Math 71: Algebra Fall 2022

PSET 5 — 3 november 2022

Prof. Voight Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

- (a) Abstract Algebra by David S. Dummit & Richard M. Foote.
- (b) Algebra by Jacob K. Goldhaber & Gertrude Ehrlich

Problems

- **1.** In this problem, we prove the main ingredients in the fourth isomorphism theorem. Throughout, let G be a group, let $N \subseteq G$ be a normal subgroup. Let $H \subseteq G$ be a subgroup.
 - (a) Define $H/N := \{hN : h \in H\}$. Show that $H/N \le G/N$ is a subgroup. (So given a subgroup of G, we can make a subgroup of G/N.)
 - (a) Since both H and N are subgroups of G, they both contain the identity element of G, ϵ . So the set $H/N = \{hn \colon h \in H, \ n \in N\}$ contains ϵ , particularly when $h = \epsilon$ and $n = \epsilon$.
 - (b) Let $h_1n_1 \in H/N$ and $h_2n_2 \in H/N$. Consider the product, $h_1n_1 \cdot h_2n_2$. Since elements of normal subgroups commute:

$$h_1 n_1 h_2 n_2 = (h_1 h_2)(n_1 n_2)$$
 $(n_1 h_2 = h_2 n_1)$
= $h_3 n_3 \in H/N$ $(h_3 = h_1 h_2 \in H, n_3 = n_1 n_2 \in N)$

So H/N is closed under multiplication.

(c) Let $h_1n_1 \in H/N$. Consider the inverse, $(h_1n_1)^{-1}$. Since elements of normal subgroups commute:

$$(h_1 n_1)^{-1} = n_1^{-1} h_1^{-1}$$

$$= h_1^{-1} n_1^{-1} \qquad (n_1^{-1} h_1^{-1} = h_1^{-1} n_1^{-1} \text{ since } n_1^{-1} \in N)$$

$$= h_2 n_2 \in H/N \qquad (h_2 = h_1^{-1} \in H, \ n_2 = n_1^{-1} \in N)$$

So H/N is closed under inversion.

(b) Show that (HN)/N = H/N. (So we get the same subgroups of G/N by taking those subgroups $H \leq G$ containing N.)

Consider the map $\phi \colon H \to (HN)/N$ defined by $\phi(h) := hnN, \ n \in N$. Take the instance $h \in \ker(G)$, then $hn = \epsilon$, and hnN = N. Thus, we see that one of the cosets of HN/H is N. Using this coset, we can define the image of ϕ as a product of H and N — that is, H/N.

- (c) If $\phi \colon G \to G'$ is a group homomorphism and $H' \subseteq G'$ is a subgroup, show that $\phi^{-1}(H')$ is a subgroup of G. Apply this to the map $\pi \colon G \to G/N$ to conclude that if $H' \subseteq G/N$ is a subgroup, then $\pi^{-1}(H') \subseteq G$ is a subgroup of G containing N. (So we can go backwards.) [Hint: recall that if $f \colon A \to B$ is a map and $Y \subseteq B$ is a subset, then the preimage is $f^{-1}(Y) = \{x \in A : f(x) \in Y\}$. The use of this symbol does not imply that f has an inverse.]
 - (a) Let ϵ' be the identity element of G'. Then $\phi(\epsilon) = \epsilon' \in H'$. So $\phi^{-1}(\{\epsilon'\}) = \{\epsilon\}$. Therefore, $\phi^{-1}(H')$ contains the identity element of G.
 - (b) For $h_1, h_2 \in H'$, let $g_1 = \phi^{-1}(h_1)$ and $g_2 \in \phi^{-1}(h_2)$. Then $\phi(g_1) \in H'$ and $\phi(g_2) \in H'$. So $\phi(g_1g_2) = \phi(g_1)\phi(g_2) \in H'$. By definition of the isomorphism mapping elements in G to elements in H',

Let $g \in \ker(\phi)$, then $\phi(g) = \epsilon$. So $\phi^{-1}(\epsilon) = \{g \in G : \phi(g) = \epsilon\} = \{g \in G : g = \epsilon\} = \{\epsilon\}$. Thus, $\phi^{-1}(H')$ is closed under the identity element. Let $g_1 \in \phi^{-1}(H')$ and $g_2 \in \phi^{-1}(H')$. Then $\phi(g_1) \in H'$ and $\phi(g_2) \in H'$. So $\phi(g_1g_2) = \phi(g_1)\phi(g_2) \in H'$. Thus, $\phi^{-1}(H')$ is closed under multiplication. Let $g \in \phi^{-1}(H')$. Then $\phi(g) \in H'$. So $\phi(g^{-1}) = (\phi(g))^{-1} \in H'$. Thus, $\phi^{-1}(H')$ is closed under inversion.

(d) Show that if $H \subseteq G$ is normal, then $H/N \subseteq G/N$ is normal.

2. (DF 3.5.3)

(a) Prove that S_n is generated by the set $\{(1\ 2), (2\ 3), \dots, (n-1\ n)\}$. [Hint: Consider conjugates, e.g. $(2\ 3)(1\ 2)(2\ 3)^{-1}$.]

First, we note that every permutation can be written as a product of transpositions. Consider the trivial cases of n=1. Then S_1 is generated by the single identity element. For S_2 , we have the two elements $(1\ 2)$ and $(2\ 1)$, which are both transpositions generated by $(1\ 2)$. For each $n\geq 3$, supposing we have already shown that $S_{(n-1)}$ is generated by the set $\{(1\ 2), (2\ 3), \ldots, (n-2\ n-1)\}$, we can generate any element $(i\ n)$ by conjugation:

$$(i (n-1)) \cdot ((n-1) n) \cdot ((n-1) i) = (i n)$$

(b) Show that every element in A_n for $n \geq 3$ can be written as the product of (not necessarily disjoint) 3-cycles.

The alternating group A_n is generated by all cycles that can be written as an even product of transpositions. For any $a,b,c\in\{1,2,\ldots,n\}$, The cycle $(a\ b\ c)$ can be written as two transpositions of a:

$$(a\,b\,c)=(a\,b)(b\,c)$$

Essentially, every 3-cycle is a product of two transpositions. Since every elements in A_n can be written as a product of **even** transpositions, every element in A_n can also be written as a product of the 3-cycles constituting contiguous pairs of those transpositions.

3. (DF 4.1.4)

Let S_3 act on the set Ω of ordered pairs: $\{[i,j]: 1 \leq i,j \leq 3\}$ by $\sigma([i,j]) = [\sigma(i),\sigma(j)]$. Let's write square brackets around these ordered pairs so there is no chance we will get confused between them and permutations (we should have been OK since there are commas involved).

- (a) For each $\sigma \in S_3$ find the cycle decomposition of σ under this action (i.e., find its cycle decomposition when σ is considered as an element of S_9 —first fix a labelling of these nine ordered pairs). Is the action faithful?
- (b) Find the orbits of S_3 on Ω . Is the action transitive?
- (c) For each orbit \mathcal{O} of S_3 acting on these nine points, pick some $a \in \mathcal{O}$ and find the stabilizer of a in S_3 . What does this have to do with the orbit-stabilizer lemma (DF, Proposition 2, §4.1, p. 114)?

- 4. (DF 3.4.2, 4.3.2)
 - (a) Give a composition series for each of the groups D_8 , Q_8 , and $\mathbb{Z}/8\mathbb{Z}$.
 - (a) Composition series for $D_8 = \langle r, s : r^4 = s^2 = 1, rs = sr^{-1} \rangle$:

$$1 < \langle s \rangle \cong \langle r^2 \rangle \cong \langle sr^n, n \in \mathbb{Z}^+ \rangle \cong C_2$$
$$< \langle r \rangle \cong C_4, \{1, r^2, s, sr^2\} \cong \{1, r^2, sr, sr^3\} \cong V_4 < D_8$$

Note: subgroups isomorphic to V_4 in D_8 are: $\{1, r^2, s, sr^2\}$ and $\{1, r^2, sr, sr^3\}$.

(b) Composition series for $Q_8=\langle i,j,k\colon i^2=j^2=k^2=-1,ij=k,\ jk=i,\ ki=j\rangle$

$$1 < \langle -1 \rangle \cong C_2 < \langle i \rangle \cong \langle j \rangle \cong \langle k \rangle < Q_8$$

(c) Composition series for $\mathbb{Z}/8\mathbb{Z}$

$$1 < \mathbb{Z}/2\mathbb{Z} \cong C_2 < \mathbb{Z}/4\mathbb{Z} \cong C_4 < \mathbb{Z}/8\mathbb{Z} \cong C_8$$

(b) List all conjugacy classes in the groups D_8 , Q_8 , $\mathbb{Z}/8\mathbb{Z}$.

Conjugacy classes are the sets of elements that are conjugate to each other.

(a) D_8 has 5 conjugacy classes:

$$\{1\}, \{r, r^3\}, \{r^2\}, \{s, sr^2\}, \{sr, sr^3\}$$

(b) Q_8 has 5 conjugacy classes:

$$\{1\}, \{-1\}, \{i, -i\}, \{j, -j\}, \{k, -k\}$$

(c) $\mathbb{Z}/8\mathbb{Z}$ has 8 conjugacy classes. Because the group is Abelian, each element is its own conjugate.

5. (DF 4.3.25)

Almost by definition, a normal subgroup is a union of conjugacy classes. If H < G is a proper subgroup of a finite group G, then G is not the union of conjugates of H, i.e., $G \neq \bigcup_{g \in G} gHg^{-1}$. (You are not asked to prove this.)

Let
$$G := \operatorname{GL}_2(\mathbb{C})$$
, and let $H = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{C}, ac \neq 0 \right\}$.

(a) Show that H is not normal in G.

Let $g \in G$, $h \in H$. Suppose H is normal in G, then $ghg^{-1} \in H$.

Take
$$g = \begin{pmatrix} w & x \\ y & z \end{pmatrix}$$
 and let's define $g^{-1} = \begin{pmatrix} w' & x' \\ y' & z' \end{pmatrix}$. Let's take $h = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$.

Then:

$$hg^{-1} = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \cdot \begin{pmatrix} w' & x' \\ y' & z' \end{pmatrix}$$

$$= \begin{pmatrix} aw' + by' & ax' + bz' \\ cy' & cz' \end{pmatrix}$$

$$g(hg^{-1}) = \begin{pmatrix} w & x \\ y & z \end{pmatrix} \cdot \begin{pmatrix} aw' + by' & ax' + bz' \\ cy' & cz' \end{pmatrix}$$

$$= \begin{pmatrix} w(aw' + by') + xcy' & w(ax' + bz') + xcz' \\ zcy' & zcz' \end{pmatrix}$$

If $ghg^{-1} \in H$, then zcy' = 0. That would require that either z, c, y' is 0.

- (a) In the case of z = 0, then clearly the choice of g doesn't cover the entirety of G.
- (b) In the case of c=0, then the matrix h is not in H, since in the definition of H we restricted the product $ac \neq 0$. This causes a contradiction.
- (c) In the case y'=0, then w' and z' must non-zero (for the matrix g^{-1} to be invertible), and, in-fact, $g^{-1} \in H$, which implies that $g \in H$. If $g \in H$, and H < G, then the choice of g doesn't cover the entirety of G.

Therefore, we can conclude that H is not normal in G because it is not normal to all the elements in G.

(b) Prove that every element of G is conjugate to some element of the subgroup H and deduce that G is the union of conjugates of H. [Hint: Every polynomial over \mathbb{C} has a root; use this to show that every element of $\mathrm{GL}_2(\mathbb{C})$ has an eigenvector.]

Consider
$$g = \begin{pmatrix} w & x \\ y & z \end{pmatrix} \in G$$
, and $h = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in H$. Let's define $g^{-1} = \begin{pmatrix} w' & x' \\ y' & z' \end{pmatrix}$.

Every matrix $g \in G$ has the characteristic equation: $x^2 - (w+z)x + (wx-yz) = 0$. Since every polynomial over $\mathbb C$ has a root, every matrix $g \in G$ has an eigenvector.