6.00 Handout, Lecture 15 (Not intended to make sense outside of lecture)

```
def stdDev(X):
    mean = sum(X)/float(len(X))
    tot = 0.0
    for x in X:
        tot += (x - mean)**2
    return (tot/len(X))**0.5
def flipPlot(minExp, maxExp, numTrials):
    meanRatios = []
    meanDiffs = []
    ratiosSDs = []
    diffsSDs = []
    xAxis = []
    for exp in range(minExp, maxExp + 1):
        xAxis.append(2**exp)
    for numFlips in xAxis:
        ratios = []
        diffs = []
        for t in range(numTrials):
            numHeads = 0
            for n in range(numFlips):
                if random.random() < 0.5:</pre>
                    numHeads += 1
            numTails = numFlips - numHeads
            ratios.append(numHeads/float(numTails))
            diffs.append(abs(numHeads - numTails))
        meanRatios.append(sum(ratios)/numTrials)
        meanDiffs.append(sum(diffs)/numTrials)
        ratiosSDs.append(stdDev(ratios))
        diffsSDs.append(stdDev(diffs))
    pylab.plot(xAxis, meanRatios, 'bo')
    pylab.title('Mean Heads/Tails Ratios ('
                + str(numTrials) + ' Trials)')
    pylab.xlabel('Number of Flips')
    pylab.ylabel('Mean Heads/Tails')
    pylab.semilogx()
    pylab.figure()
    pylab.title('Mean abs(#Heads - #Tails) ('
                + str(numTrials) + ' Trials)')
    pylab.xlabel('Number of Flips')
    pylab.ylabel('Mean abs(#Heads - #Tails')
    pylab.plot(xAxis, meanDiffs, 'bo')
    pylab.semilogx()
    pylab.semilogy()
    . . .
```

```
def flip(numFlips):
   heads = 0.0
    for i in range(numFlips):
        if random.random() < 0.5:</pre>
            heads += 1.0
    return heads/numFlips
def flipSim(numFlipsPerTrial, numTrials):
    fracHeads = []
    for i in range(numTrials):
        fracHeads.append(flip(numFlipsPerTrial))
   return fracHeads
def labelPlot(nf, nt, mean, sd):
   pylab.title(str(nt) + ' trials of '
                + str(nf) + ' flips each')
   pylab.xlabel('Fraction of Heads')
   pylab.ylabel('Number of Trials')
   xmin, xmax = pylab.xlim()
   ymin, ymax = pylab.ylim()
   pylab.text(xmin + (xmax-xmin)*0.02, (ymax-ymin)/2,
               'Mean = ' + str(round(mean, 6))
               + '\nSD = ' + str(round(sd, 6)))
def makePlots(nf1, nf2, nt):
    """nt = number of trials per experiment
       nf1 = number of flips 1st experiment
       nf2 = number of flips 2nd experiment""
    fracHeads1 = flipSim(nf1, nt)
   mean1 = sum(fracHeads1)/float(len(fracHeads1))
   sd1 = stdDev(fracHeads1)
   pylab.hist(fracHeads1, bins = 20)
   xmin,xmax = pylab.xlim()
   ymin,ymax = pylab.ylim()
   labelPlot(nf1, nt, mean1, sd1)
   pylab.figure()
   fracHeads2 = flipSim(nf2, nt)
def poll(n, p):
   votes = 0.0
    for i in range(n):
        if random.random() < p/100.0: votes += 1</pre>
   return votes
def testErr(n = 1000, p = 46.0, numTrials = 1000):
   results = []
   for t in range(numTrials):
        results.append(poll(n, p))
   print 'std = ' + str((stdDev(results)/n)*100) + '%'
   results = pylab.array(results)/n
   pylab.hist(results)
   pylab.xlabel('Fraction of Votes')
   pylab.ylabel('Number of Polls')
```

MIT OpenCourseW	/are
http://ocw.mit.edu	

6.00SC Introduction to Computer Science and Programming Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.