Samples

Equation of a straight line SOLUTIONS

1. To find the equation of the new line, we first need the gradient of the original line. Now,

$$8y = 32 + 16x$$
, so $y = 2x + 4$

Hence the gradient of the original line is $m_0 = 2$.

The new line is perpendicular to the original line, so the new line has gradient $m=-\frac{1}{m_0}$. Hence $m=-\frac{1}{2}$

Thus the equation of the line is $y = -\frac{1}{2}x + c$ and we can substitute the coordinates of the point $(x_1, y_1) = (-18, -1)$ into this equation to get the value of c:

$$-1 = -\frac{1}{2} \times (-18) + c$$
, so $-1 = 9 + c$. Hence $c = -1 - 9 = -10$.

Hence the equation of the line is $y = -\frac{1}{2}x - 10$.

2. To find the equation of the new line, we first need the gradient of the original line. Now,

$$-3y - 6x = 3$$
, so
 $-3y = 6x + 3$
 $y = -2x - 1$

Hence the gradient of the original line is $m_0 = -2$.

The new line is perpendicular to the original line, so the new line has gradient $m = -\frac{1}{m_0}$. Hence $m = \frac{1}{2}$.

Thus the equation of the line is $y = \frac{1}{2}x + c$ and we can substitute the coordinates of the point $(x_1, y_1) = (0, -10)$ into this equation to get the value of c:

$$-10 = \frac{1}{2} \times 0 + c$$
, so $-10 = c$.

Hence the equation of the line is $y = \frac{1}{2}x - 10$.

3. To find the equation of the new line, we first need the gradient of the original line. Now,

$$36x = 9y + 18$$
, so $-9y = -36x + 18$
 $y = 4x - 2$

Hence the gradient of the original line is $m_0 = 4$.

The new line is perpendicular to the original line, so the new line has gradient $m = -\frac{1}{m_0}$. Hence $m = -\frac{1}{4}$.

Thus the equation of the line is $y = -\frac{1}{4}x + c$ and we can substitute the coordinates of the point $(x_1, y_1) = (-16, 1)$ into this equation to get the value of c:

$$1 = -\frac{1}{4} \times (-16) + c$$
, so $1 = 4 + c$. Hence $c = 1 - 4 = -3$.

Hence the equation of the line is $y = -\frac{1}{4}x - 3$.