

PES University, Bangalore

(Established under Karnataka Act No. 16 of 2013)

UE19CS203 – STATISTICS FOR DATA SCIENCE

Unit-2 - Random Variables

QUESTION BANK

Chebyshev's inequality

Exercises for Section 4.5

[Text Book Exercise – Section 4.5 – Q. No. [26] – Pg. No. [256]]

1. Chebyshev's inequality (Section 2.4) states that for any random variable X with mean μ and variance σ^2 , and for any positive number k, $P(|X - \mu| \ge k\sigma) \le 1/k^2$. Let $X \sim N$ (μ , σ^2). Compute $P(|X - \mu| \ge k\sigma)$ for the values k = 1, 2, and 3. Are the actual probabilities close to the Chebyshev bound of $1/k^2$, or are they much smaller?