<u>SPRAWOZDANIE</u> SIECI ROZPROSZONE

Osoba wykonująca	Grupa	Data		
Uczelnia	Wydział	Kierunek		
Politechnika Lubelska	Elektrotechniki i Informatyki	Informatyka I. stopnia, stacjonarne		
Temat				
LABORATORIUM NR 3				

1. Konfiguracja trasy statycznej za pomocą adresu następnego skoku

b. Wyświetl zawartość tablicy routingu, aby zweryfikować nowe wpisy. Zauważ, że nowa trasa jest oznaczona literą S, która mówi, że ta trasa jest trasą statyczną. Podaj właściwe polecenie i umieść w sprawozdaniu wynik jego działania.

show ip route

```
Router#show ip route

Codes: L - Jocai, C - connected, S - static, R - RIP, M - mobile, 8 - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IR - OSPF inter area

M1 - OSPF MSSR external type 1, N2 - OSPF MSSR esternal type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - OUR, P - periodic downloaded static route, H - NHRP, 1 - LISP

+ - replicated route, X - next hop override

Gateway of last resort is not set

172.16.1.0 [1/0] via 192.168.1.2

192.166.1.0 [1/0] via 192.168.1.2

192.168.1.0/24 is submetted, 1 submets

C 192.168.1.0/24 is directly connected, Serial0/0/1

192.168.2.0/24 is directly connected, Serial0/0/1

192.168.2.0/24 is variably submetted, 2 submets, 2 masks

C 192.168.2.0/24 is variably submetted, 2 submets, 2 masks

C 192.168.2.0/24 is directly connected, Serial0/0/1

192.168.2.0/24 is directly connected, Serial0/0/1

L 192.168.2.1/32 is directly connected, GigabitEthermet0/0

Router#
```

Zgodnie z zapisem w tablicy routingu każdy pakiet, który dopasuje pierwsze 24 bity adresu docelowego do adresu 172.16.1.0/24, zostanie przekazany do routera następnego skoku na adres 192.168.1.2. Jakiego interfejsu użyje router R3 do przekazywania pakietów do sieci 172.16.1.0/24?

SerialO/0/1

c. Załóżmy, że nastepujące pakiety przybyły do routera R3. Jak zachowa się router? Przekaże pakiety, czy porzuci je? Jeśli R3 przekaże pakiet, to który interfejs routera R3 wyśle pakiet?

Pakiet	Docelowy adres	IP Porzuci czy przekaże?	Interfejs
1	172.16.2.1	porzuci	
2	172.16.1.10	przekaże	Serial0/0/1
3	192.168.1.2	przekaże	Serial0/0/1
4	172.16.3.10	porzuci	
5	192.168.2.10	przekaże	Gigabit(Fast)Ethernet0/0

d. Czy test ping z PC3 do PC2 zakończył się sukcesem? Nie. Uzasadnij odpowiedź

Ping nie zakończył się sukcesem, ponieważ dodaliśmy odpowiednią trasę statyczną z R3 do R2, ale **nie dodaliśmy statycznej trasy powrotnej** (z R2 do R3) – PC3 może wysyłać pakiety, ale nie może ich odbierać z PC2.

e. Na routerze R2 skonfiguruj trasę statyczną do sieci 192.168.2.0. Jaki jest adres następnego skoku routera R2 realizujący osiągniecie celu dla pakietu przeznaczonego do sieci 192.168.2.0/24?

192.168.1.1

ip route 192.168.2.0 255.255.255.0 **192.168.1.1**

f. Wyświetl zawartość tablicy routingu, aby zweryfikować nowe wpisy. Podaj właściwe polecenie i umieść w sprawozdaniu wynik jego działańia.

show ip route

2. Konfiguracja trasy statycznej przy pomocy interfejsu wychodzącego

b. Wyświetl zawartość tablicy routingu, aby zweryfikować nowe wpisy. Podaj właściwe polecenie.

d. W jaki sposób można usunąć trasy statyczne z tej konfiguracji?

Z trybu konfiguracji globalnej należy użyć polecenia **no ip route** (adres sieci docelowej) (maska) (adres następnego skoku/nazwa interfejsu wychodzącego).

f. Wyświetl zawartość tablicy routingu, aby zweryfikowa nowe wpisy. Podaj właściwe polecenie.

R2# show ip route

```
C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, sta - IS-IS sunmary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - OOR, P - periodic dounloaded static route, H - NHRP, 1 - LISP
        + - replicated route, % - next hop override
Gateway of last resort is not set
       172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks
           172.16.1.0/24 is directly connected, GigabitEthernet0/0
           172.16.1.1/32 is directly connected, GigabitEthernet0/0
172.16.2.0/24 is directly connected, Serial0/0/0
           172.16.2.2/32 is directly connected. Seria10/0/0
           172.16.3.0/24 is directly connected, SerialO/O/O
5
       192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
192.168.1.0/24 is directly connected, Serial0/0/1
           192.168.1.2/32 is directly connected, SerialD/D/1
       192.168.2.0/24 [1/0] via 192.168.1.1
 Router#
```

W tym momencie R2 posiada kompletną tablicę routingu z poprawnymi trasami do wszystkich pięciu sieci przedstawionych na diagramie topologii. Czy to oznacza, że R2 może otrzymać odpowiedzi ping od wszystkich urządzeń znajdujących się na diagramie topologii? **Nie**

Uzasadnij odpowiedź.

Dzieje się tak, ponieważ ustalone zostały trasy z R2 do innych sieci, ale **nie ustawiliśmy jeszcze trasy powrotnej z R1 do R2.**

g. Wykorzystaj komendę ping do sprawdzenia łączności pomiędzy hostami PC2 i PC1. Ten test powinien zakończy się porażką, ponieważ router R1 nie posiada w tablicy routingu powrotnej trasy do sieci 172.16.1.0. Jak proponujesz rozwiązać ten problem ?

Należy dodać trasę z R1 do R2. Dokonamy tego poleceniem: ip route 172.16.1.0 255.255.255.0 s0/0/0

3. Konfiguracja domyślnej trasy statycznej

b. Wyświetl zawartość tablicy routingu, aby zweryfikować nowe wpisy. Podaj właściwe polecenie i umieść w sprawozdaniu wynik jego działania.

show ip route Codes: - EIGRP external, 0 - OSPF NSSA external type 1, NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 inter area, * - candidate default, U - per-user static route , P - periodic dounloaded static route, H - NHRP, 1 - LISP - replicated route, % - next hop override Gateway of last resort is 172.16.2.2 to network 0.0.0.0 0.0.0.0/0 (1/0) via 172.16,2,2 is variably subnetted, 5 subnets, 2 masks is directly connected, .0/24 is directly connected. 32 is directly connected, 16.3.0/24 is directly connected, GigabitEthernetO/D is directly connected, GigabitEthernetO/O outer#

c. Wykorzystaj komendę ping do sprawdzenia łączności pomiędzy hostami PC2 i PC1.
Czy test ping z PC2 do PC1 zakończył się sukcesem? Tak
Czy test ping z PC3 do PC1 zakończył się sukcesem? Nie

Czy w tablicy routingu routera R3 istnieje trasa do sieci 172.16.3.0? Nie

4. Konfiguracja sumarycznej trasy statycznej

b. Trasę sumaryczną zweryfikuj w tablicy routingu. Podaj właściwe polecenie i umieść w sprawozdaniu wynik jego działania

```
outer#show ip route

odes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

0 - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF MSSA external type 1, N2 - OSPF MSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
Feb 17 11:37:56.867: %SYS-5-CONFIG_I: Configured from console by console
                                                                                                                                                                                                                                                                              * - replicated route, % - next hop override
Gateway of last resort is not set
                    172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks
                  172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks
172.16.0.0/22 (1/0) via 192.168.1.2
172.16.1.0/24 (1/0) via 192.168.1.2
172.16.2.0/24 is directly connected, Serial0/0/1
192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
192.168.1.0/24 is directly connected, Serial0/0/1
192.168.1.1/32 is directly connected, Serial0/0/1
192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
192.168.2.0/24 is directly connected, GigabitEthernet0/0
192.168.2.1/32 is directly connected, GigabitEthernet0/0
r#
Router#
```

d. Sprawdź, czy trasy nadal znajdują się w tablicy routingu. Podaj własciwe polecenie i umieść w sprawozdaniu wynik jego działania

Trasy zostały usunięte z tablicy routingu.

```
Trasy zostafy usuniete z tablicy routingu.

Kouter#show ip route

Feb 17 11:43:10.575: XSYS-5-CONFIG_I: Configured from console by console

Codes: L - local, C - commected, S - static, R - RIP, H - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP

+ - replicated route, X - next hop override
  Gateway of last resort is not set
                                   172.16.0.0/22 is subnetted, 1 subnets
172.16.0.0 [1/0] via 192.168.1.2
192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
192.168.1.0/24 is directly connected, Serial0/0/1
192.168.1.1/32 is directly connected, Serial0/0/1
192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
192.168.2.0/24 is directly connected, GigabitEthernet0/0
192.168.2.1/32 is directly connected, GigabitEthernet0/0
```

e. Wykorzystaj komend ping do sprawdzenia łączności pomiedzy hostami: PC3 i PC1. Czy test ping z PC3 do PC1 zakonczył się sukcesem? **Tak.**

```
C:\Users\student>ping 172.16.3.10

Badanie 172.16.3.10 z 32 bajtami danych:
Odpowiedź z 172.16.3.10: bajtów=32 czas=36ms ITL=125
Odpowiedź z 172.16.3.10: bajtów=32 czas=35ms ITL=125
Odpowiedź z 172.16.3.10: bajtów=32 czas=35ms ITL=125
Odpowiedź z 172.16.3.10: bajtów=32 czas=35ms ITL=125
Statystyka badania ping dla 172.16.3.10:
Pakiety: Wysłane = 4, Odebrane = 4, Utracone = 0
(0% straty),
Szacunkowy czas błądzenia pakietów w millisekundach:
Minimum = 35 ms, Maksimum = 36 ms, Czas średni = 35 ms
```

5. ZADANIA DO SAMODZIELNEGO OPRACOWANIA

5.1 Wyjaśnić co oznacza pojęcie dystansu administracyjnego. Jakie są jego wartości domyślne w przypadku konfigurowania routingu statycznego oraz jakim poleceniem można mu nadać własną wartość.

Dystans (odległość) administracyjny(a) jest to parametr określający poziom zaufania (wiarygodności) co do źródła danych o danej trasie. Jest on wyrażony w postaci liczby naturalnej z przedziału 0-255. Liczba wyrażająca DA jest odwrotnie proporcjonalna do poziomu zaufania – im mniejsza liczba, tym większy poziom wiarygodności.

Domyślny poziom zaufania dla tras statycznych wynosi 1.

Aby ustawić ten parametr podajemy go jako kolejny – ostatni - argument po bramie – adresie IP następnego skoku/nazwie interfejsu wychodzącego – w poleceniu **ip route.**

Wyglądałoby to następująco: ip route IP_sieci_docelowej maska brama **DA(0-255)**

9.2. Czy dystans administracyjny może być wykorzystany w procesie konfigurowania tras zapasowych? Jeśli tak to proszę wyjaśnic zasadę postępowania.

Tak. Należy w niej ustawić wysoką liczbę DA (niski poziom zaufania) – wyższą niż tą określoną dla protokołu routingu dynamicznego. Wtedy automatycznie zostanie wykorzystany routing dynamiczny, dopiero gdy on zawiedzie – wykorzystana zostanie trasa zapasowa.

Dzieje się tak z powodu ustawień, które wprowadziliśmy – protokół routingu dynamicznego ma większy poziom zaufania – a więc pierwszeństwo użycia wobec statycznej trasy zapasowej, która zostaje wykorzystana tylko w przypadkach zawodności routingu dynamicznego.