Homework 2

Exercise 1

Fill in the following table. Use \checkmark when the set is **closed** and \nearrow when the set is not closed:

(-1,2]	(-1,1)	[-1, 1]	$\mathbb{R} \setminus \{1\}$	$\{1, 2, 3\}$	$\mathbb{R}\setminus(0,1)$	\mathbb{Z}	Q	$\mathbb{R} \backslash \mathbb{Q}$	\mathbb{R}

Prove each statement using the theoretical results from the lectures and seminars.

Exercise 2

Specify the type of the following sets (open or closed). Prove your statements.

$$A = \bigcup_{n \in \mathbb{N}} \left(-1 + \frac{1}{n}, 1 - \frac{1}{n} \right), \quad B = \bigcup_{n \in \mathbb{N}} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right]$$

$$C = \bigcap_{n \in \mathbb{N}} \left(-1 + \frac{1}{n}, 1 - \frac{1}{n} \right) \quad D = \bigcap_{n \in \mathbb{N}} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right]$$

$$E = \bigcup_{n \in \mathbb{N}} \left[-1 - \frac{1}{n}, 1 + \frac{1}{n} \right] \quad D = \bigcap_{n \in \mathbb{N}} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n} \right)$$

Exercise 3

Fill in the following table. Use \checkmark when the set is a **neighborhood** of -1 and \checkmark when it is not:

(-1, 2]	(-2,1)	[-1, 1]	$\mathbb{R} \setminus \{1\}$	Z	$\mathbb{R}\setminus(-1,0)$	\mathbb{Q}

Prove each statement using the theoretical results from the lectures and seminars.