

SEQUENCE LISTING

<110> DAWSON, GLYN
SEUNGUEN, JULIA CHO

<120> COMPOUNDS THAT ENHANCE TUMOR DEATH

<130> ARCD:351US

<140> 09/930,559

<141> 2001-08-15

<150> 60/225,526

<151> 2000-08-15

<160> 11

<170> PatentIn Ver. 2.1

<210> 1

<211> 2279

<212> DNA

<213> Human

<400> 1

ggcacgagcg aagatggcgt cgcccggtc cctgtggctc ttggctgtgg ctctcctgcc 60
atggacctgc gcttcctcggg cgctgcagca tctgaccgg ccggcgccgc tgccgttgg 120
gatctggcat gggatgggag acagctgttgc caatccctta agcatgggtg ctattaaaaaa 180
aatggtggag aagaaaatac ctggaattta cgtcttatct ttagagattt ggaagaccct 240
gatggaggac gtggagaaca gcttccttctt gaatgtcaat tcccaagtaa caacagtgtg 300
tcaggcactt gctaaggatc ctaaatttca gcaaggctac aatgctatgg gattctccca 360
gggaggccaa tttctgaggg cagtggctca gagatgccct tcacctccca ttagcaatct 420
gatctcggtt gggggacaac atcaagggtt ttttgactc cctcgatgcc caggagagag 480
ctctcacatc tgtgacttca tccgaaaaac actgaatgtt gggcgctact ccaaagttgt 540
tcaggaacgc ctcgtcaag ccgaataactg gcatgaccctt ataaaggagg atgttatcg 600
caaccacagc atcttcttgg cagatataaa tcaggagcgg ggtatcaatg agtccatcaa 660
gaaaaacctg atggccctga agaagttgtt gatgtgaaa ttccctcaatg attccattgt 720
ggaccctgtt gattcggagt gttttggatt ttacagaatg ggccaagcca agggaaaccat 780
tcaccttacag gagacctccc tgtacacaca ggaccgcctg gggctaaagg aaatggacaa 840
tgcaggacag ctatgtttc tggctacaga aggggaccat cttcagttgt ctgaagaatg 900
gttttatgcc cacatcatac cattccttgg atgaaaccccg tatagttcac aatagagctc 960
agggagcccc taacttccaa aaccacatg ggagacagtt tccttcatgc ccaagcctga 1020
gctcagatcc agcttgcac taatccttct atcatctaac atgcactact tggaaagatc 1080
taagatctga atcttaccc ttgcacatctt ctgttaccat atggtgttga atgcaagttt 1140
aattaccatg gagattgttt tacaaactt tgatgtggtc aagttcagtt ttagaaaagg 1200
gagtctgttc cagatcaggg ccagaactgt gcccgccccc aaaggagaca actaactaaa 1260
gtatgtgat agattctaag gccaaaccatt tttccaagtc ttgcctatatt tcaagcaaag 1320
aggtgcccag gcctgaggtt ctcacataaa tgctttgtt tgctggatg ttaaccagtg 1380

cttggaaaaa tcttgcttgg ctatttctgc atcatttctt aaggctgcct tcctctctga 1440
gtacgttgcc ctctgtgcta tcaatcatct tatcatcaat tattagacaa atcccactgg 1500
cctacagtct tgcttctgca gcacccactt tgtctcctca ggttagtgatg aattagttgc 1560
tgtcacaaaa ggagggaaagt agcaccacaaa ttAAATTGCT taagagagga aatgtacatc 1620
ttgtataact tagggagcga agaaaatgta ggcgcgaaag tgAAAAGTGA ggcagctagt 1680
tcTTCCtatt ccattctcgA ccaacctgcc ctTTCTTAAT atgactagtG gtcttgatgc 1740
tagagtcaac ttactctgtt gctggcttA gcagagaata ggaggaacca tatgaaaaag 1800
atcaggctt ctgacttcca tccccaaac acatttacca gcatactcca aactgtttct 1860
gatgtgttcc atgagaaaag gattgttgc tcaaaaagct tggaaaatac tacacactcc 1920
cttTCTCCTT ctggagatca acccacatta gagtgctaa ggactcctga gaattcctgt 1980
tacagtaaac aaaactaacf taatctacca ttccctacac tatttgagca tggaaatcat 2040
agtccccact ctatgaaaac ttaacgctt ttggaaagaca ttTCTGTAGC atgtcagttt 2100
ggagaaatga tgagctacgc cttgatgaaa gaaccgtgtt ggtgctgctA agtttagcca 2160
ttatggtttt tcTTTCTCT ctcttaagcc ttattttca actaaaagat gaggattaag 2220
agcaagaagt tgggggggat gtgaaaataa ttttatgagg ttgtctaaaa tctcgtgcc 2279

<210> 2

<211> 306

<212> PRT

<213> Human

<400> 2

Met Ala Ser Pro Gly Cys Leu Trp Leu Leu Ala Val Ala Leu Leu Pro
1 5 10 15

Trp Thr Cys Ala Ser Arg Ala Leu Gln His Leu Asp Pro Pro Ala Pro
20 25 30

Leu Pro Leu Val Ile Trp His Gly Met Gly Asp Ser Cys Cys Asn Pro
35 40 45

Leu Ser Met Gly Ala Ile Lys Lys Met Val Glu Lys Lys Ile Pro Gly
50 55 60

Ile Tyr Val Leu Ser Leu Glu Ile Gly Lys Thr Leu Met Glu Asp Val
65 70 75 80

Glu Asn Ser Phe Phe Leu Asn Val Asn Ser Gln Val Thr Thr Val Cys
85 90 95

Gln Ala Leu Ala Lys Asp Pro Lys Leu Gln Gln Gly Tyr Asn Ala Met
100 105 110

Gly Phe Ser Gln Gly Gly Gln Phe Leu Arg Ala Val Ala Gln Arg Cys
115 120 125

Pro Ser Pro Pro Met Ile Asn Leu Ile Ser Val Gly Gly Gln His Gln

130

135

140

Gly Val Phe Gly Leu Pro Arg Cys Pro Gly Glu Ser Ser His Ile Cys
145 150 155 160

Asp Phe Ile Arg Lys Thr Leu Asn Ala Gly Ala Tyr Ser Lys Val Val
165 170 175

Gln Glu Arg Leu Val Gln Ala Glu Tyr Trp His Asp Pro Ile Lys Glu
180 185 190

Asp Val Tyr Arg Asn His Ser Ile Phe Leu Ala Asp Ile Asn Gln Glu
195 200 205

Arg Gly Ile Asn Glu Ser Tyr Lys Lys Asn Leu Met Ala Leu Lys Lys
210 215 220

Phe Val Met Val Lys Phe Leu Asn Asp Ser Ile Val Asp Pro Val Asp
225 230 235 240

Ser Glu Trp Phe Gly Phe Tyr Arg Ser Gly Gln Ala Lys Glu Thr Ile
245 250 255

Pro Leu Gln Glu Thr Ser Leu Tyr Thr Gln Asp Arg Leu Gly Leu Lys
260 265 270

Glu Met Asp Asn Ala Gly Gln Leu Val Phe Leu Ala Thr Glu Gly Asp
275 280 285

His Leu Gln Leu Ser Glu Glu Trp Phe Tyr Ala His Ile Ile Pro Phe
290 295 300

Leu Gly

305

<210> 3

<211> 7

<212> PRT

<213> Human

<400> 3

Gly Cys Val Lys Ile Lys Lys

1

5

<210> 4

<211> 8

<212> PRT
<213> Human

<400> 4
Ile Arg Tyr Cys Trp Leu Arg Arg
1 5

<210> 5
<211> 9
<212> PRT
<213> Human

<400> 5
Val Thr Thr Leu Cys Cys Gly Lys Asn
1 5

<210> 6
<211> 7
<212> PRT
<213> Human

<400> 6
Met Leu Cys Cys Met Arg Arg
1 5

<210> 7
<211> 8
<212> PRT
<213> Human

<400> 7
Met Gly Cys Leu Gly Asn Ser Lys
1 5

<210> 8
<211> 8
<212> PRT
<213> Human

<400> 8
Met Gly Cys Leu Gly Asn Ser Lys
1 5

<210> 9
<211> 10
<212> PRT
<213> Human

<400> 9
Gly Cys Met Ser Cys Lys Cys Val Leu Ser
1 5 10

<210> 10
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 10
tcttaggtacc aagatggcgt cgcccggtctg cctgt 35

<210> 11
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 11
acggtctaga tcatccaagg aatggtatga tgtggca 38