

Introduction to Neural Networks

Lecture 2 Recap

Linear Regression

= a supervised learning method to find a linear model of the form

$$\hat{y}_i = \theta_0 + \sum_{j=1}^d x_{ij}\theta_j = \theta_0 + x_{i1}\theta_1 + x_{i2}\theta_2 + \dots + x_{id}\theta_d$$

Goal: find a model that explains a target y given the input x

Logistic Regression

Loss function

$$\mathcal{L}(y_i, \widehat{y}_i) = -y_i \cdot \log \widehat{y}_i + (1 - y_i) \cdot \log[1 - \widehat{y}_i])$$

Cost function

$$\mathcal{C}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} (y_i \cdot \log \widehat{y_i}) + (1 - y_i) \cdot \log[1 - \widehat{y_i}])$$
Minimization
$$\widehat{y_i} = \sigma(x_i \boldsymbol{\theta})$$

Linear vs Logistic Regression

Predictions can exceed the range of the training samples

→ in the case of classification

[0:1] this becomes a real issue

Predictions are guaranteed to be within [0:1]

How to obtain the Model?

Linear Score Functions

Linear score function as seen in linear regression

$$f_i = \sum_{j} w_{k,j} x_{j,i}$$

 $f = W x$ (Matrix Notation)

Linear Score Functions on Images

• Linear score function f = Wx

On CIFAR-10

On ImageNet

Linear Score Functions?

Logistic Regression

Linear Separation Impossible!

Linear Score Functions?

- Can we make linear regression better?
 - Multiply with another weight matrix W_2

$$\hat{f} = \mathbf{W_2} \cdot f \\
\hat{f} = \mathbf{W_2} \cdot \mathbf{W} \cdot \mathbf{x}$$

Operation is still linear.

$$\widehat{W} = W_2 \cdot W$$

$$\widehat{f} = \widehat{W} x$$

Solution → add non-linearity!!

• Linear score function f = Wx

- Neural network is a nesting of 'functions'
 - 2-layers: $f = W_2 \max(0, W_1 x)$
 - 3-layers: $f = W_3 \max(0, W_2 \max(0, W_1 x))$
 - 4-layers: $f = W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x)))$
 - 5-layers: $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$
 - ... up to hundreds of layers

Introduction to Neural Networks

History of Neural Networks

Source: http://beamlab.org/deeplearning/2017/02/23/deep_learning_101_part1.html

Logistic Regression

Neural Networks

• Non-linear score function $f = ... (\max(0, W_1x))$

Visualizing activations of first layer.

Source: ConvNetJS

1-layer network: f = Wx

2-layer network: $f = W_2 \max(0, W_1 x)$

Why is this structure useful?

2-layer network: $f = W_2 \max(0, W_1 x)$

Net of Artificial Neurons

Source: https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

Activation Functions

10

5

Sigmoid: $\sigma(x) = \frac{1}{(1+e^{-x})}$ 0.5 tanh: tanh(x)ReLU: $\max(0, x)$

Parametric ReLU: $max(\alpha x, x)$

Maxout
$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

$$\text{ELU } f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha(e^x - 1) & \text{if } x \le 0 \end{cases}$$

$$f = W_3 \cdot (W_2 \cdot (W_1 \cdot x)))$$

Why activation functions?

Simply concatenating linear layers would be so much cheaper...

Why organize a neural network into layers?

Biological Neurons

Biological Neurons

Credit: Stanford CS 231n

Artificial Neural Networks vs Brain

Artificial neural networks are **inspired** by the brain, but not even close in terms of complexity!

The comparison is great for the media and news articles however...

Output

Description:

Artificial Neural Network

- Summary
 - Given a dataset with ground truth training pairs $[x_i; y_i]$,
 - Find optimal weights \boldsymbol{W} using stochastic gradient descent, such that the loss function is minimized
 - Compute gradients with backpropagation (use batch-mode; more later)
 - Iterate many times over training set (SGD; more later)

Directional graph

 Matrix operations are represented as compute nodes.

- Vertex nodes are variables or operators like +, -, *, /, log(), exp() ...
- Directional edges show flow of inputs to vertices

• $f(x, y, z) = (x + y) \cdot z$

Evaluation: Forward Pass

• $f(x, y, z) = (x + y) \cdot z$ Initialization x = 1, y = -3, z = 4 \boldsymbol{x} d = -2sum mult

• Why discuss compute graphs?

• Neural networks have complicated architectures $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$

Lot of matrix operations!

Represent NN as computational graphs!

A neural network can be represented as a computational graph...

- it has compute nodes (operations)
- it has edges that connect nodes (data flow)
- it is directional
- it can be organized into 'layers'

• From a set of neurons to a Structured Compute Pipeline

[Szegedy et al., CVPR'15] Going Deeper with Convolutions

Concat Dropout Fully connected Softmax

- The computation of Neural Network has further meanings:
 - The multiplication of $\boldsymbol{W_i}$ and \boldsymbol{x} : encode input information
 - The activation function: select the key features

Source; https://www.zybuluo.com/liuhui0803/note/981434

Computational Graphs

- The computations of Neural Networks have further meanings:
 - The convolutional layers: extract useful features with shared weights

Source: https://www.zcfy.cc/original/understanding-convolutions-colah-s-blog

Computational Graphs

 The computations of Neural Networks have further meanings:

- The convolutional layers: extract useful features with

shared weights

Source: https://www.zybuluo.com/liuhui0803/note/981434

Loss Functions

What's Next?

We need a way to describe how close the network's outputs (= predictions) are to the targets!

What's Next?

Idea: calculate a 'distance' between prediction and target!

Loss Functions

• A function to measure the goodness of the predictions (or equivalently, the network's performance)

Intuitively, ...

- a large loss indicates bad predictions/performance
 (→ performance needs to be improved by training the model)
- the choice of the loss function depends on the concrete problem or the distribution of the target variable

Regression Loss

L1 Loss:

$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||y_i - \widehat{y}_i||_1$$

MSE Loss:

$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||y_i - \widehat{y}_i||_2^2$$

Binary Cross Entropy

Loss function for binary (yes/no) classification

$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = -\sum_{i=1}^{n} (y_i \cdot \log \widehat{y}_i + (1 - y_i) \cdot \log[1 - \widehat{y}_i])$$

The network predicts the probability of the input belonging to the "yes" class!

Cross Entropy

= loss function for multi-class classification

$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = -\sum_{i=1}^{n} \sum_{k=1}^{k} (y_{ik} \cdot \log \widehat{y}_{ik})$$

This generalizes the binary case from the slide before!

More General Case

- Ground truth: y
- Prediction: \hat{y}
- Loss function: $L(y, \hat{y})$
- Motivation:
 - minimize the loss <=> find better predictions
 - predictions are generated by the NN
 - find better predictions <=> find better NN

Initially

During Training...

During Training...

Training Curve

Parameters $\boldsymbol{\theta}$

- Loss function: $L(y, \hat{y}) = L(y, f_{\theta}(x))$
- Neural Network: $f_{\theta}(x)$
- Goal:
 - minimize the loss w.r.t. θ

Optimization! We train compute graphs with some optimization techniques!

• Minimize: $L(y, f_{\theta}(x))$ w.r.t. θ

• In the context of NN, we use gradient-based

optimization

• Minimize: $L(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}))$ w.r.t. $\boldsymbol{\theta}$

$$\boldsymbol{\theta}^* = \arg\min L(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}))$$

- Given inputs ${m x}$ and targets ${m y}$
- Given one layer NN with no activation function

$$f_{\theta}(x) = Wx$$
, $\theta = W$

Later
$$\theta = \{W, b\}$$

• Given MSE Loss: $L(\boldsymbol{y}, \widehat{\boldsymbol{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||y_i - \widehat{y}_i||_2^2$

- Given inputs \boldsymbol{x} and targets \boldsymbol{y}
- Given one layer NN with no activation function
- Given MSE Loss: $L(\boldsymbol{y}, \widehat{\boldsymbol{y}}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||y_i| W \cdot x_i||_2^2$

- Given inputs ${m x}$ and targets ${m y}$
- Given a one layer NN with no activation function $f_{\theta}(x) = Wx$, $\theta = W$

• Given MSE Loss:
$$L(y, \widehat{y}; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ||\boldsymbol{W} \cdot \boldsymbol{x}_i - \boldsymbol{y}_i||_2^2$$

•
$$\nabla_{\theta} L(y, f_{\theta}(x)) = \frac{1}{n} \sum_{i=1}^{n} (W \cdot x_{i} - y_{i}) \cdot x_{i}^{T}$$

- Given inputs \boldsymbol{x} and targets \boldsymbol{y}
- Given a multi-layer NN with many activations

$$f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$$

- Gradient descent for $L(\boldsymbol{y},f_{\boldsymbol{\theta}}(\boldsymbol{x}))$ w. r. t. $\boldsymbol{\theta}$
 - Need to propagate gradients from end to first layer (W_1).

- Given inputs \boldsymbol{x} and targets \boldsymbol{y}
- Given multi-layer NN with many activations

- Given inputs \boldsymbol{x} and targets \boldsymbol{y}
- Given multilayer layer NN with many activations $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$
- Gradient descent solution for $Lig(y,f_{m{ heta}}(x)ig)$ w. r. t. $m{ heta}$
 - Need to propagate gradients from end to first layer (W_1)
- Backpropagation: Use chain rule to compute gradients
 - Compute graphs come in handy!

- Why gradient descent?
 - Easy to compute using compute graphs
- Other methods include
 - Newtons method
 - L-BFGS
 - Adaptive moments
 - Conjugate gradient

Summary

- Neural Networks are computational graphs
- Goal: for a given train set, find optimal weights

- Optimization is done using gradient-based solvers
 - Many options (more in the next lectures)

- Gradients are computed via backpropagation
 - Nice because can easily modularize complex functions

Next Lectures

- Next Lecture:
 - Backpropagation and optimization of Neural Networks

Check for updates on website/moodle regarding exercises

See you next week ©

Further Reading

- Optimization:
 - http://cs231n.github.io/optimization-1/
 - http://www.deeplearningbook.org/contents/optimization.html

- General concepts:
 - Pattern Recognition and Machine Learning C. Bishop
 - http://www.deeplearningbook.org/