1. СУФФИКСНЫЕ ДЕРЕВЬЯ

Пусть S = S[1..n] — слово в алфавите Σ и символ \$ не входит в Σ . Тогда в слове S\$ никакой суффикс не является префиксом другого суффикса.

Определение 1. Суффиксным деревом для S\$ называется такое дерево T, у которого имеется n+1 лист, занумерованный числами от 1 до (n+1), все дуги T помечены подсловами слова S\$, из каждой внутренней вершины выходят хотя бы две дуги, метки всех выходящих из одной вершины дуг, начинаются c разных букв и в каждый лист j из корня ведет путь, на котором "написан" суффикс S[j..n]\$.

Из этого определения непосредственно следует, что число вершин в T не превосходит 2n. Но общая длина всех меток T может быть квадратична, т.е. $O(n^2)$. Линейное представление дерева получится, если для каждого ребра его метку-подслово S[j..k] заменить на пару чисел (j,k). Описанный ниже алгоритм будет работать с метками-словами, но его можно легко преобразовать в алгоритм, работающий с метками-парами индексов (как?).

1.1. Алгоритм Укконена для построения суффиксного дерева (Ukkonen - 1995).

Определение 2. Неявное суффиксное дерево для слова S — это дерево, которое получается из суффиксного дерева для S\$ следующим путем:

- 1) из меток всех дуг удаляется символ \$;
- 2) удаляются все ребра, оставшиеся без меток;
- 3) удаляются вершины, у которых остался 1 сын.

Неявное суффиксное дерево для префикса S[1..i] слова S получается таким же образом из суффиксного дерева для слова S[1..i]\$. Обозначим это дерево через I_i .

На рисунке ниже показаны суффиксное дерево T для слова S\$ = xabxa\$ и неявное суффиксное дерево T' для слова S = xabxa.

Вначале опишем алгоритм, который будет строить последовательность неявных суффиксных деревьев I_1, I_2, \ldots, I_n по слову S[1..n]. Алгоритм работает фазами – на фазе i+1 по дереву I_i строится дерево I_{i+1} .

Общая схема алгоритма

- 1. Построить I_1 .
- 2. **FOR** i = 1 **TO** n 1 **DO**

/* Фаза i + 1:

3. **FOR** j = 1 **TO** i + 1 **DO** /* Расширение j:

1

4. Найти в текущем дереве конец пути, помеченного S[j..i] и, если требуется, расширить этот путь, добавив S[i+1].

Пусть $\beta = S[j..i]$. Уточним алгоритм расширения суффикса. Расширение суффикса

Случай 1: Путь β в текущем дереве заканчивается в листе:

Добавить символ S(i+1) к метке дуги, ведущей в этот лист;

Случай 2: Никакой путь, продолжающий β не начинается с S(i+1), но хоть одно продолжение у пути с β имеется:

Если β заканчивается внутри дуги (u,w), то создать новую вершину v "между"u и w, в которую из корня ведет путь, помеченный β . Иначе пусть v — это вершина, в которой заканчивается β . Создать новый лист с меткой позиции j и дугу из v в него, с меткой S(i+1);

Случай 3: Имеется путь, продолжающий β символом S(i+1):

Ничего не делать.

Ясно, что этими тремя случаями исчерпываются все возможности. При "наивной" реализации алгоритма на поиск конца β в текущем дереве требуется $|\beta|$ шагов, после этого реализация расширения выполняется за O(1) шагов. Тогда i-я фаза может быть выполнена за время $O(n^2)$, а весь алгоритм за время $O(n^3)$.

Определение 3. Суффиксной ссылкой для внутренней вершины дерева v, в которую ведет путь, помеченный $x\alpha$ ($x \in \Sigma$, $\alpha \in \Sigma^*$) называется пара вершин ("дуга") (s, s(v)) такая, что κ вершине w = s(v) ведет путь, помеченный α . В частности, если $\alpha = \varepsilon$, то в качестве s(v) выступает корень дерева.

Лемма 1. Если внутренняя вершина v с путем-меткой $x\alpha$ создается при расширении j на фазе i+1, то либо путь, помеченный α , уже заканчивается в некоторой вершине дерева, либо вершина, в которую ведет путь α , будет создана при следующем расширении j+1 на той же фазе i+1.

Следствие. Во всяком неявном суффиксном дереве I_i для любой внутренней вершины v, в которую ведет путь с меткой $x\alpha$, существует вершина s(v), в которую ведет путь α .

Алгоритм SEA для расширения j

1. Зная конец p (p не обязательно вершина!) предыдущего расширения S[j-1..i], найти первую вершину v на пути из p в корень, для которой существует суффиксная ссылка s(v) = w. Если такой v нет, то положить v := w:=корень дерева. Пусть γ — это метка пути из v в p.

- 2. "Спуститься" из w по пути, помеченному γ .
- 3. Применить к найденной точке алгоритм расширения суффикса S[j..i]S(i+1).
- 4. Если в предыдущем расширении j-1 была создана новая вершина и с путем-меткой $x\alpha$, , то по лемме 1 путь α теперь должен вести в некоторую вершину s(u). Тогда создать суффиксную ссылку (u,s(u)).

Трюк 1. Подсчитать - пропустить

Пусть $|\gamma| = g$ и известны длины слов-меток для всех ребер текущего дерева. Тогда при поиске пути из s(v) по γ можно найти следующую вершину за O(1) шагов:

- a) h := 1; w := s(v);
- b) Найти выходящее из w ребро (w, u) с первым символом = h-му символу γ ;
- с) Пусть g' длина метки этого ребра. Если g' < g, то w := u; g := g g'; h := h + g'; снова перейти к пункту (b);
- d) Если $g \le g'$, то выдать (w,u),g (это означает, что γ заканчивается на g-ом символе ребра (w,u)).
- **Лемма 2.** Пусть $(v, s(v)) cy \phi \phi$ иксная ссылка в текущем дереве, по которой в алгоритме осуществляется переход. Тогда глубина $(v) \le глубина(s(v)) + 1$.
- **Теорема 1.** C использованием трюка 1 каждую фазу алгоритма можно выполнить за время O(n).
- **Трюк 2.** Заканчивать фазу i+1 как только при некотором расширении будет иметь место Случай 3.

Действительно, легко понять, что если для расширения j имеет место случай 3, то для всех последующих расширений j+1, j+2, ... той же фазы тоже будет выполнен случай 3.

Заметим, что после создания листа с меткой позиции j, эта вершина останется листом и для нее всегда будет выполняться случай 1. Обозначим через j_i номер последнего расширения фазы (i+1), в последовательности расширений со случаями 1 или 2. Этот номер не убывает: $j_i \leq j_{i+1}$ (почему?).

Трюк 3. На фазе i+1 при создании ребра с меткой S[j..(i+1)], ведущего в лист, вместо пары индексов (j,i+1) приписывать этому ребру пару (j,e), где e-cимвол переменной, принимающей на каждой фазе i+1 значение i+1.

Уточним теперь алгоритм выполнения одной фазы алгоритма.

Фаза i + 1.

- 1. e := i + 1;
- 2. Последовательно применять единичные расширения SEA, начиная с $j=j_i+1$ до первого расширения j^* , для которого выполнится случай 3, а если случай 3 не наступит, то до конца фазы, т.е. до $j^*=i+1$.
- $3. j_{i+1} := j^* 1.$

Теорема 2. С использованием суффиксных связей и трюков 1-3 алгоритм Укконена строит последовательность неяных суффиксных деревьев I_1, \ldots, I_n за время O(n). Как получить явное суффиксное дерево? Для этого достаточно применить алгоритм Укконена к слову S\$, а затем заменить в метках ребер символ переменной e на число n+1 - номер последнего символа \$. Таким образом, справедлива

Теорема 3. С помощью алгоритма Укконена можно построить суффиксное дерево (со всеми суффиксными ссылками) для слова S\$ за время O(|S|).

Объединенное суффиксное дерево для множества слов

Пусть задано множество слов $\{S_1,\ldots,S_M\}$ общей длиной $n, \sum_{i=1}^M |S_i| = n$. Обобщим понятие суффиксного дерева для множества слов так, чтобы в объединенном дереве были представлены суффиксы всех слов из заданного множества.

Определение 4. Объединенным суффиксным деревом для $\{S_1, \ldots, S_M\}$ называется такое дерево T, у которого имеется $\leq n$ листьев, каждому из которых приписана одна или несколько меток вида $(i,j), 1 \leq M, 1 \leq |S_i|$, причем каждая метка такого вида приписана какому-либо листу, все дуги T помечены подсловами слов S_i \$, из каждой внутренней вершины выходят хотя бы две дуги, метки всех выходящих из одной вершины дуг, начинаются с разных букв u, если листу приписана метка (i,j), то из корня в него ведет путь, на котором "написан" суффикс слова $S_i[j..n]$ \$.

На следующем рисунке представлено объединенное суффиксное дерево для двух слов: $S_1 = xabxa$ и $S_2 = babxba$.

3ada ча 1. Модифицируйте алгоритм Укконена так, чтобы он строил объединенное суффиксное дерево для множества слов общей длины n за время O(n). 3a мечание. Метки дуг в объединенном дереве имеют вид (i; p, q), где i — номер слова во

множестве, а p и q начальная и заключительная позиция подслова-метки в слове S_i .

Задача 2. Предположим, что к заданному множеству слов добавляется новое слово или из него удаляется некоторое слово. Предложите алгоритмы для эффективного выполнения этих операций на объединенном суффиксном дереве.

1.2. Применения суффиксных деревьев.

1. Поиск всех вхождений подслова

Чтобы найти все вхождения образца-слова P длины m в слово S длины n, построим суффиксное дерево T для S, а затем пройдем в T по единственному пути, помеченному символами P. Если на этом пути лист T встретится раньше, чем закончится P, то P не входит в S. Если же P в вершине v или на дуге, ведущей в эту вершину, то все вхождения P в S — это метки листьев, из поддерева с корнем в вершине v (почему?). Время работы этого алгоритма O(n+m).

2. Поиск всех вхождений слов-образцов

Пусть задано множество слов-образцов $\mathcal{P} = \{U_1, \dots, U_k\}$, суммарная длина которых равна n. Требуется найти все вхождения этих образцов в текст S длины m. Докажите, что это можно сделать с использованием суффиксного дерева за время O(n+m+r), где r — общее число искомых вхождений.

3. Поиск вхождений слов в базу данных

Пусть база данных содержит слова общей суммарной (большой!) длиной n. Требуется так организовать базу данных, чтобы эффективно по слову-запросу P выяснить входит ли оно в базу данных, а если не входит, то определить, се слова БД, для которых оно является префиксом, а если и таких слов нет, то найти самый длинный префикс P является префиксом какого-либо слова в базе данных.

Для решения этой проблемы можно организовать суффиксное дерево для конкатенации слов БД, разделенных новым символом за время O(n), а затем отвечать на любой запрос длины m за время O(n+k), где k — число слов БД, в которые входит P.

4. Наибольшее общее подслово для двух слов

Задача: по двум словам S_1 и S_2 найти самое длинное слово P, которое входит как подслово и в S_1 , и в S_2 .

Докажите, что с использованием суффиксных деревьев эту задачу можно решить за время, линейное от $(|S_1| + |S_2|)$.

5. Проблема загрязненной ДНК

Задача: для заданного слова S_1 (новая цепочка ДНК) и известного слова S_2 (в нем объединены различные источники загрязнений) найти все подслова S_2 длины не меньше l, входящие в S_1 . Эти подслова являются возможными нежелательными частями S_2 , которые могут загрязнять ДНК.

Докажите, что с использованием суффиксных деревьев и эту задачу можно решить за время, линейное от $(|S_1| + |S_2|)$.

6. Общие подстроки для множества строк

Пусть дано множество W, состоящее из K различных строк (слов) суммарной длины n. Для каждого i от 2 до K определим l(i) как длину самой длинной подстроки, входящей в не менее чем в i строк W. Задача состоит в том, чтобы построить таблицу из (K-1)-й строки, в которой для каждого i указано число l(i) и какая-нибудь строка длины l(i), входящая в $\geq i$ строк из W.

Построим объединенное суффиксное дерево T для множества W, в котором каждый лист имеет метку слова, суффикс которого в этом листе заканчивается. Для каждой внутренней вершины v обозначим через C(v) число различных слов из W, суффиксы которых заканчиваются в поддереве с корнем v.

- 6.1. Покажите, как, зная значения C(v) для всех внутренних вершин, построить требуемую таблицу за время O(n).
- 6.2. Предложите алгоритм вычисления значений C(v) для всех внутренних вершин T за время O(Kn). (Имеется и более эффективный алгоритм, решающий эту задачу за время O(n).)

7. Повторяющиеся структуры в слове

Определение 5. Максимальная пара в слове S — это пара одинаковых подслов α и β , у которых окаймляющие их слева и справа символы различны, т.е. расширение этих слов в любом направлении нарушит их равенство.

Максимальная пара представляется тройкой (p_1, p_2, n') , где p_1 и p_2 — начальные позиции этих подслов, а n' — их длина. Через $\mathcal{R}(S)$ обозначим множество всех троек, задающих максимальные пары в S.

Например, в строке S = xabcyiiizabcqabcyrxar имеется три вхождения подслова abc. Первое и второе образуют максимальную пару (2, 10, 3), второе и третье — максимальную пару (10, 14, 3), а первое и третье не образуют максимальную пару.

Определение 6. Подслово α слова S называется максимальным повтором, если оно входит в некоторую максимальную пару. Через $\mathcal{R}'(S)$ обозначим множество всех максимальных повторов S.

В нашем примере и авс, и авсу являются максимальными повторами.

Определение 7. Максимальный повтор называется супермаксимальным повтором, если он не является подсловом никакого другого максимального повтора.

7.1. Поиск всех максимальных повторов

Лемма 3. Пусть T-суффиксное дерево для слова S. Если подслово α является максимальным повтором, то путь в T, помеченный α , ведет в некоторую вершину v.

Из этой леммы непосредственно следует

Теорема 4. В каждом слове длины п может быть не более п максимальных повторов.

Определение 8. Для каждой позиции i слова S назовем символ S(i-1) левым символом для i. Левый символ для листа дерева T — это левый символ позиции-метки этого листа. Внутренняя вершина v дерева T называется левой вилкой (left diverse), если хотя бы

dва листа в поддереве с корнем v имеют различные левые символы.

Заметим, что, если v — левая вилка, то и все ее предки в T также являются левыми вилками.

Теорема 5. Слово α , ведущее в дереве T в вершину v, является максимальным повторм тогда и только тогда, когда v является левой вилкой.

Задача. Постройте алгоритм сложности O(n), который для каждой вершины T определит, является ли она левой вилкой.

Из теоремы 5 следует, что все максимальные повторы однозначно представляются некоторым срезом дерева T, включающим только левые вилки. Это поддерево имеет размер O(n), хотя общая длина всех максимальных повторов может достигать $O(n^2)$.

Теорема 6. Все максимальные повторы в слове S можно найти за время O(n), а дерево, представляющее ux, можно получить из суффиксного дерева T за такое же время.

7.1. Поиск всех супермаксимальных повторов

Определение 9. Максимальный повтор α называется почти супермаксимальным повтором, если он хотя бы один раз входит в S в такой позиции, в которой не является подсловом другого максимального повтора. Такое вхождение α назовем свидетельством этого факта.

Например, в строке $a\alpha bx\alpha ya\alpha bx\alpha b$ подслово α является максимальным повтором, но не будет ни супермаксимальным, ни даже почти супермаксимальным повтором. А в строке $a\alpha bx\alpha ya\alpha b$ это же подслово α снова не супермаксимально, но почти супермаксимально. Свидетельством этого будет второе вхождение α .

Пусть вершина v суффиксного дерева T для слова S соответствует максимальному повтору α и пусть w — один из сыновей v. Обозначим через L(w) множество вхождений α в S, определяемых листьями поддерева с корнем w.

Пемма 4. Если w — внутренняя вершина T, то никакое из вхождений α в S, задаваемых L(w) не является свидетельством почти супермаксимальности α .

Пемма 5. Пусть w является листом T, κ которому ведет путь $\beta = \alpha \gamma$. Пусть x- это левый символ для w. Тогда вхождение α в S, задаваемое w является свидетельством почти супермаксимальности α тогда и только тогда, когда x не является левым символом ни y какого другого листа под вершиной v.

Теорема 7. Внутренняя вершина v, являющаяся левой вилкой, представляет почти супермаксимальный повтор α тогда и только тогда, когда один из сыновей v является листом (задающим некоторую позицию i), левый символ которого S(i-1) не является левым символом никакого другого листа под v. Левая вилка v представляет супермаксимальный повтор тогда и только тогда, когда все сыновья v являются листьями c различными левыми символами.

Отсюда следует, что все супермаксимальные и почти супермаксимальные повторы в слове S можно найти за линейное время O(n).

8. Линеаризация циклического слова

Пусть задано циклическое слово S[1..n], в котором за каждым символом S(i) следует символ $S(i+1 \mod n)$. Задача состоит в том, чтобы выбрать место разрезания этого слова i так, чтобы получившееся линейное слово $S^i = S(i) \dots S(n)S(1) \dots S(i-1)$ было лексикографически минимальным среди всех таких линейных слов.

Эта задача возникает в химических базах данных для кольцевых молекул.

Задача. Предложите алгоритм линейной сложности для линеаризации циклических слов. Указание: используйте суффиксное дерево для слова LL, где L- произвольная линеаризация S.

9. Сжатие данных по Зиву-Лемпелю (Ziv-Lempel)

Определение 10. Для позиции i слова S длины n обозначим через $Prior_i$ самый длинный префикс S[i..n], который является подсловом слова S[1..i-1].

Через l_i обозначим длину $Prior_i$. При $l_i > 0$ через s_i обозначим начальную позицию самого левого вхождения $Prior_i$.

Например, при S = abaxcabaxabz мы имеем $Prior_7 = bax$, $l_7 = 3$ и $s_7 = 2$.

Алгоритм сжатия 1

Для вышеприведенного слова S результатом алгоритма будет представление ab(1,1)c(1,3)x (1,2)z. По нему можно легко восстановить S.

Пусть T — суффиксное дерево для S. Для вершины v обозначим через c_v минимальную позицию суффикса S среди листьев поддерева с корнем v, т.е. c_v — это позиция первого вхождения метки-пути из корня в v.

Алгоритм Укконена можно использовать для построения сжатого представления S следующим образом. Предположим, что уже построено сжатое представление для S[1..i-1] и неявное суффиксное дерево I_{i-1} для строки S[1..i-1]. Предположим также, что для каждой вершины v определено c_v . Тогда пару (s_i, l_i) можно получить, пойдя в I_{i-1} по пути, помеченному S[i..m] до такой точки p (не обязательно вершины), в которой либо выполнено условие i=(длина слова, ведущего в $p)+c_v$, где v— первая вершина на этом пути не выше p, либо после p нет подходящего продолжения S[i..m]. Во всех случаях $s_i=c_v$ и $l_i=($ длина слова, ведущего в p). Время такого вычисления пары (s_i, l_i) ограничено $O(l_i)$.

Далее выполняется (i+1)-я фаза алгоритма Укконена, на которой I_{i-1} преобразуется в I_i . При этом в момент создания новой вершины v, разбивающей ребро (u,w) на две части, положим $c_v = c_w$, а если создается новый лист v с меткой j, то полагаем $c_v = j$.

Теорема 8. Алгоритм сжатия 1 можно реализовать в линейное время как алгоритм, последовательно обрабатывающий символы строки S за один проход.