

Text Mining 5 Language Processing

Madrid Summer School on Advanced Statistics and Data Mining

Florian Leitner Data Catalytics, S.L. leitner@datacatytics.com

Evaluation metrics for classification tasks

Evaluations should answer questions like:

How to measure a change to an approach?

Did adding a feature improve or decrease performance?

Is the approach good at locating the relevant pieces or good at excluding the irrelevant bits?

How do two or more different methods compare?

Essential evaluation metrics: Accuracy, F-Measure, MCC Score

Patient→ Doctor↓	has cancer	is healthy
diagnose cancer	TP	FP
detects nothing	FN	TN

- Precision (P)
- correct hits [TP] ÷
 all hits [TP + FP]
- Recall (R; Sensitivity, TPR)
- correct hits [TP] ÷ true cases [TP + FN]
- **Specificity** (True Negative Rate)
- correct misses [TN] ÷ negative cases [FP + TN]

NB: no result order

Accuracy

- correct classifications [TP + TN] ÷ all cases [TP + TN + FN + FP])
- highly sensitive to class imbalance
- F-Measure (F-Score)
- the harmonic mean between P & R
 = 2 TP ÷ (2 TP + FP + FN)
 = (2 P R) ÷ (P + R)
- → does not require a TN count
- MCC Score (Mathew's Correlation Coefficient)
- χ^2 -based: (TP TN FP FN) ÷ sqrt[(TP+FP)(TP+FN)(TN+FP)(TN+FN)]
- robust against class imbalance

Ranked evaluation results:

AUC ROC and PR

Area Under the Curve Receiver-Operator Characteristic Precision-Recall

Davis & Goadrich. ICML 2006

TPR / Recall (aka. Sensitivity)

$$TP \div (TP + FN)$$

FPR (not Specificity!)

 $FP \div (TN + FP)$

Precision

 $TP \div (TP + FP)$

To ROC or to PR?

Curve I:
10 hits in
the top 10,
and 10 hits
spread over
the next
1500
results.

AUC ROC 0.813 Results: 20 T « 1980 N

The Relationship Between Precision-Recall and ROC Curves

Figure 12. Comparing AUC-PR for Two Algorithms

"An algorithm which optimizes the area under the ROC curve is not guaranteed to optimize the area under the PR curve."

Davis & Goadrich, 2006

- Davis & Goadrich. The Relationship Between PR and ROC Curves. ICML 2006
- Landgrebe et al. Precision-recall operating characteristic (P-ROC) curves in imprecise environments. Pattern Recognition 2006
- Hanczar et al. Small-Sample Precision of ROC-Related Estimates. Bioinformatics 2010

→ Use (AUC) PR for [imbalanced] ranking scenarios!

Florian Leitner <florian.leitner@upm.es>

MSS/ASDM: Text Mining

Curve II:

Hits spread

evenly over

the first 500

results.

AUC ROC

0.875

Detecting grammatical (sentence) structure

Phrase-structure (aka. constituency) vs. dependency grammars

https://en.wikipedia.org/wiki/Phrase_structure_grammar

P-S Grammars: Chomsky; Dependency Grammars: Tesnière

Dependency relations can be annotated with a linear-time parser.

note the one-to-many constituency vs. the one-to-one dependency relations

MSS/ASDM: Text Mining

Tesnière's dependency relations (1959)

ate(he, pizza with anchovies) ate(he, with anchovies)

Relationships

ate(he, pizza) ate(he, with friends)

NB: Dependencies cannot capture **phrasal structure** (subject, object, verb phrase, etc.), and in particular, **word order**.

which can be a benefit: some languages have a free word order, e.g. Turkish or Czech reminder: clauses and collocations are special phrasal structures

Dependency parsing 1/2

- Transition-based, arc-standard, shift-reduce, greedy parsing.
- The default approach to dependency parsing today is O(n).
- ▶ Transition-based: Move from one token to the next.
- ▶ Arc-standard: assign arcs when the dependent token (at the arrowhead) is fully resolved (common alternative: arc-eager → assign the arcs immediately).
- ▶ **Shift-reduce**: A stack of words and a stream buffer: either shift next word from the buffer to the stack or reduce a word from the stack by "arcing".
- ▶ **Greedy**: Make locally optimal transitions (assume independence of arcs).

A shift-reduce parse

Dependency Parsing. Kübler et al., 2009

MSS/ASDM: Text Mining

Dependency parsing 2/2

- (Arc-standard) Transitions: **shift** or **reduce** (left-arc, right-arc)
- Transitions are chosen using some classifier
- Maximum entropy classifier, support vector machine, single-layer perceptron, perceptron with one hidden layer (→ Stanford parser, 2014 edition, SpaCy v1), more complex deep nets (→ Google's SyntaxNet, SpaCy v2)
- Main issues:
- ▶ Few large, well annotated training corpora ("dependency treebanks"). Biomedical domain: GENIA; Newswire: WSJ, Prague, Penn, ...
- ▶ **Non-projective** trees (i.e., trees with arcs crossing each other; common in a number of other languages, e.g. German) with arcs that have to be drawn between nodes that are not adjacent on the stack.

Four approaches to relationship extraction

Co-mention window

- ▶ E.g.: if ORG and LOC entity within same sentence and no more than x tokens in between, treat the pair as a hit.
- Low precision, high recall; trivial, many false positives.

Dependency parsing

- ▶ If a path covering certain nodes (e.g. prepositions like "in/IN" or predicates [~verbs]) connects two entities, extract that pair.
- Balanced precision and recall, computationally expensive.

- Pattern extraction (over the seq. tags)
- ▶ e.g.: <ORG>+ <IN> <LOC>+
- High precision, low recall; cumbersome, but very common.
- ▶ Pattern learning can help.

token-distance, num.

of tokens between the

entities, tokens

before/after them,

- Machine Learning
- Features for sentences with entities and some classifier (e.g., SVM, neural net, MaxEnt, Bayesian net, ...)
- Highly variable milages.
 ... but loads of fun in your speaker's opinion:)

etc.