AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior listings of claims in the application:

1. (PREVIOUSLY PRESENTED) A compound of formula 1

$$R_{5}$$
 R_{6}
 R_{7}
 N_{1}
 R_{3}

Formula 1

wherein

R₃ is C₁-C₁₀ alkyl;

 $R_4 \text{ to } R_7 \text{ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -SO_3T, -CO_2T, -OH, -(CH_2)_aSO_3T, -(CH_2)_aOSO_3T, -(CH_2)_aNHSO_3T, -(CH_2)_aCO_2(CH_2)_bSO_3T, -(CH_2)_aOCO(CH_2)_bSO_3T, -(CH_2)_aCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aOCONH(CH_2)_bSO_3T, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3T_2, -(CH_2)_aNHPO_3HT, -(CH_2)_aNHPO_3T_2, -(CH_2)_aCO_2(CH_2)_bPO_3T_2, -(CH_2)_aCO(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCO(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_$

 $Y_1 \text{ is selected from the group consisting of hydrophilic peptides, arylpolysulfonates,} \\ -(CH_2)_aOSO_3T, -(CH_2)_aNHSO_3T, -(CH_2)_aCO_2(CH_2)_bSO_3T, -(CH_2)_aOCO(CH_2)_bSO_3T, \\ -(CH_2)_aCONH(CH_2)_bSO_3T, -(CH_2)_aNHCO(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, \\ -(CH_2)_aNHCSNH(CH_2)_bSO_3T, -(CH_2)_aOCONH(CH_2)_bSO_3T, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aOPO_3HT, -(CH_2)_aOPO_3HT, -(CH_2)_aNHPO_3HT, -(CH_2)_aNHPO_3T_2, -(CH_2)_aCO_2(CH_2)_bPO_3HT, \\ -(CH_2)_aCO_2(CH_2)_bPO_3T_2, -(CH_2)_aOCO(CH_2)_bPO_3HT, -(CH_2)_aOCO(CH_2)_bPO_3HT, \\ -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCO(CH_2)_bPO_3HT, \\ -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3HT, \\ -(CH_2)_aCONH(CH_2)_bPO_3HT, \\$

 $-(CH_2)_aNHCO(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, \\ -(CH_2)_aNHCSNH(CH_2)_bPO_3HT, -(CH_2)_aNHCSNH(CH_2)_bPO_3T_2, -(CH_2)_aOCONH(CH_2)_bPO_3HT, \\ -(CH_2)_aOCONH(CH_2)_bPO_3T_2; \\$

W₁ is -CR_cR_d;

a, b, d, f, h, i, and j independently vary from 1-10;

c, e, g, and k independently vary from 1-100;

 R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; and T is either H or a negative charge.

2-16 (CANCELED)

17. (PREVIOUSLY PRESENTED) The compound of claim 1 wherein R₃ is C₁ alkyl.

18. (CANCELED)

19. (PREVIOUSLY PRESENTED) The compound of claim 17 wherein each of R_4 to R_7 is independently -H or -SO₃T.

20-22. (CANCELED)

23. (PREVIOUSLY PRESENTED) The compound of claim 1 wherein each of R_4 to R_7 is independently -H or -SO₃T.

24-26. (CANCELED)

27. (CURRENTLY AMENDED) A method for performing a diagnostic or therapeutic procedure which comprises

administering to an individual an effective amount of a compound of formula 1

$$R_{5}$$
 R_{6}
 R_{7}
 R_{1}
 R_{3}

Formula 1

wherein

R₃ is C₁-C₁₀ alkyl;

 $R_4 \text{ to } R_7 \text{ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aCO(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aNHPO₃HT, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃HT, -(CH₂)_aOCO(CH₂)_bPO₃HT, -(CH₂)_aOCO(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃T₂, -(CH₂)_aOCO(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -(CH₂)_aCONH(CH₂)_bPO₃T₂, -(CH₂)_aCONH(CH₂)_bCONH(CH₂$

 $Y_1 \text{ is selected from the group consisting of hydrophilic peptides, arylpolysulfonates, } \underline{C1-C10 \text{ alkyl.}}, -(CH_2)_a OSO_3T, -(CH_2)_a NHSO_3T, -(CH_2)_a CO_2(CH_2)_b SO_3T, -(CH_2)_a OCO(CH_2)_b SO_3T, -(CH_2)_a CONH(CH_2)_b SO_3T, -(CH_2)_a NHCONH(CH_2)_b SO_3T, -(CH_2)_a NHCONH(CH_2)_b SO_3T, -(CH_2)_a NHCONH(CH_2)_b SO_3T, -(CH_2)_a PO_3HT, -(CH_2)_a PO_3HT, -(CH_2)_a PO_3HT, -(CH_2)_a OPO_3HT, -(CH_2)_a NHPO_3HT, -(CH_2)_a NHPO_3T_2, -(CH_2)_a CO_2(CH_2)_b PO_3HT, -(CH_2)_a CO_2(CH_2)_b PO_3T_2, -(CH_2)_a CO(CH_2)_b PO_3HT, -(CH_2)_a CO(CH_2)_b PO_3HT, -(CH_2)_a CONH(CH_2)_b PO_3HT, -(CH_2)_a NHCO(CH_2)_b PO_3HT, -(CH_2)_a NHCO(CH_2)_b PO_3T_2, -(CH_2)_a NHCONH(CH_2)_b PO_3T_2, -(CH_2)_a NHCONH(CH_2)_b PO_3T_2, -(CH_2)_a NHCONH(CH_2)_b PO_3T_2, -(CH_2)_a NHCONH(CH_2)_b PO_3HT, -(CH_2)_a OCONH(CH_2)_b PO_3$

W₁ is -CR_cR_d;

a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k independently vary from 1-100; R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; and T is either H or a negative charge; and performing the diagnostic or therapeutic procedure.

28. (PREVIOUSLY PRESENTED) The method of claim 27 wherein

R₃ is C₁-C₁₀ alkyl;

 R_4 to R_7 are independently selected from the group consisting of C1-C5 alkoxyl, C1-C5 polyalkoxyalkyl, C1-C10 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, mono- and disacharides, amino, nitro, hydrophilic peptides, arylpolysulfonates, C1-C10 aryl, -SO_3T, -CO_2T, -OH, -(CH_2)_aSO_3T, -(CH_2)_aOSO_3T, -(CH_2)_aNHSO_3T, -(CH_2)_aCO_2(CH_2)_bSO_3T, -(CH_2)_aOCO(CH_2)_bSO_3T, -CH_2(CH_2-O-CH_2)_c-CH_2-OH, -(CH_2)_d-CO_2T, -CH_2-(CH_2-O-CH_2)_e-CH_2-CO_2T, -(CH_2)_r-NH_2, -CH_2-(CH_2-O-CH_2)_g-CH_2-NH_2, -(CH_2)_h-N(R_a)-(CH_2)_i-CO_2T, and -(CH_2)_j-N(R_b)-CH_2-(CH_2-O-CH_2)_k-CH_2-CO_2T;

 $Y_1 \text{ is selected from the group consisting of hydrophilic peptides, arylpolysulfonates,} \\ -(CH_2)_aOSO_3T, -(CH_2)_aNHSO_3T, -(CH_2)_aCO_2(CH_2)_bSO_3T, -(CH_2)_aOCO(CH_2)_bSO_3T;}$

 W_1 is -CR_cR_d;

a, b, d, f, h, i, and j independently vary from 1-5;

c, e, g, and k independently vary from 1-20;

 R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; and T is a negative charge.

- 29. (CURRENTLY AMENDED) The method of claim 27 wherein each R_4 , R_6 and R_7 is H, R_5 is SO_3T , Y_1 is $-(CH_2)_3SO_3T$; W_4 is $-C(CH_3)_2$; and T is a negative charge.
- 30. (CURRENTLY AMENDED) The method of claim 27 wherein the <u>diagnostic or therapeutic</u> procedure uses light of wavelength in the region of 350 nm -1300 nm.
- 31. (CURRENTLY AMENDED) The method of claim 27 wherein the <u>diagnostic or therapeutic</u> procedure comprises monitoring a blood clearance profile by fluorescence using light of wavelength in the region of 350 nm to 1300 nm.
- 32. (CURRENTLY AMENDED) The method of claim 27 wherein the <u>diagnostic or therapeutic</u> procedure comprises monitoring a blood clearance profile by absorption using light of wavelength in the region of 350 nm to 1300 nm

- 33. (CURRENTLY AMENDED) The method of claim 27 wherein the <u>diagnostic or therapeutic</u> procedure is for physiological function monitoring.
- 34. (CURRENTLY AMENDED) The method of claim 33 wherein the <u>diagnostic or therapeutic</u> procedure is for renal function monitoring.
- 35. (CURRENTLY AMENDED) The method of claim 33 wherein the <u>diagnostic or therapeutic</u> procedure is for cardiac function monitoring.
- 36. (CURRENTLY AMENDED) The method of claim 33 wherein the <u>diagnostic or therapeutic</u> procedure is for determining organ perfusion in vivo.