CO 250: Introduction to Optimization

Module 3: Duality Through Examples (Shortest Path Algorithm)

© University of Waterloo

The figure on the right shows another simple instance of the shortest s,t-path problem.

By inspection, we see the shortest s,t-path (bold edges) has length 5.

We know this because there is a feasible width assignment, of value 5, proving optimality!

Shortest path LP:

$$\min \quad \sum (x_e : e \in E)$$

s.t.
$$\sum (x_e \,:\, e \in \delta(S)) \geq 1$$

$$(\delta(S) \,\, s, t\text{-cut})$$

$$x > 0$$

Shortest path dual:

$$\max \quad \sum (y_S \, : \, \delta(S) \, \, s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
 $(e \in E)$

© University of Waterloo 2/

Shortest path LP:

$$\min \quad \sum (x_e : e \in E)$$

s.t.
$$\sum (x_e \,:\, e \in \delta(S)) \geq 1$$

$$(\delta(S) \,\, s, t\text{-cut})$$

$$x > 0$$

Shortest path dual:

$$\max \quad \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$

$$(e \in E)$$

$$y \ge 0$$

$$x_e = \begin{cases} 1 & e \text{ bold in figure} \\ 0 & \text{otherwise} \end{cases}$$

for all $e \in E$ is feasible for a shortest path LP.

$$y_{\{s\}} = y_{\{s,b\}} = 1, \ y_{\{s,a,b,c\}} = 3,$$

and $y_S=0$ for all other s,t-cuts, $\delta(S)$ yields a feasible dual solution of value 5!

Shortest path LP:

$$\min \quad \sum (x_e : e \in E)$$

s.t.
$$\sum (x_e \,:\, e \in \delta(S)) \geq 1$$

$$(\delta(S) \,\, s, t\text{-cut})$$

$$x \geq 0$$

Shortest path dual:

$$\max \quad \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$

$$(e \in E)$$

$$y \ge 0$$

Theorem

[Weak Duality] If \bar{x} is feasible for a shortest path LP and \bar{y} is feasible for its dual, then $b^T\bar{y} \leq c^T\bar{x}$.

 \longrightarrow The **bold** path in the figure is a shortest s, t-path!

©University of Waterloo 4 / 1

Theorem

[Weak Duality] If \bar{x} is feasible for shortest path LP and \bar{y} is feasible for its dual, then $b^T\bar{y} \leq c^T\bar{x}$.

 \longrightarrow The **bold** path in the figure is a shortest s, t-path!

Today:

- 1. How did we find the bold path?
- 2. How did we find the dual solution?
- 3. Is there always a dual solution whose values matches the length of a shortest *s*, *t*-path?

©University of Waterloo 5/1

An Algorithm for the Shortest s, t-Path Problem

©University of Waterloo 6/

Arcs and Directed Paths

So far, we know that edges of a graph G=(V,E) are unordered pairs of vertices.

Now we'll introduce arcs – ordered pairs of vertices. We denote an arc from u to v as \overrightarrow{uv} , and draw it as an arrow from u to v.

A directed path is then a sequence of arcs

$$\overrightarrow{v_1v_2}, \overrightarrow{v_2v_3}, \dots, \overrightarrow{v_{k-1}v_k},$$

where $\overrightarrow{v_iv_{i+1}}$ is an arc in the given graph, and $v_i \neq v_j$ for all $i \neq j$.

Example:

$$\overrightarrow{uv}, \overrightarrow{vw}, \overrightarrow{wx}$$

is a u, x-dipath.

©University of Waterloo 7/

Shortest Paths: Algorithmic Ideas

Idea: Find an s, t-path P and a feasible dual y, s.t. $c(P) = \mathbb{1}^T y$. How do we do this?

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$\mathrm{slack}_y(e) = c_e - \sum (y_U :$$

$$\delta(U) \ s, t\text{-cut, } e \in \delta(U))$$

Recall the shortest path dual:

$$\max \quad \sum (y_S \, : \, \delta(S) \, \, s, t\text{-cut})$$

s.t.
$$\sum (y_S \, : \, e \in \delta(S)) \leq c_e$$

$$(e \in E)$$

$$y \geq 0$$

©University of Waterloo 8 / 1

Shortest Paths: Algorithmic Ideas

Definition

Let y be a feasible dual solution. The slack of an edge $e \in E$ is defined as

$$\mathrm{slack}_y(e) = c_e - \sum (y_U :$$

$$\delta(U) \ s, t\text{-cut}, \ e \in \delta(U))$$

Examples: for the dual y given on the right,

- $slack_y(sa) = 2 1 = 1$
- $slack_y(sd) = 3 1 1 = 1$
- $slack_y(ct) = 4 1 2 = 1$

$$\max \quad \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$

$$(e \in E)$$

$$y > 0$$

©University of Waterloo 9/

We start with the trivial dual y = 0.

The simplest s, t-cut is $\delta(\{s\})$.

 \longrightarrow Increase $y_{\{s\}}$ as much as we can while still maintaining feasibility

$$\longrightarrow y_{\{s\}} = 1$$

Note: This decreases the slack of sc to 0! \longrightarrow Replace sc by \overrightarrow{sc}

Next we look at all vertices that are reachable from s via directed paths:

$$U = \{s, c\}$$

and consider increasing y_U .

Q: By how much can we increase y_U ?

$$\max \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$

$$(e \in E)$$

$$y \ge 0$$

©University of Waterloo 10 / 1

Q: By how much can we increase y_U ?

The maximum increase possible for $y_{\{s,c\}}$ is determined by the slack of edges in $\delta(\{s,c\})!$

$$\begin{aligned} & \mathsf{slack}_y(sa) &=& 2-1=1 \\ & \mathsf{slack}_y(cb) &=& 2 \\ & \mathsf{slack}_y(ct) &=& 4 \\ & \mathsf{slack}_y(cd) &=& 1 \\ & \mathsf{slack}_y(sd) &=& 3-1=2 \end{aligned}$$

Edges cd and sa minimize slack. If we pick one arbitrarily, sa for example, we can then set $y_U = \operatorname{slack}_y(sa) = 1$ and convert sa into arc \overrightarrow{sa} .

$$\max \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$

$$(e \in E)$$

$$y \ge 0$$

©University of Waterloo 11 / 1

 ${f Q}$: Which vertices are reachable from s via directed paths?

$$U = \{s, a, c\}$$

Natural idea: Increase $y_{\{s,a,c\}}$ by as much as we can. How much is this? \longrightarrow the slack of cd is 0, and hence

$$y_{\{s,a,c\}} = 0$$

Also: we can change cd into \overrightarrow{cd} and let

$$U = \{s, a, c, d\}$$

be the reachable vertices from s.

$$\max \quad \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S \, : \, e \in \delta(S)) \leq c_e$$

$$(e \in E)$$

$$y \geq \mathbb{0}$$

©University of Waterloo 12 /

The vertices reachable from \boldsymbol{s} by directed paths are in

$$U = \{s, a, c, d\}$$

Let us compute the slack of edges in $\delta(U)$.

$$\begin{aligned} &\mathsf{slack}_y(ab) &=& 1 \\ &\mathsf{slack}_y(cb) &=& 2-1=1 \\ &\mathsf{slack}_y(ct) &=& 4-1=3 \end{aligned}$$

We let $y_{\{s,a,c,d\}}=1$, add the equality arc \overrightarrow{cb} , and update the set

 $\operatorname{slack}_{u}(dt) = 2$

$$U = \{s, a, b, c, d\}$$

of vertices reachable from s.

$$\max \quad \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y > 0$$

©University of Waterloo 13 / 1

The vertices reachable from \boldsymbol{s} by directed paths are now in

$$U = \{s, a, b, c, d\}$$

Let us compute the slack of edges in $\delta(U)$:

$$\begin{aligned} & \mathsf{slack}_y(bt) &=& 4 \\ & \mathsf{slack}_y(ct) &=& 4-2=2 \\ & \mathsf{slack}_u(dt) &=& 2-1=1 \end{aligned}$$

We let $y_{\{s,a,b,c,d\}} = 1$ and add the equality arc \overrightarrow{dt} .

$$\max \quad \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$
$$(e \in E)$$
$$y > 0$$

©University of Waterloo 14 /

Note: We now have a directed s, t-path in our graph:

$$P = \overrightarrow{sc}, \overrightarrow{cd}, \overrightarrow{dt},$$

Its length is 4 and its value if 4!

We also have a feasible dual solution:

$$y_{\{s\}} = y_{\{s,c\}} = y_{\{s,a,c,d\}} = y_{\{s,a,b,c,d\}} = 1,$$

and $y_U = 0$ otherwise.

Therefore, we know that path P is a shortest path!

$$\max \quad \sum (y_S : \delta(S) \ s, t\text{-cut})$$

s.t.
$$\sum (y_S : e \in \delta(S)) \le c_e$$

$$(e \in E)$$

$$y \ge 0$$

©University of Waterloo

Shortest Path Algorithm

To compute the shortest Path for the instance on the right, we used the following algorithm:

Algorithm 3.2 Shortest path.

Input: Graph G = (V, E), costs $c_e \ge 0$ for all $e \in E$, $s, t \in V$ where $s \ne t$.

Output: A shortest st-path P

- 1: $y_W := 0$ for all st-cuts $\delta(W)$. Set $U := \{s\}$
- 2: while $t \notin U$ do
- 3: Let ab be an edge in $\delta(U)$ of smallest slack for y where $a \in U$, $b \notin U$
- 4: $y_U := \operatorname{slack}_{v}(ab)$
- 5: $U := U \cup \{b\}$
- 6: change edge ab into an arc \overrightarrow{ab}
- 7: end while
- 8: return A directed st-path P.

©University of Waterloo 16/1

Recap

- We saw a shortest path algorithm that simultaneously computes
 - (a) an s, t-path P, and
 - (b) a feasible solution y for the dual of the shortest path LP.
- We will soon show that the length of the output path P, and the value of the dual solution y are the same, thus showing that both P and y are optimal.

©University of Waterloo 17/17