Deep Hedging – Learning to Trade

Chen-Chung Yang¹ De-Jin Huang²

¹Department of Computer Science Tsing Hua University

²Department of Mathematics Tsing Hua University

URP Midterm Presentation, March 1

Table of Contents

- Introduction
- 2 Discrete time market with Frictions
- 3 Pricing and hedging using convex risk measure
- 4 Approximating Hedging Strategies by Deep Neural Networks
- 5 Numerical Experiments

Table of Contents

- Introduction
- 2 Discrete time market with Frictions
- 3 Pricing and hedging using convex risk measure
- 4 Approximating Hedging Strategies by Deep Neural Networks
- 5 Numerical Experiments

Motivation

Motivation

Derivative Pricing

Motivation

Derivative Pricing

Portfolio Hedging

• Mathematical finance models often assume "ideal" market conditions and frictionless trading, which do not align with real-world scenarios.

- Mathematical finance models often assume "ideal" market conditions and frictionless trading, which do not align with real-world scenarios.
- Practical trading is affected by transaction costs, market impacts, and liquidity issues.

- Mathematical finance models often assume "ideal" market conditions and frictionless trading, which do not align with real-world scenarios.
- Practical trading is affected by transaction costs, market impacts, and liquidity issues.
- A significant gap exists in effective, scalable solutions for addressing these real-world trading challenges.

- Mathematical finance models often assume "ideal" market conditions and frictionless trading, which do not align with real-world scenarios.
- Practical trading is affected by transaction costs, market impacts, and liquidity issues.
- A significant gap exists in effective, scalable solutions for addressing these real-world trading challenges.

Solution: Deep Hedging!!!

What's This???

Deep Hedging introduces an innovative method proposed by Bühler-Gonon-Teichmann-Wood [1] by utilizing neural networks to guide trading decisions in hedging strategies.

Deep Hedging introduces an innovative method proposed by Bühler-Gonon-Teichmann-Wood [1] by utilizing neural networks to guide trading decisions in hedging strategies.

Key Advantages:

Deep Hedging introduces an innovative method proposed by Bühler-Gonon-Teichmann-Wood [1] by utilizing neural networks to guide trading decisions in hedging strategies.

Key Advantages:

 Efficiency: Facilitates the effective training of hedging strategies, ensuring precise optimization of performance.

Deep Hedging introduces an innovative method proposed by Bühler-Gonon-Teichmann-Wood [1] by utilizing neural networks to guide trading decisions in hedging strategies.

Key Advantages:

- Efficiency: Facilitates the effective training of hedging strategies, ensuring precise optimization of performance.
- Model-free: Operates free from the constraints of traditional financial models, providing flexibility in facing the unpredictable nature of markets.

Project objective

The primary aim of this project is to:

Project objective

The primary aim of this project is to:

 Delve into the theoretical foundations of hedging and pricing mechanisms.

Project objective

The primary aim of this project is to:

- Delve into the theoretical foundations of hedging and pricing mechanisms.
- Execute the deep hedging algorithm, deriving effective hedging strategies and determining asset pricing.

Table of Contents

- Introduction
- 2 Discrete time market with Frictions
- Pricing and hedging using convex risk measure
- 4 Approximating Hedging Strategies by Deep Neural Networks
- 5 Numerical Experiments

• a discrete-time financial market with finite time horizon T and trading dates $0 = t_0 < t_1 < ... < t_n = T$.

- a discrete-time financial market with finite time horizon T and trading dates $0 = t_0 < t_1 < ... < t_n = T$.
- $I_k \in \mathbb{R}^r$ the market information available at time t_k , which represents all known information such as prices, bid, asks, etc.

- a discrete-time financial market with finite time horizon T and trading dates $0 = t_0 < t_1 < ... < t_n = T$.
- $I_k \in \mathbb{R}^r$ the market information available at time t_k , which represents all known information such as prices, bid, asks, etc.
- d stocks with mid-prices given by an \mathbb{R}^d -valued stochastic process $\underline{S} = (S_k)_{k=0,\dots,n}$.

- a discrete-time financial market with finite time horizon T and trading dates $0 = t_0 < t_1 < ... < t_n = T$.
- $I_k \in \mathbb{R}^r$ the market information available at time t_k , which represents all known information such as prices, bid, asks, etc.
- d stocks with mid-prices given by an \mathbb{R}^d -valued stochastic process $\underline{S} = (S_k)_{k=0,\dots,n}$.
- ullet a random variable Z, which represents a contingent claim with maturity T.

• Engage in Trading the assets \underline{S} through an \mathbb{R}^d -valued strategy $\underline{\delta} = (\delta_k)_{k=0,\dots,n-1}.$

- Engage in Trading the assets \underline{S} through an \mathbb{R}^d -valued strategy $\underline{\delta} = (\delta_k)_{k=0,\dots,n-1}$.
- Each entry $\delta_k = (\delta_k^1, ..., \delta_k^d)$ represents the allocation within the d assets at each time point.

- Engage in Trading the assets \underline{S} through an \mathbb{R}^d -valued strategy $\underline{\delta} = (\delta_k)_{k=0,\dots,n-1}$.
- Each entry $\delta_k = (\delta_k^1, ..., \delta_k^d)$ represents the allocation within the d assets at each time point.
- δ^i_k quantifies the holdings of the *i*-th asset at the moment t_k .

- Engage in Trading the assets \underline{S} through an \mathbb{R}^d -valued strategy $\underline{\delta} = (\delta_k)_{k=0,\dots,n-1}$.
- Each entry $\delta_k = (\delta_k^1, ..., \delta_k^d)$ represents the allocation within the d assets at each time point.
- δ^i_k quantifies the holdings of the *i*-th asset at the moment t_k .
- For ease of notation, we set initial and final with $\delta_{-1} = \delta_T := 0$.

- Engage in Trading the assets \underline{S} through an \mathbb{R}^d -valued strategy $\underline{\delta} = (\delta_k)_{k=0,\dots,n-1}$.
- Each entry $\delta_k = (\delta_k^1, ..., \delta_k^d)$ represents the allocation within the d assets at each time point.
- δ^i_k quantifies the holdings of the *i*-th asset at the moment t_k .
- For ease of notation, we set initial and final with $\delta_{-1} = \delta_T := 0$.
- ullet The trading gains or losses under strategy $\underline{\delta}$ is calculated by:

$$(\underline{\delta} \cdot \underline{S})_T := \sum_{k=0}^{T-1} \delta_k \cdot (S_{k+1} - S_k).$$

We define the following trading spaces:

We define the following trading spaces:

 \bullet \mathcal{H}^u is defined as the unconstrained set of trading strategies.

We define the following trading spaces:

- \bullet \mathcal{H}^u is defined as the unconstrained set of trading strategies.
- For each time step k, $\mathcal{H}_k := H_k(\mathbb{R}^{d(k+1)})$ denotes the set of trading strategies for δ_k that adhere to specific constraints, as image under a mapping $H_k : \mathbb{R}^{d(k+1)} \to \mathbb{R}^d$.

We define the following trading spaces:

- ullet \mathcal{H}^u is defined as the unconstrained set of trading strategies.
- For each time step k, $\mathcal{H}_k := H_k(\mathbb{R}^{d(k+1)})$ denotes the set of trading strategies for δ_k that adhere to specific constraints, as image under a mapping $H_k : \mathbb{R}^{d(k+1)} \to \mathbb{R}^d$.
- $\mathcal{H} := (H \circ \mathcal{H}^u) \subset \mathcal{H}^u$ represents the set of restricted trading strategies.

Hedging Strategies

Hedging Strategies

• Let's start with a portfolio whose initial cash position is p_0 . Note: A negative p_0 indicates the potential for cash withdrawal from the portfolio.

Hedging Strategies

- Let's start with a portfolio whose initial cash position is p_0 . Note: A negative p_0 indicates the potential for cash withdrawal from the portfolio.
- Assume all trading operations are self-financing, meaning they rely solely on the portfolio's own assets, eliminating the necessity for external financing.

Hedging Strategies

- Let's start with a portfolio whose initial cash position is p_0 . Note: A negative p_0 indicates the potential for cash withdrawal from the portfolio.
- Assume all trading operations are self-financing, meaning they rely solely on the portfolio's own assets, eliminating the necessity for external financing.
- Account for **proportional transaction costs** in trading activities. That is, initiating a position $n \in \mathbb{R}^d$ in \underline{S} at time t_k leads to costs

$$c_k(\mathbf{n}) := \sum_{i=1}^d c_k^i S_k^i |n_i|.$$

Hedging strategies

The terminal value of the portfolio at time T is determined by:

$$PnL_{\mathcal{T}}(Z, p_0, \underline{\delta}) := -Z + p_0 + (\underline{\delta} \cdot \underline{S})_{\mathcal{T}} - C_{\mathcal{T}}(\underline{\delta}),$$

where:

Hedging strategies

The terminal value of the portfolio at time T is determined by:

$$PnL_{\mathcal{T}}(Z, p_0, \underline{\delta}) := -Z + p_0 + (\underline{\delta} \cdot \underline{S})_{\mathcal{T}} - C_{\mathcal{T}}(\underline{\delta}),$$

where:

• The sum of the first three terms represents the portfolio's wealth at maturity T, assuming a market without transaction costs.

Hedging strategies

The terminal value of the portfolio at time T is determined by:

$$PnL_{\mathcal{T}}(Z, p_0, \underline{\delta}) := -Z + p_0 + (\underline{\delta} \cdot \underline{S})_{\mathcal{T}} - C_{\mathcal{T}}(\underline{\delta}),$$

where:

- The sum of the first three terms represents the portfolio's wealth at maturity T, assuming a market without transaction costs.
- The final term,

$$C_T(\underline{\delta}) := \sum_{k=0}^n c_k (\delta_k - \delta_{k-1})$$

accounts for the cumulative transaction costs incurred by implementing strategy $\underline{\delta}$ until maturity.

Table of Contents

- Introduction
- 2 Discrete time market with Frictions
- 3 Pricing and hedging using convex risk measure
- 4 Approximating Hedging Strategies by Deep Neural Networks
- 5 Numerical Experiments

A hedging strategy aims to reduce the risk associated with a derivative portfolio.

A hedging strategy aims to reduce the risk associated with a derivative portfolio.

Question: How to quantify risk?

A hedging strategy aims to reduce the risk associated with a derivative portfolio.

Question: How to quantify risk?

Answer: Risk Measures.

Let Ω be a probability space and $\mathcal{X}:\{\Omega\to\mathbb{R}\}$ be the set of all real-valued random variables over Ω .

Let Ω be a probability space and $\mathcal{X}:\{\Omega\to\mathbb{R}\}$ be the set of all real-valued random variables over Ω .

We call $\rho: \mathcal{X} \to \mathbb{R}$ a convex risk measure [2] if it is

Let Ω be a probability space and $\mathcal{X}:\{\Omega\to\mathbb{R}\}$ be the set of all real-valued random variables over Ω .

We call $\rho: \mathcal{X} \to \mathbb{R}$ a convex risk measure [2] if it is

1 Monotone decreasing: if $X_1 \geq X_2$ then $\rho(X_1) \leq \rho(X_2)$.

Let Ω be a probability space and $\mathcal{X}:\{\Omega\to\mathbb{R}\}$ be the set of all real-valued random variables over Ω .

We call $\rho: \mathcal{X} \to \mathbb{R}$ a convex risk measure [2] if it is

- **1** Monotone decreasing: if $X_1 \ge X_2$ then $\rho(X_1) \le \rho(X_2)$.
- **② Convexity**: $\rho(\alpha X_1 + (1 \alpha)X_2) \le \alpha \rho(X_1) + (1 \alpha)\rho(X_2)$ for $\alpha \in [0, 1]$.

Let Ω be a probability space and $\mathcal{X}:\{\Omega\to\mathbb{R}\}$ be the set of all real-valued random variables over Ω .

We call $\rho: \mathcal{X} \to \mathbb{R}$ a convex risk measure [2] if it is

- **1** Monotone decreasing: if $X_1 \ge X_2$ then $\rho(X_1) \le \rho(X_2)$.
- **2 Convexity**: $\rho(\alpha X_1 + (1 \alpha)X_2) \le \alpha \rho(X_1) + (1 \alpha)\rho(X_2)$ for $\alpha \in [0, 1]$.
- **3** Cash-Invariant: $\rho(X+c) = \rho(X) c$ for $c \in \mathbb{R}$

Entropic risk measure

Examples (Entropic risk measure)

$$\rho = \frac{1}{\lambda} \log \left(\mathbb{E} \left[\exp(-\lambda X) \right] \right)$$

Here λ is the risk aversion parameter.

Conditional value at risk

Examples (CVaR)

$$\mathit{CVaR}_{lpha}(X) := \mathbb{E}[X|X \leq \mathit{VaR}_{lpha}(X)]$$

where $VaR_{\alpha}(X) := P[X \leq \cdot]^{-1}(1-\alpha)$

Let ρ be a given convex risk measure.

Let ρ be a given convex risk measure.

Consider the optimization problem

$$\pi(X) := \inf_{\underline{\delta} \in \mathcal{H}} \rho(X + (\underline{\delta} \cdot \underline{S})_{\mathcal{T}} - C_{\mathcal{T}}(\delta)). \tag{1}$$

Let ρ be a given convex risk measure.

Consider the optimization problem

$$\pi(X) := \inf_{\underline{\delta} \in \mathcal{H}} \rho(X + (\underline{\delta} \cdot \underline{S})_{\mathcal{T}} - C_{\mathcal{T}}(\delta)). \tag{1}$$

We define an **optimal hedging strategy** as δ that minimizes within H as per the definition of $\pi(X)$.

Let ρ be a given convex risk measure.

Consider the optimization problem

$$\pi(X) := \inf_{\underline{\delta} \in \mathcal{H}} \rho(X + (\underline{\delta} \cdot \underline{S})_{\mathcal{T}} - C_{\mathcal{T}}(\delta)). \tag{1}$$

We define an **optimal hedging strategy** as δ that minimizes within H as per the definition of $\pi(X)$.

Proposition

 π is monotone decreasing and cash-invariant. If moreover C_T and $\mathcal H$ are convex, then π is a convex risk measure.

• Indifference pricing is a method of pricing derivatives based on a risk measure (or a utility function).

- Indifference pricing is a method of pricing derivatives based on a risk measure (or a utility function).
- We define the indifference price p(Z) of a contingent claim Z as the amount of cash that one needs to charge in order to be indifferent between the position -Z and not doing so. That is, as the solution p_0 to $\pi(-Z+p_0)=\pi(0)$.

- Indifference pricing is a method of pricing derivatives based on a risk measure (or a utility function).
- We define the indifference price p(Z) of a contingent claim Z as the amount of cash that one needs to charge in order to be indifferent between the position -Z and not doing so. That is, as the solution p_0 to $\pi(-Z+p_0)=\pi(0)$.
- Due to cash-invariance, this condition simplifies to setting $p_0 = p(Z)$, hence,

$$p(Z) = \pi(-Z) - \pi(0).$$

Indifference price of an attainable contingent claim

Lemma

Suppose $C_T \equiv 0$ and $\mathcal{H} = \mathcal{H}^u$. If Z is attainable, i.e. there exists $\underline{\delta}^* \in \mathcal{H}$ and $p_0 \in \mathbb{R}$ such that $Z = p_0 + (\underline{\delta}^* \cdot \underline{S})_T$, then $p(Z) = p_0$.

Indifference price of an attainable contingent claim

Lemma

Suppose $C_T \equiv 0$ and $\mathcal{H} = \mathcal{H}^u$. If Z is attainable, i.e. there exists $\underline{\delta}^* \in \mathcal{H}$ and $p_0 \in \mathbb{R}$ such that $Z = p_0 + (\underline{\delta}^* \cdot \underline{S})_T$, then $p(Z) = p_0$.

Takeaway: A replicable contingent claim can be hedged completely and thus has zero price.

Table of Contents

- Introduction
- 2 Discrete time market with Frictions
- Pricing and hedging using convex risk measure
- 4 Approximating Hedging Strategies by Deep Neural Networks
- Numerical Experiments

Universal approximation by neural networks

Universal approximation by neural networks

Artificial Neural networks are compositions of multiple simple functions that map real-valued vectors to real-valued vectors.

Universal approximation by neural networks

Artificial Neural networks are compositions of multiple simple functions that map real-valued vectors to real-valued vectors.

Universal Approximation Theorem

Let \mathfrak{X} be a compact subset of \mathbb{R}^{d_0} . The set of neural networks mapping from \mathfrak{X} to \mathbb{R}^{d_1} is dense in $C(\mathfrak{X}, \mathbb{R}^{d_1})$.[3]

Optimal hedging using deep neural networks

We now consider neural network hedging strategies.

Optimal hedging using deep neural networks

We now consider neural network hedging strategies.

In order to apply the Universal Approximation Theorem above, we represent the optimization over constrained trading strategies $\underline{\delta} \in \mathcal{H}$ as an optimization over $\underline{\delta} \in \mathcal{H}^u$ with a following modified objective.

We now consider neural network hedging strategies.

In order to apply the Universal Approximation Theorem above, we represent the optimization over constrained trading strategies $\underline{\delta} \in \mathcal{H}$ as an optimization over $\underline{\delta} \in \mathcal{H}^u$ with a following modified objective.

Lemma

We may write the constrained problem (1) as the modified un-constrained problem as

$$\pi(X) = \inf_{\delta \in \mathcal{H}^u} \rho\left(X + (H \circ \underline{\delta} \cdot \underline{S})_T - C_T(H \circ \underline{\delta})\right).$$

Define

$$H_{M} = \{(\delta_{k})_{k=0,...,n-1} \in \mathcal{H}^{u} : \delta_{k} = F_{k}(I_{0},...,I_{k},\delta_{k-1}), F_{k} \in \mathcal{NN}_{M,r(k+1)+d,d}\}$$
$$= \{(\delta_{k}^{\theta})_{k=0,...,n-1} \in \mathcal{H}^{u} : \delta_{k}^{\theta} = F_{k}^{\theta}(I_{0},...,I_{k},\delta_{k-1}), \theta_{k} \in \Theta_{M,r(k+1)+d,d}\}$$

Define

$$H_{M} = \{(\delta_{k})_{k=0,...,n-1} \in \mathcal{H}^{u} : \delta_{k} = F_{k}(I_{0},...,I_{k},\delta_{k-1}), F_{k} \in \mathcal{NN}_{M,r(k+1)+d,d}\}$$

$$= \{(\delta_{k}^{\theta})_{k=0,...,n-1} \in \mathcal{H}^{u} : \delta_{k}^{\theta} = F_{k}^{\theta}(I_{0},...,I_{k},\delta_{k-1}), \theta_{k} \in \Theta_{M,r(k+1)+d,d}\}$$

We aim to calculate

$$\pi^{M}(X) = \inf_{\delta \in \mathcal{H}_{M}} \rho \left(X + (H \circ \underline{\delta} \cdot \underline{S})_{T} - C_{T}(H \circ \underline{\delta}) \right)$$
$$= \inf_{\theta \in \Theta_{M}} \rho \left(X + (H \circ \underline{\delta}^{\theta} \cdot \underline{S})_{T} - C_{T}(H \circ \delta^{\theta}) \right)$$
(2)

where
$$\Theta_M = \prod_{k=0}^{n-1} \Theta_{M,r(k+1)+d,d}$$
.

The Universal Approximation Theorem suggests that strategies within \mathcal{H} can be arbitrarily approximated by strategies in \mathcal{H}_{M} . i.e.

The Universal Approximation Theorem suggests that strategies within \mathcal{H} can be arbitrarily approximated by strategies in \mathcal{H}_M . i.e.

Proposition

$$\lim_{M\to\infty}\pi^M(X)=\pi(X).$$

The Universal Approximation Theorem suggests that strategies within \mathcal{H} can be arbitrarily approximated by strategies in \mathcal{H}_{M} . i.e.

Proposition

$$\lim_{M\to\infty}\pi^M(X)=\pi(X).$$

Consequently, the neural network price $p^M(Z) := \pi^M(-Z) - \pi^M(0)$ converges to the exact price p(Z).

As a result, the focus shifts to solving for π^M effectively.

As a result, the focus shifts to solving for π^M effectively.

Key Question: How do we calculate a (close-to) optimal $\theta \in \Theta_M$ for our neural network-based hedging strategy (2)?

As a result, the focus shifts to solving for π^M effectively.

Key Question: How do we calculate a (close-to) optimal $\theta \in \Theta_M$ for our neural network-based hedging strategy (2)?

Brief Answer: Apply standard deep learning techniques to robust representation of convex risk measures, including:

As a result, the focus shifts to solving for π^M effectively.

Key Question: How do we calculate a (close-to) optimal $\theta \in \Theta_M$ for our neural network-based hedging strategy (2)?

Brief Answer: Apply standard deep learning techniques to robust representation of convex risk measures, including:

Minibatch stochastic gradient descent for iterative optimization.

As a result, the focus shifts to solving for π^M effectively.

Key Question: How do we calculate a (close-to) optimal $\theta \in \Theta_M$ for our neural network-based hedging strategy (2)?

Brief Answer: Apply standard deep learning techniques to robust representation of convex risk measures, including:

- Minibatch stochastic gradient descent for iterative optimization.
- Backpropagation algorithm for efficient gradient calculation.

Table of Contents

- Introduction
- 2 Discrete time market with Frictions
- Pricing and hedging using convex risk measure
- 4 Approximating Hedging Strategies by Deep Neural Networks
- **5** Numerical Experiments

Market generator:

- Black-Scholes model
- Heston model

Market generator:

- Black-Scholes model
- Heston model

Hedging target: European call option

payoff
$$(S, K) = max(S - K, 0)$$
.

Market generator:

- Black-Scholes model
- Heston model

Hedging target: European call option

payoff
$$(S, K) = max(S - K, 0)$$
.

Risk measure : CVaR with $\alpha = 0.95$.

Parameters definition and settings:

- Simulate 5000 paths
- Trading days T = 30/252
- Trading every day, $\Delta t = 1/252$
- S_t is the stock price at time t, $S_0 = 100$
- K is strike price, K = 100
- V_t is the variance at time t
- δ_t is asset position at time t
- ullet $F^{ heta}$ is neural network with parameters heta

Black-Scholes model

Asset price paths:

$$\Delta S_t = S_{t-1} \times (\mu \Delta t + \sigma \sqrt{\Delta t} \mathcal{N}), \text{ for } t > 0$$

where:

- ullet μ is a constant means expected return
- \bullet σ is a constant means variance
- ullet $\mathcal N$ is standard normal distribution

Hedging strategies

Black-Scholes model delta hedging:

Hedge Ratio
$$\delta = \frac{\partial C}{\partial S} = N(d_1)$$

where

- C is the call option price
- N(x) is the CDF of standard normal distribution

$$d_1 = \frac{\log\left(\frac{S_0 e^{-rt}}{K}\right)}{\sigma\sqrt{t}} + \frac{\sigma\sqrt{t}}{2}$$

Hedging strategies

Black-Scholes model delta hedging:

Hedge Ratio
$$\delta = \frac{\partial C}{\partial S} = N(d_1)$$

where

- C is the call option price
- N(x) is the CDF of standard normal distribution

Deep Hedging:

Hedge Ratio
$$\delta_t^{ heta} = F^{ heta}(I_t, \delta_{t-1}^{ heta})$$

where

• Input $I_t = (\log(S_t/K), \ \sigma, \ T - t)$ at time t

Simulation result

CVaR_{0.95} value

Deep Hedging: -3.63Delta Hedging: -7.96

Heston model

Asset price paths :

$$\begin{split} \Delta S_t &= S_{t-1} \times (\mu \Delta t + \sqrt{V_{t-1} \Delta t} \mathcal{N}_S), \ \ \textit{for} \ t > 0 \\ \Delta V_t &= \alpha (b - V_{t-1}) \Delta t + \sigma \sqrt{V_{t-1} \Delta t} \mathcal{N}_V, \ \ \textit{for} \ t > 0 \end{split}$$

where:

- ullet μ is the expected return
- $\mathcal{N}_{\mathcal{S}}$ and \mathcal{N}_{V} are standard normal distribution with correlation $ho \in [-1,1]$
- α , b, σ , v_0 , s_0 are positive constants.

Hedging strategies

Heston model delta hedging:

Hedge Ratio
$$\delta = \frac{\partial C}{\partial S}$$

where C is the call option price.

Hedging strategies

Heston model delta hedging:

Hedge Ratio
$$\delta = \frac{\partial \textit{C}}{\partial \textit{S}}$$

where *C* is the call option price.

Deep Hedging:

Hedge Ratio
$$\delta_t^{\theta}, V_t^{\theta} = F^{\theta}(I_t, \delta_{t-1}^{\theta}, V_{t-1}^{\theta})$$

where

• Input $I_t = (\log(S_t/K), T - t)$ at time t

Simulation result

CVaR_{0.95} value

• Deep Hedging: -3.76

• Delta Hedging: -8.13

Transaction cost

Transaction cost $c_t(x) = \epsilon |x| S_t$, with $\epsilon = 0.01$

CVaR_{0.95} value

• Deep Hedging: -5.27

• Delta Hedging: -8.49

Replace model-based paths with synthetic paths generated by "GAN"

- Replace model-based paths with synthetic paths generated by "GAN"
- Explore signature hedging strategies

- Replace model-based paths with synthetic paths generated by "GAN"
- Explore signature hedging strategies
- Delve into deep Bellman hedging approaches i.e. leveraging reinforcement learning algorithms for dynamic decision-making

References

- [1] H. Buehler, L. Gonon, J. Teichmann, and B. Wood, "Deep hedging," *Quantitative Finance*, vol. 19, no. 8, pp. 1271–1291, 2019.
- [2] F. Hans and A. Schied, *Stochastic Finance: An Introduction in Discrete Time by.* De Gruyter, 2016.
- [3] K. Hornik, "Approximation capabilities of multilayer feedforward networks," *Neural networks*, vol. 4, no. 2, pp. 251–257, 1991.