## Fourier from the ground up

## 1 The algebra of trigonometric polynomials

**Definition 1**. A trigonometric polynomial is an expression of the form

$$f(\theta) = \sum_{n \in \mathbf{Z}} f_n e^{in\theta}$$

where all the coefficients  $f_n \in \mathbf{C}$  are zero except, maybe, a finite number of them. The set of all trigonometric polynomials is denoted by  $\mathfrak{P}$ .

There are two ways to interpret a trigonometric polynomial: as a function  $\mathbb{Z} \to \mathbb{C}$  defined by  $n \mapsto f_n$ , or as a function  $\mathbb{R} \to \mathbb{C}$  defined by  $\theta \mapsto f(\theta)$ . Most of Fourier analysis deals with the duality between these two interpretations.

Let us introduce some **common language**. A trigonometric polynomial is usually called a *signal*. The indices n are called the *frequencies* and the coefficient  $f_n$  is called the *amplitude of* f *at the frequency* n. The mapping  $n \mapsto |f_n|^2$  is called the *power spectrum* of the signal f. Building the signal from its amplitudes is called is called *synthesis*, and extracting the amplitudes from a signal is called *analysis*.

The monomial  $e^{in\theta}$  is called a *pure wave of frequency n*. Thus, synthesis consists in creating a signal as a linear combination of pure waves, and analysis consists in recovering the coefficients of this linear combination. The whole of harmonic analysis consists in studying the duality between signals  $f(\theta)$  and their spectra  $f_n$ ; how do the operations on signals correspond to operations on their spectra, and vice-versa.

## **Definition 2**. a b c

**Proposition 3**. (Elementary properties) The following properties hold:

- 1. If  $f \in \mathcal{P}$  then  $f(\theta)$  is a function  $\mathbf{R} \to \mathbf{C}$  which is  $2\pi$ -periodic and  $\mathscr{C}^{\infty}$ .
- 2. If  $f \in \mathcal{P}$  then  $f_n$  is a function  $\mathbf{Z} \to \mathbf{C}$  of finite support.
- 3. The set P is a vector space over C.
- 4. If  $h = \lambda f + \mu g$  then  $h_n = \lambda f_n + \mu g_n$ .
- 5. The set  $\mathcal{P}$  is an algebra (thus, closed by pointwise product  $f(\theta)g(\theta)$ )

*Proof.* (1) Each monomial  $e^{in\theta}$  is  $\mathscr{C}^{\infty}$  and  $2\pi$ -periodic, and f is a finite linear combination of such monomials, so it is also  $\mathscr{C}^{\infty}$  and  $2\pi$ -periodic. (2) This is a rewriting of the defintion of  $\mathscr{P}$ . (3,4) This result is immediate by linearity of finite sums. (5) The product of two finite sums is still a finite sum.

When interpreting a trigonometric polynomial as a  $2\pi$ -periodic function  $\mathbf{R} \to \mathbf{C}$ , it helps to plot it as a closed curve in the complex plane. The monomials  $e^{in\theta}$  for  $n \neq 0$  all correspond to the unit circle traversed n times, clockwise for n < 0, anticlockwise for n > 0.

