MIE407 Nuclear Reactor Theory & Design

Jonah Chen

Nuclear Stability:

- Stability of nucleus is the result of the balance between the strong nuclear force and the electromagnetic
 force.
- Range of the strong nuclear force is about $1 \, \mathrm{fm}$ (femtometre, $10^{-13} \, \mathrm{cm}$)
- The strong nuclear force acts equally between protons and neutrons, but neutrons also reduce repulsions between protons by pushing them further apart from each other.
- ullet Fermi approx: $r=R_0A^{1/3}$ where $R_0=1.2\,\mathrm{fm}$
- The strong nuclear force is repulsive at very small distances, which contributes to the incompressibility of the nucleus.
- The strong nuclear force is insignificant at larger than around 4 proton diameters.

Nuclear Binding Energy:

• The binding energy of a nucleus can be found by calculating the mass defect of the nucleus compared to the mass of the unbound nucleons.

$$E_B = [Zm_p + (A - Z)m_n - m]c^2 \equiv \Delta M \times c^2$$
(1)

- ullet The binding energy is usually expressed as the average binding energy per nucleon $arepsilon=E_B/A$.
- $1 u=931.5 MeV/c^2$

Compound nucleus decay modes:

- Neutron capture (n,γ) : Nucleus decays to a lower energy state by emitting some gamma rays. $n+^A X \to^{A+1} X^* \to^{A+1} X + \gamma$
- Elastic scattering (n, n'): Neutron is re-emitted after leaving the nucleus in the ground state.
- Inelastic scattering $(n, n'\gamma)$: Neutron (usually high energy) is re-emitted at a lower energy, leaving the nucleus in an excited state. Then, the nucleus emits some gamma rays to return to the ground state.
- Fission (n, f): Nucleus splits into two fragments with approx. 2:3 mass ratio.
- Particle emission $(n, \alpha), (n, p), (n, kn)$: A particle other than a neutron, or multiple neutrons are emitted. Only occurs with very high energy neutrons. Hence, only a small number of (n, 2n) reactions occur in nuclear reactors.

Nuclear Fission

- When a thermal neutron ($\leq 1\,\mathrm{eV}$) is absorbed by a U-235 nucleus, it forms a compound nucleus that fissions with $\approx 84\%$ probability.
- Fission is a threshold reaction. In cases for U-235, the threshold energy is lower than the energy gained by binding the extra neutron. Hence, fissions may occur by neutrons with any energy. However, for U-238, the threshold energy is about 1 MeV greater than the energy gained by binding the extra neutron. Hence, fissions only occur by neutrons with kinetic energy greater than 1 MeV, which rarely occurs in even a fast reactor.
- Under thermal conditions $(0.0253\,\mathrm{eV}\ \mathrm{or}\ 2200\,\mathrm{m/s})$ the distribution of fission products is a strong bimodal distribution (Peaks at A=96,135).
- Most neutrons (prompt neutrons) emitted in fission are released at the instant of fission.
- ullet A small number of fission fragments also emit neutrons (delayed neutrons). These compose of <1% of the total neutrons, but they are significant in the transient behavior of the reactor.
- Delayed neutrons result from high nuclear excitation of the daughter (when the excess energy exceed the nuclear binding energy of the neutron)
- Between 0 to 7 prompt neutrons may be emitted by fission, on average around 2.4. This is very important.
- The fission neutron spectrum is approximately $\chi(E)=0.484\sinh\left(\sqrt{2E}\right)e^{-E}\mathrm{MeV}^{-1}$. Integrate this over a interval of E to obtain the probability of energy in that interval. (Average $2\,\mathrm{MeV}$)
- Delayed neutrons are much lower energy $(400 \, \mathrm{keV})$
- Reaction Rate stuff
 - Intensity $I = nv (1/\text{cm}^2\text{s})$
 - Flux ϕ (1/cm²s)
 - Number density $N=rac{
 ho N_A}{M}$ (1/cm³)
 - Microscopic cross section σ (1/cm²)
 - Macroscopic cross section $\Sigma = N\sigma$ (1/cm)
 - Reaction rate $R = \Sigma \phi$ (1/cm³s)
- Passive or non-multiplying media are characterized by the scattering (σ_s) and capture (σ_c) cross sections.
- Multiplying media contain at least one fissile or fissionable (fissile at high energy only) isotope and are further characterized by fission cross-section σ_f and ν .

1 Propogation of Neutrons in a Passive Medium

- Due to interactions with the medium, the initial intensity I_0 decreases to I(x) at depth x.
- The rate of decrease is the reaction rate $I' = -R = \Sigma I$, with solution $I(x) = I_0 e^{-\Sigma x}$. Σ is the total cross-section.
- Understood in probability terms, $e^{-\Sigma x}$ is the probability that a neutron survive to depth x. Also, for very small Δx , $\Sigma \Delta x$ is the probability that a neutron will interact in Δx .
- Finally, $\Sigma e^{-\Sigma x} \Delta x$ is the probability that a neutron will interact between distance x and $x + \Delta x$.
- The mean free path is defined as the average distance a neutron travels before interacting

$$\lambda = \int_0^\infty x p(x) dx = \int_0^\infty x \Sigma e^{-\Sigma x} dx = \frac{1}{\Sigma}$$
 (2)

Note that the mean free path can be used for a single reaction type also, e.g. $\lambda_s, \lambda_c, \lambda_f$.

• Point neutron source. The intensity of the source is S.

- In empty space, $\phi(r) = \frac{\dot{S}}{4\pi r^2}$.
- In medium, $\phi(r) = \frac{\dot{S}}{4\pi r^2} e^{-\Sigma r}$
- If there is scattering, these equations will underestimate the flux.

2 NEUTRON FLUX AND CURRENT

- In analyzing a nuclear reactor, we are interested in the neutron population at any position/time, and the rates of all nuclear reaction at any position/time.
- The neutron density is $n(\mathbf{r}, \mathbf{v}, t)$. It is useful to express the velocity vector as the speed v and the unit direction Ω . We also use kinetic energy (which contains the same information as the speed $E = \frac{1}{2}mv^2$) i,e, $n(\mathbf{r}, E, \Omega, t)$.
- $n(\mathbf{r}, E, \mathbf{\Omega}, t)$ is a density function with units $1/\mathrm{cm}^3\mathrm{eVsr.}$ $n(\mathbf{r}, E, \mathbf{\Omega}, t)\mathrm{d}V\mathrm{d}E\mathrm{d}\Omega$.
- With $\mu := \cos \theta$, we have $d\Omega = -d\varphi d\mu/4\pi$, when we integrate over the all solid angles, we can integrate φ from 0 to 2π and μ from 1 to -1.
- Here, we define $d\Omega = dS/4\pi = -d\varphi d(\cos\theta)/4\pi$. Note that $\int_{4\pi} d\Omega = \frac{1}{4\pi} \int_0^{2\pi} d\varphi \int_{-1}^1 d\mu = 1$
- The angular neutron density $n(\mathbf{r}, E, \mathbf{\Omega})$ is an important reactor parameter used in the definition of neutron flux and current.
- \bullet The integral of the angular neutron density over all solid angles is the **neutron density** in cm⁻³eV⁻¹

$$n(\mathbf{r}, E) = \int_{4\pi} n(\mathbf{r}, E, \mathbf{\Omega}) d\Omega.$$
 (3)

• If some quantity q with density ρ can flow by a velocity field v, we can define the vector flux

$$\mathbf{j} = \rho \mathbf{v}.\tag{4}$$

We can define the neutron flux density as

$$\phi(\mathbf{r}, E, \mathbf{\Omega}) = n(\mathbf{r}, E, \mathbf{\Omega})\mathbf{v}(\mathbf{r}, E, \mathbf{\Omega}). \tag{5}$$

• The magnitude of vector flux density is the combined distance traveled by these neutrons (this is important for determining reaction rate) is defined as the scalar neutron flux,

$$\Phi(\mathbf{r}, E) = \int_{4\pi} \phi(\mathbf{r}, E, \mathbf{\Omega}) d\Omega = v \int_{4\pi} n(\mathbf{r}, E, \mathbf{\Omega}) d\Omega.$$
 (6)

• The neutron (net) current density (this is important for determining neutron transport) is

$$\mathbf{J}(\mathbf{r}, E) = \int_{4\pi} \mathbf{v} n(\mathbf{r}, E, \mathbf{\Omega}) d\Omega = v \int_{4\pi} \hat{\mathbf{\Omega}} n(\mathbf{r}, E, \mathbf{\Omega}) d\Omega$$
 (7)

- Since the integral in (7) is performed over all direction, which yields a vector that points in a particular direction. The direction of **J** represents the direction of **net** neutron flow.
- We can specify a unit vector \hat{n} that is normal to dA, then $\mathbf{J} \cdot \hat{n} dA$ is the net number of neutrons crossing the surface dA per unit energy and unit time.

3 NEUTRON DIFFUSION EQUATION

- We will first try to understand how neutrons flows through an volume element $\Delta V = \Delta x \Delta y \Delta z$ within a passive medium. In a passive medium, there are two types of interactions (absorption and scattering).
- For sake of simplicity, we will assume a partial current $\mathbf{J}=J_x\hat{x}$. Due to interactions, we have

$$\frac{J_x(x + \Delta x, y, z) - J_x(x, y, z)}{\Delta x} \to \frac{\partial J_x}{\partial x} dV$$
 (8)

We can repeat this for the J_y and J_z to obtain the **leakage** form

$$d\mathcal{L} = \operatorname{div} \mathbf{J} dV. \tag{9}$$

- At steady state, the net leakage (9) represents a mismatch between neutron gain and loss.
- ullet The overall neutron balance in $\mathrm{d}V$ becomes

$$d\mathcal{L} = (Q - R_a)dV \tag{10}$$

where Q is the source density in cm⁻³s⁻¹ and $R_a = \Sigma_a \phi$ is the rate of absorption per unit volume.

$$\operatorname{div} \mathbf{J} + \Sigma_a \Phi = Q. \tag{11}$$

equation (11) is the **neutron balance equation**.

• We need an equation to relate J and Φ . The most common approximation is the **diffusion approximation**, which assumes the neutron flux (**not neutron density**) behaves like a fluid

$$\mathbf{J}(\mathbf{r}) = -\mathbf{D}(\mathbf{r})\nabla\Phi(\mathbf{r})\tag{12}$$

Here, the diffusion coefficient D has the dimensions of length. This depends on spatial position because
the material in the reactor is not homogeneous. The diffusion coefficient is related to the cross-sections
of the medium

$$D = \frac{\lambda_{tr}}{3} = \frac{1}{\Sigma_{tr}},\tag{13}$$

where λ_{tr} is the transport mean free path in cm.

3.1 Transport Cross-Section

• The macroscopic transport cross-section is determined by the density of the medium,

$$\Sigma_{tr} = N\sigma_{tr} \tag{14}$$

• The microscopic transport cross-section accounts for both absorption and inelastic scattering

$$\sigma_{tr} = \sigma_a + (1 - \bar{\mu})\sigma_s,\tag{15}$$

where $\bar{\mu} \approx \frac{2}{3A}$ is the average cosine of the scattering angle θ .

- In the center of mass frame, the scattering is isotropic, but in the lab frame it is not due to conservation of momentum. $0 \le \theta < 180^\circ$ or $0 \le \bar{\theta} < 90^\circ$. As $\mu = \cos \theta, 1 \ge \mu > 0$.
- Typically, $\bar{\mu} << 1$ for heavier atoms A >> 1, so $\sigma_{tr} = \sigma_a + \sigma_s = \sigma_t$. In this course, make this approximation unless otherwise told.

LIMITATIONS OF THE DIFFUSION APPROXIMATION

• Underlying diffusion theory is an approximation that expresses the scattering kernel as an expression in Legendre polynomials, in which the first order term are used

$$\Sigma_s(z, \mathbf{\Omega} \to \mathbf{\Omega}') = \Sigma_s(z, \mathbf{\Omega} \cdot \mathbf{\Omega}') = \frac{1}{2\pi} \sum_{l=0}^{\infty} \frac{2l+1}{2} P_l(\mu) \Sigma_s(z)$$
 (16)

where $\mu = \cos(\Omega \cdot \Omega')$ and P_l is the Legendre polynomial of order l.

- This approximation is good except:
 - Near a strong source or absorber
 - At the boundary between two media with dissimilar neutron diffusion characteristics

3.3 EQUATION AND BOUNDARY CONDITIONS

• Combining the diffusion approximation with the neutron balance equation, we obtain the neutron diffusion equation

$$(\operatorname{div}(D\nabla) + \Sigma_a)\Phi = Q \tag{17}$$

• A reactor core is modelled composed of numerous homogeneous regions in which this dependence on D vanishes. Then, this reduces to

$$(-D\Delta + \Sigma_a)\Phi = Q \tag{18}$$

ullet The net current at a plane x=b inside a homogeneous material region in a slab reactor consists of two contributions

$$J_{+}(b) = \frac{\Phi(b)}{4} - \frac{D}{2} \frac{\mathrm{d}\Phi}{\mathrm{d}x} \tag{19}$$

$$J_{-}(b) = \frac{\Phi(b)}{4} + \frac{D}{2} \frac{d\Phi}{dx}$$
 (20)

- These equations yield the net current at x = b which agrees with Fick's law.
- Since neutrons leaving one region must enter the other, the additional boundary conditions are

$$J_{+}^{A}(b) = J_{+}^{B}(b) \tag{21}$$

$$J_{-}^{A}(b) = J_{-}^{B}(b) \tag{22}$$

Then substituting the values for J, we obtain

$$\frac{\Phi_A(b)}{4} - \frac{D_A}{2} \frac{\mathrm{d}\Phi_A}{\mathrm{d}x} = \frac{\Phi_B(b)}{4} - \frac{D_B}{2} \frac{\mathrm{d}\Phi_B}{\mathrm{d}x} \tag{23}$$

$$\frac{\Phi_{A}(b)}{4} - \frac{D_{A}}{2} \frac{d\Phi_{A}}{dx} = \frac{\Phi_{B}(b)}{4} - \frac{D_{B}}{2} \frac{d\Phi_{B}}{dx}
\frac{\Phi_{A}(b)}{4} + \frac{D_{A}}{2} \frac{d\Phi_{A}}{dx} = \frac{\Phi_{B}(b)}{4} + \frac{D_{B}}{2} \frac{d\Phi_{B}}{dx}$$
(23)

We can add and subtract these equations and obtain

$$\Phi_A(b) = \Phi_B(b) \tag{25}$$

$$D_A \frac{\mathrm{d}\Phi_A}{\mathrm{d}x} = D_B \frac{\mathrm{d}\Phi_B}{\mathrm{d}x} \tag{26}$$

Thus, we know from Fick's law that

$$J_A(b) = J_B(b) (27)$$

(28)

• When region B is vacuum, there is no return current. Hence,

$$0 = J_{-}^{A}(b) = \frac{\Phi_{A}(b)}{4} + \frac{D_{A}}{2} \frac{\mathrm{d}\Phi_{A}}{\mathrm{d}x}$$
 (29)

$$\frac{\mathrm{d}\Phi_A}{\mathrm{d}x} = -\frac{1}{2D_A}\Phi_A(b) = -\frac{3}{2}\frac{\mathrm{d}\Phi_A}{\mathrm{d}\lambda_{tr}^A} \tag{30}$$

• We approximate beyond the boundary the neutron current is linear thus,

$$\delta_{ex} = -\frac{\Delta_A(b)}{\frac{d\Phi_A}{dr}} = \frac{2}{3} \frac{\lambda_{tr}^A}{\Phi_A(b)} \Phi_A(b) = \frac{2}{3} \lambda_{tr}^A$$
(31)

With neutron transport theory, we get a better approximation for $\delta_{ex} = 0.71 \lambda_{tr}^A$. This value δ_{ex} is called the **extrapolation length**.

3.4 Solution of the Neutron Diffusion Equation

ullet Consider a point isotropic source \dot{S} in an infinite homogeneous and isotropic medium. The problem has spherical symmetry and has no source apart from r=0, so the neutron diffusion equation reduces to

$$-D\Delta\Phi + \Sigma_a\Phi = 0 \tag{32}$$

$$-\frac{D}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}\Phi}{\mathrm{d}r}\right) + \Sigma_a\Phi = 0 \tag{33}$$

$$\frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}\Phi}{\mathrm{d}r} \right) - \frac{\Sigma_a}{D} \Phi = 0 \tag{34}$$

We will define the diffusion area as

$$L^2 = \frac{D}{\Sigma_a} = \frac{1}{3\Sigma_{tr}\Sigma_a} \tag{35}$$

Therefore,

$$\frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}\Phi}{\mathrm{d}r} \right) - \frac{\Phi}{L^2} = 0 \tag{36}$$

- We can think of the diffusion area as
- Using the substitution $\Phi(r) = R(r)/r$, the differential equation becomes

$$\frac{\mathrm{d}^2 R}{\mathrm{d}r^2} - \frac{R}{L^2} = 0 \tag{37}$$

So the general solution is

$$R(r) = Ae^{-r/L} + Be^{r/L}. (38)$$

• We can determine A and B using the boundary conditions at r=0 and $r=\infty$. With the condition $\Phi(\infty)=\lim_{r\to\infty}R(r)/r=0$, we have B=0. For the boundary condition at r=0, we have $\Phi(0)=\dot{S}=A/r$