Lecture Section:

Student Name:

- **1.** (2 pts.) We have a graph with *n* vertices stored in an adjacency list. How much time will it take to verify that a single edge exists using the adjacency list (stored as an array)?
 - (a) $O(n \log n)$
 - (b) O(n)
 - (c) O(1)
 - (d) $O(n^2)$

Answer (b) O(n)

Looking up a single edge requires iterating through a list of up to n elements.

2. (2 pts.) Consider the following graph,

Which of the following are plausible DFS traversals of the graphs? Mark all correct answers.

- (a) abfehg
- (b) abfhge
- (c) afbehg
- (d) gebafh

Answer (b) and (d) "g e b a f h" and "a b f h g e" DFS explores all available neighbors before backtracking.

Monday, Sep 29, 2025

PSU Email ID:

3. (2 pts.) What is the maximum number of edges possible in a simple undirected graph having *n* vertices?

(a)
$$\frac{n(n+1)}{2}$$

(b)
$$\frac{n(n-1)}{2}$$

(c)
$$n(n-1)$$

Answer (b) $\frac{n(n-1)}{2}$

Number of pairs of *n* vertices is $\binom{n}{2} = \frac{n(n-1)}{2}$.

- **4.** (2 pts.) The topological sort of a Directed Acyclic Graph (DAG) is always unique.
 - (a) True
 - (b) False

Answer (b) False

- **5.** (2 pts.) In a DFS tree, back edges are defined as:
 - (a) Edges that lead to the root node.
 - (b) Edges that point into the current node.
 - (c) Edges that lead to a child node.
 - (d) Edges that lead to an ancestor node.

Answer (d) Edges that lead to an ancestor node.