Introduccion a la Bioinformática Información biológica en formato electrónico Bases de datos

Fernán Agüero

Instituto de Investigaciones Biotecnológicas UNSAM

Bases de datos: introducción: conceptos básicos

Qué es una base de datos?

Una colección de datos

Cómo colecciono los datos?

Decisión del usuario. Diseño de la base de datos.

Puedo usar:

Planilla de Cálculo? (Excel)

Procesador de texto? (Word)

Si. Permite sólo búsqueda y ordenamiento simples.

También. Como los datos están en columnas independientes, se puede ordenar en formas más complejas. Las búsquedas siguen siendo simples.

Bases de datos: introducción: conceptos básicos: registros

- Cada registro tiene varios campos.
- Cada campo contiene información específica.
- Cada campo contiene datos de un tipo determinado.
 - Ej: dinero, texto, números enteros, fechas, direcciones
- Cada registro tiene una clave primaria. Un identificador único que define al registro sin ambigüedad.

gi	Accession	version	date	Genbank Division	taxid	organims	Number of Chromosomes
6226959	NM_000014	3	01/06/2000	PRI	9606	homo sapiens	22 diploid + X+Y
6226762	NM_000014	2	12/10/1999	PRI	9606	homo sapiens	22 diploid + X+Y
4557224	NM_000014	1	04/02/1999	PRI	9606	homo sapiens	22 diploid + X+Y
41	X63129	1	06/06/1996	MAM	9913	bos taurus	29+X+Y

Tipos de datos

- Cada campo de una base de datos contiene un tipo particular de datos
 - 211203
 - Es un numero?
 - Es texto?
 - Es una fecha?
- Ejemplo de una busqueda: buscar todos los registros en donde el valor almacenado sea mayor que 211203
 - Es obvio que para poder comparar los valores almacenados tenemos que saber qe tipo de valores estamos comparando.
 - Si es una fecha: 21 12 03 < 2 12 04
 - Si es un numero: 211 203 > 21 204
 - Si es texto: 211203 ≠ 21204, las comparaciones < y > pueden dar distintos resultados (evaluan orden o longitud)

Tipos de datos

- Numericos (enteros, decimales)
- Texto
- Fechas (DD/MM/YYYY, HH:MM:SS)
- Logicos (boolean) = verdadero / falso
- Geometricos (punto, linea, circulo, poligonos, etc.)

Bases de datos: conceptos básicos: clave primaria

gi	Accession	version	date	Genbank Division	taxid	organims	Number of Chromosomes
6226959	NM_000014	3	01/06/2000	PRI	9606	homo sapiens	22 diploid + X+Y
6226762	NM_000014	2	12/10/1999	PRI	9606	homo sapiens	22 diploid + X+Y
4557224	NM_000014	1	04/02/1999	PRI	9606	homo sapiens	22 diploid + X+Y
41	X63129	1	06/06/1996	MAM	9913	bos taurus	29+X+Y

gi = Genbank Identifier: Clave única : Clave primaria

Cambia con cada actualización del registro correspondiente a la secuencia

Accession Number: Clave secundaria

Refiere al mismo locus y secuencia, a pesar de los cambios en la secuencia.

Accession + Version es equivalente al gi (representa un identificador único)

Ejemplo: AF405321.2 Accession: AF405321 Version: 2

Bases de datos: bases de datos relacionales

gi	Accession	version	date	Genbank Division	taxid	organims	Number of Chromosomes
6226959	NM_000014	3	01/06/2000	PRI	9606	homo sapiens	22 diploid + X+Y
6226762	NM_000014	2	12/10/1999	PRI	9606	homo sapiens	22 diploid + X+Y
4557224	NM_000014	1	04/02/1999	PRI	9606	homo sapiens	22 diploid + X+Y
41	X63129	1	06/06/1996	MAM	9913	bos taurus	29+X+Y

Base de datos relacional:

Normalizar una base de datos: repartir sub-elementos repetidos en varias tablas, relacionadas a través de un identificador único (clave primaria).

gi	Accession	version	date	Genbank Division	taxid
6226959	NM_000014	3	01/06/2000	PRI	9606
6226762	NM_000014	2	12/10/1999	PRI	9606
4557224	NM_000014	1	04/02/1999	PRI	9606
41	X63129	1	06/06/1996	MAM	9913
taxid	organims	Number	of Chromos	omes	
9606	homo sapiens	22 diploid + X+Y			
9913	bos taurus	29+X+Y	•		

Bases de datos: distribucion de la informacion

gi	annotation
5693	Trypanosoma cruzi chromosome 3, ORF 1234, similar to gi 12345 AF934567 caseine kinase (Candida albicans)
5694	Candida albicans hypothetical protein in region 2192224568
5695	Sarcocystis cruzi 16SRNA gene
5696	Lutzomyia cruzi cytochrome b; best similarity to gi 1234568

gi	Organism	Annotation	similar to
5693	Trypanosoma cruzi	Chromosome 3, ORF 1234	12345
5694	Candida albicans	Hypothetical protein in region 2192224568	
5695	Sarcocystis cruzi	16S RNA gene	786512
5696	Lutzomyia cruzi	Cytochrome b	12345 <mark>6</mark> 8

Schemas

 La distribución de los datos en campos dentro de una tabla y de las relaciones entre tablas y sus campos es lo que se llama el diseño o schema

Schemas (cont)

Representación relacional de la información

- Qué criterio usamos para diseñar el schema?
- Cómo distribuimos los datos en tablas/columnas?
- Distintas cosas a tener en cuenta:
 - Eficiencia (economía) al almacenar datos: normalización
 - Consultas que planeamos hacer sobre nuestra base de datos y en el tipo de datos.

Relaciones entre los datos

• Ejemplos de relaciones

- Proteins ↔ Bibliographic references

Proteins

Accession	Description	MW	pl
AF1234	Malate dehydrogenase	36000	6.4
AM44432	Cysteine proteinase	45000	4.5

Linking table

Accession	PubMed ID
AF1234	1234556
AF1234	23445

Bibliographic References

PubMed ID	Journal	Year	Title	Vol
1234556	J Biol Chem	1978	The malate dehydrogenase	5
23445	Biochem J	1982	A malate dehydrogenase from	13

Representación de árboles y grafos

- Ejemplo: representación en forma relacional de árboles y grafos
 - Información estucturada jerárquicamente
 - Taxonomy (NCBI), SCOP (Structural Classification of Proteins)

Phylogenetic Tree of Life

Relational modeling of biological data: trees and graphs. Aaron

J. Mackey. http://www.oreillynet.com/pub/a/network/2002/11/27/bioconf.html

Ejemplo: adjacency list

	Campo	Tipo de dato
PK	Taxon_id	Entero
FK	Parent_id	Entero (ref a PK)
	Nombre	texto

Este tipo de representación se conoce como 'adjacency list':

Cada relación jerárquica 'padre-hijo' está definida en forma explícita.

Taxon_id	Parent_id	nombre
1	-	raíz
2	1	Bacteria
2157	1	Archaea
2759	1	Eukaryota
1224	2	Proteobacteria
•••	•••	•••
543	1236	Enterobacteriaceae
561	543	Escherichia
562	561	Escherichia coli
83333	562	Escherichia coli K12

Adjacency list: consultas

- Qué consultas podemos hacer sobre los datos organizados en forma de 'adjacency list'?
 - Podemos encontrar el taxón inmediatamente superior de cualquier elemento taxonómico.
 - Podemos encontrar taxones terminales sin 'hijos'
 - Podemos encontrar un taxón (o taxones) buscándolos por nombre
- Y cuáles son difíciles de hacer con esta representación de los datos?
 - Podemos encontrar todos los taxones 'hijos' de un determinado taxón?
 - Ejemplos típicos de este tipo de consultas: buscar todos los mamíferos, todos los vertebrados, o todos los miembros del orden Apicomplexa.
 - Cómo harían esta consulta? Es posible responder estas preguntas con una única consulta sobre la base de datos? Cuántas consultas deberían hacer?

Eukaryota; Fungi/Metazoa group; Metazoa; Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata; Craniata; Vertebrata; Gnathostomata; Teleostomi; Euteleostome; Sarcopterygii; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Primates; Catarrhini; Hominidae; Homo/Pan/Gorilla Group; Homo; Homo sapiens

Representación relacional de árboles: nested set

	Campo	Tipo
PK	Taxon_id	entero
FK	Parent_id	entero
	Left_id	entero
	Right_id	entero
	Nombre	texto

Los valores left y right son números arbitrarios, pero deben cumplir con la siguiente propiedad:

Para cada par 'padrehijo' los valores del hijo tienen que estar dentro de los valores del padre.

Taxon	Nombre	Parent	Left	Right
1	Root	NULL	1	323458
2	Bacteria	1	21703	87862
3	Archaea	1	87863	92266
4	Eukaryota	1	92267	323456
1224	Proteobacteria	2	23982	49591
•••		•••	•••	•••
543	Enterobacteriaceae	1236	26681	27938
561	Escherichia	543	26852	26891
562	Escherichia coli	561	26853	26868
83333	Escherichia coli K12	562	26856	26857

Nested set representation: como calcular left/right?

- Cómo se generan los valores para left y right?
 - Hay que recorrer el árbol asignando estos valores

- Arboles / Grafos
 - Hay distintas maneras de recorrerlos
 - Depth-first
 - Breadth-first

Materialized Paths

	Campo	Tipo
PK	Taxon_id	entero
	Name	Texto
	Path	Texto

En este diseño, el **camino** (*path*) hacia cada nodo del árbol, está incluído en forma explícita en la información asociada a cada nodo.

Taxon	Nombre	Path
1	Root	1
2	Bacteria	1.2
3	Archaea	1.3
4	Proteobacteria	1.2.4
5	Cyanobacteria	1.2.5
6	Actinobacteria	1.2.6
7	Crenarchaeota	1.3.7
8	Euryarchaeota	1.3.8
9	Thaumarchaeota	1.3.9
10	Alfa-Proteobacteria	1.2.4.10
11	Gamma-proteobacteria	1.2.4.11
12	Delta-proteobacteria	1.2.4.12
13	Coriobacteridae	1.2.6.13
14	Actinobacteria	1.2.6.14
15	Methanobacteria	1.3.8.15
16	Thermococci	1.3.8.16
17	Cenarchaeales	1.3.9.17
18	Nitrosopumiales	1.3.9.18

Materialized Paths: consultas

- Buscar un nodo y todos sus parentales
 - Ej: buscar todos los parentales del nodo 'Thermococci'
 - Buscar todos los registros cuyo Path esté contenido dentro del nodo de interés
 - Path del nodo 'thermococci' = 1.3.8.16
 - · Lista de Paths que cumplen la condición,
 - 1.3.8 (Euryarchaeota), 1.3 (Archaea), 1 (root)
- Buscar un nodo y todos sus descendientes (directos o indirectos)
 - Ej: buscar todos los descendientes del nodo 'Bacteria'
 - Buscar todos los registros cuyo Path contenga al del nodo de interés
 - Path del nodo de 'Bacteria' = 1.2
 - Lista de Paths que cumplen con la condición,
 - 1.2.4 (Proteobacteria), 1.2.5 (cyanobacteria), 1.2.6 (Actinobacteria),
 - 1.2.4.10 (alpha-proteobacteria), 1.2.4.11 (gamma-proteobacteria),
 - 1.2.4.12 (delta-proteobacteria), etc.

Entity-Attribute-Value

- También: Object-Attribute-Value
- Usado en casos en donde el número de atributos (propiedades, parámetros) utilizados para describir algo (un objeto o entidad) es muy grande pero el número de atributos que realmente se utilizan es variable y pequeño.
- El caso más común es el de historias clínicas de pacientes
 - Cientos de miles de atributos que se pueden medir, diagnosticar, o evaluar
 - En la consulta el médico pregunta de acuerdo a los síntomas que describe el paciente (filtra atributos) y finalmente se almacena en la base de datos aquellos que son relevantes.

20

Entity-Attribute-Value

- Modelar estos datos de la manera tradicional
 - Una tabla con miles de columnas (una por cada posible atributo)
 - El seguimiento en el tiempo de un paciente implica agregar una fila por cada consulta.
 - En cada fila hay sólo unos pocos hallazgos (positivos), el resto de las columnas están vacías (NULL).
- Modelar estos datos usando el modelo Entity-Attribute-Value
 - Una única tabla con tres columnas:

Tabla de objetos (entidades)

ID	Nombre	Apellido	•••
Paciente 1	Tito	Chocola	

Tabla de datos

Entity	Attribute	Value
Paciente 1	1	33
Paciente 1	15	230
Paciente 1	56	

Tabla de atributos

Attr ID	Name	Description	Data type	Units	Input validation
1	Edad	Edad	Integer	Años	\d+
15	Colesterol en sangre	Descripcion	Float	Mg/ml	\d+\.?\d*

Structured Query Language

- SQL Structured Query Language
 - Es un lenguaje utilizado por todos los sistemas de manejo de bases de datos relacionales
 - Oracle, Sybase, PostgreSQL, MySQL, SQLite, etc.
 - Permite definir tablas, relaciones (DDL)
 - Y hacer consultas (DML)
- DDL Data Definition Language
 - Subset de SQL utilizado para crear bases de datos, tablas, definir campos, etc.
 - CREATE DATABASE, CREATE TABLE
 - DROP DATABASE, DROP TABLE,
 - ALTER TABLE,
- DML Data Manipulation Language
 - Subset de SQL utilizado para hacer consultas, insertar y actualizar datos, etc.
 - SELECT FROM TABLE, INSERT INTO TABLE
 - UPDATE TABLE
 - DELETE FROM TABLE

SQL - Un ejemplo de consulta

Proteins

Accession	Description	MW	pl
AF1234	Malate dehydrogenase	36000	6.4
AM44432	Cysteine proteinase	45000	4.5

Linking table

Accession	PubMed ID
AF1234	1234556
AF1234	23445

Bibliographic References

PubMed ID	Journal	Year	Title	Vol
1234556	J Biol Chem	1978	The malate dehydrogenase	5
23445	Biochem J	1982	A malate dehydrogenase from	13

SELECT accession, description, journal, year, vol, pages, ...
FROM proteins, bibliographic_references, linking_table
WHERE linking_table.accession = proteins.accession
AND linking_table.pubmed_id = bibliographic_references.pubmed_id
AND proteins.mw <= 36000;

SQL - Un ejemplo de manipulación de datos

Proteins

Accession	Description	MW	pl
AF1234	Malate dehydrogenase	36000	6.4
AM44432	Cysteine proteinase	45000	4.5

Linking table

Accession	PubMed ID
AF1234	1234556
AF1234	23445

Bibliographic References

PubMed ID	Journal	Year	Title	Vol
1234556	J Biol Chem	1978	The malate dehydrogenase	5
23445	Biochem J	1982	A malate dehydrogenase from	13

INSERT INTO proteins (accession, description, mw, ...) VALUES ('AF1234', 'Malate dehydrogenase', '36000', ...);

UPDATE proteins **SET** mw = 45000 **WHERE** accession = AM44432;

DELETE FROM proteins **WHERE** accession = AF1234;

Bases de datos biológicas

Reinventar la rueda

- Cuántas maneras hay de organizar información biológica en forma de tablas en una base de datos relacional?
- secuencias + anotación?
- Secuencias + features (propiedades de la secuencia localizables)

-

Después de haber reinventado muchas ruedas ...

- GUS, Genomics Unified Schema
 - PlasmoDB, ToxoDB, CryptoDB (ApiDB), TcruziDB, Allgenes.org,
- Chado, The GMOD Database Schema
 - Wormbase, FlyBase, TaiR, Gramene, SGD, DictyBase

GUS: Genomics Unified Schema

- Qué es?
 - Extensive relational database schema
 - Associated application framework
- Para que se usa?
 - Para almacenar, integrar, analizar y presentar datos genómicos

Modular schema:

- Core: tablas conteniendo información de GUS (housekeeping)
- DOTS: tablas para almacenar información sobre secuencias, genes,
- SRES: resource tables (to store external resources, controlled vocabularies)
- RAD: microarray data
- TESS: transcription binding, transcription factors
- PROT: proteomics

CHADO: The GMOD schema

- GMOD = Generic Model Organism Database
- CHADO = DB Schema that underlies many GMOD installations
- Capable of representing many of the general classes of data frequently encountered in modern biology

Modular schema

- Companalysis, for data derived from computational analysis
- Contact, for people, groups, organizations
- Controlled vocabularies
- Expression
- General (for accession numbers and identifiers)
- Genetic
- MAGE, microarray data
- Phenotype,
- Organism, for taxonomic data)
- Publication, for publication references
- Sequence, for sequence, annotation, and features
- Stock, for specimens and biological collections

RDBMS

- Relational Database Management Systems
 - Comerciales
 - Oracle, Sybase
 - Open source, gratuitos
 - PostgreSQL, MySQL
- Todos usan SQL (standard query language) para
 - crear tablas, indices, etc.
 - CREATE TABLE taxon (taxon_id integer, name text, PRIMARY KEY(taxon_id))
 - ALTER TABLE taxon INDEX (name)
 - ingresar datos
 - INSERT INTO taxon (taxon_id, name) VALUES (1, root);
 - UPDATE taxon SET name = "Trypanosoma cruzi" WHERE name = "Schizotrypanum cruzi"
 - consultar
 - SELECT name FROM taxon WHERE taxon_id = 1;
 - SELECT taxon_id, name FROM taxon WHERE taxon_id IN ('12', '15', '345', '1823')

Búsquedas en una base de datos: índices

- Para facilitar las búsquedas en una base de datos, se construyen índices.
- Un índice es una lista de claves primarias asociadas a un determinado campo (o grupo de campos)

gi	Accession	version	date	Genbank Division	taxid	organims	Number of Chromosomes
6226959	NM_000014	3	01/06/2000	PRI	9606	homo sapiens	22 diploid + X+Y
6226762	NM_000014	2	12/10/1999	PRI	9606	homo sapiens	22 diploid + X+Y
4557224	NM_000014	1	04/02/1999	PRI	9606	homo sapiens	22 diploid + X+Y
41	X63129	1	06/06/1996	MAM	9913	bos taurus	29+X+Y

```
gi Accession
6226959 NM_000014
6226762 NM_000014
4557224 NM_000014
41 X63129
```

Indices (cont)

 Un ejemplo más complejo: buscar todos los records que contengan la palabra 'kinase' en la descripción de la secuencia

gi	acc	def	
2147	314077	Menopus laevis rhoc	dopsin r
1234	5 43	5M6i7s musculus caseir	n kinas∈

Indexar la columna 'def'

```
word
casein1234,3245,43678,123456 ...
kinase432,5678,32456,123456 ...
laevis36314,214734, ...
mus 23467,98732,123456,312456,567
muscul23e467,98732,123456,567983 ...
rhodop2sli4n734,223466,873212,23587,29
xenopu2s8462,36314,98476,214734 ...
```

Indexar es costoso

- El proceso de indexación es costoso en términos computacionales, pero se realiza una única vez (en realidad cada vez que se actualizan los datos)
- Desde el punto de vista de la base de datos, los indices no son otra cosa que nuevas tablas relacionadas con la tabla que contiene el campo indexado
- Ejemplo más obvio: buscadores de páginas de internet (Google, Altavista). Visitan páginas e indexan los términos que encuentran
 - kewyword: url1, url2, url3, url4, etc.

Indices

- Son estructuras de datos utilizadas para acelerar la búsqueda de relaciones (tuples) que cumplan alguna determinada condición
 - Igualdad: encontrar Discos donde Banda = Tipitos
 - Otras condiciones son posibles: rangos
 - Encontrar Discos donde Año de Lanzamiento (AL) sea
 - AL < 1990 y AL > 1980
- Hay muchos tipos de Indices
 - Convencionales
 - B-Trees
 - Hashing indexes
- Se evalúan de acuerdo a
 - Tiempo de acceso
 - Tiempo que lleva insertar un dato
 - Tiempo que lleva borrar un dato
 - Espacio en disco que ocupan

32

Indices convencionales

- Similares al índice de un libro
 - El indice contiene una entrada, con un puntero (número de página) al lugar donde están los datos
- Sparse vs Dense (más o menos densos)
 - Dense: hay una entrada para cada clave asociada a un objeto
 - Sparse: hay una entrada para algunas claves solamente

Indice (genes)	Genes	Tiempo	Expresión
ABC1 →	ABC1	1	0.2
BRC2 -	BRC2	1	0.8
CAM3	BRC2	2	0.3
DHFR	CAM3	2	0.25
EGF-1	DHFR	1	0.1
	DHFR	2	0.3
/ 4	DHFR	2	0.4
Ä	EGF-1	1	0.3

Sparse vs Dense

- Ventajas / Desventajas?
 - Los índices densos son más rápidos
 - Los índices dispersos ocupan menos espacio
 - Cuál es el límite a partir del cuál un indice disperso se vuelve denso?
 - Los índices dispersos pueden ajustarse
 - Cuantas claves nos salteamos?
 - Densidad de claves
 - Evaluar # total de filas, # de entradas por cada clave

Multi-level indexes

- Los índices convencionales pueden ser muy grandes
- La idea de estos índices es que reduzcan el acceso a disco
- La unidad mínima de I/O en una computadora es mover un bloque de datos del disco a memoria
- Ejemplo
 - Un archivo con 100,000 registros, con 10 datos x gen
 - Un índice disperso, con una entrada x gen: tendríamos 10,000 filas
 - Si asumimos que en un bloque de I/O entran 100 filas, necesitamos acceder a 100 bloques.
- Es deseable mantener los índices en memoria RAM
- Los índices se vuelven costosos cuando crecen los datos
 - Que pasaría en el caso de tener millones de registros?

Binary trees

Arboles: nodos conectados con vértices (grafos)

- Para hacer búsquedas, los datos se ignoran.
- Es como si el árbol solo tuviera 'claves'

Binary trees

Reglas para moverse en el árbol

- Ejemplo, buscar A
- Empezar en la raíz, si encontramos A listo!
- Si no, nos movemos, de esta forma:
 - Si la clave del nodo es < A, a la izquierda
 - Si la clave del nodo es > A, a la derecha

Armando un árbol: BDCAE

- Empezamos por la raiz
- Agregamos nodos siguiendo las mismas reglas de movimiento

Profundidad promedio de este árbol: 1.5

$$(1+1+2+2)/4$$

Binary trees

- Armando un árbol: ABCDE
 - El órden de los datos afecta el balance del árbol (la distribución de las ramas)

Más sobre 'binary trees'

- Arboles balanceados vs no balanceados
 - Profundidad es inversamente proporcional a la velocidad de las búsquedas

2

1.5

4

2.5

Profundidad máxima

Profundidad promedio

- B-Tress are not 'binary tree!
 - Bushy Trees, B

- Son una generalización de los árboles binarios
 - Los nodos pueden contener más de una clave
 - Las claves dentro de un nodo están ordenadas
 - B-Tree de orden 2 => cada nodo contiene a lo sumo 3 claves
 - B-Tree de orden 3 => cada nodo contiene a lo sumo 4 claves
 - B-Tree de orden n = a lo sumo n-1 claves

B-Tree de orden 5

- A lo sumo 4 claves por nodo
- Agrego una nueva clave (un nuevo objeto/elemento)

Como me excedo del límite, parto el nodo a la mitad

41

• Ejemplo: ABCDE

- Esta cadena de texto, en un árbol binario, da un árbol desbalanceado
- Probemos usando un B-Tree de orden 3

B-trees

- B-trees son estructuras de datos especializadas
 - Uso en discos (lento)
 - Almacenamiento de grandes volúmenes de datos
- Permiten realizar búsquedas extremadamente rápidas
 - No se recorren todos y cada uno de los nodos para obtener una respuesta

Recorriendo árboles

- Depth-first
 - Recorrido en profundidad primero
 - Se visita cada nodo 3 veces
 - Al visitarlo por primera vez (desde el nodo parental)
 - Al visitarlo por segunda vez desde el nodo hijo izquierdo
 - Al visitarlo nuevamente (desde el nodo hijo derecho)
- Breadth-first (level order)
 - Recorrido exhaustivo de cada nivel de profundidad del árbol (hacia lo ancho)
- Ejemplos interactivos:
 - http://nova.umuc.edu/~jarc/idsv/lesson1.html

Búsquedas en bases de datos: búsquedas indexadas

Importante: no se busca en el total de los datos disponibles, sino sobre un subset pre-computado.

- Buscadores de páginas en internet
- PubMed / Entrez / SRS
- BLAST

Motores de búsqueda: búsquedas simples

- Los motores de búsqueda ofrecen búsquedas simples
- No imponen restricciones
- El usuario tipea palabras libremente
- Usan estrategias para intentar "adivinar" la intención del usuario (sobre qué campo de la base de datos buscar)

Ejemplo: term mapping - Entrez (PubMed)

- Entrez busca en una serie de listas para ver si la palabra que ingresaron se encuentra en alguna
- MeSH (Medical Subject Headings): vocabulario controlado utilizado para indexar artículos en PubMed.
- Journals: nombre completo del journal, abreviaturas usadas en MEDLINE y números ISSN.
- Lista de frases: cientos de miles de frases generadas a partir de MeSH y otros vocabularios controlados similares.
- Indice de autores: apellido e iniciales.
- Stopwords: palabras comunes, presentes en casi todos los registros de la base de datos (a, an, by, of, the ...)

Búsquedas simples: pros / cons

- Ventajas
 - rápidas de formular
 - no hay que leer el manual
 - ni hacer un curso 🙂
- Desventajas
 - poco selectivas

Búsquedas avanzadas

- Presuponen un cierto conocimiento sobre la organización subyacente de los datos
- Hay que especificar sobre qué campos buscar:
 - ⇒ hay que conocer los campos
- Entrez: se especifican entre corchetes
- Tags predefinidos (hay que conocerlos)
 - Escherichia coli[organism]
 - review[publication type]
 - attenuator[feature key]
- SRS: formulario avanzado (no hay que conocer términos o tags)

Búsquedas avanzadas: Entrez

Entrez provee además

- Límites: especie de formulario avanzado que les permite limitar la búsqueda a un campo determinado, sin tener que conocer los tags)
- History: una historia de las búsquedas que van realizando. En cualquier momento pueden combinar búsquedas o volver sobre alguna de ellas
- Preview/Index: les permite probar una búsqueda (preview) y ver el número de registros que selecciona o ver los índices y el número de registros asociados a cada uno de ellos
- Details: permite analizar la traducción que realizó Entrez de la búsqueda que realizamos (uso de sinónimos, límites, etc)

Operadores lógicos

- En búsquedas simples o avanzadas siempre tienen a disposición operadores lógicos para encadenar términos
- AND (intersección)
 - human AND genome
 - +human +genome
 - human && genome
- OR (unión)
 - human OR genome
 - human || genome
- NOT (subconjunto)
 - human NOT genome

Orden de los términos en un query

- El orden de los términos es importante
- Un query se evalúa de izquierda a derecha
 - human NOT genome no es lo mismo que genome NOT human
- Si el query tiene muchos términos pueden forzar el orden de evaluación usando paréntesis
 - human AND cancer AND (cell OR science OR nature)
 - casein kinase NOT (human OR mouse)

The NAR Molecular Biology Database Collection

El numero de Enero de cada año está dedicado a bases de datos biológicas

Algunas bases de datos Argentinas

2009

TcSNP: a database of genetic variation in Trypanosoma cruzi

Alejandro A. Ackermann, Santiago J. Carmona and Fernán Agüero*

Author Affiliations

Instituto de Investigaciones Biotecnológicas, Universidad de San Martín - CONICET, San Martín, 1650, Argentina

*To whom correspondence should be addressed. Tel: +54 11 4580 7255; Fax: +54 11 4752 9639; Email: fernan@unsam.edu.ar

Received August 15, 2008. Revision received September 24, 2008. Accepted October 18, 2008.

2011

PCDB: a database of protein conformational diversity

Ezequiel I. Juritz, Sebastian Fernandez Alberti and Gustavo D. Parisi

Author Affiliations

Universidad Nacional de Quilmes, Centro de Estudios e Investigaciones, Roqu Peña 352, Bernal, Argentina

*To whom correspondence should be addressed. Tel: +54(011)43657100; Fax: +54(011)43657182; Email: gusparisi@gmail.com

Received Au Revision received Nove Accepted Nove

TDR Targets: a chemogenomics resource for neglected diseases

María P. Magariños¹, Santiago J. Carmona¹, Gregory J. Crowther², Stuart A. Ralph³, David S. Roos⁴, Dhanasekaran Shanmugam⁴, Wesley C. Van Voorhis² and Fernán Agüero¹,*

- Author Affiliations

¹Instituto de Investigaciones Biotecnológicas, Universidad de San Martín, San Martín, Buenos Aires, Argentina, ²Department of Medicine, University of Washington, Seattle, WA, USA, ³Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia and ⁴Department of Biology and Penn Genomics Institute, University of Pennsylvania, Philadelphia, PA, USA

To whom correspondence should be addressed. Tel: +54 11 4580 7255 (Ext. 310); Fax: +54 11 4752 9639; Email: fernan@unsam.edu.ar, fernan.aguero@gmail.com

2012

Received September 15, 2011. Revision received October 24, 2011. Accepted October 25, 2011.

Beca de Iniciación (Doctoral)

Proyecto PICT-2013, Búsqueda de marcadores para diagnóstico molecular de la Enfermedad de Chagas.

Beca por 3 años

Bases de datos biológicas: DNA

Nucleotide databases:

- Genbank: International Collaboration
 - NCBI (USA), EMBL (Europe), DDBJ (Japan and Asia)
 - European Nucleotide Archive (ENA) Europe
 - Sequence Read Archive (SRA) USA
- Organism specific databases
 - FlyBase
 - ChickBASE
 - pigbase
 - SGD (Saccharomyces Genome Database)

Bases de datos biológicas: proteínas

Protein Databases:

- NCBI:
 - Genpept: Translated Proteins from Genbank Submissions
- EMBL
 - TrEMBL: Translated Proteins from EMBL Database
- SwissProt:
 - recibe secuencias peptídicas
 - cura y anota secuencias provenientes de TrEMBL

(Gratuita para uso académico. Restricciones sobre los descubrimientos hechos utilizando la base de datos. La versión de 1998 es gratuita y libre de todas las restricciones.)

- http://www.expasy.ch (última versión no-gratuita)
- NCBI tiene la última versión gratuita.

Bases de datos biológicas: estructura

Structure databases:

- PDB: Protein structure database.
 - http://www.rscb.org/pdb/
- MMDB: NCBI's version of PDB with entrez links.
 - http://www.ncbi.nlm.nih.gov
- SCOP: structural classification of proteins
 - family, superfamily, fold
- CATH: structural classification of proteins
 - class, architecture, topology, homology
- FSSP: fold classification based on structure-structure alignment

Genome Mapping Information:

- http://www.il-st-acad-sci.org/health/genebase.html
- NCBI(Human)
- Genome Centers:
 - Stanford, Washington University, UCSC
- Research Centers and Universities

Bases de datos biológicas: literatura

- Literature databases:
 - NCBI: Pubmed: All biomedical literature.
 - www.ncbi.nlm.nih.gov
 - Abstracts and links to publisher sites for
 - full text retrieval/ordering
 - journal browsing.
 - Publisher web sites.
- Pathways Database:
 - KEGG: Kyoto Encyclopedia of Genes and Genomes: www.genome.ad.jp/kegg/kegg/html
 - BioCyc: Pathway/Genome Databases and Pathway Tools
 - www.biocyc.org

61

Bases de datos biológicas: GenBank

- Es un <u>Banco</u>: no se intenta unificar datos.
 - No se pueden modificar las secuencias sin el consentimiento del autor (submitter).
 - No se intenta unificar (puede haber más de una secuencia para un locus/gen).
 - Puede haber registros de diversas calidades de secuencia y diferentes fuentes ==> Se separan en varias divisiones de acuerdo a:
 - Secuencias de alta calidad en divisiones taxonómicas.
 - PRI -> Primates
 - MAM -> Mamíferos
 - INV -> Invertebrados
 - Secuencias de baja calidad en divisiones uso-específicas.
 - GSS -> Genome Sequence Survey
 - EST -> Expressed Sequence Tags
 - HTG -> High Troughput Sequencing (unfinished contigs, BACs, cosmids, chromosomes).

GenBank

- Redundante
- Con errores
- Dificil de actualizar
- Para poder corregir, mejorar y mantener actualizada la anotación de los registros, el NCBI creó RefSeq (colección curada de registros de GenBank)
 - toma records de GenBank y los actualiza/corrije
 - unifica para reducir redundancia
 - Accession numbers del tipo XX_123456

Bases de datos primarias

- Una base de datos primaria es un repositorio de datos derivados de un experimento o de conocimiento científico.
 - Genbank (Repositorio de secuencias nucleotídicas)
 - Protein DB, Swissprot
 - PDB
 - Pubmed (literatura)
 - Genome Mapping
 - Kegg (Kyoto Encyclopedia of Genes and Genomes, base de datos de vías metabólicas)

64

Bases de datos secundarias

- Una base de datos secundaria contiene información derivada de otras fuentes (primarias, entre otras).
 - Refseq (Colección curada de GenBank en NCBI)
 - Unigene (Clustering de ESTs en NCBI)
- Las bases de datos organismo específicas son en general una mezcla entre primaria y secundaria.

65

Formas de representar la información

- En una base de datos, la información está representada en forma compleja
- El usuario sin embargo tiene acceso a formas más simples de representación de los datos: flatfiles
- Ejemplos de archivos simples (flatfiles): FASTA, GenBank/EMBL
- En general son archivos de texto (o HTML enel caso de páginas web) conteniendo todos los datos de un registro, organizados de alguna forma particular.
- Ejemplos:
 - GenBank/EMBL, FASTA, Swissprot

Representación de la información

Representación de la información

76

Ejemplo de formato: GenBank

```
LOCUS
            XELRHODOP
                                     1684 bp mRNA
                                                        linear VRT 15-FEB-1996
DEFINITION
            Xenopus laevis rhodopsin mRNA, complete cds.
            T<sub>1</sub>07770
ACCESSION
            L07770.1 GI:214734
VERSION
            G protein-coupled receptor; phototransduction protein; retinal
KEYWORDS
            protein; rhodopsin; transmembrane protein.
SOURCE
            Xenopus laevis (African clawed frog)
            Xenopus laevis
  ORGANISM
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Amphibia; Batrachia; Anura; Mesobatrachia; Pipoidea; Pipidae;
            Xenopodinae; Xenopus.
               (bases 1 to 1684)
REFERENCE
  AUTHORS
            Knox, B.E., Scalzetti, L.C., Batni, S. and Wang, J.Q.
            Molecular cloning of the abundant rhodopsin and transducin from
  TITLE
            Xenopus laevis
            Unpublished (1992)
  JOURNAL
            2 (bases 1 to 1684)
REFERENCE
  AUTHORS
            Batni, S., Scalzetti, L., Moody, S.A. and Knox, B.E.
            Characterization of the Xenopus rhodopsin gene
  TITLE
            J. Biol. Chem. 271 (6), 3179-3186 (1996)
  JOURNAL
            96216396
  MEDLINE
            8621718
   PUBMED
            Original source text: Xenopus laevis (tissue library: lambda-ZAPII)
COMMENT
            adult retina cDNA to mRNA.
```

77

Ejemplo de formato: GenBank (cont)

```
Location/Oualifiers
FEATURES
                     1..1684
     source
                     /organism="Xenopus laevis"
                     /db xref="taxon:8355"
                     /tissue type="retina"
                     /dev stage="adult"
                     /tissue lib="lambda-ZAPII"
                     110..1174
     CDS
                     /note="gene accession number U23808"
                     /codon start=1
                     /product="rhodopsin"
                     /protein id="AAC42232.1"
                     /db xref="GI:214735"
                     /translation="MNGTEGPNFYVPMSNKTGVVRSPFDYPQYYLAEPWQYSALAAYM
                     FLLILLGLPINFMTLFVTIOHKKLRTPLNYILLNLVFANHFMVLCGFTVTMYTSMHGY
                     FIFGQTGCYIEGFFATLGGEVALWSLVVLAVERYMVVCKPMANFRFGENHAIMGVAFT
                     WIMALSCAAPPLFGWSRYIPEGMOCSCGVDYYTLKPEVNNESFVIYMFIVHFTIPLIV
                     IFFCYGRLLCTVKEAAAQQQESATTQKAEKEVTRMVVIMVVFFLICWVPYAYVAFYIF
                     THQGSNFGPVFMTVPAFFAKSSAIYNPVIYIVLNKQFRNCLITTLCCGKNPFGDEDGS
                     SAATSKTEASSVSSSOVSPA"
                     189..1684
    misc feature
                     /note="sequenced from clone pXOP71"
     variation
                     1224
                     /note="clone pX0P5 contained deletion from bp 1224-1534"
```

Bases de datos: formatos: EMBL

```
standard; RNA; VRT; 1684 BP.
ΤD
     XLRHODOP
XX
AC
     L07770;
XX
SV
     L07770.1
XX
DT
     12-DEC-1992 (Rel. 34, Created)
\mathsf{DT}
     04-MAR-2000 (Rel. 63, Last updated, Version 7)
XX
DΕ
     Xenopus laevis rhodopsin mRNA, complete cds.
XX
ΚW
     G protein-coupled receptor; phototransduction protein; retinal protein;
ΚW
     rhodopsin; transmembrane protein.
XX
OS
     Xenopus laevis (African clawed frog)
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Amphibia;
     Batrachia; Anura; Mesobatrachia; Pipoidea; Pipidae; Xenopodinae; Xenopus.
OC
XX
     [1]
RN
     1-1684
RΡ
RA
     Knox B.E., Scalzetti L.C., Batni S., Wang J.Q.;
     "Molecular cloning of the abundant rhodopsin and transducin from Xenopus
RT
     laevis";
RT
RL
     Unpublished.
XX
     [2]
RN
RP
     1-1684
RX
     MEDLINE; 96216396.
     Batni S., Scalzetti L., Moody S.A., Knox B.E.;
RA
     "Characterization of the Xenopus rhodopsin gene";
RΤ
     J. Biol. Chem. 271(6):3179-3186(1996).
RL
XX
```

DR

Bases de datos: formatos: EMBL (cont)

```
Location/Qualifiers
FH
     Key
FΗ
FT
                     1..1684
     source
                      /db xref="taxon:8355"
FT
                      /organism="Xenopus laevis"
FT
                      /dev stage="adult"
FT
                      /tissue type="retina"
FT
                      /tissue lib="lambda-ZAPII"
FT
                     110..1174
FT
     CDS
                      /codon start=1
FT
                      /db xref="SWISS-PROT:P29403"
FT
                      /note="gene accession number U23808"
FT
                      /product="rhodopsin"
FT
                      /protein id="AAC42232.1"
FT
                      /translation="MNGTEGPNFYVPMSNKTGVVRSPFDYPQYYLAEPWQYSALAAYMF
FT
                     LLILLGLPINFMTLFVTIQHKKLRTPLNYILLNLVFANHFMVLCGFTVTMYTSMHGYFI
FT
FT
                      FGQTGCYIEGFFATLGGEVALWSLVVLAVERYMVVCKPMANFRFGENHAIMGVAFTWIM
FT
                     ALSCAAPPLFGWSRYIPEGMQCSCGVDYYTLKPEVNNESFVIYMFIVHFTIPLIVIFFC
FT
                      YGRLLCTVKEAAAQQQESATTQKAEKEVTRMVVIMVVFFLICWVPYAYVAFYIFTHQGS
FT
                     NFGPVFMTVPAFFAKSSAIYNPVIYIVLNKOFRNCLITTLCCGKNPFGDEDGSSAATSK
FT
                     TEASSVSSSQVSPA"
                     189..1684
     misc feature
FT
FT
                     /note="sequenced from clone pXOP71"
FT
     variation
                     1224
                     /note="clone pX0P5 contained deletion from bp 1224-1534"
FТ
```

Feature tables

- Una de las regiones más importantes (en cuanto a cantidad de información)
- El espectro de 'features' que se pueden representar es amplio e incluye regiones de una secuencia que pueden:
 - contar con una función biológica
 - afectar o ser el resultado de la expresión de una función biológica
 - interaccionar con otras moléculas
 - afectar la replicación de una secuencia
 - afectar o ser el resultado de recombinación de diferentes secuencias
 - ser reconocidas como una unidad repetitiva
 - tener estructura secundaria o terciaria
 - mostrar variación
 - haber sido corregidas o revisadas

Feature tables: formato

Feature key [fkey]

- una palabra clave que indica un grupo funcional
- **Ejemplos:** source, CDS, RBS, repeat_region

Location

- instrucciones para localizar el feature
- **Ejemplos:** 1..1000, 23..400, join(544..589,688..1032)

Qualifiers

- información adicional acerca del feature

Feature keys

Key	Description
attenuator	Sequence related to transcription termination
C_region	Constant region of immunoglobulin light and heavy chain,
_	and T-cell receptor alpha, beta and gamma chains
CAAT_signal	'CAAT box' in eukaryotic promoters
CDS	Sequence coding for amino acids in protein (includes stop codon)
conflict	Independent determinations differ
D-loop	Displacement loop
D-segment	Diversity segment of immunoglobulin heavy chain and
	T-cell receptor beta-chain
enhancer	Cis-acting enhancer of promoter function
exon	Region that codes for part of spliced mRNA
GC_signal	'GC box' in eukaryotic promoters
iDNA	Intervening DNA eliminated by recombination
intron	Transcribed region excised by mRNA splicing
J_segment	Joining segment of immunoglobulin light and heavy chains,
	And T-cell receptor alpha, beta and gamma-chains
LTR	Long terminal repeat
mat_peptide	Mature peptide coding region (does not include stop codon)
misc_binding	Miscellaneous binding site
misc_difference	Miscellaneous difference feature also used to describe variability
that mutagenesis).	arises as a result of genetic manipulation (e.g. site directed
•••	

Feature keys [fkey]

• Constituyen un vocabulario controlado, organizado en forma jerárquica

```
misc RNA
gene
   misc signal
                                     * prim transcript
  promoter
                                     * precursor RNA
* CAAT signal
                                       mRNA
                                     * 5'clip
* TATA signal
                                     * 3'clip
* -35 signal
* -10 signal
                                     * 5'UTR
                                     * 3'UTR
* GC signal
   RBS
                                     * exon
                                     * CDS
   polyA signal
   enhancer
                                     * sig peptide
                                     * transit peptide
   attenuator
  terminator
                                     * mat peptide
*
                                     * intron
   rep origin
                                     * polyA site
                                     *
                                        rRNA
                                      tRNA
                                        scRNA
                                        snRNA
```

84 Fernán Agüero

snoRNA

Locations

A location can be one of the following:

- A single base
- A contiguous span of bases (1..1009)
- A site between two bases (23²⁴)
- A single base chosen from a range of bases (23.79)
- A single base chosen from among two or more specified bases
- A joining of sequence spans (join(1..1009,2130..5401))
- A reference to an entry other than the one to which the feature belongs i.e. a remote entry), followed by a location referring the remote sequence.

Qualifiers

- /qualifier_name=value
 - Free text
 - Controlled vocabulary or enumerated values
 - Citations or reference numbers
 - Sequences
 - Feature labels

Qualifier	Description
/allele	Name of the allele for given gene.
/anticodon	Location of the anticodon of tRNA and the amino acid for which it codes
/bound_moiety	Moiety bound
/cell_line	Cell line from which the sequence was obtained
/cell_type	Cell type from which the sequence was obtained
/chromosome	Chromosome from which the sequence was obtained
/citation	Reference to a citation providing the claim of or
	evidence for a feature
/clone	Clone from which the sequence was obtained
/clone_lib	clone library from which the sequence was obtained

Feature tables: ejemplos

```
1..1509
source
                /organism="Mus musculus"
                /strain="CD1"
                <1..9
promoter
                /gene="ubc42"
                join(10..567,789..1320)
mRNA
                /gene="ubc42"
                join (54..567, 789..1254)
CDS
                /gene="ubc42"
                /product="ubiquitin conjugating enzyme"
                /function="cell division control"
                 /translation="MVSSFLLAEYKNLIVNPSEHFKISVNEDNLTEGPPDTLY
                OKIDTVLLSVISLLNEPNPDSPANVDAAKSYRKYLYKEDLESYPMEKSLDECS
                AEDIEYFKNVPVNVLPVPSDDYEDEEMEDGTYILTYDDEDEEEDEEMDDE"
                10..567
exon
                /gene="ubc42"
                /number=1
                568..788
intron
                /gene="ubc42"
                /number=1
                789..1320
exon
                /gene="ubc42"
                /number=2
polyA signal
                1310..1317
```

Un gen eucariótico

Fernán Agüero

87

/gene="ubc42"

Feature tables: ejemplos

```
1..9430
source
                /organism="Lactococcus sp."
                /strain="MG1234"
                160..165
-35 signal
                /gene="galA"
                /evidence=EXPERIMENTAL
-10 signal
                179..184
                /gene="galA"
                /evidence=EXPERIMENTAL
                405..1934
CDS
                /gene="galA"
                /product="galactose permease"
                /function="galactose transporter"
                /evidence=EXPERIMENTAL
                2003..3001
CDS
                /gene="galM"
                /product="aldose 1-epimerase"
                /EC number="5.1.3.3"
                /function="mutarotase"
CDS
                3235..4537
                /gene="galK"
                /product="galactokinase"
                /EC number="2.7.1.6"
                /evidence=EXPERIMENTAL
```

Un operon bacteriano

Feature tables: ejemplos

```
1..5300
source
                /organism="Cloning vector pABC"
                /lab host="Escherichia coli"
                /focus
                1..5138
source
                /organism="Escherichia coli"
                /strain="K12"
                5139..5247
source
                /organism="Aequorea victoria"
                /dev stage="adult"
                5248..5300
source
                /organism="Escherichia coli"
                /strain="K12"
                join(complement(<1..799), complement(5080..5120))</pre>
CDS
                /gene="mob1"
                /product="mobilization protein 1"
                complement (1697..2512)
CDS
                /gene="Km"
                /product="kanamycin resistance protein"
                                                               Un vector de
                3037..3711
CDS
                /gene="rep1"
                                                           clonado (circular)
                /product="replication protein 1"
CDS
                complement (4170..4829)
                /gene="Cm"
                /product="chloramphenicol resistance protein"
```

Feature tables: qualifiers (cont)

• Cada feature key tiene asociada una descripción y una serie de calificadores posibles

Feature Key	attenuator
Organism scope	prokaryotes
Molecule scope Definition	DNA1) region of DNA at which regulation of termination of transcription occurs, which controls the expression of some bacterial operons;2) sequence segment located between the promoter and the first structural gene that causes partial termination of transcription
Optional qualifiers	<pre>/citation=[number] /db_xref="<database>:<identifier>" /evidence=<evidence_value> /gene="text" /label=feature_label /locus_tag="text" (single token) /map="text" /note="text" /phenotype="text" /usedin=accnum:feature_label</evidence_value></identifier></database></pre>

Formato FASTA

```
>identificador texto descriptivo
```

Secuencia de nucleótidos o amino acidos en multiples lineas si es necesario en multiples lineas si es necesario

n = newline, enter, return

Ejemplo:

>gi|41|emb|X63129.1|BTA1AT B.taurus mRNA for alpha-1-anti-trypsin

GACCAGCCCTGACCTAGGACAGTGAATCGATAATGGCACTCTC

CATCACGCGGGGCCTTCTGCTGCT

>gi|214734|L07770|XELRHODOP Xenopus laevis rhodopsin mRNA

ACCGTACGACCGGTGACCTGTGACCAACAACCCGGGTGAAAAC

ACGTCTCGACGACAGTGAGACTG

Otros formatos

Hay otros formatos más amigables para la computadora

- Ejemplo: cuando estamos escribiendo programas o scripts para automatizar una tarea
- ASN.1 (NCBI)
 - Abstract Syntax Notation One(notación sintáctica abstracta 1, ASN.1)
 es una norma para representar datos independientemente de la
 máquina que se esté usando y sus formas de representación internas
 - http://es.wikipedia.org/wiki/ASN.1
- XML
 - XML, siglas en inglés de Extensible Markup Language (lenguaje de marcas extensible), es un metalenguaje extensible de etiquetas
 - http://es.wikipedia.org/wiki/Extensible_Markup_Language

Ejemplo ASN.1

Xenopus laevis rhodopsin mRNA, complete cds

GenBank: L07770.1 Seq-entry ::= set { level 1 , class nuc-prot , descr { source { org { taxname "Xenopus laevis" , common "African clawed frog", db { { db "taxon", tag id 8355 } }, orgname { name binomial { genus "Xenopus", species "laevis" }, lineage "Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Amphibia; Batrachia; Anura; Mesobatrachia; Pipoidea; Pipidae; Xenopodinae; Xenopus; Xenopus", gcode 1, mgcode 2, div "VRT" } }, subtype { { subtype tissue-type, name "retina" } , { subtype dev-stage , name "adult" } , { subtype tissue-lib , name "lambda-ZAPII" } } } , pub { pub { gen { serial-number 1 } , gen { cit "Unpublished" , authors { names std { { name name { last "Knox" , initials "B.E." } } , { name name { last "Scalzetti" , initials "L.C." } } , { name name { last "Batni" , initials "S." } } , { name name { last "Wang" , initials "J.Q." } } } , date std { year 1992 } , title "Molecular cloning of the abundant rhodopsin and transducin from Xenopus laevis" } } } , pub { pub { gen { serial-number 2 } , muid 96216396 , article { title { name "Characterization of the Xenopus rhodopsin gene." } , authors { names std { { name name { last "Batni" , initials "S." } } , { name name { last "Scalzetti", initials "L." } } , { name name { last "Moody", initials "S.A." } } , { name name { last "Knox", initials "B.E." } } } , affil str "Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse, New York 13210, USA." } , from journal { title { iso-jta "J. Biol. Chem." , ml-jta "J Biol Chem" , issn "0021-9258", name "The Journal of biological chemistry." }, imp { date std { year 1996, month 2, day 9 }, volume "271" , issue "6", pages "3179-3186", language "eng" } }, ids { pubmed 8621718, medline 96216396 } }, pmid 8621718 } }, create-date std { year 1993 , month 4 , day 28 } , update-date std { year 1996 , month 2 , day 15 } } , seq-set { seq { id { genbank { name "XELRHODOP" , accession "L07770" , version 1 } , gi 214734 } , descr { title "Xenopus laevis rhodopsin mRNA, complete cds.", molinfo { biomol mRNA } , genbank { source "Xenopus laevis (tissue library: lambda-ZAPII) adult retina cDNA to mRNA.", keywords { "G protein-coupled receptor", "phototransduction protein", "retinal protein", "rhodopsin", "transmembrane protein" } , entry-date std { year 1996 , month 2 , day 15 } } , inst { repr raw , mol rna , length 1684 , strand ss , seg-data ncbi2na 'AC8127D2FA8D129F72A35FEA400201120A4F7F731080A1FCC89E714E068 120AD40FFCED54ED41007AAEB18254F63C574B3C7C92253A433D247A79F13BD79D35E7EAF14341 F4E17EFEF14D491080748115701C4D79E05EB3F94347D3AD7BBABD1AE10EC45D0E469C7D37FA50 1EBE713E0A7DFE711FAEB82E95DEB47ACB3E96F808CCEBADE4254E941F58F6A8814E73CEAEC97D 13A34E9FEDFB9E75D777DA3AD48C4D522A0E439D39A2C871C447825E2B410E0D7FBCDC4EF4FB51 F453D578FB4DF7DE73AD979DE47B408A79254904A0DE71454829E2022B4520EBEF34EB6FF7D78D EFAB95CE5CEE93DC4DF45452A7707FA54B7D385B549FDFE5089DE73710D7B4DC4FB7E0404BD6C1 E7E34515EE7BA020D4F6B8E08E9D77925175084827DF7B77D494AEDD793089F452A7B74AB59E5D 110F54D1F095EDC7EF9829020F512FF0CFC554F79505FA11EC2278553C79EA0A5427FBE4F78EE3 5FD24803ABA3D0E0FD1429EC4C10C13CB78291754548839047CFCDDEDFF7E133E39E7DCF4EB470 400B54FF10E41E02C3B3FFB0CC304CFD390DD779F3E90ADE332E28C8494855F93C035ECF003F7F 90B'H } , annot { { data ftable { { data imp { key "variation" } , comment "clone pXOP5 contained deletion from bp 1224-1534" , location pnt { point 1223 , id gi 214734 } } , { data imp { key "misc feature" } , comment "sequenced from clone pXOP71" , location int { from 188 , to 1683 , id gi 214734 $\}$ $\}$ $\}$ $\}$, seq { id { genbank { accession "AAC42232" , version 1 } , gi 214735 } , descr { title "rhodopsin [Xenopus laevis]", molinfo { biomol peptide , tech concept-trans } } , inst { repr raw , mol aa , length 354 , seq-data ncbieaa "MNGTEGPNFYVPMSNKTGVVRSPFDYPOYYLAEPWOYSALAAYMFLLILLGLPINFMTL FVTIQHKKLRTPLNYILLNLVFANHFMVLCGFTVTMYTSMHGYFIFGQTGCYIEGFFATLGGEVALWSLVVLAVERYM VVCKPMANFRFGENHAIMGVAFTWIMALSCAAPPLFGWSRYIPEGMOCSCGVDYYTLKPEVNNESFVIYMFIVHFTIP LIVIFFCYGRLLCTVKEAAAQQQESATTQKAEKEVTRMVVIMVVFFLICWVPYAYVAFYIFTHQGSNFGPVFMTVPAF 94AKSSAIYNPVIYIVLNKQFRNCLITTLCCGKNPFGDEDGSSAATSKTEASSVSSSQVSPA" } , annot { { data ftable { } data prot { name { Fernán Agüero}

Ejemplo ASN.1

```
Xenopus laevis rhodopsin mRNA, complete cds
GenBank: L07770.1
Seq-entry ::= set {
   level 1,
   class nuc-prot.
   descr {
      source {
          org {
             taxname "Xenopus laevis",
             common "African clawed frog",
             db {
                    db "taxon",
                    tag id 8355 }},
             orgname {
                 name binomial {
                    genus "Xenopus",
                    species "laevis" },
                 lineage "Eukaryota; Metazoa; Chordata; Craniata;
Vertebrata; Euteleostomi; Amphibia; Batrachia; Anura; Mesobatrachia;
Pipoidea; Pipidae; Xenopodinae; Xenopus; Xenopus",
                 gcode 1,
                 mgcode 2,
                 div "VRT" } } ,
          subtype {
                    subtype tissue-type,
                    name "retina" },
                     subtype dev-stage,
                    name "adult" },
                     subtype tissue-lib,
                    name "lambda-ZAPII" } } } ,
      pub {
          pub {
             gen {
                 serial-number 1 },
                 gen {
                    cit "Unpublished",
```

```
authors {
                         names std {
                                name name {
                                 last "Knox",
                                 initials "B.E." } },
                                name name {
                                 last "Scalzetti".
                                 initials "L.C." } },
                                name name {
                                 last "Batni",
                                 initials "S." } },
                                name name {
                                 last "Wang",
                                initials "J.Q." } } } ,
                  date std {
                      year 1992 } .
                     title "Molecular cloning of the abundant rhodopsin
and transducin from Xenopus laevis" } } } ,
           pub {
              pub {
                  gen {
                     serial-number 2 },
                  muid 96216396,
                  article {
                      title {
                         name "Characterization of the Xenopus
rhodopsin gene." },
                      authors {
                         names std {
                             { name name {
                                 last "Batni",
                                 initials "S." } },
                                name name {
                                 last "Scalzetti",
                                 initials "L." } },
                                name name {
                                 last "Moody",
                                initials "S.A." } },
                                name name {
                                 last "Knox", initials "B.E." } } ,
                      affil str "Department of Biochemistry and Molecular
Biology, State University of New York Health Science Center, Syracuse,
New York 13210, USA." },
```