SÉRIES TEMPORELLES MASTER I : MATHS. APPLIQ& STAT

(HOME WORK $N^{\circ}3$)

Le 13 mai 2022 à 8:04

EXERCICE 1 Soient $(X_1+X_2+X_3+X_4)$ des variables aléatoires. Soit $(X_t)_{t\in\mathbb{Z}}$ un processus AR(1) ecrire le modèle de processus et Calculer la variance de $(X_1+X_2+X_3+X_4)/4$?

EXERCICE 2 Soit le processus MA(1):

$$y_t = 1 + \epsilon_t - \frac{1}{2}\epsilon_{t-1}$$

Calculer la fonction d'autocorrélation et donner une représentation graphique.

EXERCICE 4 Soit le processus MA(2) :

$$y_t = \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2}$$

Calculer la fonction d'autocovariance et la fonction d'autocorrélation.

EXERCICE 5 Soit le processus AR(1) :

$$y_t = \frac{1}{2}y_{t-1} + \varepsilon_t$$

avec ε_t un bruit blanc gaussien d'espérance nulle et de variance unitaire. On suppose que la condition initiale est déterministe : $y_0 = 1$. (1) Ce processus est-il stationnaire? (2) Calculer la probabilité que y_t soit inférieur à zéro pour t = 1, 2, 10, 100 et 500.

EXERCICE 6 Soit le processus AR(1):

$$y_t = \varphi y_{t-1} + \varepsilon_t$$

avec ε_t un bruit blanc gaussien d'espérance nulle et de variance σ_ε^2 , on suppose que $|\varphi|<1$. (1) Calculer la fonction d'autocovariance. et d'autocorrélation.

EXERCICE 7 Soit le processus AR(2) :

$$y_t = \varphi_1 y_{t-1} + \varphi_2 y_{t-2} + \varepsilon_t$$

où ε_t est un bruit blanc gaussien d'espérance nulle et de variance σ_{ε}^2 . (1) Caractériser les conditions sur les paramètres autorégressifs pour que le processus stochastique soit asymptototiquement stationnaire. (2) Quelle(s) condition(s) supplémentaire(s) faut-il poser pour que le processus stochastique soit stationnaire?

EXERCICE 8 Les processus suivants sont-ils asymptotiquement stationnaires :

- (a) $y_t = \frac{1}{2}y_{t-1} \frac{1}{4}y_{t-2} + \varepsilon_t$
- (b) $y_t = \frac{1}{4}y_{t-1} + \frac{1}{8}y_{t-2} + \varepsilon_t$
- (c) $y_t = \frac{1}{2}y_{t-1} + \frac{1}{16}y_{t-2} \frac{1}{32}y_{t-3} + \varepsilon_t$

avec ε_t un bruit blanc gaussien d'espérance nulle et de variance unitaire.

EXERCICE 9 Soit le processus AR(2) :

$$y_t = \frac{5}{6}y_{t-1} - \frac{1}{6}y_{t-1} + \varepsilon_t$$

avec ε_t un bruit blanc gaussien d'espérance nulle et de variance unitaire. Écrire la forme MA(∞) de ce processus stochastique.

EXERCICE 10 Soit le processus AR(3):

$$y_t = \frac{1}{2}y_{t-1} + \frac{1}{16}y_{t-2} - \frac{1}{32}y_{t-3} + \varepsilon_t$$

avec ε_t un bruit blanc gaussien d'espérance nulle et de variance unitaire. Calculer la fonction d'autocovariance.