第三章 线性代数回顾

矩阵加法 (需要维度相同)

注:看过高数的这部分应该不需要详解吧

Matrix Addition

Andrew Ng

矩阵相乘

Scalar Multiplication

real number
$$3 \times \begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 6 & 15 \\ 9 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} \times \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\$$

Andrew Ng

Combination of Operands

Example

Details:

To get y_i , multiply \underline{A} 's i^{th} row with elements of vector x, and add them up.

Andrew Ng

矩阵乘法不符合交换律

Let A and B be matrices. Then in general, $A \times B \neq B \times A$. (not commutative.)

E.g.
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

Identity Matrix

1 is identify. 1x2=2x1=2

Denoted I (or $I_{n\times n}$).

Examples of identity matrices:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 \times 3 \end{bmatrix}$$

For any matrix A,

any matrix A, $A \cdot I = I \quad A = A$ $A \cdot I = A$

矩阵的逆

Andrew Ng

矩阵的转置

Matrix Transpose

Example:
$$\underline{\underline{A}} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 9 \end{bmatrix}$$

$$\underline{\underline{A^T}} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 9 \end{bmatrix}$$