Math 3B: Lecture 3

Noah White

September 28, 2016

Last time, we spoke about

• Graphing using calculus

- Graphing using calculus
- Horizontal asymptotes

- Graphing using calculus
- Horizontal asymptotes
- Verticle asymptotes

- Graphing using calculus
- Horizontal asymptotes
- Verticle asymptotes
- Role of the first/second derivative

- Graphing using calculus
- Horizontal asymptotes
- Verticle asymptotes
- Role of the first/second derivative

Last time, we spoke about

- Graphing using calculus
- Horizontal asymptotes
- Verticle asymptotes
- Role of the first/second derivative

Note: The quiz will start at the beginning of the discussion section next time.

Example time

... On the board.

• An asymptote is a straight line which the function approaches as $x \to \pm \infty$

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$
- If a function has a slanted asymptote its gradient must approach a constant

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$
- If a function has a slanted asymptote its gradient must approach a constant
- So we should find

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$
- If a function has a slanted asymptote its gradient must approach a constant
- So we should find

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$
- If a function has a slanted asymptote its gradient must approach a constant
- So we should find

$$\lim_{x\to\pm\infty}f'(x)=m$$

• We then know the function has a slanted asymptote y = mx + b.

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$
- If a function has a slanted asymptote its gradient must approach a constant
- So we should find

$$\lim_{x\to\pm\infty}f'(x)=m$$

- We then know the function has a slanted asymptote y = mx + b.
- To find *b*:

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$
- If a function has a slanted asymptote its gradient must approach a constant
- So we should find

$$\lim_{x\to\pm\infty}f'(x)=m$$

- We then know the function has a slanted asymptote y = mx + b.
- To find *b*:

- An asymptote is a straight line which the function approaches as $x \to \pm \infty$
- If a function has a slanted asymptote its gradient must approach a constant
- So we should find

$$\lim_{x\to\pm\infty}f'(x)=m$$

- We then know the function has a slanted asymptote y = mx + b.
- To find *b*:

$$b = \lim_{x \to \pm \infty} (f(x) - mx)$$

Example time

... On the board.

A function is three pieces of information

• A domain, $D \subset \mathbb{R}$

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule $f: D \longrightarrow R$ that assigns to every element of D an element of R.

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule $f: D \longrightarrow R$ that assigns to every element of D an element of R.

A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule $f: D \longrightarrow R$ that assigns to every element of D an element of R.

Example

The functions

A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule $f: D \longrightarrow R$ that assigns to every element of D an element of R.

Example

The functions

• $f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2$

A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule f: D → R that assigns to every element of D an element of R.

Example

The functions

- $f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2$
- $f: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}; x \mapsto x^2$

A function is three pieces of information

- A domain, $D \subset \mathbb{R}$
- A range, $R \subset \mathbb{R}$, and
- A rule f: D → R that assigns to every element of D an element of R.

Example

The functions

- $f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2$
- $f: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}; x \mapsto x^2$
- $f: \mathbb{R} \longrightarrow \mathbb{R}_{>0}; x \mapsto x^2$

Global Maximums and minimums

Definition (Global maximum)

A function $f:D\longrightarrow R$ has a global maximum at a if

$$f(x) \le f(a)$$
 for all $x \in D$

Global Maximums and minimums

Definition (Global maximum)

A function $f: D \longrightarrow R$ has a global maximum at a if

$$f(x) \le f(a)$$
 for all $x \in D$

Definition (Global minimum)

A function $f: D \longrightarrow R$ has a global minimum at a if

$$f(x) \ge f(a)$$
 for all $x \in D$

Example of a global minimum

 $f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2$ has a min at x = 0

Example of a global maximum

$$f:(-\infty,0]\longrightarrow \mathbb{R}; f(x)=x^3$$
 has a max at $x=0$

Local Maximums and minimums

Definition (local maximum)

A function $f: D \longrightarrow R$ has a local maximum at a if

$$f(x) \le f(a)$$
 for all x near a

Local Maximums and minimums

Definition (local maximum)

A function $f:D\longrightarrow R$ has a local maximum at a if

$$f(x) \le f(a)$$
 for all x near a

Definition (local minimum)

A function $f: D \longrightarrow R$ has a local minimum at a if

$$f(x) \ge f(a)$$
 for all x near a

Example of a local minimum

 $f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2$ has a min at x = 0

Example of a local maximum

$$f: \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^3 - 4x^2 - 3x + 13$$
 has a local max at $x = -\frac{1}{3}$

Example of a local maximum

$$f:\mathbb{R}\longrightarrow\mathbb{R}; f(x)=x^3-4x^2-3x+13$$
 has a local max at $x=-\frac{1}{3}$

Definition (Critical point)

A function f(x) has a critical point at x = a if f'(a) = 0 or if f'(a) is undefined.

Definition (Critical point)

A function f(x) has a critical point at x = a if f'(a) = 0 or if f'(a) is undefined.

Examples

Definition (Critical point)

A function f(x) has a critical point at x = a if f'(a) = 0 or if f'(a) is undefined.

Examples

• $f(x) = x^2$ has a critical point at x = 0 (since f'(x) = 2x)

Definition (Critical point)

A function f(x) has a critical point at x = a if f'(a) = 0 or if f'(a) is undefined.

Examples

- $f(x) = x^2$ has a critical point at x = 0 (since f'(x) = 2x)
- $f(x) = \sin x$ has a critical point at $x = \frac{\pi}{2}$ (since $f'(x) = \cos x$)

Definition (Critical point)

A function f(x) has a critical point at x = a if f'(a) = 0 or if f'(a) is undefined.

Examples

- $f(x) = x^2$ has a critical point at x = 0 (since f'(x) = 2x)
- $f(x) = \sin x$ has a critical point at $x = \frac{\pi}{2}$ (since $f'(x) = \cos x$)
- $f(x) = e^x$ doesn't have any critical points since $f'(x) = e^x$ can never be zero

Local maximums and minimums (extrema) occur at

Local maximums and minimums (extrema) occur at

critical points

Local maximums and minimums (extrema) occur at

- critical points
- end points of the domain (are also critical points!)

Local maximums and minimums (extrema) occur at

- critical points
- end points of the domain (are also critical points!)

Local maximums and minimums (extrema) occur at

- critical points
- end points of the domain (are also critical points!)

Note: All extrema are critical points, but not all critical points are extrema!

Local maximums and minimums (extrema) occur at

- critical points
- end points of the domain (are also critical points!)

Note: All extrema are critical points, but not all critical points are extrema!

Example

$$f:(-\infty,1]\longrightarrow \mathbb{R}; f(x)=x^3$$
 has critical points at $x=0$ and 1

Example

$$f'(x) = 3x^2$$
 so $f'(0) = 0$ and $f'(1)$ is undefined.

Suppose x = a is a critical point for the function f(x).

Suppose x = a is a critical point for the function f(x).

First derivative test (minimums)

• If f'(x) < 0 for x less than and close to a, and

Suppose x = a is a critical point for the function f(x).

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then

Suppose x = a is a critical point for the function f(x).

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then
- f(x) has a minimum at a.

Suppose x = a is a critical point for the function f(x).

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then
- f(x) has a minimum at a.

Suppose x = a is a critical point for the function f(x).

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then
- f(x) has a minimum at a.

Suppose x = a is a critical point for the function f(x).

Suppose x = a is a critical point for the function f(x).

First derivative test (maximums)

• If f'(x) > 0 for x less than and close to a, and

Suppose x = a is a critical point for the function f(x).

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then

Suppose x = a is a critical point for the function f(x).

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then
- f(x) has a maximum at a.

Suppose x = a is a critical point for the function f(x).

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then
- f(x) has a maximum at a.

Suppose x = a is a critical point for the function f(x).

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then
- f(x) has a maximum at a.

