

Kommunikationsnetze

Kapitel 2: Kommunikationsprotokolle und Schichtenmodelle

Vorlesung Kommunikationsnetze

Wintersemester 2021/22

Prof. Dr.-Ing. Peter Roer

Kapitelübersicht

2.1 Kommunikationsprotokolle – Einführung

- Grundprinzipien der Nachrichtenübertragung
- Eigenschaften der Kommunikation
- Notwendigkeit von Kommunikationsprotokollen
- Protokollfamilien
- Standardisierung

2.2 Schichtenmodell der Kommunikation

- OSI Referenzmodell
 - Grundprinzipien, Aufgaben der Schichten
 - Peer-to-Peer Kommunikation, Kapselung, PDUs
- TCP/IP-Kommunikationsmodell
 - Schichtenmodell, PDUs, Adressierung
 - Grundprinzip der Adressierung

Nachrichtenübertragung

- _ Technische Kommunikation = Immaterieller Austausch von Nachrichten mit Hilfe technischer Einrichtungen (ursprünglich: über größere Entfernungen)
 - Nachricht: Zusammenstellung von Zeichen, die codiert übertragen werden.

- Nachricht läuft von einem Sender (Quelle) über einen Kanal (Übertragungsmedium) zu einem Empfänger (Ziel)
 - Eine Nachricht werden senderseitig codiert, in Form von Signalen (die die codierten Nachrichten darstellen) übertragen und nach dem Empfang decodiert.
- __ Digitale Übertragung ermöglicht die Übertragung unterschiedlicher Informationen (Text, Sprache, Video, Multimedia) über den gleichen Kanal

Nachrichtenübertragung

Digitale Signalübertragung:

- Digitale Signale sind zeit- und wertdiskret
- Elektrische Signale sind codierte Abbilder des Quellensignals

Digitalisierung eines analogen Signals:

- Abtastung und Quantisierung
- Codierung (typisch: in Binärsignale)

Beispiel: Binäres Signal

T: Bit Time

_ Digitale Übertragung ist **störunempfindlicher** als analoge Übertragung:

- Solange Codeelemente noch erkannt werden können, haben Störungen keinen Einfluss auf die empfangene Information
- Über eine Übertragungsstrecke mit mehreren Regeneratoren akkumuliert die Störleistung nicht
 - => kein Informationsverlust, solange Codeelemente noch erkennbar!

Nachrichtenübertragung

Paketorientierte Übertragung

- Segmentierung
 - Nachrichten werden in der Regel in kleine, handhabbare Pakete unterteilt (z.B. in IP-basierten Netzen)
 - Beim Empfang müssen die Segmente (Pakete) in der richtigen Reihenfolge wieder zusammengesetzt werden

 Nummer eriemung erforderlicht.
 - -> Nummerierung erforderlich!

Adressierung der Absender / Anwendungen erforderlich

Multiplexing

- Nutzung eines Kanals um (gleichzeitig)
 Nachrichten mehrerer Absender /
 Anwendungen zu übertragen
- Daten verschiedener Anwendungen k\u00f6nnen "gleichzeitig" \u00fcbertragen werden (Multiplex)
- bei Fehlern nur Wiederholung betroffener Pakete
- Quality-of-Service Mechanismen realisierbar

Transaktion

Kommunikation erfordert Regeln

- __Für eine erfolgreiche Kommunikation müssen Regeln eingehalten werden:
 - Identifikation der Partner
 - Absprache der Kommunikationsmethode (Direkt, Telefon, Brief, ...)
 - Verständigung über die verwendete Sprache
 - Festlegung der Geschwindigkeit
 - Definition, ob der Partner eine Nachricht bestätigen soll oder nicht
 - •
- Technische Kommunikation ist erfolgreich, wenn der Inhalt einer Nachricht beim Empfänger dem vom Absender beabsichtigten Inhalt entspricht.

Ein Satz von Regeln für die technische Kommunikation heißt **Kommunikationsprotokoll.**

Kommunikationsprotokolle

Protokoll:

 formale Beschreibung von Regeln und Konventionen, wie die Kommunikation zwischen Geräten in einem Netzwerk erfolgt

Protokolle regeln

- das Format und den Aufbau der ausgetauschten Daten
- die Adressierung
- die Reihenfolge der ausgetauschten Daten
- die zeitliche Steuerung
- die Fehlerbehandlung

Dienst	Protokoll
World Wide Web (WWW)	HTTP (Hypertext Transport Protocol)
E-Mail	SMTP (Simple Mail Transfer Protocol) POP (Post Office Protocol)
Datentransfer	FTP (File Transfer Protocol)

_Protokollfamilie (Protocol Suite):

- Eine Gruppe von Protokollen, die gemeinsam die Kommunikationsabläufe eines bestimmten Kommunikationsdienstes bestimmen
- Werden hierarchisch geschichtet → auch "Protokollstapel" ("Protocol Stack")

Kommunikationsprotokolle

Beispiel: Möglicher Protokoll-Stapel im World Wide Web:

 Umfasst Protokolle der TCP/IP-Protokollfamilie (hier IP, TCP, HTTP) und der IEEE 802 Protokollfamilie (hier: Ethernet)

Kommunikationsprotokolle -Standardisierung

- International standardisierte Protokolle ermöglichen herstellerunabhängige Kommunikation zwischen Geräten
 - im Gegensatz zu proprietären Protokollen einzelner Hersteller
- Organisationen, die Protokolle standardisieren (Beispiele):
 - **IEEE** (Institute for Electrical and Electronic Engineers, www.ieee.org)

- z.B. Weitverkehrsnetze, SDH, ISDN, GSM, ...
- **ETSI** (European Telecommunikation Standardization Institute, www.etsi.org)
- **ISO** (International Standardization Organization, www. iso.org)
- **EIA/TIA** ((Electrical bzw. Telecommunication Industry Association)

Standardisierung

Beispiel: Internet-Standardisierung

Internet Adress-Verwaltung (IP-Adressen, DNS Namen, TCP/UDP-Portnummern)

- IANA (Internet Assigned Numbers Authority)
- ICANN (Internet Corporation for Assigned Names and Numbers)

Standardisierung

Beispiel: IEEE 802 Standards

- Netztechnologien f
 ür lokale Netze und Metropolitain Area Networks, z.B.
 - IEEE 802 Overview & Architecture
 - IEEE 802.1: Bridging & Management
 - IEEE 802.2: Logical Link Control
 - IEEE 802.3: Ethernet
 - IEEE 802.11: Wireless LANs
 - IEEE 802.15: Wireless PANs (z.B. Bluetooth, ZigBee)
 - IEEE 802.16: Broadband Wireless MANs
 - IEEE 802.17: Resilient Packet Rings
 - IEEE 802.20: Mobile Broadband Wireless Access
 - IEEE 802.21: Media Independent Handover Services
 - IEEE 802.22: Wireless Regional Area Networks

Aufgabe:

Besuchen Sie die Web-Seiten der IETF, IEEE und ITU-T und finden Sie die folgenden Standards: RFC 791 IEEE 802.3 ITU-T Y.2001

- __i.d.R. 6 Monate nach Verabschiedung kostenlos verfügbar
 - -> IEEE Get Program (http://standards.ieee.org/about/get/index.html)

2.2 Schichtenmodell der Kommunikation

- _ Die Beschreibung der komplexen Abläufe eines Kommunikationsprozesses wird durch hierarchisch gegliederte Kommunikationsmodelle vereinfacht
- Strukturierung der anfallenden Aufgaben in hierarchische Schichten
 - Schicht := eine Gruppe vergleichbarer Aufgaben und Funktionen
 - Jede Schicht erbringt eine spezifische Aufgabe des Kommunikationsvorgangs
 - Zur Erfüllung dieser Aufgabe umfasst eine Schicht in der Regel mehrere, auch unterschiedliche Funktionen (→ "Dienst" der Schicht)
 - Der Kommunikationsvorgang insgesamt wird durch das hierarchische Zusammenspiel der Schichten erbracht
- _ Grundprinzip der Kommunikation: Peer-to-Peer Kommunikation
 - Logische Kommunikation nur zwischen gleichrangigen Schichten
 - Geregelt durch Kommunikationsprotokolle f
 ür diese Schicht
- Vorteile dieses Ansatzes:
 - Modularisierung und Komplexitätsreduktion (Teile und Herrsche)
 - Finfacherer Protokollentwurf

Schichtenmodell – Beispiel

Kommunikation zwischen Geschäftsführenden der Unternehmen X und Y

- X → Y Angebot anfordern
- Y → X Angebot schicken
- X → Y Auftrag erteilen
- Hilfe von Sachbearbeitenden

Sachbearbeitende

- Angebot sauber formulieren, Geschäftspapier, AGBs, etc.
- Kommunikation zwischen Sachbearbeitenden kann deutlich h\u00f6here Komplexit\u00e4t haben
 - Einholen von Zusatzinformationen
 - Rückfrage bei Ausbleiben des Angebots
- Sachbearbeitende transportieren Angebot nicht selbst, sondern per Post

Schichtenmodell – Beispiel (2)

Beispiel: TCP/IP-Schichtenmodell

OSI-Referenzmodell

_Open Systems Interconnection (OSI) - Referenzmodell der ISO

- Grundlegendes Referenzmodell zur Strukturierung der Kommunikation in technischen Systemen
- Definiert die grundlegenden Aufgaben der Schichten
- Standard: ISO/IEC 7498: Information Processing Systems Open Systems Interconnection – Basic Reference Model, 1984
- Offene Systeme: herstellerunabhängig
- vorher gab es eine Reihe proprietärer Systeme in der Datenkommunikation (IBM SNA, DECNet, ...)
- Bis heute: zentrale Bedeutung bei der Strukturierung der Kommunikationsaufgaben
- die auf Basis des OSI-Modells entwickelten Protokolle sind mittlerweile bedeutungslos und fast vollständig durch die Internet-Protokolle der TCP/IP-Familie verdrängt worden

ISO: International Organization for Standardization

OSI-Referenzmodell

- Grundprinzipien

- Sieben hierarchische Schichten
- __Die Schichten sind so konzipiert, dass sie ihre spezifische Aufgabe weitgehend unabhängig von anderen Schichten ausführen können.
- Jede Schicht bietet der nächst höheren Schicht ihre Dienste an.
- Jede Schicht kommuniziert (logisch) nur mit der gleichrangigen Schicht auf dem Partnersystem unter Verwendung eines Kommunikationsprotokolls (Peer-to-Peer Kommunikation, "horizontale" Kommunikation).
- Eine Interaktion auf einem System erfolgt nur zwischen direkt benachbarten Schichten, z.B. Schicht n und Schicht n-1 ("Vertikale" Kommunikation). Diese Interaktion soll sich auf das Nötigste beschränken.

OSI-Referenzmodell – 7 Schichten

Schicht 7:

Application Layer

Schicht 6:

Presentation Layer

Schicht 5:

Session Layer

Schicht 4:

Transport Layer

Schicht 3:

Network Layer

Schicht 2:

Data Link Layer

Schicht 1:

Physical Layer

Anwendungsschicht

Darstellungsschicht

Sitzungsschicht

Transportschicht

Vermittlungsschicht

Sicherungsschicht

Bitübertragungsschicht

OSI-Referenzmodell – Aufgaben der 7 Schichten

Anwendungsorientierte Schichten: Schichten 5-7

Schicht 7 – Anwendungsschicht

- Stellt Netzdienste für Anwendungen außerhalb des OSI-Modells zur Verfügung
- z.B. Anwendungsprotokolle wie HTTP, SMTP, ...

Schicht 6 – Darstellungsschicht

- Stellt die einheitliche Darstellung der Information der Anwendung für den Datentransfer sicher
- z.B. Datenformate, Zeichencodierung, ggf. Kompression, etc.

Schicht 5 — Sitzungsschicht

- Aufbau, Verwaltung und Steuerung (inkl. Synchronisation) von Kommunikationssitzungen zwischen Anwendungen
- z.B. Ablaufsteuerung, Dialogverwaltung, Synchronisation von Dialogen

Application Layer		
Presentation Layer		
Session Layer		
Transport Layer		
Network Layer		
Data Link Layer		
Physical Layer		

OSI-Referenzmodell – Aufgaben der 7 Schichten

Transportorientierte Schichten: Schichten 1-4

Schicht 4: Transportschicht / Transport Layer

- Datentransport zwischen Anwendungen auf Endsystemen (Ende-zu-Ende Datentransport)
 - Bei verbindungsorientiertem Datentransport:
 - Auf- und Abbau von logischen Verbindungen
 - Segmentierung der Anwendungsdaten
 - Zuverlässiger Datentransport mittels Flusssteuerung und Fehlerkorrektur (Ende-zu-Ende)

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

- Bei verbindungslosem Datentransport:
 - Spontane Kommunikation ohne Segmentierung, keine Flusssteuerung

OSI-Referenzmodell – Aufgaben der 7 Schichten

Transportorientierte Schichten: Schichten 1-4

Schicht 3: Vermittlungsschicht / Network Layer

- Datentransport zwischen Endgeräten über ggf. auch mehrere von der OSI-Schicht 2 bereitgestellte Übertragungsabschnitte
 - logische Adressierung der Endgeräte
 - Wegesuche, Auswahl des besten Pfades (Vermittlung bzw. Routing)
 - Bei verbindungsorientiertem Datentransport:
 - Wegesuche, Verbindungsauf- und -abbau
 - Bei verbindungslosem Datentransport:
 - Routing, individueller Transport von Paketen zum Ziel-Endgerät

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

OSI-Referenzmodell – Aufgaben der 7 Schichten

Transportorientierte Schichten: Schichten 1-4

Schicht 2: Sicherungsschicht / Data Link Layer

- (Gesicherter) Datentransfer über einen Übertragungsabschnitt (Link) zwischen benachbarten Systemen
 - Rahmenbildung (Framing)
 - Steuerung des Medienzugriffs
 - Verwaltung von physikalischen Adressen
 - Fehlererkennung oder ggf. Fehlerkorrektur

Application Layer		
Presentation Layer		
Session Layer		
Transport Layer		
Network Layer		
Data Link Layer		
Physical Layer		

Schicht 1: Bitübertragungsschicht / Physical Layer

- Übertragung der Bits über ein physikalisches Übertragungsmedium
 - Definiert elektrische, mechanische und funktionale Spezifikationen einer
 Technologie für die Bitübertragung über ein bestimmtes Übertragungsmedium:
 - Spezifikation der Signale (Signalform, Bitsynchronisation, Spannungspegel, ...)
 - Spezifikation von Kabeln, Steckern, Kabellängen, etc.
 - Aktivierung und Deaktivierung der Übertragung, ...

OSI-Referenzmodell: Peer-to-Peer Kommunikation

Unterscheidung:

- Endsysteme nutzen/realisieren die OSI-Schichten 1-7
- Netzwerkelemente nutzen/realisieren die OSI-Schichten 1-3

OSI-Referenzmodell: Peer-to-Peer Kommunikation

- __Jede Schicht kommuniziert logisch mit der gleichrangigen Schicht auf dem Partnersystem (Horizontale Kommunikation).
 - Die Kommunikation wird in der Schicht n durch ein Schicht-n-Kommunikationsprotokoll geregelt.
 - Für die Realisierung der Kommunikation werden die Dienste der darunter liegenden Schicht genutzt.
 - Dazu werden die Informationen der Schicht n beim Sender an die Schicht n-1 weitergereicht und beim Empfänger von der Schicht n-1 entgegen genommen (Vertikale Kommunikation).
- _Beinhaltet "Kapselung" der Daten
 - Einkapselung auf der Sendeseite
 - Entkapselung auf der Empfangsseite

_Die so erzeugten Dateneinheiten in einer Schicht heißen allgemein Protocol Data Unit (PDU).

Protocol Data Unit (PDU)

- _ Die in einer Schicht ausgetauschten Dateneinheiten heißen allgemein Protocol Data Unit (PDU).
- _ Jede Schicht transportiert die Daten der nächst höheren Schicht (= deren PDU) in ihrem Datenfeld und ergänzt diese mit eigenen Steuerinformationen, z.B.
 - Adressinformation
 - Name des Protokolls der übergeordneten Schicht
 - Länge der Nutzdaten

Eine PDU enthält:

- Ein Datenfeld für <u>Nutzinformationen</u> (= PDU der nächst höheren Schicht)
- Kopffeld (Header) und ggf. Anhang (Trailer) für eigene <u>Steuerinformationen</u>
- In jeder Schicht wird eine protokollspezifische PDU verwendet

Kapselung (1)

Kapselung (2)

Sendeseite

- Jede Schicht bekommt die PDU der über ihr liegenden Schicht übergeben
- Nutzdaten der Schicht = PDU der übergeordneten Schicht
- Jede Schicht fügt ihre eigenen Steuerungsinformationen hinzu, z.B.
 - Adressinformationen
 - Name des Protokolls der übergeordneten Schicht
 - Länge der Nutzdaten
- und übergibt ihre PDU an die unter ihr liegende Schicht
- Die Daten werden auf diese Weise gekapselt bis hinab zur Bitübertragungsschicht

_ Empfangsseite

- Jede Schicht wertet ihre eigene Steuerinformation aus
- und entfernt diese vor der Übergabe an die nächst höhere Schicht wieder

Beispiel: PDU im TCP/IP-Protokollstack

- __ Header und ggf. Trailer enthalten Steuerinformation der jeweiligen Schicht
- _ Das Datenfeld enthält die Nutzinformation (= die PDU der nächst höheren Schicht)

TCP/IP-Modell

Basis des Internet

- Entwicklung seit Beginn der 1970er Jahre.
- Ziel: Entwicklung eines leitungsfähigen, ausfallsicheren Netzes.
- TCP und IP wurden 1981 in der heutigen Version standardisiert
- Protokolle f
 ür praktische Implementierungen

Hierarchische Netzarchitektur:

- Umfasst vier statt sieben Schichten
 - Funktionen des Presentation und Session Layer befinden sich im Application Layer.
 - Data Link und Physical Layer bilden den Network Access Layer, der die Aufgabe hat, Internet-PDUs auf einem beliebigen Data Link Layer zu übertragen

4 Schichten im TCP/IP-Modell

TCP/IP-Modell: Aufgaben der Schichten

_Application Layer (Anwendungsschicht)

- Aufgabe: Kommunikation zwischen Anwendungsprozessen
- Beispiele: HTTP (WWW), SMTP (E-Mail), DNS
- Es wird vorausgesetzt, dass die darunter liegenden Schichten die Anwendungsdaten zuverlässig an den Anwendungsprozess auf dem Zielrechner übertragen.
- Umfasst die OSI Schichten 5 bis 7

_Transport Layer (Transportschicht)

- Aufgabe: (Zuverlässiger) Ende-zu-Ende Transport von Segmenten von einem Kommunikationsendpunkt (= einer Anwendung) zu einem anderen
- Adressierung der Anwendungen (logische Portnummern)
- Zwei mögliche Protokolle: TCP (zuverlässiger Transport), UDP (unzuverlässig)
- Segmentierung der Anwendungsdaten (nur TCP)
- Zuverlässigkeit und Flusskontrolle (nur TCP)
- Entspricht der OSI-Schicht 4

TCP/IP Modell: Aufgaben der Schichten

Internet Layer (Netzwerkschicht)

- Aufgabe: Verbindungsloser Transport von Paketen zwischen identifizierbaren Endgeräten (evtl. über mehrere Verbindungsabschnitte)
- Kapselung von Segmenten in Paketen
- Logische Adressierung der Endgeräte (z.B. IP-Adressen), Wegwahl (Routing)
- Entspricht der OSI-Schicht 3; Protokoll: IP

Network Access Layer (Netzzugangsschicht)

- Umfasst die OSI-Schichten 1 und 2, beschreibt dadurch die Netztechnologie auf einem lokalen Abschnitt (Bsp: Ethernet, WLAN)
- In der Schicht 2:
 - Kapselung von Paketen in Frames
 - Übertragung von Frames zwischen zwei direkt benachbarten Systemen
 - Adressierung über physikalische Adressen (im LAN)
 - Medienzugriffssteuerung (Media Access Control)
- In der Schicht 1: Umwandlung der Bits in Signale und physikalische Übertragung

Vergleich der Modelle

TCP/IP-Modell: Protokollbeispiele

Kapselung im TCP/IP Modell

Analog zum OSI-Referenzmodell

Die PDUs der einzelnen Schichten tragen spezifische Namen

TCP/IP Modell: Standardisierung und Realisierung

Die Architektur und die Protokolle sind offene Standards

 Standardisierung in Dokumenten (Request for Comment - RFC) kontrolliert durch die IETF (Internet Engineering Task Force).

TCP/IP Modell: PDU-Namen und Adressierung

Schicht	Daten/Adressierung	Beispiel
Anwendung	Anwendungsdaten	SMTP, HTTP
Transport	Segmente / Datagramme Adressierung der Anwendungen über Portnummern	SMTP = Port 25 HTTP = Port 80
Vermittlung (Internet)	IP-Pakete Adressierung von Geräten (weltweit) über IP-Adressen	192.168.0.1 10.0.0.24
Data Link	Frames Adressierung direkt angeschlossener Geräte über physikalische Adressen (MAC-Adressen)	01:02:33:44:55:A6:A7:F8
Bitübertragung	Bits / Codierung Timing und Synchronisation	NRZ

Grundlagen der Adressierung

- _ Damit in jeder Schicht PDUs richtig zugeordnet werden können sind Adressen nötig, z.B. für:
 - Absender- und Zielsystem im gleichen Netzsegment (OSI-Schicht 2)
 - Absender- und Zielsystem im gesamten Netz (OSI-Schicht 3)
 - Absender- und Zielanwendung auf den Endgeräten (OSI-Schicht 4)

Adressen sind Bestandteil der Steuerinformation der PDUs

Technische Kommunikation verwendet grundsätzlich Absender- und Zieladressen

Adressierung im TCP/IP-Stack

OSI-Schicht 2 (Data Link Layer)

- Physikalische Adressierung der Geräte in einem LAN -> MAC Adressen
- In der Netzwerkkarte fest vorgegeben
- 48 Bit, Hexadezimaldarstellung
- Beispiel: C2-FE-15-A7-DE-12

OSI-Schicht 3 (Network Layer)

- Logische Adressierung von Endgeräten in einem Netz -> IP-Adressen
- Manuell konfiguriert oder automatisch bezogen
- Hierarchische Struktur: Netz- und Hostadressen innerhalb eines Netzes
- Kennzeichnung Netz-/Hostanteil durch Subnetzmaske bzw. Präfix
- Beispiel 192.168.1.12 /24

OSI-Schicht 4 (Transport Layer)

Adressierung der Anwendungen auf Endgeräten -> Portnummern

Beispiel: IPv4-Adressen

- IPv4 Adressen umfassen 32 Bit
- Enthalten Netzanteil und Hostanteil

- _ Unterscheidung durch Angabe der Länge des Netzanteils durch Network Prefix oder Subnetzmaske
 - Angabe als Network Prefix:
 - Beispiel: 192.168.16.4 /25 (\rightarrow 25 Bit Netzanteil, 32-25=7 Bit Hostanteil)
 - Angabe durch Netzmaske: 4 Byte a.b.c.d wie IP-Adresse

 - In der Maske: "1"-Bit = Netzanteil, "0"-Bit = Hostanteil
- Ein Host erhält eine Adresse aus dem Adressbereich seines Netzes
 - Beispiel: Hostadresse 192.168.16.4 aus dem Netz 192.168.16.0 /25

Kommunikation innerhalb eines Netzes

Beispiel: PC1 und FTP Server im gleichen Netz

Ethernet Frame direkt an die Netzwerkkarte des Rechners mit FTP-Server

PC1 192.168.1.110 AA-AA-AA-AA-AA

Kommunikation zwischen Geräten in unterschiedlichen Netzen

- Beispiel: Zugriff von PC1 auf den WebServer 172.16.1.99 in einem anderen Netz (z.B. im Internet)
 - Ethernet Frames lokal an die Netzwerkkarte des Default Gateway
 - Router leiten die Pakete zum richtigen Zielnetz weiter

Kommunikation zwischen Anwendungen

- _ Welche Anwendung auf dem Zielsystem soll angesprochen werden?
 - Transportschicht verwendet Portnummern zur Identifikation der Anwendungsprozesse auf den Endsystemen.

At the end device, the service port number directs the data to the correct conversation.

Ubung Schichtenmodelle Bitte zuordnen:

C)SI	-N	lr.
	7	,	

a) Data Link

Schichtname

6

Layer

schicht

schicht

d) Bitübertra-

1. Paket

PDU-Name

5

b) Netzwerkschicht

4

c) Anwendungs-

3

2

gungsschicht

e) Transport-

2. Segment

- 3. Bits
- 4. Frames

5.Applicationdata

Aufgaben

- a) Wegwahl (Routing)
- b) Datenübertragung zw. benachbarten Stationen
- c) Codierung zu Signalen
- d) Rechneradressierung
- e) Erkennung von Übertragungsfehlern
- f) Segmentierung
- g) Medienzugriffssteuerung
- h) Adressierung mit IP-Adressen
- i) Adressierung über **Ports**
- i) Adressierung mit MAC-Adressen