

381

REPORT NO. CG-M-2-814

STATISTICAL DESCRIPTION OF WAVE INDUCED VIBRATORY STRESSES IN SHIPS

Sverre Gran

Det norske Veritas

DECEMBER 1980 FINAL REPORT

1.

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE SPRINGFIELD, VIRGINIA 22161

PREPARED FOR

U.S. DEPARTMENT OF TRANSPORTATION
UNITED STATES COAST GUARD
OFFICE OF MERCHANT MARINE SAFETY
WASHINGTON, D.C. 20593

82 02 23

реги

THE THE COPY

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report do not necessarily reflect the official view or policy of the Coast Guard; and they do not constitute a standard, specification, or regulation.

This report, or portions thereof may not be used for advertising or sales promotion purposes. Citation of trade names and manufacturers does not constitute endorsement or approval of such products.

ASP

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

. Report No.	7 2	Government Accessi	on No	3. Recipien	l'a Cereles No	0
CG-M-2-81		ED-ALLL	186			
		W-HYJ-	200	ļ <u>.</u>		
Title and Subtitle				5. Report D	•'• mber 198∈	Λ
Statistical Des			ced		Organizatio	
Vibratory Stres	ses in St	nips			·y - · y - · · · · · · · · · · · · · · ·	
				8 Performin	g Organizatio	n Report No.
Author(s) Svenne Gran				80-1	171	
				1	· No (TRAIS	
Performing Organization Name Det norske Veri		onmob Divinia		IC Went Un	I'MB (IRAIS	••
P.O. Box 300, H)11	11. Centrec	t or Grent No.	
Oslo, Norway	, , , , , , ,	72		DTCG	23-80-C-	20007
				13. Type of	Report and Po	eried Covered
Sponsoring Agency Name and						
U.S. Coast Guar				Fina	l Report	
2100 Second Str Washington, D.	,			14 Spensor	ne Agenc" Ce	ode .
adjuring con, D.	· • • • • • • • • • • • • • • • • • • •	•		1		
This report c	a with pa	irticular atte				
	a with pa tresses i between resentati	rticular atte in ships. periods, RMS	values and sessible	e induced pectral w	bending idth	
response spectr and springing s Relationships are discussed. Different rep	a with patresses in between resentations and the longer developments. En	periods, RMS ons of the rece considered. g term descripped, and has pirical data	values and sesulting extription and principle in part beer related to	e induced pectral w eme value ediction compared	bending idth under of extrements	
response spectr and springing s Relationships are discussed. Different rep stationary cond An approach t stresses has be alternative met deductions have Springing stres Spectral analys Statistical ana	a with patresses in between resentations are on the loren developments. En been attentions is lysis	periods, RMS ons of the rece considered, oped, and has opirical data cached in an a	values and sesulting extraction and properties to related to represent to the procure of the pro	e induced pectral w eme value ediction compared he theore is availa e Nationa	idth under of extremith tical ble to the second of the	me he U.S. pub cal
response spectr and springing s Relationships are discussed. Different rep stationary cond An approach t stresses has be alternative met deductions have 7. Key Words Springing stres Spectral analys	a with patresses in between resentations are on the loren developments. En been attentions is lysis	periods, RMS cons of the rece considered. In g term descripped, and has apprical data cached in an acceptance.	values and sesulting extraption and print part been related to appendix. 18. Distribution State Document through the Information	e induced pectral w eme value ediction compared he theore is availa e Nationa n Service	idth under of extrement with tical ble to the spring of	me he U.S. pub cal ield,VA 221
response spectr and springing s Relationships are discussed. Different rep stationary cond An approach t stresses has be alternative met deductions have Springing stres Spectral analys Statistical ana	a with patresses in between resentations and the longen developments. Endods.	periods, RMS ons of the rece considered, oped, and has opirical data cached in an a	values and sesulting extraption and print part been related to appendix. 18. Distribution State Document through the Information	e induced pectral w eme value ediction compared he theore is availa e Nationa n Service	idth under of extremith tical ble to the second of the	me he U.S. pub cal

Det norske Veritas Research Division

POSTAL ADDRESS. P.O.BOX 300, 1322 HØVIK, NORWAY

TELEPHONE: +47(02) 12 99 55

CABLE ADDRESS.

VERITAS, OSLO

TELEX:

16 192 VERIT N

T	F	CI	41	JI	\mathbf{C}	Δ	L	R	F	P	\cap	R	T	_
	_	U	- 11	ИI		_	_	Г٦	_	r '	U	П		

30th December 1980 Project No. Subject Group VERITAS Report No. 80-1171 H₂ FDIV/11 11 10 📭 Approved by Title of Report Statistical Description of Wave Harald Olsen Induced Vibratory Stresses in Ships Principal engineer Client/Sponsor ref. Client/Sponsor of project Contract U.S.Coast Guard DTCG 23-80-C-20007 Work carried out by S. Gran

This report contains general, theoretical considerations of two-peak response spectra with particular attention to wave induced bending and springing stresses in ships.

Relationships between periods, RMS-values and spectral width are discussed.

Different representations of the resulting extreme value under stationary conditions are considered.

Fatigue contributions from the respective spectral components are evaluated and discussed.

An approach to the long term description and prediction of extreme stresses has been developed, and has in parts been compared with alternative methods. Empirical data related to the theoretical deductions have been attached in an appendix.

4 Indexing terms		Distribution statement:
SPRINGING SPECTRAL ANALYSIS		No distribution without permission from the responsible department.
STATISTICAL ANALY EXTREME CONDITION	SIS S	Limited distribution within Det norske Veritas.
	Rev. No.	Y Free distribution.
Date of last rev.	1	1.3.0
10th September 198	' 시	138

CO	NTENTS PAGE	
1.	SUMMARY, ASSUMPTIONS AND CONCLUSIONS	1.1
	1.1 A preliminary survey	1.1
	1.2 Basic assumptions	1.3
	1.3 Conclusions	1.7
2.	GENERAL PROPERTIES OF A TWO-COMPONENT STRESS SPECTRUM	2.1
	2.1 Basic variables	2.1
	2.2 Dimensionless representation	2.3
	2.3 Considerations of the Spectral Width	2.5
	2.4 Consideration of Periods	2.7
3.	DISTRIBUTION OF MAXIMA UNDER STATIONARY CONDITIONS	3.1
	3.1 Exact distribution of local maxima	3.3
	3.2 Distribution of positive maxima	3.7
	3.3 Approximation with generalized gamma distribution	3.9
4.	CHARACTERISTIC EXTREME VALUE	4.1
	4.1 Elementary considerations	4.1
	4.2 Characteristic extreme at arbitrary springing share	4.3
	4.3 Extreme positive maximum	4.5
	4.4 Relation to individual maxima	4.8
5.	STATISTICAL EXTREME VALUE DISTRIBUTION	5.1
	5.1 Exact representation	5.1
	5.2 Narrow band approximation	5.3
	5.3 Approximation with double exponential distribution	5.4
	5.4 Approximation with square normal distribution	5.5
	5.5 Application of distribution for positive maxima	5.7
	5.6 Approximation with generalized jamma distribution	5.9
	5.7 Discussion of alternatives	5.10
	5 8 Dienoreion of extreme value distribution	5 1

6. EXTREME VALUE DISTRIBUTION BY UNKNOWN SPECTRAL WIDTH	6.1
7. UNCERTAINTY IN SHORT TERM EXTREME VALUE PREDICTIONS	7.1
8. FATIGUE AND CRACK PROPAGATION	8.1
8.1 Elementary considerations	8.1
8.2 Fatigue under combined bending and springing	8.2
8.3 Comparison with regression formula	8.5
9. LONG TERM DISTRIBUTION OF RMS	9.1
9.1 Distribution in a special case	9.1
9.2 Distribution in general cases	9.4
10. LONG TERM DISTRIBUTION OF POSITIVE MAXIMA	10.1
10.1 Proposed procedure	10.1
10.2 Rayleigh short term - Weibull RMS	10.4
11. CONCLUDING REMARKS	11.1
12. REFERENCES	12.1
APPENDIX A:	
TABLE OF POLY-GAMMA AND RELATED FUNCTIONS.	A.1
APPENDIX B:	
EMPIRICAL DATA FROM FIELD MEASUREMENTS	B.1

1. SUMMARY, ASSUMPTIONS AND CONCLUSIONS.

1.1 A preliminary survey

The present report is concerned with random processes, the power spectra of which consist of two distinct peaks. In marine engineering such processes are found in ships and slender offshore structures who exhibit a resonant random vibration in addition to the semi-static forces excerted by the passing waves.

With reference to ships the resonant stress is termed <u>springing</u> and corresponds to the two node mode of vibration. The semistatic response is termed <u>bending</u> and corresponds to the more familiar hogging and sagging stresses.

The main objective of the work is to investigate how the extreme stress in both a short and a long time interval is influenced by the mixing ratio of bending and springing.

In the short term case, i.e. under stationary conditions, the stress peaks are supposed to follow a Rice Probability distribution, which is common for signals of arbitrary spectral shape. The distribution parameters, i.e. the RMS and the spectral width in this case are simple, algebraic functions of the individual RMS and periods for springing and bending.

Once the Rice distribution of peaks is adopted, the short term extreme stress is also known, both in terms of the characteristic value and the probability distribution. As the exact extreme value expressions are fairly unsurveyable there are a number of approximate formulae which give more direct insight into uncertainty, effect of period estimate etc.

The long term case is heavily based on certain properties of the generalized gamma functions. It has been pointed out that there is a logical relationship between the Rice and the general gamma distributions. (Section 3.3) By short term gamma distributed peaks and long term gamma distributed RMS, a method has been pointed out to establish a long term gamma distribution of stress peaks. Once this is established, the long term extreme may be evaluated.

At the present stage, the short term stationary condition case is fairly complete. The long term case is less complete from a theoretical point of view, but the evaluation methods pointed out should give reasonably correct results when applied to practical problems. For this purpose a table of the functions required are included in Appendix A.

Although not a part of the original project, some evaluations of fatigue life has been included, partly for the sake of completeness, and partly because it is felt that additional vibration components may be more important for deterioration processes than for direct overloading.

Some empirical material from a measuring project on a tanker has been included in Appendix B. This material has been presented in a fashion which conforms with the theoretical work. An evaluation of the measured data against the theoretical results has, however, not been undertaken. Previous documentation of the measurements are found in /14/.

1.2 Basic assumptions.

The work and conclusions in this report are based on the following assumptions:

- A When considered separately the springing and bending stress components are gaussian, narrow-banded random processes. This implies that the average zero-up-crossing period is equal to the average peak period, and that the amplitudes are Rayleigh distributed.
- B The bending and springing stress components are statistically independent under stationary conditions. This implies that the resulting stress process is a gaussian broad-banded process with Rice distributed maxima.
- The RMS-values of the springing and bending stress components are statistically independent in the long run.
- There is a high degree of independence between the total RMS-value and the variables connected with the average periods, such as the spectral width parameter.
- E The contributions to crack propagation velocity or fatigue rate from bending and springing are to be added together linearly.

Assumption A is supported by Fig.1,2,1.

Assumption B has not been extensively testes within the present project or in previous related projects. In case there is a positive correlation between the instantaneouse bending and springing stresses, the present theories will underestimate the total stress extremes.

Assumption C is supported by Table 1.2.1.

Assumption D is supported by Table 1.2.2.

Assumption E is to some degree discussed in the text in Chapter 8.

Fig.1.2.1 Statistical properties of bending and springing stress components within a short term record. The sample values are gaussian and the amplitudes are Rayleigh-like. From /14/.

TALL CONDITIONS

42 4 CORRELATION BETWEEN BENCING AND SPRINGING STRESS LEVEL

IN THE PRESENT SECTION THE CORPELATION BETWEEN THE SPRINGING STRESS AND THE BENCING STRESS LEVEL WILL BE MORE CLOSELY INVESTIGATED.

CONCERN SIEMS FROM THE FACT THAT SPRINGING STRESS LEVEL UNDER GIVEN ENVIRONMENTAL CONDITIONS IS DIFFICULT TO PREDICT, WHILE PREDICTION OF RENTING STRESS CAN BE PERFORMED WITH REASONABLE ACCURACY BY A NUMBER OF METMODS.
THEREFORE, IF THERE IS A CERTAIN CORRELATION BETWEEN THESE VARIABLES, THE SPRINGING STRESS IN A GIVEN CONDITION CAN BE PREDICTED ON THE BENDING STRESS PREDICTION.

THE INVESTIGATION IS BASED ON 1119 OBSERVATIONS.

SOME MAIN DATA OF THE OBSERVATIONS ARE LISTED IN THE FOLLOWING TABLE !

AVERAGE BENDING ROOT-E VALUE	38.60 KP/CM**2
STANDARD DEVIATION OF BENDING ROOT-E VALLE	33.41 KP/CH402
LARGEST VALUE OF THE BENDING ROOT-E VALUE	217,00 KP/CM**2
CORRESPONDING VALUE OF SPRINGING ROOT-E VALUE	44.00 KP/CM**2
SMALLEST VALUE OF THE BENDING ROOT-E VALUE	2.00 KP/CM**2
CORRESPONDING VALUE OF SPRINGING ROOT-E VALUE	1.00 KP/CM4+5
AVERAGE SPRINGING ROOT-E VALUE	13.49 KP/CH**2
STANDARD DEVIATION OF SPHINGING ROCT-E VALLE	13.22 KP/CH**2
LARGEST VALUE OF THE SPRINGING ROOT-E VALUE	97.00 KP/CM**2
CORRESPONDING VALUE OF BENDING ROOT-E VALUE	46.00 KP/CM4+2
SMALLEST VALUE OF THE SPRINGING ROCT-E VALUE	1.00 KP/CH++2
CORRESPONDING VALUE OF BENDING ROOT-E VALUE	7.80 KP/CH**2

POSSIBLE LINEAR REGRESSION OLRVES ARE 1

x = 22.944 . 1.161 * Y

y = 6.465 · .182 • x

IN KB\CHeeS IN KB\CHeeS WHERE X IS THE BENDING ROOT-E VALUE AND Y IS THE SPRINGING ROOT-E VALUE

THE COEFFICIENT OF CORRELATION 15 .459

IF Y IS KNOWN, THE UNCERTAINTY IN X IS REDUCED FROM 12.41 (THE STANDARD DEVIATION IN THE TABLE ABOVE) TO 29.67 BY USING THE FIRST REGRESSION RELATION.
SIMILARY, IF X IS KNOWN, THE UNCERTAINTY IN Y IS RECUCED FROM 13.28 TO 11.75 BY USING THE SECOND RELATION.
AN INTUITIVE IMPRESSION OF THE CORRELATION IS ALSO DETAINED BY INSPECTION OF THE SCATTER DIAGRAM ON THE WEST PAGE.

SCATTER DIAGRAM

(ALL CONDITIONS)

THIS DIAGRAM SHOWS THE SIMULTANEOUS DISTRIBUTION OF OBSERVATIONS AND THE PARAMETERS OF THE CLASS-WISE AND MADGINAL DISTRIBUTIONS :

JE BENDING ROOT-E VALUE

YI SPRINGING ROOT-E VALUE

	()/(=00/					4-/64-									
CLASS PÍOPOÍA			X I	10.00	30.00	50.00	70.00	90,00	110.90	130.00	150.00	170.00	195,60	210.00	TOTA
}	VALUE		Y1	9.20	12.27	17.52	22.16	25.88	26.25	27.73	28,00	29,17	33,00	55.00	14,28
	1	STAUDARD PEVIATION	Υı	7.03	10.15	14.66	16.73	18.37	13.64	18.14	15.88	13.82	23,15	10.00	13.23
٧:	*1	*1													
5.00	28,39	22.39		250	203	95	51	10	3	ì	ı	1	1	o	585
15.an	41,22	10.50		54	111	69	20	6	*	5	3	5	1		278
25.00	56.23	44.33		13	14	34	16	3		0	5	•	1	0	122
35.nô	61.01	37.21		•	16	26	7	4	3	3	2	2	0	o	69
45.00	73.43	42.34		0	7	10	6	5	•	σ	0	2	n	1	35
55.01	A3,75	57.78		5	1	4	1	3	1	1	1	1	1	ø	16
65.00	100.91	<7.44		σ	1	2	3	1	n	1	1	r	1	1	i i
75.00	60.00	10.00		n	٨	1	1	0	n	0	0	٥	0	0	?
85.00	.00	-00		n	n	0	o	0	0	0	0	0	0	0	0
95.00	50.00	.00		٠	n	1	ŗ	0	o	o	0	0	0	r	1
TOTAL	39.42	31, 11	1	125	177	242	74	74	24	11	13	15	5	2	1119

Table 1.2.1. Correlation between bending and springing stress level in the long run. From /14/.

The same and the feethers are

A2 20

IALL COMDITIONS

AR.6 CORRELATION BETWEEN THE RICE DISTRIBUTION PARAMETERS OF THE TOTAL STRESS

THE AMPLITUDES OR THE LOCAL MAXIMA OF THE TOTAL STRESS ARE SUPPOSED TO FOLLOW A RICE PROBABILITY FUNCTION.

THIS DISTRIBUTION FUNCTION HAS TWO PARAMETERS: THE ROOT-E VALUE DEFINED AS SQRT(2)-THE NMS-VALUE, AND THE SPECTHAL WIDTH EPSILON DEFINED AS SQRT(1 ~ (PEAK PERIOD/ZERO CHOSSING PERIOD)++2).

IT WILL BE OF INTEREST TO SEE IF THESE PARAMETERS AND STATISTICALLY INDEPENDENT OR IF THERE IS SOME CORRELATION.

IT WILL ALSO BE OF INTEREST TO KNOW THE CMARACTERISTIC VALUES OF THE SPECTRAL WIDTH, WECAUSE THE APPLICATION OF THE RAYLEIGH DISTRIBUTION COMPONIT USED. IS ONLY VALID FOR SMALL VALUES OF THE SPECTRAL WIDTH (LESS THAN EPSILON # 0.75),

THE INVESTIGATION IS MASED ON 1119 OBSERVATIONS.

SOME MAIN DATA OF THE DUSERVATIONS ARE LISTED IN THE FOLLOWING TABLE I

AVERAGE STRESS SPECTHAL WIDTH
STANDARD DEVIATION OF STRESS SPECTRAL WIDTH
LARGEST VALUE OF TOTAL STRESS ROOT-E VALUE
CORRESPONDING VALUE OF TOTAL STRESS ROOT-E VALUE
CORRESPONDING VALUE OF TOTAL STRESS ROOT-E VALUE
CORRESPONDING VALUE OF TOTAL STRESS ROOT-E VALUE
STRESS POOT-E VALUE
STRESS POOT-E VALUE
STRESS ROOT-E VALUE
ST

AVERAGE TOTAL STRESS ROOT-E VALUE
STAMDARD DEVIATION OF TOTAL STRESS HOOT-E VALUE
LARGEST VALUE OF THE TOTAL STRESS ROOT-E VALUE
CORRESPONDING VALUE OF STRESS SPECTRAL WIDTH
SMALLEST VALUE OF STRESS ROOT-E VALUE
CORRESPONDING VALUE OF STRESS SPECTRAL WIDTH
CORRESPONDING VALUE OF STRESS SPECTRAL WIDTH
ON-PA199-01 DIMENSIONLESS
OF THE TOTAL STRESS SPECTRAL WIDTH
ON-PA199-01 DIMENSIONLESS

AN INTUITIVE IMPRESSION OF THE CORRELATION IS ALSO OBTAINED BY INSPECTION OF THE SCATTER DIAGRAM ON THE MEAT PAGE.

SCATTER DIAGRAM

IALL CONDITIONS)

THIS DIAGRAM SHOWS THE SIMULTAMEOUS DISTRIBUTION OF OBSERVATIONS AND THE PARAMETERS OF THE CLASS-WISE AND MARGINAL DISTRIBUTIONS τ

A: STRESS SPECTRAL #10TH IN DIMENSIONLESS

YI TOTAL STRESS ROOT-E VALUE IN KP/CHOP2

CLASS MIDPOIN			Ä I	. 35	.45	.55	. 65	. 75	.85	. 95	TOTAL
	VALUE	<u>. </u>	7,	50.00	52.50	43.33	48.49	52.46	55.74	30.65	47.52
		ORAGNATE HOLTALVED	٧,	.00	25.37	19.84	22.60	25.90	36.87	31.67	33.57
Y 5	X:	A:									
10.00	.92	.07		•	0	2	3	2	28	116	151
30.00	.87	.10		0	3	8	51	46	151	198	427
50.00	.85	.11		1	3	7	12	41	118	94	276
70.00	.03	.10	1	0	1	3	11	28	60	35	136
90.00	.63	.10	į.	0	0	1	6	7	53	12	49
110.00	.84	.09		0	1	0	•	•	22	•	31
130.00	.87	.04	İ	٥	0	0	•	0	9	2	11
150.00	.86	.05	1	0	٥	0	•	1	10	2	13
170.00	.90	.05	1	•	0	0	•	0	6	7	15
190.00	.84	.09	1	0	0	0	0	ı	0	2	3
210.00	.90	.05	1	•	0	0	0	•	5	5	•
230.00	.65	.00		0	0	•	ø	•	i	•	ı
TOTAL	.80	-10	Τ			21	53	130	432	474	1119

Table 1.2.2. Correlation between stress level ($\sqrt{2}$ RMS) and the spectral width parameter ϵ . From /14/.

The Beat

1.3 Conclusions.

If the attitude of a ship navigator is adopted, the problem can be stated as follows:

You know the springing and bending periods of the vessel. The first one is a farily constant one, while the bending period is roughly equal to the encountering wave period. You also know the RMS-value of the total stress which may be monitored in real time by the simplest type of a hull surveillance stress monitor. What you do not know is how the observed stress is shared between bending and springing. How important is it, for a safe operation of the vessel, to discern between bending and springing stress in this situation?

The present work indicates the following main conclusions:

A To evaluate the largest stress Smax in a rough weather situation, there is no sense in discerning between springing and bending. The extreme load Smax may in any case be evaluated as

$$Smax = 1.4 \times RMS \times \sqrt{\ln N}$$
 (1.3.1)

where RMS is the value read from the monitor, and N is a rough mean value between the springing and bending number of cycles in the time period considered. The uncertainty introduced by rough estimate of N is completely exhausted by the natural, statistical dispersion of the largest stress, and both these sources of uncertainty are nearly exhausted by only a moderate measureing error of RMS. (Chapter 6 and 7).

B The relative uncertainty in the estimated largest value (1.3.1) due to natural dispersion under stationary conditions (that is relative dispersion of extreme value distribution, the correct values of RMS and N being exactly known) is with good approximation

$$\frac{\delta \text{Smax}}{\text{Smax}} = \frac{1}{2 \ln N} \tag{1.3.2}$$

On the other hand the relative uncertainty in the extreme stress (1.3.1) due to uncertain monitoring of RMS is directly equal to the relative uncertainty in RMS itself.

C The fatigue rate increases when the springing share exceeds a certain limit. There is also an upper limit for the fatigue increase due to springing, and this limit is given by the bending-to-springing period ratio which may be of order 3-6. Thus, if the ship design has proved sensitive to fatigue damages, either by fatigue calculations at the design stage or by observation of cracks during the service stage, heavy springing should be avoided. (Chapter 8).

If the attitude of a ship designer is adopted, the problems will be somewhat different and may be stated as follows:

Bending and springing responses are regarded as two different phenomena. We have a number of hydrodynamic theories, methods and computer programs which may predict the bending stresses in the short and long term by a given service profile. We also have (presumably) theories, methods and computer programs for treating springing stresses in the same way.

The ship should, however, be designed to resist the <u>resulting</u> stresses, and the question is: How should bending and springing be combinded to give the resulting stress when those two components are known separately?

The following conclusions may be of practical use:

D When the largest stress and the largest springing stress are separately known, a guiding estimate of the resulting maximum stress is

$$Smax \approx \sqrt{Smax (bending)^2 + Smax (springing)^2}$$
 (1.3.3)

The relation is assumed to hold in the short term as well as in the long term case. (Section 4.4)

- E When the long term distribution of bending RMS and springing RMS are known (in terms of Weibull plots Fig.9.1.1) there exists an additive class of distributions which immediately indicates the long term distribution of the resulting RMS more or less roughly. In addition the long term distribution of the springing or bending share (springing resp. bending RMS relative to total RMS) is indicated. (Section 9.1).
- F The spectral width ε entering the Rice distribution for local maxima is not a basic variable, but is uniquely determined by the springing-to-total RMS ratio (springing share x) and the bending-to-springing period ratio (τ). (Section 2.3).
- G The limiting case of $\varepsilon=1$ can never be obtained in the present situation, while the opposite limit $\varepsilon=0$ is approached in both the pure springing and the pure bending case. This indicates that a number of approximate formulae derived for $\varepsilon=0$ may be of rather general application. (Section 3.1).
- H The Rice-distribution for positive maxima under stationary conditions may with good approximation be replaced by a generalized gamma distribution. The resemblance is exact in the limiting cases of ε =0 and ε =1. (Section 3.3).
- I Several analytical probability distribution, exact and approximate, are available for the extreme stress under stationary conditions by known zero crossing period. (Chapter 5).
- J Probability distribution for the extreme stress by unknown period is derived in analytical form, but this distribution does not deviate significantly from the distribution with period fixed at the mean value between bending and springing. (Chapter 6).
- K For given long term probability distribution of RMS, an analytical procedure is suggested which attaches a generalized gamma function to the long term distribution of stress peaks. (Chapter 10).

GENERAL PROPERTIES OF A TWO-COMPONENT STRESS SPECTRUM

2.1 Basic variables

The resultant stress presently considered consists of two distinguished spectral components which will be termed the bending stress due to quasistatic wave action, and the springing stress due to resonans vibration. Regarded separately, each stress component is narrow-banded, and a short term stationary stress state is completely characterized by the four variables:

 $\sigma_{\mbox{\footnotesize{B}}}$ Root Mean Square (RMS) of the bending stress

 T_{B} Average period of the bending stress

 $\sigma_{\mathbf{S}}$ RMS of the springing stress

T_s Average period of the springing stress

If the power spectral density of the total stress is termed $S(\omega)$, a function of the circular frequency ω , the spectral moment of order n can in general be written:

$$M_n = \int_0^\infty u^n S(\omega) d\omega = (\frac{2\pi}{T_B})^n \sigma_B^2 + (\frac{2\pi}{T_S})^n \sigma_T^2$$
 (2.1.1)

Based on the spectral moments of order 0, 2 and 4 the following three parameters of the total stress may be defined:

- RMS-value σ (or variance σ^2)

$$\sigma = \sqrt{M_0} = \sqrt{\sigma_B^2 + \sigma_S^2}$$
 (2.1.2)

- Average zero-crossing period T_z

$$T_{z} = 2\pi \sqrt{\frac{M_{0}}{M_{2}}} = \sqrt{\frac{\sigma_{B}^{2} + \sigma_{S}^{2}}{\sigma_{B}^{2}/T_{B}^{4} + \sigma_{S}^{2}/T_{S}^{4}}}$$
 (2.1.3)

- Average peak period Tp

$$T_{p} = 2\pi \sqrt{\frac{M_{2}}{M_{4}}} = \sqrt{\frac{\sigma_{B}^{2}/T_{B}^{2} + \sigma_{S}^{2}/T_{S}^{2}}{\sigma_{B}^{2}/T_{B}^{4} + \sigma_{S}^{2}/T_{S}^{4}}}$$
(2.1.4)

From these basic variables one may derive a number of related parameters which do not convey new information, but which have significance for physical or historical reasons:

- The ratio a between peak- and zero-crossing period

$$\alpha = \frac{T_{P}}{T_{Z}} = \frac{\sigma_{B}^{2}/T_{B}^{2} + \sigma_{S}^{2}/T_{S}^{2}}{\sqrt{(\sigma_{B}^{2}/T_{B}^{4} + \sigma_{S}^{2}/T_{S}^{4})(\sigma_{B}^{2} + \sigma_{S}^{2})}} = \sqrt{1 - \epsilon^{2}} = 2a - 1$$
(2.1.5)

- The spectral width ϵ

$$\varepsilon = \sqrt{1 - \alpha^2} = 2\sqrt{a(1 - a)} \tag{2.1.6}$$

- The fraction of positive maxima a

$$a = \frac{1}{2}(1 + \sqrt{1 - \epsilon^2}) = \frac{1}{2}(1 + \alpha)$$
 (2.1.7)

The spectral width ϵ has been the prevailing shape parameter of the Rice distribution in the literature /1/, /2/. Some authors have preferred the period ratio α , for example /3/, /4/. The related parameter a is essential by considering the distribution of positive peaks only, see /5/, and appears as the shape parameter in the generalized gamma distribution approximated to the Rice distribution, see Section 3.3.

2.2. <u>Dimensionless Representation</u>

It is convenient to perform the derivations within a dimensionless system of variables.

As time unit is chosen the springing period T_S which is the most stable of the time variables introduced. Periods measured with T_S as unit will be denoted τ with a corresponding subscript.

As stress unit in the short term case will be chosen the total RMS value, σ . This is the quantity which is for instance most easy to monitor in service. Stress variables measured with σ as unit will be denoted x with a corresponding subscript.

t written without subscript denotes the dimensionless <u>bending</u> period.

x written without subscript denotes the dimensionless <u>springing</u> RMS.

Hence the variables previously defined may be re-written as follows:

- RMS of bending stress $X_{\rm R}$, bending share

$$x_B = \frac{\sigma_B}{\sigma} = \frac{\sigma_B}{\sqrt{\sigma_B^2 + \sigma_S^2}} = \sqrt{1 - x_S^2} = \sqrt{1 - x^2}$$
 (2.2.1)

- Period of bending stress τ_{R}

$$\tau_{B} = \tau = \frac{T_{B}}{T_{S}} \tag{2.2.2}$$

- RMS of springing stress X, springing share

$$X_S = X = \frac{\sigma_S}{\sigma} = \frac{\sigma_S}{\sqrt{\sigma_S^2 + \sigma_B^2}}$$
 (2.2.3)

- Average zero-crossing period $\tau_{\rm Z}$

$$\tau_{Z} = \frac{T_{Z}}{T_{S}} = \frac{1}{\sqrt{\chi^{2} + \chi_{R}^{2}/1}} = \frac{\tau}{\sqrt{1 + \chi^{2}(\tau^{2} - 1)}}$$
 (2.2.4)

- Average peak period p

$$= \frac{T_{D}}{\sqrt{\frac{X_{B}^{2}/(z^{2} + x^{2})}{\lambda_{B}^{2}/(z^{4} + x^{2})}}} = \sqrt{\frac{1 + x^{2}(z^{2} - 1)}{1 + x^{2}(z^{4} - 1)}}$$
 (2.2.5)

- Ratio between peak- and zero-crossing period

$$\alpha = \frac{{}^{1}P}{{}^{1}Z} = \frac{X_{B}^{2} + X^{2}\tau^{2}}{\sqrt{X_{B}^{2} + X^{2}\tau^{4}}} = \frac{1 + X^{2}(\tau^{2} - 1)}{\sqrt{1 + X^{2}(\tau^{4} - 1)}} = 2a - 1 \quad (2.2.6)$$

- Spectral width ϵ

$$= \sqrt{1 - \alpha^2} = \left[1 - \frac{\left[1 + x^2(\tau^2 - 1)\right]^2}{1 + x^2(\tau^4 - 1)}\right]^{\frac{1}{2}} = \left[\frac{x^2(1 - x^2)(\tau^2 - 1)}{1 + x^2(\tau^4 - 1)}\right]^{\frac{1}{2}}$$
(2.2.7)

- Fraction of positive maxima a

$$a = \frac{1}{2} \left[1 + \frac{1 + x^2 (\tau^2 - 1)}{\sqrt{1 + x^2 (\tau^4 - 1)}} \right] = \frac{1}{2} \left[1 + \sqrt{1 - \epsilon^2} \right] = \frac{1}{2} [1 + \alpha]$$
(2.2.8)

2.3 Considerations of the Spectral Width

As observed from equation (2.2.7), the spectral width parameter ε is completely determined by the springing RMS-to-total RMS ratio x, and the bending-to-springing period ratio Υ . The equation is

$$\varepsilon^2 = \frac{x^2 (1 - x^2) (\tau^2 - 1)^2}{1 + x^2 (\tau^2 - 1) (\tau^2 + 1)}$$
 (2.3.1)

From this we may conclude:

- ε = 0 for x = 0. This occurs when σ_{S} = 0 and the stress is pure bending.
- $\alpha = 0$ for $(1 X^2) = \sigma_B^2/\sigma^2 = 0$. That is: there is no bending, and the stress is pure springing.
- ϵ = 0 for τ = T_B/T_S = 1. That is: the spectral peaks due to springing and bending coincide, and there is in reality only one peak in the stress spectrum.
- Differentiation with respect to X keeping τ constant reveals that ϵ has its maximum value when

$$\frac{\sqrt{1-X^2}}{X} = \tau \qquad \text{that is} \qquad \frac{\sigma_B}{\sigma_S} = \frac{T_B}{T_S}$$
 (2.3.2)

The spectral width is then given by

$$\varepsilon_{\text{max}} = \frac{\tau^2 - 1}{\tau^2 + 1} = \frac{T_B^2 - T_S^2}{T_B^2 + T_S^2} = 1 - \frac{2}{\tau^2 + 1}$$
(2.3.3)

or by

$$\varepsilon_{\text{max}} = 1 - 2x^2 = 1 - 2(O_S/O)^2$$
 (2.3.4)

- ϵ = 1 is obtained only when τ + ∞ and X + 0, that is T_S >> T_B and σ_S >> σ_B

The spectral width ϵ is shown as a function of the springing share $X = \sigma_S/\sigma$ for selected values of the relative bending period $\tau = T_B/T$ in Fig. 2.3.1.

Fig. 2.3.1. Spectral width ε as a function of the springing share $X = \tau_S/\sigma$ for selected values of the bending-to-springing period ratio $\tau = T_B/T_S$.

This figure shows in more detail how the spectral width becomes zero when the stress is either pure bending, $\sigma_S/\sigma=0$, or pure springing, $\sigma_S/\sigma=1.0$. And also how the spectral width disappears when the springing and bending periods approaches each other at $\tau=1$.

The maximum values of the spectral width are located on the dashed line which is the parabola described by (2.3.4).

The value ϵ = 1 is an ideal case which is never realized in practice.

2.4 Consideration of Periods

In a given time interval t, the number of local maxima is $N_{\rm D}$

$$N_{p} = \frac{t}{T_{p}} = \frac{t}{T_{s}} \sqrt{\frac{1+x^{2}(\tau^{4}-1)}{[1+x^{2}(\tau^{2}-1)]\tau^{2}}} = \frac{t}{T_{B}} \sqrt{\frac{1+x^{2}(\tau^{4}-1)}{1+x^{2}(\tau^{2}-1)}}$$
(2.4.1)

The peak period T_D is given in (2.1.4).

The dimensionless representation is given in (2.2.5).

The term $t/T_{\rm S}$ on the right side is the number of springing cycles in the time t considered. The square root expression is therefore the ratio between local maxima and number of springing cycles experienced within an arbitrary time interval, and is graphed in Fig. 2.4.1.

It is observed that the peak period very rapidly becomes equal to the springing period, more rapidly the longer the bending period is.

Fig. 2.4.1 Number of local maxima within a time interval, as a fraction of upringing cycles.

Similarly, in a given interval t, the number of zero crossings $N_{\rm Z}$ is

$$N_{z} = \frac{t}{T_{z}} = \frac{t}{T_{S}} \frac{1}{t} \sqrt{1 + x^{2} (\tau^{2} - 1)} = \frac{t}{T_{B}} \sqrt{1 + x^{2} (\tau^{2} - 1)}$$
 (2.4.2)

 $T_{\rm Z}$ is the zero crossing period given in (2.1.3), dimensionless in (2.2.4). As $t/T_{\rm S}$ is the number of springing periods within t, the square root term is the ratio between zero crossing periods and springing periods in any arbitrary time interval. The ratio is graphed in Fig. 2.4.2.

Fig. 2.4.1 and Fig. 2.4.2 show how, depending on the circumstances, the peak as well as the zero-crossing period will always be situated somewhere between the bending and springing periods.

Fig. 2.4.2 Number of zero crossing periods within a time interval as a fraction of springing periods.

The fraction of positive maxima is given by the parameter a in (2.1.7) and (2.2.8). Hence the number of positive maxima, denoted $N_{\bf p}^{-1}$, in the time t is

$$N_p^+ = aN_p = \frac{1}{2} [1 + \sqrt{1 - c^2}] N_p = \frac{N_p + N_z}{2}$$
 (2.4.3)

that is, the mean value between the number of peaks and zero-up-crossings. The average period between positive peaks, denoted $T_{\rm p}^{\ +}$ is hence

$$T_p^+ = \frac{2}{1/T_p + 1/T_z} = \frac{2T_pT_z}{T_p + T_z} = \frac{T_p}{a}$$
 (2.4.4)

Correspondingly the fraction of <u>negative</u> maxima is (1-a), which gives a number of negative maxima denoted $N_{\rm D}$ of

$$N_p^- = (1-a)N_p = \frac{1}{2}[1-\sqrt{1-\epsilon^2}]N_p = \frac{N_p-N_z}{2}$$
 (2.4.5)

The average period between the negative maxima, denoted $T_{\rm p}^{-}$, is

$$T_p^- = \frac{2}{1/T_p - 1/T_z} = \frac{2T_z T_p}{T_z - T_p}$$
 (2.4.6)

These expressions will be of importance later.

The fraction of positive maxima is uniquely determined by the bending-to-springing period ratio τ and the springing share x as it appears from equation (2.2.8).

The dependence is graphed in Fig. 2.4.3.

Fraction of positive maxima is essential in the probability distribution of positive maxima, Section 3.2 and 4.5 and also for the approximation with generalized gamma distributions, Section 3.3 and 4.6.

Fig. 4.2.3 Fraction of positive maxima as a function of the period ratio τ and the springing share x. (Equation (3.8)).

DISTRIBUTION OF MAXIMA UNDER STATIONARY CONDITIONS

3.

We consider a time interval during which the sea conditions and the ship speed and course do not change significantly. In the real life this will only be the case in short term intervals of a couple of hours duration. However, consideration of such stationary intervals of, say, 20 years duration is also of interest because some long term trends may be qualitatively indicated.

Looked separately, the bending and springing stresses are assumed to be gaussian random processes with RMS values σ_B and σ_S respectively. That is: If the bending stress component is filtered out and sampled, the sample values over a sufficiently long period will conform with a normal probability law with standard deviation σ_B . Similarly sampled data from the springing stress component will conform with a normal probability law with standard deviation σ_S . If the two spectral components are statistically independent, sampled data of the complete stress signal conform with a normal distribution with standard deviation σ_S , equal to the RMS-value.

Looked separately, the bending and springing stresses are also assumed to be narrow-banded. That means, among other things, that they appear as a sequence of slowly modulated amplitudes which conform with a Rayleigh probability distribution with parameter $\sqrt{2}\tau_B$ for the bending stress and $\sqrt{2}\sigma_S$ for the springing stress component. The distribution of amplitudes coincides with the sampled value distribution of the envelope of the respective components. In the narrow banded case the stress peaks, or local maxima, coincide with the amplitudes, and represent a sampling of the stress envelope with a sampling period, equal to the period of the respective stress components. Since there is one zero-up crossing and one positive peak in each cycle, there is little or no difference between the zero crossing period and the peak for a narrow-banded stress component.

When the stress components are superposed upon each other, the concepts of "envelope" and "amplitude" loose the significance. What is still significant is the sequence of peaks, or local

maxima. This makes little conceptual difficulties for the extreme stress prediction, since the extreme stress within a certain time interval is easily definable as the largest local maximum value. In fatigue, nowever, the complications become considerable because the amplitude-concept is lost. By counting cycles for fatigue life prediction, however, one can evidently not identify the stress cycles with the peaks.

Alternative parameters to the RMS-value o are:

- The "ROOT-E" value $\sqrt{E} = \sqrt{2}\sigma$ which is the Rayleigh distribution parameter for single amplitudes.
- The significant height, or double amplitude, $H_s=4\sigma$ which is preferred in the analogy of wave motion.

3.1 Exact distribution of local maxima

For a broad-band stress history, which also covers the present two-component case, the peaks or local maxima conform with a Rice probability law /1/ /2/ which has two parameters:

- the RMS-value σ
- the spectral width ϵ (or any related parameter α or a).

Denote the sequence of N stress peaks

$$s_1 \ s_2 \ s_3 \ \dots \ s_N.$$
 (3.1.1)

Normalize the stress peaks with respect to the RMS-value σ and define the sequence of dimensionless peaks

$$Z_1 \ Z_2 \ Z_3 \ \dots \ Z_N, \qquad Z_m = S_m/\sigma$$
 (3.1.2)

The probability density function of the stress peaks is

$$g(z) = \frac{1}{\sqrt{2\pi}} \quad e^{-\frac{Z^2}{2\varepsilon^2}} + \sqrt{1-\varepsilon^2} \phi(\frac{\sqrt{1-\varepsilon^2}}{\varepsilon}z)z e^{-\frac{Z^2}{2}}$$
(3.1.3)

 ϕ () is the normal probability integral

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{X} e^{-\frac{t^2}{2}} dt$$
 (3.1.4)

Special cases of (3.1.3) are:

$$\varepsilon = 0$$
 $g(Z) = Z e^{-Z^2/2}$ (Rayleigh) (3.1.5)

$$\varepsilon \ll 1 \ll z$$
 $g(z) = \sqrt{1-\varepsilon^2} z e^{-z^2/2}$ (3.1.6)

$$\varepsilon = 1$$
 $g(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$ (Normal) (3.1.7)

$$Z = 0 g(0) = \varepsilon / \sqrt{2\pi} (3.1.8)$$

The probability of exceedance is

$$Q(Z) = 1 - \phi(Z/\epsilon) + \sqrt{1 - \epsilon^2} \phi(\frac{\sqrt{1 - \epsilon^2}}{\epsilon} Z) e^{-Z^2/2} \qquad (3.1.9)$$

with the special cases:

$$\varepsilon = 0$$
 $Q(Z) = e^{-Z^2/2}$ (3.1.10)

$$\epsilon \ll 1 \ll Z$$
 $Q(Z) = \sqrt{1-\epsilon^2} e^{-Z^2/2}$ (3.1.11)

$$\epsilon = 1$$
 $Q(Z) = 1 - \phi(Z)$ (3.1.12)

$$Z = 0$$
 $Q(0) = \frac{1}{2}(1+\sqrt{1-\epsilon^2}) = a$ (3.1.13)

The cumulative probability function P(Z) appears immediately from the exceedance probability through

$$P(Z) = 1 - Q(Z) (3.1.14)$$

The moments of the distribution are:

Mean value:
$$\mu_1 = \bar{z} = \sqrt{\frac{\pi}{2}} \sqrt{1 - \epsilon^2}$$
 (3.1.15)

Variance:
$$\mu_2 = (\overline{z-\overline{z}})^2 = 1 - (\frac{\pi}{2} - 1)(1 - \epsilon^2)$$
 (3.1.16)

3rd central moment:
$$\mu_3 = \overline{(z-\bar{z})^3} = \sqrt{\frac{\pi}{2}} (\pi-3) (1-\epsilon^2)^{3/2}$$
 (3.1.17)

Hence follow the dimensionless coefficients:

Coefficient of variation
$$\lambda = \mu_2^{\frac{1}{2}}/\mu_1 = \sqrt{\frac{2}{\pi}} \sqrt{1-\frac{\pi}{2}+\frac{1}{1-\epsilon^2}}$$
 (3.1.18)

Coefficient of skewness
$$\beta = \mu_3/\mu_2^{\frac{1}{2}} = \sqrt{\frac{\pi}{2}}(\pi-3) \left\{ \frac{1-\epsilon^2}{1-(\pi/2-1)(1-\epsilon^2)} \right\}^{3/2}$$

(3.1.19)

A graph of the exceedance probability is given in Fig. 3.1.1. The limiting cases of ε = 0 and ε = 1 are plotted together with ε = 0.5, 0.9 and 0.95. With the extreme value prediction in mind,

the high-peak-low-probability region is of most interest. Hence, looking to the region about Z=4, $\Omega=10^{-4}$, it is observed that Q is reduced by roughly one decade when ϵ goes from 0 to 1 under constant σ . Half a decade, however, is occupied by the transition from $\epsilon=0$ to $\epsilon=0.95$.

Keeping the probability level constant, it is observed that the argument Z is reduced by about 0.6, or 15%, when ε goes from 0 to 1. An amount of 0.3, or 7%, however, is occupied by the transition from 0 to 0.95.

These observations indicate that the special cases of low ϵ and large stress, equations (3.1.6) and (3.1.11), may be valid for fairly large ϵ -values.

Fig. 3.1.1 Graph of the probability of exceedance of the Rice probability distribution.

3.2 Distribution of positive maxima

For $\epsilon > 0$ there is a certain fraction of negative maxima and an equal fraction of positive minima, which is given by (3.1.13). The number of positive maxima is given in (2.4.3), and is

$$N_{p}^{+} = Q(0) N_{p} = aN_{p} = \frac{N_{p} + N_{z}}{2} = \frac{\sqrt{1 + x^{2} (\tau^{4} - 1) + \tau [1 + x^{2} (\tau^{2} - 1)]}}{2\tau \sqrt{1 + x^{2} (\tau^{2} - 1)}} \frac{t}{T_{s}}$$
(3.2.1)

The probability distribution of the positive maxima is found by truncating the ordinary Rice distribution at Z=0. This gives the probability density function, corresponding to (8.3)

$$g^{+}(z) = \frac{g(z)}{O(0)} = \frac{1}{\sqrt{2\pi}} \frac{\varepsilon}{a} e^{-\frac{z^2}{2\varepsilon^2}} + \frac{\sqrt{1-\varepsilon^2}}{a} \phi(\frac{\sqrt{1-\varepsilon^2}}{\varepsilon}z) z e^{-\frac{z^2}{2}}$$
(3.2.2)

where

$$a = \frac{1}{2} [1 + \sqrt{1 - \epsilon^2}] = Q(0)$$
 (3.2.3)

The probability of exceedance, corresponding to (8.9) is

$$Q^{+}(Z) = \frac{Q(Z)}{Q(Q)} = \frac{1}{a} [1 - \phi(Z/\epsilon)] + \frac{\sqrt{1 - \epsilon^2}}{a} \phi(\frac{\sqrt{1 - \epsilon^2}}{\epsilon} Z) e^{-Z^2/2}$$
(3.2.4)

with the narrow band approximation corresponding to (3.1.9)

$$\varepsilon \ll 1 \ll z$$
: $Q^{+}(z) = \frac{\sqrt{1-\varepsilon^{2}}}{a} e^{-z^{2}/2}$ (3.2.5)

The exceedance probability is graphed in Fig. 3.2.1. The cumulative probability function is given by

$$P^{+}(Z) = 1 - Q^{+}(Z) = \frac{P(Z) - P(0)}{Q(0)}$$
 (3.2.6)

Extreme values have been studied in terms of the truncated distribution by Ochi /5/.

The truncated distribution will be applied later in the approximation with generalized gamma distribution, Section 3.3, and in discussion of extreme value, Section 4.5.

Fig. 3.2.1 Graph of the probability of exceedance for the truncated Rice distribution for positive stress peaks, or local maxima.

3.3 Approximation with generalized gamma distribution

The generalized gamma distribution has the density function

$$f(Z) = \frac{h}{\Gamma(a)A}(\frac{Z}{A})^{ah-1} e^{-(Z/A)^{h}}$$
 (3.3.1)

where a, h and A are parameters. This distribution covers a lot of well-known distributions as special cases, see Table 3.3.1.

With reference to Article 9 it is observed that the limiting case of the truncated Rice distribution with ϵ = 0, that is the Rayleigh distribution, is equal to the generalized gamma distribution with

$$a = 1$$

 $h = 2$
 $A = \sqrt{2}$ (3.3.2)

Similarly, the broad band limiting case $\varepsilon = 1$, that is the

a	h	Α	Distribution function
1/2	2	√2σ	One sided normal distribution
1/2	2	σ	Error function
a	1	2	Elementary gamma distribution
n/2	1	2	χ^2 -distribution with n degrees of freedom
1	2	√2σ	Rayleigh distribution
3/2	2	√2σ	Maxwell distribution
1	1	A	Exponential distribution
1	h>0	A	Two parameter Weibull distribution
1	h<0	A	Fréchet distribution
1	$\frac{\bar{x}}{\bar{\sigma}} > 1$	-x	Approximate normal distribution with expectation $\bar{\mathbf{x}}$ and standard deviation σ
1	000	A	δ -distribution. Constant $x = A$

Table 3.3.1 Special cases of the generalized gamma distribution.

one sided normal distribution, coincides with the generalized gamma distribution with parameters

$$a = 1/2$$

 $h = 2$
 $A = \sqrt{2}$ (3.3.3)

It is hence reasonable to assume that the intermediate family of truncated Rice distributions with arbitrary ε can be approximated with generalized gamma distributions with parameters

$$a = \frac{1}{2} \left[1 - \sqrt{1 + \epsilon^2} \right]$$

$$h = 2$$

$$A = \sqrt{2}$$
(3.3.4)

This can also be shown to be the case.

The distribution of positive maxima has hence approximately the probability density function

$$g^{+}(Z) = \frac{\sqrt{2}}{\Gamma(a)} (\frac{Z}{\sqrt{2}})^{2a-1} e^{-Z^{2}/2}$$
 (3.3.5)

and the exceedance probability function

$$Q^{+}(Z) = \Gamma(a; Z^{2}/2)/\Gamma(a)$$
 (3.3.6)

where the complete and incomplete gamma functions are defined by

$$\Gamma(a;x) = \int_{x}^{\infty} t^{a-1} e^{-t} dt , \quad \Gamma(a) = \Gamma(a;0)$$
 (3.3.7)

Graph of the exceedance probability is given in Fig. 3.3.1.

Further information about the generalized gamma distribution is given in /6/ or /7/ among others.

Fig. 3.3.1 Graph of the probability of exceedance approximated by the generalized gamma distribution.

4. CHARACTERISTIC EXTREME VALUE

4.1 Elementary considerations

Consider a time interval t under stationary conditions with a given RMS value σ of the complete stress signal. One then has the simple and well known estimate for the extreme value

$$S_C = \sigma \sqrt{2 \ln N} \tag{4.1.1}$$

which is obtained by putting the exceedance value Q equal to 1/N.

This formula is correct only when $\varepsilon=0$, and from the considerations in Section 2.3 this takes place in the two limiting cases when the springing share $x=\sigma_S/\sigma=0$ and 1.

In the case $x \approx 0$, the stress is a pure bending process, and the number of cycles is

$$N_{B} = \frac{t}{T_{B}} \tag{4.1.2}$$

In the opposite case x = 1, the stress is a pure springing process, and the number of cycles is

$$N_{S} = \frac{t}{T_{S}} = \frac{t}{T_{B}} \cdot \tau = N_{B} \cdot \tau \qquad (\tau = T_{B}/T_{S}) \qquad (4.1.3)$$

Thus, when the stress goes from pure bending to pure springing with the same RMS, the extreme value increases with a factor

$$\frac{S_{C} \text{ (pure springing)}}{S_{C} \text{ (pure bending)}} = \sqrt{\frac{\ln N_{S}}{\ln N_{B}}} = \sqrt{1 + \frac{\ln \tau}{\ln N_{B}}}$$
 (4.1.4)

Results are given in Table 4.1.1 in terms of percentage increase in extreme value when stress goes from pure bending to pure springing. One has reason to believe that this is a maximum increase, and that the increase in a mixture of bending and springing lies somewhere between.

One may conclude from these results that, when the total stress RMS is given, the presence of springing can at most elevate the extreme stress with about 10-15% in the short time case. For the long term case the table indicate an increase of order 5%.

τ	Number of bending periods in the time interval, $N_{\hbox{\scriptsize B}}$						
	10 ²	103	104	10 ⁵	106	107	108
2	7.26%	4.90%	3.69%	2.97%	2.48%	2.13%	1.86%
3	11.3	7.66	5.80	4.66	3.90	3.35	2.94
4	14.1	9 .58	7.26	5.85	4.90	4.21	3.69
5	16.2	11.0	8.39	6.76	5.66	4.87	4.28
6	18.0	12.2	9.29	7.50	6.29	5.41	4.75
7	19.3	13.2	10.1	8.12	6.81	5.86	5.15
8	20.5	14.1	10.7	8.66	7.26	6.26	5.49

Table 4.1.1 Percentage increase in extreme value when the stress goes from pure bending to pure springing under constant RMS.

4.2 Characteristic extreme at arbitrary springing share

One considers a time interval t which contains a sequence of $N_{\rm p}$ stress peaks in the total stress history. A characteristic value for the extreme, or maximum stress peak is obtained by putting Q(Z) = $1/N_{\rm p}$ in equation (3.1.11). This gives:

$$S_{c} = \sigma \sqrt{2 \ln \sqrt{1 - \epsilon^{2}} N_{p}} = \sigma \sqrt{2 \ln (T_{p}/T_{z}) (t/T_{p})} = \sigma \sqrt{2 \ln N_{z}}$$
 (4.2...

where ${\rm N}_{\rm Z}$ is the number of zero crossings in the same time interval.

Equation (4.2.1) is valid for small and moderate values of ϵ only. But since ϵ is zero in both the limiting cases: springing is all or none, and since ϵ can never become = 1.0, it is reasonable to believe (4.2.1) to be generally applicable in the present problem.

Equation (4.2.1) will then replace equation (4.1.1) which was only valid for ϵ = 0. Thus introducing the number of zero crossings from (2.4.2) into (11.1), one may derive the ratio between the maximum stress at arbitrary springing share and the maximum stress in the pure bending case:

$$\frac{S_{C} \text{ (arbitrary springing)}}{S_{C} \text{ (pure bending)}} = \sqrt{1 + \frac{1}{2} \frac{\ln[1+x^{2}(\tau^{2}-1)]}{\ln N_{B}}}$$
 (4.2.2)

This is a generalization of (4.1.4), the latter giving the limiting case of x = 1 only.

Some results are shown in Fig. 4.2.1, for some selected values of the bending-to-springing period ratio τ and the time intervals given in terms of bending cycles. This figure shows the transition of the extreme stress amplitude by increasing springing share up to the pure springing case. And with reference to the Table 4.1. it may be concluded that the extreme stress increases roughly linearly with the springing share.

Fig. 4.2.1 Percentage increase in characteristic extreme stress amplitude as a function of the springing share x, by changing bending period (τ) and time interval (N_B) .

4.3 Extreme positive maximum

So far the total distribution of both positive and negative maxima has been considered by using the complete Rice distribution described in Section 3.1.

One should also consider the short term extreme value predicted by the positive maxima only. This can be derived from the truncated Rice distribution described in Section 3.2.

In a time interval t there is a number of

$$N_p^+ = aN_p \tag{4.3.1}$$

positive peaks, as derived in (2.4.3).

A characteristic value for the extreme stress peak is obtained by putting the probability of exceedance in (3.2.5) equal to $1/N_p^{+}$. This gives

$$Q^{+}(Z_{C}) = \frac{\sqrt{1-\epsilon^{2}}}{a} e^{-Z_{C}^{2}} / 2 = \frac{1}{aN_{D}}$$
 (4.3.2)

which gives

$$Z_{c} = \sqrt{2 \ln \sqrt{1 - \varepsilon^2} N_{p}} = \sqrt{2 \ln N_{z}}$$
 (4.3.3)

the same as in (4.2.1)

That is: The truncated Rice distribution predicts the same extreme stress under stationary conditions as the complete Rice distribution.

The characteristic extreme value predicted by the generalized gamma distribution may be studied very roughly by considering the equivalent of (4.3.2) introducing an asymptotic expression for O(Z):

$$\frac{1}{\Gamma(a)} \left(\frac{Z}{\sqrt{2}}\right)^{2a-1/2} e^{-\left(Z/\sqrt{2}\right)^2} \left\{ 1 + \frac{a-1}{\left(Z/\sqrt{2}\right)^2} + \ldots \right\} = \frac{1}{aN_p}$$
 (4.3.4)

Putting $1/\Gamma(a) \approx a$ and taking the predominate term of the natural logarithm on each side, one obtains the leading term

$$z_{c} = \sqrt{2 \ln a^2 N_p}$$
 (4.3.5)

which is equivalent to (4.2.1).

For small values of ϵ we have

$$a^{2} = \frac{1}{4} [1 + \sqrt{1 - \epsilon^{2}}]^{2} = \frac{1}{2} [(1 - \frac{1}{2} \epsilon^{2}) + \sqrt{1 - \epsilon^{2}}] \approx \sqrt{1 - \epsilon^{2}}$$
 (4.3.6)

When introduced in (4.3.5) this gives back the previous characteristic extreme (4.2.1), which also appears from Fig. 4.2.1 For $\varepsilon = 1$, on the other side, (4.2.1) breaks together and gives non-sense results while (4.3.5) gives

$$Z_{C} = \sqrt{2 \ln(N_{D}/4)}$$
 (4.3.7)

The corresponding expression for ϵ = 1 derived directly from the one-sided normal distribution is

$$Z_{c} = \sqrt{2 \ln N_{p} / \sqrt{2\pi}}$$
 (4.3.8)

which gives about 1.5% higher values, but this equation is still an approximation. Equation (4.3.8) is discussed in /2/.

An expression for the characteristic extreme value which is more complete than (4.3.5), but still an approximation for ε \neq 0 is obtained by taking one term more into consideration in the logarithm of (4.3.4). This gives

$$Z_{c} = \sqrt{2} \left\{ \ln a^2 N_p + \frac{1}{2} \sqrt{1 - \epsilon^2} \ln (\ln a^2 N_p) \right\}^{\frac{1}{2}}$$
 (4.3.9)

but this formula is probably of little practical interest in the present context.

Fig. 4.2.1 Graph of the alternative functions of ϵ for determination of the effective number of maxima which enters the extreme stress formulae (4.2.1) and (4.3.5), that is $2c = \sqrt{2 \ln \sqrt{1-\epsilon^2} N_p}, \text{ alternatively} = \sqrt{2 \ln a^2 N_p}.$

4.4 Relation to individual maxima

In a given time t the complete signal executes $N_{\rm Z}$ = t/T_Z zero-up-crossing cycles, and the characteristic extreme stress is

$$S_{C} = \sqrt{2\sigma^{2}(lnt - lnT_{Z})}$$
 (4.4.1)

as stated in equation (4.2.1).

In the same time interval the bending stress component executes $N_{\rm B}$ = $t/T_{\rm B}$ cycles and has an individual characteristic extreme value

$$S_{CB} = \sqrt{2\sigma_B^2 (Int - InT_B)}$$
 (4.4.2)

Similarly the springing component executes $N_S = t/T_S$ cycles and has its individual characteristic extreme value

$$S_{CS} = \sqrt{2\sigma_S^2 (lnt - lnT_B)}$$
 (4.4.3)

Hence since $\sigma^2 = \sigma_B^2 + \sigma_S^2$ according to (2.1.2), the individual extremes for bending and springing may be introduced in (4.4.1) and give

$$S_C = \sqrt{S_{CB}^2 \frac{1 \text{nt} - 1 \text{nT}_Z}{1 \text{nt} - 1 \text{nT}_B}} + S_{CS}^2 \frac{1 \text{nt} - 1 \text{nT}_Z}{1 \text{nt} - 1 \text{nT}_S}$$
 (4.4.4)

That is, the total stress extreme is a weighted quadratic sum of the individual extremes. Since we always have

$$T_{S} < T_{Z} < T_{B} \tag{4.4.5}$$

the springing contribution has slightly greater weight than the bending contribution.

For sufficiently long times t the weighting factors approach unity, and (4.4.4) becomes

$$S_C = \sqrt{S_{CB}^2 + S_{CS}^2}$$
 (4.4.6)

This relation gives in most cases a good indication of the importance of springing as far as extreme value is concerned.

5. STATISTICAL EXTREME VALUE DISTRIBUTION

In the present chapter the statistical probability distribution of the short term extreme value will be discussed. The exact probability function is pointed out together with a number of possible approximations. Each distribution function is given an identifier which is referred to in a comparison which is undertaken at the end of the chapter.

5.1 Exact representation (No. la)

Consider a time interval t which contains a sequence of N_p stress peaks which are randomly distributed according to a Rice distribution function. The largest stress peak $Z = S/\sigma$ has probability distribution defined exactly by the following formulae:

Cumulative probability Pt:

$$P_{t}(z) = [1-Q(z)]^{N}P = [\phi(z/\epsilon) + \sqrt{1-\epsilon^{2}} \phi(\frac{\sqrt{1-\epsilon^{2}}}{\epsilon}z) e^{-z^{2}/2}]^{N}P$$
 (5.1.1)

Probability density function

$$g_t(z) = dP_t(z)/dz = N_p [1-Q(z)]^{N_p-1} g(z)$$
 (5.1.2)

where Q(Z) and g(Z) are given by the equations (3.1.9) and (3.1.3) respectively.

The spectral width ϵ is given by (2.2.7) and the number of local maxima N_{p} is given by (2.4.1).

The expectation value is with some approximation

$$E(Z) = \sqrt{21 n \sqrt{1-\epsilon^2} N_p} + \frac{c}{\sqrt{21 n \sqrt{1-\epsilon^2} N_p}}, c = 0.5772$$
 (5.1.3)

which is somewhat higher than the characteristic maximum (4.3.3) Fig. 5.1.1 shows how the probability density changes with the springing share $x = \sigma_S/\sigma$. The bending period has been put equal to 5 times the springing period, that is $\tau = 5$, and a time interval of 5000 springing cycles or 1000 bending cycles is considered,

that is of order 2.5 hours. Corresponding spectral width, number of peaks and extreme values appear in Table 5.1.1. It is observed that the difference between characteristic and expectation extreme is insignificant.

Springing share, x	Bending period, τ	Spectral width, ϵ	Number of peaks, N _p	Characteristic maximum, Zc	Expectation value E(Z)
0	5	0.0	1000	3.717	3.872
0.333	5	0.8993	4380	3.888	4.036
0.666	5	0.7148	4885	4.034	4.177
1.0	5	0.0	5000	4.127	4.267

Table 5.1.1 Change in spectral width, peak number and maximum values with the springing share. The cases correspond to the distributions in Fig. 5.1.1.

Fig. 5.1.1 Exact probability density function for short time maximum stress.

5.2 Narrow band approximation (No. 2)

The general expressions for the cumulative probability and the probability density were given in (5.1.1) and (5.1.2) in the last article. Introducing Q(Z) from equations (3.1.9) and (3.1.3) respectively, gave the correct distribution functions. One may, however, introduce the low- ε -high-Z approximations (3.1.11) and (3.1.6) instead. This gives the cumulative probability function of the maximum peak

$$P_{t}(z) = [1 - \sqrt{1 - \varepsilon^{2}} e^{-z^{2}/2}]^{N_{p}}$$
 (5.2.1)

and the probability density

$$g_t(z) = N_p[1-\sqrt{1-\epsilon^2} e^{-z^2/2}]^{N_p-1} \sqrt{1-\epsilon^2} ze^{-z^2/2}$$
 (5.2.2)

where ϵ and N_p are to be evaluated as before, that is by (2.2.7) and (2.4.1) respectively.

It appears from the discussion in Section 5.7 that this approximation is very close to the exact distribution in the present context, but it breaks of course together for ϵ approximation 1.

5.3 Approximation with double exponential distribution (No. 3a)

The cumulative probability function of the short term extreme stress was with very good approximation given by (5.2.1), that is

$$P_{t}(z) = [1 - \sqrt{1 - \varepsilon^{2}} e^{-z^{2}/2}]^{N_{p}}$$
 (5.3.1)

The characteristic value of the extreme value was given in (4.2.1) This may be written as an expression for $\sqrt{1-\epsilon^2}$, viz. $z_c^2/2$

$$\sqrt{1-\varepsilon^2} = e^{Z_C} \frac{2/2}{N_p}$$
 (5.3.2)

This may be introduced in (5.3.1) and gives then

$$P_{t}(z) = \left[1 - \frac{1}{N_{p}} e^{-(z^{2} - z_{c}^{2})/2}\right]^{N_{p}}$$

$$\approx e^{-e^{-(z^{2} - z_{c}^{2})/2}} = e^{-N_{z}e^{-z^{2}/2}}$$
(5.3.3)

according to the definition of e.

The probability density function is

$$g_t(z) \approx z e^{-(z^2-z_c^2)/2} e^{-e^{-(z^2-z_c^2)/2}}$$
 (5.3.4)

 $N_{\mbox{\scriptsize p}}$ and ϵ do not appear as individual parameters, but rather through the combination

$$\sqrt{1-\epsilon^2} N_p = N_z = \frac{t}{T_s} \sqrt{1 + x^2(\tau^2-1)}$$
 (5.3.5)

in the characteristic value

$$Z = \sqrt{2 \ln N_Z}$$
 (5.3.6)

The goodness of this approximation is discussed in Section 5.7, and is found to agree very closely with the exact distribution.

5.4 Approximation with square normal distribution (No. 4a,b)

The double exponential approximation for the short term extreme stress, derived in Section 5.3 may be somewhat modified by considering the variable

$$y = (z^2 - z_c^2)/2$$
 or $z^2 = 2y + z_c^2$ (5.4.1)

The probability density function of y is, from (5.3.9),

$$g'_{t}(y) = e^{-y} \cdot e^{-e^{-y}} = e^{-y} \cdot e^{-1+y-y^{2}/2} + \dots$$

$$= \frac{1}{e} e^{-y^{2}/2} + \dots \approx \frac{1}{\sqrt{2\pi}} e^{-y^{2}/2}$$
(5.4.2)

That is, y is approximately normal distributed with expectation . 0 and variance 1. Hence the square of the extreme stress \mathbf{Z}^2 is approximately normal with expectation $\mathbf{Z_c}^2$ and variance 2.

Hence the probability density of Z is approximately

$$g(z) = \frac{1}{\sqrt{2\pi}} z e^{-(z^2 - z_c^2)^2/8}$$
 (5.4.3)

with the cumulative probability function

$$P_{t}(z) = \phi(\frac{z^{2}-z^{2}}{\sqrt{2}})$$
 (5.4.4)

where ϕ is the ordinary normal probability integral. One may argue that one should apply the expectation value (5.1.3), that is

$$Z_{C} = 2 \ln N_{Z} + \frac{0.5772}{2 \ln N_{Z}}$$
 (0.5772....is Euler's constant) (5.4.5)

rather than the characteristic extreme value (4.2.1) in this connection.

As appears from Section 5.7, the distribution has no skewness, but the variance seems reasonably correct. It should be mentioned that according to the last section the more exact distribution of the variable y in (5.4.1) is the elementary double exponential distribution with density

$$g(u) = e^{-y} e^{-e^{-y}}$$

which has the following main parameters, exactly determined:

Mean value $\bar{y} = \Psi(1) = 0.57721$ (Eulers const.) 2. central moment $E(y-\bar{y})^2 = \Psi'(1) = 1.64493$ 3. central moment $E(y-\bar{y})^3 = \Psi''(1) = 2.40411$

The Ψ , Ψ' , Ψ'' functions are the successive derivatives of $ln\Gamma$.

5.5 Application of distribution for positive maxima (No. 1b)

The probability distribution of the positive maxima was treated in Section 3.2. It was also shown in Section 4.2, equations (4.3.1) to (4.3.3) that this distribution gives the same characteristic extreme value as the complete Rice distribution, provided that the number of peaks is correct. The probability distribution of the extreme stress is then also expected to be closely the same.

The basic equation for the cumulative probability function of the extreme, corresponding to (5.1.1) is

$$P_{t}^{+}(Z) = [1 - Q^{+}(Z)]^{N_{p}^{+}}, \quad Q_{p}^{+}(Z) \text{ given by } (3.2.4) \\ N_{p}^{+} \text{ given by } (3.2.1)$$
 (5.5.1)

The probability density function is, similar to (5.1.2),

$$g^{+}(t) = N_{p}^{+} [1-Q^{+}(Z)]^{N_{p}^{+}-1} g^{+}(Z), g^{+}(Z) \text{ given by } (3.2.2)$$
(5.5.2)

The distribution is very slightly different from (5.1.2)

For this extreme value probability distribution, namely (5.5.1), we may find the small- ε -large-Z-approximation by application of $Q^+(Z)$ from (3.2.5), just as it was done for the complete distribution in Section 5.2. This gives the cumulative probability distribution

$$P_{t}^{+}(Z) = \left[1 - \frac{\sqrt{1 - \epsilon^2}}{a} e^{-Z^2/2}\right]^{aN}p$$
 (5.5.3)

which is not exactly the same as (5.3.1), but indeed very close.

One may, however, proceed further and find the double exponential approximation to (5.5.3), as it was done in Section 5.3. For this purpose one expresses the characteristic extreme from (4.3.2) on the form

$$\frac{\sqrt{1-\varepsilon^2}}{a} = \frac{1}{aN_p} e^{Z_c^2/2}$$
 (5.5.4)

and introduces this into (5.5.3) This gives

$$P_{t}^{+}(Z) = [1 - \frac{1}{aN_{p}} e^{-(Z^{2} - Z_{c}^{2})/2}]^{aN_{p}} \approx e^{-e^{-(Z^{2} - Z_{c}^{2})/2}}$$
(5.5.5)

which is identical with (5.3.3).

That is: The extreme value distribution of positive maxima coincides with the complete extreme value distribution on the double exponential distribution level of approximation.

Approximation with generalized gamma distribution (No. 5)

In Section 3.3 it was shown that the truncated Rice distribution for the positive maxima may be replaced by a generalized gamma distribution with reasonable accuracy. Hence a probability distribution function for the short term extreme value may be established by the basic formulae (5.5.1) and (5.5.2) with application of the required functions from Section 3.3.

This gives the cumulative probability function:

$$P_{t}^{+}(Z) = [1 - \Gamma(a; Z^{2}/2)/\Gamma(a)]^{aN}p$$
 (5.6.1)

and the probability density function

$$g_{t}^{+}(z) = aN_{p} \left[1 - \Gamma(a; z^{2}/2)/\Gamma(a)\right]^{aN} p^{-1} \frac{\sqrt{2}}{\Gamma(a)} (\frac{z}{\sqrt{2}})^{2a-1} e^{-z^{2}/2}$$
(5.6.2)

with the parameters a and aN_p defined in (2.2.8) and (2.4.1)-(2.4.3) respectively. That is

$$a = \frac{1}{2} \left[1 + \frac{1 + x^2 (\tau^2 - 1)}{\sqrt{1 + x^2 (\tau^4 - 1)}} \right]$$
 (5.0.3)

and

$$aN_{p} = N_{p}^{+} = \frac{1}{2}[N_{p} + N_{z}] = \frac{1}{2}N_{B}\left[\sqrt{\frac{1+x^{2}(\tau^{4}-1)}{1+x^{2}(\tau^{2}-1)}} + \sqrt{1+x^{2}(\tau^{2}-1)}\right]$$
(5.6.4)

The distribution function has very much the same shape, while the most probable extreme is slightly lower.

One may also reconsider the double exponential distribution discussed in Section 5.3, with the characteristic extreme as $\sqrt{2} \ln a^2 N_p$ derived in (4.3.5). This gives a distribution of correct shape, but with slightly too high mean value.

5.7 Discussion of alternatives

Previous in this article different representations of the probability distribution of the short term extreme stress peak have been derived. These are:

- No.la) The exact probability function based on the complete Rice distribution of the total ensemble of local maxima. Derived in Section 5.1.
- No.2 Narrow band approximation of the short term exceedance probability introduced into No.1.

 Derived in Section 5.2.
- No.3a) Double exponential distribution derived from No.2 using the characteristic extreme of the Rice distribution.

 Derived in Section 5.3.
- No.4a) Square normal distribution derived from No.3a) using the characteristic extreme value as a parameter.

 Derived in Section 5.4 using equation (5.4.5).
- No.4b) Square normal distribution derived as in No.4a), but using the expectation value of the extreme as a parameter. Derived in Section 5.4 using equation (5.4.5).
- No.1b) Exact probability function based on the truncated Rice distribution for positive maxima.

 Derived and discussed in Section 5.5.
- No.5 Truncated Rice distribution in No.1b) replaced by the generalized gamma distribution approximation.

 Derived in Section 5.6.
- No.3b) Double exponential distribution using the characteristic extreme of the generalized gamma distribution.

 Derived in Section 5.6.

The different formulae have been compared by considering a particular case selected in the region where approximations are most likely to fail, viz. in the large —short time region.

The case with the following parameters has been chosen:

Springing share	x	=	1/3
Bending/springing period ratio	τ	=	5
Number of springing cycles	N_s	=	5000
Hence:	·		
Bending share	$\sqrt{1-x^2}$	=	0.9428
Spectral width	ε .	=	0.8993
Peak-to zero crossing period ratio	α	=	0.4373
Fraction of positive maxima	a	=	0.71867
Number of bending cycles	N_{B}	=	1000
Number of zero crossings $(a^2N_p = 2262.2)$	N_z	=	1915.5
Total number of peaks	N_{D}	=	4380
Number of positive peaks	N _P	=	3147.8
Characteristic extreme from Rice distribution		=	3.8879
Expectation extreme from Rice distribution	E(Z _C)	=	4.0363
Characteristic extreme from gamma distributio	n Z _C	=	3.9304
Alternative value from gamma distribution	E(Z _C)	=	4.0425

Graphs of the different distributions are shown in Fig. 5.7.1. A table of the same distributions are given in Table 5.7.1. A table with a qualitative indication of the fitness of the approximate distributions is given in Table 5.7.2.

Fig. 5.7.1 Graphs of different representation of the probability density function of the short term extreme in a selected case, $(x = 1/3, \tau = 5, N_S = 5000)$. See also Fig. 12.1.

Dist. Complete Rice Act. Nurrow band Double ext owned Square normal Bact. Truncated Ceneral Double extrans Lith Characteristic extr. of with expectat Rice Act. muth Characteristic Complete Rice Act. Muth Characteristic Complete Stock Act. Complete Rice Act. Muth Characteristic Complete Rice Act. of Complete	O.N.	1a)	2	3a)	4a)	4 b)	16)	7.	36)
Decirio Continue	Distr	Exact. Complete Ri		Double exponential	Square normal with characteristic extr.		Exa ct, Truncated Rice		Double exponential Garma
	1	(12.2) (8.9) (3.	هَ	.1)	(12.32) (11.1)	(12, 32) (12, 34)	(12.41) (9.2)	- 1	·i
	3.0	0.601625	0.000000000	.000000	23		520000000000		.188246
1.2 0.000181828 0.0000380839 0.0000380839 0.000380	3.	S • 29 " 6 20 0 • 0	.00000.	• 0 C C C C C O O • •	0.027978173	118099900-0	• 000000•	576	
*** 3 0.0056.16684 1 0.0055.06226 0.055.05966 0.259.2567 0.0055.258674 0.055199582 0.1795.845 0.022191815 0.055.056226 0.055.05966 0.259.2567 0.0551999582 0.1795.845 0.022191815 0.055.056226 0.055.029565 0.05918697 0.0551999582 0.1795.845 0.022191815 0.055.056226 0.055.029565 0.05918697 0.05918697 0.05918697 0.05916.845 0.09916.	•	_	+00038639	.00033120	.06540996	.0131148	•	39696000	ر ران :
1.000011956155 0.00001956155 0.00001956155 0.00001956155 0.00001956155 0.00001956155 0.00001956155 0.00001956155 0.00001956155 0.00001956155 0.00001956155 0.00001956155 0.00001956155 0.0000195615 0.0000195615 0.0000195615 0.0000195615 0.0000195615 0.0000195615 0.0000195616 0.0000195988 0.0000195616 0.0000195988 0.0000195616 0.0000195988 0.0000195616 0.0000195616 0.000019565 0.0000195616 0.0000195988 0.0000195616 0.00000195616 0.0000195616 0.00000195616 0.00000195616 0.00000195616 0.		0.006476684	80246900.	•00698336	.14130206	•0342998	.0064606	.03/6912	.00.
1	-	0.051958155	•	.05420596	-27933420	.08257467	85658750+		176.
1		0.5543570375		2209105	.50029851	• 1 8 1 1 6 9 8 7 • 2 5 6 5 5 6 3 6 4 6	. 6 5 4 2 6 3 1 7	21/4/6/00 0	. 1 2 2 6 6 5 5 5 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8
	2 -	- 07 - 07 - 07 - 07 - 07 - 07 - 07 - 07	98155975		900000000000000000000000000000000000000	97010000	E000000000	0126362.	
1.43565677 1.4331679 1.4331679 1.4331679 1.44709378 1.57866038 1.355611489 1.18656677 1.445076449 1.44566677 1.5866678 1.3566867 1.44697674 1.4469778 1.58668673 1.35667867 1.18656787 1.4469787 1.58668673 1.35667880 1.18656787 1.4469778 1.58668673 1.35667880 1.18657678 1.4470778 1.58668673 1.4866778 1.4467778 1.4467778 1.4469778 1.4467778 1.4467778 1.4467778 1.446778		- 3 1 1 1 5 5 9 7	31135377	1122822	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	900000000000000000000000000000000000000	-31176756		951
1 185552065 1 18555206	7	. ~	1 - 4 3 3 3 1 6 7 9 9	1.4.7.15.15.2	5 1 2 0 4 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	28060446.		38515c1	7417912
-1 1-148170113 1-144785552 1-144697534 1-14239187 1-581696803 0-898365800 0-58760466 1-5540407 1-535068603 0-898365800 0-58760466 1-5540407 1-535068603 0-898365800 0-58760466 1-5540407 1-535068603 0-898365800 0-58760466 1-5540407 1-55404671 1-535068603 0-898365800 0-58760466 1-55407103 1-7554047 1-58765800 0-86856800 0-5677103 1-75540713 1-7540572 0-86856800 0-867552 0-33255240 1-756772 1-7540572 0-86856800 0-867552 0-33255240 1-756772 1-756772 1-756772 0-86856872 0-876572 0-876772 0-87772 0-		5555206	• 35195555	20015	709737	7886038	5561148	829584	90
-2 0.69833561 0.661245010 0.661219660 0.41333135 0.93756194 0.66305881 0.46540103 0.755171 0.662051603 0.66205881 0.46540103 0.75540841 0.46540103 0.755171 0.662051603 0.465406603 0.465406881 0.466740681 0.466740681 0.466740681 0.466740681 0.466740681 0.466740681 0.466740681 0.466740681 0.466740681 0.466740681 0.4667406681 0.46674061 0.46674061 0.466	:	-	-14478555	446975	239318	58169685	4 6 2 1 3 5 6	.9296449	5997027
**************************************	4.5	.89833767		.89566594	. 7.5	33506860	.89836588	.687604	~
** 0**6655686 0**219847972 0**319842583 0**026518973 0**25349652 0**320549652 0**22157360 0**372517*** ** 0**213740846 0**21334735 0**21334722 0**019064913 0**094879117 0**213744490 0**1464345 0**22157360 0**372517*** ** 0**213740846 0**21334736 0**21334722 0**019064913 0**094879117 0**213744490 0**1464597340**** ** 0**213740846 0**21334736 0**013941793 0**00049183 0**0006486814 0**018976417 0**153740************************************	•	.66305160	•		323313	9377	•66306	.466101	1-755171796
** G**2054354 0**219847972 0**319842583 0**066518973 0**253306272 0**320549652 0**22157360 3**72517*** ** G**213740846 0**213337036 0**21333772 0**019064943 0**094879117 0**21374490 0**114653459 0**2497344** ** G**139646268 0**13941875 0**0139417793 0**0104288311 0**0139648465 0**0289721 0**105744** ** G**0189702079 0**0189576888 0**0189576502 0**01041070 0**015871146 0**015869721 0**105464** ** G**0189702079 0**0189576888 0**0189576502 0**010141070 0**015878259 0**015869721 0**105464** ** G**0189702079 0**0189576888 0**0189575 0**010141070 0**0158774825 0**015869721 0**1054918** ** G**01895619 0**0121876888 0**0131350872 0**010001911** ** G**0101184071 0**0101861909 0***013350872 0**010101917** ** G**010184071 0***0101861909 0***010191878 0****0101019191** ** G**010184071 0***********************************	•	.46863648	-	-	464437	5	.46864675	.33255.	ď
• 6 0 = 213740846 0 = 21337036 0 = 213340846 0 = 213340846 0 = 213340846 0 = 21334085 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086 0 = 21334086	•••	• 37	319	31984258	0	\sim	.32054965	.2215736	3-372517793
-7 0-139646268 0-139418752 0-139417793 0-004288319 0-028055084 0-139648465 0-09281727 3-1657468 0-089702079 0-089576888 0-089576502 0-000746535 0-006438311 0-089703414 0-05965921 5-1054249 0-03547145 0-0356714191 0-056714040 0-000099162 0-001141070 0-05678255 0-052664163 0-0668360 0-035474826 0-035434482 0-0356714040 0-000099162 0-001141070 0-05578259 0-052664163 0-0668361 0-021895619 0-021876886 0-021876864 0-000009915 0-002189591 0-0527822 0-5226659 0-05278281 0-0218360536 0-013350880 0-013350872 0-000000001 0-013360718 0-002187826 0-05258175992 0-0013360536 0-0013350872 0-00000001 0-00000018 0-013360718 0-00831359 0-00568113 0-0048053042 0-002842626 0-00284262 0-00000001 0-00000002 0-0013360718 0-002293133 0-00568114 0-0008613945 0-002842626 0-002842887 0-0001661909 0-000111381 0-00111381 0-00111381 0-00111381 0-00111381 0-000111381 0-000111381 0-000250742 0-0000550603 0-0000550603 0-0000550742 0-0000550742 0-0000550603 0-0000550742 0-0000550742 0-0000550603 0-0000512046 0-0000512116 0-000015087 0-0000512116 0-0000175034 0-0000775046 0-0000775034 0-0000550742 0-0000550742 0-0000575034 0-0000575057 0-0000575057 0-00005777 0-00005777 0-000057042 0-0000575034 0-0000575057 0-00005777 0-00005777 0-000057042 0-0000575034 0-00005777 0-000057042 0-000	•••	-21374084	•2133370	0 - 213334722	0	0.094879117	-21374449	.1446345	1381
• 0.0869702079 0.089576888 0.0895714191 0.080714191 0.080702079 0.08678259 0.036678259 0.036678259 0.036678259 0.036678259 0.036678259 0.036678259 0.036678259 0.036678259 0.036678259 0.036678259 0.036678259 0.036678259 0.036678259 0.036678259 0.036678259 0.037678259 0.037678269 0.037678259 0.037678259 0.037678259 0.037678259 0.037678259 0.037678259 <t< th=""><th>~</th><th>-13964626</th><th>• 139</th><th>. 13</th><th>00428831</th><th>.02805508</th><th>.13964846</th><th>.09281</th><th>.163740</th></t<>	~	-13964626	• 139	. 13	00428831	.02805508	.13964846	.09281	.163740
• 9 0.056781745 0.056714191 0.056714040 0.000099162 0.001141070 0.055782559 0.0236474822 0.0236474822 0.02259162 0.02179800 • 0 0.01895619 0.021895639 0.021895639 0.021895639 0.0235474822 0.0235476622 0.023541602 • 2 0.013360316 0.021335087 0.00000039 0.00000018; 0.00013360718 0.000351387 0.01378266 0.032581605 0.032581605 0.032581605 0.032581605 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558138 0.03558133 0.0358	•	-08970207	.08957688	80.	.00074653	006458	.08970341	869	•10501•
•0 0.035474326 0.0235438482 0.035438482 0.0235438482 0.0235438482 0.02187684 0.000000131 0.021895613 0.021895821 0.01378266 0.02581502 0.03543482 0.01378266 0.02581502 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.035813826 0.03581382 0.035813826 0.03581382 </th <th>:</th> <th>.05678174</th> <th>•</th> <th>• 0 5</th> <th>91660000</th> <th>.0011100.</th> <th>05678255</th> <th>91 +94</th> <th>• 6683639</th>	:	.05678174	•	• 0 5	91660000	.0011100.	05678255	91 +94	• 6683639
**** 0 *******************************	•	-03547432	•	• 0 3	066000	53	0.035474822	0.02260009	3+341798065
-2 0.013360536 0.0013350800 0.013350872 0.000000039 0.000001110 0.013360718 0.000831359 0.01575978 -3 0.00861042 0.00260131 0.0008058128 0.000000001 0.000801511 0.000496238 0.000951387 -4 0.0026431845 0.0026421479 0.002842625 0.002643184 0.002643184 0.002643183 0.00568134 0.00568134 0.00156250 0.002643887 0.00156250 0.00166250 0.00166250 0.00166250 0.00166250 0.00166250 0.00166253 0.00166250 0.00166250 0.001661909 0.001661909 0.001661909 0.00166253 0.00095137 0.001961553 0.001961553 0.00095132 0.001961553 0.00095132 0.001961553 0.00196165 0	3.1	.02189561	•	0.021876864	+00000013	00	0.021895921	0-01378266	.02581603
**************************************	5 - 2	.01336053	•	.01335087	.00000000	.00000-	01336071	0-00831359	.0157597
	•	.008063	00000	00.	100000000000	.0000000.	0-000063151	9623	18813600.
•5 0.002843849 0.002842626 0.002843617 0.003861307 0.003861317 0.00386131 0.00386131 0.00396177 0.003961857 0.003961877 0.003961877 0.003961877 0.003961877 0.003961877 0.003961877 0.003961877 0.003961877 0.003961877 0.003961877 0.003961877 0.003961877 0.003961877 0.003961823 0.003961823 0.003961823 0.003961834 0.003	3.1	-004813	.004	-00481147		.00000000	0.00481400.0	9313	.00568134
	5 - 5	+002843	.002	.00284262		6873	0.002843887	0.00171381	.30335677
-7 0-000961843 0-000961553 0-000961553 0-00056811 0 0-000951856 0-00056811 0 0-000550749 0-00032213 0 0-000550749 0-00032213 0 0-000312111 0-000312046 0-000312046 0-000312046 0-0000312116 0-000175034 0-000175034 0-000175034 0-000175034	5.6	.001662	٠	•		5472-1	0.001662530	0.00099177	.0019
• 0 • 0 0 0 5 5 0 7 4 2 0 • 0 0 0 5 5 5 6 6 0 3 0 • 5 5 5 6 6 0 3 0 • 5 6 6 5 1 2 0 0 • 6 6 0 0 0 0 0 0 1 7 5 0 6 7 0 0 0 0 0 0 1 7 5 0 6 7 0 0 0 0 0 1 7 5 0 6 7 0 0 0 0 0 1 7 5 0 6 7 0 0 0 0 0 1 7 5 0 6 7 0 0 0 0 0 1 7 5 0 6 7 0 0 0 0 0 1 7 5 0 6 7 0 0 0 0 0 0 0 1 7 5 0 6 7 0 0 0 0 0 0 1 7 5 0 6 7 0 0 0 0 0 1 7 5 0 6 7 0 0 0 0 0 1 7 5 0 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 . 7	.000361	0.55136000.0	•			958196000.0		
-9 0-000312111 0-000312046 0-000312046 0-000312046 0-000175034 0-000175034 0-000175034 0-000175034	3.5	•	0.000550603	0 - 300550603			.00055074	0.00032213	₹9 000•
• 0 • 0 0 0 0 0 1 7 5 0 6 0 • 0 0 0 0 0 1 7 5 0 3 • 0 • 0 0 0 0 1 7 5 0 3 • 0 • 0 0 0 1 7 5 0 6 7 6 9 • 1 1 0 2 1 6 2 1	٠	+0000315	0.000312046	.00031204			.00031211	179G•	3 - 3 9 9 3 5 9 5 1 7
	•	.000175	000175	.000175			-00011506	3 2/	912016.

Table 5.7.1 Different representations of the short term extreme value distribution. $x\approx 1/3$. z=5. $N_{\rm S}=5000$.

DISTRIBUTION		Probable largest value	Standard deviation	Skewness
la)	Exact. Complete Rice distribution	Basis for comparison	Basis for comparison	Basis for comparison
2	Narrow band ap- proximation	++	++	++
3a)	Double exponential Rice extreme	++	++	++
4a)	Square normal, characterist. extr	+	+	Skewness is too small
4b)	Square normal ex- pectation extreme	3.5% high	+	Skewness is too small
lb)	Exact. Truncated Rice distribution	++	++	++
5	General gamma distribution	2% low	++	+
3b)	Double exponential	l% high	++	++

- ++ very close agreement
- + reasonably close agreement

Table 5.7.2 Tentative evaluation of the three first moments of the extreme value distribution representations. The evaluation has been performed by inspection of Fig. 5.7.1. The case is realistic but unfavourable. Discrepancies are generally lower.

5.8 Dispersion of the extreme value distribution

Fractiles of the short term extreme value distribution can conveniently be evaluated from the double exponential distribution representation, equation (5.3.3)

$$P = e^{-N_z} e^{-z^2/2}$$
 (5.8.1)

Solving for Z gives immediately the P-fractile Z_p

$$z_p = \sqrt{-2 \ln(\frac{1}{N_z} \ln \frac{1}{p})} = \sqrt{2} \sqrt{\ln N_z - \ln(\ln \frac{1}{p})}$$
 (5.8.2)

That is: There is $100 \cdot P$ % chance that the extreme value shall be less or equal to $Z_{\mathbf{p}}$.

The characteristic value Z_C correspond to the 36.8% fractile (1/e). As a measure for dispersion we may choose the 68% confidence interval (corresponding to the $\stackrel{+}{-}$ one standard deviation in the normal distribution). The interval is determined by:

- Lower limit, 16% fractile

$$z_{0.16} = \sqrt{2} \sqrt{\ln N_z - 0.606}$$
 (5.8.3)

- Upper limit, 84% fractile

$$z_{0.84} = \sqrt{2} \sqrt{\ln N_z + 1.75} \tag{5.8.4}$$

Taking half of the 68% confidence interval as an estimate for the standard deviation of the extreme value δz , we find

$$\delta Z = \frac{1}{\sqrt{2}} \left\{ \sqrt{\ln N_z + 1.75} - \sqrt{\ln N_z - 0.606} \right\}$$
 (5.3.5)

The relative deviation, $\delta Z/Z_C$, is shown in percent in Fig. 5.8.1 and is seen to have characteristic values of order 5-10%. This is in the same order of magnitude as the increase experienced when the stress goes from pure bending to pure springing (Fig. 4.2.1)

Fig. 5.8.1 Standard deviation of the extreme value represented by one half of the 68% confidence interval (heavy line) and by $1/Z_{\rm C}$ (dotted line). The deviation cover only the natural dispersion present when all parameters are known and fixed.

A more handy but less stringent expression for the dispersion of the extreme value can be derived from Section 12.4. In this section it was shown that the variable

$$y = (z^2 - z_c^2)/2 (5.8.6)$$

is approximately normal distributed with expectation 0 and standard deviation 1. Since Z is rather close to $Z_{\rm C}$, (13.6) gives

$$y = \frac{1}{2}(Z - Z_C)(Z + Z_C) \approx \frac{1}{2}(Z - Z_C)2Z_C = (Z - Z_C)/(1/Z_C)$$
 (5.8.7)

which shows that Z is roughly normal with standard deviation

$$\delta Z = 1/Z_C \tag{5.8.8}$$

The relative standard deviation, $1/{\rm Z_c}^2$, is plotted in Fig. 5.8.1. It is found to correspond closely to 1/2 of the 60% confidence interval.

6. EXTREME VALUE DISTRIBUTION BY UNKNOWN SPECTRAL WIDTH

So far we have only considered stationary cases where the springing share x and the bending period ratio τ are assumed to be known. When x and τ are known, one also knows the spectral width ϵ and the related parameters α and a which in turn determine the number of zero crossings N_Z (in terms of springing cycles), and N_Z is the only term in the basic extreme value expression which is dependent of the springing-to-bending relationships. See equations (4.2.1), (4.3.3), (5.1.3), (4.3.5), (4.3.9) among others.

Further about the number of zero crossing cycles, we know that it will always lie somewhere between the number of bending cycles $N_{\rm B}$ and the number of springing cycles $N_{\rm S}$, thus

$$N_B \leqslant N_Z \leqslant N_S$$
 or $\frac{1}{\tau} \leqslant \frac{N_Z}{N_S} \leqslant 1$ (6.1.1)

This was discussed in Section 2.4.

Thus, in a stationary condition, if one knows the total stress RMS value σ , the springing and bending periods, N_S and τ , but is completely ignorant about the mixing ratio of springing and bending, the number of zero crossing cycles N_Z can only be determined by a probability distribution. The probability distribution which conveys minimum information and which introduces largest uncertainty in the predicted extreme value is the uniform distribution between N_B and N_S . That is: N_Z has the probability density function

$$h(N) = \frac{1}{N_S - N_B}$$
 $N_B \le N \le N_S$ (6.1.2)

which has the mean value

$$\bar{N} = \frac{1}{2}(N_B + N_S)$$
 (6.1.3)

and the standard deviation

$$\delta_{N} = \left\{ \frac{1}{3} \frac{N_{s}^{3} - N_{B}^{3}}{N_{s}^{-} N_{B}} - \frac{1}{4} (N_{s} + N_{B})^{2} \right\}^{\frac{1}{2}}$$
(6.1.4)

Expressed by the bending period ratio \mathcal{T} , the standard deviation relative to the mean value is

$$\frac{\sqrt{N}}{N} = \left\{ \frac{4}{3} \frac{\tau^3 - 1}{(\tau - 1)(\tau + 1)^2} - 1 \right\}^{\frac{1}{2}}$$
 (6.1.5)

A plot is given in Fig. 6.1.1.

Fig. 6.1.1 Relative uncertainty in number of zero-crossing cycles in the case of a uniform probability distribution between $N_{\rm B}$ and $N_{\rm S}$. The dotted line is the corresponding uncertainty in the characteristic extreme value.

In the case studied in Section 12.7 a time interval was considered which covered N_S = 5000 springing cycles and N_B = 1000 bending cycles, that is = 5. If one is ignorant about the number of zero crossings in this case, the uniform distribution (6.1.2) prescribes a mean number of (3000 $^{\pm}$ 1154) cycles. The uncertainty is 38.5%.

With this probability distribution of $N_{\rm Z}\text{,}$ the characteristic extreme value

$$z_{c} = \sqrt{2 \ln N_{z}}$$
 (6.1.6)

also becomes a random variable with a probability density function

$$k(z) = \frac{1}{N_S - N_B} \frac{1}{2} z e^{z^2/2}, \sqrt{21nN_B} < z < \sqrt{21nN_S}$$
 (6.1.7)

The relative uncertainty in the characteristic extreme caused by the uncertainty in number of cycles is approximately

$$\frac{\delta_{\rm Z}}{\bar{z}} \approx \frac{1}{2} \frac{1}{1 \, \rm nN} \frac{\delta_{\rm N}}{\bar{N}} \approx \frac{1}{\bar{z}^2} \frac{\delta_{\rm N}}{\bar{N}} \tag{6.1.8}$$

the relative uncertainty in N being given by (6.1.5). Since N in the short term case is of order N = 1000 we have $(2\ln N)$ being roughly 15. The relative uncertainty in the characteristic extreme is thus of order 1/15 of the relative uncertainty in the number of periods, which is below 5% in most practical cases. In the numerical example it is about 2.5%. This means in the practice that the extreme value distribution under uniformly distributed number of cycles is expected to deviate insignificantly from the extreme value distribution obtained with the number of cycles fixed at the mean value (6.1.3).

To derive the actual probability distribution of the short term extreme value by unknown number of cycles, the double exponential approximation (5.3.3) is most convenient. The cumulative probability distribution by given $N_{\rm Z}$ is

$$P_t(Z; N_Z = N) = e^{-N} e^{-Z^2/2}$$
 (6.1.9)

Weighted by the probability distribution (6.1.2) for the number of cycles N, one obtains

$$P_{t}(z) = \frac{1}{N_{S}-N_{B}} \int_{N_{B}}^{N_{S}} e^{-Ne^{-Z^{2}/2}} dN$$

$$= \frac{1}{N_{S}-N_{B}} e^{Z^{2}/2} \left[e^{-N_{B}e^{-Z^{2}/2}} - e^{-N_{S}e^{-Z^{2}/2}} \right]$$
(6.1.10)

which is the cumulative probability distribution of the short term extreme when number of zero crossings is unknown. The corresponding probability density is

$$g_t(z) = \frac{z}{N_S - N_B} \left\{ (N_B + e^{Z^2/2}) e^{-N_B e^{-Z^2/2}} - (N_S + e^{Z^2/2}) e^{-N_S e^{-Z^2/2}} \right\}$$
 (6.1.11)

This distribution is graphed in Fig. 6.1.2 for the case studied in Fig. 5.7.1.

Fig. 6.1.2 also shows the probability distribution of the extreme value when the number of zero crossings is fixed at the mean value of $N_Z = 3000$. The peak values of the two distributions indicate that the <u>standard deviation</u> of the extreme increase by a factor 1.47/1.36 = 1.081, that is 8.1%, by the loss of information about the number of zero crossing cycles.

Fig. 6.1.2 Probability function of the extreme by unknown, uniformly distributed number of cycles.

7. UNCERTAINTIES IN SHORT TERM EXTREME VALUE PREDICTIONS

It appears from (4.2.1) and (5.4.1) that the extreme response under stationary conditions can be written

$$S = \sigma Z = \sqrt{2}\sigma\sqrt{1nN_2 + y} \tag{7.1.1}$$

y is a normalized random variable which is responsible for the natural dispersion of the extreme value, approximately normal distributed with expectation value $\bar{y}=0$ and standard deviation $\delta_y=1$. More exactly y is double exponential distributed with $\bar{y}=0.5772$ and $\bar{0}y=1.2825$.

 N_Z is the number of zero crossings, in the most unfavourable case uniformly distributed between N_B and N_S . Expectation value \tilde{N} is the arithmetic mean, and standard deviation δ_N which may amount to the order of N_B (6.1.4)

d is the RMS of the complete response subjected to a normal error distribution with expectation $\bar{\sigma}$ and standard deviation δ_{σ} . Depending on the situation, σ may be monitored in real time with a relative uncertainty of order 5-10%, or it may appear from wave load response calculations and has then a still higher uncertainty.

Uncertainties in y, $N_{\rm Z}$ and $_{\rm O}$ makes the actual extreme peak S uncertain with expectation

$$\bar{S} = \sqrt{2}\bar{\sigma}\sqrt{\ln \bar{N}} = \bar{\sigma}\bar{Z} \tag{7.1.2}$$

and standard deviation s given by

$$\frac{\delta_{S}}{\bar{S}} = \sqrt{\left(\frac{\delta_{O}}{\bar{\sigma}}\right)^{2} + \left(\frac{1}{\bar{z}^{2}} \frac{\delta_{N}}{\bar{N}}\right)^{2} + \left(\frac{1}{\bar{z}^{2}}\right)^{2}} \qquad \bar{Z} = \sqrt{2\ln\bar{N}}$$
 (7.1.3)

The second term under the square root stems from (6.1.8) and the last term from (5.8.8).

Considering the case studied in section 5.7 and Fig. 6.1.2, and assuming 10% uncertainty in the RMS value o, we have

$$\overline{Z} = 4.0$$
 $\overline{N} = 3000$
 $(7.1.4)$

which give

$$\frac{\delta S}{\bar{S}} = \sqrt{0.10^2 + 0.0240^2 + 0.0625^2} = \sqrt{0.1^2 + 0.067^2} = \underline{0.12}$$
(7.1.5)

It is hence seen that the uncertainty caused by unknown number of cycles is nearly exhausted by the natural dispersion y. And both these error sources are nearly exhausted by the uncertainty in the RMS.

It is also observed that when uncertainty in RMS is disregarded, the relative uncertainty in the extreme stress becomes

$$\frac{\delta_{S}}{\bar{s}} = \frac{1}{\bar{z}^{2}} \sqrt{1 + (\frac{\delta_{N}}{\bar{N}})^{2}} = \frac{1}{16} \sqrt{1 + 0.15} \approx \frac{1}{16} (1 + 0.075) = 0.067$$
(7.1.6)

which confirms the conclusion drawn from Fig. 6.1.2: By loss of information about the number of cycles, the uncertainty in extreme value increases with 7.5% (\approx 8.1%), viz. by increasing from 0.0625 to 0.067.

8. FATIGUE CRACK AND PROPAGATION

8.1 Elementary considerations

It is convenient to consider fatigue in terms of crack propagation velocity. Consider a crack of present linear extension a. Under the influence of a pure stationary bending stress, the crack proceeds with a mean velocity $v_{\rm B}$

$$v_B = \frac{da}{dt} = \frac{da}{dN} \cdot \frac{dN}{dt} = \frac{da}{dN} \cdot \frac{1}{T_B} = \frac{da}{dN} \cdot \frac{1}{\tau T_S}$$
 (8.1.1)

Under a pure stationary springing stress, the crack proceeds with a mean velocity $\boldsymbol{v}_{\text{s}}$

$$v_{S} = \frac{da}{dN} \cdot \frac{1}{T_{S}} \tag{8.1.2}$$

Now da/dN which occurs in both (8.1.1) and (8.1.2) is the mean crack increase per cycle, and provided that the stress RMS is the same in both cases, then da/dN are also the same in both cases.

Thus we obtain under very general conditions, that when the stress goes from pure bending to pure springing under fixed RMS, cracks accelerates with a factor

$$\frac{\mathbf{v_S}}{\mathbf{v_R}} = \frac{\mathbf{T}\mathbf{B}}{\mathbf{T_S}} = \tau \tag{8.1.3}$$

and correspondingly, the fatigue life time is reduced by a factor $1/\tau$.

As tis of order 3-4-5, one may conclude that fatigue may be rather sensitive to the presence of springing.

8.2 Fatigue under combined bending and springing

Proceeding with development of cracks as a model for fatigue and deteriorating processes it can be shown that distinctly separated spectral stress peaks do not interact. This is only an assumption, but it may be supported by results obtained with the rainflow cycle counting method which is presently regarded as the most reliable cycle counting method for crack propagation as well as Miner calculations.

The propagation speed v of a crack is thus the sum of the bending term v_B and the springing term v_S . The linear extension a of a one-dimensional crack has then the velocity

$$v = \frac{da}{dt} = v_B + v_S = \frac{da}{dN} \frac{1}{T_B} + \frac{da}{dN} \frac{1}{T_S}$$
 (8.2.1)

According to Paris et.al. /8/ the increment da/dN per cycle is related to the stress intensity ΔK through

$$\frac{da}{dN} = C(\Delta K)^{m}$$
 (C and m are constants) (8.2.2)

The stress intensity has a linear relationship to the nominal, local stress amplitude S through

$$\Delta K = \sqrt{\pi a} g(a) S \qquad (8.2.3)$$

where g(a) is a geometry factor. When the sequence of amplitudes S is not constant in magnitude, but fluctuating according to a Rayleigh distribution with parameter $\sqrt{2}\sigma$, the average contribution from each cycle is

$$\frac{\mathrm{da}}{\mathrm{dN}} = C[\sqrt{2\pi a} \ g(a)]^{m} \Gamma(1+m/2) \sigma^{m} = C \sigma^{m}$$
 (8.2.4)

C' is a new constant which changes only slowly with the crack depth, but which is instantaneously the same for springing and bending.

Introduced in (8.2.1) we then find the crack velocity

$$v = C\left[\sqrt{2\pi a} g(a)\right]^{m} \Gamma(1+m/2) \left[\frac{\sigma B^{m}}{T_{B}} + \frac{\sigma S^{m}}{T_{S}}\right]$$
(8.2.5)

where σ_B and σ_S are the RMS of bending and springing only. Introducing the total RMS, σ_s gives

$$v = C[\sqrt{2\pi a} \ g(a)]^m \ \Gamma(1+m/2) \ \frac{\sigma^m}{T_B} \left[(\sqrt{1-x^2})^m + \tau x^m \right]$$
 (8.2.6)

Here the last bracket is a factor which tells how more faster the cracking process goes on when the stress changes gradually from pure bending to pure springing through x. The fatigue life is reduced by the same factor. By definition, this factor is closely related to a spectral correction factor, denoted λ , appearing in the literature /9/. For the present case we have thus in particular

$$\lambda' = (\sqrt{1 - x^2})^m + (x^m)$$
 (8.2.7)

which is graphed in Fig. 8.2.1 for different values of m and τ . The normal value of m is 3-4, but values up to 8 appear in different codes /10/. (It should be noted that m in the crack propagation approach is equal to the slope parameter of the Wöhler curves usually entering into the Miner fatigue calculations).

It is observed from Fig. 8.2.1 that the fatigue decreses slightly for a small component of springing when the total RMS is given. This is in accordance with common evidence, since fatigue is known to decrease by less regular cycle forms. For larger springing share, the fatigue rate increases rapidly up to the factor τ predicted in Section 8.1 due to the increased number of cycles. In case the squared springing share \mathbf{x}^2 in the long run is Beta distributed (see section 9.2) with parameters (\mathbf{r},\mathbf{s}) , and τ is considered constant, the long term average of the spectral correction factor due to springing is

$$\frac{1}{\lambda^{(r)}} = \frac{1}{B(r,s)} \left[B(r,s+m/2) + \tau B(r+m/2,s) \right]$$
 (8.2.8)

There is one inconsistency in (8.2.7): The spectral correction factor λ should approach 1 for t=1, that is when the two spectral components coincide to one. This is only the case for m=2.

Fig. 8.2.1.Spectral correction factor for fatigue by fixed σ and τ_B .

8.3 Comparison with regression formula

An empirical formula for the spectral correction factor λ is suggested in /9/ and has the form

$$\lambda(m, \epsilon) = a(m) + [1-a(m)](1-\epsilon)^{b(m)}$$
 (8.3.1)

By regression analysis of counting tests on simulated random records, the functions were determined to

$$a(m) = 0.926 - 0.033 m$$

 $b(m) = -2.323 + 1.587 m$ (8.3.2)

Due to definition of periods, (8.3.1) is not quite the same as (8.3.1), but a relationship may be established by

$$\lambda' = \frac{TB}{TZ}\lambda = \sqrt{1+x^2(\tau^2-1)} \left\{ a(m) + [1-a(m)][1-\epsilon(x,\tau)]^{b(m)} \right\}$$

$$\epsilon(x,\tau) = x(\tau-1) - \sqrt{\frac{1-x^2}{1+x^2(\tau^4-1)}}$$
(8.3.4)

 ϵ is quoted from (2.2.7).

Tha fatigue correction factor derived from this equation is graphed in Fig. 8.3.1, and should be comparable with Fig. 8.2.1. The fatigue rate is, however, seen to increase much more steadily with the springing share than predicted previously.

The stress spectra on which (8.3.1) and (8.3.2) are based are of different nature than the two-peak spectrum underlying (8.2.7), and it is not immediately clear which procedure that gives the most correct results.

Fig. 8.3.1.Spectral correction factor derived from Wirsching's formula (8.3.3).

9 LONG TERM DISTRIBUTION OF RMS

9.1 Distributions in a special case

In one particular case the long term probability distributions of the total RMS and the springing share can be exactly derived from the long term bending and springing RMS-distributions. This occurs when the bending RMS σ_B follows a general gamma distribution (3.3.1) on the particular form

$$f(\sigma_B) = f(m, 2, B; \sigma_B) = \frac{2}{\Gamma(m)B} (\frac{\sigma_B}{B})^{2m-1} e^{-(\sigma_B/B)^2}$$
 (9.1.1)

and the springing RMS $\boldsymbol{\sigma}_{\boldsymbol{S}}$ follows the almost similar distribution

$$f(\sigma_S) = f(n, 2, B; \sigma_S)$$
 (9.1.2)

In this case the total RMS σ defined through (2.1.2)

$$\sigma^2 = \sigma_B^2 + \sigma_S^2 \tag{9.1.3}$$

has the related distribution function

$$f(\sigma) = f(m+n, 2, B; \sigma) = \frac{2}{\Gamma(m+n)} (\frac{\sigma_1}{B})^{2(m+n)-1} e^{-(\sigma/B)^2}$$
(9.1.4)

That is, in this particular case the shape parameters m and n for the bending and springing are additive such that the corresponding parameter for the total RMS is (m + n).

Some selected members of this class of distributions are shown in Fig. 9.1.1, normalized to scale parameter B=1. This plot may in some situations be used qualitatively to judge the importance of vibration components.

For example, if a Weibull plot of the bending and springing RMS are relatively positioned roughly as the curves for m = 1.0 and m = 0.25 respectively, then the total RMS is positioned roughly as the m = 1.25 curve. That is the presence of springing increases the extreme stress level with order 3-4%.

Fig. 9.1.1 Weibull plot of selected members of the additive class of long term probability distributions.

Normalized RMS-value, σ/B

The statistical moments of the distribution (9.1.1) are

$$M_{i} = E(\sigma^{2}) = B^{i} \frac{\Gamma(m+i/2)}{\Gamma(m)}$$
 (9.1.5)

That is, the parameters m and B can be expressed by moments through

$$m = \frac{M_2^2}{M_4 - M_2^2} \tag{9.1.6}$$

$$B^2 = M_2/m$$
 (9.1.7)

In the particular case treated here, the squared springing share $x^2 = (\sigma_s/\sigma)^2$ is Beta-distributed with parameters m and n. The probability density function of x is then

$$p(x) = \frac{2\Gamma(m+n)}{\Gamma(m)\Gamma(n)} x^{2n-1} (1-x^2)^{m-1}$$
 (9.1.8)

The probability density of the bending share is obtained by interchange of m and n.

9.2 Distribution in general cases

The simple relationship between the individual and the resulting distribution of RMS (9.1.1)-(9.1.4) does not hold in general. Neither does the exact Beta-distribution hold for the squared springing- or bending share.

One may, however, fit the same distributions to the empirical data by methods defined in the sequel:

Variables defined in the interval $(0 - \infty)$:

This yields in particular springing, bending and total RMS. Statistical distribution may be approximated with the generalized gamma distribution with parameters (b, g, B) with density

$$f(Z) = \frac{g}{\Gamma(b)B} (\frac{Z}{B})^{bg-1} e^{-(Z/B)^g}$$
 (9.2.1)

The parameters b, k and B may be estimated by the method of moments as defined in /6/ through the following steps:

- The measured values are

$$Z_1 \quad Z_2 \quad Z_3 \dots \dots Z_N \tag{9.2.2}$$

- Evaluate estimators for the logarithmic mean value, variance and skewness:

$$R = \frac{1}{N} \sum_{i=1}^{N} \ln Z_{i}$$
 (9.2.3)

$$V = \frac{1}{N-1} \sum_{i=1}^{N} (\ln z_i - R)^2$$
 (9.2.4)

$$T = s^{-3/2} \frac{1}{(N-1)(N-2)} \sum_{i=1}^{N} (\ln z_i - R)^3$$
 (9.2.5)

- Determine the value of the shape parameter b from the formula

$$-\Psi''(b)/\Psi'(b)^{3/2} = /T/$$

The table in Appendix A may be used.

- Determine the slope parameter k by

$$g = \frac{1}{2} \sqrt{\Psi^{T}(b)/V} + \text{for } T < 0$$

$$- \text{ for } T > 0$$
(9.2.6)

- Determine the scale parameter B through

$$B = \exp (R - \Psi(b)/g)$$
 (9.2.7)

Available computer programs are described in /11/ and /12/. It should be stressed, nowever, that the empirical estimates (9.2.3)-(9.2.5) should, if possible, be calculated directly from the observed values in the sequence (9.2.2). Grouping of data into classes, which is more or less explicitely assumed in the programs has proved to introduce unnecessary inaccuracies, in particular in the determination of the skewness parameter b.

Variables defined in the interval (0,1)

Variables defined in (0,1) are among others:

- The spectral width ϵ
- The peak-to-zero crossing period \sim lo α
- The springing share x
- The bending share x_B
- The fraction of positive maxima, redefined as (2a-1)

The squared values of the variables are also defined in (0,1). The statistical distributions of such variables may be approximated by the Beta-distribution with the density

$$g(Z) = \frac{\Gamma(m+n)}{\Gamma(m)\Gamma(n)} Z^{n-1} (1-Z)^{m-1}$$
 (9.2.3)

The two parameters m and n may be determined by the mean value and standard deviation as follows:

- Determine the value \bar{z} and the variance V through

$$\tilde{\mathbf{Z}} = \frac{1}{N} \; \Sigma \; \mathbf{Z}_{\mathbf{i}} \tag{9.2.9}$$

$$V = \frac{1}{N-1} \sum (Z_i - \bar{Z})^2$$
 (9.2.10)

- Determine the parameters n and m through:

$$n = (\bar{z} - \bar{z}^2 - \sigma_z^2) \bar{z}/V \qquad (9.2.11)$$

$$m = n(1-\overline{z})/\overline{z} \tag{9.2.12}$$

Preferably the squared variables ϵ^2 , x^2 etc. should be matched to the Beta-distribution, because then the distributions of α^2 = $1-\epsilon^2$ and $x_B^2=1-x^2$ are simultaneously determined. The probability distribution of the variable themselves, i.e. ϵ or x are then given by the function (9.1.8).

10. LONG TERM DISTRIBUTION OF POSITIVE MAXIMA

10.1 Proposed procedure

Suggest that the distribution of local maxima under stationary conditions can be described by a general gamma distribution with parameters (a, h, A). By section 3.3 this distribution should approximate the truncated Rice distribution, giving in particular

a = fraction of positive maxima in interval (0.5, 1)
$$h = 2 \qquad (10.1.1)$$

$$A = \sqrt{2}\sigma$$

The scale parameter A is distributed in the long run according to a general gamma function with parameters (b, g, B).

Neglecting period fluctuations for the moment, the long term distribution of local maxima is

$$f_S(S) = \int_S^\infty f(a, h, A; S) f(b, g, B; A) dA$$
 (10.1.2)

This distribution can be approximated by a general gamma distribution with parameters (d, k, D) by a method which gives correct logarithmic moments up to the third order.

Transforming (10.1.2) to lnS, one may find the moment generating functions of the distributions on each side of the equality sign. Equating the moment generating functions gives

$$\Phi(u) = E(e^{us}) = D^{u} \frac{\Gamma(d+u/k)}{\Gamma(d)} = B^{u} \frac{\Gamma(a+u/h)\Gamma(b+u/g)}{\Gamma(a)\Gamma(b)}$$
(10.1.3)

Hence the cumulant generating function is

$$\Theta(\mathbf{u}) = \ln \Phi(\mathbf{u}) \tag{10.1.4}$$

From this function the cumulants \mathbf{X}_n of general order r can be derived by

$$n = \frac{d\theta}{du} \bigg|_{u=0} \tag{10.1.5}$$

Comparing the first three cumulants of (10.1.3) gives the three equations for determination of the gamma parameters d,k and A.

$$\mathcal{L}_{1} = \ln D + \Psi(d)/k = \ln B + \Psi(a)/h + \Psi(b)/g$$
 (10.1.6)

$$\chi_2 = \psi^1(d)/k^2 = \psi^1(a)/h^2 + \psi^1(b)/g^2$$
 (10.1.7)

$$\mathcal{K}_3 = \Psi^{11}(d)/k^3 = \Psi^{11}(a)/h^3 + \Psi^{11}(b)/g^3$$
 (10.1.8)

Hence the skewness coefficient on each side is

$$\frac{\Re 3}{\Re_2^{3/2}} = \frac{\Psi^{11}(d)}{\Psi^{1}(d)^{3/2}} = \frac{\Psi^{11}(a)/h^3 + \Psi^{11}(b)/g^3}{\left[\Psi^{1}(a)/h^2 + \Psi^{1}(b)/g^2\right]^{3/2}}$$
(10.1.9)

The right side is known, and the middle term is only a function of d. Hence d can be evaluated by the table in Appendix A..

Once d is known, k may be evaluated from the second cumulant identity (10.1.7)

$$k = \left[\frac{\Psi^{1}(d)}{\Psi^{1}(a)/h^{2} + \Psi^{1}(b)/g^{2}} \right]^{1/2}$$
 (10.1.10)

and finally from the first cumulant (10.1.6) one finds

$$D = B \exp \{ \Psi(a) / h + \Psi(b) / g - \Psi(d) / k \}$$
 (10.1.11)

In the present particular case of Rice-distributed short term maxima we have h=2.

If the long term distribution of the RMS value σ rather than of $A=\sqrt{2}\sigma$ is known, B should be set equal to 2 x the scale parameter of the long term distribution of σ .

To get an idea about the validity of the procedure proposed in the last section, one may consider the particular case of narrow banded stresses (Rayleigh distribution) where the $A = \sqrt{2}$ RMS is Weibull distributed in the 1 \log run. In this case we have

a = 1
h = 2
b = 1

$$\Psi(1) = 0.57721$$

 $\Psi^{1}(1) = 1.64493$
 $Y^{11}(1) = 2.40411$

When the Weibull parameters k and B of the long term distribution of $\sqrt{2}$ RMS are known, the gamma parameters d,k and D of the amplitude distribution may be determined from (10.1.9)-(10.1.11). Some corresponding values are given in Table 10.2.1.

g	d	k	(D/B)
0.0	0.65	0	0.749
0.5	1.16	0.436	0.516
1.0	1.50	0.674	0.399
1.5	1.79	0.806	0.361
2.0	1.89	0.918	0.384
2.5	1.83	1.034	0.442
3.0	1.72	1.147	0.508
3.5	1.60	1.254	0.575
4.0	1.50	1.349	0.631
4.5	1.42	1.429	0.678
5.0	1.35	1.503	0.720
5.5	1.30	1.561	0.752
6.0	1.26	1.610	0. 778

Table 10.2.1. Parameters of long term distribution of amplitudes by Rayleigh distributed short amplitudes and Weibull distributed $\sqrt{2}$ RMS.

Corresponding values can also be determined from Fig.10.2.1.

Fig.1o.2.1. Graph of gamma parameters for long term stress amplitudes (d, K,D) by Rayleigh short term amplitudes (1,2, $\sqrt{2}\sigma$) and Weibull long term $\sqrt{2}\sigma$, that is (1,g,B).

Comparison may be made by a procedure reported by Nordenstrøm /13/ where the objective was to fit a Weibull distribution to (10.1.2) which should give good accuracy for large stresses.

Some corresponding values for d,k and D obtained by the two methods are listed in Table 10.2.2.

	Nordenstrøm's values			Present method			
g	d	k	D/B	d	k	D/B	
0.5	1.0	.428	.560	1.16	.436	.516	
1.0	1.0	.722	.611	1.50	.674	.399	
2.0	1.0	1.086	.690	1.89	.918	.384	
4.0	1.0	1.444	.782	1.50	1.349	.631	
6.0	1.0	1.614	.834	1.26	1.610	.778	
∞	1.0	2.0	1.0	1.0	2.0	1.0	

Table 10.2.2. Some corresponding amplitude distribution parameters obtained by different methods.

Weibull plots of the distribution obtained for g=1.0 and 6.0 are shown in Fig.10.2.2. The corresponding distributions are seen to coincide for large stresses where Nordenstrøms values are most correct. This investigation gives some confidence to the present procedure, at least for low spectral width.

WEIDUL PROBABILITY PAPER Normalized stress amplitude, S/B Fig.1o.2.2. Lone term Cumulative probability distribution of narrow kanded stress amplitudes by Weibull long term distribution for $\sqrt{2}\sigma$ Comparison between the present method and data from Nordenstrom /13/. q is the slope parameter for the Weibull distribution of $\sqrt{2}\sigma$.

11. CONCLUDING REMARKS.

The validity of the way of establishing the long term stress distribution outlined in chapter 10 should be more thoroughly studied, in particular for wide band stresses.

The long term parameters (d,k,D) for half-normal short term stress distribution and Weibull long term D-distribution are given in Table 11.1 and Fig.11.1 analogous to the representation in Section 10.2. However, alternative data for comparison are not imediately available.

When the long term statistical distribution of local maxima is established in terms of the probability distribution P(d,k,D;S) the characteristic long term extreme can be established as the $(1-N_p^{-\frac{1}{2}})$ fractile. This may always be solved numerically, for instance by /ll/ which solves this by Wegstein iteration.

One may also evaluate a characteristic extreme value by the asymptotic expression

$$S_{c} = D \left\{ ln \left(\frac{d}{\Gamma(d)} N_{p}^{+} + (d-1/k) ln \left[ln \left(\frac{d}{\Gamma(d)} N_{p}^{+} \right) \right] \right\}^{1/k}$$
 (11.1.1)

The probability distribution of the extreme value is given as

$$P(z) = P(d,k,D;S)^{p}$$
 (11.1.2)

analogous to (5.1.1), and may be discussed along much the same lines as in the stationary case Chapter 5.

The influence of the changes in period should be investigated.

g	đ	k	A/B
.0	1.00	0	.374
.1	1.02	.0982	.299
. 2	1.08	.186	.237
.3	1.18	.258	.185
. 4	1.32	.311	.142
.5	1.49	.347	.1092
.6	1.68	.374	.0874
.7	1.90	.387	.0655
.8	2.13	.396	.0511
.9	2.36	.401	.0408
1.0	2.58	.405	.0337
1.5	3.35	.421	.0209
2.0	3.53	.446	.0231
2.5	3.46	.473	.0297
3.0	3.35	.495	.0369
3.5	3.24	.514	.0442
4.0	3.15	.528	.0507
4.5	3.08	.540	.0563
5.0	3.03	.548	.0607
5.5	2.98	.556	.0651
6.0	2.95	.561	.0681

Table 11.1 Parameters of long term distribution of positive maxima by broad band signal (ϵ =1) and Weibull distributed $\sqrt{2}$ RMS.

Fig. 11.1 Graph of gamma parameters for long term stress amplitudes (d,k,D) by one-sided normal short term distribution ($\frac{1}{2}$, 2, $\sqrt{2}\sigma$ with parameters (1,g,B).

12 REFERENCES

- /1/ RICE,S.O.:

 Mathematical Analysis of Random Noise.

 Bell System Technical Journal. 23, 282- (1944).24,46- (1945).
- /2/ CARTWRIGHT, D.E. and LONGUET-HIGGINS,M.S.:
 The Statistical Distribution of the Maximal of Random Functions.
 Royal Society of London. Proceedings. Series A.
 273, 212 (1956).
- /3/ TRAMPE BROCH, J.:

 Effects of Spectrum Non-Linearities upon the Peak
 Distribution of Random Signal. Brüel & Kiær Technical
 Review. 3, 5 31, (1963).
- /4/ MJLES, M.: The Theoretical Statistical Distribution of the Peaks of Combined Springing and Wave-Induces Stress Loads. Division of Mechanical Engineering, Canada. Report LTR-SH-103 (1970).
- /5/ OCHI, M.K.:
 On Prediction of Extreme Values. Journal of Ship Research,
 17, 29-37, (1973).
- /6/ STACY, E.W. and MIHRAM, G.A.:

 Parameter Estimation for a Generalized Gamma Distribution.

 Technometrics 7 no.3, 349-358, (1965).
- /7/ GRAN, S.:
 Analytical Description of Stochastic Fatigue. Det norske
 Veritas. Report no.77-240.

- /8/ PARIS, P.C., GOMEZ, H.P. and ANDERSON, W.E.:
 A Rational Analytical Theory of Fatigue. The Trend in Engineering. 13, no.9. 1961.
- /9/ WIRSCHING, P.H.:

 Probability-Based Fatigue Design Criteria for Ocean

 Structures. American Petroleum Institute. API-PRAC

 Project ♯ 15, Final Report, Draft Copy dated August 1979.
- /10/ BRITISH STANDARDS INSTITUTION

 Steel, Concrete and Composite Bridges. Part 10. Code of Practice for Fatigue. BS.5400 Part 10. Appendix A
- /11/ OCHI, M.C.:

 Computer Program for Estimation of Extreme Values Based on the Generalized Gamma Distribution. David W. Taylor Naval Ship Research and Development Center. Report no. DTNSRDC SPD-692-C1.
- /12/ GRAN, S.:

 Fitting of Generalized Gamma Distribution to Statistical

 Data. Computer Program Description. Det norske VERITAS.

 Report no. 79-1100.
- /13/ NORDENSTRØM, N.:

 A Method to Predict Long-Term Distribution of Waves and Wave-Induced Motions and Loads on Ships and Other Floating Structures. Det norske VERITAS.

 Publication No.81. April 1973.p.21.
- /14/ GRAN, S.:
 Full Scale Measurements of Springing Contribution to Extreme
 Stress and Fatigue in a Large Tanker.
 Det norske VERITAS. Report No.76-417.

- /15/ OCHI, M.K.:

 Generalization of Rayleigh Probability Distribution and its

 Application.

 Journal of Ship Research, 1978.
- /16/ TROESCH, A.:
 Ship Springing An Experimental and Theoretical Study.
 Report MARD-940-80056, May 1980, NTIS
 PB 211279.

APPENDIX A

TABLE OF POLY-GAMMA AND RELATED FUNCTIONS.

Following quantities are tabelled:

X - argument of functions

GAMMA - $\Gamma(x)$ PS - $\psi(x)$ PS1 - $\psi'(x)$ PS2 - $\psi''(x)$ PS/VPS1 - $\psi(x)/\sqrt{\psi'(x)}$ VPS - $\sqrt{\psi'(x)}$

 $ps2/ps1xx3/2 - \psi''(x)/\psi'(x)^{3/2}$

٠	SAMMA .	15	201	032	p2 (Ab.21)	VP 31 (PS3/PS1**3/2
.01	01.4326	-100.56	10001.6 -	20000000.	-1.0055	100.003	-1.9975
.02	41.4422	-50.54		- 150002.	-1.0106		-1.9731
.03	52.7.50	- 55.6.15		-74076-	-1.0151	33.357	-1.9958
. 134	24.4610	-25.91	620.6	-31.152.	-1.01 3	25.031	-1.9927
.05	17.4701	-20.50	401.5	-10005.	-1.0229	20.033	-1.988B
.06	16.1457	-17.15	279.3	~ 1261.	-1.0262	16.712	
. 97	13,7736	-14.75	20 5. 5	~> ¹ 33.	-1.03 10	14.333	
.03	11. 1956	-12. 5	157.7	-3"0	-1.0314	12.55)	* * =
• 3 4	10.5162	-11.55	124 • 9	-2745.	-1.0334	11.176	-1.4666
.10	9.5135	-10.42	101.4	-2002.	-1.0350	10.071	
•11	8.6127	-9.50	84.1	-1504.	-1.0362	9.168	
.12	7.1632	- 3. 73	70.3	-115°.	-1.0371	£.417	
•15	7.2302	-3-07	60 • 6	- 112.	-1.0376	7.781	
-14	6.5887	-7.51	52.4	-731.	-1.0377	7.238	-1.9270
.15	6.2203	-7.0210		~534.2466			-1.9178
.15	5.3113	-5.5°10		-411.8977			-1.9084
•17	5.4512	-6.2101		-403.6635			-1.8987
•1H	5.131	- i. 1702		-344.4886			-1.8887
•19	4.846	-5∙564 ⁹	28. 9832	-293.0797	-1.0551	2.3836	-1.8784
.20	4.590 3	-5.2P30	26.2674	-251.4781	-1.0320	5.1252	-1.8680
• 21	4.3900	~5.03.3		-217.4055			-1.8574
.22	4.1505	~4.8094		~189, 2439			-1.8466
• 23	3.95 18	-4.5005		-165.7642			-1.8356
•24	3.7855	-4.4062	18.5719	-146.0319	-1.0224	4.3095	-1.8246
. 25	3.6256	-4.2275	17.1973	-123.3277	-1.0174	4.1470	-1.8134
. 26	3.47 /3	-4.0617		-115.0919			-1.8022
•27	3.3426	- 3, 90 75		-102.8043			-1.7907
.73	3 + 2169	~ 3 · 7 6 55		-92.3558			-1.7795
• 29	3.1001	-3.6289	13.0370	-83.2270	-1.0050	3.6107	-1.7681
• 30	2.9916	-3.5025	12.2454	-75.2725	-1.0009	3.4993	-1.7566
. 31	2.3593	-3.3837		~63.3092			-1.7452
. 52	2.795	-3.2717	10.1764	-62.1870	-,9921	3.2979	-1.7337
•33	2.7972	-3.1660	10.2321	-56.7824			-1.7222
• 34	2.6242	- 3.0659	9.7347	-51.9931	9825	3.1207	-1.7108
•35	2.5461	-2.7711	9.2405	-47.7338	7774	3.0399	-1-6994
.36	2.4727	-2.8110	€.7825	~43.9329	9721	2.9635	-1.6880
.37	2,4035	-2.7953	4.3605	-40.5303	7667	2.8914	-1.6766
• 33	2.33%3						! -1.6653
.39	2.2765	-2.635 3	7.6100	-34.7236	~ • ° ° 5 5 5 5	2.7586	-1.6541
.40	2.2182			-32,23+1	- ,9496	2.6973	-1.6429
.41	2.162 4	-2.4702				-	-1.6317
.42	2.1104						-1.6207
.43	2.0605			· -	-		3 -1.6077
.44	2.0132	-2.2939	6.1525	~24.3986	9248	2.4∺04	-1.598°
• 45	1.0691	-2.2335	5.7164	-22+8517	9183	2.4324	-1.5880
+46	1.0252						-1.5772
• 47	1.8 43						-1.5666
•43	1.0453						-1.5560
• 49	1.8001	-3.0137	5,1031	-17-8429	8910	2.2601	1 -1.5455

×	GAMME ,	63	P31	P32	PS/VPS1	VPS1 PS2/PS1++3/2
•50	1.7725	-1.1635	4.734	-16.8238	8P 39	2.2214 -1.5351
•51	1.73.4	-1.71.00	4.7713	-15.9=20	8767	2.1843 -1.5249
+52	1.705	-1.46:1	4.0167	-19.0252	36 94	2.1447 -1.5147
.53	1.6747	-1.3236	4.4705	-14.2220	- 96 20	2.1144 -1.5046
-54	1.644	-1.77:6	4.3321	-13.4764	8545	2-0814 -1-4946
						20. 10
• 55	1.6161	-1.7350	4.2008	-12,7835	8470	2.0496 -1.4847
• 55	1.5946	-1.6946	4.0763	-12.1336	8393	2.0190 -1.4749
.57	1.5523	-1.6544	3. 1577	-11.5376	8316	1.9895 -1.4653
•54	1.536	-1.6154	3. 3454	-10-9763	323 3	1.9610 -1.4557
•59	1.5126	-1.5775	3.7383	-10.4523	8159	1.9335 -1.4462
.60	1.4892	-1.5406	3.6362	-a• a854	8079	1.9069 -1.436P
· 51	1.4657	-1.5047	3. 538 ^a	-4.5039	7 999	1.8812 -1.4276
•62	1.4450	-1.46+3	3 . 4460	-9.0737	7918	1.8564 -1.4184
•63	1.4242	-1.4353	3. 3573	- 1.6699	7 936	1.8323 -1.4094
•64	1.4041	-1.4027	3. 2726	-8.29 05	7754	1.8090 -1.4004
		4	* * * * * * * * * * * * * * * * * * * *			
•65	1.3848	-1.3703	3.1915	-7.9337	7671	1.7865 -1.3915
•66	1.3662	~1.33dB	3.1133	-7.5979	-,7587	1.7646 -1.3828
•67	1.3482	-1.3081	3.0374	-7-2814	7503	1.7434 -1.3741
•64	1.3309	-1.2730	2.9631	-6.9829	7418	1.7223 -1.3656
•69	1.3142	-1.2487	2.8997	-6.7012	7333	1.7029 -1.3571
.70	1.2981	-1.2200	2.8340	-6.4350	-,7247	1.6835 -1.3488
.71	1.2825	-1.1920	2.7710	-6.1833	7161	1.6646 -1.3405
.72	1.2575	-1.1646	2.7103	-5.9450	7074	1.6463 -1.3324
.73	1.2530	-1.1378	2.6520	-5.7194	6987	1.6285 -1.3243
.74	1.2370	-1.1115	2.5959	-5.5055	- 6899	1.6112 -1.3163
•				00000	• • • • • • • • • • • • • • • • • • • •	14010
•75	1.2254	-1.0859	2.5419	-5.3026	6811	1.5943 -1.3085
.76	1.2123	-1.0607	2.4499	-5.1100	6722	1.5779 -1.3007
.77	1.1997	-1.0361	2.4396	-4.9271	6633	1.5619 -1.2930
. 79	1.1:75	-1.0110	2.3913	-4.7531	6544	1.5464 -1.2854
.79	1.1757	~. 98 32	2.3446	-4.5876	6454	1.5312 -1.2779
•60	1.1642	-•°650	2.2995	-4-4301	6364	1.5164 -1.2705
.81	1.1' 32	~.9422	2.255	-4-2801	6275	1.5020 -1.2632
.42	1.1425	∼•ଘ1ୁଘସ	2.2139	-4.1370	61 R2	1.4379 -1.2559
•° 3	1.1322	~•39d0	2.1732	-4.0006	6091	1.4742 -1.2488
.84	1.1222	~-3764	2.1338	-3-8705	6000	1.4608 -1.2417
.85	1.1125	~.8553	2.0957	-3.7462	5908	1.4477 -1.2348
96	1.1031	9345	2.0537	-3.6274		1.4349 -1.2279
. 47	1.0441	141	2.0232	-3.5133	-	1.4224 -1.2211
- 84	1.0-53	7540	1.0835	-3,4052		1.4102 -1.2143
89	1.0768	~.7743	1.551	-3.3013		1.3982 -1.2077
•						
• 70	1.0696	1549	1.4325	~3.2018	5445	1.3966 -1.2011
• 41	1.0607	 13 5°	1.0910	~3,1065		1.3751 -1.1946
•	1.0530	7171	1.7604	-3.0151		1.3640 -1.1882
• 43	1.0456	6° 26	1. 307	-? - 7274		1.3530 -1.1819
• 34	1.03P4	6-05	1.0019	-2.8434	- • 50 69	1.3423 -1.1756
ar	1 0715	_ 2000		_0 7407	. 40.75	1 7710 4 440
• 35	1.0315	6626	1.7738	-2.7627		1.3318 -1.1694
• ⁷ 0	1.0247	- 04 50 - 077	1.7466	-2.6852 -2.6107		1.3216 -1.1633
. 9 7 . na	1.01	6277	1.7201	-2.6107		1.3115 -1.1573
• 33	1.0117 1.0053	-•6106 -•5538	1.5 (43 1.5643	-2.5391 -2.4793		1.3017 -1.1513
• 7 3	T • 00 0 4)T)A	To 1,2,4,3	-2.4793	4576	1.2320 -1.1454

×	JAMMA ,	b.2	P 01	232 8	PS/VPS1	VPS1 PS	?/PS1• • 3/2
. 20	1 0000	5772	1.6445	-2.4041	4501	1.2325 -	1.1395
1.00	1.0000	540,	1.6212	-7.3404	4405	1.2733 -	
1 • 0 I	. 43		1.502	-2.27/1	4301	1.2042 -	
1.02	a Grand	6445	1.5756	-5.5300	4214	1.2553 -	1.1225
1.03	. 4. 35	5293	1.5537	-2.1630	4113	1.2465 -	1.1169
1.04	. 37 / 4	-,5133	1.0001	-2. Inde	- (711)		
1.05	•9735	40.76	1.5324	-2.10°2	~.4 022	1.2373 -	
1.95	.46-7	4 26	1.5115	-7.855°	3926	1.2294 -	
1.07	. 5542	4676	1.4 71?	-7.0043	- • 3× 2∩	1.2212 -	
1.03	. 95 7	4528	1.4715	-1.9549	3733	1.2130 -	
1.09	9555	43-2	1.4521	-1.9074	36 36	1.2050 -	1.0900
1.07					75.40	070	1 0040
1.10	.9514	423°	1.4333	-1.8615	3540	1.1972 -	
1.11	. 474	48a5	1.414	-1.8171	3443	1.1395 -	
1.12	-436	3055	1.3770	-1,7742	~. 3346	1.1813 -	
1.13	.9395	3:16	1.37 14	-1.7323	3244	1.1745 ~	
1.14	• 4364	3679	1.3623	-1.6927	3152	1.1672 ~	1.0646
141	• 30 .				7050	1.1600 -	.1 0597
1.15	.9330	3543	1.3456	-1.6540	~.3055	1.1527 ~	
1.16	•45.18	3410	1.3202	-1.6165	~.2957		
1.17	• 9767	3277	1.3132	-1.5002	2860	1.1460 -	
1.13	.9237	3147	1.2476	-1.5450	2763	1.1391 -	1.0407
1.19	.9205	3018	1.2823	-1.5110	 2665	1.1324	-1•0406
4 60	C:105	2990	1.2674	-1.4780	2567	1.1259 -	-1.0359
1.20	.9182		1.252.	-1.4461	2470	1.1193	-1.0313
1.21	•4156	2764	1.2335	-1.4151	2372	1.1129	
1.22	.9131	2640	1.2245	-1.3851	2274	1.1065	
1.23	.9109	2517	1.2107	-1.3560	2177	1.1003	
1.24	•9055	23°5	1.2101	-143300	*****		
1.25	.9064	2275	1.1973	-1.3277	2079	1.0942	
1.26	. 40 4 4	2155	1.1842	-1.3003	1981	1.0882	
1.27	·9025	2038	1.1713	-1,2737	1 883	1.0823	-1.0049
1.28	.9007	1-21	1.1587	-1.2479	1785	1.0764	
1.29	.6330	1:06	1.1464	-1.2228	1687	1.0707	9963
104	•(- > 5				1500	4 0/50	9921
1.30	.8975	1672	1,1343	-1.1985		1.0650	
1.31	• 85 6 0	1573	1.1224	-1.1743		1.0544	9880
1.32	• F: 46	1467	1.110	-1.1518	1342	1.0539	9834
1.33	.8434	1357	1.0994	-1.1294		1.0485	9799
1.34	∗8 922	1249	1.0882	-1.1077	1196	1.0432	9758
<u> </u>	61.4.0	1139	1.0772	-1.0266	1098	1.0379	9719
1.35	•8°12		1.0664	-1.0660		1.0327	- , 9640
1 • 36	• 9 10 2	1032	1.0557	-1.0460		1.0270	9641
1 • 37	• PF 93	01.26	1.0455	-1.0265		1.0225	- , 9602
1.38	•8: 25	0-21		-1.0076	· · · · · · · · · · · · · · · · · · ·		-,9564
1.39	·6: 7 a	0717	1.0353	-1.0010	,•0.0,	1441.0	
1.40	•8F 7 3	Ou14	1.0254	9841			9527
1.41	•846 °	0512	1.0156	3713	?050%		- , १६ छ
1.42	•6: 64	9411	1.0051	- 4537	7 8410		- , 74 S.1
1.45	8.00	0711	1165	7367	0311	•ववस्त	114 1 -
	- X-50	0211	• 3372	-,9200	0213	• a - 2P	9500
1.44		#UL 11					
1.45	•8° 57	0113	. T. L	-•003			
1.46	\$ 515	0016	• 26 11	" `			• ' '
1.47	in the	•96-1	• 0.35	* `		•	
1.4.1	· e - 17	.017s	. "1"				
1.49		.0271	. 45	• • •	:		

Y	CAMMA +	P\$	D. 3.1	ခဂျဂ္	05 AAb 21	VPS1 P	S2/PS1++3/2
1.50	• 8`-62	•9365	• 7349	8299	.0377	• 9669	9170
1.51	• 4-66	• 945	- 3365	-, 147	.0476	•9626	9136
1.52	.H. 70	05.50	1185	0013	.0574	.9544	9103
1.53	.3 76	.0642	105	7833	.0672	•9542	9070
1.54	86.2	.0732	• 3027	7751	.0771	.9501	9037
2134	• • • • • •	•0,52	0 02,	• • • • • • • • • • • • • • • • • • • •	•••	,	• / • • / •
1.55	.8399	•0∂22	• 9751	7625	.0869	.9461	9004
1.56	• ยุยกร์	.3"11	. 3375	7501	.0767	. 9421	8972
1.57	ະເລີດຣັ	.1000	3 301	7301	.1066	.9381	8940
1.58	.HP14	.10 47	• <727	7265	.1164	.9342	890A
1.59	8924	.1174	8655	7144	.1262	.9303	8877
1.60	-8935	.1260	• 6 5 8 4	7036	.1360	. 9265	8946
1.61	.8: 47	.1346	•×5 1 5	~• 6º26	•145 ^q	.9227	RP15
1.62	•895°	.1431	. 3446	6917	.1557	.9190	87A5
1.63	*8°72	1515	• 3375	~.6714	.1655	.9153	- • 9755
1.64	.8986	•15 ⁹ 8	·8312	6611	•1753	.9117	8725
1.65	•°001	.1681	- 9246	6511	•185i	.9081	-•8695
1.56	•9017	.1763	• 41 31	6413	.1949	•9045	8666
1.67	• 70 3 3	.11:45	• 3113	6317		.9010	8637
1.63	.9050	11° 26	• 3055	6223		. R975	-•8608
1.69	•40 6¤	•2006	.7933	6131	.2244	.8940	8579
						0.204	
1.70	• 90 8 6	• 2045	• 7932	6041		•8906 2277	8551
1.71	.9106	.2164	• 7 372	-,5953		.8873	~*8523
1.72	•9126	.2243	• 7 113	5867		.8839	8495
1.73	.9147	•2321	.7755	5732		•88 06	8467
1.74	•9168	•2398	•7694	5700	.2733	.8774	~-8448
1.75	.9191	•2475	.7641	~.561 9	.2831	.8741	8413
1.75	.5214	•2551	.7585	~.5540		8709	8386
1.77	•9239	•2626	7530	5462		8678	8359
1.78	-9268	.2701	.7476	5386		-8646	8332
1.79	-928P	.2776	•7422	5312		.8615	8306
1017	♥ > Z G (02110	• • • • • • • • • • • • • • • • • • • •	7,012	70202	••••	
1.80	.9314	·26·50	.7370	5239	.3320	.8585	8280
1.81	. 9341	• 2° 23	•7318	5167	.3417	• 855 4	8254
1.52	9360	• 25:46	.7266	5077	.3515	.8524	8229
1.43	. 93 0 7	• 3069	.7316	5028		· 8495	9203
1.84	•9426	.3141	.7166	4961	.3710	.8465	8178
1.95	•9456	.3212	•7117	4895		.8436	8153
1.46	.34H7	•32/3	• 7058	~.4P30		·3407	-•812ª
1.87	•9518	.3353	.7020	4767		.8379	8104
1.38	•°551	•3423	• 6773	4784		·8350	8080
1.39	• 958 4	•34 93	• 6426	4643	•4197	-8322	8056
		75.0	(2.20	A P 3 Y	4984	0204	0577
1.90	.9618	•3562	• 6930	4583		•8294 •¤267	8032 8004
1.91	•9£52	•363 0	. 6 134	- , 4524			7984
1.72	•560×	• 3699	. 5734	4457		.8240 .8213	~. 7961
1.73	• 3724	• 3765	•6795 •6701	4410 4354		•8186	7938
1.94	•9761	• 36 53	* D / OT	4394	• 1 073	+010 0	- 6 f 7 J D
1.95	•9773	• 3- 00	• 6658	4300	4789	.8160	7915
1.76	·°.37	•37.67	•6615	4246		·P133	7992
1.97	.4177	.40 53	6573	41 3 3		·H107	7869
1.99	9-17	دا 40.	.6531	4142		.8082	7347
1.99	995A	•4163	.5470	4091		.8056	7925
- ·			•				

×	TAMMA +	HS	1131	6.35	es /ves1	VPS1 PS	S2/PS1++3/2
2.00	1.0000	.4234	. 644 '	4041	•5265	∙ 8031	7802
2.00	1.0045	42112	,431	-, 39.12	.9361	.8005	7780
2.03	1.00 6	• 45) 0	ا دور ر	3 44	-545	.7'31	7754
2.03	1.0131	4420	.6339	39 17	-5555	.7356	7737
2.04	1.0176	.441 3	•6333	3350	•5651	.7332	7716
2404	T+0110	• 1 - 3	• 0	,,,	• ,5 • 5	-,	
2.05	1.0223	4545	• 6253	~.3405	-5743	.7908	~.7694
2.05	1.025	•46 BH	. 9 21 9	3763	, SH 44	.7884	7673
2.07	1.0315	.4670	· b17	3716	.5 141	.7460	7652
2.04	1.0365	.4731	141	3673	.6031	.7837	7631
2.09	1.0415	4772	.6105	3630	-6134	.7813	7611
240)	100113	•••					
2.10	1.0465	·4853	.6069	3589	•6230	•7790	7590
2.11	1.0516	.4'14	.6033	3547	•6326	.7767	7570
2.12	1.055	.4'.74	·5099	3507	.6423	.7744	7550
2.13	1.0521	.5034	• 5 163	3467	•6519	.7722	7530
2.14	1.0675	•50 73	. 5 128	3428	• 6615	.7700	7510
241,	2004. 4						
2.15	1.0730	•5152	.5394	3389	.6711	.7677	7490
2.16	1.07 6	.5211	.5360	3352	•6807	.7655	7470
2.17	1.042	.5270	.5327	3314	.6903	.7634	7451
2.13	1.0 00	.5323	.5774	~.3273	•6999	.7612	7432
2.17	1.0959	.5385	•5762	~.3242	.7095	.7591	7413
2.20	1.1018	.5443	.5729	3206	.7171	.7563	 7393
2.21	1.1073	.5500	.5697	3171	.7287	• 754 3	7375
2.22	1.1140	•5557	• 5665	3137	.7382	•7527	~.735 5
2.23	1.1202	.5613	• 5635	3103	. 7474	. 7506	7337
2.24	1.1266	.5670	.5604	3070	.7574	.7486	7319
2.25	1.1330	.5725	.5573	3037	•766 ⁹	.7465	7300
2.26	1.1305	•5781	•5543	3005	.7765	.7445	7282
2.27	1.1462	•58 36	.5513	2974	.7860	•7425	7264
2.23	1.1529	.5891	.5434	2942	.7956	.7405	7246
2.29	1.1598	•5946	•5454	2912	.8051	.7385	722e
							7010
2.30	1.1657	•6000	.5425	2981		. 7366	7210
2.31	1.1739	• 60 55	•5317	2752		•7346	7193
2.32	1.1"07	•6103	•5363	2822		•7327	7175
2.33	1.1892	•6162	,5340	2773		•7308	7158
2.34	1.1956	•6215	.5312	2765	.8527	.7289	7140
			E 115	2737	-8622	.7270	7123
2.35	1.2031	.6268	•5285 •5254	2709		.7251	7106
2.36	1.2106	•6321	.5231	26+2		.7232	7089
2.37	1.2184	.6373	•5231 •5204	2655		.7214	7072
2.30	1.225?	•6425	.5178	- • 2629		•7196	7056
2.39	1.2341	.6477	• 3x + 6	- (202)	. 502	•,,,,,,	
2 40	1.2422	•652ª	•5152	-,2603	•9097	.7177	7039
2.40	1.2503	•65 TO	.5126	2577		.715"	7023
2.41 2.42	1.25.5	•5632	.5100	2553		.7141	7006
2.43	1.2670	•6682	.5775	2527		.7124	6990
2.44	1.2756	.6733	5047	2502		.7106	6974
2 + TT	አቀ <i>ሬ</i> ተ 10	*9103		, , . .	_ ,, =		•
2.45	1.254?	•67 33	.5025	2478	.4570	.7088	6958
2.46	1.2 39	. 34	.5000	2454		.7071	6742
2.47	1.301	. 6F 13	.4 175	2431		.7054	••6926
2.4	1.3107	• 51 33	.4 151	2407	1 .1455	.7037	6910
2.49	1.3201	.6092	. 4927	239	9947	.7019	6894

x	GAMME .	F-3	031	472	25/VP \$1	VPS1 PS	S2/PS1++3/2
2.50	1.3293	.70.52	. 4004	2362	1.0041	.7003	6979
2.51	1.33%	.70 - 0	4 3 37	-,2340	1.0136	.6386	6863
3.52	1.34-5	.7123	4 357	231		•6969	684
2.53	1.35 0	•717	4 3 3 4	2296	1.0324	•6952	6833
2.54	1.367	. 72.26	4311	-,2275	1.0324	•6436	-•6818
24.74	14301	• 72.20	• • • •	- 12213	1.041,	•6 •30	-40014
2.53	1.3777	.7214	• 4739	2254	1.0512	•6320	6803
2.56	1.3:7	.7322	. 4766	2233	1.0606	•6°03	6780
2.57	1.35 41	• 736°	. 4744	2213	1.0700	•6987	6773
2.54	1.40 4	.7416	• 4723	2132	1.0793	•6371	675H
2.59	1.4170	.7464	• 4 700	2173	1.0887	-6855	6743
200				722.5	2000,7	• • • • • • • • • • • • • • • • • • • •	207.10
2.60	1.4296	.7510	•4673	2153	1.0981	.6840	6729
2.61	1.4404	. 7557	.4657	2134	1.1074	-6824	6714
2.62	1.4514	.7604	.4635	2114	1.1168	.6803	6700
2.63	1.4625	.7650	.4614	2076	1.1262	.6793	6695
2.64	1.4733	.7696	.4593	2077	1.1355	.6778	6671
		•••	• • •		101000	••••	***************************************
2.65	1.4852	.7742	• 4573	205A	1.1448	.676 2	6657
2.50	1.4969	•7787	. 4552	2040	1.1542	.6747	6643
2.67	1.5045	•7F33	.4532	2022	1.1635	.6732	6629
2.69	1.5204	•7F79	.4512	2005	1.1728	.6717	6615
2.6°	1.5325	•7923	• 4492	1987	1.1822	.6702	6601
						.	
2.70	1.5447	• 79 68	.4472	1970	1.1915	.6687	6587
2.71	1.5571	.3012	4453	1º53	1.2008	.6673	6574
2.72	1.5676	• 80 57	4433	1°36	1.2101	•6658	6560
2.73	1.5924	.3101	. 4414	1º20	1.2194	-6644	6547
2.74	1.5953	·8145	· 4395	1903	1.2287	•6629	6533
2.75	1.60R4	.8189	• 4376	1887	1.2380	•6615	6520
2.76	1.6215	•8233	.4357	1871	1.2472	.6601	6507
2.77	1.6351	•9276	• 433°	-+1855	1.2565	6587	6493
2.73	1.6447	•831 ⁹	· 4 320	1840	1.2658	•6573	-•6480
2.79	1.6625	.8363	•4301	1824	1.2751	•6559	6467
2.80	1.6765	·8405	•4283	1809	1.2843	.6545	6454
2.41	1.6-07	• R 4 40	• 4 265	1794	1 • 29 36	•6531	6441
2.92	1.7051	• 3471	.4247	1779	1.3028	•6517	-•6 42 8
2.33	1.7196	• 1533	4230	1765		•6504	6416
2.84	1.7344	•8575	.4212	1750	1.3213	-6490	6403
							_
2.85	1.7494	• 8617	•4195	1736	-	-6477	-•6390
2.86	1.7646	• 4659	.4177	1722		•6463	6378
2.87	1.7799	• 4701	•4160	1709		.6450	636 5
2.88	1.7255	• 3742	.4143	1694		•6437	-•6353
2.89	1.8113	•੪ 7 ⋴ 4	• 4126	1681	1.3674	•6424	6341
	4 0004	35.00					
2.90	1.8274	88 25	.4110	1667		•6411	6328
2.71	1.8436	. 45 66	.40+3	1654	1.3850	•639A	6316
2.72	1.2600	• 9° 97	• 4077	1641		-6385	6304
2.73	1.8767	• 45 4 3	• 4 0 6 0	1623		•6372	-•6292
2.94	1.8036	• 49 88	. 4044	1615	1.4134	• 6359	6280
2.95	1.9100	•9028	A 0.2 ->	- 1000	1 4226	(***	- (2(9
2.95	1.9291	•4088	•4028 •4012	-•1602 -•1590		•6347	6268
2.97	1.9457	• 1109	• 4012 • 3036	1577		•6334 6321	6256
2.48	1.9636	• 1149	• 3 3 3 10	1565		•6321 •6301	6244 6233
2.99	1.9-17	.9188	• 3 7 6 5	1553		•6297	6233 6221
∠ • 1.7	## / L f	 >▼ ○ ○ 	• J (G)	- * T 122	F 6 4 7 7 7 7	*OZ71	- • 0 • 2 1

							1001 1/2
×	STAMPA &	p3	PIL	889	PS/VPS1	VP'31	PS2/PS1++3/2
`	• • • •			1541	1.4604	.629	4 -,6209
3.00	2.0000		3941	1521		.627	
3.01	2.01%	·1267	. 3 < 54	151"		. 626	06186
3.02	2.0374		. 3 11 1	1503		.624	36175
	2.0555		.3434	1435		.623	66164
3.03	2.075	• 33 45	.3337	14"	1 1.70		
3.04					1.5141	.622	46152
	2.0755	1423	. 3574	- 1413			26141
3.05	2.1153	. 1462	.3 '5"	147		_	06130
3.06	20110	, 1501	. 5 (44	-,146	· ·		
3.07	2.1355	153ª	.3330	145	1.5414		
3.03	2.1553	1577	.3915	143	9 1.5505	, , , , , ,	, ,
3.07	2.1766	• 3				.610	656097
		. 3615	. 3301	142	9 1.5596	-	
3.10	2.1976	1653	. 3787	141	3 1.568		
3.11	2.2183		.5773	140	3 1.577	61	
3.12	2.2405	- 16 11	.375 ⁴	139	7 1.536	.61	
3.13	3.2623	• 372 ⁻³	.3745	138		9 .61	196053
3.14	2.2345	. 3766	*2143	• • • •			1017
J. Z.			~ ~ 7 1	13	77 1.605	0 .61	086043
3.15	2.3069	្ន ក <u>ុខ</u> ្ព ា 4	.3731	~.136		1 .60	976032
	2.3297	• 4F 41	.3717	13		.60	1866021
3.16	2.3524	. 4873	.3703	13		2 .60	756011
3.17	2.3762	.a⊹15	.3500	13		-	1636000
3.1%	2.399	, 30 52	.3677	13	36 18652		
3.19	2.0///	•			28 1.65	3 .60	3525990
	2 4040	.9488	.3663	13			0425979
3.20	2.4240	1.0025	. 3650	13			0315969
3.21	3.44-3	1.0061	.3637	13			020 5959
3.22		1.0032	. 3624	13		•	009 - 5948
3.23	2.4991	1.0134	.3611	12	91 1.63	64 • 6	00,
3.24	2.5235	Tenta	•00				998 5938
		4 0170	•3599	12	282 1.69		
3.25	2.5472	1.0170	35 15	13	73 1.70	-	
5.26	2.5754	1.0206	.3573	1	264 1.71	_	
3.27		1.024?	.3360	1	255 1.72		3467 590H
3.28	- 1001	1.0277		1	246 1.73	15 •	5956 5898
3.29		1.0313	.3547	4 2			
J• L			****	1	238 1.74	105 -	59465888
3.3	0 2.6°34	1.0348	. 3535		227 1.7	195	5935 5878
		1.0334	,3523	- • 1	221 1.79	5×5 •1	59255869
3.5		1.0417	.3510	- • 1	212 1.7		5915 -•585 8
3.3			• 34 h	_			59045849
3.3	/		· 34 46	1	204 1.7		
3.3	2 2 5 7 7	-		_	196 1.7	Q 5 4 •	58945839
	3 2.827	1.0523	.3474			143 •	5884 5824
3.3	0.0671		• 346J	1			5374 5920
3.3	- 11 TV		. 34 38	· - • :		-	5464 5810
3.3	37		. 543	٠			5854 5800
3.	38 2.31		.3427	:	1164 1.8	3212	1994
3•3	3a 2.94ª	2 Tingor					58445791
	_	07.36	. 5419	5 -•			
3.	40 2.9-1	2 1.0646	740	4 - •	1149 1.	_	~~~
5.	41 5.013			•	1141 1.7	, , , , ,	
	42 3.045			-	1133 1.	–	.
	45 3.074	2 1.07ª 3		_	1125 1.	3659	.58055754
	44 3,113	1.05.31	. 331	•	-		
,•	• •		.335	.n →-	1111 1.		.57955744
٦.	45 3.146	3 1.0/65			1111 1.	as37	.57865735
	46 5.1	7 · 1 · 0 · · · ·	. 334	•		4426	.57765726
	.47 3.21	36 1.05 S.	333	, .	1006 1.	0015	.57675717
	44 3.25	10 1.00 65	,333			71 04	.5757570F
			. 331	.4		- - ·	
3	· 49 3+27	-					

X	GAMMA ,	P.3	P 71	P32 F	PS/VPS1	VPS1 PS	2/PS1++3/2
3.50	3.3233	1.1032	• 3 3 04	1082	1.9193	.5748	5699
3.51	3.3503	1.1065	• 32 93	1075	1.9282	•5738	5690
3.52	3.3-77	1.1097	. 32 12	1063	1.9371	•5729	5691
3.53	3.4357	1.1130	. 3271	1061	1.9460	.5720	5672
3.54	3.4742	1.1163	.3261	1054	1.9548	.5710	 5663
3.55	3.5132	1.1195	.3250	1048	1.9637	-5701	5654
3.56	3.552°	1.122	.3240	1041	1.9726	•5692	5645
3.57	3.5930	1.1260	.3230	1034	1.9914	•5683	5636
3.5d	3.633	1.1242	•321°	1023	1.9303	.5674	5628
3.59	3.6751	1.1325	• 3209	1021	1.9991	•5665	561 ^q
3.60	3.7170	1.1357	•3199	1015	2.0090	• 5656	5610
3.61	3.7525	1.1389	.3189	1009	2.0168	.5647	5602
3.62	3.8026	1.1420	•317°	1002	2.0256	5638	-•55°3
3.63	3.8464	1.1452	·316 ·	0996	2.0345	•5629	5585
3.64	3.8907	1.1484	•3159	0990	2.0433	•5620	5576
3.65	3.9357	1.1515	.3149	0994	2.0521	-5611	5568
3.66	3.9814	1.1547	.3137	0979	2.0609	•5603	555°
3.67	4.0277	1.1578	.3129	0972	2.0697	•5594	5551
3.68	4.0747	1.1609	.3120	0966	2.0785	•5585	5543
3.69	4.1223	1.1640	.3110	0960	2.0873	•5577	5534
3.70	4.1706	1.1672	.3100	0954	2.0961	•5568	5526
3.71	4.2197	1.1702	•3091	0949	2.1049	• 5560	5513
3.72	4.2674	1.1733	.3081	0942	2.1137	.5551	-• 5 507
3.73	4.3199	1.1764	.3072	0937	2.1225	•5543	5501
3.74	4.3710	1.1795	•3063	0931	2.1313	.5534	54 93
7 75	4.4230	1.18.25	.3053	0925	2.1400	.5526	5485
3.75	4.4757	1.16.56	.3044	0920	2.1488	.5517	5477
3.76	4.5291	1.1886	•3035	0514	2.1576	.5509	5469
3.77 3.78	4.5833	1.1033	.3026	0909	2.1663	.5501	5461
3.79	4.6383	1.1547	.3017	0904	2.1751	•5493	5453
3.80	4.6942	. 1.1977	.3008	0898		.5484	5445
3.81	4.7508	1.2007	• 2 799	0893	2.1926	•5476	5437
3.82	4.8022	1.2037	• 2 9 9 0	0888		•546B	542°
3.83	4.8665	1.2067	-2931	0882	2.2100	-5460	~•5 4 22
3.84	4.9257	1.2096	•2972	0877	2.2188	.5452	5414
3.85	4.9857	1.2126	.2964	0872	2.2275	.5444	5406
3.86	5.0456	1.2156	. 2955	0867		.5436	~.539 8
3.87	5.1034	1.21 95	.2946	0862		-5428	5391
3.88	5.1711	1.2715	2433	-,0857		.5420	5383
3.89	5.2347	1.2244	• 2929	0852		-5412	5375
3.90	5.2993	1.2273	• 2 921	0847		-5404	5368
3.91	5.3642	1.2302	•2312	0942		• 5396	5360
3.42	5.4313	1.2332	·2 004	0938		•5389	
3.73	5.4980	1.2361	• 2335	0°33		•5381	
3.94	5.5673	1.2339	•2337	0828	2.3058	•5373	5338
3.95	5.6367	1.2418	.2374	0823	2.3145	• 5365	
3.96	5.7073	1.2447	.2 171	0417	2.3232	•5353	
3.97	5.7794	1.2476	.2962	0114	2.331H	•5350	
3.98	5.8515	1.2504	. 2 354	 0∺0¹	2.3405	•5343	
3.99	5,9252	1.2533	.2846	0805		•53 3 5	5301
J 4 / 7	397636		- -				

X	GAMMA ,	P3	PS1	993	PS/VPS1	VPS1 P	32/PS1••3/2
4.00	0.0000	1.2561	•243-	0400	2.3573	•5323	5293
4.01	5.075	1.25 (3	.2 30			.5320	-•52º6
4.02	1539	1.261	.2 322		2.3751	•5313	-• 527 ^G
4,93	3.231 2	1.2645	. 114		2.3837	•5305	•• 5272
4.04	4.310 %	1.2674	. 2 - 07	- 07:3	2.3924	•5298	~•5265
7107	4.714.5					• 32 75	~.3263
4.05	5.3711	1.2792	• 27 ⁹³	0773	2.4010	•5290	~•5257
4.06	2.472 ·	1.2730	.2771	0774	2.40 96	•5243	5250
4.07	5•555 N	1.275	.2733	0770	2,4192	•5276	5243
4 • D ·3	a.640.2	1.27 36	• 2776	0765	2.4261	•5263	5236
4.09	4.725 9	1.3813	• 27u3	0761	2.4355	• 5261	522 9
4.10	6.8126	1.28 41	.2760	0757	2.4441	.5254	5222
4.11	9.9007	1.2:64	• 2 753		2.4527	.5247	5215
4.12	5.902	1.28.36	. 2 745		2.4613	• 5240	5208
4.13	7.0 10	1.25.24	.2739		2 • 46 99	• 5232	5201
4.14	7.1732	1.2551	.2730	0741		•5225	5194
4.15	7.2659	1.2978	•2723	0737		•5218	5187
4.16	7.361 3	1.3005	.2716	0733		•5211	5181
4.17	7-45 / 3	1.3032	.2703	0729		.5204	5174
4.19	7.5563	1.3050	.2701	0725		•5197	5167
4.19	7.6557	1.3086	. 2694	0721	2.5214	•5190	5160
4.20	7.7567	1.3113	.2637	0718	2.5299	•5183	5153
4.21	7.8541	1.3140	• 267°		2.5385	•5176	5147
4.22	1.9632	1.3167	·2672	0710		.5170	5140
4.23	3.0603	1.3194	• 2665	0706		•5163	5133
4.24	3.1761	1.3220	• 2 65 3	0703		•5156	5127
4.25	3.2950	1.3247	• 2651	0693	2.5727	•5149	5120
4.26	3.3156	1.3273	. 2644	0695		•5142	5114
4.27	3.5073	1.3300	• 2 15 37	0692		•5135	5107
4.23	3.6220	1.3326	• 2630	0688		•5123	5100
4.29	8.7377	1.3352	• 262 4	0685		•5122	5094
						¥3122	•30)4
4.30	3.8553	1.3377	.2617	0691		•5115	5087
4.31	3,9747	1.3405	.2610	0677		•5109	5081
4.32	∍.0 55 a	1.3431	• 2 o 03	0674		•5102	5074
4.33	7.2170	1 • 3457	• 2596	0671	2.6409	•5096	506°
4.34	7.3440	1.3433	• 2590	-•0667	2.6494	•5089	5062
4.35	9.4710	1.3509	. 2583	0664	2.6579	•5082	5055
4.35	a.5993	1.3534	. 2577	0550	2.6664	•5076	50 4º
4.37	7.730 €	1.3560	• 2570	0657	2.6744	• 506 +	5043
4.33	1.8630	1.3536	.2563	0654	2.6833	•5063	5036
4.39	3.9999	1.3611	.2557	0650		•5057	5030
4.40	10.1360	1.3637	·2550	0647	2.7003	•5050	 5024
4.41	10.2754	1.3662	.2544	0544	2.7084	• 50 4 4	501 ⁸
4.42	10.4159	1.363	•2537	0641	2.70%	.5037	5017
4.45	10.5605	1.3713	•2531	0637	2.7257	.5031	5011 5005
4.44	10.7055	1.5733	•2525	0634	2.7342	•5025	4990
•							
4.45	10.9547	1.3764	•2513	0631	2.7426	•501 u	4993
4 • 46	11.0053	1.37 11	•251?	-•0634	2.7511	•5012	4987
4.47	11.150.2	1.3 14	•2305	0625		•5006	4981
4.44	11.3136	1.38.39	• 25 9 0	0622		• 50 00	4975
4.47	11.4714	1. 35 64	·24 ·13	0619	2.7764	.4 793	4968

×	GAMMA .	P ;	P 31	0/32	P3/VP31	VPS1 PS2/PS1++3/	Ĵ
4.50	11.6317	1.34 30	.2487	0616	2 7040	4.207 4.24	
4.51	11.7:45	1.3:14	• 24 · · · · · · · · · · · · · · · · · ·	0616	2.7849	•4987 -•4962	
4.52	11.9533	1.3933	•2475 •2475	0613 0610	2.7933	•4981 4956	
4.53	12.1277	1.363	•2461	0610	2.8017	•4975 -•4950	
4.54	12.2186	1.3089	•2463	0604		4969 - 4944	
7007	12.5 00	1.00000	• 245)	0604	2.8185	•4963 -•493 9	
4.55	12.4720	1.4012	•2457	0601	2.8270	•4957 -•4933	
4.56	12.64 41	1.4037	·2451	05 98	2.4354	•4951 - •4927	
4.57	12.8271	1.40.51	. 2445	0595	2.8438	•4945 -•4921	
4.34	13.0039	1.40 36	• 243 ⁹	0592	2.8522	•4939 -•4915	
4.53	13.1736	1.4110	• 2433	-•0589	2.8606	•4933 -•4909	
4.60	13.3812	1.4134	• 2427	0586	2 • 86 90	•4927 -•4903	
4.61	13.5719	1.4157	.2421	0534	2.8774	•4921 -•4897	
4.62	13.7656	1.4143	.2416	05×1	2.8857	.49154892	
4.63	13.3623	1.4207	.2410	0573	2.8741	·49094886	
4.64	14.1623	1.4231	.2404	0575	2.9025	·4903 -·4880	
4.65	14.3654	1.4255	• 2393	0572	2.9109	.48974874	
4.66	14.5719	1.4279	• 2392	0570	2.9193	•4891 -• 4869	
4.67	14.7516	1.4303	.2387	0567	2.9276	•4886 -• 4863	
4.68	14.9947	1.4327	•2381	0564	2.9360	•4880 -• 4857	
4.69	15.2113	1.4351	• 2376	0562	2.ºº443	•4874 -• 4852	
			42010	40302	20 113	64074 64032	
4.70	15.4313	1.4374	.2370	0559	2.9527	.48684846	
4.71	15.6549	1.4393	.2364	0556	2.9610	.48624841	
4.72	15.8921	1.4422	2359	0554	2.9694	.48574935	
4.73	16.1130	1.4445	•2353	0551	2.9777	•4851 -•4829	
4.74	16.3477	1.4469	·2348	0549	2.9861	•4845 -•4824	
4.75	16.5861	1.4492	•2342	0546	2.9944	-48404818	
4.76	16.8294	1.4515	.2337	0544	3.0027	.48344813	
4.77	17.0747	1.4539	. 2331	0541	3.0110	.48284807	
4.78	17.3249	1.4562	.2326	0539	3.0194	.48234802	
4.79	17.5793	1.4585	•2321	0536	3.0277	-48174796	
4.50	17.8378	1.4608	.2315	0534	3.0360	•4812 -•4791	
4.H1	13.1005	1.4632	.2310	0531	3.0443	.48064786	
4.82	18.3675	1.4655	.2305	0529	3.0526	•4801 -•4780	
4.83	13.6382	1.4678	• 22 99	0526	3.0609	.47954775	
4.84	13.9146	1.4701	. 2 294	0524	3.0692	•4790 -•4769	
4 05	40 4054						
4.85	19.1950	1.4724	• 2289	0522	3.0775	.47844764	
4.46	17.4793	1.4746	• 2 2 3 4	~.0517	3.0858	.47794759	
4.37	1 1.7625	1.4769	•2279	0517	3.0941	•4773 -•4753	
4.89	20.0639	1.4702	• 2273	0515	3.1024	•4768 -•4748	
4.89	20.3631	1.4P15	• 2268	0512	3.1106	•4763 -•4743	
4.90	20.6673	1.4837	.2263	0510	3.1189	.47574738	
4.71	20.9764	1.4 60	· 2255	050A	3.1272	•4752 -•4732	
4.72	21.2107	1.4893	·2253	0506	3.1355	•4747 -•4727	
4.43	21.6102	1.4905	. 2 248	0503	3.1437	•4741 -•4722	
4.94	21.9347	1.4527	.2243	0501	3.1520	.47364717	
4.95	22.2651	1.4350	.223°	0499	3.1602	•4731 -•4711	
4.76	22.6007	1.4972	.2233	0497	3.1635	.47254706	
4.77	22.941	1.4905	.2223	0474	3.1767	.47204701	
4. 14	23.2897	1.5017	. 2223	0492	3.1350	•4715 -•4696	
4.99	23.6414	1.5039	. 2219	0490	3.1932	.47104691	
		-		· •			

Y	GAMMA ,	P.3	P31	P32	PS/VPS1	VPS1 PS	32/PS1**3/2
5.00	23.9998	1.5051	.2213	~.04 89	3.2014	. 4704	4 686
5.01	24.3643	1.50-3	220:	04 16	3.20 7	4699	4681
	24.7344	1.5105	.2204	04 4	3.217	. 4694	4676
3.02	25.1116	1.51.27	.0131	- 04 12	3.2261	·4687	4671
0.03	25.4047	1.5149	.21 34	0479	3.2343	.4684	4666
5.04	23.4747	1. 714	• 2. L / 1	• • • •	., , , , , , ,	• 101,1	• , 5 5 5
5.05	25.8541	1.5171	•2183	0477	3.2426	.4679	4661
5.06	26.2001	1.5143	.2134	0475	3 • 25 09	.4674	4656
5.07	25.6/27	1.5213	.2187	0473	3.2590	.4663	4651
5.03	27.0021	1.5237	.2175	0471	3.2672	.4664	4646
5.09	27.50 3	1.5258	.2170	0469	3.2754	•4659	4641
3.07	2.1430 3	14 32 30					
5.10	27.9316	1.5280	.2165	0467	3-2836	• 4653	4636
5.11	23.361	1.5302	.2161	0465	3.2713	.4648	4531
5.12	20.7996	1.5323	.2156	0463	3.3000	.4643	4626
5.13	21,2445	1.5345	.2152	0461	3.3081	.463 8	4621
5.14	23.6971	1.5366	.2147	0459	3.3163	.4634	4616
3414	2.40 .2						
5.15	30.1573	1.5388	.2142	0457	3.3245	.4629	4611
5.16	30.6253	1.5409	.2135	0455	3.3327	.4624	4607
5.17	31.1012	1.5431	.2133	~.0453	3.3409	.461 9	4602
5.14	31.5852	1.5452	·2123	0451	3 • 34 70	.4614	4597
5.19	32.0773	1.5473	.2124	0450	3.3572	.4609	4592
3.42							
5.20	32.5779	1.5494	.2120	0448	3.3653	-4604	4587
5.21	33.0:63	1.5516	.2115	0446	3.3735	.4599	-•4583
5.22	33.6046	1.5537	.2111	0444	3.3817	•4594	457R
5.23	34.1312	1.5558	.2106	0442	3.3898	•4590	4573
5-24	34-6667	1.5579	.2102	0440	3.3979	• 4585	-•4568
5.25	35.2114	1.5600	• 209B	0438		.4580	4564
5.26	35.7653	1.5621	• 2073	0437		•4575	4559
5.27	36.3258	1.5642	• 2047	~•043 5		.4570	4554
5.28	36.9019	1.5662	·2085	0433		• 4566	-• 45 50
5.29	37.4849	1.5683	.2030	0431	3.4386	. 4561	4545
					7 4467	AEE/	- 4540
5.30	38.0777	1.5704	.2076	0429		• 4556	-•4540 -•4536
5.31	33.6603	1.5725	2072	0424		•4552 •4547	4531
5.32	39.2343	1.5746	.2067	0426		•4542	4526
5.33	37.9143	1.5765	.2063	0424		.4537	4522
5.34	40.5531	1.5787	· 2059	0422	344172	• 4331	
	41 1000	1.5807	.2055	0421	3.4873	.4533	4517
5.35	41.1989	1.5-29	• 2 050	0413		•4528	4513
5.36	41.8556 42.523ª	1.5843	2046	0417		.4524	4508
5.37	43.2035	1.5067	.2043	0416		.4519	4504
5.38	43.8951	1.5889	.2033	0414		.4514	4499
5.39	43 60731	1.000	• 2 00 1				
5.40	44.5 985	1.5-10	.2034	0412	3.5279	.4510	4495
5.41	45.3142	1.5° 30	.2030	0411		.4505	4490
5.42	46.0423	1.5050	2026	040		.4501	44R6
5.43	46.75 30	1.5770	.2022	-,0407		- 4496	4481
5.44	47.5357	1.5971	.2017	0406		•4492	4477
78.44	1, 255 - 1		2				
5.45	43.3034	1.6011	.2913	0404	3.5682	.4487	4472
5.46	41.0935	1.0031	. 200	0402	3.5762	• 4483	
5.47	47.8772	1.6051	-2005	0401	3.54.43	.4478	
5.49	50.6547	1.6071	.2001	033		.4474	4450
5.49	51.5064	1.60 71	• 1977	039	3 5.6004	• 4469	4455
- • • •							

У	in 19Mp g	f**;	0.91	ndb	PS/VPS1	VPS1 P	\$2/P\$1••3/2
5.50	52.3424	1.0111	.1345	0396	3 • 60 ∘ 4	. 4465	~.4450
5.51	53.1:30	1.5151	1 151	-+0395 0395		• 4460	4446
9.92	54.05 6	1.6151	.1 136	03/3		• 4456	4442
4.53	54.0373	1.6171	•1 •32	0311		• 4452	
9.54	55.4355	1.61.10	•1 17:1	0390	3.6406	4447	4433
					546100	• • • • • • • • • • • • • • • • • • • •	• 1 7 3 3
5.55	55.7474	1.5210	•1 →74	0383	3.6487	. 4443	4429
5.55	57.67 3	1.6230	1 → 7 9	0347		.4433	4424
5.57	53.61.65	1.5250	• 1 165	0335		.4434	4420
5.53	51.5 05	1.6269	• 1º46?	~.03 44		.4430	4416
5.54	6 3.5 5/3	1.6237	• 1959	0392	3.6808	.4425	4412
5.50	61.5534	1.6308	• 1°55	0381		.4421	4407
5.61	62.5661	1.6328	•1 151	0379		.4417	
5.62	63.5167	1.6347	• 1 747	0378		• 4412	-•4399
5.63	64.64.15	1.6367	• 1 343	0376		• 4409	4395
5.64	65.7129	1.6386	•1939	0375	3.7208	.4404	-•4390
5 75	44 7300	1 (10)	4/37/		* ***		
5 • 65	66.79°2	1.6406	•1936	0374		.4400	4386
5 • 56	67•9047 63•0300	1.6425	•1 •32	0372		.4395	4382
5•67 5•68	70.1751	1.6444	•1 328 •1325	0371		.4391	4379
5.69	71.3407	1.6463 1.6493	•1725	0369		• 43 87	4374
2.0	11.5401	1.04.20	•1 '21	0368	3.7608	•4383	4370
5.70	72.5270	1.6502	•1917	0366	3.7687	. 4379	4366
5.71	73.7345	1.6521	•1-114	0365		.4374	4361
5.72	74.9535	1.6540	•1 110	0364		.4370	4357
5.73	76.2145	1.6559	.1906	0362		•4366	4353
5.74	77.4979	1.6578	•1903	0361		.4362	4349
5.75	79.7839	1.6597	• 1 9 9 9	0360	3.8086	•4358	4345
5.76	A0.1031	1.6616	•1 ५ ₹5	0358	3.8166	•4354	4341
5.77	d1.4460	1 • 66 35	•1 392	0357		•4350	4337
5.78	82.8130	1.6654	• 1 889	0356		• 4346	-•4333
5.79	84.2045	1.6673	•1885	0354	3.8404	.4341	4329
5.80	45 (21.0	1 ((0)	1 001	0757	7 24 24	4777	
5•80 5•81	45•6210 47•0630	1•66°2 1•5711	• 1 8 8 1 • 1 9 7 3	0353		• 4337	4325
5.92	87.5307	1.6729	•1873 •1374	0352 0350		• 4333 • 4329	-•4321 -•4317
5.43	30.0253	1.6744	•1871	0349		.4325	4313
5.84	91-5466	1.6767	•1867	0348		•4321	4309
34	. 200 100	100.00	12007	••••	340002	4 7321	• • • • • • • • • • • • • • • • • • • •
5.85	93.0954	1.6735	. 1964	0346	3.8881	.4317	4305
5.46	94.6721	1.65 04	.1860	0345		.4313	1301
5.47	96.2773	1.6223	.1857	0344		.4309	4297
5.44	97.9116	1.6 41	•1 153	0343	3.9119	•4305	4293
5,99	97.5753	1.6860	• 1 350	0341	3 • 91 9 8	.4301	4289
5.00	101.2633	1.6978	•1347	0340		•4297	4285
> 1	102-9341	1.6047	.1345	0337		•4293	4281
5+12	104.7500	1.6-15	.1 140	0338		•4297	4277
5.73	196.537	1.6 33	•1 36	0336		• 4285	4274
5.34	103.3593	1.6952	•1 333	0335	3,7593	•4281	4270
5.15	110.2119	1.6970	• 1 3 30	0334	3,9672	_ A 9 7 u	4266
5.76	110.07-2	1.67 33	• 1.376	0333		•4278 •4274	
5.47	114.000	1.7007	•1 123	0331		•4270	-•4258
5,44	115.7776	1.7025	1 1 20	0330		•4266	4254
5,99	117.9701	1.7043	.1317	0329		• 4262	4251
	· -	· -					

y	1.4 JAK 1	1.5	231	252	P3/VP31	VPS1 PS2/PS1++3/2
o • 00	111.5970	1.7061	•1 313	- 0336	6 0067	A050 A0A7
)1	122.0450	1.707:	.1 10	032° 0327	4.0067	•425B -•4247
5.02	124.1003	1.7077	-1 107	-,0327	4.0145 4.0224	•4254 -•4243
73	126.3111	1.7115	•1305	0324		•4251 -•4239 •4247 -•4235
4.04	12.4-27	1.7133	1300	0323	4.0382	•4243 -•4232
.14.0.4	X 1 1 0 14 2 2	10/1/5	• 1 . 30	- 10323	4.0302	• 7243 - • 4232
0.05	130.7144	1 • 71 51	•1737	0322	4.0460	•4237 -•422P
6.75	132.575	1.7169	.1794	0321	4.053	.42354224
5.37	135.2-03	1.71 1	•1771	0320	4.0617	.42324228
o • 0 ·	137.6274	1.7205	.1737	031		•4228 -•4217
6.63	140.0170	1.7223	. 1 7 34	0319	4.0775	•4224 -•4213
6.10	142.4507	1.7241	•1781	0316	4.0853	.42204209
5 • 11	144.3202	1.7259	•177	0315	4.0932	.42164206
· 12	147.4535	1.7276	.1775	0314	4.1010	.42134202
0.15	150.0244	1.724	.1772	0313	4.1089	•4209 -•41 99
6.14	152.6424	1.7312	• 1768	0312	4.1167	• 4205 -•41 95
o•15	155.3098	1.7330	•1765	~•0311	4.1245	•4202 -•41 91
5 • 16	153.0251	1.7347	•1762	0710	4.1323	·4198 ~·4187
b • 17	163.7929	1.7365	• 1 75°	0307	4.1402	.41944184
6.13	163.6107	1.7312	•1 756	0309	4.1480	•4191 ~•4180
6 • 1 9	166.4809	1.7400	•1 753	0307	4.155R	•4187 -•4176
6.20	163.4845	1.7417	•1750	0305	4.1636	.41834173
5.21	172.3524	1.7435	•1747	0304	4.1715	•4180 -•416 ⁹
6.22	175.4159	1.7452	.1744	0303	4.1793	•4176 -•4166
5.23	173.5057	1.7470	.1741	0302	4.1871	•4172 -•4162
6.24	181.6531	1.7437	.1739	0301	4.1949	.41694159
6.25	184.8572	1.7505	.1735	0300	4.2027	•4165 -•4155
6.26	183-1252	1.7522	•1732	0299	4.2105	•4161 - •4151
b.27	191.4522	1.7539	•1723	0298	4.2193	•4158 -•414P
6.23	174.8415	1.7556	•1726	0297	4.2261	·4154 -·4144
6.29	198.2941	1.7574	.1723	0296	4.2339	•4151 -•4141
(70	201 0117	1 7501	1 700	0.005		
6.30 6.31	201.8113 205.3045	1.75°1 1.7609	•1720	0295		•4147 -•4137
6.32	20 1.0450	1.7625	•1717 •1714	0294	4.2494	•4144 -•4134
6.33	212.7540	1.7642	•1711	0293 0292	4.2572 4.2650	•4140 -•4130 •4137 -•4127
5.34	216.5528	1.7659	•1709	0291		•4137 -•4127 •4133 -•4123
3.04	21003323	141037	•1105	0271	4.2125	•4133 -•4123
u . 35	220.4129	1.7677	.1705	0290	4.2805	.41304120
5,36	224.3455	1.76 74	.1792		4.2833	.41264116
0.37	223.3522	1.7711	.1037	0289	4.2761	•4122 -•4113
6.38	252.4344	1.7728	•1577		4.3038	.4117410°
6.37	236.5331	1.7745	• 1 694	0286	4.3116	•4116 -•4106
5.40	240.8315	1.7761	•1671		4.31 94	•4112 -•4102
5.41	24 3.14 9.3	1.7773	.16%		4.3271	.41074099
6 • 42 6 • 43	24 3.54 26	1.7775	•1635		4.3349	•4105 -•40°6
5 • 4 3 5 • 4 4	254•0313 254•5984	1.75 12 1.75 2)	• 1 6 32 1 6 9 0		4 - 34 26	•4102 -•4092 •000
U • 44	2J5•075"	101721	.1690	0231	4.3504	•4098 -•408°
4.45	263.2529	1.745	.1577	0231	4.35 11	·4095 -·4095
19.49	207.9452		.1974		4 • 36 58	•4031 -•4082
6.47	272.8076	1.71.71	.1,71		4.5736	.40834079
6.4	277.7515	1.7€ 16	•166"		4.3313	.40854075
63 . 44	232.7612	1.7 12	• 1666	027?		.40814072

	ia ime	r ,	1	*	247VP31	VP31 P	52/231++5/2
5 • • ()) 1 T	1 7	• / •	0.0.14			
	237.6.24	1.7	•1.563	0276	4.346	• 407	-•406°
1		1 - 7 - 45	1 (1)	0275	4.4045	.4074	4065
14 + 3.1	3 - 4024	1.7.52	• 1 5 7	0274	_	.4071	4052
· • • •	333.4135	1.7 79	•1993	0073	4.4190	4063	4057
12 4 1 14	307.5076	1 • 75 05	•155	0272	4.4276	•4064	- • 4055
· · · · · · · ·	514 + 144 71	1.4012	•1647	0271	4.4353	.4061	4052
hadti	300.673	1. 00	.11,44	0270	4.4431	•405B	4041
· • • 7	32 3651 0 3	1 • 40 45	•1.344	0270	4 • 45 0 4	. 4054	4045
> . `>'\	357.4573	1.9051	• 1 > 41	- • 1) n p +	4.45 ()	• 40 51	4042
6• 5⁴	33 1,500 3	1.4074	• 1 b 3 · 2	026R	4.4662	• 4 0 4 4	4039
b • · · 0	344.6 44	1.004	•1636	0267	4.4733	. 4844	4036
5.51	393.944	1.4110	• 1 0 5 5	0266	4.4816	4041	4032
0.03	357.4125	1.3127	• 1 • 30	0265	4.4872	•4031	4029
4, 6, 5	367.4537	1.143	•1625	0264	4.496	•4035	4026
5 - 64	373.6196	1.3159	•1625	0264	4.5046	•4031	4025
	3.0001 3	10 /13	V13 7	40234	4 5 5 4 6	• 4031	- 402.1
ი•65	377.4143	1.8175	• 1622	0263	4.5123	.4028	4019
9 • 6 b	344.334	1.3132	·1320	0262	4.5200	·4025	4016
6.67	311.3440	1.3203	•1517	-,0261	4.5277	• 4021	4013
ا ز ور	3+1.5739	1.4224	• 161)	0260	4.5353	•4019	4010
5.51	405.9278	1.8240	•1 •12	025g	4.5430	.4015	4006
6 • 70	413.4032	1.3256	•160°	025∂	4.5507	.4012	4003
0.71	421.0230	1.3272	•1:07	0259	4.55 8.3	•4009	4000
o • 12	42 3 . 7 10 3	1.3234	• 1 2 0 4	0257	4.5660	•4005	3997
6.73	435.7079	1.3304	•1503	0256	4.5736	• 40 02	3994
6.74	444.7757	1.9320	•1599	0255	4.5813	•3999	3991
6.75	453.0061	1.3336	•15 17	0254	4.5890	•3996	3987
5.76	461.3929	1.4352	•15∃4	0254	4.5966	•3993	3984
5.77	467.3424	1.3363	•1592	0253	4.6043	•3789	3991
6 - 73	473.6530	1.4344	•1539	0252	4.6119	•3486	39 7 8
6.79	497.5429	1.3400	•1537	0252 0251	4.6195		
0.17	4114542	1. 1400	• T 3 3 I	0231	4 • 61 77	•3983	3975
6.40	476.6007	1.8416	-1594	0250	4.6272	-3980	3972
6 • 41	505.2343	1.9432	• 1531	0250	4.6349	• 3977	3960
5. (2	515.2455	1.3443	• 1574	0243	4.6424	•3974	3966
6 . 13	524.3463	1.0463	•1577	-,0243	4.6501	• 3971	3762
6 • 34	534.6309	1.9479	•1574	0247	4.6577	• 3967	3959
6.95	544.6066	1.8495	•1572	0246	4.6653	. 3964	3956
5.36	554.7767	1.511	• 1561	0246	4.6730	• 3761	3053
6.57	565.1461	1.0526	•1567	0245		•3953	3950
6.38	575.7184	1.3542	• 1564	0244	4.6882	3955	3947
6.49	596.4974	1.8557	• 1562	0243	4.6958	• 3952	3944
6.40	597.41.76	1.3573	•155	0243	4.7034	• 3949	3941
5 • 11	603.633	1.053+	• 1 557	-,0242	4.7110	• 3146	- • 393A
o • 42	620.1146	1.3604	•1555	0241	4.7136	• 3 ¹ 4 3	 3935
6.33	651.79 3	1.000	• 1552	0240	4.7260	• 30 40	- • 39 32
6 • 14	643.646	1. 3635	•1 550	0240	4.7333	•3937	3929
4, 15	653.7591	1.3651	•1547	0231	4.7414	•3734	3926
n • 16	66 1.10 15	1. 1696	• 1545	023	4.74-0	•3,21	-,3023
17 . 17	6 0.7036	1. 16.32	•1545	0237	4.7566	.3129	3720
6.1	6:3.5442	1.0007	• 1 540	0237	4.7642	•3725	3917
6+ 49	703.6380	1.4712	• 1534	0236	4.7710	• 3121	3914

>	14.72 MM	۲,	*11	P 12	P5/VP\$1	VP31 PS2/PS1++3/2
7.00	720.0	1.3723	.1.51	0235	4.7794	.39133911
7.01	733.	1.3745	1 3 3 5	0235	4.7369	•3113 •• 5700
7.02	747.5	1.375	1731	0.254	4.7045	
7.03						•3 12 -•3 10 5
	761 - 7	1.7/4	152	0:53	4 . 0 2 1	-3 10 370?
7 - 0 4	770 - 1	1.3733	• 1 325	0232	4.8077	•3°97 -•38°°
7.00	Vall * 3	1.4 04	• 1 5.24	0232	4.8172	.34043R96
1.06	0.	1 . 20	• 1501	0731	4 * 24°	·3°01 -·3993
7 • 9 7	<21 · ?	1.3-35	• 1 · 1 ·	0230	4.7324	•34a; -• 34a0
7 - 0 %	430. "	1 50	• 1 i 17	0230	4.0337	.30953897
1.04	352.7	1.9° 65	•1515	0229	4.8475	·389238H4
7.10	ეგ° ₊ 0	1.95.80	•1512	0228	4.8550	•3839 - •3881
7.11	424. a	1.38 15	•1510	0223	4.8626	•3836 • •3879
7.12	102 4	1. 10	•150°			
7.13	11 7	-	-	0227	4.0701	.38833876
	137.2	1.3 25	•150°	0236	4.8777	.38803°73
7 - 1 4	131 • 2	1 • 30 41	•1503	0226	4.8852	•3877 -•3870
7-15	755.2	1. 40.56	.1501	0225	4.8928	.38743967
7.16	173 . 4	1.3771	• 14 -7 7	0224	4.7003	•3871 -•3°64
7.17	392.1	1. → ч6	• 14 ⁻³ 6	0224	4.9070	•3569 ••3°61
7.18	1011.1	1.4000	• 1494	0223	4.7154	•3366 •• 385°
7.19	1030.5	1.9015	•1492	0222	4.9229	.39633956
7.20	1050.3	1.5030	•1490	0222	4.9304	•3860 -•3953
7.21	1070.5	1.1045	• 1430	0221	4.9377	.34573450
7.22	1031.1	1.7060	. 14 35	0220	4.9455	•3854 -•3847
1.23	1112.1	1.4075	.14.3	0220	4.9530	•3851 -•3844
7.24	1133.5	1.4090	1491	0219	4.4605	.38483841
1424	1133.3	1	• T.4. 2T	0217	4. 000	•3545 -•3541
7.25	1155.4	1105	.1479	0218	4.9680	•3846 -•383®
7.26	1177.7	1.3113	.1477	0218	4.4755	•3843 -•3 836
1.27	1200.4	1.0134	.1474	0217	4.4830	.38403933
7.23	1223.6	1. 1149	.1472	0216	4.9405	.38373339
7 +29	1247.3	1.4164	•1470	0216	4.9980	.38343827
7.30	1271.4	1. 4173	•146n	0215	5.0055	•3+31 -•3°25
7.31	1296.1	1,9193	.1466	0314	5.0130	•3527 ••3122
7.32	1321.2	1.3203	.1464	0214	5.0205	•3526 -•3819
7.33	1345, 1	1.0222	•1463	-,0213	5.0280	.3H233916
7.34		1.9237	.1457			.38203914
7.07	1373.4	1,4237	•143	0213	5.0355	.38203914
7.35	139 . 6	1.4251	.1457	0212	5.0430	.38173811
7.36	142t. • 1	1.92 56	·1455		3.050S	.3919380°
1.37	1454 • 6	1.4230	. 1455	0211	5.0530	.38123905
7.3%	1440.	1.7215	.1451	0710	5.0554	.38073903
7.37	1511 • 5	1.7307	•1449	0210	5.0729	• 39 06 •• 3NDO
7.40	1941.3	1.3324	.1447	0209	5.0904	.38043797
7.41	1 171 - 4	1.3533	1449	0209	5.037	• 3RO1 -• 3794
7.42	1600.1	1.355	.1445			• 3793 - • 3799
7.45	1.33.4	1, 2353	.1441		5.10?	• 3795 -• 3783
7.44	1665.4	1.9392	•143°	0207	5.1103	•3793 -•3786
1.45	165% • 0	1. 13 6	•1435	0206	5.1177	.37903784
1-46		1. 1410	. 1454		0 • 1252	.37373781
7.47	$1765 \cdot 2$	1. 425	•143D	0305		•3735 -•377°
7 . 4 .	179 • 1	1. 143 4	-1430	0 20 4) • 14 O 1	.37823779
7.49	1 (35 + 2	1.453	1428	0204	3.1475	•3779 -•3773

•	as summar	***	., 11	•	nt./vPS1	VP51 P52/P51++3/9
7.09	1 71.3	1. 140	.1925	0203	5.1550	.37763770
7. 1	1.0.1	1.44	.1424	0207	5.1624	.37743767
1.	14	1.34	. 14		1.16 (0)	.37713765
2.13		1. 4.10	.14 3	0201	17/5	.37613762
7.59	1375.0	1.0524	.141	0201	0.1141	.37663760
* . ,			• • • •	• 7	744 17	• 1700 - • 5780
1.55	.1062.	1 . 25, 3 2	• 1419	0200	1.1922	•3763 -•3757
7 . 10	1103.4	1. 11:55	.1414	0200	5.1746	.37603754
7.57	2145.7	1. 557	.1412	01	0.0071	.37513752
7.50	1117.6	1. 46, 1	•141ii	01	5.2145	.375;374
7.54	2230 • 9	1.4595	.1404	01গ৪	5.2219	.37523746
	0.37/ 0	1 0 () 0				
7.60	2275.0	1.9609	.1405	0197	5.2293	.37503744
7.51	2.520 • 1	1.0623	.1404	01 17	5.2367	.37473741
7.52	2565 • 1	1.36.57	-1403	0146	5.2442	•3745 - • 373
7.55	2413.3	1 • 46 51	• 1 4 00	01 16	⇒. 251 ե	•3742 - •3736
7.54	2460.3	1.9665	•1374	01 35	5.2590	•3739 -•3733
7.65	2509.9	1.9672	• 13%	0195	5.2664	•3737 -•3731
7.56	255-1	1.36 3	•1374	01 14	5.2730	•3734 -•372
7.57	2610.7	1.1707	.1392	01.44	2512	•3732 -•3726
1.6	2662.5	1.7721	.1 591	0175	5.2836	•3729 -•3723
7.69	2715.7	1.9735	.13:2	0193	5.2760	•3726 -•3720
1407	2. 1 2 3 4 7	147733	• 1 3	-•01-3	3 • 2 • 6 0	•3128 -•3120
7.70	2769. 1	1.9749	.1387	0192	5.3034	.37243718
7.71	2 25.1	1.9763	•13 ↔	0191	5.310 3	.37213715
7 - 72	2001.5	1.9777	.13.5	0191	5.3182	•3717 -•3713
7.73	2 3 1 1	1.9799	• 13 '1	01°0	5.3256	.37153710
7.74	2397. н	1. 3/ 04	•137 ⁴	0170	5.3330	•3714 -•370¤
1.75	3057•°	1.9813	•1377	0189	5.3403	•3711 -•3705
7.70	511 • 9	1. 49.32	•1375	~.0143	5.3477	•3708 -•3703
7.77	3181 • 5	1. 145	.13/3	0139	5.3551	·3706 - · 3700
7.72	3245.3	1.9859	.1371	0133	5.3625	
1.79	3310.4	1.9873	•1371	0187	5.3699	•3703 -•3699 •3701 -•3695
1 • 1)	331044	1.6 /6 /3	• 137U	-•0101	34 36 77	•3701 -•3675
7.40	3375.9	1.9807	.136%	0187	5.3772	•3693 -•3693
7 • 1	5444	1. 00	• 1364	01-46	5.3946	•3696 -•3690
1.42	3514.7	1 • 1 • 14	• 1 304	0136	5.3920	•3693 -•3 699
7.33	5584.7	1.1.27	.1362	0135	5.3993	.36913685
7.84	3655 • 1	1. 9941	•1360	0185	5.4067	•3688 - •3683
7.85	1770 <i>(</i>	1 0055	1.750	_ ^*4	E 49.40	7/0/ 7/00
7.35	3730 • 6 5 '0 • • '	1•9955 1• ¹⁶ 63	•135°	0184	5.4140	•3686 -•3680
		1.1.62	•1357	- 0184	5.4214	• 3683 - • 3678
7.37	5 (82 • 6 3 (61 • 9		•1355	0143	5.4283	•3681 -•3675
7.3.		1.0005	•1353	0193	5.4361	.367 (3673
7.83	3041.0	2.0000	•1351	0182	5 • 44 35	.36763670
7.70	4122.7	2.0022	•1347	0182	5.450B	.36733668
7. 11	1200.1	2.0036	•1347	0131	5.4591	.36713665
7.92	4271.3	2.0044	.1344	01 11	5 • 46 55	.36633663
7.73	437	2.0053	.1544	01-0	5.4700	.36693660
7 - 5 4	4460.	2,0076	•1342	01:0	5.4802	•3663 -•3658
7 10	466.2	2 04 0	1 7 6 0	0.4 300	E hall	7/61 1/5/
7.75	4557.6	2.00.0	.1349	0179	5.4975	.36613656
7.16	4650 - 1	2.0101	. 1 5 5		5,4949	•365 · ••3653
7.17 7.31	1/44 · ; 4 41 · 0	2.0116 2.0130	.1:57		5.5022 5.6099	•3656 -•3651
7.99			.135:	-,0174	5.5095	.3654364°
1 • • • •	4 13 . 4	2.0143	. 1.533	0177	5.516	. 3651 3646

‹	14 444	10.5	931	5.15	95/VP31	VP 31 - P0	52/PS1++5/2
	. 3 6 3 . 0	2.0156	. 1 3 3 1	0177	5.5241	. 3649	3643
4.00	1040.9	· -		0177	5.5314	. 3646	3541
.01	1147 • 6	2.0170 2.013	•1330 •132	- 0176	5.5331	. 3644	3531
. 7.7	5247.5	2.0176	152		5.5461	3642	3636
- 93	5554.5	2.0210	.1324	0175	5.5534	.3637	3534
S • 04	5463 • 7	2.0210	• 1324	.0173	30333	•••	•
05	5575.3	3.0223	•1323	0175	5.5607	• 3637	3531
.05	5 d 3	>.0236	.1321	0174	5.5630	.3634	3521
17	3.0.6	2.0243	•131	0174	5.5753	• 3632	3627
. 0 -3	5024 - 4	2.0262	.1317	0173	5.5926	.3630	3624
∃•0 →	6045 - 7	2.0276	.1315	0173	5.5899	. 3627	3622
. •							
4.10	616-6	2.0289	.1314	0172		• 3625	-,3620
4.11	5256 • 1	2.0302	•1312	0172	5.6045	.3622	3617
4.12	u425.2	2.0315	• 1 310	0171	5.6115	.3620	3615
.13	áb57 • 1	2.0329	•130 ·	0171	5.6191	.3613	3613
3.14	6691 • A	2.0341	.1307	0171	5.6264	•3615	3610
				0470	C /777	7617	3608
8.15	682" • 4	2.0354	.1305	0170	5.6337	• 3613	3606
₹•16	5 16 7	2.0367	. 1304	0170	5.6410	• 3611	3608 3603
५.17	7113.3	2.0360	•1302	016 ^q	5.6482	• 36 08 • 36 06	3601
□ • 1 ◄	7254 . "	2.0343	.1300	0169	5.6555	.3604	3599
4.19	740° • 5	2.0406	•1293	0168	5.6628	• 36 07	-• JJ 7 ·
8.20	7562 • 3	2.0419	•1277	0168	5.6701	.3601	3596
4.21	771% 3	2.0432	•1295	016P	5.6773	• 3599	3594
8.22	7377.7	2.0445	.1274	0167	5.6846	.3597	3592
B.23	3040.5	2.0458	.1292	0167		.3574	3589
3.24	3206.7	2.0471	.1290	0166	5.6991	.3592	3587
342.		-					
8 - 25	8376.5	2.0484	•1289	0166		•3590	3585
4.26	35411.0	2.0497	.1297	0165		•3537	3592
1.27	3727.0	2.0510	• 1 2º5	0165		• 3585	3580
3.24	३७ ०७ • व	2.0522	1284	0165		•3583	-•357°
8.29	9092.7	2.0535	1282	0164	5.7354	-3580	3576
u 70	0.261 6	2.0548	•1280	0164	5.7427	. 3578	3573
H.30	9281.4 9474.1	2.0561	.1279	0163		.3576	3571
3.31 3.32	7671.0	2.0574	.1277	0163		.3574	356°
4.33	1972 • 1	2.9536	.1275	0162		.3571	3567
8.34	10077.5	2.0599	.1274		5.7717	• 3569	3564
0131	1007703	2003					
R.35	10287.3	2.0612	.1272	0162	5.7789	• 3567	3562
3.36	13501.6	2.0625	•1271	0161	5.7861	. 3564	3560
3.37	10720.5	2.0637	•126)	0161	5.7934	• 3562	3557
1.34	10 144.1	2.0650	•1267	0160	5.3006	• 3560	 3555
5 . 39	11172.5	2.0663	•1265	0160	5.8078	• 355 8	3553
	11405 0	2.0675	•1264	0160	5.8151	•3555	3551
R • 40	11405.8 11644.2	2.0633	.1263	015		.3553	3549
3.41	11007.7	2.0701	•1261	0159		.3551	3546
. 42	12135 • 4	2.0713	•1251	015		.3541	
4.43	12390.5	2.0726	•1253	015		.3547	3542
4.44	[2370+3	20125	■ # 2 / /	.013	. 22 2		
4.45	12650.0	2.0738	• 1 256	015		.3544	
4.46	12/15.0	2.0751	•1255	0157		.3542	
. 47	131 6 - 1	7.0753	•1253	0157		• 3540	3535
8.44	13462.0	2.1775	•1252	01%	_	.353R	3533 - 3531
H.49	13745.5	2.0783	•1250	0156	5 5.8800	• 35 35	3531

×	14447	100	• .1	PRZVPS	1 VP31 P	\$27851++372
50	14034.4	2.0/01	.1244	0156 5.887	2 • 3533	45.00
.51	1432 . 4	1.0.13	.1347	0155 5.144		3529
. 12	14550.	7.0 76	.1245	0155		*•3527 *•3524
5	14.5	2.0 11	.1244	0154 5.70%		
- 54	15253.5	2.0851	•1 244 •1242	0154 5.416		3522
•) 4	1))) • ,	T• AV 7T	• 1 d 47		0 .3524	3520
.55	15575.0	2.0163	.1241	0154 5.923		351°
•ာ6	15403.5	2.0 76	•123°	0153 5.030	4 .3520	3516
·· • 57	1923 • 1	2.0 B9	•123×	0153 5-937	6 • 351 }	3513
Sec. 3.7	15981.	2.0 -00	· 1 · 56	0153 5.944	3 3516	3511
₹.53	16432.2	2.0413	•1235	0152 5.951	• 3514	3507
3.60	17240.2	2.04.25	.1253	0152 5.959	1 •3511	3507
8.61	17555	2.0:37	.1231	0151 5.966		350%
.62	1 (029 - 6	2.0.50	.1230	0151 5.973		3503
0.53	1 1411 . 4	2 • 9% 62	•1223	0151 5.980		3501
4.64	18801.5	2.0474	.1227	0150 5.987		3498
8.65	1 1200.1	2.0986	1005	0150 5 DOE	0 7501	7404
R • 66	13607.5		•1225	0150 5.995		3496
^ •66 В • 57	20023.7	2.0(30	•1224	0150 5.002		3474
9.68		2.1011	•1222	0144 6.009		3492
	2044 1.0	2.1023	.1221	0149 6.016		34ªN
B•69	209H 3 • 5	2.1035	•1219	0149 6.023	7 •3492	34 8R
4.70	21327.6	2.1048	.1218	0148 6.030	8 .3490	34R6
9.71	21781.4	2.1060	•1217	014× 6.038		3494
3.72	22245.1	2.1072	•1215	0147 6.045		34R2
3.75	22 71°•)	2.1084	•1214	0147 6.052		3479
B.74	23203.2	2.1096	.1212	0147 6.059		3477
5.75	23698.0	2•11 0 8	.1211	0146 6.066	6 •3479	~.3475
8.76	24203.7	2.1120	.1209	0146 6.073		3473
3.77	24720.5	2.1132	•120±	0146 6.080		
H.7H	2524°•6	2.1194	•1206	0145 6.088		~•3471 ~•3469
8.79	25788 . 3	2.1157	•1205	0145 6.095		~•3467
0 • 1 2	2310:43	201131	• 1203	0140 6-040	1 • 34/1	** 3 1 6 /
B . B O	2633°• °	2.1169	.1203	0145 6.102	3 • 3469	3465
· .81	25903.5	2.11:1	.1202	0144 6.109	4 .3467	3463
٠ - 2	27470.6	$2 \cdot 11 \cdot 5$.1200	0144 6.116	6 •3465	3461
8.93	2306% 4	2.1205	• 1177	0144 6-123	7 • 3463	·• 3459
8.34	23670.1	2.1217	•1198	0143 6.130	8 .3461	3457
8.85	2 1285 0	2.1229	•1196	0143 6.137	9 •3459	3454
4. 16	27/13.5	2.1241	•11 5	0143 6.145		3452
. 17	33555.3	2.1252	•113	014? 6.152		3450
4.44	31212.4	2.1264	•11 12	0142 6.159		3448
n • dià	31863.4	2.1276	-1170	014? 6.166		3446
8.90	3256% 2	2.1288	.1193	0141 6.173	5 .3448	3444
5. 11	33270.2	2.1300	.1199	0141 5.140		3442
1. 12	33270.	2.1312	• 11/35	0141 5.150		3440
1.15	5471 • 0	2.1324	• 1155	0140 5.174		343°
H • 14	35467.5	2.1336	•1133	0140 0.202		-•343" -•3436
	J.) (U I • 3	72 4 2 (1 (1 ()	• I I I I	+0110 0+202	.U • J T T U	• 57 50
8.75	35232 • 5	2.1347	•11.2	0149 6.209	1 .3439	3434
3.46	37014 + 6	3.1359	-1111	0137 5.216		3432
3.17	37313+3	2.1371	-1171	0.31 5.223	. 3434	3430
न । भ	51630.	2.13.3	-117	-+0137 5+230		342"
3.97	3 1466 . 1	2.1395	•1177	0138 6.237	5 •3430	3426

¥	JAMM1	₽;	031	712 PS/VP	31 VPS1 F	PS2/PS1++5/2
+.00	4331,.	2.1406	• 1175	013 + 6.24	A/ 3A20	7404
4.31	41152.3	2.1406	•1173			
1.02	420445	1.1430	•1179	0135 3.25		3422
1.03		2.1442		-,0137 5.25		3420
	4376.5		.1171	0137 6.26		3410
1.04	43.421.65	2.1453	•1170	0137 6.27	23 •3420	3416
1.05	44381.3	2.1465	•115ª	0136 5.2R	00 • 3418	3414
4,05	45 155 . 4	2.1477	•1167	0135 6.24		3412
.07	51 • 1 5 • ٥٠	14 To	• 1166	0136 6.29	4? • 3414	3410
₹ •0 3	47 6 . 0	2.1500	.1164	0135 6.30		340g
4.04	4370 .6	2.1512	.1163	0135 6.30	P3 • 3410	3406
1.10	4 3973 . 4	2.1523	•1161	0135 6.31	54 .3408	3404
1.11	51961.0	2.1535	•1160	0134 6.32		3402
→.12	52172.	2.1546	.115	0134 6.32		-• 3400
13	5330 . 4	2.1550	.1157	0134 5.33		3398
9.14	54471.5	2.1570	•1156	0134 5.34		3396
7.14	377110	2.1770	•1136	-,0134 5.34	37 -3400	33"6
9.15	5565° • 5	2.1581	.1155	0133 6.35	07 .3398	3394
1.16	56 174 • 1	2.1593	•1153	0133 6.35	71 .3396	3393
1.17	54115.7	2.1604	•1152	0133 6.36	49 .3394	3391
4.14	5-1385.4	2.1616	.1151	0132 6.37		-• 338°
9.19	60685.4	2.1627	•114 ^q	0132 6.37		3387
9.20	62010.4	2.1639	•1148	0132 6.38	60 •3388	3385
1.21	33367.2	2.1650	.1147	0131 6.39		 33 83
1.22	64754 • 5	2.1662	.1146	0131 6.40		33H1
1.23	66172	2.1673	.1144	0131 6.40		-•337°
9.24	67623.1	2.1685	.1143	0130 6.41		~.3377
	0782541	201003	• • • • • •	10130 3141	42 • 336 1	
4.25	63105 · A	2.1646	.1142	0130 6.42	12 .3379	3375
1.26	70:522 • 0	2.1797	•1140	0130 6.42	33 -3377	3373
4.27	72172.1	2.1719	•1137	0130 6.43	53 • 3375	3371
9.2ª	73757 • 2	2.1730	•1130	0129 6.44	23 •3373	-•336°
9.29	75377.9	2.1742	.1136	0127 6.44	94 .3371	336A
9.30	77035.1	2.1753	•1135	~.0129 6.45	64 .3369	-•3366
1.31	7 3720 • 7	2.1764	.1134	0128 6.46		3354
4.52	30462.4	2.1776	•1133	0129 6.47		3362
9.33	62234.2	2.17:7	•1131	0129 6.47		3360
9.34	84045.0	2.1798	.1130	0128 6.48		3358
1.35	85899 • 6	2.1009	•1129	0127 6.49	15 .3360	3356
1.36	н 77 9 3.1	2.1: 21	•1127	0127 6.49		3354
1.37	H 1730 - 3	2.15.32	•1126	0127 6.50		-•3354 -•3352
7.34	71711.4	2.1 43	•1125	0126 6.51		3351
9.39	93737.2	2.1:55	.1124	0126 6.51		3349
) • J •	73131 • 2	2.1. 33	1144	-•0150 0•01	*B •3332	334
4.40	า540≒ า	2.1966	•1122	0126 6.52		3347
7.41	77.27.5	2.17.77	.1121	0126 5.53	36 . 3344	3345
1.42	100074+7	2.1081	.1120	0125 6.54	06 .3347	3343
1.45	102 501 - 5	7.11 77	.111'	0125 6.54	70 .3345	3341
1.44	104575.4	2.1°11	•1117	0125 6.55	46 • 3343	3339
1.45	106 //2 • 6	2.19.22	•1115	0124 6.56	16 .3341	3337
4.46	10 3262 . 3	2.153	•1115	0124 6.56		3336
1.47	1115 "	7.1744	.1114	0124 6.57		-, 3334
4.40	114164.4	2.1955	.1112	0124 6.58		3332
1.41	11569% 3	2.1906	.1111	0123 5.58		3330
						· · ·

7.50 11-251.7 2-1-77 .11100123 0.5766 .3332332-1-1-1 121-45.1 2-1-63 .110-10123 0.003. 3330332-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	×	GAMMS	F 2	P 31	002 P 1/VPS1	VPG1 PS27PS1++372
121 121 13.1 2.10 31 110 -0123 0.00 0.00 0.00 13.50 -3.50 13.50 12.00 11.00 -0122 0.6427 0.326 -3.321 -3.35 12.00 13.00	7.50	119961.7	2.1.17	1110	- 0103 G 5044	33.10 - 310.1
1-02 124054, 7 2.2010 1100 -0123 0.6100 .3121 3325 .354 .3526 .3324 .354 130764, 2 2.2022 .1105 -0122 6.6245 .3326 3321 .354 .3526 .3323 .3526 .3324 .3521 .354 .3526 .3323 .3526 .3323 .3526 .3323 .3526 .3324 .3521 .3526 .3324 .3521 .3526 .3324 .3521 .3526 .3322 .3521 .3526 .3522 .3521 .3526 .3521 .3527 .3526 .3521 .3527 .352						
1.55 12742 3 2.2011 1.105 0122 6.6245 3324 3321 1.56 130166.1 2.2032 1.105 0122 6.6245 3324 3321 1.56 130133.4 2.2034 1.103 0121 6.6353 3321 3317 1.57 13116.4 2.2035 1.101 0121 6.6353 3321 3317 1.58 142272.0 2.2066 1.100 0121 6.6254 3317 3318 1.59 14547.6 2.2077 1.003 0121 6.6264 3317 3318 1.59 14547.6 2.2088 1.008 0121 6.6594 3317 3318 1.60 143695.2 2.2088 1.008 0120 6.6644 3313 3308 1.61 15201.3 2.2089 1.007 0120 6.6644 3313 3308 1.62 15541.5 2.2110 1.095 0120 6.6633 3311 3308 1.63 153487.0 2.2121 1.094 0120 6.6673 3330 3305 1.64 162444.6 2.2132 1.003 0119 6.6742 3306 3303 3.65 166080.4 2.2133 1.091 0119 6.6742 3304 3301 3.66 16300.1 2.2153 1.091 0119 6.7012 3304 3301 3.67 173604.7 2.2164 1.087 0119 6.7151 3301 3297 3.69 181477.4 2.2186 1.087 0118 6.7290 3297 3298 3.70 185540.7 2.2197 1.096 0118 6.7290 3297 3294 3.71 193715.8 2.2217 1.094 0117 6.7637 3288 3299 3.72 133778.8 2.2211 1.094 0117 6.7637 3288 3299 3.73 143355.9 2.22240 1.081 0117 6.7637 3288 3299 3.74 202795.3 2.2240 1.081 0117 6.7637 3288 3299 3.75 207357.2 2.2251 1.0980 0117 6.7707 3266 3283 3299 3.76 212023.0 2.2252 1.071 0116 6.7984 3.279 3294 3.77 2133778.7 2.2294 1.075 0116 6.7984 3.279 3299 3.77 226678.7 2.2294 1.075 0116 6.7984 3.279 3266 4.96 257337.0 2.2245 1.096 0117 6.6960 3.267 3267 3.87 227103.7 2.2350 1.067 0116 6.8960 3.274 3271 3.98 235442.1 2.2306 1.076 0116 6.8960 3.267 3266 4.99 287965.6 2.2412 1.063 0113						
100 100						
4.55 133166.1 2.2035 .11040122 0.6315 .33223319 1.50 13413.4 2.2035 .11010121 6.6324 .33173317 1.5116.4 2.2095 .11010121 6.6324 .33173318 1.554 142272.0 2.2066 .11000121 6.6524 .33173318 1.554 142272.0 2.2066 .11000121 6.6524 .33173318 1.554 142272.0 2.2066 .11000121 6.6524 .33173318 1.554 142272.0 2.2099 .10370121 6.6524 .33173318 1.554 1.52015.3 2.2099 .10370120 6.6633 .33113310 1.661 152015.3 2.2099 .10370120 6.6633 .33113310 1.661 152015.3 2.2011 .10950120 6.6633 .33113308 1.63 153489.0 2.2121 .10930112 6.6942 .33063303 1.6316 1.63 153489.0 2.2121 .10930112 6.6942 .33063303 1.664 162444.6 2.2132 .10930112 6.6942 .33063303 1.664 16300.1 2.2153 .10910112 6.6942 .33063303 1.664 16300.1 2.2153 .10910112 6.6942 .33063303 1.664 16300.1 2.2153 .10910112 6.7082 .3302 .3297 1.674 175604.7 2.2164 .10870112 6.7082 .3302 .3297 1.674 17740.5 2.2175 .10820112 6.7082 .3302 .3297 1.674 1775604.7 2.2164 .10870112 6.7082 .3302 .3297 1.3297 1.674 1775604.7 2.2164 .10870112 6.7082 .3302 .3297 .3294 1.71 187715.4 2.2208 .10810112 6.7368 .3297 .3294 1.72 139375.0 2.2217 1.0840112 6.7429 .3229 .3222 1.72 139375.0 2.2217 1.0840112 6.7568 .3229 .3222 1.72 1.0840117 6.7568 .3220 .3227 .3224 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72						
4.55	4.34	130,64.	2.5032	•1195	0122 6.6245	•3324 -•3321
4.59 1316 4 2.2095 110010121 6.6524 .33173318 1.59 145447.6 2.2077 10930121 6.6524 .33173514 1.59 145447.6 2.2077 10930121 6.6524 .33173512 1.66 1152016.7 2.2099 10 10 10 10 10 10 10 10 10 10 10 10 10	4.55	133166.1	2.2033	•1194	0122 5.6315	•3322 -•3319
4.59 145272 2.2066 .1100 0121 6.6524 .3317 3318 4.59 14547.6 2.2077 .1093 0121 6.6594 .3315 3312 9.60 143695.2 2.2088 .1038 0120 6.6664 .3313 3310 9.61 152016.3 2.2099 .1037 0120 6.66733 .33311 33108 9.62 155414.5 2.2110 .1095 0120 6.6933 .3310 33108 9.64 162444.6 2.2132 .1093 0112 6.6942 .3306 3303 9.65 166900.4 2.2143 .1092 0112 6.6942 .3306 3303 9.66 164900.1 2.2153 .1091 0112 6.7082 .3302 3222 9.66 164900.1 2.2153 .1091 0112 6.7082 .3302 3222 9.68 177450.5 2.2175 .1093 0113 6.7221 .3293 3227 9.69 181477.4 2.2186 .1087 0118 6.7221 .3293 3224 9.70 185540.7 2.2197 .1096 0118 6.7260 .3227 .3224 9.71 18715.4 2.2208 .1095 0113 6.7429 .3294 3220 9.72 13935.9 2.2212 .1081 0117 6.7569 .3290 .3227 9.73 19335.9 2.2222 .1042 0117 6.7569 .3220 .3224 9.74 202795.3 2.2220 .1081 0117 6.7569 .3220 .3227 9.77 202795.3 2.2220 .1081 0117 6.7569 .3228 .3228 9.77 215790.3 2.2223 .1071 0116 6.7776 .3288 .3225 9.79 226678.7 2.2224 .1075 0116 6.7984 .3273 .3228 9.79 226678.7 2.2234 .1075 0116 6.7984 .3273 .3276 9.80 231790.3 2.2335 .1077 0116 6.7984 .3273 .3276 9.80 231790.3 2.2337 .1077 0116 6.8953 .3276 .3276 9.80 231790.3 2.2360 .1064 0114 6.8851 .3276 .3276 9.80 231790.3 2.2340 .1065 0115 6.8054 .3276 .3276 9.80 231790.3 2.2340 .1066 0114 6.8953 .3267 .3266 9.81 231790.5 2.2340 .1066 0114 6.8967 .3276 .3276 9.90 28785.6 2.2412 .1065 0115 6.8076 .3267 .3266 9.91 28785.7 2.2345 .1065 0115 6.8077 .3264 .3265 9.92 30100.1 2.2435 .1065 0112 6.	1.50	135133.4	2.2044	.1103	0121 6.6335	.33213317
4.59 145447.6 2.2077 .10030121 6.6594 .33193312 9.60 149695.2 2.2088 .10 80120 6.6664 .33133310 9.61 152016.3 2.2099 .10 970120 6.6673 .33113308 9.62 155414.5 2.2110 .10950120 6.6673 .33113308 9.63 153499.9 2.2121 .10930120 6.6873 .33033306 9.64 152444.6 2.2132 .10930112 6.6942 .33043303 9.65 166090.4 2.2153 .10910114 6.7012 .33043303 9.66 163900.1 2.2153 .10910114 6.7082 .33023297 9.68 17745.5 2.2175 .10930118 6.7221 .32993296 9.69 181477.4 2.2186 .10870118 6.7221 .32993296 9.69 181477.4 2.2186 .10870118 6.7221 .32993294 9.70 185549.7 2.2174 .10860118 6.7360 .32953292 9.71 189715.8 2.2213 .10940117 6.7499 .32943290 9.72 173579.8 2.2213 .10840117 6.7568 .3290 .3297 9.73 174335.9 2.2224 .10810117 6.7568 .3290 .3297 9.74 202795.3 2.2240 .10810117 6.7567 .32863287 9.74 202795.3 2.2240 .10810117 6.7637 .32883287 9.74 202795.3 2.2240 .10810117 6.7637 .32863281 9.77 21509.1 2.2251 .10900116 6.7716 .32833281 9.78 21790.3 2.2252 .1079 .0116 6.7716 .32833281 9.79 226678.7 2.22243 .1077 .0116 6.7794 .32833280 9.70 231790.3 2.2305 .10740116 6.7944 .3279 .3276 9.80 231790.3 2.2305 .10740116 6.7949 .3274 .3274 9.79 226678.7 2.2236 .1072 .0115 6.8054 .3273 .3276 9.80 231790.3 2.2305 .10740116 6.7946 .3269 .3274 9.94 253442.9 2.2348 .1070 .0114 6.8331 .3271 .3267 9.99 287465.6 2.2412 .1066 .0114 6.8369 .3265 .3262 9.99 287465.6 2.2412 .1066 .0114 6.8369 .3265 .3265 9.99 287465.6 2.2412 .1066 .0114 6.8367 .3265 .3265 9.99 287465.6 2.2412 .1064 .0113 6.8076 .3265 .3265 9.99 287465.6 2.2412 .1066 .0114 6.8367 .3265 .3265 9.99 287465.6 2.2412 .1066 .0114 6.8367 .3265 .3265 9.99 287465.6 2.2412 .1066 .0114 6.8367 .3265 .3265 9.99 287465.6 2.2412 .1066 .0114 6.8091 .3257 .3266 9.99 287465.6 2.2412 .1066 .0114 6.8091 .3257 .3266 9.99 287465.6 2.2412 .1066 .0114 6.8091 .3250 .3267 9.94 31003.7 2.2344 .1055 .0116 6.9091 .3255 .3265 9.99 287465.6 2.2412 .1066 .0114 6.806 .3260 .	4.57	15116 . 4	2.2055	.1101	0121 6.6455	.33193319
4.60 149695.2 2.2088 .10 940120 6.6664 .33133310 9.61 155015.3 2.2099 .10 970120 6.6664 .33133310 9.62 155414.5 2.2110 .10 950120 6.66733 .33113308 9.62 155414.5 2.2110 .10 950120 6.6873 .33113308 9.62 155414.5 2.2111 .10 940120 6.6873 .33103306 9.63 153489.9 2.2121 .10 9301120 6.6873 .33043306 9.666 163400.1 2.2153 .10 930112 6.6972 .3306 .33023209 9.65 166080.4 2.2132 .10 930112 6.6972 .3306 .3303 9.65 166080.4 2.2132 .10 930112 6.6972 .3306 .3300 9.65 166080.1 2.2153 .10 910112 6.7082 .33023299 9.67 175604.7 2.2164 .10 870112 6.7082 .33023299 9.67 175604.7 2.2164 .10 870112 6.720 .33073207 9.68 17749.5 2.2175 .10 830118 6.7221 .32993296 9.69 181477.4 2.2186 .10 870118 6.7221 .32993294 9.70 185540.7 2.217 .10 860118 6.7260 .32953292 9.71 19715.4 2.2207 .10 950118 6.7260 .32973294 9.73 19335.9 2.2217 .10 860118 6.7360 .32953292 9.73 19335.9 2.2213 .10 840117 6.7568 .3290 .32973287 9.74 202795.3 2.2240 .10 810117 6.7568 .3290 .32973287 9.74 202795.3 2.2240 .10 810117 6.7568 .3290 .3287 9.74 202795.3 2.2240 .10 810117 6.7568 .3290 .3287 9.74 202795.3 2.2240 .10 810117 6.7637 .32883285 9.74 202795.3 2.2240 .10 810117 6.7637 .32883287 9.74 202795.3 2.2240 .10 810117 6.7637 .32883287 9.74 202795.3 2.2240 .10 810117 6.7637 .32883287 9.74 202795.3 2.2240 .10 810117 6.7637 .32883287 9.74 202795.3 2.2240 .10 810117 6.7637 .32863287 9.74 202795.3 2.2240 .10 810117 6.7637 .32863287 9.74 202795.3 2.2240 .10 810117 6.7637 .32863287 9.74 202795.3 2.2240 .10 810117 6.7637 .32863287 9.74 202795.3 2.2240 .10 810117 6.7637 .32863287 9.74 202795.3 2.2240 .10 810117 6.7637 .32863287 9.74 202795.3 2.2240 .10 810117 6.7637 .32863287 9.74 202795.3 2.2245 .10 700116 6.7940 .32673286 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75	4.54	142272	2.2066	.1100	0121 6.6524	.331/3314
9.61 152015.3 2.2009 10.970120 6.6733 .33113308 9.62 155414.5 2.2110 11.0950120 6.6803 .33103306 1.63 15940.7 2.2121 1.0940120 6.6873 .33073306 9.661 162444.6 2.2132 1.0930112 6.6942 .33063303 9.661 162444.6 2.2132 1.0930112 6.6942 .33063303 9.661 162444.6 2.2132 1.0930112 6.6942 .33063303 9.661 16390.1 2.2153 1.0940114 6.7012 .33043301 9.661 16390.1 2.2153 1.0940114 6.7012 .33043301 9.661 177450.5 2.2175 1.0940114 6.7151 .33013227 9.641 177450.5 2.2175 1.0940114 6.7221 .32293224 9.70 185540.7 2.2197 1.0960114 6.7221 .32293224 9.70 187515.4 2.2200 1.0950114 6.720 .32273224 9.71 187715.4 2.2200 1.0950114 6.7424 .32243229 9.73 19335.9 2.2229 1.0420117 6.7568 .32293224 9.73 19335.9 2.2220 1.0810117 6.7568 .32293224 9.74 202795.3 2.2220 1.0810117 6.7568 .32243224 9.75 193750.8 2.2213 1.0940117 6.7568 .32243224 9.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77	1,59	145447.6	2.2077	•1097	0121 6.6594	
9.61 152015.3 2.2009 10.970120 6.6733 .33113308 9.62 155414.5 2.2110 11.0950120 6.6803 .33103306 1.63 15940.7 2.2121 1.0940120 6.6873 .33073306 9.661 162444.6 2.2132 1.0930112 6.6942 .33063303 9.661 162444.6 2.2132 1.0930112 6.6942 .33063303 9.661 162444.6 2.2132 1.0930112 6.6942 .33063303 9.661 16390.1 2.2153 1.0940114 6.7012 .33043301 9.661 16390.1 2.2153 1.0940114 6.7012 .33043301 9.661 177450.5 2.2175 1.0940114 6.7151 .33013227 9.641 177450.5 2.2175 1.0940114 6.7221 .32293224 9.70 185540.7 2.2197 1.0960114 6.7221 .32293224 9.70 187515.4 2.2200 1.0950114 6.720 .32273224 9.71 187715.4 2.2200 1.0950114 6.7424 .32243229 9.73 19335.9 2.2229 1.0420117 6.7568 .32293224 9.73 19335.9 2.2220 1.0810117 6.7568 .32293224 9.74 202795.3 2.2220 1.0810117 6.7568 .32243224 9.75 193750.8 2.2213 1.0940117 6.7568 .32243224 9.77 2.77 2.77 2.77 2.77 2.77 2.77 2.77	9.60	143635.2	2.2088	-1036	0120 6-6664	-33133310
9.62 159414.5 2.2110 10950120 6.6873 .33103306 1648 152444.6 2.2132 10930111 6.6873 .330333053305 1664 162444.6 2.2132 10930112 6.6873 .330433053305 1666 16300.1 2.2153 10910114 6.7012 .33043301 1666 164300.1 2.2153 10910114 6.7082 .33023299 1647 175604.7 2.2164 10870114 6.7151 .3301 .3297 1647 175604.7 2.2165 10830118 6.7221 .32993296 1669 181477.4 2.2186 10870118 6.7221 .32993296 1670 185540.7 2.2147 11975 1670 185540.7 2.2147 11975 1670 1870 1870 1870 1870 1870 1870 1870 18						
9.63 154449.0 2.2121 10940120 6.6873 33093308 9.66 166900.9 2.2143 10930119 6.6942 33063303 9.65 166900.9 2.2143 10940119 6.7082 33043291 9.67 173604.7 2.2164 10870119 6.7151 33013297 9.68 177496.5 2.2175 10840119 6.7151 33013297 9.68 177496.5 2.2175 10840118 6.7251 32993296 9.69 184877.4 2.2186 10870118 6.7250 322973294 9.70 185549.7 2.2197 10860118 6.7360 32953292 9.71 187715.4 2.2208 10950119 6.7429 32943294 9.72 133076.8 2.2213 10840117 6.749 32293284 9.73 194335.9 2.2213 10840117 6.749 32903287 9.74 202795.3 2.2220 10810117 6.7568 32903287 9.74 202795.3 2.2220 10810117 6.7637 32883285 9.75 207357.2 2.2251 10800117 6.7767 32863283 9.74 21692.2 2.2240 10810117 6.7767 32863283 9.74 221662.2 2.2242 10710116 6.7716 32853283 9.74 221662.2 2.2243 10770116 6.7716 32853289 9.74 221662.2 2.2243 10770116 6.7915 32813278 9.79 226678.7 2.2229 10750116 6.7915 32813278 9.79 226678.7 2.2224 10750116 6.7918 32743278 9.79 226678.7 2.2236 10720116 6.7918 32763278 9.80 231790.3 2.2356 10740115 6.8054 32733276 9.80 231790.3 2.2356 10720115 6.8192 32743271 9.83 257172.0 2.2350 10710116 6.8331 32713267 9.84 253442.8 2.2338 10700115 6.8261 32723269 9.84 253442.8 2.2348 10700114 6.88400 32693256 9.89 253442.8 2.2348 10700114 6.8840 32653265 9.99 283443.1 2.2401 10640113 6.8667 32653262 9.99 283443.1 2.2401 10640113 6.86746 32603257 9.99 283443.1 2.2401 10640113 6.8674 32593255 9.99 283443.1 2.2401 10640113 6.8915 32553262 9.99 38745.4 2.2456 10550113 6.8915 32553259 9.99 287465.6 2.2412 10630113 6.8915 32553259 9.99 38747.4 2.2507 10550112 6.9022 32533250						
9.64 162444.6 2.2132 .10930119 6.6942 .33063303 9.65 166080.9 2.2153 .10910119 6.7082 .33023299 9.67 1715004.7 2.2164 .10870119 6.7082 .33023299 9.67 1715004.7 2.2164 .10870119 6.7082 .33023299 9.68 1817740.5 2.2175 .10830118 6.7221 .32993296 9.69 1817740.5 2.2186 .10870118 6.7221 .32993296 9.69 1817754 2.22186 .10870118 6.7290 .32973294 9.70 185540.7 2.2197 .10860118 6.7360 .32953294 9.71 187715.4 2.2208 .10950119 6.7429 .32943290 9.72 193075.8 2.2213 .10840117 6.7429 .32923289 9.73 19335.9 2.2229 .10420117 6.7637 .32883287 9.74 202795.3 2.2240 .10810117 6.7637 .32883285 9.75 207357.2 2.2251 .10800117 6.7637 .32883285 9.75 207357.2 2.2252 .10710116 6.7776 .32853281 9.77 216794.1 2.2273 .10790116 6.7776 .32853281 9.77 226678.7 2.2294 .10770116 6.7945 .32833290 9.78 221652.2 2.2243 .10770116 6.7945 .32833276 9.80 231790.3 2.2252 .10770116 6.7945 .32833276 9.80 231790.3 2.2355 .10740115 6.8054 .32783278 9.81 237014.7 2.2316 .10730115 6.8192 .32743271 9.84 253442.8 2.2337 .10710115 6.8192 .32743271 9.84 253442.8 2.2338 .10700114 6.8400 .32693269 9.85 259172.0 2.2350 .10740115 6.8261 .32723264 9.87 271030.1 2.2330 .10640113 6.8746 .32653267 9.89 283443.1 2.2401 .10640113 6.8800 .32693255 9.90 280465.6 2.2412 .10630114 6.8800 .32693256 9.90 280465.6 2.2412 .10630114 6.8800 .32693257 9.91 280465.6 2.2412 .10630114 6.8800 .32693257 9.92 280465.6 2.2422 .10690113 6.8816 .32593254 9.93 310030.7 2.2454 .10590112 6.6953 .32553259 9.90 280465.6 2.2412 .10630113 6.8816 .32593254 9.93 310030.7 2.2444 .10590112 6.6902 .32533254 9.93 310030.7 2.2465 .10590112 6.6902 .32533254 9.94 280465.6 2.2412 .10630113 6.8816 .32693257 9.95 32420.8 2.2456 .10590112 6.6902 .32533259 9.95 32420.8 2.2456 .10590112 6.6903 .32553259 9.97 32420.9 2.2456 .10590						
9.65 166090.4 2.2143 .10920119 6.7012 .33043301 9.66 16300.1 2.2153 .10910119 6.7012 .33023299 9.47 175604.7 2.2164 .10890119 6.7151 .33013297 9.68 177494.5 2.2175 .10890118 6.7221 .32993296 9.69 181477.4 2.2186 .10870118 6.720 .32973294 9.70 185549.7 2.2197 .10960118 6.7290 .32973294 9.70 185549.7 2.2197 .10960118 6.7360 .32953292 4.71 187715.4 2.2208 .10950119 6.7429 .32943299 9.72 133070.8 2.2219 .10840117 6.7499 .32943290 9.72 133070.8 2.2219 .10840117 6.7568 .32903287 9.73 19335.9 2.2229 .10820117 6.7568 .32903287 9.74 202795.3 2.2240 .10810117 6.7568 .32903287 9.77 207357.2 2.2251 .10900117 6.7707 .32863283 9.77 207357.2 2.2251 .10900117 6.7707 .32863283 9.77 210790.1 2.2273 .10790116 6.7340 .32833285 9.77 226678.7 2.2224 .10770116 6.7340 .32833280 9.79 226678.7 2.2224 .10770116 6.7340 .32833280 9.79 226678.7 2.2224 .10750116 6.7984 .32793276 9.80 231790.3 2.2305 .10740115 6.8054 .32783274 9.91 237015.7 2.2316 .10730115 6.8192 .32743271 9.43 247443.2 2.2336 .10740115 6.8261 .32723269 9.84 253442.8 2.2338 .10700115 6.8261 .32723269 9.84 253442.8 2.2338 .10700115 6.8261 .32723269 9.89 231790.3 2.2305 .10640113 6.8409 .32653261 9.89 28343.1 2.2301 .10660114 6.8400 .32693257 9.89 28343.1 2.2301 .10660114 6.8409 .32673266 9.89 28343.1 2.2301 .10660114 6.8409 .32693257 9.90 28085.6 2.2422 .10670115 6.8074 .32553262 9.99 280865.6 2.2422 .10600113 6.8746 .32603257 9.91 296437.0 2.2331 .10650113 6.8746 .32603257 9.91 296437.0 2.2343 .10610112 6.8993 .32553262 9.99 280865.6 2.2425 .10690113 6.8809 .32553262 9.99 280865.6 2.2426 .10590112 6.9922 .32533259 9.91 280865.6 2.2426 .10590113 6.8746 .32603257 9.91 296437.0 2.2434 .10510112 6.9922 .32533259 9.91 280867.7 2.2444 .10590112 6.9922 .32533259 9.93 31003.7 2.2434 .10550113 6.8075 .32653259 9.93 324260.8 2.2465 .10590112 6.9022 .32533259 9.						
9.66 163900.1 2.2153 .10410114 6.7082 .330232973297364 177460.7 2.2164 .10870118 6.7221 .330132973296 3.684 177460.5 2.2175 .10830118 6.7221 .32993296 3.694 181477.4 2.2186 .10870118 6.7290 .3297329432943294 .11 187715.4 2.2208 .10950118 6.7260 .329532923294 3.71 187715.4 2.2208 .10950118 6.7360 .329532923284 9.72 13397b.8 2.2217 .10860118 6.7360 .329532923284 9.73 14335.9 2.2213 .10840117 6.7568 .32903287 9.74 202795.3 2.2240 .10810117 6.7568 .32903287 9.75 207357.2 2.2250 .10810117 6.7637 .32863283 9.76 212023.9 2.2252 .10730116 6.77707 .32863283 9.76 212023.9 2.2252 .10730116 6.77707 .32863281 9.77 216794.1 2.2273 .10790116 6.7715 .32813278 9.77 226678.7 2.2244 .10750116 6.7915 .32813278 9.79 226678.7 2.2244 .10750116 6.7915 .32813278 9.79 226678.7 2.2248 .10730115 6.8054 .32793276 9.80 231790.3 2.2305 .10740115 6.8054 .32793276 9.80 231790.3 2.2305 .10740115 6.8054 .32793276 9.80 231790.3 2.2305 .10740115 6.8192 .32743271 9.83 247483.2 2.2337 .10710115 6.8192 .32743271 9.83 247483.2 2.2337 .10710115 6.8192 .32743271 9.84 27716.7 2.2316 .10730115 6.8192 .32743271 9.84 27716.7 2.2316 .10730115 6.8054 .32723269 9.84 253442.9 2.2338 .10700114 6.8400 .32693266 9.84 27716.7 2.2311 .10650114 6.8400 .32693267 9.89 253442.9 2.2348 .10700114 6.8400 .32693267 9.89 283443.1 2.2401 .10640113 6.8676 .32603257 9.89 283443.1 2.2401 .10640113 6.8676 .32603257 9.99 280465.6 2.2412 .10630114 6.8869 .32673264 9.39 283443.1 2.2401 .10640113 6.8676 .32603257 9.99 280465.6 2.2412 .10630114 6.8909 .32573264 9.325 9.33 1003.7 2.2445 .10550112 6.9092 .3253 .3255 9.3259 9.99 303160.1 2.2433 .10910112 6.9092 .3253 .3255 9.3259 9.99 303160.1 2.2445 .10590111 6.9269 .32443255 9.3259 9.33 1003.7 2.2445 .10590111 6.9269 .32443255 9.3259 9.33 1003.7 2.2446 .10590111 6.9269 .32443245 9.325 9.3250 9.32503246	7.64	1024446	2.2132	•1003	0117 6-6942	•3306 -•33 0.5
9.47 173604.7 2.2164 .10870118 6.7151 .33013297 .3296 .684 177456.5 2.2175 .10830118 6.7221 .32993296 .69 181477.4 2.2186 .10870118 6.7220 .32973294 .70 185549.7 2.2186 .10870118 6.7290 .32973294 .70 185549.7 2.2197 .10860118 6.7360 .32953292 .70 11 187715.4 2.2208 .10950119 6.7429 .32943290 .70 11 187715.4 2.2208 .10950119 6.7429 .32943290 .70 17 1873355.9 2.2219 .10820117 6.7698 .32923287 .70 193355.9 2.2229 .10820117 6.7568 .32903287 .70 193355.9 2.2229 .10820117 6.7637 .32883285 .70 193355.9 2.2229 .10810117 6.7637 .32883285 .70 194 .70 1	9.65	166090.9	2.2143		0119 6.7012	.33043301
9.69 181477.4 2.2186 .10870118 6.7221 .32993296 9.69 181477.4 2.2186 .10870118 6.7290 .32973294 9.70 185549.7 2.2197 .10860118 6.7360 .32953292 9.71 181715.4 2.2208 .10990119 6.7429 .32943290 9.72 19397b.8 2.2213 .10840117 6.7499 .32923289 9.73 193355.9 2.2229 .10420117 6.7568 .32903287 9.74 202795.3 2.2240 .10810117 6.7637 .32883285 9.75 207357.2 2.2251 .10800117 6.7767 .32863283 9.76 212023.3 2.2262 .10710116 6.7776 .32853281 9.77 21679.1 2.2273 .10790116 6.7776 .32853281 9.74 221662.2 2.2243 .10770116 6.7846 .32833290 9.74 221662.2 2.2243 .10770116 6.7846 .32833278 9.79 226678.7 2.2294 .10750116 6.7845 .32813278 9.79 226678.7 2.2294 .10750116 6.7845 .32783276 9.80 231790.3 2.2305 .10740115 6.8054 .32783275 9.91 237017.7 2.2316 .10730115 6.8102 .32743271 9.93 247443.2 2.2337 .10710115 6.8102 .32743271 9.94 253442.9 2.2348 .10700114 6.8640 .32693267 9.98 253442.9 2.2348 .10700114 6.8640 .32693267 9.89 253442.9 2.2350 .10640114 6.8640 .32693266 1.98 287165.7 2.23 1 .10650113 6.8607 .32643261 9.89 287463.1 2.23 1 .10650113 6.8607 .32643261 9.89 287463.1 2.23 1 .10650113 6.8607 .32643261 9.89 287463.1 2.23 1 .10650113 6.8676 .32623259 9.90 288965.6 2.2412 .10630113 6.8676 .32603257 9.91 296437.0 2.2422 .10620113 6.8676 .32603257 9.92 289485.1 2.2401 .10640113 6.8676 .32603257 9.93 31003.7 2.2444 .10510112 6.9022 .3253 .3255 9.94 31707.5 2.2444 .10510112 6.9022 .3253 .3255 9.95 3262 .3259 9.97 330160.1 2.2343 .10010112 6.9091 .32513248 9.97 33104.9 2.2446 .10590111 6.9229 .32443245 9.97 33104.9 2.2446 .10590111 6.9229 .32443245 9.97 33104.9 2.2446 .10590111 6.9229 .32543255 9.93 35476.4 2.2507 .10530111 6.9367 .3255 .3252 9.97 335476.4 2.2507 .10530111 6.9367 .3245 .3240	1.66	167300.1		•1091	0119 6.7082	•3302 -•329°
3.69 181477.4 2.2186 .1087 0118 6.7290 .3297 3294 9.70 185549.7 2.2197 .1086 0118 6.7360 .3295 3292 4.71 18715.4 2.2209 .1099 0119 6.7429 .3294 3290 9.72 193976.8 2.2213 .1084 0117 6.7499 .3292 3289 9.73 194335.9 2.2229 .1042 0117 6.7568 .3290 3287 9.74 202795.3 2.2240 .1081 0117 6.7637 .3288 3285 9.75 207357.2 2.2251 .1080 0117 6.7707 .3286 3283 9.76 212023.9 2.2262 .1071 0116 6.7776 .3285 3281 9.77 21662.2 2.2243 .1077 0116 6.7715 .3281 3278 9.77 221667.2 2.2243 .1077 0116 6.7948 .	9.57	173604.7	2.2164	.1087	0119 6.7151	•3301 -•3297
3.69 181477.4 2.2186 .1087 0118 6.7290 .3297 3294 9.70 185549.7 2.2197 .1086 0118 6.7360 .3295 3292 4.71 193715.4 2.2209 .1049 0117 6.7499 .3294 3290 9.72 139375.8 2.2229 .1042 0117 6.7568 .3290 3284 9.73 193335.9 2.2229 .1081 0117 6.7568 .3290 3287 9.74 202795.3 2.2240 .1081 0117 6.7637 .3288 3285 9.75 207357.2 2.2251 .1080 0117 6.7707 .3286 3283 9.77 21666.2 2.2243 .1079 0116 6.7715 .3285 3281 9.77 2216678.7 2.2294 .1075 0116 6.7915 .3281 3278 9.79 226678.7 2.2294 .1075 0116 6.7915 <td< td=""><td>9.64</td><td>177456.5</td><td>2.2175</td><td>·1083</td><td>0118 6.7221</td><td>•3299 -•3296</td></td<>	9.64	177456.5	2.2175	·1083	0118 6.7221	•3299 -•3296
4.71 18 715.4 2.2207 .10 95 0119 6.74 24 .32 94 32 90 9.72 19397b.8 2.2212 .10 42 0117 6.74 97 .32 92 32 87 9.73 19 3355.2 2.2222 .10 42 0117 6.76 37 .32 88 32 85 9.74 202795.3 2.22 40 .10 81 0117 6.76 37 .32 88 32 85 9.75 20 7357.2 2.22 51 .10 80 0117 6.76 37 .32 86 32 83 1.76 21 20 23.2 2.22 43 .10 77 0116 6.77 76 .32 85 32 81 9.77 21 21 79 2.22 43 .10 77 0116 6.78 46 .32 83 32 78 9.79 22 66 78.7 2.22 29 4 .10 75 0116 6.79 84 .32 78 32 78 9.80 23 17 90.3 2.23 35 .10 74 0115 6.80 54 .32 78 32 74 9.91 23 70 19.7 2.23 36 .10 74 0115 6.80 54 .32 74 32 71 9.42 24	9.69	181477.4	2.2186	• 1087	0118 6.7290	
4.71 18 715.4 2.2207 .10 95 0119 6.74 24 .32 94 32 90 9.72 19397b.8 2.2212 .10 42 0117 6.74 97 .32 92 32 87 9.73 19 3355.2 2.2222 .10 42 0117 6.76 37 .32 88 32 85 9.74 202795.3 2.22 40 .10 81 0117 6.76 37 .32 88 32 85 9.75 20 7357.2 2.22 51 .10 80 0117 6.76 37 .32 86 32 83 1.76 21 20 23.2 2.22 43 .10 77 0116 6.77 76 .32 85 32 81 9.77 21 21 79 2.22 43 .10 77 0116 6.78 46 .32 83 32 78 9.79 22 66 78.7 2.22 29 4 .10 75 0116 6.79 84 .32 78 32 78 9.80 23 17 90.3 2.23 35 .10 74 0115 6.80 54 .32 78 32 74 9.91 23 70 19.7 2.23 36 .10 74 0115 6.80 54 .32 74 32 71 9.42 24	9.70	185549.7	2.2197	. 1 0.86	0118 6-7360	. 3295 - 3292
9.72 19397b.8 2.2219 .10840117 6.7499 .32923289 9.73 193335.9 2.2229 .10820117 6.7568 .32903287 9.74 202795.3 2.2240 .10810117 6.7637 .32883285 9.75 207357.2 2.2251 .10800117 6.7637 .32883285 9.75 207357.2 2.2252 .10710116 6.7707 .32863283 1.76 212023.9 2.22b2 .10710116 6.7707 .32863283 1.3280 9.77 210794.1 2.2273 .10790116 6.7716 .32853281 9.77 220678.7 2.2243 .10770116 6.7716 .32833280 9.77 226678.7 2.2294 .10750116 6.7915 .32813278 9.79 226678.7 2.2294 .10750116 6.7984 .32793276 9.80 231790.3 2.2305 .10740115 6.8054 .32783274 9.91 237014.7 2.2316 .10730115 6.8123 .32763273 1.92 242360.7 2.2326 .10720115 6.8123 .32763273 1.92 242360.7 2.2326 .10720115 6.8261 .32723269 9.84 253442.8 2.2338 .10700114 6.8331 .32713267 9.84 253442.8 2.2338 .10700114 6.8331 .32713267 9.85 259172.0 2.2336 .10640114 6.8469 .32673264 9.87 271050.7 2.2331 .10650113 6.8607 .32643261 9.89 283443.1 2.2401 .10640113 6.8676 .32623259 9.90 289865.6 2.2412 .10630113 6.8676 .32623259 9.90 289865.6 2.2412 .10630113 6.8676 .32603257 9.93 31003 7 2.2444 .10590113 6.8676 .32603257 9.93 31003 7 2.2444 .10590112 6.9953 .32553259 9.95 324280.6 2.2445 .10590112 6.9953 .32553259 9.95 324280.6 2.2446 .10590112 6.9953 .32553259 9.95 324280.6 2.2446 .10590112 6.9922 .32533250 9.975 324280.6 2.2446 .10590112 6.9922 .32533250 9.975 324280.6 2.2465 .10570112 6.9920 .32443245 9.99 35475 .4 2.2507 .10530111 6.9367 .32453245 9.99 35475 .4 2.2507 .10530111 6.9367 .32453245 9.99 35475 .4 2.2507 .10530111 6.9367 .32453245 9.99 35475 .4 2.2507 .10530111 6.9367 .32453245 9.99 35475 .4 2.2507 .10530111 6.9367 .32453245 9.99 35475 .4 2.2507 .10530111 6.9367 .32453245 9.99 35475 .4 2.2507 .10530111 6.9367 .32453245 9.99 35475 .4 2.2507 .10530111 6.9367 .32453245 9.99 35475 .4 2.2507 .10530111 6.9366 .32433245 9.99 35475 .4 2.2507 .10530111 6.9366						
9.73 19335.9 2.2229 10820117 6.7568 .32903287 3.74 202795.3 2.2240 .10810117 6.7637 .32883285						
9.74 202795.3 2.2240 .10810117 6.7637 .32883285 9.75 207357.2 2.2251 .10800117 6.7707 .32863283 1.76 212023.7 2.2262 .10710116 6.7776 .32853281 9.77 216799.1 2.2273 .10790116 6.7846 .32833280 9.74 221662.2 2.2243 .10770116 6.7915 .32813278 9.79 226678.7 2.2294 .10750116 6.7915 .32813278 9.79 226678.7 2.2294 .10750116 6.7984 .32793276 9.80 231790.3 2.2305 .10740115 6.8054 .32783274 7.91 23701.7 2.2316 .10730115 6.8192 .32763273 4.92 242367 2.2326 .10720115 6.8192 .32743271 9.84 253442.8 2.2337 .10710115 6.8261 .32723269 9.84 253442.8 2.2338 .10700114 6.88331 .32713267 9.85 257172.0 2.2336 .10640114 6.8400 .32693266 1.96 265035.3 2.2369 .10640114 6.8469 .32673264 9.87 271030.1 2.2330 .10640114 6.8469 .32673264 9.89 283443.1 2.2401 .10650114 6.8676 .32623259 9.90 287465.6 2.2412 .10630113 6.8676 .32623259 9.90 287465.6 2.2412 .10630113 6.8676 .32623259 9.90 287465.6 2.2412 .10630113 6.8676 .32603257 9.91 296437.0 2.2423 .10640113 6.8815 .3257 .3254 9.92 303160.0 2.2422 .10620113 6.8816 .3257 .3254 9.93 31003.7 2.2444 .10530112 6.9022 .3253 .3255 9.94 317076.5 2.2454 .10510112 6.9022 .3253 .3255 9.95 324280.6 2.2475 .10570112 6.9091 .32513248 9.96 33164.6 2.2475 .10570112 6.9092 .32543255 9.97 35475.4 2.22476 .10590111 6.9209 .32443257 9.99 35475.4 2.22476 .10590111 6.9209 .32443245 9.99 35475.4 2.22507 .10530111 6.9367 .32453245 9.99 35475.4 2.2507 .10530111 6.9367 .32453245 9.99 35475.4 2.2507 .10530111 6.9367 .32453245						
9.75						
9.76 212023.0 2.2262 .10710116 6.7776 .32853281 9.77 216796.1 2.2273 .10790116 6.7346 .32833280 9.74 221662.2 2.2243 .10770116 6.7915 .32813278 9.79 226678.7 2.2294 .10750116 6.7984 .32793276 9.79 226678.7 2.2294 .10750116 6.7984 .32793276 9.79 226678.7 2.2294 .10750116 6.7984 .32793276 9.70 231790.3 2.2305 .10740115 6.8054 .32783274 9.91 237019.7 2.2316 .10730115 6.8054 .32783274 9.91 237019.7 2.2316 .10730115 6.8192 .32743271 9.83 247443.2 2.2337 .10710115 6.8261 .32723269 9.84 253442.9 2.2348 .10700115 6.8261 .32723269 9.84 253442.9 2.2348 .10700114 6.8331 .32713267 9.84 253442.9 2.2348 .10700114 6.8469 .32673264 9.87 271030.1 2.2330 .10660114 6.8469 .32673264 9.87 271030.1 2.2330 .10660114 6.8539 .32653262 9.89 283443.1 2.2401 .10650113 6.8607 .32643261 9.89 283443.1 2.2401 .10650113 6.8607 .32643261 9.89 283443.1 2.2401 .10650113 6.8676 .32623259 9.90 287865.6 2.2412 .10630113 6.8876 .32623259 9.90 287865.6 2.2412 .10630113 6.8866 .32623257 9.93 31003.7 2.2444 .10530112 6.8953 .32553252 9.94 31707F.5 2.2454 .10510112 6.9022 .32533250 9.75 324280.6 2.2455 .10570112 6.9022 .32533250 9.75 324280.6 2.2475 .10590112 6.9022 .32533250 9.75 324280.7 2.2476 .10590111 6.9269 .32443245 9.99 354754 2.22476 .10590111 6.9269 .32443245 9.99 354754 2.2507 .10530111 6.9367 .32453245 9.99 354754 2.2507 .10530111 6.9367 .32453245 9.99 354754 2.2507 .10530111 6.9367 .32453245 9.99 354754 2.2507 .10530111 6.9367 .32453245 9.99 354754 2.2507 .10530111 6.9367 .32453245 9.99 354754 2.2507 .10530111 6.9367 .32453245 9.99 354754 2.2507 .10530111 6.9367 .32453245 9.99 354754 2.2507 .10530111 6.9367 .32453245 9.99 354754 2.2507 .10530111 6.9367 .32453245 9.99 354754 2.2507 .10530111 6.9367 .32453245 9.99 354754 2.2507 .10530111 6.9367 .32453245 9.99 354754 2.2507 .10530111 6.9367 .3245 -		2027-343	202270	•1081		•3288 -•3255
9.77 216796.1 2.2273 .107°0116 6.7346 .32833280 9.78 221662.2 2.2283 .10770116 6.7915 .32813278 9.79 226678.7 2.2294 .10750116 6.7984 .32793276 9.80 231790.3 2.2305 .10740115 6.8054 .32783274 7.°1 237019.7 2.2316 .10730115 6.8192 .32763273 4.42 24236.7 2.2326 .10720115 6.8192 .32743271 7.83 247443.2 2.2337 .10710115 6.8261 .32723269 9.84 253442.9 2.2348 .10700114 6.8331 .32713267 9.85 259172.0 2.2359 .10640114 6.8400 .32693266 4.96 265033.3 2.2369 .10670114 6.8469 .32673264 9.87 271030.1 2.2330 .10660114 6.8539 .32653262 9.88 277160.7 2.2331 .10650113 6.8667 .32643261 9.89 283443.1 2.2401 .10640113 6.8676 .32623259 9.90 289865.6 2.2412 .10630113 6.8676 .32603257 3.91 296437.0 2.2422 .10620113 6.8815 .32583255 9.93 310030.7 2.2444 .10530112 6.8953 .32553252 9.94 317078.5 2.2454 .10510112 6.8963 .32553252 9.95 324280.6 2.2465 .10570112 6.9022 .32533250 9.75 324280.6 2.2465 .10570112 6.9022 .32533254 9.75 334280.6 2.2465 .10570112 6.9022 .32533254 9.76 33164.6 7.2475 .10590111 6.9160 .32503247 9.77 339149.7 2.2446 .10590111 6.9209 .32483245 9.79 35475.4 2.2507 .10530111 6.9367 .32453245 9.79 35475.4 2.2507 .10530111 6.9367 .32453242 10.00 362977.3 2.2518 .10520110 6.9436 .32433240	9.75	207357.2	2.2251	.1080	0117 6.7707	.32863283
9.74 221662.2 2.2243 .10770116 6.7915 .32813278 9.79 226678.7 2.2294 .10750116 6.7984 .32793276 9.80 231790.3 2.2305 .10740115 6.8054 .32783274 9.91 237014.7 2.2316 .10730115 6.8123 .32763273 4.42 24236.7 2.2326 .10720115 6.8123 .32743271 9.83 247443.2 2.2337 .10710115 6.8261 .32723269 9.84 253442.8 2.2337 .10710114 6.8331 .32713267 9.85 259172.0 2.2359 .10640114 6.8400 .32693266 4.46 265033.3 2.2369 .10670114 6.8699 .32673264 9.87 271030.1 2.2330 .10660114 6.8699 .32673264 9.87 271030.1 2.2330 .10660114 6.8699 .32653262 9.88 27716.7 2.2331 .10650113 6.8676 .32623259 9.89 283443.1 2.2401 .10640113 6.8676 .32623259 9.90 289465.6 2.2412 .10630113 6.8676 .32603257 9.91 296437.0 2.2422 .10620113 6.8676 .32603257 9.93 31003 7 2.2444 .10530112 6.8953 .32553255 9.93 31003 7 2.2444 .10530112 6.8953 .32553255 9.93 31003 7 2.2444 .10530112 6.8953 .32553255 9.94 31707F.5 2.2454 .10510112 6.8902 .32533250 9.95 324280.8 2.2465 .10570112 6.9022 .32533250 9.95 324280.8 2.2465 .10570112 6.9022 .32533247 9.37 33164 7 2.2475 .10560111 6.9160 .3250 .3247 9.37 33164 7 2.2475 .10590111 6.9269 .32443245 9.99 35475 4 2.2507 .10530111 6.9269 .32443245 9.99 35475 4 2.2507 .10530111 6.9367 .32453242 10.00 362577.3 2.2518 .10520111 6.9367 .32453242 10.00 362577.3 2.2518 .10520111 6.9367 .32453242 10.00 362577.3 2.2518 .10520111 6.9367 .32453245 10.00 362577.3 2.2518 .10520111 6.9367 .32453245 10.00 362577.3 2.2518 .10520111 6.9367 .32453245 10.00 362577.3 2.2518 .10520111 6.9367 .32453245 10.00 362577.3 2.2518 .10520111 6.9367 .32453245 10.00 362577.3 2.2518 .10520111 6.9367 .32453245 10.00 362577.3 2.2518 .10520111 6.9367 .32453245 10.00 362577.3 2.2518 .10520111 6.9367 .32453245 10.00 362577.3 2.2518 .10520111 6.9367 .32453245 10.00 362577.3 2.2518 .10520111 6.9367 .32453245 10.00 362577.3 2.2518 .10520111 6.9367 .3	1.76	212023.0	2.2262	.1071	0116 6.7776	.32853281
9.74 221662.2 2.2243 .10770116 6.7915 .32813278 9.79 226678.7 2.2294 .10750116 6.7984 .32793276 9.80 231790.3 2.2305 .10740115 6.8054 .32783274 9.91 237014.7 2.2316 .10730115 6.8192 .32743271 9.83 247443.2 2.2337 .10710115 6.8192 .32743271 9.84 253442.8 2.2337 .10710115 6.8261 .32723269 9.84 253442.8 2.2338 .10700114 6.8460 .32693267 9.84 253442.8 2.2338 .10700114 6.8460 .32693267 9.84 25343.1 2.2340 .10640114 6.8640 .32693266 9.87 271030.1 2.2330 .10660114 6.8669 .32673264 9.87 271030.1 2.2330 .10660114 6.8669 .32673264 9.88 277165.7 2.2331 .10650113 6.8667 .32623259 9.89 283443.1 2.2401 .10640113 6.8676 .32623259 9.90 287865.6 2.2412 .10630113 6.8676 .32603257 9.91 276437.0 2.2422 .10620113 6.8676 .32603257 9.93 31003.7 2.2444 .10530112 6.8953 .32553255 9.94 31707f.5 2.2444 .10530112 6.8953 .32553255 9.94 31707f.5 2.2446 .10530112 6.8953 .32553255 9.94 31707f.5 2.2446 .10530112 6.8953 .32553257 9.94 31707f.5 2.2446 .10530112 6.9022 .32533250 9.75 324280.8 2.2445 .10510112 6.9022 .32533250 9.75 33164.6 2.2445 .10550112 6.9022 .32533250 9.75 33164.6 2.2446 .10590111 6.9160 .3250 .3247 9.75 33164.6 2.2446 .10590111 6.9269 .32443247 9.77 337149.7 2.2446 .10590111 6.9269 .32443247 9.77 337149.7 2.2446 .10590111 6.9269 .32443247 9.77 337149.7 2.2446 .10590111 6.9269 .32443247 9.77 337149.7 2.2446 .10590111 6.9269 .32443247 9.77 337149.7 2.2446 .10590111 6.9269 .32443247 9.77 337149.7 2.2446 .10590111 6.9269 .32443247 9.79 35479.4 2.2507 .10530111 6.9367 .32453245 9.99 35479.4 2.2507 .10530111 6.9367 .32453245 9.99 35479.4 2.2507 .10530111 6.9367 .32453245 9.99 35479.4 2.2507 .10530111 6.9367 .32453245 9.99 35479.4 2.2507 .10530111 6.9367 .32453245 9.99 35479.4 2.2507 .10530111 6.9367 .32453245 9.99 35479.4 2.2507 .10530111 6.9367 .32453245 9.99 35479.4 2.2507 .10530111 6.9367 .32453245 9.99 35	9.77	21679% 1	2.2273	.107°	0116 6.7346	-32833280
9.79 226678.7 2.2294 .10750116 6.7984 .32793276 9.80 231790.3 2.2305 .10740115 6.8054 .32783274 9.01 23701.7 2.2316 .10730115 6.8123 .32763275 4.42 24236.7 2.2326 .10720115 6.8192 .32743271 9.83 247443.2 2.2337 .10710115 6.8261 .32723269 9.84 253442.9 2.2348 .10700114 6.8400 .32693267 9.85 259172.0 2.2359 .10640114 6.8400 .32693267 9.87 271030.1 2.2340 .10670114 6.8469 .32673264 9.87 271030.1 2.2340 .10660114 6.8539 .32653262 9.89 283443.1 2.2401 .10640113 6.8676 .32623259 9.90 28985.6 2.2412 .10630113 6.8676 .32623259 9.90 28985.6 2.2412 .10630113 6.8676 .32623259 9.90 28985.6 2.2422 .10620113 6.8815 .32583255 9.91 296437.0 2.2442 .10630113 6.8815 .32583255 9.93 303160.1 2.2433 .10610113 6.8888 .32573254 9.93 31003.7 2.2444 .10590112 6.8953 .32553252 9.94 317076.5 2.2454 .10590112 6.9022 .32533250 9.95 324280.6 2.2465 .10570112 6.9021 .32513248 9.97 339146.7 2.2476 .10590111 6.9229 .32483245 9.98 34475.4 2.2507 .10530111 6.9367 .32453245 9.99 35475.4 2.2507 .10530111 6.9367 .32453245 10.00 362577.3 2.2518 .10520110 6.9436 .32433240	9.74		2.2243	-1077		
7.°1 257019.7 2.2316 .10730115 6.8123 .32763273 4.42 24236.7 2.2326 .10720115 6.8192 .32743271 7.83 247443.2 2.2337 .10710115 6.8261 .32723269 9.84 253442.9 2.2348 .10700114 6.8331 .32713267 7.86 265033.3 2.2369 .10640114 6.8400 .32693266 7.86 265033.3 2.2369 .10670114 6.8469 .32673264 7.87 271030.1 2.2330 .10660114 6.8469 .32673264 7.88 277160.7 2.2331 .10650113 6.8676 .32623261 7.88 277160.7 2.2331 .10650113 6.8676 .32623261 7.89 283443.1 2.2401 .10640113 6.8676 .32623259 7.99 287865.6 2.2412 .10630113 6.8676 .32623257 7.91 296437.0 2.2422 .10630113 6.8676 .32623255 7.3254 7.32 303160.1 7.2433 .10610113 6.8884 .32573254 7.32 303160.1 7.2433 .10610112 6.8953 .32553252 7.94 317078.5 2.2454 .10550112 6.8953 .32553252 7.94 317078.5 2.2454 .10550112 6.9022 .32533250 7.37 337185.7 2.2446 .10550112 6.9022 .32533250 7.37 337185.7 2.2446 .10550112 6.9022 .32533255 7.3254 7.37 337185.7 2.2446 .10550112 6.9022 .32533255 7.3254 7.37 337185.7 2.2475 .10540111 6.9260 .32503247 7.37 337185.7 2.2476 .10530111 6.9260 .32483245 7.37 35475.4 2.2507 .10530111 6.9367 .32453245 7.399 35475.4 2.2507 .10530111 6.9367 .32453242 10.00 362877.3 2.2518 .10520110 6.9436 .32433240						
7.°1 257019.7 2.2316 .10730115 6.8123 .32763273 4.42 24236.7 2.2326 .10720115 6.8192 .32743271 7.83 247443.2 2.2337 .10710115 6.8261 .32723269 9.84 253442.9 2.2348 .10700114 6.8331 .32713267 7.86 265033.3 2.2369 .10640114 6.8400 .32693266 7.86 265033.3 2.2369 .10670114 6.8469 .32673264 7.87 271030.1 2.2330 .10660114 6.8469 .32673264 7.88 277160.7 2.2331 .10650113 6.8676 .32623261 7.88 277160.7 2.2331 .10650113 6.8676 .32623261 7.89 283443.1 2.2401 .10640113 6.8676 .32623259 7.99 287865.6 2.2412 .10630113 6.8676 .32623257 7.91 296437.0 2.2422 .10630113 6.8676 .32623255 7.3254 7.32 303160.1 7.2433 .10610113 6.8884 .32573254 7.32 303160.1 7.2433 .10610112 6.8953 .32553252 7.94 317078.5 2.2454 .10550112 6.8953 .32553252 7.94 317078.5 2.2454 .10550112 6.9022 .32533250 7.37 337185.7 2.2446 .10550112 6.9022 .32533250 7.37 337185.7 2.2446 .10550112 6.9022 .32533255 7.3254 7.37 337185.7 2.2446 .10550112 6.9022 .32533255 7.3254 7.37 337185.7 2.2475 .10540111 6.9260 .32503247 7.37 337185.7 2.2476 .10530111 6.9260 .32483245 7.37 35475.4 2.2507 .10530111 6.9367 .32453245 7.399 35475.4 2.2507 .10530111 6.9367 .32453242 10.00 362877.3 2.2518 .10520110 6.9436 .32433240	9.80	231790.3	2,2305	- 1.074	0115 6.8054	.3078 - 327A
4.92 24236 7 2.2326 .1072 0115 6.8192 .3274 3271 9.84 247443.2 2.2337 .1071 0115 6.8261 .3272 3269 9.84 253442.9 2.2348 .1070 0114 6.8400 .3267 3267 9.85 259172.0 2.2359 .1064 0114 6.8400 .3267 3266 4.86 265033.3 2.2369 .1067 0114 6.8469 .3267 3264 9.47 271030.1 2.2330 .1066 0114 6.8539 .3265 3262 9.89 287465.7 2.2331 .1065 0113 6.8607 .3264 3261 9.89 283443.1 2.2401 .1063 0113 6.8746 .3262 3259 9.90 287465.6 2.2412 .1063 0113 6.8746 .3250 3257 3.91 29637.0 2.2422 .1063 0113 6.8849 .3257 3254 9.93 31037.7 2.2433 .1061 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
7.83 247443.2 2.2337 .10710115 6.8261 .32723269 9.84 253442.9 2.2348 .10700114 6.8331 .32713267 7.85 259172.0 2.2359 .10640114 6.8400 .32693266 1.96 265033.3 2.2369 .10670114 6.8469 .32673264 9.87 271030.1 2.2330 .10660114 6.8539 .32653262 1.98 277165.7 2.2331 .10650113 6.8607 .32643261 9.89 283443.1 2.2401 .10640113 6.8676 .32623259 9.90 283865.6 2.2412 .10630113 6.8746 .32603257 3.91 236437.0 2.2422 .10620113 6.8815 .32583255 3.92 303160.1 2.2433 .10510112 6.8884 .32573254 9.33 310037.7 2.2444 .10590112 6.8953 .32553252 9.94 317078.5 2.2454 .10590112 6.9022 .32533250 9.75 324280.6 2.2475 .10590112 6.9091 .32513248 9.36 33164.6 2.2476 .10590111 6.9160 .32503247 9.77 337149.7 2.2476 .10590111 6.929 .32483245 3.99 35475.4 2.2507 .10530111 6.9367 .32453245 9.99 35475.4 2.2507 .10530111 6.9367 .32453242 10.00 362977.3 2.2518 .10520110 6.9456 .32433240						
9.84 253442.9 2.2348 .10700114 6.8331 .32713267 9.85 259172.0 2.2357 .10640114 6.8400 .32693266 1.96 265033.3 2.2369 .10670114 6.8469 .32673264 9.87 271030.1 2.2340 .10660114 6.8539 .32653262 1.98 277160.7 2.2341 .10650113 6.8607 .32643261 9.89 283443.1 2.2401 .10640113 6.8676 .32623259 9.90 287865.6 2.2412 .10630113 6.8746 .32603257 3.91 296437.0 2.2422 .10620113 6.8815 .32583255 3.92 303160.1 2.2433 .10410112 6.8884 .32573254 9.33 310037.7 2.2444 .10540112 6.8953 .32553252 9.94 317078.5 2.2454 .10550112 6.9022 .32533250 9.75 324280.6 2.2465 .10570112 6.9091 .32513248 9.36 33164.6 2.2465 .10570112 6.9091 .32513248 9.37 337186.7 2.2476 .10590111 6.9160 .32503247 9.47 337186.7 2.2476 .10540111 6.920 .32483245 3.99 35475.4 2.2507 .10530111 6.9367 .32453242 10.00 362677.3 2.2518 .10520110 6.9456 .32433240						
3.85 259172.0 2.2357 .1064 0114 6.8400 .3269 3266 4.86 265033.3 2.2369 .1067 0114 6.8469 .3267 3264 9.47 271030.1 2.2330 .1066 0114 6.8469 .3265 3262 9.88 277160.7 2.2331 .1065 0113 6.8676 .3264 3261 9.89 283443.1 2.2401 .1064 0113 6.8676 .3262 3259 9.90 280465.6 2.2412 .1063 0113 6.8746 .3260 3257 3.91 206437.0 2.2422 .1062 0113 6.8746 .3258 3258 3.92 305160.1 7.2443 .1051 0112 6.8953 .3257 3254 9.33 310035.7 2.2444 .1050 0112 6.8953 .3255 3252 9.94 317078.5 2.2454 .1050 0112 6.9022 .3253 3259 9.75 324260.6 2.2475 .1050 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
7.96 265033.3 2.2369 .1067 0114 6.8469 .3267 3264 9.87 271030.1 2.2330 .1066 0114 6.8539 .3265 3262 9.88 277160.7 2.2331 .1065 0113 6.8607 .3264 3261 9.89 283443.1 2.2401 .1064 0113 6.8676 .3262 3259 9.90 287865.6 2.2412 .1063 0113 6.8746 .3260 3257 3.91 29637.0 2.2422 .1062 0113 6.8815 .3254 3255 3.92 303160.1 7.2433 .1061 0112 6.8884 .3257 3254 9.93 310037.7 2.2444 .1057 0112 6.8953 .3255 3252 9.94 317077.5 2.2454 .1051 0112 6.9022 .3253 3250 9.75 324260.6 2.2475 .1057 0112 6.9091 .3251 3248 9.37 3364.6 2.2476 .1059 -	9.84	253 44 2. F	2.2348	.1070	0114 6.8331	. •3271 -•3267
9.87 271030.1 2.2330 .10660114 6.8539 .32653262 9.88 277169.7 2.2331 .10650113 6.8607 .32643261 9.89 283443.1 2.2401 .10640113 6.8676 .32623259 9.90 283465.6 2.2412 .10630113 6.8746 .32603257 3.91 236437.0 2.2422 .10620113 6.8815 .32543255 3.92 303160.1 2.2433 .10610112 6.8884 .32573254 9.33 310037.7 2.2444 .10570112 6.8984 .32573254 9.33 310037.7 2.2444 .10570112 6.8953 .32553252 7.94 317078.5 2.2454 .10550112 6.9022 .32533250 9.75 324260.6 2.2465 .10570112 6.9091 .32513248 9.36 33164.6 2.2465 .10570111 6.9160 .32503247 9.37 337149.7 2.2446 .10590111 6.9229 .32443245 3.48 344.09.7 2.2476 .10540111 6.9229 .32443245 3.99 35475.4 2.2507 .10530111 6.9367 .32453242 10.00 362977.3 2.2518 .10520110 6.9436 .32433240	9.85	257172.0	2.2357	•106→	0114 6.8400	•3269 -•3266
9.88 277160.7 2.2331 .1065 0113 6.8607 .3264 3261 9.89 283443.1 2.2401 .1064 0113 6.8676 .3262 3259 9.90 287865.6 2.2412 .1063 0113 6.8746 .3260 3257 3.91 296437.0 2.2422 .1062 0113 6.8815 .3258 3255 3.92 303160.1 2.2433 .1041 0112 6.8884 .3257 3254 9.93 310037.7 2.2444 .1057 0112 6.8953 .3255 3252 9.94 317078.5 2.2454 .1051 0112 6.9022 .3253 3250 9.75 324260.6 2.2465 .1057 0112 6.9091 .3251 3248 9.76 33164.6 2.2475 .1056 0111 6.9160 .3250 3247 9.77 330186.7 2.2476 .1059 0111 6.9229 .3248 3245 9.99 35475.4 2.2476 .1054	4.96	265033.3	2.2369	.1067	0114 6.8469	.32673264
7.88 277165.7 2.2331 .1065 0113 6.8607 .3264 3261 9.89 283443.1 2.2401 .1064 0113 6.8676 .3262 3259 9.90 280865.6 2.2412 .1063 0113 6.8746 .3260 3257 3.91 236437.0 2.2422 .1062 0113 6.8815 .3258 3255 3.92 303160.1 7.2443 .1051 0112 6.8988 .3257 3254 9.93 310037.7 2.2444 .1051 0112 6.8953 .3255 3252 9.94 317078.5 2.2454 .1051 0112 6.9022 .3253 3250 9.75 324260.6 2.2465 .1057 0112 6.9091 .3251 3248 9.76 33164.6 2.2465 .1057 0111 6.9160 .3250 3247 9.77 330146.7 2.2466 .1059 0111 6.9229 .3248 3245 9.77 330146.7 2.2466 .1059 <td< td=""><td>9.87</td><td>271030.1</td><td>2.23 30</td><td>.1066</td><td>0114 6.8539</td><td>•3265 -•3262</td></td<>	9.87	271030.1	2.23 30	.1066	0114 6.8539	•3265 -•3262
9.89 283443.1 2.2401 .1064 0113 6.8676 .3262 3259 9.90 287465.6 2.2412 .1063 0113 6.8746 .3260 3257 3.91 236437.0 2.2422 .1062 0113 6.8815 .3258 3255 3.92 303160.1 7.2433 .1061 0112 6.8884 .3257 3254 9.23 310035.7 2.2444 .1052 0112 6.8953 .3255 3252 9.94 317078.5 2.2454 .1051 0112 6.9022 .3253 3250 9.75 324260.6 2.2465 .1057 0112 6.9091 .3251 3248 9.76 33164.6 2.2475 .1056 0111 6.9160 .3250 3247 9.77 337189.7 2.2476 .1055 0111 6.9229 .3248 3245 3.93 35475.14 2.2507 .1053 0111 6.9367 .3246 3243 9.99 35475.14 2.2507 .1053 <td< td=""><td>1.98</td><td>277165.7</td><td>2.23 11</td><td>.1065</td><td></td><td></td></td<>	1.98	277165.7	2.23 11	.1065		
3.91 296437.0 2.2422 .1052 0113 6.8815 .3258 3255 3.92 303160.1 2.2433 .1061 0112 6.8884 .3257 3254 9.93 31003.7 2.2444 .1057 0112 6.8953 .3255 3252 9.94 317078.5 2.2454 .1051 0112 6.9092 .3253 3250 9.75 324260.6 2.2465 .1057 0112 6.9091 .3251 3248 9.76 33164.6 2.2475 .1056 0111 6.9160 .3250 3247 9.77 337149.7 2.2476 .1059 0111 6.9229 .3248 3245 3.93 35475.4 2.2507 .1053 0111 6.9367 .3245 3242 10.00 362977.3 2.2518 .1052 0110 6.9456 .3243 3240						
3.91 296437.0 2.2422 .1052 0113 6.8815 .3258 3255 3.92 303160.1 2.2433 .1061 0112 6.8884 .3257 3254 9.93 31003.7 2.2444 .1057 0112 6.8953 .3255 3252 9.94 317078.5 2.2454 .1051 0112 6.9092 .3253 3250 9.75 324260.6 2.2465 .1057 0112 6.9091 .3251 3248 9.76 33164.6 2.2475 .1056 0111 6.9160 .3250 3247 9.77 337149.7 2.2476 .1059 0111 6.9229 .3248 3245 3.93 35475.4 2.2507 .1053 0111 6.9367 .3245 3242 10.00 362977.3 2.2518 .1052 0110 6.9456 .3243 3240	9,40	247445 4	2.2413	. 1 04%	0111 4 4744	. 3260 - 3257
3.92 303160.1 7.2433 .10510117 6.8884 .32573254 9.93 310037.7 2.2444 .10570112 6.8953 .32553257 9.94 317078.5 2.2454 .10570112 6.8953 .32553250 9.95 324260.6 2.2455 .10570112 6.9022 .32533250 9.95 324260.6 2.2465 .10570112 6.9091 .32513248 9.96 331647.6 2.2475 .10560111 6.9160 .32503247 9.97 337149.7 2.2476 .10590111 6.9229 .32443245 9.99 35475.4 2.2507 .10530111 6.9269 .32463243 9.99 35475.4 2.2507 .10530111 6.9367 .32453242 10.00 362877.3 2.2518 .10520110 6.9436 .32433240						
9.73 310037.7 2.2444 .10530112 6.6953 .32553252 9.94 317078.5 2.2454 .10550112 6.9022 .32533250 9.75 324260.6 2.2465 .10570112 6.9091 .32513248 9.36 331647.6 2.2475 .10560111 6.9160 .32503247 9.77 337189.7 2.2476 .10590111 6.9229 .32483245 9.99 35475.4 2.2507 .10530111 6.9269 .32463243 9.99 35475.4 2.2507 .10530111 6.9367 .32453242 10.00 362877.3 2.2518 .10520110 6.9436 .32433240	_					
9.75 324260.6 2.2465 .1057 0112 6.9022 .3253 3250 9.75 324260.6 2.2465 .1057 0112 6.9091 .3251 3248 9.76 33164.6 7.2475 .1056 0111 6.9160 .3250 3247 9.77 337189.7 2.2476 .1059 0111 6.9229 .3248 3245 3.93 344/94.7 2.2476 .1054 0111 6.9269 .3246 3243 9.93 35475.4 2.2507 .1053 0111 6.9367 .3245 3242 10.00 362977.3 2.2518 .1052 0110 6.9456 .3243 3240						
9.75 324260.6 2.2465 .10570112 6.9091 .32513248 0.36 33164.6 7.2475 .10560111 6.9160 .32503247 9.77 337149.7 2.2476 .10590111 6.9229 .32443245 3.49 344 09.7 2.2476 .10540111 6.9269 .32463243 9.99 35475.4 2.2507 .10530111 6.9367 .32453242 10.00 362977.3 2.2518 .10520110 6.9456 .32433240						
7.76 33164 - 6 7.2475 .10560111 6.0160 .32503247 9.77 330140. 2.2476 .10500111 6.0220 .32443245 3.44 340104. 2.2476 .10540111 6.0220 .32443245 9.99 35475 - 4 2.2507 .10530111 6.0367 .32453242 10.00 362677.3 2.2518 .10520110 6.0456 .32433240	7.44	31/075.5	2.2454	•105	0112 6.9022	•3253 ••3250
9.77 33°189.7 2.24 ′6 .1059 0111 6.9229 .3248 3245 3.93 354754 2.2507 .1053 0111 6.9367 .3246 3243 10.00 362877.3 2.2518 .1052 0110 6.9456 .3243 3240		324260.6	2.2465	.1057	0112 6.9091	-32513248
3.43 340.04. 2.2436 .10540111 5.7260 .32463243 9.99 354754 2.2507 .10530111 6.9367 .32453242 10.00 362577.3 2.2518 .10520110 6.9456 .32433240	3,36		2.2475	• 1 156	0111 6.9160	•3250 -•324 7
3.43 340.04. 2.2436 .10540111 5.3260 .32463243 3.34 354754 2.2507 .10530111 6.3367 .32453242 10.00 362577.3 2.2518 .10520110 6.3456 .32433240	4.71	330149.	2.24 16	· 1055	0111 6.9229	.324H3245
9.99 354754 2.2507 .10530111 6.9367 .32453242 10.00 362977.3 2.2518 .10520110 6.9456 .32433240	4. +9	340 104 .	2 + 24 76		0111 6.7200	
10.00 362477.3 2.2518 .10520110 6.9456 .32433240	9,99					
	10.00	362977.3			·	
	×		lu x	1/X	-1/x2 Vx lux	4

APPENDIX B

EMPIRICAL DATA FROM FIELD MEASUREMENTS

Statistical long term distributions from full scale measurements on T/T Esso Bonn /14/.

Main data of ship	в.3
Deviation in the square sum of RMS-values (2.1.2) evaluated in terms of $\left(1 - \sqrt{\sigma_B^2 + \sigma_S^2} / \sigma\right)$	в.4
Distributions of RMS-values $\sigma_{,\sigma_{B}}$ and σ_{S}	B.5
Distributions of logarithmic RMS-values $\ln\sigma$, $\ln\sigma_B$ and $\ln\sigma_S$.	в.8
Distributions of springing share $x_s(2,2,3)$, bending share $x_B(2,2,1)$ and the squared functions	B.11
Springing and bending periods, T_s and T_B , average zero-crossing period T_z (2.1.3), T_p (2.2.5)	B.14
Bending, zero-crossing and peak period made	
dimensionless with respect to the springing period τ (2.2.2), τ_z (2.2.4) and τ_p (2,2,5)	B.18
Peak-to-zero-crossing period ratio $\alpha(2.2.6)$,	
spectral width $\varepsilon(2.2.7)$ and the squared functions	B.21
Fraction of positive maxima $_a$ (2.2.8), period of positive maxima $_p^+$ (2.4.4) and $_p^-$	B.24
Peak period division ratio $(T_B^-T_S)/(T_B^-T_S)$ and zero crossing period division ratio $(T_z^-T_S)/(T_B^-T_S)$ touched in chapter 6.	B.27

Normalized extreme values $\left(0.5(S_{\text{max}}/\sigma)^2 - \ln N\right)$, (5.3.4),	
for springing, bending and total stress	B.29
Spectral correction factor for fatigue λ' , (8.2.7)	
for $m=3$ and $m=4$.	B.32

Particulars:	
Length overall	347.800 M
Length on summer LWL	337.861 "
Length between perpendicular	s 329.200 *
Breadth moulded	51.800 "
Depth moulded	25.600 "
Drafts:	
Tropical freshwater	20.913 *
Freshwater	20.498 *
Tropical	20.458 *
Summer	20.043 "
Winter	19.628 "
Weights:	
Light weight	36.063 T
Light weight V.C.G. Above Ba	ase 14.30 M
Light weight LCG FWD of AP	150.33 *
Load displacement summer	292.758 T
" " tropical	299.493 T
Tonnage International:	
Gross	126.192,23
Net	99.621,46
Section modulus	
Top midship section modulus	76.23 m ³
Bottom midship section modulus	
Midship second moment of ste	
area	982.38 M

Main data for A.G. WESER yard No. 1388 T.T. "ESSO BONN"

DEVIATION IN RMS. :-SORT (RMSB++2+RMSS++2) /RMST ALL LOADING CONDITIONS

STATESTICAL PARAMETERS

	705
WUMBER OF SAMPLE VALUES	725
ARITHMETIC MEAN VALUE, MI	e.172+00
STANDARD CEVIATION, S	1.201-01
COEFFICIENT OF VARIATION, MI/S	£-804~01
COEFFICIENT OF SKENNISS, KS/S**3	771-03
COEFFICIENT OF SYCHOLOGY KINDS	
COEFFICIENT OF ENCESS. K4/S	1.706-01
STCHMO CENTRAL MONENT, C2	1.043-82
THIRD CENTRAL REMENT, C3	6.533-63
POLITY CENTRAL MOMENT, C4	4-174-05
ABORTH CERMAN HOUSEALL CA.	3,350 +05
FRUNTH CURIL ANT A K4=(C4-3-C2+-2)	20330403
SECOND MOMENT ABOUT 2580, M2	2.101+0?
THESE NORE TY ABOUT ZERG, #3	1.057+04
PONTETT APOUT ZERO, M	6.875-05
	-1.254-00
MANIMUM VALUE	*.441-01

DEVIATION IN RMS. i-SORT (RMSB..2+RMSS..2) / RMST BALLAST CONDITIONS

DEVIATION IN RMS. 1-SORT (RMSB++2+RMSS++2)/RMST FULL LOAD CONDITIONS

STATISFICAL PARAMETERS

HUMBIR OF SAMPLS VALUES	38 9
ARITHMETIC MEAN VALU , MI	7.533+00
STANDARD CEVIATION, S	1-088-01
CCEPTICIENT OF VARIATION, %/5	6-922-01
COEFFICIENT OF SKEWNESS, K3/S**3	4-187-46
CHEFT ICIERY OF ENCESS, KAYSHAR	2.245-01
SECOND CONTRAL HONGAT, CO	1,190+02
THIRD CENTRAL MOMENT, C3	5.394+03
FOURTH CERTRAL MOMENT, CA	3.365-95
FOURTH CURLANT, K4=(C4-3-C22)	3-144-05
SECOND MANENT ANOUT ZERD, NO	1.748+02
THIRD MON/ BY ADOUT 259C; MY	F.435+03
FOURTH ROSENT ABOUT ZERO, M	5,569-05
MIRIMUM VALUE	~1.259-00
MANTON MALLO	
MAXITUR VALUE	7.442-02

NUMBER OF SAMPLE VALUES	336
RITHMETIC MEAN VALUE, 41	4.913+0
TANDARD CEVIATIONS S	1.318+01
OFFICIENT OF VARIATION, MI/S	6.765-01
OFFICIENT OF SKEWNESS, KS/S++3	3-414-0
DEFFICIENT OF EXCESS, KA/S-+	1.311.0
SECUMD CENTRAL MOMENTA C2	1.735-0
THYRY CENTRAL MOMENTS CS	7-809+0
DURTH CENTRAL MONERT, C4	4.655+0
FOURTH CURULANT, K4={C4-3+C2-+27	3.951+0
SECOND MORENT ABOUT ZERO, RZ	2.323-0
THIRD MOMENT ABOUT ZERCA MS	1 - 30 5 -0
CURTH HOPER ABOUT ZERO HA	***31*0
Thirmum VALUE	-7-204-8
MARINUR VALUE	2.469.0

	-	ŧn	•	•		8	N	ų	٦.	ŧ		,	ч	u	н	п				•			٠	4		٠	•	٠	٠	٠	٠	1116
	117	-	£,	ı	¢		P	Ł	M		٧	A	u	91	Ε.			1													٠	3.324-01
	AN																															2.290+01
	21																															1.451-00
	Ž,																															2.110+00
E (• 3				Ŧ	•	•	,	E	=	•	E	5	,	•		•	•	3	• •	•	•	٠	٠	٠	•	•	•	٠	٠	5.773+00
	LC O					,				_		_					,		,													5.244+02
71	43 8		C	Ľ	ŧ۲		۸	L		Ю	ж	₹	M	Ŧ	٠		1	5		٠		•	٠		•	٠	•	•	٠	•	•	2.535+04
	24	TH		c		7	•	41		×	0	P	ŧ	ķ	ŧ,		٥						٠						٠	٠	•	2.414+04
f		TH		C	•	u	L	4.	17	•		ĸ	4	-	"			. 3	•	C	٤.	•	2)		•	٠	•	•	•	٠	1.589+06
	EC 0	-						,				u	T		21			٠.		R	,											1.629+03
	ų,																															1+143+05
•	SUE	T	, ,	•		ŧ	*	t	^		•	U	7		21			٠,	•	^	•		٠		•	٠	•	•	•	٠	٠	1.044+07
	18 1			,			u															_			_		_					4.242+00

STATISTICAL PARAMETERS	
NUMBER OF SAMPLE VALUES	1119
AGITHMETIC REAR VALUE, MT	2.729+01
STANDARD DEVIATION, S	2.363+01
COEFFICIENT OF VARIATION, MI/S	1.155+00
CONFFICIENT OF SKEWNESS, K3/S**3	2.058+00
COMPFICIENT OF EXCESS, K4/5++4	5.403+00
CASALICITIES ON EXCESS! MOLITICAL	,,
SECOND CENTRAL MOMENT, CZ	5.563+02
	2.715-04
THERE CENTRAL MOMENT, C3	
FOURTH CENTRAL MOMENT, C4	2.619+06
FOURTH CUMULANT, K4=(C4-3+(2++2)	1.484+04
SECOND MOMENT ABOUT ZERO. M2	1.303+03
THIRD MOMENT ABOUT ZERO, MS	9.304.04
	8.608-06
FOURTH MOMENT ABOUT ZERO, M4	8.500*00
MINIMUM VALUE	1.414+00
MAXIMUM VALUE	1.534+02
HAZINGH VALUE	11734 00

STATISTICAL PARAMETERS	
MANDER OF SAMPLE VALUES	1119
ARITHMETAC PEAN VALUE, M1	9.535+00
STAMBARD DEVIATION, S	9.353+00
COSPERCIONE OF VARIATION, MI/S	1.019+00
CORPFACIENT OF SKEWNESS, K3/S++3	1.842+00
COMPPECIBLE OF EXCESS, K4/S4	4.052+00
SECOND CENTRAL MOMENT, CZ	8.749+01
THIRD CENTRAL MOMENT, (3	1.508+03
FOURTH CENTRAL MOMENT, C4	5.398+04
FOURTH CUMULANT, #4=(C4-3+C2++2)	3.102+04
SECOND NUMERY ABOUT TERO, M2	1.783+02
TOMERO MOMENT ABOUT ZERO, H3	4.869+03
FOURTH MOMENT ABOUT ZERO, NA	1.670+05
# MIZMAN VALUE	7.070-01

•	1 30	235	r;
	KF (M++3		
STATISTICAL PAPAR	RETERS		STATISTICAL
ARITMPETIC MEAN VALU STANDARD DEVIATION, CONFESSION OF VARIA CONFESSION OF SKEWN CONFESSION OF EXCES	18, K4/5**4	2.765+01 2.244+01 1.232+00 2.144+00 6.480+00	HUMBER OF SAMPI A RITHMETIC MEAN STAMBARD DEVIAT COEFFICIENT OF COEFFICIENT OF COEFFICIENT OF
THISP CENTRAL MORENT FORMTH CONTROL MORENT FORETH TUMBLERT, KA- SELOND MORENT ABOUT THISP MORENT ABOUT THISP MORENT ABOUT	17. C2	2.446+04 2.404+06 1.643+06	SECONO CENTRAL P FURTH CENTRAL P FURTH CENTRAL FURTH CUMULANT SECONO MONGRET A THIRD MONERY AN
FRUNTH MOMENT ABOUT	2680, 84	7.941-04	FOURTH HOMENT

STATISTICAL PARAMETERS	
NURBER OF SAMPLE VALUES	557
A MITHRETIC MEAN VALUE, #1	1.188-01
STANDARO DEVIATION, S	1.069-01
COEFFICIENT OF VARIATION, MY/S	1.111+00
COEFFICIENT OF SKEWNESS, K3/S++3	1.537+00
COEFFECIENT OF ENCESS, RA/S4	2.631+00
SECONO CENTRAL MOMENT, CZ	1.144+02
THIPS CENTRAL MOMENT, (3	1.880+03
FOURTH CENTRAL MOMENT, C4	7.344+04
FOURTH CHRULANT, X4=(C4-3+(2++2)	3.441-04
SECOND MORENT ABOUT ZERO, M2	2.539+02
THIRD MOMEN! ADOUT ZERG, NO	7-415-63
FOURTH MOMENT ABOUT ZERO, M4	2.783-03
	20103-03
R INIMUM WALUE	7-878-01
HARIRUM MALUE	4.030-01

NUMBER OF SAMPLE VALUES	473
ARITHMETIC MEAN VALUE, MI	3.547+01
S YAMBARD DEVEATION, S	
CONTRACTOR OF MINISTERS AND	2.437-01
COEFFICIENT OF VARIATION, MI/S	1.443+00
COEFFICIENT OF SKEWNESS, K3/Sans	2.021+00
COEFFICIENT OF EXCESS, K4/5-4	4.688-00
SECOND CENTRAL MOMENT, CZ	5.941+02
THIRD CENTRAL HOMENY, C3	2.927+04
FOURTH CENTRAL MOMENT, C4	
TOWNS CHANGE HOWENING A SAME A SAME	2.714+06
FOURTH CUMULANY, K4=(C4=3+(24=2)	1.055.04
SECOND MOMENT ABOUT TERO, M2	1.845+03
THIRS MORENT ABOUT ZERO, NS	
FOURTH MOMENT ABOUT ZERO, NA	1.378-05
Transfer about tead, be	1.297+07
HININUN VALUE	
	7 + 7 7 7 + 00

RMS FOR SPRINGING STRESS FULL LOAD CONDITIONS

STATISTICAL PARAMETERS

N UNNER	0 f	SAM	n	E 1	YA:	LU							_							47
ARITHE	ETIE	PE	40		ALI	u E	Ξ-		1			Ī	_		-	ī	·	-	_	3.09440
S TANDA		EVI	ĀŦ	101	Τ.	3	•					-				-		:		2.493+01
COEFFL																				1.242+00
C OE FF3																				1.957+00
COEFFI		7 0	•			••	٠	•	•	•	**	•	•	•	•	•	٠	٠	•	4.240+00
1 EC 0#8	cen			104		. 7 .		e a	,		_		_					_	_	6.216+02
THIRD																				3.033+04
	. 600 1					::	٠	٠.	. •	•	•	•	٠	•	٠	•	•	•	•	
FOURTH	(E#	1 H M		. 01	151	ųΥ,	,	"	•		•	٠	•		•	•	٠		•	2.805+06
FOURTH	CHM	UE, AI	ĦΥ	٠,	4.	• (1	C 4	- 3	•	: 2	••	5.)	٠	•	•	٠	•	•	1.446+04
\$ 60.049	200	ENT		861	41	21		۵.		.,					_			_	_	1.579+03
THIRD !				Day 1	٠,	• • •		٠,				•	•	-	•	•	•	•	•	1.174+01
FOURTH	N-COPI		-	BQC	,,	41		۰,	'	••		•	•	•	•	•	٠	•	•	1.099+01
n (k i Pul																				1.414+00
- 1-1-0			•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	٠	٠	•	
HAX I FUI	- 44	LUE	٠	•	٠	٠	٠	•	•	•	•	•	•	٠	•	•	٠	٠	•	1.534*82

HIMBER OF SAMPLE VALUES	473
A TAI JAMES TAG THE AND VALUE . M	8.051+0
STANDARS DEVENTION, S	
CONTRACTOR OF MARKAGES	7.164+8
COMPRESENT OF VARIATION, MI/S	1.124-84
COEFFECTION OF SERBURESS, E3/8++3	1.823+00
COMPLICIENT OF EXCESS, R4/5+44	3.647+0
SECOND CENTRAL MORENT, C2	5.132+0
TALING CERTEAL MONENT, CZ	4.702+6
FORTH CENTRAL HORERT, CA	
FORTH CHRULARY, K4-(CA-3-(20-2)	1.75600
. many compression respective and Septime 1.	7.454-0
SECOND MORENT ABOUT ZERG, M2	1.140+0
THERE MOMENT ABOUT TERD, HS	2.423.0
FAMILE MOMENT ABOUT ZERO, M4	
The second secon	4.249-0
H Inimus VALUE	1.414-00
MAZIMUM MALUE	
	4.242+01

NUMBER OF SAMPLE VALUES	1030
ARITMMETIC MEAN VALUE, RS	3.203+00
STANSARD DEVIATION, S	7.402-01
CORFFECIENT OF VARIATION, MI/S	4.213-00
CORPROCIENT OF SKEWMESS, K3/5**3	-5.380-01
CONFFRENCIT OF EXCESS, g4/s**4	9-491-01
committeding on excessi Kantana	V. 671-01
SECOND CENTRAL POPENT, C2	5.779-01
THERD CENTRAL MOMENT, CS	-2.363-01
FOURTH CENTRAL MORENT, C4	1.325+00
FOMETH CHRMLANT, K4=(C4-3+C2++2)	3.234-01
Location Commitment & reserves 2 artists 1	3.430-01
SECOND ROMENT ABOUT ZERO, M2	1.063+01
THIRS MOMENT ABOUT ZERO, M3	3.216+01
FOURTH MOMENT ABOUT ZERO, M4	1.390+02
regain mental about teas; no	1.300-02
MINIMUM MALUE	4.581-01
HAXTHUR MALUE	5.053+00
	,,,,,,,,

LN (RMS) FOR BENDING STRESS ALL LOADING CONDITIONS

LN (RMS) FOR SPRINGING STRESS

STATISTICAL PARAMETERS

NUMBER OF SAMPLE VALUES	1030
ARITHMETIC MEAN VALUE, MT	3.073+00
STANDARD DEVIATION, S	8.283-01
COMPERCIANT OF VARIATION, MY/S	3.710+00
COSPISCIONT OF SKEWNESS, K3/5++3	-4.054-01

COMPUTATIONS OF MICESS, MA/S-44	8.543-01
SECOND CENTRAL MOMENT, CZ	6.861-01
THERO CENTRAL MOMENT, ()	-3.440-01
FOURTH CONTRAL MORENT, C4	1.815-00
F 000776 CHROLANT, E4=(C4-)=(2++2)	
A semina comprised a re-ice-largesti	4.032-01
SECONO POPENT ABOUT ZERO, RZ	1.013+01
THERP POMENT ABOUT ZERO, AS	3.400-01
	1.254+02
Wallette WALING	3.444-01
PARIFORM VALUE	0.04254.2

NUMBER OF SAMPLE VALUES	1030
WATTHEFT IC MEAN VALUE, NO	1.913+00
- shareman beared today 2	9.238-01
- THE PROPERTY OF VARIATION, MI/S	2.070-00
CATABELEUL OL EKEMBERT K2/2-42	-2.904-02
COEFFOCIENT OF EXCESS, E4/S++4	-7,339-61
S RECORD CENTRAL MOMENT, CZ	
THING REATRAL MOMENT, CT	8.534-01
Comment of the contract of the	-2.201-02
FORTH CONTRAL MONERT, C4	1.451+00
**************************************	~9.34 6- 01
SECOND PORENT ABOUT ZERO, NZ	4.310+00
THEFO MORENT ABOUT JERO, MY	1.184+01
FORTE MARENT ABOUT ZERO, MA	3.354-01
	3.336-01
MINIMUM VALUE	
WALLBORN WALLE	-3,499-01

MUMBER OF SAMPLE VALUES	557
ARITHMETIC MEAN VALUE, MI	3.177+00
STANDARD BEVEATION, S	7.927-01
COEFFICIENT OF VARIATION, MI/S	4.007+00
COMPRICIENT OF SKEWHESS, K3/S++3	-7.552-01
CORFFECIENT OF ENCESS, K4/S++4	
**************************************	1.123+00
SECOND SENTRAL MOMENT, CZ	4.285-01
THERP CENTRAL MOMENT, C3	-3.743-01
FOURTH CENTRAL MOMENT, C4	1.428+00
Total Service Control of the Control	
F 90070 CHMPLANT, K4=(C4-3+(2++2)	4.435-01
SECON TOPERT ABOUT ZERO, HZ	1.072+01
THIRD MARKET ABOUT ZERO, HS	
The state of the s	3.766*01
FORTH MARRY ABOUT ZERO, H4	1.367+02
The state of the s	
COMMINISTRATION OF THE PARTY OF	4.581-01
The state of the s	

STATISTICAL PARAMETERS	
NUMBER OF SAMPLE VALUES	557
A MITHINETIC HEAR VALUE, NY	3.000+00
STANDARD DEVIATION, S	8.740-01
COEFFICIENT OF VARIATION, MI/S	3.424+00
COEFFICIENT OF SKEWNESS, K3/S++3	-7.228-01
COPPRESENT OF ENCESS, RA/S-44	4.387-01
SECOND CRUTTAL MONENT, CZ	7.474-01
THERE CENTRAL NOMENT, C3	-4,859-01
FORTH CENTRAL MOMENT, CA	2.143+00
FAMRTH CUMULANT, K4=(C4-3+C2++2)	3.762-01
SECOND MOMENT ABOUT ZERO, RZ	9.764400
THERE MOMENT ABOUT TERO, HS	3-340-01
FRUETH ROMENT ABOUT ZERO, N4	1.187+02
THE TOUR SALES	
MARINUM VALUE	4.993+00

STATISTICAL PARAMETERS	
NUMBER OF SAMPLE VALUES	557
ARITMMETIC MEAN VALUE, HI	2.054+00
STAMBARD DEVIATION, S	9.791-01
CSEFICIENT OF VARIATION, MI/S	2.098+00
CONFESCIONT OF SKEWNESS, K3/S++3	-2.477-01
COEFFICIENT OF EXCESS, K4/5++4	-5.939-01
DECEMBL CONTRAL MOMENT, CZ	9.584-01
TENE CHITRAL HORENT, CS	-2.512-01
FINISTS CHUTTAL HOREST, C4	2.211+00
PORTE CHENLANT, E4=(C4-3+(2++2)	-5.457-01
SECOND MOMENT ABOUT ZERO, HZ	3.174+00
THERE MOMENT ABOUT JERG, #3	1.431+01
FORM THE MOMENT ABOUT ZERO, H4	4.216+01
# 30 SPARK WALVE	-3.444-01
	-3.400-01

MUMBER OF SAMPLE VALUES	. 473
AMITMMETSC MEAN VALUE, M1	3.233+00
STANDARD DEVENTION, S	
COEFFICIENT OF VARIATION, PI/S	
COEFFICIENT OF SKEWNESS, E3/5++3	
COEFFICIENT OF EXCESS, KA/S++4	
SECOND CENTRAL MOMERT, (2	. 5.177-01
THIRD CENTRAL MOMENT, C3	4.362-02
FOURTH CENTRAL MOMENT, C4	
FOURTH CUMULANT, K4=(C4-3+C2++2)	
SECOND MORENT ABOUT ZEED, MZ	. 1.097+01
THIRD POMENT ABOUT ZERO, HS	
FOURTH MOMENT ABOUT ZERG, R4	1.418-02
	. 4.931-01
HIMIMUM VALUE	
MATTERN WALLS	. 1.053400

STATISTICAL PARAMETERS

NUMBER OF SAMPLE VALUES	473
ARITHMETIC PEAR VALUE, M1	3.159+00
STANDARD DEVIATION, S	7.402-01
COEFFICIENT OF VARIATION, HI/S	
CONTRACTOR OF THE PROPERTY AND A STATE OF THE PARTY OF TH	4.155+00
CEEFFICIERY OF SKEUNESS, K3/S++3	-2.949-01
CONFFICIENT OF EXCESS, K4/Sand	8.091-01
SECONO CENTRAL MOMENT, CZ	5.780-01
THIRD CENTRAL ROMENT, CS	-1,305-01
FOURTH CENTRAL MORENT, C4	1.272+00
FERRY CUMULANT, K4+(C4-3+C2++2)	
Annual construct project-lackants	2.703-01
SECOMO MOMENT ABOUT ZERO, HZ	1.056+01
THIRD MORENT ABOUT YERO, PJ	3.444*01
FOURTH ROMENT ABOUT ZERO, H4	1.337-02
	1.337-02
A SPENNIN PALME	254 64-0 1
and Treatment of the land	***************************************

NUMBER OF SAM																	473
ARITHMETIC ME		٠.	::		•	_:	•	•	•	•	•	•	٠	٠	•	•	
	75		•	٧ž	•			•	•	•	•	•		•	٠	•	1.744+00
STANDARD DEVI		10	٠,	2		•	•		٠		٠						8.246-01
COEFFECIENT O		VA	1	a T	10	٠,		1/	5		٠						2.117+00
COEFFICIENT O		SK	EW	NE	2.2		K 3	/ 5	••	3	_		-			- 1	1.909-01
COEFFICIENT O			7	• •	-		74	::	4	•	•	٠	•	•	•	•	
	•	•	••	••	•		•		•	٠	•	•	•	•	٠	•	-4.382-01
S BC 040 CENTRA		n Ou		¥Ŧ.		.,			_					_			4.799-01
THERE CONTRAL		~			٠.	;`		•	•	•	•	•	•	•	٠	٠	
COLOR SERVICE	્ =	-	щ.	•		٠.	•	•	٠	•	•	٠	٠	•	•	•	1.070-01
FOURTH CENTRA		HO1	ŧŧ.		, ,	(4		٠	٠	٠	•	•		٠	•		9.994-01
FOURTH CUMULA	N T	, ,	4	• ((4	- 3	• (;	•	• 2)	٠	•	•	•	٠	•	-3.875-01
SECOND HORENT	A	801	11	21		٠.	R :	,		_		_		_			3.727+00
THIRD MOREST	48	DUT	٠.	, 2				•	•	•	•	•	•	•	•	•	
I MISTH MARKET			'		٠.	•	٦.	٠.	•	•	•	•	•	•	•	•	8.981+00
FOURTH MOMENT	-	•••	•	*1		٠,	-	٠	•	•	•	•	•	•	٠	•	2.343+01
MININUM VALUE																	
	•	•	٠	•	•	٠	٠	•	•	•	•	٠	•	•	•	•	3.466-01
RAKIR UR WALVE	•	•	٠	•	•		٠	٠	•	٠							3.748+00

ALCOHOLD STATE OF THE STATE OF

EXPANDED DRAWINGS OF SPRINGING PERIOD

AV SPRINGING RERIOD, TS. ALL LOADING CONDITIONS

AV SPRINGING PERIOD. IS FULL LOAD CONDETIONS

AV SPRINGING PERIOD, IS BALLAST CONDITIONS

on and a sign of the

MUMBER OF SAMPLE VALUES	1030
ARITHMETIC MEAN VALUE, MI	4-176+00
STANDARD DENTATION C	
STANDARD DEVIATION, S	1.153-00
COEFFICIENT OF VARIATION, ML/S	3.622 400
COEFFICIENT OF SKEWMESS, KS/S++3	1.566 40
CDEFFICIENT OF EXCESS, K4/3	1.407-00
	10407400
SECOND CENTRAL MONENT, C2	
THE OF THE PROPERTY OF	1,350+00
THIRD CENTRAL MOMENT. C3	2.401+00
FOURTH CENTRAL MONENT, CA	1.316-01
FOURTH CURMANT, K4=(C4-3+C2++2)	7-777-40

SECONO HOPENT ABOUT ZERG, HZ	
SECOND HORENT ABOUT ZERO, HE	1.877+01
THIRD MORENY ABOUT ZERC, MS	7.180 -01
FOURTH HORENT ABOUT ZERO, MY	4.963+02
•	
HIMITHAN VALUE	2.000-00
MATTERIA WALLE	
MAXIMUM VALUE	1,075+01

DIMENSIONLESS PEAK PERIOD. TP/TS ALL LOADING CONDITIONS

DIMENSIONLESS ZERO CROSSING PERIOD. 12/15 ALL LOADING CONDITIONS

STATISTICAL PARAMETERS

NUMBER OF SAMPLE VALUES	1630
ARTTHRETIC HEAR VALUE, HI	1.458-00
STANDAND DEVIATION, S	3.249-01
COMPTICIONS OF VARIATION, ML/S	2.751-00
COEFFICIENT OF SKINNESS, K3/S+-3	2.357+00
COELLICITIES OF SWINGS 25 KD12-2	7.550-00
COEFFICIENT OF EXCESS. K4/5++4	7.330-00
SECOND CENTRAL MOREAT, C2	2.776-81
THIRD CENTRAL MOMENT, C3	3-446-61
	9-673-01
FOUNTH CERTIAL HONERT, CA	
FOURTH CUPULANT, RESCO -3-C225	7.361-01
SECOND MORENT ABOUT ZERO, M2	2.379.02
	4.596+00
THIRD MOREST ABOUT ZERG, AS	
FERRITH HOR DIT ABOUT ZERD, M	1.087-01
	1.063+00
MINIMUM VALUE	
mattimin valif	6.146-00

MUMBER)F	5	AN	4	υĎ	þ	u	Æ	5			٠			٠						1030
ARITHM	ET I C		ME	M P	٧	ĂL	U		×	1					٠						2-821-64
STANDA	RO '	35	VI.	M	[n	٧,	•	;													1.360+00
COSFFI	CIF	٠1	OF	٠,١	VA	RI	A1	r :	Ç.	١,	41	1	3				٠.				2.075-00
COSEFE	ct : 1	1 1	OF		SK:	Ų	N	3	s,		**	1	••	3							1-268-00
COSFFI	CIE	1	OF		EX	ĊE	S	,	*	4	/s•	•	٠	٠	•	•	•	•	•	•	2.752-60
SECOND	CEI	N 1	RAC	. ,	40	ME	N	r,	c	2											1.650-00
THIRD	C: N1	1 P	AL.	M)M	CN	۲,		(3	,		٠								•	2-126-00
																					2.036-01
																					1-010-01
SECOND	MO f	4 E	NT	AI	BO	ut	. ,	ZΕ	RO	٠.	H										7.001-00
THIRD	MOM !		τ /	AB	OU.	Ť	21	R	c.	Ť	M3		٠								4.128-61
FOURTH	P)1	ě	٩T	A!	P (· I	ŲΤ			£Ĵ	•	m	ŀ	•	•	•	•	•	•		•	2.078-02
MINIMU	. .	٠.	LIF			_					_	_	_	_	_	_	_		_		
MANIMIL																					1. Elizabet

A STATE OF THE STA

NUMBER OF SAMPLE VALUES				473
ARTTHMETTO MEAN VALUE, MI		: :	3.91	1-00
STANDARD DEVIATION, S		• •	7 44	0-01
COEFFICIENT OF VARIATION, ME/S	• •	٠.	1 1479	
				1 +0 8
COMPRECIENT OF SKEWNESS, K3/S++3 .				4-01
COEFFICIENT OF EXCESS, KAZS		• •	. 5.05	15-0 L
SECOND CENTRAL MOMENT, C2			. 6.26	0-0 t
THERD CENTRAL MOMENT, CS			2.01	4-61
FOURTH CENTRAL HOREST, CA	• •	٠.		
				6+60
PHURTH CUMULANT, K4=(C4-3-C2-+2) .	• •	• •	. 1.96	1-61
SECOND MOMENT ABOUT 7, 80, M?			. 1.59	8 +0 1
THIRD MONEST ABOUT ZERC. MS			. 6.77	0 +0 1
FOURTH HOM NT ABOUT ZERO, M				7-02
HENERUM VA LE			. 2.00	9 +0 7
HANTHUM VALUE			. 6.50	10+07

DIMENSIONLESS PEAK PERIOD. TP/TS FULL LOAD CONDITIONS

DIMENSIONLESS ZERO CROSSING PERIOD. TZ/TS FULL LGAD CONDITIONS

STATISTICAL PARAMETERS

NUMBER OF SAMPLE VALUES	473
ARTTHMETIC MEAN VALUE. 41	1-598-08
STANDARD DEVIATION, S	5.241-01
COMPRECIENT OF VARIATION, ME/S	3-633-60
COEFFICIENT OF SKEWNESS, KS/***	1-147-00
CHEFFICIENT OF CHOESE, REFSEED	£.544-01
SECONO CERTAL MORENTO CO	2.747-41
THERE CENTRAL MONERTY C3	1.651-01
FORETH CENTRAL MOMENT, CA	2-780-61
FOURTH CUPLLANT, K4=4C4-3-C721	5.163-02
SECONO MOMENT ABOUT ? MO. M?	2.481-07
THE MOMENT AMOUT ZERC, MS	5.487-01
FOREST NORTHY ABOUT ZE NO, M	1.165-01
ATETMEN VALUE	1.023-67
TANTON VALUE	3.413-00

NUMBER OF SAMPLE VALUES	473
ARITHMETIC HEAN VALUE, ML	2.957+88
STAMPARD SEVIATIONS S	1.090+00
COSFFICIONS OF VARIATION MINE	2.711-00
CHIEFFECTIVAT OF SKEWNEIS KS/5++3	2. 381-01
COSFFICIENT OF SECESS, K4/5***	-4,569-61
SECOND CENTRAL NOMENT - C?	1,187-00
THIRD CENTRAL MONGHIT, CS	4.383-01
FIUPTH C'ATRAL MONTHY. CA	3.575+08
FOUNTH CUMULAUT, #4-(C4-5-C7-+2)	-6.460-01
SECOND NOMENT ANOUT ZERO, NZ	7.720 -00
THIRD MOTERT AROUT ZERO, HS	3.689-01
FOURTH HOMENT AMOUT TO RO	1.473+02
MINIMUM VALUE	1.135-00
MAXIMUM VALUE	6-192-08

STATISTICAL PARAMITIR.

YUMBER OF SAMP	LE VALUE	s			1030
ARITHMETIC MEA					7.821-01
STANDARD C'VIA					7.497-02
COMPRESCIONING					1.043-01
COFFF ICIENT OF					5.723-01
CHEFFICIENT OF					-1.206-02
DICONDICTATRAC	MOMENT.	es .			4.620-03
THERY C' YTEAL					2.911-04
I TUPTH C'ATRAL					9.438-05
- GURTH CUPLLA					-3.898-67
JCCOND HOMENT	ARJUT 31	FO . 82			6.173-01
THIR) MONTAT					4.919-01
FOURTH MOMENT	ABOUT .	PG - M4	• • • • •	· • • •	3-956-61
TREMUM WATOR					£-103-01
HAYT WE WALUF					5-982-81

PERIOD OF POSITIVE MAXIMA. IP+ $\pm \text{IP}/\text{A}$ ALL LOADING CONDITIONS

AV-PEAK PERIOD. TP

STATISTICAL PARAMETERS

NUMBER OF SAP	PL	- 4	A	.u	2												1027
ARTTHRETIC ME	44	V A	L	J.,		1									٠		4.003.00
STANDARD CEVI																	1.637.00
COCFF TCTCBT O																	2.443-00
COEFF ICIENT O	F	SKE	w	Œ	: 5 :	٠.	K 3/	15		3					٠		1.115-00
COEFF ICIENT																	1-145-08
SECONO CENTRA	ı	40 F	ĸ.	47	, (2											2.6R1 +00
THTED CENTERS	. •	946	٠,	۲.	C!	3				٠			٠		٠		4,874+00
FRIETH CERTA																	2.979+01
FOURTH CHECK	MT	. 1	(4	= ((•	- 3	• C	2 -	• 2	,	•	•	•	•	•	•	P.229+00
SECONO HOPEN		P OL	17	21		٥.	42	2									1.869-81
THIND PORT ST	AB	ðui	r	*c1	ı C	•	43	٠.							٠		1.010+0?
FOURTH MONENT	7 .	Bot	JŦ	•	1	٠,	•	•	٠	•	•	٠	•	•	•	•	6.203+62
2 -																	
REMEMBER VACES							٠			٠						•	1-829-00
HARIMUP VALUE																	1.300-01
				-	-	-		7									

MUP!	15R 74	· 'A	-	Ĺ	•	M.	ı.	s												1030
ARIT	THAET I	(m	f A		٧Ň	Ui		٦	ı											3-075-08
STA	DRACE	CEV	14	11	١.,															1.254-00
CULI	FFICE	4.1	Œ	٧		41	1	~		41	1	S				٠				2.465+00
	FICE:																			1.796 -01
	FICE																			4.687-01
3500	na c	A TR	AL	M				c	2											1-577-08
1411	10 CH	1 RA		40	41.1	iT.	. 1	c3								٠				3.536.400
FOUR	1715	4 18	٨L	4) 4	41		¢	٠											1.912-61
FOUL	FAH CI	··	AN	۲,	4	= (C	•-	١.	· C	•	• 2	•	•	•	•	•	•	•	1-166-01
31.0	3 tO 4) M E+-	7	44	11)1	, ,	٠,	# 1		41										1.114+01
	4) Mile																			4-742-01
	₹ Т-1 — Щ																			2.452-43
MIM.	[4U#	/ 4 L U	ış																	1.765-01

NUMBER OF SAMPLE VALUES	55 *
ARITHMETIC MEAN VALUE. MI	7.831-01
STANDARD DEVIATION. S	4-609-02
COMPACTENT OF VARIATION, MI/S	1.471-01
CHEFFICIENT OF SKEWIESS, KS/53	-447-01
COEFFICIENT OF EXCESS, K4/54	-5.407-01
SECOND CENTRAL MOMENT, C2	7-759-03
	3.203-04
THERD CENTRAL MONERT, C3	
PRINTIN CENTRAL MORENT, C4	2-476-64
PRINTIN CHROLANT, K4=(C4-3-C2++2)	-3.303-05
SECOND MOMENT ABOUT ZERO, M2	4.219-01
THIRD HOME AT ABOUT ZERO, MS	4.789-61
MOUNTAIN MONEST ABOUT ZE NO, M	4.050-01
₹ 3 *	
* ***	
MINIMUM VALUE	ۥ103 -0 1
MANUFACTOR MALLET	E - BA 1A1

AV-PEAK PERIOD. TP

STATISTICAL PAPAN TER

NUMBER OF SAMPLE VALUES					554
BRITHMETIC MEAN VALUE . MI					2,304 +00
STANDARD CEVIATIONS					1.332+00
CONFESSION AT A MARIATICH MICO	•	•	•	•	2.480+00
COEFFICE AT ME SKEWNESS, 43/0++3					2.129-00
CONFERENCE AT OF EXCESS. KA/S**4					7-212-60
CHERNICE AND DESCRIPTION OF THE PARTY OF THE	•	•	•	•	/0442-00
COTONIA CONTRAC MONTHY, CALL					1.774+00
THE TO COUT PAL MONTH TO CS					5.031-00
					3.215-01
FOURTH CLAIRAL MOMENT, CA					
FOURTH CUMULANT, K4=4C4-3-C2++2F	•	•	•	•	2.271-01
исель чэм чт жаныт мян, ю н н н					1.269+01
					162-01
THIRD FOR AT AGOUT TERES 43					
FOURTY HOW THE AMOUT FORES ME	•	•	•	•	3.331+02
MINIMUM VALU"		_	_		1.427+01
					1 - 30 0 - 01
HANTHUM VALU					

WIRBER (¥ S	AFF	LΕ	VA	LU	E 3												95
ARITHME	110	MEA		AL	Vτ	. '	Ħ1					٠			٠	٠		2.4%
STANDAR																		4. 844-6
COEFF IC																		3-1-02-0
COEFFIC																		2.524
OEFF IC																		-121-4
COEFF LC	CRI	•	L	CE	22	٠	~*	/34	•	•	٠	•	•	•	•	•	•	
SECOND (E #T	RAL	4	ME	e t		C2										_	6.471-4
HIRD C																		1.3134
OURTH (1.6114
FOURTH (
OUR IN		LAN	•		= 1		- ,	•		• 2	,	•	•	•	•	٠	•	3.354
SECOND 1	ORE	MT	480	UT		٤.	٥.	100		_		_	_		_		_	6.874
HIRD W	MES	7 4	no.	17	7			#1	٠.	-	Ī	-			•	-	•	2.1614
FOURTH I																		4.0524
reenin .		~ 1	417		•		••		•	٠	•	•	•	•	•	•	•	
a IN I MUM		uF.		_	_	_	_		_		_			_	_	_		1.7634
RURI KAR																		7.234
*** ****		U.	• •	•	•	•	•	•	•	3	٠.	٠	•	٠	•	•	•	102 34 74

6.633-01 7-907-01

A STATE OF THE STA

PEAK PERIOD DIVISION RATIO. (T -TS)/(TB-TS) FULL LGAD CONDITIONS

STATESTICAL PARAMETERS

COEFFICIENT OF VARIATION, HE'S	1-272-08
COEFFICIENT OF SKEWNESS, KS/S3	1.649+00
CONFESCIONAL OF CACCOS! KANG	6, 359-01
Control of the second	-
SECUND CONTRAL MOMENT. C2	2,116-02
THIRD CENTRAL MONENT, C3	3,346-03
FOURTH CENTRAL MOMENT, CA	1-628-63
FOURTH CURULARS, K4=(C4-3-C24-2)	2.847-64
SECOND HOMENT ABOUT ZERD, 42	5, 539-02
THIRD MONEAT ABOUT ZERG, M3	2.137-42
FOURTH HOMENT ABOUT 2083; 50	9.575-03
MINIMUM VALUE	
MAKINUM VALUE	7.271-01

ZERO PERIOD DIVISION RATIO. (12-TS) ℓ (TB TS) FULL LOAD CONDITIONS

NUMBER OF SAMPLE VALUES	473
ARITHMETIC MEAN VALUE, MI	6.254-01
SYANDARD CEVIATION, :	2-434-01
COEFF ICE INT OF VARIATION, 41/5	2.561-02
COMPTICIONE OF SKEWNESS, KS/S-+5	-3-831-01
COEFFICIENT OF EXCESS, K4/54	-1-871-00
SECOND CENTRAL MOMENT, C2	54925-62
THIRD CENTRAL HONENT, CS	-5. 526-0 5
FOURTH CENTRAL MONETO, CA	6.701-63
FOURTH CUMULANT, KOX(C+-3+C2++2)	-3-931-03
RECORD ROMENT ABOUT ZERO, M2	4.582-01
THIRD MOMEAT ABOUT ZERC, M3	3,503-01
FOURTH MORENT ABOUT ZEND, MA	2.845-01
AND SAUR	P. 660-92
PARTIE VALUE	5.779-61

NORM-EXTREME OF TOTAL STRESS. HALF RANGE ALL LOADING CONDITIONS

STATISTICAL PARAPETERS

NUMBER OF SAMPLE VALUES	725
ARITHMETEC MEAN VALUE, ME	6.646-01
STANDARD DEVIATION, S	1.783-00
COEFFICIENT OF VARIATION, ME/S	3-727-01
COEFFICIENT OF SKEWNESS, K3/C++3	6-967-41
COEFFICIENT OF EXCESS, KA/S+++	3.733-00
SECOND CENTRAL MOMENT, CO	1-177-€€
THERD CENTRAL MONERT, CS	3-944-00
FOURTH CENTRAL HOPENT, C4	7-007-01
PURTH CURMLANT, K4=(C4-3+C2++2)	3.975-01
SECONO NOMENT AMOUT ZING, M2	3-615-00
THERD MOMENT ABOUT ZERC. 43	1.055-01
FORTH MONEUT ASOUT 25 No. m	8.864-81
-41	
RENEMAN VALUE	-5-936-008
MAXINUM VILLE	1.043-01

NORMLEXTREME OF BENDING STRESS. ALL LOADING CONDITIONS

STATISTICAL PARAMETERS

NUMBER OF SAMPLE VALUES	560
ARITHMETSC MEAN VALUE, R1	3.208-01
STANGARD DEVIATION, S	1.243+00
COEFFICIENT OF VARIATION, MI/S	2.540-01
COEFFECTERT OF SKEWMESS, K3/S++3	1.509+00
COLFFICIENT OF EXCESS, RA/S+-4	3,435+00

SECOMO CENTRAL MOMENT, C2	1.594+00
THERD CENTUAL MOMENT, C3	3.042+00
FOURTH CENTRAL POPENT, CA	2.149+61
FOURTH CHOULANT, 14=(C4-3+C2++2)	1.384+01
, , , , , ,	14.04-01
SECOMP MOMENT ABOUT ZERG, M2	1.494+00
THIRD HONENT ABOUT ZERO, P3	4.547+00
	2.418-01
PAURYM MAMERT ABOUT ZERO, N4	\$18/B-0/
N SPI COMP VALUE	-3.414+00
NALIMON VALUE	1.433+00

NORMLEXTREME OF SPRINGING STRESS. HALF FANCE ALL LOADING CONDITIONS

STATISTICAL PARAMETERS

NUMBER OF SAMPLE VALUES	
ABBER OF SUCCESSION	492
ARTTERETIC MEAN VALUE, R1	-4.953-01
STANDARD DEVIATION, S	2.002+00
COEFFICIENT OF VARIATION, MI/S	-2-467-01
COEFFICIENT OF SKEWNESS, K3/5++3	5.284+00
COEFFICIENT OF EXCESS, K4/S**4	5.924+01
SECOND CENTRAL MORENT, CZ	4.031+00
THIRD CENTRAL MOMENT, C3	4.277+01
FOURTH CENTRAL MOMENT, C4	1.012+03
FOURTH CUMULANT, K4=(C4-3+C2++2)	9.430-02
SECOND NOMENE ABOUT TERO, R2	4.748+00
THIRD MORENT ABOUT ZERG, MS	3-432-01
FOURTH MOMENT ABOUT ZERO, RA	
TODATA MUNENI MOUT ZERU, NA	9.253+02
MINIMUM MALUE	-3.253+00
MAKEMUM VALUE	2.573+01

NORM.EXTREME OF BENDING STRESS. ALE LOADING CONDITIONS

NUMBER OF SAMPLE VALUES	360
ARITHMETIC MEAN VALUE, MI	2-670-01
STANDARD DEVIATION, 5	1.247-49
COEFFICIENT OF VARIATION, ME/S	2-141-01
COEFFICIENT OF SKEWNESS, KS/C++3	1-699-63
COEFFICIENT OF EXCESS, Ke/S	6-075-01
SECOND CENTRAL MOMENT, C2	1.555.00
THIRD CENTRAL HOMENT, CS	3.264-02
FOURTH CENTRAL MONEAT. C4	2.200-01
FOURTH CUNULANT. K4=(C4-3-C22)	1-475-01
SECOND WOMEN'T ABOUT ZENO, NO	1.624-82
THERD HOMENT ABOUT STROP HS	4.505-00
FOURTH HOREIR ABOUT 22 40, IN	2.595-01
MANUFACTURE MANUFACTURE AND ADDRESS OF THE PARTY AND ADDRESS OF THE PAR	
MINIMUM VALUE	
MAXIMUM VALUE	7. 715-01

The state of the s

A The sea

NORM-EXTREME OF TOTAL STREETS HALF HARES NORM. EXTREME OF SPRINGING STRESS. HALF RANGE FULL LOAD CONDI MIGHS FULL LOAD CONDITIONS 0 4 6, 4 DENS! . T ., 3 § 0 3 ö PROBABILITY O c. 4 13 DIMENSIONLESS DIMENSION, 155 STATISTICAL PARAMETERS STATISTICAL PARAMETERS 335 9.990-01 2.017+00 4.954-01 7.673-01 2.591+00 NUMBER OF SAMPLE VALUE : ARTHMETIC MEAN VALUE : NI STAMOARD (PEVIATION S COMPTICIENT OF VARIATION, MI/O COEFFECTION OF SAMMESS, KA/S-14 COEFFECTION OF SECONS, KA/S-14 SECONO CENTRAL MOMENT, C2
TMEND CENTRAL MOMENT, C3
FOURTH CENTRAL MOMENT, C4
FOURTH CUMULANT, E4=(C4-5=C2=2) 4.067-03 6.293-00 1.093-02 5.340-01 4.500+00 1.938+01 1.576+02 -2.993+00 2.573+01 NORM-EXTREME OF BENDING STRESS. NORMLEXTREME OF BENDING STRESS. FULL LOAD CONDITIONS FULL LOAD CONDITIONS 0.6 POSITIVE AMPLITUDES NEGATIVE AMPLITUDES DE#S ! T S# 33 6.4 PROSUBILITY ij., 0.2 10 DIMENSIONLESS DIMENSIONLESS STATISTICAL PARAMETERS STATISTICAL PARAMETERS 1.704-00 3.702-03 3.930-01 2.166-01 2.001+00 1.792-09 5.436-60 3.570-61

Marie Control of the

FATIGUE FACTOR, LAMBDA' M=4 FULL LOAD CONDITIONS

STATISTICAL PARAMETERS

NUMBER OF SAMPLE VALUES	473
ARITHMETIC MEAN VALUE, MI	1-027-00
STANDARD CEVIATION, S	1.210-01
COEFFICIENT OF VARIATICA, MIS	8-185-00
COPPRIGNAT OF SKEWHITS, KS/3++3	3-569-00
CONFETCIONS OF CYCEGG, KAZS-+4	1.397-01
SECUND CENTRAL MOMENT, C*	1.465-02
THIRD CENTRAL MOMENTS CS	6-313-03
FOURTH CENTRAL MOMENT, CA	3-646-03
FOUNTH CUPILLATT, RATICE TO COMPANY CO.	3.002-03
FOUNTH CONCLUDE, MARKET AND CONTRACTOR OF THE CO	34002-0
SECOND HOMENT ADOUT 7580, 42	1.067-0
THERD MONTAT AROUT ZERCE "T	1.135+0
FOURTH MUNICIT ANNUT TIRTS 14	1.234+00
	1,273-0
MIKIMUM VALUE	
MANTHUM WALLIF	1.754+0

NUMBER OF SAMPLE VALUES	473
ARITHMETIC MEAN VALUE, MI	5.052-01
STAMBARD DEVIATION, S	4.720-02
COEFFICIENT OF VARIATION, MI/S	5.313.00
COEFF TOTENT OF SKEWHESS, KS/S++T	C.146=01
CHEFFICIENT OF EXCESS, KAYS	4.480-80
SECOND CENTRAL MONENT, C2	5.445-03
THERE CENTRAL MOMENT, CS	E- 377-09
FOURTH CENTRAL NOMENT, C4	6.676-04
FOURTH CURLLANT, K4=(C4-1-C22)	3.997-04
SECOND MOMENT ABOUT ZERD, NZ	2.289-01
THERD MOMENT ABOUT ZERO, MS	7-692-01
POURTN HOR BUT ABOUT ZERD, M	7.214-01
WENTHUN VALUE	7-221-01
MAY THINK YALDER	

