Unit I Summary

UNIT I

NETWORK LAYER SECURITY

&

TRANSPORT LAYER SECURITY

Network layer security:

- •IPSec Protocol
- •IP Authentication Header
- •IP ESP
- •Key Management Protocol for IPSec

Transport layer Security:

- SSL protocol
- Cryptographic Computations
- TLS Protocol

IPSec Protocol Documents

- IP Security Document Roadmap RFC 2411 by IETF -November 1998
- IPSec protocols is divided into seven groups
- Seven-group documents describes the set of IPSec protocols
 - Architecture
 - ESP
 - AH
 - Encryption algorithm
 - Authentication algorithm
 - Key management
 - DOI: Domain of Interpretation

Security Associations (SAs)

- An SA is uniquely identified by three parameters
 - 1. Security Parameters Index (SPI)
 - 2. IP Destination Address
 - 3. Security Protocol Identifier
- Two nominal databases
 - Security Policy Database (SPD)
 - Security Association Database (SAD)
 - Info in SPD indicates "what" to do with arriving datagram
 - specifies the policies that is to applied on all IP traffic
 (inbound or outbound, from host or security gateways)
 - Info in the SAD indicates "how" to do it

AH Format

Figure 7.4 IPsec AH format.

ESP Packet Format

IPSec Modes of Operation-AH

Transport Packet layout

IP Header AH Header Payload (TCP, UDP, etc)

Tunnel Packet layout

IP Header	AH Header	IP Header	Payload (TCP. UDP,etc)

Transport Mode

Tunnel Mode

IPSec Modes of Operation - ESP

Transport Packet layout

HMAC

Encryption and Authentication Algorithms

 The encryption authentication algorithm employed is specified by the SA

- 1. Encryption
- 2. Decryption
- 3. Authentication
- 4. ICV

Key management

- Two types of key establishment
 - Manual
 - System administrator configures each system with the necessary keys
 - Automated
 - On-demand creation of keys for SA
- Default automated method is ISAKMP/Oakley
 - IKE = ISAKMP + OAKELY key exchange
 - Oakley key determination protocol
 - A key exchange protocol based on Diffie-Hellman
 - Provides added security (e.g., authentication)
 - ISAKMP Internet Security Association and Key Management Protocol
 - Provides a framework for key exchange
 - Defines message formats that can carry the messages of various key exchange protocols

Key Management

(I) ISAKMP Payloads

- Provide modular building blocks for constructing ISAKMP messages
- The presence and ordering of payloads in ISAKMP is defined the Exchange Type Field in ISAKMP Header

(I) ISAKMP Payloads

ISAKMP Header

ISAKMP

SAKMP Header with Generic ISAKMP Payloads

ISAKMP

- Payload Types for ISAKMP
- Payloads are used to transfer information such as SA data or key exchange data in DOI-defined formats
 - **1. SA**: used to begin the setup of a new SA; carries various attributes
 - **2. Proposal (P):** used during SA setup; indicates protocol to be used (AH or ESP) and number of transforms
 - **3. Transform (T):** used during SA setup; indicates transform (e.g., DES, 3DES) and its attributes
 - **4. IKE**: used to carry key exchange data (e.g., Oakley)
 - 5. Identification (ID): used to exchange identification information (e.g., IP address)
 - **6. Certificate Payload :** carries a public key certificate (PGP, X.509, SPKI, ...)
 - 7. Certificate Request Payload
 - 8. Hash (HASH)
 - 9. Signature Payload
 - 10. Nonce (NONCE)
 - 11. Notification (N): contains error or status information
 - **12. Delete Payload:** indicates one or more SAs that the sender has deleted from its database (no longer valid)
 - 13. Vendor ID

ISAKMP

ISAKMP Exchanges

- Base Exchange: Key Exchange and Authentication
- Identity Protection Exchange: Identity and Authentication
- Authentication Only Exchange
- Aggressive Exchange: the Security Association, Key Exchange and Authentication-related
- Informational Exchange: information for security association management

Where SSL Fits

SSL Architecture

Encrypts

Figure 8.2 The overall operation of the SSL Record Protocol.

SSL Record Protocol Operation

MAC:

The MAC is computed before encryption

 $H_1 = \text{hash}(MAC\text{-write-secret} \parallel \text{pad-1} \parallel \text{seq-num} \parallel \text{SSLCompressed.type} \parallel$ SSLCompressed.length | SSLCompressed.fragment)

 $H = \text{hash}(MAC\text{-write-secret} \parallel \text{pad-2} \parallel H_1)$

Figure 8.3 Computation of MAC over the compressed data.

SSL Record Protocol Format

SSL-specific protocols

- Change Cipher Spec Protocol: Notify the receiving party that subsequent records will be protected under the just-negotiated CipherSpec and keys
- Alert Protocol: Convey the severity of the message and a description of the alert
- Handshake Protocol

SSL Handshake Protocol

Asterisks (*) are optional or situation-dependent messages that are not always sent

Figure 8.5 SSL Handshake Protocol.

Computing the Master Secret

Converting the Master Secret into Cryptographic Parameters

Figure 8.7 Generation of key block.

TLS Protocol Pseudo-random Function (PRF)

TLS Protocol

Pseudo-random Function (PRF)

 $PRF(secret, label, seed) = P_MD5(S1, label||seed) \oplus P_SHA - 1(S2, label||seed)$

TLS Protocol

Error alerts

- TLS supports all of the error alerts defined in SSLv3 with additional alert
 - Decryption failed
 - Record overflow
 - Unknown CA
 - Access denied
 - Decode error
 - Decrypt error
 - Decrypt error:
 - Export restriction
 - Protocol version
 - Insufficient security
 - Internal error:
 - User cancelled
 - No renegotiation

Alert level

- Not explicitly specified, the sending party may determine at its discretion whether this is a fatal error or not
- Warning is received, the receiving party may decide at its discretion whether to treat this as a fatal error or not
- Fatal is received, all messages must be treated as fatal messages and close connection

TLS Protocol

Certificate Verify Message

```
CertificateVerify.signature.md5_hash
MD5(handshake_message)
CertificateVerify.signature.sha_hash
SHA(handshake message)
```

Finished Message

```
PRF(master_secret, finished_label, MD5(handshake_message)||
SHA-1(handshake_message))
```

• Cryptographic Computations - Master secret