

### IFT6390 Fondements de l'apprentissage machine

#### **Kernel Trick**

Professor: Ioannis Mitliagkas

Slides: Pascal Vincent

### Reminder

- There is a lot of ways to learn a linear classifie (e.g. Perceptron, logistic regression, SVM.)
- We saw that we can obtain a non-linear classifier using a linear classifier by simply pre-processing the input data.
- We just need to apply a non  $\varphi$  to data points x to projec them into a feature space of higher dimension:

$$\tilde{\mathbf{x}} = \varphi(\mathbf{x})$$

# Ex. a priori linear transform (pre-



#### To obtain a non-linear classifer

#### We can:

• Use a mapping  $\varphi$  that we explictly choose a priori and explicitly compute each  $\tilde{\mathbf{x}}=\varphi(\mathbf{x})$ 

$$\underbrace{(x_{[1]},x_{[2]})}_{\mathbf{x}} \mapsto \underbrace{(1,x_{[1]},x_{[2]},x_{[1]}x_{[2]},x_{[1]}^2,x_{[2]}^2,\sin x_{[1]},\cos x_{[2]})}_{\tilde{\mathbf{x}}}$$

• Learn a non-linear mapping  $\varphi$  within some parametrized class of functions. Neural networks can be seen from this perspective (e.g. first layer computes  $\varphi$ )

Ex: 
$$\tilde{\mathbf{x}} = \varphi(\mathbf{x}) = \operatorname{sigmoid}(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Use the kernel trick

# What's bad with explictly choosing the mapping?

- If x is already of high dimension, a polynomial mapping will lead to computing  $\tilde{\mathbf{x}}$  in a space of very high dimension.
- Ex:  $\mathbf{x} \in \mathbb{R}^d$  and polynomial mapping of degree k (all products within k components of x), we need to compute  $\tilde{\mathbf{x}}$  in space of dimension  $\sim d^k$ .

Ex: d=100,  $k=5 \longrightarrow 10 000 000 000$ 

# The kernel trick

- Can be applied to any learning algorithm that can be expressed in terms of dot products between input points.
- The trick consists in supposing that we can compute the dot product  $\langle \varphi(\mathbf{x}_i), \varphi(\mathbf{x}_j) \rangle$  directly without having to explictly compute  $\varphi(\mathbf{x})$ .
- We choose a kernel K satisfying

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \varphi(\mathbf{x}_i), \varphi(\mathbf{x}_j) \rangle$$

# Example

$$\varphi : \underbrace{\left(x_{[1]}, x_{[2]}\right)}_{\mathbf{x}} \mapsto (x_{[1]}^{2}, \sqrt{2} x_{[1]} x_{[2]}, x_{[2]}^{2})$$

$$K(\mathbf{x}, \mathbf{y}) = \langle \varphi(\mathbf{x}), \varphi(\mathbf{y}) \rangle$$

$$= \langle (x_{[1]}^{2}, \sqrt{2} x_{[1]} x_{[2]}, x_{[2]}^{2}), (y_{[1]}^{2}, \sqrt{2} y_{[1]} y_{[2]}, y_{[2]}^{2}) \rangle$$

$$= x_{[1]}^{2} y_{[1]}^{2} + \sqrt{2} x_{[1]} x_{[2]} \sqrt{2} y_{[1]} y_{[2]} + x_{[2]}^{2} y_{[2]}^{2}$$

$$= x_{[1]}^{2} y_{[1]}^{2} + 2 x_{[1]} x_{[2]} y_{[1]} y_{[2]} + x_{[2]}^{2} y_{[2]}^{2}$$

$$= (x_{[1]} y_{[1]} + x_{[2]} y_{[2]})^{2}$$

$$= (\langle \mathbf{x}, \mathbf{y} \rangle)^{2}$$

We can compute dot products in the new feature space without having to explictly use the feature map!

# Terminology

- We call the input space where the original inputs x belong the starting/orginil/ raw input space.
- The space where  $\varphi$  maps the data is feature space)
- The kernel K corresponds to a dot product in the feature space.

## Kernel trick: details

A linear model takes the form

$$egin{array}{lll} g(\mathbf{x}) &=& \mathbf{w}^T \mathbf{x} + b & \mathbf{x} &\in \mathbb{R}^d \ g(\mathbf{x}) &=& b + \langle \mathbf{w}, \mathbf{x} 
angle & \mathbf{w} &\in \mathbb{R}^d, b \in \mathbb{R} \end{array}$$

For many learning algorithms w will always be a linear combination of input points:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i$$

Hence **w** can be implicitly represented by using the scalars  $\alpha_i$  (sometimes, most of them will be 0, e.g. in SVM)

• Ex: Perceptron find  $\mathbf{w}$  starting from 0 and adding/substracting vectors that are colinear to input points from the training set (the  $\mathbf{x}_i$ 's).

# Kernel trick: details

In particular, if we work with input points mapped in the feature space  $\tilde{\mathbf{x}} = \Phi(\mathbf{x})$ , we can implicitly represent  $\mathbf{w}$  (potentially of high dimension) with

$$\tilde{\mathbf{w}} = \sum_{i=1}^{n} \alpha_i \tilde{\mathbf{x}}_i = \sum_{i=1}^{n} \alpha_i \varphi(\mathbf{x}_i)$$

In which case we can compute

$$g(\tilde{\mathbf{x}}) = b + \langle \tilde{\mathbf{w}}, \tilde{\mathbf{x}} \rangle$$

$$= b + \langle \tilde{\mathbf{w}}, \varphi(\mathbf{x}) \rangle$$

$$= b + \left\langle \left( \sum_{i=1}^{n} \alpha_{i} \varphi(\mathbf{x}_{i}) \right), \varphi(\mathbf{x}) \right\rangle$$

$$= b + \sum_{i=1}^{n} \alpha_{i} \langle \varphi(\mathbf{x}_{i}), \varphi(\mathbf{x}) \rangle$$

$$= b + \sum_{i=1}^{n} \alpha_{i} K(\mathbf{x}_{i}, \mathbf{x})$$

Since we only need to compute dot products between points in the feature space, we can use the kernel K without ever having to explictly use the feature map!

# ! Warning!

$$\tilde{\mathbf{w}} = \sum_{i=1}^{n} \alpha_i \tilde{\mathbf{x}}_i = \sum_{i=1}^{n} \alpha_i \varphi(\mathbf{x}_i) \neq \varphi\left(\sum_{i=1}^{n} \alpha_i \mathbf{x}_i\right)$$

So you cannot simply run the algorithm in the original space, and then apply  $\varphi$  to the weight vector returned by the algorithm!

You need to *implictly* run the algorithm on the points  $\varphi(x)$  (in the feature space).

# Kernel trick: summary

- Express an algorithm in the feature space (corresponding to some feature map  $\varphi$ ) using only dot products between input points.
- In general, this will imply keeping track of some weight vector
   α used by the algorithm (for a linear combination of input points)
- Replace all dot products with a kernel function K.
- This corresponds to running the algorithm in the feature space without ever having to explicitly compute the mappings with the feature map  $\varphi$ .

# Common kernel functions

Usual scalar product:

$$K(a,b) = \langle a,b \rangle$$

• Polynomial kernel of degree k:  $K_k(a,b) = (1 + \langle a,b \rangle)^k$ 

$$K_k(a,b) = (1 + \langle a,b \rangle)^k$$

• RBF (or Gaussian) kernel:

$$K_{\sigma}(a,b) = e^{-\frac{1}{2} \frac{\|a-b\|^2}{\sigma^2}}$$

#### Remarks:

- There are a lot of other useful kernels
- There are also kernels on strings, trees, graphs...
- Kernels can have (hyper)-parameters. ex:
- The feature map  $\varphi$  associated with a kernel K cannot always be expressed in a nice analytical form: the RBF kernel corresponds to a feature space of infinite dimension!

# What it takes to be a kernel...

- Not all functions K(.,.) are kernels: there is not always a mapping  $\varphi$  such that  $K(a,b) = \langle \varphi(a), \varphi(b) \rangle$
- *Mercer Theorem:* This will be the case if, and only if, *K* is continuous, symmetric and positive semi-definite.

## Kernel-trick friendly algorithms:

Many learning algorithms that usually return a linear classifier/regressor can be kernelized. Among others:

classification

- Perceptron => Kernel Perceptron
- Support Vector Machines (SVM)
- Logistic Regression
- Linear Regression
- Ridge Regression

regression

- Support Vector Regression (SVM variant for regression)
- Bayesian Linear Regression => Gaussian Processes (also Kriging in stats).

unsupervised

Principal Component Analysis (PCA)