Seat	Sat	D
No.	Set	P

T.E. (Civil Engineering) (Part – I) (Old CGPA) Examination, 2018 DESIGN OF STEEL STRUCTURES

Day and Date: Friday, 30-11-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

N.B.: 1) Answer any three questions from each Section.

- 2) **Use** of IS 800-2007 and IS 875 Part 1, Part 2 and Part 3 are allowed, but not allowed for MCQ (Q1).
- 3) **Use** of scientific non programmable calculator is **allowed**.
- 4) Figures to the right indicate the full marks.
- 5) Assume suitable data if necessary and mention it **clearly** before the solution.
- 6) Draw the appropriate sketches whenever necessary.
- 7) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 8) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

MCQ/Objective Type Questions

Duration: 30 Minutes	Marks: 14

1. Choose the correct answer:

i) Steel is an alloy which mainly contains

a) iron and silica

b) iron and sulphur

c) iron and carbon

d) iron and sodium

ii) What is the hole diameter for a bolt of 25 mm diameter?

a) 25 mm

b) 26 mm

c) 30 mm

d) 28 mm

iii) Which of the following sections has minimum value of shape factor?

a) Rectangle

b) Triangle

c) Circle

d) I section

iv) Two plates of 14 mm and 12 mm are joined by fillet weld, the maximum size of fillet weld may be

a) 16.5

b) 15.5

c) 10.5

d) 12.5

P.T.O.

 $(14 \times 1 = 14)$

V)	if the angle between	en fusion faces is	105° ?	ickness in fillet weld
	a) 0.6	b) 0.65	c) 0.7	d) 0.75
vi)	The allowable sler a) 180	nderness ratio of the b) 250	ne elements in bu c) 145	ilt-up section is d) 50
vii)	Which one of the f a) Purlin	ollowing is a comp b) Boom	oression member c) Girt	? d) Tie
viii)	limited to span div	ided by	_	industrial building is
	a) 180	b) 250	c) 300	d) 325
ix)	As per the IS 800 a) simply supported b) cantilever bean c) continuous bear d) compression m	ed beams ns ms	ed as a	
x)	Sag rods are designal compression members to laterally support d) laterally unsuppression members.	embers ers ted beams		
xi)	is less than			factored shear force
	a) $0.4V_d$	b) 0.6V _d	c) 0.8 V _d	d) V _d
xii)		umn to the base p n load	late in gusseted b	
xiii)	The self weight of a) $(1 + 5)5$	•	n²) may be obtain c) (1 – 5)5	
xiv)	For economical sp and roof coverings a) t = p + r	respectively, ther		cost of truss, purlin d) $t + p + 2r$
	$\alpha_j : - p + 1$	ο, ι – 2p + ι	ο, τ – ρ - οι	ω, ιτρτ2ι

Seat	
No.	

Day and Date: Friday, 30-11-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Answer any three questions from each Section.

- 2) **Use** of IS 800-2007 and IS 875 Part 1, Part 2 and Part 3 are allowed, but not allowed for MCQ (Q1).
- 3) **Use** of scientific non programmable calculator is **allowed**.
- 4) Figures to the right indicate the full marks.
- 5) Assume suitable data if necessary and mention it **clearly** before the solution.
- 6) Draw the appropriate sketches whenever necessary.

SECTION - I

SECTION - II

6. Design a laterally unsupported beam for the following data:

10

Effective span = 4 m

Maximum bending moment + 550 KNm

Maximum shear force = 200 KN

Steel grade = Fe 410

7. Design an I section purlin, for an industrial building situated at Allahabad, to support a galvanised corrugated iron sheet roof for the following data:

Spacing of truss c/c = 6.0 m

Span of truss = 12 m

Slope of truss = 30°

Spacing of purlin = 1.5 m

Intensity of wind pressure = 2 KN/m²

Weight of galvanised sheets = 130 N/m²

Grade of steel = Fe 410.

9

8. Design battening for column consisting of 2 ISLC 300 placed face to face over total width of 300 mm. Length of column is 4 m with both ends hinged. Take $f_y = 250$ MPa.

9

9. A column section ISHB 350 @ 661.2 KN/m carries a factored axial compressive load of 1650 KN and factored bending moment of 90 KNm. Design the base plate and its connections. Assume concrete pedestal of M 20 grade.

Seat	
No.	

T.E. (Civil Engineering) (Part – I) (Old CGPA) Examination, 2018 **DESIGN OF STEEL STRUCTURES**

Max. Marks: 70 Day and Date: Friday, 30-11-2018

Time: 2.30 p.m. to 5.30 p.m.

N.B. : 1) Answer **any three** questions from **each** Section.

- 2) Use of IS 800-2007 and IS 875 Part 1, Part 2 and Part 3 are allowed, but not allowed for MCQ (Q1).
- 3) **Use** of scientific non programmable calculator is **allowed**.
- 4) Figures to the right indicate the full marks.
- 5) Assume suitable data if necessary and mention it clearly before the solution.
- 6) Draw the appropriate sketches **whenever** necessary.
- 7) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each guestion carries one mark.
- 8) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$

- i) The deflection of steel beams in buildings other than industrial building is limited to span divided by
 - a) 180
- b) 250
- c) 300
- d) 325
- ii) As per the IS 800 purlins are designed as a
 - a) simply supported beams
- b) cantilever beams

c) continuous beams

- d) compression member
- iii) Sag rods are designed as
 - a) compression members
 - b) tension members
 - c) laterally supported beams
 - d) laterally unsupported beams

P.T.O.

iv)	A beam section is classed as low shear case when the factored shear force is less than			
	a) $0.4V_d$	b) 0.6V _d	c) $0.8 V_d$	d) V _d
v)	•	umn to the base p n load		
vi)	The self weight of a) $(1 + 5)5$		· •	-
vii)	and roof coverings	respectively, the	n	e cost of truss, purlin
	a) t = p + r	b) $t = 2p + r$	c) $t = p + 3r$	d) t + p + 2r
viii)	Steel is an alloy w a) iron and silica c) iron and carbor	-	ins b) iron and sulp d) iron and sodi	
ix)	What is the hole d a) 25 mm		of 25 mm diamete c) 30 mm	
x)	Which of the follow a) Rectangle	ving sections has		f shape factor ?
xi)	size of fillet weld n	nay be		weld, the maximum
	a) 16.5	b) 15.5	c) 10.5	d) 12.5
xii)	if the angle between	en fusion faces is	105° ?	nickness in fillet weld
	a) 0.6	b) 0.65	c) 0.7	d) 0.75
xiii)	The allowable sler a) 180	nderness ratio of the b) 250	he elements in bu c) 145	uilt-up section is d) 50
xiv)	Which one of the f	ollowing is a com	oression member	?
	a) Purlin	b) Boom	c) Girt	d) Tie

Seat	
No.	

Day and Date: Friday, 30-11-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Answer **any three** questions from **each** Section.

- 2) **Use** of IS 800-2007 and IS 875 Part 1, Part 2 and Part 3 are allowed, but not allowed for MCQ (Q1).
- 3) **Use** of scientific non programmable calculator is **allowed**.
- 4) Figures to the right indicate the full marks.
- 5) Assume suitable data if necessary and mention it **clearly** before the solution.
- 6) Draw the appropriate sketches whenever necessary.

SECTION - I

SECTION - II

6. Design a laterally unsupported beam for the following data:

10

Effective span = 4 m

Maximum bending moment + 550 KNm

Maximum shear force = 200 KN

Steel grade = Fe 410

7. Design an I section purlin, for an industrial building situated at Allahabad, to support a galvanised corrugated iron sheet roof for the following data:

Spacing of truss c/c = 6.0 m

Span of truss = 12 m

Slope of truss = 30°

Spacing of purlin = 1.5 m

Intensity of wind pressure = 2 KN/m²

Weight of galvanised sheets = 130 N/m²

Grade of steel = Fe 410.

9

8. Design battening for column consisting of 2 ISLC 300 placed face to face over total width of 300 mm. Length of column is 4 m with both ends hinged. Take $f_v = 250$ MPa.

9

9. A column section ISHB 350 @ 661.2 KN/m carries a factored axial compressive load of 1650 KN and factored bending moment of 90 KNm. Design the base plate and its connections. Assume concrete pedestal of M 20 grade.

Seat	
No.	

T.E. (Civil Engineering) (Part – I) (Old CGPA) Examination, 2018 **DESIGN OF STEEL STRUCTURES**

Day and Date: Friday, 30-11-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

Duration: 30 Minutes

1

- N.B. : 1) Answer any three questions from each Section.
 - 2) **Use** of IS 800-2007 and IS 875 Part 1. Part 2 and Part 3 are allowed, but not allowed for MCQ (Q1).
 - 3) **Use** of scientific non programmable calculator is **allowed**.
 - 4) Figures to the right indicate the full marks.
 - 5) Assume suitable data if necessary and mention it clearly before the solution.
 - 6) Draw the appropriate sketches whenever necessary.
 - 7) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
 - 8) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

MCQ/Objective Type Questions

. Ch	oose the correct ar	nswer:		(14>	<1=14)
i)	What is the value if the angle between			nickness in fillet we	eld
	a) 0.6	b) 0.65	c) 0.7	d) 0.75	
ii)	The allowable sler	nderness ratio of th	ne elements in bu	ilt-up section is	
	a) 180	b) 250	c) 145	d) 50	
iii)	Which one of the f	ollowing is a comp	oression member	?	
	a) Purlin	b) Boom	c) Girt	d) Tie	
iv)	The deflection of slimited to span div		ldings other than	industrial building	is
	a) 180	b) 250	c) 300	d) 325	РΤО

P.T.O.

Marks: 14

v)	As per the IS 800 a) simply supporte b) cantilever bean c) continuous bea d) compression m	ed beams ns ms	ed a	as a		
vi)	Sag rods are designal compression members of the same statement of	embers ers ted beams				
vii)	A beam section is a is less than					
viii)	 a) 0.4V_d In case of an axially connecting the col a) 100% of column c) 25% of column 	y loaded column m umn to the base p n load	ach late b)	nined for full be	arir base nn l	ng, the fastenings e are designed for load
ix)	The self weight of a) $(1 + 5)5$	-	-	-		-
x)	For economical spand roof coverings a) t = p + r	respectively, ther	า			
xi)	Steel is an alloy w a) iron and silica c) iron and carbor	hich mainly contai	ns b)	iron and sulp	hur	ττρτ2ι
xii)	What is the hole d a) 25 mm	iameter for a bolt of b) 26 mm		5 mm diamete 30 mm		28 mm
xiii)	Which of the follow a) Rectangle	ving sections has l b) Triangle		imum value of Circle		ape factor ? I section
xiv)	Two plates of 14 is size of fillet weld in a) 16.5			oined by fillet 10.5		ld, the maximum 12.5

Seat	
No.	

Day and Date: Friday, 30-11-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Answer any three questions from each Section.

- 2) **Use** of IS 800-2007 and IS 875 Part 1, Part 2 and Part 3 are allowed, but not allowed for MCQ (Q1).
- 3) **Use** of scientific non programmable calculator is **allowed**.
- 4) Figures to the right indicate the full marks.
- 5) Assume suitable data if necessary and mention it **clearly** before the solution.
- 6) Draw the appropriate sketches whenever necessary.

SECTION - I

SECTION - II

6. Design a laterally unsupported beam for the following data:

10

Effective span = 4 m

Maximum bending moment + 550 KNm

Maximum shear force = 200 KN

Steel grade = Fe 410

7. Design an I section purlin, for an industrial building situated at Allahabad, to support a galvanised corrugated iron sheet roof for the following data:

Spacing of truss c/c = 6.0 m

Span of truss = 12 m

Slope of truss = 30°

Spacing of purlin = 1.5 m

Intensity of wind pressure = 2 KN/m²

Weight of galvanised sheets = 130 N/m²

Grade of steel = Fe 410.

9

9

- 8. Design battening for column consisting of 2 ISLC 300 placed face to face over total width of 300 mm. Length of column is 4 m with both ends hinged. Take $f_y = 250$ MPa.
- 9. A column section ISHB 350 @ 661.2 KN/m carries a factored axial compressive load of 1650 KN and factored bending moment of 90 KNm. Design the base plate and its connections. Assume concrete pedestal of M 20 grade.

Seat	
No.	

Set

T.E. (Civil Engineering) (Part – I) (Old CGPA) Examination, 2018 DESIGN OF STEEL STRUCTURES

Day and Date: Friday, 30-11-2018 Max. Marks: 70

Time: 2.30 p.m. to 5.30 p.m.

N.B.: 1) Answer any three questions from each Section.

- 2) **Use** of IS 800-2007 and IS 875 Part 1, Part 2 and Part 3 are allowed, but not allowed for MCQ (Q1).
- 3) **Use** of scientific non programmable calculator is **allowed**.
- 4) Figures to the right indicate the full marks.
- 5) Assume suitable data if necessary and mention it **clearly** before the solution.
- 6) Draw the appropriate sketches whenever necessary.
- 7) Q. No. 1 is compulsory. It should be solved in first 30 minutes in Answer Book Page No. 3. Each question carries one mark.
- 8) Answer MCQ/Objective type questions on Page No. 3 only. Don't forget to mention, Q.P. Set (P/Q/R/S) on Top of Page.

MCQ/Objective Type Questions

Duration: 30 Minutes Marks: 14

1. Choose the correct answer:

 $(14 \times 1 = 14)$

- i) Sag rods are designed as
 - a) compression members
- b) tension members
- c) laterally supported beams
- d) laterally unsupported beams
- ii) A beam section is classed as low shear case when the factored shear force is less than
 - a) $0.4V_d$
- b) 0.6V_d
- c) 0.8 V_d
- d) V_d
- iii) In case of an axially loaded column machined for full bearing, the fastenings connecting the column to the base plate in gusseted base are designed for
 - a) 100% of column load

b) 50 % of column load

c) 25% of column load

d) errection loads only

iv)	The self weight of a) $(1 + 5)5$	a roof truss (N/mn b) (1/3 + 5)10	•	•	
v)		or economical spacing of roof truss, if t, p, r are the cost of truss, purling nd roof coverings respectively, then			
	a) $t = p + r$	b) $t = 2p + r$	c) $t = p + 3r$	d) $t + p + 2r$	
vi)	Steel is an alloy w a) iron and silica	hich mainly contain	ns b) iron and sulp	hur	
	c) iron and carbon		d) iron and sodium		
vii)	What is the hole d	iameter for a bolt o	f 25 mm diameter ?		
	a) 25 mm	b) 26 mm	c) 30 mm	d) 28 mm	
viii)	Which of the follow a) Rectangle	ving sections has r b) Triangle	minimum value of c) Circle	f shape factor ? d) I section	
ix)	size of fillet weld may be				
	a) 16.5	b) 15.5	c) 10.5	d) 12.5	
x)		That is the value of constant 'K' to calculate throat thickness in fillet weld the angle between fusion faces is 105°?			
	a) 0.6	b) 0.65	c) 0.7	d) 0.75	
xi)	The allowable sler a) 180	nderness ratio of th b) 250	ne elements in bu c) 145	ilt-up section is d) 50	
xii)	Which one of the f	ollowing is a comp	ression member	?	
	a) Purlin	b) Boom	c) Girt	d) Tie	
xiii)	The deflection of s limited to span div		ldings other than	industrial building is	
	a) 180	b) 250	c) 300	d) 325	
xiv)	As per the IS 800 a) simply supported b) cantilever bean	ed beams	ed as a		
	c) continuous bea	ıms			

d) compression member

Seat	
No.	

Day and Date: Friday, 30-11-2018 Marks: 56

Time: 2.30 p.m. to 5.30 p.m.

Instructions: 1) Answer any three questions from each Section.

- 2) **Use** of IS 800-2007 and IS 875 Part 1, Part 2 and Part 3 are allowed, but not allowed for MCQ (Q1).
- 3) **Use** of scientific non programmable calculator is **allowed**.
- 4) Figures to the right indicate the full marks.
- 5) Assume suitable data if necessary and mention it **clearly** before the solution.
- 6) Draw the appropriate sketches whenever necessary.

SECTION - I

SECTION - II

6. Design a laterally unsupported beam for the following data:

10

Effective span = 4 m

Maximum bending moment + 550 KNm

Maximum shear force = 200 KN

Steel grade = Fe 410

7. Design an I section purlin, for an industrial building situated at Allahabad, to support a galvanised corrugated iron sheet roof for the following data:

Spacing of truss c/c = 6.0 m

Span of truss = 12 m

Slope of truss = 30°

Spacing of purlin = 1.5 m

Intensity of wind pressure = 2 KN/m²

Weight of galvanised sheets = 130 N/m²

Grade of steel = Fe 410.

9

8. Design battening for column consisting of 2 ISLC 300 placed face to face over total width of 300 mm. Length of column is 4 m with both ends hinged. Take $f_y = 250$ MPa.

9

9. A column section ISHB 350 @ 661.2 KN/m carries a factored axial compressive load of 1650 KN and factored bending moment of 90 KNm. Design the base plate and its connections. Assume concrete pedestal of M 20 grade.