Quiz 1

(Supplementary)

24th September, 2025

Time: 2 hrs Total marks: 26

On the real line \mathbb{R} , let \mathcal{T}_{\geq} be the collection of subsets consisting of \emptyset , along with the usual open sets $U \subset \mathbb{R}$ satisfying

$$\mathbb{Z}_{>n} \coloneqq \{n, n+1, n+2, \dots\} \subset U, \text{ for some } n \in \mathbb{Z}.$$

Attempt any question. You can get maximum 20.

Q1. Show that \mathcal{T}_{\geq} is a topology on \mathbb{R} .

Solution: Given $\emptyset \in \mathcal{T}_{\geq}$. Also, $\mathbb{R} \supset \mathbb{Z}$, and hence, $\mathbb{R} \in \mathcal{T}_{\geq}$. For any collection $U_{\alpha} \in \mathcal{T}_{\geq}$, we have some α_0 and some $n \in \mathbb{Z}$ so that $\mathbb{Z}_{\geq n} \subset U_{\alpha_0}$. But then $\mathbb{Z}_{\geq n} \subset \bigcup U_{\alpha}$, which is already open in the usual topology. Thus, $\bigcup U_{\alpha} \in \mathcal{T}_{\geq}$. Also, for $U_1, \ldots, U_k \in \mathcal{T}_{\geq}$, we have some $n_1, \ldots, n_k \in \mathbb{Z}$ such that $\mathbb{Z}_{\geq n_i} \subset U_{n_i}$. Take $N = \max_{1 \leq i \leq k} \{n_i\}$. Then, $\mathbb{Z}_{\geq N} \subset \bigcap_{i=1}^k U_i$, which is already open in \mathbb{R} .

- Q2. Compare (i.e., strictly fine, strictly coarse or incomparable) \mathcal{T}_{\geq} with the following.
 - i) The usual topology on \mathbb{R} .

Solution: It is given that any open in \mathcal{T}_{\geq} is open in the usual topology. Also, $(0,1) \notin \mathcal{T}_{\geq}$. Thus, \mathcal{T}_{\geq} is strictly coarser than the usual topology.

ii) The lower limit topology \mathbb{R}_l .

Solution: Since lower limit topology is strictly finer than the usual topology, it is strictly finer than \mathcal{T}_{\geq} as well.

iii) The upper limit topology \mathbb{R}_u

Solution: Since upper limit topology is strictly finer than the usual topology, it is strictly finer than \mathcal{T}_{\geq} as well.

iv) The topology $\mathcal{T}_{\rightarrow} = \{\emptyset, \mathbb{R}\} \bigcup \{(a, \infty) \mid a \in \mathbb{R}\}$ on \mathbb{R} .

Solution: For any (a,∞) , we can always get some $a< n\in \mathbb{Z}$, whence $\mathbb{Z}_{\geq n}\subset (a,\infty)$. Thus, $(a,\infty)\in \mathcal{T}_{\geq}$. On the other hand, $\mathbb{R}\setminus\{0\}$ is open in \mathcal{T}_{\geq} , but not open in $\mathcal{T}_{\rightarrow}$. Thus, \mathcal{T}_{\geq} is strictly finer than $\mathcal{T}_{\rightarrow}$.

- Q3. For $a \in \mathbb{R}$, determine (with justification) the closures of the following sets in $(\mathbb{R}, \mathcal{T}_{\geq})$. $[1 \times 5 = 5]$
 - i) (a, ∞) .

Solution: Any open set in \mathcal{T}_{\geq} is unbounded from above. Thus, any open set will intersect (a, ∞) . Hence, $\overline{(a, \infty)} = \mathbb{R}$.

ii) $(-\infty, a)$.

Solution: We have $(-\infty, a]$ is closed, and clearly $\mathbb{R} \setminus (-\infty, a) = [a, \infty)$ is not even open in the usual topology. Thus, $\overline{(-\infty, a)} = (-\infty, a]$, being the smallest closed set containing it.

iii) $\{a\}$.

Solution: Since $\mathbb{R} \setminus \{a\} = (-\infty, a) \cup (a, \infty)$ is open in \mathcal{T}_{\geq} , we have $\overline{\{a\}} = \{a\}$.

iv) $A = \{a, a + 1, a + 2, \dots\}.$

Solution: If $a \in \mathbb{Z}$, then it follows that any open set will intersect A. Thus, $\bar{A} = \mathbb{R}$. On the other hand, if $a \notin \mathbb{Z}$, then it follows that $\mathbb{R} \setminus A$ is open in the usual topology, and contains \mathbb{Z} . Thus, $\bar{A} = A$ in that case.

v) $B = \{a, a - 1, a - 2, \dots\}.$

Solution: Clearly $\mathbb{R} \setminus B$ is open in the usual topology, and contains $\mathbb{Z}_{\geq n}$ for any $a < n \in \mathbb{Z}$. Thus, $\bar{B} = B$.

Q4. Determine (with justification) whether $(\mathbb{R}, \mathcal{T}_{>})$ is T_0, T_1 , or T_2 .

Solution: Since for any $a \in \mathbb{R}$, we have $\{a\}$ is closed, it follows that $(\mathbb{R}, \mathcal{T}_{\geq})$ is T_1 , and hence, T_0 . On the other hand, any two open sets will contain some $\mathbb{Z}_{\geq n}$, and hence, $(\mathbb{R}, \mathcal{T}_{\geq})$ is not T_2 .

- Q5. Prove or give counter-example to the following statements.
 - i) If a sequence (x_n) converges to x in $(\mathbb{R}, \mathcal{T}_{\to})$, then $x_n \to x$ in $(\mathbb{R}, \mathcal{T}_{\geq})$ as well. **Solution:** Consider $x_n = n + 0.5$. Then, $\{x_n\}$ is discrete in $(\mathbb{R}, \mathcal{T}_{\geq})$, and thus, does not converge to any point of \mathbb{R} . On the other hand, x_n converges to any point of \mathbb{R} in the topology \mathcal{T}_{\to} .
 - ii) If a sequence (x_n) converges to x in $(\mathbb{R}, \mathcal{T}_{\geq})$, then $x_n \to x$ in $(\mathbb{R}, \mathcal{T}_{\rightarrow})$ as well. **Solution:** Since \mathcal{T}_{\geq} is strictly finer than $\mathcal{T}_{\rightarrow}$, it follows that if $x_n \to x$ in \mathcal{T}_{\geq} , then $x_n \to x$ in $\mathcal{T}_{\rightarrow}$ as well.
- Q6. Prove or disprove : $(\mathbb{R}, \mathcal{T}_{\geq})$ is path connected.

Solution: Since \mathcal{T}_{\geq} is strictly coarser than the usual topology, for any continuous map $f: X \to \mathbb{R}_{\text{usual}}$, we have $f: X \to (\mathbb{R}, \mathcal{T}_{\geq})$ is still continuous. Since \mathbb{R} is path connected with the usual topology, it follows that $(\mathbb{R}, \mathcal{T}_{\geq})$ is path connected.

Q7. Consider the equivalence relation on \mathbb{R} : $a \sim b$ if and only if $a - b \in \mathbb{Z}$. For any $x \in \mathbb{R}$, find the closure of the equivalence class [x] in the quotient topology induced from $(\mathbb{R}, \mathcal{T}_{>})$.

Solution: For any $x \notin \mathbb{Z}$, we have seen that $x + \mathbb{Z}$ is closed (follows from iv) and v) of Q3). Hence, $q^{-1}([x])$ is closed. But then $\overline{\{[x]\}} = \{[x]\}$. Now, consider [0]. For any $x \notin \mathbb{Z}$, if we have some open set $[x] \in U \subset \mathbb{R}/_{\sim}$, then $q^{-1}(U)$, being a saturated open set, must contain \mathbb{Z} . Thus, $[0] \in U$. Hence, $\overline{\{[0]\}} = \mathbb{R}/_{\sim}$.

Q8. Consider the equivalence relation on \mathbb{R} : $a \sim b$ if and only if either

$$a, b \in \mathbb{R} \setminus \mathbb{Z}$$
, and $a = b$, or, $a, b \in \mathbb{Z}$.

For any $x \in \mathbb{R}$, find the closure of the equivalence class [x] in the quotient topology induced from $(\mathbb{R}, \mathcal{T}_{\geq})$.

Solution: For any $x \notin \mathbb{Z}$, we have $q^{-1}([x]) = \{x\}$, which is closed in \mathcal{T}_{\geq} . Thus, $\overline{\{[x]\}} = \{[x]\}$. Next, consider the class [0]. For any open set $U \subset \mathbb{R}/_{\sim}$, we have $q^{-1}(U)$ intersects \mathbb{Z} . Thus, $[0] \in U$. Hence, $\overline{\{[0]\}} = \mathbb{R}/_{\sim}$.