EXAME TEÓRICO DE RECURSO DE ARQUITECTURA DE COMPUTADORES II 13/07/2011

.....

GRUPO I - 0,6 cada

- 1) A função de um bootloader num sistema baseado num microcontrolador é:
 - a) realizar a compilação do software e iniciar a sua execução após o reset do sistema
 - b) transferir o código executável para o host usado no desenvolvimento para posterior assemblagem ou compilação
 - c) transferir o código executável do host usado no desenvolvimento para o sistema embedded para posterior execução
 - d) nenhuma das respostas está correcta
- 2) O sinal de selecção (CE\) de um porto mapeado na gama de endereços 0x00400...0x007FF de um processador com um espaço de endereçamento de 20 bits pode ser obtido através da expressão:

a)
$$CE \setminus = \sum_{i=11}^{19} Ai \setminus$$

b) $CE \setminus = \sum_{i=11}^{19} Ai$
c) $CE \setminus = \sum_{i=0}^{10} Ai \setminus$
d) $CE \setminus = \sum_{i=10}^{10} Ai$

- 3) O diagrama temporal da figura ao lado representa um ciclo de:
- a) leitura de um dispositivo em que os sinais de controlo usam lógica positiva
- b) leitura de um dispositivo em que os sinais de controlo usam lógica negativa
- c) escrita num dispositivo em que os sinais de controlo usam lógica positiva
- d) escrita num dispositivo em que os sinais de controlo usam lógica negativa

4) Numa transferência semi-síncrona:

- a) assume-se que o dispositivo externo responde à velocidade do CPU, e consequentemente, não existem sinais de protocolo envolvidos na transacção
- b) O CPU prolonga o ciclo de leitura/escrita por um ou mais ciclos de relógio, se for activado um sinal de protocolo gerado pelo dispositivo externo
- c) O CPU prolonga o ciclo de leitura/escrita até que o dispositivo externo sinalize que a operação pretendida foi completada
 - d) nenhuma das respostas está correcta
- 5) A figura ao lado corresponde ao diagrama temporal de uma transferência:
- **a)** assíncrona de escrita, com dados e endereços disponibilizados numa configuração "merged"
- assíncrona de escrita, com dados e endereços disponibilizados numa configuração "micro-ciclo"
- síncrona de escrita, com dados e endereços disponibilizados numa configuração "micro-ciclo"
- **d)** síncrona de escrita, com dados e endereços disponibilizados numa configuração "*merged*"

RD=0 WR= 0=> WR-7

6) Um árbitro de um barramento multimaster baseado em prioridade FIFO garante:

- (a) a ausência de fenómenos de starvation
 - b) que é sempre servido o master de maior prioridade com pedido pendente de atribuição de barramento
 - c) que a atribuição do barramento é fixado pela ordem temporal inversa com que os masters fazem os seus pedidos
 - d) nenhuma das respostas estão correctas

7) Numa transferência por DMA, o respectivo controlador:

- a) pode usar o barramento em qualquer instante de acordo com as suas necessidades
- b) apenas pode usar o barramento quando o CPU não estiver a aceder à memória ou a unidades de I/O.
- c) pode usar o barramento sempre que o árbitro lhe dê permissão para o fazer

>XIX2

d) pode usar o barramento em qualquer instante de acordo com as suas necessidades, desde que respeite um tempo mínimo entre utilizações

8) Para a transferência de 204	18 words (de 32 bits),	um controlador	de DMA de 32 bits,	dedicado, a funcionar	· em
modo cycle-stealing, necessi	la de pelo menos:				

- a) 2048 bus cycles
- b) 4096 bus cycles
 - c) 8192 bus cycles
- d) 16384 bus cycles

9) Num sistema com vários dispositivos interligados por um barramento SPI, em termos de comunicação:

- a) A função dos dispositivos é fixa à partida, podendo apenas existir um master, sendo os restantes obrigatoriamente slaves
- b) podem exister, permanentemente, vários masters e vários slaves, configurados nessa função à partida, sendo a comunicação estabelecida entre quaisquer dois desses dispositivos
- c) em cada instante apenas pode existir um master, sendo os restantes obrigatoriamente slaves, mas um slave pode tornar-se master se ganhar o processo de arbitragem com outro master de inferior prioridade
 - d) a função masterslave de cada dispositivo é imposta de acordo com as necessidades, pelo controlador SPI

10) Na interface I2C o master selecciona o slave com quem vai comunicar através de:

- a) um sinal de selecção que activa antes de iniciar a transferência
- 🖒 informação transmitida na linha de dados 💛 🗸 🛶 👈

21x 220 x A

d) um sinal de selecção através do qual é transferido o endereço do slave

d) um barramento de endereços de 7 bits a partir do qual cada dispositivo descodifica o seu próprio endereço

11) A técnica "bit dominante/bit recessivo" é utilizada em:

RS232 e CAN

b) I2C e SPI

C) CAN e I2C

SPI e CAN

12) Um cabo USB, de acordo com a versão 2.0 da norma, possui os seguintes condutores:

a) VBUS e GND para alimentação; D+ e D- para transmissão não-diferencial em modo full-duplex

DIVBUS e GND para alimentação; D+ e D- para transmissão diferencial em modo full-duplex

(c) BUS e GND para alimentação; D+ e D- para transmissão diferencial em modo half-duplex

d) VBUS e GND para alimentação; D+ e D- para transmissão não-diferencial em modo half-duplex

13) O número total de pinos (excluindo as linhas de alimentação) de um circuito integrado de uma memória dinâmica DRAM de 2Mx8, com um sínal único de controlo de leitura/escrita é:

14) Suponha que dispõe de 64 circuitos de memória de 4Mx2. Usando todos estes circuitos é possível construir um módulo de memória de: (4 x x x x = 577 2 (6) 32Mx16 (7) 32Mx16	
15) O dirty-bit é usado numa cache com política de escrita: a) write-through para indicar que a informação armazenada no respectivo bloco foi alterada b) write-back para indicar que a informação armazenada no respectivo bloco foi alterada e) write-through para indicar que o respectivo bloco não está a ser usado d) write-back para indicar que o respectivo bloco não está a ser usado	
16) Numa cache com associatividade de 4 de 8kBytes e 128 linhas, o número de comparadores necessários	
para comparar o campo <i>tag</i> de um endereço de acesso à memória é:	
a) 4 $\begin{array}{c} \text{(b)} 128 \\ \text{(c)} 512 \\ \text{(d)} 8192 \end{array}$ $\begin{array}{c} A = A \\ A =$	
17) A técnica de memória virtual permite:	
 a) a utilização de memória cache no processador para aumentar a dimensão aparente da memória física do sistema b) que a dimensão da memória física disponivel exceda o limite do espaço de endereçamento de um processo c) implementar mecanismos de protecção através da independência dos espaços de endereçamento de cada processo d) podas as restantes respostas estão correctas 	
$\frac{\mathcal{L}}{\mathcal{L}}$	
18) A tradução de endereços virtuais em endereços físicos consiste na tradução de: a) physical page number no virtual page number e sua justaposição com o page offset no endereço produzido pelo CPU b) physical page offset no virtual page offset e sua justaposição com o page number no endereço produzido pelo CPU c) virtual page offset no physical page offset e sua justaposição com o page number no endereço produzido pelo CPU d) virtual page number no physical page number e sua justaposição com o page offset no endereço produzido pelo CPU 10) As máximos de magrática virtual page accessor page accessor page accessor page accessor page offset no endereço produzido pelo CPU	
19) As páginas de memória virtual possuem normalmente:	
a) a mesma dimensão dos blocos da cache para tornar partido das transferências por DMA b) a mesma dimensão dos blocos da cache para tornar partido das transferências por interrupção	
c) uma dimensão de alguns milhares de bytes para tirar partido das transferências por Interrupção	
d) uma dimensão de alguns milhares de bytes para tirar partido das transferências por interrupção	
20) Num dado processador um endereço virtual é representado com 32 bits, dos quais 10 bits são usados para o page offset. Este processador é usado num sistema com 16Bytes de memória física. Nestas circunstâncias, o	
número de páginas virtuais e físicas é, respectivamente:	
- a) 4M e 1M	
b) 4M e 1k	
9/4G e 1M 49/4G e 1k (EU) 52 U = 27 122 / 1	
39 40 e 1k (= 1 3 2 1 = 22) = 4 9\	
10=2	
76=29 VG -2 x2 30 30-10-20 M	

2 1 = 2 2 1 = 2

a) 500 e 1500

b) 1500 e 500

c) (499) e 1499

d) 1499 e 499

C) (499) e 499

C) (499) e 499

T= ton 1 toff qd5 T= ton 9 0125 x 2 = ton 0,05 = to

22) Considere um sistema baseado num CPU a funcionar a uma frequência de 10MHz com uma taxa de execução de 2,5 MIPS que processa por interrupção eventos externos periódicos. Se a latência máxima no atendimento a uma interrupção for de 5 ciclos de relógio, e a rotina de serviço à interrupção tiver 30 . instruções, a máxima frequência a que esses eventos podem ocorrer é, respectivamente:

a) 71kHz b) 80kHz c) 200kHz d) 285kHz

23) Considere um CPU a funcionar a uma frequência de 50MHz ligado a uma memória com um tempo de acesso de 38ns. O CPU suporta transferências do tipo semi-síncrono, estando o ciclo de leitura, sem wait-states, representado na figura ao lado (note o tempo de setup de 3ns). No barramento de dados que interliga o CPU e a memória, existe um buffer com um tempo de propagação de 5ns e o descodificador que gera o sinal de selecção para a memória apresenta um atraso de propagação de 7ns. Para que este sistema funcione correctamente, o número de wait-states que é necessário introduzir no ciclo de leitura é:

24) Um dispositivo com interface RS232 e configurado para transmitir com 7 bits de dados, paridade par e 2 stop bits, produz a trama seguinte que é recebida por outro dispositivo RS232 incorrectamente, configurado para 8 bits de dados, paridade ímpar e 1 stop bit, mas com o mesmo baud rate. Nestas circunstâncias o receptor:

vai detectar um erro de paridade
b) vai detectar uma trama inválida devido a um
número incorrecto de stop bits

vai detectar um erro de paridade e uma trama inválida devido a um número incorrecto de stop bits

d) qão vai detectar qualquer erro

Oddddd dd ddll

25) Considere um processador com <u>um espaço</u> de endereçamento de 32 bits e uma memória cache com associatividade de <u>2</u> , de 16kByte e blocos de 32 bytes. A dimensão, em bits, dos campos <i>tag. set</i> , e <i>byte</i> é:
a) tag: 19; set: 8; byte: 5 b) tag: 18; set: 9; byte: 5 c) tag: 13; set: 14; byte: 5 d) tag: 14; set: 16; byte: 2 26) O número total de bits de armazenamento (dados e controle) necessário para a implementação de uma
memória cache com associatividade de 2, de <u>16kByte</u> e blocos de 32bytes, com política de escrita do tipo <i>write</i> -
back, num espaço de endereçamento de 32 bits, é: a) 140288 b) 140800 c) 141312 d) 141824
27) Num sistema que suporta um nível de cache e memória virtual:
a) no espaço de armazenamento secundário (disco) estão armazenadas as páginas de memória virtual mais
recentemente acedidas e na memória cache estão armazenados os blocos dessas páginas mais recentemente acedidos
b) os blocos da cache e as páginas de memória são tipicamente da mesma dimensão
c) enquanto é efectuado o processamento de um page fault de um processo, o processador pode estar ocupado a
executar outro processo

d) todas as restantes respostas estão correctas

GRUPO III - 0,8 cada

Um sistema possui um espaço de endereçamento virtual de 4Gbytes, páginas de memória de 8kBytes e 512Mbytes de memória física. Considere tambem:

> Que num dado instante está a executar um processo cujo Page Table Register possui o valor 0x01230000

> • Que cada entrada da Page Table possui 32 bits, está alinhada em endereços múltiplos de 4 e contém a seguinte informação:

			•
Valid, Dirty, Read, Write, Execute flags	Bits não usados	PPN	- رابا
[31:27]	[26:16]	[15:0]	الرباي

O conteúdo de algumas posições da memória principal a seguir indicados:

Endereço	Valor			
0x01230008	0xB0000002			
0x0123000C	0xF0000003			
0x01230010	0xB8000001			
0x01230014 .	OxA000000			

28) Num acesso à memoria, o CPU produz o endereco 0x00006000, o qual é traduzido no seguinte endereco físico:

- a) 0x0000600C
- **b)** 0x0000200C
- c) 0x0000100C
- d) nenhuma das respostas estão correctas

29) O processo em execução pode aceder ao endereço virtual 0x0000A010 para:

a) leitura
b) escrita

- b) escrita
- c) leitura e escrita
- d nenhuma das respostas está correcta

0000 1000 000 0000 0 1010

101 0000 0000 0000 101

30) No endereço virtual 0x00008008 do processo em execução encontra-se:

- a) uma word do segmento de dados estáticos inicializados
- b) uma word do segmente de dados estáticos não inicializados
- c) uma word da stack
- d) o código máquina de uma instrução