A Concise (though Heuristic) Derivation of AMP

Weijia Zheng ¹

Department of Information Engineering The Chinese University of Hong Kong wjzheng@link.cuhk.edu.hk

May 15, 2025

¹I mainly took reference to: "A Simple Derivation of AMP and its State Evolution via First-Order Cancellation" by P. Schniter. This is a very readable file on this topic.

Overview

Introduction

- Onsager Correction Derivation
- State Evolution

Overview

Introduction

- 2 Onsager Correction Derivation
- State Evolution

High dimensional linear regression problem

Liner regression formulation

Consider a problem of the form $\mathbf{y} = \mathbf{A}\boldsymbol{\beta}_0 + \mathbf{w}$. We want to reconstruct $\boldsymbol{\beta}_0$ from \mathbf{y} .

²Figure copied from "Approximate Message Passing for Statistical Inference and Estimation" (good lecture slides with Youtube video recording)

High dimensional linear regression problem

Liner regression formulation

Consider a problem of the form $\mathbf{y} = \mathbf{A}\boldsymbol{\beta}_0 + \mathbf{w}$. We want to reconstruct $\boldsymbol{\beta}_0$ from \mathbf{y} .

y: an observed length-*m* measurement vector

w: an unknown length-m noise. Assume $w \sim_{iid} \mathcal{N}(0, \tau_w)$

A: a known big $m \times N$ (normalized) matrix with m < N, $\frac{m}{N} \to \delta \in \Omega(1)$

 β_0 : a length-N signal vector to find

²Figure copied from "Approximate Message Passing for Statistical Inference and Estimation" (good lecture slides with Youtube video recording)

Prior knowledge on β_0 : sparsity

People may assume sparsity of β_0 . That is, it has only $K \ll N$ nonzero entries.

Prior knowledge on β_0 : sparsity

People may assume sparsity of β_0 . That is, it has only $K \ll N$ nonzero entries.

NP-hardness of sparse recovery in general

Assume K-sparse, the problem: for any given \mathbf{A} , find $\arg\min_{\boldsymbol{\beta}}\|\mathbf{A}\boldsymbol{\beta}-\mathbf{y}\|^2$ is NP-hard. In fact, even if we know the entries' values of the ground-truth $\boldsymbol{\beta}_0$, the problem is still NP-hard. ^a

^aFor the NP-hardness: one can do reduction using Exact Cover by 3-Sets (X3C).

(Sparsity inspired) LASSO

LASSO and ISTA

$$\min_{\beta} \underbrace{\frac{1}{2} \|\mathbf{y} - \mathbf{A}\boldsymbol{\beta}\|^{2}}_{\triangleq g(\beta)} + \lambda \|\boldsymbol{\beta}\|_{1}.$$

Iterative Soft-Thresholding Algorithm (ISTA) can solve this:

$$\mathbf{v} = \mathbf{y} - \mathbf{A}oldsymbol{eta}^t \ eta^{t+1} = \operatorname{soft}(oldsymbol{eta}^t + s\mathbf{A}^T\mathbf{v}^t; s\lambda).$$

Writing it into a more intuitive form:

$$oldsymbol{eta}^{t+1} = \underbrace{\mathtt{soft}(oldsymbol{eta}^t - s
abla g(oldsymbol{eta}^t); s \lambda)}_{ ext{impose sparsity}}.$$

$$abla g(oldsymbol{eta}) = \mathbf{A}^T (\mathbf{A}oldsymbol{eta} - \mathbf{y}).$$

Figure: soft(x, T).

One can tune the parameter λ to control the sparsity, and s here works as a stepsize.

LASSO is convex in β .

AMP Framework

LASSO & ISTA are great, but...

LASSO is motivated by **sparsity** alone, and it does not consider the signal's prior distribution, which may sometimes be available. Thus, people want to integrate the knowledge of $\beta_0 \sim_{iid} p_{\beta}$ into inference of β_0 .^a

The problem then changes to find an $\hat{\boldsymbol{\beta}}$ for $\mathbf{y} = \mathbf{A}\boldsymbol{\beta}_0 + \mathbf{w}$, while $\boldsymbol{\beta}_0 \sim_{iid} p_{\boldsymbol{\beta}}$.

^aAMP does not explicitly assume sparsity of $oldsymbol{eta}_0$.

AMP Framework

LASSO & ISTA are great, but...

LASSO is motivated by **sparsity** alone, and it does not consider the signal's prior distribution, which may sometimes be available. Thus, people want to integrate the knowledge of $\beta_0 \sim_{iid} p_{\beta}$ into inference of β_0 .^a

The problem then changes to find an $\hat{\boldsymbol{\beta}}$ for $\mathbf{y}=\mathbf{A}\boldsymbol{\beta}_0+\mathbf{w},~$ while $\boldsymbol{\beta}_0\sim_{iid}p_{\boldsymbol{\beta}}.$

We compare the procedure of AMP and ISTA at below.

Approximate message passing (AMP)

$$\mathbf{v}^t = \mathbf{y} - \mathbf{A} eta^t + \underbrace{\frac{\mathbf{v}^{t-1}}{m} \sum_{j=1}^N \eta_{t-1}'(r_j^{t-1})}_{}$$

$$oldsymbol{eta}^{t+1} = \eta_t (oldsymbol{eta}^t + s oldsymbol{\mathsf{A}}^T oldsymbol{\mathsf{v}}^t).$$

Iterative Soft Thresholding Algo. (ISTA)

$$egin{aligned} \mathbf{v}^t &= \mathbf{y} - \mathbf{A}eta^t \ eta^{t+1} &= \mathrm{soft}(eta^t + s\mathbf{A}^T\mathbf{v}^t; s\lambda). \end{aligned}$$

 $[^]a\mathsf{AMP}$ does not explicitly assume sparsity of $\boldsymbol{\beta}_0.$

There are some requirements in \mathbf{A} , the sensing/measurement matrix. In general, assume \mathbf{A} to be entry-wisely iid generated with $\mathbb{E}a_{ij}=0$ and $\mathbb{E}(a_{ij}^2)=\frac{1}{m}$ suffices.

In fact, in the paper we will go through, they assume $a_{ij} \in \mathcal{U}\{\pm \frac{1}{\sqrt{m}}\}$. But this is mainly to simplify the proof, and it can be extended to more general cases.

There are some requirements in \mathbf{A} , the sensing/measurement matrix. In general, assume \mathbf{A} to be entry-wisely iid generated with $\mathbb{E}a_{ij}=0$ and $\mathbb{E}(a_{ij}^2)=\frac{1}{m}$ suffices.

In fact, in the paper we will go through, they assume $a_{ij} \in \mathcal{U}\{\pm \frac{1}{\sqrt{m}}\}$. But this is mainly to simplify the proof, and it can be extended to more general cases.

AMP iteration

$$\mathbf{v}^t = \mathbf{y} - \mathbf{A} \boldsymbol{\beta}^t + \underbrace{\frac{\mathbf{v}^{t-1}}{m} \sum_{j=1}^N \eta'_{t-1}(r_j^{t-1})}_{ ext{Onsager correction term}}$$

$$oldsymbol{eta}^{t+1} = \eta_t (\underbrace{oldsymbol{eta}^t + s \mathbf{A}^T \mathbf{v}^t}_{ riangle \mathbf{r}^t}).$$

$$m{r}^t \in \mathbb{R}^N$$
, termed "effective observation" $\eta_t(\cdot)$ is called a "denoising function" $[\eta_t(m{r})]_j = \eta_t(r_j)$

In ISTA, $\eta_t = \mathtt{soft}()$ and we do not consider any correction term

Main purpose of the paper

Simply to understand: why there is such an "Onsager term", and what should be chosen as the denoising function $\eta_t(\cdot)$.

Overview

- 2 Onsager Correction Derivation

Why the Onsager Correction?

AMP Iteration Recap

For $\mathbf{y} = \mathbf{A}\boldsymbol{\beta}_0 + \mathbf{w}$, AMP iterates:

$$\mathbf{v}^{t} = \mathbf{y} - \mathbf{A} \beta^{t} + \frac{\mathbf{v}^{t-1}}{m} \sum_{j=1}^{N} \eta'_{t-1}(r_{j}^{t-1}),$$

Onsager correction term

$$oldsymbol{eta}^{t+1} = \eta_t \left(oldsymbol{eta}^t + oldsymbol{\mathsf{A}}^T oldsymbol{\mathsf{v}}^t
ight) riangleq \eta_t(oldsymbol{\mathsf{r}}^t).$$

Why the Onsager Correction?

AMP Iteration Recap

For $\mathbf{y} = \mathbf{A}\boldsymbol{\beta}_0 + \mathbf{w}$, AMP iterates:

$$\mathbf{v}^t = \mathbf{y} - \mathbf{A}eta^t + \underbrace{rac{\mathbf{v}^{t-1}}{m}\sum_{j=1}^N \eta_{t-1}'(r_j^{t-1})}_{ ext{Onsager correction term}},$$

$$\boldsymbol{\beta}^{t+1} = \eta_t \left(\boldsymbol{\beta}^t + \mathbf{A}^T \mathbf{v}^t \right) \triangleq \eta_t(\mathbf{r}^t).$$

Partial goal: Ensure $\mathbf{r}^t - \boldsymbol{\beta}_0 \approx$ Gaussian noise. (See next page.) Onsager term adjusts \mathbf{v}^t to cancel error correlations.

Our focus soon

Derive the Onsager term by analyzing the difference between the effective observation and ground-truth signal $\mathbf{e}^t = \mathbf{r}^t - \boldsymbol{\beta}_0$.

Correction terms work

Correction terms push the effective observation to β_0 + some (tiny) Gaussian. Comparing with vanilla IST, such effect is decisive.

A: $m \times N = 2000 \times 4000$; β_0 has 500 non-zeros \sim iid unif ± 1

Error Analysis

Define the Error

Recall $\mathbf{r}^t = \boldsymbol{\beta}^t + \mathbf{A}^T \mathbf{v}^t$. The error is: $\mathbf{e}^t = \mathbf{r}^t - \boldsymbol{\beta}_0 = (\boldsymbol{\beta}^t + \mathbf{A}^T \mathbf{v}^t) - \boldsymbol{\beta}_0$. Substitute $\mathbf{v}^t = \mathbf{y} - \mathbf{A}\boldsymbol{\beta}^t + \mathbf{u}^t$, where \mathbf{u}^t denotes (any) correction term:

$$\mathbf{r}^t = oldsymbol{eta}^t + \mathbf{A}^T \left(\mathbf{y} - \mathbf{A} oldsymbol{eta}^t + \mathbf{u}^t
ight).$$

Since
$$\mathbf{y} = \mathbf{A}\boldsymbol{\beta}_0 + \mathbf{w}$$
, $\mathbf{A}^T \mathbf{y} = \mathbf{A}^T (\mathbf{A}\boldsymbol{\beta}_0 + \mathbf{w})$. Then

$$\boldsymbol{e}^t = (\boldsymbol{I} - \boldsymbol{A}^T \boldsymbol{A})(\boldsymbol{\beta}^t - \boldsymbol{\beta}_0) + \boldsymbol{A}^T (\boldsymbol{w} + \boldsymbol{u}^t).$$

Error Analysis

Define the Error

Recall $\mathbf{r}^t = \boldsymbol{\beta}^t + \mathbf{A}^T \mathbf{v}^t$. The error is: $\mathbf{e}^t = \mathbf{r}^t - \boldsymbol{\beta}_0 = (\boldsymbol{\beta}^t + \mathbf{A}^T \mathbf{v}^t) - \boldsymbol{\beta}_0$. Substitute $\mathbf{v}^t = \mathbf{y} - \mathbf{A}\boldsymbol{\beta}^t + \mathbf{u}^t$, where \mathbf{u}^t denotes (any) correction term:

$$\mathbf{r}^t = oldsymbol{eta}^t + \mathbf{A}^T \left(\mathbf{y} - \mathbf{A} oldsymbol{eta}^t + \mathbf{u}^t
ight).$$

Since $\mathbf{y} = \mathbf{A}\boldsymbol{\beta}_0 + \mathbf{w}$, $\mathbf{A}^T \mathbf{y} = \mathbf{A}^T (\mathbf{A}\boldsymbol{\beta}_0 + \mathbf{w})$. Then

$$\mathbf{e}^t = (\mathbf{I} - \mathbf{A}^T \mathbf{A})(\mathbf{\beta}^t - \mathbf{\beta}_0) + \mathbf{A}^T (\mathbf{w} + \mathbf{u}^t).$$

Zooming in the *I*-th entry

We focus more on β^t . $\beta^t = \eta_{t-1}(\mathbf{r}^{t-1})$. Its /-th entry is $\beta^t_l = \eta_{t-1}(\mathbf{r}^{t-1}_l)$. And we decompose r^{t-1}_l as:

$$r_l^{t-1} = \beta_l^{t-1} + \sum_k a_{kl} v_k^{t-1} = \beta_l^{t-1} + \sum_{k \neq i} a_{kl} v_k^{t-1} + a_{il} v_i^{t-1}.$$
 (1)

Error decomposition

Then the error (its j-th entry) becomes

$$\begin{split} e_j^t &= \sum_i a_{ij} \left[\sum_{l \neq j} a_{il} (\beta_{0,l} - \beta_l^t) + w_i + u_i^t \right] \\ &= \sum_i a_{ij} \sum_{l \neq j} a_{il} [\beta_{0,l} - \eta_{t-1} (r_{l \setminus i}^{t-1})] + \sum_i a_{ij} w_i \\ &\qquad \qquad \qquad \\ &\qquad \qquad \qquad \\ &\qquad \qquad \qquad \\ &\qquad \qquad + \sum_i a_{ij} \left[u_i^t + \sum_{l \neq j} - \frac{v_i^{t-1}}{m} \eta_{t-1}' (r_{l \setminus i}^{t-1}) \right] \qquad a_{ij} \text{ and } v_i^{t-1} \text{ are coupled!} \\ &\stackrel{\triangle}{=} T_1 \text{ ,want to make it small when } m \text{ is large} \end{split}$$

In the above, we used Taylor expansion:

$$\beta_l^t = \eta_{t-1}(r_l^{t-1}) = \eta_{t-1}(r_{l\setminus i}^{t-1} + a_{il}v_i^{t-1}) \approx \eta_{t-1}(r_{l\setminus i}^{t-1}) + a_{il}v_i^{t-1}\eta_{t-1}'(r_{l\setminus i}^{t-1}).$$

And, we used $a_{il}^2 = \frac{1}{m}$.

Focus on Correction Term

The last error term (the not Gaussian one) is the only term involving \mathbf{u}^t :

$$T_{1} = \sum_{i} a_{ij} \left[u_{i}^{t} - \sum_{l \neq j} \frac{v_{i}^{t-1}}{m} \eta_{t-1}'(r_{l \setminus i}^{t-1}) \right]$$
 (2)

Note that \mathbf{u}^t is some correction term free to choose. And we wish such choice to make T_1 small.

We can see why Onsager is good by observing its form: $u_i^t \triangleq \frac{v_i^{t-1}}{m} \sum_{l=1}^N \eta_{t-1}'(r_l^{t-1})$. We can proceed an estimation of T_1 :

$$T_{1} \approx_{2 \text{ order Taylor}} \approx \sum_{i} a_{ij} \left[\frac{v_{i}^{t-1}}{m} \sum_{l=1}^{N} \eta_{t-1}'(r_{l}^{t-1}) - \sum_{l \neq j} \frac{v_{i}^{t-1}}{m} \eta_{t-1}'(r_{l \setminus i}^{t-1}) \right]$$
(3)

$$\approx \frac{1}{m} \sum_{i} a_{ij} v_{i}^{t-1} \left| \eta_{t-1}'(r_{j}^{t-1}) + \sum_{l \neq j} a_{il} v_{i}^{t-1} \eta_{t-1}''(r_{l \setminus i}^{t-1}) \right| \in \mathcal{O}(\frac{1}{\sqrt{m}})$$
 (4)

The two terms in eq. (4) are both $\mathcal{O}(\frac{1}{\sqrt{m}})$. And it is hard to design a better correction term (without sacrificing too much computational complexity.)

Overview

Introduction

- 2 Onsager Correction Derivation
- State Evolution

Completing Error Estimation

Recap: Error Decomposition

From the previous slide, the error e_i^t is:

$$e_{j}^{t} = \sum_{i} a_{ij} \sum_{l \neq j} a_{il} [\beta_{0,l} - \eta_{t-1}(r_{l \setminus i}^{t-1})] + \sum_{i} a_{ij} w_{i} + \underbrace{\sum_{j} a_{ij} w_{i}}_{\text{ignored when } m \gg 1}$$

$$= S_{1}$$
Indepndence + CLT $\Longrightarrow \sim_{d}$ Gaussian

 S_2 is much easier to handle, it has zero mean and variance $= \tau_w$. (w's power)

 S_1 has mean zero. And it has variance $\frac{1}{m^2} \sum_{i=1}^m \sum_{l \neq j} (\epsilon_{l \setminus i}^t)^2 \approx \frac{n}{m} \frac{1}{n} \sum_{l=1}^n (\epsilon_l^t)^2$, where $\epsilon_l^t \triangleq \beta_{0,l} - \eta_{t-1}(r_l^{t-1})$ is the effective noise.

People denote $\mathcal{E}^t = \frac{1}{n} \sum_{l=1}^n (\epsilon_l^t)^2$. Then one can write

$$\mathbf{e}_{j}^{t} = eta_{0,j} - r_{j}^{t} \sim_{\mathsf{approx.}} \mathcal{N}(\mathbf{0}, \delta^{-1}\mathcal{E}^{t} + \underbrace{\tau_{w}}_{\mathsf{fixed}}).$$

State Evolution: Predicting Performance

State Evolution Equations

Track error variance $\tau_r^t = \text{Var}(r_i^t - \beta_{0,j})$:

$$\tau_r^t = \delta^{-1} \mathcal{E}^t + \tau_w, \quad \mathcal{E}^{t+1} = \mathbb{E} \left[\eta_t (\beta_0 + Z_t) - \beta_0 \right]^2, \quad Z_t \sim \mathcal{N}(0, \underbrace{\tau_r^t}_{m}).$$

 \mathcal{E}^t : Mean squared error (MSE) of denoiser at iteration t. It predicts AMP's MSE without running the algorithm.

Basically, \mathcal{E}^t is what we can control in τ_r^t . Hence we want to choose a function $\eta_t()$ to minimize it!

Now, we see why people choose $\eta_t \leftarrow$ posterior mean estimator (PME).³

³One can use Tweedie's formula here, when β_0 's prior is known. β_0 is known.