

Ch. 13 - IoT Application Protocol Layer Sec 4 – MQTT Protocol

COMPSCI 147

Internet-of-Things; Software and Systems

APP PROTOCOLS FOR IOT - STANDARDIZATION

- HTTP
 - IETF standard (RFC 2616 is HTTP/1.1)
- CoAP
 - IETF standard (RFC 7252)
- XMPP
 - IETF standard (RFC 6272)

- MQTT
 - OASIS standard
- AMQP
 - OASIS and ISO 19464 standard (1.0)
- SIP
 - IETF Standard (RFC 3261)
- IEEE 1888
 - IEEE Standard
- DDS (RTPS)
 - Object Management Group (OMG) Standard

MQTT

- Message Queue Telemetry Transport (MQTT)
- Lightweight messaging protocol for M2M communication
 - Low network bandwidth and small code footprint
- Invented and sponsored by IBM.
 - MQ originated from "message queuing (MQ)" architecture
 - There is no queueing in MQTT.
 - Now Open source. Open-source libraries are available.
- Telemetry = Tele-Metering = Remote measurements
- Telemetry data goes from devices to a broker.
 - Uses a publish/subscribe mechanism.

WHO USES MQTT

- Facebook messenger uses MQTT to minimize battery usage.
 FB bought "Beluga group chat" that used MQTT
- Extremely light-weight, perfect for M2M battery powered IoT devices
- Several other applications uses this protocol for medical and environmental applications.

MQTT - BROKER

- Many open-source implementations of clients and brokers are available
 - Really small message broker (RSMB): C
 - Mosquitto
 - Micro broker: Java based for PDAs, notebooks
- Simple to implement
- Provide a Quality-of-Service Data Delivery
- Data Agnostic
- Continuous Session Awareness

MQTT Components

MQTT

Broker

Handles routing of messages

Client

Publish and subscribe to topics they want to send/receive data to/from

Topics

Messages published to a topic are received by all subscribers

MQTT - CONCEPTS

- Topics/Subscriptions: Messages are published to topics. Clients can subscribe to a topic or a set of related topics
 - Topics can be hierarchical (e.g., /house/bedroom/light)
- Publish/Subscribe: Clients can subscribe to (multiple) topics or publish to topics.

MQTT - ARCHITECTURE

- Broker and connected Clients
 - broker receives subscriptions from clients on topics
 - broker receives messages and forward them
 - clients subscribe/publish on topics
- Brokers allow bridge configuration

MQTT CONCEPTS II

- Quality of Service Levels: Three levels:
 - 0 = At most once (Best effort, No Ack // fire and forget),
 - 1 = At least once (Acked, retransmitted if ack not received),
 - 2 = Exactly once [Request to send (Publish), Clear-to-send (Pubrec), message (Pubrel), ack (Pubcomp)]
- Retained Messages: Server keeps messages even after sending it to all subscribers. New subscribers get the retained messages

MQTT CONCEPTS III

- Persistent (clean session) and non-persistent connections
 - Clean session flag
 - all subscriptions/messages are removed on disconnect
 - Otherwise, subscriptions/messages remain in effect after disconnection
 - Subsequent messages with high QoS are stored for delivery after reconnection
- Wills: At connection, a client can inform that it has a will or a message that should be published if unexpected disconnection
 - Brokers send an alarm if the client loses connection.
- Periodic keep-alive messages
 - Checking if a client is still alive
- Topic Trees: Topics are organized as trees using / character
 - /# matches all sublevels
 - /+ matches only one sublevel

MQTT HYPOTHETICAL LIGHT SWITCH

MQTT: PUB/SUB

- Clients connect to a "Broker"
- Clients subscribe to topics eg,
 - client.subscribe('toggleLight/1')
 - client.subscribe('toggleLight/2')
 - client.subscribe('toggleLight/3')
- Clients can publish messages to topics:
 - client.publish('toggleLight/1', 'toggle');
 - client.publish('toggleLight/2', 'toggle');
- All clients receive all messages published to topics they subscribe to
- Messages can be anything
 - Text
 - Images
 - etc

MQTT EXAMPLE

MQTT APPLICATION EXAMPLES

- Home pacemaker monitoring solution
 - Sensors on patient
 - Collected by a monitoring equipment in home (broker) using MQTT
 - Subscribed by a computer in the hospital
 - Alerts the doctor if anything is out-of-order

Demo MQTT with ESP32

• Server: https://github.com/eclipse/mosquitto

Client (ESP32) library:

https://registry.platformio.org/libraries/knolleary/PubSubClient