1. Searching in Graph:

How to search or traverse in a Graph

2. Recap Queue:

push(), pop() : Time = O(1), Space = O(n)

3. BFS Simulation - 1 [Tree] : Breadth First Seach / Level Order Traversal **STEP** :

- a. Select a Node
- b. Explore a Node { Visit All Adjacent Nodes }

2	4	5	6	9
---	---	--------------	---	---

Fig: Queue

Output: 2, 3, 4, 5, 9

4. BFS Simulation part - 2 [Cyclic]:

STEP: Same as part 1 + We Need Extra Visited Array

5. BFS Pseudocode:

- a. Input—> Graph and source
- b. Output—> Traverse all node and print
- c. BFS(graph, source)
- d. Initiate Visited Array and an empty Queue
- e. Mark visited[source] = 1 and q.push(source)
- f. while(!Queue.empty()) :
 - i. Head = queue.front()
 - ii. q.pop()
 - iii. Print the head
 - iv. For all adjacent node of head
 - 1. If visited[adj_node] == 0: continue
 - 2. If visited[adj_node] == 1: q.push(adj_node)

6. Complexity Analysis:

Time Complexity : O (V) + O (2E) == O (V + E), Worst Case : O (V^2)

Space Complexity: O(V)