Versja:	Numer indeksu:	_	$\overline{\text{Grupa}^1}$:			
Λ			s. 4	s. 5	s. 103	s. 10
$\boldsymbol{\mathcal{H}}$			s. 105	s. 139	s. 140	s. 14
	Logika dla info	rmatyk	ów			
	Sprawdzian nr 1, 16 Czas pisania: 30	-				
prostokąt po	punkty). Jeśli zbiór klauzul $\{\neg p\}$ niżej wpisz rezolucyjny dowód sprzed wartościowanie spełniające ten zbió	zności t		-		
zi od angielsl	punkty). Rozważmy taki trójargu kich słów if-then-else), że dla dowo tościowania σ zmiennych zdaniowyc	lnych fo	ormuł φ_1, φ_2		,	_
	$\hat{\sigma}(ite(\varphi_1, \varphi_2, \varphi_3)) = \begin{cases} \hat{\sigma}(\varphi_1, \varphi_2, \varphi_3) \\ \hat{\sigma}(\varphi_2, \varphi_3) \end{cases}$	$_{2}), ext{ jeśl}$ $_{3}), ext{ wp}$	i $\hat{\sigma}(\varphi_1) = T$ op.	,		

W przeciwnym przypadku wpisz słowo "NIE".

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę
ćwiczeniową.

ONF:	CNF:	
ą równoważne oraz w φ	Powiemy że formuła φ jest $uproszczeniem$ formuły ψ jeśli obie for występuje mniej spójników logicznych niż w ψ . W prostokąt poroszczeniem formuły $(p \lor q \lor r) \land (p \lor \neg q \lor r)$ lub słowo "NIE"	oniże
aka formuła nie istnieje. Zadanie 5 (2 punkty)	Wpisz słowo "TAK" w te prostokąty, które odpowiadają form ⇒ ¬q. W pozostałe prostokąty wpisz słowo "NIE".	ułon
aka formuła nie istnieje. Zadanie 5 (2 punkty)		ułon

Wei	rsja
	_

Numer in	ndeksu:	

Grupa ⁺ :			
s. 4	s. 5	s. 103	s. 104
105	120	1.40	1 / 1

Zadanie 6 (5 punktów). Rozważmy taki trójargumentowy spójnik logiczny maj (nazwa pochodzi od angielskiego słowa majority), że dla dowolnych formuł $\varphi_1, \varphi_2, \varphi_3$ rachunku zdań oraz dowolnego wartościowania σ zmiennych zdaniowych $\hat{\sigma}(maj(\varphi_1, \varphi_2, \varphi_3)) = \mathsf{T}$ wtedy i tylko wtedy, gdy większość (tzn. 2 lub 3) z argumentów $\varphi_1, \varphi_2, \varphi_3$ ma wartość T przy wartościowaniu σ .

- (a) Sformułuj zasadę indukcji w takiej wersji, żeby można było z niej skorzystać w punkcie (b).
- (b) Udowodnij indukcyjnie, że dla dowolnej formuły zbudowanej ze zmiennych zdaniowych i spójników \neg , \wedge istnieje równoważna formuła zbudowana ze zmiennych zdaniowych i spójników maj, \bot , \neg . Oczywiście w zapisie wszystkich formuł można używać nawiasów.

Zadanie 7 (5 punktów).

- (a) Sformułuj zasadę indukcji w takiej wersji, żeby można było z niej skorzystać w punkcie (b).
- (b) Niech $f:\mathbb{N}\to\mathbb{N}$ będzie funkcją spełniającą następujące zależności rekurencyjne:

$$f(0) = 0, (*)$$

$$f(n+1) = f(n) + 2 \cdot 3^n$$
 dla wszystkich $n \in \mathbb{N}$. (**)

Udowodnij indukcyjnie, że $f(n) = 3^n - 1$ dla wszystkich liczb $n \in \mathbb{N}$.

Zadanie 8 (5 punktów). Które z następujących dwóch stwierdzeń są prawdziwe? Uzasadnij odpowiedź.

- (a) Dla dowolnych formuł φ, ψ rachunku zdań, jeśli formuła $\varphi \Leftrightarrow \psi$ jest spełnialna a ψ jest tautologią, to φ jest spełnialna.
- (b) Dla dowolnych formuł φ, ψ rachunku zdań, jeśli formuły $\varphi \Leftrightarrow \psi$ oraz ψ są spełnialne, to φ jest spełnialna.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

			a. 1			
Wersja:	Numer indeksu:		$\frac{\text{Grupa}^1}{}$			
			s. 4	s. 5	s. 103	s. 104
			s. 105	s. 139	s. 140	s. 141
	Logika dla info	ormatyków	V			
	Sprawdzian nr 1, 16 Czas pisania: 36					
dzi od angielskio	unkty). Rozważmy taki trójarg ch słów if-then-else), że dla dow ściowania σ zmiennych zdaniowy	olnych forr	$\stackrel{-}{\operatorname{nul}} \varphi_1, arphi_2$			
	$\hat{\sigma}(ite(\varphi_1, \varphi_2, \varphi_3)) = \begin{cases} \hat{\sigma}(\varphi_1, \varphi_2, \varphi_3) \\ \hat{\sigma}(\varphi_1, \varphi_2, \varphi_3) \end{cases}$	(p_2) , jeśli (p_3) , wpp.	$\hat{\sigma}(arphi_1) = T$,		
wiasów), równow	muła zbudowana tylko ze zmienzyczna formule $\neg(p \Rightarrow \neg q)$, to w porzypadku wpisz słowo "NIE".	•				`
są równoważne o	unkty). Powiemy że formuła φ je oraz w φ występuje mniej spójnil gdącą uproszczeniem formuły (p istnieje.	ków logiczn	nych niż w	ψ . W μ	orostokąt	poniżej

¹Proszę zakreślić właściwą grupę ćwiczeniową.

	ściowanie spełniające t	ien zbiór. ————		
•	kty). Wpisz słowo "T le $p \Leftrightarrow \neg q$. W pozostał			dają formułom
$(\neg p) \Leftrightarrow q$		($(p \Rightarrow \neg q) \land (\neg q \Rightarrow p)$	
		_	$\neg((p \Rightarrow q) \land (q \Rightarrow p))$	
$(p \land \neg q) \lor (\neg p \land q)$				
Zadanie 5 (2 punk	kty). W prostokąty po j postaci normalnej, re			nio w dysjunk
Zadanie 5 (2 punk	-,			nio w dysjunk
Zadanie 5 (2 punk cyjnej i koniunkcyjne	-,			nio w dysjunk-
Zadanie 5 (2 punk	-,	ównoważne form		nio w dysjunk-

Wersja

Numer indeksu:	

$Grupa^1$:

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów).

- (a) Sformułuj zasadę indukcji w takiej wersji, żeby można było z niej skorzystać w punkcie (b).
- (b) Niech $g: \mathbb{N} \to \mathbb{N}$ będzie funkcją spełniającą następujące zależności rekurencyjne:

$$g(0) = 2, (*)$$

$$g(n+1) = 2 \cdot g(n) + 3^n - 1$$
 dla wszystkich $n \in \mathbb{N}$. (**)

Udowodnij indukcyjnie, że $g(n) = 3^n + 1$ dla wszystkich liczb $n \in \mathbb{N}$.

Zadanie 7 (5 punktów). Rozważmy taki trójargumentowy spójnik logiczny min (nazwa pochodzi od angielskiego słowa minority), że dla dowolnych formuł $\varphi_1, \varphi_2, \varphi_3$ rachunku zdań oraz dowolnego wartościowania σ zmiennych zdaniowych $\hat{\sigma}(min(\varphi_1, \varphi_2, \varphi_3)) = \mathsf{T}$ wtedy i tylko wtedy, gdy mniejszość (tzn. 0 lub 1) z argumentów $\varphi_1, \varphi_2, \varphi_3$ ma wartość T przy wartościowaniu σ .

Na ćwiczeniach zdefiniowaliśmy taki binarny spójnik logiczny \uparrow (znany również pod nazwą nand), że dla dowolnych formuł φ_1, φ_2 rachunku zdań oraz dowolnego wartościowania σ zmiennych zdaniowych $\hat{\sigma}(\varphi_1 \uparrow \varphi_2) = \mathsf{F}$ wtedy i tylko wtedy, gdy $\hat{\sigma}(\varphi_1) = \mathsf{T}$ i $\hat{\sigma}(\varphi_2) = \mathsf{T}$.

- (a) Sformułuj zasadę indukcji w takiej wersji, żeby można było z niej skorzystać w punkcie (b).
- (b) Udowodnij indukcyjnie, że dla dowolnej formuły zbudowanej ze zmiennych zdaniowych i spójnika \uparrow istnieje równoważna formuła zbudowana ze zmiennych zdaniowych i spójników min, \bot . Oczywiście w zapisie wszystkich formuł można używać nawiasów.

Zadanie 8 (5 punktów). Które z następujących dwóch stwierdzeń są prawdziwe? Uzasadnij odpowiedź.

- (a) Dla dowolnych formuł φ, ψ rachunku zdań, jeśli formuła $\varphi \Leftrightarrow \psi$ jest sprzeczna a ψ jest tautologia, to φ jest sprzeczna.
- (b) Dla dowolnych formuł φ, ψ rachunku zdań, jeśli formuła $\varphi \Leftrightarrow \psi$ jest sprzeczna a ψ jest spełnialna, to φ jest spełnialna.

¹Proszę zakreślić właściwą grupę ćwiczeniową.