Counting the Outcomes of Experiments

Jonathan R. Bacolod

Sauyo High School

1. Table

- 1. Table
- 2. Tree Diagram

- 1. Table
- 2. Tree Diagram
- 3. Systematic Listing

- 1. Table
- 2. Tree Diagram
- 3. Systematic Listing
- 4. Fundamental Counting Principle (FCP)

Example 1

On a Saturday morning, you washed most of your clothes and they are still wet. Your friend invites you to attend his birthday party and you are left with only 2 pants and 3 shirts. In how many different ways can you dress?

Pants = 2 ways to choose

```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

|--|

	Pant 1	Pant 2
Shirt 1	S_1P_1	S_1P_2

	Pant 1	Pant 2
Shirt 1	S_1P_1	S_1P_2
Shirt 2	S_2P_1	S_2P_2

	Pant 1	Pant 2
Shirt 1	S_1P_1	S_1P_2
Shirt 2	S_2P_1	S_2P_2
Shirt 3	S_3P_1	S_3P_2

	Pant 1	Pant 2
Shirt 1	S_1P_1	S_1P_2
Shirt 2	S_2P_1	S_2P_2
Shirt 3	S_3P_1	S_3P_2

:.
$$n(S) = 6$$


```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

 P_1

$$S_1 \longrightarrow P_1S_1$$

$$P_1 \xrightarrow{S_1} P_1 S_1$$
 $P_1 \xrightarrow{S_2} S_2$

$$S_1 \longrightarrow P_1S_1$$
 $S_2 \longrightarrow P_1S_2$

Pants = 2 ways to choose Shirts = 3 ways to choose n(S) = ?

 P_2

$$P_{1} \longrightarrow S_{1} \longrightarrow P_{1}S_{1}$$

$$S_{2} \longrightarrow P_{1}S_{2}$$

$$S_{3} \longrightarrow P_{1}S_{3}$$

$$S_{1} \longrightarrow P_{2}S_{1}$$

$$P_{2} \longrightarrow S_{2} \longrightarrow P_{2}S_{2}$$

$$S_{3} \longrightarrow P_{2}S_{3}$$

$$\therefore n(S) = 6$$

```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

Pant 1 and Shirt 1

```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

Pant 1 and Shirt 1 Pant 1 and Shirt 2

```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

Pant 1 and Shirt 1 Pant 1 and Shirt 2 Pant 1 and Shirt 3

```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

Pant 1 and Shirt 1 Pant 1 and Shirt 2 Pant 1 and Shirt 3 Pant 2 and Shirt 1

```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

```
Pant 1 and Shirt 1
Pant 1 and Shirt 2
Pant 1 and Shirt 3
Pant 2 and Shirt 1
Pant 2 and Shirt 2
```

```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

```
Pant 1 and Shirt 1
Pant 1 and Shirt 2
Pant 1 and Shirt 3
Pant 2 and Shirt 1
Pant 2 and Shirt 2
Pant 2 and Shirt 3
```

```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

Pant 1 and Shirt 1 Pant 1 and Shirt 2 Pant 1 and Shirt 3 Pant 2 and Shirt 1 Pant 2 and Shirt 2 Pant 2 and Shirt 3

:.
$$n(S) = 6$$

What is the Fundamental Counting Principle?

What is the Fundamental Counting Principle?

We can find the total number of ways different events can occur by multiplying the number of ways each event can happen.

What is the Fundamental Counting Principle?

- We can find the total number of ways different events can occur by multiplying the number of ways each event can happen.
- ▶ If one event can occur in m ways, and a second event can occur in n ways, and a third event can occur in p ways, and so on, then the sequence of events can occur in $m \times n \times p \times \ldots$ ways.

```
Pants = 2 ways to choose
Shirts = 3 ways to choose
n(S) = ?
```

Pants = 2 ways to choose Shirts = 3 ways to choose n(S) = ?

$$n(S) = 2 \times 3$$

Pants = 2 ways to choose Shirts = 3 ways to choose n(S) = ?

$$n(S) = 2 \times 3$$
$$n(S) = 6$$

Pants = 2 ways to choose Shirts = 3 ways to choose n(S) = ?

$$n(S) = 2 \times 3$$
$$n(S) = 6$$

: there are 6 different ways you can dress

Example 2

Three 5-peso coins are tossed. How many outcomes are possible?

First coin = 2 outcomes

First coin = 2 outcomes Second coin = 2 outcomes

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes

$$n(S) = ?$$

Coin 1	Coin 2	Coin 3	Outcome

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes

Coin 1	Coin 2	Coin 3	Outcome
Н	Н	Н	HHH

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes p(s) = 2

Coin 1	Coin 2	Coin 3	Outcome
Н	Н	Н	HHH
Н	Н	Т	HHT

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes p(s) = 2

Coin 1	Coin 2	Coin 3	Outcome
Н	Н	Н	HHH
Н	Н	Т	HHT
Н	Т	Н	HTH

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes p(s) = 2

Coin 1	Coin 2	Coin 3	Outcome
Н	Н	Н	HHH
Н	Н	Т	HHT
Н	Т	Н	HTH
Н	Т	Т	HTT

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes p(s) = 2

Coin 1	Coin 2	Coin 3	Outcome
Н	Н	Н	HHH
Н	Н	Т	HHT
Н	T	Н	HTH
Н	T	Т	HTT
T	Н	Н	THH

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes p(S) = 2

n(S) = f	?
----------	---

Coin 1	Coin 2	Coin 3	Outcome
Н	Н	Н	HHH
Н	Н	Т	HHT
Н	Т	Н	HTH
Н	Т	Т	HTT
T	Н	Н	THH
T	Н	Т	THT

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes p(s) = 2

Coin 1	Coin 2	Coin 3	Outcome
Н	Н	Н	HHH
Н	Н	T	HHT
Н	Т	Н	HTH
Н	T	Т	HTT
T	Н	Н	THH
T	Н	Т	THT
T	Т	Н	TTH

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes p(S) = 2

n(S) = f	?
----------	---

Coin 1	Coin 2	Coin 3	Outcome
Н	Н	Н	HHH
Н	Н	Т	HHT
Н	Т	Н	HTH
Н	Т	Т	HTT
T	Н	Н	THH
T	Н	Т	THT
T	Т	Н	TTH
T	Т	Т	TTT

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

Coin 1	Coin 2	Coin 3	Outcome
Н	Н	Н	HHH
Н	Н	Т	HHT
Н	Т	Н	HTH
Н	Т	Т	HTT
T	Н	Н	THH
T	Н	Т	THT
T	Т	Н	TTH
T	T	Т	TTT

:.
$$n(S) = 8$$

First coin = 2 outcomes

First coin = 2 outcomes Second coin = 2 outcomes

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

```
First coin = 2 outcomes

Second coin = 2 outcomes

Third coin = 2 outcomes

n(S) = ?

1st Coin 2nd Coin 3rd Coin Outcome
```

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ? 1st Coin 2nd Coin 3rd Coin Outcome

Η

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

1st Coin 2nd Coin 3rd Coin Outcome

First coin = 2 outcomes
Second coin = 2 outcomes
Third coin = 2 outcomes
n(S) = ?

1st Coin 2nd Coin 3rd Coin Outcome

First coin = 2 outcomes
Second coin = 2 outcomes
Third coin = 2 outcomes
n(S) = ?

1st Coin 2nd Coin 3rd Coin Outcome

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

$$H \longrightarrow H \longrightarrow HHH$$

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

First coin = 2 outcomes

First coin = 2 outcomes Second coin = 2 outcomes

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes

First coin = 2 outcomes Second coin = 2 outcomes Third coin = 2 outcomes n(S) = ?

```
First coin = 2 outcomes
Second coin = 2 outcomes
Third coin = 2 outcomes
n(S) = ?
```

HHH

```
First coin = 2 outcomes
Second coin = 2 outcomes
Third coin = 2 outcomes
n(S) = ?
```

HHH HHT

```
First coin = 2 outcomes
Second coin = 2 outcomes
Third coin = 2 outcomes
n(S) = ?
HHH
HHT
HTH
```

```
First coin = 2 outcomes
Second coin = 2 outcomes
Third coin = 2 outcomes
n(S) = ?
HHH
HHT
HTH
HTT
```

```
First coin = 2 outcomes
Second coin = 2 outcomes
Third coin = 2 outcomes
n(S) = ?

HHH

THH
```

HHT HTH HTT

```
First coin = 2 outcomes
Second coin = 2 outcomes
Third coin = 2 outcomes
n(S) = ?
```

HHH HHT HTH HTT

THH THT

```
First coin = 2 outcomes
Second coin = 2 outcomes
Third coin = 2 outcomes
n(S) = ?
```

HHH THH
HHT THT
HTH

```
First coin = 2 outcomes
Second coin = 2 outcomes
Third coin = 2 outcomes
n(S) = ?
```

```
HHH THH
HHT THT
HTH TTH
```

```
First coin = 2 outcomes
Second coin = 2 outcomes
Third coin = 2 outcomes
n(S) = ?
```

HHH THH
HHT THT
HTH TTT

:.
$$n(S) = 8$$

Example 2: Using the Fundamental Counting Principle

Example 2: Using the Fundamental Counting Principle

First coin = 2 outcomes

First coin = 2 outcomes Second coin = 2 outcomes

$$n(S) = 2 \times 2 \times 2$$

$$n(S) = 2 \times 2 \times 2$$
$$n(S) = 8$$

$$n(S) = 2 \times 2 \times 2$$

 $n(S) = 8$
 \therefore there are 8 outcomes possible

Example 3

You go to a restaurant to buy some breakfast. The menu says, for food: pancakes, waffles, or french fries; and for drinks: coffee, juice, hot chocolate, and tea. How many different meal choices do you have?

Food = 3 ways to choose

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

Coffee (C)	Juice (J)	Hot Choco (H)	Tea (T)
---------------	--------------	---------------------	---------

	Coffee (C)	Juice (J)	Hot Choco (H)	Tea (T)
Pancake (P)	PC	PJ	PH	PT

	Coffee (C)	Juice (J)	Hot Choco (H)	Tea (T)
Pancake (P)	PC	PJ	PH	PT
Waffles (W)	WC	WJ	WH	WT

	Coffee (C)	Juice (J)	Hot Choco (H)	Tea (T)
Pancake (P)	PC	PJ	PH	PT
Waffles (W)	WC	WJ	WH	WT
Fries (F)	FC	FJ	FH	FT

	Coffee (C)	Juice (J)	Hot Choco (H)	Tea (T)
Pancake (P)	PC	PJ	PH	PT
Waffles (W)	WC	WJ	WH	WT
Fries (F)	FC	FJ	FH	FT

$$: n(S) = 12$$

Food = 3 ways to choose

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```


$$C \longrightarrow PC$$

$$P \stackrel{C}{\longrightarrow} J \stackrel{PC}{\longrightarrow} PC$$

$$P \longrightarrow C \longrightarrow PC$$

$$P \stackrel{C}{\longleftrightarrow} J \stackrel{PC}{\longrightarrow} PJ$$

$$P \stackrel{C}{\longleftrightarrow} \begin{array}{c} C & \longrightarrow PC \\ J & \longrightarrow PJ \\ H & \longrightarrow PH \end{array}$$

$$P \rightleftharpoons \begin{matrix} C & \longrightarrow PC \\ J & \longrightarrow PJ \\ H & \longrightarrow PH \\ T \end{matrix}$$

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

$$P \rightleftharpoons \begin{matrix} C & \longrightarrow & PC \\ J & \longrightarrow & PJ \\ H & \longrightarrow & PH \\ T & \longrightarrow & PT \end{matrix}$$

Food = 3 ways to choose Drink = 4 ways to choose n(S) = ?

$$P \rightleftharpoons \begin{matrix} C & \longrightarrow & PC \\ J & \longrightarrow & PJ \\ H & \longrightarrow & PH \\ T & \longrightarrow & PT \end{matrix}$$

W

$$P \longrightarrow \begin{array}{c} C & \longrightarrow PC \\ J & \longrightarrow PJ \\ PH & \longrightarrow PH \\ T & \longrightarrow PH \\ PH & \longrightarrow PH \\ W & \longrightarrow PH \\ W & \longrightarrow WH \\ W & \longrightarrow WH$$

Food = 3 ways to choose

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC PJ

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC PJ PH

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

```
PC
PJ
PH
PT
```

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC

WC

PJ

PH PT VVC

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC WC PJ WJ

PH

PΤ

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC WC
PJ WJ
PH WH
PT

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC	WC
PJ	WJ
PH	WH
PT	WT

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC	WC
PJ	WJ
PH	WH
PT	WT

FC

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC WC
PJ WJ
PH WH
PT WT

4 D > 4 A > 4 B > 4 B > B = 900

FC

FJ

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC	WC	FC
PJ	WJ	FJ
PH	WH	FH
PT	WT	

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC	WC	FC
PJ	WJ	FJ
PH	WH	FH
PT	WT	FT

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

PC WC FC PJ WJ FJ PH WH FH PT WT FT

$$:. n(S) = 12$$

Food = 3 ways to choose

```
Food = 3 ways to choose
Drink = 4 ways to choose
n(S) = ?
```

$$n(S) = 3 \times 4$$

$$n(S) = 3 \times 4$$

 $n(S) = 12$

Food = 3 ways to choose Drink = 4 ways to choose n(S) = ?

$$n(S) = 3 \times 4$$

 $n(S) = 12$

.: there are 12 different meal choices

Find the number of possible outcomes for each scenario using the fundamental counting principle.

1. Boys and girls in a family with two children.

Find the number of possible outcomes for each scenario using the fundamental counting principle.

1. Boys and girls in a family with two children.

$$n(S) = 2 \times 2$$

Find the number of possible outcomes for each scenario using the fundamental counting principle.

1. Boys and girls in a family with two children.

$$n(S) = 2 \times 2$$

 $n(S) = 4$ possible outcomes

Find the number of possible outcomes for each scenario using the fundamental counting principle.

2. Choosing a 3G or 4G cellphone that comes in black, white, or transparent.

Find the number of possible outcomes for each scenario using the fundamental counting principle.

2. Choosing a 3G or 4G cellphone that comes in black, white, or transparent.

$$n(S) = 2 \times 3$$

Find the number of possible outcomes for each scenario using the fundamental counting principle.

2. Choosing a 3G or 4G cellphone that comes in black, white, or transparent.

$$n(S) = 2 \times 3$$

 $n(S) = 6$ possible outcomes

Find the number of possible outcomes for each scenario using the fundamental counting principle.

3. A choice of Spanish, muffin or toast bread with coffee, milk, or juice.

Find the number of possible outcomes for each scenario using the fundamental counting principle.

3. A choice of Spanish, muffin or toast bread with coffee, milk, or juice.

$$n(S) = 3 \times 3$$

Find the number of possible outcomes for each scenario using the fundamental counting principle.

3. A choice of Spanish, muffin or toast bread with coffee, milk, or juice.

$$n(S) = 3 \times 3$$

 $n(S) = 9$ possible outcomes

Find the number of possible outcomes for each scenario using the fundamental counting principle.

4. Elias has a choice of a queen or king with a choice of hearts, diamonds, clubs, or spades.

Find the number of possible outcomes for each scenario using the fundamental counting principle.

4. Elias has a choice of a queen or king with a choice of hearts, diamonds, clubs, or spades.

$$n(S) = 2 \times 4$$

Find the number of possible outcomes for each scenario using the fundamental counting principle.

4. Elias has a choice of a queen or king with a choice of hearts, diamonds, clubs, or spades.

$$n(S) = 2 \times 4$$

 $n(S) = 8$ possible outcomes

Find the number of possible outcomes for each scenario using the fundamental counting principle.

5. A die is rolled and a coin is tossed.

Find the number of possible outcomes for each scenario using the fundamental counting principle.

5. A die is rolled and a coin is tossed.

$$n(S) = 6 \times 2$$

Find the number of possible outcomes for each scenario using the fundamental counting principle.

5. A die is rolled and a coin is tossed.

$$n(S) = 6 \times 2$$

 $n(S) = 12$ possible outcomes

Solve each problem completely.

1. In how many ways can 1 out of 4 blue flags, 1 out of 3 red flags, and 1 out of 2 green flags be arranged on a pole?

Solve each problem completely.

1. In how many ways can 1 out of 4 blue flags, 1 out of 3 red flags, and 1 out of 2 green flags be arranged on a pole?

$$n(S) = 4 \times 3 \times 2$$

Solve each problem completely.

1. In how many ways can 1 out of 4 blue flags, 1 out of 3 red flags, and 1 out of 2 green flags be arranged on a pole?

$$n(S) = 4 \times 3 \times 2$$

 $n(S) = 24$ ways

Solve each problem completely.

2. A lock contains 3 dials, each with ten digits. How many possible sequences of numbers exist?

Solve each problem completely.

2. A lock contains 3 dials, each with ten digits. How many possible sequences of numbers exist?

$$n(S) = 10 \times 10 \times 10$$

Solve each problem completely.

2. A lock contains 3 dials, each with ten digits. How many possible sequences of numbers exist?

$$n(S) = 10 \times 10 \times 10$$

 $n(S) = 1,000$ possible sequences of numbers

Solve each problem completely.

3. Four students are to be chosen from a group of 9 to fill the positions of president, vice-president, treasurer and secretary. In how many ways can this be accomplished?

Solve each problem completely.

3. Four students are to be chosen from a group of 9 to fill the positions of president, vice-president, treasurer and secretary. In how many ways can this be accomplished?

$$n(S) = 9 \times 8 \times 7 \times 6$$

Solve each problem completely.

3. Four students are to be chosen from a group of 9 to fill the positions of president, vice-president, treasurer and secretary. In how many ways can this be accomplished?

$$n(S) = 9 \times 8 \times 7 \times 6$$

 $n(S) = 3,024$ ways

Solve each problem completely.

4. How many 5-number license plates can be made using the digits 0, 1, 2, 3, 4, 5, if repetitions are allowed?

Solve each problem completely.

4. How many 5-number license plates can be made using the digits 0, 1, 2, 3, 4, 5, if repetitions are allowed?

$$n(S) = 6 \times 6 \times 6 \times 6 \times 6$$

Solve each problem completely.

4. How many 5-number license plates can be made using the digits 0, 1, 2, 3, 4, 5, if repetitions are allowed?

$$n(S) = 6 \times 6 \times 6 \times 6 \times 6$$

 $n(S) = 7,776$ license plates

Solve each problem completely.

5. How many 5-number license plates can be made using the digits 0, 1, 2, 3, 4, 5, if repetitions are not allowed?

Solve each problem completely.

5. How many 5-number license plates can be made using the digits 0, 1, 2, 3, 4, 5, if repetitions are not allowed?

$$n(S) = 6 \times 5 \times 4 \times 3 \times 2$$

Solve each problem completely.

5. How many 5-number license plates can be made using the digits 0, 1, 2, 3, 4, 5, if repetitions are not allowed?

$$n(S) = 6 \times 5 \times 4 \times 3 \times 2$$

 $n(S) = 720$ license plates

Thank you for attending the virtual class.