ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΝΙΟΥ 2025

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8)

ОЕМА А

Στις ερωτήσεις **Α1-Α4** να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στην επιλογή σας, η οποία συμπληρώνει σωστά την ημιτελή πρόταση.

- Α1. Η ένταση του ρεύματος που διαρρέει ένα πηνίο μεταβάλλεται από την τιμή Ι στην τιμή 2Ι. Η ηλεκτρεγερτική δύναμη από αυτεπαγωγή που αναπτύσσεται στο πηνίο
 - α) είναι μεγαλύτερη, αν η μεταβολή της έντασης του ρεύματος γίνει γρήγορα.
 - β) δεν εξαρτάται από τον χρόνο, στον οποίο γίνεται η μεταβολή αλλά μόνο από την αρχική και τελική τιμή της έντασης του ρεύματος.
 - γ) εξαρτάται από την ωμική αντίσταση που υπάρχει στο κύκλωμα.
 - δ) εξαρτάται από την πηγή που τροφοδοτεί το κύκλωμα.

Μονάδες 5

- Α2. Μια μικρή σφαίρα προσκρούει ελαστικά στην επίπεδη επιφάνεια ενός κατακόρυφου τοίχου. Αν η σφαίρα χτυπήσει πλάγια στην επιφάνεια, τότε
 - α) η ορμή της διατηρείται.
 - β) η κινητική της ενέργεια διατηρείται.
 - γ) η ταχύτητά της διατηρείται.
 - δ) οι γωνίες πρόσπτωσης και ανάκλασης δεν είναι ίσες.

Μονάδες 5

- **Α3.** Η δύναμη \vec{F} που ασκεί το μαγνητικό πεδίο \vec{B} σε ηλεκτρικό φορτίο q που κινείται με ταχύτητα \vec{U} έχει
 - α) την κατεύθυνση των δυναμικών γραμμών, αν πρόκειται για θετικό φορτίο, και αντίθετη, αν πρόκειται για αρνητικό.
 - $oldsymbol{eta}$) τη διεύθυνση της ταχύτητας $ec{f U}$.
 - φ) διεύθυνση που σχηματίζει με τις δυναμικές γραμμές γωνία φ με $\eta\mu\phi = \frac{F}{B|q|\upsilon}.$
 - δ) διεύθυνση κάθετη στο επίπεδο που ορίζεται από το \vec{B} και την ταχύτητα \vec{U} .

Μονάδες 5

- Α4. Σε μια εξαναγκασμένη μηχανική ταλάντωση το πλάτος της ταλάντωσης
 - α) μεταβάλλεται, όταν μεταβάλλεται η συχνότητα του διεγέρτη.
 - β) παραμένει σταθερό, όταν μεταβάλλεται η συχνότητα του διεγέρτη.
 - γ) είναι ανεξάρτητο από τη σταθερά απόσβεσης b.
 - δ) ελαχιστοποιείται στην κατάσταση συντονισμού.

Μονάδες 5

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

- **Α5.** Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή τη λέξη Λάθος, αν η πρόταση είναι λανθασμένη.
 - α) Σύμφωνα με την αρχή της επαλληλίας, όταν σε ένα ελαστικό μέσο διαδίδονται δύο ή περισσότερα κύματα, το πλάτος της ταλάντωσης ενός σημείου είναι πάντα ίσο με το άθροισμα των πλατών των δύο κυμάτων που συμβάλλουν.
 - β) Η Αρχή της Αβεβαιότητας αναφέρει ότι δεν είναι δυνατόν να μετρήσουμε ταυτόχρονα και τη θέση και την ορμή ενός σωματιδίου με απεριόριστη ακρίβεια.
 - γ) Σε οποιαδήποτε θερμοκρασία και αν βρίσκεται ένα μέλαν σώμα, εκπέμπει ενέργεια με μορφή ηλεκτρομαγνητικής ακτινοβολίας σε όλο το φάσμα της.
 - δ) Τα ηλεκτρομαγνητικά κύματα είναι διαμήκη κύματα.
 - ε) Το έργο εξαγωγής φωτοηλεκτρονίων από το μέταλλο της καθόδου εξαρτάται από την συχνότητα της προσπίπτουσας ακτινοβολίας.

Μονάδες 5

<u>OEMA B</u>

B1. Σώμα μάζας $m_1 = m$ κινούμενο με ταχύτητα \vec{U}_0 , συγκρούεται κεντρικά και πλαστικά με ακίνητο σώμα μάζας $m_2 = 3$ m. Ο λόγος της κινητικής ενέργειας του συσσωματώματος προς την αρχική κινητική ενέργεια του σώματος m_1 είναι:

i) 1/2

ii) 1/3

iii) 1/4

α) Να επιλέξετε τη σωστή απάντηση.

Μονάδες 2

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 6

Β2. Εγκάρσιο κύμα διαδίδεται σε νήμα κατά τη διεύθυνση του άξονα χ΄χ του **Σχήματος 1**. Τα διαδοχικά σημεία Κ, Λ, Μ, Ν απέχουν από τα γειτονικά τους απόσταση λ/4.

Σχήμα 1

Τη χρονική στιγμή t_1 , που το κύμα έχει ήδη διαδοθεί στην περιοχή KN, το σημείο M βρίσκεται στη θέση ισορροπίας και η ταχύτητά του \mathbf{U}_{M} είναι αρνητική, έχοντας φάση $\phi_{M} < \phi_{\Lambda}$.

Τη χρονική στιγμή t_1 + 3T/2 το στιγμιότυπο του κύματος στην περιοχή KN σε ποια από τις παρακάτω απεικονίσεις του **Σχήματος 2** αντιστοιχεί;

ΑΡΧΗ 3ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

α) Να επιλέξετε τη σωστή απάντηση.

Μονάδες 2

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 6

B3. Φωτόνιο αρχικής ενέργειας E_0 σκεδάζεται από πρακτικώς ακίνητο ηλεκτρόνιο, σύμφωνα με το φαινόμενο Compton σε γωνία $\phi = 60^{\circ}$ ως προς την αρχική διεύθυνση διάδοσης του φωτονίου. Μετά τη σκέδαση η ενέργεια του σκεδαζόμενου φωτονίου είναι ίση με την κινητική ενέργεια του ανακρουόμενου ηλεκτρονίου. Αν c είναι η ταχύτητα του φωτός στο κενό και m_e η μάζα του ηλεκτρονίου, τότε η αρχική ενέργεια του φωτονίου είναι

i)
$$E_0 = m_e \cdot c^2$$

ii)
$$E_0 = 2 \cdot m_e \cdot c^2$$

iii)
$$E_0 = 3 \cdot m_e \cdot c^2$$

α) Να επιλέξετε τη σωστή απάντηση.

Μονάδες 2

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 7

<u>ΘΕΜΑ Γ</u>

Στο κύκλωμα του **Σχήματος 3** το τετράγωνο αγώγιμο συρμάτινο πλαίσιο ΓΔΗΖΓ, αμελητέας ωμικής αντίστασης, έχει εμβαδόν $A = 2 \cdot 10^{-2} \, m^2$, αποτελείται από N = 100 σπείρες και βρίσκεται εξ ολοκλήρου μέσα σε κατακόρυφο ομογενές μαγνητικό πεδίο έντασης \vec{B} , του οποίου οι μαγνητικές γραμμές έχουν φορά από κάτω προς τα πάνω. Το πλαίσιο μπορεί να περιστρέφεται γύρω από οριζόντιο νοητό άξονα, ο οποίος διέρχεται από τα μέσα των πλευρών ΓΖ και ΔΗ και είναι κάθετος στις δυναμικές γραμμές του πεδίου.

Σχήμα 3

ΤΕΛΟΣ 3ΗΣ ΑΠΟ 8 ΣΕΛΙΔΕΣ

ΑΡΧΗ 4ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Τα άκρα του πλαισίου βρίσκονται σε επαφή με τους δακτυλίους Δ_1 και Δ_2 , οι οποίοι συνδέονται μέσω ενός διακόπτη (δ_1) με ευθύγραμμο μεταλλικό αγωγό ΚΛ μήκους $\ell=1$ m και ωμικής αντίστασης R=10 Ω . Ο αγωγός ΚΛ είναι σταθερά στερεωμένος, βρίσκεται στο κατακόρυφο επίπεδο και είναι κάθετος στον άξονα περιστροφής του πλαισίου.

Μεταξύ των σημείων Μ και Θ του κυκλώματος υπάρχει ένας διακόπτης (δ_2) και μια ηλεκτρική πηγή ηλεκτρεγερτικής δύναμης E=20 V και αμελητέας εσωτερικής αντίστασης. Αρχικά οι διακόπτες (δ_1) και (δ_2) είναι ανοικτοί.

Με το πλαίσιο να είναι αρχικά ακίνητο οριζόντια θέση μεταβάλλουμε την αλγεβρική τιμή της έντασης TOU μαγνητικού πεδίου σε συνάρτηση με τον χρόνο, όπως φαίνεται στο διπλανό διάγραμμα.

Γ1. Να σχεδιάσετε τη γραφική παράσταση της απόλυτης τιμής της ηλεκτρεγερτικής δύναμης από επαγωγή που αναπτύσσεται στα άκρα του πλαισίου σε συνάρτηση με το χρόνο για το χρονικό διάστημα από 0 έως 0,2 s.

Μονάδες 8

Διατηρώντας την ένταση του μαγνητικού πεδίου σταθερή και ίση με B=0,5~T, αρχίζουμε να περιστρέφουμε το πλαίσιο γύρω από τον άξονα περιστροφής του. Όταν το πλαίσιο αποκτήσει σταθερή γωνιακή ταχύτητα $\omega=50\cdot \pi$ rad/s, κλείνουμε τον διακόπτη (δ_1) .

Γ2. Να υπολογίσετε τη θερμότητα Q που εκλύεται στον αγωγό ΚΛ σε μια πλήρη περιστροφή του πλαισίου.

Μονάδες 5

Γ3. Να υπολογίσετε το ποσοστό μεταβολής της εκλυόμενης θερμότητας στον αγωγό ΚΛ ανά περιστροφή, αν το πλαίσιο περιστρεφόταν με διπλάσια γωνιακή ταχύτητα.

Μονάδες 6

Στο κατακόρυφο επίπεδο, στο οποίο βρίσκεται ο αγωγός ΚΛ, παράλληλα με αυτόν και σε απόσταση $d=2\cdot 10^{-2}$ m, έχει στερεωθεί ένας άλλος ευθύγραμμος αγωγός XY μεγάλου μήκους που διαρρέεται από ρεύμα σταθερής έντασης $I_1=5$ A. Κάποια χρονική στιγμή ανοίγουμε τον διακόπτη (δ_1) και ταυτόχρονα κλείνουμε τον διακόπτη (δ_2) .

Γ4. Να σχεδιάσετε στο μέσο του αγωγού ΚΛ τη δύναμη που του ασκεί ο αγωγός ΧΥ και να υπολογίσετε το μέτρο της.

Μονάδες 6

Να θεωρήσετε ότι:

- π² ≈ 10 και όπου εμφανίζεται το π να μην αντικατασταθεί.
- Το μαγνητικό πεδίο του ευθύγραμμου αγωγού ΧΥ δεν επηρεάζει τη μαγνητική ροή που διέρχεται από το στρεφόμενο πλαίσιο.
- Το ομογενές μαγνητικό πεδίο περιορίζεται στην έκταση του πλαισίου.
- Το σχήμα δεν είναι υπό κλίμακα.

ΤΕΛΟΣ 4ΗΣ ΑΠΟ 8 ΣΕΛΙΔΕΣ

ΑΡΧΗ 5ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΘΕΜΑ Δ

Κυκλική στεφάνη μάζας M=4 kg και ακτίνας $R=\frac{9}{8\pi}$ m είναι ακίνητη

πάνω σε ομογενή δοκό μάζας m_{δ} = 1 kg και μήκους ℓ = 4 m. Το άνω άκρο της δοκού συνδέεται με άρθρωση σε κατακόρυφο τοίχο, ενώ το κάτω άκρο της ακουμπά σε λείο οριζόντιο δάπεδο σχηματίζοντας γωνία θ με αυτό, όπου ημθ = 0,6 και συνθ = 0,8. Η ισορροπία της στεφάνης εξασφαλίζεται από κατακόρυφο νήμα που εφάπτεται στη στεφάνη. Το άνω άκρο του νήματος συνδέεται σε σώμα Σ_1 μάζας m_1 = 1,5 kg, το οποίο ισορροπεί με τη βοήθεια ελατηρίου σταθεράς k = 60 N/m που κρέμεται από οροφή, όπως στο παρακάτω σχήμα. Στο άνω άκρο της, κάθετης στη δοκό, διαμέτρου PZ της στεφάνης υπάρχει υλικό σημείο Z.

Δ1. Να δείξετε ότι η επιμήκυνση του ελατηρίου είναι 0,5 m.

Μονάδες 6

Τη χρονική στιγμή $t_o=0$ κόβουμε το νήμα. Η στεφάνη αρχίζει να κυλίεται χωρίς να ολισθαίνει με σταθερή γωνιακή επιτάχυνση, ενώ το Σ_1 εκτελεί απλή αρμονική ταλάντωση σταθεράς D=k.

- **Δ2.** α) Τη χρονική στιγμή t_1 , όταν η ταχύτητα του σημείου Z μηδενιστεί για δεύτερη φορά, να υπολογίσετε τη μετατόπιση του κέντρου μάζας της στεφάνης (μονάδες 3).
 - β) Αν t_1 = 1,5 s, να υπολογίσετε το μέτρο της ταχύτητας των σημείων της περιφέρειας της στεφάνης, η απόσταση των οποίων από τη δοκό είναι ίση με την ακτίνα της στεφάνης (μονάδες 4).

Μονάδες 7

Δ3. Να υπολογίσετε το έργο της δύναμης του ελατηρίου για το χρονικό διάστημα από t_0 έως t_1 . Δίνεται ότι $\sqrt{40} \approx 2 \, \pi$.

Μονάδες 6

ΑΡΧΗ 6ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Δ4. Να σχεδιάσετε τη γραφική παράσταση του μέτρου της δύναμης $\vec{\mathsf{F}}$ που δέχεται η δοκός από το οριζόντιο δάπεδο σε συνάρτηση με την απόσταση x του σημείου επαφής της στεφάνης με την δοκό από την αρχική θέση του σημείου P και μέχρι x = 3 m.

Μονάδες 6

Να θεωρήσετε ότι:

- Όλα τα σώματα της διάταξης βρίσκονται στο ίδιο κατακόρυφο επίπεδο.
- $g = 10 \text{ m/s}^2$.
- Το σχήμα δεν είναι υπό κλίμακα.

ΟΔΗΓΙΕΣ (για τους εξεταζομένους/τις εξεταζόμενες)

- 1. Οι τύποι και τα δεδομένα που είναι απαραίτητα για την επίλυση των θεμάτων και ΔΕΝ δίνονται στις εκφωνήσεις να αντληθούν από τον πίνακα δεδομένων και τύπων.
- 2. Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.
- 3. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.
- **4.** Να απαντήσετε **στο τετράδιό σας** σε όλα τα θέματα **μόνο** με μπλε ή **μόνο** με μαύρο στυλό με μελάνι που δεν σβήνει. **Για τα σχήματα μπορεί να χρησιμοποιηθεί και μολύβι.**
- 5. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή.
- 6. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων.
- 7. Ώρα δυνατής αποχώρησης: 10.00 π.μ.

ΑΚΟΛΟΥΘΕΙ ΠΙΝΑΚΑΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΤΥΠΩΝ (Σελίδες 2)

ΣΑΣ ΕΥΧΟΜΑΣΤΕ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ

ΤΕΛΟΣ 6ΗΣ ΑΠΟ 8 ΣΕΛΙΔΕΣ

ΦΥΣΙΚΗ Γ΄ ΛΥΚΕΙΟΥ ΠΙΝΑΚΑΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΤΥΠΩΝ

ΨΥΖΙΚΗ Ι ΛΥΚΕΙΟΥ ΠΙΙΝΑΚΑΖ ΔΕΔΟΙΝΙΕΙΝΏΝ ΚΑΙ ΤΥΠΩΝ			
ΦΥΣΙΚΕΣ ΣΤΑΘΕΡΕΣ ΚΑΙ ΠΑΡΑΓΟΝΤΕΣ ΜΕΤΑΤΡΟΠΗΣ			
Μάζα πρωτονίου, m_p = 1,67·10 ⁻²⁷ kg Φορτίο ηλεκτρονίου (απόλυτη τιμή), e = 1,6·10 ⁻¹⁹ C			
Μάζα νετρονίου, $m_n = 1,67 \cdot 10^{-27} \text{ kg}$	Ηλεκτρονιοβόλτ, 1eV=1,6 ·10 ⁻¹⁹ J		
Μάζα ηλεκτρονίου, m_e = 9,11 \cdot 10 ⁻³¹ kg	Ταχύτητα του φωτός, $c = 3 \cdot 10^8 \text{m/s}$		
Επιτάχυνση λόγω της βαρύτητας κοντά στην επιφάνεια της Γης, g =9,8 m/s 2			
Ηλεκτρική σταθερά, $k=1/4\pi\varepsilon_0=9\cdot10^9~{\rm N\cdot m^2/C^2}$			
Σταθερά παγκόσμιας έλξης, G =6,67·10 ⁻¹¹ m³/kg·s²			
Μαγνητική διαπερατότητα του κενού, μ_0 =4 $\pi \cdot 10^{-7}$ Wb/A·m = 4 $\pi \cdot 10^{-7}$ (T·m/A)			
Σταθερά του Planck, <i>h</i> =6,63.10 ⁻³⁴ J·s = 4,14.10 ⁻¹⁵ eV·s			
$hc = 12,42 \cdot 10^{-7} eV \cdot m = 12,42 \cdot 10^{-7} eV \cdot 10^9 nm = 1242 eV \cdot nm \approx 1200 eV \cdot nm$			

$nc=12,42\cdot 10 \text{ eV} \cdot m=12$
ΠΡΟΘΕΜΑΤΑ ΜΟΝΑΔΩΝ
ΜΕΤΡΗΣΗΣ
$10^{12} \rightarrow \text{tera}(T)$
$10^9 \rightarrow \text{giga}(G)$
$10^6 \rightarrow \text{mega (M)}$
$10^3 \rightarrow \text{kilo (k)}$
$10^{-2} \rightarrow \text{centi (c)}$
$10^{-3} \rightarrow \text{milli (m)}$
$10^{-6} \rightarrow \text{micro}(\mu)$
$10^{-9} \rightarrow \text{nano (n)}$
$10^{-12} \rightarrow \text{pico}(p)$

ΓΕΩΜΕΤΡΙΑ -ΤΡΙΓΩΝΟΜΕΤΡΙΑ
Εμβαδόν παραλληλογράμμου: <i>Α=βυ</i>
Περίμετρος κύκλου: <i>C</i> =2π <i>r</i>
Εμβαδόν κύκλου: <i>Α</i> =π <i>r</i> ²
Εμβαδόν σφαίρας: <i>Α</i> =4π <i>r</i> ²
Όγκος σφαίρας: $V = \frac{4}{3}\pi r^3$
Μήκος τόξου κύκλου <i>s=r</i> ϑ
$\eta\mu\alpha + \eta\mu\beta = 2\sigma\upsilon\nu(\frac{\alpha-\beta}{2})\eta\mu(\frac{\alpha+\beta}{2})$

n	m
	ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
	$\eta \mu \theta = \frac{a}{c}$, $\sigma v v \theta = \frac{b}{c}$
	$\varepsilon\varphi\theta = \frac{a}{b}$
	$c^2 = a^2 + b^2$
	c a

ΜΟΝΑΔΕΣ, ΣΥΜΒΟΛΑ	μέτρο, m	χερτζ, Hz	τζουλ , Ι	ηλεκτρονιοβόλτ <i>,</i> eV
	χιλιόγραμμο, kg	τέσλα, Τ	νιούτον, Ν	κέλβιν, Κ
	δευτερόλεπτο, s	χένρι, Η	βολτ, V	βατ, W
	αμπέρ, Α	ομ, Ω	κουλόμπ, C	ακτίνιο, rad

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ							
θ	0 º	30°	37 ⁰	45°	53°	60°	90°
ημθ	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
συνθ	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
εφθ	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	_

ΚΡΟΥΣΕΙΣ- ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ		ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ		
$v=v_0+\alpha t$	<i>υ</i> : ταχύτητα	$E = \frac{F}{}$	$\Phi_{\rm B} = BA\sigma \upsilon \nu \theta$	Α: εμβαδόν
1 2	<i>x</i> : θέση	E = -	$F = B q \upsilon\eta\mu\theta$	<i>Β:</i> μαγνητικό πεδίο
$X = X_0 + v_0 t + \frac{1}{2} \alpha t^2$	Δχ:μετατόπιση	9	$\int F = B q \partial \eta \mu \partial$	\mathcal{D}_{B} : μαγνητική ροή
_	α: επιτάχυνση	$I = \frac{dq}{dt}$		Ε: ηλεκτρικό πεδίο,
$\upsilon^2 = \upsilon_0^2 + 2\alpha \Delta x$	<i>m</i> : μάζα	dt	$F = BI\ell \eta \mu \varphi$	HEΔ
$m_1 - m_2$	<i>p</i> : ορμή	$I = \frac{V}{}$	$\mu_0 I_1 I_2$	<i>F</i> : δύναμη
$v_1 = \frac{m_1 - m_2}{m_1 + m_2} v_1$	<i>F</i> : δύναμη	$I = \frac{1}{R}$	$F = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{\alpha} \ell$	<i>q</i> : ηλεκτρικό
$m_1 + m_2$	$T_{o\lambda}$: τριβή	T F	$Z \mathcal{H} = \mathcal{U}$	φορτίο
$2m_1$	ολίσθησης	$I = \frac{E}{R_{o\lambda}}$	E Dud	Ε _{επ} : ΗΕΔ από
$v_2 = \frac{2m_1}{m_1 + m_2} v_1$	μ:συντελεστής	$R_{o\lambda}$	$E_{\varepsilon\pi} = B \upsilon \ell$	επαγωγή
1 1 2 2	τριβής	W	$d\Phi_{n}$	<i>Ι:</i> ηλεκτρικό ρεύμα
	Ν: κάθετη	$V = \frac{W}{g}$	$E_{\varepsilon\pi} = -N\frac{d\Phi_B}{dt}$	<i>V:</i> διαφορά
	δύναμη	q		δυναμικού
		$R_{o\lambda} = R_1 + R_2 + R_3$	$E_{\alpha\nu\tau} = -L\frac{di}{dt}$	W: έργο
	<i>Κ</i> : κινητική		dt	<i>R</i> : αντίσταση
	ενέργεια			

\vec{a} $\vec{d}\vec{p}$	s: τόξο ή	1 1 1 1	N^2 .	ℓ ή α : μήκος ή
$\Sigma \vec{F} = m\vec{\alpha} = \frac{d\vec{p}}{dt}$	διάστημα	$\frac{1}{R_{o\lambda}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ $R = o\frac{\ell}{R_1}$	$L = \mu \mu_0 - A$	απόσταση
$T_{o\lambda}=\mu N$	ακ:κεντρομόλος	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$		<i>Ε_{αυτ}</i> : ΗΕΔ από
'''	επιτάχυνση		$II = \frac{1}{L}II^2$	αυτεπαγωγή
$K = \frac{1}{2}m\upsilon^2$	<i>R</i> ή <i>r</i> : ακτίνα	$R = o^{\ell}$	2	<i>U:</i> ενέργεια μαγν.
2	<i>ω</i> : γωνιακή	$A = \rho \frac{A}{A}$	$c = \lambda f$	πεδίου
$p = m \upsilon$	ταχύτητα	$R_{o\lambda} = R_1 + R_2 + R_3$ $R = \rho \frac{\ell}{A}$ $R = \mu_0 I \Delta \ell$	E	<i>R</i> ολ: ολική
ds	θ: γωνία	$\Delta B = \frac{\mu_0}{4\pi} \frac{I\Delta \ell}{r^2} \eta \mu \theta$	$\frac{-}{R} = C$	αντίσταση
$v = \frac{ds}{dt}$	Τ: περίοδος	$4\pi r^2$	_	ρ: ειδική
2	<i>f</i> : συχνότητα		$E = E_{\text{max}} \eta \mu 2\pi (\frac{t}{T} - \frac{X}{\lambda})$	αντίσταση
$\alpha_k = \frac{v^2}{r}$	<i>u_{cm}</i> : ταχύτητα	$\mu_0 2I$	_ ^v	<i>L</i> : συντελεστής
r	κέντρου μάζας	$B = \frac{\mu_0 2I}{4\pi r}$	$B = B_{\text{max}} \eta \mu 2\pi (\frac{t}{T} - \frac{X}{2})$	αυτεπαγωγής
$d\theta = 2\pi$	α _{γων} : γωνιακή	1,771	$B = B_{\text{max}} \eta \mu 2\pi (\frac{1}{T} - \frac{1}{\lambda})$	Τ: περίοδος
$\omega = \frac{d\theta}{dt} = \frac{2\pi}{T} = 2\pi f$	επιτάχυνση	$\mu 2\pi I$	1 /	λ: μήκος κύματος
	α _{cm} :επιτάχυνση	$B = \frac{\mu_0 2\pi I}{4\pi r}$		<i>r</i> : ακτίνα ή
$T = \frac{1}{f}$	κέντρου μάζας	$4\pi r$		απόσταση
f	τ: ροπή			<i>n:</i> αριθμός
$\upsilon_{cm} = \omega R$ $\alpha_{y\omega v} = \frac{d\omega}{dt}$	<i>ℓ , d</i> : μήκος ή	$\Sigma B\Delta \ell \sigma \upsilon \nu \theta = \mu_0 I_{\varepsilon \gamma \kappa}$		σπειρών ανά
$a_{\gamma\omega\nu} = \frac{dt}{dt}$	απόσταση	$R = \mu I n$		μονάδα μήκους
$\alpha_{cm} = \alpha_{\gamma \omega \nu} R$	<i>L</i> : στροφορμή	$B = \mu_0 In$		Ν: αριθμός
,		$n = \frac{N}{\ell}$		σπειρών
$\tau = F\ell = Fd$		$n = \frac{1}{\ell}$		<i>υ</i> : ταχύτητα
L=m ur $\Sigma \tau_{\varepsilon \xi} = \frac{dL}{dt}$				θ, φ: γωνία
$2\iota_{\varepsilon\xi} = \frac{1}{dt}$				μ :μαγνητική
				διαπερατότητα
				<i>c</i> : ταχύτητα φωτός

ΤΑΛΑΝΤΩΣΕΙΣ ΚΑ	I MHXANIKA KYMATA	ΕΝΑΛΛ	ΑΣΣΟΜΕΝΟ ΡΕΥΜΑ	
$x=A\eta\mu(\omega t+\varphi)$	Α: πλάτος	υ=Vημ $ωt$	υ: στιγμιαία τάση	
υ=ωΑσυν(ωt+φ)	χ: απομάκρυνση, θέση	V=NBωA	<i>V</i> : πλάτος τάσης	
$a=-ω^2 A η μ(ωt+φ)$	υ: ταχύτητα	$i = I\eta\mu(\omega t)$	<i>i:</i> στιγμιαίο ρεύμα	
F = -Dx	α: επιτάχυνση	1)	<i>!</i> : πλάτος ρεύματος	
1 ,	ω: γωνιακή συχνότητα	$i = \frac{\upsilon}{R}$	Ιεν: ενεργός ένταση	
$U = \frac{1}{2}Dx^2$	φ: αρχική φάση	_	<i>V</i> εν: ενεργός τάση	
$U=\lambda f$	<i>f</i> : συχνότητα	$I = \frac{I}{I}$	<i>P</i> : Μέση ισχύς	
F=-bu	D: σταθερά επαναφοράς	$I_{\varepsilon \nu} = \frac{I}{\sqrt{2}}$	<i>p</i> : Στιγμιαία ισχύς	
	Τ: περίοδος	V	Τ:περίοδος	
$A = A_0 e^{-\Lambda t}$	b: σταθερά απόσβεσης	$V_{\varepsilon \nu} = \frac{V}{\sqrt{2}}$	<i>R</i> : αντίσταση	
t = x	λ:μήκος κύματος	*	W: ενέργεια ηλ. ρεύματος	
$y = A\eta\mu 2\pi (\frac{t}{T} \pm \frac{x}{\lambda})$	Τ: περίοδος	p=υ i	Ν: αριθμός σπειρών	
1 70	<i>U</i> : δυναμική ενέργεια	$P = \frac{W}{T}$		
2 2-+	<i>y:</i> απομάκρυνση	$P = \frac{T}{T}$		
$y = 2A\sigma v \frac{2\pi x}{r} \eta \mu \frac{2\pi t}{r}$				
λ Ι	ΣΤΟΙΧΕΙΑ ΚΒΑΝΤΟΙ			
λmaxT=σταθ		Τ: θερμοκρασία	λ:μήκος κύματος	
	$\lambda' - \lambda = \frac{h}{m_e c} (1 - \sigma \upsilon \nu \varphi)$	Ε: ενέργεια	φ: γωνία	
$E = hf = pc$, $p = \frac{h}{\lambda}$	m_e^{C}	<i>p:</i> ορμή	<i>t</i> : χρόνος	
70	$\Delta p_{x} \Delta x \geq \frac{h}{2\pi}$, $\Delta E \Delta t \geq \frac{h}{2\pi}$	<i>c</i> : ταχύτητα φωτός	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
K=hf-Φ	$ \Delta P_{x} \Delta x \geq \frac{1}{2\pi}, \Delta E \Delta t \geq \frac{1}{2\pi}$	<i>f</i> : συχνότητα	Δ: αβεβαιότητα	
2.6	-77 -77 -77 -77 -77 -77 -77 -77 -77 -77	<i>x</i> : θέση	Ψ: κυματοσυνάρτηση	

Κ: Κινητική ενέργεια

x: θέση

Ψ: κυματοσυνάρτηση

V: όγκος

 $c = \lambda f$

 $\sum \left| \Psi \right|^2 dV = 1$