

460640675226 Primer Bloque Teorico Elementos en Teoria de Computacion Evaluacion Final Escenario 8

Elementos de Teoría de la Computación (Politécnico Grancolombiano)

Puntaje para este intento: **122.92** de 125

Entregado el 9 de mayo en 11:39

Este intento tuvo una duración de 6 minutos.

Pregunta 1	6.25 / 6.25 pts
Si se sabe que $mcm(a,b)=12$ con $a>$	0, entonces es correcto afirmar:
${\color{red} @ \; mcd(a,b) \mid 12}$	
$@ \ 12 \mid mcd(a,b) \\$	
$igcirc$ $a=12k$ para algún $k\in\mathbb{Z}$	
$\bigcirc ab =12$	

Pregunta 2	6.25 / 6.25 pts
Si se sabe que $mcd(a,b)=7$ con $a>0$, entonces es co	orrecto afirmar:
ullet 7 $mcm(a,b)$	
\bigcirc $a < 7$	
\bigcirc 7 $(3a+b+9)$	
$igotimes$ Si $d\mid a$ y $d\div b$, entonces $d>7$	

6.25 / 6.25 pts
onces es correcto afirmar:

Pregunta 6	6.25 / 6.25 pts
Si $5 \mid x$ y $12 \mid x$, entonces es correcto afirmar:	
● 60 x	
○ 17 x	
○ 7 x	
© 5 12.	

Pregunta 7	6.25 / 6.25 pts
Si $7a\equiv 3\mod\ 12$ es correcto afirmar:	
$97a+12 \equiv 15 \mod 12$	
\bigcirc $9a \equiv 15 \mod 60$	
$ a^2 + 1 \equiv 9 \mod 12 $	

6.25 / 6.25 pts
afirmar:

Parcial	Pregunta 9 4.	.17 / 6.25 pts
	Si $2midx, 3midx, 5midx, 2 \leq \sqrt{x}, 3 \leq \sqrt{x}, 5 \leq \sqrt{x}$ y $7 > \sqrt{x}$, entonces es correcto afirmar:	
	x es un número compuesto mayor a 49.	
	■ x	
	₹ 26	
	■ x	
	₹ 53	

Pregunta 10	6.25 / 6.25 pts
Si $a\equiv 5 \mod 7$ y $b\equiv 2 \mod 7$ es correcto afirmar:	
$ a^2 + b^2 \equiv 0 \mod 7 $	
$\bigcirc a(b+3) \equiv 3 \mod 7$	
$\bigcirc 2b \equiv a-2 \mod 7$	

Pregunta 11	6.25 / 6.25 pts
Sobre el número $16 \mod 18$ es correcto afirmar:	
No tiene inverso, módulo 18.	
Su cuadrado es congruente con 3.	
Su opuesto es congruente con 3.	
igordown Si $c\equiv 16\mod 18$, entonces el residuo de dividir c entre 18 es 2 .	

Pregunta 12	6.25 / 6.25 pts
Si $5 \mid 11x$, entonces es correcto afirmar:	
● 5 x	
011x = 5	
$^{\odot}$ 5 \mid (11 $x-11$)	
$\odot~5\div11x$ es un número entero.	

Pregunta 13	6.25 / 6.25 pts	
El inverso de $12 \mod 25$ es:		
© 23 mod 25		
© 2 mod 25		
\bigcirc -12 mod 25		
8 mod 25		

Pregunta 14	6.25 / 6.25 pts
Al calcular $5^{1001} \mod 3$ se obtiene:	
② 2	
0	
1	
· -2	

regunta 15	6.25 / 6.25 pts
i $7x\equiv 4\mod 13$, entonces es correcto afirmar:	
$lacksquare 4x \equiv 6 \mod 13$	
$2x \equiv 6 \mod 13$	
$ \bigcirc -x \equiv 8 \mod 13 $	
$ 2x+1 \equiv 7x-1 \mod 13 $	

Pregunta 16	6.25 / 6.25 pts
mcd(4,8) es:	
• 4	
© 8	
© 2	
6	

Pregunta 17	6.25 / 6.25 pts	
p_{ara} determinar si un número n es primo se debe:		
$lacksquare$ Comprobar que para todo m entero, $\cot 1 < m < n$,	se tiene que $mmidn$.	
$\label{eq:comprobar} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	se tiene que $mmidn$.	
ullet Comprobar que $nmidm$ para todo entero $1 < m < r$	l.	
lacksquare Comprobar que n no es un número par.		

Si se sabe que $11 \equiv x \mod 12$, entonces es correcto afirmar:

$$x^2 \equiv 0 \mod 12$$

$$\bigcirc \ 3x-1 \equiv 7 \mod 12$$

$$(x+1)^2 \equiv x \mod 12$$

Pregunta 19

6.25 / 6.25 pts

Si se sabe que $13 \equiv x \mod 14$, entonces es correcto afirmar:

$$\bigcirc x^2 + x \equiv 1 \mod 14$$

$$x^2 \equiv 0 \mod 14$$

$$3x - 1 \equiv 7 \mod 14$$

$$(x+1)^2 \equiv x-13 \mod 14$$

Pregunta 20 6.25 / 6.25 pts

Si $a=2^35^27^3$ y $b=2^47^211^3$, entonces es correcto afirmar:

$$ullet$$
 $mcd(a,b) = 2^37^2 \ \mbox{y} \ mcm(a,b) = 2^45^27^311^3$

$$mcd(a,b) = 2^37^2 \vee mcm(a,b) = 2^47^3$$

$$\mod(a,b) = 2^3 \, 5^2 \, 7^2 \, \mathrm{y} \, mcm(a,b) = 2^4 \, 5^2 \, 7^3 \, 11^3$$

$$mcd(a,b) = 2^3 5^2 7^2 ymcm(a,b) = 2^4 7^3 11^3$$