

УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники

Вычислительная математика

Малышева Татьяна Алексеевна, к.т.н., доцент tamalysheva@itmo.ru

Санкт-Петербург, 2025

Аппроксимация функций Постановка задачи

Задачи исследования в большинстве случаев требуют *установить* определенный вид функциональной зависимости между характеристиками изучаемого явления.

Аппроксимацией (приближением) функции называется нахождение такой функции (аппроксимирующей функции), которая была бы <u>близка</u> к заданной.

Задача аппроксимации функции состоит в том, чтобы данную функцию f(x) приближенно заменить (аппроксимировать) некоторой функцией $\varphi(x)$, значения которой в заданной области мало отличались от опытных данных:

$$f(x) \approx \varphi(x)$$
.

Приближенная функциональная зависимость, полученная на основании экспериментальных данных, называется аппроксимирующей функцией.

Аппроксимация функций. Постановка задачи

Аппроксимация может потребоваться в следующих случаях:

1. Например, из эксперимента, **известны значения функции** $f(x_1) = y_1$, $f(x_2) = y_2 \dots f(x_n) = y_n$, т.е. функция y = f(x) задана таблично. Требуется найти значение f(x) при таком значении аргумента x^* , которого нет среди узлов x_1, x_2, \dots, x_n , но сделать это по каким-либо причинам затруднительно (экспериментальная установка, на которой выполнены измерения, уже разобрана или дорогостоящий эксперимент)

В таком случае можно найти аппроксимирующую функцию $\varphi(x)$ и если она «близка» к f(x) на множестве узлов $X=\{x_1,x_2,...,x_n\}$, то и в нужной точке x^* , вероятно, $f(x^*)\approx \varphi(x^*)$

2. Функция f(x) задана аналитически, т. е. формулой, но эта формула слишком сложна для регулярного использования. И в этом случае выгодно аппроксимировать f(x) более простой функцией $\varphi(x)$ и все расчеты выполнять с ней.

Какие функции наиболее «просты» и в силу этого удобны в качестве аппроксимирующих?

Чаще всего используются полиномы (многочлены), которые легко складывать, умножать, делить, дифференцировать и интегрировать:

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Аппроксимация функций. Постановка задачи

В зависимости от специфики задачи можно выделить два способа определения аналитической функции:

- 1. С помощью построения интерполяционного многочлена n-степени, который проходит **непосредственно через все точки** заданного массива данных: $\boldsymbol{\varphi}(\boldsymbol{x_i}) = \boldsymbol{y_i}$. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена Лагранжа или интерполяционного многочлена Ньютона (Гаусса, Бесселя, Стирлинга)
- 2. С помощью построения аппроксимирующего многочлена n-степени, который проходит **в ближайшей близости от точек** из заданного массива данных: $\varphi(x_i) \approx y_i$. В данном случае аппроксимирующая функция определяется по методу наименьших квадратов.

Аппроксимация функций

Если приближение строится на дискретном наборе точек $\{x_1, x_2, ..., x_n\}$, аппроксимацию называют **точечной или** дискретной.

Наиболее часто встречающим видом точечной аппроксимации является интерполяция и среднеквадратичное приближение.

В том случае, когда аппроксимация проводится на непрерывном множестве точек, аппроксимация называется непрерывной или интегральной. Примером такой аппроксимации может служить разложение функции в ряд Тейлора, то есть замена некоторой функции степенным многочленом.

Аппроксимирующую функцию $\varphi(x)$ строят таким образом, чтобы отклонения $\varphi(x)$ от f(x) в заданной области было наименьшим. Понятие "малого отклонения" зависит от того, каким способом оценивается близость двух функций, поэтому оно будет уточняться в дальнейшем при рассмотрении конкретных методов аппроксимации.

Аппроксимация функций

Рис. 1. Графическая интерпретация принципа построения интерполяционного полинома (а) и аппроксимирующей линии (б) для точечно заданной функции

Основная задача *интерполяции* — нахождение значения функции в тех точках внутри данного интервала, где она не задана, т.е. для промежуточных аргументов.

Основная задача **аппроксимации** — построение эмпирической формулы, для которой $f(x_i) \approx \varphi(x_i)$.

АППРОКСИМАЦИЯ ФУНКЦИИ

Построение эмпирической формулы состоит из 2 этапов:

1. Подбор общего вида формулы.

Иногда он известен из физических соображений.

Если характер зависимости неизвестен, то первоначально его выбирают геометрически: экспериментальные точки наносятся на график, и примерно угадывается общий вид зависимости путем сравнения полученной кривой с графиками известных функций (многочлена, логарифмической, показательной функций и т.п.).

Выбор вида эмпирической зависимости — наиболее сложная часть решения задачи, ибо класс известных аналитических зависимостей необъятен. Практика, однако, показывает, что при выборе аналитической зависимости достаточно ограничиться довольно узким кругом функций: линейные, степенные и показательные.

2. Определение значений параметров аппроксимирующей функции.

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Будем считать, что вид аппроксимирующей функции или эмпирической формулы выбран и представлен в виде:

$$y = \varphi(x, a_0, a_1, a_2, \dots, a_m),$$

где φ – известная функция, a_0 , a_1 , a_2 ,, a_m – неизвестные параметры.

Требуется определить такие параметры, при которых значения аппроксимирующей функции приблизительно совпадали со значениями исследуемой функции в точках x_i , т.е. $y_i \approx \varphi(x_i)$. Разность между этими значениями (отклонения) обозначим через ε_i . Тогда $\varepsilon_i = \varphi(x, a_0, a_1, a_2, \dots, a_m) - y_i$ $i=1,2,\dots n$

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Мерой отклонения многочлена $\varphi(x)$ от заданной функции f(x) на множестве точек ((x_i, y_i) является величина S (критерий минимизации), равная сумме квадратов разности между значениями многочлена и функции для всех точек x_0, x_1, \ldots, x_n :

$$S = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [\varphi(x_i) - y_i]^2 \rightarrow min$$

Задача нахождения наилучших значений параметров a_0, a_1, \dots, a_m сводятся к некоторой минимизации отклонений ε_i .

Параметры a_0, a_1, \dots, a_m эмпирической формулы находятся из условия минимума функции $S = S(a_0, a_1, a_2, \dots, a_m)$,.

Так как здесь параметры выступают в роли независимых переменных функции S, то ее минимум найдем, приравнивая к нулю частные производные по этим переменным (m – степень многочлена, n - число точек в таблице):

$$\frac{\partial S}{\partial a_0} = 2 \sum_{i=1}^n a_0 + a_1 x_i + \dots + a_{m-1} x_i^{m-1} + a_m x_i^m - y_i = 0$$

$$\frac{\partial S}{\partial a_1} = 2 \sum_{i=1}^n (a_0 + a_1 x_i + \dots + a_{m-1} x_i^{m-1} + a_m x_i^m - y_i) x_i = 0$$

$$\dots \dots$$

$$\frac{\partial S}{\partial a_m} = 2 \sum_{i=1}^n (a_0 + a_1 x_i + \dots + a_{m-1} x_i^{m-1} + a_m x_i^m - y_i) x_i^m = 0$$

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения.

$$\begin{cases} a_0 n + a_1 \sum_{i=1}^{n} x_i + \dots + a_{m-1} \sum_{i=1}^{n} x_i^{m-1} + a_m \sum_{i=1}^{n} x_i^m &= \sum_{i=1}^{n} y_i \\ a_0 \sum_{i=1}^{n} x_i + a_1 \sum_{i=1}^{n} x_i^2 + \dots + a_{m-1} \sum_{i=1}^{n} x_i^m + a_m \sum_{i=1}^{n} x_i^{m+1} &= \sum_{i=1}^{n} x_i y_i \\ \dots & \dots & \dots \\ a_0 \sum_{i=1}^{n} x_i^m + a_1 \sum_{i=1}^{n} x_i^{m+1} + \dots + a_{m-1} \sum_{i=1}^{n} x_i^{2m-1} + a_m \sum_{i=1}^{n} x_i^{2m} &= \sum_{i=1}^{n} x_i^m y_i \end{cases}$$

Рассмотрим в качестве эмпирической формулы линейную функцию:

$$\varphi(x,a,b) = ax + b$$

Сумма квадратов отклонений запишется следующим образом:

$$S = S(a,b) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [\varphi(x_i) - y_i]^2 = \sum_{i=1}^{n} (ax_i + b - y_i)^2 \to min$$

Для нахождения a и b необходимо найти минимум функции S(a,b).

Необходимое условие существования минимума для функции S:

$$\begin{cases} \frac{\partial S}{\partial a} = 0 \\ \frac{\partial S}{\partial b} = 0 \end{cases}$$
 или
$$\begin{cases} 2\sum_{i=1}^{n} (ax_i + b - y_i)x_i = 0 \\ 2\sum_{i=1}^{n} (ax_i + b - y_i) = 0 \end{cases}$$

Упростим полученную систему:

$$\begin{cases} a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a \sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i \end{cases}$$

Введем обозначения:

$$SX = \sum_{i=1}^{n} x_i$$
, $SXX = \sum_{i=1}^{n} x_i^2$, $SY = \sum_{i=1}^{n} y_i$, $SXY = \sum_{i=1}^{n} x_i y_i$

Получим систему уравнений для нахождения параметров а и b:

$$\begin{cases} aSXX + bSX = SXY \\ aSX + bn = SY \end{cases},$$

из которой находим (правило Крамера):

$$\Delta = SXX \cdot n - SX \cdot SX$$

$$\Delta_{1} = SXY \cdot n - SX \cdot SY$$

$$\Delta_{2} = SXX \cdot SY - SX \cdot SXY$$

$$\alpha = \frac{\Delta_{1}}{\Lambda}, \quad b = \frac{\Delta_{2}}{\Lambda}$$

Пример 1. Пусть, изучая неизвестную функциональную зависимость между х и у, в результате серии экспериментов, была получена таблица значений. Необходимо найти приближенную функциональную зависимость и определить значения параметров аппроксимирующей функции.

X	1,2	2,9	4,1	5,5	6,7	7,8	9,2	10,3
Y	7,4	9,5	11,1	12,9	14,6	17,3	18,2	20,7

Для определения вида зависимости нанесем экспериментальные точки на график: в качестве аппроксимирующей функции выбираем многочлен первой степени и строим линейную модель $P_1(x) = ax + b$

Вычисляем суммы: SX=47,7 SXX=353,37 SY=111,7 SXY=766,3

Получаем систему линейных уравнений:

$$\begin{cases} 353,37a + 47,7b = 766,3 \\ 47,7a + 8b = 111,7 \end{cases}$$

Решая систему, получим значения коэффициентов: a=1,4543 и b=5,2911.

Проверим правильность выбора линейной модели. Для этого вычислим значения аппроксимирующей функции $P_1(x)=1,4543x+5,2911$

№ п.п.	1	2	3	4	5	6	7	8
X	1,2	2,9	4,1	5,5	6,7	7,8	9,2	10,3
Υ	7,4	9,5	11,1	12,9	14,6	17,3	18,2	20,7
$P_1(x)=$ ax +b	7,0363	9,5086	11,2538	13,2899	15,0351	16,6348	18,6709	20,2707
$\epsilon_{\rm i}$	-0,3637	0,0086	0,1538	0,3899	0,4351	-0,6652	0,4709	-0,4293

Вывод: исследуемая функциональная зависимость может быть приближенно описана линейной моделью $P_1(x)=1,4543x+5,2911$, т.к. $P_1(x_i)\approx Y_i$, ε_i \rightarrow min

Определим меру отклонения: $S = \sum_{i=1}^{n} \varepsilon_{i}^{2} = 1{,}3459$

Коэффициент корреляции

Коэффициент корреляции – это степень связи между двумя переменными.

Корреляция помогает найти ответ на два вопроса.

Во-первых, является ли связь между переменными положительной (прямо пропорциональная зависимость) или отрицательной (обратно пропорциональная зависимость).

Во-вторых, насколько сильна зависимость.

Коэффициент корреляции Пирсона позволяет определить наличие или отсутствие **линейной** связи между двумя переменными:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Средние значения х и у:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \quad \bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$-1 \le r \le 1$$

Например, при помощи критерия корреляции Пирсона можно ответить на вопрос о наличии связи между температурой тела и содержанием лейкоцитов в крови при острых респираторных инфекциях, между ростом и весом пациента, между содержанием в питьевой воде фтора и заболеваемостью населения кариесом.

Коэффициент корреляции

При $r=\pm 1$ - строгая линейная функциональная зависимость в зависимости от знака коэффициента $a\ (f=ax+b)$

При r=0 - связь между переменными отсутствует (в данном случае линейная).

$$r < 0,3$$
 - связь слабая

$$r = 0.3 \div 0.5$$
 - связь умеренная

$$r = 0.7 \div 0.7$$
 - связь заметная

$$r = 0.7 \div 0.9$$
 - связь высокая

$$r = 0.9 \div 0.99$$
 - связь весьма высокая

Вычислим коэффициент корреляции для примера 1:

r=0,9909, т.е. наличие линейной связи правомерно

Блок-схема метода наименьших квадратов для линейной аппроксимации

Рассмотрим в качестве эмпирической формулы квадратичную функцию:

$$\varphi(x, a_0, a_1, a_2) = a_0 + a_1 x + a_2 x^2$$

Сумма квадратов отклонений запишется следующим образом:

$$S = S(a_0, a_1, a_2) = \sum_{i=1}^{n} (a_0 + a_1 x_i + a_2 x_i^2 - y_i)^2 \rightarrow min$$

Приравниваем к нулю частные производные S по неизвестным параметрам, получаем систему линейных уравнений:

$$\begin{cases} \frac{\partial S}{\partial a_0} = 2\sum_{i=1}^n a_2 x_i^2 + a_1 x_i + a_0 - y_i = 0\\ \frac{\partial S}{\partial a_1} = 2\sum_{i=1}^n (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i = 0\\ \frac{\partial S}{\partial a_2} = 2\sum_{i=1}^n (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i^2 = 0 \end{cases}$$

$$\begin{cases} \frac{\partial S}{\partial a_0} = 2\sum_{i=1}^n a_2 x_i^2 + a_1 x_i + a_0 - y_i = 0 \\ \frac{\partial S}{\partial a_1} = 2\sum_{i=1}^n (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i = 0 \\ \frac{\partial S}{\partial a_2} = 2\sum_{i=1}^n (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i^2 = 0 \end{cases} \begin{cases} a_0 n + a_1 \sum_{i=1}^n x_i + a_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 + a_2 \sum_{i=1}^n x_i^3 = \sum_{i=1}^n x_i y_i \\ a_0 \sum_{i=1}^n x_i^2 + a_1 \sum_{i=1}^n x_i^3 + a_2 \sum_{i=1}^n x_i^4 = \sum_{i=1}^n x_i^2 y_i \end{cases}$$

<u>Пример 2</u>. Пусть в результате серии экспериментов была получена таблица значений:

X	1,1	2,3	3,7	4,5	5,4	6,8	7,5
Υ	3,5	4,1	5,2	6,9	8,3	14,8	21,2

Необходимо найти приближенную функциональную зависимость и определить значения параметров аппроксимирующей функции. Для определения вида зависимости нанесем экспериментальные точки на график: в качестве аппроксимирующей функции выбираем многочлен второй степени и строим полиномиальную модель $P_2(x) = a_0 + a_1 x + a_2 x^2$

Сумма квадратов отклонений запишется следующим образом:

$$S = \sum_{i=1}^{n} (a_0 + a_1 x_i + a_2 x_i^2 - y_i)^2 \to min$$

Вычислим:

$$\sum_{i=1}^{n} x_{i} = 31,3 \quad \sum_{i=1}^{n} x_{i}^{2} = 172,09 \quad \sum_{i=1}^{n} x_{i}^{3} = 1049,05 \quad \sum_{i=1}^{n} x_{i}^{4} = 6779,43$$

$$\sum_{i=1}^{n} y_{i} = 64 \quad \sum_{i=1}^{n} x_{i} y_{i} = 368,03 \quad \sum_{i=1}^{n} x_{i}^{2} y_{i} = 2355,72$$

Получим систему линейных уравнений, решив которую, определим значения коэффициентов эмпирической формулы:

$$\begin{cases} 7a_0 + 31, 3a_1 + 172, 09a_2 = 64 \\ 31, 3a_0 + 172, 09a_1 + 1049, 05a_2 = 368, 03 \\ 172, 09a_0 + 1049, 05a_1 + 6779, 43a_2 = 2355, 72 \end{cases} \begin{cases} a_0 = 6, 365 \\ a_1 = -2, 687 \\ a_2 = 0, 602 \end{cases}$$

Проверим правильность выбора модели. Для этого вычислим значения аппроксимирующей функции $P_2(x)=0.602x_i^2-2.687x_i+6.365$

№ п.п.	1	2	3	4	5	6	7
X	1,1	2,3	3,7	4,5	5,4	6,8	7,5
Υ	3,5	4,1	5,2	6,9	8,3	14,8	21,2
$P_2(x) = a_0 + a_1 x + a_2 x^2$	4,138	3,369	4,664	6,464	9,410	15,930	20,075
ϵ_{i}	0,638	-0,731	-0,536	-0,436	1,110	1,130	-1,125

Вывод: исследуемая функциональная зависимость может быть приближенно описана выбранной моделью, т.к.

$$P_2(x_i) \approx Y_i, \, \varepsilon_i \rightarrow min$$

Определим меру отклонения: $S = \sum_{i=1}^{n} \varepsilon_{i}^{2} = 5,191$

Среднеквадратичное отклонение

В случае, когда экспериментальные данные могут быть описаны несколькими уравнениями, выбор наилучшего из них можно осуществить по величине среднеквадратичного отклонения:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}}$$

Наилучшим считается уравнение, для которого значение $\boldsymbol{\delta}$ минимально.

Аппроксимация с помощью других функций

Помимо линейных зависимостей для описания результатов эксперимента используют также показательные, степенные, логарифмические функции. Эти функции легко могут быть приведены к линейному виду, после чего для определения коэффициентов аппроксимирующей функции можно использовать описанный выше алгоритм.

Аппроксимирующая функция задана степенной функцией вида:

$$\varphi(x) = ax^b$$

Для применения метода наименьших квадратов степенная функция **линеаризуется**:

$$\ln(\varphi(x)) = \ln(ax^b) = \ln(a) + b\ln(x)$$

Введем обозначения: $Y=\ln(\varphi(x))$; $A=\ln(a)$; B=b; $X=\ln(x)$

Получаем линейную зависимость: Y=A+BX.

После определения коэффициентов А и В вернемся к принятым ранее обозначениям:

$$a = e^{A}$$
 $b = B$

Аппроксимация с помощью других функций

Аппроксимирующая функция задана экспоненциальной функцией вида:

$$\varphi(x) = ae^{bx}$$

Для применения метода наименьших квадратов экспоненциальная функция линеаризуется:

$$\ln(\varphi(x)) = \ln(ae^{bx}) = \ln a + bx$$

Введем обозначения: $Y=\ln(\varphi(x))$; $A=\ln(a)$; B=b

Получаем линейную зависимость: Y=A+Bx.

После определения коэффициентов А и В вернемся к принятым ранее обозначениям:

$$a = e^{A}$$
 $b = B$

Аппроксимирующая функция задана логарифмической функцией вида:

$$\varphi(x) = aln(x) + b$$

Аппроксимация с помощью других функций

Вид функции	Табличный Х	Табличный Ү
Степенная	Ln X	Ln Y
Экспоненциальная	X	Ln Y
Логарифмическая	Ln X	Y

Достоверность аппроксимации (коэффициент детерминации):

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \varphi_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{\varphi_{i}})^{2}} \qquad \overline{\varphi_{i}} = \frac{1}{n} \sum_{i=1}^{n} \varphi_{i}$$

Чем ближе значение R^2 к единице ($R^2 \to 1$), тем надежнее функция φ аппроксимирует исследуемый процесс.

Если $R^2 \ge 0,95$,то говорят о высокой точности аппроксимации (модель хорошо описывает явление).

Если $0.75 \le R^2 < 0.95$, то говорят об удовлетворительной аппроксимации (модель в целом адекватно описывает явление).

Если $0.5 \le R^2 < 0.75$, то говорят о слабой аппроксимации (модель слабо описывает явление).

Если R^2 < 0,5, то говорят, что точность аппроксимации недостаточна и модель требует изменения.

Пример 3. Найти функцию, являющуюся наилучшим приближением заданной табличной функции:

X	1,1	2,3	3,7	4,5	5,4	6,8	7,5
Υ	2,73	5,12	7,74	8,91	10,59	12,75	13,43

Используя метод наименьших квадратов, вычислим коэффициенты различных аппроксимирующих функций, проанализируем меру отклонения S и среднеквадратичное отклонение δ . Результаты вычислений сведем в таблицу:

Вид функции	а	b	С	Мера отклонения S	Среднеквадратичное отклонение δ	Достоверность аппроксимации ${\cal R}^2$
$\varphi = ax + b$	1,6854	1,2168	-	0,47302	0,25995	0,9948
$\varphi = ax^b$	2,5421	0,8382	-	0,15412	0,14838	0,9985
$\varphi = ae^{bx}$	2,7309	0,2346	-	10,72993	1,23808	0,9172
$\varphi = aln x + b$	5,6500	1,1989	-	4,19977	0,77457	0,9542
$ \varphi = ax^2 + bx + c $	-0,0589	2,1974	0,3743	0,06902	0,09929	0,9992

Выбор наилучшей аппроксимирующей функции определяется значением *среднеквадратического отклонени*я. В связи с этим следует:

- 1. по методу наименьших квадратов определить несколько аппроксимирующих функций,
- по критерию наименьшего среднеквадратического отклонения выбрать наиболее подходящую функцию.