Game Theory Assignment 2

Shivam Utreja, Roll No. 150682

November 6, 2018

1 Question 1

No. of agents, N=2

Set of alternatives, $A = \{a, b, c\}$

We are also given that the SCF f is onto.

The given two preference profiles are:

$$f(P_1, P_2) = a$$

Part (a):

Given: The domain of preference profiles is of unrestricted strict preferences. f is strategyproof. To prove: $f(P'_1, P'_2) = b$.

Proof: Consider the preference order $P_2'' = (c > a > b)$. We will use it to prove the result.

Note that since f is strategy proof, it is also monotonous.

Let $P = (P_1, P_2), P' = (P'_1, P'_2), P'' = (P_1, P''_2), P''' = (P'_1, P''_2)$

Now $D(a, P_1) \subseteq D(a, P_1)$, $D(a, P_2) \subseteq D(a, P_2'')$ and f(P) = a. $\therefore f(P) = f(P'') = f(P_1, P_2'') = a$ from monotonicity of f.

Now, let if possible, f(P''') = c.

But then $aP_{1}'c$, that is, $f(P_{1}, P_{2}'')P_{1}'f(P_{1}', P_{2}'')$, which contradicts f is strategyproof. But we also know that $f(P_{1}', P_{2}'') \in \{P_{1}'(1), P_{2}''(1)\}$, that is, $f(P_{1}', P_{2}'') \in \{b, c\}$.

 $f(P''') = f(P'_1, P''_2) = \hat{b}.$

But now $D(b, P'_1) \subseteq D(b, P'_1), D(b, P''_2) \subseteq D(b, P'_2)$ and f(P''') = b.

 \therefore From monotonicity of f we have $f(P''') = f(P') = f(P'_1, P'_2) = b$. Hence proved.

Part (b):

Now the domain of preferences is restricted to the single-peaked preferences domain.

Intrinsic ordering of preferences is a < b < c.

The earlier conclusion does not hold in this case. This is because the earlier proof made use of the preference order P_2'' of agent 2 in the preference profiles P'' and P'''. But this preference order is not a single-peaked preference, hence the earlier proof does not go through.

Consider the following SCF;

 $f(P_1^*, P_2^*) = min\{P_1^*(1), P_2^*(1)\},$ for some preference profile (P_1^*, P_2^*)

First it is easy to note that this SCF is unanimous. Hence it is also onto.

Now $f(P_1, P_2) = min\{a, c\} = a$ and $f(P'_1, P'_2) = min\{b, a\} = a$.

Therefore, this provided SCF is onto with $f(P_1, P_2) = a$ and $f(P'_1, P'_2) = a$.

2 Question 2

set of projects = X \therefore set of alternatives = $A = \{Y | Y \subseteq X \ and Y \neq \phi\}$ Note that, since $|X| \geq 2$ we have $|A| \geq 3$.

Now consider $V, W \in A$ such that $V \subset W$.

Therefore, for any given agent i and preference P_i ;

Case 1: If the highest ranked project in W is in V, agent i is indifferent between alternatives W and V at profile P_i .

Case 2: else, if the highest ranked project in W is in W-V, then agent i prefers W over V.

Therefore it can never happen that alternative V is preferred over alternative W, for all such pairs of alternatives V, W defined above.

Therefore this is a setting where the preference profiles are restricted. All possible orderings of the alternatives are not possible.

Hence we may not be able to apply the Gibbard-Satterthwaite theorem here.

3 Question 3

Yes, the median voter SCF is group strategyproof under the single-peaked domain model. This is proved below.

Given: The preferences are single-peaked.

To prove: Median voter SCF is group strategyproof.

Proof: Let, if possible, there exists a group $K \subseteq N$ which can manipulate the median voting rule. Lets call the median of the true preferences, m. And m itself is part of the left side of m. (without loss of generality).

Case 1:

The actual peaks of all the members of K are on the same side of m.

Without loss of generality, let all members of K have their peaks to the left side of m. Then;

- i) if the reported peaks of all agents $i \in K$ are to the left of m, the output of the SCF doesn't change. Hence, such a manipulation is useless.
- ii) if any of the agents in K report their peaks to be to the right of m, the median (hence the output of the SCF) will shift to the right; farther away from the actual peaks of all the agents in K. Hence, such a manipulation is useless as well.

Therefore, there are no beneficial manipulations in this case.

The argument for the case when the actual peaks of all the agents in K are to the right of m, is symmetrical.

Case 2:

 $K = L \cup R$, where the actual peaks of all members of L are to the left of m, and that of R are to the right of m. $L, R \neq \phi$.

Now any manipulation that causes the output of SCF to shift to the left of m, benefits members of L, but members of R are worse off. Similarly, any manipulation that causes the output of the SCF to shift to the right of m, benefits members of R, but then members of L are worse off.

Therefore there doesn't exist any manipulation (at any preference profile), that benefits all the members of such a group K. Therefore no such group K satisfies the definition of group-manipulable given in the question.

Combining cases 1 and 2 exhausts all possible types of K. Therefore the assumption that there exists a group K which can manipulate the median voter SCF, is false. Therefore the median voter SCF is group strategy-proof.