ANALYSIS FOR DIABETES USING GRAPHICAL LASSO

Y.K. Kim*, Y. Yun, M. Yoon & H. Nakayama Graduate School of Science and Engineering Kansai University, Japan

Contents

- Background and Purpose
- Basic Analysis
 - T-test
 - correlation analysis
- Graphical Lasso and Structure Analysis
- Importance in Support Vector Machines
- Conclusion

Background

- Recently, approximately 60% of total deaths are caused by lifestyle diseases.
- Especially, diabetes may affect serious illnesses, for example, cerebral infarction and myocardial infarction.

Fig.1: The demographic statistics of Japan, 2015 (source: Demographic Statistics, Ministry of Health, 2015

Related works

- Predictive modeling and analytics for diabetes using a machine learning approach
 - V. Kumari and H. Kaur
 - Applied Computing and Informatics, 2008
- A method for classification using machine learning technique for diabetes
 - R. Aishwarya, P. Gayathri, et al.
 - International Journal of Engineering and Technology, 2013
- Prediction of diabetes using classification algorithm
 D. Sisodia and D. S. Sisodia
 - Procedia Computer Science, 2018

Purpose

For Pima Indians diabetes data,

- to investigate whether a structure change exists between data for diabetics and for non-diabetics by using graphical lasso
 - to compare a direct correlation between factors
 - to evaluate a change score between non-diabetics and diabetics
- to investigate importance for each factor for detecting diabetes by using SVM

It will be expected for increasing the effectiveness in disease prevention and health promotion

Graphical Lasso

- Data set $D = \left\{ \boldsymbol{x}^{(i)} \mid i = 1, ..., l \right\}, \boldsymbol{x} \in \mathbb{R}^m$
- \bullet m dimensional multivariate normal distribution

$$N(\boldsymbol{x} \mid 0, \Lambda^{-1}) = \frac{(\det \Lambda)^{1/2}}{(2\pi)^{m/2}} \exp\left(-\frac{1}{2}\boldsymbol{x}^{T}\Lambda\boldsymbol{x}\right)$$

In the graphical lasso, the precision matrix $\Lambda:=\Sigma^{-1}$ is estimated by the following the maximum likelihood method with an L_1 regularization.

$$\Rightarrow \Lambda^* = \arg\max_{\Lambda} \left(\ln \det \Lambda - \operatorname{tr}(S\Lambda) - \underline{\rho||\Lambda||_1} \right)$$

S: covariance matrix for given data

making a sparse structure depending on ho

 $\rho > 0$: given regularization parameter

Structure analysis by graphical lasso

• Precision matrix $\Lambda = (\lambda_{ij}) \implies \text{adjacency matrix}$ which yields a direct correlation between x_i and x_j

$$\Lambda = \begin{pmatrix} * & * & * & * & * & * & 0 \\ * & * & * & * & * & 0 \\ * & * & * & 0 & 0 & 0 \\ * & * & 0 & * & 0 & 0 \\ * & * & 0 & 0 & * & 0 \\ 0 & 0 & 0 & 0 & 0 & * \end{pmatrix} \qquad \Box$$

Fig. 2 : Correlation graph between x_i and x_j based on an adjacency matrix

Structural difference for two data sets

$$\Lambda = \begin{pmatrix}
* & * & * & * & * & 0 \\
* & * & * & * & * & 0 \\
* & * & * & 0 & 0 & 0 \\
* & * & 0 & * & 0 & 0 \\
* & * & 0 & 0 & * & 0 \\
0 & 0 & 0 & 0 & 0 & *
\end{pmatrix}$$

Fig.3: Correlation for a dataset 1

Fig.4: Correlation for a dataset 2

VS.

Support Vector Machines (SVM)

- Powerful tool for machine learning
- Proposed by Vapnik and Chervonenkis in statistical learning theory
 - classification (Cortes & Vapnik, 1995)
 - regression (Vapnik et al., 1996)
- Main features
 - evaluation of generalization ability by VC-dimension
 - maximal margin linear classifier on the feature space
 - kernel representation

Support Vector Machines (SVM)

Mapping data from input space to feature space

X : original input space

linearly non-separable>

Z: high dimensional feature space < linearly separable >

Support Vector Machines (SVM)

There exist many hyperplanes to separate two classes

Which one should we choose?

How can we find an optimal one?

Margin in SVM

 SVM finds a separating hyperplane far away as possible from two classes by maximizing the margin.

Overview of data

- Pima Indians diabetes (1990) downloaded https://www.kaggle.com/
 - 768 women with 8 factors
 - # non-diabetics = 500, # diabetics = 268

	factor	description	Value
	Pregnancies	Number of times pregnant	-
	Glucose	Plasma glucose concentration in a 2 hours in oral glucose tolerance test	mg/dl
	Blood Pressure	Diastolic blood pressure	mm Hg
	Skin Thickness	Triceps skin fold thickness	mm
	Insulin	2-hour serum insulin	mu U/ml
	BMI	Body mass index	kg/m^2
	Diabetes Pedigree Function	Diabetes Pedigree Function	-
2019/	Age	Years	-

Flow of the analysis

T-test and Correlation analysis

Analysis between factors by Graphical Lasso

Evaluation for importance of each factor by SVM

Comparison (1) for averages by T-test

factor	T-value	P-value
Pregnancies	-5.91	0.00
Glucose	-13.75	0.00
Blood Pressure	-1.71	0.09
Skin Thickness	-1.97	0.05
Insulin	-3.30	0.00
BMI	-8.62	0.00
Diabetes Pedigree Function	-4.58	0.00
Age	-6.92	0.00

Comparison (2) for correlation matrices

	Pregnancies	Glucos ⇒ no indirect correlation between factors							
							Function		
Pregnancies		0.10	0.13	-0.12	-0.13	0.02	-0.08	0.57	For Non-
Glucose	-0.05	-	0.19	0.02	0.35	0.13	0.10	0.23	diabetics
Blood Pressure	0.13	0.07		0.19	0.07	0.36	0.03	0.21	
Skin Thickness	-0.08	0.04	0.23		0.41	0.44	0.10	-0.16	
Insulin	-0.08	0.26	0.09	0.46	_	0.25	0.23	-0.15	
ВМІ	-0.16	0.05	0.13	0.31	0.06	-	0.07	0.04	
Diabetes Pedigree Function	-0.07	0.03	0.03	0.27	0.10	0.14		0.04	
Age	0.44	0.10	0.26	-0.09	0.02	-0.19	-0.09	-	

Comparison (3) for structures by graphical lasso

Fig. 5: Structures based on adjacency matrices

the relation not appearing in diabetics: the new relation not appearing in non-diabetics

Change Score*

defined by
$$a_i$$
: = $\frac{1}{2} \ln \frac{\Lambda_{ii}}{\Lambda_{'ii}} - \frac{1}{2} \left\{ \frac{[\Lambda S \Lambda]_{ii}}{\Lambda_{ii}} - \frac{[\Lambda' S \Lambda']_{ii}}{\Lambda'_{ii}} \right\}$

Source:

Change detection from heterogeneous data sources, Tsuyoshi ide, 2014

factor	score
Pregnancies	0.039
Glucose	0.023
Blood Pressure	0.023
Skin Thickness	0.015
Insulin	0.014
BMI	0.063
Diabetes Pedigree Function	0.011
Age	0.037

Importance for each factor in SVM

Summary

- The change score in BMI is the highest(change score = 0.063) among all factors between data.
- On the other hand, Diabetes Pedigree Function shows that change score between non-diabetics and diabetics is not high.
- Also, Pregnancies (correlation value = 0.44) is due to a high correlation value with age, change score is high.
- The results of t-test and SVM show that BMI and Glucose are important factor for diabetes diagnosis.
- On the other hand, pregnancies and diabetes pedigree function are not so important factor in the diagnosis of diabetes.

Conclusion

- The results suggest that BMI is one of the most influential factors for diabetes diagnosis.
- In the future, we will consider not only the graphical lasso but also other methods to compare the important factors of diabetes diagnosis.
- In addition, we are going to apply graphical lasso to feature selection in SVM.

Reference

- Demographic statics, Ministry of Health, 2015.
- Data Health, Ministry of Health, 2017
- Anomaly Detection and Change Detection, Tshuyoshi Ide, 2009
- Sparse gaussian markov random field mixtures for anomaly detection, Tshuyoshi ide, 2016
- Pima Indians Diabetes Database, Kaggle, 2007 https://www.kaggle.com/

Age vs. Glucose

Skin Thickness vs. Diabetes Pedigree Function

