1. 基本仕様

1-1. 概要

Spartan-7 Evaluation Board における伝送線路シミュレーション結果を報告致します。

1-2. シミュレーション環境

	製品名	取扱会社
伝送線路シミュレーション検証	HyperLynx VX2.4 Update1	メンターグラフィックスジャパン

1-3. 顧客要求仕様

1-3-1. 接続図

デバイスモデル

Device	Ref.	Part number	Туре	File
FPGA	U201	XC7S50-2CSGA324C	IBIS	impl_5.ibs
DDR3L SDRAM	U402	MT41K256M16TW-107P	IBIS	v00h_1p35.ibs

1-3-2. シミュレーション条件

a) シミュレーション信号ライン

グループ	信号名	構成		Bit Pattern	動作速度
CLK	DDR3L_CLK, DDR3L_CLK	1:1接続	差動	Toggle	
DQS	DDR3L_UDQS, DDR3L_/UDQS, DDR3L_LDQS, DDR3L_/LDQS,			Toggle	DDR3-800 400MHz
DQ	DDR3L_DQ[15:0]			Random Bit	400WITIZ
DQM	DDR3L_UDM, DDR3L_LDM	1:1接続		(128bit)	
CAC	DDR3L_A[14:0], DDR3L_BA[2:0], DDR3L_/RAS, /DDR3L_/CAS, DDR3L_/WE, DDR3L_/CS, DDR3L_CKE, DDR3L_ODT	1:1接続		Random Bit (128bit)	DDR3-800 200MHz

b) DRV/ODT 仕様

	0		Spartan-7		終端抵抗	
Operatig condition		itig condition		Drive	ODT	など
CLK_Group	Write	to DRAM	SSTL135_F_HR	_	-	100Ω
DQS_Group	Write	to DRAM	CCTI 125 F LID INFO		$20\Omega/30\Omega/40\Omega/60\Omega/120\Omega$	_
	Read	from DRAM	SSTL135_F_HR_IN50	34Ω/40Ω		_
Write to DRAM		SSTL135 F HR IN50		$20\Omega/30\Omega/40\Omega/60\Omega/120\Omega$	_	
DQ_Group	Read	from DRAM	221F120FFTHKTIN00	34Ω/40Ω	_	_
DM_Group	Write	to DRAM	SSTL135_F_HR	-	$20\Omega/30\Omega/40\Omega/60\Omega/120\Omega$	-
CAC_Group	Write	to DRAM	SSTL135_F_HR	-	_	51Ω

クロックの終端抵抗定数は $80.6\,\Omega$ から $100\,\Omega$ に変更して解析を行っています CAC の終端抵抗定数は $49.9\,\Omega$ から $51\,\Omega$ に変更して解析を行っています

c) シミュレーション設定

DDR3L 全信号(RESETは含まない)をクロストークの影響を考慮し、受信端はダイで解析を行っています。解析信号パターンは CLK/DQS は動作周波数における ON/OFF のトグル動作、アドレス系とデータは信号ネット毎に任意のランダム・ビット・パターン (128bit) を割り当て、受信端は Die にて観測しています。タイミングモデルは HyperLynx が用意している DDR3 用の汎用モデルを使用しています。

※1 クロストーク設定は HyperLynx 9.0 以降のデフォルト値でシミュレーションしています

アグレッサーからの最大距離D: 0.381mm 最少カップリングセグメント長L: 2.54mm

※2 電源は理想電源、GND は理想 GND としてシミュレーションしています 実機では電源、GND ノイズの影響で波形が悪化する可能性があります

d) プリント基板仕様

	Color	Layer Name	Туре	Usage	Thickness um	Er	Loss Tangent		
			Dielectric	Solder Mask	25	3.3	0.02	DIE1_2	
2		1	Metal	Signal	40	<auto></auto>	<auto></auto>	2	
3		DIE1_2	Dielectric	Substrate	115	4.3	0.016		
		2	Metal	Plane	35	<auto></auto>	<auto></auto>	DIE2_3	
		DIE2_3	Dielectric	Substrate	300	4.3	0.016	3	
5		3	Metal	Signal	35	<auto></auto>	<auto></auto>	DIE3_4	
7		DIE3_4	Dielectric	Substrate	115	4.3	0.016	4 —	
3		4	Metal	Plane	35	<auto></auto>	<auto></auto>	DIE LE	
)		DIE4_5	Dielectric	Substrate	300	4.3	0.016	DIE4_5	
0		5	Metal	Plane	35	<auto></auto>	<auto></auto>	5	
1		DIE5_6	Dielectric	Substrate	115	4.3	0.016	DIE5_6	
2		6	Metal	Signal	35	<auto></auto>	<auto></auto>	6 —	_
3		DIE6_7	Dielectric	Substrate	300	4.3	0.016	DIE6_7	
4		7	Metal	Plane	35	<auto></auto>	<auto></auto>	DIE037	
5		DIE7_8	Dielectric	Substrate	115	4.3	0.016	7 —	
6		8	Metal	Signal	40	<auto></auto>	<auto></auto>	DIE7_8	
7			Dielectric	Solder Mask	25	3.3	0.02	8	

2. 配線パターンについて

3. SIM波形について

4. タイミング測定について

HyperLynx の DDRxバッチシミュレーションにて DDR3-800(1.35V)で解析を行っています。 コントローラ、メモリ共に HyperLynx がデフォルトで用意しているタイミングモデルを使用しているので、 あくまでも参考値としてご確認をお願いいたします。

※ HyperLynxがデフォルトで用意しているコントローラモデルは FreeScale Semiconductor 社の デバイスを元に作成されています

タイミング測定時には同時に JEDEC 信号品質測定も行っています

5. 所見

5-1. 終端抵抗定数について

初期回路図の終端抵抗はクロック 80.6Ω 、CAC 40.2Ω となっていましたが、FPGA IBIS モデルは MIG のデフォルト設定で出力されており、ODT 50Ω で FPGA の IO IN_TERM(Internal Termination Impedance) を 50Ω となっていました。ただし、基板層構成で配線インピーダンスは差動 100Ω 、シングル 50Ω であるため終端抵抗の定数確認を行いました。

特に大きな差ではありませんが定数を大きくすると振幅が大きくなるため、リンギングの出かたも大きめになりますが、伝送線路は Zo=50Ω なので下記定数で良いと思います。

R402~R425 : $40.2 \Omega \Rightarrow 51.0$ ohms R426 : $80.6 \Omega \Rightarrow 100.0$ ohms

解析結果は *6-3.終端抵抗定数確認波形* を参照願います

5-2. 解析結果について

終端抵抗はクロック $100\,\Omega$ 、CAC $51\,\Omega$ とし、DRAM の ODT $60\,\Omega$ 、ドライブ $34\,\Omega$ で解析を行いました。 波形は良好でタイミングマージンも確保されており、JEDEC 信号品質測定も全て Pass しています。 HyperLynx ではリード時にホールド側のマージンが少ない傾向となりますが、セットアップ側にマージンが十分に確保されているのでタイミング調整機能などがあれば補正可能だと想定します。

解析結果は 6-4.解析波形 を参照願います

6. 解析結果

6-1. タイミング測定ワースト値について

		T	光 /ㅗ	
		Typical	(worst)	単位:
[DQS-DQ]	Write	t-DS	t-DH	
LDQS	DQ[7:0], LDM	220.7	250.9	
UDQS	DQ[15:8], UDM	230.5	245.1	
[DQS-DQ]	Read	t-DQSQ	t-QH	
LDQS	DQ[7:0]	164.0	4.8	
UDQS	DQ[15:8]	170.1	5.4	
[CLK-DQS] DRV=F		t-DQSS	t-DSS	
CK	LDQS	444.1	569.1	
	UDQS	445.1	569.8	
[CLK-CMD/ADD/CTRL]		t-IS	t-IH	
CK	CAC	388.9	554.1	

単位:[ps]

詳細な結果は下記ファイルを参照願います

[Spartan-7_Eva_Board]DDR3L_Timing,JEDEC_2018-07-08.xlsx

6-2. JDEC信号品質測定結果について

	Typical
Rise Rail Overshoot	Pass
Fall Rail Undershoot	Pass
Rise Rail Overshoot Area	Pass
Fall Rail Undershoot Area	Pass
Monotonic	Pass
VIH/L(AC) Min Limit	Pass
VIH/L(DC) Monotonicity	Pass
Vref Threshold Multi Cross	Pass
Max Slew Time	Pass
VIX	Pass
VID(AC)	Pass
VID(DC)	Pass
VSEH/VSEL	Pass
TVAC/TDVAC	Pass

詳細な結果は下記ファイルを参照願います

[Spartan-7_Eva_Board]DDR3L_Timing,JEDEC_2018-07-08.xlsx

Design file: REFERENCE_BOARD.HYP Designer: 田村 俊樹

HyperLynx VX.2.5_Update1

Comment: CLK 400MHz Rt=80.6ohm and 100ohm Typical @die

Date: Friday Jul. 5, 2019 Time: 9:12:07

Net name: DDR3L_CLK

Show Latest Waveform = YES

Design file: REFERENCE_BOARD.HYP Designer: 田村 俊樹

HyperLynx VX.2.5_Update1

Comment: A0 DDR3L-800 Rt=40.2ohm and 51ohm Typical @die

Date: Friday Jul. 5, 2019 Time: 9:07:46 Net name: DDR3L_A0

Design file: SPARTAN7.FFS Designer: 田村 俊樹

HyperLynx VX.2.4_Update1

Comment: DDR3L_CK -- 400MHz Drv=SSTL135_F_HR Rt=100ohm Typical @die

Date: Monday Jul. 8, 2019 Time: 15:24:43
Net name: Net001
Show Latest Waveform = YES, Show Saved Waveform = YES

Design file: SPARTAN7.FFS Designer: 田村 俊樹

HyperLynx VX.2.4_Update1

Comment: CK -- 400MHz, CAC -- 200MHz Drv=SSTL135_F_HR Rt=CK 100ohm, CAC 51ohm Typical @die

Date: Monday Jul. 8, 2019 Time: 15:38:58 Net name: DDR3L_A0

Design file: SPARTAN7.FFS Designer: 田村 俊樹

HyperLynx VX.2.4_Update1

Comment: DDR3L_[U,L]DQS [Write] -- 400MHz Drv=SSTL135_F_HR_IN50, Rcv=ODT 60ohm Typical @die

Date: Monday Jul. 8, 2019 Time: 15:29:17 Net name: Net003

Show Latest Waveform = YES, Show Saved Waveform = YES

Design file: SPARTAN7.FFS Designer: 田村 俊樹

HyperLynx VX.2.4_Update1

Comment: DDR3L_[U,L]DQS [Read] -- 400MHz Drv=34ohm, Rcv=SSTL135_F_HR_IN50 Typical @die

Date: Monday Jul. 8, 2019 Time: 15:34:23 Net name: DDR3L/LDQS

Show Latest Waveform = YES, Show Saved Waveform = YES

Design file: SPARTAN7.FFS Designer: 田村 俊樹

HyperLynx VX.2.4_Update1

Comment: LDQS,DQ[7-0],LDM [Write] -- 400MHz Drv=SSTL135_F_HR(_IN50), Rcv=ODT 60ohm Typical @die

Date: Monday Jul. 8, 2019 Time: 15:32:10 Net name: Net005

Design file: SPARTAN7.FFS Designer: 田村 俊樹

HyperLynx VX.2.4_Update1

Comment: UDQS,DQ[15-8],UDM [Write] -- 400MHz Drv=SSTL135_F_HR(_IN50), Rcv=ODT 60ohm Typical @die

Date: Monday Jul. 8, 2019 Time: 15:32:34 Net name: Net005

Design file: SPARTAN7.FFS Designer: 田村 俊樹

HyperLynx VX.2.4_Update1

Comment: LDQS,DQ[7-0] [Read] -- 400MHz Drv=34ohm, Rcv=SSTL135_F_HR_IN50 Typical @die

Date: Monday Jul. 8, 2019 Time: 15:37:26 Net name: DDR3L_DQ0

Designer: 田村 俊樹 Design file: SPARTAN7.FFS

HyperLynx VX.2.4_Update1

Comment: UDQS,DQ[15-8] [Read] -- 400MHz Drv=34ohm, Rcv=SSTL135_F_HR_IN50 Typical @die

Date: Monday Jul. 8, 2019 Time: 15:37:48 Net name: DDR3L_DQ0