

CAMBRIDGE INSTITUTE OF TECHNOLOGY

K.R. PURAM, BENGALURU-560036.

Department of Basic Sciences

Preparatory Examination - Odd Semester 2018-19

Sub. Name: Elements of Civil Engineering &

Engineering Mechanics

Sub. Code: 18CIV14

Semester: I

Date: 14-01-2019

Time: 9:00 AM

Duration: 3 Hours

Max. Marks: 100

NOTE:

Answer five full questions, choosing one from each module, each full question carries maximum of 20 Marks.

SI. No.	QUESTIONS	COs	RBT Levels	Marks
1	Module - I a) Define Resolution and Composition of forces.	COI	LI	04M
	b) Explain the principles of engineering mechanics with the help of neat sketch.	COI	1.2	07M
	c) Interpret the resultant for the force system shown in the figure below	COI	L3	09M
	OR			
2	a) List the characteristics of couple.	COI	LI	04M
	b) Four forces acting on a point shown in figure below such that resultant of all the four forces 500N acting along the x axis. Determine the unknown force P and its inclination.	CO1	L2	07M
	200N 45" R=500N x			

-	c) Interpret the resultant, magnitude, direction and position from point A of the forces shown in the figure below.	coı	1.3	09M
	500N + D			
	1200N			
3	a) List the condition of equilibrium.	CO2	LI	04M
	b) Two cables are connected at A and C as shown in figure below and a force of 20kN is applied at B. Determine the forces in the cable along BA and CB.	CO2	L2	07M
	c) Interpret the value of W ₁ for the equilibrium of the system shown in the figure below.	CO2	L3	09M
	W ₁ — W ₂ =1000N OR			
4	 a) Define structural Engineering. b) Determine the resultant of the three forces acting on a hook shown in figure below. 	CO2 CO2	L.1 L.2	04M 07M

Page 2 of 4

	c) Two cables attached at the top of tower carries a gay cables AB. Interpret the tension in gay cable such that the resultant of the forces in all three cables acts vertically down as shown in figure below.	CO2	1.3	09M
5	Module - III a) A body resting on a horizontal plane required a pull of 100 N inclined at 30° to horizontal just to move it. It was also found that a push of 110 N inclined at 20° to the plane just moved the body. Determine the weight of body and coefficient of friction.	CO3	L2	10M
	b) A block weighing 10 kN is to be raised by means of 20° wedge as shown below. Determine the horizontal force which will just raise the block if coefficient of friction for all contact surfaces is 0.3.	CO3	1.3	10M
	Body Wodge P			
6	a) Determine the value of P so that the body will not impend down the plane. Also find the value of P for the body to impend up the plane. Take coefficient of friction is 0.3.	CO3	1.2	10M
	100N			
	b) Determine the force P that must be applied to the 20 kN block B to lift the 100 kN block A shown in figure below. The coefficient of friction for all contact surfaces is 0.3.	CO3	L3	10M

	A B P			
7	Module - IV Derive the expression of quarter-circle by the first principle.	CO4	L2	10M
	Determine the centroid of I-section with respect to given figure.	CO4	L3	10M
8	a) Determine the Moment of Inertia of Circle by the method of first principle.	CO4	L2	10M
	b) Determine the Moment of Inertia and polar radius of gyration with respect to given figure.	CO4	L3	10M
4	a) With the help of neat sketch explain Range and obtain the expression for range of projectile.	CO5	L2	10M
	b) A projectile is fired from the top of cliff 150 m height with an initial velocity of 180 m/sec at an angle of elevation of 300 with the horizontal. Neglecting air resistance, determine: i) greatest elevation above the cliff ii) horizontal distance from the gun to the point where the projectile strikes the ground. OR	CO5	L3	10M
10	a) State and prove Newton's Laws of Motion.	CO5	L2	10M
	b) A horizontal bar of length 1.5 m rotates, it accelerates uniformly from 1200 rpm to 1500 rpm in an interval of 5 seconds. Find the linear velocity at the beginning and end of the interval. What are the normal and tangential components of the acceleration at the center of the bar after 4 seconds?	CO5	L3	10M

-END-