

On note la distribution de
$$X_n$$
 par le vecteur de probabilités $\pi_n = \left[\mathbb{P}(X_n = A) \quad \mathbb{P}(X_n = B) \quad \mathbb{P}(X_n = C) \right]^{\top} \in \mathbb{R}^3$.

Step 0: $A \rightarrow A (p=0.5)$

Walk: A

Markov Chains

Exemple

	To A	To B	To C			
From A	0.5	0.3	0.2			
From B	0.3	0.4	0.3			
From C	0.2	0.3	0.5			
La matrice de transition P						

2. On suppose que X_n a une distribution asymptotique π , comment peut-on l'obtenir?

1. Déterminez π_{n+1} en fonction de P et de π_n .

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans $\mathcal{S}=\{A,B,C\}$.

 X_n peut valoir A, B ou C et X_{n+1} ne dépend que de X_n

avec les probabilités conditionelles de transition:

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans $\mathcal{S}=\{A,B,C\}$.

 X_n peut valoir A, B ou C et X_{n+1} ne dépend que de X_n

avec les probabilités conditionelles de transition:

	To A	To B	To C
$\mathbf{From} \mathbf{A}$	0.5	0.3	0.2
From B	0.3	0.4	0.3
From C	0.2	0.3	0.5

La matrice de transition P

Step 0: $A \rightarrow A (p=0.5)$

On note la distribution de X_n par le vecteur de probabilités $\pi_n = \left[\mathbb{P}(X_n = A) \quad \mathbb{P}(X_n = B) \quad \mathbb{P}(X_n = C) \right]^{\top} \in \mathbb{R}^3$.

- 1. Déterminez π_{n+1} en fonction de P et de π_n .
- 2. On suppose que X_n a une distribution asymptotique π , comment peut-on l'obtenir ?

34

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Step 0: $A \rightarrow A (p=0.5)$

Walk: A

Step 0: $A \rightarrow A (p=0.5)$

Walk: A

Stationnarité: cas discret

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans un ensemble fini \mathcal{S} .

