Lending Club Data Set Prediction

Company Information:

Lending Club is a peer to peer lending company based in the United States, in which investors provide funds for potential borrowers and investors earn a profit depending on the risk they take (the borrowers credit score). Lending Club provides the "bridge" between investors and borrowers.

Questions to be Answered:

We will use data science and exploratory data analysis to take a peek Lending Club's loan data from 2007 to 2011, focusing on the following questions regarding this period:

Loan Absolute Variables Distribution: How does loan value, amount funded by lender and total committed by investors distribution looks like? Applicants income range: Range of Applicants income for both good and bad loans

Defaults Volume: How many loans were defaulted?

Average Interest Rates: What was the range of interest rate for the loans?

Loan Purpose: What were the most frequent Loan Purposes?

Loan Grades: Variation of interest rates for the different grades of loans

Delinquency Breakdown: How many loans were Charged Off(Bad loans)?

How does the loan data distribution look like? Using Data Science, we will paint a picture detailing the most important aspects related to the loans and perform EDA (Exploratory Data Analysis).

Can we create a better, optimized model to predict credit risk using machine learning?

By analyzing these aspects, we will be able to understand our data better and also get to know a bit of Lending Club's story. The dataset contains 43K loan applications from 2007 through 2011 and it can be downloaded from the url www.lendingclub.com (https://www.lendingclub.com).

The Methodology:

Libraries:

pandas for: data loading, wrangling, cleaning, and manipulation, feature selection and engineering, descriptive statistics numpy for: array data structure, the primary input for classifiers, model comparison ,matrix manipulation imblearn for: oversampling imbalanced dataset scikit-learn for: classifier models ,model evaluation matplotlib for: data visualization

Data Wrangling and cleaning:

• The dataset was directly obtained from the url www.lendingclub.com (http://www.lendingclub.com). Initially the shape of the data showed only 1 column which was due to a single heading present in the cvs file. After the deletion of that row the data set represented approx 43000 rows and 150 columns • Several columns were

renamed to make them readable • The '%' sign from the interest rate column was removed and the column was converted into float data type for the ease of computation/visualisation. • The employee length had two rows of object data type due to boolean / arithmatic operators(<,+) present in it. It was modified for the sake of calculations. • In the complete dataset, 15% of the loans were classified as bad loans which gives us an imbalanced dataset. This problem will be dealt on later stage. • "Charged Off", "Default", "Does not meet the credit policy" Charged Off", "In Grace Period","Late (16-30 days)", "Late (31-120 days)" were classified as Bad Loans and all others as Good Loans which was done under the column loan_condition. This column was our target variable. • Logarithmic transformation of annual income was done due to large values. • Their were 30,000 unique employee titles/designation which would be of minimal usage hence, this column was dropped. • column "id" was made the index • Columns having more than 30% of the values missing/Nan were dropped which resulted in 58 columns left for model training. • The following histogram shows the incompleteness: From the above histogram, we see there's a large gap between features missing "some" data (<20%) and those missing "lots" of data (>40%). Because it's generally very difficult to accurately impute data with more than 30% missing values, we drop such columns.

List other potential data sets you could use.

There were many other latest quarterly(Q1,Q2,Q3,Q4) dataset present on the lending club website but as the number of columns were very less hence the large dataset was used. Also , several other cleaned datasets were also present on Kaggle but using the dataset directly from the website was much more of a realistic approach.

Initial findings.

• The initial findings seem to suggest a positive correlation between several features of the applicant with the loan status(target variable) which can be utilised for the model building. • Also, the verification status did not have any significant impact on the loan target variable • This shows that 41.3% of the bad loans were not verified. • The fico_score mean of the good loans is more than 700 and most of the values of fico_score lies near 700 score hence the fico_score for good loans should be closer to 700. • The majority of loans is either graded as B or C — together these correspond to more than 50% of the loan population. While there is a considerable amount of A graded or "prime" loans (~17%), there is a small amount of E graded, or "uncollectible" loans (~0,06%). Which is a good sign for Lending Club. • Number of bad loans were less in the category A jobs and it had more number of good loans as compared to the other category.

Statistical inferences:

The direction to take the statistical analysis for this project was very clear once the data was obtained and visualised. It was very apparent that there was a positive correlation between the Loan Status and the following features: Interest rate employment length grade fico range income purpose etc.

Also a heat map was plotted for the correlation among the features. We also plotted the ecdf for interest rates for A grade loans and Interest rates for the other grades apart from a grade.

The above oberservations made us to perform a Frequentist test on the interest rates. The test was performed to check whether the interest rates offered for A grade loans were lesser than the other grades hence we did a single tail Welch's t-test as the variance is not equal.

H0: The interest rates offered for other grade loans is greater than the A grade loan.

H1: The interest rates offered for other grade loans is not greater than the A grade loan.

On running the test the following results were obtained: Ttest_indResult(statistic=324.96013788823643, pvalue=0.0) The confidence interval for A grade loans is: (7.339761200000001, 7.327202348671294, 7.352320051328707) The confidence interval for all other loan other than A grade loans is: (13.687281466395113, 13.651015426092169, 13.723547506698058)

As the p value was less than 0.05 hence the null hypothesis was rejected .

Machine Learning techniques used:

We built our first model: 1)Knn Classifier:

We got an accuracy of 0.93. As our model has good loans dominating the sample we may need to over sample our data with bad sample. We also checked the effect on the accuracy by changing n in the model and the graph is plotted below after the codes.

Due to imbalanced data out score results showed 1.0 as 85% of the loans were good(target variable). Hence we used 2) imblearn for oversampling and RandomForestClassifier:

We see that the recall score and precision score comes out to be 1, which does not seen to be right. it can also be because of the dominating class of good loans or some other dominating features.

We then checked the important features in the model and observed that few features such as: loan_status,loan_condition_int,recoveries,collection_recovery_fee,last_credit_pull_d,total_rec_late_fee,total_rec_i are to be dropped due to there insignificance/unavailability before the approval or similar terms to the loan_condition(target variable). Hence we drop the above columns from the new data set and train our model again. and got the following result:

Validation Results 0.8879022147931467 0.9444308145240432 Test Results 0.8820985332831892 0.9388568896765618

Next, we did manual oversampling: It shows that out of 43000 datasets 6431 data represents the bad loans. So to make our dataset balanced we will create a new dataset "balanced" comprising both the type in 3:2 ratio. We used two models separately to plot the ROC curve using the manually over sampled data.

3) KNN Classifier :Accuracy: 0.6489321843387036

4)Logistic Regression: precision score of :0.72

We will be proceeding for an Ensembled Learning Model to give much better result and hence we will now observe the performance of Six models together using a FOR loop. And the results have been given below.

It seemed like logistic regressio, Decision Tree and LDA models agree to each other. Hence we will finally use this models into our Ensemble Techniques as our main aim is to increase the Precision and accuracy (decrease the False Positives which are more dangerous in our case).

5)Ensemble Model

This method combines the decisions from multiple models to improve the overall performance. This can be achieved in various ways, the first method which we would use is Max Voting.

a)Max Voting: The accuracy score of the test model using the Max Voting Ensemble Method is: 0.77

b)Advanced Ensemble Method of Bagging meta-estimator

Bagging meta-estimator is an ensembling algorithm that can be used for both classification (BaggingClassifier) and regression (BaggingRegressor) problems. It follows the typical bagging technique to make predictions. Following are the steps for the bagging meta-estimator algorithm: The score using the Decision Tree bagging

Classifier is: 0.91 The ROC Curve using above models have been plotted below.

Limitations:

The dataset had imbalanced data in which the good loans were dominating. A lot of data was missing which might have affected our model. Various factors such as AGE, NET WORTH, EXISTING LOANS, EMI DEDUCTIBLE EVERY MONTH, etc. if were present we would have given better predictions. As the customer's repaying capacity depends on many other things which were not present in the data set hence model might not give 100% correct results.

Conclusion

We applied machine learning methods to predict the probability that a requested loan on LendingClub will charge off/turn into a bad loan. After training and evaluating with different models (logistic regression, random forest, and Decision tree) and finally using ensemble method we found that in all the cases Decision tree performed the best. We selected Decision tree Bagging Classifier as our final model with AUC SCORE 0.9 on a test set.

Using this model can provide a somewhat informed prediction of the likelihood that a loan will charge off, using only data available to potential investors before the loan is fully funded. The major importance by far was found as the FICO score and the annual income. Hence, deviating from the basic principles of banking (FICO) would be risky for an investor.

We also found that, according to the Pearson correlations between the predictors and the response, the most important variables for predicting charge-off are the loan interest rate and term, and the borrower's FICO score and debt-to-income ratio.

Scope for Future work:

We can also try Boosting and Stacking method to give much better results. As our major concern was to increase precision these other models can help us to to the same. Some more datasets of different quarter can be downloaded directly from the www.lendingclub.com (http://www.lendingclub.com) website and the model can be tested for much better accuracy. All of the important features can be examined for further correlations/patterns. A model predicting ROI and diversification of funds allocation based on the risk factor can be generated. Risk assessment for specific customer types could be carried out using these same techniques. Safest category of investment can be predicted and given to the clients so as to ensure good return on investment. The project could be wrapped in a web application and tested on real world data, asking loan applicants to input their info and report back their results, which could be compared to the model's prediction. When new quarterly data are published, the model's predictive capabilities can be tested in earnest. This projects also acts as a proof-of-concept for application analysis. It could easily be applied to other types of applications for which large data sets exist. For example, Credit card defaults.

Client Recommendations

To minimise the risk of a costly rejection, lending club should screen the applicants and choose the best qualified, with the lowest chances of rejection. Screened applicants should then have their applications prepared either in house or in the office itself If all available candidates are risky, the company should look at the application features that are most significantly increasing risk and alter the application to reduce risk. All the cases should be verified as we saw 41% of unverified loans turned Bad. Hence verification is highly recommended

Code, Graphs and Observations:

In [1]:

```
#import warnings
#warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import t
from numpy.random import seed
from scipy.stats import norm
from scipy.stats import ttest_ind_from_stats
df= pd.read_csv('LoanStats3a_securev1_new.csv',low_memory=False)
```

Understanding the various features (columns) of the dataset

```
In [2]:
print(df.info())
df.head()
df.columns
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 42542 entries, 0 to 42541
Columns: 150 entries, id to settlement_term
dtypes: float64(120), object(30)
memory usage: 48.7+ MB
None
Out[2]:
Index(['id', 'member id', 'loan amnt', 'funded amnt', 'funded amnt in
       'term', 'int rate', 'installment', 'grade', 'sub grade',
       'orig projected additional accrued interest',
       'hardship payoff_balance_amount', 'hardship_last_payment_amoun
t',
       'debt_settlement_flag', 'debt_settlement_flag_date',
       'settlement_status', 'settlement_date', 'settlement_amount',
       'settlement percentage', 'settlement term'],
      dtype='object', length=150)
```

```
In [3]:
```

```
print(df.shape)
```

(42542, 150)

```
In [4]:
```

```
df.head()
```

Out[4]:

	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment
0	1077501	NaN	5000.0	5000.0	4975.0	36 months	10.65%	162.87
1	1077430	NaN	2500.0	2500.0	2500.0	60 months	15.27%	59.83
2	1077175	NaN	2400.0	2400.0	2400.0	36 months	15.96%	84.33
3	1076863	NaN	10000.0	10000.0	10000.0	36 months	13.49%	339.31
4	1075358	NaN	3000.0	3000.0	3000.0	60 months	12.69%	67.79

5 rows × 150 columns

Data Wrangling

```
In [5]:
```

```
In [6]:
```

```
df.head()
print(type(df['interest_rate'][0]))
```

<class 'str'>

In [7]:

```
#removing percentage sign from the interest_rate and convert it to float from string
df.interest_rate = df.interest_rate.str.replace('%', '').astype('float64')
print(df.interest_rate.head())
```

- 0 10.65
- 1 15.27
- 2 15.96
- 3 13.49
- 4 12.69

Name: interest_rate, dtype: float64

```
In [8]:
```

```
#remove months from term colums
df.term = df.term.str.replace('months', '')
df.term.head()

Out[8]:
0     36
1     60
2     36
3     36
4     60
Name: term, dtype: object
```

In [9]:

```
#setting up the index
df.set_index('id')

#member_id column shows Nan value and is of less significance hence we drop it
df.drop(['member_id'],axis=1,inplace=True)
```

In [10]:

```
missing_fractions = df.isnull().mean().sort_values(ascending=False)
missing_fractions.head(20)
```

Out[10]:

```
inq_fi
                                    1.0
                                    1.0
percent_bc_gt_75
mths since recent bc dlq
                                    1.0
mths since recent inq
                                    1.0
mths_since_recent_revol_delinq
                                    1.0
num accts ever 120 pd
                                    1.0
num_actv_bc_tl
                                    1.0
num actv rev tl
                                    1.0
num_bc_sats
                                    1.0
num bc tl
                                    1.0
num il tl
                                    1.0
num_op_rev_tl
                                    1.0
num_rev_accts
                                    1.0
num_rev_tl_bal_gt_0
                                    1.0
                                    1.0
num sats
num_tl_120dpd_2m
                                    1.0
num tl 30dpd
                                    1.0
num_tl_90g_dpd_24m
                                    1.0
num tl op past 12m
                                    1.0
mths_since_recent_bc
                                    1.0
dtype: float64
```

In [11]:

```
plt.figure(figsize=(6,3), dpi=90)
missing_fractions.plot.hist(bins=20)
plt.title('Histogram of Feature Incompleteness')
plt.xlabel('Fraction of data missing')
plt.ylabel('Feature count')
```

Out[11]:

Text(0, 0.5, 'Feature count')

From the above histogram, we see there's a large gap between features missing "some" data (<20%) and those missing "lots" of data (>40%). Because it's generally very difficult to accurately impute data with more than 30% missing values, we drop such columns. First store all variables missing more than 30% data in an alphabetical list:

```
In [12]:
```

(42542, 58)

```
drop_list = sorted(list(missing_fractions[missing_fractions > 0.3].index))
print(len(drop_list))
df.drop(labels=drop_list, axis=1, inplace=True)
df.shape
91
Out[12]:
```

So now we dropped the columns with more than 30% missing values and hare left with 58 columns.

In [13]:

print(df.columns)

```
df.info()
Index(['id', 'loan_amount', 'funded_amount', 'investor_funds', 'term',
       'interest rate', 'installment', 'grade', 'sub grade', 'emp titl
e',
       'emp length', 'home ownership', 'annual income', 'verification
status',
       'issue d', 'loan status', 'pymnt plan', 'url', 'purpose', 'titl
e',
       'zip code', 'addr state', 'dti', 'deling 2yrs', 'earliest cr li
ne',
       'fico range low', 'fico range high', 'inq last 6mths', 'open ac
c',
       'pub_rec', 'revol_bal', 'revol_util', 'total_acc',
       'initial list status', 'out prncp', 'out prncp inv', 'total pym
nt',
       'total_pymnt_inv', 'total_rec_prncp', 'total_rec_int',
       'total_rec_late_fee', 'recoveries', 'collection_recovery_fee',
       'last_pymnt_d', 'last_pymnt_amnt', 'last_credit_pull_d',
       'last fico range high', 'last fico range low',
       'collections_12_mths_ex_med', 'policy_code', 'application_typ
e',
       'acc_now_delinq', 'chargeoff_within_12_mths', 'delinq_amnt',
       'pub_rec_bankruptcies', 'tax_liens', 'hardship flag',
       'debt settlement flag'],
      dtype='object')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 42542 entries, 0 to 42541
Data columns (total 58 columns):
                              42538 non-null object
loan amount
                               42535 non-null float64
                              42535 non-null float64
funded amount
investor funds
                              42535 non-null float64
                              42535 non-null object
term
                              42535 non-null float64
interest rate
installment
                              42535 non-null float64
grade
                              42535 non-null object
                              42535 non-null object
sub grade
emp_title
                              39909 non-null object
                              41423 non-null object
emp length
home ownership
                              42535 non-null object
annual income
                              42531 non-null float64
                              42535 non-null object
verification status
                              42535 non-null object
issue d
loan_status
                              42535 non-null object
pymnt plan
                              42535 non-null object
                              42535 non-null object
url
                              42535 non-null object
purpose
                              42522 non-null object
title
                              42535 non-null object
zip code
addr_state
                              42535 non-null object
dti
                              42535 non-null float64
                              42506 non-null float64
deling 2yrs
earliest cr line
                              42506 non-null object
fico range low
                              42535 non-null float64
fico_range_high
                              42535 non-null float64
ing last 6mths
                              42506 non-null float64
                              42506 non-null float64
open_acc
```

```
42506 non-null float64
pub rec
                               42535 non-null float64
revol bal
revol util
                              42445 non-null object
                              42506 non-null float64
total acc
initial list status
                              42535 non-null object
out prncp
                              42535 non-null float64
                              42535 non-null float64
out prncp inv
total pymnt
                              42535 non-null float64
total pymnt inv
                              42535 non-null float64
total rec prncp
                              42535 non-null float64
total rec int
                              42535 non-null float64
total rec late fee
                              42535 non-null float64
                              42535 non-null float64
recoveries
                              42535 non-null float64
collection recovery fee
last pymnt d
                              42452 non-null object
                              42535 non-null float64
last pymnt amnt
last credit pull d
                              42531 non-null object
last fico range high
                              42535 non-null float64
last fico range low
                              42535 non-null float64
collections 12 mths ex med
                              42390 non-null float64
policy code
                              42535 non-null float64
application type
                              42535 non-null object
                              42506 non-null float64
acc now deling
chargeoff within 12 mths
                              42390 non-null float64
                              42506 non-null float64
deling amnt
pub rec bankruptcies
                              41170 non-null float64
tax liens
                              42430 non-null float64
hardship flag
                              42535 non-null object
debt settlement flag
                              42535 non-null object
dtypes: float64(34), object(24)
```

memory usage: 18.8+ MB

In [14]:

```
df['emp title'].describe()
```

Out[14]:

39909 count unique 30656 US Army top freq 139

Name: emp_title, dtype: object

There are too many different job titles for this feature to be useful, so we drop it.

In [15]:

```
df.drop(labels='emp title', axis=1, inplace=True)
```

```
In [16]:
```

```
df['emp length'].value counts(dropna=False).sort index()
Out[16]:
1 year
              3595
10+ years
              9369
              4743
2 years
3 years
              4364
4 years
              3649
              3458
5 years
6 years
             2375
             1875
7 years
             1592
8 years
9 years
              1341
              5062
< 1 year
NaN
              1119
Name: emp length, dtype: int64
```

In the above column we need to change the details of 10+ years and <1 year into a readable format which is done below:

```
In [17]:
```

```
df['emp_length'].replace(to_replace='10+ years', value='10 years', inplace=True)
df['emp_length'].replace('< 1 year', '0 years', inplace=True)</pre>
```

Now we convert hte employee length into an int value :

```
In [18]:
```

```
def emp_length_to_int(s):
    if pd.isnull(s):
        return s
    else:
        return np.int8(s.split()[0])
df['emp_length'] = df['emp_length'].apply(emp_length_to_int)
df['emp_length'].value_counts(dropna=False).sort_index()
Out[18]:
```

```
0.0
         5062
1.0
         3595
2.0
         4743
3.0
         4364
4.0
        3649
5.0
        3458
        2375
6.0
7.0
        1875
8.0
        1592
9.0
        1341
10.0
        9369
NaN
         1119
Name: emp_length, dtype: int64
```

Because of the large range of incomes, we should take a log transform of the annual income variable.

```
In [19]:
```

```
df['log annual inc'] = df['annual income'].apply(lambda x: np.log10(x+1))
df['log annual inc'].describe()
Out[19]:
         42531,000000
count
mean
             4.764398
             0.246615
std
             3.278067
min
25%
             4.602071
50%
             4.770859
             4.916459
75%
             6.778151
max
Name: log annual inc, dtype: float64
In [20]:
df["loan status"].value counts()
Out[20]:
Fully Paid
                                                         34116
                                                          5670
Charged Off
Does not meet the credit policy. Status: Fully Paid
                                                          1988
Does not meet the credit policy. Status: Charged Off
                                                           761
Name: loan status, dtype: int64
In [21]:
# Determining the loans that are bad from loan_status column
bad loan = ["Charged Off", "Default", "Does not meet the credit policy. Status:Charge
             "Late (16-30 days)", "Late (31-120 days)"]
df['loan condition'] = np.nan
def loan condition(status):
    if status in bad loan:
        return 'Bad Loan'
    else:
        return 'Good Loan'
```

Pie Chart for Loan Conditions

df['loan condition'] = df['loan status'].apply(loan condition)

In [22]:

```
#f, ax = plt.subplots(1,2, figsize=(16,8))
labels ="Good Loans", "Bad Loans"

plt.suptitle('Information on Loan Conditions', fontsize=15)

df["loan_condition"].value_counts().plot.pie(explode=[0,0.10],autopct='%3.0f%%', shades.
```

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a2236a550>

Information on Loan Conditions

The above pie chart shows that the data is imbalanced and it has 85% of good loans and 15% of bad loans. We might have to do oversampling of the bad loans for better results at the end. That will be decided after building the model for this data at later stage.

In [23]:

```
df['income_category'] = np.nan
lst = [df]

for col in lst:
    col.loc[col['annual_income'] <= 100000, 'income_category'] = 'Low'
    col.loc[(col['annual_income'] > 100000) & (col['annual_income'] <= 200000), 'income_category'] = 'High'</pre>
```

In [24]:

```
# Let's transform the column loan_condition into integrers.

lst = [df]
df['loan_condition_int'] = np.nan

for col in lst:
    col.loc[df['loan_condition'] == 'Good Loan', 'loan_condition_int'] = 0 # Negation col.loc[df['loan_condition'] == 'Bad Loan', 'loan_condition_int'] = 1 # Positive

# Convert from float to int the column (This is our label)
df['loan_condition_int'] = df['loan_condition_int'].astype(int)
fig, (ax1, ax2)= plt.subplots(nrows=1, ncols=2, figsize=(14,6))

sns.violinplot(x="income_category", y="loan_amount", data=df, palette="Set2", ax=axisns.violinplot(x="income_category", y="loan_condition_int", data=df, palette="Set2",
```

Out[24]:

<matplotlib.axes. subplots.AxesSubplot at 0x1a1bd2eba8>

Loan Condition V/s Income

In [25]:

```
plt.scatter(df.loan_condition,df.annual_income)
plt.xlabel("condition")
plt.ylabel("income")
plt.ylim(0,1400000)
plt.title("Range of income with respect to loan condition")
plt.show()
```


Loan Condition V/s Fico Scores

```
In [26]:
```

```
sns.violinplot(x="fico_range_high", y="loan_condition", data=df, palette="Set2" )
plt.show()
```


The mean of the good loans is more than 700 and most of the values of fico_score lies near 700 score hence the fico score for good loans should be closer to 700.

In [27]:

```
df.home_ownership.groupby(df.loan_condition).value_counts().plot.bar()
plt.show()
```


Loan Grades and Subgrades are assigned by Lending Club based on the borrower's credit worthiness and also on some variables specific to that Loan.

In [28]:

df.grade.groupby(df.loan_condition).value_counts().plot.bar()
plt.show()

The majority of loans is either graded as B or C - together these correspond to more than 50% of the loan population. While there is a considerable amount of A graded or "prime" loans (~17%), there is a small amount of E graded, or "uncollectible" loans (~0,06%). Which is a good sign for Lending Club. But, are these the right grades?

Data visualization to see how the loan value, amount funded by lender and total committed by investors distribution looks like?

In [29]:

```
fig, ax = plt.subplots(1, 3, figsize=(16,5))

loan_amount = df["loan_amount"].values
funded_amount = df["funded_amount"].values
investor_funds = df["investor_funds"].values
sns.distplot(loan_amount, ax=ax[0], color="red",bins=(100,100))
ax[0].set_title("Loan Applied by the Borrower", fontsize=14)
sns.distplot(funded_amount, ax=ax[1], color="blue",bins=(100,100))
ax[1].set_title("Amount Funded by the Lender", fontsize=14)
sns.distplot(investor_funds, ax=ax[2], color="green",bins=(100,100))
ax[2].set_title("Total committed by Investors", fontsize=14)
```

/Users/ankit/anaconda3/lib/python3.7/site-packages/numpy/lib/histogram s.py:893: RuntimeWarning: invalid value encountered in true_divide return n/db/n.sum(), bin_edges

/Users/ankit/anaconda3/lib/python3.7/site-packages/statsmodels/nonpara metric/kde.py:448: RuntimeWarning: invalid value encountered in greate r

 $X = X[np.logical_and(X > clip[0], X < clip[1])] # won't work for two columns.$

/Users/ankit/anaconda3/lib/python3.7/site-packages/statsmodels/nonpara metric/kde.py:448: RuntimeWarning: invalid value encountered in less

X = X[np.logical_and(X > clip[0], X < clip[1])] # won't work for two
columns.</pre>

/Users/ankit/anaconda3/lib/python3.7/site-packages/numpy/lib/histogram s.py:893: RuntimeWarning: divide by zero encountered in true_divide return n/db/n.sum(), bin edges

Out[29]:

Text(0.5, 1.0, 'Total committed by Investors')

In [30]:

```
df.boxplot(column='loan_amount')
```

Out[30]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a1bce6a58>

In [31]:

```
mean =np.mean(df.funded_amount)
std =np.std(df.funded_amount)
print(mean)
print(std)
```

10821.585752909368 7146.830662349949

In [32]:

df.verification_status.groupby(df.loan_condition).value_counts().plot.bar()
plt.show()


```
In [33]:
```

```
pd.crosstab(df ['verification_status'], df ['loan_condition'], margins=True)
```

Out[33]:

loan_condition	Bad Loan	Good Loan	All
verification_status			
Not Verified	2655	16103	18758
Source Verified	1534	8772	10306
Verified	2242	11229	13471
All	6431	36104	42535

This shows that 41.3% of the bad loans were not verified.

In [34]:

```
df[['fico_range_low', 'fico_range_high']].describe()
```

Out[34]:

	fico_range_low	fico_range_high
count	42535.000000	42535.000000
mean	713.052545	717.052545
std	36.188439	36.188439
min	610.000000	614.000000
25%	685.000000	689.000000
50%	710.000000	714.000000
75%	740.000000	744.000000
max	825.000000	829.000000

In [35]:

df.grade.groupby(df.loan_condition).value_counts().plot.bar()
plt.show()

Number of bad loans were less in the category A jobs and it had more number of good loans as compared to the other category.

Statistical Inferences

We want to check whether the interest rates offered for A grade loans were lesser than the other grades hence we are going to use single tail Welch's t-test as the variance is not equal.

 H_{0} : The interest rates offered for other grade loans is greater than the A grade loan.

 H_1 : The interest rates offered for other grade loans is not greater than the A grade loan.

In [36]:

```
x=df.interest_rate[df.grade=='A']
sns.distplot(x)
```

Out[36]:

<matplotlib.axes. subplots.AxesSubplot at 0x1a1c190cf8>

In [37]:

```
x=df.interest_rate[df.grade!='A']
x = x[np.logical_not(np.isnan(x))]
sns.distplot(x)
```

Out[37]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a1cbbf198>


```
In [38]:
```

```
def loan_sampler_A(n):
    return np.random.choice(df.interest_rate[df.grade=='A'].astype('float64'), n)
def loan_sampler_other(n):
    return np.random.choice(df.interest_rate[df.grade!='A'].astype('float64'),n)
```

In [39]:

```
seed(47)
size=50
sample1 = loan_sampler_A(size)
sample2 = loan_sampler_other(size)
type(sample1[0])
```

Out[39]:

numpy.float64

In [40]:

```
mean_A = np.mean(sample1)
mean_other = np.mean(sample2)
std_A=np.std(sample1)
std_other=np.std(sample2)
seed(47)
N=500
# take your samples here
total_mean_A=np.empty(N)
total_mean_other=np.empty(N)
for i in range (N):
    total_mean_A[i]=np.mean(loan_sampler_A(size))
    total_mean_other[i]=np.mean(loan_sampler_other(size))
```

In [41]:

```
n=len(total_mean_A)
x=np.sort(total_mean_A)
y=np.arange(1,n+1)/n
plt.plot(x,y,marker='.',linestyle='none')
# Label the axes
plt.xlabel('Interest rate for Grade A Loans')
plt.ylabel('ECDF')
plt.show()
```


In [42]:

```
n=len(total_mean_other)
x=np.sort(total_mean_other)
y=np.arange(1,n+1)/n
plt.plot(x,y,marker='.',linestyle='none')
# Label the axes
plt.xlabel('Interest rate for Other Grade Loans')
plt.ylabel('ECDF')
plt.show()
```


It is very much clear from the above ECDF graph that the interest rates for the other grades lies in the range of (12.5,15)

```
In [43]:
```

```
total_mean_other = total_mean_other[np.logical_not(np.isnan(total_mean_other))]
```

In [44]:

```
import stats
py.stats
s.ttest_ind(total_mean_other,total_mean_A,equal_var=False))

onfidence_interval(data, confidence=0.95):
0 * np.array(data)
n(a)
= np.mean(a), scipy.stats.sem(a)
* scipy.stats.t.ppf((1 + confidence) / 2., n-1)
m, m-h, m+h
confidence interval for A grade loans is: "+str(mean_confidence_interval(total_mean_confidence_interval for all other loan other than A grade loans is:"+ str(mean_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confidence_confide
```

```
Ttest_indResult(statistic=324.96013788823643, pvalue=0.0)
The confidence interval for A grade loans is: (7.339761200000001, 7.32 7202348671294, 7.352320051328707)
The confidence interval for all other loan other than A grade loans is: (13.687281466395113, 13.651015426092169, 13.723547506698058)
```

Here, the p value is less than 0.05 hence the result is of high significance. Hence, we reject the null hypothesis.

Correlation among the features

Few important columns are selected from the full dataset based on the significance and the data present prior to the approval of the loan. The columns are saved in 'imp_columns' list.

Now we will see the correlation between the numerical data

In [45]:

```
imp_columns=['loan_amount','term','interest_rate','grade','emp_length','home_ownersh
df2=df[imp_columns]
df2.corr()
```

Out[45]:

	loan_amount	interest_rate	emp_length	annual_income	fico_range_low	fico_ran
loan_amount	1.000000	0.292346	0.158339	0.276122	0.133232	(
interest_rate	0.292346	1.000000	0.000062	0.054365	-0.702587	-(
emp_length	0.158339	0.000062	1.000000	0.115990	0.089997	(
annual_income	0.276122	0.054365	0.115990	1.000000	0.052027	(
fico_range_low	0.133232	-0.702587	0.089997	0.052027	1.000000	1
fico_range_high	0.133232	-0.702587	0.089997	0.052027	1.000000	7

employee length, annual income and fico scores have strong positive correlation with the loan amount .

In [46]:

df[imp_columns].head()

Out[46]:

	loan_amount	term	interest_rate	grade	emp_length	home_ownership	annual_income	verific
0	5000.0	36	10.65	В	10.0	RENT	24000.0	
1	2500.0	60	15.27	С	0.0	RENT	30000.0	S
2	2400.0	36	15.96	С	10.0	RENT	12252.0	
3	10000.0	36	13.49	С	10.0	RENT	49200.0	S
4	3000.0	60	12.69	В	1.0	RENT	80000.0	S

Correlation between all the important columns:

In [47]:

```
df2.apply(lambda x: x.factorize()[0]).corr()
corr_imp=df2.apply(lambda x: x.factorize()[0]).corr()
print(corr_imp)
```

	loan_amount	term	_	_
loan_amount	1.000000	0.049321		
term	0.049321	1.000000		
interest_rate		-0.229188		
grade	0.038821	0.174308		
emp_length	-0.015373	-0.021818	-0.002	423 0.001704
home_ownership	0.015785	0.101269	-0.046	499 -0.007129
annual_income	0.022134	-0.036130	0.180	196 0.011177
verification_status	-0.019865	-0.260850	0.216	612 -0.076179
loan_status	0.049661	0.008709	0.273	700 0.193024
loan_condition	0.032362	0.133752	0.023	507 0.112504
purpose	-0.027695	0.001936	0.018	901 0.010115
title	0.003469	-0.200983	0.570	702 0.033934
addr_state	0.005964	0.012570	0.027	204 0.004016
fico_range_low	0.009369	-0.039866	0.060	645 0.001520
fico_range_high	0.009369	-0.039866	0.060	645 0.001520
income category	-0.015621	0.036324	-0.003	993 0.040700
	emp length	home owne	ership annua	l_income \
loan_amount	-0.015373	_		0.022134
term	-0.021818			0.036130
interest rate	-0.002423			0.180196
grade	0.001704			0.011177
emp_length	1.000000			0.017164
home_ownership	-0.070542			0.009486
annual income	-0.017164			1.000000
verification_status	0.039064			0.009812
loan_status	-0.012969			0.051434
loan condition	-0.020226			0.000376
purpose	-0.020220			0.020303
title	-0.000502			0.131895
addr state	-0.018810			0.020443
fico range low	-0.018810			0.003770
	-0.035675			0.003770
fico_range_high				
<pre>income_category</pre>	-0.040154	0.2	201819	0.089805
			1	1
,	verification	n_status	loan_status	loan_condition
\ loom_ome		0.10065	0.040661	0 022262
loan_amount		0.019865	0.049661	0.032362
term		0.260850	0.008709	0.133752
interest_rate		0.216612	0.273700	0.023507
grade		0.076179	0.193024	0.112504
emp_length		0.039064	-0.012969	-0.020226
home_ownership		0.074966	-0.000060	-0.020695
annual_income		0.009812	0.051434	0.000376
verification_status		1.000000	0.058409	-0.029244
loan_status		0.058409	1.000000	0.635935
loan_condition		0.029244	0.635935	1.000000
purpose		0.004351	0.022216	0.013826
title		0.183712	0.233310	0.010506
addr_state		0.019698	0.021418	-0.008037
fico_range_low		0.046653	0.051280	-0.039701
fico_range_high	(0.046653	0.051280	-0.039701
income_category	-(0.151210	-0.005405	-0.036119

	purpose	title	addr_state	fico_range_low	\
loan_amount	-0.027695	0.003469	0.005964	0.009369	
term	0.001936	-0.200983	0.012570	-0.039866	
interest_rate	0.018901	0.570702	0.027204	0.060645	
grade	0.010115	0.033934	0.004016	0.001520	
emp_length	-0.003795	-0.000502	-0.018810	-0.035675	
home_ownership	-0.001644	-0.016955	0.065866	0.068482	
annual_income	0.020303	0.131895	0.020443	0.003770	
verification_status	-0.004351	0.183712	0.019698	0.046653	
loan_status	0.022216	0.233310	0.021418	0.051280	
loan_condition	0.013826	0.010506	-0.008037	-0.039701	
purpose	1.000000	0.019102	0.014780	0.026234	
title	0.019102	1.000000	0.014666	0.057461	
addr_state	0.014780	0.014666	1.000000	0.014521	
fico_range_low	0.026234	0.057461	0.014521	1.000000	
fico_range_high	0.026234	0.057461	0.014521	1.000000	
income_category	-0.001880	0.000589	-0.026015	0.017565	
	£:	سنا ماسناما سسا			

	fico range high	income category
loan_amount	0.009369	-0.015621
term	-0.039866	0.036324
interest_rate	0.060645	-0.003993
grade	0.001520	0.040700
emp_length	-0.035675	-0.040154
home_ownership	0.068482	0.201819
annual_income	0.003770	0.089805
verification_status	0.046653	-0.151210
loan_status	0.051280	-0.005405
loan_condition	-0.039701	-0.036119
purpose	0.026234	-0.001880
title	0.057461	0.000589
addr_state	0.014521	-0.026015
fico_range_low	1.000000	0.017565
fico_range_high	1.000000	0.017565
<pre>income_category</pre>	0.017565	1.000000

In [48]:

Out[48]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a1e766a58>

In []:

Model Building

In [49]:

```
# Convert all non-numeric values to number
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
for var in df.columns:
    le = LabelEncoder()
    df[var]=df[var].astype('str')
    df[var]=le.fit_transform(df[var])
```

```
In [50]:
```

```
from sklearn import preprocessing
target_name='loan_condition'
y= df.loan_condition
X= df.drop(target_name,axis=1)
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, y, stratify=y, random_state=1)
from sklearn import neighbors
knn = neighbors.KNeighborsClassifier(n_neighbors=5)
```

In [51]:

```
knn.fit(X_train, Y_train)
```

Out[51]:

In [52]:

```
Y_predict=knn.predict(X_test)
#y_predict=y_predict.reshape(-1,1)
```

In [53]:

```
from sklearn import metrics
# Model Accuracy, how often is the classifier correct?
print("Accuracy:", metrics.accuracy_score(Y_test, Y_predict))
```

Accuracy: 0.9310831139526138

We got an accuracy of 0.93. As our model has good loans dominating the sample we may need to over sample our data with bad sample.

We would now check the effect on the accuracy by changing n in the model and the graph is plotted below:

In [54]:

```
neighbors = np.arange(1, 9)
train_accuracy = np.empty(len(neighbors))
test accuracy = np.empty(len(neighbors))
from sklearn.neighbors import KNeighborsClassifier
# Loop over different values of k
for i, k in enumerate(neighbors):
    # Setup a k-NN Classifier with k neighbors: knn
    knn = KNeighborsClassifier(n neighbors=k)
    # Fit the classifier to the training data
    knn.fit(X train, Y train)
    #Compute accuracy on the training set
    train accuracy[i] = knn.score(X train, Y train)
    #Compute accuracy on the testing set
    test accuracy[i] = knn.score(X test, Y test)
# Generate plot
plt.title('k-NN: Varying Number of Neighbors')
plt.plot(neighbors, test_accuracy, label = 'Testing Accuracy')
plt.plot(neighbors, train accuracy, label = 'Training Accuracy')
plt.legend()
plt.xlabel('Number of Neighbors')
plt.ylabel('Accuracy')
plt.show()
```


From the above graph we can see that we get best result at n= 4 which gives us training accuracy as 0.96 and testing accuracy as 0.94

Confusion Matrix

```
In [55]:
```

```
#Random Forest
from sklearn.metrics import confusion_matrix
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n estimators = 10000, random state = 42)
rf.fit(X train, Y train);
predictions = rf.predict(X test)
cm = confusion matrix(Y test, predictions)
print(cm)
#Decision Tree
from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X train, Y train)
predictions = clf.predict(X test)
cm2 = confusion matrix(Y test, predictions)
print(cm2)
[[1608
          0]
```

```
[ 0 9028]]
[[1608 0]
[ 0 9028]]
```

In [56]:

```
from sklearn.metrics import recall_score
print (clf.score(X_test, Y_test))
print (recall_score(Y_test, clf.predict(X_test)))
```

1.0 1.0

Imbalanced datasets can be seen everywhere. Usually banks want to predict fraudulent credit card charges but only a small fraction of observations are actually positives. I'd guess that only 1 in 10,000 credit card charges are fraudulent, at most. Recently, oversampling the minority class observations has become a common approach to improve the quality of predictive modeling. By oversampling, models are sometimes better able to learn patterns that differentiate classes.

Using imblearn for oversampling

```
In [57]:
```

```
!pip install imblearn
```

```
Requirement already satisfied: imblearn in /Users/ankit/anaconda3/lib/python3.7/site-packages (0.0)
Requirement already satisfied: imbalanced-learn in /Users/ankit/anaconda3/lib/python3.7/site-packages (from imblearn) (0.5.0)
Requirement already satisfied: joblib>=0.11 in /Users/ankit/anaconda3/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.12.5)
Requirement already satisfied: scikit-learn>=0.21 in /Users/ankit/anaconda3/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.21.3)
Requirement already satisfied: numpy>=1.11 in /Users/ankit/anaconda3/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.16.2)
Requirement already satisfied: scipy>=0.17 in /Users/ankit/anaconda3/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.2.1)
```

In [56]:

```
from imblearn.over sampling import SMOTE
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import recall score
x_train, x_val, y_train, y_val = train_test_split(X_train, Y_train,
                                                  test size = .3,
                                                  random state=123)
sm = SMOTE(random state=123)
x_train_res, y_train_res = sm.fit_sample(x_train, y_train)
clf rf = RandomForestClassifier(n estimators=1000, random state=123)
clf_rf.fit(x_train_res, y_train_res)
print(y train res)
print ('Validation Results')
print( clf rf.score(x val, y val))
print (recall score(y val, clf rf.predict(x val)))
print (clf_rf.score(X_test, Y_test))
print (recall_score(Y_test, clf_rf.predict(X_test)))
```

```
[0 1 1 ... 0 0 0]
Validation Results
1.0
1.0
1.0
```

We see that the recall score and precision score comes out to be 1, which does not seen to be right. it can also be because of the dominating class of good loans or some other dominating features.

We can use check the important features in the model:

```
In [ ]:
```

```
!pip install tabulate
```

In [57]:

```
from tabulate import tabulate
model = clf_rf.fit(X_train, Y_train)
headers = ["name", "score"]
values = sorted(zip(X_train.columns, model.feature_importances_), key=lambda x: x[1
print(tabulate(values, headers, tablefmt="plain"))
```

```
score
name
loan status
                             0.281725
loan condition int
                             0.273198
                             0.225039
recoveries
collection recovery fee
                             0.120456
last credit pull d
                             0.0258278
last fico range low
                             0.0220151
last fico range high
                             0.0217922
total_rec_late_fee
                             0.00312538
funded amount
                             0.00264734
total rec prncp
                             0.00251706
sub grade
                             0.00244401
                             0.00231675
debt settlement flag
grade
                             0.00168734
loan amount
                             0.00159987
interest rate
                             0.00154694
term
                             0.00137368
investor_funds
                             0.00127642
total rec int
                             0.00107401
installment
                             0.000915142
total pymnt
                             0.000866923
                             0.000742396
last pymnt d
total pymnt inv
                             0.000717986
fico range low
                             0.000619525
last_pymnt_amnt
                             0.000614174
fico range high
                             0.000577185
ing last 6mths
                             0.000335434
                             0.000286089
log annual inc
id
                             0.000265829
url
                             0.000241269
revol_util
                             0.000175763
zip code
                             0.000175039
title
                             0.000167329
revol bal
                             0.000150034
                             0.000145773
dti
annual income
                             0.00014392
earliest cr line
                             0.00013537
pub rec bankruptcies
                             0.000111475
                             0.00010987
addr state
issue d
                             0.000108215
purpose
                             0.000100904
                             9.55752e-05
total_acc
emp length
                             9.02301e-05
open acc
                             8.75193e-05
verification status
                             6.49991e-05
                             4.74653e-05
pub rec
income_category
                             4.68721e-05
home ownership
                             4.01721e-05
delinq_2yrs
                             3.21821e-05
                             1.56433e-05
policy code
initial_list_status
                             1.55937e-05
application type
                             1.55427e-05
```

```
out_prncp_inv
                             1.431948-03
pymnt plan
                             1.21278e-05
out_prncp
                             1.1293e-05
tax liens
                             1.11435e-05
collections_12_mths_ex_med
                             9.41221e-06
hardship flag
                             8.11167e-06
deling amnt
                             6.06368e-06
acc now deling
                             5.19062e-06
chargeoff within 12 mths
                             3.07781e-06
```

We can see that few features such as:

loan_status,loan_condition_int,recoveries,collection_recovery_fee,last_credit_pull_d,total_rec_late_fee,total_rec_i are to be dropped due to there insignificance/unavailability before the approval or similar terms to the loan_condition(target variable).

Hence we drop the above columns from the new data set and train our model again.

```
In [58]:
```

```
type(df)
```

Out[58]:

pandas.core.frame.DataFrame

In [59]:

```
delete=['loan_status','recoveries','collection_recovery_fee','last_credit_pull_d','
df.drop(delete,axis=1,inplace=True)
```

```
In [60]:
```

```
for var in df.columns:
    le = LabelEncoder()
    df[var]=df[var].astype('str')
    df[var]=le.fit transform(df[var])
df.drop('loan condition int',axis=1,inplace=True)
target name='loan condition'
y= df.loan condition
X= df.drop(target name,axis=1)
from sklearn.model selection import train test split
X train, X test, Y train, Y test = train test split(X, y, stratify=y, random state=)
x train, x val, y train, y val = train test split(X train, Y train,
                                                   test size = .3,
                                                   random state=123)
sm = SMOTE(random state=12, ratio = 1.0)
x train res, y train res = sm.fit sample(x train, y train)
clf rf = RandomForestClassifier(n estimators=1000, random state=123)
clf rf.fit(x train res, y train res)
print ('Validation Results')
print( clf rf.score(x val, y val))
print (recall_score(y_val, clf_rf.predict(x_val)))
print ('Test Results')
print (clf rf.score(X test, Y test))
print (recall score(Y test, clf rf.predict(X test)))
```

```
Validation Results
0.8879022147931467
0.94444308145240432
Test Results
0.8820985332831892
0.9388568896765618
```

Now we can see some realistic results when we have removed the after approval columns from the data set.

Hence, few features were dominating our model which have been removed from the feature list. This gives us a validation score of 0.86

We can see the model seems pretty good as their has been very less variation in the score of the test set and the validation set. We will also deal with the same dataset by oversampling manually.

Creating a Balanced Dataset Manually

```
In [61]:
```

```
print(df.loan_condition.values)
```

```
[1 0 1 ... 1 1 1]
```

```
In [62]:
```

```
bad_loans=df[df.loan_condition.values==0]
print(bad_loans.shape)
good_loans=df[df.loan_condition.values==1][:int(bad_loans.shape[0]*0.66)]
print(good_loans.shape)

(6431, 50)
(4244, 50)
```

It shows that out of 43000 datasets 6431 data represents the bad loans. So to make our dataset balanced we will create a new dataset "balanced" coprising both the type in 3:2 ratio

```
In [63]:
```

```
balanced_df=pd.concat([bad_loans,good_loans])
balanced_df.shape

Out[63]:
(10675, 50)

In [64]:

# Convert all non-numeric values to number
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
for var in balanced_df.columns:
    le = LabelEncoder()
    balanced_df[var]=balanced_df[var].astype('str')
    balanced_df[var]=le.fit_transform(balanced_df[var])
```

Now we will use the above balanced data set to run and improve our model

Wewill be using two models separately to plot the ROC curve using the manually over sampled data. The two models to be used are:

1) KNN Classifier 2)Logistic Regression

```
In [65]:
```

```
#knn Classifier
from sklearn import preprocessing
target_name='loan_condition'
y_balanced= balanced_df['loan_condition']
X_balanced= balanced_df.drop(target_name,axis=1)
```

```
In [66]:
```

```
port train_test_split
ed, Y_train_balanced, Y_test_balanced = train_test_split(X_balanced, y_balanced, strain_test_split(X_balanced, y_balanced, strain_balanced)
in_balanced)
X_test_balanced)
the classifier correct?
acy_score(Y_test_balanced, Y_predict_balanced))
```

Accuracy: 0.6489321843387036

In [67]:

```
recall_score(Y_test_balanced,Y_predict_balanced)
```

Out[67]:

0.5240339302544769

In [68]:

```
from sklearn.metrics import classification_report
print(classification_report(Y_test_balanced, knn.predict(X_test_balanced), digits=4
```

	precision	recall	fl-score	support
0	0.6996	0.7313	0.7151	1608
1	0.5628	0.5240	0.5427	1061
accuracy			0.6489	2669
macro avg	0.6312	0.6277	0.6289	2669
weighted avg	0.6452	0.6489	0.6466	2669

In [69]:

```
fpr, tpr, thresholds = metrics.roc_curve(Y_test_balanced, Y_predict_balanced)
```

In [70]:

```
print("False Positive Rate"+str(fpr))
print("True Positive Rate"+str(tpr))
print("Treshold"+str(thresholds))
False Positive Rate[0] 0 26865672 1
```

```
False Positive Rate[0. 0.26865672 1. ]
True Positive Rate[0. 0.52403393 1. ]
Treshold[2 1 0]
```

In [71]:

```
roc_auc=metrics.auc(fpr, tpr)
```

In [72]:

```
import matplotlib.pyplot as plt
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


Using Logistic Regression for the above balanced dataset

In [73]:

```
from sklearn.linear_model import LogisticRegression
lr= LogisticRegression()
X_lr_train, X_lr_test, y_lr_train, y_lr_test=train_test_split(X_balanced, y_balanced, y_balanced)
```

In [99]:

```
lr.fit(X_lr_train, y_lr_train)
```

Out[99]:

```
In [75]:
print(lr.coef )
print(lr.intercept )
                  1.49945157e-04 -7.25457286e-05 -1.27129403e-04
[[ 1.05069031e-01
  -3.76923827e-01 -6.34920728e-04 -4.84585748e-01 -1.92713323e-02
   1.12096218e-02 -6.44587457e-03 -7.75467719e-06 2.13250233e-01
   6.58307616e-02
                  0.00000000e+00 -1.05006988e-01 -3.47476731e-02
  -9.90186147e-05 -3.49859121e-04 -4.30537653e-03 -1.12202737e-04
  -4.57324888e-02 -1.46064695e-04 3.79923786e-03 3.79923786e-03
  -1.01768128e-02 -6.84276577e-03 -1.54298585e-01 -4.23143936e-05
   2.09164153e-04 -7.96188612e-04 0.0000000e+00 0.0000000e+00
   0.000000000e+00 -6.34169300e-05 -1.45056225e-05 1.67153643e-02
   9.31524391e-03 -1.47967487e-02 0.0000000e+00 0.0000000e+00
  -1.83464674e-03 -1.47967487e-02 -1.83464674e-03 -8.50066863e-01
  -3.28132888e-03 0.00000000e+00 -5.78765791e-01 -1.23786561e-04
   6.58666819e-0211
[-0.79670961]
In [76]:
y lr pred = lr.predict(X lr test)
In [79]:
confusion_matrix(y_lr_test, y_lr_pred)
Out[79]:
array([[1299, 321],
       [ 373, 676]])
In [80]:
recall_score(y_lr_test, y_lr_pred, average='macro')
Out[80]:
0.7231375560498534
In [81]:
from sklearn.metrics import precision score
precision_score(y_lr_test, y_lr_pred, average='macro')
Out[81]:
```

0.7274739889525035

Our precision score has improved to 0.73 using logistic regression.

In [82]:

```
fpr, tpr, thresholds = metrics.roc_curve(y_lr_test, y_lr_pred)
roc_auc=metrics.auc(fpr, tpr)
import matplotlib.pyplot as plt
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
print("False Positive Rate"+str(fpr))
print("True Positive Rate"+str(tpr))
print("Treshold"+str(thresholds))
```



```
False Positive Rate[0. 0.19814815 1. True Positive Rate[0. 0.64442326 1. ]
Treshold[2 1 0]
```

In [83]:

```
!pip install shap
```

```
Requirement already satisfied: shap in /Users/ankit/anaconda3/lib/pyth
on3.7/site-packages (0.31.0)
Requirement already satisfied: tqdm>4.25.0 in /Users/ankit/anaconda3/1
ib/python3.7/site-packages (from shap) (4.31.1)
Requirement already satisfied: scikit-learn in /Users/ankit/anaconda3/
lib/python3.7/site-packages (from shap) (0.21.3)
Requirement already satisfied: numpy in /Users/ankit/anaconda3/lib/pyt
hon3.7/site-packages (from shap) (1.16.2)
Requirement already satisfied: pandas in /Users/ankit/anaconda3/lib/py
thon3.7/site-packages (from shap) (0.24.2)
Requirement already satisfied: scipy in /Users/ankit/anaconda3/lib/pyt
hon3.7/site-packages (from shap) (1.2.1)
Requirement already satisfied: joblib>=0.11 in /Users/ankit/anaconda3/
lib/python3.7/site-packages (from scikit-learn->shap) (0.12.5)
Requirement already satisfied: python-dateutil>=2.5.0 in /Users/ankit/
anaconda3/lib/python3.7/site-packages (from pandas->shap) (2.8.0)
Requirement already satisfied: pytz>=2011k in /Users/ankit/anaconda3/1
ib/python3.7/site-packages (from pandas->shap) (2018.9)
Requirement already satisfied: six>=1.5 in /Users/ankit/anaconda3/lib/
python3.7/site-packages (from python-dateutil>=2.5.0->pandas->shap)
(1.12.0)
```

In [84]:

```
import shap
shap.initjs()
explainer = shap.TreeExplainer(clf_rf)
shap_values = explainer.shap_values(X_test_balanced.iloc[0,:])
X_test_balanced.iloc[0,:]
shap.force_plot(explainer.expected_value[0],shap_values[0],X_test_balanced.iloc[0,:]
```

Out[84]:

On the training set, we compute the Pearson correlation, F-statistic, and p value of each predictor with the response variable charged_off.

```
In [85]:
```

```
linear_dep = pd.DataFrame()
for col in X_lr_train.columns:
    linear_dep.loc[col, 'pearson_corr'] = X_lr_train[col].corr(y_lr_train)
linear_dep['abs_pearson_corr'] = abs(linear_dep['pearson_corr'])
```

```
In [98]:
```

```
n sklearn.feature_selection import f_classif
col in X_lr_train.columns:
mask = X_lr_train[col].notnull()
(linear_dep.loc[col, 'F'], linear_dep.loc[col, 'p_value']) = f_classif(pd.DataFrame)
```

Sort the results by the absolute value of the Pearson correlation:

```
In [87]:
```

```
linear_dep.sort_values('abs_pearson_corr', ascending=False, inplace=True)
linear_dep.drop('abs_pearson_corr', axis=1, inplace=True)
```

Reset the index:

```
In [88]:
```

```
linear_dep.reset_index(inplace=True)
linear_dep.rename(columns={'index':'variable'}, inplace=True)
```

View the results for the top 20 predictors most correlated with charged_off:

In [89]:

linear_dep.head(20)

Out[89]:

	variable	pearson_corr	F	p_value
0	issue_d	0.348538	1106.765682	2.013476e-227
1	grade	-0.303534	812.270913	2.966116e-170
2	last_fico_range_high	0.261521	587.607228	2.518588e-125
3	last_fico_range_low	0.240806	492.701703	5.529379e-106
4	pub_rec_bankruptcies	-0.168312	233.354705	5.951227e-52
5	term	-0.129487	136.491143	2.793326e-31
6	pub_rec	-0.110699	99.299270	2.964555e-23
7	debt_settlement_flag	-0.100951	82.409046	1.372916e-19
8	verification_status	0.077342	48.166643	4.220454e-12
9	interest_rate	0.074254	44.376214	2.888735e-11
10	inq_last_6mths	-0.072144	41.877128	1.029112e-10
11	fico_range_low	-0.067423	36.551566	1.553460e-09
12	fico_range_high	-0.067423	36.551566	1.553460e-09
13	delinq_2yrs	-0.059986	28.904947	7.816236e-08
14	purpose	-0.056531	25.660973	4.160692e-07
15	income_category	0.054551	23.889128	1.040306e-06
16	title	-0.053206	22.722351	1.904806e-06
17	emp_length	0.048351	18.755458	1.504092e-05
18	chargeoff_within_12_mths	-0.044686	16.014382	6.343011e-05
19	collections_12_mths_ex_med	-0.044686	16.014382	6.343011e-05

We will be proceeding for an Ensembled Learning Model to give much better result and hence we will now observe the performance of Six models together using a FOR loop.

The six models used below are:

- 1)LogisticRegression
- 2)DecisionTreeClassifier
- 3)LinearDiscriminantAnalysis
- 4)SVC
- 5)KNeighborsClassifier

6)MultinomialNB

Six models on the balanced data:

```
In [91]:
```

```
import warnings
warnings.filterwarnings("ignore")
from sklearn.model selection import train test split
train_X,val_X,train_y,val_y=train_test_split(X_train_balanced,Y_train_balanced,rando
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive bayes import MultinomialNB
models=[]
models.append(("logreg",LogisticRegression()))
models.append(("tree", DecisionTreeClassifier()))
models.append(("lda",LinearDiscriminantAnalysis()))
models.append(("svc",SVC()))
models.append(("knn", KNeighborsClassifier()))
models.append(("nb",MultinomialNB()))
seed=123
scoring='accuracy'
from sklearn.model selection import KFold
from sklearn.model_selection import cross_val_score
result=[]
names=[]
for name, model in models:
    #print(model)
    kfold=KFold(n splits=10, random state=seed)
    model.fit(train X,train y)
    y1 predict=model.predict(val X)
    cv result=cross val score(model,train X,train y,cv=kfold,scoring=scoring)
    result.append(cv result)
    names.append(name)
    print("Results on the Test Data: %s %f %f %f %f" % (name,cv_result.mean(),cv_res
    print("Results on the Validation data: %f %f" % (recall score(val y, model.pred
Results on the Test Data: logreg 0.729180 0.022243 0.737546 0.742152
```

```
Results on the Test Data: logreg 0.729180 0.022243 0.737546 0.742152
Results on the Validation data: 0.721736 0.726542
Results on the Test Data: tree 0.882908 0.016949 0.886533 0.889800
Results on the Validation data: 0.887871 0.887723
Results on the Test Data: lda 0.738006 0.024670 0.738838 0.741548
Results on the Validation data: 0.725525 0.728460
Results on the Test Data: svc 0.605763 0.022685 0.500000 0.301236
Results on the Validation data: 0.500000 0.296204
Results on the Test Data: knn 0.641071 0.018189 0.622495 0.626699
Results on the Validation data: 0.640372 0.644752
Results on the Test Data: nb 0.534643 0.025895 0.537188 0.535632
Results on the Validation data: 0.548731 0.547077
```

It seems like logistic regressio, Decision Tree and LDA models agree to each other. Hence we will finally use this models into our Ensemble Techniques as our main aim is to increase the Precision and accuracy (decrease the False Positives which are more dangerous in our case).

Ensemble Model

This method combines the decisions from multiple models to improve the overall performance. This can be achieved in various ways, the first method which we would use is Max Voting.

Max voting Ensemble Method

In [92]:

```
from sklearn.ensemble import VotingClassifier
model1 = LogisticRegression()
model2 = LinearDiscriminantAnalysis()
model3 = DecisionTreeClassifier()
model_final = VotingClassifier(estimators=[('lr', model1), ('ld', model2),('tree',momodel_final.fit(train_X,train_y)
print("The accuracy score of the test model using the Max Voting Ensemble Method is:
print (model_final.score(X_test_balanced,Y_test_balanced))
```

The accuracy score of the test model using the Max Voting Ensemble Met hod is: 0.7680779318096665

In [93]:

```
print(classification_report(Y_test_balanced, model_final.predict(X_test_balanced),
```

	precision	recall	fl-score	support
0 1	0.8006 0.7158	0.8190 0.6909	0.8097 0.7031	1608 1061
accuracy macro avg	0.7582	0.7549	0.7681 0.7564	2669 2669
weighted avg	0.7669	0.7681	0.7673	2669

We can see that the Ensemble Method has improved our model to a great extend. Our precision for both 0 and 1 has increaed.

The last model which we can train our model is the

Advanced Ensemble Method of Bagging meta-estimator

Bagging meta-estimator is an ensembling algorithm that can be used for both classification (BaggingClassifier) and regression (BaggingRegressor) problems. It follows the typical bagging technique to make predictions. Following are the steps for the bagging meta-estimator algorithm:

Random subsets are created from the original dataset (Bootstrapping). The subset of the dataset includes all features. A user-specified base estimator is fitted on each of these smaller sets. Predictions from each model are combined to get the final result.:

In [94]:

```
from sklearn.ensemble import BaggingClassifier
from sklearn import tree
model1 = BaggingClassifier(DecisionTreeClassifier())
model1.fit(train_X, train_y)
print("The score using the Decision Tree bagging Classifier is:")
print(model1.score(X_test_balanced,Y_test_balanced))
```

The score using the Decision Tree bagging Classifier is: 0.9119520419632822

We can see that there has been a good increase in the score using bagging classifier and the score has now become 0.91.

In [95]:

```
from sklearn.metrics import roc_auc_score
y_score = model1.predict_proba(X_test_balanced)[:,1]
roc_auc_score(Y_test_balanced, y_score)
```

Out[95]:

0.9752216767247646

In [96]:

```
fpr, tpr, thresholds = metrics.roc_curve(Y_test_balanced, model1.predict(X_test_balance_auc=metrics.auc(fpr, tpr)
import matplotlib.pyplot as plt
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
print("False Positive Rate"+str(fpr))
print("True Positive Rate"+str(tpr))
print("Treshold"+str(thresholds))
```



```
False Positive Rate[0. 0.0659204 1. ]
True Positive Rate[0. 0.87841659 1. ]
Treshold[2 1 0]
```

In [97]:

print(classification_report(Y_test_balanced, model1.predict(X_test_balanced), digits

	precision	recall	f1-score	support
0	0.9209	0.9341	0.9274	1608
1	0.8979	0.8784	0.8880	1061
accuracy			0.9120	2669
macro avg	0.9094	0.9062	0.9077	2669
weighted avg	0.9118	0.9120	0.9118	2669

Here we generate a classification report to check the performance of our Bagging Classifier model. You can see the random forest works on "0" prediction very well, which means it can confidently tell you who is the bad customer which was the main importance for our model. Also, it has a pretty good recall when predicting the loan default behaviours. In laymen's terms, recall means how many cases are predicted correctly among all the true conditions.

Conclusion

We applied machine learning methods to predict the probability that a requested loan on LendingClub will charge off/turn into a bad loan. After training and evaluating with different models (logistic regression, random forest, and Decision tree)and finally using ensemble method we found that in all the cases Decision tree performed the best.We selected RandomForestClassifier (using SMOTE) with the results: Validation Results 0.8879022147931467 0.9444308145240432 Test Results 0.8820985332831892 0.9388568896765618

and Decision tree Bagging Classifier as our final model with AUC SCORE 0.9 on a test set.

Using this model can provide a somewhat informed prediction of the likelihood that a loan will charge off, using only data available to potential investors before the loan is fully funded. The major importance by far was found as the FICO score and the annual income. Hence, deviating from the basic prnciples of banking (FICO) would be risky for an investor.

We also found that, according to the Pearson correlations between the predictors and the response, the most important variables for predicting charge-off are the loan interest rate and term, and the borrower's FICO score and debt-to-income ratio.