Тензорный анализ сингулярного спектра

Хромов Никита Андреевич, Голяндина Нина Эдуардовна

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Процессы управления и устойчивость 2 апреля 2024, Санкт-Петербург

Постановка задачи

 $X=(x_1,x_2,\ldots,x_N),\ x_i\in\mathbb{R}$ — вещественный временной ряд. X=T+P+R. T — тренд, P — сезонность, R — шум.

Возможные задачи:

- **1** Выделение сигнала из ряда: нахождение S = T + P,
- 2 Отделение компонент сигнала: нахождение Т и Р,
- 3 Нахождение парамтров сигнала в параметрической модели.

Методы, основанные на подпространстве сигнала:

- SSA (задачи 1 и 2)
 (Golyandina et al. (2001), Analysis of time series structure:
 SSA and related techiques)
- ESPRIT (задача 3)
 (Roy, Kailath (1989), ESPRIT-estimation of signal parameters via rotational invariance techniques)

Имеющиеся результаты

В работе Papy et al. (2005) была предложена тензорная модификация метода ESPRIT и экспериментально показано её преимущество для конкретной модели.

Цель: расширение предложенного Рару алгоритма для решения задачи выделения сигнала, исследование свойств тензорных модификаций методов семейства SSA с точки зрения точности выделения сигнала.

Модель одномерного сигнала

$$X = (x_0, x_1, \dots, x_{N-1}) = S + R,$$

S — сигнал, R — шум.

$$s_n = \sum_{j=1}^{R} a_j e^{-\alpha_j n} \cos(2\pi\omega_j n + \varphi_j)$$

Параметры:

$$a_j\in\mathbb{R}\setminus\{0\}$$
 — амплитуды, $lpha_j\in\mathbb{R}$ — степени затухания, $\omega_j\in[0,1/2]$ — частоты, $arphi_j\in[0,2\pi)$ — фазы.

Модель многомерного сигнала

$$\mathsf{X} = egin{pmatrix} \mathsf{X}_1 \ \mathsf{X}_2 \ dots \ \mathsf{X}_P \end{pmatrix}$$
, $\mathsf{X}_p = \mathsf{S}_p + \mathsf{R}_p$ — одномерные ряды.

Общий случай:

$$s_n^{(p)} = \sum_{j=1}^{R(p)} a_j^{(p)} e^{-\alpha_j^{(p)} n} \cos\left(2\pi\omega_j^{(p)} n + \varphi_j^{(p)}\right)$$

Рассматриваемый случай:

$$s_n^{(p)} = \sum_{j=1}^R a_j^{(p)} e^{-\alpha_j n} \cos\left(2\pi\omega_j n + \varphi_j^{(p)}\right)$$

Описание алгоритма MSSA

 ${\sf X}-P$ -мерный временной ряд длины N с сигналом ${\sf S},\, L-$ длина окна, K=N-L+1.

Оператор вложения:

$$\mathbb{H}_{L}\left(\mathsf{X}_{p}\right) = \begin{pmatrix} x_{0}^{(p)} & x_{1}^{(p)} & x_{2}^{(p)} & \dots & x_{K-1}^{(p)} \\ x_{1}^{(p)} & x_{2}^{(p)} & \ddots & \dots & \vdots \\ x_{2}^{(p)} & \ddots & \ddots & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots & x_{N-2}^{(p)} \\ x_{L-1}^{(p)} & \dots & \dots & x_{N-2}^{(p)} & x_{N-1}^{(p)} \end{pmatrix}$$

Описание алгоритма MSSA

Параметры алгоритма: $L, R: R \leqslant L < N, K \geqslant L.$ R — число компонент, отнесённых к сигналу.

Схема алгоритма MSSA для выделения сигнала

- f Bложение $f X\mapsto f H=[\mathbb{H}(f X_1):\mathbb{H}(f X_2):\cdots:\mathbb{H}(f X_P)]\in\mathbb{R}^{L imes KP},$
- f Pазложение $f H = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^{
 m T}, \ d \leqslant L$
- $egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} igoldsymbol{S} = igg[igli oldsymbol{S}_1 : igroup oldsymbol{S}_2 : \cdots : igroup oldsymbol{S}_P \end{bmatrix}, & egin{align*} igli oldsymbol{S}_p \in \mathbb{R}^{L imes K} \end{aligned}$
- $oldsymbol{\mathfrak{S}}_p$ Усредняются вдоль побочных диагоналей: $ilde{s}_n^{(p)} = \max\left\{\left(ilde{\mathbf{S}}_p\right)_{i,j} \ \middle| \ i+j-2=n\right\}.$

Ранг сигнала

S имеет ранг r, если $\forall L: r \leq \min(L,K) \quad \mathrm{rank} \, \mathbb{H}_L(\mathsf{S}) = r.$ Рекомендуемый выбор параметра R в алгоритме: R = r.

Примеры

• $s_n = Ae^{\alpha n}\cos(2\pi\omega n + \varphi),$ $A \neq 0, \ \alpha \in \mathbb{R}, \ \omega \in [0, 1/2], \ \varphi \in [0, 2\pi)$

$$r(\omega) = \begin{cases} 1, & \omega \in \{0, 1/2\}, \\ 2, & \omega \in (0, 1/2). \end{cases}$$

•

$$s_n^{(p)} = \sum_{j=1}^{R} a_j^{(p)} e^{-\alpha_j n} \cos\left(2\pi\omega_j n + \varphi_j^{(p)}\right)$$

 $r = \sum_{(\omega,\alpha) \in \Omega} r(\omega)$, Ω — все уникальные пары (ω_j,α_j) .

Построение траекторного тензора

$$L < N$$
, $K = N - L + 1 \geqslant L$

Разложение и группировка

ullet HOSVD траекторного тензора ${\mathcal H}$ имеет вид

$$\mathcal{H} = \sum_{l=1}^{L} \sum_{k=1}^{K} \sum_{p=1}^{P} c_{lkp} \mathbf{U}_{l}^{(1)} \circ \mathbf{U}_{k}^{(2)} \circ \mathbf{U}_{p}^{(3)}.$$

• Этап группировки в алгоритме HO-MSSA имеет вид

$$\widetilde{\mathcal{H}} = \sum_{l=1}^{R_1} \sum_{k=1}^{R_2} \sum_{p=1}^{R_3} c_{lkp} \mathbf{U}_l^{(1)} \circ \mathbf{U}_k^{(2)} \circ \mathbf{U}_p^{(3)},$$

 $R_i \leqslant \min(L, K, P)$ — параметры алгоритма.

Ранги тензора

n-ранг тензора: размерность пространства, порождённого векторами вдоль n-го измерения $(\operatorname{rank}_n(\mathcal{A}))$.

Теорема

Пусть многомерный временной ряд

$$(x_0^{(p)}, x_1^{(p)}, \dots, x_{N-1}^{(p)}), \quad p = 1, 2, \dots, P$$

имеет ранг d в терминах MSSA, тогда для траекторного тензора \mathcal{H} , построенного по любой длине окна L < N такой, что $\min(L,K) \geqslant d$, выполняется $\mathrm{rank}_1(\mathcal{H}) = \mathrm{rank}\,2(\mathcal{H}) = d$, а 3-ранг этого тензора равен рангу матрицы, в строках которой записаны заданные одномерные ряды.

Ранги сигнала в HO-MSSA

- 1- и 2-ранги траекторного тензора ${\cal H}$ сигнала S совпадают с рангом этого сигнала в терминах MSSA.
- Однако ранг третьего измерения имеет иной смысл.

На этапе группировки рекомендуется брать $R_1=R_2=r$ и $R_3=r_3$, где r — MSSA-ранг сигнала, r_3 — ранг матрицы, составленной из ${\bf S}_p$.

Примеры

$$s_n^{(p)} = \sum_{j=1}^R a_j^{(p)} e^{-\alpha_j n} \cos\left(2\pi\omega_j n + \varphi_j^{(p)}\right), \quad n \in \overline{0:N-1},$$

$$p \in \overline{1:P}, a_j^{(p)} \neq 0, \alpha_j \in \mathbb{R}, \omega_j \in (0, 1/2), \varphi_j^{(p)} \in [0, 2\pi)$$

$$\bullet \omega_i \neq \omega_j, \ \varphi_j^{(p)} = \varphi_j^{(m)} \Longrightarrow r = 2R, \ r_3 = R,$$

Численные сравнения

• Одинаковые фазы

$$x_n^{(p)} = c_1^{(p)} e^{-0.01n} \cos(2\pi 0.2n) + c_2^{(p)} e^{-0.02n} \cos(2\pi 0.22n) + \varepsilon_n^{(p)},$$

2 Линейно меняющиеся фазы

$$\begin{aligned} x_n^{(p)} &= c_1^{(p)} e^{-0.01n} \cos(2\pi 0.2n + p\pi/6) \\ &+ c_2^{(p)} e^{-0.02n} \cos(2\pi 0.22n + p\pi/9) + \varepsilon_n^{(p)}, \end{aligned}$$

В обоих случаях $n=0,1,\dots,24$, $p=1,2,\dots,12$, $c_k^{(p)}\sim {\rm N}(0,1)$, $\varepsilon_n^{(p)}\sim {\rm N}(0,0.02)$ и независимы.

Точность сравнивалась по RMSE по 1000 реализациям шума $\varepsilon_n^{(p)}$, сравнение проводилось на одних и тех же реализациях шума при выборе оптимальных для каждого метода параметров $L,\,R$ и $R_3.$

Численные сравнения

Таблица: RMSE оценки многомерного сигнала

	MSSA	HO-MSSA
равные фазы	0.0107	0.0079
линейные фазы	0.00924	0.00918

Выводы

- HOSVD SSA и HOSVD MSSA являются прямыми обобщениями SSA и MSSA, однако устроены существенно сложнее и имеют большую трудоемкость.
- Оба расширения усложняют алгоритм необходимостью подбора дополнительного параметра.
- HOSVD SSA выделяет сигнал менее точно, чем SSA.
- HOSVD MSSA выделяет сигнал точнее, чем MSSA.