HW 4 CHEM 362

Available: Feb. 18, 2008 Due: Feb. 25, 2008

- 1. Draw all of the isomers, geometrical and optical for the following:
 - a. $\left[\operatorname{Co}(\operatorname{en})_{2}\operatorname{Cl}_{2}\right]^{+}$
 - b. $[Co(en)_2NH_3Cl]^{2+}$
 - c. $[Co(en)(NH_3)_2Cl_2]^{2+}$
- 2. Draw the molecular structures of the following complexes:
 - a. *cis*-dichlorotetracyanochromate(III)
 - b. *mer*-triamminetrichlorocobalt(III)
 - c. *trans*-dichlorobis(trimethylphosphine)palladium(II)
 - d. *fac*-triaquotrinitrocobalt(III)
- 3. Give the proper name for each of the following compounds:
 - a. $[Pt(py)_4][PtCl_4]$
 - b. Pt(acac)(NH₃)Cl
 - c. $Rh(NH_3)_5Cl$
 - d. $[Pt(en)_2][ClO_4]_2$
 - e. $Na_3[Fe(CN)_6] \cdot 2H_2O$
 - f. $Na_4[Fe(CN)_6]$
 - g. [Co(H₂O)₆]SO₄
 - h. $[Ni(Phen)_3][ClO_4]_2$
 - i. Ni(CO)₄
 - j. $Co(NH_3)(Cl)(Br)(CH_3COO)$
 - k. Na₂[PdCl₆]
- 4. For each coordination number from two to nine, mention the principal geometrical arrangement (or arrangements).
- 5. What is meant by tetragonal, rhombic and trigonal distortions of an octahedron?
- 6. Give one example of each of the following types of isomers:
 - a. Ionization isomer
 - b. Linkage isomer
 - c. Coordination isomer
- 7. What is meant by the chelate effect? Give an example.
- 8. Show with drawings how axial-equatorial exchange in a square pyramidal (sp) complex AB₅ could occur through a trigonal bipyramidal (tbp) intermediate.
- 9. Draw all the possible isomers for an octahedral complex having four different monodentate ligands. Indicate optical isomers.
- 10. Why do you think that species such as AlCl₃, [CuCl₃] and Pt(NH₃)₂Cl⁺ are not actually three-coordinate mononuclear complexes but rather dinuclear compounds?

- 11. Write the chemical reactions for:
 - a. Water exchange in the hexaaquanickel(II) ion
 - b. Base hydrolysis of [Co(NH₃)₅Cl]²⁺
 - c. cis-Pt(PEt₃)₂(CN)(Cl) + H₂O
- 12. Show with drawings, the enantiomorphs of
 - a. $M(en)_2Cl_2$
 - b. $M(en)_3$
- 13. Contrast the general trends for substitution reactions of (1) octahedral and (2) square planar complexes regarding:
 - a. Leaving group effects
 - b. Charge effects
 - c. Steric effects
- 14. Summarize the types of data that indicate a predominantly dissociative mechanism for substitution reactions of octahedral complexes.
- 15. Summarize the types of data that indicate a predominantly associative mechanism for substitution reactions of octahedral complexes.
- 16. For $[PtX_4]^{2-}$ compounds, both ligand exchange and thermodynamic stability increase in the order

$$X = Cl < Br < I < CN$$

Explain why these observations are not inconsistent with each other.

- 17. What do each of the following abbreviations stand for?
 - a. tbp
 - b. fac
 - c. mer
 - d. bpy
- 18. Draw structures of the following ligands:
 - a. ethylenediamine (en)
 - b. acetylacetonate (acac)
 - c. diethylenetriamine (EDTA)
 - d. 1,10-phenanthroline
 - e. 2,2'-bipyridine
 - f. acetate ion
 - g. dimethylsulfoxide (DMSO)
- 19. Draw the six-coordinate ML₆ complex as an octahedron and as a trigonal prism
 - a. What is the relationship between the two structures?
 - b. Why is the octahedral geometry more favored than the trigonal prism?
 - c. Show how the number of geometrical isomers differ for the octahedron and the trigonal prism geometry for M(bpy)₂Cl₂.