituted Alkene Carbons Oxidized to Carboxylates
- Disubstituted Alkene Carbons Oxidized to Ketones

#### **How You May See Oxidative Cleavage**

An Unknown Alkene (C<sub>8</sub>H<sub>16</sub>) Gives Two Products When Treated w/ Hot KMnO<sub>4</sub>:

The Products are a Carboxylic Acid and a Ketone, So Our Alkene Must Be Trisubstituted. We Don't Know if it is CIS or TRANS, but we Can Put the Rest of the Structure Together:

#### **Dihalide Addition To Alkynes**



- Addition Reactions, Just as in Alkenes (adds Once or Twice)
- Anti Additions, First Product Usually a Trans Dihaloalkene
- Can Get Relatively Good Trans Dihaloalkene Yields (1 eq X2)

#### **Addition of HX to Alkynes**



- Addition Reactions, Just as in Alkenes (adds Once or Twice)
- Final Product Typically Geminal Dihaloalkene
- Both Additions Follow Markovnikov's Rule (explains gem.)
- Alumina Accelerates Reaction Rate (as seen w/ Alkenes)

## Oxidative Cleavage of Alkynes



- Can Use Either Ozonolysis or KMnO₄ as with Alkenes
- Products of the Oxidative Cleavage are Carboxylic Acids

#### **Anti-Markovnikov HBr Addition**



- Addition of Peroxides (ROOR) → ANTI-MARKOVNIKOV
- Goes Through a Radical Mechanism
- Right Now Focus on Regiochemistry (Know the Reaction)

# The Diels-Alder Reaction

Synthetic method for preparing compounds containing a cyclohexene ring

# The Reaction



conjugated diene

alkene dienophile

cyclohexene



transition state

# Mechanistic features

- concerted mechanism
- cycloaddition
- pericyclic reaction
  - -a concerted reaction that proceeds through a cyclic transition state

# Recall the general reaction...



conjugated alkene diene diene dienophile

cyclohexene

The equation as written is somewhat misleading because ethylene is a relatively unreactive dienophile.

## What makes a reactive dienophile?

The most reactive dienophiles have an electron-withdrawing group (EWG) directly attached to the double bond.



Typical EWGs

$$C=0$$

$$-c \equiv N$$





benzene 100°C o





## Acetylenic Dienophile



# Diels-Alder Reaction is Stereospecific\*

- syn addition to alkene
- cis-trans relationship of substituents on alkene retained in cyclohexene product

\*A stereospecific reaction is one in which stereoisomeric starting materials give stereoisomeric products; characterized by terms like syn addition, anti elimination, inversion of configuration, etc.

# Example $C_6H_5$ COH H<sub>2</sub>C=CHCH=CH<sub>2</sub> + C<sub>6</sub>H<sub>5</sub> only product





only product

## Cyclic dienes yield bridged bicyclic Diels-Alder adducts.







• is the same as



#### Alcohols, Carbonyls and REDOX

- The Carbonyl Group
- Oxidation/Reduction Reactions: Review
- Reduction of Carbonyls to Alcohols
- Oxidation of Alcohols
- Organometallic Compounds
- Organolithium and Magnesium Compounds
- Reactions of Organolithium/Magnesium Species
- Alcohols from Grignard Reactions
- Lithium Dialkylcuprates

#### **The Carbonyl Functional Group**



- Carbonyl Features 1  $\sigma$  and 1  $\pi$  Bond
- Carbonyl Group Quite Polarized (C<sup>δ+</sup>, O<sup>δ-</sup>)

#### **General Reactions of Carbonyls**

#### **Nucleophilic Addition to Carbonyl Groups:**



#### Oxidation of Alcohols/Reduction of Carbonyls:

More Hydrogen Content



Less
Hydrogen
Content

#### Oxidation/Reduction Reactions

- Commonly Termed 'REDOX' Reactions
- From General Chemistry, we Will Recall
  - Oxidation: Loss of Electrons
  - Reduction: Gain of Electrons
- Organic Chemists will Typically use Different Definitions
  - Reduction: Increase Hydrogen Content (Decrease Oxygen)
  - Oxidation: Decrease Hydrogen Content (Increase Oxygen)
- Oxidizing/Reducing Agents: Usually Inorganic Compounds (M+)
- We will also Recall that in REDOX Reactions:
  - Oxidizing Agents get Reduced
  - Reducing Agents get Oxidized

#### **Oxidation States of Carbon: Organics**



• +1 For More Electronegative, -1 For Less, 0 For Bonded Carbon

#### **Alcohol Synthesis: Carbonyl Reduction**



Carboxylic Acids, Esters, Aldehydes Reduced to 1° Alcohols

Ketones Reduced to 2° Alcohols

Several Hydrogen Sources
Are Used In Organic
Reactions: We've Already
Seen NaBH<sub>4</sub>

#### Reducing Agents: 1° and 2° Alcohols

- Sodium Borohydride: NaBH<sub>4</sub>
- Lithium Aluminum Hydride: LiAIH<sub>4</sub> (LAH)
- H<sub>2</sub>/Transition Metal Catalyst
- NaBH<sub>4</sub> and LiAlH<sub>4</sub> are Hydride Transfer Agents
- Hydride (H<sup>-</sup>) Acts as a Nucleophile
- Carbonyls Have Varying Degrees of Ease of Reduction:



**Hardest** Easiest

#### Selection of a Reducing Agent

- Choice of Reducing Agent Impacts Reaction Products
- For Ketones/Aldehydes Either Reductant Suffices

|                    | Carboxylate | Ester       | Ketone     | Aldehyde   |
|--------------------|-------------|-------------|------------|------------|
| LiAlH <sub>4</sub> | 1° Alcohol  | 1° Alcohol  | 2° Alcohol | 1° Alcohol |
| NaBH <sub>4</sub>  | No Reaction | No Reaction | 2° Alcohol | 1º Alcohol |

- Carboxylates/Esters Only Reduced by LiAlH<sub>4</sub>
- For Compounds w/ Multiple Carbonyl F.G.s; Select Based on Which Group(s) Need to be Reduced

#### NaBH<sub>4</sub>/LiAlH<sub>4</sub> Reduction Examples



## DIBAL (diisobutylaluminum hydride [(CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>]<sub>2</sub>AIH) allows the addition of one equivalent of hydride to an ester

$$CH_{3}CH_{2}CH_{2}COCH_{3}$$
 an ester 
$$1. [(CH_{3})_{2}CHCH_{2}]_{2}AIH, -78 \, ^{\circ}C$$
 
$$CH_{3}CH_{2}CH_{2}CH_{2}CH$$
 an aldehyde

Replacing some of hydrogens of LiAIH<sub>4</sub> with OR groups decreases the reactivity of the metal hydride

#### **Formation of Amines by Reduction**

$$CH_{3}CH_{2}CH_{2}CNH_{2} \xrightarrow{\text{1. LiALH}_{4}, \text{ dry}} \xrightarrow{\text{THF, 0} \circ \text{C}} CH_{3}CH_{2}CH_{2}CH_{2}NH_{2}$$

$$CH_{3}CH_{2}CH_{2}CNHCH_{3} \xrightarrow{\text{1. LiALH}_{4}, \text{ dry}} \xrightarrow{\text{THF, 0} \circ \text{C}} CH_{3}CH_{2}CH_{2}CH_{2}NHCH_{3}$$

$$a \text{ secondary amine}$$

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3} \xrightarrow{\text{1. LiALH}_{4}, \text{ dry}} \xrightarrow{\text{THF, 0} \circ \text{C}} CH_{3}CH_{2}CH_{2}CH_{2}NCH_{3}$$

$$a \text{ tertiary amine}$$

## NaBH<sub>4</sub> can be used to selectively reduce an aldehyde or a ketone in a compound keeping the ester or a C=C unaffected





#### Oxidizing Agents in Organic Chemistry



Pyridinium chlorochromate (PCC)



**Chromic Acid**(Jones Reagent)

- PCC Generally a Mild Oxidant (1° Alcohol → Aldehyde)
- Jones Reagent Harsher Oxidant (1° Alcohol → Carboxylic Acid)
- Choose Oxidant Based on Desired Carbonyl Functional Group

#### General Oxidizing Agent Selection

- Just as in Reductions, Oxidation Products Depend on Reagent
- Generally Don't Oxidize 3° Alcohols

|                                                    | MeOH               | 1° Alcohol         | 2° Alcohol | 3° Alcohol     |
|----------------------------------------------------|--------------------|--------------------|------------|----------------|
| PCC                                                | H <sub>2</sub> C=O | Aldehyde           | Ketone     | No<br>Reaction |
| Cr <sup>6+</sup><br>H <sub>2</sub> SO <sub>4</sub> | HCO <sub>2</sub> H | Carboxylic<br>Acid | Ketone     | No<br>Reaction |

- PCC Good For Aldehydes From Primary Alchols
- Cr<sup>6+</sup>/H<sub>2</sub>SO<sub>4</sub> Reagents, KMNO<sub>4</sub> Primary → Carboxylic Acids
- Use What You Like For Most Ketones

#### Oxidation of 1°, 2° Alcohols



#### Oxidation Mechanisms: Chromate Esters

