Today in Cryptography (5830)

Review of modes of operation & active attacks Message authentication

CBC-MAC

Attacks against bad CBC-MAC implementations Variable-length secure CBC-MAC

Authenticated encryption

Malleability example: Encrypted cookies

abc35h013490... = CTR-Mode(K, "admin=0")

Malicious client can simply flip a few bits to change admin=1

Review

- Goal: secure (length-extending) encryption
- What we have so far:
 - Block cipher modes of operation (CBC, CTR)
 - Insecurity against active attacks
 - Bit flip "mauling" attacks against CTR
 - Padding oracle attacks against CBC

 We need another tool: authenticity mechanisms

More generally:

Attacker has read/write access to communications channel

The strategy:

Arrange so that that all bits received can be validated as having come from sender (the person with key K)

The tool: Message authentication schemes

- (1) Tag(K, Msg) outputs a tag T
- (2) Verify(K,Msg,T) outputs 0/1 (invalid / valid)

Correctness: Verify(K,Msg,Tag(K,Msg)) = 1 always

Security: No computationally efficient attacker can forge tags for a new message even when attacker gets

 $(Msg_1, T_1), (Msg_2, T_2), ..., (Msg_q, T_q)$

for messages of his choosing and reasonably large q.

Message authentication using pseudorandom functions (PRFs)

Let $F : \{0,1\}^k \times \{0,1\}^* \rightarrow \{0,1\}^n$ be a secure PRF

Tag(K,Msg)
Return F(K,Msg)

Verify(K,Msg,T):

If F(K,Msg) = T then Return 1
Return 0

Why is this secure?

What was example of a good PRF?

Recall CBC mode

Ciphertext block chaining (CBC)

Pad message M to M1,M2,M3,... where each block Mi is n bits Choose random n-bit string IV

Can we convert this into variable-message-length PRF?

CBC-MAC

Message authentication code (MAC)

Turns out this is (provably) a good PRF if K used only on same-length messages

Variable-message-length CBC-MAC

Prepend message length

Encrypted CBC-MAC

Authenticated encryption (AE)

Correctness: for all K, D(K, E(K,M)) = M with probability 1 over randomness used

Authenticated encryption (AE)

What security properties do we need from symmetric encryption?

- 1) Confidentiality: should not learn any information about M
- 2) Authenticity: should not be able to forge ciphertexts

Often referred to as Authenticated Encryption security

Authenticated encryption (AE)

Ciphertext unforgeability: Let K be honestly generated secret key. No computationally efficient attacker can construct ciphertext C* that decrypts correctly under K, even when given

$$(M_1, C_1), (M_2, C_2), ..., (M_q, C_q)$$

for messages of his choosing and ciphertexts generated under K. It must be that $C^* \neq C_i$ for $1 \leq i \leq q$

How do we do it?

Build a new scheme from Enc mode (CBC, CTR) and MAC Kg outputs Enc key K1 and MAC key K2

Several ways to combine:

- (1) encrypt-then-mac
- (2) mac-then-encrypt
- (3) encrypt-and-mac

Composing encryption and authentication

Encrypt(K,M):

Use secret keys K_1 and K_2 . These can be derived from K if needed $K_1 = AES(K, O^n)$ $K_2 = AES(K, 1^n)$

 $C = CTR-Mode(K_1, M)$

 $T = Tag(K_2,C)$

Output C||T

Decrypt(K,C||T)

If Verify(K_2 ,C,T) \neq 1 then Return error Return CTR-Mode(K_1 ,C)

Build a new scheme from Enc mode (CBC, CTR) and MAC Kg outputs Enc key K1 and MAC key K2

Several ways to combine:

- (1) encrypt-then-mac
- (2) mac-then-encrypt
- (3) encrypt-and-mac

Thm. If encryption scheme provides confidentiality against passive attackers and MAC provides unforgeability, then Encrypt-then-MAC provides secure authenticated encryption

Key separation is essential

If one uses same key for both encryption and MAC, attacks can arise

Consider CBC-MAC plus CBC-mode encryption

General rule: different crypto primitives or different applications of same primitive, need independent keys

TLS 1.2 record protocol: MAC-Encode-Encrypt (MEE)

TLS 1.3 using proper authenticated-encryption schemes

Dedicated authenticated encryption schemes

Not a generic composition of Enc, MAC. Directly construct from blockcipher

Attack	Inventors	Notes
OCB (Offset Codebook)	Rogaway	One-pass (one blockcipher call per block of message)
GCM (Galois Counter Mode)	McGrew, Viega	CTR mode plus specialized MAC
CWC	Kohno, Viega, Whiting	CTR mode plus Carter-Wegman MAC
CCM	Housley, Ferguson, Whiting	CTR mode plus CBC-MAC
EAX	Wagner, Bellare, Rogaway	CTR mode plus OMAC (variant of CBC-MAC)

Symmetric Encryption Advice

Never use CTR mode or CBC mode by themselves

Passive security is almost never good enough!!

Encrypt-then-MAC better than MAC-then-Encrypt, Encrypt and MAC

Dedicated modes that have been analyzed thoroughly are also good