Alternating-time Temporal Logic

Natasha Alechina Brian Logan

Utrecht University

n.a.alechina@uu.nl b.s.logan@uu.nl

ATL* and ATL

- Hope you all listened to Orna Kupferman's talk
- the topic of today's lecture is ATL: Alternating-time Temporal Logic (Alur et al. 1997-2002)
- the lecture will cover:
 - syntax and semantics of ATL*
 - syntax and semantics of ATL
 - properties of ATL that will be useful for model checking

Main idea behind ATL/ATL*

- · temporal logic meets game theory
- main idea: cooperation modalities

 $\langle\!\langle A \rangle\!\rangle$ Φ : coalition A has a collective strategy to enforce temporal property Φ

Example Formulae

- ⟨⟨agents⟩⟩ Fgoal "agents can achieve the goal"
- (\(\alpha agents\)\)\)\)\)\)\)\)\\ G safe "agents can enforce a safety property"
- $\langle\langle agent, env \rangle\rangle G$ (request \rightarrow Fgranted) fairness: this is an ATL* property

Formal Syntax of ATL*

Syntax of ATL*

```
\varphi ::= \mathsf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \gamma,
\gamma ::= \varphi \mid \neg \gamma \mid \gamma \land \gamma \mid X \gamma \mid F \gamma \mid G \gamma \mid \gamma_1 U \gamma_2.
```

As in LTL, "eventually" and "always" can be derived from "until":

- $F\gamma \equiv true U\gamma$
- $G\gamma \equiv \neg F \neg \gamma$

Two main syntactic variants:

- "Vanilla" ATL: every temporal operator preceded by exactly one cooperation modality
- ATL*: no syntactic restrictions

ATL Models: Concurrent Game Structures

Definition (Concurrent Game Structure)

A concurrent game structure is a tuple $M = \langle Agt, St, \mathcal{V}, Act, d, o \rangle$, where:

- Agt: a finite set of all agents
- St: a set of states
- V: a valuation of propositions
- Act: a finite set of (atomic) actions
- $d: Agt \times St \rightarrow 2^{Act}$ defines actions available to an agent in a state
- o: a deterministic transition function that assigns outcome states $q' = o(q, \alpha_1, \dots, \alpha_k)$ to states and tuples of actions

Strategies

Definition (Strategy)

A strategy is a conditional plan.

memoryless strategy: a function $s_a: St \rightarrow Act$

perfect recall strategy: a function $s_a: St^+ \to Act$

A collective strategy is simply a tuple of individual strategies.

Definition (Outcome of a strategy)

Function $out(q, s_A)$ returns the set of all paths that may result from agents A executing strategy s_A from state q onward.

example robot 1 strategy s_1 $s_1(q_0) = wait$ $s_1(q_2) = push$ $s_1(q_1) = wait$ $out(q_0, s_1) = \{$ $q_0q_0q_0...(2 \text{ waits})$ $q_0q_2q_2...(2 \text{ pushes})$ $q_0(q_0^*q_2^*)^* \text{ (mixed)}$ all paths avoiding q_1 }

Definition (Semantics of ATL*: state formulae)

```
egin{aligned} \textit{M}, \textit{q} &\models \textit{p} & & \text{iff } \textit{q} \text{ is in } \mathcal{V}(\textit{p}); \\ \textit{M}, \textit{q} &\models \neg \varphi & & \text{iff } \textit{M}, \textit{q} \not\models \varphi; \\ \textit{M}, \textit{q} &\models \varphi_1 \land \varphi_2 & & \text{iff } \textit{M}, \textit{q} \models \varphi_1 \text{ and } \textit{M}, \textit{q} \models \varphi_2; \end{aligned}
```

Definition (Semantics of ATL*: path formulae)

Definition (Semantics of ATL*: state formulae)

```
M, q \models p iff q is in \mathcal{V}(p);

M, q \models \neg \varphi iff M, q \not\models \varphi;

M, q \models \varphi_1 \land \varphi_2 iff M, q \models \varphi_1 and M, q \models \varphi_2;

M, q \models \langle\!\langle A \rangle\!\rangle \Phi iff there is a collective strategy s_A such that, for every path \lambda \in out(q, s_A), we have M, \lambda \models \Phi;
```

Definition (Semantics of ATL*: path formulae)

Definition (Semantics of ATL*: state formulae)

```
M, q \models p iff q is in \mathcal{V}(p);

M, q \models \neg \varphi iff M, q \not\models \varphi;

M, q \models \varphi_1 \land \varphi_2 iff M, q \models \varphi_1 and M, q \models \varphi_2;

M, q \models \langle\!\langle A \rangle\!\rangle \Phi iff there is a collective strategy s_A such that, for every path \lambda \in out(q, s_A), we have M, \lambda \models \Phi;
```

Definition (Semantics of ATL*: path formulae)

Analogous to LTL and CTL*!

Definition (Semantics of ATL*: state formulae)

```
\begin{array}{ll} \textit{M}, \textit{q} \models \textit{p} & \text{iff } \textit{q} \text{ is in } \mathcal{V}(\textit{p}); \\ \textit{M}, \textit{q} \models \neg \varphi & \text{iff } \textit{M}, \textit{q} \not\models \varphi; \\ \textit{M}, \textit{q} \models \varphi_1 \land \varphi_2 & \text{iff } \textit{M}, \textit{q} \models \varphi_1 \text{ and } \textit{M}, \textit{q} \models \varphi_2; \\ \textit{M}, \textit{q} \models \langle\!\langle \textit{A} \rangle\!\rangle \Phi & \text{iff there is a collective strategy } \textit{s}_{\textit{A}} \text{ such that, for every path } \lambda \in \textit{out}(\textit{q}, \textit{s}_{\textit{A}}), \text{ we have } \textit{M}, \lambda \models \Phi; \end{array}
```

Definition (Semantics of ATL*: path formulae)

```
M, \lambda \models \varphi iff M, \lambda[0] \models \varphi, for a state formula \varphi;

M, \lambda \models X\gamma iff M, \lambda[1..\infty] \models \gamma;

M, \lambda \models F\gamma iff M, \lambda[i..\infty] \models \gamma for some i \geq 0;

M, \lambda \models G\gamma iff M, \lambda[i..\infty] \models \gamma for all i \geq 0;

M, \lambda \models \gamma_1 \ U \gamma_2 iff M, \lambda[i..\infty] \models \gamma_2 for some i \geq 0, and M, \lambda[j..\infty] \models \gamma_1 for all 0 \leq i < i;
```

State-Based Semantics for ATL

The semantics of "vanilla" ATL can be given entirely in terms of states:

```
\begin{array}{ll} \textit{M}, \textit{q} \models \textit{p} & \text{iff } \textit{p} \text{ is in } \mathcal{V}(\textit{q}); \\ \textit{M}, \textit{q} \models \neg \varphi & \text{iff } \textit{M}, \textit{q} \not\models \varphi; \\ \textit{M}, \textit{q} \models \varphi_1 \land \varphi_2 & \text{iff } \textit{M}, \textit{q} \models \varphi_1 \text{ and } \textit{M}, \textit{q} \models \varphi_2; \end{array}
```

State-Based Semantics for ATL

The semantics of "vanilla" ATL can be given entirely in terms of states:

```
\begin{array}{ll} \textit{M}, \textit{q} \vDash \textit{p} & \text{iff } \textit{p} \text{ is in } \mathcal{V}(\textit{q}); \\ \textit{M}, \textit{q} \vDash \neg \varphi & \text{iff } \textit{M}, \textit{q} \not\vDash \varphi; \\ \textit{M}, \textit{q} \vDash \varphi_1 \land \varphi_2 & \text{iff } \textit{M}, \textit{q} \vDash \varphi_1 \text{ and } \textit{M}, \textit{q} \vDash \varphi_2; \\ \\ \textit{M}, \textit{q} \vDash \langle\!\langle \textit{A} \rangle\!\rangle \textit{X} \varphi & \text{iff there is a collective strategy } \textit{s}_{\textit{A}} \text{ such that, for every path } \lambda \in \textit{out}(\textit{q}, \textit{s}_{\textit{A}}), \text{ we have } \textit{M}, \lambda[1] \vDash \varphi; \\ \end{array}
```

State-Based Semantics for ATL

The semantics of "vanilla" ATL can be given entirely in terms of states:

```
M, q \models p
                                     iff p is in \mathcal{V}(q);
                                     iff M, q \not\models \varphi;
M, q \models \neg \varphi
M, q \models \varphi_1 \land \varphi_2
                                     iff M, q \models \varphi_1 and M, q \models \varphi_2;
M, q \models \langle\!\langle A \rangle\!\rangle X \varphi
                                     iff there is a collective strategy s_A such that, for
                                     every path \lambda \in out(q, s_A), we have M, \lambda[1] \models
                                     \varphi;
M, q \models \langle \langle A \rangle \rangle F \varphi
                                     iff there is s_A such that, for every \lambda \in
                                     out(q, s_A), we have M, \lambda[i] \models \varphi for some i \geq 0;
M, q \models \langle \langle A \rangle \rangle G \varphi
                                     iff there is s_A such that, for every \lambda \in
                                     out(q, s_A), we have M, \lambda[i] \models \varphi for all i \geq 0;
M, q \models \langle \langle A \rangle \rangle \varphi_1 U \varphi_2
                                     iff there is s_A such that, for every \lambda \in
                                     out(q, s_A), we have M, \lambda[i] \models \varphi_2 for some i \geq 0
                                     and M, \lambda[j] \models \varphi_1 for all 0 \le j < i.
```


$$\mathsf{pos}_0 \to \langle\!\langle 1 \rangle\!\rangle \textit{G} \neg \mathsf{pos}_1$$

$$\mathsf{pos}_0 \to \langle\!\langle 1 \rangle\!\rangle \textit{G} \neg \mathsf{pos}_1$$

Semantic Embedding of CTL in ATL

Temporal reasoning can be **semantically** embedded in strategic reasoning as follows:

- we take a transition system to be a concurrent game structure with a single agent ("the system" s)
- transitions are due to actions of the agent

In the system, both agents can enforce phi together

13

- $E\gamma$ ("there is a path on which γ holds") can be then translated to $\langle\!\langle s\rangle\!\rangle\gamma$ ("the system can behave in a way that makes γ true")
- $A\gamma$ ("for all paths, γ holds") can be translated to $\langle\!\langle\emptyset\rangle\!\rangle\gamma$ (" γ is enforced whatever all the agents i.e., the system do")

Phi is always do, even without agents

Syntactic Embedding of CTL in ATL

Also, ATL extends the branching-time logic CTL by the following **syntactic** translation:

- $A\gamma \equiv \langle\langle\emptyset\rangle\rangle\gamma$ ("for all paths" = necessary outcomes)
- $E\gamma \equiv \langle\!\langle Agt \rangle\!\rangle \gamma$ ("there is a path" = outcomes obtainable by grand coalition)

Syntactic Embedding of CL in ATL

ATL extends Coalition Logic CL by the following **syntactic** translation:

•
$$[A]\varphi \equiv \langle\!\langle A \rangle\!\rangle X\varphi$$

Memory Does not Influence Ability in "Vanilla" ATL

Let us discern between two definitions of the satisfaction relation:

 \models_R : perfect recall is assumed, strategies are of type $f: St^+ \to Act$

 \models_r : only memoryless strategies are allowed, i.e., $f: St \to Act$

Theorem

For any M, q and φ , we have:

$$M, q \models_r \varphi \Leftrightarrow M, q \models_R \varphi.$$

ATL* and Memory

For ATL* – contrary to "vanilla" ATL – memory matters:

Theorem

There is a model M, a state q in M, and a formula φ , such that

$$M, q \models_r \varphi \quad \not\Leftrightarrow \quad M, q \models_R \varphi$$

Counterexample:

M:
$$\bigcap_{p}^{\alpha} \bigcap_{\beta}^{q} \bigcap_{\phi} q'$$

$$\varphi = \langle\!\langle a \rangle\!\rangle (Xp \wedge XX \neg p)$$

Fixpoint Properties

Theorem

The following formulae are valid in ATL:

- $\langle\!\langle A \rangle\!\rangle G \varphi \quad \leftrightarrow \quad \varphi \wedge \langle\!\langle A \rangle\!\rangle X \langle\!\langle A \rangle\!\rangle G \varphi$
- $\langle\!\langle A \rangle\!\rangle \varphi_1 U \varphi_2 \quad \leftrightarrow \quad \varphi_2 \vee \varphi_1 \wedge \langle\!\langle A \rangle\!\rangle X \langle\!\langle A \rangle\!\rangle \varphi_1 U \varphi_2$.

Corollary

Strategy for *A* that achieves an objective specified in "vanilla" ATL can be **synthesized incrementally** (no backtracking is necessary).

References

R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic. *Journal of the ACM*, 49:672–713, 2002.