STAT151A Quiz 5 (Apr 23rd)

Please write your full name and email address:

The OLS estimator is given by $\hat{\beta} = (X^{\intercal}X)^{-1}X^{\intercal}Y$.

You have 20 minutes for this quiz.

There are three parts, (a), (b), and (c), each weighted equally..

This quiz will use some facts about the standard normal distribution. If $z \sim \mathcal{N}\left(0,1\right)$, then:

- $\mathbb{E}[z] = 0$
- $\mathbb{E}[z^2] = 1$ $\mathbb{E}[z^3] = 0$ $\mathbb{E}[z^4] = 3$

Recall that the OLS estimator of $y_n \sim \beta^{\dagger} \boldsymbol{x}_n$ is $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\dagger} \boldsymbol{X})^{-1} \boldsymbol{X}^{\dagger} \boldsymbol{Y}$.

For this quiz, we will take

$$a_n \sim \mathcal{N}(0,1)$$
 IID and $b_n = a_n^2$.

Note that the pairs (a_n, b_n) are IID, but a_n and b_n are not independent.

Let $\mathbf{x}_n = (a_n, b_n)^{\intercal}$. Let $\mathbf{\beta} = (\beta_a, \beta_b)^{\intercal}$. Let $y_n = \mathbf{\beta}^{\intercal} \mathbf{x}_n + \varepsilon_n$, where ε_n are IID with $\mathbb{E}\left[\varepsilon_n\right] = 0$ and $\operatorname{Var}\left(\varepsilon_n\right) < \infty$. The residuals ε_n and a_n are all independent of one another.

Note that a_n , b_n , β_a , and β_b are all scalars, and both x_n and β are 2-vectors.

Let $\hat{\beta}$ denote the OLS estimator of $y_n \sim \beta^{\mathsf{T}} x_n$, that is, of y_n regressed on both a_n and b_n . Note that the regression for $\hat{\beta}$ does not include a constant.

Let $\hat{\alpha}$ denote the OLS estimator of $y_n \sim \alpha a_n$, that is, of y_n regressed on a_n alone. Note that the regression for $\hat{\alpha}$ does not include a constant, and does not include b_n .

(a)

Prove that, as $N \to \infty$,

•
$$\hat{\alpha} \to \beta_a$$
 and

•
$$\hat{\boldsymbol{\beta}} \to \boldsymbol{\beta} = \begin{pmatrix} \beta_a \\ \beta_b \end{pmatrix}$$
.

(b)

For part (b), let $\hat{y}_{\text{new}} = \beta_a a_{\text{new}}$, and assume that $\beta_b \neq 0$. Note that \hat{y}_{new} is formed with β_a , not $\hat{\alpha}$. Prove that

$$\mathbb{E}\left[y_{\text{new}} - \hat{y}_{\text{new}}\right] \neq 0,$$

where the expectation is taken over a_{new} , b_{new} , and ε_{new} . That is, when you exclude b_n from the regression, the predictions evaluted at the limit β_a are biased.

(c)

For part (c), let $\hat{y}'_{\text{new}} = \beta^{\intercal} x_{\text{new}}$. Note that \hat{y}'_{new} is formed with β , not $\hat{\beta}$. Prove that

$$\mathbb{E}\left[y_{\text{new}} - \hat{y}'_{\text{new}}\right] = 0,$$

where the expectation is taken over a_{new} , b_{new} , and ε_{new} . That is, when you include b_n from the regression, the predictions evaluated at the limit β are unbiased.