

The Ambassadors (Holbein), 1533

Alexei Efros CS280, Spring 2024

Linear Envy

(Scaled) Orthographic Projection

$$x = mX, y = mY$$

$$\begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

Perspective Projection

$$x = f \frac{X}{Z}, y = f \frac{Y}{Z}$$

Homogeneous coordinates

Trick: add one more coordinate!

Converting to homogeneous coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x,y,z) \Rightarrow \left| egin{array}{c} x \ y \ z \ 1 \end{array} \right|$$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \Rightarrow (f\frac{x}{z}, f\frac{y}{z})$$
divide by the third coordinate

It's not just some hack...

Projective Geometry: the study of geometric properties that are invariant under projective transformations.

What is the geometric intuition?

a point in the image is a ray in projective space

- Each point (x,y) on the plane is represented by a ray (wx,wy,w)
 - all points on the ray are equivalent: $(x, y, 1) \cong (wx, wy, w)$

Projective lines

What does a line in the image correspond to in projective space?

A line is a *plane* of rays through origin

- all rays
$$(x,y,z)$$
 satisfying: $ax + by + cz = 0$

in vector notation:
$$0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

l p

A line is also represented as a homogeneous 3-vector I

Point and line duality

- Since I p=0
- I is ⊥ to every point (ray) p on the line

What is the line I spanned by rays $\mathbf{p_1}$ and $\mathbf{p_2}$?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I is the plane normal

What is the intersection of two lines I_1 and I_2 ?

• \mathbf{p} is \perp to $\mathbf{l_1}$ and $\mathbf{l_2}$ \Rightarrow $\mathbf{p} = \mathbf{l_1} \times \mathbf{l_2}$

Points and lines are *dual* in projective space!

Another problem solved

Intersection of parallel lines

They intersect at <u>different</u> infinities!

These 2D Transformations can all be represented as matrix multiplications in homogeneous coordinates

Heterogeneous

$$\frac{x'}{y'} = \frac{x}{y} + \frac{t_x}{t_y}$$

$$x' = x + t$$

Now we can chain transformations

Now we can chain transformations

$$x' = RTx$$

2-D Rotation


```
x = r \cos (\phi)
y = r \sin (\phi)
x' = r \cos (\phi + \theta)
y' = r \sin (\phi + \theta)
```

2-D Rotation


```
x = r \cos (\phi)
y = r \sin (\phi)
x' = r \cos (\phi + \theta)
y' = r \sin (\phi + \theta)
Trig Identity...
x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)
y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)
```

2-D Rotation


```
x = r \cos (\phi)
y = r \sin (\phi)
x' = r \cos (\phi + \theta)
y' = r \sin (\phi + \theta)
Trig Identity...
x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)
y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)
```

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$
$$y' = x \sin(\theta) + y \cos(\theta)$$

Euclidean = rotation and translation

Similarity = rotation, translation and uniform scaling $(s_x = s_y)$

Affine = rotation, translation, uniform scaling $(s_x = s_y)$, and shearing

Affine = rotation, translation, shearing and uniform scaling $(s_x = s_y)$

$$x'$$
 = x' a b c x' y d e f x' 1

Properties:

- 6 degrees of freedom
- Parallel lines remain parallel

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Heterogeneous coordinates

$$X = fX/Z$$

 $Y = fY/Z$

image coordinates

Heterogeneous coordinates

$$X = fX/Z$$

 $y = fY/Z$

image coordinates

Heterogeneous coordinates

$$X = fX/Z$$

 $y = fY/Z$

image coordinates

Heterogeneous coordinates

$$X = fX/Z$$

 $y = fY/Z$

image coordinates

Heterogeneous coordinates

$$x = fX/Z$$

 $y = fY/Z$

image coordinates

Homogeneous coordinates

Going back to heterogeneous coordinates:

$$\begin{array}{c} X \\ Y \\ \hline Z/f \end{array} \longrightarrow (f X/Z, f Y/Z)$$

Orthographic (parallel) projection

Orthographic (parallel) projection

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f \end{bmatrix} \implies (f\frac{x}{z}, f\frac{y}{z})$$
divide by the third coordinate

In practice: lots of coordinate transformations...

For the pinhole camera:

When changing to pixels, there will be an arbitrary scaling:

if pixels are rectangular

In heterogeneous coordinates:

$$P_C = P_W - T$$

In heterogeneous coordinates:

$$P_C = R(P_W - T)$$

$$\frac{X_c}{Y_c} \\ \frac{Z_c}{1} = \frac{R}{0} - RT \cdot \frac{X_w}{Y_w}$$

2. Camera coordinates to image coordinates (square pixels)

Radial Distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from **Helmut Dersch**

A pencil of rays contains all views

Nothing special about a given projection

So, we can generate any synthetic camera view as long as it has the same center of projection!

Homography

A projective mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- Parallelism not preserved
- but must preserve straight lines
- Maps 2D to 2D (but in homogenous coordinates)

called Homography

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$
p H p

To apply a homography **H**

- Compute **p**' = **Hp** (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

Generating new views with same COP

Image rectification

To unwarp (rectify) an image

- Find the homography H given a set of p and p' pairs
- How many correspondences are needed?

Solving for homographies

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Can set scale factor i=1. So, there are 8 unknowns.

Set up a system of linear equations:

$$Ah = b$$

where vector of unknowns $h = [a,b,c,d,e,f,g,h]^T$

Need at least 8 eqs, but the more the better...

Solve for h. Can be done in Matlab using "\" command

• see "help Imdivide"

If overconstrained, can solve using least-squares:

$$\min \|Ah - b\|^2$$

Fun with homographies

Original image

St.Petersburg photo by A. Tikhonov

Virtual camera rotations

Practicalities of applying transforms

Representing Images and Geometry

569

Figure 38.10: Comparison between forward and backward mapping using nearest neighbor interpolation. Forward mapping will produce missing values.

Figure 38.11: Comparison between forward and backward mapping. Forward mapping produces many artifacts. In both cases we use nearest neighbor interpolation.

Forward mapping

Backward mapping

What is the shape of the b/w floor pattern?

From Martin Kemp *The*Science of Art

The floor (enlarged)

What is the shape of the b/w floor pattern?

The floor (enlarged)

Automatically rectified floor

Slide from Criminisi

Analysing patterns and shapes

What is the (complicated) shape of the floor pattern?

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

Slide from Criminisi

Analysing patterns and shapes

Automatic rectification

From Martin Kemp, *The Science of Art* (manual reconstruction)

Holbein, The Ambassadors

Personalized projections

"School of Athens", Raffaello Sanzio ~1510

Give a separate treatment to different parts of the scene Slide by Lihi Zelnik-Manor

Personalized projections

"School of Athens", Raffaello Sanzio ~1510

Give a separate treatment to different parts of the scene Slide by Lihi Zelnik-Manor

changing camera center

Mapping one camera into another

In general, we can not find a transformation from x_1 to x_2 . It requires knowing

the 3D coordinates of each corresponding point.

(The general mapping has to depend on 3D shape, otherwise we would learn no information from the 2nd image of a stereo camera!)

Mapping one camera into another

Mapping one camera into another

Planar scene (or far away)

PP3 is a projection plane of both centers of projection, so we are OK!

This is how big aerial photographs are made

Planar mosaic

3D reconstruction from a single view

We want real 3D scene walk-throughs:
Camera rotation
Camera translation

Can we do it from a single image?

"Tour into the Picture"

Step 1: define planes

p 2: rectify each plane

Step 3: compute 3D box coords