intro to mathematics in software engineering

Fontys University of Applied Sciences

April 23, 2025

objectives

scary looking functions
math related software engineering concepts
translate math to programming

fundamentals of mathematical and function notation

$$f(x) = x^2$$

fundamentals of mathematical and function notation

$$a \cdot f(x)$$

$$f(x-c)$$

$$f(x) + d$$

fundamentals of mathematical and function notation

$$a\cdot f(x)\Rightarrow$$
 multiplies the y-value by a
$$f(x/b)\Rightarrow$$
 multiplies the x-value by b
$$f(x-c)\Rightarrow$$
 shifts graph c units to the right
$$f(x)+d\Rightarrow$$
 shifts graph d units upward

$$g(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2\pi(2n-1)ft)}{2n-1}$$

(where
$$t = time$$
, $f = frequency$, $n = iterations$)

$$g(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2\pi(2n-1)ft)}{2n-1}$$

we are dealing with a function built from multiple smaller functions added together

$$g(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2\pi(2n-1)ft)}{2n-1}$$

the sin on the inside suggests we are dealing with waves or oscillations

$$g(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2\pi(2n-1)ft)}{2n-1}$$

denominator 2n-1 hints that terms get smaller as n increases - later terms have less influence

$$g_1(t) = \frac{4}{\pi} \cdot \frac{\sin(2\pi(2(1) - 1)ft)}{2(1) - 1}$$
$$= \frac{4}{\pi} \cdot \frac{\sin(2\pi(1)ft)}{1}$$
$$= \frac{4}{\pi} \cdot \sin(2\pi ft)$$
$$g_1(t) = \frac{4}{\pi} \sin(2\pi ft)$$

set of pairs \Rightarrow index and value elements (pairs) are conventionally of same memory size

one_d_array = [0, 0, 1, 0, 1, 0, 1, 1]


```
two_d_array = [
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
```


binary tree

data structure expressed as a figurative tree one root node nodes can only have one parent node and at most two children nodes (left and right) foundation for more complex data structures