$$B^0$$

$$I(J^P) = \frac{1}{2}(0^-)$$

Quantum numbers not measured. Values shown are quark-model predictions.

See also the B^\pm/B^0 ADMIXTURE and $B^\pm/B^0/B_s^0/b$ -baryon AD-MIXTURE sections.

See the Note "Production and Decay of *b*-flavored Hadrons" at the beginning of the B^\pm Particle Listings and the Note on " B^0 - $\overline B^0$ Mixing" near the end of the B^0 Particle Listings.

B⁰ MASS

The fit uses m_{B^+} , $(m_{B^0}-m_{B^+})$, and m_{B^0} to determine m_{B^+} , m_{B^0} , and the mass difference.

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
5279.63±0.15 OUR FIT	Γ Error i	ncludes scale facto	or of 1	.1.	
5279.55 ± 0.26 OUR AV	ERAGE				
5279.6 ± 0.2 ± 1.0		$^{ m 1}$ AAD	13 U	ATLS	pp at 7 TeV
$5279.58 \!\pm\! 0.15 \!\pm\! 0.28$		² AAIJ	12E	LHCB	pp at 7 TeV
$5279.63\!\pm\!0.53\!\pm\!0.33$		³ ACOSTA	06	CDF	$p\overline{p}$ at 1.96 TeV
5279.1 ± 0.7 ± 0.3	135	⁴ CSORNA	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
5281.3 ± 2.2 ± 1.4	51	ABE	96 B	CDF	$p\overline{p}$ at 1.8 TeV
• • • We do not use th	e followin	g data for average	s, fits,	limits, e	etc. • • •
$5279.2 \pm 0.54 \pm 2.0$	340	ALAM	94	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
5278.0 ± 0.4 ± 2.0		BORTOLETT	O92	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5279.6 \pm 0.7 \pm 2.0$	40	⁵ ALBRECHT	90J	ARG	$e^+e^- ightarrow \gamma(4S)$
5278.2 ± 1.0 ± 3.0	40	ALBRECHT	87C	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
5279.5 ± 1.6 ± 3.0	7	⁶ ALBRECHT	87 D	ARG	$e^+e^- ightarrow \gamma(4S)$
$5280.6 \pm 0.8 \pm 2.0$		BEBEK	87	CLEO	$e^+e^- ightarrow \gamma(4S)$
1 Measured with B_d^0	$\rightarrow J/\psi(\mu$	$(\mu^{+}\mu^{-}) \kappa_{S}^{0} (\pi^{+}\pi^{-})$	_) dec	cays.	

$m_{B^0} - m_{B^+}$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
0.31±0.06 OUR FIT				
0.32 ± 0.05 OUR AVERAGE				
$0.20\pm0.17\pm0.11$	¹ AAIJ	12E	LHCB	pp at 7 TeV
$0.33 \pm 0.05 \pm 0.03$	² AUBERT	08AF	BABR	$e^+e^- ightarrow \gamma(4S)$
$0.53 \pm 0.67 \pm 0.14$	³ ACOSTA	06	CDF	$p\overline{p}$ at 1.96 TeV

HTTP://PDG.LBL.GOV

Page 1

² Uses $B^0 \rightarrow J/\psi K^0$ fully reconstructed decays.

 $^{^3}$ Uses exclusively reconstructed final states containing a $J/\psi \to \mu^+\mu^-$ decays. 4 CSORNA 00 uses fully reconstructed 135 $B^0 \to J/\psi^{(\prime)} \, K_S^0$ events and invariant masses

without beam constraint. 5 ALBRECHT 90J assumes 10580 for $\varUpsilon(4S)$ mass. Supersedes ALBRECHT 87C and

⁶ Found using fully reconstructed decays with J/ψ . ALBRECHT 87D assume $m_{\Upsilon(4S)} =$ 10577 MeV.

$0.41 \pm 0.25 \pm 0.19$	ALAM	94	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$-0.4\ \pm0.6\ \pm0.5$	BORTOLETT	O92	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$-0.9\ \pm 1.2\ \pm 0.5$	ALBRECHT	90J	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$2.0 \pm 1.1 \pm 0.3$	⁴ BEBEK	87	CLEO	$e^+e^- ightarrow$	$\Upsilon(4S)$

¹Uses exclusively reconstructed final states containing a $J/\psi \rightarrow \mu^+\mu^-$ decay.

$m_{B_H^0}-m_{B_L^0}$

See the $B^0-\overline{B}^0$ MIXING PARAMETERS section near the end of these B^0 Listings.

B⁰ MEAN LIFE

See $B^\pm/B^0/B_s^0/b$ -baryon ADMIXTURE section for data on B-hadron mean life averaged over species of bottom particles.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

<i>VALUE</i> (10^{-12} s)	EVTS	DOCUMENT ID		TECN	COMMENT
1.520±0.004 OUR EV	ALUATION	ON			
$1.534 \pm 0.019 \pm 0.021$		$^{ m 1}$ ABAZOV	15A	D0	$p\overline{p}$ at 1.96 TeV
$1.499 \pm 0.013 \pm 0.005$		² AAIJ	14E	LHCB	pp at 7 TeV
$1.524 \pm 0.006 \pm 0.004$		³ AAIJ	14E	LHCB	pp at 7 TeV
$1.524 \pm 0.011 \pm 0.004$		⁴ AAIJ	14 R	LHCB	pp at 7 TeV
$1.509 \pm 0.012 \pm 0.018$		⁵ AAD	13 U	ATLS	pp at 7 TeV
$1.508 \pm 0.025 \pm 0.043$		² ABAZOV	12 U	D0	$p\overline{p}$ at 1.96 TeV
$1.507 \pm 0.010 \pm 0.008$		⁶ AALTONEN	11	CDF	$p\overline{p}$ at 1.96 TeV
$1.414 \pm 0.018 \pm 0.034$		⁷ ABAZOV	09E	D0	$p\overline{p}$ at 1.96 TeV
$1.504 \pm 0.013 { + 0.018 \atop -0.013 }$		⁸ AUBERT	06 G	BABR	$e^+e^- ightarrow \gamma(4S)$
$1.534 \pm 0.008 \pm 0.010$		⁹ ABE	05 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.531 \pm 0.021 \pm 0.031$		¹⁰ ABDALLAH	04E	DLPH	$e^+e^- \rightarrow Z$
$1.523 {+0.024\atop -0.023} \pm 0.022$		¹¹ AUBERT	03 C	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.533 \pm 0.034 \pm 0.038$		¹² AUBERT	03H	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.497\!\pm\!0.073\!\pm\!0.032$		¹³ ACOSTA	02 C	CDF	p p at 1.8 TeV
$1.529 \pm 0.012 \pm 0.029$		¹⁴ AUBERT	02H	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.546 \pm 0.032 \pm 0.022$		¹⁵ AUBERT	01F	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$1.541 \!\pm\! 0.028 \!\pm\! 0.023$		¹⁴ ABBIENDI,G	00 B	OPAL	$e^+e^- \rightarrow Z$
$1.518 \pm 0.053 \pm 0.034$		¹⁶ BARATE	00R	ALEP	$e^+e^- \rightarrow Z$

² Uses the *B*-momentum distributions in the e^+e^- rest frame. ³ Uses exclusively reconstructed final states containing a $J/\psi \to \mu^+\mu^-$ decays.

⁴BEBEK 87 actually measure the difference between half of $E_{\rm cm}$ and the B^\pm or B^0 mass, so the $m_{B^0}-m_{B^\pm}$ is more accurate. Assume $m_{\Upsilon(4S)}=10580$ MeV.

```
<sup>17</sup> ABBIENDI
                                                                        99J OPAL e^+e^- \rightarrow Z
1.523 \pm 0.057 \pm 0.053
1.474 \pm 0.039 \, {}^{+\, 0.052}_{-\, 0.051}
                                             <sup>16</sup> ABE
                                                                               CDF
                                                                                           p\overline{p} at 1.8 TeV
                                             <sup>17</sup> ACCIARRI
                                                                               L3
                                                                                           e^+e^- \rightarrow Z
1.52 \pm 0.06 \pm 0.04
                                                                        98s
                                             <sup>17</sup> ABE
                                                                        97J
                                                                               SLD
1.64 \pm 0.08 \pm 0.08
                                             <sup>18</sup> ABREU
1.532 \pm 0.041 \pm 0.040
                                                                               DLPH
       ^{+0.15}_{-0.13}\ \pm0.05
                                             <sup>13</sup> BUSKULIC
                                                                                           e^+e^- \rightarrow Z
                                                                              ALEP
                                  121
                                                                        96J
1.49 \begin{tabular}{cccc} +0.17 & +0.08 \\ -0.15 & -0.06 \end{tabular}
                                             <sup>19</sup> BUSKULIC
                                                                              ALEP
                                                                                           e^+e^- \rightarrow Z
1.61 \ ^{+\, 0.14}_{-\, 0.13} \ \pm 0.08
                                         16,20 ABREU
                                                                               DLPH e^+e^- \rightarrow Z
                                             <sup>21</sup> ADAM
                                                                               DLPH e^+e^- \rightarrow Z
1.63 \pm 0.14 \pm 0.13
                                         16,22 AKERS
1.53 \pm 0.12 \pm 0.08
                                                                        95T OPAL e^+e^- \rightarrow Z
• • • We do not use the following data for averages, fits, limits, etc. • • •
1.501 {}^{\displaystyle +0.078}_{\displaystyle -0.074} \pm 0.050
                                               <sup>2</sup> ABAZOV
                                                                        07S D0
                                                                                           Repl. by ABAZOV 12U
                                               <sup>2</sup> ABULENCIA
                                                                        07A CDF
1.524 \pm 0.030 \pm 0.016
                                                                                           Repl. by AALTONEN 11
1.473 {+\, 0.052 \atop -\, 0.050} \pm 0.023
                                               <sup>7</sup> ABAZOV
                                                                        05B D0
                                                                                           Repl. by ABAZOV 05W
1.40 \  \, ^{+\, 0.11}_{-\, 0.10} \  \, \pm 0.03
                                               <sup>2</sup> ABAZOV
                                                                        05C D0
                                                                                           Repl. by ABAZOV 07S
                                               <sup>7</sup> ABAZOV
                                                                        05W D0
1.530 \pm 0.043 \pm 0.023
                                                                                           Repl. by ABAZOV 09E
                                             <sup>23</sup> ACOSTA
1.54 \pm 0.05 \pm 0.02
                                                                        05
                                                                               CDF
                                                                                           Repl. by AALTONEN 11
                                             <sup>15</sup> ABE
1.554 \pm 0.030 \pm 0.019
                                                                        02H BELL
                                                                                           Repl. by ABE 05B
                                             <sup>13</sup> ABE
1.58 \pm 0.09 \pm 0.02
                                                                        98B CDF
                                                                                           Repl. by ACOSTA 02C
                                             <sup>16</sup> ABE
1.54 \pm 0.08 \pm 0.06
                                                                        96C
                                                                              CDF
                                                                                           Repl. by ABE 98Q
                                             <sup>24</sup> BUSKULIC
                                                                                           e^+e^- \rightarrow Z
1.55 \pm 0.06 \pm 0.03
                                                                        96J
                                                                               ALEP
                                             <sup>16</sup> BUSKULIC
                                                                                           Repl. by BARATE 00R
1.61 \pm 0.07 \pm 0.04
                                                                        96J
                                                                               ALEP
                                             <sup>25</sup> ADAM
1.62 \pm 0.12
                                                                        95
                                                                               DLPH
                                                                                           e^+e^- \rightarrow Z
                                             <sup>13</sup> ABE
1.57 \pm 0.18 \pm 0.08
                                                                        94D CDF
                                                                                           Repl. by ABE 98B
                                  121
1.17 \ ^{+\, 0.29}_{-\, 0.23} \ \pm 0.16
                                             <sup>16</sup> ABREU
                                    96
                                                                        93D DLPH
                                                                                           Sup. by ABREU 95Q
                                             <sup>21</sup> ABREU
1.55 \pm 0.25 \pm 0.18
                                    76
                                                                        93G DLPH
                                                                                          Sup. by ADAM 95
1.51 \  \, ^{+\, 0.24}_{-\, 0.23} \  \, ^{+\, 0.12}_{-\, 0.14}
                                             <sup>16</sup> ACTON
                                    78
                                                                        93C OPAL
                                                                                          Sup. by AKERS 95T
1.52 \begin{array}{l} +0.20 \\ -0.18 \end{array} \begin{array}{l} +0.07 \\ -0.13 \end{array}
                                             <sup>16</sup> BUSKULIC
                                    77
                                                                                          Sup. by BUSKULIC 96J
                                                                        93D ALEP
1.20 \begin{tabular}{cccc} +0.52 & +0.16 \\ -0.36 & -0.14 \end{tabular}
                                             <sup>26</sup> WAGNER
                                    15
                                                                               MRK2 E_{cm}^{ee} = 29 \text{ GeV}
0.82 \begin{array}{c} +0.57 \\ -0.37 \end{array} \pm 0.27
                                             <sup>27</sup> AVERILL
                                                                                           E_{\rm cm}^{ee} = 29 \text{ GeV}
                                                                        89
                                                                               HRS
```

¹ Measured using $B^0 \rightarrow D^- \mu^+ \nu X$ decays.

² Measured mean life using $B^0 \to J/\psi K_S^0$ decays.

³ Measured using $B^0 \rightarrow J/\psi K^{*0}$ decays.

⁴ Measured using $B^0 \rightarrow K^+\pi^-$ decays.

⁵ Measured with $B_d^0 \rightarrow J/\psi(\mu^+\mu^-) K_S^0(\pi^+\pi^-)$ decays.

⁶ Measured mean life using fully reconstructed decays $(J/\psi K^{(*)})$.

⁷ Measured mean life using $B^0 \rightarrow J/\psi K^{*0}$ decays.

⁸ Measured using a simultaneous fit of the B^0 lifetime and $\overline{B}{}^0B^0$ oscillation frequency Δm_d in the partially reconstructed $B^0 o D^{*-} \ell \nu$ decays.

⁹ Measurement performed using a combined fit of *CP*-violation, mixing and lifetimes.

- 10 Measurement performed using an inclusive reconstruction and B flavor identification technique.
- 11 AUBERT 03C uses a sample of approximately 14,000 exclusively reconstructed $B^0 \rightarrow$ $D^*(2010)^- \ell \nu$ and simultaneously measures the lifetime and oscillation frequency.
- ¹² Measurement performed with decays $B^0 \rightarrow D^{*-}\pi^+$ and $B^0 \rightarrow D^{*-}\rho^+$ using a partial reconstruction technique.
- ¹³ Measured mean life using fully reconstructed decays.
- ¹⁴ Data analyzed using partially reconstructed $\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}$ decays.
- 15 Events are selected in which one B meson is fully reconstructed while the second B meson is reconstructed inclusively.
- ¹⁶ Data analyzed using $D/D^*\ell X$ event vertices.
- ¹⁷ Data analyzed using charge of secondary vertex.
- ¹⁸ Data analyzed using inclusive $D/D^* \ell X$.
- 19 Measured mean life using partially reconstructed $D^{*-}\pi^+ X$ vertices.
- ²⁰ ABREU 95Q assumes B($B^0 \to D^{**-} \ell^+ \nu_{\ell}$) = 3.2 ± 1.7%.
- $^{21}\,\mathrm{Data}$ analyzed using vertex-charge technique to tag B charge.
- ²² AKERS 95T assumes B($B^0 \rightarrow D_s^{(*)} D^{0}(^*)$) = 5.0 ± 0.9% to find B^+/B^0 yield. ²³ Measured using the time-dependent angular analysis of $B_d^0 \rightarrow J/\psi K^{*0}$ decays.
- ²⁴ Combined result of $D/D^*\ell x$ analysis, fully reconstructed B analysis, and partially reconstructed $D^{*-}\pi^{+}X$ analysis.
- ²⁵ Combined ABREU 95Q and ADAM 95 result.
- 26 WAGNER 90 tagged B^0 mesons by their decays into D^{*-} e^+ u and D^{*-} μ^+ u where the D^{*-} is tagged by its decay into $\pi^{-}\overline{D}^{0}$.
- ²⁷ AVERILL 89 is an estimate of the B^0 mean lifetime assuming that $B^0 \rightarrow D^{*+} + X$ always.

τ_{R0}/τ_{R0}

VALUE	DOCUMENT ID		TECN	COMMENT
$1.000 \pm 0.008 \pm 0.009$	¹ AAIJ	14E	LHCB	pp at 7 TeV
1 Measured using $B^0 ightarrow J/$	$\psi {\it K}^{*0}$ decays.			

MEAN LIFE RATIO τ_{R^+}/τ_{R^0}

au_{B^+}/ au_{B^0} (direct measurements)

'OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.076±0.004 OUR EVA	LUATION				
$1.074\pm0.005\pm0.003$		¹ AAIJ	14E	LHCB	pp at 7 TeV
$1.088 \pm 0.009 \pm 0.004$		² AALTONEN	11	CDF	$p\overline{p}$ at 1.96 TeV
$1.080 \pm 0.016 \pm 0.014$		³ ABAZOV	05 D	D0	$p\overline{p}$ at 1.96 TeV
$1.066 \pm 0.008 \pm 0.008$		⁴ ABE	05 B	BELL	$e^+e^- ightarrow \gamma(4S)$
$1.060 \pm 0.021 \pm 0.024$		⁵ ABDALLAH	04E	DLPH	$e^+e^- ightarrow Z$
$1.093\!\pm\!0.066\!\pm\!0.028$		⁶ ACOSTA	02 C	CDF	$p\overline{p}$ at 1.8 TeV
$1.082 \pm 0.026 \pm 0.012$		⁷ AUBERT	01F	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.085 \pm 0.059 \pm 0.018$		³ BARATE	00R	ALEP	$e^+e^- \rightarrow Z$

$1.079 \pm 0.064 \pm 0.041$		⁸ ABBIENDI	99J	OPAL	$e^+e^- ightarrow Z$
$1.110 \pm 0.056 {+0.033 \atop -0.030}$		³ ABE	98Q	CDF	$p\overline{p}$ at 1.8 TeV
$1.09\ \pm0.07\ \pm0.03$		8 ACCIARRI		-	$e^+e^- \rightarrow Z$
$1.01 \pm 0.07 \pm 0.06$		⁸ ABE	97 J	SLD	$e^+e^- o Z$
$1.27 \begin{array}{c} +0.23 & +0.03 \\ -0.19 & -0.02 \end{array}$		⁶ BUSKULIC	96J	ALEP	$e^+e^- \rightarrow Z$
$1.00 \ ^{+ 0.17}_{- 0.15} \ \pm 0.10$		^{3,9} ABREU	95Q	DLPH	$e^+e^- o Z$
$1.06 \ ^{+0.13}_{-0.11} \ \pm 0.10$		¹⁰ ADAM	95	DLPH	$e^+e^- ightarrow Z$
$0.99 \ \pm 0.14 \ ^{\displaystyle +0.05}_{\displaystyle -0.04}$		3,11 AKERS	95T	OPAL	$e^+e^- ightarrow Z$
• • • We do not use th	e followi	ng data for average	s, fits,	limits, e	etc. • • •
$1.091 \pm 0.023 \pm 0.014$		⁷ ABE	02H	BELL	Repl. by ABE 05B
$1.06 \pm 0.07 \pm 0.02$		⁶ ABE	98 B	CDF	Repl. by ACOSTA 02C
$1.01 \pm 0.11 \pm 0.02$		³ ABE	96 C	CDF	Repl. by ABE 98Q
$1.03 \pm 0.08 \pm 0.02$		¹² BUSKULIC	96J	ALEP	$e^+e^- \rightarrow Z$
$0.98 \pm 0.08 \pm 0.03$		³ BUSKULIC	96J	ALEP	Repl. by BARATE 00R
$1.02 \ \pm 0.16 \ \pm 0.05$	269	⁶ ABE	94 D	CDF	Repl. by ABE 98B
$1.11 \ ^{+0.51}_{-0.39} \ \pm 0.11$	188	³ ABREU	93 D	DLPH	Sup. by ABREU 95Q
$1.01 \ ^{+0.29}_{-0.22} \ \pm 0.12$	253	¹⁰ ABREU	93 G	DLPH	Sup. by ADAM 95
$1.0 {}^{+ 0.33}_{- 0.25} \ \pm 0.08$	130	ACTON	93 C	OPAL	Sup. by AKERS 95T

¹ Measured using $B \rightarrow J/\psi K^{(*)}$ decays.

 au_{B^+}/ au_{B^0} (inferred from branching fractions) These measurements are inferred from the branching fractions for semileptonic decay or other spectator-dominated decays by assuming that the rates for such decays are equal for B^0 and B^+ . We do not use measurements which assume equal production of B^0 and B^+ because of the large uncertainty in the production ratio.

"OUR EVALUATION" has been obtained by the Heavy Flavor Averaging Group (HFLAV) by taking into account correlations between measurements.

<u>VALUE</u> <u>CL%</u> <u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.076±0.034 OUR EVALUATION 1.07 ±0.04 OUR AVERAGE				
$1.07 \pm 0.04 \pm 0.03$ $1.067 \pm 0.041 \pm 0.033$				$e^+e^- \rightarrow \Upsilon(4S)$ $e^+e^- \rightarrow \Upsilon(4S)$
HTTP://PDG.LBL.GOV	Page 5	C	reated	: 5/30/2017 17:22

² Measured mean life using fully reconstructed decays $(J/\psi K^{(*)})$.

³ Data analyzed using $D/D^* \mu X$ vertices.

⁴ Measurement performed using a combined fit of *CP*-violation, mixing and lifetimes.

⁵ Measurement performed using an inclusive reconstruction and B flavor identification $\underline{ \frac{6}{6} \text{ Measured using fully reconstructed decays.} }$

⁷ Events are selected in which one B meson is fully reconstructed while the second B meson is reconstructed inclusively. ⁸ Data analyzed using charge of secondary vertex. ⁹ ABREU 95Q assumes B($B^0 \rightarrow D^{**-}\ell^+\nu_\ell$) = 3.2 \pm 1.7%.

 $^{^{10}}$ Data analyzed using vertex-charge technique to tag B charge. 11 AKERS 95T assumes B(B⁰ $\rightarrow D_s^{(*)}D^{0\,(*)}) = 5.0 \pm 0.9\%$ to find B^+/B^0 yield.

¹² Combined result of $D/D^*\ell X$ analysis and fully reconstructed B analysis.

• • We do not use the following data for averages, fits, limits, etc. • • •

$0.95 \begin{array}{c} +0.117 \\ -0.080 \end{array} \pm 0.091$	-		¹ ARTUSO	97	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.15 \pm 0.17 \pm 0.06$			² JESSOP	97	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.93 \pm 0.18 \pm 0.12$			³ ATHANAS	94	CLE2	Sup. by ARTUSO 97
$0.91 \ \pm 0.27 \ \pm 0.21$			⁴ ALBRECHT	92C	ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$
1.0 ± 0.4		29	^{4,5} ALBRECHT	92G	ARG	$e^+e^- ightarrow \gamma(4S)$
$0.89 \ \pm 0.19 \ \pm 0.13$			⁴ FULTON	91	CLEO	$e^+e^- ightarrow~ \varUpsilon(4S)$
$1.00 \pm 0.23 \pm 0.14$			⁴ ALBRECHT	89L	ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$
0.49 to 2.3	90		⁶ BEAN	87 B	CLEO	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ ARTUSO 97 uses partial reconstruction of $B o D^* \ell
u_\ell$ and independent of B^0 and B^+ production fraction.

$\Delta \Gamma_{B_d^0} / \Gamma_{B_d^0}$

 $\Gamma_{B^0_d}$ and $\Delta\Gamma_{B^0_d}$ are the decay rate average and difference between two B_d^0 $C\!P$ eigenstates (light - heavy). The λ_{CP} characterizes B^0 and $\overline{B}{}^0$ decays to states of charmonium plus K_I^0 , see the review on "CP Violation" in the reviews section.

"OUR EVALUATION" has been obtained by the Heavy Flavor Averaging Group (HFLAV) by taking into account correlations between measure-

```
VALUE (units 10^{-2})
                            CL%
                                         DOCUMENT ID
                                                                TECN
  - 0.2 \pm1.0 OUR EVALUATION
  - 0.2 \pm1.1 OUR AVERAGE
                                      <sup>1</sup> AABOUD
                                                          16G ATLS pp at 7, 8 TeV
  - 0.1 \pm 1.1 \pm 0.9
                                      <sup>2</sup> AAIJ 14E LHCB pp at 7 TeV
  - 4.4 \pm 2.5 \pm 1.1
                                      <sup>3</sup> HIGUCHI
                                                          12 BELL e^+e^- \rightarrow \Upsilon(4S)
      1.7 \pm 1.8 \pm 1.1
                                       <sup>4</sup> AUBERT,B
                                                          04C BABR e^+e^- \rightarrow \Upsilon(4S)
      0.8 \pm 3.7 \pm 1.8
                                      <sup>5</sup> ABDALLAH
                                                          03B DLPH e^+e^- \rightarrow Z

    • • We do not use the following data for averages, fits, limits, etc.

      0.50 \pm 1.38
                                        ABAZOV
                                                          14 D0
                                                                         p\overline{p} at 1.96 TeV
                                       <sup>6</sup> BEHRENS
                                                          00B CLE2 e^+e^- \rightarrow \Upsilon(4S)
< 80
                            95
```

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^3}$ ATHANAS 94 uses events tagged by fully reconstructed B^- decays and partially or fully reconstructed B^0 decays.

⁴ Assumes equal production of B^0 and B^+ .

⁵ ALBRECHT 92G data analyzed using $B \to D_s \overline{D}$, $D_s \overline{D}^*$, $D_s^* \overline{D}$, $D_s^* \overline{D}^*$ events.

⁶ BEAN 87B assume the fraction of $B^0 \overline{B}{}^0$ events at the $\Upsilon(4S)$ is 0.41.

 $^{^1}$ Measured from the ratio of decay time distributions of $B^0 o J/\psi \, K_S^0$ and $B^0 o$ $J/\psi\,K^{*0}$ decays.

² Measured using the effective lifetimes of $B^0 \to J/\psi K_S^0$ and $B^0 \to J/\psi K^{*0}$ decays. ³ Reports $-\Delta \Gamma_d/\Gamma_d$ using $B^0 \to J/\psi K_S^0$, $J/\psi K_L^0$, $D^-\pi^+$, $D^{*-}\pi^+$, $D^{*-}\rho^+$, and $D^{*-}\ell^+\nu$ decays.

⁴ Corresponds to 90% confidence range [-0.084, 0.068].

B⁰ DECAY MODES

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

	Mode	ı		e factor/ nce level
Γ_1	$\ell^+ u_\ell$ anything	[a]] (10.33± 0.28) %	
Γ_2^-	$e^+ \nu_e X_c$		($10.1~\pm~0.4$) %	
Γ ₃	$D\ell^+ u_\ell$ anything		(9.2 \pm 0.8) %	
Γ ₄	$D^-\ell^+ u_\ell$	[a]] ($2.19\pm~0.12$)%	
Γ_5	$D^- au^+ u_ au$		($1.03\pm~0.22)~\%$	
Γ_6	$D^*(2010)^-\ell^+ u_\ell$	[a]] (4.93± 0.11) %	
Γ_7	$D^*(2010)^- au^+ u_ au$		($1.67\pm~0.13)~\%$	S=1.1
Γ ₈	$\overline{D}{}^0\pi^-\ell^+ u_\ell$		$(4.3 \pm 0.6) \times 10^{-3}$	
Γ ₉	$D_0^*(2400)^-\ell^+\nu_\ell, \ D_0^{*-} \to \overline{D}^0\pi^-$		$(3.0 \pm 1.2) \times 10^{-3}$	S=1.8
Γ ₁₀	$D_2^*(2460)^-\ell^+\nu_\ell, \ D_2^{*-} \to \overline{D}^0\pi^-$		$(1.21\pm 0.33) \times 10^{-3}$	S=1.8
Γ ₁₁	$\overline{D}^{(*)}n\pi\ell^{\overset{\frown}{+}} u_{\ell}(n\ \geq\ 1)$		(2.3 ± 0.5) %	
Γ_{12}^{-1}	$\overline{D}^{*0}\pi^-\ell^+ u_\ell$		$(4.9 \pm 0.8) \times 10^{-3}$	
Γ ₁₃	$D_1(2420)^-\ell^+\nu_\ell, \ D_1^-\to$		$(2.80\pm\ 0.28)\times10^{-3}$	
Γ ₁₄	$D_{1}^{\prime}(2430)^{-}\ell^{+}\nu_{\ell},\ D_{1}^{\prime-} ightarrow D_{1}^{\prime-}$		$(3.1 \pm 0.9) \times 10^{-3}$	

 $^{^5}$ Used the measured $\tau_{B^0}=1.55\pm0.03\,\mathrm{ps.}$ Corresponds to an upper limit of < 0.18 at $_295\%$ C.L.

 $^{^6}$ BEHRENS 00B uses high-momentum lepton tags and partially reconstructed $\overline B{}^0\to D^{*+}\pi^-$, ρ^- decays to determine the flavor of the B meson. Assumes $\Delta_{md}{=}0.478\pm0.018\,\mathrm{ps}^{-1}$ and $\tau_{R^0}{=}1.548\pm0.032\,\mathrm{ps}.$

```
D_2^*(2460)^- \ell^+ \nu_{\ell}, D_2^{*-} \rightarrow
                                                                 (6.8 \pm 1.2) \times 10^{-4}
                                                                   (1.3 \pm 0.5) \times 10^{-3}
(1.4 \pm 0.5) \times 10^{-3}
             \begin{array}{c} \overline{D}^{*0}\pi^{-} \\ D^{-}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} \\ D^{*-}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} \end{array}

ho^-\ell^+
u_\ell
\Gamma_{18}
                                                                   [a] (2.94 \pm 0.21) \times 10^{-4}
\begin{array}{ccc} \Gamma_{19} & \pi^- \ell^+ \nu_{\ell} \\ \Gamma_{20} & \pi^- \mu^+ \nu_{\mu} \end{array}
                                                                   [a] (1.45\pm 0.05) \times 10^{-4}
                                                                                                  \times 10^{-4} CL=90%
                                                  Inclusive modes
       K^\pm anything
                                                                           (78 \pm 8)\%
\Gamma_{23} D^0 X
                                                                           (8.1 \pm 1.5)\%
\Gamma_{24} \quad \overline{D}{}^{0}X
                                                                           (47.4 \pm 2.8)\%
\Gamma_{25} D^+X
                                                                                                                  CL=90%
                                                                         <
                                                                               3.9
\Gamma_{26} D^-X
                                                                           ( 36.9 \pm 3.3 ) %
\Gamma_{27} D_s^+ X
                                                                           (10.3 + 2.1 \atop -1.8)\%
\Gamma_{28} D_{s}^{-}X
                                                                         < 2.6
                                                                                                  %
                                                                                                                  CL=90%
\Gamma_{29} \quad \Lambda_c^{+} X
                                                                         < 3.1
                                                                                                  %
                                                                                                                  CL=90%
\Gamma_{30} \quad \overline{\Lambda}_c^- X
                                                                           (5.0 + 2.1 \atop -1.5)\%
\Gamma_{31} \overline{c} X
                                                                           (95 \pm 5)\%
\Gamma_{32} cX
                                                                           (24.6 \pm 3.1)\%
\Gamma_{33} \overline{c} c X
                                                                           (119 \pm 6 ) %
                                              D, D^*, or D_s modes
\Gamma_{34} \quad D^{-}\pi^{+}
                                                                           (2.52\pm 0.13) \times 10^{-3}
                                                                                                                      S=1.1
\Gamma_{35} D^-\rho^+
                                                                           (7.9 \pm 1.3) \times 10^{-3}
\Gamma_{36} D^- K^0 \pi^+
                                                                           (4.9 \pm 0.9) \times 10^{-4}
\Gamma_{37} D^-K^*(892)^+
                                                                           (4.5 \pm 0.7) \times 10^{-4}
       D^-\omega\pi^+
                                                                           (2.8 \pm 0.6) \times 10^{-3}
       D^-K^+
                                                                           (1.86\pm\ 0.20)\times10^{-4}
\Gamma_{40} D^-K^+\pi^+\pi^-
                                                                           (3.5 \pm 0.8) \times 10^{-4}
       D^-K^+\overline{K}^0
                                                                                                  \times 10^{-4}
                                                                                                                  CL=90%
       D^{-}K^{+}\overline{K}^{*}(892)^{0}
                                                                           (8.8 \pm 1.9) \times 10^{-4}
\Gamma_{43} \quad \overline{D}{}^0 \pi^+ \pi^-
                                                                           (8.8 \pm 0.5) \times 10^{-4}
\Gamma_{44} D^*(2010)^-\pi^+
                                                                           (2.74\pm 0.13) \times 10^{-3}
\Gamma_{45} \overline{D}^{0} K^{+} K^{-}
                                                                           (4.9 \pm 1.2) \times 10^{-5}
        D^{-}\pi^{+}\pi^{+}\pi^{-}
                                                                           (6.0 \pm 0.7) \times 10^{-3}
                                                                                                                      S = 1.1
       (D^-\pi^+\pi^+\pi^-) nonresonant D^-\pi^+\rho^0 D^-a_1(1260)^+ D^*(2010)^-\pi^+\pi^0
                                                                           (3.9 \pm 1.9) \times 10^{-3}
\Gamma_{48}
                                                                           (1.1 \pm 1.0) \times 10^{-3}
                                                                           (6.0 \pm 3.3) \times 10^{-3}
                                                                           (1.5 \pm 0.5)\%
\Gamma_{51} D^*(2010)^- \rho^+
                                                                           (2.2 + 1.8 \atop -2.7) \times 10^{-3}
                                                                                                                      S = 5.2
\Gamma_{52} D^*(2010)^-K^+
                                                                           (2.12\pm 0.15) \times 10^{-4}
```

Γ ₁₁₁	$D^{-}D_{sJ}(2700)^{+}, \ D_{sJ}^{+} \rightarrow D^{0} \kappa^{+}$	(7.1 ±	$1.2) \times 10^{-4}$	
Γ112	$D^{0}K^{+}$ $D^{+}\pi^{-}$	(7.4 +	$1.3) \times 10^{-7}$	
Γ112	$D_s^+\pi^-$	($0.26) \times 10^{-5}$	
	$D_s^{*+}\pi^-$	($0.20) \times 10^{-5}$	S=1.4
	$D_s^+ \rho^-$	<	2.4	× 10 ⁻⁵	CL=90%
. 112	D*+ o-	(1.3) \times 10 ⁻⁵	CL-3070
L 110	$D_{s}^{*+}\rho^{-}$ $D_{s}^{+}a_{0}^{-}$,	1.9	$\times 10^{-5}$	CL 000/
' 117 	D_s^{*+}	<			CL=90%
	$D_s^{*+}a_0^{-}$	<	3.6	$\times 10^{-5}$	CL=90%
l 119	$D_s^+ a_1(1260)^-$	<	2.1	$\times 10^{-3}$	CL=90%
	$D_s^{*+} a_1(1260)^-$	<	1.7	× 10 ⁻³	CL=90%
	$D_{s}^{+}a_{2}^{-}$	<	1.9	× 10 ⁻⁴	CL=90%
	$D_s^{*+} a_2^-$	<	2.0	\times 10 ⁻⁴	CL=90%
Γ_{123}	$D_s^- K^+$	($2.7~\pm$	$0.5) \times 10^{-5}$	S=2.7
Γ_{124}	$D_s^{*-}K^+$	($2.19\pm$	$0.30) \times 10^{-5}$	
	$D_s^- K^*(892)^+$	($3.5~\pm$	$1.0) \times 10^{-5}$	
Γ ₁₂₆	$D_s^{*-} K^*(892)^+$	(3.2 +	$^{1.5}_{1.3}$) $ imes$ 10 ⁻⁵	
Γ ₁₂₇	$D_{s}^{-}\pi^{+}K^{0}$	(9.7 ±	$1.4) \times 10^{-5}$	
Γ ₁₂₈	$D_s^{*-}\pi^+K^0$	<		$\times 10^{-4}$	CL=90%
Γ ₁₂₉	$D_{s}^{-}K^{+}\pi^{+}\pi^{-}$	($0.5) \times 10^{-4}$	
Г	$D = -+ \kappa * (000)0$	<	3.0	× 10 ⁻³	CL=90%
Γ ₁₃₁	$D_{s}^{*} \pi^{+} K^{*}(892)^{0}$ $\overline{D}_{s}^{0} K^{0}$	<	1.6	$\times10^{-3}$	CL=90%
Γ ₁₃₂	$\overline{D}^{\delta}K^{0}$			$0.7) \times 10^{-5}$	
Γ ₁₃₃	$\overline{D}^0 \underline{K}^+ \pi^-$	($1.7) \times 10^{-5}$	
Γ124	$D^0 K^* (892)^0$	($0.6) \times 10^{-5}$	
Γ ₁₃₅	$\overline{D}{}^{0}K^{*}(1410)^{0}$	<	6.7	$\times 10^{-5}$	CL=90%
Γ ₁₃₆	$\frac{\overline{D}^0 K^* (1410)^0}{\overline{D}^0 K_0^* (1430)^0}$	(7) \times 10 ⁻⁶	
Γ ₁₃₇	$\overline{D}{}^{0}K_{2}^{*}(1430)^{0}$	($0.9) \times 10^{-5}$	
	$D_0^*(2400)^-, D_0^{*-} \rightarrow \overline{D}{}^0\pi^-$	($0.9) \times 10^{-5}$	
	$D_2^*(2460)^-K^+, D_2^{*-} \rightarrow$			$(0.35) \times 10^{-5}$	
	$^{-}\overline{D}{}^{0}\pi^{-}$				CI 000/
^I 140	$D_3^*(2760)^- K^+, D_3^{*-} \rightarrow \overline{D}_{0,\pi^-}^0$	<	1.0	× 10 °	CL=90%
Γ ₁₄₁	$\overline{D}{}^0 \pi^- \over \overline{D}{}^0 K^+ \pi^-$ non-resonant	<	3.7	\times 10 ⁻⁵	CL=90%
$\Gamma_{1/2}$	$[K^{+}K^{-}]_{D}K^{*}(892)^{0}$				
Γ ₁₄₃	$\frac{[\pi^{+}\pi^{-}]_{D}^{1D}K^{*}(892)^{0}}{D^{0}\pi^{0}}$				
Γ ₁₄₄	$\frac{1}{D}$ 0 π 0	($2.63\pm$	$0.14) \times 10^{-4}$	
Γ ₁₄₅	$\overline{D}{}^0 \rho^0$			$0.21) \times 10^{-4}$	
Γ_{146}	$\overline{D}_{2}^{0}f_{2}$			$0.21) \times 10^{-4}$	
Γ ₁₄₇	\overline{D}_{1}^{0}			$0.32) \times 10^{-4}$	S=2.5
Γ ₁₄₈	$\overline{D}^0 \eta'$	($0.16) \times 10^{-4}$	S=1.3
140	•	`		,	

```
\Gamma_{149} \overline{D}{}^{0} \omega
                                                                     (2.54\pm 0.16) \times 10^{-4}
\Gamma_{150} D^0 \phi
                                                                                           \times 10^{-5}
                                                                                                         CL=90%
                                                                         1.16
\Gamma_{151} \ D^0 K^+ \pi^-
                                                                     (5.3 \pm 3.2) \times 10^{-6}
\Gamma_{152} D^0 K^* (892)^0
                                                                                           \times 10^{-5}
                                                                         1.1
                                                                                                         CL=90%
\Gamma_{153} \overline{D}^{*0} \gamma
                                                                         2.5
                                                                                           \times 10^{-5}
                                                                                                         CL=90%
                                                                   <
\Gamma_{154} \ \overline{D}^*(2007)^0 \pi^0
                                                                     (2.2 \pm 0.6) \times 10^{-4}
                                                                                                             S = 2.6
\Gamma_{155} \ \overline{D}^*(2007)^0 \rho^0
                                                                                           \times 10^{-4}
                                                                   <
                                                                                                         CL=90%
\Gamma_{156} \ \overline{D}^*(2007)^0 \eta
                                                                   (2.3 \pm 0.6) \times 10^{-4}
                                                                                                             S = 2.8
\Gamma_{157} \ \overline{D}^*(2007)^0 \eta'
                                                                   (1.40\pm 0.22) \times 10^{-4}
\Gamma_{158} \ \overline{D}^*(2007)^0 \pi^+ \pi^-
                                                                     (6.2 \pm 2.2) \times 10^{-4}
\Gamma_{159} \ \overline{D}^*(2007)^0 K^0
                                                                     (3.6 \pm 1.2) \times 10^{-5}
\Gamma_{160} \ \overline{D}^*(2007)^0 K^*(892)^0
                                                                                                         CL=90%
                                                                   <
                                                                         6.9
                                                                                           \times 10^{-5}
\Gamma_{161} D^*(2007)^0 K^*(892)^0
                                                                   <
                                                                                           \times 10^{-5}
                                                                         4.0
                                                                                                         CL=90%
\Gamma_{162} D^*(2007)^0 \pi^+ \pi^+ \pi^- \pi^-
                                                                     (2.7 \pm 0.5) \times 10^{-3}
\Gamma_{163} D^*(2010)^+ D^*(2010)^-
                                                                     (8.0 \pm 0.6) \times 10^{-4}
\Gamma_{164} \ \overline{D}^*(2007)^0 \omega
                                                                     (3.6 \pm 1.1) \times 10^{-4}
                                                                                                            S = 3.1
\Gamma_{165} D^*(2010)^+ D^-
                                                                     (6.1 \pm 1.5) \times 10^{-4}
                                                                                                             S = 1.6
\Gamma_{166} D^*(2007)^0 \overline{D}^*(2007)^0
                                                                                           \times 10^{-5}
                                                                   <
                                                                         9
                                                                                                         CL=90%
\Gamma_{167} D^{-}D^{0}K^{+}
                                                                     (1.07\pm 0.11)\times 10^{-3}
\Gamma_{168} D^- D^* (2007)^0 K^+
                                                                   (3.5 \pm 0.4) \times 10^{-3}
\Gamma_{169} D^*(2010)^- D^0 K^+
                                                                   (2.47\pm 0.21) \times 10^{-3}
\Gamma_{170} D^*(2010)^- D^*(2007)^0 K^+
                                                                     (1.06 \pm 0.09)\%
\Gamma_{171} D^- D^+ K^0
                                                                     (7.5 \pm 1.7) \times 10^{-4}
\Gamma_{172} D^*(2010)^- D^+ K^0 +
                                                                     (6.4 \pm 0.5) \times 10^{-3}
              D^-D^*(2010)^+K^0
\Gamma_{173} D^*(2010)^- D^*(2010)^+ K^0
                                                                     (8.1 \pm 0.7) \times 10^{-3}
             D^{*-}D_{s1}(2536)^+, D_{s1}^+ \rightarrow
                                                                     (8.0 \pm 2.4) \times 10^{-4}
                  D^{*+}K^{0}
\Gamma_{175} \ \overline{D}{}^0 D^0 K^0
                                                                     (2.7 \pm 1.1) \times 10^{-4}
\Gamma_{176} \ \overline{D}{}^0 D^* (2007)^0 K^0 +
                                                                     (1.1 \pm 0.5) \times 10^{-3}
              \overline{D}^*(2007)^0 D^0 K^0
\Gamma_{177} \ \overline{D}^*(2007)^0 D^*(2007)^0 K^0
                                                                     (2.4 \pm 0.9) \times 10^{-3}
\Gamma_{178} (\overline{D} + \overline{D}^*) (D + D^*) K
                                                                        3.68\pm~0.26)~\%
                                           Charmonium modes
\Gamma_{179} \eta_c K^0
                                                                     (8.0 \pm 1.2) \times 10^{-4}
\Gamma_{180} \quad \eta_c \, K^*(892)^0
                                                                     (6.3 \pm 0.9) \times 10^{-4}
\Gamma_{181} \quad \eta_c(2S) K^{*0}
                                                                                           \times 10^{-4}
                                                                         3.9
                                                                                                         CL=90%
\Gamma_{182} h_c(1P) K^{*0}
                                                                                           \times 10^{-4}
                                                                                                         CL=90%
\Gamma_{183} J/\psi(1S) K^0
                                                                     (8.73\pm 0.32)\times 10^{-4}
\Gamma_{184} J/\psi(1S) K^+ \pi^-
                                                                     (1.15\pm 0.05) \times 10^{-3}
\Gamma_{185} \qquad J/\psi(1S) \, K^*(892)^0
                                                                     (1.28\pm 0.05) \times 10^{-3}
\Gamma_{186} \ J/\psi(1S) \eta K_S^0
                                                                     (5.4 \pm 0.9) \times 10^{-5}
\Gamma_{187} J/\psi(1S) \eta' K_S^0
                                                                         2.5
                                                                                           \times 10^{-5}
                                                                                                         CL=90%
\Gamma_{188} J/\psi(1S)\phi K^{0}
                                                                     (4.9 \pm 1.0) \times 10^{-5}
                                                                                                             S=1.3
```

HTTP://PDG.LBL.GOV Page 12 Created: 5/30/2017 17:22

```
\Gamma_{189} J/\psi(1S) \omega K^{0}
                                                                                         (2.3 \pm 0.4) \times 10^{-4}
\Gamma_{190} = X(3872)K^0, X \rightarrow J/\psi\omega
( 6.0 \pm 3.2 \times 10^{-4}
\Gamma_{191} = X(3915), X \rightarrow J/\psi\omega
( 6.0 \pm 3.2 \times 10^{-6}
\Gamma_{192} = J/\psi(15)K(1270)^0
 \Gamma_{192} J/\psi(1S) \dot{K}(1270)^0
                                                                                     (1.3 \pm 0.5) \times 10^{-3}
                                                                                \begin{array}{ccc} (& 1.3 \pm & 0.3 \ ) \times 10 \\ (& 1.76 \pm & 0.16) \times 10^{-5} \\ (& 1.08 \pm & 0.23) \times 10^{-5} \end{array}
 \Gamma_{193} J/\psi(1S)\pi^{0}
                                                                                                                                           S = 1.1
\Gamma_{194} J/\psi(1S)\eta
                                                                                                                                            S=1.5
\Gamma_{195} J/\psi(1S)\pi^{+}\pi^{-}
                                                                                     (4.03\pm 0.18) \times 10^{-5}
 \Gamma_{196} \qquad J/\psi(1S)\,\pi^+\,\pi^- nonresonant < 1.2 \times 10<sup>-5</sup> CL=90%
                                                                                  (8.1 \ \frac{+}{-} \ \frac{1.1}{0.9}) \times 10^{-6}
                J/\psi(1S) f_0(500), f_0 \to \pi \pi
 \Gamma_{197}
                                                                                     (3.3 \begin{array}{c} + 0.5 \\ - 0.6 \end{array}) \times 10^{-6}
                J/\psi(1S)f_2
 Γ<sub>198</sub>
                                                                                                                                           S = 1.6
                                                                               (\quad 2.55^{+}_{-} \  \, \stackrel{0.18}{0.16}) \times 10^{-5}
\Gamma_{199} = J/\psi(1S)\rho^0
Γ<sub>200</sub>
                J/\psi(1S) f_0(980), f_0 \to
                                                                                       < 1.1
                                                                                                       \times 10^{-6} CL=90%
\Gamma_{201} = J/\psi(1S) \rho(1450)^0, \ \rho^0 \to \pi\pi ( 3.0 ^+ ^{1.6}_{-0.7} ) \times 10<sup>-6</sup>
\Gamma_{202} J/\psi \rho (1700)^0, \ \rho^0 \to \pi^+ \pi^-  (2.0 ± 1.3) × 10<sup>-6</sup>
                                                                            ( 1.8 \ ^{+} \ 0.7 \ ) \times 10^{-5}
\Gamma_{203} J/\psi(1S)\omega
\begin{array}{lll} \Gamma_{204} & J/\psi(1S)\,K^+\,K^- & (& 2.6~\pm~0.4~)\times10^{-6} \\ \Gamma_{205} & J/\psi(1S)\,a_0(980), & a_0 \rightarrow & (& 4.7~\pm~3.4~)\times10^{-7} \end{array}
                       K^+K^-
 \Gamma_{206} J/\psi(1S)\phi
                                                                                  < 1.9 \times 10^{-7}
                                                                                                                                       CL=90%
                                                                      ( 7.6 \pm 2.4 ) \times 10^{-6}
( 4.4 \pm 0.4 ) \times 10^{-4}
 \Gamma_{207} J/\psi(1S) \eta'(958)
\Gamma_{208} J/\psi(1S) \dot{K}^{0} \pi^{+} \pi^{-}
 \Gamma_{208} J/\psi(1S) K^0 \pi^+ \pi^- (4.4 ± 0.4) × 10<sup>-4</sup> 

\Gamma_{209} J/\psi(1S) K^0 K^- \pi^+ + \text{c.c.} < 2.1 × 10<sup>-5</sup>
                                                                                                                                       CL=90%
\Gamma_{210} J/\psi(1S) K^0 K^+ K^-
                                                                                      (2.5 \pm 0.7) \times 10^{-5}
                                                                                                                                            S=1.8
\Gamma_{211} J/\psi(1S) K^0 K^{\pm} \pi^{\mp}
\Gamma_{217} X(3872)^{-}K^{+}
                                                                                    < 5 \times 10^{-4} CL=90%
 \Gamma_{218} \ \ X(3872)^{-} K^{+}, \ \ X(3872)^{-} \rightarrow \qquad [c] < 4.2 \times 10^{-6}
                                                                                                                                       CL=90%
                   J/\psi(1S)\pi^{-}\pi^{0}
\Gamma_{219} \quad X(3872) K^{0}, \quad X \rightarrow J/\psi \pi^{+} \pi^{-} \qquad (4.3 \pm 1.3) \times 10^{-6}
\Gamma_{220} \quad X(3872) K^{0}, \quad X \rightarrow J/\psi \gamma \qquad <2.4 \qquad \times 10^{-6}
\Gamma_{221} \quad X(3872) K^{*}(892)^{0}, \quad X \rightarrow J/\psi \gamma \qquad <2.8 \qquad \times 10^{-6}
\Gamma_{222} \quad X(3872) K^{0}, \quad X \rightarrow \psi(2S) \gamma \qquad <6.62 \qquad \times 10^{-6}
\Gamma_{223} \quad X(3872) K^{*}(892)^{0}, \quad X \rightarrow (4.4 ) \times 10^{-6}
                                                                                                                                       CL=90%
                                                                                                                                       CL=90%
                                                                                                                                       CL=90%
                                                                                                                                       CL=90%
                   \psi(2S)\gamma
\Gamma_{224} \quad X(3872) K^0, \quad X \rightarrow D^0 \overline{D}{}^0 \pi^0
\Gamma_{225} \quad X(3872) K^0, \quad X \rightarrow \overline{D}{}^{*0} D^0
(1.7 \pm 0.8) \times 10^{-4}
(1.2 \pm 0.4) \times 10^{-4}
```

```
\Gamma_{226} X(3872) K^{+} \pi^{-}, X \rightarrow
                                                                           (7.9 \pm 1.4) \times 10^{-6}
               J/\psi \pi^+\pi^-
              X(3872)K^*(982)^0, X \rightarrow
                                                                      (4.0 \pm 1.5) \times 10^{-6}
                    J/\psi \pi^+\pi^-
\Gamma_{228} \quad X(4430)^{\pm} K^{\mp}, \quad X^{\pm} \rightarrow \psi(2S) \pi^{\pm}
                                                          (6.0 + \frac{3.0}{2.4}) \times 10^{-5}
\Gamma_{229} \ \ X(4430)^{\pm} \ K^{\mp}, \ \ X^{\pm} \rightarrow \ \ J/\psi \ \pi^{\pm} ( 5.4 ^{+}_{-} 4.0 ) \times 10^{-6}
\Gamma_{230} \ X(3900)^{\pm} K^{\mp}, \ X^{\pm} \rightarrow \ J/\psi \pi^{\pm}
                                                                                        \times 10<sup>-7</sup>
                                                                          < 9
                                                                        (\phantom{-}2.2\phantom{0}^{\phantom{0}+\phantom{0}1.3\phantom{0}}\phantom{0})\times10^{-5\phantom{0}}
\Gamma_{231} \ \ X(4200)^{\pm} K^{\mp}, \ \ X^{\pm} \rightarrow \ \ J/\psi \pi^{\pm}
                                                                                                   \times 10^{-7}
\Gamma_{232} J/\psi(1S) p \overline{p}
                                                                          < 5.2
                                                                                                                    CL=90%
\Gamma_{233} J/\psi(1S)\gamma
                                                                          < 1.5
                                                                                                    \times 10^{-6}
                                                                                                                   CL=90%
\Gamma_{234} J/\psi(1S)\overline{D}^0
                                                                                                    \times 10^{-5}
                                                                                                                   CL=90%
                                                                          < 1.3
\Gamma_{235} \ \psi(2S) \pi^0
                                                                          (1.17\pm 0.19) \times 10^{-5}
\Gamma_{236} \ \psi(2S) K^0
                                                                           (5.8 \pm 0.5) \times 10^{-4}
\Gamma_{237} \psi(3770)K^0, \psi \rightarrow \overline{D}{}^0D^0
                                                                                                    \times 10^{-4}
                                                                          < 1.23
                                                                                                                   CL=90%
\Gamma_{238} \ \psi(3770) K^0, \ \psi \to \ D^- D^+
                                                                                                    \times 10^{-4}
                                                                                1.88
                                                                                                                   CL=90%
\Gamma_{239} \ \psi(2S) \pi^+ \pi^-
                                                                            (2.3 \pm 0.4) \times 10^{-5}
\Gamma_{240} \ \psi(2S) K^{+} \pi^{-}
                                                                            (5.8 \pm 0.4) \times 10^{-4}
\Gamma_{241} \quad \psi(2S) \, K^*(892)^0
                                                                            (5.9 \pm 0.4) \times 10^{-4}
\Gamma_{242} \quad \chi_{c0} K^0
                                                                            (1.47\pm 0.27) \times 10^{-4}
\Gamma_{243} \quad \chi_{c0} \, K^*(892)^0
                                                                            (1.7 \pm 0.4) \times 10^{-4}
\Gamma_{244} \quad \chi_{c1} \pi^0
                                                                            (1.12\pm 0.28) \times 10^{-5}
\Gamma_{245} \quad \chi_{c1} K^0
                                                                            (3.93\pm\ 0.27)\times10^{-4}
\Gamma_{246} \chi_{c1}\pi^-K^+
                                                                            (4.97\pm 0.30)\times 10^{-4}
\Gamma_{247} \qquad \chi_{c1} \, K^*(892)^0
                                                                            (2.39\pm 0.19) \times 10^{-4}
                                                                                                                        S = 1.2
                                                                            ( 3.0 \ ^{+} \ ^{4.0} \ ) \times 10^{-5}
\Gamma_{248} X(4051)^{-}K^{+}, X^{-} \rightarrow
                   \chi_{c1}\pi^{-}
             X(4248)^- K^+, X^- \to
                                                                          (4.0 \begin{array}{c} +20.0 \\ -1.0 \end{array}) \times 10^{-5}
                   \chi_{c1}\pi^{-}
\Gamma_{250} \quad \chi_{c1} \pi^{+} \pi^{-} K^{0}
                                                                           (3.2 \pm 0.5) \times 10^{-4}
\Gamma_{251} \quad \chi_{c1} \pi^- \pi^0 K^+
                                                                           (3.5 \pm 0.6) \times 10^{-4}
\Gamma_{252} \quad \chi_{c2} K^0
                                                                                                    \times 10^{-5}
                                                                          < 1.5
                                                                                                                   CL=90%
\Gamma_{253} \quad \chi_{c2} K^* (892)^0
                                                                            (4.9 \pm 1.2) \times 10^{-5}
                                                                                                                       S=1.1
\Gamma_{254} \quad \chi_{c2} \pi^- K^+
                                                                            (7.2 \pm 1.0) \times 10^{-5}
\Gamma_{255} \quad \chi_{c2} \, \pi^+ \, \pi^- \, K^0
                                                                                                    \times 10<sup>-4</sup>
                                                                                1.70
                                                                                                                   CL=90%
\Gamma_{256} \ \chi_{c2} \pi^- \pi^0 K^+
                                                                                 7.4
                                                                                                    \times 10^{-5}
                                                                                                                   CL=90%
                                                   K or K* modes
\Gamma_{257} \ K^+ \pi^-
                                                                            (1.96\pm\ 0.05)\times 10^{-5}
\Gamma_{258} \ K^0 \pi^0
                                                                            (9.9 \pm 0.5) \times 10^{-6}
\Gamma_{259} \eta' K^0
                                                                            (6.6 \pm 0.4) \times 10^{-5}
                                                                                                                       S=1.4
\Gamma_{260} \quad \eta' \, K^* (892)^0
                                                                            (2.8 \pm 0.6) \times 10^{-6}
\Gamma_{261} \quad \eta' \, K_0^* (1430)^0
                                                                            (6.3 \pm 1.6) \times 10^{-6}
HTTP://PDG.LBL.GOV Page 14
                                                                         Created: 5/30/2017 17:22
```

```
(1.37\pm 0.32)\times 10^{-5}
\Gamma_{262} \quad \eta' \, K_2^* (1430)^0
\Gamma_{263} \eta K^0
                                                                             (\quad 1.23^{+}_{-}\  \, {\overset{0.27}{0.24}})\times 10^{-6}
\Gamma_{264} \eta K^*(892)^0
                                                                             (1.59\pm 0.10) \times 10^{-5}
\Gamma_{265} \eta K_0^* (1430)^0
                                                                            (1.10\pm 0.22) \times 10^{-5}
\Gamma_{266} \eta K_2^* (1430)^0
                                                                            (9.6 \pm 2.1) \times 10^{-6}
\Gamma_{267} \omega K^{\bar{0}}
                                                                            (4.8 \pm 0.4) \times 10^{-6}
\Gamma_{268}^{261} \ a_0(980)^0 K^0, \ a_0^0 \rightarrow \ \eta \pi^0
                                                                          < 7.8
                                                                                                 \times 10^{-6}
                                                                                                                    CL=90%
\Gamma_{269} b_1^0 \, K^0, b_1^0 
ightarrow \, \widetilde{\omega} \, \pi^0
                                                                                                    \times 10^{-6}
                                                                                 7.8
                                                                                                                    CL=90%
\Gamma_{270} \ a_0(980)^{\pm} K^{\mp}, \ a_0^{\pm} \rightarrow \ \eta \pi^{\pm}
                                                                                                    \times 10^{-6}
                                                                                                                    CL=90%
(7.4 \pm 1.4) \times 10^{-6}
                                                                                         \times 10^{-6}
                                                                                                                    CL=90%
\Gamma_{273} \ b_1^- K^{*+}, \ b_1^- 	o \omega \pi^-
                                                                                                    \times 10^{-6}
                                                                                 5.0
                                                                                                                    CL=90%
\Gamma_{274} \ \ \bar{a_0}(1450)^{\pm} \, \bar{K}^{\mp}, \ \ a_0^{\pm} \rightarrow \ \eta \, \pi^{\pm}
                                                                                 3.1
                                                                                                    \times 10^{-6}
                                                                                                                    CL=90%
\Gamma_{275} K_s^0 X^0 (Familon)
                                                                                                    \times 10^{-5}
                                                                                 5.3
                                                                                                                    CL=90%
\Gamma_{276} \omega K^* (892)^0
                                                                            (2.0 \pm 0.5) \times 10^{-6}
\Gamma_{277} \ \omega (K\pi)_0^{*0}
                                                                            (1.84\pm 0.25) \times 10^{-5}
\Gamma_{278} \ \omega K_0^* (1430)^0
                                                                            (1.60\pm 0.34)\times 10^{-5}
\Gamma_{279} \omega K_2^* (1430)^0
                                                                            (1.01\pm 0.23) \times 10^{-5}
\Gamma_{280} \quad \omega \, K^{\overline{+}} \, \pi^- nonresonant \Gamma_{281} \quad K^+ \, \pi^- \, \pi^0
                                                                            (5.1 \pm 1.0) \times 10^{-6}
                                                                            ( 3.78\pm~0.32) \times~10^{-5}
\Gamma_{282} K^+ \rho^-
                                                                            (7.0 \pm 0.9) \times 10^{-6}
          K^{+} \rho (1450)^{-}
Γ<sub>283</sub>
                                                                         (2.4 \pm 1.2) \times 10^{-6}
\Gamma_{284} K^+ \rho (1700)^-
                                                                          (6 \pm 7) \times 10^{-7}
              (K^{+}\pi^{-}\pi^{0}) non-resonant
                                                                       (2.8 \pm 0.6) \times 10^{-6}
Γ<sub>285</sub>
              (K\pi)_0^{*+}\pi^{-}, (K\pi)_0^{*+} \rightarrow
                                                                            (3.4 \pm 0.5) \times 10^{-5}
\Gamma_{286}
              (K\pi)^{0}_{0}\pi^{0}, (K\pi)^{*0}_{0} \rightarrow
\Gamma_{287}
                                                                            (8.6 \pm 1.7) \times 10^{-6}
          K^+\pi^- \ K_2^*(1430)^0\pi^0
                                                                                                    \times 10^{-6}
                                                                                                                    CL=90%
              K^*(1680)^0 \pi^0
\Gamma_{289}
                                                                          < 7.5
                                                                                                    \times 10^{-6}
                                                                                                                    CL=90%
\Gamma_{290} \quad K_{\chi}^{*0} \pi^{0} 
\Gamma_{291} \quad K^{0} \pi^{+} \pi^{-}
                                                                    [d] (6.1 \pm 1.6) \times 10^{-6}
                                                                            (5.20\pm\ 0.24)\times10^{-5}
                                                                                                                        S = 1.3
                                                                            (\quad 1.47^{+}_{-}\  \, \stackrel{0.40}{0.26})\times 10^{-5}
              K^0\pi^+\pi^- non-resonant
                                                                                                                        S = 2.1
           K^0 \rho^0
\Gamma_{293}
                                                                            (4.7 \pm 0.6) \times 10^{-6}
              K^*(892)^+\pi^-
                                                                            (8.4 \pm 0.8) \times 10^{-6}
\Gamma_{294}
              K_0^*(1430)^+\pi^-
                                                                       (3.3 \pm 0.7) \times 10^{-5}
\Gamma_{295}
                                                                                                                        S = 2.0
              K_{x}^{*+}\pi^{-}
                                                                 [d] (5.1 \pm 1.6) \times 10^{-6}
\Gamma_{296}
              K^*(1410)^+\pi^-, K^{*+} \rightarrow
                                                                         < 3.8
                                                                                        \times 10^{-6} CL=90%
\Gamma_{297}
              f_0(980)K^0, f_0 \rightarrow \pi^+\pi^-
                                                                            (7.0 \pm 0.9) \times 10^{-6}
Γ<sub>298</sub>
                                                                            (2.7 + 1.3 \times 10^{-6}) \times 10^{-6}
              f_{5}(1270)K^{0}
\Gamma_{299}
```

```
f_{x}(1300)K0, f_{x} \rightarrow \pi^{+}\pi^{-}
                                                                        (1.8 \pm 0.7) \times 10^{-6}
\Gamma_{301} \quad K^*(892)^0 \pi^0
                                                                        (3.3 \pm 0.6) \times 10^{-6}
\Gamma_{302} \quad K_2^*(1430)^+ \pi^-
                                                                                              \times 10^{-6}
                                                                      <
                                                                                                             CL=90%
\Gamma_{303} K^*(1680)^+\pi^-
                                                                                               \times 10^{-5}
                                                                     < 1.0
                                                                                                             CL=90%
\Gamma_{304} \quad K^{+} \pi^{-} \pi^{+} \pi^{-}
                                                                                               \times 10^{-4}
                                                              [e] < 2.3
                                                                                                             CL=90%
\Gamma_{305} \qquad \rho^0 \, K^+ \, \pi^-
                                                                  (2.8 \pm 0.7) \times 10^{-6}
                                                               ( 1.4 ^{+}_{-} 0.5 ) \times 10<sup>-6</sup>
\Gamma_{306} f_0(980) K^+ \pi^-, f_0 \to \pi \pi
\Gamma_{307} K^+\pi^-\pi^+\pi^- nonresonant
                                                                     < 2.1
                                                                                           \times 10^{-6}
                                                                                                             CL=90%
\Gamma_{308} K^*(892)^0 \pi^+ \pi^-
                                                                     (5.5 \pm 0.5) \times 10^{-5}
\Gamma_{309} K^*(892)^0 \rho^0
                                                                     (3.9 \pm 1.3) \times 10^{-6}
                                                                                                                 S = 1.9
\Gamma_{310}~~K^*(892)^0\,f_0(980),~~f_0 \rightarrow ~\pi\,\pi~~(~~3.9~^{+}_{-}~^{2.1}_{1.8}~) \times 10^{-6}
                                                                                                                 S = 3.9
\Gamma_{311} K_1(1270)^+\pi^-
                                                                                           \times 10^{-5}
                                                                      <
                                                                            3.0
                                                                                                             CL=90%
                                                                                              \times 10^{-5}
\Gamma_{312} K_1(1400)^+\pi^-
                                                                      < 2.7
                                                                                                             CL=90%
Γ<sub>313</sub>
             a_1(1260)^-K^+
                                                                [e] (1.6 \pm 0.4) \times 10^{-5}
\Gamma_{314} \quad K^*(892)^+ \rho^-
                                                                        (1.03\pm 0.26)\times 10^{-5}
\Gamma_{315} \quad K_0^*(1430)^+ \rho^-
                                                                        (2.8 \pm 1.2) \times 10^{-5}
\Gamma_{316} K_1(1400)^0 \rho^0
                                                                                              \times 10^{-3}
                                                                                                             CL=90%
\Gamma_{317} \quad K_0^* (1430)^0 \rho^0
                                                                     (2.7 \pm 0.6) \times 10^{-5}
\Gamma_{318} K_0^*(1430)^0 f_0(980), f_0 \rightarrow \pi \pi
                                                          ( 2.7 \pm 0.9) \times 10^{-6}
( 8.6 \pm 2.0) \times 10^{-6}
\Gamma_{319} K_2^*(1430)^0 f_0(980), f_0 \rightarrow \pi \pi
                                                                     ( 8.6 \pm 2.0 ) \times 10<sup>-6</sup>
\Gamma_{320} K^{+}K^{-}
                                                                        (7.8 \pm 1.5) \times 10^{-8}
\Gamma_{321} \quad K^0 \overline{K}{}^0
                                                                        (1.21\pm 0.16) \times 10^{-6}
\Gamma_{322} \ K^0 K^- \pi^+
                                                                       (6.5 \pm 0.8) \times 10^{-6}
\Gamma_{323} \ \underline{K}^*(892)^{\pm} K^{\mp}
                                                                                               \times 10^{-7}
                                                                                                             CL=90%
                                                                      <
\Gamma_{324}^{\circ} \overline{K}^{*0} K^{0}' + K^{*0} \overline{K}^{0}
                                                                                               \times 10^{-7}
                                                                                                             CL=90%
                                                                            9.6
\Gamma_{325} K^{+}K^{-}\pi^{0}
                                                                       (2.2 \pm 0.6) \times 10^{-6}
\Gamma_{326} K_S^0 K_S^0 \pi^0
                                                                      <
                                                                                              \times 10^{-7}
                                                                                                             CL=90%
\Gamma_{327} \quad K_S^{0} K_S^{0} \eta
                                                                      < 1.0
                                                                                              \times 10^{-6}
                                                                                                             CL=90%
\Gamma_{328} \quad K_S^{\breve{0}} K_S^{\breve{0}} \eta'
                                                                      <
                                                                                               \times 10^{-6}
                                                                                                             CL=90%
\Gamma_{329} K^{0}K^{+}K^{-}
                                                                       (2.49\pm 0.31)\times 10^{-5}
                                                                                                                 S = 3.0
          K^0 \phi
\Gamma_{330}
                                                                        (7.3 \pm 0.7) \times 10^{-6}
         f_0(980) K^0, f_0 \rightarrow K^+ K^-
                                                                    (7.0 \begin{array}{c} + 3.5 \\ - 3.0 \end{array}) \times 10^{-6}
Γ<sub>331</sub>
                                                                       (1.3 \ ^{+}_{-} \ 0.7 \ ) \times 10^{-5}
            f_0(1500)K^0
\Gamma_{332}
         \Gamma_{333}
Γ<sub>334</sub>
\Gamma_{335}
\Gamma_{336} \quad K_S^0 K_S^0 K_S^0
                                                                     (6.0 \pm 0.5) \times 10^{-6}
                                                                                                                 S = 1.1
         f_0(980)K^0, f_0 \rightarrow K_S^0 K_S^0 ( 0.0 \pm 0.3 ) \times 10^{-6}
         f_0(1710)K^0, f_0 \rightarrow K_S^0 K_S^0 ( 5.0 ^+ 5.0 ) \times 10<sup>-7</sup> f_0(2010)K^0, f_0 \rightarrow K_S^0 K_S^0 ( 5 \pm 6 ) \times 10<sup>-7</sup>
\Gamma_{338}
Γ<sub>339</sub>
```

Γ ₃₄₀		($1.33\pm$	$0.31) \times 10^{-5}$	
Γ_{341}	$K_S^0 K_S^0 K_L^0$	<	1.6	$\times10^{-5}$	CL=90%
Γ ₃₄₂	$K^*(892)^0K^+K^-$	($2.75\pm$	$0.26) \times 10^{-5}$	
Γ ₃₄₃	$K^*(892)^0 \phi$	($0.05) \times 10^{-5}$	
Γ ₃₄₄	$K^+K^-\pi^+\pi^-$ nonresonant	<	7.17	$\times 10^{-5}$	CL=90%
Γ ₃₄₅	$K^*(892)^0 K^- \pi^+$	(4.5 \pm	$1.3) \times 10^{-6}$	
Γ ₃₄₆	$K^*(892)^0 \overline{K}^*(892)^0$	(8 ±	5) \times 10 ⁻⁷	S=2.2
Γ ₃₄₇	$K^+K^+\pi^-\pi^-$ nonresonant	<	6.0	$\times 10^{-6}$	CL=90%
Γ ₃₄₈	$K^*(892)^0 K^+ \pi^-$	<	2.2	\times 10 ⁻⁶	CL=90%
Γ ₃₄₉	$K^*(892)^0 K^*(892)^0$	<	2	× 10 ⁻⁷	CL=90%
	$K^*(892)^+K^*(892)^-$	<	2.0	\times 10 ⁻⁶	CL=90%
Γ ₃₅₁	$K_1(1400)^0 \phi$	<	5.0	× 10 ⁻³	CL=90%
	$\phi(K\pi)_0^{*0}$	(4.3 ±	$0.4) \times 10^{-6}$	
Γ_{353}	$\phi(K\pi)_{0}^{*0} (1.60 < m_{K\pi} < 2.15)$	[f]	1.7	$\times 10^{-6}$	CL=90%
Γ ₃₅₄	$K_0^*(1430)^{0} K^- \pi^+$	<	3.18	\times 10 ⁻⁵	CL=90%
Γ ₃₅₅	$K_0^*(1430)^0 \overline{K}^*(892)^0$	<	3.3	$\times10^{-6}$	CL=90%
Γ ₃₅₆	$K_0^*(1430)^0\overline{K}_0^*(1430)^0$	<	8.4	$\times10^{-6}$	CL=90%
Γ ₃₅₇	$K_0^*(1430)^0 \phi$	(3.9 ±	$0.8) \times 10^{-6}$	
Γ ₃₅₈	$K_0^{0}(1430)^{0}K^{*}(892)^{0}$	<	1.7	$\times 10^{-6}$	CL=90%
Γ ₃₅₉	$K_0^*(1430)^0 K_0^*(1430)^0$	<	4.7	$\times 10^{-6}$	CL=90%
Γ ₃₆₀	$K^*(1680)^0 \phi$	<	3.5	$\times 10^{-6}$	CL=90%
Γ ₃₆₁	$K^*(1780)^0 \phi$	<	2.7	$\times10^{-6}$	CL=90%
Γ ₃₆₂	$K^*(2045)^0 \phi$	<	1.53	$\times10^{-5}$	CL=90%
Γ ₃₆₃	$K_2^*(1430)^0 \rho^0$	<	1.1	$\times10^{-3}$	CL=90%
Γ ₃₆₄	$K_2^*(1430)^0 \phi$	(6.8 ±	0.9) \times 10 ⁻⁶	S=1.2
Γ ₃₆₅	$\kappa^{\circ}\phi\phi$	($0.9) \times 10^{-6}$	
Γ ₃₆₆		<	3.1	$^{'}$ $ imes$ 10^{-5}	CL=90%
Γ_{367}	$\eta K^0 \gamma$	(7.6 ±	$1.8) \times 10^{-6}$	
Γ ₃₆₈	$\eta' K^0 \gamma$	<		\times 10 ⁻⁶	CL=90%
Γ ₃₆₉	$K^0 \phi \gamma$	($2.7~\pm$	$0.7) \times 10^{-6}$	
Γ_{370}	$K^+\pi^-\gamma$			$1.4) \times 10^{-6}$	
Γ_{371}	$K^*(892)^0 \gamma$	($4.33\pm$	$0.15) \times 10^{-5}$	
Γ_{372}	$K^*(1410)\gamma$	<	1.3	$\times 10^{-4}$	CL=90%
Γ ₃₇₃	$K^+\pi^-\gamma$ nonresonant	<	2.6	$\times 10^{-6}$	CL=90%
Γ ₃₇₄	$K^*(892)^0 X(214), X \rightarrow \mu^+ \mu^-$	[g] <		$\times 10^{-8}$	CL=90%
Γ ₃₇₅	$K^0\pi^+\pi^-\gamma$	($0.18) \times 10^{-5}$	
Γ ₃₇₆	$K^+\pi^-\pi^0\gamma$	(4.1 \pm	$0.4) \times 10^{-5}$	
Γ ₃₇₇	$K_1(1270)^0_0 \gamma$	<	5.8	\times 10 ⁻⁵	CL=90%
Γ ₃₇₈	$K_1(1400)^0 \gamma$	<	1.2	\times 10 ⁻⁵	CL=90%
Γ ₃₇₉	$K_2^*(1430)^0 \gamma$	($1.24\pm$	$0.24) \times 10^{-5}$	
Γ ₃₈₀	$K^{*}(1680)^{0}\gamma$	<	2.0	× 10 ⁻³	CL=90%
Γ ₃₈₁	$K_3^*(1780)^0 \gamma$	<	8.3	× 10 ⁻⁵	CL=90%
Γ ₃₈₂	$K_4^*(2045)^0 \gamma$	<	4.3	$\times 10^{-3}$	CL=90%

Light unflavored meson modes

I ₄₃₉	p p	($1.5 \begin{array}{c} + & 0.7 \\ - & 0.5 \end{array}) \times 10^{-8}$	
Γ_{440}	$p\overline{p}\pi^{+}\pi^{-}$		2.5×10^{-4}	CL=90%
Γ_{441}	$p\overline{p}K^0$	($2.66 \pm 0.32) \times 10^{-6}$	
Γ_{442}	$\Theta(1540)^{+}\overline{ ho}$, $\Theta^{+} ightarrow$ $ hoK_{S}^{0}$	[i] <	5×10^{-8}	CL=90%
Γ ₄₄₃	$f_J(2220)K^0$, $f_J o p\overline{p}$	<	4.5×10^{-7}	CL=90%
Γ ₄₄₄	$p \overline{p} K^* (892)^0$	(1.24^{+}_{-} $\begin{array}{c} 0.28 \\ 0.25 \end{array}) \times 10^{-6}$	
Γ ₄₄₅	$f_J(2220)K_0^*, f_J \rightarrow p\overline{p}$	<	1.5×10^{-7}	CL=90%
Γ ₄₄₆	$ ho \overline{\Lambda} \pi^-$	($3.14\pm\ 0.29)\times10^{-6}$	
Γ_{447}	$p\overline{\Lambda}\pi^-\gamma$	<	6.5 $\times 10^{-7}$	CL=90%
Γ_{448}	$p\overline{\Sigma}(1385)^-$	<	2.6×10^{-7}	CL=90%
Γ_{449}	$\Delta^0 \overline{\Lambda}$	<	9.3 $\times 10^{-7}$	CL=90%
Γ ₄₅₀	$p\overline{\Lambda}K^-$	<	8.2×10^{-7}	CL=90%
Γ_{451}	$p\overline{\Lambda}D^-$	($2.5 \pm 0.4) \times 10^{-5}$	
Γ_{452}	$p\overline{\Lambda}D^{*-}$	($3.4 \pm 0.8 \times 10^{-5}$	
Γ ₄₅₃	$p\overline{\Sigma}^0\pi^-$	<	3.8×10^{-6}	CL=90%
Γ ₄₅₄	$\overline{\Lambda}\Lambda$	<	3.2×10^{-7}	CL=90%
Γ ₄₅₅	$\overline{\Lambda}\Lambda K^0$	($4.8 \ ^{+}_{-} \ ^{1.0}_{0.9} \) \times 10^{-6}$	
Γ ₄₅₆	$\overline{\Lambda}\Lambda K^{*0}$	($2.5 \ ^{+}_{-} \ 0.9_{0.8} \) \times 10^{-6}$	
	$\overline{\Lambda}\Lambda D^0$	($1.00^{+}_{-}{}^{0.30}_{0.26})\times 10^{-5}$	
Γ ₄₅₈	$D^0 \Sigma^0 \overline{\Lambda} + \text{c.c.}$	<	3.1×10^{-5}	CL=90%

HTTP://PDG.LBL.GOV Page

Page 19 Created: 5/30/2017 17:22

```
\Gamma_{459} \Delta^0 \overline{\Delta}{}^0
                                                                                                                                                CL=90%
                                                                                                                             \times 10^{-3}
                                                                                                     1.5
\Gamma_{460}^{100} \Delta^{++}\overline{\Delta}^{--}
                                                                                                                             \times 10^{-4}
                                                                                                     1.1
                                                                                                                                                CL=90%
\Gamma_{461} \ \overline{D}{}^0 p \overline{p}
                                                                                               (1.04 \pm 0.07) \times 10^{-4}
\Gamma_{462} D_s^- \overline{\Lambda} p
                                                                                               (2.8 \pm 0.9) \times 10^{-5}
\Gamma_{463} \overline{D}^* (2007)^0 p \overline{p}
                                                                                               ( 9.9 \pm 1.1 ) \times\,10^{-5}
\Gamma_{464} D^*(2010)^- p \overline{n}
                                                                                               (1.4 \pm 0.4) \times 10^{-3}
                                                                                              (3.32\pm\ 0.31)\times 10^{-4}
\Gamma_{465} D^- p \overline{p} \pi^+
\Gamma_{466} D^*(2010)^- p \overline{p} \pi^+
                                                                                               (4.7 \pm 0.5) \times 10^{-4}
                                                                                                                                                     S = 1.2
\Gamma_{467} \ \overline{D}{}^{0} p \overline{p} \pi^{+} \pi^{-}
                                                                                              (3.0 \pm 0.5) \times 10^{-4}
\Gamma_{468} \overline{D}^{*0} p \overline{p} \pi^+ \pi^-
                                                                                              (1.9 \pm 0.5) \times 10^{-4}
< 9
                                                                                                                             \times 10^{-6}
                                                                                                                                                CL=90%
                                                                                                                             \times 10^{-5}
                                                                                            < 1.4
                                                                                                                                                CL=90%
                                                                                                                             \times 10^{-4}
                                                                                                                                                CL=90%
\Gamma_{472} \overline{\Lambda}_c^- p \pi^+ \pi^-
                                                                                               (1.01\pm 0.14) \times 10^{-3}
                                                                                                                                                     S=1.3
\Gamma_{473} \overline{\Lambda}_c^- p
                                                                                               (1.52\pm 0.18) \times 10^{-5}
\Gamma_{474} \overline{\Lambda}_{c}^{-} p \pi^{0}
                                                                                               (1.53\pm 0.18) \times 10^{-4}
\Gamma_{475} \quad \Sigma_c(2455)^- p
                                                                                                                             \times 10^{-5}
                                                                                             <
\Gamma_{476} \ \overline{\Lambda}_{c} p \pi^{+} \pi^{-} \pi^{0}
                                                                                                                             \times 10^{-3}
                                                                                             < 5.07
                                                                                                                                                CL=90%
\Gamma_{477} \ \overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{-} \pi^{+} \pi^{-}
                                                                                                                             \times 10^{-3}
                                                                                            < 2.74
                                                                                                                                                CL=90%
\Gamma_{478} \quad \overline{\Lambda}_c^- p \pi^+ \pi^- \text{(nonresonant)}
                                                                                          (5.4 \pm 1.0) \times 10^{-4}
                                                                                                                                                     S=1.3
                 \overline{\Sigma}_{c}(2520)^{--}p\pi^{+}
                                                                                           (1.01\pm 0.18) \times 10^{-4}
                 \overline{\Sigma}_c(2520)^0 p \pi^-
\Gamma_{480}
                                                                                            < 3.1
                                                                                                                             \times 10^{-5}
                                                                                                                                                CL=90%

\overline{\Sigma}_{c}(2455)^{0} p \pi^{-}

\overline{\Sigma}_{c}(2455)^{0} N^{0}, N^{0} \rightarrow

                                                                                           (1.07\pm\ 0.16)\times10^{-4}
\Gamma_{481}
                                                                                               (6.3 \pm 1.6) \times 10^{-5}
            \frac{
ho\pi^-}{\overline{\Sigma}_c}(2455)^{--} 
ho\pi^+
                                                                                          (1.81\pm 0.24) \times 10^{-4}
\Gamma_{484} \Lambda_c^- p K^+ \pi^-
                                                                                               (3.4 \pm 0.7) \times 10^{-5}
           \overline{\Sigma}_c(2455)^{--} p K^+, \ \overline{\Sigma}_c^{--} \rightarrow
                                                                                           (8.7 \pm 2.5) \times 10^{-6}
             \Lambda_c^- p K^* (892)^0
                                                                                                                            \times 10^{-5}
                                                                                                     2.42
                                                                                                                                                CL=90%
\Gamma_{487} \Lambda_c^- p K^+ K^-
                                                                                               (2.0 \pm 0.4) \times 10^{-5}
\Gamma_{488} \Lambda_c^- p \phi
                                                                                             < 9
                                                                                                                             \times 10^{-6}
                                                                                                                                                CL=90%

\Gamma_{489} \quad \underline{\Lambda}_{c}^{-} \, p \, \overline{p} \, p \\
\Gamma_{490} \quad \underline{\overline{\Lambda}}_{c}^{-} \, \Lambda \, K^{+}

                                                                                                     2.8
                                                                                              (4.8 \pm 1.1) \times 10^{-5}

\begin{array}{ll}
\Gamma_{491} & \overline{\Lambda}_{c}^{-} \Lambda_{c}^{+} \\
\Gamma_{492} & \overline{\Lambda}_{c}(2593)^{-} / \overline{\Lambda}_{c}(2625)^{-} p \\
\Gamma_{493} & \overline{\Xi}_{c}^{-} \Lambda_{c}^{+}, \ \overline{\Xi}_{c}^{-} \to \overline{\Xi}^{+} \pi^{-} \pi^{-} \\
\Gamma_{494} & \Lambda_{c}^{+} \Lambda_{c}^{-} K^{0}
\end{array}

                                                                                                                             \times 10^{-5}
                                                                                            < 1.6
                                                                                                                                                CL=95%
                                                                                            < 1.1
                                                                                                                             \times 10^{-4}
                                                                                                                                                CL=90%
                                                                                           (1.7 \pm 1.8) \times 10^{-5}
                                                                                                                                                     S = 2.2
                                                                                               (4.3 \pm 2.2) \times 10^{-4}
```

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

	• , ,				` '	
Γ ₄₉₅	$\gamma \gamma$	B1	<	3.2	\times 10 ⁻⁷	CL=90%
Γ ₄₉₆	e^+e^-	B1	<	8.3	\times 10 ⁻⁸	CL=90%
Γ_{497}	$e^+e^-\gamma$	B1	<	1.2	\times 10 ⁻⁷	CL=90%
	$\mu^+\mu^-$	B1	($1.8~\pm$	$3.1) \times 10^{-10}$	S=2.6
	$\mu^+\mu^-\gamma$	B1	<	1.6	$\times 10^{-7}$	CL=90%
Γ ₅₀₀	$\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	B1	<	5.3	\times 10 ⁻⁹	CL=90%
	SP , $S \rightarrow \mu^+\mu^-$,	B1	[j] <	5.1	\times 10 ⁻⁹	CL=90%
	$P ightarrow \ \mu^+ \mu^-$					
Γ_{502}	$ au^+ au^-$	B1	<	4.1	\times 10 ⁻³	CL=90%
Γ_{503}	$\pi^0 \ell^+ \ell^-$	B1	<	5.3	\times 10 ⁻⁸	CL=90%
Γ_{504}	$\pi^0e^+e^-$	B1	<	8.4	\times 10 ⁻⁸	CL=90%
Γ ₅₀₅	$\pi^0\mu^+\mu^-$	B1	<	6.9	\times 10 ⁻⁸	CL=90%
Γ ₅₀₆	$\eta \ell^+ \ell^-$	B1	<	6.4	\times 10 ⁻⁸	CL=90%
Γ ₅₀₇	$\eta e^+ e^-$	B1	<	1.08	\times 10 ⁻⁷	CL=90%
Γ ₅₀₈	$\eta \mu^+ \mu^-$	B1	<	1.12	\times 10 ⁻⁷	CL=90%
Γ ₅₀₉	$\pi^0 \nu \overline{\nu}$	B1	<	6.9	$\times10^{-5}$	CL=90%
Γ _{Ε10}	$K^0\ell^+\ell^-$	B1	[a] (31 +	$_{0.7}^{0.8}$) \times 10 ⁻⁷	
	$K^0e^+e^-$	B1	(1.6 +	$^{1.0}_{0.8}$) × 10 ⁻⁷	
Γ_{512}	$\kappa^0 \mu^+ \mu^-$	B1	($3.39\pm$	$0.34) \times 10^{-7}$	
Γ_{513}	$K^0 u \overline{ u}$	B1	<	4.9	$\times 10^{-5}$	CL=90%
Γ ₅₁₄	$ ho^{0} \nu \overline{\nu}$	B1	<	2.08	$\times 10^{-4}$	CL=90%
	$K^*(892)^0 \ell^+ \ell^-$	B1	[a] (9.9 +	$^{1.2}_{1.1}$) $ imes$ 10 ⁻⁷	
Γ ₅₁₆	$K^*(892)^0 e^+ e^-$	B1	(1.03 +	$_{0.17}^{0.19}) \times 10^{-6}$	
	$K^*(892)^0 \mu^+ \mu^-$	B1	(1.03+	$0.06) \times 10^{-6}$	
Γ ₅₁₈	$K^*(892)^0 \chi$, $\chi \rightarrow$	B1	(,	
. 310	$\mu^+\mu^-$					
Γ ₅₁₉	$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	($2.1~\pm$	$0.5) \times 10^{-8}$	
Γ ₅₂₀	$K^*(892)^0 \nu \overline{\nu}$	B1	<		$\times 10^{-5}$	CL=90%
	invisible	B1	<	2.4	\times 10 ⁻⁵	CL=90%
	$ u \overline{ u} \gamma$	B1	<	1.7	$\times 10^{-5}$	CL=90%
Γ_{523}	$\phi u \overline{ u}$	B1	<	1.27	\times 10 ⁻⁴	CL=90%
Γ ₅₂₄	$e^{\pm}\mu^{\mp}$	LF	[h]	2.8	\times 10 ⁻⁹	CL=90%
Γ_{525}	$\pi^0 e^{\pm} \mu^{\mp}$	LF	<	1.4	\times 10 ⁻⁷	CL=90%
Γ_{526}	$\mathcal{K}^0e^\pm\mu^\mp$	LF	<	2.7	\times 10 ⁻⁷	CL=90%
Γ_{527}	$K^*(892)^0 e^+ \mu^-$	LF	<	5.3	\times 10 ⁻⁷	CL=90%
Γ_{528}	$K^*(892)^0 e^- \mu^+$	LF	<	3.4	\times 10 ⁻⁷	CL=90%
Γ_{529}	$K^*(892)^0e^\pm\mu^\mp$	LF	<	5.8	\times 10 ⁻⁷	CL=90%
Γ ₅₃₀	$e^{\pm} au^{\mp}$	LF	[h]	2.8	\times 10 ⁻⁵	CL=90%
500						

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- [c] $X(3872)^+$ is a hypothetical charged partner of the X(3872).
- [d] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- [e] B^0 and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [f] This decay refers to the coherent sum of resonant and nonresonant J^P = 0^+ $K\pi$ components with $1.60 < m_{K\pi} < 2.15$ GeV/c².
- [g] X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment, Physical Review Letters **94** 021801 (2005)
- [h] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [i] $\Theta(1540)^+$ denotes a possible narrow pentaguark state.
- [j] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/ c^2 and 214.3 MeV/ c^2 , respectively.

CONSTRAINED FIT INFORMATION

An overall fit to 34 branching ratios uses 85 measurements and one constraint to determine 22 parameters. The overall fit has a $\chi^2=71.7$ for 64 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> ₇	56									
<i>x</i> 34	0	0								
^x 46	0	0	43							
<i>x</i> ₇₂	0	0	6	13						
^x 123	0	0	10	4	1					
^x 183	0	0	0	0	0	0				
^X 185	0	0	0	0	0	0	0			
<i>x</i> 236	0	0	0	0	0	0	0	0		
^x 241	0	0	0	0	0	0	0	0	19	
×247	0	0	0	0	0	0	0	28	0	0
^x 253	0	0	0	0	0	0	0	6	0	0
^X 257	0	0	0	0	0	0	0	0	0	0
^x 291	0	0	0	0	0	0	0	0	0	0
x ₃₂₂	0	0	0	0	0	0	0	0	0	0
x ₃₂₉	0	0	0	0	0	0	0	0	0	0
^X 343	0	0	0	0	0	0	0	0	0	0
<i>×</i> 387	0	0	0	0	0	0	0	0	0	0
^x 418	0	0	0	0	0	0	0	0	0	0
^X 512	0	0	0	0	0	0	4	0	0	0
^X 517	0	0	0	0	0	0	0	17	0	0
	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> 34	^x 46	<i>x</i> ₇₂	<i>x</i> ₁₂₃	^X 183	^X 185	^x 236	^x 241
^X 253	22									
^X 257	0	0								
^x 291	0	0	0							
<i>x</i> ₃₂₂	0	0	0	24						
<i>x</i> ₃₂₉	0	0	0	11	3					
×343	0	0	0	0	0	0				
<i>×</i> 387	0	0	27	0	0	0	0			
^x 418	0	0	0	0	0	0	20	0		
^X 512	0	0	0	0	0	0	0	0	0	
^X 517	5	1	0	0	0	0	0	0	0	0
	^X 247	^X 253	^X 257	^x 291	x ₃₂₂	×329	^X 343	^X 387	^X 418	^x 512

B⁰ BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^{\pm} section.

$\Gamma(\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_1/Γ

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

<i>VALUE</i> (units 10^{-2})	DOCUMENT ID		TECN	COMMENT			
10.33±0.28 OUR EVALUATIO	N						
10.14±0.30 OUR AVERAGE	Error includes scale fa	actor	of 1.1.				
$10.46 \pm 0.30 \pm 0.23$	$^{ m 1}$ URQUIJO	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$			
$9.64 \pm 0.27 \pm 0.33$	² AUBERT,B	06Y	BABR	$e^+e^- \rightarrow \Upsilon(4S)$			
$10.78\!\pm\!0.60\!\pm\!0.69$	³ ARTUSO	97	CLE2	$e^+e^- ightarrow \gamma(4S)$			
$9.3 \pm 1.1 \pm 1.5$	ALBRECHT	94	ARG	$e^+e^- ightarrow \gamma(4S)$			
$9.9\ \pm 3.0\ \pm 0.9$	HENDERSON	92	CLEO	$e^+e^- \rightarrow \gamma(4S)$			
• • • We do not use the following data for averages, fits, limits, etc. • • •							
$10.32 \pm 0.36 \pm 0.35$	⁴ OKABE	05	BELL	Repl. by URQUIJO 07			
$10.9 \pm 0.7 \pm 1.1$	ATHANAS	94		Sup. by ARTUSO 97			
1 LIROLILIO 07 report a meas	curement of (0.80 ± 0.00)	20 4	- 0 21\%	for the partial branching			

 $^{^1}$ URQUIJO 07 report a measurement of (9.80 \pm 0.29 \pm 0.21)% for the partial branching fraction of $B\to e\nu_e X_c$ decay with electron energy above 0.6 GeV. We converted the result to $B\to e\nu_e X$ branching fraction.

⁴ The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above 0.6 GeV/c in the B rest frame, and their ratio of B($B^+ \rightarrow e^+ \nu_e X$)/B($B^0 \rightarrow e^+ \nu_e X$) = 1.08 \pm 0.05 \pm 0.02.

$\Gamma(e^+ u_e X_c)/\Gamma_{ m total}$					Γ	₂ /Γ
$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT		
10.08+0.30+0.22	$1_{LIROULIO}$	07	RFII	a+a	$\Upsilon(AS)$	

 $^{^{1}}$ Measure the independent B^{+} and B^{0} partial branching fractions with electron threshold energies of 0.4 GeV.

$$\Gamma(D^-\ell^+\nu_\ell)/\Gamma_{\text{total}}$$
 Γ_4/Γ

 ℓ denotes e or μ , not the sum.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

 $^{^2}$ The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above 0.6 GeV/c in the B rest frame. The best precision on the ratio is achieved for a momentum threshold of 1.0 GeV: B($B^+ \rightarrow e^+ \nu_e X$) / B($B^0 \rightarrow e^+ \nu_e X$) = 1.074 \pm 0.041 \pm 0.026.

³ARTUSO 97 uses partial reconstruction of $B \to D^* \ell \nu_{\ell}$ and inclusive semileptonic branching ratio from BARISH 96B (0.1049 \pm 0.0017 \pm 0.0043).

<u>VALUE</u>	DOCUMENT ID		TECN 0	COMMENT
0.0219±0.0012 OUR EVALUAT				
0.0225±0.0008 OUR AVERAGE				1 20(1.0)
$0.0231 \pm 0.0003 \pm 0.0011$	¹ GLATTAUER			$e^+e^- \rightarrow \Upsilon(4S)$
$0.0221 \pm 0.0011 \pm 0.0011$	² AUBERT	10		$e^+e^- \rightarrow \Upsilon(4S)$
$0.0209 \pm 0.0013 \pm 0.0018$	³ BARTELT	99		$e^+e^- ightarrow ~ \Upsilon(4S)$
$0.0235 \pm 0.0020 \pm 0.0044$	⁴ BUSKULIC	97		$e^+e^- o Z$
• • We do not use the following	_	_		
$0.0221 \pm 0.0011 \pm 0.0012$	² AUBERT			Repl. by AUBERT 10
$0.0213 \pm 0.0012 \pm 0.0039$	ABE ⁵ ATHANAS			Repl. by GLATTAUER 16
$0.0187 \pm 0.0015 \pm 0.0032$	⁶ FULTON	97		Repl. by BARTELT 99
$0.018 \pm 0.006 \pm 0.003$		91		$e^+e^- \rightarrow \Upsilon(4S)$
$0.020 \pm 0.007 \pm 0.006$				$e^+e^- ightarrow ~ \varUpsilon(4S)$
¹ Uses a fully reconstructed <i>E</i>	meson as a tag	on the	recoil sid	de while the other, on the
signal side, is partially recon ² Uses a fully reconstructed <i>B</i>				•
³ Assumes equal production o	$A = \frac{1}{2}$	ho me	recon side	₹.
⁴ BUSKULIC 97 assumes frac				$7.8 \pm 2.2\%$ and PDC 06
values for B lifetime and bra				
⁵ ATHANAS 97 uses missing of	energy and missin	g mon	nentum to	reconstruct neutrino
⁶ FULTON 91 assumes assum	ing equal product	ion of	B^0 and B	B^+ at the $\Upsilon(4S)$ and uses
Mark III D and D^* branchin				
⁷ ALBRECHT 89J reports 0.03		5. We	rescale u	sing the method described
in STONE 94 but with the i				
$\Gamma(D^-\ell^+ u_\ell)/\Gamma(\ell^+ u_\ell$ anythi	· ·\	•		· - /-
(<i>D L' V_e</i>)/ (<i>L' V_e</i> anythi	ng i			
		_		Γ_4/Γ_1
VALUE	DOCUMENT I			COMMENT
<u>VALUE</u> 0.230±0.011±0.011	DOCUMENT I	10	BABR	-, -
VALUE	DOCUMENT I	10	BABR	COMMENT
<u>VALUE</u> 0.230±0.011±0.011	DOCUMENT I 1 AUBERT meson on the rec	10	BABR	COMMENT
	DOCUMENT I 1 AUBERT meson on the rec	10 coil sid	BABR e.	$\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ Γ_{4}/Γ_{3}
$VALUE$ 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell \text{ any } \ell)$	DOCUMENT IN AUBERT The meson on the recent thing DOCUMENT IN AUBERT DOCUMENT IN AUBRET DOCUMENT IN AUBRET DOCUMENT IN AUBRET DOCUMENT IN AUB	10 coil sid	BABR e. <u>TECN</u>	$\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ Γ_{4}/Γ_{3}
$VALUE$ 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell)$ $VALUE$ 0.215±0.016±0.013	DOCUMENT IN AUBERT 1 AUBERT 2 meson on the recent thing) 1 AUBERT 1 AUBERT	10 coil sid	BABR e. <u>TECN</u> AN BABR	$\frac{\textit{COMMENT}}{e^{+}e^{-}\rightarrow~\Upsilon(4S)}$ Γ_{4}/Γ_{3} $\frac{\textit{COMMENT}}{}$
$VALUE$ 0.230 \pm 0.011 \pm 0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell \text{ any})$ $VALUE$ 0.215 \pm 0.016 \pm 0.013 1 Uses a fully reconstructed B	DOCUMENT IN AUBERT 1 AUBERT 2 meson on the recent thing) 1 AUBERT 1 AUBERT	10 coil sid	BABR e. <u>TECN</u> AN BABR	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$
$VALUE$ 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell)$ $VALUE$ 0.215±0.016±0.013	DOCUMENT IN AUBERT 1 AUBERT 2 meson on the recent thing) 1 AUBERT 1 AUBERT	10 coil sid	BABR e. <u>TECN</u> AN BABR	$\frac{\textit{COMMENT}}{e^{+}e^{-}\rightarrow~\Upsilon(4S)}$ Γ_{4}/Γ_{3} $\frac{\textit{COMMENT}}{}$
$VALUE$ 0.230 \pm 0.011 \pm 0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell \text{ any})$ $VALUE$ 0.215 \pm 0.016 \pm 0.013 1 Uses a fully reconstructed B	DOCUMENT IN AUBERT 1 AUBERT 2 meson on the recent thing) 1 AUBERT 1 AUBERT	10 coil sid	BABR e. <u>TECN</u> AN BABR e.	$\frac{\textit{COMMENT}}{e^{+}e^{-}\rightarrow~\Upsilon(4S)}$ $\frac{\textit{COMMENT}}{e^{+}e^{-}\rightarrow~\Upsilon(4S)}$ $\frac{\textit{COMMENT}}{e^{+}e^{-}\rightarrow~\Upsilon(4S)}$
$VALUE$ 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell)$ $VALUE$ 0.215±0.016±0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\rm total}$	DOCUMENT II AUBERT meson on the recent in thing) DOCUMENT II AUBERT meson on the recent in the	10 coil sid 07 coil sid	BABR e. TECN AN BABR e. TECN	$\frac{\textit{COMMENT}}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{\textit{COMMENT}}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ Γ_{5}/Γ $\frac{\textit{COMMENT}}{e^{-}e^{-}}$
VALUE 0.230 \pm 0.011 \pm 0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell \text{ any})$ VALUE 0.215 \pm 0.016 \pm 0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10^{-2}) • • • We do not use the following	DOCUMENT II AUBERT meson on the recent in thing) DOCUMENT II AUBERT meson on the recent in the	10 coil sid	BABR e. TECN AN BABR e. TECN cs, limits,	$\frac{\textit{COMMENT}}{e^{+}e^{-}\rightarrow \ \Upsilon(4S)}$ $\frac{\textit{COMMENT}}{e^{+}e^{-}\rightarrow \ \Upsilon(4S)}$ $\frac{\textit{COMMENT}}{e^{+}e^{-}\rightarrow \ \Upsilon(4S)}$ $\frac{\textit{COMMENT}}{e^{+}e^{-}\rightarrow \ \Upsilon(4S)}$ etc. • • •
VALUE 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell)$ any the VALUE 0.215±0.016±0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻²) • • • We do not use the following 1.04±0.35±0.18	DOCUMENT II AUBERT I meson on the receive thing) DOCUMENT II AUBERT I meson on the receive	10 coil sid	BABR e. TECN AN BABR e. TECN s, limits, N BABR	$\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ Γ_{5}/Γ $\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ etc. • • •
VALUE 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell)$ any ℓ VALUE 0.215±0.016±0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻²) • • • We do not use the following 1.04±0.35±0.18 1 Uses a fully reconstructed B	DOCUMENT II AUBERT I meson on the receive thing) DOCUMENT II AUBERT I meson on the receive	10 coil sid	BABR e. TECN AN BABR e. TECN s, limits, N BABR	$\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ Γ_{5}/Γ $\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ etc. • • • Repl. by AUBERT 09s
VALUE 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell)$ any the VALUE 0.215±0.016±0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻²) • • • We do not use the following 1.04±0.35±0.18	DOCUMENT II AUBERT meson on the recent in thing) DOCUMENT II AUBERT meson on the recent in the	D oril sid	BABR e. TECN AN BABR e. TECN is, limits, N BABR recoil side	$\frac{\textit{COMMENT}}{e^+e^- \to \Upsilon(4S)}$ $\frac{\Gamma_4/\Gamma_3}{e^+e^- \to \Upsilon(4S)}$ $\frac{\textit{COMMENT}}{e^+e^- \to \Upsilon(4S)}$ $\frac{\textit{COMMENT}}{\text{etc.} \bullet \bullet \bullet}$ Repl. by AUBERT 09s e.
VALUE 0.230 ± 0.011 ± 0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell \text{ anyly})$ VALUE 0.215 ± 0.016 ± 0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻²) • • • We do not use the following 1.04 ± 0.35 ± 0.18 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma(D^-\ell^+\nu_\ell)$ VALUE	DOCUMENT II AUBERT meson on the recent in thing) DOCUMENT II AUBERT meson on the recent in the	D Or ooil sid D or ooil sid D ges, fit 08 on the	BABR e. TECN AN BABR e. TECN s, limits, N BABR recoil side	$\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ etc. • • • Repl. by AUBERT 09s e. $\frac{\Gamma_{5}/\Gamma_{4}}{COMMENT}$
VALUE 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell \text{ anyly})$ VALUE 0.215±0.016±0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻²) • • • We do not use the following 1.04±0.35±0.18 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma(D^-\ell^+\nu_\ell)$ VALUE 0.469±0.084±0.053	DOCUMENT II AUBERT meson on the recent in thing) DOCUMENT II AUBERT meson on the recent in the	D Or coil sid D Or coil sid D ges, fit OR the	BABR e. TECN AN BABR e. TECN s, limits, N BABR recoil side	$\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{5}/\Gamma_{4}}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$
VALUE 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell \text{ any } t)$ VALUE 0.215±0.016±0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻²) • • • We do not use the following the following structed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma(D^-\ell^+\nu_\ell)$ Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma(D^-\ell^+\nu_\ell)$ VALUE 0.469±0.084±0.053 • • • We do not use the following structed B	DOCUMENT II AUBERT meson on the recent in thing) DOCUMENT II AUBERT meson on the recent in the	D Oroil sid	BABR e. TECN AN BABR e. TECN S, limits, N BABR recoil side TECN D BABR s, limits,	$\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ etc. • • • $\frac{\Gamma_{5}/\Gamma_{4}}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ etc. • • •
VALUE 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell \text{ anyly})$ VALUE 0.215±0.016±0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻²) • • • We do not use the following 1.04±0.35±0.18 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma(D^-\ell^+\nu_\ell)$ VALUE 0.469±0.084±0.053	DOCUMENT II AUBERT meson on the recent in thing) DOCUMENT II AUBERT meson on the recent in the	D Oroil sid	BABR e. TECN AN BABR e. TECN S, limits, N BABR recoil side TECN D BABR s, limits,	$\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{5}/\Gamma_{4}}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$
VALUE 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell)$ any ℓ VALUE 0.215±0.016±0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻²) • • • We do not use the following 1.04±0.35±0.18 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma(D^-\ell^+\nu_\ell)$ VALUE 0.469±0.084±0.053 • • We do not use the following 0.489±0.165±0.069 1 Uses a fully reconstructed B	DOCUMENT IN AUBERT Thing) DOCUMENT IN AUBERT The meson on the recommend in the recommend	D Or oil sid D Or oil sid D Or on the D 12 ges, fit 09 on the	BABR e. TECN AN BABR e. TECN s, limits, N BABR recoil side TECN D BABR s, limits, S BABR recoil side	$\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\text{etc.} \bullet \bullet \bullet$ Repl. by AUBERT 09S e. $\frac{\Gamma_{5}/\Gamma_{4}}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ etc. $\bullet \bullet \bullet$ Repl. by LEES 12D e.
VALUE 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell)$ any ℓ VALUE 0.215±0.016±0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10^{-2}) • • • We do not use the following 1.04±0.35±0.18 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma(D^-\ell^+\nu_\ell)$ VALUE 0.469±0.084±0.053 • • We do not use the following 0.489±0.165±0.069	DOCUMENT IN AUBERT Thing) DOCUMENT IN AUBERT The meson on the recommend in the recommend	D Or oil sid D Or oil sid D Or on the D 12 ges, fit 09 on the	BABR e. TECN AN BABR e. TECN s, limits, N BABR recoil side TECN D BABR s, limits, S BABR recoil side	$\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\text{etc.} \bullet \bullet \bullet$ Repl. by AUBERT 09S e. $\frac{\Gamma_{5}/\Gamma_{4}}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ etc. $\bullet \bullet \bullet$ Repl. by LEES 12D e.
VALUE 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell)$ any ℓ VALUE 0.215±0.016±0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻²) • • • We do not use the following 1.04±0.35±0.18 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma(D^-\ell^+\nu_\ell)$ VALUE 0.469±0.084±0.053 • • We do not use the following 0.489±0.165±0.069 1 Uses a fully reconstructed B	DOCUMENT IN AUBERT Thing) DOCUMENT IN AUBERT The meson on the recommend in the recommend	D Or oil sid D Or oil sid D Or on the D 12 ges, fit 09 on the	BABR e. TECN AN BABR e. TECN s, limits, N BABR recoil side TECN D BABR s, limits, S BABR recoil side	$\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\text{etc.} \bullet \bullet \bullet$ Repl. by AUBERT 09S e. $\frac{\Gamma_{5}/\Gamma_{4}}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ etc. $\bullet \bullet \bullet$ Repl. by LEES 12D e.
VALUE 0.230±0.011±0.011 1 Uses a fully reconstructed B $\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D\ell^+\nu_\ell)$ any ℓ VALUE 0.215±0.016±0.013 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻²) • • • We do not use the following 1.04±0.35±0.18 1 Uses a fully reconstructed B $\Gamma(D^-\tau^+\nu_\tau)/\Gamma(D^-\ell^+\nu_\ell)$ VALUE 0.469±0.084±0.053 • • We do not use the following 0.489±0.165±0.069 1 Uses a fully reconstructed B	DOCUMENT IN AUBERT Thing) DOCUMENT IN AUBERT The meson on the recommend in the recommend	D Or oil sid D Or oil sid D Or on the Or on the Or on the Or on the or on the	BABR e. TECN AN BABR e. TECN s, limits, N BABR recoil side TECN D BABR s, limits, S BABR recoil side + or μ^+	$\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\frac{\Gamma_{4}/\Gamma_{3}}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ $\text{etc.} \bullet \bullet \bullet$ Repl. by AUBERT 09S e. $\frac{\Gamma_{5}/\Gamma_{4}}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$ etc. $\bullet \bullet \bullet$ Repl. by LEES 12D e.

 $\Gamma(D^*(2010)^-\ell^+\nu_\ell)/\Gamma_{\text{total}}$

 Γ_6/Γ

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

```
DOCUMENT ID
                                                                       TECN COMMENT
0.0493 \pm 0.0011 OUR EVALUATION
0.0510 \pm 0.0023 OUR FIT Error includes scale factor of 1.6.
0.0509±0.0022 OUR AVERAGE Error includes scale factor of 1.6. See the ideogram
below.
                                            <sup>1</sup> DUNGEL
                                                                       BELL e^+e^- \rightarrow \Upsilon(4S)
0.0458 \pm 0.0003 \pm 0.0026
                                           <sup>2</sup> AUBERT
                                                                 08Q BABR e^+e^- \rightarrow \Upsilon(4S)
0.0549 \pm 0.0016 \pm 0.0025
                                           <sup>3</sup> AUBERT
                                                                 08R BABR e^+e^- \rightarrow \Upsilon(4S)
0.0469 \pm 0.0004 \pm 0.0034
                                            <sup>4</sup> ABDALLAH
                                                                 04D DLPH e^+e^- \rightarrow Z^0
0.0590 \pm 0.0022 \pm 0.0050
                                           <sup>5</sup> ADAM
                                                                       CLE2
0.0609 \pm 0.0019 \pm 0.0040
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
0.0470 \pm 0.0013 + 0.0036
                                           <sup>6</sup> ABREU
                                                                      DLPH e^+e^- \rightarrow Z
                                           <sup>7</sup> ABBIENDI
                                                                 00Q OPAL e^+e^- \rightarrow Z
0.0526 \pm 0.0020 \pm 0.0046
                                           <sup>8</sup> BUSKULIC
0.0553 \pm 0.0026 \pm 0.0052
                                                                       ALEP
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.0490 \pm 0.0007 ^{+0.0036}_{-0.0035}
                                           <sup>4</sup> AUBERT
                                                                 05E BABR Repl. by AUBERT 08R
                                                                      DLPH e^+e^- \rightarrow Z^0
                                           <sup>9</sup> ABDALLAH
0.0539 \pm 0.0011 \pm 0.0034
                                          <sup>10</sup> ABE
                                                                                 Repl. by DUNGEL 10
0.0459 \pm 0.0023 \pm 0.0040
                                                                       BELL
                                          <sup>11</sup> BRIERE
0.0609 \pm 0.0019 \pm 0.0040
                                                                 02
                                                                       CLE2
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
                                          <sup>12</sup> ACKERSTAFF 97G
                                                                       OPAL
                                                                                 Repl. by ABBI-
0.0508 \pm 0.0021 \pm 0.0066
                                                                                     ENDI 00Q
                                          <sup>13</sup> ABREU
                                                                 96P
0.0552 \pm 0.0017 \pm 0.0068
                                                                       DLPH
                                                                                 Repl. by ABREU 01H
                                          <sup>14</sup> BARISH
                                                                 95
                                                                       CLE2
0.0449 \pm 0.0032 \pm 0.0039
                                376
                                                                                 Repl. by ADAM 03
                                          <sup>15</sup> BUSKULIC
0.0518 \pm 0.0030 \pm 0.0062
                                410
                                                                95N
                                                                      ALEP
                                                                                 Sup. by BUSKULIC 97
                                          <sup>16</sup> ALBRECHT
                                                                94
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
0.045 \pm 0.003 \pm 0.004
                                                                       ARG
                                          <sup>17</sup> ALBRECHT
0.047 \pm 0.005 \pm 0.005
                                                                 93
                                                                       ARG
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
                                235
                                          <sup>18</sup> SANGHERA
                                                                 93
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
seen
                                398
                                                                       CLE2
                                          <sup>19</sup> ANTREASYAN 90B
                                                                       CBAL e^+e^- \rightarrow \Upsilon(4S)
0.070 \pm 0.018 \pm 0.014
                                          <sup>20</sup> ALBRECHT
                                                                 89C
                                                                       ARG
                                          <sup>21</sup> ALBRECHT
                                                                 89J
0.060 \pm 0.010 \pm 0.014
                                                                       ARG
                                          <sup>22</sup> BORTOLETTO89B
0.040 \pm 0.004 \pm 0.006
                                                                      CLEO
                                                                                 e^+e^- \rightarrow \Upsilon(4S)
                                          <sup>23</sup> ALBRECHT
0.070 \pm 0.012 \pm 0.019
                                                                 87J
                                                                       ARG
                                  47
   <sup>1</sup> Uses fully reconstructed D^{*-}\ell^{+}\nu events (\ell=e or \mu).
```

 $^{^2}$ Uses a fully reconstructed B meson as a tag on the recoil side.

³ Measured using fully reconstructed D^* sample and a simultaneous fit to the Caprini-Lellouch-Neubert form factor parameters: $\rho^2=1.191\pm0.048\pm0.028$, $R_1(1)=1.429\pm0.061\pm0.044$, and $R_2(1)=0.827\pm0.038\pm0.022$.

⁴ Measured using fully reconstructed D^* sample.

⁵ Uses the combined fit of both $B^0 \to D^*(2010)^- \ell \nu$ and $B^+ \to \overline{D}(2007)^0 \ell \nu$ samples.

 $^{^6}$ ABREU 01H measured using about 5000 partial reconstructed D^* sample.

⁷ ABBIENDI 00Q assumes the fraction B($b \rightarrow B^0$)= (39.7 $^{+1.8}_{-2.2}$)%. This result is an average of two methods using exclusive and partial D^* reconstruction.

⁸ BUSKULIC 97 assumes fraction (B^+) = fraction (B^0) = $(37.8 \pm 2.2)\%$ and PDG 96 values for B lifetime and D^* and D branching fractions.

 $^{^{9}}$ Combines with previous partial reconstructed D^{*} measurement.

WEIGHTED AVERAGE 0.0509±0.0022 (Error scaled by 1.6)

 10 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{11}\,\mathrm{The}$ results are based on the same analysis and data sample reported in ADAM 03.

¹² ACKERSTAFF 97G assumes fraction (B^+) = fraction (B^0) = $(37.8 \pm 2.2)\%$ and PDG 96 values for B lifetime and branching ratio of D^* and D decays.

 13 ABREU 96P result is the average of two methods using exclusive and partial D^* reconstruction.

¹⁴ BARISH 95 use B($D^0 \rightarrow K^- \pi^+$) = (3.91 \pm 0.08 \pm 0.17)% and B($D^{*+} \rightarrow D^0 \pi^+$) = (68.1 \pm 1.0 \pm 1.3)%.

¹⁵ BUSKULIC 95N assumes fraction (B^+) = fraction (B^0) = 38.2 ± 1.3 ± 2.2% and τ_{B^0} = 1.58 ± 0.06 ps. $\Gamma(D^{*-}\ell^+\nu_\ell)/\text{total}$ = [5.18 - 0.13(fraction(B^0) – 38.2) – 1.5(τ_{B^0} – 1.58)]%.

¹⁶ ALBRECHT 94 assumes B($D^{*+} \rightarrow D^0 \pi^+$) = 68.1 \pm 1.0 \pm 1.3%. Uses partial reconstruction of D^{*+} and is independent of D^0 branching ratios.

ALBRECHT 93 reports $0.052\pm0.005\pm0.006$. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0\to K^-\pi^+$). We have taken their average e and μ value. They also obtain $\alpha=2*\Gamma^0/(\Gamma^-+\Gamma^+)-1=1.1\pm0.4\pm0.2$, $A_{AF}=3/4*(\Gamma^--\Gamma^+)/\Gamma=0.2\pm0.08\pm0.06$ and a value of $V_{cb}=0.036-0.045$ depending on model assumptions.

Combining $\overline{D}^{*0}\ell^+\nu_\ell$ and $\overline{D}^{*-}\ell^+\nu_\ell$ SANGHERA 93 test V-A structure and fit the decay angular distributions to obtain $A_{FB}=3/4*(\Gamma^--\Gamma^+)/\Gamma=0.14\pm0.06\pm0.03$. Assuming a value of V_{cb} , they measure V, A_1 , and A_2 , the three form factors for the $D^*\ell\nu_\ell$ decay, where results are slightly dependent on model assumptions.

$\Gamma(D^*(2010)^-\ell^+\nu_{\ell})/\Gamma(D\ell^+\nu_{\ell})$ anything)

 Γ_6/Γ_3

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
$0.537 \pm 0.031 \pm 0.036$	¹ AUBERT 07A	N BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{1}}$ Uses a fully reconstructed B meson on the recoil side.

$\Gamma(D^*(2010)^-\tau^+\nu_{\tau})/\Gamma_{\text{total}}$

 Γ_7/Γ

VALUE (units 10^{-2}) DOCUMENT ID **1.67 \pm 0.13 OUR FIT** Error includes scale factor of 1.1. ¹ MATYJA 07 BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(D^*(2010)^-\tau^+\nu_{\tau})/\Gamma(D^*(2010)^-\ell^+\nu_{\ell})$

 Γ_7/Γ_6

VALUE	<u>DOCUMENT ID</u>		TECN	COMMENT
0.328±0.022 OUR FIT				
0.325 ± 0.022 OUR AVERAGE				
$0.302 \pm 0.030 \pm 0.011$	¹ SATO	16 B	BELL	$e^+e^- ightarrow \ \varUpsilon(4S)$
$0.336 \pm 0.027 \pm 0.030$	² AAIJ	15Q	LHCB	pp at 7, 8 TeV
$0.355\!\pm\!0.039\!\pm\!0.021$	^{3,4} LEES	12 D	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follow	ing data for average	s fits	limits 6	etc • • •

³ AUBERT 09S BABR Repl. by LEES 12D

¹⁹ ANTREASYAN 90B is average over B and \overline{D}^* (2010) charge states.

 $^{^{20}}$ The measurement of ALBRECHT 89C suggests a D^* polarization γ_L/γ_T of 0.85 ± 0.45 . or $\alpha = 0.7 \pm 0.9$.

 $^{^{21}}$ ALBRECHT 89J is ALBRECHT 87J value rescaled using B($D^*(2010)^-
ightarrow$ $D^0\pi^-$) = 0.57 \pm 0.04 \pm 0.04. Superseded by ALBRECHT 93.

²²We have taken average of the the BORTOLETTO 89B values for electrons and muons, 0.046 \pm 0.005 \pm 0.007. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0 \rightarrow K^-\pi^+$). The measurement suggests a D^* polarization parameter value $\alpha = 0.65 \pm 0.66 \pm 0.25$.

²³ALBRECHT 87J assume μ -e universality, the B($\Upsilon(4S) \rightarrow B^0 \overline{B}^0$) = 0.45, the $B(D^0 \to K^- \pi^+) = (0.042 \pm 0.004 \pm 0.004)$, and the $B(D^*(2010)^- \to D^0 \pi^-)$ = 0.49 \pm 0.08. Superseded by ALBRECHT 89J.

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $^{1.11\!\}pm\!0.51\!\pm\!0.06$ 08N BABR Repl. by AUBERT 09S

¹Observed in the recoil of the accompanying B meson.

 $^{^2}$ Uses a fully reconstructed B meson as a tag on the recoil side.

 $^{^1}$ Uses semileptonic ${\it B}$ decay events for tagging and $\tau^+ \to \ \ell^+ \nu_\ell \overline{\nu}_\tau$ mode.

 $^{^2\,{\}rm Uses}~\tau^+ \rightarrow ~\mu^+\nu_\mu \overline{\nu}_\tau$ and μ^+ as ℓ^+

 $^{^{3}\,\}mathrm{Uses}$ a fully reconstructed B meson as a tag on the recoil side.

⁴Uses $\tau^+ \to e^+ \nu_e \overline{\nu}_{\tau}$ and $\tau^+ \to \mu^+ \nu_\mu \overline{\nu}_{\tau}$ and e^+ or μ^+ as ℓ^+ .

```
\Gamma(\overline{D}^0\pi^-\ell^+\nu_\ell)/\Gamma_{\text{total}}
                                                                                                               \Gamma_8/\Gamma
VALUE (units 10^{-3})
4.3±0.6 OUR AVERAGE
                                                                   08Q BABR e^+e^- \rightarrow \Upsilon(4S)
4.3\pm0.8\pm0.3
                                           <sup>1</sup> AUBERT
                                         1,2 LIVENTSEV
                                                                         BELL e^+e^- \rightarrow \Upsilon(4S)
4.3\!\pm\!0.9\!\pm\!0.2
                                                                  80
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                           <sup>3</sup> LIVENTSEV
                                                                  05
                                                                         BELL Repl. by LIVENTSEV 08
   ^{
m 1} Uses a fully reconstructed B meson as a tag on the recoil side.
   ^2 LIVENTSEV 08 reports (4.2 \pm 0.7 \pm 0.6) \times 10 ^{-3} from a measurement of [ \Gamma(B^0 \rightarrow
     \overline{D}{}^0\pi^-\ell^+\nu_\ell)/\Gamma_{	ext{total}}] \ / \ [B(B^0 	o D^-\ell^+\nu_\ell)] \ 	ext{assuming B} (B^0 	o D^-\ell^+\nu_\ell) = (2.12 \pm 1.00)
     0.20) \times 10^{-2}, which we rescale to our best value B(B^0 \to D^- \ell^+ \nu_\ell) = (2.19 \pm 0.12) \times
     10^{-2}. Our first error is their experiment's error and our second error is the systematic
     error from using our best value.
   <sup>3</sup>LIVENTSEV 05 reports [\Gamma(B^0 \rightarrow \overline{D}^0 \pi^- \ell^+ \nu_\ell)/\Gamma_{\text{total}}] / [B(B^+ \rightarrow \overline{D}^0 \ell^+ \nu_\ell)] =
     0.15\pm0.03\pm0.03 which we multiply by our best value B(B^+ 	o \overline{D}^0 \ell^+ \nu_\ell) = (2.27 \pm
     0.11) \times 10^{-2}. Our first error is their experiment's error and our second error is the
     systematic error from using our best value.
\Gamma(D_0^*(2400)^-\ell^+\nu_\ell, D_0^{*-} \to \overline{D}{}^0\pi^-)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{0}/\Gamma
                                                DOCUMENT ID
VALUE (units 10^{-3})
3.0±1.2 OUR AVERAGE Error includes scale factor of 1.8.
                                                                     08BL BABR e^+e^- \rightarrow \Upsilon(4S)
4.4 \pm 0.8 \pm 0.6
                                              <sup>1</sup> LIVENTSEV
                                                                     08 BELL e^+e^- \rightarrow \Upsilon(4S)
2.0 \pm 0.7 \pm 0.5
   ^{
m 1} Uses a fully reconstructed B meson as a tag on the recoil side.
\Gamma(D_2^*(2460)^-\ell^+\nu_\ell,\ D_2^{*-}
ightarrow\ \overline{D}{}^0\pi^-)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{10}/\Gamma
VALUE (units 10^{-3})
1.21±0.33 OUR AVERAGE Error includes scale factor of 1.8.
                                              <sup>1</sup> AUBERT
                                                                     09Y BABR e^+e^- \rightarrow \Upsilon(4S)
1.10 \pm 0.17 \pm 0.08
2.2 \pm 0.4 \pm 0.4
                                              <sup>2</sup> LIVENTSEV
                                                                     08 BELL e^+e^- \rightarrow \Upsilon(4S)
   ^{1} Uses a simultaneous fit of all B semileptonic decays without full reconstruction of events.
     AUBERT 09Y reports B(B^0 \rightarrow \overline{D}_2^*(2460)^-\ell^+\nu_\ell) \cdot B(\overline{D}_2^*(2460)^- \rightarrow \overline{D}(*)^0\pi^-) =
     (1.77\pm0.26\pm0.11)\times10^{-3} and the authors have provided us the individual measurement.
   ^2 Uses a fully reconstructed B meson as a tag on the recoil side.
\Gamma(\overline{D}^{(*)} \cap \pi \ell^+ \nu_{\ell} (n \geq 1)) / \Gamma(D \ell^+ \nu_{\ell} \text{ anything})
                                                                                                            \Gamma_{11}/\Gamma_3
<u>VA</u>LUE
                                                 DOCUMENT ID
                                                                           TECN COMMENT
                                                                     07AN BABR e^+e^- \rightarrow \Upsilon(4S)
0.248 \pm 0.032 \pm 0.030
   <sup>1</sup> Uses a fully reconstructed B meson on the recoil side.
\Gamma(\overline{D}^{*0}\pi^-\ell^+\nu_\ell)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{12}/\Gamma
VALUE (units 10^{-3})
                                                                         TECN COMMENT
4.9 ± 0.8 OUR AVERAGE
                                           <sup>1</sup> AUBERT
                                                                  08Q BABR e^+e^- \rightarrow \Upsilon(4S)
4.8 \pm 0.8 \pm 0.4
                                         <sup>1,2</sup> LIVENTSEV
                                                                  80
                                                                         BELL e^+e^- \rightarrow \Upsilon(4S)
5.8 \pm 2.3 \pm 0.3
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                         <sup>3,4</sup> LIVENTSEV
5.7 \pm 1.3 \pm 0.2
                                                                  05
                                                                         BELL Repl. by LIVENTSEV 08
                                                                              Created: 5/30/2017 17:22
```

 $^{
m 1}$ Uses a fully reconstructed B meson as a tag on the recoil side.

³Excludes D^{*+} contribution to $D\pi$ modes.

⁴ LIVENTSEV 05 reports $[\Gamma(B^0 \to \overline{D}^{*0}\pi^-\ell^+\nu_\ell)/\Gamma_{total}]$ / $[B(B^+ \to \overline{D}^*(2007)^0\ell^+\nu_\ell)] = 0.10 \pm 0.02 \pm 0.01$ which we multiply by our best value $B(B^+ \to \overline{D}^*(2007)^0\ell^+\nu_\ell) = (5.69 \pm 0.19) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D_1(2420)^-\ell^+ u_\ell,\ D_1^ightarrow \overline{D}^{*0}\pi^-)/\Gamma_{\mathsf{total}}$

 Γ_{13}/Γ

<i>VALUE</i> (units 10 ⁻³)	DOCUMENT ID		TECN	COMMENT
2.80±0.28 OUR AVERAGE				
$2.78 \pm 0.24 \pm 0.25$	$^{ m 1}$ AUBERT	09Y	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$2.7 \pm 0.4 \pm 0.3$	² AUBERT	08BL	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5.4 \pm 1.9 \pm 0.9$	² LIVENTSEV	80	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ Uses a simultaneous measurement of all B semileptonic decays without full reconstruction of events.

$$\Gamma(D_1'(2430)^-\ell^+\nu_\ell,\ D_1'^-
ightarrow \overline D^{*0}\pi^-)/\Gamma_{ ext{total}}$$

 Γ_{14}/Γ

	MMENT	
3.1 \pm 0.7 \pm 0.5 1 AUBERT 08BL BABR e^+	-e- →	Υ(4S)

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

<5.0 90 1 LIVENTSEV 08 BELL $e^{+}e^{-}
ightarrow \varUpsilon(4S)$

$$\Gamma(D_2^*(2460)^-\ell^+\nu_\ell, D_2^{*-} \to \overline{D}^{*0}\pi^-)/\Gamma_{\text{total}}$$

 Γ_{15}/Γ

VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
0.68±0.12 OUR AVI	ERAGE				
$0.67\!\pm\!0.12\!\pm\!0.05$		$^{ m 1}$ AUBERT			$e^+e^- ightarrow \gamma(4S)$
$0.7\ \pm0.2\ \pm0.2$		² AUBERT	08BL	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
ullet $ullet$ We do not use the	he followin	g data for averages	s, fits,	limits, e	etc. • • •
<3.0	90	² LIVENTSEV	08	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Uses a simultaneous fit of all B semileptonic decays without full reconstruction of events. AUBERT 09Y reports B($B^0 \to \overline{D}_2^*(2460)^-\ell^+\nu_\ell$) \cdot B($\overline{D}_2^*(2460)^- \to \overline{D}(*)^0\pi^-$) = $(1.77 \pm 0.26 \pm 0.11) \times 10^{-3}$ and the authors have provided us the individual measurement.

$$\Gamma(D^-\pi^+\pi^-\ell^+\nu_\ell)/\Gamma(D^-\ell^+\nu_\ell)$$

 Γ_{16}/Γ_{4}

VALUE (units
$$10^{-2}$$
)DOCUMENT IDTECNCOMMENT**5.8±1.8±1.2**1 LEES16 BABR $e^+e^- \rightarrow \Upsilon(4S)$

² LIVENTSEV 08 reports $(5.6 \pm 2.1 \pm 0.8) \times 10^{-3}$ from a measurement of $[\Gamma(B^0 \to \overline{D}^{*0}\pi^-\ell^+\nu_\ell)/\Gamma_{total}]/[B(B^0 \to D^-\ell^+\nu_\ell)]$ assuming $B(B^0 \to D^-\ell^+\nu_\ell)=(2.12 \pm 0.20) \times 10^{-2}$, which we rescale to our best value $B(B^0 \to D^-\ell^+\nu_\ell)=(2.19 \pm 0.12) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^{2}}$ Uses a fully reconstructed B meson as a tag on the recoil side.

 $^{^{1}}$ Uses a fully reconstructed B meson as a tag on the recoil side.

 $^{^2}$ Uses a fully reconstructed B meson as a tag on the recoil side.

 $^{^{1}\,\}mathrm{Measurement}$ used electrons and muons as leptons.

 $\Gamma(D^{*-}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell})/\Gamma(D^{*}(2010)^{-}\ell^{+}\nu_{\ell})$ $\frac{VALUE \text{ (units }10^{-2})}{2.8\pm0.8\pm0.6}$ $\frac{DOCUMENT \text{ ID}}{1 \text{ LEES}}$ $\frac{TECN}{16}$ $\frac{COMMENT}{16}$ $\frac{e^{+}e^{-} \rightarrow \Upsilon(4S)}{16}$

$$\Gamma(
ho^-\ell^+
u_\ell)/\Gamma_{ ext{total}}$$
 Γ_{18}/Γ

 $\ell = e$ or μ , not sum over e and μ modes.

"OUR EVALUATION" has been obtained by the Heavy Flavor Averaging Group (HFLAV) by including both B^0 and B^+ decays. The average assumes equality of the semileptonic decay width for these isospin conjugate states.

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
2.94±0.11±0.18	OUR EVAI	LUATION			
2.45 ± 0.32 OUR A	VERAGE	Error includes sca	le fac	tor of 1.	6. See the ideogram below.
$3.22\!\pm\!0.27\!\pm\!0.24$					$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.75\!\pm\!0.15\!\pm\!0.27$					$e^+e^- o ag{7}(4S)$
$2.93\!\pm\!0.37\!\pm\!0.37$		³ ADAM	07	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.17\!\pm\!0.54\!\pm\!0.32$		⁴ HOKUUE	07	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$2.57 \!\pm\! 0.29 \!+\! 0.53 \\ -0.62$		⁵ BEHRENS	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use	the follow	ving data for averag	ges, fi	ts, limits	s, etc. • • •
$2.14 \pm 0.21 \pm 0.56$		² AUBERT,B	050	BABR	Repl. by DEL-AMO- SANCHEZ 110
$2.17 \pm 0.34 {+0.62 \atop -0.68}$		⁶ ATHAR	03	CLE2	Repl. by ADAM 07
$3.29\!\pm\!0.42\!\pm\!0.72$		⁷ AUBERT	03E	BABR	Repl. by AUBERT,B 050
$2.69\!\pm\!0.41\!+\!0.61\\-0.64$		⁸ BEHRENS	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.5\ \pm0.4\ ^{+0.7}_{-0.9}$		⁹ ALEXANDER	96T	CLE2	Repl. by BEHRENS 00
<4.1	90	¹⁰ BEAN	93 B	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
1 The signal events	+	ad by a second D r		roconst	rusted in the fully hadronic

¹ The signal events are tagged by a second *B* meson reconstructed in the fully hadronic decays.

 $^{^{}m 1}$ Measurement used electrons and muons as leptons.

 $^{^2}B^+$ and B^0 decays combined assuming isospin symmetry. Systematic errors include both experimental and form-factor uncertainties.

³ The B^0 and B^+ results are combined assuming the isospin, B lifetimes, and relative charged/neutral B production at the $\Upsilon(4S)$.

⁴ The signal events are tagged by a second B meson reconstructed in the semileptonic mode $B \to D^{(*)} \ell \nu_{\ell}$.

 $^{^5}$ Averaging with ALEXANDER 96T results including experimental and theoretical correlations considered, BEHRENS 00 reports systematic errors $^{+0.33}_{-0.46}\pm0.41$, where the second error is theoretical model dependence. We combine these in quadrature.

second error is theoretical model dependence. We combine these in quadrature. 6 ATHAR 03 reports systematic errors $^{+0.47}_{-0.50} \pm 0.41 \pm 0.01$, which are experimental systematic, systematic due to residual form-factor uncertainties in the signal, and systematic due to residual form-factor uncertainties in the cross-feed modes, respectively. We combine these in quadrature.

⁷ Uses isospin constraints and extrapolation to all electron energies according to five different form-factor calculations. The second error combines the systematic and theoretical uncertainties in quadrature.

⁸ BEHRENS 00 reports $^{+0.35}_{-0.40} \pm 0.50$, where the second error is the theoretical model dependence. We combine these in quadrature. B^+ and B^0 decays combined using

isospin symmetry: $\Gamma(B^0 \to \rho^- \ell^+ \nu) = 2\Gamma(B^+ \to \rho^0 \ell^+ \nu) \approx 2\Gamma(B^+ \to \omega \ell^+ \nu)$. No evidence for $\omega \ell \nu$ is reported.

- ⁹ ALEXANDER 96T reports $^{+0.5}_{-0.7}\pm 0.5$ where the second error is the theoretical model dependence. We combine these in quadrature. B^+ and B^0 decays combined using isospin symmetry: $\Gamma(B^0\to \rho^-\ell^+\nu)=2\Gamma(B^+\to \rho^0\ell^+\nu)\approx 2\Gamma(B^+\to \omega\ell^+\nu)$. No evidence for $\omega\ell\nu$ is reported.
- 10 BEAN 93B limit set using ISGW Model. Using isospin and the quark model to combine $\Gamma(\rho^0\,\ell^+\,\nu_\ell)$ and $\Gamma(\omega\,\ell^+\,\nu_\ell)$ with this result, they obtain a limit $<\!(1.6\text{--}2.7)\times 10^{-4}$ at 90% CL for $B^+\to (\omega\,\mathrm{or}\,\,\rho^0)\,\ell^+\,\nu_\ell$. The range corresponds to the ISGW, WSB, and KS models. An upper limit on $|V_{ub}/V_{cb}|<0.08\text{--}0.13$ at 90% CL is derived as well.

 $\Gamma(\pi^-\ell^+\nu_\ell)/\Gamma_{ ext{total}}$ "OUR EVALUATION" is provided by the Heavy Flavor Averaging Group (HFLAV) and the procedure is described at http://www.slac.stanford.edu/xorg/hflav/.

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT	
1.45 ± 0.05 OUR EVALUATION					
1.46±0.04 OUR AVERAGE					
$1.49 \pm 0.09 \pm 0.07$	$^{ m 1}$ SIBIDANOV	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.47 \pm 0.05 \pm 0.06$	^{2,3} LEES	12AA	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.41 \pm 0.05 \pm 0.07$	⁴ DEL-AMO-SA.	.110	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.49 \pm 0.04 \pm 0.07$	² HA	11	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.54 \!\pm\! 0.17 \!\pm\! 0.09$	⁴ AUBERT	VA80	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.37\!\pm\!0.15\!\pm\!0.11$	^{5,6} ADAM	07	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.38\!\pm\!0.19\!\pm\!0.14$	⁷ HOKUUE	07	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc. • •

$1.42\!\pm\!0.05\!\pm\!0.08$.11F	BABR	Repl. by LEES 12AA
$1.46 \pm 0.07 \pm 0.08$	⁸ AUBERT	07 J	BABR	Repl. by DEL-AMO-
	0			SANCHEZ 11F
$1.33 \pm 0.17 \pm 0.11$	⁹ AUBERT,B			Repl. by AUBERT 08AV
$1.38 \pm 0.10 \pm 0.18$	¹⁰ AUBERT,B	050	BABR	Repl. by DEL-AMO-
	4.4			SANCHEZ 11C
$1.33 \pm 0.18 \pm 0.13$	¹¹ ATHAR			Repl. by ADAM 07
$1.8 \pm 0.4 \pm 0.4$	¹² ALEXANDER	96T	CLE2	Repl. by ATHAR 03

¹ The signal events are tagged by a second B meson reconstructed in the fully hadronic decays.

 $\Gamma(\pi^-\mu^+\nu_\mu)/\Gamma_{\rm total}$ Γ_{20}/Γ

DOCUMENT ID TECN • We do not use the following data for averages, fits, limits, etc. •

¹ ALBRECHT 91c ARG

 $\Gamma(\pi^-\tau^+\nu_{\tau})/\Gamma_{\rm total}$ Γ_{21}/Γ 90

² Uses loose neutrino reconstruction technique. Assumes B($\Upsilon(4S) \to B^+ B^-$) = (51.6 \pm 0.6)% and B($\Upsilon(4S) \rightarrow B^0 \overline{B}^0$) = (48.4 ± 0.6) %.

³ Reports also a branching fraction value B($B^0 \to \pi^- \ell^+ \nu$) = (1.45 ± 0.04 ± 0.06)×10⁻⁴ from the decays of B^+ and B^0 that are combined using the isospin symmetry relation.

⁴ Using the isospin symmetry relation, B^+ and B^0 branching fractions are combined.

⁵The B^0 and B^+ results are combined assuming the isospin, B lifetimes, and relative

charged/neutral B production at the $\Upsilon(4S)$. 6 Also report the rate for q 2 > 16 GeV 2 of (0.41 \pm 0.08 \pm 0.04) \times 10 $^{-4}$ from which they obtain $|V_{ub}|=3.6\pm0.4\pm0.2^{+0.6}_{-0.4}$ (last error is from theory).

 $^{^{7}}$ The signal events are tagged by a second B meson reconstructed in the semileptonic mode $B \to D^{(*)} \ell \nu_{\ell}$.

 $^{^8}$ The analysis uses events in which the signal B decays are reconstructed with an innovative loose neutrino reconstruction technique.

 $^{^{9}}$ The signals are tagged by a second $\overset{\cdot}{B}$ meson reconstructed in a semileptonic or hadronic decay. The B^0 and B^+ results are combined assuming the isospin symmetry.

 $^{^{10}\,}B^+$ and $^{0}\,$ decays combined assuming isospin symmetry. Systematic errors include both experimental and form-factor uncertainties.

 $^{^{11}}$ ATHAR 03 reports systematic errors $0.11\pm0.01\pm0.07$, which are experimental systematic, systematic due to residual form-factor uncertainties in the signal, and systematic due to residual form-factor uncertainties in the cross-feed modes, respectively. We combine these in quadrature.

 $^{^{12}}$ ALEXANDER 96T gives systematic errors $\pm 0.3 \pm 0.2$ where the second error reflects the estimated model dependence. We combine these in quadrature. Assumes isospin symmetry: $\Gamma(B^0 \to \pi^- \ell^+ \nu) = 2 \times \Gamma(B^+ \to \pi^0 \ell^+ \nu)$.

 $^{^1}$ In ALBRECHT 91c, one event is fully reconstructed providing evidence for the b
ightarrow utransition.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^{\pm} \text{ anything})/\Gamma_{\text{tota}}$						Γ ₂₂ /Γ
VALUE	18	DOCUMENT ID		TECN	COMMENT	
0.78±0.08		¹ ALBRECHT	96D	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Average multiplicity.						
$\Gamma(D^0X)/\Gamma_{\text{total}}$		DOCUMENT ID		TECN	CO. 41 45.45	Γ ₂₃ /Γ
<u>VALUE</u>		DOCUMENT ID 1 AUBERT				
0.081±0.014±0.005 • • • We do not use the	following					1 (45)
$0.063 \pm 0.019 \pm 0.005$	TOHOWING	¹ AUBERT,BE				LIDEDT 07N
¹ Events are selected by charmed particle in the branching ratio uncert	e rest of	ly reconstructing	one B	and sea	rching for a	reconstructed
$\Gamma(\overline{D}{}^0X)/\Gamma_{total}$						Γ_{24}/Γ
VALUE		DOCUMENT ID		TECN	COMMENT	
$0.474 \pm 0.020 ^{+0.020}_{-0.019}$		¹ AUBERT	07N	BABR	$e^+e^-\to$	$\Upsilon(4S)$
ullet $ullet$ We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
$0.511\!\pm\!0.031\!\pm\!0.028$		¹ AUBERT,BE	04 B	BABR	Repl. by A	UBERT 07N
¹ Events are selected by charmed particle in the branching ratio uncert $\Gamma(D^0X)/[\Gamma(D^0X) +$	ne rest of tainties.	the event. The la			des systemat	
VALUE	. (2).	<u>DOCUMENT ID</u>		TECN		(23 24)
0.146±0.022±0.006		AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
\bullet \bullet We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
$0.110 \pm 0.031 \pm 0.008$		AUBERT,BE	04 B	BABR	Repl. by A	UBERT 07N
$\Gamma(D^+X)/\Gamma_{\text{total}}$	CL%	DOCUMENT ID		TECN	COMMENT	Γ ₂₅ /Γ
<0.039	90	¹ AUBERT			$e^+e^- \rightarrow$	$\Upsilon(45)$
• • • We do not use the		_				. (.0)
< 0.051	90	¹ AUBERT,BE	04 B	BABR	Repl. by A	UBERT 07N
¹ Events are selected by charmed particle in th branching ratio uncert	e rest of	ly reconstructing the event. The la	one <i>B</i> ast err	and sea or includ	rching for a des systema	reconstructed tic and charm
$\Gamma(D^-X)/\Gamma_{\text{total}}$		DOCUMENT ID		TECN	COMMENT	Γ ₂₆ /Γ
0.369±0.016 ^{+0.030} _{-0.027}		¹ AUBERT				
0.021						1 (45)
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
$0.397 \pm 0.030 {+ 0.040 \atop - 0.038}$		¹ AUBERT,BE	04 B	BABR	Repl. by A	UBERT 07N
¹ Events are selected by charmed particle in th branching ratio uncert	e rest of	ly reconstructing the event. The la	one <i>B</i> ast err	and sea or includ	rching for a des systemat	reconstructed tic and charm

$\Gamma(D^+X)/[\Gamma(D^+X)]$	+Γ(<i>D</i> -	X)] DOCUMENT ID		TECN	$\Gamma_{25}/(\Gamma_{25}+\Gamma_{26})$		
$0.058 \pm 0.028 \pm 0.006$		AUBERT	07N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
• • We do not use the	following	_					
$0.055 \pm 0.040 \pm 0.006$		AUBERT,BE	04 B	BABR	Repl. by AUBERT 07N		
$\Gamma(D_s^+X)/\Gamma_{total}$					Γ ₂₇ /Γ		
VALUE		DOCUMENT ID					
$0.103 \pm 0.012 ^{f +0.017}_{f -0.014}$		¹ AUBERT	07N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
• • • We do not use the	following	data for average	es, fits,	limits, e	etc. • • •		
$0.109\!\pm\!0.021\!+\!0.039 \\ -0.024$		¹ AUBERT,BE	04 B	BABR	Repl. by AUBERT 07N		
1 Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.							
$\Gamma(D_s^-X)/\Gamma_{total}$					Γ ₂₈ /Γ		
<u>∨ALUE</u> <0.026	<u>CL%</u> 90	DOCUMENT ID	071	TECN DADD	$e^+e^- ightarrow \gamma(4S)$		
• • • We do not use the							
< 0.087	90				Repl. by AUBERT 07N		
	he rest of				rching for a reconstructed des systematic and charm		
$\Gamma(D_s^+X)/[\Gamma(D_s^+X)$	$+\Gamma(D_s^-)$	X)]			$\Gamma_{27}/(\Gamma_{27}+\Gamma_{28})$		
VALUE		DOCUMENT ID					
0.879±0.066±0.005 • • • We do not use the	following				$e^+e^- \rightarrow \gamma(4S)$		
$0.733 \pm 0.092 \pm 0.010$. Tollowing	_			Repl. by AUBERT 07N		
F(A+V)/F							
$\Gamma(\Lambda_c^+ X)/\Gamma_{\text{total}}$	CL 0/	DOCUMENT ID		TECN	Γ ₂₉ /Γ		
<u>∨ALUE</u> <0.031	90	DOCUMENT ID AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$		
• • We do not use the					` ,		
< 0.038	90	¹ AUBERT,BE	04 B	BABR	Repl. by AUBERT 07N		
¹ Events are selected by charmed particle in t branching ratio uncer	he rest of	ely reconstructing the event. The l	one <i>B</i> ast err	and sea or includ	rching for a reconstructed des systematic and charm		
$\Gamma(\overline{\Lambda}_c^- X)/\Gamma_{\text{total}}$					Γ ₃₀ /Γ		
VALUE		DOCUMENT ID		TECN	COMMENT		
$0.05 \pm 0.010^{+0.019}_{-0.011}$		$^{ m 1}$ AUBERT	07N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
• • • We do not use the	following	data for average	s, fits,	limits, e	etc. • • •		
$0.049\!\pm\!0.017\!+\!0.018\atop-0.011$		$^{1}\mathrm{AUBERT,BE}$	04 B	BABR	Repl. by AUBERT 07N		
Events are selected by charmed particle in t branching ratio uncer	he rest of	ely reconstructing the event. The l	one <i>B</i> ast err	and sea or includ	rching for a reconstructed des systematic and charm		
HTTP://PDG.LBL.G	OV	Page 35		Creat	red: 5/30/2017 17:22		

$\Gamma(A^{+}V)/[\Gamma(A^{+}V)+\Gamma(\overline{A}^{-})]$	~ \]			F //F +F \
$\Gamma(\Lambda_c^+ X)/[\Gamma(\Lambda_c^+ X) + \Gamma(\overline{\Lambda}_c^- X)]$	DOCUMENT ID		TECN	$\Gamma_{29}/(\Gamma_{29}+\Gamma_{30})$
$0.243^{+0.119}_{-0.121} \pm 0.003$	AUBERT			$e^+e^- \rightarrow \gamma(4S)$
• • • We do not use the following	data for averages			` ,
$0.286 \pm 0.142 \pm 0.007$	AUBERT,BE	04 B	BABR	Repl. by AUBERT 07N
$\Gamma(\overline{c}X)/\Gamma_{\text{total}}$	DOCUMENT ID		<u>TECN</u>	Γ₃₁/Γ
$0.947 \pm 0.030 + 0.045$	¹ AUBERT	07N	BABR	$e^+e^- \rightarrow \gamma(4S)$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$1.039 \pm 0.051 {+0.063 \atop -0.058}$	¹ AUBERT,BE	04 B	BABR	Repl. by AUBERT 07N
¹ Events are selected by complete charmed particle in the rest of branching ratio uncertainties.				
$\Gamma(cX)/\Gamma_{\text{total}}$				Γ ₃₂ /Γ
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
$0.246 \pm 0.024 ^{+0.021}_{-0.017}$	¹ AUBERT	07N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$0.237 \pm 0.036 ^{+ 0.041}_{- 0.027}$	¹ AUBERT,BE	04 B	BABR	Repl. by AUBERT 07N
¹ Events are selected by complete charmed particle in the rest of branching ratio uncertainties.	ely reconstructing the event. The la	one <i>B</i> ast err	and sea or includ	rching for a reconstructed des systematic and charm
$\Gamma(\overline{c}cX)/\Gamma_{\text{total}}$				Г ₃₃ /Г
VALUE	DOCUMENT ID		TECN	,
$1.193\pm0.030^{+0.053}_{-0.049}$	¹ AUBERT	07N	BABR	$a^{+}a^{-}$ $\gamma(AS)$
• • • We do not use the following	data for averages			$e \cdot e \rightarrow I(43)$
	data for average.	s, fits,	limits, e	` '
$1.276 \!\pm\! 0.062 \!+\! 0.088 \\ -0.074$	¹ AUBERT,BE			` '
$1.276\pm0.062^{+0.088}_{-0.074}$ ¹ Events are selected by complete charmed particle in the rest of branching ratio uncertainties.	¹ AUBERT,BE	04B one <i>B</i>	BABR	Repl. by AUBERT 07N rching for a reconstructed
¹ Events are selected by complete charmed particle in the rest of	¹ AUBERT,BE	04B one <i>B</i>	BABR	Repl. by AUBERT 07N rching for a reconstructed
1 Events are selected by complete charmed particle in the rest of branching ratio uncertainties. Γ(D-π+)/Γ _{total} VALUE (units 10 ⁻³) 2.52±0.13 OUR FIT Error include	¹ AUBERT,BE ely reconstructing the event. The land	04B one <i>B</i> ast err	BABR and sea or includ	Repl. by AUBERT 07N rching for a reconstructed des systematic and charm
¹ Events are selected by complete charmed particle in the rest of branching ratio uncertainties. $\Gamma(D^-\pi^+)/\Gamma_{\text{total}}$ VALUE (units 10 ⁻³) EVTS	¹ AUBERT,BE ely reconstructing the event. The land the event of the	04B one <i>B</i> ast err	BABR and sea for includent the sea for includent the sea for the s	Repl. by AUBERT 07N rching for a reconstructed des systematic and charm
1 Events are selected by complete charmed particle in the rest of branching ratio uncertainties. Γ(D-π+)/Γ _{total} VALUE (units 10 ⁻³) EVTS 2.52±0.13 OUR FIT Error included 2.68±0.13 OUR AVERAGE 2.55±0.05±0.16 3.03±0.23±0.23	1 AUBERT, BE ely reconstructing the event. The land the event is a scale factor of the event	04B one <i>B</i> ast err 1.1. 07H 06J	BABR and sea for include the sea for include t	Repl. by AUBERT 07N rching for a reconstructed des systematic and charm
¹ Events are selected by complete charmed particle in the rest of branching ratio uncertainties. Γ(D ⁻ π ⁺)/Γ _{total} VALUE (units 10 ⁻³) EVTS 2.52±0.13 OUR FIT Error included 2.68±0.13 OUR AVERAGE 2.55±0.05±0.16 3.03±0.23±0.23 2.68±0.12±0.24	1 AUBERT,BE ally reconstructing the event. The land the event is a scale factor of the scale factor of the event is a scale	04B one <i>B</i> ast err 1.1. 07H 06J 02B	BABR and sea for included the	Repl. by AUBERT 07N rching for a reconstructed des systematic and charm
1 Events are selected by complete charmed particle in the rest of branching ratio uncertainties. Γ(D-π+)/Γtotal VALUE (units 10 ⁻³) EVTS 2.52±0.13 OUR FIT Error included 2.68±0.13 OUR AVERAGE 2.55±0.05±0.16 3.03±0.23±0.23 2.68±0.12±0.24 2.7 ±0.6 ±0.5	AUBERT, BE all preconstructing the event. The land the event is a scale factor of the scale factor of the event is a scale	04B one <i>B</i> ast err 1.1. 07H 06J 02B	BABR and sea for includ TECN BABR BABR CLE2 CLEO	Repl. by AUBERT 07N rching for a reconstructed des systematic and charm
¹ Events are selected by complete charmed particle in the rest of branching ratio uncertainties. Γ(D ⁻ π ⁺)/Γ _{total} VALUE (units 10 ⁻³) EVTS 2.52±0.13 OUR FIT Error included 2.68±0.13 OUR AVERAGE 2.55±0.05±0.16 3.03±0.23±0.23 2.68±0.12±0.24	1 AUBERT,BE ally reconstructing the event. The land the event is a scale factor of the scale factor of the event is a scale	04B one <i>B</i> ast err 1.1. 07H 06J 02B	BABR and sea for include TECN BABR BABR CLE2 CLEO ARG	Repl. by AUBERT 07N rching for a reconstructed des systematic and charm

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 36

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $2.90\pm0.21\pm0.16$ 1,7 AUBERT,B 040 BABR Repl. by AUBERT 07H $2.9\pm0.4\pm0.1$ 81 8 ALAM 94 CLE2 Repl. by AHMED 02B $3.1\pm1.3\pm1.0$ 7 SALBRECHT 88K ARG $e^+e^- \rightarrow \Upsilon(4S)$

⁸ ALAM 94 reports $[\Gamma(B^0 \to D^-\pi^+)/\Gamma_{\text{total}}] \times [B(D^+ \to K^-2\pi^+)] = (0.265 \pm 0.032 \pm 0.023) \times 10^{-3}$ which we divide by our best value $B(D^+ \to K^-2\pi^+) = (8.98 \pm 0.28) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$$\Gamma(D^-\ell^+\nu_\ell)/\Gamma(D^-\pi^+)$$

VALUE

DOCUMENT ID

AALTONEN

DOE OF P at 1.96 TeV

 $\Gamma(D^-\rho^+)/\Gamma_{\text{total}}$ Γ_{35}/Γ

<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
RAGE				
79	1 ALAM	94	CLE2	$e^+e^- ightarrow$ $\Upsilon(4S)$
9	² ALBRECHT	90 J	ARG	$e^+e^- ightarrow$ $\varUpsilon(4S)$
	RAGE	RAGE 79 1 ALAM	RAGE 79 1 ALAM 94	RAGE 79

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$0.022~\pm 0.012~\pm 0.009$$
 6 2 ALBRECHT 88K ARG $e^+e^-
ightarrow~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Uses a missing-mass method. Does not depend on D branching fractions or B^+/B^0 production rates.

 $^{^3}$ AHMED 02B reports an additional uncertainty on the branching ratios to account for 4.5% uncertainty on relative production of B^0 and B^+ , which is not included here.

⁴BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

⁵ ALBRECHT 88K assumes $B^0 \overline{B}{}^0:B^+B^-$ production ratio is 45:55. Superseded by AL-BRECHT 90J which assumes 50:50.

⁶BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92.

⁷ AUBERT,B 040 reports $[\Gamma(B^0 \to D^-\pi^+)/\Gamma_{\text{total}}] \times [B(D^+ \to K_S^0\pi^+)] = (42.7 \pm 2.1 \pm 2.2) \times 10^{-6}$ which we divide by our best value $B(D^+ \to K_S^0\pi^+) = (1.47 \pm 0.08) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^1}$ ALAM 94 reports $[\Gamma(B^0\to D^-\rho^+)/\Gamma_{\rm total}]\times [B(D^+\to K^-2\pi^+)]=0.000704\pm0.000096\pm0.000070$ which we divide by our best value $B(D^+\to K^-2\pi^+)=(8.98\pm0.28)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² ALBRECHT 88K assumes $B^0 \overline{B}{}^0:B^+B^-$ production ratio is 45:55. Superseded by ALBRECHT 90J which assumes 50:50.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D^-K^*(892)^+)/\Gamma_{\text{total}}$					Γ ₃₇ /Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
4.5±0.7 OUR AVERAGE					
$4.6 \pm 0.6 \pm 0.5$	¹ AUBERT,BE	05 B	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$3.7 \pm 1.5 \pm 1.0$	¹ MAHAPATRA	02	CLE2	$e^+e^- ightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal production of $^{ m E}$	$^{\mathrm{+}}$ and B^{0} at the	r(4	S).		
$\Gamma(D^-\omega\pi^+)/\Gamma_{ ext{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₃₈ /Γ
0.0028±0.0005±0.0004	¹ ALEXANDER				Υ(15)
1 Assumes equal production of E					` ,
all observed $\omega \pi^+$ having proce					
MeV and width 547 \pm 86 $^{+46}_{-45}$		γ .		2 42405 20	5
$\Gamma(D^-K^+)/\Gamma_{total}$					Г ₃₉ /Г
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
1.86±0.20 OUR AVERAGE	1		11165	1	,
$1.89 \pm 0.19 \pm 0.10$	¹ AAIJ ² ABE			<i>pp</i> at 7 Te\	
$1.7~\pm0.4~\pm0.1$ 1 AAIJ 11F reports (2.01 \pm 0.1				$e^+e^- \rightarrow$	` ,
10^{-3} , which we rescale to our Our first error is their experim from using our best value. ² ABE 011 reports $[\Gamma(B^0 \to D^- 10^{-2})]$ which we multiply by our Our first error is their experim from using our best value.	ent's error and o $(\kappa^+)/\Gamma_{ ext{total}}$ / [B $_{ ext{r}}$ best value B($_{ ext{B}}^0$	our sec $s(B^0 - B^0)$	cond err $ \begin{array}{ccc} & D^{-}\pi \\ & D^{-}\pi^{+} \end{array} $	or is the syst $[-+)]=(6.8\pm$ $=(2.52\pm0)$	tematic error $1.5 \pm 0.7) \times \\ 1.3) \times 10^{-3}.$
$\Gamma(D^-K^+)/\Gamma(D^-\pi^+)$					Γ_{39}/Γ_{34}
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
8.22±0.11±0.25	AAIJ	13 P	LHCB	pp at 7 Te	/
$\Gamma(D^-K^+\pi^+\pi^-)/\Gamma(D^-\pi^+\pi^-)$	$(\pi^{+}\pi^{-})$				Γ ₄₀ /Γ ₄₆
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
5.9±1.1±0.5	AAIJ	12T	LHCB	pp at 7 Te	/
$\Gamma(D^-K^+\overline{K}^0)/\Gamma_{\mathrm{total}}$					Γ ₄₁ /Γ
VALUE (units 10 ⁻⁴) CL%	DOCUMENT ID		TECN	COMMENT	
VALUE (units 10 ⁻⁴) CL% <3.1 90	$^{ m 1}$ DRUTSKOY	02	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal production of $^{ m E}$					
$\Gamma(D^-K^+\overline{K}^*(892)^0)/\Gamma_{total}$					Γ ₄₂ /Γ
VALUE (units 10 ⁻⁴) 8.8±1.1±1.5	DOCUMENT ID		TECN	COMMENT	
$8.8 \pm 1.1 \pm 1.5$	¹ DRUTSKOY	02	BELL	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal production of $^{ m \it E}$	$^{ m H}$ and $B^{ m 0}$ at the	γ (4.	S).		

$\Gamma(\overline{D}^0\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{43}/Γ

VALUE (units 10 +)	<u>CL% EV15</u>	DOCUMENT ID		IECN	COMMENT
8.8 ±0.5 OUR	AVERAGE				
$8.95\!\pm\!0.15\!\pm\!0.52$					pp at 7, 8 TeV
$8.4 \pm 0.4 \pm 0.8$		² KUZMIN	07	BELL	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use t	the following c	lata for averages,	fits,	limits, et	.c. • • •
$8.0 \pm 0.6 \pm 1.5$	2,	³ SATPATHY	03	BELL	Repl. by KUZMIN 07
< 16	an	2 ΔΙ ΔΙΛ	QΛ	CLF2	$a^{+}a^{-} \rightarrow \Upsilon(AS)$

$\Gamma(D^*(2010)^-\pi^+)/\Gamma_{\text{total}}$

 Γ_{44}/Γ

Created: 5/30/2017 17:22

`						
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.74±0.13 OUR AVE	RAGE					
$2.79\!\pm\!0.08\!\pm\!0.17$		$^{ m 1}$ AUBERT				
$2.50\!\pm\!0.34\!\pm\!0.13$		^{2,3} AUBERT,BE	06J	BABR	$e^+e^- \rightarrow 7$	r(4S)
$2.81\!\pm\!0.24\!\pm\!0.05$		⁴ BRANDENB	98	CLE2	$e^+e^- \rightarrow 7$	r(4S)
$2.6 \pm 0.3 \pm 0.4$	82	⁵ ALAM				
$3.37 \pm 0.96 \pm 0.02$		⁶ BORTOLETTO	092	CLEO	$e^+e^- \rightarrow 7$	r(4S)
$2.36 \!\pm\! 0.88 \!\pm\! 0.02$	12	⁷ ALBRECHT	90J	ARG	$e^+e^- \rightarrow 7$	r(4S)
$2.36^{+1.50}_{-1.10}\pm0.02$	5	⁸ BEBEK	87	CLEO	$e^+e^- \rightarrow 7$	r(4S)

• • We do not use the following data for averages, fits, limits, etc. • •

10	± 4	± 1	8	⁹ AKERS	94J	OPAL	$e^+e^ \rightarrow$	Z
2.7	± 1.4	± 1.0	5	¹⁰ ALBRECHT	87 C	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
3.5	± 2	± 2		¹¹ ALBRECHT	86F	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
17	± 5	± 5	41	¹² GILES	84	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ The second uncertainty combines in quadrature all systematic uncertainties quoted in the paper. AAIJ 15Y reports B($B^0 \to \overline{D}{}^0\pi^+\pi^-$) = (8.46 \pm 0.14 \pm 0.49) \times 10⁻⁴ in the kinematic region m($\overline{D}{}^0\pi^\pm$) > 2.1 GeV which we corrected to the full phase-space dividing by 0.945 from Belle.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ No assumption about the intermediate mechanism is made in the analysis.

⁴BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D. The product branching fraction into $D_0^*(2340)\pi$ followed by $D_0^*(2340) \to D^0\pi$ is < 0.0001 at 90% CL and into $D_2^*(2460)$ followed by $D_2^*(2460) \to D^0\pi$ is < 0.0004 at 90% CL.

⁵ BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%. B($D^0\to K^-\pi^+$) = (4.2 \pm 0.4 \pm 0.4)% and B($D^0\to K^-\pi^+\pi^+\pi^-$) = (9.1 \pm 0.8 \pm 0.8)% were used.

⁶ Corrected by us using assumptions: $B(D^0 \to K^-\pi^+) = (0.042 \pm 0.006)$ and $B(\Upsilon(4S) \to B^0\overline{B}^0) = 50\%$. The product branching ratio is $B(B^0 \to \overline{D}^0\pi^+\pi^-)B(\overline{D}^0 \to K^+\pi^-) = (0.39 \pm 0.26) \times 10^{-2}$.

- ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- ² AUBERT,BE 06J reports $[\Gamma(B^0 \to D^*(2010)^-\pi^+)/\Gamma_{\text{total}}]$ / $[B(B^0 \to D^-\pi^+)]$ = 0.99 ± 0.11 ± 0.08 which we multiply by our best value $B(B^0 \to D^-\pi^+)$ = $(2.52 \pm 0.13) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ Uses a missing-mass method. Does not depend on D branching fractions or B^+/B^0 production rates.
- ⁴BRANDENBURG 98 assume equal production of B^+ and B^0 at $\Upsilon(4S)$ and use the D^* reconstruction technique. The first error is their experiment's error and the second error is the systematic error from the PDG 96 value of $B(D^* \to D\pi)$.
- 5 ALAM 94 assume equal production of B^+ and B^0 at the $\varUpsilon(4S)$ and use the CLEO II ${\rm B}(D^*(2010)^+\to D^0\pi^+)$ and absolute ${\rm B}(D^0\to K^-\pi^+)$ and the PDG 1992 ${\rm B}(D^0\to K^-\pi^+\pi^0)/{\rm B}(D^0\to K^-\pi^+)$ and ${\rm B}(D^0\to K^-2\pi^+\pi^-)/{\rm B}(D^0\to K^-\pi^+)$.
- ⁶ BORTOLETTO 92 reports $(4.0 \pm 1.0 \pm 0.7) \times 10^{-3}$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^-\pi^+)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \to D^0\pi^+)]$ assuming $B(D^*(2010)^+ \to D^0\pi^+) = 0.57 \pm 0.06$, which we rescale to our best value $B(D^*(2010)^+ \to D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁷ ALBRECHT 90J reports $(2.8 \pm 0.9 \pm 0.6) \times 10^{-3}$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^-\pi^+)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \to D^0\pi^+)]$ assuming $B(D^*(2010)^+ \to D^0\pi^+) = 0.57 \pm 0.06$, which we rescale to our best value $B(D^*(2010)^+ \to D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁸ BEBEK 87 reports $(2.8^{+1.5}_{-1.2}^{+1.0}) \times 10^{-3}$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^-\pi^+)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \to D^0\pi^+)]$ assuming $B(D^*(2010)^+ \to D^0\pi^+) = 0.57 \pm 0.06$, which we rescale to our best value $B(D^*(2010)^+ \to D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92 and ALBRECHT 90J.
- $^9\,\text{Assumes B}(\overset{\cdot}{Z}\to~b\,\overline{b})=0.217$ and 38% B_d production fraction.
- 10 ALBRECHT 87C use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \to B^+B^-) = 55\%$ and $B(\Upsilon(4S) \to B^0\overline{B}{}^0) = 45\%$. Superseded by ALBRECHT 90J.
- 11 ALBRECHT 86F uses pseudomass that is independent of D^0 and D^+ branching ratios.
- ¹² Assumes B($D^*(2010)^+ \rightarrow D^0\pi^+$) = 0.60 $^+0.08$. Assumes B($\Upsilon(4S) \rightarrow B^0\overline{B}^0$) = 0.40 \pm 0.02 Does not depend on D branching ratios.

$$\Gamma(D^*(2010)^-\ell^+\nu_\ell)/\Gamma(D^*(2010)^-\pi^+)$$
 Γ_6/Γ_{44} $\rho_{\overline{\nu}}$ $\rho_{\overline{\nu}}$

 $\Gamma(D^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{46}/Γ TECN_ COMMENT 0.0060 ± 0.0007 **OUR FIT** Error includes scale factor of 1.1. ¹ BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ ¹BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D. $\Gamma(D^-\pi^+\pi^+\pi^-)/\Gamma(D^-\pi^+)$ Γ_{46}/Γ_{34} 2.39 ± 0.23 OUR FIT $2.38 \pm 0.11 \pm 0.21$ AAIJ 11E LHCB pp at 7 TeV $\Gamma((D^-\pi^+\pi^+\pi^-) \text{ nonresonant})/\Gamma_{\text{total}}$ Γ_{47}/Γ ¹ BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $0.0039 \pm 0.0014 \pm 0.0013$ ¹BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D. $\Gamma(D^-\pi^+\rho^0)/\Gamma_{\rm total}$ Γ_{48}/Γ TECN COMMENT ¹ BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $0.0011 \pm 0.0009 \pm 0.0004$ 1 BORTOLETTO 92 assumes equal production of B^+ and B^0 at the \varUpsilon (4S) and uses Mark III branching fractions for the D. $\Gamma(D^-a_1(1260)^+)/\Gamma_{\text{total}}$ Γ_{49}/Γ **VALUE** TECN COMMENT ¹ BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $0.0060 \pm 0.0022 \pm 0.0024$ ¹BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D. $\Gamma(D^*(2010)^-\pi^+\pi^0)/\Gamma_{\text{total}}$ Γ_{50}/Γ ¹ ALBRECHT $0.0152 \pm 0.0052 \pm 0.0001$ 51 90J ARG • • • We do not use the following data for averages, fits, limits, etc. • ² ALBRECHT $0.015 \pm 0.008 \pm 0.008$ 87C ARG $e^+e^- \rightarrow \Upsilon(4S)$ 1 ALBRECHT 90J reports 0.018 \pm 0.004 \pm 0.005 from a measurement of [$\Gamma(B^0
ightarrow$ $D^*(2010)^-\pi^+\pi^0)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \rightarrow D^0\pi^+)] \text{ assuming } B(D^*(2010)^+ \rightarrow D^0\pi^+)$ $D^0\pi^+$) = 0.57 \pm 0.06, which we rescale to our best value B($D^*(2010)^+ \rightarrow D^0\pi^+$) $= (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D. 2 ALBRECHT 87C use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \rightarrow B^+B^-) = 55\%$ and $B(\Upsilon(4S) \rightarrow B^0\overline{B}^0) = 45\%$. Superseded by AL-

BRECHT 90J.

$\Gamma(D^*(2010)^-\rho^+)/\Gamma_{\text{total}}$

 Γ_{51}/Γ

COMMENT

VALUE (units 10⁻³) EVTS DOCUMENT ID TECH

2.2 + **1.8 OUR AVERAGE** Error includes scale factor of 5.2.

$1.48 \pm \ 0.27 {+}\ 0.26 \ 0.57$		$^{1,2}\mathrm{MATVIENKO}$	15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$6.8 \pm 0.3 \pm 0.9$		^{1,3} CSORNA	03	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$16.0 \pm 11.3 \pm 0.1$		⁴ BORTOLETTO) 92	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$5.89 \pm 3.52 \pm 0.04$	19	⁵ ALBRECHT	90.I	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

7.4
$$\pm$$
 1.0 \pm 1.4 76 6,7 ALAM 94 CLE2 $e^{+}e^{-} \rightarrow \Upsilon(4S)$
81 \pm 29 $_{-24}^{+59}$ 19 8 CHEN 85 CLEO $e^{+}e^{-} \rightarrow \Upsilon(4S)$

- ⁴ BORTOLETTO 92 reports $0.019 \pm 0.008 \pm 0.011$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^- \rho^+)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \to D^0 \pi^+)]$ assuming $B(D^*(2010)^+ \to D^0 \pi^+) = 0.57 \pm 0.06$, which we rescale to our best value $B(D^*(2010)^+ \to D^0 \pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁵ ALBRECHT 90J reports $0.007 \pm 0.003 \pm 0.003$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^- \rho^+)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \to D^0 \pi^+)]$ assuming $B(D^*(2010)^+ \to D^0 \pi^+) = 0.57 \pm 0.06$, which we rescale to our best value $B(D^*(2010)^+ \to D^0 \pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁶ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \to D^0\pi^+)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-2\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.
- ⁷This decay is nearly completely longitudinally polarized, $\Gamma_L/\Gamma=(93\pm5\pm5)\%$, as expected from the factorization hypothesis (ROSNER 90). The nonresonant $\pi^+\pi^0$ contribution under the ρ^+ is less than 9% at 90% CL.
- ⁸ Uses B($D^* \to D^0 \pi^+$) = 0.6 \pm 0.15 and B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = 0.4. Does not depend on D branching ratios.

$\Gamma(D^*(2010)^-K^+)/\Gamma_{\text{total}}$

 Γ_{E2}/Γ

Created: 5/30/2017 17:22

VALUE (units 10 4)	DOCUMENT ID		IECN	COMMENT
2.12±0.15 OUR AVERAGE		_		
$2.13 \pm 0.12 \pm 0.10$	$^{ m 1}$ AUBERT	06A	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.0 \pm 0.4 \pm 0.1$	² ABE	011	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 1 AUBERT 06A reports [$\Gamma(B^0\to D^*(2010)^-\,K^+)/\Gamma_{total}$] / [B($B^0\to D^*(2010)^-\,\pi^+$)] = 0.0776 \pm 0.0034 \pm 0.0029 which we multiply by our best value B($B^0\to D^*(2010)^-\,\pi^+$) = (2.74 \pm 0.13) \times 10 $^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹ Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$ resonance.

² The second uncertainty combines in quadrature the systematic and model uncertainties.

³ The second error combines the systematic and theoretical uncertainties in quadrature. CSORNA 03 includes data used in ALAM 94. A full angular fit to three complex helicity amplitudes is performed.

 $^{2}\,\text{ABE 011 reports } [\Gamma(B^{0}\,\rightarrow\,\,D^{*}(2010)^{-}\,K^{+})/\Gamma_{\text{total}}]\,\,/\,\,[\text{B}(B^{0}\,\rightarrow\,\,D^{*}(2010)^{-}\,\pi^{+})] = 0$ $0.074 \pm 0.015 \pm 0.006$ which we multiply by our best value B($B^0 \to D^*(2010)^- \pi^+$) $= (2.74 \pm 0.13) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D^*(2010)^-K^+)/\Gamma(D^*(2010)^-\pi^+)$						
VALUE	DOCUMENT ID	TECN	COMMENT			
$(7.76\pm0.34\pm0.26)\times10^{-2}$	AAIJ	13AO LHCB	pp at 7 TeV			
$\Gamma(D^*(2010)^- K^0 \pi^+)/\Gamma_{\rm tot}$	al		Γ ₅₃ /Γ			
VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT			
$3.0\pm0.7\pm0.3$	$^{ m 1}$ AUBERT,BE	05B BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$			
$^{ m 1}$ Assumes equal production $^{ m c}$	of B^+ and B^0 at the	$rac{\gamma}(4S)$.				

$\Gamma(D^*(2010)^- K^*(892)^+)/\Gamma_{\text{total}}$

 Γ_{54}/Γ

VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT		
3.3±0.6 OUR AVERAGE						
$3.2 \pm 0.6 \pm 0.3$	$^{ m 1}$ AUBERT,BE					
$3.8 \pm 1.3 \pm 0.8$	² MAHAPATRA	02	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
1 ^	D+1 DO +1	∞ (1)	~\			

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D^*(2010)^-K^+\overline{K}^0)/\Gamma_{\text{total}}$

 Γ_{55}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
<4.7	90	¹ DRUTSKOY	02	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D^*(2010)^- K^+ \overline{K}^*(892)^0) / \Gamma_{\text{total}}$

 Γ_{56}/Γ

VALUE (units 10^{-4})	DOCUMENT ID T		TECN	COMMENT
12.9±2.2±2.5	$^{ m 1}$ DRUTSKOY	02	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{57}/Γ

, ,	,	// total					517
VALUE (unit	s 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
7.21±0	0.29 OUR AVER	AGE					
7.26 ± 0	$0.11\pm~0.31$		¹ LEES			$e^+e^- \rightarrow$	
6.81 ± 0	0.23 ± 0.72		² MAJUMDER				
6.3 ± 3	1.0 ± 1.1		^{,4} ALAM				
13.4 ± 3	3.6 ± 0.1		⁵ BORTOLETT				
$10.1~\pm 4$	4.1 ± 0.1		⁶ ALBRECHT	90 J	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We	do not use the f	following da	nta for averages,	fits, lir	mits, etc	. • • •	
33 ±9	9 ± 16		⁷ ALBRECHT	87 C	ARG	$e^+e^- ightarrow$	$\Upsilon(4S)$
<42			⁸ BEBEK				

¹ Assumes B($\Upsilon(4S) \rightarrow B^0 \overline{B}^0$) = 0.486 \pm 0.006.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and an unpolarized final state.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

- ³ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \to D^0\pi^+)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-2\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.
- ⁴ The three pion mass is required to be between 1.0 and 1.6 GeV consistent with an a_1 meson. (If this channel is dominated by a_1^+ , the branching ratio for $\overline{D}^{*-}a_1^+$ is twice that for $\overline{D}^{*-}\pi^+\pi^+\pi^-$.)
- ⁵ BORTOLETTO 92 reports $0.0159 \pm 0.0028 \pm 0.0037$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \to D^0\pi^+)]$ assuming $B(D^*(2010)^+ \to D^0\pi^+) = 0.57 \pm 0.06$, which we rescale to our best value $B(D^*(2010)^+ \to D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁶ ALBRECHT 90J reports $0.012 \pm 0.003 \pm 0.004$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \to D^0\pi^+)]$ assuming $B(D^*(2010)^+ \to D^0\pi^+) = 0.57 \pm 0.06$, which we rescale to our best value $B(D^*(2010)^+ \to D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁷ ALBRECHT 87C use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \to B^+B^-) = 55\%$ and $B(\Upsilon(4S) \to B^0\overline{B}^0) = 45\%$. Superseded by ALBRECHT 90J.
- ⁸ BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92.

$\Gamma((D^*(2010)^-\pi^+\pi^+\pi^-) \text{ nonresonant})/\Gamma_{\text{total}}$

 Γ_{58}/Γ

0.0000±0.0019±0.0016

$$\frac{DOCUMENT\ ID}{1}$$
 BORTOLETTO92 CLEO $e^+e^-
ightarrow \varUpsilon(4S)$

¹BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.

$\Gamma(D^*(2010)^-\pi^+\rho^0)/\Gamma_{\text{total}}$

 Γ_{59}/Γ

VALUE 0.00573±0.00317±0.00004

$$\frac{DOCUMENT\ ID}{1}$$
 BORTOLETTO92 CLEO $e^+e^-
ightarrow \varUpsilon(4S)$

¹ BORTOLETTO 92 reports $0.0068 \pm 0.0032 \pm 0.0021$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^-\pi^+\rho^0)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \to D^0\pi^+)]$ assuming $B(D^*(2010)^+ \to D^0\pi^+) = 0.57 \pm 0.06$, which we rescale to our best value $B(D^*(2010)^+ \to D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$\Gamma(D^*(2010)^- a_1(1260)^+)/\Gamma_{\text{total}}$

 Γ_{60}/Γ

<u>VALUE</u>	DOCUMENT IL)	TECN	COMMENT
0.0130±0.0027 OUR AVERAGE				
$0.0126\!\pm\!0.0020\!\pm\!0.0022$	1,2 ALAM	94	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.0152 \pm 0.0070 \pm 0.0001$	³ BORTOLET	TO92	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ ALAM 94 value is twice their $\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\rm total}$ value based on their observation that the three pions are dominantly in the $a_1(1260)$ mass range 1.0 to 1.6 GeV.

```
^2 ALAM 94 assume equal production of B^+ and B^0 at the \Upsilon(4S) and use the CLEO II B(D^*(2010)^+ \rightarrow D^0\pi^+) and absolute B(D^0 \rightarrow K^-\pi^+) and the PDG 1992 B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+) and B(D^0 \rightarrow K^-2\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+).
```

³ BORTOLETTO 92 reports $0.018 \pm 0.006 \pm 0.006$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^- a_1(1260)^+)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \to D^0\pi^+)]$ assuming $B(D^*(2010)^+ \to D^0\pi^+) = 0.57 \pm 0.06$, which we rescale to our best value $B(D^*(2010)^+ \to D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$$\Gamma(\overline{D}_1(2420)^0\pi^-\pi^+, \overline{D}_1^0 \rightarrow D^{*-}\pi^+)/\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-)$$
 Γ_{61}/Γ_{57} $VALUE$ DOCUMENT ID TECN COMMENT (2.04±0.42±0.22) × 10⁻² AAIJ 13AO LHCB pp at 7 TeV

$$\Gamma(D^*(2010)^- K^+ \pi^- \pi^+)/\Gamma(D^*(2010)^- \pi^+ \pi^+ \pi^-)$$
 Γ_{62}/Γ_{57} $VALUE$ DOCUMENT ID TECN COMMENT (6.47±0.37±0.35) × 10⁻² AAIJ 13AO LHCB pp at 7 TeV

$$\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-\pi^0)/\Gamma_{total}$$
 $VALUE$

0.0176±0.0027 OUR AVERAGE

1 ALEXANDER 01B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
0.0345±0.0181±0.0003

28 ALBRECHT 90J ARG $e^+e^- \rightarrow \Upsilon(4S)$

 $0.0345\pm0.0181\pm0.0003$ 28 2 ALBRECHT 90J ARG $e^+e^-
ightarrow \varUpsilon(4S)$ 1 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. The signal is consistent with all observed $\omega\,\pi^+$ having proceeded through the ρ'^+ resonance at mass $1349\pm25^{+10}_{-5}$

MeV and width 547 \pm 86 $^{+46}_{-45}$ MeV. ² ALBRECHT 90J reports 0.041 \pm

² ALBRECHT 90J reports $0.041 \pm 0.015 \pm 0.016$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^-\pi^+\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \to D^0\pi^+)]$ assuming $B(D^*(2010)^+ \to D^0\pi^+) = 0.57 \pm 0.06$, which we rescale to our best value $B(D^*(2010)^+ \to D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$$\Gamma(D^{*-}3\pi^{+}2\pi^{-})/\Gamma_{\text{total}}$$
 $VALUE \text{ (units }10^{-3})$
 $1 \text{ MAJUMDER} \quad 04 \quad \text{BELL} \quad e^{+}e^{-} \rightarrow \Upsilon(4S)$

$$\Gamma(\overline{D}^*(2010)^-\omega\pi^+)/\Gamma_{\text{total}}$$
 Γ_{65}/Γ

 VALUE (units 10^{-3})
 DOCUMENT ID
 TECN
 COMMENT

 2.46 \pm 0.18 OUR AVERAGE
 Error includes scale factor of 1.2.

 $2.31 \pm 0.11 \pm 0.14$ 1 MATVIENKO 15 BELL $e^+e^- \rightarrow \Upsilon(4S)$
 $2.88 \pm 0.21 \pm 0.31$ 1 AUBERT 06L BABR $e^+e^- \rightarrow \Upsilon(4S)$
 $2.9 \pm 0.3 \pm 0.4$ 1,2 ALEXANDER 01B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² The signal is consistent with all observed $\omega\pi^+$ having proceeded through the ρ'^+ resonance at mass 1349 \pm 25 $^{+10}_{-5}$ MeV and width 547 \pm 86 $^{+46}_{-45}$ MeV.

VALUE (units 10 ⁻⁴)	$(-\pi^+)/\Gamma_{total}$				Г ₆₆ /Г
	DOCUMENT ID		TECN	COMMENT	
$2.7^{+0.8}_{-0.4}$ OUR AVERAGE					
$2.5 \pm 0.4 ^{+0.8}_{-0.2}$	^{1,2} MATVIENKO	15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.1 \pm 1.2 \pm 1.1$	³ AUBERT	06L	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
 Assumes equal production The measurement is obta uncertainty combines in q Obtained by fitting the ev 	ined by amplitude ana quadrature experiments vents with cos $ heta_{D^*} <$	al syste 0.5 an	ematic and scaling	nd model ur g up the resi	ncertainties. ult by a facto
of $4/3$. No interference ef	ffects between $B^0 o$	$D_1'\omega$	and D^*	$\omega\pi$ are assu	med.
$\Gamma(\overline{D}^{*-}\rho(1450)^{+})/\Gamma_{total}$					Γ ₆₇ /Γ
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
$1.07 \substack{+0.15 + 0.40 \\ -0.31 - 0.13}$	^{1,2} MATVIENKO	15	BELL	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
 Obtained by amplitude an in qudrature experimental Assumes equal production 	I systematic and mode	l unce			inty combine
$\Gamma(\overline{D}_1(2420)^0\omega)/\Gamma_{total}$					Γ ₆₈ /Γ
VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT	
$0.7 \pm 0.2 \pm 0.1$	1,2 MATVIENKO	15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
 Obtained by amplitude an in qudrature experimental Assumes equal production 	I systematic and mode	l unce			inty combine
					г /г
$\Gamma(\overline{D}_2^*(2460)^0\omega)/\Gamma_{\text{total}}$					1 69/1
	DOCUMENT ID		TECN	COMMENT	1 69/1
		15	TECN BELL	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow}$	
VALUE (units 10^{-4})	1,2 MATVIENKO nalysis of $\overline{B}{}^0 ightarrow \mathcal{D}^{*-}$ I systematic and mode	$15 \ \omega \pi^+$. I unce	BELL The sec	$e^+e^- ightarrow$ ond uncerta	$\Upsilon(4S)$
VALUE (units 10 ⁻⁴) 0.4±0.1±0.1 ¹ Obtained by amplitude an in qudrature experimental 2 Assumes equal production Γ(\(\overline{D}^* - b_1(1235)^-, b_1^ b_1(1235)^-)	1,2 MATVIENKO nalysis of $\overline B^0 o D^{*-}$ I systematic and mode n of B^0 and B^+ at $^{\prime\prime}$ $\omega\pi^-)/\Gamma_{ m total}$	15 $\omega\pi^+$. I unce $(4S)$.	BELL The sec rtainties	$e^+e^- ightarrow$ ond uncerta	r(4 s) inty combine r
VALUE (units 10 ⁻⁴) 0.4±0.1±0.1 ¹ Obtained by amplitude an in qudrature experimental 2 Assumes equal production Γ(\(\overline{D}^* - b_1(1235)^-, b_1^ b_1(1235)^-)	1,2 MATVIENKO nalysis of $\overline B^0 o D^{*-}$ I systematic and mode n of B^0 and B^+ at $^{\prime\prime}$ $\omega\pi^-)/\Gamma_{ m total}$	15 $\omega\pi^+$. I unce $(4S)$.	BELL The sec rtainties	$e^+e^- ightarrow$ ond uncerta	inty combine: Г₇₀/Г
VALUE (units 10 ⁻⁴) 0.4±0.1±0.1 ¹ Obtained by amplitude an in qudrature experimental ² Assumes equal production Γ(\(\overline{D}^* - b_1(1235)^-, b_1^ b_1) \) VALUE <0.7 × 10 ⁻⁴ 90	1,2 MATVIENKO nalysis of $\overline{B}^0 o D^{*-}$ of 1 systematic and mode n of 1 and 1 at 2 $\omega\pi^{-})/\Gamma_{\text{total}}$ 1 MATVIENKO	$ \begin{array}{c} 15 \\ \omega \pi^{+}.\\ \text{I unce}\\ (4S). \end{array} $	BELL The sec rtainties	$e^+e^- ightarrow$ ond uncerta	r(4 s) inty combine r
VALUE (units 10 ⁻⁴) 0.4±0.1±0.1 ¹ Obtained by amplitude an in qudrature experimental 2 Assumes equal production Γ(Φ*- b ₁ (1235)-, b ₁ - was a constant of the constant	1,2 MATVIENKO nalysis of $\overline{B}^0 o D^{*-}$ of 1 systematic and mode n of 1 and 1 at 2 $\omega\pi^{-})/\Gamma_{\text{total}}$ 1 MATVIENKO	$ \begin{array}{c} 15 \\ \omega \pi^{+}.\\ \text{I unce}\\ (4S). \end{array} $	BELL The sec rtainties	$e^+e^- ightarrow$ ond uncerta	r(4 s) inty combine r
VALUE (units 10^{-4}) 0.4±0.1±0.1 1 Obtained by amplitude an in qudrature experimental 2 Assumes equal production $\Gamma(\overline{D}^{*-}b_1(1235)^-, b_1^- \rightarrow VALUE$ $<0.7 \times 10^{-4}$ 90 1 Assumes equal production $\Gamma(\overline{D}^{**-}\pi^+)/\Gamma_{\text{total}}$	1,2 MATVIENKO nalysis of $\overline{B}{}^0 \rightarrow D^{*-}$ I systematic and mode of B^0 and B^+ at $\Upsilon^0 \rightarrow \omega \pi^-)/\Gamma_{\text{total}}$ 0 0 0 0 0 0 0 0 0 0	15 $\omega \pi^+$ I unce $(4S)$.	BELL The sec rtainties. TECN BELL	$e^+e^- ightarrow$ ond uncerta $\frac{COMMENT}{e^+e^- ightarrow}$	r(4 s) inty combine r 7 0 / r
VALUE (units 10^{-4}) 0.4±0.1±0.1 1 Obtained by amplitude an in qudrature experimental 2 Assumes equal production $\Gamma(\overline{D}^{*-}b_1(1235)^{-}, b_1^{-} \rightarrow VALUE \qquad CLY = CLY$	1,2 MATVIENKO nalysis of $\overline{B}^0 \to D^{*-}$ of systematic and mode n of B^0 and B^+ at $\Upsilon^0 \to \omega \pi^-$)/ Γ_{total} 1 MATVIENKO n of B^0 and B^+ at Υ^0 ocited state with mass	15 $\omega \pi^{+}$ I unce $(4S)$. 15 $(4S)$.	BELL The secretainties. TECN BELL M < 2.8	$e^+e^- \rightarrow$ ond uncerta $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{3 \text{ GeV/c}^2}{2 \text{ GeV/c}^2}$	r(4 S) inty combine r (4 S) r (4 S)
VALUE (units 10^{-4}) 0.4±0.1±0.1 1 Obtained by amplitude an in qudrature experimental 2 Assumes equal production $\Gamma(\overline{D}^{*-}b_1(1235)^-, b_1^- \rightarrow VALUE$ $<0.7 \times 10^{-4}$ 90 1 Assumes equal production $\Gamma(\overline{D}^{**-}\pi^+)/\Gamma_{\text{total}}$ D^{**-} represents an exitation of the value (units 10^{-3})	1,2 MATVIENKO nalysis of $\overline{B}^0 \to D^{*-}$ of systematic and mode n of B^0 and B^+ at $\Upsilon^0 \to \omega \pi^-$)/ Γ_{total} 1 MATVIENKO n of B^0 and B^+ at Υ^0 ocited state with mass	15 $\omega \pi^{+}$ I unce $(4S)$. 15 $(4S)$.	BELL The secretainties. TECN BELL M < 2.8	$e^+e^- \rightarrow$ ond uncerta $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{GeV/c^2}{e^+e^-}$	r(4 S) inty combines r (4 S) r (4 S)
VALUE (units 10^{-4}) 0.4±0.1±0.1 1 Obtained by amplitude an in qudrature experimental 2 Assumes equal production $\Gamma(\overline{D}^{*-}b_1(1235)^-, b_1^- \rightarrow VALUE$ $< 0.7 \times 10^{-4} \qquad 90$ 1 Assumes equal production $\Gamma(\overline{D}^{**-}\pi^+)/\Gamma_{\text{total}}$ $D^{**-} \text{ represents an ex}$ $VALUE \text{ (units } 10^{-3}\text{)}$ 1.9±0.9±0.1	$1,2$ MATVIENKO nalysis of $\overline{B}^0 \rightarrow D^{*-}$ of systematic and mode of B^0 and B^+ at $\Upsilon^0 \rightarrow \omega \pi^-$ / Γ_{total} 0 0 0 0 0 0 0 0 0 0	15 $\omega \pi^{+}$. I unce $(4S)$. 15 $(4S)$. $2.2 < {}$	BELL The secretainties. TECN BELL M < 2.8 TECN BABR	$e^+e^- ightarrow$ ond uncerta $\frac{COMMENT}{e^+e^- ightarrow}$ $\frac{COMMENT}{e^+e^- ightarrow}$	T(4S) inty combines
VALUE (units 10^{-4}) 0.4±0.1±0.1 1 Obtained by amplitude an in qudrature experimental 2 Assumes equal production $\Gamma(\overline{D}^{*-}b_1(1235)^-, b_1^- \rightarrow 0.7 \times 10^{-4})$ $\sqrt{ALUE} \qquad CL\%$ $< 0.7 \times 10^{-4} \qquad 90$ 1 Assumes equal production $\Gamma(\overline{D}^{**-}\pi^+)/\Gamma_{\text{total}}$ $D^{**-} \text{ represents an ex}$ $VALUE \text{ (units } 10^{-3}\text{)}$ 1.9±0.9±0.1 1 AUBERT, BE 06J reports	$1,2$ MATVIENKO nalysis of $\overline{B}{}^0 \to D^{*-}$ is systematic and mode in of B^0 and B^+ at $\Upsilon^0 \to \omega \pi^-$)/ $\Gamma_{ ext{total}}$ 0 0 0 0 0 0 0 0 0 0	15 $\omega \pi^+$ I unce $(4S)$. 15 $(4S)$. $2.2 < $ 06 J / $\Gamma_{ tota}$	BELL The secretainties. TECN BELL M < 2.8 TECN BABR J / [B(E	$e^+e^- \rightarrow$ ond uncerta $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$	$r(4S)$ inty combine r_{70}/r $r_{(4S)}$ r_{71}/r $r_{(4S)}$ $r_{(4S)}$ $r_{(4S)}$ $r_{(4S)}$
VALUE (units 10^{-4}) 0.4±0.1±0.1 1 Obtained by amplitude an in qudrature experimental 2 Assumes equal production $\Gamma(\overline{D}^{*-}b_1(1235)^-, b_1^- \rightarrow VALUE$ $< 0.7 \times 10^{-4} \qquad 90$ 1 Assumes equal production $\Gamma(\overline{D}^{**-}\pi^+)/\Gamma_{\text{total}}$ $D^{**-} \text{ represents an ex}$ $VALUE \text{ (units } 10^{-3}\text{)}$ 1.9±0.9±0.1	1,2 MATVIENKO nalysis of $\overline{B}{}^0 \rightarrow D^{*-}$ of systematic and mode in of B^0 and B^+ at Υ^0 $\omega \pi^-$)/ Γ_{total} $DOCUMENT\ ID$ 1 MATVIENKO in of B^0 and B^+ at Υ^0 scited state with mass $DOCUMENT\ ID$ 1,2 AUBERT,BE $\Gamma(B^0 \rightarrow \overline{D}^{**-}\pi^+)$ of litiply by our best value	15 $\omega \pi^{+}$. I unce $(4S)$. 15 $(4S)$. $2.2 < {}$ $06J$ Γ_{tota} e B(B^{\dagger}	BELL The secretarinties. $TECN$ BELL $M < 2.8$ $TECN$ BABR $TECN$ TE	$e^+e^- \rightarrow$ ond uncerta $\frac{COMMENT}{e^+e^- \rightarrow}$	$T(4S)$ inty combine T_{70}/I $T(4S)$ T_{71}/I $T(4S)$ $T(4S$

Page 46

Created: 5/30/2017 17:22

HTTP://PDG.LBL.GOV

$\Gamma(D_1(2420)^-\pi^+, D_1(2420)^-\pi^+)$	_	-				Γ ₇₂ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT II)	TECN	COMMENT	
$0.99^{+0.20}_{-0.25}$ OUR FIT						
$0.89 \pm 0.15 ^{+0.17}_{-0.32}$		¹ ABE	05A	BELL	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal proc	luction c	of B^+ and B^0 at th	ne $\Upsilon(4.$	S).		
$\Gamma(D_1(2420)^-\pi^+, L$	$D_1^- \to L$	$(D^-\pi^+\pi^-)/\Gamma(D^-\pi^+\pi^-)$	$-\pi^+\eta$	$(\pi^{+}\pi^{-})$		Γ_{72}/Γ_{46}
<i>VALUE</i> (units 10 ⁻²)		DOCUMENT IE)	TECN	COMMENT	
$1.65^{+0.35}_{-0.40}$ OUR FIT						
$2.1 \pm 0.5 \ ^{+0.3}_{-0.5}$		AAIJ	11E	LHCB	pp at 7 Te	٠V
$\Gamma(D_1(2420)^-\pi^+, L$	$D_1^- \to L$	$O^{*-}\pi^+\pi^-)/\Gamma_{to}$	tal			Γ ₇₃ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT IE)	TECN	COMMENT	
<0.33	90	¹ ABE	05A	BELL	e^+e^-	$\Upsilon(4S)$
¹ Assumes equal proc						
$\Gamma(D^*(2010)^-\pi^+\pi^+$	-π ⁻)/[$-(D^*(2010)^-\pi^+$	·)			Γ ₅₇ /Γ ₄₄
VALUE		DOCUMENT IE)	TECN	COMMENT	
$2.64 \pm 0.04 \pm 0.13$		AAIJ	13A0	LHCB	pp at 7 Te	eV
$\Gamma(\overline{D}_2^*(2460)^-\pi^+,$ ($D_{2}^{*})^{-}$ -	$\rightarrow D^0\pi^-)/\Gamma_{\text{tota}}$	l			Γ ₇₄ /Γ
VALUE (units 10^{-4})		DOCUMENT IE)	TECN	COMMENT	
2.38±0.16 OUR AV	/ERAGE	1				
$2.44 \pm 0.07 \pm 0.16$		¹ AAIJ ^{2,3} KUZMIN			<i>pp</i> at 7, 8	
$2.15\pm0.17\pm0.31$ • • We do not use the	ae follow					1 (45)
<14.7	90	² ALAM			$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Result obtained using ture all systematic of ² Assumes equal procading of Our second uncertains.	uncertair Iuction c	obar formalism. That ies quoted in the of B^+ and B^0 at the	e secon paper. ne $\Upsilon(4.5)$	d uncert S).	ainty combii	nes in quadra-
$\Gamma(\overline{D}_0^*(2400)^-\pi^+,$ (Γ ₇₅ /Γ
, , ,	- 0/ -	,		TECN	COMMENT	' /5/'
VALUE (units 10 ⁻⁴) 0.76±0.08 OUR AVER		DOCUMENT ID	,	TECN	COMMENT	

15Y LHCB pp at 7, 8 TeV 07 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 1 AAIJ $0.77\!\pm\!0.05\!\pm\!0.06$ 2,3 KUZMIN $0.60 \pm 0.13 \pm 0.27$

 $^{^1}$ Result obtained using the isobar formalism. The second uncertainty combines in quadrature all systematic uncertainties quoted in the paper. 2 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. 3 Our second uncertainty combines systematics and model errors quoted in the paper.

$\Gamma(D_2^*(2460)^-\pi^+,$	$(D_2^*)^-$ –	$\rightarrow D^{*-}\pi^{+}\pi^{-})/\Gamma$	total			Γ ₇₆ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<0.24	90	¹ ABE	05A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
_						

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\overline{D_2^*}(2460)^- \rho^+)/\Gamma_{total}$ VALUE

CL%

DOCUMENT ID

1 ALAM

94

CLE2 $e^+ e^- \rightarrow \Upsilon(4S)$

$\Gamma(D^0\overline{D}^0)/\Gamma_{\text{total}}$

 Γ_{78}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
$0.14 \pm 0.06 \pm 0.03$		¹ AAIJ	13 AP	LHCB	pp at 7 TeV
• • • We do not use th	ne following	g data for averages	s, fits,	limits, e	etc. • • •
.0.40	0.0	2 4 5 4 6 1 11	00	DEL 1	± - ma(4.6)

<0.43 90 2 ADACHI 08 BELL $e^+e^- \rightarrow \Upsilon(4S)$ <0.6 90 2 AUBERT,B 06A BABR $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(D^{*0}\overline{D}^{0})/\Gamma_{\text{total}}$

 Γ_{79}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT
<2.9	90	¹ AUBERT,B 06	a BABR	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D^-D^+)/\Gamma_{\rm total}$

 Γ_{80}/Γ

VALUE (units 10 ⁻⁴) CL%	<u>DOCUMENT ID</u>		TECN	COMMENT
2.11±0.18 OUR AVERA	SE .			
$2.12 \pm 0.16 \pm 0.18$		12	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$1.97 \pm 0.20 \pm 0.20$				$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.8 \pm 0.4 \pm 0.5$	¹ AUBERT,B	06A	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	owing data for averages	, fits,	limits, e	etc. • • •

$\Gamma(D^{\pm}D^{*\mp}(CP\text{-averaged}))/\Gamma_{\text{total}}$

 Γ_{81}/Γ

VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT	
6.14±0.29±0.50	¹ ROHRKEN 1	2 BELL	$e^+e^- ightarrow \gamma(4S)$	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^1}$ ALAM 94 assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$ and use the CLEO II absolute B($D^0\to K^-\pi^+$) and B($D_2^*(2460)^+\to D^0\pi^+$) = 30%.

¹ Uses B($B^0 \to D^- D^+$) = (2.11 ± 0.31) × 10⁻⁴ and B($B^+ \to \overline{D}{}^0 D_s^+$) = (10.1 ± 1.7) × 10⁻³.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma(D^-D_s^+)/\Gamma_{\text{total}}$						Γ ₈₂ /Γ
<u>VALUE</u> <u>EVT</u>		DOCUMENT ID)	TECN	COMMENT	
0.0072±0.0008 OUR AVERAGE						
$0.0073 \pm 0.0004 \pm 0.0007$		¹ ZUPANC			$e^+e^- \rightarrow$	` ,
$0.0066 \pm 0.0014 \pm 0.0006$		² AUBERT			$e^+e^- \rightarrow$	` ,
$0.0068 \pm 0.0024 \pm 0.0006$		³ GIBAUT	96		$e^+e^- \rightarrow$	
$0.010 \pm 0.009 \pm 0.001$		⁴ ALBRECHT			$e^+e^- \rightarrow$	
$0.0053 \pm 0.0030 \pm 0.0005$		⁵ BORTOLET			$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following	ng da					
0.012 ± 0.007	3	⁶ BORTOLET	TO90	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 ZUPANC 07 reports (7.5 \pm 0.2	2 ± 1.	$1) imes 10^{-3}$ from a	measui	rement c	of $[\Gamma(B^0 \rightarrow$	$D^{-}D_{s}^{+})/$
$\Gamma_{total}] \times [B(D_{s}^+ \to \phi \pi^+)]$	assu	ming $B(D_s^+ \rightarrow$	$\phi\pi^+$)	= (4.4	\pm 0.6) $ imes$ 10	$^{-2}$, which
we rescale to our best value their experiment's error and o	$B(D_s^{\dagger})$	$\phi \rightarrow \phi \pi^+) = ($	4.5 ± 0	$(0.4) \times 10$	0 ⁻² . Our fi	rst error is
value.						
² AUBERT 06N reports (0.64						
$(D^-D_s^+)/\Gamma_{total}] imes [B(D_s^+)]$						
which we rescale to our best error is their experiment's er	value	e B $(D_s^+ o \phi \pi)$	$^{+}) = ($	4.5 ± 0	$(.4) \times 10^{-2}$	Our first
error is their experiment's er	ror an	nd our second er	ror is th	ne systei	matic error f	rom using
our best value. ³ GIBAUT 96 reports 0.0087	± 0.	.0024 ± 0.0020	from	a meası	urement of	$[\Gamma(B^0 \rightarrow$
$(D^-D_s^+)/\Gamma_{total}] \times [B(D_s^+)]$						
we rescale to our best value their experiment's error and o	$B(D_s^{\dagger})$	$\phi + \phi \pi^+ = ($	4.5 ± 0	$0.4) \times 10$	0 $^{-2}$. Our fi	rst error is
	our se	cond error is the	system	natic err	or from usin	g our best
value. ⁴ ALBRECHT 92G reports 0.0	017 J	0.012 ± 0.006	from		uramant of	ι Γ (ρ0 .
$D^-D_s^+$)/ Γ_{total}] × [B(D_s^+						
we rescale to our best value is their experiment's error ar	$B(D_{i})$	$\phi \pi^{\top} \rightarrow \phi \pi^{\top} = 0$	$(4.5 \pm$	0.4) ×	10 ⁻² . Our	first error
is their experiment's error ar	10 OU	r second error is	the sy	stemation	c error from	using our
best value. Assumes PDG 1 $7.7 \pm 1.0\%$.	1990	D branching i	ratios,	e.g., B($D^+ \rightarrow \kappa$	2π ') =
⁵ BORTOLETTO 92 reports 0	.0080	$\pm 0.0045 \pm 0.00$	030 froi	m a mea	surement of	$\Gamma(B^0 \rightarrow$
$(D^-D_s^+)/\Gamma_{\text{total}} \times [B(D_s^+)]$						
which we rescale to our best error is their experiment's en	valut ror ar	σ b($D_s \rightarrow \varphi \pi$	') — (ror is th	4.5 \pm 0	matic error 1	from using
our best value. Assumes equa						
branching fractions for the D		a			(.c) and as	oo mank m

branching fractions for the D. 6 BORTOLETTO 90 assume B($D_s \rightarrow \phi \pi^+$) = 2%. Superseded by BORTOLETTO 92.

$\Gamma(D^*(2010)^-D_s^+)/\Gamma_{\text{total}}$					Г ₈₃ /Г
VALUE EVTS	DOCUMENT ID		TECN	COMMENT	
0.0080 ± 0.0011 OUR AVERAGE					
$0.0073\!\pm\!0.0013\!\pm\!0.0007$	$^{ m 1}$ AUBERT			$e^+e^- \rightarrow$	
$0.0083 \pm 0.0015 \pm 0.0007$	² AUBERT	031	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.0088 \pm 0.0017 \pm 0.0008$	³ AHMED			$e^+e^- \rightarrow$	
$0.008 \pm 0.006 \pm 0.001$	⁴ ALBRECHT				
$0.011 \pm 0.006 \pm 0.001$	⁵ BORTOLETT	O92	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following	g data for average	es, fits	, limits,	etc. • • •	

 $0.0072\pm0.0022\pm0.0006$ 6 GIBAUT 96 CLE2 Repl. by AHMED 00B $0.024~\pm0.014$ 3 7 BORTOLETTO90 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

- 1 AUBERT 06N reports (0.71 \pm 0.13 \pm 0.09) \times 10 $^{-2}$ from a measurement of [$\Gamma(B^0\to D^*(2010)^-D_s^+)/\Gamma_{\rm total}]\times [{\rm B}(D_s^+\to\phi\pi^+)]$ assuming ${\rm B}(D_s^+\to\phi\pi^+)=0.0462\pm0.0062$, which we rescale to our best value ${\rm B}(D_s^+\to\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ² AUBERT 03I reports $0.0103\pm0.0014\pm0.0013$ from a measurement of $[\Gamma(B^0\to D^*(2010)^-D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.036$, which we rescale to our best value $B(D_s^+\to\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³AHMED 00B reports $0.0110 \pm 0.0018 \pm 0.0011$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^-D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi\pi^+)]$ assuming $B(D_s^+ \to \phi\pi^+) = 0.036$, which we rescale to our best value $B(D_s^+ \to \phi\pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁴ ALBRECHT 92G reports $0.014 \pm 0.010 \pm 0.003$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^- D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ and $D^*(2010)^+$ branching ratios, e.g., $B(D^0 \to K^- \pi^+) = 3.71 \pm 0.25\%$, $B(D^+ \to K^- 2\pi^+) = 7.1 \pm 1.0\%$, and $B(D^*(2010)^+ \to D^0 \pi^+) = 55 \pm 4\%$.
- ⁵ BORTOLETTO 92 reports $0.016 \pm 0.009 \pm 0.006$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^- D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.030 \pm 0.011$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.
- ⁶ GIBAUT 96 reports $0.0093 \pm 0.0023 \pm 0.0016$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^- D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.035$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁷BORTOLETTO 90 assume B($D_s \rightarrow \phi \pi^+$) = 2%. Superseded by BORTOLETTO 92.

Γ(D⁻D_s⁺⁺)/Γ_{total} VALUE 0.0074±0.0016 OUR AVERAGE 0.0071±0.0016±0.0006 1 AUBERT 0.0078±0.0032±0.0007 2 GIBAUT 96 CLE2 $e^+e^- o \Upsilon(4S)$ 0.016 ±0.012 ±0.001 3 ALBRECHT 92G ARG $e^+e^- o \Upsilon(4S)$ 1 AUBERT 06N reports (0.69 ± 0.16 ± 0.09) × 10⁻² from a measurement of [Γ(B⁰ →

AUBERT 06N reports $(0.69 \pm 0.16 \pm 0.09) \times 10^{-2}$ from a measurement of [I ($B^0 \rightarrow D^-D_s^{*+}$)/ Γ_{total}] \times [B($D_s^+ \rightarrow \phi \pi^+$)] assuming B($D_s^+ \rightarrow \phi \pi^+$) = 0.0462 \pm 0.0062, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = (4.5 \pm 0.4) \times 10⁻². Our first

error is their experiment's error and our second error is the systematic error from using our best value.

- ² GIBAUT 96 reports $0.0100 \pm 0.0035 \pm 0.0022$ from a measurement of $[\Gamma(B^0 \to D^-D_s^{*+})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.035$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ALBRECHT 92G reports $0.027\pm0.017\pm0.009$ from a measurement of $[\Gamma(B^0\to D^-D_s^{*+})/\Gamma_{\rm total}]\times [B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.027$, which we rescale to our best value $B(D_s^+\to\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ branching ratios, e.g., $B(D^+\to K^-2\pi^+)=7.7\pm1.0\%$.

$\Gamma(D^*(2010)^-D_s^{*+})/\Gamma_{\text{total}}$

 Γ_{85}/Γ

<u>VALUE</u>	<u>DOCUMENT ID</u>		<u>TECN</u>	<u>COMMENT</u>
0.0177±0.0014 OUR AVERAGE				
$0.0173 \!\pm\! 0.0018 \!\pm\! 0.0015$	$^{ m 1}$ AUBERT	06N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.0188 \pm 0.0009 \pm 0.0017$	² AUBERT	05∨	BABR	$e^+e^- ightarrow \gamma(4S)$
$0.0158 \pm 0.0027 \pm 0.0014$	³ AUBERT	031	BABR	$e^+e^- ightarrow \gamma(4S)$
$0.015\ \pm0.004\ \pm0.001$	⁴ AHMED	00 B	CLE2	$e^+e^- ightarrow \gamma(4S)$
$0.016\ \pm0.009\ \pm0.001$	⁵ ALBRECHT	92 G	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.016 \pm 0.005 \pm 0.001$

⁶ GIBAUT 96

96 CLE2 Repl. by AHMED 00B

- 1 AUBERT 06N reports $(1.68\pm0.21\pm0.19)\times10^{-2}$ from a measurement of $[\Gamma(B^0\to D^*(2010)^-D_s^{*+})/\Gamma_{\rm total}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.0462\pm0.0062$, which we rescale to our best value $B(D_s^+\to\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ² A partial reconstruction technique is used and the result is independent of the particle decay rate of D_S^+ meson. It also provides a model-independent determination of B($D_S^+ \rightarrow \phi \pi^+$) = (4.81 ± 0.52 ± 0.38)%.
- ³ AUBERT 03I reports $0.0197 \pm 0.0015 \pm 0.0030$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^- D_s^{*+})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.036$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁴AHMED 00B reports $0.0182 \pm 0.0037 \pm 0.0025$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^- D_s^{*+})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.036$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁵ALBRECHT 92G reports $0.026 \pm 0.014 \pm 0.006$ from a measurement of $[\Gamma(B^0 \to D^*(2010)^-D_s^{*+})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ and $D^*(2010)^+$ branching ratios, e.g., $B(D^0 \to D^+)$

 $K^-\pi^+)=3.71\pm0.25\%,\ \mathsf{B}(D^+\to K^-2\pi^+)=7.1\pm1.0\%,\ \mathsf{and}\ \mathsf{B}(D^*(2010)^+\to K^-2\pi^+)=7.1\pm1.0\%$ $D^0 \pi^+$) = 55 ± 4%.

 6 GIBAUT 96 reports 0.0203 \pm 0.0050 \pm 0.0036 from a measurement of [$\Gamma(B^0 \rightarrow$ $D^*(2010)^- D_S^{*+})/\Gamma_{ ext{total}}] \times [B(D_S^+ o \phi \pi^+)] \text{ assuming } B(D_S^+ o \phi \pi^+) = 0.035,$ which we rescale to our best value B($D_s^+ \to \phi \pi^+$) = (4.5 \pm 0.4) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using

$[\Gamma(D^*(2010)^-D_s^+) + \Gamma(D^*(2010)^-D_s^{*+})]/\Gamma_{\text{total}}$

VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT 2.5 ±0.4 OUR AVERAGE 1 AUBERT 031 BABR $e^{+}e^{-}
ightarrow \varUpsilon (4S)$ $2.40 \pm 0.35 \pm 0.22$ ² BORTOLETTO90 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ $3.3 \pm 0.9 \pm 0.3$

 1 AUBERT 03I reports (3.00 \pm 0.19 \pm 0.39) imes 10 $^{-2}$ from a measurement of [$\Gamma(B^0
ightarrow$ $D^*(2010)^- \, D_s^+ \big) + \Gamma \big(B^0 \to \, D^*(2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}}] \times [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{assuming} \; (2010)^- \, D_s^{*+} \big) + \Gamma \big(B^0 \to \, D^*(2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{assuming} \; (2010)^- \, D_s^{*+} \big) + \Gamma \big(B^0 \to \, D^*(2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{assuming} \; (2010)^- \, D_s^{*+} \big) + \Gamma \big(B^0 \to \, D^*(2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{assuming} \; (2010)^- \, D_s^{*+} \big) + \Gamma \big(B^0 \to \, D^*(2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^+ \to \, \phi \, \pi^+)] \; \mathsf{Assuming} \; (2010)^- \, D_s^{*+} \big) \Big] / \Gamma_{\mathsf{total}} [\mathsf{B}(D_s^$ $B(D_s^+ \to \phi \pi^+) = 0.036$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) =$ $(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

²BORTOLETTO 90 reports $(7.5 \pm 2.0) \times 10^{-2}$ from a measurement of $[\Gamma(B^0 \rightarrow B^0)]$ $D^*(2010)^- D_s^+) + \Gamma(B^0 \to D^*(2010)^- D_s^{*+}) / \Gamma_{\mathsf{total}} \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.02$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) =$ $(4.5\pm0.4) imes10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(D_{s0}(2317)^{-}K^{+}, D_{s0}^{-} \to D_{s}^{-}\pi^{0})/\Gamma_{\text{total}}$$
 Γ_{86}/Γ_{86}

DOCUMENT ID TECN COMMENT VALUE (units 10^{-5})

 $4.2^{+1.4}_{-1.2}\pm0.4$

¹ DRUTSKOY 05 BELL $e^+e^- \rightarrow \Upsilon(4S)$

Created: 5/30/2017 17:22

 $^1\,\text{DRUTSKOY}$ 05 reports $(5.3^{+1.5}_{-1.3}\,\pm\,1.6)\times10^{-5}$ from a measurement of $[\Gamma(B^0\,\to\,1.5)\times10^{-5}]$ $D_{s0}(2317)^-K^+$, $D_{s0}^- o D_s^-\pi^0)/\Gamma_{\mathsf{total}}] imes [\mathsf{B}(D_s^+ o \phi\pi^+)]$ assuming $\mathsf{B}(D_s^+ o \phi\pi^+)$ $\phi\pi^+)=$ 0.036 \pm 0.009, which we rescale to our best value B($D_s^+
ightarrow \phi\pi^+)=$ (4.5 \pm $(0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(D_{s0}(2317)^{-}\pi^{+}, D_{s0}^{-} \to D_{s}^{-}\pi^{0})/\Gamma_{\text{total}}$$
 $\Gamma_{87}/\Gamma_{\text{total}}$

VALUE (units 10^{-5}) CL% DOCUMENT ID TECN COMMENT **<2.5** 90 1 DRUTSKOY 05 BELL $e^+e^- \rightarrow \Upsilon(4S)$ <2.5

$$\Gamma(D_{sJ}(2457)^-K^+, D_{sJ}^- \to D_s^-\pi^0)/\Gamma_{\text{total}}$$
 Γ_{88}/Γ

VALUE (units 10^{-5})

CL%

DOCUMENT ID

TECN

COMMENT $e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\frac{\Gamma\left(D_{sJ}(2457)^{-}\pi^{+},\ D_{sJ}^{-}\to D_{s}^{-}\pi^{0}\right)/\Gamma_{\text{total}}}{\frac{VALUE\ (\text{units}\ 10^{-5})}{\text{<0.40}} \qquad \frac{CL\%}{90} \qquad \frac{DOCUMENT\ ID}{1} \qquad \frac{TECN}{\text{BELL}} \qquad \frac{COMMENT}{e^{+}e^{-}\to \Upsilon(4S)}$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D_{s0}^*(2317)^+D^-, D_{s0}^{*+} \to D_s^+\pi^0)/\Gamma_{\text{total}}$

 Γ_{93}/Γ

Created: 5/30/2017 17:22

 VALUE (units 10^{-3})
 DOCUMENT ID
 TECN
 COMMENT

 1.09 \pm 0.16 OUR AVERAGE

 $1.03 \pm 0.16 \pm 0.04$ 1.2 CHOI
 15A BELL $e^+e^- \rightarrow \Upsilon(4S)$
 $1.4^{+0.5}_{-0.4} \pm 0.1$ 2.3 AUBERT,B
 04s BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

$$0.69^{+0.29}_{-0.24}\pm0.06$$
 2,4 KROKOVNY 03B BELL Repl. by CHOI 15A

¹ CHOI 15A reports $(10.2^{+1.3}_{-1.2} \pm 1.0 \pm 0.4) \times 10^{-4}$ from a measurement of $[\Gamma(B^0 \to D_{s0}^*(2317)^+ D^-, D_{s0}^{*+} \to D_s^+ \pi^0)/\Gamma_{total}] \times [B(D_s^+ \to K^+ K^- \pi^+)] \times [B(D^+ \to K^- 2\pi^+)]$ assuming $B(D_s^+ \to K^+ K^- \pi^+) = (5.39 \pm 0.21) \times 10^{-2}, B(D^+ \to K^- 2\pi^+) = (9.13 \pm 0.19) \times 10^{-2}$, which we rescale to our best values $B(D_s^+ \to K^+ K^- \pi^+) = (5.45 \pm 0.17) \times 10^{-2}$, B(D⁺ → K⁻ 2π⁺) = (8.98 ± 0.28) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best values.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ AUBERT,B 04S reports $(1.8 \pm 0.4^{+0.7}_{-0.5}) \times 10^{-3}$ from a measurement of $[\Gamma(B^0 \to D_{s0}^*(2317)^+D^-, D_{s0}^{*+} \to D_s^+\pi^0)/\Gamma_{total}] \times [B(D_s^+ \to \phi\pi^+)]$ assuming $B(D_s^+ \to \phi\pi^+) = 0.036 \pm 0.009$, which we rescale to our best value $B(D_s^+ \to \phi\pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ KROKOVNY 03B reports $(0.86^{+0.33}_{-0.26}\pm0.26)\times10^{-3}$ from a measurement of $[\Gamma(B^0\to D_{s0}^*(2317)^+D^-,\ D_{s0}^{*+}\to\ D_s^+\pi^0)/\Gamma_{total}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.036\pm0.009$, which we rescale to our best value $B(D_s^+\to\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D_{s0}(2317)^+D^-, D_{s0}^+ \to D_s^{*+}\gamma)/\Gamma_{total}$

 Γ_{94}/Γ

$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID	TECN	COMMENT
<0.95	90	¹ KROKOVNY 03	BB BELL	$e^+e^- ightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D_{s0}(2317)^+D^*(2010)^-, D_{s0}^+ \to D_s^+\pi^0)/\Gamma_{\text{total}}$

 Γ_{95}/Γ

$VALUE$ (units 10^{-3})	
$1.5\pm0.4^{+0.5}_{-0.4}$	

DOCUMENT ID TECN COMMENT

1 AUBERT,B 04S BABR $e^+e^-
ightarrow \Upsilon(4S)$

$\Gamma(D_{sJ}(2457)^+D^-)/\Gamma_{\text{total}}$

 Γ_{96}/Γ

, ,, ,,					
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
3.5±1.1 OUR AVERAGE			-		
$2.6 \pm 1.5 \pm 0.7$	¹ AUBERT	06N	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.8^{+2.2}_{-1.6}\pm 1.1$	^{2,3} AUBERT,B	04 S	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$3.9^{+1.5}_{-1.3}\pm0.9$	^{2,4} KROKOVNY	03 B	BELL	$e^+e^-\to$	$\Upsilon(4S)$

 $^{^{}m 1}$ Uses a missing-mass method in the events that one of the B mesons is fully reconstructed.

$$\Gamma(D_{sJ}(2457)^+D^-, D_{sJ}^+ \rightarrow D_s^+\gamma)/\Gamma_{\text{total}}$$

 Γ_{97}/Γ

Created: 5/30/2017 17:22

VALUE (units 10⁻³)

DOCUMENT ID

TECN
COMMENT

$0.65^{+0.17}_{-0.14}$ OUR AVERAGE

 $^{^1}$ Assumes equal production of B^+ and B^0 at the \varUpsilon (4S).

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ AUBERT,B 04S reports $[\Gamma(B^0 \to D_{sJ}(2457)^+ D^-)/\Gamma_{\text{total}}] \times [B(D_{s1}(2460)^+ \to D_{s}^{*+}\pi^0)] = (2.3^{+1.0}_{-0.7}\pm0.3)\times10^{-3}$ which we divide by our best value $B(D_{s1}(2460)^+ \to D_{s}^{*+}\pi^0) = (48\pm11)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ KROKOVNY 03B reports $[\Gamma(B^0 \to D_{sJ}(2457)^+D^-)/\Gamma_{\text{total}}] \times [B(D_{s1}(2460)^+ \to D_{s}^{*+}\pi^0)] = (1.9^{+0.7}_{-0.6}\pm0.2)\times10^{-3}$ which we divide by our best value $B(D_{s1}(2460)^+ \to D_{s}^{*+}\pi^0) = (48\pm11)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ KROKOVNY 03B reports $(0.82^{+0.22}_{-0.19}\pm0.25)\times10^{-3}$ from a measurement of $[\Gamma(B^0\to D_{sJ}(2457)^+D^-,\ D_{sJ}^+\to\ D_s^+\gamma)/\Gamma_{\rm total}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.036\pm0.009$, which we rescale to our best value $B(D_s^+\to\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(D_{sJ}(2457)^+D^-, D_{sJ}^+ \rightarrow D_s^{*+}\gamma)/\Gamma_{\text{total}}$$

 Γ_{98}/Γ

VALUE (units 10^{-3})	CL%	DOCUMENT ID	TECN	COMMENT
<0.60	90	¹ KROKOVNY 03	в BELL	$e^+e^- ightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$$\Gamma(D_{sJ}(2457)^+D^-,\ D_{sJ}^+ o D_s^+\pi^+\pi^-)/\Gamma_{
m total}$$

 Γ_{99}/Γ

VALUE (units
$$10^{-3}$$
) CL% DOCUMENT ID TECN COMMENT $e^+e^- \rightarrow \Upsilon(4S)$

$$\Gamma(D_{sJ}(2457)^+D^-,\ D_{sJ}^+
ightarrow\ D_s^+\pi^0)/\Gamma_{ ext{total}}$$

 Γ_{100}/Γ

$$\frac{VALUE \text{ (units } 10^{-3})}{\text{<0.36}} \qquad \frac{CL\%}{90} \qquad \frac{DOCUMENT \text{ ID}}{\text{1 KROKOVNY 03B BELL }} \qquad \frac{COMMENT}{e^+e^- \rightarrow \Upsilon(4S)}$$

$\Gamma(D^*(2010)^- D_{sJ}(2457)^+)/\Gamma_{\text{total}}$

 Γ_{101}/Γ

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
9.3±2.2 OUR AVERAGE				
$8.8 \pm 2.0 \pm 1.4$	¹ AUBERT	06N	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$11 \begin{array}{cc} +5 \\ -4 \end{array} \pm 3$	^{2,3} AUBERT,B	04 S	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 1 Uses a missing-mass method in the events that one of the B mesons is fully reconstructed. 2 AUBERT,B $\,$ 04S $\,$ reports $\,[\Gamma(B^0\to D^*(2010)^-\,D_{sJ}(2457)^+)/\Gamma_{\rm total}]\,\times\,[B(D_{s1}(2460)^+\to D_s^{*+}\pi^0)]=(5.5\pm1.2^{+2.2}_{-1.6})\times10^{-3}$ which we divide by our best value $B(D_{s1}(2460)^+\to D_s^{*+}\pi^0)=(48\pm11)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value. 3 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$$\Gamma(D_{sJ}(2457)^+ D^*(2010), D_{sJ}^+ \rightarrow D_s^+ \gamma)/\Gamma_{\text{total}}$$

 Γ_{102}/Γ

2.3
$$\pm$$
0.3 \pm 0.6 DOCUMENT ID TECN COMMENT

1 AUBERT,B 04S BABR $e^+e^- \rightarrow \Upsilon(4S)$

ASSUMES equal production of D and D and D are a measurement of D and D assuming D as D as

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

```
\left[\Gamma(D^{-}D_{s1}(2536)^{+},\ D_{s1}^{+}\to D^{*0}K^{+}) + \Gamma(D^{*+}K^{0})\right]/\Gamma_{\text{total}}
                                                                           \Gamma_{103}/\Gamma = (\Gamma_{104} + \Gamma_{105})/\Gamma
VALUE (units 10^{-4})DOCUMENT IDTECNCOMMENT2.75 ± 0.62 ± 0.361,2 AUSHEV11BELLe^+e^- \rightarrow \Upsilon(4S)
   ^{1} Uses \Gamma(D^{*}(2007)^{0} \rightarrow D^{0}\pi^{0}) \ / \ \Gamma(D^{*}(2007)^{0} \rightarrow D^{0}\gamma) \ = \ 1.74 \ \pm \ 0.13 and
  \Gamma(D_{s1}(2536)^+ \to D^*(2007)^0 \, K^+) / \Gamma(D_{s1}(2536)^+ \to D^*(2010)^+ \, K^0) = 1.36 \pm 0.2. <sup>2</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D^-D_{s1}(2536)^+, D_{s1}^+ \to D^{*0}K^+)/\Gamma_{total}
                                                                                                     \Gamma_{104}/\Gamma
VALUE (units 10<sup>-4</sup>) CL%
                                             DOCUMENT ID TECN COMMENT
                                           <sup>1</sup> AUBERT
                                                                08B BABR e^+e^- \rightarrow \Upsilon(4S)
   1.71 \pm 0.48 \pm 0.32
• • • We do not use the following data for averages, fits, limits, etc. • •
                                            AUBERT
                                                                03X BABR Repl. by AUBERT 08B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D^-D_{s1}(2536)^+, D_{s1}^+ \to D^{*+}K^0)/\Gamma_{\text{total}}
                                                                                                     \Gamma_{105}/\Gamma
                                             DOCUMENT ID TECN COMMENT
VALUE (units 10^{-4})
                                           ^{1} AUBERT 08B BABR e^{+}e^{-} 
ightarrow \Upsilon(4S)
2.61 \pm 1.03 \pm 0.31
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\left[\Gamma(D^*(2010)^- D_{s1}(2536)^+, D_{s1}^+ \to D^{*0}K^+) + \Gamma(D^{*+}K^0)\right]/\Gamma_{\text{total}}
                                                                           \Gamma_{106}/\Gamma = (\Gamma_{107} + \Gamma_{108})/\Gamma
VALUE (units 10^{-4})DOCUMENT IDTECNCOMMENT5.01 ± 1.21 ± 0.701.2 AUSHEV11BELLe^+e^- \rightarrow \Upsilon(4S)
   <sup>1</sup>Uses \Gamma(D^*(2007)^0 \rightarrow D^0\pi^0) / \Gamma(D^*(2007)^0 \rightarrow D^0\gamma) = 1.74 \pm 0.13 and
    \Gamma(D_{s1}(2536)^+ \to D^*(2007)^0 K^+) / \Gamma(D_{s1}(2536)^+ \to D^*(2010)^+ K^0) = 1.36 \pm 0.2.
   <sup>2</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D^*(2010)^- D_{s1}(2536)^+, D_{s1}^+ \to D^{*0}K^+)/\Gamma_{total}
                                                                                                     \Gamma_{107}/\Gamma
VALUE (units 10^{-4})
                                             DOCUMENT ID TECN COMMENT
                               CL%
                                                                08B BABR e^+e^- \rightarrow \Upsilon(4S)
   3.32 \pm 0.88 \pm 0.66

    • • We do not use the following data for averages, fits, limits, etc.

                               90
<7
                                            AUBERT
                                                                03X BABR Repl. by AUBERT 08B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D^{*-}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow D^{*+}K^{0})/\Gamma_{total}
                                                                                                     \Gamma_{108}/\Gamma
                                             DOCUMENT ID TECN COMMENT
VALUE (units 10^{-4})
                                           <sup>1</sup> AUBERT 08B BABR e^+e^- \rightarrow \Upsilon(4S)
5.00 \pm 1.51 \pm 0.67
   ^1 Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D^{-}D_{sJ}(2573)^{+}, D_{sJ}^{+} \rightarrow D^{0}K^{+})/\Gamma_{\text{total}}
                                                                                                     \Gamma_{109}/\Gamma
                                             DOCUMENT ID TECN COMMENT
VALUE (units 10^{-5}) CL\%
                                           <sup>1</sup> LEES 15C BABR e^+e^- \rightarrow \Upsilon(4S)
    3.4±1.7±0.5
• • • We do not use the following data for averages, fits, limits, etc. • • •
                               90 AUBERT 03x BABR e^+e^- \rightarrow \Upsilon(4S)
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
HTTP://PDG.LBL.GOV
                                                 Page 56
                                                                         Created: 5/30/2017 17:22
```

7.14 \pm 0.96 \pm 0.69 1 LEES 15C BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(D^+\pi^-)/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{112}}/\Gamma$

VALUE (units 10^{-7})DOCUMENT IDTECNCOMMENT7.4 \pm 1.2 \pm 0.41,2 DAS10 BELL $e^+e^- \rightarrow \Upsilon(4S)$

¹ DAS 10 reports $[\Gamma(B^0 \to D^+\pi^-)/\Gamma_{total}]$ / $[B(B^0 \to D^-\pi^+)] = (2.92 \pm 0.38 \pm 0.31) \times 10^{-4}$ which we multiply by our best value $B(B^0 \to D^-\pi^+) = (2.52 \pm 0.13) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(D_s^+\pi^-)/\Gamma_{\text{total}}$ Γ_{113}/Γ

<i>LUE</i> (units 10 ⁻⁶)	CL% DOCUI	MENT ID	TECN	COMMENT	
21.6±2.6 OUR AVE	RAGE				
$19.9 \pm 2.6 \pm 1.8$ $25 \pm 4 \pm 2$	¹ DAS ¹ AUBE			$e^+e^- \rightarrow e^+e^- \rightarrow$	` '

• • We do not use the following data for averages, fits, limits, etc.

$14.0 \pm 3.5 \pm 1.3$		² AUBERT			Repl. by AUBERT 08AJ
$25 \pm 9 \pm 2$		³ AUBERT			Repl. by AUBERT 07K
$19 \begin{array}{cc} +9 \\ -7 \end{array} \pm 2$					Repl. by DAS 10
< 220	90				$e^+e^- ightarrow ~ \varUpsilon(4S)$
<1300	90	⁶ BORTOLETTO	O90	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Derived using $\tan(\theta_C) f_D/f_{D_s} \sqrt{B(B^0 \to D_s^+ \pi^-)/B(B^0 \to D^- \pi^+)}$ by assuming the flavor SU(3) symmetry, where θ_C is the Cabibbo angle, $f_D(f_{D_s})$ is the $D(D_s)$ meson decay constant.

² AUBERT 07K reports $[\Gamma(B^0 \to D_s^+\pi^-)/\Gamma_{total}] \times [B(D_s^+ \to \phi\pi^+)] = (0.63 \pm 0.15 \pm 0.05) \times 10^{-6}$ which we divide by our best value $B(D_s^+ \to \phi\pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ AUBERT 03D reports $[\Gamma(B^0 \to D_s^+\pi^-)/\Gamma_{total}] \times [B(D_s^+ \to \phi\pi^+)] = (1.13 \pm 0.33 \pm 0.21) \times 10^{-6}$ which we divide by our best value $B(D_s^+ \to \phi\pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ KROKOVNY 02 reports $[\Gamma(B^0 \to D_s^+\pi^-)/\Gamma_{\rm total}] \times [B(D_s^+ \to \phi\pi^+)] = (0.86^{+0.37}_{-0.30} \pm 0.11) \times 10^{-6}$ which we divide by our best value $B(D_s^+ \to \phi\pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 5 ALEXANDER 93B reports < 270 \times 10 $^{-6}$ from a measurement of $[\Gamma(B^{0} \rightarrow D_{c}^{+}\pi^{-})/D_{c}^{+}\pi^{-})$ $\Gamma_{ ext{total}}] \times [B(D_s^+ o \phi \pi^+)]$ assuming $B(D_s^+ o \phi \pi^+) = 0.037$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻². ⁶ BORTOLETTO 90 assume B($D_s \rightarrow \phi \pi^+$) = 2%.

 $\left[\Gamma(D_s^+\pi^-) + \Gamma(D_s^-K^+)\right]/\Gamma_{\text{total}}$

 $(\Gamma_{113}+\Gamma_{123})/\Gamma$

VALUE CL% DOCUMENT ID TECN COMMENT $\frac{113}{123}$ $\frac{123}{1}$ $\frac{1$

 1 ALBRECHT 93E reports $< 1.7 \times 10^{-3}$ from a measurement of $[\Gamma(B^0 \to D_s^+ \pi^-) + D_s^+ \pi^-]$ $\Gamma(B^0 \to D_s^- K^+) / \Gamma_{\text{total}} \times [B(D_s^+ \to \phi \pi^+)] \text{ assuming } B(D_s^+ \to \phi \pi^+) = 0.027,$ which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 \times 10⁻².

$\Gamma(D_s^{*+}\pi^-)/\Gamma_{\text{total}}$

 Γ_{114}/Γ

$VALUE$ (units 10^{-5}) $CL\%$	DOCUMENT ID	TECN	COMMENT
2.1 ± 0.4 OUR AVERAGE	Error includes scale	factor of 1.4	
$1.75 \pm 0.34 \pm 0.20$	¹ JOSHI	10 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.6 \ {+0.5\atop -0.4} \ \pm 0.2$	¹ AUBERT	08AJ BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• We do not use the following data for averages, fits, limits, etc. • •

$2.9 \pm 0.7 \pm 0.3$		² AUBERT	07K	BABR	Repl. by AUBERT 08AJ
< 4.1	90	AUBERT	03 D	BABR	Repl. by AUBERT 07K
<40	90	³ ALEXANDER	93 B	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 3 ALEXANDER 93B reports < 44 \times 10^{-5} from a measurement of [$\Gamma(B^0 \to ~D_s^{*+} \, \pi^-)/$ $\Gamma_{\text{total}}] \times [B(D_s^+ o \phi \pi^+)]$ assuming $B(D_s^+ o \phi \pi^+) = 0.037$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

$\left[\Gamma(D_{\bullet}^{*+}\pi^{-}) + \Gamma(D_{\bullet}^{*-}K^{+})\right]/\Gamma_{\text{total}}$

 $(\Gamma_{114} + \Gamma_{124})/\Gamma$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<7 × 10 ⁻⁴	90	¹ ALBRECHT	93E	ARG	$e^+e^- ightarrow \Upsilon(4S)$

 1 ALBRECHT 93E reports $<1.2\times10^{-3}$ from a measurement of [$\left\lceil \Gamma(B^0\to~D_{_{S}}^{*+}\pi^-)\right.$ + $\Gamma(B^0 \to D_s^{*-} K^+) \Big] / \Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)] \text{ assuming } B(D_s^+ \to \phi \pi^+) = 0.027,$ which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

$\Gamma(D_{\epsilon}^{+}\rho^{-})/\Gamma_{\text{total}}$

 Γ_{115}/Γ

$VALUE$ (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
< 2.4	90	¹ AUBERT	08AJ	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •	
<130	90	² ALBRECHT				
< 50	90	³ ALEXANDER	93 B	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

HTTP://PDG.LBL.GOV

Page 58

² AUBERT 07K reports $[\Gamma(B^0 \to D_s^{*+}\pi^-)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi\pi^+)] = (1.32 \pm 0.27 \pm 0.$ $0.15) \times 10^{-6}$ which we divide by our best value B($D_s^+ \to \phi \pi^+$) = $(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D_s^{*+}\rho^-)/\Gamma_{\text{total}}$

 Γ_{116}/Γ

$VALUE$ (units 10^{-5})	CL%	DOCUMENT ID	TECN	COMMENT	
$4.1^{+1.3}_{-1.2}\pm0.4$		¹ AUBERT	08AJ BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

<150 90
2
 ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$ < 60 90 3 ALEXANDER 93B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(D_s^+ a_0^-)/\Gamma_{\text{total}}$

 Γ_{117}/Γ

VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
<1.9	90	¹ AUBERT	06x	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D_s^{*+}a_0^-)/\Gamma_{\text{total}}$

 Γ_{118}/Γ

<i>VALUE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT
<3.6	90	¹ AUBERT	06x	BABR	$e^+e^- \rightarrow \gamma(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma\big(D_s^+\,a_1(1260)^-\big)/\Gamma_{\text{total}}$

 Γ_{119}/Γ

VALUE CL% DOCUMENT ID TECN COMMENT
$$\frac{1}{2}$$
 $\frac{1}{2}$ ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ ALBRECHT 93E reports $<2.2\times10^{-3}$ from a measurement of $[\Gamma(B^0\to D_s^+\rho^-)/\Gamma_{total}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.027,$ which we rescale to our best value $B(D_s^+\to\phi\pi^+)=4.5\times10^{-2}.$

³ALEXANDER 93B reports $< 6.6 \times 10^{-4}$ from a measurement of $[\Gamma(B^0 \to D_s^+ \rho^-)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ ALBRECHT 93E reports $<2.5\times10^{-3}$ from a measurement of $[\Gamma(B^0\to D_s^{*+}\rho^-)/\Gamma_{\rm total}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.027,$ which we rescale to our best value $B(D_s^+\to\phi\pi^+)=4.5\times10^{-2}.$

 $^{^3}$ ALEXANDER 93B reports < 7.4 \times 10 $^{-4}$ from a measurement of [$\Gamma(B^0\to D_s^{*+}\rho^-)/\Gamma_{total}$] \times [B($D_s^+\to\phi\pi^+$)] assuming B($D_s^+\to\phi\pi^+$) = 0.037, which we rescale to our best value B($D_s^+\to\phi\pi^+$) = 4.5 \times 10 $^{-2}$.

 $^{^1}$ ALBRECHT 93E reports $<3.5\times10^{-3}$ from a measurement of $[\Gamma(B^0\to D_s^+\,a_1(1260)^-)/\Gamma_{\rm total}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.027$, which we rescale to our best value $B(D_s^+\to\phi\pi^+)=4.5\times10^{-2}$.

```
\Gamma(D_c^{*+}a_1(1260)^-)/\Gamma_{\text{total}}
                                                                                                   ^1 \text{ALBRECHT} 93E reports < 2.9 \times 10^{-3} from a measurement of [ \Gamma(B^0 \rightarrow
          D_s^{*+} a_1(1260)^-)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(D_s^+ \to \phi \pi^+)] \text{ assuming } \mathsf{B}(D_s^+ \to \phi \pi^+) = 0.027,
          which we rescale to our best value B(D_s^+ \rightarrow \phi \pi^+) = 4.5 \times 10<sup>-2</sup>.
\Gamma(D_s^+ a_2^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                                              \Gamma_{121}/\Gamma
                                                                                               rac{\textit{DOCUMENT ID}}{1} TECN COMMENT e^+e^- 
ightarrow \varUpsilon(4S)
VALUE (units 10^{-5})
  <19
       <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D_s^{*+}a_2^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                                              \Gamma_{122}/\Gamma
VALUE (units 10^{-5})
                                                                                                   DOCUMENT ID TECN COMMENT
                                                                                                                                              06x BABR e^+e^- \rightarrow \Upsilon(4S)
       <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D_s^-K^+)/\Gamma_{\text{total}}
                                                                                                                                                                                                                              \Gamma_{123}/\Gamma
VALUE (units 10^{-6})
                                                                      CL%
             27 ± 5 OUR FIT Error includes scale factor of 2.7.
             22 ± 5 OUR AVERAGE Error includes scale factor of 1.8.
                                                                                               <sup>1</sup> DAS
                                                                                                                                               10 BELL e^+e^- \rightarrow \Upsilon(4S)
             19.1\pm\ 2.4\pm1.7
                                                                                               <sup>1</sup> AUBERT
                                                                                                                                              08AJ BABR e^+e^- \rightarrow \Upsilon(4S)
             29 \pm 4 \pm 2
     • We do not use the following data for averages, fits, limits, etc. • •
                                                                                               <sup>2</sup> AUBERT
                                                                                                                                              07K BABR Repl. by AUBERT 08AJ
             27 \pm 5 \pm 2
                                                                                               <sup>3</sup> AUBERT
             26 \pm 10 \pm 2
                                                                                                                                              03D BABR Repl. by AUBERT 07K
             36 \begin{array}{c} +11 \\ -10 \end{array} \pm 3
                                                                                               <sup>4</sup> KROKOVNY
                                                                                                                                              02 BELL Repl. by DAS 10
                                                                                               <sup>5</sup> ALEXANDER 93B CLE2 e^+e^- \rightarrow \Upsilon(4S)
  < 190
                                                                                               ^{6} BORTOLETTO90 CLEO e^{+}e^{-} \rightarrow \Upsilon(4S)
  <1300
       <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
      <sup>2</sup> AUBERT 07K reports [\Gamma(B^0 \to D_S^- K^+)/\Gamma_{\text{total}}] \times [B(D_S^+ \to \phi \pi^+)] = (1.21 \pm 0.17 \pm 0.1
          0.11) \times 10^{-6} which we divide by our best value B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}. Our first error is their experiment's error and our second error is the systematic error
           from using our best value.
      <sup>3</sup> AUBERT 03D reports [\Gamma(B^0 \to D_s^- K^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)] = (1.16 \pm 0.36 \pm 0.36)
          0.24) \times 10^{-6} which we divide by our best value B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}. Our first error is their experiment's error and our second error is the systematic error
          from using our best value.
      <sup>4</sup>KROKOVNY 02 reports [\Gamma(B^0 \rightarrow D_s^- K^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \rightarrow \phi \pi^+)] = (1.61^{+0.45}_{-0.38} \pm 0.21) \times 10^{-6} which we divide by our best value B(D_s^+ \rightarrow \phi \pi^+) = 0.00
      (4.5\pm0.4)\times10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value. 

<sup>5</sup> ALEXANDER 93B reports < 230\times10^{-6} from a measurement of [\Gamma(B^0\to D_s^-K^+)/S^-K^+]
          \Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)] assuming B(D_s^+ \to \phi \pi^+) = 0.037, which we rescale to
      our best value B(D_s^+ \rightarrow \phi \pi^+) = 4.5 × 10<sup>-2</sup>.

<sup>6</sup>BORTOLETTO 90 assume B(D_s \rightarrow \phi \pi^+) = 2%.
                                                                                                                                                               Created: 5/30/2017 17:22
```

$\Gamma(D_s^{*-}K^+)/\Gamma_{\text{total}}$		Γ ₁₂₄ /
<i>VALUE</i> (units 10^{-5})	CL%	DOCUMENT ID TECN COMMENT
2.19±0.30 OUR AV	'ERAGE	
$2.02\pm0.33\pm0.22$		1 JOSHI 10 BELL $e^+e^- \rightarrow \Upsilon(4S)$
$2.4 \pm 0.4 \pm 0.2$		¹ AUBERT 08AJ BABR $e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use th	ne followin	g data for averages, fits, limits, etc. • • •
$2.2 \pm 0.6 \pm 0.2$		² AUBERT 07K BABR Repl. by AUBERT 08A
< 2.5	90	
<14	90	3 ALEXANDER 93B CLE2 $e^+e^- ightarrow \gamma(4S)$
		B^+ and B^0 at the $\varUpsilon(4S)$.
² AUBERT 07K report	ts [$\Gamma(B^0$ $-$	$\to D_s^{*-} K^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)] = (0.97 \pm 0.24 \pm 0.04)$
$0.12) \times 10^{-6}$ which	we divide	by our best value B($D_{s}^{+} ightarrow \phi \pi^{+}$) = (4.5 \pm 0.4) $ imes$ 10 $^{-2}$
Our first error is th	neir experi	ment's error and our second error is the systematic error
from using our best	value.	17 10-5 (D*- 1/+)
ALEXANDER 93B	reports <	$17 imes 10^{-5}$ from a measurement of $[\Gamma(B^0 o D_s^{*-} K^+)]$
		assuming B($D_s^+ o \phi \pi^+$) = 0.037, which we rescale t
our best value $B(D)$	$\frac{+}{s} \rightarrow \phi \pi^{-}$	$^{+}) = 4.5 \times 10^{-2}$.
$\Gamma(D_s^-K^+)/\Gamma(D^-\pi)$	+)	Γ_{123}/Γ_3
<i>VALUE</i> (units 10 ⁻²)	,	DOCUMENT ID TECN COMMENT
1.09±0.19 OUR FIT	Error inclu	
$1.29 \pm 0.05 \pm 0.08$		AAIJ 15AC LHCB pp at 7, 8 TeV
$\Gamma(D_s^-K^*(892)^+)/\Gamma$	total	Γ ₁₂₅ /
VALUE (units 10^{-5})	CL%	DOCUMENT ID TECN COMMENT
$3.5^{+1.0}_{-0.9}\pm0.4$		1 AUBERT 08AJ BABR $e^{+}e^{-} ightarrow \ \varUpsilon(4S)$
• • • We do not use the	ne followin	g data for averages, fits, limits, etc. ● ●
<280	90	2 ALBRECHT 93E ARG $e^+e^- ightarrow \varUpsilon(4S)$
< 80	90	³ ALEXANDER 93B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
¹ Assumes equal prod	luction of	B^+ and B^0 at the $\Upsilon(4S)$.
		$<$ 4.6 \times 10 ⁻³ from a measurement of [$\Gamma(B^0$ –
		${\sf B}(D_{\sf S}^+ o \phi \pi^+)]$ assuming ${\sf B}(D_{\sf S}^+ o \phi \pi^+) = 0.027$
		value B($D_s^+ o \phi \pi^+$) = 4.5 $ imes 10^{-2}$.
		$<$ 9.7 $ imes$ 10 ⁻⁴ from a measurement of [$\Gamma(B^0$ -
		$B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$
which we rescale to	our best	value B $(D_{s}^{+} o \phi \pi^{+}) = 4.5 imes 10^{-2}$.
$\Gamma(D_s^{*-}K^*(892)^+)/$	Γ _{total}	Γ ₁₂₆ /
VALUE (units 10^{-5})	CL%	DOCUMENT ID TECN COMMENT
$3.2^{+1.4}_{-1.2}\pm0.4$		¹ AUBERT 08AJ BABR $e^+e^- \rightarrow \Upsilon(4S)$
-1.2	ne followin	ng data for averages, fits, limits, etc. • • •
<350	90	2 ALBRECHT 93E ARG $e^+e^- ightarrow \Upsilon(4S)$
< 90	90	• • • • • • • • • • • • • • • • • • • •
. 50	50	
HTTP://PDG.LBL.	GOV	Page 61 Created: 5/30/2017 17:2

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D_s^-\pi^+K^0)/\Gamma_{\text{total}}$

 Γ_{127}/Γ

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	totai					,	
$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT		
0.97±0.14 Ol	JR AVERAGE						
$0.94 \pm 0.12 \pm 0$.10	$^{ m 1}$ WIECHCZYN					
$1.10 \pm 0.26 \pm 0$.20	$^{ m 1}$ AUBERT	08 G	BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$	
ullet $ullet$ We do not	use the followin	g data for average	es, fits,	limits,	etc. • • •		
<40	90	² ALBRECHT	93E	ARG	$e^+e^ \rightarrow$	$\Upsilon(4S)$	
¹ Assumes equa	I production of	B^+ and B^0 at th	e γ(4	S).			
² ALBRECHT 93E reports $< 7.3 \times 10^{-3}$ from a measurement of $[\Gamma(B^0 \rightarrow D_s^- \pi^+ K^0)/$							
$\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to							
our best value	$B(D_s^+ \to \phi \pi)$	$^{+}) = 4.5 \times 10^{-2}$					

$\Gamma(D_s^{*-}\pi^+K^0)/\Gamma_{\text{total}}$

 Γ_{128}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
< 1.10	90		08G	BABR	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

<25 90 ² ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(D_s^-K^+\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{129}/Γ

VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT
1.73±0.32±0.35	¹ AAIJ	12AX LHCB	pp at 7 TeV

¹ AAIJ 12AX reports $[\Gamma(B^0 \to D_s^- K^+ \pi^+ \pi^-)/\Gamma_{total}] / [B(B_s^0 \to D_s^- K^+ \pi^+ \pi^-)] = 0.54 \pm 0.07 \pm 0.07$ which we multiply by our best value $B(B_s^0 \to D_s^- K^+ \pi^+ \pi^-) = (3.2 \pm 0.6) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(D_s^-\pi^+K^*(892)^0)/\Gamma_{\text{total}}$$

 Γ_{130}/Γ

<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID	TE	ECN	COMMENT	
$<3.0 \times 10^{-3}$	90	¹ ALBRECHT	93E AI	RG	$e^+e^- \rightarrow$	Υ(4S)

 $^{^1}$ ALBRECHT 93E reports $<5.0\times10^{-3}$ from a measurement of $[\Gamma(B^0\to D_s^-\pi^+K^*(892)^0)/\Gamma_{\rm total}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.027$, which we rescale to our best value $B(D_s^+\to\phi\pi^+)=4.5\times10^{-2}$.

 $^{^2}$ ALBRECHT 93E reports $<5.8\times10^{-3}$ from a measurement of $[\Gamma(B^0\to D_s^{*-}K^*(892)^+)/\Gamma_{\rm total}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.027$, which we rescale to our best value $B(D_s^+\to\phi\pi^+)=4.5\times10^{-2}$. 3 ALEXANDER 93B reports $<11.0\times10^{-4}$ from a measurement of $[\Gamma(B^0\to B^0)]$

³ ALEXANDER 93B reports $< 11.0 \times 10^{-4}$ from a measurement of $[\Gamma(B^0 \to D_s^{*-} K^*(892)^+)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² ALBRECHT 93E reports < 4.2 \times 10⁻³ from a measurement of [$\Gamma(B^0 \to D_s^{*-}\pi^+ K^0)/\Gamma_{total}$] \times [B($D_s^+ \to \phi\pi^+$)] assuming B($D_s^+ \to \phi\pi^+$) = 0.027, which we rescale to our best value B($D_s^+ \to \phi\pi^+$) = 4.5 \times 10⁻².

	⁰)/Γ _{total} <u><i>CL%</i></u>		ID	TECN	COMMEN	Γ ₁₃₁ /Γ
<1.6 × 10 ^{−3}	90	¹ ALBRECH	Г 93Е	ARG	e^+e^- -	$ ightarrow$ $\Upsilon(4S)$
¹ ALBRECHT 93E	reports <	< 2.7 × 10 ⁻	³ from	a me	asurement	of $[\Gamma(B^0)]$
$D_s^{*-}\pi^+K^*(892)^0$	$)/\Gamma_{total}]$	$\times [B(D_s^+ \to \phi)]$	π^+)] as	suming	$B(D_s^+ \to$	$\phi \pi^{+}) = 0.027$,
which we rescale to	o our best	value B $(D_s^+ ightarrow$	$\phi\pi^+$)	= 4.5 ×	10^{-2} .	
$\Gamma(\overline{D}{}^0K^0)/\Gamma_{total}$						Γ ₁₃₂ /Γ
<i>VALUE</i> (units 10 ⁻⁵)		DOCUMENT	ID	TECN	COMMEN	IT
5.2±0.7 OUR AVERA	GE	1				
$5.3 \pm 0.7 \pm 0.3$		¹ AUBERT,B				` ,
$5.0^{+1.3}_{-1.2}\pm0.6$		1 KROKOVN	Y 03	BELL	e^+e^- -	\rightarrow $\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at	the Υ (4	S).		
$\Gamma(\overline{D}{}^0K^+\pi^-)/\Gamma_{ m tota}$	al					Γ ₁₃₃ /Γ
VALUE (units 10^{-6})		DOCUMENT	ID	TECN	COMMEN	IT
88±15±9		¹ AUBERT	06A	BABR	e ⁺ e ⁻ -	$ ightarrow$ $\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at	the $\Upsilon(4$	·S).		
$\Gamma(\overline{D}{}^0K^+\pi^-)/\Gamma(\overline{D}{}^0K^+\pi^-)$	$^{0}\pi^{+}\pi^{-})$					Γ_{133}/Γ_{43}
VALUE		<u>DOCUMENT</u>	ID	TECN	COMMEN	IT
$0.106 \pm 0.007 \pm 0.008$		AAIJ	13A	Q LHCB	<i>pp</i> at 7	TeV
$\Gamma(\overline{D}^0 K^*(892)^0)/\Gamma_0$	total					Γ ₁₃₄ /Γ
VALUE (units 10 ⁻⁵)		DOCUMENT ID	<u></u>	ECN C	OMMENT	
4.5±0.6 OUR AVERA) _{A A I I}	15v l	LICD	+ 7 0	T-1/
	-,-	² AAIJ ³ AUBERT,B	15X L	ARR e	$+_{e}-$	1eV Υ(4S)
$5.4 \pm 0.3 \pm 1.1$ 4 0 + 0 7 + 0 3						, (15)
$4.0\pm0.7\pm0.3$	3					$\Upsilon(45)$
$4.0 \pm 0.7 \pm 0.3$ $4.8 + 1.1 \pm 0.5$		KROKOVNY	03 B	ELL e	$+_{e} \rightarrow$	` '
$4.0 \pm 0.7 \pm 0.3$ $4.8 {+ 1.1 \atop - 1.0} \pm 0.5$ • • • We do not use the	he followin	RROKOVNY	03 B	ELL <i>e</i> , limits,	$+_e \rightarrow$ etc. • • •	•
$4.0 \pm 0.7 \pm 0.3$ $4.8 + 1.1 \pm 0.5$	the followin	RROKOVNY g data for avera AUBERT	03 B ages, fits 06A B	ELL e , limits, ABR F	$+_e - \rightarrow$ etc. • • • Repl. by Al	UBERT,B 06L

 $\Gamma\big(\overline{\it D}{}^0\,K^*(1410)^0\big)/\Gamma_{total}$ Γ_{135}/Γ DOCUMENT ID TECN COMMENT 1 AAIJ 15X LHCB pp at 7, 8 TeV

 $^{^1}$ Measured via amplitude analysis of $B^0 o \overline{D}{}^0$ $K^+\pi^-$, which excludes contribution from decay via $D^*(2010)^-$ resonance.

$\Gamma(\overline{D}^0 K_0^* (1430)^0) / \Gamma_{\text{total}}$

 Γ_{136}/Γ

VALUE (units 10^{-5}) 15X LHCB pp at 7, 8 TeV $0.7\pm0.7\pm0.1$

 1 AAIJ 15X reports (0.71 \pm 0.27 \pm 0.33 \pm 0.47 \pm 0.08) \times 10^{-5} from a measurement of $[\Gamma(B^0 \to \overline{D}^0 K_0^* (1430)^0)/\Gamma_{\text{total}}] \times [B(B^0 \to \overline{D}^0 K^+ \pi^-)]$ assuming $B(B^0 \to \overline{D}^0 K^+ \pi^-)$ $\overline{D}^0 K^+ \pi^-) = (9.2 \pm 0.6 \pm 0.7 \pm 0.6) \times 10^{-5}$, which we rescale to our best value $B(B^0 \to \overline{D}{}^0 K^+ \pi^-) = (8.8 \pm 1.7) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Measured via amplitude analysis of $B^0 \to \overline{D}{}^0 K^+ \pi^-$, which excludes contribution from decay via $D^*(2010)^-$ resonance.

$\Gamma(\overline{D}^0 K_2^*(1430)^0)/\Gamma_{\text{total}}$

 Γ_{137}/Γ

VALUE (units 10^{-5}) 15X LHCB pp at 7, 8 TeV $2.1\pm0.8\pm0.4$

 $^1\,\text{AAIJ}$ 15X reports (2.04 \pm 0.45 \pm 0.30 \pm 0.54 \pm 0.25) \times 10 $^{-5}$ from a measurement of $[\Gamma(B^0 \to \overline{D}{}^0 K_2^*(1430)^0)/\Gamma_{\text{total}}] \times [B(B^0 \to \overline{D}{}^0 K^+\pi^-)]$ assuming $B(B^0 \to \overline{D}{}^0 K^+\pi^-)$ $\overline{D}{}^0\,{\cal K}^+\,\pi^-)=(9.2\,\pm\,0.6\,\pm\,0.7\,\pm\,0.6)\times10^{-5}$, which we rescale to our best value $B(B^0 \to \overline{D}{}^0 K^+ \pi^-) = (8.8 \pm 1.7) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Measured via amplitude analysis of $B^0 \to \overline{D}{}^0 K^+ \pi^-$, which excludes contribution from decay via $D^*(2010)^-$ resonance.

$\Gamma(D_0^*(2400)^-,\ D_0^{*-}\to \,\overline{D}{}^0\pi^-\big)/\Gamma_{\rm total}$

 Γ_{138}/Γ

1,2 AAIJ 15v LLCP -VALUE (units 10^{-5}) $1.9 \pm 0.8 \pm 0.4$ 15X LHCB pp at 7, 8 TeV

 $^1\,\text{AAIJ}$ 15X reports (1.77 \pm 0.26 \pm 0.19 \pm 0.67 \pm 0.20) \times 10 $^{-5}$ from a measurement of $[\Gamma(B^0 \to D_0^*(2400)^-, D_0^{*-} \to \overline{D}{}^0\pi^-)/\Gamma_{total}] \times [B(B^0 \to \overline{D}{}^0K^+\pi^-)]$ assuming $B(B^0 \rightarrow \overline{D}^0 K^+ \pi^-) = (9.2 \pm 0.6 \pm 0.7 \pm 0.6) \times 10^{-5}$, which we rescale to our best value B($B^0 \to \overline{D}^0 \, K^+ \pi^-$) = (8.8 \pm 1.7) \times 10⁻⁵. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 Measured via amplitude analysis of $B^0 o \, \overline{D}{}^0\, K^+\, \pi^-$, which excludes contribution from decay via $D^*(2010)^-$ resonance.

$\Gamma(D_2^*(2460)^- K^+, D_2^{*-} \rightarrow \overline{D}{}^0 \pi^-)/\Gamma_{\text{total}}$

 Γ_{139}/Γ

Created: 5/30/2017 17:22

VALUE (units 10^{-6}) TECN COMMENT 20.3±3.5 OUR AVERAGE 1,2 AAIJ 15X LHCB pp at 7, 8 TeV

 $22 \pm 2 \pm 4$ ³ AUBERT 06A BABR $e^+e^- \rightarrow \Upsilon(4S)$ $18.3 \pm 4.0 \pm 3.1$

 $^{1}\text{AAIJ 15X reports } (2.12 \pm 0.10 \pm 0.11 \pm 0.11 \pm 0.25) \times 10^{-5} \text{ from a measurement of } [\Gamma(B^{0} \rightarrow D_{2}^{*}(2460)^{-}K^{+}, D_{2}^{*-} \rightarrow \overline{D}{}^{0}\pi^{-})/\Gamma_{\text{total}}] \times [\text{B}(B^{0} \rightarrow \overline{D}{}^{0}K^{+}\pi^{-})]$ assuming B($B^0 \rightarrow \overline{D}^0 K^+ \pi^-$) = $(9.2 \pm 0.6 \pm 0.7 \pm 0.6) \times 10^{-5}$, which we rescale to our best value B($B^0 \rightarrow \overline{D}^0 K^+ \pi^-$) = (8.8 ± 1.7) × 10⁻⁵. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 Measured via amplitude analysis of $B^0
ightarrow \, \overline{\it D}{}^0\, {\it K}^+\, \pi^-$, which excludes contribution from decay via $D^*(2010)^-$ resonance.

³Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

Citationi Ci i atingnam ci	. u (. u.		., 5. 0,	10, 10000	(2010) and 2	or, apaato	
$\Gamma(D_3^*(2760)^-K^+, L$)* ⁻ -	$ ightarrow \overline{D}{}^0\pi^-ig)/\Gamma_{total}$				Γ ₁₄₀ /Γ	
VALUE	CL%	DOCUMENT ID		TECN	COMMENT		
$< 0.10 \times 10^{-5}$	90	¹ AAIJ	15X	LHCB	pp at 7, 8	TeV	
¹ Measured via amplitude analysis of $B^0 \to \overline{D}{}^0 K^+ \pi^-$, which excludes contribution from decay via $D^*(2010)^-$ resonance.							
$\Gamma(\overline{D}{}^{0}K^{+}\pi^{-}\text{non-resonant})/\Gamma_{\text{total}}$ $\Gamma_{141}/\Gamma_{141}$							
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT		
<37	90	¹ AUBERT	06A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
1				-\			

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma([K^+K^-]_DK^*(892)^0)/\Gamma(\overline{D}{}^0K^*(892)^0)$

 $\Gamma_{142}/\Gamma_{134}$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $1.05 ^{+0.17}_{-0.15} \pm 0.04$ AAIJ 14BN LHCB Repl. by AAIJ 16S $1.36 ^{+0.37}_{-0.32} \pm 0.07$ AAIJ 13L LHCB Repl. by AAIJ 14BN

$\Gamma([\pi^+\pi^-]_D K^*(892)^0)/\Gamma(\overline{D}{}^0 K^*(892)^0)$

 $\Gamma_{143}/\Gamma_{134}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $1.21^{+0.28}_{-0.25} \pm 0.05$ AAIJ 14BN LHCB Repl. by AAIJ 16S

$\Gamma\big(\overline{D}{}^0\pi^0\big)/\Gamma_{\rm total}$

 Γ_{144}/Γ

Created: 5/30/2017 17:22

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
2.63 ± 0.14 OUR AVER	AGE				
$2.69\!\pm\!0.09\!\pm\!0.13$		¹ LEES	11 M	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.25\!\pm\!0.14\!\pm\!0.35$		$^{ m 1}$ BLYTH	06	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$2.74^{igoplus 0.36}_{-0.32}\!\pm\!0.55$		¹ COAN	02	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$2.9 \pm 0.2 \pm 0.3$		¹ AUBERT	04 B	BABR	Repl. by LEES 11M
$3.1 \pm 0.4 \pm 0.5$		¹ ABE	02J	BELL	Repl. by BLYTH 06
<1.2	90	² NEMATI	98	CLE2	Repl. by COAN 02
<4.8	90	³ ALAM	94	CLE2	Repl. by NEMATI 98

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions.

³ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0 \to K^-\pi^+$) and the PDG 1992 B($D^0 \to K^-\pi^+\pi^0$)/B($D^0 \to K^-\pi^+$) and B($D^0 \to K^-2\pi^+\pi^-$)/B($D^0 \to K^-\pi^+$).

 $\Gamma(\overline{D}{}^{0}\rho^{0})/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{145}}/\Gamma$

VALUE (units 10 ⁻⁴)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
3.21 ± 0.21 OUR A	VERAGE				
$3.21\!\pm\!0.10\!\pm\!0.21$		1 AAIJ	15Y	LHCB	<i>pp</i> at 7, 8 TeV
$3.19 \pm 0.20 \pm 0.45$		^{2,3} KUZMIN	07	BELL	$e^+e^- ightarrow \gamma(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$2.9 \pm 1.0 \pm 0.4$		² SATPATHY	03	BELL	Repl. by KUZMIN 07
< 3.9	90	⁴ NEMATI	98	CLE2	$e^+e^- ightarrow~ \varUpsilon(4S)$
< 5.5	90	⁵ ALAM	94	CLE2	Repl. by NEMATI 98
< 6.0	90	⁶ BORTOLETTO	092	CLEO	$e^+e^- ightarrow~ \varUpsilon(4S)$
<27.0	90	⁷ ALBRECHT	88K	ARG	$e^+e^- ightarrow \Upsilon(4S)$

¹ Measured using isobar formalism in the decay chain $B^0 \to \overline{D}{}^0 \rho(770)$, $\rho \to \pi^+ \pi^-$ assuming B($\rho(770) \to \pi^+ \pi^-$) = 1. The second uncertainty combines in quadrature all systematic uncertainties quoted in the paper.

 $\Gamma(\overline{D}^0 f_2)/\Gamma_{\text{total}}$ Γ_{146}/Γ

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
1.56±0.21 OUR AVERAGE				
$1.68 \pm 0.11 \pm 0.21$		15Y	LHCB	pp at 7, 8 TeV
$1.20 \pm 0.18 \pm 0.38$	^{2,3} KUZMIN	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Result obtained using the isobar formalism. The second uncertainty combines in quadrature all systematic uncertainties quoted in the paper. Measured in the decay chain $B^0 \to \overline{D}{}^0 f_2(1270)$, $f_2 \to \pi^+\pi^-$.

 $\Gamma(\overline{D}^0\eta)/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{147}}/\Gamma$

VALUE (units 10 ⁻⁴)	CL%	<u>DOCUMENT ID</u>		TECN	COMMENT
2.36±0.32 OUR AVE	RAGE	Error includes scale	facto	r of 2.5.	
$2.53\!\pm\!0.09\!\pm\!0.11$		1 LEES			$e^+e^- ightarrow \Upsilon(4S)$
$1.77 \pm 0.16 \pm 0.21$		$^{ m 1}$ BLYTH	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use th	e followin	ng data for averages	s, fits,	limits, e	etc. • • •
$2.5\ \pm0.2\ \pm0.3$		¹ AUBERT	04 B	BABR	Repl. by LEES 11M
$1.4 ^{+ 0.5}_{- 0.4} \pm 0.3$		¹ ABE	02 J	BELL	Repl. by BLYTH 06
<1.3	90	² NEMATI	98	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<6.8	90	³ ALAM	94	CLE2	Repl. by NEMATI 98

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³Our second uncertainty combines systematics and model errors quoted in the paper.

⁴ NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions.

⁵ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0 \to K^-\pi^+$) and the PDG 1992 B($D^0 \to K^-\pi^+\pi^0$)/B($D^0 \to K^-\pi^+$) and B($D^0 \to K^-2\pi^+\pi^-$)/B($D^0 \to K^-\pi^+$).

 $^{^6}$ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

⁷ ALBRECHT 88K reports < 0.003 assuming $B^0 \overline{B}{}^0:B^+B^-$ production ratio is 45:55. We rescale to 50%.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³Our second uncertainty combines systematics and model errors quoted in the paper.

 $\Gamma(\overline{D}^0\eta')/\Gamma_{\text{total}}$ Γ_{148}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
1.38±0.16 OUR AVER	AGE E	rror includes scale	factor	of 1.3.		
$1.48\!\pm\!0.13\!\pm\!0.07$		¹ LEES	11M	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.14\!\pm\!0.20 \!+\!0.10 \\ -0.13$		¹ SCHUMANN	05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	followin	g data for averages	. fits.	limits. e	etc. • • •	

e the following data for averages, fits, limits, etc.

$1.7\ \pm0.4\ \pm0.2$		$^{ m 1}$ AUBERT	04 B	BABR	Repl. by LEES 11M
< 9.4	90	² NEMATI	98	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 8.6	90	³ ALAM	94	CLE2	Repl. by NEMATI 98

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0 \to K^-\pi^+$) and the PDG 1992 B($D^0 \to K^-\pi^+\pi^0$)/B($D^0 \to K^-\pi^+$) and B($D^0 \to K^- 2\pi^+ \pi^-$)/B($D^0 \to K^- \pi^+$).

Г	\overline{D}^0	n')	/Γ($(\overline{D}^0\eta)$	١
- 1			1	,,	,

 $\Gamma_{148}/\Gamma_{147}$

Created: 5/30/2017 17:22

					,	
VALUE	DOCUMENT ID)	TECN	COMMENT		
$0.54 \pm 0.07 \pm 0.01$	LEES	11 M	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
• • • We do not use the following	g data for averag	es, fits,	limits, e	etc. • • •		
$0.7 \pm 0.2 \pm 0.1$	AUBERT	04 B	BABR	Repl. by L	EES 11M	

 $\Gamma(\overline{D}{}^0\omega)/\Gamma_{\mathsf{total}}$ Γ_{149}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
2.54±0.16 OUR AVE	RAGE				
$2.75\!\pm\!0.72\!\pm\!0.35$		¹ AAIJ			<i>pp</i> at 7, 8 TeV
$2.57\!\pm\!0.11\!\pm\!0.14$		² LEES	11M	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.37\!\pm\!0.23\!\pm\!0.28$		² BLYTH	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the	ne following	data for averages	s, fits,	limits, e	etc. • • •
$3.0 \pm 0.3 \pm 0.4$		² AUBERT	04 B	BABR	Repl. by LEES 11M
$1.8 \pm 0.5 ^{+ 0.4}_{- 0.3}$		² ABE	02 J	BELL	Repl. by BLYTH 06
< 5.1	90	³ NEMATI	98	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 6.3	90	⁴ ALAM	94	CLE2	Repl. by NEMATI 98

 $^{^{}m 1}$ Result obtained using the isobar model. The second uncertainty combines in quadrature

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions.

 $^{^3}$ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0 \to K^-\pi^+$) and the PDG 1992 B($D^0 \to K^-\pi^+\pi^0$)/B($D^0 \to K^-\pi^+$) and B($D^0 \to K^-2\pi^+\pi^-$)/B($D^0 \to K^-\pi^+$).

² NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions.

all systematic uncertainties quoted in the paper. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^3}$ NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions.

⁴ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0 \to K^-\pi^+$) and the PDG 1992 B($D^0 \to K^-\pi^+\pi^0$)/B($D^0 \to K^-\pi^+$) and B($D^0 \to K^-\pi^+\pi^-$)/B($D^0 \to K^-\pi^+$).

$\Gamma(D^0\phi)/\Gamma_{ m total}$						Γ ₁₅₀ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<11.6	90	$^{ m 1}$ AUBERT	07 AC	BABR	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro-	duction o	of B^+ and B^0 at the	e γ(45	S).		
$\Gamma(D^0 K^+ \pi^-)/\Gamma_{ m tota}$	al					Γ ₁₅₁ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
• • • We do not use t	he followi	ing data for average	es, fits,	limits, e	etc. • • •	
<19	90	¹ AUBERT	06A I	BABR	Repl. by Al	JBERT 09AE
¹ Assumes equal pro-	duction o	of B^+ and B^0 at the	e γ(45	S).		
$\Gamma(D^0 K^+ \pi^-)/\Gamma(\overline{D}$	0 K $^{+}$ π^{-}	,				$\Gamma_{151}/\Gamma_{133}$
<u>VALUE</u> 0.060±0.034 OUR AV	EDACE	DOCUMENT ID		TECN	COMMENT	
		^{1,2} NEGISHI	10	DELI	a+ a-	$\Upsilon(AC)$
$0.045 + 0.056 + 0.028 \\ -0.050 - 0.018$						` ,
0.068 ± 0.042 Assumes equal pro-		3 AUBERT		BABR	$e^+e^- \rightarrow$	1 (45)
	⁺ mode. I				MeV of the	nominal K*0
2 Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds 3 Reports a signal a	t the leve		deviati		er combining	g results from
2 Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds 3 Reports a signal a	t the level $+\pi - \pi 0$	el of 2.5 standard	deviati		er combining	results from Γ_{152}/Γ
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, K^-	t the level $x + \frac{1}{\pi} - \frac{1}{\pi} 0$, total $CL\%$	el of 2.5 standard ϵ , and $K^+\pi^-\pi^+\pi^-$	deviati -	ons afte	COMMENT	Γ ₁₅₂ /Γ
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, $K^ \Gamma(D^0 K^*(892)^0)/\Gamma_0 VALUE (units 10^{-5}) <1.1$	t the leve $x + \pi - \pi 0$, total $\frac{CL\%}{90}$	el of 2.5 standard ϵ , and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B	deviati - 06L	ons afte <u>TECN</u> BABR	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow}$	Γ ₁₅₂ /Γ
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, $K^ \Gamma(D^0 K^*(892)^0)/\Gamma_0$ VALUE (units 10^{-5})	total $\frac{CL\%}{90}$ the following the second state $\frac{CL\%}{90}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average	deviati 06L es, fits,	TECN BABR limits, 6	$\frac{COMMENT}{e^{+}e^{-} \rightarrow}$ etc. • •	$\frac{\Gamma_{152}/\Gamma}{\Upsilon^{(4S)}}$
² Uses $D^0 \rightarrow K^-\pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+\pi^-$, $K^ K^ K^-$	t the level $r+\pi-\pi 0$, total $\frac{CL\%}{90}$ the following $\frac{90}{100}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY	deviati - 06L es, fits,	TECN BABR limits, o	$\frac{COMMENT}{e^{+}e^{-} \rightarrow}$ etc. • •	$\frac{\Gamma_{152}/\Gamma}{\Upsilon^{(4S)}}$
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, K^- Γ($D^0 K^* (892)^0$)/Γ ₁ VALUE (units 10^{-5}) <1.1 • • • We do not use to	t the level $r+\pi-\pi 0$, total $\frac{CL\%}{90}$ the following $\frac{90}{100}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY	deviati - 06L es, fits,	TECN BABR limits, o	$\frac{COMMENT}{e^{+}e^{-} \rightarrow}$ etc. • •	$\frac{\Gamma_{152}/\Gamma}{\Upsilon^{(4S)}}$
2 Uses $D^0 \rightarrow K^-\pi^-$ mass. Corresponds 3 Reports a signal a $D^0 \rightarrow K^+\pi^-$, $K^ K^ K^-$	t the level $r+\pi-\pi 0$, total $\frac{CL\%}{90}$ the following $\frac{90}{100}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY	deviati - 06L es, fits,	TECN BABR limits, o	$\frac{COMMENT}{e^{+}e^{-} \rightarrow}$ etc. • •	r_{152}/r $r_{(4S)}$ $r_{(4S)}$
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, $K^ \Gamma(D^0 K^*(892)^0)/\Gamma_0 VALUE (units 10^{-5}) <1.1 • • • We do not use to <1.8 1 Assumes equal proof \Gamma(\overline{D}^{*0} \gamma)/\Gamma_{total}$	t the level $r+\pi-\pi 0$, total $\frac{CL\%}{90}$ the following $\frac{90}{100}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY	deviati $\begin{array}{c} - \\ 06L\\ \text{es, fits,}\\ 03\\ \text{e} & \Upsilon(45) \end{array}$	TECN BABR limits, 6 BELL S).	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ etc. \bullet \bullet \bullet $e^{+}e^{-} \rightarrow$	$\frac{\Gamma_{152}/\Gamma}{\Upsilon^{(4S)}}$
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, K^- Γ($D^0 K^* (892)^0$)/Γ ₁ VALUE (units 10^{-5}) <1.1 • • • We do not use t <1.8 ¹ Assumes equal prof Γ($\overline{D}^{*0} \gamma$)/Γ _{total} VALUE <2.5 × 10^{-5}	total $\frac{CL\%}{90}$ duction o $\frac{CL\%}{90}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^-$ and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ AUBERT,B	deviati 06L es, fits, 03 e $\Upsilon(4S)$	TECN BABR limits, 6 BELL S). TECN BABR	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ etc. • • • $e^{+}e^{-} \rightarrow$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$	Γ_{152}/Γ Υ (4S) Υ (4S) Γ_{153}/Γ
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, K^- Γ($D^0 K^*(892)^0$)/Γ ₁ VALUE (units 10^{-5}) <1.1 • • • We do not use to <1.8 ¹ Assumes equal profit $(\overline{D}^{*0} \gamma)/\Gamma_{total}$ VALUE <2.5 × 10^{-5} • • • We do not use to $(10^{-5} \times 10^{-5})$	total $ \frac{CL\%}{90} $ the following of t	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^-$ and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average	deviati 06L es, fits, 03 e $\Upsilon(43)$	TECN BABR limits, 6 BELL S). TECN BABR limits, 6	$\begin{array}{c} \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \end{array}$	Γ_{152}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{153}/Γ $\Upsilon(4S)$
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, K^- Γ($D^0 K^*(892)^0$)/Γ ₁ VALUE (units 10^{-5}) <1.1 • • • We do not use to <1.8 ¹ Assumes equal product $(D^{*0} \gamma)/\Gamma_{total}$ VALUE <2.5 × 10^{-5} • • • We do not use to <5.0 × 10^{-5}	total CL% 90 duction o $\frac{CL\%}{90}$ che following $\frac{CL\%}{90}$ che following $\frac{CL\%}{90}$ che following $\frac{CL\%}{90}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^-$ and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ ARTUSO	deviati 06L es, fits, 03 e $\Upsilon(4S)$ 05Q es, fits, 00	TECN BABR limits, 6 BELL S). TECN BABR limits, 6 CLE2	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ etc. • • • $e^{+}e^{-} \rightarrow$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$	Γ_{152}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{153}/Γ $\Upsilon(4S)$
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, K^- Γ($D^0 K^*(892)^0$)/Γ ₁ VALUE (units 10^{-5}) <1.1 • • • We do not use to <1.8 ¹ Assumes equal profit $(\overline{D}^{*0} \gamma)/\Gamma_{total}$ VALUE <2.5 × 10^{-5} • • • We do not use to $(10^{-5} \times 10^{-5})$	total CL% 90 duction o $\frac{CL\%}{90}$ che following $\frac{CL\%}{90}$ che following $\frac{CL\%}{90}$ che following $\frac{CL\%}{90}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^-$ and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ ARTUSO	deviati 06L es, fits, 03 e $\Upsilon(4S)$ 05Q es, fits, 00	TECN BABR limits, 6 BELL S). TECN BABR limits, 6 CLE2	$\begin{array}{c} \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \end{array}$	Γ_{152}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{153}/Γ $\Upsilon(4S)$
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, K^- Γ($D^0 K^*(892)^0$)/Γ ₁ VALUE (units 10^{-5}) <1.1 • • • We do not use to <1.8 ¹ Assumes equal product $(D^{*0} \gamma)/\Gamma_{total}$ VALUE <2.5 × 10^{-5} • • • We do not use to <5.0 × 10^{-5}	t the leven $x + \pi - \pi 0$ stotal $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ duction of duction of $\frac{CL\%}{90}$ duction of $\frac{CL\%}{90}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^-$ and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ ARTUSO	deviati 06L es, fits, 03 e $\Upsilon(4S)$ 05Q es, fits, 00	TECN BABR limits, 6 BELL S). TECN BABR limits, 6 CLE2	$\begin{array}{c} \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \end{array}$	Γ_{152}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{153}/Γ $\Upsilon(4S)$
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, K^- Γ($D^0 K^*(892)^0$)/Γ ₁ VALUE (units 10^{-5}) <1.1 • • • We do not use to $0.00000000000000000000000000000000000$	t the lever $+\pi - \pi 0$, total $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ duction of total $\frac{CL\%}{60}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^-$ and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ ARTUSO of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$	deviati 06L es, fits, 03 e $\Upsilon(45)$ 05Q es, fits, 00 e $\Upsilon(45)$	TECN BABR limits, 6 BELL S). TECN CLE2 S).	$\frac{\textit{COMMENT}}{e^{+}e^{-}} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ \\ \frac{\textit{COMMENT}}{e^{+}e^{-}} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ \\ \frac{\textit{COMMENT}}{e^{+}e^{-}} \rightarrow \\ $	Γ_{152}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{153}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{154}/Γ
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, K^- Γ($D^0 K^*(892)^0$)/Γ ₁ VALUE (units 10^{-5}) <1.1 • • • We do not use to <1.8 ¹ Assumes equal product $V^{-1}(D^{*0}\gamma)$ /Γ total $V^{-1}(D^{*0}\gamma)$ /Γ total $V^{-1}(D^{*0}\gamma)$ /Γ total $V^{-1}(D^{*0}\gamma)$ /Γ total $V^{-1}(D^{*0}\gamma)$ /Γ $V^{-1}(D^{*0}(2007)^0\pi^0)$	t the lever $+\pi - \pi 0$, total $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ duction of total $\frac{CL\%}{60}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^-$ and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ ARTUSO of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ Error includes scale	deviati 06L es, fits, 03 e $\Upsilon(43)$ 05Q es, fits, 00 e $\Upsilon(43)$	TECN BABR limits, 6 BELL S). TECN BABR limits, 6 CLE2 S).	$\frac{COMMENT}{e^{+}e^{-}} \rightarrow etc. \bullet \bullet \bullet$ $e^{+}e^{-} \rightarrow etc. \bullet \bullet \bullet$	Γ_{152}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{153}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{154}/Γ Rogram below.
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, K^- Γ($D^0 K^*(892)^0$)/Γ ₁ VALUE (units 10^{-5}) <1.1 • • • We do not use to $0.00000000000000000000000000000000000$	t the lever $+\pi - \pi 0$, total $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ duction of total $\frac{CL\%}{60}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^-$ and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ ARTUSO of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ Error includes scale $\frac{1}{1}$ LEES	deviation of the set	TECN BABR limits, 6 BELL S). TECN BABR limits, 6 CLE2 S).	$\frac{COMMENT}{e^{+}e^{-}} \rightarrow etc. \bullet \bullet \bullet$ $e^{+}e^{-} \rightarrow etc. \bullet \bullet \bullet$	Γ_{152}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{153}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{154}/Γ eogram below. $\Upsilon(4S)$
2 Uses $D^{0} \rightarrow K^{-}\pi^{-}$ mass. Corresponds 3 Reports a signal a $D^{0} \rightarrow K^{+}\pi^{-}$, K^{-} Γ($D^{0}K^{*}(892)^{0}$)/Γ ₁ VALUE (units 10^{-5}) <1.1 • • • We do not use to <1.8 1 Assumes equal proof $\Gamma(\overline{D}^{*0}\gamma)/\Gamma_{\text{total}}$ VALUE <2.5 × 10^{-5} • • • We do not use to <5.0 × 10^{-5} 1 Assumes equal proof $\Gamma(\overline{D}^{*}(2007)^{0}\pi^{0})/\Gamma$ VALUE (units 10^{-4}) 2.2 ±0.6 OUR AV 3.05 ± 0.14 ± 0.28 1.39 ± 0.18 ± 0.26	t the lever $+\pi - \pi 0$, total $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ duction of total $\frac{CL\%}{60}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^-$ and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average 1 KROKOVNY of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average 1 ARTUSO of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ Error includes scale 1 LEES 1 BLYTH	deviati 06L es, fits, 03 e $\Upsilon(45)$ 05Q es, fits, 00 e $\Upsilon(45)$ e factor 11M 06	TECN BABR limits, 6 BELL S). TECN BABR limits, 6 CLE2 S). TECN r of 2.6. BABR BELL	$\begin{array}{c} \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ \text{See the ide} \\ e^{+}e^{-} \rightarrow \\ e^{+}e^{-} \rightarrow \\ \end{array}$	Γ_{152}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{153}/Γ $\Upsilon(4S)$ Γ_{154}/Γ Γ_{154}/Γ Γ_{154}/Γ Γ_{154}/Γ Γ_{154}/Γ Γ_{154}/Γ Γ_{154}/Γ
² Uses $D^0 \rightarrow K^- \pi^-$ mass. Corresponds ³ Reports a signal a $D^0 \rightarrow K^+ \pi^-$, K^- Γ($D^0 K^*(892)^0$)/Γ ₁ VALUE (units 10^{-5}) <1.1 • • • We do not use to $0.00000000000000000000000000000000000$	t the lever $+\pi - \pi 0$, total $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ duction of total $\frac{CL\%}{60}$	el of 2.5 standard of and $K^+\pi^-\pi^+\pi^-$ and $K^+\pi^-\pi^+\pi^ \frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ KROKOVNY of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ AUBERT,B ing data for average $\frac{1}{1}$ ARTUSO of B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ Error includes scale $\frac{1}{1}$ LEES	deviati 06L es, fits, 03 e $\Upsilon(45)$ 05Q es, fits, 00 e $\Upsilon(45)$ e factor 11M 06	TECN BABR limits, 6 BELL S). TECN BABR limits, 6 CLE2 S). TECN r of 2.6. BABR BELL	$\frac{COMMENT}{e^{+}e^{-}} \rightarrow etc. \bullet \bullet \bullet$ $e^{+}e^{-} \rightarrow etc. \bullet \bullet \bullet$	Γ_{152}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{153}/Γ $\Upsilon(4S)$ Γ_{154}/Γ Γ_{154}/Γ Γ_{154}/Γ Γ_{154}/Γ Γ_{154}/Γ Γ_{154}/Γ Γ_{154}/Γ

• • We do not use the following data for averages, fits, limits, etc.

$2.9 \pm 0.4 \pm 0.5$		$^{ m 1}$ AUBERT	04 B	BABR	Repl. by LEES 11M
$2.7 \begin{array}{c} +0.8 & +0.5 \\ -0.7 & -0.6 \end{array}$		¹ ABE	02J	BELL	Repl. by BLYTH 06
<4.4	90	² NEMATI	98	CLE2	Repl. by COAN 02
< 9.7	90	³ ALAM	94	CLE2	Repl. by NEMATI 98

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

values for D^0 , D^{*0} , η , η' , and ω branching fractions. ³ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$.

$\Gamma(\overline{D}{}^{0}\pi^{0})/\Gamma(\overline{D}^{*}(2007)^{0}\pi^{0})$

[144/[154

. (5 %)/. (5 (2001) %	,				. 144/ . 134
VALUE	DOCUMENT ID)	TECN	COMMENT	
0.90±0.08 OUR AVERAGE					
$0.88 \pm 0.05 \pm 0.06$	LEES	11 M	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.62 \pm 0.23 \pm 0.35$	BLYTH	06	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the follow	ving data for averag	es, fits,	limits, e	etc. • • •	
$1.0 \pm 0.1 \pm 0.2$	AUBERT	04 B	BABR	Repl. by L	EES 11M

² NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96

$\Gamma(\overline{D}^*(2007)^0 \rho^0$	•	DOCUMENT ID		TECN	Γ ₁₅₅ /Γ
	<u>CL%</u> 90	DOCUMENT ID			$e^+e^- \rightarrow \Upsilon(4S)$
		TSATPATHY ng data for average			` ,
		•			
< 0.00056	90 90	² NEMATI ³ ALAM			$e^+e^- ightarrow~ \varUpsilon(4S)$ Repl. by NEMATI 98
< 0.00117					Repl. by NEWATT 98
² NEMATI 98 at values for D^0 , 3 ALAM 94 assing $B(D^*(2007)^0$	ssumes equal probability D^{*0} , η , η' , ard ume equal probability $D^0\pi^0$) and	nd ω branching fracture function of B^+ and d absolute B(D^0 $-$	and B^{0} ections. $B^{0} = B^{0}$ K^{-}	at the γ t the γ (π^+) and	$\Gamma(4S)$ and use the PDG 96 $(4S)$ and use the CLEO I d the PDG 1992 B($D^0-K^-\pi^+$).
$\Gamma(\overline{D}^*(2007)^0\eta)$	•	, , , , , ,		, ,,	Γ ₁₅₆ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT
2.3 ±0.6 OUI		Error includes scale		of 2.8.	
$2.69 \pm 0.14 \pm 0.2$	23	¹ LEES		BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.40 \pm 0.28 \pm 0.2$	26	$^{ m 1}$ BLYTH	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • We do not	use the followin	ng data for average	s, fits,	limits,	etc. • • •
$2.6 \pm 0.4 \pm 0.4$	1	¹ AUBERT	04 B	BABR	Repl. by LEES 11M
<4.6	90	$^{ m 1}$ ABE	02J	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 2.6	90	² NEMATI	98	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 6.9	90	³ ALAM	94	CLE2	Repl. by NEMATI 98
¹ Assumes equa	l production of	B^+ and B^0 at the	$e \gamma(4$	S).	
		roduction of B^+ arnd ω branching frac			$\Gamma(4S)$ and use the PDG 90
³ ALAM 94 ass	ume equal proc $ ightarrow D^0 \pi^0$) and	luction of B^+ and d absolute B(D^0 $-$	B ⁰ a → K ⁻	t the γ (π^+) and	(4S) and use the CLEO I d the PDG 1992 B(D^0 –
$(\kappa - \pi + \pi^0)/B$	$S(D^{\circ} \rightarrow K \pi$) and $\mathcal{B}(\mathcal{D}) \to$	1 21	, ,)/	$B(D^{\bullet} \to K \pi^{+}).$
$\mathcal{K}^-\pi^+\pi^0)/\mathbb{B}$ $\Gamma(\overline{D}{}^0\eta)/\Gamma(\overline{D}{}^*($,		,,	$\Gamma_{147}/\Gamma_{156}$
$\kappa^-\pi^+\pi^0)/{\sf E}$ $\Gamma(\overline{D^0}\eta)/\Gamma(\overline{D^*})$ VALUE	$(2007)^{0}\eta)$	DOCUMENT ID		,,	$\Gamma_{147}/\Gamma_{156}$
$K^-\pi^+\pi^0)/B$ $\Gamma(\overline{D}^0\eta)/\Gamma(\overline{D}^*(\overline{D}^*))$ $VALUE$ 0.99 ± 0.10 OUR I	$(2007)^{0}\eta)$	DOCUMENT ID		TECN	Γ ₁₄₇ /Γ ₁₅₆
$K^-\pi^+\pi^0)/E$ $\Gamma(\overline{D}^0\eta)/\Gamma(\overline{D}^*(\overline{D}^*))$ $O(0.99\pm0.10)$ $O(0.97\pm0.07\pm0.07)$	$(2007)^{0}\eta)$	DOCUMENT ID	11M	TECN BABR	$\Gamma_{147}/\Gamma_{150}$ $COMMENT$ $e^+e^- ightarrow \Upsilon(4S)$
$K^-\pi^+\pi^0)/E$ $\Gamma(\overline{D^0\eta})/\Gamma(\overline{D^*})$ 0.99 ± 0.10 OUR $0.97\pm0.07\pm0.07$ $1.27\pm0.29\pm0.25$	(2007) ⁰ η)	DOCUMENT ID	11M 06	TECN BABR BELL	$\Gamma_{147}/\Gamma_{156}$ $COMMENT$ $e^+e^- o \Upsilon(4S)$ $e^+e^- o \Upsilon(4S)$

$\Gamma\big(\overline{D}^*(2007)^{\boldsymbol{0}}\eta'\big)/\Gamma\big(\overline{D}^*(2007)^{\boldsymbol{0}}\eta\big)$

 $\Gamma_{157}/\Gamma_{156}$

Created: 5/30/2017 17:22

VALUE	DOCUMENT ID	TECN	COMMENT
$0.61\pm0.14\pm0.02$	LEES 11M	BABR	$e^+e^- ightarrow \gamma(4S)$
AA7 11 C.11 .	l	10 0.	

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

 $0.5 \pm 0.3 \pm 0.1$ AUBERT 04B BABR Repl. by LEES 11M

$\Gamma(\overline{D}^*(2007)^0\eta')/\Gamma_{\mathrm{tot}}$	tal					Γ ₁₅₇ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
1.40±0.22 OUR AVE	RAGE					
$1.48\!\pm\!0.22\!\pm\!0.13$		¹ LEES		BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.21\!\pm\!0.34\!\pm\!0.22$		$^{ m 1}$ SCHUMANN			$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits,	etc. • • •	
$1.3 \pm 0.7 \pm 0.2$	1	^{l,2} AUBERT				
<14	90	BRANDENB				
<19					$e^+e^ \rightarrow$	
<27	90	⁴ ALAM	94		Repl. by N	IEMATI 98
¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² Reports an upper limit < 2.6 × 10 ⁻⁴ at 90% CL. ³ NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions. ⁴ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II B($D^*(2007)^0 \rightarrow D^0\pi^0$) and absolute B($D^0 \rightarrow K^-\pi^+$) and the PDG 1992 B($D^0 \rightarrow K^-\pi^+\pi^0$)/B($D^0 \rightarrow K^-\pi^+$) and B($D^0 \rightarrow K^-2\pi^+\pi^-$)/B($D^0 \rightarrow K^-\pi^+$).						
$\Gamma(\overline{D}{}^0\eta')/\Gamma(\overline{D}{}^*(2007$	_	,			`	Γ ₁₄₈ /Γ ₁₅₇
VALUE	, ., ,	DOCUMENT ID		TECN	COMMENT	- 140/ - 15/
0.96±0.18±0.06		LEES			$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following					()
$1.3 \pm 0.8 \pm 0.2$		AUBERT			Repl. by L	EES 11M
$\Gamma(\overline{D}^*(2007)^0\pi^+\pi^-)$	$/\Gamma_{ ext{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₁₅₈ /Γ
$\frac{VALUE}{(6.2\pm 1.2\pm 1.8)\times 10^{-4}}$		DOCUMENT ID				00(10)
•					e ' e →	1 (45)
Assumes equal produ						
² No assumption about	t the inter	mediate mechanis	m is i	made in	the analysis	
$\Gamma(\overline{D}^*(2007)^0 K^0)/\Gamma_{\rm to}$	otal					Γ ₁₅₉ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
$3.6 \pm 1.2 \pm 0.3$		$^{ m 1}$ AUBERT,B	06L	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits,	etc. • • •	
< 6.6	90	$^{ m 1}$ KROKOVNY	03	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of E	${\it B}^+$ and ${\it B}^0$ at the	Υ(4.	S).		
$\Gamma(\overline{D}^*(2007)^0 K^*(892)^{-1})$	$)^0)/\Gamma_{\rm tot}$	al				Γ ₁₆₀ /Γ
<i>VALUE</i> <6.9 × 10 ^{−5}	CL%	DOCUMENT ID		TECN	COMMENT	
$< 6.9 \times 10^{-5}$	90	1 KROKOVNY	03	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of E	${\it B}^+$ and ${\it B}^0$ at the	r(4	S).		
$\Gamma(D^*(2007)^0 K^*(892)^{1/4})$				TECN	COMMENT	Γ ₁₆₁ /Γ
<u>VALUE</u> <4.0 × 10 ^{−5}	<u>CL /0</u>	1 KROKOVNIV	U3	RELI	_+	Υ(15)
					e e →	1 (43)
¹ Assumes equal produ	iction of <i>E</i>	o⊓ and B° at the	1 (4)	5).		

$\Gamma(D^*(2007)^0\pi^+\pi^+\pi^-\pi^-)/\Gamma_{\text{total}}$

 Γ_{162}/Γ

- (= (====) //- total					
$VALUE$ (units 10^{-3})	DOCUMENT ID	TECN	COMMENT		
2.7 ±0.5 OUR AVERAGE					
$2.60 \pm 0.47 \pm 0.37$	$^{ m 1}$ MAJUMDER	04	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$3.0 \pm 0.7 \pm 0.6$	$^{ m 1}$ EDWARDS	02	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D^*(2010)^+D^*(2010)^-)/\Gamma_{\text{total}}$

 Γ_{163}/Γ

VALUE (units 10^{-4}) CL%	DOCUMENT ID	TECN	COMMENT	
8.0 ±0.6 OUR AVERAGE	GE .			
$7.82\!\pm\!0.38\!\pm\!0.63$	$^{ m 1}$ KRONENBIT:			
$8.1 \pm 0.6 \pm 1.0$	¹ AUBERT,B	06A BABR	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
$9.9 \ ^{+4.2}_{-3.3} \ \pm 1.2$	¹ LIPELES	00 CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

$8.1 \pm 0.8 \pm 1.1$		$^{ m 1}$ MIYAKE	05	BELL	Repl. by KRONENBIT-
$8.3 \pm 1.6 \pm 1.2$		^{1,2} AUBERT	02м	BABR	Repl. by AUBERT, B 06B
$6.2 \ ^{+4.0}_{-2.9} \ \pm 1.0$		³ ARTUSO	99	CLE2	Repl. by LIPELES 00
<61 <22	90 90	⁴ BARATE ⁵ ASNER	•		$e^+e^- ightarrow~Z$ Repl. by ARTUSO 99

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{D}^*(2007)^0\omega)/\Gamma_{\rm total}$

 Γ_{164}/Γ

<i>VALUE</i> (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT
3.6 \pm 1.1 OUR AV	/ERAGE	Error includes scal	e fact	or of 3.1	
$4.55 \!\pm\! 0.24 \!\pm\! 0.39$		$^{ m 1}$ LEES	11 M	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.29\!\pm\!0.39\!\pm\!0.40$		$^{ m 1}$ BLYTH	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	ne followin	ig data for average	s, fits,	limits, e	etc. • • •
$4.2 \pm 0.7 \pm 0.9$	90	¹ AUBERT	04 B	BABR	Repl. by LEES 11M
< 7.9	90	$^{ m 1}$ ABE	02 J	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 7.4	90	² NEMATI	98	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<21	90	³ ALAM	94	CLE2	Repl. by NEMATI 98

 $^{^1}$ Assumes equal production of B^+ and B^0 at the \varUpsilon (4S).

 $^{^2}$ AUBERT 02M also assumes the measured $\emph{CP}\mbox{-}\mbox{odd}$ fraction of the final states is 0.22 \pm 0.18 \pm 0.03.

³ ARTUSO 99 uses B($\Upsilon(4S) \rightarrow B^0 \overline{B}^0$)=(48 ± 4)%.

⁴BARATE 98Q (ALEPH) observes 2 events with an expected background of 0.10 ± 0.03 which corresponds to a branching ratio of $(2.3^{+1.9}_{-1.2} \pm 0.4) \times 10^{-3}$.

⁵ ASNER 97 at CLEO observes 1 event with an expected background of 0.022 \pm 0.011. This corresponds to a branching ratio of $(5.3^{+7.1}_{-3.7} \pm 1.0) \times 10^{-4}$.

AUBERT

$\Gamma(D^*(2010)^+D^-)/\Gamma_{\text{total}}$

 $0.7\ \pm0.1\ \pm0.1$

 Γ_{165}/Γ

04B BABR Repl. by LEES 11M

$VALUE$ (units 10^{-4}) $CL\%$	DOCUMENT ID	TECN	COMMENT
6.1±1.5 OUR AVERAGE	Error includes scale fac	tor of 1.6.	
$5.7 \pm 0.7 \pm 0.7$	¹ AUBERT,B 06	A BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$
$11.7 \pm 2.6 {+2.2 \atop -2.5}$	1,2 ABE 02	Q BELL	$e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$8.8 \pm 1.0 \pm 1.3$		$^{ m 1}$ AUBERT	03 J	BABR	Repl. by AUBERT,B 06B
$14.8 \pm 3.8 {+2.8 \atop -3.1}$		^{1,3} ABE	02Q	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 6.3	90	¹ LIPELES			$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 56	90	BARATE			$e^+e^- \rightarrow Z$
<18	90	ASNER	97	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D^*(2007)^0\overline{D}^*(2007)^0)/\Gamma_{\text{total}}$

 Γ_{166}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT
< 0.9	90	¹ AUBERT,B 06	A BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use t	he follov	ving data for averages, fi	ts, limits, e	etc. • • •
<270	90	BARATE 98	Q ALEP	$e^+e^- ightarrow Z$
1			(. 0)	

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma(D^-D^0K^+)/\Gamma_{\text{total}}$

 Γ_{167}/Γ

(// total			1017
VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
$1.07 \pm 0.07 \pm 0.09$	¹ DEL-AMO-SA11B	BABR	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the following	g data for averages, fits,	limits, e	etc. • • •
$1.7 \pm 0.3 \pm 0.3$	¹ AUBERT 03X	BABR	Repl. by DEL-AMO- SANCHEZ 11B

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions.

³ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-2\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.

² The measurement is performed using fully reconstructed D^* and D^+ decays.

³ The measurement is performed using a partial reconstruction technique for the D^* and fully reconstructed D^+ decays as a cross check.

```
\Gamma(D^-D^*(2007)^0K^+)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{168}/\Gamma
VALUE (units 10^{-3})
                                                                     TECN
3.46 \pm 0.18 \pm 0.37
                                          <sup>1</sup> DEL-AMO-SA...11B BABR e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                          <sup>1</sup> AUBERT
                                                              03X BABR Repl. by DEL-AMO-
4.6 \pm 0.7 \pm 0.7
                                                                                  SANCHEZ 11B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D^*(2010)^- D^0 K^+)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{169}/\Gamma
VALUE (units 10^{-3})
                                                                   TECN COMMENT
                                          <sup>1</sup> DEL-AMO-SA..11B BABR e^+e^- \rightarrow \Upsilon(4S)
2.47\pm0.10\pm0.18
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                          <sup>1</sup> AUBERT
                                                              03X BABR Repl. by DEL-AMO-
                                                                                  SANCHEZ 11B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D^*(2010)^-D^*(2007)^0K^+)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{170}/\Gamma
VALUE (units 10^{-3})
                                                                     TECN COMMENT
                                          <sup>1</sup> DEL-AMO-SA...11B BABR e^+e^- \rightarrow \Upsilon(4S)
10.6 \pm 0.33 \pm 0.86
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                         <sup>1</sup> AUBERT
                                                              03X BABR Repl. by DEL-AMO-
                                                                                  SANCHEZ 11B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D^-D^+K^0)/\Gamma_{total}
                                                                                                 \Gamma_{171}/\Gamma
VALUE (units 10^{-3})
                                            DOCUMENT ID
                                                                   TECN COMMENT
                                          <sup>1</sup> DEL-AMO-SA...11B BABR e^+e^- \rightarrow
   0.75\pm0.12\pm0.12
• • • We do not use the following data for averages, fits, limits, etc. •
                              90
                                          <sup>1</sup> AUBERT
                                                              03X BABR Repl. by DEL-AMO-
                                                                                  SANCHEZ 11B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
[\Gamma(D^*(2010)^-D^+K^0) + \Gamma(D^-D^*(2010)^+K^0)]/\Gamma_{\text{total}}
                                                                                                 \Gamma_{172}/\Gamma
VALUE (units 10^{-3})
                                            DOCUMENT ID
                                                                  TECN COMMENT
                                          <sup>1</sup> DEL-AMO-SA...11B BABR e^+e^- \rightarrow \Upsilon(4S)
6.41 \pm 0.36 \pm 0.39
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                         <sup>1</sup> AUBERT
6.5 \pm 1.2 \pm 1.0
                                                              03X BABR Repl. by DEL-AMO-
                                                                                  SANCHEZ 11B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D^*(2010)^-D^*(2010)^+K^0)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{173}/\Gamma
VALUE (units 10^{-3})
                                       DOCUMENT ID
8.1 \pm 0.7 OUR AVERAGE
                                     <sup>1</sup> DEL-AMO-SA..11B BABR e^+e^- \rightarrow \Upsilon(4S)
8.26 \pm 0.43 \pm 0.67
                                   <sup>1,2</sup> DALSENO
6.8 \pm 0.8 \pm 1.4
                                                                BELL
                                   <sup>1,2</sup> AUBERT,B
8.8 \pm 0.8 \pm 1.4
                                                          06Q BABR e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
8.8 \begin{array}{c} +1.5 \\ -1.4 \end{array} \pm 1.3
                                     <sup>1</sup> AUBERT
                                                         03X BABR Repl. by AUBERT, B 06Q
                                                                      Created: 5/30/2017 17:22
```

HTTP://PDG.LBL.GOV

Page 74

$\Gamma(D^{*-}D_{s1}(2536)^{+},\ D_{s1}^{+} \to D^{*+}K^{0})/\Gamma_{\text{total}}$ Γ_{174}/Γ VALUE (units 10⁻⁴) 8.0±2.4 OUR AVERAGE

 $7.6_{\,-4.2\,-1.4}^{\,+4.8\,+1.6}$ 07 BELL $e^+e^- \rightarrow \Upsilon(4S)$ ^{1,2} DALSENO

^{1,2} AUBERT,B 06Q BABR $e^+e^- \rightarrow \Upsilon(4S)$ $8.2 \pm 2.6 \pm 1.2$

$\Gamma(\overline{D}{}^0D^0K^0)/\Gamma_{total}$

 Γ_{175}/Γ

VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
$0.27 \pm 0.10 \pm 0.05$		¹ DEL-AMO-SA.	. 11 B	BABR	$e^+e^- ightarrow \Upsilon(4S)$
ullet $ullet$ We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
<1.4	90	¹ AUBERT	03X	BABR	Repl. by DEL-AMO- SANCHEZ 11B

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\left[\Gamma(\overline{D}{}^0D^*(2007)^0K^0)+\Gamma(\overline{D}^*(2007)^0D^0K^0)\right]/\Gamma_{\text{total}}$

 Γ_{176}/Γ

<i>VALUE</i> (units 10 ⁻³)	CL%	DOCUMENT ID	TECN	COMMENT
$1.08 \pm 0.32 \pm 0.36$		¹ DEL-AMO-SA1	1B BABR	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use th	e following	g data for averages, f	fits, limits, e	etc. • • •
<3.7	90	¹ AUBERT 0	3x BABR	Repl. by DEL-AMO- SANCHEZ 11B

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma(\overline{D}^*(2007)^0 D^*(2007)^0 K^0)/\Gamma_{\text{total}}$

 Γ_{177}/Γ

VALUE (units 10^{-3})	CL%	DOCUMENT ID	TECN	COMMENT
2.40±0.55±0.67		¹ DEL-AMO-SA11B	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the	following	data for averages, fits	, limits, e	etc. • • •
<6.6	90	¹ AUBERT 03X	BABR	Repl. by DEL-AMO- SANCHEZ 11B

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma((\overline{D}+\overline{D}^*)(D+D^*)K)/\Gamma_{\text{total}}$

 Γ_{178}/Γ

$VALUE$ (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
$3.68 \pm 0.10 \pm 0.24$	¹ DEL-AMO-SA11B	BABR	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the follow	ing data for averages, fits	, limits, e	etc. • • •
$4.3 \pm 0.3 \pm 0.6$	¹ AUBERT 03X	BABR	Repl. by DEL-AMO-

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 The result is rescaled by a factor of 2 to convert from K^0_S to K^0 .

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

²The result is rescaled by a factor of 2 to convert from K_S^0 to K^0 .

$\Gamma(\eta_c K^0)/\Gamma_{ m total}$					Г ₁₇₉ /Г
$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
0.80±0.12 OUR AVERAGE					
$0.55^{+0.19}_{-0.18}{\pm}0.06$	1,2 AUBERT	07AV	BABR	$e^+e^-\to$	$\Upsilon(4S)$
$0.89 \pm 0.15 \pm 0.06$	^{1,3} AUBERT,B	04 B	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.23\!\pm\!0.23\!+\!0.40\\-0.41$	¹ FANG	03	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.09^{+0.55}_{-0.42}\!\pm\!0.33$	⁴ EDWARDS	01	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\eta_c K^0)/\Gamma(J/\psi(1S)K^0)$

 $\Gamma_{179}/\Gamma_{183}$

				,
<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT	
1.39±0.20±0.45	¹ AUBERT,B 04B	BABR	$e^+e^- \rightarrow$	Υ(4S)

¹ Uses BABAR measurement of B($B^0 \rightarrow J/\psi K^0$) = (8.5 ± 0.5 ± 0.6) × 10⁻⁴.

$\Gamma(\eta_c K^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{180}/Γ

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
0.63±0.09 OUR AVERAGE				
$0.59 \pm 0.07 \pm 0.07$	1,2 AUBERT	08AB	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.69^{+0.21}_{-0.20}{\pm}0.07$	^{3,4} AUBERT	07AV	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.62\!\pm\!0.32 \!+\!0.55 \\ -0.60$	⁴ FANG	03	BELL	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ AUBERT 08AB reports $[\Gamma(B^0\to~\eta_{\it C}\,{\it K}^*(892)^0)/\Gamma_{total}]~/~[B(B^+\to~\eta_{\it C}\,{\it K}^+)]=0.62\pm0.06\pm0.05$ which we multiply by our best value B($B^+\to~\eta_{\it C}\,{\it K}^+)=(9.6\pm1.1)\times10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\eta_c(2S)K^{*0})/\Gamma_{\text{total}}$

 Γ_{181}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT
<3.9	90	¹ AUBERT	08AB BABR	$e^+e^- ightarrow \Upsilon(4S)$

¹ Uses the production ratio of $(B^+B^-)/(B^0\overline{B}^0)=1.026\pm0.032$ at $\Upsilon(4S)$.

HTTP://PDG.LBL.GOV

Page 76

² AUBERT 07AV reports $[\Gamma(B^0 \to \eta_c \, K^0)/\Gamma_{\text{total}}] \times [B(\eta_c(1S) \to p\overline{p})] = (0.83^{+0.28}_{-0.26} \pm 0.05) \times 10^{-6}$ which we divide by our best value $B(\eta_c(1S) \to p\overline{p}) = (1.50 \pm 0.16) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ AUBERT,B 04B reports $[\Gamma(B^0 \to \eta_c \, K^0)/\Gamma_{\text{total}}] \times [B(\eta_c(1S) \to K\overline{K}\pi)] = (0.0648 \pm 0.0085 \pm 0.0071) \times 10^{-3}$ which we divide by our best value $B(\eta_c(1S) \to K\overline{K}\pi) = (7.3 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ EDWARDS 01 assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$. The correlated uncertainties (28.3)% from B($J/\psi(1S) \to \gamma \eta_{\mathcal{C}}$) in those modes have been accounted for

² Uses the production ratio of $(B^+B^-)/(B^0\overline{B}^0)=1.026\pm0.032$ at $\Upsilon(4S)$.

³ AUBERT 07AV reports $[\Gamma(B^0 \to \eta_c K^*(892)^0)/\Gamma_{\text{total}}] \times [B(\eta_c(1S) \to p\overline{p})] = (1.03^{+0.27}_{-0.24} \pm 0.17) \times 10^{-6}$ which we divide by our best value $B(\eta_c(1S) \to p\overline{p}) = (1.50 \pm 0.16) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gammaig(B^0 o h_c(1P)K^{*0}ig)/\Gamma_{ m total} imes \Gammaig(h_c(1P) o \gamma \eta_c(1S)ig)/\Gamma_{ m total} \ \Gamma_{182}/\Gamma imes \Gamma_{9}^{h_c(1P)}/\Gamma^{h_c(1P)}$

VALUE (units 10^{-4})CL%DOCUMENT IDTECNCOMMENT<2.2</td>901 AUBERT08AB BABR $e^+e^- \rightarrow \Upsilon(4S)$

¹ Uses the production ratio of $(B^+B^-)/(B^0\overline{B}^0)=1.026\pm0.032$ at $\Upsilon(4S)$.

$\Gamma(\eta_c K^*(892)^0)/\Gamma(\eta_c K^0)$

 $\Gamma_{180}/\Gamma_{179}$

VALUE	DOCUMENT ID	TECN	<u>COMMENT</u>	
$1.33 \pm 0.36 ^{igoplus 0.24}_{-0.33}$	FANG 03	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	

$\Gamma(J/\psi(1S)K^0)/\Gamma_{\text{total}}$

 Γ_{183}/Γ

VALUE (units 10 ⁻⁴)	<u>CL%</u>	EVTS	DOCUMENT ID	TECN	COMMENT	
8.73+0.32 OUR F	-11					

8.73±0.32 OUR FIT 8.72±0.32 OUR AVERAGE

$8.8 \ ^{+1.4}_{-1.3} \ \pm 0.1$	-	^{1,2} AUBERT	07AV	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$8.69 \pm 0.22 \pm 0.30$		² AUBERT	05 J	BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$
$7.9 \pm 0.4 \pm 0.9$		² ABE	03 B	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$9.5\ \pm0.8\ \pm0.6$		² AVERY	00	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
$11.5 \pm 2.3 \pm 1.7$		³ ABE	96н	CDF	$p\overline{p}$ at 1.8 TeV
$6.93 \pm 4.07 \pm 0.04$		⁴ BORTOLETTO) 92	CLEO	$e^+e^- ightarrow \gamma(4S)$
$9.24\!\pm\!7.21\!\pm\!0.05$	2	⁵ ALBRECHT	90 J	ARG	$e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

8.3
$$\pm 0.4 \pm 0.5$$
 2 AUBERT 02 BABR Repl. by AUBERT 05J 8.5 $^{+1.4}_{-1.2} \pm 0.6$ 2 JESSOP 97 CLE2 Repl. by AVERY 00 7.5 $\pm 2.4 \pm 0.8$ 10 4 ALAM 94 CLE2 Sup. by JESSOP 97 <50 90 ALAM 86 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

¹ AUBERT 07AV reports $[\Gamma(B^0 \to J/\psi(1S)K^0)/\Gamma_{total}] \times [B(J/\psi(1S) \to p\overline{p})] = (1.87^{+0.28}_{-0.26} \pm 0.07) \times 10^{-6}$ which we divide by our best value $B(J/\psi(1S) \to p\overline{p}) = (2.120 \pm 0.029) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^{+} and B^{0} at the $\Upsilon(4S)$.

³ ABE 96H assumes that B($B^+ \to J/\psi K^+$) = (1.02 ± 0.14) × 10⁻³.

⁴BORTOLETTO 92 reports $(6\pm3\pm2)\times10^{-4}$ from a measurement of $[\Gamma(B^0\to J/\psi(1S)K^0)/\Gamma_{\rm total}]\times[B(J/\psi(1S)\to e^+e^-)]$ assuming $B(J/\psi(1S)\to e^+e^-)=0.069\pm0.009$, which we rescale to our best value $B(J/\psi(1S)\to e^+e^-)=(5.971\pm0.032)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁵ ALBRECHT 90J reports $(8\pm 6\pm 2)\times 10^{-4}$ from a measurement of $[\Gamma(B^0\to J/\psi(1S)\kappa^0)/\Gamma_{\rm total}]\times [B(J/\psi(1S)\to e^+e^-)]$ assuming $B(J/\psi(1S)\to e^+e^-)=0.069\pm 0.009$, which we rescale to our best value $B(J/\psi(1S)\to e^+e^-)=(5.971\pm 0.032)\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)K^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{184}/Γ

DOCUMENT ID	TECIV	COMMENT
¹ BORTOLETTO92	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
	CHILIKIN 14	

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.079 ± 0.011		² AUBERT	09AA BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<1.3	90	³ ALBRECHT	87D ARG	e^+e^-	$\Upsilon(4S)$
< 6.3	90	GILES	84 CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^1}$ BORTOLETTO 92 reports (1.0 \pm 0.4 \pm 0.3) \times 10 $^{-3}$ from a measurement of [Γ(B 0 \rightarrow $J/\psi(1S)K^+\pi^-)/\Gamma_{ ext{total}}] \times [B(J/\psi(1S) \rightarrow e^+e^-)] \text{ assuming } B(J/\psi(1S) \rightarrow e^+e^-)$ $= 0.069 \pm 0.009$, which we rescale to our best value B($J/\psi(1S) \rightarrow e^+e^-$) = (5.971 \pm $0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)K^*(892$	$)^0)/\Gamma_{ m tota}$	il			Γ ₁₈₅ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
1.28 ±0.05 OUR FI	Γ				
1.28 ± 0.05 OUR AV	ERAGE				
$1.19 \ \pm 0.01 \ \pm 0.08$		CHILIKIN	14	BELL	$\overline{B}^0 \rightarrow J/\psi K^- \pi^+$
$1.33 \ ^{+0.22}_{-0.21} \ \pm 0.02$		^{1,2} AUBERT	07AV	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$1.309 \pm 0.026 \pm 0.077$		² AUBERT	05 J	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$1.29 \pm 0.05 \pm 0.13$		² ABE	02N	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.74 \pm 0.20 \pm 0.18$		³ ABE	980	CDF	p p 1.8 TeV
$1.32\ \pm0.17\ \pm0.17$		⁴ JESSOP			$e^+e^- \rightarrow \Upsilon(4S)$
$1.27 \ \pm 0.65 \ \pm 0.01$		⁵ BORTOLETT	O92	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
$1.27\ \pm0.60\ \pm0.01$	6	⁶ ALBRECHT	90J	ARG	$e^+e^- \rightarrow \Upsilon(4S)$
$4.04\ \pm1.81\ \pm0.02$	5	⁷ BEBEK	87	CLEO	$e^+e^- ightarrow \gamma(4S)$
\bullet \bullet We do not use t	he followi	ng data for average	s, fits,	limits, e	etc. • • •
$1.24\ \pm0.05\ \pm0.09$		² AUBERT	02	BABR	Repl. by AUBERT 05J
$1.36 \pm 0.27 \pm 0.22$		⁸ ABE	96H	CDF	Sup. by ABE 980
$1.69 \pm 0.31 \pm 0.18$	29	⁹ ALAM	94	CLE2	Sup. by JESSOP 97
		¹⁰ ALBRECHT	94 G	ARG	$e^+e^- ightarrow \Upsilon(4S)$
4.0 ± 0.30		¹¹ ALBAJAR			$E_{cm}^{p\overline{p}} = 630 \; GeV$
3.3 ± 0.18	5	¹² ALBRECHT	87D	ARG	$e^+e^- \rightarrow \Upsilon(4S)$
4.1 ± 0.18	5	¹³ ALAM	86	CLEO	Repl. by BEBEK 87
1 AUBERT 07AV rep = $(2.82^{+0.30}_{-0.28}^{+0.30})$	orts $[\Gamma(B^0)]$	$0 o J/\psi(1S) K^*(0)$ which we divide 0	892) ⁰) by our	/Γ _{total}] best val	$ig imes [B(J/\psi(1S) ightarrow \ p\overline{p})]$ ue $B(J/\psi(1S) ightarrow \ p\overline{p}) =$
$(2.120 + 0.029) \times$	$^{33}_{10}$	ır first error is their	experi	ment's e	error and our second error
is the systematic e	rror from i	using our best value	e.		

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{2}}$ Does not report systematic uncertainties.

³ ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. $K\pi$ system is specifically selected as nonresonant.

³ ABE 980 reports $[B(B^0 \to J/\psi(1S)K^*(892)^0)]/[B(B^+ \to J/\psi(1S)K^+)] = 1.76 \pm$ 0.14 ± 0.15 . We multiply by our best value B($B^+ \rightarrow J/\psi(1S) K^+$)= $(9.9 \pm 1.0) \times 10^{-4}$.

Our first error is their experiment's error and our second error is the systematic error from using our best value.

- ⁴ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- 5 BORTOLETTO 92 reports $(1.1\pm0.5\pm0.3)\times10^{-3}$ from a measurement of $\Gamma(B^{0}\to$ $J/\psi(1S)\,K^*(892)^0)/\Gamma_{ ext{total}}] \times [B(J/\psi(1S) \rightarrow e^+e^-)] \text{ assuming } B(J/\psi(1S) \rightarrow e^+e^-)$ $e^+e^-)=0.069\pm0.009$, which we rescale to our best value B($J/\psi(1S)\to e^+e^-$) = $(5.971 \pm 0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- 6 ALBRECHT 90J reports (1.1 \pm 0.5 \pm 0.2) imes 10 $^{-3}$ from a measurement of [$\Gamma(B^0
 ightarrow$ $J/\psi(1S)\,K^*(892)^0)/\Gamma_{ ext{total}}] imes [\mathrm{B}(J/\psi(1S)
 ightarrow e^+e^-)]$ assuming $\mathrm{B}(J/\psi(1S)
 ightarrow$ $e^+e^-)=0.069\pm0.009$, which we rescale to our best value B $(J/\psi(1S)\to e^+e^-)=$ $(5.971\pm0.032) imes10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- 7 BEBEK 87 reports (3.5 \pm 1.6 \pm 0.3) \times 10 $^{-3}$ from a measurement of [$\Gamma(B^0$ \rightarrow $J/\psi(1S) K^*(892)^0 / \Gamma_{\text{total}} \times [B(J/\psi(1S) \rightarrow e^+e^-)] \text{ assuming } B(J/\psi(1S) \rightarrow e^+e^-)$ $e^+e^-)=0.069\pm0.009$, which we rescale to our best value B $(J/\psi(1S)
 ightarrow e^+e^-)=$ $(5.971\pm0.032)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Updated in BORTOLETTO 92 to use the same assumptions.
- ⁸ ABE 96H assumes that B($B^+ \to J/\psi K^+$) = (1.02 ± 0.14) × 10⁻³.
- 9 The neutral and charged B events together are predominantly longitudinally polarized, Γ_L/Γ =0.080 \pm 0.08 \pm 0.05. This can be compared with a prediction using HQET, 0.73 (KRAMER 92). This polarization indicates that the $B \to \psi K^*$ decay is dominated by the CP = -1 CP eigenstate. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- $^{
 m 10}$ <code>ALBRECHT</code> 94G measures the polarization in the vector-vector decay to be predominantly longitudinal, $\Gamma_T/\Gamma=0.03\pm0.16\pm0.15$ making the neutral decay a $\it CP$ eigenstate when the K^{*0} decays through $K_{S}^{0}\pi^{0}$.
- ¹¹ ALBAJAR 91E assumes B_d^0 production fraction of 36%.
- ¹² ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. Superseded by ALBRECHT 90J.
- 13 ALAM 86 assumes B^{\pm}/B^0 ratio is 60/40. The observation of the decay $B^+ \rightarrow$ $J/\psi K^*(892)^+$ (HAAS 85) has been retracted in this paper.

$\Gamma(J/\psi(1S)K^*(892)^0)/\Gamma(J/\psi(1S)K^0)$

 $\Gamma_{185}/\Gamma_{183}$

	, , , ,				=00,	
<u>VALUE</u>	DOCUMENT ID)	TECN	COMMENT		
1.50±0.09 OUR AVERAGE						
$1.51 \pm 0.05 \pm 0.08$	AUBERT	05 J	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$1.39\!\pm\!0.36\!\pm\!0.10$	ABE	96Q	CDF	p p		
• • • We do not use the follow	ing data for averag	es, fits,	limits, e	etc. • • •		
$1.49\!\pm\!0.10\!\pm\!0.08$	$^{ m 1}$ AUBERT	02	BABR	Repl. by A	UBERT	05J
¹ Assumes equal production of	of B^+ and B^0 at the	$r = \Upsilon(4)$	5)			

$\Gamma(J/\psi(1S)\eta K_S^0)/\Gamma_{\text{total}}$

 Γ_{186}/Γ

VALUE (units 10^{-5})	DOCUMENT ID		TECN	COMMENT
5.4 ±0.9 OUR AVERAGE				
$5.22 \pm 0.78 \pm 0.49$	$^{ m 1}$ IWASHITA	14	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$8.4 \pm 2.6 \pm 2.7$	$^{ m 1}$ AUBERT	04Y	BABR	$e^+e^- ightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(J/\psi(1S)\eta'K_S^0)/\Gamma_{\text{total}}$

 Γ_{187}/Γ

VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
<2.5	90	¹ XIE	07	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)\omega K^0)/\Gamma_{\rm total}$

 Γ_{189}/Γ

$VALUE$ (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
2.3±0.3±0.3	¹ DEL-AMO-SA10B	BABR	$e^+e^- ightarrow \gamma(4S)$
ullet $ullet$ We do not use	the following data for a	verages,	fits, limits, etc. • • •

 $^{3.1\}pm0.6\pm0.3$ 1 AUBERT 08W BABR Repl. by DEL-AMO-SANCHEZ 10B

$\Gamma(X(3872)K^0, X \rightarrow J/\psi\omega)/\Gamma_{\text{total}}$

 Γ_{190}/Γ

VALUE (units 10^{-6})	DOCUMENT ID		COMMENT
6±3±1	¹ DEL-AMO-SA10B	BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(X(3915), X \rightarrow J/\psi\omega)/\Gamma_{\text{total}}$

 Γ_{191}/Γ

<u>VALUE (units 10^{-5})</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **2.1±0.9±0.3** ¹ DEL-AMO-SA...10B BABR $e^+e^- \rightarrow \Upsilon(4S)$

$$1.3^{+1.3}_{-1.1}\pm 0.2$$
 1,2 AUBERT 08W BABR Repl. by DEL-AMO-SANCHEZ 10B

$\Gamma(J/\psi(1S)\phi K^0)/\Gamma_{\text{total}}$

 Γ_{188}/Γ

VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT
4.9 ±1.0 OUR AVERAGE	Error includes scale fa	ctor of 1.3	
$4.43 \pm 0.76 \pm 0.19$			R $e^+e^- ightarrow~ \varUpsilon(4S)$
$10.2\ \pm 3.8\ \pm 1.0$	¹ AUBERT	030 BABI	$R e^+e^- \rightarrow \Upsilon(4S)$
$8.8 \ {+3.5\atop -3.0} \ \pm 1.3$	² ANASTASSOV	00 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)K(1270)^{0})/\Gamma_{\text{total}}$

 Γ_{192}/Γ

$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
1.30±0.34±0.32	¹ ABE	01L	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses the PDG value of $B(B^+ \to J/\psi(1S) \, K^+) = (1.00 \pm 0.10) \times 10^{-3}$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

 $^{^2}$ Corresponds to upper limit of 3.9×10^{-5} at 90% CL.

² ANASTASSOV 00 finds 10 events on a background of 0.5 ± 0.2 . Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$, a uniform Dalitz plot distribution, isotropic $J/\psi(1S)$ and ϕ decays, and $B(B^+ \to J/\psi(1S) \phi K^+) = B(B^0 \to J/\psi(1S) \phi K^0)$.

$\Gamma(J/\psi(1S)\pi^0)/\Gamma_{\text{total}}$

 Γ_{193}/Γ

$VALUE$ (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
1.76±0.16 OUR	AVERAG	Error includes	scale	factor o	f 1.1.
$1.69\!\pm\!0.14\!\pm\!0.0$	7				$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.3 \pm 0.5 \pm 0.2$		$^{ m 1}$ ABE	03 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.5 \ {+1.1 \atop -0.9} \ \pm 0.2$		¹ AVERY	00	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use	the follow	ving data for avera	ages, f	its, limit	s, etc. • • •
$1.94 \pm 0.22 \pm 0.1$	7	¹ AUBERT,B	06 B	BABR	Repl. by AUBERT 08AU
$2.0 \pm 0.6 \pm 0.2$		¹ AUBERT			Repl. by AUBERT, B 06B
< 32	90	² ACCIARRI	97 C	L3	
< 5.8	90			CLE2	Sup. by AVERY 00
<690	90	¹ ALEXANDER	95	CLE2	Sup. by BISHAI 96
1 ^		-t D+ D0 -+	μ - γ	(1C)	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)\eta)/\Gamma_{\mathsf{total}}$

 Γ_{194}/Γ

$VALUE$ (units 10^{-6})	L%_	DOCUMENT ID		TECN	COMMENT
10.8 ± 2.3 OUR AVER	AGE Er	ror includes scale	e fact	or of 1.5	
$7.3 \pm 2.5 \pm 1.3$]	^L AAIJ	15 D	LHCB	pp at 7, 8 TeV
$12.3^{+1.8}_{-1.7}\pm0.7$	2,3	³ CHANG	12	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

We do not use the following data for averages, fits, limits, etc.

$$9.5\pm1.7\pm0.8$$
 $3 CHANG $07A$ BELL Repl. by CHANG 12 $<$ 27 90 AUBERT 030 BABR $e^+e^-\to \varUpsilon(4S)$ <1200 90 4 ACCIARRI 97C L3

$\Gamma(J/\psi(1S)\pi^{+}\pi^{-})/\Gamma_{\text{total}}$

 Γ_{195}/Γ

VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT	
4.03±0.18 OUR AVERAGE				
$4.00\pm0.14\pm0.12$	^{1,2} AAIJ	13M LHCB	pp at 7 TeV	
46 + 07 + 06	³ AUBERT	03B BABR	$e^+e^- \rightarrow \Upsilon(45)$	

 $^{^1}$ AAIJ 13M reports (3.97 \pm 0.09 \pm 0.11 \pm 0.16) \times 10 $^{-5}$ from a measurement of [Γ(B 0 \rightarrow $J/\psi(1S)\pi^+\pi^-)/\Gamma_{\mathsf{total}}] \ / \ [\mathsf{B}(B^+ o J/\psi(1S)K^+)] \ \mathsf{assuming} \ \mathsf{B}(B^+ o J/\psi(1S)K^+)$ = $(1.018 \pm 0.042) \times 10^{-3}$, which we rescale to our best value B($B^+ \rightarrow J/\psi(1S) K^+$) = $(1.026 \pm 0.031) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² ACCIARRI 97C assumes B^0 production fraction (39.5 \pm 4.0%) and B_s (12.0 \pm 3.0%).

 $^{^1}$ AAIJ 15D reports $[\Gamma(B^0 \rightarrow J/\psi(1S)\eta)/\Gamma_{ ext{total}}]$ / $[B(B_s^0 \rightarrow J/\psi(1S)\eta)] = (1.85 \pm 1.85)$ $0.61\pm0.14) imes 10^{-2}$ which we multiply by our best value B($B_S^0 o J/\psi(1S)\eta$) = $(4.0\pm0.7)\times10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^2}$ Reconstructs η in $\gamma\gamma$ and $\pi^+\pi^-\pi^0$ decays. 3 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^4}$ ACCIARRI 97C assumes B^0 production fraction (39.5 \pm 4.0%) and B_s (12.0 \pm 3.0%).

 $^{^2}$ AAIJ 13M does not report correlations between various measurements of the $J/\psi\pi\pi$

³Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(J/\psi(1S)\pi^{+}\pi^{-}$ nonresonant)/ Γ_{total}

 Γ_{196}/Γ

• • • •		,			_
VALUE (units 10^{-5})	CL%	DOCUMENT ID	TECN	COMMENT	
<1.2	90	¹ AUBERT	07AC BABR	$e^+e^- \rightarrow \gamma(4S)$	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S) f_0(500), f_0 \rightarrow \pi\pi)/\Gamma_{\text{total}}$

 Γ_{197}/Γ

VALUE (units 10⁻⁶) DOCUMENT ID TECN COMMENT

$8.1^{+1.1}_{-0.0}$ OUR AVERAGE

$$8.8 \pm 0.5 ^{+1.1}_{-1.5}$$
 1 AAIJ 14X LHCB pp at 7, 8 TeV $6.5 ^{+2.5}_{-1.1} \pm 0.3$ 2,3 AAIJ 13M LHCB pp at 7 TeV

$\Gamma(J/\psi(1S)f_2)/\Gamma_{\text{total}}$

 Γ_{198}/Γ

Created: 5/30/2017 17:22

VALUE (units 10^{-5}) CL% DOCUMENT ID TECN COMMENT

0.33^{+0.05}_{-0.06} **OUR AVERAGE** Error includes scale factor of 1.6.

$$0.30 \pm 0.03 ^{+0.02}_{-0.03}$$
 1 AAIJ 14X LHCB pp at 7, 8 TeV $0.42 \pm 0.06 \pm 0.02$ 2,3 AAIJ 13M LHCB pp at 7 TeV

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

<0.5 90 4,5 AUBERT 07AC BABR $e^+e^-
ightarrow \varUpsilon(4S)$

¹ AAIJ 14X uses Dalitz plot analysis of $B^0 \rightarrow J/\psi \pi^+ \pi^-$.

² AAIJ 13M reports $(6.4 \pm 0.8^{+2.4}_{-0.8}) \times 10^{-6}$ from a measurement of $[\Gamma(B^0 \to J/\psi(1S) f_0(500), f_0 \to \pi\pi)/\Gamma_{\text{total}}] / [B(B^0 \to J/\psi(1S)\pi^+\pi^-)]$ assuming $B(B^0 \to J/\psi(1S)\pi^+\pi^-) = (3.97 \pm 0.09 \pm 0.11 \pm 0.16) \times 10^{-5}$, which we rescale to our best value $B(B^0 \to J/\psi(1S)\pi^+\pi^-) = (4.03 \pm 0.18) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ AAIJ 13M does not report correlations between various measurements of the $J/\psi \pi \pi$ final state. Measured in Dalitz plot like analysis of $B^0 \to J/\psi \pi^+ \pi^-$.

 $^{^1}$ AAIJ 14X uses Dalitz plot analysis of $B^0 \to J/\psi \pi^+ \pi^-$.

² AAIJ 13M reports $[\Gamma(B^0 \to J/\psi(1S) f_2)/\Gamma_{total}] \times [B(f_2(1270) \to \pi\pi)] = (3.5 \pm 0.4 \pm 0.4) \times 10^{-6}$ from a measurement of $[\Gamma(B^0 \to J/\psi(1S) f_2)/\Gamma_{total}] \times [B(f_2(1270) \to \pi\pi)] / [B(B^0 \to J/\psi(1S) \pi^+\pi^-)]$ assuming $B(B^0 \to J/\psi(1S) \pi^+\pi^-) = (3.97 \pm 0.09 \pm 0.11 \pm 0.16) \times 10^{-5}$, which we rescale to our best values $B(f_2(1270) \to \pi\pi) = (84.2^{+2.9}_{-0.9}) \times 10^{-2}$, $B(B^0 \to J/\psi(1S) \pi^+\pi^-) = (4.03 \pm 0.18) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

³AAIJ 13M does not report correlations between various measurements of the $J/\psi\pi\pi$ final state. Measured in Dalitz plot like analysis of $B^0\to J/\psi\pi^+\pi^-$.

⁴ AUBERT 07AC reports $[\Gamma(B^0 \to J/\psi(1S)\,f_2)/\Gamma_{\rm total}] \times [{\rm B}(f_2(1270) \to \pi\pi)] < 0.46 \times 10^{-5}$ which we divide by our best value ${\rm B}(f_2(1270) \to \pi\pi) = 84.2 \times 10^{-2}$.

⁵ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(J/\psi(1S)\rho^0)/\Gamma_{\text{total}}$

 Γ_{199}/Γ

VALUE (units 10^{-5})

 $2.55^{+0.18}_{-0.16}$ OUR AVERAGE

 $2.50\pm0.10^{+0.18}_{-0.15}$

1 AALL

14X LHCB pp at 7, 8 TeV

² AUBERT $2.7 \pm 0.3 \pm 0.2$

90

07AC BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

 $2.52^{+0.22}_{-0.23}\pm0.11$

3,4 AAIJ

13M LHCB Repl. by AAIJ 14X

 $1.6 \pm 0.6 \pm 0.4$ <25

² AUBERT **BISHAI**

03B BABR Repl. by AUBERT 07AC

CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

¹ AAIJ 14X uses Dalitz plot analysis of $B^0 \rightarrow J/\psi \pi^+ \pi^-$. We assume B(ρ (770)⁰ \rightarrow $\pi^+\pi^-$) = 100%.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

(2.49 + 0.20 + 0.16)reports from a measurement of $[\Gamma(B^0 \to J/\psi(1S)\rho^0)/\Gamma_{\text{total}}]$ / $[B(B^0 \to J/\psi(1S)\pi^+\pi^-)]$ assuming B($B^0 \to J/\psi(1S)\pi^+\pi^-$) = $(3.97 \pm 0.09 \pm 0.11 \pm 0.16) \times 10^{-5}$, which we rescale to our best value B($B^0 \to J/\psi(1S)\pi^+\pi^-$) = $(4.03\pm0.18)\times10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using

our best value. 4 AAIJ 13M does not report correlations between various measurements of the $J/\psi\pi\pi$ final state. Measured in Dalitz plot like analysis of $B^0 \to J/\psi \pi^+ \pi^-$. Assumes B(ρ (770) $^0 \to$ $\pi\pi) = 100\%.$

 $\Gamma(J/\psi(1S) f_0(980), f_0 \to \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{200}/Γ

13M LHCB pp at 7 TeV

 1 AAIJ 13M does not provide correlations between various measurements of the $J/\psi\pi^{+}\pi^{-}$ final state. The measurements were obtained from a Dalitz plot like analysis of $B^0 \rightarrow J/\psi \pi^+ \pi^-$. Also reports $\Gamma(J/\psi(1S) f_0(980), f_0 \rightarrow \pi^+ \pi^-)/\Gamma_{\text{total}} =$ $(6.1^{+3.1}_{-2.0}^{+1.7}_{-1.4}) \times 10^{-6}$.

$\Gamma(J/\psi(1S)\rho(1450)^0, \rho^0 \to \pi\pi)/\Gamma_{\text{total}}$

 Γ_{201}/Γ

VALUE (units 10^{-6})

DOCUMENT ID

TECN COMMENT

$3.0^{+1.6}_{-0.7}$ OUR AVERAGE

 $4.6 \pm 1.1 \pm 1.9$

1 AALL

14X LHCB pp at 7, 8 TeV

 $2.1^{+2.4}_{-0.7}\pm0.1$

^{2,3} AAIJ

13M LHCB pp at 7 TeV

Created: 5/30/2017 17:22

 1 AAIJ 14x uses Dalitz plot analysis of $B^0\to J/\psi\pi^+\pi^-.$ 2 AAIJ 13M reports $(2.1^{+1.0}_{-0.6}{}^{+2.2}_{-0.4})$ \times 10^{-6} from a measurement of [Γ($B^0\to 10^{-2}$ $J/\psi(1S)\,\rho(1450)^0$, $\rho^0 \to \pi\pi)/\Gamma_{ ext{total}}$] / [B($B^0 \to J/\psi(1S)\pi^+\pi^-$)] assuming $B(B^0 \to J/\psi(1S)\pi^+\pi^-) = (3.97 \pm 0.09 \pm 0.11 \pm 0.16) \times 10^{-5}$, which we rescale to our best value B($B^0 \rightarrow J/\psi(1S)\pi^+\pi^-$) = $(4.03 \pm 0.18) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best

 3 AAIJ 13M does not report correlations between various measurements of the $J/\psi\pi\pi$ final state. Measured in Dalitz plot like analysis of $B^0 \to J/\psi \pi^+ \pi^-$.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(J/\psi \rho(1700)^0, \rho^0 \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{202}/Γ VALUE (units 10^{-6}) 14X LHCB pp at 7.8 TeV $2.0\pm0.5\pm1.2$ ¹ AAIJ 14X uses Dalitz plot analysis of $B^0 \rightarrow J/\psi \pi^+ \pi^-$. $\Gamma(J/\psi(1S)\omega)/\Gamma_{\text{total}}$ Γ_{203}/Γ VALUE (units 10^{-5}) TECN $1.8^{+0.7}_{-0.5}\pm0.1$ ¹ AAIJ 14X LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • •

<27 **BISHAI** 96 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 90 $^{1}\, \text{AAIJ 14X reports } \left[\Gamma\big(B^{0} \ \rightarrow \ J/\psi(1S)\omega\big)/\Gamma_{\mathsf{total}}\right] \ \times \ \left[\mathsf{B}(\omega(782) \ \rightarrow \ \pi^{+}\,\pi^{-})\right] \ = \ \Gamma(B^{0})$ $(2.7^{+0.8}_{-0.6}^{+0.7}) \times 10^{-7}$ which we divide by our best value B($\omega(782) \rightarrow \pi^+\pi^-$) =

 $(1.53^{+0.11}_{-0.13}) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(J/\psi(1S)\omega)/\Gamma(J/\psi(1S)\rho^0)$

 $\Gamma_{203}/\Gamma_{199}$

DOCUMENT ID TECN COMMENT $0.61^{\displaystyle +0.24}_{\displaystyle -0.14}^{\displaystyle +0.31}_{\displaystyle -0.16}$ 13M LHCB pp at 7 TeV

 1 AAIJ 13M reports $0.61^{+0.24}_{-0.14}^{+0.31}$ from a measurement of $[\Gamma(B^0\to~J/\psi(1S)\,\omega)/$ $\Gamma(B^0 \to J/\psi(1S) \rho^0)] \times [B(\omega(782) \to \pi^+\pi^-)]$ assuming $B(\omega(782) \to \pi^+\pi^-) =$ $(1.53^{+0.11}_{-0.13}) \times 10^{-2}$

$\Gamma(J/\psi(1S)\omega)/\Gamma(J/\psi(1S)\rho^0)$

 $\Gamma_{203}/\Gamma_{199}$

VALUE $0.89\pm0.19^{+0.07}_{-0.13}$ AAIJ 13A LHCB pp at 7 TeV

$\Gamma(J/\psi(1S)K^+K^-)/\Gamma_{\text{total}}$

 Γ_{204}/Γ

VALUE (units 10^{-6}) 13BT LHCB pp at 7 TeV $2.55 \pm 0.35 \pm 0.08$

 $^1\,\text{AAIJ}$ 13BT reports (2.53 \pm 0.31 \pm 0.19) \times 10 $^{-6}$ from a measurement of $[\Gamma(B^0 \to J/\psi(1S)\,K^+\,K^-)/\Gamma_{total}] \ / \ [B(B^+ \to J/\psi(1S)\,K^+)] \ \text{assuming} \ B(B^+ \to J/\psi(1S)\,K^+)] \ \text{assuming} \ B(B^+ \to J/\psi(1S)\,K^+)$ $J/\psi(1S)K^+)=(1.018\pm0.042)\times10^{-3}$, which we rescale to our best value B(B⁺ \rightarrow $J/\psi(1S)K^{+})=(1.026\pm0.031)\times10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(J/\psi(1S) a_0(980), a_0 \rightarrow K^+ K^-)/\Gamma_{\text{total}}$

 Γ_{205}/Γ

Created: 5/30/2017 17:22

DOCUMENT ID TECN COMMENT *VALUE* (units 10^{-6}) 13BT LHCB pp at 7 TeV

 $^{^2}$ AAIJ 13M does not report correlations between various measurements of the $J/\psi\pi\pi$ final state. Measured in Dalitz plot like analysis of $B^0 \to J/\psi \pi^+ \pi^-$. Assumes B($\rho(770)^0 \to$ $\pi\pi$) = 100%.

¹ AAIJ 13BT uses B($\overline{B}^0 \to J/\psi K^+ K^-$) = (2.53 \pm 0.31 \pm 0.19) \times 10⁻⁶ to derive this result. It also reports the equivalent upper limit of $< 9.0 \times 10^{-7}$ at 90% CL.

$\Gamma(J/\psi(1S)\phi)/\Gamma_{tota}$	al					Γ ₂₀₆ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<0.19	90	¹ AAIJ	13 B7	LHCB	pp at 7 Te	eV
• • • We do not use t						
<1.01	90	LEES ² LIU ² AUBERT	15	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
< 0.94	90	² LIU	180	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<9.2						
¹ AAIJ 13BT uses B(= 0.31 ±	$0.19) \times 10^{-}$	6 and B(ϕ $-$
K^+K^-) = (48.9 =				~ \		
² Assumes equal prod	duction of	B^{\perp} and B^{\sim} at th	e / (43	5).		
$\Gamma(J/\psi(1S)\eta'(958))$	$/\Gamma_{\text{total}}$					Γ ₂₀₇ /Γ
VALUE (units 10 ⁻⁶) 7.6±2.2±1.0	CL%	DOCUMENT ID		TECN	COMMENT	
7.6±2.2±1.0		¹ AAIJ	15 D	LHCB	pp at 7, 8	TeV
• • • We do not use t						
< 7.4	90	^{2,3} CHANG	12	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<63	90	³ AUBERT	030	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ AAIJ 15D reports	$[\Gamma(B^0 \rightarrow$	$J/\psi(1S)\eta'(958)$	$)/\Gamma_{tot}$	_{al}] / [B	$(B_s^0 \rightarrow J/$	$\psi(1S)\eta')] =$
$(2.28 \pm 0.65 \pm 0.16$						
$= (3.3 \pm 0.4) \times 10$						
3 Assumes equal prod	duction of	π^- and $ ho$ (770) 0	$rac{1}{2}$	5)		
³ Assumes equal proof $\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)$	duction of	$^{\prime}B^{+}$ and B^{0} at th $^{\prime}$	e γ(45	5).		
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi_{VALUE})$	duction of	$^{\prime}B^{+}$ and B^{0} at th $^{\prime}$	e γ(45	5).	<u>COMMENT</u>	Γ ₁₉₄ /Γ ₂₀₇
$\frac{\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi_{ALUE})}{1.111\pm0.475\pm0.062}$	duction of $\psi(1S)\eta'$	(958) (958)) 1 AAIJ	e Υ (4:	S). <u>TECN</u> LHCB		
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi_{VALUE})$	duction of $\psi(1S)\eta'$	(958) (958)) 1 AAIJ	e Υ (4:	S). <u>TECN</u> LHCB		
$\frac{\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi_{ALUE})}{1.111\pm0.475\pm0.062}$	duction of $m{U}m{\psi(1S)}m{\eta'}$	(958) and (958) at the (958) $($	e Υ (4:	S). <u>TECN</u> LHCB		TeV
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\kappa^0\pi^+\pi)$ $\Gamma(J/\psi(1S)\kappa^0\pi^+\pi)$ VALUE	duction of $J'\psi(1S)\eta'$ $ u^-, \eta' ightarrow $ $ u^-, \eta' ightarrow $	(958) and (958) at the (958) $($	e Υ (4 $rac{1}{2}$ $rac{15}{2}$ $\pi^+\pi^-$	S). <u>TECN</u> LHCB decays	5.	TeV
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\psi)/\Gamma(J/\psi(1S)\kappa^0\pi^+\pi^0)/U$ $\Gamma(J/\psi(1S)\kappa^0\pi^+\pi^0)/U$ $VALUE$ 0.50 ±0.04 OUR AV	duction of $J'\psi(1S)\eta'$ $ u^-, \eta' ightarrow $ $ u^-, \eta' ightarrow $	(958) and (958)	15D	TECN LHCB decays	S. COMMENT	TeV Γ ₂₀₈ /Γ ₁₈₃
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\psi)/\Gamma(J/\psi(1S)\psi)/\Gamma(J/\psi(1S)\psi)/\Gamma(J/\psi(1S)\psi)/\Gamma(J/\psi(1S)\psi)/\Gamma(J/\psi)/\Gamma$	duction of $J'\psi(1S)\eta'$ $ u^-, \eta' ightarrow $ $ u^-, \eta' ightarrow $	(958) and (958)	e Υ (4. $\frac{15}{17}$ D 3 D 4 T 4 L	TECN LHCB decays	S. COMMENT pp at 7 Te	TeV Γ₂₀₈/Γ₁₈₃
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\psi)/\Gamma(J/\psi)/$	duction of $l'\psi(1S)\eta'$	(958) and (958) ρ^0 at the (958) ρ^0	e Υ (4. $\frac{15}{17}$ D 3 D 4 T 4 L	TECN LHCB decays	S. COMMENT pp at 7 Te	TeV Γ₂₀₈/Γ₁₈₃
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\psi)/\Gamma(J/\psi(1S)\kappa^0\pi^+\pi^0)/(J/\psi(1S))/(J/\psi$	duction of $l'\psi(1S)\eta'$	(958) and (958) ρ^0 at the (958) ρ^0	e Υ (4.) 15 D $\eta \pi^{+} \pi^{-}$ 14 L	TECN LHCB decays	S. COMMENT pp at 7 Te	ΤeV Γ₂₀₈/Γ₁₈₃ eV
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi_{ALUE})$ 1.111±0.475±0.062 1 Uses $J/\psi \rightarrow \mu^{+}\mu^{-}$ $\Gamma(J/\psi(1S)K^{0}\pi^{+}\pi^{-})$ $VALUE$ 0.50 ±0.04 OUR AVIOLATION 0.493±0.034±0.027 1.24 ±0.40 ±0.15 $\Gamma(J/\psi(1S)K^{0}K^{+})$	duction of $(\psi(1S)\eta)$ $(\eta(1S)\eta)$	(958) (958) (1000) (1000) (1000) (100) $($	15D 1π+π- 14L 02B	TECN_LHCB TECN_ TECN_LHCB CDF	COMMENT pp at 7 Te pp 1.8 Te	ΤeV Γ₂₀₈/Γ₁₈₃ eV
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\psi)/\Gamma(J/\psi)/$	duction of $(\psi(1S)\eta)$ $(\eta(1S)\eta)$	$(7)^{\prime}$ and $(8)^{\prime}$ at the $(7)^{\prime}$ and $(9)^{\prime}$ an	e Υ (4) 15D $\gamma \pi^+ \pi^-$ 14L 02B	TECN LHCB TECN LHCB CDF TECN 1.8.	COMMENT pp at 7 Te pp 1.8 Te COMMENT	TeV Γ ₂₀₈ /Γ ₁₈₃ Εν Γ ₂₁₀ /Γ
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi_{NLUE})$ 1.111±0.475±0.062 1 Uses $J/\psi \rightarrow \mu^{+}\mu^{-}$ $\Gamma(J/\psi(1S)K^{0}\pi^{+}\pi^{-})$ $VALUE$ 0.50 ±0.04 OUR AVIOLATION (0.493±0.034±0.027) 1.24 ±0.40 ±0.15 $\Gamma(J/\psi(1S)K^{0}K^{+}\mu^{-})$ $VALUE$ (units 10 ⁻⁶) 25 ±7 OUR AVERAGE (34.9±6.7±1.5	duction of $(\psi(1S)\eta)$ $(\eta(1S)\eta)$	$(7)^{\prime}$ and $(8)^{\prime}$ at the $(7)^{\prime}$ and $(9)^{\prime}$ an	e Υ (4) 15D $\gamma \pi^+ \pi^-$ 14L 02B	TECN LHCB TECN LHCB CDF TECN 1.8.	COMMENT pp at 7 Te pp 1.8 Te COMMENT	TeV Γ ₂₀₈ /Γ ₁₈₃ Εν Γ ₂₁₀ /Γ
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi_{ALUE})$ 1.111±0.475±0.062 1 Uses $J/\psi \rightarrow \mu^{+}\mu^{-}$ $\Gamma(J/\psi(1S)K^{0}\pi^{+}\pi^{-})$ $VALUE$ 0.50 ±0.04 OUR AVIOLATION (0.493±0.034±0.027 1.24 ±0.40 ±0.15) $\Gamma(J/\psi(1S)K^{0}K^{+}\mu^{-})$ $VALUE$ (units 10 ⁻⁶) 25 ±7 OUR AVERAGE (34.9±6.7±1.5 20.2±4.3±1.9	duction of $(\psi(1S)\eta)$	(958) (958) (958) (100) $(100$	15D 77*** 14L 02B ctor of 15 14L	TECN LHCB decays TECN LHCB CDF TECN 1.8. BABR LHCB	COMMENT $pp \text{ at 7 Te}$ $p\overline{p} \text{ 1.8 Te}$ $COMMENT$ $e^{+}e^{-} \rightarrow$ $pp \text{ at 7 Te}$	ΤeV Γ₂₀₈/Γ₁₈₃ (V) Γ₂₁₀/Γ (Υ(4S)
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi_{ALUE})$ 1.111±0.475±0.062 1 Uses $J/\psi \rightarrow \mu^{+}\mu^{-}$ $\Gamma(J/\psi(1S)K^{0}\pi^{+}\pi^{-})$ $VALUE$ 0.50 ±0.04 OUR AVIOLATION (0.493±0.034±0.027 1.24 ±0.40 ±0.15 $\Gamma(J/\psi(1S)K^{0}K^{+}\mu^{-})$ $VALUE$ (units 10 ⁻⁶) 25 ±7 OUR AVERAGE (34.9±6.7±1.5	duction of $I/\psi(1S)\eta$	(958) (958) (958) (100) $(100$	15D 77*** 14L 02B ctor of 15 14L	TECN LHCB decays TECN LHCB CDF TECN 1.8. BABR LHCB	COMMENT $pp \text{ at 7 Te}$ $p\overline{p} \text{ 1.8 Te}$ $COMMENT$ $e^{+}e^{-} \rightarrow$ $pp \text{ at 7 Te}$	$ au_{\text{P}}$ ΤeV $ au_{\text{P}}$
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi_{ALUE})$ 1.111±0.475±0.062 ¹ Uses $J/\psi \rightarrow \mu^+ \mu$ $\Gamma(J/\psi(1S)K^0\pi^+\pi^+ \mu^- \mu^- \mu^- \mu^- \mu^- \mu^- \mu^- \mu^- \mu^- \mu^-$	duction of $I/\psi(1S)\eta$ $I/\psi(1S)\eta$ $I/\psi(1S)\eta$ $I/\psi(1S)\eta$ $I/\psi(1S)\eta$ $I/\psi(1S)\eta$ FRAGE $I/\psi(1S)\eta$	(958) (958) $DOCUMENT\ ID$ 1 $AAIJ$ $ ho^0\gamma$, and $\eta'\to \eta'$ $OCUMENT\ ID$ $OCUMENT$ $OCUMENT$ $OCUMENT$ $OCUMENT$ $OCUMENT$	15D 77*** 14L 02B ctor of 15 14L	TECN LHCB decays TECN LHCB CDF TECN 1.8. BABR LHCB	COMMENT $pp \text{ at 7 Te}$ $p\overline{p} \text{ 1.8 Te}$ $COMMENT$ $e^{+}e^{-} \rightarrow$ $pp \text{ at 7 Te}$	TeV $\Gamma_{208}/\Gamma_{183}$ Γ_{210}/Γ
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/V_{NLUE})$ 1.111±0.475±0.062 ¹ Uses $J/\psi \rightarrow \mu^+ \mu$ $\Gamma(J/\psi(1S)K^0\pi^+\pi^+ \chi^- V_{NLUE})$ 0.50 ±0.04 OUR AVIOUS 0.493±0.034±0.027 1.24 ±0.40 ±0.15 $\Gamma(J/\psi(1S)K^0K^+ \mu^- V_{NLUE})$ 25 ±7 OUR AVERAGE 34.9±6.7±1.5 20.2±4.3±1.9 ¹ Measured with B(E involved branching) $\Gamma(J/\psi(1S)K^0K^- \pi^- V_{NLUE})$	duction of $(\psi(1S)\eta)$ $(\psi(1S$	(958) (958) $DOCUMENT ID$ 1 $AAIJ$ $\rho^0 \gamma$, and $\eta' \rightarrow \eta'$ $DOCUMENT ID$ $AAIJ$ $AFFOLDER$ tal $DOCUMENT ID$ $AAIJ$ $AFFOLDER$ AIJ	e Υ (4.) 15D $7\pi^{+}\pi^{-}$ 14L 02B ctor of 15 14L $(B^{0}-$	$TECN$ LHCB TECN LHCB CDF TECN 1.8. BABR LHCB J/ψ K	COMMENT $pp \text{ at 7 Te}$ $p\overline{p} \text{ 1.8 TeV}$ $COMMENT$ $e^+e^- \rightarrow pp \text{ at 7 Te}$ $pp \text{ at 7 Te}$ $pp \text{ at 7 Te}$	TeV $ \frac{\Gamma_{208}/\Gamma_{183}}{\Gamma_{208}/\Gamma_{183}} $ $ \frac{\Gamma_{210}/\Gamma_{183}}{\Gamma_{209}/\Gamma_{183}} $ $ \frac{\Gamma_{209}/\Gamma_{183}}{\Gamma_{209}/\Gamma_{183}} $
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/V_{NLUE})$ 1.111±0.475±0.062 ¹ Uses $J/\psi \rightarrow \mu^+ \mu^ \Gamma(J/\psi(1S)K^0\pi^+\pi^-)$ VALUE 0.50 ±0.04 OUR AVI 0.493±0.034±0.027 1.24 ±0.40 ±0.15 $\Gamma(J/\psi(1S)K^0K^+ \mu^-)$ VALUE (units 10 ⁻⁶) 25 ±7 OUR AVERA 34.9±6.7±1.5 20.2±4.3±1.9 ¹ Measured with B(E involved branching $\Gamma(J/\psi(1S)K^0K^-\pi^-)$ VALUE <21 × 10 ⁻⁶	duction of $I/\psi(1S)\eta$ $I/\psi(1$	(958) (958) $DOCUMENT ID$ 1 $AAIJ$ $\rho^0 \gamma$, and $\eta' \rightarrow \eta'$ M	e Υ (4) 15D $7\pi^{+}\pi^{-}$ 14L 02B	$TECN$ LHCB decays $TECN$ LHCB CDF $TECN$ 1.8. BABR LHCB $J/\psi K$	COMMENT $pp \text{ at 7 Te} \\ p\overline{p} \text{ 1.8 Te} \\ \hline \frac{COMMENT}{e^+e^- \rightarrow pp \text{ at 7 Te}} \\ \frac{COMMENT}{S} \text{ using Pl} \\ \hline \frac{COMMENT}{pp \text{ at 7 Te}} \\ \hline pp \text{ at 7 Te} \\ \hline $	TeV $\Gamma_{208}/\Gamma_{183}$ $\Gamma_{208}/\Gamma_{183}$ Γ_{210}/Γ Γ_{210}/Γ Γ_{209}/Γ
$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi_{ALUE})$ 1.111±0.475±0.062 1 Uses $J/\psi \rightarrow \mu^{+}\mu^{-}$ $\Gamma(J/\psi(1S)K^{0}\pi^{+}\pi^{-})$ VALUE 0.50 ±0.04 OUR AVIOUS 0.493±0.034±0.027 1.24 ±0.40 ±0.15 $\Gamma(J/\psi(1S)K^{0}K^{+}\mu^{-})$ VALUE (units 10 ⁻⁶) 25 ±7 OUR AVERANCE 34.9±6.7±1.5 20.2±4.3±1.9 1 Measured with B(E involved branching $\Gamma(J/\psi(1S)K^{0}K^{-}\pi^{-})$	duction of $I/\psi(1S)\eta$ $I/\psi(1$	(958) (958) $DOCUMENT ID$ 1 $AAIJ$ $\rho^0 \gamma$, and $\eta' \rightarrow \eta'$ M	e Υ (4) 15D $7\pi^{+}\pi^{-}$ 14L 02B	$TECN$ LHCB decays $TECN$ LHCB CDF $TECN$ 1.8. BABR LHCB $J/\psi K$	COMMENT $pp \text{ at 7 Te} \\ p\overline{p} \text{ 1.8 Te} \\ \hline \frac{COMMENT}{e^+e^- \rightarrow pp \text{ at 7 Te}} \\ \frac{COMMENT}{S} \text{ using Pl} \\ \hline \frac{COMMENT}{pp \text{ at 7 Te}} \\ \hline pp \text{ at 7 Te} \\ \hline $	TeV $\Gamma_{208}/\Gamma_{183}$ $\Gamma_{208}/\Gamma_{183}$ Γ_{210}/Γ Γ_{210}/Γ Γ_{209}/Γ

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 85

$\Gamma(J/\psi(1S)K^0\rho^0)/\Gamma_{\rm tot}$:al					Γ ₂₁₂ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT	-
5.4±2.9±0.9	1	AFFOLDER	02 B	CDF	<u>p</u>	
$^{1}\mathrm{Uses}\;B^{0} ightarrow\;J/\psi(1S)K$						8.3×10^{-4} .
$\Gamma(J/\psi(1S)K^*(892)^+\pi$	·-)/F _{tota}	I				Γ ₂₁₃ /Γ
VALUE (units 10^{-4})				TECN	COMMENT	-
7.7±4.1±1.3	1	DOCUMENT ID AFFOLDER	02 B	CDF	<i>p</i> p 1.8 TeV	
$^{1}\mathrm{Uses}\;B^{0} ightarrow\;J/\psi(1S)K$						8.3×10^{-4} .
$\Gamma(J/\psi(1S)\pi^+\pi^-\pi^+\pi^-)$	-)/Γ(<i>J</i> /-	$\psi(1S)\pi^+\pi^-$	-)			Γ ₂₁₄ /Γ ₁₉₅
VALUE		DOCUMENT ID		TECN		
$0.361 \pm 0.017 \pm 0.021$	1				pp at 7, 8 T	-eV
$^{ m 1}$ Excludes contributions	from ψ (2 S) and <i>X</i> (3872)	deca	ying to .	$J/\psi(1S)\pi^+\pi$	·
$\Gamma(J/\psi(1S)f_1(1285))/\Gamma$	- total					Γ ₂₁₅ /Γ
VALUE (units 10^{-6})	<u> </u>	DOCUMENT ID		TECN	COMMENT	
$8.2\pm2.0^{+0.4}_{-0.5}$	1	AAIJ	14Y	LHCB	<i>pp</i> at 7, 8 T	-eV
1 AAIJ 14Y reports (8.37	+ 1 05+0	$.71 \pm 0.35) \times$	10-6	from a r	measurement	of IT(BO _
$2\pi^{+}2\pi^{-}) = 0.11^{+}0.0$ $= (11.2^{+}0.7) \times 10^{-2}.$ the systematic error fro	Our first on using ou	error is their ex ur best value.				cond error is
$\Gamma(J/\psi(1S)K^*(892)^0\pi^{-1}$	-					Γ ₂₁₆ /Γ
VALUE (units 10 ⁻⁴)		AFFOLDER		TECN	COMMENT	
0.0 1.9 1.1	4					
$\begin{array}{c} 1 \text{Uses} \; B^0 \rightarrow J/\psi(1S) \\ 12.4 \times 10^{-4}. \end{array}$	K*(892) ⁰	decay as a re	ferenc	e and E	$B(B^0 \rightarrow J/v)$	$\psi(1S) K^0) =$
$\Gamma(X(3872)^-K^+)/\Gamma_{\text{tota}}$	al					Γ ₂₁₇ /Γ
$\frac{VALUE}{<5 \times 10^{-4}}$	<u>L%</u>	DOCUMENT ID		TECN	COMMENT	
<5 × 10⁻⁴ 9	0 1	AUBERT	06E	BABR	$e^+e^- \rightarrow $	$\Upsilon(4S)$
¹ Perform measurements	of absolute	e branching fra	ctions	using a	missing mass	s technique.
$\Gamma(X(3872)^-K^+, X(38)^-K^+)$	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Γ ₂₁₈ /Γ
VALUE (units 10 ⁻⁶) C <4.2	<u>1.2</u>	DOCUMENT ID		TECN	COMMENT	
						$\Upsilon(4S)$
• • • We do not use the fo						
< 5.4 9	0 2,3	AUBERT	05 B	BABR	$e^+e^- \rightarrow 7$	$\Upsilon(4S)$
1 Assumes $\pi^+\pi^0$ origina 2 Assumes equal producti 3 The isovector- X hypoth	ion of B^{+}	and B^0 at the			at $1 imes 10^{-4}$ k	evel.

$\Gamma(X(3872)K^0, X \rightarrow J/\psi \pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{219}/Γ VALUE (units 10^{-6}) 1,2 CHOI $4.3\pm1.2\pm0.4$ 11 BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. 08Y BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 ² AUBERT ^{2,3} AUBERT 06 BABR Repl. by AUBERT 08Y <10.3 $^{1}\,\text{CHOI 11 reports}\,\left[\Gamma\big(B^{0}\,\rightarrow\,X(3872)\,\text{K^{0},}\quad X\,\rightarrow\,J/\psi\,\pi^{+}\,\pi^{-}\big)/\Gamma_{\text{total}}\right]\,/\,\left[\text{B}(B^{+}\,\rightarrow\,X(3872)\,\text{K^{0},}\quad X\,\rightarrow\,Z/\psi\,\pi^{+}\,\pi^{-})/\Gamma_{\text{total}}\right]\,/\,\left[\text{B}(B^{+}\,\rightarrow\,X(3872)\,\text{K^{0},}\quad X\,\rightarrow\,Z/\psi\,\pi^{+}\,\pi^{-})/\Gamma_{\text{total}}\right]$ $X(3872)K^+$, $X \rightarrow J/\psi \pi^+ \pi^-)] = 0.50 \pm 0.14 \pm 0.04$ which we multiply by our best value B($B^+ \to X(3872)K^+$, $X \to J/\psi \pi^+ \pi^-$) = $(8.6 \pm 0.8) \times 10^{-6}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ²Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 3 The lower limit is also given to be 1.34×10^{-6} at 90% CL. $\Gamma(X(3872)K^0, X \rightarrow J/\psi\gamma)/\Gamma_{\text{total}}$ Γ_{220}/Γ VALUE (units 10^{-6}) CL%DOCUMENT ID TECN COMMENT ¹ BHARDWAJ 11 BELL $e^+e^- \rightarrow \Upsilon(4S)$ <2.4 90 • • • We do not use the following data for averages, fits, limits, etc. • • • ² AUBERT 09B BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² Uses B($\Upsilon(4S) \to B^+B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0\overline{B}^0$) = (48.4 ± 0.6)%. $\Gamma(X(3872)K^*(892)^0, X \rightarrow J/\psi\gamma)/\Gamma_{\text{total}}$ Γ_{221}/Γ VALUE (units 10^{-6}) CL% 90 DOCUMENT ID TECN COMMENT AUBERT 09B BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Uses B($\Upsilon(4S) \to B^+ B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%. $\Gamma(X(3872)K^0, X \rightarrow \psi(2S)\gamma)/\Gamma_{\text{total}}$ Γ_{222}/Γ DOCUMENT ID TECN COMMENT 1 BHARDWAJ 11 BELL $e^{+}e^{-} \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • ² AUBERT 09B BABR $e^+e^- \rightarrow \Upsilon(4S)$ <19 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² Uses B($\Upsilon(4S) \to B^+ B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%. $\Gamma(X(3872)K^*(892)^0, X \to \psi(2S)\gamma)/\Gamma_{\text{total}}$ $\frac{DOCUMENT\ ID}{1}$ AUBERT 098 BABR $e^+e^- \rightarrow$ VALUE (units 10^{-6}) CL% 09B BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 <4.4 ¹ Uses B($\Upsilon(4S) \to B^+ B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%. $\Gamma(X(3872)K^0, X \rightarrow D^0\overline{D}^0\pi^0)/\Gamma_{\text{total}}$ Γ_{224}/Γ DOCUMENT ID TECN COMMENT VALUE (units 10^{-4}) $1.66\pm0.70^{+0.32}_{-0.37}$ ¹ GOKHROO 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Measure the near-threshold enhancements in the $(D^0 \overline{D}{}^0 \pi^0)$ system at a mass 3875.2 \pm

 $^{^1}$ Measure the near-threshold enhancements in the $(D^0\,\overline{D}{}^0\,\pi^0)$ system at a mass 3875.2 \pm 0.7 $^{+0.3}_{-1.6}$ \pm 0.8 MeV/c².

$\Gamma(X(3872)K^0, X \rightarrow$	$\overline{D}^{*0}D^{0}$	/Γ _{total}				Γ ₂₂₅ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT	
1.2 ±0.4 OUR AVERA		1			1	22(- 2)
$0.97 \pm 0.46 \pm 0.13$		¹ AUSHEV ² AUBERT			$e^+e^- \rightarrow e^+e^- \rightarrow$	
$2.22 \pm 1.05 \pm 0.42$					e ' e →	7 (43)
¹ Assumes equal produ ² This result is equival					7×10^{-4}	
$\Gamma(X(3872)K^{+}\pi^{-}, \lambda)$	-	,				Γ ₂₂₆ /Γ
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
$7.9 \pm 1.3 \pm 0.4$		¹ BALA	15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	iction of B^{-}	$^+$ and B^0 at the	$\Upsilon(4.$	S).		
$\Gamma(X(3872)K^*(982)^0$, $X \rightarrow J/$	=				Γ ₂₂₇ /Γ
VALUE (units 10^{-6})		DOCUMENT ID				
$4.0\pm1.5\pm0.3$		BALA	15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(X(4430)^{\pm}K^{\mp}, X^{\pm})$. •	$(5)\pi^{\pm})/\Gamma_{ m total}$				Γ ₂₂₈ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
$6.0^{f +1.7}_{-2.0}{}^{+2.5}_{-1.4}$		CHILIKIN	13	BELL	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
• • • We do not use the						
<3.1	95	$^{ m 1}$ AUBERT	09A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$3.2 + 1.8 + 5.3 \\ -0.9 - 1.6$		¹ MIZUK	09	BELL	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
$4.1\pm1.0\pm1.4$	1,	² сноі	80	BELL	Repl. by M	1IZUK 09
¹ Assumes equal produ	iction of B^-	$^+$ and $B^{ m 0}$ at the	$\Upsilon(4)$	S).		
² Establishes the $X(44)$					eeds confirm	nation.
$\Gamma(X(4430)^{\pm}K^{\mp}, X^{\pm})$						Γ ₂₂₉ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
$5.4_{-1.0-0.6}^{+4.0+1.1}$		CHILIKIN	14	BELL	$\overline{B}^0 \rightarrow J/2$	$\psi K^- \pi^+$
• • • We do not use the	e following o	data for average	s, fits,	limits, e	etc. • • •	
<4	95	¹ AUBERT	09A	BABR	$e^+e^- \to$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	iction of B^-	$^+$ and B^0 at the	r(4	S).		
$\Gamma(X(3900)^{\pm}K^{\mp}, X^{\pm})$	$^{ d} \rightarrow J/\psi i$			TECN	COMMENT	Γ ₂₃₀ /Γ
$\frac{VALUE}{<9\times10^{-7}}$		DOCUMENT ID CHILIKIN	1/1	RELL	$\overline{\mathbb{R}^0} \longrightarrow 1/2$	η, κ ⁻ π ⁺
			14	DLLL	יש <i>⊒</i>	φιν π
$\Gamma(X(4200)^{\pm}K^{\mp}, X^{\pm})$	$^{ abla} ightarrow J/\psi a$	$\pi^{\pm})/\Gamma_{total}$				Γ ₂₃₁ /Γ
$VALUE$ (units 10^{-5})		DOCUMENT ID		TECN	COMMENT	
$2.2^{f +0.7+1.1}_{f -0.5-0.6}$		CHILIKIN			$\overline{B}^0 \rightarrow J/2$	

$\Gamma(J/\psi(1S)\rho\overline{\rho})/\Gamma_{\text{tot}}$	al					Γ ₂₃₂ /Γ
VALUE 7	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<5.2 × 10 ⁻⁷		¹ AAIJ				:V
• • • We do not use the						
$< 8.3 \times 10^{-7}$	90	² XIE	05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
		² AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Uses B($B_s^0 o J/\psi$ ($(1S)\pi^+\pi^-$	$^{-}) = (1.98 \pm 0.2)$	$0) \times 1$	0^{-4} .		
² Assumes equal produ	uction of $\it L$	${\sf B}^+$ and ${\sf B}^0$ at the	r(4.	S).		
$\Gamma(J/\psi(1S)\gamma)/\Gamma_{total}$						Γ ₂₃₃ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	_
<u>VALUE</u> (units 10 ^{−6}) <1.5	90	¹ AAIJ	15 BE	3 LHCB	<i>pp</i> at 7, 8	TeV
• • • We do not use the	e following	g data for average	s, fits,	limits,	etc. • • •	
<1.6	90	² AUBERT,B	04T	BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$
¹ Branching fractions	of normali	zation modes B^0	\rightarrow J	$/\psi\gamma X$ t	aken from F	DG 14. Use
$f_s/f_d = 0.259 \pm 0.0$		<u></u>	20(4	C)		
² Assumes equal produ	uction of <i>I</i>	B' and B' at the	1 (4.	5).		
$\Gamma igl(J/\psi(1S) \overline{D}{}^0 igr) / \Gamma_{ m tot}$	al					Γ ₂₃₄ /Γ
$VALUE$ (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.3	90	$^{ m 1}$ AUBERT	05 U	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	e following	g data for average	s, fits,	limits,	etc. • • •	
<2.0	90	¹ ZHANG	05 B	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	uction of <i>I</i>	$^{\mathrm{3}+}$ and $^{\mathrm{0}}$ at the	$\Upsilon(4)$	S).		` ,
-			(-) -		F /
$\Gamma(\psi(2S)\pi^0)/\Gamma_{\text{total}}$						Γ ₂₃₅ /Ι
VALUE (units 10 ⁻⁵)		DOCUMENT ID				
$1.17 \pm 0.17 \pm 0.08$		¹ CHOBANOVA			$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	uction of I	${f B}^+$ and ${f B}^0$ at the	r(4.	S).		
$\Gamma(\psi(2S)K^0)/\Gamma_{\text{total}}$						Γ ₂₃₆ /Γ
1	CL 0/	DOCUMENT ID		TECN	COMMENT	. 730/ .
5.8 ±0.5 OUR FIT	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
5.8 ±0.5 OUR AV						
$4.7\ \pm0.7\ \pm0.7$		$^{ m 1}$ AAIJ	14L	LHCB	pp at 7 Te	٧
$6.46 \pm 0.65 \pm 0.51$		² AUBERT	05 J	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$6.7 \hspace{0.1cm} \pm 1.1$		² ABE			$e^+e^- \rightarrow$	
$5.0 \pm 1.1 \pm 0.6$		² RICHICHI	01		$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	e following					
$6.9\ \pm 1.1\ \pm 1.1$		² AUBERT				UBERT 05J
< 8	90	² ALAM	94	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<15	90	² BORTOLETT	O92	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<28	90	² ALBRECHT				` '
¹ Measured with B(B ⁰ using PDG 12 values	s for the ir	nvolved branching	fracti	ons.	$\tau^{-}) / B(B^{0})$	$\rightarrow J/\psi K_S^0$
² Assumes equal produ	uction of <i>I</i>	B^{\top} and B^{\cup} at the	r(4.	5).		

$\Gamma(\psi(2S)K^0)/\Gamma(J/\psi)$						$\Gamma_{236}/\Gamma_{183}$
VALUE		DOCUMENT ID				
$0.82\pm0.13\pm0.12$		¹ AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal prod	luction of	B^+ and B^0 at the	$rac{\gamma}{4}$	S).		
$\Gamma(\psi(3770)K^0, \psi \rightarrow$,					Γ ₂₃₇ /Γ
VALUE (units 10 ⁻⁴)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<1.23		¹ AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal prod	luction of	B^+ and B^0 at the	$rac{\gamma}{4}$	S).		
$\Gamma(\psi(3770)K^0, \psi \rightarrow$	D^-D^+	-)/Γ _{total}				Г ₂₃₈ /Г
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.88		$^{ m 1}$ AUBERT				$\Upsilon(4S)$
¹ Assumes equal prod	luction of	${\it B}^{+}$ and ${\it B}^{0}$ at the	$rac{\gamma}{4}$	S).		
$\Gamma(\psi(2S)\pi^+\pi^-)/\Gamma($	$J/\psi(1S$	$(\pi^+\pi^-)$				$\Gamma_{239}/\Gamma_{195}$
<u>VALUE</u> 0.56±0.07±0.05				TECN	COMMENT	
$0.56\pm0.07\pm0.05$		¹ AAIJ	13A	LHCB	pp at 7 Te	V
1 Assuming lepton ur ratio B($J/\psi ightarrow \mu$ $e^{+}e^{-})=7.69\pm0$	$^{+}\mu^{-})/B$	$(\psi(2S) \rightarrow \mu^+\mu^-$	_) =	$B(J/\psi^{-\tau})$	$\rightarrow e^+e^-)$	$/B(\psi(2S) ightarrow$
$\Gamma(\psi(2S)K^+\pi^-)/\Gamma_t$	rotal					Г/Г
*						,
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT	,
VALUE (units 10 ⁻⁴) 5.80±0.39	<u>CL%</u>					,
• • • We do not use the	<u>CL%</u>	ng data for average	s, fits,	limits, e	etc. • • •	Υ(4S)
• • • We do not use th 5.57 ± 0.16	<u>CL%</u> ne followin	ng data for average ³ AUBERT	s, fits, 09A	limits, e	etc. • • • $e^+e^- \rightarrow$	r(4S)
• • • We do not use th 5.57 ± 0.16 $5.68 \pm 0.13 \pm 0.42$	<u>CL%</u> ne followin	ng data for average ³ AUBERT ² MIZUK	s, fits, 09A 09	limits, e A BABR BELL	etc. • • • $e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow$	$\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$
• • • We do not use the 5.57 ± 0.16 $5.68\pm0.13\pm0.42$ <10	CL% ne followin	ng data for average ³ AUBERT ² MIZUK ² ALBRECHT	s, fits, 09AA 09 90J	limits, 6 A BABR BELL ARG	etc. \bullet \bullet $e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	$ \begin{array}{c} $
• • • We do not use th 5.57 ± 0.16 $5.68 \pm 0.13 \pm 0.42$	ne following 90 ments with $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$	ang data for average 3 AUBERT 2 MIZUK 2 ALBRECHT 4 $\psi(2S) ightarrow \ell^+\ell^-$ where 4 and 6 at the	s, fits, 09A/ 09 90J vith m	limits, e A BABR BELL ARG easureme	etc. \bullet \bullet $e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	$ \begin{array}{c} $
• • • We do not use the 5.57 ± 0.16 $5.68\pm0.13\pm0.42$ <10 1 Combines measurem uses $\psi(2S) \rightarrow J/\psi$ 2 Assumes equal prod	ne following 90 hents with $\frac{1}{2}\pi^{+}\pi^{-}$ duction of tematic units of the second	ang data for average 3 AUBERT 2 MIZUK 2 ALBRECHT 4 $\psi(2S) ightarrow \ell^+\ell^-$ where 4 and 6 at the	s, fits, 09A/ 09 90J vith m	limits, e A BABR BELL ARG easureme	etc. \bullet \bullet $e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	$\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ ZUK 09 which
• • • We do not use the 5.57 ± 0.16 $5.68\pm0.13\pm0.42$ <10 1 Combines measurem uses $\psi(2S) \rightarrow J/\psi$ 2 Assumes equal proof 3 Does not report sys $\Gamma(\psi(2S) K^*(892)^0)$	ne following 90 ments with $\frac{1}{2}\pi + \frac{1}{2}\pi - \frac{1}{2}\pi$ duction of tematic until $\frac{1}{2}$	ang data for average 3 AUBERT 2 MIZUK 2 ALBRECHT 4 $\psi(2S) ightarrow \ell^+\ell^-$ where 4 and 6 at the	s, fits, $09AA$ 09 $90J$ with m e $\Upsilon(4S)$	limits, 6 A BABR BELL ARG easurements	etc. \bullet \bullet $e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	$\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ ZUK 09 which
• • • We do not use the 5.57 ± 0.16 $5.68\pm0.13\pm0.42$ <10 1 Combines measurem uses $\psi(2S) \rightarrow J/\psi$ 2 Assumes equal proof 3 Does not report sys $\Gamma(\psi(2S) \textit{K*}(892)^{0}) \textit{VALUE (units } 10^{-4})$ 5.9 ± 0.4 OUR FIT	ne following 90 ments with $\frac{1}{2} \frac{1}{2} \frac$	ang data for average 3 AUBERT 2 MIZUK 2 ALBRECHT 2 $\psi(2S) \rightarrow \ell^+\ell^-$ w 2 2 and 3 at the incertainties.	s, fits, $09AA$ 09 $90J$ with m e $\Upsilon(4S)$	limits, 6 A BABR BELL ARG easurements	etc. \bullet \bullet $e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e$ ent from MIZ	$\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ ZUK 09 which
• • • We do not use the 5.57 ± 0.16 $5.68\pm0.13\pm0.42$ <10 1 Combines measurem uses $\psi(2S) \rightarrow J/\psi$ 2 Assumes equal proof 3 Does not report sys $\Gamma(\psi(2S) K^*(892)^0)$	ne following 90 ments with $\frac{1}{2} \frac{1}{2} \frac$	ang data for average 3 AUBERT 2 MIZUK 2 ALBRECHT 2 $\psi(2S) \rightarrow \ell^+\ell^-$ w 2 2 and 3 at the incertainties.	s, fits, $09AA$ 09 $90J$ with materials $\Upsilon(4.5)$	Ilmits, 6 A BABR BELL ARG easurement S).	etc. \bullet \bullet $e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e$ ent from MIZ	Υ(4S) Υ(4S) Υ(4S)
• • • We do not use the 5.57 ± 0.16 $5.68\pm0.13\pm0.42$ <10 1 Combines measurem uses $\psi(2S) \rightarrow J/\psi$ 2 Assumes equal proof 3 Does not report sys $\Gamma(\psi(2S) \textit{K*}(892)^{0}) \textit{VALUE (units } 10^{-4})$ 5.9 ± 0.4 OUR FIT	ne following 90 ments with $\frac{1}{2} \frac{1}{2} \frac$	ang data for average $\frac{3}{8}$ AUBERT $\frac{2}{9}$ MIZUK $\frac{2}{9}$ ALBRECHT at $\psi(2S) \rightarrow \ell^+\ell^-$ where ℓ^+ and ℓ^- at the incertainties.	s, fits, $09AA$ 09 $90J$ with mase $\Upsilon(4.5)$	A BABR BELL ARG easurements). TECN or of 1.1	etc. \bullet \bullet $e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e$ ent from MIZ	Τ(4S) Τ(4S) Τ(4S) Τ(4S) ΣUK 09 which
• • • We do not use the 5.57 ± 0.16 $5.68\pm0.13\pm0.42$ <10 1 Combines measurem uses $\psi(2S) \rightarrow J/\psi$ 2 Assumes equal prod 3 Does not report sys $\Gamma(\psi(2S) K^*(892)^0) V_{ALUE (units 10^{-4})}$ 5.9 $\pm 0.4 OUR FI^*$ 6.0 $^{+0.5}_{-0.7} OUR AV$	ne following 90 ments with $\frac{1}{2} \frac{1}{2} \frac$	ang data for average $\frac{3}{8}$ AUBERT $\frac{2}{9}$ MIZUK $\frac{2}{9}$ ALBRECHT at $\psi(2S) \rightarrow \ell^+\ell^-$ where ℓ^+ and ℓ^- at the incertainties. **DOCUMENT ID** **Error* includes sca** 1 CHILIKIN 1 AUBERT	s, fits, $09AA$ 09 $90J$ with more $\Upsilon(4S)$ le fact	Ilimits, 6 A BABR BELL ARG easurement S). TECN or of 1.1 BELL	etc. \bullet \bullet $e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	$\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$
• • • We do not use the 5.57 ± 0.16 $5.68\pm0.13\pm0.42$ <10 1 Combines measurem uses $\psi(2S) \rightarrow J/\psi$ 2 Assumes equal prod 3 Does not report sys $\Gamma(\psi(2S) K^*(892)^0) V_{ALUE (units 10^{-4})}$ 5.9 $\pm 0.4 OUR FI^*$ 6.0 $+0.5 OUR AV_{0.5}$ $5.55 +0.22 +0.41$ $-0.23 -0.84$	ne following 90 ments with $\frac{1}{2} \frac{1}{2} \frac$	ang data for average 3 AUBERT 2 MIZUK 2 ALBRECHT 2 $\psi(2S) \rightarrow \ell^+\ell^-$ w 2 2 2 3 4 4 4 4 4 4 4 4	s, fits, 09A/ 09 90J vith ma e \(\gamma(4.5) \)	A BABR BELL ARG easurement S). TECN OR of 1.1 BELL BABR CLE2	etc. \bullet \bullet $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^-e^-$	T(4S) $T(4S)$

• • We do not use the following data for averages, fits, limits, etc. • •

5.52	+0.3 -0.3	5+0.53 $2-0.58$		$^{ m 1}$ MIZUK	09	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<19			90	$^{ m 1}$ ALAM			Repl. by RICHICHI 01
14	±8	± 4					$e^+e^- ightarrow \Upsilon(4S)$
<23			90	$^{ m 1}$ ALBRECHT	90J	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\psi(2S)K^*(892)^0)/\Gamma(J/\psi(1S)K^*(892)^0)$

 $\Gamma_{241}/\Gamma_{185}$

<u>VALUE</u>	<u>DOCUMENT ID</u>	TECN	COMMENT	
$0.484 \pm 0.018 \pm 0.011$	1,2 AAIJ	12L	LHCB	pp at 7 TeV

 $^{^1}$ AAIJ 12L reports 0.476 \pm 0.014 \pm 0.010 \pm 0.012 from a measurement of [Г(B^0 ightarrow $\psi(2S)K^*(892)^0)/\Gamma(B^0 \rightarrow J/\psi(1S)K^*(892)^0)] \times [B(J/\psi(1S) \rightarrow e^+e^-)] /$ [B($\psi(2S) \rightarrow e^+e^-$)] assuming B($J/\psi(1S) \rightarrow e^+e^-$) = (5.94 \pm 0.06) \times 10⁻²,B($\psi(2S) \rightarrow e^+e^-$) = (7.72 \pm 0.17) \times 10⁻³, which we rescale to our best values B($J/\psi(1S) \rightarrow e^+e^-$) = (5.971 \pm 0.032) \times 10⁻², B($\psi(2S) \rightarrow e^+e^-$) = $(7.89 \pm 0.17) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\psi(2S)K^*(892)^0)/\Gamma(\psi(2S)K^0)$

 $\Gamma_{241}/\Gamma_{236}$

VALUE	DOCUMENT ID	TECN	COMMENT
1.02±0.10 OUR FIT			
$1.00 \pm 0.14 \pm 0.09$	AUBERT 05J	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

$\Gamma(\chi_{c0} K^0)/\Gamma_{total}$

 Γ_{242}/Γ

Created: 5/30/2017 17:22

$VALUE$ (units 10^{-0}) CL	<u> DOCUMENT ID</u>		TECN	COMMENT
147± 27 OUR AVERAG	E			
$149^{+\ 105}_{-\ 87}\pm\ 8$	$^{1,2}LEES$	121	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$148 \pm 30 \pm 13$	^{1,3} LEES	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
142^{+}_{-} $^{55}_{44} \pm 22$	1,4 AUBERT	09AL	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

< 113	90	⁴ GARMASH	07	BELL	$e^+e^- ightarrow$	$\Upsilon(4S)$
<1240	90	$^{ m 1}$ AUBERT	05K	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
< 500	90	⁵ EDWARDS	01	CLE2	$e^+e^- ightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² ABE 980 reports $[B(B^0 \to \psi(2S)K^*(892)^0)]/[B(B^+ \to J/\psi(1S)K^+)] = 0.908 \pm 0.908$ 0.194 ± 0.10 . We multiply by our best value B($B^+ \rightarrow J/\psi(1S) K^+$)= $(9.9 \pm 1.0) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes B($J/\psi \rightarrow \mu^+\mu^-$) / B($\psi(2S) \rightarrow \mu^+\mu^-$) = B($J/\psi \rightarrow e^+e^-$) / B($\psi(2S) \rightarrow \mu^+\mu^-$) $e^+e^-) = 7.69 \pm 0.19$.

²LEES 12I reports $[\Gamma(B^0 \rightarrow \chi_{c0} \kappa^0)/\Gamma_{\text{total}}] \times [B(\chi_{c0} (1P) \rightarrow \kappa_S^0 \kappa_S^0)] =$ $(0.46^{+0.25}_{-0.17}\pm0.21)\times10^{-6}$ which we divide by our best value B($\chi_{c0}(1P)\to K_5^0K_5^0$) = $(3.10 \pm 0.18) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ³ Measured in the $B^0 \rightarrow K_S^0 K^+ K^-$ decay.

⁴ Uses Dalitz plot analysis of the $B^0 \to K^0 \pi^+ \pi^-$ final state decays.

 5 EDWARDS 01 assumes equal production of B^0 and B^+ at the $\Upsilon(4S).$ The correlated uncertainties (28.3)% from B($J/\psi(1S) \to \gamma \eta_{\rm C}$) in those modes have been accounted for.

$\Gamma(\chi_{c0}K^*(892)^0)/\Gamma$	- total					Γ ₂₄₃ /Γ
<i>VALUE</i> (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
$1.7 \pm 0.3 \pm 0.2$		¹ AUBERT	08 BI	D BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$
• • • We do not use t	he followir					
<7.7	90	$^{ m 1}$ AUBERT	05K	BABR	Repl. by A	UBERT 08BD
$^{ m 1}$ Assumes equal pro	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at th	ne γ (4	4 <i>S</i>).		
$\Gamma(\chi_{c1}\pi^0)/\Gamma_{ m total}$						Γ ₂₄₄ /Γ
<i>VALUE</i> (units 10 ⁻⁵)		DOCUMENT ID)	TECN	COMMENT	
$1.12 \pm 0.25 \pm 0.12$		$^{ m 1}$ KUMAR	80	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at th	ne γ (4	4 <i>S</i>).		
$\Gamma(\chi_{c1}K^0)/\Gamma_{ m total}$						Γ ₂₄₅ /Γ
<i>VALUE</i> (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
3.93±0.27 OUR A	VERAGE					
$3.78^{igoplus 0.17}_{-0.16} \pm 0.33$		$^{ m 1}$ BHARDWAJ	11	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.2 \pm 0.3 \pm 0.3$		² AUBERT	09 B	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$3.1 \ ^{+1.6}_{-1.1} \ \pm 0.1$		³ AVERY	00	CLE2	e^+e^-	$\Upsilon(4S)$
• • • We do not use t	he followir	ng data for averag	es, fits	s, limits,	etc. • • •	
$3.51 \pm 0.33 \pm 0.45$		¹ SONI	06	BELL	Repl. by Bl	HARDWAJ 11
$4.53\!\pm\!0.41\!\pm\!0.51$		¹ AUBERT	05 J			
$4.3 \pm 1.4 \pm 0.2$		⁴ AUBERT	02	BABR	Repl. by Al	JBERT 05J
<27	90	¹ ALAM	94		$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro						/ / ->
² Uses $\chi_{c1,2} \rightarrow J/\psi$		es B($\Upsilon(4S) \to B$	+ <i>B</i> -) = (51.	$6\pm0.6)\%$ an	$d B(\Upsilon(4S) \rightarrow$
$B^0 \overline{B}{}^0) = (48.4 \pm $. r= / =0	0\ /
³ AVERY 00 reports						
$\Gamma_{ m total} \times [{ m B}(\chi_{c1})] \times [{ m B}(\chi_{c1})]$ 0.016, which we re	$(P) o \gamma J$	$I/\psi(15))$] assumir ur best value B(γ	ıg Β(χ ₁(1 <i>P</i>)	$(c1^{(1P)})$	$\rightarrow \gamma J/\psi(1S)$ $/\psi(1S)) = 0$	$(33.9 \pm 1.2) \times$
10^{-2} . Our first er						
error from using ou	ır best valu	e. Assumes equal	produ	iction of	B^+ and B^0	at the $\Upsilon(4S)$.
⁴ AUBERT 02 report	\approx (5.4 \pm 1.4	$4\pm1.1) imes10^{-\dot4}$ fro	m a m	neasurem	ent of $[\Gamma(B^0)]$	$\rightarrow \chi_{c1} \dot{\kappa}^0)/$
⁴ AUBERT 02 report Γ_{total}] × [B(χ_{c1} () 0.016, which we re	$(1P) \rightarrow \gamma J$	$J/\psi(1S))]$ assumin	$g B(\chi)$	$\langle c1^{(1P)} \rangle$	$\rightarrow \gamma J/\psi(1.5)$	$(5)) = 0.273 \pm $
10^{-2} . Our first er	scale to ou	ir best value ${\sf B}(\chi_{\sf C})$	$1^{(1P)}$	$ ho ightarrow \gamma J$	$/\psi(15)) = ($	$33.9 \pm 1.2) \times$
error from using ou	ror is their ir best valu	e. Assumes equal	produ	ction of	B^+ and B^0	at the $\Upsilon(4S)$.
	_	·	•			
$\Gamma(\chi_{c1}K^0)/\Gamma(J/\psi(V))$	12) V.)	DOCUMENT ID	,	TECN	COMMENT	$\Gamma_{245}/\Gamma_{183}$
0.53±0.16±0.02		¹ AUBERT	02	RARE	$\frac{COMMENT}{e^+e^-} \rightarrow$	Υ(45)
0.JJ T 0.10 T 0.02		AUDLINI	UΖ	DADE		, (43)

 1 AUBERT 02 reports 0.66 \pm 0.11 \pm 0.17 from a measurement of $[\Gamma(B^{0} \rightarrow \chi_{c1} K^{0})/$ $\Gamma(B^0 \to J/\psi(1S)\,K^0)] \times [\mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S))]$ assuming $\mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = 0.273 \pm 0.016$, which we rescale to our best value $\mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S))$ $\gamma J/\psi(1S)$) = (33.9 \pm 1.2) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c1}\pi^-K^+)/\Gamma_{total}$

 Γ_{246}/Γ

VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
4.97±0.12±0.28	¹ BHARDWAJ 16	BELL	$e^+e^- ightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ MIZUK

08 BELL Repl. by BHARDWAJ 16

Created: 5/30/2017 17:22

 $\Gamma_{246}/\Gamma_{184}$

 $\Gamma(\chi_{c1}\pi^-K^+)/\Gamma(J/\psi(1S)K^+\pi^-)$ VALUE0.480±0.021±0.017 DOCUMENT ID1 LEES

 1 LEES 12B reports $0.474\pm0.013\pm0.026$ from a measurement of $[\Gamma(B^0\to\chi_{c1}\pi^-K^+)/$ $\Gamma(B^0 \to J/\psi(1S)\,K^+\,\pi^-)] \times [\mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S))] \text{ assuming } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale to our best value } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale to our best value } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale to our best value } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale to our best value } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale to our best value } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale to our best value } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale to our best value } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale to our best value } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text{ which we rescale } \mathrm{B}(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}, \text$ $\gamma J/\psi(1S))=(33.9\pm 1.2)\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c1} K^*(892)^0)/\Gamma_{total}$

 Γ_{247}/Γ

<u>UE (units 10^{-4})</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>7</u> **2.39 \pm 0.19 OUR FIT** Error includes scale factor of 1.2. VALUE (units 10^{-4})

$2.22_{-0.31}^{+0.40}$ OUR AVERAGE Error includes scale factor of 1.6.

2.5
$$\pm 0.2$$
 ± 0.2 1 AUBERT 09B BABR $e^+e^- \rightarrow \Upsilon(4S)$ 1.73 $^+0.15 + 0.34 _{-0.12 - 0.22}$ 2 MIZUK 08 BELL $e^+e^- \rightarrow \Upsilon(4S)$

ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

```
<sup>2</sup> SONI
3.14 \pm 0.34 \pm 0.72
                                                       06 BELL Repl. by MIZUK 08
                                    <sup>2</sup> AUBERT
                                                       05J BABR Repl. by AUBERT 09B
3.27 \pm 0.42 \pm 0.64
                                    <sup>3</sup> AUBERT
                                                       02 BABR Repl. by AUBERT 05J
3.9 \pm 1.3 \pm 0.1
                                    <sup>4</sup> ALAM
                                                       94 CLE2 e^+e^- \rightarrow \Upsilon(4S)
```

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{1}\}operatorname{Uses}\chi_{c1,2}\rightarrow\ J/\psi\gamma.\ \operatorname{Assumes}\ \operatorname{B}(\varUpsilon(4S)\rightarrow\ B^{+}\,B^{-})=(51.6\pm0.6)\%\ \operatorname{and}\ \operatorname{B}(\varUpsilon(4S)\rightarrow\ B^{+}\,B^{-})=(51.6\pm0.6)\%$ $B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^3}$ AUBERT 02 reports (4.8 \pm 1.4 \pm 0.9) \times 10⁻⁴ from a measurement of [$\Gamma(B^0 \rightarrow$ $\chi_{c1} K^*(892)^0)/\Gamma_{total}] \times [B(\chi_{c1}(1P) \to \gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = 0.273 \pm 0.016$, which we rescale to our best value $B(\chi_{c1}(1P) \to \gamma J/\psi(1S))$ $\gamma J/\psi(1S)$) = (33.9 \pm 1.2) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁴BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c1}K^*(892)^0)/\Gamma($	$(J/\psi(1S)K^*(892)^0)$				$\Gamma_{247}/\Gamma_{185}$
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
19.8±1.1±1.5	rror includes scale factor of $^{ m 1}$ AAIJ		LHCB	pp at 7 Te	èV
1 Uses B($\chi_{c1} ightarrow ~J/\psi$	$(34.4 \pm 1.5)\%$.				
$\Gamma(\chi_{c1} K^*(892)^0)/\Gamma($	•		TECN	COMMENT	$\Gamma_{247}/\Gamma_{245}$
<u>VALUE</u> 0.72±0.11±0.12	<u>DOCUMENT ID</u> AUBERT				Υ(4S)
	e following data for average				7 (13)
$0.89 \pm 0.34 \pm 0.17$	¹ AUBERT				UBERT 05J
¹ Assumes equal prod	uction of B^+ and B^0 at th				
$\Gamma(X(4051)^{-}K^{+}, X^{-})$	$^- ightarrow \chi_{c1} \pi^-) / \Gamma_{ m total}$	·	ŕ		Γ ₂₄₈ /Γ
VALUE (units 10^{-5})	<u>CL%</u> <u>DOCUMENT ID</u>		TECN	COMMENT	
$3.0^{f +1.5}_{f -0.8} {+3.7}_{f -1.6}$	$^{ m 1}$ MIZUK				
• • • We do not use th	e following data for average	es, fits,	limits,	etc. • • •	
<1.8	90 ^{1,2} LEES	12 B	BABR		
2 Uses $\gamma_{a1} \rightarrow J/\psi \gamma$	mode. Uses $\chi_{c1} ightarrow J/\psi \gamma$	v mode	- Finds	and hoor	rintion of the
data without this B^0	$^{0} \rightarrow X(4051)^{+}K^{-}$ decay			a good desc	
data without this B^0 $\Gamma(X(4248)^-K^+, X^-)$	$0 o X(4051)^+ K^-$ decay $- o \chi_{c1} \pi^- / \Gamma_{ ext{total}}$	mode	in a fit.		Γ ₂₄₉ /Γ
data without this B^0	$0 o X(4051)^+ K^-$ decay $- o \chi_{c1} \pi^- / \Gamma_{ ext{total}}$	mode	in a fit.	COMMENT	Γ ₂₄₉ /Γ
data without this B^0 $\Gamma(X(4248)^- K^+, X^-)$ $VALUE (units 10^{-5}) 4.0^{+2.3}_{-0.9}^{+19.7}$	$0 o X(4051)^+ K^-$ decay $T o \chi_{c1} \pi^- / \Gamma_{ ext{total}}$	mode 08	in a fit. TECN BELL	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow}$	Γ ₂₄₉ /Γ
data without this B^0 $\Gamma(X(4248)^- K^+, X^-)$ $VALUE (units 10^{-5}) 4.0^{+2.3}_{-0.9}^{+19.7}$	$0 o X(4051)^+ K^- ext{ decay}$ $- o \chi_{c1} \pi^-) / \Gamma_{ ext{total}}$ $- ext{CL\%} ext{DOCUMENT ID}$ $1 ext{ MIZUK}$	08 es, fits,	in a fit. TECN BELL	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow}$	Γ ₂₄₉ /Γ
data without this B^0 $\Gamma(X(4248)^- K^+, X^-)$ $VALUE (units 10^{-5}) 4.0^{+2.3}_{-0.9}^{+19.7} -0.9^- 0.5 • • • We do not use the case of the$	$0 \rightarrow X(4051)^+K^-$ decay $- \rightarrow \chi_{c1}\pi^-)/\Gamma_{total}$ $CL\%$ DOCUMENT ID 1 MIZUK The following data for average $- 1,2$ LEES auction of $- 1,2$ LEES auction of $- 1,2$ LEES are mode. Finds a good described $- 1,2$ LEES and $- 1,2$ LEES are mode. Finds a good described $- 1,2$ LEES are mode.	mode 08 es, fits, $12B$ e $\Upsilon(4.8)$	TECN BELL limits, G BABR S).	$\frac{\textit{COMMENT}}{e^+e^-} \rightarrow$ etc. • •	Γ₂₄₉/Γ (45)
data without this B^0 $\Gamma(X(4248)^-K^+, X^-)$ $VALUE (units 10^{-5}) 4.0^{+2.3+19.7}_{-0.9-0.5} • • • We do not use the case of the condition of the cond$	$0 \rightarrow X(4051)^+K^-$ decay $0 \rightarrow X(4051)^+K^-$ decay $0 \rightarrow X_{c1}\pi^ 0 \rightarrow X_{c1}$	mode 08 es, fits, $12B$ e $\Upsilon(4.8)$	TECN BELL limits, G BABR S).	$\frac{\textit{COMMENT}}{e^+e^-} \rightarrow$ etc. • •	Γ₂₄₉/Γ (45)
data without this B^0 $\Gamma(X(4248)^-K^+, X^-)$ $VALUE (units 10^{-5}) 4.0^{+2.3+19.7}_{-0.9-0.5} • • • We do not use the case of the condition of the cond$	$0 \rightarrow X(4051)^+K^-$ decay $- \rightarrow X_{c1}\pi^-)/\Gamma_{total}$ $- \rightarrow X_{c1}\pi^-)/\Gamma_{tot$	mode 08 es, fits, $12B$ e $\Upsilon(4.$ cription	TECN BELL limits, of BABR S). n of the	$\frac{COMMENT}{e^{+}e^{-}} \rightarrow$ etc. • • •	$rac{\Gamma_{249}/\Gamma}{ \Upsilon(4S)}$ at this $B^0 ightarrow \Gamma_{250}/\Gamma$
data without this B^0 $\Gamma(X(4248)^- K^+, X^-)$ $VALUE (units 10^{-5}) 4.0^{+2.3}_{-0.9}^{+19.7} 4.0^{+2.3}_{-0.9}^{+19.7} 4.0^{-0.9}_{-0.5}^{-0.5} • • • We do not use the value of A is a sum of $	$0 \rightarrow X(4051)^+K^-$ decay $X \rightarrow X(4051)^+K^-$ decay $X \rightarrow X(1\pi^-)/\Gamma_{\text{total}}$ $X \rightarrow X(1051)^+K^-$ decay	08 es, fits, 12B e $\Upsilon(4.$ cription	TECN BELL limits, of BABR S). n of the TECN BELL	$\frac{COMMENT}{e^{+}e^{-}} \rightarrow$ etc. • • •	$rac{\Gamma_{249}/\Gamma}{ \Upsilon(4S)}$ at this $B^0 ightarrow \Gamma_{250}/\Gamma$
data without this B^0 $\Gamma(X(4248)^- K^+, X^-)$ $VALUE (units 10^{-5}) 4.0^{+2.3}_{-0.9}^{+19.7} 4.0^{+2.3}_{-0.9}^{+19.7} 4.0^{-0.9}_{-0.5}^{-0.5} • • • We do not use the value of A is a sum of $	$0 \rightarrow X(4051)^+K^-$ decay $- \rightarrow X_{c1}\pi^-)/\Gamma_{total}$ $- \rightarrow X_{c1}\pi^-)/\Gamma_{tot$	08 es, fits, 12B e $\Upsilon(4.$ cription	TECN BELL limits, of BABR S). n of the TECN BELL	$\frac{COMMENT}{e^{+}e^{-}} \rightarrow$ etc. • • •	$rac{\Gamma_{249}/\Gamma}{ \Upsilon(4S)}$ at this $B^0 ightarrow \Gamma_{250}/\Gamma$
data without this B^0 $\Gamma(X(4248)^- K^+, X^-)$ $(X(4248)^- K^+, X^-)$ $(X(4248)^- K^+, X^-)$ $(X(423)^+ 19.7$ $(X(423)^+ 19.7$ $(X(4248)^+ K^-)$ $(X(4248)$	$C_0 \rightarrow X(4051)^+K^-$ decay $C_0 \rightarrow X_{c1}\pi^-)/\Gamma_{total}$ $C_0 \rightarrow $	mode 08 es, fits, $12B$ e $\Upsilon(4.$ cription 16 e $\Upsilon(4.$	TECN BELL limits, of BABR S). n of the TECN BELL S).	$\frac{COMMENT}{e^{+}e^{-}} \rightarrow$ etc. • • • $\frac{COMMENT}{e^{+}e^{-}} \rightarrow$	$rac{\Gamma_{249}/\Gamma}{ \Upsilon(4S)}$ at this $B^0 ightarrow \Gamma_{250}/\Gamma$
data without this B^0 $\Gamma(X(4248)^-K^+, X^-)$ $VALUE (units 10^{-5}) 4.0^{+2.3}_{-0.9}^{+19.7} 4.0^{+2.3}_{-0.9}^{+19.7} 4.0^{-0.9}_{-0.5}^{-0.5} • • • We do not use the sequel product of $	$C o X(4051)^+ K^-$ decay $C o X_{C1}\pi^-$)/ Γ_{total} $CL\%$ $DOCUMENT ID$ 1 MIZUK The following data for average O	mode 08 es, fits, $12B$ e $\Upsilon(4.6)$ 16 e $\Upsilon(4.6)$	TECN BELL limits, of BABR S). n of the TECN BELL S).	$\frac{COMMENT}{e^{+}e^{-}} \rightarrow$ etc. • • • • $\frac{COMMENT}{e^{+}e^{-}} \rightarrow$	Γ_{249}/Γ $T(4S)$ at this $B^0 o$ Γ_{250}/Γ $T(4S)$
data without this B^0 $\Gamma(X(4248)^-K^+, X^-)$ $VALUE (units 10^{-5}) 4.0^{+2.3}_{-0.9}^{+19.7}_{-0.5} • • • We do not use the case of the content of t$	$C_0 \rightarrow X(4051)^+K^-$ decay $C_0 \rightarrow X_{c1}\pi^-)/\Gamma_{total}$ $C_0 \rightarrow $	mode 08 es, fits, 12B e $\Upsilon(4.6)$ cription 16 e $\Upsilon(4.6)$	TECN BELL limits, of BABR S). n of the TECN BELL S).	$\frac{COMMENT}{e^{+}e^{-}} \rightarrow$ etc. • • • • $\frac{COMMENT}{e^{+}e^{-}} \rightarrow$	Γ_{249}/Γ $T(4S)$ at this $B^0 o$ Γ_{250}/Γ $T(4S)$

$\Gamma(\chi_{c2}K^0)/\Gamma_{total}$						Γ ₂₅₂ /Γ
` '	CI%	DOCUMENT ID)	TECN	COMMENT	
<u>VALUE</u> <1.5 × 10 ^{−5}	90	¹ BHARDWAJ				
• • We do not use t	• •					(13)
$< 2.8 \times 10^{-5}$	90	² AUBERT	09B	BABR	e^+e^-	$\Upsilon(4S)$
$< 2.6 \times 10^{-5}$		1				HARDWAJ 11
$< 4.1 \times 10^{-5}$	90	$^{ m 1}$ AUBERT	05K	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes equal proo 2 Uses $\chi_{c1,2} ightarrow J/\psi$ $B^0 \overline{B}{}^0) = (48.4 \pm$	γ . Assum				$6\pm0.6)\%$ ar	nd B($\varUpsilon(4S) ightarrow$
$\Gamma(\chi_{c2}K^*(892)^0)/\Gamma$	total					Γ_{253}/Γ
VALUE (units 10 ⁻⁵)					COMMENT	
4.9±1.2 OUR FIT	Error inc	ludes scale factor 1 AUBERT			. + -	20(4.6)
6.6±1.8±0.5 • • • We do not use t	he followi					1 (45)
<7.1	90	_	_			$\Upsilon(AS)$
<3.6		² SONI ² AUBERT	05 05	BABF	e e e → R Repl. bv /	AUBERT 09B
1 Uses $\chi_{c1,2} ightarrow \ {\it J/\psi}$						
$B^{0}\overline{B}^{0}) = (48.4 \pm$		163 D(1(13)	<i>.</i>) — (31.	0 ± 0.0) / 0 di	Id B(/ (13)
$\frac{2}{2}$ Assumes equal prod		f B^+ and B^0 at	the $\Upsilon(4)$	4 <i>S</i>).		
$\Gamma(\chi_{c2}K^*(892)^0)/\Gamma$			`	,		$\Gamma_{253}/\Gamma_{247}$
` _ ′	•	~				
		DOCUMENT	ID	TECN	COMMENT	
20 ± 5 OUR FIT		DOCUMENT and des scale factor of		TECN	COMMENT	
20 ±5 OUR FIT 17.1±5.0±2.0	Error inclu	udes scale factor of	of 1.1.		COMMENT B pp at 7 T	
	Error inclu	udes scale factor of AAIJ	of 1.1. 13/	AC LHCE	_	
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} ightarrow J/$	Error inclu $(\psi\gamma)/B(\chi$	udes scale factor of AAIJ	of 1.1. 13/	AC LHCE	_	TeV
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} \rightarrow J/\Gamma$)/ $\Gamma(\chi_{c2}\pi^-K^+)/\Gamma_{tot}$	Error inclu $(\psi\gamma)/B(\chi$	udes scale factor of 1 AAIJ $\chi_{c2} ightarrow J/\psi \gamma) =$	of 1.1. 13/ 1.76 ±	AC LHCE : 0.11.	3 <i>pp</i> at 7 T	
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} \rightarrow J/\Gamma$) $\Gamma(\chi_{c2}\pi^-K^+)/\Gamma_{tot}$ VALUE (units 10^{-4})	Error inclu $(\psi\gamma)/B(\chi$	udes scale factor of 1 AAIJ $g_{C2} ightarrow J/\psi \gamma) = 0$	of 1.1. 13/ 1.76 ±	O.11. TECN	B pp at 7 T	Γ ₂₅₄ /Γ
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} \rightarrow J/\Gamma$) $\Gamma(\chi_{c2}\pi^{-}K^{+})/\Gamma_{tot}$ VALUE (units 10^{-4}) 0.72 \pm 0.09 \pm 0.05	Error inclu $(\psi\gamma)$ /B $(\chi$	udes scale factor of 1 AAIJ $_{C2} ightarrow J/\psi \gamma) = rac{DOCUMENT}{^1}$ BHARDWA	of 1.1. 134 1.76 ±	AC LHCE 0.11. TECN BELL	3 <i>pp</i> at 7 T	Γ ₂₅₄ /Γ
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} \rightarrow J/\Gamma$) $\Gamma(\chi_{c2}\pi^-K^+)/\Gamma_{tot}$ VALUE (units 10^{-4})	Error inclu $(\psi\gamma)$ /B $(\chi$	udes scale factor of 1 AAIJ $_{C2} ightarrow J/\psi \gamma) = rac{DOCUMENT}{^1}$ BHARDWA	of 1.1. 134 1.76 ±	AC LHCE 0.11. TECN BELL	B pp at 7 T	Γ ₂₅₄ /Γ
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} \rightarrow J/\Gamma$) $\Gamma(\chi_{c2}\pi^{-}K^{+})/\Gamma_{tot}$ VALUE (units 10^{-4}) 0.72 \pm 0.09 \pm 0.05 1 Assumes equal proof $\Gamma(\chi_{c2}\pi^{+}\pi^{-}K^{0})/\Gamma$	Error include $(\psi\gamma)/B(\chi)$ all duction of total	udes scale factor of 1 AAIJ $_{Cc2} ightarrow J/\psi \gamma) = rac{DOCUMENT}{^1}$ BHARDWA f B^+ and B^0 at 1	of 1.1. $13/4$ $1.76 \pm \frac{1}{2}$ $\frac{1}{2}$ $$	TECN BELL	B pp at 7 T $\frac{COMMENT}{e^+e^-} \rightarrow$	Γ_{254}/Γ $\Upsilon(4S)$ Γ_{255}/Γ
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} \rightarrow J/\Gamma$) $\Gamma(\chi_{c2}\pi^{-}K^{+})/\Gamma_{tot}$ VALUE (units 10^{-4}) 0.72 \pm 0.09 \pm 0.05 1 Assumes equal proof $\Gamma(\chi_{c2}\pi^{+}\pi^{-}K^{0})/\Gamma$	Error include $(\psi\gamma)/B(\chi)$ all duction of total	udes scale factor of 1 AAIJ $_{Cc2} ightarrow J/\psi \gamma) = rac{DOCUMENT}{^1}$ BHARDWA f B^+ and B^0 at 1	of 1.1. $13/4$ $1.76 \pm \frac{1}{2}$ $\frac{1}{2}$ $$	TECN BELL	B pp at 7 T $\frac{COMMENT}{e^+e^-} \rightarrow$	Γ_{254}/Γ $\Upsilon(4S)$ Γ_{255}/Γ
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} \rightarrow J/\Gamma$) $\Gamma(\chi_{c2}\pi^-K^+)/\Gamma_{tot}$ VALUE (units 10^{-4}) 0.72 \pm 0.09 \pm 0.05 1 Assumes equal prod $\Gamma(\chi_{c2}\pi^+\pi^-K^0)/\Gamma_{VALUE}$ <1.70 × 10^{-4}	Error include $(\psi\gamma)/B(\chi)$ all duction of total $\frac{\mathit{CL\%}}{90}$	udes scale factor of 1 AAIJ 2 2 2 2 3 4 AAIJ 2 2 3 4 4 4 BHARDWA 4 4 4 4 4 4 BHARDWA 4 4 BHARDWA	of 1.1. 134 $1.76 \pm \frac{7D}{4}$ $1.76 \pm \frac{1}{4}$	TECN BELL TECN BELL TECN BELL	B pp at 7 T $\frac{COMMENT}{e^+e^-} \rightarrow$	Γ_{254}/Γ $\Upsilon(4S)$ Γ_{255}/Γ
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} \rightarrow J/\Gamma$) $\Gamma(\chi_{c2}\pi^{-}K^{+})/\Gamma_{tot}$ VALUE (units 10^{-4}) 0.72 \pm 0.09 \pm 0.05 1 Assumes equal proof $\Gamma(\chi_{c2}\pi^{+}\pi^{-}K^{0})/\Gamma$	Error include $(\psi\gamma)/B(\chi)$ all duction of total $\frac{\mathit{CL\%}}{90}$	udes scale factor of 1 AAIJ 2 2 2 2 3 4 AAIJ 2 2 3 4 4 4 BHARDWA 4 4 4 4 4 4 BHARDWA 4 4 BHARDWA	of 1.1. 134 $1.76 \pm \frac{7D}{4}$ $1.76 \pm \frac{1}{4}$	TECN BELL TECN BELL TECN BELL	B pp at 7 T $\frac{COMMENT}{e^+e^-} \rightarrow$	Γ_{254}/Γ $\Upsilon(4S)$ Γ_{255}/Γ
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} \rightarrow J/\Gamma$ $\Gamma(\chi_{c2}\pi^-K^+)/\Gamma_{tot}$ VALUE (units 10^{-4}) 0.72 \pm 0.09 \pm 0.05 1 Assumes equal proof $\Gamma(\chi_{c2}\pi^+\pi^-K^0)/\Gamma_{VALUE}$ <1.70 × 10 ⁻⁴ 1 Assumes equal proof	Error include $(\psi\gamma)/B(\chi)$ and $(\psi\gamma)/B(\chi)$ duction of $(\psi\gamma)$ $(\psi\gamma)/B(\chi)$ $(\psi\gamma)/B(\chi)$ duction of $(\psi\gamma)/B(\chi)$	udes scale factor of 1 AAIJ 2 2 2 2 3 4 AAIJ 2 2 3 4 4 4 BHARDWA 4 4 4 4 4 4 BHARDWA 4 4 BHARDWA	of 1.1. 134 $1.76 \pm \frac{7D}{4}$ $1.76 \pm \frac{1}{4}$	TECN BELL TECN BELL TECN BELL	B pp at 7 T $\frac{COMMENT}{e^+e^-} \rightarrow$	Γ_{254}/Γ $\Upsilon(4S)$ Γ_{255}/Γ
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} \rightarrow J/\Gamma$ $\Gamma(\chi_{c2}\pi^-K^+)/\Gamma_{tot}$ VALUE (units 10^{-4}) 0.72 \pm 0.09 \pm 0.05 1 Assumes equal proof $\Gamma(\chi_{c2}\pi^+\pi^-K^0)/\Gamma_{VALUE}$ <1.70 × 10 ⁻⁴ 1 Assumes equal proof $\Gamma(\chi_{c2}\pi^-\pi^0K^+)/\Gamma_{C2}\pi^-\pi^0K^+$	Error include $(\psi\gamma)/\mathrm{B}(\chi)$ all duction of $\frac{CL\%}{90}$ duction of $\frac{CL\%}{100}$	udes scale factor of 1 AAIJ 2 $_{C2} ightarrow J/\psi \gamma) = \frac{DOCUMENT}{^1}$ BHARDWA 1 1 BHARDWA 1 BHARDWA 1 BHARDWA 1 BHARDWA 1 BHARDWA	of 1.1. 13.4 1.76 \pm 1.76 \pm 1.76 \pm 1.76 the $\Upsilon(4)$ 1.76 \pm 1.76 the $\Upsilon(4)$ 1.76 \pm 1.77 \pm 1.76 \pm 1.77 \pm 1.	TECN BELL 45). TECN BELL 45).	$\begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \end{array}$ $\begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \end{array}$	
17.1 \pm 5.0 \pm 2.0 1 Uses B($\chi_{c1} \rightarrow J/\Gamma$ $\Gamma(\chi_{c2}\pi^-K^+)/\Gamma_{tot}$ VALUE (units 10^{-4}) 0.72 \pm 0.09 \pm 0.05 1 Assumes equal proof $\Gamma(\chi_{c2}\pi^+\pi^-K^0)/\Gamma_{VALUE}$ <1.70 × 10 ⁻⁴ 1 Assumes equal proof	Error include $(\psi\gamma)/\mathrm{B}(\chi)$ all duction of $\frac{CL\%}{90}$ duction of $\frac{CL\%}{100}$	udes scale factor of 1 AAIJ 2 $_{C2} ightarrow J/\psi \gamma) = \frac{DOCUMENT}{^1}$ BHARDWA 1 1 BHARDWA 1 BHARDWA 1 BHARDWA 1 BHARDWA 1 BHARDWA	of 1.1. 13.4 1.76 \pm 1.76 \pm 1.76 \pm 1.76 the $\Upsilon(4)$ 1.76 \pm 1.76 the $\Upsilon(4)$ 1.76 \pm 1.77 \pm 1.76 \pm 1.77 \pm 1.	TECN BELL 45). TECN BELL 45).	$\begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \end{array}$ $\begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \end{array}$	

$\Gamma(K^+\pi^-)/\Gamma_{ ext{total}}$				Γ ₂₅₇ /Γ
VALUE (units 10^{-6}) CL%	DOCUMENT ID		TECN	COMMENT
19.6 ± 0.5 OUR FIT				
19.6 \pm 0.5 OUR AVERAGE				
$20.00 \pm 0.34 \pm 0.60$	¹ DUH	13		$e^+e^- \rightarrow \Upsilon(4S)$
$19.1 \pm 0.6 \pm 0.6$	¹ AUBERT	07 B	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$18.0 \begin{array}{c} + & 2.3 & +1.2 \\ - & 2.1 & -0.9 \end{array}$	$^{ m 1}$ BORNHEIM	03	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • We do not use the following	ng data for average	es, fits	, limits,	etc. • • •
$19.9~\pm~0.4~\pm0.8$	¹ LIN	07A	BELL	Repl. by DUH 13
$18.5 \pm 1.0 \pm 0.7$	$^{ m 1}$ CHAO	04	BELL	Repl. by LIN 07A
$17.9 \pm 0.9 \pm 0.7$	$^{ m 1}$ AUBERT	02Q	BABR	Repl. by AUBERT 07B
$22.5 \pm 1.9 \pm 1.8$	$^{ m 1}$ CASEY	02	BELL	Repl. by CHAO 04
$19.3 \begin{array}{c} + \ 3.4 \end{array} \begin{array}{c} +1.5 \\ - \ 3.2 \end{array} \begin{array}{c} -0.6 \end{array}$	¹ ABE	01н	BELL	Repl. by CASEY 02
$16.7 \pm 1.6 \pm 1.3$	¹ AUBERT	01E	BABR	Repl. by AUBERT 02Q
< 66 90	² ABE	00 C	SLD	$e^+e^- \rightarrow Z$
$17.2 \ \ \begin{array}{c} + \ 2.5 \\ - \ 2.4 \end{array} \ \pm 1.2$	¹ CRONIN-HEN.	00	CLE2	Repl. by BORNHEIM 03
$15 \begin{array}{ccc} + & 5. \\ - & 4 \end{array} \pm 1.4$	GODANG	98	CLE2	Repl. by CRONIN- HENNESSY 00
$\begin{array}{ccc} 24 & \begin{array}{cc} +17 \\ -11 \end{array} & \pm 2 \end{array}$	³ ADAM	96 D	DLPH	
< 17 90	ASNER	96	CLE2	Sup. by ADAM 96D
< 30 90	⁴ BUSKULIC	96V	ALEP	$e^+e^- o Z$
< 90 90	⁵ ABREU	95N	DLPH	Sup. by ADAM 96D
< 81 90	⁶ AKERS	94L	OPAL	
< 26 90	⁷ BATTLE	93	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<180 90	ALBRECHT	91 B	ARG	
< 90 90	⁸ AVERY	89 B	CLEO	` ,
<320 90	AVERY	87	CLEO	$e^+e^- ightarrow \gamma(4S)$
1 Assumes equal production of 2 ABE 00C assumes B(Z $ ightarrow$	B^{+} and B^{0} at the $b \overline{b}$)=(21.7 ± 0	ie $\Upsilon(4$	(S).	B fractions $f_{D0} = f_{D+} =$
$(39.7^{+1.8}_{-2.2})\%$ and $f_{B_s}=(10.5)$,		В° В
		c	0.10	Santailantiana (mana 1700 amal
³ ADAM 96D assumes $f_{B^0} = 1$ B_s decays cannot be separate	$t_{B^-} = 0.39$ and t_{B^-}	$B_s =$	0.12.	contributions from B° and
B_s decays cannot be separate rates for the two neutral B m	ed. Limits are give nesons	en tor	tne wei	gnted average of the decay
rates for the two neutral B m 4 BUSKULIC 96V assumes PD0	G 96 production fr	action	is for B^0	0 , B^{+} , B_{s} , b baryons.
5 Assumes a B^0 , B^- producti	on fraction of 0.3	9 and	а <i>В</i> _с р	roduction fraction of 0.12.
Contributions from B^0 and	B ⁰ decays cannot	be se	eparated	l. Limits are given for the
Contributions from B ⁰ and weighted average of the deca	y rates for the two	neuti	ral <i>B</i> m	esons.
⁶ Assumes B($Z \rightarrow b\overline{b}$) = 0.23	$^{\circ}_{L7}$ and $^{\circ}_{B_{a}}$ (B_{a}^{0}) f	raction	n 39.5%	(12%).
⁷ BATTLE 93 assumes equal p	roduction of $B^0\overline{B}$	0 and	B^+B^-	at $\Upsilon(4S)$.
8 Assumes the $\varUpsilon(4S)$ decays 4	3% to $B^0\overline{B}^0$.			
$\Gamma(\mathcal{K}^+\pi^-)/\Gamma(\mathcal{K}^0\pi^0)$				$\Gamma_{257}/\Gamma_{258}$
VALUE	DOCUMENT ID			
$2.16\pm0.16\pm0.16$	LIN	07A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	ng data for average			

 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\left[\Gamma(K^+\pi^-) + \Gamma(\pi^+\pi^-)\right]/\Gamma_{\text{total}}$

 $(\Gamma_{257} + \Gamma_{387})/\Gamma$

<i>VALUE</i> (units 10 ⁻⁶)	EVTS	DOCUMENT ID		TECN	COMMENT
19± 6 OUR AVERAGE					
$28^{+15}_{-10}\pm20$		¹ ADAM	96 D	DLPH	$e^+e^- ightarrow Z$
$18^{+}_{-}\begin{array}{c} 6+3\\ 5-4 \end{array}$	17.2	ASNER	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 24^{+}_{-} $^{8}_{7}$ \pm 2

² BATTLE 93 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(K^0\pi^0)/\Gamma_{\text{total}}$

 Γ_{258}/Γ

,					
VALUE (units 10^{-6})	CL% DOCUMENT ID		TECN	COMMENT	
9.9 ±0.5 OUR AVI	ERAGE				
$9.68\!\pm\!0.46\!\pm\!0.50$	¹ DUH	13	BELL	$e^+e^- \rightarrow \Upsilon(4S)$	
$10.1\ \pm0.6\ \pm0.4$	¹ LEES	13 D	BABR	$e^+e^- \rightarrow \Upsilon(4S)$	
$12.8 \begin{array}{c} +4.0 \\ -3.3 \end{array} \begin{array}{c} +1.7 \\ -1.4 \end{array}$	¹ BORNHEIM	03	CLE2	$e^+e^- ightarrow \Upsilon(4S)$	
• • • We do not use the	e following data for avera	ges, fi	ts, limits	s, etc. • • •	
$8.7\ \pm0.5\ \pm0.6$	$^{ m 1}$ FUJIKAWA	10A	BELL	Repl. by DUH 13	
$10.3 \pm 0.7 \pm 0.6$	¹ AUBERT	08E	BABR	Repl. by LEES 130)
$9.2 \pm 0.7 \pm 0.6$	1 LIN	07A	BELL	Repl. by FUJIKAW	/A 10

		4			. ,
$10.3 \pm 0.7 \pm 0.6$		¹ AUBERT	08E	BABR	Repl. by LEES 13D
$9.2\ \pm0.7\ \pm0.6$		1LIN	07A	BELL	Repl. by FUJIKAWA 10A
$11.4 \pm 0.9 \pm 0.6$		$^{ m 1}$ AUBERT	05Y	BABR	Repl. by AUBERT 08E
$11.4 \pm 1.7 \pm 0.8$		$^{ m 1}$ AUBERT	04M	BABR	Repl. by AUBERT 05Y
11.7 $\pm 2.3 {}^{+1.2}_{-1.3}$		¹ CHAO	04	BELL	Repl. by LIN 07A
$8.0 \ {+3.3\atop -3.1} \ \pm 1.6$		¹ CASEY	02	BELL	Repl. by CHAO 04
$16.0 \begin{array}{l} +7.2 \\ -5.9 \end{array} \begin{array}{l} +2.5 \\ -2.7 \end{array}$		¹ ABE	01н	BELL	Repl. by CASEY 02
$8.2 \ ^{+3.1}_{-2.7} \ \pm 1.2$		¹ AUBERT	01E	BABR	Repl. by AUBERT 04M
$14.6 \begin{array}{c} +5.9 \\ -5.1 \end{array} \begin{array}{c} +2.4 \\ -3.3 \end{array}$		¹ CRONIN-HEN.	.00	CLE2	Repl. by BORNHEIM 03
<41	90	GODANG	98	CLE2	Repl. by CRONIN- HENNESSY 00
<40	90	ASNER	96	CLE2	

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta' K^0)/\Gamma_{\text{total}}$

 Γ_{259}/Γ

() // 5552.				,
<i>VALUE</i> (units 10^{-6})	DOCUMENT ID	TECN	COMMENT	
66 ± 4 OUR AVERAGE	Error includes scale fa	ctor of 1	.4.	
$68.5 \pm \ 2.2 \pm 3.1$	¹ AUBERT 09A	/ BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$58.9^{+}_{-} {3.6\atop 3.5} \pm 4.3$	¹ SCHUEMANN 06	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
89 $^{+18}_{-16}$ ± 9	¹ RICHICHI 00	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

HTTP://PDG.LBL.GOV

Page 97

 $^{^1}$ ADAM 96D assumes $f_{B^0}=f_{B^-}=0.39$ and $f_{B_s}=0.12.$ Contributions from B^0 and B_s decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons. 2 BATTLE 93 assumes equal production of $B^0\,\overline{B}{}^0$ and $B^+\,B^-$ at $\Upsilon(4S)$.

• • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT 07AE BABR Repl. by AUBERT 09AV $66.6 \pm 2.6 \pm 2.8$ $^{\mathrm{1}}$ AUBERT $67.4 \pm 3.3 \pm 3.2$ 05M BABR AUBERT 07AE ¹ AUBERT $60.6 \pm 5.6 \pm 4.6$ 03W BABR Repl. by AUBERT 05M $+19 \\ -16$ ± 8 ¹ ABE 01M BELL Repl. by SCHUEMANN 06 42 $^{+13}_{-11}$ ± 4 ¹ AUBERT 01G BABR Repl. by AUBERT 03W $47 \begin{array}{c} +27 \\ -20 \end{array} \pm 9$ **BEHRENS** CLE2 Repl. by RICHICHI 00 98 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\eta' K^*(892)^0)/\Gamma_{\text{total}}$ Γ_{260}/Γ *VALUE* (units 10^{-6}) TECN COMMENT 2.8 ± 0.6 OUR AVERAGE 14 BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ SATO $2.6 \pm 0.7 \pm 0.2$ $3.1^{+0.9}_{-0.8}\pm0.3$ ¹ DEL-AMO-SA...10A BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT $3.8 \pm 1.1 \pm 0.5$ 07E BABR Repl. by DEL-AMO-SANCHEZ 10A ¹ SCHUEMANN 07 < 2.6 **BELL** $e^+e^- \rightarrow \Upsilon(4S)$ 90 ¹ AUBERT,B Repl. by AUBERT 07E 90 < 7.6 04D BABR ¹ RICHICHI <24 90 00 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ **BEHRENS** 90 CLE2 Repl. by RICHICHI 00 <39 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\eta' K_0^*(1430)^0)/\Gamma_{\text{total}}$ Γ_{261}/Γ VALUE (units 10^{-6}) TECN COMMENT ¹ DEL-AMO-SA...10A BABR $e^+e^- \rightarrow \Upsilon(4S)$ $6.3 \pm 1.3 \pm 0.9$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\eta' K_2^*(1430)^0)/\Gamma_{\text{total}}$ Γ_{262}/Γ DOCUMENT ID TECN COMMENT VALUE (units 10^{-6}) ¹ DEL-AMO-SA..10A BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\eta K^0)/\Gamma_{\text{total}}$ Γ_{263}/Γ VALUE (units 10^{-6}) $1.23^{+0.27}_{-0.24}$ OUR AVERAGE $1.27^{\color{red}+0.33}_{-0.29}\!\pm\!0.08$ ¹ HOL BELL $e^+e^- \rightarrow \Upsilon(4S)$ $1.15^{\,+\,0.43}_{\,-\,0.38}\,{\pm}\,0.09$ ¹ AUBERT 09AV BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. ¹ CHANG 07B BELL Repl. by HOI 12 < 1.9 90 06V BABR $e^+e^-
ightarrow \varUpsilon(4S)$ ¹ AUBERT,B < 2.9 90 ¹ AUBERT.B 05K BABR $e^+e^- \rightarrow \Upsilon(4S)$ < 2.5 90

HTTP://PDG.LBL.GOV

Page 98

< 2.0	90	¹ CHANG	05A	BELL	Repl. by CHANG 07B
< 5.2	90	$^{ m 1}$ AUBERT	04H	BABR	Repl. by AUBERT,B 05K
< 9.3	90	$^{ m 1}$ RICHICHI	00	CLE2	$e^+e^- ightarrow \gamma(4S)$
<33	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta K^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{264}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
15.9 ± 1.0 OUR AVE	RAGE					
$15.2\!\pm\!1.2\!\pm\!1.0$					$e^+e^- \rightarrow$	
$16.5\!\pm\!1.1\!\pm\!0.8$	1	AUBERT,B	06н	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$13.8^{\displaystyle +5.5}_{\displaystyle -4.6}\!\pm\!1.6$	1	RICHICHI	00	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following data for averages, fits, limits, etc. • •						
	1					

 $18.6\!\pm\!2.3\!\pm\!1.2$ 04D BABR Repl. by AUBERT, B 06H **BEHRENS** 98 CLE2 Repl. by RICHICHI 00

$\Gamma(\eta K_0^*(1430)^0)/\Gamma_{\text{total}}$

 Γ_{265}/Γ

 $1 \frac{\textit{DOCUMENT ID}}{\textit{AUBERT,B}}$ 06H BABR $e^+e^- \rightarrow$ VALUE (units 10^{-6}) 06H BABR $e^+e^- \rightarrow \Upsilon(4S)$ $11.0 \pm 1.6 \pm 1.5$

$\Gamma(\eta K_2^*(1430)^0)/\Gamma_{\text{total}}$

 Γ_{266}/Γ

$VALUE$ (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
9.6±1.8±1.1	¹ AUBERT,B	06н BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\omega K^0)/\Gamma_{\text{total}}$

 Γ_{267}/Γ

CONMENT

VALUE (units 10 °)	CL%	DOCUMENT ID		TECN	COMMENT
4.8±0.4 OUR AV	ERAGE				
$4.5 \pm 0.4 \pm 0.3$					$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5.4 \!\pm\! 0.8 \!\pm\! 0.3$		¹ AUBERT	07AE	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$10.0^{+5.4}_{-4.2}{\pm}1.4$		¹ JESSOP	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use	the follow	ving data for aver	ages,	fits, limi	ts, etc. • • •
$6.2\!\pm\!1.0\!\pm\!0.4$		¹ AUBERT,B	06E	BABR	Repl. by AUBERT 07AE
$4.4^{+0.8}_{-0.7}\pm0.4$		¹ JEN	06	BELL	Repl. by CHOBANOVA 14
$5.9^{igoplus 1.6}_{-1.3}\!\pm\!0.5$		¹ AUBERT	04н	BABR	Repl. by AUBERT,B 06E
$4.0^{+1.9}_{-1.6}\!\pm\!0.5$		¹ WANG	04A	BELL	Repl. by JEN 06
<13	90	¹ AUBERT	01 G	BABR	Repl. by AUBERT 04H
< 57	90	¹ BERGFELD	98	CLF2	Repl. by JESSOP 00

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 Γ_{273}/Γ

 $\frac{\Gamma(b_1^- K^{*+}, b_1^- \to \omega \pi^-)/\Gamma_{\text{total}}}{\stackrel{CL\%}{< 5.0 \times 10^{-6}}} \frac{CL\%}{90} 1$ DOCUMENT ID TECN COMMENT ¹ AUBERT 09AF BABR $e^+e^-
ightarrow \varUpsilon(4S)$

$\Gamma(a_0(1450)^{\pm}\,K^{\mp},\ a_0^{\pm} ightarrow \,\eta\,\pi^{\pm})/\Gamma_{\mathrm{total}}$

 Γ_{274}/Γ

DOCUMENT ID TECN COMMENT

1 AUBERT 07Y BABR $e^+e^- \rightarrow$

$\Gamma(K_S^0 X^0 (Familon)) / \Gamma_{total}$

 Γ_{275}/Γ

Created: 5/30/2017 17:22

DOCUMENT ID TECN COMMENT VALUE (units 10^{-6}) 01B CLE2 $e^{+}e^{-}$ <53

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{}m 1}$ AMMAR 01B searched for the two-body decay of the B meson to a massless neutral feebly-interacting particle $X^{\scriptsize 0}$ such as the familon, the Nambu-Goldstone boson associated with a spontaneously broken global family symmetry.

$\Gamma(\omega K^*(892)^0)/\Gamma_{to}$	otal					Γ ₂₇₆ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN (COMMENT	
2.0±0.5 OUR AVE	ERAGE					
$2.2 \!\pm\! 0.6 \!\pm\! 0.2$		1 AUBERT				
$1.8 \pm 0.7 \pm 0.3$		¹ GOLDENZWE				r(4S)
• • • We do not use t	the follow					
< 4.2	90	, .o = = , =	06T E	BABR I	Repl. by AU	BERT 09H
< 6.0	90	¹ AUBERT ¹ BERGFELD	050 E	BABR I	Repl. by AU	BERT,B 06T
$<$ 23 1 Assumes equal pro						
$\Gamma(\omega(K\pi)_0^{*0})/\Gamma_{ ext{total}}$ $(K\pi)_0^{*0}$ is the tousing LASS shape	l otal S-wav pe.	ve composed of K_0^*	(1430) a	and nonr		
VALUE (units 10^{-6})		DOCUMENT I	D	TECN	COMMENT	
$18.4 \pm 1.8 \pm 1.7$		$^{ m 1}$ AUBERT	09н	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction o	of B^+ and B^0 at	the $\Upsilon(4.$	S).		
$\Gamma(\omega K_0^*(1430)^0)/\Gamma_0$	total					Г ₂₇₈ /Г
VALUE (units 10^{-6})		DOCUMENT	ID	TECN	COMMENT	
$16.0 \pm 1.6 \pm 3.0$		¹ AUBERT	09н	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction o	of B^+ and B^0 at	the \varUpsilon (4.	<i>S</i>).		
$\Gamma(\omega K_2^*(1430)^0)/\Gamma_0$	total					Γ ₂₇₉ /Γ
VALUE (units 10 ⁻⁶) 10.1±2.0±1.1		DOCUMENT	ID	TECN	COMMENT	
$10.1 \pm 2.0 \pm 1.1$		$^{ m 1}$ AUBERT	09н	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction o	of B^+ and B^0 at	the \varUpsilon (4.	<i>S</i>).		
$\Gamma(\omega K^+\pi^-$ nonreso	, ,					Γ ₂₈₀ /Γ
VALUE (units 10^{-6})		DOCUMENT I	ID	TECN	COMMENT	
$5.1 \pm 0.7 \pm 0.7$		^{1,2} GOLDENZV	VE08	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes equal pro 2 For the $K\pi$ mass	duction o	of B^+ and B^0 at $55-1.250$ GeV/c ²	the $\Upsilon(4)$	S). ng <i>K</i> *(8	392)	
	_		,			F /F
$\Gamma(K^+\pi^-\pi^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-6})		<u>DOCUMENT</u>	ID	TECN	COMMENT	Γ ₂₈₁ /Γ
37.8±3.2 OUR AVE	ERAGE	DOCOMENT		TECH	COMMENT	
$38.5 \pm 1.0 \pm 3.9$		1,2 LEES	11	BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$
$36.6^{+4.2}_{-4.3}\pm3.0$		¹ CHANG	04	BFLI	$e^+e^- ightarrow$	$\Upsilon(45)$
• • • We do not use t	the follow					7 (13)
$35.7^{+2.6}_{-1.5}\pm 2.2$		¹ AUBERT	08A0	Q BABR	Repl. by I	LEES 11
<40	90	¹ ECKHART	02	CLE2	$e^+e^- ightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro ² Uses Dalitz plot ar		of B^+ and B^0 at	the Υ (4.	<i>S</i>).		` '

$\Gamma(K^+ ho^-)/\Gamma_{ m total}$				Γ ₂₈₂ /Γ	
$VALUE$ (units 10^{-6}) CL		UMENT ID	TECN	COMMENT	
7.0 \pm 0.9 OUR AVER/ 6.6 \pm 0.5 \pm 0.8		S 11	DADD	${ m e^+e^-} ightarrow~\gamma(4S)$	
15.1 + 3.4 + 2.4 $15.1 - 3.3 - 2.6$				$e^+e^- ightarrow \gamma(4S)$	
■ ■ 3.3 – 2.6■ ■ We do not use the				, ,	
$8.0^{+0.8}_{-1.3}\pm0.6$	¹ AUB			Repl. by LEES 11	
-1.5				Repl. by AUBERT 08AQ	
$7.3^{+1.3}_{-1.2}\pm 1.3$	1 JESS				
<32 90 <35 90				$e^+e^- ightarrow~\varUpsilon(4S)$ Repl. by JESSOP 00	
$^{ m 1}$ Assumes equal produ	ction of ${\it B}^{+}$ a	nd B^0 at the γ	r(4S).		
² Uses Dalitz plot anal	ysis of $B^0 o$	$K^+\pi^-\pi^0$ dec	cays.		
$\Gamma(K^+\rho(1450)^-)/\Gamma_{to}$	tal			Γ ₂₈₃ /Γ	
$VALUE$ (units 10^{-6})	CL% De	OCUMENT ID	TECN	COMMENT	
$2.4 \pm 1.0 \pm 0.6$				$e^+e^- ightarrow \gamma(4S)$	
• • • We do not use the		_			
<2.1				Repl. by LEES 11	
1 Assumes equal produ 2 Uses Dalitz plot analy					
$\Gamma(K^+\rho(1700)^-)/\Gamma_{to}$	tal			Γ ₂₈₄ /Γ	
VALUE (units 10 ⁻⁶) 0.6±0.6±0.4	<u>CL%</u> <u>D</u>	OCUMENT ID	TECN	COMMENT	
				` ,	
• • • We do not use the <1.1				etc. • • • Repl. by LEES 11	
¹ Assumes equal produ				Repl. by LEES 11	
² Uses Dalitz plot analy					
$\Gamma((K^+\pi^-\pi^0)$ non-re	sonant)/ Γ_{to}	tal		Γ ₂₈₅ /Γ	
* -	, .		TECN	COMMENT	
$\frac{VALUE \text{ (units } 10^{-6}\text{)}}{2.8 \pm 0.5 \pm 0.4}$	1,2 LI	EES 1	l1 BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use the					
$4.4 \pm 0.9 \pm 0.5$	¹ A	UBERT (08AQ BABR	Repl. by LEES 11 $e^+e^- ightarrow~ \varUpsilon(4S)$	
<9.4				$e \cdot e \rightarrow I(45)$	
¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² Uses Dalitz plot analysis of $B^0 \to K^+\pi^-\pi^0$ decays. The quoted value is only for the flat part of the non-resonant component.					
$\Gamma((K\pi)_0^{*+}\pi^-, (K\pi)_0^*)$	$i^+ \rightarrow K^+ \pi^0$	$\Gamma_{\rm total}$		Γ ₂₈₆ /Γ	
** ** **	<i>*</i>	, .	80) and non	resonant that are described	
VALUE (units 10^{-6})	De	OCUMENT ID	TECN	COMMENT	
34.2±2.4±4.1	1,2 LI			$e^+e^- ightarrow \gamma(4S)$	
HTTP://PDG.LBL.G	OV	Page 102	Crea	ted: 5/30/2017 17:22	

• • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT 08AQ BABR Repl. by LEES 11 1 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ 2 Uses Dalitz plot analysis of B^0 \rightarrow $~{\it K}^+\,\pi^-\,\pi^0$ decays. $\Gamma((K\pi)_0^{*0}\pi^0$, $(K\pi)_0^{*0} \rightarrow K^+\pi^-)/\Gamma_{\text{total}}$ Γ_{287}/Γ $(\kappa\pi)^{*0}_0$ is the total S-wave composed of κ^*_0 (1430) and nonresonant that are described VALUE (units 10^{-6}) TECN COMMENT 1,2 LEES 11 BABR $e^+e^- \rightarrow \Upsilon(4S)$ $8.6 \pm 1.1 \pm 1.3$ ullet ullet We do not use the following data for averages, fits, limits, etc. ullet $8.7^{+1.1}_{-0.9}^{+2.8}_{-2.6}$ ¹ AUBERT 08AQ BABR Repl. by LEES 11 1 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$ ² Uses Dalitz plot analysis of $B^0 \to K^+\pi^-\pi^0$ decays. $\Gamma(K_2^*(1430)^0\pi^0)/\Gamma_{\text{total}}$ Γ_{288}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT 08AO BABR $e^+e^- \rightarrow \Upsilon(4S)$ <4.0 90 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^*(1680)^0\pi^0)/\Gamma_{\rm total}$ Γ_{289}/Γ *VALUE* (units 10^{-6}) 08AQ BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT <7.5 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K_x^{*0}\pi^0)/\Gamma_{\text{total}}$ Γ_{290}/Γ K_{\downarrow}^{*0} stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$. TECN COMMENT VALUE (units 10^{-6}) $6.1^{+1.6}_{-1.5}^{+0.5}_{-0.6}$ 04 BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ CHANG ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^0\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{291}/Γ *VALUE* (units 10^{-6}) DOCUMENT ID CL% TECN COMMENT **52.0** \pm **2.4 OUR FIT** Error includes scale factor of 1.3. 49.6± 2.0 OUR AVERAGE ¹ AUBERT 09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$ $50.2 \pm 1.5 \pm 1.8$ ² GARMASH BELL $e^+e^- \rightarrow \Upsilon(4S)$ $47.5 \pm 2.4 \pm 3.7$ $50 \begin{array}{c} +10 \\ -9 \end{array}$ ¹ ECKHART CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT $43.0 \pm 2.3 \pm 2.3$ 061 BABR Repl. by AUBERT 09AU ¹ AUBERT,B 040 BABR Repl. by AUBERT 061 $43.7 \pm 3.8 \pm 3.4$ ¹ GARMASH $45.4 \pm 5.2 \pm 5.9$ 04 BELL Repl. by GARMASH 07 $e^+e^- \rightarrow \Upsilon(4S)$ <440 90 **ALBRECHT** 91E ARG 1 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ 2 Uses Dalitz plot analysis of the $B^0 \to \ K^0 \, \pi^+ \, \pi^-$ final state decays.

$\Gamma(K^0\pi^+\pi^-\text{non-resonant})/\Gamma_{\text{total}}$

 Γ_{292}/Γ

VALUE (units 10^{-6})

14.7^{+4.0}_{-2.6} **OUR AVERAGE** Error includes scale factor of 2.1.

$$11.1^{+2.5}_{-1.0}\pm0.9$$

 $^{\mathrm{1}}$ AUBERT

09AU BABR $e^+e^-
ightarrow \gamma(4S)$

$$19.9 \pm 2.5 + 1.7 \\ -2.0$$

² GARMASH

07 BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(K^0 \rho^0)/\Gamma_{\text{total}}$

 Γ_{203}/Γ

· (·· P)/· total					- 293/ -
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
4.7±0.6 OUR	AVERAG	E			
$4.4^{igoplus 0.7}_{-0.6} \!\pm\! 0.3$		¹ AUBERT	09 AU	BABR	$e^+e^- ightarrow \gamma(4S)$
$6.1\!\pm\!1.0\!+\!1.1\\-1.2$		² GARMASH	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use	the follow	ving data for averag	ges, fit	s, limits	, etc. • • •
$4.9 \pm 0.8 \pm 0.9$		$^{ m 1}$ AUBERT	07F	BABR	Repl. by AUBERT 09AU
< 39	90	ASNER	96	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 320	90	ALBRECHT	91 B	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 500	90	³ AVERY	89 B	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<64000	90	⁴ AVERY	87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
_					

$\Gamma(K^*(892)^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{294}/Γ

$VALUE$ (units 10^{-6}) $CL\%$	DOCUMENT ID		TECN	COMMENT
8.4±0.8 OUR AVERAGE				
$8.0 \pm 1.1 \pm 0.8$	^{1,2} LEES	11	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$8.3^{igoplus 0.9}_{-0.8}\!\pm\!0.8$	^{2,3} AUBERT	09 AU	BABR	$e^+ e^- ightarrow ~ \varUpsilon (4S)$
$8.4 \pm 1.1 {+1.0 \atop -0.9}$	³ GARMASH	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$16 \begin{array}{cc} +6 \\ -5 \end{array} \pm 2$	² ECKHART	02	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$12.6^{igoplus 2.7}_{-1.6}\!\pm\!0.9$		^{1,2} AUBERT	08AQ BABR	Repl. by LEES 11
$11.0\pm 1.5\pm 0.71$		² AUBERT	06ı BABR	
$12.9 \pm 2.4 \pm 1.4$		² AUBERT,B	040 BABR	AUBERT 09AU Repl. by AUBERT 061
$14.8 {}^{+ 4.6 + 2.8}_{- 4.4 - 1.3}$		² CHANG	04 BELL	Repl. by GARMASH 07
< 72	90	ASNER		$e^+e^- ightarrow ~ \varUpsilon(4S)$
<620	90	ALBRECHT	91B ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<380	90	⁴ AVERY	89B CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 560	90	⁵ AVERY	87 CLEO	$e^+e^- \rightarrow \Upsilon(4S)$

HTTP://PDG.LBL.GOV

Page 104

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ 2 Uses Dalitz plot analysis of the $B^0 \to \ K^0 \, \pi^+ \, \pi^-$ final state decays.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. 2 Uses Dalitz plot analysis of the $B^0\to\ K^0\,\pi^+\,\pi^-$ final state decays. 3 AVERY 89B reports $<5.8\times10^{-4}$ assuming the $\varUpsilon(4S)$ decays 43% to $B^0\,\overline{B}{}^0$. We

⁴ AVERY 87 reports < 0.08 assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to

VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT $2.7^{+1.0}_{-0.8}\pm0.9$ 09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT

¹Uses Dalitz plot analysis of $B^0 \to K^+\pi^-\pi^0$ decays. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ³ Uses Dalitz plot analysis of the $B^0 \to K^0 \pi^+ \pi^-$ final state decays. ⁴ AVERY 89B reports $< 4.4 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$. We ⁵ AVERY 87 reports $< 7 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to 50%. $\Gamma(K_0^*(1430)^+\pi^-)/\Gamma_{\text{total}}$ Γ_{295}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT **33** \pm **7 OUR AVERAGE** Error includes scale factor of 2.0. $29.9^{+2.3}_{-1.7}\pm 3.6$ ^{1,2} AUBERT 09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$ $49.7\pm3.8^{+6.8}$ 07 BELL $e^+e^- \rightarrow \Upsilon(4S)$ ² GARMASH ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² Uses Dalitz plot analysis of the $B^0 \to K^0 \pi^+ \pi^-$ final state decays. $\Gamma(K_{\star}^{*+}\pi^{-})/\Gamma_{\text{total}}$ Γ_{296}/Γ K_{\downarrow}^{*+} stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$. DOCUMENT ID _____ TECN COMMENT *VALUE* (units 10^{-6}) $5.1\pm1.5^{+0.6}_{-0.7}$ 04 BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ CHANG ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^*(1410)^+\pi^-, K^{*+} \to K^0\pi^+)/\Gamma_{\text{total}}$ Γ_{297}/Γ DOCUMENT ID TECN COMMENT ¹ GARMASH 90 07 BELL $e^+e^- \rightarrow \Upsilon(4S)$ <3.8 ¹Uses Dalitz plot analysis of the $B^0 \to K^0 \pi^+ \pi^-$ final state decays. $\Gamma(f_0(980)K^0, f_0 \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{298}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT 7.0±0.9 OUR AVERAGE 09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBFRT $6.9 \pm 0.8 \pm 0.6$ $7.6 \pm 1.7 {+0.9 \atop -1.3}$ ² GARMASH BELL $e^+e^- \rightarrow \Upsilon(4S)$ 07 ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet¹ AUBERT 061 BABR Repl. by AUBERT 09AU $5.5\!\pm\!0.7\!\pm\!0.6$ ³ AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 90 < 360 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 Uses Dalitz plot analysis of the ${\it B}^0 \rightarrow {\it K}^0 \, \pi^+ \pi^-$ final state decays. 3 AVERY 89B reports $< 4.2 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%. $\Gamma(f_2(1270)K^0)/\Gamma_{\text{total}}$ Γ_{299}/Γ

• • • We do not use the following data for averages, fits, limits, etc. • • • ² GARMASH 07 BELL $e^+e^- \rightarrow \Upsilon(4S)$ < 2.5 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² GARMASH 07 reports B($B^0 \to f_2(1270) K^0$)×B($f_2(1270) \to \pi^+\pi^-$) < 1.4 × 10⁻⁶ using Dalitz plot analysis. We compute $B(B^0 \to f_2(1270)K^0)$ using the PDG value $B(f_2(1270) \to \pi\pi) = 84.2 \times 10^{-2}$ and 2/3 for the $\pi^+\pi^-$ fraction. $\Gamma(f_{\mathsf{x}}(1300)K0, f_{\mathsf{x}} \to \pi^+\pi^-)/\Gamma_{\mathsf{total}}$ Γ_{300}/Γ *VALUE* (units 10^{-6}) DOCUMENT ID TECN COMMENT $1.81^{+0.55}_{-0.45}\pm0.48$ ¹ AUBERT 09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^*(892)^0\pi^0)/\Gamma_{\text{total}}$ Γ_{301}/Γ DOCUMENT ID *VALUE* (units 10^{-6}) CL% 1,2 LEES BABR $e^+e^- \rightarrow \Upsilon(4S)$ $3.3 \pm 0.5 \pm 0.4$ • • • We do not use the following data for averages, fits, limits, etc. • ^{1,2} AUBERT 08AQ BABR Repl. by LEES 11 $3.6 \pm 0.7 \pm 0.4$ ² CHANG < 3.5 90 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $e^+e^- \rightarrow \Upsilon(4S)$ < 3.6 90 **JESSOP** 00 CLE2 Repl. by JESSOP 00 <28 **ASNER** CLE2 1 Uses Dalitz plot analysis of $B^0\to K^+\pi^-\pi^0$ decays. 2 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K_2^*(1430)^+\pi^-)/\Gamma_{\text{total}}$ Γ_{302}/Γ VALUE (units 10^{-6}) TECN COMMENT ¹ GARMASH 07 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 90 • • • We do not use the following data for averages, fits, limits, etc. • • • < 16.2 90 ^{2,3} AUBERT 08AQ BABR $e^+e^- \rightarrow \Upsilon(4S)$ ³ GARMASH < 18 04 BELL Repl. by GARMASH 07 $e^+e^- \rightarrow \Upsilon(4S)$ < 2600 **ALBRECHT** 91B ARG $^{1}\,\text{GARMASH 07 reports B}(\mathcal{B}^{0}\to\ \mathcal{K}_{2}^{*}(1430)^{+}\,\pi^{-})\times \text{B}(\mathcal{K}_{2}^{*+}\to\ \mathcal{K}^{0}\,\pi^{+})<2.1\times10^{-6}$ using Dalitz plot analysis. We compute B($B^0 \to K_2^*(1430)^+\pi^-$) using the PDG value $B(K_2^*(1430) \to K\pi) = 49.9 \times 10^{-2}$ and 2/3 for the $K^0\pi^+$ fraction. ² Uses Dalitz plot analysis of $B^0 \rightarrow K^+\pi^-\pi^0$ decays. ³ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^*(1680)^+\pi^-)/\Gamma_{\text{total}}$ Γ_{303}/Γ VALUE (units 10^{-6}) <10 90 ¹ GARMASH 07 BELL • • We do not use the following data for averages, fits, limits, etc. • ^{2,3} AUBERT 08AQ BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 ¹ GARMASH 07 reports B($B^0 \to K^*(1680)^+\pi^-$)×B($K^{*+} \to K^0\pi^+$) < 2.6 × 10⁻⁶ using Dalitz plot analysis. We compute B($B^0 \to K^*(1680)^+\pi^-$) using the PDG value $B(K^*(1680) \rightarrow K\pi) = 38.7 \times 10^{-2}$ and 2/3 for the $K^0\pi^+$ fraction. ² Uses Dalitz plot analysis of $B^0 \rightarrow K^+\pi^-\pi^0$ decays. ³ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^+\pi^-\pi^+\pi^-)/\Gamma$	total					Γ ₃₀₄ /Γ
<i>VALUE</i> <2.3 × 10 ^{−4}	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	COMMENT	
						Z
• • • We do not use t						
$<2.1 \times 10^{-4}$		² ABREU				
1 ADAM 96D assume B_s decays cannot be rates for the two notes 2 Assumes a B^0 , B^- Contributions from weighted average of	eutral B m $^-$ production B^0 and	nesons. on fraction of 0.3 B_c^0 decays cannot	9 and be se	a $B_{m s}$ proparated.	oduction fra Limits are	ction of 0.12.
$\Gamma(ho^0 K^+ \pi^-)/\Gamma_{ m total}$	l					Γ ₃₀₅ /Γ
VALUE (units 10 ⁻⁶)		DOCUMENT ID		TECN	COMMENT	
$2.8\pm0.5\pm0.5$		$^{1,2}\mathrm{KYEONG}$	09	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal properties 2 Required 0.75 $< m$	$\sigma_{K^+\pi^-} <$	1.20 GeV/c^2 .	e $\Upsilon(4)$	5).		F/F
$\Gamma(f_0(980)K^+\pi^-, f_0(980)K^+\pi^-)$	-			TECN	COMMENT	Г ₃₀₆ /Г
VALUE (units 10 ⁻⁶)						
$1.4\pm0.4^{+0.3}_{-0.4}$		^{1,2} KYEONG	09	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes equal properties 2 Required 0.75 $< m$	$r_{K^+K^-} <$ nresonant	1.2 GeV/c ² .				Γ ₃₀₇ /Γ
VALUE 6	<u>CL%</u>	DOCUMENT ID 1,2 KYEONG		TECN	COMMENT	
					$e^+e^- \rightarrow$	7(45)
1 Assumes equal pro- 2 Required 0.55 $< m$					GeV/c^2 .	
$\Gamma(K^*(892)^0\pi^+\pi^-)$	$/\Gamma_{total}$					Γ ₃₀₈ /Γ
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
54.5±2.9±4.3		DOCUMENT ID 1 AUBERT	07AS	BABR	$e^+e^- \rightarrow$	Υ(4S)
\bullet \bullet We do not use t	he followir					,
4.5 + 1.1 + 0.9		1,2 KYEONG	09	BELL	$e^+e^ \rightarrow$	$\Upsilon(4S)$
-1.0-1.6 <1400	90	ALBRECHT				` ,
1 Assumes equal properties 2 Required $0.55 < m$	duction of	B^+ and B^0 at th				(10)
$\Gamma(K^*(892)^0 \rho^0)/\Gamma_{to}$		DOCUMENT ID		TECN	COMMENT	Γ ₃₀₉ /Γ
<u>VALUE (units 10⁻⁶)</u> 3.9±1.3 OUR AV	ERAGE	<u>DOCUMENT ID</u> Error includes scal	e facto	TECN or of 1.9.	COMMENT	
$5.1\pm0.6^{+0.6}_{-0.8}$		¹ LEES			$e^+e^ \rightarrow$	$\Upsilon(45)$
						` ,
$2.1 + 0.8 + 0.9 \\ -0.7 - 0.5$		¹ KYEONG		BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
HTTP://PDG.LBL	CO1/	Page 107				

• • • We do not use the following data for averages, fits, limits, etc. • • •

$5.6\!\pm\!0.9\!\pm\!1.3$		¹ AUBERT,B	06G BABR	Repl. by LEES 12K
< 34	90	² GODANG	02 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<286	90	³ ABE	00c SLD	$e^+e^- ightarrow Z$
<460	90	ALBRECHT	91B ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 580	90	⁴ AVERY	89B CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<960	90	⁵ AVERY	87 CLEO	$e^+e^- \rightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^*(892)^0 f_0(980), f_0 \to \pi \pi)/\Gamma_{\text{total}}$

 Γ_{310}/Γ

DOCUMENT ID TECN COMMENT VALUE (units 10^{-6}) CL%

$3.9^{+2.1}_{-1.8}$ **OUR AVERAGE** Error includes scale factor of 3.9.

 \bullet $\,\bullet$ We do not use the following data for averages, fits, limits, etc. \bullet $\,\bullet$

< 4.3 90
1
 AUBERT,B 06G BABR $e^{+}e^{-} \rightarrow \Upsilon(4S)$ <170 90 3 AVERY 89B CLEO $e^{+}e^{-} \rightarrow \Upsilon(4S)$

$\Gamma(K_1(1270)^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{311}/Γ

VALUE	CL%	DOCUMENT ID		TECN	<u>COMMENT</u>
$<3.0 \times 10^{-5}$	90	¹ AUBERT	10 D	BABR	$e^+e^- \rightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K_1(1400)^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{312}/Γ

VALUE	<u>CL%</u>	<u>DOCUMENT ID</u>		<u>TECN</u>	COMMENT	
$< 2.7 \times 10^{-5}$	90	¹ AUBERT	10 D	BABR	$e^+e^- \rightarrow \gamma(4S)$	
\A/ II	си .	1	c·.	12. 14.		

• • We do not use the following data for averages, fits, limits, etc.

$$< \! 1.1 \times 10^{-3}$$
 90 ALBRECHT 91B ARG $e^+ \, e^- \rightarrow ~ \varUpsilon (4S)$

$\Gamma(a_1(1260)^-K^+)/\Gamma_{\text{total}}$

 Γ_{313}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
16.3±2.9±2.3		1,2 AUBERT	08F	BABR	$e^+e^- \rightarrow \gamma(4S)$

HTTP://PDG.LBL.GOV

Page 108

 $^{^2}$ Assumes a helicity 00 configuration. For a helicity 11 configuration, the limit decreases

to 2.4 \times 10⁻⁵. 3 ABE 00C assumes B(Z \rightarrow $b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} =$ $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

⁴ AVERY 89B reports $< 6.7 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We

⁵ AVERY 87 reports $< 1.2 \times 10^{-3}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to 50%.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ 2 The upper limit is 2.2 \times 10 $^{-6}$ at 90% CL.

 $^{^3}$ AVERY 89B reports $< 2.0 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 • • We do not use the following data for averages, fits, limits, etc. ³ ADAM 96D DLPH $e^+e^- \rightarrow Z$ 95N DLPH Sup. by ADAM 96D <390 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² Assumes a_1^{\pm} decays only to 3π and $B(a_1^{\pm} \rightarrow \pi^{\pm}\pi^{\mp}\pi^{\pm}) = 0.5$. ³ADAM 96D assumes $f_{B^0} = f_{B^-} = 0.39$ and $f_{B_s} = 0.12$. Contributions from B^0 and B_s decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons.

4 Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. Contributions from B^0 and B^0_s decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons. $\Gamma(K^*(892)^+\rho^-)/\Gamma_{\text{total}}$ Γ_{314}/Γ DOCUMENT ID TECN COMMENT VALUE (units 10^{-6}) 12K BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT,B 06G BABR Repl. by LEES 12K ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K_0^*(1430)^+\rho^-)/\Gamma_{\text{total}}$ Γ_{315}/Γ DOCUMENT IDTECNCOMMENTLEES12KBABR $e^+e^- \rightarrow \Upsilon(4S)$ VALUE (units 10^{-6}) ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K_1(1400)^0 \rho^0)/\Gamma_{\text{total}}$ Γ_{316}/Γ DOCUMENT IDTECNCOMMENTALBRECHT91BARG $e^+e^- \rightarrow \Upsilon(4S)$ $< 3.0 \times 10^{-3}$ $\Gamma(K_0^*(1430)^0\rho^0)/\Gamma_{\text{total}}$ Γ_{317}/Γ DOCUMENT ID TECN COMMENT *VALUE* (units 10^{-6}) 12K BABR $e^+e^- \rightarrow \gamma(4S)$ 27士4士4 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K_0^*(1430)^0 f_0(980), f_0 \to \pi\pi)/\Gamma_{\text{total}}$ Γ_{318}/Γ $\frac{DOCUMENT~ID}{1}$ LEES 12K BABR $e^+e^ightarrow \varUpsilon(4S)$ VALUE (units 10^{-6}) ¹ LEES ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(K_2^*(1430)^0 f_0(980), f_0 \to \pi\pi)/\Gamma_{\text{total}}$

DOCUMENT ID $\frac{TECN}{BABR}$ $\frac{COMMENT}{e^+e^-} \rightarrow \Upsilon(4S)$ VALUE (units 10^{-6}) $8.6 \pm 1.7 \pm 1.0$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

DOCUMENT ID

TECN

COMMENT

CL%

 $\Gamma(K^+K^-)/\Gamma_{\text{total}}$

VALUE (units 10⁻⁸)

 Γ_{320}/Γ

VILO	L (units	, 10		CL/U		DOCOMENT 1D		TECIV	COMMENT
	7.8	0± 1.27	7± 0.84		1	AAIJ	17 G	LHCB	pp at 7 and 8 TeV
• • •	• We	do not ι	use the fo	llowing	data	a for averages, fi	its, lir	nits, etc	. • • •
	10	± 8	± 4		2,3	DUH	13	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
	12	+ 8 - 7	\pm 1		4	AAIJ	12AR	LHCB	Repl. by AAIJ 17G
	23	± 10	± 10		5	AALTONEN	12L	CDF	p p at 1.96 TeV
<	70			90	6	AALTONEN	09 C	CDF	Repl. by AALTO- NEN 12L
<	50			90		AUBERT	07 B	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	41			90		LIN	07	BELL	Repl. by DUH 13
<	180			90	7	ABULENCIA,A	06 D	CDF	Repl. by AALTO- NEN 09C
<	37			90		ABE	05 G	BELL	Repl. by LIN 07
<	70			90	_	CHAO	04	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	80			90		BORNHEIM	03	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	60			90		AUBERT	02Q	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	90			90		CASEY	02	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< :	270			90	3	ABE	01H	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< :	250			90	3	AUBERT	01E	BABR	$e^+e^- ightarrow \gamma(4S)$
< 6	600			90	8	ABE	00 C	SLD	$e^+e^- ightarrow Z$
<	190			90	3	CRONIN-HEN.	.00	CLE2	$e^+e^- ightarrow \gamma(4S)$
< '	430			90		GODANG	98	CLE2	Repl. by CRONIN- HENNESSY 00
< 4	600				9	ADAM	96 D	DLPH	$e^+e^- \rightarrow Z$
<	400			90		ASNER	96	CLE2	Repl. by GO- DANG 98
< 1	800			90		BUSKULIC	96V	ALEP	$e^+e^- \rightarrow Z$
<12	000			90		ABREU	95N	DLPH	Sup. by ADAM 96D
<	700			90	3	BATTLE	93	CLE2	$e^+e^- ightarrow \Upsilon(4S)$

¹ Supercedes results of AAIJ 12AR.

 $^{^2}$ DUH 13 reports also for the same data B($B^0 o K^+K^-$) $< 0.20 \times 10^{-6}$ at 90% CL.

³ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁴AAIJ 12AR reports $[\Gamma(B^0 \to K^+K^-)/\Gamma_{\text{total}}]$ / $[B(B_s^0 \to K^+K^-)]$ / $[\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^0)] = 0.018^{+0.008}_{-0.007} \pm 0.009$ which we multiply by our best values $B(B_s^0 \to K^+K^-) = (2.54 \pm 0.16) \times 10^{-5}$, $\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^0) = 0.256 \pm 0.013$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

 $^{^{5}}$ Reported a central value of (0.23 \pm 0.10 \pm 0.10) \times 10 $^{-6}$ using B(B 0 \rightarrow ~ \textit{K}^{+} π^{-}) = (19.4 \pm 0.6) \times 10 $^{-6}$.

⁶ Obtains this result from B(K^+K^-)/B($K^+\pi^-$) = 0.020 \pm 0.008 \pm 0.006, assuming B($B^0 \rightarrow K^+\pi^-$) = (19.4 \pm 0.6) \times 10⁻⁶.

 $^{^7}$ ABULENCIA,A 06D obtains this from $\Gamma(K^+K^-)/\Gamma(K^+\pi^-)<0.10$ at 90% CL, assuming B($B^0\to K^+\pi^-)=(18.9\pm0.7)\times10^{-6}$.

⁸ ABE 00C assumes B(Z \rightarrow $b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} = (39.7 {+} \frac{1.8}{-2.2})\%$ and $f_{B_S} = (10.5 {+} \frac{1.8}{-2.2})\%$.

⁹ ADAM 96D assumes $f_{B^0} = f_{B^-} = 0.39$ and $f_{B_s} = 0.12$. Contributions from B^0 and B_s decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons.

 $^{^{10}\, \}rm BUSKULIC$ 96V assumes PDG 96 production fractions for $B^0,\, B^+,\, B_s,\, b$ baryons. $^{11}\, \rm Assumes$ a $B^0,\, B^-$ production fraction of 0.39 and a B_s production fraction of 0.12. Contributions from B^0 and B^0_s decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons.

$\Gamma(K^0\overline{K}^0)/\Gamma_{total}$					Г ₃₂₁ /Г
	CL%	DOCUMENT ID	TECN	COMMENT	
1.21±0.16 OUR	AVERAGE				
$1.26 \pm 0.19 \pm 0.05$				$e^+e^- \rightarrow \Upsilon(4S)$	
$1.08 \pm 0.28 \pm 0.11$				$e^+e^- \rightarrow \Upsilon(4S)$	
• • • We do not use	the follow	ving data for averag	ges, fits, limit	ts, etc. ● ●	
$0.87^{igoplus 0.25}_{-0.20}\!\pm\!0.09$		¹ LIN	07 BELL	Repl. by DUH 13	
$0.8 \pm 0.3 \pm 0.9$		$^{ m 1}$ ABE	05G BELL	Repl. by LIN 07	
$1.19^{igoplus 0.40}_{-0.35}\!\pm\!0.13$		¹ AUBERT,BE	05E BABR	Repl. by AUBERT	,BE 06C
< 1.8	90			$e^+e^- ightarrow ~ \varUpsilon(4S)$	
< 1.5	90			Repl. by ABE 05G	
< 3.3	90			$e^+e^- \rightarrow \Upsilon(4S)$	
< 4.1	90			$e^+e^- \rightarrow \Upsilon(4S)$	
<17	90			$e^+e^- \rightarrow \Upsilon(4S)$	
$^{ m 1}$ Assumes equal pr	oduction	of B^+ and B^0 at t	he $\Upsilon(4S)$.		
$\Gamma ig(K^0 K^- \pi^+ ig) / \Gamma_{ m to}$	tal				Γ_{322}/Γ
	CL%	DOCUMENT IL) TEC	N COMMENT	
6.5±0.8 OUR FI	Τ				
$6.4 \pm 1.0 \pm 0.6$		¹ DEL-AMO-S	A10E BAI	BR $e^+e^- ightarrow~ \varUpsilon$ (4	·S)
• • • We do not use	the follow	ving data for averag	ges, fits, limit	ts, etc. • • •	
<18	90	¹ GARMASH	04 BEI	$L e^+e^- ightarrow \gamma (4)$	·S)
<21	90	¹ ECKHART	02 CLE	$E2 ext{ } e^+e^- ightarrow ag{7}(4)$	·S)
$^{ m 1}$ Assumes equal pr	oduction	of B^+ and B^0 at t	he $\Upsilon(4S)$.		
$\Gamma(K^*(892)^{\pm}K^{\mp})$	/Ftatal				Γ ₃₂₃ /Γ
	CL%	DOCUMENT II) TFC	N COMMENT	323/
<0.4 × 10 ⁻⁶	90	AAIJ		CB pp at 7 TeV	
$\Gamma(K^0K^-\pi^+)/\Gamma(E^0\pi^+)$	<u>-</u> + س	-1		Г	₂₂ /Г ₂₉₁
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A A A	*) <i>TEC</i>	<u>-</u> .	22/ • 291
0.126±0.015 OUR F	IT	<u>DOCUMENT IL</u>	D TEC	<u>COMMENT</u>	
$0.128 \pm 0.017 \pm 0.009$		AAIJ	13BP LH(CB pp at 7 TeV	
$\left[\Gamma(\overline{K}^{*0}K^{0})+\Gamma(K^{0})\right]$	$(K^{*0}\overline{K}^{0})^{-1}$	$/\Gamma_{total}$			Г ₃₂₄ /Г
<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT IL) TEC	N COMMENT	
<u>VALUE (units 10^{−6})</u> <0.96	90	¹ AAIJ	16 LH(CB pp at 7 TeV	
• • • We do not use					
<1.9	90			BR $e^+e^- o \Upsilon(4)$	·S)
	_κ 0 _π +	$\pi^{-}) = (4.96 \pm 0.2)$,
		π) = (4.90 \pm 0.2 of B^+ and B^0 at t			
HTTP://PDG.LB	L.GOV	Page 111	Cr	reated: 5/30/201	7 17:22

$\Gamma(K^+K^-\pi^0)/\Gamma_{\text{total}}$						Γ ₃₂₅ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
$2.17 \pm 0.60 \pm 0.24$		¹ GAUR	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the						
<19	90	1 ECKHART	02	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of B^{-}	$^+$ and $B^{ m 0}$ at the	$\Upsilon(45)$	S).		
$\Gamma(K_S^0K_S^0\pi^0)/\Gamma_{total}$						Γ ₃₂₆ /Γ
<i>VALUE</i> <0.9 × 10 ^{−6}	CL%	DOCUMENT ID		TECN	COMMENT	
$< 0.9 \times 10^{-6}$	90	¹ AUBERT	09AE	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of B^{-}	$^+$ and $B^{ m 0}$ at the	$\Upsilon(45)$	S).		
$\Gamma ig(\mathcal{K}_{S}^{0} \mathcal{K}_{S}^{0} \eta ig) / \Gamma_{total}$						Γ ₃₂₇ /Γ
<u>VALUE</u> <1.0 × 10 ^{−6}	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$<1.0 \times 10^{-6}$	90	¹ AUBERT	09AE	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	ction of B^{-}	$^+$ and B^0 at the	$\gamma(45)$	S).		
$\Gamma(K_S^0 K_S^0 \eta')/\Gamma_{total}$						Γ ₃₂₈ /Γ
VALUE <2.0 × 10 ⁻⁶	CL%	DOCUMENT ID		TECN	<u>COMMENT</u>	
$< 2.0 \times 10^{-6}$	90	¹ AUBERT	09AE	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of B^{-}	$^+$ and $B^{ m 0}$ at the	$\Upsilon(45)$	5).		
$\Gamma(K^0K^+K^-)/\Gamma_{\text{total}}$						Γ ₃₂₉ /Γ
VALUE (units 10^{-6})					COMMENT	
24.9±3.1 OUR FIT		ludes scale facto	r of 3.	.0.		
26.6±1.2 OUR AVE 26.5±0.9±0.8		² LEES	120	DARD	a+a-	Υ(45)
$28.3 \pm 3.3 \pm 4.0$,	¹ GARMASH	04	BFLI	$e^+e^- \rightarrow$	$\Upsilon(45)$ $\Upsilon(45)$
• • We do not use the						(.0)
$23.8 \pm 2.0 \pm 1.6$		$^{ m 1}$ AUBERT,B	04V	BABR	Repl. by L	EES 120
		ALBRECHT	91E	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	ction of B^{-}	$^+$ and $B^{ m 0}$ at the	Y(45	5).		
² All intermediate char	monium an	nd charm resonar	ices ai	re remov	ed, except o	of χ_{c0} .
$\Gamma(K^0K^+K^-)/\Gamma(K^0$	$\pi^+\pi^-)$					$\Gamma_{329}/\Gamma_{291}$
VALUE		DOCUMENT ID		TECN	COMMENT	
0.48 ±0.06 OUR FIT 0.385±0.031±0.023	Error inclu					
0.303 ± 0.031 ± 0.023		AAIJ	1366	LUCP	pp at 7 Te	: V
$\Gamma(K^0\phi)/\Gamma_{ ext{total}}$						Γ ₃₃₀ /Γ
<u>VALUE (units 10⁻⁶)</u> 7.3±0.7 OUR AVE	CL%	DOCUMENT ID		TECN	COMMENT	
		_				
$7.1 \pm 0.6 {+0.4 \atop -0.3}$		¹ LEES	120	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$9.0^{+2.2}_{-1.8}\pm0.7$		1			1	22(- 2)
-1.6		¹ CHEN	03 B	BELL	$e^+e^- \rightarrow$	T(4S)

• • • We do not use the following data for averages, fits, limits, etc. • •

$8.4^{+1.5}_{-1.3}\pm0.5$		¹ AUBERT	04A	BABR	Repl. by LEES 120
$8.1^{+3.1}_{-2.5}\pm0.8$		¹ AUBERT	01 D	BABR	$e^+e^- ightarrow \Upsilon(4S)$
< 12.3	90	¹ BRIERE	01	CLE2	$e^+e^- ightarrow \gamma(4S)$
< 31	90	¹ BERGFELD	98	CLE2	
< 88	90	ASNER	96	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
< 720	90	ALBRECHT			$e^+e^- ightarrow \Upsilon(4S)$
< 420	90	² AVERY	89 B	CLEO	$e^+e^- ightarrow \Upsilon(4S)$
<1000	90	³ AVERY	87	CLEO	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma(f_0(980)K^0, f_0 \rightarrow K^+K^-)/\Gamma_{\text{total}}$

 Γ_{331}/Γ

VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
$7.0^{+2.6}_{-1.8}\pm 2.4$	¹ LEES	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(f_0(1500)K^0)/\Gamma_{\text{total}}$

 Γ_{332}/Γ

VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
$13.3^{+5.8}_{-4.4}\pm3.2$	¹ LEES	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma\big(f_2'(1525)^0\,K^0\big)/\Gamma_{\text{total}}$

 Γ_{333}/Γ

$VALUE$ (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
$0.29^{+0.27}_{-0.18}\pm0.36$	¹ LEES	120	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(f_0(1710)K^0, f_0 \rightarrow K^+K^-)/\Gamma_{\text{total}}$

 Γ_{334}/Γ

VALUE (units 10 ⁻⁶)	DOCUMENT ID			COMMENT
$4.4 \pm 0.7 \pm 0.5$	¹ LEES	120	BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^0K^+K^-\text{nonresonant})/\Gamma_{\text{total}}$

 Γ_{335}/Γ

VALUE (units
$$10^{-6}$$
)

33±5±9

DOCUMENT ID

TECN COMMENT

1 LEES

120 BABR $e^+e^- \rightarrow \Upsilon(4S)$

² AVERY 89B reports $< 4.9 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%.

³ AVERY 87 reports $< 1.3 \times 10^{-3}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to 50%

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K_S^0 K_S^0 K_S^0)/\Gamma_{\text{total}}$					Г ₃₃₆ /Г			
VALUE (units 10^{-6})	DOCUMENT ID			COMMENT				
6.0 ± 0.5 OUR AVERAGE				1				
$6.19 \pm 0.48 \pm 0.19$	¹ LEES			$e^+e^- \rightarrow$	` ,			
$4.2 {+1.6 \atop -1.3} \pm 0.8$	¹ GARMASH	04	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$			
• • • We do not use the follo	wing data for average	s, fits,	limits, e	etc. • • •				
$6.9 {}^{+0.9}_{-0.8} \pm 0.6$	¹ AUBERT,B	05	BABR	Repl. by L	EES 12I			
$^{ m 1}$ Assumes equal production	of B^+ and B^0 at the	r(45	S).					
$\Gamma(f_0(980)K^0, f_0 \to K^0_5 K^0_5)$	$\binom{0}{5}/\Gamma_{\text{total}}$				Γ ₃₃₇ /Γ			
VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT				
$2.7^{+1.3}_{-1.2}\pm 1.3$	$^{1,2} LEES$				$\Upsilon(4S)$			
$^{1}\mathrm{Assumes}$ equal production $^{2}\mathrm{Uses}$ Dalitz plot analysis o	of B^+ and B^0 at the of the $B^0 ightarrow ~{\cal K}^0_S {\cal K}^0_S $	κ^0_S de	5). cay.					
$\Gamma(f_0(1710)K^0, f_0 \to K^0_5)$	$K_S^0)/\Gamma_{ ext{total}}$				Г ₃₃₈ /Г			
$VALUE$ (units 10^{-6})	DOCUMENT ID		TECN	COMMENT				
$0.50^{f +0.46}_{f -0.24}\pm 0.11$	$^{1,2}\mathrm{LEES}$				Υ(4S)			
$^{ m 1}$ Assumes equal production $^{ m 2}$ Uses Dalitz plot analysis o	of B^+ and B^0 at the of the $B^0 o \ \mathcal{K}^0_S \mathcal{K}^0_S \mathcal{K}^0_S$	$pprox \Upsilon(45) \ ext{K}_S^0 \ ext{de}$	6). cay.					
$\Gamma(f_0(2010)K^0, f_0 \rightarrow K_S^0)$	$(K_S^0)/\Gamma_{\text{total}}$				Γ ₃₃₉ /Γ			
$VALUE$ (units 10^{-6})	DOCUMENT ID		TECN	COMMENT				
$0.54^{+0.21}_{-0.20}\pm0.52$	1,2 LEES				Υ(4S)			
¹ Assumes equal production	of B^+ and B^0 at the	e Υ(45	S).					
² Uses Dalitz plot analysis o	of the ${\cal B}^0 ightarrow {\cal K}^0_S {\cal K}^0_S $	κ_S^0 de	cay.					
$\Gamma(K_S^0K_S^0K_S^0$ nonresonant)/F _{total}				Γ ₃₄₀ /Γ			
VALUE (units 10^{-6})			TECN	COMMENT	5-107			
$13.3^{+2.2}_{-2.3}\pm 2.2$	- 1,2 LEES				Υ(4S)			
1 Assumes equal production 2 Uses Dalitz plot analysis o	¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² Uses Dalitz plot analysis of the $B^0 \to K_S^0 K_S^0 K_S^0$ decay.							
$\Gamma(K_S^0K_S^0K_L^0)/\Gamma_{ ext{total}}$					Γ ₃₄₁ /Γ			
<i>VALUE</i> (units 10 ^{−6}) <i>CL%</i> <16 90	DOCUMENT ID		TECN	COMMENT				
				$e^+e^- \rightarrow$	$\Upsilon(4S)$			
¹ Assumes equal production	of B^+ and B^0 at the	r(45	5).					

$\Gamma(K^*(892)^0K^+K^-)/\Gamma_{\text{total}}$

 Γ_{342}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
27.5±1.3±2.2		¹ AUBERT	07AS	BABR	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use	the following	data for averages	s, fits,	limits, e	etc. • • •

91E ARG $e^+e^-
ightarrow \varUpsilon(4S)$ ALBRECHT <610 90

$\Gamma(K^*(892)^0\phi)/\Gamma_{\text{total}}$

 Γ_{343}/Γ

VALUE (units 10^{-6}) CL%	DOCUMENT ID		TECN	COMMENT			
10.0±0.5 OUR FIT							
10.0 ± 0.5 OUR AVERAGE							
$10.4 \pm 0.5 \pm 0.6$	1 PRIM			$e^+e^- ightarrow ~ \varUpsilon(4S)$			
$9.7\!\pm\!0.5\!\pm\!0.5$	$^{ m 1}$ AUBERT	08BG	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$			
$11.5 {}^{+ 4.5 + 1.8}_{- 3.7 - 1.7}$	¹ BRIERE	01	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$			
• • • We do not use the following data for averages, fits, limits, etc. • • •							

$9.2\pm0.7\pm0.6$ $9.2\pm0.9\pm0.5$ $11.2\pm1.3\pm0.8$ $10.0+1.6+0.7$ $-1.5-0.8$		¹ AUBERT ¹ AUBERT,B ¹ AUBERT ¹ CHEN	04w BABR 03v BABR	Repl. by AUBERT 08BG Repl. by AUBERT 07D Repl. by AUBERT,B 04W Repl. by PRIM 13
2.0 0.0				
$8.7^{ightharpoonup{+}2.5}_{-2.1}\!\pm\!1.1$		¹ AUBERT		Repl. by AUBERT 03V
<384	90	² ABE	00c SLD	$e^+e^- ightarrow Z$
< 21	90	¹ BERGFELD	98 CLE2	
< 43	90	ASNER		$e^+e^- ightarrow \gamma(4S)$
<320	90	ALBRECHT		$e^+e^- ightarrow \gamma(4S)$
<380	90	³ AVERY		$e^+e^- ightarrow ~ \varUpsilon(4S)$
<380	90	⁴ AVERY	87 CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
3				

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma(K^+K^-\pi^+\pi^-\text{nonresonant})/\Gamma_{\text{total}}$

 Γ_{344}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<71.7	90	1,2 CHIANG	10	BELL	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ Measured in the range 0.7< $m_{K\pi} <$ 1.7 and corrected using PS assumption for the full $_{K\pi}$ mass range.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

²ABE 00C assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{R0} = f_{R+} = 0$

 $^{(39.7^{+1.8}}_{-2.2})\% \text{ and } f_{B_s} = (10.5^{+1.8}_{-2.2})\%.$ 3 AVERY 89B reports $<4.4\times10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}{}^0$. We

rescale to 50%. 4 AVERY 87 reports $< 4.7 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^*(892)^0K^-\pi^+)$	$/\Gamma_{total}$					Γ ₃₄₅ /Γ
VALUE (units 10^{-6})	,, ,	DOCUMENT II	D	TECN	COMMENT	
4.5 ±1.3 OUR AVER	AGE					
$2.11 + 5.63 + 4.85 \\ -5.26 - 4.75$		^{1,2} CHIANG	10	BELL	e^+e^-	$\Upsilon(4S)$
$4.6 \pm 1.1 \pm 0.8$		² AUBERT	07AS	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Measured in the rank $K\pi$ mass range. The 2 90% CL.	ne quoted	result is equivalen	nt to the	e upper	PS assumpti limit of < 13	on for the full $3.9 imes 10^{-6}$ at
² Assumes equal proof $\Gamma(K^*(892)^0 \overline{K}^*(892)^0 \overline{K}^$			he / (43	>).		Г ₃₄₆ /Г
VALUE (units 10^{-6})	*	DOCUMENT II	D	TECN	COMMENT	- 340/ -
0.8 ±0.5 OUR A	WERAGE					
$0.26^{+0.33}_{-0.29}^{+0.10}_{-0.08}$		^{1,2} CHIANG	10	BELL	$e^+e^-\to$	$\Upsilon(4S)$
$1.28^{+0.35}_{-0.30}\pm0.11$		² AUBERT	081	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	he followi	ng data for averag	ges, fits,	limits, e	etc. • • •	
< 22	90	³ GODANG			$e^+e^- \rightarrow$	
<469	90	⁴ ABE	00 C	SLD	$e^+e^ \rightarrow$	7
1 Measured in the rank $K\pi$ mass range. T	nge 0.7< he quoted	$m_{K\pi} < 1.7$ and ϵ	correcte	d using I	PS assumpti	on for the full
$K\pi$ mass range. T 90% CL. 2 Assumes equal prod 3 Assumes a helicity to 1.9×10^{-5} . 4 ABE 00C assumes	he quoted fuction of 00 configurable $B(Z) o 0$	Fresult is equivaled B^+ and B^0 at the transfer B^- and B^0 and B^0 are B^- (21.7 ± 0	corrected int to the $\Upsilon(43)$ icity 11	d using le upper (5).	PS assumpti limit of $<$ 0 ration, the limit	on for the full $0.8 imes 10^{-6}$ at the finit decreases
$K\pi$ mass range. T 90% CL. 2 Assumes equal proof 3 Assumes a helicity to 1.9×10^{-5} . 4 ABE 00C assumes $(39.7^{+1.8}_{-2.2})\%$ and π	the quoted duction of 00 configurable $B(Z \to f_{B_s} = (10.5))$	Fresult is equivaled B^+ and B^0 at the puration. For a helical $b \overline{b} = (21.7 \pm 6.5 \pm 0.2)\%$.	corrected int to the $\Upsilon(43)$ icity 11	d using le upper (5).	PS assumpti limit of $<$ 0 ration, the limit	on for the full 0.8×10^{-6} at smit decreases $f_{B0} = f_{B+} = 10^{-6}$
$K\pi$ mass range. T 90% CL. 2 Assumes equal prod 3 Assumes a helicity to 1.9×10^{-5} . 4 ABE 00C assumes $(39.7^{+1.8}_{-2.2})\%$ and π	the quoted duction of 00 configuration $B(Z ightharpoonup F_{B_s} = (10.9)$	Fresult is equivaled $(B^+)^+$ and $(B^0)^+$ at the puration. For a helical $(B^-)^+$	corrected that to the $\Upsilon(4.5)$ icity 11	d using I e upper 5). configui	PS assumpti limit of $<$ 0 ration, the limit B fractions	on for the full $0.8 imes 10^{-6}$ at the finit decreases
$K\pi$ mass range. T 90% CL. 2 Assumes equal prod 3 Assumes a helicity to 1.9×10^{-5} . 4 ABE 00C assumes $(39.7^{+1.8}_{-2.2})\%$ and π	the quoted duction of 00 configuration $B(Z ightharpoonup F_{B_s} = (10.9)$	I result is equivaled $(B^+)^+$ and $(B^0)^-$ at the equivalent $(B^-)^+$ and $(B^-)^$	corrected that to the $\Upsilon(4.5)$ icity 11 0.1)% a	d using I e upper S). configurand the	PS assumpti limit of < 0 ration, the limit of Sections of COMMENT	on for the full 0.8×10^{-6} at smit decreases $f_{B0} = f_{B^+} = \Gamma_{347}/\Gamma$
$K\pi$ mass range. T 90% CL. 2 Assumes equal prod 3 Assumes a helicity to 1.9×10^{-5} . 4 ABE 00C assumes $(39.7^{+1.8}_{-2.2})\%$ and $\Gamma(K^+K^+\pi^-\pi^-$ not $VALUE$ (units 10^{-6})	the quoted duction of 00 configures $B(Z \to B_s = 10.5)$ where $B(Z \to B_s = 10.5)$ is $B(Z \to B_s = 10.5)$ in $B($	I result is equivalent B^+ and B^0 at the transfer B^- and B^0 at the transfer B^- and B^- an	corrected that to the $\Upsilon(4\S)$ icity 11 0.1)% and $\frac{1}{2}$	d using I e upper S). configur and the TECN BELL	PS assumpti limit of < 0 ration, the limit of Sections of COMMENT	on for the full 0.8×10^{-6} at smit decreases $f_{B0} = f_{B^+} = \Gamma_{347}/\Gamma$
$K\pi$ mass range. T 90% CL. 2 Assumes equal product of 1.9 \times 10 ⁻⁵ . 4 ABE 00C assumes (39.7 $^{+1.8}_{-2.2}$)% and a sum of K	the quoted duction of $B(Z \rightarrow f_{B_S} = (10.5)$ The second of $\frac{CL\%}{90}$ Solution of $\frac{CL\%}{90}$	I result is equivalent B^+ and B^0 at the transfer B^- and B^0 at the transfer B^- and B^- an	corrected that to the $\Upsilon(4\S)$ icity 11 0.1)% and $\frac{1}{2}$	d using I e upper S). configur and the TECN BELL	PS assumpti limit of < 0 ration, the limit of Sections of COMMENT	on for the full 0.8×10^{-6} at smit decreases $f_{B0} = f_{B+} = \frac{\Gamma_{347}/\Gamma}{\Upsilon(4S)}$
$K\pi$ mass range. T 90% CL. ² Assumes equal prod ³ Assumes a helicity to 1.9×10^{-5} . ⁴ ABE 00C assumes $(39.7^{+1.8}_{-2.2})\%$ and π $\Gamma(K^+K^+\pi^-\pi^-\text{not})$ **Color: Assumes equal prod $\Gamma(K^*(892)^0K^+\pi^-)$	the quoted duction of $B(Z \rightarrow B_s = (10.9))$ The property of $B_s = \frac{CL\%}{90}$ Huction of $B_s = \frac{CL\%}{200}$	I result is equivaled B^0 at the suration. For a help $b\overline{b}$ = (21.7 ± 0.05) =	corrected to the $\Upsilon(4)$ icity 11 $0.1)\%$ and $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ he $\Upsilon(4)$	d using le upper 6). configurand the TECN BELL 6).	PS assumption of the limit of	on for the full 0.8×10^{-6} at simit decreases $f_{B0} = f_{B+} = \frac{\Gamma_{347}/\Gamma}{\Upsilon(4S)}$
$K\pi$ mass range. T 90% CL. ² Assumes equal prod ³ Assumes a helicity to 1.9×10^{-5} . ⁴ ABE 00C assumes $(39.7^{+1.8}_{-2.2})\%$ and π $\Gamma(K^+K^+\pi^-\pi^-\text{not})$ **Color: Assumes equal prod $\Gamma(K^*(892)^0K^+\pi^-)$	the quoted duction of $B(Z \rightarrow B_s = (10.9))$ The property of $B_s = \frac{CL\%}{90}$ Huction of $B_s = \frac{CL\%}{200}$	I result is equivaled B^0 at the suration. For a help $b\overline{b}$ = (21.7 ± 0.05) =	corrected to the $\Upsilon(4)$ icity 11 $0.1)\%$ and $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ he $\Upsilon(4)$	d using le upper 6). configurand the TECN BELL 6).	PS assumption of the limit of	on for the full 0.8×10^{-6} at simit decreases $f_{B0} = f_{B+} = \frac{\Gamma_{347}/\Gamma}{\Upsilon(4S)}$
$K\pi$ mass range. T 90% CL. ² Assumes equal prod ³ Assumes a helicity to 1.9×10^{-5} . ⁴ ABE 00C assumes $(39.7^{+1.8}_{-2.2})\%$ and π $\Gamma(K^+K^+\pi^-\pi^-\text{not})$ **Color: Assumes equal prod $\Gamma(K^*(892)^0K^+\pi^-)$	the quoted duction of $B(Z \rightarrow F_{B_s} = (10.5)$ The second of $B(S) = \frac{CL\%}{90}$ The second of $B(S) = \frac{CL\%}{90}$	I result is equivaled B^+ and B^0 at the puration. For a help $b\overline{b}$)=(21.7 ± 0.05)%. The pure B^- and $B^$	corrected to the $\Upsilon(43)$ icity 11 0.1)% and $\Gamma(43)$ he $\Gamma(43)$ or $\Gamma(43)$ ges, fits,	d using le upper 5). configurand the TECN BELL 5). TECN BABR limits, 6	PS assumption of $<$ 0 comment $e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow e^-e^- \rightarrow e^-e^-e^- \rightarrow e^-e^- \rightarrow e^-e^-$	on for the full 0.8×10^{-6} at simit decreases $f_{B0} = f_{B^+} = \frac{\Gamma_{347}/\Gamma}{\Upsilon(4S)}$
$K\pi$ mass range. T 90% CL. ² Assumes equal prod ³ Assumes a helicity to 1.9×10^{-5} . ⁴ ABE 00C assumes (39.7 $^{+1.8}_{-2.2}$)% and π $\Gamma(K^+K^+\pi^-\pi^-\text{not})$ <6.0 ¹ Assumes equal prod $\Gamma(K^*(892)^0K^+\pi^-)$ VALUE (units 10^{-6}) <2.2	the quoted duction of $B(Z \rightarrow F_{B_s} = (10.5)$ The second of $B(S) = \frac{CL\%}{90}$ The second of $B(S) = \frac{CL\%}{90}$	I result is equivaled B^0 at the property of B^+ and B^0 at the property of B^0 and B^0 and B^0 at the property of B^0 and B^0 and B^0 and B^0 at the property of B^0 and B^0 and B^0 and B^0 and B^0 are the property of B^0 and B^0 and B^0 are the property of B^0 and B^0 and B^0 are the property of B^0 and B^0 and B^0 are the property of B^0 and B^0 and B^0 are the property of B^0 and B^0 are the property of B	corrected to the $\Upsilon(43)$ icity 11 0.1)% and $\Gamma(43)$ he $\Gamma(43)$ or $\Gamma(43)$ ges, fits,	d using le upper 5). configurand the TECN BELL 5). TECN BABR limits, 6	PS assumption of $<$ 0 comment $e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow e^-e^- \rightarrow e^-e^-e^- \rightarrow e^-e^- \rightarrow e^-e^-$	on for the full 0.8×10^{-6} at simit decreases $f_{B0} = f_{B^+} = \frac{\Gamma_{347}/\Gamma}{\Upsilon(4S)}$
$K\pi$ mass range. T 90% CL. ² Assumes equal prod ³ Assumes a helicity to 1.9×10^{-5} . ⁴ ABE 00C assumes (39.7 $^{+1.8}_{-2.2}$)% and π $\Gamma(K^+K^+\pi^-\pi^-\text{not})$ <6.0 ¹ Assumes equal prod $\Gamma(K^*(892)^0K^+\pi^-)$ VALUE (units 10^{-6}) <2.2 • • • We do not use the	the quoted duction of $B(Z \rightarrow B_s = (10.9))$ the following $B(Z \rightarrow B_s = (10.9))$ the following $B(Z \rightarrow B_s = (10.9))$ the following $B(Z \rightarrow B_s = (10.9))$	I result is equivaled B^0 at the suration. For a help B^0 and B^0 at the suration. For a help B^0 and B^0 at the suration B^0 and B^0 at the suration B^0 at th	corrected to the $\Upsilon(4)$ icity 11 0.1)% and $\frac{1}{2}$ 10 he $\Upsilon(4)$ 0.7AS ges, fits, 10	d using le upper 6). configurand the TECN BELL 6). TECN BABR limits, 6 BELL	PS assumption of $<$ 0 comment $e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow e^-e^- \rightarrow e^-e^-e^- \rightarrow e^-e^- \rightarrow e^-e^-$	on for the full 0.8×10^{-6} at simit decreases $f_{B0} = f_{B^+} = \frac{\Gamma_{347}/\Gamma}{\Upsilon(4S)}$
$K\pi$ mass range. T 90% CL. 2 Assumes equal prod 3 Assumes a helicity to 1.9×10^{-5} . 4 ABE 00C assumes $(39.7^{+1.8}_{-2.2})\%$ and a $\Gamma(K^+K^+\pi^-\pi^-\text{not})$ <6.0 1 Assumes equal prod $\Gamma(K^*(892)^0K^+\pi^-)$ <2.2 • • • We do not use the <7.6 1 Assumes equal prod <7.6	the quoted duction of $B(Z \rightarrow f_{B_s} = (10.9)$ The second of $\frac{CL\%}{90}$ The following $\frac{CL\%}{90}$	I result is equivaled B^0 at the suration. For a help B^0 and B^0 at the suration. For a help B^0 and B^0 at the suration B^0 and B^0 at the suration B^0 and B^0 and B^0 and B^0 at the suration B^0 and	corrected to the $\Upsilon(4)$ icity 11 0.1)% and $\frac{1}{2}$ 10 he $\Upsilon(4)$ 0.7AS ges, fits, 10	d using le upper 6). configurand the TECN BELL 6). TECN BABR limits, 6 BELL	PS assumption of $<$ 0 comment $e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow e^-e^- \rightarrow e^-e^-e^- \rightarrow e^-e^- \rightarrow e^-e^-$	on for the full 0.8×10^{-6} at simit decreases $f_{B0} = f_{B^+} = \frac{\Gamma_{347}/\Gamma}{\Upsilon(4S)}$
$K\pi$ mass range. T 90% CL. ² Assumes equal prod ³ Assumes a helicity to 1.9×10^{-5} . ⁴ ABE 00C assumes (39.7 $^{+1.8}_{-2.2}$)% and π $\Gamma(K^+K^+\pi^-\pi^-\text{not})$ <6.0 ¹ Assumes equal prod $\Gamma(K^*(892)^0K^+\pi^-)$ <i>VALUE</i> (units 10^{-6}) <2.2 • • • We do not use the <7.6	the quoted duction of $B(Z) \rightarrow B_s = (10.5)$ The factor of $B(Z) \rightarrow B_s = (10.5)$ The factor of $B(Z) \rightarrow B_s = (10.5)$ The following $B(Z) \rightarrow B_s = (10.5)$ Th	I result is equivaled B^0 at the suration. For a help B^0 and B^0 at the suration. For a help B^0 and B^0 at the suration B^0 and B^0 at the suration B^0 and B^0 and B^0 and B^0 at the suration B^0 and	corrected to the $\Upsilon(4)$ icity 11 0.1)% and $\Gamma(4)$ 0.7 AS ges, fits, 10 the $\Gamma(4)$	d using le upper 6). configurand the TECN BELL 6). TECN BABR limits, 6 BELL 6).	PS assumption limit of $<$ 0 comment $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^-e^-e^- \rightarrow e^-e^- \rightarrow e^-e^-e^- \rightarrow e^-e^- \rightarrow e^-e^-e^- \rightarrow e^-e^- \rightarrow e^-e^-e^- \rightarrow e^-e^- \rightarrow e^-e^-$	on for the full 0.8×10^{-6} at simit decreases $f_{B0} = f_{B+} = \frac{\Gamma_{347}/\Gamma}{\Upsilon(4S)}$ Γ_{348}/Γ $\Upsilon(4S)$ Γ_{349}/Γ

VALUE (units 10^{-6}) CL% DOCUMENT ID TECN COMMENT Quantity 10^{-6} Quantity 10^{-6} Quantity 10^{-6} Pocument ID Technology 2000 Tech

HTTP://PDG.LBL.GOV

Page 116

$\Gamma(K^*(892)^+K^*(892)^-)/\Gamma_{total}$

 Γ_{350}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
< 2.0	90	$^{ m 1}$ AUBERT	08 AP	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	e following	g data for averages	s, fits,	limits, e	etc. • • •	
<141	90	² GODANG	02	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K_1(1400)^0\phi)/\Gamma_{\text{total}}$

 Γ_{351}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 5.0 \times 10^{-3}$	90	ALBRECHT	91 B	ARG	$e^+e^- ightarrow \gamma(4S)$

$\Gamma(\phi(K\pi)_0^{*0})/\Gamma_{\text{total}}$

 Γ_{352}/Γ

This decay refers to the coherent sum of resonant and nonresonant $J^P=0^+~K\pi$ components with $1.13 < m_{K\pi} < 1.53~{\rm GeV/c^2}$.

<i>VALUE</i> (units 10 ⁻⁶)	DOCUMENT ID) TE	CN	COMMENT
4.3±0.4 OUR AVERAGE				
$4.3 \pm 0.4 \pm 0.4$	¹ PRIM	13 BE	LL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$4.3 \pm 0.6 \pm 0.4$	$^{ m 1}$ AUBERT	08BG BA	BR	$e^+e^- \rightarrow \Upsilon(4S)$
ullet $ullet$ We do not use the fol	lowing data for aver	ages, fits, li	mits,	etc. • • •
$5.0 \pm 0.8 \pm 0.3$	¹ AUBERT	07D BA	BR	Repl. by AUBERT 08BG

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma(\phi(K\pi)_0^{*0} (1.60 < m_{K\pi} < 2.15))/\Gamma_{\text{total}}$

Г₃₅₃/Г

This decay refers to the coherent sum of resonant and nonresonant $J^P=0^+~K\pi$ components with $1.60 < m_{K\pi} < 2.15~{\rm GeV/c^2}$.

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
<1.7	90	¹ AUBERT	07AO BABR	$e^+e^- ightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K_0^*(1430)^0K^-\pi^+)/\Gamma_{\text{total}}$

 Γ_{354}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<31.8	90	1,2 CHIANG	10	BELL	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ Measured in the range 0.7< $m_{K\pi} < 1.7$ and corrected using PS assumption for the full $K\pi$ mass range.

$\Gamma(K_0^*(1430)^0\overline{K}^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{355}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<3.3	90	1,2 CHIANG	10	BELL	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ Measured in the range 0.7< $m_{K\pi} < 1.7$ and corrected using PS assumption for the full $K\pi$ mass range.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes a helicity 00 configuration. For a helicity 11 configuration, the limit decreases to 2.9×10^{-5}

² Assumes a helicity 00 configuration. For a helicity 11 configuration, the limit decreases to 8.9×10^{-5} .

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K_0^*(1430)^0\overline{K}_0^*(1430$	1430) ⁰)/Γ	total				Γ ₃₅₆ /Γ
				TECN	COMMENT	-
<i>VALUE</i> (units 10 ^{−6}) <8.4	90	1,2 CHIANG	10	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
		$m_{m{K}\pi} < 1.7$ and co				
² Assumes equal pi	oduction of	$^{\mathrm{F}}B^{\mathrm{+}}$ and B^{0} at the	e $\Upsilon(45)$	5).		
$\Gamma(K_0^*(1430)^0\phi)/\Gamma$	- total					Γ ₃₅₇ /Γ
VALUE (units 10^{-6})		DOCUMENT ID		ECN	COMMENT	
$3.9 \pm 0.5 \pm 0.6$		$^{ m 1}$ AUBERT				r(4S)
• • • We do not use	the followi					
$4.6 \pm 0.7 \pm 0.6$		1 AUBERT	07D E	BABR	Repl. by AU	BERT 08BG
seen		² AUBERT,B			Repl. by AU	BERT 07D
		B^+ and B^0 at the				
² Observed 181 ±	1/ events w	rith statistical signif	icance	greate	r than 10 σ .	
$\Gamma(K_0^*(1430)^0K^*(30)^0K^0K^*(30)^0K^*(30)^0K^*(30)^0K^*(30)^0K^*(30)^0K^*(30)^0K^*(30)^0K$	892) ⁰)/Γ _t	otal				Γ ₃₅₈ /Γ
VALUE (units 10 ⁻⁶) <1.7	CL%	DOCUMENT ID		TECN	COMMENT	-
<1.7	90	¹ CHIANG	10	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
		B^+ and B^0 at the				
			`	,		- /-
$\Gamma(K_0^*(1430)^0K_0^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(1430)^0K_0^*(143$	1430)°)/I	total				Г ₃₅₉ /Г
<i>VALUE</i> (units 10 ^{−6}) <4.7	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
					$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pi	roduction of	$^{\mathrm{f}}B^{+}$ and B^{0} at the	e $\Upsilon(45)$	5).		
$\Gamma(K^*(1680)^0\phi)/\Gamma$	- total					Γ ₃₆₀ /Γ
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
<3.5	90	¹ AUBERT	07AC	BARR	e+e-	$\Upsilon(45)$
-		FB^+ and B^0 at the				, (10)
		D' and D' at the	c / (4.).		
$\Gamma(K^*(1780)^0\phi)/\Gamma$	total					Г ₃₆₁ /Г
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<2.7	90	¹ AUBERT	07 AC	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pi	oduction of	$^{\mathrm{F}}B^{\mathrm{+}}$ and B^{0} at the	e γ(45	5).		
$\Gamma(K^*(2045)^0\phi)/I$	- total					Γ ₃₆₂ /Γ
		DOCUMENT ID		TECN	COMMENT	
<i>VALUE</i> (units 10 ^{−6}) <15.3	90	1 AUBERT	07AC	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
		$^{\mathrm{F}}B^{\mathrm{+}}$ and B^{0} at the				` '
			(' -	,		
$\Gamma(K_2^*(1430)^0\rho^0)/$						Γ ₃₆₃ /Γ
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
$< 1.1 \times 10^3$	90	ALBRECHT	91 B	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	total					Г ₃₆₄ /I
VALUE (units 10^{-6})		DOCUMENT ID				
6.8±0.9 OUR A	WERAGE	Error includes s	cale fac	ctor of 1	.2.	
$5.5^{igoplus 0.9}_{-0.7}\!\pm\!1.0$		$^{ m 1}$ PRIM	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$7.5 \pm 0.9 \pm 0.5$		$^{ m 1}$ AUBERT	08 BG	BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$
• • We do not use	the followi					
$7.8\!\pm\!1.1\!\pm\!0.6$		¹ AUBERT ² AUBERT,B	07 D	BABR	Repl. by Al	JBERT 08BG
seen	00	² AUBERT,B	04W	BABR	Repl. by Al	JBERT 07D
<1400	90	ALBRECHT			e ' e →	1 (45)
1 Assumes equal pro 2 The angular districance of 3.2 σ .					ence with sta	itistical signif
$\Gamma ig(\mathcal{K}^0 \phi \phi ig) / \Gamma_{total}$						Γ ₃₆₅ /
VALUE (units 10^{-6})		DOCUMENT I	ID	TECN	COMMENT	
4.5±0.8±0.3						$\Upsilon(4S)$
• • We do not use	the followi	ng data for avera	ges, fit	s, limits,	etc. • • •	
$4.1^{+1.7}_{-1.4}\pm0.4$		¹ AUBERT,B	E 061	H BABF	Repl. by I	LEES 11A
¹ Assumes equal probelow 2.85 GeV/ <i>c</i>		f ${\it B}^0$ and ${\it B}^+$ at	the γ	^(4 <i>S</i>) an	d for a $\phi\phi$	invariant ma
* * * * * * * * * * * * * * * * * * * *						
$\Gamma(\eta'\eta'K^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-6})		DOCUMENT 1	ID	TECN	<u>COMMENT</u>	Γ ₃₆₆ /
∕/ALUE (units 10 ^{−6}) <31	90	¹ AUBERT,B	061	BABF	$\frac{COMMENT}{e^+e^-} \rightarrow$	
VALUE (units 10^{-6})	90	¹ AUBERT,B	061	BABF	$\frac{\textit{COMMENT}}{e^+e^-}$	
VALUE (units 10 ⁻⁶) <31 1 Assumes equal pro	90	¹ AUBERT,B	061	BABF	$\frac{\textit{COMMENT}}{e^+e^-} ightarrow$	Υ(4S)
\sqrt{ALUE} (units 10^{-6}) <31 Assumes equal pro $\Gamma(\eta K^0 \gamma)/\Gamma_{\text{total}}$	90	1 AUBERT,B 2 3 4 4 4 4 4 4 4 4	06) $the~ {\cal T}($	⊃ BABF 4 <i>S</i>).	$e^+e^- ightarrow$	τ _(4S)
\sqrt{ALUE} (units 10^{-6}) <31 Assumes equal pro $\Gamma(\eta K^0 \gamma)/\Gamma_{\text{total}}$	90 oduction of	1 AUBERT,B 2 3 4 4 4 4 4 4 4 4	06) $the~ {\cal T}($	⊃ BABF 4 <i>S</i>).	$\frac{\textit{COMMENT}}{e^+e^-} \rightarrow$ $\frac{\textit{COMMENT}}{e^+e^-}$	τ _(4S)
$VALUE$ (units 10^{-6}) <31 ¹ Assumes equal pro $\Gamma(\eta K^0 \gamma)/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6})	90 oduction of	1 AUBERT,B 2 3 4 4 4 4 4 4 4 4	066 γ the γ	P BABF 4 <i>S</i>). 	R e ⁺ e [−] →	Υ(4S) Γ ₃₆₇ /
$^{\prime}$ ALUE (units 10^{-6}) <31 1 Assumes equal pro $\Gamma(\eta K^{0} \gamma)/\Gamma_{\text{total}}$ $^{\prime}$ ALUE (units 10^{-6}) 7.6±1.8 OUR AVER	90 oduction of	1 AUBERT,B 2 3 4 4 4 4 4 4 4 4	06ID 09	P BABF 4 <i>S</i>). 	R e ⁺ e [−] →	r(4 s) r (4 s)
\sqrt{ALUE} (units 10^{-6}) <31 1 Assumes equal pro $\Gamma(\eta K^0 \gamma)/\Gamma_{\text{total}}$ \sqrt{ALUE} (units 10^{-6}) 7.6±1.8 OUR AVER $7.1^{+2.1}_{-2.0} \pm 0.4$	90 oduction of	1 AUBERT,B 2 3 4 and 3 4 4 4 4 4 4 4 4	06ithe Υ (-	 BABF 4S). TECN BABF BELL 	$\begin{array}{c} R & e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ R & e^{+}e^{-} \rightarrow \\ e^{+}e^{-} \rightarrow \end{array}$	r(4 S) r (4 S)
$^{\prime}$ ALUE (units 10^{-6}) <31 1 Assumes equal pro $^{\prime}$ (η K^{0} γ)/ Γ_{total} $^{\prime}$ ALUE (units 10^{-6}) 7.6±1.8 OUR AVER 7.1 $^{+2.1}_{-2.0}$ ±0.4 8.7 $^{+3.1}_{-2.7}$ -1.6 • • We do not use	90 oduction of	1 AUBERT,B 2 3 4 and 3 4 4 4 4 4 4 4 4	066 the $\Upsilon(\cdot)$ 1D 09 05 ges, fit	P BABF 4S). TECN BABF BBELL s, limits,	$\begin{array}{c} COMMENT \\ \hline \\ & e^{+}e^{-} \rightarrow \\ \\ & e^{+}e^{-} \rightarrow \\ \\ & \text{etc.} \bullet \bullet \\ \end{array}$	$\Upsilon(4S)$ $\Gamma_{367}/\Gamma_{7(4S)}$ $\Upsilon(4S)$
$VALUE$ (units 10^{-6}) <31 1 Assumes equal pro $\Gamma(\eta K^0 \gamma)/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6}) 7.6±1.8 OUR AVER 7.1 $^{+2.1}_{-2.0}$ ±0.4 8.7 $^{+3.1}_{-2.7}$ +1.6 • • • We do not use 11.3 $^{+2.8}_{-1.6}$ ±0.6	90 oduction of AGE	1 AUBERT,B 2 3 4 and 3 4 4 4 4 4 4 4 4 4 4	066 the $\Upsilon(\cdot)$ 1D 09 05 ges, fit	P BABF 4S). TECN BABF BBELL s, limits,	$\begin{array}{c} COMMENT \\ \hline \\ & e^{+}e^{-} \rightarrow \\ \\ & e^{+}e^{-} \rightarrow \\ \\ & \text{etc.} \bullet \bullet \\ \end{array}$	$\Upsilon(4S)$ $\Gamma_{367}/\Gamma_{7(4S)}$ $\Upsilon(4S)$
$VALUE$ (units 10^{-6}) <31 1 Assumes equal pro $\Gamma(\eta K^{0} \gamma)/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6}) 7.6±1.8 OUR AVER $7.1^{+2.1}_{-2.0} \pm 0.4$ $8.7^{+3.1}_{-2.7} + 1.6$ • • • We do not use $11.3^{+2.8}_{-1.6} \pm 0.6$ $1 m_{\eta K} < 3.25 \text{ GeV}$	90 oduction of AGE the following V/c ² .	1 AUBERT,B 1 2 3 AUBERT 2 AUBERT 2 3 NISHIDA 3 data for avera 1 AUBERT,E	066 the $\Upsilon()$ 09 05 ges, fit	P BABF 4S). TECN BABF BBELL S, limits, MBABF	$\begin{array}{c} COMMENT \\ \hline \\ & e^{+}e^{-} \rightarrow \\ \\ & e^{+}e^{-} \rightarrow \\ \\ & \text{etc.} \bullet \bullet \\ \end{array}$	$\Upsilon(4S)$ $\Gamma_{367}/\Gamma_{7(4S)}$ $\Upsilon(4S)$
$VALUE$ (units 10^{-6}) <31 1 Assumes equal pro $\Gamma(\eta K^0 \gamma)/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6}) 7.6±1.8 OUR AVER 7.1 $^{+2.1}_{-2.0}$ ±0.4 8.7 $^{+3.1}_{-2.7}$ +1.6 • • • We do not use 11.3 $^{+2.8}_{-1.6}$ ±0.6	90 oduction of AGE the following V/c ² . oduction of	1 AUBERT,B 1 2 3 AUBERT 2 AUBERT 2 3 NISHIDA 3 data for avera 1 AUBERT,E	066 the $\Upsilon()$ 09 05 ges, fit	P BABF 4S). TECN BABF BBELL S, limits, MBABF	$\begin{array}{c} COMMENT \\ \hline \\ & e^{+}e^{-} \rightarrow \\ \\ & e^{+}e^{-} \rightarrow \\ \\ & \text{etc.} \bullet \bullet \\ \end{array}$	Υ (4S) $\Gamma_{367}/\Gamma_{(4S)}$ Υ (4S) Υ (4S)
$VALUE$ (units 10^{-6}) <31 1 Assumes equal pro $\Gamma(\eta K^{0} \gamma)/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6}) 7.6±1.8 OUR AVER $7.1^{+2.1}_{-2.0} \pm 0.4$ $8.7^{+3.1}_{-2.7} + 1.9$ • • We do not use $11.3^{+2.8}_{-1.6} \pm 0.6$ $1 m_{\eta K} < 3.25 \text{ GeV}$ 2 Assumes equal pro $3 m_{\eta K} < 2.4 \text{ GeV}$	90 oduction of AGE the following V/c ² . oduction of	1 AUBERT,B 1 2 3 AUBERT 2 AUBERT 2 3 NISHIDA 3 data for avera 1 AUBERT,E	066 the $\Upsilon()$ 09 05 ges, fit	P BABF 4S). TECN BABF BBELL S, limits, MBABF	$\begin{array}{c} COMMENT \\ \hline \\ & e^{+}e^{-} \rightarrow \\ \\ & e^{+}e^{-} \rightarrow \\ \\ & \text{etc.} \bullet \bullet \\ \end{array}$	r(4 s) r (4 s) r (4 s) r (4 s) AUBERT 09
$VALUE$ (units 10^{-6}) <31 1 Assumes equal pro $\Gamma(\eta K^{0} \gamma)/\Gamma_{\text{total}}$ $VALUE$ (units 10^{-6}) 7.6±1.8 OUR AVER $7.1^{+2.1}_{-2.0} \pm 0.4$ $8.7^{+3.1}_{-2.7} + 1.6$ • • We do not use $11.3^{+2.8}_{-1.6} \pm 0.6$ $1 m_{\eta K} < 3.25 \text{ GeV}$ ² Assumes equal pro	90 oduction of AGE the following V/c ² . oduction of	1 AUBERT,B 1 2 3 AUBERT 1,2 AUBERT 2,3 NISHIDA 3 and 3 4 AUBERT,E 4 4 4 4 4 4 4 4	the $r($. 1D 09 05 ges, fit 3 06	P BABF 4 <i>S</i>). TECN BABF BBELL S, limits, BM BABF 4 <i>S</i>).	$\begin{array}{c} COMMENT \\ \hline \\ & e^+e^- \rightarrow \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ \hline \\ & \text{Repl. by } I \end{array}$	r(4 s) r (4 s) r (4 s) r (4 s) AUBERT 09

<6.6 90 1,3 AUBERT,B 06M BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 119

 $\Gamma(K^0\phi\gamma)/\Gamma_{\text{total}}$ Γ_{369}/Γ

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
$2.74 \pm 0.60 \pm 0.32$		¹ SAHOO	11 A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •	
<2.7		¹ AUBERT				
<8.3	90	$^{ m 1}$ DRUTSKOY	04	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at $\Upsilon(4S)$.

 $\Gamma(K^+\pi^-\gamma)/\Gamma_{\text{total}}$ Γ_{370}/Γ VALUE DOCUMENT ID TECN COMMENT $(4.6^{+1.3}_{-1.2} + 0.5) \times 10^{-6}$ 1,2 NISHIDA 02 BELL $e^+e^- \rightarrow$ 02 BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(K^*(892)^0\gamma)/\Gamma_{\text{total}}$

 Γ_{371}/Γ

Created: 5/30/2017 17:22

* ,			
VALUE (units 10^{-6})	<u>CL%</u> <u>DOCUMENT ID</u>	TECN	COMMENT
43.3± 1.5 OUR	AVERAGE		
$44.7 \pm 1.0 \pm 1.6$	$^{ m 1}$ AUBERT	09AO BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$40.1 \pm \ 2.1 \pm 1.7$	² NAKAO	04 BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$45.5 + \begin{array}{cc} 7.2 \\ - & 6.8 \end{array} \pm 3.4$	³ COAN	00 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$39.2 \pm \ 2.0 \pm 2.4$		⁴ AUBERT,BE	04A BA	ABR Repl. by AUBERT 09AO
< 110	90	ACOSTA	02G CE	DF $p\overline{p}$ at 1.8 TeV
$42.3 \pm 4.0 \pm 2.2$		² AUBERT	02C BA	ABR Repl. by AUBERT, BE 04A
< 210	90	⁵ ADAM	96D DL	LPH $e^+e^- \rightarrow Z$
40 ± 17 ± 8		⁶ AMMAR	93 CL	LE2 Repl. by COAN 00
< 420	90	ALBRECHT	89G AF	RG $e^+e^- ightarrow~\varUpsilon(4S)$
< 240	90	⁷ AVERY	89B CL	LEO $e^+e^- ightarrow~ \varUpsilon(4S)$
<2100	90	AVERY	87 CL	LEO $e^+e^- ightarrow~ \varUpsilon(4S)$

 $^{{}^{1}\}operatorname{Uses}\,\mathsf{B}(\varUpsilon(4S)\to\ B^{+}\,B^{-})=(51.6\pm0.6)\%\text{ and }\mathsf{B}(\varUpsilon(4S)\to\ B^{0}\,\overline{B}{}^{0})=(48.4\pm0.6)\%.$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{2}} m_{\eta' K} < 3.4 \text{ GeV/c}^{2}$.

 $^{^3} m_{\eta' \, K}^{'} < 3.25 \; {
m GeV/c^2}.$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the \varUpsilon (4S). 2 1.25 GeV/c^2 < $M_{K\pi}$ < 1.6 GeV/c^2

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. No evidence for a nonresonant $K\pi\gamma$ contamination was seen; the central value assumes no contamination.

 $^{^4}$ Uses the production ratio of charged and neutral B from $\varUpsilon(4S)$ decays $\mathsf{R}^{+/0}=1.006\pm$

 $^{^{0.048.}}$ S ADAM 96D assumes $\mathit{f}_{B^0} = \mathit{f}_{B^-} = 0.39$ and $\mathit{f}_{B_{\mathcal{S}}} = 0.12.$

 $^{^6}$ AMMAR 93 observed $\stackrel{-}{6.6}\pm\stackrel{-}{2.8}$ events above background. 7 AVERY 89B reports $<2.8\times10^{-4}$ assuming the $\varUpsilon(4S)$ decays 43% to $B^0\overline{B}{}^0.$ We rescale to 50%.

 $\Gamma(K^*(1410)\gamma)/\Gamma_{\text{total}}$ $<1.3 \times 10^{-4}$ 90 02 BELL ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^+\pi^-\gamma \text{ nonresonant})/\Gamma_{\text{total}}$ Γ_{373}/Γ DOCUMENT ID TECN COMMENT $< 2.6 \times 10^{-6}$ 1,2 NISHIDA BELL $e^+e^- \rightarrow \Upsilon(4S)$ 02 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 1.25 GeV/ c^2 < $M_{K\pi}$ < 1.6 GeV/ c^2 $\Gamma(K^*(892)^0 X(214), X \to \mu^+ \mu^-)/\Gamma_{\text{total}}$ X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment (PARK 05) VALUE (units 10^{-8}) 1,2 HYUN BELL e^+e^- 90 <2.26 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ²Based on scalar nature of X particle. With a vector X assumption, the upper limit is 2.27×10^{-8} $\Gamma(K^0\pi^+\pi^-\gamma)/\Gamma_{\text{total}}$ Γ_{375}/Γ VALUE (units 10^{-5}) 1.99 ± 0.18 OUR AVERAGE $2.05\pm0.20^{+0.26}_{-0.22}$ ^{1,2} DEL-AMO-SA..16 BABR $e^+e^- \rightarrow \Upsilon(4S)$ ^{1,3} AUBERT 07R BABR $e^+e^- \rightarrow \Upsilon(4S)$ $1.85 \!\pm\! 0.21 \!\pm\! 0.12$ 3,4 YANG $2.40\pm0.4\ \pm0.3$ 05 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $^{1}M_{K\pi\pi}$ < 1.8 GeV/ c^{2} . ²Uses B($\Upsilon(4S) \rightarrow B^+B^-$) = 0.513 ± 0.006. ³Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $^{4} M_{K\pi\pi} < 2.0 \text{ GeV}/c^{2}$. $\Gamma(K^{+}\pi^{-}\pi^{0}\gamma)/\Gamma_{\text{total}}$ Γ_{376}/Γ VALUE (units 10^{-5}) 1,2 AUBERT $4.07 \pm 0.22 \pm 0.31$ 07R BABR $e^+e^- \rightarrow \Upsilon(4S)$ $^{1}M_{K\pi\pi}$ < 1.8 GeV/ c^{2} . ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K_1(1270)^0\gamma)/\Gamma_{\text{total}}$ Γ_{377}/Γ VALUE (units 10^{-5}) **TECN** ¹ YANG 90 05 BELL • • We do not use the following data for averages, fits, limits, etc.

² ALBRECHT < 700 89G ARG

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

²ALBRECHT 89G reports < 0.0078 assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(K_1(1400)^0\gamma)/\Gamma_{\text{total}}$ VALUE (units 10^{-5}) 90 1 YANG 05 BFLL • • We do not use the following data for averages, fits, limits, etc. ² ALBRECHT 89G ARG ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ²ALBRECHT 89G reports < 0.0048 assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$. We $\Gamma(K_2^*(1430)^0\gamma)/\Gamma_{\text{total}}$ VALUE (units 10^{-5}) 1.24±0.24 OUR AVERAGE ¹ AUBERT,B 04U BABR $e^+e^- \rightarrow \Upsilon(4S)$ $1.22 \pm 0.25 \pm 0.10$ ¹ NISHIDA **BELL** $1.3 \pm 0.5 \pm 0.1$ • • • We do not use the following data for averages, fits, limits, etc. • ² ALBRECHT 89G ARG ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² ALBRECHT 89G reports $< 4.4 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%. $\Gamma(K^*(1680)^0\gamma)/\Gamma_{\text{total}}$ <u>VA</u>LUE ¹ ALBRECHT 89G ARG < 0.0020 90 ¹ALBRECHT 89G reports < 0.0022 assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%. $\Gamma(K_3^*(1780)^0\gamma)/\Gamma_{\text{total}}$ • • We do not use the following data for averages, fits, limits, etc. • •

 $[\]Gamma_{381}/\Gamma$

VALU	E (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<	83	90	1,2 NISHIDA	05	BELL	$e^+e^- ightarrow \gamma(4S)$

 $e^+e^- \rightarrow \gamma(4S)$ <10000 ³ ALBRECHT 89G ARG

$\Gamma(K_{\perp}^*(2045)^0\gamma)/\Gamma_{\text{total}}$

 Γ_{382}/Γ

Created: 5/30/2017 17:22

 Γ_{378}/Γ

 Γ_{379}/Γ

VALUE	CL%	DOCUMENT ID		TECN	<u>COMMENT</u>
<0.0043	90	¹ ALBRECHT	89G	ARG	$e^+e^- ightarrow \gamma(4S)$

¹ALBRECHT 89G reports < 0.0048 assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Uses B($K_3^*(1780) \rightarrow \eta K$) = $0.11^{+0.05}_{-0.04}$

 $^{^3}$ ALBRECHT 89G reports < 0.011 assuming the $\Upsilon(4S)$ decays 45% to $B^0 \, \overline{B}{}^0$. We rescale to 50%.

 $\Gamma(\rho^0\gamma)/\Gamma_{\text{total}}$ Γ_{383}/Γ VALUE (units 10^{-6}) CL% **TECN** COMMENT 0.86 ± 0.15 OUR AVERAGE $0.97^{\displaystyle +0.24}_{\displaystyle -0.22}\!\pm\!0.06$ ¹ AUBERT 08BH BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.78 ^{\,+\, 0.17 \,+\, 0.09}_{\,-\, 0.16 \,-\, 0.10}$ ¹ TANIGUCHI 80 **BELL** $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • $0.79^{\,+\,0.22}_{\,-\,0.20}\,{\pm}\,0.06$ ¹ AUBERT 07L BABR Repl. by AUBERT 08BH $1.25 ^{\,+\, 0.37 \,+\, 0.07}_{\,-\, 0.33 \,-\, 0.06}$ ¹ MOHAPATRA 06 Repl. by TANIGUCHI 08 BELL ¹ AUBERT BABR Repl. by AUBERT 07L $0.0 \pm 0.2 \pm 0.1$ 90 ¹ MOHAPATRA 05 **BELL** 90 $e^+e^- \rightarrow \Upsilon(4S)$ < 0.8 04C BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT < 1.2 90 ¹ COAN <17 00 CLE2 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\rho^0 X(214), X \rightarrow \mu^+ \mu^-)/\Gamma_{\text{total}}$ Γ_{384}/Γ X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment (PARK 05) VALUE (units 10⁻⁸) TECN COMMENT 1,2 HYUN <1.73 90 10 BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² The result is the same for a scalar or vector X particle. $\Gamma(\rho^0\gamma)/\Gamma(K^*(892)^0\gamma)$ $\Gamma_{383}/\Gamma_{371}$ VALUE (units 10^{-2}) TECN COMMENT DOCUMENT ID $2.06_{-0.43}^{+0.45}_{-0.16}^{+0.14}$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ **TANIGUCHI** $\Gamma(\omega\gamma)/\Gamma_{\text{total}}$ Γ_{385}/Γ \underline{VALUE} (units 10^{-6}) CL% DOCUMENT ID TECN COMMENT $0.44^{+0.18}_{-0.16}$ OUR AVERAGE $0.50^{\,+\,0.27}_{\,-\,0.23}\,{\pm}\,0.09$ ¹ AUBERT 08BH BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.40^{\,+\,0.19}_{\,-\,0.17}\,{\pm}\,0.13$ ¹ TANIGUCHI BELL $e^+e^- \rightarrow \Upsilon(4S)$ 80 • • We do not use the following data for averages, fits, limits, etc. • • • $0.40^{\displaystyle +0.24}_{\displaystyle -0.20}\!\pm\!0.05$ ¹ AUBERT 07L BABR Repl. by AUBERT 08BH 0.56 + 0.34 + 0.05¹ MOHAPATRA 06 **BELL** Repl. by TANIGUCHI 08 -0.27 - 0.10¹ AUBERT 90 05 BABR Repl. by AUBERT 07L < 1.0¹ MOHAPATRA 05 **BELL** Repl. by MOHAPATRA 06 < 0.8 90 04C BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT < 1.090

¹ COAN

90

< 9.2

00

CLE₂

 $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\phi\gamma)/\Gamma_{ ext{total}}$						Γ ₃₈₆ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<1.0 \times 10^{-7}$	90	$^{ m 1}$ KING	16	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
$< 8.5 \times 10^{-7}$	90	¹ AUBERT,BE				
$< 3.3 \times 10^{-6}$	90	1 COAN	00	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	ction of E	$^{ m 8}^+$ and B^0 at the	$\Upsilon(4.$	S).		

 $\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{387}/Γ

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
5.12±0.19 OUR F	-IT				
5.13±0.24 OUR	WERAGE				
$5.04 \pm 0.21 \pm 0.18$		¹ DUH	13		$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5.5 \pm 0.4 \pm 0.3$		$^{ m 1}$ AUBERT	07в	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$\begin{array}{cccc} 4.5 & +1.4 & +0.5 \\ -1.2 & -0.4 \end{array}$		¹ BORNHEIM	03	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
\bullet \bullet We do not use t	he followir	ng data for average	es, fits	s, limits,	etc. • • •
$5.1 \pm 0.2 \pm 0.2$		¹ LIN	07A	BELL	Repl. by DUH 13
$4.4 \pm 0.6 \pm 0.3$		¹ CHAO	04	BELL	Repl. by LIN 07A
$4.7 \pm 0.6 \pm 0.2$		¹ AUBERT	02Q	BABR	Repl. by AUBERT 07B
$5.4 \pm 1.2 \pm 0.5$		¹ CASEY	02	BELL	Repl. by CHAO 04
$5.6 \begin{array}{c} +2.3 & +0.4 \\ -2.0 & -0.5 \end{array}$		¹ ABE	01н	BELL	Repl. by CASEY 02
$4.1\ \pm1.0\ \pm0.7$		$^{ m 1}$ AUBERT	01E	BABR	Repl. by AUBERT 02Q
< 67	90	² ABE	00 C	SLD	$e^+e^- \rightarrow Z$
$4.3 \ ^{+1.6}_{-1.4} \ \pm 0.5$		¹ CRONIN-HEN.	.00	CLE2	Repl. by BORNHEIM 03
< 15	90	GODANG	98	CLE2	Repl. by CRONIN- HENNESSY 00
< 45	90	³ ADAM	96 D	DLPH	$e^+e^- \rightarrow Z$
< 20	90	ASNER	96	CLE2	Repl. by GODANG 98
< 41	90	⁴ BUSKULIC	96V	ALEP	$e^+e^- \rightarrow Z$
< 55	90	⁵ ABREU	95N	DLPH	Sup. by ADAM 96D
< 47	90	⁶ AKERS	94L	OPAL	$e^+e^- ightarrow Z$
< 29	90	¹ BATTLE	93	CLE2	$e^+e^- o \Upsilon(4S)$
<130	90	1 ALBRECHT	90 B		()
< 77	90	⁷ BORTOLETTO	D89	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<260	90	⁷ BEBEK	87	CLEO	` ,
< 500	90	GILES	84	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
1 Assumes equal pro-	duction of	B^+ and B^0 at th	$e^{\gamma(a)}$	45)	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

²ABE 00c assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} = (39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

 $^{^3}$ ADAM 96D assumes $f_{B^0}=f_{B^-}=0.39$ and $f_{B_{\rm S}}=0.12.$

⁴ BUSKULIC 96V assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons.

⁵ Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. ⁶ Assumes B($Z \rightarrow b\overline{b}$) = 0.217 and B_d^0 (B_s^0) fraction 39.5% (12%). ⁷ Paper assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%.

 $\Gamma(\pi^+\pi^-)/\Gamma(K^+\pi^-)$ $\Gamma_{387}/\Gamma_{257}$ TECN COMMENT 0.261 ± 0.010 OUR FIT 0.261 ± 0.015 OUR AVERAGE $0.262 \pm 0.009 \pm 0.017$ AAIJ 12AR LHCB pp at 7 TeV 11N CDF $0.259 \pm 0.017 \pm 0.016$ **AALTONEN** $p\overline{p}$ at 1.96 TeV • • • We do not use the following data for averages, fits, limits, etc. • • • $0.21 \pm 0.05 \pm 0.03$ ABULENCIA, A 06D CDF Repl. by AALTONEN 11N

 $\Gamma(\pi^0\pi^0)/\Gamma_{ ext{total}}$

TECN

COMMENT

96 CLE2 Repl. by GODANG 98

 $e^+e^- \rightarrow Z$

Created: 5/30/2017 17:22

DOCUMENT ID

1.91±0.22 OUR A	VEKAGE				
$1.83\!\pm\!0.21\!\pm\!0.13$		¹ LEES	13 D	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.3 \begin{array}{c} +0.4 & +0.2 \\ -0.5 & -0.3 \end{array}$		¹ CHAO	05	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use t	he followin	g data for average	s, fits,	limits,	etc. • • •
$1.47\!\pm\!0.25\!\pm\!0.12$		$^{ m 1}$ AUBERT	07 BC	BABR	Repl. by LEES 13D
$1.17\!\pm\!0.32\!\pm\!0.10$		¹ AUBERT	05L	BABR	Repl. by AUBERT 07BC
< 3.6	90	¹ AUBERT	03L	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.1 \pm 0.6 \pm 0.3$		¹ AUBERT	03 S	BABR	Repl. by AUBERT 05L
< 4.4	90	$^{ m 1}$ BORNHEIM	03	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.7\ \pm0.6\ \pm0.2$		¹ LEE	03	BELL	Repl. by CHAO 05
< 5.7	90	¹ ASNER	02	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 6.4	90	$^{ m 1}$ CASEY	02	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 9.3	90	GODANG	98	CLE2	Repl. by ASNER 02

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

90

$\Gamma(\eta\pi^0)/\Gamma_{ ext{total}}$ Γ_{389}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
$0.41 ^{igoplus 0.17}_{-0.15} ^{+0.05}_{-0.07}$		1,2 PAL	15	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

ASNER

² ACCIARRI

• • We do not use the following data for averages, fits, limits, etc.

< 1. < 1. <	-	2		$e^+e^- ightarrow~ \varUpsilon$ (4 S) Repl. by AUBERT 08AH
< 2	5 90	² CHANG	05A BELL	Repl. by PAL 15
< 2	5 90	² AUBERT,	B 04D BABR	Repl. by AUBERT 06W
< 2	9 90	² RICHICHI	00 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 8	90	BEHRENS	98 CLE2	Repl. by RICHICHI 00
< 250	90	³ ACCIARR	I 95H L3	$e^+e^- ightarrow~Z$
<1800	90	² ALBRECH	HT 90B ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ PAL 15 signal significance is 3.0 standard deviations. The measurement corresponds to 90% CL upper limit of $< 6.5 \times 10^{-7}$.

< 9.1

< 60

² ACCIARRI 95H assumes $f_{B^0}=39.5\pm4.0$ and $f_{B_s}=12.0\pm3.0\%$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^3}$ ACCIARRI 95H assumes $f_{B^0}=39.5\pm4.0$ and $f_{B_s}=12.0\pm3.0\%$.

$\Gamma(\eta\eta)/\Gamma_{\text{total}}$	Γ ₃₉₀ /Γ
' \ <i>'\'\\</i>	' 390/ '

VALU	<i>JE</i> (units 10 ⁻⁰)	CL%	DOCUMENT ID		TECN	COMMENT
<	1.0	90	¹ AUBERT	09AV	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• •	• We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
<	1.8	90	¹ AUBERT,B	06V	BABR	Repl. by AUBERT 09AV
<	2.0	90				$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	2.8	90	$^{ m 1}$ AUBERT,B			$e^+e^- \rightarrow \Upsilon(4S)$
< 1	18	90	BEHRENS	98		$e^+e^- \rightarrow \Upsilon(4S)$
<41	10	90	² ACCIARRI	95H	L3	$e^+e^- \rightarrow Z$

 $\Gamma \big(\eta' \, \pi^0 \big) / \Gamma_{\text{total}}$ Γ_{391}/Γ

<u>VALUE</u> (units 10 ⁻⁶) <u>CL%</u>	DOCUMENT ID	TECN	COMMENT		
1.2±0.6 OUR AVERAGE	Error includes scale fact	or of 1.7.			
$0.9\!\pm\!0.4\!\pm\!0.1$	¹ AUBERT 08A				
$2.8 \!\pm\! 1.0 \!\pm\! 0.3$	¹ SCHUEMANN 06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
• • We do not use the following data for averages fits limits etc. • • •					

$0.8^{+0.8}_{-0.6}{\pm}0.1$		¹ AUBERT	06W BABR Repl. by AUBERT 08AH
$1.0^{+1.4}_{-1.0}\pm0.8$	90	¹ AUBERT,B	04D BABR Repl. by AUBERT 06W
< 5.7	90	¹ RICHICHI	00 CLE2 $e^+e^- ightarrow \gamma(4S)$
<11	90	BEHRENS	98 CLE2 Repl. by RICHICHI 00

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

 $\Gamma(\eta'\eta')/\Gamma_{\text{total}}$

 Γ_{392}/Γ

Created: 5/30/2017 17:22

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
< 1.7	90	¹ AUBERT	09AV	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
ullet $ullet$ We do not use	the follow	ing data for averag	ges, fit	s, limits	, etc. • • •
< 6.5	90	¹ SCHUEMANN	07	BELL	$e^+e^- ightarrow \Upsilon(4S)$
< 2.4	90	¹ AUBERT,B	06∨	BABR	Repl. by AUBERT 09AV
<10	90	¹ AUBERT,B			Repl. by AUBERT,B 06V
<47	90	BEHRENS	98	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma\big(\eta'\,\eta\big)/\Gamma_{\mathsf{total}}$ Γ_{393}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
< 1.2	90	¹ AUBERT	08ан	BABR	$e^+e^- ightarrow \gamma(4S)$
\bullet \bullet We do not use t	he followi	ng data for averag	es, fit	s, limits,	etc. • • •
< 4.5	90	¹ SCHUEMANN	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 1.7	90	$^{ m 1}$ AUBERT	06W	BABR	Repl. by AUBERT 08AH
< 4.6	90	$^{ m 1}$ AUBERT,B	04X	BABR	$e^+e^- ightarrow \gamma(4S)$
<27	90	BEHRENS	98	CLE2	$e^+e^- ightarrow \gamma(4S)$
$^{ m 1}$ Assumes equal pro	duction of	$^{+}B^{+}$ and B^{0} at the	ne $\Upsilon(4)$	4 <i>S</i>).	

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ 2 ACCIARRI 95H assumes $f_{B^0}=39.5\pm4.0$ and $f_{B_S}=12.0\pm3.0\%.$

$\Gamma(\eta' ho^0)/\Gamma_{ m total}$					Γ ₃₉₄ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
< 1.3	90	¹ SCHUEMANN	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use t	he followi	ng data for averages	s, fits,	limits, e	etc. • • •
< 2.8	90	¹ DEL-AMO-SA.	10A	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 3.7	90	AUBERT	07E	BABR	Repl. by DEL-AMO- SANCHEZ 10A
< 4.3	90	$^{ m 1}$ AUBERT,B	04 D	BABR	Repl. by AUBERT 07E
<12	90	¹ RICHICHI	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<23	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00
¹ Assumes equal pro	duction of	B^+ and B^0 at the	$\Upsilon(4.$	S).	

$\Gamma(\eta' f_0(980), f_0 \rightarrow \pi^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{395}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.9	90	¹ DEL-AMO-SA	.10A E	BABR	$e^+e^- ightarrow ~ $
\bullet \bullet We do not use	the followin	g data for averages,	fits, li	imits, e	etc. • • •
<1.5	90	AUBERT	07E E	BABR	Repl. by DEL-AMO- SANCHEZ 10A

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\eta \rho^0)/\Gamma_{\rm total}$

 Γ_{396}/Γ

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
< 1.5	90	¹ AUBERT	07Y	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •
< 1.9	90	$^{ m 1}$ WANG	07 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 1.5	90	$^{ m 1}$ AUBERT,B			Repl. by AUBERT 07Y
<10	90	$^{ m 1}$ RICHICHI	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<13	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta f_0(980), f_0 \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{397}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.4	90	¹ AUBERT	07Y	BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\omega\eta)/\Gamma_{\text{total}}$

 Γ_{398}/Γ

Created: 5/30/2017 17:22

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT	
$0.94^{+0.35}_{-0.20}\pm0.09$		¹ AUBERT	09AV BABR	$e^+e^- ightarrow \gamma(4S)$	

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$$<$$
 1.9 90 1 AUBERT,B 05K BABR Repl. by AUBERT 09AV 4.0 $^{+1.3}_{-1.2}$ \pm 0.4 1 AUBERT,B 04X BABR Repl. by AUBERT,B 05K $<$ 12 90 1 BERGFELD 98 CLE2

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

Citation: C. Patrignar	ni <i>et al.</i> (Parti	cle Data Group), Chin. Phys. C, 40 , 100001 (2016) and 2017 update
$\Gamma(\omega\eta')/\Gamma_{total}$		Γ ₃₉₉ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
$1.01^{f +0.46}_{f -0.38} \pm 0.09$		1 AUBERT 09AV BABR $e^{+}e^{-} ightarrow \varUpsilon(4S)$
• • • We do not use	the follow	ing data for averages, fits, limits, etc. • • •
< 2.2	90	1 SCHUEMANN 07 BELL $e^{+}e^{-} ightarrow$ \varUpsilon (4 S)
< 2.8	90	¹ AUBERT,B 04X BABR $e^+e^- \rightarrow \Upsilon(4S)$
<60	90	¹ BERGFELD 98 CLE2
¹ Assumes equal pr	roduction o	of B^+ and B^0 at the \varUpsilon (4 S).
$\Gammaig(\omega ho^0ig)/\Gamma_{ m total}$		Γ ₄₀₀ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
< 1.6	90	1 AUBERT 09H BABR $e^{+}e^{-} ightarrow \varUpsilon(4S)$
• • • We do not use		ing data for averages, fits, limits, etc. • • •
< 1.5	90	AUBERT,B 06T BABR Repl. by AUBERT 09H
< 3.3	90	AUBERT 050 BABR Repl. by AUBERT, B 06T
<11		¹ BERGFELD 98 CLE2
¹ Assumes equal pi	roduction c	of B^+ and B^0 at the \varUpsilon (4 S).
$\Gamma(\omega f_0(980), f_0 \rightarrow$,	
<i>VALUE</i> (units 10^{-6})	CL%	$rac{ extit{DOCUMENT ID}}{1}$ AUBERT 09H BABR $e^+e^- ightarrow \varUpsilon(4S)$
• • • We do not use		ing data for averages, fits, limits, etc. • • •
<1.5	90	$^{ m 1}$ AUBERT,B $^{ m 06T}$ BABR Repl. by AUBERT 09H
$^{ m 1}$ Assumes equal p	roduction o	of B^+ and B^0 at the $\varUpsilon(4S)$.
$\Gamma(\omega\omega)/\Gamma_{ exttt{total}}$		Γ ₄₀₂ /Γ
· · · · ·	CL 0/	DOCUMENT ID TECH COMMENT

$\Gamma(\omega\omega)/\Gamma_{ ext{total}}$					Γ ₄₀₂ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT	

 $1.2\pm0.3^{+0.3}_{-0.2}$ ¹ LEES 14 BABR $e^+e^- \rightarrow \Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet¹ AUBERT,B ¹ BERGFELD 06T BABR Repl. by LEES 14 98 CLE2 90 < 4.0

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma(\phi\pi^0)/\Gamma_{total}$					Γ ₄₀₃ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.15	90	1 KIM	12A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not us	e the follow	ing data for averag	es, fits	s, limits,	etc. • • •
< 0.28	90	¹ AUBERT,B	06 C	BABR	$e^+e^- ightarrow ~ \gamma(4S)$
<1.0	90	¹ AUBERT,B	04 D	BABR	Repl. by AUBERT, B 06C
<5	90	¹ BERGFELD	98	CLE2	

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

<19

-	`	,			
$\Gammaig(\phi\etaig)/\Gamma_{ ext{total}}$					Γ ₄₀₄ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT	
<0.5	90	¹ AUBERT 0	9av BABR	$e^+e^- \rightarrow \Upsilon(4S)$	
• • • We do not use	the follow				
< 0.6	90	¹ AUBERT.B 0	6v BABR	Repl. by AUBERT	09AV
<1.0	90	1 AUBERT,B 0	4x BABR	Repl. by AUBERT	,B 06∨
<9	90	¹ BERGFELD 9	8 CLE2	. ,	
¹ Assumes equal pr	oduction o	of B^+ and B^0 at the	e γ(4 <i>S</i>).		
$\Gamma(\phi\eta')/\Gamma_{ m total}$					Γ ₄₀₅ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT	-
< 0.5	90	1 SCHUEMANN 0			
• • • We do not use					
	90	¹ AUBERT 0			
< 1.1		¹ AUBERT,B 0	9AV BABR	$e \cdot e \rightarrow I(43)$	00 4) /
< 1.0 < 4.5	90 90	¹ AUBERT,B 0	0V DADK √V DADD	Repl. by AUDER I	09AV
< 4.5 <31	90		8 CLE2	Repl. by AUDER I	,D 00V
		of B^+ and B^0 at the	e 7 (45).		
$\Gamma(\phi\pi^+\pi^-)/\Gamma_{total}$					Γ ₄₀₆ /Γ
$VALUE$ (units 10^{-7})		DOCUMENT ID	TEC	N COMMENT	
$1.82 \pm 0.25 \pm 0.43$		¹ AAIJ	17A LHC	CB <i>pp</i> at 7, 8 TeV	
$^{ m 1}$ Signal evidence is	4.5 stand	ard deviations.			
$\Gamma(\phi ho^0)/\Gamma_{ m total}$					Γ ₄₀₇ /Γ
* *	C1 %	DOCUMENT ID	TEC	N COMMENT	4017
	90	1 AUDEDT	OODY DAE	$e^+e^- ightarrow \gamma (4)$	<u></u>
< 0.33 • • • We do not use					.5)
<156	90	² ABE		$e^+e^- ightarrow Z$	
< 13		¹ BERGFELD			
		of B^+ and B^0 at the			
		\rightarrow $b\overline{b})=(21.7 \pm 0.1)$		he B fractions f_{R^0}	$=f_{R^+}=$
$(39.7^{ightarrow 1.8}_{-2.2})\%$ and				Б	D.
-2.2770 dive	B_s (10)	-2.2			
$\Gamma(\phi f_0(980), f_0 \rightarrow$	$\pi^{+}\pi^{-}$	/Γ _{total}			Γ_{408}/Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TEC	N COMMENT	
<i>VALUE</i> (units 10 ^{−6}) <0.38	90	¹ AUBERT	08вк ВАЕ	$_{\rm BR}$ $_{\rm e^+e^- ightarrow \ r(4)}$	·S)
$^{ m 1}$ Assumes equal pr	oduction o	of B^+ and B^0 at the	e $\Upsilon(4S)$.		
$\Gamma(\phi\omega)/\Gamma_{total}$					Γ ₄₀₉ /Γ
VALUE (units 10 ⁻⁶) < 0.7	CL%	DOCUMENT ID	TEC	N COMMENT	
< 0.7	90	1 _{LEES}	 1Δ RΔF	${}_{RR} = {e^{+}e^{-}} \rightarrow \gamma (A$	·S)
• • • We do not use	the follow	ing data for average	es, fits. limit	s, etc. • • •	~ <i>,</i>
< 1.2		¹ AUBERT,B			1/
< 1.2 <21	90 90	¹ BERGFELD	98 CLE		14
		of B^+ and B^0 at the		- <u>-</u>	
			, ,	. 1 = /00 /00:	7 4 - 22
HTTP://PDG.LB	L.GOV	Page 129	Cro	eated: 5/30/201	7 17:22

					Г ₄₁₀ /Г
CL%	DOCUMENT ID		ΓΕCΝ	COMMENT	.207
e following					
90	¹ AUBERT	08BK E	BABR	$e^+e^- \rightarrow \gamma(45)$	5)
90	¹ AUBERT,B	04x E	BABR	Repl. by AUBER	Т 08вк
90 2	² ABE	00C S	SLD	$e^+e^- ightarrow Z$	
90	^l BERGFELD	98 (CLE2		
90	ASNER	96 (CLE2	$e^+e^- \rightarrow \Upsilon(45)$	5)
$B(Z \rightarrow$	$b\overline{b})=(21.7 \pm 0.00)$			$_{E}$ $_{B}$ fractions $f_{_{E}}$	$_{B^0} = f_{B^+} =$
,	-				Γ ₄₁₁ /Γ
CL%	DOCUMENT ID		TECN	COMMENT	
					4 <i>S</i>)
e following					
90	¹ AUBERT,BE	04	BABR	Repl. by AUB	ERT 07Y
uction of E	B^+ and B^0 at the	e Υ(45	S).		
	•				Γ ₄₁₂ /Γ
<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
90	¹ AUBERT	07Y	BABR	$e^+e^- ightarrow~\gamma($	4 <i>S</i>)
uction of E	B^+ and B^0 at the	e $\Upsilon(4.5)$	S).		
					Г.,,, /Г
CL 0/	DOCUMENT ID		TECN	COMMENT	Γ ₄₁₃ /Γ
<u>CL%</u>	1 ALBBECUT	000	ADC	± = ~ ~(1C)
nit assumes	s equal production	n of B	^o B ^o an	id B^+B^- at T	(45).
					Γ_{414}/Γ
CL%	DOCUMENT ID		TECN	COMMENT	
	1.2 1/11/201/20	00	DELL	+ - ~	4.6)
-	4				
				`	,
	1 JESSOP	00	CLEO	$e^+e^- o ag{7}$	45)
e following	g data for average	s, fits,	limits,	etc. • • •	
	¹ DRAGIC	06	BELL	Repl. by KUS	4KA 08
	DRAGIC	04	BELL		
90	$^{ m 1}$ GORDON	02	BELL	Repl. by DRA	GIC 04
	4.01.55		C1 - C	B===	00.55
90 90	ASNER ¹ ALBRECHT	96 90 _B	CLEO ARG	Repl. by JESS $e^+e^- o au($	
	90 e following 90 90 90 90 uction of E $B(Z \rightarrow \eta \pi^{\pm})$ $= \frac{CL\%}{90}$ e following 90 uction of E $= \frac{CL\%}{90}$	90 AAIJ e following data for average 90 1 AUBERT 90 1 AUBERT, 8 90 2 ABE 90 1 BERGFELD 90 ASNER 90 at the B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.8 \pm 0.6 \pm 0.7 \pm 0.9 \pm 0.7 \pm 0.9 \pm 0.	90 AAIJ 15AS Le following data for averages, fits, 90 1 AUBERT 08BK E 90 1 AUBERT, B 04X E 90 2 ABE 00C S 90 1 BERGFELD 98 0 00 ASNER 96	90 AAIJ 15AS LHCB e following data for averages, fits, limits, 90 1 AUBERT 08BK BABR 90 1 AUBERT, B 04X BABR 90 2 ABE 00C SLD 90 1 BERGFELD 98 CLE2 90 ASNER 96 CLE2 outtion of B^+ and B^0 at the $\Upsilon(4S)$. B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the $B_{S} = (10.5 + \frac{1}{2}.8)$ %. $AUBERT = 0.1$ $AUBERT = 0.$	e following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

Created: 5/30/2017 17:22

 $^{^2}$ This is the first measurement that excludes contributions from ho(1450) and ho(1570)resonances.

$\Gamma(ho^{\mp}\pi^{\pm})/\Gamma_{ m total}$			Γ ₄₁₅ /Γ
<i>VALUE</i> (units 10^{-6}) <i>CL</i> %	DOCUMENT ID	TECN COMMENT	
23.0±2.3 OUR AVERAG			-
$22.6 \pm 1.1 \pm 4.4$		BELL $e^+e^- \rightarrow \gamma$	` '
$22.6 \pm 1.8 \pm 2.2$	¹ AUBERT 03	BT BABR $e^+e^- ightarrow 7$	^(4 <i>S</i>)
$27.6^{+8.4}_{-7.4}\pm 4.2$	¹ JESSOP 00	CLE2 $e^+e^- \rightarrow \gamma$	^(4 <i>S</i>)
• • • We do not use the follo	wing data for averages, f	its, limits, etc. • • •	
$20.8 \! \begin{array}{l} +6.0 \! + \! 2.8 \\ -6.3 \! - \! 3.1 \end{array}$	¹ GORDON 02	BELL Repl. by KU	SAKA 08
< 88 90	ASNER 96	CLE2 Repl. by JES	
< 520 90	¹ ALBRECHT 90	OB ARG $e^+e^- ightarrow$ γ	
<5200 90	³ BEBEK 87	' CLEO $e^+e^- o au$	^(4 <i>S</i>)
 Assumes equal production This is the first measurer resonances. BEBEK 87 reports < 6.1 × to 50%. 	ment that excludes conti	ributions from $ ho(1450)$ a	
$\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{ ext{total}}$			Γ ₄₁₆ /Γ
	DOCUMENT ID 1		
<11.2 × 10⁻⁶ 90	¹ VANHOEFER 14 E	BELL $e^+e^- \rightarrow \Upsilon(4S)$)
• • • We do not use the follo	wing data for averages, f	its, limits, etc. • • •	
$< 23.1 \times 10^{-6}$ 90		BABR $e^+e^- \rightarrow \Upsilon(4S)$)
		BELL Repl. by VANHO	EFER 14
	_	DLPH $e^+e^- o Z$	
$< 2.8 \times 10^{-4}$ 90		DLPH Sup. by ADAM 9	
$< 6.7 \times 10^{-4}$ 90	¹ ALBRECHT 90B A	$ARG e^+e^- \rightarrow \Upsilon(4S)$)
1 Assumes equal production 2 ADAM 96D assumes $f_{B^{0}}$			
3 Assumes a B^0 , B^- produ	ction fraction of 0.39 and	d a B_s production fraction	on of 0.12.
$\Gamma(ho^0\pi^+\pi^-)/\Gamma_{ m total}$			Γ ₄₁₇ /Γ
VALUE (units 10^{-6}) CL%	DOCUMENT ID	TECN COMMENT	
< 8.8 90		B BABR $e^+e^- ightarrow \gamma (e^+e^-)$	4 <i>S</i>)
• • • We do not use the follo			- /
<12.0 90		BELL $e^+e^- \rightarrow \Upsilon(e^-)$	
<12.0 90	¹ CHIANG 08	BELL Repl. by VANI	HOEFER 14
$^{ m 1}$ Assumes equal production	of B^+ and B^0 at the γ	(45).	
$\Gamma(ho^0 ho^0)/\Gamma_{ m total}$			Γ_{418}/Γ
$VALUE$ (units 10^{-6}) $CL\%$	DOCUMENT ID	TECN COMMENT	
0.96±0.15 OUR FIT	~=		
0.97±0.24 OUR AVERA		DELL ±	4.6)
$1.02 \pm 0.30 \pm 0.15$		BELL $e^+e^- \rightarrow \Upsilon(e^+e^-)$	
$0.92 \pm 0.32 \pm 0.14$	- AUREKI 08B	B BABR $e^+e^- ightarrow \gamma (e^+e^-)$	45)

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.4 \pm 0.4 ^{+0}_{-0}$).2).3	² CHIANG	80	BELL	Repl. by VANHOEFER 14
$1.07 \pm 0.33 \pm 0$).19	² AUBERT	07 G	BABR	Repl. by AUBERT 08BB
< 1.1	90	² AUBERT	051	BABR	Repl. by AUBERT 07G
< 2.1	90	² AUBERT	03V	BABR	Repl. by AUBERT 051
< 18	90	³ GODANG	02	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<136	90	⁴ ABE	00 C	SLD	$e^+e^- \rightarrow Z$
<280	90	² ALBRECHT	90 B	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<290	90	⁵ BORTOLETT	O89	CLEO	$e^+e^- ightarrow \gamma(4S)$
<430	90	⁵ BEBEK	87	CLEO	$e^+e^- \rightarrow \gamma(4S)$

¹ Signal significance 3.4 standard deviations.

$\Gamma(\rho^{0}\rho^{0})/\Gamma(K^{*}(892)^{0}\phi)$

 $\Gamma_{418}/\Gamma_{343}$

(,	J .J
$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT		
9.5±1.5 OUR FIT						
$9.4 \pm 1.7 \pm 0.9$	AAIJ	15T	LHCB	<i>pp</i> at 7, 8 Te	٠V	

$\Gamma(f_0(980)\pi^+\pi^-, f_0 \to \pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{419}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$<3.0 \times 10^{-6}$	90	¹ VANHOEFER 14	BELL	$e^+e^- ightarrow \gamma(4S)$

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
 3.8 \times 10 $^{-6}$ 90 1 CHIANG 08 BELL $e^{+}e^{-} \rightarrow \Upsilon(4S)$

$\Gamma(ho^0 f_0(980), f_0 \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$

VALUE (units 10^{-7}) CL%

 Γ_{420}/Γ

7.8±2.2±1.1		1,2 VANHOEFER	${}_{14} \overline{BELL} {e^{+} e^{-} \rightarrow \; \varUpsilon(4S)}$	
• • • We do not	use the f	ollowing data for ave	erages, fits, limits, etc. ● ●	
< 8.1	90	AAIJ	15т LHCB <i>pp</i> at 7, 8 TeV	
<4.0	90	² AUBERT	08BB BABR $e^+e^- ightarrow~ \varUpsilon(4S)$	
<3	90	² CHIANG	08 BELL Repl. by VANHOEFER 14	ļ
< 5.3	90	² AUBERT	07G BABR Repl. by AUBERT 08BB	

¹Signal significance of 3.1 standard deviations.

$\Gamma(f_0(980) f_0(980), f_0 \to \pi^+\pi^-, f_0 \to \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{421}/Γ

VALUE (units
$$10^{-6}$$
) CL% DOCUMENT ID TECN COMMENT
<0.19 90 1 AUBERT 08BB BABR $e^+e^- \rightarrow \Upsilon(4S)$

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ Assumes a helicity 00 configuration. For a helicity 11 configuration, the limit decreases

to 1.4×10^{-5} . ⁴ ABE 00C assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} =$ $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

⁵ Paper assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 0.2	90	¹ VANHOEFER	14	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 0.1	90	¹ CHIANG	80	BELL	Repl. by VANHOEFER 14
< 0.16	90	$^{ m 1}$ AUBERT	07 G	BABR	Repl. by AUBERT 08BB

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(f_0(980)f_0(980), f_0 \to \pi^+\pi^-, f_0 \to K^+K^-)/\Gamma_{\text{total}}$

 Γ_{422}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID	TECN	COMMENT
<0.23	90	¹ AUBERT	08BK BABR	$e^+e^- \rightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(a_1(1260)^{\mp}\pi^{\pm})/\Gamma_{\text{total}}$

 Γ_{423}/Γ

$VALUE$ (units 10^{-6}) $CL\%$	DOCUMENT ID	TECN	COMMENT
26 ±5 OUR AVERAGE	Error includes scale	factor of 1.9.	
$22.2 \pm 2.0 \pm 2.8$	^{1,2} DALSENO 1	l2 BELL	$e^+e^- ightarrow \Upsilon(4S)$
$33.2 \pm 3.8 \pm 3.0$	^{2,3} AUBERT 0	06V BABR	$e^+e^- ightarrow \Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc. • •

< 630	90	² ALBRECHT	90 B	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
< 490	90	⁴ BORTOLET	ΓΟ89	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<1000	90	⁴ BEBEK	87	CLEO	$e^+e^- \rightarrow$	$\Upsilon(45)$

¹ DALSENO 12 reports B($B^0 \to a_1^\pm \pi^\mp$) B($a_1^\pm \to \pi^\pm \pi^+ \pi^-$) = (11.1 \pm 1.0 \pm 1.4) \times 10⁻⁶ which we rescaled assuming a_1 (1260) decays only to 3π and B($a_1^\pm \to \pi^\pm \pi^+ \pi^-$)

$\Gamma(a_2(1320)^{\mp}\pi^{\pm})/\Gamma_{\text{total}}$

 Γ_{424}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$<6.3 \times 10^{-6}$	90	¹ DALSENO	12	BELL	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<3.0\times10^{-4}$$
 90 2 BORTOLETTO89 CLEO $e^+e^-\to \Upsilon(4S)$ $<1.4\times10^{-3}$ 90 2 BEBEK 87 CLEO $e^+e^-\to \Upsilon(4S)$

$\Gamma(\pi^+\pi^-\pi^0\pi^0)/\Gamma_{ m total}$

 Γ_{425}/Γ

<sup>= 0.5.
&</sup>lt;sup>2</sup> Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
³ Assumes $a_1(1260)$ decays only to 3π and $B(a_1^\pm \to \pi^\pm \pi^\mp \pi^\pm) = 0.5$.
⁴ Paper assumes the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%.

 $^{^1}$ DALSENO 12 reports B($B^0 \rightarrow ~a_2^\pm\,\pi^\mp)$ B($a_2^\pm \rightarrow ~\pi^\pm\,\pi^+\,\pi^-) <~2.2\times 10^{-6}$ which we rescaled using B($a_2^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$) = 1/2 B($a_2^{\pm} \rightarrow 3\pi$) = 0.35 \pm 0.013. ² Paper assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%.

 $^{^1}$ ALBRECHT 90B limit assumes equal production of $B^0\overline{B}{}^0$ and B^+B^- at $\Upsilon(4S)$.

Citation. C. I attiglian	i ci ai. (i ait	icic Data Group), Cilii	. 1 11y3.	C, 40, 1	ooooi (2010) and 2017 apaate	
$\Gamma(ho^+ ho^-)/\Gamma_{ m total}$					Γ ₄₂₆ /	′Г
	CL%	DOCUMENT ID		TECN	COMMENT	
27.7±1.9 OUR	AVERAGE				1	
$28.3 \pm 1.5 \pm 1.5$					$e^+e^- \rightarrow \Upsilon(4S)$	
$25.5 \pm 2.1 {+3.6 \atop -3.9}$		¹ AUBERT	07 BF	BABR	$e^+e^- ightarrow \gamma(4S)$	
• • • We do not use	the follow		iges, f	its, limit	s, etc. • • •	
$22.8 \pm 3.8 ^{+2.3}_{-2.6}$		¹ SOMOV	06	BELL	Repl. by VANHOEFER 1	
$25 \begin{array}{ccc} +7 & +5 \\ -6 & -6 \end{array}$		¹ AUBERT	04G	BABR	Repl. by AUBERT,B 04R	
30 ± 4 ± 5]	^{1,2} AUBERT,B	04 R	BABR	Repl. by AUBERT 07BF	
<2200	90	$^{ m 1}$ ALBRECHT	90 B	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
alone gives (33 \pm $\Gamma(a_1(1260)^0\pi^0)/I$	$(4 \pm 5) \times $	10^{-6} .			Γ 04G result by AUBERT 04 $\Gamma_{427}/\Gamma_{427}/\Gamma_{427}$	
<u>VALUE</u> <1.1 × 10 ^{−3}		DOCUMENT				
•					$e^+e^- ightarrow \gamma(4S)$	
¹ ALBRECHT 90B	limit assu	mes equal product	ion of	$f B^{0} B^{0}$	and B^+B^- at $\Upsilon(4S)$.	
$\Gamma(\omega\pi^0)/\Gamma_{ m total}$					Γ ₄₂₈ /	′ Γ
·	<u>CL%</u>	DOCUMENT ID			COMMENT	
< 0.5	90	¹ AUBERT			$e^+e^- ightarrow \gamma(4S)$	
• • • We do not use	the follow		iges, t			
< 2.0	90	¹ JEN	06		$e^+e^- \rightarrow \Upsilon(4S)$	
< 1.2	90				R Repl. by AUBERT 08AF	ł
< 1.9	90	1 WANG			$e^+e^- \rightarrow \Upsilon(4S)$	
< 3	90	¹ AUBERT ¹ JESSOP			$e^+e^- \rightarrow \Upsilon(4S)$	
< 5.5 < 14	90 90	¹ BERGFELD	98		$e^+e^- ightarrow~\varUpsilon(4S)$ Repl. by JESSOP 00	
< 14 <460	90	² ALBRECHT		ARG		
					e e → 1 (+3)	
1 Assumes equal pr 2 ALBRECHT 90B	limit assu	mes equal product	tne <i>I</i> ion of	(45). $B^0 \overline{B}^0$	and B^+B^- at \varUpsilon (4 S).	
$\Gamma(\pi^+\pi^+\pi^-\pi^-\pi^0)$)/r _{total}	DOCUMENT	ID.	TEC	Γ ₄₂₉ /	′Г
VALUE 3	<u>CL%</u>	1 ALDDECU	<i>ID</i>	1EC	$\frac{N}{G}$ $\frac{COMMENT}{e^+e^- \rightarrow \Upsilon(4S)}$	
					and B^+B^- at $\Upsilon(4S)$.	
$\Gamma(a_1(1260)^+\rho^-)$						/ - -
$(a_1(1200), p)$	' total	DOCUMENT	ID	TEC	Γ ₄₃₀ /	•
VALUE (units 10 1)	00	1.2 AUDEDT D	<u>υ</u>	60 DAI	$rac{N}{BR} rac{COMMENT}{e^+e^- ightarrow \Upsilon(4S)}$	
• • • We do not use	the follow	ving data for avera	iges, f	its, limit	s, etc. • • •	
<3400	90	$^{ m 1}$ ALBRECHT	9	OB ARG	$G = e^+e^- \rightarrow \Upsilon(4S)$	
1 Assumes equal pr 2 Assumes a_{1} (1260					$(\pi^{\pm}) = 0.5.$	

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

$\Gamma\big(a_1(1260)^0\rho^0\big)/\Gamma_{\rm t}$	otal				Γ ₄₃₁ /Γ
VALUE <2.4 × 10 ⁻³	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
¹ ALBRECHT 90в Ii	mit assum	es equal production	of $B^0 \overline{B}{}^0$ and	nd B^+B^- at	$\Upsilon(4S)$.
$\Gamma(b_1^{\mp}\pi^{\pm},\ b_1^{\mp}\to\omega)$	$π$ \mp $)/Γ$ to	tal			Γ ₄₃₂ /Γ
VALUE (units 10 ⁻⁶) 10.9±1.2±0.9		DOCUMENT ID	TECN	COMMENT	
$10.9 \pm 1.2 \pm 0.9$		$^{ m 1}$ AUBERT	07ві BABF	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro-	duction of	$^{+}B^{+}$ and B^{0} at the	$\Upsilon(4S)$.		
$\Gamma(b_1^0\pi^0,\ b_1^0\to\omega\pi^0)$	•				Γ ₄₃₃ /Ι
<i>VALUE</i> (units 10 ^{−6}) <1.9	CL%	DOCUMENT ID	TECN	COMMENT	
<1.9	90	$^{ m 1}$ AUBERT	08AG BABF	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro-	duction of	$^{\mathrm{c}}B^{\mathrm{+}}$ and B^{0} at the	$\Upsilon(4S)$.		
$\Gamma(b_1^- \rho^+, b_1^- \to \omega \tau)$	π^-)/Γ $_{tof}$	tal			Γ ₄₃₄ /Ι
$\frac{\text{VALUE}}{<1.4\times10^{-6}}$	CL%	DOCUMENT ID	TECN	COMMENT	
$<1.4 \times 10^{-6}$	90	¹ AUBERT	09AF BABF	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro-	duction of	$^{\mathrm{F}}B^{\mathrm{+}}$ and B^{0} at the	$\Upsilon(4S)$.		
$\Gamma(b_1^0 ho^0$, $b_1^0 ightarrow\omega\pi^0$)/Γ _{total}				Γ ₄₃₅ /Ι
VALUE <3.4 × 10 ⁻⁶	<u>CL%</u>	DOCUMENT ID	<u>TECN</u>	COMMENT	
				$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	$^{\mathrm{F}}B^{+}$ and B^{0} at the	$\Upsilon(4S)$.		
$\Gamma(\pi^+\pi^+\pi^+\pi^-\pi^-$	π^-)/ Γ_{to}	tal			Γ ₄₃₆ /Ι
<i>VALUE</i> <3.0 × 10 ^{−3}	<u>CL%</u>	1 ALDDECUT	IECN	_ <u>COMMENT</u> 	20(4.6)
¹ ALBRECHT 90в Ii	mit assum	es equal production	of $B^{0}B^{0}$ and	nd B^+B^- at	$: \Upsilon(4S).$
$\Gamma(a_1(1260)^+a_1(1260)^+$	50) [—] , a ₁ +	$\tau ightarrow 2\pi^+\pi^-$, a_1^-	$\rightarrow 2\pi^-\pi^-$	[⊢])/Γ _{total}	Γ ₄₃₇ /Ι
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT	
$11.8 \pm 2.6 \pm 1.6$		¹ AUBERT			$\Upsilon(4S)$
• • • We do not use t	he followi	ng data for averages	s, fits, limits,	etc. • • •	
<6000	90	¹ ALBRECHT	90в ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<2800		² BORTOLETT		$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro- ² BORTOLETTO 89 We rescale to 50%	reports <			4 <i>S</i>) decays 43	3% to $B^0\overline{B}{}^0$
$\Gamma(\pi^+\pi^+\pi^+\pi^-\pi^-$	$\pi^{-}\pi^{0})/$	Γ _{total}			Γ ₄₃₈ /Ι
			TECN	COMMENT	
<i>VALUE</i> <1.1 × 10 ^{−2}	90	$^{ m 1}$ ALBRECHT	90в ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ ALBRECHT 90в li	mit assum	es equal production	of $B^0 \overline{B}{}^0$ and	nd B^+B^- at	r(4S).

	$(\overline{p})/\Gamma_{\text{total}}$					Γ ₄₃₉ /Γ
VAL	UE (units 10 ⁻⁸)	CL%	DOCUMENT ID		TECN	COMMENT
	$1.47 {+0.62 +0.35 \atop -0.51 -0.14}$		¹ AAIJ	13 BG	LHCB	pp at 7 TeV
• •	• We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •
<	11	90	² TSAI	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	41	90	² CHANG	05	BELL	$e^+e^- ightarrow \gamma(4S)$
<	27	90	² AUBERT	04 U	BABR	$e^+e^- ightarrow \Upsilon(4S)$
<	140	90	² BORNHEIM	03	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
<	120	90	² ABE	020	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
<	700	90	² COAN	99	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
<	1800	90	³ BUSKULIC	96∨	ALEP	$e^+e^- \rightarrow Z$
<3	5000	90	⁴ ABREU	95N	DLPH	Sup. by ADAM 96D
<	3400	90	⁵ BORTOLETTO	O89	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
<1	2000	90	⁶ ALBRECHT	88F	ARG	$e^+e^- \rightarrow \Upsilon(4S)$
<1	7000	90	⁵ BEBEK	87	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
-		,				

¹ Uses normalization mode B($B^0 \rightarrow K^+\pi^-$) = (19.55 \pm 0.54) \times 10⁻⁶.

 $^{^4}$ Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. 5 Paper assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}{}^0$. We rescale to 50%. 6 ALBRECHT 88F reports $<1.3\times10^{-4}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}{}^0$. We rescale to 50%.

$\Gamma(p\overline{p}\pi^+\pi^-)/\Gamma_{total}$					Г ₄₄₀ /Г
VALUE (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT	

<2.5	90	$^{ m 1}$ BEBEK	89	CLEO $e^+e^- \rightarrow \Upsilon(4S)$	
• • • We do not use	the followin	g data for averag	es, fits,	limits, etc. • • •	
		•			

< 9.5 90

² ABREU ³ ALBRECHT 95N DLPH Sup. by ADAM 96D $5.4 \pm 1.8 \pm 2.0$ 88F ARG $e^+e^- \rightarrow \Upsilon(4S)$

Γ_{441}/Γ

VALUE (units 10 ⁻⁰)	<u>DOCUMENT ID</u>		TECN	COMMENT
2.66 ± 0.32 OUR AVERA	AGE			
$2.51^{+0.35}_{-0.29}{\pm}0.21$	1,2 CHEN	08 C	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$3.0 \pm 0.5 \pm 0.3$	² AUBERT	07AV	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the f	ollowing data for averages	s, fits,	limits, e	etc. • • •
$2.40^{igoplus 0.64}_{-0.44}\!\pm\!0.28$	2,3,4 WANG	05A	BELL	Repl. by CHEN 08C

$$1.88^{+0.77}_{-0.60} \pm 0.23$$
 $2,3,5$ WANG 04 BELL Repl. by WANG 05A <7.2 90 $2,3$ ABE 02K BELL Repl. by WANG 04

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ BUSKULIC 96V assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons.

 $^{^{1}}$ BEBEK 89 reports < 2.9 \times 10 $^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to B^{0} $\overline{B}{}^{0}$. We rescale

to 50%. ² Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12.

³ALBRECHT 88F reports $6.0 \pm 2.0 \pm 2.2$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%.

Page 137

Created: 5/30/2017 17:22

HTTP://PDG.LBL.GOV

¹ Explicitly vetoes resonant production of $p\overline{p}$ from charmonium states. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ³ Explicitly vetoes resonant production of $p\overline{p}$ from charmonium states and pK^0 production from Λ_{c} . ⁴ Provides also results with $M_{p\,\overline{p}}$ < 2.85 GeV/c² and angular asymmetry of $p\,\overline{p}$ system. $^{5}\,\mathrm{The}$ branching fraction for $M_{\mathcal{D}\,\overline{\mathcal{D}}}~<2.85$ is also reported. $\Gamma(\Theta(1540)^{+}\overline{p}, \Theta^{+} \rightarrow pK_{S}^{0})/\Gamma_{\text{total}}$ Γ_{442}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT CL% 07AV BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT < 0.05 90 • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ WANG 05A BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(f_J(2220)K^0, f_J \rightarrow p\overline{p})/\Gamma_{\text{total}}$ DOCUMENT ID TECN COMMENT VALUE (units 10^{-6}) 90 07AV BABR $e^+e^- \rightarrow \Upsilon(4S)$ < 0.45 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(p\overline{p}K^*(892)^0)/\Gamma_{\text{total}}$ Γ_{444}/Γ VALUE (units 10^{-6}) CL%DOCUMENT ID TECN COMMENT $1.24^{+0.28}_{-0.25}$ OUR AVERAGE $1.18^{\,+\,0.29}_{\,-\,0.25}\,{\pm\,0.11}$ 1,2 CHEN 08C BELL $e^+e^- \rightarrow \Upsilon(4S)$ ² AUBERT 07AV BABR $e^+e^-
ightarrow \varUpsilon(4S)$ $1.47 \pm 0.45 \pm 0.40$ • • • We do not use the following data for averages, fits, limits, etc. • ² WANG 04 BELL $e^+e^- \rightarrow \Upsilon(4S)$ < 7.6 1 Explicitly vetoes resonant production of $p\overline{p}$ from charmonium states. 2 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. $\Gamma(f_J(2220)K_0^*, f_J \rightarrow p\overline{p})/\Gamma_{\text{total}}$ Γ_{445}/Γ VALUE (units 10^{-6}) TECN COMMENT ¹ AUBERT 07AV BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(p\overline{\Lambda}\pi^{-})/\Gamma_{\text{total}}$ Γ_{446}/Γ VALUE (units 10^{-6}) CL% TECN COMMENT 3.14±0.29 OUR AVERAGE ¹ AUBERT 09AC BABR $e^+e^- \rightarrow \Upsilon(4S)$ $3.07 \pm 0.31 \pm 0.23$ $3.23^{+0.33}_{-0.29}\pm0.29$ ¹ WANG 07C BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • $2.62^{\,+\,0.44}_{\,-\,0.40}\,{\pm}\,0.31$ 1,2 WANG 05A BELL Repl. by WANG 07C $3.97^{\,+\,1.00}_{\,-\,0.80}\,{\pm}\,0.56$ ¹ WANG BELL Repl. by WANG 05A ¹ COAN 99 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ < 13 90 ³ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(4S)$ 90 <180

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. 2 Provides also results with $M_{p\overline{p}} < 2.85~{\rm GeV/c^2}$ and angular asymmetry of $p\overline{\Lambda}$ system. 3 ALBRECHT 88F reports $< 2.0 \times 10^{-4}$ assuming the $\varUpsilon(4S)$ decays 45% to $B^0\,\overline{B}^0$. We

$\Gamma(p \overline{\Lambda} \pi^- \gamma) / \Gamma_{total}$						Γ ₄₄₇ /Γ
<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT	
<6.5 × 10 ⁻⁷	90	¹ LAI	14	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(p\overline{\Sigma}(1385)^-)/\Gamma_{\text{total}}$

 Γ_{448}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.26	90	¹ WANG	07 C	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\Delta^0 \overline{\Lambda})/\Gamma_{total}$

 Γ_{449}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.93	90	¹ WANG	07C	BELL	$e^+e^- \rightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(p\overline{\Lambda}K^-)/\Gamma_{\text{total}}$

 Γ_{450}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.82	90	¹ WANG	03	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(p\overline{\Lambda}D^-)/\Gamma_{\text{total}}$

 Γ_{451}/Γ

VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
25.1±2.6±3.5	¹ CHANG	15	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

 $\Gamma(p\overline{\Lambda}D^{*-})/\Gamma_{\text{total}}$

 Γ_{452}/Γ

VALUE (units
$$10^{-6}$$
)DOCUMENT IDTECNCOMMENT33.6 \pm 6.3 \pm 4.41 CHANG15BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(p\overline{\Sigma}{}^0\pi^-)/\Gamma_{\rm total}$

 Γ_{453}/Γ

 $\Gamma(\overline{\Lambda}\Lambda)/\Gamma_{total}$

 Γ_{454}/Γ

VALUE (units
$$10^{-6}$$
)CL%DOCUMENT IDTECNCOMMENT<0.3290 1 TSAI07BELL $e^{+}e^{-} \rightarrow \Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 0.69	90	¹ CHANG	05	BELL	Repl. by TSAI 07
<1.2	90	¹ BORNHEIM	03	CLE2	$e^+e^- o ~ \varUpsilon(4S)$
<1.0	90	$^{ m 1}$ ABE	020	BELL	Repl. by CHANG 05
< 3.9	90	$^{ m 1}$ COAN	99	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{\Lambda}\Lambda K^0)/\Gamma_{\text{total}}$

 Γ_{455}/Γ

VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
$4.76^{+0.84}_{-0.68}\pm0.61$	^{1,2} CHANG	09	BELL	$e^+e^- ightarrow ho$ (45)

 $^{^1\,{\}rm Excluding}$ charmonium events in 2.85 $< m_{\Lambda \overline{\Lambda}} < 3.128\,\,{\rm GeV/c^2}$ and 3.315 $< m_{\Lambda \overline{\Lambda}} < 3.735\,\,{\rm GeV/c^2}.$ Measurements in various $m_{\Lambda \overline{\Lambda}}$ bins are also reported.

$\Gamma(\overline{\Lambda}\Lambda K^{*0})/\Gamma_{total}$

 Γ_{456}/Γ

VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
$2.46^{igoplus 0.87}_{-0.72} \pm 0.34$	^{1,2} CHANG 09	BELL	$e^+e^- ightarrow \gamma(4S)$

 $^{^{1}}$ Excluding charmonium events in 2.85 $< m_{\Lambda \overline{\Lambda}} < 3.128~{\rm GeV/c^{2}}$ and 3.315 $< m_{\Lambda \overline{\Lambda}} < 3.735~{\rm GeV/c^{2}}$. Measurements in various $m_{\Lambda \overline{\Lambda}}$ bins are also reported.

$\Gamma(\overline{\Lambda}\Lambda D^0)/\Gamma_{\text{total}}$

 Γ_{457}/Γ

\ // total				.0.7
VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT	

$1.00^{+0.30}_{-0.26}$ OUR AVERAGE

$0.98^{\begin{subarray}{c} +0.29 \\ -0.26 \end{subarray}} \pm 0.19$	1,2 LEES	14B BABR $e^+e^- ightarrow \Upsilon(4S)$
$1.05^{+0.57}_{-0.44}\pm0.14$	² CHANG	09 BELL $e^+e^- ightarrow \gamma(4S)$

 $^{^{1}\,\}mathrm{Evidence}$ for 3.4 st. dev. signal significance.

$\Gamma \big(D^0 \, \Sigma^0 \, \overline{\varLambda} + \text{c.c.} \big) / \Gamma_{\text{total}}$

 Γ_{458}/Γ

•	,				
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
$< 3.1 \times 10^{-5}$	90	1,2 LEES 14B	BABR	$e^+e^- \rightarrow \Upsilon(4S)$)

¹Here $\Sigma^0 \to \Lambda \gamma$.

$\Gamma(\Delta^0 \overline{\Delta}{}^0)/\Gamma_{\text{total}}$

 Γ_{459}/Γ

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	
<0.0015	90	¹ BORTOLETTO89	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^{1}}$ BORTOLETTO 89 reports < 0.0018 assuming $\varUpsilon(4S)$ decays 43% to $B^{0}\,\overline{B}{}^{0}.$ We rescale to 50%.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ ¹BORTOLETTO 89 reports $< 1.3 \times 10^{-4}$ assuming $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We $\Gamma(\overline{D}^0 p \overline{p})/\Gamma_{\text{total}}$ Γ_{461}/Γ VALUE (units 10^{-4}) DOCUMENT ID TECN 1.04±0.07 OUR AVERAGE 1,2 DEL-AMO-SA..12 BABR $e^+e^- \rightarrow \Upsilon(4S)$ $1.02\pm0.04\pm0.06$ ² ABE 02W BELL $e^+e^- \rightarrow \Upsilon(4S)$ $1.18 \!\pm\! 0.15 \!\pm\! 0.16$ • • • We do not use the following data for averages, fits, limits, etc. • • • ² AUBERT.B 06S BABR Repl. by DEL-AMO-SANCHEZ 12 ¹Uses the values of D and D^* branching fractions from PDG 08. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(D_{\epsilon}^{-} \overline{\Lambda} p) / \Gamma_{\text{total}}$ Γ_{462}/Γ DOCUMENT ID TECN COMMENT VALUE (units 10⁻⁵) 1,2 MEDVEDEVA 07 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $2.8 \pm 0.8 \pm 0.3$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² MEDVEDEVA 07 reports $(2.9\pm0.7\pm0.5\pm0.4)\times10^{-5}$ from a measurement of $[\Gamma(B^0\to 0.5\pm0.4)\times10^{-5}]$ $D_s^- \overline{\Lambda} \rho) / \Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)] \text{ assuming } B(D_s^+ \to \phi \pi^+) = (4.4 \pm 0.6) \times 10^{-2},$ which we rescale to our best value B($D_s^+ \to \phi \pi^+$) = (4.5 \pm 0.4) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using $\Gamma(\overline{D}^*(2007)^0 p \overline{p})/\Gamma_{\text{total}}$ Γ_{463}/Γ VALUE (units 10^{-4}) 0.99 ± 0.11 OUR AVERAGE BABR $e^+e^- \rightarrow \Upsilon(4S)$ ^{1,2} DEL-AMO-SA..12 $0.97 \pm 0.07 \pm 0.09$ $1.20^{+0.33}_{-0.29}\pm0.21$ ² ABE 02W BELL $e^+e^- \rightarrow \Upsilon(4S)$ ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet² AUBERT.B 06S BABR Repl. by DEL-AMO-SANCHEZ 12 $1.01\pm0.10\pm0.09$ ¹Uses the values of D and D^* branching fractions from PDG 08. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(D^*(2010)^- p \overline{n})/\Gamma_{\text{total}}$ Γ_{464}/Γ

Created: 5/30/2017 17:22

VALUE (units 10^{-4}) TECN COMMENT $14.5^{+3.4}_{20}\pm2.7$ 01 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ¹ ANDERSON

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

```
\Gamma(D^- p \overline{p} \pi^+) / \Gamma_{\text{total}}
                                                                                                          \Gamma_{465}/\Gamma
VALUE (units 10^{-4})
                                  DOCUMENT ID
                              <sup>1,2</sup> DEL-AMO-SA...12 BABR e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                <sup>2</sup> AUBERT.B
                                                      06S BABR Repl. by DEL-AMO-SANCHEZ 12
   ^{1} Uses the values of D and D^{*} branching fractions from PDG 08.
   <sup>2</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(D^*(2010)^- p \overline{p} \pi^+) / \Gamma_{\text{total}}
                                                                                                          \Gamma_{466}/\Gamma
VALUE (units 10^{-4})
                                  DOCUMENT ID
                                                             TECN COMMENT
4.7 ±0.5 OUR AVERAGE Error includes scale factor of 1.2.
4.55\pm0.16\pm0.39
                             <sup>1,2</sup> DEL-AMO-SA..12
                                                             BABR e^+e^- \rightarrow \Upsilon(4S)
6.5 \  \, ^{+\, 1.3}_{-\, 1.2}\  \, \pm 1.0
                                <sup>2</sup> ANDERSON
                                                      01 CLE2 e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                <sup>2</sup> AUBERT.B
4.81 \pm 0.22 \pm 0.44
                                                      06S BABR Repl. by DEL-AMO-SANCHEZ 12
   ^{1} Uses the values of D and D^{*} branching fractions from PDG 08.
   <sup>2</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^0 p \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}}
                                                                                                          \Gamma_{467}/\Gamma
VALUE (units 10^{-4})
                                                                       TECN COMMENT
                                           1.2 \overline{\text{DEL-AMO-SA...}} BABR e^+e^- \rightarrow \Upsilon(4S)
2.99 \pm 0.21 \pm 0.45
   <sup>1</sup>Uses the values of D and D^* branching fractions from PDG 08.
   <sup>2</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^{*0} p \overline{p} \pi^+ \pi^-) / \Gamma_{\text{total}}
                                                                                                          \Gamma_{468}/\Gamma
VALUE (units 10^{-4})
                                                                    TECN COMMENT
1.91 \pm 0.36 \pm 0.29
   <sup>1</sup>Uses the values of D and D^* branching fractions from PDG 08.
   <sup>2</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\Theta_c \overline{p} \pi^+, \Theta_c \to D^- p)/\Gamma_{\text{total}}
                                                                                                          \Gamma_{469}/\Gamma
                                                DOCUMENT ID TECN COMMENT
                                                                    06S BABR e^+e^- \rightarrow \Upsilon(4S)
                                             <sup>1</sup> AUBERT.B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\Theta_c \overline{p} \pi^+, \Theta_c \to D^{*-} p) / \Gamma_{\text{total}}
                                                                                                          \Gamma_{470}/\Gamma
                                               DOCUMENT ID TECN COMMENT
VALUE (units 10^{-6}) CL\%
                                             <sup>1</sup> AUBERT B
                                                                    06S BABR e^+e^- \rightarrow \Upsilon(4.5)
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{\Sigma}_c^{--}\Delta^{++})/\Gamma_{\text{total}}
                                                                    94 CLE2 e^+e^- \rightarrow \Upsilon(4S)
                                 90
   <sup>1</sup> PROCARIO 94 reports < 0.0012 from a measurement of [\Gamma(B^0 \to \overline{\Sigma}_c^{--} \Delta^{++})/\Gamma_{total}]
     \times [B(\Lambda_c^+ \to pK^-\pi^+)] assuming B(\Lambda_c^+ \to pK^-\pi^+) = 0.043, which we rescale to
     our best value B(\Lambda_c^+ \rightarrow pK^-\pi^+) = 6.35 \times 10^{-2}.
HTTP://PDG.LBL.GOV
                                                  Page 141
                                                                            Created: 5/30/2017 17:22
```

 $\Gamma(\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{-})/\Gamma_{\text{total}}$

 Γ_{472}/Γ

Created: 5/30/2017 17:22

• •				
$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
1.01±0.14 OUR AVERAGE	Error includes scale fa	actor c	of 1.3. S	ee the ideogram below.
$1.23\!\pm\!0.05\!\pm\!0.33$	^{1,2} LEES	13H	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.88\!\pm\!0.11^{+0.05}_{-0.04}$	^{1,3} PARK	07	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$1.31^{+0.21}_{-0.20}\pm0.07$	⁴ DYTMAN	02	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the foll	owing data for average	s, fits,	limits,	etc. • • •
$0.87\!\pm\!0.16^{+0.05}_{-0.04}$	⁵ GABYSHEV	02	BELL	Repl. by PARK 07
$1.33^{igoplus 0.46}_{-0.42}\!\pm\!0.37$	6 _{FU}	97	CLE2	Repl. by DYTMAN 02

WEIGHTED AVERAGE

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ Uses $\varLambda_c^+ \to p K^- \pi^+$ mode. The second error includes the uncertainty of the branching fraction of the Λ_c decay, B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (5.0 \pm 1.3)%.

³ PARK 07 reports (11.2 \pm 0.5 \pm 3.2) \times 10⁻⁴ from a measurement of $[\Gamma(B^0 \to \overline{\Lambda}_c^- p \pi^+ \pi^-)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p K^- \pi^+)]$ assuming $B(\Lambda_c^+ \to p K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $B(\Lambda_c^+ \to p K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$ $(6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second er-

ror is the systematic error from using our best value. 4 DYTMAN 02 reports $(1.67^{+0.27}_{-0.25})\times 10^{-3}$ from a measurement of [Γ($B^0\to$ $\overline{\Lambda}_c^- p \pi^+ \pi^-)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p K^- \pi^+)] \text{ assuming } B(\Lambda_c^+ \to p K^- \pi^+) = 0.05,$ which we rescale to our best value $B(\Lambda_c^+ \to p K^- \pi^+) = (6.35 \pm 0.33) \times 10^{-2}$. Our

first error is their experiment's error and our second error is the systematic error from using our best value.

⁵ GABYSHEV 02 reports $(1.1 \pm 0.2) \times 10^{-3}$ from a measurement of $[\Gamma(B^0 \to \overline{\Lambda}_c^- p \pi^+ \pi^-)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p K^- \pi^+)]$ assuming $B(\Lambda_c^+ \to p K^- \pi^+) = 0.05$, which we rescale to our best value $B(\Lambda_c^+ \to p K^- \pi^+) = (6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 6 FU 97 uses PDG 96 values of Λ_c branching fraction.

 $\Gamma(\overline{\Lambda}_{c}^{-}p)/\Gamma_{\text{total}}$ Γ_{473}/Γ

()						
VALUE (units 10^{-5}) CL%	DOCUMENT ID		TECN	COMMENT		
1.52±0.18 OUR AVERAG	E		_			
$1.49 \pm 0.16 \pm 0.08$	1,2 AUBERT	08BN	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$2.19^{+0.56}_{-0.49}{\pm}0.65$	$^{1,3}\mathrm{GABYSHEV}$	03	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	

• • We do not use the following data for averages, fits, limits, etc.

$2.10 {+0.67 +0.77 \atop -0.55 -0.46}$		^{1,4} AUBERT	07A\	/ BABR	Repl. by AUBERT 08BN
< 9	90				$e^+e^- ightarrow \gamma(4S)$
< 3.1	90		02	BELL	$e^+e^- ightarrow~ \varUpsilon(4S)$
<21	90	⁶ FU	97	CLE2	$e^+e^- o ag{7}(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{\Lambda}_c^- p \pi^0) / \Gamma_{\text{total}}$

 Γ_{474}/Γ

Created: 5/30/2017 17:22

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
$1.53 \pm 0.17 \pm 0.08$		^{1,2} AUBERT	10H	BABR	$e^+e^- ightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
5.9 90 ³ FU 97 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

² AUBERT 08BN reports $(1.89 \pm 0.21 \pm 0.49) \times 10^{-5}$ from a measurement of $[\Gamma(B^0 \to \overline{\Lambda}_c^- p)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p \, K^- \pi^+)]$ assuming $B(\Lambda_c^+ \to p \, K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $B(\Lambda_c^+ \to p \, K^- \pi^+) = (6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³The second error for GABYSHEV 03 includes the systematic and the error of $\Lambda_c \to \overline{p}K^+\pi^-$ decay branching fraction.

 $[\]overline{p}K^+\pi^-$ decay branching fraction. ⁴Uses the value for $\Lambda_C \to pK^-\pi^+$ branching ratio (5.0 \pm 1.3)%.

⁵ DYTMAN 02 measurement uses B($\Lambda_c^- \to \overline{p}K^+\pi^-$) = 5.0 \pm 1.3%. The second error includes the systematic and the uncertainty of the branching ratio.

 $^{^6\,\}mathrm{FU}$ 97 uses PDG 96 values of Λ_C branching ratio.

 $^{^1}$ AUBERT 10H reports (1.94 \pm 0.17 \pm 0.52) \times 10 $^{-4}$ from a measurement of [$\Gamma(B^0\to \overline{\Lambda}_c^-\,p\pi^0)/\Gamma_{total}]\times [B(\Lambda_c^+\to p\,K^-\pi^+)]$ assuming $B(\Lambda_c^+\to p\,K^-\pi^+)=(5.0\pm1.3)\times 10^{-2}$, which we rescale to our best value $B(\Lambda_c^+\to p\,K^-\pi^+)=(6.35\pm0.33)\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^3}$ FU 97 uses PDG 96 values of Λ_{c} branching ratio.

$\Gamma(\Lambda_c^- p K^+ K^-)/\Gamma_{\text{total}}$

 Γ_{487}/Γ

VALUE (units 10^{-5})

DOCUMENT ID TECN COMMENT

 $1.97 \pm 0.35 ^{+0.11}_{-0.10}$

15B BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $^{1}\,\text{LEES 15B reports}\;[\Gamma(B^{0}\rightarrow\;\Lambda_{c}^{-}\,p\,K^{+}\,K^{-})/\Gamma_{\text{total}}]\,\times\,[B(\Lambda_{c}^{+}\rightarrow\;p\,K^{-}\,\pi^{+})]=(12.5\,\pm\,10^{-2}\,M_{\odot}^{-1}\,M_{\odot}^{-1})$ 2.0 ± 1.0) \times 10^{-7} which we divide by our best value B($\Lambda_c^+ \to pK^-\pi^+$) = (6.35 \pm $0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\Lambda_c^- p\phi)/\Gamma_{\text{total}}$

 Γ_{488}/Γ

15B BABR $e^+e^-
ightarrow \gamma(4S)$

 $^1 \, {\rm LEES} \ 15 {\rm B} \ {\rm reports} < 1.2 \times 10^{-5} \ {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ [\Gamma(B^0 \to \ \Lambda_C^- \, p \, \phi) / \Gamma_{\rm total}] \ \times 10^{-5} \, {\rm from \ a \ measurement \ of} \ \Gamma_{\rm total} \ \Gamma_{\rm total}$ $[B(\Lambda_c^+ \to pK^-\pi^+)]$ assuming $B(\Lambda_c^+ \to pK^-\pi^+) = (5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = 6.35 \times 10⁻².

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\Sigma_c(2455)^-p)/\Gamma_{\text{total}}$

 Γ_{475}/Γ

 $\frac{DOCUMENT\ ID}{1,2}$ AUBERT 10H BABR $e^+e^ightarrow \varUpsilon(4S)$

 $^{1}\,\text{AUBERT 10H reports}\,\,[\Gamma(B^{0}\,\rightarrow\,\,\Sigma_{c}(\text{2455})^{-}\,p)/\Gamma_{\text{total}}]\,\times\,[\text{B}(\Lambda_{c}^{+}\,\rightarrow\,\,p\,\text{K}^{-}\,\pi^{+})]\,<$ 1.5×10^{-6} which we divide by our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = 6.35×10^{-2} .

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\Lambda_c^- p \pi^+ \pi^- \pi^0) / \Gamma_{\text{total}}$

 Γ_{476}/Γ

 1 FU 97 uses PDG 96 values of Λ_{c} branching ratio.

$\Gamma(\overline{\Lambda}_c^- ho \pi^+ \pi^- \pi^+ \pi^-)/\Gamma_{ m total}$

 Γ_{477}/Γ

 $\frac{CL\%}{90}$ $\frac{DOCUMENT~ID}{1}$ $\frac{TECN}{90}$ $\frac{COMMENT}{1}$ $\frac{COMMENT}{1}$

 1 FU 97 uses PDG 96 values of Λ_{c} branching ratio.

$\Gamma(\overline{\Lambda}_c^- \rho \pi^+ \pi^- \text{(nonresonant)})/\Gamma_{\text{total}}$

 Γ_{478}/Γ

DOCUMENT ID _____ TECN COMMENT VALUE (units 10^{-4}) **5.4±1.0 OUR AVERAGE** Error includes scale factor of 1.3.

 $7.9 \pm 0.4 \pm 2.0$

^{1,2} LEES

13H BABR $e^+e^- \rightarrow \Upsilon(4S)$ 07 BELL $e^+e^- \rightarrow \Upsilon(4S)$

Created: 5/30/2017 17:22

 $5.0 \pm 0.8 \pm 0.3$

1,3 PARK

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^3\,\text{PARK}$ 07 reports (6.4 \pm 0.4 \pm 1.9) \times 10 $^{-4}$ from a measurement of [$\Gamma(B^0$ \rightarrow $\overline{\varLambda_c^-} \, p \, \pi^+ \, \pi^- \, (\text{nonresonant})) / \Gamma_{\text{total}}] \, \times \, [\mathsf{B}(\varLambda_c^+ \, \to \, p \, K^- \, \pi^+)] \, \text{assuming} \, \, \mathsf{B}(\varLambda_c^+ \, \to \, p \, K^- \, \pi^+)]$ $pK^-\pi^+$) = $(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value B($\Lambda_c^+ \to pK^-\pi^+$) $=(6.35\pm0.33)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Sigma}_c(2520)^{--}p\pi^+)/\Gamma_{\text{total}}$

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
1.01 ± 0.18 OUR AVERAGE				
$1.15\!\pm\!0.10\!\pm\!0.30$	1,2 LEES	13H	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.94 \pm 0.21 \pm 0.05$	^{1,3} PARK	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

$\Gamma(\overline{\Sigma}_c(2520)^0 p\pi^-)/\Gamma_{\text{total}}$

 Γ_{480}/Γ

<u>VALUE</u>	<u>CL%</u>	<u>DOCUMENT ID</u>		TECN	<u>COMMENT</u>
$< 0.31 \times 10^{-4}$	90	1,2 LEES	13H	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use	the following	a data for averages	fite	limits a	tc • • •

$$<\!0.38\times10^{-4}$$
 90 1 PARK 07 BELL e⁺ e⁻ \rightarrow $\Upsilon(4S)$ $<\!1.21\times10^{-4}$ 90 1,2 GABYSHEV 02 BELL Repl. by PARK 07

$\Gamma(\overline{\Sigma}_c(2455)^0 N^0, N^0 \rightarrow p\pi^-)/\Gamma_{\text{total}}$

Created: 5/30/2017 17:22

 N^0 is the N(1440) P_{11} or N(1535) S_{11} or an admixture of the two baryonic states.

VALUE (units
$$10^{-4}$$
)DOCUMENT IDTECNCOMMENT0.63 \pm 0.16 \pm 0.031,2 KIM08BELL $e^+e^- \rightarrow \Upsilon(4S)$

² Uses $\Lambda_c^+ \to p K^- \pi^+$ mode. The second error includes the uncertainty of the branching fraction of the $\Lambda_{\it C}$ decay, B($\Lambda_{\it C}^+ \to \it p\, K^- \pi^+$) = (5.0 \pm 1.3)%.

⁴ GABYSHEV 02 BELL Repl. by PARK 07 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Uses $\Lambda_c^+ \to p K^- \pi^+$ mode. The second error includes the uncertainty of the branching fraction of the Λ_{C} decay, B($\Lambda_{C}^{+} \rightarrow pK^{-}\pi^{+}$) = (5.0 \pm 1.3)%.

 $^{^3\,\}text{PARK}$ 07 reports (1.2 \pm 0.1 \pm 0.4) \times 10 $^{-4}$ from a measurement of [$\Gamma(B^0$ \rightarrow $\overline{\Sigma}_c(2520)^{--}\,p\,\pi^+)/\Gamma_{\mathsf{total}}]\,\times\,[\mathsf{B}(\varLambda_c^+\,\to\,\,p\,K^-\,\pi^+)]\,\,\mathsf{assuming}\,\,\mathsf{B}(\varLambda_c^+\,\to\,\,p\,K^-\,\pi^+)$ = $(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value B($\Lambda_c^+ \rightarrow pK^-\pi^+$) = $(6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is

the systematic error from using our best value. 4 GABYSHEV 02 reports $(1.63^{+0.64}_{-0.58}) \times 10^{-4}$ from a measurement of $[\Gamma(B^0 \rightarrow B^0)]$ $\overline{\Sigma}_c(2520)^{--}\,p\,\pi^+)/\Gamma_{\mathsf{total}}]\times[\mathsf{B}(\varLambda_c^+\to\ p\,K^-\,\pi^+)]\;\mathsf{assuming}\;\mathsf{B}(\varLambda_c^+\to\ p\,K^-\,\pi^+)=$ 0.05, which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Uses the value for $\Lambda_{c} \rightarrow p K^{-} \pi^{+}$ branching ratio (5.0 \pm 1.3)%.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 2 KIM 08 reports (0.80 \pm 0.15 \pm 0.25) imes 10 $^{-4}$ from a measurement of [$\Gamma(B^0 \to B^0)$] $\overline{\Sigma}_c(\text{2455})^0\,\text{N}^0, \quad \text{N}^0 \rightarrow \ \, p\,\pi^-)/\Gamma_{\text{total}}] \,\times\, [\text{B}(\Lambda_c^+ \rightarrow \ \, p\,\text{K}^-\,\pi^+)] \,\, \text{assuming} \,\, \text{B}(\Lambda_c^+ \rightarrow \ \, p\,\text{K}^-\pi^+)]$ $pK^-\pi^+)=(5.0\pm1.3)\times10^{-2}$, which we rescale to our best value B($\Lambda_c^+\to pK^-\pi^+$) = $(6.35\pm0.33) imes10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Sigma}_c(2455)^0 p\pi^-)/\Gamma_{\text{total}}$

 Γ_{481}/Γ

					-
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
1.07 ± 0.16 OUR AVERA	GE				
$0.91\!\pm\!0.07\!\pm\!0.24$		1,2 LEES	13H	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$1.10 \pm 0.20 \pm 0.06$		^{1,3} PARK			$e^+e^- \rightarrow \Upsilon(4S)$
$1.7 \pm 0.6 \pm 0.1$		⁴ DYTMAN	02	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the	e followir	ng data for averages	s, fits,	limits, e	etc. • • •
$0.38^{+0.36}_{-0.32}\pm0.02$	90	⁵ GABYSHEV	02	BELL	Repl. by PARK 07

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 2 Uses $\Lambda_c^+ o p \, K^- \, \pi^+$ mode. The second error includes the uncertainty of the branching fraction of the Λ_c decay, B($\Lambda_c^+ \rightarrow p K^- \pi^+$) = (5.0 \pm 1.3)%.

 3 PARK 07 reports (1.4 \pm 0.2 \pm 0.4) imes 10⁻⁴ from a measurement of [$\Gamma(B^0$ ightarrow $\overline{\Sigma}_c(2455)^0\,p\,\pi^-)/\Gamma_{\rm total}]\,\times\,[{\rm B}(\Lambda_c^+\,\rightarrow\,p\,K^-\,\pi^+)]\ \ {\rm assuming}\ \ {\rm B}(\Lambda_c^+\,\rightarrow\,p\,K^-\,\pi^+)$ = $(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value B($\Lambda_c^+ \rightarrow p K^- \pi^+$) = $(6.35\pm0.33)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 4 DYTMAN 02 reports (2.2 \pm 0.7) imes 10 $^{-4}$ from a measurement of [$\Gamma(B^0$ ightarrow $\overline{\Sigma}_c(2455)^0\,p\,\pi^-)/\Gamma_{\mathsf{total}}]\,\times\,[\mathsf{B}(\varLambda_c^+\,\to\,\,p\,K^-\,\pi^+)]\,\,\mathsf{assuming}\,\,\mathsf{B}(\varLambda_c^+\,\to\,\,p\,K^-\,\pi^+)=$ 0.05, which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

 5 GABYSHEV 02 reports $(0.48^{+0.46}_{-0.41})\times 10^{-4}$ from a measurement of [$\Gamma(B^0\to 0.48)$ $\overline{\Sigma}_c(2455)^0 p \pi^-)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p K^- \pi^+)] \text{ assuming } B(\Lambda_c^+ \to p K^- \pi^+) =$ 0.05, which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Sigma}_{a}(2455)^{--}n\pi^{+})/\Gamma_{babb}$

 Γ_{402}/Γ

$(2c(2+33) P^{n})/\text{total}$				' 483/ '	
VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT	
1.81±0.24 OUR AVERAGE					
$2.13\!\pm\!0.10\!\pm\!0.56$	^{1,2} LEES	13H	BABR	$e^+e^- ightarrow \Upsilon(4S)$	
$1.65\!\pm\!0.25\!+\!0.09\\-0.08$	^{1,3} PARK	07	BELL	$e^+e^- ightarrow \Upsilon(4S)$	
$2.9 \pm 0.9 ^{+0.2}_{-0.1}$	⁴ DYTMAN	02	CLE2	$e^+e^- ightarrow \Upsilon(4S)$	
• • • We do not use the follow	ing data for average	s, fits,	limits, e	etc. • • •	
$1.9 \ ^{+0.6}_{-0.5} \ \pm 0.1$	⁵ GABYSHEV	02	BELL	Repl. by PARK 07	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^3\,\text{PARK}$ 07 reports (2.1 \pm 0.2 \pm 0.6) \times 10 $^{-4}$ from a measurement of [$\Gamma(B^0$ \rightarrow $\overline{\Sigma}_c(2455)^{--}p\pi^+)/\Gamma_{ ext{total}}] \times [\mathsf{B}(\Lambda_c^+ o pK^-\pi^+)] \text{ assuming } \mathsf{B}(\Lambda_c^+ o pK^-\pi^+)$ = $(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value B($\Lambda_c^+ \rightarrow pK^-\pi^+$) = $(6.35\pm0.33)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 4 DYTMAN 02 reports (3.7 \pm 1.1) imes 10 $^{-4}$ from a measurement of [$\Gamma(B^0
ightarrow$ $\overline{\Sigma}_c(2455)^{--}\,p\,\pi^+)/\Gamma_{\mathsf{total}}]\times[\mathsf{B}(\varLambda_c^+\to\ p\,K^-\,\pi^+)]\;\mathsf{assuming}\;\mathsf{B}(\varLambda_c^+\to\ p\,K^-\,\pi^+)=$ 0.05, which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^5\,\text{GABYSHEV}$ 02 reports $(2.38^{+0.75}_{-0.69})\times10^{-4}$ from a measurement of $[\Gamma(B^0$ \rightarrow $\overline{\Sigma}_{c}(2455)^{--}p\pi^{+})/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})] \text{ assuming } \mathsf{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+}) = 0$ 0.05, which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Lambda - pK^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{484}/Γ

 $^1\,\text{AUBERT}$ 09AG reports (4.33 \pm 0.82 \pm 0.33 \pm 1.13) $\times\,10^{-5}$ from a measurement of $[\Gamma(B^0 \to \Lambda_c^- p \, K^+ \pi^-)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p \, K^- \pi^+)] \text{ assuming } B(\Lambda_c^+ \to p \, K^- \pi^+)$ = $(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value B($\Lambda_c^+ \rightarrow pK^-\pi^+$) = $(6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{\Sigma}_c(2455)^{--} \rho K^+, \overline{\Sigma}_c^{--} \to \overline{\Lambda}_c^- \pi^-)/\Gamma_{\text{total}}$

 Γ_{485}/Γ

VALUE (units 10^{-5})

DOCUMENT ID

TECN

COMMENT

1,2 AUBERT

09AG BABR $e^+e^- \rightarrow \Upsilon(4S)$

Created: 5/30/2017 17:22

 1 AUBERT 09AG reports (1.11 \pm 0.30 \pm 0.09 \pm 0.29) \times 10^{-5} from a measurement of [$\Gamma(B^{0} \rightarrow \overline{\Sigma}_{c}(2455)^{--} p \, K^{+}, \ \overline{\Sigma}_{c}^{--} \rightarrow \overline{\Lambda}_{c}^{-} \pi^{-}) / \Gamma_{total}] \times [B(\Lambda_{c}^{+} \rightarrow p \, K^{-} \pi^{+})]$ assuming B($\Lambda_c^+ \to pK^-\pi^+$) = $(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $B(\Lambda_c^+ \to p K^- \pi^+) = (6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\Lambda - pK^*(892)^0)/\Gamma_{total}$

 Γ_{486}/Γ

VALUE (units 10^{-5})

CL%

DOCUMENT ID

TECN

COMMENT

COMMENT

AUBERT

O9AG BABR $e^+e^- \rightarrow \Upsilon(4S)$

² Uses $\Lambda_c^+ \to p K^- \pi^+$ mode. The second error includes the uncertainty of the branching fraction of the Λ_{c} decay, B($\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$) = (5.0 \pm 1.3)%.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\Lambda_c^- p \overline{p} p) / \Gamma_{\text{total}}$

 Γ_{480}/Γ

VALUE (units 10^{-6})

200 DOCUMENT ID

TECN COMMENT

LEES 14C BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(\overline{\Lambda}_c^- \Lambda K^+)/\Gamma_{\text{total}}$

 Γ_{490}/Γ

VALUE (units 10^{-5})DOCUMENT IDTECNCOMMENT4.8±1.1 $^{+0.2}_{-0.3}$ 1,2 LEES11FBABR $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(\overline{\Lambda}_c^- \Lambda_c^+)/\Gamma_{\text{total}}$

 Γ_{491}/Γ

VALUE (units 10^{-5})CL%DOCUMENT IDTECNCOMMENT<1.6</td>951 AAIJ14AA LHCBpp at 7 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

<6.2 90 2 UCHIDA 08 BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\overline{\Lambda}_c(2593)^- / \overline{\Lambda}_c(2625)^- p) / \Gamma_{\text{total}}$

 Γ_{492}/Γ

VALUECL%DOCUMENT IDTECNCOMMENT
$$<1.1 \times 10^{-4}$$
90 1,2 DYTMAN02CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\overline{\Xi}_c^- \Lambda_c^+, \, \overline{\Xi}_c^- \to \overline{\Xi}^+ \pi^- \pi^-)/\Gamma_{\text{total}}$

 Γ_{493}/Γ

Created: 5/30/2017 17:22

VALUE (units 10^{-5})DOCUMENT IDTECNCOMMENT1.7±1.8 OUR AVERAGEError includes scale factor of 2.2. $1.2\pm0.9\pm0.1$ 1.2 AUBERT08H BABR $e^+e^- \rightarrow \Upsilon(4S)$ $7.3^{+3.3}_{-2.7}\pm0.4$ 2.3 CHISTOV06A BELL $e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and $B(\Lambda_c^+ \to pK^-\pi^+) = 0.050 \pm 0.013$.

 $^{^{1}}$ Assumes equal production of B^{0} and B^{+} from Upsilon(4S) decays.

² LEES 11F reports $(3.8 \pm 0.8 \pm 0.2 \pm 1.0) \times 10^{-5}$ from a measurement of $[\Gamma(B^0 \to \overline{\Lambda}_c^- \Lambda K^+)/\Gamma_{\text{total}}]$ / $[B(\Lambda_c^+ \to p K^- \pi^+)]$ / $[B(\Lambda \to p \pi^-)]$ assuming $B(\Lambda_c^+ \to p K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}, B(\Lambda \to p \pi^-) = (63.9 \pm 0.5) \times 10^{-2}$, which we rescale to our best values $B(\Lambda_c^+ \to p K^- \pi^+) = (6.35 \pm 0.33) \times 10^{-2}, B(\Lambda \to p \pi^-) = (63.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. The reported uncertainties are statistical, systematic, and $\overline{\Lambda}_c^-$ branching fraction uncertainty.

¹ Uses B($\overline{B}^0 \to D^+ D_s^-$) = (7.2 ± 0.8) × 10⁻³.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² DYTMAN 02 measurement uses B($\Lambda_c^- \to \overline{p}K^+\pi^-$) = 5.0 \pm 1.3%. The second error includes the systematic and the uncertainty of the branching ratio.

¹ AUBERT 08H reports $(1.5 \pm 1.07 \pm 0.44) \times 10^{-5}$ from a measurement of $[\Gamma(B^0 \to \Xi_c^- \Lambda_c^+, \Xi_c^- \to \Xi^+ \pi^- \pi^-)/\Gamma_{total}] \times [B(\Lambda_c^+ \to p K^- \pi^+)]$ assuming $B(\Lambda_c^+ \to p K^- \pi^+) = (5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $B(\Lambda_c^+ \to p K^- \pi^+) = (6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ CHISTOV 06A reports $(9.3^{+3.7}_{-2.8}\pm3.1)\times10^{-5}$ from a measurement of $[\Gamma(B^0\to\overline{\Xi}^-\Lambda_c^+)]$ $\overline{\Xi}_c^- \to \overline{\Xi}^+ \pi^- \pi^-)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to pK^- \pi^+)] \text{ assuming } B(\Lambda_c^+ \to pK^- \pi^+)$ $= (5.0 \pm 1.3) \times 10^{-2}, \text{ which we rescale to our best value } B(\Lambda_c^+ \to pK^- \pi^+) =$ $(6.35\pm0.33)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Lambda_c^+ \Lambda_c^- K^0)/\Gamma_{\text{total}}$

 Γ_{404}/Γ

\ C C // total					,
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
4.3±2.2 OUR AVERAGE			-		
$3.0 \pm 2.8 \pm 0.2$	1,2 AUBERT	08н	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$6.2^{+3.7}_{-3.5} \pm 0.3$	^{2,3} GABYSHEV	06	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^1}$ AUBERT 08H reports (0.38 \pm 0.31 \pm 0.21) imes 10 $^{-3}$ from a measurement of [$\Gamma(B^0
ightarrow$ $\Lambda_c^+ \Lambda_c^- K^0)/\Gamma_{\text{total}} \times [B(\Lambda_c^+ \to pK^-\pi^+)]$ assuming $B(\Lambda_c^+ \to pK^-\pi^+) = (5.0 \pm 1.0 \pm 1.$ 1.3) \times 10⁻², which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (6.35 \pm 0.33) \times 10^{-2} . Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ Γ_{495}/Γ

Test for ΔB =1 weak neutral current. Allowed by higher-order electroweak interactions.

VALUE	CL%	DOCUMENT ID		TECIV	COMMENT		
<3.2 × 10 ⁻⁷	90	¹ DEL-AMO-SA.	.11A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •		
$< 6.2 \times 10^{-7}$	90	¹ VILLA	06	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
.1 7 10-6	00	1	01.		+ -	20(4.0)	

 $^{^{1}}$ AUBERT 011 BABR $e^{+}e^{-} \rightarrow \varUpsilon(4S)$ 2 ACCIARRI 951 L3 $e^{+}e^{-} \rightarrow Z$ $<1.7 \times 10^{-6}$ $< 3.9 \times 10^{-5}$ 90

 $\Gamma(e^+e^-)/\Gamma_{\text{total}}$

Created: 5/30/2017 17:22

Test for ΔB =1 weak neutral current. Allowed by higher-order electroweak interactions.

CL% DOCUMENT ID TECN COMMENT

VALUE	CL%	DOCUMENT ID TECH COMMENT
$< 8.3 \times 10^{-8}$	90	AALTONEN 09P CDF $p\overline{p}$ at 1.96 TeV
● ● We do not us	e the foll	owing data for averages, fits, limits, etc. • • •
$< 11.3 \times 10^{-8}$	90	1 AUBERT 08P BABR $e^{+}e^{-} ightarrow~ \varUpsilon(4S)$
$< 6.1 \times 10^{-8}$	90	¹ AUBERT 05W BABR Repl. by AUBERT 08P
$< 1.9 \times 10^{-7}$	90	1 CHANG 03 BELL $e^{+}e^{-} ightarrow$ \varUpsilon (4 S)
$< 8.3 \times 10^{-7}$	90	1 BERGFELD 00B CLE2 $e^{+}e^{-} ightarrow \gamma(4S)$
$< 1.4 \times 10^{-5}$	90	2 ACCIARRI 97B L3 $e^+e^- ightarrow Z$

 $^{^2}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 3 GABYSHEV 06 reports $(7.9^{+2.9}_{-2.3}\,\pm\,4.3)\times10^{-4}$ from a measurement of [$\Gamma(B^0\,\rightarrow\,1.00)$ $\Lambda_c^+ \Lambda_c^- K^0)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\Lambda_c^+ \to pK^-\pi^+)] \text{ assuming } \mathsf{B}(\Lambda_c^+ \to pK^-\pi^+) = (5.0 \pm m)$ 1.3) \times 10⁻², which we rescale to our best value B($\Lambda_c^+ \to p K^- \pi^+$) = (6.35 \pm 0.33) \times 10^{-2} . Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

 $^{^2}$ ACCIARRI 95I assumes $f_{R0}=39.5\pm4.0$ and $f_{B_s}=12.0\pm3.0\%$.

```
< 5.9 \times 10^{-6}
                           90
                                         AMMAR
                                                                    CLE2 Repl. by BERGFELD 00B
                                       <sup>3</sup> AVERY
< 2.6 \times 10^{-5}
                           90
                                                             89B CLEO e^+e^- \rightarrow \Upsilon(4S)
< 7.6 \times 10^{-5}
                                       <sup>4</sup> ALBRECHT
                           90
                                                                   ARG
                                                                              e^+e^- \rightarrow \Upsilon(4S)
< 6.4 \times 10^{-5}
                           90
                                       <sup>5</sup> AVERY
                                                             87
                                                                    CLEO e^+e^- \rightarrow \Upsilon(4S)
< 3 \times 10^{-4}
                           90
                                         GILES
                                                                    CLEO Repl. by AVERY 87
```

 $\Gamma(e^+e^-\gamma)/\Gamma_{\text{total}}$

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions. **DOCUMENT ID** TECN COMMENT CL% $<1.2 \times 10^{-7}$ 08C BABR $e^+e^- \rightarrow \Upsilon(4S)$ **AUBERT**

 $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ Γ_{498}/Γ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

TECN COMMENT CL% DOCUMENT ID **0.18±0.31 OUR AVERAGE** Error includes scale factor of 2.6. ¹ AABOUD -0.25 ± 0.20 16L ATLS pp at 7, 8 TeV $0.39^{\,+\,0.16}_{\,-\,0.14}$ ² KHACHATRY...15BE LHC pp at 7, 8 TeV

• • We do not use the following data for averages, fits, limits, etc. • • •

				,	
<	0.80	90	³ AAIJ	13B LHCB	Repl. by AAIJ 13BA
<	0.63	90	⁴ AAIJ	13BA LHCB	Repl. by KHACHA-
<	3.8	90	⁵ AALTONEN	13F CDF	TRYAN 15BE pp at 1.96 TeV
<	0.92	90	⁶ CHATRCHYAN	I 13AW CMS	pp at 7, 8 TeV
<	2.6	90	³ AAIJ	12A LHCB	Repl. by AAIJ 12W
<	0.81	90	⁷ AAIJ	12W LHCB	Repl. by AAIJ 13B
<	1.4	90	⁷ CHATRCHYAN	112A CMS	pp at 7 TeV
<	12	90	⁸ AAIJ	11B LHCB	Repl. by AAIJ 12A
<	5.0	90	⁷ AALTONEN	11AG CDF	<i>р</i> р at 1.96 TeV
<	3.7	90	⁷ CHATRCHYAN	N11T CMS	Repl. by CHATRCHYAN 12A

 $^{^1}$ This value is obtained from a profile-likelihood fit, see Fig. 9. It corresponds to an uppper limit of $< 0.42 \times 10^{-9}$ at 95% C.L.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² ACCIARRI 97B assume PDG 96 production fractions for B^+ , B^0 , B_s , and Λ_h .

 $^{^3}$ AVERY 89B reports $< 3 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale

 $^{^4}$ ALBRECHT 87D reports $<8.5\times10^{-5}$ assuming the $\varUpsilon(4S)$ decays 45% to $B^0\,\overline B{}^0.$ We

 $_5$ rescale to 50%. SAVERY 87 reports < 8 \times 10 $^{-5}$ assuming the $\varUpsilon(4S)$ decays 40% to $B^0\overline{B}{}^0$. We rescale to 50%.

²Derived from the combined fit to CMS and LHCb data. Uncertainty includes both statistical and systematic component. Also reports $B(B^0 \to \mu^+ \mu^-)/B(B_c \to \mu^+ \mu^-)$ $=0.14^{+0.08}_{-0.06}$

³ Uses B($B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+$) = $(6.01 \pm 0.21) \times 10^{-5}$ and B($B^0 \to K^+ \pi^-$) = (1.94 \pm 0.06) $\times\,10^{-5}$ for normalization.

⁴Reports also a limit of < 7.4 imes 10 $^{-10}$ at 95% CL. Uses normalization modes B^+ ightarrow $J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$ and $B^0 \rightarrow K^+ \pi^-$.

⁵ Uses normalization mode B($B^+ \to J/\psi \, K^+$) = (10.22 ± 0.35) × 10⁻⁴. ⁶ Uses B($B^+ \to J/\psi \, K^+ \to \mu^+ \mu^- \, K^+$) = (6.0 ± 0.2) × 10⁻⁵ for normalization.

⁷Uses B(B⁺ $\rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$) = (6.01 ± 0.21) × 10⁻⁵.

⁸ Uses B production ratio $f(\overline{b} \to B^+)/f(\overline{b} \to B_s^0) = 3.71 \pm 0.47$ and three normalization modes.

	<u>CL%</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
<u>VALUE</u> <1.6 × 10 ^{−7}	90	AUBERT	08 C	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$\Gamma(au^+ au^-)/\Gamma_{ m total}$					Γ ₅₀₂ /Γ
Test for $\Delta B=1$					r electroweak interactions
<i>VALUE</i> <4.1 × 10 ^{−3}	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
$<4.1 \times 10^{-3}$ ¹ Assumes equal pro					$e^+e^- o ag{7}(4S)$
		D' allu D' at ti	16 7 (42	,).	F /F
$\Gamma(\mu^+\mu^-\mu^+\mu^-)/\Gamma$	total				Γ ₅₀₀ /Γ
VALUE <5.3 × 10^{−9}	<u>CL%</u>	DOCUMENT ID	10	<u>TECN</u>	COMMENT
				LHCB	pp at 7 TeV
¹ Also reports a lim	it of < 6.6	$ imes$ 10^{-9} at 95% C	L.		
$\Gamma(SP, S \rightarrow \mu^+\mu^-)$	P → u	+ u-)/[tatal			Γ ₅₀₁ /Γ
Here S and P	are the hyp	othetical scalar a	nd pseu	doscalar	particles with masses of
2.5 GeV/c ² and	d 214.3 Me	√/c ² , respectively			
<i>VALUE</i> <5.1 × 10^{−9}	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
$<5.1 \times 10^{-9}$	90	¹ AAIJ	13AW	LHCB	pp at 7 TeV
$^{ m 1}$ Also reports a lim	it of < 6.3	$ imes$ 10^{-9} at 95% C	L.		
$\Gamma(-0) + \rho - 1/\Gamma$					Γ/Γ
$\Gamma(\pi^0\ell^+\ell^-)/\Gamma_{\text{total}}$	CL 0/	DOCUMENT IF	,	TECN	Γ ₅₀₃ /Γ
<i>∨ALUE</i> <5.3 × 10^{−8}	<u>CL%</u>	1 LEEC	1214	DADD	+ - ~(4C)
<2.3 X IO	90	- LEES	13⋈	BABK	$e \cdot e \rightarrow I(43)$
• • We do not use	the following	or data for averag	oc fitc	limite 6	otc A A A
• • • We do not use	the followir	ng data for averag	es, fits,		
• • • We do not use $<1.5 \times 10^{-7}$	the following 90	ng data for averag $^{ m 1}$ WEI	es, fits, 08A	BELL	$e^+e^- ightarrow~\gamma(4S)$
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$	the followir 90 90	ng data for averag 1 WEI 1 AUBERT	es, fits, 08A 07AG	BELL BABR	
• • • We do not use $<1.5 \times 10^{-7}$	the followir 90 90	ng data for averag 1 WEI 1 AUBERT	es, fits, 08A 07AG	BELL BABR	$e^+e^- ightarrow~\gamma(4S)$
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ Assumes equal pro	the followir 90 90	ng data for averag 1 WEI 1 AUBERT	es, fits, 08A 07AG	BELL BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$ Repl. by LEES 13M
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ 1 Assumes equal pro $\Gamma(\pi^{0}\nu\overline{\nu})/\Gamma_{ ext{total}}$	the followin 90 90 oduction of	1 WEI 1 AUBERT 8 and 8 at th	es, fits, $08A$ $07AG$	BELL BABR 5).	$e^+e^- ightarrow~\gamma(4S)$
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ Assumes equal pro $\Gamma(\pi^0 \nu \overline{\nu})/\Gamma_{ ext{total}}$ Test for $\Delta B=1$	90 90 oduction of	ng data for averag 1 WEI 1 AUBERT $^B+$ and 0 at the ral current. Allowe $^{DOCUMENT\ ID}$	es, fits, $08A$ $07AG$ ne $\Upsilon(4S)$ ed by hig	BELL BABR (5). her-order	$e^+e^- ightarrow~ \varUpsilon(4S)$ Repl. by LEES 13M $$\Gamma_{509}/\Gamma_{}^{}$ er electroweak interaction $$COMMENT$$
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ $^{1} \text{ Assumes equal pro}$ $\Gamma(\pi^{0} \nu \overline{\nu})/\Gamma_{\text{total}}$ $\text{Test for } \Delta B = 1$ $VALUE$ $<6.9 \times 10^{-5}$	the following 90 90 oduction of weak neutrony $\frac{CL\%}{90}$	ag data for averag 1 WEI 1 AUBERT $^+$ and 0 at the ral current. Allowe $^{0OCUMENT\ ID}$ 1 LUTZ	es, fits, $08A$ $07AG$ The $\Upsilon(4S)$ and by hig 13	BELL BABR 5). her-orde <u>TECN</u> BELL	$e^+e^- ightarrow \varUpsilon(4S)$ Repl. by LEES 13M $\Gamma_{509}/\Gamma_{e^+e^-}$ er electroweak interaction $\frac{COMMENT}{e^+e^- ightarrow \varUpsilon(4S)}$
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ $^{1} \text{ Assumes equal pro}$ $\Gamma(\pi^{0} \nu \overline{\nu})/\Gamma_{\text{total}}$ $\text{Test for } \Delta B = 1$ $\frac{VALUE}{}$ • • • We do not use	90 90 oduction of weak neutron CL% 90 the followin	1 WEI 1 AUBERT 8 and 8 at the ral current. Allowed 1 DUTZ 1 But a data for averaging data for averaging 1 RECOUNT 1 AUT 1 RECOUNT 1 REC	es, fits, $08A$ $07AG$ The $\Upsilon(4S)$ and by hig 13	BELL BABR 5). her-orde <u>TECN</u> BELL	$e^+e^- ightarrow \varUpsilon(4S)$ Repl. by LEES 13M $\Gamma_{509}/\Gamma_{e^+e^-}$ er electroweak interaction $\frac{COMMENT}{e^+e^- ightarrow \varUpsilon(4S)}$
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ $^{1} \text{ Assumes equal pro}$ $\Gamma(\pi^{0} \nu \overline{\nu})/\Gamma_{\text{total}}$ $\text{Test for } \Delta B = 1$ $VALUE$ $<6.9 \times 10^{-5}$	the following 90 90 oduction of weak neutrony $\frac{CL\%}{90}$	1 WEI 1 AUBERT 8 and 8 at the ral current. Allowed 1 DUTZ 1 Dutaged at a for average data for average 1	es, fits, $08A$ $07AG$ The $\Upsilon(4S)$ and by high 13 The es, fits,	BELL BABR 5). cher-orde <u>TECN</u> BELL limits, e	$e^+e^- ightarrow \varUpsilon(4S)$ Repl. by LEES 13M $\Gamma_{509}/\Gamma_{e^+e^-}$ er electroweak interaction $\frac{COMMENT}{e^+e^- ightarrow \varUpsilon(4S)}$
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ $^{1} \text{ Assumes equal pro}$ $\Gamma(\pi^{0} \nu \overline{\nu})/\Gamma_{\text{total}}$ $\text{Test for } \Delta B = 1$ $\frac{VALUE}{}$ • • • We do not use	the following 90 90 oduction of weak neutrong 60 the following 90	1 WEI 1 AUBERT 8 and 8 at the ral current. Allowed 1 LUTZ 1 CHEN	es, fits, $08A$ $07AG$ The $\Upsilon(4S)$ The desired by high ses, fits, $07D$	BELL BABR S). Ther-orde TECN BELL limits, 6	$e^+e^- ightarrow \varUpsilon(4S)$ Repl. by LEES 13M Γ_{509}/Γ or electroweak interaction $COMMENT$ $e^+e^- ightarrow \varUpsilon(4S)$ etc. • • •
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ $1 \text{ Assumes equal proof for } \Delta B = 1$ $VALUE$ $<6.9 \times 10^{-5}$ • • • We do not use $<2.2 \times 10^{-4}$ $1 \text{ Assumes equal proof for } \Delta B = 1$ $<2.2 \times 10^{-4}$ $1 \text{ Assumes equal proof for } \Delta B = 1$	the following 90 90 oduction of Use weak neutron 90 the following 90 oduction of	1 WEI 1 AUBERT 8 and 8 at the ral current. Allowed 1 LUTZ 1 CHEN	es, fits, $08A$ $07AG$ The $\Upsilon(4S)$ The desired by high ses, fits, $07D$	BELL BABR S). Ther-orde TECN BELL limits, 6	$e^+e^- ightarrow \varUpsilon(4S)$ Repl. by LEES 13M Γ_{509}/Γ or electroweak interaction $COMMENT$ $e^+e^- ightarrow \varUpsilon(4S)$ etc. $\bullet \bullet \bullet$ Repl. by LUTZ 13
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ $^{1} \text{ Assumes equal pro}$ $\Gamma(\pi^{0} \nu \overline{\nu})/\Gamma_{\text{total}}$ $\text{Test for } \Delta B = 1$ $\frac{VALUE}{<6.9 \times 10^{-5}}$ • • • We do not use $<2.2 \times 10^{-4}$ $^{1} \text{ Assumes equal pro}$ $\Gamma(\pi^{0} e^{+} e^{-})/\Gamma_{\text{total}}$	the following 90 90 oduction of Laweak neutron 90 the following 90 oduction of Laweak neutron 90 oduction 90 oductin 90 oduction 90 oduction 90 oduction 90 oduction 90 oduction 90	Ing data for average 1 WEI 1 AUBERT $^+$ and 0 at the ral current. Allowed $^{\underline{DOCUMENT\ ID}}$ 1 LUTZ and data for average 1 CHEN $^+$ and 0 at the rand 0 and 0 at the rand 0 at the rand 0 and 0 and 0 and 0 and 0 at the rand 0 and 0 an	es, fits, $08A$ $07AG$ the $\Upsilon(4S)$ 13 the se, fits, $07D$ the $\Upsilon(4S)$	BELL BABR S). sher-orde TECN BELL limits, 6 BELL S).	$e^+e^- ightarrow \varUpsilon(4S)$ Repl. by LEES 13M Γ_{509}/Γ or electroweak interaction $COMMENT$ $e^+e^- ightarrow \varUpsilon(4S)$ etc. \bullet \bullet Repl. by LUTZ 13
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ $^{1} \text{ Assumes equal pro}$ $\Gamma(\pi^{0} \nu \overline{\nu})/\Gamma_{\text{total}}$ $\text{Test for } \Delta B = 1$ $\frac{VALUE}{<6.9 \times 10^{-5}}$ • • • We do not use $<2.2 \times 10^{-4}$ $^{1} \text{ Assumes equal pro}$ $\Gamma(\pi^{0} e^{+} e^{-})/\Gamma_{\text{total}}$	the following 90 90 oduction of Laweak neutron 90 the following 90 oduction of Laweak neutron 90 oduction 90 oductin 90 oduction 90 oduction 90 oduction 90 oduction 90 oduction 90	Ing data for average 1 WEI 1 AUBERT $^+$ and 0 at the ral current. Allowed $^{\underline{DOCUMENT\ ID}}$ 1 LUTZ and data for average 1 CHEN $^+$ and 0 at the rand 0 and 0 at the rand 0 at the rand 0 and 0 and 0 and 0 and 0 at the rand 0 and 0 an	es, fits, $08A$ $07AG$ the $\Upsilon(4S)$ 13 the se, fits, $07D$ the $\Upsilon(4S)$	BELL BABR S). sher-orde TECN BELL limits, 6 BELL S).	$e^+e^- ightarrow \varUpsilon(4S)$ Repl. by LEES 13M Γ_{509}/Γ_{er} The electroweak interaction $COMMENT$ $e^+e^- ightarrow \varUpsilon(4S)$ Repl. by LUTZ 13
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ $^{1} \text{ Assumes equal pro}$ $\Gamma(\pi^{0} \nu \overline{\nu})/\Gamma_{\text{total}}$ $\text{Test for } \Delta B = 1$ $VALUE$ $<6.9 \times 10^{-5}$ • • • We do not use $<2.2 \times 10^{-4}$	the following 90 90 oduction of weak neutron 90 the following 90 oduction of large CL% 90 oduction of large CL% 90	ang data for average 1 WEI 1 AUBERT 2 And 3 at the ral current. Allowed 3 DOCUMENT ID 3 CHEN 3 And 3 At the 3 DOCUMENT ID 3 LEES	es, fits, $08A$ $07AG$ $ed by hig$ 13 $es, fits,$ $07D$ $e \Upsilon(4S)$ $13M$	BELL S). Sher-order TECN BELL S). TECN BABR	$e^+e^- ightarrow \Upsilon(4S)$ Repl. by LEES 13M Γ_{509}/Γ er electroweak interaction $COMMENT$ $e^+e^- ightarrow \Upsilon(4S)$ etc. • • • Repl. by LUTZ 13 Γ_{504}/Γ $COMMENT$ $e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ $^{1} \text{ Assumes equal properties for } \Delta B = 1$ $\frac{VALUE}{6.9 \times 10^{-5}}$ • • • We do not use $<2.2 \times 10^{-4}$ $^{1} \text{ Assumes equal properties equal properties } \Gamma(\pi^{0} e^{+} e^{-})/\Gamma_{\text{total}}$ $\frac{VALUE}{\sqrt{ALUE}}$ $<8.4 \times 10^{-8}$ • • • We do not use	the following 90 90 oduction of the following 90 oduction of the following 90 oduction of the following 90 t	Ing data for average 1 WEI 1 AUBERT B^+ and B^0 at the ral current. Allowe $\frac{DOCUMENT\ ID}{1}$ LUTZ and data for average 1 CHEN B^+ and B^0 at the $\frac{DOCUMENT\ ID}{1}$ LEES and data for average data for average 1 CHEN	es, fits, $08A$ $07AG$ 13 es, fits, $07D$ $13M$ es, fits, fits,	BELL BABR S). TECN BABR BABR limits, 6	$e^+e^- ightarrow \varUpsilon(4S)$ Repl. by LEES 13M Γ_{509}/Γ er electroweak interaction $COMMENT$ $e^+e^- ightarrow \varUpsilon(4S)$ etc. \bullet \bullet Γ_{504}/Γ $COMMENT$ $e^+e^- ightarrow \varUpsilon(4S)$ etc. \bullet \bullet
• • • We do not use $<1.5 \times 10^{-7}$ $<1.2 \times 10^{-7}$ $^{1} \text{ Assumes equal properties for } \Delta B = 1$ $\frac{VALUE}{6.9 \times 10^{-5}}$ • • • We do not use $<2.2 \times 10^{-4}$ $^{1} \text{ Assumes equal properties } (\pi^{0} e^{+} e^{-})/\Gamma_{\text{total}}$ $\frac{VALUE}{4.4 \times 10^{-8}}$	the following 90 90 oduction of weak neutron 90 the following 90 oduction of the following 90 the following 90 the following 90 the following 90	Ing data for average 1 WEI 1 AUBERT B^+ and B^0 at the real current. Allowed DOCUMENT ID 1 LUTZ and data for average 1 CHEN B^+ and B^0 at the DOCUMENT ID 1 LES and data for average 1 WEI	es, fits, $08A$ $07AG$ 13 es, fits, $07D$ $13M$ es, fits, $08A$	BELL BABR S). TECN BABR BABR limits, 6 BABR limits, 6 BABR BELL	$e^+e^- ightarrow \varUpsilon(4S)$ Repl. by LEES 13M F509/Fer electroweak interaction $COMMENT$ $e^+e^- ightarrow \varUpsilon(4S)$ etc. • • • Repl. by LUTZ 13 F504/F $COMMENT$ $e^+e^- ightarrow \varUpsilon(4S)$

$\Gamma(\pi^0\mu^+\mu^-)/\Gamma_{ m total}$						Γ ₅₀₅ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$< 6.9 \times 10^{-6}$	90	¹ LEES	13M	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the						
$<1.8 \times 10^{-7}$	90	¹ WEI	A80	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$< 5.1 \times 10^{-7}$		¹ AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	iction of <i>E</i>	$^{ m H}$ and $B^{ m U}$ at the	$\Upsilon(45)$	S).		
$\Gamma(\eta \ell^+ \ell^-)/\Gamma_{total}$						Γ ₅₀₆ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
VALUE <6.4 × 10 ⁻⁸	90	¹ LEES	13M	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ						
$\Gamma(\eta e^+ e^-)/\Gamma_{\text{total}}$						Γ ₅₀₇ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
VALUE <10.8 × 10 ⁻⁸	90	¹ LEES	13M	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ						
$\Gamma(\eta \mu^+ \mu^-)/\Gamma_{total}$						Γ ₅₀₈ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$<11.2 \times 10^{-8}$	90	¹ LEES	13M	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	iction of E	$^{ m H}$ and $^{ m B0}$ at the	$\gamma(45)$	S).		
$\Gamma(K^0\ell^+\ell^-)/\Gamma_{ ext{total}}$						Γ ₅₁₀ /Γ
VALUE (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT	
$3.1^{+0.8}_{-0.7}$ our avera	GE					
$2.1^{+1.5}_{-1.3}\!\pm\!0.2$		¹ AUBERT	09т	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$3.4^{+0.9}_{-0.8}\pm0.2$		¹ WEI	09A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. • • •	
$2.9^{+1.6}_{-1.3}\pm0.3$		¹ AUBERT,B	06J	BABR	Repl. by A	UBERT 09T
<6.8	90	¹ ISHIKAWA				
$^{ m 1}$ Assumes equal produ	iction of E					,
$\Gamma(K^0e^+e^-)/\Gamma_{\text{total}}$						Γ ₅₁₁ /Γ
Test for $\Delta B = 1$ we VALUE (units 10^{-7})		DOCUMENT ID				cinteractions.
1.6 ^{+1.0} _{-0.8} OUR A						
$0.8^{+1.5}_{-1.2}\pm0.1$		¹ AUBERT	09т	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
-1.2 $2.0^{+1.4}_{-1.0}\pm0.1$		¹ WEI			$e^+e^- ightarrow$	
$^{2.0} - 1.0^{\pm 0.1}$		VV [USA	DELL	e · e →	1 (43)

	$1.3 {+} {1.6}_{-} {\pm} 0.2$		¹ AUBERT,B	0 6J	BABR	Repl. by AUBERT 09T
_	$2.1^{+2.3}_{-1.6}\pm0.8$		¹ AUBERT	03 U	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	5.4	90	² ISHIKAWA	03	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	27	90	$^{ m 1}$ ABE	02	BELL	Repl. by ISHIKAWA 03
<	38	90	$^{ m 1}$ AUBERT	02L	BABR	$e^+e^- ightarrow \gamma(4S)$
<	84.5	90	³ ANDERSON	01 B	CLE2	$e^+e^- ightarrow \gamma(4S)$
<	3000	90	ALBRECHT	91E	ARG	$e^+e^- ightarrow \gamma(4S)$
<	5200	90	⁴ AVERY	87	CLEO	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma \big(K^0 \nu \overline{\nu} \big) / \Gamma_{total}$

Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interaction.

VALUE	CL%	DOCUMENT ID	TECN COMMENT
$< 4.9 \times 10^{-5}$	90	1,2 LEES 13I	BABR $e^+e^- ightarrow~ \varUpsilon(4S)$
• • • We do not use th	e follow	ing data for averages, fits	s, limits, etc. • • •
$< 19.4 \times 10^{-5}$	90	¹ LUTZ 13	BELL $e^+e^- ightarrow \varUpsilon(4S)$
$< 5.6 \times 10^{-5}$	90	¹ DEL-AMO-SA10Q	BABR Repl. by LEES 131
$< 1.6 \times 10^{-4}$	90	¹ CHEN 07D	BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(\rho^0 \nu \overline{\nu})/\Gamma_{\text{total}}$

 Γ_{514}/Γ

Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interaction.

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

² WEI

$$<$$
4.4 \times 10 $^{-4}$ 90 1 CHEN 07D BELL Repl. by LUTZ 13

 $\Gamma(K^0\mu^+\mu^-)/\Gamma_{\text{total}}$

 $4.4 \begin{array}{c} +1.3 \\ -1.1 \end{array} \pm 0.3$

 Γ_{512}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions

09A BELL $e^+e^- \rightarrow \Upsilon(4S)$

		· · ·	.6	
VALUE (units 10^{-7}) CL%	DOCUMENT ID		TECN	COMMENT
3.39±0.34 OUR FIT				
3.4 \pm 0.4 OUR AVERAGE				
$3.27 \pm 0.34 \pm 0.17$	¹ AAIJ	14M	LHCB	<i>pp</i> at 7, 8 TeV
$4.9 \begin{array}{c} +2.9 \\ -2.5 \end{array} \pm 0.3$	² AUBERT	09Т	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

² Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$.

 $^{^3}$ The result is for di-lepton masses above 0.5 GeV.

 $^{^4}$ AVERY 87 reports < 6.5×10^{-4} assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to 50%.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 Also reported a limit $< 8.1 \times 10^{-5}$ at 90% CL obtained using a fully reconstructed hadronic *B*-tag evnets.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$3.1 \begin{array}{c} +0.7 \\ -0.6 \end{array}$		AAIJ	12AF	LHCB	Repl. by AAIJ 14M
$5.9 \ {}^{+3.3}_{-2.6} \ \pm 0.7$		² AUBERT,B	06 J	BABR	Repl. by AUBERT 09T
$1.63^{+0.82}_{-0.63}\!\pm\!0.14$		² AUBERT	03 U	BABR	Repl. by AUBERT,B 06J
$5.6 \ {}^{+2.9}_{-2.3} \ \pm 0.5$		³ ISHIKAWA	03	BELL	Repl. by WEI 09A
<33	90	² ABE	02	BELL	Repl. by ISHIKAWA 03
<36	90	AUBERT	02L	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<66.4	90	⁴ ANDERSON			$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 5200	90	ALBRECHT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 3600	90	⁵ AVERY	87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Uses B($B^0 \to J/\psi(1S) K^0$) = (0.928 \pm 0.013 \pm 0.037) \times 10⁻³ for normalization.

$\Gamma(K^0 \mu^+ \mu^-)/\Gamma(J/\psi(1S)K^0)$

 $\Gamma_{512}/\Gamma_{183}$

VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
0.39±0.04 OUR FIT			
$0.37 \pm 0.12 \pm 0.02$	AALTONEN	11AI CDF	$p\overline{p}$ at 1.96 TeV

 $\Gamma(K^*(892)^0\ell^+\ell^-)/\Gamma_{total}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions. VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT

$9.9^{+1.2}_{-1.1}$ OUR AVERAGE

$$10.3^{+2.2}_{-2.1}\pm 0.7$$
 1 AUBERT 09T BABR $e^+e^-\to \Upsilon(4S)$ $9.7^{+1.3}_{-1.1}\pm 0.7$ 1 WEI 09A BELL $e^+e^-\to \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $\Gamma(K^*(892)^0\,e^+\,e^-)/\Gamma_{total}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions. VALUE (units 10^{-7}) CL%DOCUMENT ID TECN COMMENT

$10.3^{+1.9}_{-1.7}$ OUR AVERAGE

HTTP://PDG.LBL.GOV Page 154

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. The second error is a total of systematic uncertainties including model dependence.

 $^{^4}$ The result is for di-lepton masses above 0.5 GeV. 5 AVERY 87 reports $<4.5\times10^{-4}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0\,\overline{B}{}^0$. We rescale

¹ Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$.

	$10.4^{+3.3}_{-2.9}{\pm}1.1$		¹ AUBERT,B	06 J	BABR	Repl. by AUBERT 09T
	$11.1^{+5.6}_{-4.7}\!\pm\!1.1$		$^{ m 1}$ AUBERT	03 U	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	24	90	² ISHIKAWA	03	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	64	90	¹ ABE	02	BELL	Repl. by ISHIKAWA 03
<	67	90	¹ AUBERT	02L	BABR	$e^+e^- ightarrow \gamma(4S)$
<2	900	90	ALBRECHT	91E	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ 2 Assumes equal production of B^0 and B^+ at $\varUpsilon(4S).$

 $\Gamma(K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interactions.

		, 0	
VALUE (units 10^{-7}) CL%	DOCUMENT ID	TECN	COMMENT
10.3 \pm 0.6 OUR FIT			
10.5 \pm 0.7 OUR AVERAGE			
$10.36^{+0.18}_{-0.17}\!\pm\!0.71$	¹ AAIJ	16AO LHCB	<i>pp</i> at 7, 8 TeV
$13.5 \ ^{+4.0}_{-3.7} \ \pm 1.0$	² AUBERT	09T BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$10.6 \ {+1.9\atop -1.4} \ \pm 0.7$	² WEI	09A BELL	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the follow	ing data for avera	ges, fits, limits	s, etc. • • •

$\Gamma(K^*(902)^0, +, -)/\Gamma(1/3/(15)K^*(902)^0)$

C--- /C---

$I(K(092) \mu \mu)$	P(13)N (092))		18 י/517 י	5
$VALUE$ (units 10^{-3})	DOCUMENT ID	TE	ECN CON	MMENT	
0.81±0.05 OUR FIT					_
$0.77 \pm 0.08 \pm 0.03$	AALTONEN	11AI CE	OF $p\overline{p}$	at 1.96 TeV	
• • • We do not use the follow	ing data for aver	ages, fits,	limits, et	C. ● ● ●	
$0.80 \pm 0.10 \pm 0.06$	AALTONEN	11L CI	OF Rep	ol. by AALTONEN 11A	J
$0.61\!\pm\!0.23\!\pm\!0.07$	AALTONEN	09в CI	OF Rep	ol. by AALTONEN 11L	
$\Gamma(K^*(892)^0\chi, \chi \rightarrow \mu^+\mu^-$)/Γ _{total}			Γ ₅₁₈ /	Γ

DOCUMENT ID TECN COMMENT 1 AAIJ $< \sim 10^{-9}$ 15AZ LHCB pp at 7, 8 TeV 95

¹ Uses B($B^0 \to J/\psi K^*(892)^0$) = $(1.19 \pm 0.01 \pm 0.08) \times 10^{-3}$. The second error is the total systematic uncertainty.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. The second error is a total of systematic uncertainties including model dependence. 4 AFFOLDER 99B measured relative to $B^0 \rightarrow J/\psi(1S) \, K^*(892)^0$.

 $^{^{}m 1}$ The limt is obtained as a function of di-muon mass. A normalizing mode branching fraction value of B($B^0 \to K^{*0} \mu^+ \mu^-$) = $(1.6 \pm 0.3) \times 10^{-7}$ is used.

$\Gamma(\pi^+\pi^-\mu^+\mu^-)/\Gamma_{\text{total}}$

 Γ_{519}/Γ

VALUE (units 10^{-8})	DOCUMENT ID		TECN	COMMENT
2.1±0.5±0.1	¹ AAIJ	15 S	LHCB	<i>pp</i> at 7, 8 TeV

 $^1\,\text{AAIJ}$ 15S reports (2.11 \pm 0.51 \pm 0.15 \pm 0.16) \times 10 $^{-8}$ from a measurement of $J/\psi(1S)\,K^*(892)^0)=(1.3\pm0.1) imes10^{-3}$, which we rescale to our best value B($B^0 o$ $J/\psi(1S) K^*(892)^0$) = $(1.28 \pm 0.05) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^*(892)^0 \nu \overline{\nu})/\Gamma_{\text{total}}$

 Γ_{520}/Γ

T-+ f A D 1 l l	Allowed by higher-order electroweak interactions	_
Lest for // B= I Weak helitral clirrent	Allowed by higher-order electroweak interactions	-

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 5.5 \times 10^{-5}$	90	$^{ m 1}$ LUTZ	13	BELL	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the	e followin	g data for averages	, fits,	limits, e	tc. • • •
$< 1.2 \times 10^{-4}$	90	1,2 LEES	131	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$< 1.2 \times 10^{-4}$	90	AUBERT	08 BC	BABR	Repl. by LEES 131
$< 3.4 \times 10^{-4}$	90	$^{ m 1}$ CHEN	07 D	BELL	$e^+e^- ightarrow \gamma(4S)$
$< 1.0 \times 10^{-3}$	90	³ ADAM	96 D	DLPH	$e^+e^- \rightarrow Z$

$\Gamma(\text{invisible})/\Gamma_{\text{total}}$

 Γ_{521}/Γ

Created: 5/30/2017 17:22

$VALUE$ (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
< 2.4	90	¹ LEES	12T	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	g data for averages	s, fits,	limits, e	etc. • • •	
<13	90				$e^+e^- \rightarrow$	
<22	90	¹ AUBERT,B	04J	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^1}$ Uses the fully reconstructed $B^0 o D^{(*)} - \ell^+
u_\ell$ events as a tag.

$\Gamma(\nu\overline{\nu}\gamma)/\Gamma_{\text{total}}$ Γ_{522}/Γ

<i>VALUE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT
<1.7	90	¹ LEES	12T	BABR	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the	e following	data for averages	fits.	limits. 6	etc. • • •

$$<$$
4.7 90 1 AUBERT,B 04J BABR Repl. by LEES 12T

 $\Gamma(\phi\nu\overline{\nu})/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interaction.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<1.27 × 10 ⁻⁴	90	¹ LUTZ	13	BELL	$e^+e^- \rightarrow \gamma(4S)$

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
5.8 \times 10⁻⁵ 90 1 CHEN 07D BELL Repl. by LUTZ 13

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 Also reported a limit $<9.3\times10^{-5}$ at 90% CL obtained using a fully reconstructed hadronic *B*-tag evnets.

³ ADAM 96D assumes $f_{B^0} = f_{B^-} = 0.39$ and $f_{B_s} = 0.12$.

 $^{^2}$ Identified by fully reconstructing a hadronic decay of the accompanying B meson and requiring no other particles in the event.

 $^{^1}$ Uses the fully reconstructed $B^0
ightarrow D^{(*)} - \ell^+
u_\ell$ events as a tag.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$ Test of lepton family number conservation. Allowed by higher-order electroweak interactions. VALUE DOCUMENT ID TECN COMMENT $< 2.8 \times 10^{-9}$ 1 AAIJ 90 13BMLHCB pp at 7 TeV • • We do not use the following data for averages, fits, limits, etc. $< 6.4 \times 10^{-8}$ 90 **AALTONEN** 09P CDF $p\overline{p}$ at 1.96 TeV $< 9.2 \times 10^{-8}$ ² AUBERT 08P BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 $< 1.8 \times 10^{-7}$ ² AUBERT 90 05W BABR $e^+e^- \rightarrow \Upsilon(4S)$ $< 1.7 \times 10^{-7}$ ² CHANG $e^+e^- \rightarrow \Upsilon(4S)$ 03 BELL 90 $< 15 \times 10^{-7}$ ² BERGFELD 90 00B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $< 3.5 \times 10^{-6}$ ABE 98V CDF $p\overline{p}$ at 1.8 TeV 90 ³ ACCIARRI $< 1.6 \times 10^{-5}$ 90 97B L3 $< 5.9 \times 10^{-6}$ **AMMAR** CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 90 94 $< 3.4 \times 10^{-5}$ ⁴ AVERY 89B CLEO 90 $e^+e^- \rightarrow \Upsilon(4S)$ $< 4.5 \times 10^{-5}$ ⁵ ALBRECHT 90 87D ARG $e^+e^- \rightarrow \Upsilon(4S)$ $< 7.7 \times 10^{-5}$ ⁶ AVERY $e^+e^- \rightarrow \Upsilon(4S)$ 90 87 CLEO $< 3 \times 10^{-4}$ 90 **GILES** 84 CLEO Repl. by AVERY 87 ¹ Uses normalization mode B($B^0 \rightarrow K^+\pi^-$) = (19.4 ± 0.6) × 10⁻⁶. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 3 ACCIARRI 97B assume PDG 96 production fractions for B^+ , B^0 , B_s , and Λ_h . ⁴ Paper assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%. ⁵ ALBRECHT 87D reports $< 5 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We ⁶ AVERY 87 reports $< 9 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to 50%. $\Gamma(\pi^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$ Γ_{525}/Γ **VALUE** TECN COMMENT ¹ AUBERT $<1.4 \times 10^{-7}$ 90 07AG BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$ Γ_{526}/Γ Test of lepton family number conservation. VALUE (units 10^{-7}) CL% DOCUMENT ID TECN COMMENT 90 ¹ AUBERT,B 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • <40 90 ¹ AUBERT 02L BABR Repl. by AUBERT, B 06J ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^*(892)^0 e^+ \mu^-)/\Gamma_{\text{total}}$ Γ_{527}/Γ VALUE (units 10^{-7}) TECN COMMENT CL% DOCUMENT ID 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT.B <5.3 90 ¹ Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. $\Gamma(K^*(892)^0 e^- \mu^+)/\Gamma_{\text{total}}$ Γ_{528}/Γ VALUE (units 10^{-7}) ¹ AUBERT,B <3.4 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$

HTTP://PDG.LBL.GOV

¹ Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$.

Page 157

 $\Gamma(K^*(892)^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$

 Γ_{529}/Γ

Test of lepton family number conservation.

$VALUE$ (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT
< 5.8	90	¹ AUBERT,B	06J	BABR	$e^+e^- ightarrow~\gamma(4S)$
• • • We do not use the following data for averages, fits, limits, etc. • •					
<34	90	¹ AUBERT	02L	BABR	Repl. by AUBERT.B 06J

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$

 Γ_{530}/Γ

Test of lepton family number conservation. Allowed by higher-order electroweak inter-

VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 2.8 \times 10^{-5}$	90	¹ AUBERT	08A	BABR	$e^+e^- \rightarrow \Upsilon(4S)$	
 • • We do not use the following data for averages, fits, limits, etc. • • 						
$< 1.1 \times 10^{-4}$	90	BORNHEIM	04	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$< 5.3 \times 10^{-4}$	90	AMMAR	94	CLE2	Repl. by BORNHEIM 04	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\mu^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$

 Γ_{531}/Γ

Test of lepton family number conservation. Allowed by higher-order electroweak inter-

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$< 2.2 \times 10^{-5}$	90	¹ AUBERT	1A80	BABR	$e^+e^- ightarrow \Upsilon(4S)$	
 ◆ We do not use the following data for averages, fits, limits, etc. 						
$<3.8 \times 10^{-5}$ $<8.3 \times 10^{-4}$	90 90	BORNHEIM AMMAR			$e^+e^- ightarrow~\varUpsilon(4S)$ Repl. by BORNHEIM 04	
< 0.3 × 10	90	AIVIIVIAN	94	CLEZ	Repl. by BORNHEIM 04	

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\Lambda_c^+\mu^-)/\Gamma_{\text{total}}$

 Γ_{532}/Γ

Created: 5/30/2017 17:22

$$\frac{VALUE}{<1.4 \times 10^{-6}}$$
 $\frac{CL\%}{90}$ $\frac{DOCUMENT\ ID}{1,2\ DEL-AMO-SA...11}$ $\frac{TECN}{BABR}$ $e^+e^- \rightarrow \Upsilon(4S)$

 $^1\,\text{DEL-AMO-SANCHEZ}$ 11K reports < 180 \times 10^{-8} from a measurement of [$\Gamma(B^0$ \rightarrow $\Lambda_c^+ \mu^-)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \rightarrow pK^-\pi^+)] \text{ assuming } B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (5.0 \pm pK^-\pi^+)$ 1.3) \times 10⁻², which we rescale to our best value B($\Lambda_c^+ \to p K^- \pi^+$) = 6.35 \times 10⁻². ² Uses B($\Upsilon(4S) \to B^0 \overline{B}^0$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^+ B^-$) = (48.4 ± 0.6)%.

 Γ_{533}/Γ

 $^1\,\text{DEL-AMO-SANCHEZ}$ 11K reports < 520 \times 10 $^{-8}$ from a measurement of [$\Gamma(B^0$ \rightarrow $\Lambda_c^+ e^-)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \rightarrow pK^-\pi^+)] \text{ assuming } B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (5.0 \pm m)$ 1.3) \times 10⁻², which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = 6.35 \times 10⁻². ² Uses B($\Upsilon(4S) \to B^0 \overline{B}^0$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^+ B^-$) = (48.4 ± 0.6)%.

B_{ε}^{0} CROSS-PARTICLE BRANCHING RATIOS

$\Gamma([K^+K^-]_DK^*(892)^0)/\Gamma_{\text{total}} \times B(B_s^0 \to [K^+K^-]_DK^*(892)^0)$ **VALUE** TECN COMMENT 14BN LHCB pp at 7, 8 TeV $0.10\pm0.02\pm0.01$ $\Gamma([\pi^+\pi^-]_D K^*(892)^0)/\Gamma_{\text{total}} \times B(B_s^0 \to [\pi^+\pi^-]_D K^*(892)^0) \quad \Gamma_{143}/\Gamma \times B$ <u>DOCUMENT</u> ID TECN COMMENT $0.15\pm0.04\pm0.01$ 14BN LHCB pp at 7, 8 TeV

A REVIEW GOES HERE – Check our WWW List of Reviews

POLARIZATION IN BO DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (L) or both are transverse and parallel (\parallel) or perpendicular (\perp) to each other with the parameters Γ_L/Γ , Γ_\perp/Γ , and the relative phases ϕ_\parallel and ϕ_\perp . See the definitions in the note on "Polarization in B Decays" review in the B^0 Particle Listings.

Γ_L/Γ in $B^0 \rightarrow J/\psi(1S)K^*(892)^0$

I_{L}/I_{L}	$\psi(1J)N$	(092)		
VALUE	EVTS	DOCUMENT ID	TECI	N COMMENT
0.571 ± 0.007 OUR AV	ERAGE			
$0.572 \pm 0.006 \pm 0.014$		¹ AAIJ	13AT LHC	B pp at 7 TeV
$0.587 \pm 0.011 \pm 0.013$		² ABAZOV	09E D0	$p\overline{p}$ at 1.96 TeV
$0.556 \pm 0.009 \pm 0.010$		³ AUBERT	07AD BAE	${}^{ m BR}$ $e^+e^- ightarrow~ argamma(4S)$
$0.562 \pm 0.026 \pm 0.018$		ACOSTA	05 CDF	$p\overline{p}$ at 1.96 TeV
$0.574 \pm 0.012 \pm 0.009$		ITOH	05 BEL	L $e^+e^- ightarrow \gamma(4S)$
$0.59 \ \pm 0.06 \ \pm 0.01$		⁴ AFFOLDER	00N CDF	$p\overline{p}$ at 1.8 TeV
$0.52\ \pm0.07\ \pm0.04$		⁵ JESSOP	97 CLE	2 $e^+e^- ightarrow~ \varUpsilon(4S)$
$0.65 \ \pm 0.10 \ \pm 0.04$	65	ABE	95z CDF	$p\overline{p}$ at 1.8 TeV
$0.97\ \pm0.16\ \pm0.15$	13	⁶ ALBRECHT	94G ARC	$e^+e^- ightarrow~\gamma(4S)$
 ● ● We do not use t 	he follow	ing data for averag	ges, fits, lim	its, etc. • • •
$0.566 \pm 0.012 \pm 0.005$		³ AUBERT	05P BAE	BR Repl. by AUBERT 07AD
$0.62\ \pm0.02\ \pm0.03$		⁷ ABE	02N BEL	L Repl. by ITOH 05
$0.597 \pm 0.028 \pm 0.024$		⁸ AUBERT	01H BAE	BR Repl. by AUBERT 07AD
$0.80\ \pm0.08\ \pm0.05$	42	⁶ ALAM	94 CLE	2 Sup. by JESSOP 97
$^{ m 1}$ AAIJ 13AT obtains	$\Gamma_{\parallel}/\Gamma=$	0.227 \pm 0.004 \pm	0.011. Th	e relation 1 = (Γ_L + Γ_\perp +
Γ_{\parallel})/ Γ is used to o	htain Γ_{τ}	/ Г		

 $[\]Gamma_{\parallel})/\Gamma$ is used to obtain Γ_{L}/Γ .

 $^{^2}$ Measured the angular and lifetime parameters for the time-dependent angular untagged decays $B_d^0 \to J/\psi \, K^{*0}$ and $B_s^0 \to J/\psi \, \phi.$

³ Obtained by combining the B^0 and B^+ modes.

 $^{^4}$ AFFOLDER 00N measurements are based on 190 B^0 candidates obtained from a data sample of 89 pb $^{-1}$. The *P*-wave fraction is found to be 0.13 $^{+0.12}_{-0.09}\pm0.06$.

 $^{^{5}}$ JESSOP 97 is the average over a mixture of B^{0} and B^{+} decays. The P-wave fraction is found to be 0.16 \pm 0.08 \pm 0.04.

⁶ Averaged over an admixture of B^0 and B^+ decays.

Γ_{\perp}/Γ in $B^0 \rightarrow J/\psi K^{*0}$

VALUE	DOCUMENT ID		TECN	COMMENT
0.211±0.008 OUR AVERAGE	Error includes scale	factor	of 1.3.	See the ideogram below.
$0.201\!\pm\!0.004\!\pm\!0.008$	AAIJ	13AT	LHCB	pp at 7 TeV
$0.230 \pm 0.013 \pm 0.025$	¹ ABAZOV	09E	D0	$p\overline{p}$ at 1.96 TeV
$0.233 \pm 0.010 \pm 0.005$	² AUBERT	07 AD	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.215 \pm 0.032 \pm 0.006$	ACOSTA	05	CDF	$p\overline{p}$ at 1.96 TeV
$0.195 \pm 0.012 \pm 0.008$	ITOH	05	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ Measured the angular and lifetime parameters for the time-dependent angular untagged decays $B^0_d \to J/\psi \, K^{*0}$ and $B^0_s \to J/\psi \, \phi.$ 2 Obtained by combining the B^0 and B^+ modes.

ϕ_{\parallel} in $B^0 ightarrow \ J/\psi \, K^{*0}$

VALUE (rad)	DOCUMENT ID	TECN	COMMENT
-2.92±0.04 OUR AVERAGE	Error includes scale f	actor of 1.3.	See the ideogram below.
$-2.94\!\pm\!0.02\!\pm\!0.03$		13AT LHCB	pp at 7 TeV
$-2.69\!\pm\!0.08\!\pm\!0.11$	$^{ m 1}$ ABAZOV	09E D0	$p\overline{p}$ at 1.96 TeV
$-2.93\!\pm\!0.08\!\pm\!0.04$	² AUBERT	07AD BABR	$e^+e^- o ~ \varUpsilon(4S)$

 $^{^7}$ Averaged over an admixture of B^0 and B^+ decays and the P wave fraction is (19 \pm 2 \pm

⁸ Averaged over an admixture of B^0 and B^- decays and the P wave fraction is (16.0 \pm

²Obtained by combining the B^0 and B^+ modes.

ϕ_{\perp} in $B^0 \to J/\psi K^{*0}$

VALUE (rad)	DOCUMENT ID	TECN	COMMENT
2.96±0.05 OUR AVERAGE	Error includes scale facto	r of 2.2. Se	ee the ideogram below.
$2.94 \pm 0.02 \pm 0.02$	AAIJ 13	BAT LHCB	pp at 7 TeV
$3.21 \pm 0.06 \pm 0.06$	ABAZOV 09	DE DO	$p\overline{p}$ at 1.96 TeV
$2.91 \pm 0.05 \pm 0.03$	¹ AUBERT 07	7AD BABR	$e^+e^- \rightarrow \Upsilon(4S)$

 1 Obtained by combining the \mathcal{B}^{0} and \mathcal{B}^{+} modes.

HTTP://PDG.LBL.GOV

Page 161

 $^{^1\,\}mathrm{Obtained}~\phi_{\parallel}$ as $\delta_2-\delta_1$, assuming they are uncorrelated.

$\Gamma_I/\Gamma \text{ in } B^0 \to \psi(2S) K^*(892)^0$ TECN COMMENT $0.463^{+0.028}_{-0.040}$ OUR AVERAGE $0.455 {}^{+\, 0.031}_{-\, 0.029} {}^{+\, 0.014}_{-\, 0.049}$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ **CHILIKIN** ¹ AUBERT $0.48 \pm 0.05 \pm 0.02$ 07AD BABR $e^+e^- \rightarrow \Upsilon(4S)$ ² RICHICHI CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.45 \pm 0.11 \pm 0.04$ • • • We do not use the following data for averages, fits, limits, etc. • $0.448 ^{\,+\, 0.040 \,+\, 0.040}_{\,-\, 0.027 \,-\, 0.053}$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ **MIZUK** ¹ Obtained by combining the B^0 and B^+ modes. 2 Averages between charged and neutral B mesons. Γ_{\perp}/Γ in $B^0 \rightarrow \psi(2S)K^{*0}$ VALUE ¹ AUBERT 07AD BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.30\pm0.06\pm0.02$ ¹ Obtained by combining the B^0 and B^+ modes. ϕ_{\parallel} in $B^0 \rightarrow \psi(2S) K^{*0}$ VALUE (rad) 07AD BABR $e^+e^- \rightarrow \Upsilon(4S)$ $-2.8\pm0.4\pm0.1$ ¹Obtained by combining the B^0 and B^+ modes. ϕ_{\perp} in $B^0 \rightarrow \psi(2S)K^{*0}$ VALUE (rad) $2.8 \pm 0.3 \pm 0.1$ ¹Obtained by combining the B^0 and B^+ modes. Γ_L/Γ in $B^0 \rightarrow \chi_{c1} K^*(892)^0$ VALUE **0.83** $^{+0.06}_{-0.08}$ **OUR AVERAGE** Error includes scale factor of 1.3. $0.947 {}^{+\, 0.038}_{-\, 0.048} {}^{+\, 0.046}_{-\, 0.099}$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ **MIZUK** $0.77 \pm 0.07 \pm 0.04$ ¹ AUBERT 07AD BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹Obtained by combining the B^0 and B^+ modes. Γ_{\perp}/Γ in $B^0 \rightarrow \chi_{c1} K^*(892)^0$ VALUE TECN COMMENT ¹ AUBERT 07AD BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.03\pm0.04\pm0.02$ ¹Obtained by combining the B^0 and B^+ modes. $\phi_{\rm II}$ in $B^0 \rightarrow \chi_{c1} K^* (892)^0$ VALUE (rad) 07AD BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.0\pm0.3\pm0.1$ ¹Obtained by combining the B^0 and B^+ modes.

Γ_L/Γ in $B^0 \rightarrow D_s^{*+}D^{*-}$				
VALUE	<u>DOCUMENT</u>	ID	TECN	COMMENT
0.52 ± 0.05 OUR AVERAGE				
$0.519 \pm 0.050 \pm 0.028$	¹ AUBERT			$e^+e^- ightarrow \gamma(4S)$
$0.506 \pm 0.139 \pm 0.036$	AHMED	00 B	CLE2	$e^+e^- o ag{7}(4S)$
$^{ m 1}$ Measurement performed $^{ m u}$	sing partial recons	truction o	f <i>D</i> *- o	decay.
Γ_L/Γ in $B^0 \rightarrow D^{*-}\rho^+$ VALUE VALUE EVTS	S DOCUMENT	ID	TFCN	COMMENT
0.885±0.016±0.012				$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the follo				` '
$0.93 \pm 0.05 \pm 0.05$ 76				$e^+e^- ightarrow \gamma(4S)$
Γ_L/Γ in $B^0 o D_s^{*+} ho^-$				
VALUE	DOCUMENT	ID	TECN	COMMENT
$0.84^{+0.26}_{-0.28}\pm0.13$	¹ AUBERT	08AJ	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
¹ Assumes equal production	of B^+ and B^0 at	the $\Upsilon(45)$	5).	
Γ_L/Γ in $B^0 o D_s^{*+} K^{*-}$	-			
VALUE	DOCUMENT	ID	<u>TECN</u>	COMMENT
$0.92^{+0.37}_{-0.31} \pm 0.07$	¹ AUBERT	08AJ	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$^{ m 1}$ Assumes equal production	of ${\it B}^+$ and ${\it B}^0$ at	the $\Upsilon(45)$	5).	
Γ_L/Γ in $B^0 \rightarrow D^{*+}D^{*-}$				
- ,	DOCUMENT ID	TECN	СОММ	1ENT
$0.624 \pm 0.029 \pm 0.011$				
• • • We do not use the follo	wing data for aver	ages, fits,	limits, e	etc. • • •
$0.57\ \pm0.08\ \pm0.02$	MIYAKE 05	BELL	Repl.	by KRONENBITTER 12
Γ_{\perp}/Γ in $B^0 \rightarrow D^{*+}D^{*-}$	-			
VALUE	DOCUMENT ID	TECN	СОММ	1ENT
0.147±0.019 OUR AVERAGE				
$0.138 \pm 0.024 \pm 0.006$	KRONENBIT12	2 BELL	e^+e^-	$^{-} ightarrow~\Upsilon(4S)$
$0.158 \pm 0.028 \pm 0.006$	AUBERT 09	OC BABR	e^+e^-	$^{-} ightarrow~\Upsilon(4S)$
• • • We do not use the follo	wing data for aver	ages, fits,	limits, e	etc. • • •
$0.125 \pm 0.043 \pm 0.023$	VERVINK 09	BELL	Repl.	by KRONENBITTER 12
$0.143 \pm 0.034 \pm 0.008$	AUBERT 07	7во BABR	Repl.	by AUBERT 09C
$0.125 \pm 0.044 \pm 0.007$	AUBERT,BE 05		-	by AUBERT 07BO
$0.19 \pm 0.08 \pm 0.01$	MIYAKE 05		-	by VERVINK 09
$0.063 \pm 0.055 \pm 0.009$	AUBERT 03	3Q BABR	Repl.	by AUBERT,BE 05A
Γ_L/Γ in $B^0 o \overline{D}{}^{*0}\omega$				
VALUE	<u>DOCUMENT</u>	ID	TECN	COMMENT
$0.665 \pm 0.047 \pm 0.015$	LEES			$e^+e^- \rightarrow \gamma(4S)$
=	-			(- /

Γ_L/Γ in $B^0 \rightarrow \overline{D}_1(2430)^0 \omega$

VALUE (%) TECN COMMENT DOCUMENT ID

 $63.0\pm9.1^{+6.5}_{-6.0}$

 1,2 MATVIENKO 15 BELL $e^+e^- \rightarrow \Upsilon(4S)$

Γ_L/Γ in $B^0 \rightarrow \overline{D}_1(2420)^0 \omega$

 $67.1 \pm 11.7 ^{+2.3}_{-5.0}$

 1,2 MATVIENKO 15 BELL $e^+e^- \rightarrow \Upsilon(4S)$

Γ_L/Γ in $B^0 \rightarrow \overline{D}_2^*(2460)^0 \omega$

VALUE (%) DOCUMENT ID TECN COMMENT $76.0^{+18.3}_{-8.5}^{+3.5}_{-2.8}$ 1,2 MATVIENKO 15 BELL $e^+e^- \rightarrow \Upsilon(4S)$

 Γ_L/Γ in $B^0 \to D^{*-}\omega\pi^+$

TECN COMMENT 06L BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT $0.654 \pm 0.042 \pm 0.016$

Γ_L/Γ in $B^0 \to \omega K^{*0}$

VALUE	DOCUMENT ID		TECN	COMMENT	
0.69±0.13 OUR AVERAGE					
$0.72 \pm 0.14 \pm 0.02$	AUBERT	09н	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.56 \pm 0.29 {+0.18 \atop -0.08}$	GOLDENZWE.	.08	BELL	$e^+e^-\to$	$\Upsilon(4S)$

Γ_L/Γ in $B^0 \rightarrow \omega K_2^*(1430)^0$

VALUE <u>TECN</u> <u>COMMENT</u> DOCUMENT ID 09H BABR $e^+e^- \rightarrow \gamma$ (4S) $0.45\pm0.12\pm0.02$ **AUBERT**

 Γ_I/Γ in $B^0 \to K^{*0}\overline{K}^{*0}$

TECN COMMENT $0.80^{+0.10}_{-0.12}\pm0.06$ **AUBERT** 08I BABR $e^+e^- \rightarrow \Upsilon(4S)$

Γ_L/Γ in $B^0 \rightarrow \phi K^*(892)^0$

VALUE DOCUMENT ID TECN COMMENT 0.497 ± 0.017 OUR AVERAGE $0.497 \pm 0.019 \pm 0.015$ AAIJ 14AMLHCB pp at 7 TeV $0.499 \pm 0.030 \pm 0.018$ **PRIM** BELL $e^+e^- \rightarrow \Upsilon(4S)$ 08BG BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.494 \pm 0.034 \pm 0.013$ **AUBERT**

HTTP://PDG.LBL.GOV

Page 164

¹Obtained by amplitude analysis of $\overline{B}{}^0 \to D^{*-} \omega \pi^+$. The second uncertainty combines in qudrature experimental systematic and model uncertainties.

² Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$.

¹ Obtained by amplitude analysis of $\overline{B}{}^0 \to D^{*-} \omega \pi^+$. The second uncertainty combines in qudrature experimental systematic and model uncertainties.

² Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$.

¹ Obtained by amplitude analysis of $\overline{B}^0 \to D^{*-} \omega \pi^+$. The second uncertainty combines in qudrature experimental systematic and model uncertainties.

² Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$.

¹ Invariant mass of the $[\omega \pi]$ system is restricted in the region 1.1 and 1.9 GeV.

$0.506 \pm 0.040 \pm 0.015$	AUBERT	07D BABR	Repl. by AUBERT 08BG
$0.45 \pm 0.05 \pm 0.02$	CHEN	05A BELL	Repl. by PRIM 13
$0.52\ \pm0.05\ \pm0.02$	¹ AUBERT,B	04W BABR	Repl. by AUBERT 07D
$0.65 \pm 0.07 \pm 0.02$	AUBERT	03V BABR	Repl. by AUBERT,B 04W
$0.41 \pm 0.10 \pm 0.04$	CHEN	03B BELL	Repl. by CHEN 05A

 $^{^1}$ AUBERT,B 04W also measures the fraction of parity-odd transverse contribution $f_\perp=0.22\pm0.05\pm0.02$ and the phases of the parity-even and parity-odd transverse amplitudes relative to the longitudinal amplitude.

Γ_{\perp}/Γ in $B^0 \rightarrow \phi K^*(892)^0$

- 1 /				
VALUE	DOCUMENT ID	TE	CN	COMMENT
0.224±0.015 OUR AVERAGE				
$0.221 \pm 0.016 \pm 0.013$	AAIJ			pp at 7 TeV
$0.238 \pm 0.026 \pm 0.008$	PRIM			$e^+e^- ightarrow \gamma(4S)$
$0.212 \pm 0.032 \pm 0.013$	AUBERT	08BG BA	ABR	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the following	g data for averag	ges, fits, li	imits,	etc. • • •
$0.227\!\pm\!0.038\!\pm\!0.013$	AUBERT	07D BA	ABR	Repl. by AUBERT 08BG
$0.31 \ ^{+0.06}_{-0.05} \ \pm 0.02$	¹ CHEN	05A BE	ELL	Repl. by PRIM 13
$0.22\ \pm0.05\ \pm0.02$	AUBERT,B	04W BA	ABR	Repl. by AUBERT 07D

 $^{^{}m 1}$ This quantity was recalculated by the BELLE authors from numbers in the original paper.

ϕ_{\parallel} in $B^0 \rightarrow \phi K^*(892)^0$

VALUE (rad)		DOCUMENT ID	TECN	COMMENT
2.43 ±0.11	OUR AVERAGE	Error includes sca	le factor of	1.8. See the ideogram below.
2.562 ± 0.069	± 0.040	AAIJ		3 pp at 7 TeV
$2.23\ \pm0.10$	± 0.02	PRIM		$_{-}$ $e^{+}e^{-} ightarrow$ $arGamma(4S)$
$2.40\ \pm0.13$	± 0.08	AUBERT	08BG BAB	R $e^+e^- o \varUpsilon(4S)$
• • • We do	not use the follow	ing data for averag	ges, fits, limi	ts, etc. • • •
2.31 ± 0.14	± 0.08	AUBERT	07D BAB	R Repl. by AUBERT 08BG
$2.40 \begin{array}{l} +0.28 \\ -0.24 \end{array}$	± 0.07	¹ CHEN	05A BELL	Repl. by PRIM 13
$2.34 \begin{array}{l} +0.23 \\ -0.20 \end{array}$	± 0.05	AUBERT,B	04W BAB	R Repl. by AUBERT 07D

 $^{^{1}}$ This quantity was recalculated by the BELLE authors from numbers in the original paper.

ϕ_{\perp} in $B^0 \rightarrow \phi K^*(892)^0$

/ _			
VALUE (rad)	DOCUMENT ID	TECN	COMMENT
2.53 ± 0.09 OUR AVERAGE	Error includes scal	e factor of 1.7	7. See the ideogram below.
$2.633 \pm 0.062 \pm 0.037$	AAIJ	14AM LHCB	pp at 7 TeV
$2.37 \pm 0.10 \pm 0.04$	PRIM	13 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.35 \pm 0.13 \pm 0.09$	AUBERT	08BG BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	wing data for averag	es, fits, limits,	, etc. • • •
$2.24\ \pm0.15\ \pm0.09$	AUBERT	07D BABR	Repl. by AUBERT 08BG
$2.51 \pm 0.25 \pm 0.06$	$^{ m 1}$ CHEN	05A BELL	Repl. by PRIM 13
$2.47 \pm 0.25 \pm 0.05$	AUBERT,B	04W BABR	Repl. by AUBERT 07D

 $^{^{}m 1}$ This quantity was recalculated by the BELLE authors from numbers in the original paper.

$\delta_0(B^0 \rightarrow \phi K^*(892)^0)$

VALUE (rad)	DOCUMENT ID		TECN	COMMENT
2.88±0.10 OUR AVERAGE				
$2.91 \pm 0.10 \pm 0.08$	PRIM	13	BELL	$e^+e^- ightarrow \gamma(4S)$
$2.82 \pm 0.15 \pm 0.09$	AUBERT	08B0	BABR	$e^+e^- \rightarrow \gamma(4S)$
• • • We do not use the following	data for averag	es, fit	s, limits,	etc. • • •
$2.78 \pm 0.17 \pm 0.09$	AUBERT	07 D	BABR	Repl. by AUBERT 08BG

A_{CP}^0 in $B^0 \rightarrow \phi K^*(892)^0$

VALUE	DOCUMENT ID	TECN	COMMENT
-0.007 ± 0.030 OUR AVERAGE			
$-0.003\!\pm\!0.038\!\pm\!0.005$	AAIJ	14AM LHCB	pp at 7 TeV
$-0.030\pm0.061\pm0.007$	PRIM	13 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.01\ \pm0.07\ \pm0.02$	AUBERT	08BG BABR	$e^+e^- o ag{7}(4S)$
• • • We do not use the following	data for averag	ges, fits, limits,	, etc. • • •
$-0.03 \pm 0.08 \pm 0.02$	AUBERT	07D BABR	Repl. by AUBERT 08BG
$0.13 \pm 0.12 \pm 0.04$	^L CHEN	05A BELL	Repl. by PRIM 13
$-0.06~\pm0.10~\pm0.01$	AUBERT,B	04W BABR	Repl. by AUBERT 07D

¹ This quantity was recalculated by the BELLE authors from numbers in the original paper.

$A_{CP}^{\perp} \text{ in } B^0 \to \phi K^*(892)^0$

VALUE	DOCUMENT ID	TECN	COMMENT
-0.02 ± 0.06 OUR AVERAGE			
$0.047 \pm 0.074 \pm 0.009$	AAIJ		pp at 7 TeV
$-0.14\ \pm0.11\ \pm0.01$	PRIM	13 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.04\ \pm0.15\ \pm0.06$	AUBERT	08BG BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

HTTP://PDG.LBL.GOV

Page 167

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$-0.03 \pm 0.16 \pm 0.05$	AUBERT	07D BABR	Repl. by AUBERT 08BG
$-0.20\ \pm0.18\ \pm0.04$	$^{ m 1}$ CHEN	05A BELL	Repl. by PRIM 13
$-0.10\ \pm0.24\ \pm0.05$	AUBERT,B	04W BABR	Repl. by AUBERT 07D

 $^{^{1}}$ This quantity was recalculated by the BELLE authors from numbers in the original paper.

$\Delta\phi_{\parallel}$ in $B^0 ightarrow \phi \, K^*(892)^0$

VALUE (rad)	DOCUMENT ID	TECN	COMMENT
0.05 ± 0.05 OUR AVERAGE			
$0.045 \pm 0.069 \pm 0.015$	AAIJ		pp at 7 TeV
$-0.02\ \pm0.10\ \pm0.01$	PRIM	13 BELL	$e^+e^- o \Upsilon(4S)$
$0.22\ \pm0.12\ \pm0.08$	AUBERT	08BG BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	g data for averag	ges, fits, limits	, etc. • • •
$0.24\ \pm0.14\ \pm0.08$	AUBERT	07D BABR	Repl. by AUBERT 08BG
$-0.32 \pm 0.27 \pm 0.07$	¹ CHEN	05A BELL	Repl. by PRIM 13
$0.27 \ {+0.20\atop -0.23} \ \pm 0.05$	AUBERT,B	04W BABR	Repl. by AUBERT 07D

¹ This quantity was recalculated by the BELLE authors from numbers in the original paper.

$\Delta \phi_{\perp}$ in $B^0 \rightarrow \phi K^*(892)^0$

/ _ /	\ /		
VALUE (rad)	DOCUMENT ID	TECN	COMMENT
0.08 ±0.05 OUR AV	ERAGE		
$0.062\!\pm\!0.062\!\pm\!0.005$	AAIJ	14AM LHCB	pp at 7 TeV
$0.05\ \pm0.10\ \pm0.02$	PRIM	13 BELL	$e^+e^- ightarrow \Upsilon(4S)$
$0.21\ \pm0.13\ \pm0.08$	AUBERT	08BG BABR	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the	following data for avera	ges, fits, limits,	etc. • • •
$0.19\ \pm0.15\ \pm0.08$	AUBERT	07D BABR	Repl. by AUBERT 08BG
$-0.30\ \pm0.25\ \pm0.06$	¹ CHEN	05A BELL	Repl. by PRIM 13
$0.36\ \pm0.25\ \pm0.05$	AUBERT,B	04W BABR	Repl. by AUBERT 07D
1			

 $^{^{}m 1}$ This quantity was recalculated by the BELLE authors from numbers in the original paper.

$\Delta\delta_0(B^0 \rightarrow \phi K^*(892)^0)$

VALUE (rad)	DOCUMENT ID		TECN	COMMENT
0.13±0.09 OUR AVERAGE				
$0.08\!\pm\!0.10\!\pm\!0.01$	PRIM	13	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$0.27\!\pm\!0.14\!\pm\!0.08$	AUBERT	08 BG	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	data for averag	es, fit	s, limits,	etc. • • •
$0.21 \pm 0.17 \pm 0.08$	AUBERT	07 D	BABR	Repl. by AUBERT 08BG

$\Delta \phi_{00}(B^0 \to \phi K_0^*(1430)^0)$

VALUE (rad)	DOCUMENT ID	TECN	COMMENT
$0.28 \pm 0.42 \pm 0.04$	AUBERT	08BG BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

Γ_L/Γ in $B^0 o \phi K_2^*(1430)^0$

VALUE	DOCUMENT ID		IECN	COMMENT	
$0.913^{f +0.028}_{f -0.050}$ OUR AVERAGE					
$0.918 {}^{+ 0.029}_{- 0.060} \pm 0.012$	PRIM	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.901^{+0.046}_{-0.058} \pm 0.037$	AUBERT	08BG	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

HTTP://PDG.LBL.GOV Page 168 Created: 5/30/2017 17:22

• • • We do not use the following data for averages, fits, limits, etc. • • • $0.853^{+0.061}_{-0.069} \pm 0.036$ **AUBERT** 07D BABR Repl. by AUBERT 08BG Γ_{\perp}/Γ in $B^0 \rightarrow \phi K_2^*(1430)^0$ DOCUMENT ID TECN COMMENT $0.027^{+0.031}_{-0.025}$ OUR AVERAGE Error includes scale factor of 1.1. $0.056^{\,+\,0.050}_{\,-\,0.035}\,{\pm}\,0.009$ 13 BELL $e^+e^- \rightarrow \Upsilon(4S)$ **PRIM** $0.002^{\,+\,0.018}_{\,-\,0.002}\,{\pm}\,0.031$ 08BG BABR $e^+e^- \rightarrow \Upsilon(4S)$ **AUBERT** • • We do not use the following data for averages, fits, limits, etc.
 • • $0.045^{+0.049}_{-0.040} \pm 0.013$ AUBERT 07D BABR Repl. by AUBERT 08BG $\phi_{||} \text{ in } B^0 \to \phi K_2^* (1430)^0$ VALUE (rad) DOCUMENT ID TECN 4.0 ± 0.4 OUR AVERAGE $e^+e^-
ightarrow \gamma(4S)$ $3.76 \pm 2.88 \pm 1.32$ PRIM **BELL** 08BG BABR $e^+e^- \rightarrow \Upsilon(4S)$ $3.96 \pm 0.38 \pm 0.06$ AUBERT • • We do not use the following data for averages, fits, limits, etc. $2.90 \pm 0.39 \pm 0.06$ **AUBERT** 07D BABR Repl. by AUBERT 08BG $\phi_{\perp} \text{ in } B^0 \to \phi K_2^* (1430)^0$ VALUE (rad) DOCUMENT ID TECN COMMENT $4.45^{+0.43}_{-0.38}\pm0.13$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ **PRIM** 13 • • • We do not use the following data for averages, fits, limits, etc. • • • $5.72^{+0.55}_{-0.87}\pm0.11$ **AUBERT** 07D BABR Repl. by AUBERT 08BG $\delta_0(B^0 \to \phi K_2^*(1430)^0)$ VALUE (rad) DOCUMENT ID TECN COMMENT 3.46 ± 0.14 OUR AVERAGE $3.53\!\pm\!0.11\!\pm\!0.19$ **PRIM** 08BG BABR $e^+e^- \rightarrow \Upsilon(4S)$ **AUBERT** $3.41\pm0.13\pm0.13$ • • We do not use the following data for averages, fits, limits, etc. $3.54^{+0.12}_{-0.14}\pm0.06$ **AUBERT** 07D BABR Repl. by AUBERT 08BG $A_{CP}^{0} \text{ in } B^{0} \rightarrow \phi K_{2}^{*}(1430)^{0}$ -0.03 ±0.04 OUR AVERAGE $-0.016^{\,+\,0.066}_{\,-\,0.051}\,{\pm}\,0.008$ 13 BELL $e^+e^- \rightarrow \Upsilon(4S)$ PRIM 08BG BABR $e^+e^- \rightarrow \Upsilon(4S)$ $-0.05 \pm 0.06 \pm 0.01$ **AUBERT** A_{CP}^{\perp} in $B^0 \rightarrow \phi K_2^* (1430)^0$ TECN COMMENT **DOCUMENT ID** $-0.01^{+0.85}_{-0.67}\pm0.09$ 13 BELL $e^+e^- \rightarrow \Upsilon(4S)$ **PRIM** HTTP://PDG.LBL.GOV Page 169 Created: 5/30/2017 17:22

$\Delta \phi_{\parallel}(B^0 \rightarrow \phi K_2^*(1430)^0)$ VALUE (rad)	<u>DOCUMENT</u>	ID	<u>TECN</u>	COMMENT
-0.9 ± 0.4 OUR AVERAGE $-0.02\pm 1.08\pm 1.01$ $-1.00\pm 0.38\pm 0.09$	PRIM AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$ $e^+e^- \rightarrow \Upsilon(4S)$
$\Delta\phi_{\perp}(B^0\to \phi K_2^*(1430)^0)$ VALUE	DOCUMENT	ID	<u>TECN</u>	COMMENT
$-0.19\pm0.42\pm0.11$	PRIM	13	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$\Delta \delta_0 \text{ in } B^0 \rightarrow \phi K_2^* (1430)^0$ VALUE (rad)	DOCUMENT	ID	TECN	COMMENT
0.08±0.09 OUR AVERAGE 0.06±0.11±0.02	PRIM	13	BELL	$e^+e^- ightarrow \gamma(4S)$
$0.11 \pm 0.13 \pm 0.06$	AUBERT	08 BG	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
Γ_L/Γ in $B^0 \to K^*(892)^0 \rho^0$	D OCUMENT	ID	<u>TECN</u>	<u>COMMENT</u>
0.40±0.08±0.11 • • • We do not use the following	LEES	12K	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$0.57 \pm 0.09 \pm 0.08$				Repl. by LEES 12K
Γ_L/Γ in $B^0 \to K^{*+}\rho^-$	<u>DOCUMENT</u>	ID	TECN	COMMENT
0.38±0.13±0.03	LEES			$e^+e^- ightarrow \Upsilon(4S)$
Γ_L/Γ in $B^0 o ho^+ ho^-$	DOCUMENT ID		<u> CON</u>	MMENT
0.990 ^{+0.021} _{-0.019} OUR AVERAGE				
$0.988 \pm 0.012 \pm 0.023$	VANHOEFER	16 BEI	L e ⁺	$e^- o ag{(4S)}$
$0.992 \pm 0.024 {+0.026 \atop -0.013}$	AUBERT	07BF BAI	BR e ⁺	$e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	ng data for avera	ages, fits,	limits, e	tc. • • •
$0.941^{+0.034}_{-0.040}{\pm}0.030$	SOMOV	06 BEI	_L Rep	ol. by VANHOEFER 16
$0.978 \pm 0.014 {}^{+ 0.021}_{- 0.029}$	AUBERT,B	05C BAI	BR Rep	ol. by AUBERT 07BF
$0.98 \ ^{+0.02}_{-0.08} \ \pm 0.03$	AUBERT	04G BAI	BR Rep	ol. by AUBERT,B 04R
$0.99\ \pm0.03\ ^{+0.04}_{-0.03}$	AUBERT,B	04R BAI	BR Rep	ol. by AUBERT,B 05C

 Γ_L/Γ in $B^0
ightarrow
ho^0
ho^0$

<u>DOCUMENT ID TECN COMMENT</u>

0.71 $^{+0.08}_{-0.09}$ **OUR AVERAGE** Error includes scale factor of 1.6. See the ideogram below.

 $0.745 { + 0.048 \atop -0.058 } \pm 0.034$

VALUE

AAIJ

15T LHCB pp at 7, 8 TeV

 $0.21 \ ^{+0.18}_{-0.22} \ \pm 0.15$

VANHOEFER 14

BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $0.75 \ \, ^{+\, 0.11}_{-\, 0.14} \ \, \pm 0.05$

AUBERT

08BB BABR $e^+e^-
ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.87 \pm 0.13 \pm 0.04$

AUBERT

07G BABR Repl. by AUBERT 08BB

WEIGHTED AVERAGE 0.71+0.08-0.09 (Error scaled by 1.6)

 $\Gamma_L/\Gamma \text{ in } B^0 \rightarrow a_1(1260)^+ a_1(1260)^-$

VALUE DOCUMENT ID TECN COMMENT

0.31 \pm 0.22 \pm 0.10

AUBERT 09AL BABR $e^+e^- \rightarrow \Upsilon(4S)$

 Γ_L/Γ in $B^0 \rightarrow p\overline{p}K^*(892)^0$

VALUE 1.01±0.13±0.03

DOCUMENT IDTECNCOMMENTCHEN08CBELL $e^+e^- \rightarrow \Upsilon(4S)$

 Γ_L/Γ in $B^0 \to \Lambda \overline{\Lambda} K^*(892)^0$

VALUE

DOCUMENT ID TECN COMMENT

 $0.60\pm0.22\pm0.08$

CHANG 09 BELL $e^+e^- \rightarrow \Upsilon(4S)$

A REVIEW GOES HERE – Check our WWW List of Reviews

$B^0-\overline{B}^0$ MIXING PARAMETERS

For a discussion of $B^0-\overline{B}^0$ mixing see the note on " $B^0-\overline{B}^0$ Mixing" in the B^0 Particle Listings above.

 χ_d is a measure of the time-integrated B^0 - \overline{B}^0 mixing probability that a produced $B^0(\overline{B}^0)$ decays as a $\overline{B}^0(B^0)$. Mixing violates $\Delta B \neq 2$ rule.

$$\chi_d = \frac{x_d^2}{2(1+x_d^2)}$$

$$x_d = \frac{\Delta m_{B^0}}{\Gamma_{B^0}} = (m_{B_H^0} - m_{B_L^0}) \tau_{B^0},$$

where H, L stand for heavy and light states of two B^0 CP eigenstates and $\tau_{B^0} = \frac{1}{0.5(\Gamma_{B^0_H} + \Gamma_{B^0_L})}$.

 χ_d

This $B^0-\overline{B}^0$ mixing parameter is the probability (integrated over time) that a produced B^0 (or \overline{B}^0) decays as a \overline{B}^0 (or B^0), e.g. for inclusive lepton decays

$$\chi_d = \Gamma(B^0 \to \ell^- X \text{ (via } \overline{B}^0)) / \Gamma(B^0 \to \ell^{\pm} X)$$

= $\Gamma(\overline{B}^0 \to \ell^+ X \text{ (via } B^0)) / \Gamma(\overline{B}^0 \to \ell^{\pm} X)$

Where experiments have measured the parameter $r=\chi/(1-\chi)$, we have converted to χ . Mixing violates the $\Delta B \neq 2$ rule.

Note that the measurement of χ at energies higher than the $\Upsilon(4S)$ have not separated χ_d from χ_s where the subscripts indicate $B^0(\overline{b}d)$ or $B^0_s(\overline{b}s)$. They are listed in the $B^\pm/B^0/B^0_s/b$ -baryon ADMIXTURE section.

The experiments at $\Upsilon(4S)$ make an assumption about the $B^0\overline{B}^0$ fraction and about the ratio of the B^\pm and B^0 semileptonic branching ratios (usually that it equals one).

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements, includes χ_d calculated from Δm_{R^0} and τ_{R^0} .

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
0.1860 ± 0.0011	OUR EVALUATIO	N			
0.182 ± 0.015	OUR AVERAGE				
$0.198\ \pm0.013$	± 0.014	$^{ m 1}$ BEHRENS	00 B	CLE2	$e^+e^- ightarrow \gamma(4S)$
0.16 ± 0.04	± 0.04	² ALBRECHT	94	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
0.149 ± 0.023	± 0.022	³ BARTELT	93	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
0.171 ± 0.048		⁴ ALBRECHT	92L	ARG	$e^+e^- ightarrow \gamma(4S)$
• • • We do not u	use the following d	ata for averages, f	its, lim	nits, etc	. • • •
0.20 ±0.13 =	± 0.12	⁵ ALBRECHT	96 D	ARG	$e^+e^- ightarrow ~ \gamma(4S)$
0.19 ± 0.07	± 0.09	⁶ ALBRECHT	96 D	ARG	$e^+e^- ightarrow \Upsilon(4S)$
0.24 ± 0.12		⁷ ELSEN	90	JADE	$e^{+}e^{-}$ 35–44 GeV
$0.158 \begin{array}{l} +0.052 \\ -0.059 \end{array}$		ARTUSO	89	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
0.17 ± 0.05		⁸ ALBRECHT	87ı	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 0.19	90	⁹ BEAN	87 B	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
< 0.27	90	¹⁰ AVERY	84	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
1					. =0

 $^{^1}$ BEHRENS 00B uses high-momentum lepton tags and partially reconstructed $\overline{B}{}^0$ ightarrow $D^{*+}\pi^-$, ρ^- decays to determine the flavor of the *B* meson.

$\Delta m_{B^0} = m_{B^0_H} - m_{B^0_L}$

 Δm_{B^0} is a measure of 2π times the $B^0 { extstyle -} \overline B{}^0$ oscillation frequency in time-dependent mixing experiments.

The second "OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/.

 $^{^2}$ ALBRECHT 94 reports r=0.194 \pm 0.062 \pm 0.054. We convert to χ for comparison. Uses tagged events (lepton + pion from D^*).

³BARTELT 93 analysis performed using tagged events (lepton+pion from D^*). Using dilepton events they obtain 0.157 \pm 0.016 $^{+0.033}_{-0.028}$

⁴ ALBRECHT 92L is a combined measurement employing several lepton-based techniques. It uses all previous ARGUS data in addition to new data and therefore supersedes AL-BRECHT 871. A value of $r=20.6\pm7.0\%$ is directly measured. The value can be used to measure x = $\Delta M/\Gamma = 0.72 \pm 0.15$ for the B_d meson. Assumes $f_{+-}/f_0 = 1.0 \pm 0.05$ and uses $\tau_{B^{\pm}}/\tau_{B^0} = (0.95 \pm 0.14) (f_{+-}/f_0)$.

⁷These experiments see a combination of B_s and B_d mesons.

 $^{^8}$ ALBRECHT 871 is inclusive measurement with like-sign dileptons, with tagged B decays plus leptons, and one fully reconstructed event. Measures r=0.21 \pm 0.08. We convert to χ for comparison. Superseded by ALBRECHT 92L.

 $^{^9}$ BEAN 87B measured r < 0.24; we converted to χ .

 $^{^{10}}$ Same-sign dilepton events. Limit assumes semileptonic BR for B^+ and B^0 equal. If B^0/B^{\pm} ratio <0.58, no limit exists. The limit was corrected in BEAN 87B from r < 0.30 to r < 0.37. We converted this limit to χ .

The averaging/rescaling procedure takes into account correlations between the measurements.

The first "OUR EVALUATION", also provided by the HFLAV, includes Δm_d calculated from χ_d measured at $\Upsilon(4S)$.

<i>VALUE</i> ($10^{12} \ \hbar \ s^{-1}$)	DOCUMENT ID	TECN	COMMENT
0.5064±0.0019 OUR EVALU			
0.5065±0.0019 OUR EVAL			
$0.5050\pm0.0021\pm0.0010$	¹ AAIJ	16AV LHCB	pp at 7, 8 TeV
$0.503 \pm 0.011 \pm 0.013$	² AAIJ	13CF LHCB	pp at 7 TeV
$0.5156 \pm 0.0051 \pm 0.0033$	³ AAIJ	13F LHCB	pp at 7 TeV
$0.499 \pm 0.032 \pm 0.003$	⁴ AAIJ	12i LHCB	pp at 7 TeV
$0.506 \pm 0.020 \pm 0.016$	⁵ ABAZOV	06w D0	$p\overline{p}$ at 1.96 TeV
$0.511 \pm 0.007 \ \begin{array}{c} +0.007 \\ -0.006 \end{array}$	⁶ AUBERT	06G BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$0.511 \pm 0.005 \pm 0.006$	⁷ ABE	05B BELL	$e^+e^- o ag{7}(4S)$
$0.531 \pm 0.025 \pm 0.007$	⁸ ABDALLAH	03B DLPH	$e^+e^- \rightarrow Z$
$0.492\ \pm0.018\ \pm0.013$	⁹ AUBERT	03C BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.503 \pm 0.008 \pm 0.010$	¹⁰ HASTINGS	03 BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$0.509 \pm 0.017 \pm 0.020$	¹¹ ZHENG	03 BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$0.516 \pm 0.016 \pm 0.010$	¹² AUBERT	02ı BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$0.493 \pm 0.012 \pm 0.009$	¹³ AUBERT	02J BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$0.497 \pm 0.024 \pm 0.025$	¹⁴ ABBIENDI,G	00B OPAL	$e^+e^- \rightarrow Z$
$0.503 \pm 0.064 \pm 0.071$	15 ABE	99K CDF	$p\overline{p}$ at 1.8 TeV
$0.500 \pm 0.052 \pm 0.043$	16 ABE	99Q CDF	$p\overline{p}$ at 1.8 TeV
. 0.020		-	
$0.516 \pm 0.099 \ \begin{array}{c} +0.029 \\ -0.035 \end{array}$	¹⁷ AFFOLDER	99c CDF	$p\overline{p}$ at 1.8 TeV
$0.471 {}^{+ 0.078}_{- 0.068} {}^{+ 0.033}_{- 0.034}$	¹⁸ ABE	98C CDF	$p\overline{p}$ at 1.8 TeV
$0.458 \pm 0.046 \pm 0.032$	¹⁹ ACCIARRI	98D L3	$e^+e^- \rightarrow Z$
$0.437 \pm 0.043 \pm 0.044$	²⁰ ACCIARRI	98D L3	$e^+e^- \rightarrow Z$
$0.472 \pm 0.049 \pm 0.053$	²¹ ACCIARRI	98D L3	$e^+e^- \rightarrow Z$
$0.523 \pm 0.072 \pm 0.043$	²² ABREU	97N DLPH	$e^+e^- ightarrow Z$
$0.493 \pm 0.042 \pm 0.027$	²⁰ ABREU	97N DLPH	$e^+e^- \rightarrow Z$
$0.499 \pm 0.053 \pm 0.015$	²³ ABREU	97N DLPH	$e^+e^- \rightarrow Z$
	¹⁹ ABREU	97N DLFH	$e^+e^- \rightarrow Z$
. 0 020			
$0.444\ \pm0.029\ {}^{+0.020}_{-0.017}$	²⁰ ACKERSTAFF	97∪ OPAL	$e^+e^- \rightarrow Z$
$0.430\ \pm 0.043\ ^{+0.028}_{-0.030}$	¹⁹ ACKERSTAFF	97V OPAL	$e^+e^- ightarrow Z$
$0.482\ \pm0.044\ \pm0.024$	²⁴ BUSKULIC	97D ALEP	$e^+e^- \rightarrow Z$
$0.404\ \pm0.045\ \pm0.027$	²⁰ BUSKULIC	97D ALEP	$e^+e^- \rightarrow Z$
$0.452 \pm 0.039 \pm 0.044$	¹⁹ BUSKULIC	97D ALEP	$e^+e^- \rightarrow Z$
$0.539 \pm 0.060 \pm 0.024$	²⁵ ALEXANDER		$e^+e^- \rightarrow Z$
$0.567 \pm 0.089 \ \begin{array}{c} +0.029 \\ -0.023 \end{array}$	²⁶ ALEXANDER		
• • • We do not use the fol	lowing data for ave	rages, fits, lim	nits, etc. • •
$0.516 \pm 0.016 \pm 0.010$	²⁷ AUBERT		$e^+e^- \rightarrow \Upsilon(4S)$
$0.494 \pm 0.012 \pm 0.015$	²⁸ HARA	02N BABIN	Repl. by ABE 05B
$0.528 \pm 0.017 \pm 0.011$	²⁹ TOMURA		Repl. by ABE 05B
$0.463 \pm 0.008 \pm 0.016$	13 ABE		Repl. by HASTINGS 03
	30 ACCIARRI		$e^+e^- \rightarrow Z$
$0.444 \pm 0.028 \pm 0.028$	~~ ACCIARRI	98D L3	e ' e → ∠

```
31 ABREU
                                                            97N DLPH e^+e^- \rightarrow Z
0.497 \pm 0.035
0.467\ \pm0.022\ ^{+0.017}_{-0.015}
                                     ^{32} ACKERSTAFF 97V OPAL e^+e^- \rightarrow Z
                                     <sup>33</sup> BUSKULIC
0.446 \pm 0.032
                                                            97D ALEP e^+e^- \rightarrow Z
0.531 \begin{array}{l} +0.050 \\ -0.046 \end{array}
                                     <sup>34</sup> ABREU
                                                            96Q DLPH Sup. by ABREU 97N
                   \pm 0.078
0.496 \begin{array}{l} +0.055 \\ -0.051 \end{array}
                                     <sup>19</sup> ACCIARRI
                   \pm 0.043
                                                            96E L3
                                                                             Repl. by ACCIARRI 98D
                   +0.023 \\ -0.019
                                     <sup>35</sup> ALEXANDER
                                                           96V OPAL e^+e^- \rightarrow Z
0.548 \pm 0.050
                                     <sup>36</sup> AKERS
                                                            95J OPAL Repl. by ACKERSTAFF 97V
0.496 \pm 0.046
0.462 \begin{array}{l} +0.040 \\ -0.053 \end{array} \begin{array}{l} +0.052 \\ -0.035 \end{array}
                                     <sup>19</sup> AKERS
                                                                  OPAL Repl. by ACKERSTAFF 97V
                                     <sup>22</sup> ABREU
                                                            94M DLPH Sup. by ABREU 97N
0.50
        \pm 0.12 \pm 0.06
                                     <sup>25</sup> AKERS
                                                            94C OPAL Repl. by ALEXANDER 96V
0.508 \pm 0.075 \pm 0.025
                                     <sup>26</sup> AKERS
                                                            94H OPAL Repl. by ALEXANDER 96V
0.57
        \pm 0.11
                   \pm 0.02
        +0.07
                                     <sup>19</sup> BUSKULIC
                                                            94B ALEP Sup. by BUSKULIC 97D
0.50
         -0.06
                   -0.10
        ^{+\,0.10}_{-\,0.11}
                   +0.04
                                    <sup>26</sup> BUSKULIC
                                                            93K ALEP Sup. by BUSKULIC 97D
0.52
```

 2 Uses semileptonic decays of $B^0 o D^- \mu^+
u_\mu X$ where the D^- mesons are reconstructed

3 Measured using $B^0 \to D^-\pi^+$ and $B^0 \to J/\psi K^* (892)^0$ decays.

⁴ Measured using $B^0 \rightarrow D^- \pi^+$.

²³ Uses
$$\pi_s^{\pm} \ell$$
- Q_{hem} .

 $^{^1}$ Uses semileptonic decays of $B^0\to D^-\mu^+\nu_\mu X$ and $B^0\to D^{(*)-}\mu^+\nu_\mu X$, where the D mesons are reconstructed in $D^-\to K^+\pi^-\pi^-$ and $D^{(*)-}\to \overline D^0\pi^-$ with $\overline D^0\to K^+\pi^-$.

⁵ Uses opposite-side flavor-tagging with $B \to D^{(*)} \mu \nu_{\mu} X$ events.

⁶ Measured using a simultaneous fit of the B^0 lifetime and $\overline{B}{}^0 B^0$ oscillation frequency Δm_d in the partially reconstructed $B^0 \to D^{*-} \ell \nu$ decays.

⁷ Measurement performed using a combined fit of *CP*-violation, mixing and lifetimes.

⁸ Events with a high transverse momentum lepton were removed and an inclusively reconstructed vertex was required.

⁹ AUBERT 03C uses a sample of approximately 14,000 exclusively reconstructed $B^0 \rightarrow D^*(2010)^- \ell \nu$ and simultaneously measures the lifetime and oscillation frequency.

¹⁰ HASTINGS 03 measurement based on the time evolution of dilepton events. It also reports $f_+/f_0=1.01\pm0.03\pm0.09$ and CPT violation parameters in $B^0-\overline{B}^0$ mixing.

¹¹ ZHENG 03 data analyzed using partially reconstructed $\overline B{}^0 \to D^{*-}\pi^+$ decay and a flavor tag based on the charge of the lepton from the accompanying B decay.

 $^{^{12}}$ Uses a tagged sample of fully-reconstructed neutral B decays at $\Upsilon(4S)$.

 $^{^{13}}$ Measured based on the time evolution of dilepton events in $\varUpsilon(4S)$ decays.

¹⁴ Data analyzed using partially reconstructed $\overline B{}^0\to D^{*+}\ell^-\overline\nu$ decay and a combination of flavor tags from the rest of the event.

¹⁵ Uses di-muon events.

¹⁶ Uses jet-charge and lepton-flavor tagging.

¹⁷ Uses $\ell^- D^{*+} - \ell$ events.

¹⁸ Uses π -B in the same side.

 $^{^{19}}$ Uses ℓ - ℓ .

²⁰ Uses ℓ - Q_{hem} .

 $^{^{21}}$ Uses $\ell\text{-}\ell$ with impact parameters.

 $^{^{22}}$ Uses $D^{*\pm}$ - Q_{hem} .

- ²⁴ Uses $D^{*\pm}$ - ℓ/Q_{hem}
- 25 Uses $D^{*\pm}\ell$ - Q_{hem} .
- ²⁶ Uses $D^{*\pm}$ - ℓ .
- ²⁷ AUBERT 02N result based on the same analysis and data sample reported in AUBERT 02I.
- ²⁸ Uses a tagged sample of B^0 decays reconstructed in the mode $B^0 \to D^* \ell \nu$.
- 29 Uses a tagged sample of fully-reconstructed hadronic B^0 decays at $\Upsilon(4S)$.
- 30 ACCIARRI 98D combines results from ℓ - ℓ , ℓ - Q_{hem} , and ℓ - ℓ with impact parameters.
- ³¹ ABREU 97N combines results from $D^{*\pm}$ - Q_{hem} , ℓ - Q_{hem} , π_s^{\pm} ℓ - Q_{hem} , and ℓ - ℓ .
- 32 ACKERSTAFF 97V combines results from ℓ - ℓ , ℓ - Q_{hem} , D^* - ℓ , and $D^{*\pm}$ - Q_{hem} .
- 33 BUSKULIC 97D combines results from $D^{*\pm}$ - $\ell/Q_{
 m hem}$, ℓ - $Q_{
 m hem}$, and ℓ - ℓ .
- ³⁴ ABREU 96Q analysis performed using lepton, kaon, and jet-charge tags.
- 35 ALEXANDER 96V combines results from $D^{*\pm}$ - ℓ and $D^{*\pm}\ell$ - Q_{hem} .
- ³⁶ AKERS 95J combines results from charge measurement, $D^{*\pm}\ell$ - $Q_{\rm hem}$ and ℓ - ℓ .

 $x_d = \Delta m_{B^0} / \Gamma_{B^0}$

The second "OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

The first "OUR EVALUATION", also provided by the HFLAV, includes χ_d measured at $\Upsilon(4S)$.

VALUE

DOCUMENT ID

 0.770 ± 0.004 OUR EVALUATION 0.770 ± 0.004 OUR EVALUATION

First Second

0.770±0.004 OUR EVALUATION Sec

$\operatorname{Re}(\lambda_{CP} / |\lambda_{CP}|) \operatorname{Re}(z)$

The λ_{CP} characterizes B^0 and \overline{B}^0 decays to states of charmonium plus K^0_L . Parameter z is used to describe CPT violation in mixing, see the review on "CP Violation" in the reviews section.

VALUE	DOCUMENT ID		TECN	COMMENT
$0.047 \pm 0.022 \pm 0.003$	¹ LEES	16E	BABR	$e^+e^- \rightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.014 \pm 0.035 \pm 0.034$

² AUBERT.B 04C BABR Repl. by LEES 16E

$\Delta\Gamma$ Re(z)

Re(z)

VALUE (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
−4 ± 4 OUR AVERAGE	Error includes scale facto	r of 1.4.	
$-6.5 \pm \ 2.8 \pm 1.4$	¹ LEES 16	E BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.9 \pm 3.7 \pm 3.3$	² HIGUCHI 12	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

HTTP://PDG.LBL.GOV

Page 176

¹ The first uncertainty is the uncertainty from Re(z) and the second uncertainty is from Re($\lambda/|\lambda|$).

² Corresponds to 90% confidence range [-0.072, 0.101].

- • We do not use the following data for averages, fits, limits, etc. •
 - $0 \pm 12 \pm 1$

- ³ HASTINGS
- 03 BELL Repl. by HIGUCHI 12
- 1 Measurement uses decays $B^0/\overline B{}^0\to c\overline c K^0_S/K^0_L.$ 2 Measured using $B^0\to J/\psi\,K^0_S,\,J/\psi\,K^0_L,\,D^-\pi^+,\,D^{*-}\pi^+,\,D^{*-}\rho^+,$ and $D^{*-}\ell^+\nu$
- ³ Measured using inclusive dilepton events from B^0 decay.

lm(z)

<i>VALUE</i> (units 10 ⁻²)	DOCUMENT ID		TECN	COMMENT
-0.8 ± 0.4 OUR AVERAGE				
$1.0 \pm 3.0 \pm 1.3$	¹ LEES	16E	BABR	$e^+e^- o ag{7}(4S)$
$-0.57 \pm 0.33 \pm 0.33$	² HIGUCHI	12	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-1.39\pm0.73\pm0.32$	³ AUBERT	06T	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
● ● We do not use the following	g data for averages	s, fits,	limits, e	etc. • • •
$3.8 \pm 2.9 \pm 2.5$				Repl. by AUBERT 06T
-3 ± 1 ± 3	⁵ HASTINGS	03	BELL	Repl. by HIGUCHI 12
1		^		

CP VIOLATION PARAMETERS

$\operatorname{Re}(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2)$

CP impurity in B_d^0 system. It is obtained from either $a_{\ell\ell}$, the charge asymmetry in like-sign dilepton events or a_{CD} , the time-dependent asymmetry of inclusive B^0 and \overline{B}^0 decays.

"OUR EVALUATION" is an average obtained by the Heavy Flavor Averaging Group (HFLAV) and described at http://www.slac.stanford.edu/xorg/hflav/. It is the result of a fit to B_d and B_s CP asymmetries, which includes the B_d measurements listed below and the B_s measurements listed in the B_s section, taking into account correlations between those measurements.

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
$-$ 0.5 \pm 0.4 OUR EVALUA	ATION			
$-$ 0.1 \pm 0.4 OUR AVERAGE	GE			
$-$ 0.05 \pm 0.48 \pm 0.75	¹ AAIJ	15F	LHCB	<i>pp</i> at 7, 8 TeV
$-~0.975\pm~0.875\pm0.475$	² LEES	15A	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$1.55~\pm~1.05$	³ ABAZOV	14	D0	$p\overline{p}$ at 1.96 TeV
$0.15 \pm 0.42 {+ 0.94 \atop - 0.81}$	⁴ LEES	13N	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$-$ 1.7 \pm 1.1 \pm 0.4	⁵ ABAZOV	12 AC	D0	$p\overline{p}$ at 1.96 TeV
$0.4~\pm~1.3~\pm0.9$	⁶ AUBERT	06T	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$-$ 0.3 \pm 2.0 \pm 2.1	⁷ NAKANO	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$3.5 \pm 10.3 \pm 1.5$	⁸ JAFFE	01	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^{1}}$ Measurement uses decays $B^{0}/\overline{B}^{0}\to c\overline{c}K_{S}^{0}/K_{L}^{0}.$ 2 Measured using $B^{0}\to J/\psi\,K_{S}^{0},\,J/\psi\,K_{L}^{0},\,D^{-}\pi^{+},\,D^{*-}\pi^{+},\,D^{*-}\rho^{+}$, and $D^{*-}\ell^{+}\nu$

³ Measurement uses $B^0/\overline{B}^0 \to \ell^+ X/\ell^- X$ decays. Assuming $\Delta \Gamma = 0$, the result becomes $Im(z) = (-0.37 \pm 0.54) \times 10^{-2}$.

⁴ Corresponds to 90% confidence range [-0.028, 0.104].

⁵ Measured using inclusive dilepton events from B^0 decay.

```
<sup>9</sup> ABAZOV
  - 0.3
           \pm 1.3
                                                         11U D0
                                                                        Repl. by ABAZOV 14
                                    <sup>10</sup> ABAZOV
  - 2.3
           \pm 1.1
                                                         06s D0
                                                                        Repl. by ABAZOV 11U
                     \pm 0.8
                                    <sup>11</sup> AUBERT,B
                                                         04C BABR Repl. by AUBERT 06T
 -14.7
           \pm 6.7
                     \pm 5.7
                                     <sup>2</sup> AUBERT
     1.2
                                                         02K BABR Repl. by LEES 15A
          \pm 2.9
                     \pm 3.6
                                    <sup>12</sup> BARATE
  -3.2 \pm 6.5
                                                         01D ALEP
                                                                        e^+e^- \rightarrow Z
                                    <sup>13</sup> BEHRENS
                                                         00B CLE2
                                                                        Repl. by JAFFE 01
     4
           \pm 18
                     \pm 3
                                    <sup>14</sup> ABBIENDI
                                                         99J OPAL e^+e^- \rightarrow Z
     1.2 \pm 13.8 \pm 3.2
                                    ^{15} ACKERSTAFF 97U OPAL e^+e^- 
ightarrow Z
                                    <sup>16</sup> BARTELT
                                                              CLE2 e^+e^- \rightarrow \Upsilon(4S)
   45
<
```

- 1 AAIJ 15F uses semileptonic B^0 decays in the inclusive final states $D^-\,\mu^+$ and $D^{*-}\,\mu^+$, where the D^- meson decays into the $K^+\,\pi^-\,\pi^-$ final state, and the D^{*-} meson into the $\overline D^0(\to K^+\,\pi^-)\pi^-$ final state. Reports $A^d_{SL}=(-0.02\pm0.19\pm0.30)\%$, which equals to $4{\rm Re}(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2)$.
- 2 Uses the charge asymmetry in like-sign dilepton events. LEES 15A reports $A^d_{SL}=(-3.9\pm3.5\pm1.9)\times10^{-3}$.
- 3 ABAZOV 14 uses the dimuon charge asymmetry with different impact parameters from which it reports $A^d_{SL}=(-$ 0.62 \pm 0.42) \times 10 $^{-2}$.
- 4 Uses $B^0\to D^{*-}$ X ℓ^+ ν_ℓ and a kaon-tagged sample which yields measurement of $A^d_{SL}=(0.06\pm0.17^{+0.38}_{-0.32})\%$, corresponding to $\Delta_{CP}=1-\left|\mathbf{q/p}\right|=(0.29\pm0.84^{+1.88}_{-1.61})\times10^{-3}$.
- ⁵ ABAZOV 12AC uses $B^0 \to D^- \mu^+ X$ and $B^0 \to D^* (2010)^- \mu^+ X$ decays without initial state flavor tagging which yields measurement of $A^d_{SL} = (6.8 \pm 4.5 \pm 1.4) \times 10^{-3}$.
- ⁶ AUBERT 06T reports $|q/p|-1=(-0.8\pm 2.7\pm 1.9)\times 10^{-3}$. We convert to $(1-|q/p|^2)/4$.
- 7 Uses the charge asymmetry in like-sign dilepton events and reports $\left| q/p \right| = 1.0005 \pm 0.0040 \pm 0.0043.$
- 8 JAFFE 01 finds $a_{\ell\ell}=0.013\pm0.050\pm0.005$ and combines with the previous BEHRENS 00B independent measurement.
- 9 ABAZOV 110 uses the dimuon charge asymmetry with different impact parameters from which it reports $A^d_{SL}=(-1.2\pm5.2)\times10^{-3}$.
- $^{10}\,\mathrm{Uses}$ the dimuon charge asymmetry.
- ¹¹ AUBERT 04C reports $|q/p| = 1.029 \pm 0.013 \pm 0.011$ and we converted it to $(1 |q/p|^2)/4$.
- 12 BARATE 01D measured by investigating time-dependent asymmetries in semileptonic and fully inclusive B_d^0 decays.
- ¹³ BEHRENS 00B uses high-momentum lepton tags and partially reconstructed $\overline B^0 \to D^{*+}\pi^-$, ρ^- decays to determine the flavor of the B meson.
- 14 Data analyzed using the time-dependent asymmetry of inclusive B^0 decay. The production flavor of B^0 mesons is determined using both the jet charge and the charge of secondary vertex in the opposite hemisphere.
- 15 ACKERSTAFF 97U assumes CPT and is based on measuring the charge asymmetry in a sample of B^0 decays defined by lepton and Q_{hem} tags. If CPT is not invoked, $\text{Re}(\epsilon_B) = -0.006 \pm 0.010 \pm 0.006$ is found. The indirect CPT violation parameter is determined to $\text{Im}(\delta B) = -0.020 \pm 0.016 \pm 0.006$.
- ¹⁶ BARTELT 93 finds $a_{\ell\ell}=0.031\pm0.096\pm0.032$ which corresponds to $|a_{\ell\ell}|<0.18$, which yields the above $|{\rm Re}(\epsilon_{R0})/(1+|\epsilon_{R0}|^2)|$.

 $A_{T/CP}$

 $A_{T/CP}$ is defined as

$$\frac{P(\overline{B}^0 \to B^0) - P(B^0 \to \overline{B}^0)}{P(\overline{B}^0 \to B^0) + P(B^0 \to \overline{B}^0)},$$

the CPT invariant asymmetry between the oscillation probabilities P($\overline{\mathcal{B}}^0 \to \mathcal{B}^0$) and $P(B^0 \rightarrow \overline{B}^0).$

VALUE $0.005\pm0.012\pm0.014$

$A_{CP}(B^0 \to D^*(2010)^+D^-)$

 A_{CP} is defined as

$$\frac{B(\overline{B}^0 \to \overline{f}) - B(B^0 \to f)}{B(\overline{B}^0 \to \overline{f}) + B(B^0 \to f)},$$

the *CP*-violation charge asymmetry of exclusive B^0 and \overline{B}^0 decay.

VALUE	DOCUMENT ID		TECN	COMMENT
-			IECIV	COMMENT
0.037 ± 0.034 OUR AVERAG	E			
$0.06\ \pm0.05\ \pm0.02$	ROHRKEN	12	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.008\!\pm\!0.048\!\pm\!0.013$	AUBERT			$e^+e^- ightarrow~ \varUpsilon(4S)$
$0.07 \pm 0.08 \pm 0.04$	¹ AUSHEV	04	BELL	$e^+e^- ightarrow~ \varUpsilon(4S)$
• • • We do not use the follow	ving data for ave	ages,	fits, limi	ts, etc. • • •
$-0.12\ \pm0.06\ \pm0.02$	AUBERT	07AI	BABR	Repl. by AUBERT 09C
$-0.03 \pm 0.10 \pm 0.02$	AUBERT,B	06A	BABR	Repl. by AUBERT 07AI
$-0.03 \pm 0.11 \pm 0.05$	AUBERT	03 J	BABR	Repl. by AUBERT,B 06B
¹ Combines results from fully	and partially rec	onstri	icted B ⁰	$D^{0} \rightarrow D^{*\pm}D^{\mp}$ decays

$A_{CP}(B^0 \rightarrow [K^+K^-]_D K^*(892)^0)$

VALUE	DOCUMENT ID	<u>TECN COMMENT</u>
• • • We do not use the following	data for average	s, fits, limits, etc. • • •
$-0.20\!\pm\!0.15\!\pm\!0.02$	AAIJ	14BN LHCB Repl. by AAIJ 16S
$-0.45\pm0.23\pm0.02$	AAIJ	13L LHCB Repl. by AAIJ 14BN

$A_{CP}(B^0 \to [K^+\pi^-]_D K^*(892)^0)$

VALUL	DOCUMENT	<u>ILCIV</u>	COMMENT
$-0.03\pm0.04\pm0.02$	AAIJ	14BN LHCB	pp at 7, 8 TeV
ullet $ullet$ We do not use the follow	wing data for averag	ges, fits, limits, e	tc. • • •

TECNI COMMENT

Created: 5/30/2017 17:22

 $-0.08\!\pm\!0.08\!\pm\!0.01$ **AAIJ** 13L LHCB Repl. by AAIJ 14BN

$$R_d^+ = \Gamma(B^0 \to [\pi^+ K^-]_D K^{*0}) / \Gamma(B^0 \to [\pi^- K^+]_D K^{*0})$$

VALUE

DOCUMENT ID

TECN

THEN

$$R_d^- = \Gamma(\overline{B}^0 \to [\pi^- K^+]_D K^{*0}) / \Gamma(\overline{B}^0 \to [\pi^+ K^-]_D K^{*0})$$

VALUE

DOCUMENT ID

AAIJ

14BN LHCB

pp at 7, 8 TeV

¹ AUBERT 02K uses the charge asymmetry in like-sign dilepton events.

$A_{CP}(B^0 \rightarrow [\pi^+\pi^-]_D K^*(892)^0)$

VALUE <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • • We do not use the following data for averages, fits, limits, etc. • •

 $-0.09\pm0.22\pm0.02$

AAIJ

14BN LHCB Repl. by AAIJ 16S

$A_{CP}(B^0 \rightarrow K^+\pi^-)$

<u>VALUE</u>	<u>DOCUMENT ID</u>		<u> IECN</u>	COMMENT		
-0.082±0.006 OUR AVERAGE						
$-0.083\!\pm\!0.013\!\pm\!0.004$	AALTONEN	14 P	CDF	$p\overline{p}$ at 1.96 TeV		
$-0.080\pm0.007\pm0.003$	AAIJ	13AX	LHCB	pp at 7 TeV		
$-0.069\!\pm\!0.014\!\pm\!0.007$	DUH	13	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$-0.107\!\pm\!0.016\!+\!0.006\\-0.004$	LEES	13 D	BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$		
-0.04 ± 0.16	¹ CHEN	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
• • • We do not use the following	wing data for ave	rages,	fits, lim	its, etc. • • •		
$-0.088\!\pm\!0.011\!\pm\!0.008$	AAIJ	12V	LHCB	Repl. by AAIJ 13AX		
$-0.086\!\pm\!0.023\!\pm\!0.009$	AALTONEN	11N	CDF	Repl. by AALTONEN 14P		
$-0.094 \pm 0.018 \pm 0.008$	LIN	80	BELL	Repl. by DUH 13		
$-0.107\!\pm\!0.018\!+\!0.007\\-0.004$	AUBERT	07AF	BABR	Repl. by LEES 13D		
$-0.013\!\pm\!0.078\!\pm\!0.012$	ABULENCIA,A	06 D	CDF	Repl. by AALTONEN 11N		
$-0.088\!\pm\!0.035\!\pm\!0.013$	² CHAO	05A	BELL	Repl. by CHAO 04B		
$-0.133\!\pm\!0.030\!\pm\!0.009$	³ AUBERT,B	04K	BABR	Repl. by AUBERT 07AF		
$-0.101\pm0.025\pm0.005$	⁴ CHAO	04 B	BELL	Repl. by LIN 08		
$-0.07\ \pm0.08\ \pm0.02$	⁵ AUBERT	02 D	BABR	Repl. by AUBERT 02Q		
$-0.102\pm0.050\pm0.016$	⁶ AUBERT	02Q	BABR	Repl. by AUBERT,B 04K		
$-0.06\ \pm0.09\ ^{+0.01}_{-0.02}$	⁷ CASEY	02	BELL	Repl. by CHAO 04B		
$0.044 {+ 0.186 + 0.018 \atop - 0.167 - 0.021}$	⁸ ABE	01K	BELL	Repl. by CASEY 02		
$-0.19 \pm 0.10 \pm 0.03$	⁹ AUBERT	01E	BABR	Repl. by AUBERT 02Q		
1 Corresponds to 90% confidence range $-0.30 < A_{CP} < 0.22$.						
7						

 $^{^2}$ Corresponds to a 90% CL interval of $-0.15 < A_{CP} < -0.03$.

$A_{CP}(B^0 \to \eta' K^*(892)^0)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.07 ± 0.18 OUR AVERAGE				
$-0.22\pm0.29\pm0.07$	SATO	14	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.02 \pm 0.23 \pm 0.02$	DEL-AMO-SA	10A	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$0.08 \pm 0.25 \pm 0.02$	¹ AUBERT	07E	BABR	Repl. by DEL-AMO- SANCHEZ 10A

 $^{^{1}}$ Reports A_{CP} with the opposite sign convention.

³ Based on a total signal yield of N($K^-\pi^+$) + N($K^+\pi^-$) = 1606 \pm 51 events.

 $^{^4}$ CHAO 04B reports significance of 3.9 standard deviation for deviation of A_{CP} from zero.

 $^{^{5}\,\}mathrm{Corresponds}$ to 90% confidence range -0.21 $<\!A_{CP}<0.07.$

⁶ Corresponds to 90% confidence range $-0.188 < A_{CP} < -0.016$.

⁷ Corresponds to 90% confidence range $-0.21 < A_{CP} < +0.09$.

⁸ Corresponds to 90% confidence range $-0.25 < A_{CP} < 0.37$.

 $^{^{9}}$ Corresponds to 90% confidence range $-0.35 <\!\!A_{C\!P}<-0.03.$

A (D) /(*/1420)())						
$A_{CP}(B^0 \to \eta' K_0^* (1430)^0)$	DOCUMENT ID		TECN	COMMENT		
<u>VALUE</u> −0.19±0.17±0.02	DOCUMENT ID DEL-AMO-SA					
	DEE-/(WO-5/(10/	D/\DI\	C C ,	7 (43)	
$A_{CP}(B^0 \to \eta' K_2^*(1430)^0)$						
VALUE	DOCUMENT ID					
$0.14 \pm 0.18 \pm 0.02$	DEL-AMO-SA10A BABR $e^+e^- ightarrow~\varUpsilon(4S)$					
$A_{CP}(B^0 \to \eta K^*(892)^0)$						
VALUE	DOCUMENT ID	TE	CN C	OMMENT		
0.19±0.05 OUR AVERAGE				⊥ _ a	V + 6\	
$0.17 \pm 0.08 \pm 0.01$	WANG C				` '	
$0.21 \pm 0.06 \pm 0.02$ • • We do not use the following	AUBERT,B 0				(43)	
$0.02\pm0.11\pm0.02$					DEDT D AGU	
0.02±0.11±0.02	AUBERT,B 0	14D BA	NBK K	epi. by AUI	SERT,B UOH	
$A_{CP}(B^0 \to \eta K_0^*(1430)^0)$						
VALUE	DOCUMENT ID		TECN	COMMENT		
$0.06 \pm 0.13 \pm 0.02$	AUBERT,B	06н І	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
A (PO . ~ V*(1420)0)						
$A_{CP}(B^0 \rightarrow \eta K_2^*(1430)^0)$ VALUE	DOCUMENT ID		TECN	COMMENT		
-0.07±0.19±0.02	<u>DOCUMENT ID</u> AUBERT,B					
0.01 ±0.13 ±0.02	AOBERT,B	0011	D/\DI\	C C ,	7 (43)	
$A_{CP}(B^0 \rightarrow b_1 K^+)$						
VALUE	DOCUMENT ID					
$-0.07\pm0.12\pm0.02$	AUBERT	0 7 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$A_{CP}(B^0 \rightarrow \omega K^{*0})$						
VALUE	DOCUMENT ID		TECN	COMMENT		
0.45±0.25±0.02	AUBERT					
					,	
$A_{CP}(B^0 \to \omega(K\pi)_0^{*0})$						
VALUE	DOCUMENT ID					
$-0.07\pm0.09\pm0.02$	AUBERT	09H I	BABR	$e^+e^- \rightarrow$	7(45)	
$A_{CP}(B^0 \to \omega K_2^*(1430)^0)$						
VALUE	DOCUMENT ID		TECN	COMMENT		
$-0.37 \pm 0.17 \pm 0.02$	AUBERT					
A (D) W+ = 0)						
$A_{CP}(B^0 \rightarrow K^+\pi^-\pi^0)$						
$\frac{\textit{VALUE} \text{ (units } 10^{-2}\text{)}}{0 \ \pm \ 6 \ \ \mathbf{OUR} \ \mathbf{AVERAGE}}$	DOCUMENT ID		TECN	COMMENT		
	1	00	0.455		00(46)	
-3.0^{+}_{-} $\begin{array}{c} 4.5 \\ 5.1 \end{array} \pm 5.5$	¹ AUBERT				` '	
7 ±11 ±1	² CHANG		BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
¹ Uses Dalitz plot analysis of B^0	$V \rightarrow K^+\pi^-\pi^0 d$	ecays.				
² Corresponds to 90% confidence	\sim e range $-0.12~<$	$A^{\cup F}$	< 0.26).		

 $^{^2}$ Corresponds to 90% confidence range - 0.12 $\,<$ A CP $\,<$ 0.26.

$A_{CP}(B^0 \rightarrow \rho^- K^+)$

0.20 ± 0.11 OUR AVERAGE

 $0.20\pm 0.09\pm 0.08$

TECN COMMENT

¹ LEES

BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $0.22^{\,+\,0.22\,+\,0.06}_{\,-\,0.23\,-\,0.02}$

² CHANG

BELL $e^+e^- \rightarrow \Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc. • •

 $0.11^{\,+\,0.14}_{\,-\,0.15}\,{\pm}\,0.07$

¹ AUBERT

08AQ BABR Repl. by LEES 11

 $-0.28\pm0.17\pm0.08$

³ AUBERT

03T BABR Repl. by AUBERT 08AQ

¹Uses Dalitz plot analysis of $B^0 \rightarrow K^+\pi^-\pi^0$ decays.

 2 Corresponds to 90% confidence range $-0.18 < A_{CP} < 0.64$.

³The result reported corresponds to $-A_{CP}$.

$A_{CP}(B^0 \to \rho(1450)^- K^+)$

VALUE

 $-0.10\pm0.32\pm0.09$

11 BABR $e^+e^- \rightarrow \Upsilon(4S)$

¹Uses Dalitz plot analysis of $B^0 \rightarrow K^+\pi^-\pi^0$ decays.

$A_{CP}(B^0 \to \rho(1700)^- K^+)$

<u>VA</u>LUE $-0.36\pm0.57\pm0.23$

<u>DOCUMENT I</u>D ¹ LEES

BABR $e^+e^- \rightarrow \Upsilon(4S)$

¹Uses Dalitz plot analysis of $B^0 \to K^+\pi^-\pi^0$ decays.

$A_{CP}(B^0 \rightarrow K^+\pi^-\pi^0 \text{ nonresonant})$

<u>VALUE</u> $0.10\pm0.16\pm0.08$

11 BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.23 + 0.19 + 0.11

¹ AUBERT

08AQ BABR Repl. by LEES 11

$A_{CP}(B^0 \rightarrow K^0\pi^+\pi^-)$

 $-0.01\pm0.05\pm0.01$

solutions is used.

Created: 5/30/2017 17:22

 1 Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent

$A_{CP}(B^0 \to K^*(892)^+\pi^-)$

VALUE	DOCUMENT ID		TECN	COMMENT	
-0.22±0.06 OUR AVERAGE	•				
$-0.29\!\pm\!0.11\!\pm\!0.02$	¹ LEES			$e^+e^- \rightarrow$	
$-0.21\!\pm\!0.10\!\pm\!0.02$	^{2,3} AUBERT			$e^+e^- \rightarrow$	
$-0.21\!\pm\!0.11\!\pm\!0.07$	⁴ DALSENO	09	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.26^{+0.33+0.10}_{-0.34-0.08}$	⁵ EISENSTEIN	03	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Uses Dalitz plot analysis of $B^0 \to K^+\pi^-\pi^0$ decays. The quoted value is only for the flat part of the non-resonant component.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$-0.19^{+0.20}_{-0.15}\pm0.04$$
 1 AUBERT 08AQ BABR Repl. by LEES 11 $-0.11\pm0.14\pm0.05$ 2 AUBERT 06I BABR Repl. by AUBERT 09AU $0.23\pm0.18^{+0.09}_{-0.06}$ AUBERT,B 040 BABR Repl. by AUBERT 06I

$A_{CP}(B^0 \to (K\pi)_0^{*+}\pi^-)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.09 ± 0.07 OUR AVERAGE				
$0.07\!\pm\!0.14\!\pm\!0.01$	¹ LEES	11	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.09 \pm 0.07 \pm 0.03$	² AUBERT	09 AU	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	g data for averages	s, fits,	limits, e	etc. • • •
$0.17 {+ 0.11 \atop - 0.16} \pm 0.22$	¹ AUBERT	08AG	BABR	Repl. by LEES 11

¹Uses Dalitz plot analysis of $B^0 \to K^+\pi^-\pi^0$ decays.

$A_{CP}(B^0 \to (K\pi)_0^{*0}\pi^0)$

VALUE	DOCUMENT ID		TECN	COMMENT		
$-0.15\pm0.10\pm0.04$	¹ LEES	11	BABR	$e^+e^- ightarrow \Upsilon(4S)$		
• • • We do not use the following data for averages, fits, limits, etc. • •						
$-0.22\pm0.12^{+0.30}_{-0.20}$	¹ AUBERT	08A0	BABR	Repl. by LEES 11		

 $^{-0.22\}pm0.12^{+0.30}_{-0.29}$ 1 AUBERT 08AQ BAE 1 Uses Dalitz plot analysis of $B^0 o K^+\pi^-\pi^0$ decays.

$A_{CP}(B^0 \rightarrow K^{*0}\pi^0)$

VALUE	DOCUMENT ID	TECN	COMMENT		
$-0.15\pm0.12\pm0.04$	¹ LEES	11	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$$-0.09^{+0.21}_{-0.24}\pm0.09$$
 1 AUBERT 08AQ BABR Repl. by LEES 11

$A_{CP}(B^0 \to K^*(892)^0 \pi^+ \pi^-)$

VALUEDOCUMENT IDTECNCOMMENT
$$0.07 \pm 0.04 \pm 0.03$$
AUBERT07AS BABR $e^+e^- \rightarrow \Upsilon(4S)$

$A_{CP}(B^0 \to K^*(892)^0 \rho^0)$

VALUE

DOCUMENT ID

TECN COMMENT

-0.06±0.09±0.02

LEES

12K BABR
$$e^+e^- \rightarrow \Upsilon(4S)$$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.09\pm0.19\pm0.02$ AUBERT,B 06G BABR Repl. by LEES 12K

HTTP://PDG.LBL.GOV Page 183 Created: 5/30/2017 17:22

¹ Uses Dalitz plot analysis of $B^0 \to K^+\pi^-\pi^0$ decays.

²Uses Dalitz plot analysis of $B^0 \rightarrow K^0 \pi^+ \pi^-$ decays.

³ The first of two equivalent solutions is used.

⁴Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two consistent solutions that may be preferred.

 $^{^{5}}$ Corresponds to 90% confidence range $-0.31 <\!\!A_{CP}<0.78.$

² Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent solutions is used

¹Uses Dalitz plot analysis of $B^0 \to K^+\pi^-\pi^0$ decays.

$A_{CP}(B^0 \to K^{*0} f_0(980))$				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.07 \pm 0.10 \pm 0.02$				$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • We do not use the following	data for average	es, fits,	limits,	etc. • • •
$-0.17 \pm 0.28 \pm 0.02$	AUBERT,B	06 G	BABR	Repl. by LEES 12K
$A_{CP}(B^0 \rightarrow K^{*+}\rho^-)$				
VALUE	DOCUMENT ID			
$0.21 \pm 0.15 \pm 0.02$	LEES	12K	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$A_{CP}(B^0 \to K^*(892)^0 K^+ K^-$	-)			
VALUE			TECN	COMMENT
$0.01\pm0.05\pm0.02$	AUBERT	07AS	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^0 \rightarrow a_1^- K^+)$				
VALUE	DOCUMENT ID			
$-0.16\pm0.12\pm0.01$	AUBERT	08F	BABK	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$A_{CP}(B^0 \rightarrow K^0 K^0)$ VALUE	DOCUMENT ID		TECN	COMMENT
$\frac{-0.58^{+0.73}_{-0.66}\pm0.04}$	LIN			$e^+e^- ightarrow \gamma(4S)$
$A_{CP}(B^0 \to K^*(892)^0 \phi)$	DOGUMENT ID	_		COLMENT
<u>VALUE</u> 0.00 ±0.04 OUR AVERAGE	DOCUMENT ID		<u>ECN</u>	COMMENI
$-0.007 \pm 0.048 \pm 0.021$	PRIM	13 E	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.01\ \pm0.06\ \pm0.03$	AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	data for average	es, fits,	limits,	etc. • • •
$-0.03 \pm 0.07 \pm 0.03$	AUBERT			Repl. by AUBERT 08BG
	CHEN			Repl. by PRIM 13
$-0.01 \pm 0.09 \pm 0.02$				Repl. by AUBERT 07D
$0.04 \pm 0.12 \pm 0.02$				Repl. by AUBERT 04W
$0.07 \pm 0.15 {+0.05 \atop -0.03}$	CHEN	03B E	BELL	Repl. by CHEN 05A
$0.00 \pm 0.27 \pm 0.03$	AUBERT	02E E	BABR	Repl. by AUBERT 03V
¹ Corresponds to 90% confidence				
² Corresponds to 90% confidence				
³ Corresponds to 90% confidence	e range — 0.44 <	A _{CP} <	0.44.	
$A_{CP}(B^0 \to K^*(892)^0 K^- \pi^+)$	⁻)			
VALUE				COMMENT
$0.22 \pm 0.33 \pm 0.20$	AUBERT	07AS	BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$
$A_{CP}(B^0 \rightarrow \phi(K\pi)_0^{*0})$				
VALUE	DOCUMENT ID		ECN	COMMENT
0.12 ±0.08 OUR AVERAGE	PRIM	13 E	ו ו	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.093 \pm 0.094 \pm 0.017$ $0.20 \pm 0.14 \pm 0.06$	AUBERT			$e^+e^- ightarrow ~ \Upsilon(4S)$
• • • We do not use the following				
0.17 \pm 0.15 \pm 0.03	AUBERT			Repl. by AUBERT 08BG
HTTP://PDG.LBL.GOV	Page 184		Crea	ted: 5/30/2017 17:22

$A_{CP}(B^0 \to \phi K_2^*(1430)^0)$ DOCUMENT ID <u>TECN</u> <u>COMMENT</u> -0.11 ± 0.10 OUR AVERAGE $-0.155 {}^{\displaystyle +0.152}_{\displaystyle -0.133} \pm 0.033$ **PRIM** BELL $e^+e^- \rightarrow \Upsilon(4S)$ $-0.08 \pm 0.12 \pm 0.05$ **AUBERT** 08BG BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • $-0.12 \pm 0.14 \pm 0.04$ **AUBERT** 07D BABR Repl. by AUBERT 08BG $A_{CP}(B^0 \to K^*(892)^0 \gamma)$ DOCUMENT ID TECN COMMENT -0.002 ± 0.015 OUR AVERAGE 13 LHCB pp at 7 TeV $0.008 \pm 0.017 \pm 0.009$ AAIJ 09AO BABR $e^+e^- \rightarrow \Upsilon(4S)$ **AUBERT** $-0.016\pm0.022\pm0.007$ $A_{CP}(B^0 \to K_2^*(1430)^0 \gamma)$ TECN COMMENT DOCUMENT ID $-0.08\pm0.15\pm0.01$ 04U BABR $e^+e^- \rightarrow \Upsilon(4S)$ AUBERT,B $A_{CP}(B^0 \rightarrow \rho^+\pi^-)$ DOCUMENT ID TECN COMMENT **0.13±0.06 OUR AVERAGE** Error includes scale factor of 1.1. $0.09^{\,+\,0.05}_{\,-\,0.06}\,{\pm}\,0.04$ ¹ LEES 13J BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ KUSAKA BELL $e^+e^- \rightarrow \Upsilon(4S)$ 07 $0.21\!\pm\!0.08\!\pm\!0.04$ • • • We do not use the following data for averages, fits, limits, etc. • • • $0.03\pm0.07\pm0.04$ **AUBERT** 07AA BABR Repl. by LEES 13J $-0.02\!\pm\!0.16\!+\!0.05\\-0.02$ WANG 05 BELL Repl. by KUSAKA 07 $-0.18\pm0.08\pm0.03$ AUBERT 03T BABR Repl. by AUBERT 07AA ¹ Uses time-dependent Dalitz plot analysis of $B^0 \to \pi^+\pi^-\pi^0$ decays. $A_{CP}(B^0 \rightarrow \rho^- \pi^+)$ DOCUMENT ID TECN COMMENT -0.08 ± 0.08 OUR AVERAGE $-0.12\!\pm\!0.08\!+\!0.04\\-0.05$ ¹ LEES 13J BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ KUSAKA BELL $e^+e^- \rightarrow \Upsilon(4S)$ $0.08 \pm 0.16 \pm 0.11$ • • • We do not use the following data for averages, fits, limits, etc. • • • $-0.37\!\pm\!0.16^{\,+\,0.09}_{\,-\,0.10}$ **AUBERT** 07AA BABR Repl. by LEES 13J $-0.53\!\pm\!0.29\!+\!0.09\\-0.04$ WANG 05 BELL Repl. by KUSAKA 07 ¹ Uses time-dependent Dalitz plot analysis of $B^0 \to \pi^+\pi^-\pi^0$ decays. $A_{CP}(B^0 \to a_1(1260)^{\pm}\pi^{\mp})$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT	
-0.07±0.06 OUR AVERAGE					
$-0.06\!\pm\!0.05\!\pm\!0.07$	DALSENO	12	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$-0.07\!\pm\!0.07\!\pm\!0.02$	AUBERT	070	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

$A_{CP}(B^0 \rightarrow b_1^- \pi^+)$					
VALUE	<u>DOCUMENT</u>	ID		TECN	COMMENT
$-0.05\pm0.10\pm0.02$					$e^+e^- ightarrow \Upsilon(4S)$
$A_{CP}(B^0 \rightarrow p\overline{p}K^*(892)^0)$	DOCUMENT	ID		TECN	COMMENT
0.05±0.12 OUR AVERAGE	<u>DOCUMENT</u>	עו		TECN	COMMENT
$-0.08 \pm 0.20 \pm 0.02$	CHEN		08C	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.11 \pm 0.13 \pm 0.06$	AUBERT				$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^0 \rightarrow \rho \overline{\Lambda} \pi^-)$					
<u>VALUE</u> 0.04±0.07 OUR AVERAGE	<u>DOCUMENT</u>	<u>ID</u>		TECN	COMMENT
$0.10\pm0.10\pm0.02$	AUBERT		0010	RARR	$e^+e^- ightarrow ~ \Upsilon(4S)$
$-0.02 \pm 0.10 \pm 0.02$ $-0.02 \pm 0.10 \pm 0.03$	WANG				$e^+e^- \rightarrow \Upsilon(4S)$
0.02 ± 0.10 ± 0.03	Willa		orc	DELL	(43)
$A_{CP}(B^0 \to K^{*0}\ell^+\ell^-)$					
<u>VALUE</u> -0.05±0.10 OUR AVERAGE	<u>DOCUMENT</u>	ID		<u>TECN</u>	COMMENT
$0.02 \pm 0.20 \pm 0.02$	AUBERT		09т	BARR	$e^+e^- ightarrow \Upsilon(4S)$
$-0.08 \pm 0.12 \pm 0.02$	WEI				$e^+e^- \rightarrow \Upsilon(4S)$
	***		03/1		
$A_{CP}(B^0 \to K^{*0}e^+e^-)$	DOCUMENT			TE 611	CO. 44 (F.). T
VALUE					COMMENT + - ~ ~ ~ (4.6)
$-0.21\pm0.19\pm0.02$	WEI		09A	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^0 \to K^{*0} \mu^+ \mu^-)$					
<u>VALUE</u> −0.034±0.024 OUR AVERAGE	<u>DOCUMENT</u>	ID		<u>TECN</u>	COMMENT
$-0.034 \pm 0.024 \text{UUR AVERAGE}$ $-0.035 \pm 0.024 \pm 0.003$	AAIJ		1/1	LUCD	pp at 7, 8 TeV
$0.00 \pm 0.15 \pm 0.03$	WEI				$e^+e^- ightarrow \Upsilon(4S)$
 • • We do not use the following 					
-0.072 + 0.040 + 0.005					
	AAIJ		13E	LUCP	Repl. by AAIJ 14AN
$C_{D^*(2010)^-D^+}(B^0 \to D^*(2010)^-D^+)$)10) ⁻ D ⁺)				
<u>VALUE</u> <u>DC</u>	CUMENT ID		TECN	COM	IMENT
-0.01±0.11 OUR AVERAGE					
		12			$e^- o au(4S)$
•					$e^- o ag{4S}$
		04			$e^- o au(4S)$
• • • We do not use the following					
					I. by AUBERT 09C
				-	I. by AUBERT 07AI
)3 J		•	l. by AUBERT,B 05Z
1 ROHRKEN 12 reports the me $0.12\pm0.11\pm0.03$ such that (easurements of $C_{D*(2010)-D}$	f C o+ =	= - : C -	$^{0.01}$ $^{\pm}$	0.11 ± 0.04 and ΔC =
² Combines results from fully and					$D^{*\pm}D^{\mp}$ decays.

$S_{D^*(2010)^-D^+} (B^0 \to D^*(2010)^-D^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.72 ± 0.15 OUR AVERAGE				
$-0.65\!\pm\!0.22\!\pm\!0.07$	$^{ m 1}$ ROHRKEN			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.73\!\pm\!0.23\!\pm\!0.050$	AUBERT	09 C	BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$
$-0.96\!\pm\!0.43\!\pm\!0.12$	² AUSHEV	04	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follow	wing data for ave	rages,	fits, limi	its, etc. • • •
$-0.44\pm0.22\pm0.06$	AUBERT	07AI	BABR	Repl. by AUBERT 090
$-0.29\!\pm\!0.33\!\pm\!0.07$	AUBERT,B	05Z	BABR	Repl. by AUBERT 07AI
$-0.24\!\pm\!0.69\!\pm\!0.12$	AUBERT	03 J	BABR	Repl. by AUBERT,B 05Z
$^{ m 1}$ ROHRKEN 12 reports th	e measurements	of S :	= -0.78	8 \pm 0.15 \pm 0.05 and Δ S $=$

 $^{^1}$ ROHRKEN 12 reports the measurements of S = $-0.78\pm0.15\pm0.05$ and ΔS = $-0.13\pm0.15\pm0.04$ such that $S_{D^*(2010)^+D^-}=S-\Delta S.$

$C_{D^*(2010)^+D^-} (B^0 \to D^*(2010)^+D^-)$

_ (====) =			
<u>VALUE</u>	DOCUMENT ID	TEC	N COMMENT
0.00 ± 0.13 OUR AVERAGE	Error includes s	cale factor	of 1.3. See the ideogram below.
$0.11 \pm 0.14 \pm 0.06$	$^{ m 1}$ ROHRKEN	12 BEI	_L $e^+e^- ightarrow$ $arGamma(4S)$
$0.08\!\pm\!0.17\!\pm\!0.04$	AUBERT	09C BA	BR $e^+e^- ightarrow~ \varUpsilon(4S)$
$-0.37\!\pm\!0.22\!\pm\!0.06$	² AUSHEV	04 BEI	_L $e^+e^- o arGamma(4S)$
• • • We do not use the follow	ving data for ave	rages, fits,	limits, etc. • • •
$0.18 \pm 0.15 \pm 0.04$	AUBERT	07AI BA	BR Repl. by AUBERT 090
$0.09 \pm 0.25 \pm 0.06$	AUBERT,B	05z BA	BR Repl. by AUBERT 07AI
$-0.47\pm0.40\pm0.12$	AUBERT	03J BA	BR Repl. by AUBERT,B 05Z

HTTP://PDG.LBL.GOV

Page 187

²Combines results from fully and partially reconstructed $B^0 \to D^{*\pm}D^{\mp}$ decays.

$S_{D^*(2010)^+D^-} (B^0 \to D^*(2010)^+D^-)$

_ (
<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT	
-0.73±0.14 OUR AVERAGE					
$-0.90\!\pm\!0.21\!\pm\!0.07$	$^{ m 1}$ ROHRKEN	12	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$-0.62\!\pm\!0.21\!\pm\!0.03$	AUBERT	09 C	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$-0.55\!\pm\!0.39\!\pm\!0.12$	² AUSHEV	04	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use the follow	wing data for ave	rages,	fits, limi	ts, etc. • • •	
$-0.79\pm0.21\pm0.06$	AUBERT	07AI	BABR	Repl. by AUBERT 09C	
$-0.54\pm0.35\pm0.07$	AUBERT,B	05Z	BABR	Repl. by AUBERT 07AI	
$-0.82\pm0.75\pm0.14$	AUBERT	03 J	BABR	Repl. by AUBERT,B 05Z	
1 ROHRKEN 12 reports the measurements of S $= -0.78 \pm 0.15 \pm 0.05$ and Δ S $= -0.13 \pm 0.15 \pm 0.04$ such that $S_{D^*(2010)^+D^-} = $ S $+ \Delta$ S.					

² Combines results from fully and partially reconstructed $B^0 \to D^{*\pm}D^{\mp}$ decays.

$C_{D^{*+}D^{*-}}(B^0 \to D^{*+}D^{*-})$

TECN COMMENT **0.01±0.09 OUR AVERAGE** Error includes scale factor of 1.6. See the ideogram below. ^{1,2} KRONENBIT...12 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $-0.15\pm0.08\pm0.04$ 3 LEES 12AF BABR $e^+e^- \rightarrow \Upsilon(4S)$ $+0.15\pm0.09\pm0.04$ 09C BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.05 \pm 0.09 \pm 0.02$ **AUBERT** • • • We do not use the following data for averages, fits, limits, etc. • • • ² VERVINK Repl. by KRONENBITTER 12 $-0.15\pm0.13\pm0.04$ BELL ¹ AUBERT 07BO BABR Repl. by AUBERT 09C $-0.02\pm0.11\pm0.02$ ² MIYAKE $0.26\pm0.26\pm0.06$ BELL Repl. by VERVINK 09 ⁴ AUBERT $0.28 \pm 0.23 \pm 0.02$ 03Q BABR Repl. by AUBERT 07BO WEIGHTED AVERAGE

HTTP://PDG.LBL.GOV

Page 188

 $^{^1}$ ROHRKEN 12 reports the measurements of C $=-0.01\pm0.11\pm0.04$ and $\Delta C=0.12\pm0.11\pm0.03$ such that $C_{D^*(2010)^+D^-}=C+\Delta C$.

²Combines results from fully and partially reconstructed $B^0 \to D^{*\pm}D^{\mp}$ decays.

$S_{D^{*+}D^{*-}}(B^0 \to D^{*+}D^{*-})$

VALUE	DOCUMENT ID	TECN	COMMENT
-0.59 ± 0.14 OUR AVERAG	E Error include	s scale factor	of 1.8. See the ideogram below.
$-0.79\!\pm\!0.13\!\pm\!0.03$			$e^+e^- o \ \varUpsilon(4S)$
$-0.34\!\pm\!0.12\!\pm\!0.05$			$e^+e^- o ~ \varUpsilon(4S)$
$-0.70\pm0.16\pm0.03$	¹ AUBERT	09C BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the fo	llowing data for a	verages, fits,	limits, etc. • • •
$-0.96\!\pm\!0.25\!+\!0.13\\-0.16$	VERVINK	09 BELL	Repl. by KRONENBITTER 12
$-0.66\!\pm\!0.19\!\pm\!0.04$	¹ AUBERT	07во BABR	Repl. by AUBERT 09C
$-0.75\pm0.56\pm0.12$	MIYAKE	05 BELL	Repl. by VERVINK 09
$0.06 \pm 0.37 \pm 0.13$	³ AUBERT	03Q BABR	Repl. by AUBERT 07BO

 $^{^{}m 1}$ Assumes both $\it CP$ -even and $\it CP$ -odd states having the $\it CP$ asymmetry.

03Q BABR Repl. by AUBERT 07BO

WEIGHTED AVERAGE -0.59±0.14 (Error scaled by 1.8)

¹ Assumes both *CP*-even and *CP*-odd states having the *CP* asymmetry.

 $^{^2}$ Belle Collab. quotes $A_{D^{\ast+}\,D^{\ast-}}$ which is equal to $-{\it C}_{D^{\ast+}\,D^{\ast-}}$

³ Measured partially reconstructed candidates when one D^0 meson is not exceplicately reconstructed. Analysis does not separate CP-even and CP-odd component.

⁴ AUBERT 03Q reports $|\lambda|$ =0.75 \pm 0.19 \pm 0.02 and Im(λ)=0.05 \pm 0.29 \pm 0.10. We convert them to S and C parameters taking into account correlations.

² Measured partially reconstructed candidates when one D^0 meson is not excellicitely reconstructed. Analysis does not separate CP-even and CP-odd component. ³ AUBERT 03Q reports $|\lambda|$ =0.75 \pm 0.19 \pm 0.02 and Im(λ)=0.05 \pm 0.29 \pm 0.10. We convert them to S and C parameters taking into account correlations.

$C_{+} (B^{0} \rightarrow D^{*+}D^{*-})$

See the note in the $C_{\pi\pi}$ datablock, but for CP even final state.

 $-0.05\pm0.14\pm0.02$ AUBERT 07B0 BABR Repl. by AUBERT 09C 0.06 $\pm0.17\pm0.03$ 3 AUBERT,BE 05A BABR Repl. by AUBERT 07B0

 $^{^3}$ AUBERT,BE 05A reports a *CP*-odd fraction R $_\perp$ = 0.125 \pm 0.044 \pm 0.007.

$S_+ (B^0 \to D^{*+}D^{*-})$

See the note in the $S_{\pi\pi}$ datablock, but for CP even final state.

VALUE	DOCUMENT ID	TEC	CN COMMENT	
-0.73 ± 0.09 OUR AVERAGE				
$-0.81\!\pm\!0.13\!\pm\!0.03$	KRONENBIT.	12 BE	LL $e^+e^- \rightarrow$	$\Upsilon(4S)$
$-0.49\!\pm\!0.18\!\pm\!0.08$	¹ LEES	12AF BA	BR $e^+e^- \rightarrow$	$\Upsilon(4S)$
$-0.76\pm0.16\pm0.04$	AUBERT	09C BA	BR $e^+e^- \rightarrow$	$\Upsilon(4S)$
ullet $ullet$ We do not use the followi	ng data for avera	ges, fits, li	mits, etc. • • •	
$-0.72\pm0.19\pm0.05 \\ -0.75\pm0.25\pm0.03$	AUBERT ² AUBERT,BE		BR Repl. by A BR Repl. by A	

 $^{^{1}}$ Belle Collab. quotes $A_{D^{\ast+}\,D^{\ast-}}$ which is equal to $-\textit{C}_{D^{\ast+}\,D^{\ast-}}$

² Measured partially reconstructed candidates when one D^0 meson is not exceplicately reconstructed. Extracted under assumption of equal C_+ and C_- .

 1 Measured partially reconstructed candidates when one D^0 meson is not excplicitely reconstructed. Analysis does not separate CP-even and CP-odd component. Value is obtained from $S=-0.34\pm0.12\pm0.05$ using $S=S_+$ (1 - 2 R_\perp) with $R_\perp=0.158\pm0.029$.

 2 AUBERT,BE 05A reports a *CP*-odd fraction $R_{\perp}=0.125\pm0.044\pm0.007$.

C_{-} ($B^{0} \rightarrow D^{*+}D^{*-}$) See the note in the C_{7}

See the note in the $C_{\pi\pi}$ datablock, but for CP odd final state.

$\pi\pi$	$\pi\pi$ addableck, but for every state.						
VALUE	DOCUMENT ID	TECN	COMMENT				
0.19±0.31 OUR AVERAGE							
$0.05 \pm 0.39 \pm 0.08$	¹ KRONENBIT12	BELL	$e^+e^- ightarrow~ \varUpsilon(4S)$				
$0.41 \pm 0.49 \pm 0.08$	AUBERT 09	c BABR	$e^+e^- o \ \varUpsilon(4S)$				
• • • We do not use the following	ng data for averages,	fits, limits	s, etc. • • •				
$0.23 \pm 0.67 \pm 0.10$			Repl. by AUBERT 09C				
$-0.20\pm0.96\pm0.11$	² AUBERT,BE 05	A BABR	Repl. by AUBERT 07B0				
15 11 6 11 1	1.	_					

¹ Belle Collab. quotes $A_{D^{*+}D^{*-}}$ which is equal to $-C_{D^{*+}D^{*-}}$.

$S_{-}(B^{0} \rightarrow D^{*+}D^{*-})$

See the note in the $S_{\pi\pi}$ datablock, but for CP odd final state.

71 /1					
VALUE	DOCUMENT ID	TECN	COMMENT		
0.1 ±1.6 OUR AVERAGE	Error includes scale	e factor of 3.5	5.		
$1.52\!\pm\!0.62\!\pm\!0.12$	KRONENBIT	12 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$-1.80\pm0.70\pm0.16$	AUBERT	09c BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
• • We do not use the following data for averages, fits, limits, etc. • •					
$-1.83\!\pm\!1.04\!\pm\!0.23$			Repl. by AUBERT 09C		
$-1.75\pm1.78\pm0.22$	¹ AUBERT,BE	05A BABR	Repl. by AUBERT 07B0		
1 ALIDEDE DE OEA HAMANTA	CD add fraction D	_ 0.12F ±	0.044 ± 0.007		

 $^{^1}$ AUBERT,BE 05A reports a *CP*-odd fraction R $_\perp =$ 0.125 \pm 0.044 \pm 0.007.

$C(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0)$

VALUE	DOCUMENT ID		TECN	COMMENT
$0.01 \pm 0.28 \pm 0.09$	¹ DALSENO	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Reports value of A which is equal to -C.

$S(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0)$

VALUE	DOCUMENT ID		TECN	COMMENT
$0.06^{+0.45}_{-0.44}\pm0.06$	¹ DALSENO	07	BELL	$e^+e^- ightarrow \ \varUpsilon(4S)$

¹ This value includes an unknown *CP* dilution factor D due to possible contributions from intermediate resonances and different partial waves.

$C_{D^+D^-} (B^0 \to D^+D^-)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.22 ± 0.24 OUR AVERAGE	Error includes scale	factor	of 2.5.	See the ideogram below.
$0.26 { + 0.18 \atop - 0.17} \!\pm\! 0.02$	AAIJ			<i>pp</i> at 7, 8 TeV
$-0.43\!\pm\!0.16\!\pm\!0.05$	ROHRKEN			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.07\!\pm\!0.23\!\pm\!0.03$	AUBERT	09 C	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.91\!\pm\!0.23\!\pm\!0.06$	¹ FRATINA	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follow	ing data for averages	s, fits,	limits, e	etc. • • •
$0.11 \pm 0.22 \pm 0.07$	AUBERT	07AI	BABR	Repl. by AUBERT 09C
$0.11 \pm 0.35 \pm 0.06$	AUBERT,B	05Z	BABR	Repl. by AUBERT 07AI

HTTP://PDG.LBL.GOV

Page 191

 $^{^2}$ AUBERT,BE 05A reports a $\emph{CP}\mbox{-}\mbox{odd}$ fraction $R_{\perp}=0.125\pm0.044\pm0.007.$

¹ The paper reports A, which is equal to -C.

$S_{D^+D^-} (B^0 \to D^+D^-)$

VALUE DOCUMENT ID TECN COMMENT

 $-0.76^{+0.15}_{-0.13}$ OUR AVERAGE Error includes scale factor of 1.2.

$-0.54^{\begin{subarray}{c} +0.17 \\ -0.16 \end{subarray}} \pm 0.05$	AAIJ	16AN LHCE	<i>pp</i> at 7, 8 TeV
$-1.06^{\begin{subarray}{c} +0.21 \\ -0.14 \end{subarray}} \pm 0.08$	ROHRKEN	12 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.63\pm0.36\pm0.05$	AUBERT		$R e^+e^- ightarrow \Upsilon(4S)$
$-1.13\!\pm\!0.37\!\pm\!0.09$	FRATINA	07 BELL	$e^+e^- ightarrow~ \varUpsilon(4S)$
• • • We do not use the following of	data for averages	s, fits, limits,	etc. • • •
$-0.54\pm0.34\pm0.06$	AUBERT	07AI BABF	Repl. by AUBERT 09C
$-0.29\pm0.63\pm0.06$	AUBERT.B	05z BABF	R Repl. by AUBERT 07AL

$C_{J/\psi(1S)\pi^0}~(B^0 \to ~J/\psi(1S)\pi^0)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.13 ± 0.13 OUR AVERAGE				
$-0.20\!\pm\!0.19\!\pm\!0.03$	AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.08\!\pm\!0.16\!\pm\!0.05$	¹ LEE	A80	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the follow	ing data for aver	ages,	fits, limi	ts, etc. • • •
$-0.21\!\pm\!0.26\!\pm\!0.06$	AUBERT,B	06 B	BABR	Repl. by AUBERT 08AU
$0.01 \pm 0.29 \pm 0.03$	1 KATAOKA	04	BELL	Repl. by LEE 08A
$0.38 \pm 0.41 \pm 0.09$	AUBERT	03N	BABR	Repl. by AUBERT,B 06B
1 BELLE Collab. quotes $A_{J/r}$	$_{/,\pi^0}$ which is equ	al to	$-C_{I/\psi}$	π^0 ·

HTTP://PDG.LBL.GOV

Page 192

$S_{J/\psi(1S)\pi^0} (B^0 \to J/\psi(1S)\pi^0)$

−0.94±0.29 OUR AVERAGE Error includes scale factor of 1.9. 08AU BABR $e^+e^- \rightarrow \Upsilon(4S)$ $-1.23\pm0.21\pm0.04$ **AUBERT** 08A BELL $e^+e^- \rightarrow \Upsilon(4S)$ $-0.65\pm0.21\pm0.05$ LEE • • We do not use the following data for averages, fits, limits, etc. $-0.68\pm0.30\pm0.04$ AUBERT,B 06B BABR Repl. by AUBERT 08AU $-0.72\pm0.42\pm0.09$ KATAOKA BELL Repl. by LEE 08A $0.05 \pm 0.49 \pm 0.16$ AUBERT 03N BABR Repl. by AUBERT, B 06B

 $C(B^0 \rightarrow J/\psi(1S)\rho^0)$

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **—0.063±0.056^{+0.019} 1 AAIJ 15J LHCB** *pp* at 7, 8 TeV

$$S(B^0 \rightarrow J/\psi(1S)\rho^0)$$

$$C_{D_{CP}^{(*)}h^0}(B^0 \to D_{CP}^{(*)}h^0)$$

VALUEDOCUMENT IDTECNCOMMENT $-0.02 \pm 0.07 \pm 0.03$ 1 ABDESSALAM 15 $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $-0.23\pm0.16\pm0.04$

AUBERT

07AJ BABR Repl. by ABDESSALAM 15

Created: 5/30/2017 17:22

$$S_{D_{CP}^{(*)}h^0}(B^0 \to D_{CP}^{(*)}h^0)$$

VALUEDOCUMENT IDTECNCOMMENT $-0.66 \pm 0.10 \pm 0.06$ 1 ABDESSALAM 15 $e^+e^- \rightarrow \Upsilon(4)$

• • • We do not use the following data for averages, fits, limits, etc. • •

To the do not use the following data for averages, has, mints, etc. to a

 $-0.56\pm0.23\pm0.05$ AUBERT 07AJ BABR Repl. by ABDESSALAM 15 1 BABAR and BELLE combined analysis uses *CP*-eigenstate decay modes $D^{0} \rightarrow K^{+}K^{-}$,

 $K_S^0 \pi^0$, $K_S^0 \omega$, and $h^0 = \pi^0$, η , ω .

¹ Time-dependent *CP* violation is measured in the $B^0 \to J/\psi \, \rho^0$ and was used to limit the size of penguin amplitude contributions to $\phi_{\it S}$ in $B^0_{\it S} \to J/\psi \, \phi$ decays to be between $[-1.05^\circ, 1.18^\circ]$ at 95% confidence level.

¹ Time-dependent *CP* violation is measured in the $B^0 \to J/\psi \, \rho^0$ and was used to limit the size of penguin amplitude contributions to ϕ_S in $B^0_S \to J/\psi \, \phi$ decays to be between $[-1.05^\circ, 1.18^\circ]$ at 95% confidence level.

¹ BABAR and BELLE combined analysis uses *CP*-eigenstate decay modes $D^0 \to K^+ K^-$, $K^0_S \pi^0$, $K^0_S \omega$, and $h^0 = \pi^0$, η , ω .

TECN COMMENT

$C_{K^0\pi^0}$ $(B^0 \rightarrow K^0\pi^0)$

0.00±0.13 OUR AVERAGE Error includes scale factor of 1.4.					
$-0.14\!\pm\!0.13\!\pm\!0.06$	¹ FUJIKAWA	10A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$0.13 \pm 0.13 \pm 0.03$	AUBERT	091	BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$	
• • • We do not use the fo	llowing data for ave	rages,	fits, lim	its, etc. • • •	
$0.24 \pm 0.15 \pm 0.03$	AUBERT	08E	BABR	Repl. by AUBERT 091	
$0.05\!\pm\!0.14\!\pm\!0.05$	¹ CHAO	07	BELL	Repl. by FUJIKAWA 10A	
$0.06\pm0.18\pm0.03$	AUBERT	05Y	BABR	Repl. by AUBERT 08E	
$-0.16\pm0.29\pm0.05$	^{1,2} CHAO	05A	BELL	Repl. by CHEN 05B	
$0.11 \pm 0.20 \pm 0.09$	$^{ m 1}$ CHEN	05 B	BELL	Repl. by CHAO 07	
$-0.03\!\pm\!0.36\!\pm\!0.11$	$^{ m 1}$ AUBERT	04M	BABR	Repl. by AUBERT,B 04M	
$0.40 {}^{+ 0.27}_{- 0.28} {\pm} 0.09$	³ AUBERT,B	04M	BABR	Repl. by AUBERT 05Y	
1					

¹Reports A which is equal to -C.

$S_{K^0\pi^0} (B^0 \to K^0\pi^0)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.58 ± 0.17 OUR AVERAGE				
$0.67\!\pm\!0.31\!\pm\!0.08$	FUJIKAWA	10A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.55 \pm 0.20 \pm 0.03$	AUBERT	091	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follow	ing data for aver	ages,	fits, limi	ts, etc. ● ●
$0.40\pm0.23\pm0.03$	AUBERT	08E	BABR	Repl. by AUBERT 091
$0.33 \!\pm\! 0.35 \!\pm\! 0.08$	CHAO	07	BELL	Repl. by FUJIKAWA 10A
$0.35^{+0.30}_{-0.33}{\pm}0.04$	AUBERT	05Y	BABR	Repl. by AUBERT 08E
$0.32\!\pm\!0.61\!\pm\!0.13$	CHEN	05 B	BELL	Repl. by CHAO 07
$0.48^{+0.38}_{-0.47}\pm0.06$	¹ AUBERT,B	04M	BABR	Repl. by AUBERT 05Y

 $^{^{1}\,\}text{Based}$ on a total signal yield of 122 \pm 16 events.

$C_{\eta'(958)\,K^0_S}(B^0 o \, \eta'(958)\,K^0_S)$ See updated measurements in $C_{\eta'\,K^0}$

VALUE	<u>DOCUMENT ID</u>		TECN	COMMENT	
-0.04 ± 0.20 OUR AVERAGE	Error includes scal	e factor	of 2.5.		
$-0.21\!\pm\!0.10\!\pm\!0.02$	AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$0.19\!\pm\!0.11\!\pm\!0.05$	$^{ m 1}$ CHEN	05 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use the following data for averages, fits, limits, etc. • •					
$-0.26\pm0.22\pm0.03$	¹ ABE	03 C	BELL	Repl. by ABE 03H	
$0.01\!\pm\!0.16\!\pm\!0.04$	¹ ABE	03H	BELL	Repl. by CHEN 05B	
$0.10 \pm 0.22 \pm 0.04$	AUBERT	03W	BABR	Repl. by AUBERT 05M	
$-0.13\!\pm\!0.32 {+0.06\atop -0.09}$	$^{ m 1}$ CHEN	02 B	BELL	Repl. by ABE 03C	
1 RELLE Collaborators 4	. which is a	aual to -		_	

BELLE Collab. quotes $A_{\eta'(958)K_S^0}$ which is equal to $-C_{\eta'(958)K_S^0}$.

 $^{^2}$ Corresponds to a 90% CL interval of $-0.33\ <\ A_{CP}\ < 0.64.$

 $^{^3\,\}text{Based}$ on a total signal yield of 122 \pm 16 events.

$S_{\eta'(958)\,K^0_S}(B^0 o\eta'(958)K^0_S)$ See updated measurements in $S_{\eta'\,K^0}$

VALUE	<u>DOCUMENT ID</u>		<u>TECN</u>	COMMENT
0.43±0.17 OUR AVERAGE	Error includes scale fac	ctor o	f 1.5.	
$0.30\!\pm\!0.14\!\pm\!0.02$	AUBERT			$e^+e^- ightarrow \Upsilon(4S)$
$0.65\!\pm\!0.18\!\pm\!0.04$	CHEN	05 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the following	owing data for averages	, fits,	limits, e	etc. • • •
$0.71\!\pm\!0.37\!+\!0.05\\-0.06$	ABE	03 C	BELL	Repl. by ABE 03H
$0.43 \pm 0.27 \pm 0.05$	ABE	03H	BELL	Repl. by CHEN 05B
$0.02\!\pm\!0.34\!\pm\!0.03$	AUBERT	03W	BABR	Repl. by AUBERT 05M
$0.28\!\pm\!0.55\!+\!0.07\\-0.08$	CHEN	02 B	BELL	Repl. by ABE 03C

$C_{\eta' K^0} (B^0 \rightarrow \eta' K^0)$

VALUE	DOCUMENT ID		TECN	COMMENT		
-0.06 ± 0.04 OUR AVERAGE						
$-0.03\!\pm\!0.05\!\pm\!0.04$	$^{ m 1}$ SANTELJ			$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$-0.08\!\pm\!0.06\!\pm\!0.02$	AUBERT	091	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
• • We do not use the following data for averages, fits, limits, etc. • •						
$-0.16\pm0.07\pm0.03$	² AUBERT	07A	BABR	Repl. by AUBERT 091		
$0.01 \pm 0.07 \pm 0.05$	1,2 CHEN	07	BELL	Repl. by SANTELJ 14		

¹ The paper reports A, which is equal to -C.

$S_{\eta'K^0} (B^0 \rightarrow \eta'K^0)$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT	
0.63±0.06 OUR AVERAGE					
$0.68 \pm 0.07 \pm 0.03$	SANTELJ			$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$0.57\!\pm\!0.08\!\pm\!0.02$	AUBERT	091	BABR	$e^+e^- ightarrow \gamma(4S)$	
• • • We do not use the following data for averages, fits, limits, etc. • •					
$0.58 \pm 0.10 \pm 0.03$	¹ AUBERT	07A	BABR	Repl. by AUBERT 091	
$0.64 \pm 0.10 \pm 0.04$	$^{ m 1}$ CHEN	07	BELL	Repl. by SANTELJ 14	

 $^{^{}m 1}$ The mixing-induced CP violation is reported with a significance of more than 5 standard deviations in this $b \rightarrow s$ penguin dominated mode.

$C_{\omega \, K_S^0} \; (B^0 \to \; \omega \, K_S^0)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.0 ± 0.4 OUR AVERAGE	Error includes sca	ale fa	ctor of 3	.0.
$0.36 \pm 0.19 \pm 0.05$	¹ CHOBANOVA	14	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.52^{igoplus 0.22}_{-0.20}\!\pm\!0.03$	AUBERT	091	BABR	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the follow	ing data for avera	iges, f	fits, limit	s, etc. • • •
$0.09\!\pm\!0.29\!\pm\!0.06$	¹ CHAO	07	BELL	Repl. by CHOBANOVA 14
$-0.55^{\ +0.28}_{\ -0.26}\!\pm\!0.03$	AUBERT,B	06E	BABR	Repl. by AUBERT 091
$-0.27\pm0.48\pm0.15$	¹ CHEN	05 B	BELL	Repl. by CHAO 07
1 Belle Collab. quotes $^A_{~\omega} K^0_S$	which is equal to	$-C_{\alpha}$	νK_S^0 .	

Page 195

Created: 5/30/2017 17:22

HTTP://PDG.LBL.GOV

² The mixing-induced *CP* violation is reported with a significance of more than 5 standard deviations in this $b \rightarrow s$ penguin dominated mode.

$S_{\omega K_s^0}$	(<i>B</i> ⁰	\rightarrow	ωK_5^0)
--------------------	-------------------------	---------------	------------------

- 115	•				
VALUE		DOCUMENT ID		TECN	COMMENT
0.70±0.21 OUR AV	ERAGE				
$0.91\!\pm\!0.32\!\pm\!0.05$		CHOBANOVA	14	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.55^{+0.26}_{-0.29}{\pm}0.02$		AUBERT	091	BABR	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use	the followin	g data for avera	ges, f	its, limit	s, etc. • • •
$0.11\!\pm\!0.46\!\pm\!0.07$		CHAO	07	BELL	Repl. by CHOBANOVA 14
$0.51^{+0.35}_{-0.39} \pm 0.02$		AUBERT,B	06E	BABR	Repl. by AUBERT 091
$0.76\!\pm\!0.65\!+\!0.13\\-0.16$		CHEN	05 B	BELL	Repl. by CHAO 07
	_				

$C(B^0 \rightarrow K_S^0 \pi^0 \pi^0)$

VALUEDOCUMENT IDTECNCOMMENT0.23 \pm 0.52 \pm 0.13AUBERT07AQ BABR $e^+e^- \rightarrow \Upsilon(4S)$

$S\left(B^0 \to \ K_S^0 \pi^0 \pi^0\right)$

VALUEDOCUMENT IDTECNCOMMENT $0.72 \pm 0.71 \pm 0.08$ AUBERT 0.74×0.08 0.74×0.08

$C_{\rho^0\,K^0_S}\;(B^0\to\;\rho^0\,K^0_S)$

VALUE DOCUMENT ID TECN COMMENT

-0.04 ± 0.20 OUR AVERAGE

 $-0.05\pm0.26\pm0.10$ 1 AUBERT 09AU BABR $e^+e^ightarrow$ $\varUpsilon(4S)$

$$-0.03^{+0.24}_{-0.23}\pm 0.15$$
 2,3 DALSENO 09 BELL $e^+e^- o au(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.64 \pm 0.41 \pm 0.20$

AUBERT 07F BABR Repl. by AUBERT 09AU

Created: 5/30/2017 17:22

$S_{\rho^0 K_S^0} (B^0 \to \rho^0 K_S^0)$

VALUE DOCUMENT ID TECN COMMENT

$0.50^{f +0.17}_{f -0.21}$ OUR AVERAGE

 $0.35^{\,+\,0.26}_{\,-\,0.31}\pm0.07$ 1 AUBERT 09AU BABR e $^+\,e^ightarrow$ $\varUpsilon(4S)$

$$0.64^{+0.19}_{-0.25}\pm0.13$$
 2 DALSENO 09 BELL $e^+e^-
ightarrow$ $\varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.20\pm0.52\pm0.24$ AUBERT 07F BABR Repl. by AUBERT 09AU

 $^{^1}$ Uses Dalitz plot analysis of $B^0\to K^0\pi^+\pi^-$ decays and the first of two equivalent solutions is used.

² Quotes $A_{\rho^0}(KS)^0$ which is equal to $-C_{\rho^0}K_S^0$.

³ Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two consistent solutions that may be preferred.

¹Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent solutions is used.

² Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two consistent solutions that may be preferred.

$C_{f_0(980)K_S^0}(B^0 \to f_0(980)K_S^0)$

VALUE	DOCUMENT ID	TECN	COMMENT				
0.29±0.20 OUR AVERAGI	0.29±0.20 OUR AVERAGE						
$0.28 \pm 0.24 \pm 0.09$	1 LEES		$e^+e^- ightarrow ~ \varUpsilon(4S)$				
$0.30\!\pm\!0.29\!\pm\!0.14$	^{2,3} NAKAHAMA	10 BELL	$e^+e^- \rightarrow \Upsilon(4S)$				
ullet $ullet$ We do not use the foll	owing data for aver	rages, fits, limi	its, etc. • • •				
$0.08\pm0.19\pm0.05$ $0.06\pm0.17\pm0.11$ $-0.41\pm0.23\pm0.07$ $0.15\pm0.15\pm0.07$ $0.39\pm0.27\pm0.09$	² CHAO ² CHEN	09 BELL 07AX BABR 07 BELL 05B BELL	Repl. by CHAO 07				
1 Uses Dalitz plot analysis of the $B^0 o K^0_SK^+K^-$ decay. 2 Quotes $A_{f_0(980)K^0_S}$ which is equal to $-C_{f_0(980)K^0_S}$.							
³ Uses Dalitz plot analysis solutions that may be pre	of $B^0 \rightarrow K_S^0 K^+$ eferred.	K [−] decays a	nd the first of four consistent				

 $^{^4}$ Uses Dalitz plot analysis of $B^0 o K^0 \pi^+ \pi^-$ decays and the first of two equivalent solutions is used.

$S_{f_0(980)K_S^0}(B^0 \to f_0(980)K_S^0)$

VALUE	DOCUMENT ID		TECN	COMMENT	
-0.50 ± 0.16 OUR AVERAGE					
$-0.55 \!\pm\! 0.18 \!\pm\! 0.12$	¹ LEES	120	BABR	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$-0.43^{+0.22}_{-0.20}{\pm}0.14$	² DALSENO	09	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

$-0.96^{+0.21}_{-0.04}\pm0.04$	³ AUBERT	09AU BABR	Repl. by LEES 120
$-0.25\!\pm\!0.26\!\pm\!0.10$	⁴ AUBERT	07AX BABR	Repl. by AUBERT 09AU
$0.18 \pm 0.23 \pm 0.11$	CHAO	07 BELL	Repl. by DALSENO 09
$0.47\!\pm\!0.41\!\pm\!0.08$	CHEN	05B BELL	Repl. by CHAO 07

$S_{f_2(1270)K_S^0}(B^0 \to f_2(1270)K_S^0)$

VALUE	DOCUMENT ID	TECN	COMMENT	_
$-0.48\pm0.52\pm0.12$	$^{ m 1}$ AUBERT	09AU BABR	$e^+e^- ightarrow ~ \gamma(4S)$	

 $^{^1}$ Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent solutions is used.

Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two consistent solutions that may be preferred.

 $^{^1}$ Uses Dalitz plot analysis of the $B^0\to K^0_SK^+K^-$ decay. 2 Uses Dalitz plot analysis of $B^0\to K^0\pi^+\pi^-$ decays and the first of two consistent solutions that may be preferred.

³ Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent

solutions is used. 4 Reports $\beta_{eff}.$ We quote S obtained from epaps: E-PRLTAO-99-076741.

$C_{f_2(1270)K_S^0}(B^0 \to f_2(1270)K_S^0)$

VALUEDOCUMENT IDTECNCOMMENT $0.28^{+0.35}_{-0.40} \pm 0.11$ 1 AUBERT09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$

$S_{f_x(1300)K_S^0}(B^0 \to f_x(1300)K_S^0)$

VALUEDOCUMENT IDTECNCOMMENT $-0.20 \pm 0.52 \pm 0.10$ 1 AUBERT09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$

$C_{f_x(1300)K_S^0}(B^0 \to f_x(1300)K_S^0)$

VALUEDOCUMENT IDTECNCOMMENT $0.13 ^{+0.33} _{-0.35} \pm 0.10$ 1 AUBERT09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$

$S_{K^0\pi^+\pi^-}$ ($B^0 \rightarrow K^0\pi^+\pi^-$ nonresonant)

VALUE DOCUMENT ID TECN COMMENT

-0.01 \pm 0.31 \pm 0.10

1 AUBERT 09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$

$C_{K^0\pi^+\pi^-}$ ($B^0 \rightarrow K^0\pi^+\pi^-$ nonresonant)

VALUE DOCUMENT ID TECN COMMENT

0.01 \pm 0.25 \pm 0.08

1 AUBERT 09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$

$C_{K_S^0K_S^0}$ $(B^0 \rightarrow K_S^0K_S^0)$

VALUEDOCUMENT IDTECNCOMMENT 0.0 ± 0.4 OUR AVERAGEError includes scale factor of 1.4. $0.38 \pm 0.38 \pm 0.05$ 1 NAKAHAMA 08 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $-0.40 \pm 0.41 \pm 0.06$ AUBERT,BE 06C BABR $e^+e^- \rightarrow \Upsilon(4S)$

$S_{K^0_SK^0_S}\left(B^0\to~K^0_SK^0_S\right)$

 $^{^1}$ Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent solutions is used.

¹ Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent solutions is used.

¹ Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent solutions is used.

¹Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent solutions is used.

 $^{^1}$ Uses Dalitz plot analysis of ${\it B}^0 \to {\it K}^0 \, \pi^+ \, \pi^-$ decays and the first of two equivalent solutions is used.

¹Reports $A_{K_S^0 K_S^0}$ which equals to $-C_{K_S^0 K_S^0}$.

$C_{K^+K^-K^0_S}(B^0 \to K^+K^-K^0_S \text{ nonresonant})$

 $0.40 \pm 0.33 \stackrel{+0.28}{-0.10}$ 3 ABE

 $0.17 \pm 0.16 \pm 0.04$

V.	<u>ALUE</u>	<u>DOCUMENT ID</u>		<u> TECN</u>	COMMENI
	0.06 ±0.08 OUR AVERA	\GE			
	$0.02\ \pm0.09\ \pm0.03$	^{1,2} LEES			$e^+e^- ightarrow \gamma(4S)$
	$0.14\ \pm0.11\ \pm0.09$	^{3,4} NAKAHAMA	10	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
•	• We do not use the following the follo	lowing data for aver	ages,	fits, limi	ts, etc. • • •
	$0.054 \pm 0.102 \pm 0.060$	^{3,5} AUBERT	07AX	BABR	Repl. by LEES 120
	$0.09\ \pm0.10\ \pm0.05$	^{3,5} CHAO	07	BELL	Repl. by NAKAHAMA 10
	$0.10\ \pm0.14\ \pm0.04$	⁵ AUBERT	05T	BABR	Repl. by AUBERT 07AX
	$0.09\ \pm0.12\ \pm0.07$	³ CHEN	05 B	BELL	Repl. by CHAO 07
	$-0.10 \pm 0.19 \pm 0.10$	⁵ AUBERT,B	04V	BABR	Repl. by AUBERT 05T

 $^{^1\,\}text{Uses}$ Dalitz plot analysis of the ${\it B}^0\to~{\it K}^0_S\,{\it K}^+\,{\it K}^-$ decay.

3,5 ABE

03C BELL Repl. by ABE 03H

03H BELL Repl. by CHEN 05B

$S_{K^+K^-K^0_S}$ ($B^0 \rightarrow K^+K^-K^0_S$ nonresonant)

VALUE		DOCUMENT ID		TECN	COMMENT
-0.66 ± 0.11	OUR AVERAGE				
$-0.65\ \pm0.12$	± 0.03	^{1,2} LEES	120	BABR	$e^+e^- ightarrow \gamma(4S)$
-0.68 ± 0.15	$+0.21 \\ -0.13$	³ CHAO	07	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$-0.764\pm0.111 {}^{+ 0.071}_{- 0.040}$	^{3,4} AUBERT	07AX BABR	Repl. by LEES 120
$-0.42\ \pm0.17\ \pm0.03$	^{3,5} AUBERT	05T BABR	Repl. by AUBERT 07AX
$-0.49\ \pm0.18\ \pm0.04$	CHEN	05B BELL	Repl. by CHAO 07
$-0.56 \pm 0.25 \pm 0.04$	^{3,6} AUBERT,B	04V BABR	Repl. by AUBERT 05T
$-0.49\ \pm0.43\ \pm0.11$	ABE	03C BELL	Repl. by ABE 03H
$-0.51\ \pm0.26\ \pm0.05$	^{3,7} ABE	03н BELL	Repl. by CHEN 05B

 $^{^1\,\}text{Uses}$ Dalitz plot analysis of the $\textit{B}^0\to~\textit{K}^0_\textit{S}\,\textit{K}^+\,\textit{K}^-$ decay.

 $^{^2}$ This measurement is performed on all the isobar components, excluding ϕK_S^0 and $f_0(980)K_S^0$.

³ Quotes $A_{K^+K^-K_S^0}$ which is equal to $-C_{K^+K^-K_S^0}$.

 $^{^4}$ Uses Dalitz plot analysis of $B^0
ightarrow ~K^0_S \, K^+ \, K^-$ decays and the first of four consistent

solutions that may be preferred. ⁵ Excludes the events from $B^0 \to \phi K_{\tilde{S}}^0$ decay. The results are derived from a combined sample of $K^+K^-K^0_S$ and $K^+K^-K^0_L$ decays.

 $^{^2}$ This measurement is performed on all the isobar components, excluding ϕK^0_S and $f_0(980)K_S^0$. Note that the nonresonant component is not a *CP* eigenstate.

 $^{^3}$ Excludes events from $B^0 o \phi K^0_{S}$ decay. The results are derived from a combined sample of $K^+K^-K^0_S$ and $K^+K^-K^0_L$ decays.

 $^{^4\,\}mathrm{Reports}\;\beta_{eff}.$ We quote S obtained from epaps: E-PRLTAO-99-076741.

 $^{^5}$ The measured $\it CP$ -even final states fraction is 0.89 \pm 0.08 \pm 0.06. 6 The measured $\it CP$ -even final states fraction is 0.98 \pm 0.15 \pm 0.04. 7 The measured $\it CP$ -even final states fraction is 1.03 \pm 0.15 \pm 0.05.

$C_{K^+K^-K^0_S}(B^0 \rightarrow K^+K^-K^0_S \text{ inclusive})$

 $0.015 \pm 0.077 \pm 0.053$

$S_{K^+K^-K^0_S}$ ($B^0 \rightarrow K^+K^-K^0_S$ inclusive)

 $-0.647\pm0.116\pm0.040$

$C_{\phi K_S^0} (B^0 \rightarrow \phi K_S^0)$

VALUE	<u>DOCUMENT ID</u>		TECN	COMMENT
0.01±0.14 OUR AVERAG	E			
$0.05\!\pm\!0.18\!\pm\!0.05$	¹ LEES		BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.04\!\pm\!0.20\!\pm\!0.10$	^{2,3} NAKAHAMA	10	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
 ● ● We do not use the fol 	lowing data for aver	ages,	fits, limi	ts, etc. • • •
$0.08 \pm 0.18 \pm 0.04$	^{2,4} AUBERT	07AX	BABR	Repl. by LEES 120
$-0.07\!\pm\!0.15\!\pm\!0.05$	^{2,4} CHEN	07	BELL	Repl. by NAKAHAMA 10
$0.00\pm0.23\pm0.05$	⁴ AUBERT	05T	BABR	Repl. by AUBERT 07AX
$-0.08\!\pm\!0.22\!\pm\!0.09$	^{2,4} CHEN	05 B	BELL	Repl. by CHEN 07
$0.01\!\pm\!0.33\!\pm\!0.10$	⁴ AUBERT,B	04 G	BABR	Repl. by AUBERT 05T
$0.56 \pm 0.41 \pm 0.16$	² ABE	03 C	BELL	Repl. by ABE 03H
$0.15 \pm 0.29 \pm 0.07$	² ABE	03н	BELL	Repl. by CHEN 05B
¹ Uses Dalitz plot analysis	of the ${\it B}^0 \rightarrow {\it K}^0_S {\it K}$	K+ K	decay.	

DOCUMENT ID TECN COMMENT

$S_{\phi\,K^0_S} \; (B^0 \to \; \phi\,K^0_S)$

VALUE

0.59 ± 0.14 OUR AVERAGE		
$0.66 \pm 0.17 \pm 0.07$	¹ LEES	120 BABR $e^+e^- ightarrow~\varUpsilon(4S)$
$0.50 \pm 0.21 \pm 0.06$	² CHEN	07 BELL $e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	owing data for avera	ges, fits, limits, etc. • • •
$0.21\!\pm\!0.26\!\pm\!0.11$	^{2,3} AUBERT	07AX BABR Repl. by LEES 120
$0.50 \pm 0.25 {+0.07\atop-0.04}$	² AUBERT	05T BABR Repl. by AUBERT 07AX
$0.08 \pm 0.33 \pm 0.09$	² CHEN	05B BELL Repl. by CHEN 07
$0.47 \pm 0.34 {+ 0.08 \atop - 0.06}$	² AUBERT,B	04G BABR Repl. by AUBERT 05T
$-0.73\!\pm\!0.64\!\pm\!0.22$	ABE	03C BELL Repl. by ABE 03H
$-0.96\!\pm\!0.50\!+\!0.09 \\ -0.11$	ABE	03H BELL Repl. by CHEN 05B

 $^{^1}$ Measured using full Dalitz plot fit including ϕ component. 2 The results are derived from a combined sample of $K^+K^-K^0_S$ and $K^+K^-K^0_L$ decays.

 $^{^{1}}$ Measured using full Dalitz plot fit including ϕ component.

 $^{^2}$ Quotes $A_{\phi K_S^0}$ which is equal to $-C_{\phi K_S^0}$. 3 Uses Dalitz plot analysis of $B^0 \to K_S^0 K^+ K^-$ decays and the first of four consistent solutions that may be preferred.

⁴ Result combines B-meson final states ϕK_S^0 and ϕK_L^0 by assuming $S_{\phi K_S^0} = -S_{\phi K_L^0}$

 $^{^1}$ Uses Dalitz plot analysis of the $B^0\to K^0_S\,K^+\,K^-$ decay. 2 Result combines B-meson final states $\phi\,K^0_S$ and $\phi\,K^0_L$ by assuming $S_{\phi\,K^0_S}=-S_{\phi\,K^0_L}$

 $^{^3}$ Reports eta_{eff} . We quote S obtained from epaps: E-PRLTAO-99-076741.

$C_{K_SK_SK_S}(B^0 \rightarrow K_SK_SK_S)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.23 ± 0.14 OUR AVERAGE				
$-0.17\!\pm\!0.18\!\pm\!0.04$	LEES	121	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.31\!\pm\!0.20\!\pm\!0.07$	1 CHEN	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the followin	g data for averag	es, fit	s, limits,	etc. • • •
$0.02\!\pm\!0.21\!\pm\!0.05$	AUBERT	0 7 AT	BABR	Repl. by LEES 12I
$-0.34^{\displaystyle +0.28}_{\displaystyle -0.25}\pm 0.05$	AUBERT,B	05	BABR	Repl. by AUBERT 07AT
$-0.54\!\pm\!0.34\!\pm\!0.09$	¹ SUMISAWA	05	BELL	Repl. by CHEN 07
1	1 . 1		_	

¹ Belle Collab. quotes $A_{K_S K_S K_S}$ which is equal to $-C_{K_S K_S K_S}$.

$S_{K_S K_S K_S}(B^0 \rightarrow K_S K_S K_S)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.5 ± 0.6 OUR AVERAGE	Error includes sca	le fact	or of 3.0	
$-0.94^{\displaystyle +0.24}_{\displaystyle -0.21}\!\pm\!0.06$	LEES	121	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.30 \pm 0.32 \pm 0.08$	CHEN	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • We do not use the following data for averages, fits, limits, etc. • •				
$-0.71\pm0.24\pm0.04$	AUBERT	07AT	BABR	Repl. by LEES 12I
$-0.71^{igoplus 0.38}_{-0.32}\!\pm\!0.04$	AUBERT,B	05	BABR	Repl. by AUBERT 07AT
$1.26 \pm 0.68 \pm 0.20$	SUMISAWA	05	BELL	Repl. by CHEN 07.

$C_{K^0_5\pi^0\gamma}(B^0\to K^0_5\pi^0\gamma)$

VALUE	<u>DOCUMENT ID</u>	TECN	COMMENT
0.36±0.33±0.04	1 AUBERT	08BA BABR	$e^+e^- \rightarrow \Upsilon(4S)$

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

$S_{K^0_S\pi^0\gamma}(B^0\to K^0_S\pi^0\gamma)$

$-0.78\pm0.59\pm0.09$	¹ AUBERT	08BA BABR $e^+e^- ightarrow \varUpsilon(4S)$
• • • We do not use the following	owing data for avera	iges, fits, limits, etc. • • •
$-0.10\pm0.31\pm0.07 \ 0.9\ \pm1.0\ \pm0.2$		06 BELL $e^+e^- ightarrow \varUpsilon(4S)$ 05P BABR Repl. by AUBERT 08BA
⊥0.46		

DOCUMENT ID

^{2,3} USHIRODA 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $0.20\pm0.20\pm0.06$ $^{
m 1}$ AUBERT,B 05P BABR Repl. by AUBERT 08BA $-1.0 \pm 0.5 \pm 0.2$

³ USHIRODA $-0.03\pm0.34\pm0.11$ 05 BELL Repl. by USHIRODA 06

 $^{^{1}\, {\}sf Requires} \,\, 1.1 < \, M_{\mbox{${\cal K}$}_{S}^{0} \, \pi^{0}} \,\, < 1.8 \,\, {\sf GeV/c^{2}}. \label{eq:controller}$

² Requires $M_{\kappa_S^0 \pi^0} \stackrel{3}{<} 1.8 \text{ GeV/c}^2$.

³Reports $A_{K_S^0 \pi^0 \gamma}$, which is $-C_{K_S^0 \pi^0 \gamma}$.

 $^{-0.58^{+0.46}}_{-0.38}\pm0.11$ **USHIRODA** 05 BELL Repl. by USHIRODA 06

 $^{^{1}}$ Requires 1.1 < $M_{\mbox{$K_S^0$}\,\pi^0}$ < 1.8 GeV/c 2 . 2 Requires $M_{\mbox{$K_S^0$}\,\pi^0}$ < 1.8 GeV/c 2 .

$$C_{K_{S}^{0}\pi^{+}\pi^{-}\gamma}(B^{0}\to K_{S}^{0}\pi^{+}\pi^{-}\gamma)$$

1 DEL-AMO-SA..16 BABR $e^+e^ightarrow \varUpsilon(4S)$

0.845 GeV/c² or $m_{K\pi} > 0.945$ GeV/c².

$S_{K_{c}^{0}\pi^{+}\pi^{-}\gamma}(B^{0}\to K_{S}^{0}\pi^{+}\pi^{-}\gamma)$

 $1 ext{DOCUMENT ID}$ TECN COMMENT TECN TEC

¹ Requires $M_{K\pi\pi}$ < 1.8 GeV/c², 0.6 GeV/c² < $m_{\pi^+\pi^-}$ < 0.9 GeV/c², $m_{K\pi}$ < 0.845 GeV/c² or $m_{K\pi} > 0.945$ GeV/c².

$C_{K^*(892)^0\gamma} (B^0 \to K^*(892)^0\gamma)$

DOCUMENT ID TECN COMMENT **=0.04±0.16 OUR AVERAGE** Error includes scale factor of 1.2. 08BA BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT $-0.14\pm0.16\pm0.03$

^{1,2} USHIRODA 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $0.20\pm0.24\pm0.05$

• • We do not use the following data for averages, fits, limits, etc.

 $-0.40\pm0.23\pm0.03$ 05P BABR Repl. by AUBERT 08BA

AUBERT,B 3 AUBERT,B $-0.57\pm0.32\pm0.09$ 04Z BABR Repl. by AUBERT, B 05P

$S_{K^*(892)^0\gamma}(B^0 \to K^*(892)^0\gamma)$

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT	
-0.15 ± 0.22 OUR AVERAGE				
$-0.03\!\pm\!0.29\!\pm\!0.03$	$^{ m 1}$ AUBERT	08BA BABR	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$-0.32^{+0.36}_{-0.33}\pm0.05$	¹ USHIRODA	06 BELL	$e^+e^- ightarrow$	$\Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

 $-0.21\pm0.40\pm0.05$ 05P BABR Repl. by AUBERT 08BA AUBERT,B

 $-0.79^{\,+\,0.63}_{\,-\,0.50}\,{\pm}\,0.10$ ² USHIRODA BELL Repl. by USHIRODA 06

³ AUBERT,B $0.25 \pm 0.63 \pm 0.14$ 04Z BABR Repl. by AUBERT, B 05P

$C_{\eta K^0 \gamma} (B^0 \rightarrow \eta K^0 \gamma)$

 $-0.32^{+0.40}_{-0.39}\pm0.07$ ¹ AUBERT 09 BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^{1}}$ Requires 0.8 $< M_{K_c^0 \pi^0} < 1.0 \text{ GeV/c}^2$.

²Reports value of A which is equal to -C.

 $^{^3}$ Based on a total signal of 105 \pm 14 events with $K^*(892)^0
ightarrow K^0_{m S} \pi^0$ only.

 $^{^{1}}$ Requires 0.8 $< M_{K_c^0 \pi^0} < 1.0 \text{ GeV/c}^2$.

² Assumes $C(B^0 \to K^*(892)^0 \gamma) = 0$.

³ Based on a total signal of 105 ± 14 events with $K^*(892)^0 \rightarrow K_S^0 \pi^0$ only.

 $^{^{1}}m_{nK}$ < 3.25 GeV/c².

,	• 7			,	·
$S_{\eta K^0 \gamma} (B^0 \rightarrow \eta K^0 \gamma)$					
VALUE	<u>DOCUMENT ID</u>		<u>TECN</u>	<u>COMMENT</u>	
$-0.18^{+0.49}_{-0.46}\pm0.12$	¹ AUBERT	09	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{1}m_{\etaK}$ $< 3.25~{ m GeV/c^{2}}.$					
$C_{K^0\phi\gamma} (B^0 \to K^0\phi\gamma)$ VALUE	DOCUMENT ID		TECN	COMMENT	
	-			·	
$-0.35\pm0.58^{igoplus 0.10}_{igoplus 0.23}$	¹ SAHOO	11A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Reports value of \emph{A} , which	is equal to $-C$.				
$S_{K^0\phi\gamma} (B^0 \rightarrow K^0\phi\gamma)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.74^{igoplus 0.72}_{-1.05}^{+0.72}_{-0.24}^{+0.10}$	SAHOO	11A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$C(B^0 \to K_S^0 \rho^0 \gamma)$					
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
$-0.05\pm0.18\pm0.06$	^{1,2} LI				$\Upsilon(4S)$
1 Requires M $_{\mathcal{K}_{S}^{0}\pi^{+}\pi^{-}}<1$	$.8 \text{ GeV/c}^2 \text{ and } 0.6 <$	M_{π^+}	$_{\pi^{-}} < 0.9$	9 GeV/c^2 .	
2 Reports value of $A_{ m eff}$ wh contribution in the $ ho^0$ reg	hich is equal to $-C$,				onant $\pi^+\pi^-$
$S(B^0 \rightarrow K_S^0 \rho^0 \gamma)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
-0.04±0.23 OUR AVERAGE					
$-0.18\!\pm\!0.32 {+0.06\atop -0.05}$	¹ DEL-AMO-SA	16	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.11 \pm 0.33 {+0.05 \atop -0.09}$	² LI	08F	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Requires $M_{$	GeV/c^2 , 0.6 GeV/c^2	< m	_+	< 0.9 GeV/	c^2 , $m_{K\pi}$ <
0.845 GeV/c ² or $m_{K\pi}$			π'π		TC A
² Requires $M_{K\pi\pi} < 1.8$ G					
$C(B^0 \rightarrow \rho^0 \gamma)$					
VALUE	<u>DOCUMENT ID</u>				
$0.44 \pm 0.49 \pm 0.14$	¹ USHIRODA	80	BELL	$e^+e^- \rightarrow$	T(45)
¹ Reports value of A which	is equal to $-C$.				
$S(B^0 \rightarrow \rho^0 \gamma)$					
VALUE	DOCUMENT ID		TECN	COMMENT	

 $-0.83\pm0.65\pm0.18$

USHIRODA

08 BELL $e^+e^- \rightarrow \Upsilon(4S)$

$C_{\pi\pi} (B^0 \rightarrow \pi^+\pi^-)$

 $C_{\pi\,\pi}$ is defined as $(1-|\lambda|^2)/(1+|\lambda|^2)$, where the quantity $\lambda=q/p~\overline{A}_f/A_f$ is a phase convention independent observable quantity for the final state f. For details, see the review on "CP Violation" in the Reviews section.

VALUE	DOCUMENT ID		TECN	COMMENT
-0.31 ± 0.05 OUR AVERAGE				
$-0.38\!\pm\!0.15\!\pm\!0.02$	AAIJ	13 BO	LHCB	pp at 7 TeV
$-0.33\!\pm\!0.06\!\pm\!0.03$	¹ DALSENO	13	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.25\!\pm\!0.08\!\pm\!0.02$	LEES	13 D	BABR	$e^+e^- o \ \varUpsilon(4S)$
• • • We do not use the follow	wing data for aver	ages,	fits, limi	ts, etc. ● ●
$-0.21\!\pm\!0.09\!\pm\!0.02$	AUBERT	07AF	BABR	Repl. by LEES 13D
$-0.55 \!\pm\! 0.08 \!\pm\! 0.05$	¹ ISHINO	07	BELL	Repl. by DALSENO 13
$-0.56\!\pm\!0.12\!\pm\!0.06$	¹ ABE	05 D	BELL	Repl. by ISHINO 07
$-0.09\!\pm\!0.15\!\pm\!0.04$	AUBERT,BE	05	BABR	Repl. by AUBERT 07AF
$-0.58\!\pm\!0.15\!\pm\!0.07$	¹ ABE	04E	BELL	Repl. by ABE 05D
$-0.77\pm0.27\pm0.08$	¹ ABE	03 G	BELL	Repl. by ABE 04E.
$-0.94^{\displaystyle +0.31}_{\displaystyle -0.25}\!\pm\!0.09$	¹ ABE	02М	BELL	Repl. by ABE 03G
$-0.25^{+0.45}_{-0.47}\!\pm\!0.14$	² AUBERT	02 D	BABR	Repl. by AUBERT 02Q
$-0.30\!\pm\!0.25\!\pm\!0.04$	³ AUBERT	02Q	BABR	Repl. by AUBERT,BE 05
1 Paper reports $A_{\pi\pi}$ which	equals to $-C_{\pi\pi}$.			
$\frac{2}{3}$ Corresponds to $\frac{7}{90}$ % confidence		$< C_{\pi \pi}$	_r < 0.47	

 $^{^3}$ Corresponds to 90% confidence range $-0.72 < C_{\pi\pi} < 0.12$.

VΔLUE

 $S_{\pi\pi}$ ($B^0 \to \pi^+\pi^-$) $S_{\pi\pi} = 2 \mathrm{Im} \lambda/(1+|\lambda|^2)$, see the note in the $C_{\pi\pi}$ datablock above. DOCUMENT ID

VALUE	DOCUMENT ID	IECIV	COMMENT
-0.67±0.06 OUR AVERAGE			
$-0.71\!\pm\!0.13\!\pm\!0.02$	AAIJ	13BO LHCB	pp at 7 TeV
$-0.64\pm0.08\pm0.03$	¹ DALSENO	13 BELL	$e^+e^- ightarrow~ \varUpsilon(4S)$
$-0.68\!\pm\!0.10\!\pm\!0.03$	LEES	13D BABR	$e^+e^- o ~ \varUpsilon(4S)$
• • • We do not use the follow	wing data for ave	rages, fits, lim	nits, etc. • • •
$-0.60\!\pm\!0.11\!\pm\!0.03$	AUBERT	07AF BABR	Repl. by LEES 13D
$-0.61\!\pm\!0.10\!\pm\!0.04$	ISHINO	07 BELL	Repl. by DALSENO 13
$-0.67\!\pm\!0.16\!\pm\!0.06$	² ABE	05D BELL	Repl. by ISHINO 07
$-0.30\pm0.17\pm0.03$	AUBERT,BE	05 BABR	Repl. by AUBERT 07AF
$-1.00\pm0.21\pm0.07$	³ ABE	04E BELL	Repl. by ABE 05D
$-1.23\!\pm\!0.41 \!+\! 0.08 \atop -0.07$	ABE	03G BELL	Repl. by ABE 04E.
$-1.21 {}^{+ 0.38}_{- 0.27} {}^{+ 0.16}_{- 0.13}$	ABE	02м BELL	Repl. by ABE 03G
$0.03^{+0.52}_{-0.56}\!\pm\!0.11$	⁴ AUBERT	02D BABR	Repl. by AUBERT 02Q
$0.02 \pm 0.34 \pm 0.05$	⁵ AUBERT	02Q BABR	Repl. by AUBERT,BE 05
1 An isospin analysis using o $\phi_{2} < 66.8^{\circ}$ at 68% CL.	other BELLE mea	surements, di	sfavors the region of $23.8^{\circ} <$

TECN

COMMENT

 $[\]phi_2$ < 00.8° at 00% CL. ² Rule out the *CP*-conserving case, $C_{\pi\pi} = S_{\pi\pi} = 0$, at the 5.4 sigma level. ³ Rule out the *CP*-conserving case, $C_{\pi\pi} = S_{\pi\pi} = 0$, at the 5.2 sigma level.

 $^{^4}$ Corresponds to 90% confidence range - 0.89 $<\!S_{\pi\,\pi}<$ 0.85.

 $^{^{5}}$ Corresponds to 90% confidence range $-0.54 <\! S_{\pi\,\pi} < 0.58.$

$C_{\pi^0\pi^0}(B^0$	\rightarrow	$\pi^0\pi^0$)
1/11/17		

VALUE	DOCUMENT ID		IECN	COMMENT
-0.43 ± 0.24 OUR AVERAGE				
$-0.43\!\pm\!0.26\!\pm\!0.05$	LEES	13 D	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.44^{igoplus 0.52}_{igoplus 0.53}\!\pm\!0.17$	¹ CHAO	05	BELL	$e^+e^- ightarrow \gamma(4S)$
ullet $ullet$ We do not use the following	ng data for avera	ges, fi	ts, limits	s, etc. • • •
$-0.49\pm0.35\pm0.05 \\ -0.12\pm0.56\pm0.06$	AUBERT ² AUBERT			Repl. by LEES 13D Repl. by AUBERT 07BC

 $^{^1}$ BELLE Collab. quotes $A_{\pi^0\,\pi^0}$ which is equal to $-{\it C}_{\pi^0\,\pi^0}.$ 2 Corresponds to a 90% CL interval of $-0.88~<~A_{CP}~<0.64.$

$C_{\rho\pi} (B^0 \rightarrow \rho^+\pi^-)$

<u>VALUE</u>	DOCUMENT ID	TECN	I COMMENT
-0.03 ± 0.07 OUR AVERAGE	Error includes	scale factor	of 1.2.
			R $e^+e^- \rightarrow \Upsilon(4S)$
$-0.13 \pm 0.09 \pm 0.05$	¹ KUSAKA	07 BEL	L $e^+e^- ightarrow~\varUpsilon(4S)$
• • • We do not use the following	ng data for avera	ges, fits, lim	nits, etc. • • •
$0.15\ \pm0.09\ \pm0.05$	AUBERT	07AA BAB	R Repl. by LEES 13J
$0.25\ \pm0.17\ ^{+0.02}_{-0.06}$	WANG	05 BEL	L Repl. by KUSAKA 07
$0.36\ \pm0.18\ \pm0.04$	AUBERT	03T BAB	R Repl. by AUBERT 07AA
1,,		0 +	- 0 .

¹Uses time-dependent Dalitz plot analysis of $B^0 \to \pi^+\pi^-\pi^0$ decays.

$S_{\rho\pi} (B^0 \rightarrow \rho^+\pi^-)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.05 ± 0.07 OUR AVERAGE				
	LEES			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.06 \pm 0.13 \pm 0.05$	KUSAKA	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	g data for averag	ges, fit	ts, limits	, etc. • • •
$-0.03\ \pm0.11\ \pm0.04$	AUBERT	07 AA	BABR	Repl. by LEES 13J
$-0.28\ \pm0.23\ ^{+0.10}_{-0.08}$	WANG	05	BELL	Repl. by KUSAKA 07
$0.19\ \pm0.24\ \pm0.03$	AUBERT	03T	BABR	Repl. by AUBERT 07AA
1 Hara tima damandant Dalita al	-+Iv-i£ D(0 .	_+	_0

 $^{^1}$ Uses time-dependent Dalitz plot analysis of $B^0
ightarrow \ \pi^+\pi^-\pi^0$ decays.

$\Delta C_{\rho\pi} (B^0 \rightarrow \rho^+\pi^-)$

 $\Delta C_{
ho\pi}$ describes the asymmetry between the rates $\Gamma(B^0 \to \rho^+\pi^-) + \Gamma(\overline{B}^0 \to \rho^-\pi^+)$ and $\Gamma(B^0 \to \rho^-\pi^+) + \Gamma(\overline{B}^0 \to \rho^+\pi^-)$.

VALUE	DOCUMENT ID		TECIV	COMMENT
0.27 ±0.06 OUR AVERAGE				
	¹ LEES			$e^+e^- ightarrow \Upsilon(4S)$
$0.36 \pm 0.10 \pm 0.05$	¹ KUSAKA	07	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$\bullet~\bullet~$ We do not use the followin	g data for averag	ges, fi	ts, limits	s, etc. • • •
$0.39\ \pm0.09\ \pm0.09$	AUBERT	07A	BABR	Repl. by LEES 13J
$0.38 \ \pm 0.18 \ ^{+0.02}_{-0.04}$	WANG	05	BELL	Repl. by KUSAKA 07
$0.28 \ ^{+0.18}_{-0.19} \ \pm 0.04$	AUBERT	03T	BABR	Repl. by AUBERT 07AA

 $^{^1\, \}text{Uses}$ time-dependent Dalitz plot analysis of $\textit{B}^0 \to \ \pi^+\,\pi^-\,\pi^0$ decays.

 $\Delta S_{\rho\pi}$ ($B^0 \rightarrow \rho^+\pi^-$) $\Delta S_{\rho\pi}$ is related to the strong phase difference between the amplitudes contributing to $B^0 \rightarrow \rho^+ \pi^-$.

VALUE	DOCUMENT ID		TECN	COMMENT
0.01 ± 0.08 OUR AVERAGE				
$0.054\pm0.082\pm0.039$	¹ LEES	13 J	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.08 \pm 0.13 \pm 0.05$	¹ KUSAKA	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	g data for averag	ges, fit	ts, limits	, etc. • • •
$-0.01~\pm 0.14~\pm 0.06$	AUBERT	07AA	BABR	Repl. by LEES 13J
$-0.30 \pm 0.24 \pm 0.09$	WANG	05	BELL	Repl. by KUSAKA 07
$0.15\ \pm0.25\ \pm0.03$	AUBERT	03T	BABR	Repl. by AUBERT 07AA

 $^{^1\, \}text{Uses time-dependent Dalitz plot analysis of } B^0 \rightarrow \ \pi^+\,\pi^-\,\pi^0 \ \text{decays}.$

$C_{\rho^0\pi^0} (B^0 \to \rho^0\pi^0)$

P				
VALUE	DOCUMENT ID		TECN	COMMENT
0.27±0.24 OUR AVERAGE				
$0.19\!\pm\!0.23\!\pm\!0.15$	¹ LEES			$e^+e^- ightarrow \gamma(4S)$
$0.49 \pm 0.36 \pm 0.28$	1,2 KUSAKA	07	BELL	$e^+e^- \rightarrow \gamma(4S)$
ullet $ullet$ We do not use the follow	ing data for average	s, fits,	limits, e	etc. • • •
$-0.10\!\pm\!0.40\!\pm\!0.53$	AUBERT	07A	BABR	Repl. by LEES 13J
$0.53 {+0.67 +0.10\atop -0.84 -0.15}$	² DRAGIC	06	BELL	Repl. by KUSAKA 07
¹ Uses time-dependent Dalitz	plot analysis of B^0	$\rightarrow \pi$	$+_{\pi}{\pi} 0$	decays.

$S_{\rho^0\pi^0} (B^0 \to \rho^0\pi^0)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.23 ± 0.34 OUR AVERAGE				
$-0.37\!\pm\!0.34\!\pm\!0.20$	¹ LEES	13 J	BABR	$e^+e^- ightarrow \gamma(4S)$
$0.17 \pm 0.57 \pm 0.35$	¹ KUSAKA	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$0.04 \pm 0.44 \pm 0.18$	AUBERT	07A	BABR	Repl. by LEES 13J

 $^{^1}$ Uses time-dependent Dalitz plot analysis of ${\it B}^0 \rightarrow ~\pi^+\pi^-\pi^0$ decays.

$C_{a_1\pi} (B^0 \to a_1(1260)^+\pi^-)$

VALUE	DOCUMENT ID		TECN	COMMENT	
-0.05 ± 0.11 OUR AVERAGE					
$-0.01\!\pm\!0.11\!\pm\!0.09$	DALSENO	12	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$-0.10\!\pm\!0.15\!\pm\!0.09$	AUBERT	070	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

$S_{a_1 \pi} (B^0 \to a_1(1260)^+ \pi^-)$

<u>VALUE</u>	<u>DOCUMENT ID</u>	TECN	COMMENT
-0.2 ± 0.4 OUR AVERAGE	Error includes scale facto	r of 3.2.	
$-0.51\!\pm\!0.14\!\pm\!0.08$	DALSENO 12	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.37 \pm 0.21 \pm 0.07$	AUBERT 070	BABR	$e^+e^- ightarrow \gamma(4S)$

Uses time-dependent Dalitz plot analysis of 2 Quotes $A_{\rho^0\,\pi^0}$ which is equal to $-C_{\rho^0\,\pi^0}$.

$\Delta C_{a_1\pi} (B^0 \rightarrow a_1(1260)^+\pi^-)$

 $\Delta C_{a_1\pi}$ describes the asymmetry between the rates $\Gamma(B^0 o a_1^+\pi^-)+\Gamma(\overline B^0 o a_1^-\pi^+)$ and $\Gamma(B^0 o a_1^-\pi^+)+\Gamma(\overline B^0 o a_1^+\pi^-)$.

VALUEDOCUMENT IDTECNCOMMENT**0.43 \pm 0.14 OUR AVERAGE**Error includes scale factor of 1.3. $0.54 \pm 0.11 \pm 0.07$ DALSENO12BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $0.54 \pm 0.11 \pm 0.07$ DALSENO $0.26 \pm 0.15 \pm 0.07$ AUBERT

AUBERT 070 BABR $e^+e^-
ightarrow \Upsilon(4S)$

$\Delta S_{a_1 \pi} (B^0 \rightarrow a_1(1260)^+ \pi^-)$

 $\Delta S_{a_1 \pi}$ is related to the strong phase difference between the amplitudes contributing to $B^0 \to a_1 \pi$ decays.

VALUE	DOCUMENT ID		TECN	COMMENT
-0.11 ± 0.12 OUR AVERAGE				
$-0.09\!\pm\!0.14\!\pm\!0.06$	DALSENO	12	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.14\pm0.21\pm0.06$	AUBERT	070	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

$C(B^0 \rightarrow b_1^- K^+)$

VALUEDOCUMENT IDTECNCOMMENT $-0.22 \pm 0.23 \pm 0.05$ AUBERT07BIBABR $e^+e^- \rightarrow \Upsilon(4S)$

$\Delta C (B^0 \rightarrow b_1^- \pi^+)$

VALUE DOCUMENT ID $-1.04 \pm 0.23 \pm 0.08$ DOCUMENT ID AUBERT $07BI BABR <math>e^+e^- \rightarrow \Upsilon(4S)$

$C_{\rho^0\rho^0}~(B^0 \rightarrow ~\rho^0\rho^0)$

VALUEDOCUMENT IDTECNCOMMENT $0.2 \pm 0.8 \pm 0.3$ AUBERT08BB BABR $e^+e^- \rightarrow \Upsilon(4S)$

$S_{ ho^0 ho^0}~(B^0 ightarrow~ ho^0 ho^0)$

VALUEDOCUMENT IDTECNCOMMENT $0.3 \pm 0.7 \pm 0.2$ AUBERT08BB BABR $e^+e^- \rightarrow \Upsilon(4S)$

$C_{\rho\rho}\;(B^0\to\;\rho^+\rho^-)$

VALUEDOCUMENT IDTECNCOMMENT 0.00 ± 0.09 OUR AVERAGE1 VANHOEFER 16 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $0.01 \pm 0.15 \pm 0.06$ AUBERT 07BF BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $-0.16 \pm 0.21 \pm 0.08$ 1 SOMOV 07 BELL Repl. by VANHOEFER 16 $-0.00 \pm 0.30 \pm 0.09$ 1 SOMOV 06 BELL Repl. by SOMOV 07 $-0.03 \pm 0.18 \pm 0.09$ AUBERT,B 05C BABR Repl. by AUBERT 07BF $-0.17 \pm 0.27 \pm 0.14$ AUBERT,B 04R BABR Repl. by AUBERT,B 05C

 1 BELLE Collab. quotes A_{CP} which is equal to -C.

04R BABR Repl. by AUBERT, B 05C

$S_{\rho\rho}$	$(B^0$	\rightarrow	ρ^{+}	ρ^{-}	1

VALUE	DOCUMENT ID		TECN	COMMENT
-0.14 ± 0.13 OUR AVERAGE				
$-0.13\!\pm\!0.15\!\pm\!0.05$	VANHOEFER	16	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.17\!\pm\!0.20 \!+\!0.05 \atop -0.06$	AUBERT	07 BF	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	ng data for aver	ages,	fits, limi	ts, etc. • • •
$0.19 \pm 0.30 \pm 0.08$ $0.08 \pm 0.41 \pm 0.09$	SOMOV SOMOV	07 06		Repl. by VANHOEFER 16 Repl. by SOMOV 07
$-0.33\!\pm\!0.24\!+\!0.08\\-0.14$	AUBERT,B	05 C	BABR	Repl. by AUBERT 07BF

 $|\lambda| (B^0 \to J/\psi K^*(892)^0)$

 $-0.42\pm0.42\pm0.14$

1 1 3	, ,	, ,					
VALUE		CL%	DOCUMENT ID		TECN	COMMENT	
<0.25		95	¹ AUBERT,B	04н	BABR	$e^+e^- \rightarrow 7$	r(4S)

¹Uses the measured cosine coefficients C and \overline{C} and assumes |q/p| = 1.

AUBERT,B

$\cos 2\beta \ (B^0 \to J/\psi K^*(892)^0)$

 β (ϕ_1) is one of the angles of CMK unitarity triangle, see the review on "CP" Violation in the Reviews section.

VALUE DOCUMENT ID TECN COMMENT

1.7 $^{+0.7}_{-0.9}$ **OUR AVERAGE** Error includes scale factor of 1.6.

$\cos 2\beta \ (B^0 \to \ [K_S^0 \pi^+ \pi^-]_{D^{(*)}} \ h^0)$

VALUE	DOCUMENT ID		TECN	COMMENT	
0.84±0.31 OUR AVERAGE					
$1.06 \pm 0.33 {+0.21 \atop -0.15}$	¹ VOROBYEV	16	BELL	$e^+e^- \rightarrow \gamma (4$	<i>S</i>)
$0.42\!\pm\!0.49\!\pm\!0.16$	² AUBERT	07вн	BABR	$e^+e^- ightarrow \gamma (4$	<i>S</i>)
• • • We do not use the follow	ng data for averag	es, fit	ts, limits	, etc. • • •	
1.87 + 0.40 + 0.22	³ KROKOVNY	06	BELL	Repl. by VORC	BYEV 16

¹A model-independent measurement uses the binned Dalitz plot technique.

¹The measurement is obtained when sin 2β is fixed to 0.726 and the sign of cos 2β is positive with 86% confidence level.

² The measurement is obtained with sin 2β fixed to 0.731.

 $^{^2}$ AUBERT 07BH evaluates the likelihoods for the positive and negative solutions assuming $\sin(2 \beta_{eff}) = 0.678$. It quotes L₊ / (L₊+ L₋) = 0.86 corresponding to a likelihood ratio of $L_{\perp}/L_{\perp}=6.14$ in favor of the positive solution.

 $^{^3}$ KROKOVNY 06 evaluates the likelihoods for the positive and negative solutions assuming $\sin(2 \beta_{eff}) = 0.689$. It quotes L₊ / (L₊+ L₋) = 0.983 corresponding to a likelihood ratio of $L_{\perp}/L_{\perp} = 57.8$ in favor of the positive solution.

$(S_+ + S_-)/2 (B^0 \rightarrow D^{*-}\pi^+)$

 $S_{\pm}=-rac{2Im(\lambda_{\pm})}{1+|\lambda_{+}|^2}$ where λ_{+} and λ_{-} are defined in the $C_{\pi\pi}$ datablock above for

<u>VALUE</u> DOCUMENT ID TECN COMMENT -0.039±0.011 OUR AVERAGE ¹ BAHINIPATI BELL $e^+e^- \rightarrow \Upsilon(4S)$ 11 $-0.046\pm0.013\pm0.015$ ² AUBERT 06Y BABR $e^+e^- \rightarrow \Upsilon(4S)$ $-0.040\pm0.023\pm0.010$ 05Z BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT $-0.034\pm0.014\pm0.009$ • • • We do not use the following data for averages, fits, limits, etc. • • • $-0.039\pm0.020\pm0.013$ ³ RONGA BELL Repl. by BAHINIPATI 11 ¹ GERSHON Repl. by RONGA 06 $-0.030\pm0.028\pm0.018$ ² AUBERT 04V BABR Repl. by AUBERT 06Y $-0.068\pm0.038\pm0.020$ ¹ AUBERT $-0.063\pm0.024\pm0.014$ 04W BABR Repl. by AUBERT 05Z ² SARANGI $0.060 \pm 0.040 \pm 0.019$ BELL Repl. by RONGA 06

$(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{*-}\pi^{+})$

,			
DOCUMENT ID		TECN	COMMENT
GE			
$^{ m 1}$ bahinipati	11	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
² AUBERT	06Y	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$^{ m 1}$ AUBERT	05Z	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
owing data for ave	rages,	fits, limi	its, etc. • • •
³ RONGA	06	BELL	Repl. by BAHINIPATI 11
¹ GERSHON	05	BELL	Repl. by RONGA 06
_	04V	BABR	Repl. by AUBERT 06Y
	04W	BABR	Repl. by AUBERT 05Z
² SARANGI	04	BELL	Repl. by RONGA 06
$ed B^0 \rightarrow D^{*\pm}\pi^{7}$	F deca	ays.	
	TABAHINIPATI AUBERT AUBERT AUBERT AUBERT SANGA AUBERSHON AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT	The second state of the se	The second state of the se

²Uses fully reconstructed $B^0 \rightarrow D^{*\pm}\pi^{\mp}$ decays.

$(S_+ + S_-)/2 (B^0 \rightarrow D^- \pi^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.046 ± 0.023 OUR AVERAGE				
$-0.010\!\pm\!0.023\!\pm\!0.07$	$^{ m 1}$ AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.050 \pm 0.021 \pm 0.012$	² RONGA	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$-0.022\!\pm\!0.038\!\pm\!0.020$	¹ AUBERT	04V	BABR	Repl. by AUBERT 06Y
$-0.062\!\pm\!0.037\!\pm\!0.018$	¹ SARANGI	04	BELL	Repl. by RONGA 06

¹Uses fully reconstructed $B^0 \rightarrow D^{\pm} \pi^{\mp}$ decays.

¹Uses partially reconstructed $B^0 \rightarrow D^{*\pm} \pi^{\mp}$ decays.

 $^{^2}$ Uses fully reconstructed $B^0 o D^{*\pm} \pi^{\mp}$ decays.

³ Combines the results from fully reconstructed and partially reconstructed $D^*\pi$ events by taking weighted averages. Assumes that systematic errors from physics parameters and fit biases in the two measurements are 100% correlated.

³ Combines the results from fully reconstructed and partially reconstructed $D^*\pi$ events by taking weighted averages. Assumes that systematic errors from physics parameters and fit biases in the two measurements are 100% correlated.

² Combines the results from fully reconstructed and partially reconstructed $D\pi$ events by taking weighted averages. Assumes that systematic errors from physics parameters and fit biases in the two measurements are 100% correlated.

VALUE	DOCUMENT ID		TECN	COMMENT
-0.022±0.021 OUR AVERAGE				
$-0.033\!\pm\!0.042\!\pm\!0.012$	¹ AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.019\!\pm\!0.021\!\pm\!0.012$	² RONGA			$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$0.025\!\pm\!0.068\!\pm\!0.033$	¹ AUBERT	04V	BABR	Repl. by AUBERT 06Y
$-0.025\pm0.037\pm0.018$	¹ SARANGI	04	BELL	Repl. by RONGA 06
1 Uses fully reconstructed $R^0 \rightarrow$	$D^{\pm}\pi^{\mp}$ decays			

Uses fully reconstructed $B^0 \rightarrow D^{\pm} \pi^+$ decays.

$(S_+ + S_-)/2 (B^0 \rightarrow D^- \rho^+)$

<u>VALUE</u>		DOCUMENT ID		TECN	COMMENT
$-0.024\pm0.031\pm0.009$		¹ AUBERT	06Y	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
1	0				

¹ Uses fully reconstructed $B^{0} \rightarrow D^{-} \rho^{+}$ decays.

$(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{-} \rho^{+})$

<u>VALUE</u>		DOCUMENT ID		TECN	COMMENT
$-0.098\pm0.055\pm0.018$		$^{ m 1}$ AUBERT	06Y	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
4	^				

¹Uses fully reconstructed $B^0 \rightarrow D^- \rho^+$ decays.

$$C_{\eta_c\,K^0_S}\,(B^0\to~\eta_c\,K^0_S)$$

 ${ ext{TECN} \over ext{09K}}$ ${ ext{COMMENT} \over ext{e}^+ \, ext{e}^-
ightarrow \, \varUpsilon(4S)}$ $0.080 \pm 0.124 \pm 0.029$

$$S_{\eta_c\,K^0_S} \; (B^0 \to \; \eta_c\,K^0_S)$$

 ${ ext{TECN} \over ext{09K}}$ ${ ext{COMMENT} \over ext{e}^+ \, ext{e}^-
ightarrow \, \varUpsilon(4S)}$ DOCUMENT ID $0.925 \pm 0.160 \pm 0.057$ **AUBERT**

 $C_{c\overline{c}K(*)0}$ ($B^0 \to c\overline{c}K(*)0$)
OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

VALUE (units 10^{-2}) 0.5± 1.7 OUR EVALUATION 0.5± 1.6 OUR AVERAGE

$-\ 0.6\pm\ 1.6\pm1.2$	¹ ADACHI	12A BELL	$e^+e^ \rightarrow$	$\Upsilon(4S)$

DOCUMENT ID

$$-29$$
 $^{+53}_{-44}$ ± 6 2 AUBERT 09AU BABR $e^+e^- \rightarrow \Upsilon(4S)$ 3 AUBERT 09K BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

	1			
$-4\pm7\pm5$	⁴ SAHOO	80	BELL	Repl. by ADACHI 12A
$4.9 \pm \ 2.3 \pm 1.8$	³ AUBERT	07AY	BABR	Repl. by AUBERT 09K
$-\ 1.8\pm\ 2.1\pm1.4$	⁵ CHEN	07	BELL	Repl. by ADACHI 12A
$-\ 0.7\pm\ 4.1\pm3.3$	⁶ ABE	05 B	BELL	Repl. by CHEN 07
$5.1\pm \ 3.2\pm 1.4$	⁷ AUBERT	05F	BABR	Repl. by AUBERT 07AY
$5.1\pm 5.1\pm 2.6$	⁸ ABE	02Z	BELL	Repl. by ABE 05B
$5.3\pm\ 5.4\pm3.2$	⁹ AUBERT	02P	BABR	Repl. by AUBERT 05F

 $^{^2}$ Combines the results from fully reconstructed and partially reconstructed $D\pi$ events by taking weighted averages. Assumes that systematic errors from physics parameters and fit biases in the two measurements are 100% correlated.

$sin(2\beta)$

 $3.2 \begin{array}{c} +1.8 \\ -2.0 \end{array} \pm 0.5$

For a discussion of *CP* violation, see the review on "*CP* Violation" in the Reviews section. $\sin(2\beta)$ is a measure of the *CP*-violating amplitude in the $B_d^0 \to J/\psi(1S) K_S^0$.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

VALUE	DOCUMENT ID	TECN	COMMENT
0.679 ± 0.020 OUR EVALUATIO	N		
0.677 ± 0.020 OUR AVERAGE			
$0.667 \pm 0.023 \pm 0.012$	¹ ADACHI		$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.57 \pm 0.58 \pm 0.06$	² SATO	12 BELL	$e^+e^- ightarrow~ \varUpsilon(5S)$
$0.69\ \pm0.52\ \pm0.08$	³ AUBERT	09AU BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$
$0.687\!\pm\!0.028\!\pm\!0.012$	⁴ AUBERT	09к BABR	$e^+e^- o ~ \varUpsilon(4S)$
$1.56 \pm 0.42 \pm 0.21$	⁵ AUBERT	04R BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.79 \begin{array}{l} +0.41 \\ -0.44 \end{array}$	⁶ AFFOLDER	00c CDF	$p\overline{p}$ at $1.8~{ m TeV}$
$0.84 \ ^{+0.82}_{-1.04} \ \pm 0.16$	⁷ BARATE	00Q ALEP	$e^+e^- ightarrow Z$

⁸ ACKERSTAFF 98Z OPAL $e^+e^- \rightarrow Z$

• • We do not use the following data for averages, fits, limits, etc.

```
<sup>9</sup> SAHOO
0.72 \pm 0.09 \pm 0.03
                                                                BELL
                                                                         Repl. by ADACHI 12A
                                      <sup>4</sup> AUBERT
0.714 \pm 0.032 \pm 0.018
                                                          07AY BABR
                                                                         Repl. by AUBERT 09K
                                        CHEN
                                                                         Repl. by ADACHI 12A
0.642 \pm 0.031 \pm 0.017
                                                                BELL
                                    ^{10}\,\mathrm{ABE}
                                                          05B BELL
                                                                         Repl. by CHEN 07
0.728 \pm 0.056 \pm 0.023
                                    <sup>11</sup> AUBERT
0.722 \pm 0.040 \pm 0.023
                                                                BABR Repl. by AUBERT 07AY
                                    <sup>12</sup> ABE
                                                                         e^+e^- \rightarrow \Upsilon(4S)
0.99 \pm 0.14 \pm 0.06
                                                          02U BELL
                                    <sup>13</sup> ABE
                                                          02z BELL
                                                                         Repl. by ABE 05B
0.719 \pm 0.074 \pm 0.035
                                    <sup>14</sup> AUBERT
                                                                BABR e^+e^- \rightarrow \Upsilon(4S)
0.59 \pm 0.14 \pm 0.05
                                    <sup>15</sup> AUBERT
                                                                BABR Repl. by AUBERT 05F
0.741 \pm 0.067 \pm 0.034
                                                          02P
\begin{array}{cccc} 0.58 & +0.32 & +0.09 \\ -0.34 & -0.10 \end{array}
                                        ABASHIAN
                                                          01
                                                                BELL
                                                                         Repl. by ABE 01G
                                    16 ABE
0.99 \pm 0.14 \pm 0.06
                                                          01G BELL
                                                                          Repl. by ABE 02Z
                                        AUBERT
                                                                         Repl. by AUBERT 01B
0.34 \pm 0.20 \pm 0.05
                                                                BABR
                                    <sup>16</sup> AUBERT
0.59 \pm 0.14 \pm 0.05
                                                          01B BABR Repl. by AUBERT 02P
                                    <sup>17</sup> ABE
                                                          98U CDF
                                                                          Repl. by AFFOLDER 00C
1.8 \pm 1.1 \pm 0.3
```

 $^{^1}$ Measurement based on $B^0\to J/\psi\, K_S^0,\, B^0\to \psi(2S)\, K_S^0,\, B^0\to J/\psi\, K_L^0,$ and $B^0\to \chi_{c1}(1P)\, K_S^0$ decays.

² Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent solutions is used.

³ Measurement based on $B^0 \rightarrow c\overline{c}K^{(*)0}$ decays.

⁴Reports value of A of $B^0 \rightarrow \psi(2S) K^0$ which is equal to -C.

⁵ Reports value of A of $B^0 \rightarrow J/\psi K^0$ which is equal to -C.

⁶ Measurement based on 152×10^6 $B\overline{B}$ pairs.

⁷ Measurement based on 227×10^6 $B\overline{B}$ pairs.

⁸ Measured with both $\eta_f=\pm 1$ samples.

⁹ Measured with the high purity of $\eta_f = -1$ samples.

- 1 Measurement based on ${\it B}^0 \rightarrow {\it J/\psi}\,{\it K}^0_S,\, {\it B}^0 \rightarrow {\it \psi}(2S)\,{\it K}^0_S,\, {\it B}^0 \rightarrow {\it J/\psi}\,{\it K}^0_L,$ and ${\it B}^0 \rightarrow {\it W}(2S)\,{\it K}^0_S$ $\chi_{c1}(1P)K_S^0$ decays.
- 2 SATO 12 uses 121 fb $^{-1}$ data collected on Y(5S) resonance. Uses the " $B-\pi$ tagging" where $B\pi^+$ and $B\pi^-$ tagged $J/\psi\,K_S^0$ events are compared.
- 3 Uses Dalitz plot analysis of $B^0 \to \kappa^0 \pi^+ \pi^-$ decays and the first of two equivalent
- 4 Measurement based on $B^0 \rightarrow c\overline{c}K^{(*)0}$ decays.
- 5 Measurement in which the J/ψ decays to hadrons or to muons that do not satisfy the
- standard identification criteria. 6 AFFOLDER 00C uses about 400 $B^0 \to J/\psi(1S)\,K^0_S$ events. The production flavor of B^0 was determined using three tagging algorithms: a same-side tag, a jet-charge tag, and a soft-lepton tag.
- ⁷BARATE 00Q uses 23 candidates for $B^0 \to J/\psi(1S) K_S^0$ decays. A combination of jet-charge, vertex-charge, and same-side tagging techniques were used to determine the B^0 production flavor.
- 8 ACKERSTAFF 98Z uses 24 candidates for $B_d^0 o J/\psi(1S)\,K_S^0$ decay. A combination of jet-charge and vertex-charge techniques were used to tag the B_d^0 production flavor.
- 9 Based on $B^0 o \psi(2S) K_S^0$ decays.
- 10 Measurement based on 152×10^6 $B\overline{B}$ pairs.
- 11 Measurement based on 227 imes 10 6 $B\overline{B}$ pairs.
- 12 ABE 02U result is based on the same analysis and data sample reported in ABE 01G.
- 13 ABE 02Z result is based on 85×10^6 $B\overline{B}$ pairs.
- $^{14}\mathsf{AUBERT}$ 02N result based on the same analysis and data sample reported in AUBERT 01B.
- 15 AUBERT 02P result is based on $88 \times 10^6~B\overline{B}$ pairs.
- $^{16}\,\mathrm{First}$ observation of CP violation in B^0 meson system.
- 17 ABE 98U uses 198 \pm 17 $B_d^0 \rightarrow J/\psi(1S)\,K^0$ events. The production flavor of B^0 was determined using the same side tagging technique.

$C_{J/\psi(nS)K^0} (B^0 \rightarrow J/\psi(nS)K^0)$

'OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging rescaling procedure takes into account correlations between the measurements

aging/rescaling procedure takes into account correlations between the measurements.					
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
0.5±2.0 OUR EVALUATION	ON				
$-$ 0.9 \pm 1.7 OUR AVERAGE	Error includes scale fa	actor	of 1.1.		
$-3.8\pm3.2\pm0.5$	¹ AAIJ	15N	LHCB	<i>pp</i> at 7, 8 TeV	
$1.5 \pm 2.1 {+2.3 \atop -4.5}$	^{2,3} ADACHI	12A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$-10.4\!\pm\!5.5{+2.7\atop-4.7}$	^{3,4} ADACHI	12A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$-1.9\pm2.6^{+4.1}_{-1.7}$	^{3,5} ADACHI	12A	BELL	$e^+e^- ightarrow \gamma(4S)$	
$8.9\!\pm\!7.6\!\pm\!2.0$	⁴ AUBERT	09K	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$1.6 \pm 2.3 \pm 1.8$	AUBERT	09K	BABR	$e^+e^- \rightarrow \Upsilon(4S)$	
• • • We do not use the follo	wing data for averages	s, fits,	limits, e	etc. • • •	
$3 \pm 9 \pm 1$	⁶ AAIJ	13K	LHCB	Repl. by AAIJ 15N	
$-$ 4 ± 7 ± 5	^{3,4} SAHOO	80	BELL	Repl. by ADACHI 12A	
$-1.8\pm2.1\pm1.4$	³ CHEN	07	BELL	Repl. by ADACHI 12A	

- 1 AAIJ 15N uses 41,560 flavor-tagged $B_d\to J/\psi\,K^0_S$ events from 3 fb $^{-1}$ of integrated luminosity. Provides the correlation coefficient $\rho=0.483$ between the statistical uncertainty
- tainties of and measurements. 2 Uses $B^0 \to J/\psi \, K_S^0$ decays.
- The paper reports A, which is equal to -C.
- 4 Uses $B^0
 ightarrow \psi(2S) K_S^0$ decays.
- ⁵ Uses $B^0 \rightarrow J/\psi K_I^0$ decays.
- ⁶ AAIJ 13K uses 8200 flavor-tagged $B_d \to J/\psi K_S^0$ events from 1 fb⁻¹ of integrated luminosity. Provides the correlation coefficient $\rho=0.42$ between the statistical uncertainties of $S_{J/\psi(\rm nS)} K^0$ ($B^0 \to J/\psi(\rm nS) K^0$) and $C_{J/\psi(\rm nS)} K^0$ ($B^0 \to J/\psi(\rm nS) K^0$)

 $S_{J/\psi({\sf nS})\,{\sf K}^0}$ ($B^0\to J/\psi({\sf nS})\,{\sf K}^0$) "OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

DOCUMENT ID TECN COMMENT

0.676 ± 0.021 OUR EVALUATION

0.687 ± 0.021 OUR AVERAGE Error includes scale factor of 1.2.

$0.731 \pm 0.035 \pm 0.020$	1 AAIJ	15N	LHCB	<i>pp</i> at 7, 8 TeV
$0.670 \pm 0.029 \pm 0.013$	² ADACHI	12A	BELL	$e^+e^- ightarrow \gamma(4S)$
$0.738 \pm 0.079 \pm 0.036$	³ ADACHI	12A	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$0.642 \pm 0.047 \pm 0.021$	⁴ ADACHI	12A	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$0.57 \pm 0.58 \pm 0.06$	⁵ SATO	12	BELL	$e^+e^- ightarrow \gamma(5S)$
$0.897 \pm 0.100 \pm 0.036$	³ AUBERT			$e^+e^- ightarrow \Upsilon(4S)$
$0.666 \pm 0.031 \pm 0.013$	AUBERT	09K	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$0.79 \begin{array}{l} +0.41 \\ -0.44 \end{array}$	⁶ AFFOLDER	00 C	CDF	$p\overline{p}$ at $1.8~{ m TeV}$
$\begin{array}{ccc} 0.84 & +0.82 \\ -1.04 & \pm 0.16 \end{array}$	⁷ BARATE	00Q	ALEP	$e^+e^- ightarrow Z$
$3.2 \begin{array}{c} +1.8 \\ -2.0 \end{array} \pm 0.5$	⁸ ACKERSTAFF	98Z	OPAL	$e^+e^- o Z$

• We do not use the following data for averages, fits, limits, etc. • • •

$0.73 \pm 0.07 \pm 0.04$	⁹ AAIJ	13K	LHCB	Repl. by AAIJ 15N
$0.650 \pm 0.029 \pm 0.018$	¹⁰ SAHOO	80	BELL	Repl. by ADACHI 12A
$0.72\ \pm0.09\ \pm0.03$	³ SAHOO	80	BELL	Repl. by ADACHI 12A
$0.642 \pm 0.031 \pm 0.017$	CHEN	07	BELL	Repl. by ADACHI 12A

 $^{^1}$ AAIJ 15N uses 41,560 flavor-tagged $B_d\to J/\psi\,K^0_S$ events from 3 fb $^{-1}$ of integrated luminosity. Provides the correlation coefficient $\rho=0.483$ between the statistical uncer-

tainties of and measurements. ${}^2\text{Uses }B^0 \to J/\psi\,K^0_S \text{ decays.}$ ${}^3\text{Based on }B^0 \to \psi(2S)\,K^0_S \text{ decays.}$

 $^{^4}$ Uses $B^0
ightarrow J/\psi K_L^0$ decays.

 $^{^5}$ SATO 12 uses 121 fb $^{-1}$ data collected at $\varUpsilon(5S)$ resonance. Uses the " $B-\pi$ tagging" where $B\pi^+$ and $B\pi^-$ tagged $J/\psi K^0_S$ events are compared. ⁶ AFFOLDER 00C uses about 400 $B^0 \to J/\psi(1S) K^0_S$ events. The production flavor of

 B^0 was determined using three tagging algorithms: a same-side tag, a jet-charge tag, and a soft-lepton tag.

 7 BARATE 00Q uses 23 candidates for $B^0 \to J/\psi(1S) K_S^0$ decays. A combination of jet-charge, vertex-charge, and same-side tagging techniques were used to determine the B^0 production flavor.

 8 ACKERSTAFF 98Z uses 24 candidates for $B_d^0 o J/\psi(1S)\,K_S^0$ decay. A combination of jet-charge and vertex-charge techniques were used to tag the B_d^0 production flavor.

⁹ AAIJ 13K uses 8200 flavor-tagged $B_d \to J/\psi K_S^0$ events from 1 fb⁻¹ of integrated luminosity. Provides the correlation coefficient $\rho=0.42$ between the statistical uncertainties of $S_{J/\psi}(\rm nS)\,K^0$ ($B^0 \to J/\psi(\rm nS)\,K^0$) and $C_{J/\psi}(\rm nS)\,K^0$ ($B^0 \to J/\psi(\rm nS)\,K^0$)

measurements. 10 Combined result of CHEN 07 and SAHOO 08.

$C_{J/\psi K^{*0}} (B^0 \to J/\psi K^{*0})$

 $\frac{DOCUMENT\ ID}{1}$ $\frac{DOCUMENT\ ID}{1}$ $\frac{TECN}{1}$ $\frac{COMMENT}{1}$ $\frac{COMMENT}{1}$ $\frac{COMMENT}{1}$

 1 Based on $B^{0} \rightarrow J/\psi \, K^{*0}$, $K^{*0} \rightarrow K_{S}^{0} \, \pi^{0}$.

$S_{J/\psi \, K^{*0}} \; (B^0 \to J/\psi \, K^{*0})$

 $\frac{\textit{DOCUMENT ID}}{1,2}$ AUBERT 09K BABR $e^+e^ightarrow \varUpsilon(4S)$ VALUE $0.601 \pm 0.239 \pm 0.087$

 $C_{\chi_{c0} K_{S}^{0}} (B^{0} \rightarrow \chi_{c0} K_{S}^{0})$ NALUE

DOCUMENT ID

TECN COMMENT

1 AUBERT

$S_{\chi_{c0}K_S^0}(B^0 \rightarrow \chi_{c0}K_S^0)$

 $1 = \frac{DOCUMENT \ ID}{1} = \frac{TECN}{1} = \frac{COMMENT}{1} = \frac{1}{1} =$ $-0.69\pm0.52\pm0.08$

$C_{\chi_{c1}K_5^0} (B^0 \to \chi_{c1}K_5^0)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.06 ±0.07 OUR AVERAGE				
$0.017\!\pm\!0.083\!+\!0.026\\-0.046$	ADACHI	12A	BELL	$e^+e^- ightarrow \gamma(4S)$
$0.129 \pm 0.109 \pm 0.025$	AUBERT	09K	BABR	$e^+e^- ightarrow \Upsilon(4S)$

 $^{^{1}}$ Based on ${\it B}^{0}$ ightarrow ${\it J/\psi}\,{\it K}^{*0}$, ${\it K}^{*0}$ ightarrow ${\it K}_{\it S}^{0}\,\pi^{0}$.

²This $S_{1/3/K^{*0}}$ value has been corrected for the dilution of the $\sin(\Delta M \Delta t)$ coefficient of the \overrightarrow{CP} asymmetry by a factor of $1-R_{\parallel}$, which arises from the mixture of CP-even and CP-odd B decay amplitudes.

¹Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent solutions is used.

¹Uses Dalitz plot analysis of $B^0 \to K^0 \pi^+ \pi^-$ decays and the first of two equivalent solutions is used.

$S_{\chi_{c1}K_S^0}(B^0 \rightarrow \chi_{c1}K_S^0)$ VALUE 0.63 ±0.10 OUR AVERAGE	DOCUMENT ID	TECN COMMENT		
$0.640 \pm 0.117 \pm 0.040$	ADACHI 12A	BELL $e^+e^- \rightarrow \Upsilon(4S)$		
$0.614 \pm 0.160 \pm 0.040$		BABR $e^+e^- \rightarrow \Upsilon(4S)$		
$\sin(2\beta_{\rm eff})(B^0 \to \phi K^0)$ VALUE	DOCUMENT ID	ECN COMMENT		
0.22±0.27±0.12	AUBERT 07AX B	ABR $e^+e^- ightarrow \gamma(4S)$		
ullet $ullet$ We do not use the following	data for averages, fits	, limits, etc. • • •		
$0.50 \pm 0.25 ^{+0.07}_{-0.04}$	NUBERT 05⊤ B	ABR Repl. by AUBERT 07AX		
$^{ m 1}$ Obtained by constraining $\it C=0$).			
$\sin(2\beta_{\text{eff}})(B^0 \to \phi K_0^*(1430))$	•	TECN COMMENT		
<u>VALUE</u>		TECN COMMENT		
$0.97^{egin{array}{c} +0.03 \\ -0.52 \end{array}}$	AUBERI 08B	G BABR $e^+e^- ightarrow~\varUpsilon(4S)$		
¹ Measured using the <i>CP</i> -violation amplitude.	on phase difference Δ	ϕ_{00} between the B and \overline{B} decay		
$\sin(2\beta_{\rm eff})(B^0 \rightarrow K^+K^-K^0_S)$				
_	OOCUMENT ID T	ECN COMMENT		
$0.77 \pm 0.11^{+0.07}_{-0.04}$	AUBERT 07AX B	ABR $e^+e^- \rightarrow \Upsilon(4S)$		
ullet $ullet$ We do not use the following				
$0.55 \pm 0.22 \pm 0.12$	UBERT 05⊤ B	ABR Repl. by AUBERT 07AX		
$^{ m 1}$ Obtained by constraining $\it C=0$).			
$\sin(2\beta_{\rm eff})(B^0 \rightarrow [K_S^0 \pi^+ \pi^-]$	-(·) h ⁰)			
	D(*) · ·) DOCUMENT ID	TECN COMMENT		
0.37±0.22 OUR AVERAGE				
		BELL $e^+e^- \rightarrow \Upsilon(4S)$		
$0.29\pm0.34\pm0.06$ • • • We do not use the following		BABR $e^+e^- ightarrow \varUpsilon(4S)$		
•	•			
		BELL Repl. by VOROBYEV 16		
$^{ m 1}$ A model-independent measuren	nent uses the binned L	Dalitz plot technique.		
$\beta_{\text{eff}}(B^0 \rightarrow [K_S^0 \pi^+ \pi^-]_{D^{(*)}} h$		TECN COMMENT		
<u>VALUE</u> (°) 11.7±7.8±2.1	1 VODODVEV 16	PELL of a Transfer		
		, ,		
$^{ m 1}$ A model-independent measurement uses the binned Dalitz plot technique.				
$2eta_{ m eff}(B^0 o J/\psi ho^0)$				
VALUE (°)	DOCUMENT ID	TECN COMMENT		
$41.7 \pm 9.6 ^{+2.8}_{-6.3}$	AAIJ 15J	LHCB pp at 7, 8 TeV		

$|\lambda| (B^0 \to [K_S^0 \pi^+ \pi^-]_{D(*)} h^0)$

VALUE	DOCUMENT ID	TECN	COMMENT	
$1.01\pm0.08\pm0.02$	AUBERT	07вн BABR	$e^+e^- ightarrow \gamma(4S)$	

$\left|\sin(2\beta+\gamma)\right|$

 β (ϕ_1) and γ (ϕ_3) are angles of CKM unitarity triangle, see the review on "CP" Violation" in the Reviews section.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
>0.40	90	¹ AUBERT	06Y	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
>0.13	95	² RONGA	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
>0.07	95	² RONGA	06	BELL	$e^+e^- ightarrow \ \varUpsilon(4S)$
>0.35	90	³ AUBERT	05Z	BABR	$e^+e^- ightarrow \gamma(4S)$
>0.69	68	⁴ AUBERT	04V	BABR	$e^+e^- ightarrow \gamma(4S)$
>0.58	95	⁵ AUBERT	04W	BABR	Repl. by AUBERT 05Z

¹Uses fully reconstructed $B^0 \to D^{(*)} \pm \pi^{\mp}$ and $D^{\pm} \rho^{\mp}$ decays and some theoretical assumptions.

$2\beta + \gamma$

VALUE (°)	DOCUMENT ID	TECN	COMMENT
83±53±20	¹ AUBERT	08AC BABR	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ Used a time-dependent Dalitz-plot analysis of $B^0 \to \ D^\mp \, K^0 \, \pi^\pm$ assuming the ratio of the $b \rightarrow u$ and $b \rightarrow c$ decay amplitudes to be 0.3.

For angle $\alpha(\phi_2)$ of the CKM unitarity triangle, see the review on "CP violation" in the reviews section.

VALUE (°)	DOCUMENT ID		TECN	COMMENT
93 \pm 5 OUR AVERAGE				
93.7 ± 10.6	¹ VANHOEFER	16	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$92.4 {+\atop -}\; 6.0 \ 6.5$	¹ AUBERT	09 G	BABR	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the following	owing data for ave	rages	, fits, lin	nits, etc. • • •
84.9 ± 13.5				Repl. by VANHOEFER 16
$79~\pm~7~\pm11$				$e^+e^- o arGamma(4S)$
78.6 ± 7.3		070	BABR	$e^+e^- ightarrow \gamma(4S)$
88 ± 17	⁴ SOMOV	06	BELL	Repl. by VANHOEFER 14
100 ± 13	⁵ AUBERT,B	05 C	BABR	Repl. by AUBERT 09G
$102 \begin{array}{c} +16 \\ -12 \end{array} \pm 14$	⁶ AUBERT,B	04 R	BABR	Repl. by AUBERT,B 05C

² Combines the results from fully reconstructed and partially reconstructed $D^{(*)}\pi$ events by taking weighted averages. Assumes that systematic errors from physics parameters

and fit biases in the two measurements are 100% correlated. ³ Uses partially reconstructed $B^0 \to D^{*\pm}\pi^{\mp}$ decays and some theoretical assumptions. ⁴ Uses fully reconstructed $B^0 \to D^{(*)\pm}\pi^{\mp}$ decays and some theoretical assumptions, such as the SU(3) symmetry relation.

⁵ Combining this measurement with the results from AUBERT 04V for fully reconstructed $B^0 \to D^{(*)\pm}\pi^{\mp}$ and some theoretical assumptions, such as the SU(3) symmetry relation.

Obtained using isospin relation and selecting a solution closest to the CKM best fit average; the 90% CL allowed interval is $59^{\circ} < \phi_2$ ($\equiv \alpha$) $< 115^{\circ}$.

 5 Obtained using isospin relation and selecting a solution closest to the CKM best fit average; 90% CL allowed interval is $79^\circ < \tilde{\alpha} < 123^\circ$.

 $^{
m 6}$ Obtained from the measured $\it CP$ parameters of the longitudinal polarization by selecting the solution closest to the CKM best fit central value of $\alpha = 95^{\circ} - 98^{\circ}$.

CP VIOLATION PARAMETERS IN $B^0 \rightarrow D^0 K^{*0}$ DECAY -

The parameters r_{R0} and δ_{R0} are the magnitude ratio and strong phase difference between the amplitudes of A($B^0
ightarrow D^0 K^{*0}$) and A($B^0
ightarrow$ $\overline{D}^0 K^{*0}$). The measured observables and are defined as $x_+ = r_{R^0}$ $\cos(\delta_{B^0}~\pm~\gamma)$ and $y_{\pm}=r_{B^0}\sin(\delta_{B^0}~\pm~\gamma)$ where γ is the CKM

"OUR EVALUATION" is an average, with correlations taken into accout, obtained by the Heavy Flavor Averaging Group (HFLAV) and described at http://www.slac.stanford.edu/xorg/hflav/. It include the measurements listed below as well as the measurements listed in the "CP VIOLATION PARAMETERS IN $B^+ \rightarrow D^{(*)0} K^{(*)+}$ DECAYS" section in the B^+ listings.

$\gamma(B^0 \to D^0 K^{*0})$

VALUE (°)	DOCUMENT ID)	TECN	COMMENT
81±29 OUR AVERAGE		tor of 1	.5.	
71 ± 20	1,2 AAIJ	16Z	LHCB	pp at 7, 8 TeV
$162 \!\pm\! 56$	³ AUBERT	09 R	BABR	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 1 A model-independent binned Dalitz plot analysis of the decays $B^0 o DK^{*0}$, with $D \to K_S^0 \pi^+ \pi^-$ and $D \to K_S^0 K^+ K^-$. The results cannot be combined with the model-dependent analysis of the same dataset reported in AAIJ 16AA.

⁴ Uses Dalitz plot analysis of $D \to K_S^0 \pi^+ \pi^-$ decays coming from $B^0 \to DK^*(892)^0$ modes. Measures $r_{B^0}=0.39\pm0.13$, and $\delta_{B^0}=197^{+24}_{-20}$ degrees.

¹ Based on an isospin analysis of the $B \rightarrow \rho \rho$ system.

² Obtained using the time dependent analysis of $B^0 \to a_1(1260)^{\pm}\pi^{\mp}$ and branching fraction measurements of $B \to a_1(1260)K$ and $B \to K_1\pi$. Uses SU(3) flavor relations.

³ The angle $\alpha_{\rm eff}$ is obtained using the measured *CP* parameters of $B^0 \to a_1(1260)^\pm \pi^\mp$ and choosing one of the four solutions that is compatible with the result of SM-based

² Angle γ required to satisfy $0<\gamma<180$ degrees. ³ Uses Dalitz plot analysis of $D^0\to K_S^0\pi^+\pi^-$ decays coming from $B^0\to D^0K^{*0}$ modes. The corresponding 95% CL interval is $77^\circ<\gamma<247^\circ$. A 180 degree ambiguity is implied.

$x_+(B^0 \rightarrow DK^{*0})$

VALUE	DOCUMENT II	D	TECN	COMMENT
0.04±0.17 OUR AVERAGE				
$0.04 \pm 0.16 \pm 0.11$	¹ AAIJ	16 S	LHCB	<i>pp</i> at 7, 8 TeV
$0.05 \pm 0.35 \pm 0.02$	AAIJ	16Z	LHCB	<i>pp</i> at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.05 \pm 0.24 \pm 0.04$ 16AA LHCB Repl. by AAIJ 16Z

$x_{-}(B^0 \rightarrow DK^{*0})$

<u>VALUE</u>	<u>DOCUMENT ID</u>		<u>TECN</u>	COMMENT	
-0.16 ± 0.14 OUR AVERAGE					
$-0.02\!\pm\!0.13\!\pm\!0.14$	$^{ m 1}$ AAIJ	16 S	LHCB	<i>pp</i> at 7, 8 TeV	
$-0.31\!\pm\!0.20\!\pm\!0.04$	AAIJ	16Z	LHCB	<i>pp</i> at 7, 8 TeV	
• • • We do not use the follow	ing data for average	s, fits,	limits, e	etc. • • •	
$-0.15\pm0.14\pm0.03$	² AAIJ	16A/	LHCB	Repl. by AAIJ 16Z	

 $^{1}\, \text{Uses Dalitz plot of } B^{0} \rightarrow D\, K^{+}\, \pi^{-} \text{ with } D \rightarrow K^{+}\, K^{-} \text{, } \pi^{+}\, \pi^{-} \text{, or } K^{+}\, \pi^{-}.$

$y_{\perp}(B^0 \rightarrow DK^{*0})$

<u>VALUE</u>	<u>DOCUMENT ID</u>		TECN	<u>COMMENT</u>	_
-0.68 ± 0.22 OUR AVERAGE					
$-0.47\pm0.28\pm0.22$	$^{ m 1}$ AAIJ	16 S	LHCB	<i>pp</i> at 7, 8 TeV	
$-0.81\!\pm\!0.28\!\pm\!0.06$	AAIJ	16Z	LHCB	pp at 7, 8 TeV	
\\\/- d+ +b- f-11		- t:+-	1::	-4	

We do not use the following data for averages, fits, limits, etc.

$$-0.65^{+0.24}_{-0.23}\pm0.08$$
 2 AAIJ 16AA LHCB Repl. by AAIJ 16Z

$y_{-}(B^0 \rightarrow DK^{*0})$

VALUE	<u>DOCUMENT</u>	ID :	TECN	COMMENT
0.20 ± 0.25 OUR AVERAGE	Error includes sc	ale factor o	of 1.2.	
$-0.35\pm0.26\pm0.41$	$^{ m 1}$ AAIJ	16S l	LHCB	<i>pp</i> at 7, 8 TeV
$0.31\!\pm\!0.21\!\pm\!0.05$	AAIJ	16z l	LHCB	<i>pp</i> at 7, 8 TeV
 • • We do not use the following data for averages, fits, limits, etc. 				

16AA LHCB Repl. by AAIJ 16Z $0.25\!\pm\!0.15\!\pm\!0.06$

¹ Uses Dalitz plof of $B^0 \to DK^+\pi^-$ with $D \to K^+K^-$, $\pi^+\pi^-$, or $K^+\pi^-$.

 $^{^1}$ Uses Dalitz plof of $B^0\to DK^+\pi^-$ with $D\to K^+K^-$, $\pi^+\pi^-$, or $K^+\pi^-$. 2 Uses Dalitz plot analysis of $D\to K^0_5\pi^+\pi^-$ decays coming from $B^0\to DK^*(892)^0$

 $^{^2}$ Uses Dalitz plot analysis of $D \to K_5^0 \pi^+ \pi^-$ decays coming from $B^0 \to DK^*(892)^0$ modes.

¹ Uses Dalitz plof of $B^0 \to DK^+\pi^-$ with $D \to K^+K^-$, $\pi^+\pi^-$, or $K^+\pi^-$. ² Uses Dalitz plot analysis of $D \to K^0_S\pi^+\pi^-$ decays coming from $B^0 \to DK^*(892)^0$

² Uses Dalitz plot analysis of $D \rightarrow K_S^0 \pi^+ \pi^-$ decays coming from $B^0 \rightarrow DK^*(892)^0$

 $r_{B^0}(B^0 \rightarrow DK^{*0})$

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

$0.222^{+0.041}_{-0.045}$ OUR EVALUATION

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 0.39 ± 0.13 2 AAIJ 16AA LHCB Repl. by AAIJ 16Z

¹ Measurement is performed with $K^+\pi^-$ masses within 50 MeV of the K^{*0} mass and an absolute value of the cosine of the K^{*0} helicity angle greater than 0.4. Angle γ is required to satisfy $0<\gamma<180$ degrees.

required to satisfy $0<\gamma<180$ degrees. ² Uses Dalitz plot analysis of $D\to K^0_S\pi^+\pi^-$ decays coming from $B^0\to DK^*(892)^0$ modes

 $\delta_{R0}(B^0 \to DK^{*0})$

VALUE (°) DOCUMENT ID TECN COMMENT

194⁺²⁷₋₂₂ OUR EVALUATION

204+21 1 AAIJ 16Z LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

 197^{+24}_{-20} 2 AAIJ 16AA LHCB Repl. by AAIJ 16Z

T and CPT VIOLATION PARAMETERS

Measured values of the *T*-, *CP*-, and *CPT*-asymmetry parameters, defined as the differences in $S^{\pm}_{\alpha,\beta}$ and $C^{\pm}_{\alpha,\beta}$ between symmetry-transformed transitions. The indices $\alpha=\ell^+$, ℓ^- and $\beta=K^0_S$, K^0_L stand for reconstructed the flavor final state and the *CP* final states from $\Upsilon(4S)$ decay. The sign \pm indicates whether the decay to the flavor final state α occurs before or after the decay to the *CP* final state.

Alternatively, violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B^0 mixing. Results are expressed in terms of the standard model extension parameter Δa , which describes the difference between the couplings of the valence quarks within B^0 meson with the Lorentz-violating fields.

$$\Delta S_T^+ (S_{\ell^-,K_S^0}^- - S_{\ell^+,K_S^0}^+)$$

<u>VALUE</u> −1.37±0.14±0.06 DOCUMENT IDTECNCOMMENTLEES12W BABR $e^+e^- oup \Upsilon(4S)$

$$\Delta S_T^- (S_{\ell^-, K_S^0}^+ - S_{\ell^+, K_S^0}^-)$$

VALUE

 $1.17 \pm 0.18 \pm 0.11$

DOCUMENT ID TECN COMMENT

LEES 12W BABR $e^+e^- o again (4S)$

HTTP://PDG.LBL.GOV

Page 219

¹ Measurement is performed with $K^+\pi^-$ masses within 50 MeV of the K^{*0} mass and an absolute value of the cosine of the K^{*0} helicity angle greater than 0.4. Angle γ is required to satisfy $0<\gamma<180$ degrees.

² Uses Dalitz plot analysis of $D \to K_S^0 \pi^+ \pi^-$ decays coming from $B^0 \to DK^*(892)^0$ modes

$\Delta C_T^+ (C_{\ell^-, K_S^0}^ C_{\ell^+, K_S^0}^+)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
0.10±0.14±0.08	LEES				
					,
$\Delta C_T^- (C_{\ell^-, K_S^0}^+ - C_{\ell^+, K_S^0}^-)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
0.04±0.14±0.08	LEES	12W	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
AS+ (S+ S+)					
$\Delta S_{CP}^+ (S_{\ell^-, K_S^0}^+ - S_{\ell^+, K_S^0}^+)$					
VALUE	DOCUMENT ID				
$-1.30\pm0.11\pm0.07$	LEES	12W	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Delta S_{ab}^{-} (S^{-} - S^{-})$					
$\Delta S_{CP}^{-} (S_{\ell^{-},K_{S}^{0}}^{-} - S_{\ell^{+},K_{S}^{0}}^{-})$					
VALUE	DOCUMENT ID				
$1.33 \pm 0.12 \pm 0.06$	LEES	12W	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
ΔC_{ab}^+ (C ⁺ α - C ⁺ α)					
$\Delta C_{CP}^+ (C_{\ell^-, K_S^0}^+ - C_{\ell^+, K_S^0}^+)$					
VALUE	DOCUMENT ID				
$0.07 \pm 0.09 \pm 0.03$	LEES	12W	BABK	$e^+e^- \rightarrow$	1 (45)
$\Delta C_{CP}^{-} (C_{\ell^{-}, K_{S}^{0}}^{-} - C_{\ell^{+}, K_{S}^{0}}^{-})$					
-	DOCUMENT ID		TECN	COMMENT	
<u>VALUE</u> 0.08±0.10±0.04	DOCUMENT ID LEES			$e^+e^- \rightarrow$	
0.00 ± 0.10 ± 0.04	LLLS	1200	DADIN	e • e →	7 (43)
$\Delta S_{CPT}^{+} (S_{\ell^{+}, K_{S}^{0}}^{-} - S_{\ell^{+}, K_{S}^{0}}^{+})$					
VALUE	DOCUMENT ID		TECN	COMMENT	
0.16±0.21±0.09				$e^+e^- \rightarrow$	
					(10)
$\Delta S_{CPT}^{-} (S_{\ell^{+}, K_{S}^{0}}^{+} - S_{\ell^{+}, K_{S}^{0}}^{-})$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$-0.03\pm0.13\pm0.06$	LEES				
					` ,
$\Delta C_{CPT}^+ (C_{\ell^+,K_5^0}^ C_{\ell^+,K_5^0}^+)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
0.14±0.15±0.07	LEES				
A C - 1 C + C - \					
$\Delta C_{CPT}^{-} (C_{\ell^{+}, K_{S}^{0}}^{+} - C_{\ell^{+}, K_{S}^{0}}^{-})$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.03 \pm 0.12 \pm 0.08$	LEES	12W	BABR	e^+e^-	$\Upsilon(4S)$

Δa_{\parallel} CPT parameter in B^0 mixing

<i>VALUE</i> (10 ⁻¹⁵ GeV)	DOCUMENT ID		TECN	COMMENT
$-0.10\pm0.82\pm0.54$	¹ AAIJ	16E	LHCB	<i>pp</i> at 7, 8 TeV
1 Uses $B^0 ightarrow \ J/\psi K^0_{oldsymbol{S}}$ decays.				

Δa_{\perp} CPT parameter in B^0 mixing

$VALUE~(10^{-13}~{ m GeV})$	DOCUMENT ID		TECN	COMMENT
$-0.20\pm0.22\pm0.04$	¹ AAIJ	16E	LHCB	<i>pp</i> at 7, 8 TeV
1 Uses $B^0 ightarrow J/\psi K^0_{S}$ decays.				

Δa_X CPT parameter in B^0 mixing

$VALUE~(10^{-15}~{ m GeV})$	DOCUMENT ID		TECN	COMMENT
$+1.97\pm1.30\pm0.29$	¹ AAIJ	16E	LHCB	<i>pp</i> at 7, 8 TeV
1 Uses $B^0 ightarrow \ J/\psi K^0_{S}$ decays.				

Δa_Y CPT parameter in B^0 mixing

<i>VALUE</i> (10 ⁻¹⁵ GeV)	DOCUMENT ID		TECN	COMMENT
$+0.44\pm1.26\pm0.29$	¹ AAIJ	16E	LHCB	<i>pp</i> at 7, 8 TeV
1 Uses $B^0 ightarrow \ J/\psi K_S^0$ decays.				

$B^0 o D^{*-} \ell^+ \nu_\ell$ FORM FACTORS

 R_1 (form factor ratio $\sim V/A_1$)

± `	' 1'			
<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
1.41 ± 0.04 OUR AVERAGE				
$1.401 \pm 0.034 \pm 0.018$	$^{ m 1}$ DUNGEL	10	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$1.56 \pm 0.07 \pm 0.15$	AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.18 \pm 0.30 \pm 0.12$	DUBOSCQ	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the follow	ing data for average	s, fits,	limits, e	etc. • • •
$1.429 \pm 0.061 \pm 0.044$	AUBERT	08R	BABR	Repl. by AUBERT 09A
$1.396 \pm 0.060 \pm 0.044$	AUBERT,B	06Z	BABR	Repl. by AUBERT 08R
111 6.11	- e+		`	

¹ Uses fully reconstructed $D^{*-}\ell^+\nu$ events ($\ell=e$ or μ).

 R_2 (form factor ratio $\sim A_2/A_1$)

2 \	Z' I'			
VALUE	DOCUMENT ID	TEC	N COMMENT	
0.85 ± 0.05 OUR AVERAGE	Error includes scale	factor of 1	1.9.	
$0.864 \pm 0.024 \pm 0.008$	$^{ m 1}$ DUNGEL	10 BEI	L $e^+e^- o arGamma(4S)$	
$0.66 \pm 0.05 \pm 0.09$	AUBERT	09A BAI	BR $e^+e^- ightarrow~ \varUpsilon(4S)$	
$0.71\ \pm0.22\ \pm0.07$	DUBOSCQ	96 CLE	$e^+e^- ightarrow~ \varUpsilon(4S)$	
• • • We do not use the following data for averages, fits, limits, etc. • • •				
$0.827 \pm 0.038 \pm 0.022$	AUBERT	08R BAI	BR Repl. by AUBERT 09A	
$0.885 \pm 0.040 \pm 0.026$	AUBERT,B	06z BAI	BR Repl. by AUBERT 08R	
1 Uses fully reconstructed D^{*}	$e^{-\ell}\ell^+ u$ events ($\ell=e$	or μ).		

 $ho_{A_1}^2$ (form factor slope)

VALUE	DOCUMENT ID		TECN	COMMENT
1.204 ± 0.031 OUR AVERAGE				
$1.214 \pm 0.034 \pm 0.009$	$^{ m 1}$ DUNGEL	10	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.22 \pm 0.02 \pm 0.07$	AUBERT	09A	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.91\ \pm 0.15\ \pm 0.06$	DUBOSCQ	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	data for averages	, fits,	limits, e	etc. • • •
$1.191 \pm 0.048 \pm 0.028$	AUBERT	08 R	BABR	Repl. by AUBERT 09A
$1.145 \pm 0.059 \pm 0.046$	AUBERT,B	06Z	BABR	Repl. by AUBERT 08R
1 Uses fully reconstructed $\mathit{D^{*-}}\ell^{-1}$	$^- u$ events ($\ell=\epsilon$	or μ).	

PARTIAL BRANCHING FRACTIONS IN $B^0 ightarrow \kappa^{(*)0} \ell^+ \ell^-$

$B(B^0 \to K^{*0} e^+ e^-) (0.0009 < q^2 < 1.0 \text{ GeV}^2/c^4)$

•	, ,	-		•	
$VALUE$ (units 10^{-7})		DOCUMENT ID		TECN	COMMENT
$3.1^{+0.9}_{-0.8}^{+0.2}_{-0.3}^{\pm}0.2$		¹ AAIJ	13∪	LHCB	pp at 7 TeV

¹ The last uncertainty is due to uncertainties of B($B^0 \to J/\psi \, K^{*0}$) and B($J/\psi \to e^+ \, e^-$) branching fraction measurements.

$B(B^0 \to K^{*0} \ell^+ \ell^-)$ (0.1 < q² < 2.0 GeV²/c⁴)

VALUE (units 10⁻⁷) DOCUMENT ID TECN COMMENT

1.24 $^{+0.23}_{-0.27}$ **OUR AVERAGE** Error includes scale factor of 1.6.

 $1.14 \pm 0.11 ^{+0.11}_{-0.15}$ AAIJ 13Y LHCB pp at 7 TeV, $K^{*0} \mu^+ \mu^-$

 $1.80 \pm 0.36 \pm 0.11$ AALTONEN 11AI CDF $p \overline{p}$ at 1.96 TeV

• • We do not use the following data for averages, fits, limits, etc.

 $0.48^{\ +\ 0.14}_{\ -\ 0.12}\pm 0.04$ CHATRCHYAN 13BL CMS $\ pp$ at 7 TeV

 $1.16 \pm 0.23 \pm 0.11$ AAIJ 12U LHCB Repl. by AAIJ 13Y

$B(B^0 \to K^{*0} \ell^+ \ell^-)$ (2.0 < q² < 4.3 GeV²/c⁴)

VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
0.76 ±0.07 OUR AVERAGE				
$0.759 \pm 0.115 \pm 0.046$	KHACHATRY			
$0.69\ \pm0.07\ \pm0.09$	AAIJ	13Y	LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$0.87 \pm 0.16 \pm 0.07$	CHATRCHYAN	1 3 BL	CMS	pp at 7 TeV
$0.84 \pm 0.28 \pm 0.06$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use the following	data for averag	es, fit	s, limits	, etc. • • •
$0.78 \pm 0.21 \pm 0.05$	AAIJ	12 U	LHCB	Repl. by AAIJ 13Y

 $^{^{1}\,\}text{CHATRCHYAN}$ 13BL uses, for this bin, $1.0 < \mathsf{q}^{2} < 2.0 \,\, \text{GeV}^{2}/c^{4}.$

$B(B^0 \to K^{*0} \ell^+ \ell^-)$ (4.3 < q² < 8.68 GeV²/c⁴)

VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
1.87±0.21 OUR AVERAGE				
$2.15 \pm 0.18 ^{+0.22}_{-0.28}$	AAIJ	13Y	LHCB	$ ho ho$ at 7 TeV, $K^{*0} \mu^+ \mu^-$
$1.62 \pm 0.31 \pm 0.18$	CHATRCHYAN	13 BL	CMS	pp at 7 TeV
$1.73 \pm 0.43 \pm 0.15$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use the following	data for averag	es, fit	s, limits	, etc. • • •
$3.02\pm0.35\pm0.22$	AAIJ	12 U	LHCB	Repl. by AAIJ 13Y

$B(B^0 \to K^{*0} \ell^+ \ell^-)$ (10.09 < q² < 12.86 GeV²/c⁴)

$VALUE$ (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
1.49 ± 0.15 OUR AVERAGE	Error includes scale fac	ctor of 1.3.	See the ideogram below.
$1.72 \pm 0.11 \pm 0.14$	KHACHATRY16	D CMS	pp at 8 TeV
$1.19\!\pm\!0.11 \! \begin{array}{l} +0.14 \\[-4pt] -0.17\end{array}$	AAIJ 13	BY LHCB	pp at 7 TeV, $K^{*0}\mu^+\mu^-$
$1.50 \pm 0.25 \pm 0.25$	CHATRCHYAN 13	BBL CMS	pp at 7 TeV
$1.77 \pm 0.36 \pm 0.12$	AALTONEN 1	LAI CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use the follo	owing data for averages	, fits, limits	s, etc. • • •
$1.52 \!\pm\! 0.25 \!\pm\! 0.19$	AAIJ 12	2U LHCB	Repl. by AAIJ 13Y

WEIGHTED AVERAGE 1.49±0.15 (Error scaled by 1.3)

 ${\sf B}({\it B}^0 \to \ {\it K}^{*0} \, \ell^+ \, \ell^-) \ (10.09 < {\sf q}^2 < 12.86 \ {\sf GeV}^2/c^4) \ ({\sf units} \ 10^{-7})$

$B(B^0 \to K^{*0} \ell^+ \ell^-)$ (14.18 < q² < 16.0 GeV²/c⁴)

$B(B^0\to K^{*0}\ell^+\ell^-)\ (14.18)$	$3 < d_{-} < 10.0$	/	,	
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
1.09±0.10 OUR AVERAGE Er				
$1.22 \pm 0.11 \pm 0.09$	KHACHATRY			pp at 8 TeV
$1.02 \pm 0.11 {+0.11 \atop -0.15}$	AAIJ	13Y L	-HCB	$ ho ho$ at 7 TeV, $K^{st 0} \mu^+ \mu^-$
$0.84^{+0.16}_{-0.15}\pm0.09$	CHATRCHYAI			•
$1.34 \pm 0.26 \pm 0.08$ • • • We do not use the following	AALTONEN			$p\overline{p}$ at 1.96 TeV
$1.15\pm0.20\pm0.09$	AAIJ	_		Repl. by AAIJ 13Y
$B(B^0 \to K^{*0}\ell^+\ell^-)$ (16.0)	-	•	•	
<u>VALUE (units 10⁻⁷)</u> 1.27±0.09 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT
$1.26 \pm 0.09 \pm 0.09$	KHACHATRY	16 D (CMS	pp at 8 TeV
$1.23\pm0.12^{igoplus 0.15}_{-0.18}$	AAIJ			pp at 7 TeV, $K^{*0}\mu^+\mu^-$
-0.16 $1.56 \pm 0.18 \pm 0.15$	CHATRCHYAI			
$0.97\!\pm\!0.26\!\pm\!0.07$	AALTONEN			<i>p</i> p at 1.96 TeV
• • • We do not use the following	ng data for avera	ges, fits	, limits,	etc. • • •
$1.50\pm0.24\pm0.15$	AAIJ	12∪ l	_HCB	Repl. by AAIJ 13Y
	$(15.0 < q^2 <$	19.0 G	GeV ² /c	⁴)
$B(B^0 \to K^*(892)^0 \ell^+ \ell^-)$		_	TECN	COMMENT
	DOCUMENT I	D	TECIV	COMMENT
	<u>DOCUMENT I</u> AAIJ			<i>pp</i> at 7, 8 TeV
$ \frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13} $	AAIJ	16A	o LHC B	
$\frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13}$ $B(B^0 \to K^{*0} \ell^+ \ell^-) \text{ (1.0 < 0.05)}$	AAIJ < q ² < 6.0 Ge\	16A(/²/c⁴)	o LHCB	<i>pp</i> at 7, 8 TeV
$ \frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13} $	AAIJ	16A(/²/c⁴)	o LHCB	<i>pp</i> at 7, 8 TeV
$\frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13}$ $B(B^0 \to K^{*0} \ell^+ \ell^-) \text{ (1.0 < VALUE (units } 10^{-7})}$	AAIJ < q ² < 6.0 Ge\	16A(/²/c⁴)	O LHCB	<i>pp</i> at 7, 8 TeV
$\frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13}$ $B(B^0 \rightarrow K^{*0} \ell^+ \ell^-) \text{ (1.0 } < \frac{VALUE \text{ (units } 10^{-7})}{1.87 \pm 0.12 \text{ OUR AVERAGE}}$	AAIJ < q ² < 6.0 Ge\ DOCUMENT I	16A(O LHCB TECN D LHCB	pp at 7, 8 TeV COMMENT pp at 7, 8 TeV
$\frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13}$ $B(B^0 \rightarrow K^{*0}\ell^+\ell^-) \text{ (1.0 } < 0.05 \pm 0.12)$ $\frac{VALUE \text{ (units } 10^{-7})}{1.87 \pm 0.12 \text{ OUR AVERAGE}}$ $1.92 + 0.10 \pm 0.05 \pm 0.13$ 1.90 ± 0.20 $1.42 \pm 0.41 \pm 0.12$	AAIJ < q ² < 6.0 GeN DOCUMENT I AAIJ KHACHATE AALTONEN	16A0 16A0 16A0 16A0 RY16D 11A0	TECN CMS CDF	pp at 7, 8 TeV COMMENT pp at 7, 8 TeV pp at 7, 8 TeV pp at 1.96 TeV
$ \frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13} $ $ B(B^0 \rightarrow K^{*0} \ell^+ \ell^-) \text{ (1.0 } < \frac{VALUE \text{ (units } 10^{-7})}{1.87 \pm 0.12 \text{ OUR AVERAGE}} $ $ 1.92 + 0.10 \pm 0.05 \pm 0.13 $ $ 1.90 \pm 0.20 $ $ 1.42 \pm 0.41 \pm 0.12 $ • • • We do not use the following the solution of the s	AAIJ < q ² < 6.0 GeN DOCUMENT I AAIJ KHACHATE AALTONEN	16A0 16A0 16A0 16A0 RY16D 11A0	TECN CMS CDF	pp at 7, 8 TeV COMMENT pp at 7, 8 TeV pp at 7, 8 TeV pp at 1.96 TeV
$\frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13}$ $B(B^0 \rightarrow K^{*0}\ell^+\ell^-) \text{ (1.0 } < 0.05 \pm 0.12)$ $\frac{VALUE \text{ (units } 10^{-7})}{1.87 \pm 0.12 \text{ OUR AVERAGE}}$ $1.92 + 0.10 \pm 0.05 \pm 0.13$ 1.90 ± 0.20 $1.42 \pm 0.41 \pm 0.12$	AAIJ < q ² < 6.0 GeN DOCUMENT I AAIJ KHACHATE AALTONEN	16A0 16A0 16A0 RY16D 11A1 ges, fits	TECN TECN CMS CDF , limits,	pp at 7, 8 TeV COMMENT pp at 7, 8 TeV pp at 7, 8 TeV pp at 1.96 TeV
$ \frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13} $ $ B(B^0 \rightarrow K^{*0} \ell^+ \ell^-) \text{ (1.0 } < \frac{VALUE \text{ (units } 10^{-7})}{1.87 \pm 0.12 \text{ OUR AVERAGE}} $ $ 1.92 + 0.10 \pm 0.05 \pm 0.13 $ $ 1.90 \pm 0.20 $ $ 1.42 \pm 0.41 \pm 0.12 $ • • • We do not use the following the solution of the s	AAIJ AAIJ AAIJ KHACHATE AALTONEN ng data for avera	16A0 16A0 16A0 16A0 RY16D 1 11A1 ges, fits 13Y	TECN TECN CMS CDF Ilimits,	pp at 7, 8 TeV COMMENT pp at 7, 8 TeV pp at 7, 8 TeV pp at 1.96 TeV etc. • • • Repl. by AAIJ 16AO Repl. by KHACHA-
$ \frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13} $ $ B(B^0 \rightarrow K^{*0} \ell^+ \ell^-) \text{ (1.0 < } \frac{VALUE \text{ (units } 10^{-7})}{1.87 \pm 0.12 \text{ OUR AVERAGE}} $ $ 1.92 + 0.10 \pm 0.05 \pm 0.13 $ $ 1.90 \pm 0.20 $ $ 1.42 \pm 0.41 \pm 0.12 $ • • • We do not use the following the	AAIJ AAIJ AAIJ KHACHATE AALTONEN AAIJ AALTONEN AAIJ	16A0 16A0 16A0 16A0 RY16D 11A0 13Y (AN 13B0	TECN TECN CMS CDF Ilimits,	pp at 7, 8 TeV COMMENT pp at 7, 8 TeV pp at 7, 8 TeV pp at 1.96 TeV etc. • • • Repl. by AAIJ 16AO Repl. by KHACHA- TRYAN 16D
$\frac{VALUE \text{ (units }10^{-7})}{1.95^{+0.08}_{-0.09}\pm0.03\pm0.13}$ B($B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}$) (1.0 < \frac{VALUE \text{ (units }10^{-7})}{1.87\pm0.12 \text{ OUR AVERAGE}} 1.92 $^{+0.10}_{-0.09}\pm0.05\pm0.13$ 1.90±0.20 1.42±0.41±0.12 • • • We do not use the following 1.70±0.15 $^{+0.20}_{-0.25}$ 2.20±0.30±0.20 2.10±0.30±0.15	AAIJ AAIJ AAIJ KHACHATR AALTONEN ng data for avera AAIJ CHATRCHY AAIJ	16A0 16A0 16A0 RY16D 1 11A1 ges, fits 13Y (AN 13B) 12U	TECN CMS CDF , limits, LHCB LCMS	pp at 7, 8 TeV COMMENT pp at 7, 8 TeV pp at 7, 8 TeV pp at 1.96 TeV etc. • • • Repl. by AAIJ 16AO Repl. by KHACHA- TRYAN 16D
$ \frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13} $ $ B(B^0 \rightarrow K^{*0}\ell^+\ell^-) \text{ (1.0 } < 0.05 \pm 0.12) $ $ \frac{VALUE \text{ (units } 10^{-7})}{1.87 \pm 0.12 \text{ OUR AVERAGE}} $ $ 1.92 + 0.10 \pm 0.05 \pm 0.13 $ $ 1.90 \pm 0.20 $ $ 1.42 \pm 0.41 \pm 0.12 $ • • We do not use the following the following that the following the follo	AAIJ AAIJ AAIJ KHACHATE AALTONEN AAIJ CHATRCHY AAIJ CHATRCHY AAIJ	16A0 16A0 16A0 RY16D 11A0 13Y (AN 13B) 12U 12V 12/c4	TECN TECN CMS CDF , limits, LHCB CMS	pp at 7, 8 TeV COMMENT pp at 7, 8 TeV pp at 7, 8 TeV pp at 1.96 TeV etc. • • • Repl. by AAIJ 16AO Repl. by KHACHA- TRYAN 16D Repl. by AAIJ 13Y
$\frac{VALUE \text{ (units }10^{-7})}{1.95^{+0.08}_{-0.09}\pm0.03\pm0.13}$ B($B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}$) (1.0 < \frac{VALUE \text{ (units }10^{-7})}{1.87\pm0.12 \text{ OUR AVERAGE}} 1.92 $^{+0.10}_{-0.09}\pm0.05\pm0.13$ 1.90±0.20 1.42±0.41±0.12 • • • We do not use the following 1.70±0.15 $^{+0.20}_{-0.25}$ 2.20±0.30±0.20 2.10±0.30±0.15	AAIJ AAIJ AAIJ KHACHATE AALTONEN AAIJ CHATRCHY AAIJ CHATRCHY AAIJ CHOCUMENT I	16A0 16A0 16A0 RY16D 11A1 13Y (AN 13B1 12U 12/2/c4)	TECN TECN CMS CDF , limits, LHCB L CMS LHCB	pp at 7, 8 TeV COMMENT pp at 7, 8 TeV pp at 7, 8 TeV pp at 1.96 TeV etc. • • • Repl. by AAIJ 16AO Repl. by KHACHA- TRYAN 16D
$\frac{VALUE \text{ (units }10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13}$ $B(B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}) \text{ (1.0 } < \frac{VALUE \text{ (units }10^{-7})}{1.87 \pm 0.12 \text{ OUR AVERAGE}}$ $1.92 + 0.10 \pm 0.05 \pm 0.13$ 1.90 ± 0.20 $1.42 \pm 0.41 \pm 0.12$ • • • We do not use the following the followi	AAIJ AAIJ AAIJ KHACHATR AALTONEN AAIJ CHATRCHY AAIJ CHATRCHY AAIJ CHATRCHY AAIJ AAIJ AAIJ AAIJ	16A0 16A0 16A0 RY16D 11A1 13Y (AN 13B1 12U 12/2/c4)	TECN TECN CMS CDF , limits, LHCB L CMS LHCB	pp at 7, 8 TeV COMMENT pp at 7, 8 TeV pp at 7, 8 TeV pp at 1.96 TeV etc. • • • Repl. by AAIJ 16AO Repl. by KHACHA- TRYAN 16D Repl. by AAIJ 13Y
$\frac{VALUE \text{ (units }10^{-7})}{1.95^{+0.08}_{-0.09}\pm0.03\pm0.13}$ B($B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}$) (1.0 < $\frac{VALUE \text{ (units }10^{-7})}{1.87\pm0.12 \text{ OUR AVERAGE}}$ 1.92 $^{+0.10}_{-0.09}\pm0.05\pm0.13$ 1.90±0.20 1.42±0.41±0.12 • • • We do not use the following 1.70±0.15 $^{+0.20}_{-0.25}$ 2.20±0.30±0.20 2.10±0.30±0.15 B($B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}$) (0.0 < $\frac{VALUE \text{ (units }10^{-7})}{1.90}$	AAIJ AAIJ AAIJ KHACHATR AALTONEN AAIJ CHATRCHY AAIJ CHATRCHY AAIJ CHATRCHY AAIJ AAIJ AAIJ AAIJ	16A0 16A0 16A0 RY16D 11A1 13Y (AN 13B1 12U 12V 11A1 11A1	TECN CMS CDF , limits, LHCB L CMS LHCB	PP at 7, 8 TeV COMMENT PP at 7, 8 TeV PP at 7, 8 TeV PP at 1.96 TeV etc. • • • Repl. by AAIJ 16AO Repl. by KHACHA- TRYAN 16D Repl. by AAIJ 13Y COMMENT PP at 1.96 TeV
$ \frac{VALUE \text{ (units } 10^{-7})}{1.95 + 0.08 \pm 0.03 \pm 0.13} $ $ B(B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}) \text{ (1.0 } < 0.05 \pm 0.12) $ $ \frac{VALUE \text{ (units } 10^{-7})}{1.87 \pm 0.12 \text{ OUR AVERAGE}} $ $ 1.92 + 0.10 \pm 0.05 \pm 0.13 $ $ 1.90 \pm 0.20 $ $ 1.42 \pm 0.41 \pm 0.12 $ • • We do not use the following the following that the following the following that the following the following the following that the following that the following the followin	AAIJ AAIJ AAIJ KHACHATR AALTONEN AAIJ CHATRCHY AAIJ CHATRCHY AAIJ CHATRCHY AAIJ CHATRCHY AAIJ CHATRCHY AAIJ COUMENT II AALTONEN AALTONEN AALTONEN	16A0 16A0 16A0 RY16D 11A1 13Y (AN 13B1 12U 12V 11A1 11A1	TECN CMS CDF , limits, LHCB L CMS LHCB	PP at 7, 8 TeV COMMENT PP at 7, 8 TeV PP at 7, 8 TeV PP at 1.96 TeV etc. • • • Repl. by AAIJ 16AO Repl. by KHACHA- TRYAN 16D Repl. by AAIJ 13Y COMMENT PP at 1.96 TeV
VALUE (units 10^{-7}) 1.95 + 0.08 ± 0.03 ± 0.13 B($B^0 \rightarrow K^{*0}\ell^+\ell^-$) (1.0 < VALUE (units 10^{-7}) 1.87 ± 0.12 OUR AVERAGE 1.92 + 0.10 ± 0.05 ± 0.13 1.90 ± 0.20 1.42 ± 0.41 ± 0.12 • • We do not use the following the followin	AAIJ AAIJ AAIJ KHACHATR AALTONEN AAIJ CHATRCHY AAIJ CHATRCHY AAIJ CHATRONEN AAIJ CHATRONEN AAIJ CHATRONEN AAIJ COUMENT II AALTONEN DOCUMENT II DOCUMENT II	16A0 16A0 16A0 RY16D 11A1 13Y (AN 13B1 12U 12V 11A1 11A1	TECN TECN CMS CDF , limits, LHCB L CMS LHCB TECN TECN	PP at 7, 8 TeV COMMENT PP at 7, 8 TeV PP at 7, 8 TeV PP at 1.96 TeV etc. • • • Repl. by AAIJ 16AO Repl. by KHACHA- TRYAN 16D Repl. by AAIJ 13Y COMMENT PP at 1.96 TeV
VALUE (units 10^{-7}) 1.95 $^{+0.08}_{-0.09} \pm 0.03 \pm 0.13$ B($B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}$) (1.0 < VALUE (units 10^{-7}) 1.87 ± 0.12 OUR AVERAGE 1.92 $^{+0.10}_{-0.09} \pm 0.05 \pm 0.13$ 1.90 ± 0.20 1.42 $\pm 0.41 \pm 0.12$ • • We do not use the following 1.70 $\pm 0.15 ^{+0.20}_{-0.25}$ 2.20 $\pm 0.30 \pm 0.20$ 2.10 $\pm 0.30 \pm 0.15$ B($B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}$) (0.0 < VALUE (units 10^{-7}) 2.60 $\pm 0.45 \pm 0.17$ B($B^{0} \rightarrow K^{0}\ell^{+}\ell^{-}$) (q ² < 3.20 \text{VALUE (units 10^{-7})} 0.24 $^{+0.22}_{-0.20}$ OUR AVERAGE 0.21 $^{+0.27}_{-0.23}$	AAIJ AAIJ AAIJ KHACHATE AALTONEN AAIJ CHATRCHY AAIJ CHATRCHY AAIJ CHATRONEN AALTONEN AALTONEN AALTONEN AALTONEN AALTONEN AALTONEN AAIJ AALTONEN AAIJ	16A0 $\sqrt{2}/c^4$) D 16A0 RY16D 11A1 ges, fits 13Y $\sqrt{2}/c^4$) D 11A1	TECN CMS CDF CMS LHCB CMS LHCB CMS LHCB CMS LHCB CMS LHCB CMS LHCB	PP at 7, 8 TeV COMMENT PP at 7, 8 TeV PP at 7, 8 TeV PP at 1.96 TeV etc. • • • Repl. by AAIJ 16AO Repl. by KHACHA- TRYAN 16D Repl. by AAIJ 13Y COMMENT PP at 1.96 TeV COMMENT PP at 7 TeV
VALUE (units 10^{-7}) 1.95 + 0.08 ± 0.03 ± 0.13 B($B^0 \rightarrow K^{*0}\ell^+\ell^-$) (1.0 < VALUE (units 10^{-7}) 1.87 ± 0.12 OUR AVERAGE 1.92 + 0.10 ± 0.05 ± 0.13 1.90 ± 0.20 1.42 ± 0.41 ± 0.12 • • We do not use the following the followin	AAIJ AAIJ AAIJ KHACHATR AALTONEN AAIJ CHATRCHY AAIJ CHATRCHY AAIJ CHATRONEN AAIJ CHATRONEN AAIJ CHATRONEN AAIJ COUMENT II AALTONEN DOCUMENT II DOCUMENT II	16A0 $\sqrt{2}/c^4$) D 16A0 RY16D 11A1 ges, fits 13Y $\sqrt{2}/c^4$) D 11A1	TECN CMS CDF CMS LHCB CMS LHCB CMS LHCB CMS LHCB CMS LHCB CMS LHCB	PP at 7, 8 TeV COMMENT PP at 7, 8 TeV PP at 7, 8 TeV PP at 1.96 TeV etc. • • • Repl. by AAIJ 16AO Repl. by KHACHA- TRYAN 16D Repl. by AAIJ 13Y COMMENT PP at 1.96 TeV

Page 224

HTTP://PDG.LBL.GOV

$B(B^0 \to K^0 \ell^+ \ell^-) (2.0 < q^2)$	•	•		
VALUE (units 10 ⁻⁷)	DOCUMENT ID		TECN	COMMENT
0.24 ^{+0.35} _{-0.30} OUR AVERAGE Error	includes scale fa	ctor o	f 1.6.	
$0.07^{+0.25}_{-0.21}$	AAIJ	12AH	LHCB	pp at 7 TeV
$0.93 \pm 0.49 \pm 0.07$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^0 \to K^0 \ell^+ \ell^-) (4.3 < q^2)$	$< 8.68 \text{ GeV}^2$	/c ⁴)		
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
1.08±0.27 OUR AVERAGE				
1.23±0.31	AAIJ			pp at 7 TeV
$0.66 \pm 0.51 \pm 0.05$	AALIONEN	IIAI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^0 \to K^0 \ell^+ \ell^-) (10.09 <$	-	•	•	
VALUE (units 10 ⁻⁷)	DOCUMENT ID	<u> </u>	TECN	COMMENT
0.27±0.27 OUR AVERAGE Erro				
$0.50 {+0.22 \atop -0.19}$	AAIJ	12AH	LHCB	pp at 7 TeV
$-0.03\pm0.22\pm0.01$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^0 \to K^0 \ell^+ \ell^-)$ (14.18 <	$q^2 < 16.0 \text{ Ge}$	V ² /c ⁴	⁴)	
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
0.29 ^{+0.21} _{-0.15} OUR AVERAGE Error	includes scale fa	ctor o	f 1.8.	
$0.20^{+0.13}_{-0.09}$	AAIJ	12AH	LHCB	pp at 7 TeV
$0.73 \pm 0.26 \pm 0.06$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^0 \to K^0 \ell^+ \ell^-) (q^2 > 16)$	$0.0 \text{ GeV}^2/\text{c}^4$			
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
$0.31^{+0.16}_{-0.12}$ OUR AVERAGE				
$0.35^{+0.21}_{-0.14}$	AAIJ	12AH	LHCB	pp at 7 TeV
$0.21\!\pm\!0.18\!\pm\!0.16$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^0 \to K^0 \ell^+ \ell^-) (1.0 < q^2)$	$< 6.0 \text{ GeV}^2/$	c ⁴)		
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
VALUE (units 10 ⁻⁷) 0.92 ±0.16 OUR AVERAGE				
$0.916^{\begin{subarray}{c} +0.172 \\ -0.157 \end{subarray}} \pm 0.004$	¹ AAIJ		LHCB	<i>pp</i> at 7, 8 TeV
$0.98 \pm 0.61 \pm 0.08$	AALTONEN			$p\overline{p}$ at 1.96 TeV
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
$0.65 \begin{array}{l} +0.45 \\ -0.35 \end{array}$	AAIJ	12AH	LHCB	Repl. by AAIJ 14M
1 Uses B($B^{0} ightarrow J/\psi(1S) K^{0}) = \mu^{+} \mu^{-} as a lepton pair. Measure$				

$B(B^0 \to K^0 \ell^+ \ell^-)$ (0.0 < q² < 4.3 GeV²/c⁴)

VALUE (units 10^{-7}

 $1.27 \pm 0.62 \pm 0.10$

11AI CDF **AALTONEN** $p\overline{p}$ at 1.96 TeV

$B(B^0 \to K^0 \ell^+ \ell^-)$ (15.0 < q² < 22.0 GeV²/c⁴)

VALUE (units 10^{-7})

DOCUMENT ID TECN COMMENT

 $0.67^{+0.11}_{-0.11}\pm0.04$

¹ AAIJ

14M LHCB pp at 7, 8 TeV

¹ Uses B($B^0 \to J/\psi(1S) K^0$) = $(0.928 \pm 0.013 \pm 0.037) \times 10^{-3}$ for normalisation and $\mu^+\mu^-$ as a lepton pair.

${\rm B}(B^0 \to K_{0.2}^*(1430)^0 \mu^+ \mu^-) \ (1.10 < {\rm q}^2 < 6.00 \ {\rm GeV^2/c^4})$

VALUE (units 10^{-8})

 $4.02\pm0.44\pm0.31$

16AP LHCB pp at 7.8 TeV

 1 Measured the differential branching fraction and angular moments of the decay B^{0} ightarrow $K^{+}\pi^{-}\mu^{+}\mu^{-}$ in the $K^{+}\pi^{-}$ invariant mass range 1330 $< m(K^{+}\pi^{-}) < 1530 \text{ MeV/c}^{2}$.

²The reported value is converted from the measured d $B/\mathrm{d}q^2=(0.82\pm0.09\pm0.063)\, imes$ 10^{-8} (GeV²/c⁴)⁻¹ by multiplying by the $\Delta q^2 = 4.9$ GeV²/c⁴ range.

$F_H(B^0 \to K^0 \mu^+ \mu^-) (1.1 < q^2 < 6.0 \text{ GeV}^2/c^4)$

 F_H is a fractional contribution of (pseudo) scalar and tensor amplitudes to the decay width in the massless muon approximation.

VALUE $0.78\pm0.46\pm0.09$ DOCUMENT ID

TECN COMMENT

140 LHCB *pp* at 7, 8 TeV

$F_H(B^0 \to K^0 \mu^+ \mu^-) (15.0 < q^2 < 22.0 \text{ GeV}^2/c^4)$

 $0.34 \pm 0.25 \pm 0.03$

140 LHCB pp at 7, 8 TeV

 $^{
m 1}$ AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as half of the width of interval.

PRODUCTION ASYMMETRIES

$A_P(B^0)$

 $A_{D}(B^{0}) = [\sigma(\overline{B}^{0}) - \sigma(B^{0})] / [\sigma(\overline{B}^{0}) + \sigma(B^{0})]$

VALUE (units 10^{-2})

DOCUMENT ID

TECN COMMENT

0.1 ±0.4 OUR AVERAGE

 $0.25 \pm 0.48 \pm 0.05$

¹ AABOUD

16G ATLS pp at 7, 8 TeV

Created: 5/30/2017 17:22

 $-0.35\pm0.76\pm0.28$

² AAIJ

14BP LHCB pp at 7 TeV

- 1 Based on time-dependent analysis of $B^0 o J/\psi \, K^{*0}$ decay in kinematic range $ho_T >$ 10 GeV/c and $|\eta|$ < 2.5.
- ² Based on time-dependent analysis of $B^0 \to J/\psi K^{*0}$ and $B^0 \to D^-\pi^+$ in kinematic range 4 $< p_T < 30 \text{ GeV/c}$ and $2.5 < \eta < 4.5$.

 $^{^1}$ AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as half of the width of interval.

B⁰ REFERENCES

AAIJ	17A	PR D95 012006	R. Aaij et al.	(LHCb Collab.)
AAIJ	17G	PRL 118 081801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AABOUD	16G	JHEP 1606 081	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	16L	EPJ C76 513	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAIJ	16	JHEP 1601 012	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	16AA	JHEP 1608 137	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PRL 117 261801	R. Aaij <i>et al.</i>	(LHCb Collab.)
			3	
AAIJ		JHEP 1611 047	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	16AP	JHEP 1612 065	R. Aaij <i>et al.</i>	(LHCb)
AAIJ	16AV	EPJ C76 412	R. Aaij et al.	(LHCb Collab.)
AAIJ	16E	PRL 116 241601	R. Aaij <i>et al.</i>	(LHCb Collab.)
-				
AAIJ	16S	PR D93 112018	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	16Z	JHEP 1606 131	R. Aaij <i>et al.</i>	(LHCb Collab.)
BHARDWAJ	16	PR D93 052016	V. Bhardwaj et al.	(BELLE Collab.)
CHOBANOVA	16	PR D93 031101	V. Chobanova et al.	(BELLE Collab.)
	-			
DEL-AMO-SA		PR D93 052013	P. del Amo Sanchez et al.	(
GLATTAUER	16	PR D93 032006	R. Glattauer <i>et al.</i>	(BELLE Collab.)
HAMER	16	PR D93 032007	P. Hamer <i>et al.</i>	(BELLE Collab.)
KHACHATRY	16D	PL B753 424	V. Khachatryan et al.	`(CMS Collab.)
KING	16			
		PR D93 111101	Z. King et al.	(BELLE Collab.)
LEES	16	PRL 116 041801	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	16E	PR D94 011101	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	16H	PR D94 091101	J.P. Lees et al.	(BABAR Collab.)
	16B	PR D94 072007		`
SATO			Y. Sato et al.	(BELLE Collab.)
VANHOEFER	16	PR D93 032010	P. Vanhoefer <i>et al.</i>	(BELLE Collab.)
VOROBYEV	16	PR D94 052004	V. Vorobyev <i>et al.</i>	(BELLE Collab.)
AAIJ	15AC	JHEP 1505 019	R. Aaij <i>et al.</i>	`(LHCb Collab.)
AAIJ		JHEP 1510 053	R. Aaij <i>et al.</i>	
			J	(LHCb Collab.)
AAIJ		PRL 115 161802	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15BB	PR D92 112002	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15D	JHEP 1501 024	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15F	PRL 114 041601	R. Aaij et al.	(LHCb Collab.)
-				
AAIJ	15J	PL B742 38	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15N	PRL 115 031601	R. Aaji <i>et al.</i>	(LHCb Collab.)
AAIJ	15Q	PRL 115 111803	R. Aaij et al.	(LHCb Collab.)
AAIJ	15S	PL B743 46	R. Aaij <i>et al.</i>	(LHCb Collab.)
				`
AAIJ	15T	PL B747 468	R. Aaij et al.	(LHCb Collab.)
AAIJ	15X	PR D92 012012	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15Y	PR D92 032002	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15Z	JHEP 1504 064	R. Aaij et al.	(LHCb Collab.)
ABAZOV	15A	PRL 114 062001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABDESSALAM	15	PRL 115 121604		(BABAR and BELLE Collabs.)
BALA	15	PR D91 051101	A. Bala <i>et al.</i>	(BELLE Collab.)
CHANG	15	PRL 115 221803	YY. Chang et al.	(BELLE Collab.)
CHOI	15A	PR D91 092011	SK. Choi et al.	(BELLE Collab.)
KHACHATRY			V. Khachatryan <i>et al.</i>	(CMS and LHCb Collab.)
LEES	15	PR D91 012003	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	15A	PRL 114 081801	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	15B	PR D91 031102	J.P. Lees et al.	(BABAR Collab.)
LEES		PR D91 052002	J.P. Lees <i>et al.</i>	(BABAR Collab.)
MATVIENKO	15	PR D92 012013	D. Matvienko <i>et al.</i>	(BELLE Collab.)
PAL	15	PR D92 011101	B. Pal <i>et al.</i>	(BELLE Collab.)
WIECHCZYN	15	PR D91 032008	J. Wiechczynski et al.	(BELLE Collab.)
AAIJ		PRL 112 202001	R. Aaij <i>et al.</i>	(LHCb Collab.)
			•	`
AAIJ		JHEP 1405 069	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14AN	JHEP 1409 177	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14BM	NJP 16 123001	R. Aaij et al.	(LHCb Collab.)
AAIJ		PR D90 112002	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PL B739 218	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14E	JHEP 1404 114	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14L	JHEP 1407 140	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14M	JHEP 1406 133	R. Aaij et al.	(LHCb Collab.)
AAIJ	140	JHEP 1405 082	R. Aaij <i>et al.</i>	(LHCb Collab.)
				`
AAIJ	14R	PL B736 446	R. Aaij et al.	(LHCb Collab.)
AAIJ	14X	PR D90 012003	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14Y	PRL 112 091802	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	14P	PRL 113 242001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	14	PR D89 012002	V.M. Abazov <i>et al.</i>	(D0 Collab.)
CHILIKIN	14	PR D90 112009	K. Chilikin <i>et al.</i>	(BELLE Collab.)

CHOBANOVA	14	PR D90 012002	V. Chobanova et al.	(BELLE Collab.)
IWASHITA	14	PTEP 2014 043C01	T. Iwashita <i>et al.</i>	(BELLE Collab.)
LAI	14	PR D89 051103	YT. Lai et al.	(BELLE Collab.)
LEES	14	PR D89 051101	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	14B	PR D89 112002	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	14C	PR D89 071102	J.P. Lees <i>et al.</i>	
PDG				(BABAR Collab.)
	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG Collab.)
SANTELJ	14	JHEP 1410 165	L. Santelj <i>et al.</i>	(BELLE Collab.)
SATO	14	PR D90 072009	S. Sato et al.	(BELLE Collab.)
VANHOEFER	14	PR D89 072008	P. Vanhoefer et al.	(BELLE Collab.)
AAD	13U	PR D87 032002	G. Aad et al.	(ATLAS Collab.)
AAIJ	13	NP B867 1	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13A	NP B867 547	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AA	NP B871 403	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AC	NP B874 663	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AO	PR D87 092001	R. Aaij et al.	(LHCb Collab.)
AAIJ	13AP	PR D87 092007	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AQ	PR D87 112009	R. Aaij et al.	(LHCb Collab.)
AAIJ	-	PR D88 052002	R. Aaij et al.	(LHCb Collab.)
AAIJ		PRL 110 211801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PRL 110 221601	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13B	PRL 110 021801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PRL 111 101805	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ			•	`
-		PRL 111 141801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		JHEP 1310 183	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		JHEP 1310 143	R. Aaij et al.	(LHCb Collab.)
AAIJ		JHEP 1310 005	R. Aaij et al.	(LHCb Collab.)
AAIJ		PR D88 072005	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		EPJ C73 2655	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13E	PRL 110 031801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13F	PL B719 318	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13K	PL B721 24	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13L	JHEP 1303 067	R. Aaij et al.	(LHCb Collab.)
AAIJ	13M	PR D87 052001	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13P	JHEP 1304 001	R. Aaij et al.	(LHCb Collab.)
AAIJ	13U	JHEP 1305 159	R. Aaij et al.	(LHCb Collab.)
AAIJ	13Y	JHEP 1308 131	R. Aaij et al.	(LHCb Collab.)
AAIJ	13Z	JHEP 1309 006	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	13F	PR D87 072003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
		PRL 111 101804	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN			S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHILIKIN	1301	PR D88 074026	K. Chilikin <i>et al.</i>	(BELLE Collab.)
DALSENO	13	PR D88 092003	J. Dalseno <i>et al.</i>	(BELLE Collab.)
DUH	13	PR D87 031103	Y. T. Duh et al.	(BELLE Collab.)
GAUR	13	PR D87 091101	V. Gaur et al.	(BELLE Collab.)
LEES	13D	PR D87 052009	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13H	PR D87 092004	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13I	PR D87 112005	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13J	PR D88 012003	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13M	PR D88 032012	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13N	PRL 111 101802	J.P. Lees <i>et al.</i>	(BABAR Collab.)
Also		PRL 111 159901(errat.)	J.P. Lees <i>et al.</i>	(BABAR Collab.)
Also		PR D93 032001	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LUTZ	13	PR D87 111103	O. Lutz et al.	(BELLE Collab.)
PRIM	13	PR D88 072004	M. Prim et al.	(BELLE Collab.)
SIBIDANOV	13	PR D88 032005	A. Sibidanov et al.	(BELLE Collab.)
AAIJ	12A	PL B708 55	R. Aaij et al.	(LHCb Collab.)
AAIJ		JHEP 1207 133	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PRL 109 131801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		JHEP 1210 037	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PR D86 112005	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12AX	PL B708 241	R. Aaij et al.	(LHCb Collab.)
			•	
AAIJ	121	PL B709 177	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12L	EPJ C72 2118	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12T	PRL 108 161801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12U	PRL 108 181806	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12V	PRL 108 201601	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12W	PRL 108 231801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	12L	PRL 108 211803	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV		PR D86 072009	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	12U	PR D85 112003	V.M. Abazov et al.	(D0 Collab.)

ADACHI		BB1 444 4-444		(5-11- 6 11 1)
ADACIII	12A	PRL 108 171802	I. Adachi <i>et al.</i>	(BELLE Collab.)
CHANG	12	PR D85 091102	MC. Chang et al.	(BELLE Collab.)
CHATRCHYAN	12A	JHEP 1204 033	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
DALSENO	12	PR D86 092012	J. Dalseno <i>et al.</i>	(BELLE Collab.)
DEL-AMO-SA	12	PR D85 092017	P. del Amo Sanchez et al.	(BABAR Collab.)
				`. :
HIGUCHI	12	PR D85 071105	T. Higuchi <i>et al.</i>	(BELLE Collab.)
HOI	12	PRL 108 031801	CT. Hoi et al.	(BELLE Collab.)
HSU	12	PR D86 032002	CL. Hsu <i>et al.</i>	(BELLE Collab.)
KIM	12A	PR D86 031101	J.H. Kim <i>et al.</i>	(BELLE Collab.)
KRONENBIT	12	PR D86 071103	B. Kronenbitter et al.	(BELLE Collab.)
				. `
LEES	12AA	PR D86 092004	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12AF	PR D86 112006	J.P. Lees et al.	(BABAR Collab.)
LEES	12B	PR D85 052003	J.P. Lees et al.	(BABAR Collab.)
				` '
LEES	12D	PRL 109 101802	J.P. Lees <i>et al.</i>	(BABAR Collab.)
Also		PR D88 072012	J.P. Lees et al.	(BABAR Collab.)
	101			1
LEES	12I	PR D85 054023	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12K	PR D85 072005	J.P. Lees et al.	(BABAR Collab.)
LEES	120	PR D85 112010	J.P. Lees et al.	(BABAR Collab.)
				1
LEES	12T	PR D86 051105	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12W	PRL 109 211801	J.P. Lees et al.	(BABAR Collab.)
NEGISHI	12	PR D86 011101	K. Negishi <i>et al.</i>	(BELLE Collab.)
				(BLLLL Collab.)
PDG	12	PR D86 010001	J. Beringer <i>et al.</i>	(PDG Collab.)
ROHRKEN	12	PR D85 091106	M. Rohrken et al.	(BELLE Collab.)
				(DELLE CILL)
SATO	12		Y. Sato <i>et al.</i>	(BELLE Collab.)
AAIJ	11B	PL B699 330	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	11E	PR D84 092001	R. Aaij <i>et al.</i>	(LHCb Collab.)
	111	TR D04 092001	N. Adij et al.	
Also		PR D85 039904 (errat.)	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	11F	PRL 107 211801	R. Aaij et al.	(LHCb Collab.)
AALTONEN	11	PRL 106 121804	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11AG	PRL 107 191801	T. Aaltonen et al.	(CDF Collab.)
Also		PRL 107 239903 (errat.)	T Aaltonen et al	(CDF Collab.)
	11 1			
AALTONEN		PRL 107 201802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11L	PRL 106 161801	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	11N		T. Aaltonen et al.	(CDF Collab.)
				`
ABAZOV	11U	PR D84 052007	V.M. Abazov <i>et al.</i>	(D0 Collab.)
AUSHEV	11	PR D83 051102	T. Aushev et al.	(BELLE Collab.)
BAHINIPATI	11	PR D84 021101	S. Bahinipati <i>et al.</i>	(BELLE Collab.)
DAHIMIFAH	TT	FN D04 021101	3. Dannipati et al.	
DILLADDIAGAL		DDI 407 004000		` '
BHARDWAJ	11	PRL 107 091803	V. Bhardwaj <i>et al.</i>	(BELLE Collab.)
				(BELLE Collab.)
CHATRCHYAN	11T	PRL 107 191802	S. Chatrchyan et al.	(BELLE Collab.) (CMS Collab.)
CHATRCHYAN CHOI	11T 11	PRL 107 191802 PR D84 052004	S. Chatrchyan <i>et al.</i> SK. Choi <i>et al.</i>	(BELLE Collab.) (CMS Collab.) (BELLE Collab.)
CHATRCHYAN	11T 11	PRL 107 191802	S. Chatrchyan et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.)
CHATRCHYAN CHOI DEL-AMO-SA	11T 11 .11A	PRL 107 191802 PR D84 052004 PR D83 032006	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA	11T 11 11A 11B	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA	11T 11 11A 11B 11C	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA	11T 11 11A 11B 11C	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA	11T 11 . 11A . 11B . 11C . 11F	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA	11T 11 . 11A . 11B . 11C . 11F . 11K	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 091101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA	11T 11 . 11A . 11B . 11C . 11F	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 091101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA	11T 11 . 11A . 11B . 11C . 11F . 11K	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. H. Ha et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES	11T 11 . 11A . 11B . 11C . 11F . 11K . 11	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101 PR D83 112010	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. H. del Amo Sanchez et al. H. Ha et al. J.P. Lees et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES	11T 11 11A 11B 11C 11F 11K 11 11 11	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052001 PR D83 052011 PR D83 091101 PR D83 071101 PR D83 112010 PR D84 012001	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. J.P. Lees et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES	11T 11 . 11A . 11B . 11C . 11F . 11K . 11	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101 PR D83 112010	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. H. del Amo Sanchez et al. H. Ha et al. J.P. Lees et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES	11T 11 11A 11B 11C 11F 11K 11 11 11 11A 11F	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES	11T 11 11A 11B 11C 11F 11K 11 11 11	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D84 112007	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. H. Ha et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also	11T 11 11A 11B 11C 11F 11K 11 11 11 11A 11F 11M	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D87 039901 (errat.)	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. H. Ha et al. J.P. Lees et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES	11T 11 11A 11B 11C 11F 11K 11 11 11 11A 11F	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D84 112007	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. H. Ha et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO	11T 11 11A 11B 11C 11F 11K 11 11 11A 11F 11M	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D84 112007 PR D87 039901 (errat.) PR D84 071101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. H. Ha et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al. H. Sahoo et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT	11T 11 11A 11B 11C 11F 11K 11 11 11A 11F 11M	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D84 112007 PR D87 039901 (errat.) PR D84 071101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. H. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT	11T 11 11A 11B 11C 11F 11K 11 11 11A 11F 11M 11A 10 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052001 PR D83 052011 PR D83 091101 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D84 112007 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. H. del Amo Sanchez et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al. H. Sahoo et al. B. Aubert et al. B. Aubert et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT	11T 11 11A 11B 11C 11F 11K 11 11 11A 11F 11M	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D84 112007 PR D87 039901 (errat.) PR D84 071101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. H. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT	11T 11 11A 11B 11C 11F 11K 11 11 11A 11F 11M 11A 10 10D 10H	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052001 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. AUBERT et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUSHEV	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10 10D 10H 10	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 0520011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D87 039901 (errat.) PR D84 071101 PR D84 071101 PR D84 071101 PR D87 039901 (errat.) PR D84 071101 PR D84 071101 PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. AUBERT et al. T. Aushev et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUSHEV CHIANG	11T 11 11A 11B 11C 11F 11K 11 11 11A 11F 11M 11A 10 10D 10D 10 10	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 071101 PR D84 012001 PR D84 071102 PR D84 112007 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. AUBERT et al. T. Aushev et al. CC. Chiang et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUSHEV	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10 10D 10H 10	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 0520011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D87 039901 (errat.) PR D84 071101 PR D84 071101 PR D84 071101 PR D87 039901 (errat.) PR D84 071101 PR D84 071101 PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. AUBERT et al. T. Aushev et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUSHEV CHIANG DAS	11T 11 11A 11B 11C 11F 11K 11 11 11A 11F 11M 11A 10 10D 10D 10 10	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D87 039901 (errat.) PR D84 071101 PR D84 071101 PR D84 071101 PR D84 071101 PR D87 039901 (errat.) PR D87 039901 PR D88 071101 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101 PR D81 071101 PR D82 051103	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. T. Aushev et al. CC. Chiang et al. A. Das et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA	11T 11 11A 11B 11C 11F 11K 11 11 11A 11F 11M 11A 10 10D 10D 10 10 10	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101 PR D84 112010 PR D84 071102 PR D84 112007 PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101 PR D82 051103 PR D82 011502	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CC. Chiang et al. A. Das et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA DEL-AMO-SA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11A 10 10D 10H 10 10 10 10A 10B	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 012007 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 071101 PR D81 071101 PR D81 071101 PR D81 071101 PR D82 031102 PR D81 071101 PR D82 051103 PR D82 011502 PR D82 011101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. H. Ha et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CC. Chiang et al. A. Das et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11A 10 10D 10H 10 10 10 10A 10B	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 091101 PR D83 071101 PR D84 112010 PR D84 071102 PR D84 112007 PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101 PR D82 051103 PR D82 011502	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CC. Chiang et al. A. Das et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10 10D 10H 10 10 10A 10B 10E	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D84 112007 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D82 051103 PR D82 011502 PR D82 011101 PR D82 031101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CC. Chiang et al. A. Das et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10D 10D 10H 10 10 10D 10A 10B 10B	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052001 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101 PR D82 051103 PR D82 011502 PR D82 011101 PR D82 031101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CC. Chiang et al. A. Das et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10D 10D 10D 10D 10D 10D 10D 10D 10D 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 071101 PR D84 012001 PR D84 012001 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 071101 PR D82 051103 PR D82 011502 PR D82 011502 PR D82 011101 PR D82 031101 PR D82 112002 PR D82 112002	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. D. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CC. Chiang et al. A. Das et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10D 10D 10H 10 10 10D 10A 10B 10B	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052001 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101 PR D82 051103 PR D82 011502 PR D82 011101 PR D82 031101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. D. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CC. Chiang et al. A. Das et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DUNGEL FUJIKAWA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10D 10D 10D 10D 10D 10D 10D 10D 10D 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 071101 PR D84 012001 PR D84 012001 PR D87 039901 (errat.) PR D84 071101 PR D85 031102 PR D86 031102 PR D87 03901 PR D88 031103 PR D80 031103 PR D81 071101 PR D82 031103 PR D82 011502 PR D82 011101 PR D82 031101 PR D82 031101 PR D82 031101 PR D82 031101 PR D82 112002 PR D82 112007 PR D81 011101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CC. Chiang et al. A. Das et al. P. del Amo Sanchez et al. W. Dungel et al. M. Fujikawa et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DUNGEL FUJIKAWA HYUN	11T 11 11A 11B 11C 11F 11K 11 11 11A 11F 11M 11A 10D 10D 10D 10D 10D 10D 10D 10D 10D 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D87 039901 (errat.) PR D84 071101 PR D84 071101 PR D84 071101 PR D84 031102 PR D84 031102 PR D81 052009 PR D82 031102 PR D81 05103 PR D82 011502 PR D82 011502 PR D82 011101 PR D82 031101 PR D82 031101 PR D82 112002 PR D82 112007 PR D81 011101 PR D82 112007 PR D81 011101 PR D82 112007 PR D81 011101 PRL 105 091801	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CC. Chiang et al. A. Das et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al. W. Dungel et al. M. Fujikawa et al. M. Fujikawa et al. H.J. Hyun et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DUNGEL FUJIKAWA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10D 10D 10D 10D 10D 10D 10D 10D 10D 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 071101 PR D84 012001 PR D84 012001 PR D87 039901 (errat.) PR D84 071101 PR D85 031102 PR D86 031102 PR D87 03901 PR D88 031103 PR D80 031103 PR D81 071101 PR D82 031103 PR D82 011502 PR D82 011101 PR D82 031101 PR D82 031101 PR D82 031101 PR D82 031101 PR D82 112002 PR D82 112007 PR D81 011101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CC. Chiang et al. A. Das et al. P. del Amo Sanchez et al. W. Dungel et al. M. Fujikawa et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DINGEL FUJIKAWA HYUN JOSHI	11T 11 11A 11B 11C 11F 11K 11 11 11A 11F 11M 11A 10D 10D 10D 10D 10D 10D 10D 10D 10D 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 112001 PR D84 071102 PR D84 112007 PR D87 039901 (errat.) PR D80 031102 PR D81 052009 PR D82 031102 PR D81 051003 PR D81 071101 PR D82 051103 PR D82 011502 PR D82 011101 PR D82 031101 PR D82 031101 PR D82 112002 PR D82 112002 PR D81 101101 PR D82 112002 PR D81 011101 PR D82 112007 PR D81 011101 PR D82 112007 PR D81 011101 PRL 105 091801 PR D81 031101	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. CC. Chiang et al. A. Das et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al. P. del Amo Sanchez et al. W. Dungel et al. M. Fujikawa et al. M. Fujikawa et al. H.J. Hyun et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA DUNGEL FUJIKAWA HYUN JOSHI NAKAHAMA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10 10D 10H 10 10B 10B 10E 10Q 10D 10A 10D 10D 10D 10D 10D 10D 10D 10D 10D 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 012001 PR D84 112007 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101 PR D82 051103 PR D82 011502 PR D82 011502 PR D82 011101 PR D82 031101 PR D82 031101 PR D82 112007 PR D81 011101 PR D82 01101 PR D82 112007 PR D81 011101 PR D82 112007 PR D81 011101 PR D82 01101 PR D81 031101 PR D82 073011	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. P. del Amo Sanchez et al. N. J. Joshi et al. N.J. Joshi et al. Y. Nakahama et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUBERT AUBHEV CHIANG DAS DEL-AMO-SA DUNGEL FUJIKAWA HYUN JOSHI NAKAHAMA WEDD	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10 10D 10H 10 10B 10B 10B 10B 10C 10D 10D 10D 10D 10D 10D 10D 10D 10D 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 071102 PR D84 112007 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101 PR D82 051103 PR D82 011502 PR D82 011502 PR D82 011101 PR D82 01101 PR D82 073011 PR D81 031101 PR D81 031101 PR D82 073011 PR D82 073011 PR D81 111104	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. P. del Amo Sanchez et al. P. J. J. Joshi et al. Y. Nakahama et al. R. Wedd et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA DUNGEL FUJIKAWA HYUN JOSHI NAKAHAMA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10 10D 10H 10 10B 10B 10E 10Q 10D 10A 10D 10D 10D 10D 10D 10D 10D 10D 10D 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032004 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 012001 PR D84 112007 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101 PR D82 051103 PR D82 011502 PR D82 011502 PR D82 011101 PR D82 031101 PR D82 031101 PR D82 112007 PR D81 011101 PR D82 01101 PR D82 112007 PR D81 011101 PR D82 112007 PR D81 011101 PR D82 01101 PR D81 031101 PR D82 073011	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. P. del Amo Sanchez et al. N. J. Joshi et al. N.J. Joshi et al. Y. Nakahama et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10 10D 10H 10 10 10B 10B 10B 10C 10D 10D 10D 10D 10D 10D 10D 10D 10D 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101 PR D82 051103 PR D82 011502 PR D82 011101 PR D82 011101 PR D82 01101 PR D82 112002 PR D81 112007 PR D81 011101 PR D82 073011 PR D81 011104	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10D 10D 10H 10 10 10B 10B 10B 10B 10C 10D 10D 10D 10D 10D 10D 10D 10D 10D 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101 PR D82 051103 PR D82 011502 PR D82 011502 PR D82 011101 PR D82 011502 PR D82 011101 PR D82 011101 PR D82 011101 PR D82 011502 PR D81 011101 PR D82 011502 PR D82 011501 PR D82 03101 PR D81 011101 PR D82 073011 PR D81 011104 PR D79 011104 PR D79 011104	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. P. del Amo Sanchez et al. T. Altonen et al. T. Aaltonen et al. T. Aaltonen et al. T. Aaltonen et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (CDF Collab.) (CDF Collab.)
CHATRCHYAN CHOI DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA DEL-AMO-SA HA LEES LEES LEES Also SAHOO AUBERT AUBERT AUBERT AUSHEV CHIANG DAS DEL-AMO-SA	11T 11 11A 11B 11C 11F 11K 11 11A 11F 11M 11A 10 10D 10H 10 10 10B 10B 10B 10C 10D 10D 10D 10D 10D 10D 10D 10D 10D 10D	PRL 107 191802 PR D84 052004 PR D83 032006 PR D83 032007 PR D83 052011 PR D83 052011 PR D83 052011 PR D83 071101 PR D83 112010 PR D84 012001 PR D84 071102 PR D87 039901 (errat.) PR D84 071101 PRL 104 011802 PR D81 052009 PR D82 031102 PR D81 031103 PR D81 071101 PR D82 051103 PR D82 011502 PR D82 011101 PR D82 011101 PR D82 01101 PR D82 112002 PR D81 112007 PR D81 011101 PR D82 073011 PR D81 011104	S. Chatrchyan et al. SK. Choi et al. P. del Amo Sanchez et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. P. del Amo Sanchez et al.	(BELLE Collab.) (CMS Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.)

AALTONEN	09P	PRL 102 201801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	09E	PRL 102 032001	V.M. Abazov et al.	(D0 Collab.)
AUBERT	09	PR D79 011102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09A	PR D79 012002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09AA	PR D79 112001	B. Aubert et al.	(BABAR Collab.)
AUBERT		PR D79 112009	B. Aubert <i>et al.</i>	(BABAR Collab.)
				,
AUBERT	09AD	PR D80 011101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09AE	PR D80 031102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09AF	PR D80 051101	B. Aubert et al.	(BABAR Collab.)
AUBERT		PR D80 051105	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09AL	PR D80 092007	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	0940	PRL 103 211802	B. Aubert <i>et al.</i>	(BABAR Collab.)
		PR D80 112001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT				,
AUBERT	09AV	PR D80 112002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09B	PRL 102 132001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09C	PR D79 032002	B. Aubert et al.	(BABAR Collab.)
				,
AUBERT	09G	PRL 102 141802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09H	PR D79 052005	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09I	PR D79 052003	B Aubert <i>et al</i>	(BABAR Collab.)
AUBERT	09K	PR D79 072009	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.)
			D. Aubert et al.	
AUBERT	09R	PR D79 072003	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09S	PR D79 092002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09T	PRL 102 091803	B. Aubert et al.	(BABAR Collab.)
	051			
Also			o. E-PRLTAO-102-060910	(BABAR Collab.)
AUBERT	09Y	PRL 103 051803	B. Aubert <i>et al.</i>	(BABAR Collab.)
CHANG	09	PR D79 052006	YW. Chang et al.	(BELLE Collab.)
DALSENO	09	PR D79 072004	J. Dalseno <i>et al.</i>	(BELLE Collab.)
KYEONG	09	PR D80 051103	SH. Kyeong <i>et al.</i>	(BELLE Collab.)
MIZUK	09	PR D80 031104	R. Mizuk <i>et al.</i>	(BELLE Collab.)
VERVINK	09	PR D80 111104	K. Vervink et al.	(BELLE Collab.)
WEI	09A	PRL 103 171801	JT. Wei <i>et al.</i>	(BELLE Collab.)
	USA			` ,
Also		EPAPS Supplement I		(BELLE Collab.)
ADACHI	80	PR D77 091101	I. Adachi <i>et al.</i>	(BELLE Collab.)
AUBERT	08AB	PR D78 012006	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08AC	PR D77 071102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D77 091104	B. Aubert <i>et al.</i>	(BABAR Collab.)
				,
AUBERT		PR D78 011103	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08AG	PR D78 011104	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	HA80	PR D78 011107	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08A I	PR D78 032005	B. Aubert et al.	(BABAR Collab.)
		PR D78 051103	B. Aubert <i>et al.</i>	
AUBERT				(BABAR Collab.)
AUBERT		PR D78 052005	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	UA80	PRL 101 021801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	VA80	PRL 101 081801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08B	PR D77 011102	B. Aubert et al.	(BABAR Collab.)
		PR D78 071102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT				
AUBERT		PR D78 071104	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08BC	PR D78 072007	B. Aubert et al.	(BABAR Collab.)
AUBERT	08BD	PR D78 091101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D78 092008	B. Aubert et al.	(BABAR Collab.)
				(
AUBERT		PR D78 112001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PRL 101 201801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08BL	PRL 101 261802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08BN	PR D78 112003	B. Aubert et al.	(BABAR Collab.)
AUBERT	08C	PR D77 011104	B. Aubert et al.	(BABAR Collab.)
AUBERT	08E	PR D77 012003	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08F	PRL 100 051803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08G	PRL 100 171803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	H80	PR D77 031101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	081	PRL 100 081801	B. Aubert <i>et al.</i>	(BABAR Collab.)
				,
AUBERT	08N	PRL 100 021801	B. Aubert <i>et al.</i>	(BABAR Collab.)
Also		PR D79 092002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08P	PR D77 032007	B. Aubert et al.	(BABAR Collab.)
AUBERT	08Q	PRL 100 151802	B. Aubert et al.	(BABAR Collab.)
AUBERT	08R	PR D77 032002	B. Aubert <i>et al.</i>	(BABAR Collab.)
				` · · · · · · · · · · · · · · · · · · ·
AUBERT	W80	PRL 101 082001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08Y	PR D77 111101	B. Aubert <i>et al.</i>	(BABAR Collab.)
CHEN	08C	PRL 100 251801	JH. Chen <i>et al.</i>	(BELLE Collab.)
CHIANG	08	PR D78 111102	C.C. Chiang et al.	(BELLE Collab.)
CHOI	08	PRL 100 142001	SK. Choi <i>et al.</i>	(BELLE Collab.)
GOLDENZWE		PRL 101 231801	P. Goldenzweig <i>et al.</i>	(BELLE Collab.)
SOLDLINZ VV L	. 00	. N.L 101 231001	i. Goldenzweig et al.	(BEEEE Collab.)

KIM KUMAR KUSAKA	08 08 08	PL B669 287 PR D78 091104 PR D77 072001	H.O. Kim <i>et al.</i> R. Kumar <i>et al.</i> A. Kusaka <i>et al.</i>	(BELLE Co (BELLE Co (BELLE Co	ollab.) ollab.)
LEE	08A	PR D77 071101	S.E. Lee <i>et al</i> .	(BELLE Co	
LI LIN	08F 08	PRL 101 251601 NAT 452 332	J. Li <i>et al.</i> SW. Lin <i>et al.</i>	(BELLE Co	
LIU	081	PR D78 011106	Y. Liu et al.	(BELLE Co	
LIVENTSEV	80	PR D77 091503	D. Liventsev et al.	(BELLE Co	
MIZUK	08	PR D78 072004	R. Mizuk <i>et al.</i>	(BELLE Co	
NAKAHAMA PDG	80 80	PRL 100 121601 PL B667 1	Y. Nakahama <i>et al.</i> C. Amsler <i>et al.</i>	(BELLE Co (PDG Co	,
SAHOO	08	PR D77 091103	H. Sahoo <i>et al.</i>	(BELLE Co	
TANIGUCHI	80	PRL 101 111801	N. Taniguchi et al.	(BELLE Co	,
UCHIDA	80	PR D77 051101 PRL 100 021602	Y. Uchida <i>et al.</i> Y. Ushiroda <i>et al.</i>	(BELLE Co	
USHIRODA WEI	08 08A	PR D78 011101	JT. Wei <i>et al.</i>	(BELLE Co	
ABAZOV	07S	PRL 99 142001	V.M. Abazov <i>et al.</i>	` (D0 Ca	ollab.)
ABULENCIA	07A	PRL 98 122001	A. Abulencia et al.	(FNAL CDF Co	
ADAM Also	07	PRL 99 041802 PR D76 012007	N.E. Adam <i>et al.</i> D.M. Asner <i>et al.</i>	(CLEO Co	
AUBERT	07A	PRL 98 031801	B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT			B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT		PR D76 031101	B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT AUBERT		PR D76 031102 PR D76 031103	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Co (BABAR Co	
AUBERT			B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT		PRL 99 051801	B. Aubert et al.	(BABAR Co	,
AUBERT			B. Aubert et al.	(BABAR Co	
AUBERT AUBERT		PRL 99 081801 PR D76 051101	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT			B. Aubert <i>et al.</i>	(BABAR Co	,
AUBERT			B. Aubert et al.	(BABAR Co	,
AUBERT			B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT AUBERT			B. Aubert <i>et al.</i>	(BABAR Co (BABAR Co	
AUBERT	07AX	PRL 99 161802	B. Aubert <i>et al.</i>	(BABAR Co	ollab.)
AUBERT			B. Aubert et al.	(BABAR Co	
AUBERT AUBERT	07B 07BC		B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Co	,
AUBERT		PR D76 052007	B. Aubert <i>et al.</i>	(BABAR Co	,
AUBERT		PRL 99 231802	B. Aubert <i>et al.</i>	(BABAR Co	,
AUBERT AUBERT		PRL 99 241803 PR D76 111102	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT	07D	PRL 98 051801	B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT	07E		B. Aubert et al.	(BABAR Co	ollab.)
AUBERT	07F	PRL 98 051803	B. Aubert et al.	(BABAR Co	,
AUBERT AUBERT	07G 07H	PRL 98 111801 PR D75 031101	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Co (BABAR Co	
AUBERT	07J	PRL 98 091801	B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT	07K	PRL 98 081801	B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT AUBERT	07L 07N	PRL 98 151802 PR D75 072002	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT	070	PRL 98 181803	B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT	07Q	PR D75 051102	B. Aubert et al.	(BABAR Co	ollab.)
AUBERT	07R	PRL 98 211804	B. Aubert et al.	(BABAR Co	,
Also Also		PRL 100 189903E PRL 100 199905E	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Co	
AUBERT	07Y	PR D75 111102	B. Aubert et al.	(BABAR Co	ollab.)
CHANG	07A	PRL 98 131803	MC. Chang et al.	(BELLE Co	
CHANG CHAO	07B 07	PR D75 071104 PR D76 091103	P. Chang <i>et al.</i> Y. Chao <i>et al.</i>	(BELLE Co	
CHEN	07	PRL 98 031802	KF. Chen <i>et al.</i>	(BELLE Co	,
CHEN	07D	PRL 99 221802	KF. Chen et al.	(BELLE Co	
DALSENO FRATINA	07 07	PR D76 072004 PRL 98 221802	J. Dalseno <i>et al.</i> S. Fratina <i>et al.</i>	(BELLE Co	
GARMASH	07	PR D75 012006	A. Garmash <i>et al.</i>	(BELLE Co	
HOKUUE	07	PL B648 139	T. Hokuue et al.	(BELLE Co	ollab.)
ISHINO	07 07	PRL 98 211801	H. Ishino <i>et al.</i> A. Kusaka <i>et al.</i>	(BELLE Co	
KUSAKA Also	U1	PRL 98 221602 PR D77 072001	A. Kusaka <i>et al.</i> A. Kusaka <i>et al.</i>	(BELLE Co	ollab.)
KUZMIN	07	PR D76 012006	A. Kuzmin <i>et al.</i>	(BELLE Co	

LIN	07	PRL 98 181804	SW. Lin <i>et al.</i>	(BELLE Collab.)
LIN	07A	PRL 99 121601	SW. Lin et al.	(BELLE Collab.)
MATYJA	07	PRL 99 191807	A. Matyja <i>et al.</i>	(BELLE Collab.)
MEDVEDEVA	07	PR D76 051102	T. Medvedeva et al.	(BELLE Collab.)
PARK	07	PR D75 011101	K.S. Park et al.	(BELLE Collab.)
				1
SCHUEMANN	07	PR D75 092002	J. Schuemann <i>et al.</i>	(BELLE Collab.)
SOMOV	07	PR D76 011104	A. Somov <i>et al.</i>	(BELLE Collab.)
TSAI	07	PR D75 111101	YT. Tsai et al.	(BELLE Collab.)
URQUIJO	07	PR D75 032001	P. Urquijo <i>et al.</i>	(BELLE Collab.)
· .			. 3	1
WANG	07B	PR D75 092005	C.H. Wang <i>et al.</i>	(BELLE Collab.)
WANG	07C	PR D76 052004	MZ. Wang et al.	(BELLE Collab.)
XIE	07	PR D75 017101	Q.L. Xie <i>et al.</i>	(BELLE Collab.)
				(BELLE Collab.)
ZUPANC	07	PR D75 091102	A. Zupanc <i>et al.</i>	(BELLE Collab.)
ABAZOV	06S	PR D74 092001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	06W	PR D74 112002	V.M. Abazov et al.	(D0 Collab.)
ABULENCIA,A		PRL 97 211802	A. Abulencia <i>et al.</i>	(CDF Collab.)
ACOSTA	06	PRL 96 202001	D. Acosta et al.	(CDF Collab.)
AUBERT	06	PR D73 011101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06A	PRL 96 011803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06E	PRL 96 052002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06G	PR D73 012004	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06I	PR D73 031101	B. Aubert <i>et al.</i>	(BABAR Collab.)
				,
AUBERT	06L	PR D74 012001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06N	PR D74 031103	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06S	PRL 96 241802	B. Aubert <i>et al.</i>	(BABAR Collab.)
				` · · · · · · · · · · · · · · · · · · ·
AUBERT	06T	PRL 96 251802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06V	PRL 97 051802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06W	PR D73 071102	B. Aubert <i>et al.</i>	(BABAR Collab.)
			B. Aubert <i>et al.</i>	
AUBERT	06X	PR D73 071103		(BABAR Collab.)
AUBERT	06Y	PR D73 111101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06A	PR D73 112004	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06B	PR D74 011101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06C	PR D74 011102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06E	PR D74 011106	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06G	PRL 97 201801	B. Aubert <i>et al.</i>	(BABAR Collab.)
				` · · · · · · · · · · · · · · · · · · ·
AUBERT,B	06H	PRL 97 201802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06J	PR D73 092001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06K	PRL 97 211801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06L	PR D74 031101	B. Aubert et al.	(BABAR Collab.)
				` · · · · · · · · · · · · · · · · · · ·
AUBERT,B	06M	PR D74 031102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	060	PR D74 031104	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06P	PR D74 031105	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06Q	PR D74 091101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06R	PR D74 032005	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06S	PR D74 051101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06T	PR D74 051102	B. Aubert <i>et al.</i>	(BABAR Collab.)
,				,
AUBERT,B	06V	PR D74 051106	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06Y	PR D74 091105	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06Z	PR D74 092004	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	06C	PRL 97 171805	B. Aubert <i>et al.</i>	(BABAR Collab.)
,				(
AUBERT,BE	06H	PRL 97 261803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	06J	PR D74 111102	B. Aubert et al.	(BABAR Collab.)
AUBERT, BE	06N	PR D74 072008	B. Aubert et al.	(BABAR Collab.)
				\
BLYTH	06	PR D74 092002	S. Blyth <i>et al.</i>	(BELLE Collab.)
CHISTOV	06A	PR D74 111105	R. Chistov <i>et al.</i>	(BELLE Collab.)
DRAGIC	06	PR D73 111105	J. Dragic <i>et al</i> .	(BELLE Collab.)
GABYSHEV	06	PRL 97 202003	N. Gabyshev <i>et al.</i>	(BELLE Collab.)
			,	` '
GOKHROO	06	PRL 97 162002	G. Gokhroo <i>et al.</i>	(BELLE Collab.)
JEN	06	PR D74 111101	CM. Jen <i>et al.</i>	(BELLE Collab.)
KROKOVNY	06	PRL 97 081801	P. Krokovny et al.	(BELLE Collab.)
MOHAPATRA		PRL 96 221601		
	06		D. Mohapatra <i>et al.</i>	(BELLE Collab.)
NAKANO	06	PR D73 112002	E. Nakano <i>et al.</i>	(BELLE Collab.)
RONGA	06	PR D73 092003	F.J. Ronga <i>et al.</i>	(BELLE Collab.)
SCHUEMANN	06	PRL 97 061802	J. Schuemann <i>et al.</i>	(BELLE Collab.)
SOMOV	06	PRL 96 171801	A. Somov et al.	(BELLE Collab.)
SONI	06	PL B634 155	N. Soni <i>et al.</i>	(BELLE Collab.)
USHIRODA	06	PR D74 111104	Y. Ushiroda <i>et al.</i>	(BELLE Collab.)
VILLA	06	PR D73 051107	S. Villa <i>et al.</i>	(BELLE Collab.)
ABAZOV	05B	PRL 94 042001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05C	PRL 94 102001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	05D	PRL 94 182001	V.M. Abazov et al.	(D0 Collab.)
				,

ABE 05B PR D71 072003 K. Abe et al. (BELLE Collab.) Also PR D71 079903 (errat.) K. Abe et al. (BELLE Collab.) ABE 05D PRL 95 101801 K. Abe et al. (BELLE Collab.) ABE 05G PRL 95 231802 K. Abe et al. (BELLE Collab.) ACOSTA 05 PRL 94 101803 D. Acosta et al. (CDF Collab.) AUBERT 05 PRL 94 011801 B. Aubert et al. (BABAR Collab.) AUBERT 05B PR D71 031501 B. Aubert et al. (BABAR Collab.) AUBERT 05E PR D71 051502 B. Aubert et al. (BABAR Collab.) AUBERT 05F PRL 94 161803 B. Aubert et al. (BABAR Collab.) AUBERT 05I PRL 94 131801 B. Aubert et al. (BABAR Collab.) AUBERT 05J PRL 94 171801 B. Aubert et al. (BABAR Collab.) AUBERT 05K PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PR D71 031103 B. Aubert et al. (BABAR C
ABE 05G PRL 95 231802 K. Abe et al. (BELLE Collab.) ACOSTA 05 PRL 94 101803 D. Acosta et al. (CDF Collab.) AUBERT 05 PRL 94 011801 B. Aubert et al. (BABAR Collab.) AUBERT 05B PR D71 031501 B. Aubert et al. (BABAR Collab.) AUBERT 05E PR D71 051502 B. Aubert et al. (BABAR Collab.) AUBERT 05F PRL 94 161803 B. Aubert et al. (BABAR Collab.) AUBERT 05I PRL 94 131801 B. Aubert et al. (BABAR Collab.) AUBERT 05J PRL 94 141801 B. Aubert et al. (BABAR Collab.) AUBERT 05J PRL 94 171801 B. Aubert et al. (BABAR Collab.) AUBERT 05K PRL 94 171801 B. Aubert et al. (BABAR Collab.) AUBERT 05L PRL 94 181802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PR D71 031103 B. Aubert et al. (BABAR Collab.) AUBERT 05M PR D71 091102 B. Aubert et al. (BABAR Collab.) AUBERT 05M PR D71 091103 B. Aubert et al. (BABAR Collab.) AUBERT 05M PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05W PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05W PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05W PR D71 111102 B. Aubert et al. (BABAR Collab.)
ACOSTA 05 PRL 94 101803 D. Acosta et al. (CDF Collab.) AUBERT 05 PRL 94 011801 B. Aubert et al. (BABAR Collab.) AUBERT 05B PR D71 031501 B. Aubert et al. (BABAR Collab.) AUBERT 05E PR D71 051502 B. Aubert et al. (BABAR Collab.) AUBERT 05F PRL 94 161803 B. Aubert et al. (BABAR Collab.) AUBERT 05I PRL 94 131801 B. Aubert et al. (BABAR Collab.) AUBERT 05J PRL 94 141801 B. Aubert et al. (BABAR Collab.) AUBERT 05K PRL 94 181802 B. Aubert et al. (BABAR Collab.) AUBERT 05L PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05D PR D71 031103 B. Aubert et al. (BABAR Collab.) AUBERT 05P PR D71 091102 B. Aubert et al. (BABAR Collab.) AUBERT 05U PR D71 091103 B. Aube
AUBERT 05 PRL 94 011801 B. Aubert et al. (BABAR Collab.) AUBERT 05B PR D71 031501 B. Aubert et al. (BABAR Collab.) AUBERT 05E PR D71 051502 B. Aubert et al. (BABAR Collab.) AUBERT 05F PRL 94 161803 B. Aubert et al. (BABAR Collab.) AUBERT 05I PRL 94 131801 B. Aubert et al. (BABAR Collab.) AUBERT 05J PRL 94 141801 B. Aubert et al. (BABAR Collab.) AUBERT 05K PRL 94 171801 B. Aubert et al. (BABAR Collab.) AUBERT 05L PRL 94 181802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05O PR D71 031103 B. Aubert et al. (BABAR Collab.) AUBERT 05O PR D71 091102 B. Aubert et al. (BABAR Collab.) AUBERT 05T PR D71 091103 B. Aubert et al. (BABAR Collab.) AUBERT 05U PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V <td< td=""></td<>
AUBERT 05E PR D71 051502 B. Aubert et al. (BABAR Collab.) AUBERT 05F PRL 94 161803 B. Aubert et al. (BABAR Collab.) AUBERT 05I PRL 94 131801 B. Aubert et al. (BABAR Collab.) AUBERT 05J PRL 94 141801 B. Aubert et al. (BABAR Collab.) AUBERT 05K PRL 94 171801 B. Aubert et al. (BABAR Collab.) AUBERT 05L PRL 94 181802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05O PR D71 031103 B. Aubert et al. (BABAR Collab.) AUBERT 05P PR D71 032005 B. Aubert et al. (BABAR Collab.) AUBERT 05T PR D71 091102 B. Aubert et al. (BABAR Collab.) AUBERT 05U PR D71 091103 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V <t< td=""></t<>
AUBERT 05F PRL 94 161803 B. Aubert et al. (BABAR Collab.) AUBERT 05I PRL 94 131801 B. Aubert et al. (BABAR Collab.) AUBERT 05J PRL 94 141801 B. Aubert et al. (BABAR Collab.) AUBERT 05K PRL 94 171801 B. Aubert et al. (BABAR Collab.) AUBERT 05L PRL 94 181802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05O PR D71 031103 B. Aubert et al. (BABAR Collab.) AUBERT 05F PR D71 032005 B. Aubert et al. (BABAR Collab.) AUBERT 05T PR D71 091102 B. Aubert et al. (BABAR Collab.) AUBERT 05U PR D71 091103 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V <t< td=""></t<>
AUBERT 05J PRL 94 141801 B. Aubert et al. (BABAR Collab.) AUBERT 05K PRL 94 171801 B. Aubert et al. (BABAR Collab.) AUBERT 05L PRL 94 181802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05O PR D71 031103 B. Aubert et al. (BABAR Collab.) AUBERT 05P PR D71 091102 B. Aubert et al. (BABAR Collab.) AUBERT 05T PR D71 091103 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.)
AUBERT 05K PRL 94 171801 B. Aubert et al. (BABAR Collab.) AUBERT 05L PRL 94 181802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05O PR D71 031103 B. Aubert et al. (BABAR Collab.) AUBERT 05P PR D71 032005 B. Aubert et al. (BABAR Collab.) AUBERT 05T PR D71 091102 B. Aubert et al. (BABAR Collab.) AUBERT 05U PR D71 091103 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05W PRL 94 221803 B. Aubert et al. (BABAR Collab.) AUBERT 05Y PR D71 111102 B. Aubert et al. (BABAR Collab.)
AUBERT 05L PRL 94 181802 B. Aubert et al. (BABAR Collab.) AUBERT 05M PRL 94 191802 B. Aubert et al. (BABAR Collab.) AUBERT 05O PR D71 031103 B. Aubert et al. (BABAR Collab.) AUBERT 05P PR D71 032005 B. Aubert et al. (BABAR Collab.) AUBERT 05T PR D71 091102 B. Aubert et al. (BABAR Collab.) AUBERT 05U PR D71 091103 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05W PRL 94 221803 B. Aubert et al. (BABAR Collab.) AUBERT 05Y PR D71 111102 B. Aubert et al. (BABAR Collab.)
AUBERT 050 PR D71 031103 B. Aubert et al. (BABAR Collab.) AUBERT 05P PR D71 032005 B. Aubert et al. (BABAR Collab.) AUBERT 05T PR D71 091102 B. Aubert et al. (BABAR Collab.) AUBERT 05U PR D71 091103 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05W PRL 94 221803 B. Aubert et al. (BABAR Collab.) AUBERT 05Y PR D71 111102 B. Aubert et al. (BABAR Collab.)
AUBERT 05P PR D71 032005 B. Aubert et al. (BABAR Collab.) AUBERT 05T PR D71 091102 B. Aubert et al. (BABAR Collab.) AUBERT 05U PR D71 091103 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05W PRL 94 221803 B. Aubert et al. (BABAR Collab.) AUBERT 05Y PR D71 111102 B. Aubert et al. (BABAR Collab.)
AUBERT 05T PR D71 091102 B. Aubert et al. (BABAR Collab.) AUBERT 05U PR D71 091103 B. Aubert et al. (BABAR Collab.) AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05W PRL 94 221803 B. Aubert et al. (BABAR Collab.) AUBERT 05Y PR D71 111102 B. Aubert et al. (BABAR Collab.)
AUBERT 05V PR D71 091104 B. Aubert et al. (BABAR Collab.) AUBERT 05W PRL 94 221803 B. Aubert et al. (BABAR Collab.) AUBERT 05Y PR D71 111102 B. Aubert et al. (BABAR Collab.)
AUBERT 05W PRL 94 221803 B. Aubert <i>et al.</i> (BABAR Collab.) AUBERT 05Y PR D71 111102 B. Aubert <i>et al.</i> (BABAR Collab.)
AUBERT 05Y PR D71 111102 B. Aubert et al. (BABAR Collab.)
AUBERT 05Z PR D71 112003 B. Aubert <i>et al.</i> (BABAR Collab.)
AUBERT,B 05 PRL 95 011801 B. Aubert et al. (BABAR Collab.)
AUBERT,B 05C PRL 95 041805 B. Aubert et al. (BABAR Collab.)
AUBERT,B 05K PRL 95 131803 B. Aubert et al. (BABAR Collab.)
AUBERT,B 050 PR D72 051102 B. Aubert <i>et al.</i> (BABAR Collab.) AUBERT,B 05P PR D72 051103 B. Aubert <i>et al.</i> (BABAR Collab.)
AUBERT,B 05Q PR D72 051106 B. Aubert et al. (DADAR Collab.)
AUBERT,B 05Z PRL 95 131802 B. Aubert et al. (BABAR Collab.)
AUBERT,BE 05 PRL 95 151803 B. Aubert <i>et al.</i> (BABAR Collab.) AUBERT,BE 05A PRL 95 151804 B. Aubert <i>et al.</i> (BABAR Collab.)
AUBERT,BE 05B PRL 95 171802 B. Aubert et al. (BABAR Collab.)
AUBERT, BE 05C PR D72 091103 B. Aubert et al. (BABAR Collab.)
AUBERT,BE 05E PRL 95 221801 B. Aubert <i>et al.</i> (BABAR Collab.) AUBERT,BE 05F PR D72 111101 B. Aubert <i>et al.</i> (BABAR Collab.)
CHANG 05 PR D71 072007 MC. Chang et al. (BELLE Collab.)
CHANG 05A PR D71 091106 P. Chang <i>et al.</i> (BELLE Collab.) CHAO 05 PRL 94 181803 Y. Chao <i>et al.</i> (BELLE Collab.)
CHAO 05A PR D71 031502 Y. Chao <i>et al.</i> (BELLE Collab.)
CHEN 05A PRL 94 221804 KF. Chen <i>et al.</i> (BELLE Collab.)
CHEN 05B PR D72 012004 KF. Chen <i>et al.</i> (BELLE Collab.) DRUTSKOY 05 PRL 94 061802 A. Drutskoy <i>et al.</i> (BELLE Collab.)
GERSHON 05 PL B624 11 T. Gershon et al. (BELLE Collab.)
ITOH 05 PRL 95 091601 R. Itoh et al. (BELLE Collab.) LIVENTSEV 05 PR D72 051109 D. Liventsev et al. (BELLE Collab.)
LIVENTSEV 05 PR D72 051109 D. Liventsev et al. (BELLE Collab.) MAJUMDER 05 PRL 95 041803 G. Majumder et al. (BELLE Collab.)
MIYAKE 05 PL B618 34 H. Miyake et al. (BELLE Collab.)
MOHAPATRA 05 PR D72 011101 D. Mohapatra et al. (BELLE Collab.) NISHIDA 05 PL B610 23 S. Nishida et al. (BELLE Collab.)
OKABE 05 PL B614 27 T. Okabe et al. (BELLE Collab.)
PARK 05 PRL 94 021801 H.K. Park et al. (FNAL HyperCP Collab.)
SCHUMANN 05 PR D72 011103 J. Schumann et al. (BELLE Collab.) SUMISAWA 05 PRL 95 061801 K. Sumisawa et al. (BELLE Collab.)
USHIRODA 05 PRL 94 231601 Y. Ushiroda et al. (BELLE Collab.)
WANG 05 PRL 94 121801 C.C. Wang <i>et al.</i> (BELLE Collab.) WANG 05A PL B617 141 MZ. Wang <i>et al.</i> (BELLE Collab.)
XIE 05 PR D72 051105 Q.L. Xie et al. (BELLE Collab.)
YANG 05 PRL 94 111802 H. Yang et al. (BELLE Collab.)
ZHANG 05B PR D71 091107 L.M. Zhang et al. (BELLE Collab.) ABDALLAH 04D EPJ C33 213 J. Abdallah et al. (DELPHI Collab.)
ABDALLAH 04E EPJ C33 307 J. Abdallah et al. (DELPHI Collab.)
ABE 04E PRL 93 021601 K. Abe et al. (BELLE Collab.)
AUBERT 04A PR D69 011102 B. Aubert <i>et al.</i> (BABAR Collab.) AUBERT 04B PR D69 032004 B. Aubert <i>et al.</i> (BABAR Collab.)
AUBERT 04C PRL 92 111801 B. Aubert et al. (BABAR Collab.)
AUBERT 04G PR D69 031102 B. Aubert <i>et al.</i> (BABAR Collab.) AUBERT 04H PRL 92 061801 B. Aubert <i>et al.</i> (BABAR Collab.)
AUBERT 04M PRL 92 201802 B. Aubert et al. (BABAR Collab.)
AUBERT 04R PR D69 052001 B. Aubert et al. (BABAR Collab.)

AUBERT	04U	PR D69 091503	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04V	PRL 92 251801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04W	PRL 92 251802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04Y	PRL 93 041801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04Z	PRL 93 051802	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	04B	PR D70 011101	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	04C	PR D70 012007	B. Aubert et al.	(BABAR Collab.)
Also		PRL 92 181801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04D	PR D70 032006	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04G	PRL 93 071801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04H	PRL 93 081801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04J	PRL 93 091802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04K	PRL 93 131801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04M	PRL 93 131805	B. Aubert	(BABAR Collab.)
AUBERT,B	040	PR D70 091103	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04R	PRL 93 231801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04S 04T	PRL 93 181801 PR D70 091104	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B AUBERT,B	04 T	PR D70 091104 PR D70 091105	B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
AUBERT,B	04V	PRL 93 181805	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04W	PRL 93 231804	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	04X	PRL 93 181806	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04Z	PRL 93 201801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	04	PR D70 111102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	04A	PR D70 112006	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT, BE	04B	PR D70 091106	B. Aubert et al.	(BABAR Collab.)
AUSHEV	04	PRL 93 201802	T. Aushev et al.	`(BELLE Collab.)
BORNHEIM	04	PRL 93 241802	A. Bornheim <i>et al.</i>	`(CLEO Collab.)
CHANG	04	PL B599 148	P. Chang <i>et al.</i>	(BELLE Collab.)
CHAO	04	PR D69 111102	Y. Chao <i>et al.</i>	(BELLE Collab.)
CHAO	04B	PRL 93 191802	Y. Chao <i>et al.</i>	(BELLE Collab.)
DRAGIC	04	PRL 93 131802	J. Dragic	(BELLE Collab.)
DRUTSKOY	04	PRL 92 051801	A. Drutskoy et al.	(BELLE Collab.)
GARMASH	04	PR D69 012001	A. Garmash et al.	(BELLE Collab.)
KATAOKA	04	PRL 93 261801	S.U. Kataoka <i>et al.</i>	(BELLE Collab.)
MAJUMDER	04	PR D70 111103	G. Majumder <i>et al.</i>	(BELLE Collab.)
NAKAO SARANGI	04 04	PR D69 112001 PRL 93 031802	M. Nakao <i>et al.</i>	(BELLE Collab.)
WANG	04	PRL 92 131801	T.R. Sarangi <i>et al.</i> M.Z. Wang <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
WANG	04A	PR D70 012001	C.H. Wang <i>et al.</i>	(BELLE Collab.)
ABDALLAH	03B	EPJ C28 155	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABE	03B	PR D67 032003	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	03C	PR D67 031102	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	03G	PR D68 012001	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	03H	PRL 91 261602	K. Abe <i>et al.</i>	(BELLE Collab.)
ADAM	03	PR D67 032001	N.E. Adam <i>et al.</i>	(CLEO Collab.)
ATHAR	03	PR D68 072003	S.B. Athar <i>et al.</i>	(CLEO Collab.)
AUBERT	03B	PRL 90 091801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03C	PR D67 072002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03D	PRL 90 181803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03E	PRL 90 181801	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT AUBERT	03H 03I	PR D67 091101 PR D67 092003	B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
AUBERT	03J	PRL 90 221801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03K	PRL 90 231801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03L	PRL 91 021801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03N	PRL 91 061802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	030	PRL 91 071801	B. Aubert et al.	(BABAR Collab.)
AUBERT	03Q	PRL 91 131801	B. Aubert et al.	(BABAR Collab.)
AUBERT	03S	PRL 91 241801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03T	PRL 91 201802	B. Aubert et al.	(BABAR Collab.)
AUBERT	03U	PRL 91 221802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03V	PRL 91 171802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03W	PRL 91 161801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03X	PR D68 092001	B. Aubert <i>et al.</i>	(BABAR Collab.)
BORNHEIM CHANG	03 03	PR D68 052002 PR D68 111101	A. Bornheim <i>et al.</i> MC. Chang <i>et al.</i>	(CLEO Collab.) (BELLE Collab.)
CHANG	03 03B	PRL 91 201801	KF. Chen <i>et al.</i>	(BELLE Collab.)
CSORNA	036	PR D67 112002	S.E. Csorna <i>et al.</i>	(CLEO Collab.)
EISENSTEIN	03	PR D68 017101	B.I. Eisenstein <i>et al.</i>	(CLEO Collab.)
FANG	03	PRL 90 071801	F. Fang <i>et al.</i>	(BELLE Collab.)
			2	,

GABYSHEV	03	DDI 00 101000	N. Cabushay at al	(BELLE Collab.)
		PRL 90 121802	N. Gabyshev <i>et al.</i>	
HASTINGS	03	PR D67 052004	N.C. Hastings et al.	(BELLE Collab.)
ISHIKAWA	03	PRL 91 261601	A. Ishikawa <i>et al.</i>	(BELLE Collab.)
KROKOVNY	03	PRL 90 141802	P. Krokovny et al.	(BELLE Collab.)
KROKOVNY	03B	PRL 91 262002	P. Krokovny <i>et al.</i>	(BELLE Collab.)
LEE	03	PRL 91 261801	S.H. Lee <i>et al.</i>	(BELLE Collab.)
SATPATHY	03	PL B553 159	A. Satpathy et al.	(BELLE Collab.)
WANG	03	PRL 90 201802	MZ. Wang et al.	(BELLE Collab.)
ZHENG	03	PR D67 092004	Y. Zheng <i>et al.</i>	(BELLE Collab.)
ABE	02	PRL 88 021801	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02E	PL B526 258	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02F	PL B526 247	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02H	PRL 88 171801	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02J	PRL 88 052002	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02K	PRL 88 181803	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02M	PRL 89 071801	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02N	PL B538 11	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	020	PR D65 091103	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02Q	PRL 89 122001	K. Abe et al.	(BELLE Collab.)
ABE	02U	PR D66 032007	K. Abe et al.	(BELLE Collab.)
ABE	02W	PRL 89 151802	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02Z	PR D66 071102	K. Abe <i>et al.</i>	(BELLE Collab.)
ACOSTA	02C	PR D65 092009	D. Acosta et al.	` (CDF Collab.)
ACOSTA	02G	PR D66 112002	D. Acosta et al.	(CDF Collab.)
AFFOLDER	02B	PRL 88 071801	T. Affolder et al.	(CDF Collab.)
AHMED	02B	PR D66 031101	S. Ahmed et al.	(CLEO Collab.)
ASNER	02	PR D65 031103	D.M. Asner et al.	(CLEO Collab.)
AUBERT	02	PR D65 032001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	02C	PRL 88 101805	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	02D	PR D65 051502	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	02E	PR D65 051101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	02H	PRL 89 011802	B. Aubert <i>et al.</i>	(BABAR Collab.)
Also	0211	PRL 89 169903 (errat.)		(BABAR Collab.)
AUBERT	02I	PRL 88 221802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	02J	PRL 88 221803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	02S	PRL 88 231801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	02L	PRL 88 241801	B. Aubert et al.	(BABAR Collab.)
AUBERT	02L	PRL 89 061801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	02N	PR D66 032003	B. Aubert et al.	(BABAR Collab.)
AUBERT	02P	PRL 89 201802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	02Q	PRL 89 281802	B. Aubert <i>et al.</i>	(BABAR Collab.)
BRIERE	02	PRL 89 081803	R. Briere et al.	(CLEO Collab.)
CASEY	02	PR D66 092002	B.C.K. Casey <i>et al.</i>	(BELLE Collab.)
CHEN	02B	PL B546 196	KF. Chen <i>et al.</i>	(BELLE Collab.)
COAN	02.0	PRL 88 062001	T.E. Coan et al.	(CLEO Collab.)
Also	02	PRL 88 069902 (errat.)		(CLEO Collab.)
DRUTSKOY	02	PL B542 171	A. Drutskoy <i>et al.</i>	(BELLE Collab.)
DYTMAN	02	PR D66 091101	S.A. Dytman <i>et al.</i>	(CLEO Collab.)
ECKHART	02	PRL 89 251801	E. Eckhart <i>et al.</i>	(CLEO Collab.)
EDWARDS	02	PR D65 012002	K.W. Edwards <i>et al.</i>	(CLEO Collab.)
GABYSHEV	02	PR D66 091102	N. Gabyshev <i>et al.</i>	(BELLE Collab.)
GODANG	02	PRL 88 021802	R. Godang <i>et al.</i>	(CLEO Collab.)
GORDON	02	PL B542 183	A. Gordon <i>et al.</i>	(BELLE Collab.)
HARA	02	PRL 89 251803	K. Hara <i>et al.</i>	(BELLE Collab.)
KROKOVNY	02	PRL 89 231804	P. Korkovny <i>et al.</i>	(BELLE Collab.)
MAHAPATRA	02	PRL 88 101803	R. Mahapatra <i>et al.</i>	(CLEO Collab.)
NISHIDA	02	PRL 89 231801	S. Nishida <i>et al.</i>	(BELLE Collab.)
TOMURA	02	PL B542 207	T. Tomura <i>et al.</i>	(BELLE Collab.)
ABASHIAN	01	PRL 86 2509	A. Abashian <i>et al.</i>	(BELLE Collab.)
ABE	01D	PRL 86 3228	K. Abe <i>et al.</i>	(BELLE Collab.)
			K. Abe et al.	
ABE	01G	PRL 87 091802		(BELLE Collab.)
ABE	01H	PRL 87 101801	K. Abe <i>et al.</i> K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	01I	PRL 87 111801		(BELLE Collab.)
ABE	01K	PR D64 071101	K. Abe et al.	(BELLE Collab.)
ABE	01L	PRL 87 161601	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	01M	PL B517 309	K. Abe <i>et al.</i>	(BELLE Collab.)
ABREU	01H	PL B510 55	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ALEXANDER	01B	PR D64 092001	J.P. Alexander <i>et al.</i>	(CLEO Collab.)
AMMAR	01B	PRL 87 271801	R. Ammar <i>et al.</i>	(CLEO Collab.)
ANDERSON ANDERSON	01 01B	PRL 86 2732 PRL 87 181803	S. Anderson <i>et al.</i> S. Anderson <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
MUDENSON	OID	1 WF 01 101003	J. MINICISUII EL dI.	(CLLO CONAD.)

AUBERT	01	PRL 86 2515	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	01B	PRL 87 091801	B. Aubert et al.	(BABAR Collab.)
AUBERT	01D	PRL 87 151801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	01E	PRL 87 151802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	01F	PRL 87 201803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	01G	PRL 87 221802	B. Aubert et al.	(BABAR Collab.)
AUBERT	01H	PRL 87 241801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	011	PRL 87 241803	B. Aubert <i>et al.</i>	(BABAR Collab.)
BARATE	01D	EPJ C20 431	R. Barate <i>et al.</i>	(ALEPH Collab.)
				(ALLFII Collab.)
BRIERE	01	PRL 86 3718	R.A. Biere et al.	(CLEO Collab.)
EDWARDS	01	PRL 86 30	K.W. Edwards et al.	(CLEO Collab.)
JAFFE	01	PRL 86 5000	D. Jaffe <i>et al.</i>	(CLEO Collab.)
RICHICHI	01	PR D63 031103	S.J. Richichi et al.	(CLEO Collab.)
			G. Abbiendi <i>et al.</i>	
ABBIENDI	00Q	PL B482 15		(OPAL Collab.)
ABBIENDI,G	00B	PL B493 266	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABE	00C	PR D62 071101	K. Abe <i>et al.</i>	`(SLD Collab.)
				(SED Collab.)
AFFOLDER	00C	PR D61 072005	T. Affolder et al.	(CDF Collab.)
AFFOLDER	00N	PRL 85 4668	T. Affolder et al.	(CDF Collab.)
AHMED	00B	PR D62 112003	S. Ahmed <i>et al.</i>	(CLEO Collab.)
ANASTASSOV	00	PRL 84 1393	A. Anastassov et al.	(CLEO Collab.)
ARTUSO	00	PRL 84 4292	M. Artuso et al.	(CLEO Collab.)
				(CLEO Collab.)
AVERY	00	PR D62 051101	P. Avery <i>et al.</i>	(CLEO Collab.)
BARATE	00Q	PL B492 259	R. Barate et al.	(ALEPH Collab.)
	-			
BARATE	00R	PL B492 275	R. Barate <i>et al.</i>	(ALEPH Collab.)
BEHRENS	00	PR D61 052001	B.H. Behrens <i>et al.</i>	(CLEO Collab.)
BEHRENS	00B	PL B490 36	B.H. Behrens <i>et al.</i>	(CLEO Collab.)
BERGFELD	00B	PR D62 091102	T. Bergfeld <i>et al.</i>	(CLEO Collab.)
CHEN	00	PRL 85 525	S. Chen <i>et al.</i>	(CLEO Collab.)
COAN	00	PRL 84 5283	T.E. Coan <i>et al.</i>	(CLEO Collab.)
CRONIN-HEN	00	PRL 85 515	D. Cronin-Hennessy et al.	(CLEO Collab.)
			C.F. Common of all	(CLEO C-II-I-)
CSORNA	00	PR D61 111101		(CLEO Collab.)
JESSOP	00	PRL 85 2881	C.P. Jessop <i>et al.</i>	(CLEO Collab.)
LIPELES	00	PR D62 032005	E. Lipeles et al.	(CLEO Collab.)
RICHICHI	00	PRL 85 520	S.J. Richichi <i>et al.</i>	(CLEO Collab.)
ABBIENDI	99 J	EPJ C12 609	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABE	99K	PR D60 051101		(CDF Collab.)
				(CDI Collab.)
ABE	99Q	PR D60 072003	F. Abe <i>et al.</i>	(CDF Collab.)
AFFOLDER	99B	PRL 83 3378	T. Affolder <i>et al.</i>	(CDF Collab.)
				(CDE Collab.)
AFFOLDER	99C	PR D60 112004		(CDF Collab.)
ARTUSO	99	PRL 82 3020	M. Artuso <i>et al.</i>	(ČLEO Collab.)
BARTELT	99	PRL 82 3746	J. Bartelt <i>et al.</i>	(CLEO Collab.)
COAN	99	PR D59 111101	T.E. Coan <i>et al.</i>	(CLEO Collab.)
ABE	98B	PR D57 5382	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98C	PRL 80 2057	F. Abe <i>et al.</i>	(CDF Collab.)
	90C			(CDF Collab.)
Also		PR D59 032001	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	980	PR D58 072001	F. Abe <i>et al.</i>	(CDF Collab.)
				(CDF C II I)
ABE	98Q	PR D58 092002		(CDF Collab.)
ABE	98U	PRL 81 5513	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98V	PRL 81 5742	F. Abe <i>et al.</i>	(CDF Collab.)
ACCIARRI	98D	EPJ C5 195	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	98S	PL B438 417	M. Acciarri et al.	(L3 Collab.)
ACKERSTAFF	98Z	EPJ C5 379	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
BARATE	98Q	EPJ C4 387	R. Barate <i>et al.</i>	(ALEPH Collab.)
BEHRENS	98	PRL 80 3710	B.H. Behrens et al.	`(CLEO Collab.)
				`
BERGFELD	98	PRL 81 272	T. Bergfeld <i>et al.</i>	(CLEO Collab.)
BRANDENB	98	PRL 80 2762	G. Brandenbrug <i>et al.</i>	(CLEO Collab.)
		PRL 80 3456		`
GODANG	98		R. Godang <i>et al.</i>	(CLEO Collab.)
NEMATI	98	PR D57 5363	B. Nemati <i>et al.</i>	(CLEO Collab.)
ABE	97 J	PRL 79 590	K. Abe <i>et al.</i>	(SLD Collab.)
ABREU	97F	ZPHY C74 19	P. Abreu <i>et al.</i>	(DELPHI Collab.)
Also		ZPHY C75 579	(erratum)P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	97N	ZPHY C76 579	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	97B	PL B391 474	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	97C	PL B391 481	M. Acciarri et al.	(L3 Collab.)
ACKERSTAFF	97G	PL B395 128	K. Ackerstaff et al.	(OPAL Collab.)
				`
ACKERSTAFF	97U	ZPHY C76 401	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ACKERSTAFF	97V	ZPHY C76 417	K. Ackerstaff et al.	(OPAL Collab.)
ARTUSO	97	PL B399 321	M. Artuso <i>et al.</i>) (
				(CLEO Collab.)
ASNER	97	PRL 79 799	D. Asner <i>et al.</i>	(CLEO Collab.)
ATHANAS	97	PRL 79 2208	M. Athanas et al.	(CLEO Collab.)
BUSKULIC				(ALEPH Collab.)
DUDANUI II	97	PL B395 373	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
Bookolie				

BUSKULIC	97D	ZPHY C75 397	D. Buskulic et al.	(ALEPH Collab.)
FU	97	PRL 79 3125	X. Fu <i>et al.</i>	(CLEO Collab.)
JESSOP	97	PRL 79 4533	C.P. Jessop et al.	(CLEO Collab.)
			•	
ABE	96B	PR D53 3496	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	96C	PRL 76 4462	F. Abe <i>et al.</i>	(CDF Collab.)
				(CDT Collab.)
ABE	96H	PRL 76 2015	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	96Q	PR D54 6596	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	96P	ZPHY C71 539	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	96Q	ZPHY C72 17	P. Abreu <i>et al.</i>	(DELPHI Collab.)
	-			`
ACCIARRI	96E	PL B383 487	M. Acciarri <i>et al.</i>	(L3 Collab.)
ADAM	96D	ZPHY C72 207	W. Adam et al.	(DELPHI Collab.)
ALBRECHT	96D	PL B374 256	H. Albrecht et al.	(ARGUS Collab.)
ALEXANDER	96T	PRL 77 5000	J.P. Alexander et al.	`(CLEO Collab.)
ALEXANDER	96V	ZPHY C72 377	G. Alexander et al.	(OPAL Collab.)
ASNER	96	PR D53 1039	D.M. Asner et al.	(CLEO Collab.)
				`
BARISH	96B	PRL 76 1570	B.C. Barish et al.	(CLEO Collab.)
BISHAI	96	PL B369 186	M. Bishai <i>et al.</i>	(CLEO Collab.)
				(CLLO Collab.)
BUSKULIC	96J	ZPHY C71 31	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
BUSKULIC	96V	PL B384 471	D. Buskulic et al.	(ALEPH Collab.)
DUBOSCQ	96	PRL 76 3898	J.E. Duboscq <i>et al.</i>	(CLEO Collab.)
GIBAUT	96	PR D53 4734	D. Gibaut <i>et al.</i>	(CLEO Collab.)
				(CLLO Collab.)
PDG	96	PR D54 1	R. M. Barnett et al.	(PDG Collab.)
ABE	95Z	PRL 75 3068	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	95N	PL B357 255	P. Abreu <i>et al.</i>	(DELPHI Collab.)
-			P. Abreu <i>et al.</i>	\
ABREU	95Q	ZPHY C68 13		(DELPHI Collab.)
ACCIARRI	95H	PL B363 127	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	95I	PL B363 137	M. Acciarri <i>et al.</i>	(L3 Collab.)
ADAM	95	ZPHY C68 363	W. Adam <i>et al.</i>	(DELPHI Collab.)
		ZPHY C66 555	R. Akers <i>et al.</i>	`
AKERS	95J			(OPAL Collab.)
AKERS	95T	ZPHY C67 379	R. Akers <i>et al.</i>	(OPAL Collab.)
ALEXANDER	95		J. Alexander et al.	\
	95	PL B341 435		(CLEO Collab.)
Also		PL B347 469 (erratum)	J. Alexander <i>et al.</i>	(CLEO Collab.)
	95	` ,	B.C. Barish et al.	\
BARISH		PR D51 1014		(CLEO Collab.)
BUSKULIC	95N	PL B359 236	D. Buskulic et al.	(ÀLEPH Collab.)
ABE	94D	PRL 72 3456	F. Abe <i>et al.</i>	` (CDF Collab.)
ABREU	94M	PL B338 409	P. Abreu <i>et al.</i>	(DELPHI Collab.)
AKERS	94C	PL B327 411	R. Akers et al.	` (OPAL Collab.)
AKERS	94H	PL B336 585	R. Akers <i>et al.</i>	(OPAL Collab.)
AKERS	94J	PL B337 196	R. Akers et al.	(OPAL Collab.)
AKERS	94L	PL B337 393	R. Akers <i>et al.</i>	(OPAL Collab.)
ALAM	94	PR D50 43	M.S. Alam et al.	(CLEO Collab.)
ALBRECHT	94	PL B324 249	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	94G	PL B340 217	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
AMMAR	94	PR D49 5701	R. Ammar <i>et al.</i>	(CLEO Collab.)
ATHANAS	94	PRL 73 3503	M. Athanas <i>et al.</i>	(CLEO Collab.)
	٥.			(CLEO C.II.L.)
Also		PRL 74 3090 (erratum)	M. Athanas et al.	(CLEO Collab.)
BUSKULIC	94B	PL B322 441	D. Buskulic et al.	(ALEPH Collab.)
PDG	94	PR D50 1173	L. Montanet et al.	(CERN, LBL, BOST+)
PROCARIO	94	PRL 73 1472	M. Procario <i>et al.</i>	(CLEO Collab.)
STONE	94	HEPSY 93-11	S. Stone	(,
Published	in B D	ecays, 2nd Edition, World	Scientific, Singapore	
ABREU	93D	ZPHY C57 181	P. Abreu et al.	(DELPHI Collab.)
ABREU	93G	PL B312 253	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACTON	93C	PL B307 247	P.D. Acton et al.	(OPAL Collab.)
ALBRECHT	93	ZPHY C57 533	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	93E	ZPHY C60 11	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALEXANDER	93B		J. Alexander et al.	
		PL B319 365		(CLEO Collab.)
AMMAR	93	PRL 71 674	R. Ammar <i>et al.</i>	(CLEO Collab.)
BARTELT	93	PRL 71 1680	J.E. Bartelt et al.	(CLEO Collab.)
				(
BATTLE	93	PRL 71 3922	M. Battle <i>et al.</i>	(CLEO Collab.)
BEAN	93B	PRL 70 2681	A. Bean <i>et al.</i>	(CLEO Collab.)
				. `
BUSKULIC	93D	PL B307 194	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
Also		PL B325 537 (erratum)	D. Buskulic et al.	(ALEPH Collab.)
	0017			\
BUSKULIC	93K	PL B313 498	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
SANGHERA	93	PR D47 791	S. Sanghera et al.	(CLEO Collab.)
				(ADCUC C-III-1)
ALBRECHT	92C	PL B275 195	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	92G	ZPHY C54 1	H. Albrecht et al.	(ARGUS Collab.)
			H. Albrecht <i>et al.</i>	1
ALBRECHT	92L	ZPHY C55 357		(ARGUS Collab.)
BORTOLETTO	92	PR D45 21	D. Bortoletto et al.	(CLEO Collab.)
HENDERSON		PR D45 2212	S. Henderson <i>et al.</i>	(CLEO Collab.)
	92			
KRAMER	92 92	PL B279 181	G. Kramer, W.F. Palmer	(HAMB, OSU)

ALBAJAR ALBRECHT ALBRECHT ALBRECHT BERKELMAN "Decays of	91E 91B 91C 91E 91	PL B273 540 PL B254 288 PL B255 297 PL B262 148 ARNPS 41 1	C. Albajar <i>et al.</i> H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i> K. Berkelman, S. Stone	(UA1 Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (CORN, SYRA)
FULTON ALBRECHT ALBRECHT ANTREASYAN BORTOLETTO ELSEN ROSNER	91 90B 90J 90B	PR D43 651 PL B241 278 ZPHY C48 543 ZPHY C48 553 PRL 64 2117 ZPHY C46 349 PR D42 3732	R. Fulton et al. H. Albrecht et al. H. Albrecht et al. D. Antreasyan et al. D. Bortoletto et al. E. Elsen et al. J.L. Rosner	(CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (Crystal Ball Collab.) (CLEO Collab.) (JADE Collab.)
WAGNER ALBRECHT ALBRECHT ALBRECHT ALBRECHT	90 89C 89G 89J 89L	PRL 64 1095 PL B219 121 PL B229 304 PL B229 175 PL B232 554	S.R. Wagner <i>et al.</i> H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(Mark II Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.)
ARTUSO AVERILL AVERY BEBEK BORTOLETTO		PRL 62 2233 PR D39 123 PL B223 470 PRL 62 8 PRL 62 2436	M. Artuso et al. D.A. Averill et al. P. Avery et al. C. Bebek et al. D. Bortoletto et al.	(CLEO Collab.) (HRS Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
BORTOLETTO ALBRECHT ALBRECHT ALBRECHT ALBRECHT ALBRECHT	89B 88F 88K 87C 87D 87I	PRL 63 1667 PL B209 119 PL B215 424 PL B185 218 PL B199 451 PL B192 245	D. Bortoletto <i>et al.</i> H. Albrecht <i>et al.</i>	(CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.)
ALBRECHT AVERY BEAN BEBEK ALAM ALBRECHT PDG	87J 87 87B 87 86 86 86F	PL B197 452 PL B183 429 PRL 58 183 PR D36 1289 PR D34 3279 PL B182 95 PL 170B 1	H. Albrecht et al. P. Avery et al. A. Bean et al. C. Bebek et al. M.S. Alam et al. H. Albrecht et al. M. Aguilar-Benitez et al.	(ARGUS Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ARGUS Collab.) (CERN, CIT+)
CHEN HAAS AVERY GILES BEHRENDS	85 85 84 84 83	PR D31 2386 PRL 55 1248 PRL 53 1309 PR D30 2279 PRL 50 881	A. Chen et al. J. Haas et al. P. Avery et al. R. Giles et al. S. Behrends et al.	(CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)