NOI 2023 模拟赛 题解

目录

1	unpredictable	1
2	maze	2
3	dark	2

A 莫测的狂徒(unpredictable)

 $ans=(n-1)!\sum_{i \neq j}f(i,j)$,只需计算所有 f(i,j) 的和。而 f(i,j) 的和又可以拆成 $w_{i,k}$ 的和以及 $w_{j,k}$ 的和。

假设 i 是前缀,j 是后缀。那么枚举 i 的前缀,只需计算出有多少个 j 的后缀与它相等。使用哈希表,假设长为 k 的前缀有 $c_{i,k}$ 个后缀与它相等,由于 k 不一定是最大的,所以跑出所有前缀的 border,让 c_{brd_i} 减去 c_i 即可。最终贡献就是 $\sum c_{i,k}w_{i,k}$ 。

然后让 i 作为后缀 j 作为前缀再跑一次。时间复杂度 $\mathcal{O}(\sum |s_i|)$ 。

B 诡策狂谋(maze)

首先 1 操作单独考虑。只用考虑 2 操作对询问的影响。

仔细观察数表,发现 $x=ab, |a-b|\leq 2$ 意味着 x 这个数在四条对角线附近一两个数的位置。于是直接分类讨论,每次矩形操作可以视为对一条线段上每个数进行一次后缀加,再对一条线段上每个数进行一次后缀减,再带上 O(1) 个区间加。例如图中对 80 (在 49 下面)进行操作就等于对 $[1,+\infty], [8,+\infty], [23,+\infty]$ 加上 v,再对 $[3,+\infty], [12,+\infty], [29,+\infty]$ 减去 v,再对 [46,49], [77,80] 各加上一个 v 即可。这里 1,8,23 和 3,12,29 就各形成一个线段。

把暴力写出来,一共有 8 种线段。把线段中所有 $O(\sqrt{V})$ 数预处理出来,问题就是每次对 [1,k] 的每个 p_i 进行后缀加,然后对某个 R 进行前缀查。

设 s_i 为 p_i 的前缀和,设位置 i 总共加了 c_i ,考虑询问 R 的影响,设 p_a 是 p 中最大的 $\leq R$ 的元素,答案就是 $\sum_{i\leq a}((R+1)i-s_i)c_i+\sum_{i>a}((R+1)-s_a)c_a$ 。只需要维护 c_i,c_ii,c_is_i 的前缀和即可。于是用总计 $8\times 3=24$ 个树状数组即可解决本题。

C 黑暗先锋(dark)

我们把 a_i 改成 $f(a_i) - 3$,其中 f(x) 表示类型 x 的攻击力,这样问题就转化为数和 > 0 的自区间数量。

因为 mod m, 所以 a 序列一定是一个混循环的数列, 我们先把前面的一小段去掉, 也就是先考虑整循环的情况。设周期长度为 n, 周期的和为 S, 按照周期长度给序列分块。

设块内前缀和数组为 $\{p_i\}$, 后缀和为 $\{s_i\}$ 。

然后要明确一个事实: 由于 $\{a_i\}$ 是随机数列,所以其前缀和、后缀和的最值是 $O(\sqrt{m})$ 级别的,因此我们可以去枚举 p_i, s_i 的不同值。下面所说的"枚举 i, j" 都是指枚举值不同的 i, j。

对答案的贡献可以分为散块对散块、散块对整块、整块之间三种,假设两边散块中夹了N个整块。

• 散块对散块。相当于计算:

$$\sum_{i=l}^{n} \sum_{j=1}^{r} [p_i + s_j + NS > 0]$$

可以把不同的 p_i, s_i 排序后双指针。因为可以预处理的时候先求出排序结果,所以是 $O(\sqrt{m})$ 的。

• 散块对整块。相当于计算:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=0}^{N-1} [p_i + s_j + kS > 0]$$

对于一对 i, j,求出使其满足艾弗森括号内的条件的 k 的取值范围 $[L_{i,j}, R_{i,j}]$,改写式子:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \left(\min\{N-1, R_{i,j}\} - \max\{0, L_{i,j}\} + 1 \right)$$

实际上要么 $L_{i,j} = -\infty$ 要么 $R_{i,j} = +\infty$,所以这里实际上只有一维的限制。预处理时枚举每个 i,将 $L_{i,j}$, $R_{i,j}$ 排序并计算前缀和。查询的时候只用枚举 i,并在排序后的数组上双指针即可。

• 整块之间,分为整块内部和两个整块之间。*N* 个整块内部的贡献可以简单预处理。 两个整块之间相当于计算:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=0}^{N-1} \sum_{j=i+1}^{N-1} [p_i + s_j + (j-i-1)S > 0]$$

可以求出 i-i 需要满足的取值范围,然后也可以用上面类似的方法计算。

最后还有前面不循环的一段产生的贡献,可以把它当成散块来计算。总复杂度 $O(T\sqrt{m})$ 。