Additive Feature Attribution

What we Gained, What we Lost

When we switched from Logistic Regression to GBTs we gained a lot

- A reliable proxy model
- A well defined feature and transparent importance definition
- Sparse and reliable importance scores

What we Gained, What we Lost

When we switched from Logistic Regression to GBTs we gained a lot

- A reliable proxy model
- A well defined feature and transparent importance definition
- Sparse and reliable importance scores

However, we also lost something:

With Linear Regression, we used to be able to:

- Identify the direction of the correlation (through the coefficient sign)
- ...And explain individual examples, by looking at the difference:

$$\theta^T x - \mathbb{E}_{x' \in P(X)} \left[\theta^T x' \right]$$

Explaining Individual Examples

Let's look again at the last equation:

$$\theta^T x - \mathbb{E}_{x' \in P(X)} \left[\theta^T x' \right]$$

- lacktriangleright Assuming P(X) is approximated by using a sample...
- ...Then $\mathbb{E}_{x' \in P(X)} \left[\theta^T x' \right]$ is just the average prediction on the data

I.e. it is the prediction we could make without access to any input value

Therefore, the difference above represents the gap between:

- ...What we can predict given all information on one example
- ...And what we can predict with no such information

It's the collective value of all available information

Explaining Individual Examples

Due to linearity, the formula can be rewritten as:

$$\theta^T x - \mathbb{E}_{x' \in P(X)} \left[\theta^T x' \right] = \theta^T (x - \mathbb{E}_{x' \in P(X)} [x'])$$
$$= \sum_{j=1}^n \theta_j (x_j - \mathbb{E}_{x'_j \in P(X_j)} [x'_j])$$

Meaning that we can assign a value to every input attribute:

■ If we know the attribute, the model output moves from the trivial prediction

lacksquare ...And the change is given by $\phi_j(x) = heta_j(x_j - \mathbb{E}_{x_j' \in P(X_j)}[x_j'])$

We call $\phi_i(x)$ the effect of attribute j for the example x

Can we generalize this process to non-linear models?

Additive Feature Attribution

Given an example x, we can try to build an additive attribution model:

$$g(z, x) = \phi_0 + \sum_{j=1}^{n} \phi_j(x) z_j$$
 with: $z_j \in \{0, 1\}$

- lacksquare Where z_i is called a simplified input
- lacktriangleright ...And represents the fact that the j-th attribute is known or unknown

Intuitively, we build a linear explaination for the model local behavior

- Several ML explainability approaches can be seen as attempts at this
- ...Most notably the original LIME method

Shapely Values

How do we build the additive attribution model?

- We've already seen how to do it for linear models
- ...But for non-linear models the input features interact with each other

A possible solution: marginalizing over all subset of remaining features

Let \mathcal{X} be the set of all input features; then we have:

$$\phi_{j}(x) = \sum_{S \subset \mathcal{X} \setminus j} \frac{|S|!(n - |S| - 1)!}{n!} (\hat{f}(x|_{S \cup j}) - \hat{f}(x|_{S}))$$

- lacksquare The sum is over all subsets that do not contain feature j
- The coefficient ensures normalization

Shapely Values

The result of our marginalization:

$$\phi_j(x) = \sum_{S \subset \mathcal{X} \setminus j} \frac{|S|!(n-|S|-1)!}{n!} (\hat{f}(x|_{S \cup j}) - \hat{f}(x|_S))$$

...Are known as Shapely values

- They originate from game theory
- ...In a setup where we want to assign credit to multiple actors for a result
- The actors correspond to our input features, the result to the model output

Shapely values are the only attribution model with some key properties

SHAP

Using Shapely values for explanation become prominent with this paper

The work makes a number of contributions:

- It introduces the general idea of additive feature attribution
- It shows how several previous approaches fall into that category
- It show how Shapely values provide "ideal" attribution scores
- It introduces multiple techniques to approximate the values

Computing Shapely values can be very expensive, for two reasons:

- There is exponential number of terms in the sum
- Many ML models do not support missing values

Kernel SHAP

Those issues can be sidestepped by learning a local linear approximator

Given an example x, we can:

- Sample multiple simplified vectors z' of simplified inputs z from $\{0,1\}^n$
- For every sampled vector, we construce an example:
- For all j s.t. $z'_j = 1$, we put $x'_j = x_j$ in the example
- lacksquare We sample all x' s.t. $z'_j = 0$ from a background set
- We train a particular type of linear model on the obtained examples
- ...Then we compute the Shapely values using the linear formula

By sampling from the background we marginalize out "missing" attributes

Typically, we use as a background the training set or a sample of that

Kernel SHAP

The method we have just described is referred to as Kernel-SHAP

It works even if we used kernels computed on the original features

- E.g. we can group multiple features, or apply non-linear transformations
- In that case, the Shapely values will apply to the kernels

Other approximation methods have been defined

- DeepSHAP for Deep NNs
- TreeSHAP for tree models
- ...

Note: TreeSHAP is supposed to be exact, but it computes a variant of Shapely values (where conditioning replaces marginalization for the missing attributes)

SHAP in Action

The authors of the SHAP paper maintain an excellent Python package

```
In [16]: f = lambda x: xbm.predict(x)
    explainer = shap.KernelExplainer(f, shap.sample(X_train, 100), link='logit')
    shap_values = explainer(X_test)
100%
100/100[00:58<00:00,1.68it/s]
```

- We'll focus on the test data, since we want to find the true correlates
- For classifiers, it easier to explain logits rather than probabilities
- The process can be slow, and using a small backgrond set is recommended
- The result contains the Shapely values, the base values, and the original data

Waterfall Plots

The SHAP library allows us to build waterfall plots

The bars represent the Shapely values, the colors their sign

Force Plots

Waterfall plots can be "compacted" into force plots

Here we have again a plot for example 0:

...And have a plot for example 99

Global Force Plots

Force plots can be stacked to inspect many examples at once:

Scatter Plots

We can use scatter plots to show the effect of a single feature

■ The gray area is the chosen feature histogram

Beeswarm (Summary) Plot

We can stack (and color) multiple scatter plots to obtain a beeswarm plot:

■ By checking the color distribution we can indentify linear and non-linear effects

Scatter (Dependency) Plots

We can color scatter plots by using another feature to highlight dependency

■ If we pass the whole tensor as a color, the coloring feature is chosen by SHAP

