Recommender Systems

Nishanth Nair April 09, 2020

Motivation

- Problem definition
 - To predict whether (or how much) a given person will like a given item
- Broad range of applications
 - Movie ratings
 - Amazon product recommendations
 - iTunes music suggestions
 - Friend recommendations
- Collaborative Filtering
 - Bipartite graph: two types of nodes, edges join nodes of different types
 - Predictions based on preferences of similar people
 - Insight: preferences are correlated, people are people

Figure 1: example

• Recommender systems can help you learn features

Types of recommendation systems

Figure 2: example

Content based recommendations

- Look at general attributes for each item,
- try to determine whether a person likes those attributes, and
- then predict unknown ratings based on known attributes
 - Does Annie like suspense movies?
 - Does Annie like movies with Leonardo di Caprio?
 - Et cetera
- Given known features of each movie
- And given knowledge of how users rate these movies
- We can develop a model that predicts how a user will rate an unseen movie, given features of the movie
- Formally:
 - Given.
 - * Features $x^m = (x_1^m, x_2^m, ..., x_k^m)$ are k features for an item m
 - * Rating Y_{im} is a rating for item m from user i
 - We need to build a model such that

$$Y_{im} = f_i(x^m)$$

- $-f_i(x)$ is a model specific to each person.
- $-\hat{Y_{im}}$ would be the predicted rating for item m for user i
- Any classifier or linear regression model can be used. i.e.

$$Y_{im} = \beta_0 + \beta_{i1} x_1^m + \dots + \beta_{ik} x_k^m$$

• Limitations

- Sparse data: Many movies and features but very few available ratings
- People's tastes are generally not that straightforward
 - * Difficult and time consuming to get very content specific features.
 - * Some features may be intangible, subjective, complex
- Difficult to determine what features to use.

Collaborative Filtering

- Collaborative filtering is commonly used for recommender systems.
- It relies only on past user behavior.
 - for example, previous transactions or product ratings without requiring the creation of explicit profiles.
- This approach is known as collaborative filtering, a term coined by the developers of Tapestry, the first recommendersystem.
- Collaborative filtering analyzes relationships between users and interdependencies among products to identify new user item associations.
- These techniques aim to fill in the missing entries of a user-item association (eg. user movie rating)

Nearest Neighbor CF

Overview

- Based on the following intiution:
 - Similar people rate same item similarly (user-based CF).
 - Same person rates similar items similarly (item-based CF).
- Below is an example to make the idea more concrete. Below is a table of Ratings given by different users for ddifferent movies(Y).

Movie	Y ₁	Y ₂	Y ₃	Y_4	Y ₅
Annie	4	5	5	-	4
Bob	4	-	5	2	4
Carol	-	4	1	-	1
Dave	3	-	-	5	3

Figure 3: example

• User based CF

- Lets say we want to determone Annie's rating for movie $4(Y_4)$
- Look for people similar to Annie. Here, Bob seems similar, use a rating similar to Bob for Annie.

Figure 4: User Based CF example

• Item based CF

- Lets say we want to determone Carols's rating for movie 1 (Y_1)
- Look for mmovvies with ratings similar to movvie 1. Here, Movie 5 seems similar, so use its corresponding rating for Carol.

Movie	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅		
Annie	4	5	5	2	4		
Bob	4	-	5	2	4		
Carol	-	4	1	-	1		
Dave	3	-	-	5	3		

		·			
Movie	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅
Annie	4	5	5	2	4
Bob	4	-	5	2	4
Carol	1	4	1	-	1
Dave	3	-	-	5	3

Figure 5: Item Based CF example

• For the sake of understanding, we can think of the predicted rating for user i for movie m to be the weighted sum of the neighbors ratings for movie m.

$$\hat{Y}_{im} = \sum_{j \in N_i} W_{ij}.(Y_{jm})$$

• The weight, W_{ij} can be computed as the Pearson correlation coefficient (r)

$$W_{ij} = r = \frac{\sum_{m} (Y_{im} - \bar{Y}_i)(Y_{jm} - \bar{Y}_j)}{\sqrt{\sum_{m} (Y_{im} - \bar{Y}_i)^2 \cdot (Y_{jm} - \bar{Y}_j)^2}}$$

- The above simplistic approach doesn't take into account peoples baseline prefences. For example,
 - Alice could always rate a movie lower (and give a 2 instead of 4 or 1 instead of 3) and Bob might tend to always rate them higher.
 - By considering individual baselines and normalizing, we get a much better prediction.

$$\hat{Y}_{im} = \bar{Y}_i + \alpha. \sum_{j \in N_i} W_{ij}.(Y_{jm} - \bar{Y}_j)$$

- The above equation adds to i's baseline rating and it also reduces j's baseline to reduce bias.
- There many potential extensions to computing the above.
 - Removing bias from ratings
 - * Users mean rating(depicted in the equation above)
 - * Global mean rating
 - * Items mean rating
 - * Items mean rating + users deviation from items mean rating
 - * etc..
 - Measuring similarity between people or items
 - * Pearson correlation coefficient (described earlier)
 - * Cosine similarity.
 - * Inverse Euclidean (or other) distance.
 - * Note: These metrics assume complete data. In practice, can only compute over set of items rated by both users.

Latent factor Model based CF

Overview

- In the content based approach, we assume we have the features and ratings and we compute the predictive weights of the model.
- Assume that we know the ratings and the predictive weights but not the features. Can we determine the features?
- Formally,
 - In the content based approach, we are given Y_{im} and x_k^m and we compute β_{ik}

$$Y_{im} = \beta_0 + \beta_{i1} x_1^m + \dots + \beta_{ik} x_k^m$$

– Now, we are given β and Y_{im} and we need to compute x_k^m

$$Y_{im} = \gamma_0 + x_1^m \hat{\beta}_{i1} + \dots + x_k^m \hat{\beta}_{ik}$$

- This what model based collaborative filtering uses to approach the recommendations problem.
 - Given features, we can learn user preferences i.e β .
 - Given user preferences, we can learn features i.e x.
- In this approach, we can "guess" (randomly initialize) our preference parameters and use that to estimate features and then use estimated features to estimate parameters and so on.

Guess
$$\beta \implies x \implies \beta...$$

Approaches

- Many approaches can be taken to solve this
 - Probabilistic
 - Rule based
 - Classification
 - Regression
 - Matrix factorization
 - etc..

Matrix Factorization (Low Dimensional Rank Factorization)

- Recommender systems rely on different types of input data, which are often placed in a
 matrix with one dimension representing users and the other dimension representing
 items of interest.
- The values in the matrix are called **latent factors**
- Matrix factorization models map both users and items to a joint latent factor space of dimensionality f, such that user item interactions are modeled as inner products in that space.
- The intiution for this is as follows:

Figure 6: example

- Assume we have a vector V of movies that are characterized on a scale from serious to escapist.
 - Assume we have a vector U of users that characterizes users as male or female and their corresponding interest in movies characterised from seriouss to escapist.
 - The resulting dor product of U and V gives us a matrix R, of the users interest or rating for a specific movie.
 - Matrix factorization reverses this. i.e, given a sparse matrix R (many entries are empty), it attempts to determine U and V

Figure 7: matrix factorization

- The primary challenge is the large number of missing values in R
- Earlier systems relied on imputation to fill in missing ratings and make the rating matrix dense.
 - This is very expensive and significantly increases amount of data.
 - Inaccurate imputation distorts the data significantly.

Problem overview

• Given a matrix R, find lower rank matrices U and V to approximate R such that

$$R \approx U^T . V$$

• To learn factor vectors, we need to minize the objective (or loss) function which is the Regularized Square Error:

$$L(U, V) = (R - U^{T}.V)^{2} + \lambda(||V||^{2} + ||U||^{2})$$

Solution Approaches

- Stochastic gradient descent
 - Easy to implement
 - Computation is fast
- Alternating Least Squares
 - More favorable approach
 - Allows for parallelization
 - For systems centered around implicit data.
 - * data is not considered sparse, gradient descent maynot be practical.
 - * ALS handles this efficiently.

Alternating Least Squares (ALS)

• Given the objective function,

$$L(U, V) = (R - U^{T}.V)^{2} + \lambda(||V||^{2} + ||U||^{2})$$

- Can we jointly optimize U and V?
 - No, because the loss function is not convex. Both U and V are unknown.
 - We know, for ridge regression, the objective function takes the form:

$$L = (Y - \theta^T . X)^2 + \lambda . ||\theta||^2$$

- Based on this, we can break our loss function as follows and solve as 2 sub problems:

$$L(U, V) = (R - U^{T}.V)^{2} + \lambda(||V||^{2}) + \lambda(||U||^{2})$$

Problem 1: Given V, solve -
$$L(U) = (R - U^T.V)^2 + \lambda(||U||^2)$$

Problem 2: Given U, solve -
$$L(V) = (R^T - V^T \cdot U)^2 + \lambda(||V||^2)$$

ALS Algorithm

- STEP 0: Intialize random U_0 and V_0
- STEP 1: Minimize L(U). Fix V and determine U.

$$L(U) = (R - U^{T}.V)^{2} + \lambda(||U||^{2})$$

- Closed form solution:

$$U = (V.V^{T} + \lambda I)^{-1}.(V.R^{T})$$

$$U^{*} = U^{T} = R.V_{0}^{T}.(V_{0}^{T}.V_{0} + \lambda I)^{-1}$$

• STEP 2:Minimize L(V). Fix U and determine V

$$L(V) = (R^T - V^T \cdot U)^2 + \lambda(||V||^2)$$

- Closed form solution:

$$V^* = (U.U^T + \lambda I)^{-1}.(U.R)$$

$$\implies V^* = ((U^*)^T.U^* + \lambda .I)^{-1}.((U^*)^T.R)$$

• STEP 3:Repeat 1 and 2 with updated U and V values until convergence.

Single Node ALS Algorithm

```
lambda_{-} = 0.1
n_factors = 100
m, n = R. shape
n_{iterations} = 20
U = 5 * np.random.rand(m, n factors)
V = 5 * np.random.rand(n factors, n)
def get_error(R, U, V, W):
    return np.sum((W * (R - np.dot(U,V)))**2)
errors = []
for ii in range(n_iterations):
    U = np.linalg.solve(np.dot(V, V.T))
                             + lambda_ * np.eye(n_factors),
                         np.dot(V, R.T)).T
    V = np. linalg. solve(np. dot(U.T, U))
                             + lambda_ * np.eye(n_factors),
                         np.dot(U.T, R))
    if ii % 100 == 0:
        print('{}th_iteration_is_completed'.format(ii))
    errors.append(get_error(R, U, V, W))
R hat = np.dot(U, V)
print('Error_of_rated_movies:{}'.format(get_error(R, U, V, W)))
```

Weighted ALS Algorithm

- In regular ALS, Mean squared error is large because the optimization also includes errors for missing ratings.
- In the weighted version, include a ratings indicator, W having value 1 if user has rated and 0 if not.

Figure 8: Regular ALS vs weighted ALS

- STEP 0: Intialize random U_0 and V_0
- STEP 1: Minimize L(U). Fix V and determine U.

$$L(U) = (R - U^T . VW)^2 + \lambda(||U||^2)$$

- Closed form solution:

$$U^* = R.WV_0^T.(V_0^T.WV_0 + \lambda I)^{-1}$$

• STEP 2:Minimize L(V). Fix U and determine V

$$L(V) = (R^T - V^T.WU)^2 + \lambda(||V||^2)$$

- Closed form solution:

$$\implies V^* = ((WU^*)^T . U^* + \lambda . I)^{-1} . ((WU^*)^T . R)$$

• STEP 3:Repeat 1 and 2 with updated U and V values until convergence.

Single Node Weighted ALS Algorithm

Distributed ALS Algorithm

Distributed closed form solution

- The single node closed form solution described earlier is inefficient.
- We can further break down the problem to achieve parallelization in a single node.
- In the computation of U, each row of U is independent of the other and thus can be computed in parallel.
 - 1 row of U depends on the corresponding row of R and the entire V.
- Similarly.
 - 1 row of V depends on the corresponding column of R (or row of R^T) and the entire U.
- So now that we can parallelize, how do we distribute this.

STEP 1: Initialize with Random values.

Figure 9: Distributed: init

STEP 2: Fix V and compute U

- Partition R by rowID
- Broadcast V to all worker nodes
- Compute each row of U in the mappers using the closed form solution

$$U^* = RV^T (VV^T + \lambda . I)^{-1}$$

- Combine all rows of U in the reducer

Figure 10: Distributed: compute U

STEP 3: Fix U and compute V

- Partition R by columnID
- Broadcast \$U^*\$ to all worker nodes
- Compute each row of ${\tt V}$ in the mappers using the closed form solution

$$V^* = R^T U (U^T U + \lambda . I)^{-1}$$

- Combine all columns of V in the reducer

Figure 11: Distributed: compute V

STEP 4: Iterate steps 1 and 2 until convergence.

Implementation in spark

- Matrix R needs to be used in each iteration. It should be cached.
- R needs to be partitioned in two ways: by row and by column.
- Updated U and V need to be broadcast iteratively to each worker.
- Partition U or V in the same way as R.
- Operate on blocks to lower communication.
- For detailed implementation in spark, refer:

https://s3.amazonaws.com/static.datascience.berkeley.edu/DATASCI+W261+Machine+Learning+at+Scale/Week+14/14.7/ALS+in+Spark-MateiPaper.pdf

Distributed Gradient descent solution

- If U and V are too big, the closed form solution won't work.
- Executors will crash.
- With gradient descent approach, we can parallelize computation to a cell level.
- In essence, we compute the gradient for each cell in the mappers and then combine the final values in the reducers.
- The price we pay is time to execute will be vvery large and a lot of network traffic would be generated.

Calculate gradient for each partition:

$$\nabla_U^i = 2 \cdot \left(R^i - U_0^i \cdot V_0^i\right) \cdot V_0^{i^T} + 2 \cdot \lambda \cdot U_0^i$$

Figure 12: Distributed: compute U

Calculate gradient of V for each partition:

$$\nabla_V^i = 2 \cdot \left(R^i - U_1^i \cdot V_0^i \right) \cdot U_1^{i^T} + 2 \cdot \lambda \cdot V_0^i$$

Figure 13: Distributed: compute V