NumPy (Numerical Python)

- Go to the website "numpy.org"
- Click "Documentation"
 - NumPy quickstart
 - NumPy: the absolute basics for beginners
 - NumPy fundamentals
- Array (N-dimensional array, ndarray)
 - 1-dimensional array (vector)
 - 2-dimensional array (matrix)
 - 3 or higher dimensional array (tensor)

Array from list

- import numpy as np
- np.array([1, 2, 3])
 - Vector
 - Has one axis (dimension)
 - Has 3 elements
 - Has a length of 3
- np.array([[1, 2, 3],[4, 5, 6]])
 - Matrix
 - Has two axes (dimensions)
 - First axis has a length of 2
 - Second axis has a length of 3

Attributes for numpy.ndarray

.ndim

the number of axes (dimensions) of the array.

.shape

the size of the array in each dimension.

.size

- the total number of elements of the array.

.dtype

the type of the elements in the array.

.itemsize

the size in bytes of each element of the array.

Array creation

```
np.zeros(3)
np.zeros((3, 4))
np.ones(3)
np.ones((3, 4))
np.identity(5)
np.arange(6), np.arange(6.0)
np.arange(2, 9)
np.arrange(2, 20, 3)
np.linspace(2, 3, 11)
np.arrange(12).reshape(3, 4)
```

Matrix operations

```
A*B # elementwise product
A@B # matrix product
A.dot(B) # matrix product
from numpy.linalg import inv
inv(A)
np.transpose(A)
A.T
```

Numpy functions

```
np.sum(B)
np.sum(B, axis=0)
np.sum(B, axis=1)
np.mean()
np.max()
np.argmax()
np.hstack((a, b))
np.vstack((a, b))
np.hsplit()
np.vsplit()
```

Pandas (Panel Data Analysis)

In 2008, pandas development began at AQR Capital Management.

Columns	Symbols	AAPL	NKE	GOOGL	AMZN	FB
	Date					
	2018-01-02	41.248272	61.186932	1073.209961	1189.010010	181.419998
	2018-01-03	41.241089	61.177288	1091.520020	1204.199951	184.669998
	2018-01-04	41.432659	61.138741	1095.760010	1209.589966	184.330002
	2018-01-05	41.904385	61.659157	1110.290039	1229.140015	186.850006
	2018-01-08	41.748737	62.208481	1114.209961	1246.869995	188.279999
Index						
	2021-08-25	148.360001	169.560196	2841.580078	3299.179932	368.390015
	2021-08-26	147.539993	166.645004	2828.810059	3316.000000	364.380005
	2021-08-27	148.600006	167.580002	2880.080078	3349.629883	372.630005
	2021-08-30	153.119995	168.029999	2891.810059	3421.570068	380.660004
	2021-08-31	151.830002	164.740005	2893.949951	3470.790039	379.380005
	923 rows ×	5 columns		4	Values	

Dataframe and Series

- Dataframe (2-dimensions)
- Series (1-dimension)

Functions, methods, and attributes

pd.Series()

pd.DataFrame()

pd.date_range()

s.index

s.values

s.abs()

df.index

df.columns

df.values

df.T

df.head()

df.tail()

df.describe()

df.sort_index()

df.sort_values()

df.loc[]

df.iloc[]

Reading and Writing

import seaborn as sns
df = sns.load_dataset('titanic')
df.to excel('titanic.xlsx')

Additional methods

```
df.dtypes
df.info()
df.mean()
df.median()
df.groupby()
df.value_counts()
df.count()
```