In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

DATA COLLECTION

In [2]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\4_drug200 - 4_drug200.csv")
a
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [3]:

```
b=a.head(100)
b
```

Out[3]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
95	36	М	LOW	NORMAL	11.424	drugX
96	58	F	LOW	HIGH	38.247	drugY
97	56	F	HIGH	HIGH	25.395	drugY
98	20	М	HIGH	NORMAL	35.639	drugY
99	15	F	HIGH	NORMAL	16.725	drugY

100 rows × 6 columns

DATA CLEANING AND PRE-PROCESSING

In [4]:

b.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype	
0	Age	100 non-null	int64	
1	Sex	100 non-null	object	
2	BP	100 non-null	object	
3	Cholesterol	100 non-null	object	
4	Na_to_K	100 non-null	float64	
5	Drug	100 non-null	object	
<pre>dtypes: float64(1), int64(1), object(4)</pre>				

memory usage: 4.8+ KB

In [5]:

b.describe()

Out[5]:

	Age	Na_to_K
count	100.000000	100.000000
mean	43.770000	16.823000
std	16.367531	7.257723
min	15.000000	7.285000
25%	30.500000	11.031250
50%	43.000000	15.025500
75%	58.000000	20.020250
max	74.000000	38.247000

In [6]:

b.columns

Out[6]:

Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='objec
t')

EDA AND VISUALIZATION

In [7]:

sns.pairplot(b)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x29a8dd21bb0>

In [8]:

sns.distplot(b['Age'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]:

<AxesSubplot:xlabel='Age', ylabel='Density'>


```
In [9]:
```

```
f=b[['Age','Na_to_K']]
```

In [10]:

```
sns.heatmap(f.corr())
```

Out[10]:

<AxesSubplot:>

In [11]:

```
x=f[['Age']]
y=f['Na_to_K']
```

In [12]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [13]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[13]:

LinearRegression()

In [14]:

```
print(lr.intercept_)
```

17.419245881561885

RIDGE REGRESSION

```
In [18]:
from sklearn.linear_model import Ridge,Lasso

In [19]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)

Out[19]:
Ridge(alpha=10)
In [20]:
rr.score(x_test,y_test)

Out[20]:
-0.00854387901678666
```

LASSO REGRESSION

```
In [21]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[21]:
Lasso(alpha=10)
```

In [22]:
<pre>la.score(x_test,y_test)</pre>
Out[22]:
-0.0063207832286731325
In []: