Theorem The natural logarithm of a Weibull(α , β) random variable is an extreme value (α , β) random variable.

Proof Let the random variable X have the Weibull distribution with probability density function

$$f_X(x) = (\beta/\alpha)x^{\beta-1} e^{-x^{\beta}/\alpha}$$
 $x > 0$.

The transformation $Y=g(X)=\log X$ is a 1–1 transformation from $\mathcal{X}=\{x\,|\,x>0\}$ to $\mathcal{Y}=\{y\,|\,-\infty>y>\infty\}$ with inverse $X=g^{-1}(Y)=e^Y$ and Jacobian

$$\frac{dX}{dY} = e^Y.$$

Therefore by the transformation technique, the probability density function of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

$$= (\beta/\alpha)(e^y)^{\beta-1} e^{-(e^y)^\beta/\alpha} |e^y|$$

$$= (\beta/\alpha)e^{\beta y - (e^y)^\beta/\alpha} - \infty < y < \infty,$$

which is the probability density function of the extreme value distribution.

APPL verification: The APPL statements

assume(alpha > 0);

 $X := WeibullRV(((1 / alpha) ^ (1 / beta)), beta);$

g := [[x -> log(x)], [0, infinity]];

Y := Transform(X, g);

Z := ExtremeValueRV(alpha, beta);

vield identical functional forms

$$f_Y(y) = (\beta/\alpha)e^{\beta y - (e^y)^\beta/\alpha}$$
 $-\infty < y < \infty,$

for the random variables Y and Z, which verifies that the natural logarithm of a Weibull random variable has the extreme value distribution. Notice that the first Weibull parameter is entered $(1/\alpha)^{(1/\beta)}$ so the parameterization will match that of the transformation technique above.