Linear Algebra and Matrix Methods Eigenvalues and Eigenvectors

Eigenvectors, Eigenvalues: "proper" directions, scalings

So far, we've seen ways to solve a system of linear equations,

$$A\vec{x} = b$$
.

If $A\vec{x} = b$ has no solution, then the least squares (best fit) solution to

$$A^t A \hat{x} = A^t b$$

will suffice for "as close as we can get".

If $A\vec{x} = b$ has a solution, then $b \in C(A)$.

We are now interested in the special case where b is a scaling of \vec{x} .

Eigenvectors, Eigenvalues: "proper" directions, scalings

Goal: Solve the $n \times n$ (square) system

$$A\vec{x} = \lambda \vec{x}$$

for \vec{x} and λ .

These are considered the "proper" directions of the matrix A, where transformation by the matrix A is equivalent to merely scaling that direction.

^{*}The "eigen" in these terms is German for "proper" or "characteristic".

Eigenvectors, Eigenvalues: "proper" directions, scalings

If there are solutions to this eigenproblem[†]

$$A\vec{x} = \lambda \vec{x}$$
,

we will call the values in each pair (\vec{x}, λ) by the names

eigenvector for each
$$\vec{x} \in \mathbb{C}^n$$

and

eigenvalue for each $\lambda \in \mathbb{C}$.

[†]Some of the examples in this chapter require you to understand arithmetic with complex numbers, i.e. from $\mathbb{C}=\{a+bi\,|\,a,b\in\mathbb{R},i^2=-1\}.$

Eigenvectors and eigenvalues via nullspaces

How can we solve this system?

Typically, if you want to solve an equation for a variable, you'll get all instances of that variable on the same side of the equals sign.

We'll do that here: seeing that scaling a vector by λ is the same as multiplying the vector by the scaled identity matrix λI ,

$$A\vec{x} = \lambda \vec{x} \implies A\vec{x} - \lambda \vec{x} = 0 \implies (A - \lambda I)\vec{x} = 0.$$

Thus, if \vec{x} is an eigenvector of A, then $\vec{x} \in N(A - \lambda I)$.

Eigenvectors and eigenvalues via determinants

 $\vec{x} = 0$ is always a solution. However, the eigenvector 0 has any $\lambda \in \mathbb{C}$ as an eigenvalue; this tells us nothing about the matrix A.

If a nontrivial \vec{x} solves the eigenproblem, we see that the columns of $A - \lambda I$ are linearly dependent; that is,

$$det(A - \lambda I) = 0.$$

Eigenvectors and eigenvalues via determinants

$$det(A - \lambda I) = 0.$$

This is the **characteristic equation** we need to solve, for $\lambda \in \mathbb{C}$.

This also explains why we say $\lambda \in \mathbb{C}$ and $\vec{x} \in \mathbb{C}^n$:

$$det(A - \lambda I) = 0$$

is an nth degree polynomial equation in λ , with n roots (with multiplicity) in \mathbb{C} .

Roots of the eigenequation: spectrum of the matrix

Unfortunately for the desire for a solution to the characteristic equation, we know[‡] that there is no general method of find roots of polynomials of degree $n \ge 5$.

That said, we can use various techniques to solve this problem.

[‡]thanks to Neils Abel (1802-1829)

Roots of the eigenequation: spectrum of the matrix

Define the **trace** of a square matrix A as the sum of its diagonal:

$$tr(A) = \sum_{i=1}^{n} a_{ii}.$$

Then, if $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{C}$ are the *n* roots of the characteristic equation of *A* (i.e. the **spectrum** of *A*), we have

$$det(A) = \prod_{i=1}^{n} \lambda_i$$
 and $tr(A) = \sum_{i=1}^{n} \lambda_i$.

Roots of the eigenequation: exponentiation

▶ Repeated multiplication by A on an eigenvector repeats scaling by λ : for any $k \in \mathbb{N}$,

$$A(A\vec{x}) = A(\lambda \vec{x}) \implies A^2 \vec{x} = \lambda^2 \vec{x} \implies A^k \vec{x} = \lambda^k \vec{x}.$$

▶ If A is invertible, then all of the eigenvalues of A are nonzero.

If \vec{x} is an eigenvector of A with eigenvalue λ , then \vec{x} is also an eigenvector of A^{-1} , with eigenvalue λ^{-1} :

$$A\vec{x} = \lambda \vec{x} \implies A^{-1}A\vec{x} = \lambda A^{-1}\vec{x} = \vec{x}$$

 $\implies A^{-1}\vec{x} = \lambda^{-1}\vec{x}.$

▶ If A is singular, then det(A) = 0, and $\lambda = 0$ is one of its eigenvalues.

Roots of the eigenequation: triangular, projection

- ▶ If A is triangular, then A's eigenvalues are the diagonal entries.
- ▶ If A is symmetric $(A^t = A)$, then A's eigenvalues are in \mathbb{R} .
- ▶ If A = P is a projection matrix, then the idempotency of P determines λ : since $P^2 = P$, we get

$$\lambda^2 \vec{x} = P^2 \vec{x} = P \vec{x} = \lambda \vec{x} \implies \lambda \in \{0, 1\}.$$

The eigenvector(s) \vec{x} paired with

- ▶ $\lambda = 1$ have $P\vec{x}_1 = \vec{x}_1$, and so project to themselves under $P(\vec{x}_1 \in C(P) = C(P^t))$ since $P(\vec{x}_1 \in C(P))$ since $P(\vec{x}_1 \in C(P$
- ▶ $\lambda = 0$ have $P\vec{x}_0 = 0$, and so project to 0 under $P(\vec{x} \in N(P))$.

Roots of the eigenequation: orthogonal

▶ If A = Q is orthogonal $(Q^{-1} = Q^t)$, then

$$Q\vec{x} = \lambda \vec{x} \implies (Q\vec{x})^t (Q\vec{x}) = (\lambda \vec{x})^t (\lambda \vec{x})$$

$$\implies \vec{x}^t Q^t Q\vec{x} = \vec{x}^t \vec{x} = ||\vec{x}||^2 = \lambda^2 ||\vec{x}||^2$$

$$\implies \lambda \in \{-1, 1\}.$$

In particular, if A = R is a reflection matrix, R is orthogonal and symmetric, implying R is an involution ($R^2 = I$). Thus,

$$R\vec{x} = \lambda \vec{x} \implies R^2 \vec{x} = \lambda^2 \vec{x} = \vec{x} \implies \lambda \in \{-1, 1\}.$$

▶ If A is **skew-symmetric** $(A^t = -A)$, then A's eigenvalues are "pure imaginary": $\lambda = bi \in \mathbb{C}$ for $b \in \mathbb{R}$.

Example: 2x2 matrix

Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.

$$det(A) = 4 - 4 = 0$$

and A is symmetric, so both eigenvalues are real.

Thus, A is singular, and so one of A's eigenvalues is 0.

Find the eigenvalues:

$$det(A - \lambda I) = 0 \implies det \begin{pmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{pmatrix} = 0$$
$$\implies (1 - \lambda)(4 - \lambda) - 4 = 0$$
$$\implies \lambda^2 - 5\lambda = 0 \implies \lambda = 0, 5.$$

Example: 2x2 matrix

To find the eigenvectors, we need to solve

$$(A - \lambda I)\vec{x} = 0$$

for each λ .

The eigenvectors associated with $\lambda = 0$ are:

$$A\vec{x} = 0 \implies \text{(compute rref(A))} \implies x_1 = -2x_2 \implies \vec{x}_n = x_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix}.$$

The eigenvectors associated with $\lambda = 5$ are:

$$(A - 5I)\vec{x} = 0 \implies \begin{pmatrix} 1 - 5 & 2 \\ 2 & 4 - 5 \end{pmatrix} \vec{x} = 0$$

$$\implies \text{(compute rref(A-5I))} \implies x_1 = \frac{1}{2}x_2 \implies \vec{x}_n = x_2 \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}.$$

Example: 3x3 matrix

Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 5 & 4 \\ -6 & 3 & 7 \\ 0 & 0 & 2 \end{pmatrix}$.

Note: A is invertible:

$$det(A) = 2[1(3) - 5(-6)] = 66 \neq 0.$$

Thus, A's eigenvalues are all nonzero.

First, find the eigenvalues:

$$det(A - \lambda I) = 0 \implies det \begin{pmatrix} 1 - \lambda & 5 & 4 \\ -6 & 3 - \lambda & 7 \\ 0 & 0 & 2 - \lambda \end{pmatrix} = 0$$
$$\implies (2 - \lambda)[(1 - \lambda)(3 - \lambda) + 30] = 0$$
$$\implies \lambda = 2 \text{ is an eigenvalue.}$$

Example: 3x3 matrix, conjugate pair

There are two more: factoring out the $2-\lambda$ term, we have

$$(1 - \lambda)(3 - \lambda) + 30 = 0 \implies 3 - 4\lambda + \lambda^2 + 30 = 0$$
$$\implies \lambda^2 - 4\lambda + 33 = 0$$
$$\implies \lambda = \frac{4 \pm \sqrt{16 - 4(1)(33)}}{2} = 2 \pm i\sqrt{29}.$$

These are the other two eigenvalues.

Note that they are a conjugate pair of complex numbers.

Example: 3x3 matrix, conjugate pair

Now for the eigenvectors: solving $(A-2I)\vec{x}=0$ for $\lambda=2$ yields

$$\lambda = 2$$
: $\vec{x_n} = x_3 \begin{pmatrix} \frac{31}{29} \\ -\frac{17}{29} \\ 1 \end{pmatrix}$, or $x_3 \begin{pmatrix} 31 \\ -17 \\ 29 \end{pmatrix}$.

The conjugate pair of complex eigenvalues have complex conjugate pair eigenvectors:

$$\lambda = 2 + i\sqrt{29}: \qquad \vec{x}_n = x_2 \begin{pmatrix} \frac{1}{6}(1 - i\sqrt{29}) \\ 1 \\ 0 \end{pmatrix}$$
$$\lambda = 2 - i\sqrt{29}: \qquad \vec{x}_n = x_2 \begin{pmatrix} \frac{1}{6}(1 + i\sqrt{29}) \\ 1 \\ 0 \end{pmatrix}.$$

Example: eigenvalue multiplicity

Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} 5 & 2 \\ 0 & 5 \end{pmatrix}$.

This one is easy: A is triangular, so clearly the eigenvalues are $\lambda=5$ with multiplicity 2.

What are the eigenvectors?

$$(A-5I)\vec{x}=0 \implies 2x_2=0 \implies \vec{x}_n=x_1\begin{pmatrix}1\\0\end{pmatrix}.$$

Diagonalization of an invertible matrix

We know an $n \times n$ matrix A has, with multiplicity, n pairs of eigenvectors and eigenvalues. Label them

$$(\lambda_1, \vec{x}_1), (\lambda_2, \vec{x}_2), ..., (\lambda_n, \vec{x}_n).$$

If the n eigenvectors of A are *linearly independent*, then we can construct an invertible **eigenvector matrix**

$$X = (\vec{x_1} \ \vec{x_2} \ \cdots \ \vec{x_n})$$

of the *n* eigenvectors (which, naturally, are a basis of \mathbb{R}^n), and a corresponding diagonal eigenvalue matrix

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Diagonalization of an invertible matrix

Since $A\vec{x}_i = \lambda_i \vec{x}_i$ for all i = 1, 2, ..., n, and X is invertible, we have

$$AX = X\Lambda \implies X^{-1}AX = \Lambda,$$

or

$$A = X\Lambda X^{-1}$$
,

called the diagonalization of A.

Note that the exponentiation property of eigenvalues is easy to see:

$$A^{n} = (X \Lambda X^{-1})^{n} = (X \Lambda X^{-1})(X \Lambda X^{-1}) \cdots (X \Lambda X^{-1}) = X \Lambda^{n} X^{-1},$$

comfirming the notion that the eigenvalues of A^n are λ^n , with the same eigenvectors as A.

Finding eigenvalues is not a linear operation

Certain "shortcuts" to computing eigenvalues do not work:

If A and B are $n \times n$ matrices, with the sets of eigenvalues $\{\lambda_i\}_{i=1}^n$ for A and $\{\beta_i\}_{i=1}^n$ for B, then:

- ▶ A + B does *not* have the eigenvalues $\lambda_i + \beta_i$ unless both A and B are diagonal.
- ▶ AB does *not* have the eigenvalues $\lambda_i \beta_i$.

Finding eigenvalues is not a linear operation

However,

Proposition

Assume A and B are diagonalizable, with diagonalizations

$$A = X\Lambda X^{-1}, B = TKT^{-1}.$$

Then

$$X = T \iff AB = BA$$
.

Invertibility vs Diagonalizability?

If any eigenvalue has multiplicity, then A is only diagonalizable if the **geometric multiplicity** of each eigenvalue's nullspace,

$$m_G(\lambda) = dim(N(A - \lambda I)),$$

equals the arithmetic multiplicity of the eigenvalue,

$$m_A(\lambda) = \text{multiplicity of } \lambda \text{ in } det(A - \lambda I) = 0.$$

Invertibility vs Diagonalizability?

Note that $m_A(\lambda) \geq m_G(\lambda)$ always holds.

If all *n* eigenvalues differ, then for each,

$$m_G(\lambda) = m_A(\lambda) = 1$$
,

and A is diagonalizable (even if one of the eigenvalues is 0).

If the n eigenvectors of the matrix A are independent, then all eigenvalues differ, and A can be diagonalized.

Similar Matrices

If A is diagonalizable, in form

$$A = X \Lambda X^{-1}$$
,

there are multiple forms, depending on the scalings and orderings of the eigenvectors in X.

We will extend the conjugation paradigm to nondiagonalizable A.

Let M be an invertible matrix. Then we call

$$B = M^{-1}AM$$

similar to A.

Similar Matrices

If A is diagonalizable, then Λ is similar to A. In general,

Proposition

A and $M^{-1}AM$ have the same eigenvalues, and if \vec{x} is an eigenvector of A, then $M^{-1}\vec{x}$ is an eigenvector of $M^{-1}AM$.

Proof

$$A\vec{x} = \lambda \vec{x} \implies (M^{-1}AM)(M^{-1}\vec{x}) = M^{-1}A\vec{x}$$
$$= M^{-1}\lambda \vec{x} = \lambda(M^{-1}\vec{x}). \blacksquare$$

Some similarity-invariant properties

What properties are *invariant* (do not change) under the transformation $A \mapsto M^{-1}AM$?

- eigenvalues
- trace
- determinant
- rank
- # of independent eigenvectors
- ▶ Jordan form

Some similarity-variant properties

What properties do change under this transformation?

- eigenvectors (from \vec{x} to $M^{-1}\vec{x}$)
- ▶ all four subspaces $(C(A) \text{ to } C(M^{-1}AM), \text{ etc.})$
- singular values (in SVD)

Initial, long-term distributions

Once again examining powers of A, let $c \in \mathbb{R}^n$. Then the eigenvectors of A make a basis of \mathbb{R}^n , and so c can be represented via X in the form

$$c = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}, \ A = X\Lambda X^{-1} \implies Xc = \sum_{i=1}^n c_i \vec{x}_i.$$

Set $u_0 = Xc$ and define $u_k = A^k u_0$. We can quickly calculate u_k :

$$u_k = A^k u_0 = A^k (c_1 \vec{x}_1 + c_2 \vec{x}_2 + \dots + c_n \vec{x}_n)$$

= $c_1 \lambda_1^k \vec{x}_1 + c_2 \lambda_2^k \vec{x}_2 + \dots + c_n \lambda_n^k \vec{x}_n$.

Consider a particle Y_t at each time t moving along the states $\{1,2,...,n\}$ with one-step probabilities

$$p_{ij} = P(Y_{t+1} = i \mid Y_t = j).$$

If A is a **Markov matrix**§, whose entries are $a_{ij} = p_{ij}$, then A^k is the matrix of k-step probabilities

$$P(Y_{t+k}=i\mid Y_t=j).$$

[§]I am leaving out many important probability-based details here.

If we define u_0 as the **initial distribution** of Y_0 , and define u_k iteratively, as

$$u_{k+1} = Au_k$$

then the **long-term distribution** of Y is found by sending $k \to \infty$.

 $[\]P$ a probability mass function of the initial position Y_0 of the n possible states in the system

A property of Markov matrices is that all of their eigenvalues have the property $|\lambda_i| \leq 1$, and, in particular, one of them is 1: we label this one $\lambda_1 = 1$.

Thus, the **long-term distribution** of Y is the eigenvector \vec{x}_1 , as we increase k in the k-step distribution u_k : recall, if $u_0 = Xc$, then

$$u_k = c_1 \lambda_1^k \vec{x}_1 + c_2 \lambda_2^k \vec{x}_2 + \dots + c_n \lambda_n^k \vec{x}_n.$$

As $k \to \infty$, $\lambda_i^k \to 0$ for i > 1 since $|\lambda_i| < 1$. But $\lambda_1 = 1$, so we get the limit

$$u_{\infty} = \lim_{k \to \infty} u_k = \lim_{k \to \infty} c_1 \lambda_1^k \vec{x}_1 + c_2 \lambda_2^k \vec{x}_2 + \dots + c_n \lambda_n^k \vec{x}_n = c_1 \vec{x}_1.$$

The scaling of u_{∞} that yields a probability vector is called π , the **long-term**, or **steady state**, distribution of Y.

Markov matrix example

Consider a finite-state machine consisting of three states: 1, 2, 3.

The Markov matrix associated with this machine is

$$A = \begin{pmatrix} 0.2 & 0.1 & 0.5 \\ 0.4 & 0.5 & 0.5 \\ 0.4 & 0.4 & 0 \end{pmatrix}.$$

For example, the probability that, from state $X_k = 3$ at time k, the machine moves at time k + 1 to state $X_{k+1} = 2$ is

$$p_{23} = P(X_{k+1} = 2 | X_k = 3) = 0.5.$$

and the probability the machine moves from state $X_k=2$ to $X_{k+1}=3$ is

$$p_{32} = P(X_{k+1} = 3 | X_k = 2) = 0.4.$$

Markov matrix example

If this machine keeps running, what is the long-term distribution?

In other words, far out in time, what are the probabilities the machine is in each state?

We can calculate the long-term state by examining the eigenproblem for A.

Markov matrix example

The Markov matrix associated with this machine is

$$A\vec{x} = \lambda \vec{x}$$

$$\begin{pmatrix} 0.2 & 0.1 & 0.5 \\ 0.4 & 0.5 & 0.5 \\ 0.4 & 0.4 & 0 \end{pmatrix} \vec{x} = \lambda \vec{x}$$

$$\det \begin{pmatrix} 0.2 - \lambda & 0.1 & 0.5 \\ 0.4 & 0.5 - \lambda & 0.5 \\ 0.4 & 0.4 & -\lambda \end{pmatrix} = 0$$

$$-\lambda^3 + 0.7\lambda^2 + 0.34\lambda - 0.04 = 0.$$

At this point, it would be tedious to compute the roots of the characteristic equation

$$-\lambda^3 + 0.7\lambda^2 + 0.34\lambda - 0.04 = 0,$$

or, multiplying both sides by -100,

$$100\lambda^3 - 70\lambda^2 - 34\lambda + 4 = 0,$$

but since A is a Markov matrix, we can easily see $\lambda_1 = 1$.

This simplifies our work significantly; we can use the trace and determinant formulas

$$det(A) = \lambda_1 \lambda_2 \lambda_3, \quad tr(A) = \lambda_1 + \lambda_2 + \lambda_3$$

to get the other two eigenvalues on top of $\lambda_1 = 1$:

$$det(A) = 0.2(0 - 0.2) - 0.1(0 - 0.2) + 0.5(0.16 - 0.2)$$
$$= -0.04 + 0.02 - 0.02 = -0.04$$
$$tr(A) = 0.2 + 0.5 + 0 = 0.7$$

$$\implies \lambda_2 \lambda_3 = -0.04, \ \lambda_2 + \lambda_3 = -0.3 \implies \lambda_2 = 0.1, \ \lambda_3 = -0.4.$$

Thus, our three eigenvalues are

$$\lambda_1 = 1, \ \lambda_2 = 0.1, \ \lambda_3 = -0.4,$$

and we now need the eigenvector $\vec{x_1}$ for $\lambda_1 = 1$.

$$(A - I)\vec{x_1} = 0$$

$$\implies \begin{pmatrix} -0.8 & 0.1 & 0.5 \\ 0.4 & -0.5 & 0.5 \\ 0.4 & 0.4 & -1 \end{pmatrix} \vec{x_1} = 0$$

$$\implies \begin{pmatrix} 1 & 0 & -\frac{5}{6} \\ 0 & 1 & -\frac{5}{3} \\ 0 & 0 & 0 \end{pmatrix} \vec{x_1} = 0 \implies \vec{x} = \begin{pmatrix} 5/6 \\ 5/3 \\ 1 \end{pmatrix} x_3.$$

As our steady state long-term distribution needs to be a **probability vector** (a vector of nonnegative values that sum to 1), we choose the appropriate value for x_3 to make it so: this is

$$\frac{5}{6} + \frac{5}{3} + 1 = \frac{21}{6} \implies \vec{x_1} = \begin{pmatrix} 5/21 \\ 10/21 \\ 6/21 \end{pmatrix}.$$

Note that the other two eigenvectors have terms that sum to 0:

$$\vec{x_2} = \begin{pmatrix} 1 \\ 1/4 \\ -5/4 \end{pmatrix} x_3, \ \vec{x_3} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} x_3.$$

Let's say we start the machine at time 0 with initial distribution

$$u_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

in state 1 with probability 1.

At time 0,

$$u_0 = c_1 \vec{x_1} + c_2 \vec{x_2} + c_3 \vec{x_3}$$

for some constants c_1 , c_2 , c_3 .

We can compute $c_1=1$, $c_2=\frac{24}{105}$, $c_3=\frac{56}{105}$ to get

$$u_0 = \begin{pmatrix} 5/21 \\ 10/21 \\ 6/21 \end{pmatrix} + \frac{24}{105} \begin{pmatrix} 1 \\ 1/4 \\ -5/4 \end{pmatrix} + \frac{56}{105} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

At time k, the probabilities of the machine being in each state are

$$u_k = \begin{pmatrix} 5/21 \\ 10/21 \\ 6/21 \end{pmatrix} + \frac{24}{105} (0.4)^k \begin{pmatrix} 1 \\ 1/4 \\ -5/4 \end{pmatrix} + \frac{56}{105} (-0.1)^k \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},$$

which, as
$$k \to \infty$$
, converges to $\vec{x_1} = \begin{pmatrix} 5/21 \\ 10/21 \\ 6/21 \end{pmatrix}$.

The exponential of a square matrix

We can compute power series-like objects using exponentiation.

Recall, for any $r, t \in \mathbb{R}$, the natural expoential e^{rt} can be defined as a power series:

$$e^{rt} = \sum_{n=0}^{\infty} \frac{1}{n!} (rt)^n = 1 + rt + \frac{1}{2} (rt)^2 + \frac{1}{6} (rt)^3 + \cdots$$

Likewise, if A is a square matrix and $t \in \mathbb{R}$, we will ignore the scalar convention of writing scalars on the left, and define the matrix exponential by

$$e^{At} = \sum_{n=0}^{\infty} \frac{1}{n!} (At)^n = I + At + \frac{1}{2} (At)^2 + \frac{1}{6} (At)^3 + \cdots$$

The exponential of a diagonalizable matrix

If A is diagonalizable, then $A = X\Lambda X^{-1}$ for some eigenvalue matrix Λ and eigenvector matrix X.

Then the exponential is easy to compute:

$$e^{At} = I + At + \frac{1}{2}(At)^{2} + \frac{1}{6}(At)^{3} + \cdots$$

$$= I + X\Lambda t X^{-1} + \frac{1}{2}(X\Lambda t X^{-1})^{2} + \frac{1}{6}(X\Lambda t X^{-1})^{3} + \cdots$$

$$= I + X(\Lambda t)X^{-1} + \frac{1}{2}X(\Lambda t)^{2}X^{-1} + \frac{1}{6}X(\Lambda t)^{3}X^{-1} + \cdots$$

$$= Xe^{\Lambda t}X^{-1}.$$

 \therefore the eigenvalues of e^{At} are $e^{\Lambda t}$, with the same eigenvectors as A.

The complex exponential as a diagonalizable matrix

Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Its powers have period 4, and e^{At} is orthogonal:

$$A^2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \ A^3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ A^4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I.$$

Thus,

$$e^{At} = \begin{pmatrix} 1 - \frac{1}{2}t^2 + \frac{1}{4}t^4 - \cdots & t - \frac{1}{3}t^3 + \frac{1}{5}t^5 - \cdots \\ - \left(t - \frac{1}{3}t^3 + \frac{1}{5}t^5 - \cdots\right) & 1 - \frac{1}{2}t^2 + \frac{1}{4}t^4 - \cdots \end{pmatrix}.$$

The complex exponential as a diagonalizable matrix

We can rewrite this form of e^{At} in power series terms:

$$e^{At} = \begin{pmatrix} \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n+1)!} & \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!} \\ -\sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!} & \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n+1)!} \end{pmatrix} = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix},$$

the two-dimensional rotation matrix.

The complex exponential as a diagonalizable matrix

The eigenvalue/eigenvector pairs of A are

$$(\lambda_1, \vec{x}_1) = \left(i, \begin{pmatrix} 1 \\ i \end{pmatrix}\right), \ (\lambda_2, \vec{x}_2) = \left(-i, \begin{pmatrix} 1 \\ -i \end{pmatrix}\right).$$

The eigenvalue/eigenvector pairs of e^{At} are

$$(e^{\lambda_1 t}, \vec{x}_1) = \left(e^{it}, \begin{pmatrix} 1 \\ i \end{pmatrix}\right), \ (e^{\lambda_2 t}, \vec{x}_2) = \left(e^{-it}, \begin{pmatrix} 1 \\ -i \end{pmatrix}\right).$$

Note the connection to Euler's formula:

$$e^{it} = \cos(t) + i\sin(t).$$

Symmetric Matrices

Recall, a **symmetric matrix** A is a square matrix such that

$$A = A^t$$
.

If A is symmetric and has independent columns, then A is diagonalizable, and so

$$A = X\Lambda X^{-1} \implies A^t = (X\Lambda X^{-1})^t = (X^{-1})^t \Lambda^t X^t = A.$$

Fact: $X^{-1} = X^t$, i.e. X is orthogonal.

Spectral Theorem

Theorem

Let A be a real-valued, symmetric matrix. Then its eigenvector matrix X is orthogonal, i.e. $X^tX = I$, and can be chosen as unit length vectors.

We will relabel this X as Q and write $A = Q \Lambda Q^t$.

Spectral Theorem: Supporting Propositions

Proposition

A real-valued, symmetric \implies A's eigenvalues are real-valued.

Proof Suppose $A\vec{x} = \lambda \vec{x}$. Denote by $\overline{\lambda}$ the complex conjugate of λ : that is, if $\lambda = a + bi$, then $\overline{\lambda} = a - bi$.

We will prove that $\lambda = \overline{\lambda}$, which implies b = 0, and so $\lambda = a \in \mathbb{R}$.

Spectral Theorem: Supporting Propositions

Proof (continued)

Thus, $A = \overline{A}$ since A is real-valued, and so

$$A\vec{x} = \lambda \vec{x} \implies \overline{A\vec{x}} = \overline{\lambda \vec{x}} \implies A\overline{\vec{x}} = \overline{\lambda \vec{x}}.$$

Transposing, we have

$$\overline{\vec{x}}^t A^t = \overline{\vec{x}}^t \overline{\lambda} \implies \overline{\vec{x}}^t A = \overline{\vec{x}}^t \overline{\lambda}$$

$$\implies \overline{\vec{x}}^t A \vec{x} = \overline{\vec{x}}^t \overline{\lambda} \vec{x}$$

$$\implies \overline{\vec{x}}^t \lambda \vec{x} = \overline{\vec{x}}^t \overline{\lambda} \vec{x} \implies \lambda(\overline{\vec{x}}^t \vec{x}) = \overline{\lambda}(\overline{\vec{x}}^t \vec{x}).$$

But $\vec{\vec{x}}^t \vec{x}$ is a scalar. Thus, $\lambda = \overline{\lambda}$.

Spectral Theorem: Supporting Propositions

Proposition

Let A be a real-valued, symmetric matrix. Then, if $\vec{x_i}$ and $\vec{x_j}$ are eigenvectors corresponding to the eigenvalues λ_i and λ_j , $i \neq j$, and $\lambda_i \neq \lambda_j$, then $\vec{x_i} \perp \vec{x_j}$.

Proof We are given $A\vec{x}_i = \lambda_i \vec{x}_i$, $A\vec{x}_j = \lambda_j \vec{x}_j$, $\lambda_i \neq \lambda_j$, and $A = A^t$. Thus,

$$\lambda_{i}(\vec{x}_{i}^{t}\vec{x}_{j}) = (\lambda_{i}\vec{x}_{i}^{t})\vec{x}_{j} = (\lambda_{i}\vec{x}_{i})^{t}\vec{x}_{j}$$

$$= (A\vec{x}_{i})^{t}\vec{x}_{j} = \vec{x}_{i}^{t}A^{t}\vec{x}_{j} = \vec{x}_{i}^{t}(A\vec{x}_{j})$$

$$= \vec{x}_{i}^{t}\lambda_{j}\vec{x}_{j} = \lambda_{j}(\vec{x}_{i}^{t}\vec{x}_{j}).$$

Therefore, $\lambda_i = \lambda_j$ or $\vec{x}_i^t \vec{x}_j = 0$. As we are given $\lambda_i \neq \lambda_j$, it must then be that $\vec{x}_i^t \vec{x}_j = 0$, i.e. $\vec{x}_i \perp \vec{x}_j$.

Pivots vs Eigenvalues

We know that, if A is triangular, then the eigenvalues of A are the diagonal entries, i.e. the pivots, of A.

However, this is not true for a non-triangular matrix. For a matrix A = LDU, the pivots of A correspond to the diagonal entries of D, which are *not* the eigenvalues of A.

Pivots vs Eigenvalues

We have the following "compromise" result:

If $d_1, d_2, ..., d_n$ are the diagonal entries of D, i.e. the pivots of A, and $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of A, then

$$det(A) = \prod_{i=1}^{n} \lambda_i = \prod_{i=1}^{n} d_i = det(D).$$

Pivots vs Eigenvalues: Symmetric

If A is symmetric, then the signs of pivots and eigenvalues agree:

positive pivots of $A = A^t = \#$ positive eigenvalues of $A = A^t$.

If all eigenvalues of A are positive (and hence all pivots are positive), then we call A is **positive definite** matrix.

(We will have another definition of this term shortly.)

Schur's Theorem

Theorem

If A is a square, complex-valued matrix, then A has a decomposition called **Schur form**,

$$A = QTQ^{-1},$$

where

- ▶ Q is a unitary matrix, i.e. $Q^{-1} = \overline{Q}^t$, its conjugate transpose, and
- T is upper triangular.

If A is a square, real-valued matrix, then the Schur form of A has Q an orthogonal matrix. If A is also symmetric, then T is diagonal.

Positive Definite Matrices

An $n \times n$ matrix A is called **symmetric positive definite (SPD)** if A is symmetric and satisfies all of the equivalent properties:

- $ightharpoonup ec{x}^t A ec{x} > 0$ for any $ec{x}
 eq 0 \in \mathbb{R}^n$ (the "energy" definition)
- ▶ all n pivots $d_i > 0$
- ▶ all *n* eigenvalues $\lambda_i > 0$
- all n upper-left determinants (deleting successive bottom row/column pairs) > 0
- $ightharpoonup A = R^t R$ for some R with independent columns.

If we relax the first (really, any) property to ≥ 0 , any A satisfying is called **symmetric positive semi-definite (SPSD)**.

satisfying one satisfies them all!

Positive Definite Matrices: Cholesky decomposition

If all the inequalities are flipped, we call A symmetric negative (semi)definite.

If A has positive and negative eigenvalues, we call A indefinite.

The last property,

 $ightharpoonup A = R^t R$ for some R with independent columns,

is the **Cholesky decomposition** of A; more to the point,

$$A = LDU \implies A = LDL^{t} = (L\sqrt{D})(L\sqrt{D})^{t},$$

i.e.
$$R = (L\sqrt{D})^t$$
.

Positive Definite Matrices: two decompositions

If A is SPD, then there is a decomposition for pivots and another for eigenvalues:

$$A = LDL^t$$

gives the pivots in D (with triangular bookends), and

$$A = Q \Lambda Q^t$$

gives the eigenvalues in Λ (with orthogonal bookends).

Positive Definite Matrices: closed under addition, 2x2

For once, arithmetic intuition holds: if A and B are SPD, then so is A + B:

$$\vec{x}^t(A+B)\vec{x} = \vec{x}^t A \vec{x} + \vec{x}^t B \vec{x} > 0.$$

The converse, of course, is not necessarily true.

A 2x2 matrix
$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
 is SPD $\iff a > 0$ and $ac - b^2 > 0$.

Positive Semidefinite Matrices: Quadratic Forms, Ellipses

Note the energy definition of an SPSD matrix:

 $\vec{x}^t A \vec{x} \ge 0$ for any $\vec{x} \ne 0 \in \mathbb{R}^n$.

This kind of function, $f(\vec{x}) = \vec{x}^t A \vec{x}$, is called a **quadratic form**.

If A is SPSD, then the equation

$$\vec{x}^t A \vec{x} = 1$$

defines an *n*-dimensional ellipsoid in \mathbb{R}^n , centered at the origin.

In particular, the equation in \mathbb{R}^2 ,

$$\vec{x}^t A \vec{x} = 1,$$
 i.e. $(x \ y) \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = ax^2 + 2bxy + cy^2 = 1,$

defines an ellipse.

Positive Semidefinite Matrices: principal axis theorem

This ellipse

$$\vec{x}^t A \vec{x} = ax^2 + 2bxy + cy^2 = 1$$

is tilted and stretched from the unit circle

$$\vec{x}^t I \vec{x} = x^2 + y^2 = 1$$

in that its eigenvectors point in the directions of the minor and major axes, and the eigenvalues determine the lengths of the axes: this is stated in the **Principal Axis Theorem**.

Positive Semidefinite Matrices: principal axis theorem

Factoring the matrix $A = Q\Lambda Q^t$ yields a way to "standardize" the ellipse equation in the following way:

$$\vec{x}^t A \vec{x} = (\vec{x}^t Q) \Lambda(Q^t \vec{x}) = 1.$$

Writing $C = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = Q^t \vec{x}$, the change into "ellipse coordinates",

$$\vec{x}^t A \vec{x} = C^t \Lambda C = \lambda_1 c_1^2 + \lambda_2 c_2^2 = 1.$$

This implies that, if \vec{x}_1 and \vec{x}_2 the eigenvectors of A, and $\lambda_1 \leq \lambda_2$, then the semi-minor axis is in the directions of \vec{x}_1 with length $\frac{1}{\sqrt{\lambda_1}}$, and the semi-major axis is in the direction of \vec{x}_2 , with length $\frac{1}{\sqrt{\lambda_2}}$.

Example: principal axis theorem

Consider the ellipse in the plane defined by

$$10x^2 + 8xy + 7y^2 = 1.$$

Example: principal axis theorem

$$10x^2 + 8xy + 7y^2 = 1$$

can be represented by the matrix equation $\vec{x}^t A \vec{x} = 1$:

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 10 & 4 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 1.$$

Factoring $A = Q \Lambda Q^t$ yields

$$Q = \begin{pmatrix} 0.822 & -0.570 \\ 0.570 & 0.822 \end{pmatrix}, \ \Lambda = \begin{pmatrix} 12.772 & 0 \\ 0 & 4.228 \end{pmatrix}.$$

The semi-minor axis has length 0.280 in the direction $\begin{pmatrix} 0.822 \\ 0.570 \end{pmatrix}$;

the semi-major axis is in direction $\begin{pmatrix} -0.570\\ 0.822 \end{pmatrix}$ with length 0.486.

BONUS: Applications to Ordinary Differential Equations

Recall that

$$\frac{d}{dt}(e^{\lambda t}) = \lambda e^{\lambda t}.$$

 $\frac{d}{dt}$, the **differential operator** with respect to the variable t, can be considered a *matrix* applied to a vector of functions u.

We will thus examine ODEs via linear algebra.

Ordinary Differential Equation $\frac{du}{dt} = \lambda u$: 1×1 case

The single-variable initial condition ODE

$$\frac{du}{dt} = \lambda u$$
, $u(0) = C$ with solution $u(t)$

is solved by the function $u(t) = Ce^{\lambda t}$.

This is a 1×1 matrix version of a linear constant coefficient system of ODEs with initial conditions. We will generalize.

Ordinary Differential Equation $\frac{du}{dt} = Au$: $n \times n$ case

The $n \times n$ linear constant coefficient ODE system looks like

$$\frac{du}{dt} = Au, \ u(0) = \begin{pmatrix} u_1(0) \\ u_2(0) \\ \vdots \\ u_n(0) \end{pmatrix} \text{ with solution } u(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_n(t) \end{pmatrix}$$

and is solvable via eigenproblem methods.

Ordinary Differential Equation $\frac{du}{dt} = Au$: $n \times n$ case

If we can solve the eigenproblem

$$A\vec{x} = \lambda \vec{x}$$

with n pairs of distinct eigenvalues and independent eigenvectors

$$(\lambda_1, \vec{x_1}), (\lambda_2, \vec{x_2}), ..., (\lambda_n, \vec{x_n}),$$

then we can rewrite the initial conditions of the ODE as

$$u(0) = \sum_{i=1}^{n} c_i \vec{x_i}$$

and solve the system with the solution

$$u(t) = \sum_{i=1}^{n} c_i e^{\lambda_i t} \vec{x_i}.$$

Example: ODE $\frac{du}{dt} = Au$: $n \times n$ case

Solve the ODE system

$$\frac{du}{dt} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix} u, \ u(0) = \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix} \text{ for } u(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \\ u_3(t) \end{pmatrix}.$$

The associated eigenproblem is

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix} \vec{x} = \lambda \vec{x}.$$

Example: ODE $\frac{du}{dt} = Au$: $n \times n$ case

This triangular system has eigenvalues

$$\lambda_1 = 1, \ \lambda_2 = 2, \ \lambda_3 = 3.$$

The associated eigenvectors are

$$\vec{x_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{x_2} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \vec{x_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Example: ODE $\frac{du}{dt} = Au$: $n \times n$ case

Solving the initial condition for its coefficients c_1 , c_2 , c_3 yields

$$u(0) = c_1 \vec{x_1} + c_2 \vec{x_2} + c_3 \vec{x_3}$$

$$\implies \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

$$\implies \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$

$$\implies u(0) = \vec{x_1} + \vec{x_2} + 4\vec{x_3}.$$

Example: ODE $\frac{du}{dt} = Au$: $n \times n$ case

Thus, the solution to the ODE system is

$$egin{align} u(t) &= c_1 e^{\lambda_1 t} ec{x_1} + c_2 e^{\lambda_2 t} ec{x_2} + c_3 e^{\lambda_3 t} ec{x_3} \ &= e^t egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + e^{2t} egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix} + 4 e^{3t} egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix} \ &= egin{pmatrix} e^t + e^{2t} + 4 e^{3t} \ e^{2t} + 4 e^{3t} \ 4 e^{3t} \end{pmatrix} = egin{pmatrix} u_1(t) \ u_2(t) \ u_3(t) \end{pmatrix}. \end{split}$$

Check: ODE $\frac{du}{dt} = Au$: $n \times n$ case

We check the solution:

$$\frac{d}{dt}u(t) = \frac{d}{dt} \begin{pmatrix} e^{t} + e^{2t} + 4e^{3t} \\ e^{2t} + 4e^{3t} \\ 4e^{3t} \end{pmatrix}$$

$$= \begin{pmatrix} e^{t} + 2e^{2t} + 12e^{3t} \\ 2e^{2t} + 12e^{3t} \\ 12e^{3t} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} e^{t} + e^{2t} + 4e^{3t} \\ e^{2t} + 4e^{3t} \\ 4e^{3t} \end{pmatrix} = Au. \checkmark$$

A 1×1 second order linear ODE has form

$$my'' + by' + ky = 0, y = y(t),$$

with constants $m, b, k \in \mathbb{R}$.

We typically solve this kind of ODE by first assuming the form $y(t)=Ce^{\lambda t}$ and checking the coefficient equation

$$m\lambda^2 + b\lambda + k = 0,$$

which comes from the derivatives

$$y' = \lambda y, \ y'' = \lambda^2 y.$$

It should be clear that the quadratic equation yields the solutions

$$\lambda_1 = \frac{-b + \sqrt{b^2 - 4mk}}{2m}, \ \lambda_2 = \frac{-b - \sqrt{b^2 - 4mk}}{2m}.$$

Then, the solution to the second order ODE is

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t},$$

where c_1 and c_2 are given by initial conditions.

How can we use linear algebra to solve a second order linear ODE?

WLOG we will set m = 1 to make the calcuations easier.

Setting
$$u = \begin{pmatrix} y \\ y' \end{pmatrix}$$
, the ODE

$$y'' + by' + ky = 0$$

is transformed into the linear system

$$\frac{du}{dt} = Au, \ A = \begin{pmatrix} 0 & 1 \\ -k & -b \end{pmatrix}.$$

We solve the system as before.

Note that the characteristic equation of A is precisely the quadratic we used earlier:

$$\det(A - \lambda I) = \lambda^2 + b\lambda + k = 0.$$

Thus λ_1 and λ_2 are as we calculated, and the eigenvectors are

$$\vec{x_1} = \begin{pmatrix} 1 \\ \lambda_1 \end{pmatrix}, \ \vec{x_2} = \begin{pmatrix} 1 \\ \lambda_2 \end{pmatrix}.$$

We get the system solution

$$egin{aligned} u(t) &= c_1 e^{\lambda_1 t} ec{x_1} + c_2 e^{\lambda_2 t} ec{x_2} \ &= c_1 e^{\lambda_1 t} egin{pmatrix} 1 \ \lambda_1 \end{pmatrix} + c_2 e^{\lambda_2 t} egin{pmatrix} 1 \ \lambda_2 \end{pmatrix} \end{aligned}$$

$$\implies \begin{pmatrix} y(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} \\ c_1 \lambda_1 e^{\lambda_1 t} + c_2 \lambda_2 e^{\lambda_2 t} \end{pmatrix}.$$

Note that, for this to work, we require $\lambda_1 \neq \lambda_2$.

If any eigenvalues match, we need to add solutions of form $Ct^ke^{\lambda t}$.

Example: Second Order ODE: General Solution

Solve for
$$y = y(t)$$
:

$$y'' - 6y' + 5y = 0$$
, $y(0) = 10$, $y'(0) = 4$.

$$\begin{array}{ll} \text{characteristic equation} & \lambda^2 - 6\lambda + 5 = 0 \\ \Longrightarrow & \lambda_1 = 1, \ \lambda_2 = 5 \\ \Longrightarrow & \vec{x_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \vec{x_2} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \\ \Longrightarrow & u(t) = \begin{pmatrix} y(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} c_1 e^t + c_2 e^{5t} \\ c_1 e^t + 5 c_2 e^{5t} \end{pmatrix}. \end{array}$$

Example: Second Order ODE: Initial Conditions

initial conditions
$$u(0) = \begin{pmatrix} y(0) \\ y'(0) \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

$$\implies \qquad \begin{pmatrix} c_1 + c_2 \\ c_1 + 5c_2 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

$$\implies \qquad c_1 = \frac{23}{2}, \ c_2 = -\frac{3}{2}.$$

$$\therefore \qquad y(t) = \frac{23}{2}e^t - \frac{3}{2}e^{5t}.$$

Check:
$$y'(t) = \frac{23}{2}e^t - \frac{15}{2}e^{5t}$$
, $y''(t) = \frac{23}{2}e^t - \frac{75}{2}e^{5t}$
 $\implies y'' - 6y' + 5y = 0$. \checkmark

Example: Second Order ODE: Matching Eigenvalues

Solve for
$$y = y(t)$$
:
$$y'' - 8y' + 16y = 0, \ y(0) = 10, \ y'(0) = 4.$$

$$char eqn \qquad \lambda^2 - 8\lambda + 16 = 0$$

$$\Rightarrow \qquad \lambda_1 = \lambda_2 = 4$$

$$\Rightarrow \qquad \vec{x_1} = \vec{x_2} = \begin{pmatrix} 1\\4 \end{pmatrix}$$

$$\Rightarrow \qquad u(t) = \begin{pmatrix} y(t)\\y'(t) \end{pmatrix} = \begin{pmatrix} (c_1 + c_2 t)e^{4t}\\(4c_1 + c_2 + 4c_2 t)e^{4t} \end{pmatrix}.$$

Example: Second Order ODE: Matching Eigenvalues

init cond
$$u(0) = \begin{pmatrix} y(0) \\ y'(0) \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

$$\Rightarrow \qquad \begin{pmatrix} c_1 \\ 4c_1 + c_2 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

$$\Rightarrow \qquad c_1 = 10, \ c_2 = -36.$$

$$y(t) = (10 - 36t) e^{4t}.$$
Check:
$$y'(t) = (4 - 144t)e^{4t},$$

$$y''(t) = (-128 - 576t)e^{4t}$$

$$\Rightarrow \qquad y'' - 8y' + 16y = 0. \checkmark$$

Long-Term Stability of ODE Solutions via Eigenvalues

As $t \to \infty$, what happens to u(t)? Does the ODE solution:

- ▶ stabilize $(u(t) \rightarrow c \in \mathbb{R})$? ("vanish" if c = 0)
- ▶ explode $(|u(t)| \to \infty)$?
- ▶ cycle $(0 < |u(t)| < \infty$ but u(t) continues to vary)?

Since $e^{\lambda t}$ is the structure of the terms of a typical ODE solution, we examine the eigenvalues as complex: $\lambda = r + is \in \mathbb{C}$.

- ▶ stabilize: *all* eigenvalues have r < 0 (exponential decay)
- explode: any eigenvalue has r > 0 (exponential growth)
- cycle: r = 0, $s \neq 0$