PSALTer results panel $\mathcal{S} = \iiint \left(\frac{1}{4}\left(2\,a_{0}\,\mathcal{R}^{\alpha\beta}_{\alpha}\,\mathcal{R}^{\chi}_{\beta\chi} + \mathcal{R}^{\alpha\beta\chi}\right) \left(-2\,a_{0}\,\mathcal{R}_{\beta\chi\alpha} + 4\,\mathcal{W}_{\alpha\beta\chi}\right) + 4\,\mathcal{T}^{\alpha\beta}_{\alpha\beta} h_{\alpha\beta} - a_{0}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha} + 4\,\mathcal{W}_{\alpha\beta\chi} + 4\,\mathcal{W}_{\alpha\beta\chi}\right) + 4\,\mathcal{T}^{\alpha\beta}_{\alpha\beta} h_{\alpha\beta} - a_{0}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha} + 4\,\mathcal{W}_{\alpha\beta\chi} + 4\,\mathcal{W}_{\alpha\beta\chi}\right) + 4\,\mathcal{T}^{\alpha\beta}_{\alpha\beta} h_{\alpha\beta} - a_{0}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha\beta} + 4\,\mathcal{W}_{\alpha\beta\chi} + 4\,\mathcal{W}_{\alpha\beta\chi}\right) + 4\,\mathcal{T}^{\alpha\beta}_{\alpha\beta} h_{\alpha\beta} - a_{0}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha\beta} + 4\,\mathcal{W}_{\alpha\beta\chi}\right) + 4\,\mathcal{T}^{\alpha\beta}_{\alpha\beta} h_{\alpha\beta} + 4\,\mathcal{T}^{\alpha\beta}_{\alpha\beta}$ $a_{0} h_{\chi}^{\chi} \partial_{\beta} \mathcal{A}^{\alpha\beta}_{\alpha} - 2 a_{0} h_{\alpha\chi} \partial_{\beta} \mathcal{A}^{\alpha\beta\chi} + 2 a_{0} h_{\beta\chi} \partial^{\chi} \mathcal{A}^{\alpha\beta}_{\alpha}))[t, x, y, z] dz dy dx dt$ **Wave operator** $0^{+}h^{\parallel} + 0 \qquad 0 \qquad \frac{ia.k}{2\sqrt{2}} \qquad 0 \qquad -\frac{ia.k}{4\sqrt{3}} \qquad \frac{ia.k}{4\sqrt{6}}$ ${}^{1^+}_{\cdot}\mathcal{R}_{\mathsf{a}}{}^{\parallel}\,\dagger^{lphaeta}$ ${}^{1^+}_{\cdot}\mathcal{F}_{\mathsf{a}}{}^{\scriptscriptstyle \perp}\,\dagger^{lphaeta}$ ${}^{1^+}_{\cdot}\mathcal{F}_{\mathsf{S}}{}^{\scriptscriptstyle \perp}_{\mathsf{T}}^{}$ $\frac{ia.k}{4\sqrt{2}} \qquad 0 \qquad -\frac{ia.k}{4\sqrt{6}} \quad \frac{1}{4}i \sqrt{\frac{5}{6}} \ a.k$ $\frac{1}{2}h^{\perp} + \alpha$ $^{1}\mathcal{A}_{\mathsf{a}}{}^{\parallel}\,\dagger^{lpha}$ ${}^1\mathcal{A}_{\mathsf{a}}{}^{\scriptscriptstyle \perp} \mathsf{\dagger}^{\alpha}$ ${}^{1}\mathcal{A}_{\mathsf{s}}{}^{\scriptscriptstyle{\perp}\mathsf{t}}\,\mathsf{t}^{\alpha}$ ${}^{1}\mathcal{A}_{\mathsf{s}}^{\parallel\mathsf{t}}\,\mathsf{\dagger}^{\alpha}$ $0 0 -\frac{a}{6\sqrt{2}} -\frac{1}{6}\sqrt{\frac{5}{2}} a_0 \frac{a}{3} \frac{a}{6\sqrt{2}}$ ${}^{1}\mathcal{A}_{s}^{\perp h}\dagger^{\alpha}$ $0 \qquad 0 \qquad -\frac{a}{6} \qquad -\frac{\sqrt{5} \, a}{6} \qquad \frac{a}{6 \, \sqrt{2}} \qquad \frac{a}{6 \, \sqrt{2}} \qquad \frac{5 \, a}{12} \qquad \frac{5 \, a}{12} \qquad \frac{2^{+} \, h^{\parallel}_{\alpha\beta} \, 2^{+} \, \mathcal{A}_{a}^{\parallel}_{\alpha\beta} \, 2^{+} \, \mathcal{A}_{s}^{\parallel}_{\alpha\beta} \, 2^{+} \, \mathcal{A}_{s}^{\perp}_{\alpha\beta} \, 2^{+} \, \mathcal{A}_{s}$ ${}^{1}\mathcal{A}_{\mathsf{s}}{}^{\mathsf{\parallel}\mathsf{h}}\,\mathsf{\dagger}^{\alpha}$ $^{2^{+}}h^{\parallel}\dagger^{\alpha\beta}$ $^{2^{+}}\mathcal{A}_{\mathsf{a}}{}^{\parallel}\,\dagger^{\alpha\beta}$ $^{2^{+}}\mathcal{R}_{s}^{\parallel}\dagger^{lphaeta}$ $^{2^{+}}\mathcal{A}_{s}{}^{\perp}\dagger^{lphaeta}$ ${}^{2}\mathcal{A}_{a}^{\parallel} \dagger^{\alpha\beta\chi}$ ${}^{2}\mathcal{A}_{s}^{\parallel} + {}^{\alpha\beta\chi}$ 0 $^{3}\mathcal{A}_{\mathsf{s}}^{\parallel}_{\alpha\beta\chi}$ ${}^{3}\mathcal{A}_{s}^{\parallel} + {}^{\alpha\beta\chi}$ **Saturated propagator**

	${}^0\dot{\cdot}\mathcal{T}^{\scriptscriptstyle \perp}$	0 . \mathcal{T}^{\parallel}	0 $\mathcal{W}_{a}^{\parallel}$	0 $\mathcal{W}_{s}^{\perp t}$	0 $\mathcal{W}_{s}^{\parallel}$	0 $\mathcal{W}_{s}^{\perp h}$	${}^{0}\mathcal{W}_{a}^{\parallel}$
^{0⁺} ∵⊤⁺	$-\frac{36 k^2}{a_0 (16+3 k^2)^2}$	$\frac{4 \sqrt{3}}{16a.+3a.k^2}$	$\frac{2i\sqrt{6}k}{16a.+3a.k^2}$	$-\frac{72ik}{a.(16+3k^2)^2}$	$\frac{8 i k (19+3 k^2)}{a \cdot (16+3 k^2)^2}$	0	0
^{0.+} 7⁻∥†	$\frac{4\sqrt{3}}{16a.+3a.k^2}$	$\frac{4}{a \cdot k^2}$	$\frac{2i\sqrt{2}}{a.k}$	0 0	$-\frac{8i}{\sqrt{3} (16a. k+3a. k^3)}$	$-\frac{8i\sqrt{\frac{2}{3}}}{16a.k+3a.k^{3}}$	0
⁰⁺ W _a †	$-\frac{2i\sqrt{6}k}{16a.+3a.k^{2}}$	$-\frac{2 i \sqrt{2}}{a \cdot k}$	0	$\frac{4\sqrt{6}}{16a.+3a.k^{2}}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a.+3a.k^{2}}$	$-\frac{8}{\sqrt{3}(16a_{.}+3a_{.}k^{2})}$	0
0+W _s ±t+	$\frac{72ik}{a.(16+3k^2)^2}$	$-\frac{8i\sqrt{3}}{16a.k+3a.k^{3}}$	$\frac{4\sqrt{6}}{16a.+3a.k^{2}}$	$-\frac{144}{a.(16+3k^2)^2}$	$\frac{16(19+3k^2)}{a \cdot (16+3k^2)^2}$	$-\frac{8\sqrt{2}(10+3k^2)}{a(16+3k^2)^2}$	0
0 ⁺ W _s †	$-\frac{8ik(19+3k^2)}{a.(16+3k^2)^2}$	$\frac{8i}{\sqrt{3} (16a.k+3a.k^3)} $	$-\frac{4\sqrt{\frac{2}{3}}}{16a.+3a.k^2}$	$\frac{16(19+3k^2)}{a\cdot (16+3k^2)^2}$	$-\frac{16(35+6k^2)}{3a\cdot(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a.(16+3k^2)^2}$	0
⁰⁺ W _s ^{⊥h} †	$\frac{4i \sqrt{2} k (10+3k^2)}{a \cdot (16+3k^2)^2}$	$\frac{8i \sqrt{\frac{2}{3}}}{16a.k+3a.k^{3}}$	$-\frac{8}{\sqrt{3}(16a.+3a.k^2)}$	$-\frac{8\sqrt{2}(10+3k^2)}{a(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a.(16+3k^2)^2}$	$\frac{32(13+3k^2)}{3a.(16+3k^2)^2}$	0
⁰⁻ W _a [∥] †	0	0	0	0	0	0	$-\frac{2}{a}$

$-\frac{2}{a}$	$^{1^+}\mathcal{W}_{a}{}^{\parallel}{}_{\alpha\beta}$	$^{1^{+}}\mathcal{W}_{a}{^{\perp}}_{\alpha\beta}$	$^{1^{+}}\mathcal{W}_{S}{^{\perp}}_{\alpha\beta}$	$^1\mathcal{T}^{\scriptscriptstyle \perp}{}_{\alpha}$	${}^{1}\mathcal{W}_{a}{}^{\parallel}{}_{lpha}$	${}^1\mathcal{W}_{a}{}^{\scriptscriptstyle\perp}{}_{\alpha}$	$^{1}\mathcal{W}_{s}^{^{\perpt}}{}_{\alpha}$	${}^{1}\mathcal{W}_{s}{}^{\parallelt}{}_{\alpha}$	${}^{1}\mathcal{W}_{s}^{\perph}{}_{\alpha}$	${}^1\mathcal{W}_{s}{}^{\ h}{}_{lpha}$
$^{1^{+}}\mathcal{W}_{a}{}^{\parallel}\dagger^{lphaeta}$	0	$-\frac{2\sqrt{2}}{a}_{0}$	0	0	0	0	0	0	0	0
$^{1^{+}}\mathcal{W}_{a}{^{\perp}}\dagger^{\alpha\beta}$	$-\frac{2\sqrt{2}}{a}_{0}$	$\frac{2}{a}$	0	0	0	0	0	0	0	0
$^{1^{+}}\mathcal{W}_{S}{^{\perp}}\dagger^{\alpha\beta}$	0	0	$\frac{4}{a}$	0	0	0	0	0	0	0
${}^{1}\mathcal{T}^{\perp}\dagger^{\alpha}$	0	0	0	$\frac{2 k^2}{a. (2+k^2)^2}$	$\frac{2i\sqrt{2}k}{a.(2+k^2)}$	$\frac{i k (4+k^2)}{a \cdot (2+k^2)^2}$	$-\frac{i k (6+5 k^2)}{\sqrt{6} a \cdot (2+k^2)^2}$	$\frac{i\sqrt{\frac{5}{6}}k}{a\cdot(2+k^2)}$	$-\frac{2ik(3+k^2)}{\sqrt{3}a_{0}(2+k^2)^2}$	$\frac{i \sqrt{\frac{2}{3}} k}{a \cdot (2+k^2)}$
${}^{1}\mathcal{W}_{a}{}^{\parallel}\dagger^{lpha}$	0	0	0	$-\frac{2i\sqrt{2}k}{a\cdot(2+k^2)}$	0	$\frac{\sqrt{2} (4+k^2)}{a_{.0}(2+k^2)}$	$-\frac{2k^2}{\sqrt{3}a_{.0}(2+k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{a. (2+k^2)}$	0
${}^1\mathcal{W}_{a}{}^{\scriptscriptstyle\perp}\dagger^{lpha}$	0	0	0	$-\frac{ik(4+k^2)}{a(2+k^2)^2}$	$\frac{\sqrt{2} (4+k^2)}{a_{\cdot \cdot} (2+k^2)}$	$\frac{(4+k^2)^2}{2a.(2+k^2)^2}$	$\frac{k^2 \left(-2+k^2\right)}{2 \sqrt{6} a_{.0} (2+k^2)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a. +2 a. k^2}$	$\frac{k^2 (5+2 k^2)}{\sqrt{3} a \cdot (2+k^2)^2}$	$-\frac{k^2}{\sqrt{6} \ a_{.0}(2+k^2)}$
${}^{1}W_{s}^{\perp t}\dagger^{\alpha}$	0	0	0	$\frac{i k (6+5 k^2)}{\sqrt{6} a (2+k^2)^2}$	$-\frac{2k^2}{\sqrt{3}a_{.0}(2+k^2)}$	$\frac{k^2 \left(-2+k^2\right)}{2 \sqrt{6} a_{.0} \left(2+k^2\right)^2}$	$-\frac{76+52k^2+3k^4}{12a_{\cdot \cdot}(2+k^2)^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a \cdot (2+k^2)}$	$\frac{-2+k^2}{3\sqrt{2}a_{.0}(2+k^2)^2}$	$\frac{1}{-2a\frac{8a.}{0}}$
${}^{1}\mathcal{W}_{s}{}^{\parallelt}t^{\alpha}$	0	0	0	$-\frac{i \sqrt{\frac{5}{6}} k}{a \cdot (2+k^2)}$	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a. +2 a. k^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a \cdot (2+k^2)}$	$\frac{1}{12a}$	$-\frac{\sqrt{\frac{5}{2}}}{6a.+3a.k^2}$	$-\frac{\sqrt{5}}{6a}$
$\frac{1}{2}W_{s}^{\perp h} \uparrow^{\alpha}$	0	0	0	$\frac{2 i k (3+k^2)}{\sqrt{3} a \cdot (2+k^2)^2}$	$\frac{\sqrt{\frac{2}{3}} k^2}{a_{\cdot}(2+k^2)}$	$\frac{k^2 (5+2 k^2)}{\sqrt{3} a (2+k^2)^2}$	$\frac{-2+k^2}{3\sqrt{2}a_{.}(2+k^2)^2}$		$\frac{2(17+14k^2+3k^4)}{3a.(2+k^2)^2}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a. (2+k^2)}$
${}^{1}\mathcal{W}_{s}{}^{\parallelh}t^{\alpha}$	0	0	0	$-\frac{i\sqrt{\frac{2}{3}}k}{a.(2+k^2)}$	0	$-\frac{k^2}{\sqrt{6} \ a_{.0}(2+k^2)}$	$\frac{1}{-2 a\frac{8a.}{0.2+3k^2}}$	$-\frac{\sqrt{5}}{6a.}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a. (2+k^2)}$	5 3a.
				, and the second						

5 3a.	$^{2^{+}}\mathcal{T}^{\parallel}{}_{lphaeta}$	$^{2^{+}}W_{a}^{\parallel}_{\alpha\beta}$	$^{2^{+}}W_{s}^{\parallel}_{\alpha\beta}$	$^{2^{+}}W_{s}^{\perp}{}_{\alpha\beta}$	$^{2}W_{a}^{\parallel}_{\alpha\beta\chi}$	${}^{2}W_{s}^{\parallel}_{\alpha\beta\chi}$	
$^{2^{+}}\mathcal{T}^{\parallel}$ † lphaeta	$-\frac{8}{a \cdot k^2}$	$-\frac{4i\sqrt{2}}{ak}$	4i	$\frac{4i\sqrt{\frac{2}{3}}}{1}$	0	0	
$^{2^{+}}W_{a}^{\parallel}\dagger^{lphaeta}$	$\frac{4i\sqrt{2}}{a.k}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a}$	$\frac{4}{\sqrt{3}}a_{0}$	0	0	
$^{2^{+}}\mathcal{W}_{S}^{\parallel}†^{lphaeta}$	$-\frac{4i}{\sqrt{3}} \underbrace{a.k}_{0}$	$\frac{2\sqrt{\frac{2}{3}}}{a}$	$-\frac{8}{3a}$	$-\frac{2\sqrt{2}}{3a.}$	0	0	
$2^{+}W_{a}^{\parallel} + \alpha^{\beta}$ $2^{+}W_{s}^{\parallel} + \alpha^{\beta}$ $2^{+}W_{s}^{\perp} + \alpha^{\beta}$	$-\frac{4i\sqrt{\frac{2}{3}}}{a.k}$	$\frac{4}{\sqrt{3}}a$	$-\frac{2\sqrt{2}}{3a.}$	$\frac{8}{3a}$	0	0	
$^{2}W_{a}^{\parallel}$ † $^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a}$	0	
${}^{2} \mathcal{W}_{a}^{\parallel} + {}^{\alpha\beta\chi}$ ${}^{2} \mathcal{W}_{s}^{\parallel} + {}^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a}$	3 ⁻ W
						$^{3}W_{s}^{\parallel}$ † $^{\alpha\beta\chi}$	

Source constraints

Spin-parity form	Covariant form	Multiplicities
$k^{0^{+}}W_{s}^{\parallel} + 2k^{0^{+}}W_{s}^{\perp h} - 6\bar{i}^{0^{+}}\mathcal{T}^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\alpha} \mathcal{W}^{\alpha\beta}_{ \beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$k^{0^{+}}W_{s}^{\perp t} + 2i^{0^{+}}\mathcal{T}^{\perp} == 0$	$2\partial_{\beta}\partial_{\alpha}\mathcal{T}^{-\alpha\beta} == \partial_{\chi}\partial_{\beta}\partial_{\alpha}\mathcal{W}^{\alpha\beta\chi}$	1
$\frac{6k {}^{1}\mathcal{W}_{a}^{\perp}{}^{\alpha} + 2k {}^{1}\mathcal{W}_{s}^{\parallel h^{\alpha}} + k {}^{1}\mathcal{W}_{s}^{\parallel t^{\alpha}} + 3k {}^{1}\mathcal{W}_{s}^{\perp t^{\alpha}} + 12i {}^{1}\mathcal{T}^{\perp}{}^{\alpha} == 0}$	$4 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \mathcal{W}^{\alpha \beta}_{\beta} = 4 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + 2 \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta} + \partial_{\delta} \partial^{\delta} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi}_{\chi}$	3
$k^{1}W_{s}^{\perp h^{\alpha}} - 6i^{1}\mathcal{T}^{\perp^{\alpha}} == k(3^{1}W_{a}^{\perp^{\alpha}} + {}^{1}W_{s}^{\perp t^{\alpha}})$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} = 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta}$	3
Total expected gauge generators:		8

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: Polarisations: 2

Unitarity conditions

 $a_{0} < 0$