MATHEMATICS 121, FALL 2013 LINEAR ALGEBRA WITH APPLICATIONS

November 1, 2013 Luis Perez

Module #12, Proof:

- For real $n \times n$ matrix A, prove that if all the polynomials $p_i(t)$ are simple and have real roots, then there exists a basis for \mathbb{R}^n consisting of eigenvectors of A.
- Prove that if there exists a basis for \mathbb{R}^n consisting of eigenvectors of A, then all the polynomials $p_i(t)$ are simple and have real roots.

Assume that for each $\vec{\boldsymbol{w}} = \vec{\boldsymbol{e}}_i$ we choose, the corresponding polynomial $p_i(t)$ has simple, real roots. Then consider the subspace E_i which is the image of the matrix with columns $\vec{\boldsymbol{e}}_i, A\vec{\boldsymbol{e}}_i, A^2\vec{\boldsymbol{e}}_i \cdots A^{m_i}\vec{\boldsymbol{e}}_i$. We assert that there exists a basis of eigenvectors for E_i . To see this, notice that because $p_i(t)$ only has simple, real roots, then:

$$p_i(t) = (t - \lambda_1 I)(t - \lambda_2 I) \cdots (t - \lambda_{m_i} I) = 0$$

Plugging in A, and factoring out any of the terms, we have that $(A-\lambda_j I)q_j(A)\vec{e}_i = 0$ where $q_j(t)$ is the polynomial left behind after factoring $(t-\lambda_j I)$, and therefore $q_j(t)\vec{e}_i$ is an eigenvector of A. For example, we have

- 1. Leaving out the first term of p(A), $(A \lambda_1 I)$, we know that $q_1(A) = (A \lambda_2 I) \cdots (A \lambda_{m_i} I) \vec{e_i}$ is an eigenvector with eigenvalue λ_1 .
- 2. Leaving out the second term of p(A), $(A \lambda_2 I)$, we know that $q_2(A) = (A \lambda_1 I) \cdots (A \lambda_{m_i} I) \vec{e_i}$ is an eigenvector with eigenvalue λ_2 .
- 3. We can continue this process until, leaving out the last term of p(A), $(A \lambda_{m_i}I)$, we have that $q_{m_i}(A) = (A \lambda_1I)(A \lambda_2I) \cdots (A \lambda_{m_i-1}I)\vec{e_i}$ is an eigenvector with eigenvalue λ_{m_i} .

We have therefore constructed m_i eigenvectors with distinct eigenvalues. By Module 11, the eigenvectors must be linearly independent. Furthermore, each eigenvector is a linear combination of the columns of the matrix whose image is E_i (you just have to multiply out $q_j(A)$ to see this). Additionally, the matrix is constructed so that you stop as soon as you encounter one linearly dependent vector, therefore even though A has $m_i + 1$ columns, the dim(Im A) is only m_i , and our set of m_i eigenvectors therefore forms a basis of E_i .

Now consider the space E which is the image of the matrix $[E_1 | E_2 | \cdots | E_n]$. Because each E_i contains the basis vector \vec{e}_i , then the image of this matrix is \mathbb{R}^n . Furthermore, as described earlier each E_i has a basis consisting only of eigenvectors, and therefore the image of our matrix also has a basis consisting of eigenvectors. More precisely, $\vec{e}_i \in E_i$ which is spanned by eigenvectors only, so removing all e_i from our new matrix does not affect the image of the matrix. Then it is the case that if for a real $n \times n$ matrix A all the polynomials $p_i(t)$ are simple and have real roots, then there exists a basis for of R^n consisting only of eigenvectors of A.

Now we prove that if there exists a basis for R^n consisting of eigenvectors of A, then all the polynomials $p_i(t)$ are simple and have real roots. To see this, note that because we have a basis of eigenvectors then for any basis vector \vec{e}_i , we can write $\vec{e}_i = a_1\vec{v}_1 + a_2\vec{v}_2 = \cdots a_n\vec{v}_n$. Note that our basis need not consists of eigenvectors with distinct eigenvalues; they only need to form a basis. Then consider the polynomial $p_i(t) = (t - \lambda_1 I)(t - \lambda_2 I) \cdots (t - \lambda_k I)$ where $k \leq n$ (depending on whether we have repeated eigenvalues or not). Then applying $p_i(A)$ to \vec{e}_i yields 0 because we have included every possible eigenvector in the polynomial. If we remove any factor, then we are no longer guaranteed to obtain 0. Therefore all $p_i(t)$ (ie, polynomials for which \vec{e}_i is a linear combination of eigenvectors, as occurs when we construct our matrix $[\vec{e}_i \mid A\vec{e}_i \mid \cdots \mid A^{m_i}\vec{e}_i]$ with the smallest possible m_i) are simple and have real roots.

Q.E.D.