Embedded Communication Serial Peripheral Interface (SPI)

It applies to the STM32F031x4/x6, STM32F051x4/x6/x8, STM32F071xB, STM32F072x8/xB, STM32F038x6, STM32F058x8 and STM32F078xB devices. For the purpose of this manual, STM32F0x1/STM32F0x2/STM32F0x8 microcontrollers a

The STM32F0xx is a family of microcontrollers with different memory sizes, packages an

For information on the ARM CORTEX™-M0 core, please refer to the Cortex-M0 technical

litre.ougmented

Related documents

 Cortex-M0 technical reference manual, available from: http://lintbcornier.arm.com/help/spicicom.arm.doc.ddi0432c/ DDI0432C_cortex_m0_r0p0_tmp.df
 STM32F0xx Cortex-M0 programming manual (PM0215) RM0091

Reference manual

STM32F0x1/STM32F0x2/STM32F0x8 advanced ARM-based 32-bit MCUs

Chapter 15 SPI "Mastering STM32" by Carmine Noviello https://leanpub.com/mastering-stm32

Chapter 27 Serial Peripheral Interface (SPI) RM0091: STM32F0x1 Reference manual

Embedded Systems II – EEE3096

R. Verrinder

Y. Abdul Gaffar

SPI and the big picture Context

- SPI is a serial synchronous type of communication
 - Two devices share a common clock signal to synchronise the exchange of data

Serial Peripheral Interface Implementation on the STM32F0

Serial Peripheral Interface Implementation on the STM32F0

- STM32F051 has two SPI hardware modules.
 - SPI 1
 - SPI 2

Serial Peripheral Interface Implementation on the STM32F0

- STM32F051 has two SPI hardware modules.
 - SPI 1
 - SPI 2
- SPI configurability (list below is not complete. See Chapter 27 for more details)
 - Master of slave operation
 - Full-duplex synchronous data transfer
 - Length of data: 4-bits to 16 bits
 - Order of data: LSB first or MSB first
 - Clock frequency (SCLK): 8 different settings
 - SPI modes: choose from mode 0, 1, 2 or 3

Serial Peripheral Interface Implementation on the STM32F0

- Pins on the STM32F0 that can be used and their AF
 - PA4 (AF0) SPI1_NSS (slave select)
 - PA5 (AF0) SPI1_SCLK (clock)
 - PA6 (AF0) SPI1_MISO (master input slave output)
 - PA7 (AF0) SPI1_MOSI (master output slave input)
 - PA15 (AF0) SPI1_NSS (slave select)
 - PB3 (AF0) SPI1_SCLK (clock)
 - PB4 (AF0) SPI1_MISO (master input slave output)
 - PB5 (AF0) SPI1_MOSI (master output slave input)
 - PB12 (AF0) SPI2_NSS (slave select)
 - PB13 (AF0) SPI2_SCLK (clock)
 - PB14 (AF0) SPI2_MISO (master input slave output)
 - PB15 (AF0) SPI2_MOSI (master output slave input)

SPI1

SPI1

GPIO

Output mode: bit set/rest register

 The lower 16-bits of the GPIO port bit set/reset register (GPIOx_BSRR), bit0 to bit15, is used to set the individual logic state of a pin

Bits 15:0 BSy: Port x set bit y (y= 0..15)

0: No action on the corresponding ODRx bit

1: Sets the corresponding ODRx bit

9.4.7		GPIO	port	bit se	et/res	et reç	gister	(GPI	Ox_E	SRR) (x =	AF))			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0	
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	\square
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0	
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	

- The lower 16-bits of the GPIO port bit set/reset register (GPIOx_BSRR), bit0 to bit15, is used to set the individual logic state of a pin
 - Example: writing a '1' to bit 0 of the GPIOB_BSRR will set PB0 to logic HIGH

Bits 15:0 BSy: Port x set bit y (y= 0..15)

0: No action on the corresponding ODRx bit

1: Sets the corresponding ODRx bit

9.4.7		GPIO	port	bit se	et/res	et reç	gister	(GPI	Ox_E	SRR) (x =	AF))		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

- The lower 16-bits of the GPIO port bit set/reset register (GPIOx_BSRR), bit0 to bit15, is used to set the individual logic state of a pin
 - Example: writing a '1' to bit 0 of the GPIOB_BSRR will set PB0 to logic HIGH
- The higher 16-bits of the GPIO port bit set/reset register (GPIOx_BSRR), bit16 to bit 31, is used to clear the individual logic state of a pin

Bits 31:16 BRy: Port x reset bit y (y = 0..15)

0: No action on the corresponding ODRx bit

1: Resets the corresponding ODRx bit

	GPIO	port	bit se	et/res	et reç	gister	(GPI	Ox_E	SRR) (x =	AF)			
30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
14	13	12	11	10	8	8	7	0	5	4	3	2	1	U
BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
-	30 BR14 w 14 BS14	30 29 BR14 BR13 W W 14 13 BS14 BS13	30 29 28 BR14 BR13 BR12 W W W 14 13 12 BS14 BS13 BS12	30 29 28 27 BR14 BR13 BR12 BR11 w w w w 14 13 12 11 BS14 BS13 BS12 BS11	30 29 28 27 26 BR14 BR13 BR12 BR11 BR10 w w w w w 14 13 12 11 10 BS14 BS13 BS12 BS11 BS10	30 29 28 27 26 25 BR14 BR13 BR12 BR11 BR10 BR9 w w w w w w 14 13 12 11 10 9 BS14 BS13 BS12 BS11 BS10 BS9	30 29 28 27 26 25 24 BR14 BR13 BR12 BR11 BR10 BR9 BR8 W W W W W W W 14 13 12 11 10 9 8 BS14 BS13 BS12 BS11 BS10 BS9 BS8	30 29 28 27 26 25 24 23 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 w w w w w w w w w 14 13 12 11 10 9 8 7 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7	30 29 28 27 26 25 24 23 22 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 w w w w w w w w w w 14 13 12 11 10 9 8 7 6 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6	30 29 28 27 26 25 24 23 22 21 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 w w w w w w w w w w w w 14 13 12 11 10 9 8 7 6 5 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5	30 29 28 27 26 25 24 23 22 21 20 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 w w w w w w w w w w w w w 14 13 12 11 10 9 8 7 6 5 4 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4	30 29 28 27 26 25 24 23 22 21 20 19 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 W W W W W W W W W W W W W W W W BR9 14 13 12 11 10 9 8 7 6 5 4 3 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3	BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 w <	30 29 28 27 26 25 24 23 22 21 20 19 18 17 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 w w w w w w w w w w w w w w w w 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1

- The lower 16-bits of the GPIO port bit set/reset register (GPIOx_BSRR), bit0 to bit15, is used to set the individual logic state of a pin
 - Example: writing a '1' to bit 0 of the GPIOB_BSRR will set PB0 to logic HIGH
- The higher 16-bits of the GPIO port bit set/reset register (GPIOx_BSRR), bit16 to bit 31, is used to clear the individual logic state of a pin
 - Example: writing a '1' to bit 16 of the GPIOB_BSRR will set PB0 to logic LOW

Bits 31:16 BRv: Port x reset bit v (v = 0..15)

0: No action on the corresponding ODRx bit
1: Resets the corresponding ODRx bit

9.4.7		GPIO	port	bit se	et/res	et reç	gister	(GPI	Ox_E	SRR) (x =	AF)		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	U
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Serial Peripheral Interface Steps to program the STM32F0

Serial Peripheral Interface Steps to program the STM32F051

Objective

- Setup STM32F0 as the master
- Use SPI 2
- Clock frequency: SCLK = 3MHz
- Data bits: 8
- Full duplex

Pin mapping

- SS : PB12
- SCLK: PB13
- MISO: PB14
- MOSI : PB15

Assumptions

• $f_{CLK} = 48MHz$

STM32F0 (master)

- Step 1: Enable clock on GPIO port B
 - Set IOPBEN (bit 18) in RCC_AHBENR

Bit 18 IOPBEN: I/O port B clock enable

Set and cleared by software.

0: I/O port B clock disabled

1: I/O port B clock enabled

7.4.	6	AH	3 per	ipher	al clo	ck er	nable	regis	ter (F	RCC_	AHBE	ENR)			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	TSCEN	Res.	IOPF EN	IOPE EN	IOPD EN	IOPC EN	IOPB EN	IOPA EN	Res.
							rw		rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	CRC EN	Res.	FLITF EN	Res.	SRAM EN	Res.	DMA EN
									rw		rw		rw		rw

- Step 1: Enable clock on GPIO port B
 - Set IOPBEN (bit 18) in RCC_AHBENR

RCC -> AHBENR |= RCC_AHBENR_GPIOBEN; // enable clock PORT B

Bit 18 IOPBEN: I/O port B clock enable
Set and cleared by software.

0: I/O port B clock disabled
1: I/O port B clock enabled

7.4.	6	AHI	B per	ipher	al clo	ck er	nable	regis	ter (F	RCC_	AHBE	ENR)			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	TSCEN	Res.	IOPF EN	IOPE EN	IOPD EN	IOPC EN	IOPB EN	IOPA EN	Res.
							rw		rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	CRC EN	Res.	FLITF EN	Res.	SRAM EN	Res.	DMA EN
									rw		rw		rw		rw

- Step 1: Enable clock on GPIO port B
- Step 2: Configure port pins
 - To configure PB13, PB14, PB15 to AF, set MODER13[1:0], MODER14[1:0] and MODER15[1:0] to '10' in GPIOB_MODER
 - To configure PB12 to output, set MODER12[1:0] to '01'

Extracted from the STM32F051 reference manual

- Step 1: Enable clock on GPIO port B
- Step 2: Configure port pins
 - To configure PB13, PB14, PB15 to AF, set MODER13[1:0], MODER14[1:0] and MODER15[1:0] to '10' in GPIOB_MODER
 - To configure PB12 to output, set MODER12[1:0] to '01'

```
GPIOB -> MODER |= GPIO_MODER_MODER13_1;  // set PB13 to AF mode
GPIOB -> MODER |= GPIO_MODER_MODER14_1;  // set PB14 to AF mode
GPIOB -> MODER |= GPIO_MODER_MODER15_1;  // set PB14 to AF mode

GPIOB -> MODER |= GPIO_MODER_MODER12_0;  // set PB12 to output mode
```


- Step 1: Enable clock on GPIO port B
- Step 2: Configure port pins
- Step 3: Map PB13, PB14 and PB15 to SPI2_SCLK, SPI2_MISO and SPI2_MOSI respectively
 - Set AFR13 to '0000' in GPIOB_AFRH
 - Set ARF14 to '0000' in GPIOB_AFRH
 - Set ARF15 to '0000' in GPIOB_AFRH

AFRV selection
0000: AF0
0001: AF1
0010: AF2
0011: AF3

	Table 15. Alternate fund	ctions selected throu	gn GPIOB_AFK registe	ers for port B
Pin name	AF0	AF1	AF2	AF3
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	TSC_G3_IO2
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	TSC_G3_IO3
PB2				TSC_G3_IO4
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2	TSC_G5_IO1
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT	TSC_G5_IO2
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	TSC_G5_IO3
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	TSC_G5_IO4
PB8	CEC	I2C1_SCL	TIM16_CH1	TSC_SYNC
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT
PB10	CEC	I2C2_SCL	TIM2_CH3	TSC_SYNC
PB11	EVENTOUT	I2C2_SDA	TIM2_CH4	TSC_G6_IO1
PB12	SPI2_NSS	EVENTOUT	TIM1_BKIN	TSC_G6_IO2
PB13	SPI2_SCK		TIM1_CH1N	TSC_G6_IO3
PB14	SPI2_MISO	TIM15_CH1	TIM1_CH2N	TSC_G6_IO4
PB15	SPI2_MOSI	TIM15_CH2	TIM1_CH3N	TIM15_CH1N

	9.4.	10		O alte AE)		func	tion	high	regis	ter (G	PIO	_AFI	RH)			
Г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		AFR1	5[3:0]			AFR1	4[3:0]			AFR1	3[3:0]			AFR1	2[3:0]	
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
П		AFR1	1[3:0]			AFR1	0[3:0]			AFR	9[3:0]			AFR	B[3:0]	
Ī	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Extracted from the STM32F051 datasheet

- Step 1: Enable clock on GPIO port B
- Step 2: Configure port pins
- Step 3: Map PB13, PB14 and PB15 to SPI2_SCLK, SPI2_MISO and SPI2_MOSI respectively
 - Set AFR13 to '0000' in GPIOB_AFRH
 - Set ARF14 to '0000' in GPIOB_AFRH
 - Set ARF15 to '0000' in GPIOB_AFRH

- •
- Step 4: Disable the slave device
 - Set PB12 high

- •
- Step 4: Disable the slave device
 - Set PB12 high

GPIOB -> BSRR |= GPIO_BSRR_BS_12; // disable the slave device by setting PB12 high

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
 - Set SPI2EN (bit 14) in APB1ENR

Bit 14 SPI2EN: SPI2 clock enable
Set and cleared by software

0: SPI2 clock disabled
1: SPI2 clock enabled

7.4.	.8	AP	Вре	ripher	al clo	ock e	nable	regi	ster	1 (RC	C_AF	B1EN	IR)		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	CEC EN	DAC EN	PWR EN	CRS EN	Res.	CAN EN	Res.	USB EN	I2C2 EN	I2C1 EN	Res.	USART 4EN	USART 3EN	USART 2EN	Res.
	rw	rw	rw	rw		rw		rw	rw	rw		rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	SPI2 EN	Res.	Res.	WWDG EN	Res.	Res.	TIM14 EN	Res.	Res.	TIM7 EN	TIM6 EN	Res.	Res.	TIM3 EN	TIM2 EN
	rw			rw			rw			rw	rw			rw	rw

Extracted from the STM32F051 reference manual

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
 - Set SPI2EN (bit 14) in APB1ENR

RCC -> APB1ENR |= RCC_APB1ENR_SPI2EN; // enable clock for SPI 2

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
 - Set BIDOE (bit 14) in SPI2_CR1

Bit 14 **BIDIOE:** Output enable in bidirectional mode 0: Output disabled (receive-only mode)

1: Output enabled (transmit-only mode)

	27.7	.1 :	SPI	ontro	ol reg	ister	1 (SP	lx_C	R1)							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BIDI MODE	BIDI OE	CRC EN	CRC NEXT	CRCL	RX ONLY	SSM	SSI	LSB FIRST	SPE		BR [2:0]		MSTR	CPOL	СРНА
ľ	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
 - Set BIDOE (bit 14) in SPI2_CR1

SPI2 -> CR1 |= SPI_CR1_BIDIOE; // enable output to transmit only

Bit 14 **BIDIOE**: Output enable in bidirectional mode

0: Output disabled (receive-only mode)

1: Output enabled (transmit-only mode)

27.7	.1	SPI	ontro	ol reg	ister	1 (SP	lx_C	R1)							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIDI MODE	BIDI OE	CRC EN	CRC NEXT	CRCL	RX ONLY	SSM	SSI	LSB FIRST	SPE		BR [2:0]		MSTR	CPOL	СРНА
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
- Step 7: Set clock frequency
 - Assuming $f_{CLK} = 48MHz$, then set $f_{SCLK} = 3MHz$ by writing '011' to BR[2:0]. [Note: $f_{CLK}/16 = 3MHz$]

27.7.1			SPI	ontro	ol reg	ister	1 (SP	lx_C	R1)							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BIDI MODE	BIDI OE	CRC EN	CRC NEXT	CRCL	RX ONLY	SSM	SSI	LSB FIRST	SPE		BR [2:0]		MSTR	CPOL	СРНА
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
- Step 7: Set clock frequency
 - Assuming $f_{CLK} = 48MHz$, then set $f_{SCLK} = 3MHz$ by writing '011' to BR[2:0]. [Note: $f_{CLK}/16 = 3MHz$]

```
Bits 5:3 BR[2:0]: Baud rate control 000: f<sub>PCLK</sub>/2 001: f<sub>PCLK</sub>/4 010: f<sub>PCLK</sub>/8 011: f<sub>PCLK</sub>/16 100: f<sub>PCLK</sub>/32
```

SPI2 -> CR1 |= (SPI_CR1_BR_0| SPI_CR1_BR_1); // write '011' to BR[2:0]

27.7.1		SPI	ontro	ol reg	ister	1 (SP	lx_C	R1)							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIDI MODE	BIDI OE	CRC EN	CRC NEXT	CRCL	RX ONLY	SSM	SSI	LSB FIRST	SPE		BR [2:0]			CPOL	СРНА
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Extracted from the STM32F051 reference manual

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
- Step 7: Set clock frequency
- Step 8: Configure SPI2 in STM32F0 to be the master
 - Set MSTR (bit 2) to configure SPI2 in STM32F0 to be the master

Bit 2 MSTR: Master selection

O: Slave configuration

1: Master configuration

27.7.1		SPI control register 1 (SPIx_CR1)													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIDI MODE	BIDI OE	CRC EN	CRC NEXT	CRCL	RX ONLY	SSM	SSI	LSB FIRST	SPE	BR [2:0]			MSTR	CPOL	СРНА
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
- Step 7: Set clock frequency
- Step 8: Configure SPI2 in STM32F0 to be the master
 - Set MSTR (bit 2) to configure SPI2 in STM32F0 to be the master

SPI2 -> CR1 |= SPI_CR1_MSTR; // set SPI2 of STM32F0 to be the master

Bit 2 MSTR: Master selection

0: Slave configuration

1: Master configuration

27.7.1		SPI control register 1 (SPIx_CR1)													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIDI MODE	BIDI OE	CRC EN	CRC NEXT	CRCL	RX ONLY	SSM	SSI	LSB FIRST	SPE		BR [2:0]		MSTR	CPOL	СРНА
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
- Step 7: Set clock frequency
- Step 8: Configure SPI2 in STM32F0 to be the master
- Step 9: Set data length to 8-bits
 - Write '0111' to DS[3:0] in SPI2_CR2
 - Set FRXTH (bit 12) in SPI2 CR2

Bit 12 FRXTH: FIFO reception threshold

This bit is used to set the threshold of the RXFIFO that triggers an RXNE event

0: RXNE event is generated if the FIFO level is greater than or equal to 1/2 (16-bit)

1: RXNE event is generated if the FIFO level is greater than or equal to 1/4 (8-bit)

Bit 11:8 **DS** [3:0]: Data size

0000: Not used 0001: Not used

0010: Not used 0011: 4-bit 0100: 5-bit

0101: 6-bit 0110: 7-bit

0111: 8-bit

Extracted from the STM32F051 reference manual

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
- Step 7: Set clock frequency
- Step 8: Configure SPI2 in STM32F0 to be the master
- Step 9: Set data length to 8-bits
 - Write '0111' to DS[3:0] in SPI2_CR2
 - Set FRXTH (bit 12) in SPI2_CR2

```
SPI2 -> CR2 |= (SPI_CR2_DS_0| SPI_CR2_DS_1| SPI_CR2_DS_2); // set data size to 8-bits SPI2 -> CR2 |= SPI_CR2_FRXTH; // RXNE event is trigger when 8-bits is received
```


- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
- Step 7: Set clock frequency
- Step 8: Configure SPI2 in STM32F0 to be the master
- Step 9: Set data length to 8-bits
- Step 10: Enable slave output
 - Clear PB12

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
- Step 7: Set clock frequency
- Step 8: Configure SPI2 in STM32F0 to be the master
- Step 9: Set data length to 8-bits
- Step 10: Enable slave output
 - Clear PB12

GPIOB -> BSRR |= GPIO_BSRR_BR_12; // enable the slave device by setting PB12 low

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
- Step 7: Set clock frequency
- Step 8: Configure SPI2 in STM32F0 to be the master
- Step 9: Set data length to 8-bits
- Step 10: Enable slave output
- Step 11: Enable SPI2
 - Set SPE (bit x) in SPI2_CR1

Bit 6 **SPE:** SPI enable
0: Peripheral disabled
1: Peripheral enabled

- •
- Step 4: Disable the slave device
- Step 5: Enable clock to SPI2
- Step 6: Set output (MOSI) to be transmit only
- Step 7: Set clock frequency
- Step 8: Configure SPI2 in STM32F0 to be the master
- Step 9: Set data length to 8-bits
- Step 10: Enable slave output
- Step 11: Enable SPI2
 - Set SPE (bit x) in SPI2_CR1

Bit 6 **SPE:** SPI enable
0: Peripheral disabled
1: Peripheral enabled

```
SPI2 -> CR1 |= SPI_CR1_SPE; // Enable SPI2
```

```
void init_SPI2(void)
RCC -> AHBENR |= RCC AHBENR GPIOBEN;
                               // enable clock PORT B
GPIOB -> MODER |= GPIO_MODER_MODER13_1;
                                // set PB13 to AF mode
GPIOB -> MODER |= GPIO_MODER_MODER14_1;
                                // set PB14 to AF mode
GPIOB -> MODER |= GPIO_MODER_MODER15_1; // set PB14 to AF mode
GPIOB -> MODER |= GPIO MODER MODER12 0; // set PB12 to output mode
GPIOA -> AFR[1] &= ~GPIO AFRH PIN13 AFR;
                               // clear bits AFR13[3:0]
GPIOA -> AFR[1] &= ~GPIO AFRH PIN14 AFR;
                               // clear bits AFR14[3:0]
GPIOA -> AFR[1] &= ~GPIO AFRH PIN15 AFR:
                               // clear bits AFR15[3:0]
```

Serial Peripheral InterfaceC code for intialisation: STM32F051

```
// disable the slave device by setting PB12 high
GPIOB -> BSRR |= GPIO BSRR BS 12;
RCC -> APB1ENR |= RCC_APB1ENR_SPI2EN;
                                             // enable clock for SPI 2
SPI2 -> CR1 |= SPI CR1 BIDIOE;
                                          // enable output to transmit only
SPI2 -> CR1 |= (SPI_CR1_BR_0| SPI_CR1_BR_1); // write '011' to BR[2:0]
SPI2 -> CR1 |= SPI_CR1_MSTR; // set SPI2 of STM32F0 to be the master
SPI2 -> CR2 |= (SPI_CR2_DS_0| SPI_CR2_DS_1| SPI_CR2_DS_2); // set data size to 8-bits
SPI2 -> CR2 |= SPI CR2 FRXTH;
                                    // RXNE event is trigger when 8-bits is received
SPI2 -> CR2 |= SPI_CR2_SSOE; // Enable slave
SPI2 -> CR1 |= SPI_CR1_SPE; // Enable SPI2
```

Serial Peripheral Interface Steps to program the master (STM32F0) to transmit data to a slave, in polling mode

Master (STM32F0) transmits data to slave (device B)

Step 1: Enable the slave device by clearing SS

#define DataToTx 0b00000010 // 8-bit data to transmit from master to slave

GPIOB -> BSRR |= GPIO_BSRR_BR_12; // enable the slave: clear PB12

- Step 1: Enable the slave device by clearing SS
- Step 2: Write transmit data in SPI2_DR

```
#define DataToTx 0b00000010 // 8-bit data to transmit from master to slave
```

```
GPIOB -> BSRR |= GPIO_BSRR_BR_12; // enable the slave: clear PB12

SPI2 -> DR = DataToTx; // write transmit data to data register of SPI2
```

- Step 1: Enable the slave device by clearing SS
- Step 2: Write transmit data in SPI2_DR
- Step 3: Wait until receive buffer ≥ 8 bits

```
#define DataToTx 0b00000010 // 8-bit data to transmit from master to slave
```

```
GPIOB -> BSRR |= GPIO_BSRR_BR_12; // enable the slave: clear PB12
SPI2 -> DR = DataToTx; // write transmit data to data register of SPI2
```

while(SPI2 -> SR & SPI_SR_RXNE) ==0); // wait until 8-bits are put into the rx buffer

- Step 1: Enable the slave device by clearing SS
- Step 2: Write transmit data in SPI2_DR
- Step 3: Wait until receive buffer ≥ 8 bits

#define DataToTx 0b00000010

Step 4: Read 'dummy' data in the receive buffer

```
GPIOB -> BSRR |= GPIO_BSRR_BR_12; // enable the slave: clear PB12

SPI2 -> DR = DataToTx; // write transmit data to data register of SPI2

while(SPI2 -> SR & SPI_SR_RXNE) ==0); // wait until 8-bits are put into the rx buffer

DummyData = SPI2 -> DR; // read 'dummy' data shifted into the master
```

// 8-bit data to transmit from master to slave

- Step 1: Enable the slave device by clearing SS
- Step 2: Write transmit data in SPI2_DR
- Step 3: Wait until receive buffer ≥ 8 bits
- Step 4: Read 'dummy' data in the receive buffer
- Step 5: Disable the slave device by setting SS

```
#define DataToTx 0b00000010 // 8-bit data to transmit from master to slave
```

```
GPIOB -> BSRR |= GPIO_BSRR_BR_12; // enable the slave: clear PB12

SPI2 -> DR = DataToTx; // write transmit data to data register of SPI2

while(SPI2 -> SR & SPI_SR_RXNE) ==0); // wait until 8-bits are put into the rx buffer

DummyData = SPI2 -> DR; // read 'dummy' data shifted into the master

GPIOB -> BSRR |= GPIO_BSRR_BS_12; // disable the slave: set PB12
```

Serial Peripheral Interface Steps to program the master (STM32F0) to read data from a slave, in polling mode

Master (STM32F0) receives data from a slave (device B)

Step 1: Enable the slave device by clearing SS

```
#define DummyDataToTx 0b00000001 // 8-bit dummy data to transmit GPIOB -> BSRR |= GPIO_BSRR_BR_12; // enable the slave: clear PB12
```

- Step 1: Enable the slave device by clearing SS
- Step 2: Write 'dummy' data in SPI2_DR

```
#define DummyDataToTx 0b00000001  // 8-bit dummy data to transmit GPIOB -> BSRR |= GPIO_BSRR_BR_12; // enable the slave: clear PB12 SPI2 -> DR = DummyDataToTx; // write transmit data to data register of SPI2
```

- Step 1: Enable the slave device by clearing SS
- Step 2: Write 'dummy' data in SPI2_DR
- Step 3: Wait until receive buffer ≥ 8 bits

- Step 1: Enable the slave device by clearing SS
- Step 2: Write 'dummy' data in SPI2_DR
- Step 3: Wait until receive buffer ≥ 8 bits
- Step 4: Read receive data in the receive buffer

- Step 1: Enable the slave device by clearing SS
- Step 2: Write 'dummy' data in SPI2_DR
- Step 3: Wait until receive buffer ≥ 8 bits
- Step 4: Read receive data in the receive buffer
- Step 5: Disable the slave device by setting SS