Estimation Notes 3.8 - 3.9 pp.45 - 50

Key Points: Vector Parameter CRLB for Transformations; CRLB for the General Gaussian Case

1. Vector Parameter CRLB for Transformations

1. Assume that it is desired to estimate $\alpha = \mathbf{g}(\boldsymbol{\theta})$, and \mathbf{g} is an r-dimensional function. Then we have

$$\mathbf{C}_{\hat{\boldsymbol{\alpha}}} - \frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})^{\mathrm{T}}}{\partial \boldsymbol{\theta}} \ge \mathbf{0}$$
(3.30)

where, as before, ≥ 0 is to be interpreted as **positive semidefinite**. Note that $\partial \mathbf{g}(\boldsymbol{\theta})/\partial \boldsymbol{\theta}$ is the $r \times p$ Jacobian Matrix defined as

$$\frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial g_1(\boldsymbol{\theta})}{\partial \theta_1} & \frac{\partial g_1(\boldsymbol{\theta})}{\partial \theta_2} & \dots & \frac{\partial g_1(\boldsymbol{\theta})}{\partial \theta_p} \\ \frac{\partial g_2(\boldsymbol{\theta})}{\partial \theta_1} & \frac{\partial g_2(\boldsymbol{\theta})}{\partial \theta_2} & \dots & \frac{\partial g_2(\boldsymbol{\theta})}{\partial \theta_p} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_r(\boldsymbol{\theta})}{\partial \theta_1} & \frac{\partial g_r(\boldsymbol{\theta})}{\partial \theta_2} & \dots & \frac{\partial g_r(\boldsymbol{\theta})}{\partial \theta_p} \end{bmatrix}$$

2. Example 3.8 CRLB for Signal-to-Noise Ratio

Consider a DC level in WGN with A and σ^2 unknown. We wish to estimate $\alpha = A^2/\sigma^2$ which can be considered to be the SNR for a single sample. Here $\boldsymbol{\theta} = [A, \sigma^2]^T$ and $g(\boldsymbol{\theta}) = \theta_1^2/\theta_2 = A^2/\sigma^2$. Then from Example 3.6 we have

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{N}{\sigma^2} & 0\\ 0 & \frac{N}{2\sigma^4} \end{bmatrix}$$

the Jacobian is

$$\frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial g(\boldsymbol{\theta})}{\partial \theta_1} & \frac{\partial g(\boldsymbol{\theta})}{\partial \theta_2} \end{bmatrix} = \begin{bmatrix} \frac{\partial g(\boldsymbol{\theta})}{\partial A} & \frac{\partial g(\boldsymbol{\theta})}{\partial \sigma^2} \end{bmatrix} = \begin{bmatrix} \frac{2A}{\sigma^2} & -\frac{A^2}{\sigma^4} \end{bmatrix}$$

so that

$$\frac{\partial \mathbf{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{g}(\boldsymbol{\theta})^{\mathrm{T}}}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{2A}{\sigma^2} & -\frac{A^2}{\sigma^4} \end{bmatrix} \begin{bmatrix} \frac{\sigma^2}{N} & 0 \\ 0 & \frac{2\sigma^4}{N} \end{bmatrix} \begin{bmatrix} \frac{2A}{\sigma^2} \\ -\frac{A^2}{\sigma^4} \end{bmatrix} = \frac{4\alpha + 2\alpha^2}{N}$$

finally we have

$$var(\hat{\alpha}) \ge \frac{4\alpha + 2\alpha^2}{N}$$

3. It is noteworthy that for vector parameter transformations, the linearity is maintained.

2. CRLB for the General Gaussian Case

4. In the case of Gaussian Observations we can derive the CRLB that that generalizes (3.14). Assume that both the mean and covariance of \mathbf{x} may depend on $\boldsymbol{\theta}$

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}(\boldsymbol{\theta}), \mathbf{C}(\boldsymbol{\theta}))$$

then the Fisher Information Matrix is given by

$$[\mathbf{I}(\boldsymbol{\theta})]_{ij} = \left[\frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial \theta_i}\right]^{\mathrm{T}} \mathbf{C}^{-1}(\boldsymbol{\theta}) \left[\frac{\partial \boldsymbol{\mu}(\boldsymbol{\theta})}{\partial \theta_j}\right] + \frac{1}{2} \mathrm{tr} \left[\mathbf{C}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{C}(\boldsymbol{\theta})}{\partial \theta_i} \mathbf{C}^{-1}(\boldsymbol{\theta}) \frac{\partial \mathbf{C}(\boldsymbol{\theta})}{\partial \theta_j}\right]$$
(3.31)

where

$$rac{\partial oldsymbol{\mu}(oldsymbol{ heta})}{\partial heta_i} = \left[egin{array}{c} rac{\partial [oldsymbol{\mu}(oldsymbol{ heta})]_1}{\partial heta_i} \ & rac{\partial [oldsymbol{\mu}(oldsymbol{ heta})]_2}{\partial heta_i} \ & dots \ & rac{\partial [oldsymbol{\mu}(oldsymbol{ heta})]_N}{\partial heta_i} \end{array}
ight]$$

$$\frac{\partial \mathbf{C}(\boldsymbol{\theta})}{\partial \theta_i} = \begin{bmatrix}
\frac{\partial [\mathbf{C}(\boldsymbol{\theta})]_{11}}{\partial \theta_i} & \frac{\partial [\mathbf{C}(\boldsymbol{\theta})]_{12}}{\partial \theta_i} & \cdots & \frac{\partial [\mathbf{C}(\boldsymbol{\theta})]_{1N}}{\partial \theta_i} \\
\frac{\partial [\mathbf{C}(\boldsymbol{\theta})]_{21}}{\partial \theta_i} & \frac{\partial [\mathbf{C}(\boldsymbol{\theta})]_{22}}{\partial \theta_i} & \cdots & \frac{\partial [\mathbf{C}(\boldsymbol{\theta})]_{2N}}{\partial \theta_i} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial [\mathbf{C}(\boldsymbol{\theta})]_{N1}}{\partial \theta_i} & \frac{\partial [\mathbf{C}(\boldsymbol{\theta})]_{N2}}{\partial \theta_i} & \cdots & \frac{\partial [\mathbf{C}(\boldsymbol{\theta})]_{NN}}{\partial \theta_i}
\end{bmatrix}$$

5. For the scalar parameter case in which

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}(\theta), \mathbf{C}(\theta))$$

this reduces to

$$I(\theta) = \left[\frac{\partial \boldsymbol{\mu}(\theta)}{\partial \theta}\right]^{\mathrm{T}} \mathbf{C}^{-1}(\theta) \left[\frac{\partial \boldsymbol{\mu}(\theta)}{\partial \theta}\right] + \frac{1}{2} \mathrm{tr}\left[\left(\mathbf{C}^{-1}(\theta) \frac{\partial \mathbf{C}(\theta)}{\partial \theta}\right)^{2}\right]$$
(3.32)