Звіт з лабораторної роботи 2

за дисципліною "Системний аналіз та теорія прийняття рішень" студента групи ПА-17-2 Панасенка Єгора Сергійовича Кафедра комп'ютерних технологій ФПМ, ДНУ, 2020-2021 навч.р. Варант 17

Звіт у форматі PDF доступний за посиланням https://gaurapanasenko.github.io/unilab_opt/SAaDT_Lab2.pdf. Вихідний код доступний за посиланням https://github.com/gaurapanasenko/unilab/tree/master/08/SAaDT_Lab2

Постановка задачі

Потрібно побудувати імітаційну модель роботи каси з продажу квитків за таких параметрів роботи. Відвідувачі приходять до каси через 10 ... 30 сек. Оглядають приміщення – 0 ... 15 сек. і займають чергу. У касі працюють два касири. Кожен касир витрачає на обслуговування відвідувача однаковий час – приблизно 15 ... 25 сек. Каса працює 5 год.

Перша ітерація

GPSS Код

```
SIMULATE

GENERATE 20,10 ;new person every 20sec +-10sec

TRANSFER 0.5,,PROM ;probability 1/2 for queue PROM

ADVANCE 7.5,7.5 ;wait 7.5sec+-7.5sec or 0..15sec, I FOUND MISTAKE!!!!

QUEUE OCH

SEIZE KASS

DEPART OCH

ADVANCE 20,5 ;this kass processes person 20sec +-5sec

RELEASE KASS

TERMINATE

PROM QUEUE OCH1

SEIZE KASS1

DEPART OCH1
```

```
ADVANCE 20,5 ;this kass processes person 20sec +-5sec
RELEASE KASS1
TERMINATE
GENERATE 18000 ;this is seconds!!! I know it!!!
TERMINATE 1
START 1
```

GPSS World звіт

GPSS World Simulation Report - Lab2.16.1 Thursday, April 01, 2021 01:30:53 START TIME END TIME BLOCKS FACILITIES STORAGES 0.000 18000.000 **VALUE** NAME **KASS** 10003.000 KASS1 10001.000 0CH 10002.000 OCH1 10000.000 **PROM** 10.000 LABEL ENTRY COUNT CURRENT COUNT RETRY LOC BLOCK TYPE GENERATE TRANSFER ADVANCE QUEUE SEIZE DEPART ADVANCE RELEASE TERMINATE **PROM** QUEUE SEIZE DEPART ADVANCE RELEASE TERMINATE GENERATE TERMINATE

FACILITY	<i>'</i>	ENTRIES	UT	IL. A	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
KASS1		460	0	.507	19.840) 1	922	0	0	0	0
KASS		460	0	.508	19.871	. 1	920	0	0	0	1
QUEUE		MAX CO	NT.	ENTRY	ENTRY(0)	AVE.COM	IT. AVE	.TIM	E AVI	E.(-0)	RETRY
OCH1		2	0	460	320	0.051	L	1.993	1	6.543	0
OCH		2	1	461	306	0.071	L	2.783	3	8.277	0
FEC XN	PRI	BDT		ASSEM	1 CURRENT	NEXT	PARAM	1ETER	VAI	LUE	
920	0	18004.7	'32	920	7	8					
922	0	18016.6	03	922	13	14					
923	0	18020.5	09	923	0	1					
924	0	36000.6	00	924	0	16					

Аналіз

У попередьному навчальному семестрі я був ознайомлений з деякими командами програмнимного пакету GPSS, але у цій лабораторній роботі з'явилась нова незнайома команда TRANSFER.

"Блок TRANSFER изменяет маршрут движения транзактов в зависимости от значения первого операнда (в основном или альтернативном направлении) при определенном состоянии оборудования: обслуживающих устройств, очереди, логических ключей и т.п.: TRANSFER [A],B,[C],[D] А – режим перехода; В – метка первого альтернативного блока; С – метка второго альтернативного блока; D – константа, используемая для относительной переадресации транзактов."

• Имитационное моделирование на GPSS : учеб.-метод. пособие для студентов технических специальностей / Д. Н. Шевченко, И. Н. Кравченя; М-во образования Респ. Беларусь, Белорус. гос. ун-т трансп. – Гомель : БелГУТ, 2007. – 97 с. - http://simulation.su/uploads/files/default/2007-uch-posobsnevchenko-kravchenko-1.pdf

Таким чином за допомогою тканстве ми задаємо, що із вирогідністю 0.5 ми будемо вибирати другу касу.

Також у постановці задачі, та прикладу на GPSS виявлено та виправлено помилки та розходження, зокрема виправлено, що огляд приміщеня повинен бути все ж таки у діапазоні 0...15 сек, що означає 7.5сек +-7.5сек.

У звіті бачимо що каси не навантажені, і у кожній черзі по 2 максимальних тракзакта і у середному знаходилось [0.061] транзакта, тому можна поэксперементувати із вирогідністю. Фізично це можливо зробити одну із кас на неповний робочий часом, хоча імовірність не зовсім прямий спосіб задання цієї нової моделі з неповний робочим часом.

Друга ітерація

GPSS Код

```
SIMULATE
GENERATE 20,10 ; new person every 20sec +-10sec
TRANSFER 0.94, PROM ; probability 1/2 for queue PROM
ADVANCE 7.5,7.5 ;wait 7.5sec+-7.5sec or 0..15sec, I FOUND MISTAKE!!!!
QUEUE OCH
SEIZE KASS
DEPART OCH
ADVANCE 20,5 ; this kass processes person 20sec +-5sec
RELEASE KASS
TERMINATE
PROM QUEUE OCH1
SEIZE KASS1
DEPART OCH1
ADVANCE 20,5 ;this kass processes person 20sec +-5sec
RELEASE KASS1
TERMINATE
GENERATE 18000 ; this is seconds!!! I know it!!!
TERMINATE 1
START 1
```

GPSS World звіт

```
GPSS World Simulation Report - Lab2_Interesting.16.1

Thursday, April 01, 2021 01:45:58

START TIME END TIME BLOCKS FACILITIES STORAGES
0.000 18000.000 17 2 0
```

NAME KASS KASS1			VALUE									
OCH												
	OCH1				10000.0	100						
	PROM				10.0	000						
LABEL		LOC	BLOC	K TYPE	ENTRY	COUNT	CURREN	T COUN	IT RI	ETRY		
		1	GENE	RATE	8	888		0		0		
		2	TRAN	ISFER	8	88		0		0		
		3	ADVA	NCE		54		0		0		
		4	QUEL	JE		54		0		0		
		5	SEIZ	ĽΕ		54		0		0		
		6	DEPA	ART		54		0		0		
		7	ADVA	NCE		54		0		0		
		8	RELE	ASE		54		0		0		
		9	TERM	INATE		54		0		0		
PROM		10	QUEL	JE	8	34		0		0		
		11	SEIZ	ĽΕ	8	34		0		0		
		12		ART	8	34		0		0		
		13		NCE		34		1		0		
	14		RELEASE			833		0		0		
				INATE		33		0		0		
				RATE	_	1		0		0		
	17			INATE		1		0		0		
FACILITY		ENTRIES	UTI	L. AV	'E. TIME A	VAIL.	OWNER P	END IN	ITER	RETRY	DELAY	
KASS1					19.852							
KASS		54		060			0	0	0	0	0	
			•			_				ŭ		
QUEUE		MAX C	ONT.	FNTRY F	NTRY(0) A	VF . CON	T. AVF.	TTMF	ΔVΙ	F.(-0)	RFTRY	
OCH1		4		834	202			.885		14.365		
OCH		1		54	51		0					
OCH		-	O	54	71	0.001	O	• 555		,.1,3	Ū	
FEC XN	PRI	RDT		ΔSSEM	CURRENT	NFXT	ΡΔΡΔΜΕ	TFR	\/ \ I	UF		
890			.617 890		0	1	ANAIL	ANAPIETEN				
889	0			889		14						
891	0	36000.		891	0	16						
031	U	30000.	000	031	V	10						

Аналіз

Було обрано імовірність 0.94, що тракзакти будуть оброблятися касою каss1, це видно у стовпці UTIL. Як бачимо система працює эфективно, на цій ітерації, але було виявлено, що, якщо підвищувати цю імовірність, то каса кass1 буде перевантажена і таким чином відмовитись від другої каси не можливо.

Висновки

Модель працює стабільно, хоча ці каси простоюють, але спроби відмовитись від другої каси приводять до перевантаження.