Body size evolution in palaeognath birds is consistent with Neogene cooling-linked gigantism (Supplementary material)

Nicholas M. A. Crouch^{1,2} Julia A. Clarke^{1,2}

¹Dept. of Geological Sciences

University of Texas at Austin

Austin, Texas, 78756, U.S.A.

² Email: <Julia_Clarke@jsg.utexas.edu>

LIST OF TABLES

22	S1 Mas	s estimates for members of Gastornis, Brontornis, and Diatryma	10
		Contents	
20		and the present study.	9
	S3	Comparison of weight estimates for a selection of species from Worthy et al. (2017)	
18		zoic periods	8
	S2	Number and geographic distribution of recorded avian specimens in the three Ceno-	
16	S1	Range in palaeognath species mass plotted against mean species mass	7
		List of Figures	
14		observed body mass for extant Palaeognathae	6
	S3	$\it r^2$ values from models describing the relationship between predicted body mass and	
12		tarsus, tmt = tarsometatarsus, hum = humerus	5
	S2	Raw data used in this study to generate scaling equations. Fem = femur, tbt = tibio-	
10	S1	Extinct crown and stem Palaeognathae included in this study	2

Table S1: Extinct crown and stem Palaeognathae included in this study. Species without an estimated mass were assigned a discrete weight category based on comparisons of preserved material to modern taxa. See main text for discussion of the age estimate for *Struthio brachydactylus*. Two taxa suggested to be ratites – a fragmentary distal tarsometatarsus (Tambussi et al., 1994) and an incomplete rostral section of a premaxilla (Cenizo, 2012) – are not included in this study. Although these taxa are large, their placement within Palaeognathae has been disputed (e.g. Mayr, 2009; Cenizo, 2012) and are therefore not included in this study.

Order	Species	Mean Age (Mya)	log(mass)(kg)	Size Class
Aepyornithiformes	Aepyornis maximus	1.29	5.78	gigantic
	Aepyornis medius	1.29	5.02	gigantic
	Aepyornis gracilis	1.29	4.84	gigantic
	Mullerornis hildebrandti	0.25	4.44	large
	Aepyornis grandis	1.29	4.43	large
	Mullerornis agilis	0.25	3.99	medium
	Mullerornis betsilei	0.25	3.84	medium
	Mullerornis rudis	0.25	-	medium
Apterygiformes	Proapteryx micromeros	17.50	0.76	small
Casuriiformes	Dromaius ocypus	3.96	-	large
	Emuarius guljaruba	23.50	3.93	medium
	Emuarius gidju	19.50	3.61	medium
Dinornithiformes	Dinornis robustus	1.00	5.27	gigantic
	Pachyornis elephantopus	1.50	4.82	gigantic
	Dinornis novaezealandiae	1.00	4.74	large
	Megalapteryx benhami	1.00	4.31	large

Order	Species	Mean Age (Mya)	log(mass)(kg)	Size Class
	Pachyornis geranoides	1.50	4.18	large
	Anomalopteryx didiformis	1.50	4.13	large
	Emeus crassus	0.50	4.12	large
	Megalapteryx didinus	1.00	4.00	large
	Eurapteryx curtus	1.00	3.77	medium
	Pachyornis australis	1.50	3.71	medium
	Euryapteryx curtus	0.80	3.68	medium
Lithornithiformes	Paracathartes howardae	53.90	1.36	small
	Lithornis celetius	59.25	1.07	small
	Lithornis vulturinus	52.20	0.92	small
	Lithornis promiscuus	56.30	0.90	small
	Lithornis plebius	56.30	0.41	small
	Calciavis grandei	51.66	0.15	small
	Pseudocrypturus cercanaxius	53.05	-0.03	small
	Fissuravis weigelti	57.50	-	small
	?Lithornis hookeri	51.90	-	small
Rheiformes	Opistodactylus kirchneri	7.90	3.73	medium
	Pterocnemia mesopotamica	11.50	3.44	medium
	Opistodactylus patagonicus	16.90	-	medium
	Opistodactylus horacioperezi	21.50	-	medium
Struthioniformes	Struthio oldowayi	1.90	5.53	gigantic
	Struthio transcaucasicus	3.09	5.39	gigantic
	Struthio dmanisensis	2.15	5.37	gigantic

Order	Species	Mean Age (Mya)	log(mass)(kg)	Size Class
	Struthio karatheodoris	8.10	5.20	gigantic
	Struthio linxiaensis	7.95	-	gigantic
	Struthio novorossicus	7.15	-	gigantic
	Struthio pannonicus	1.89	-	gigantic
	Struthio brachydactylus	12–16	4.56	large
	Struthio anderssoni	1.36	-	large
	Struthio asiaticus	2.50	-	large
	Struthio barbarus	2.50	-	large
	Struthio chersonensis	3.39	-	large
	Struthio coppensi	19.50	-	large
	Struthio daberasensis	3.50	-	large
	Struthio kakesiensis	5.35	-	large
	Struthio karingarabensis	5.35	-	large
	Struthio orlovi	10.30	-	large
	Struthio wimani	3.96	-	large
	Struthio/Namornis oshanai	15.50	-	large
Tinamiformes	Crypturellus reai	16.90	-0.60	small
	Santa cruz tinamou 1	17.00	-	small
	Santa cruz tinamou 2	17.00	-	small
Unknown	Eremopezus eocaenus	35.95	3.97	medium
	Remiornis heberti	57.50	2.62	medium
	Palaeotis weigelti	44.50	2.53	medium
	Diogenornis fragilis	57.35	2.37	medium
	Ratite indet.	35.05		medium

Table S2: Raw data used in this study to generate scaling equations. Fem = femur, tht = tibiotarsus, tmt = tarsometatarsus, hum = humerus.

Species	Specimen weight (kg)	Dunning mean weight (kg)	fem length (mm)	tbt length (mm)	tmt length (mm)	hum length (mm)
Tinamus tao	1.6	84.3	123	80	87	
Crypturellus undulatus	0.5	9.0	55	77	51	53
Tinamus tao	2.0	1.6	81	121	82	98
Crypturellus soui	0.2	0.2	45	62	38	40
Dromaius novaehollandiae	27.2	34.2	187	1	•	1
Struthio camelus	130.0	111	340	580	521	1
Apteryx owenii	1.2	1.2	74	110	61	ı
Struthio camelus	66.3	111.0	243	1	ı	ı
Casuarius casuarius	36.6	44.0	204	358	•	86
Dromaius novaehollandiae	40.7	34.2	225	343	ı	ı
Struthio camelus	80.9	111.0	285	534	ı	368
Struthio camelus	81.9	111.0	294	574	ı	381
Rhea americana	18.9	23.0	190	321	1	265

Table S3: r^2 values from models describing the relationship between predicted body mass and observed body mass for extant Palaeognathae. 'Study' refers to the source of the respective equation used for mass prediction.

Study	Femur	Tibiotarsus	Tarsometatarsus
Current	0.90	0.94	0.87
Field et al. (2013)	0.51	0.58	0.46
Cubo and Casinos (1997)	0.49	0.55	0.44

Figure S1: Range in palaeognath species mass plotted against mean species mass (n = 36). Data from Dunning (2007).

Figure S2: Number and geographic distribution of recorded avian specimens in the three Cenozoic periods.

Figure S3: Comparison of weight estimates for a selection of species from Worthy et al. (2017) and the present study.

S1 Mass estimates for members of Gastornis, Brontornis, and Diatryma

- The masses reported by Worthy et al. (2017) were calculated using femoral and tibiotarsus circumferences and the equations of Campbell and Marcus (1992), as well as taken from previous studies which used these same measurements
- (Handley et al., 2016). These equations led to the estimated mass of *Brontornis burmeisteri*, an undoubtedly large species, exceeding that of the largest elephant bird *Aepyornis maximus* despite skeletal estimates not being as large Tambussi
- et al. (1999) reported the tibiotarsus length of $B.\ burmeisteri$ to be 768mm compared to 810mm in $A.\ maximus$ (Gatesy,
 - 1991). We suggest that this discrepancy is due to the measurements not scaling appropriately with increasing body size,
- 30 leading to an over-inflation of the masses of these taxa (Figure S3). This scaling disparity is possibly due to Gastornithi
 - formes (the clade in which Gastornis is found, Worthy et al., 2017) being nested within the Galloanseres which lack any
- modern relatives of equivalent size. Our equations lead to the masses of these taxa; however, as no Galloanseres were included in the calculation of the equations used here this result should be viewed cautiously.

LITERATURE CITED

Campbell, K. E. and L. Marcus, 1992. The relationships of hindlimb bone dimensions to body weight in birds. Natural History Museum of Los Angeles County Science Series 36:395–412.

36

- Cenizo, M. M., 2012. Review of the putative Phorusrhacidae from the Cretaceous and Paleogene of Antarctica: new records of ratites and pelagornithid birds. Polish Polar Research 33:225–244.
- Cubo, J. and A. Casinos, 1997. Flightlessness and long bone allometry in Palaeognathiformes and

 Sphenisciformess. Netherlands Journal of Zoology 47:209–226.
 - Dickison, M. R., 2007. The allometry of giant flightless birds. Master's thesis, Duke University.
- Dunning, J. B., 2007. CRC Handbook of Avian Body Masses, Second Edition. CRC Press.
- Field, D. J., C. Lynner, C. Brown, and S. a. F. Darroch, 2013. Skeletal correlates for body mass estimation in modern and fossil flying birds. PloS one 8:e82000.
- Gatesy, S. M., 1991. Hind limb scaling in birds and other theropods: Implications for terrestrial locomotion. Journal of Morphology 209:83–96.
- Handley, W. D., A. Chinsamy, A. M. Yates, and T. H. Worthy, 2016. Sexual dimorphism in the late
 Miocene mihirung Dromornis stirtoni (Aves: Dromornithidae) from the Alcoota Local Fauna of central Australia. Journal of Vertebrate Paleontology 36:e1180298.
- 50 Mayr, G., 2009. Paleogene Fossil Birds. Springer-Verlag Berlin Heidelberg.
- Tambussi, C., M. Ubilla, and D. Perea, 1999. The youngest large carnassial bird (Phorusrhacidae,
 Phorusrachinae) from South America (Pliocene-Early Pleistocene of Uruguay). Journal of Vertebrate Paleontology 19:404–406.

- Tambussi, C. P., J. I. Noriega, A. Gaździcki, A. Tatur, M. A. Reguero, and S. F. Vizcaino, 1994. Ratite
 bird from the Paleogene La Meseta Formation, Seymour Island, Antarctica. Polish Polar Research
 15:15–20.
- Worthy, T. H., F. J. Degrange, W. D. Handley, and M. S. Y. Lee, 2017. The evolution of giant flightless
 birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres). Royal Society
 Open Science 4:170975.