Indian Institute of Technology Guwahati

Mid-Semester Examination, July-November 2012

MA 101 Mathematics-I

Time: 2 Hrs Marks: 25

Model Solution

1. With proper justifications, prove or disprove the following statements.

(a) The set
$$\{(x, y, z) \in \mathbb{R}^3 \mid 2x - y + 5z = 3\}$$
 is a subspace of \mathbb{R}^3 . [1]

Ans: If the zero vector (0,0,0) is in the given set, then 0=3. This is an absurd. Thus, the given set is not a subspace of \mathbb{R}^3 .

(b) If A is any
$$m \times n$$
 matrix, then $rank(A^T A) = rank(A)$. [1]

Ans: Note that the number of columns of A and A^TA are equal and it is n. By rank theorem, $\operatorname{rank}(A) + \operatorname{nullity}(A) = n = \operatorname{rank}(A^TA) + \operatorname{nullity}(A^TA)$. Observe that $\mathbf{x} \in \operatorname{null}(A)$ if and only if $\mathbf{x} \in \operatorname{null}(A^TA)$, so that $\operatorname{nullity}(A) = \operatorname{nullity}(A^TA)$. Hence, $\operatorname{rank}(A) = \operatorname{rank}(A^TA)$.

(c) If \mathcal{B}_1 and \mathcal{B}_2 are bases for eigenspaces corresponding to two distinct eigenvalues of a matrix, then $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$. [1]

Ans: Let λ_1 and λ_2 be the corresponding distinct eigenvalues of a matrix A. If $v \in \mathcal{B}_1 \cap \mathcal{B}_2$, then clearly $v \neq \mathbf{0}$. Further, $Av = \lambda_1 v$ and $Av = \lambda_2 v$, so that $\lambda_1 v = \lambda_1 v$. Thus, $(\lambda_1 - \lambda_2)v = \mathbf{0}$. Since $v \neq \mathbf{0}$, we get $\lambda_1 = \lambda_2$; a contradiction. Hence, $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$.

OR

Refer to the result "the eigenvectors v_1 and v_2 corresponding to distinct eigenvalues λ_1 and λ_2 are linearly independent", and conclude the given statement.

(d) If A and B are 2×2 matrices such that $\det A = \det B$, then A must be similar to B.

Ans: Consider the matrices $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Note that $\det A = \det B$. However, observe that their characteristic polynomials are different. Hence, A is not similar to B.

(e) The basis
$$\{(1,0,0),(0,1,0),(0,0,1)\}$$
 for \mathbb{R}^3 is orthonormal. [1]

Ans: Write $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$. Observe that $e_1 \cdot e_2 = e_3 \cdot e_2 = e_1 \cdot e_3 = 0$. Further, $||e_1|| = ||e_2|| = ||e_3|| = 1$.

2. (a) Define all the three types of elementary matrices. [1]

Ans: A matrix that is obtained by performing any one of the three elementary row operations (row exchange, multiply a nonzero constant to a row, or add a multiple of a row to another row) on an identity matrix is called as an elementary matrix.

Write $E_{i,j}$ to denote the elementary matrix obtained by exchanging the *i*th row with *j*th row in an identity matrix.

Write E_{ki} to denote the elementary matrix obtained by multiplying a nonzero constant k to the ith row in an identity matrix.

Write E_{ki+j} to denote the elementary matrix obtained by multiplying a constant k to the ith row and adding to jth row in an identity matrix.

(b) Write the inverse of each of the three types of elementary matrices. [1]

Ans: $E_{i,j}^{-1} = E_{i,j}$, $E_{ki}^{-1} = E_{\frac{1}{k}i}$, and $E_{ki+j}^{-1} = E_{-ki+j}$. This can be observed from the fact that the elementary row operations are reversible.

- (c) Write the determinant of each of the three types of elementary matrices. [1] Ans: $\det E_{i,j} = -1$, $\det E_{ki} = k$ and $\det E_{ki+j} = 1$.
 - (d) Show that every invertible matrix is a product of elementary matrices. [2]

Ans: Let $A_{n\times n}$ be an invertible matrix. Then, observe that the system $A\mathbf{x}=\mathbf{0}$ has only the trivial solution. That is, the Gauss-Jordan elimination applied to the augmented matrix $[A \mid \mathbf{0}]$ of the system gives $[I_n \mid \mathbf{0}]$ so that the reduced row echelon form of A is I_n . Hence, there is a finite sequence of elementary row operations which reduces A to I_n . Let E_1, \ldots, E_k be the corresponding sequence of elementary matrices (in the order) which are left multiplied to A to get I_n . That is,

$$E_k \cdots E_1 A = I_n$$
.

Hence, $A = E_1^{-1} \cdots E_k^{-1}$. Since inverse of an elementary matrix is also an elementary matrix, we have A as a product of elementary matrices.

3. (a) Prove that the range of a linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is the column space of its standard matrix [T].

Ans:

Range of
$$T = \{T(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^n\} = \{[T]\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$$

$$= \left\{ \begin{bmatrix} C_1 & \cdots & C_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \middle| x_i \in \mathbb{R} \right\},$$
where C_1, \dots, C_n are the columns of $[T]$ and $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$.
$$= \{C_1x_1 + \dots + C_nx_n \mid x_i \in \mathbb{R}\}$$

$$= \operatorname{col}([T]), \text{ being the set of all linear combinations of columns of } [T].$$

- (b) Prove that the linear transformation defined by an orthogonal matrix is anglepreserving in \mathbb{R}^n .
- Ans: Let A be an $n \times n$ orthogonal matrix and T_A be the linear transformation defined by $T_A(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. For any nonzero vectors $u, v \in \mathbb{R}^n$, the angle θ between u and v is given by $\cos \theta = \frac{u \cdot v}{\|u\| \|v\|}$. Since $\|A\mathbf{x}\| = \|\mathbf{x}\|$ and $A\mathbf{x} \cdot A\mathbf{x} = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have the angle between $T_A(u)$ and $T_A(v)$ is the same as θ . (Here, $T_A(u) \neq \mathbf{0} \neq T_A(v)$.)
 - (c) If the null space of a matrix A is $\{0\}$, then prove that the matrix transformation T_A is injective (one-one).

Ans: For two vectors u, v, assume $T_A(u) = T_A(v)$. Then, $Au = Av \Longrightarrow A(u - v) = \mathbf{0}$. Consequently, $u - v \in \text{null}(A)$. Hence, $u - v = \mathbf{0}$, so that u = v.

(d) Let A be a matrix. Prove that each vector in row(A) is orthogonal to every vector in null(A). [1]

Ans: Let $A = \begin{bmatrix} R_1 \\ \vdots \\ R_m \end{bmatrix}$ be an $m \times n$ matrix with rows R_1, \dots, R_m . Let $\mathbf{x} \in \text{null}(A)$ be arbitrary. Then, $\mathbf{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = A\mathbf{x} = \begin{bmatrix} R_1 \\ \vdots \\ R_m \end{bmatrix} \mathbf{x} = \begin{bmatrix} R_1 \cdot \mathbf{x} \\ \vdots \\ R_m \cdot \mathbf{x} \end{bmatrix}$, so that $R_i \cdot \mathbf{x} = 0$

for all i. Thus, each row of A is orthogonal to \mathbf{x} . If is orthogonal to \mathbf{x} .

(e) If the algebraic multiplicity of an eigenvalue λ of a matrix is 1, then prove that any two eigenvectors corresponding to λ are parallel (a scalar multiple of one another). [1]

Ans: Since the geometric multiplicity of each eigenvalue is less than or equal to its algebraic multiplicity, the geometric multiplicity of λ equals 1. So, any nonzero vector in the eigen space of λ will form a basis and hence, any two eigenvectors corresponding to λ are scalar multiple of each other.

- 4. Consider the matrix $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$.
 - (a) Write all the eigenvalues of A. [1]

Ans: Eigenvalues are 1, 2, 3.

(b) Write an eigenvector corresponding to each of the eigenvalues of A. [1]

Ans: An eigenvector corresponding to the eigenvalue 1 is $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$. An eigenvector corresponding to the eigenvalue 2 is $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T$. An eigenvector corresponding to the eigenvalue 3 is $\begin{bmatrix} 3 & 2 & 2 & 2 \end{bmatrix}^T$.

(c) Write an invertible matrix P such that $PAP^{-1} = D$, where D is a diagonal matrix.

Ans: Note that the algebraic and geometric multiplicities of the eigenvalue 2 are equal and another eigenvector of 2 which is independent of the one given above is $\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^T$. By arranging these linearly independent eigenvectors as columns

a matrix we get P^{-1} , as indicated here. Thus, $P^{-1} = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix}$. Hence,

the corresponding
$$P = \begin{bmatrix} 1 & -1 & -1 & \frac{1}{2} \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

(d) For $k \ge 0$, compute A^k . [1]

Ans: We have $PAP^{-1} = D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$, so that $A = P^{-1}DP$ and $A^k = P^{-1}D^kP$.

Thus,

$$A^{k} = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2^{k} & 0 & 0 \\ 0 & 0 & 2^{k} & 0 \\ 0 & 0 & 0 & 3^{k} \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 & \frac{1}{2} \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2^{k} - 1 & 2^{k} - 1 & \frac{3^{k+1} - 2^{k+2} + 1}{2} \\ 0 & 2^{k} & 0 & 3^{k} - 2^{k} \\ 0 & 0 & 0 & 3^{k} \end{bmatrix}$$

5. (a) Use Cayley-Hamilton theorem to compute the inverse of $A = \begin{bmatrix} 1 & 5 & 1 \\ 2 & 1 & 3 \\ 1 & 4 & 0 \end{bmatrix}$. [2]

Ans: Characteristic equation $\det(A-\lambda I)=0$ will be $\lambda^3-2\lambda^2-22\lambda=10$. By Cayley-Hamilton theorem, we have $A^3-2A^2-22A=10I$ so that $10A^{-1}=A^2-2A-22I$.

Thus,
$$A^{-1} = \frac{1}{10} \begin{bmatrix} -12 & 4 & 14 \\ 3 & -1 & -1 \\ 7 & 1 & -9 \end{bmatrix}$$
.

(b) If A is an $n \times n$ matrix and B is the matrix obtained by interchanging any two rows of A, then prove that $\det B = -\det A$. [3]

Ans: Refer to the textbook (3rd edition), page no. 289, Lemma 4.14.