Villamosmérnök alapszak Fizika1	1.	2.	3.	4.	E1.	E2.	Mondat	Összes
agy zárthelyi dolgozat, 2018. nov. 9.						Sec.	Georgia Maria	
				NÉ	V:			
	Neptun kód:							
			IV	eptur	i kou:	s (A)	A Rigolanov	r smildel
CONTRACTOR OF THE CONTRACTOR O				,	- torrigh		Előadó: Má	irkus / Sar
Egy l_0 hosszúságú kamion egyenletes v_0 se közúton. Mögötte állandó l_0 követési távolsa személyautó az 1. ábra szerint. A közúton v_{max} . ($v_0 < v_{max}$) A mozgást tekintsük egy dime	ágot tart a sebes	va h ségk	alad e	gy	0 0	$ \xrightarrow{v_{\theta}} $	1. ábra	
a) A t_0 =0 időpillanatban a személyautó egye Mire a kamion hátulját eléri, sebessége éppe Mennyi idő alatt érte utol a személyautó a kan	nletesen en v _{max} é	gyoi értéke						May
et kamionhor rögsitett von	athor	tal	ahi	renc	charl	ven:	2. ábra	I_o
$l_0 = \frac{\alpha}{2} \cdot t_1 \qquad \alpha = \frac{v_{\text{max}} - v_0}{t_1}$ $l_0 = \frac{v_{\text{max}} - v_0}{2t_1} \cdot t_1^2 = \frac{v_{\text{max}} - v_0}{2} \cdot t_1$ b) Est käystäen a grandhysvá agyanlatos v	⇒ [t ₁ =	el elha	lo alad tt lo			3. ábra	
b) Ezt követően a személyautó egyenletes v_{ii} a kamion mellett, és visszahúzódik saját sáv távolságra. (3. ábra) Mennyi időre volt szi manőver befejezéséhez? (1) $t_{2} = \frac{2l_{0}}{V_{max}} - V_{0} \leftarrow \frac{1}{2} $			es, elo	(4)	zenle	lo ites	morga's	
a kamion mellett, és visszahúzódik saját sáv távolságra. (3. ábra) Mennyi időre volt szi manőver befejezéséhez? (1)	ebess	ėż		(09)	yenla 2====================================	tes 4la	morga's	

A hamion rendoneraben:

- Egy cirkuszi mutatvány során m tömegű motorosok száguldoznak az R sugarú "halálgömbben". Az A pontban a motorkerékpár sebessége v₁, a kerekek és a gömb közötti tapadási súrlódási együttható értéke μ_0 , a motorosok minden pillanatban szükséges mennyiségű "gázt adnak". A motorokat tekintsük pontszerűnek.

b) Mekkora a motoros eredő gyorsulása az A pontban? (0,5)

c) Legalább mekkora v_2 sebességgel kell haladnia a motornak a B pontban, hogy a gömb felületén maradjon?

$$tgd = \frac{F_R}{mg}$$

$$d = tg^{-1} \frac{F_R}{mg}$$

b) A csomagra Coriolis-erő is hat. A 2. ábrára rajzolja fel a Coriolis-erő hatására β szögben kitérülő csomagot, és tüntesse fel a Coriolis-erő vektorát! (0,5)

a) Határozza meg a β szöget (0,5) és számítsa ki a kötelet feszítő erő nagyságát! (1)

$$t_g \beta = \frac{f_{cov}}{mg} = \frac{2m\omega}{g}$$

$$\beta = t_g^{-1} \frac{2\omega\sigma}{g}$$

$$K = \sqrt{f_g^2 + f_k^2 + f_{cov}^2} \iff \frac{f_g + f_{cov}}{f_g}$$

$$V = \sqrt{(mg)^2 + (2m\omega\sigma)^2 + f_k^2}$$

4. Egy havas fennsíkon m tömegű ember tol egy M tömegű szánkót. A szánkó és a hó között elhanyagolható a súrlódás, azonban az ember talpa és a hó között μ₀ tapadási súrlódási együttható mérhető. A szánkó kezdetben nyugalomban van, s távolságra a fennsík szélétől. A fennsík szélét a szánkó sebessége v₁.

 a) A vízszintes szakaszon melyik erő gyorsítja a szánkó+ember alkotta rendszert? Az erő vektorát rajzolja fel az ábrára! (1)

b) Mekkora az (a) feladatban megnevezett erő átlagos nagysága (1)

Mendste'tel alepje'n:
$$W = \Delta E_{Lin} = \frac{1}{L} (M+m) V_1^2 - 0$$
 $W = F_{ts} S$
 $\Rightarrow F_{ts} S = \frac{1}{L} (M+m) V_1^2$
 $F_{ts} = \frac{(M+m) V_1^2}{2S}$

c) A fennsík szélén az ember óvatosan felugrik a szánkóra (a felugrás nem módosítja közös sebességüket) és kezdetét veszi a lesiklás. Mekkora sebességgel érkezik meg a szánkó a h magasságú lejtő aljára?(1)

Konzervativ rendher
$$\Rightarrow$$
 mech. energia megmandis

$$E_{kin} + E_{pot} = E_{kin} + E_{pot}$$

$$\frac{1}{2} (M+m) U_1^2 + (M+m) gh = \frac{1}{2} (M+m) U_2^2 + 0$$

$$U_2 = 2 gh + U_1^2$$

$$V_2 = \sqrt{2 gh + U_1^2}$$

Kifejtendő kérdések

1. Hasonlítsa össze az egyenes vonalú mozgást a körmozgással! Nevezze meg a két mozgásforma jellemzésére használt alapvető kinematikai mennyiségeket, definiálja őket matematikai összefüggéssel, adja meg SI mértékegységüket. (1,5) Írja fel az egyenes vonalú egyenletesen gyorsuló mozgás hely-idő függvényét, valamint az egyenletesen gyorsuló körmozgás elfordulás-idő függvényét általános alakban! (1) Adjon meg összefüggést, mely kapcsolatot teremt a körmozgás kerületi sebessége és szögsebessége között! (0,5)

	Egenes vona	lu morgas	Kerm	متاف	ii: (0,5)
Elmordula	× ×	(m)	Elfordulas:	9	(dimensatlan)
	V=lim dx at x0 dt	$\left(\frac{m}{3}\right)$	Szögsebenig:		Maria and American Company of the Co
Gombos:	a = lim AU At=0 At	(me	Srigggonali:		1 /
C 01				DL.20	
Egyphetesen with the mi	Xt=X+16+ 2	i t	9(t)= 4.+ w.	t+ 2.t2	

kunileti rebesség -> VK= RW < nögsebesség

2. Matematikai összefüggés segítségével definiálja egy M tömegű gömbszimmetrikus test gravitációs terében elhelyezett m tömegű tömegpont potenciális energiáját, és nevezze meg az összefüggésben szereplő fizikai mennyiségeket! (1) Definiálja a mechanikai energia fogalmát! (0,5) Mutassa be a mechanikai energia megmaradás törvényének alkalmazását egy olyan test földetérési sebességének meghatározásán keresztül, melyet az R sugarú Föld felszíne felett R távolságra kezdősebesség nélkül elejtettünk.

Kiegészítendő mondatok

Egészítse ki az alábbi hiányos mondatokat úgy a megfelelő szavakkal, szókapcsolatokkal, matematikai kifejezésekkel (skalár-vektor megkülönböztetés), hogy azok a Fizika1 tantárgy színvonalának megfelelő, fizikailag helyes állításokat fogalmazzanak meg!

1.	A fizikai mennyiség a mérőszámból és a mentehegységből áll.
2.	Azokat a mennyiségeket, melyeknek nagysága és
3.	Egy testet függőlegesen elhajítunk a talajról ν kezdősebességgel, egy másikat 45°-os szög alatt 2ν sebességgel. A
4.	Lejtőre helyezünk egy hasábot, de az nem csúszik le. A hasábra ható tapadási súrlódási erő nagysága, mint a nehézségi erő lejtővel párhuzamos komponense.
5.	A Hooke-törvény értelmében a
6.	Gyorsuló vonatkoztatási rendszerekben kelektlurkáj erőket definiálunk annak érdekében, hogy a Newton törvényeket az inerciarendszerekben megszokott alakban tudjuk felírni.
7.	A centrifugális erő a forgó vonatkoztatási rendszer szögsebességének majsodil. hatványával arányos.
8.	Egy tömegpontra F erő hat, miközben a test elmozdul. Az erő munkája nulla, ha az erő és az elmozdulás-vektor
9.	Ha egy erőtérben mozgó testre érvényes a mechanikai energia megmaradás törvénye, akkor az erőtér
10.	A munkatétel értelmében a testre ható crők eredőjének munkája egyenlő a test kinetism energiajának megváltozásával
	Tintain görelüli kerék talajjal érintkező pontjának pillanatnyi sebessége nulla.
12.	Egy erőteret honginnel nevezünk, ha az erő vektora a tér minden pontjában ugyanakkora.