Nonlinear Control: a Introduction

Bing Zhu

The Seventh Research Division Beihang University, Beijing, P.R.China

Nonlinear control

Typical tasks in nonlinear control

- Stabilization
- Output regulation
- Trajectory tracking

Methodology

- State feedback: all states are measurable, static or dynamic feedback
- Output feedback: only the output is measurable

B. Zhu (SRD BUAA) 2019 Fall 2/10

Other detailed approaches

- Optimal control: performance index to be optimized, constraints
- Robust control: influences on closed-loop stability due to uncertainties
- Adaptive control: quantitative influences on system performances due to parametric uncertainties

Robust control

- System plant belongs to an "uncertainty set".
- The closed-loop system with any member in the "uncertainty set" can be stabilized.
- Example:

$$\dot{x} = f(x) + u \text{ with } |f(x)| < k|x|, \ k > 0$$
 (1)

can be asymptotically stabilized by u = -kx, even though the detailed express of f(x) is unknown.

B. Zhu (SRD BUAA) 2019 Fall 4 / 10

Adaptive control

- Parametric uncertainties exist
- Feedback control with parameter estimation in the loop
- Example:

$$\dot{x} = px + u$$
 with uncertain p (2)

can be stabilized by u = -kx with $\dot{k} = \beta x^2$ ($\beta > 0$)

B. Zhu (SRD BUAA) 2019 Fall 5 / 10

Robust adaptive control

- Parametric uncertainties, un-modeled dynamics, etc.
- Combination of robust control and adaptive control
- Example:

$$\dot{x} = px + d(x) + u \tag{3}$$

where p is uncertain, and d(x) is uncertain with known bound |d(x)| < D(x). The Robust adaptive control can be designed by

$$u = -kx - (D(x) + \epsilon)\operatorname{sgn}(x), \ \dot{k} = \beta x^2, \ \beta > 0, \ \epsilon > 0,$$
(4)

to stability the closed-loop system.

B. Zhu (SRD BUAA) 2019 Fall 6 / 10

Categories of feedback control

Static state feedback:

$$\dot{x} = f(t, x, u) \tag{5}$$

The static state feedback is in the form of $u = \gamma(t, x)$.

The static state feedback is "memoryless" with respect to *x*.

Dynamic state feedback:

$$u = \gamma(t, x, z), \ \dot{z} = g(t, x, z). \tag{6}$$

Integral control and adaptive control are examples of dynamic state feedback.

B. Zhu (SRD BUAA) 2019 Fall 7 / 10

Categories of feedback control

Static output feedback:

$$\dot{x} = f(t, x, u), \ y = h(t, x, u) \tag{7}$$

The static state feedback is in the form of $u = \gamma(t, y)$.

Example:
$$\dot{x}_1 = -x_1 + x_2^2$$
, $\dot{x}_2 = u$, $y = x_2$, $u = -y$.

Dynamic output feedback:

$$u = \gamma(t, y, z), \ \dot{z} = g(t, y, z). \tag{8}$$

Observers are usually applied in dynamic output feedback.

B. Zhu (SRD BUAA) 2019 Fall 8 / 10

Several typical nonlinear control approaches

In this course,

- Approximate linearization
 - * Linearization around working points
 - * Pole assignment, LQR, etc.
 - Local stability
 - ⋆ To enlarge stability region ⇒ Gain scheduling.
- Feedback linearization
 - * Use feedback to cancel nonlinearities
 - ⋆ Global stability
 - * Usually combined with robust control

Several typical nonlinear control approaches

In this course,

- Sliding model control (SMC)
 - * Use dis-continuous term to overcome the uncertainty
 - * Matched uncertainty
- Backstepping
 - System plant in cascaded form, or "triangular form"
 - Un-matched uncertainty can be handled
- Lyapunov redesign
 - * Additional terms in the controller to treat matched uncertainties
- Direct Lyapunov-based control

