Московский Физико-Технический Институт (государственный университет)

Работа 18

ЗАДАНИЕ 1

1. Соберем интегрирующую цепь и проведем измерения. Результаты запишем в таблицу:

$$C=1$$
 $m\kappa\Phi$ $R=129$ (130) Om $f_0=1000$ (1233) Γu

20ln(K)	n
-0,30227	-2
-3,65443	-1
-9,62534	0
-19,885	1
-31,891	2
-45,0759	3
-58,0084	4

Построим граф Боде для интегрирующий цепи по полученным данным:

2. Подключим генератор прямоугольных сигналов. По осциллограме переходной характеристики оценим постоянную времени τ :

$$\tau = 106$$
 mkc

$$f_0 = rac{1}{2\pi au} pprox 1.5 \quad \kappa \Gamma u,$$

что совпадает со значеним для f_0 полученным в первом пункте.

Граничная частота по графу Боде:

$$f_0 = 1.3$$
к Γ ц

3. Превратим интегрирующую цепь в дифференцирующую и проведем аналогичные измерения. Запишем результаты:

$$f_0 = 1 \kappa \Gamma u$$

20ln(K)	n
-50,0207	-4
-35,9153	-3
-23,6834	-2
-13,6244	-1
-7,74268	0
-5,6738	1
-5,27931	2

Построим граф Боде для дифференцирующей цепи по полученным данным:

Граф Боде для дифференцирующей схемы

-10
-20
-20
-40
-50
-60
-5 -4 -3 -2 -1 0 1 2 3

4. Подключим генератор прямоугольных сигналов. По осциллограме переходной характеристики оценим постоянную времени τ :

$$\tau = 140$$
 mkc

$$f_0=rac{1}{2\pi au}\simeq 1 \quad \kappa \Gamma u,$$

что совпадает со значеним для f_0 полученным в первом пункте.

5. Откроем в MicroCap модель **rcint.cir**. Изучим графики частотной и фазовой характеристики.

По графику видно, что передаточная функция цепи принимает вид:

$$H(p) = \frac{K_0}{1 + p\tau}; \quad K_0 = \frac{R_L}{R + R_L}, \tau = (R||R_L)C.$$

По графику оценим верхнюю частоту:

$$R_L=10\ \kappa O$$
м, $f_0\simeq 10\ \kappa \Gamma$ ц $R_L=10\ MO$ м, $f_0\simeq 19,9\ \kappa \Gamma$ ц

Изучим переходную характеристику. По графику оценим постоянную времени:

$$R_L=10~\kappa O$$
м, $au\simeq 9,7~\kappa\kappa c$ $R_L=10~MO$ м, $au\simeq 19,6~\kappa\kappa c$

6. Откроем модель **rcdiff.cir**. Изучим ее частотную и фазовую характеристики.

По графику видно, что передаточная функция цепи при $R_S \neq 0$ принимает вид:

$$H(p) = \frac{K_0 p \tau}{1 + p \tau}; \quad K_0 = \frac{R}{R + R_S}, \tau = (R + R_S)C.$$

По графику оценим верхнюю частоту:

$$R_S=0$$
 $f_0\simeq 9,75$ к Γ μ , $R_S=10$ к O м, $f_0\simeq 4,88$ к Γ μ

Изучим переходную характеристику. По графику оценим постоянную времени:

$$R_S=0, \quad au \simeq 16,7 \; ext{mkc}$$
 $R_S=10 \; \kappa O ext{m}, \quad au \simeq 31,8 \; ext{mkc}$

7. Откроем модель **rcpower.cir**. Изучим графики частотной зависимости потребляемых интегрирующей цепью активных и реактивных мощностей и графики мощностей на её комопонентах.

Видно, что у реактивной компоненты потребление становится максимальным при частоте $f_0=10~\kappa\Gamma u$, и стремится к нулю при частоте f=0 и $f=\infty$. При $f=f_0$ выполняется закон сложения мощностей.

Подключая и отключая резитор R_L варьированием $[1k, 1Meg|1Meg](1Meg = \infty)$, изучим его влияние на распределение мощностей в схеме при $f = f_0$.

При уменьшении значения сопротивления резистора R_L , его мощность возрастает до 0,2 мBm, мощность на резисторе R падает до 0,4 мBm, а реактивная мощность конденсатора . Скорость увеличения мощности на резисторе R_L становится равной -0,2 мBm.

ЗАДАНИЕ 2

1. Откроем модель **rc2pole.cir**.

По графикам определим затухание на частоте $f_0 \simeq 10~\kappa\Gamma u$, оно равно -9,6 dB и скорость его нарастания в полосах задержания -40,4 + 9,6 = -30,8 $dB/\partial\epsilon\kappa a\partial y$. По графикам ФЧХ измерим значения фазовых сдвигов ФВЧ, ПФ и ФНЧ на частотах 0, f_0,∞ .

	ФВЧ	ПΦ	ФНЧ
0	180	90	0
f_0	90	0	-90
∞	0	-90	-180

Двухсторонняя полоса $\triangle f$ пропускания $\Pi \Phi \approx 30 \ \kappa \Gamma u$, что в три раза больше f_0 . Это сходится с теорией.

2. Откроем графики преходных характеристик.

Оценим время спада τ_- первого выброса переходной характеристик ФВЧ до уровня $1/e \simeq 0,37$:

$$\tau_{-} = 5 \, \text{MKC}$$

Оценим время нарастания t_+ фронта переходной характеристики ФНЧ до уровня $1-1/e \simeq 0,63$:

$$\tau_{+}=61~\mathrm{m}\kappa c$$

Найдем их отношение:

$$\frac{\tau_+}{\tau} = 12, 2$$

ЗАДАНИЕ 3

1. Откроем модель **phshift.cir**.

Наибольший диапазон перестройки реализуется на частоте $f=20~\kappa\Gamma q$. Границы этого диапазона [-143,4;-22,7].

2. Откроем модель двойного T-моста 2tbridge.cir.

Измерим полосу режекции $\triangle f=39\ \kappa \Gamma u$. $f_0=10\ \kappa \Gamma u$, следовательно выполняется $\triangle f=f_0$.

При росте R, f_0 падает. При $R = 5 \kappa O M$ наблюдается скачок на $\Phi Y X$.

3. Подключив ко фходу источник прямоугольного импульса, проанализиурем переходную характеристику. $\tau_+ = 4~\text{mkc},~\tau_- = 58~\text{mkc}$. Это сходится с теоретическими значениями.

Варьирование приводит к усреднению функции.

4. Откроем модель **2tdelay.cir**.

Оценим $Q = f_0/\triangle f$.

$R, \kappa O M$	4,9	5	5,1
$f_0, \kappa \Gamma u$	10,05	10	9,95
$\triangle f$, $\kappa \Gamma u$,	0,05	$10^{-4} \cdot 2, 5$	0,05
Q	100,5	40000	99,5

В режиме Transient измерим групповые задержки τ_g :

 $au_g=3~{\it Mc},$

значение для обоих случаев ($R=4,9~\kappa O$ м, $f=10,05~\kappa \Gamma$ и и $R=5,1~\kappa O$ м, $R=10,05~\kappa \Gamma$ и и $R=5,1~\kappa O$ м, $R=10,05~\kappa \Gamma$ и и $R=10,05~\kappa \Gamma$ и и R=10,0

 $9,95 \ \kappa O_{M}$).

ЗАДАНИЕ 4

1. На макетной плате соберем схему полосового фильтра (его схема, как и схема Φ НЧ и Φ ВЧ представлены на рисунке).

$$L=220~{\rm M}{\kappa}\Gamma{\rm H}$$

$$C=1\,\mathrm{mk}\Phi$$

$$r = 92 O_M$$

Измерим резонансную частоту и коэффициент передачи:

$$f_0 = 366 \ \kappa \Gamma u$$

$$\triangle f = 75 \ \kappa \Gamma u$$

$$Q = \frac{f_0}{\triangle f} = 4,8$$

2. Из тех же компонент соберем схемы ФВЧ и ФНЧ. Измерим для них резонансную частоту и отношения $K(f_0)/K(0)$ для ФНЧ и $K(f_0)/K(\infty)$ для ФВЧ.

$$Q = \frac{K(f_0)}{K(0)} = 5,18$$

$$Q = \frac{K(f_0)}{K(\infty)} = 4, 1$$

3. Подключим генератор прямоугольных импульсов. Изучим переходные характеристики ФВЧ, ФНЧ и ПФ. Прикинем по осцилограммам период колебаний и время их затухания до уровня 1/e=0,37 и дадим оценку резонансной частоты и добротности. Для ФВЧ:

$$T=2,8~\mathrm{mkc}$$

$$\tau = 0.45 \,\mathrm{mkc}$$

$$f_0 = 365 \ \kappa \Gamma u$$

$$Q = 6, 2$$

Для ФНЧ:

$$T=2,83$$
 мкс

$$\tau = 0,49$$
 мкс

$$f_0 = 352 \ \kappa \Gamma u$$

$$Q = 5, 7$$

Для ФВЧ:

$$T=2,84~{\rm M}{\kappa}c$$

$$\tau = 0,51$$
 мкс

$$f_0 = 351 \ \kappa \Gamma u$$

$$Q = 5, 6$$

4. Откроем в MicroCap модель **rlc2pole.cir**, изучим частотные фазовые и переходные характеристики фильтров.

Рис. 1: Частотные и фазовые характеристики

5. Откроем модель **groupdel.cir** полосового фильтра. Наблюдая в режиме *Transient* отклик на двух частотный сигнал изучим зависимость групповой задержки τ_g от R=10,20,40,100.

Рис. 2: Переходные характеристики

R, OM	10	20	40	100
τ_g , MC	0,5	0,29	$0,\!152$	0,064
τ_{meop} , MC	0,62	0,31	$0,\!155$	0,06
Q	195	98	49	19

6. Откроем модель lcpower.cir.

На частоте резонанса $f_0 = 250 \ \kappa \Gamma$ ų.

$$P_L = 176,066 \, m$$
 $P_C = -177,477 \, m$ $P_R = 15,89 \, m \Rightarrow \sum P = 14,47$

$$P_{\sum meop} = 16, 18 m$$

На одной из границ полосы пропускания $f_1=238~\kappa \Gamma u$:

$$P_L = 116,577 \, m$$
 $P_C = -122,51 \, m$ $P_R = 11,14 \, m \Rightarrow \sum P = 5,147$

$$P_{\sum meop} = 11,367 m$$

Закон суммирования выполняется.

ЗАДАНИЕ 5

1. Откроем в MicroCap модель **parallel.cir** параллельного контура с $f_0 = 100 \ \kappa \Gamma u$, $\varrho = 570$. По схеме оценим параметры:

$$\alpha = \frac{\rho}{R_0}$$

$$\beta = \frac{R}{\rho}$$

$$Q = \frac{1}{\alpha + \beta}$$

$$\rho = \sqrt{\frac{L}{C}} = 568$$

$$\alpha = 0,0568$$
 $\beta = 0,0563$

$$Q = 8,84$$

2. Найдем резонансную частоту $f_0=100~\kappa \Gamma u$, полосу пропускания $\Delta f=11,6~\kappa \Gamma u$. Измерим сопротивление контура $R_0=5~\kappa O M$. Оценим добротность как:

$$Q = \frac{R_0}{\rho} = 8,8$$

$$Q = \frac{f_0}{\triangle f} = 8, 6$$

3. Изучим влияние на добротность последовательных потерь R, установив варьирование R = [0, 32||32].

Добротность при R=0:

$$Q = \frac{f_0}{\triangle f} = 17, 3$$

Изучим влияние параллельных потерь R_0 , установив варьирование $R_0 = [10k, 1000k || 1000k]$. Измерим добротность при $R_0 = 1000 \ \kappa O M$:

$$Q = \frac{f_0}{\triangle f} = 17, 2$$

При увеличении R от 0 Oм до 32 Oм 1/Q меняется от 0,058 до 0,116. При увеличении R_0 от 10 κO м до 1000 κO м 1/Q меняется от 0,116 до 0,058.

4. Изучим зависимость частоты параллельного резонанса от R = [0, 150||50].

R, OM	0	50	100	150
$f_{ u \kappa cn}, \ \kappa \Gamma u$	100	99,6	98,42	96,4
β	0	0,088	$0,\!176$	0,264
f_{meop}	100	99,6	98,43	96,45

5. Исследуем влияние последовательных потерь в области низких частот. Установим частотный диапазон от 1 $\kappa \Gamma u$ до 130 $\kappa \Gamma u$ и будем варьировать R = [0, 20||2].

Получаем, что при R=12~Oм фазовый сдвиг на частоте $f=2~\kappa\Gamma u$ составляет $\pi/4$.

ЗАДАНИЕ 6

1. Откроем модель **combined.cir** с $f_0 = 100 \ \kappa \Gamma u, \ \rho = 15, 9 \ \kappa \Gamma u, \ q \simeq 10, \ \alpha = 1.$

Изучим графики частотной и фазовой характеристик, а также графики частотных зависимостей вещественной и мнимой частей мпеданса.

2. Измерим частоты f_p , f_0 последовательного и параллельного резонансов по точкам пересечения нуля фазовой характеристикой:

$$f_p = 100, 5 \ \kappa \Gamma y$$
 $f_0 = 140, 6 \ \kappa \Gamma y$

Измерим полосы $\triangle f_p, \triangle f_0$, в которых фазовая характеристика изменяется в диапазоне $\pm 45\deg$ в окрестностях резонансов.

$$\triangle f_p = 10,6 \ \kappa \Gamma u$$

$$\triangle f_0 = 10,8 \ \kappa \Gamma u$$

Оценим добротности Q_p, Q_0 и проверим, что $f_0 = f_p \sqrt{2}, \, Q_0 = Q_p \sqrt{2}$:

$$Q_p = \frac{f_p}{\triangle f_p} = 9,5$$

$$Q_0 = \frac{f_0}{\triangle f_0} = 13$$

$$Q_0 = 13 \simeq 13, 43 = Q_p \sqrt{2}$$

$$f_0 = 140, 6 \simeq 142, 1 = f_p \sqrt{2}$$

3. Измерим сопротивление контура на частотах последовательного и параллельного резонансов, сравним результаты с теоретическими значениями $(r, k^2 \rho_p, Q_p)$:

$$r_{s\kappa cn} = 1,565 \ \kappa O M \simeq 1,59 \ \kappa O M = r_{mean}$$

$$(k^2\rho_p,Q_p)_{\text{skcn}}=78,1~\text{kOm} \simeq 79,1~\text{kOm} = \Big(\frac{\alpha}{1+\alpha}\Big)^2\sqrt{\frac{L}{c}}(1+\alpha)\frac{r}{\rho} = (k^2\rho_p,Q_p)_{\text{meop}}$$

Снимем зависимость сопротивления на частоте параллельного резонанса от $R = [500, 2000 \| 500]$ и емкости $C_0 = [100p, 300p \| 100p]$. Сопоставим их с теорией. Осмыслим характер изменения графиков при варьировании R и C_0 .

R, OM	500	1000	1500	2000
$Z, \kappa O M$	247	124,4	83	61,9

Получаем зависимость:

$$Z \sim \frac{1}{R}$$

 $C_0, n\Phi$ $Z, \kappa O M$ 78,3 25,4 11,9

Получаем зависимость:

$$Z \sim \frac{1}{C_0^2}$$

4. Обнулим последовательности потери r и варьированием $R_0 = [10k, 100k || 10k]$ подберем сопротивления параллельных потерь так, чтобы достичь того же резонансного сопротивления, что и при $r = 1590 \ O_{\mathcal{M}}$.

Получим $R_0 = 80 \ \kappa O$ м. Проверим закон пересчета:

$$R_0 r = k^2 \rho_p^2$$

$$80000 \cdot 1590 \simeq \left(\frac{1}{2}\right)^2 \cdot 2 \cdot 15900^2.$$

Соотношение выше выполняется.

5. Варьируя $R_0 = [80k, 10Meg \| 10Meg]$ при r = 1590~Oм, изучим влияние R_0 на поведения частотной и фазовой характеристик на низких частотах - в диапазоне 1k, 180k.

При увеличении R_0 частотная характеристика увеличивается, а фазовая уменьшается.