3. Proyectividades

3.1 Siguin en \mathbb{P}^3 tres rectes r, s i t no coplanàries dos a dos i l_1, l_2, l_3, l_4 quatre rectes diferents tallant a r, s i t. Siguin P_i, Q_i, R_i les interseccions de l_i amb r, s i t respectivament, i = 1, 2, 3, 4. Demostreu que:

$$(P_1, P_2, P_3, P_4) = (Q_1, Q_2, Q_3, Q_4) = (R_1, R_2, R_3, R_4)$$

3.2 Es consideren, en un espai projectiu \mathbb{P}^3 de dimensió 3, dues rectes disjuntes r i s i rectes ℓ_i , $i=1\ldots,4$, tals que

$$\ell_1 \cap r$$
, $\ell_2 \cap r$, $\ell_3 \cap r$, $\ell_4 \cap r$

i

$$\ell_1 \cap s$$
, $\ell_2 \cap s$, $\ell_3 \cap s$, $\ell_4 \cap s$

són quaternes de punts diferents amb igual raó doble. Es demana demostrar que tota recta que talla a ℓ_1, ℓ_2, ℓ_3 , talla també a ℓ_4 .

3.3 En un pla projectiu es consideren dos punts diferents O i O', i rectes r, s, t per O i r', s', t' per O', diferents dues a dues i diferents de OO'. Demostreu que els punts $r \cap r'$, $s \cap s'$ i $t \cap t'$ estan alineats si i només si

$$(r, s, t, OO') = (r', s', t', OO').$$

- 3.4 Considerem en \mathbb{P}^2 un triangle ABC i una recta l que no passa per cap dels punts A, B, C. Anomenem A', B', C' els punts en què l talla els costats oposats dels vèrtexs A, B, C, respectivament. Sigui O un punt de l, diferent de A', B', C'. Proveu: (l, OA, OB, OC) = (O, A', B', C').
- 3.5 Sea L una recta en un plano proyectivo y $A, B, C \in L$ tres puntos distintos de la misma. Sean por otra parte P, Q, R tres puntos distintos de dicho plano, no pertenecientes a L. Demostrar que se tiene la igualdad de razones dobles

$$(PA, PB, PC, PR) = (QA, QB, QC, QR)$$

si y sólo si los puntos P, Q, R están alineados.

3.6 Homografies de \mathbb{P}^1 .

Sigui $\varphi: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$ una homografia. Considerant a \mathbb{P}^1 una referència, la matriu de φ serà de la forma $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ amb $ad - bc \neq 0$, és a dir, si $P = (x_0 : x_1) \in \mathbb{P}^1$, llavors $\varphi(P) = (ax_0 + bx_1 : cx_0 + dx_1)$.

- (a) Si la coordenada absoluta de P és $x \neq \infty$, demostreu que la coordenada absoluta de $\varphi(P)$ és $x' = \frac{ax+b}{cx+d}$ (amb les regles usuals de càlcul amb ∞). Demostreu que no es pot donar que ax+b=0 i cx+d=0 alhora (és a dir, numerador i denominador no es poden anul.lar al mateix temps). Aquesta s'anomena l'equació de φ en coordenades absolutes.
- (b) Busqueu la imatge del punt que té com a coordenada absoluta ∞ .
- (c) Si x és la coordenada absoluta de P i x' la de $\varphi(P)$, escrivim l'equació de φ amb coordenada absoluta de la forma:

$$Axx' + B_1x + B_2x' + C = 0$$

on
$$A = c, B_1 = -a, B_2 = d, C = -b$$
 i tenim $AC - B_1B_2 \neq 0$.

Demostreu que l'equació dels punts fixos de φ és $Ax^2 + (B_1 + B_2)x + C = 0$ i que ∞ és fix si i només si A = 0.

- (d) Trobeu condicions sobre A, B, C, per a que φ tingui:
 - dos punts fixos (homografia hiperbòlica)
 - un sol punt fix (homografia parabòlica)
 - cap punt fix (homografia el.líptica)
- (e) Una homografia $\phi: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$ és una involució si i només si $\phi^2 = I$ i $\phi \neq I$. Proveu que φ és una involució si i només si $B_1 = B_2$. Deduïu que φ és una involució si i només si la matriu M de φ té traça 0.

3 mm

- 3.7 Siguin r, s dues rectes diferents de \mathbb{P}^2 , $O = r \cap s$ i $\varphi : r \longrightarrow s$ una projectivitat.
 - (a) Proveu: φ és perspectiva $\Leftrightarrow \varphi(O) = O$.
 - (b) Proveu que els punts de la forma $P\varphi(Q)\cap Q\varphi(P)$ determinen una recta al variar P,Q sobre r. Aquesta recta s'anomena $eix\ de\ la\ projectivitat$.
 - (c) Deduïu de l'apartat ii) un mètode per construir gràficament la imatge $\varphi(T)$ d'un punt $T \in r$, coneguts l'eix de la projectivitat φ i la imatge d'un punt fixat $P \in r$, $P \neq O$.
 - (d) Doneu una caracterització dels punts d'intersecció de r i s amb l'eix de la projectivitat. Doneu una caracterització de la perspectiva en termes de l'eix de la projectivitat.
- 3.8 Sigui $\varphi: \mathbb{P}^2 \longrightarrow \mathbb{P}^2$, $\varphi \neq id$, una projectivitat que té tres punts fixos no alineats A, B, C.
 - (a) Escolliu una referència i escriviu la matriu de φ .
 - (b) Donat $Q \in \mathbb{P}^2$ tal que no està sobre el triangle ABC, proveu que les raons dobles següents:

$$(Q, \varphi(Q), Q\varphi(Q) \cap AB, Q\varphi(Q) \cap AC)$$
$$(Q, \varphi(Q), Q\varphi(Q) \cap AB, Q\varphi(Q) \cap BC)$$
$$(Q, \varphi(Q), Q\varphi(Q) \cap AC, Q\varphi(Q) \cap BC)$$

no depenen del punt Q escollit.

- 3.9 Donats dos triangles ABC i A'B'C' i un punt O de manera que AA', BB', CC' són rectes diferents i concurrents en O, proveu:
 - (a) Existeix una i només una projectivitat que transforma A, B, C en A', B', C' respectivament i deixa O fix
 - (b) Aquesta projectivitat té una recta de punts fixos.
 - (c) Feu servir els apartats anteriors per provar el teorema de Desargues.
- 3.10 **Homologia general de** \mathbb{P}^2 . Sigui $\varphi: \mathbb{P}^2 \longrightarrow \mathbb{P}^2$ una homografia que té un punt fix P i una recta r de punts fixos tal que $P \notin r$.
 - (a) Proveu que el feix de rectes per P és un feix de rectes fixes.
 - (b) Escolliu una referència en \mathbb{P}^2 i escriviu la matriu de φ .
 - (c) Donat $Q \in \mathbb{P}^2$, $Q \notin r$ i $Q \neq P$ sigui $\bar{Q} = PQ \cap r$. Proveu que $(P, \bar{Q}, Q, \varphi(Q))$ no depèn del punt Q escollit. Si anomenem λ a aquesta raó doble, diem que φ és una homologia general de centre P, eix r i raó λ .
 - (d) Sigui $f: E \longrightarrow E$ un representant qualsevol de φ . Proveu que f té dos valors propis, un de multiplicitat 1 i un de multiplicitat 2 i que el seu quocient és λ .

- 3.11 **Homologia especial de** \mathbb{P}^2 . Sigui $\varphi: \mathbb{P}^2 \longrightarrow \mathbb{P}^2$ una homografia que té una recta r de punts fixos i cap més punt fix.
 - (a) Proveu que existeix un feix de rectes fixes per un punt $P \in r$. φ s'anomena homologia especial d'eix r i centre P.
 - (b) Escolliu una referència a \mathbb{P}^2 i escriviu la matriu de φ .
- 3.12 Es consideren en un espai projectiu \mathbb{P} de dimensió tres, tres rectes L_1, L_2, L_3 disjuntes dues a dues.
 - i) Demostreu que existeix una referència projectiva en la qual les rectes tenen equacions:

$$L_1 = \{Y = Z = 0\}$$

 $L_2 = \{X = T = 0\}$
 $L_3 = \{X = Y, Z = T\}$

- ii) Si R_1, R_2, R_3 són tres rectes disjuntes dues a dues de \mathbb{P} , demostreu que existeix una projectivitat $f: \mathbb{P} \longrightarrow \mathbb{P}$ tal que $f(L_i) = R_i$, i = 1, 2, 3.
- 3.13 **Biaxial de** \mathbb{P}^3 . Sigui $\varphi: \mathbb{P}^3 \longrightarrow \mathbb{P}^3$, $\varphi \neq id$, una homografia que té dues rectes de punts fixos r i s, que es creuen.
 - (a) Proveu que hi ha dos feixos de plans fixes i determineu-ne les varietats base.
 - (b) Escolliu una referència i determineu la matriu de φ .
 - (c) Sigui $Q \in \mathbb{P}^3$, $Q \notin r$ i $Q \notin s$. Proveu que la recta $Q\varphi(Q)$ talla a r i a s, i que la raó doble $(Q, \varphi(Q), Q\varphi(Q) \cap r, Q\varphi(Q) \cap s)$ no depèn del punt Q. Diem que φ és una homografia biaxial.
- 3.14 Siguin r, s i t tres rectes de \mathbb{P}^3 que es creuen dues a dues. Estudieu les homografies de \mathbb{P}^3 que deixen fixes cadascuna de les tres rectes i tals que la seva restricció a t és una homografia hiperbòlica.
- 3.15 Es consideren a \mathbb{P}^2 dues rectes diferents r i s i la perspectiva $g:r\longrightarrow s$ de centre $O\notin r\cup s$. Estudieu les homografies de \mathbb{P}^2 que deixen O fix i tals que la seva restricció a r és g.
- 3.16 Siguin A, A', B, B' els vèrtexos d'un quadrivèrtex a \mathbb{P}^2 . Demostreu que existeix una i només una homologia especial f de \mathbb{P}^2 que transforma A en A' i B en B'. Trobeu el centre i l'eix de f.
- 3.17 Donat en el pla \mathbb{P}^2 un triangle ABC, determineu les homografies φ de \mathbb{P}^2 que deixen invariants AB i AC i tals que $\varphi|AB$ és la involució de punts fixos A i B i $\varphi|AC$ és la involució de punts fixos A i C. Determineu els punts i rectes fixes per una tal φ .
- 3.18 Siguin r, s dues rectes que es creuen d'un espai projectiu \mathbb{P}_3 , de dimensió tres sobre \mathbb{R} , i f una projectivitat de \mathbb{P}_3 que deixa r i s invariants de manera que $f_{|r}$ i $f_{|s}$ són homografies parabòliques. Determineu els punts fixos i els plans invariants de f.
- 3.19 Sigui $\varphi: \pi_1 \longrightarrow \pi_2$ una projectivitat entre plans diferents d'un espai projectiu de dimensió 3. Demostreu que són equivalents les condicions:
 - (a) Existeix un punt $O \notin \pi_1 \cup \pi_2$ tal que per a tot $P \in \pi_1$ els punts $O, P, \varphi(P)$ estan alineats.
 - (b) Els punts de $\pi_1 \cap \pi_2$ són fixos per φ .

- 3.20 Sean L y T variedades lineales suplementarias de \mathbb{P}^n ($L \vee T = \mathbb{P}^n$, $L \cap T = \emptyset$). Sea φ una homografía no idéntica de \mathbb{P}^n que deja fijos todos los puntos de L y de T. Probar que si $p \notin L \cup T$, entonces el punto p no es fijo para φ y la recta $p \vee \varphi(p)$ corta a L y a T.
- 3.21 En un plano proyectivo \mathbb{P}_2 se consideran un triángulo T, con vertices p_0, p_1, p_2 , y un punto p no situado en ninguno de sus lados. Si para cada i = 0, 1, 2, se denota por q_i el punto intersección de la recta pp_i con el lado de T opuesto a p_i , sea h la proyectividad que deja fijo p y transforma p_i en q_i , i = 0, 1, 2. Demostrar que para cualquier q de \mathbb{P}_2 , los puntos q, h(q) y $h^3(q)$ están alineados.
- 3.22 En un plano proyectivo se tienen dos rectas r y r' que se cortan en un punto O, y puntos distintos $A, B, C \in r$ y $A', B', C' \in r'$, todos distintos de O. Se tiene también una proyectividad $f: r \to r'$ que cumple f(O) = O, f(A) = A', f(B) = B', f(C) = C'. Suponiendo que las rectas AC', BB', CA' son concurrentes, calcular (O, A, B, C).