Why use data.table?

- Concise and consistent syntax
 - Think in terms of rows, columns and groups
 - Provides a placeholder for each

Creating a data.table

```
library(data.table)
x_dt <- data.table(id = 1:2, name = c("a", "b"))
x_dt
id name
y <- list(id = 1:2, name = c("a", "b"))
x <- as.data.table(y)</pre>
X
id name
```


Using column names to select columns

```
ans <- batrips[, c("trip_id", "duration")]</pre>
head(ans, 2)
trip_id duration
             435
139545
139546
             432
ans <- batrips[, "trip_id"]</pre>
# Still a data.table, not a vector
head(ans, 2)
trip_id
139545
139546
```


data.tables and data.frames (II)

Functions used to query data.frames also work on data.tables

```
nrow(x)
ncol(x)
dim(x)
```


Row numbers

```
# Subset 3rd and 4th rows from batrips
batrips[3:4]
# Same as
batrips[3:4, ]
# Subset everything except first five rows
batrips[-(1:5)]
# Same as
batrips[!(1:5)]
```

Logical expressions

```
# Subset rows where subscription_type is "Subscriber"
batrips[subscription_type == "Subscriber"]
# Subset rows where start_terminal = 58 and end_terminal is not 65
batrips[start_terminal == 58 & end_terminal != 65]
# Subset all rows where start station starts with San Francisco
batrips[start_station %like% "^San Francisco"]
# Subset all rows where duration is between 2000 and 3000
batrips[duration %between% c(2000, 3000)]
# Subset all rows where start_station is "Japantown", "Mezes Park" or "MLK Library"
batrips[start_station %chin% c("Japantown", "Mezes Park", "MLK Library")]
```

Using column names to select columns

j argument accepts a character vector of column names

Column numbers instead of names work just ne

```
ans \leftarrow batrips[, c(2, 4)]
head(ans, 2)
duration start_station
          San Francisco City Hall
435
          San Francisco City Hall
```

However, we consider this a bad practice

```
# If the order of columns changes, the result is wrong
batrips[, c(2, 4)]
# The result is always correct, no matter the order
batrips[, c("duration", "start_station")]
```

432

Deselecting columns with character vectors

- -c("col1", "col2", ...) deselects the speci ed columns
- Convenience feature only in data.table
- Using ! instead of works the same way

```
# Select all cols *except* those shown below
ans <- batrips[, -c("start_date", "end_date", "end_station")]
head(ans, 1)</pre>
```

```
trip_id duration start_station start_terminal bike_id end_terminal
139545 435 San Francisco City Hall 58 65 473

subscription_type zip_code
Subscriber 94612
```

Selecting columns the data.table way

Remember how columns were used as if they are variables in i argument in the last chapter?

```
# Recap the "i" argument
# All trips more than an hour
batrips[duration > 3600]
```

Similarly, you can use a list of variables (column names) to select columns

```
ans <- batrips[, list(trip_id, dur = duration)]
head(ans, 2)</pre>
```

```
trip_id dur
139545 435
139546 432
```

When selecting a single column, not wrapping the variable by list() returns a vector

```
# Select a single column and return a data.table
ans <- batrips[, list(trip_id)]
head(ans ,2)</pre>
```

```
trip_id
139545
139546
```

```
# Select a single column and return a vector
ans <- batrips[, trip_id]
head(ans, 2)</pre>
```

```
139545 139546
```


Selecting columns the data.table way

.() is an alias to list(), for convenience

```
# .() is the same as list()
ans <- batrips[, .(trip_id, duration)]
head(ans, 2)</pre>
```

```
trip_id duration
139545 435
139546 432
```

Computing on rows and columns

Combining i and j is straightforward

```
# Compute mean of duration column for "Japantown" start station
batrips[start_station == "Japantown", mean(duration)]
```

2464.331

```
# How many trips started from "Japantown"?
batrips[start_station == "Japantown", .N]
```

902

Compute in j and return a data.table

Recall that you can select multiple columns using .()

```
# Recap: Select trip_id and duration columns
ans <- batrips[, .(trip_id, dur = duration)]
head(ans, 2)</pre>
```

```
trip_id dur
139545 435
139546 432
```

You can compute on multiple columns and return a data.table the same way

```
mn_dur med_dur
1131.967 511
```

The by argument

The by argument allows computations for each unique value of the (grouping) columns speci ed in by

```
# How many trips happened from each start_station?
ans <- batrips[, .N, by = "start_station"]
head(ans, 3)</pre>
```

```
start_station N
San Francisco City Hall 2145
Embarcadero at Sansome 12879
Steuart at Market 11579
```

The by argument

by argument accepts both character vector of column names as well as a list of variables/expressions

```
# Same as batrips[, .N, by = "start_station"]
ans <- batrips[, .N, by = .(start_station)]
head(ans, 3)</pre>
```

```
start_station N
San Francisco City Hall 2145
Embarcadero at Sansome 12879
Steuart at Market 11579
```

The by argument

Allows renaming grouping columns on the y

```
ans <- batrips[, .(no_trips = .N), by = .(start = start_station)]
head(ans, 3)</pre>
```

```
start no_trips
San Francisco City Hall 2145
Embarcadero at Sansome 12879
Steuart at Market 11579
```

Expressions in by

The list() or .() expression in by allows for grouping variables to be computed on the y

```
# Get number of trips for each start_station for each month
ans <- batrips[ , .N, by = .(start_station, mon = month(start_date))]
head(ans, 3)</pre>
```

```
start_station mon N
San Francisco City Hall 1 193
Embarcadero at Sansome 1 985
Steuart at Market 1 813
```

Chaining expressions

data.table expressions can be chained together, i.e., x[...][...]

uniqueN()

- uniqueN() is a helper function that returns an integer value containing the number of unique values in the input object
- It accepts vectors as well as data.frames and data.tables.

```
id <- c(1, 2, 2, 1)
uniqueN(id)</pre>
```

2

```
x \leftarrow data.table(id, val = 1:4)
id val
uniqueN(x)
uniqueN(x, by = "id")
```

uniqueN() together with by

Calculate the total number of unique bike ids for every month

```
ans <- batrips[, uniqueN(bike_id), by = month(start_date)]
head(ans, 3)</pre>
```

```
month V1 ## <~~ auto naming of cols
1 605
2 608
3 631
```

- .sp is a special symbol which stands for Subset of Data
- Contains subset of data corresponding to each group; which itself is a data.table
- By default, the grouping columns are excluded for convenience

```
x \leftarrow data.table(id = c(1, 1, 2, 2, 1, 1), val1 = 1:6, val2 = letters[6:1])
```

```
x[, print(.SD), by = id]
```

```
val1 val2
        b
val1 val2
Empty data.table (0 rows) of 1 col: id
```

```
x[, SD[1], by = id]
```

```
x[, SD[.N], by = id]
```

```
id val1 val2
1 6 a
2 4 c
```

.SDcols

.SDcols holds the columns that should be included in .SD

```
batrips[, .SD[1], by = start_station]
```

```
start_station trip_id duration start_date
San Francisco City Hall 139545 435 2014-01-01 00:14:00
Embarcadero at Sansome 139547 1523 2014-01-01 00:17:00
```

```
# .SDcols controls the columns .SD contains
batrips[, .SD[1], by = start_station, .SDcols = c("trip_id", "duration")]
```

```
start_station trip_id duration
San Francisco City Hall 139545 435
Embarcadero at Sansome 139547 1523
```

.SDcols

```
batrips[, .SD[1], by = start_station, .SDcols = - c("trip_id", "duration")]
```

```
start_station start_date
San Francisco City Hall 2014-01-01 00:14:00
Embarcadero at Sansome 2014-01-01 00:17:00
```

data.frame internals

- In v3.1.0, improvements were made to deep copy only the column that is updated
- In this case, just columns a and b are deep copied in the operation performed on below

```
df <- data.frame(a = 1:3, b = 4:6, c = 7:9, d = 10:12)
df[1:2] <- lapply(df[1:2], function(x) ifelse(x%%2, x, NA))
df</pre>
```

```
a b c d
1 NA 7 10
NA 5 8 11
3 NA 9 12
```

data.table internals

- data.table updates columns in place, i.e., by reference
- This means, you don't need the assign the result back to a variable
- No copy of any column is made while their values are changed
- data.table uses a new operator := to add/update/delete columns by reference

LHS := RHS form

Functional form

Let's practice!

DATA MANIPULATION WITH DATA. TABLE IN R

Grouped aggregations

DATA MANIPULATION WITH DATA. TABLE IN R

Ma Dowle, Arun Srinivasan Instructors, DataCamp

Combining ":=" with by

```
ncol(batrips)
```

11

```
batrips[, n_zip_code := .N, by = zip_code]
ncol(batrips)
```

12

```
batrips[, n_zip_code := .N, by = zip_code][]
```

```
trip_id duration ... zip_code n_zip_code
139545 435 ... 94612 1228
139546 432 ... 94107 36061
139547 1523 ... 94112 2168
```

Combining ":=" with by

```
batrips[, n_zip_code := .N, by = zip_code][]
```

```
trip_id duration ... zip_code n_zip_code
139545 435 ... 94612 1228
139546 432 ... 94107 36061
139547 1523 ... 94112 2168
```

```
batrips[n_zip_code > 1000]
```

bike_id	<pre>subscription_type</pre>	zip_code	n_zip_code	
473	Subscriber	94612	1228	
395	Subscriber	94107	36061	
331	Subscriber	94112	2168	
335	Customer	94109	6980	
580	Customer		1541	
677	Subscriber	94107	36061	
604	Subscriber	94133	15687	
480	Customer	94109	6980	
277	Customer	94109	6980	
56	Subscriber	94105	19899	

Combining ":=" with by

Let's practice!

DATA MANIPULATION WITH DATA. TABLE IN R

Advanced aggregations

DATA MANIPULATION WITH DATA. TABLE IN R

Ma Dowle, Arun Srinivasan Instructors, DataCamp

Recap

```
# Same example as seen before
## LHS := RHS Form
batrips[, c("is_dur_gt_1hour", "week_day") :=
            .(duration > 3600, wday(start_date)]
# Same as above, but in `:=`() functional form
batrips[, `:=`(is_dur_gt_1hour = duration > 3600,
               week_day = wday(start_date))]
# Update by reference with by
batrips[, n_zip_code := .N, by = zip_code]
```

Adding multiple columns by reference by group

```
end_station ... end_dur_first end_dur_last
trip_id duration ...
139545
                     Townsend at 7th ...
            435 . . .
                                                   435
                                                                660
        432 ... Townsend at 7th ...
139546
                                                   435
                                                                660
         1523 ... Beale at Market ...
139547
                                                  1523
                                                                229
139549
           1620 ... Powell Street BART ...
                                                  1620
                                                                540
           1617 ... Powell Street BART ...
 139550
                                                  1620
                                                                540
```

Binning values

For each unique combination of start_station and end_station, if median duration:

- less than 600, "short"
- between 600 and 1800, "medium"
- "long", otherwise

Multi-line expressions in j

```
batrips[, trip_category := {
          med_dur = median(duration, na.rm = TRUE)
          if (med_dur < 600) "short"
          else if (med_dur >= 600 & med_dur <= 1800) "medium"
          else "long"
        },
        by = .(start_station, end_station)]
batrips[1:3]</pre>
```

Alternative way

```
bin_median_duration <- function(dur) {</pre>
  med_dur <- median(dur, na.rm = TRUE)</pre>
  if (med_dur < 600) "short"
  else if (med_dur >= 600 & med_dur <= 1800) "medium"
  else "long"
batrips[, trip_category := bin_median_duration(duration),
           by = .(start_station, end_station)]
```

All together - i, j and by

Let's practice!

DATA MANIPULATION WITH DATA. TABLE IN R

Fast data reading with fread()

DATA MANIPULATION WITH DATA. TABLE IN R

Ma Dowle, Arun Srinivasan Instructors, DataCamp

Blazing FAST!

- Fast and parallel le reader
- Argument nThread controls the number of threads to use

User-friendly

- Can import local les, les from the web, and strings
- Intelligent defaults colClasses, sep, nrows etc.
- Note: Dates and Datetimes are read as character columns but can be converted later with the excellent fasttime or anytime packages

Fast and friendly file reader

```
# File from URL
DT1<-fread("https://bit.ly/2RkBXhV")
DT1</pre>
```

```
# String
DT3 <- fread("a,b\n1,2\n3,4")
DT3</pre>
```

```
a b
1 2
3 4
```

```
a b1 23 4
```

```
# Local file
DT2 <- fread("data.csv")
DT2</pre>
```

```
# String without col names
DT4 <- fread("1,2\n3,4")
DT4</pre>
```

```
a b
1 2
3 4
```

```
V1 V21 23 4
```

nrows and skip arguments

```
# Read only first line (after header)
fread("a,b\n1,2\n3,4", nrows = 1)
a b
1 2
# Skip first two lines containing metadata
str <- "# Metadata\nTimestamp: 2018-05-01 19:44:28 GMT\na,b\n1,2\n3,4"</pre>
fread(str, skip = 2)
a b
1 2
3 4
```


More on nrows and skip arguments

```
str <- "# Metadata\nTimestamp: 2018-05-01 19:44:28 GMT\na,b\n1,2\n3,4"
fread(str, skip = "a,b")
a b
fread(str, skip = a,b, nrows = 1)
a b
1 2
```

select and drop arguments

```
str <- "a,b,c\n1,2,x\n3,4,y"
fread(str, select = c("a", "c"))

# Same as
fread(str, drop = "b")</pre>
```

```
str <- "1,2,x\n3,4,y"
fread(str, select = c(1, 3))

# Same as
fread(str, drop = 2)
```

```
a c
1 x
3 y
```

```
V1 V3
1 x
3 y
```

Let's practice!

DATA MANIPULATION WITH DATA. TABLE IN R

Advanced file reading

DATA MANIPULATION WITH DATA. TABLE IN R

Ma Dowle, Arun Srinivasan Instructors, DataCamp

Reading big integers using integer64 type

- By default, R can only represent numbers less than or equal to 2^31 1 = 2147483647
- Large integers are automatically read in as package
 integer64 type, provided by the package

```
ans <- fread("id, name\n1234567890123, Jane\n5284782381811, John\n")
ans</pre>
```

```
id name
1234567890123 Jane
5284782381811 John
```

```
class(ans$id)
```

```
"integer64"
```


Specifying column class types with colClasses

```
str <- "x1,x2,x3,x4,x5\n1,2,1.5,true,cc\n3,4,2.5,false,ff" ans <- fread(str, colClasses = c(x5 = "factor")) str(ans)
```

```
Classes 'data.table' and 'data.frame': 2 obs. of 5 variables:
$ x1: int 1 3
$ x2: int 2 4
$ x3: num 1.5 2.5
$ x4: logi TRUE FALSE
$ x5: Factor w/ 2 levels "cc", "ff": 1 2
```

Specifying column class types with colClasses

```
Classes 'data.table' and 'data.frame': 2 obs. of 5 variables:
$ x1: int 1 3
$ x2: int 2 4
$ x3: num 1.5 2.5
$ x4: logi TRUE FALSE
$ x5: Factor w/ 2 levels "cc", "ff": 1 2
```

Specifying column class types with colClasses

```
str <- "x1,x2,x3,x4,x5,x6\n1,2,1.5,2.5,aa,bb\n3,4,5.5,6.5,cc,dd"
ans <- fread(str, colClasses = list(numeric = 1:4, factor = c("x5", "x6")))
str(ans)</pre>
```

```
Classes 'data.table' and 'data.frame': 2 obs. of 6 variables:
$ x1: num 1 3
$ x2: num 2 4
$ x3: num 1.5 5.5
$ x4: num 2.5 6.5
$ x5: Factor w/ 2 levels "aa", "cc": 1 2
$ x6: Factor w/ 2 levels "bb", "dd": 1 2
```

The fill argument

```
str <- "1,2\n3,4,a\n5,6\n7,8,b" fread(str)
```

```
V1 5 6
7 8 b
Warning message:
In fread(str):
Detected 2 column names but the data has 3 columns (i.e. invalid file).
Added 1 extra default column name for the first column which is guessed to be row names or an index.
Use setnames() afterwards if this guess is not correct, or fix the file write command that created the file to create a valid file.
```

The fill argument

```
fread(str, fill = TRUE)
```

```
V1 V2 V3
1 2
3 4 a
5 6
7 8 b
```

The na.strings argument

Missing values are commonly encoded as: "999" or "##NA" or "N/A"

```
str <- "x,y,z\n1,###,3\n2,4,###\n#N/A,7,9" ans <- fread(str, na.strings = c("###", "#N/A")) ans
```

```
X y Z
1 NA 3
2 4 NA
NA 7 9
```

Let's practice!

DATA MANIPULATION WITH DATA. TABLE IN R

Fast data writing with fwrite()

DATA MANIPULATION WITH DATA. TABLE IN R

Ma Dowle, Arun Srinivasan Instructors, DataCamp

fwrite

Ability to write list columns using secondary separator (|)

```
dt <- data.table(id = c("x", "y", "z"), val = list(1:2, 3:4, 5:6))
fwrite(dt, "fwrite.csv")
fread("fwrite.csv")</pre>
```

```
id val
x 1|2
y 3|4
z 5|6
```

date and datetime columns (ISO)

- fwrite() provides three additional ways of writing date and datetime format squash and epoch
- Encourages the use of ISO standards with ISO as default

Date and times

```
date time datetime
2018-12-17 19:54:51 2018-12-17 14:54:51
```

date and datetime columns (ISO)

```
# "ISO" is default
fwrite(dt, "datetime.csv", dateTimeAs = "ISO")
fread("datetime.csv")
```

```
date time datetime
2018-12-17 19:55:39 2018-12-17T19:55:39.735036Z
```

date and datetime columns (Squash)

- squash writes yyyy-mm-dd hh:mm:ss as yyyymmddhhmmss, for example
- Read in as integer. Very useful to extract month, year etc by simply using modulo arithmetic.
 e.g., 20160912 %/% 10000 = 2016
- Also handles milliseconds (ms) resolution
- POSIXct type (17 digits with ms resolution) is automatically read in as integer 64 by fread

date and datetime columns (Squash)

```
fwrite(dt, "datetime.csv", dateTimeAs = "squash")
fread("datetime.csv")
      date time datetime
1: 20181217 195539 20181217195539735
20181217 %/% 10000
[1] 2018
```

date and datetime columns (Epoch)

- epoch counts the number of days (for dates) or seconds (for time and datetime) since relevant epoch
- Relevant epoch is 1970-01-01, 00:00:00 and 1970-01-01T00:00:00Z for date, time and datetime, respectively

date and datetime columns (Epoch)

```
fwrite(dt, "datetime.csv", dateTimeAs = "epoch")
fread("datetime.csv")
```

```
date time datetime 17882 71871 1545076672
```

Let's practice!

DATA MANIPULATION WITH DATA. TABLE IN R

Welcome to the course

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Joining data.tables

Combine information from two data.tables into a single data.table

demograp	hics:			shipping:						
name	gender	age		name	ad dress		name	gender	age	ad dress
Trey	NA	54		Trey	12 High street	_	Trey	NA	54	12 High street
Matthew	М	43	T	Matthew	7 Mill road	_	Matthew	М	43	7 Mill road
Angela	F	39		Angela	33 Pacific boulevard		Angela	F	39	33 Pacific boulevard

Course overview

- Chapter 1: Joining data with merge()
- Chapter 2: Joins in the data.table work ow
- Chapter 3: Troubleshooting joins
- Chapter 4: Concatenating and reshaping data.table s

Table keys

Columns that link information across two tables

Inspecting `data.tables` in your R session

The tables() function will show you all data.tables loaded in your R session

```
tables()
```

```
NAME NROW NCOL MB COLS KEY

1: demographics 3 3 0 name, gender, age

2: shipping 3 2 0 name, address

Total: OMB
```

Inspecting `data.tables` in your R session

The str() will show you the type of each column in a single data.table

```
str(demographics)

Classes 'data.table' and 'data.frame': 3 obs. of 3 variables:
```

```
$ name : chr "Trey" "Matthew" "Angela"
$ gender: chr NA "M" "F"
$ age : num 54 43 39
```

- attr(*, ".internal.selfref")=<externalptr>

Inspecting `data.tables` in your R session

demographics_all

```
name sex age
             NA 54
       Trey
 1:
     Matthew
              M 43
      Angela F 39
 4: Michelle F 63
     Mohamed
              M 26
     Patrick
102:
              M 27
103:
        Wei
              F 41
    Adam
              M 33
104:
     Somchai
105:
              M 53
       Alma
106:
              F 19
```

Let's practice!

JOINING DATA WITH DATA. TABLE IN R

The merge function

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Joins

- Concept of joins come from database query languages (e.g. SQL).
- Four standard joins:
 - inner
 - full
 - le
 - right
- All four can be done using merge()

Inner join

Only keep observations that have information in both

data.tables

demographics:

name	gender	age
Trey	NA	54
Matthew	М	43
Angela	F	39
Michelle	F	63

_

shipping:

name	ad dress
Matthew	7 Mill road
Trey	12 High street
Abdullah	3a Union street
Angela	33 Pacific boulevard

name	gender	age	ad dress
Angela	F	39	33 Pacific boulevard
Matthew	М	43	7 Mill road
Trey	М	NA	12 High street

The by argument

Use by to avoid repeated typing of the same column name

shipping:

Angela

demographics:

name	gender	age
Trey	NA	54
Matthew	М	43
Angela	F	39
Michelle	F	63

name	address	
Matthew	7 Mill road	
Trey	12 High street	
Abdullah	3a Union street	

33 Pacific boulevard

name	gender	age	ad dress
Angela	F	39	33 Pacific boulevard
Matthew	М	43	7 Mill road
Trey	М	NA	12 High street

Full join

Keep all observations that are in either data.table

demographics:

name	gender	age
Trey	NA	54
Matthew	М	43
Angela	F	39
Michelle	F	63

shipping:

name	ad dress
Matthew	7 Mill road
Trey	12 High street
Abdullah	3a Union street
Angela	33 Pacific boulevard

name	gender	age	address
Abdullah	NA	NA	3a Union street
Angela	F	39	33 Pacific boulevard
Matthew	М	43	7 Mill road
Michelle	F	63	NA
Trey	М	NA	12 High street

Let's practice!

JOINING DATA WITH DATA. TABLE IN R

Left and right joins

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Left joins

Add information from the right data.table to the le data.table

merge(x = demographics, y = shipping, by = "name", all.x = TRUE)

demographics:

name	gender	age
Trey	NA	54
Matthew	М	43
Angela	F	39
Michelle	F	63

name	address	
Matthew	7 Mill road	
Trey	12 High street	
Abdullah	3a Union street	
Angela	33 Pacific boulevard	

name	gender	age	address
Angela	F	39	33 Pacific boulevard
Matthew	М	43	7 Mill road
Michelle	F	63	NA
Trey	М	NA	12 High street

Right joins

Add information from the le

data.table to the right data.table

merge(x = demographics, y = shipping, by = "name", all.y = TRUE)

demographics:

name	gender	age
Trey	NA	54
Matthew	М	43
Angela	F	39
Michelle	F	63

shipping:

name	ad dress	
Matthew	7 Mill road	
Trey	12 High street	
Abdullah	3a Union street	
Angela	33 Pacific boulevard	

name	gender	age	address
Abdullah	NA	NA	3a Union street
Angela	F	39	33 Pacific boulevard
Matthew	М	43	7 Mill road
Trey	М	NA	12 High street

Right joins - Left joins

```
# Right join
merge(x = demographics, y = shipping, by = "name", all.y = TRUE)

# Same as
merge(x = shipping, y = demographics, by = "name", all.x = TRUE)
```

Default values

- Default values for all, all.x and all.y are FALSE in the merge() function
- Look up function argument defaults using help("merge")

Exercise instructions

Le join shipping to demographics:

```
merge(demographics, shipping, by = "name", all.x = TRUE)
```

Right join shipping to demographics:

```
merge(demographics, shipping, by = "name", all.y = TRUE)
```

Let's practice!

JOINING DATA WITH DATA. TABLE IN R

data.table syntax

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Recap of the data.table syntax

General form of data.table syntax

Joins

General form of data.table syntax joins

Right joins

The default join is a right join

demographics[shipping, on = .(name)]

The on argument

Variables inside list() or .() are looked up in the column names of both data.tables

```
shipping[demographics, on = list(name)]
shipping[demographics, on = .(name)]
```

Character vectors can also be used

```
join_key <- c("name")
shipping[demographics, on = join_key]</pre>
```

Left joins

Remember, a le join is the same as a right join with the order swapped:

shipping[demographics, on = .(name)]

Inner joins

Set nomatch = 0 to perform an inner join:

shipping[demographics, on = .(name), nomatch = 0]

Full joins

Not possible with the data.table syntax, use the merge() function:

merge(demographics, shipping, by = "name", all = **TRUE**)

shipping:

demographic	S:
-------------	----

name	gender	age
Trey	NA	54
Matthew	М	43
Angela	F	39
Michelle	F	63

name	gender	age	address
Abdullah	NA	NA	3a Union street
Angela	F	39	33 Pacific boulevard
Matthew	М	43	7 Mill road
Michelle	F	63	NA
Trey	М	NA	12 High street

Anti-joins

Filter a data.table to rows that have no match in another data.table

demographics[!shipping, on = .(name)]

demographics:

name	sex	age
Trey	NA	54
Matthew	М	43
Angela	F	39
Michelle	F	63

shipping:

name	address
Matthew	7 Mill road
Trey	12 High street
Abdullah	3a Union street
Angela	33 Pacific boulevard

name	sex	age
Michelle	F	63

Let's practice!

JOINING DATA WITH DATA. TABLE IN R

Setting and viewing data.table keys

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Setting `data.table` keys

Se ing keys means you don't need the on argument when performing a join

- Useful if you need to use a data.table in many di erent joins Sorts the data.table in memory by the key column(s)
- Makes Itering and join operations faster

Multiple columns can be set and used as keys

The `setkey()` function

Key columns are passed as arguments

```
setkey(DT, ...)

setkey(DT, key1, key2, key3)
setkey(DT, "key1", "key2", "key3")

# To set all columns in DT as keys
setkey(DT)
```

The `setkey()` function

Set the keys of both data.tables before a join

```
setkey(dt1, dt1_key)
setkey(dt2, dt2_key)
```

Perform an inner, right, and le join:

```
# Inner join dt1 and dt2
dt1[dt2, nomatch = 0]
# Right join dt1 and dt2
dt1[dt2]
# Left join dt1 and dt2
dt2[dt1]
```

Setting keys programmatically

Key columns are provided as a character vector

```
keys <- c("key1", "key2", "key3")
setkeyv(dt, keys)</pre>
```

Getting keys

haskey() checks whether you have set keys

haskey(dt1)

TRUE

key() returns the key columns you have set

key(dt1)

"dt1_key"

Getting keys

When no keys are set

haskey(dt_no_key)

FALSE

key(dt_no_key)

NULL

Viewing all 'data.tables' and their keys

tables()

```
NAME
                 NROW NCOL MB COLS
                                                          KEY
[1,] dt
                                                          key1, key2, key3
                            1 key1, key2, key3, value
[2,] dt1
                            1 dt1_key_column, value, group dt1_key
                1,000
[3,] dt2
                1,000
                            1 dt2_key_column,time
                                                          dt2_key
                    5
[4,] dt_no_key
                         2 1 id, color
Total: 4MB
```

Let's practice!

JOINING DATA WITH DATA. TABLE IN R

Incorporating joins into your data.table workflow

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Chaining data.table expressions

data.table expressions can be chained in sequence:

```
demographics[...][...]
```

General form of chaining a join:

Join then compute

```
name gender age

1: Mark M 54

2: Matt M 43

3: Angela F 39

4: Michelle F 63
```

Join then compute

```
purchases <- data.table(name = c("Mark", "Matt", "Angela", "Michelle"), sales = c(1, 5, 4, 3), spent = c(41.70, 41.78, 50.77, 60.01)) purchases
```

Join then compute

```
gender avg_spent
1: M 13.91333
2: F 20.00333
```

Computation with joins

Computation with joins:

E cient for large data.tables!

Joining and column creation

Column creation takes place in the main data.table:

```
customers[purchases, on = .(name), return_customer := sales > 1]
customers
```

```
name gender age return_customer

1: Mark M 54 FALSE

2: Matt M 43 TRUE

3: Angela F 39 TRUE

4: Michelle F 63 TRUE
```

Grouping by matches

by = .EACHI groups j by each row from DT2

Grouping by matches

```
shipping[customers, on = .(name),
    j = .("# of shipping addresses" = .N),
    by = .EACHI]
```


Grouping by columns with joins

Grouping by columns in the by restricts computation to the main data.table:

Grouping by columns with joins

Join and calculate by group in customers:

```
customers[shipping, on = .(name),
    .(avg_age = mean(age)), by = .(gender)]
```

```
gender avg_age
1: M 46.66667
2: F 39.00000
```

Let's practice!

JOINING DATA WITH DATA. TABLE IN R

Complex keys

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Misspecified joins

What happens when you don't use the correct columns for join keys?

- An error is thrown
- The result is a malformed data.table

Column type mismatch

Using join key columns with dierent types will error

```
customers[web_visits, on = .(age = name)]
```

```
Error in bmerge(i, x, leftcols, rightcols, io, xo, roll, rollends,
nomatch, :
  typeof x.age (double) != typeof i.name (character)
```

customers:

name	gender	age	address
Madeline Martin	F	54	5 Market lane
Madeline Bernard	F	45	4 Jacaranda crescent
George Dimakos	М	39	2a Park square

name	date	duration
Madeline Martin	2018-05-02	5
Madeline Martin	2018-05-03	32
Madeline Bernard	2018-05-03	12
George Dimakos	2018-04-27	45

Column type mismatch

```
customers[web_visits, on = .(id)]
```

```
Error in bmerge(i, x, leftcols, rightcols, io, xo, roll, rollends,
nomatch, :
  typeof x.id (integer) != typeof i.id(character)
```

customers:

id	name	gender	age	ad dress
1	"Madeline Martin"	"F"	54	"5 Market lane"
2	"Madeline Bernard"	"F"	45	"4 Jacaranda crescent"
3	"George Dimakos"	"M"	39	"2a Park square"

id	name	date	duration
"1"	"Madeline Martin"	2018-05-02	5
"1"	"Madeline Martin"	2018-05-03	32
"2"	"Madeline Bernard"	2018-05-03	12
"3"	"George Dimakos"	2018-04-27	45

Malformed full joins - no common key values

merge(customers, web_visits, by.x = "address", by.y = "name", all = TRUE)

customers:

name	gender	age	ad dress
Madeline Martin	F	54	5 Market lane
Madeline Bernard	F	45	4 Jacaranda crescent
George Dimakos	М	39	2a Park square

name	date	duration
Madeline Martin	2018-05-02	5
Madeline Martin	2018-05-03	32
Madeline Bernard	2018-05-03	12
George Dimakos	2018-04-27	45

ad dress	name	gender	age	date	duration
2a Park square	George Dimakos	М	39	NA	NA
4 Jacaranda crescent	Madeline Bernard	F	45	NA	NA
5 Market lane	Madeline Martin	F	54	NA	NA
George Dimakos	NA	NA	NA	2018-04-27	45
Madeline Bernard	NA	NA	NA	2018-05-03	12
Madeline Martin	NA	NA	NA	2018-05-02	5
Madeline Martin	NA	NA	NA	2018-05-03	32

Malformed right and left joins - no common key values

customers[web_visits, on = .(address = name)]

customers:

name	gender	age	ad dress
Madeline Martin	F	54	5 Market lane
Madeline Bernard	F	45	4 Jacaranda crescent
George Dimakos	М	39	2a Park square

name	date	duration
Madeline Martin	2018-05-02	5
Madeline Martin	2018-05-03	32
Madeline Bernard	2018-05-03	12
George Dimakos	2018-04-27	45

name	gender	age	ad dress	date	duration
NA	NA	NA	Madeline Martin	2018-05-02	5
NA	NA	NA	Madeline Martin	2018-05-03	32
NA	NA	NA	Madeline Bernard	2018-05-03	12
NA	NA	NA	George Dimakos	2018-04-27	45

Malformed inner joins - no common key values

customers[web_visits, on = .(address = name), nomatch = 0]

customers:

name	gender	age	ad dress
Madeline Martin	F	54	5 Market lane
Madeline Bernard	F	45	4 Jacaranda crescent
George Dimakos	М	39	2a Park square

name	date	duration
Madeline Martin	2018-05-02	5
Madeline Martin	2018-05-03	32
Madeline Bernard	2018-05-03	12
George Dimakos	2018-04-27	45

name	gender	age	ad dress	date	duration
------	--------	-----	----------	------	----------

Malformed joins - coincidental common key values

customers[web_visits, on = .(age = duration), nomatch = 0]

customers:

name	gender	age	ad dress
Madeline Martin	F	54	5 Market lane
Madeline Bernard	F	45	4 Jacaranda crescent
George Dimakos	М	39	2a Park square

name	date	duration
Madeline Martin	2018-05-02	5
Madeline Martin	2018-05-03	32
Madeline Bernard	2018-05-03	12
George Dimakos	2018-04-27	45

name	gender	age	ad dress	i.name	date
Madeline Bernard	F	45	4 Jacaranda crescent	George Dimakos	2018-04-27

Avoiding misspecified joins

Learning what each column represents before joins will help you avoid errors

Keys with different column names

customers:

name	gender	age	ad dress
Madeline Martin	F	54	5 Market lane
Madeline Bernard	F	45	4 Jacaranda crescent
George Dimakos	М	39	2a Park square

person	date	duration
Madeline Martin	2018-05-02	5
Madeline Martin	2018-05-03	32
Madeline Bernard	2018-05-03	12
George Dimakos	2018-04-27	45

```
merge(customers, web_visits, by.x = "name", by.y = "person")
customers[web_visits, on = .(name = person)]
customers[web_visits, on = c("name" = "person")]
key <- c("name" = "person")
customers[web_visits, on = key]</pre>
```

Multi-column keys

customers:

first	last	gender	age	ad dress
Madeline	Martin	F	54	5 Market lane
Madeline	Bernard	F	45	4 Jacaranda crescent
George	Dimakos	М	39	2a Park square

first	last	date	duration
Madeline	Martin	2018-05-02	5
Madeline	Martin	2018-05-03	32
Madeline	Bernard	2018-05-03	12
George	Dimakos	2018-04-27	45

Multi-column keys

purchases:

name	date	item	units	price
Madeline Martin	2018-05-03	book	2	\$15.00
Arthur Smith	2018-05-03	shelf	1	\$30.00
Jaqueline Mary	2018-05-03	CD	1	\$12.00
George Dimakos	2018-05-03	plant	3	\$16.00
George Dimakos	2018-04-27	shelf	1	\$30.00

name	date	duration
Madeline Martin	2018-05-02	5
Madeline Martin	2018-05-03	32
Madeline Bernard	2018-05-03	12
George Dimakos	2018-04-27	45

Specifying multiple keys with merge()

Specifying multiple keys with the data.table syntax

```
purchases[web_visits, on = .(name, date)]
purchases[web_visits, on = c("name", "date")]

purchases[web_visits, on = .(name = person, date)]
purchases[web_visits, on = c("name" = "person", "date")]
```

Final Slide

JOINING DATA WITH DATA.TABLE IN R

Problem columns

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Common column names

parents:

name	gender	age
Sarah	F	41
Max	М	43
Qin	F	36

children:

parent	name	gender	age
Sarah	Oliver	М	5
Max	Sebastian	М	8
Qin	Kai-lee	F	7

Common column names

Using the data.table syntax

```
parents[children, on = .(name = parent)]
```

```
name gender age i.name i.gender i.age

1: Sarah F 41 Oliver M 5

2: Max M 43 Sebastian M 8

3: Qin F 36 Kai-lee F 7
```

Common column names with merge()

Using the merge() function

```
merge(x = children, y = parents, by.x = "parent", by.y = "name")
```

```
parent name gender.x age.x gender.y age.y

1: Max Sebastian M 8 M 43

2: Qin Kai-lee F 7 F 36

3: Sarah Oliver M 5 F 41
```

Adding context with your own suffixes

The suffixes argument can add useful context:

```
merge(children, parents, by.x = "parent", by.y = "name",
    suffixes = c(".child", ".parent"))
```

```
parent name gender.child age.child gender.parent age.parent

1: Max Sebastian M 8 M 43

2: Qin Kai-lee F 7 F 36

3: Sarah Oliver M 5 F 41
```

Renaming columns

Rename all columns using setnames()

```
parent parent.gender parent.age

1: Sarah F 41

2: Max M 43

3: Qin F 36
```

Joining with `data.frames`

Join keys for data.frames may be in the rownames

```
parents
     gender age
Sarah
          F 41
    M 43
Max
         F 36
Qin
parents <- as.data.table(parents, keep.rownames = "parent")</pre>
parents
  parent gender age
1: Sarah
     Max M 43
     Qin
             F 36
```


Let's practice!

JOINING DATA WITH DATA. TABLE IN R

Duplicate matches

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Join key duplicates

Which bacteria could be found at both sites using any method? site1_ecology[site2_ecology, on = .(genus)]

site1_ecology: genus

method count WGS Nitrosomonas 500 620 **16S** Nitrosomonas Rhizobium 360 WGS Rhizobium **16S** 300

	genus	present	method
	Nitrosomonas	TRUE	WGS
	Nitrosomonas	TRUE	16S
4	Nitrosomonas	TRUE	Culture
4	Rhizobium	TRUE	WGS
$\frac{1}{2}$	Rhizobium	TRUE	16S
١	Rhizobium	FALSE	Culture

Error from multiplicative matches

```
site1_ecology[site2_ecology, on = .(genus)]
```

```
Error in vecseq(f__, len__, if (allow.cartesian || notjoin ||
!anyDuplicated(f__, :
    Join results in 12 rows; more than 10 = nrow(x)+nrow(i). Check for
    duplicate key values in i each of which join to the same group in x over
    and over again. If that's ok, try by=.EACHI to run j for each group to
    avoid the large allocation. If you are sure you wish to proceed, rerun
    with allow.cartesian=TRUE. Otherwise, please search for this error message
    in the FAQ, Wiki, Stack Overflow and data.table issue tracker for advice.
```

Allowing multiplicative matches

allow.cartesian = TRUE allows the join to proceed:

```
# data.table syntax
site1_ecology[site2_ecology, on = .(genus), allow.cartesian = TRUE]

# merge()
merge(site1_ecology, site2_ecology, by = "genus", allow.cartesian = TRUE)
```

Allowing multiplicative matches

```
site1_ecology[site2_ecology, on = .(genus), allow.cartesian = TRUE]
```

```
genus count method present i.method
1: Nitrosomonas
                   500
                           WGS
                                  TRUE
                                            WGS
2: Nitrosomonas
                   620
                           16S
                                  TRUE
                                            WGS
3: Nitrosomonas
                                            16S
                   500
                          WGS
                                  TRUE
4: Nitrosomonas
                           16S
                                  TRUE
                                            16S
                   620
5: Nitrosomonas
                   500
                           WGS
                                  TRUE
                                        Culture
                                        Culture
6: Nitrosomonas
                                  TRUE
                   620
                           16S
       Rhizobium
                           WGS
                                  TRUE
                                            WGS
 7:
                   360
       Rhizobium
                                  TRUE
                                            WGS
                   300
                           16S
9:
       Rhizobium
                   360
                          WGS
                                  TRUE
                                            16S
       Rhizobium
                                  TRUE
10:
                   300
                           16S
                                            16S
       Rhizobium
                                 FALSE
11:
                           WGS
                                        Culture
                   360
12:
       Rhizobium
                   300
                           16S
                                 FALSE
                                        Culture
```

Missing values

Missing values (NA) will match all other missing values:

Filtering missing values

!is.na() can be used to lter rows with missing values

```
site1_ecology <- site1_ecology[!is.na(genus)]
site1_ecology</pre>
```

```
genus count method
1: Nitrosomonas 500 WGS
2: Rhizobium 360 WGS
```

```
site2_ecology <- site2_ecology[!is.na(genus)]
site2_ecology</pre>
```

```
genus present method

1: Nitrosomonas TRUE Culture

2: Rhizobium TRUE Culture

3: Azotobacter TRUE Culture
```

Keeping only the first match

```
site1_ecology[site2_ecology, on = .(genus), mult = "first"]
```

genus	Year	count	method			
Nitrosomonas	2018	620	16S	*	-:	-:
Nitrosomonas	2017	603	16S		site2_ecology:	
Nitrosomonas	2016	591	168		genus	
Rhizobium	2018	290	16S	-	Nitrosomonas	<i>Nitrosomonas</i> TRUE
Rhizobium	2017	300	16S		Rhizobium	Rhizobium TRUE
Rhizobium	2016	280	16S		Azotobacter	Azotobacter FALSE
Azotobacter	2018	1230	165		•	•
Azotobacter	2017	0	16S			
Azotobacter	2016	0	16S			

Keeping only the last match

```
children[parents, on = .(parent = name), mult = "last"]
```

genus	Year	count	method
Nitrosomonas	2018	620	16S
Nitrosomonas	2017	603	16S
Nitrosomonas	2016	591	16S
Rhizobium	2018	290	16S
Rhizobium	2017	300	16S
Rhizobium	2016	280	16S
Azotobacter	2018	1230	16S
Azotobacter	2017	0	16S
Azotobacter	2016	0	16S

Identifying and removing duplicates

duplicated() : what rows are duplicates?

unique(): Iter a data.table to just unique rows

The duplicated() function

Using values in all columns:

```
duplicated(site1_ecology)
```

FALSE FALSE FALSE

Using values in a subset of columns:

FALSE TRUE FALSE TRUE

genus	count	method
Nitrosomonas	500	WGS
Nitrosomonas	620	16S
Rhizobium	360	WGS
Rhizobium	300	16S

The unique() function

```
unique(site1_ecology, by = "genus")
```

genus	count	method				
Nitrosomonas	500	WGS		genus	count	method
Nitrosomonas	620	16S	x ^	Nitrosomonas	500	WGS
Rhizobium	360	WGS	├	Rhizobium	360	WGS
Rhizobium	300	16S	x			

Changing the search order

fromLast = TRUE changes the direction of the search to start from the last row

```
duplicated(site1_ecology, by = "genus", fromLast = TRUE)
```

TRUE FALSE TRUE FALSE

unique(site1_ecology, by = "genus", fromLast = TRUE)

genus	count	method				
Nitrosomonas	500	WGS	x	genus	count	method
Nitrosomonas	620	16S	├	Nitrosomonas	620	16S
Rhizobium	360	WGS	x ,	Rhizobium	300	16S
Rhizobium	300	16S				

Let's practice!

JOINING DATA WITH DATA. TABLE IN R

Concatenating data.tables

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Same columns, different data.tables

Concatenating

data.tables

sales_2015:

quarter	amount
1	\$3,200,100
2	\$2,950,000
3	\$2,980,700
4	\$3,420,000

sales_2016:

quarter	amount
1	\$3,350,000
2	\$3,000,300
3	\$3,120,200
4	\$3,670,000

year	quarter	amount
2015	1	\$3,200,100
2015	2	\$2,950,000
2015	3	\$2,980,700
2015	4	\$3,420,000
2016	1	\$3,350,000
2016	2	\$3,000,300
2016	3	\$3,120,200
2016	4	\$3,670,000

Concatenation functions

rbind(): concatenate rows from data.tables stored in di erent variables

rbindlist() : concatenate rows from a list of data.tables

The rbind() function

Concatenate two or more data.tables stored as variables

```
# ... takes any number of arguments
rbind(...)
rbind(sales_2015, sales_2016)
```

```
quarter
            amount
         1 3200100
1:
2:
         2 2950000
3:
         3 2980700
4:
         4 3420000
5:
         1 3350000
6:
         2 3000300
         3 3120200
         4 3670000
8:
```

The idcol argument adds a column indicating the data.table of origin

```
rbind("2015" = sales_2015, "2016" = sales_2016, idcol = "year")
```

```
year quarter
                amount
1: 2015
             1 3200100
2: 2015 2 2950000
        3 2980700
3: 2015
4: 2015
             4 3420000
5: 2016
             1 3350000
6: 2016
             2 3000300
7: 2016
             3 3120200
8: 2016
             4 3670000
```

```
rbind(sales_2015, sales_2016, idcol = "year")
```

```
year quarter amount
              1 3200100
1:
              2 2950000
3:
              3 2980700
              4 3420000
5:
              1 3350000
6:
              2 3000300
              3 3120200
8:
              4 3670000
```

```
rbind(sales_2015, sales_2016, idcol = TRUE)
```

```
.id quarter
               amount
             1 3200100
1:
             2 2950000
3:
             3 2980700
             4 3420000
5:
             1 3350000
6:
             2 3000300
             3 3120200
8:
             4 3670000
```

Handling missing columns

```
rbind("2015" = sales_2015, "2016" = sales_2016, idcol = "year",
    fill = TRUE)
```

sales_2015:

quarter	profit
1	\$3,200,100
2	\$2,950,000
3	\$2,980,700
4	\$3,420,000

sales_2016:

quarter	profit	revenue
1	\$3,350,000	\$1,860,000
2	\$3,000,300	\$1,500,000
3	\$3,120,200	\$1,307,000
4	\$3,670,000	\$2,400,000

year	quarter	profit	revenue
2015	1	\$3,200,100	NA
2015	2	\$2,950,000	NA
2015	3	\$2,980,700	NA
2015	4	\$3,420,000	NA
2016	1	\$3,350,000	\$1,860,000
2016	2	\$3,000,300	\$1,500,000
2016	3	\$3,120,200	\$1,307,000
2016	4	\$3,670,000	\$2,400,000

Handling missing columns

```
rbind(sales_2015, sales_2016, idcol = "year")
```

```
Error in rbindlist(l, use.names, fill, idcol) :
   Item 2 has 3 columns, inconsistent with item 1 which has 2 columns.
   If instead you need to fill missing columns, use set argument 'fill'
   to TRUE.
```

The rbindlist() function

Concatenate rows from a list of data.tables

```
# Read in a list of data.tables
table_files <- c("sales_2015.csv", "sales_2016.csv")
list_of_tables <- lapply(table_files, fread)
rbindlist(list_of_tables)</pre>
```

```
quarter amount
         1 3200100
1:
         2 2950000
2:
         3 2980700
3:
4:
         4 3420000
5:
         1 3350000
6:
         2 3000300
7:
         3 3120200
         4 3670000
8:
```

The idcol argument takes names from the input list

```
names(list_of_tables) <- c("2015", "2016")
rbindlist(list_of_tables, idcol = "year")</pre>
```

```
year quarter
                 amount
1: 2015
              1 3200100
2: 2015
              2 2950000
              3 2980700
3: 2015
4: 2015
              4 3420000
5: 2016
              1 3350000
6: 2016
              2 3000300
7: 2016
              3 3120200
8: 2016
              4 3670000
```

Handling different column orders

sales_2015:

quarter	amount
1	\$3,200,100
2	\$2,950,000
3	\$2,980,700
4	\$3,420,000

use.names = TRUE

sales_2016:

amount	quarter
\$3,350,000	1
\$3,000,300	2
\$3,120,200	3
\$3,670,000	4

year	quarter	amount
2015	1	\$3,200,100
2015	2	\$2,950,000
2015	3	\$2,980,700
2015	4	\$3,420,000
2016	1	\$3,350,000
2016	2	\$3,000,300
2016	3	\$3,120,200
2016	4	\$3,670,000

'data.tables' with different column names

sales_2015:

quarter	amount
1	\$3,200,100
2	\$2,950,000
3	\$2,980,700
4	\$3,420,000

use.names = FALSE

sales_2016:

quarter	profit
1	\$3,350,000
2	\$3,000,300
3	\$3,120,200
4	\$3,670,000

year	quarter	amount
2015	1	\$3,200,100
2015	2	\$2,950,000
2015	3	\$2,980,700
2015	4	\$3,420,000
2016	1	\$3,350,000
2016	2	\$3,000,300
2016	3	\$3,120,200
2016	4	\$3,670,000

Pitfalls of `use.names = FALSE`

sales_2015:

quarter	amount
1	\$3,200,100
2	\$2,950,000
3	\$2,980,700
4	\$3,420,000

use.names = FALSE

sales_2016:

amount	quarter
\$3,350,000	1
\$3,000,300	2
\$3,120,200	3
\$3,670,000	4

year	quarter	amount
2015	1	\$3,200,100
2015	2	\$2,950,000
2015	3	\$2,980,700
2015	4	\$3,420,000
2016	\$3,350,000	1
2016	\$3,000,300	2
2016	\$3,120,200	3
2016	\$3,670,000	4

Differing defaults

- Default for rbind() is use.names = TRUE
- Default for rbindlist() is use.names = FALSE unless fill = TRUE.

Let's practice!

JOINING DATA WITH DATA. TABLE IN R

Set operations

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Set operation functions

Given two data.tables with the same columns:

- fintersect(): what rows do these two data.tables share in common?
- funion(): what is the unique set of rows across these two data.tables?
- fsetdiff(): what rows are unique to this data.table?

Set operations: `fintersect()`

Extract rows that are present in both data.tables

fintersect(dt1, dt2)

dt1:

id	animal	color
1	giraffe	yellow
2	lion	yellow
3	antelope	brown
4	mouse	grey

dt2:

id	animal	color
2	lion	yellow
4	mouse	grey
5	whale	blue
6	cassowary	black

fintersect()

id	animal	color
2	lion	yellow
4	mouse	grey

`fintersect()` and duplicate rows

Duplicate rows are ignored by default:

fintersect(dt1, dt2)

dt1:

id	animal	color
1	giraffe	yellow
2	lion	yellow
3	antelope	brown
4	mouse	grey
2	lion	yellow
2	lion	yellow

dt2:

id	animal	color
2	lion	yellow
4	mouse	grey
5	whale	blue
6	cassowary	black
2	lion	yellow

fintersect()

id	animal	color
2	lion	yellow
4	mouse	grey

`fintersect()` and duplicate rows

all = TRUE : keep the number of copies present in both data.tables :

fintersect(dt1, dt2, all = TRUE)

dt1:

id	animal	color
1	giraffe	yellow
2	lion	yellow
3	antelope	brown
4	mouse	grey
2	lion	yellow
2	lion	yellow

dt2:

id	animal	color
2	lion	yellow
4	mouse	grey
5	whale	blue
6	cassowary	black
2	lion	yellow

fintersect()

id	animal	color
2	lion	yellow
4	mouse	grey
2	lion	yellow

Set operations: `fsetdiff()`

Extract rows found exclusively in the rst data.table

fsetdiff(dt1, dt2)

dt1:

id	animal	color
1	giraffe	yellow
2	lion	yellow
3	antelope	brown
4	mouse	grey

dt2:

id	animal	color
2	lion	yellow
4	mouse	grey
5	whale	blue
6	cassowary	black

fsetdiff()

id	animal	color
1	giraffe	yellow
3	antelope	brown

`fsetdiff()` and duplicates

Duplicate rows are ignored by default:

fsetdiff(dt1, dt2)

dt1:

id	animal	color
1	giraffe	yellow
2	lion	yellow
3	antelope	brown
4	mouse	grey
2	lion	yellow
2	lion	yellow
3	antelope	brown

dt2:

id	animal	color
2	lion	yellow
4	mouse	grey
5	whale	blue
6	cassowary	black
2	lion	yellow

id	animal	color
1	giraffe	yellow
3	antelope	brown

`fsetdiff()` and duplicates

all = TRUE : return all extra copies:

fsetdiff(dt1, dt2, all = TRUE)

dt1:

id	animal	color
1	giraffe	yellow
2	lion	yellow
3	antelope	brown
4	mouse	grey
2	lion	yellow
2	lion	yellow
3	antelope	brown

dt2:

id	animal	color
2	lion	yellow
4	mouse	grey
5	whale	blue
6	cassowary	black
2	lion	yellow

id	animal	color
1	giraffe	yellow
3	antelope	brown
2	lion	yellow
3	antelope	brown

Set operations: `funion()`

Extract all rows found in either data.table:

funion(dt1, dt2)

dt1:

id	animal	color
1	giraffe	yellow
2	lion	yellow
3	antelope	brown
4	mouse	grey

dt2:

id	animal	color
2	lion	yellow
4	mouse	grey
5	whale	blue
6	cassowary	black

funion()

id	animal	color
1	giraffe	yellow
3	antelope	brown
2	lion	yellow
4	mouse	grey
5	whale	blue
6	cassowary	black

`funion()` and duplicates

Duplicate rows are ignored by default:

funion(dt1, dt2)

dt1:

id	animal	color
1	giraffe	yellow
2	lion	yellow
2	lion	yellow
2	lion	yellow

dt2:

id	animal	color
2	lion	yellow
4	mouse	grey
5	whale	blue
2	lion	yellow

id	animal	color
1	giraffe	yellow
2	lion	yellow
4	mouse	grey
5	whale	blue

`funion()` and duplicates

all = TRUE : return all rows:

funion(dt1, dt2, all = TRUE) # rbind()

dt1:

id	animal	color
1	giraffe	yellow
2	lion	yellow
2	lion	yellow
2	lion	yellow

dt2:

id	animal	color
2	lion	yellow
4	mouse	grey
5	whale	blue
2	lion	yellow

id	animal	color
1	giraffe	yellow
2	lion	yellow
4	mouse	grey
5	whale	blue
2	lion	yellow

Removing duplicates when combining many 'data.tables'

Two data.tables:

1. Use funion() to concatenate unique rows

Three or more:

- 1. Concatenate all data.tables using rbind() or rbindlist()
- 2. Identify and remove duplicates using duplicated() and unique()

Let's practice!

JOINING DATA WITH DATA. TABLE IN R

Melting data.tables

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Melting a wide data.table

sales_wide:

quarter	2015	2016
1	\$3,200,100	\$3,350,000
2	\$2,950,000	\$3,000,300
3	\$2,980,700	\$3,120,200
4	\$3,420,000	\$3,670,000

quarter	year	amount
1	2015	\$3,200,100
2	2015	\$2,950,000
3	2015	\$2,980,700
4	2015	\$3,420,000
1	2016	\$3,350,000
2	2016	\$3,000,300
3	2016	\$3,120,200
4	2016	\$3,670,000

Use measure.vars to specify columns to stack:

```
melt(sales_wide, measure.vars = c("2015", "2016"))
```

```
quarter variable
                    value
               2015 3200100
1:
               2015 2950000
               2015 2980700
3:
               2015 3420000
5:
               2016 3350000
6:
         2
               2016 3000300
         3
7:
               2016 3120200
8:
               2016 3670000
```

Use variable.name and value.name to rename these columns in the result:

```
melt(sales_wide, measure.vars = c("2015", "2016"),
  variable.name = "year", value.name = "amount")
```

Use id.vars to specify columns to keep aside

```
melt(sales_wide, id.vars = "quarter",
   variable.name = "year", value.name = "amount")
```

Use both to keep only a subset of columns

```
melt(sales_wide, id.vars = "quarter", measure.vars = "2015",
  variable.name = "year", value.name = "amount")
```

Let's practice!

JOINING DATA WITH DATA. TABLE IN R

Casting data.tables

JOINING DATA WITH DATA. TABLE IN R

Sco Ritchie
Postdoctoral Researcher in Systems
Genomics

Casting a long data.table

sales_wide <- dcast(sales_long, quarter ~ year, value.var = "amount")</pre>

sales_long:

quarter	year	amount
1	2015	\$3,200,100
2	2015	\$2,950,000
3	2015	\$2,980,700
4	2015	\$3,420,000
1	2016	\$3,350,000
2	2016	\$3,000,300
3	2016	\$3,120,200
4	2016	\$3,670,000

sales_wide:

The dcast() function

The general form of dcast():

The dcast() function

sales_wide <- dcast(sales_long, quarter ~ year, value.var = "amount")</pre>

sales_long:

quarter	year	amount
1	2015	\$3,200,100
2	2015	\$2,950,000
3	2015	\$2,980,700
4	2015	\$3,420,000
1	2016	\$3,350,000
2	2016	\$3,000,300
3	2016	\$3,120,200
4	2016	\$3,670,000

sales_wide:

Splitting multiple value columns

dcast(profit_long, quarter ~ year, value.var = c("revenue", "profit"))

profit_long:

quarter	year	revenue	profit
1	2015	\$3,200,100	\$640,020
2	2015	\$2,950,000	\$590,000
3	2015	\$2,980,700	\$596,140
4	2015	\$3,420,000	\$684,000
1	2016	\$3,350,000	\$670,000
2	2016	\$3,000,300	\$600,060
3	2016	\$3,120,200	\$624,040
4	2016	\$3,670,000	\$734,000

quarter	revenue_2015	revenue_2016	profit_2015	profit_2016
1	\$3,200,100	\$3,350,000	\$640,020	\$670,000
2	\$2,950,000	\$3,000,300	\$590,000	\$600,060
3	\$2,980,700	\$3,120,200	\$596,140	\$624,040
4	\$3,420,000	\$3,670,000	\$684,000	\$734,000

Multiple row identifiers

Keep multiple columns as row identi ers:

dcast(sales_long, quarter + season ~ year, value.var = "amount")

sales_long:

quarter	season	year	amount
1	Winter	2015	\$3,200,100
2	Spring	2015	\$2,950,000
3	Summer	2015	\$2,980,700
4	Autumn	2015	\$3,420,000
1	Winter	2016	\$3,350,000
2	Spring	2016	\$3,000,300
3	Summer	2016	\$3,120,200
4	Autumn	2016	\$3,670,000

quarter	season	2015	2016
1	Winter	\$3,200,100	\$3,350,000
2	Spring	\$2,950,000	\$3,000,300
3	Summer	\$2,980,700	\$3,120,200
4	Autumn	\$3,420,000	\$3,670,000

Dropping columns

Only columns included in the formula or value.var will be in the result:

sales_wide <- dcast(sales_long, quarter ~ year, value.var = "amount")</pre>

sales_long:

quarter	season	year	amount
1	Winter	2015	\$3,200,100
2	Spring	2015	\$2,950,000
3	Summer	2015	\$2,980,700
4	Autumn	2015	\$3,420,000
1	Winter	2016	\$3,350,000
2	Spring	2016	\$3,000,300
3	Summer	2016	\$3,120,200
4	Autumn	2016	\$3,670,000

	quarter	2015	2016	
•	1	\$3,200,100	\$3,350,000	
	2	\$2,950,000	\$3,000,300	
	3	\$2,980,700	\$3,120,200	
	4	\$3,420,000	\$3,670,000	

Multiple groupings

Split on multiple group columns:

dcast(sales_long, quarter ~ department + year, value.var = "amount")

sales_long:

quarter	department	year	amount
1	retail	2015	\$3,200,100
3	retail	2015	\$2,980,700
1	retail	2016	\$3,350,000
3	retail	2016	\$3,120,200
1	consulting	2015	\$100,400
3	consulting	2015	\$130,200
1	consulting	2016	\$125,000
3	consulting	2016	\$150,400

quarter	retail_2015	retail_2016	consulting_2015	consulting_2016
1	\$3,200,100	\$3,350,000	\$100,400	\$125,000
3	\$2,980,700	\$3,120,200	\$130,200	\$150,400

Converting to a matrix

```
sales_wide <- dcast(sales_long, season ~ year, value.var = "amount")
sales_wide</pre>
```

```
season 2015 2016

1: Autumn 3420000 3670000

2: Spring 2950000 3000300

3: Summer 2980700 3120200

4: Winter 3200100 3350000
```

Converting to a matrix

as.matrix() can take one of the columns to use as the matrix rownames:

```
mat <- as.matrix(sales_wide, rownames = "season")
mat</pre>
```

```
2015 2016
Autumn 3420000 3670000
Spring 2950000 3000300
Summer 2980700 3120200
Winter 3200100 3350000
```

Let's practice!

JOINING DATA WITH DATA. TABLE IN R

Introduction to the course

TIME SERIES WITH DATA. TABLE IN R

James Lamb Instructor

A data frame is a general-purpose data structure

- A data frame is not something unique to R!
- It's a common data structure that meets these properties:
 - List of lists
 - All lists are of equal length
 - Value type must be the same within each list (column)
 - Value types can be di erent across columns

```
someDF <- data.frame(x = rnorm(10), y = rep(TRUE, 100))
str(someDF)</pre>
```

```
'data.frame': 100 obs. of 2 variables:
$ x: num -1.5456 -1.1905 0.6055 0.9489 0.0023 ...
$ y: logi TRUE TRUE TRUE TRUE TRUE ...
```

data.table is an extension on data.frame

- data.frame = R's default data frame implementation
- data.table = extension of that base class
- data.table improvements:
 - more expressive syntax
 - more e cient memory use via pass-by-reference operators

```
library(data.table)
someDT <- data.table(x = rnorm(100), y = rep(TRUE, 100))
str(someDT)</pre>
```

```
Classes 'data.table' and 'data.frame': 100 obs. of 2 variables:
$ x: num -0.474 -0.944 0.382 -0.505 -1.128 ...
$ y: logi TRUE TRUE TRUE TRUE TRUE ...
```

Selecting columns with .()

You can select columns from a data.table with .():

```
baseballDT[, .(timestamp, winning_team)]
```

```
timestamp winning_team

1: 2018-01-01 00:00:00 BOS

2: 2018-01-01 00:00:36 CWS

3: 2018-01-01 00:01:12 MIL
```

Column selection with .SD

Use .SD (Subset of Data) to reference a subset of columns.

```
cols <- c("timestamp", "winning_team")
baseballDT[, .SD, .SDcols = cols]</pre>
```

This is identical:

```
baseballDT[, .SD, .SDcols = c("timestamp", "winning_team")]
```

"new data.table with speci c columns"

```
timestamp winning_team
1: 2018-01-01 00:00:00 BOS
2: 2018-01-01 00:00:36 CWS
3: 2018-01-01 00:01:12 MIL
```

Brief review of grep()

grep() returns indexes of strings matching a pa ern.

```
grep(pattern = 'art', c('artistic', 'colorful'))
```

1

Use value = TRUE to get values instead of indexes.

```
grep(pattern = 'art', c('artistic', 'colorful'), value = TRUE)
```

"artistic"

Use column su xes to group columns.

```
innings_pitched_COUNT runs_allowed_COUNT era_AVERAGE

1: 10 8 7.2

2: 20 4 1.8

3: 30 22 6.6
```

Get just the count data

```
count_cols <- grep('COUNT$', names(baseballDT), value = TRUE)
countDT <- baseballDT[, .SD, .SDcols = count_cols]
countDT</pre>
```

```
innings_pitched_COUNT runs_allowed_COUNT

1: 10 8

2: 20 4

3: 30 22
```

Combining row and column selection

Expressive subset statements with row selectors

```
cols <- c("timestamp", "winning_team")
baseballDT[
   which.max(timestamp),
   .SD,
   .SDcols = cols
]</pre>
```

"Get the most recent observation"

```
timestamp winning_team
1: 2018-01-01 01:00:00 BOS
```

Let's practice!

TIME SERIES WITH DATA.TABLE IN R

Flexible data selection

TIME SERIES WITH DATA. TABLE IN R

James Lamb Instructor

Explicit references

Use direct name references in []

```
locDT <- data.table(
    cities = c("Chicago", "Boston", "Milwaukee"),
    ppl_mil = c(2.7, 0.673, 0.595)
)
locDT[, cities]</pre>
```

```
"Chicago" "Boston" "Milwaukee"
```

Calling functions

Functions in the i block to select rows

```
locDT[which.max(ppl_mil)]
```

```
cities ppl_mil
1: Chicago 2.7
```

Using get()

get(): evaluate a string as a column reference

```
locDT <- data.table(
    cities = c("Chicago", "Boston", "Milwaukee"),
    ppl_mil = c(2.7, 0.673, 0.595)
)
city_col <- "cities"
locDT[, get(city_col)]</pre>
```

```
"Chicago" "Boston" "Milwaukee"
```

get() is great when writing functions

Write reusable functions without hard-coded column names:

```
square_col <- function(DT, col_name){
    return(DT[, get(col_name) ^ 2])
}
square_col(locDT, "ppl_mil")</pre>
```

7.290000 0.452929 0.354025

Using()

Problem: get people in thousands from the ppl_mil column.

```
locDT[, ppl_bil := ppl_mil * 1000]
locDT[, ppl_bil]
```

```
2700 673 595
```

But what if you want to parameterize the new column name?

```
add_bil_ppl <- function(DT, new_name){
   DT[, (new_name) := ppl_mil * 1000
}
add_bil_ppl(locDT, "some_rand_name")
print(locDT)</pre>
```

```
cities ppl_mil some_rand_name

1: Chicago 2.700 2700

2: Boston 0.673 673

3: Milwaukee 0.595 595
```

Combining () and get()

Function to create features by adding 10 to existing columns

```
add10 <- function(DT, cols){
    for (col in cols){
        new_name <- paste0(col, "_plus10")
        DT[, (new_name) := get(col) + 10]
    }
}
add10(locDT, cols = "ppl_mil")
locDT</pre>
```

```
cities ppl_mil_plus10
1: Chicago 2.700 12.700
2: Boston 0.673 10.673
3: Milwaukee 0.595 10.595
```

Changing names with setnames()

Change a single column's name:

```
locDT <- data.table(
    cities = c("Chicago", "Boston", "Milwaukee"),
    ppl_mil = c(2.7, 0.673, 0.595)
)
setnames(locDT, old = "cities", new = "city_names")
names(locDT)</pre>
```

```
"city_names" "ppl_mil"
```

setnames() in functions

```
tag_important_columns <- function(DT, cols){
    setnames(DT, old = cols, new = paste0(cols, "_important"))
}</pre>
```

Calling this function is e cient and doesn't copy the data!

```
tag_important_columns(locDT, "ppl_mil")
locDT
```

```
cities ppl_mil_important

1: Chicago 2.700

2: Boston 0.673

3: Milwaukee 0.595
```

Let's practice!

TIME SERIES WITH DATA.TABLE IN R

Executing functions inside data.tables

TIME SERIES WITH DATA. TABLE IN R

James Lamb Instructor

Use functions in the "i" block to select rows

```
stockDT <- data.table(
    close_date = seq.POSIXt(as.POSIXct("2017-01-01"), as.POSIXct("2017-01-30"), length.out = 100),
    MSFT = runif(100, 70, 80),
    AAPL = runif(100, 140, 180)
)
stockDT[which.max(MSFT)] # Best day for Microsoft</pre>
```

```
close_date MSFT AAPL

1: 2017-01-08 07:45:27 79.9235 159.9928

stockDT[close_date > max(close_date) - 60 * 60 * 8] # Final 8 hours of the dataset
```

```
close_date MSFT AAPL
1: 2017-01-29 16:58:10 73.78340 157.9154
2: 2017-01-30 00:00:00 71.51727 141.8897
```

cor() creates a correlation matrix between columns

```
cor(stockDT[, .SD, .SDcols = c('AAPL', 'MSFT')])
```

```
AAPL MSFT
AAPL 1.00000000 0.05680504
MSFT 0.05680504 1.00000000
```

You can call this directly inside a data.table!

```
corr_mat <- stockDT[, cor(.SD), .SDcols = c('AAPL', 'MSFT')]
print(corr_mat)</pre>
```

```
AAPL MSFT
AAPL 1.00000000 0.05680504
MSFT 0.05680504 1.00000000
```

Use functions in the "j" block to generate new columns

Add a new column:

```
stockDT[, rand_noise := AAPL + rnorm(100)]
```

```
close_date MSFT AAPL rand_noise
1: 2017-01-01 00:00:00 76.46907 163.6131 162.4594
2: 2017-01-01 07:01:49 78.68001 174.1177 174.9193
```

```
# Two-step process to generate "mean price by hour of the day"
stockDT[, hour_of_day := as.integer(strftime(close_date, "%H"))]
stockDT[, mean(AAPL), by = hour_of_day][order(hour_of_day)]
   hour_of_day
             0 155.4853
            1 163.5479
 3:
            2 152.5203
# 1-step process to generate "mean price by hour of day"
stockDT[, mean(AAPL), by = .(
   hour_of_day = as.integer(strftime(close_date, "%H"))
   )][order(hour_of_day)]
   hour_of_day
       0 155.4853
1:
      1 163.5479
```

2 152.5203

Applying a function over every column with .SD

- Use lapply() if you want a data.table back
- Use sapply() if you want a vector or list back

```
# Count percent missing values by column
stockDT[, lapply(.SD, function(x){mean(is.na(x))})]
```

```
close_date MSFT AAPL

1: 0 0.1 0.26

# Count non-NA values
```

```
num_obs <- stockDT[, sapply(.SD, function(x){sum(!is.na(x), na.rm = TRUE)})]
print(num_obs)</pre>
```

```
close_date MSFT AAPL
100 90 74
```

Let's practice!

TIME SERIES WITH DATA.TABLE IN R

Overview of the POSIXct type

TIME SERIES WITH DATA.TABLE IN R

James Lamb Instructor

History of POSIX

POSIX = Portable Operating System for Unix

```
POSIXIt = a list object with date-time components like year and day stored in individual a ributes
```

```
lt <- as.POSIXlt("2017-01-01", tz = "UTC") print(attributes(lt))
```

```
$names
"sec" "min" "hour" "mday" "mon" "year" "wday" "yday" "isdst"
```

History of POSIX

= a signed integer representing seconds since 1970-01-01, with a single a ribute capturing timezone.

```
ct <- as.POSIXct("2017-01-01", tz = "UTC")
print(as.numeric(ct))</pre>
```

1483228800

Converting other formats to POSIXct

```
# String conversion
as.POSIXct("2004-10-27", tz = "UTC")
"2004-10-27 UTC"
# Integer conversion
as.POSIXct(1540153601, origin = "1970-01-01", tz = "UTC")
"2018-10-21 20:26:41 UTC"
# Excel dates
as.POSIXct(as.Date(42885, origin = "1900-01-01"), tz = "UTC")
```


"2017-06-01 00:00:00 UTC"

as.POSIXct is vectorized!

Apply to a vector

```
dates <- c("2004-10-24", "2004-10-25", "2004-10-26")
as.integer(as.POSIXct(dates, tz = "UTC"))
```

1098576000 1098662400 1098748800

as.POSIXct is vectorized!

Code looks the same on a data.table column

```
someDT <- data.table(dates = c("2004-10-24", "2004-10-25", "2004-10-26"))

someDT[, posix := as.POSIXct(dates, tz = "UTC")]

str(someDT)
```

```
Classes 'data.table' and 'data.frame': 3 obs. of 2 variables:
$ dates: chr "2004-10-24" "2004-10-25" "2004-10-26"
$ posix: POSIXct, format: "2004-10-24" ...
```

Creating POSIXct dates out of data frame columns

- := can be used to add or modify columns
- as.POSIXct() is vectorized

Sample dataset:

```
gameDT <- data.table(
    game_date = c("2004-10-23", "2004-10-24", "2004-10-26", "2004-10-27")
)</pre>
```

Add a new column:

```
gameDT[, posix_date := as.POSIXct(game_date, tz = "UTC")]
```

```
the_date <- "10-27-2004 22:29:00"
as.POSIXct() can't handle this, lubridate makes it easy!
lubridate::mdy_hms(the_date)
"2004-10-27 10:29:00 UTC"</pre>
```

Other common lubridate functions:

- ymd_hms(): ex. "2017-01-10 00:00:00"
- dmy_hms(): ex. "10-01-2017 00:00:00"
- ymd_h(): ex. "2017-01-10 06"
- ymd(): ex. "2017-01-10"

Let's practice!

TIME SERIES WITH DATA. TABLE IN R

Creating data.tables from vectors

TIME SERIES WITH DATA. TABLE IN R

James Lamb Instructor

Creating data.tables from scratch

Creating a data.table is as easy as calling data.table()!

```
candyDT <- data.table(
    color = c("red", "blue", "green"),
    size = c("S", "L", "S"),
    num = c(100, 50, 210)
)</pre>
```

```
color size num

1: red S 100

2: blue L 50

3: green S 210
```

If you can make vectors, you can make a data.table!

Use all your favorite vector-making functions to make data.table s!

```
testDT <- data.table(
    rand_numbers = rnorm(100),
    rand_strings = sample(LETTERS, n = 100, replace = TRUE),
    simple_index = 1:100,
    sample_dates = seq.POSIXt(
          from = as.POSIXct("1990-01-01"),
          to = as.POSIXct("1992-08-01"),
          length.out = 100),
    fifty_fifty_split = c(rep(TRUE, 50), rep(FALSE, 50)))</pre>
```

c(), rep(), seq(), sample(), rnorm() and more will be valuable!

More on seq.POSIXt()

seq.POSIXt() is the POSIXt variant of R's seq() family

```
# Date range defining one day
start <- as.POSIXct("2010-06-17", tz = "UTC")
end <- as.POSIXct("2010-06-18", tz = "UTC")</pre>
```

length.out: the secret to changing the frequency of your test data

```
# Hourly timestamps
hourlyDT <- data.table(
    timestamp = seq.POSIXt(start, end, length.out = 1 + 24))
# Minute timestamps
minuteDT <- data.table(
    timestamp = seq.POSIXt(start, end, length.out = 1 + 24 * 60))</pre>
```

Dynamic resizing with .N

could hard code the number of elements everywhere

```
# Hourly stock price dataset
hourlyDT <- data.table(
    close_time = seq.POSIXt(start, end, length.out = 1 + 24),
    COMPANY1 = rnorm(n = 1 + 24),
    COMPANY2 = rnorm(n = 1 + 24)
)</pre>
```

But .N means you don't have to!

```
add_stock_data <- function(DT){
   DT[, COMPANY1 := rnorm(n = .N)]
   DT[, COMPANY2 := rnorm(n = .N)]
}</pre>
```

Let's practice!

TIME SERIES WITH DATA. TABLE IN R

Coercing from xts

TIME SERIES WITH DATA. TABLE IN R

James Lamb Instructor

Creating xts objects

Two required things:

- x = a vector of input data
- order.by = a vector of date-times to use as index

```
dates <- seq.POSIXt(
    from = as.POSIXct("2017-06-15"),
    to = as.POSIXct("2017-06-16"),
    length.out = 24
)
ex_tee_ess<- xts::xts(
    x = rnorm(24),
    order.by = dates
)</pre>
```

Creating xts objects

Complex object with a ributes.

- tclass = R class for the date-time index
- tzone = timezone for date-time index

```
attr(ex_tee_ess, "tclass")
```

```
"POSIXct" "POSIXt"
```

```
attr(ex_tee_ess, "tzone")
```

11 11

Expressive subsetting

Friendly subse ing makes data scientists happy.

- ['/'] = "the whole dataset"
- ['2017'] = "data from 2017"
- ['2017-01/'] = "data from January 2017 to the end of the data"
- ['2014/2015'] = "data from 2014 to 2015"

Subsetting example

```
# Entire dataset
str(hourlyXTS)
An 'xts' object on
  2017-06-15/2017-06-18 containing:
      Data: num [1:73, 1] -0.118 ...
# Observations on or after June 16
str(hourlyXTS["2017-06-16/"])
An 'xts' object on
  2017-06-16/2017-06-18 containing:
      Data: num [1:49, 1] 0.495 ...
```

Easy aggregations

How to create a time-series aggregation:

- bucket your dataset into equal-sized windows by time
- evaluate one or more functions over the values that fall within each window

```
Examples include to.minutes(), to.minutes10(), to.daily()
```

```
xts::to.daily(hourlyXTS)
```

```
hourlyXTS.Open hourlyXTS.High hourlyXTS.Low hourlyXTS.Close
2017-06-16
               0.3511835
                              1.783355
                                           -1.750838
                                                          0.09564442
2017-06-17
              -1.0457750
                              3.182890
                                           -3.039372
                                                         -1,43888466
               0.7893328
2017-06-18
                              2.396728
                                           -1.770283
                                                          0.69979482
2017-06-18
               1.7245329
                              1.724533
                                                          1.72453289
                                            1.724533
```

Converting from xts to data.table

- xts: powerful for speci c tasks
- data.table : exible to custom processing

Converting is as easy as as.data.table()!

```
# Convert with as.data.table()
hourlyDT <- data.table::as.data.table(</pre>
   hourlyXTS)
head(hourlyDT, n = 2)
                  index
                                V1
1: 2017-06-15 00:00:00 -0.4448620
2: 2017-06-15 01:00:00 0.5558520
# Change names
data.table::setnames(hourlyDT, "V1", "stock_price")
head(hourlyDT, n = 2)
                 index stock_price
1: 2017-06-15 00:00:00 -0.4448620
2: 2017-06-15 01:00:00 0.5558520
```

Let's practice!

TIME SERIES WITH DATA. TABLE IN R

Combining datasets with merge and rbindlist

TIME SERIES WITH DATA. TABLE IN R

James Lamb Instructor

Two timestamps might look the same printed...

```
sec <- as.POSIXct("2010-04-06 19:00:00", tz = "UTC")
milli <- as.POSIXct("2010-04-06 19:00:00.005", tz = "UTC")
print(c(sec, milli))</pre>
```

```
"2010-04-06 14:00:00 CDT" "2010-04-06 14:00:00 CDT"
```

...but have di erent underlying values!

```
options(digits = 16)
print(as.numeric(sec))
print(as.numeric(milli))
```

```
1270580400
1270580400.005
```

Precision-safe merges

The naive approach returns a checkerboard join result:

```
merge(secDT, milliDT, by = "timestamp", all = TRUE)
```

```
timestamp abc def
1: 2010-04-06 19:00:00 1.5 NA
2: 2010-04-06 19:00:00 NA TRUE
```

Use round() for safer merges

Instead, use round() to get to the nearest second.

1: 2010-04-06 19:00:00 1.5 TRUE

Downsampling

data.table functions for extracting integer date-parts:

```
year() = 4-digit year
```

- mday() = day-of-the-month(1-31)
- hour() = hour (1-24)

Example:

```
salesDT[, .(ts, year = year(ts), mday = mday(ts), hour = hour(ts))]
```

Merging across frequencies

Get a daily aggregation of the hourly price data:

Merge daily sales with daily prices:

```
mergeDT <- merge(
    dailySalesDT,
    dailyPriceDT,
    by.x = "day_int",
    by.y = "day"
)</pre>
```

Stacking datasets with rbindlist()

Ok, so you have a few data.tables

```
DT1 <- fread("2014.csv")
DT2 <- fread("2015.csv")
DT3 <- fread("2016.csv")

Just rbindlist() them up!

allDT <- rbindlist(list(DT1, DT2, DT3), fill = TRUE)</pre>
```

A warning with rbindlist()

When using rbindlist(), watch out for:

- Di erent column names
- Timestamps with di erent types (e.g. Date vs. POSIXct)

Let's practice!

TIME SERIES WITH DATA. TABLE IN R

Generating lags

TIME SERIES WITH DATA. TABLE IN R

James Lamb Instructor

Introduction to lags

"lag" = "the value of this variable _n_ periods ago"

```
dailyDT[, lag15 := shift(sales, type = "lag", n = 15)]
```

Sales vs. 15-day lag

- type = "lag" : move earlier data forward
- type = "lead" : move later data backwards

Check it out!

```
someDT <- data.table(col1 = c("a", "b", "c", "d", "e"))
someDT[, col1_lag1 := shift(col1, n = 1, type = "lag")]
someDT[, col1_lag2 := shift(col1, n = 2, type = "lag")]
someDT[, col1_lead1 := shift(col1, n = 1, type = "lead")]
someDT[, col1_lead2 := shift(col1, n = 2, type = "lead")]
someDT</pre>
```

```
col1 col1_lag1 col1_lag2 col1_lead1 col1_lead2
1:
           <NA>
                    <NA>
     a
                                           С
2:
     b
              a <NA>
                                           d
3:
              b
     С
                       a
                                            е
4:
     d
                       b
                                         <NA>
5:
                               <NA>
                                         <NA>
     е
```

Keying / sorting by time

shift() takes vector as-is

```
backwardsDT[, somenums_lag1 := shift(somenums, type = "lag", n = 1)]
backwardsDT
```

Always use setorderv before shift

Use setorderv() to x this!

```
setorderv(backwardsDT, "timestamp")
backwardsDT[, somenums_lag1 := shift(somenums, type = "lag", n = 1)]
```

Using lags in linear models

If you have lags in your data.table, you can drop them right into a linear model:

```
mod <- lm(sales ~ lag15, data = dailyDT)
summary(mod)</pre>
```

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.02777 0.58156 5.206 6.96e-07 ***

lag15 0.83273 0.06929 12.018 < 2e-16 ***
```

Making lags on the fly in models

But even cooler...make them on the y!

```
mod <- lm(sales ~ shift(sales, n = 21), data = dailyDT)
summary(mod)</pre>
```

```
# Fit models with 1 and 2 lags
mod1 <- lm(price ~ lag1, data = aluminumDT)
mod2 <- lm(price ~ lag1 + lag2, data = aluminumDT)
# Compare with stargazer
stargazer::stargazer(list(mod1, mod2), type = "text")</pre>
```

```
Dependent variable: price
                                (2)
                   (1)
<hr />-----
lag1
                  -0.015
                               -0.035
                               0.046
lag2
Constant
                               0.169*
                  0.162*
<hr />-----
Observations  
              99
                             98
R2
                  0.0002
                               0.003
Adjusted R2
                  -0.010
                         -0.018
                     *p<0.1; **p<0.05; ***p<0.01
Note:
```

Caution with long datasets

Wrong approach - shi ing across subjects:

```
experimentDT[, lag1 := shift(result, type = "lag", n = 1)]
experimentDT
```

```
day result subject_id lag1
1:
        1.0
                    A NA
       3.3
                    A 1.0
3:
        2.5
                    A 3.3
                    B 2.5
4:
        1.1
       3.9
                    B 1.1
5:
        3.8
                    B 3.9
```

Use "by" with long datasets

Correct approach - with "by":

```
experimentDT[, lag1 := shift(result, type = "lag", n = 1), by = subject_id]
```

```
day result subject_id lag1
   1 1.0
                A NA
   2 3.3
                A 1.0
3:
      2.5
                A 3.3
4:
      1.1
                B NA
   2 3.9
5:
                B 1.1
6:
   3 3.8
                B 3.9
```

Let's practice!

TIME SERIES WITH DATA. TABLE IN R

Generating growth rates and differences

TIME SERIES WITH DATA. TABLE IN R

James Lamb
Instructor

Quarterly change in U.S. Real GDP (billion 2012 dollars)

Computing differences (math)

The formula for an *n*-period di erence:

$$X_t - X_{t-n}$$

Where:

- X_t = the value of X at time t
- X_{t-n} = the value X n periods prior to time t

Computing differences (code)

That X_{t-n} term is just the _n_-period lag!

```
gdpDT[, lag1 := shift(gdp, type = "lag", n = 1)]
gdpDT[, diff1 := gdp - lag1]
```

You can also do this in one shot:

```
gdpDT[, diff1 := gdp - shift(gdp, type = "lag", n = 1)]
```

Quarterly % change in U.S. Real GDP

Computing growth rates (math)

The formula for an *n*-period di erence:

$$\frac{X_t - X_{t-n}}{X_{t-n}}$$

Where:

- X_t = the value of X at time t
- X_{t-n} = the value X n periods prior to time t

Computing growth rates (code)

That X_{t-n} term is just the *n*-period lag!

```
gdpDT[, lag1 := shift(gdp, type = "lag", n = 1)]
gdpDT[, diff1 := gdp - lag1]
gdpDT[, growth1 := diff1 / lag1]
```

You can also do this in one shot:

```
gdpDT[, growth1 :=
    (gdp - shift(gdp, type = "lag", n = 1)) /
    shift(gdp, type = "lag", n = 1)
]
```

A simpler growth formula

The growth rate formula can be re-wri en

$$\frac{X_t}{X_{t-n}} - 1$$

This simpli es the code:

```
gdpDT[, growth1 := (gdp / shift(gdp, type = "lag", n = 1)) - 1]
```

Let's practice!

TIME SERIES WITH DATA. TABLE IN R

Windowing with j and by

TIME SERIES WITH DATA. TABLE IN R

James Lamb
Instructor

Why you should care about windowed aggregations

- 1. Creating features for machine learning models. For example:
 - "hourly average click volume"
 - "1-day volatility in price"
 - "1-month count of failed inspections"
- 2. Downsampling for plo ing

Creating a grouping indicator

"group by month"

```
salesDT[, nearest_month := month(timestamp)]
```

```
timestamp sales nearest_month
1: 2018-08-01 543.183 8
2: 2018-08-02 546.341 8
3: 2018-09-19 576.842 9
4: 2018-10-19 510.838 10
5: 2018-11-08 472.143 11
```


Applying aggregate functions

Windowed aggregations, one set of values per month:

```
aggDT <- salesDT[, .(
    min = min(sales),
    total = sum(sales),
    num_obs = length(sales)),
by = nearest_month]</pre>
```

```
nearest_month
                 min
                           total num_obs
              8 358.099 15202.14
1:
                                      31
              9 420.018 15067.15
                                      30
3:
             10 404.858 15872.85
                                      31
4:
             11 403.295 14733.55
                                      30
             12 372.442 15695.31
5:
                                       31
```

Windowing on the fly

Windowing and aggregation in one expression:

```
aggDT <- salesDT[, .(
    min = min(sales),
    total = sum(sales),
    num_obs = length(sales)),
by = month(timestamp)]</pre>
```

```
min
                    total num_obs
   month
      8 358.099 15202.14
1:
                               31
      9 420.018 15067.15
                               30
     10 404.858 15872.85
3:
                               31
4:
     11 403.295 14733.55
                               30
5:
      12 372.442 15695.31
                               31
```

Word of caution: statistical validity

A system issue wiped out most of our August-October data!

```
aggDT <- malfunctionDT[, .(
    min = min(sales),
    total = sum(sales),
    num_obs = length(sales)),
    by = month(timestamp)]</pre>
```

Be sure to look at those observation counts:

```
month min total variance num_obs

1: 8 475.030 1564.554 1623.344 3

2: 10 423.986 6672.959 2158.440 13

3: 11 403.295 14733.546 2337.096 30

4: 12 372.442 15695.306 2474.622 31
```

Let's practice!

TIME SERIES WITH DATA. TABLE IN R

Getting Started

TIME SERIES WITH DATA. TABLE IN R

James Lamb Instructor

Getting data from Quandl

Quandl provides an R package for pulling data

```
aluminumDF <- Quandl::Quandl(
    code = "LME/PR_AL",
    start_date = "2001-12-31",
    end_date = "2018-03-12")
head(aluminumDF, n = 2)</pre>
```

```
Date Cash Buyer Cash Seller & Settlement 3-months Buyer 3-months Seller 15-months Buyer
1 2018-03-12
                 2096.5
                                          2097.0
                                                          2117.0
                                                                            2118
                                                                                               NA
2 2018-03-09
                 2078.0
                                          2078.5
                                                          2098.5
                                                                                              NA
                                                                            2099
 15-months Seller Dec 1 Buyer Dec 1 Seller Dec 2 Buyer Dec 2 Seller Dec 3 Buyer Dec 3 Seller
                          2168
                                       2173
                                                    2188
                                                                 2193
                                                                             2208
                                                                                           2213
                NA
                          2148
                                                                 2173
                                                                                           2193
                NA
                                       2153
                                                    2168
                                                                             2188
```

Convert to a data.table

```
Use as.data.table() to convert a data.frame to a data.table
```

```
aluminumDT <- as.data.table(aluminumDF)
```

Now you have a data.table!

```
str(aluminumDT)
```

```
Classes 'data.table' and 'data.frame': 1552 obs. of 13 variables:

$ Date : Date, format: "2018-03-12" "2018-03-09" ...

$ Cash Buyer : num 2096 2078 2082 2112 2136 ...

$ Cash Seller & Settlement: num 2097 2078 2082 2112 2136 ...

$ 3-months Buyer : num 2117 2098 2104 2132 2154 ...

$ 3-months Seller : num 2118 2099 2104 2132 2155 ...
```

Clean up column names

```
aluminumDT[, .(Date, `Cash Seller & Settlement`)] # Spaces are cumbersome
```

Use setnames() to clean up

```
setnames(aluminumDT, "Cash Seller & Settlement", "aluminum_price")
aluminumDT[, .(Date, aluminum_price)]
```

Renaming columns during a subset

Use () to select and rename columns

Now you'll have a new table to work with!

Applying functions with .()

Subset, rename columns, AND change types!

Look at that new dataset:

```
str(newDT)
```

```
Classes 'data.table' and 'data.frame': 1552 obs. of 2 variables:
$ obstime : POSIXct, format: "2018-03-11 19:00:00" "2018-03-08 18:00:00" ...
$ aluminum_price: num 2097 2078 2082 2112 2136 ...
```

Merging on timestamps

Select:

- Two data.tables
- One or more columns to merge on
- A merge strategy

```
mergedDT <- merge(
    x = aluminumDT,
    y = nickelDT,
    all = TRUE,
    by = "obstime"
)</pre>
```

```
obstime aluminum_price nickel_price
1: 2012-01-02 18:00:00
                               2006.0
                                              18430
2: 2012-01-03 18:00:00
                               2052.0
                                             18705
3: 2012-01-04 18:00:00
                               2003.5
                                             18590
4: 2012-01-05 18:00:00
                               2020.0
                                             18680
5: 2012-01-08 18:00:00
                               2061.5
                                              18855
```

Using Reduce with merge()

```
Reduce(
    f = function(x,y){paste0(x, y, "|")},
    x = c("a", "b", "c")
)
```

```
Reduce(
    f = function(x, y){merge(x, y, by = "obstime")
    x = list(someDT, otherDT)
)
```

```
"ab|c|"
```

Use it to merge data.tables!

```
obstime col1 col2
1: 2017-01-01 00:01:00 -0.873 -0.286
2: 2017-01-01 00:08:00 1.571 0.320
```

Let's practice!

TIME SERIES WITH DATA. TABLE IN R

Timeseries feature engineering

TIME SERIES WITH DATA. TABLE IN R

James Lamb Instructor

Differences review

Math:

$$X_t - X_{t-1}$$

Code:

```
gdpDT[, diff1 := gdp - shift(gdp, type = "lag", n = 1)]
```

Hardcoded difference function

The code from the previous slide, as a function:

```
add_diffs <- function(DT){
   DT[, diff1 := gdp - shift(gdp, type = "lag", n = 1)]
   return(invisible(NULL))
}</pre>
```

Drawbacks:

- assumes that column called "gdp" exists
- assumes you want to always compute a 1-period di erence
- assumes you want to store the di erence in a column called "diff1"

Improvement 1: configure new column name

Recall: you can pass in a variable with a column name to ()

```
colname <- "abc"
someDT[, (colname) := rnorm(10)]</pre>
```

Update the function:

```
add_diffs <- function(DT, newcol){
   DT[, (newcol) := gdp - shift(gdp, type = "lag", n = 1)]
   return(invisible(NULL))}</pre>
```

Call it:

```
add_diffs(DT, "diff1")
```

Improvement 2: choose the column to difference

Use get() to evaluate a column reference:

```
colname <- "def"
someDT[, random_stuff := get(colname) * rnorm(10)]</pre>
```

Update the function:

```
add_diffs <- function(DT, newcol, dcol){
   DT[, (newcol) := get(dcol) - shift(get(dcol), type = "lag", n = 1)]
   return(invisible(NULL))}</pre>
```

Call it:

```
add_diffs(DT, "diff1", "cpi")
```

Improvement 3: configure number of periods

Update the function:

```
add_diffs <- function(DT, newcol, dcol, ndiff){
   DT[, (newcol) := get(dcol) - shift(get(dcol), type = "lag", n = ndiff)]
   return(invisible(NULL))
}</pre>
```

Call it:

```
add_diffs(DT, "diff1", "cpi", 2)
```

Growth rates review

Math:

$$\frac{X_n}{X_{n-1}} - 1$$

Code:

```
gdpDT[, growth1 := (gdp / shift(gdp, type = "lag", n = 1)) - 1]
```

Extending to growth rates

Di erences:

```
get(dcol) - shift(get(dcol), type = "lag", n = ndiff)
```

Growth rates:

```
(get(dcol) / shift(get(dcol), type = "lag", n = ndiff)) - 1
```

The function:

```
add_growth_rates <- function(DT, newcol, dcol, ndiff){
   DT[, (newcol) :=
        (get(dcol) / shift(get(dcol), type = "lag", n = ndiff)) - 1
   ]
   return(invisible(NULL))}</pre>
```

Let's practice!

TIME SERIES WITH DATA. TABLE IN R

EDA and model building

TIME SERIES WITH DATA.TABLE IN R

James Lamb Instructor

Feature selection

Terms:

- Feature engineering = taking some columns and making more columns
- Feature selection = choosing which columns to show to a model

Strategies for feature selection in time series problems

Strategies:

- Hand-picking features based on domain knowledge
- Dropping 0-variance or low-variance variables
- Highest (absolute) linear correlation with the target
- Model families that do it automatically
 - Penalized regression
 - Tree-based models

Computing correlations

Correlation matrices from data.tables

```
cor() can take a data.table directly
```

```
someDT <- data.table(x = rnorm(100), y = rnorm(100), z = rnorm(100))
```

Correlations are bounded between -1 and 1:

```
cor(someDT)
```

```
      X
      Y
      Z

      X
      1.00000000 0.1294980 -0.05782045

      Y
      0.12949804 1.0000000 0.11575081

      Z
      -0.05782045 0.1157508 1.00000000
```

Problem with missing values

Add in one missing value...

```
someDT <- data.table(x = c(NA, rnorm(99)), y = rnorm(100), z = rnorm(100))
```

...and this is what you get:

```
cor(someDT)
```

```
      X
      Y
      Z

      X
      1
      NA
      NA

      Y
      NA
      1.000000000
      0.03368368

      Z
      NA
      0.03368368
      1.00000000
```

Handling missing values

Given a data.table with missing values...

```
x y z

1: NA 1 green

2: TRUE 2 red

3: FALSE 3 <NA>
```

```
complete.cases(someDT) # ...get a logical vector telling you which rows have no NAs
someDT[complete.cases(someDT)] # and subset with it!
```

```
FALSE TRUE FALSE

x y z

1: TRUE 2 red
```

Correlation matrix una ected by NAs:

```
someDT <- data.table(x = c(NA, rnorm(99)), y = rnorm(100), z = rnorm(100))
# Get correlation matrix
cmat <- cor(someDT[complete.cases(someDT)])</pre>
```

```
x y z
x 1.00000000 0.1294980 -0.05782045
y 0.12949804 1.0000000 0.11575081
z -0.05782045 0.1157508 1.00000000
```

See what, if anything, is strongly correlated with

```
cmat[, "x"]
```

```
x y z
1.00000000 0.1294980 -0.05782045
```

Pseudocode for a regression training pipeline

Hand picking features:

```
# Select features
feat_cols <- c("var_1", "var_5")
# Fit model
mod1 <- lm(target ~ ., data = trainDT[, .SD, .SDcols = feat_cols])</pre>
```

Some fancy strategy you put in a function:

```
# Select features
feat_cols <- select_features(trainDT)
# Fit model
mod2 <- lm(target ~ ., data = trainDT[, .SD, .SDcols = feat_cols)</pre>
```

Let's practice!

TIME SERIES WITH DATA. TABLE IN R

Congratulations

TIME SERIES WITH DATA. TABLE IN R

James Lamb Instructor

Congratulations!

TIME SERIES WITH DATA. TABLE IN R

