Kalman filter(Partial Pooling)

LinyiGuo2019/8/11

```
rm(list = ls())
set.seed(9483)
```

Data is from NIKE and ADIDAS.

##

residuals.fracdiff

Data Understanding & Arima Analysis

```
library(ggfortify)
## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
    method
                   from
##
     [.quosures
                   rlang
##
     c.quosures
                   rlang
##
    print.quosures rlang
library(forecast)
## Registered S3 method overwritten by 'xts':
##
    method
               from
##
     as.zoo.xts zoo
## Registered S3 method overwritten by 'quantmod':
##
                      from
##
     as.zoo.data.frame zoo
## Registered S3 methods overwritten by 'forecast':
##
    method
                           from
##
    autoplot.Arima
                         ggfortify
##
    autoplot.acf
                           ggfortify
                           ggfortify
##
    autoplot.ar
##
    autoplot.bats
                           ggfortify
     autoplot.decomposed.ts ggfortify
##
    autoplot.forecast
##
                           ggfortify
##
                           ggfortify
##
                           ggfortify
##
    autoplot.ts
                           ggfortify
##
    fitted.ar
                           ggfortify
##
    fitted.fracdiff
                           fracdiff
##
    fortify.ts
                           ggfortify
##
    residuals.ar
                           ggfortify
                           fracdiff
```

Nike quarterly sales from 2005 to 2018

Adidas quarterly sales from 2005 to 2018


```
# Time Series Decomposition
decompose_nike <- decompose(data_nike, "additive")
autoplot(decompose_nike)</pre>
```

Decomposition of additive time series

decompose_adi <- decompose(data_adi, "additive")
autoplot(decompose_adi)</pre>


```
# Fit Arima model
arima_nike <- auto.arima(data_nike)
arima_adi <- auto.arima(data_adi)

# Model diagnostic
ggtsdiag(arima_nike)</pre>
```

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

ggtsdiag(arima_adi)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic


```
# correlation between trends
# two trends have strong positive correlation 0.9211
cor(decompose_nike$trend[3:54], decompose_adi$trend[3:54])
```

[1] 0.9210953

```
# correlation between seasonal
# positive correlation 0.7563
cor(decompose_nike$seasonal,decompose_adi$seasonal)
```

[1] 0.7563281

The residuals:

- seem like white noise around 0
- have no significant correlations
- \bullet p values are well above 0.05

Comment: Ljung-Box is used to test the independence, and the hypothesis being tested is that the residuals from the ARIMA model have no autocorrelation.

Kalman Filter

Analyse separately

NIKE

Seasonal component from Kalman Filter


```
autoplot(coef(out_nike, states = "trend")) +
labs(title = 'Trend component from Kalman Filter', y = 'trend')
```

Trend component from Kalman Filter

Seasonal component from Kalman Filter(var_T=0.1)


```
autoplot(coef(out_nike1, states = "trend")) +
labs(title = 'Trend component from Kalman Filter', y = 'trend')
```

Trend component from Kalman Filter

Seasonal component from Kalman Filter


```
autoplot(coef(out_nike2, states = "trend")) +
labs(title = 'Trend component from Kalman Filter', y = 'trend')
```

Trend component from Kalman Filter

We can tell from the results above:

- we don't name Q in SSMseasonal -> seasonal is invariant
- decrease variance of noise in obs equation (keep other params' values, the same below) -> Trend will be spickier
- decrease variance of noise of trend -> Trend will be smoother

Comparison

```
# Seasonal
plot(decompose_nike$seasonal,ylab='',ylim=c(-350,450))
par(new=TRUE)
plot(ts(rowSums(coef(out_nike, states = "seasonal")[,c(1,3)]),
            frequency = 4, start = c(2005,1),
     lty=2, col="green", ylab='',ylim=c(-350,450))
par(new=TRUE)
plot(ts(rowSums(coef(out_nike1, states = "seasonal")[,c(1,3)]),
            frequency = 4, start = c(2005,1),
     lty=3, col="red", ylab='',ylim=c(-350,450))
par(new=TRUE)
plot(ts(rowSums(coef(out_nike2, states = "seasonal")[,c(1,3)]),
            frequency = 4, start = c(2005,1)),
     lty=4, col="blue", ylab='',ylim=c(-350,450))
title(main = 'Comparison of seasonal', ylab = 'seasonal')
legend('topleft', c('Arima','Q_T=1','Q_T=0.1','H=0.1'),lty=c(1,2,3,4),col=c('black','green','red','blue
```

Comparison of seasonal

Comparison of trend

ADIDAS(SKIP)

Partial Pooling

```
## Smoothed values of states and standard errors at time n = 56:
##
                         Estimate
                                    Std. Error
## level.data_nike
                                       0.8007
                         9602.5839
## level.data_adi
                         6363.6043
                                       0.8007
## sea_trig1.data_nike
                         -182.7943
                                       0.2330
## sea_trig*1.data_nike
                                       0.2330
                         -275.6700
## sea_trig2.data_nike
                          -94.1114
                                       0.1500
## sea_trig1.data_adi
                          -81.9219
                                       0.2330
## sea_trig*1.data_adi
                         -210.1138
                                       0.2330
## sea_trig2.data_adi
                         -314.8360
                                       0.1500
```

Trend component comparison

Seasonal Components' Comparison of Nike

Seasonal Components' Comparison of Adi

Seasonal Adjustment Results(NIKE)

Seasonal Adjustment Results(Adi)

Different Situations

Change the correlation of trend into 1 (correlated)

```
##
                         Estimate
                                     Std. Error
## level.data_nike
                         8858.8732
                                        0.6309
## level.data_adi
                         7127.0518
                                        0.6309
## sea_trig1.data_nike
                         -166.2265
                                        0.2327
## sea_trig*1.data_nike
                         -292.2378
                                        0.2327
## sea_trig2.data_nike
                          -85.8275
                                        0.1499
## sea_trig1.data_adi
                          -99.0479
                                        0.2327
## sea_trig*1.data_adi
                         -192.9878
                                        0.2327
## sea_trig2.data_adi
                         -323.3989
                                        0.1499
```

```
# Trend
## upper line is Nike, the other one is Adidas
ts.plot(coef(out_combination1, states="trend"), ylim=c(1500,10000))
par(new=TRUE)
ts.plot(coef(out_combination, states = "trend"), col=2, lty=2, ylim=c(1500,10000))
legend('topleft', c('Cor=1','Cor=0'),lty=c(1,2),col=c(1,2))
title(main='Comparison of Trend Between Correlated and Uncorrelated')
```

Comparison of Trend Between Correlated and Uncorrelated

Comparison of seasonal(NIKE)

difference of seasonal components Under Cor=1 and Cor=0(NIKE)

Comparison of seasonal(Adi)

difference of seasonal components Under Cor=1 and Cor=0(Adi)

Change the covariance matrix(variance) of seasonal

Note: The models we used before are all based on invariant seasonal component, now we move on to Gaussian seasonal.

Working on single case first(NIKE)

Change the variance of seasonal from 0 to 0.01 (Q=H=1)

Seasonal(NIKE)

Seasonal Adjustment(NIKE)


```
# trend
plot(coef(out_nike_seasonal0.01,states = "trend"), ylab='',ylim=c(3000,10000))
par(new=TRUE)
plot(decompose_nike$trend,ylab='',col=2,lty=2,ylim=c(3000,10000))
legend("topleft", c('Kalman(Q_sea=0.01)','Arima'),lty=c(1,2),col=c(1,2))
title(main='Trend (NIKE)')
```

Trend (NIKE)


```
# residuals
plot(data_nike-rowSums(coef(out_nike_seasonal0.01)),ylim=c(-500,500),ylab='')
par(new=TRUE)
plot(decompose_nike$random, ylim=c(-500,500), ylab='',lty=2,col=2)
legend("topleft", c('kalman(Q_sea=0.01)','Arima'),lty=c(1,2),col=c(1,2))
title(main="Residuals(NIKE)")
```

Residuals(NIKE)

variance of seasonal is equal to 1

Seasonal(NIKE)

Seasonal Adjustment(NIKE)


```
# trend
plot(coef(out_nike_seasonal1,states = "trend"), ylab='',ylim=c(3000,10000))
par(new=TRUE)
plot(decompose_nike$trend,ylab='',col=2,lty=2,ylim=c(3000,10000))
legend("topleft", c('Kalman(Q_sea=1)','Arima'),lty=c(1,2),col=c(1,2))
title(main='Trend (NIKE)')
```

Trend (NIKE)


```
# residuals
plot(data_nike-rowSums(coef(out_nike_seasonal1)),ylim=c(-400,500),ylab='')
par(new=TRUE)
plot(decompose_nike$random, ylim=c(-400,500), ylab='',lty=2,col=2)
legend("topleft", c('kalman(Q_sea=1)','Arima'),lty=c(1,2),col=c(1,2))
title(main="Residuals(NIKE)")
```

Residuals(NIKE)

