Chapter 8

열화학

- 8.1 에너지의 기초 개념
- 8.2 화학 반응과 열의 출입
- 8.3 엔탈피의 변화: ΔH
- 8.4 열화학 반응식

- 8.5 반응열과 반응열의 측정(열계량법)
- 8.6 헤스 법칙
- 8.7 표준 반응 엔탈피: ΔH°
- **8.8** 반응열의 종류

8.1 에너지의 기초개념

■ 열역학 제 1법칙

그림 8.1 계와 주위

열역학 제1법칙

에너지는 한 형태에서 다른 한 형태로 전환할 수는 있으나, 만들어지거나 파괴 또는 소멸할 수 없다.

8.1 에너지의 기초개념

■ 열역학 제 1법칙

$$U_{\text{계}} + U_{\text{주위}} = E_{\text{우주}} =$$
 항상 일정

$$\Delta U$$
계 $= -\Delta U$ 주위

$$\Delta U_{\text{A}} + \Delta U_{\text{A}} = 0$$

8.1 에너지의 기초개념

• 화학에서 내부에너지의 변화

$$\Delta U = w + q \tag{8.3}$$

표 8.1 일(w)과 열(q)에서 부호의 의미

과정	부호
계가 주위에 한 일	_
계에 대해서 주위가 한 일	+
계가 주위로부터 흡수한 열(흡열 과정)	+
계가 주위로 방출한 열(발열 과정)	_

8.2 화학반응과 열의 출입

■ 발열 반응 vs. 흡열 반응

그림 8.3 발열 반응과 흡열 반응에 서의 열에너지 이동

열의 출입

에너지 기초 개념

 $U_f = E_1 + 2E$

울라프가 가지고 있는 내부 에너지 U

$$U_f - U_i = \Delta U = 2E$$

에너지 (Energy): 열(heat)

찬물 → 가열 → 계의 분자를 자극 → 분자 운동이 활발해진다.

→ 계의 에너지를 증가시킨다.

단열성 :고립계

열은 온도차 때문에 생기는 에너지의 이전이다.

8.2 화학반응과 열의 출입

■ 열린계 vs. 닫힌계 vs. 고립계

(a) 열린계	(b) 닫힌계	(c) 고립계
계와 주위 사이에 물질과 에너지가 교환 가능	에너지(열)는 이동할 수 있지만 물질은 이동할 수 없는 계	물질이나 에너지 모두 이동이 허용되지 않는 계
에너지 얼린계	에나지 닫힌계	고립계
수증기	9	

그림 8.4 계의 구분

8.2 화학반응과 열의 출입

예제 8.2

계와 주위 사이에 열 전달 방향을 나타내고, 이 반응이 흡열반응 또는 발열반응인지를 ΔE 의 부호로 밝히시오.

- (a) 샤워 중 욕실 위 증기의 응축
- (b) 고깃집 불판 아래에서 타고 있는 숯
- (c) 드라이아이스 (CO₂(s)) 의 승화
- (d) 이마에서 증발하는 땀
- (e) 겨울철 빙판 위에 뿌린 염화 칼슘의 용해액
- (f) 끓는 물 속에서 하얗게 익어가는 달걀 흰자

8.3 엔탈피의 변화: △*H*

■ 기체의 부피 변화

그림 8.5 기체의 부피 변화

$$w = F \times d \tag{8.4}$$

8.3 엔탈피의 변화: △*H*

■ 기체의 부피 변화

 $P = \frac{F}{A}$ 면적 = A Δh

그림 8.6 기체가 팽창하면서 일을 할 때

최종 상태

$$W = F \times d = \frac{F}{c^{2}} \times c^{3} = P \times V$$

$$\Delta V > 0$$

$$-P \Delta V < 0$$

$$W_{sys} < 0$$

• 8.3 기체가 한 일

예제 8.3

어떤 반응이 외부 압력 4.0 atm 에 대응하여 부피가 11.0 L 에서 16.2 L로 팽창하면서 기체가 한 일은 몇 kJ 인가?

 $\Delta V = (16.2 - 11.0) L = +5.2 L$

 $W = -4.0 \text{ atm x } (5.2 \text{ L}) \text{ x } 101.3 \text{ J/L} \cdot \text{ atm} = -2.107 \text{ kJ}$

부피 팽창시 계가 주위로 일을 해 준 경우이다.

일을 주위로 했기 때문에 내부에너지는 줄어든다.

$$\Delta U < 0$$
 $\Delta U = q + w = w < 0$

$$\Delta V = +5.2 L$$

$$w = -P\Delta V$$

8.3 엔탈피의 변화: △*H*

$$\Delta U = w + q$$

$$\Delta U = q_p - P\Delta V$$

$$q_p = \Delta U + P\Delta V$$

 q_p : 일정 압력에서의 반응열(정압 반응열)

$$q_p = \Delta U + P\Delta V$$

$$q_p = \Delta H$$

$$\Delta H = \Delta U + P \Delta V$$

$$\Delta H = H_f - H_i$$

• 8.3 엔탈피의 변화

$$\Delta U = 9p + W$$

$$= 9p - P\Delta V$$

$$\Delta H = 9p = \Delta U + P\Delta V$$
 Signar the E.

• 8.3 엔탈피의 변화

예제 8.4

비료의 원료인 암모니아는 수소 기체와 질소 기체의 반응으로 생성된다. 이 반응의 열화학 반응식은 다음과 같다. 이 반응이 40.0~atm 의 압력 조건에서 1.12~L 의 부피가 감소하면서 진행되었다고 할 때, 이 반응의 내부에너지 변화 $\Delta E (= \Delta U)$ 를 계산하시오.

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g) \Delta H = -92.2KJ$$

8.4 열화학 반응식

$$H_2O(s) \longrightarrow H_2O(l) \qquad \Delta H = 6.01 \text{ kJ/mol}$$

$$H_2O(l) \longrightarrow H_2O(s)$$
 $\Delta H = -6.01 \text{ kJ/mol}$ p. 224

열화학 반응식

화학 반응에서 출입하는 열에너지 변화, 즉 반응 엔탈피를 함께 나타낸 화학 반응식을 열화학 반응식이라고 한다.

• 8.3 엔탈피의 변화

예제 8.5

내연 기관에서 에탄올 (CH_3CH_2OH) 이 연소하면 다음과 같은 생성물이 생성된다. $CH_3CH_2OH + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$

위 반응에서 계의 열 변화를 실제 측정해 보면 에탄올 1몰당 -1367 kJ 의 반응열 q 를 보인다. 이 내용을 근거로 물음에 답하시오.

- (a) 이 반응은 흡열 반응인가? 발열 반응인가?
- (b) 0.200 mol 의 에탄올이 연소할 때의 반응열 q 값은 얼마인가?

그림 8.7 발열 과정과 흡열 과정의 에너지 변화

그림 8.8 식품 포장지에 인쇄된 섭취 열량 안내문

1 cal = 4.184 J = 4.184 N·m

$$Q(9) = c \times m \times \Delta T$$

c: 물의 비열(J/℃·g 또는 cal/℃·g)

m: 열량계에 담겨 있는 물의 질량(g)

 ΔT : 온도 변화 $(T_{\text{최종}} - T_{\text{최초}})$

■ 정적 열량계

영양정보	1봉(33 g)당 165 kcal		
1봉당	1일 영양성분 기준치에 대한 비율		
나트륨	75 mg 4%		
탄수화물	22 g 7 %		
당류	12 g 12 %		
지방	7 g 13 %		
트랜스지방	0 g		
포화지방	7 g 47 %		
콜레스테롤	0 mg 0 %		
단백질	3g 5%		
*1일 영양성분 기준치에 대한 비율(%)은 2,000kcal			

그림 8.8 식품 포장지에 인쇄된 섭취 열량 안내문

$Q(9) = c \times m \times \Delta T$

c: 물의 비열(J/℃·g 또는 cal/℃·g)

m: 열량계에 담겨 있는 물의 질량(g)

 ΔT : 온도 변화 $(T_{\text{최종}} - T_{\text{최초}})$

■ 정적 열량계

■ 비열

표 8.2 대표적인 물질의 비열			
물질	비열(g·%)	물질	비열(g·°C) 성・C
A1(s)	0.900	Fe(s)	0.444
Au(s)	0.129	Hg(l)	0.139
C(흑연)	0.720	$H_2O(l)$	4.184
C(다이아몬드)	0.502	$C_2H_5OH(l)$	2.46
Cu(s)	0.385		

예제 8.6

단열 처리가 된 물탱크에 25 ℃의 물 5.000 kg이 담겨 있다고 가정하자. 이 물탱크에 쇠구슬 1개를 넣어두고 장시간 방치를 했더니 물의 온도가 19.4 ℃가 되었다. 물음에 답하시오.

- (a) 물에 넣기 전 쇠구슬의 온도는 물의 온도에 비해 높을까, 낮을까? 이유와 함께 답하시오.
- (b) 쇠구슬의 열 변화는 몇 kJ인가? (단, 물의 비열은 4.184 J/g·℃이다.)

■ 커피컵 열량계 (정압 열량계)

$$Q(9) = c \times m \times \Delta T$$

c: 물의 비열(J/°C·g 또는 cal/°C·g)

m: 열량계에 담겨 있는 물의 질량(g)

 ΔT : 온도 변화 $(T_{최종} - T_{최초})$

• 8.6 헤스 법칙

· 8.7 표준반응 엔탈피: △H°

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

$$C(s) + O_2(g) \rightarrow$$

· 8.7 표준반응 엔탈피: △H°

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_F^0 = -393.5 \text{ KJ/ $\frac{1}{2}}$ $\Delta H_F^0 = -393.5 \text{ KJ/ $\frac{1}{2}$ $\Delta H_F^0 = -393.5 \text{ KJ/}\frac{1}{2}$ $\Delta H_F^0 = -393.5 \text{ KJ/$$$$$$$$$$$$$$$$$$$$$$$$

표준 생성 엔탈피 (standard enthalpy of formation : 1 atm (표준 조건), 25 ℃ 에서 원소물질을 이용하여 1몰의 화합물을 생성하는 과정에서 발생하는 엔탈피

C(흑연)	0	$MgCO_3(s)$	-1112.9
C(다이아몬드)	1.90	$N_2(g)$	0
CO(g)	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O(g)$	81.56
CaCO ₃ (s)	-1206.9	$N_2O_4(g)$	9.66
$\operatorname{Cl}_2(g)$	0	O(g)	249.4
HCl(g)	-92.3	$O_2(g)$	0

• 8.7 표준반응 엔탈피: △H°

$$4 \text{ NH}_3(g) + 7 \text{ O}_2(g) \longrightarrow 4 \text{ NO}_2(g) + 6 \text{ H}_2\text{O}(l)$$

$$\Delta H^{\circ} = 4 \times \Delta H_{f}^{\circ}(NO_{2}(g)) + 6 \times \Delta H_{f}^{\circ}(H_{2}O(l)) - \{4 \times \Delta H_{f}^{\circ}(NH_{3}(g)) + 7 \times \Delta H_{f}^{\circ}(O_{2}(g))\}$$

$$\Delta H^{\circ} = \{4 \times 33.85 \text{ kJ/mol} + 6 \times (-285.8 \text{ kJ/mol})\} - \{4 \times (-46.3 \text{ kJ/mol}) + 7 \times 0 \text{ kJ/mol}\}$$

= -1394.2 kJ/mol(발열)

표 8.3 대표적 화합물의 표준 생성 엔탈피

물질	$\Delta H_{\rm f}^{\circ}({\rm kJ/mol})$	물질	$\Delta H_{ m f}^{\circ}({ m kJ/mol})$
Ag(s)	0	$H_2O_2(l)$	-187.6
AgCl(s)	-127.0	Hg(l)	0
Al(s)	0	$I_2(s)$	0
$\text{Al}_2\text{O}_3(s)$	21669.8	HI(g)	25.9
$\mathrm{Br}_2(l)$	0	Mg(s)	0
HBr(g)	-36.2	MgO(s)	-601.8
C(흑연)	0	$MgCO_3(s)$	-1112.9
C(다이아몬드)	1.90	$N_2(g)$	0
CO(g)	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O(g)$	81.56
CaCO ₃ (s)	-1206.9	$N_2O_4(g)$	9,66
$\operatorname{Cl}_2(g)$	0	O(g)	249.4
HCl(g)	-92.3	$O_2(g)$	0
Cu(s)	0	$O_3(g)$	142.2
CuO(s)	-155.2	S(사방)	0
$F_2(g)$	0	S(단사)	0.30
HF(s)	-271.6	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395,2
$H_2(g)$	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	Zn(s)	0
$H_2O(l)$	-285.8	ZnO(s)	-348.0

· 8.7 표준반응 엔탈피: △H°

예제 8.7

자동차 엔진에서 옥테인의 연소를 나타낸 열화학 반응식이 다음과 같을 때, 표 8.3 이나 부록 E를 이용하여 옥테인 (I) 의 표준생성 엔탈피를 계산하시오.

2 C₈ H₁₈(l) + 50₂(g) → & CO₂(g) + 9 H₂O(l) △H° = -5220 KJ/g

~~\b)	110,0	- 144316/	10,0
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33,85
CaO(s)	-635.6	$N_2O(g)$	81.56
CaCO ₃ (s)	-1206.9	$N_2O_4(g)$	9.66
$\operatorname{Cl}_2(g)$	0	O(g)	249.4
HCl(g)	-92.3	$O_2(g)$	0
Cu(s)	0	$O_3(g)$	142,2
CuO(s)	-155.2	S(사방)	0
$F_2(g)$	0	S(단사)	0.30
HF(s)	-271.6	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395.2
$H_2(g)$	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	Zn(s)	0
$H_2O(l)$	-285.8	ZnO(s)	-348.0

· 8.7 표준반응 엔탈피: △H°

예제 8.8

$$CH_{+}(g) + 20_{2}(g) \rightarrow CO_{2}(g) + 2H_{2}O(l) \Delta H = \frac{2}{3}$$

이와 같은 온도와 압력 조건에서 다음과 같은 다양한 반응의 열화학 반응식이 성립한다라고 할때, 이 반응식들을 이용하여 메케인 연소 반응의 반응 엔탈피를 계산하시오.

$$CH_{+}(g) + O_{2}(g) \rightarrow CH_{2}O(g) + H_{2}O(g) \Delta H = -275.6 \text{ EJ}$$
 $CH_{2}O(g) + O_{2}(g) \rightarrow CO_{2}(g) + H_{2}O(g) \Delta H = -526.7 \text{ EJ}$
 $H_{2}O(g) \rightarrow H_{2}O(g) \Delta H = 44.0 \text{ EJ}$

• 8.8 반응열의 종류

■ 용해 엔탈피 (용해열)

 $NaOH(s) + H_2O(l) \longrightarrow NaOH(aq)$

$$\Delta H_{\frac{\Theta}{N}}^{\circ} = -44.5 \text{ kJ/mol}$$

■ 묽힘 엔탈피 (묽힘열)

진한 황산 용액 + 순수한 물

그림 8.11 수산화 소듐의 용해와 용 해열

• 수화 엔탈피 (수화열)

그림 8.12 고체 NaCl과 수화

• 8.8 반응열의 종류

• 승화 엔탈피 (승화열)

■ 용융 엔탈피 (용융열)

$$H_2O(s) \longrightarrow H_2O(l)$$
 $\Delta H_{\frac{Q}{Q}} = 6.01 \text{ kJ/mol}$

■ 증발 엔탈피 (증발열)

$$H_2O(l) \longrightarrow H_2O(g)$$
 $\Delta H_{\text{GH}} = 40.65 \text{ kJ/mol}$