OPERÁCIE S VEKTORMI

Opakovanie

Vektory zapisujeme nasledovne:

- a) pomocou písmena, nad ktorým je šípka: \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \overrightarrow{d} \overrightarrow{v}
- b) pomocou hrubo vyznačených písmen (hlavne v tlačenom texte): **a b c d v**

<u>Veľkosť vektora</u> zapisujeme pomocou absolútnej hodnoty alebo pomocou písmena bez šípky a je určená veľkosť ou ľubovoľnej orientovanej úsečky, ktorá je jeho umiestnením.

Napr. zápis
$$|\vec{v}| = v = 7$$
 čítame "veľkosť vektora vé sa rovná 7".

Grafické znázornenie vektorov

Vektor možno graficky zakresliť pomocou orientovanej úsečky (úsečky so šípkou).

$$|\overrightarrow{F}| = F = 7$$

Vektor \overrightarrow{F} má veľkosť 7, smer vektora \overrightarrow{F} je daný orientovanou úsečkou.

<u>Nulový vektor</u> je vektor, ktorého veľkosť je 0, zapisujeme $\overset{\rightarrow}{0}$ alebo **0**. Nulový vektor nemá smer, graficky ho nemožno zakresliť.

Rovnosť vektorov

Vektory \vec{a} , \vec{b} sa rovnajú, ak majú rovnakú veľkosť a rovnaký smer. Zapisujeme $\vec{a} = \vec{b}$.

<u>Vektorová priamka vektora</u> je priamka preložená začiatočným a koncovým bodom daného vektora, je to priamka, na ktorej vektor leží.

Operácie s vektormi

Podobne ako s <u>číslami</u> možno vykonávať isté <u>číselné operácie</u> (sčítať, odčítať, násobiť, deliť, ...), aj s vektormi možno vykonávať **vektorové operácie**:

- A) súčet vektorov
- B) reálny násobok vektora
- **C**) rozdiel vektorov
- D) skalárny súčin vektorov
- E) vektorový súčin vektorov

<u>A) Súčet vektorov \vec{a} a \vec{b} </u> – je vektor $\vec{a} + \vec{b}$, ktorý vznikne ako súčet ich umiestnení (orientovaných úsečiek) s rovnakým začiatkom

- súčet vektorov nazývame tiež **skladanie** vektorov (alebo sčítavanie vektorov)
- súčet (skladanie) vektorov je iná operácia ako súčet čísel vyjadrujúcich dĺžku vektoro
- výsledkom skladania 2 vektorov je vektor

A 1) súčet 2 vektorov súhlasného smeru

- výsledný vektor má smer oboch vektorov a jeho veľkosť sa rovná súčtu veľkostí oboch vektorov

A 2) súčet 2 vektorov opačného smeru

- výsledný vektor má smer väčšieho vektora a jeho veľkosť sa rovná rozdielu veľkostí oboch vektorov
- špeciálnym prípadom skladania 2 vektorov opačného smeru je skladanie dvoch rovnako veľkých vektorov opačného smeru, kedy je ich výsledný vektor nulový

$$\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{0}$$

$$|\overrightarrow{c}| = |\overrightarrow{a}| - |\overrightarrow{b}| = |\overrightarrow{b}| - |\overrightarrow{a}| = 0$$

A 3) skladanie 2 vektorov rôzneho smeru

 výsledný vektor nájdeme tak, že obrazec doplníme do rovnobežníka a výsledným vektorom je orientovaná uhlopriečka tohto rovnobežníka

2

<u>B) reálny násobok vektora</u> \vec{a} - je vektor \vec{k} . \vec{a} (kde k je reálne číslo), ktorý vznikne ako reálny násobok ľubovoľného umiestnenia (orientovanej úsečky) tohto vektora

B 1) násobenie vektora kladným reálnym číslom

- ak vynásobíme vektor kladným reálnym číslom *k*, dostaneme vektor, ktorý má rovnaký smer a jeho veľkosť sa rovná *k* násobku veľkosti daného vektora.

B 2) násobenie vektora záporným reálnym číslom

- ak vynásobíme vektor záporným reálnym číslom k, dostaneme vektor, ktorý má opačný smer a jeho veľkosť sa rovná |k| násobku veľkosti daného vektora.

ak vynásobíme vektor číslom (- 1), dostaneme opačný vektor
 Opačný vektor k danému vektoru je taký vektor, ktorý má rovnakú veľkosť, ale opačný smer.

Poznámka:

- 1.) $\vec{a} \cdot 0 = \vec{0}$ Ak vynásobíme vektor číslom nula, dostaneme nulový vektor.
- 2.) $\vec{0}$. $k = \vec{0}$ Ak vynásobíme nulový vektor ľubovoľným reálnym číslom, dostaneme nulový vektor.

3

<u>C) Rozdiel vektorov \vec{a} a \vec{b} </u> – je vektor \vec{a} - \vec{b} , ktorý vznikne ako súčet prvého vektora a opačného vektora k druhému vektoru

$$\stackrel{\rightarrow}{a}$$
 $-\stackrel{\rightarrow}{b}$ $=\stackrel{\rightarrow}{a}$ $+$ (-1) . $\stackrel{\rightarrow}{b}$ $=\stackrel{\rightarrow}{a}$ $+$ $(-\stackrel{\rightarrow}{b})$

Odčítať vektor \vec{b} od vektora \vec{a} znamená pripočítať k vektoru \vec{a} presne (-1) násobok vektora \vec{b} , teda odčítať vektor \vec{b} od vektora \vec{a} znamená pripočítať k vektoru \vec{a} opačný vektor k vektoru \vec{b} .

Postup:

Zostrojíme vektor $-\overrightarrow{b}$, potom vektorovo sčítame vektory \overrightarrow{a} , $-\overrightarrow{b}$ doplnením do rovnobežníka. Vektor \overrightarrow{c} je výsledný vektor. Vhodným posunom vektora \overrightarrow{c} zistíme, že vektor \overrightarrow{a} $-\overrightarrow{b}$ je vektor, ktorý má začiatočný bod v koncovom bode vektora \overrightarrow{b} a koncový bod v koncovom bode vektora \overrightarrow{a} (smeruje od \overrightarrow{b} ku \overrightarrow{a}), nie je nutné zostrojovať rovnobežník.

Poznámka:

Sčítať (skladať) môžeme ľubovoľný počet vektorov. Nie je nutné zostrojovať rovnobežníky. Vektorový súčet vektorov nájdeme tak, že začiatočný bod nasledujúceho vektora umiestnime do koncového bodu predchádzajúceho vektora a výsledný vektor dostaneme spojením začiatočného bodu prvého vektora s koncovým bodom posledného vektora v danom vektorovom súčte.

PRÍKLAD 1:

Nájdite vektor \overrightarrow{x} , ktorý je vektorovým súčtom vektorov \overrightarrow{r} , \overrightarrow{s} , \overrightarrow{v} .

Riešenie:

PRÍKLAD 2:

Sú dané vektory $\vec{u} = (3; 2)$ a $\vec{v} = (-1; 3)$. Zakreslite tieto vektory v súradnicovom systéme a určte ich súčet a rozdiel:

- a) graficky
- b) výpočtom

Riešenie a) (graficky):

Postup: Najprv zakreslíme umiestnenia vektorov \vec{u} a \vec{v} , potom presunieme začiatočný bod vektora \vec{v} rovnobežne do koncového bodu vektora \vec{u} . Výsledný vektor $\vec{s} = \vec{u} + \vec{v} = (2, 5)$

Postup: Najprv zakreslíme umiestnenia vektorov \vec{u} a \vec{v} , potom narysujeme opačný vektor $-\vec{v}$. Následne presunieme začiatočný bod vektora $-\vec{v}$ rovnobežne do koncového bodu vektora \vec{u} . Výsledný vektor $\vec{r} = \vec{u} - \vec{v} = \vec{u} + (-\vec{v}) = (4, -1)$

Riešenie b) (výpočtom):

Súčet:

$$\vec{s} = \vec{u} + \vec{v} = [u_1 + v_1; u_2 + v_2] = [3 + (-1); 2 + 3] = (2; 5)$$

Rozdiel:

$$\vec{r} = \vec{u} - \vec{v} = [u_1 - v_1; u_2 - v_2] = [3 - (-1); 2 - 3] = (4; -1)$$

Vidíme, že súradnice oboch vektorov sú v úlohe a) aj v úlohe b) totožné.

Domáca úloha:

Podľa návodu v Príklade 1 a Príklade 2 vyriešte nasledujúcu úlohu:

Sú dané vektory $\vec{u} = (0; 2)$ a $\vec{v} = (2; 2)$. Zakreslite tieto vektory v súradnicovom systéme so začiatkom v počiatku súradnicového systému a určte ich súčet aj rozdiel:

- a) graficky
- b) výpočtom