Verificação da Autenticidade de Assinaturas Manuscritas Utilizando Redes Neurais Convolucionais

Defesa do Trabalho de Conclusão de Curso I

por

Marcos Wenneton V. de Araujo

Orientadora: Elloá B. Guedes

{mwvda.eng, ebgcosta}@uea.edu.br

do

Grupo de Pesquisa em Sistemas Inteligentes Escola Superior de Tecnologia Universidade do Estado do Amazonas

Manaus - Amazonas - Brasil

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Finais
- 10. Referências

1. Introdução

- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Finais
- 10. Referências

Introdução 3/37

Assinaturas manuscritas

- Biometria
 - Características fisiológicas
 - Traços comportamentais
- Assinaturas manuscritas como forma de biometria
 - Utilização desde os tempos primórdios
 - Método não-invasivo
 - Baixo custo de aquisição
- Difícil verificação de autenticidade devido a grande variabilidade dos padrões encontrados nas assinaturas

Introdução 4/3

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Finai
- 10. Referências

Objetivos 5/37

Objetivos

Objetivo Geral

Verificar a autenticidade de assinaturas manuscritas utilizando Redes Neurais Convolucionais

Objetivos 6/37

Objetivos

Objetivo Geral

Verificar a autenticidade de assinaturas manuscritas utilizando Redes Neurais Convolucionais

Objetivos Específicos

- Realizar a fundamentação teórica acerca dos conceitos das redes neurais convolucionais;
- Consolidar uma base de dados representativa de assinaturas manuscritas;
- Descrever o problema considerado segundo uma tarefa de Aprendizado de Máquina;
- Propor, treinar e testar diferentes redes neurais convolucionais para a tarefa considerada;
- Analisar os resultados obtidos.

Objetivos 6/3

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Finais
- 10. Referências

Justificativa 7/37

Justificativa

- Autenticação de assinaturas manuscritas
 - ➤ Devido a ampla utilização em documentos oficiais e transações financeiras atualmente, busca-se a melhoria e avaliação de métodos para este fim;
 - Documentos e obras de arte históricas.
- Prática de conceitos, técnicas e tecnologias de uma área emergente da Computação
- Proposta alinhada com as atividades desenvolvidas pelo Laboratório de Sistemas Inteligentes

Justificativa 8/3

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Finai
- 10. Referência:

Metodologia 9/37

Metodologia

A condução das atividades obedece à metodologia apresentada a seguir, composta dos seguintes passos:

- Estudo dos conceitos relacionados à Aprendizado de Máquina, Redes Neurais Convolucionais e Deep Learning;
- 2. Descrição do problema considerado como uma tarefa de Aprendizado de Máquina;
- Consolidação de uma base de dados representativa de assinaturas originais e forjadas;
- Levantamento do ferramental tecnológico para implementação das redes neurais convolucionais;
- Proposição de modelos de redes neurais convolucionais para o problema considerado, contemplando arquitetura, parâmetros e hiperparâmetros;

Metodologia 10/37

Metodologia

- 6. Treino das redes propostas para a tarefa de aprendizado considerada;
- 7. Teste das redes previamente treinadas com vistas a coleta de métricas de desempenho;
- Análise dos resultados e identificação dos modelos mais adequados para o problema considerado;
- 9. Escrita da proposta de Trabalho de Conclusão de Curso;
- 10. Defesa da proposta de Trabalho de Conclusão de Curso;
- 11. Escrita do Trabalho de Conclusão de Curso; e
- 12. Defesa do Trabalho de Conclusão de Curso.

Metodologia 11/37

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Finais
- 10. Referência:

Cronograma 12/37

Cronograma

Tabela 1: Cronograma de atividades

						2019					
	02	03	04	05	06	07	80	09	10	11	12
Atividade 1	Х	Х	Х								
Atividade 2		Χ									
Atividade 3		Χ	Χ								
Atividade 4			Χ								
Atividade 5				Χ	Χ	Χ	Χ				
Atividade 6				Χ	Χ	Χ	Χ				
Atividade 7							Χ	Χ			
Atividade 8									Χ	Χ	
Atividade 9	Х	Χ	Χ	Χ	Χ						
Atividade 10					Χ						
Atividade 11						Χ	Χ	Χ	Χ	Χ	Χ
Atividade 12											Χ

Cronograma 13/37

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Finais
- 10. Referências

Fundamentação Teórica 14/37

Aprendizado de Máquina

- As técnicas de **Aprendizado de Máquina** têm sido aplicadas com sucesso em um grande número de problemas reais em diversos domínios
- Características: natureza inferencial e a boa capacidade de generalização dos métodos e técnicas desta área
- Algoritmos capazes de aprender padrões por meio de exemplos, baseado-se em dados previamente disponíveis
- Paradigmas de aprendizado supervisionado e não-supervisionado

Fundamentação Teórica 15/3

Redes Neurais Artificiais

- Inspiradas na capacidade de processamento de informações do cérebro humano
- Neurônios artificiais são as unidades fundamentais de uma RNA
- Função de ativação fornece a resposta de um neurônio para uma dada entrada
- Neurônios artificiais são conectados entre si na forma de uma rede e distribuídos em uma ou mais camadas ocultas
- Algoritmo Backpropagation
 - Fase foward produz uma saída para uma dada entrada
 - Fase backwards calcula a diferença entre as saídas para minimizar o erro

Fundamentação Teórica 16/3

Deep Learning e Redes Neurais Convolucionais

- Subárea específica do Aprendizado de Máquina
- Redes Neurais Convolucionais (CNNs):
 - Possuem camadas hierárquicas e profundas
 - ♣ Aproveitam-se da operação matemática denominada convolução
 - Destacam-se pelo reconhecimento de padrões em dados de alta dimensionalidade

Figura 1: Papel das camadas convolucionais e feature maps das CNNs

Fundamentação Teórica 17/3

Arquiteturas Canônicas de Redes Neurais Convolucionais

- Arquiteturas com bom desempenho em competições de Visão Computacional
- ➡ Comuns ainda hoje no cenário de Deep Learning
- LeNet (1998)
- AlexNet (2012)
- **VGG** (2014)
- Inception (2014)
- ResNet (2015)

Fundamentação Teórica 18/3

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica

7. Solução Proposta

- 8. Resultados Parciais
- 9. Considerações Finais
- 10. Referência:

Solução Proposta 19/37

Tarefa de Aprendizado

- ▶ Problema abordado como uma tarefa de classificação binária
- > Entrada:
 - ► Imagem em escala de cinza com dimensões de 256 × 256 *pixels* contendo duas assinaturas manuscritas (uma de referência e outra para a inferência)
- **Saída:**
 - Classificação da assinatura quanto à sua autenticidade (autêntica ou forjada)

Figura 2: Visão geral da tarefa de aprendizado considerada

Solução Proposta 20/37

Tarefa de Aprendizado

- Partição dos exemplos autênticos utilizando o método holdout
 - ▶ 70% para treinamento;
 - ▶ 10% para validação;
 - ▶ 20% para teste.
- Utilização das métricas Acurácia e F-score para análise de desempenho dos modelos

Solução Proposta 21/37

Coleta do conjunto de Dados

- ➡ Signature Verification Competition 2009 (SigComp2009)
- Dois conjuntos de dados foram utilizados na competição:
 - Norwegian Information Security Donders Centre for Cognition (NISDCC)
 - Netherlands Forensic Institute (NFI)
- ▶ Informações online e offline das assinaturas

Tabela 2: Quantitativo de indivíduos e assinaturas offline por conjunto de dados.

Conjunto	Autores originais	Autores forjadores	Autores originais com assinaturas forjadas	Assinaturas genuínas	Assinaturas forjadas	Total de assinaturas
NISDCC	12	31	12	60	1.838	1.898
NFI	79	33	19	940	624	1.564

olução Proposta 22/3

Preparação dos Dados

- Combinação e redimensionamento das imagens
- Separação dos exemplos autênticos conforme o método holdout
- Exemplos forjados necessitaram de um diferente tipo de separação

Tabela 3: Quantitativo de exemplos.

Conjunto	Tipo de Exemplo	Quantidade de Dados	Proporção
Treinamento	Autêntico	9.374	54%
	Forjado	8.131	46%
Validação	Autêntico	947	46%
	Forjado	1.134	54%
Teste Autêntico		6.119	73%
Forjado		2.257	27%

olução Proposta 23/3

Preparação dos Dados

Figura 3: Representação gráfica da proporção dos exemplos por classe e finalidade na tarefa de aprendizado considerada.

Normalização dos *pixels* das imagens ao serem fornecidas às CNNs

Solução Proposta 24/37

Modelos, Parâmetros e Hiperparâmetros Utilizados

Arquiteturas de CNNs escolhidas: LeNet, AlexNet, MobileNet, SqueezeNet, VGG-16 e Inception

Tabela 4: Valores dos hiperparâmetros selecionados para a elaboração dos modelos.

Épocas	Patience	Otimizador	Função de ativação		
200	5, 10 e 15	SGD, Adam e RMSprop	ReLU, ELU, SELU e Leaky ReLU		

- Busca em grid nos hiperparâmetros quando possível
- Demais casos, hiperparâmetros típicos

iolução Proposta 25/3

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Finai
- 10. Referências

Resultados Parciais 26/37

Resultados Parciais

- Utilização de um servidor para treinamento das CNNs:
 - Processador Intel Core i7
 - 16 GB de RAM
 - GPU Nvidia GeForce GTX 1080 com 11 GB de memória
- LeNet e AlexNet
- Modelos degenerados tiveram seus resultados descartados
 - Dying ReLU problem
 - > Permanência em mínimos locais no treinamento

Resultados Parciais 27/3

LeNet

Tabela 5: Detalhamento dos melhores modelos obtidos com a arquitetura LeNet.

Identificação	Otimizador	Patience	Função de Ativação	Acurácia	F-Score
LeNet A	RMSprop	5	<i>Leaky</i> ReLU	0.9865	0.9755
LeNet B	RMSprop	15	ReLU	0.9858	0.9740
LeNet C	SGD	5	ELU	0.9787	0.9619
LeNet D	RMSprop	10	SELU	0.9707	0.9483

Resultados Parciais 28/37

LeNet

Figura 4: Histórico de *loss* e acurácia durante o treinamento dos melhores modelos obtidos com a arquitetura LeNet.

(a) Loss durante o treinamento da LeNet A

(b) Acurácia durante o treinamento da LeNet A

Resultados Parciais 29/37

LeNet

Figura 6: Matrizes de confusão dos melhores modelos obtidos com a arquitetura LeNet.

Resultados Parciais Guasticução Vertadebra Guasticução Vertadebra 30/37

AlexNet

Tabela 6: Detalhamento dos melhores modelos obtidos com a arquitetura AlexNet.

Identificação	Otimizador	Patience	Função de Ativação	Acurácia	F-Score
AlexNet A	Adam	15	ELU	0.9654	0.9393
AlexNet B	SGD	10	<i>Leaky</i> ReLU	0.9601	0.9311
AlexNet C	SGD	5	SELU	0.9561	0.9244

Resultados Parciais 31/37

AlexNet

Figura 8: Histórico de *loss* e acurácia durante o treinamento dos melhores modelos obtidos com a arquitetura AlexNet.

(a) Loss durante o treinamento da AlexNet A

(b) Acurácia durante o treinamento da AlexNet A

Resultados Parciais 32/37

AlexNet

Figura 10: Matrizes de confusão dos melhores modelos obtidos com a arquitetura AlexNet.

Resultados Parciais 33/37

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Finais

10. Referências

Considerações Finais 34/37

Considerações Parciais

▶ Total de 72 redes treinadas

Considerações Finais 35/3:

Considerações Parciais

- ▶ Total de 72 redes treinadas
- Melhor desempenho: LeNet

Acurácia: 0.9755

F-Score: 0.9865

 Parâmetros e Hiperparâmetros: Otimizador RMSprop, patience 5 e função de ativação Leaky ReLU.

Considerações Finais 35/37

Considerações Parciais

- ▶ Total de 72 redes treinadas
- Melhor desempenho: LeNet

Acurácia: 0.9755

F-Score: 0.9865

- ▶ Parâmetros e Hiperparâmetros: Otimizador RMSprop, patience 5 e função de ativação Leaky ReLU.
- Próximos passos:
 - ♣ Arquiteturas com menos parâmetros (MobileNet, SqueezeNet)

Arquiteturas mais profundas (VGG-16, Inception)

Considerações Finais 35/3

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Finais

10. Referências

Referências 36/37