Banco de Dados

Módulo Básico

Introdução

Tópicos:

- Modelos de Dados (1º, 2º e 3º geração)
- Modelo Conceitual
- Modelo Lógico
- Modelo Relacional

Modelo de Dados

- Modelo para organização dos dados de um banco de dados específico (esquema)
 - Define um conjunto de conceitos para representação de dados
 - <u>Exemplos</u>:
 - Entidade
 - Tabela
 - Atributo
 - Etc.

Modelo de Dados

- Existem modelos para diferentes níveis de abstração e representação de dados
 - Modelo Conceitual
 - Modelo Lógico
 - Modelo Físico
 - Organização dos arquivos de dados em disco
 - Organização sequencial, uso de índices hashing ou b-tree, etc.
 - Não são manipulados por usuários ou aplicações que acessam o BD (implementação de cada SGBD)

Modelo Conceitual

- Representação com alto nível de abstração
 - Modela de forma mais natural os fatos do mundo real, suas propriedades e seus relacionamentos
 - Independe do SGBD
 - Preocupação com a semântica da aplicação

Exemplo:

Modelo de Entidade Relacionamento (MER)

Modelo Lógico

- Representa os dados em alguma estrutura (lógica) de armazenamento de dados
 - Também chamados de modelos de banco de dados
 - Depende da tecnológica (SGBD)
- Exemplos:
 - Modelo Relacional (tabelas)
 - Modelos Hierárquicos e XML (árvores)
 - Modelo Orientado a Objetos (classes objetos complexos)

Alunos (matrícula, nome, anolngresso, curso)

Cursos (código, nome)

Modelos de BD (Lógicos)

- Suporte a métodos de acesso
 - Especificação dos conceitos do modelo (DDL)
 - Dados, seus domínios e restrições
 - Manipulação de conceitos modelados (DML)
- Esquema (lógico) de BD
 - Resultado da especificação dos dados de um determinado domínio de aplicação em um modelo de BD

Modelos de BD

- Primeira Geração
 - Modelos Pré-Relacionais
 - Modelo hierárquico e de Rede
- Segunda Geração
 - Modelos Relacionais
- Terceira Geração
 - Modelos Pós-Relacionais
 - Modelos orientados a objetos
 - Objeto relacional
 - Temporal | Geográfico | Etc.

Modelos de BD

- Modelos Pré-Relacionais
 - Modelos com várias limitações
 - Não representam adequadamente relacionamentos do mundo real
 - Exemplos:
 - Hierarquias (1:1 ou 1:N)
 - Inexistência de uma linguagem de consulta declarativa
 - Consultas exigem programação pela aplicação
 - Manipulam um registro por vez
 - Baixa performance de acesso

Modelos de BD

- Modelos Pós-Relacionais
 - Novos modelos de dados para atender os requisitos de alguns tipos de aplicação
 - Banco de Dados Orientado a Objetos
 - Dados com representação complexa
 - Banco de Dados Temporal
 - Considera a evolução dos dados
 - Suporta a representação da história dos dados (passado, presente e futuro)
 - Exemplos (Áreas de Aplicação):
 - Engenharia, geografia, medicina, etc.

- Características:
 - Organização dos dados
 - Atributo, relação, chave, etc.
 - Integridade
 - Restrições básicas para dados e relacionamentos
 - Manipulação
 - Linguagens formais e SQL

Organização:

- O modelo apresenta 5 (cinco) conceitos:
 - Domínio
 - Atributo
 - Tupla
 - Relação
 - Chave

Domínio:

- Conjunto de valores permitidos para um dado
- Exemplo:
 - Inteiro, string (domínios básicos)
 - Data, hora (domínios compostos)
 - [0,120], ["M", "F"] (domínios definidos)
- Para um domínio existem operações válidas
 - Inteiro (somar, dividir, ...)
 - Data (extrair dia, extrair mês, ...)
- Definição de domínios de dados
 - DDL

- Atributo:
 - Um item de dado do banco de dados
 - Possui um nome e um domínio
 - <u>Exemplos</u>:
 - Nome: string
 - Data_Nascimento: date
 - *Idade*: [0,120]
 - Definição do Atributo
 - DDL

Tupla (1):

- Um conjunto de pares (atributo + valor)
- Define uma ocorrência de um fato do mundo real ou de um relacionamento entre fatos
- Valor de um atributo
 - Definido no momento da criação de uma tupla

- Deve ser:

- Compatível com o domínio ou NULL (valor inexistente ou indeterminado)
- Atômico (indivisível, não estruturado e monovalorado)

Tupla (2):

Relação (1):

- Composto por um cabeçalho e um corpo
- <u>Cabeçalho</u>:
 - Número fixo de atributos (grau da relação)
 - Atributos não-ambíguos
- Corpo:
 - Número variável de tuplas (cardinalidade da relação)
 - Ordem não é relevante
 - Na teoria, uma relação é um conjunto de tuplas
 - Na prática, uma relação é uma coleção de tuplas
 - Neste caso, uma relação é nomeada de TABELA

Relação (2):

id_investidor integer	nome character varying(60)	valor_principal money		tx_juros double precision	valor_resultante money
3	Ribas de Freitas	R\$98.765,35			
1	José de Alencar	R\$80.554,44	6	0.15	R\$186.327,31
2	Paulo Maluf	R\$324.345,15	1	0.05	R\$340.562,40

- Chave (1):
 - Conjunto de um ou mais atributos de uma relação
 - Tipos de Chaves:
 - Chave Primária (Primary Key)
 - Atributo(s) cujo (combinação de) valor(es) identifica(m) unicamente uma tupla em uma relação
 - Conceitos associados (chaves candidatas e alternativas)
 - Exemplos:
 - Alunos (matrícula)
 - Cidades (nome, estado)

- Chave (2):
 - Conjunto de um ou mais atributos de uma relação
 - Tipos de Chaves:
 - Chave Estrangeira (Foreign Key)
 - Atributo(s) de uma relação R1 que estabelece(m) uma equivalência de valor com a chave primária de uma relação R2
 - -Se FK é uma chave estrangeira em R1 que faz referência à chave primária (PK) de R2, então:
 - » domínio (FK) = domínio (PK)
 - R1 e R2 podem ser a mesma relação

- Chave (3):
 - Conjunto de um ou mais atributos de uma relação
 - Tipos de Chaves:
 - Chave Estrangeira (Foreign Key)
 - Exemplo:

```
Alunos (<u>Código</u>, Nome, CPF, Curso <u>referencia</u> Código de Curso)

Cursos (<u>Código</u>, Descrição)
```

- Integridade:
 - Identificação para todos os dados
 - Garantia de acesso a todos os dados sem ambiguidade
 - Regra de Integridade de Entidade (RIE)
 - Garantia de relacionamentos válidos
 - Regra de Integridade Referencial (RIR)

- Regra de Integridade de Entidade (RIE):
 - Dada uma tupla de uma relação R
 - O valor de cada atributo que compõe a chave primária de (t) deve ser diferente de NULL
 - Não pode existir uma outra tupla (t) em R com o mesmo valor de chave primária de (t)

- Regra de Integridade Referencial (RIR):
 - Dada uma tupla (t) e uma chave estrangeira (fk) em (t)
 - O valor de (fk) pode ser igual à NULL se e somente se os atributos de (fk) não fizerem parte da chave primária de (t)
 - O valor de (fk) pode ser diferente de NULL se e somente se existir uma tupla (t) na relação referencial tal que a chave primária de (t) possuir o mesmo valor da (fk) de (t)

- Implicações da RIR:
 - Dadas duas relações (R1 e R2) e uma chave estrangeira (fk)
 em R1 que faz referência à chave primária de R2, três ações podem ser tomadas:
 - 1^a Impedimento:
 - A operação de atualização não é efetivada

- Implicações da RIR:
 - Dadas duas relações (R1 e R2) e uma chave estrangeira (fk)
 em R1 que faz referência à chave primária de R2, três ações podem ser tomadas:
 - 2ª Cascata:
 - Se ocorrer a E de uma tupla (t) de R2, então E toda a tupla de R1 tal que (fk) faça referência à chave primária de (t)

- Implicações da RIR:
 - Dadas duas relações (R1 e R2) e uma chave estrangeira (fk)
 em R1 que faz referência à chave primária de R2, três ações podem ser tomadas:
 - 2ª Cascata:
 - Se ocorrer uma A da chave primária de uma tupla (t) de R2, então A o valor da (fk) de toda tupla de R1 que faça referência ao valor antigo da chave primária de (t) para o novo valor da chave primária de (t)

- Implicações da RIR:
 - Dadas duas relações (R1 e R2) e uma chave estrangeira (fk)
 em R1 que faz referência à chave primária de R2, três ações podem ser tomadas:
 - 3ª Anulação:
 - Se ocorrer uma E de uma tupla (t) de R2, então para toda a tupla de R1 tal que (fk) faça referência à chave primária de (t) faça (fk) = NULL

EXERCÍCIOS

Referências

ELMASRI, R.; NAVATHE, S. B. Sistemas de Banco de Dados: Fundamentos e Aplicações. Pearson, 2018.

HARRINGTON, J. L. Projeto de Bancos de Dados Relacionais - Teoria e Prática. 1.ed. Campus, 2015.

SILBERSCHATZ, A.; KORTH, H. F.; SUDARSHAN, S. Sistema de Banco de Dados. Campus, 2006.

Aula 03 | Módulo Básico