Numerical Method and Simulations

0.1 Results

The results for the different test controls for the different strategies are below:

0.1.1 Isolation-only

Figure 1: Dynamics of isolation-only model for $w_{max} = 500$, $t_0 = 0$

Figure 2: Dynamics of isolation-only model for $w_{max}=500,\ t_0=10$

Figure 3: Dynamics of isolation-only model for $w_{max}=500,\ t_0=20$

Isolation-only				
Timing (t)	Objective	Function	Value	
	(J)			
Start control at $t = 0$	15.3799			
Start control at $t = 10$	192.5949			
Start control at $t = 20$	3795.6885			

These results from the isolation-only model indicate that the timing of isolation has a great impact on the peak of infection as long as we are working with limited resources. Delaying isolation results in higher or multiple peaks of infections.

0.1.2 Travel Restrictions-only

Figure 4: Dynamics of Travel Restrictions-only model when the control is initiated at the start of the epidemic for $z_{max} = 500$

Figure 5: Dynamics of Travel Restrictions-only model when the control is initiated at time t=5 for $z_{max}=500$

Figure 6: Dynamics of Travel Restrictions-only model when the control is initiated at time t=10 for $z_{max}=500$

Figure 7: Dynamics of Travel Restrictions-only model when the control is initiated at time t=20 for $z_{max}=500$

Travel Restrictions-only					
Timing (t)	Objective	Function	Value		
	(J)				
Start control at $t = 0$	5046.8924				
Start control at $t = 5$	5021.2436				
Start control at $t = 8$	4986.0178				
Start control at $t = 10$	4968.6757				
Start control at $t = 15$	5036.5653				
Start control at $t = 20$	5077.5662				

When travel restriction is implemented initially, we observe a lower peak of infection but at a higher cost. The lowest value of the objective function is observed when travel restriction is enforced just before or after the peak of infection.

0.1.3 Mixed Model

Figure 8: Dynamics of mixed model when the controls are initiated at the start of the epidemic for $w_{max} = 500$, $z_{max} = 500$ (both immediately until all available resources used up)

Figure 9: Travel-restrictions first starting at t=0 until all resources used up, then isolation only for $w_{max}=500,\ z_{max}=500$

Figure 10: Isolation-only first starting at t=0 until all resources used up, then travelrestrictions only; for $w_{max}=500$, $z_{max}=500$

Figure 11: Wait 10 days with no controls, and then do both controls until each resource is all used up for $w_{max}=500,\ z_{max}=500$

Figure 12: Wait 10 days; then do travel-restrictions first until all used up; then isolationonly for $w_{max} = 500$, $z_{max} = 500$

Figure 13: Wait 10 days; then do isolation first until all used up; then travel restrictionsonly for $w_{max} = 500$, $z_{max} = 500$

Mixed Policy					
Timing (t)	Objective	Function	Value		
	(J)				
Start control at $t = 0$	5078.7862				
Travel restrictions	5026.8161				
first, then isolation					
Isolation first, then	5044.1513				
Travel restrictions					
Start both controls at	4958.4881				
t = 10					
Start Travel restric-	4961.6379				
tions at $t = 10$, then					
Isolation					
Start Isolation at $t =$	4953.8546				
10 then Travel restric-					
tions					

The mixed model results also indicate that if we can start both controls at the initial time, we can minimize the infection peak but at a higher cost. Again, we observe that isolation is most effective compared to travel restrictions.