Домашнее задание по теории вероятностей №2.

Михайлов Никита Маратович, БПМИ-161.

1 Задача №1.

На воркшоп по взлому компьютерных сетей собрались п программистов. После бурного семинара ни один из них не смог узнать свой ноутбук, и они разобрали их наугад. Далее, каждый из них с вероятностью р независимо от других мог потерять ноутбук по дороге домой. Найдите вероятность того, что ни один программист не принес домой свой ноутбук.

1.1 Решение.

Заметим, что если программист взял свой ноутбук, то он должен его потерять, а если взял чужой, то все хорошо.

Пусть свой ноутбук взяло свой ноутбук ровно k человек (их нужно еще выбрать), тогда у остальных !(n-k) (кол-во беспорядков, как в прошлом д/з) способов распределить ноутбуки между собой так, чтобы никому не достался свой. Итого способов для конкретного k: $\binom{n}{k} \cdot !(n-k)$. Ну а всего способов n!. Вычислим вероятность для события "ровно k человек взяло свой ноутбук $\binom{n}{k} \cdot \frac{!(n-k)}{n!}$. Но по нашему условию они их должны потерять, поэтому домножим на p^k . Итого для всех k возьмем сумму по правилу сложения:

$$P = \sum_{k=0}^{n} \binom{n}{k} \cdot \frac{!(n-k)}{n!} \cdot p^{k}$$

2 Задача №2.

В легкоатлетической сборной выступают четыре спортсмена А, В, С, D. Спортсмен А принимает допинг перед соревнованиями с вероятностью 0,9; спортсмен В — с вероятностью 0,5; спортсмен С — с вероятностью 0,2; а спортсмен D пытается победить честно и допинг не принимает (а потому всегда проигрывает). Антидопинговая лаборатория выбрала случайного спортсмена и проверила его на допинг после двух соревнований в течение года. Вероятность ошибки теста лаборатории при наличии допинга составляет 0,05, а при его отсутствии результат теста всегда отрицательный. Получив два отрицательных результата, лаборатория решает протестировать другого спортсмена, выбрав его случайно среди оставшихся. Известно, что в третий раз результат теста лаборатории был положительным. Каковы условные вероятности того, что второй случайный спортсмен был, на самом деле, А, В, С или D, если все решения спортсменов (принимать или не принимать допинг перед соревнованиями) и результаты тестов независимы?

2.1 Решение.

Под «условной вероятностью» понимается выполнение события $X_C = \{$ Вторым был спортсмен «С» $\}$ при условии $M = \{$ Первый спортсмен прошел 2 допинг-пробы, а второй завалил $\}$.

$$P(X_C|M) = \frac{P(X_C \cap M)}{P(M)}$$

Посчитаем P(M). Для этого посчитаем вероятности пройти 2 пробы – либо не было допинга, либо был, но ошиблась лаборатория и так 2 раза(а так же нужно выбрать спортсмена):

1.
$$P(A_1) = \frac{1}{4} \cdot (0.1 + 0.9 \cdot 0.05)^2$$

2.
$$P(B_1) = \frac{1}{4} \cdot (0.5 + 0.5 \cdot 0.05)^2$$

3.
$$P(C_1) = \frac{1}{4} \cdot (0.8 + 0.2 \cdot 0.05)^2$$

4.
$$P(D_1) = \frac{1}{4}$$

Осталось посчитать вероятность завалить третью пробу – принять допинг и отсутствие ошибки(и выбрать из оставшихся троих):

1.
$$P(A_2) = \frac{1}{3} \cdot 0.9 \cdot 0.95$$

2.
$$P(B_2) = \frac{1}{3} \cdot 0.5 \cdot 0.95$$

3.
$$P(C_2) = \frac{1}{3} \cdot 0.2 \cdot 0.95$$

4.
$$P(D_2) = 0$$

Итого $P(M) = P(A_1) \cdot (P(B_2) + P(C_2) + P(D_2)) + P(B_1) \cdot (P(A_2) + P(C_2) + P(D_2)) + P(C_1) \cdot (P(B_2) + P(A_2) + P(D_2)) + P(D_1) \cdot (P(B_2) + P(C_2) + P(A_2)) = \frac{2.69462275}{12}$ – спасибо python. Теперь для каждого спортсмена посчитаем вероятность пересечения и разделим на P(M):

A:
$$P(X_A|M) = \frac{P(A_2) \cdot \left(P(B_1) + P(C_1) + P(D_1)\right)}{P(M)} = 0.6129336193721365$$

B:
$$P(X_B|M) = \frac{P(B_2) \cdot \left(P(A_1) + P(C_1) + P(D_1)\right)}{P(M)} = 0.2956385545991549$$

C:
$$P(X_C|M) = \frac{P(C_2) \cdot \left(P(B_1) + P(A_1) + P(D_1)\right)}{P(M)} = 0.09142782602870847$$

D:
$$P(X_D|M) = 0$$