OTOMATISASI PERINGKASAN TEKS PADA DOKUMEN HUKUM MENGGUNAKAN METODE *LATENT SEMANTIC ANALYSIS*

TUGAS METODOLOGI PENELITIAN

Oleh:

MILLENIA RUSBANDI NIM. 1641720029

PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN TEKNOLOGI INFORMASI POLITEKNIK NEGERI MALANG 2020

1. Tujuan

Berdasarkan latar belakang dan rumusan masalah di atas, maka tujuan dari skripsi ini yaitu:

- 1 Membantu pihak aparat hukum dalam melakukan peringkasan dokumen.
- 2 Menerapkan metode *latent semantic analysis* pada ringkasan dokumen hukum.
- 3 Membaca dokumen hukum dalam format pdf dan mengubahnya ke dalam teks yang dapat diolah oleh sistem peringkasan otomatis.
- 4 Menganalisis performasi hasil ringkasan dari metode tersebut berupa akurasi berdasarkan *precision*, *recall* dan *f-measure*.

2. Landasan Teori

Tinjauan pustaka merupakan bagian yang akan membahas tentang penyelesaian masalah yang akan memberikan jalan keluarnya. Dalam hal ini akan dikemukakan beberapa teori-teori yang berkaitan dengan masalah yang diangkat.

2.1 State-of-the-Art Penelitian Terdahulu

Berdasarkan penelitian pada tahun 2014, Agustinus Widiantoro telah membangun sebuah aplikasi peringkasan dokumen berbahasa jawa secara otomatis menggunakan metode TF-IDF (*Term Frequency-Inverse Document Frequency*). Dari penelitian tersebut, hasil yang didapatkan menunjukan bahwa tingkat keakurasian sistem mencapai 64%. Tetapi, kelemahan dari sistem ini yaitu kurangnya daftar kata umum (*stopwords*) yang digunakan sehingga penulis menyarankan untuk melakukan penambahan daftar kata umum untuk meningkatkan akurasi (Widiantoro, 2014).

Pada tahun 2015, penelitian dilakukan oleh Geetha J.K. dan Deepamala N. dengan judul "*Kannada text summarization using Latent Semantic Analysis*". Penelitian tersebut menggunakan Bahasa Kanada. Tingkat akurasi yang didapatkan yaitu 94% dan *precision* sebesar 80% (N & K, 2015).

Pada tahun 2017, penelitian dilakukan oleh Sohini Roy Chowdhury, Kamal Sarkar dan Santanu Dam dengan judul "An Approach to Generic Bengali Text Summarization Using Latent Semantic Analysis". Penelitian tersebut menggunakan

aksara Bengali. Teks yang diringkas diambil 10% dari teks asli. Nilai F-Score yang didapatkan yaitu 0.324347.

Pada tahun 2017, Huihong Lan dan Jinde Huang melakukan penelitian yang berjudul "Chinese-English Cross-Lingual Text Clustering Algorithm based on Latent Semantic Analysis". Klasterisasi menggunakan CLTC-LSA yang dilakukan, meningkat sebanyak 13.96% dibandingkan hanya menggunakan CLTC.

Pada tahun 2018, Mozibur Raheman Khan dan Rajkumar Kannan melakukan sebuah penelitian dengan judul "Summarizing Health Review using Latent Semantic Analysis". Penelitian ini menggunakan metode Latent Semantic Analysis untuk feature identification. Selanjutnya akan diklasifikasi menjadi positive review atau negative review. Tingkat akurasinya sebesar 82.20 %.

Penelitian berikutnya dilakukan oleh Tinaliah dan Triana Elizabeth pada tahun 2018. Peneliti menggunakan metode *Latent Semantic Analysis* dan *Jaro-Winkler Distance* dalam mendeteksi plagiarisme dokumen. Tingkat akurasi pada penelitian tersebut menghasilkan nilai plagiat mencapai 97,14% (Tinaliah & Elizabeth, 2018).

Dari penelitian yang telah dipaparkan diatas, Metode *Latent Semantic Analysis* dan Metode TF-IDF dapat diterapkan pada proses peringkasan dokumen dengan tingkat akurasi yang cukup baik. Maka dari itu, pada penelitian ini penulis menggunakan dua metode tersebut dalam melakukan peringkasan teks. Untuk objek yang akan digunakan yaitu berupa dokumen hukum.

Tabel 6.1 Tabel *State-of-the-Art* Penelitian Terdahulu

No	Judul	Penulis/Jurnal	Univ /	Permasalahan	Metode	Kesimpulan
			Tahun		Pengolahan	
					Data	
1	Peringkasan Dokumen Berbahasa	Agustinus	Universitas	Pembuatan	TF-IDF	Hasil yang didapatkan
	Jawa Secara Otomatis	Widiantoro	Sanata Dharma	ringkasan		menunjukan bahwa
	Menggunakan Metode TF-IDF		Yogyakarta /	masih manual		tingkat keakurasian
			2014	membutuhkan		sistem mencapai 64%.
				waktu lama.		Tetapi, kelemahan dari
						sistem ini yaitu
						kurangnya daftar kata
						umum (stopwords)
						yang digunakan.
2	Kannada Text Summarization	Geetha	RV College of	Sulitnya	Latent	Tingkat akurasi yang
	Using Latent Semantic Analysis	J.K. dan Deepamala	Engineering /	melakukan	Semantic	didapatkan yaitu 94%
		N/	2015	peringkasan	Analysis	dan <i>precision</i> sebesar
		International		manual dengan		80%
		Conference on		adanya		
		Advances in		dokumen yang		
		Computing,		banyak.		

3	An Approach to Generic Bengali Text Summarization Using Latent Semantic Analysis	Communications and Informatics (ICACCI) Sohini Roy Chowdhury , Kamal Sarkar dan Santanu Dam / International Conference on Information Technology	Department of Computer Science and Engineering, Jadavpur University / 2017	Sulitnya melakukan peringkasan manual dengan adanya dokumen yang banyak.	Latent Semantic Analysis	Penelitian tersebut menggunakan aksara Bengali. Teks yang diringkas diambil 10% dari teks asli. Nilai F-Score yang didapatkan yaitu 0.324347.
4	Chinese - English Cross -Lingual Text Clustering Algorithm based on Latent Semantic Analysis	Huihong Lan dan Jinde Huang / Proceedings of Science ISSC	Guangxi College of Education Nanning, China / 2017	Tingkat Akurasi dengan Menggunakan metode CLTC rendah.	CLTC-LSA	LSA mampu mengurangi <i>noise</i> . Klasterisasi meningkat sebanyak 13.96% dibandingkan hanya menggunakan CLTC.

5	Peringkasan Dokumen Berbahasa Inggris Menggunakan Sebaran Local Sentence	Aminul Wahib, Agus Zainal Arifin, Diana Purwitasari / Jurnal Teknik	Institut Teknologi Sepuluh November /	Kurang efektif dalam mencari dan membaca informasi karena masih	Similarity based histogram clustering (SHC), Local	metode sebaran <i>local</i> sentence lebih baik atau meningkat sebesar 13% dibandingkan dengan
6	Perbandingan Hasil Deteksi Plagiarisme Dokumen dengan Metode	Informatika ITS Tinaliah Tinaliah, Triana Elizabeth	Akademi Manajemen	manual. Banyaknya plagiarisme.	Sentence Latent Semantic	metode SIDeKiCK. Tingkat akurasi pada penelitian tersebut
	Jaro-Winkler Distance dan Metode Latent Semantic Analysis	Jurnal Teknologi dan Sistem Komputer; Volume 6, Issue 1, Year 2018	dan Informatika MDP Palembang, STMIK Global Informatika MDP Palembang		Analysis dan Jaro-Winkler Distance	menghasilkan nilai plagiat mencapai 97,14%

7	Otomatisasi Peringkasan Dokumen Sebagai Pendukung Sistem Manajemen Surat	Ahmad Najibullah, Wang Mingyan / Register: Jurnal Ilmiah Teknologi Sistem Informasi, Januari 2015, Volume 1, Nomor 1	/ 2018 Universitas Nanchang, Nanchang, Republik Rakyat Tiongkok / 2015	Pengelolaan surat tidak efektif dikarenakan banyaknya surat.	Naïve Bayes	Hasil uji coba menunjukkan bahwa tingkat kompresi adalah 53.67% dengan informasi penting yang tersedia dalam ringkasan mencapai 96.67% dari dokumen asli.
8.	Automatic Text Summarization Menggunakan Metode Graph dan Ant Colony Optimization	I Wayan Adi Setyadi , Duman Care Khrisne, I Made Arsa Suyadnya / Teknologi Elektro, Vol. 17, No.	Universitas Udayana, Bali / 2018	Banyaknya dokumen tidak penting yang tersebar di internet, menyulitkan pencarian.	Graph dan Ant Colony Optimization	Pengujian hasil ringkasan dengan mencari kesamaan hasil ringkasan sistem dengan hasil ringkasan secara manual menggunakan cosine similarity memperoleh persentase kesamaan 76.3%. Pengujian

1,Januari -April		dengan autosummary
2018		tools pada Microsoft
		Word memperoleh
		hasil ringkasan
		ratarata memiliki
		kesamaan 68.15%.
		Hasil ringkasan sistem
		dengan hasil ringkasan
		ahli memiliki
		kesamaan 78.43%.
		Hal ini berarti lebih
		dari 75% informasi
		yang dianggap penting
		oleh manusia sudah
		dapat di temukan oleh
		sistem.
		9

9.	Peringkasan Dokumen Bahasa	Achmad Ridok /	Program Studi	Penggalian	Non-Negative	Hasil evaluasi
	Indonesia Berbasis Non-Negative	Jurnal Teknologi	Ilmu Komputer,	informasi dari	Matrix	menunjukkan
	Matrix Factorization (NMF)	Informasi dan Ilmu	Universitas	dokumen	Factorization	ringkasan sistem
		Komputer (JTIIK)	Brawijaya /	berupa	(NMF)	mempunyai rata-rata
		Vol. 1, No. 1, April	2014	ringkasan secara		precision dan recall
		2014, hlm. 39-44		otomatis masih		masing-masing
				tidak ada.		0.19724 dan 0.34085.
						Sedangkan evaluasi
						ringkasan antar pakar
						mempunyai rata-rata
						presisi dan recall
						masing-masing
						0.68667 dan 0.70642.
10.	Peringkasan Teks Otomatis	Nirmala Fa'izah	Program Studi	Penggalian	Maximum	Hasil pengujian
	Menggunakan Metode Maximum	Saraswati, Indriati,	Teknik	informasi dari	Marginal	terbaik dari rata-rata
	Marginal Relevance Pada Hasil	Rizal Setya Perdana	Informatika,	dokumen	Relevance	precision, recall, f-
	Pencarian Sistem Temu Kembali	/	Fakultas Ilmu	berupa	(MMR)	measure dan akurasi
	Informasi Untuk Artikel Berbahasa	Ivam of	Komputer,	ringkasan secara		masing-masing
	Indonesia	Jurnal	Universitas	otomatis masih		sebesar 0,70, 0,75,
		Pengembangan Taknalagi Informasi	Brawijaya /	tidak ada.		0,70 dan 74,17.
		Teknologi Informasi dan Ilmu Komputer	2018			Metode yang

e-ISSN: 2548-964X	digunakan sudah
Vol. 2, No. 11,	cukup baik untuk
November 2018,	mendapatkan
hlm. 5494-5502	dokumen yang relevan
	dengan query dan
	memperoleh ringkasan
	berdasarkan judul
	yang sesuai dengan isi
	dari dokumen.

Gambar 2.1 Posisi Penelitian

2.2 Text Mining

Text mining memiliki definisi menambang data yang berupa teks dimana sumber data di dapatkan dari dokumen. Tujuan text mining adalah mencari kata-kata yang dapat mewakili isi dari dokumen dan dilakukannya analisa keterhubungan antar dokumen.

Jenis masukan (*input*) dari *text mining* berupa data tak terstruktur yang merupakan pembeda utama dari *data mining* dimana menggunakan data terstruktur atau basis data sebagai masukan. *Text mining* dapat dianggap sebagai proses dua tahap yang diawali dengan penerapan struktur terhadap sumber data teks dan dilanjutkan dengan ekstraksi informasi dan pengetahuan yang relevan dari data teks terstruktur ini dengan menggunakan teknik dan alat yang sama dengan *data mining*. Proses yang umum dilakukan oleh text mining, yaitu perangkuman otomatis, kategorisasi dokumen, penggugusan teks, dll (Nindito, 2016).

2.3 Peringkasan Teks Otomatis

Peringkasan teks otomatis merupakan pembuatan rangkuman dari suatu teks secara otomatis dengan menggunakan serta memanfaatkan sistem peringkasan teks yang dijalankan pada komputer. Sebuah sistem peringkasan teks diberi *input* (masukan) berupa teks kemudian sistem akan memproses dengan melakukan peringkasan yang akan menghasilkan *output* (keluaran) berupa teks yang lebih singkat dari sumber teks aslinya (Hovy, 2005). Terdapat dua pendekatan peringkas teks yaitu:

a. Ekstraksi (extractive summary)

Pada teknik ekstraksi, sistem menyalin unit-unit yang dianggap paling penting dari sebuah teks dan diubah menjadi ringkasan. Unit-unit teks yang disalin dapat berupa klausa utama, kalimat utama, atau paragraf utama tanpa ada penambahan kalimat-kalimat baru yang terdapat pada dokumen aslinya.

b. Abstraksi (abstractive summary)

Teknik abstraksi menggunakan metode *linguistic* untuk memeriksa dan menafsirkan teks menjadi ringkasan. Ringkasan teks tersebut dihasilkan dengan cara menambahkan kalimat-kalimat baru yang merepresentasikan intisari teks

sumber ke dalam bentuk yang berbeda dengan kalimat-kalimat yang ada pada teks sumber (Gupta & Lehal, 2010).

Pada penelitian ini, metode yang digunakan untuk melakukan peringkasan teks otomatis adalah dengan menggunakan teknik ekstraksi. Hasil dari ringkasan merupakan kalimat asli yang terdapat pada dokumen dan tidak mengalami penambahan kalimat.

2.4 Pre-Processing

Pada tahapan ini, data tekstual akan diubah menjadi teks agar dapat diolah oleh sistem. Penelitian ini menggunakan dokumen sebagai inputan awal. Proses yang digunakan antara lain :

a. Pembentukan Kalimat

Pembentukan kalimat yaitu pemecahan teks dokumen menjadi kumpulan kalimat berdasarkan delimiter.

b. Case Folding

Case folding merupakan pengubahan huruf pada kalimat menjadi huruf kecil (lowercase) dan penghilangan karakter yang tidak valid seperti tanda baca.

c. Tokenizing

Pada proses ini, kalimat tersebut dipecah kembali menjadi beberapa kata tunggal penyusunnya.

d. Stopword Removal

Stopword removal adalah proses penghilangan kata-kata yang tidak merepresentasikan isi dokumen.

e. Stemming

Stemming adalah proses pengembalian kata tunggal yang memiliki imbuhan menjadi kata dasar.

2.5 TF-IDF

Setelah dokumen diproses dengan cara *pre-processing, tokenizing, filtering* dan *stemming*, selanjutnya dilakukan proses pembobotan kata. Pada metode ini pembobotan kata dalam sebuah dokumen dilakukan dengan mengalikan nilai TF dan IDF.

Term frequency (TF) adalah pengukuran yang paling sederhana dalam metode pembobotan. Pada metode ini, masing-masing term diasumsikan mempunyai proporsi kepentingan sesuai jumlah kemunculan dalam teks dokumen. Term frequency dapat memperbaiki nilai recall pada information retrieval, tetapi tidak selalu memperbaiki nilai precision (Tokunaga & Iwayama, 1994). Hal ini disebabkan term yang frequent cenderung muncul di banyak teks, sehingga term tersebut memiliki kekuatan

Inverse document frequency (IDF) adalah metode pembobotan term yang lebih condong (fokus) untuk memperhatikan kemunculan term pada keseluruhan kumpulan teks. Pada IDF, term yang jarang muncul pada keseluruhan koleksi teks dinilai lebih berharga. Nilai kepentingan tiap term diasumsikan berbanding terbalik dengan jumlah teks yang mengandung term tersebut (Tokunaga & Iwayama, 1994).

Term frequncy inverse document frequency (TF•IDF) adalah metode pembobotan yang menggabungkan metode TF dan IDF. Metode ini diusulkan oleh Salton sebagai sebuah kombinasi metode yang dapat memberikan performansi yang lebih baik, khususnya dalam memperbaiki nilai recall dan precision (Tokunaga & Iwayama, 1994). Berikut ini merupakan perhitungannya:

$$TF.IDF = TF * log(N/DF)$$
(7.1)

Keterangan:

TF: Jumlah term tersebut

N : Total dokumen

DF : Jumlah dokumen yang mengandung suatu term

2.6 Latent Semantic Analysis

Latent Semantic Analysis (LSA) menurut bahasa terbagi atas beberapa kata yang penting yaitu latent dan semantic, latent yang memiliki arti tersembunyi atau sesuatu yang masih belum terlihat, sedangkan semantic berasal dari bahasa yunani "semanticos" yang berarti memberi tanda, penting atau cabang linguistik yang mempelajari arti dan makna dari suatu bahasa, kode atau jenis representasi lainnya.

Dari pengertian dapat ditarik kesimpulan bahwa, LSA adalah menguraikan atau menganalisa makna yang masih tersembunyi dari suatu bahasa, kode atau jenis representasi lainya, guna memperoleh informasi yang penting. Kesamaan kata dan

kalimat diperoleh dengan cara menggunakan *Singular Value Decomposition* (SVD), di mana SVD mempunyai kapasitas untuk mereduksi *noise*, sehingga dapat meningkatkan hasil akurasi pada ringkasan (Peter & Kp, 2009).Peringkasan dokumen menggunakan metode LSA memiliki 3 tahapan yaitu: pembentukan matriks input dari dokumen untuk menampilkan kalkulasi, *Singular Value Decomposition*, dan penyeleksian kalimat.