Potentiometric Titration Data for Experiment 04 (22MS076 and 22MS140)

Table 1: Volume of NaOH Added vs. Potentiometer Reading

Sl.	Volume of	Potentiometer
No.	NaOH (ml)	\mid (mV)
0	0.0	481
1	1.0	476
$\parallel 2$	2.0	474
3	3.0	472
$\parallel 4$	4.0	469
5	5.0	468
6	6.0	467
7	7.0	465
8	8.0	463
9	9.0	461
10	10.0	459
11	11.0	456
12	12.0	452
13	13.0	446
14	14.0	442
15	15.0	439
16	16.0	434
17	17.0	429
18	18.0	421
19	18.5	416
20	18.8	410
21	19.0	405
22	19.3	399
23	19.5	395
24	19.8	390
25	20.0	383
26	20.3	375
27	20.5	370
28	20.8	362
29	21.0	356
30	21.3	350
31	21.5	345
32	21.8	339
33	22.0	335

Sl.	Volume of	Potentiometer
No.	NaOH (ml)	(mV)
34	22.3	331
35	22.5	328
36	23.0	323
37	24.0	314
38	25.0	306
39	26.0	299
$\parallel 40$	27.0	293
$\parallel 41$	28.0	288
$\parallel 42$	29.0	282
43	30.0	277
44	31.0	272
45	32.0	268
46	33.0	262
47	34.0	257
48	35.2	251
49	36.0	245
50	36.5	240
51	37.0	236
$\parallel 52$	37.5	232
53	38.0	225
$\parallel 54$	38.3	219
$\parallel 55$	38.5	217
56	38.8	211
57	39.0	208
58	39.3	200
59	39.5	196
60	39.8	184
61	40.0	166
62	40.3	78
63	40.6	74
64	40.8	-7
65	41.0	-27