VLSI Design

32-Bit Brent-Kung Adder EE 671 : Assignment #3

Simranjeet Singh - 183076005

October 21, 2018

Basic Components

This section includes all the basic components required for 32-bit Brent-Kung adder. All the components are designed and simulated for SCL's 180 nm process.

Minimum Sized Inverter

Design and Layout

Figure 1: Minimum Sized Inverter

Inverter Parameter $\gamma\left(\frac{W_p}{W_n}\right)$ is chosen to get nearly equal rise time and fall time under Typical-Typical process corner (SCL).

Table 1: Design

Parameter	Value
P-MOS Gate Width W_p	$0.85~\mu m$
P-MOS Gate Length L_p	$0.18 \ \mu m$
N-MOS Gate Width W_n	$0.22~\mu m$
N-MOS Gate Length L_n	$0.81 \ \mu m$

Generate using Domino logic

Design and Layout

Figure 2: Generate using domino logic

Propagate using Domino logic

Design and Layout

(a) Schematic

(b) Layout

Figure 3: Propagate using domino logic

Carry Generator

Design and Layout

(a) Schematic

(b) Layout

Figure 4: Carry Generator

LVS and PEX generation

(a) LVS report

Calibre Info

Calibre View generation completed with 0 WARNINGs and 0 ERRORs.

Please consult the CIW transcript for messages.

(b) PEX generation

Figure 5: Carry Generator

Test Bench Simulation

For the following simulation, time period of clock and input signal is 1 ns.

Generate

Figure 6: Generate

Figure 7: Generate

Table 2: Calculation of generate delay

Parameter	Value
Rise Time	$141.339 \ ps$
Fall Time	$148.223 \ ps$

Propagate

Figure 8: Test Bench

Figure 9: Delay

Table 3: Calculation of propagate delay

Parameter	Value
Rise Time	141.651 ps
Fall Time	$145.575 \ ps$

Carry Out

Figure 10: Test Bench

Figure 11: Delay

Table 4: Calculation of carry delay

Parameter	Value
Rise Time	$144.231 \ ps$
Fall Time	$150.529 \ ps$

VHDL Simulation

Figure 12: simulation Result

The clock frequency calculated is:301.38 Mhz The maximum delay to generate the sum is 1659 ps.