Math 55a, Assignment #9, November 14, 2003

Notations. \mathbb{R} is the field of all real numbers. \mathbb{C} is the field of all complex numbers. \mathbb{N} denotes the set of all natural numbers (i.e., all positive integers). For a field \mathbb{F} and \mathbb{F} -vector spaces V and W, $\operatorname{Hom}_{\mathbb{F}}(V, W)$ denotes the set of all \mathbb{F} -linear maps from V to W and $\operatorname{End}_{\mathbb{F}}(V)$ denotes the set of all \mathbb{F} -linear maps from V to itself. The dual $\operatorname{Hom}_{\mathbb{F}}(V,\mathbb{F})$ of V is denoted by V^* . The dual V^* of the dual V^* of V is naturally identified with V. For $V \in \operatorname{Hom}_{\mathbb{F}}(V,W)$, $V^* \in \operatorname{Hom}_{\mathbb{F}}(W^*,V^*)$ denotes the adjoint of V. The set of all \mathbb{F} -bilinear \mathbb{F} -valued functions on $V^* \times W^*$ is denoted by $V \otimes W$.

For $k \in \mathbb{N}$ the set of all F-multi-linear F-valued functions on

$$\underbrace{V \times \cdots \times V}_{k \text{ copies}}$$

is denoted by

$$\underbrace{V \otimes \cdots \otimes V}_{k \text{ copies}}$$

or $V^{\otimes k}$. The set of all skew-symmetric \mathbb{F} -multi-linear \mathbb{F} -valued functions on

$$\underbrace{V \times \cdots \times V}_{k \text{ copies}}$$

is denoted by

$$\underbrace{V \wedge \cdots \wedge V}_{k \text{ copies}}$$

or $\wedge^k V$. (A function is skew-symmetric if its sign is changed whenever any two of its arguments are switched.) The set $\wedge^k V$ is an \mathbb{F} -vector subspace of $V^{\otimes k}$.

Every $T \in \operatorname{End}_{\mathbb{F}}(V)$ induces element of $\operatorname{End}_{\mathbb{F}}(V^{\otimes k})$ which we denote by $T^{\otimes k}$. We denote by $\wedge^k T$ the element of $\operatorname{End}_{\mathbb{F}}(\wedge^k V)$ which is the restriction of $T^{\otimes k}$ to $\wedge^k V$.

For $v_1, v_2 \in V = \operatorname{Hom}_{\mathbb{F}}(V^*, \mathbb{F})$ the wedge product $v_1 \wedge v_2$ is the element of $\wedge^2 V$ which is defined by the skew-symmetric \mathbb{F} -bilinear \mathbb{F} -valued function

$$(u_1^*, u_2^*) \mapsto \frac{1}{2} (v_1(u_1^*)v_2(u_2^*) - v_2(u_1^*)v_1(u_2^*))$$

on $V^* \times V^*$. Likewise, for $v_1, \dots, v_k \in V = \operatorname{Hom}_{\mathbb{F}}(V^*, \mathbb{F})$ the wedge product $v_1 \wedge \dots \wedge v_k$ is the element of $\wedge^k V$ defined by the skew-symmetric \mathbb{F} -multilinear \mathbb{F} -valued function on

$$\underbrace{V \times \cdots \times V}_{k \text{ copies}}$$

which is obtained by skew-symmetrizing

$$(u_1^*,\cdots,u_k^*)\mapsto v_1(u_1^*)\cdots v_k(u_k^*).$$

The determinant of a matrix A is denoted by $\det A$.

Problem 1. (Laplace expansion of determinant) Let V be a vector space over a field \mathbb{F} of dimension n. Let e_1, \dots, e_n be an \mathbb{F} -basis of V. Let $1 \leq m < n$. Let $T \in \operatorname{End}_{\mathbb{F}}(V)$ whose matrix with respect to e_1, \dots, e_n is

$$C = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

For $j_1 < j_2 < \cdots < j_m$ and $j_{m+1} < j_{m+2} < \cdots < j_n$ with $\{j_1, j_2, \cdots, j_n\} = \{1, 2, \cdots, n\}$, let

$$A_{j_1,j_2,\cdots,j_m} = \begin{pmatrix} a_{1j_1} & a_{1j_2} & \cdots & a_{1j_m} \\ a_{2j_1} & a_{2j_2} & \cdots & a_{2j_m} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{mj_1} & a_{mj_2} & \cdots & a_{mj_m} \end{pmatrix}$$

and

$$B_{j_1,j_2,\cdots,j_m} = \begin{pmatrix} a_{m+1\,j_{m+1}} & a_{m+2\,j_{m+2}} & \cdots & a_{m+1\,j_n} \\ a_{m+2\,j_{m+1}} & a_{m+2\,j_{m+2}} & \cdots & a_{m+2\,j_n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n\,j_{m+1}} & a_{n\,j_{m+2}} & \cdots & a_{n\,j_n} \end{pmatrix}.$$

Let sign (j_1, j_2, \dots, j_n) be the sign of the permutation (j_1, j_2, \dots, j_n) of $(1, 2, \dots, n)$. Show that

$$\det C = \sum_{j_1, \dots, j_m} sign(j_1, j_2, \dots, j_n) (\det A_{j_1, j_2, \dots, j_m}) (\det B_{j_1, j_2, \dots, j_m}),$$

where the summation \sum_{j_1,\dots,j_m} is over all permutations (j_1,j_2,\dots,j_n) of $(1,2,\dots,n)$ with $j_1 < j_2 < \dots < j_m$ and $j_{m+1} < j_{m+2} < \dots < j_n$. (*Hint:* compare with the proof of the expansion of a determinant according to a row.)

Problem 2. Let V be an \mathbb{F} -vector space of finite dimension n. Let e_1, \dots, e_n be an \mathbb{F} -basis of V and $e_1^*, \dots, e_n^* \in V^*$ be its dual basis. Let $T \in \operatorname{End}_{\mathbb{F}}(V)$ and $T^* \in \operatorname{End}_{\mathbb{F}}(V^*)$ be its adjoint.

- (a) Prove that the determinant of the matrix of T with respect to e_1, \dots, e_n is equal to the determinant of the matrix of T^* with respect to e_1^*, \dots, e_n^* .
- (b) Fix an \mathbb{F} -isomorphism $\Phi : \wedge^n V \to \mathbb{F}$. Consider the pairing

$$\Xi: V \times (\wedge^{n-1}V) \to \mathbb{F}$$

defined by

$$(v_1, v_2 \wedge \cdots \wedge v_n) \mapsto \Phi(v_1 \wedge \cdots \wedge v_n).$$

Let $(a_{i,j})_{1 \leq i,j \leq n}$ be the matrix of T with respect to e_1, \dots, e_n . For $1 \leq i, j \leq n$ let $A_{j,i}$ be the $(n-1) \times (n-1)$ -determinant obtained by removing the i-th row and the j-th column of the matrix $(a_{i,j})_{1 \leq i,j \leq n}$. Let $(b_{j,i})_{1 \leq j,i \leq n}$ be the matrix whose (j,i)-th element is $(-1)^{i+j}A_{j,i}$. Show that the determinant of $(b_{j,i})_{1 \leq j,i \leq n}$ raised to power n-1. (Hint: consider the matrix of $T^{\wedge (n-1)} \in \operatorname{End}_{\mathbb{F}}(\wedge^{n-1}V)$ with respect to the basis

$$e_1 \wedge \cdots \wedge e_{j-1} \wedge e_{j+1} \wedge \cdots \wedge e_n$$
 for $1 \le j \le n$

of $\wedge^{n-1}V$; apply Part (a) to the pairing Ξ ; and use the pairing Ξ to compare the basis

$$e_1 \wedge \cdots \wedge e_{j-1} \wedge e_{j+1} \wedge \cdots \wedge e_n$$
 for $1 \leq j \leq n$

of $\wedge^{n-1}V$ with the dual basis e_1^*, \dots, e_n^* of V).

Problem 3. Let $1 \le m < n$. Let

$$C = \det \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

For $1 \le j_1 < j_2 < \dots < j_m \le n$ and $1 \le k_1 < k_2 < \dots < k_m \le n$ let

$$A_{j_{1},j_{2},\cdots,j_{m};k_{1},k_{2},\cdots,k_{m}} = \det \begin{pmatrix} a_{j_{1},k_{1}} & a_{j_{1},k_{2}} & \cdots & a_{j_{1},k_{m}} \\ a_{j_{2},k_{1}} & a_{j_{2},k_{2}} & \cdots & a_{j_{2},k_{m}} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{j_{m},k_{1}} & a_{j_{m},k_{2}} & \cdots & a_{j_{m},k_{m}} \end{pmatrix}$$

Consider (j_1, j_2, \dots, j_m) with $1 \le j_1 < j_2 < \dots < j_m \le n$ as a single index. There are $\binom{n}{m}$ such indices, where

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

is the binomial coefficient. Let B be the determinant of order $\binom{n}{m}$ whose entry in the position

$$((j_1, j_2, \cdots, j_m), (k_1, j_2, \cdots, k_m))$$

is $A_{j_1,j_2,\dots,j_m;k_1,j_2,\dots,k_m}$. Express B in terms of C and n and m. (Hint: let $T \in \operatorname{End}_{\mathbb{F}}(\mathbb{F}^n)$ whose matrix is

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

with respect to the natural basis e_1, \dots, e_n of \mathbb{F}^n . Compare the matrix of $T^{\wedge k} \in \operatorname{End}_{\mathbb{F}}(\wedge^k(\mathbb{F}^n))$ with the matrix whose entry in the position

$$((j_1,j_2,\cdots,j_m),(k_1,j_2,\cdots,k_m))$$

is $A_{j_1,j_2,\cdots,j_m;k_1,j_2,\cdots,k_m}$ when the basis

$$e_{j_1} \wedge \cdots \wedge e_{j_m}$$
 (for $1 \leq j_1 < \cdots < j_m \leq n$)

of $\wedge^k(\mathbb{F}^n)$ is used. Consider upper triangular forms.)

Problem 4

(a) Verify that the following three Pauli's matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -\sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

are all unitary (i.e. isometries in \mathbb{C}^2) and are square roots of the 2×2 identity matrix.

(b) Verify that each of the following four Eddington's matrices

$$\begin{pmatrix} \sqrt{-1} \, \sigma_1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} \sqrt{-1} \, \sigma_3 & 0 \\ 0 & \sqrt{-1} \, \sigma_3 \end{pmatrix}, \\ \begin{pmatrix} 0 & -\sigma_2 \\ \sigma_2 & 0 \end{pmatrix}, \quad \begin{pmatrix} -\sqrt{-1} \, \sigma_2 & 0 \\ 0 & \sqrt{-1} \, \sigma_2 \end{pmatrix}$$

is equal to the negative of its complex-conjugate transpose and is unitary and also is the square root of the negative of the 4×4 identity matrix.

Problem 5. Consider each of the n^2 entries of an $n \times n$ matrix $X = (x_{j,k})_{1 \le j,k \le n}$ as a variable. Write the characteristic polynomial $\det(X - \lambda I)$ in the form $\sum_{\ell=0}^{n} f_{\ell}(X) \lambda^{n-\ell}$, where $f_{\ell}(X)$ means a function of the n^2 entries of X.

- (a) Show that $f_k(AB) = f_k(BA)$ for any pair of $n \times n$ matrices A and B. (Note that this is the generalization of the statements for the trace and the determinant.) (*Hint:* continuity arguments reduce the general case to the case of invertible A and B.)
- (b) Conversely, if $\phi(X)$ is a polynomial in the n^2 entries of X and has the property that $\phi(AB) = \phi(BA)$ for any pair of $n \times n$ matrices A and B, then show that there exists a polynomial $P(Y_1, \dots, Y_n)$ of n variables such that $\phi(X) = P(f_1(X), \dots, f_n(X))$ for any $n \times n$ matrix X. (Hint: continuity arguments reduce the general case to the case of X having distinct eigenvalues; diagonalize X; use the fact that a polynomial symmetric in its variables is a polynomial of elementary symmetric functions.)

Problem 6. Consider the matrix

$$A = \begin{pmatrix} 0 & 2 & 0 & 0 \\ k & 0 & 2 & 0 \\ 0 & k & 0 & 2 \\ 0 & 0 & k & 0 \end{pmatrix},$$

where k is a constant.

- (a) Find a value of k such that the matrix A is diagonalizable.
- (b) Find a value of k such that the matrix A is not diagonalizable.