

Khoa Công Nghệ Thông Tin Trường Đại Học Cần Thơ

Phương pháp học Bayes Bayesian classification

<u>Đỗ Thanh Nghị</u> - <u>dtnghi@cit.ctu.edu.vn</u> Trần Nguyễn Minh Thư - <u>tnmthu@cit.ctu.edu.vn</u>

Cần Thơ - 2015

Nội dung

- Giới thiệu về Bayesian classification
- Kiến thức về xác suất thống kê
- Giải thuật học của naive Bayes
- ■Kết luận và hướng phát triển

Giải thuật học của naive Bayes kết luận và hướng phát triển

Bayesian classification

- Phương pháp học Bayes bayesian classification
 - Phân loại này được đặt theo tên của Thomas Bayes (1702-1761), người đề xuất các định lý Bayes
 - Giải thuật học có giám sát (supervised learning) xây dựng mô hình phân loại dựa trên dữ liệu tập học đã có nhãn (lớp)
 - Mang Bayes (Bayesian network), Bayes ngây thơ (naive Bayes)
 - Giải quyết các vấn đề về phân loại, gom nhóm, etc.

3

Bayesian classification

Giải thuật học của naive Bayes
 kết luận và hướng phát triển

Giới thiêu về Bayesian classification

- Phương pháp học Bayes ứng dụng thành công
 - Phân loại thư rác

Cho một email, dự đoán xem đó là thư rác hay không

• Chẩn đoán y tế

Cho một danh sách các triệu chứng, dự đoán xem bệnh nhân có bệnh X hay không

Thời tiết

Dựa vào nhiệt độ, độ ẩm, vv ... dự đoán nếu nó sẽ mưa vào ngày mai

Bayesian classification

- ☐ Phương pháp Bayesian là hệ thống ham học
- Dựa vào các đặc trưng đưa ra kết luận nhãn của đối tượng mới đến
- Khi đưa ra một tập huấn luyện, hệ thống ngay lập tức phân tích dữ liệu và xây dựng một mô hình. Khi cần phân loại một đối tượng mới đến, hệ thống sử dụng mô hình đã xây dựng để xác định đối tượng mới.
- Phương pháp Bayesian (ham học) có xu hướng phân loại các trường hợp nhanh hơn KNN (lười học)

Giải thuật học của naive Bayes kết luận và hướng phát triển Kỹ thuật DM thành công (2011) Which methods/algorithms did you use for data analysis in 2011? [311 voters] 59.8 % Decision Trees/Rules (186) Regression (180) 57.9 % 52.4 % Clustering (163) Statistics (descriptive) (149) 47.9 % Visualization (119) 38.3 % Time series/Sequence analysis (92) 29.6 % Support Vector (SVM) (89) 28.6 % 28.6 % Association rules (89) Ensemble methods (88) 28.3 % Text Mining (86) 27.7 % Neural Nets (84) 27.0 % Boosting (73) 23.5 % Bayesian (68) 21.9 % Bagging (63) 20.3 % Factor Analysis (58) 18.7 %

16.4 %

Anomaly/Deviation detection (51)

Giới thiêu về Bayesian classification

Nội dung

- Giới thiệu về Bayesian classification
- Kiến thức về xác suất thống kê
- Giải thuật học của naive Bayes
- Kết luận và hướng phát triển

7

Xác suất thống kê

Một vài ví dụ

- Khi tung 1 đồng xu, khả năng nhận mặt ngửa là bao nhiêu?
- Khi tung một hột xúc xắc, khả năng xuất hiện mặt " 6 nút" là bao nhiêu?

P (h): ký hiệu xác suất của giả thuyết h

Xác suất thống kê

Xác suất xuất hiện mặt ngửa: P(ngửa) = 0.5

Xác suất xuất hiện mặt có 6 nút: P(6) = 1/6

Xác suất thống kê

name	laptop	phone
Kate	PC	Android
Tom	PC	Android
Harry	PC	Android
Annika	Mac	iPhone
Naomi	Mac	Android
Joe	Mac	iPhone
Chakotay	Mac	iPhone
Neelix	Mac	Android
Kes	PC	iPhone
B'Elanna	Mac	iPhone

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone là bao nhiêu?

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone khi người này có sử dụng một máy tính xách tay Mac là bao nhiêu?

Xác suất thống kê

name	laptop	phone		
Kate	PC	Android		
Tom	PC	Android		
Harry	PC	Android		
Annika	Mac	iPhone		
Naomi	Mac	Android		
Joe	Mac	iPhone		
Chakotay	Mac	iPhone		
Neelix	Мас	Android		
Kes	PC	iPhone		
B'Elanna	Mac	iPhone		

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone là bao nhiêu?

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone khi người này có sử dụng một máy tính xách tay Mac là bao nhiêu?

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau :

$$P(A/B) = \frac{P(AB)}{P(B)}$$

Xác suất thống kê

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau :

$$P(A/B) = \frac{P(AB)}{P(B)}$$

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone?

$$P(iPhone) = 5/10 = 0.5$$

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone khi người này sử dụng một máy tính xách tay Mac?

$$P(iPhone \mid mac) = \frac{P(mac \cap iPhone)}{P(mac)}$$

$$P(mac \cap iPhone) = \frac{4}{10} = 0.4$$
 $P(mac) = \frac{6}{10} = 0.6$

$$P(iPhone \mid mac) = \frac{0.4}{0.6} = 0.667$$

name	laptop	phone	
Kate	PC	Android	
Tom	PC	Android	
Harry	PC	Android	
Annika	Mac	iPhone	
Naomi	Mac	Android	
Joe	Mac	iPhone	
Chakotay	Mac	iPhone	
Neelix	Мас	Android	
Kes	PC	iPhone	
B'Elanna	Мас	iPhone	

Định lý Bayes

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau :

$$P(A/B) = \frac{P(AB)}{P(B)}$$

Định lý Bayes bắt nguồn từ xác suất có điều kiện. Định lý Bayes được đặt theo tên **Rev. Thomas Bayes** (/ beɪz /; 1702-1761), người đầu tiên đã cho thấy làm thế nào để sử dụng thông tin mới để cập nhật những thông tin trước đó.

Xác suất thống kê

Định lý Bayes cho phép tính xác suất xảy ra của một sự kiện ngẫu nhiên A khi biết sự kiện liên quan B đã xảy ra. Xác suất này được ký hiệu là P(A|B), và đọc là "xác suất của A nếu có B".

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{likelihood*prior}{normalizing_constant}$$

Xác suất thống kê

Theo định lí Bayes, xác suất xảy ra A khi biết B sẽ phụ thuộc vào 3 yếu tố:

- •Xác suất xảy ra A của riêng nó, không quan tâm đến bất kỳ thông tin nào của B. Kí hiệu là P(A). Đại lượng này còn gọi là tiên nghiệm (prior)
- Xác suất xảy ra B của riêng nó, không quan tâm đến A. Kí hiệu là P(B). Đại lượng này còn gọi là hằng số chuẩn hóa (normalising constant)
- •Xác suất xảy ra B khi biết A xảy ra. Kí hiệu là P(B|A) và đọc là "xác suất của B nếu có A". Đại lượng này gọi là khả năng (likelihood) xảy ra B khi biết A đã xảy ra.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{likelihood*prior}{normalizing_constant}$$

Xác suất thống kê

Định lý Bayes

$$P(H|E) = \frac{P(E|H).P(H)}{P(E)}$$

Evidence E = [E1,E2,...,En] thuộc tính của dữ liệu cần dự báo Event H: giá trị lớp/ nhãn của dữ liệu E cần sự báo

Н	The probability of a hypothesis
Е	Conditional on a new piece of evidence
P(H E)	The probability of a hypothesis conditional on a new evidence
P(E H)	The probability of the evidence given the hypothesis
P(H)	The prior probability of the hypothesis
P(E)	The prior probability of the evidence

Nội dung

- ■Kiến thức về xác suất thống kê
- ■Giới thiệu về Bayesian classification
- ■Giải thuật học của naive Bayes
- ■Kết luận và hướng phát triển

17

Giải thuật naive Bayes

Giới thiệu về Bayesian classification

Giải thuật học của naive Bayes

kết luận và hướng phát triển

- Ngây thơ
 - các thuộc tính (biến) có độ quan trọng như nhau
 - các thuộc tính (biến) độc lập thống kê
- Nhân xét
 - Giả thiết các thuộc tính độc lập không bao giờ đúng
 - nhưng trong thực tế, naive Bayes cho kết quả khá tốt ©

Giới thiệu về Bayesian classification

Giải thuật học của naive Bayes

kết luận về hướng phát triển

Luật Bayes

Đinh lý xác suất Bayes

$$P(H|E) = \frac{P(E|H).P(H)}{P(E)}$$

Evidence E = [E1,E2,...,En] có n giá trị thuộc tính của dữ liệu cần dư báo

Event H: giá trị lớp/ nhãn của dữ liệu E cần sự báo

19

Giới thiệu về Bayesian classification <u>Giải thuật học của naive Bayes</u> kết luận và hướng phát triển

Luật Bayes

Đinh lý xác suất Bayes

$$P[H \mid E] = \frac{P[E \mid H]P[H]}{P[E]}$$

Do giả thiết: " các thuộc tính độc lập nhau"

$$P(H|E) = \frac{P(E_1|H).P(E_2|H)...P(E_n|H).P(H)}{P(E)}$$

Evidence E = [E1,E2,...,En] có n thuộc tính của dữ liệu cần dự báo Event H: giá trị lớp/ nhãn của dữ liệu E cần dự báo

Bayes thơ ngây

Bước 1

Học (learning Phase)- xây dựng mô hình sắn dùng (tính sắn xác suất xuất hiện của tất cả các trường hợp)

Bước 2

Khi có đối tượng/sự kiện mới xuất hiện cần phân loại : xác định nhãn của đối tương mới đến thông qua giá trị xác suất lớn nhất tính được.

Ví dụ:

Outlook	Tomo	Llumpiditu	Min du	Dlavi
Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Ví dụ: Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No
			23	

Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Bước 1

 $P(H|E) = \frac{P(E_1|H).P(E_2|H)....P(E_n|H).P(H)}{P(E)}$

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Out	tlook		Temp	eratur	е	Hu	midity		1	Windy		PI	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								24

Giải thuật học của naive Bayes kết luận và hướng phát triển

Ví du

Bước 2

$$\Pr[yes \mid E] = \Pr[Outlook = Sunny \mid yes]$$

$$\times \Pr[Temperature = Cool \mid yes]$$

$$\times \Pr[Humidity = High \mid yes]$$

$$\times \Pr[Windy = True \mid yes]$$

$$\times \frac{\Pr[yes]}{\Pr[E]}$$

$$= \frac{\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}}{\Pr[E]}$$

$$= \frac{\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}}{\Pr[E]}$$

$$= \Pr[Vindy = True \mid yes]$$

$$= \frac{P(Outlook = Sunny \mid Play = Yes) = 2/9}{P(Temperature = Cool \mid Play = Yes) = 3/9}$$

$$= P(Huminity = High \mid Play = Yes) = 3/9$$

$$= P(Wind = True \mid Play = Yes) = 3/9$$

$$= P(Play = Yes) = 9/14$$

Dữ liệu weather, dựa trên các thuộc : Giải thuật học của naive Bayes kết luận và hướng phát triển

Giới thiệu về Bayesian classification

tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

	•						_	_		•			
Out	tlook		Temp	eratur	е	Hu	midity		1	Vindy		PI	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

quyết định (play=yes/no)?

$$P[Yes|E] = (2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14) / P[E]$$

= 0.0053/P[E]

P[No|E] = 0.0206 / P[E]

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

=> yes/no?

Dữ liệu weather, dựa trên các thuộc : Giải thuật học của naix kết luận và hướng phát tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Out	look		Temp	eratur	е	Hu	midity		1	Windy		Pl	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

quyết định (play=yes/no)?

Likelihood(yes) = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

Likelihood(no) = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Likelihood(yes) = 0.0053 / (0.0053 + 0.0206) = 0.205

Likelihood(no) = 0.0206 / (0.0053 + 0.0206) = 0.795

=> yes/no?

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Bài tập- cho tập dữ liệu như bảng

Class:

C1:buys_computer= 'yes' C2:buys_computer=

'no'

Data sample X =(age<=30, Income=medium, Student=yes Credit_rating= Fair)

	age	income	student	credit_rating	buys_computer
	<=30	high	no	fair	no
	<=30	high	no	excellent	no
=	3040	high	no	fair	yes
	>40	medium	no	fair	yes
=	>40	low	yes	fair	yes
	>40	low	yes	excellent	no
	3140	low	yes	excellent	yes
	<=30	medium	no	fair	no
	<=30	low	yes	fair	yes
	>40	medium	yes	fair	yes
	<=30	medium	yes	excellent	yes
	3140	medium	no	excellent	yes
	3140	high	yes	fair	yes
	>40	medium	no	excellent	no
	>40	medium	no	excellent	no

age	age income		credit_rating	buys_computer			
<=30 high		no	fair	no			
<=30	J		excellent	no			
3040			fair	yes			
>40 medium >40 low		no	fair	yes			
		yes	fair	yes			
>40	low	yes	excellent	no			
3140	low	yes	excellent	yes			
<=30	medium	no	fair	no			
<=30	low	yes	fair	yes			
>40	medium	yes	fair	yes			
<=30	medium	yes	excellent	yes			
3140	medium	no	excellent	yes			
3140	high	yes	fair	yes			
>40	medium	no	excellent	no			

Giới thiệu về Bayesian classification

Giải thuật học của naive Bayes kết luận và hướng phát triển

Xác suất = 0

- giá trị của thuộc tính không xuất hiện trong tất cả các lớp sử dụng Laplace estimator
- xác suất không bao giờ có giá trị 0
- Cộng thêm cho tử một giá trị là p_iμ và mẫu số giá trị μ để tính xác suất. μ hằng số dương và pi là hệ số dương sao cho tổng các p_i = 1 (i=1..n)

Laplace estimator

ví dụ: thuộc tính *outlook* cho lớp "no"

$$\frac{3+\mu/3}{5+\mu}$$

$$\frac{0+\mu/3}{5+\mu}$$

$$\frac{2+\mu/3}{5+\mu}$$

Sunny

Overcast

Rainy

Outlook			Temperature		Humidity		Windy			Play			
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								
			1			1			1			<u> </u>	33

Giới thiệu về Bayesian classification <u>Giải thuật học của naive Bayes</u> kết luận và hướng phát triển

Laplace estimator

ví dụ: thuộc tính *outlook* cho lớp "no"

$$\frac{3+\mu/3}{5+\mu}$$

$$\frac{0+\mu/3}{5+\mu}$$

$$\frac{2+\mu/3}{5+\mu}$$

Sunny

Overcast

Rainy

- trọng số có thể không bằng nhau, nhưng tổng phải là 1
- thuộc tính *outlook* cho lớp "Yes"

$$\frac{2 + \mu p_1}{9 + \mu}$$

$$\frac{4 + \mu p_1}{9 + \mu}$$

$$\frac{3+\mu p_3}{9+\mu}$$

Sunny

Overcast

Rainy

Giới thiệu về Bayesian classification

Giải thuật học của naive Bayes
kết luận và hướng phát triển

Laplace estimator

ví dụ: thuộc tính *outlook* cho lớp "no"

$$\frac{3+1/3}{5+1}$$

$$\frac{0+1/3}{5+1}$$

$$\frac{2+1/3}{5+1}$$

Sunny

Overcast

Rainy

Outlook								
Yes	No							
2	3							
4	0							
3	2							
2/9	3/5							
4/9	0/5							
3/9	2/5							
	Yes 2 4 3 2/9 4/9							

Sunny = 10/18 Overcast = 1/18 Rainy = 7/18