1. (Currently Amended) A pentabromobenzyl alkyl ether of the formula:

wherein:

Z represents the group $-(Y-O)_n-$, wherein Y is a linear or branched $-(C_2-C_8)$ alkylene-;

- n represents an integer from 2 to 4;
- k may be 0 or 1;
- R_1 represents hydrogen, a linear or branched -(C_1 - C_{10})alkyl, a linear or branched -(C_2 - C_{10})alkylene-OH, allyl, or 1,2-dibromopropyl; provided that when k is zero R_1 represents a linear or branched -(C_4 - C_{10})alkyl or a linear or branched -(C_2 - C_{10})alkylene-OH and when k is 1, R_1 represents hydrogen, a linear or branched -(C_1 - C_4)alkyl, allyl or 1,2-dibromopropyl.
- 2. (Original) A pentabromobenzyl alkyl ether according to claim 1, wherein Z represents a group selected from $-(C_2H_4O)\,n$ and $-(C_3H_6O)\,n$, wherein n represents 2.
- 3. (Original) A pentabromobenzyl alkyl ether according to claim 1, wherein k=1 and R_1 represents H, methyl or butyl.
- 4. (Original) A pentabromobenzyl alkyl ether according to claim 1, wherein k=0 and R_1 represents branched (C_8) alkyl or linear (C_6) alkylene-OH.

5. (Currently Amended) A pentabromobenzyl alkyl ether according to claim 1, selected from the group consisting of:

(i) pentabromobenzyl-O-CH₂-CH₂OCH₃;

(ii) pentabromobenzyl O-CH₂CH₂O(CH₂)₃CH₃+

(iii) pentabromobenzyl-O-(CH₂CH₂O)₂CH₃;

(iv) pentabromobenzyl-O-(CH₂CH₂O)₂H;

(v) pentabromobenzyl -O-(CH₂)₆OH;

 $\frac{\text{(vi)}}{\text{pentabromobenzyl}} - \text{O-CH}_2\text{CH}(\text{C}_2\text{H}_5) (\text{CH}_2)_3\text{CH}_3;$

(vii) pentabromobenzyl O CH2CH2CH2CH2CH2CH2CH2

(viii) pentabromobenzyl-O-(C₃H₆O)₂-CH₃

 $\frac{\text{(ix)}}{\text{pentabromobenzyl}} - O - (C_3H_6O)_2 - H$

6. (Currently Amended) A pentabromobenzyl alkyl ether according to claim 1, for use as a fire retardant of the formula:

wherein:

- Z represents the group $-(Y-O)_{\underline{n}}$, wherein Y is a linear or branched $-(C_2-C_8)$ alkylene-;
- n represents an integer from 2 to 4;
- k may be 0 or 1;
- R₁ represents hydrogen, a linear or branched $-(C_1-C_{10})$ alkyl, a linear or branched $-(C_2-C_{10})$ alkylene-OH, allyl, or 1,2-dibromopropyl; provided that when k is zero R₁ represents a linear or branched $-(C_4-C_{10})$ alkyl or a linear or branched $-(C_2-C_{10})$ alkylene-OH and when k is 1, R₁ represents hydrogen, a linear or branched $-(C_1-C_4)$ alkyl, allyl or 1,2-dibromopropyl.
- 7. (Canceled) A pentabromobenzyl alkyl ether according to claim 1, for use as a fire retardant in a

polymeric composition or in polymer containing composition.

8. (Previously Presented) A fire retarded polymeric or polymer-containing composition comprising a pentabromobenzyl alkyl ether of the formula:

$$Br_5$$
 wherein:

- Z represents the group $-(Y-O)_n$ -, wherein Y is a linear or branched $-(C_2-C_8)$ alkylene-;
- n represents an integer from 2 to 4;
- k may be 0 or 1;
- R_1 represents hydrogen, a linear or branched -(C_1 - C_{10})alkyl, a linear or branched -(C_2 - C_{10})alkylene-OH, allyl, or 1,2-dibromopropyl; provided that when k is zero R_1 represents a linear or branched -(C_4 - C_{10})alkyl or a linear or branched -(C_2 - C_{10})alkylene-OH and when k is 1, R_1 represents hydrogen, a linear or branched -(C_1 - C_4)alkyl, allyl or 1,2-dibromopropyl.
- 9. (Original) A fire retarded composition according to claim 8, wherein said polymer is selected from the group consisting of chlorinated polyethylene, polyethylene, polypropylene, styrene resins, high-impact polystyrene, polyvinyl chloride, acrylonitrile-butadienestyrene copolymer, flexible and rigid polyurethane, epoxy resins and unsaturated polyester resins.
- 10. (Original) A fire retarded composition according to claim 9, wherein said polymer is polypropylene.
- 11. (Original) A fire retarded composition according to claim 9, wherein said polymer is high impact polystyrene (HIPS).

- 12. (Original) A fire retarded composition according to claim 9, wherein said polymer is acryl-butadienestyrene terpolymer (ABS).
- 13. (Original) A fire retarded composition according to claim 9, wherein said polymer is polyurethane.
- 14. (Currently Amended) A fire retarded composition according to claim 8, wherein said polymer is selected from the group consisting of polyurethane, polypropylene copolymer, high impact polystyrene (HIPS) and acryl-butadiene-styrene terpolymer (ABS), and said pentabromobenzyl alkyl ether is selected from the group consisting of:

(i) pentabromobenzyl O CH₂-CH₂OCH₃;

(ii) pentabromobenzyl O CH₂CH₂O (CH₂)₃CH₃;

(iii) pentabromobenzyl -O- (CH₂CH₂O)₂CH₃;

(iv) pentabromobenzyl -O- (CH₂CH₂O)₂H;

(v) pentabromobenzyl -O- (CH₂)₆OH;

(vi) pentabromobenzyl -O-CH₂CH(C₂H₅) (CH₂)₃CH₃;

(vii) pentabromobenzyl O-CH₂CH₂OCH₂CH=CH₂;

(viii) pentabromobenzyl -O- (C₃H₆O)₂-OCH₃

(ix) pentabromobenzyl -O- (C₃H₆O)₂-H

- 15. (Amended) A fire retarded composition according claim to any one of claims 8 to 14, further comprising a metal oxide, preferably Sb_2O_3 .
- 16. (Currently Amended) A process for the preparation of a pentabromobenzyl alkyl ether of the formula:

wherein:

- Z represents the group $-(Y-O)_n-$, wherein Y is a linear or branched $-(C_2-C_8)$ alkylene-;
- n represents an integer from 2 to 4;
- k may be 0 or 1;
- R_1 represents hydrogen, a linear or branched - $(C_1$ - $C_{10})$ alkyl, a linear or branched - $(C_2$ - $C_{10})$ alkylene-OH, allyl, or 1,2-dibromopropyl; provided that when k is zero R_1 represents a linear or branched - $(C_4$ - $C_{10})$ alkyl or a linear or branched - $(C_2$ - $C_{10})$ alkylene-OH and when k is 1, R_1 represents hydrogen, a linear or branched - $(C_1$ - $C_4)$ alkyl, allyl or 1,2-dibromopropyl, comprising

reacting a glycol, a mono-, or di-alcohol of the formula HO -(Z) $_k$ -R $_1$, or the corresponding metal alcoholate thereof, with a pentabromobenzyl halide.

- 17. (Cancelled) A pentabromobenzyl alkyl ether according to claim 1, for use as a fire retardant, substantially as described and exemplified in the specification.
- 18. (Cancelled) A process for the preparation of pentabromobenzyl alkyl ethers as defined in claim 1, substantially as described and exemplified in the specification.
- 19. (Cancelled) A fire retarded polymer composition comprising pentabromobenzyl alkyl ether according to claim 1, substantially as described and exemplified in the specification.
- 20. (Previously Presented) The process of claim 16, wherein the pentabromobenzyl halide is pentabromobenzyl bromide.

- 21. (Previously Presented) The process of claim 16, wherein the reaction occurs in the presence of a base.
- 22. (Previously Presented) The process of claim 16, wherein the linear or branched $-(C_2-C_8)$ alkylene- is selected from the group consisting of $-CH_2CH_2-$ and $-CH_2CH(CH_3)$ --.
- 23. (Previously Presented) A fire retarded polymeric or polymer-containing composition of claim 8, wherein the linear or branched $-(C_2-C_8)$ alkylene- is selected from the group consisting of $-CH_2CH_2-$ and $-CH_2CH(CH_3)$ --.
- 24. (Previously Presented) A pentabromobenzyl alkyl ether according to claim 1, wherein the linear or branched $-(C_2-C_8)$ alkylene- is selected from the group consisting of $-CH_2CH_2-$ and $-CH_2CH(CH_3)$ --.