Wieloręcy bandyci

Systemy Rekomendacyjne 2021/2022

Collaborative filtering

- Działa offline trening modelu wymaga dużo czasu
- Bazuje (zazwyczaj) na bezpośrednim feedbacku od użytkowników (np. oceny filmów)
- Wymaga znacznej wiedzy o każdym użytkowniku
- Nie wykrywa chwilowych trendów

Wieloręki bandyta

- Każdy element w puli do zarekomendowania to jeden jednoręki bandyta
- Każdy bandyta ma "zakodowane" prawdopodobieństwo wygranej
- Na początku nie znamy tych prawdopodobieństw
- Mając skończoną liczbę żetonów, chcemy opracować taką strategię, by zmaksymalizować wygraną
- Z każdą rekomendacją zyskujemy nową wiedzę i aktualizujemy bandytów

Wieloręki bandyta

Problem

• Musimy równoważyć pomiędzy eksploracją nowych albo nie dość znanych bandytów (*exploration*) a wykorzystaniem już zdobytej wiedzy, by wygrać jak najwięcej (*exploitation*)

Funkcje celu - przypomnienie

- · Akcje użytkowników, na których możemy oprzeć funkcje celu:
 - Impresje (użytkownik zobaczył element na stronie)
 - Kliki (użytkownik kliknął w element)
 - •
- Funkcje celu:
 - CTR click through ratio: iloraz klików i impresji

Bandyci naiwni

- $| \bullet ext{Losowy} |$
 - Świetnie eksploruje
 - ...ale w ogóle nie wykorzystuje zdobytej wiedzy
- Top N
 - Wybiera N materiałów z największą wartością funkcji celu
 - Świetnie wykorzystuje wiedzę
 - ...ale nie potrafi jej zdobyć

Bandyta ε-zachłanny (ε-greedy)

- 1. Przygotuj listę materiałów posortowaną po wartości funkcji celu
- 2. Przygotuj listę materiałów w kolejności losowej
- 3. Dla każdej pozycji i w liście rekomendacji:
 - 1. Wylosuj liczbę losową *x*
 - 2. Jeśli $x > \varepsilon$, to weź *i*-ty element z listy posortowanej
 - 3. Jeśli $x \le \varepsilon$, to weź *i*-ty element z listy losowej

$$N = 5$$

 $\varepsilon = 0.2$

n=5

$$n=5$$

$$x = 0.15$$
 $x = 0.7$

$$\varepsilon = 0.2$$

$$n=5$$

$$x = 0.15$$

$$x = 0.7$$

$$x = 0.9$$

$$x = 0.4$$

$$x = 0.2$$

Optymizm

- Funkcja, która w deterministyczny sposób wskazuje, jak duże jest prawdopodobieństwo, że element, którego od dawna nie rekomendowaliśmy warto ponownie zarekomendować
- Oparta na liczbie akcji (np. impresji) zarówno pojedynczych elementów jak i całego zbioru elementów

$$Opt_i = \sqrt{\frac{2 * ln(n)}{n_i}}$$

$$n = \sum_i n_i$$

Upper Confidence Bound (UCB)

- 1. Do wartości funkcji celu każdego z materiałów dodaj optymizm
- 2. Posortuj materiały po wartości takiej optymistycznej funkcji celu
- 3. Weź N najlepszych materiałów

n=5

n=5

UCB n=5

Rozkład beta

$$\alpha = 1, \beta = 1$$

$$\alpha = 2, \beta = 5$$

$$\alpha = 7, \beta = 3$$

Thompson Sampling (TS)

Każdy materiał, zamiast wartością funkcji celu, opisywany jest dwoma parametrami a i b

- 1. Dla każdego materiału i wylosuj liczbę losową zgodnie z rozkładem beta(a, b)
- 2. Posortuj materiały według wylosowanych wartości
- 3. Weź N najlepszych materiałów
- 4. Zaktualizuj wartości a i b
 - 1.Jeśli sukces (np. użytkownik kliknął): $\alpha += 1$
 - 2.Jeśli porażka (np. nie kliknął): b += 1

Thompson Sampling

Thompson Sampling

n=3

Thompson Sampling

n=3

Czy da się jeszcze lepiej?

Parametryzacja

- Bandyta e-greedy posiada parametr ε prawdopodobieństwo zarekomendowania losowego elementu zamiast tego z listy TopN
- Bandyta UCB może mieć parametr c, który stanowi wagę, z jaką do funkcji celu dodajemy wartość optymizmu
- Bandyta TS może mieć dwa parametry zamiast dodawać 1 do parametrów α i b, możemy dodawać wartości odpowiednio $a_{\rm inc}$ oraz $b_{\rm inc}$

Bandyci bezstanowi

- Klasyczna implementacja bandyty wprowadza stan wartość optymizmu w UCB czy wartość parametrów rozkładu beta w TS są cały czas przechowywane i aktualizowane
- Jeśli mamy gotowy mechanizm służący do obliczania aktualnych metryk i funkcji celu każdego z elementów, stan wszystkich bandytów możemy policzyć "w locie"

Okno czasowe

- Klasyczna implementacja raz zdobytych danych nie oddaje nigdy
- Im bardziej zmienne są elementy, które rekomendujemy, tym mniej przydatne są historyczne dane
- Najprostszy mechanizm "zapominania" starych danych polega na uwzględnianiu zdarzeń z ostatnich N godzin/dni

Dalsza lektura

- Jednym z najlepszych źródeł wiedzy o algorytmach bandytów jest blog https://banditalgs.com/ oraz jego "papierowa wersja": https://tor-lattimore.com/downloads/book/book.pdf
- Bardzo ciekawym rozwinięciem bandyty Thompson Sampling jest modelowanie każdego elementu za pomocą dwóch rozkładów beta, jednego "klasycznego" i drugiego zanikającego w czasie: https://dl.acm.org/doi/10.1145/3460231.3474250
- Warto także rozważyć, czy bandyci są naprawdę sprawiedliwi i czy dają każdemu elementowi podobne szanse "pokazania się": https://dl.acm.org/doi/10.1145/3460231.3474248

Podsumowanie

- Jakie są ograniczenia collaborative filtering?
- Jaka abstrakcja stoi za rodziną algorytmów wielorękich bandytów?
- Algorytmy:
 - ε-greedy
 - Upper Confidence Bound
 - Thompson Sampling
- Dodatkowe ulepszenia algorytmów wielorękich bandytów