Mnemonic	Opcode <u>\$\frac{y}{2}\$</u>	SREG	Syntax	Destination		Source		Description	Alias
ADC	0 0 0 1 1 1 r <mark>d d d d d</mark> r r r r	* * * * *	ADC Rd, Rr	Rd 0≤	: d ≤ 31	Rr	0 ≤ r ≤ 31	Add with carry	
ADD	0 0 0 0 1 1 r <mark>d d d d d</mark> r r r r	* * * * * *	ADD Rd, Rr	Rd 0≤	d ≤ 31	Rr	0 ≤ r ≤ 31	Add without carry	
ADIW	1 0 0 1 0 1 1 0 K K d d K K K K	* * * * *	ADIW Rd+1:Rd K	Rd d∈ {24	4,26,28,30}		0 ≤ K ≤ 63	Add immediate to word	
AND	0 0 1 0 0 0 r d d d d d r r r r	* 0 * *	AND Rd, Rr		d ≤ 31	Rr	0 ≤ r ≤ 31	Logical AND	
ANDI	0 1 1 1 K K K K d d d d K K K K	* 0 * *	ANDI Rd, K	Rd 16:	≤ d ≤ 31	K	0 ≤ K ≤ 255	Logical AND with immediate	
ASR	1 0 0 1 0 1 0 d d d d d 0 1 0 1	* * * * *	ASR Rd	Rd 16:	≤ d ≤ 31			Arithmetic shift right	
BCLR	1 0 0 1 0 1 0 0 1 8 8 8 1 0 0 0	? ? ? ? ? ? ? ?	BCLR s			s	0 ≤ s ≤ 7	Bit clear in SREG	
BLD	1 1 1 1 1 0 0 d d d d d 0 b b b		BLD Rd, b	Rd 0≤	d ≤ 31	b	0 ≤ b ≤ 7	Bit load from T flag in SREG to bit in register	
BRBC	1 1 1 1 0 1 k k k k k k k s s s		BRBC s, k	s 0	≤ s ≤ 7	k	-64 ≤ b ≤ 63	Branch if bit in SREG is cleared	
BRBS	1 1 1 1 0 0 k k k k k k k s s s		BRBS s, k	s 0	≤ s ≤ 7	k	$-64 \le b \le 63$	Branch if bit in SREG is set	
BREAK	1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0		BREAK					BREAK	
BREQ	1 1 1 1 0 0 k k k k k k k 0 0 1		BREQ k			k	$-64 \le b \le 63$	Branch if equal	BRBS 1, k
BRGE	1 1 1 1 0 1 k k k k k k k 1 0 0		BRGE k			k	$-64 \le b \le 63$	Branch if greater of equal (signed)	BRBC 4, k
BRHC	1 1 1 1 0 1 k k k k k k k 1 0 1		BRHC k			k	$-64 \le b \le 63$	Branch if half carry flag is cleared	BRBC 5, k
BRHS	1 1 1 1 0 0 k k k k k k k 1 0 1		BRHS k			k	$-64 \le b \le 63$	Branch if half carry flag is set	BRBS 5, k
BRID	1 1 1 1 0 1 k k k k k k k 1 1 1		BRID k			k	$-64 \le b \le 63$	Branch if global interrupt is disabled	BRBC 7, k
BRIE	1 1 1 1 0 0 k k k k k k k 1 1 1		BRIE k			k	$-64 \le b \le 63$	Branch if global interrupt is enabled	BRBS 7, k
BRLO	1 1 1 1 0 0 k k k k k k k 0 0 0		BRLO k			k	$-64 \le b \le 63$	Branch if lower (unsigned)	BRBS 0, k
BRLT	1 1 1 1 0 0 k k k k k k k 1 0 0		BRLT k			k	$-64 \le b \le 63$	Branch if less than (signed)	BRBS 4, k
BRMI	1 1 1 1 0 0 k k k k k k k 0 1 0		BRMI k			k	$-64 \le b \le 63$	Branch if minus	BRBS 2, k
BRNE	1 1 1 1 0 1 k k k k k k k 0 0 1		BRNE k			k	$-64 \le b \le 63$	Branch if not equal	BRBC 1, k
BRPL	1 1 1 1 0 1 k k k k k k k 0 1 0		BRPL k			k	$-64 \le b \le 63$	Branch if plus	BRBC 2, k
BRSH	1 1 1 1 0 1 k k k k k k k 0 0 0		BRSH k			k	$-64 \le b \le 63$	Branch if same or higher (unsigned)	BRBC 0, k
BRTC	1 1 1 1 0 1 k k k k k k k 1 1 0		BRTC k			k	$-64 \le b \le 63$	Branch if T flas is cleared	BRBC 6, k
BRTS	1 1 1 1 0 0 k k k k k k k 1 1 0		BRTS k			k	$-64 \le b \le 63$	Branch if T flas is set	BRBS 6, k
BRVC	1 1 1 1 0 1 k k k k k k k 0 1 1		BRVC k			k	$-64 \le b \le 63$	Branch if overflow flag is cleared	BRBC 3, k
BRVS	1 1 1 1 0 0 k k k k k k k k 0 1 1		BRVS k			k	$-64 \le b \le 63$	Branch if overflow flag is set	BRBS 3, k
BSET	1 0 0 1 0 1 0 0 0 s s s 1 0 0 0	? ? ? ? ? ? ? ?	BSET s			s	$0 \le s \le 7$	Bit set in SREG	
BST	1 1 1 1 1 0 1 d d d d d 0 b b b	?	BST Rd, b	Rd 0 ≤	d ≤ 31	b	$0 \le b \le 7$	Bit store from bit in register to T flag in SREG	
CALL	1 0 0 1 0 1 0 k k k k k 1 1 1 k 🗸		CALL k			k	$0 \le k \le 4M$	Long call to a subroutine	
CBI	1 0 0 1 1 0 0 0 A A A A A b b b		CBI A, b	A 0≤	A ≤ 31	b	$0 \le b \le 7$	Clear bit in I/O register	
CBR	0 1 1 1 K K K K d d d d K K K K	* 0 * *	CBR Rd, K	Rd 16:	≤ d ≤ 31	K	0 ≤ K ≤ 255	Clears bit in register	ANDI Rd, (\$FF – K)
CLC	1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0	0	CLC					Clear carry flag	BCLR 0
CLH	1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0	0	CLH					Clear half carry flag	BCLR 5
CLI	1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 0	0	CLI					Clear global interrupt flag	BCLR 7
CLN	1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0	0	CLN					Clear negative flag	BCLR 2
CLR	0 0 1 0 0 1 d d d d d d d d d	0 0 0 1	CLR Rd	Rd 0 ≤	d ≤ 31			Clear register	EOR Rd, Rd
CLS	1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0	0	CLS					Clear sign flag	BCLR 4
CLT	1 0 0 1 0 1 0 0 1 1 1 0 0 0 0	0	CLT					Clear T flag	BCLR 6
CLV	1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0	0	CLV					Clear overflow flag	BCLR 3
CLZ	1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0	0	CLZ					Clear zero flag	BCLR 1
СОМ	1 0 0 1 0 1 0 d d d d d 0 0 0 0	* 0 * * 1	COM Rd		d ≤ 31			One's complement	
CP	0 0 0 1 0 1 r <mark>d d d d d</mark> r r r r	* * * * * *	CP Rd, Rr	-	d ≤ 31	Rr	0 ≤ r ≤ 31	Compare	
CPC	0 0 0 0 0 1 r d d d d d r r r r	* * * * * *	CPC Rd, Rr		d ≤ 31	Rr	$0 \le r \le 31$	Compare with carry	
CPI	0 0 1 1 K K K K d d d d K K K K	* * * * * *	CPI Rd, K	-	≤ d ≤ 31	K	0 ≤ K ≤ 255	Compare with immediate	
CPSE	0 0 0 1 0 0 r <mark>d d d d d r r r r</mark>		CPSE Rd, Rr		: d ≤ 31	Rr	0 ≤ r ≤ 31	Compare and skip if equal	
DEC	1 0 0 1 0 1 0 d d d d d 1 0 1 0	* * * *	DEC Rd	Rd 0 ≤	: d ≤ 31			Decrement	
DES	1 0 0 1 0 1 0 0 K K K K 1 0 1 1		DES K			K	0 ≤ K ≤ 255	Data Encryption Standard	
EICALL	1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1		EICALL					Extended indirect call to a subroutine	
EIJMP	1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1		EIJMP					Extended indirect jump	
ELPM (1)	1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0		ELPM					Extended load program memory	
ELPM (2)	1 0 0 1 0 0 0 <mark>d d d d d 0 1 1 0 </mark>		ELPM Rd, Z	-	: d ≤ 31			Extended load program memory	
ELPM (3)	1 0 0 1 0 0 0 <mark>d d d d d 0</mark> 1 1 1		ELPM Rd, Z+	Rd 0 ≤	d ≤ 31			Extended load program memory	

10	Opcode 9 9 9 9 9 9 9 9 9	ITHSVNZC	Syntax	Destination		Source		Description	Alias
EOR 0 0	0 1 0 0 1 r d d d d d r r r r	* 0 * *	EOR Rd, Rr	Rd	0 ≤ d ≤ 31	Rr	0 ≤ r ≤ 31	Logial exclusive OR	
	0 0 0 0 1 1 0 d d d 1 r r r	* *	FMUL Rd, Rr	Rd	16 ≤ d ≤ 23	Rr	16 ≤ r ≤ 23	Factional multiply unsigned	
		* *	FMULS Rd, Rr	Rd	16 ≤ d ≤ 23	Rr	16 ≤ r ≤ 23	Factional multiply signed	
	0 0 0 0 0 1 1 1 d d d 1 r r r	* *	FMULS Rd, Rr	Rd	16 ≤ d ≤ 23	Rr	16 ≤ r ≤ 23	Factional multiply signed with unsigned	
			ICALL					Indirect call to a subroutine	
			IJUMP					Indirect jump	
			IN Rd, A	Rd	$0 \le d \le 31$	Α	0 ≤ A ≤ 63	Load an I/O location to register	
		* * * *	INC Rd	Rd	0 ≤ d ≤ 31			Increment	
			JMP k			k	0 ≤ k ≤ 4M	Long jump	
			LAC Rd	Rd	$0 \le d \le 31$			Load and clear	
	0 0 1 0 0 1 <mark>d d d d d</mark> 0 1 0 1		LAS Rd	Rd	$0 \le d \le 31$			Load and set	
			LAT Rd	Rd	0 ≤ d ≤ 31			Load and toggle	
			LD Rd, X	Rd	0 ≤ d ≤ 31			Load indiect using register X	
			1	Rd	0 ≤ d ≤ 31			Load indiect using register X post incremented	
	0 0 1 0 0 0 d d d d d 1 1 1 0		LD Rd, -X	Rd	0 ≤ d ≤ 31			Load indiect using register X pre decremented	
· · · /	0 0 0 0 0 d d d d d 1 0 0 0		LD Rd, Y	Rd	0 ≤ d ≤ 31			Load indiect using register Y	LDD Rd, Y+0
	0 0 1 0 0 0 d d d d d 1 0 0 1		LD Rd, Y+	Rd	0 ≤ d ≤ 31			Load indiect using register Y post incremented	
	0 0 1 0 0 0 d d d d d 1 0 1 0		LD Rd, -Y	Rd	0 ≤ d ≤ 31			Load indiect using register Y pre decremented	
	0 0 0 0 0 d d d d d 0 0 0 0		LD Rd, Z	Rd	$0 \le d \le 31$			Load indiect using register Z	LDD Rd, Z+0
	0 1 0 0 0 d d d d d 0 0 0 1		LD Rd, Z+	Rd	$0 \le d \le 31$			Load indiect using register Z post incremented	,
	0 0 1 0 0 <mark>0 d d d d d 0 0</mark> 1 0		LD Rd, -Z	Rd	$0 \le d \le 31$			Load indiect using register Z pre decremented	
LDD (Y) 1 0	0 q 0 <mark>q 0 d d d d d 1 q q q</mark>		LDD Rd, Y+q	Rd	$0 \le d \le 31$			Load indiect using register Y with displacement	
	0			Rd	$0 \le d \le 31$			Load indiect using register Z with displacement	
	10KKKKddddKKKK		LDI, Rd, K	Rd	16 ≤ d ≤ 31	К	0 ≤ K ≤ 255	Load immediate	
			LDS Rd, k	Rd	$0 \le d \le 31$	k	0 ≤ k ≤ 65535	Load direct	
LDS (2) 1 0) 1 0 0 k k <mark>d d d d</mark> k k k k		LDS Rd, k	Rd	16 ≤ d ≤ 31	k	0 ≤ k ≤ 127	Load direct	
	0 0 1 0 1 0 1 1 1 0 0 1 0 0 0		LPM					Load program memory	
LPM (2) 1 0	0 0 1 0 0 0 <mark>d d d d d</mark> 0 1 0 0		LPM Rd, Z	Rd	$0 \le d \le 31$			Load program memory	
LPM (3) 1 0	0 0 1 0 0 0 <mark>d d d d d</mark> 0 1 0 1		LPM Rd, Z+	Rd	$0 \le d \le 31$			Load program memory	
LSL 0 0	0 0 0 1 1 d <mark>d d d d d d d d d</mark>	* * * * * *	LSL Rd	Rd	$0 \le d \le 31$			Logical shift left	ADD Rd, Rd
LSR 1 0	0 0 1 0 1 0 <mark>d d d d d 0 1 1 0</mark>	* * 0 * *	LSR Rd	Rd	$0 \le d \le 31$			Logical shift right	
MOV 0 0) 1 0 1 1 r <mark>d d d d d</mark> r r r r		MOV Rd, Rr	Rd	$0 \le d \le 31$	Rr	0 ≤ r ≤ 31	Copy register	
MOVW 0 0	0 0 0 0 0 1 <mark>d d d d</mark> r r r r		MOVW Rd+1:Rd, Rr+1:Rr	Rd	d ∈ {0,2,,30}	Rr	r ∈ {0,2,,30}	Copy register word	
MUL 1 0)		MUL Rd, Rr	Rd	$0 \le d \le 31$	Rr	0 ≤ r ≤ 31	Multiply (unsigned)	
			MULS Rd, Rr	Rd	$16 \le d \le 31$	Rr	16 ≤ r ≤ 31	Multiply (signed)	
MULSU 0 0	0 0 0 0 1 1 		MULSU Rd, Rr	Rd	$16 \le d \le 31$	Rr	16 ≤ r ≤ 31	Multiply (signed with unsigned)	
NEG 1 0	0 0 1 0 1 0 <mark>d d d d d</mark> 0 0 0 1		NEG Rd	Rd	$0 \le d \le 31$			Two's complement (negate)	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		NOP					No operation	
		* 0 * *	OR Rd, Rr	Rd	$0 \le d \le 31$	Rr	0 ≤ r ≤ 31	Logical OR	
	. 1 0 <mark>K K K K d d d d</mark> K K K K	* 0 * *	ORI Rd, K	Rd	$16 \le d \le 31$	K	0 ≤ K ≤ 255	Logical OR with immediate	
			OUT A, Rr	Α	$0 \le A \le 63$	Rr	0 ≤ r ≤ 31	Store register to I/O location	
			POP Rd	Rd	$0 \le d \le 31$			Pop register from stack	
PUSH 1 0	0 0 1 0 0 1 r r r r r 1 1 1 1 1		PUSH Rr			Rr	0 ≤ r ≤ 31	Push register onto stack	
			RCALL k			k	-2K ≤ k ≤ 2K	Relative call to a subroutine	
	0 0 1 0 1 0 1 0 0 0 0 1 0 0 0		RET					Return from subroutine	
	0 0 1 0 1 0 1 0 0 0 1 1 0 0 0		RETI					Return from interrupt service routine	
RJMP 1 0	0		RJMP k			k	-2K ≤ k ≤ 2K	Relative jump	
	0 0 1 1 1 d d d d d d d d d d	* * * * * *	ROL Rd	Rd	$0 \le d \le 31$			Rotate left through carry	ADC Rd, Rd
	0 0 1 0 1 0 <mark>d d d d d 0 1 1 1</mark>	* * * * *	ROR Rd	Rd	$0 \le d \le 31$			Rotate right through carry	
	0 0 0 <mark>1 0 r <mark>d</mark> d d d d r r r r</mark>	* * * * * *	SBC Rd, Rr	Rd	$0 \le d \le 31$	Rr	0 ≤ r ≤ 31	Subtract with carry	
	OOKKK <mark>dddd</mark> KKKK	* * * * * *	SBCI Rd, K	Rd	$16 \le d \le 31$	K	0 ≤ K ≤ 255	Subtract immediate with carry	
	0 0 1 1 0 1 0 A A A A A b b b		SBI A, b	Α	$0 \le A \le 31$	b	$0 \le b \le 7$	Set bit in I/O register	
SBIC 1 0	0 0 1 1 0 0 1 A A A A A b b b		SBIC A, b	Α	$0 \le A \le 31$	b	$0 \le b \le 7$	Skip if bit in I/O register is cleared	

	Opcode ूर्	SREG	O vintary	Donation ation		0		De entretien	Alies
Mnemonic	15 12 8 4 0	ITHSVNZC	- Syntax	Destination	Destination		Source	Description	Alias
SBIS	1 0 0 1 1 0 0 1 A A A A A b b b		SBIS A, b	A 0 ≤ A ≤	31	b	0 ≤ b ≤ 7	Skip if bit in I/O register is set	
SBIW	1 0 0 1 0 1 1 1 K K d d K K K K	* * * * *	SBIW Rd+1:Rd K	Rd $d \in \{24,26,$	28,30}		0 ≤ K ≤ 63	Subtract immediate from word	
SBR	0 1 1 0 K K K K d d d d K K K K	* 0 * *	SBR Rd, K	Rd 16 ≤ d ≤	31	K	0 ≤ K ≤ 255	Set bits in register	ORI Rd, K
SBRC	1 1 1 1 1 1 0 r r r r r 0 b b b		SBRC Rd, b	Rd 16 ≤ d ≤	31	b	$0 \le b \le 7$	Skip if bit in register is cleared	
SBRS	1 1 1 1 1 1 1 r r r r r 0 b b b		SBRS Rd, b	Rd 16 ≤ d ≤	31	b	$0 \le b \le 7$	Skip if bit in register is set	
SEC	1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0	?	SEC					Set carry flag	BSET 0
SEH	1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0	?	SEH					Set half carry flag	BSET 5
SEI	1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0	?	SEI					Set global interrupt flag	BSET 7
SEN	1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0	?	SEN					Set negative flag	BSET 2
SER	1 1 1 0 1 1 1 1 d d d d 1 1 1 1		SER Rd	Rd 16 ≤ d ≤	31			Set all bits in register	LDI Rd, \$FF
SES	1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0	?	SES					Set sign flag	BSET 4
SET	1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0	?	SET					Set T flag	BSET 6
SEV	1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0	?	SEV					Set overflow flag	BSET 3
SEZ	1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0	?	SEZ					set zero flag	BSET 1
SLEEP	1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0		SLEEP					Set circuit in sleep mode	
SPM	1 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0		SPM					Store program memory	
SPM	1 0 0 1 0 1 0 <u>1 1 1 1 1 0</u> 0 0		SPM Z+					Store program memory	
ST (X,1)	1 0 0 1 0 0 1 r r r r r 1 1 0 0		ST X, Rr			Rr	0 ≤ r ≤ 31	Store indiect using register X	
ST (X,2)	1 0 0 1 0 0 1 r r r r r 1 1 0 1		ST X+, Rr			Rr	0 ≤ r ≤ 31	Store indiect using register X post incremented	
ST (X,3)	1 0 0 1 0 0 1 r r r r r 1 1 1 0		ST -X, Rr			Rr	0 ≤ r ≤ 31	Store indiect using register X pre decremented	
ST (Y,1)	1 0 0 0 0 1 r r r r r 1 0 0 0		ST Y, Rr			Rr	0 ≤ r ≤ 31	3 3	LDD Y+0, Rr
ST (Y,2)	1 0 0 1 0 0 1 r r r r r 1 0 0 1		ST Y+, Rr			Rr	0 ≤ r ≤ 31	Store indiect using register Y post incremented	
ST (Y,3)	1 0 0 1 0 0 1 r r r r r 1 0 1 0		ST -Y, Rr			Rr	0 ≤ r ≤ 31	Store indiect using register Y pre decremented	
ST (Z,1)	1 0 0 0 0 1 r r r r r 0 0 0 0		ST Z, Rr			Rr	0 ≤ r ≤ 31	9 9	STD Z+0, Rd
ST (Z,2)	1 0 0 1 0 0 1 r r r r r 0 0 0 1		ST Z+, Rr			Rr	0 ≤ r ≤ 31	Store indiect using register Z post incremented	
ST (Z,3)	1 0 0 1 0 0 1 r r r r r 0 0 1 0		ST -Z, Rr			Rr	0 ≤ r ≤ 31	Store indiect using register Z pre decremented	
STD (Y)	1 0 q 0 q q 1 r r r r r l q q q		STD Y+q, Rr			Rr	0 ≤ r ≤ 31	Store indiect using register Y with displacement	
STD (Z)	1 0 q 0 q q 1 r r r r r 0 q q q		STD Z+q Rr			Rr	0 ≤ r ≤ 31	Store indiect using register Z with displacement	
STS (1)	1 0 0 1 0 0 1 r r r r r 0 0 0 0 V		LDS k, Rr	$k \qquad 0 \le k \le 65$		Rr	0 ≤ r ≤ 31	Store direct	
STS (2)	1 0 1 0 0 k k k r r r r k k k k		LDS k, Rr	$k \qquad 0 \le k \le 1$		Rr	16 ≤ r ≤ 31	Store direct	
SUB	0 0 0 1 1 0 r d d d d d r r r r	* * * * * *	SUB Rd, Rr	Rd $0 \le d \le$		Rr	0 ≤ r ≤ 31	Subtract without carry	
SUBI	0 1 0 1 K K K K d d d d K K K K	* * * * * *	SUBI Rd, K	Rd 16 ≤ d ≤	-	K	0 ≤ K ≤ 255	Subtract immediate	
SWAP	1 0 0 1 0 1 0 d d d d d 0 0 1 0		SWAP Rd	Rd $0 \le d \le$				Swap nibbles	
TST	0 0 1 0 0 0 d d d d d d d d d d	* 0 * *	TST Rd	Rd $0 \le d \le$	31				AND Rd, Rd
WDR	1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0		WDR					Watchdog reset	
XCH	1 0 0 1 0 0 1 d d d d d 0 1 0 0		XCH Z, Rd	Z		Rd	0 ≤ r ≤ 31	Exchange	