

MÉTODOS ESTATÍSTICOS

Testes de Hipóteses Não Paramétricos - Parte 1 Testes de Ajustamento

Licenciatura em Engenharia Informática

Departamento de Matemática Escola Superior de Tecnologia de Setúbal Instituto Politécnico de Setúbal 2021-2022

Testes de Hipóteses Não Paramétricos:

Testes de Ajustamento

- Os testes de ajustamento servem para testar a hipótese de que uma determinada amostra aleatória foi recolhida de uma população com uma determinada distribuição.
- Um teste deste tipo compara a hipótese nula (H_0) com a hipótese alternativa (H_1) , tendo a seguinte forma:
 - ▶ H₀ Os dados provêm da população com a distribuição especificada
 - \triangleright H_1 Os dados não provêm da população com a distribuição especificada

2/50

Engenharia Informática

Princípios Básicos na Realização dos Testes de Ajustamento

- São definidas duas hipóteses:
 - $f Hipótese \, Nula = H_0$ é a hipótese que indica a distribuição que se pretende testar.
 - Hipótese Alternativa $=H_1$ é a hipótese que se contrapõe à hipótese nula, ou seja, que indica que a distribuição que foi colocada na hipótese nula não é válida
- é definida uma Estatística Teste, que é a base da realização do teste e consiste em comparar a amostra com o modelo teórico.
- São construídas duas regiões:
 - Região de Aceitação = RA conjunto de valores para os quais H_0 é admissível.
 - Região de Rejeição ou Região Crítica =RC conjunto de valores para os quais H_0 não é admissível.

Engenharia Informática Métodos Estatísticos 2021-2022 3/50

◆□▶◆圖▶◆臺▶◆臺▶

Princípios Básicos na Realização dos Testes de Hipóteses

- A regra de decisão define as condições de rejeição ou não rejeição da hipótese nula:
 - Se o Valor Observado da Estatística de Teste sob a hipótese H_0 pertencer à Região de Aceitação, então Não se Rejeita H_0
 - Se o Valor Observado da Estatística de Teste sob a hipótese H_0 pertencer à Região Crítica, então Rejeita-se H_0
- $oldsymbol{\circ}$ Erros de decisão um teste de hipóteses nem sempre conduz a decisões corretas, a análise de uma amostra pode falsear as conclusões quanto à população. Um dos erros é o chamado $oldsymbol{\mathsf{Erro}}$ de 1^a espécie ou $oldsymbol{\mathsf{Nível}}$ de significância do teste:

$$\alpha = P$$
 [rejeitar $H_0 \mid H_0$ verdadeira]

para minimizar este erro fixa-se o seu valor.

• As regiões de aceitação e de rejeição $(RA \ e \ RC)$ são definidas à custa do valor fixado para o nível de significância (α) .

Engenharia Informática Métodos Estatísticos 2021-2022 4/50

Na prática, em vez de calcular a região crítica (RC) e a região de aceitação (RA), é usual calcular-se o Valor-p (ou p-value).

Valor-p (ou p-value)

É a probabilidade associada ao valor da estatística de teste, considerando H_0 verdadeira.

• Se o valor-p for pequeno significa que, no caso de H_0 ser verdadeira, estamos perante um evento muito raro, pouco provável de ocorrer, então deve optar-se por rejeitar H_0 .

Portanto, o valor-p também permite tomar decisões:

- se valor-p $< \alpha$, então rejeita-se H_0
- se valor-p > α , então não se rejeita H_0

2021-2022

Testes de Ajustamento

- Existem diversos testes de ajustamento, só vamos ver os seguintes:
 - ► Teste de ajustamento do Qui-Quadrado
 - ★ é válido para distribuições discretas e contínuas
 - * amostras grandes
 - * pode haver a necessidade de agrupar os dados
 - Teste de ajustamento de Kolmogorov-Smirnov
 - * é válido para distribuições contínuas, muito usado para testar a distribuição Normal (também existe uma versão para distribuições discretas mas não será estudada)
 - ★ pode ser aplicado a amostras pequenas
 - não é necessário agrupar os dados

Objetivo

Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados, ou seja, comparar a distribuição dos dados amostrais (frequências observadas) com a distribuição teórica que se associa à população de onde provém essa amostra.

Formulação das Hipóteses a Testar:

 H_0- Os dados provêm da população com a distribuição teórica especificada

 H_1- Os dados não provêm da população com a distribuição teórica especificada

Estatística de Teste

A estatística de teste tem por base os desvios entre as frequências observadas (O_i) e esperadas (E_i) . Supondo verdadeira a hipótese H_0 , então

$$Q = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} \sim \chi_{(k-1-r)}^2$$

onde r representa o número de parâmetros desconhecidos da distribuição proposta em H_0 , estimados a partir da amostra.

《ロシペラシペミト を かく と かく は かく また また かく で かく で Engenharia Informática Métodos Estatísticos 2021-2022 8/50

Cálculo do Valor Observado da Estatística de Teste sob a Hipótese \mathcal{H}_0

$$Q_{obs} = \sum_{i=1}^{k} \frac{\left(O_i - E_i\right)^2}{E_i}$$

- De acordo com o tipo de dados da amostra, construir a respetiva tabela de frequências;
- k corresponde ao número de linhas da tabela de frequências
- frequências observadas = $O_i \rightarrow$ corresponde às frequências absolutas, n_i , das tabelas de frequências;
- frequências esperadas = $E_i=np_i o$ frequência absoluta esperada referente à categoria ou classe i se H_0 for verdadeira, sendo
 - n é a dimensão da amostra
 - p_i a probabilidade da variável aleatória, com o modelo probabilístico definido na hipótese H_0 , pertencer à categoria ou classe i.

Observação: Tem-se $\sum\limits_{i=1}^{\kappa}O_i=\sum\limits_{i=1}^{\kappa}E_i=n$

Engenharia Informática Métodos Estatísticos 2021-2022

Definição da Região de Aceitação e de Região Crítica

Um valor da estatística de teste ${\cal Q}$ elevado indica um desajuste entre a distribuição de frequências amostral e teórica:

- a Região de Aceitação é $RA = \left[0, x_{(k-1-r);1-\alpha}^2\right[$
- a Região Crítica é $RC = \left[x_{(k-1-r);1-lpha}^2, +\infty \right[$

Engenharia Informática Métodos Estatísticos 2021-2022 10 / 50

Regra de Decisão com base na Região Crítica

• Se o valor observado da estatística de teste não pertencer à Região Crítica,

$$Q_{obs} \notin RC$$

então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados provêm de uma população que possui a distribuição teórica definida na hipótese H_0 .

• Se o valor observado da estatística de teste pertencer à Região Crítica,

$$Q_{obs} \in RC$$

então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados não provêm de uma população que possui a distribuição teórica definida na hipótese H_0 .

Engenharia Informática Métodos Estatísticos 2021-2022 11/50

4 D > 4 A > 4 B > 4 B >

Cálculo do valor-p

Considerando que ${\cal H}_0$ é verdadeira, o valor-p indica a probabilidade do valor observado da estatística de teste ocorrer:

$$\mathsf{valor-p} = P\left(Q \geq Q_{\mathsf{obs}}\right)$$

O valor-p pode ser visto como o menor valor de α (nível de significância) para o qual os dados observados indicam que H_0 deve ser rejeitada.

Engenharia Informática Métodos Estatísticos 2021-2022 12 / 50

Regra de Decisão com base no valor-p

Se

valor-p
$$> \alpha$$

então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados provêm de uma população que possui a distribuição teórica definida na hipótese H_0 .

Se

valor-p
$$\leq \alpha$$

então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados não provêm de uma população que possui a distribuição teórica definida na hipótese H_0 .

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 夕 Q ②

Condições de aplicação do teste

- Não há mais de 20% das frequências esperadas inferiores a 5, isto é, $E_i < 5$ no máximo em 20% das células dos E_i .
- Todas as frequências esperadas devem ser maiores ou iguais a 1, isto é, $E_i \geq 1$ para todo $i=1,\ldots,k$.
- Alguns autores acrescentam ainda que a dimensão da amostra deve ser maior que 20 e outros que deve ser maior que 30.

Observações

- As regras de aplicação do teste de ajustamento do Qui-Quadrado devem ser, tanto quanto possível verificadas, sob pena do teste não ser rigoroso. Ou seja, o teste de ajustamento do Qui-Quadrado não tem qualquer pressuposto, a infração das regras de aplicação apenas leva à perda de rigor.
- Quando as frequências esperadas não atingem os valores aconselhados agregam-se classes adjacentes de forma a obter novas classes que satisfaçam as condições.

Engenharia Informática Métodos Estatísticos 2021-2022 14/50

Exemplo 1

Deseja-se verificar se um dado é equilibrado (não viciado), para tal lançou-se o dado 210 vezes e os resultados obtidos foram:

face do dado	Número de vezes que saiu a face
1	46
2	35
3	25
4	19
5	40
6	45

Teste a hipótese referida considerando um nível de significância de 5%.

4□ > 4回 > 4 = > 4 = > = 900

Engenharia Informática

Seja

X- número da face virada para cima num lançamento de um dado com $D_X=\{1,2,3,4,5,6\}$

Pretende-se verificar se o dado é equilibrado (não viciado),

ou seja,

Pretende-se verificar se a variável X segue uma distribuição Uniforme Discreta:

$$X \sim U_{(6)}$$

Engenharia Informática

Hipótese a ser testada

Seja X a variável aleatória que representa o número da face virada para cima num lançamento de um dado

$$H_0: X \sim U_{(6)}$$

$$vs H_1: X \nsim U_{(6)}$$

Dados

- Total de dados: n = 46 + 35 + 25 + 19 + 40 + 45 = 210
- Distribuição Uniforme discreta: $f(x) = P(X = x) = \begin{cases} \frac{1}{6}, & x \in \{1, 2, \dots, 6\} \\ 0, & \text{caso contrário} \end{cases}$
- Não é necessário estimar parâmetros: r=0
- nível de significância = $\alpha = 0.05$

Domínio	Frequências Observadas	Probabilidade	Frequências Esperadas	Valor Observado da Estatística de Teste
x_i	$O_i = n_i$	$p_i = f(x_i)$	$E_i = n \times p_i$	$\frac{(O_i - E_i)^2}{E_i}$
1	46	$f(1) = \frac{1}{6}$	$210 \times \frac{1}{6} = 35$	$\frac{(46-35)^2}{35} = 3.46$
2	35	$f(2) = \frac{1}{6}$	$210 \times \frac{1}{6} = 35$	$\frac{(35-35)^2}{35} = 0$
3	25	$f(3) = \frac{1}{6}$	$210 \times \frac{1}{6} = 35$	$\frac{(25-35)^2}{35} = 2.86$
4	19	$f(4) = \frac{1}{6}$	$210 \times \frac{1}{6} = 35$	$\frac{(19-35)^2}{35} = 7.31$
5	40	$f(5) = \frac{1}{6}$	$210 \times \frac{1}{6} = 35$	$\frac{(40-35)^2}{35} = 0.71$
6	45	$f(6) = \frac{1}{6}$	$210 \times \frac{1}{6} = 35$	$\frac{(45-35)^2}{35} = 2.86$
	n = 210	1	n = 210	$Q_{obs} = \sum_{i=1}^{6} \frac{(O_i - E_i)^2}{E_i} = 17.2$

Engenharia Informática Métodos Estatísticos 2021-2022 18/50

A estatística de teste, sob a hipótese H_0 , tem distribuição Qui-Quadrado com

$$k-1-r=6-1-0=5 \quad \text{graus de liberdade}$$

$$Q \sim \chi^2_{(5)}$$

Regra de Decisão através da Região Crítica

$$Q_{obs} = 17.2 \qquad \text{e} \qquad RC = \left[x_{(k-1-r);1-\alpha}^2, +\infty \right[= \left[x_{(5);0.95}^2, +\infty \right[= [11.1, +\infty[$$

Como $Q_{obs}=17.2 \in RC$ então rejeita-se a hipótese H_0

Regra de Decisão através do valor-p

$$\mathsf{valor}\text{-}p = P(Q \ge Q_{obs}) = P(Q \ge 17.2) = 1 - P(Q < 17.2) = 1 - F(17.2)$$

R: valor-
$$p = 1 - F(17.2) = 1 - 0.9959 = 0.0041$$

Tabela em papel: valor-
$$p = 1 - F(17.2) \approx 1 - F(16.7) = 1 - 0.995 = 0.005$$

Como valor- $p \leq 0.05 = \alpha$ então rejeita-se a hipótese H_0

Conclusão: Com base na amostra e ao nível de significância de 5%, o dado não parece ser equilibrado.

Engenharia Informática Métodos Estatísticos 2021-2022

R

usar a função chisq.test()

e obtém-se

- $Q_{obs} = 17.2$
- \bullet graus de liberdade =5
- valor-p = 0.004136

Como valor- $p \leq 0.05 = \alpha$ então rejeita-se a hipótese H_0

Conclusão: Com base na amostra e ao nível de significância de 5%, o dado não parece ser equilibrado.

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - りq (P

Exemplo 2

A procura diária de um certo produto foi, em 40 dias escolhidos ao acaso, a seguinte:

Número de unidades	Número de dias
0	6
1	14
2	10
3	7
4	2
5	1

Será que tais observações foram extraídas de uma população com distribuição de Poisson, isto é, será de admitir que tal procura segue uma distribuição de Poisson? Teste a hipótese referida considerando um nível de significância de 1%.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

Hipótese a ser testada

Seja X a variável aleatória que representa a procura diária do produto

$$H_0: X \sim P(\lambda)$$
 vs $H_1: X \nsim P(\lambda)$

Dados

- Total de dados: n = 6 + 14 + 10 + 7 + 2 + 1 = 40
- É necessário estimar λ , como $E[X]=\lambda$, então uma estimativa para λ é a média da amostra
- Estimativa de λ : $\overline{x}=\frac{0\times 6+1\times 14+2\times 10+3\times 7+4\times 2+5\times 1}{40}=1.7$
- Distribuição Poisson: $X \sim P(1.7)$ (tabela)
- Número de parâmetros estimados: r=1
- nível de significância = $\alpha = 0.01$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Domínio	Frequências	Probabilidade	Frequências
	Observadas		Esperadas
x_i	$O_i = n_i$	$p_i = f(x_i)$	$E_i = n \times p_i$
0	6	f(0) = 0.1827	$40 \times 0.1827 = 7.309$
1	14	f(1) = 0.3106	$40 \times 0.3106 = 12.424$
2	10	f(2) = 0.2640	$40 \times 0.2640 = 10.56$
3	7	f(3) = 0.1496	$40 \times 0.1496 = 5.984$
4	2	f(4) = 0.0636	$\boxed{40 \times 0.0636 = 2.544^{(***)}}$
5 ou mais (*)	1	$P(X \ge 5) = 0.0296^{(**)}$	$\boxed{40 \times 0.0296 = 1.184^{(***)}}$
	n = 40	1	n = 40

(*) o domínio da distribuição Poisson não tem fim

Engenharia Informática

$$(**)$$
 $P(X \ge 5) = 1 - P(X < 5) = 1 - P(X \le 4) = 1 - F(4) = 1 - 0.9704 = 0.0296$

 $^{(***)}$ Como falham as condições de aplicabilidade deste teste, mais de $20\%~(6\times20\%=1.2)$ das frequências esperadas são inferiores a 5, iremos agregar valores adjacentes.

Métodos Estatísticos

4 미 > 《라 > 〈호 > 〈호 > 〈호 > 〈호 > 〈호 > 〉호

23 / 50

2021-2022

Domínio	Frequências	Probabilidade	Frequências	Valor Observado da
	Observadas		Esperadas	Estatística de Teste
x_i	$O_i = n_i$	$p_i = f(x_i)$	$E_i = n \times p_i$	$\frac{(O_i - E_i)^2}{E_i}$
0	6	0.1827	7.309	$\frac{(6-7.309)^2}{7.309} = 0.2344$
1	14	0.3106	12.424	$\frac{(14-12.424)^2}{12.424} = 0.1999$
2	10	0.2640	10.56	$\frac{(10-10.56)^2}{10.56} = 0.0297$
3	7	0.1496	5.984	$\frac{(7-5.984)^2}{5.984} = 0.1725$
4 ou mais	3	$P(X \ge 4) = 0.0932^{(*)}$	$40 \times 0.0932 = 3.728$	$\frac{(3-3.728)^2}{3.728} = 0.1422$
	n = 40	1	n = 40	$\sum_{i=1}^{5} \frac{(O_i - E_i)^2}{E_i} = 0.7787$

$$^{(*)}P(X \ge 4) = 1 - P(X < 4) = 1 - P(X \le 3) = 1 - F(3) = 1 - 0.9068 = 0.0932$$

- 4 ロ ト 4 園 ト 4 恵 ト - 夏 - 釣 9 (で)

Engenharia Informática Métodos Estatísticos 2021-2022 24/50

A estatística de teste, sob a hipótese H_0 , tem distribuição Qui-Quadrado com

$$k-1-r=5-1-1=3 \quad \text{graus de liberdade}$$

$$Q \sim \chi^2_{(3)}$$

Regra de Decisão através da Região Crítica

$$Q_{obs} = 0.7787 \qquad \text{e} \qquad RC = \left[x_{(k-1-r);1-\alpha}^2, +\infty \right[= \left[x_{(3);0.99}^2, +\infty \right[= \left[11.3, +\infty \right] \right] + \left[x_{(k-1);1-\alpha}^2, +\infty \right] = 0.7787$$

Como $Q_{obs}=0.7787 \notin RC$ então não se rejeita a hipótese H_0

Regra de Decisão através do valor-p

$$\mathsf{valor} - p = P(Q \geq Q_{obs}) = P(Q \geq 0.7787) = 1 - P(Q < 0.7787) = 1 - F(0.7787)$$

R: valor-
$$p = 1 - F(0.7787) = 1 - 0.1454 = 0.8546$$

Tabela em papel: valor-
$$p = 1 - F(0.7787) \approx 1 - F(0.584) = 1 - 0.10 = 0.90$$

Como valor- $p>0.01=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e ao nível de significância de 1%, conclui-se que a procura diária segue uma distribuição Poisson.

Engenharia Informática Métodos Estatísticos 2021-2022

usar a função chisq.test()

e obtém-se

- $Q_{obs} = 0.77853$
- graus de liberdade (corrigido) = 3
- valor-p (corrigido) = 0.8545952

Como valor- $p>0.01=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e ao nível de significância de 1%, conclui-se que a procura diária segue uma distribuição Poisson.

Exemplo 3

Na tabela seguinte apresentam-se os tempos de falha (em horas) de uma determinada máquina:

1476	300	98	221	157
182	499	552	1563	36
246	442	20	796	31
47	438	400	279	247
210	284	553	767	1297
214	428	597	2025	185
467	401	210	289	1024

Será que tais observações foram extraídas de uma população com distribuição Exponencial, isto é, será de admitir que os tempos de falha seguem uma distribuição Exponencial? Teste a hipótese referida considerando um nível de significância de 10%.

27 / 50

Engenharia Informática Métodos Estatísticos 2021-2022

Hipótese a ser testada

Seja X a variável aleatória que representa os tempos de falha em horas

$$H_0: X \sim Exp(\theta)$$
 vs $H_1: X \nsim Exp(\theta)$

Dados

- Total de dados: n = 35
- É necessário estimar θ , como $E[X]=\theta$, então uma estimativa para θ é a média da amostra
- Estimativa de θ : $\overline{x}=\frac{1476+300+98+\cdots+1024}{35}=485.1714$ horas
- Distribuição Exponencial: $X \sim Exp(485.1714)$

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\frac{x}{485.1714}}, & x \ge 0 \end{cases}$$

- Número de parâmetros estimados: r=1
- Como a variável é contínua é necessário definir classes → Regra de Sturges:
 6 classes e cada classe com amplitude 334.2
- nível de significância = $\alpha = 0.10$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

Domínio:	Frequências	Probabilidade
Classes	Observadas	
$]x_i, x_{i+1}]$	$O_i = n_i$	$p_i = P(x_i < X \le x_{i+1})$
$]-\infty,354.2]$ (*)	18	$P(X \le 354.2) = F(354.2) = 0.5181$
]354.2, 688.4]	10	$P(354.2 < X \le 688.4) = F(688.4) - F(354.2) = 0.2399$
]688.4, 1022.6]	2	$P(688.4 < X \le 1022.6) = F(1022.6) - F(688.4) = 0.1205$
]1022.6, 1356.8]	2	$P(1022.6 < X \le 1356.8) = F(1356.8) - F(1022.6) = 0.0605$
]1356.8, 1691]	2	$P(1356.8 < X \le 1691) = F(1691) - F(1356.8) = 0.0304$
]1691, +∞[(**)	1	$P(X > 1691) = 1 - P(X \le 1691) = 1 - F(1691) = 0.0306$
	n = 35	1

Engenharia Informática

29 / 50

2021-2022

Métodos Estatísticos

 $^{^{(*)}}$ com base na amostra seria [20,354.2], mas a variável pode assumir qualquer valor em $\mathbb R$

 $^{^{(**)}}$ com base na amostra seria]1691,2025.2], mas a variável pode assumir qualquer valor em $\mathbb R$

Domínio:	Frequências	Probabilidade	Frequências
Classes	Observadas		Esperadas
$]x_i, x_{i+1}]$	$O_i = n_i$	$p_i = P(x_i < X \le x_{i+1})$	$E_i = n \times p_i$
$]-\infty, 354.2]$	18	0.5181	$35 \times 0.5181 = 18.1341$
]354.2, 688.4]	10	0.2399	$35 \times 0.2399 = 8.3965$
]688.4, 1022.6]	2	0.1205	$35 \times 0.1205 = 4.2164^{(****)}$
]1022.6, 1356.8]	2	0.0605	$35 \times 0.0605 = 2.1173^{(***)}$
]1356.8, 1691]	2	0.0304	$35 \times 0.0304 = 1.0632^{(***)}$
]1691, +∞[1	0.0306	$35 \times 0.0306 = 1.0725^{(***)}$
	n = 35	1	n = 35

(***) Falham as condições de aplicabilidade do teste, mais de 20% (6 classes $\times 20\% = 1.2$) das frequências esperadas são inferiores a 5, iremos agregar classes adjacentes.

Domínio: Classes	Frequências Observadas	Probabilidade	Frequências Esperadas	Valor Observado da Estatística de Teste
$]x_i, x_{i+1}]$	$O_i = n_i$	$p_i = P(x_i < X \le x_{i+1})$	$E_i = n \times p_i$	$\frac{(O_i - E_i)^2}{E_i}$
$]-\infty, 354.2]$	18	0.5181	18.1341	$\frac{(18-18.1341)^2}{18.1341} = 0.0010$
]354.2, 688.4]	10	0.2399	8.3965	$\frac{(10-8.3965)^2}{8.3965} = 0.3062$
]688.4, $+\infty$ [7	$P(X \ge 688.4) = 0.2420$	8.4695	$\frac{(7-8.4695)^2}{8.4695} = 0.2550$
	n = 35	1	n = 35	$\sum_{i=1}^{3} \frac{(O_i - E_i)^2}{E_i} = 0.5622$

Engenharia Informática Métodos Estatísticos 2021-2022 31/50

A estatística de teste, sob a hipótese H_0 , tem distribuição Qui-Quadrado com

$$k-1-r=3-1-1=1 \quad \text{graus de liberdade}$$

$$Q \sim \chi^2_{(1)}$$

Regra de Decisão através da Região Crítica

$$Q_{obs} = 0.5622 \qquad \text{e} \qquad RC = \left[x_{(k-1-r);1-\alpha}^2, +\infty \right[= \left[x_{(1);0.90}^2, +\infty \right[= \left[2.71, +\infty \right[-1.001 + 1.00$$

Como $Q_{obs} = 0.5622 \notin RC$ então não se rejeita a hipótese H_0

Regra de Decisão através do valor-p

$$\mathsf{valor} - p = P(Q \geq Q_{obs}) = P(Q \geq 0.5622) = 1 - P(Q < 0.5622) = 1 - F(0.5622)$$

R: valor-
$$p = 1 - F(0.5622) = 1 - 0.5466 = 0.4534$$

Tabela em papel: valor-
$$p = 1 - F(0.5622) \approx 1 - F(0.455) = 1 - 0.50 = 0.50$$

Como valor- $p>0.10=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e ao nível de significância de 10%, conclui-se que os tempos de falha seguem uma distribuição Exponencial.

Engenharia Informática Métodos Estatísticos 2021-2022

usar a função chisq.test()

e obtém-se

- $Q_{obs} = 0.56218$
- graus de liberdade (corrigido) = 1
- valor-p (corrigido) = 0.453383

Como valor- $p>0.10=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e ao nível de significância de 10%, conclui-se que os tempos de falha seguem uma distribuição Exponencial.

《□▶ 《□▶ 《□▶ 《□▶ ○■ ○ 夕○○

Teste de ajustamento de Kolmogorov-Smirnov

Objetivo

Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados, ou seja, comparar a função de distribuição teórica (referente à população) com a função de distribuição amostral (referente à amostra).

Formulação das Hipóteses a Testar:

 H_0- A população possui certa distribuição teórica

vs

 H_1 – A população não possui certa distribuição teórica

(ロト 4回 ト 4 E ト 4 E - か 9 C)

Teste de ajustamento de Kolmogorov-Smirnov

Estatística de Teste

A estatística de teste tem por base a análise da proximidade entre a função de distribuição empírica ou da amostra, $F_S\left(x\right)$, e a função de distribuição teórica ou populacional, $F_T\left(x\right)$. Supondo verdadeira a hipótese H_0 :

$$D = \sup_{x} |F_S(x) - F_T(x)|$$

A estatística D de Kolmogorov-Smirnov para uma amostra encontra-se tabelada. Na tabela encontra-se o quantil $D_{n;\alpha}$ para uma amostra de dimensão n e para um nível de significância α . Nesta tabela não é dada a função de distribuição mas o seu complementar, ou seja

$$D_{n;\alpha}$$
 é o quantil de probabilidade α tal que $P(D \geq D_{n;\alpha}) = \alpha$

Em termos práticos:

$$D = \max_{x} \left\{ \left| F_S\left(x_{(i)}\right) - F_T\left(x_{(i)}\right) \right| ; \left| F_S\left(x_{(i-1)}\right) - F_T\left(x_{(i)}\right) \right| \right\}$$

Engenharia Informática Métodos Estatísticos 2021-2022 35/50

Teste de ajustamento de Kolmogorov-Smirnov

Cálculo do Valor Observado da Estatística de Teste sob a Hipótese H_0

$$D_{obs} = \max_{x} \left\{ \left| F_S\left(x_{(i)}\right) - F_T\left(x_{(i)}\right) \right| ; \left| F_S\left(x_{(i-1)}\right) - F_T\left(x_{(i)}\right) \right| \right\}$$

- Ordenar a amostra.
- Construir a tabela de frequências sem definir classes.
- função de distribuição empírica ou da amostra $=F_S(x) \rightarrow \text{corresponde}$ à frequência relativa acumulada, F_i , das tabelas de frequências;
- função de distribuição teórica ou populacional $=F_T(x) \to \text{corresponde}$ ao valor da função de distribuição da variável aleatória, com o modelo probabilístico definido em H_0 .

Definição da Região de Aceitação e de Região Crítica

Um valor da estatística de teste D elevado indica um desajuste entre a distribuição amostral e teórica:

- a Região de Aceitação é $RA = [0, D_{n;\alpha}[$
- a Região Crítica é $RC = [D_{n;\alpha}, +\infty[$

Regra de Decisão com base na Região Crítica

- Se $D_{obs} \notin RC$, então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados provêm de uma população que possui a distribuição teórica definida na hipótese H_0 .
- Se $D_{obs} \in RC$, então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados não provêm de uma população que possui a distribuição teórica definida na hipótese H_0 .

Engenharia Informática Métodos Estatísticos 2021-2022 37/50

◆□▶◆圖▶◆臺▶◆臺▶

Cálculo do valor-p

Considerando que H_0 é verdadeira, o valor-p indica a probabilidade do valor observado da estatística de teste ocorrer:

$$valor-p = P\left(D \ge D_{obs}\right)$$

Regra de Decisão com base no valor-p

- Se valor-p $> \alpha$, então, ao nível de significância α , a hipótese H_0 não é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados provêm de uma população que possui a distribuição teórica definida na hipótese H_0 .
- Se valor-p $\leq \alpha$, então, ao nível de significância α , a hipótese H_0 é rejeitada, isto é, com base na amostra há evidências estatísticas que os dados não provêm de uma população que possui a distribuição teórica definida na hipótese H_0 .

O valor-p pode ser visto como o menor valor de α (nível de significância) para o qual os dados observados indicam que H_0 deve ser rejeitada.

Engenharia Informática Métodos Estatísticos 2021-2022 38 / 50

Condições de aplicação do teste

- O teste de Kolmogorov-Smirnov será usado apenas para amostras aleatórias extraídas de populações contínuas.
- O teste de Kolmogorov-Smirnov só pode ser aplicado quando a distribuição indicada na hipótese nula está completamente especificada.
- Caso pretendessemos, por exemplo, efetuar um ajustamento de uma distribuição normal, sem especificar μ e σ , temos de recorrer a outro teste Teste de Normalidade de Lilliefors (este teste não será abordado) ou, como vimos, ao teste de ajustamento do Qui-Quadrado com os dados agrupados.

Exemplo 4

Na tabela seguinte apresentam-se os tempos de falha (em horas) de uma determinada máquina:

1476	300	98	221	157
182	499	552	1563	36
246	442	20	796	31

Será que tais observações foram extraídas de uma população com distribuição Exponencial com média 730 horas? Teste a hipótese referida considerando um nível de significância de 10%.

Hipótese a ser testada

Seja X a variável aleatória que representa os tempos de falha em horas

$$H_0: X \sim Exp(730)$$
 vs $H_1: X \nsim Exp(730)$

Dados

- Total de dados: n=15
- Distribuição Exponencial: $X \sim Exp(730)$

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\frac{x}{730}}, & x \ge 0 \end{cases}$$

- nível de significância = $\alpha = 0.10$
- Construir a tabela de frequências com os valores da amostra por ordem crescente e sem definir classes:

(ロ) (部) (注) (注) 注 の(())

x_i	n_i	f_i	$F_i = F_S(x_i)$	$F_T(x_i) = P(X \le x_i)$	$ F_S(x_i) - F_T(x_i) $	$\left F_S\left(x_{i-1}\right) - F_T\left(x_i\right)\right $
20	1	$\frac{1}{15}$	$\frac{1}{15} = 0.0667$	F(20) = 0.0270	0.0667 - 0.0270 = 0.0396	0 - 0.0270 = 0.0270
31	1	1 15	$\frac{2}{15} = 0.1333$	F(31) = 0.0416	0.1333 - 0.0416 = 0.0918	0.0667 - 0.0416 = 0.0251
36	1	$\frac{1}{15}$	$\frac{3}{15} = 0.2$	F(36) = 0.0481	0.2 - 0.0481 = 0.1519	0.1333 - 0.0481 = 0.0852
98	1	$\frac{1}{15}$	$\frac{4}{15} = 0.2667$	F(98) = 0.1256	0.2667 - 0.1256 = 0.1410	0.2 - 0.1256 = 0.0744
157	1	$\frac{1}{15}$	$\frac{5}{15} = 0.3333$	F(157) = 0.1935	0.3333 - 0.1935 = 0.1398	0.2667 - 0.1935 = 0.0732
182	1	$\frac{1}{15}$	$\frac{6}{15} = 0.4$	F(182) = 0.2207	0.4 - 0.2207 = 0.1793	0.3333 - 0.2207 = 0.1127
221	1	$\frac{1}{15}$	$\frac{7}{15} = 0.4667$	F(221) = 0.2612	0.4667 - 0.2612 = 0.2055	0.4 - 0.2612 = 0.1388
246	1	$\frac{1}{15}$	$\frac{8}{15} = 0.5333$	F(246) = 0.2861	0.5333 - 0.2861 = 0.2473	0.4667 - 0.2861 = 0.1806
300	1	$\frac{1}{15}$	$\frac{9}{15} = 0.6$	F(300) = 0.3370	0.6 - 0.3370 = 0.2630	0.5333 - 0.3370 = 0.1963
442	1	$\frac{1}{15}$	$\frac{10}{15} = 0.6667$	F(442) = 0.4542	0.6667 - 0.4542 = 0.2125	0.6 - 0.4542 = 0.1458
499	1	$\frac{1}{15}$	$\frac{11}{15} = 0.7333$	F(499) = 0.4952	0.7333 - 0.4952 = 0.2381	0.6667 - 0.4952 = 0.1715
552	1	$\frac{1}{15}$	$\frac{12}{15} = 0.8$	F(552) = 0.5305	0.8 - 0.5305 = 0.2695	0.6667 - 0.5305 = 0.2028
796	1	$\frac{1}{15}$	$\frac{13}{15} = 0.8667$	F(796) = 0.6639	0.8667 - 0.6639 = 0.2027	0.8 - 0.6639 = 0.1361
1476	1	$\frac{1}{15}$	$\frac{14}{15} = 0.9333$	F(1476) = 0.8676	0.9333 - 0.8676 = 0.0657	0.8667 - 0.8676 = 0.0009
1563	1	$\frac{1}{15}$	$\frac{15}{15} = 1$	F(1563) = 0.8825	1 - 0.8825 = 0.1175	0.9333 - 0.8825 = 0.0509

◆ロト ◆御 ト ◆差 ト ◆差 ト 差 り へ ○

42 / 50

Engenharia Informática Métodos Estatísticos 2021-2022

$$D_{obs} = max \{ |F_S(x_i) - F_T(x_i)| ; |F_S(x_{i-1}) - F_T(x_i)| \} = 0.2695$$

Regra de Decisão através da Região Crítica

$$RC = [D_{n;\alpha}, +\infty[= [D_{15;0.10}, +\infty[= [0.304, +\infty[$$

Como $D_{obs}=0.2695 \notin RC$ então não se rejeita a hipótese H_0

Regra de Decisão através do valor-p

valor-
$$p = P(D \ge D_{obs}) = P(D \ge 0.2695) \approx P(D \ge 0.266) = 0.20$$

Como valor- $p>0.10=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e ao nível de significância de 10%, conclui-se que os tempos de falha seguem uma distribuição Exponencial com média 730 horas.

Engenharia Informática Métodos Estatísticos 2021-2022 43/50

◆ロ → ← 同 → ← 目 → ← 同 → へ ○ へ ○ ○

usar a função ks.test()

e obtém-se

- $D_{obs} = 0.26946$
- valor-p = 0.1881

Como valor- $p=0.1881>0.10=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e ao nível de significância de 10%, conclui-se que os tempos de falha seguem uma distribuição Exponencial com média 730 horas.

44 / 50

Engenharia Informática Métodos Estatísticos

Exemplo 5

Numa baía efetuaram-se 36 medições dos níveis de salinidade. Os valores obtidos aleatoriamente foram os seguintes:

75	92	80	80	84	72	84	77	81
77	75	81	80	92	72	77	78	76
77	86	77	92	80	78	68	78	92
68	80	81	87	76	80	87	77	86

Pretende-se testar, para um nível de significância de 5%, se os valores da salinidade nessa baía são normalmente distribuídos com média 80 e desvio padrão 6.95.

Hipótese a ser testada

Seja X a variável aleatória que representa os níveis de salinidade

$$H_0: X \sim N(80, 6.95)$$
 vs $H_1: X \nsim N(80, 6.95)$

Dados

- Total de dados: n=36
- Distribuição Normal: $X \sim N(80, 6.95) \Leftrightarrow Z = \frac{X-80}{6.05} \sim N(0,1)$
- nível de significância = $\alpha = 0.05$
- Construir a tabela de frequências com os valores da amostra por ordem crescente:

4□ > 4同 > 4 = > 4 = > = 900

x_i	n_i	f_i	$F_i = F_S(x_i)$	$F_T(x_i) = P(X \le x_i)$	$\left F_{S}\left(x_{i}\right)-F_{T}\left(x_{i}\right)\right $	$\left F_S\left(x_{i-1}\right) - F_T\left(x_i\right)\right $
68	2	2 36	$\frac{2}{36} = 0.0556$	$\Phi\left(\frac{68-80}{6.95}\right) = 0.0421$	0.0556 - 0.0421 = 0.0134	0 - 0.0421 = 0.0421
72	2	2 36	$\frac{4}{36} = 0.1111$	$\Phi\left(\frac{72-80}{6.95}\right) = 0.1248$	0.1111 - 0.1248 = 0.0137	0.0556 - 0.1248 = 0.0693
75	2	2 36	$\frac{6}{36} = 0.1667$	$\Phi\left(\frac{75-80}{6.95}\right) = 0.2359$	0.1667 - 0.2359 = 0.0693	0.1111 - 0.2359 = 0.1248
76	2	2 36	$\frac{8}{36} = 0.2222$	$\Phi\left(\frac{76-80}{6.95}\right) = 0.2825$	0.2222 - 0.2825 = 0.0602	0.16667 - 0.2825 = 0.1158
77	6	6 36	$\frac{14}{36} = 0.3889$	$\Phi\left(\frac{77-80}{6.95}\right) = 0.3330$	0.3889 - 0.3330 = 0.0559	0.2222 - 0.3330 = 0.1108
78	3	3 36	$\frac{17}{36} = 0.4722$	$\Phi\left(\frac{77-80}{6.95}\right) = 0.3868$	0.4722 - 0.3868 = 0.0855	0.3889 - 0.3868 = 0.0021
80	6	<u>6</u> 36	$\frac{23}{36} = 0.6389$	$\Phi\left(\frac{80-80}{6.95}\right) = 0.5$	0.6389 - 0.5 = 0.1389	0.4722 - 0.5 = 0.0278
81	3	3/36	$\frac{26}{36} = 0.7222$	$\Phi\left(\frac{81-80}{6.95}\right) = 0.5572$	0.7222 - 0.5572 = 0.1650	0.6389 - 0.5572 = 0.0817
84	2	$\frac{2}{36}$	$\frac{28}{36} = 0.7778$	$\Phi\left(\frac{84-80}{6.95}\right) = 0.7175$	0.7778 - 0.7175 = 0.0602	0.7222 - 0.7175 = 0.0047
86	2	$\frac{2}{36}$	$\frac{30}{36} = 0.8333$	$\Phi\left(\frac{86-80}{6.95}\right) = 0.8060$	0.8333 - 0.8060 = 0.0273	0.7778 - 0.8060 = 0.0282
87	2	$\frac{2}{36}$	$\frac{32}{36} = 0.8889$	$\Phi\left(\frac{87-80}{6.95}\right) = 0.8431$	0.8889 - 0.8431 = 0.0458	0.8333 - 0.8431 = 0.0097
92	4	$\frac{4}{36}$	$\frac{36}{36} = 1$	$\Phi\left(\frac{92-80}{6.95}\right) = 0.9579$	1 - 0.9579 = 0.0421	0.8889 - 0.9579 = 0.0690

◆ロト ◆昼 ト ◆ 昼 ト ◆ 昼 ・ 夕 ○ ○

47 / 50

Engenharia Informática Métodos Estatísticos 2021-2022

$$D_{obs} = max \{ |F_S(x_i) - F_T(x_i)| ; |F_S(x_{i-1}) - F_T(x_i)| \} = 0.1650$$

Regra de Decisão através da Região Crítica

$$RC = [D_{n;\alpha}, +\infty[= [D_{36;0.05}, +\infty[= [0.221, +\infty[$$

Como $D_{obs} = 0.1650 \notin RC$ então não se rejeita a hipótese H_0

Regra de Decisão através do valor-p

valor-
$$p = P(D \ge D_{obs}) = P(D \ge 0.1650) \approx P(D \ge 0.174) = 0.20$$

Como valor- $p>0.05=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e ao nível de significância de 5%, conclui-se que os níveis da salinidade nessa baía são normalmente distribuídos com média 80 e desvio padrão 6.95.

Engenharia Informática Métodos Estatísticos 2021-2022 48 / 50

usar a função ks.test()

e obtém-se

- $D_{obs} = 0.16502$
- valor-p = 0.2808

Como valor- $p=0.2808>0.05=\alpha$ então não se rejeita a hipótese H_0

Conclusão: Com base na amostra e ao nível de significância de 5%, conclui-se que os níveis da salinidade nessa baía são normalmente distribuídos com média 80 e desvio padrão 6.95.

49 / 50

Engenharia Informática Métodos Estatísticos 2021-2022

Testes de ajustamento: Qui-Quadrado vs Kolmogorov-Smirnov

Vantagens e Desvantagens

- O teste de ajustamento do Qui-Quadrado é preferencialmente usado em amostras aleatórias extraídas de populações discretas enquanto o teste de Kolmogorov-Smirnov será apenas usado para amostras aleatórias extraídas de populações contínuas.
- O teste de Kolmogorov-Smirnov não requer o agrupamento dos dados, utiliza toda a informação contida no conjunto de dados (ao contrário do teste de ajustamento do Qui-Quadrado que é necessário a agregação dos dados em classes quando a variável é contínua).
- O teste de ajustamento do Qui-Quadrado está orientado essencialmente para grandes amostras, enquanto que o teste de Kolmogorov-Smirnov é aplicável a pequenas amostras.
- O teste de Kolmogorov-Smirnov só pode ser aplicado quando a distribuição indicada na hipótese nula está completamente especificada (o que não sucede com o teste de ajustamento do Qui-Quadrado, os parâmetros podem ser estimados).

Engenharia Informática Métodos Estatísticos 2021-2022 50 / 50