算法导论笔记整理

berry

2022.3.5

目录

1	—ì Ì	至其他的东西
	1.1	斯特林公式 Stirling formula
	1.2	还有其他的东西
2	主定	理 Master Theorem
	2.1	主定理
3	分治	法 Divide-and-Conquer
	3.1	矩阵乘法 "
		3.1.1 一般方法
		3.1.2 简单的分治算法
		3.1.3 Strassen 算法
	3.2	多项式乘法 8
		3.2.1 简单做法
		3.2.2 分治做法
		3.2.3 改进分治做法
		3.2.4 更快的算法 (FFT)
	3.3	归并排序 9
	3.4	快速排序
4	随机	L算法
	4.1	矩阵乘法验证
	4.2	规避快速排序最坏情况
5	排序	·算法归纳
	5.1	插入排序
	5.2	归并排序 10
	5.3	堆排序
	5.4	快速排序 10
		5.4.1 规避快排的最坏情况

	5.5 5.6	线性时间排序	
•			
6		表 Hash Table	10
	6.1	简单均匀哈希假设	
	6.2	哈希函数	
		6.2.1 除法哈希(取模)	
		6.2.2 乘法哈希	
		6.2.3 点积哈希	11
		6.2.4 全域哈希 universal hashing	
	6.3	全域哈希 universal hashing	
		6.3.1 一个全域哈希函数簇(基于点积哈希)	12
		6.3.2 另一个简单的全域哈希函数簇(同书 150)	12
	6.4	完美哈希/完全哈希 perfect hashing	13
	6.5	开放寻址法	13
	6.6	一致性哈希 consistent hashing	13
7	摊还	分析 Amortized Analysis	13
	7.1	聚合分析	13
	7.2	核算法	13
	7.3	势函数法	13
8	动态	规划 Dynamic Programming	13
	8.1	例子	13
	8.2	带权重的区间调度	14
	8.3	解法	
	8.4	最长公共子串	
	8.5	背包问题	
	8.6	带权独立集(WIS)问题	
	8.7	旅行商问题	
	8.8	最优二分查找树	
^	& a		
9	贪心。		15
	9.1	证明贪心的正确性	
	9.2	区间调度问题	
	9.3	区间分解/染色	
	9.4	最小化延迟问题	
	9.5	部分背包问题(之前的是 0-1 背包问题)	15
	9.6	数据压缩	15

10	最小	生成树	16
	10.1	图表示方法	16
	10.2	生成树	16
	10.3	Prim 算法	16
	10.4	Kruskal 算法	16
11	₩ *	* At = 1 * - 1 * 4	10
11		集 disjoint set	16
		链表实现	
	11.2	森林实现	
		11.2.1 普通森林实现	
		11.2.2 按秩合并	16
		11.2.3 路径压缩	16
	11.3	按秩合并、路径压缩的时间复杂度(摊还分析)	16
		11.3.1 准备工作	
		11.3.2 摊还分析(核算法)	17
12	最短	直路算法	18
			18
		图表示方法	
		单源最短路径问题	19
		12.3.1 Dijkstra 算法	19
		12.3.2 广度优先搜索 BFS	20
		12.3.3 深度优先搜索 DFS	20
		12.3.4 Bellman-Ford 算法	
		12.0.1 Definition Fig. 1	20
13	最大	大流算法	20
	13.1	流	20
		13.1.1 流的定义	20
		13.1.2 流抵消、流分解	20
		13.1.3 流的性质(16/51)	21
	13.2	残差网络/剩余网络 Residual Network	21
	13.3	增广路径 Augmenting Path	21
	13.4	割 cut	21
	13.5	最大流最小割定理 Max-flow Min-cut Theorem	22
		Ford-Fulkerson 算法	22
		13.6.1 算法正确性	22
		13.6.2 时间复杂度	22
	13.7	Edmonds-Karp 算法	22
		13.7.1 版本一	22
		13.7.2 版本二	23
		13.7.3	$\frac{23}{24}$

	13.8 Dinic 算法	24
	13.8.1 阻塞流	25
	13.8.2 Dinic 算法	25
	13.9 单位容量图	25
	13.10 网络流的应用	25
	13.10.1 非交路径 edge disjoint path	25
	13.10.2 二分图匹配 bipartite matching	25
	13.10.3 图像分割 image segmentation	26
	13.11 引入随机的最小割算法	26
1 1	Ab Jul. Hei Dul 1.	0.0
14	线性规划 linear programming	26
	14.1 标准形式(原问题)	
	14.2 对偶问题 duality	
	14.3 弱对偶性	27
15	NPC 问题	27
	15.1 可满足性问题 (SAT) satisfiability problem	28
	15.2 团问题 Clique	28
	15.3 独立集问题 (IS) independent set	28
	15.4 顶点覆盖问题 (VC) vertex cover	28
	15.5 3SAT 问题	28
	15.6 k 着色问题 k-Colorability	29
	15.7 精确集合覆盖 Exact (Set) Cover	29
	15.8 整数规划 (IP) Integer Programming	29
	15.9 背包问题 Knapsack	29
	15.10 子集和问题 Subset Sum	29
	15.11 集合分割问题 Partition	29
	15.12 装箱问题 Bin Packing	30
	15.13 哈密顿回路 Hamiltonian Circuit	30
	15.14 旅行商问题(TSP)Traveling Salesman	30
16	近似算法	30
10	16.1 负载均衡 Load Balancing	
	16.1.1 简单贪心解法	
		30
	16.2 点覆盖	
		31
	16.2.2 聪明的贪心算法	31
	- 10.0 (22.4 %)	31
	16.3 旅行商问题 TSP	
	16.3.1 一个 2-近似算法	-31

	16.3.2 一个 3/2-近似算法	32
16.4	带权集合覆盖 Weighted Set Cover	32
	16.4.1 用整数规划求近似解	32

1 一些其他的东西 6

1 一些其他的东西

1.1 斯特林公式 Stirling formula

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

【为做题,可以简记为: $n! \sim \left(\frac{n}{e}\right)^n$ 】【斯特林公式!】【非常重要! 赶紧补! 背!】

欧拉常数 γ

$$\gamma := \lim_{n \to \infty} \left(\sum_{i=1}^{n} \left(\frac{1}{i} \right) - \ln(n) \right)$$

由此可知 $\sum_{i=1}^{k} \sim \Theta(\lg k)$ 。

1.2 还有其他的东西

【第一次作业(主定理)中用了不少暴力的求和,整理一下总结在这里】

2 主定理 Master Theorem

2.1 主定理

主定理 设 $a \ge 1$ 和 b > 1 是常数, f(n) 是一个函数, T(n) 是定义在非负整数上的递归式:

$$T(n) = aT(n/b) + f(n)$$

则

- 1. 若对某个常数 $\epsilon > 0$ 有 $f(n) = O(n^{log_b a \epsilon})$, 则 $T(n) = \Theta(n^{log_b a})$
- 2. 若 $f(n) = \Theta(n^{log_b a})$, 则 $T(n) = \Theta(n^{log_b a} lgn)$
- 3. 若对某个常数 $\epsilon>0$ 有 $f(n)=\Omega(n^{\log_b a+\epsilon})$,且对某个常数 c<1 有 $af(n/b)\leq cf(n), n\gg 1$,则 $T(n)=\Theta(f(n))$

对应到分治算法, T(n) 是规模为 n 的问题的时间复杂度, a 是划分出的 n/b 规模的子问题的个数, f(n) 是分解 (divide) 和合并 (combine) 的开销。对应到递归树上看, (3) 对应子节点开销占主要的问题, (1) 对应父节点(分解和合并)开销占主要的问题, (2) 对应子问题和分合开销相同的问题。

【主定理的证明跳过了】

3 分治法 Divide-and-Conquer

分解 devide,解决 conquer,合并 combine

3.1 矩阵乘法

给定两个同型方阵 $A_{n\times n}$ 和 $B_{n\times n}$, 求它们的乘积 C=AB

3.1.1 一般方法

三层循环。时间复杂度为 $\Theta(n^3)$ 。

```
SQUARE-MATRIX-MULTIPLY(A, B)

1 n = A.rows

2 let C be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 c_{ij} = 0

6 for k = 1 to n

7 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

8 return C
```

3.1.2 简单的分治算法

考虑将矩阵分块:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}, C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

则原式转化为:

$$\begin{cases} C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} \\ C_{12} = \dots \\ C_{21} = \dots \\ C_{22} = \dots \end{cases}$$

原问题被拆分为 8 次 $n/2 \times n/2$ 的矩阵乘法和 4 次 $n/2 \times n/2$ 的矩阵加法。于是有:

$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2) \tag{3.1}$$

由主定理,易得此分治法的时间复杂度仍为 $\Theta(n^3)$

3.1.3 Strassen 算法

考虑方程(1),由主定理可知,限制其时间复杂度的主要因素在 $log_ba = log_28 = 3$ 。如果可以减少乘法运算的数量(对应 a),就可以降低算法的复杂度。

Strassen 提出一种只需要 7 次矩阵乘法的算法。他对 A 和 B 的分块矩阵做了一通操作,最终将计算改写为 7 次 $n/2 \times n/2$ 的矩阵乘法和 18 次 $n/2 \times n/2$ 的矩阵加法。详情可参考书 P45-47 或课件 lecture 2(36/44)。

这样, 递推公式变为

$$T(n) = 7T(\frac{n}{2}) + \Theta(n^2) \tag{3.2}$$

时间复杂度变为 $\Theta(n^{\log_2 7 = 2.81})$

需要注意两点:

- 这个算法的矩阵加法次数明显增多了,因此复杂度上的常数比较大,在 n 较小时,效果差于"简单的分治算法"
- 目前已经提出 $\Theta(n^{2.376})$ 的算法, 但是它并不实用

3.2 多项式乘法

给定 A(x) 和 B(x) 两个 n 阶多项式, 求其乘积。

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$$

按照类似3.1的思路,可以做多项式的乘法。

3.2.1 简单做法

$$C(x) = A(x)B(x) = c_0 + c_1x + c_2x^2 + \dots + c_{2n}x^{2n}$$

其中

$$c_i = \sum_{k=0}^{i} a_k b_{i-k}, \ i = 1, 2, ..., 2n$$

上式称为卷积。

易见常规算法是 $\Theta(n^2)$ 的。

怎么实现这个卷积呢? 可以固定 $b_0, b_1, ..., b_n$, 将 $a_n, ..., a_0$ 在 $b_0, ..., b_n$ 上滑动,每次滑动一格且计算乘积,求和。

3.2.2 分治做法

考虑

$$A(x) = (a_0 + \dots + a_{\frac{n}{2} - 1} x^{\frac{n}{2} - 1}) + x^{\frac{n}{2}} (a_{\frac{n}{2}} + \dots + a_n x^{\frac{n}{2}}) := P(x) + x^{\frac{n}{2}} Q(x)$$

$$B(x) = (b_0 + \dots + b_{\frac{n}{2} - 1} x^{\frac{n}{2} - 1}) + x^{\frac{n}{2}} (b_{\frac{n}{2}} + \dots + b_n x^{\frac{n}{2}}) := R(x) + x^{\frac{n}{2}} S(x)$$

将 A(n) 和 B(n) 分割为两部分,每部分的规模为 n/2。这样

$$C(x) = P(x)R(x) + (P(x)S(x) + R(x)Q(x))x^{\frac{n}{2}} + Q(X)S(x)x^{n}$$

可得递推关系式为 $T(n) = 4T(n/2) + \Theta(n)$ 。由主定理,算法是 $\Theta(n^2)$ 的。

4 随机算法 9

3.2.3 改进分治做法

同3.1,上述分治算法没有降低复杂度的原因是: 规模为 n/2 的子问题较多。考虑减少 n/2 的乘法操作,即可降低复杂度。

$$(P+Q)(R+S) = PR + (PS+QR) + QS$$

则只需计算 (P+Q)(R+S), PR, QS 即可。 $T(n)=3T(n/2)+\Theta(n)$,复杂度降为 $\Theta(n^{\log_2 3\approx 1.59})$ 。当 然常数(加减法操作)增大了。

3.2.4 更快的算法 (FFT)

用快速傅里叶变换 (FFT), 可以实现 $\Theta(nlgn)$ 的复杂度。详见这个链接

3.3 归并排序

【分成两半,各自排序,最后整合】

3.4 快速排序

【选定哨兵,小于哨兵放左边,大于哨兵放右边,然后左右两边分别递归快排】

【最坏情况下,每次哨兵都是最小 or 最大,则复杂度变成 $O(n^2)$ 了。随机算法可以规避最坏情况】

4 随机算法

4.1 矩阵乘法验证

给定三个同型方阵 $A_{n\times n}$, $B_{n\times n}$ 和 $C_{n\times n}$, 验证是否有 AB=C lecture 2(44/44)

4.2 规避快速排序最坏情况

5 排序算法归纳

5.1 插入排序

这是第一次课讲的,就是引入算法复杂度用的。插入排序本身也非常简单,这里贴个伪代码就好了。

```
for j=2 to n
key = A[j]
i = j-1
while (i>0 and A[i] > key):
    A[i+1] = A[i]
i = i-1
A[i+1] = key
```

5.2 归并排序

归并排序使用的是分治法的思想。 借助这种思想,还有二分查找【lec2 26/44】

5.3 堆排序

5.4 快速排序

5.4.1 规避快排的最坏情况

只要是比较排序,时间最优也是 $O(n \lg n)$ 【决策树。证明:lec4 11/60 (n! 个叶子节点的二叉树。深度 h 的二叉树有最多 2^h 个叶节点。所以 $2^h \ge n!$,得到 $h = O(n \lg n)$ 】

5.5 线性时间排序

【这个标题不靠谱。线性时间排序就是顺序统计量啊】

5.6 顺序统计量

- 1) 找最大最小。需且仅需 n-1 次比较。O(n) 时间。
- 2) 同时得到最大最小。【考虑淘汰赛机制】每两个数一组,组内大者与 max 记录做比较,小者与 min 记录比较。这样有 n/2 组,每组有 3 次比较,共 3n/2 次比较【可以证明这是最少的比较方法?】
- 3) 找最大和次大。【考虑淘汰赛机制】找出最大者 n 次比较,有一棵二叉树。而次大者一定是和这个最大者比较过的元素,故只需检查最大者一路上来"打败"过的元素即可,有 lgn 次比较
- 4) 找第 k 大。【方法 1: 快排(可以用随机版本。因为随机版本规避了最坏情况),同时每次只用递归一侧。O(n) 的。方法 2: 最坏情况下线性时间的顺序统计量算法(一组 5 个取中间,各组中间取中间的算法)】

【关于最坏情况线性时间的算法,只要分析最后两个子问题 T() 加起来系数不超过 1 (要严格小于 1, 如果不仔细考虑下取整和放缩的话),就是 O(n) 的。要是大于等于 1, 则不是 O(n) 的。】

6 散列表 Hash Table

每个数据有唯一的 key 与之对应。所以我们存储数据时,只考虑存储 key 即可,通过 key 和数据的对应关系即可确定数据。

字典操作指插入、删除、查找这三个操作。

对直接寻址表而言,字典操作最坏情况下是 O(1) 的。散列表能够在平均时间上保证字典操作是 O(1) 的。散列表克服了直接寻址表的两个缺点:

- 1. 当全域 U (key 的可能取值) 很大时,计算机可能存不下整张规模为 |U| 的表
- 2. 实际存储用到的 key 集合 K 可能远小于 U, 直接寻址表造成很大的空间浪费

因此,我们考虑散列表/哈希表。假设一共有n个可能的 key (键),哈希表中有m个槽。在本节中,我们总是假设n>m,否则还不如用直接寻址表。

定义**装载因子** $\alpha = n/m$,表示平均哈希进每个槽的 key 的个数(如果采用链接法表示, α 就是一个链的平均存储单元数)。

使用链表法存储时,如果使用双向链表,则删除一个元素的代价是 O(1) 的。("删除"是指确定元素位置后,把该元素对应的数据单元删去的操作。确定元素位置属于"查找"操作)

6.1 简单均匀哈希假设

哈希表的平均性能取决于使用的哈希函数。哈希函数在下一节讨论。这里提出简单均匀哈希假设:假设每个 $k \in K$ 都等可能地哈希进任意槽中。

在简单均匀哈希假设下,一次不成功查找的平均时间是 $\Theta(1+\alpha)$,一次成功的查找的平均时间也是 $\Theta(1+\alpha)$ 。【见书 P145-146】当 $n=\Theta(m)$ 时,这个代价是 $\Theta(1)$

所以,当散列表中槽数 m 与元素数 n 成正比,且采用双向链表解决冲突时,插入和删除在最坏情况下都只需要 O(1) 时间。

6.2 哈希函数

6.2.1 除法哈希(取模)

$$h(k) = k \mod m \tag{6.1}$$

这里 m 应避免取 2 的幂次,因为这样相当于只使用到 key 值的低若干位。一般 m 的选取规则是:选一个不太接近 2 或 10 的幂次的素数。

有时哈希表规模为素数可能不方便。下面的乘法哈希通常效果更好,但这种取模哈希使用最为广泛。

6.2.2 乘法哈希

令 $m=2^r$, 即哈希表有 2^r 个槽。设计算机使用 w 位的字, 取 A 为满足 $2^{w-1} < A < 2^w$ 的奇数。

$$h(k) = (A \times k \mod 2^w) >> (w - r) \tag{6.2}$$

注意: A 的选取不要太靠近 2^w 。【这里乘法哈希和书上的公式形式不太一样,但是意思是一样的 (+ 148)】乘法哈希的速度: 1) 模 2^w 计算很快; 2) 右移 w-r 位计算很快。

6.2.3 点积哈希

令 m 为素数。将键 k 分割为 r+1 个数,每个数都落在 $\{0,1,...,m-1\}$ 范围内。即 $k=< k_0,k_1,...,k_r>$,其中 $0 \le k_i < m$ 。令 $a=< a_0,a_1,...,a_r$,其中 a_i 是在 $\{0,1,...,m-1\}$ 中的随机数。定义哈希函数

$$h_a(k) = \sum_{i=1}^r a_i k_i \mod m \tag{6.3}$$

点积哈希有非常好的性质,但是计算复杂度高一些。在后面构造全域哈希函数簇的时候用到它了。

前面这些方法都有一个问题: 可以构造一组数据 $\{x_n\}$, 使得 $h(x_i) = t, \forall x_i$, 这样散列表的性能就达到最差的 O(n) 级别。

应对方法:引入随机。这样攻击者不知道选择的是哪个哈希函数,就无法设计上述攻击。

6.2.4 全域哈希 universal hashing

全域哈希内容比较多,用一个 subsection 来讲

6.3 全域哈希 universal hashing

Definition 令 U 为所有 key 的集合,H 是一组有限个数的哈希函数。每个 $h \in H$ 都是 U 映射到 $\{0,1,2,...,m-1\}$ 的函数。若对任意 $x,y \in U, x \neq y$,存在 $|\{h \in H: h(x) = h(y)\}| \leq |H|/m$,则称 H 是**全域的**。亦即,H 里任取一个哈希函数 h,任意两个不相等的 x 和 y,哈希时发生碰撞的概率不超过 1/m。

Theorem 令 h 是从 H 中均匀随机地选出的一个哈希函数,则对任意给定 x,与 x 出现碰撞的次数的期望 < n/m。即 $E(\#collisions\ with\ x) < n/m$,这里 # 表示次数。

证明:【来不及再打一遍了,见 ppt lec4-1 23/40 起】【证明结果发现 E(#...) = (n-1)/m】

6.3.1 一个全域哈希函数簇(基于点积哈希)

令 m 为素数。将键 k 分割为 r+1 个数,每个数都落在 $\{0,1,...,m-1\}$ 范围内。即 $k=\langle k_0,k_1,...,k_r\rangle$,其中 $0 \le k_i < m$ 。 今 $a=\langle a_0,a_1,...,a_r\rangle$,其中 a_i 是在 $\{0,1,...,m-1\}$ 中的随机数。定义哈希函数

$$h_a(k) = \sum_{i=1}^r a_i k_i \mod m$$

注意,这每一个哈希函数就是点积哈希。它们构成的哈希函数簇 H 共有 m^{r+1} 个函数。

Lemma 令 m 为素数。对任意 $z \in Z_m, z \neq 0$,存在一个唯一的 $z^{-1} \in Z_m$ 使得 $z\dot{z}^{-1} \equiv 1 \pmod{m}$ 。证明: 因为 Z_m^* 是一个乘法群,所以显然。详细证明需要群的知识,建议回顾代数结构课笔记(笑)。

Theorem 哈希函数簇 $H = \{h_a\}$ 是全域的。

证明: 【26/40】要用到上面的引理。证明了对一组确定的 $a_1, a_2, ..., a_r$,只有唯一存在的一个 a_0 会 使得 x 和 y 冲突。这样 H 就满足全域的定义了。

6.3.2 另一个简单的全域哈希函数簇(同书 150)

 ϕp 是一个大于 n 的素数 (即能包含所有元素的键), 定义哈希函数

$$h_{a,b}(x) = ((ax+b) \mod p) \mod m \tag{6.4}$$

函数簇 $H_{p,m}$ 定义为

$$H_{n,m} = \{h_{a,b} : 1 \le a < p, 0 \le b < p\}$$

即 $a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p$ 。可见这个函数簇中共有 p(p-1) 个函数。 $H_{p,m}$ 还有一个优点是哈希表的规模 m 可以是任意值,不一定要是素数。这一点将在下面的证明中看到。

Theorem $H_{p,m}$ 是全域的。

证明: 【31/40 起】

6.4 完美哈希/完全哈希 perfect hashing

是一种静态的数据结构,即一旦键存入表中,键集合就不会再变化。完美哈希能提供最坏情况下 O(1) 的搜索操作。【差完美哈希,开放寻址法,一致性哈希,即可解决本章。至于 cuckoo,bloom,counter-min,大概率不考,不看了】

【完美哈希看完了,证明部分简单过的。大致记得怎么回事吧】

6.5 开放寻址法

【探查序列】【线性探查、二次探查、双重哈希/双重散列】【还没仔细看, 6.14 来看】

6.6 一致性哈希 consistent hashing

7 摊还分析 Amortized Analysis

- 7.1 聚合分析
- 7.2 核算法

【要保证剩的钱数始终非负】

7.3 势函数法

【要保证和初始状态相比,势变化量始终非负】

8 动态规划 Dynamic Programming

【这一章的笔记都是瞎整理的! 时间不够了】

8.1 例子

有向无环图的最短路 $dist(v) = \min_{(u,v) \in E} \{ dist(u) + d(u,v) \}$ 【最长路径也是类似】 【动态规划问题都相当于是有向无环图问题。且一旦依赖关系成环,dp 就失效了】

最长递增子序列 $L(j) = \max_{(i,j) \in E} \{L(i) + 1\}$ 。L(j) 表示以 j 结尾的最长递增子序列长度。【我记得作业有一个类似的,但是要返回最长的这个序列,而不仅是序列的长度。要去看一下】

8.2 带权重的区间调度

每个任务有起始时间、结束时间、价值 v。要使做的任务的总价值最高(只有一个人在做任务)。【方法:贪心、枚举、动态规划】

所有任务按结束时间从早到晚排序,记为任务 1,2, ...。对任务 j, 记 p(j) 是最后一个和 j 任务不冲突的任务。则 $d[0]=0, d[j]=\max\{v_i+d[p(j)], d[j-1]\}$

8.3 解法

- 1) 暴力递归调用。指数级的复杂度、大量子问题被重复计算
- 2) 备忘录。即我们平时用的打表【表打好后, O(1) 返回任何数据的最优解】
- 3) 自底向上。即根据要什么,去求对应需要的那些,递归直到最小问题,即可逐层返回。【只针对我们要的数据的最优解计算,沿途算出来的一些最优解都是顺带的。但是自底向上可以一路保留走过来的路径, e.g. 能够给出串具体是什么,而不是只能给出串的长度】

对带权重的区间调度问题, 备忘录是 $O(n \lg n)$ 的

8.4 最长公共子串

$$d[i][j] = \begin{cases} d[i-1][j-1] + 1, & if \ x[i] = y[j] \\ \max\{d[i][j-1], d[i-1][j]\}, & otherwise \end{cases}$$

8.5 背包问题

令 d[k][b] 表示只使用物品 1,...,k,在背包容量不超过 b 的情况下的最优解。s 表示物品大小,v 表示物品价值。

$$d[k][b] = \begin{cases} 0, & if \ k = 0 \\ d[k-1][b], & if \ s_k > b \\ \max\{v_k + d[k-1][b-s_k], d[k-1][b]\}, & otherwise \end{cases}$$

8.6 带权独立集 (WIS) 问题

最大的点集子集,使得这个子集中的任意两个顶点在原图中不相邻。

这个问题是 NP 难的。故我们这里只考虑图是一个树的情况。

$$d[u] = \max\{\sum_{v \in C(u)} d[v], w_u + \sum_{C(C(u))} d[v]\}$$

8.7 旅行商问题

dp 算法的复杂度是 $O(n^22^n)$ 。暴力算法是 O(n!) 的。

令 $C(S,j), j \in S$ 表示从 1 出发经过 S 中所有点最后到 j 的最短路长度。 $C(S,j) = \min_{i \in S - \{j\}} (C(S - \{j\}, i) + d_{ij})$

9 贪心法 15

8.8 最优二分查找树

9 贪心法

9.1 证明贪心的正确性

- 1) stay ahead。证明每一步的结果总是不差于最优解在这一步的结果
- 2) 上下界。证明贪心算法达到了上/下界
- 3) 交换论证。证明最优解经过一些不使结果更坏的变换,可以到达贪心解

9.2 区间调度问题

【回顾:有 dp 算法】【这里假设权重都为 1. 则有更快的算法: 贪心】

【qh 6.15 在群里发的图片: 贪心是一种限制条件更加严格的情况下,时间复杂度低于 dp 的最优化问题解法。贪心和动规本质上是不排斥的,都是最优化问题的解法】

解法:最早结束时间优先。按结束时间从早到晚排序,按次序选择任务(当然每个任务加进来以后,和它冲突的任务就都不能选了)

证明: stay ahead

9.3 区间分解/染色

【把若干任务分配到最少数量的处理器上/把若干课程安排到最少数量的教室里】

算法: 最早开始时间优先。

证明: 贪心算法到达了下界。【定义了"深度"的概念。某时刻同时运行的任务数称为这个时刻的深度】

9.4 最小化延迟问题

【单处理器。每个任务有最晚完成时间 d (但是可以超时,超时部分算延迟)、运行耗时 t ,设开始时间 s ,结束时间 f=s+t (这是不准抢占的模型啊)】【定义任务 i 的延迟 $l_i=\max\{0,f_i-d_i\}$,要求最小化总延迟】

算法: 最早 ddl 优先。

证明:交换论证。交换相邻的"逆序"任务【只要有逆序,一定有相邻逆序】

9.5 部分背包问题(之前的是 0-1 背包问题)

按照性价比从高到低选取即可

9.6 数据压缩

【定长编码,没有优化空间。我们考虑变长编码】

【霍夫曼编码】【前缀码。变长编码不能是前缀码。一棵不满的二叉树不可能对应一个最优编码】

10 最小生成树 16

10 最小生成树

10.1 图表示方法

【图表示方法:邻接矩阵啥的, lec8 5/63】

握手引理
$$\sum_{v \in V} deg(v) = 2|E|$$

10.2 生成树

一个定理 生成树的子图是生成树【类比:最短路的子路是最短路】

10.3 Prim 算法

【用贪心实现的算法】

【类似 Dijkstra 算法! 时间复杂度也和 Dijkstra 一样。有三种数据结构的实现,对应复杂度不同。 斐波那契堆的时间是 $O(V \lg V + E)$ 】

10.4 Kruskal 算法

【用并查集实现的算法】

【初始化、每个点是一个集合。每次找跨集合的边中最小权重的那个、合并两个集合】

11 并查集 disjoint set

并查集有三个操作: MAKE-SET(x), FIND(x), UNION(x,y)

11.1 链表实现

一条链表是一个并查集,链表的第一个节点作为集合的代表元。可见书 P326 图片。时间复杂度如下:

MAKE-SET	FIND	UNION
O(1)	O(1)	O(n)

11.2 森林实现

11.2.1 普通森林实现

11.2.2 按秩合并

11.2.3 路径压缩

11.3 按秩合并、路径压缩的时间复杂度(摊还分析)

MAKE-SET 和 UNION 操作都是 O(1) 的。故我们只分析 FIND 的时间复杂度,考虑 m 次 FIND 的摊还代价。

11.3.1 准备工作

首先给出一些观察和引理。

Observation 1 对任意节点 x, 以 x 为根节点的子树的深度/树高不超过 x 的秩 rank(x)

Observation 2 对所有非根节点 (即 $parent(x) \neq x$), 有 rank(x) < rank(parent(x)) (即 $rank(x) \leq rank(parent(x)) + 1$)

Lemma 1 以 x 为根的树至少有 $2^{rank(x)}$ 个节点。

用数学归纳法证明。

- 1) rank(x) = 0 时,即 x 是孤立点时,树有 $1 = 2^0$ 个节点。
- 2) 假设 rank(x) = k 时成立,则 rank(x) = k + 1 时:考虑到秩的增加只能发生在两棵同秩子树合并时,所以树 x 一定是从两棵 rank = k 的子树合并而来,由假设知两棵子树都至少有 2^k 个节点,因此树 x 至少有 $2^{k+1} = 2^{rank(x)}$ 个节点。

综上 1)2), 得证。

Lemma 2 秩为 k 的节点至多有 $n/2^k$ 个, $\forall k \geq 0$ 。

证明:一个秩为 k 的节点代表一棵至少 2^k 个节点的子树,这样的子树至多 $n/2^k$ 个。

Lemma 3 所有节点的秩最大不超过 $\lg n$ 。

由 Lemma 2 易得, $n/2^k \ge 1$, 故 $k \le \lg n$ 。

Lemma 4 $rank \ge k$ 的节点至多 $n/2^{k-1}$ 个。

证明: $rank \ge k$ 的节点总数为 $\sum_{i=k}^{\lg n} n/2^i < \sum_{i=k}^{\infty} n/2^i \sim n/2^{k-1}$ 。

Observation 3 一个节点只要变为非根节点,它的秩就永远固定了(非根节点不可能再变成根节点)。

11.3.2 摊还分析(核算法)

对所有节点按照 $\log^* r$ 进行分组, $\log^* r$ 值相同的在一组。这里 r 是节点的秩, $\log^* r$ 是满足 $\log^* r$ 是满足 $\log^* r$ 是 的最小的整数 k。亦即,第 i 组中的全部节点都满足 $2^{2^{\dots^2}} < r \le 2^{2^{\dots^2}}$ 。将每一组记为区间 $(k,2^k]$,其中 k 本身是 2 的迭代幂次。

Lemma 5 对上述分组而言,组数不超过 $\log^* n$ 。

因为 n 个节点的最大秩不超过 $\lg n$ 。

12 最短路算法 18

Lemma 6 在分组 $(k, 2^k]$ 中的节点数不超过 $n/2^{k-1}$ 。

因为秩超过 k 的节点数就不超过 $n/2^{k-1}$ (**Lemma 4**)。

对分组 $(k, 2^k]$ 中的每一个节点,赋予它 2^k 块 "钱"。对每个分组而言,赋予的总钱数不超过 $\frac{n}{2k-1} \times 2^k = 2n$ 。发出去的总钱数不超过 $2n \log^* n$ 。

规定"付钱"规则如下:在运行 FIND 函数找过的路径上,每一条边 (u,v) (注:在路径压缩前,这个 v 就是 parent(u)),如果 u 和 v 在同一个分组中,则 u 来支付走过这条边的代价;如果 u 和 v 在不同的分组,则由 FIND 函数支付走过这条边的代价。

对所有非根节点 u,只要 FIND 函数经过 u 节点,就会把 u 的 parent 改为当前的根节点。由 **Observation 2** 可知,只要原先的 parent(u) 不是根节点,则路径压缩后 parent(u) 的秩一定增加至 少 1。又因为 u 所在的分组 $(k, 2^k]$ 区间长度为 $2^k - k \le 2^k$,所以 u 这个节点至多支付 2^k 次(之后 parent(u) 就和 u 不在一个分组了)。所以,我们分给每个节点的钱足够其支付 parent(u) 不是根节点时的全部费用 $(O(2n\log^* n)$ 。而 parent(u) 是根节点的情况在每次 FIND 操作中只会出现一次,对总共 m 次 FIND 操作,只要单独 "补贴" m 块钱即可 (O(n))。由节点承担的总开销是 $O(2n\log^* n) + O(m)$ 。

由 **Lemma 5**, 对每一次 FIND 操作,由 FIND 函数支付的代价不超过 $\log^* n$ 。所以 m 次 FIND 操作中由 FIND 函数支付的代价不超过 $m \log^* n$ 。

综上,m 次 FIND 操作总代价是 $O(2n\log^* n + m + m\log^* n) \sim O((m+n)\log^* n)$ 。一次 FIND 的均摊代价是 $O((1+\frac{n}{m})\log^* n)$,近似线性。

12 最短路算法

首先定义最短路权重

$$\delta(u,v) = \begin{cases} & \min\{w(p) : u \xrightarrow{p} v\}, & \text{if have path from } u \text{ to } v \\ & \infty, & \text{else} \end{cases}$$

注意如果有负回路,即某个回路的总权重为负,则一直在这个负回路上绕圈会使路径权重越来越小。因此讨论最短路问题时,需要一个基本假设:图中没有负回路。

12.1 基本定理

(最优子结构) 最短路径的子路径还是最短路径

反证法易证: 否则原最短路径不是最短

(最短路的三角不等式) 对 u,v,x 三个节点,设 x 不在 u,v 的最短路上,则 $\delta(u,v) < \delta(u,x) + \delta(x,v)$ 反证法易证: 否则 $u \to x \to v$ 是 u,v 的更短路

12.2 图表示方法

1. 邻接链表。每个节点的全部邻边用链表串起来表示。lecture9[9/47]

12 最短路算法 19

2. 优先队列。优先队列可以用二叉堆、斐波那契堆等实现。lecture9[10/47]

12.3 单源最短路径问题

目标: 给定一个节点 $s \in V$, 要找出 $\delta(s, v), \forall v \in V$ 。

12.3.1 Dijkstra 算法

是一种贪心算法。仅适用没有负权重边的情况。

- 1. 维护集合 S, 其中任意节点 $v \in S$, $\delta(s,v)$ 已确定
- 2. 每一步中,把 $u \in V S$ 的 dis(s, u) 最小的节点 u 放入 S 中
- 3. 更新所有和 u 有边相连的点 i 的 dis(s,i)

注意: dis(s,u) 时刻表示的是"从s 出发,经S 中的若干个点,最后一步到达u"的所有可能路中最短路的长度(权重)。如果从S 到u 没有直接相连的边,则 $dis(s,u)=\infty$ 。

【算法正确性的证明在 ppt 14/74】下面证明算法的正确性。用 d(v) 简记 dis(s,v)。

Lemma $d(v) \geq \delta(s, v), \forall v \in V$ 始终成立。

证明: 算法初始化时,d(s)=0, $d(v)=\infty, \forall v\neq s$; $\delta(s,s)=0$, $\delta(s,v)\leq\infty, \forall v$ 。引理成立。 假设 v 是第一个 $d(v)<\delta(s,v)$ 的节点,u 是导致 d(v) 发生改变以至于不等式不成立的节点,即 d(v)=d(u)+w(u,v)。则

$$\begin{split} d(v) &< \delta(s,v) & supposition \\ &\leq \delta(s,u) + \delta(u,v) & triangle \ inequality \\ &\leq \delta(s,u) + w(u,v) & shortest \ path \leq specific \ path \\ &\leq d(u) + w(u,v) & v \ is \ the \ first \ violation \end{split}$$

即 d(v) < d(u) + w(u, v),矛盾。所以假设不成立。所以引理成立。

Theorem 当 Dijkstra 算法停止时, $d(v) = \delta(s, v), \forall v \in V$ 。即算法的正确性。

【16/74】【这里简单写写。假设 u 是第一个加入 S 时 $d(u) \neq \delta(s,u)$ 的,则由 **Lemma** 可知 $d(u) > \delta(s,u)$ 。假设 s 到 u 的最短路 p, $(x,y) \in p$ 是 p 上第一条跨越 S 和 V-S 的边,即 $x \in S, y \in V-S$ 。利用"最短路的子路是最短路",推出 $d(y) = \delta(s,y) \leq \delta(s,u) \leq d(u)$,进而因为算法选择 u 而不是 y,说明 $d(y) = \delta(s,y) = \delta(s,u) = d(u)$,矛盾。】

【时间复杂度 20/74】

当图是无权重图时,可以使用 BFS 或 DFS 代替 Dijkstra,即用先进先出队列(普通队列)对 Dijkstra 的优先队列做改进。

12.3.2 广度优先搜索 BFS

12.3.3 深度优先搜索 DFS

如果不知道图中是否有负回路怎么办? Bellman-Ford 算法可以判定图中是否有负回路, 如果没 有负回路, 可以返回最短路。

12.3.4 Bellman-Ford 算法

算法: [lec18 4/45] [初始化 d(v) 和 Dijkstra 一样, 然后迭代 |V|-1 轮, 每一轮中, 以任意次序 遍历所有边 (u,v), 如果 d(v) > d(u) + w(u,v), 则修改 d(v) = d(u) + w(u,v)。这每一轮称为一次"松 弛"。经过 |V|-1 轮松弛后,如果图中还有任何一条边 (u,v) 满足 d(v)>d(u)+w(u,v),则图中有负 回路, 否则已经得到最短路 (所有 $d(v) = \delta(s, v)$)。】

算法时间是 O(VE) 的。

算法正确性【lec18 27/45】【暂时略过,来不及了。赌他考应用不考证明】【这个证明也很容易啊, 我 5min 就看完了 hhh】

13 最大流算法

用 m 表示图 G 的边数, n 表示顶点数。

13.1 流

13.1.1 流的定义

满足三个性质:

$$\sum f(v,u) \ (流 \lambda = 流 \exists)$$

3) 反对称性。f(u, v) = -f(v, u)

流值 $|f| = \sum_{v \in V} f(s, v) = f(s, V) = f(V, t)$ 。 若 u 和 v 之间没有路,则 f(u, v) = c(u, v) = 0。

13.1.2 流抵消、流分解

流抵消 flow cancellation 如果有流 $u \xrightarrow{2:3} v$ 和流 $v \xrightarrow{1:2} u$,则可以抵消为流 $u \xrightarrow{1:3} v$ 和 $v \xrightarrow{0:2} u$ 。

流分解 flow decomposition 任意一个图 G 上的可行流 f 都可以被分解为至多 m 个环流或 s-t 路 径流。因为每分解出一个流,就至少消去这个流走过的路上的一条边(至少一条边上的流量降为 0)。

【这个看起来 trival, 但是在后面证明 Edmonds-Karp 算法版本一、Dinic 算法的时候用处大大 滴!】【lec10 9/51】

分解出的至多 m 个流中,只有 s-t 路径流对流 f 的流值有贡献,所有环流都没有贡献 f 的流值。

13.1.3 流的性质(16/51)

Lemma 对 G=(V,E) 上的流 f , 令 $f(X,Y)=\sum_{x\in X,y\in Y}f(x,y)$, 有:

- 1) $f(X,X) = 0, \forall X \subset V$
- 2) $f(X,Y) = -f(Y,x), \forall X,Y \subset V$
- 3) $f(X \cup Y, Z) = f(X, Z) + f(Y, Z), \forall X, Y, Z \subset V \perp X \cap Y = \emptyset$

【证明是容易的。没时间写了。】

13.2 残差网络/剩余网络 Residual Network

剩余容量定义为

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v), & if \ (u,v) \in E \\ f(u,v), & if \ (v,u) \in E \\ 0, & else \end{cases}$$

可见 $c_f(u,v) \geq 0$ 。

记图 G = (V, E),则**残差网络/剩余网络** $G_f = (V, E_f)$,其中

$$E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$$

可见 $|E_f| \leq 2|E|$ 。

13.3 增广路径 Augmenting Path

若 G_f 中存在一条 s-t 路径 p, 则称这条路径 p 为 G 的增广路径。

若把增广路径添加到原图 G 上(即增广),可以将 G 的流值增加 $c_f(p) = \min_{(u,v)} \in Pc_f(u,v)$ 。依 据这个性质,可以设计 Ford-Fulkerson 算法找最大流。【注意, FF 算法只在有理数流量、容量的情况 下能收敛, 无理数情况下可能进入无限循环(lec10 15/51. 本质是有理数的确界可达, 无理数确界不可 达)】【这些在15/51,没仔细看了】

13.4 割 cut

割 (S,T) 是图 G 的定点集合 V 的一个划分, $T=V-S,\ s\in S, t\in T$ 。**割的容量**定义为 c(S,T)= $\sum_{u \in S} \sum_{v \in T} c(u, v)$

直观上可以感受到,小容量的割会限制流的大小,使得流不能称为大容量流。实际上,这个感受可 以由下面的引理得到。

Lemma 给定一个流 f, 对任意割 (s,T), 有 |f| = f(S,T). 证明: f(S,T) = f(S,V) - f(S,S) = f(s,V) + f(S-s,V) = f(s,V) = |f|

Corollary 对任意一个流,任意割的容量都是他的流值的上界。即对任意割 (S,T), $f(S,T) \leq c(S,T)$ 。

证明:
$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) \le \sum \sum c(u,v) = c(S,T)$$

13.5 最大流最小割定理 Max-flow Min-cut Theorem

(最大流最小割定理) 下面三个命题等价:

- 1) $f \in G$ 的最大流。
- 2) 残差网络 G_f 不含任何增广路。
- 3) G 中存在某个割 (S,T),满足 |f| = c(S,T)。

下面证明。

- $1 \Rightarrow 2$ 。假设存在一个增广路,则沿这条增广路一定可以对 f 增广,与 f 是最大流矛盾。
- $3 \Rightarrow 1$ 。任意割的容量都是 |f| 的上界,即 $|f| \le c(S,T), \forall S \cup T = V, S \cap T = \emptyset$ 。所以 |f| = c(S,T) 的情况下,不存在更大的流。即 f 是最大流。

 $2 \Rightarrow 3$ 。令 $S = \{v: s \to v \text{ 在 } G_f \text{ 中有路 }\}$,T = V - S。因为残差网络 G_f 不含任何增广路,所以 $s \in S$, $t \in T$,即这样的 (S,T) 是一个割。对任意 $u \in S, v \in T$,有 $c_f(u,v) = 0$ (否则 $v \in S$),所以 f(u,v) = c(u,v)。所以 |f| = f(S,T) = c(S,T)。

13.6 Ford-Fulkerson 算法

Ford-Fulkerson()

- 01 let f(u, v) = 0 for each node u, v
- while there exist augmentation path p in G_f
- 03 augment f by $c_f(p)$

注意: FF 算法是一类算法的统称。对于找增广路 f, 可以用 BFS, 也可以用 DFS。

13.6.1 算法正确性

FF 算法结束时, G_f 中已经没有增广路。由最大流最小割定理可知,算法得到最大流。

13.6.2 时间复杂度

找每一条增广路,不论 BFS 还是 DFS,用时 O(E)。每条增广路为流值带来至少 1 的增加(而且可能产生每个增广路只增加 1 的情况),所以总用时 $O(E|f^*|)$ 。其中 f^* 是最大流。

这个复杂度不是 |V| 或 |E| 的多项式时间。如果最大流很大,时间复杂度会很高。

一个每次增广流值只增加1的例子:【27/51】

13.7 Edmonds-Karp 算法

用广度优先改进 Ford-Fulkerson 算法。版本一用到 Dijkstra 算法,本质上也是一种广度优先。

13.7.1 版本一

思路:每次都找容量最大的增广路。这样可以避免一次增广只增加1的情况。

修改 Dijkstra 算法,使得每次都找最大容量的增广路(即把"最短路"改成"最长路",算法本质不变)。

Claim 1 在最大流为 F 的图中,一定存在一条容量至少为 F/m 的 s-t 路径。

证明:由流分解定理可知,流 F 至多分解成 m 条环流或路径流。则由鸽笼原理,得证。

Claim 2 Edmonds-Karp#1 算法至多进行 $O(m \lg F)$ 次迭代。

证明: 设迭代次数为 k。由 Claim 1 可知,一次迭代后, G_f 剩余的流不超过 F - F/m; k 次迭代后,剩余不超过 $(1-1/m)^k \times F$ 。因为 $1-x \le e^{-x}$,所以 $(1-1/m)^k \le e^{-kx}$ 。要经过 k 次使得 $(1-1/m)^k * F = 1$,则 $k \sim m \lg F$ 。

如果使用斐波那契堆,则每次 Dijkstra 算法时间是 $O(m \lg n)$ 的。结合 Claim 2 可知,Edmonds-Karp#1 总时间是 $O(m^2 \lg n \lg F)$ 。

13.7.2 版本二

思路:每次都找最短的增广路。这样可以降低找增广路的开销。【这也是书上的 EK 算法】

使用 BFS 算法找增广路,这样每次找到的都是最短的增广路。

Claim 增广的次数不超过 $\Theta(VE)$ 。

证明: 这个 Claim 的证明比较复杂,需要引入层次图概念和单调性引理。这两个概念在下一小结介绍。这里直接使用单调性引理,来证明这个 Claim。

令 p 为一条增广路。定义**关键边**为增广路 p 中残差容量恰好等于路的残差容量的边,即关键边 $(u,v) \in p$ 满足 $c_f(p) = c_f(u,v)$ 。亦即,关键边是整条路 p 中残差容量最小的边。则如果这条边 (u,v) 在一轮增广时被增广,那么下一轮增广时,(u,v) 不会出现在 G_f 中,而是 (v,u) 会以之前 $c_f(u,v)$ 的 残差容量出现在 G_f 中。当 (v,u) 在某轮增广时被增广之后,下一轮增广时 (u,v) 边才会出现在 G_f 中,也才有可能再次成为关键边。

假设这一轮增广使用 p 为增广路。由层次图的介绍可知,在 p 被增广前,对关键边 (u,v),有 $\delta(v) = \delta(u) + 1(1)$ 。由上面一段分析知,对 p 增广后,只有 (v,u) 出现在 G_f 中,而 (u,v) 不会出现,直到 (v,u) 被增广后 (u,v) 才会再出现。考虑 (v,u) 被增广前,有 $\delta'(u) = \delta'(v) + 1$ 。由单调性引理可知, $\delta'(v) \geq \delta(v)$,再结合 (1) 式,有

$$\delta'(u) = \delta'(v) + 1$$
$$\geq \delta(v) + 1$$
$$= \delta(u) + 2$$

所以在边 (u,v) 两次成为关键边的过程中, $\delta(u)$ 至少增加了 2。则如果一条边 (u,v) 成为关键边 k 次, $\delta(u)$ 至少增加了 2(k-1)。

因为对每个点 $u,\ \delta(u)$ 从 ≥ 0 开始,保持单调不减,且保持 $\leq |V|-1$ (共 |V| 的点,层次图最深也只能有 |V|-1 层)。所以对任意边 (u,v),它至多成为关键边 $\frac{|V|-1}{2}+1\sim\Theta(V)$ 次。

又因为每轮迭代有一条关键边,一共有 |E| 条边,所以共迭代至 $\Theta(VE)$ 次。

至此得证。

因为 BFS 每次找增广路是 $\Theta(V+E)=\Theta(E)$ 的,结合 Claim 可知,Edmonds-Karp#2 算法时间是 $\Theta(VE^2)$ 的。

13.7.3 层次图和单调性引理

从 s 出发,到 v 的路径的边数为 i,则点 v 归入层次图的第 i 层。如果从 s 到 v 有多条路径,则 i 取边数最少的那条路径的边数。这样构建了从 s 到 t 的层次图,每个点都在一个唯一的层次中。【30/51】同一层内的所有节点之间的边全部去除,深层到浅层的边也去除,只剩下钱层到深层的单向边。

实际上 BFS 产生的就是这样的层次图。每个点被归入哪个层次,是由 BFS 最先遇到这个点的时间决定的,即由边数最短的路径决定的;同一层内的点互相之间的边,以及深层到浅层的边,在 BFS 时会被忽略。所以 Edmonds-Karp#2 算法用 BFS 找增广路,其实本质上是在这样的层次图上取层次深度最小的 s-t 路径。

单调性引理 令 $\delta(v) = \delta_f(s, v) = G_f$ 中 s 到 v 的广度优先距离(即 s 到 v 的最短路径长度,亦即层次图中所在的层次数/深度)。则在 EK 算法运行过程中, $\delta(v)$ 单调不减。即,设流 f 增广为 f',则 $\delta'(v) \geq \delta(v)$ 。

用数学归纳法证明。

- 1) $\delta'(s) = \delta(s) = 0$
- 2) 考虑 $G_{f'}$ 中一条 s 到 v 的广度优先路 $s\to ...\to u\to v\to ...\to t$,假设 v 是这条路上第一个 $\delta'(v)<\delta(v)$ 的节点,下面来推出矛盾。

因为 1) 中证明了 s 不会是这样的 v,所以在 $s \leadsto v$ 的路上,v 前一定有一个节点 u。由假设,节点 u 已经满足 $\delta'(u) \geq \delta(u)$,且在这条路中, $\delta'(v) = \delta'(u) + 1$, $(u,v) \in E_{f'}$ 。下面分类讨论增广前 (u,v) 是否在 E_f 中:

- 2.1) $(u,v) \in E_f$ 。则由最短路的三角不等式(最短路算法那一章"基本定理"部分)和归纳假设,有 $\delta(v) \le \delta(u) + 1 \le \delta'(u) + 1 = \delta'(v)$
 - 2.2) $(u,v) \notin E_f$ 。则增广路中一定含有边 (v,u)。则 $\delta(v) = \delta(u) 1 \le \delta'(u) 1 = \delta'(v) 2 < \delta'(v)$ 综上 2.1)2.2), $\delta'(v) \ge \delta(v)$,这与假设矛盾。所以假设不成立,所以 $\delta'(v) \ge \delta(v)$ 。

综上1)2),数学归纳法证明结束。

13.8 Dinic 算法

Dinic 算法对 Edmonds-Karp#2 算法进行了改进。EK 算法每轮迭代,总是要从 s 出发进行 BFS,即每次都要回到层次图的起始点(0 层)。Dinic 算法引入了阻塞流的概念,使得不必每次寻找增广路都从 s 开始。

【没时间一点一点打了,见 ppt 吧。本质上,EK 每次增广都回到 s 重新找路,而 Dinic 只是在路上回退,这样在增广不导致层次图层数加深的情况下,Dinic 比 EK 节省了代价。当层次为 k 的层次图上没有增广路的时候,就要重新构造 G_f ,这和 EK 是一样的,此时 Dinic 从 s 开始找路了。但是要知道,在层次为 k 的图上还有增广路的时候,EK 每次都重构 G_f 和整个层次图,但是仍然会找出一条深度为 k 的路,所以实际上它的这些重构层次图的操作是没有意义的,这也是 Dinic 比 EK 省时间的地方所在】

【Dinic 的一轮(构成一次阻塞流)代价是 O(mn) 的,每次形成阻塞流都会使层次图深度至少 +1,所以总代价还是 $O(mn^2)$ 的。可能只是常数小一点?但是如果用比较好的数据结构,可以使构成一次阻塞流的代价是 $O(m \lg n)$ 】

13.8.1 阻塞流

13.8.2 Dinic 算法

13.9 单位容量图

单位容量图是每条边的容量都是 1 的图。即 $c_e = 1, \forall e \in E$ 。

Lemma 1 Dinic 算法在单位容量图上迭代次数为 $O(\min(m^{1/2}, 2n^{2/3}))$ 。

证明:分别从边和点的角度,得到了 min 中的两组数据。

- 1) 从边的角度。由容斥原理,当 s 到 t 的增广路长度已经 $\geq m^{1/2}$ 时, G_f 对应的层次图中一定存在相邻的两层,它们之间的边数(正向边数 + 反向边数)小于 $m^{1/2}$ (否则总边数超过 m 了)。此时,因为每条边的容量是 1,所以 G_f 的最小割的容量 = 正向边数 反向边数 $\leq m^{1/2}$,所以 G_f 的最大流 $\leq m^{1/2}$ 。所以,当深度已经超过 $m^{1/2}$ 时,还需要不超过 $m^{1/2}$ 次迭代(即使每次增广流只增加 1,每次迭代只增广一次,迭代次数也 $\leq m^{1/2}$)。而深度到达 $m^{1/2}$,需要至多 $m^{1/2}$ 次迭代(由单调性引理,每次迭代深度都至少加 1),所以总共不超过 $2m^{1/2}$ 次迭代。
- 2) 从点的角度。当深度 $\geq 2n^{2/3}$ 时,一定存在相邻两层,它们的节点数都 $\leq n^{1/3}$ (否则至少每隔一层就有一层节点数 $> n^{1/3}$,则至少 $1/2 \times 2n^{2/3} = n^{2/3}$ 个节点数 $> n^{1/3}$ 的层,总节点数超过 n 了)。则它们之间的边数不超过 $2n^{2/3}$ (包括正向的至多 $n^{2/3}$ 条边和反向的至多 $n^{2/3}$ 条边)。类似 1) 分析可知,深度 $\geq 2n^{2/3}$ 时,还需要迭代次数不超过 $2n^{2/3}$ 。同时深度达到 $2n^{2/3}$ 需要迭代至多 $2n^{2/3}$ 次。所以总迭代次数不超过 $2n^{2/3} + 2n^{2/3} = 4n^{2/3}$)次。

综上 1)2),总迭代次数为 $O(\min(2m^{1/2}, 4n^{2/3})) = O(\min(m^{1/2}, 2n^{2/3}))$ 。

Lemma 2 在单位容量图中,可以在 O(m) 时间内找到一个阻塞流。

证明:因为所有边的容量都是 1,所以在层次图中每找到一条增广路,整条路上的所有边都是关键边,增广后都会消失(反向不会被加入层次图,所以每次增广在层次图中的效果仅仅是关键边消失)。则每条边只能被增广一次,共m条边,且增广一条边的代价是常数的,所以至多O(m)的代价。

Theorem 在单位容量图上,可以在 $O(m\min(m^{1/2}, 2n^{2/3}))$ 时间找到最大流。

证明: 由 Lemma 1 和 Lemma 2, 用 Dinic 算法即可。

13.10 网络流的应用

13.10.1 非交路径 edge disjoint path

要找最大非交路径数【lec11 7/41】可使用单位容量图的最大流建模。

Theorem 单位容量图的最大流流值和最大非交路径数相等。

13.10.2 二分图匹配 bipartite matching

要找最大匹配【11/41】我们讨论二分图的匹配问题。

建模:起始点 s 到所有左节点,左节点到右节点边变成单项边,所有右节点到 t。边权重: L 到 R 的边都是 ∞ , $s\to L$ 和 $R\to t$ 都是 1。运行最大流算法。

Theorem G 中的最大匹配和 G' 中的最大流流值相等。

【另外 ppt 17/41 讲了三种最大流算法下的时间复杂度。有两个算法是作业题,而且比较复杂。赌他不考吧】

13.10.3 图像分割 image segmentation

【18/41】这里只考虑前景和背景的分割。

建模:对每个像素点 i,与其上下左右相邻点之间有边。像素点构成点集,相邻点之间的边构成边集。每个像素点 i 有三个参数(提前给定好): $a_i \geq 0$ 表示 i 在前景的概率, $b_i \geq 0$ 表示 i 在背景的概率, $p_{ij} \geq 0$ 表示 i 和 j 一个分在前景一个分在背景时的惩罚(因为相邻点更可能标签相同,所以对相邻点不同标签的分割方法给出一定的惩罚)

像素点分割成前景 A 和背景 B 两个集合,要使下式值最大: $\sum_{i\in A}a_i + \sum_{j\in B}b_j - \sum_{(i,j)\in E, |A\cap\{i,j\}|=1}p_{ij}$ 。即要前景和背景点的概率尽可能大,分界线上的惩罚尽可能小。

【后面还有一堆构造方法,不打字了,见 ppt 吧】转化为最小割问题了

13.11 引入随机的最小割算法

【考试不要求】

14 线性规划 linear programming

【主要了解建模。对算法设计不要求。即把问题建模成 lp 模型,把 lp 问题转化成对偶问题等】

【除了本章介绍的线性规划外,它的另一种用途是为 NP 难问题设计近似算法。这在近似算法那一章将多次看到】

线性规划的三要素 如下:

- 1) 决策变量(decision variables) $x_1, x_2, ..., x_n$
- 2) 目标函数 (objective) $\sum_{j=1}^{n} c_j x_j$
- 3) 线性约束(linear constraints) $\sum_{i=1}^{n} a_{ij} x_j \leq b_i, 1 \leq i \leq m$

给定系数 a_{ij}, c_j 和 b_i ,其中 $1 \le i \le m, 1 \le j \le n$ 。要找到一组满足线性约束的决策变量,使得线性目标函数的值最大。

【有一些超平面、凸集之类的东西在 ppt 上,不抄了(来不及了)】

14.1 标准形式(原问题)

目标:

$$\max \boldsymbol{c}^T \boldsymbol{x}$$

15 NPC 问题 27

约束:

 $Ax \leq b$ $x \geq 0$

14.2 对偶问题 duality

思路: 找目标函数的上界, 如果上界越来越紧, 就会越来越接近最大值。

目标:

 $\min \boldsymbol{b}^T \boldsymbol{y}$

约束:

 $A^T oldsymbol{y} \geq oldsymbol{c} \ oldsymbol{y} \geq oldsymbol{0}$

可见把最大化问题对偶成了最小化问题。对偶问题再对偶,就回到最初的最大化问题。

14.3 弱对偶性

弱对偶性定理 设x 是原问题的可行解,y 是对偶问题的可行解,则 $c^Tx \leq b^Ty$ 。即,原问题的最大值不超过对偶问题的最小值。

证明:【18/39】

【先到这吧。ppt 后面给了一些线性规划建模的例子,再往后是不要求的东西了】

15 NPC 问题

不是所有问题都有多项式时间算法。比如旅行商问题(Traveling Salesperson Problem, TSP)是一个经典的 NP 问题。我们动态规划那一章设计过一个动态规划算法,时间复杂度是 $O(n^22^n)$ 的。这也是目前已知的最优算法。团(Clique)问题是另一个难的问题,目前一直的最优算法是 $O(n2^n)$ 的。

我们可以通过证明下界来说明某问题就是很难,没有多项式时间算法(回顾我们证明过比较排序的下界是 $O(n \lg n)$)。但是证明下界也是很困难的。我们也可以证明一个问题和某个困难问题等价,来说明这个问题是困难的。

从一个角度说,我们当然希望能够解更多的问题(即更多的问题都是 P 的)。但是从另一个角度说,一些领域是需要困难问题的,例如单项函数(one way function)就应用于密码学中。密码学希望找到更好的困难问题,它要求问题的平均时间也是困难的,而不仅仅是最坏情况下困难。

【P,NP 等问题的定义,略】【NP 问题一定是判定问题而不是求解问题(?)】

【强调一点: NPC=NP+NP 难,即问题本身是 NP 的,且所有 NP 问题可以规约到它(有一个 NP 难问题可以规约到它即可)】

【lec13 17/58】规约与被规约的关系问题,要清晰。判断 NP 难的规约和这一页说的是相反的, Π' 是 NP 难,且 $\Pi' \leq \Pi$,有 Π 是 NP 难。

15 NPC 问题 28

15.1 可满足性问题 (SAT) satisfiability problem

【lec13 19/58】任何 NP 问题都可以规约到 SAT 问题(作为一个 Theorem,这里我们只接受不证明)。SAT 是 NPC 的。

SAT 的每个语句都是或符号连接的(析取)。实际上,与符号可以用或和非来实现,所以我们不妨规定 SAT 的语句都是或符号连接。

15.2 团问题 Clique

【lec13 22/58】团是一个图中的完全子图。团问题是找最大团的问题。

规约: SAT < Clique。

对任意的 SAT 公式 $\phi = C_1, C_2, ..., C_m$,设这些公式包含变量 $x_1, x_2, ..., x_n$ 。现在构造一个图 G = (V, E) 和一个数 k,使得 ϕ 可满足当且仅当 G 有一个规模 $\geq k$ 的团。

对 ϕ 中涉及的每一个文字 t,创建一个节点 v_t (即使是相同的文字,只要在不同的语句中出现,都要再加一个点)。创建边 $(v_t, v_{t'},$ 当且仅当满足下列两个条件: 1)t 和 t' 不在同一个语句中; 2)t 不是 t' 的反。

Claim ϕ 可满足当且仅当 G 有 $\geq m$ 的团【证明略。一个语句为真,等价于语句中有至少一个文字为真】

15.3 独立集问题 (IS) independent set

【lec13 29/58】独立集是不相邻的点组成的集合。独立集问题(IS)是找最大独立集的问题规约: 团问题 G=(V,E),k,构造对应的独立集问题 G'=(V',E'),k'。 $k'=k,V'=V,E'=E^c$ 。这里 E^c 表示 E 的补。这个构造实际就是构造一个补图。

Claim $C \in G$ 中的一个团当且仅当 $C \in G'$ 中的一个独立集

15.4 顶点覆盖问题 (VC) vertex cover

是用顶点覆盖所有边的问题。希望用尽可能少的顶点覆盖所有边。

规约: IS 问题 G = (V, E), k,构造对应的 VC 问题 G' = (V', E'), k'。 V' = V, E' = E, k' = |V| - k

Claim $S \neq G$ 中的独立集当且仅当 $S \neq G'$ 中的点覆盖。

至此, $SAT \leq Clique \leq IS \leq VC$ 。且有不证明的那个定理可知,它们都可规约到 SAT。它们都是 NPC 问题。

15.5 3SAT 问题

【2SAT 是 P 的, 3SAT 仍是 NPC 的】 SAT 到 3SAT 规约【lec13 34/58】 15 NPC 问题 29

15.6 k 着色问题 k-Colorability

对 k=2 是容易的。对 $k\geq 3$ 是 NPC 的。

SAT 规约到 3 着色,3 着色规约到 k 着色。【SAT 规约到 3 着色,要看计算理论的作业】【可以让韬洋帮忙拿计算理论作业看看】

15.7 精确集合覆盖 Exact (Set) Cover

【42/58】给定一个有限集 X 和它的一组子集构成的集合 S,问是否存在 $S' \subset S$,使得 X 中每一个元素,都恰好在 S' 中的一个元素(S' 的元素是 X 的子集)里。

规约: 3 着色规约到精确集合覆盖

15.8 整数规划 (IP) Integer Programming

【lec13 48/58】线性规划增加变量是整数的条件。

规约: 点覆盖 VC 规约到 IP 【就是把 VC 问题建模成 IP 问题。每个点 v 用一个变量 x_v 表示, x_v 为 0 表示不选这个点,为 1 表示选这个点。则约束条件是 $x_u+x_v\leq 1, \forall (u,v)\in E$ 且 $x_v\in\{0,1\}, \forall v\in V$ 。目标是 $\min\sum x_v$ 】

15.9 背包问题 Knapsack

原始的背包问题是给定背包容量 B,要使装下的物品总价值尽可能高。这里改成判定问题:给定期望的总价值 B,判定能否找到一个总重不超过 W (即找到容量不超过 W 的背包),装下价值不少于 B 的物品。【因为 NP 问题必须是判定问题不能是求解问题】

【规约? ppt 上好像没给?】

15.10 子集和问题 Subset Sum

给定数值集合 S 和目标值 B,判断是否存在一个子集 $S' \subset S$,使子集中元素和恰好为 B。规约:精确覆盖规约到 Subset Sum 【lec13 53/58】 【构造 p 进制 0-1 串】

15.11 集合分割问题 Partition

给定数值集合 S 和目标值 B,判断是否存在一个子集 $S' \subset S$,使子集中元素和恰好等于子集外元素和(即把 S 等分成两半)。

上面三个问题的规约:

Partition 规约到 Subset Sum【显然啊】

Subset Sum 规约到 Partition: 引入两个新元素 N-B 和 $N-(\Sigma-B)$ 。这里 Σ 是原集合 S 的元素和, $N>\Sigma$ 。这样转化为总和为 2N 的集合分割问题【因为 $N>\Sigma$,所以新加入的两个元素不可能分在同一组】

Partition 规约到 Knapsack: 集合中每个元素 i 视为权重为 i 的一个物品,背包问题的参数 $W=B=\Sigma/2$

16 近似算法 30

15.12 装箱问题 Bin Packing

给定有限数集 S,箱子大小 B。用最少的箱子把 S 中元素全部装起来。

规约: Partition 规约到 Bin Packing 【容易的。构造箱子大小是集合元素和的一半,则 Partition 有解当且仅当两个箱子可装】

15.13 哈密顿回路 Hamiltonian Circuit

图上所有节点都恰好访问一次的回路。可以是有向图也可以是无向图

规约: 点覆盖 < 哈密顿回路【lec13 55/58】【这个规约我没看懂】

15.14 旅行商问题 (TSP) Traveling Salesman

有向图, 边上带权, 给定 k, 找权重和 $\leq k$ 的哈密顿回路。

规约:哈密顿回路 ≤TSP

16 近似算法

难问题的近似解, 可以用多项式时间得到。

16.1 负载均衡 Load Balancing

记机器数为 m, 任务数为 n。近似算法的解为 L, 最优解为 L^* 。

【这个不是有贪心算法吗?注意看一下这个和贪心那里讲的任务分配的那个问题的区别】【区别在于,贪心那里的任务,开始时间和结束时间是固定的,而这里只有任务的持续时间,何时开始也交由我们的算法安排】

Claim 即使只有两台机器,负载均衡问题也是 NP 难的【Partition 规约到负载均衡】

16.1.1 简单贪心解法

总是把任务分配给当前负载最轻的机器

16.1.2 最长运行时间 (LPT) 优先的贪心算法

由上面 2-紧界的例子受到启发: 先考虑运行时间长的任务。

Lemma 3 如果有超过 m 个任务,则 $L^* \geq 2t_{m+1}$

证明:【因为前 m+1 个任务分配到 m 台机器,至少两个任务在同一台机器上。且任务按运行时间降序排列,所以这台机器上的负载至少 $2t_{m+1}$ 】

16 近似算法 31

Theorem LPT 贪心算法是 3/2-近似的。【lec14 16/72】【这个 3/2 界是不紧的。另有论文证明了 LPT 是 4/3-近似的。太复杂了,不要求】

证明: $L_i = (L_i - t_j) + t_j \le L^* + L^*/2 = 3/2L^*$ 。这里 t_j 是分配在机器 i 上的最后一个任务 j 的运行时间。

16.2 点覆盖

16.2.1 简单贪心解法

每次随机选一条没被覆盖的边, 任取一个顶点加入覆盖集中。

【复杂度:通过构造一个巧妙的 L,R 二分图,证明了近似度是 $\Omega(\lg r)$ 的】【这里 r 是最优解的值。也就是说,当最优解很大的时候,贪心解的答案可能大到没谱了】

16.2.2 聪明的贪心算法

每次选取能够再覆盖最多的边的点。即为每个点维护它的未覆盖邻边的数量。

【复杂度:如果把这个算法应用到上面构造的 L,R 二分图,还是会选出 R 做结果,所以,最坏情况下近似度还是 $\Omega(\lg r)$ 的】

16.2.3 2-近似的算法

每次随机选一条边,把这条边的两个顶点都放在覆盖集里,然后删去这两个点的所有邻边。

Theorem 这个算法是 2-近似的多项式时间算法。

证明:易证算法是多项式时间的,下面证明算法是 2-近似的。记算法解为 C,最优解为 C^* 。【算法中的 A 的定义 |ec14| 26/72】则 $|C^*| \ge |A|$,|C| = 2|A|。所以 $|C| \le 2|C^*|$ 。【A 是最大匹配(为什么?)应该说 A 是匹配。这里也用不到最大匹配的性质啊。】

16.3 旅行商问题 TSP

Theorem 1 对任意 α , 找到 TSP 问题的 α -近似算法是 NP 难的。

证明:可以从哈密顿回路问题规约过来。对哈密顿回路问题的图 G,构造 α -近似旅行商问题的图 G' 如下

$$w(u,v) = \begin{cases} 1, & if \ (u,v) \in E \\ \alpha|V|+1, & otherwise \end{cases}$$

则在 G 里找到哈密顿回路当且仅当 G? 中找到 α 精度的旅行商问题近似解。【这个当且仅当没证】

Theorem 2 若图满足三角不等式,即 $w(u,v) \ge w(u,x) + w(x,v)$,则有多项式时间的 3/2-近似算法。

16.3.1 一个 2-近似算法

【lec14 29/72】【找最小生成树,倍增最小生成树的边数,在倍增后的"树"上找欧拉回路(一定有),按照欧拉回路上每个点第一次出现的顺序,确定 TSP 的回路】

16 近似算法 32

【证明略。见 ppt lec4 30/72】 这个 2 是紧界。31/72 有例子。

16.3.2 一个 3/2-近似算法

前面算法的问题在于,如果一个节点的度数已经是偶数,就没必要再复制它的边了。【这里把最小生成树中节点度数为奇数的那些点(一定是偶数个点)单独拿出来,在原图 G 上找这些点的代价最小的完美匹配 M,把 M 中的边加入树中。然后再找欧拉回路等等,与上面算法一样】 M 加入 T 之后,得到的就不一定还是树了。匹配 M 中的边是从 G 里来的,不是从 T 里来的。但是不影响仍然有欧拉回路。

Lemma 设 $V' \subset V$ 且 |V'| 是偶数。令 M 为 V' 的代价最低的完美匹配,则 $cost(M) \leq OPT/2$.

证明: $\mathbb{C}\cos(V' \perp h) - \mathbb{C}$ 环路)<=OPT $\cos(M) < =(1/2)\cos(V' \perp h)$ 这个回路)

【证明 1.5-近似度: $cost(C) \le cost(T) \le cost(T) + cost(M) \le 3/2OPT$ 】

【还有更多结论,不做要求 34/72】

16.4 帯权集合覆盖 Weighted Set Cover

【顶点覆盖是 NP 难问题,顶点覆盖是集合覆盖的子例,故集合覆盖是 NP 难问题(顶点覆盖能规约到集合覆盖)】

【一种是要用最小代价覆盖所有元素,一种是要在固定代价内覆盖尽可能多的元素。这里讨论的是第一种】【不要求取出的覆盖集合之间互不相交(集合覆盖要求每个元素恰好出现在一个覆盖集合中,即覆盖集合两两不相交)】

16.4.1 用整数规划求近似解

问题可以建模成整数规划问题,但是证书规划问题没办法多项式时间求解,所以松弛为线性规划来解。当然这样的解只是近似解。最后要把线性规划得到的结果舍入到整数,返回原问题的近似整数解。【lec14 37/72 起。整数规划建模和松弛到线性规划都是容易的,关键是 40/72 的舍入操作比较难想。希望考试不会要求自己给这种算法吧。。。】

Theorem 这个算法是 f-近似的。

【搞不动了。。。先看点别的吧】