

Opracowanie publikacji Danila Gorodocky'ego i Tiziano Villa'y sumatory modularne

Łukasz Wdowiak 264026 Damian Jabłoński 264025

Prowadzący: dr inż. Piotr Patronik Grupa: K03-47a, Pon 15:15-16:55 TN

Wydział Informatyki i Telekomunikacji Informatyka Techniczna IV semestr

Spis treści

	Cer	e projektu
2	Zał	ożenia projektu
3	\mathbf{Alg}	gorytmy
	3.1	Modulo dla dowolnych X i P - bit po bicie
		3.1.1 Opis algorytmu
		3.1.2 Implementacja algorytmu
	3.2	Algorytm mnożenia modułowego
		3.2.1 Opis algorytmu
		3.2.2 Implementacja algorytmu

1 Cele projektu

Celem projektu jest analiza oraz implementacja poszczególnych algorytmów związanych z arytmetyką modularną zaprezentowanych w artykule naukowym Efficient Hardware Operations for the Residue Number System by Boolean Minimization autorstwa Dana Gorodecky i Tomera Villi. W ramach projektu zostaną zaimplementowane oraz wytłumaczone algorytmy:

- Modulo dla dowolnych X i P bit po bicie
- Algorytm mnożenia modułowego

2 Założenia projektu

Nasz projekt powinien skupiać się na implementacji oraz analizie algorytmów związanych z arytmetyką modularną. W ramach projektu powinny zostać zaimplementowane wcześniej wymienione algorytmy. Algorytmy implementowane będą w języku Python.

3 Algorytmy

Autorzy artykułu zaproponowali kilka algorytmów związanych z arytmetyką modularną. W ramach projektu skupiliśmy się na kilku z nich.

3.1 Modulo dla dowolnych X i P - bit po bicie

Algorytm ten pozwala na X(modP) z dowolnych liczb. Jego głowna cechą jest to, że redukujemy liczbę X bit po bicie, aż dojdziemy do reszty z dzielenia.

3.1.1 Opis algorytmu

W artykule autorzy zaproponowali sposób obliczania oparty na następującej reprezentacji:

$$X = P \cdot Q + R = \tag{1}$$

$$= P \cdot 2^{\delta} \cdot q_{\delta} + P \cdot 2^{\delta - 1} \cdot q_{\delta - 1} + \dots + P \cdot 2^{0} \cdot q_{0} + R \tag{2}$$

 $X(\bmod P)=R$, gdzie $X=(x_\psi,x_{\psi-1},\dots,x_1)$ i δ jest określona nierównościa $P\cdot 2^\delta<2^\psi-1\leq P\cdot 2^{\delta+1}$.

Na przykład, $X=(x_{10},x_{9},\ldots,x_{1})$ i P=21, przy $\delta=5.$ Wynosi:

$$X = 21 \cdot Q + R =$$

$$= 21 \cdot 2^5 \cdot q_5 + 21 \cdot 2^4 \cdot q_4 + 21 \cdot 2^3 \cdot q_3 +$$

$$+ 21 \cdot 2^2 \cdot q_2 + 21 \cdot 2^1 \cdot q_1 + 21 \cdot 2^0 \cdot q_0 + R.$$

Każdy kolejny iloczyn częściowy jest wejściem kolejnego bloku obliczeniowego. R jest wynikiem szóstego bloku oraz resztą z dzielenia przez 21. Jeśli chcemy policzyć X(modP)=R, gdzie X=888, a P=21, to:

$$X_5 \ge 21 \cdot 2^5$$
, $888 \ge 672$, $X_4 = 888 - 21 \cdot 2^5 = 216$;
 $X_4 < 21 \cdot 2^4$, $216 < 336$, $X_3 = 216$;
 $X_3 \ge 21 \cdot 2^3$, $216 \ge 168$, $X_2 = 216 - 21 \cdot 2^3 = 48$;
 $X_2 < 21 \cdot 2^2$, $48 < 84$, $X_1 = 48$;
 $X_1 \ge 21 \cdot 2^1$, $48 \ge 42$, $X_0 = 48 - 21 \cdot 2^1 = 6$;
 $X_0 < 21 \cdot 2^0$, $6 < 21$, $R = 6$.

W pierwszym kroku porównujemy X z $21 \cdot 2^5$. Następnie odejmujemy $21 \cdot 2^5$ od X i otrzymujemy $X_4 = 216$. W kolejnym kroku porównujemy X_4 z $21 \cdot 2^4$ i otrzymujemy $X_3 = 216$. Następnie odejmujemy $21 \cdot 2^3$ od 210 otrzymujemy $21 \cdot 2^3$ 0 od 210 otrzymujemy $21 \cdot 2^3$ 0 odejmujemy $21 \cdot 2^3$ 0 odejmujemy 21

Jak widać powyżej jest to prosta operacja odejmowania i porównywania, która jest wykonywana w pętli.

3.1.2 Implementacja algorytmu

Algorytm został zaimplementowany za pomocą trzech funkcji.

- calc_length oblicza długość binarną liczby 'number' poprzez przesuwanie jej bitów w prawo i zliczanie ilości przejść, zwracając ostateczną długość.
- **get_delta** funkcja obliczająca δ na podstawie parametrów l i P, sprawdzając warunek związanym z potęgami dwójki.
- $\operatorname{mod_bit_by_bit}$ funkcja obliczająca resztę z dzielenia w pętli obliczane są kolejne wartości X. Jeżeli $X_i \geq P \cdot 2^i$, to $X_{i-1} = X_i P \cdot 2^i$, w przeciwnym wypadku $X_{i-1} = X_i$. Pętla kończy się, gdy wartość δ wynosi 0, a funkcja zwraca R jako reszte z dzielenia.

3.2 Algorytm mnożenia modułowego

Algorytm ten pozwala na mnożenie liczb w systemie resztowym. Jego główną cechą jest to, że dzielimy liczby na subwektory, a następnie mnożymy je w sposób opisany poniżej.

3.2.1 Opis algorytmu

Autorzy artykułu zaproponowali algorytm mnożenia modułowego, który pozwala policzyć $A \cdot B = R \pmod{P}$, gdzie $A = (A_{\delta}, A_{\delta-1}, \dots, A_1)$, $B = (B_{\delta}, B_{\delta-1}, \dots, B_1)$ A_{δ} oraz B_{δ} oznaczają najbardziej znaczące bity liczb A i B, a δ jest długością słow binarnych z których się składaja. Np. A = 13 i B = 14 to A = (1, 1, 0, 1) i B = (1, 1, 1, 0), a $\delta = 2$ to $A_2 = (1, 1)$ oraz $B_2 = (1, 1)$. Staramy się dzielić liczby wejściowe na dwu, trzy lub czterobitowe subwektory. Odpowiednie pary subwektorów mnożymy używając poniższego wzoru:

$$R = \sum_{i=1}^{\delta} \sum_{j=1}^{\delta} A_i \cdot B_j \cdot \left(2^{m-(i+j-2)-3} \pmod{P}\right) = S_{-} \operatorname{temp}$$

 S_{temp} nie może przekraczać $2^{3\cdot\delta+2}$

Przykład wykorzystania algorytmu:

Wybieramy dwie 6-bitowe liczby A=45 and B=15 oraz P=47. Dzielimy je na 3-bitowe subwectory. Oznacz to, że $\delta=2$

$$A_1 = (1,0,1) = 5$$
 $B_1 = (1,1,1) = 7$ $A_2 = (1,0,1) = 7$ $B_2 = (1) = 1$ $A \cdot B = S(\text{mod}47)$

$$S_{temp} = A_1 \cdot B_1(\bmod{47}) + A_1 \cdot B_2 \cdot 2^3(\bmod{47}) + A_2 \cdot B_1 \cdot 2^3(\bmod{47}) + A_2 \cdot B_2 \cdot 2^6(\bmod{47}) = 5 \cdot 7(\bmod{47}) + 5 \cdot 1 \cdot 2^3(\bmod{47}) + 5 \cdot 7 \cdot 2^3(\bmod{47}) + 5 \cdot 1 \cdot 2^6(\bmod{47}) = 35(\bmod{47}) + 40(\bmod{47}) + 45(\bmod{47}) + 38(\bmod{47}) = 158$$

 $158>=2^{3\cdot 2+2}=128,$ co oznacza, że musimy wykonać kolejna iteracje aby zmniejszyć $S_{temp}.$

$$S_{temp} = 158 = (1, 0, 0, 1, 1, 1, 1, 0)$$

$$S_{temp1} = (1, 1, 0) \ S_{temp2} = (0, 1, 1) \ S_{temp3} = (1, 0)$$

$$S_{temp} = 6 + 3 \cdot 2^{3} \pmod{47} + 2 \cdot 2^{6} \pmod{47} = 6 + 24 + 34 = 64.$$

$$64 \le 128, \text{ więc}$$

$$S(\text{mod } 47) = 64 \pmod{47} = 17$$

3.2.2 Implementacja algorytmu

4 Wnioski

bla bla bla

Literatura

[1] D. Gorodecky and T. Villa, "Efficient Hardware Operations for the Residue Number System by Boolean Minimization", Advanced Boolean Techniques, Minsk, Belarus, January, 2020, p. 237-258