CS:1010 DISCRETE STRUCTURES

PRACTICE QUESTIONS LECTURE 13,14,15

Instructions

- Try these questions before class. Do not submit!
- (1) Which of these collections of subsets are partitions of the set of integers?
 - (a) the set of even integers and the set of odd integers
 - (b) the set of positive integers and the set of negative integers
 - (c) the set of integers not divisible by 3, the set of even integers and the set of integers that leave a remainder of 3 when divided by 6

Answer:

- (a) the set of even integers and the set of odd integers: Yes since they are disjoint, nonempty subsets of \mathbb{Z} whose union gives \mathbb{Z} . The corresponding equivalence relation is congruence modulo 2.
- (b) the set of positive integers and the set of negative integers No since 0 is not in any subset.
- (c) the set of integers not divisible by 3, the set of even integers and the set of integers that leave a remainder of 3 when divided by 6

 No since the set of integers not divisible by 3 and the set of even integers are not disjoint.
- (2) For the given set and relations below, determine which define equivalence relations.
 - (a) S is the set of all people in the world today, a is related to b if a and b have an ancestor in common.
 - (b) S is the set of all people in the world today, a is related to b if a and b have the same father.
 - (c) S is the set of real numbers a is related to b if $a = \pm b$.
 - (d) S is the set of all straight lines in the plane, a is related to b if a is parallel to b.

Answers:

- (a) S is the set of all people in the world today, a is related to b if a and b have an ancestor in common.
 - No since it need not be transitive.
- (b) S is the set of all people in the world today, a is related to b if a and b have the same father.

Yes

(c) S is the set of real numbers a is related to b if $a = \pm b$. Yes (d) S is the set of all straight lines in the plane, a is related to b if a is parallel to b.

Yes

(3) If G is a group of even order, prove that it has an element $a \neq e$, where e is the identity element satisfying $a^2 = e$, i.e. a is its own inverse.

We define a relation R on G by g R g' iff either g = g' or $g = g'^{-1}$ for all $g, g' \in G$. This is an equivalence relation. Each equivalence class contains 2 elements $\{g, g^{-1}\}$, it contains less than 2 elements if $g = g^{-1}$.

Let L_1, L_2, \ldots, L_k be the equivalence classes such that $G = L_1 \cup L_2 \cup \cdots \cap L_k$ and $\emptyset = L_1 \cap L_2 \cap \cdots \cap L_k$. Then $|L_1| + \cdots + |L_k| = |G|$, where |G| is even and each $|L_i| \leq 2$. We have e is its own inverse and therefore the equivalence corresponding to e is of size 1. This implies there must be another equivalence class with exactly one element say $a \neq e$ since the total group size is even.

(4) Show that the complete graph of n vertices K_n has n(n-1)/2 edges.

A complete graph has an edge between any two vertices. You can get an edge by picking any two vertices. So it is $\binom{n}{2}$ edges, i.e. n(n-1)/2 edges.

(5) Show that the number of edges in $K_{m,n}$ is mn.

A complete bipartite graph with one set of vertices of size m and the other of size n implies there are $m \cdot n$ edges.

(6) Show that every regular bipartite graph has a perfect matching.

Let G be a regular bipartite graph with bipartition (A, B) and degree k. Let $X \subseteq A$ and let t be the number of edges with one end in X. Since every vertex in X has degree k, this means k|X| = t. Similarly, every vertex in N(X) has degree k, so $t \le k|N(X)|$, the neighbourhood of X. Thus |X| is of at most the cardinality of N(X). By Halls Theorem, this implies there is a complete matching from A to B. Analogously we can conclude that there is a complete matching from B to A. This implies there is a perfect matching from A to B.

(7) Every simple graph has a bipartite subgraph with at least |E|/2 edges.

Consider the graph G and two sets V_1 and V_2 where we will partition the vertices of G into V_1 and V_2 by looking at each vertex of G one by one. Use this criterion to make the choice: If the vertex has more edges going from V_1 to V_2 then assign it to V_2 , otherwise assign it to V_1 . If you assign a vertex v to V_i color each edge from v to V_i as red and every edge from v to V_{3-i} blue.

Then there are at least as many blue edges as there are red edges. When the process is finished, all edges will be colored, those within V_1 or V_2 will be red and those between V_1 and V_2 will be blue. 2-colorable implies bipartite.

Proof by induction:

Let P(n) be that every graph on n vertices has a bipartite subgraph with at least |E(G)/2| edges. We need to show that P(n) implies P(n+1). For a single vertex it is trivial. So we assume for P(n) and consider a graph G with n+1 vertices.

Pick a vertex v of G and let H be the subgraph obtained from G by deleting v and all edges of G incident at v. H has fewer vertices than G and therefore by induction hypothesis H has a bipartite subgraph B with at least |E(H)|/2 edges. If d = deg(v), |E(H)| = |E(G)| - d. Since B is a bipartite subgraph we can assume V_1 and V_2 as the bipartition of B. We can assume that B keeps all the vertices of H (We just have to remove the edges.) Now consider $v \in G$. Let $d_i, i = 1, 2$ be the number of edges between v and V_i in G. Choose $i \in \{1, 2\}$ so that $d_i \geq d/2$. Depending on the choice of i, add v to V_{3-i} . This also helps decide which of the d edges that are incident at v should be kept in order to extend B to another bipartitite subgraph of G with at least |E(G)|/2 edges.

(8) Prove that for a bipartite graph G on n vertices the number of edges in G is at most $\frac{n^2}{4}$.

In a bipartite graph the n vertices can be partitioned into two subsets of size i and (n-i) $0 \le i \le n$ and the edges are from vertices of different subsets, so you have a maximum of i(n-i) edges if every member of one subset is connected to every member of the other subset.

 $f(i)=i(n-i),\,0\leq i\leq n$ is maximized by i=n/2 which leads to $n/2\cdot n/2=n^4/4$ - being the maximum number of edges.

(9) Show that for all graphs $\kappa(G) \leq \lambda(G) \leq \min_{v \in V} \deg(v)$.

We will first show $\kappa(G) \leq \min_{v \in V} \deg(v)$ and also analogously, $\lambda(G)$ is less than min degree.

When G = (V, E) is a noncomplete connected graph with at least 3 vertices then vertex connectivity $\kappa(G) \leq \min_{v \in V} deg(v)$ and edge connectivity $\lambda(G) \leq \min_{v \in V} deg(v)$.

Let d be the minimum degree of a graph G. Then there is some vertex v with d neighbours. Provided that there are at least d+2 vertices in G, the removal of the d neighbours of v will disconnect v from the remainder of the graph. This will make G disconnected. Therefore there exists a vertex cut of size d, $\chi(G) \leq d$. If there are not at least d+2 vertices in G then there must be exactly d+1 vertices as otherwise the minimum degree of G cannot be d. Also we have $1 \leq \chi(G) \leq |G| - 2$ and |G| = d+1, $\chi(G) \leq d-1 \leq d$ so $\chi(G) \leq d$.

Edge connectivity: Consider a vertex v of min degree, and denote this degree as d. By removing the d edges that are adjacent to v, we disconnect the graph.

Now to show that $\kappa(G) \leq \lambda(G)$.

We use induction on $\lambda(G)$.

Basis step: If $\lambda=0$, then we have a disconnected graph which implies κ is 0 too. If $\lambda=1$ then removal of one edge disconnects the graph and it has end points a,b and this implies removal of one of these endpoints disconnects the graph and therefore $\kappa=1$ too.

Induction Step:

Note that for $\lambda = n - 1$, then $\kappa = n - 1$ since the graph is the complete graph of n vertices. Therefore we need to show that the inequality is true for all $1 \le \lambda \le n - 1$.

Let $\lambda = k$ such that 1 < k < n-1 and we assume that the inequality is true for k-1.

Consider that the removal of e_1, e_2, \ldots, e_k disconnects a graph G. Remove the edge e_k with endpoints a and b to form G_1 from G and now we a graph whose λ is k-1. By I.H. there are at most k-1 vertices v_1, v_2, \ldots, v_j s.t. once we remove these vertices from G_1 we get a graph G_2 which is disconnected. Since k < n-1, we have that $k-1 \le n-3$ and therefore G_2 has at least 3 vertices.

If both a, b are in G_2 and if adding e_k to G_2 gives us a connected graph G_3 , then if we remove either a or b from G_3 we will disconnect it to get a new graph G_4 . That is, removing at most k vertices disconnects G.

If a, b are vertices in G_2 s.t. adding e_k does not produce a connected graph then removing v_1, v_2, \ldots, v_j disconnects G as well.

Finally if either a or b is not in G_2 then $G_2 = G \setminus \{v_1, v_2, \dots, v_j\}$ and the connectivity of G is less than or equal to k. So for all cases we have $\kappa \leq k$. Hence we have shown the inductive step.

(10) Show that the existence of a simple circuit of a particular length is a graph invariant.

Suppose $G = \langle V_G, E_G \rangle$ and $H = \langle V_H, E_H \rangle$ are isomorphic graphs and suppose that G has a simple circuit of length m. Since G and H are isomorphic there is a bijection $h: V_G \to V_H$ s.t for each $u, v \in V_G$, $\{u, v\} \in E_G$ iff $\{h(u), h(v)\} \in E_H$. Let $\{\mathbf{v}_1, v_2, \ldots, v_m\}$ be the vertices of a simple circuit of size m in G s.t $\{v_k, v_{k+1}\} \in E_G$ for $k = 1, \ldots, m-1$ and $\{v_m, v_1\} \in E_G$. Then $\{h(v_k), h(v_{k+1})\} \in E_H$, for $k = 1, \ldots, m-1$, and $\{h(v_m), h(v_1)\} \in E_H$ and $h(v_1), \ldots, h(v_m)$ are distinct so they are the vertices of a simple m-cycle in H.

(11) Count the number of paths between c and d in the graph below of length 2

and 3:

Answer: We need to build the adjacency matrix for the graph w.r.t. to the

vertices order (a, b, c, d, e, f): $\begin{bmatrix}
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}$

$$A^{2} = \begin{bmatrix} 3 & 1 & 2 & 1 & 2 & 1 \\ 1 & 3 & 0 & 3 & 1 & 2 \\ 2 & 0 & 3 & 0 & 3 & 0 \\ 1 & 3 & 0 & 3 & 1 & 2 \\ 2 & 1 & 3 & 1 & 4 & 0 \\ 1 & 2 & 0 & 2 & 0 & 2 \end{bmatrix}$$
 The third row and fourth column correspond to

the number of paths from c and d of length 2 and that is 0.

$$A^{3} = \begin{bmatrix} 4 & 7 & 3 & 7 & 6 & 4 \\ 7 & 2 & 8 & 2 & 9 & 1 \\ 3 & 8 & 0 & 8 & 2 & 6 \\ 7 & 2 & 8 & 2 & 9 & 1 \\ 6 & 9 & 2 & 9 & 4 & 7 \\ 4 & 1 & 6 & 1 & 7 & 0 \end{bmatrix}$$
 The third row and fourth column correspond to the

number of paths from c and d of length 3 and that is 8.

(12) Show that K_n has a Hamilton circuit whenever $n \geq 3$.

Follows from Dirac's theorem that says if G is a simple graph with n vertices $n \geq 3$ s.t. the degree of every vertex is at least n/2 then G has a Hamilton circuit.

(13) If G is a connected planar simple graph then G has a vertex of degree not exceeding 5.

If G has one or two vertices the result is true. If G has at least three vertices then $e \leq 3v - 6$, so $2e \leq 6v - 12$ (Result stated in class). If the degree of every vertex were at least 6 then by handshaking theorem, $2e = \sum_{v \in V} deg(v)$,

FIGURE 0.1. 2-connectivity implies cycle

that is $2e \ge 6v$. But this contradicts the inequality $2e \le 6v - 12$. It follows that there must be a vertex with degree no greater than 5.

(14) A graph with at least 3 vertices is 2-connected iff every pair of vertices lie in a cycle.

A connected graph is called 2-connected if for every vertex $x \in V(G)$, G - x is connected.

Sufficient condition: If every two vertices belong to a cycle, no removal of one vertex can disconnect the graph.

Necessary condition that needs to proved : If G is 2-connected every two vertices belong to a cycle.

We will prove it by induction on the distance dist(u, v) between two vertices in the graph.

Basis case: Since the vertices are distinct, the smallest distance is 1. This means u and v are adjacent. Let z be any vertex in G other than u and v. Because of the removal of u (or v) does not disconnect G. There is a path P_1 (or P_2) that connects u (or v) with z and that does not contain v (or u).

The cycle containing u and v consists of the edge (u, v) and a path from u to v obtained from the walk from v to z using P_2 and the reverse of P_1 from z to u.

Inductive step: Let the proposition be true for all pairs of vertices on the distance $\leq k$ and let dist(u,v)=k+1. Consider the shortest path from u to v and let w be the vertex on the path which is adjacent to v. Since dist(u,w)=k there is a cycle C containing u and w. Since the removal of w does not disconnect u from v there is a path P that connects u and v that does not contain w. A cycle containing u and v can be constructed from C and P and edge between w and v. Look at Figure 0.1 for details.

(15) If G_1 and G_2 are two connected subgraphs of G having at least one vertex in common then $G_1 \cup G_2$ is connected.

Proof: Let $v \in V(G_1) \cap V(G_2)$. Let $a \in V(G_1)$ and $b \in V(G_2)$ but $a, b \notin V(G_1) \cap V(G_2)$ Then there is a path a to v P_1 in G_1 . Let $P_1 : a = a$

 $x_0, x_1, \dots, x_k = v$. Let i be the smallest such that $x_i \in G_2$. $i \geq 1$. Let Q be the path from x_i to b in G_2 . Then $x_0, x_1, x_{i-1}Q$ is a path from a to b in $G_1 \cup G_2$ as no x_j can occur in Q for j < i.

(16) The complementary graph \hat{G} of a simple graph G has the same vertices as G. Two vertices are adjacent in \hat{G} if and only if they are not adjacent in G. If a graph G is not connected, prove that its complement graph is connected.

Let G_1, \dots, G_k be the connected components of G. Let \hat{G} be the complement graph of G. As there is no edge in G between a vertex in G_i and a vertex in G_j , there is an edge between any vertex in G_i and any vertex in G_j .

Lets consider an edge in G, such as the edge $\{v, w\}$. They are in the same component of G. Since G is disconnected, we can find a vertex u in a different component such that neither uw nor uv are edges of G. Then vuw is a path from v to w in \hat{G} . Thus, \hat{G} is connected.

(17) Show that the property that a graph is bipartite is an isomorphic invariant. If G and H are isomorphic and G is a bipartite graph, we show that H is also a bipartite graph.

Since G is bipartite graph, there is a bipartition (V_1, V_2) . Let f be the isomorphism between G and H. Then let $W_1 = f(V_1)$ and $W_2 = f(V_2)$. As f is a bijective function, W_1 and W_2 are disjoint since V_1 and V_2 are. Also the union of W_1 and W_2 gives the vertex set of H.

We only need to verify that every edge in H has an endpoint in W_1 and the other one in W_2 . As G and H are isomorphic then for every distinct vertices a and b in G, they are adjacent iff f(a) and f(b) are adjacent. Therefore, for any edge $e = \{a, b\}$ in G we can find a corresponding one $e' = \{f(a), f(b)\}$ in H. As G is bipartite one of the vertices is in V_1 and the other one is in V_2 meaning one of f(a) or f(b) is in W_1 and the other is in W_2 . Therefore, H is bipartite.

- (18) How many distinct Hamiltonian cycles are there in a complete graph $K_n, n \ge 3$?
 - $\frac{(n-1)!}{2}$. Since it is the same as number of cyclic permutations where clockwise and anti-clockwise arrangements are considered the same.
- (19) What is the height of a full and balanced 7-ary tree with 340 leaves? Answer: The height of a full and balanced m-ary tree is $\lceil log_m l \rceil$ where l is the number of leaves. Here we have $h = \lceil log_7 340 \rceil = 3$ since $7^3 = 343$.

Actually any of the following answers you could have written: (i) $\lceil log_7340 \rceil$ (ii) 3 (iii) There cannot be a full 7-ary tree with 340 leaves since that would

mean one of the nodes at a level just above leaf level will have > 1 child but < 7 children.

- (20) Consider a simple graph G.
 - (a) If G has k connected components and each of these components have n_1, n_2, \ldots, n_k vertices respectively, then the number of edges of G does not exceed $\sum_{i=1}^k C(n_i, 2)$. Prove. (2 marks)

Proof: Each connected component with n_i vertices can have at most $C(n_i, 2)$ edges – the case when there is an edge between every distinct vertices and there can only be one edge between any distinct vertices since it is a simple graph.

(b) Use the previous result to show that a simple graph with n vertices and k connected components has at most $\frac{(n-k)(n-k+1)}{2}$ edges. (4 marks)

Proof: We have $\sum_{i=1}^{k} (n_i - 1) = n - k$. Squaring on both sides we get,

$$\sum_{i=1}^{k} (n_i - 1)^2 + A = n^2 - 2nk + k^2,$$

where A represents the remaining sum of terms which is always a non-negative sum since $(n_i - 1) \ge 0$, for all i.

Consider $\sum_{i=1}^{k} (n_i - 1)^2$. It is equal to,

$$\sum_{i=1}^{k} n_i^2 - \sum_{i=1}^{k} 2n_i + k = \sum_{i=1}^{k} n_i^2 - 2n + k.$$

This implies.

$$\sum_{i=1}^{k} (n_i)^2 \le n^2 - 2nk + k^2 + 2n - k = n^2 - (k-1)(2n-k).$$

Note that we removed A since it is a positive sum.

From above result we have the number of edges is at most,

$$\sum_{i=1}^{k} C(n_i, 2) = \sum_{i=1}^{k} (n_i - 1)n_i / 2 = \frac{1}{2} \sum_{i=1}^{k} (n_i)^2 - \frac{n}{2}$$

$$\leq \frac{n^2 - (k-1)(2n-k) - n}{2}$$

$$= \frac{n^2 - 2nk + k^2 + n - k}{2}$$

$$= \frac{(n-k)(n-k+1)}{2}$$

(c) Use previous result to show that a simple graph with n vertices is connected if it has more than $\frac{(n-1)(n-2)}{2}$ edges. (2 marks)

The value of $\frac{(n-k)(n-k+1)}{2}$ decreases as k increases. If a simple graph with n vertices is not connected it will have at least 2 connected components.

There, $k \geq 2$. Then there are at most (n-2)(n-1)/2 edges in the graph. But here it is said the graph has more than (n-1)(n-2)/2 edges and therefore the graph is connected.

(21) Ore's theorem: If G is a simple graph with n vertices $n \geq 3$, s.t. $deg(u) + deg(v) \geq n$ for every pair of nonadjacent vertices u and v in G then G has a Hamilton circuit.

Answer: Assume for a contradiction that G has no Hamiltonian circuit.

- (a) Pick any two vertices of G which does not have an edge between them and add a new edge between them. Keep doing this until we get a graph G_m which has a Hamiltonian circuit. The process is assured to stop since we will reach a complete graph on n vertices which has a Hamiltonian circuit.
- (b) Let G_{m-1} be the graph obtained just before adding edge $\{x,y\}$ to gt G_m . Let (z_1,\ldots,z_n,z_1) be the Hamiltonian circuit in G_m . It will have $\{x,y\}$ at some point of time else G_{m-1} would have been the graph we considered. $\{x,y\}$ could be $\{z_n,z\}$ in which case (z_1,\ldots,z_n) is a Hamiltonian path in G_{m-1} . Otherwise, there is some r, s.t. $1 \le r < n$ and $z_r = x, z_{r+1} = y$ such that $(z_{r+1},\ldots,z_n,z_1,\ldots,z_r)$ is a Hamiltonian path in G_{m-1} . In both cases, all the edges used in this path appear in G_{m-1} and only $\{x,y\}$ appear in G_n and not in G_{m-1} . Let us relabel the vertices so that this path is (x_1,\ldots,x_n) .
- (c) Suppose we find a vertex x_i s.t. x is adjacent to x_i and y is adjacent to x_{i-1} then,

$$(x, x_i, \ldots, x_n, y, x_{i-1}, \ldots, x)$$

is a Hamiltonian circuit in G_{m-1} a contradiction.

Note that here we need $n \geq 3$ since if n = 2 then the first step is (x, y) and the second s (y, x) which means we have used an edge twice, not possible in paths where edges are not repeated.

(d) Does there exists such a i? We have not used the hypothesis on degrees yet. Since G_{m-1} is obtained from G by adding edges it still satisfies the following hypothesis on G:

$$A = \{i : 2 \le i \le n \text{ and } x_i \text{ is adjacent to } x\}$$

 $B = \{i : 2 \le i \le n \text{ and } a_{i-1} \text{ is adjacent to } y\}.$

|A| = deg(x) and |B| = deg(y). As x and y are not adjacent to each other in G_{m-1} we have that $deg(x) + deg(y) \ge n$. So we have A, B subsets of $\{2, \ldots, n\}$ containing at least n elements between them. Therefore they intersect non-trivially and $x_i, i \in A \cap B$ is the desired vertex.

(22) Design recursive algorithms for preorder, inorder, postorder traversals for binary trees.

Algorithm for Preorder:

Preorder(tree)

- (a) Visit the root.
- (b) Preorder(left-subtree)
- (c) Preorder(right-subtree)

Algorithm for Inorder:

Inorder(tree)

- (a) Inorder(left-subtree)
- (b) Visit the root.
- (c) Inorder(right-subtree)

Algorithm for Postorder:

Postorder(tree)

- (a) Postorder(left-subtree)
- (b) Postorder(right-subtree)
- (c) Visit the root.
- (23) What does the inorder traversal of a BST give rise to? Ascending order of nodes/sorted list of elements.
- (24) Let x and y be two nodes of a binary tree B. Prove that x is an ancestor of y iff x stands before y in the pre-order traversal of B and x stands after y in the post-order traversal of B. Proof: If x is an ancestor of y then in a preorder traversal of B since x will be visited before y since every node is visited before its children/descendants are visited. x will stand after y in the postorder traversal since the node is visited only after the all the descendants/given by its subtrees are visited.

Now to show converse: That is x stands before y in the preorder traversal of B and x stands after y in the postorder traversal of B. Let us assume that x is not an ancestor of y. There can be two cases here:

- (a) y is an ancestor of x: but if it was then that would mean in preorder traversal y would have been visited before x, contradiction
- (b) y is not an ancestor of x. Since either of them is not ancestor of the other, this implies neither x nor y is the root. So there is at least a common ancestor. Let the lowest common ancestor (lca) be a that is the ancestor you encounter on the paths from x to root and y to root.
 - (i) Both x and y are in the same subtree of T of a since a is the lca either x or y is the root r of a subtree- or else that root would have been the lca. But that means either x is ancestor of y or vice-versa.
 - (ii) x is in the left subtree of a and y is in the right subtree of a. But that means in post-order traversal x will appear before y since the left subtrees are exhausted before right subtree.
 - (iii) x is in the right subtree of a and y is in left subtree of a then in that case y would be visited before x in preorder traversal and that is a contradiction.

Therefore x is not an ancestor of y leads to a contradiction when we assume that x stands before y in the preorder traversal of B and x stands after y in the postorder traversal of B. So the negation should be true - x is an ancestor of y.

February 25, 2021; Dept of CSE, IIT Hyderabad