Outline of This Course

- RL1: Introduction to Reinforcement Learning
- RL2: Reinforcement Learning for Lightweight Model
 - Applications
 - Fundamentals of RL
- RL3: Value Based Reinforcement Learning
 - Fundamentals of Value Based RL
 - Algorithms
- RL4: Policy-based Reinforcement Learning
 - Fundamentals of Policy Based RL
 - Algorithms

Reinforcement Learning for Lightweight Model

- Applications
 - 2048 (Temporal Difference Learning)
 - Go Programs (with Monte-Carlo Tree Search)
- Fundamentals of Reinforcement Learning
 - Markov Decision Process (MDP)
 - Dynamic Programming (Tabular RL)

Case Study: 2048

[Szubert et al., 2014; Yeh et al., 2016]

16 | 16

17 different numbers on each cell

And 4x4 = 16 cells in total.

2048 RL Agent

- Value function:
 - The expected score/return G_t from a board S
 - But, #states is huge
 - About $17^{16} \ (\cong 10^{20})$.
 - Empty $(\rightarrow 0)$, 2 (=2¹ \rightarrow 1), 4 (=2² \rightarrow 2), 8 (=2³ \rightarrow 3), ..., 65536 (=2¹⁶ \rightarrow 16).
 - Need to use value function approximator.
- Policy:
 - Simply choose the action (move) with the maximal value based on the approximator.
- Model: agent's representation of the environment
 - After a move, randomly generate a tile:
 - ► 2-tile: with probability of 9/10
 - ▶ 4-tile: with probability of 1/10
 - Reward: simply follow the rule of 2048.

TD Learning in 2048

- Value function: (Normally $\gamma = 1$)
 - Update value $V(S_t)$ toward TD target $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$
 - ► TD error: $R_{t+1} + \gamma V(S_{t+1}) V(S_t)$
- Making a decision (based on value).

$$\pi(s) = argmax_a(R_{t+1} + \mathbb{E}[V(S_{t+1}) \mid S_t = s, A_t = a])$$

- Problem: Less efficient upon making decision.

Q-Learning in 2048

- Q-value function: (Normally $\gamma = 1$)
 - Update value $Q(S_t, A_t)$ toward TD target $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$ $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t))$
- Making decision (based on value).

$$\pi(s) = argmax_a(Q(S_t, a))$$

- more efficient.
- A minor problem: Four times more memory

Afterstates in 2048

- Afterstate S_t^{af} is a state after action A_t at S_t .
 - Why not use S_t^{af} instead of (S_t, A_t) ?
 - Note: in 2048, the reward R_{t+1} is not included in S_t^{af} .
- Afterstate value function: (Normally $\gamma = 1$)
 - Update value $V^{af}\left(S_{t}^{af}\right)$ toward TD target $R_{t+1} + \gamma \max_{a} (V^{af}\left(S_{t+1}^{af}\right))$

$$V^{af}\left(S_{t}^{af}\right) \leftarrow V^{af}\left(S_{t}^{af}\right) + \alpha(R_{t+1} + \gamma \max_{a}(V^{af}\left(S_{t+1}^{af}\right)) - V^{af}\left(S_{t}^{af}\right))$$

Making decision (based on value).

$$\pi(s) = argmax_a \left(V^{af} \left(S_t^{af} \right) \right)$$

- For simplicity, we use V, instead of V^{af} , if it can be applied to both.

 $S_t, A_t \rightarrow S_t^{a_t}$

 S_{t+1}

Value Function Approximation

- As mentioned above, #states is huge, so we need to use value function approximation.
 - Use a value function approximator, $\hat{v}(S, \theta) \approx V(S)$.
 - Simply use deterministic policy: $\pi(S) = argmax_a(\hat{v}(S, \theta))$
- But, what kind of value function approximator can we use?
 - What features can we choose?
 - ► Traditionally, # of empty cells, # of continuous cells, big tiles, etc.
 - Linear (like n-tuple network) vs. non-linear (like NN)
- n-tuple network is a powerful network for 2048.
 - Explore a large set of features.
 - Simplify operations by linear value function approximation.
 - Features in each network is one-hot vector.

Gradient Descent

Now, how to do the update: $V(S_t) \leftarrow V(S_t) + \alpha \Delta V$

- Update value $V(S_t)$ towards TD target $y_t = R_{t+1} + V(S_{t+1})$ $\Delta V = (R_{t+1} + V(S_{t+1}) - V(S_t)) = (y_t - V(S_t))$ α : learning rate, or called step size.
 - Note: $\gamma = 1$ here.
- Objective function is to minimize the following loss in parameter θ . (note: $\hat{v}(S, \theta) = x(S)^T \theta$)

$$\mathcal{L}(\theta) = \mathbb{E}\left[\left(y_t - \hat{v}(S, \theta)\right)^2\right]$$

$$\nabla_{\theta} \mathcal{L}(\theta) = \left(y_t - \hat{v}(S, \theta)\right) \cdot \nabla_{\theta} \hat{v}(S, \theta) = \Delta V \cdot x(S)$$

• Update features w: step-size * prediction error * feature value

$$\theta \leftarrow \theta + \alpha \Delta V \cdot \frac{x(S)}{\|x(S)\|} \Rightarrow V(S_t) \leftarrow V(S_t) + \alpha \Delta V$$

N-Tuple Network

- Characteristics:
 - Provide with a large number of features.
 - Easily update.
- Example: 4-tuple networks as shown.
 - Each cell has 16 different tiles
 - 16⁴ features for this network.
 - ▶ But only one is on, others are 0.
 - -[...,0,0,1,0,0,...]
 - So-called one-hot vector.
 - ► So, we can use table lookup to find the feature weight.

64	•0	8	4
128	2•1		2
2	8•2		2
128	3		

0123	weight	
0000	3.04	
0001	-3.90	
0002	-2.14	
:		
0010	5.89	
:	:	
0130	-2.01	
:	:	

Note: tabular RL is just like 16-tuple network in the case of 2048.

Other N-Tuple Networks

- Left: [Szubert et al., 2014]; Right: [Yeh et al., 2016]
- Some researchers even used 7-tuple network.

Update Features in N-Tuple Networks

- For each n-tuple networks, simply update one weights.
- Features:
 - 8 x 16⁴ features, x(S) = [0, 1, 0, ..., 0, 0, 1, ..., ..., 1, 0, 0, ...]
 - ▶ All 0s, except for 8 ones.
 - One 1 every 16⁴ features.
 - Let their indices be $s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8$.
 - Only need to update $\alpha \Delta V$ at the features indexed by these indices.
 - Very efficient and fast.
- \bullet For k n-tuple networks,

$$\hat{v}(S,\theta) = x(S)^{\mathrm{T}}\theta = \sum_{j=1}^{n} x_j(S)\theta_j = \sum_{i=1}^{k} LUT_i[index(s_i)]$$

- LUT_i: the i-th n-tuple network lookup table.
- $index(s_i)$: The index in the i-th n-tuple network of state S.
- Update features w: step-size * prediction error * feature value
 - $-\theta \leftarrow \theta + \alpha \Delta V \cdot x(S)$
 - Only need to update values θ_i with $\alpha \Delta V$ at $LUT_i[index(s_i)]$.

The N-Tuple Networks Used

• Use the following [Szubert and Jaskowaski 2014]

Ours:

Our Results (2021)

100 tested games	CGI-2048 (2 nd in contest, 2014)	Kcwu (1 st in contest, 2014)	Jaśkowski (2018, Previous SOTA)	Current CGI-2048 (2021, Current SOTA)
2048	100%	100%	100%	100.0%
4096	100%	100%	100%	100.0%
8192	94%	96%	98%	99.8%
16384	59%	67%	97%	98.8%
32768	0%	2%	70%	72.0%
Max score	367956	625260	N/A	840384
Avg score	251794	277965	609104	625377
Speed	500 moves/sec	>100 moves/sec	1 move/sec	2.5 moves/sec

The First 65536

2048

Reinforcement Learning for Lightweight Model

- Applications
 - 2048 (Temporal Difference Learning)
 - Go Programs (with Monte-Carlo Tree Search)
- Fundamentals of Reinforcement Learning
 - Markov Decision Process (MDP)
 - Dynamic Programming (Tabular RL)

Case Study: Go

- Monte-Carlo Tree Search:
 - Monte-Carlo (MC) Learning (z: 1 for win, 0 for loss)
 - Multi-Armed Bandits
 - Planning
- Very successful for Go in the past two decades.
- And also applied to others successfully.
 - Other games like Havannah, Hex, GGP
 - Other applications, like mathematical optimization problems (scheduling, UCP, camera coverage).

Go – One of the Most Popular Games

- Game tree complexity: about 10^{360}
 - It is just impossible to try all moves.

(from DeepMind)

Can Alpha-Beta Search Work for Go?

- Alpha-Beta Search
 - Very successful for many games such as chess.
 - ▶ Almost dominate all computer games before 2006.
 - ▶ This is what Deep Blue used.
- The key for chess: evaluate position accurately and efficiently.
 - E.g., features:

- King: 1000

- Queen: 200

- Rook: 100

- Knight: 80

- Bishop: 70

- Pawn: 30

Guarded Pawns: 30

Guarded Knights: 40

Problem for chess:

- need to consult with experts for feeture
- need to consult with experts for feature values.

Why not alpha-beta search for Go?

- No simple heuristics like chess.
 - Only black/white pieces (no difference)
- Must know life-and-death
 - But, all are correlated.
 - ▶ Like the lower-right one.
 - But, this is very complex.

Since no simply heuristics to evaluate,

- Why not use Monte-Carlo?
- Calculate it based on stochastics.

Page 21

Rules Overview Through a Game (opening 1)

 Black/White move alternately by putting one stone on an intersection of the board.

The example was given by B. Bouzy at CIG'07.

Rules Overview Through a Game (opening 2)

Black and White aims at surrounding large « zones »

Rules Overview Through a Game

(atari 1)
 A white stone is put into « atari » : it has only one liberty left.

Rules Overview Through a Game (defense)

• White plays to connect the one-liberty stone yielding a four-stone white string with 5 liberties.

Rules Overview Through a Game (atari 2)

• It is White's turn. One black stone is atari.

(capture 1)

 White plays on the last liberty of the black stone which is removed

Rules Overview Through a Game (human end of game)

• The game ends when the two players pass. (Experts would

stop here)

Rules Overview Through a Game (contestation 1)

• White contests the black « territory » by playing inside.

Rules Overview Through a Game (contestation 2)

 White contests black territory, but the 3-stone white string has one liberty left

Rules Overview Through a Game (follow up 1)

Black has captured the 3-stone white string

Rules Overview Through a Game (follow up 2)

White lacks liberties...

Rules Overview Through a Game (follow up 3)

- Black suppresses the last liberty of the 9-stone string
- Consequently, the white string is removed

Rules Overview Through a Game (follow up 4)

Contestation is going on. White has captured four black

stones.

Rules Overview Through a Game (concrete end of game)

• The board is covered with either stones or « eyes ».

Programs know to end.

Deep Learning and Practice RL for Lightweight Model Performed OK Even for Moves (Nearly) at Random

Purely at random

Have some heuristic (from Aja's Thesis)

Stochastics

- Calculate values based on stochastics.
 - Good example: calculate π .

Multi-Armed Bandit Problem

(吃角子老虎問題)

- Assume that you have infinite plays
 - How to choose the one with the maximal average return?

Exploration vs. Exploitation

- Example for the exploration vs exploitation dilemma
 - Exploration: is a long-term process, with a risky, uncertain outcome.
 - Exploitation: by contrast is short-term, with immediate, relatively certain benefits

Deterministic Policy: UCB1

- UCB: Upper Confidence Bounds. [Auer et al., 2002]
- Initialization: Play each machine once.
- Loop:
 - Play machine *i* that maximizes,

$$X_i + \sqrt{\frac{2 \log n}{n_i}}$$

- where
 - $n = \sum_{i=1}^{k} n_i$ is the total number of playing trials.
 - n_i is the number of playing trials on machine i.
 - \blacktriangleright X_i is the (average) win rate on machine i.
- Key:
 - Ensure optimal machine is played exponentially more often than any other machine.

Cumulative Regret

- Assume Machines M₁, M₂, M₃, M₄, M₅
 - Win rates: 37%, 42%, 47%, 52%, 57%
 - Trial numbers: n_1 , n_2 , n_3 , n_4 , n_5 .

Monte-Carlo Tree Search

- A kind of planning
- A kind of Reinforcement learning

Strength of Go Program after MCTS

[Schaeffer et al., 2014]

Strength grew fast, after MCTS.

Case Study: AlphaGo

• Use stochastic policy gradient ascent to maximize the likelihood of the human move *a* selected in state *s*

$$\Delta\theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \cdot z$$

- $-\theta$: network parameter.
- $-\alpha$: learning rate
- z: the value of the episode
 - ▶ win/loss (1/-1) of the game

AlphaGo's Algorithm

- Use DCNN to learn experts' moves
 - (學習高手的著手策略)
- Use Monte-Carlo Tree Search (MCTS) for search to avoid pitfalls (避開陷阱)
 - MCTS is a kind of RL that do planning.
- Use DCNN to train "reinforcement learning (RL) network"
- Use DCNN to train "value network" (價值網路)
 - Learn the values of game positions (學習盤勢之優劣)

AlphaGo's Algorithm

- Use DCNN to learn experts' moves → DL
 - (學習高手的著手策略)
- Use Monte-Carlo Tree Search (MCTS) for search to avoid pitfalls (避開陷阱) → RL
 - MCTS is a kind of RL that do planning.
- Use DCNN to train "reinforcement learning (RL) network"
 → DRL (Policy Gradient)
- Use DCNN to train "value network" (價值網路)
 - Learn the values of game positions (學習盤勢之優劣) →DL

Policy Network and Value Network

 \boldsymbol{Z}

RL Policy Network: AlphaGo

• Use stochastic policy gradient ascent to maximize the likelihood of the human move *a* selected in state *s*

$$\Delta\theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \cdot z$$

- $-\theta$: network parameter.
- $-\alpha$: learning rate
- -z: the value of the episode
 - ▶ win/loss (1/-1) of the game

I-Chen Wu

AlphaGo Zero

- Use Monte-Carlo Tree Search (MCTS) → RL
 - Learn to find the best move (avoid pitfalls)
- Combine "value/policy network" → DRL

Like a tutor

Learn from Zero Knowledge!!!

Like a student

Reinforcement Learning for Lightweight Model

- Applications
 - 2048 (Temporal Difference Learning)
 - Go Programs (with Monte-Carlo Tree Search)
- Fundamentals of Reinforcement Learning
 - Markov Decision Process (MDP)
 - Dynamic Programming (Tabular RL)

Outline

- Introduction
- Markov Property
- Markov Process
- Markov Reward Process (MRP)
- Markov Decision Process (MDP)
- Partially Observable Markov Decision Process (POMDP)

The purpose of this chapter:

Introduce all kinds of Markov processes

Introduction

- Markov decision processes formally describe an environment for reinforcement learning
 - where the environment is fully observable.
 - i.e. The current state completely characterizes the process
 - E.g., 2048.
- Almost all RL problems can be formalized as MDPs, e.g.
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state

Markov Property

• Markov Property:

- "The future is independent of the past given the present"
- Definition: A state S_t is Markov if and only if $\mathbb{P}[S_{t+1} | S_t] = \mathbb{P}[S_{t+1} | S_1, ..., S_t]$

• Comments:

- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
- But, what if the history does matter?
 - Simply let S_t carry all information of history, $H_t = (S_1, ..., S_{t-1})$.
 - ▶ E.g., the castling rule for chess.
 - Then, it satisfies Markov Property.

Markov Process

- A Markov process is a memoryless random process,
 - i.e. a sequence of random states S_1 , S_2 , ... with the Markov property.

Definition:

- A Markov Process (or Markov Chain) is a tuple $\langle S, P \rangle$
 - $-\mathcal{S}$ is a (finite) set of states
 - \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$

State Transition Matrix

• For a Markov state *s* and successor state *s'*, the state transition probability is defined by

$$\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

• State transition matrix \mathcal{P} : (assume n states)

$$\mathcal{P} = egin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \dots & & \dots \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

- Each row of matrix sums to 1.
- Stationary distribution:
 - Let π be the stationary distribution of states.
 - Then, $\pi \mathcal{P} = \pi$.
 - Use eigenvectors to derive it. (But not the scope of this course)

Markov Reward Process (MRP)

A Markov reward process is a Markov chain with values.

Definition:

- A Markov Reward Process is a tuple $\langle S, P, R, \gamma \rangle$
 - S is a (finite) set of states
 - \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$
 - \mathcal{R} is a reward function, $\mathcal{R}_S = \mathbb{E}[R_{t+1}|S_t = s]$
 - γ is a discount factor $\gamma \in [0, 1]$.

Return

Definition

• The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Notes:

- The discount $\gamma \in [0, 1]$ is the present value of future rewards
- The value of receiving reward R is diminishing
 - $-\gamma^k R$, after k+1 time-steps.
- This values immediate reward above delayed reward.
- Discount:
 - γ close to 0 leads to "myopic" evaluation
 - γ close to 1 leads to "far-sighted" evaluation

Value Function

- The value function v(s) gives the long-term value of s
- Definition
 - The state value function v(s) of an MRP is the expected return starting from state s
 - $-v(s) = \mathbb{E}[G_t \mid S_t = s]$

Bellman Equation for MRPs

- The value function can be decomposed into two parts:
 - immediate reward R_{t+1}
 - discounted value of successor state $\gamma v(S_{t+1})$

•
$$v(s) = \mathbb{E}[G_t \mid S_t = s]$$

= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots) \mid S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$

• For a transition (s, r, s'), we have

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in S} \mathcal{P}_{ss'} v(s')$$

Bellman Equation in Matrix Form

• The Bellman equation can be expressed concisely using matrices, (closed form)

$$v = \mathcal{R} + \gamma \mathcal{P} v$$

- where v is a column vector with one entry per state.

$$\begin{bmatrix} v(1) \\ \dots \\ v(n) \end{bmatrix} = \begin{bmatrix} R_1 \\ \dots \\ R_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \dots & \dots \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \dots \\ v(n) \end{bmatrix}$$

Solving the Bellman Equation

- The Bellman equation is a linear equation
- It can be solved directly:

$$v = \mathcal{R} + \gamma \mathcal{P} v$$
$$v = (1 - \gamma \mathcal{P})^{-1} \mathcal{R}$$

- Computational complexity is $O(n^3)$ for n states
- Direct solution only possible for small MRPs
- There are many iterative methods for large MRPs, e.g.
 - Dynamic programming
 - Monte-Carlo evaluation
 - Temporal-Difference learning

Markov Decision Processes (MDP)

A (Finite) Markov Decision Process is a tuple

$$<\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma>$$

- $-\mathcal{S}$ is a (finite) set of states
- $-\mathcal{A}$ is a (finite) set of actions
- \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
 - ▶ Let \mathcal{P}^a denote the matrix $\mathcal{P}^a_{:::}$.
- \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- γ is a discount factor γ ∈ [0, 1].

Example: Recycling Robot

Figure 3.3: Transition graph for the recycling robot example.

Example: Recycling Robot

Figure 3.3: Transition graph for the recycling robot example.

Example: Recycling Robot

• Transition and Rewards:

s	s'	a	p(s' s,a)	r(s, a, s')
high	high	search	α	$r_{\mathtt{search}}$
high	low	search	$1-\alpha$	$r_{\mathtt{search}}$
low	high	search	$1-\beta$	-3
low	low	search	β	$r_{\mathtt{search}}$
high	high	wait	1	$r_{\mathtt{wait}}$
high	low	wait	0	$r_{\mathtt{wait}}$
low	high	wait	0	$r_{\mathtt{Wait}}$
low	low	wait	1	$r_{\mathtt{wait}}$
low	high	recharge	1	0
low	low	recharge	0	0.

Policies

- A policy is the agent's behavior
 - It is a map from state to action
 - A policy fully defines the behavior of an agent
 - MDP policies depend on the current state (not the history)
 - i.e. Policies are stationary (time-independent), $A_t \sim \pi(\cdot | S_t), \forall t > 0$

Policy types:

- Deterministic policy: $a = \pi(s_i)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a | S_t = s]$
 - Sometimes, written in $\pi(s, a)$.
 - ▶ Note: for deterministic policy,
 - if $a = \pi(s_i)$, $\pi(a|s) = 1$. otherwise, $\pi(a|s) = 0$.

• Examples:

- In 2048: Up/down/left/right
- In robotics: angle/force/...

Policy and MRP

- Given an MDP $\langle S, A, P, R, \gamma \rangle$ and a policy π
- The state sequence $S_1, S_2, ...$ is a Markov process $\langle S, \mathcal{P}^{\pi} \rangle$
- The state and reward sequence S_1 , R_2 , S_2 , R_3 , ... becomes a Markov reward process (MRP) $\langle S, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
 - $-\mathcal{P}^{\pi}$ is a state transition probability matrix (part of the environment),

$$\mathcal{P}^{\pi}_{ss'} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'}$$

 $-\mathcal{R}^{\pi}$ is a reward function,

$$\mathcal{R}_{s}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}_{s}^{a}$$

So, the property of MRP can be applied.

Example

• We have $\mathcal{P}_{SS_3}^{\pi} = 0.7 * 0.4 + 0.2 * 0.8 = 0.44$

Value Function

- A value function is a prediction of future reward
 - Used to evaluate the goodness/badness of states
 - ▶ therefore to select between actions.
 - Return $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$
- Types of value functions under policy π :
 - State value function: the expected return from s.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

= $\mathbb{E}_{\pi}[G_t \mid S_t = s]$

- Q-Value function: the expected return from s taking action a. $q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$

- Examples:
 - In 2048, the expected score from a board S_t .

Bellman Expectation Equation for π

• State value function:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_{\pi}(s') \right)$$

Bellman Expectation Equation for π

Q value

$$q_{\pi}(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s',a')$$

Bellman Expectation Equation in Matrix

- The Bellman expectation equation can be expressed concisely using the induced MRP.
- So, it can be solved directly:

$$v_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v_{\pi}$$
$$v_{\pi} = (1 - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}$$

Optimal Value Function

• The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

• The optimal action-value function $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

- Notes:
 - The optimal value function specifies the best possible performance in the MDP.
 - An MDP is "solved" when we know the optimal value function.

Optimal Policy

Define a partial ordering over policies

$$\pi \geq \pi'$$
 if $v_{\pi}(s) \geq v_{\pi'}(s), \forall s$

- Theorem: For any Markov Decision Process,
 - There exists an optimal policy π_* that is better than or equal to all other policies, $\pi_* \geq \pi$, $\forall \pi$.
 - All optimal policies achieve the optimal value function,

$$v_{\pi_*}(s) = v_*(s)$$

All optimal policies achieve the optimal action-value function,

$$q_{\pi_*}(s,a) = q_*(s,a)$$

Finding an Optimal Policy

- An optimal policy can be found by maximizing over $q_*(s, a)$,
 - $\pi(a|s) = 1, \text{ if } a = \underset{a \in \mathcal{A}}{\operatorname{argmax}} q_*(s, a)$
 - $-\pi(a|s)=0$, otherwise.
- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we immediately have the optimal policy
- What about state value function $v_*(s)$?
 - Similar, but we need to know model, $\mathcal{P}_{ss'}^a$. \rightarrow not model free.

Bellman Optimality Equation for V*

$$v_*(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \ v_*(s') \right)$$

Bellman Optimality Equation for Q*

$$q_{\pi}(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \max_{a' \in \mathcal{A}} q_{\pi}(s,a')$$

Solving the Bellman Optimality Equation

- Bellman Optimality Equation is non-linear
- No closed form solution (in general)
- Many iterative solution methods
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - Sarsa

Extensions to MDPs

- Infinite and continuous MDPs
 - Countably infinite state and/or action spaces
 - Straightforward
 - Continuous state and/or action spaces
 - ► Closed form for linear quadratic model (LQR)
 - Continuous time
 - ► Requires partial differential equations
 - ► Hamilton-Jacobi-Bellman (HJB) equation
 - ► Limiting case of Bellman equation as time-step
- Partially observable MDPs
 - E.g., Mahjong (as we mentioned)
- Undiscounted, average reward MDPs (ignored)

Prediction vs. Control

- For prediction: evaluate values
 - Input: MDP $<\mathcal{S}$, \mathcal{A} , \mathcal{P} , \mathcal{R} , $\gamma>$ and policy π or: MRP $<\mathcal{S}$, \mathcal{P}^{π} , \mathcal{R}^{π} , $\gamma>$
 - Output: value function v_{π} or q_{π}
- For control: find the optimal policy.
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$
 - Output: optimal value function v_* or q_* and: optimal policy, π_*

	state values	action values
prediction	v_{π}	q_{π}
control	v_*	q_*

Reinforcement Learning for Lightweight Model

- Applications
 - 2048 (Temporal Difference Learning)
 - Go Programs (with Monte-Carlo Tree Search)
- Fundamentals of Reinforcement Learning
 - Markov Decision Process (MDP)
 - Dynamic Programming (Tabular RL)

Dynamic Programming (Chapter 3)

- (Sutton) The term dynamic programming (DP) refers to a collection of algorithms that
 - compute optimal policies given a perfect model of the environment as a Markov decision process (MDP).
- (Silver) A method for solving complex problems by breaking them down into subproblems
 - Solve the subproblems,
 - Combine solutions to subproblems
- (Algorithm textbook by Cormen et al.) says
 - DP, like the divide-and-conquer method, solves problems by combining the solutions to subproblems.
 - DP is typically applied to optimization problems.
 - Applications:
 - String algorithms (e.g. sequence alignment)
 - Graph algorithms (e.g. shortest path algorithms)
 - ▶ Bioinformatics (e.g. lattice models)

Example

- By dynamic programming, we don't have to repeat calculate the state values, such as S_1 , S_2 , S_3 .
- In most algorithms given in Algorithms course

- Rarely consider transition probabilities. S_1

Why is DP related?

- Sequential or temporal component to the problem optimizing
 - a "program", i.e. a policy,
 - values, i.e., state values and state action values
- Like solving LCS (longest common sequence) problem.
 - The optimal actions.
 - The optimal values.
 - $-\mathcal{P}$ and π are deterministic.
 - Exercise: shortest path problem.

Requirements for Dynamic Programming

- Dynamic Programming is a very general solution method for problems which have two properties:
 - Optimal substructure
 - ► Principle of optimality applies
 - ▶ Optimal solution can be decomposed into subproblems
 - Overlapping subproblems
 - ► Subproblems recur many times
 - Solutions can be cached and reused
- Markov decision processes satisfy both properties
 - Bellman equation gives recursive decomposition
 - Value function stores and reuses solutions

Planning by Dynamic Programming

- Dynamic programming assumes full knowledge of the MDP
 - It is used for planning in an MDP
- For prediction: evaluate values
 - Input: MDP $<\mathcal{S}$, \mathcal{A} , \mathcal{P} , \mathcal{R} , $\gamma>$ and policy π or: MRP $<\mathcal{S}$, \mathcal{P}^{π} , \mathcal{R}^{π} , $\gamma>$
 - Output: value function v_{π}
- For control: find the optimal policy.
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$
 - Output: optimal value function v_* and: optimal policy, π_*

Three Approaches

- Policy Evaluation
 - Directly solve Bellman Equation in matrix form (see above)
 - Given an MDP $\langle S, A, P, R, \gamma \rangle$ and a policy π , it becomes a MRP problem $\langle S, P^{\pi}, R^{\pi}, \gamma \rangle$.
 - Use Iterative Policy Evaluation
- Policy Iteration
- Value Iteration

Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup

$$v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_*$$

- Using synchronous backups,
 - At each iteration k + 1,
 - for all states $s \in S$, update $v_{k+1}(s)$ from $v_k(s')$ where s' is a successor state of s
- Notes:
 - We will discuss asynchronous backups later
 - Convergence to v_{π} will be proven at the end of the lecture
 - Review the Bellman-Ford algorithm for the shortest path problem.

Iterative Policy Evaluation

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \ v_k(s') \right)$$

$$\boldsymbol{v}^{k+1} = \boldsymbol{\mathcal{R}}^{\pi} + \gamma \boldsymbol{\mathcal{P}}^{\pi} \boldsymbol{v}^{k}$$

Example: Evaluating a Random Policy in the Small Gridworld

_			
	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

r = -1on all transitions

- States:
 - Nonterminal states 1, ..., 14
 - One terminal state (shown twice as shaded squares)
- Actions
 - Four directional moves
 - leading out of the grid leave state unchanged
- Reward
 - -1 until the terminal state is reached
- Undiscounted: episodic MDP ($\gamma = 1$)
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Deep Learning and Practice

Iterative Policy Evaluation in Small Gridworld (I)

 $v_{m{k}}$ for the Random Policy

Greedy Policy w.r.t. v_k

$$k = 0$$

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

optimal

policy

Iterative Policy Evaluation in Small Gridworld (2)

$$k = 3$$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

	Ţ	Ţ	Ţ
†	Ĺ	Ţ	→
1	₽	Ţ	ļ
₽	†	1	

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

How to Improve a Policy

- Definition of policy improvement
 - Let π and π' be any pair of deterministic policies
 - ► For all $s \in S$, " $\pi(s)$ performs better than $\pi'(s)$ ". (We will see example)
- Given a policy π
 - Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

- Improve the policy by acting greedily with respect to v_{π} $\pi' = \operatorname{greedy}(v_{\pi})$

• Notes:

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to π^*

Policy Iteration

- Policy evaluation \rightarrow Estimate v_{π}
 - Iterative policy evaluation
- Policy improvement \rightarrow Generate $\pi' \geq \pi$
 - Greedy policy improvement

Proof of Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can improve the policy by acting greedily

$$\pi'(s) = \underset{a \in A}{\operatorname{argmax}} q_{\pi}(s, a)$$

• This improves the value from any state s over one step,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

• It therefore improves the value function, $v_{\pi'}(s) \ge v_{\pi}(s)$.

$$\begin{aligned} v_{\pi}(s) &\leq q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'}[R_{t+1} + \gamma \ v_{\pi}(S_{t+1}) \ | S_{t} = s] \\ &\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \ | \ S_{t} = s] \\ &\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} q_{\pi}(S_{t+2}, \pi'(S_{t+2})) \ | \ S_{t} = s] \\ &\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \cdots \ | \ S_{t} = s] = v_{\pi'}(s) \end{aligned}$$

Converge of Policy Improvement

- If improvements stop,
 - That is, for $q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$
 - ▶ "≥" becomes "=" when stopping.
- Then the Bellman optimality equation has been satisfied $v_{\pi}(s) = \max_{a \in A} q_{\pi}(s, a)$
- This implies $v_{\pi}(s) = v_{*}(s)$ for all $s \in S$
- The above proves that π will converge to an optimal policy.

Variations of Policy Iteration

• Questions:

- Does policy evaluation need to converge to v_{π} ?
- Should we introduce a stopping condition, e.g. ∈-convergence of value function?
- Simply stop after k iterations of iterative policy evaluation?
 - For example, in the small gridworld k = 3 was sucient to achieve optimal policy
 - ▶ Why not update policy every iteration? i.e. stop after k = 1

Generalized Policy Iteration

- Policy evaluation \rightarrow Estimate v_{π}
 - Any policy evaluation algorithm
- Policy improvement \rightarrow Generate $\pi' \geq \pi$
 - Any policy improvement algorithm

Principle of Optimality

- Theorem (Principle of Optimality)
 - A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if
 - For any state s' reachable from s, π achieves the optimal value from state s', $v_{\pi}(s') = v_*(s')$

Deterministic Value Iteration

- If we know the (optimal) solution to subproblems $v_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in A} \left(R_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \ v_*(s') \right)$$

- Intuition:
 - Start with final rewards and work backwards
 - apply these updates iteratively
- Notes:
 - Still works with loopy, stochastic MDPs
 - Like most DP problems. (e.g., shortest path problem)

Bellman Optimality

$$v_{n+1}(s) = \max_{a \in A} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_n(s') \right)$$

or:

$$V^{(n+1)}(s) = \max_{a \in \mathcal{A}} \left(\mathbb{E}_{s'|s,a} \left[r + \gamma V^{(n)}(s') \right] \right)$$

The Shortest Path Problem

- A very simple MDP problem with
 - deterministic state transition \mathcal{P} . (Just consider the case without state-action or black dots)
- A good example to get a quick idea about why it works.
 (see Cormen's Algorithm textbook)

Algorithms for the Shortest Path Problem

```
Relax(u, v, w)
   if v.d > u.d + w(u, v)
       v.d = u.d + w(u, v)
       \nu.\pi = u
```

- Bellman-Ford Algorithm:
 - Simple, but it works.
 - All are based on Relexation

 - ▶ Complexity for all pairs: $O(n^2e)$, n: vertex count, e: edge count.
- Dijkstra Algorithm:
 - Faster, but complex and no negative values
 - ► Complexity for all pairs: $O(ne + n^2 \log n)$
- Note:
 - The concept of Value Iterative is based on Bellman-Ford.


```
BELLMAN-FORD(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           Relax(u, v, w)
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
           return FALSE
   return TRUE
```

Value Iteration

- Problem:
 - find optimal policy π
- Solution: directly find the optimal v_* without π .
 - iterative application of Bellman optimality backup

$$v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_*$$

- Using synchronous backups (like Bellman-Ford)
 - At each iteration k+1
 - ▶ For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- Convergence to v_* will be proven later
- Unlike policy iteration, there is no explicit policy

Value Iteration

 $v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_*$

Operator View

Value iteration update

 $V^{(n+1)}(s) = \max_{a \in \mathcal{A}} \left(\mathbb{E}_{s'|s,a} \left[r + \gamma V^{(n)}(s') \right] \right)$

- It can be viewed as:
 - A function $\mathcal{T}: \mathcal{S} \to \mathcal{S}$.
 - Called backup operator.

$$[\mathcal{T}V](s) = \max_{a \in \mathcal{A}} (\mathbb{E}_{s'|s,a}[r + \gamma V(s')])$$
$$V^{(n+1)} = \mathcal{T}V^{(n)}$$

(Let V be an array of v(s))

Algorithm Value Iteration

Initialize $V^{(0)}$ arbitrarily.

for n = 0, 1, 2, ... until termination condition do $V^{(n+1)} = TV^{(n)}$

end

Value Function Space

- Consider the vector space *V* over value functions
 - There are |S| dimensions
 - Each point in this space fully species a value function v(s)
- What does a Bellman backup do to points in this space?
 - It brings value functions closer
 - Therefore the backups must converge on a unique solution

Value Function ∞-Norm

- We will measure distance between state-value functions u and v by the ∞ -norm
 - i.e. the largest difference between state values, $||U V||_{\infty} = \max_{s} |u(s) v(s)|$
- Let $\delta = ||(U V)||_{\infty}$ - $u(s) - v(s) \le \delta$ for all s

Contraction for Bellman Optimality Backup

- Bellman optimality backup operator \mathcal{T} is a γ -contraction.
- Proof: Since

$$\max_{a \in \mathcal{A}} (x(a)) - \max_{a \in \mathcal{A}} (y(a)) \le \max_{a \in \mathcal{A}} (x(a) - y(a))$$

• we have $||\mathcal{T}U - \mathcal{T}V||_{\infty}$

$$= ||\max_{a \in \mathcal{A}} (\mathcal{R}^a + \gamma \mathcal{P}^a U) - \max_{a \in \mathcal{A}} (\mathcal{R}^a + \gamma \mathcal{P}^a V)||_{\infty}$$

$$\leq ||\max_{a \in \mathcal{A}} [(\mathcal{R}^a + \gamma \mathcal{P}^a U) - (\mathcal{R}^a + \gamma \mathcal{P}^a V)]||_{\infty}$$

$$= ||\max_{a \in \mathcal{A}} [\gamma \, \mathcal{P}^a(U - V)]||_{\infty} = \gamma ||\max_{a \in \mathcal{A}} [\, \mathcal{P}^a(U - V)]||_{\infty}$$

$$\leq \gamma \delta = \gamma ||(U - V)||_{\infty}$$

- Note: $(\mathcal{P}_{s:.}^{a}(U-V)) \leq \delta$ for all s $\rightarrow ||\mathcal{P}^{a}(U-V)||_{\infty} \leq \delta$
 - For \mathcal{P}^a , each row of matrix sums to 1.

Contraction Mapping Theorem

• Backup operator \mathcal{T} is a γ -contraction with modulus γ (< 1) under ∞ -norm

$$||\mathcal{T}U - \mathcal{T}V||_{\infty} \leq \gamma ||U - V||_{\infty}$$

- By contraction-mapping principle, it has a fixed point V^*
 - by iterating

$$V, \mathcal{T}V, \mathcal{T}^2V, \dots \rightarrow V^*$$

Proof:

$$||\mathcal{T}V - \mathcal{T}V^*||_{\infty} \le \gamma ||V - V^*||_{\infty}$$

- Since $\mathcal{T}V^* = V^*$, $||\mathcal{T}V - V^*||_{\infty} \le \gamma ||V - V^*||_{\infty}$
- By recurrence, $||\mathcal{T}^n V V^*||_{\infty} \le \gamma \; ||\mathcal{T}^{n-1} V V^*||_{\infty} \le \cdots \le \gamma^n \; ||V V^*||_{\infty}$
- Since $\gamma^n \to 0$, $||\mathcal{T}^n V V^*||_{\infty} \to 0$.
- That is, $\mathcal{T}^n V \to V^*$

Policy Evaluation

• Problem: how to evaluate fixed policy π :

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma V^{\pi}(S_{t+1}) | S_t = s]$$

Backwards recursion involves a backup operation

$$V^{(k+1)} = \mathcal{T}^{\pi}V^{(k)}$$

- \mathcal{T}^{π} is defined as:

$$[\mathcal{T}^{\pi}V](s) = \mathbb{E}_{s'|s,a=\pi(s)}[r + \gamma V(s')]$$

• \mathcal{T}^{π} is also a contraction with modulus γ , sequence $V.\mathcal{T}^{\pi}V.(\mathcal{T}^{\pi})^{2}V.(\mathcal{T}^{\pi})^{3}V.... \rightarrow V^{\pi}$

• $V = T^{\pi}V$ is a linear equation that we can solve directly.

Contraction for Bellman Expectation Backup

- Bellman Expectation Backup operator \mathcal{T}^{π} is a γ -contraction,
- Proof:

$$\begin{aligned} \left| |\mathcal{T}^{\pi}U - \mathcal{T}^{\pi}V| \right|_{\infty} &= \left| |(\mathcal{R}^{\pi} + \gamma \, \mathcal{P}^{\pi}U) - (\mathcal{R}^{\pi} + \gamma \, \mathcal{P}^{\pi}V) \right| \right|_{\infty} \\ &= \left| |\gamma \, \mathcal{P}^{\pi}(U - V)| \right|_{\infty} \\ &\leq \gamma \delta = \gamma ||(U - V)||_{\infty} \end{aligned}$$

- Note:

- $(\mathcal{P}_{S::}^{\pi}(U-V)) \leq \delta$ for all s $\rightarrow ||\mathcal{P}^{\pi}(U-V)||_{\infty} \leq \delta$
 - For \mathcal{P}^{π} , each row of matrix sums to 1.

Policy Iteration: Overview

- Alternate between
 - Evaluate policy $\pi \Rightarrow V^{\pi}$
 - Set new policy to be greedy policy for V^{π}

$$\pi(s) = \underset{a}{\operatorname{argmax}} \mathbb{E}_{s'|s,a}[R_{t+1} + \gamma V^{\pi}(s')]$$

- Guaranteed to converge to optimal policy and value function in a finite number of iterations, when $\gamma < 1$
- Value function converges faster than in value iteration

```
Algorithm Policy Iteration
```

```
Initialize \pi^{(0)} arbitrarily.
```

for n = 1, 2, ... until termination condition do

$$V^{(n+1)} = \text{Solve} [V = \mathcal{T}^{\pi^{(n-1)}}V]$$

end

Modified Policy Iteration

• Update π to be the greedy policy, then value function with k backups (k-step lookahead)

```
Algorithm Modified Policy Iteration
Initialize V^{(0)} arbitrarily.

for n = 1, 2, \ldots until termination condition do
\pi^{(n+1)} = \mathcal{G}V^{(n)}
V^{(n+1)} = \left(\mathcal{T}^{\pi^{(n+1)}}\right)^k V^{(n)}, \text{ for integer } k \geq 1.
end
```

- k = 1: value iteration
- $k = \infty$: policy iteration

Exercise

- What if $\gamma = 1$?
 - Hint: Like The Shortest Path Problem
 - ▶ The shortest path to node 0.

