JOURNAL OF AGRICULTURAL RESEARCH

VOL. XXVI

WASHINGTON, D. C., OCTOBER 20, 1923

No 3

SOIL REACTION IN RELATION TO CALCIUM ADSORP-TION 1

By C. O. Swanson²

Professor of Agricultural Chemistry, Kansas State Agricultural College

DISCUSSION OF TERMS AND STATEMENT OF THE PROBLEM

SOIL REACTION AND LIME REQUIREMENT

Various terms are found in soil literature relative to soil reaction. "Soil acidity" often refers to the reaction of moist soil toward some indicator such as litmus or phenolphthalein. "Lime requirement" refers to the amount of a calcium compound necessary to change the reaction to some chosen standard, usually the color change of phenolphthalein. The minimum amount of lime required to change the reaction to this standard is referred to as the "immediate lime requirement," while "continuous lime requirement" is an expression of the amount of lime needed to keep the soil at the desirable reaction for a period of time.

ACID, NEUTRAL, AND ALKALINE SOLUTIONS

The large amount of work done in recent years on hydrogen-ion concentration has served to clarify the meaning of the terms acid, neutral, and alkaline. All aqueous solutions contain, no matter what else is present, hydrogen ions and hydroxyl ions. In a neutral solution the respective concentrations of these two ions are equal. In an acid solution the hydrogen-ion concentration is in excess of the hydroxyl-ion concentration, while in an alkaline solution the reverse is true. These ideas of acidity, neutrality, and alkalinity are applicable to water suspensions and water extracts of soil.

THE EXPRESSION FOR SOIL REACTION

In this paper the degree of soil reaction refers to the numerical value of the hydrogen-ion concentration as determined by the hydrogen electrode. This value can also, with certain restrictions, be determined by the use of indicators. Gillespie (14)8 found that there was a fairly

Accepted for publicatian July 18, 1923. Contribution No. 100 from the Department of Chemistry, Kanss Agricultural Experiment Station. Presented to the faculty of the graduate school of Cornell University, September, 1922, as a major thesis in partial fulfillment of the requirements for the degree of doctor of philosophy.

B' The writer desires to express his appreciation to Professors T. L. Lyon, J. A. Bizzell, and H. O. Buckman for helpful suggestions in doing this work and in preparing the thesis.

Reference is made by number (italic) to "Literature cited," p. 120-123.

close agreement in the values obtained by the use of the electrometric and the colorimetric methods. The method of expressing this value by the symbol P_{π} and some number is well known. Extensive bibliographies relative to hydrogen-ion concentration are given by Schmidt and Hoagland (40) and by Clark (7).

ADSORPTION AND ABSORPTION

By adsorption is meant a combination of chemical substances such that the resulting product is neither a definite chemical compound nor a homogeneous mixture. When CO₂ combines with CaO the product at equilibrium is a definite chemical compound. When HCl is added to water the product is a homogeneous substance. When this acid mixes with water there are no such surface phenomena as are found when a solid phase is present and absorption is used as the descriptive term. With adsorption are associated the ideas of surface and heterogeneity. When varying quantities of Ca(OH), are added to soil in the presence of water a series of definite chemical compounds may be formed even though their presence would be difficult to prove or disprove. That the amount of Ca(OH), taken up by a given quantity of soil is governed by various factors, one of which is the amount of clay, indicating a large extent of surface, was shown in a former publication (44). That the combination of soil and Ca(OH), when mixed in various amounts is neither a homogeneous mixture nor probably a definite chemical compound will be evident from the data to be presented. No attempt has been made to determine chemical equilibrium in this investigation; it is very probable, however, that definite chemical compounds form at equilibrium. Since there are surface phenomena and heterogeneity, the term adsorption rather than absorption is used, although some writers, notably Lyon and Buckman (31, p. 263) prefer the latter term.

HYDROGEN ELECTRODE IN USE WITH SOIL

A large amount of work has been done and many papers published on the subject of soil acidity. McIntire (33), Fisher (13), Ames and Schollenberger (2), as well as others, have discussed this subject fully and given extensive citations to literature. A study of the data presented by different investigators will show that the results obtained are dependent upon the methods used in making the determinations. The results from one method are therefore comparable with those of another only in a general way. The hydrogen electrode, as a means of measuring the hydrogen-ion concentration in soil, has not yet been used as extensively as some of the other devices. It has been employed to a limited extent in soil investigations by Gillespie (14), Plummer (37), Knight (26), Sharp and Hoagland (41, 23), Swanson et al. (44), and others.

To indicate qualitatively the hydrogen-ion concentration in a soil suspension or a soil extract, the hydrogen electrode offers a comparatively simple and rapid procedure, and the results are probably more accurate than those obtained by any other method. Electrometric titration as a means of determining the amount of acid or alkali required to titrate to the neutral point, or to change the $P_{\rm H}$ present to that of any other desired $P_{\rm H}$ can be used rapidly and successfully with many substances

for which indicators are unsuited. With soils electrometric titration has not come into extensive use because of certain inherent difficulties that have been pointed out by those who have used the method (26, 41). Some of these will be discussed later.

RELATION OF INTENSITY AND QUANTITY OF ACIDITY

The P_H value obtained by the hydrogen electrode on a soil suspension gives a measure of the actual amount of hydrogen ions present under the conditions of the experiment. This is often designated as "intensity of acidity" (14) and is very different from the total quantity of hydrogen ions which may be produced by the gradual introduction of hydroxyl ions. This point may be illustrated with the following example: A certain solution gives a reaction equivalent to PH 5. This means that there is present 0.00001 gm. hydrogen ions per liter of solution. Suppose that in this case it takes five cc. of a 0.04N hydroxid to bring 1,000 cc. of this solution to P_H 7. Five cc. of 0.04N hydroxid solution contain enough hydroxyl ions to react with 0.0002 gm. hydrogen ions. In other words, if a liter is titrated, the figure which represents the total acidity is 20 times greater than the figure which represents the intensity of acidity. If it takes 5 cc. of 0.04N hydroxid to change 100 cc. from P_H 5 to P_H 7, the total acidity is 200 times greater than the figure which represents the intensity.

DIFFICULTY IN THE USE OF THE HYDROGEN ELECTRODE WITH SOIL

In speaking of the electrometric titration of soil with standard Ca(OH)2, Sharp and Hoagland remark (41): "Such a method is logically adapted to obtain the information necessary for the proper adjustment of the soil reaction by the addition of lime. There are, however, certain difficulties met with in its application to soils. One of the chief difficulties is due to the relative insolubility of the acid-forming constituents of soil which prevent a rapid attainment of equilibrium." Data given by these investigators show that the time necessary to attain equilibrium varied from 3 to 110 hours. This time factor and other difficulties are also discussed by Knight (26). That the direct electrometric titration of a soil suspension is a tedious and difficult operation is known to anyone who has tried the method. The direct titration was used in a former investigation (44), and it was noted that if observations were made soon after the introduction of the Ca(OH), solution into a soil suspension it would usually be found that the voltage reading was greatly increased. If readings were taken at, say, five-minute or longer intervals, it would be found that the reading decreased, or the H-ion concentration gradually increased. This means that H ions are produced by more of the acidforming constitutents going into solution. This change may continue until a Pn value of, say, 6 or 5 is obtained, showing that if neutrality is desired more hydroxid must be added. As soon as this is added the voltage reading again suddenly goes up, numerically, probably beyond the equivalent of P_H 7. This does not necessarily mean that too much or even enough hydroxid has been added. The readings will again gradually decrease, showing that hydroxid must again be added if neutrality is to be attained. It is necessary to repeat this process several times, until equilibrium is established at Pn 7, or any other

desired figure. Furthermore, the nearer the value approaches the neutral point the longer time is required to attain equilibrium. This is particularly true with clay and silt soils.

The fact that on soils a $P_{\rm H}$ value may be obtained which indicates a larger H-ion concentration than hydroxyl-ion concentration means that the acid-producing substance is soluble and ionized, even if the degree of such solubility and ionization is small. Regardless of whether it is large or small, the gradual introduction of OH ions causes a change such that more hydrogen ions are produced. The slowness of this change is the fundamental difficulty in using the hydrogen electrode as the expensive apparatus necessary is cited as an objection, but this is no more valid for soil than for the large number of other substances on which electrometric measurements are made accurately and rapidly.

THE PROBLEM INVESTIGATED

The experiments presented in this paper were prompted by a desire to overcome some of the difficulties encountered in the use of the hydrogen electrode for the quantitative measurements involved in the adjustment of the hydrogen-ion concentration of a soil suspension to any other desired concentration. At the same time, it was desired to study some of the phenomena associated with the adsorption of calcium when added to the soil in the form of a Ca(OH)₂ solution. The time of the investigator is an important factor. To eliminate the time factor as an objection to the use of the electrometric method for soil, it is necessary to devise apparatus and methods which require the minimum amount of continous attention.

For work on soil acidity neutral salts have been much used. A neutral salt, such as KCl, also forms a part of the electrical connection between the electrode vessel and calomel cell. For these reasons this salt was included in the work here presented. The relative solubility of the acid-producing substance was studied by making measurements on both suspensions and extracts of soils. Calcium was for the most part added in the form of a Ca(OH)₂ solution. In some experiments precipitated CaCO₂ was used in addition to the Ca(OH)₂.

METHODS OF EXPERIMENTATION

SPECIAL APPARATUS

The potentiometer system, essentially as outlined by Hildebrand (21) was used in this investigation. The apparatus consists of the following principal pieces: One Weston direct-reading laboratory standard voltmeter, No. 5; one Kohlrausch slide-wire bridge, one Leeds and Northrup No. 2500 type R galvanometer with lamp and scale, Edison storage batteries, and other necessary accessories. The saturated potassium chlorid-calomel cell was chosen as best suited for soil work. Fales and Mudge (12) have shown that this type is the most reliable.

An apparatus was devised by which it was possible to have six electrodes in operation at the same time, so arranged as to require very little continuous attention. The position of these electrodes with reference to one another and the wiring arrangement are shown in figure 1. A side view of one of the combinations of hydrogen electrode and calomel

cell is shown in figure 2. The frame holding the six electrode vessels is supported by an iron rod passing through a hole over the center of gravity. The electrode vessels can be shaken continuously by means of the apparatus represented in figure 3. The shaking apparatus is operated by an electric motor producing about 120 agitations per minute. The hydrogen electrode, shown in figure 4, is constructed on the same plan as Hildebrand's (21). The hydrogen was made electro-

Fig. 1.—Diagram illustrating the arrangement of the electrode vessels on a supporting frame which is motated from below by means of a pulley, thus giving the desired amount of shaking. Each pair, comprising electrode vessel and calomel cell, is wired independently and is connected to the potentiometer by means of its own switch, shown at the right, through the main switch S. The individual switches are numbered with Roman numerals, and each corresponding bottle used as electrode vessel is numbered with the same numeral. The hydrogen enters at H and is distributed to the six electrode vessels. The rate of flow to each is controlled by an ordinary glass stopcock. Water for washing the electrodes is admitted from below at W and enters the electrode through the same tube as the hydrogen.

lytically and obtained compressed in iron cylinders. It was purified in a train of saturated solution of HgCl₂, alkaline pyrogallic acid, alkaline permanganate and distilled water.

SOILS AND OTHER MATERIALS USED

The general plan was to make an intensive study on one soil and then extend certain phases to other soils and other materials. Oswego silt loam was selected for the more extended study. The sample was taken in southeastern Kansas, where acid soils are more common than in the rest of the State. It contained a small amount of calcium and was moderately acid. A characteristic feature of this type of soil is the compact,

heavy subsoil. Soil samples, representing different types taken during the soil survey in various parts of the State, were available for certain phases of the work. The soils were ground in a ball mill to pass a 100-

Fig. 2.—Side view of electrode vessel with calomel cell and accessories. The hydrogen enters at H, and water for washing the electrode is admitted at W from a reservoir above; thus both hydrogen and water reach the electrode through the same tube I. Water is admitted only when it is desired to wash the electrode between determinations. The hydrogen may be used to blow out the surplus water after a washing. The rate of hydrogen flow is controlled by the stopcock in the tube H. A is the reservoir for potassium chloride solution, connecting directly with the calomel cell B below and the electrode vessel a through the capillary tube C. The stopcock K can be an ungreased ordinary glass stopcock, or a Molicy plinchcock may be used on a rubber tube. N, outlet tube for spent hydrogen, which passes through water in the bottle below. Instead of this arrangement a Bunsen valve may be used. E, wire from the lift dropen electrode. F, wire from the calomel cell. The pairs of wire got othe individual switches shown in Figure 1. O, iron rod which supports the frame holding the six electrode vessels.

mesh sieve. As all were free from fine gravel and stones this grinding did not alter the texture. Besides these soils there were used ignited soil, acid-treated soil, leached soil, and fuller's earth.

CALCIUM HYDROXID AND WATER FOR DILUTION

The calcium hydroxid solution was made by adding distilled water to an excess of calcium oxid and allowing to settle. The titration value and calcium in a measured portion had to be determined frequently, as it was found that the concentration would change slightly on standing in contact with an excess of solid Ca(OH)₂. For some of the work, solutions of definite Ca(OH)₂ concentrations were made. To make these was timeconsuming; furthermore, it was impossible in practice to maintain a constant concentration for any considerable period of time. A more satis-

iactory procedure was to use a saturated $2a(OH)_2$ solution of known strength, and to adjust the relative proportions of soil, $2a(OH)_2$ solution and water in such a way hat a definite number of cc. of the $Ca(OH)_2$ solution would represent the number of milligrams of calcium lesired per 10 grams of soil.

When ordinary disilled water was used, twas purified by bubling air free of CO, hrough it for about twe hours. At the

Fig. 3.—Apparatus for shaking the support for the electrode vessels. Red D is fastened in an ordinary laboratory clamp holder. The radius of the circle described by the crank pin C can be changed by adjusting the screw at B. By this arrangement and by altering the speed of the motor, the electrode vessels can be subjected to any desired degree of shaking.

nd of this time 100 cc. would give a distinct color with 1 drop of 0.05N VaOH, using phenolphthalein as an indicator. For most of the work vater made in a conductivity still was used.

RELATIVE AMOUNTS OF SOIL, LIQUID, AND CALCIUM

On the basis of some preliminary work, and also the work of Sharp and loagland (41), Plummer (37), and others, it was decided to use soil and quid in a ratio of 1:10. The amount of soil and other materials used in he different determinations were such that the final data are on the basis f 10 grams of soil. A saturated solution of Ca(OH), has a normality of bout 0.042, but for convenience in final calculations the dilutions of the a(OH), solution were calculated to the basis of 0.04N, or a definite fraction of this normality. Five cc. of 0.04N Ca(OH), solution contain 4 1gm. of calcium, or the equivalent of 10 mgm. CaCO₃. This gives a ratio f 1:1,000 when 10 grams of soil are used, or, figuring the weight of soil 7 10ches deep at 2,000,000 pounds, the equivalent of 1 ton per acre. Acordingly each cc. of 0.04N Ca(OH), represents 400 pounds of CaCO₃ per cre. In a few of the experiments, where calcium hydroxid solutions of efinite concentrations were used, there is a variation from this ratio. In 10ch instances the exact amount of calcium added per 10 grams of soil is ven.

PREPARATION OF THE SOIL SUSPENSION

Soil, water, Ca(OH)₂ solution, or other chemical, two or more as the particular experiment called for, were placed in 500 cc. wide-mouth bottles and closed with rubber stoppers. These were then placed on a shaking machine which had a 2-inch forward and back motion at the rate of about 90 vibrations per minute. From preliminary experiments it was found that it was best to leave the soil in contact with the Ca(OH)₂ for about 24 hours. Experiments in which contact existed for

Fig. 4.—Hydrogen electrode supported in rubber stopper which fits the bottle used as electrode vessel. C, capillary glass tube making connection with the saturated potassium chloride calomel cell. B, glass tube through which excess gas may escape. The hydrogen enters at D.

.48, 72, and 96 hours indicated that slight chemical changes took place after 24 hours, but so small in fact as not to interfere with the main purpose of these experiments. The usual plan was to prepare the mixtures in the afternoon, shake for an hour, let stand over night and then shake for a while the next morning. The suspensions were then transferred to 250 cc. wide-mouth bottles used as electrode vessels, and the electrometric measurements made the same day. As six of these measurements were carried on simultaneously, 12 or 18 determinations were a convenient day's work with those suspensions or extracts which attained equilibrium in the usual time.

PREPARATION OF SOIL EXTRACTS

For the extracts 20 gm. of soil and 200 cc. of Ca(OH), were generally used. These quantities were sufficient to produce 100 cc. of material for the titrations and calcium determinations and at least 50 cc. for the electrometric measurements. After shaking in the same manner as for making the suspensions the soil was allowed to settle. When the quantity of electrolytes present were sufficient to cause coagulation, a clear solution could be obtained by pipetting of the supernatant liquid. In other cases the contents of the bottles were transferred to 500 cc. bottles and centrifugalized for about five minutes. The centrifugal force attained was about 1,300 times gravity. A perfectly clear solution was not always obtained by this method, as some colloidal clay frequently remained in suspension. The opalescence was approximately that obtained by long-time settling of clay in water. This did not interfere with the titrations, and usually did not interfere with the calcium determinations Some calcium silicate may have been present in colloidal suspension and may account for a small part of the calcium obtained in some extracts. The colloidal matter seemed to affect the electrometric measurements, making them more uncertain and reducing

the number of times an electrode could be used before replatinizing.

TITRATION AND CALCIUM DETERMINATION

The titrations were made by means of 0.05N HCl and 0.05N NaOH, using phenolphthalein as an indicator. The extracts were usually boiled before titrating. The maximum difference in titrating 100 $^{\circ}$ Cl

of boiled or unboiled extracts was 0.2 to 0.3 cc. of the standard solution. These figures are within the limits of the error of any data used as a basis for conclusions in the present investigation. The portion used for titration was also used for the determination of calcium. The extracts were made acid with HCl and the calcium was precipitated as was filtered on asbestos, dissolved in H₂SO₄ and titrated with 0.05N KMnO₄.

MAKING THE ELECTROMETRIC MEASUREMENTS

Before using, the electrodes were tested by making a blank determination on a standard acetate solution (4, 35). This blank determination was made every day. Experience showed that if the electrodes were carefully washed after each determination they could be used three or four times before they needed to be replatinized. The hydrogen was bubbled through the suspensions or extracts contained in the electrode vessels, which were shaken continuously during the measurements. Readings were taken at such intervals as were found necessary, and continued till they remained constant, within I millivolt, for five minutes or more. Most soil suspensions or extracts did not come to an apparent equilibrium in much less than an hour, and many required a longer time. Extracts or suspensions, the reaction of which is near PH 7 come to equilibrium much more slowly than those of a higher or lower PH. This was particularly true if CaCO, was present. In some such cases the material required as much as five or six hours to come to equilibrium. The tables of Schmidt and Hoagland (40) were used for calculating the PR values corresponding to the voltmeter reading, the necessary corection for the saturated calomel cell being made.

EXPERIMENTAL RESULTS

FROUP A.—INFLUENCE OF CALCIUM HYDROXID, CALCIUM CARBONATE, POTASSIUM CHLORID, HYDROCHLORIC ACID, AND OXALIC ACID, SINGLY OR IN COMBINATION, UPON $P_{\rm H}$ OF SUSPENSIONS AND EXTRACTS OF NATURAL SOIL; ALSO UPON THE TITRATION AND CALCIUM CONTENT OF THE EXTRACTS

EXPERIMENT I. - SOIL + WATER

It has been shown by several investigators (23, 37, 41) that the eaction obtained on a soil suspension in water is different from that btained on a filtered extract. This difference is due to the relative nsolubility of the acid-forming substance. In Table I are found the $^3\pi$ values obtained on four soils, together with the titration values on 50 cc. extract and the amount of water-soluble calcium. The extracts of these four soils came to equilibrium very slowly. These extracts were not boiled before titrating, and so contain the maximum amount of $^{10}_{2}$ likely to be present in such extracts. The amount of calcium obained is small. This was to be expected, since the total calcium content of these soils is low.

Table 1.— P_H on water suspensions and extracts of soils, titrations, and calcium content of extracts

Soil type.	Suspension.	Extracts.	o.o5N NaOH.	Calcium in extract.
Neosho silt loam	5. 66 4. 82	P _H 8. 54 8. 50 8. 50 8. 61	Cc. 0. 45 . 40 . 50	Mgm. I.

Rice and Osugi (39) found that the suspensions of many soils would invert cane sugar, while the extracts of such soils had little or no power. Soils containing calcium in equilibrium with HCO₃ and CO₃ have an alkaline reaction (23).

In some cases, in connection with experiments reported in this paper, titrations were made on the water extracts used for the electrometric measurements. In such cases the hydrogen removed the CO₂, and one drop of the 0.05N NaOH would produce a color with the indicator. This means that the titrable acidity of the extracts in Table I was due to carbonic acid. The maximum error of titration in any experiment due to the presence of CO₂ was therefore small, and when the CO₂ was removed by boiling or by bubbling hydrogen it was nil. The slowness of attaining equilibrium when CaCO₃ was present was evidently due to the slow decomposition of this substance under the conditions of the experiment.

EXPERIMENT 2.—SOIL + WATER + POTASSIUM CHLORID

The same soils were used as in Experiment 1, but in making the suspensions and the extracts enough of a 3N KCl solution was added to make the liquid in contact with the soil 0.5N KCl. Preliminary experiments showed that it made no material difference at what point in the preparation that KCl was added. In all of the experiments where this salt was used the amount was such as to make the concentration 0.5N. The results obtained are presented in Table II.

Table II.— P_H on suspensions and extracts of soils made with a solution of KCl and the calcium content of the extract

Soil type.	Suspensions.	Extracts.	Calcium in extract.
Neosho silt loam. Oswego silt loam. Bates very fine sandy loam. Bates loam.	5. 02	P _H 7-29 6.61 4-95 6.97	Mgm. 8.6 14.1 7.0 21.5

The presence of the neutral salt, KCl, increases the hydrogen-ion concentration both in the suspensions and in the extracts. This would indicate that the acid-forming substance is more soluble in a KCl solution than in water. Sharp and Hoagland (41) found that other neutral

salts such as NaCl and BaCl, as well as KCl increased the hydrogen-ion concentration of certain soil suspensions. What happens may be pictured as follows:

 $KCl \rightleftharpoons K^+ + Cl^ HOH \rightleftharpoons OH^- + H^+$

The increase in hydrogen-ion concentration is due to the greater adsorptive capacity of soil for the K⁺ and OH⁻ ions. According to Parker (36) molecular adsorption of KOH may also take place.

It will be shown in a subsequent experiment that the amount of calcium made soluble in a 0.5N KCl solution is very nearly the same as in 0.5N HCl solution. The above equations show that it is simply a reaction of calcium with chlorinions whether the solution is made with HCl or KCl.

EXPERIMENT 3.—SOIL + CALCIUM CARBONATE 4

Precipitated CaCO₃ was added in definite amounts to 10 gm. of soil. Two groups of mixtures were prepared. One group was placed in 125-cc. wide-mouthed glass-stoppered bottles, sealed, and let stand for 6 weeks, with occasional shaking. On this group the P_π values were determined on the suspensions only. The other group was given the usual 24 hours contact and the P_π values were determined on both the suspensions and the extracts. The results are presented in Table III.

TABLE III.—PH on water suspensions and extracts of soils to which CaCO3 had been added

		Oswego silt lo	am.	Bate	Bates very fine sandy loam,				
Calcium added.	6 weeks.	24 h	ours.	6 weeks.	24 hours.				
	Suspension.	Suspension.	Extract.	Suspension.	Suspension.	Extract.			
Mgm.	P _H 7. 46	P _H 6, 00	Р _Н 6. 31	P _H 7. 79	P _H 5. 66	P _H 6. 24			
5. o	7. 93 8. 10	7. 05 7. 83	6. 64 8. 34	8. 10 8. 10	6. 30 7. 79	7· 59 8. 23			
20. 0	8. 13 8. 37	7· 93 8. 13	8. 42 8. 93	8. 40 8. 40	8. 30 8. 37	8. 10 8. 91			

Calcium added in the form of CaCO₃ will change the hydrogen-ion concentration of a soil suspension, and the amount of change up to a certain point is proportional to the quantity of CaCO₃ added. In a supplementary experiment it was found that the P_H for suspensions prepared from soils to which increasing quantities of CaCO₃ were added would approach a maximum of about 8.50, and remain at this figure regardless of the quantity of CaCO₃ added, up to 20 tons equivalent per acre. When the same amount of CaCO₃ is added to soil, a long-time contact produces a greater hydroxyl-ion concentration than a short time. The acid-producing substance in soil liberates its hydrogen ions very slowly. It has been shown by Hagar (15) and McIntire (32, P. 41-45.) that CaCO₄ undergoes profound changes in soil.

⁴ As water was used in all of the experiments in such amounts as to make the proportion of soil and liquid to, the presence of this substance is to be understood.

EXPERIMENT 4. -- SOIL + CALCIUM CARBONATE + POTASSIUM CHLORID

In this experiment KCl was added to the soil in addition to the $CaCO_{\bullet}$ and the time of contact was 24 hours. The results for P_{H} titrations and calcium are presented in Table IV.

Table IV.— P_H on suspensions and extracts of soil+ $CaCO_2$ made with a solution of KC_i ; also the titration and calcium content of the extracts

61.1 11.1		Oswego s	ilt loam.		Bates very fine sandy loam.					
Calcium added.	Suspen- sion.	Extract.	o.o5 N HCl.	Cain extract.	Suspen- sion.	Extract.	o.os N HCl.	Ca in extract		
Mgm.	$P_{I\!\!I}$	P_H	Cc.	Mgm.	P_{H}	$P_{I\!\!R}$	Cc.	Mam		
2.5	5. 6	7.3	0.0	14. I	5. 2	5. I	о. 1	8.		
5.0	6. o	7.6	I	17. 7	5. 6	6.3	I	9.		
10.0	7. I	8.3	. 0	19.8	7. 2	8.4	. 0	13.		
20.0	7-5	8.4	- 4	20. 4	7.8	8.4	٠4	18.		
40.0	7. 6	8.5	. 4	24.4	8. o	8.4	. 5	19.		

When salts like KCl, NaCl and CaCl₂, each composed of a strong base and a strong acid, are added to soil the H-ion concentration of the soil suspension is increased. CaCO₃ is a salt of a strong base and a weak acid. When carbonates were added to soil (Experiment 13) the H-ion concentration of the suspension was decreased. In Experiment IV the KCl increased the hydrogen-ion concentration, even in the presence of CaCO₃. The calcium in the extract was dissolved by KCl partly from the soil and partly from the added CaCO₃, but only a part of the added CaCO₃, was dissolved. When 40 mgm. of calcium were added in the form of CaCO₃, the amount obtained in solution was only about 10 mgm. more than when 2.5 mgm. were added.

The titrations with 0.05N HCl were made on the same solutions in which the calcium was determined. Each cc. of this standard HCl solution is stoichometrically equivalent to 1 milligram of calcium as a carbonate or as a hydroxid. The small values of the titer figures show that very little calcium was present in such forms. The KCl furnishes the conditions essential for changing the calcium to CaCl, and it is probable that the calcium was present in the form of a neutral salt. The high hydroxyl-ion concentrations obtained with the larger amounts of CaCO, were due to the presence of the ions HCO₃, CO₃, and Ca, which are ions of a weak acid and a strong base.

EXPERIMENT 5.—SOIL+CALCIUM HYDROXID

In this and the following experiments Oswego silt loam was used unless a statement to the contrary is made. The Ca(OH)₂ solution was added to the soil in increasing amounts, beginning with 2.5 mgm and running up to 80 mgm. of calcium equivalent for 10 gm. of soil. These amounts represent from one-third ton to 20 tons equivalent of CaCO₃ per acre. The results are given in Table V.

TABLE V.—PH on suspensions and extracts of soil + Ca(OH)₂, also titrations and calcium content of extract and calcium adsorbed by soil

Calcium added.	Suspension.	Extract.	Titer 0.05N HCl.	Calcium in extract.	Calcium not adsorbed.	Calcium adsorbed.
Mom.	P_H .	Р.	Cc.	M_{gm} .	Mom.	Mom
2. 5	0. 14	8. 06	-o. 1	2. 4	0.0	2.
(, ŏ	7.08	8. 20	т	2. 3	. 0	5.
S. O	7-45	8. 54	.0	2. 0	3	8.
. 0	7.90	8. 57	.4	2. 3	ا ه.	12.
), O	8. 13	8. 88	.4	2. 7	.4	15.
ı, O	8.71	8. gr	ا . غ ا	3.7	1.4	18.
. 0	9.55	9. 38	. 6	4.0	1. 7	26.
. o	10.46	10. 23	.8	4.7	2. 4	33.
. 0	11.07	11.00	1.6	8. 0	5. 7	42.
. 0	11. 54	II. 4I	3.5	13. 0	10.7	49-
), 0	11.85	11. 7x	12. 6	23. 3	21. 0	59.

The figures for the smaller amounts of calcium added are the averages of several determinations. The $P_{\tt H}$ values show that the hydrogen-ion concentrations were higher in the suspensions than in the extracts until more than 16 mgm. of calcium had been added. Beyond 16 mgm. of calcium the $P_{\tt H}$ values for suspensions and extracts were nearly equal. In these the OH-ion concentration was so large as to mask the influence of any substance dissolved from the soil. The $P_{\tt H}$ values became equal in the suspension and the extracts when the adsorption of calcium ceased to be practically complete. This is shown in what follows.

All of the extracts to which less than 16 mgm. of calcium were added contained nearly the same amounts of calcium. This calcium may be accounted for partly by the small amount of water-soluble calcium in the soil, and partly from the re-solution of adsorbed calcium. The water-soluble calcium from the soil was 1.3 mgm. In the presence of Ca(OH)₂ this amount would be less. When Ca(OH)₂ comes in contact with soil in such a water suspension as was used in this experiment it probably forms an adsorption compound. This compound would be to some extent soluble in water (26) and would account for a larger part of the calcium in those extracts in which the adsorption was practically complete. Part of the calcium may have been present in a colloidal suspension, however, as shown by titration results; very little, if any, could have been present as a carbonate.

The average amount of calcium found in the extracts, when 16 or less mgm. were added as $Ca(OH)_2$, was 2.3 mgm. The mgm. of the adsorbed alcium were obtained by subtracting 2.3 from the subsequent figures in the column. According to this calculation, adsorption can be considered complete until 16 or more mgm. of calcium were added and comparatively ittle remained unadsorbed until more than 36 mgm. were added. This shows the large adsorptive capacity of this soil for calcium when added in the form of $Ca(OH)_2$. Since 4 mgm. represent the equivalent of 1 ton of $CaCO_8$ per acre 7 inches deep, this soil requires the equivalent of between 4 and 5 tons of CaCO per acre to produce a P_R value in the suspension corresponding to the color change of phenolphthalein. (See fig. 6.)

experiment 6.—soil+calcium hydroxid+potassium chlorid

This experiment was performed like Experiment 5, with the exception that KCl was used in addition to the $Ca(OH)_2$. The data obtained are presented in Table VI. In comparison with those in Table V, the data show clearly that the hydrogen-ion concentration was considerably increased by KCl, even when large amounts of $Ca(OH)_2$ were added. In the presence of KCl more of the hydrogen ions are liberated from the acid-forming substances, and more $Ca(OH)_2$ is required for neutralization. The absolute neutral point was passed when between 2 and 3 tons equivalent of $CaCO_3$ per acre were added in the form of $Ca(OH)_2$. The figures for the P_H values in Tables V and VI present some variations not easily explained, probably due to some disturbing factors not understood.

Table VI.—P_H on suspensions and extracts of soil+Ca(OH)₂+KCl, also titrations and calcium content of extract, and calcium adsorbed by soil

Calcium added.	Suspension.	Extract.	Titer 0.05N HCl.	Calcium in extract.	Calcium not adsorbed.	Calcium adsorbed	
Mgm.	P_H .	P_H	Cc.	Mom.	Mgm.	Mgm.	
0.0	5. 02	6. 61	-o. 1	14.0	0.0	0.	
2.5	5. 50	6. 70	I	15.5	1.5	I,	
5.0	5. 70		—. ı	16. 1	2. 1	3-	
8.0	6. 46	6. 71	—. 1	19. 3	5.3	2	
2.0	7. 22	7. 25	I	21. 1	7. 1	4	
6.0	7. 93	7.45	2	21. 3	7.3	8	
0.0	8. 50	7. 76	. 0	23.5	9.5	10.	
8.0	9. 32	8. 10	. 0	26.5	12. 5	15.	
6.0	10. 13		- 5	29.6	15.6	20.	
8.0	11.00	10. 94	I. O	35.0	21.0	27	
0.0	11.41	11.41	1.4	41.2	27. 2	32	

The calcium in the extract came from that dissolved from the soil by KCl and also from the added Ca(OH)₂. The calcium not adsorbed was obtained by subtracting 14, the figure obtained when no Ca(OH)₂ was added, from each subsequent figure. The figures so calculated for unadsorbed calcium are considerably larger than the corresponding ones in Table V. When KCl is present part of the soil's capacity for adsorbing the base is satisfied, and less calcium is adsorbed. A little over half as much calcium was adsorbed in Experiment 6 as in Experiment 5. Even this amount of adsorption is large when the large excess of KCl is considered, and it shows the great capacity of the soil for adsorbing calcium (See fig. 6.)

EXPERIMENT 7.—SOIL+CALCIUM HYDROXID+CALCIUM CARBONATE

The amounts of precipitated CaCO₃ equivalent to the calcium in the different portions of Ca(OH)₂ used in Experiment 5 were mixed with the various portions of dry soil. The rest of the experiment followed the method of No. 5. The data obtained are presented in Table VII. (See fig. 5.)

ABLE VII.—PH on suspensions and extracts of soil+CaCO₃+Ca(OH₂), also titrations and calcium content of extract and calcium adsorbed by soil

Ca added in Ca(OH):.	Ca added in CaCO ₃ .	Suspen- sion.	Extract.	0.05N HCl.	Calcium in extract,	Calcium not adsorbed.	Calcium adsorbed.
Mgm.	Mgm.	P_H .	$P_{\underline{H}}$.	Cc.	Mgm.	Mom.	Mam.
.5	2.5	7. I	7.7	-0.2	2.4	0.0	2, 5
	5	7.6	8. o	—. 2	2.4	. 0	5. c
	8	7.73	8.4	.2	2.4	. 0	8. c
	12	7.96	8. 54	.2	2. 4	. 0	12.0
,	16	8. 27	8. 57	.41	2.4	. 0	16.0
	20	8.81	8. 67	1.2	2.4	.0	20. 0
	28	9.69	9. 15	1.4	3. o	. 6	27. 4
	36	10.46	10.43	1.5	4.6	2, 2	33.8
	48	11.38	11. 14	4. 1	8. 4	6.0	42. 0
	60	11.55	11. 53	10.4	14. 3	11. q	48. 1
	8o	11. ŠŠ	11.85	20. 3	25.6	23. 2	56.8

The influence of the smaller quantities of CaCO₃ added was apparent in the greater hydroxyl-ion concentration produced with the smaller idditions of Ca(OH)₂ solutions. Where the larger portions of Ca(OH)₂ were added, the influence of the equivalent amounts of CaCO₃ on the P_H values was nil. Here the excess of the hydroxyl-ions was so large is to mask completely the influence of the HCO₃ and CO₃ ions. The iter figures show that a larger amount of calcium was present as Ca(OH)₂ in CaH₂(CO₃)₂ than in Experiment 5, but the amounts of unadsorbed alcium in the extracts were the same. The figures for the adsorption of calcium were based on the amounts added in Ca(OH)₂. According to this method of calculation as much calcium was adsorbed from $a(OH)_3$, when CaCO₃ was present as when it was absent. It should be emembered that in the 24-hours contact, equilibrium between soil and aCO_3 had probably not been reached.

EXPERIMENT 8.—SOIL+CALCIUM HYDROXID+CALCIUM CARBONATE+POTASSIUM CHLORID

This experiment was performed in all respects like No. 7, except that CI was employed in the usual concentration. The data obtained are iven in Table VIII. (See fig. 5.)

ABLE VIII.—P_H on suspensions and extracts of soil+CaCO₂+Ca(OH)₂+KCl, also titrations and calcium content of extracts and calcium adsorbed by soil

Calcium added in Ca(OH) ₂ .	Calcium added in CaCO ₃ .	Suspen- sion.	Extract,	e.osN HCL.	Calcium in extract,	Calcium not adsorbed.	Calcium adsorbed.
Mgm. 2. 5	Mom. 2. 5 8 12 16 20 28 36 48	P _H 5. 50 7. 10 7. 69 8. 00 8. 10 8. 47 9. 38 9. 91 11. 07	P _H 6. 40 7. 70 7. 90 7. 90 7. 96 8. 10 8. 28 9. 35 10. 97	Cc. 0.0 .1 .2 .3 .5 .8	Mem. 17. 1 19. 2 21. 3 21. 6 21. 9 23. 8 27. 0 30. 1 35. 4	Mom. 3. I 5. 2 7. 3 7. 6 7. 9 9. 8 13. 0 16. I 21. 4	Mgm. 0.0 .7 4.4 8.1 10.2 15.0 19.9 26.6

The presence of KCl was evident in the decreased number of OH ions produced by the addition of Ca(OH)₂. This was true for both suspensions and extracts, and similar to results obtained in preceding experiments in which KCl was used. The figures for calcium adsorption are very similar to those obtained in Experiment 6. In the short time contact of this experiment the total effect of KCl was not influenced by the presence of CaCO₃.

Fig. 5.—Curves showing the influence of KCl on the adsorption of Ca from Ca(OH):+CaCO1

EXPERIMENT 9.—SOILS + DILUTE HYDROCHLORIC ACID

In this experiment the plan was to add 0.04N HCl to three soils in portions stoichometrically equivalent to the calcium used in several of the preceding experiments. The calculated amount of 0.04N HCl was added to the soil with enough water to make the ratio of soil and liquid 1.110. The time of shaking and the duration of the digestion was the same as in the preceding experiments. Oswego silt loam, Bates very fine sandy loam, and Bates loam were used. The data obtained are presented in Table IX.

TABLE IX.—PH on suspensions and extracts of soil+HCl, also titrations and calcius content of the extracts

HCl a	added.	0	swego sil	t loam.	.	Bates v	ery fine	sandy	loam.		Bates loam.		
0.04N per 10 grams soil.	Ca equiva-	Suspension.	Extract.	o.osN NaOH.	Calcium in extract.	Suspension.	Extract.	Neos N NeoH	Calcium in extract.	Suspension.	Extract.	o.os N NaOH.	Calciumin
3.12 6.25 12.5	2. 5 5. 0 10. 0	P _H . 4. 78 4. 21 3. 16	P _H . 5. 19 4. 82 3. 76	Cc. 0. 4 . 4 1. 0	Mgm. 1.9 3.1 6.4	P _H . 4. 14 3. 70 3. 23	P _H . 5.93 4.12 3.09	Cc. 0. 5 . 9 4. 5	Mgm. 1. 5 3. 2 4. 0	P _H . 6.00 5.33 4.38	P _H . 5. 36 5. 33 4. 65	0.2) i
	20. 0 40. 0	2. 72	2. 76 2. 14	5. 6 23. 2	10. 0	2.44 2.04	2.38 1.91	13. 6 32. 9	4. 2	3. 22 2. 42	3· 57 2. 48	12.4	2

The P_n values on both suspensions and extracts showed an increase in hydrogen-ion concentration corresponding to the increased amounts of HCl added. Where the smaller amounts of HCl were added, the hydrogen-ion concentrations were greater in the suspensions than in the extracts. The same relationship between suspensions and extracts was found in the preceding experiments when small amounts of Ca(OH), were added to soil. This was thought to be due to the relative insolubility of the acid-producing substance in soil. With HCl the added acid is soluble, and in the dilution used is completely ionized, yet the same differences in PH were found between the suspensions and the extracts. This can be accounted for by the additive influence of the acid-forming substance in the soil suspension. The titration figures show that a portion of the HCl is neutralized or adsorbed by the soil, and the amount so used corresponds to the adsorptive capacity of the soil. The two soils which adsorbed the greatest amount of calcium (Experiment 19) also neutralized the greatest amount of HCl. Perhaps the greater portion, though not all, of the HCl was neutralized in dissolving calcium from the soil. The amount of calcium obtained in the extracts was proportional to the calcium content of the soil.

The main point shown in this experiment is that while the addition of small amounts of a highly ionized acid like HCl results in an increase in the hydrogen-ion concentration of the suspensions and the extracts, yet the influence of the acid-forming substance in the soil is also shown.

EXPERIMENT 10. - SOILS + OXALIC ACID

This experiment was performed in the same manner as No. 9, except that 0.04N oxalic acid was used. The data obtained are presented in Table X.

There was a notable difference in the $P_{\rm H}$ values obtained with the ise of oxalic acid as compared with HCl. The addition of the three imaller portions of oxalic acid produced a decrease in the hydrogen-ion concentration, while the two larger portions caused an increase. This neans that the addition of a small amount of oxalic acid produces an increase in the hydroxyl-ion concentration. The hydrogen-ion concentration produced by 50 cc. of 0.04N oxalic acid is not as great as hat produced by the same amount of 0.04N HCl (Experiment 9). This is due simply to the smaller ionization of oxalic acid, and also to the ormation of insoluble oxalates.

The titration figures show the expected gradual increase as the mount of acid added to the soil increased, and the figures for oxalic icid are larger than they are for HCl. Owing to the smaller solubility of calcium in oxalic acid, the amount of calcium obtained was less when it was used than with HCl.

TABLE XPH on suspensions and extracts of	f soil + oxalic acid; also titrations and cal.
cium content of	the extracts

	rCrO: Oswego silt loam.			wego silt loam. Bates very fine sandy loam.			ioam.	Bates loam.					
o.04N per 10 gm. soil.	Ca equivalent.	Suspension.	Extract.	o.osN NaOH.	Calcium in extract.	Suspension,	Extract.	0.05N NaOH.	Calcium in extract.	Suspen: fon.	Extract.	0.05N NaOH.	Calcium in extract.
3	10. 0 20. 0	P _H . 4. 95 5. 43 7. 22 5. 46 3. 86	Р _Н . 5. 80 7. 83 7. 83 4. 07 2. 42	Cc. I. 5 2. 9 7. 3 12. 6 31. 0	Mgm. 0. 8 1. 2 2. 1 3. 2 4. 9	P _H . 5. 39 5. 80 3. 76 2. 48	P _H . 8. 00 7. 93 8. 23 3. 20 2. 55	Cc. 1. 8 4. 1 8. 1 17. 0 35. 9	Mgm. 0.7 .7 I. I I. 7 2. I	P _H . 7· 95 8. 13 8. 27 7· 42 5· 73	Рн. 8. 37 8. 03 8. 00 7. 90 3. 30	Cc. 0. 4 1. 6 2. 4 8. 1 21. 8	Mom 3. 6 3. 4 3. 4 4. 6 6. 8

The increase in the hydroxyl-ion concentration with the smaller amounts of oxalic acid can be accounted for by the fact that a salt of a weak acid and a strong base has an alkaline reaction in a water solution. This is due to the formation of the highly ionized hydroxid of the base and the feebly ionized acid. The hydrogen ions and the hydroxyl ions come from the water. When oxalic acid is added to soil, oxalates are formed. If the quantity added to soil is small these oxalates are in excess, and there are more hydroxyl-ions than hydrogen ions. When larger amounts of oxalic acid are added the reverse condition occurs. The initial reaction and the calcium content of the soil appear to determine the amount of oxalic acid required to produce an excess of hydrogen ions. With Bates loam, a neutral soil with a relative higher calcium content, the excess of the hydroxyl ions persists for a larger amount of oxalic acid than is the case with the other two soils.

When NaOH is added to the extract a part is used in basic exchange with the oxalates and part to neutralize the free oxalic acid. Bates loam neutralized a larger portion of oxalic acid than the other two soils. This soil has more calcium, and therefore more insoluble calcium oxalate could be formed. This would appear to indicate that the quantity of an organic acid, such as oxalic, which a soil is able to neutralize is a measure of the potential alkalimity.

The effect of oxalic acid on soil, as shown in this experiment, explains a fact well known to agriculturists, namely, that barnyard manure reduces the acid condition of the soil. The acids which result from the decay of organic matter combine with the bases of the soil, forming salts of weak acids and strong bases. The effect of adding organic acids to soil deserves further study, particularly those which form soluble compounds, such as acetic acid.

GROUP B.—INFLUENCE OF CALCIUM HYDROXID AND POTASSIUM CHLORID ON THE $P_{\rm H}$ WHEN USED ON WASHED SOIL, IGNITED SOIL, ACID-TREATED SOIL, AND ACID-TREATED SAND, ALSO ON THE TITRATION AND CALCIUM CONTENT OF THE EXTRACT

EXPERIMENT II.-WASHED SOIL + CALCIUM HYDROXID

In this experiment Ca(OH)₂ was added to washed soil in the same manner as in Experiment 5. In washing, part of the colloidal clay was removed. The method of washing was as follows: One kgm. of soil was

placed in a tall 8-liter bottle, and distilled CO₂-free water added until the bottle was nearly full. The bottle was then shaken for one hour, after which the soil was allowed to settle for one week. The supernatant liquid, still turbid with colloidal clay, was siphoned off without disturbing the soil in the bottom. The bottle was again filled with water and the process of shaking, settling, and removal of supernatant liquid repeated 12 times in as many weeks. As far as could be observed, the supernatant liquid was as turbid the last time it was siphoned off as it was the first time. The soil was transferred, using a small amount of water, to 1-gallon earthenware jars, and allowed to evaporate and dry completely at room temperature. Oswego silt loam, Bates very fine sandy loam, and Bates loam were thus treated. The resulting dry soil was very friable and loose. Determinations showed that only a small percentage of the soil had been removed as colloidal matter in the washing process.

In a preliminary trial Ca(OH)₂ was added in varying amounts to the three washed soils, but the differences in the data from the washed soils as compared with those from the untreated were relatively the same for the three soils. Table XI gives the results obtained on the Oswego silt loam.

Table XI.—P_H of suspensions and extracts of washed soil + Ca(OH)₂; also titrations and calcium content of extracts, and calcium adsorbed from Ca(OH)₂.

Calcium added.	Suspension.	Extract.	o.o5N. HCl.	Calcium in extract.	Calcium not adsorbed.	Calcium adsorbed.
Mqm.	P_{H} .	P_H .	Cc.	Mom.	Mgm.	Mom.
0.0	4.89	7. 32	0. 0	0.4	0.0	0.0
2.5	5.94	7.35	. 1	. 5	. 1	2, 4
5.0	6. 07	8. 03	. 1	. 7	.3	4.3
8.0	6. 14	7. 76	. 2	1.1	. 7	7
2.0	7. IQ	8. 13	. 3	1.4	1.0	11.
6.0	7. 62	8. 47	. 3	1.6	I. 2	14.
0.0	8. 03	8. 30	. 2	1.7	[18.
8.o	8. 94	8. 34	. 4	2, 6	I. 3 2. 2	
6.a	9. 99	9. 59	1, 5	1		25.
8.0	10. 87	10.40		4.4	4.0	32.
0.0	11. 24	- 1	2. 5	- 5.3	4.9	43.
0.0		11. 34	9. 5	14. 1	13.7	46.
٠.٠٠	11.68	11. 68	22. 8	27. 1 .	26. 7	53-

Comparing the figures of Table XI with those in Table V it will at once be apparent that the hydrogen-ion concentrations obtained, when different amounts of Ca(OH), were added to the soil, were greater for the washed soil than for the untreated. This means that the washing process increased the solubility of the acid-producing substance. Since the acid-producing substance is slightly soluble, a small amount was removed in the washing process. However, this removal resulted in an increase, rather than a decrease, in the hydrogen-ion concentration of the suspensions and the extracts. This indicates a continuous and increasing solubility of the acid-producing substance. (See fig. 6.)

The differences in the figures for calcium adsorption obtained on the washed soil as compared with the untreated are practically within the limits of the experimental error. If there is any real difference, washing has decreased the adsorptive capacity of soil for calcium. This was probably due to the removal of colloidal clay.

EXPERIMENT 12.-IGNITED SOIL+CALCIUM HYDRO"ID

In this experiment Ca(OH), was added to Oswego silt loam after it had been ignited. Weighed portions of soil as needed for the separate determinations were placed in flat-bottomed porcelain dishes and heated at 650° for five hours in an electric muffle having an automatic tem-

Pig. 6.—Curves showing the influence of KCl on the adsorption of calcium from Ca(OH):

perature control. After cooling, the ignited soil portions were transferred to bottles, and the subsequent treatment was the same as in Experiment 5. The loss on ignition as determined on one set of samples was nearly 5 per cent. The data obtained are presented in Table XII.

Table XII.— P_H of suspensions and extracts of ignited soil+ $Ca(OH)_2$, titrations and calcium content of extracts, and calcium adsorbed from $Ca(OH)_2$

Calcium added.	Suspension.	Extract.	o.o5N. HCl.	Calcium in extract.	Calcium not adsorbed.	Calcium adsorbed
Mgm.	P_H	P_H	Cc.	Mgm.	Mgm.	Mgm.
0	5. 56	7.83	0.0	1.2	0.0	C
4	6. 78	7.96	.4	2.4	1. 2	2
3	8. 20	8.84	.6	3.0	1.8	(
3	9. 42	9.48	. 9	4.2	3.0	
5	9.99	10.60	2.5	8.9	7.7	1
)	10.40	10.07	2. 7	9. 2	8.0	1:
3	11.97	11. 17	3.4	10.0	8.8	10
5	11. 34	11. 58	6. 5	15. 2	14.0	2
3	11. 61	11.85	16. 7	24.0	22.8	2
)	11.68	11.00	24. 2	33, 3	32. I	2
o	11.87	12. 01	27.4	40. 5	39.3	49

The hydrogen-ion concentration of the suspension of the ignited soil was very nearly the same as that obtained on the original soil in Experiment 5. This shows that the acid-producing substance was not destroyed by ignition. The hydrogen-ion concentration of the extract from the ignited soil was greater than it was in the original soil. This indicates that ignition increased the solubility of the acid-producing substance. However, the addition of the same quantities of Ca(OH), to the ignited soil produced a greater increase in the hydroxyl-ion concentration. This was due to the decreased adsorption of calcium. The amount of calcium adsorbed by the ignited soil was approximately twothirds that adsorbed by the original soil. The adsorptive capacity was lessened by the destruction of colloidal structure brought about by ignition. It is also possible that ignition alters the structure of the silicates in such a way that less chemical combination with calcium is possible. It is recognized that a too general statement can not be based on this experiment with only one soil. However, it is clear that while the hydrogen-ion concentration was not decreased by ignition, the adsorptive power for calcium was materially decreased.

experiment 13.—Ignited soil+calcium hydroxid+potassium chlorid

The manner of procedure in this experiment was the same as in Expeirment 12 except that KCl was added. The results obtained are presented in Table XIII. The effect of KCl in increasing the hydrogen-ion concentration and decreasing the amount of calcium adsorbed was relatively the same on ignited soil as on the untreated soil. Ignition, however, decreased the solubility of calcium in a solution of KCl. In the original soil a solution of KCl dissolved 14 mgm. calcium per 10 gm. of soil, but in the ignited soil the amount dissolved was only 3.9 mgm. Thus while ignition increased the solubility of the acid-producing substances in a solution of KCl it decreased the solubility of calcium in the same solution. Preceding experiments have shown that calcium adsorption was decreased by the presence of KCl and also by ignition. This experiment shows that KCl added to the ignited soil results in a further decrease of calcium adsorption. This apparently means that while basic exchange took place less readily in the ignited soil, the substances formed were more highly ionized.

Table XIII.— P_H suspensions and extracts of ignited soil+ $Ca(OH)_2$ +KCl, also titrations and calcium content of extracts and calcium adsorbed from $Ca(OH)_2$

Calcium added.	Suspension.	Extract.	0.05N HCl	Calcium in Extract.	Calcium not adsorbed.	Calcium adsorbed.
<i>Mgm</i> .	P_H	$P_{\mathcal{H}}$	Cc.	Mgm.	Mom.	Mom.
4	4.82	5.83	0.3	3.9	0.0	0. (
	6. 17	7.00	. 0	6.9	3.0	1.0
3	7. 76	7- 59	. 4	9.7	6.8	1. :
	8. 88	9. 18	1. 3	12. 3	8.4	3.
S	10.05	10. 02	2. 0	14. 7	10.8	5.:
	10. 43	11. 03	7. 6	17. 5	13.6	ő. <i>i</i>
	10.90	II. 20	9.6	21.8	17. 0	10.
	11. 14	11. 51	13.8	27. 1	23. ź	12.
	11. 44	11. Š1	17. 2	32. I	28. 2	IQ.
D	11.68	11.95	30. I	42.6	38. 7	21.

EXPERIMENT 14.—ACID-TREATED SOIL+CALCIUM HYDROXID. (SOIL LOW IN CALCIUM,)

One hundred gm. of soil, Oswego silt loam, were placed in a 2-liter glass-stoppered bottle and 2 liters 0.5N HCl added. The bottle was shaken for a while, and the contents were then allowed to digest for several days with occasional shakings. The soil was washed by decantation as long as it would settle clear, and finally washed on a Buchner funnel until the filtrate gave a neutral reaction to litmus. The soil was then dried and used in a manner similar to that of Experiment 5. The data obtained are given in Table XIV.

Table XIV.— P_H of suspensions of acid-treated soil+ $Ca(OH)_2$, also titrations and calcium content of extracts and calcium adsorbed from soil. (Soil low in calcium.)

Calcium added.	Suspension.	0.05N HCl.	Calcium in extract.	Calcium not adsorbed.	Calcium adsorbed.
Mgm.	P _H	· Cc.	Mgm.	Mgm. 1.0	Mgm.
8 6	3. 70 4. 85 6. 24	6	1.2	I. 2 2, 8	7.1 14.1 21.
6 8	7· 35 8. 98	.4	3· 4 4· 5	3. 4 4. 5	32. 43.
o	9. 42 9. 72	2. 3 3. 4	8. 1	8. I 10. 8	51. 69.

The acid treatment greatly increased the hydrogen-ion concentration of the suspension. The small value of the titration figures in comparison with the figures for the amount of calcium in the extract indicates that most of the calcium was present in the form of a neutral compound. The ratio of the amount of calcium adsorbed in relation to the amount added was as great with an addition of 80 mgm. calcium in the form of Ca(OH)₂ as with 8 mgm., indicating that the adsorptive capacity was not reached. In view of this, the greater amount of calcium found in the extract was probably due to resolution of an adsorption compound of calcium.

EXPERIMENT 15.-ACID-TREATED SOIL+CALCIUM HYDROXID. (SOIL HIGH IN CALCIUM.)

The procedure in this experiment was the same as that in Experiment 14, except that the soil used was a Summit silt loam high in calcium. The data obtained are given in Table XV.

Table XV.— P_H of suspensions from acid-treated soil, also titrations and calcium content of extracts and calcium adsorbed from $Ca(OH)_2$

Calcium a sorbed.	Calcium not adsorbed.	Calcium in extract.	0.05NHCl	Suspension.	Calcium added.	
Mgm.	Mgm.	Mgm. 0.7	Сс. — 1. 6	P _H 3. 36	Mgm.	
15	1.0	1.0	-1.0	3. 43	6	
22	I. 2	I. 2	- I. 2	3, 80	4	
34	1.8	1.8	— 1. 0	4.31	6	
45	2. I	2. I	4	5.77	8	
54 71	5. I 8. 8	5. I 8. 8	4 5	7· 35 8. 47	o	

The hydrogen-ion concentrations were greater than those in the previous experiment and were due, as shown by the titration figures, to the larger amount of free acid present. After the acid treatment this soil was more colloidal than the one the used in Experiment 14. The calcium adsorptive capacity was nearly the same in the two soils. The acid treatment may be considered a case of intense leaching. Under humid climatic conditions soils high in calcium will ultimately lose their calcium to such an extent that they are as much in need of calcium as some soils derived from acidic rocks.

EXPERIMENT 16.—ACID TREATED SAND+CALCIUM HYDROXID

Ordinary river sand was chosen for this experiment. It was first ground to an impalpable powder in a ball mill, then digested in HCl. Further treatment was similar to that of the two preceding experiments. The data obtained are given in Table XVI.

TABLE XVI.—PH of suspensions of acid-treated sand+Ca(OH)₂ also titrations and calcium on the extract, and calcium adsorbed from Ca(OH)₂

Calcium added.	Suspension.	0.05NHCl	Calcium in extract.	Calcium not adsorbed.	Calcium ad- sorbed.
Mgm.	Рн.	Cc.	Mgm.	Mom.	Mgm.
2	7.76	-o. з	0.8	0.8	1.6
4		1	I. 4	1.4	2.6
6	8.40	. 6	1, 9	1. 9	4. 1
8	8.50	1.6	2.5	2. 5	5. 1
[2	8. 84	2. 2	3.7	3.7	5. <u>5</u> 8. <u>3</u>
:6	9. 25	3.9	5. 2	5. 2	10.8
10	9.35	4. 7	č. 5	. 6. <u>5</u>	13. 5

As compared with soil, sand requires a much smaller amount of $\text{Ca}(\text{OH})_2$ to produce a corresponding change in the hydrogen-ion concentration. Beyond the addition of 6 mgm. calcium the titration figures together with the P_R values show that the greater part of the calcium in the extract was present as $\text{Ca}(\text{OH})_2$. A small part may have been present as CaCl_2 . While the amount of calcium adsorbed was much less than that obtained with soil, the ratio adsorbed to the amount added was large. Finely ground sand does adsorb calcium, and the ratio between the amount adsorbed and the amount added corresponds to the adsorption law.

GROUP C.—INFLUENCE OF CALCIUM HYDROXID AND POTASSIUM CHLORID ON $P_{\rm H}$ WHEN USED WITH FULLER'S EARTH, ALSO ON THE TITRATION AND THE CALCIUM CONTENT OF THE EXTRACTS

EXPERIMENT 17.-FULLER'S EARTH+CALCIUM HYDROXID

The fuller's earth used in this experiment was a white commercial product labeled "chemically pure." It was treated like the soil in Experiment 5. The data based on 10 grams of material are given at Table XVII.

TABLE XVII.—PH of suspensions and extracts of fuller's earth, also titrations	and
Table XVII.— P_H of suspensions and extracts of fuller's earth, also titrations calcium content of extracts, and calcium adsorbed from $Ca(OH)_2$	

Calcium added.	Suspension.	Extract.	Titer 0.05N HCl.	Calcium in extract.	Calcium not adsorbed.	Calcium adsorbed
Mom.	P_H	PH	Cc.	Mgm.	Mgm.	Mgm.
0	4.82	6.23	-0. I	4.4	0.0	0.
4	7.08	7.62	. 1	5.2	.8	3-
8	7.76	7. 76	. 2	7.0	2.6	
2	8. 17	7. 86	. 2	8.0	3.6	58
6	8. 37	ģ. oo	. 2	8. 2	3.8	12
0	8. 61	8. 27	.4	8, 8	4.4	15
8	8. 91	8. 57	.6	9.6	5. 2	22
6	9. 11	g. 11	1.8	11.1	6.7	20
8	9. 28	ģ. 31	2. 5	11.8	7.4	40
0	9.48	9.45	2. 0	12. 3	7.9	52

The P_n values obtained on the water suspension and the water extract of fuller's earth show that the hydrogen-ion concentration in both was greater than that obtained in an extract of soil, and, like the soil, that the hydrogen-ion concentration was greater in the suspension than in the extract. The acid-forming substance in fuller's earth was more soluble than it was in soil. This means a greater intensity of acidity in the former. The fuller's earth had a comparatively large amount of calcium in the water extract, which makes it difficult to calculate calcium adsorption except relatively. Since the ratio of the amount of calcium adsorbed to the amount added was as great with the largest as with the smallest quantity added, the adsorptive capacity was probably not reached. The adsorptive capacity of fuller's earth for calcium was greater than that of Oswego silt loam. The titration figures show that a comparatively small amount of calcium was present in the extract as hydroxid or carbonate. Some may have been present as a silicate in colloidal form, some as the soluble compound formed with the acid-forming substance in fuller's earth, and some as redissolved from the adsorption compound.

The reactions of fuller's earth with Ca(OH), were found to be very similar to those of soil, except in degree. The acid-forming substance in fuller's earth is probably an aluminum silicate, and by inference it might be concluded that the acid-forming substance in soil is of a similar nature.

EXPERIMENT 18.—FULLER'S EARTH+CALCIUM HYDROXID+POTASSIUM CHLORID

This experiment was conducted in the same manner as Experiment 17, except that KCl was also added. The data obtained are given in Table XVIII.

Table XVIII.— P_H on suspensions and extracts of fuller's earth+ $Ca(OH)_2$ +KCl, also titration and calcium content of extracts, and calcium adsorbed from $Ca(OH)_2$

Calcium added.	Suspension.	Extract.	Titer 0.05N HCl.	Calcium in extract.	Calcium not adsorbed.	Calcium adsorbe
Mgm.	PH	P_H	Cc.	Mom.	Mom.	Mgm.
D	5. 06	5. 43	0.00	1.8	0.0	
4	6.68		.00	6.0	4.2	
8 ,	7. 15	7. 25	. 15	9.9	8.1	
2	7.66	7. 62	. 15	13. 5	11.7	
6	8.06	7. 90	. 25	17. 1	15. 3	
o ,	8. 27	8. 06	. 35	20.5	18. 7	
8	8. 64	8. 34	. 65	25.5	23.7	
6	8.94	8. 67	I. 35	20. 1	27.3	
8	0.21	9. 15	1. 65	33.0	31. 2	1
o	9. 35	9.21	2.80	35.8	34.0	2

In the presence of KCl corresponding amounts of Ca(OH), produced smaller decrease in the hydrogen-ion concentration, indicating that the slubility and the ionization of the acid-forming substance in fuller's arth are increased by KCl; in other words, there are more hydrogen ons to be neutralized by the hydroxyl ions from Ca(OH)2. On the other and, in the presence of KCl calcium adsorption was entirely inhibited hen small amounts of Ca(OH)₂ were added, and greatly reduced with he larger amounts. The adsorption of considerable quantities of calium when the larger amounts of Ca(OH), were added shows that the endency of the calcium ions to combine with the radical of the acidorming substance was not prevented by a large excess of K ions. One undred cc. of a 0.5N solution of KCl contain nearly 2,000 mgm, of otassium, and yet adsorption of calcium took place when from 20 to 60 19m. were added in the form of Ca(OH)2. The net result of the presence f KCl was a greater hydrogen-ion concentration and larger amount of nadsorbed calcium. If the acid-forming substance produces a silicic acid he following ions are present:

KCl
$$\rightleftharpoons$$
K+₊Cl-
Ca(OH)₂ \rightleftharpoons Ca+₊₂OH-
H₂SiO₂ \rightleftharpoons 2 H+SiO₃
HOH \rightleftharpoons H++OH-

f this represents the ionic condition, the neutralization is due to the lydroxyl ions from Ca(OH), combining with the hydrogen ions of the cid-forming substance. From this standpoint the reaction can be conidered purely chemical. The potassium ions combine with the radicals of the acid-forming substance, producing a potassium compound. In he absence of KCl, as in Experiment 13, or when large amounts of calium are added, as in this experiment, calcium ions combine with the adicals of the acid-forming substance. Larger amounts of calcium comsine in the absence of KCl, and the ratio between the amount which combines and the amount added accords with the law of adsorption.

FROUP D.—COMPARISON OF VARIOUS SOILS IN RESPECT TO THE INFLU-ENCE OF CALCIUM CARBONATE, CALCIUM HYDROXID, AND POTASSIUM CHLORID UPON THE PH, THE ADSORPTIVE POWER OF SOIL FOR CALCIUM FROM CALCIUM HYDROXID, AND THE CALCIUM SOLUBLE IN HYDRO-CHLORIC ACID AND POTASSIUM CHLORID SOLUTIONS

EXPERIMENT 19.—COMPARATIVE POWER OF FOUR SOILS TO ADSORB CALCIUM FROM CALCIUM HYDROXID

The purpose of this experiment was to compare the calcium-adsorptive power of four soils. Neosho silt loam, Bates very fine sandy loam, Oswego silt loam, and Bates loam were used. Eight different solutions of Ca(OH), were made and added to soil in different definite amounts. After the usual treatment, the unadsorbed calcium and also the Pn values were determined on the extracts. The data obtained based on 10 gm. of soil are given in Table XIX.

The Bates loam, a neutral soil, and Oswego silt loam, a moderately acid soil, both containing larger amounts of clay than the other two, adsorbed nearly the same amount of calcium. Neosho silt loam, less acid than Oswego silt loam, adsorbed the least. The outstanding physical property of this soil is its small amount of clay and large amount of silt.

The Bates very fine sandy loam adsorbed more than the Neosho silt loam, but less than the other two. This soil had the highest hydrogen ion concentration of the four, but it contains a comparatively small

Fig. 7.—Comparative adsorption of calcium in soils (Experiment 19).

amount of clay. The main fact shown by this experiment is that the amount of clay is a factor of greater moment in calcium adsorption that is the initial intensity of acidity.

TABLE XIX.—Adsorption of calcium from Ca(OH), by four soils

	NE	OSHO SILT LOA	м.	oswego silt loam.			
Calcium added.	Calcium in extract.	Calcium adsorbed.	Extract.	Calcium in extract.	Calcium adsorbed.	Extract.	
Mgm.	Mgm.	Mgm.	P_H .	Mgm.	Mgm.	P _{II} .	
18.7	3.4	15.3	9. 43	3.4	15. 3	. 8. 5	
21.8		17. 5	10. 04	3.9	17. 9	0. ;	
25.2	5.6	19.6	10. 55	3. 6	21.6	8.	
9.1.,,	7. 1	22. 0	10. 79	4.0	25. 1	Q . 3	
5.4	10.4	25.0	11. 26	4.8	3 0 . 6	g. (
1.5	14.2	27.3	11. 50	б. т	35- 4	10.	
4.5	21. 2	33.3	11. 73	10. Ş	44. 0	10.	
59.1	31.0	38. 1	11.90	17. 2	51. 9	11.	
	BATES VE	RY FINE SAND	Y LOAM.		BATES LOAM.		
18.7	3.8	14. 0	8. 52		7.1.0	8. 2	
:1.8	10	17. 8		3.8	14.9	8.5	
5.2	1 3 . !	20. 0	8. 55 8. 66	3.9	17. 9	8.	
9.1	1 471	- 1		4.3	20. 9	9. 3	
5.4	6.1	24. 4	9. 67	4.6	24. 5	9. Ç	
1.5	9.0	29. 0	10. 41	5.3	30. 1	10.	
4.5	0	32. 5	10. 95	6. 6	34-9	10.2	
9.I	13.8	40. 7	11. 36	9. 1	45. 4	10.4	
	23.9	45. 2	11. 73	14.5	54. 6	10.	

EXPERIMENT 20.-COMPARATIVE POWER OF FOUR SOILS TO ADSORB CALCIUM FROM CALCIUM HYDROXID IN THE PRESENCE OF CALCIUM CARBONATE

same amounts of calcium were used per 10 gm. of soil as in the preceding

The amounts of CaCO₃ equivalent to the calcium adsorbed in Experiment 19 were calculated and added to the dry soil. Fifty cubic centimeters of water was added to each bottle, the mixtures shaken for several hours, and then allowed to digest for one day. Ca(OH)2 solutions were next added, and from this point on the experiment was performed like No. 19. The Ca(OH)2 solutions were so adjusted that very nearly the

experiment. The data obtained are presented in Table XX. The calcium adsorbed was calculated on the basis of the amounts added in the Ca(OH), solutions.

	NE	osho silt loa	м.	oswego silt loam.				
Ca(OH)2	Calcium in extract.	Calcium adsorbed from Ca(OH)t	Extract.	Calcium in extract.	Calcium adsorbed from Ca(OH):	Extract.		
Mgm.	Mgm.	Mgm.	P _H .	Mym.	Mym.	$P_{\mathbf{H}_{0}}$		
	1 -	14.3	9- 53	4.6	13. 3	8.0		
		17. 1	10. 11	4.2	17. 1	8. 7		
	1	19.4	10. 72	4. 2	21. 2	9. 1		
		20.9	10. 95	4.7	23. 2	9. 6		
	, ,	23. 3	11.40	5. 2	29.0	10. 5		
	, , ,	26.4	11. 53	6.8	34.1	10.9		
		30.0	11.66	10.4	39.9	10. <u>3</u>		
	31.9	36. 3	11.90	17. 2	51.0	11. 7		
	BATES VE	RY FINE SANI	Y LOAM.		BATES LOAM.			
	4.0	13. 9	8. 45	5.4	12. 5	8. 7		
	4.7	16.6	9. 37	5. 6	15. 7	8. 7		
		20.6	9. 72	5.4	20, 0	9. I		
		22. 2	10.06	5.4	22. 5	ý. 2		
	7.6	26. 6	10.97	5.6	28. 6	10. 7		
	. 10.0	30. 9	11. 22	6.5	34.4	g. 6		
	. 15. 1	35. 2	11. 53	9. 4	40. 9	11. 1		
	26.0	42. 2	11.80	17.3	50.0	11.6		

The P_H values were not materially affected by the presence of CaCO₂. The excess of the hydroxyl ions was so large as to mask the influence of the $\mathrm{HCO_3}$ and $\mathrm{CO_3}$ ions. The addition of $\mathrm{CaCO_3}$ under the conditions of this experiment did not change the relative adsorptive power of these four soils as found in Experiment 19. The presence of CaCO₃ only slightly reduced the amount of calcium adsorbed from Ca(OH)2. In Experiment 7 it was found that CaCO, had practically no effect on calcium adsorption from Ca(OH)2. The only difference in procedure between Experiments 7 and 20 was that in the latter case there was a longer contact for the CaCO₃ in the presence of water. While the effect of this longer contact was small it is enough to suggest that calcium is taken very slowly from CaCO, by the soil. The effect of long-time contact with CaCO, was also shown in Experiment 3.

EXPERIMENT 21.—THE H-ION CONCENTRATION OF SUSPENSIONS OF SOIL, IN WATER AND IN A SOLUTION OF POTASSIUM CHLORID AND THE CALCIUM CONTENT OF HYDRO-CHLORIC ACID SOLUTIONS

In several preceding experiments it has been shown that the presence of KCl materially changes the P_{π} value of both soil suspensions and soil extracts. One of the difficulties encountered in making electrometric measurements on a soil suspension or extract is the possible diffusion of KCl from the contact tube. This is enhanced by the necessity of constant agitation of the electrode vessel and the long time required for making some of the measurements. It was desired to learn how serious a factor this is with different soils of varying calcium content.

Twenty-four soils with accompanying subsoils, taken in the soil survey from various parts of Kansas, were selected for this experiment. These soils had been analyzed for total calcium as well as other nutrients, and the resulting data as well as physical texture, as far as that is revealed by soil type, formed the basis of selection. The calcium soluble in cold 0.5N HCl was determined by digesting the soil at room temperature for 24 hours. The P_H values were determined both on the water suspensions and on the suspensions in the 0.5N KCl solution. Before taking the final voltmeter reading the rubber tube connecting the KCl solution reservoir and the capillary tube was opened slightly by pressing the pinchcock, 50 as to make fresh contact. This would introduce a small amount of KC into the soil suspensions. Preliminary experiments had shown that the concentration of the KCl solution used as a solvent could be varied considerably without affecting the PH values. The small quantity introduced by the manipulation just described would then have no effect on the suspension in which 0.5N KCl was used, but it might materially affect the water suspensions. It had been noticed several times in the preceding experiments that some of the soil colloidal matter would diffuse into the capillary KCl connecting tube. Just how much this influenced the reading was not known. When a KCl solution forms a part of the electrical connection with the calomel cell it is impossible to prevent some KClertering the electrode vessel. If the system is so arranged that KCl forms part of the mixture in the electrode vessel the small quantity of K0 entering from this source may safely be ignored. The P_{H} values and the data on acid soluble calcium are given in Table XXI.

TABLE XXI.—Hydrogen-ion concentration and calcium content of soil and subsoil

				Surface.			Subsoil.		
Soil No.	County,	Soil type.	Calcium in HCl solu- tion.	H ₁ O sus- pen- sion,	KCl sus- pen- sion,	Cal- cium in HCl solu- tion.	HrO sus- pen- sion.	KCl sus- pen- sion.	
31	Allen	Oswego fine sandy	Mgm. 15. 1	Р _Н . 4.82	PH. 4.82	Mgm. 21. I	PH. 5. 22	Pg. 5.22	
27	do	Oswego clay	34.8	5. 02	4.82	50.4	5.77	5.53	
23	do	Neosho silt loam	17.3	5.00	5.06	36.4	5.66	5.33	
25	do	Osage loam	26. I	5.00	5.06	28. 2	5.43	5.50 5.60	
49	Montgomery	Crawford loam	18.4	5. 12	4.82	25.0	5.80		
II	Allen	Summit silt loam	35. I	5. 16	5.06	189. 6	7.46	7.93	
17	Brown	Marshall silt loam	31.3	5. 26	5.40	37-3	5.33	5.00	
33	Allen	Summit silt loam	18. o	5-33	5.46	16. 7	4.65	4.73	
15	Riley	Oswego silt loam	33.0	5.39	5- 33	74.0	7. 16	7.73	

ct. 20, 1923

ABLE XXI.—Hydrogen-ion concentration and calcium content of soil and subsoil—Con.

		Surfa				Subsoil.	
il County.	Soil type.	Cal- cium in HCl solu- tion.	H ₂ O sus- pen- sion.	KCl sus- pen- sion.	Cal- cium in HCl solu- tion.	H ₂ O sus- pen- sion.	KCl sus- pen- sion.
Allen	Brown loam. Greensburg sandy loam. Oswego clay. Brown loam. Lincoln clay Colby silt loam. Osage silt loam. Crawford silt loam. Richland silt loam. Oswego silt loam. Crawford clay. Lincoln silt loam.	30. 9 33. 2 26. 3 39. 8 14. 2 42. 2 27. 2 59. 3 31. 8 34. 1 68. 2 324. 0 192. 0	P _H . 5. 43 5. 43 5. 66 5. 93 5. 97 6. 27 6. 41 6. 41 6. 48 6. 81 6. 98 7. 49 7. 49	6. 10 6. 44 6. 34 6. 54 6. 64 6. 98 7. 08 7. 76 7. 86	Mgm. 30. 6 29. 4 23. 0 112. 0 154. 2 16. 8 54. 8 0 105. 0 138. 0 209. 0 431. 0 284. 0	P _H . 5.33 5.19 5.43 8.00 7.08 6.78 6.71 7.66 7.39 6.85 7.76 7.56 7.90	P _H . 5. 02 4. 99 4. 99 8. 06 6. 98 6. 68 7. 66 7. 76 6. 85 7. 66 7. 78 8. 23

The P_H values on the soil suspensions in water and in the KCl soluion do not differ widely except as will be noted. Hoagland and Sharp 23) found that the diffusion of KCl into the electrode vessel had a endency to increase the H-ion concentration, the amount of increase, owever, was small. It should be remembered that in soils P_{π} numbers are no significance beyond the first decimal place. Considering the ifferent $P_{\rm H}$ values obtained, the general rule seems to be that the presnce of KCl increases the concentration of the H ion or the OH ion when ther is in marked excess. That is, in very acid soils the presence of Cl will increase the hydrogen-ion concentration, while in alkaline soil will increase the hydroxyl-ion concentration. If the P_{π} value obtained

between 6 and 7 the influence of KCl is small. As a rule, the calcium content is higher in the subsoil than in the irface soil, and a higher calcium content is accompanied by a lower ydrogen-ion concentration. There were five soils which were exceptions) this, namely:

No. 13, Oswego silt loam. No. 17, Marshall silt loam.

No. 33, Summit silt loam. No. 51, Brown loam.

No. 53, Marshall silt loam.

1 these the differences in calcium content of soil and subsoil were nall. As a rule, the calcium content exerted a greater influence on the action than did the difference between soil and subsoil. When the alcium content was high the P_H values ranged between 7.5 and 8.0, hich is also near the values obtained when adsorption of calcium from a(OH)₂ was complete.

experiment 22.— $P_{\rm H}$ obtained by adding varying amounts of calcium hydroxid to different soils

By adding $Ca(OH)_2$ to a soil in such a way that several definite but varying amounts are used, and then determining the $P_{\rm H}$ values of the different portions, it should be possible to determine the equivalent $CaCO_3$ needed in the form of $Ca(OH)_2$ to give any desired $P_{\rm H}$ value. A number of the soils used in Experiment 21, the initial $P_{\rm H}$ number of which was less than 7, were selected for this experiment. Varying amounts of the $Ca(OH)_2$ solution and enough KCl to make the concentration 0.5N were added to three portions of soil. The amounts of $Ca(OH)_2$ to be added to the different soil portions were judged partly from the initial $P_{\rm H}$ value obtained on the soil suspension in KCl solution and partly by the general character of the soil. The solution was left in contact for the usual 24 hours. The results are given in Table XXII The figures are grouped according to the decreasing value of the hydrogenion concentration.

TABLE XXII.—Changes in PH values produced by adding Ca(OH)2 to different soils

Soil			Calcium added, mgm.				
No.	County.	Soil type.	0	8	16	24	
			P_H	P_H	P_{H}	P_{g}	
31	Allen	Oswego fine sandy loam	4.82	6. 14	7.35	8. 03	
27	đo	Osage clay	4.82	5. 87	6. 95	7.50	
49			4.82	6.31	7.39	7.90	
II		Summit silt loam	5. o6	6. 34	7. 32		
23	, do,	Neosho silt loam	5.06	6.61	7. 52	8.67	
25	do	Osage loam	5. o 6	6. 75	7. 66	8, 72	
13	do	Oswego silt loam	5. 16	6.64	7. 49	7.96	
15	Riley		5. 33	6.64		7.76	
17	Brown	Marshall silt loam	5. 40	6, 20	7. 49	7.83	
33	Allen	Summit silt loam	5. 46	6. 37	7. 73	8.40	
53	Brown	Marshall silt loam	5. 50	6. 20	9.6 6.95	7.15	
51	Leavenworth	Brown loam	6. 04	6. 61	7. 08		
21		do	6. 10	7. 25	7. 86	7-59 8.50	
			Calcium added, mgm.				
			0	2•4	4.8	7-20	
57 41 39	Barton	Greensburg sandy loam Colby silt loam Lincoln clay	6. 34 6. 44	6. 58 6. 75 6. 75	7. 12 7. 20 7. 12	7. 46 7. 46 7. 35	
43	i Greenwood	Crawford silt loam	6. 44	6, 95	7.08	7.3	

There is in general a relationship between the initial hydrogen-ion concentration and the P_{π} values produced by the addition of a certain amount of Ca(OH)₂. If the initial hydrogen-ion concentration is high, a given amount of Ca(OH)₂ will produce a smaller change than if the

nitial concentration is low. This is due to the neutralizing effect of the cid-producing substance. Soil texture also has an influence on the esult, shown by the fact that a certain amount of $\text{Ca}(\text{OH})_2$ will not roduce as great a change in the P_{H} values in clay and silt soils as in andy soils. Most soils in which the initial hydrogen-ion concentration orresponds to a P_{H} value of 5.5 or less required about 5 tons equivalent f CaCO_3 per acre to approximate the hydroxyl-ion concentration usually ound in soils of high calcium content.

XPERIMENT 23.—TOTAL CALCIUM OF SOILS AND CALCIUM SOLUBLE IN 0.5N HYDRO-CHLORIC ACID AND 0.5N POTASSIUM CHLORID SOLUTIONS

The soils used in Experiment 18 had been previously analyzed for total alcium in connection with the work of the State soil survey. The calium soluble in 0.5N HCl and in 0.5N KCl solution was determined by igesting at room temperature for 24 hours. The data obtained are resented in Table XXIII.

TABLE XXIII.—Total calcium and calcium soluble in 0.5N HCl and in 0.5N KCl

cil	County,	Soil type.	Surface soil.			Subsoil.			
fo.			Total.	o.5N HCI	o.5N KCi	Total.	o.5N HCI	o.5N KCI	
			Mgm.	Mgm.	Mgm.	Mom.	Mgm.	Mom.	
ļΙ	Allen	Oswego fine sandy loam.	25	15	15	27	21	23	
!7	do	Osage clay	43	35	36	56	50	51	
!3	do	Neosho silt loam	39	17	16	36	36	39	
15	do	Osage loam	50	26	25	41	28	28	
19	Montgomery	Crawford loam	39	18	21	38	25	31	
1	Allen	Summit silt loam	37	35	33	195	195	56	
:7	Brown	Marshall silt loam	45	31	26	57	37	38	
13	Allen	Summit silt loam	37	18	16	31	17	19	
-5	Riley	Oswego silt loam	64	33	31	96	74	51	
-3	Allen	do	36	26	26	41	31	35	
3	Brown	Marshall silt loam	62	31	27	71	20	33	
;I	Leavenworth	Brown loam	58	33	27	59	24	27	
7	Barton	Greensburg sandy loam.	58	26	18	134	112	33	
.7	Cherokee	Oswego clay	77	35	33	181	154	145	
I	Harper	Brown loam	42	14	11	47	17	16	
9	Jewell	Lincoln clay	104	42	39	172	54	44	
.I	· · · · .do	Colby silt loam	59	27	24	06	78	45	
9	Brown	Osage silt loam	80	59	38	128	105	54	
3	Greenwood	Crawford silt loam	49	32	20	60	57	40	
5	Finney	Richland silt loam	81	34	26	42 I	130	33	
9	Allen	Oswego silt loam	82	68	52	215	200	61	
-5	Greenwood	Crawford clay	320	321	47	311	434	33	
7	Jewell	Lincoln silt loam	222	102	52	150	136	42	
5	Gove	Colby silt loam	183	78	34	256	285	34	
_		-		· '		,	,	"	

The total calcium obtained by the fusion method was uniformly eater than the calcium soluble in either the HCl or KCl solutions, id the differences were more marked in soils of low calcium content. is means that the lower the calcium content the lower the relative lubility. In soils of comparatively low calcium content the amount luble in a KCl solution was nearly the same as that soluble in a HCl

solution of the same normality. When soils contained a large amount of calcium the solubility in the KCl solution was much less than in HC_{c} and the difference increased with increasing amounts of calcium. In several of the preceding experiments it was shown that very little or no calcium was adsorbed in the presence of KCl when the amount added in Ca(OH), was small. This indicates that the calcium is changed to a soluble salt. Considerable amounts of calcium were adsorbed in the presence of KCl when the added amount of Ca(OH), was large. The power of KCl to change calcium in a soil to a soluble salt is limited Calcium in soil is usually present as a silicate or a carbonate, a salt of a weak acid and strong base. When KCl is added to soil CaCl, and the potassium salts of the weak acids are formed, the reaction being often described as basic exchange (47). This is a reversible reaction governed by the law of mass action.

GENERAL DISCUSSION

ORGANIC VERSUS INORGANIC ORIGIN OF ACIDITY

There are a number of theories relative to soil acidity, soil reaction and lime requirements. Some of these are discussed by Fisher (13) The substance which determines whether the hydrogen ions or the hydroxyl ions shall be in excess may be of organic or inorganic origin. When organic matter decays in soil organic acids may be formed. Such a source of acidity is common in muck and peat soils (29, p. 355). In soils principally of mineral origin, organic matter apparently does not play an important rôle in the production of soil acidity (11, 25). That a considerable amount of an organic acid may be added to such mineral soils without increasing the hydrogen-ion concentration was shown in the experiment with oxalic acid. In fact, the addition of small amounts of the feebly ionized acid actually increased the hydroxyl-ion concentration, probably because of the formation of salts of a weak acid and strong This explains the well-known fact that instead of increasing acidity the addition of organic matter may actually decrease the same

All of the soils used in this study were derived mostly from limestone, lime shale, and sandstone. They were therefore typical mineral soils That organic matter does not determine the reaction of such soils is shown again by the fact that after ignition (Experiment 12) the P_x values were not materially changed. The source of the excess hydrogen-ion concentration is in the mineral portion of the soil. Harris (17, 18, 19) found many acid soils that were deficient in organic matter. Most acid soils are of mineral origin, and organic matter is only an indirect

factor in the production of the acid condition.

ACID CONDITION PRODUCED BY WEATHERING

The cause of the acid condition of a mineral soil is due to chemical changes which are a part of the weathering process, or the process by which soils are formed from rocks and minerals. Acid soils are likely to be found where the annual rainfall exceeds evaporation, and alkaling soils when the opposite condition prevails. Continuous addition of NaNO₃, (NH₄)₂SO₄, or CaH₄(PO₄)₂ may also affect soil reaction (5, 10).

When silicates, such as the feldspars, undergo weathering the chemical changes which take place may be represented by the equation:

 $K_2O \cdot Al_2O_3 \cdot 6 SiO_2 + CO_2 + 2H_2O = K_2CO_3 + 4SiO_2 + Al_2O_3 \cdot 2 SiO_2 \cdot H_2O_3$

The reaction is similar when calcium or some other strong base is present in the original mineral. The base sodium has been removed from soils in humid regions to such an extent that very little is left. Under present climatic conditions calcium is the base removed in largest amount (22, p. 22-23). Since the earth's crust contains nearly the same percentage of potassium and sodium (9), and also since soils of mineral origin contain more potassium than sodium, it is indicated that potassium is less readily removed.

In the Tropics, where the conditions of weathering are more intense, the process goes further than that represented by the above equation. The equation for this more intense transformation may be written (34)—

$$\label{eq:constraints} \text{K}_2\text{O} \, \cdot \, \text{Al}_2\text{O}_3 \, \cdot \, 6 \, \text{SiO}_2 + 3 \, \, \text{H}_2\text{O} + \text{CO}_2 = 2 \, \, \text{Al} \, \, (\text{OH})_3 + \text{K}_2\text{CO}_3 + 6 \, \, \text{SiO}_2.$$

The similarities and differences of the two equations are apparent. Both show that the bases are transformed into soluble forms, and in this condition may be readily removed by leaching. However, in the formation of the alumino-silicate, kaolin, only two-thirds of the silica is set free from the original mineral. In tropical weathering, according to the above equation, all the silica is split off and the aluminum is found as the hydroxid, gibbsite, the characteristic mineral of laterite.

REMOVAL OF BASES THE FUNDAMENTAL CAUSE OF ACIDITY

The elements potassium, sodium, and calcium in those minerals which form soil are in a condition of unstable chemical equilibrium under humid climatic conditions. They form the weak link in the mineral molecule. Under the conditions of a humid climate they are removed by various agencies, and the more stable alumino-silicates found in clay are produced. This removal of bases is the fundamental cause of the acid condition of soil of mineral origin.

Cameron and Bell (6) give another picture of the chemical transformations which take place in the weathering of silicates. They write the equation as follows:

$$KAlSi_3O_8 + HOH = KOH + HAlSi_3O_8$$

The successive removal of silica is represented as follows:

 ${
m HAlSi_3O_8-SiO_2=HAlSi_2O_6}, \ {
m pyrophyllite}. \ {
m HAlSi_2O_6-SiO_2=HAISiO_4}, \ {
m kaolinite}. \ {
m HAlSiO_4-SiO_2=HAlO_2}, \ {
m diaspore}.$

This chemical reaction explains the alkaline reaction of finely ground suspension of orthoclase in water. Under humid condition the base is removed and the acid alumino-silicate is left. This is very slightly soluble and feebly ionized.

The equations also show the splitting off of silica, and, at present, considerable amounts are being leached from the land surface (22, p. 22-23). This may be removed, at least in part, in the colloidal form (24). But the serious loss is that of calcium, which under climatic contitions is leached in large amounts from cultivated land. (30)

The carbon dioxid needed for this weathering process is derived partly from that brought to the soil in rain (9), and perhaps to a larger extent from the decay of organic matter in the soil. In this way organic matter indirectly brings about an acid condition of the soil.

IMPOVERISHMENT OF CALCIUM, THE END RESULT OF WEATHERING

The net result of the weathering process is the removal of bases, mostly in carbonate form, the production of free silica, and the accumulation of the alumino-silicates. The presence of calcium in soil in the noncarbonate form indicates that all of the calcium has not been removed from these silicates. A large part of this calcium is soluble in dilute hydrochloric acid and in a 0.5N solution of KCl. In this process the potassium is taken up by the silicate and the calcium is set free in equivalent amounts (36). This process is usually called basic exchange (43, 46, 47). The ionic and adsorption theories show that calcium is made soluble because of the excess of hydrogen and chlorin ions when the adsorption of potassium takes place. The weathering process produces a soil poor in calcium. Plants need calcium for growth and development. What is often called an acid condition exists when calcium is so firmly combined with the alumino-silicates that it is unavailable for plant use. Under such a condition calcium supplied even in the form of CaSiO, may be beneficial, not because it reduces the hydrogen ions, but because it satisfies the need of plants for calcium. When calcium in the form of Ca(OH), is added to soils which contain these alumino-silicates the basic condition of the original mineral tends to be restored. Such recombination may be purely chemical. If this is true, there are an indefinite number of alumino-silicates in which calcium is only partly taken up. This was shown in several experiments in which the amount of calcium adsorbed was definitely related to the amount added.

ACID NATURE OF WEATHERED ALUMINO-SILICATES

The acid nature of weathered silicates, or the property which makes them combine with bases, can be seen from the following explanation based on Clarke's theory (δ). The simplest method of representing many, perhaps all, of the orthosilicates of aluminum is as substitution derivatives of the normal salt Al₄ (SiO₄)₃ derived from the normal silicic acid H₄SiO₄. The existence of this silicate has not been proved, but several minerals such as nephelite, NaAlSiO₄, leucite, KAlSiO₄ and Kryptolite, HAlSiO₄, in which one or more atoms of aluminum are replaced by other metals, are known. The acid nature of the latter is suggested both by the formula and by the substitution of hydrogen for the bases potassium and sodium.

The structural formulas (8) of the normal aluminum silicate and kaolinite suggests the acid nature of the latter.

It is well known that kaolin has an acid reaction toward indicators. Fuller's earth, a substance of the same chemical nature as kaolin, gave

(Experiment 13) a P_m value indicating a higher hydrogen-ion concentration than that found in many acid soils. The adsorptive power for calcium was also greater. The silicates present in such materials as fuller's earth and kaolin are relatively insoluble and very feebly ionized. Rice and Osugi (39) found that the catalytic effect of the hydrogen ion from some silicates as indicated by the inversion of cane sugar was nil when KCl was absent, but considerable when this salt was present. The greater hydrogen-ion concentration produced by adding a neutral salt like KCl to an alumino-silicate is due to the adsorption of potassium (36), thus increasing the number of hydrogen ions. When a soil is suspended in water and agitated, some bases readily go into solution, as is well known by the analysis of the water extracts. Some of the hydrogen ions in a water suspension can be accounted for by the readsorption and consequent rearrangement of bases.

ADSORPTION VERSUS CHEMICAL COMBINATION

Whether the changes which occur when a hydroxid such as Ca(OH)₂ is added to soil shall be considered purely a chemical reaction or more in the nature of an adsorption phenomenon has been the subject of considerable study (3, 17, 18, 19, 45). Recent ideas (16, 27) concerning the relationship between molecules, such as occur in the formation of crystals, and the phenomena of adsorption would point to the conclusion that there is no sharp dividing line between a purely chemical union of elements or compounds and adsorption. If it is true that chemical compounds form when Ca(OH)₂ is added to soil, then from the experimental data here presented there must be an indefinite number of such compounds, all with different formulas. It is simpler to assume ordinary adsorption as an explanation.

THE PROCESS OF ADSORPTION

The process of adsorption was demonstrated in the experiment of Linder and Picton (28), who showed that when $\mathrm{As_2S_3}$ is precipitated from colloidal solution by $\mathrm{BaCl_2}$ a certain amount of the barium is carried down and a corresponding amount of HCl produced. Parker (36) found that when an acid soil is shaken with a solution of KCl the potassium is displaced by aluminum and other bases in nearly equivalent amounts, the chlorin remaining unchanged. However, when NaOH was also added together with the KCl his data showed that just as much potassium was absorbed, but no calcium liberated. The following equations illustrate what takes place:

KCl ⇒K+ − Cl HOH⇒OH+H+ KOH (adsorbed)+HCl

In soils of relatively low calcium content the solubility of this element (Experiment 23) in 0.5N KCl was the same as in 0.5N HCl. The above equations show that in reality HCl is the dissolving agent. If a base like NaOH is present, NaCl is formed and no calcium is dissolved.

THE CAUSE OF THE LOW INTENSITY OF SOIL ACIDITY

If the HCl formed when potassium is adsorbed from KCl remained uncombined, then the increase in hydrogen-ion concentration would be much larger than it is normally. Calcium silicates are present, and the further reaction may be represented as follows:

HCl+Ca silicate \rightleftharpoons $CaCl_2+H$ silicate.

The relatively small hydrogen-ion concentration is due to the hypothetical feebly ionized silicic acid or the acid salt. The larger the amount of calcium in the soil, even in the form of silicates, the less the hydrogen-ion concentration. This is also the reason why in the presence of a small intensity of acidity, a relatively large amount of base such as Ca(OH), is necessary to shift the equilibrium from a high to a lower hydrogen-ion concentration. This fact was shown in several of the preceding experiments.

HARMFUL EFFECTS OF ALUMINO-SILICATES

Several investigators (*t*, *to*, *20*) have shown the harmful effect upon plant growth of aluminum in some soils. The net result of the weathering process is the enrichment of aluminum in the mineral matter of the soil at the same time that there is an impoverishment of the bases. In tropical weathering this is carried to the extreme, as has already been shown. The luxuriant vegetation of the Tropics would indicate that the accumulation of aluminum is not in itself harmful. Just why aluminum compounds should be toxic under some conditions and not toxic under such extreme conditions as laterite weathering is a problem which apparently has not been investigated. The explanation probably lies in the nature of the subsoil. If the subsoil is open, transference of matter takes place more readily and a better balance is maintained. The addition of calcium compounds removes the toxic effect of aluminum (*20*). The cycle of aluminum in nature and its effect on the physiological activities of plants is given by Stocklasa (*42*).

ADSORPTION OF CALCIUM AS A PROCESS OF REPLACEMENT

The presence of such alumino-silicates as are produced by weathering probably accounts for the adsorption of calcium from such compounds as Ca(OH)₂ and CaCO₃. Leaching and treatment with acids, both of which may be considered as intensified processes of weathering, increased the adsorptive power of the soil (see Experiments 11 and 14). Calcium adsorption was the same whether the original acid-treated soil was high or low in calcium (see Experiments 14 and 15). The adsorptive power is conditioned upon the alumino-silicates that are produced by those processes which make soil. Adsorption in soils is a process of replacing the lost base.

RELATIVE ADSORPTION OF CALCIUM AND POTASSIUM

When KCl is present in large amounts the need of these aluminosilicates for a base is satisfied. When the ratio of calcium to potassium was very small no calcium adsorption took place. When the ratio of calcium to potassium was 1 to 30 about half as much calcium was adsorbed as in the absence of KCl, and considerable was adsorbed even with a wider ratio. This indicates that the adsorptive power of these alumino-silicates for calcium is greater than for potassium.

CONCLUDING STATEMENT

The process of weathering removes by degrees the bases in soils, and hence alumino-silicates are present with varying amounts of bases. The definite composition of many supposed minerals is questioned (38). If definite calcium aluminates exist, an equilibrium must have been reached (38). In the absence of such an equilibrium a heterogeneous mixture is present. If the removal is gradual, and substances are present with varying amounts of bases, the recombination would also be gradual. These may be purely chemical combinations, but, if so, the quantitative relationship is as would be expected by the adsorption law. This has been shown in Experiments 5 to 18. The amount of calcium adsorbed bears a certain relation to the amount added. The total amount adsorbed increases according to the amount added. When relatively small amounts are added, all is adsorbed. When larger amounts are added the greater part is adsorbed. Adsorption is further emphasized by the fact that the amount of clay has a greater effect on the amount of calcium adsorbed than the intitial hydrogen-ion concentration (Experiments 10 and 22).

Many problems have been suggested by the present investigation. There are a number of factors which affect the electrometric measurements on soils. The hydrogen electrode does not give as satisfactory results with soils as it does with many other materials. The phenomenon of poisoning the electrode that exists with other materials is worse with soil. There is great need of standardizing the electrometric method for soils. Several of the experiments should be repeated on a more extensive scale; particularly those on the effect of organic acids on soils; leaching; ignition; and the acid treatment. More knowledge is needed concerning the solubility of the acid-forming substance in soil. The adsorption of the hydroxyl ions, only incidentally touched upon, needs further investigation.

SUMMARY

- I. Acidity or alkalinity of aqueous solutions is expressed by the symbol $P_{\rm H}$ and some number which denotes the degree of the hydrogen-ion or the hydroxyl-ion concentration. The ion in excess determines whether the solution is acid or alkaline. This general concept is applied to water solutions and water suspensions of soil. The hydrogen-ion concentration in soil was measured with the hydrogen electrode. When used with soil this method presents many difficulties; these, however, are not necessarily insurmountable.
- 2. Since surface plays an important part, and phenomena of heterogeneity are manifest, the term adsorption rather than absorption is used to describe the combination of soil and Ca(OH)₂. Quantitatively, the combination obeys the adsorption law.
- 3. Successful use of the hydrogen electrode with soils depends on effective methods and efficient apparatus. A special apparatus was devised by which it is possible to carry on six electrode measurements at the same time with the minimum attention of the operator.

- 4. A large part of the experimental work was done on one soil, with supplementary work on other soils and materials. Calcium in the form of Ca(OH), was added to soil in various amounts and the P_R values and unadsorbed calcium determined. This was done both in the presence and absence of KCl. CaCO, was also used in some experiments.
- 5. The general effect of KCl was to increase the hydrogen-ion concentration except in soils which have a comparatively large amount of calcium. It reduced calcium adsorption from zero to one-half, more being adsorbed with the larger amount of Ca(OH)2 added.
- 6. The hydrogen-ion concentration was greater on the suspensions than on the extracts except where there was an excess of hydroxyl ions. Leaching a soil did not decrease the hydrogen-ion concentration nor the adsorptive power; the last of these, however, was decreased by ignition, The addition of $CaCO_3$ and $Ca(OH)_2$ did not materially affect the P_a values unless there was a long period of contact with the $CaCO_3$. The amount of calcium adsorbed from Ca(OH)₂ was not affected by the presence of CaCO₃. The adsorptive power of soil was more closely related to the clay content than to the original hydrogen-ion concentration.
- Fuller's earth had a higher hydrogen-ion concentration and a greater adsorptive power than soil.
- 8. The hydrogen-ion concentration and adsorptive power of soil when treated with hydrochloric acid and washed was the same irrespective of the original calcium content of the soil.
- 9. Addition of small amounts of 0.04N HCl increased the hydrogen-ion concentration proportionally to the amount added. Oxalic acid of the same concentration decreased the hydrogen-ion concentration with the smaller portions of acid, and increased it with the larger portion of acid. This increase was not as great as with equivalent amounts of HCl. The difference in the effect of the two acids is due to the formation of feebly ionized salts of a weak acid and strong base in the case of the oxalic
- 10. The fundamental cause of the acid condition of a mineral soil is found in the chemical changes which accompany weathering. The bases are removed and acid alumino-silicates accumulate. Since the removal of bases takes place gradually, readsorption would take place in a like manner. The harmful effect of these alumino-silicates is not necessarily due to the higher hydrogen-ion concentration, but more probably to the adsorption of calcium to such an extent that not enough is available for plant use. The amount of calcium adsorbed when definite amounts of a solution of Ca(OH)2 is added to soil and the PH value produced can be measured by the methods described.

LITERATURE CITED

- (1) ABBOTT, J. B., CONNER, S. D., and SMALLEY, H. R.
- 1913. SOIL ACIDITY, NITRIFICATION, AND THE TOXICITY OF SOLUBLE SALTS OF ALUMINUM. Ind. Agr. Exp. Sta. Bul. 170, p. 329-374, 22 fig.

 (2) AMES, J. W., and Schollenberger, C. J.
 1916. LIMING AND LIME REQUIREMENT OF SOIL. Ohio Agr. Exp. Sta. Bul. 306,
 1917. 1818-206 f. for Bibliographical footnotes
- p. 281-396, 5 fig. Bibliographical footnotes.
 (3) Bemmelen, J. M. van. 1888. DIE ABSORPTIONSVERBINDUNGEN UND DAS ABSORPTIONSVERMÖGEN DER ACKERERDE. In Landw. Vers. Stat., Bd. 35, p. 69-136. Bibliograph-

ical footnotes.

(4) BOVIE, W. T. 1915. A DIRECT READING POTENTIOMETER FOR MEASURING AND RECORDING BOTH THE ACTUAL AND THE TOTAL REACTION OF SOLUTIONS. In Jour. Med. Research, v. 33, (n. s. v. 28), p. 295-322, illus.

- 1916. THE DATA OF GEOCHEMISTRY. U. S. Geol. Surv. Bul. 616, 821 p. Bibliographical footnotes.

 (10) CONNER, S. D.

 1916. ACID SOILS AND THE EFFECT OF ACID PHOSPHATE AND OTHER FERTILIZERS
- UPON THEM. In Jour. Indus. and Engin. Chem., v. 8, p. 35-40, 2 fig. (11) Daikuhara, G.
 1914. UEBER SAURE MINERALBÖDEN. In Bul. Imp. Cent. Agr. Exp. Sta. Japan, v. 2, p. 1-40.
- Japan, v. 2, p. 1-40.
 (12) FALES, HAROLD A., and MUDGE, WILLIAM A.
 1920. A STUDY OF THE SATURATED POTASSIUM CHLORIDE CALOMEL CELL. In
 Jour. Amer. Chem. Soc., v. 42, p. 2434-2453, 3 fig.
- (13) FISHER, E. A.
 1921. STUDIES ON SOIL REACTION. In Jour. Agr. Sci., v. 11, p. 19-65, 12 fig.
 References, p. 42-44, 64-65.
 (14) GILLESPIE. L. J.
- 1916. THE REACTION OF SOIL AND MEASUREMENTS OF HYDROGEN-ION CONCENTRATION. In Jour. Wash. Acad. Sci., v. 6, p. 7-16, 2 fig. (15) HAGAR, G.
- 1917. DIE UMWANDLUNG DES ÄTZKALKES IM BODEN UND DIE LÖSLICHKEIT DER GEBILDETEN KALKVEREBINDUNG IN IHRER BEZIEHUNGEN ZUR THEORIE DER KALKWIRKUNG. In Jour. Landw., Jahrg. 65, p. 245–311. Bibliographical footnotes.
- (16) HARKINS, W. D., DAVIES, E. C. H., and CLARK, G. L. 1917. THE ORIENTATION OF MOLECULES IN THE SURFACES OF LIQUIDS, THE ENERGY RELATIONS AT SURFACES, SOLUBLITY, ADSORPTION, EMULSI-FICATION, MOLECULAR ASSOCIATION, AND THE EFFECT OF ACIDS AND BASES ON INTERFACIAL TENSION. In Jour. Amer. Chem. Soc., v. 39,
- p. 541-596, 3 fig. Bibliographical footnotes.

 17 Jour. Amer. Chem. Soc., v. 39, p. 541-596, 3 fig. Bibliographical footnotes.

 1914. Soll. Acidity. Mich. Agr. Exp. Sta. Tech. Bul. 19, 15 p. Bibliographical footnotes.
- 1914. SOME ADSORPTION PHENOMENA IN SOILS AND KAOLIN. In Jour. Phys. Chem., v. 18, p. 355-372. Bibliographical footnotes.
- 1917. ADSORPTION BY SOILS. In Jour. Phys. Chem., v. 21, p. 454-473. Bibliographical footnotes. (20) Нактиелл, Burt L., and Ремвек, F. R.
- 1918. THE PRESENCE OF ALUMINUM AS A REASON FOR THE DIFFERENCE IN THE EFFECT OF SO-CALLED ACTO SOIL ON BARLEY AND RYE. In Soil Sci., V. 6, p. 259-278, 1 pl. References, p. 276-277.

 (21) HILDEBRAND, J. H.
- (21) HILDEBRAND, J. H.

 1913. SOME APPLICATIONS OF THE HYDROGEN ELECTRODE IN ANALYSIS, RESEARCH

v. 2, p. 77-90. Bibliographical footnotes.

- AND TEACHING. In Jour. Amer. Chem. Soc., v. 35, p. 847-871, 15 fig. (22) HILGARD, E. W.
- 1906. Sons. . . 593 p., illus. New York and London. (23) HOAGLAND, D. R., and SHARP, L. T.
 - 1918. RELATION OF CARBON DIOXID TO SOIL, REACTION AS MEASURED BY THE HYDROGEN ELECTRODE. In Jour. Agr. Research, v. 12, p. 139-148.
- Literature cited, p. 147-148.

 (24) KAHLENBERG, Louis, and LINCOLN, Azariah T.

 1898. SOLUTIONS OF SILICATES OF THE ALKALIES. In Jour. Phys. Chem.,

- (25) KAPPEN, H. 1920. ÜBER DIE AZIDITÄTSFORMEN DES BODENS UND IHRE PFLANZENPHSIO. LOGISCHE BEDEUTUNG. In Landw. Vers. Stat., Bd. 96, p. 277-307, illus. Bibliographical footnotes.
- (26) KNIGHT, Henry G.

 1920. ACIDITY AND ACIDIMETRY OF SOILS. In Jour. Indus. and Engin. Chem,
 V. 12, p. 340-344, 457-464, 559-562, illus.
- (27) LANGMUIR, Irving. 1916. THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQ-UIDS. In Jour. Amer. Chem. Soc., v. 38, p. 2221-2295, 1 fig. Bibliographical footnotes.
- (28) Linder, S. E., and Picton, Harold.

 1895. Solution and pseudo-solution. Part II. Some physical properties of arsenious sulphide and other solutions. In Jour. Chem.
- Soc. [London], v. 67, p. 63-74.

 (29) LIPMAN, Jacob G.

 1921. MICROBIOLOGY OF SOIL. In Marshall, Charles E. Microbiolology.
- 1921. MICROBIOLOGY OF SOIL. In Marshall, Charles E. Microbiology Ed. 3, p. 345-427, fig. 131-137.

 (30) Lyon, T. Lyttleton, and Bizzell, James A.
- 1918. LYSIMETER EXPERIMENTS. N. Y. Cornell Agr. Exp. Sta. Mem. 12, 115 p., 4 pl. Bibliography, p. 82-84.
- (31) —— and BUCKMAN, Harry Ö.

 1922. THE NATURE AND PROPERTIES OF SOILS. 588 p., 64 fig. New York.
 Bibliographical footnotes.
 (32) MACINTIRR, W. H.
- (32) MACINTIRE, W. H. 1916. FACTORS INFLUENCING THE LIME AND MAGNESIA REQUIREMENTS OF SOILS. Tenn. Agr. Exp. Sta. Bul. 115, 48 p., 2 fig. Bibliographical footnotes.
- (33) ——

 1921. THE NATURE OF SOIL ACIDITY WITH REGARD TO ITS QUANTITATIVE DETERMINATION. In Jour. Amer. Soc. Agron., v. 13, p. 137-161. Literature cited, p. 158-161.
- (34) MACLAREN, Malcolm.

 1906. ON THE ORIGIN OF CERTAIN LATERITES. In Geol. Mag., n. s., v. 3, p. 536-547, 2 fig. Bibliographical footnotes.
- (35) MICHAELIS, Leonor.

 1914. DIE WASSERSTOFFIONEN-KONZENTRATION. . . xiii, 210, p., 41 fig. Berlin.
 Literaturverzeichnis p. 106-207
- (36) PARKER, E. G.
 1013, SELECTIVE ADSORPTION BY SOILS. In Jour. Agr. Research, v. 1, p. 179
- 188, 2 fig. Bibliographical footnotes.
 (37) PLUMMER, J. K.
- 1918. STUDIES IN SOIL REACTION AS INDICATED BY THE HYDROGEN ELECTRODS.

 In Jour. Agr. Research, v. 12, p. 19-31. Literature cited, p. 30-31.

 (38) RANKIN, G. A.
- (36) RANKIN, G. A.

 1915. THE CONSTITUENTS OF PORTLAND CEMENT CLINKER. In Jour. Indus.

 and Engin Chem. V. J. D. 466-474, 2 fig.
- and Engin. Chem., v. 7, p. 466-474, 2 fig.

 (39) Rice, F. E., and Osugi, S.

 1918. The inversion of came sugar by soils and allied substances and
- THE NATURE OF SOIL ACIDITY. In Soil Sci., v. 5, p. 333-358. References, p. 334-358. (40) SCHMIDT, Carl L. A., and Hoagland, D. R.
 1919. Table of P.B. H AND OH VALUES CORRESPONDING TO ELECTROMOTIVE
- 1919. TABLE OF P_H, H AND OH VALUES CORRESPONDING TO ELECTROMOTIVE FORCES DETERMINED IN HYDROGEN ELECTRODE MEASUREMENTS, WITH A BIBLIOGRAPHY. Univ. Cal. Publ. Physiol., v. 5, p. 23-69. Liter2 ture, p. 44-69.

 (41) SHARP, L. T., and HOAGLAND, D. R.
- 1915. ACIDITY AND ADSORPTION IN SOILS AS MEASURED BY THE HYDROGES ELECTRODE. In Jour. Agr. Research, v. 7, p. 123-145, 1 fig.
- (42) STOCKLASA, Julius.
 1922. ÜBER DIE VERBREITUNG DES ALUMINUMS IN DER NATUR UND SEINE BEDEUTUNG BEIM BAU- UND BETRIEBESTOFFWECHSEL, DER PFLANZES.
 x, 500 p., 28 fig. Jena.
- (43) SULLIVAN, Eugene C.

 1907. THE INTERACTION BETWEEN MINERALS AND WATER SOLUTIONS.

 Geol. Surv. Bul. 312, 69 p. Bibliographical footnotes.

4) SWANSON, C. O., LATSHAW, W. L., and TAGUE, E. L.

1921. RELATION OF THE CALCIUM CONTENT OF SOME KANSAS SOILS TO THE SOIL REACTION AS DETERMINED BY THE ELECTROMETRIC TITRATION. In Jour. Agr. Research, v. 20, p. 855-868. Literature cited, p. 867-

5) TRUOG, Emil.

1916. THE CAUSE AND NATURE OF SOIL ACIDITY WITH SPECIAL REGARD TO COLLOIDS AND ADSORPTION. In Jour. Phys. Chem., v. 20, p. 457-484.

Bibliographical footnotes.

1904. COMPARISON OF METHODS FOR THE ESTIMATION OF SOIL ACIDITY. In Jour. Amer. Chem. Soc., v. 26, p. 637-662. Bibliographical footnotes. 7) WAY, J. Thomas.

1850-52. ON THE POWER OF SOILS TO ABSORB MANURE. In Jour. Roy. Agr. Soc. England, v. 11, p. 313-379; 13, p. 123-143.

TIME FOR TESTING MOTHER BEETS1

By DEAN A. PACK

lant Breeder, Sugar-Plant Investigations, Bureau of Plant Industry, United States De partment of Agriculture, Salt Lake City, Utah

In the investigations carried on during the past three years at Salt ake City Station, great irregularity has been noted in the quantity of 1gar lost by individual sugar beets during storage. Sugar beets stored nder ordinary silo conditions for three months lose from a few tenths f per cent to 8 per cent of sugar. This means that of two beets each ontaining 16 per cent sugar at harvest one might, after storage test 15.8 nd the other 10 per cent sugar. One may also find beets (a) of 20 and 3) of 17 per cent sugar at harvest time, showing spring tests (after orage) of 12 and 16 per cent sugar, respectively. This irregularity in ne percentage and quantity of sugar lost by individual beets during silo orage is also to be found in beets stored under controlled moisture and emperature conditions. Yet the State experiment stations and the agar beet companies which are developing their own seed, following 10 common practice, are at the present time still testing their sugar eets in the spring after these beets have been stored over winter. In iew of these facts the question of the proper time for mother-beet testig forces itself upon us for immediate consideration.

HISTORICAL

Friedl 2 in 1912 tested 340 beets before and after storage. These beets st from 1 to 10 per cent of sugar during storage. He also worked in onnection with several sugar factories on the loss of sugar by commeral beets during storage. From his studies he concluded that there was heavy loss of sugar in beets during storage.

METHODS

This paper deals only with beets which were stored as usual in an adinary silo. The beets were harvested during October, 1922, tested, veighed, and placed in storage during November, 1922. After 98 days in torage the same beets were weighed and tested as before. A special nachine made at this station which permits the same beet to be sampled everal times without injury was used. All beets tested by this machine ame through the storage period in perfect condition. No rot or decay vas found, and every beet that had been tested in the fall was again tested n the spring. The exceptionally good condition of these beets was due the improved methods of sampling and storing employed.

A number of beets were sampled two or three times each, and the ampling method was found satisfactory from a chemical standpoint. the samples taken from beets after storage were sufficiently separated rom the cuts made before storage to insure against oxidation and other

l Accepted for publication Aug. 24, 1923.

*Priedl, Gustave. Ein beitrag zur frage der veränderung der zuckerrübe während der Debewahrung. In Östert. Ungar. Zischr. Zuckerindus. u. Landw., Jahrg. 41, p. 698-712. 1912.

tissue changes occurring during storage. The chemical analysis w_0 made according to the method devised and described by S. F. Sherwoot chemist, Sugar-Plant Investigations, United States Department (Agriculture. 3

RESULTS

Table I gives the tag numbers of beets, the percentage of sugar ϵ harvest (fall test), percentage of sugar after storage (spring test), and the difference in the percentage of sugar before and after storage.

TABLE I.—Percentage of sugar shown by fall and spring tests and the difference between the two

Tag. No.	Fall test.	Spring test.	Differ- ence.	Tag No.	Fall test.	Spring test.	Differ- ence.
•	Per cent.	Per cent.	Per cent.		Per cent.	Per cent.	Per ce
I	19.0	13. 2	5.8	96	16. 4	16.0	2 61 (6)
2	17. 4	12. 6	4.8	97	17. 4	16. 2	ī,
4 	16. o	12. 6	3.4	98	18. 4	15. 2	3.
8	17. 6	12. 8	4.8	99	18. 4	15.0	3.
9	16.4	14. 2	2. 2	100	19.0	16. o	3.
18	17. 4	14. 2	3. 2	101	20.0	16. 4	3-
19	14.6	12. 4	2. 2	IO2	19.4	15.4	4
2ó	18. 6	15.0	3.6	103	18.4	17. 8	*
22	18. 2	14.6	3.6	104	18, 4	16. 4	2.
23	17. 6	14. 2	3.4	106	17. 2	15. 4	Ī,
24	17. 8	14.0	3.8	100	19.0	16. 2	2.
25	18. 0	14.6	3.4	110	20. 4	18. 0	2.
27	16.8	12. 4	4.4	111	17. 6	14. 4	3.
28	17. 0	12.8	4. 2	113	17.6	14. 4	3.
29	16.8	14.0	2, 8	114	17.6	15. 2	2.
30	16.8	14.0	2. 8	115	15.6	12.6	
31	18. 0	13.6	4.4	116	18. 2	15.6	3. 2.
35	16. 2	14.6	1.6	117	18. 2	14.6	
36,,,,,,,,,	17.4	14.0	3. 4	11 - 1	20.6	16. 2	3
39	20.0	16.6		119			4
4I 	17.8	14.4	3.4	120	18. 2	13.6	4
14	19. 2	16. 2	3-4	121	18.8	14.8	4
1 б	17.6	i .	3.0	122	18. 6	14. 4	4
1 7		14.6	3.0	123	17.0	14. 2	2.
+/ · · · · · · · · · · · · · · · · · · ·	17.6	13.6	4. 0	124	18. 6	14. 4	4
	17. 2	13. 2	4.0	125	18.8	15.8	3.
19 · · · · · · · · · · · · · · ·	18.0	14. 2	3.8	126	19.6	15.6	4
54 · · · · · · · · · ·	16.8	14.0	2.8	127	17. 6	15.0	2.
55	16. 2	14.6	1.6	128	15.6	14. 4	I.
56	17.6	14.4	3. 2	129	10.0	16.0	3
58	17.4	13.0	4-4	130	18. 4	16.6	1.
70	17. 6	15. 2	2. 4	131	17.8	14.0	3.
74	19.6	17.0	2.6	132	18. 4	15.6	2.
78 <i>.</i>	17.4	14.0	3-4	133	10. 2	15.0	4
<u> </u>	21.0	15.8	5. 2	134	20. 0	14. 2	5.
31	19.4	14.8	4.6	137	16. 2	12.8	3.
34	15.4	13.8	1.6	138	17.4	13.0	4
86	18, 2	14.4	3.8	139	18.8	16. 2	2.
87	15.6	13. 2	2. 4	140	20.6	16.4	4
38.,,,,,,	17.4	15.6	1.8	141	15.4	12.8	2.
89		14.4	3-4	I42	17. 2	15.0	2.
90 . <i></i>		14.6	2.6	143	18. 4	16.8	I.
91	16.6	13.6	3.0	144	14.4	10.6	3.
92	16. o	14.0	2.0	145	19. 2	16. 0	3.
93 • • • • • • • • • •		14.0	4.4	146	17.0	13, 6	3-
94 • • • • • • • • • • •		16. 4	2.8	147	17.8	15.0	2.
95 	16.6	12.8	3.8	148	19. 2	1ő. 4	2.

² Sherwood, S. F. sucrose in seed beets. In Sugar, v. 23, p. 299-300, 1921.

'ABLE I.—Percentage of sugar shown by fall and spring tests and the difference between the two—Continued

Tag. No.	Fall test.	Spring test.	Differ- ence.	Tag No.	Fall test.	Spring test.	Differ- ence.
	Per cent.	Per cent.	Per cent.		Per cent.	Per cent.	Per cent.
49	18. 8	16. 2	2.6	227	19.6	15.6	4.0
50	18. 4	15.0	3⋅4	228	17.4	14. 8	2.6
51	18. o	15.6	2.4	229	20.4	1,5. 6	4.8
52	20. 0	15.4	4.6	230	18.4	15. 2	3. 2
53	18, 4	15.2	3. 2	231	19.4	15.6	3.8
54	20.6	16.0	4.6	\$32	20. 2	16. o	4. 2
55	20.4	17. 2	3. 2	233	20.8	17.6	3. 2
56	20. 2	15.6	4.6	234	20.4	17.8	2.6
57	20.4	15.0	5- 4	235	20.6	16.6	4.0
58	19.0	15.6	3.4	236	19.4	15.6	3.8
59	19. 4	15.6	3.8	237	18. o	15.0	3.0
50	19.4	15.0	4.4	238	19.8	16.8	3. 0
55	17.8	15.0	2.8	239	16.8	14.8	2.0
58	18.0	16.6	I. 4	240	18.8	15.4	3.4
73	18. o	14.6	3-4	241	21.4	18, 0	3.4
74	17.4	14.6	2.8	242	18.6	16. 2	2.4
75	17. 2	14.0	3.2	243	20.0	17. 4	2.6
76	18. 2	16. o	2. 2	244	10.2	16.6	2.6
77	18.4	17.4	1.0	245	18. 2	15.4	2.8
18	19.6	16.8	2.8	246	20.8	17. 0	3.8
30.,	17.4	15.0	2.4	247	20.8	16.6	4. 2
33	20.0	16.4	4. 0	248	10.0	15. 2	3.8
36,,	20.4	17. 2	3. 2	249	20.0	17.4	2.6
) 0	17.6	17.0	.6	250	18.8	16.0	3.8
)1	21.2	18.8	2.4	252	19. 4	16.0	3.4
)2	19.8	16. 2	3.6	253	19.6	15.6	4.0
13	19.0	16. o	3.0	254	19. 2	15.0	4. 2
<i>14</i> · · · · · · ·	20.4	15.6	4.8	255	18.6	16.0	2.6
)5	20. 0	17.8	2. 2	256	19. 2	16.0	3. 2
16	20. p	12.2	7.8	257	18.6	14. 4	4. 2
77	21.0	16.8	4.2	258	18.4	15.4	3.0
38	19. 2	16. o	32	259	19.4	16.4	3.0
19	20.0	18.0	2.0	260	17.6	17.0	. 6
ю	20. 6	15.4	5. 2	261	18.4	14.8	3.6
η	18. 4	16. o	2.4	262	10.8	16.4	3.4
12	21.0	17.4	3. 6	263	19.4	15.6	3.8
3	17.6	14. 2	3⋅4	264	18.6	14.4	4.2
35	19.6	17.4	2, 2	265	18.8	16.6	2. 2
6,	19.0	15. 2	3.8	266	19. o	16.6	2.4
7	17. 0	14.6	2. 4	267	10.6	16.8	2.8
8	18.0	13.6	4.4	268	18.6	16. o	2.6
9	20.8	15.8	5. o	269	18.6	15. ó	3.0
0	19. 2	15.6	3.6	270	18.4	15.6	2.8
2	20,6	17.6	3.0	271	19. 2	14. 6	4.6
	16. 6	14.6	2.0	272	19.6	16.4	3. 2
3	20. 0	10.0	4.0	273	18.4	14.4	4.0
4	17.8	14.0	3.8	274	17.4	15.0	2.4
5	18.8	15.8	3.0	275	18.8	15.8	3. 0
* * * * * * * * * * * * * * * * * * * *	17. 2	14. 2	3.0	276	16.8	12.8	4.0
7 8	17. 6	13.6	4.0	278	19.4	15.6	3.8
9	21.0	16. o	5.0	279	18. 2	15.4	2.8
o	19. 2	15.4	3.8	280	18.8	16. o	2.8
7	18. 0	14.8	3. 2	281	17.6	14.0	3. 6
I	17.4	13. 2	4. 2	283	16.6	13.4	3. 2
2	18. 4	11.6	6.8	286	18.8	14.8	4.0
3	18. 4	14. 8	3.6	287	15.8	14.0	1.8
4	18. o	13.4	4.6	288	20.0	15.6	4.4
5	15.4	13.8	1.6	280	18.8	16.4	2. 4
6	18.8	12.0	6.8	200	17.4	14.4	3. 0

Table I.—Percentage of sugar shown by fall and spring tests and the difference between the two—Continued

Tag. No.	Fall test.	Spring test.	Differ- ence.	Tag No.	Fall test.	Spring test.	Diffe enu
	Per cent.	Per cent.	Per cent.		Per cent.	Per cent.	Per
gI	í	15. 2	4. 2	391	21. 6	15.6	
02	18. o	13.6	4.4	393	18.8	15.4	
93	19.4	16.6	2.8	394	18. 6	15.0	
94	18.4	14.8	3.6	395	17. 0	12.8	
95	20. 2	17.0	3. 2	396	19.8	17.0	
96	21.8	18.8	3. c	398	20.0	17. 2	
97	10.0	15.4	3.6	400	20.0	15.6	
38	18.8	16. 2	2.6	401	18.6	15.0	
	18.6	15.8	2.8	402	20.0	17.0	
99	20.4	16.8	3.6	403	17. 4	14.0	
		14. 4	2. 2	404	17. 0	13.6	
05	18.6	16. 0	2.6	405	18.8	14.8	
o6	18.6	16.6	2.0	406	17. 2	13.4	
07	17.4	14.0	3.4	407	16. 4	13.4	
08 		16.6	1.4	410	IQ. 4	15.6	
09		15.6	2.8	412	17.0	13.8	
10					16.8	12.4	
II		15.2	3.0	413	18. 2	15.6	
12	18. 4	15.4	3.0	415,	10. 2	16. 2	
13	17.4	15.6	1.8	416	19. 0	15.8	
14	18.0	14.4	3.6	417			
17	20. 2	16.6	3.6	419	14.4	12.4	
21	19.8	15.6	4.2	420	18.4	14.8	
23	18.6	15.0	3. 2	423	18.8	14. 2	
25	17.4	14.0	3.4	425	20.0	14. 2	
26		14.8	2.6	429	18. o	14.6	
27	18. 8	14.0	4.8	430	20.0	16. 2	
29	20, 2	17.0	3.2	432	19.6	15.8	
32	19.0	16.0	3.0	435	20. 0	17.0	
33	21.6	16.8	4.8	436	21.6	19.0	
35	21, 2	17.8	3.4	439	20. 2	17.6	
37	18.8	13.6	5. 2	440	21. 2	16.4	
40	18.8	14.6	4. 2	444	17.6	13.8	
41	17. 2	14. 0	3. 2	445	22.4	16.8	
43		14.8	2. 2	446	19.0	15.4	
46	19.4	15.0	4.4	449	20.4	17.6	1
49		18.0	3.4	450	20.6	16.0	
52		13.8	3.8	451	21.4	18.0	1
54		12.4	7-4	452	19.6	17.0	-
56		14.8	3. 2	455	21.0	15.6	1
57		16.4	4. 2	457	17.6	14.8	l
58	1	12.4	2.8	459	20.8	16.4	1
65		13.6	2. 0	462	20.6	16.8	
66		15.6	3.6	464	20. 8	17.0	
68		15.8	4.0	469	20.8	15.6	ļ
69	1 ^	15. 2	4.6	470	20.8	15.6	
70		15.8	2. 2	471	18.8	16. 2	
71		14.4	3.4	472	22. 0	16.8	
73	1 .	17.4	3.6	473	20.0	13.4	ĺ
75		15.8	2. 6	474	21.0	18.0	-
73		15.0	3-4	475	21. 2	16.4	
76				477	i	17. 2	
79	۱ ۾	15. 2	4.0	478	1 4	14.4	
80	0.0	14.8	3.4		21.4	17.0	
81	1 -	14.8	4.0	479	1 .	16.8	
82		16.0	2.0	480		16. 2	
83		16. 2	2.6	482		18.8	
86		14.0	4.0	484	1	16.0	
	20. 2	15.2	5.0	488	20.4	10.0	1

BLE I.—Percentage of sugar shown by fall and spring tests and the difference between the two—Continued

Tag. No.	Fail test.	Spring test.	Differ- ence.	Tag No.	Fall test.	Spring test.	Differ- ence.
-	Per cent.	Per cent.	Per ceni.		Per cent.	Per cent.	Per cent.
. ,	20. 2	15. 2	5. 0	585	19.8	15.4	4.4
	20. 4 20. 2	15. 2	5, 2	588	19. 2	13.8	5. 4
	1g. o	16. 6 16. 0	3.6	589	19.6	15.6	4.0
	18.6	15.8	3.0	590	20. 6	15.8	4.8
	20.6	16. 2	2.8	591	19.4	16.4	3.0
	20.0	17. 0	4.4	592	20. 0	16.6	3.4
	18.8	14.2	3, 0	594	19. 4	15.8	3.6
	20.6	15.4	4. 6 5.2	595	20.6	17.4	3. 2
	19. 6	IÓ. 0	3.6	208	18.6	15. 2	3- 4
	19. 0	16.6	2. 4	602	21. 0	17.0	4.0
	21.4	17.0	4.4	603	20. 0	16. 2	3.8
	20. 8	15.6	5. 2	604	21. o 18. 8	15.4	5. 6
	18.8	15. 2	3.6	605	10. 6	15.6	3.0
	20.8	16. 2	4.6	606	18.6	14.8	4.8
	21.0	16.0	5.0	607	20.0	16.0	2, 6
	20.6	15.6	5. o	608	18. 6	15. 6 16. 2	4.4
	21.8	18.4	3.4	609	19. 2	15.8	2. 4
	20. 4	15.0	5.4	610	22, 4	18. 2	3.4
	21.4	16.6	4.8	611	20.6	16. 0	4.2
	20.8	17.4	3⋅4	613	20.6	17.4	4.6
	19.6	14.8	4.8	614	18.8	15.4	3. 2
	20.0	16. o	4.0	615	19. 2	15.4	3· 4 3· 8
	20.0	16. o	4.0	616	18.8	15.4	3.4
	16.0	15.8	. 2	618	19.8	17. 8	2.0
••••••	18. 4	13.8	4.6	626	17.6	14.6	3.0
	20.4	16.6	3.8	627	20.0	17. 2	2.8
	19.6	14.8	4.8	630	18.8	15.6	3. 2
	19. 2 20. 8	14.8	4.4	635	18. 4	17.0	1.4
	20.8	15.6	5. 2	636	21.4	17.4	4.0
	21.8	15.8	5.0	637	20.4	16. 0	4.4
	20.8	17. 2	4.6	638	20. 2	18. o	2. 2
	19.6	16. 4 16. 8	4.4	640	18.6	15.0	3.6
	19.6	16. 0	2.8	642	19.4	16. 2	3. 2
	19.4	16. 2	3.6	643	19.8	16. 4	3-4
	10.6	16. 4	3. 2	644	21. 2	17.6	3, 6
	20.4	16. 0	3.2	645	20.6	16. 4	4. 2
	20.4	15.0	4. 4 5. 4	646	19. 4	16. 4	3.0
	20.6	17. 2	1	647	19.8	17.0	2.8
	20.8	14.6	3· 4 6. 2	648	20. 4	17. O	3.4
	21. 2	16.4	4.8	650	19.0	15.0	4. 0
• • • • • • • • •	20. 4	16. 0	4.4	651	19.6	15.6	4.0
	21.8	15.6	6. 2	652	20. 4 20. 0	16. 6	3.8
	19.6	14.6	5. o	656	19.8	17.4	2. 6
	20. 2	16. 2	4.0	660	22.4	18. 6	3.4
	20.8	16.8	4.0	662	19.8	15. 2	3.8
	20.4	16.0	4.0	668	19.6	16.0	4.6
	20.8	17.0	3.0	670	17.6	15. 2	3.6
	18.6	15.4	3. 2	671	18.4	15. 2	2. 4 3. 2
	20. 0	15.6	4-4	672	18.8	16.6	2. 2
	21.4	15.8	5.6	673	17.8	14.6	3. 2
	20.6	18. o	2.6	675	18.4	14.6	3. 8
	20. 2	15. 4	4.6	676	20. 6	16. 2	4.4
	19.4	15.6		681	19.8	15.6	4.3
	19.6	16. 2		683	19.6	15. 2	4.4
	19. 2	16.0	3. 2	690	20.0	16. 2	3.8
	19.6	14.6	5. O	692	19.8	17.0	2,8
	19.8	16.6		703	17.4	14.4	3, 0

TABLE I.—Percentage of sugar shown by fall and spring tests and the difference between the two—Continued

Tag. No.	Fall test.	Spring test.	Differ- ence.	Tag No.	Fall test.	Spring test.	Differ ence.
	Per cent.	Per cent.	Per cent.		Per cent. 19.8	Per cent. 16. 6	Per cm
07	20. 0	18.8	I. 2	774 · · · · · · · ·	20.4	17. 2	3
09	19.8	14. 2	5.6	775 · · · · · · · · · · · · · · · · · ·	20.8	15.8	3
12	19.8	17. 2	2.6		20. 4	18.0	5
15	18. 6	15.4	3. 2	777 · · · · · · · · · · · · · · · · · ·	20. 0	15.8	2
r6	21.0	17.0	4.0		1g. 6	15.6	4
17	18. 6	15. 2	3.4	779	19.6	17.6	4
18	18. o	15.2	2.8	780	18.8	15.0	3
19	20. 2	15.6	4.6	781	19.4	14.0	1
20	19. 0	14.4	4.6	782	10.6	15.0	:
21	18.8	15.6	3. 2	784	19.6	14.6	
22	19. 2	14.8	4.4	785	20.6	15.6	
23	19.8	14.8	5.0	786	17.6	14. 2	
24	18.4	14.6	3.8	787	18.0	16.6	
25	18. 4	13. 2	5. 2	788	19.0	15.6	
26	19. 2	16. 2	3. o 5. 8	789	21.2	17. 2	
27	19.8	14.0		790	17.8	14.0	
28	17.0	14.0	3. 0 4. 0	791	18. 2	14. 2	
30	19. 4 17. 4	15. 4 14. 0	3.4	792	16.8	12. 2	
31		13.6	3.6	793	18. 4	16.0	
32	17. 2 18. 8	15.0	3.8	794	19.4	16.6	
33			2.0	795	17.8	14.6	١ :
34	17. 6 16. 6	15.6	1.8	796	18.8	16.8	
35	18.6	16. 2	2.4	797	18. o	15.0	
36	17. 2	14.6	2.6	798	17.4	14. 2	
38	18.8	14.8	4.0	799	20.4	14.8	
39	19.4	15. 6	3.8	800	21.6	17.0	
740 741	21.6	17. 2	4.4	801	22.4	16.8	:
7 42	i .	16. 2	4.2	802	19. 2	16.8	1
743	~ ~	13.6	5. 2	803	19.6	16. 2	1
744	1	16. 2	4.2	804	19.4	14. 8	
746		15.6	4.4	805	19.6	17.0	
747		18. 6	1.4	806	19.4	16.6	
748		17. 2	4.0	807	18.8	14.6	
749	i _	13. 2	4.8	808	20.0	16.8	
750	1 -	15.8	4.8	809	18.6	15.0	
, ,5 1		14.8	3.6	810		14.6	
52		14.8	4.8	8rr	19. 2	13.0	
53		16. 2	6. 2	812	20.6	14.6	
754	19.8	15.6	4.2	813		15.8	
755	19.8	16.6	3. 2	814		14.2	
756	19.4	16.4	3.0	815		15. 2	
757	20.0	17.0	3.0	816		15.4	
758		14. 6	4.4	817		16.8	1
759		15.4	5. 4	818		15. 2	
760		15.6	3. 2	819		13.8	
,6I		14.8	3. 0	820		14.6	1
162		15.6	40	821		15.6	
763		16. 2	3.4	822,,,		14.4	
64		17. 2	3.0	823		17. 2	
765		17. 2	3. 2	824	1	17.6	
766		16.4	2.6	826	1 .	17.8	
767		17.6	3.6	827		13.8	
768		16.4	40	828	1	17.6	1
769		17.8	3.0	829		16.0	1
770		16.8	4.0	830		15. 2	
771		16.4	3. 2	831		15.4	
772	. 21.4	16. 2	5.2	832	10.4	16.4	1

 $_{\rm ABLE~I.}-Percentage~of~sugar~shown~by~fall~and~spring~tests~and~the~difference~between~the~two—Continued$

Tag, No.	Fall test.	Spring test.	Differ- ence.	Tag No.	Fall test.	Spring test.	Differ- ence.
	Per cent.	Per cent.	Per cent.		Per cent.	Per cent.	Per cent
4	19.6	17.8	2.8	893	20.6	17.4	3. 2
5	20.4	17.0	3- 4	894	20. 0	16. 2	3.8
ó	18.8	14.8	4.0	895	22. 2	17.6	4.6
7	20. 4	16. 2	4.2	896	20.6	16.0	4.6
3,,,,,,,,,,,	19. 0	16.2	2.8	897	20.4	17.0	3-4
)	19.6	14.0	5. 6	898	2I. O	17.0	4. 0
)	18. 2	14.4	3.8	899	20.8	17.6	3. 2
	20.0	15.4	4.6	9∞	20.0	17. 2	2. 8
	18. 6	15.0	3.6	901	20. 2	15.8	4-4
	17. 4 18. 8	14.0	3.4	902	20.4	15.8	4. 6
		15. 8 16. 8	3.0	903	21.0	17.6	3- 4
	20. 4 21. 2	17.8	3.6	904	19.8	16.8	ვ. c
	20. 0	17.0	3.4	905	20.0	16.8	3. 2
'	18.4	14.0	3.0	906	15.8	14.6	1. 2
))	19.0	16.0	4.4	907	19. 0	16.4	2. 6
), , , , , , , , , , , , , , , , , , ,	20.4	17. 2	3. o 3. 2	909	18. 8	16.6	2. 2
	10.0	15.6	3· 4	910	21.6	17. 2 16. 4	3. 4
	21. 2	17. 0	4. 2	912	20.0	16. 8	5. 2
	20. 0	17.6	2.4	913	21.0	16. 6	3. 2
	20. 4	18. 0	2.4	914	19.4	16. 4	4: 4
	21. 6	17. 6	4.0	915	20.6	15.4	3.0
 .	20. 2	16. o	4. 2	916	22. 2	17. 2	5. 2 5. 0
	20. 2	17.6	2.6	917	19.8	16.0	3.8
	19.8	16.0	3.8	918	17.8	15.8	2. 0
	21.6	16. 6	5.0	919	18.0	15. 2	2. 8
	.18. 0	17. 2	. 8	920	20.8	17.4	3. 4
	19.4	15.0	5- 4	921	21.0	18. 2	ž. 8
	20.8	16.8	4.0	922	20. 0	16. 2	3.8
	19.8	17.6	2. 2	923	20.0	16.8	3. 2
	21.0	16.4	4.6	924	20.4	17. 2	3. 2
	20.0	15.4	4. 6	925	17. 2	14.4	2. 8
	16. 6 18. 8	14. 2	2. 4	926	19.6	16.0	3.6
,,,,,,,,,,	20.8	16. 2	2. 6	927	18.4	15.4	3.0
, , , , , , , , , , , ,	21.6	17. o	3.8	929	18. 6	15.6	3. o
	20. 0	15.4	6. o 4. ó	930	17.0	14.0	3.0
	20. 0	15.8	4. 2	931	16. o	15. 2 16. 0	0.8
	10.0	16.6	2. 4	933	16.8	13.6	3.0
	18.6	14.6	4.0	934	18. 2	15.0	3.2
	1g. 8	15.8	4.0	935	18, 2	14.8	3. 2 3. 4
	19.6	14.0	4.6	936	IQ. 2	15. 2	4.0
	20.0	15.8	4. 2	937	IQ. 2	15. 2	4.0
********	17.8	13. 6	4. 2	938	18. 4	15.8	2.6
	17.6	13.8	3.8	939	19.8	IÓ. 2	3.6
• • • • • • • • • • • •	18. 4	14.4	4.0	940	21.4	17.4	4.0
• • • • • • • • • • • • • • • • • • • •	18. 4	14.6	3.8	941	19.6	16. 0	3.6
•••••••	20.0	16. 0	4.0	942	10.4	16. o	3.4
• • • • • • • • • • • • • • • • • • • •	22.6	16. o	6. 6	943	20. O	16. o	4. 0
	19. 0	13. 2	5. 8	944	20.8	17. 0	3.8
• • • • • • • • • • • • • • • • • • • •	20.0	16. 4	3.6	945	21.0	16. 2	4.8
	20. 4	15.6	4.8	946	20.6	16. 4	4.2
	19. 8 20. 2	14.4	5-4	948	18. 2	15. 2	3. o
	21, 2	16. 2	4.0	949	18.8	15.6	3. 2
	20.6	16. 4 17. 2	4.8	950	18. 6	14. 2	4.4
	21.4	17. 6	3· 4 3· 8	951	19.6	15.4	4. 2
	20.4	15.4	5.0	952	21, 2	16.0	5. 2
	20.0	16.4	3.6	953 954	20. 6 20. 0	15.6	5.0
60374-2			J. 0	×34	20.0	15.6	4.4

Table I.—Percentage of sugar shown by fall and spring tests and the difference between the two—Continued

Tag No.	Fall test.	Spring test.	Differ ence.	Tag No.	Fall test.	Spring test.	Diffe ence
	Per ceni	Per cent.	Per cent.		Per cent.	Per cent.	Per a
55	1q. 8	15.6	4. 2	1014	19. 2	15.4	
56	19. 2	15.0	4.2	1015	20. 4	15. 2	
57	20.4	15.0	5-4	1016	18. 4	15.0	
58	20.0	17.6	2.4	1017	18.6	14. 8	
59	20. 4	17.4	3.0	1018	20.0	16. 6	
66	18.4	15.8	2.6	1019	18.6	15.6	
Sr	20.0	15.6	4.4	1020	18.8	14.8	
62	20.0	15.8	4. 2	1021	19.4	16. 4	
53	10.6	15. 2	4.4	1022	20. 0	14.8	
54	20.0	17.0	3.0	1023	18.8	15.6	İ
65	20. 0	17. 0	3.0	1024	20. 0	17. 4	
56	IQ. 2	15.6	3.6	1025	20. 0	16. 2	
67	20. 0	15.4	4.6	1026	19. 0	14.8	
58	18. 6	14. 6	4.0	1027	16.8	13.8	
59	18. 4	16. 4	2. 0	1028	20. 4	16.6	
70	18. 6	15.0	3.0	1029	19. 4	14.6	
71	19. 6	15.6	4.0	1030	10.0	15.0	ĺ
72	21. 2	17.8	3.4	1031	18.6	15.6	
73	18. 6	14.8	3.8	1032	20. 2	16. 6	1
74	17. 2	14.8	2. 4	1033	17. 0	14.0	
75	18.6	15.6	3.0	1034	21.0	17.4	
76	20, 4	15.0	5.4	1035	21.0	16.6	
77	18. 6	14. 2	4-4	1036	10.0	16. 2	
78	17.4	13.8	3.6	1037	18. o	15. 2	1
79	21.6	18. 2	3.4	1038	18. o	15.4	1
81	10. 2	16.0	3. 2	1156	17.0	15. 2	
82	18.6	14. 2	4-4	1171	16.8	15.6	
83	19.6	15.6	4.0	1184	16. o	13.8	
84	19.6	15. 2	4.4	1103	16.6	15.0	
85	10.8	15.4	4.4	1206	15.0	13.4	
86	16. 4	13.6	2. 8	1207	17. 6	15.4	
87	18.8	16.4	2. 4	1211	14.8	13.6	1
88	16.6	14.4	2. 2	1212	15.6	14. 2	ļ
90	20. 0	15.6	4.4	1215	15.6	14.4	ļ
91	IQ. 2	15.4	3.8	121Ď	17. 6	15.8	
92	16. 8	13.4	3.4	1224	13.6	11.8	
93	19. 4	15. 2	4. 2	1226	15. 2	14. 8	ļ
94	20. 2	16, 0	4. 2	1228	17. 0	14.8	1
95	20. 0	14.6	5.4	1231	15.8	15. 2	
ģδ	10. 0	15. 2	3.8	1233	14.4	13. 2	
97	20. 4	15.8	4. 6	1245	18.4	16. 2	ļ
ı́98	20. 0	16.4	3.6	1254	15.2	14, 8	
99	19.0	16. 2	2. 8	1255	17.4	16.4	i
ÓÓO	22. 4	18.8	3. 6	1256	15.6	14. 2	
001	20. 2	16.6	3.6	1257	16.8	15.4	1
002	20. 8	17. 0	3.8	1258	17.0	14.8	-
003	19.4	16.6	2.8	1259	17. 4	15.8	1
004	19.6	15.6	4.0	1266	16. 2	14.0	1
005	2ó. 8	16.0	4.8	1272	16.6	14.4	
∞ő	19.6	15.8	3.8	1273	16.8	14.6	-
007	20.0	16.6	3.4	1282	16.8	15.4	
oo8	19.8	15.6	4. 2	1289	17. 2	14. 2	
000,	20. 0	17. 2	2.8	1302	17. 6	15.6	1
010	21.8	18. 4	3.4	1315	16.4	14.6	1
011,,	20. 2	15.8	4.4	1318	18.6	15.4	1
012	10. 2	15.8	3.4	1323	14. 6	12.6	
ю13	20.6	16.8	3.8	1328		15. 2	

The results here shown indicate that the difference in the percentage of sugar before and after storage is very irregular. In looking over this table one does not seem to find any relation whatsoever between the all test and the difference in the percentage of sugar before and after storage. It is likewise difficult to see any relation between this difference and the spring test for any one beet. One could not derive the fall est of any beet from the spring test, and as a result, the breeder is at a oss to select from his spring-test data those beets that will test high at arrest time. It would therefore be quite impossible to breed up a train of beets which would test high at harvest by making selections rom spring tests.

In order to determine what relation exists between the percentage of agar originally contained in the beet and the percentage which it loses luring storage, correlation tables were made. Table II gives the correlation as determined from Friedl's analysis.

ABLE II.—Correlation between percentage of sugar in beet and loss in percentage of sugar during storage

Percentage of ugar in		Loss in percentage during storage.																						
beet.	0, 25	0. 7!	Î. 2	1.	75	2. 25	2• 75	3. 25	3- 75	4. 25	4 75	5. 25	5- 75	6. 2	5 6.	75	7- 25	7.	75	8. 2	5 8.	75	9- 25	9-7
.5		l		ļ.,			,			ļ	ļ								_					
2.5	1	ļ	ļ		I		2	I	1						.[.			1			1	- 1		
i.5	:				- 1	2	I	3	1						1.	٠.			٠.	ļ				
-5 -5	•	į.	2	1	2	2	4	3	2		5	2	I	ŀ	I	I		1	٠.	1	·-		٠	
5.5			i			3	5	15	15		15	3 12	1		:	1	I	ľ			1	- 1	٠	<u>ا</u>
.5		٠.,		1	•				15	1	1 -	4	7	'	5	ī		į.			1	- 1		l'
٠			1	1		1	I	4	ő	5	12	6	5		4	2	2		I				I	ļ
1-5,,) =			3	ì	- 1			3	3	2	4			٠.		2		1	2	3			2	ļ
							٠		1		I		1		3	2	I		٠.	2	١		٠	
J	· · · ·	• • •		١.,		• • •	• • • •								I).	٠.			٠.					

The results shown in this table indicate a correlation value of 0.272 b0.0338 between the percentage of sugar originally found in the beet nd the decrease in percentage during storage.

The results from the analytical data of Table I are given in the following table:

ABLE III.—Correlation between percentage of sugar in bect and loss in percentage of sugar during storage (from columns 2 and 4 of Table I)

Percentage of sugar in beet.	Loss in percentage during storage.							
o wagat ta beet.	0.5	1.5	2.5	3.5	1 4-5	5.5	6.5	7-5
5		т						
3		2	3	I				
Professional Control of the Control	3	9	4	ī				
5	3	9	15	Q	3			l
	2	8	28	46	11	ı		l
1,	2	7	48	75	38	3	2	
J'''			34	79	60	15	I	
		2	21	69	70	30	4	
			4	20	27	10	3	
5				2	2	4	3	

The results here shown give a correlation coefficient of 0.462 ±0.0188 between the percentage of sugar in the beet at harvest and the decrease in percentage in individual beets during storage.

These tables also indicate that the beets of high percentage at harvest tend to decrease more in percentage of sugar during storage than do the low-testing beets; as a consequence, beets of high test at harvest tend to be low in the spring, while beets of low test at harvest tend to be relatively high in the spring. The inclination on the part of the breeder is, therefore, to select the low fall-testing beets, since these show a relatively higher percentage of sugar at planting time. A breeder, for ex. ample, guided only by the spring-testing data (see Table I) would select for seed production the beets tagged 74, 103, 110, and 155 as the most desirable among the first 100 listed. In making his selections he would choose beets testing the highest according to his data—that is, beets showing 17 or more per cent of sugar. Now, on examining the fall tests one finds that there were really 11 beets containing 20 or more per cent of sugar. Their tag numbers are 39, 79, 101, 110, 119, 134, 140, 152, 154, 155, and 156. So our breeder would select two beets containing 20 per cent of sugar and would neglect nine other beets containing 20 to 21 per cent. With these two 20 per cent beets he would select two others of less than 20 per cent. Therefore, after a few years his lines should show a decrease in the average percentage of sugar.

Friedl did not give the weight of each beet along with the percentage of sugar which it contained, and, consequently, we do not know just how much of the decrease in sugar was due to the water intake of each beet during storage. He made dry weight determinations on other beets and found an increase of 6 per cent of water during storage which would correspond to about 1 per cent decrease in the percentage of sugar. Therefore, his results show that there was a too great difference between the fall and spring tests to be accounted for by decrease in the percentage of sugar (due to intake of water) and it is evident that there was also a marked loss of the actual sugar in the beet.

In the present work the order of weighing and sampling beets was arranged so that comparable weights and percentage of sugar were obtained for each beet. The order was as follows: First, sample (at harvest time), weight of sampled beet, storage for 98 days, weight of sampled beet; and second, sample (98 days after first sample was taken).

Table IV gives for each beet these weights before and after storage, the sugar content before and after storage, and the loss of sugar in grams during storage. The same tag numbers in this table and Table I denote identical beets. The sugar content of each beet before and after storage is the product of the weight and its corresponding percentage of sugar (from Table I). For example, beet tagged 1 before storage tested 1940 weighed 1,100 gm. and contained 209 gm. of sugar; after storage this beet weighed 1,110 gm., tested 13.2, and contained 147 gm. of sugar.

TABLE IV.—Loss of sugar in grams by individual beets during 98 days' storage

i	Before	storage.	After s	torage.	
Tag No.	Weight.	Sugar content,	Weight.	Sugar content.	Loss of sugar,
	Gm.	Gm.	Gm.	Gm.	Gm.
I	1, 100	209	1,110	147	6:
2	1, 330	231	1,475	186	4.
4	1, 385 1, 185	221 208	1,520	191	31
9,	1,420	232	1, 340 1, 500	171	31
18	1, 158	202	1, 275	213 181	10 21
19	1,810	264	1,060	243	2:
20	825	153	825	123	30
12	890	162	96 0	140	2:
i3	1,495	263	1,600	227	36
14	1, 289 1, 382	229	1,420	199	34
17	1, 625	240	1, 530	227	2:
8	1, 275	273	1, 725 1, 362	214	59
9	1,385	233	1,500	174 210	4.
ó	976	164	1,037	145	2
1	1,420	256	1, 525	207	4
5	1,255	203	1,360	199	7
6	795	137	900	126	1
9	1, 105	221	1, 110	184	31
4	825	149	905	130	I
6,	1, 380	264	1,440	233	3
7	1, 155	194 203	1,200	175	I
8	1,015	174	1,237	142	3.
9	1,245	224	1,310	186	3; 3 [[]
4	955	160	1,040	146	34
5	1,080	175	1, 175	172	
6	1, 344	236	1, 530	220	10
3	1, 105	192	1, 205	157	35
4	719	126	825	125	1
8	1, 312 800	257	1, 300 860	221	36
	1,040	139 218	1, 125	120	19
[.,.,.,.,	I, 112	216	1,061	157	49 59
	1,720	265	1,000	262	39
	910	166	1,000	144	22
§	1, 152	180	1,025	162	18
1	1,000	190	1, 125	175	19
	1, 585	282	1,725	248	34
	890 1, 305	153	930	136	17
3	1,460	217	1, 362	185	32
	2,060	379	1,575 2,085	202	14 87
,	775	149	800	131	18
	1,090	18í	1, 140	146	35
***********	88a	144	900	144	0
	1, 270	221	1,260	204	17
	1, 585	292	z, 680	255	37
χο	1, 178	217	1,250	187	30
I	830	158	850	136	22
22	745	194	990 760	162 117	32
3	1,430	263	1, 510	260	27 6
6	965	177	990	162	15
9	917	158	1,000	154	4
0	965	183	1,040	168	15
***************************************	1,000	222	1, 110	200	22

Table IV.—Loss of sugar in grams by individual beets during 98 days' storage—Conld

	Before s	torage.	After st	orage.		
Tag No.	Weight.	Sugar content.	Weight.	Sugar content.	Loss of sugar,	
	Gm.	Gm.	Gm,	Gm.	Gm,	
tII	995	175	1,065	153	2	
113	1,820	320	1,920	276	4	
t14	1,670	293	1,775	270	2	
115	1,600	250	1,620	204	4	
116	1,705	310	1,620	253	5	
117	1,690	308	1,740	154	15	
119	730	150	870	141		
120	1, 205	219	1,300	177	4	
121	1, 190	224	1, 310	194	3	
123	1, 220	227 185	1, 325 1, 160	191	3	
124	1,080	201	1, 180	170	3	
[25	1, 120	211	1,370	216	+	
126	1,350	265	1,520	237	7	
127	I, 240	218	1, 575	236	+	
128	1,620	253	1,650	238	т	
120	1,170	222	1,250	200		
130	980	180	1,020	160		
131	1, 235	220	1,350	18g		
132	870	160	935	146		
133	1,425	274	1, 500	225		
134	1,020	204	1,050	149		
137	1,530	248	1,620	207		
138	1,085	189	1, 150	149		
139	1,070	201	1,200	194		
140	1,260	260	1, 312	215		
141	1,395	215	1,450	186		
142	1,715	295	1,775	166		
143	880	162	950	159		
144	1, 515	218	1,650	175		
145	1,640	315	1, 755	281		
146	1,420	241	1, 575	214		
147	1,090 850	194	1, 130 887	169		
148	860	163 162		145		
I50	1,335	245	875 1,390	200		
151	1,200	216	1,210	180		
152	1, 560	312	1,725	266		
153	1, 105	203	1,200	182		
154	1,070	220	1, 170	187		
155	1 015	207	1,050	180		
156	770	155	850	133		
157	815	166	850	127		
158	1,400	266	1,500	234		
159	1,400	272	1,400	218		
160	1,390	270	1,462	200		
165	1, 115	198	1,200	180		
168	945	170	930	254		
¥73	, , ,	169	1,012	148		
174	1	231	1,500	219		
175		167	1,075	150		
176	1 '	222	1,275	204		
177	770	142	770	134		
180	930	271	940	158		
183	850	173	1,690	254	1	
186	1, 155	236	1, 190	205	l	
100	1, 380	243	1,425	242	ŀ	

'ABLE IV.—Loss of sugar in grams by individual beets during 98 days' storage—Contd

	Before	Before storage.		Alter storage.	
Tag No.	Weight.	Sugar content.	Weight.	Sugar content.	Loss of sugar.
	Gm.	Gm.	Gm.	Gm.	Gm.
	1,080	229	1, 110	209	21
	1,670	331	1,725	279	5
	930	177	975	156	2
	1,320	269 336	I, 525 I, 720	238 306	3
	1, 140	228	1, 187	145	3,
	1,210	254	1,280	215	3
		256	1,400	224	3
	1,415	283	1,480	266	ī
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,170	241	1, 320	203	. 3
	I, 545	284	1, 570	251	3
	1,110	233	1, 154	201	3
,.,,,	1,025	180	1,062	151	2
	1,470	288	1,450	252	3
	1,180	224	1,260	192	3
		175	1,080	147	2
	I, 200	216 222	1,300	177	3
· · · · · · · · · · · · · · · · · · ·	1,070	264	1, 110	175	4
	1, 380	204	1, 515	236 198	3
	1, 100	183	1, 125	164	3
	980	196	1,040	166	3
		185	1,075	150	3
· · · · · · · · · · · · · · · · · · ·		249	1,375	217	3
	1, 580	271	1,700	241	3
	1,255	221	1,350	184	37
	1,270	267	1,360	218	49
	I, 220	234	1,300	200	3.
	1,450	261	1,500	222	39
	640	111	650	86	2
		132	890	103	28
	1 1	149	850	126	23
	595	107	637	85	22
	760	117	800	1,010	
	870 800	157	95 0 890	139	49 18
	945	164	950	141	23
	1,040	212	1, 150	179	
	1,030	180	1,065	162	33 28
	780	152	820	128	2,
	950	192	987	158	34
	875	182	900	158	2,
· · · · · · · · · · · · · · · · · · ·	900	184	900	160	2,
• • • • • • • • • • • • • • • • • •	960	198	1,020	169	20
• • • • • • • • • • • • • • • • • • • •	730	142	800	125	1
••••••	1, 330	239 ' 168	1, 360	204	3:
***************	850	207	890 1, 320	149	10
****************	850	160	930	143	I.
	I, 035	210	1, 110	200	10
	860	159	870	141	1
	870	174	900	156	18
	900	173	925	153	20
	1,090	198	1, 162	179	19
• • • • • • • • • • • • • • • • • • •		231	1,200	204	2
	930	193	1,025	170	2
	990	188	1,035	157	31
********	1,015 1	203	I, 000 1	174	29

158

262

136

270 249 229

TABLE IV .- Loss of sugar in grams by individual beets during 08 days' storage-Cinus

	Before s	torage.	After st		
Tag No.	Weight,	Sugar content.	Weight.	Sugar content.	Loss of sugar.
	Gm.	Gm.	Gm.	Gm.	Gm.
0	1,460	274	1,470	235	
2	1,060	206	1, 150	184	,
3	900	176	962	150	
4	915	176	1,050	157	:
5	980	182	1,005	161	
5	725	139	825	132	
7	1,330	247	1,450	200	
8	905	166	950	146	
9	810	157	875	143	
0	1, 150	202	1,230	200	+
I	1, 100	202	1, 160	172	
2	1, 135	224	1,210	108	
3	940	182	1,040	162	
4	805	166	012	131	
5	1,830	344	1,850	307	
6	1, 560	296	1, 575	261	
7	1,270	249	1,375	231	
3	2,000	372	2,050	328	
3	1,090	203	1, 150	179	
	1, 375	253	1,375	214	
I	855	164	830	121	
	1, 305	256	1,425	233	
	1, 380	254	1,415	204	:
	2, 120	368	2,200	. 1	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1, 530	288	1,650	330 261	
)		160			
}	950 825	160	1,010 870	120	
)	•	183		136	
)	1,005		1,080	166	:
· · · · · · · · · · · · · · · · · · ·	1, 335	251	1,400	224	:
}	825	145	890	125	
5	1,350	224 286	1,355	182	
7	1,520		1,700	252	,
8	2, 160	341	2, 300	322	
Q	1, 295	259	I, 420	222	
o	1,450	273	1,525	250	
	1,630	284	1,700	244	
I	910	176	980	149	
2	1,360	245	I, 437	195	
3	1,815	352	1,900	315	
<u>.</u>	1,080	199	1, 115	165	
5	1,200	261	1, 370	233	
D	985	215	1,010	196	
<i>{</i>	1,685	320	1,825	281	•
• • • • • • • • • • • • • • • • • • • •	1,280	241	1, 375	223	
)	1,490	277	r, 580	250	
0	1, 220	248	1,275	214	
5	1,800	299	1,960	282	
5	1,415	263	1, 500	240	:
[······	1,735	323	1,760	292	
	1,525	265	1,650	231	
	I, 735	312	1,850	307	
· · · · · · · · · · · · · · · · · · ·	1,010	186	1,000	156	

292

1,040

1, 700 870

1,875 1,500

1, 735 1, 405 1, 340

TABLE IV.—Loss of sugar in grams by individual beets during 98 days' storage—Contd

	Before storage,		After storage.			
Tag No.	Weight.	Sugar content,	Weight.	Sugar content.	Loss of sugar.	
	Gm.	Gm:	Gm.	Gm.	Gm.	
3	980	182	1,060	150	2	
š	1,020	177	1,087	151	2	
δ	1,240	216	1,290	191	2	
7	1,280	241	1, 362	190	5	
g.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,060	214	1, 100	187	2	
2	1,050	199	1,237	198		
5	1, 180	250	1, 100	196	5	
7	980	184	1, 110	151	3	
0	770	145	865	126	ĭ	
1	1, 105	190	1,225	171	1	
3	930	158	1,015	150		
6	870	169	960	144	2	
9	815	174	8so	153	2	
2	1, 175	207	1, 150	159	4	
4	1, 190	236	1, 225	152	8	
6	1, 135	204	1, 225	181	2	
7	920	189	1,000	164	2	
8	1, 705	259	1,800	223	3	
5	1, 110	173	1, 170	159	I	
6	1,200	230	1, 320	206	2	
8	900	178	920	150	2	
9	750	148	850	120	1	
0	1,280	230	1,350	213	1	
I	1,270	226	1,375	198	2	
3	1,080	227	1, 175	204	2	
5	975	179	1,000	158	2	
6	1, 275	235	1,325	199	3	
9	1, 155	222	1,275	194	2	
0	980	178	1,060	157	2	
1	820	154	875	120	2	
2	975	175	1,025	164		
3	885	166	950	154	,	
5	1,075	193	1, 160	162	3	
0	705	142	800	121	2	
7	835	172	850	144	2	
8	1,340	265	1,400	232	3	
I	790	171	880	137	3	
3	1,015	101	1,110	171	2	
4	915	170	1,050	157	1	
5	1,000	185	1, 150	147	3	
0,	1,010	200	1,037	176	2	
0	805	161	850	1.16	1	
0	900	180	940	147	3	
I	915	170	965	145	2	
2	1, 165	233	1, 280	212	2	
3	950	165	1,030	144	2	
4	8ĭo	138	860	117	2	
5	970	182	1,050	155	2	
V	845	145	900	121	2	
[2000]	945	150	980	131	ī	
0	965	187	1,050	164	1	
2	640	100	675	93	ž	
3	720	121	750	93	2	
J	1, 110	202	1, 175	183	1	
V	885	174	950	154	2	
1	1,055	188	1,050	166	2	
9	990	143	1,040	120	1	
0	1, 340	247	1,425	211	3	

TABLE IV.—Loss of sugar in grams by individual beets during 98 days' storage—Conld

	Before s	torage.	After st		
Tag No.	Weight.	Sugar content.	Weight.	Sugar content.	Loss of sugar
-	Gm.	Gm.	Gm.	Gm.	Gm.
423	800	150	910	129	2
425	795	159	900	128	3
429	910	164	1,000	146	j
430	900	180	990	160	:
432	960	188 204	1,050 1,060	166 180	:
435	990 1, 230	266	1,200	245	:
436	1, 285	260	1,030	181	3
440	925	106	1,040	171	
444	040	165	1,000	138	;
445	820	184	890	150	
446	1,352	257	1,400	216	
449	860	175	875	154	
450	990	204	1,050	168	
451	1,190	254	1,225	220	
452	1,858	364	1,900	323	
455	1,052	221	1, 175	183	
457	1,098	193	1, 175	174	
459	1,074	223 286	1, 150 1, 460	189	
462	1, 390	198	1, 400	245 178	
464	950 750	156	800	125	
470	1,000	208	I, 125	175	
471	1,390	261	I, 425	230	
472	1,050	231	1,050	168	
473	1, 370	274	1, 462	196	
474	1, 180	248	1, 260	227	
475	1,090	231	1, 140	187	
477	675	144	700	120	
478	1,000	224	1, 250	180	
479	960	205	1,025	174	
480	1, 120 680	217	1, 200	202	
484	1,010	151 218	712 1,050	115	
488	1, 117	240	1, 100	176	
492	1, 130	199	1, 270	157	
494	2,050	377	2,000	313	
407	820	166	900	137	
498	1,005	205	1, 125	171	
501	1, 076	220	1,100	183	
503	1, 240	236	1,300	208	
505	1, 260	234	1, 350	213	
506	780	161	870	141	
507	830	166 160	850	144	
508	850		925	131	
509	835 1, 160	172	925 1, 150	142 184	
5II	1, 330	253	1, 350	224	
512	650	139	668	112	
514	780	162	850	133	
515	1,250	235	1, 325	201	
516	1,460	303	1,490	241	
517	690	144	790	126	
519	900	185	987	154	
520	745	162	790	145	
521	791	161	880	132	
E99	X 7 1"				

'ABLE IV.—Loss of sugar in grams by individual beets during 98 days' storage—Contd

	Before :	Before storage.		After storage.	
Tag No.	Weight.	Sugar content.	Weight.	Sugar content.	Loss of sugar.
	Gm.	Gm.	Gm.	Gm,	Gm.
5	850	167	910	135	
7	830	166	890	142	
3,	1, 340	268	1, 375	220	
), ,, , , , , , , , , , , , , , , , , ,	1,055	169	1,075	170	
)	910	167	1,000	138	
	1,020	208	1, 075	178	
K	995	195	1,075	159	
j	870	167	925	137	
),	1,020	212	1, 050	164	
), ,,	1,000	208	1,070	169	
i	620	135	700	120	
l	780	162	825	135	
	1, 110	217	1, 125	189	
5,	865	168	900	146	
h. n. c	660	129	725	119	
	660	129	725	126	
	860	175	900	144	
	805	164	900	135	
i	1,280	264	1, 337	230	
5	1,020	212	1, 187	173	
	870	184	1,012	166	
)	1,110	226	1, 150	184	
	820	179	940	147	
	1, 105	217	1,210	177	
h	990	200	1, 100	178	
********************	875	182	940	158	
l	900	184	937	150	
	745	155	850	144	
!- · · · · · · · · · · · · · · · · · · ·	1, 120	208	1,275	196	
	750	150	825	129	
	950	203	I, 200	190	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	710	146 188	725	130	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	940		975	150	
·	840	163	875	136	
	1, 150	225 184	1,200	162	
	1, 180		1,012	183	
******	1,260	231	1, 250	216	
*********	1,000	198 (1,300	160	-
*****	1,225	235	1,040	186	
	1,100	216	1,350	180	
	960	198	1,050	166	
*************	1,375	267	1,400	230	-
*******************	1,080	216	1, 100	197	•
**********	920	178	1,010	160	
********	1,740	350	1,862	324	
	1,530	285	1,675	254	
	990	208	I, 050	179	
*******	910	182	920	140	
************	980	206	1, 100	160	
	1,000	188	1, 100	170	÷
*****************	1,080	212	1, 212	. 179	į
	1, 130	211	1, 225	106	
	1,100	220	1, 162	165	:
	1,680	312	1,725	279	ļ
)	1,285	247	1,350	213	3
1	660	148	675	123	;
	1,020	210	1, 140	182	3

Table IV.—Loss of sugar in grams by individual beets during 98 days' storage—Cont.

	Before :	storage.	After storage.			
Tag No.	Weight,	Sugar content.	Weight.	Sugar content.	Loss of sugar	
	Gm.	Gm.	Gm.	Gm.	Gm.	
613	1, 180	243	1,210	210	33	
614	1,010	190	1, 110	171	19	
615	760 810	146	825 850	127	Iq	
616	830 1, 145	156 227	1, 150	131 204	25	
626	1,325	233	I, 575	230	23 2	
627	880	176	925	159	17	
630	1, 325	250	1,425	222	28	
635	1, 220	224	1,325	225	+1	
636	1, 385	296	1,436	232	64	
637	870	177	950	152	1	
638	970	196	1,000	180	10	
640	1,450	270	1,550	232	38	
642	830	161	900	146	15	
643	1, 385	274	1,460	239	35 26	
644	930 960	197 198	970 1,075	171 176	20	
645	830	161	825	135	20	
647	815	161	875	140	12	
648	1,200	245	1, 240	211	34	
649	1,020	194	1,050	158	js 65	
650	1,840	361	1,900	296	Òş	
651	1, 180	241	1, 260	209	32	
652	1,450	290	1, 475	257	33	
656	1, 130	224	1,200	197	97	
660	950	213	910	169	44	
662	955	189	1,040	158	31 11	
668	540 1,215	106 214	600 1,310	94 199		
671	780	143	825	199	15 tå	
672	820	154	885	147		
673	1, 130	201	1,200	175	ĵ 26	
675	925	161	975	142	19	
676	970	201	1,025	166	35	
681	1,150	227	1, 225	191	37	
683	975	191	1, 100	167	24	
690	1,150	230	1, 180	191	39 21	
692	1,400	277	1,500	255	ri	
703	1, 170 1, 230	205 246	1, 300 1, 260	187 237		
700	1,005	198	1, 125	160	9 31	
712	1,280	254	1,310	225	29	
715	1, 500	294	1,725	265	29	
716	1,070	225	1, 130	192	3	
717	1, 145	214	1,225	186	21 21	
718	1,630	294	1,700	268	31	
719	1, 100	222	1,225	191	5° 45	
720	1, 150	218	1,200	173	4) 20	
721	1,480	278	1,650	258 148	31	
722	930	179 252	I, 000 I, 450,	215	37 28	
724	1,200	221	1, 320	193		
725	1,400	258	1, 475	195	63	
726	1, 170	226	1, 225	199	27	
727	1,200	238	1, 320	185	53	
728	1,470	250	1,575	220	30	
#20	7 240	260	T 500	221	. 2	

ABLE IV.-Loss of sugar in grams by individual beets during 98 days' storage-Contd

Tag No.	Before s	storage.	After s	7 ,	
	Weight.	Sugar content.	Weight.	Sugar content,	Loss of sugar.
	Gm.	Gm.	Gm.	Gm.	Gm.
2	1, 380	237	1,450	197	
 }	1,130	212	1, 225	184	
, 1. ,,	1,280	225	1, 325	207	
5	1,370	228	1,425	211	
), ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,230	228	1,310	212	
3	1, 300	224	1, 560	228	
),	1,600	301	1,675	248	
)	2, 360	46r	2,350	366	
	1,110	240	1,240	213	;
	1, 540	316	1,725	279	
	I, 230 I, 040	232	1,400	190 186	
	1,120	213	I, I50 I, 220		
	1, 195		1,220	190	
	970	239 207	1,000	172	
	1,500	270	1,500	210	
	1,060	218	1, 125	178	
	1,500	276	1,600	250	
	1,130	222	1, 262	187	
	1,230	276	1,200	200	
	970	192	950	. 148	
	1,020	203	1,040	173	
	1,450	281	1,500	246	
	r, 380	276	r, 390	238	
· · · · · · · · · · · · · · · · · · ·	1,220	233	1, 287	188	
·····	1, 125	234	1,200	182	
	98a	184	1,025	160	
	960	171	1,040	154	
	1,040	204	1, 100	172	
• • • • • • • • • • • • • • • • • • • •	713	149	825	134	
***********	1,260	254	1, 337	230	
	1,040	212	1,075	185	
	990	188	962	158	
	800	170	825	145	
·····	970	199	1,075	176	
	1,025	213	1,090 880	183	
	835 1,620	174		156	
*****	960	318 206	1, 625	266 178	
***********	920	200	1, 100	176	
*********	910	180	975	162	
*********	1,355	277	1,435	246	
		164	875	138	
	790 850	173	887	159	
	1, 140	228	1,300	205	
	730	143	800	125	
	960	188	970	171	
	940	178	1, 060	159	
	890	173	937	131	
	800	157	840	126	
	900	176	1,000	146	
····	1,060	218	1,200	187	;
· · · · · · · · · · · · · · · · · · ·	1, 170	207	1,250	177	
	1, 320	238	1,350	224	
******	1, 185	226	1,275	199	:
* * * * * * * * * * * * * * * * * * *	1,050	223	1,075	185	:
	1,060	189	1, 130	158	3
	890	162	940 i	133	2

Table IV.—Loss of sugar in grams by individual beets during 98 days' storage—Could

	Before s	torage.	After s		
Tag No.	Weight.	Sugar content.	Weight.	Sugar content,	Loss of sugar
	Gm.	Gm.	Gm.	Gm.	Gm.
792	1,200	202	1, 225	149	5;
793	1, 585	292	1,575	252	4
794	1, 160	225	I, 200	199	2
795	1, 530	272	1,600	233	39
797	1, 230	231 265	1, 325 1, 490	222 224	
798	870	152	910	129	4
799	820	167	970	144	2
800	970	210	1,037	176	3
8o1	1,020	230	1,050	176	Ş
802	1,205	231	1,275	214	Ĭ
803	860	169	900	146	2,
804	910	178	950	141	31
805 806	1,030	202	1,075	183	I
807	990	192	1,025	170 168	2:
808	I, 050 I, 000	197	1, 150 1, 125	180	2) I
809	1, 325	247	1,360	204	4,
810	I, 100	209	1,212	177	2;
811	1,080	208	1,200	156	5
812	1,750	360	1,775	259	10
813	1,040	206	1, 125	178	2
814	1,000	194	1,150	149	4
815	750	145	800	121	2
816	1, 190	207	1,250	192	I
817 818	980	202	1,075	180	2
819	920 1,420	190 264	1,062	161 214	5
820	1, 130	219	1, 550 1, 275	186	3
821	965	197	1,060	165	ÿ
822	1,010	198	1, 130	163	3
823	1,600	317	1, 575	270	4
824	1,010	208	1,050	183	2
826	1,470	309	1, 520	267	4
827	970	202	1,025	182	3
828 829	1, 130	203	I, 200	165	3
830	1, 110	233	1, 130	190	2
831	I, 150 I, 720	225 338	1, 225	196 264	7
832	1,605	202	1, 727	268	2
833	1,530	296	1,650	270	2
034	1,675	328	1,737	292	j
835	1, 160	237	1, 162	197	4
836	1,770	334	1,920	284	3
837	I, 400	286	1, 562	253	3
8 ₃ 8 8 ₃ 9	1,800	342	1,850	300	6
840	1,390	272	1,510	211	3
841	1,020	186 236	1, 080 1, 325	155 204	3
842	I, 400	260	I, 500	225	3
843	1, 290	224	1, 400	196	3
844	1,210	228	1,300	205	2
845	1,460	298	1,510	254	4
840	1,200	254	1,275	227	2
847	1,560	312	1,625	276	3
848	1,950	359	1,980	277	
849	1,775	338	1,850	296	1

'ABLE IV.-Loss of sugar in grams by individual beets during 98 days' storage-Contd

	Before	storage.	After s	torage.	
Tag No.	Weight.	Sugar content.	Weight.	Sugar content.	Loss of sugar.
	Gm.	Gm.	Gm.	Gm.	Gm.
51	1, 170	222	1,250	195	27
52.,	935	198	1,000	170	28
53	1,085	217	1, 125	198	19
54	1,030	210 231	1, 050	189	21
55	1,020	206	1,050	168	38
.57	1,200	242	I, 225	215	2
58	1, 230	243	1, 370	210	24
.59	1,060	229	1, 175	195	34
бо	1,575	283	1,600	275	
бт	1,230	238	1,350	202	30
62	1, 110	231	1, 190	200	31
63	1,345	266	1, 380	242	24
64	1,310	275	1,420	233	44
65	1, 140	228 212	1, 287	19 8 185	30
67		194	1,300		27
68	1,170	244	1, 262	170 214	30
69	1,045	226	1,275	100	27
70	1,040	208	1, 187	183	2
71	1,200	240	1, 225	194	40
72	820	156	825	137	ig
73	1, 230	228	1,360	198	30
74		234	1, 225	193	41
75	920	180	1,030	144	36
76	1, 150	230	1, 225	193	30
77 78	1, 190	212	1,370	186	26
78	920 760	163	950 800	131	32
80	1,100	140 202	1,200	115	25
81	1,070	214	1, 170	187	27
82	1,250	282	I, 375	220	62
83	840	150	925	122	37
84	1,830	366	r, 960	305	ői
85	1,090	222	1, 160	181	41
86	1,040	206	1, 130	163	43
87 88	1,200	242	1, 295	210	32
89	880 860	. 186	870	143	23 18
90	1, 270	177	925 1, 320	159	41
91	1,050	273 214	1, 150	232 177	37
92	1, 180	236	1, 300	213	23
93	1,060	218	1, 125	196	22
94	830	166	850	138	28
95	830	184	900	158	26
96	1, 130	233	1,262	202	31
97	830	169	875	149	20
99	1, 150	242	1,270	216	26
90,	930	193	990	174	19
VI	950	222 192	1,100	189 163	33
U2	880	179	1,030	145	29 34
~3····	1,090	220	1, 112	196	33
THE COURSE AND ADDRESS OF THE COURSE OF THE	1,095	217	1,150	193	24
*J' 10	1,230	246	1, 225	206	40
90, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	1,210	192	1, 275	186	6
	1,550	294	1, 590	261	33 18
o8	1,200	226		208	-

TABLE IV.—Loss of sugar in grams by individual beets during 98 days' storage—Could

	Before storage.		After storage.		
Tag No.	Weight.	Sugar content.	Weight.	Sugar content.	I _{ross (}
	Gm.	Gm.	Gm.	Gm.	Gm.
10	1,000	206	1,020	175	G.1.
II	1, 240	268	1, 240	203	
12	980	196	1,050	176	
13	870	184	950	158	
١,	1,070	208	1, 150	189	
15	770	160	850	131	
ι6	950	211	1,025	176	
17,	840	166	875	140	
18	1,250	222	1,315	208	
19	1,730	310	I, 775	270	
20	1,060	220	1,060	184	
21	1,000	210	1,050	191	
22	1,070	214	1, 120	181	
23	1, 105	221	1, 150	193	
24	1,480	302	1,450	249	
35	1,210	208	1, 230	177	
26	850	167	900	144	
27	1,330	245	1,400	216	
29	1, 145	213	1,200	187	
30	1, 420	242	1,450	203	
31	1,000	160	1,0∞	152	
32	1,255	238	1,3∞	208	
33	1, 185	199	1, 275	173	
34	1, 305	237	1,375	206	
35	1,640	299	1,700	252	
36	1,260	242	1, 325	202	
37	1,330	255	1,275	194	
38	1,000	184	1,000	158	
39	1,775	351	1,875	304	
40	1, 220	261	1,240	216	
41	1,440	282	1,300	208	
42	1, 160	225	1,300	208	
43	1, 160	232	1, 275	204	
44	1, 160	242 226	1,275	217	
45	1,075		1,237	201	
46	1, 160	# 39	1, 200	197	
48	1,420	258	1, 512	230	
49	1,450	273 101	1,450	226 156	
51	1,060	191	1, 100	168	
52	800	180	990	158	
53	1, 140	235	1, 220	190	
54	850	170	925	144	
55	910	180	970	151	
56	875	168	950	142	
57	960	196	1, 075	161	
58	980	196	1,025	180	
59	I, 200	245	1,212	211	
δο	1,020	189	1,075	170	
61	1,075	215	1,200	187	
62	810	162	925	146	
63	I, 220	239	1, 325	202	
64	1,510	302	1,525	259	
65	1,210	242	1, 275	216	
66	1, 190	220	1,275	199	
67	1,030	200	1, 150	177	
68	1, 150	214	1, 250	182	,
6g	1, 305	240		226	

ABLE IV.—Loss of sugar	in grams by	inaiviauui 0	eeis auring 98 a	ays storage—Contd

	Before	Before storage.		: After storage.	
Tag No.	Weight.	Sugar content.	Weight.	Sugar content.	Loss of sugar.
	Gm.	Gm.	Gm.	Gm.	Gm.
0	. 1,245	232	1,390	200	2,
I	. 1,190	234	1, 320	206	2
_ 2	. I, 260	267	1,250	222	4
3, ,	1,130	210	1,220	180	3
4	1,920	330	2,025	300	30
5	1,620	301	1,630	254	4
6	970	199	1,060	159	40
7	1,450	270	1,550	220	5
B	1,365	238	1,435	198	49
g	. I, 425	308	1,450	264	4
ſ	· 1,425	274	1,410	226	48
2	1, 100	205	1,200	171	34
3		202	1, 100	172	30
4	, 00	265	1,420	216	4
J	I, 330	264	1,425	219	4
5	. I, 370	225	1,450	197	28
7	1,425	268	1, 475	252	10
)	. I, 540	256	1,620	233	2
J	. 1,025	205	1, 100	171	34
2	1, 350	259	1,420	210	40
6		197	1,250	168	20
5	-, ;	248 208	1,400	212	39
,	. 1,030 . 1,125		1,062	170	38
)	1,380	225 262	1,275	186	39
,	1, 140	1	1,450	220	43
}		234	1,260	199	35
)	1,350	270 261	1, 362	223	47
хо	I, 375 I, 290	280	1,460	237	24
)I	. 980	198	1, 320 1, 650	248	4
22	1, 275	265		174	2.
3	. 1,360	265	I, 330 I, 430	226	39
04	. 1,410	276	1,525	237	28
5	1, 170	243	1,200	192	38
x6	I, 210	237	1, 320	208	51
7	I, 400	280	1,430	237	20
8	1,670	331	1,675	261	43
9	1,350	270	1,450	250	70 20
0	1,110	242	1, 125	207	35
I	1,030	208	1, 120	177	31
2	I, 220	234	1, 315	207	27
3	920	189	1,000	168	21
4	I,400	269	1, 525	235	34
5	1,225	250	1,370	208	42
6	1, 150	212	1,260	180	
7	1,320	246	1,475	218	23 28
8	960	192	1,030	171	21
y	1,330	248	1,375	215	33
0	I, 200	226	1,270	188	38
1,	1,075	208	1, 150	188	20
2	1,150	230	1,275	189	41
3	1, 120	210	1,200	187	23
4	1,690	338	r, 68o	292	46
3	1,290	258	1,375	223	35
0	I, 020	194	1, 120	166	28
7	1,390	234	1,450	200	34
	1, 215	248	1,370	228	30
9	1,225	238	1, 320	193	45
** * * * * * * * * * * * * * * * * * * *	915	174	I, 000	150	24

TABLE IV.-Loss of sugar in grams by individual beets during 98 days' storage-Comid

	Before s	torage.	Alter st			
Tag No.	Weight.	Sugar content.	Weight.	Sugar content.	Loss of sugar.	
	Gm.	Gm.	Gm.	Gm.	Gm.	
031	1, 220	227	1, 325	207		
032	88o	178	925	153		
033	1, 220	208	1,300	182		
034	1,090	229	1, 190	207		
035	1,050	220	1, 110	184		
036	1, 120	213	1, 150	186		
037	1,655	298	1,680	255		
038	945	170	975	150		
156	1, 540	262	1, 550	236		
171	1, 365	229	• 1, 450	226		
184	1,275	204	1,275	176		
193	1, 310	231	1,400	210		
206	1,240	186	1, 225	164		
207	1, 130	199	1, 175	181		
211	1,230	256	1,650	224		
212	2,050	320	2,050	291		
215	1,010	167	975	140		
216	1,420	250	1,375	217		
224	1, 365	185	1,350	159		
1226	2,260	344	2, 150	318		
1228	1,860	316	1,850	274		
[23]	2,250	356	2,075	315		
[233	790	114	800	105		
1245	1, 325	244	1, 330	216		
1254	2, 340	356	2, 350	348		
1255	1,570	273	1, 550	254		
1256	1,400	218	1,425	202		
[257	1,305	219	1, 325	204		
1258	1,480	252	1,480	210		
1259	1, 155	201	1,170	185		
1266	1,490	241	1,475	206		
1272	1,210	201	1,200	173		
1273	1, 530	257	1,500	210		
1282	1,600	269	1,600	246		
1289	1, 180	203	1, 160	165		
1302	1,450	255	1,435	224		
1315	1,315	213	1, 325	193		
1318	1,390	259	1,400	216		
1323	1, 160	169	1, 175	148		
1328	1,575	265	1,625	247		

The results here given indicate that beets are irregular in gain or loss of weight during storage. Most of the beets gained slightly in weight Some few remained constant as to weight, while others lost in weight While the mere loss or gain in weight, due to water outgo or water intakt has its effect upon the percentage of sugar, it does not influence the sugar content of the beet.

Of most consequence is the marked irregularity in the amount of sugations by individual beets during storage. This loss of sugar ranges from to 154 gm.; that is, from to 50 per cent of the total sugar content of the beet at harvest. Column 6 of Table IV gives the extent of this lost sugar for each individual beet. Some of the reasons and condition

leading to this loss of sugar will be given in a later paper on the storage of sugar beets.

Table V gives the correlation between sugar content of beets and loss of sugar in grams during storage.

TABLE V.—Correlation between sugar content of beet in grams and the loss of sugar during storage

	Loss of sugar in grams.									
Sugar content in grams,	1 to 20	21 to 40	41 to 60	61 to 80	81 to 100	101 to	121 to 140	141 to 160		
100 to 150		15								
ışı to 200	82	157	6	ľ						
or to 250	56	213	43	2						
ışı to 300		86	32	10			ļ [
or to 350	2	13	19	3]					
51 to 400	1	2	3	3	2	I	5 I			
or to 450 51 to 500										
51 to 500					1					

The value of the coefficient is 0.476 ± 0.018 , which indicates a practical certainty of correlation. The table shows in a general way the fallacy of testing sugar beets after storage and explains how a breeder's lines selected from such tests may continue to fall in sugar content with succeeding generations.

Table VI gives the correlation between the percentage of sugar in the beet at harvest and the loss of sugar in grams during storage. The value for $r = 0.366 \pm 0.020$.

TABLE VI.—Correlation between percentage of sugar in beet and grams of sugar lost during storage

Percentage of sugar in beet.	Loss of sugar in grams.															
	o to	10 to	20 to 30	30 to 40	40 to 50	50 to 60	60 to 70	70 to 80	80 to 90	90 to 100	100- to 110	110- to 120	120- to 130	130- to 140	140- to 150	to 160
3 to 14 4 to 15	 I	r	I 2		I											
15 to 16 16 to 17	6	6 10	5 12	1 7	2 2	2										
7 30 18 8 to 19 9 to 20	9	25 31 26	26 58 65	27 45	15	 8 6	3		2							· • •
o to 21 I to 22	2	16	71 27	51 75 18	27	5	5 3 2	3 2	1		1		 			
2 to 23			2	3	9	2	2									

⁴Pack, D. A. storage of sugar beets. (Unpublished.) 1923.

DISCUSSION

Since sugar-beet factories cut their beets at harvest or after a short period of storage, the sugar-beet industry requires beets of high sugar content at harvest. This fact and the results of these investigations demand that our mother beets be tested in the fall after harvest. Since the average commercial sugar beet of the factories is stored 40 days on an average before cutting to make sugar, it might be advisable to test our breeding beets 40 days after harvest. In this event we should be selecting breeding beets which would be of high sugar content at harvest and have some storage qualities as well. Thus we would select with the expense of one testing those beets which would be most desired by the sugar companies. Under no circumstances would it appear advisable to make only one test on mother beets, and this test in the spring after the beets have been stored.

If there comes a time when sugar companies are forced to store their beets over extended periods, those having good storage qualities will be desired, in which event beets containing such qualities can be selected and bred up from consistent tests made before and after storage.

SUMMARY

1. Failure to recognize the erratic variations between tests of sugar beets at harvest time and after storage until the following spring has probably led to confusion in the selection of desirable strains of beets in sugar-beet breeding work.

2. Spring tests of sugar beets (made after the beets have been stored) are incomparable with the tests made at harvest. Spring tests at untrustworthy and give erroneous values for the quality of the beets at

harvest.

3. Individual beets show great irregularity in the percentage and quality of sugar lost during storage.

4. Beets high in sugar and sugar content tend to lose more sugar during storage than do beets which are low in sugar and sugar content

5. Since sugar-beet factories cut their beets at harvest or within a average period of storage of approximately 40 days, it appears that strains selected as desirable for breeding purposes should be considered on the basis of fall rather than of spring tests.

6. In order to understand clearly the comparative value of different strains of beets, the plant breeder should record both fall and spring

tests and the conditions under which the beets were stored.

Additional copies

OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C.

10 CENTS PER COPY SUBSCRIPTION PRICE, \$4.00 PER YEAR

PURCHASER AGREES NOT TO RESELL OR DISTRIBUTE THIS COPY FOR PROFIT.—PUB. RES. 57, APPROVED MAY 11, 1922