2 Probability Theory

Definitions

- Sample space Ω
- Outcome (point or element) $\omega \in \Omega$
- Event $A \subseteq \Omega$
- σ -algebra \mathcal{A}
 - 1. $\varnothing \in \mathcal{A}$
 - 2. $A_1, A_2, \ldots, \in \mathcal{A} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
 - 3. $A \in \mathcal{A} \implies \neg A \in \mathcal{A}$
- ullet Probability Distribution $\mathbb P$
 - 1. $\mathbb{P}[A] \geq 0 \quad \forall A$
 - 2. $\mathbb{P}\left[\Omega\right] = 1$

3.
$$\mathbb{P}\left[\bigsqcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} \mathbb{P}\left[A_i\right]$$

• Probability space $(\Omega, \mathcal{A}, \mathbb{P})$

Properties

- $\bullet \ \mathbb{P}\left[\varnothing\right] = 0$
- $B = \Omega \cap B = (A \cup \neg A) \cap B = (A \cap B) \cup (\neg A \cap B)$
- $\mathbb{P}\left[\neg A\right] = 1 \mathbb{P}\left[A\right]$
- $\mathbb{P}[B] = \mathbb{P}[A \cap B] + \mathbb{P}[\neg A \cap B]$
- $\mathbb{P}\left[\Omega\right] = 1$ $\mathbb{P}\left[\varnothing\right] = 0$
- $\neg(\bigcup_n A_n) = \bigcap_n \neg A_n \quad \neg(\bigcap_n A_n) = \bigcup_n \neg A_n \quad \text{DEMORGAN}$
- $\mathbb{P}\left[\bigcup_{n} A_{n}\right] = 1 \mathbb{P}\left[\bigcap_{n} \neg A_{n}\right]$
- $\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] \mathbb{P}[A \cap B]$
 - $\implies \mathbb{P}\left[A \cup B\right] \leq \mathbb{P}\left[A\right] + \mathbb{P}\left[B\right]$
- $\bullet \ \mathbb{P}\left[A \cup B\right] = \mathbb{P}\left[A \cap \neg B\right] + \mathbb{P}\left[\neg A \cap B\right] + \mathbb{P}\left[A \cap B\right]$
- $\mathbb{P}[A \cap \neg B] = \mathbb{P}[A] \mathbb{P}[A \cap B]$

Continuity of Probabilities

- $A_1 \subset A_2 \subset \ldots \implies \lim_{n \to \infty} \mathbb{P}[A_n] = \mathbb{P}[A]$ where $A = \bigcup_{i=1}^{\infty} A_i$
- $A_1 \supset A_2 \supset \ldots \implies \lim_{n \to \infty} \mathbb{P}[A_n] = \mathbb{P}[A]$ where $A = \bigcap_{i=1}^{\infty} A_i$

Independence $\perp \!\!\! \perp$

$$A \perp \!\!\!\perp B \iff \mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$$

Conditional Probability

$$\mathbb{P}\left[A \,|\, B\right] = \frac{\mathbb{P}\left[A \cap B\right]}{\mathbb{P}\left[B\right]} \qquad \mathbb{P}\left[B\right] > 0$$

Law of Total Probability

$$\mathbb{P}\left[B\right] = \sum_{i=1}^{n} \mathbb{P}\left[B|A_{i}\right] \mathbb{P}\left[A_{i}\right] \qquad \Omega = \bigsqcup_{i=1}^{n} A_{i}$$

Bayes' Theorem

$$\mathbb{P}\left[A_i \mid B\right] = \frac{\mathbb{P}\left[B \mid A_i\right] \mathbb{P}\left[A_i\right]}{\sum_{j=1}^n \mathbb{P}\left[B \mid A_j\right] \mathbb{P}\left[A_j\right]} \qquad \Omega = \bigsqcup_{i=1}^n A_i$$

Inclusion-Exclusion Principle

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{r=1}^{n} (-1)^{r-1} \sum_{i \le i_1 < \dots < i_r \le n} \left| \bigcap_{j=1}^{r} A_{i_j} \right|$$

3 Random Variables

Random Variable (RV)

$$X:\Omega\to\mathbb{R}$$

Probability Mass Function (PMF)

$$f_X(x) = \mathbb{P}[X = x] = \mathbb{P}[\{\omega \in \Omega : X(\omega) = x\}]$$

Probability Density Function (PDF)

$$\mathbb{P}\left[a \le X \le b\right] = \int_a^b f(x) \, dx$$

Cumulative Distribution Function (CDF)

$$F_X : \mathbb{R} \to [0,1]$$
 $F_X(x) = \mathbb{P}[X \le x]$

- 1. Nondecreasing: $x_1 < x_2 \implies F(x_1) \le F(x_2)$
- 2. Normalized: $\lim_{x\to-\infty} = 0$ and $\lim_{x\to\infty} = 1$
- 3. Right-Continuous: $\lim_{y\downarrow x} F(y) = F(x)$

$$\mathbb{P}\left[a \le Y \le b \mid X = x\right] = \int_{a}^{b} f_{Y\mid X}(y\mid x) dy \qquad a \le b$$
$$f_{Y\mid X}(y\mid x) = \frac{f(x,y)}{f_{X}(x)}$$

Independence

- 1. $\mathbb{P}\left[X \leq x, Y \leq y\right] = \mathbb{P}\left[X \leq x\right] \mathbb{P}\left[Y \leq y\right]$
- 2. $f_{X,Y}(x,y) = f_X(x)f_Y(y)$