درفت (TREE)

سید ناصر رضوی

email: razavi@comp.iust.ac.ir

1818

درخت

- تعدادی عنصر که بین آنها رابطه پدر-فرزندی برقرار است. در درخت هر عنصر به غیر از ریشه دقیقاً یک پدر دارد.
- تعریف رسمی: یک درخت مجموعه محدودی از یک یا چند گره به صورت زیر می باشد:
 - دارای گره خاصی به نام **ریشه** است.
- جبقیه گره ها به $0 \ge k \ge 0$ مجموعه مجزا مانند T_1 ، ... و T_2 تقسیم می شوند به گونه ای که هریک از این مجموعه ها خود یک درخت می باشند. T_2 ، . T_2 ، . T_3 ، ... و T_4 را **زیردرخت** های ریشه می گوییم.)

DS course- N. Razavi ۲۰۰۷ -

7

مثال

تعاریف پایه ای

- مسیر: دنباله ای از گره ها مانند n_1, n_2, \ldots, n_k می باشد که در این دنباله به ازای هر i < k هر i < k یک شاخه و جود دارد.
- طول مسیر: برابر است با تعداد شاخه های موجود در آن مسیر (یا تعداد گره های موجود در مسیر منهای یک).
 - مسیر بدیهی: مسیری است که طول آن برابر صفر می باشد.
 بنابراین از هر کره به خود آن گره یک مسیر بدیهی وجود دارد.

تعاریف پایه ای

- درجه گره: برابر است با تعداد فرزندان آن گره.
- درجه درخت: برابر است با حداکثر درجه گره های موجود در آن درخت.
- گره برگ (گره خارجی): گره ای که درجه آن برابر با صفر باشد (گره ای که تعداد فرزندانش برابر با صفر باشد).
- گره غیربرگ (گره داخلی): گره ای که درجه آن بزرگتر از صفر باشد (گره ای که حداقل یک فرزند داشته باشد).

DS course- N. Razavi Y . . Y -

تعاریف یایه ای

- جد (ancestor) و نسل (descendant): اگر در درخت مسیری از گره a جد b و خود داشته باشد، در این صورت a را جد b و b را نسل a می گوییم.
- پدر (parent) و فرزند (child): اگر در درخت مسیری به طول یک از b و فرزند (child): اگره a و فرزند a و فرزند a و فرزند a می گوییم.
- گره های sibling (همزاد، هم نیا): گره هایی که پدر آنها یکسان باشد.

DS course- N. Razavi Y . . Y -

۵

تعاریف پایه ای

- level 2
- سطح (عمق) گره: برابر است با طول مسیر از ریشه تا آن گره.
- ارتفاع گره: برابر است با حداکثر طول یک مسیر از آن گره تا یکی از برگ های اولاد.
- ارتفاع درخت: برابر است با ارتفاع ریشه (حداکثر طول یک مسیر از ریشه تا یکی از برگ های درخت)

تعاریف پایه ای

- درخت k-تایی: درختی است که در آن درجه هر گره حداکثر برابر با k باشد.
 - قضیه: در هر درخت k-تایی داریم:

$$n_0 = (k-1) n_k + (k-2) n_{k-1} + \dots + 2n_3 + n_2 + 1$$

$$B = n-1 = n_0 + n_1 + \dots + n_k - 1$$

$$B = 0 \times n_0 + 1 \times n_1 + 2 \times n_2 \dots + k \times n_k$$

$$n_0 = (k-1) n_k + (k-2) n_{k-1} + \dots + 2n_3 + n_2 + 1$$

نتیجه: در هر درخت k-تایی تعداد برگ ها مستقل از تعداد گره های تک فرزندی می باشد.

تعاریف پایه ای

- درخت k-تایی کامل: درختی است که در آن درجه هر گره یا برابر با k و یا برابر با صفر باشد.
 - قضیه: در هر درخت k-تایی کامل داریم:

$$n_0 = (k-1) n_k + 1$$

$$B = n-1 = n_0 + n_k - 1$$

$$B = 0 \times n_0 + k \times n_k$$

$$n_0 = (k-1) n_k + 1$$

DS course- N. Razavi Y . . Y -

تعاریف پایه ای

• درخت متوازن: درختی است که در آن اختلاف سطح برگ ها حدکثر برابر با یک باشد.

DS course- N. Razavi - ۲۰۰۷

تعاریف پایه ای

• درخت پر: درختی است که هم کامل باشد و هم کاملاً متوازن.

• تعداد کل گره ها در یک درخت پر با درجه d و ارتفاع h برابر است با: $n = \sum_{i=0}^h d^i = d^0 + d^1 + \dots + d^h = \frac{d^{h+1}-1}{d-1}$

تعاریف پایه ای

• درخت کاملاً متوازن: درختی است که در آن اختلاف سطح برگ ها دقیقاً برابر با صفر باشد.

روش های پیمایش درخت

Preorder (T): r, Pre (T_1), Pre (T_2), ..., Pre (T_k)

Inorder (T): In (T_1), T, In (T_2), ..., In (T_k)

Postorder (T): Post (T_1), Post (T_2), ..., Post (T_k), T

DS course- N. Razavi - ۲۰۰۷

مثال: پیمایش پیش ترتیب

Preorder: $\begin{bmatrix} a & b & c & f & g & h \\ & & & & & & & & \end{bmatrix}$ $\begin{bmatrix} c & f & g & h \\ & & & & & & & \end{bmatrix}$ $\begin{bmatrix} c & f & g & h \\ & & & & & & & \end{bmatrix}$ $\begin{bmatrix} c & f & g & h \\ & & & & & & & & \end{bmatrix}$ $\begin{bmatrix} c & f & g & h \\ & & & & & & & & & \end{bmatrix}$ $\begin{bmatrix} c & f & g & h \\ & & & & & & & & & & & & \end{bmatrix}$

DS course- N. Razavi ۲۰۰۷ -

مثال: پیمایش میان ترتیب

Inorder:

مثال: پیمایش پس ترتیب

Postorder:

۱۳

۱۵

نوع داده انتزاعی درفت (TREE ADT)

• انواع داده ای

- *T*: TREE
- *n*: node

• عملیات درخت

- MAKENULL (7)
- ROOT (7)
- PARENT (*n*, *T*)
- LABEL (*n*, *T*)
- LEFT-MOST-CHILD (n, T)
- RIGHT-SIBLING (n, T)
- CREATE $_{\nu}(r, T_1, T_2, ..., T_{\nu})$

DS course- N. Razavi Y . . Y -

۱٧

19

پیمایش درخت عمومی به صورت پیش ترتیب

```
procedure PRE-ORDER (n: node);
var
   c: node;
begin
   print (LABEL (n, T));
   c := LEFT-MOST-CHILD (n. T):
                                                T(n) \in \Theta(n)
   while ( c \Leftrightarrow NULL ) do begin
      PRE-ORDER (c);
      c := RIGHT-SIBLING(c, T)
   end
end:
```

DS course- N. Razavi Y . . Y -

١٨

پیمایش درخت عمومی به صورت میان ترتیب

```
procedure IN-ORDER (n: node);
var
   c: node:
begin
   c := \text{LEFT-MOST-CHILD}(n, T);
  if ( c \Leftrightarrow NULL ) then begin
      IN-ORDER (c);
      print (LABEL (n, T));
      c := RIGHT-SIBLING(c, T)
                                                                    T(n) \in \Theta(n)
      while ( c > NULL ) do begin
        IN-ORDER (c);
         c := RIGHT-SIBLING(c, T)
      end
  print (LABEL (n, T));
end:
```

پیمایش درخت عمومی به صورت پس ترتیب

```
procedure POST-ORDER (n: node);
var
   c: node:
begin
   c := \text{LEFT-MOST-CHILD}(n, T);
  while ( c \Leftrightarrow NULL ) do begin
                                                 T(n) \in \Theta(n)
      POST-ORDER (c);
      c := RIGHT-SIBLING(c, T)
   end:
  print (LABEL (n, T))
end:
```

۲.

تمرین: پیایش به ترتیب سطع (level order)

```
• رویه ای برای پیمایش یک درخت به ترتیب سطح بنویسید. (راهنمایی:
                                                  از صف استفاده نمایید).
procedure LEVEL-ORDER (n: node);
  c: node:
  Q: QUEUE:
begin
  MAKENULL (Q);
  ENQUEUE (n, Q);
  while not EMPTY (O) do begin
     n := DEQUEUE(Q);
     print (LABEL (n, T));
     c := LEFT-MOST-CHILD (n, T);
     while ( c \Leftrightarrow NULL ) do begin
        ENQUEUE (c, Q);
        c := RIGHT-SIBLING(c, T)
     end
end:
```

پیاده سازی درخت عمومی (روش بد)

- پیاده سازی گره ها:
- یک فیلد برای ذخیره اطلاعات (برچسب)
- فیلد اشاره گر برای ذخیره آدرس فرزندان k-

label		، گر	بلد اشاره		
	Child	Child	Child		Child
	1	2	3		k

- عیب این روش پیاده سازی
- nk: تعداد کل فیلدهای اشاره گر به فرزندان
 - n-1 :**nil** تعداد فیلدهای اشاره گر غیر-
- بنابراین تعداد فیلدهای اشاره گر **nil** برابر است با:

$$nk - (n-1) = n(k-1) + 1$$

DS course- N. Razavi - ۲۰۰۷

۲۲

پیاده سازی درخت عمومی: چپ ترین فرزند–برادر راست (LMC-RSB)

DS course- N. Razavi - ۲۰۰۷

- در این روش، هر گره دارای ۲ فیلد آدرس می باشد:
 - یکی برای ذخیره آدرس چپ ترین فرزند

۲1

22

یکی برای ذخیره آدرس نزدیک ترین برادر راست

DS course- N. Razavi Y... -

مثال: يياده سازی LMC-RSB

DS course- N. Razavi Y . . Y -

پیاده سازی LMC-RSB

```
const
    MAX = ...;
    NULL = 0;

type
    TREE = 0 .. MAX;
    node = TREE;

var
    cellspace : array [1..MAX] of record
    label: labeltype;
    LMC, RSB: node
end;
```

DS course- N. Razavi Y . . Y -

40

ییاده سازی عملیات LMC-RSB

```
procedure MAKENULL (var T: TREE);
begin
    T := NULL
end;
```

$$T(n) \in \Theta(1)$$

DS course- N. Razavi ۲۰۰۷ -

49

پیاده سازی عملیات LMC-RSB

```
function ROOT (T: TREE): node;
begin
  return (T)
end;
```

$$T(n) \in \Theta(1)$$

پیاده سازی عملیات LMC-RSB

function LABEL (n: node; T: TREE): labeltype;
begin
 return (cellspace [n].lable)
end;

$$T(n) \in \Theta(1)$$

ییاده سازی عملیات LMC-RSB

```
function LEFT-MOST-CHILD (n: node; T: TREE): node; begin return (cellspace [n].LMC) end; function RIGHT-SIBLING (n: node; T: TREE): node; begin return (cellspace [n].RSB) end; T(n) \in \Theta(1)
```

پیاده سازی عملیات LMC-RSB

```
function Parent (n: node; T: TREE): node;

var

c, p: node;

begin

if (n = ROOT (T)) then return (NULL);

c := LEFT_MOST_CHILD (ROOT(T), T);

while (c > NULL) do begin

if (n = c) then return (ROOT(T));

p := PARENT (n, c);

if (p > NULL) then return (p);

c := RIGHT-SIBLING (c, T)

end;

return (NULL)

end;
```

 $T(n) \in \Theta(n)$ DS course- N. Razavi - \cdots

٣.

ییاده سازی عملیات LMC-RSB

```
function CREATE<sub>2</sub> (r. labeltype; T1, T2: TREE): TREE;

var

T: TREE;

begin

MYNEW (T);

cellspace [T]. label = r,

cellspace [T]. LMC = T1;

cellspace [T]. RSB = NULL;

cellspace [T]. RSB = T2;

return (T)

end;

T(n) \in \Theta(n)
```

DS course- N. Razavi - Y . . Y

٣١

مثال: مماسبه تعداد گره های یک درفت LMC-RSB

```
function SIZE (n: node): integer;
var
    count: integer;
    c: node;

begin
    count := 1;
    c := LEFT-MOST-CHILD (n, T);
    while ( c <> NULL ) do begin
        count := count + SIZE (c);
        c := RIGHT-SIBLING (c, T)
    end;
    return (count)
end;
```

مثال: مماسبه ارتفاع یک درفت LMC-RSB

```
function HEIGHT (n: node): integer;

var

h: integer;
c: node;

begin

h := 0;
c := \text{LEFT-MOST-CHILD } (n, T);

if (c = \text{NULL}) then return (0);

while (c <> \text{NULL}) do begin

h := \text{MAXIMUM } (h, \text{HEIGHT } (c));
c := \text{RIGHT-SIBLING } (c, T)

end;

return (h + 1)
```

DS course- N. Razavi - Y · · · V

٣٣

٣۵

تمرين

• تابعی برای محاسبه تعداد برگ های یک درخت LMC-RSB بنه سید.

DS course- N. Razavi - ۲۰۰۷

44

درفت دودویی (Binary Tree)

- تعریف: یک درخت دودویی یا تهی است و یا حاوی مجموعه محدودی از گره ها شامل ریشه و دو درخت دودویی است. این درخت ها، زیردرخت های چپ و راست نامیده می شوند.
- T_I

• تفاوت های درخت دودویی با درخت عمومی: - درخت دودویی می تواند تهی باشد.

در درخت دودویی ترتیب فرزندان اهمیت دارد.

خواص درخت های دودویی

 2^{i} ام برابر است با: 2^{i} حداکثر تعداد گره ها در سطح

 2^{h+1} - 1 : ارتفاع h برابر است با درخت دودویی با ارتفاع h برابر است با درخت دودویی با ارتفاع h

$$n = \sum_{i=0}^{h} 2^{i} = 2^{0} + 2^{1} + \dots + 2^{h} = \frac{2^{h+1} - 1}{2 - 1} = 2^{h+1} - 1$$

• رابطه بین تعداد برگ ها و تعداد گره های دو فرزندی:

$$n_0 = n_2 + 1$$

DS course- N. Razavi Y . . Y -

نمایش درخت دودویی به وسیله آرایه

- ریشه در خانه ۱ قرار دارد.
- اگر یک گره در خانه i ام باشد، آنگاه:
- $(i \! > \! 1) \left\lfloor i \! / \! 2 \right
 floor$ پدر آن گرہ در خانه -
- $(2i \le n)$ وزند چپ آن در خانه -
- $(2i + 1 \le n) 2i + 1$ فرزند راست آن در خانه –

DS course- N. Razavi Y · · · V -

نمایش درخت دودویی به وسیله آرایه

ییاده سازی درخت دودویی به وسیله اشاره گر معایب پیاده سازی درخت دودویی به وسیله آرایه

- این روش فقط برای درخت های دودویی پر و تقریباً پر مناسب h است. در بدترین حالت، یک درخت مورب به ارتفاع h به است. در بدترین حالت، یک درخت مورب به ارتفاع h+1 خانه h+1 خانه نیاز دارد که از این تعداد فقط h+1 خانه استفاده می شود و بقیه خال می مانند.
- در این روش، درج و حذف گره ها نیاز به جابجایی بقیه گره ها دارد که باعث کندی عمل درج و حذف می گردد.

type

TREE = ^nodetype;

node = TREE;

nodetype = record

label: labeltype;

left, right: node
end;

روش های پیمایش درخت دودویی

Preorder (T): r, Pre (T_t), Pre (T_t)

Inorder (T): In (T_i) , r, In (T_r)

Postorder (T): Post (T_i), Post (T_i), r

DS course- N. Razavi - ۲۰۰۷

۴١

۴٣

ییایش درخت دودویی به روش پیش ترتیب

```
procedure PRE-ORDER (n: node);
begin
   if (n \Leftrightarrow nil) then begin
       write (n^{\land}.label);
       PRE-ORDER (n^{\land}.left);
       PRE-ORDER (n\cdot .right)
   end
end;
```

DS course- N. Razavi Y . . Y -

44

پیایش درخت دودویی به روش میان ترتیب

```
procedure IN-ORDER (n: node);
begin
   if (n \Leftrightarrow nil) then begin
       IN-ORDER (n^{\land}.left);
       write (n^{\land}.label);
       IN-ORDER (n^{\land}. right)
    end
end:
```

پیایش درخت دودویی به روش پس ترتیب

```
procedure POST-ORDER (n: node);
begin
   if (n \Leftrightarrow nil) then begin
       POST-ORDER (n^{\wedge}.left);
       POST-ORDER (n^{\land}.right);
       write (n^{\land}.label)
   end
end:
```

مثال: پیمایش درخت دودویی

a, b, d, g, e, h, c, f Preorder (T):

g, d, b, e, h, a, c, f Inorder (T):

Postorder (*T*): g, d, h, e, b, f, c, a

DS course- N. Razavi Y . . Y -

پیمایش میان ترتیب درخت دودویی به صورت غیر بازگشتی به کمک پشته

```
procedure NR-INORDER (n: node);
   S: STACK;
   done: boolean;
begin
   MAKENULL (S);
   done := false;
   repeat
      while ( n \le nil ) do begin
         PUSH (n, S);
         n := n^{\wedge} left
      end:
      if not EMPTY (S) then begin
         n := \text{TOP}(S); \text{POP}(S);
         write (n\.label);
         n := n^{\cdot}.right
      end else
          done := true;
   until done
end;
                                         T(n) \in \Theta(n)
```

DS course- N. Razavi Y . . Y -

49

تمرین: ییایش به ترتیب سطم (level order)

```
• رویه ای برای پیمایش یک درخت دودویی به ترتیب سطح بنویسید.
procedure LEVEL-ORDER (n: node);
var
  O: OUEUE;
```

begin

```
MAKENULL (Q);
   ENQUEUE (n, Q);
   while not EMPTY (O) do begin
       n := DEQUEUE(Q);
       write (n^{\wedge}.label);
       if (n^{\land}.left \Leftrightarrow nil) then ENQUEUE (n^{\land}.left, Q);
       if (n^{\land}.right \Leftrightarrow nil) then ENQUEUE (n^{\land}.right, Q)
end;
```

مسأله: رسم درفت دودویی به کمک پیمایش های آن

Pre: (a,) b, c, d, e, f, g, h

40

In: b, c,(a,)e, d, g, f, h

مسأله: رسم درخت دودویی به کمک پیمایش های آن

Pre: **(b) c**

In: **(b)** c

DS course- N. Razavi - ۲۰۰۷

49

مسأله: رسم درفت دودویی به کمک پیمایش های آن

Pre: (d), e, f, g, h

In: e,d,g,f,h

DS course- N. Razavi Y . . Y -

.

مسأله: رسم درخت دودویی به کمک پیمایش های آن

Pre: (f)g, h

In: gf,h

مسأله: رسم درغت دودویی به کمک پیمایش های آن

Pre: a, b, c, d, e, f, g, h

In: b, c, a, e, d, g, f, h

Post: c, b, e, g, h, f, d, a

بنابراین با داشتن پیمایش Inorder و حداقل یکی از پیمایش های دیگر درخت دودویی قابل ترسیم است. اما با با داشتن پیمایش Preorder و Postorder درخت دودویی به صورت یکتا قابل ترسیم نیست. چرا؟

مثال: کیی کردن یک درخت دودویی

```
function COPY (n: node): TREE;
var
    T: TREE;
begin
   if n = \text{nil} then return (nil);
   new ( T);
    T^{\land}.label := n^{\land}.label
    T^{\wedge}.left := COPY(n^{\wedge}.left):
    T^{\wedge}.right := COPY(n^{\wedge}.right);
   return (T)
end:
```

DS course- N. Razavi - ۲۰۰۷

۵٣

۵۵

تمرين

۱. تابعی به صورت زیر به منظور بررسی نمودن تساوی دو درخت دودویی بنویسید.

function EQUAL-TREE (n1, n2: node): boolean;

۲. تابعی به صورت زیر بنویسید به طوری که برای هر گره در درخت دودویی، جای دو زیر درخت چپ و راست آن گره را با هم تعویض نماید.

function SWAP-TREE (*n*: node): TREE;

DS course- N. Razavi Y . . Y -

۵۴

تمرين

۳. رویه ای برای ارزشیابی یک فرمول گزاره ای بنویسید. (راهنمایی: رویه postorder را اصلاح نمایید.

$$(x_1 \wedge \neg x_2) \vee (\neg x_1 \wedge x_3) \vee \neg x_3$$

درخت نخی دودویی

- انگیزه: استفاده هوشمند از فیلدهای اشاره گر nil
- در یک درخت دودویی با n گره، کلاً 2n فیلد اشاره گر وجود دراد به طوری که -فیلد غیر nil و n+1 فیلد دارای مقدار nil می باشند.
 - هر فیلد nil می تواند به گره بعدی (در یک پیمایش خاص) اشاره کند.

پیاده سازی درخت نخی دودویی

DS course- N. Razavi Y . . Y -

۵٧

۵٩

پیاده سازی درخت نخی دودویی

DS course- N. Razavi Y . . Y -

پیمایش میان ترتیب درخت نخی دودویی پیمایش میان ترتیب درخت نخی دودویی

```
function INORDER-SUCC (n: node): node;

var

t: node;

begin

t:= n^.right,

if not n^.rightThread then

while not t^.leftThread do

t:= t^.left,

return (t)

end;
```

```
function INORDER-THREAD (T: TREE): node;
var
    n: node;

begin
    n:= T;
    repeat
    n:= INORDER-SUCC (n);
    if (n <> T) then
        write (n^.label);
    until n = T
end;
```

تبدیل درفت عمومی به درفت دودویی

ا. تبدیل درخت عمومی به شکل LMC-RSB

۲. چرخاندن اتصالات RSB به اندازه ۴۵ درجه در جهت گردش عقربه های ساعت

مثال: پیمایش درخت نخی دودویی

مِنگِل (forest)

. تعریف: جنگل یک مجموعه مرتب از $k \geq 0$ درخت مجزا است.

تبدیل جنگل به درخت دودویی

۱. تبدیل هر درخت در جنگل به یک درخت دودویی

تبدیل مِنگِل به درخت دودویی

۲. قرار دادن هر یک از درخت های دودویی به عنوان زیردرخت راست ریشه درخت قبلی

DS course- N. Razavi Y . . Y -

تبدیل مِنگِل به درخت دودویی

۲. قرار دادن هر یک از درخت های دودویی به عنوان زیردرخت

راست ریشه درخت قبلی

DS course- N. Razavi Y . . Y -

90

$_{\mathbf{L}}$ به روش $_{\mathbf{L}}$ به روش $_{\mathbf{L}}$ به روش منگل $_{\mathbf{L}}$

- ا. اگرF تهی است، برمی گردیم.
- F ملاقات ریشه اولین درخت در جنگل $ext{.}$
- به صورت F بیمایش زیردرخت های اولین درخت در جنگل F به صورت Fپیش ترتیب
 - پیمایش بقیه درخت های جنگل F به صورت پیش ترتیب ullet
- نکته: پیمایش پیش ترتیب جنگل و پیمایش پیش ترتیب درخت دودویی متناظر با آن، یکسان **است**.

تبدیل جنگل به درخت دودویی

۲. قرار دادن هر یک از درخت های دودویی به عنوان زیردرخت راست ریشه درخت قبلی

پیمایش منگل F به روش پس ترتیب

- اگر F تھی است، برمی گردیم. ullet
- ۲. پیمایش زیردرخت های اولین درخت در جنگل F به صورت پس ترتیب
 - ترتیب پیمایش بقیه درخت های جنگل F به صورت پس ترتیب $^{"}$
 - Fملاقات ریشه اولین درخت در جنگل $^{oldsymbol{ au}}$
- نکته: پیمایش پس ترتیب جنگل و پیمایش پیش ترتیب درخت دودویی متناظر با آن، یکسان **نیست**.

DS course- N. Razavi Y ... Y -

$_{\mathbf{L}}$ ىيمايش جنگل F به روش ميان ترتيب

- اگر F تهی است، برمی گردیم. ackslash
- به صورت F بیمایش زیردرخت های اولین درخت در جنگل F به صورت میان ترتیب
 - Fملاقات ریشه اولین درخت در جنگل. $^{ au}$
 - پیمایش بقیه درخت های جنگل F به صورت میان ترتیب ullet
- نکته: پیمایش میان ترتیب جنگل و پیمایش پیش ترتیب درخت دودویی متناظر با آن، یکسان است.

DS course- N. Razavi - Y...Y

\mathbf{p} بیمایش منگل \mathbf{p} به ترتیب سطم

- ۱. ملاقات ریشه درختان از چپ به راست
- ۲. ملاقات گره ها ی سطح اول از چپ به راست
- ۳. ملاقات گره ها ی سطح دوم از چپ به راست
 -4
- نکته: پیمایش به ترتیب سطح جنگل و پیمایش به ترتیب سطح درخت دودویی متناظر با آن، یکسان **نیست**.

یک کابرد درخت: نمایش زیرمجموعه های مجزا (disjoint subsets)

$$S = \{1, 2, ..., n\}$$

• یک مثال از زیرمجموعه های مجزا (برای n=10):

$$S_1 = \{1, 7, 8, 9\}$$

$$S_2 = \{2, 5, 10\}$$

$$S_3 = \{3, 4, 6\}$$

• در زیرمجموعه های مجزا داریم:

- $S_i \subseteq S$
- $S_i \cap S_j = \emptyset \ (i \neq j)$

نمایش زیرمجموعه های مجزا

DS course- N. Razavi - ۲۰۰۷

٧٣

عملیات زیرمجموعه های مجزا: UNION (*i, j*)

- در این عمل تنها کافیست که ریشه یک درخت را فرزند ریشه درخت دیگر قرار دهیم.
 - $S_1 \cup S_2$ مثال: نمایش های ممکن برای $S_1 \cup S_2$

DS course- N. Razavi - ۲۰۰۷

٧۴

عملیات زیرمجموعه های مجزا: FIND (i)

- از گره i و از طریق اشاره گرهایی که به پدر گره ها وجود دارد، به سمت ریشه حرکت می کنیم تا به ریشه درخت برسیم.
 - ریشه درخت را به عنوان نام مجموعه حاوی عنصر i برمی گردانیم.

• مثال: (9) FIND

پیاده سازی ساختمان داده زیرمجموعه های مجزا

	1	2	•••	MAX
parent				

مثال:

	-			4						- 0
parent	0	5	0	3	0	3	1	1	1	5

پیاده سازی عملیات زیرمجموعه های مجزا

```
procedure UNION (i, j: integer);
begin
    parent[i] := j
end;

function FIND (i: integer): integer;
begin
    while parent[i] > 0 do
        i := parent[i];
    return (i)
end;

    DS course- N. Razavi - Y--Y
```

مثال

```
• فرض کنید که در ابتدا
```

```
orall \ 1 \leq i \leq n \qquad S_i = \{i\} خال دنباله عملیات زیر را انجام می دهیم:

UNION (1,2) UNION (2,3) UNION (3,4) ... UNION (n-1,n) FIND (1) FIND (2) ... FIND (n)
```


- در نتیجه درخت زیر حاصل می شود:
 هزینه تمام عملیات اجتماع: (0(n)
 - $O(n^2)$. هرينه تمام عمليات يافتن-

DS course- N. Razavi ۲۰۰۷ -

٧A

بهبود عملیات یافتن و اجتماع

- تعریف (قانون وزنی برای اجتماع i و j): اگر تعداد گره ها در j درختی با ریشه i کمتر از تعداد گره ها در درختی با با ریشه i باشد، i والد i می شود و در غیر این صورت i والد i خواهد شد.
 - اجرای دنباله عملیات مثال قبل:

پیاده سازی عمل اجتماع

```
procedure WEIGHTED-UNION (i, j: integer);
var
    temp: integer;

begin
    temp := parent [i] + parent [j];
    if parent [i] > parent [j] then begin
        parent [i] := j;
        parent [j] := temp
    end else begin
        parent [j] := i;
        parent [i] := temp
    end
end;
```

WEIGHTED-UNION مثال: عملكرد الكوريتم

- $1 \le i \le n = 8$, parent[i] = -count[i] = -1
- UNION (1, 2), UNION (3, 4), UNION (5, 6), UNION (7, 8),
 UNION (1, 3), UNION (5, 7), UNION (1, 5)

[-1] [-1] [-1] [-1] [-1] [-1] [-1] [-1] 1) 2 3 4 5 6 7 8

DS course- N. Razavi - ۲۰۰۷

۸١

WEIGHTED-UNION مثال: عملكرد الگوريتم

• UNION (1, 2), UNION (3, 4), UNION (5, 6), UNION (7, 8)

DS course- N. Razavi ۲۰۰۷ -

٨٢

مثال: عملكرد الكوريتي WEIGHTED-UNION

• UNION (1, 3), UNION (5, 7)

مثال: عملكرد الگوريتم WEIGHTED-UNION

• UNION (1, 5)

قانون تخریب

• تعریف قانون تخریب: اگر j گره ای روی مسیر i تا ریشه اش باشد و parent $[j] \neq root(i)$ در این صورت $parent[j] \neq root(i)$ برابر $parent[j] \neq root(i)$ قرار خواهیم داد.

DS course- N. Razavi ۲۰۰۷ -

۸۵

پیاده سازی عمل COLLAPSING-FIND

```
function COLLAPSING-FIND (i: integer): integer;
var
    r, s: integer;

begin
    r := i;
    while parent [r] > 0 do
        r := parent [r];
    while i <> r do begin
        s := parent [i];
        parent [i] := r,
        i := s
    end;
    return (r)
end:
```

DS course- N. Razavi - ۲۰۰۷

٨۶

مثال

• FIND (8), FIND (8), FIND (8), FIND (8), FIND (8), FIND (8), FIND (8)

- تعداد حرکت ها اگر از FIND استفاده شود:
 - $\Upsilon \times \Lambda = \Upsilon \Upsilon$
- اگر از COLLAPSING-FIND استفاده شود:

$$\Upsilon + \Upsilon + V = 1\Upsilon$$

o WEIGHTED-UNION تملیل عملیات COLLAPSING-FIND

• فرض کنید که با جنگلی از درخت ها، که هر کدام یک گره دارد شروع کنیم. T(f, u) حداکثر زمان لازم برای پردازش $u \geq n/2$ عمل یافتن و u عمل اجتماع است. اگر f عمل باشد، آنگاه به ازای مقادیر مثبت k_2 و k_1

$$k_1(n + f\alpha(f + n, n)) \le T(f, u) \le k_2(n + f\alpha(f + n, n))$$

$\alpha\left(p,\,q\right)$ تعریف توابع آکرمان و

$$A(1, j) = 2^{j},$$
 $j \ge 1$

$$A(i, 1) = A(i-1, 2)$$
 $i \ge 2$

$$A(i, j) = A(i-1, A(i, j-1))$$
 $i, j \ge 2$

$$\alpha(p, q) = \min \{z \ge 1 \mid A(z, floor(p/q)) > \log_2 q\}, p \ge q \ge 1$$

DS course- N. Razavi - ۲۰۰۷

٨٩

س مسأله شمارشي

- n تا اعداد درخت های دودویی مجزا با اعداد ۱ تا n
 - n تا ای اعداد جایگشت های پشته ای اعداد n تا n
- شمارش تعداد روش های ممکن برای ضرب n+1 ماتریس

$$T(n) = \frac{1}{n+1} \binom{2n}{n} = O(4^n / n^{1.5})$$

DS course- N. Razavi Y . . Y -

٩.

درخت عبارت (Expression Tree) درخت عبارت

- تعریف فرم عبارت کاملاً پرانتزی
- $E := a | (\alpha E) | (E \beta E)$
- *a* ::= **variable**
- $\alpha :=$ unary operator (\sim , sin, cos, ...)
- $\beta ::=$ binary operator ($^{\land}$, \times , /, +, -, ...)

• مثال:

$$(\sim (a + (b/c))/(d^{\wedge}e))$$

درفت عبارت (Expression Tree)

• بهترین مدل برای یک عبارت ریاضی استفاده از درخت می باشد.

 $(\sim (a + (b/c))/(d^{\wedge}e))$

• نکته: پیمایش های پیش ترتیب، میان ترتیب و پس ترتیب درخت عبارت به ترتیب معادل فرمهای پیشوندی، میانوندی و پسوندی عبارت می باشند.

تبدیل عبارت کاملاً پرانتزی به درخت عبارت

الگوریتی تبدیل عبارت کاملاً پرانتزی به درخت عبارت

```
function EXP-TREE (i, j: integer): TREE;
var
   T: TREE;
   k: integer;
begin
   if (i = j) then begin
       new (T);
       T^{\land}.label := A[i];
       T^{\wedge}.left := nil;
       T^{\wedge}.right := nil
   end
```

DS course- N. Razavi - ۲۰۰۷

94

الگوریتم تبدیل عبارت کاملاً پرانتزی به درخت عبارت

98

90

```
else if (A [i+1]) is a unary operator) then
begin
   new ( T);
   T^{\land}.label := A[i + 1];
    T^{\wedge}.left := nil;
   T^{\wedge}.right := EXP-TREE (i+2, j-1)
end
                             i+1 \ \ i+2
```

الگوریتم تبدیل عبارت کاملاً پرانتزی به درخت عبارت

```
else begin
      new (T);
      k := MATCH(i+1);
      T^{\land}.label := A [k + 1];
      T^{\wedge}.left := EXP-TREE(i+1, k);
      T^{\wedge}.right := EXP-TREE (k+2, j-1)
  end;
  return (T)
end:
                                       k + 1 + 2
```

پیاده سازی تابع (۱) MATCH

```
function MATCH (\dot{r} integer): integer;

var

c, \dot{j}: integer;

begin

c := 0;

\dot{j} := \dot{r},

repeat

if A[\dot{j}] = `(` then c := c + 1;

if A[\dot{j}] = `)` then c := c - 1;

\dot{j} := \dot{j} + 1;

until c = 0;

return (\dot{j} - 1)

end;
```

تمرين

• الگوریتمی برای ایجاد درخت عبارت از روی فرم پسوندی بنویسید.

DS course- N. Razavi Y .. Y -

97

99

DS course- N. Razavi - Y···Y

تبدیل درخت عبارت به فره کاملاً پرانتزی

```
procedure PRINT-INFIX (T: TREE);
begin
  if (T^.label is a unary operator) then begin
    write ('(');
    write (T^.label);
    PRINT-INFIX (T^.right);
    write (')')
end
```

تبدیل درخت عبارت به فره کاملاً پرانتزی

```
if (T^.label is a binary operator) then begin
    write ('(');
    PRINT-INFIX (T^.left);
    write (T^.label);
    PRINT-INFIX (T^.right);
    write (')')
end else
    write (T^.label)
end;
```

طرم اول برای کد گذاری: کد باینری با طول ثابت

در این روش اگر n کاراکتر مختلف داشته باشیم، به هر کدام یک کد باینری با طول \bullet ثابت زیر نسبت می دهیم:

ا علول کد =
$$\lfloor \lg n \rfloor + 1$$

• محاسبه اندازه فایل کد شده (بر حسب بیت):

اندازه فایل کد شده =

$$3 \times (5 + 3 + 6 + 1 + 8 + 4 + 2) = 87$$
 bits

کلمه کد (Code word)

کد باینری با طول ۳ فراواني 000 3 001 010 011 100 (101) J10 (Code book) کتاب کد

• مثال:

1.1

1.5

مسأله:

- ورودی: تعدادی کاراکتر و احتمال وقوع هر یک از کاراکترها

الگوریتی فشرده سازی هافمن

- خروجی: کدهای کاراکترها به طوری که ضریب فشرده سازی حداقل

اندازه فایل فشرده شده – ضریب فشرده سازی اندازه فایل اصلی

DS course- N. Razavi - ۲۰۰۷

DS course- N. Razavi Y . . Y -

1.1

طرم دوم برای کد گذاری: کد پاینری با طول متغیر

- انگیزه: استفاده از کلمات کد با طول کمتر برای کاراکترهایی که فراوانی بیشتری دارند.
 - راه حل: استفاده از روش کد گذاری هافمن:
- مرحله ۱) به ازای هر کاراکتر یک درخت دودویی تک گره ای ایجاد و وزن ریشه آن درخت را برابر با احتمال کاراکتر مربوطه قرار می دهیم.

روش کد گذاری هافمن

- مرحله ۲) عملیات زیر را n-1 بار تکرار کن:
- W_2 و W_1 و W_1 و W_2 را که ریشه آنها دارای کمترین وزنهای W_1 و W_2 هر بار دو درخت W_1 و W_2 هستند انتخاب مي كنيم.
- یک درخت دودویی جدید ایجاد کن که T_1 و T_2 زیردرختان چپ و راست آن -باشند و وزن ریشه آن $W_1 + W_2$ باشد.

روش کد گذاری هافمن

روش کد گذاری هافمن

DS course- N. Razavi ۲۰۰۷ -

1.0

1.7

DS course- N. Razavi - ۲۰۰۷

1.9

روش کد گذاری هافمن

روش کد گذاری هافمن

روش کد گذاری هافمن

DS course- N. Razavi ۲۰۰۷ -

١١.

روش کد گذاری هافمن

DS course- N. Razavi Y . . Y -

روش کد گذاری هافمن

• مرحله ۳) تولید کد کاراکترها:

1.9

111

- در درخت نهایی، به شاخه های چپ برچسب 0 و به شاخه های راست برچسب 1 (و یا برعکس) می دهیم.
- به ازای هر کاراکتر، مسیر از ریشه تا برگ مربوط به آن کاراکتر را پیموده و برچسب های موجود
 در مسیر را به عنوان کد آن کاراکتر در نظر می گیریم.

كاراكتر	کد هافمن
а	111
b	001
С	01
d	0000
e	10
f	0001
g	110

یک قضیه مرتبط

- n-1 قضیه: یک درخت دودویی کامل با n گره برگ، دارای n گره داخلی می باشد.
 - n اثبات: از طریق استقرا روی \bullet

دیکود کردن (رمزگشایی)

114

0001111000010

DS course- N. Razavi ۲۰۰۷ -

تمرين

• الگوریتم فشرده سازی هافمن را پیاده سازی نمایید.

۲ نکته در مورد روش کد گذاری هافمن

- روش کد گذاری هافمن بهینه می باشد، یعنی با این روش ضریب فشرده سازی حداقل می شود.
- کدهای به دست آمده خاصیت پیشوندی دارند، یعنی در کتاب کد هیچ کلمه کدی پیشوند کلمه کد دیگری نمی باشد.
- در نتیجه دیکود کردن با یک بار پویش فایل کد شده به سادگی قابل انجام می باشد.
 - مثال: رشته 0001111000010 را دیکود نمایید.

DS course- N. Razavi Y .. Y -

يياده سازي الگوريتي هافمن

	root	weight		symbol	prob	leaf
1			1			
2			2			
	•					•
	•	•		•	•	•
	•	•		•	•	•
L						
n			n			
	FOR	EST		AL	РНАВЕ	Т

	left	right	parent
1			
2			
	•	•	٠
	•	•	•
	•	•	•
2 <i>n</i> -1			
		TREI	 E

115

110

DS course- N. Razavi Y . . Y -

DS course- N. Razavi Y ... Y -