





#### ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

#### **EM Wrap-up**

Instructor: Dikun Yang Feb – May, 2020





### Quasi-static Maxwell's Equations

$$\nabla \times E = -\mu \frac{\partial H}{\partial t}$$

$$\nabla \times H = \sigma E + \epsilon \frac{\partial E}{\partial t}$$

$$\nabla \times E = -i\omega \mu H$$

$$\nabla \times H = \sigma E + i\omega \epsilon E$$





### Wires and Loops

Electrical dipole (a *small* piece of wire)

**----**



#### Closed loop

- Magnetic field (dB/dt)
- Non-contact (divergence free)
- Inductive coupling



#### Grounded wire

- Electrical field (E)
- End points in contact with ground
- Galvanic and inductive coupling

## Loop-loop System in Frequency Domain



# EM =

#### Magnetics



- Magnetic dipole
- Magnetic flux (B)

#### Electric Resistivity



- Electric dipole
- Electric current (J)

## Electrical energy transmission

Galvanic (electric current)





DC resistivity (electric resistivity tomography)



#### Electrical energy transmission

Inductive (magnetic flux B)



- 1. Change of current in the primary
- 2. Change of magnetic flux in the core
- 3. Induced current in the secondary

#### A transformer:

- No direct connection between primary and secondary windings
- Energy goes through in the forms of electric, magnetic then electric
- Magnetic flux linkage only in AC (requires non-stationary current)

## Electrical energy transmission

Inductive (magnetic flux B)



Security scan



Metal detector

#### Ampere's law

J generates B 
$$\nabla \times \mu^{-1} \mathbf{B} = \mathbf{J} = \sigma \mathbf{E}$$





### Ampere's law

J generates B

$$\nabla \times \mu^{-1} \mathbf{B} = \mathbf{J} = \sigma \mathbf{E}$$





A small solenoid generates a magnetic field that can be approximated by a magnetic dipole (or a small bar magnet)



Still remember the magnetic dipole?

## Faraday's law

Change of B generates J

$$\nabla \times \sigma^{-1} \mathbf{J} = \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$



#### Induced current depends on

- How fast B changes
- How many B-field lines go through
- How conductive the object is

#### Communicate with the Earth without Contact

#### **Transmitter loop**



Ampere: timevarying current and changing primary magnetic field

#### Target/Ground



**Faraday**: current induced by the changing primary field:

**Ampere**: induced current generates a secondary magnetic field

#### **Receiver loop**



**Faraday**: measurable current induced in the loop by the changing secondary field



#### Notebook: Loop, dipole and field lines

"MagDipole2LoopsCoupling.ipynb"



## 3-loop Model



## 3-loop Model: Primary H<sup>p</sup>



3-loop Model: Secondary Hs





**Question**: Is the data positive or negative for the scenario on this page? Hint: Think about the positive and negative anomalies in total field magnetics.

## Data (Hs/Hp) Sign Convention

Positive primary and secondary in same direction

primary secondary Receiver



Negative primary and secondary in opposite directions





# Coupling between Two Loops Through Magnetic Flux Linkage



# Coupling between Two Loops Through Magnetic Flux Linkage



# Coupling between Two Loops Through Magnetic Flux Linkage





Null coupled

## H<sup>s</sup>/H<sup>p</sup>: Positive or Negative?





## H<sup>s</sup>/H<sup>p</sup>: Positive or Negative?







# Hs/Hp Profile



walk



## Verify using Demo Notebook

• "MagDipole3LoopsCoupling.ipynb"

https://github.com/sustechgem/geophysics-demo-notebooks/blob/master/MagDipole3LoopsCoupling.ipynb



Drawing lines only helps qualitative understanding.

We need more math to do a quantitative interpretation.



## Decompose Secondary Field



#### primary field $H_3^p \cos(\omega t)$

secondary field

$$H_3^s \cos(\omega t - \frac{\pi}{2} - \phi)$$
  
or  $H_3^s \cos(\omega t - \psi)$ 



- Hs swings in the third quadrant:  $0 < \phi < 90^{\circ}$
- $\phi$  depends on the induction number  $\alpha$
- $\alpha$  is a function of frequency  $\omega$ , self inductance L and resistance R of Loop 2

## Decompose Secondary Field



$$\phi = tan^{-1}(\frac{\omega L}{R}) = tan^{-1}(\alpha)$$

**Question**: What happens to the H<sup>s</sup> (red arrow) for a very conductive or very resistive target?

Decompose H<sup>s</sup> to two orthogonal components then normalize by H<sup>p</sup>:

90° phase lag: called "out-of-phase", "quadrature", "imaginary"  $\frac{H^s \mathrm{cos}(\phi)}{H^p}$ 

180° phase lag: called "inphase", "real"

$$\frac{H^s \sin(\phi)}{H^p}$$

## Response Function



**Question**: How would the real and imaginary data change with the induction number  $\alpha$ ?

### Response Function

$$Q(\alpha) = \frac{i\alpha}{1 + i\alpha} = \frac{\alpha^2 + i\alpha}{1 + \alpha^2} \qquad \alpha = \frac{\omega R}{R}$$

Resistive limit:

- low frequency
- low conductivity



Inductive limit:

- high frequency
- high conductivity

### Expected Data From a Loop Target



#### A Smaller Induction Number





$$\frac{H_3^s}{H_3^p} = -\frac{M_{12}M_{23}}{M_{13}L} \left[ \frac{\alpha^2 + i\alpha}{1 + \alpha^2} \right]$$



#### Coupling

- location, orientation
- overall magnitude

#### Induction

- properties of loop 2
- how much in Re & Im



#### EM-31

- Frequency = 9.8 kHzTx-Rx spacing = 3.66 m
- Horizontal or vertical coplanar
- "Ground conductivity meter"





#### EM-31 Data Frequency = fcurrent Re, Im 7 time W-E oriented transmitter receiver horizontal co-planar instrument observation grid Northing > target loop (inclination, declination) Easting (E, N, Depth) Depth

#### EM-31 Data





#### EM-31 Field Data



**Data Feature 1**: Uniform, smooth and small

#### EM-31 Data at Low Induction





Small **Re** and small **Im** on the data maps,  $\alpha$  big or small?

Low induction number:

- $H^s$  data mostly in quadrature,  $Im > Re \approx 0$
- Very small induced current
- Subdivide the earth into many pieces; each piece interacts with Tx-Rx independently without interaction between any two pieces (recall low induced magnetization in magnetics, easy calculation using superposition!)

## Apparent Conductivity

$$\sigma_a = \frac{4}{\omega \mu_0 s^2} \mathbf{Im}$$



**Question**: Which area on the maps is the most likely to have a reliable estimate of the ground conductivity?

## EM-31 Data Interpretation



#### Data Feature 1:

Uniform, smooth and small

#### Data Feature 2:

Abrupt change Positive and negative Large **Re** and small **Im** 

## EM-31 Data at High Induction





#### Large **Re** and small **Im** on the data maps, $\alpha$ big or small?

High induction number:

- Hs data mostly in in-phase, Re > Im ≈ 0
- Very strong induced current
- Cannot use apparent conductivity, but if the target is a good compact conductor, use the 3-loop model



# Vertical Target Loop



## 45 Degree Dipping Target Loop



# Horizontal Target Loop



# Equiaxed Target













Easting (m)



**Question**: Can you find those features on the data map and infer the geometry and orientations of the targets?

## Summary

- EM induction: Quasi-static
- Loop-loop system in FD: Three loop model
  - Ampere's Law and Faraday's Law
  - Coupling
  - Induction number and response function
- EM-31 as an example
  - Positive or negative?
  - Compare in-phase with quadrature



## EM Surveys



### EM Surveys

- Type of source: magnetic dipole, electric dipole, plane wave (natural source)
- Frequency or time domain
- Source waveform: harmonics, square wave, pulse wave
- Operating frequencies or time channels
- Data: complex or real

## EM-41



$$s = 10 \text{ m, } f = 6.4 \text{ kHz}$$



## EM-41



#### EM-41

- Variable depth of exploration down to 60 m
- HCP or VCP coil configuration
- Groundwater exploration in fractured and faulted bedrock



#### GEM3



- Concentric Tx-Rx
- Frequency 60 Hz to 24 kHz
- Identify an object based on its spectral fingerprints

#### Airborne EM





Skin depth: High frequency for shallow; low frequency for deep

#### Airborne EM – Groundwater Flow



## Time-domain (Transient) EM







- Wider frequency bandwidth
- Deeper penetration
- Time channel: early for shallow, late for deep

#### Airborne Time-domain EM (TEM)



- Magnetic dipole Tx and Rx
- High efficiency
- Sensitive to conductors (water, minerals)
- Adjustable source moment
- Waveforms



## ATEM - SkyTEM



## ATEM - Bookpurnong





#### **Surface TEM**

- Concentric Tx-Rx
- Time decay curve at each station
- 1D layered inversion at each station
- Stitch 1D models to form a 2D section



#### Natural Source EM







- Plane wave: horizontal E, H fields
- Frequency: 1 kHz 10<sup>-4</sup> Hz
- Depth of penetration:  $10^1 10^5$  m

## Magnetotellurics (MT)



$$\begin{bmatrix} E_{x} \\ E_{y} \end{bmatrix} = \begin{bmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{bmatrix} \begin{bmatrix} H_{x} \\ H_{y} \end{bmatrix}$$

Impedance tensor element  $Z_{ij}$  is complex and a function of sounding frequency and the earth's conductivity at different depths.





#### MT - Geothermal



#### Marine CSEM



- Electric dipole source
- Towed or ocean-bottom E-field receivers (electric dipoles too)
- Widely used in hydrocarbon exploration (resistors in a conductive background)

### Marine CSEM



#### Summary

- More EM surveys
  - Multi-frequency systems: EM-34, GEM3
  - Airborne EM: RESOLVE
  - Time domain EM: SkyTEM, concentric Tx-Rx
  - Natural source EM (MT)
  - Marine CSEM
- Applications
  - Groundwater/geothermal
  - Geologic mapping
  - Geotechnical, UXO
  - Petroleum