QQ4 Equalibria

AQA 2017-2023

			1
0	9	2	The equation shows the final stage in the production of methanol

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

20.1 mol of carbon monoxide and 24.2 mol of hydrogen were placed in a sealed container. An equilibrium was established at 600 K. The equilibrium mixture contained 2.16 mol of methanol.

Calculate the amount, in moles, of carbon monoxide and of hydrogen in the equilibrium mixture.

[2 marks]

Amount of carbon monoxide		
	_	
Amount of hydrogen	n	nol

Question 9 continues on the next page

0 9 . 3	A different mixture of carbon monoxide and hydrogen was allowed to reach equilibrium at 600 K
	At equilibrium, the mixture contained 2.76 mol of carbon monoxide, 4.51 mol of hydrogen and 0.360 mol of methanol. The total pressure was 630 kPa
	Calculate a value for the equilibrium constant, K_p , for this reaction at 600 K and state its units.
	[6 marks]
	Value of K_p Units

14

	Insufficient correct chemistry to gain a mark.		
Question	Answers	Mark	Additional Comments/Guidance
00.0	Moles of carbon monoxide 17.9	1	Allow 17.94
09.2	Moles of hydrogen 19.9	1	Allow 19.88
	pp(CH ³ OH) :		If IC commencing in comment and analysis and a NO 9 MO 9 MA
	$K_{\rm p} = \frac{pp({\rm CH^3OH})}{pp({\rm CO}) \times pp({\rm H_2})2}$ ignore brackets	1	If K _p expression incorrect can only score M2 & M3 & M4
	Total moles of gas = (2.76 + 4.51 + 0.36) = 7.63	1	If CE in M2 allow ecf for M3, M4 and M6 If no total moles calculated then can only score M1 and M6
	$pp(CO) = \frac{2.76}{7.63} \times 630 \text{ (kPa)}$ (= 228 (kPa))		
	$pp(H_2) = \frac{4.51}{7.63} \times 630 \text{ (kPa)}$ (= 372 (kPa))	2	All 3 pp of CO, H ₂ and CH ₃ OH = 2 marks 2 pp correct = 1 mark
09.3	$pp(CH_3OH) = \frac{0.36}{7.63} \times 630 \text{ (kPa)} (= 29.7 \text{ (kPa)})$		
	$K_p = \frac{29.7}{228 \times (372)2} = 9.4(1) \times 10^{-7}$ or $9.4(1) \times 10^{-13}$ if pp in Pa	1	Allow 9.39 to 9.50 x 10 ⁻⁷ (kPa ⁻²)
	can also score M1 from this expression		
	kPa ⁻² or Pa ⁻² (if converted to 630 000)	1	If no marks awarded allow M6 only for <u>kPa⁻²</u> or <u>Pa⁻²</u>
Total		14	

0 2 . 1	Nitrogen and hydrogen were mixed in a 1:3 mole ratio and left to reach equilibrium in a flask at a temperature of 550 K. The equation for the reaction between nitrogen and hydrogen is shown. $N_2(g)+3H_2(g) \rightleftharpoons 2NH_3(g)$ When equilibrium was reached, the total pressure in the flask was 150 kPa and the mole fraction of $NH_3(g)$ in the mixture was 0.80 Calculate the partial pressure of each gas in this equilibrium mixture. [3 marks]	d
	Partial pressure of nitrogenkPa Partial pressure of hydrogenkPa	
	Partial pressure of ammoniakPa	
0 2.2	Give an expression for the equilibrium constant (K_p) for this reaction. [1 mark K_p	k]

0 2 . 3

In a different equilibrium mixture, under different conditions, the partial pressures of the gases are shown in **Table 2**.

Table 2

Gas	Partial pressure / kPa
N ₂	1.20 × 10 ²
H ₂	1.50 × 10 ²
NH ₃	1.10 × 10 ³

Calculate the value of the equilibrium constant (K_p) for this reaction and give its units. [2 marks]

K_p	Units
•	

0 2 . **4** The enthalpy change for the reaction is –92 kJ mol⁻¹

State the effect, if any, of an increase in temperature on the value of \mathcal{K}_p for this reaction.

Justify your answer.

[3 marks]

Effect on K_p			
Justification	_		

Question	Answers	Additional Comments/Guidance	Mark
02.1	pp nitrogen = $0.25 \times 30 = 7.5 \text{ kPa}$ pp hydrogen = $0.75 \times 30 = 22.5 \text{ or } 23 \text{ kPa}$ pp of ammonia = $0.8 \times 150 = 120 \text{ kPa}$	(pp hydrogen + nitrogen = $150-120 = 30 \text{ kPa}$) Alternative method pp hydrogen = $0.15 \times 150 = \underline{22.5 \text{ or } 23} \text{ kPa}$ pp nitrogen = $0.05 \times 150 = \underline{7.5} \text{ kPa}$	1 1 1
02.2	$K_p = \frac{(ppNH_3)^2}{(ppN_2) \times (ppH_2)^3}$	Penalise []	1
02.3	$K_p = \frac{(1.10 \times 10^3)^2}{(1.50 \times 10^2)^3 \times 1.20 \times 10^2}$	No mark for this expression	
02.0	= 0.0029 to 0.003(0) or 2.9 x 10^{-3} to 3(.0) x 10^{-3} kPa ⁻²	If expression inverted in 02.2 allow 1 mark for kPa ² Allow 2.9 to 3(.0) x 10 ⁻⁹ Pa ⁻²	1 1
	decrease/smaller/lower	If increase or no change, 0 marks If blank, mark on	1
02.4	(Reaction/equilibrium) shifts/moves/goes in the endothermic direction (which is to the left)	Allow reaction is exothermic so equilibrium moves to the left side	1
	to reduce the temperature OR oppose the increase in temperature		1
Total			9

Do	not	writ
ou	tside	e the
	ho	_

0 7	Sulfur trioxide decomposes on heating to form an equilibrium mixture containing sulfur dioxide and oxygen. $2SO_3(g) \rightleftharpoons \ 2SO_2(g) + O_2(g)$
0 7.1	A sample of sulfur trioxide was heated and allowed to reach equilibrium at a given temperature. The equilibrium mixture contained 6.08 g of sulfur dioxide.
	Calculate the mass, in g, of oxygen gas in the equilibrium mixture. [2 marks]
	Mass9
	Question 7 continues on the next page

0 7 . 2

A different mass of sulfur trioxide was heated and allowed to reach equilibrium at 1050 $\ensuremath{\mathrm{K}}$

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

The amounts of each substance in the equilibrium mixture are shown in Table 4.

Table 4

Sub	ostance	Amount at equilibrium / mol		
sulf	ur trioxide	0.320		
sulf	ur dioxide	1.20		
оху	gen	0.600		

For this reaction at 1050 K the equilibrium constant, $K_p = 7.62 \times 10^5 \, \text{Pa}$

Calculate the mole fraction of each substance at equilibrium. Give the expression for the equilibrium constant, K_p Calculate the total pressure, in Pa, of this equilibrium mixture.

[4 marks]

Mole fraction SO ₃	
Mole fraction SO ₂	
Mole fraction O ₂	
K_{p}	

Total pressure Pa

0 7.3	For this reaction at 1050 K the equilibrium constant, $K_p = 7.62 \times 10^5 \text{Pa}$ For this reaction at 500 K the equilibrium constant, $K_p = 3.94 \times 10^4 \text{Pa}$	Do not outsid bo
	Explain how this information can be used to deduce that the forward reaction is endothermic. [2 marks]	
0 7.4	Use data from Question 07.3 to calculate the value of K_p , at 500 K, for the equilibrium represented by this equation. Deduce the units of K_p	
	$SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$ [2 marks]	
	Κ _p	
	Units	10
	Turn over for the next question	
	·	

Question	Answers	Additional Comments/Guidelines	Mark
07.1	Moles SO_2 eqbm (=6.08/64.1 = 0.0949) so moles O_2 eqbm = 0.0474 Mass of oxygen (= 0.0474 $\times 32(.0)$) = 1.52 g	Allow 0.0475 Allow M1 x 32	1 1
	M1: Mole fraction $SO_3 = 0.15$ Mole fraction $SO_2 = 0.57$ Mole fraction $O_2 = 0.28$	Accept fractions for M1	1
07.2	M2: $K_p = \frac{(pSO_2)^2 \times (pO_2)}{(pSO_3)^2}$ $(= (\frac{\lambda SO_2)^2 P^2 \times (\lambda O_2) P}{(\lambda SO_3)^2 P^2})$	Do not accept [] λ = mole fraction	1
07.12	M3: $P = \frac{K_p \times (\lambda SO_3)^2}{(\lambda SO_2)^2 \times (\lambda O_2)}$ or $\frac{K_p \times (0.15)^2}{(0.57)^2 \times (0.28)}$	M3 is for rearrangement with or without numbers If incorrect rearrangement allow correct M1 and M2 only	1
	M4 P = 1.91×10^5 (Pa) Allow range 1.88×10^5 to 1.94×10^5		1
	M1 Kp is higher at higher temperature or converse		1
07.3	M2 At higher temperature more dissociation occurs / more products are formed / equilibrium shifts to the right/forward direction	M2: Allow converse arguments M2 dependent on M1.	1
07.4	$(\sqrt{3.94} \times 10^4 \text{ Pa}) = 198.5$	Allow 198 – 198.5 (answer is 198.49)	1
07.4	Pa ^{1/2} or Pa ^{0.5}	If $\sqrt{7.62} \times 10^5 = 873$ then lose M1 but allow M2	1

0 6

Methanol can be manufactured in a reversible reaction as shown.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

 $\Delta H^{\circ} = -91 \text{ kJ mol}^{-1}$

Figure 3 shows how the partial pressures change with time at a constant temperature.

Figure 3

0 6 . 1

Draw a cross (x) on the appropriate axis of **Figure 3** when the mixture reaches equilibrium.

[1 mark]

0 6 . 2

A 0.230 mol sample of carbon monoxide is mixed with hydrogen in a 1:2 mol ratio and allowed to reach equilibrium in a sealed flask at temperature T.

At equilibrium the mixture contains 0.120 mol of carbon monoxide.

The total pressure of this mixture is 1.04×10^4 kPa

Calculate the partial pressure, in kPa, of hydrogen in the equilibrium mixture.

[4 marks]

Partial pressure of hydrogen

kPa

0 6 . 3	Give an expression for the equilibrium constant (K_p) for this reaction.	outside box
	State the units. [2 marks]	
	\mathcal{K}_p	
	Units	
0 6.4	Some more carbon monoxide is added to the mixture in Question 06.2 . The new mixture is allowed to reach equilibrium at temperature <i>T</i> .	
	State the effect, if any, on the partial pressure of methanol and on the value of K_p [2 marks]	
	Effect on partial pressure of methanol	
	Effect on value of K _p	
0 6 . 5	State the effect, if any, of the addition of a catalyst on the value of K_p for this equilibrium. Explain your answer.	
	[2 marks]	
	Effect on value of K _p	
	Explanation	
		11

Turn over for the next question

Question	Answers	Additional comments/Guidelines	Mark
06.1	Partial pressure CH ₃ OH H ₂ CO	X must be on or just below line of x axis	1
06.2	M1 Equilibrium $n(H_2) = 0.24$ M2 Total number of moles = 0.47 M3 Mole fraction of $H_2 = 0.51(1)$ or 0.24 0.47 M4 Partial pressure of hydrogen = 5310 or 5.31×10^3 kPa	M3 Allow mole fraction of $H_2 = \frac{M1}{M2}$ M4 Allow Partial pressure of hydrogen $= M3 \times 1.04 \times 10^4$	1 1 1

06.3	M1 $K_p = \frac{ppCH_3OH}{ppH_2^2 \times ppCO}$ OR $\frac{pCH_3OH}{pH_2^2 \times pCO}$	Do not allow square brackets	1
	Pa ⁻² or kPa ⁻²	Allow any pressure to power of ⁻²	1
06.4	M1 Increases		1
00.4	M2 No effect		1
	M1 No effect		1
06.5	M2 Increases <u>rate</u> of forward and backward reaction equally/by the same amount OR catalyst does not affect position of equilibrium	M2 Allow Catalyst does not appear in the K_p expression M2 Allow Only temperature affects Kp Ignore Catalysts increase the rate of reaction or rate at which equilibrium is reached	1

0 5	This question is about the equilibrium	
	$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$	
0 5.1	State and explain the effect, if any, of a decrease in overall pressure on the equilibrium yield of SO_3	[3 marks]
	Effect	
	Explanation	
0 5.2	A 0.460 mol sample of SO_2 is mixed with a 0.250 mol sample of O_2 in a sealed container at a constant temperature. When equilibrium is reached at a pressure of 215 kPa, the mixture contains 0.180 mol of SO_3	
	Calculate the partial pressure, in kPa, of SO ₂ in this equilibrium mixture.	[4 marks]
	Partial pressure of SO ₂	kPa

0 5 . 3

A different mixture of SO₂ and O₂ reaches equilibrium at a different temperature.

Table 4 shows the partial pressures of the gases at equilibrium.

Table 4

Gas	Partial pressure / kPa	
SO ₂	1.67 × 10 ²	
O ₂	1.02 × 10 ²	
SO ₃	1.85 × 10 ²	

Give an expression for the equilibrium constant (K_p) for this reaction.

Calculate the value of the equilibrium constant for this reaction and give its units.

[3 marks]

 K_p

K_p _____

0 5.4	What is the effect on the value of K_p if the pressure of this equilibrium mixture is increased at a constant temperature?	Do not write outside the box
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ [1 mark] Tick (\checkmark) one box.	
	Tick (*) One box.	
	The value of K_p	
	increases.	
	stays the same.	
	decreases.	11

Turn over for the next question

MARK SCHEME – A-LEVEL CHEMISTRY – 7405/1 – JUNE 2021

Question	Answers	Additional comments/Guidelines	Mark
	M1 decreases yield		1
05.1	M2 So equilibrium shifts to side with more moles/molecules or more moles/molecules on LHS	Allow M2 independent of M1	1
	M3 So equilibrium shifts (to left side) to oppose decrease in pressure OR to increase pressure	Must refer to equilibrium shifting to gain maximum marks	1

Question	Answers	Additional comments/Guidelines	Mark
	M1 amount SO ₂ (= 0.46 – 0.18) = 0.28 mol		1
	M2 amount O_2 (= 0.25 – 0.09) = 0.16 mol		1
05.2	M3 total amount (= 0.28 + 0.16 + 0.18) = <u>0.62</u> mol	$M4 = \frac{M1}{M3} \times 215$	1
	M4 partial pressure of $SO_2 = 0.28 \times 215 = 97(.1)$ (kPa) 0.62	М3 * Т = 1 5	1

Question	Answers	Additional comments/Guidelines	Mark
05.0	M1 $K_p = \frac{(pp SO_3)^2}{(pp SO_2)^2 \times pp O_2}$	Penalise square brackets in M1	1
05.3	$M2 = 1.2(0) \times 10^{-2}$		1
	$M3 = kPa^{-1}$		1

Question	Answers	Additional comments/Guidelines	Mark
05.4	Stays the same		1

	Answer all questions in the spaces provided.
0 1	This question is about equilibria.
0 1.1	Give two features of a reaction in dynamic equilibrium. [2 marks]
	Feature 1
	Feature 2
0 1.2	A gas-phase reaction is at equilibrium. When the pressure is increased the yield of product decreases. State what can be deduced about the chemical equation for this equilibrium. [1 mark]
	Question 1 continues on the next page

0 1. 3 Carbon monoxide and hydrogen react to form methanol.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

0.430 mol of carbon monoxide is mixed with 0.860 mol of hydrogen. At equilibrium, the total pressure in the flask is 250 kPa and the mixture contains 0.110 mol of methanol.

Calculate the amount, in moles, of carbon monoxide present at equilibrium.

Calculate the partial pressure, in kPa, of carbon monoxide in this equilibrium mixture.

[3 marks]

Amount of carbon monoxide	m	Ю

Partial pressure kPa

0 1. 4 Give an expression for the equilibrium constant (K_p) for this reaction.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

[1 mark]

 K_p

0	1	5

A different mixture of carbon monoxide and hydrogen is left to reach equilibrium at a temperature T.

Some data for this equilibrium are shown in **Table 1**.

Table 1

Partial pressure of CO	125 kPa
Partial pressure of CH₃OH	5.45 kPa
K _p	1.15 x 10 ⁻⁶ kPa ⁻²

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

Calculate the partial pressure, in kPa, of hydrogen in this equilibrium mixture.

[3 marks]

Partial pressure	 kPa

0 1 . 6

Use the K_p value from **Table 1** to calculate a value for K_p for the following reaction at temperature T.

$$CH_3OH(g) \rightleftharpoons CO(g) + 2H_2(g)$$

Give the units for K_p

[2 marks]

K_p _____

Units __

12

Question	Answers	Additional Comments/Guidelines	Mark
		allow answers in either order	
04.4	forward and reverse reactions proceed at equal <u>rates</u>		1
01.1	concentrations (of reactants and products) remain constant or concentrations (of reactants and products) stay the same	do not accept equal concentrations do not accept concentrations are the same ignore closed system	1 AO1

Question	Answers	Additional Comments/Guidelines	Mark
01.2	more moles of (gaseous) products (than (gaseous) reactants) or more moles on the RHS (than LHS)	allow molecules do not accept atoms	1 AO3

Question	Answers	Additional Comments/Guidelines	Mark
01.3	M1 (at equilibrium) n(CO) = 0.32 (mol) M2 total number of moles (at equilibrium) = 1.07 (mol) or mole fraction (CO) = 0.299 M3 p(CO) $\left(=\frac{0.320 \times 250}{1.07}\right)$ = 74.8 (kPa)	$M3 = \frac{M1 \times 250}{M2}$ allow 75 (kPa) an answer of 67.8 (kPa) = 2 marks max	1 1 1 AO2

Question	Answers	Additional Comments/Guidelines	Mark
01.4	$K_{p} = \frac{p(CH_{3}OH)}{p(H_{2})^{2} p(CO)}$	do not accept square brackets	1 AO1

0 4	Nitrogen dioxide decomposes at a high temperature.
	$2NO_2(g) \approx 2NO(g) + O_2(g)$ $\Delta H = +113 \text{ kJ mol}^{-1}$
0 4.1	A 0.317 mol sample of nitrogen dioxide is placed in a sealed flask and heated at a constant temperature until equilibrium is reached.
	At equilibrium, the flask contains 0.120 mol of oxygen.
	Calculate the mole fraction of each substance at equilibrium. [3 marks]
	Mole fraction of NO ₂
	Mole fraction of NO
	Mole fraction of O ₂
0 4.2	The total pressure in the flask in Question 04.1 is 120 kPa at equilibrium.
	Calculate the partial pressure, in kPa, of NO ₂
	If you were unable to answer Question $\bf 04.1$ you should assume that the mole fraction of NO_2 is 0.380. This is not the correct answer. [1 mark]
	[1 mark]
	Partial pressurekPa

0 4.4	The equilibrium mixture in Question 04.3 is compressed into a smaller volume.	outs b
	Deduce the effect, if any, of this change on the equilibrium yield of oxygen and on the value of K_p	
	[2 marks]	
	Effect on yield of oxygen	
	Effect on K _p	
0 4 . 5	The equilibrium mixture in Question 04.3 is allowed to reach equilibrium at a lower temperature.	
	Explain why the equilibrium yield of oxygen decreases. [2 marks]	
		1

Turn over for the next question

0 4 . 3

Table 1 shows the mole fractions of the three gases in a different equilibrium mixture.

$$2 \text{NO}_2(g) \implies 2 \text{NO}(g) + \text{O}_2(g)$$
 $\Delta H = +113 \text{ kJ mol}^{-1}$

-1-1-4

Table 1

Gas	Mole fraction
NO ₂	0.310
NO	0.460
O ₂	0.230

For this equilibrium mixture, $K_p = 59.7 \text{ kPa}$

Give an expression for K_{p} for this reaction.

Use your expression and the data in **Table 1** to calculate the total pressure, in kPa, in the flask.

[3 marks]

 K_p

Total pressure kPa

Question	Answers	Additional comments/Guidelines	Mark
04.1	M1 0.176 M2 0.549 M3 0.275	Allow answers to 2 significant figures	3 (3 x AO2)

Question	Answers	Additional comments/Guidelines	Mark
04.2	21.1 (kPa)	Allow answer to question 04.1 x 120 and answer in kPa Allow 21.6 (kPa)	1 (AO2)
		Answer using given value of 0.380 mol = 45.6(kPa)	

Question	Answers	Additional comments/Guidelines	Mark
04.3	M1 $K_p = \frac{p(NO)^2p(O_2)}{p(NO_2)^2}$ M2 = $\frac{K_{p \times} \text{mol frac } (NO_2)^2}{\text{mol frac } (NO)^2 \text{x mol frac } (O_2)}$ OR $\frac{59.7 \times (0.31)^2}{(0.46)^2 \times (0.23)}$ M3 = 117.9 (kPa) or 118 (kPa)	Do not allow square brackets Rearrangement	3 (1 x AO1, 2 x AO2)

Question	Answers	Additional comments/Guidelines	Mark
04.4	Decrease No change		2 (1 x AO1, 1 x AO3)

Question	Answers	Additional comments/Guidelines	Mark
	M1 Reaction is endothermic OR exothermic in backwards direction		2
04.5	M2 Equilibrium shifts/moves in backwards direction/to the left to raise the temp/oppose the decrease in temp		(2 x AO3)