Lógica Proposicional, Deducción Natural

Dante Zanarini

LCC

22 de agosto 2019

Demostraciones

Recordemos nuestra definición de demostración:

Una demostración (matemática) es una justificación de una sentencia (la conclusión de la demostración). La demostración puede usar algunas proposiciones que se asumen válidas (las premisas).

Observación:

Una demostración de ϕ no garantiza que ϕ sea válida

¿Por qué?

¿ Qué tenemos hasta ahora?

- Vimos una forma de realizar demostraciones: razonar semánticamente
- Si bien nos pueden servir, no es la forma natural de realizar pruebas
- Por ejemplo, ¿Cómo pruebo

$$p_0 \wedge p_1 \rightarrow p_0$$

con lo que sabemos hasta ahora?

Cálculo de Secuentes - Deducción Natural

- Hoy veremos dos sistemas de reglas que nos permiten razonar de forma natural sobre proposiciones:
 - Cálculo de secuentes.
 - Deducción Natural

 Ambos sistemas están estrechamente relacionados, y fueron definidos en 1935 por Gerhard Gentzen (1909-1945)

Secuentes

Definición (Secuente)

Un secuente es una expresión de la forma

$$\Gamma \vdash \phi$$

donde ϕ es una proposición, y Γ un conjunto de proposiciones.

- Intentaremos que un secuente tenga el siguiente significado: Hay una prueba (o derivación) de ϕ cuyas hipótesis (no descartadas) pertenecen a Γ
- Veremos más adelante qué quiere decir "no descartadas"
- Mediante reglas, iremos definiendo el conjunto de secuentes válidos

La regla trivial

DN (Regla Trivial)

Sea ϕ una proposición, entonces

 ϕ

es una derivación. Su conclusión es ϕ , y tiene una hipótesis (ϕ)

Regla de Secuente

Para todo par Γ , ϕ , el siguiente secuente es válido:

$$\Gamma, \phi \vdash \phi$$

Reglas para la conjunción

• ¿Cómo se prueba $\phi \wedge \psi$? (reglas de introducción)

DN (Introducción de la Conjunción)

$$\frac{\phi \quad \psi}{\phi \wedge \psi} i_{\wedge}$$

Si tengo derivaciones de ϕ y ψ , entonces tengo una derivación de $\phi \wedge \psi$

• ¿Cuáles son las hipótesis de la derivación?

Regla de Secuente

Si $\Gamma \vdash \phi$ y $\Delta \vdash \psi$ son secuentes válidos, entonces también lo es el secuente $\Gamma \cup \Delta \vdash \phi \land \psi$.

Reglas para la conjunción

• ¿Qué puedo derivar si conozco $\phi \wedge \psi$? (reglas de eliminación)

DN (Eliminación de la Conjunción 1)

$$\frac{\phi \wedge \psi}{\phi} e_{\wedge_1}$$

Si tengo una derivación de $\phi \wedge \psi$, entonces tengo una derivación de ϕ

• ¿Cuáles son las hipótesis de la derivación?

Regla de Secuente

Si $\Gamma \vdash \phi \land \psi$ es un secuente válido, entonces también lo es el secuente $\Gamma \vdash \phi$.

Reglas para la conjunción

• Simétricamente, tengo las siguientes reglas:

DN (Eliminación de la Conjunción 2)

$$\frac{\phi \wedge \psi}{\psi} e_{\wedge_2}$$

Si tengo una derivación de $\phi \wedge \psi$, entonces tengo una derivación de ψ

Regla de Secuente

Si $\Gamma \vdash \phi \land \psi$ es un secuente válido, entonces también lo es el secuente $\Gamma \vdash \psi$.

Árboles de Derivación

Veamos algunos ejemplos

Otra forma de estructurar demostraciones

- A veces preferiremos una prueba lineal en lugar de un árbol de derivación
- por ejemplo, damos una prueba lineal de $\phi \land \psi \vdash \psi \land \phi$:
 - $\begin{array}{lll} 1) & \phi \wedge \psi \\ 2) & \phi \\ 3) & \psi \\ 4) & \psi \wedge \phi \end{array}$

 $egin{aligned} & \mathsf{premisa} \ & e_{\wedge_1} \ (1) \ & e_{\wedge_2} \ (1) \ & i_{\wedge} \ (3), (2) \end{aligned}$

Reglas para la implicación (Eliminación)

• ¿Cómo uso la información que me provee \rightarrow en una hipótesis?

DN (Eliminación de la Implicación)

$$rac{\phi \qquad \phi
ightarrow \psi}{\psi} \; e_{
ightarrow}$$

• Regla de secuente asociada:

Regla de Secuente

Si $\Gamma \vdash \phi$ y $\Delta \vdash \phi \rightarrow \psi$ son secuentes válidos, entonces también lo es el secuente $\Gamma \cup \Delta \vdash \psi$.

Veamos unos ejemplos

Reglas para la implicación (Introducción)

- ¿Cómo se prueba una implicación?
 - ▶ Pensemos en lo que sabemos de matemática, y programación

DN (Introducción de la implicancia)

$$\begin{array}{c} [\phi] \\ \vdots \\ \psi \\ \hline \phi \to \psi \end{array} i_{\to}$$

• En forma de secuente:

Regla de Secuente

Si el secuente $\Gamma \cup \{\phi\} \vdash \psi$ es válido, también lo es $\Gamma \vdash \phi \rightarrow \psi$

Veamos unos ejemplos

Disyunción

• Introducción, o ¿Cómo se prueba un ∨?

DN (Introducción de la disyunción, 1 y 2)

$$\frac{\phi}{\phi \vee \psi}$$
 i_{\vee_1}

$$\frac{\psi}{\phi \vee \psi}$$
 i_{\vee}

• Reglas de secuente asociadas:

Regla de Secuente

- **1** Si $\Gamma \vdash \phi$ es un secuente válido, también lo es $\Gamma \vdash \phi \lor \psi$
- ② Si $\Gamma \vdash \psi$ es un secuente válido, también lo es $\Gamma \vdash \phi \lor \psi$
 - Veamos unos ejemplos

Disyunción

• **Eliminación**, o ¿Qué puedo derivar a partir de $\phi \lor \psi$?

DN (Eliminación de la disyunción)

$$\frac{\phi \lor \psi}{\chi}$$
 e_V

¿Cómo se completa esta regla?

$$\begin{array}{ccc}
 & [\phi]^1 & [\psi]^2 \\
\vdots & \vdots \\
 & \dot{\chi} & \dot{\chi} \\
\hline
 & \chi & e_{\vee}(1)(2)
\end{array}$$

¿Cómo se completa esta regla?

Regla de Secuente

Si los secuentes $\Gamma \vdash \phi \lor \psi$, $\Gamma' \cup \{\phi\} \vdash \chi$ y $\Gamma'' \cup \{\psi\} \vdash \chi$ son válidos,

Reglas para \perp

- **Eliminación** ¿Qué pasa si conozco ⊥?
 - ▶ ¡Puedo probar cualquier cosa!

DN (Eliminación de ⊥)

$$\frac{\perp}{\phi}$$
 e_{\perp}

Regla de Secuente

Si el secuente $\Gamma \vdash \bot$ es válido, también lo es $\Gamma \vdash \phi$, para cualquier proposición ϕ

Veamos unos ejemplos

Reglas para \perp

- Introducción ¿Cómo pruebo ⊥?
- Si nuestras reglas intentan preservar el valor de verdad de las proposiones, ¿tiene sentido probar ⊥?
- Sí, siempre que nuestras premisas sean contradictorias!

DN (Introducción de ⊥)

$$\frac{\phi \qquad \neg \phi}{\perp} i_{\perp}$$

Regla de Secuente

Si los secuentes $\Gamma \vdash \phi$ y $\Delta \vdash \neg \phi$ son válidos, entonces también lo es el secuente $\Gamma \cup \Delta \vdash \bot$

• Ejemplos!!

Reglas para la negación

• Introducción ¿Cómo pruebo $\neg \phi$?

DN (Introducción de la negación)

• En forma de secuente:

Regla de Secuente

Si el secuente $\Gamma \cup \{\phi\} \vdash \bot$ es válido, también lo es el secuente $\Gamma \vdash \neg \phi$.

Reglas para la negación

- ullet No daremos una regla para eliminar $eg\phi$
- ullet Observemos que la regla i_\perp puede pensarse como una forma de eliminar la negación
- La penúltima regla será fundamental para pruebas indirectas de proposiciones

DN (Eliminación de la doble negación)

$$\frac{\neg \neg \phi}{\phi}$$
 $e_{\neg \neg}$

Regla de Secuente

Si el secuente $\Gamma \vdash \neg \neg \phi$ es válido, también lo es el secuente $\Gamma \vdash \phi$

Ayuda con lemas intermedios

- Es muy frecuente que para demostrar cierto resultado ϕ , nos ayudemos primero demostrando ψ , para luego utilizar esta prueba en la demostración de ϕ
- En los cursos de matemática a esto le solemos llamar *lema auxiliar*, *proposición*, etc.

DN (Regla de corte)

Regla de Secuente

Si $\Gamma \vdash \phi$ y $\Delta \cup \{\phi\} \vdash \psi$ son válidos, también lo es el secuente $\Gamma \cup \Delta \vdash \psi$

Tenemos un cálculo para demostrar, ¿y ahora?

- Corresponde hacer algunas preguntas sobre nuestro sistema
- ¿Es consistente? (Sólo prueba cosas verdaderas)
- ¿Es completo? (Prueba todo lo verdadero)
- Antes que nada

¿Cómo se formulan, formalmente, estas preguntas?

Reglas derivadas

- Antes de responder las preguntas, veremos algunas reglas adicionales
- Estas reglas nos servirán para
 - Acortar las pruebas
 - Proveernos una forma nueva de encarar las pruebas cuando estemos trabados
- La primera regla es:

DN (Modus Tollens)

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi} MT$$

• Veamos que es una regla derivada

Reglas derivadas

Las otras reglas derivadas son las siguientes:

DN (Tercero Excluido)
$$\overline{\phi \vee \neg \phi} \ \ \mathit{TND}$$

• Veamos que son reglas derivadas