

Sets are simply collections of elements: $A = \{x, y, z\}$ (so $x \in A$)

• A subset is a set with (weakly) fewer elements ($B \subset A$)

Sets are simply collections of elements: $A = \{x, y, z\}$ (so $x \in A$)

- A subset is a set with (weakly) fewer elements $(B \subset A)$
- Sets are combined through set operations:
 - ▶ Union: $A \cup B$
 - ▶ Intersection: $A \cap B$
 - **Complement**: A^c , \overline{A} or A'
 - ► Set Difference: *A* \ *B*

Sets are simply collections of elements: $A = \{x, y, z\}$ (so $x \in A$)

- A subset is a set with (weakly) fewer elements $(B \subset A)$
- Sets are combined through set operations:
 - ▶ Union: $A \cup B$
 - ▶ Intersection: $A \cap B$
 - **Complement**: A^c , \overline{A} or A'
 - ► Set Difference: *A* \ *B*
- DeMorgan's Laws combines these operations:
 - $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$
 - $(\overline{A \cup B}) = \overline{A} \cap \overline{B}$

Sets are simply collections of elements: $A = \{x, y, z\}$ (so $x \in A$)

- A subset is a set with (weakly) fewer elements $(B \subset A)$
- Sets are combined through set operations:
 - ▶ Union: $A \cup B$
 - ▶ Intersection: $A \cap B$
 - **Complement**: A^c , \overline{A} or A'
 - ► **Set Difference**: *A* \ *B*
- DeMorgan's Laws combines these operations:
 - $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$
 - $(\overline{A \cup B}) = \overline{A} \cap \overline{B}$
- Set with no elements: Ø
- Don't disrespect the Venn Diagram!

Mathematical Operations Used in Probability

- Factorial: $n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 2 \cdot 1$
 - Example: $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$

Mathematical Operations Used in Probability

- Factorial: $n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 2 \cdot 1$
 - $Example: 5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
- Exponents
 - $e \approx 2.17$ (used in growth and construction of key distributions)
 - ▶ Negative exponents are interpreted as reciprocals: $x^{-2} = \frac{1}{x^2}$
 - $x^0 = 1$
 - ▶ Other exponent rules: $c^x \cdot c^y$, c^x/c^y , $(c^x)^y$

Mathematical Operations Used in Probability

- Factorial: $n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 2 \cdot 1$
 - $Example: 5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
- Exponents
 - $e \approx 2.17$ (used in growth and construction of key distributions)
 - ▶ Negative exponents are interpreted as reciprocals: $x^{-2} = \frac{1}{x^2}$
 - $x^0 = 1$
 - ▶ Other exponent rules: $c^x \cdot c^y, c^x/c^y, (c^x)^y$
- Logarithms
 - ▶ $\log_x(y) = ?$ ⇒ how many powers of x give you y?
 - \triangleright Example: $\log_{10}(100) = ?$
 - Natural logarithm is the inverse of the exponential, e.x.: $ln(e^5) = e^{ln(5)} = 5$
 - ▶ Other log properties: ln(xy), ln(x/y), $ln(x^2)$, ln(x+y)

Summation Notation

• Suppose you have a data of n = 500 observations, and want to find the mean

Summation Notation

- Suppose you have a data of n = 500 observations, and want to find the mean
- Denote each observation by x_i for i = 1, 2, ..., 500
- Then $\overline{x} = \frac{1}{500}(x_1 + x_2 + ... + x_n)$, which is simplified by

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Summation Notation

- Suppose you have a data of n = 500 observations, and want to find the mean
- Denote each observation by x_i for i = 1, 2, ..., 500
- Then $\overline{x} = \frac{1}{500}(x_1 + x_2 + ... + x_n)$, which is simplified by

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Some properties of summation notation:

 - $\sum_{i=1}^{n} x = nx$
 - Geometric sums $\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}$ as long as |r| < 1

Product Notation (and More!)

Any linear operation can be generalized in this way:

$$\Pi_{i=1}^{n} x_{i} = x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}$$

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap \ldots \cap A_{n}, \quad \bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \ldots \cup A_{n}$$

Product Notation (and More!)

Any linear operation can be generalized in this way:

$$\Pi_{i=1}^{n} x_{i} = x_{1} \cdot x_{2} \cdot \dots \cdot x_{n}$$

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap \dots \cap A_{n}, \quad \bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \dots \cup A_{n}$$

- · Some properties of product notation:

 - $\prod_{i=1}^{n} e^{x_i} = e^{\sum_{i=1}^{n} x_i}$
 - ▶ Important! The log of products becomes summation

$$\ln (\Pi_{i=1}^{n} x_{i}) = \ln(x_{1} \cdot x_{2} \cdot ... \cdot x_{n})$$

$$= \ln(x_{1}) + \ln(x_{2}) + ... + \ln(x_{n})$$

$$= \sum_{i=1}^{n} \ln(x_{i})$$

Functions are pathways between two spaces

- Domain: the origin space
- Co-Domain/Range: the destination space
- A function $f:D\to R$ has one (and only one!) output in R for any element in D

Functions are pathways between two spaces

- Domain: the origin space
- Co-Domain/Range: the destination space
- A function $f:D\to R$ has one (and only one!) output in R for any element in D
- Examples of real-valued functions
 - $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$
 - $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x^2 + y^2$
 - $f: \ell^{\infty} \to \mathbb{R}$ given by $U(c_1, c_2, ...) = \sum_{i=1}^{\infty} u(c_i)$

Functions are pathways between two spaces

- Domain: the origin space
- Co-Domain/Range: the destination space
- A function f: D → R has one (and only one!) output in R for any element in D
- Examples of real-valued functions
 - $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$
 - $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x^2 + y^2$
 - $f: \ell^{\infty} \to \mathbb{R}$ given by $U(c_1, c_2, ...) = \sum_{i=1}^{\infty} u(c_i)$
- Combining functions:
 - ▶ Linear operations: $(f \pm g) = f(x) \pm g(x)$
 - **Composition**: f(g(x)) (functions must match on spaces)

Functions are pathways between two spaces

- Domain: the origin space
- Co-Domain/Range: the destination space
- A function f: D → R has one (and only one!) output in R for any element in D
- Examples of real-valued functions
 - $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$
 - $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x^2 + y^2$
 - $f: \ell^{\infty} \to \mathbb{R}$ given by $U(c_1, c_2, ...) = \sum_{i=1}^{\infty} u(c_i)$
- Combining functions:
 - ▶ Linear operations: $(f \pm g) = f(x) \pm g(x)$
 - **Composition**: f(g(x)) (functions must match on spaces)

Some things to review for other classes: continuity, injective/surjective/bijective. Not needed here.

Calculus: Derivatives

- Derivatives capture notions of rates of change or slope
 - In economics, critical for optimization
 - ► To solve $\max_x f(x)$, need a first-order condition (f'(x) = 0) and a second-order condition (f''(x) < 0)

Calculus: Derivatives

- Derivatives capture notions of rates of change or slope
 - In economics, critical for optimization
 - To solve $\max_x f(x)$, need a first-order condition (f'(x) = 0) and a second-order condition (f''(x) < 0)
- Refresher on common derivatives:

$$f(x) = x^a \to f'(x) = ax^{a-1}$$

$$f(x) = a \cdot x \to f'(x) = a$$

$$f(x) = a \rightarrow f'(x) = 0$$

$$f(x) = x^{-a} \rightarrow f'(x) = -ax^{-a-1}$$

$$f(x) = e^x \to f'(x) = e^x$$

$$f(x) = \ln(x) \to f'(x) = \frac{1}{x}$$

Calculus: Derivatives

- Derivatives capture notions of rates of change or slope
 - In economics, critical for optimization
 - To solve $\max_x f(x)$, need a first-order condition (f'(x) = 0) and a second-order condition (f''(x) < 0)
- Refresher on common derivatives:

$$f(x) = x^a \to f'(x) = ax^{a-1}$$

$$f(x) = a \cdot x \to f'(x) = a$$

•
$$f(x) = a \to f'(x) = 0$$

$$f(x) = x^{-a} \to f'(x) = -ax^{-a-1}$$

$$f(x) = e^x \rightarrow f'(x) = e^x$$

$$f(x) = \ln(x) \rightarrow f'(x) = \frac{1}{x}$$

- Other derivative rules to know:
 - ▶ Product rule: $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + f'(x)g(x)$
 - ► Chain rule: $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$
 - ▶ Quotient rule: $\frac{d}{dx} [f(x)/g(x)] = \frac{g(x)f'(x)-f(x)g'(x)}{g(x)^2}$
 - $f^{(k)}(x)$ denotes the k-th derivative of f(x)

"The most important step in a proof is the step you don't know you're taking"

"The most important step in a proof is the step you don't know you're taking"

Useful tips:

- Organization helps you and me!
 - ▶ Start your proof with **Proof.** and end with □. Use sentences.
 - ▶ Take steps one line at a time
 - Justify everything!
 - ► Similar to commenting on code—don't want to have to rework

"The most important step in a proof is the step you don't know you're taking"

Useful tips:

- Organization helps you and me!
 - ightharpoonup Start your proof with Proof. and end with \square . Use sentences.
 - ▶ Take steps one line at a time
 - Justify everything!
 - Similar to commenting on code—don't want to have to rework
- When in doubt, write down what you need to show (WTS)
- If still in doubt, think about other ways of attack:
 - Proof by contradiction (never don't forget this!)
 - Induction
 - Contrapositive

"The most important step in a proof is the step you don't know you're taking"

Useful tips:

- Organization helps you and me!
 - ▶ Start your proof with **Proof.** and end with □. Use sentences.
 - Take steps one line at a time
 - Justify everything!
 - Similar to commenting on code—don't want to have to rework
- When in doubt, write down what you need to show (WTS)
- If still in doubt, think about other ways of attack:
 - Proof by contradiction (never don't forget this!)
 - Induction
 - Contrapositive

"Anything is possible when you fly on the wings of mathematics!"

SECTION 2.1-2.3: BASICS OF PROBABILITY

Building blocks in the language of probability:

1 Experiment: The action/process of uncertainty

Building blocks in the language of probability:

- **1** Experiment: The action/process of uncertainty
- **2** Sample Space, S: The set of all possible outcomes

Building blocks in the language of probability:

- **1** Experiment: The action/process of uncertainty
- **2** Sample Space, S: The set of all possible outcomes
- **3** Event, E: Any subset of outcomes in S. Events are stored in a collection, $E \in \mathcal{E}$

Building blocks in the language of probability:

- **1** Experiment: The action/process of uncertainty
- **2** Sample Space, S: The set of all possible outcomes
 - **3 Event**, E: Any subset of outcomes in S. Events are stored in a collection, $E \in \mathcal{E}$
- 4 Assigning relative likelihood of events in S is probability (P)

A triple (S, \mathcal{E}, P) is a probability space

• Flipping a coin $\Rightarrow S = \{H, T\}$

- Flipping a coin $\Rightarrow S = \{H, T\}$
- Flipping that coin 3 times $\Rightarrow \ \mathcal{S} = \{\textit{HHH}, \textit{HHT}, \textit{HTT}, \textit{TTT}, \textit{TTH}, \textit{THH}, \textit{HTH}, \textit{THT}\}$

- Flipping a coin $\Rightarrow S = \{H, T\}$
- Flipping that coin 3 times
 ⇒ S = {HHH, HHT, HTT, TTT, TTH, THH, HTH, THT}
- What about rolling dice?

- Flipping a coin $\Rightarrow S = \{H, T\}$
- Flipping that coin 3 times
 ⇒ S = {HHH, HHT, HTT, TTT, TTH, THH, HTH, THT}
- What about rolling dice?
- Two gas stations with 6 pumps each. We measure how many pumps are in use at each station at 9:17 am on a Saturday.
 What does the sample space look like?

A Complicated Sample Space

First Station	Second Station						
	0	1	2	3	4	5	6
0	(0, 0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)	(0, 6)
1	(1, 0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 0)	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
6	(6, 0)	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

Events

Events are any subset of outcomes in ${\mathcal S}$

- Flipping at least one tails
- Rolling only even numbers
- Exactly 4 pumps in use at the first station

Events

Events are any subset of outcomes in ${\mathcal S}$

- Flipping at least one tails
- Rolling only even numbers
- Exactly 4 pumps in use at the first station

An event can be simple (|E| = 1) or compound (|E| > 1).

The collection of all events, \mathcal{E} , is the power set of \mathcal{S} when the state space is discrete¹

 $^{^1}$ When $\mathcal S$ is not discrete, $\mathcal E$ needs to satisfy some special closure conditions, so that it is a σ -algebra.

The goal of probability is to map events to numbers in a way that conveys information about likelihoods

0 | 1

The goal of probability is to map events to numbers in a way that conveys information about likelihoods

The goal of probability is to map events to numbers in a way that conveys information about likelihoods

The goal of probability is to map events to numbers in a way that conveys information about likelihoods

Axioms of Probability

For an event A, denote the probability that A occurs by P(A)

A probability measure is a function $p: S \to \mathbb{R}$ that satisfies 3 axioms (building blocks of theory):

- A1 For all $A \in \mathcal{S}$, $P(A) \geq 0$
- A2 P(S) = 1
- A3 For any **infinite** collection of **disjoint** events $\{A_1, A_2, ...\}$, $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ (countable additivity)

Questions about the axioms: What do we think? Why don't we need finiteness in A3? Etc?

Consequences of These Axioms I: Null Events

Proposition: Null Events have 0 Probability

What we want to show: $P(\emptyset) = 0$

Proof: Use Axiom 3, taking as our infinite collection $\{\emptyset, \emptyset, ...\}$.

Notice that $\emptyset \cap \emptyset = \emptyset$, so the events are **disjoint**.

Then,
$$P(\bigcup_{i=1}^{\infty} \emptyset) = P(\emptyset) = \sum_{i=1}^{\infty} P(\emptyset)$$
.

But we can't have $x = \sum_{i=1}^{\infty} x$ unless x = 0. Hence, $P(\emptyset) = 0$.

Consequences of These Axioms II: Finite Collections

Proposition: Axiom 3 holds for finite collections

What we want to show: If $\{A_1, ..., A_k\}$ is a finite collection of disjoint events, then $P\left(\bigcup_{i=1}^k A_i\right) = \sum_{i=1}^k P(A_i)$.

Proof: Take a finite collection of events $\{A_1, ..., A_k\}$.

Make this an **infinite** collection by appending \emptyset 's!

That is, $\{A_1, ..., A_k\} \Rightarrow \{A_1, A_2, ..., A_k, \emptyset, \emptyset, ...\}.$

Then the third axiom says

$$P\left(\bigcup_{i=1}^k A_i\right) = P\left(\bigcup_{i=1}^\infty A_i\right) = \sum_{i=1}^\infty P(A_i) = \sum_{i=1}^k P(A_i) + 0.$$

More Probability Properties

- 1 For all $E \in \mathcal{E}$, $P(E) = 1 P(\overline{E})$
- **2** For all $E \in \mathcal{E}$, $P(E) \leq 1$
- 3 For any two events E, F, $P(E \cup F) = P(E) + P(F) P(E \cap F)$

Can you prove these?

This is something to watch out for!

Some examples

- If you flip a fair coin twice, what's the probability of getting at least one head?
- What's the probability of drawing either a spade or an ace from a deck of cards?

This is something to watch out for!

Some examples

- If you flip a fair coin twice, what's the probability of getting at least one head?
- What's the probability of drawing either a spade or an ace from a deck of cards?

When in doubt, list and count!

	Hrs Needed (day) Hrs Needed (year)		Hours Left
			8760
Sleeping	8	2920	5840

	Hrs Needed (day)	Hrs Needed (year)	Hours Left
			8760
Sleeping	8	2920	5840
Eating	.5*3 = 1.5	547.5	5250.5

	Hrs Needed (day)	Hrs Needed (year)	Hours Left
			8760
Sleeping	8	2920	5840
Eating	.5*3 = 1.5	547.5	5250.5
Bathing	$\frac{1}{3}$	109.5	5183

	Hrs Needed (day) Hrs Needed (year)		Hours Left
			8760
Sleeping	8	2920	5840
Eating	.5*3 = 1.5	547.5	5250.5
Bathing	$\frac{1}{3}$	109.5	5183
Weekends	48 hrs/wk	2496	2687

	Hrs Needed (day)	Needed (day) Hrs Needed (year)	
			8760
Sleeping	8	2920	5840
Eating	.5*3 = 1.5	547.5	5250.5
Bathing	$\frac{1}{3}$	109.5	5183
Weekends	48 hrs/wk	2496	2687
Vacation	2 wks	336	2361

	Hrs Needed (day)	Hrs Needed (year)	Hours Left
			8760
Sleeping	8	2920	5840
Eating	.5*3 = 1.5	547.5	5250.5
Bathing	$\frac{1}{3}$	109.5	5183
Weekends	48 hrs/wk	2496	2687
Vacation	2 wks	336	2361
Holidays	5 days/yr	120	2231

	Hrs Needed (day) Hrs Needed (year)		Hours Left
			8760
Sleeping	8	2920	5840
Eating	.5*3 = 1.5	547.5	5250.5
Bathing	$\frac{1}{3}$	109.5	5183
Weekends	48 hrs/wk	2496	2687
Vacation	2 wks	336	2361
Holidays	5 days/yr	120	2231
Commute	2	500	1731

	Hrs Needed (day)	Hrs Needed (year)	Hours Left	
			8760	
Sleeping	8	2920	5840	
Eating	.5*3 = 1.5	547.5	5250.5	
Bathing	$\frac{1}{3}$	109.5	5183	
Weekends	48 hrs/wk	2496	2687	
Vacation	2 wks	336	2361	
Holidays	5 days/yr	120	2231	
Commute	2	500	1731	
Working	8	2000	-269	

How to use this to your advantage: there are 8760 hours in a year. But you need time for...

	Hrs Needed (day)	eeded (day) Hrs Needed (year)	
			8760
Sleeping	8	2920	5840
Eating	.5*3 = 1.5	547.5	5250.5
Bathing	$\frac{1}{3}$	109.5	5183
Weekends	48 hrs/wk	2496	2687
Vacation	2 wks	336	2361
Holidays	5 days/yr	120	2231
Commute	2	500	1731
Working	8	2000	-269

So you have to be about an hour late to work every day!

SECTION 2.4: CONDITIONAL PROBABILITY

Dealing with Information

Suppose we're on a research team for the FDA. We're trying to evaluate PanaceaTM, a new SSRI for depression

What questions can probability answer about Panacea? What would we like to know in order to approve it?

Dealing with Information

Suppose we're on a research team for the FDA. We're trying to evaluate PanaceaTM, a new SSRI for depression

What questions can probability answer about Panacea? What would we like to know in order to approve it?

- What is the probability that Panacea reduces symptoms?
- How likely is it that taking Panacea causes migraines?

Dealing with Information

Suppose we're on a research team for the FDA. We're trying to evaluate PanaceaTM, a new SSRI for depression

What questions can probability answer about Panacea? What would we like to know in order to approve it?

- What is the probability that Panacea reduces symptoms?
- How likely is it that taking Panacea causes migraines?

What happens when new information comes along?

- Patient started taking Panacea, has canceled 3 appointments
- Migraine patient has a history of headaches

How do we use this info to update desired probabilities?

Multiple Events

When we have two events A and B, it is helpful to distinguish:

- Marginal probabilities: P(A) and P(B)
- Joint probability: $P(A \cap B)$
- Conditional probabilities: P(A|B), P(B|A)

Multiple Events

When we have two events A and B, it is helpful to distinguish:

- Marginal probabilities: P(A) and P(B)
- Joint probability: $P(A \cap B)$
- Conditional probabilities: P(A|B), P(B|A)

	Side Effects	
Symptom Repression	No	Yes
No	15	10
Yes	70	5

How effective is this drug? (What is P(SymptomRepression)?)

What if the patient is reporting side effects? (What is P(SR|SE)?)

A Formula for Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

You're on a date and want to choose a restaurant. You're craving a flour-less chocolate cake (ours really is the best!), but your date is insistent on getting french fries.

You're on a date and want to choose a restaurant. You're craving a flour-less chocolate cake (ours really is the best!), but your date is insistent on getting french fries.

You know that 70% of the restaurants in Boston sell french fries, and that 40% still make the cake you like. Googling tells you that 30% of restaurants do both.

If you go to a restaurant with french fries, what is the probability you can still have your cake?

You're on a date and want to choose a restaurant. You're craving a flour-less chocolate cake (ours really is the best!), but your date is insistent on getting french fries.

You know that 70% of the restaurants in Boston sell french fries, and that 40% still make the cake you like. Googling tells you that 30% of restaurants do both.

If you go to a restaurant with french fries, what is the probability you can still have your cake?

	C	\overline{C}	Marginal
FF	_		0.7
FF	_		0.3
Marginal	0.4	0.6	1

You're on a date and want to choose a restaurant. You're craving a flour-less chocolate cake (ours really is the best!), but your date is insistent on getting french fries.

You know that 70% of the restaurants in Boston sell french fries, and that 40% still make the cake you like. Googling tells you that 30% of restaurants do both.

If you go to a restaurant with french fries, what is the probability you can still have your cake?

	C	\overline{C}	Marginal
FF	0.3		0.7
FF	_	_	0.3
Marginal	0.4	0.6	1

Example 1: Applying conditional probabilities

We know that:

- $P(A) + P(\overline{A}) = 1$
- $P(A \cap B) + P(A \cap \overline{B}) = P(A)$

Example 1: Applying conditional probabilities

We know that:

- $P(A) + P(\overline{A}) = 1$
- $P(A \cap B) + P(A \cap \overline{B}) = P(A)$

Hence,

	C	\overline{C}	Marginal
FF	0.3	0.4	0.7
FF	0.1	0.2	0.3
Marginal	0.4	0.6	1

Example 1: Applying conditional probabilities

We know that:

•
$$P(A) + P(\overline{A}) = 1$$

•
$$P(A \cap B) + P(A \cap \overline{B}) = P(A)$$

Hence,

	C	\overline{C}	Marginal
FF	0.3	0.4	0.7
FF	0.1	0.2	0.3
Marginal	0.4	0.6	1

Hence, if you choose FF, then $P(C|FF) = 3/7 \approx 0.49$. Those odds are better than your marginal odds!

Check out this cool site for a visualization of conditional probability

SECTION 2.5: INDEPDENDENCE

Indepdendence

Two events A and B are independent if P(A|B) = P(A). Otherwise, they are dependent.

Some consequences of independence:

- P(B|A) = P(B) (symmetry)
- \overline{A} and B are independent
- B and \overline{A} are independent
- \overline{A} and \overline{B} are independent

How do we know when events are independent?

If two events are independent:

$$P(A \cap B) \Leftrightarrow P(A|B)P(B) \Leftrightarrow P(A)P(B)$$

Hence, when the intersection of two events has the same probability as the product of the two events, they are independent

Q: What is the prob. of drawing a red card that is not an ace?

Q: What is the prob. of drawing a red card that is not an ace?

	R	\overline{R}	
A	2/52	2/52	4/52
\overline{A}	24/52	24/52	48/52
	26/52	26/52	1

Q: What is the prob. of drawing a red card that is not an ace?

	R	\overline{R}	
A	1/26	1/26	1/13
\overline{A}	6/13	6/13	12/13
	1/2	1/2	1

Q: What is the prob. of drawing a red card that is not an ace?

$$\begin{array}{c|cccc} R & \overline{R} & \\ \hline A & 1/26 & 1/26 & 1/13 \\ \overline{A} & 6/13 & 6/13 & 12/13 \\ \hline & 1/2 & 1/2 & 1 \\ \hline \end{array}$$

A: Hence, $P(\overline{A} \cap R) = 6/13$.

Q: Are the events \overline{A} , R independent?

Q: Are the events \overline{A} , R independent?

A: Take product of the marginals:

$$P(\overline{A}) \cdot P(R) = \frac{12}{13} \frac{1}{2} = \frac{6}{13}$$

Q: Are the events \overline{A} , R independent?

A: Take product of the marginals:

$$P(\overline{A}) \cdot P(R) = \frac{12}{13} \frac{1}{2} = \frac{6}{13}$$

A: Hence, the two events are independent.

QUESTIONS?