Quiz, 10 questions

Cor	ngratulations! You passed!	Next Iten
~	1 / 1 points	
	is the "cache" used for in our implementation of forward propagation gation?	and backward
	It is used to cache the intermediate values of the cost function durin	g training.
	It is used to keep track of the hyperparameters that we are searching computation.	g over, to speed u
0	We use it to pass variables computed during forward propagation to backward propagation step. It contains useful values for backward propagation step.	
	We use it to pass variables computed during backward propagation corresponding forward propagation step. It contains useful values for	
_	propagation to compute activations. 1/1 points	
2. Amon	g the following, which ones are "hyperparameters"? (Check all that app	oly.)
Corr	size of the hidden layers $n^{[l]}$	
	number of iterations	

Key concep	ts on Deep Neural Networks	10/10 poir
Quiz, 10 questions	activation values $a^{[l]}$	
Un-s	selected is correct	
	number of layers \emph{L} in the neural network	
Corre	ect	
	bias vectors $b^{[l]}$	
Un-s	selected is correct	
	weight matrices $W^{[l]}$	
Un-s	selected is correct	
	learning rate $lpha$	
Corre	ect	
~	1 / 1 points	
3. Which	of the following statements is true?	
0	The deeper layers of a neural network are typically computing more complex for the input than the earlier layers.	eatures
Corre	ect	
	The earlier layers of a neural network are typically computing more complex for the input than the deeper layers.	eatures of

1/1 points

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ...,L. True/False?

Key concepts on Deep Neural Networks

Quiz, 10 questions

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]} = g^{[2]}(z^{[2]})$, $z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]} = g^{[l]}(z^{[l]})$, $z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}, ...$

10/10 points (100%)

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer dims = $[n_x, 4.3, 2, 1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following forloops will allow you to initialize the parameters for the model?

```
for(i in range(1, len(layer_dims)/2)):
2
     parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1]
         )) * 0.01
     parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
for(i in range(1, len(layer_dims)/2)):
     parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1]
2
         )) * 0.01
     parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
for(i in range(1, len(layer_dims))):
2
     parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i]
         )) * 0.01
     parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
for(i in range(1, len(layer_dims))):
     parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1]
2
         )) * 0.01
     parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

1/1 points

How many layers does this network have?

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers $\it L$ is 3. The number of hidden layers is 3.
The number of layers $\it L$ is 4. The number of hidden layers is 4.
The number of layers $\it L$ is 5. The number of hidden layers is 4.
The number of layers L is 5. The number of model layers is 4.

1/1 points

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False

1/1 points

There are certain functions with the following properties:

Key concepts one Deepc Neural Nation iks work circuit, you will need a large network of the (100%) we measure size by the number of logic gates in the network), but (ii) To compute it using a deep Quiz, 10 questions network circuit, you need only an exponentially smaller network. True/False?

0	True				
Corre	ect				
	False				
~	1 / 1				

9. Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

	$W^{\left[1 ight]}$ will have shape (4, 4)
Corre Yes.	More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]}).$
	$b^{[1]}$ will have shape (4, 1)
Corre	ect

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

10/10 points (100%)

Key concepts on Deep Neural Networks

		U	ın-sel	lected	zı t	cor	rec
حنبير	10	augstin	nc				

	un-selecte	a is	COL	rec
דווור	10 guastions			

$b^{[1]}$ will have shape (3, 1)
---------------------------------	---

Un-selected is correct

$oxed{ W^{[2]} }$	will ha	ve shap	e (3, 4
-------------------	---------	---------	---------

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Un-selected is correct

 $W^{[2]}$ will have shape (3, 1)

Un-selected is correct

 $b^{[2]}$ will have shape (3, 1)

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $W^{[3]}$ will have shape (3, 1)

Un-selected is correct

 $b^{[3]}$ will have shape (1, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $W^{[3]}$ will have shape (1, 3)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[3]}$ will have shape (3, 1)

Un-selected is correct

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

1/1 points

10.

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

- $igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$
- $W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

