Eigenvalue eigenvector

Instructor: Dr. Avijit Pal

Linear algebra- II (IC152)

Gram-Schmidt orthogonalisation process, Motivation

- Let V be a finite dimensional inner product space. Suppose $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ is a linearly independent subset of V.
- Then the Gram-Schmidt orthogonalisation process uses the vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ to construct new vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ such that

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$$
 for $i \neq j, \|\mathbf{v}_i\| = 1$ and

Span
$$\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_i\} = \text{Span } \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_i\} \text{ for } i = 1, 2, \dots, n.$$

This process proceeds with the following idea.

Gram-Schmidt orthogonalisation process cont.

- Suppose we are given two vectors u and v in a plane.
- If we want to get vectors z and y such that z is a unit vector in the direction of u and y is a unit vector perpendicular to z, then they can be obtained in the following way:

Gram-Schmidt orthogonalisation process cont.

- $\bullet \ \, \text{Take the first vector } \mathbf{z} = \frac{\mathbf{u}}{\|\mathbf{u}\|}.$
- Let θ be the angle between the vectors \mathbf{u} and \mathbf{v} .
- Then $\cos(\theta) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|u\| \|v\|}$.
- Defined $\alpha = \|\mathbf{v}\| \cos(\theta) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\|} = \langle \mathbf{z}, \mathbf{v} \rangle.$
- Then ${\bf w}={\bf v}-\alpha~{\bf z}$ is a vector perpendicular to the unit vector ${\bf z}$, as we have removed the component of ${\bf z}$ from ${\bf v}$.
- So, the vectors that we are interested in are \mathbf{z} and $\mathbf{y} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$.
- This idea is used to give the Gram-Schmidt Orthogonalisation process which we now describe.

Theorem (Gram-Schmidt Orthogonalisation Process)

Let V be an inner product space. Suppose $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ is a set of linearly independent vectors of V. Then there exists a set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ of vectors of V satisfying the following:

- $\|\mathbf{v}_i\| = 1$ for $1 \le i \le n$,
- $\langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0$ for $1 \leq i, j \leq n, i \neq j$ and
- $L(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_i) = L(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_i)$ for $1 \le i \le n$.

Outline of the proof

• We successively define the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ as follows.

$$\mathbf{v}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|}.$$

First, we calculate

$$\mathbf{w}_2 = \mathbf{u}_2 - \langle \mathbf{u}_2, \mathbf{v}_1 \rangle \mathbf{v}_1,$$

and let $\mathbf{v}_2 = \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|}$. In this process we get $\{v_1, v_2\}$.

To obtain w₃, we need to calculate

$$\mathbf{w}_3 = \mathbf{u}_3 - \langle \mathbf{u}_3, \mathbf{v}_1 \rangle \mathbf{v}_1 - \langle \mathbf{u}_3, \mathbf{v}_2 \rangle \mathbf{v}_2,$$

and let $\mathbf{v}_3 = \frac{\mathbf{w}_3}{\|\mathbf{w}_3\|}$. In this way we also get $\{v_1, v_2, v_3\}$.

• In general, if $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \dots, \mathbf{v}_{i-1}$ are already obtained, we compute w_i

$$\mathbf{w}_i = \mathbf{u}_i - \langle \mathbf{u}_i, \mathbf{v}_1 \rangle \mathbf{v}_1 - \dots - \langle \mathbf{u}_i, \mathbf{v}_{i-1} \rangle \mathbf{v}_{i-1}, \tag{1}$$

- ullet We define $\mathbf{v}_i = rac{\mathbf{w}_i}{\|\mathbf{w}_i\|}.$
- We prove the theorem by induction on n, the number of linearly independent vectors.
- For n = 1, we have

$$\mathbf{v}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|}.$$

• Since $\mathbf{u}_1 \neq \mathbf{0}, \ \mathbf{v}_1 \neq \mathbf{0}$ and

$$\|\mathbf{v}_1\|^2 = \langle \mathbf{v}_1, \mathbf{v}_1 \rangle = \langle \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|}, \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} \rangle = \frac{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle}{\|\mathbf{u}_1\|^2} = 1.$$

- Hence, the result holds for n = 1.
- Let the result hold for all $k \le n-1$. That is, suppose we are given any set of $k, \ 1 \le k \le n-1$ linearly independent vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ of V.

- Then by the inductive assumption, there exists a set $\{v_1, v_2, \dots, v_k\}$ of vectors satisfying the following:
 - $\|\mathbf{v}_i\| = 1 \text{ for } 1 \le i \le k,$
 - $\langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0$ for $1 \le i \ne j \le k$, and
 - **3** $L(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_i) = L(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_i)$ for $1 \le i \le k$.
- Now, let us assume that we are given a set of n linearly independent vectors {u₁, u₂,...,u_n} of V.
- Then by the inductive assumption, we already have vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n-1}$ satisfying
 - $\|\mathbf{v}_i\| = 1 \text{ for } 1 \le i \le n-1,$
 - $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ for $1 \le i \ne j \le n-1$, and
 - **3** $L(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_i) = L(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_i)$ for $1 \le i \le n-1$.

Using (1), we define

$$\mathbf{w}_n = \mathbf{u}_n - \langle \mathbf{u}_n, \mathbf{v}_1 \rangle \mathbf{v}_1 - \dots - \langle \mathbf{u}_n, \mathbf{v}_{n-1} \rangle \mathbf{v}_{n-1}. \tag{2}$$

- We first show that $\mathbf{w}_n \not\in L(\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_{n-1})$. This will also imply that $\mathbf{w}_n \neq \mathbf{0}$ and hence $\mathbf{v}_n = \frac{\mathbf{w}_n}{\|\mathbf{w}_n\|}$ is well defined.
- On the contrary, assume that $\mathbf{w}_n \in L(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n-1})$. Then there exist scalars $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ such that

$$\mathbf{w}_n = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_{n-1} \mathbf{v}_{n-1}.$$

• So, by (2)

$$\mathbf{u}_n = (\alpha_1 + \langle \mathbf{u}_n, \mathbf{v}_1 \rangle) + \cdots + (\alpha_n + \langle \mathbf{u}_n, \mathbf{v}_{n-1} \rangle) \mathbf{v}_{n-1}.$$

Thus, by the third induction assumption,

$$\mathbf{u}_n \in L(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n-1}) = L(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{n-1}).$$

- This gives a contradiction to the given assumption that the set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ is linear independent.
- ullet So, $\mathbf{w}_n
 eq \mathbf{0}$. Define $\mathbf{v}_n = rac{\mathbf{w}_n}{\|\mathbf{w}_n\|}$.
- Then $\|\mathbf{v}_n\|=1$. Also, it can be easily verified that $\langle \mathbf{v}_n,\mathbf{v}_i\rangle=0$ for $1\leq i\leq n-1$.
- Hence, by the principle of mathematical induction, the proof of the theorem is complete.

Example

- Let $\{(1, -1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)\}$ be a linearly independent set in $\mathbb{R}^4(\mathbb{R})$.
- We will find an orthonormal set $\{v_1, v_2, v_3\}$ such that $L((1, -1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)) = L(v_1, v_2, v_3).$
- Let $\mathbf{u}_1 = (1,0,1,0)$. Define $\mathbf{v}_1 = \frac{(1,0,1,0)}{\sqrt{2}}$. Let $\mathbf{u}_2 = (0,1,0,1)$.
- Then

$$\mathbf{w}_2 = (0, 1, 0, 1) - \langle (0, 1, 0, 1), \frac{(1, 0, 1, 0)}{\sqrt{2}} \rangle \mathbf{v}_1 = (0, 1, 0, 1).$$

• Hence, $\mathbf{v}_2 = \frac{(0,1,0,1)}{\sqrt{2}}$. Let $\mathbf{u}_3 = (1,-1,1,1)$.

example cont.

Then

$$\mathbf{w}_{3} = (1, -1, 1, 1) - \langle (1, -1, 1, 1), \frac{(1, 0, 1, 0)}{\sqrt{2}} \rangle \mathbf{v}_{1}$$
$$- \langle (1, -1, 1, 1), \frac{(0, 1, 0, 1)}{\sqrt{2}} \rangle \mathbf{v}_{2}$$
$$= (0, -1, 0, 1).$$

• Also, $\mathbf{v}_3 = \frac{(0, -1, 0, 1)}{\sqrt{2}}$.

Observation: 1

- Let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be any basis of a k -dimensional subspace W of \mathbb{R}^n .
- Then by Gram-Schmidt orthogonalisation process, we get an orthonormal set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subset \mathbb{R}^n$ with $W = L(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$.
- For $1 \le i \le k$,

$$L(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_i)=L(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_i).$$

Oveservation: 2

- Suppose we are given a set of n vectors, $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ of V that are linearly dependent.
- Then there exists a smallest k, $2 \le k \le n$ such that

$$L(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_k)=L(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_{k-1}).$$

- We claim that in this case, $\mathbf{w}_k = \mathbf{0}$.
- Since, we have chosen the smallest *k* satisfying

$$L(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_i)=L(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_{i-1}),$$

for $2 \le i \le n$, the set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{k-1}\}$ is linearly independent.

• So, by above Theorem, there exists an orthonormal set $\{v_1, v_2, \dots, v_{k-1}\}$ such that

$$L(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{k-1}) = L(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k-1}).$$

Observation: 2 cont.

• As $\mathbf{u}_k \in L(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k-1})$, by previous observation

$$\mathbf{u}_k = \langle \mathbf{u}_k, \mathbf{v}_1 \rangle + \cdots + \langle \mathbf{u}_k, \mathbf{v}_{k-1} \rangle \mathbf{v}_{n-1}.$$

- So, by definition of \mathbf{w}_k , $\mathbf{w}_k = \mathbf{0}$.
- Therefore, in this case, we can continue with the Gram-Schmidt process by replacing \mathbf{u}_k by \mathbf{u}_{k+1} .

Observation:3

Let S be a countably infinite set of linearly independent vectors.
 Then one can apply the Gram-Schmidt process to get a countably infinite orthonormal set.

Thank You