SEQUENCE LISTING

<110> Takeda Pharmaceutical Company Limited

<120> Novel Method Of Screening

<130> G05-0051

<150> PCT/JP2004/005829

<151> 2004-04-22

<150> JP 2003-118760

<151> 2003-04-23

<160> 7

<210> 1

<211> 353

<212> PRT

<213> Homo sapiens

<400> 1

Met Glu Thr Asn Phe Ser Ile Pro Leu Asn Glu Thr Glu Glu Val Leu 5

15 10

Pro Glu Pro Ala Gly His Thr Val Leu Trp Ile Phe Ser Leu Leu Val

20 25 30

His Gly Val Thr Phe Val Phe Gly Val Leu Gly Asn Gly Leu Val Ile

35 40 45

Trp Val Ala Gly Phe Arg Met Thr Arg Thr Val Asn Thr Ile Cys Tyr

	50					55					60				
Leu	Asn	Leu	Ala	Leu	Ala	Asp	Phe	Ser	Phe	Ser	Ala	Ile	Leu	Pro	Phe
65					70					75					80
Arg	Met	Val	Ser	Val	Ala	Met	Arg	Glu	Lys	Trp	Pro	Phe	Ala	Ser	Phe
				85					90					95	
Leu	Cys	Lys	Leu	Val	His	Val	Met	Ile	Asp	Ile	Asn	Leu	Phe	Val	Ser
			100					105					110		
Val	Tyr	Leu	Ile	Thr	Ile	Ile	Ala	Leu	Asp	Arg	Cys	Ile	Cys	Val	Leu
		115					120					125			
His	Pro	Ala	Trp	Ala	Gln	Asn	His	Arg	Thr	Met	Ser	Leu	Ala	Lys	Arg
	130					135					140				
Val	Met	Thr	Gly	Leu	Trp	Ile	Phe	Thr	Ile	Val	Leu	Thr	Leu	Pro	Asn
145					150					155					160
Phe	Ile	Phe	Trp	Thr	Thr	Ile	Ser	Thr	Thr	Asn	Gly	Asp	Thr	Tyr	Cys
				165					170					175	
Ile	Phe	Asn	Phe	Ala	Phe	Trp	Gly	Asp	Thr	Ala	Val	Glu	Arg	Leu	Asn
			180					185					190		
Val	Phe	Ile	Thr	Met	Ala	Lys	Val	Phe	Leu	Ile	Leu	His	Phe	Ile	Ile
		195					200					205			
Gly	Phe	Thr	Val	Pro	Met	Ser	Ile	Ile	Thr	Val	Cys	Tyr	Gly	Ile	Ile
	210					215					220				
Ala	Ala	Lys	Ile	His	Arg	Asn	His	Met	Ile	Lys	Ser	Ser	Arg	Pro	Leu
225					230					235					240
Arg	Val	Phe	Ala	Ala	Val	Val	Ala	Ser	Phe	Phe	Ile	Cys	Trp	Phe	Pro
				245					250					255	
Tyr	Glu	Leu	Ile	Gly	Ile	Leu	Met	Ala	Val	Trp	Leu	Lys	Glu	Met	Leu
			260					265					270		
Leu	Asn	Gly	Lys	Tyr	Lys	Ile	Ile	Leu	Val	Leu	Ile	Asn	Pro	Thr	Ser
		275					280					285			

 Ser
 Leu
 Ala
 Phe
 Asn
 Ser
 Cys
 Leu
 Asn
 Pro
 Ile
 Leu
 Tyr
 Val
 Phe

 290
 295
 295
 300
 300
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 9
 8
 9
 8
 9
 8
 9
 8
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9

345

350

Met

<210> 2

<211> 1059

<212> DNA

<213> Homo sapiens

340

<400> 2

atggaaacca acttetecat teetetgaat gaaactgagg aggtgeteee tgageetget 60 ggccacaccg ttctgtggat cttctcattg ctagtccacg gagtcacctt tgtcttcggg 120 gtcctgggca atgggcttgt gatctgggtg gctggattcc ggatgacacg cacagtcaac 180 accatctgtt acctgaacct ggccctagct gacttctctt tcagtgccat cctaccattc 240 cgaatggtct cagtcgccat gagagaaaaa tggccttttg cgtcattcct atgtaagtta 300 gttcatgtta tgatagacat caacctgttt gtcagtgtct acctgatcac catcattgct 360 ctggaccgct gtatttgtgt cctgcatcca gcctgggccc agaaccatcg caccatgagt 420 ctggccaaga gggtgatgac gggactctgg attttcacca tagtccttac cttaccaaat 480 ttcatcttct ggactacaat aagtactacg aatggggaca catactgtat tttcaacttt 540 gcattctggg gtgacactgc tgtagagagg ttgaacgtgt tcattaccat ggccaaggtc 600 tttctgatcc tccacttcat tattggcttc acggtgccta tgtccatcat cacagtctgc 660 tatgggatca tcgctgccaa aattcacaga aaccacatga ttaaatccag ccgtccctta 720 cgtgtcttcg ctgctgtggt ggcttctttc ttcatctgtt ggttccctta tgaactaatt 780

ggcattctaa tggcagtctg gctcaaagag atgttgttaa atggcaaata caaaatcatt 840 cttgtcctga ttaacccaac aagctccttg gcctttttta acagctgcct caacccaatt 900 ctctacgtct ttatgggtcg taacttccaa gaaagactga ttcgctcttt gcccactagt 960 ttggagaggg ccctgactga ggtccctgac tcagcccaga ccagcaacac acaccact 1020 tctgcttcac ctcctgagga gacggagtta caagcaatg 1059

<210> 3

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> amino acid sequence of GHRP-6

<220>

<223> Trp is a D-form

<400> 3

His Trp Ala Trp Phe Lys

1

5

<210> 4

<211> 11

<212> PRT

<213> Aplysia sp.

<400> 4

Ala Arg Pro Gly Tyr Leu Ala Phe Pro Arg Met

1

5

10

<210> 5 <211> 12 <212> PRT <213> Sus scrofa <400> 5 Met Pro His Ser Phe Ala Asn Leu Pro Leu Arg Phe 1 5 10 <210> 6 <211> 36 <212> PRT <213> Homo sapiens <400> 6 Tyr Pro Ser Lys Pro Asp Asn Pro Gly Glu Asp Ala Pro Ala Glu Asp 1 5 10 15 Leu Ala Arg Tyr Tyr Ser Ala Leu Arg His Tyr Ile Asn Leu Ile Thr 20 25 30 Arg Gln Arg Tyr 35 <210> 7 <211> 10.

<400> 7

<212> PRT

<213> Homo sapiens

Gly Asn His Trp Ala Val Gly His Leu Met
1 5 10