Efficient Contextual Bandits with Continuous Actions

Maryam Majzoubi

New York University

Chicheng Zhang

University of Arizona

Rajan Chari

Microsoft Research

Akshay Krishnamurthy

Microsoft Research

John Langford

Microsoft Research

Alex Slivkins

Microsoft Research

Contextual bandits (CB)

- For time step t = 1, 2, ..., T:
 - Receives context x_t
 - Takes an action $a_t \in A$
 - Receives loss $\ell_t(a_t) \in [0,1]$

- Learner's goal: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(a_t)$
- In many practical settings the action chosen is actually continuous.

Continuous-action CB applications

Precision Medicine: dosage

Dynamic pricing: price [BM18]

Networking: packet sending rate [JRG19]

Challenges

- Discrete action spaces:
 - Can afford trying all possible actions through "exploration"

- Continuous action spaces:
 - Need extra geometric assumptions to compete with best arm/policy.

Formal setup

- Action space A = [0, 1]
- Policy: mapping from context to action (e.g. linear policy $\pi_w(x) = \langle w, x \rangle$)
- Policy class Π : a structured collection of policies (e.g. $\Pi = \{\pi_w : w \in \mathbb{R}^d\}$)

Impossible to get nontrivial regret guarantees in general

Smoothed regret

• Smoothed regret:

$$\begin{split} \operatorname{SReg}(T,\Pi,h) &= \sum_{t=1}^T \ell_t(a_t) - \min_{\pi \in \Pi} \sum_{t=1}^T \operatorname{E}_{a \sim \pi_h(\cdot \mid x)} \ell_t(a) \\ \text{where } \pi_h(\cdot \mid x) &= \operatorname{uniform}([\pi(x) - h, \pi(x) + h]) \\ \text{and } h \text{ is a fixed parameter } (bandwidth). \end{split}$$

- Admits assumption-free nontrivial guarantees
- Recovers many existing results in contextual bandits with smooth loss assumptions, e.g. Lipschitz losses
- **Problem**: the existing algorithms with sublinear smoothed regret are not computationally efficient.

- ϵ -greedy with smoothing: it chooses an action with probability
 - ϵ : uniformly at random from [0, 1]
 - 1ϵ : based on the prediction of the h-smoothing of the learned policy
- **Key idea 1:** Reduce CB learning to importance-weighted (IW) multiclass learning

Key idea 2: Using tree policies to reduce IW multiclass learning to binary classification → computationally and statistically efficient

- Key idea 1: Reduce CB learning to importance-weighted (IW) multiclass learning
- Input: interaction $\log S = \{(x, a, \ell(a), p(a))\},\$ where p(a) = probability density for action a.
- 1. Consider policy class Π taking actions in $A_K = \left\{0, \frac{1}{K}, \dots, \frac{K-1}{K}\right\}$.
- 2. For every input, generate cost-sensitive label using importance weighted loss estimate:

$$\widehat{L}(\pi_h) = \frac{1}{|S|} \sum_{S} \frac{\pi_h(\mathbf{a} \mid \mathbf{x})}{p(\mathbf{a})} \ell(\mathbf{a})$$
$$= \frac{1}{|S|} \sum_{S} \widetilde{c} \left(\pi(\mathbf{x})\right)$$

where cost vector \tilde{c} is:

• Key idea 2: Using tree policies to reduce IW multiclass learning to binary classification

Tree policy: special form of decision tree with leaves associated with fixed action labels in $A_{\cal K}$

- Internal nodes are binary classifiers
- Inference time: $O(\log K)$ per round

• Key idea 2: Using tree policies to reduce IW multiclass learning to binary classification

Training tree policies: we tailor the filter tree algorithm [BLR09], and show:

- 1. it can be implemented with $O(\log K)$ time per example
- 2. it achieves statistical consistency under realizability

Provable guarantees

Base class F: {possible binary classifiers for internal tree nodes} $\Pi_{K,F}$: {all tree policies with K leaves & base class F}

Theorem: CATS with input tree policy class $\Pi_{K,F}$ and bandwidth h:

- Computation: training time of O(log K) per example,
- Smoothed regret

$$\operatorname{SReg}(T, \Pi_{K,F}, h) \le O\left(\left(\frac{K^2 T^2 \ln|F|}{h}\right)^{1/3}\right)$$

under certain realizability assumptions

Experiment

• Evaluation: regression-based CB simulation

$$(x_t, y_t) \rightarrow (x_t, \ell_t)$$
, where $\ell_t = |a - y_t|$

Baselines: perform naïve discretization with ϵ -greedy

- dLinear: reduces policy training to cost-sensitive one-versus-all multiclass classification
- 2. dTree: filter tree algorithm [BLR09]

Experiment: online contextual bandit learning

• Time cost comparison:

CATS and *dTree* have much better scalability with respect to *K* compared to *dLinear*

Online loss comparison:

CATS and dLinear have lower average losses than dTree

Experiment: off-policy optimization

 Key advantage over naïve discretization: it can use interaction log collected by one policy to do off-policy optimization over h and K.

How to use *CATS*?

Vowpal Wabbit (VW): https://github.com/VowpalWabbit/vowpal_wabbit

How to use *CATS*?

• Prediction type:


```
struct probability_density_function_value
{
  float action;  // continuous action
  float pdf_value; // pdf value
};
```

How to use *CATS*?

• Label type:

Labelled example

```
ca action:cost:pdf_value |[namespace] <features>
ca 185.121:0.657567:6.20426e-05 | <features>
ca 772.592:0.458316:6.20426e-05 | <features>
ca 15140.6:0.31791:6.20426e-05 | <features>
```

Conclusion

 We propose a contextual bandit learning algorithm for continuousaction with unknown structure

Theoretically and empirically: computationally and statistically efficient

• CATS code is available at Vowpal Wabbit

References

- [BM18] Dimitris Bertsimas and Christopher McCord. Optimization over continuous and multi-dimensional decisions with observational data. *NeurIPS* 2018
- [JRG19] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. A deep reinforcement learning perspective on internet congestion control. ICML 2019
- [KLSZ19] Akshay Krishnamurthy, John Langford, Aleksandrs Slivkins, and Chicheng Zhang. Contextual bandits with continuous actions: smoothing, zooming, and adapting. *COLT 2019*
- [BLR09] Alina Beygelzimer, John Langford, and Pradeep Ravikumar. Error-correcting tournaments. *ALT 2009*

Thank you!

Code: https://github.com/VowpalWabbit/vowpal_wabbit

arXiv: 2006.06040