Visualization

graph

저녁이 있는 프로젝트 오상훈 6 Hours, 1 Month

10 Useful Python Data Visualization Libraries

- https://mode.com/blog/python-data-visualization-libraries/
- ❖ 학습 대상 : Matplotlib, Seaborn, Bokeh

구분	주요 시각화 방법
시간 시각화	막대 그래프, 누적 막대 그래프, 점 그래프
분포 시각화	파이 차트, 도우넛 차트, 트리맵, 누적 연속 그래프
관계 시각화	스캐터플롯, 버블차트, 히스토그램
비교 시각화	히트맵, 스타 차트, 평행 좌표계, 다차원 척도법
공간 시각화	지도 맵핑

Matplot Feature

- NumPy is often used along with packages like SciPy (Scientific Python) and Mat-plotlib (plotting library).
 - ➤ 스타일 문자열은 색깔(color), 마커(marker), 선 종류(line style) 순서 ex) plt.plot(x,y,"go") plt.plot(x,y,'rs--')
 - ➤ 참조
 - https://matplotlib.org/3.1.1/api/ as gen/matplotlib.pyplot.html
 - https://matplotlib.org/gallery/index.html
 - https://matplotlib.org/examples/index.html > *_Reference
- ❖ 같이하기

from matplotlib import pyplot as plt

```
x = np.arange(1,11)
y = 2 * x + 5
plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
plt.ylabel("y axis caption")
plt.plot(x,y,"bo")
plt.show()
```


Matplot - 한글처리

- ❖ 시스템 폰트 찾기: 환경 종속. import matplotlib.font_manager as fm systemfont = " for font in fm.fontManager.ttflist: print(font) if font.name.find('Nanum') != -1 & font.name.find('Gulim') != -1: systemfont = f.name print(systemfont)
- ❖ 한글 폰트 설정 #1
 from matplotlib import rcParams
 rcParams['font.family'] = systemfont
 rcParams['font.size'] = 10
- ❖ 한글 폰트 설정 #2
 from matplotlib import rcParams
 mpl.rc('font', family=systemfont)
 mpl.rc('axes', unicode_minus=False)

Matplot - Line Plots

```
pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)
x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
                                                            Line Graph Example
y1 = [1, 3, 5, 3, 1, 3, 5, 3, 1]
y2 = [2, 4, 6, 4, 2, 4, 6, 4, 2]
                                                                                      line H
plt.plot(x, y1, 'go--', label="line L")
plt.plot(x, y2, 'bo--', label="line H")
plt.xlabel("x axis")
                                        y axis
plt.ylabel("y axis")
plt.title("Line Graph Example")
plt.show()
    해 보기
    student_score = [
         [1, 90, 80, 85, 0, 0.0, 0, 0],
         [2, 88, 85, 90, 0, 0.0, 0, 0],
                                                                  x axis
         [3, 32, 85, 90, 0, 0.0, 0, 0],
         [4, 42, 75, 93, 0, 0.0, 0, 0],
         [5, 82, 86, 88, 0, 0.0, 0, 0]
        각 구성원 점수 그래프 그리기
```

Matplot - Bar Plots

```
pyplot.bar(x, height, width=0.8, bottom=None, *, align='center', data=None,
    **kwargs)
    Colors: <a href="https://matplotlib.org/api/colors api.html">https://matplotlib.org/api/colors api.html</a>
x1 = [1, 3, 4, 5, 6, 7, 9]; y1 = [4, 7, 2, 4, 7, 8, 3]
x2 = [2, 4, 6, 8, 10]; y2 = [5, 6, 2, 6, 2]
plt.bar(x1, y1, label="Blue Bar", color='b')
                                                                     Bar Chart Example
plt.bar(x2, y2, label="Green Bar", color='g')
                                                      8 -
                                                                                           Blue Bar
                                                                                           Green Bar
plt.xlabel("bar number")
plt.ylabel("bar height")
plt.title("Bar Chart Example")
                                                    bar height
plt.show()
    해 보기
    student score = [
          [1, 90, 80, 85, 0, 0.0, 0, 0],
          [2, 88, 85, 90, 0, 0.0, 0, 0],
          [3, 32, 85, 90, 0, 0.0, 0, 0],
                                                                         bar number
          [4, 42, 75, 93, 0, 0.0, 0, 0],
          [5, 82, 86, 88, 0, 0.0, 0, 0]
         각 구성원 점수 그래프 그리기
```

Matplot - Histograms

hist(x[, bins, range, density, weights, ...])

n = 5 + np.random.randn(1000)

m = [m for m in range(len(n))]

plt.bar(m, n)

plt.title("Raw Data")

plt.show()

plt.hist(n, bins=20) plt.title("Histogram") plt.show()

plt.hist(n, cumulative=True, bins=20) plt.title("Cumulative Histogram")

pit.itie(Cumulative i iis

plt.show()

Matplot - Scatter Plots

- scatter(x, y[, s, c, marker, cmap, norm, ...])
 - Markers: https://matplotlib.org/api/markers api.html
 - "."-point,","-pixel,"o"-circle,"v"-triangle_down,"^"-triangle_up, ...

- 해보기 import numpy as np from sklearn import datasets iris = datasets.load_iris()
- ➤ iris 종류별 그래프 그리기
- ❖ 더해보기
 - ➤ iris 종류별 mean(평균), median(중간값), std(표준편차), var(분산)도 그리기

Matplot - Scatter Plots

plt.show()

```
from sklearn.datasets import load iris
iris = load iris()
# The indices of the features that we are plotting
x index = 0
y index = 1
# this formatter will label the colorbar with the correct target names
formatter = plt.FuncFormatter(lambda i, *args: iris.target names[int(i)])
plt.figure(figsize=(5, 4))
plt.scatter(iris.data[:, x index], iris.data[:, y_index], c=iris.target)
plt.colorbar(ticks=[0, 1, 2], format=formatter)
plt.xlabel(iris.feature names[x index])
                                                    4.0
plt.ylabel(iris.feature names[y index])
                                                    3.5
plt.tight_layout()
```


Matplot - Stack Plots

```
idxes = [ 1, 2, 3, 4, 5, 6, 7, 8, 9]

arr1 = [23, 40, 28, 43, 8, 44, 43, 18, 17]

arr2 = [17, 30, 22, 14, 17, 17, 29, 22, 30]

arr3 = [15, 31, 18, 22, 18, 19, 13, 32, 39]
```

```
# Adding legend for stack plots is tricky.
plt.plot([], [], color='r', label = 'D 1')
plt.plot([], [], color='g', label = 'D 2')
plt.plot([], [], color='b', label = 'D 3')
```



```
plt.stackplot(idxes, arr1, arr2, arr3, colors= ['r', 'g', 'b'])
plt.title('Stack Plot Example')
#plt.legend()
plt.show()
```

Matplot - Pie Charts

```
labels = 'S1', 'S2', 'S3'
sections = [56, 66, 24]
colors = ['c', 'g', 'y']
plt.pie(sections, labels=labels,
    colors=colors,
    startangle=90,
    explode = (0, 0.1, 0),
    autopct = '%1.2f%%')
plt.axis('equal') # Try commenting this out.
plt.title('Pie Chart Example')
plt.show()
```


Matplot - Subplotting using Subplot2grid

```
def random plots():
                                                     5 ·
    xs = []; ys = []
                                                                     7.5
                                                                         10.0
                                                                             12.5
                                                                                  15.0
                                                            2.5
                                                                                       17.5
    for i in range(20):
                                                     8
        x = i
                                                     6
        y = np.random.randint(10)
        xs.append(x); ys.append(y)
                                                     2
    return xs, ys
                                                                     7.5
                                                                             12.5
                                                       0.0
                                                           2.5
                                                                5.0
                                                                         10.0
                                                                                  15.0
                                                                                       17.5
fig = plt.figure()
ax1 = plt.subplot2grid((5, 2), (0, 0), rowspan=1, colspan=2)
ax2 = plt.subplot2grid((5, 2), (1, 0), rowspan=3, colspan=2)
ax3 = plt.subplot2grid((5, 2), (4, 0), rowspan=1, colspan=1)
ax4 = plt.subplot2grid((5, 2), (4, 1), rowspan=1, colspan=1)
x, y = random_plots(); ax1.plot(x, y)
x, y = random plots(); ax2.plot(x, y)
x, y = random_plots(); ax3.plot(x, y)
x, y = random_plots(); ax4.plot(x, y)
plt.tight layout()
plt.show()
```

Try - How do I convert a numpy array to (and display) an image?

```
from sklearn.datasets import load_digits
digits = load_digits()
plt.imshow(digits.images[9])
plt.show()
```

❖ 모아서 출력

fig, axes = plt.subplots(15,15, figsize=(8,8)) for i,ax in enumerate(axes.flat): ax.imshow(digits.images[i])

Trying - 선형회귀 시각화

```
Input Data
import numpy as np
number of points = 500
                                                 1.2
x point = []
                                                 1.0
y_point = []
a = 0.22; b = 0.78
                                                 0.8
for i in range(number of points):
  x = np.random.normal(0.0,0.5)
                                                 0.6
  y = a*x + b + np.random.normal(0.0, 0.1)
  x point.append([x])
                                                 0.4
  y point.append([y])
                                                               -0.5
                                                                           0.5
                                                                     0.0
                                                                                 1.0
                                                                                      1.5
import matplotlib as mpl
```

```
import matplotlib as mpl
mpl.use('TkAgg')
import matplotlib.pyplot as plt
plt.plot(x_point, y_point, 'o', label='Input Data')
[<matplotlib.lines.Line2D object at 0x11392bbe0>]
plt.legend()
plt.show()
```

Matplot - 3D Scatter Plots

```
import numpy as np from mpl_toolkits.mplot3d import axes3d
```

```
fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')
```

```
x1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

y1 = np.random.randint(10, size=10)

z1 = np.random.randint(10, size=10)

x2 = [-1, -2, -3, -4, -5, -6, -7, -8, -9, -10]

y2 = np.random.randint(-10, 0, size=10)

z2 = np.random.randint(10, size=10)


```
ax.scatter(x1, y1, z1, c='b', marker='o', label='blue')
ax.scatter(x2, y2, z2, c='g', marker='D', label='green')
ax.set_xlabel('x axis'); ax.set_ylabel('y axis'); ax.set_zlabel('z axis')
plt.title("3D Scatter Plot Example")
plt.tight_layout()
plt.show()
```

Matplot - 3D Bar Plots

```
import numpy as np
```

```
fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')

x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y = np.random.randint(10, size=10)
z = np.zeros(10)

dx = np.ones(10)
dy = np.ones(10)
dz = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

ax.bar3d(x, y, z, dx, dy, dz, color='g')


```
ax.set_xlabel('x axis'); ax.set_ylabel('y axis'); ax.set_zlabel('z axis') plt.title("3D Bar Chart Example") plt.tight_layout() plt.show()
```

Matplot - Wireframe Plots

```
fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')
x, y, z = axes3d.get_test_data()
ax.plot_wireframe(x, y, z, rstride = 2, cstride = 2)
```

plt.title("Wireframe Plot Example")
plt.tight_layout()
plt.show()

