TRANSFORMATIONS

OBJECTIVES

1. $\sin 21^{\circ} \operatorname{cis} 9^{\circ} - \cos 84^{\circ} \cos 6^{\circ} =$

b) 1/8

c) 3/2

d) 3/8

2. $\sin 47^{\circ} + \sin 61^{\circ} - \sin 11^{\circ} - \sin 25^{\circ} =$

a) sin 7°

b) cos 7° c) tan 7°

d) sub 14°

3. A + C = 2B then $\frac{\cos C - \cos A}{\sin A - \sin C} =$

a) cot B

b) cot 2B c) tan 2B

4. $\cos 12^{\circ} + \cos 84^{\circ} + \cos 132^{\circ} + \cos 156^{\circ} =$

a) ½

 $v) \frac{1}{4}$ $c) - \frac{1}{4}$

5. $\cos 6^{\circ} \sin 24^{\circ} \cos 72^{\circ} =$

a) - 1/8

b) $-\frac{1}{4}$ c) 1/8

d) 1/4

6. If $\sin x + \sin y = \frac{1}{4}$, $\cos x + \cos y = \frac{1}{3}$ then $\tan(\frac{x+y}{2}) = \frac{1}{4}$

a) 1/4

b) ½

d) None

7. $\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^{2008} + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^{2008} =$

a) $2\cot^{2008}\left(\frac{A+B}{2}\right)$

c) $2\tan^{2008}\left(\frac{A+B}{2}\right)$

8. If $\alpha + \beta = \gamma$ then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma - 2 \cos \alpha \cos \beta \cos \gamma =$

c) - 1

d) 2

9. If $A + B + C = 270^{\circ}$ then $\cos 2A + \cos 2B + \cos 2C + 4 \sin A \sin B \sin C =$

c) 2 d) 3

10. $\cos(\alpha + \beta + \gamma) + \cos(\alpha - \beta - \gamma) + \cos(\beta - \gamma - \alpha) + \cos(\gamma - \alpha - \beta) =$

a) $2\cos\alpha\cos\beta\cos\gamma$

b) $3\cos\alpha\cos\beta\cos\gamma$

c) $4\cos\alpha\cos\beta\cos\gamma$

d) $6 \cos \alpha \cos \beta \cos \gamma$

11. If $a = \frac{\pi}{21}$ then $\frac{\sin 3a - \sin 7a}{\sin 24a + \sin 14a} =$

c) - 1

12. If $\frac{\sin A - \sin C}{\cos C - \cos A} = \cot B$ then angles A, B, C are in

a) A.P.

b) G.P.

c) H.P.

d) A.G.P.

13. $\sin x + \sin y = \frac{3}{4}$ and $\sin x - \sin y = \frac{2}{5}$ then $\frac{\tan\left(\frac{x-y}{2}\right)}{\tan\left(\frac{x+y}{2}\right)} = \frac{1}{3}$

a) 15/8

b) 8/15

c) 3/10

d) 10/3

14. $2\sin^2(8\frac{1}{2}^0) + 4\cos 16^0 \sin(7\frac{1}{2}^0) \sin(8\frac{1}{2}^0) + \cos 32^0 =$

a) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ b) $\frac{\sqrt{3}+1}{2\sqrt{2}}$ c) $2-\sqrt{3}$ d) $2+\sqrt{3}$

15.	If $2 \cos x + 2$	$\cos 3x = \cos$	v and 2 sin x	$+ 2 \sin 3x =$	sin v then	$\cos 2x =$

- a) -7/8 b) -1/8 c) 1/8 d) 7/8

16. $\cot 16^{\circ} \cot 44^{\circ} + \cot 44^{\circ} \cot 76^{\circ} - \cot 76^{\circ} \cot 16^{\circ} =$

- a) 0
- b) 1
- c) 3

17.
$$\frac{1+\cos 56^{\circ} + \cos 58^{\circ} - \cot 66^{\circ}}{\cos 28^{\circ} \cos 29^{\circ} \sin 33^{\circ}} =$$

- a) 0
- b) 2
- d) 1

18.
$$\frac{\cos 20^{\circ} + 8\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}}{\sin^2 80^{\circ}} =$$

- a) 1
- b) 2
- c) 3
- d) 4

19.
$$\frac{\sin 5\alpha - \sin 3\alpha}{\cos 5\alpha + 2\cos 4\alpha + \cos 3\alpha} =$$

- a) $\cot \alpha/2$ b) $\cot \alpha$
- c) $\tan \alpha/2$ d) none

20. If 3 sin
$$\alpha = 5$$
 sin β then $\frac{\sin\left(\frac{\alpha+\beta}{2}\right)}{\tan\left(\frac{\alpha-\beta}{2}\right)} =$

- a) 1
- b) 2
- c) 3
- d) 4

21. m tan
$$(\theta - 30) = n \tan(\theta + 120)$$
 then $\frac{m+n}{m-n} =$

- a) $\cos 2\theta$ b) $2\cos 2\theta$ c) $\sin 2\theta$ d) $2\sin 2\theta$

22. If
$$\frac{\cos x}{a} = \frac{\cos (x+\theta)}{b} = \frac{\cos (x+2\theta)}{c} = \frac{\cos (x+3\theta)}{d}$$
 then $\frac{b+d}{a+c} = \frac{\cos (x+d)}{d}$

23. If
$$\frac{x}{y} = \frac{\cos A}{\cos B}$$
 then $\frac{x \tan A + y \tan B}{x + y}$ is equal to

- a) $\cot(\frac{A+B}{2})$ b) $\tan(\frac{A+B}{2})$ c) $\cot(A+B)$ d) $\tan(A+B)$

c)
$$\cot(A + B)$$
 d) $\tan(A + B)$

24. If $\frac{\cos(\theta_1 - \theta_2)}{\cos(\theta_1 + \theta_2)} + \frac{\cos(\theta_3 + \theta_4)}{\cos(\theta_3 - \theta_4)} = 0$ then $\tan \theta_1 \tan \theta_2 \tan \theta_3 \tan \theta_4 = 0$

a) 1 b) 2 c) -1 d) 0
25. If
$$\cos 2B = \frac{\cos(A+C)}{\cos(A-C)}$$
 then Tan A, Tan B, Tan C are in

- a) A.P.
- b) G.P.
- c) H.P.
- d) A.G.P.

26. If an angle
$$\alpha$$
 is divided into two parts A and B such that $A-B=x$ and Tan A: Tan $B=k:1$ then $\sin x=$

- a) $\frac{k+1}{k-1} \sin \alpha$ b) $\frac{k}{k+1} \sin \alpha$

- c) $\frac{k-1}{k+1} \sin \alpha$ d) $\frac{k+1}{k} \sin \alpha$

27. $\sin \alpha = \sin \beta$, $\cos \alpha = \cos \beta$ then

- a) $\sin(\frac{(\alpha+\beta)}{2}) = 0$ b) $\cos(\frac{(\alpha+\beta)}{2}) = 0$ c) $\sin(\frac{(\alpha-\beta)}{2}) = 0$ d) $\cos(\frac{(\alpha-\beta)}{2}) = 0$

a)
$$\frac{a^2 + b^2 + 2}{2}$$

b)
$$\frac{a^2 - b^2 + 2}{2}$$

c)
$$\frac{a^2 + b^2 - 2}{2}$$

d)
$$\frac{b^2 - a^2 + 2}{2}$$

29.
$$\frac{\sin 7\theta + 6\sin 5\theta + 17\sin 3\theta + 12\sin \theta}{\sin 6\theta + 5\sin 4\theta + 12\sin 2\theta} =$$

- a) $2\cos\theta$
 - b) $\cos \theta$
- c) $2\sin\theta$

30. If
$$\frac{x}{\tan(\theta + \alpha)} = \frac{y}{\tan(\theta + \beta)} = \frac{z}{\tan(\theta + \gamma)}$$
 then $\sum \frac{x + y}{x - y} \sin^2(\alpha - \beta)$

- d) None

31. If
$$\alpha + \beta + \gamma = 2\theta$$
, then $\cos \theta + \cos(\theta - \alpha) + \cos(\theta - \beta) + \cos(\theta - \gamma) =$

a)
$$4\sin\frac{\alpha}{2}.\cos\frac{\beta}{2}.\sin\frac{\gamma}{2}$$

b)
$$4\cos\frac{\alpha}{2}.\cos\frac{\beta}{2}.\cos\frac{\gamma}{2}$$

c)
$$4\sin\frac{\alpha}{2}.\sin\frac{\beta}{2}.\sin\frac{\gamma}{2}$$

a)
$$4\sin\frac{\alpha}{2} \cdot \cos\frac{\beta}{2} \cdot \sin\frac{\gamma}{2}$$
 b) $4\cos\frac{\alpha}{2} \cdot \cos\frac{\beta}{2} \cdot \cos\frac{\gamma}{2}$ c) $4\sin\frac{\alpha}{2} \cdot \sin\frac{\beta}{2} \cdot \sin\frac{\gamma}{2}$ d) $4\sin\alpha \cdot \sin\beta \cdot \sin\gamma$

32. If $A + B + C = 2S$ then $\cos^2 S + \cos^2(S - A) + \cos^2(S - B) + \cos^2(S - C) =$
a) $2\sin A \cos B \sin C$ b) $4\cos A / 2\cos B / 2\cos C / 2$
c) $2 + 2\cos A \cos B \cos C$ d) $\sin A \sin B$

33. If $A + B + C = 0^{\circ}$ then $\cos^2 A + \cos^2 B + \cos^2 C =$

33. If
$$A + B + C = 0^{\circ}$$
 then $\cos^2 A + \cos^2 B + \cos^2 C =$

- a) 1 2cosAcosBcosC
- b) 1 + 2cosAcosBcosC
- c) $2(1 + \cos A \cos B \cos C)$

34. If $A + B + C = 90^{\circ}$ then $\sin^2 A + \sin^2 B + \sin^2 C =$

- a) 1 2sinAsinBsinC
- b) 1 + 2sinAsinBsinC
- c) $1 + 2\cos A\cos B\cos C$
- d) 1 2cosAcosBcosC

35. If $A + B + C = 90^{\circ}$, then $\cos^2 A + \cos^2 B + \cos^2 C =$

- a) 1 + 2cosAcosBcosC
- b) 1 + 2sinAsinBsinC
- c) $2(1 + \cos A \cos B \cos C)$
- d) $2(1 + \sin A \sin B \sin C)$

36. If $A + B + C = 180^{\circ}$ then $\cos 2A + \cos 2B + \cos 2C + 1 =$

- a) –4sinAsinBcosC
- b) -4cosAcosBsinC
- c) -4cosAcosBcosC
- d) -4sinAcosBcocS

37. If A + B + C = 180° then
$$\frac{\sin 2A + \sin 2B + \sin 2C}{\cos A + \cos B + \cos C - 1}$$
 =

- a) $4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$
- b) $4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$
- c) $8\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$
- $d)1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$

38. $\cos x + \cos y = 1/3$, $\sin x + \sin y = \frac{1}{4}$ then $\sin(x + y) =$

- a) 7/25
- b) 24/25
- c) 25/24

39.
$$\tan \theta \tan(\theta + 60^{\circ}) + \tan \theta \tan(\theta - 60^{\circ}) + \tan(\theta + 60^{\circ}) \tan(\theta - 60^{\circ}) =$$

- b) -1 c) -2 d) -3

40. The value of
$$\cos 2\theta + 2\sin^2 55 - 1 - \sqrt{2} \sin 65 =$$

- a) 0

- c)-1 www.sakshieducation.com

41.	$\cos \alpha \sin(\beta - \gamma)$	v) + cos B.	$Sin(\gamma - 0)$	$(x) + \cos x$	γ sin(α	$-\mathbf{R}$

a) 1

b) 4cosαcosβcosγ

c) 0

d) $\frac{1}{2}$

42. If $\sin(y+z-x)$, $\sin(z+x-y)$, $\sin(x+y-z)$ are in A.P. then tan x. tan y and tan z are in

- b) G.P. c) H.P.
- d) A.G.P.

43. If Sin A + sin B = l and cos A - cos B = m, then cos(A - B) =

a)
$$\frac{l^2 - m^2}{l^2 + m^2}$$
 b) $\frac{l^2 + m^2}{l^2 - m^2}$ c) $\frac{2lm}{l^2 + m^2}$ d) $\frac{2lm}{l^2 - m^2}$

b)
$$\frac{l^2 + m^2}{l^2 + m^2}$$

c)
$$\frac{2lm}{t^2+t^2}$$

d)
$$\frac{2lm}{l^2 - m^2}$$

44.
$$cos(x - y) = 3 cos(x + y)$$
 then $cot x \cdot cot y =$

- b) 2

45. If
$$\cos \theta = \frac{\cos \alpha - \cos \beta}{1 - \cos \alpha \cos \beta}$$
 then $\tan^2 \left(\frac{\theta}{2}\right) \tan^2 \left(\frac{\beta}{2}\right) =$

a) $\tan \frac{\alpha}{2}$ b) $\tan^2 \frac{\alpha}{2}$ c) $\cot \frac{\alpha}{2}$ d) $\cot^2 \frac{\alpha}{2}$

46. If $\sin 2x = n \sin 2y$ then $\frac{Tan(x+y)}{Tan(x-y)} =$

a) $\frac{n-1}{n+1}$ b) $\frac{1-n}{1+n}$ c) $\frac{1+n}{1-n}$ d) $\frac{n+1}{n-1}$

47. If $\tan \beta = \cos \theta \tan \alpha$ then $\cot^2 \frac{\theta}{2} =$

a) $\frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)}$ b) $\frac{\cos(\alpha - \beta)}{\cos(\alpha + \beta)}$

c) $\frac{\cos(\alpha + \beta)}{\cos(\alpha - \beta)}$ d) $\frac{\cos(\alpha - \beta)}{\cos(\alpha + \beta)}$

48. If $\frac{\cos A}{\cos B} = \frac{\sin (C - \theta)}{\sin (C + \theta)}$ then $\tan \theta$ is equal to

a)
$$\tan \frac{\alpha}{2}$$

- a) $\tan \frac{\alpha}{2}$ b) $\tan^2 \frac{\alpha}{2}$ c) $\cot \frac{\alpha}{2}$ d) $\cot^2 \frac{\alpha}{2}$

46. If sin 2x = n sin 2y then
$$\frac{Tan(x + y)}{Tan(x - y)}$$
 =

a)
$$\frac{n-1}{n+1}$$

- a) $\frac{n-1}{n+1}$ b) $\frac{1-n}{1+n}$ c) $\frac{1+n}{1-n}$ d) $\frac{n+1}{n-1}$

47. If
$$\tan \beta = \cos \theta \tan \alpha$$
 then $\cot^2 \frac{\theta}{2} =$

a)
$$\frac{\sin(\alpha+\beta)}{\sin(\alpha-\beta)}$$

b)
$$\frac{\cos(\alpha-\beta)}{\cos(\alpha+\beta)}$$

c)
$$\frac{\cos(\alpha+\beta)}{\cos(\alpha-\beta)}$$
 d) $\frac{\cos(\alpha-\beta)}{\cos(\alpha+\beta)}$

d)
$$\frac{\cos(\alpha-\beta)}{\cos(\alpha+\beta)}$$

48. If $\frac{\cos A}{\cos B} = \frac{\sin (C - \theta)}{\sin (C + \theta)}$ then $\tan \theta$ is equal to

a)
$$\tan(\frac{A+B}{2})\tan\frac{A-B}{2}\tan\frac{C}{2}$$
 b) $\tan(\frac{A+B}{2})\tan\frac{A-B}{2}\tan C$ c) $\sin(\frac{A+B}{2})\sin\frac{A-B}{2}\sin\frac{C}{2}$ d) $\cos(\frac{A+B}{2})\cos\frac{A-B}{2}\cos\frac{C}{2}$

b)
$$\tan \left(\frac{A+B}{2}\right) \tan \frac{A-B}{2} \tan C$$

c)
$$\sin(\frac{A+B}{2})\sin\frac{A-B}{2}\sin\frac{C}{2}$$

d)
$$\cos(\frac{A+B}{2})\cos\frac{A-B}{2}\cos\frac{C}{2}$$

49. If $A + B + C = 180^{\circ}$ then $\cos A + \cos B - \cos C =$

a)
$$-1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$
 b) $-1 + \cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}$

b)
$$-1 + \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$$

c)
$$-1 + 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$$

c)
$$-1 + 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$$
 d) $-1 + 4\cos\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}$

50. If $A + B + C = 270^{\circ}$ then $\sin 2A + \sin 2B + \sin 2C =$

- a) 4sinAsinBsinC
- b) 4cosacosBcosC
- c) –4sinAsinBsinC
- d) -4cosAcosBcosC

51. If A + B + C = 2S, then $\sin(S - A) + \sin(S - B) + \sin(S - C) - \sin S$ is

a)
$$2\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$$

b)
$$2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$

c)
$$4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$$

d)
$$4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$

52. $\cos 22^{\circ} + \cos 78^{\circ} + \cos 80^{\circ} =$

- a) $4\sin 11^{\circ} \sin 39^{\circ} \sin 40^{\circ}$
- b) $1 + 4\cos 11^{\circ}\cos 39^{\circ}\cos 40^{\circ}$
- c) $1 + 4\sin 11^{\circ} \sin 39^{\circ} \sin 40^{\circ}$
- d) 4cos11°cos39°cos40°

53. If $\frac{\sin(\theta + \alpha)}{\cos(\theta - \alpha)} = \frac{1 - M}{1 + M}$ then $\tan\left(\frac{\pi}{4} - \theta\right) \tan\left(\frac{\pi}{4} - \alpha\right) =$

- a) $\frac{1}{M}$ b) M c) $-\frac{1}{M}$ d) 2M

54. If α , β are acute angles and $\cos 2\alpha = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta}$ then

- a) $\tan \alpha = 2 \tan \beta$
- b) $\tan \alpha = \sqrt{2} \tan \beta$
- c) $\tan \beta = \sqrt{2} \tan \alpha$
- d) $\tan \beta = 2\sqrt{2} \tan \alpha$

55. If $A + B + C = 180^{\circ}$ then $\sin 3A + \sin 3B + \sin 3C =$

- a) $4\cos\frac{3A}{2}\cos\frac{3B}{2}\cos\frac{3C}{2}$
- b) $-4\cos\frac{3A}{2}\cos\frac{3B}{2}\cos\frac{3C}{2}$
- c) $1 4\cos\frac{3A}{2}\cos\frac{3B}{2}\cos\frac{3C}{2}$
- d) $1 4\sin\frac{3A}{2}\sin\frac{3B}{2}\sin\frac{3C}{2}$

56. $1 + \sec 20^{\circ} =$

- a) $\tan 40^{\circ} \tan 30^{\circ}$
- b) cot 40° cot 30°
- c) $\tan 40^{\circ} \tan 60^{\circ}$
- d) cot 40° cot 60°

57. If $\cos \alpha + \cos \beta = a$, $\sin \alpha + \sin \beta = b$ and $\alpha - \beta = 2\theta$, then $\frac{\cos 3\theta}{\cos \theta} = a$ a) $a^2 + b^2 - 2$ b) $a^2 + b^2 - 3$ c) $3 - a^2 - b^2$ d) $\frac{a^2 + b^2}{4}$

58. If $tan(x^{o} + 100^{o}) = tan(x^{o} + 50^{o}) tan x^{o} tan(x - 50^{o})$ then the least positive value of x is

59. $\frac{1}{\cos\alpha + \cos 3\alpha} + \frac{1}{\cos\alpha + \cos 5\alpha} + \dots + \frac{1}{\cos\alpha + \cos(2n+1)\alpha} =$

- a) cosec $\alpha \left[\tan(n+1)\alpha \tan \alpha \right]$
- b) sec α [tan(n + 1) α tan α]
- c) $\frac{1}{2} \sec \alpha [\tan(n+1)\alpha \tan \alpha]$
- d) $\frac{1}{2}$ cosec α [tan(n + 1) α tan α]

60. In $\triangle ABC$, $\sin^3 A.\cos^3 (B-C) + \sin^3 B.\cos^3 (C-A) + \sin^3 C.\cos^3 (A-B) =$

- a) 2sinAsinBsinC
- b) 3cosAcosBcosC
- c) 2cosAcosBcosC
- d) 3sinAsinBsinC

61. Let α , β be such that $\pi < \alpha - \beta < 3\pi$. If $\sin \alpha + \sin \beta = \frac{-21}{65}$ and $\cos \alpha + \cos \beta = \frac{-27}{65}$ then the value of

 $\cos \frac{\alpha - \beta}{2}$ is

- a) $\frac{-3}{\sqrt{130}}$ b) $\frac{-6}{65}$ c) $\frac{6}{65}$ d) $\frac{3}{\sqrt{130}}$

62. If xy + yz + zx = 1 then $\frac{x}{1+x^2} + \frac{y}{1+y^2} + \frac{z}{1+z^2} =$

a)
$$\frac{2}{\sqrt{(1+x^2)(1+y^2)(1+z^2)}}$$

b)
$$\frac{2}{\sqrt{(1-x^2)(1+y^2)(1+z^2)}}$$

c)
$$\frac{2}{\sqrt{(1+x^2)(1-y^2)(1-z^2)}}$$

d)
$$\frac{2}{\sqrt{(1-x^2)(1+y^2)(1-z^2)}}$$

ANSWERS

7. b 8. a 10. c 1. a 2. b 3. d 4. d 5. c 6. c

17. c 18. b 15. a 16. c 11. c 12. a 13. b 14. b 20. d

27. c 28. C 25. b 26. c 29. a 24. c 21. b 22. c 23. b 30. c

37. c 38. B 35. d 36. c 31. b 32. c 33. b 34. a 39. d 40. a

47. a 48. B 45. b 46. d 49. b 43. a 41. c 42. a 44. b 50. d

57. b 58. B 59. d 55. b 56. b 52. c 53. b 54. b 51. d 60. d

56. 61. a

www.sakshieducation.com