First Order Conditions:

Households

$$u_{t} = c_{t}^{\nu_{EZ}} \left(1 - L\right)^{(1 - \nu_{EZ})}$$

$$ev_{t} = v_{t+1}^{1 - \gamma_{EZ}}$$

$$v_{t} = (1 - \beta)u_{t}^{\frac{1 - \gamma_{EZ}}{\theta_{EZ}}} + \beta \left(ev_{t}^{\frac{1}{\theta_{EZ}}}\right)^{\frac{\theta_{EZ}}{1 - \gamma_{EZ}}}$$

$$\frac{1 - \nu_{EZ}}{\nu_{EZ}} \frac{c_{t}}{1 - L_{t}} = P_{m}(1 - \alpha)\frac{Y_{t}}{L_{t}}$$

$$\Lambda_{t} = \left(\frac{u_{t+1}}{u_{t}}\right)^{\frac{1 - \gamma_{EZ}}{\theta_{EZ}}} \frac{c_{t}}{c_{t+1}} \left(v_{t+1}^{\frac{1 - \gamma_{EZ}}{ev_{t}}}\right)^{1 - \frac{1}{\theta_{EZ}}}$$

$$\beta \Lambda_{t} R_{t+1} = 1$$

Financial Intermediaries

$$\begin{split} \nu_t &= (1-\theta)\beta \Lambda_{t+1}(R_{k,t+1} - R_t) + \beta \Lambda_{t+1}\theta x_{t+1}\nu_{t+1} \\ \eta_t &= (1-\theta) + \beta \Lambda_{t+1}\theta z_{t+1}\eta_{t+1} \\ \phi_t &= \frac{\eta_t}{\lambda - \nu_t} \\ z_t &= (R_{k,t+1} - R_t)\phi_{t-1} + R_{t-1} \\ x_t &= \frac{\phi_t}{\phi_{t-1}} z_t \\ Q_t K_t &= \phi_t N_t \\ N_t &= N_{et} + N_{nt} \\ N_{et} &= \theta z_t N_{t-1}(-e_{Ne,t}) \\ N_{nt} &= \omega Q_t \xi_t K_{t-1} \end{split}$$

Final good producer

$$R_{k,t} = P_{mt} \alpha \frac{Y_{mt}}{K_{t-1}} + \xi_t \frac{Q_t - \delta_t}{Q_{t-1}}$$
$$Y_{mt} = a_t \xi_t U_t K_{t-1}^{\alpha} L_t^{1-\alpha}$$

Capital Good Producer

$$\begin{split} Q_t &= 1 + \frac{\eta_i}{2} \left(\frac{I_n + I_{ss}}{I_{n,\tau-1} + I_{ss}} - 1 \right)^2 + \eta_i \left(\frac{I_n + I_{ss}}{I_{n,\tau-1} + I_{ss}} - 1 \right) \frac{I_n + I_{ss}}{I_{n,\tau-1} + I_{ss}} \\ &- \beta \Lambda_{t+1} \eta_i \left(\frac{I_n + I_{ss}}{I_n + I_{ss}} - 1 \right) \left(\frac{I_n + I_{ss}}{I_n + I_{ss}} \right)^2 \\ \delta_t &= \delta_c + \frac{b}{1 + \zeta} U_t^{1+\zeta} \\ \delta_t &= \delta_c + \frac{b}{1 + \zeta} U_t^{1+\zeta} \\ P_{mt} \alpha \frac{Y_{m,t}}{U_t} &= b U_t^{\zeta} \xi_t K_{t-1} \\ In &= I_t - \delta - t \xi_t K_{t-1} \\ K_t &= \xi_t K_{t-1} + In \\ G_t &= G_{ss} g_t \end{split}$$

Equilibrium

$$\begin{split} Y_t &= c_t + G_t I_t + \frac{\eta_i}{2} \left(\frac{I_n + I_{ss}}{I_{n,t-1} + I_{ss}} - 1 \right)^2 (I_n + I_{ss}) \\ Y_{mt} &= Y_t D_t \\ D_t &= \gamma D_{t-1} \pi_{t-1}^{-\gamma_P \epsilon} \pi^\epsilon + (1 - \gamma) \left(\frac{1 - \gamma \pi_{t-1}^{\gamma_P (1 - \gamma)} \pi^{\gamma - 1}}{1 - \gamma} \right)^{\frac{-\epsilon}{1 - \gamma}} \\ x_t &= \frac{1}{P_{mt}} \\ F_t &= Y_t P_{mt} + \beta \gamma \Lambda_{t+1} \pi_{t+1}^\epsilon \pi^{-\epsilon \gamma_P} F_{t+1} \\ Z_t &= Y_t + \beta \gamma \Lambda_{t+1} \pi_{t+1}^{\epsilon - 1} \pi_t^{\gamma_P (1 - \epsilon)} Z_{t+1} \\ \pi_t^* &= \frac{\epsilon}{\epsilon - 1} \frac{F_t}{Z_t} \pi_t \\ \pi^{1 - \epsilon} &= \gamma \pi_{t-1}^{\gamma_P (1 - \epsilon)} + (1 - \gamma) (\pi_t^*)^{1 - \epsilon} \\ i_t &= R_t \pi_{t+1} \\ i_t &= i_{t-1}^{\rho_i} \left(\frac{1}{\beta} \pi_t^{\kappa_\pi} \left(\frac{X_t}{\frac{\epsilon}{\epsilon - 1}} \right)^{\kappa_y} \right)^{1 - \rho_i} e_{it} \end{split}$$

shocks

$$a = \rho_{a}a_{t-1} - e_{a}$$

$$\xi_{t} = \rho_{\xi}\xi_{t-1} - e_{\xi}$$

$$g_{t} = \rho_{g} * g_{t-1}$$

$$K_{eff,t} = \xi_{t}K_{t-1}$$

$$w_{t} = P_{mt} (1 - \alpha) \frac{Y_{t}}{L_{t}}$$

$$VMPK_{t} = P_{mt}\alpha \frac{Y}{\xi_{t}K_{t-1}}$$

$$W_{elf,t} = \log (C_{t} - hhC_{t-1}) - \frac{\chi L_{t}^{1+\varphi}}{1+\varphi} + \beta * W_{elf,t+1}$$

$$prem = \frac{R_{k,t+1}}{R_{t}}$$

Parameter	Restriction	Description	Value
Households			
γ_{EZ}		risk aversion	
ψ_{EZ}		Elasticity of intertemporal substitution	
$ heta_{EZ}$		deviation with respect to the benchmark CRRA	
$ u_{EZ}$		labor supply	
$f \ f$	$0 < \beta < 1$	discount factor	0.99
		fraction of bankers in the household	
(1-f)		fraction of workers	
heta	$0 < \theta < 1$	prob. bankes stay bankers in the next period	
$\frac{1}{1- heta}$		average survival time	
Financial Intermediate			
λ		fraction of Banker's possible diverable assets	
au		central bank efficiency cost per unit supplied	
$\delta,\delta(U)$		depreciation rate	0.025
ψ		fraction of assets the government is willing to fund	
Intermediate good firms			
α		Effective Capital share	0.33
U		Steady state capital utilization rate	1.0
$\delta(U)$		Steady state depreciation rate	
ζ		Elasticity of marginal depreciation with respect to utilization rate	7.2
Captial			
η_i		Inverse elasticity of net investment of the price of capital	1.728
Retail firms			
ϵ		Elasticity of substitution	4.167
γ		Probability of keeping prices fixed	0.779
γ_P		Measure of price indexation	0.241
Government			
κ_{π}		Inflation coefficient of the Taylor rule	1.5
κ_y		Output gap coefficient of the Taylor rule	0.5/4
$ ho_i$		Smoothing parameter of the Taylor rule	0.8
$rac{ ho_i}{rac{G}{Y}}$		Steady state proportion of government expenditures	0.200

Literature	γ_{EZ}	ψ_{EZ}
Caldara, Fernandez		
Rubio-Ramirez, Yao 2011	2, 5, 10, 40	0.5, 1.5
Sunbae An	10	1.25
Bansal, Yaron 2004	7.5, 10	0.5, 1.5
van Binsbergen, Fernandez-Villaverde		
Koijen, Rubio-Ramirez 2010	79.34	1.731

	D 1.0
Variable Households	Description
C_t	consumption
	consumption Family labor graphy
$egin{array}{c} L_t \ R_t \end{array}$	Family labor supply Gross real return from $t-1$ to t
B_t	
W_t	total quantity short term debt the household acquires Real Wage
Π_t	net payouts to the households from ownership of (non)-financial firms
T_t	lump sum tax
$arrho_t$	marginal utility of consumption
$\Lambda = rac{arrho_t}{arrho_t}$	marginar definer of consumption
Capital Producing Firms	
I_t	gross capital created
$\delta(U_t)\xi_t K_t$	quantity of capital refurbished
$I_{nt} \equiv I_t - \delta(U_t)\xi_t K_t$	net capital created
I_{ss}	steady state investment
Financial intermediaries	
N_{jt}	amount of net worth that Banker j has at the end of periot t
S_{jt}	the quantity of financial claims on
_	non-financial firms on the intermdiary's balance sheet
Q_t	the relative price of each claim
B_{jt}	the intermediary's debt
R_{kt+1}	intermediary's return on assets
$eta \Lambda_{t,t+1}$	stochastic discount the banker at t
V_{jt}	banker's losts from diverting
$x_{t,t+i}$	gross rate in assets between t and $t+i$
$z_{t,t+i}$	gross rate of net worth
$ u_t$	expected discounted marginal gain of the banker of
	expanding assets $Q_t S_{jt}$ by a unit
η_t	expected discounted value of having another unity of $N_{j,t}$
$Q_t S_{jt}$	value of assets Banker j holds
ϕ_t	ratio of privatly intermediated assets to equity
N_{et}	sum of net worth of entering banker
$N_{nt} \atop \omega$	net worth of entering bankers
$\frac{\omega}{1-\theta}$	value of asset intermediated via government
Credit policy	
$Q_t S_{gt}$	value of assets intermediated via government
ψ_t	fraction central bank is willing to fund of intermediated assets
ϕ_{ct}	leverage ratio for total intermediated funds
Firm	Vanital acquired by the firm
$K_{t+1} \ Y_t$	Kapital acquired by the firm
$U_t^{T_t}$	output produced by the firm Utilization rate of capital
$egin{array}{c} A_t \ P_{mt} \end{array}$	total factor productivity relative intermediate price
	Quality of Capital
$rac{\xi_t}{\xi_t K}$	effective quantity of capital
$\xi_t K_t$	enective quantity of capital