ECON 710A - Problem Set 6

Alex von Hafften*

3/8/2021

1. Consider a random effects model with an intercept only: $Y_{it} = \mu_0 + \alpha_i + \varepsilon_{it}$ $(i = 1, ..., n, t = 1, ..., T_i)$ with $\varepsilon_i = (\varepsilon_{i1}, ..., \varepsilon_{iT_i})'$ independent across $i, E[\alpha_i] = E[\varepsilon_i] = 0$, and

$$Var\begin{pmatrix} \alpha_i \\ \varepsilon_i \end{pmatrix} = \begin{bmatrix} \sigma_{\alpha}^2 & 0 \\ 0 & \sigma^2 I_{T_i} \end{bmatrix}$$
 where $\sigma^2 > 0$

(i) Argue that the OLS estimator of μ_0 (the sample average), can be represented as $\hat{\mu}_{OLS} = \frac{\sum_{i=1}^{n} 1_i' Y_i}{\sum_{i=1}^{n} 1_i' 1_i}$ where $1_i = (1, ..., 1)' \in \mathbb{R}^{T_i}$ and $Y_i = (Y_{i1}, ..., Y_{iT_i})'$.

. . .

(ii) For a non-random instrument $Z_i \in \mathbb{R}^{T_i}$, consider the IV estimator $\hat{\mu}_{IV} = \frac{\sum_{i=1}^n Z_i' Y_i}{\sum_{i=1}^n Z_i' 1_i}$. Show that $Var(\hat{\mu}_{IV}) = \frac{\sum_{i=1}^n Z_i' \Omega_i Z_i}{\left(\sum_{i=1}^n Z_i' 1_i\right)^2}$ for some $\Omega_i = \Omega_i(\sigma_{\alpha}^2, \sigma^2, T_i)$ and find Ω_i .

. . .

(iii) Show that $Var(\hat{\mu}_{IV}) \geq (\sum_{i=1}^{n} 1_i' \Omega_i^{-1} 1_i)^{-1}$ and find an instrument \tilde{Z}_i (possibly depending on Ω_i) such that $Var(\frac{\sum_{i=1}^{n} \tilde{Z}_i' y_i}{\tilde{Z}_i' 1_i}) = (\sum_{i=1}^{n} 1_i' \Omega_i^{-1} 1_i)^{-1}$.

. .

(iv) The IV estimator that uses \tilde{Z}_i is often referred to as generalized least squares (GLS) and it is (weakly) more efficient than the OLS estimator. Is GLS strictly more efficient than OLS if $T_i = T$ for all i?

. .

(v) Show that $\hat{\sigma}_i^2 = \frac{1}{T_{i-1}} \sum_{t=1}^{T_i} (Y_{it} - \bar{Y}_i)^2$ where $\bar{Y}_i = \frac{1}{T_i} \sum_{i=1}^{T_i} Y_{it}$ has expectation equal to σ^2 and argue (informally) that $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\sigma}_i^2$ is consistent for σ^2 as $n \to \infty$.

. .

(vi) Show that $\hat{\sigma}_{\alpha,i}(\mu) = \frac{1}{T_i} \sum_{t=1}^{T_i} (Y_{it} - \mu)^2 - \hat{\sigma}_i^2$ has expectation equal to σ_{α}^2 when $\mu = \mu_0$ and argue (informally) that $\hat{\sigma}_{\alpha}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\sigma}_{\alpha,i}^2(\hat{\mu}_{OLS})$ is consistent for $\hat{\sigma}_{\alpha}^2$ as $n \to \infty$.

٠.

(vii) If we let $\hat{\Omega}_i = \Omega_i(\hat{\sigma}_{\alpha}^2, \hat{\sigma}^2, T_i)$ and use this to construct a feasible version of \tilde{Z}_i , then we obtain the feasible GLS estimator. In the panel data context, this estimator is also referred to as the random effects estimator. The previous arguments imply that $\sqrt{n}\hat{\mu}_{FGLS}$ and $\sqrt{n}\hat{\mu}_{GLS}$ has the same asymptotic variances as $n \to \infty$. Propose a variance estimator \hat{V} for which you expect (based on the previous questions) that $\hat{V}^{-1/2}(\hat{\mu}_{FGLS} - \mu_0) \to_d N(0, 1)$.

.

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, and Ryan Mather. I also discussed problems with Sarah Bass, Emily Case, Danny Edgel, and Katherine Kwok.

- 2. Consider a fixed effects regression model $Y_{it} = X_{it}\beta_0 + \alpha_i + \varepsilon_{it}$ (i=1,...,n,t=1,...,T) where data is independent across i, X_{it} is independent of X_{is} for $s \neq t$ with $E[X_{it}] = 0$ and $E[X_{it}^2] = \sigma_x^2$ for all t, and strict exogeneity fails since $E[X_{is}\varepsilon_{it}] = \delta\sigma_x^2 1\{s=t+1\}$. Such failure can hapen if the regressor is a response to a previous shock, e.g., $X_{it} = \delta\varepsilon_{i,t-1} + u_{it}$ for $t \geq 1$ and ε_{it} independent of u_{it} .
- (i) Derive asymptotic biases of the fixed effects estimator and the first differences estimator as $n \to \infty$.

. .

(ii) Is there a value of T so that the two asymptotic biases are identical?

. . .

¹ You may use without proof that $\hat{\beta}_{FE} \rightarrow_p \beta_0 +$	$\frac{\sum_{t=1}^{T} (X_{i,t} - \bar{X}) \varepsilon_{i,t}}{\sum_{t=1}^{T} (X_{i,t} - \bar{X})^2} \text{ and } \hat{\beta}_{FD} \rightarrow_p \beta_0 +$	$\frac{\sum_{t=1}^{T} (X_{i,t} - X_{i,t-1})(\varepsilon_{it} - \varepsilon_{it-1})}{\sum_{t=1}^{T} (X_{i,t} - X_{i,t-1})^{2}}$
	$L_t=1$	$\angle t=1$

- 3. Consider panel data $\{\{(Y_{it},X_{it})'\}_{t=1}^T\}_{i=1}^n$ generated by the model $Y_{it}=X_{it}\beta_0+\delta_t+\alpha_i+\varepsilon_{it}$, where $\{(Y_{it},X_{it})'\}_{t=1}^T$ is i.i.d. across i,T=4, and $(X_{i1},...,X_{i4})'=(0,0,1,1)'\cdot 1\{\alpha_i>.6\}$. The error terms has an autoregressive structure $\varepsilon_{it}=\phi\varepsilon_{i,t-1}+u_{it}$ for $t\geq 1$, and $\alpha_i,\varepsilon_{i0}$, and $u_{i1},...,u_{i4}$ are i.i.d. N(0,1). The parameters take the values $\beta_0=\delta_2=\delta_3=\delta_4=1$ while δ_1 is normalized to zero and omitted from the model. We will vary the autoregressive parameter in $\{0,0.8\}$ and consider sample sizes $n\in\{40,70,100\}$.
- (i) In a statistical software of your choice, generate data according to (1), estimate $(\beta_0, \delta_2, \delta_3, \delta_4)$ using the FE estimator, and calculate both a heteroskedasticity robust variance estimate and a cluster robust variance estimate where the clustering is at the individual level. Use these variance estimators to construct two different 95% confidence intervals for β_0 . Additionally, calculate the OLS estimator of the regression coefficients in the (misspecified) common intercepts model $Y_{it} = \alpha + X_{it}\beta_0 + \delta_t + \varepsilon_{it}$.

. . .

(ii) Across 10000 simulated repetitions of the above, report the mean of the two point estimators for β_0 (OLS and FE) and the coverage rate for the two confidence intervals that rely on different variance estimators.

. . .

(iii) Discuss the results and relate them to the theory presented in lecture.

. . .