Национальный исследовательский университет «МЭИ» Институт информационных и вычислительных технологий Кафедра ПМ ИИ

Отчет по курсовой работе

по дисциплине: «Численные методы»

Тема курсовой работы

«Моделирование передачи тепла в пластине в зависимости от граничных условий»

Группа: А-05-22

Студенты:

Павлов Н. М.

Володченков Н. Д.

Руководитель:

Амосова О. А.

Москва 2024

Оглавление

Раздел 1. Задача теплопроводности	3
1.1. Постановка задачи	3
1.2. Общие выкладки по поиску аналитического решения	3
1.3. Первая попытка поиска начальных условий	4
1.4. Вторая попытка поиска начальных условий	5
1.5. Третья попытка поиска начальных условий	5
1.6. Четвертая попытка поиска начальных условий	6
1.7. Итог раздела	6
Раздел 2. Разностные схемы	7
Раздел 3. Явная разностная схема	8
3.1. Идея решения	8
3.2. Особенности применения и точность решения	8
Раздел 4. Неявная разностная схема	10
4.1. Идея решения	10
4.2. Точность метода	11
Раздел 5. Моделирование передачи тепла в пластине в зависимости от начальных и	
граничных условий	12
5.1. Первая модель	12
5.2. Вторая модель	13
5.3. Третья модель	13
5.4. Четвертая модель	16
5.5. Пятая модель	16
Раздел 6. Заключение	18
Приложение	19
Приложение 1. Код явного метода	19
Приложение 2. Код неявного метода	21
Приложение 3. Ссылки на анимации	25
Литература	26

Раздел 1. Задача теплопередачи

1.1. Постановка задачи

В ходе курсовой работы будем моделировать теплопередачу внутри квадратной пластины. Для этого требуется составить математическую модель задачи. Положим пластину в декартову систему координат так, чтобы углы пластины соответствовали координатам $(0,0),\,(0,1),\,(1,0),\,(1,1)$. Измерение температуры будем проводить в отрезок времени [0,T].

Нетрудно заметить, что в таком случае у нас получается функция нагрева u(x,y,t), определенная на D. Также обозначим границу пластины как Γ .

$$D = \{(x, y, t) \in \mathbb{R}^3 : x \in [0, 1], \ y \in [0, 1], \ t \in [0, T] \}$$

$$\Gamma = \left\{ (x,y,t) \in \mathbb{R}^3 : x = 0 \lor y = 0 \lor x = 1 \lor y = 1
ight\}$$

Обращаясь к результатам физики, имеем следующее дифференциальное уравнение, описывающее поставленную задачу:

$$rac{\partial u}{\partial t} = rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2}$$

Которое для простоты обозначений перепишем в следующем виде:

$$u_t = u_{xx} + u_{yy}$$

Но для однозначного решения этого уравнения не хватает начальных и граничных условий, определим их следующим образом:

 $u\big|_{t=0} = \phi(x,y)$ - начальное распределение тепла в пластине

 $u\big|_{\Gamma}=g(x,y,t)$ - распределение тепла на краях пластины

Поиск общего аналитического решения, зависящего от обоих условий, для такой задачи достаточно сложен, поэтому будем применять численные методы, а именно разностные схемы, которые рассмотрим далее. Далее, для оценки работы численных методов, найдем решение этой задачи при определенных начальных условиях.

1.2. Общие выкладки по поиску аналитического решения

Решение будем искать в виде $u(x,y,t) = X(x) \cdot Y(y) \cdot T(t)$, отсюда

$$u_t = X(x) \cdot Y(y) \cdot T'(t)$$

$$u_{xx} = X''(x) \cdot Y(y) \cdot T(t)$$

$$u_{yy} = X(x) \cdot Y''(y) \cdot T(t)$$

Тогда уравнение примет вид:

$$X(x) \cdot Y(y) \cdot T'(t) = X''(x) \cdot Y(y) \cdot T(t) + X(x) \cdot Y''(y) \cdot T(t)$$

Поделив обе части уравнения на $X(x) \cdot Y(y) \cdot T(t)$ получаем:

$$\frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)}$$

Заметим, что каждое из слагаемых зависит только от одной из переменных, поэтому получаем, что

$$rac{T'(t)}{T(t)}=-\lambda, \ rac{X''(x)}{X(x)}=-\lambda_1, \ rac{Y''(y)}{Y(y)}=-\lambda_2$$
, где $\lambda,\lambda_1,\lambda_2$ - некоторые константы.

Избавимся от знаменателей в каждом из этих уравнений и получим следующие задачи Штурма-Лиувилля:

$$\begin{cases} T'(t) = -\lambda T(t) & (1) \\ X''(x) = -\lambda_1 X(x) & (2) \\ Y''(y) = -\lambda_2 Y(y) & (3) \end{cases}$$

Отдельно решим каждую из них, для начала задачу (1). Если не будем задавать никаких дополнительных условий, то получим решение

$$T(t) = C^{(1)}e^{-\lambda t}$$

Пока что оставим его в таком виде и перейдем к задаче (2) (ну и аналогичные выводы сможем сделать и для задачи (3)):

$$X''(x) = -\lambda_1 X(x)$$

И тут уже от параметра λ зависит то как будет выглядеть решение. Для простоты будем брать $\lambda \in \mathbb{R}.$

1.3. Первая попытка поиска начальных условий (неудачная)

Решение получим, если возьмём $\lambda_i = 0$. Тогда общее решение будет очень простое:

$$X(x) = C_1^{(2)} x + C_0^{(2)}$$

$$Y(y) = C_1^{(3)} y + C_0^{(3)}$$

А решение для функции тепла будет выглядеть следующим образом:

$$u(x,y,t) = C^{(1)}e^0 \cdot (C_1^{(2)}x + C_0^{(2)}) \cdot (C_1^{(3)}y + C_0^{(3)}) = Axy + Bx + Cy + D$$

По смыслу задачи (тепло никак не уравновешивается) такое решение не подходит.

1.4. Вторая попытка поиска начальных условий (неудачная)

Теперь возьмем $\lambda_i < 0$, в таком случае решение запишется как

$$X(x) = C_1^{(2)} e^{\sqrt{-\lambda_1}x} + C_2^{(2)} e^{-\sqrt{-\lambda_1}x}$$

$$Y(y) = C_1^{(3)} e^{\sqrt{-\lambda_2} y} + C_2^{(3)} e^{-\sqrt{-\lambda_2} y}$$

$$u(x,y,t) = C^{(1)}e^{-\lambda t}\cdot X(x)\cdot Y(y)$$

Так как $\lambda = \lambda_1 + \lambda_2 < 0$, то при увеличении времени будет возрастать и нагрев, что также не подходит по смыслу задачи.

1.5. Третья попытка поиска начальных условий (удачная)

Будем считать $\lambda_i>0$, тогда получаем решение

$$X(x) = C_1 \cos(\sqrt{\lambda_1}x) + C_2 \sin(\sqrt{\lambda_1}x)$$

Также будем считать g(x,y,t)=0, что означает:

- X(0) = 0, тогда $C_1 = 0$
- ullet X(1)=0, тогда $\sin(\sqrt{\lambda_1})=0 \implies \lambda_1=\pi^2 n^2$

И решение примет вид

$$X(x) = C^{(2)}\sin(\pi nx)$$

Аналогично

$$Y(y) = C^{(3)}\sin(\pi m y)$$

Таким образом,

$$u(x,y,t)=Ae^{-(m^2+n^2)\pi^2t}\sin(\pi nx)\sin(\pi my)$$

Вообще говоря, это целое семейство функций, линейная комбинация которых также будет решением, но если возьмем начальное и граничное условие как

$$\phi(x,y) = \sin(\pi x)\sin(\pi y)$$

$$g(x, y, t) = 0$$

то решением такой задачи будет

$$u(x, y, t) = e^{-2\pi^2 t} \sin(\pi x) \sin(\pi y).$$

1.6. Четвертая попытка поиска начальных условий (неудачная)

Заметим, что вторая попытка была откинута только потому, что итоговое $\lambda=\lambda_1+\lambda_2$ оказалось отрицательным, благодаря чему можно было с легкостью утвердить, что такое решение не соответствует смыслу задачи. Но что, если $\lambda=\lambda_1+\lambda_2$ будет с одной стороны положительным, но с другой стороны одно из слагаемых λ_i окажется отрицательным?

Не ограничивая общности, примем, что $\lambda_1<0$, $\lambda_2>0$, $|\lambda_1|<|\lambda_1|$, тогда решения примут вид:

$$X(x) = C_1^{(2)} e^{\sqrt{-\lambda_1} x} + C_2^{(2)} e^{-\sqrt{-\lambda_1} x}$$

$$Y(y) = C_1^{(3)} \cos(\sqrt{\lambda_2} y) + C_2^{(3)} \sin(\sqrt{\lambda_2} y)$$

Наложим сюда то же краевое условие, что и в пункте 5, тогда, как мы уже знаем

$$Y(y) = C^{(3)}\sin(\pi my)$$

A для X(x) имеем:

$$\begin{cases} C_1^{(2)} + C_2^{(2)} = 0 \\ C_1^{(2)} e^{\sqrt{-\lambda_1}} + C_2^{(2)} e^{-\sqrt{-\lambda_1}} = 0 \end{cases}$$

Выразим из первого уравнения $C_2^{(2)} = -C_1^{(2)}$ и подставим во второе, получим:

$$C_1^{(2)}\cdot\left(e^{\sqrt{-\lambda_1}}-e^{-\sqrt{-\lambda_1}}
ight)=0$$

Так как приняли $\lambda_1<0$, то второй множитель никогда не обращается в 0, значит $C_1^{(2)}=0$, но тогда в силу первого уравнения $C_2^{(2)}=0$, следовательно X(x)=0, u=0. Этот случай тривиален, а значит рассматривать его не будем.

1.7. Итог раздела

Если зададим граничное и начальное условия как

$$\phi(x,y) = \sin(\pi x)\sin(\pi y)$$

$$g(x, y, t) = 0$$

То аналитическим решением будет

$$u(x,y,t)=e^{-2\pi^2t}\sin(\pi x)\sin(\pi y).$$

Раздел 2. Разностные схемы

Решение задачи теплопроводности будем искать в виде сеточной функции, с чем нам помогут разностные схемы. Для этого разобьем исходное пространство D на прямоугольную сетку точек (x_i,y_j,t_k) , где $i=0,\ldots,n;\ j=0,\ldots,n;\ k=0,\ldots,m$

$$x_i = ih$$
, $y_j = jh$, $t_k = k\tau$

Обозначим

$$U_{i,j}^k = u(x_i,y_j,t_k)$$

Заметим, что благодаря краевым условиям при решении задачи будем знать

$$U_{i,0}^k, U_{i,n}^k, U_{i,0}^k, U_{i,n}^k, \ \forall i,j,k$$

А благодаря начальному условию известно

$$U_{i,j}^0, \ \forall i,j$$

Далее будем заменять производные по формулам, их приближающим:

$$f'(x)pprox rac{f(x+h)-f(x)}{h}$$
 - правая разностная производная

$$f'(x)pprox rac{f(x)-f(x-h)}{h}$$
 - левая разностная производная

В обоих случаях предполагается h > 0.

Тогда вторую производную можно приблизить следующим образом:

$$f''(x)pprox rac{f'(x)-f'(x-h)}{h}pprox rac{rac{f(x+h)-f(x)}{h}-rac{f(x)-f(x-h)}{h}}{h}=rac{f(x+h)-2f(x)+f(x-h)}{h^2}$$

Оттуда сможем выражать значения на последующем слое U^{k+1} через значения на предыдущем(-их) U^k .

Раздел 3. Явная разностная схема

3.1. Идея решения

Заменим u_t , u_{xx} , u_{yy} на приближенные производные в точках (x_i, y_j, t_k) :

$$\frac{U_{i,j}^{k+1} - U_{i,j}^k}{\tau} = \frac{U_{i+1,j}^k - 2U_{i,j}^k + U_{i-1,j}^k}{h^2} + \frac{U_{i,j+1}^k - 2U_{i,j}^k + U_{i,j-1}^k}{h^2}$$

Отсюда сразу выражается значения температуры в следующий момент времени:

$$U_{i,j}^{k+1} = rac{ au}{h^2} \Big(U_{i-1,j}^k + U_{i+1,j}^k + U_{i,j-1}^k + U_{i,j+1}^k - 4U_{i,j}^k \Big) + U_{i,j}^k$$

$$orall i, j \in \{1, 2, \dots, n-1\}, \; k \in \{0, 1, \dots, m-1\}$$

Как видно, эта формула справедлива только для внутренних точек пластины, а для значений на краях, как было отмечено в разделе 2, используем краевые условия.

В приложении 1 приведен код, реализующий этот метод.

3.2. Особенности применения и точность решения при их соблюдении

При решение сразу захотелось решать поставленную уравнение на большом промежутке времени и при большом разрешении пластины, всё конечно же упирается в вычислительные мощности, поэтому пространство времени было решено всегда разбивать на 100 интервалов, так как именно количество интервалов времени соотвествует количеству сгенерированных кадров анимации.

Затем выбрали T=0.1, а пластину разбили на 100 кусочков.

Будем сразу брать начальные и краевые условия из пункта 5 раздела 1.

И тогда получаем анимацию, которая на первых кадрах более менее похожа на теплопередачу в пластине, но затем достаточно быстро вся пластина заполняется чередующимися очень горячими, или очень холодными точками - следовательно, нарушена устойсчивость, анимацию можно найти по ссылке (если кликабельность будет потеряна, то ссылки можно найти в приложении):

Нестабильный явный метод

Опытным путем обнаружили, что отношение $\frac{\tau}{h^2}\approx 1$ чтобы задача была устойчива, следовательно, чтобы решить задачу хотя бы для размера пластины 50 на 50, требуется уменьшить время до T=0.01, и тогда получаем следующую анимацию:

Стабильный явный метод

Погрешность в таком случае никогда не превышает 0.000104, её график можно посмотреть по той же ссылке.

Также из теории известно, что эта схема имеет 2-й порядок точности для аппроксимации производных про пространству $\frac{\partial}{\partial x}$ и $\frac{\partial}{\partial y}$ (в нашем случае $h=0.01 \implies R \approx C \cdot 10^{-4}$), и 1-й порядок точности для аппроксимации производных по времени $\frac{\partial}{\partial t}$ (в нашем случае $\tau=10^{-4} \implies R \approx C \cdot 10^{-4}$). Как видим, полученный результат удовлетворяет теории.

Раздел 4. Неявная разностная схема

4.1. Идея решения

Также будем заменять u_t на приближенную производную в точке (x_i,y_j,t_k) , но u_{xx} и u_{yy} заменим на разностную формулу в точке (x_i,y_j,t_{k+1}) - получим неявную схему

$$\frac{U_{i,j}^{k+1} - U_{i,j}^k}{\tau} = \frac{U_{i+1,j}^{k+1} - 2U_{i,j}^{k+1} + U_{i-1,j}^{k+1}}{h^2} + \frac{U_{i,j+1}^{k+1} - 2U_{i,j}^{k+1} + U_{i,j-1}^{k+1}}{h^2}$$

Немного преобразовав это уравнение, получаем

$$- au U_{i,j-1}^{k+1} - au U_{i-1,j}^{k+1} + (h^2 + 4 au) U_{i,j}^{k+1} - au U_{i+1,j}^{k+1} - au U_{i,j+1}^{k+1} = h^2 U_{i,j}^k$$

Добавив сюда краевые условия получаем систему n^2 уравнений из n^2 переменных:

$$\begin{cases} U_{0,0}^{k+1} = g(0,0,t_{k+1}) \\ U_{1,0}^{k+1} = g(x_1,0,t_{k+1}) \\ \dots \\ U_{n,0}^{k+1} = g(1,0,t_{k+1}) \\ U_{0,1}^{k+1} = g(0,y_1,t_{k+1}) \\ -\tau U_{1,0}^{k+1} - \tau U_{0,1}^{k+1} + (h^2 + 4\tau) U_{1,1}^{k+1} - \tau U_{2,1}^{k+1} - \tau U_{1,2}^{k+1} = h^2 U_{1,1}^k \\ -\tau U_{2,0}^{k+1} - \tau U_{1,1}^{k+1} + (h^2 + 4\tau) U_{2,1}^{k+1} - \tau U_{3,1}^{k+1} - \tau U_{2,2}^{j+1} = h^2 U_{2,1}^k \\ \dots \end{cases}$$

Переименовав переменные для решения этой системы как $U_{i,j}^{k+1}=x_{(n+1)j+i}$ можем переписать эту систему как Ax=b для:

$$n=3 \implies \dim(A)=16$$

Эту матрицу опишем только по строкам, тогда понятно, что строкам, которые соответствуют граничным условиям, то есть строки с номерами (n+1)j+i, когда $i=0 \lor i=n \lor j=0 \lor j=n$, будут иметь вид

$$(0 \ldots 0 1 0 \ldots 0)$$

где единица стоит прямо на главной диагонали.

А остальные строки будут иметь вид

$$(0 \ \dots \ 0 \ - au \ 0 \ 0 \ - au \ h^2 + 4 au \ - au \ 0 \ 0 \ - au \ 0 \ \dots \ 0)$$

где на главной диагонали стоит $h^2+4 au$

Вектор $b=(b_{\xi})$, где $b_{\xi}=g(\ldots)$ на границах, $b_{\xi}=U^k$ во внутренних точках.

$$n=4 \implies \dim(A)=25$$

Аналогично, только количество нулевых элементов между $(-\tau)$ для строк, соответствующих внутренним точкам пластины, станет равно 3 и будет увеличиваться на 1 по мере увеличения n.

Нетрудно заметить, что такая система обладает диагональным преобладанием, так что её можно решать методом Зейделя, но в коде будем использовать функцию spsolve, который достаточно быстро решает такие системы даже для размера 40000 (которая соответствует n=200).

4.2. Точность метода

Из теории известно, что неявный метод является абсолютно устойчивым, то есть с нашей задачей проблем возникать не должно, но так как мы ограничены в вычислительных мощностях (памятью для хранения матриц, производительностью процессора для вычислений), решили использовать параметры $T=0.1,\ \tau=10^{-3},\ h=5\cdot 10^{-3}$ (что соответствует разбиению пластины на 200 точек)

Эти параметры позволяют просмотреть теплопередачу в пластине вплоть до теплового равновесия (если граничные условия постоянны) при очень хорошем разрешение за сравнительно недолгое время вычисления. Анимацию теплопередачи для условий из пункта 5 раздела 1 можно посмотреть по ссылке:

Неявный метод

Получаем погрешность, никогда не превышающую 0.0036, которая, кстати говоря, достигает максимума на слое k=51, что можно примерно наблюдать на анимации этой погрешности по той же ссылке.

Теоретически этот метод имеет те же порядки точности, что и неявный метод, получаем что $R_{x,y} \approx C \cdot 10^{-5}, \, R_t \approx C \cdot 10^{-3}$, выбирая наибольший получаем, что полученная нами точность совпадает с теорией.

Раздел 5. Моделирование передачи тепла в пластине в зависимости от начальных и граничных условий.

В этом разделе посмотрим на разные начальные и краевые условия, все вычисления были проведены при $T=0.1,\, au=10^{-3},\, h=rac{1}{150}pprox 6.7\cdot 10^{-3}.$

Давайте смоделируем нагревание пластины при 5-ти различных условиях.

5.1. Первая модель

Начальным нагревом пластины будет

$$50\exp\left\{-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\right\}$$

по графику видно, что это нагретый центр с постепенным спадом температуры к краям.

По краям будем подавать температуру

500t

это постепенное возрастание нагрева краев.

Получаем следующую анимацию:

5.2. Вторая модель

Начальным нагревом пластины будет

$$\sin(x+y)$$

гладкое изменение температуры по диагонали (изменяется по синусоиде).

По краям зададим температуру

$$\cos(x+y+t)$$

которая в случае с T=0.1 просто немного изменится (где-то увеличится, где-то уменьшится, где-то и уменьшится, и увеличится) на краях.

Вот что как выглядит анимация этого процесса:

ссылка

5.3. Третья модель

Начальным нагревом пластины будет

$$50\exp\left\{10\cdot\left(-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\right)\right\}$$

это то же самое, что и в первой модели, просто центр теперь нагрет намного сильнее краев.

На границах подадим температуру

 $50\sin(100t)$

которая благодаря коэффициенту 100 под синусом в процессе наблюдения T=0.1 много раз изменит свою температуру от -50 до +50.

Вот какая анимация получается:

ссылка

5.4. Четвертая модель

Начальным нагревом пластины будет

$$10x + 5y + 2.5$$

это просто линейное изменение температуры вдоль пластины.

На границах возьмем функцию

 $50\sin(10x+10y)$

которая создает на границах много горячих и холодных точек.

Полученную анимацию можно увидеть по ссылке:

5.5. Пятая модель

Начальным нагревом возьмем

$$x + y$$

более гладкое линейное распределение температуры в сравнении с четвертой моделью.

На границах возьмем функцию

 $\cosh{(10x+10y-10)}$ — гиперболический косеканс

который дает более экстремальные (по перепаду температур) граничные условия.

Полученную анимацию можно увидеть по ссылке:

ссылка

Раздел 6. Заключение.

В курсовой работе рассмотрена модель передачи тепла в прямоугольной пластине, которая описывается уравнением теплопроводности.

Для численного решения были построены две разностные схемы:

1. Явная схема:

• Простая в реализации, но требует ограничения на шаг по времени τ и по пространству h для обеспечения устойчивости.

2. Неявная схема:

• Не требует жестких ограничений на шаг, устойчива при любом τ , h, но требует решения системы линейных алгебраических уравнений на каждом временном шаге.

Проделанное исследование:

- 1. Проведена дискретизация задачи с использованием центральных разностей по пространственным переменным и левых для временной переменной.
- 2. Осуществлено программное моделирование в среде Python с использованием библиотек numpy и matplotlib, включая реализацию алгоритмов для обеих схем.
- 3. Проведены вычислительные эксперименты для различных сеточных параметров h, τ , что позволило исследовать влияние сеточной дискретизации на точность и устойчивость метода.
- 4. Построены тепловые карты распределения температуры в пластине для различных временных шагов. Отчетливо видно, как начальное распределение температуры трансформируется под действием граничных условий и внутренних процессов теплопередачи.

Приложение

Приложение 1. Код явного метода

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
from scipy.sparse.linalg import spsolve
from scipy.sparse import csr_matrix
import time
from matplotlib.animation import FuncAnimation
try_number = 0
path = 'Forward/'
####!!!
####0чень важно сохранять отношение t к h как 1 к 100
####Т.е. размер в 10000 больше чем конечнее время
####!!!
###Так как метод Абсоютно устойчив только в малекнькой окружности
T = 0.01
field_size = 50
time_duration = 100
t = T / time_duration
h = 1 / (field_size - 1)
u = np.zeros((field_size, field_size, time_duration))
def phi(x, y):
    return np.sin(np.pi * x) * np.sin(np.pi * y)
def g(x, y, t):
    return 0
def Solution():
    for k in range(0, int(T / t)):
        for i in range(field_size):
            for j in range(field_size):
                if k == 0:
                    u[i][j][k] = phi(i * h, j * h)
                elif i == 0 or i == field_size - 1 or j == 0 or j ==
field_size - 1:
                    u[i][j][k] = g(i * h, j * h, k * t)
                else:
                    u[i][j][k] = t * ((u[i - 1][j][k - 1] - 2 * u[i][j][k -
1] + u[i + 1][j][k - 1]) / h ** 2 +
```

```
+ (u[i][j-1][k-1]-2*u[i][j][k-1]+
u[i][j + 1][k - 1]) / h ** 2) + u[i][j][k - 1]
Solution()
fig, ax = plt.subplots()
frames = time_duration - 3
interval = 100
heatmap = ax.imshow(u[:, :, 0], cmap='plasma', interpolation='nearest', vmin
= -1, vmax = 1)
def update(frame):
   heatmap.set_array(u[:, :, frame - 1])
   return [heatmap]
plt.colorbar(heatmap)
plt.axis('off')
ani = FuncAnimation(fig, update, frames=frames, interval=interval,
blit=True)
ani.save(path + f'Method animation{try_number}.gif',
writer=PillowWriter(fps=10))
u_solve = np.zeros_like(u)
R = np.zeros_like(u)
def solve(x, y, t):
   return np.exp(-2 * np.pi ** 2 * t) * np.sin(np.pi * x) * np.sin(np.pi *
y)
def create_u_solve_and_R():
   global max_R
   global time_R
   for k in range(time_duration):
        for i in range(field_size):
            for j in range(field_size):
                u_solve[i, j, k] = solve(i * h, j * h, k * t)
                R[i, j, k] = abs(u_solve[i, j, k] - u[i, j, k])
                if R[i, j, k] > max_R:
                    \max_{R} = R[i, j, k]
                    time_R = k
max_R = 0.0
time_R = 0.0
create_u_solve_and_R()
fig, ax = plt.subplots()
frames = time_duration - 3
interval = 100
heatmap = ax.imshow(u[:, :, 0], cmap='plasma', interpolation='nearest', vmin
```

```
= -1, vmax = 1)
def update(frame):
    heatmap.set_array(u_solve[:, :, frame - 1])
    return [heatmap]
plt.colorbar(heatmap)
plt.axis('off')
ani = FuncAnimation(fig, update, frames=frames, interval=interval,
blit=True)
ani.save(path + f'solve animation{try_number}.gif',
writer=PillowWriter(fps=10))
print(f'Maксимальная погрешность равна {max_R} на итерации {time_R}')
x = np.arange(field_size)
y = np.arange(field_size)
x, y = np.meshgrid(x, y)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_zlim(0, 0.0001)
# Начальное значение поверхности
z = R[:, :, 0]
surf = ax.plot_surface(x, y, z, cmap='viridis')
def update(frame):
    ax.clear()
    ax.set_zlim(0, 0.0001)
    z = R[:, :, frame]
    surf = ax.plot_surface(x, y, z, cmap='viridis')
    return surf,
ani = FuncAnimation(fig, update, frames=frames, blit=False)
ani.save(path + f'Error animation{try_number}.gif', writer='imagemagick',
fps=15)
plt.show()
```

Приложение 2. Код неявного метода

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
from scipy.sparse.linalg import spsolve
from scipy.sparse import csr_matrix
import time
from matplotlib.animation import FuncAnimation
```

```
try_number = 5
path = 'Backward/'
T = 0.1
field_size = 200
time_duration = 100
t = T / time_duration
h = 1 / (field_size - 1)
u = np.zeros((field_size, field_size, time_duration))
def phi(x, y):
    # Method animation1 return np.sin(np.pi * x) * np.sin(np.pi * y)
    # test1 return 50 * np.exp(-(x - 1/2) ** 2 - (y - 1/2) ** 2)
   # test2 return np.sin(x + y)
   # test3 return 50 * np.exp((-(x - 1/4) ** 2 - (y - 1/3) ** 2) / 0.1)
   # test4 return 10 * x + 5 * y + 2.5
   # test5
   return x + y
def g(x, y, t):
    # Method animation1 return 0
    # test1 return 500 * t
   # test2 return np.cos(x + y + t
   # test3 return 50 * np.sin(100 * t)
   # test4 return 50 * np.sin(10 * x + 10 * y)
    # test5 return
    1 / np.cosh(10 * ((x - 1 / 2) + (y - 1 / 2)))
def generate_A(n, h, t):
    A = np.eye((n * n), dtype='float')
   for i in range(1, n - 1):
        for j in range(1, n - 1):
            row = n * j + i
            A[row][n * j + i] = h ** 2 + 4 * t
            A[row][n * j + (i - 1)] = -t
            A[row][n * j + (i + 1)] = -t
            A[row][n * (j - 1) + i] = -t
            A[row][n * (j + 1) + i] = -t
   return A
def generate_b(u, n, h, t, k):
    b = np.zeros((n, n))
    boundary_mask = np.zeros((n, n), dtype=bool)
    boundary_mask[0, :] = boundary_mask[-1, :] = True
    boundary_mask[:, 0] = boundary_mask[:, -1] = True
```

```
inner_mask = ~boundary_mask
    i, j = np.where(boundary_mask)
    b[boundary_mask] = g(i * h, j * h, k * t)
   b[inner_mask] = h ** 2 * u[inner_mask][:, k]
   b = b.ravel()
   return b
A = csr_matrix(generate_A(field_size, h, t))
def Solution():
   for i in range(field_size):
        for j in range(field_size):
            if i == 0 or j == 0 or i == field_size - 1 or j == field_size -
1:
                u[i][j][0] = g(i * h, j * h, 0)
            else:
                u[i][j][0] = phi(i * h, j * h)
   for k in range(1, time_duration):
        b = generate_b(u, field_size, h, t, k - 1)
        y = spsolve(A, b)
        u[:, :, k] = y.reshape(field_size, field_size)
Solution()
fig, ax = plt.subplots()
frames = time_duration - 3
interval = 100
heatmap = ax.imshow(u[:, :, 0], cmap='plasma', interpolation='nearest', vmin
= -50, vmax = 50)
def update(frame):
    heatmap.set_array(u[:, :, frame - 1])
   return [heatmap]
plt.colorbar(heatmap)
plt.axis('off')
ani = FuncAnimation(fig, update, frames=frames, interval=interval,
ani.save(path + f'test{try_number}.gif', writer=PillowWriter(fps=10))
u_solve = np.zeros_like(u)
R = np.zeros_like(u)
def solve(x, y, t):
   return np.exp(-2 * np.pi ** 2 * t) * np.sin(np.pi * x) * np.sin(np.pi *
y)
```

```
def create_u_solve_and_R():
    global max_R
    global time_R
    for k in range(time_duration):
        for i in range(field_size):
            for j in range(field_size):
                u_solve[i, j, k] = solve(i * h, j * h, k * t)
                R[i, j, k] = abs(u_solve[i, j, k] - u[i, j, k])
                if R[i, j, k] > max_R:
                    \max_{R} = R[i, j, k]
                    time_R = k
\max_{R} = 0.0
time_R = 0.0
create_u_solve_and_R()
fig, ax = plt.subplots()
frames = time_duration - 3
interval = 100
heatmap = ax.imshow(u[:, :, 0], cmap='plasma', interpolation='nearest', vmin
= 0, vmax = 1)
def update(frame):
    heatmap.set_array(u_solve[:, :, frame - 1])
    return [heatmap]
plt.colorbar(heatmap)
plt.axis('off')
ani = FuncAnimation(fig, update, frames=frames, interval=interval,
ani.save(path + f'solve animation{try_number}.gif',
writer=PillowWriter(fps=10))
print(f'Maксимальная погрешность равна {max_R} на итерации {time_R}')
x = np.arange(field_size)
y = np.arange(field_size)
x, y = np.meshgrid(x, y)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_zlim(0, 0.005)
# Начальное значение поверхности
z = R[:, :, 0]
surf = ax.plot_surface(x, y, z, cmap='viridis')
def update(frame):
    ax.clear()
```

```
ax.set_zlim(0, 0.005)
z = R[:, :, frame]
surf = ax.plot_surface(x, y, z, cmap='viridis')
return surf,

ani = FuncAnimation(fig, update, frames=frames, blit=False)
ani.save(path + f'Error animation{try_number}.gif', writer='imagemagick', fps=15)
plt.show()
```

Приложение 3. Ссылки на анимации

- Нестабильный явный метод: https://imgur.com/a/IGnPehv
- Стабильный явный метод: https://imgur.com/a/MtAoKjN
- Неявный метод: https://imgur.com/a/wpB2Pmr
- 1-я модель: https://imgur.com/a/t94V6S1
- 2-я модель: <u>https://imgur.com/a/1x6v1B0</u>
- 3-я модель: https://imgur.com/a/IZTcCT0
- 4-я модель: https://imgur.com/a/SI8KQD8
- 5-я модель: https://imgur.com/a/4dhIAaC

Литература

1. Численное решение задач математической физики. Нестационарные уравнения: учебно-методическое пособие / К.О. Казёнкин, О.А. Амосова, — М.: Издательство МЭИ, 2016. — 36 с.