Vorlesung Analysis I im Wintersemester 2012/13

Wilhelm Singhof

1. Die reellen Zahlen

Mathematische Objekte (z.B. Zahlen, Funktionen, Punkte oder Geraden in der Ebene, ...) können zu Mengen zusammengefasst werden. Ist M eine Menge und a ein mathematisches Objekt, so schreibt man $a \in M$, wenn a zu M gehört und nennt a ein Element von M; andernfalls schreibt man $a \notin M$.

Beispiel: Sei M die Menge, die aus den beiden natürlichen Zahlen 1 und 2 besteht. Man schreibt $M = \{1, 2\}$. Es ist $1 \in M$, $3 \notin M$.

Sind M und N zwei Mengen und ist jedes Element von N auch Element von M, so nennt man N eine Teilmenge von M und schreibt $N \subseteq M$. Zwei Mengen M und N heißen gleich (in Zeichen M = N), wenn sie dieselben Elemente enthalten, also genau dann, wenn $M \subseteq N$ und $N \subseteq M$ ist.

Die Menge, die keine Elemente enthält, nennt man die leere Menge; sie wird mit \emptyset bezeichnet. Für jede Menge M ist $\emptyset \subseteq M$.

Die reellen Zahlen sind eine Menge \mathbb{R} zusammen mit zwei Rechenvorschriften, die je zwei Elementen $x,y\in\mathbb{R}$ ein Element $x+y\in\mathbb{R}$ und ein Element $x\cdot y\in\mathbb{R}$ zuordnen, wobei ferner eine Teilmenge $\mathbb{R}_{>0}$ von \mathbb{R} ausgezeichnet ist, deren Elemente die positiven Zahlen heißen (wir schreiben x>0 für $x\in\mathbb{R}_{>0}$), so dass die folgenden drei Gruppen I, II, III von Axiomen erfüllt sind:

I. Algebraische Axiome:

- I.a) Kommutativgesetze: x + y = y + x und $x \cdot y = y \cdot x$.
- I.b) Assoziativgesetze: (x + y) + z = x + (y + z) und (xy)z = x(yz).
- I.c) Null und Eins: Es gibt Elemente $0, 1 \in \mathbb{R}$ mit $0 \neq 1$ und x + 0 = x und $x \cdot 1 = x$ für alle $x \in \mathbb{R}$.
- I.d) Inverse Elemente: Zu jedem $x \in \mathbb{R}$ gibt es eine Zahl $-x \in \mathbb{R}$ mit x + (-x) = 0; zu jedem $x \in \mathbb{R}$ mit $x \neq 0$ gibt es eine Zahl $x^{-1} \in \mathbb{R}$ mit $x \cdot x^{-1} = 1$.
- I.e) **Distributivgesetz:** x(y+z) = xy + xz.

Statt ,, $\mathbb R$ erfüllt die Axiome I.a) - I.e)" sagt man kurz: ,, $\mathbb R$ ist ein Körper ".

II. Anordnungsaxiome:

II.a) Ist $x \in \mathbb{R}$, so gilt genau eine der folgenden 3 Möglichkeiten:

$$x > 0$$
, $x = 0$, $-x > 0$.

II.b) Ist x > 0 und y > 0, so ist x + y > 0 und xy > 0.

Bevor wir III formulieren können, müssen wir einige Bemerkungen zu den Axiomengruppen I und II machen:

(1) 1 > 0.

Bew.: Nach I.c) ist $1 \neq 0$. Nach II.a) ist daher entweder 1 > 0 oder -1 > 0. Angenommen, es wäre -1 > 0, so wäre $(-1) \cdot (-1) > 0$ nach II.b), also, da $(-1) \cdot (-1) = 1$ nach I., auch 1 > 0. Damit wäre gleichzeitig 1 > 0 und -1 > 0, im Widerspruch zu II.a). Deswegen ist die Annahme -1 > 0 falsch, und es gilt 1 > 0.

(2) Die Elemente $x \in \mathbb{R}$ mit -x > 0 heißen negativ. Sind $x,y \in \mathbb{R}$, so schreiben wir x < y oder y > x, falls y - x > 0. Insbesondere bedeutet x < 0, dass -x > 0, also dass x negativ ist. Sind $x,y \in \mathbb{R}$, so gilt nach II.a) genau eine der folgenden Möglichkeiten:

$$x > y$$
, $x = y$, $x < y$.

- (3) Ist x < 0 und y < 0, so ist xy > 0.
- (4) Ist $x \in \mathbb{R}$ und $x \neq 0$, so ist $x^2 > 0$.