Chapitre 16 : Intégrales curvilignes, formes différentielles

Ici, p = 2 ou 3.

I Intégrale curviligne le long d'une courbe

Soit $\gamma:[a,b] \to \mathbb{R}^p$ un arc paramétré de classe C^1 , de support C.

Soit $f: C \to \mathbb{R}$ une fonction continue.

On appelle intégrale curviligne de f le long de γ , et on note $\int_{\gamma} f(M) ds$ le réel défini par

$$\int_{\gamma} f(M)ds = \int_{a}^{b} f(M(t)) \frac{ds}{dt}(t) dt \text{ (où } \frac{ds}{dt}(t) = \left\| \frac{\overrightarrow{dM}}{dt}(t) \right\|)$$

Admis:

Si le paramétrage est « raisonnable » (en particulier pas de points doubles autres qu'en des points isolé), cette intégrale ne dépend que de C.

Généralisation:

Aux arcs continus et de classe C^1 par morceaux,

c'est-à-dire que γ est continu et il existe une subdivision $a = a_1 < a_2 < ... < a_n = b$ de [a,b] telle que $\forall i \in [1,n], \gamma_{[a_{i-1},a_i]}$ est de classe C^1 .

(On généralise par addition...)

Interprétation:

s étant une abscisse curviligne, ds représente « le déplacement élémentaire sur C ».

Ainsi,
$$\int_{\gamma} f(M)ds = \lim_{n \to +\infty} \sum_{i=1}^{n} f(M(t_i))(s(t_i) - s(t_{i-1})) \text{ (admis)}$$

où, pour tout $i \in [0, n]$, $t_i = a + i \cdot \frac{b-a}{n}$ (subdivision régulière de [a, b]).

Utilité:

Exemple : un fil dont la forme est donné par la courbe paramétrée γ , de densité linéique $p:M\mapsto p(M)$ (fonction continue de M) a pour masse totale $\int_{\gamma}p(M)ds$.

II Formes différentielles sur un ouvert de R.

Soit Ω un ouvert de \mathbb{R}^p .

A) Définition

Une forme différentielle sur Ω est une application de Ω dans $L(\mathbb{R}^p, \mathbb{R})$.

Si par exemple p=3, on sait que $L(\mathbb{R}^3,\mathbb{R})$ (dual de \mathbb{R}^3) est un \mathbb{R} -ev de dimension 3, dont une base naturelle est constituée des 3 projecteurs : $(x,y,z)\mapsto x$, $(x,y,z)\mapsto y$ et $(x,y,z)\mapsto z$, qu'on a notés en analyse dx,dy,dz.

Ainsi, une forme différentielle ω sur Ω s'écrit :

 $\omega = Adx + Bdy + Cdz$ où A, B, C sont 3 applications de Ω dans \mathbb{R} .

Autrement dit:

$$\forall (x, y, z) \in \mathbb{R}^3, \omega(x, y, z) = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz.$$

On dit que ω est de classe C^k lorsque A, B, C le sont.

De même si p = 2, une forme différentielle sur un ouvert Ω de \mathbb{R}^2 s'écrit :

 $\omega = Adx + Bdy$ où A et B sont des fonctions de Ω dans \mathbb{R} .

Exemples:

- ω définie par $\forall (x,y) \in \mathbb{R}, \omega(x,y) = (2x+1)dx + xydy$ est une forme différentielle de classe C^1 sur \mathbb{R}^2 .
- Si $f: \mathbb{R}^2 \to \mathbb{R}$ est de classe C^1 , alors $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ est une forme différentielle continue sur Ω .

B) Formes différentielles exactes

Définition:

Soit ω une forme différentielle continue sur Ω . On dit que ω est exacte lorsqu'il existe f, de classe C^1 sur Ω , telle que $\omega = df$.

Autrement dit, avec p = 2 par exemple :

La forme différentielle ω définie par $\forall (x,y) \in \Omega, \omega(x,y) = A(x,y)dx + B(x,y)dy$ (où A et B sont continues) est exacte si et seulement si il existe f, de classe C^1 , telle que $\forall (x,y) \in \Omega$, $A(x,y) = \frac{\partial f}{\partial x}(x,y)$ et $B(x,y) = \frac{\partial f}{\partial y}(x,y)$.

C) Intégrale curviligne d'une forme différentielle le long d'une courbe

Soit $\gamma:[a,b] \to \mathbb{R}^p$ un arc de classe C^1 et de support C.

On prend les notations habituelles :

On pose
$$\int_{v} \omega = \int_{a}^{b} \omega(M(t))(\vec{v}(t))dt$$
.

Attention: $\omega \in \mathfrak{F}(\Omega, L(\mathbb{R}^p, \mathbb{R})), \ \omega(M(t)) \in L(\mathbb{R}^p, \mathbb{R}) \text{ et } \omega(M(t))(\vec{v}(t)) \in \mathbb{R}$.

Autrement dit, dans le cas p = 2:

Si
$$\forall (x, y) \in \Omega, \omega(x, y) = A(x, y)dx + B(x, y)dy$$
, alors:

$$\int_{\gamma} \omega = \int_{a}^{b} \left[A(x(t), y(t)) . x'(t) + B(x(t), y(t)) . y'(t) \right] dt$$

Admis:

Si le paramétrage est « raisonnable », cette intégrale ne dépend que de C et de l'orientation de C définie par ce paramétrage (l'intégrale est changée en son opposée si la paramétrisation inverse l'orientation de C).

Lien avec les intégrales curvilignes de fonctions :

$$\int_{\gamma} \omega = \int_{a}^{b} \omega(M(t)) (\frac{ds}{dt}(t)\vec{T}(t)) dt = \int_{a}^{b} \omega(M(t)) (\vec{T}(t)) \frac{ds}{dt}(t) dt = \int_{\gamma} \omega(M) (\vec{T}(M)) ds$$

On peut ici encore généraliser aux arcs continus et C^1 par morceaux, par addition.

Cas où ω est exacte:

Théorème :

Soit $f: \Omega \to \mathbb{R}$, de classe C^1 , et soit $\gamma: [a,b] \to \mathbb{R}^p$ continue et de classe C^1 par morceaux, de support contenu dans Ω .

Alors $\int_{\gamma} df = f(B) - f(A)$, où A est le point de γ de paramètre a, B celui de paramètre b.

En particulier, si γ est fermé (c'est-à-dire A = B), $\int_{\gamma} df = 0$.

Démonstration:

Avec les notations précédentes, dans le cas p = 2 par exemple :

$$\int_{\gamma} \omega = \int_{a}^{b} \left[\frac{\partial f}{\partial x}(x(t), y(t)).x'(t) + \frac{\partial f}{\partial y}(x(t), y(t)).y'(t) \right] dt = \left[f(x(t), y(t)) \right]_{a}^{b} = f(B) - f(A)$$

$$\underset{\text{dérivée en } t \text{ de } t \mapsto f(x(t), y(t))}{\text{dérivée en } t \text{ de } t \mapsto f(x(t), y(t))} dt = \left[f(x(t), y(t)) \right]_{a}^{b} = f(B) - f(A)$$

III Circulation d'un champ de vecteurs

Soit Ω un ouvert de \mathbb{R}^3 , et soit $\vec{F}: \Omega \to \mathbb{R}^3$ un champ de vecteurs de classe C^0 .

On a:
$$\forall (x, y, z) \in \Omega, \vec{F}(x, y, z) = (X(x, y, z), Y(x, y, z), Z(x, y, z))$$

Soit ω la forme différentielle $\omega = Xdx + Ydy + Zdz$.

Alors $\int_{\gamma} \omega$ est aussi noté $\int_{\gamma} \vec{F}(M) \cdot \overrightarrow{dM}$, appelé circulation de \vec{F} le long de γ .

Justification, interprétation :

$$\begin{split} \int_{\gamma} \omega &= \int_{a}^{b} \left[X(M(t)).x'(t) + Y(M(t)).y'(t) + Z(M(t)).z'(t) \right] dt \\ &= \int_{a}^{b} \vec{F}(M) \cdot \vec{v}(t).dt \\ &= \lim_{n \to +\infty} \sum_{i=1}^{n} \vec{F}(M(t_{i})) \cdot \overrightarrow{M}_{i-1} \overrightarrow{M}_{i} \end{split}$$

Où
$$t_i = a + i \cdot \frac{b-a}{n}$$
 et $M_i = M(t_i)$.

(La dernière égalité est admise, mais intuitivement claire)

Ainsi, le théorème du paragraphe précédent s'écrit aussi :

$$\int_{\gamma} \overrightarrow{\operatorname{grad}}_{M} f \cdot \overrightarrow{dM} = f(B) - f(A) \text{ (circulation d'un champ dérivant d'un potentiel)}$$
où $f: \Omega \to \mathbb{R}$ est de classe C^{1} .