Lecture 2: Nearest Neighbor and Linear Classification

Data-driven approach:

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train an image classifier
- 3. Evaluate the classifier on a withheld set of test images

```
def train(train_images, train_labels):
    # build a model for images -> labels...
    return model

def predict(model, test_images):
    # predict test_labels using the model...
    return test_labels
```

Example training set

k-Nearest Neighbor find the k nearest images, have them vote on the label

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Example dataset: **CIFAR-10 10** labels

50,000 training images10,000 test images.

airplane automobile bird cat deer dog frog horse ship truck

For every test image (first column), examples of nearest neighbors in rows

Q: what is the accuracy of the nearest neighbor classifier on the training data, when using the Euclidean distance?

Q2: what is the accuracy of the **k-**nearest neighbor classifier on the training data?

What is the best **distance** to use? What is the best value of **k** to use?

i.e. how do we set the hyperparameters?

What is the best **distance** to use? What is the best value of **k** to use?

i.e. how do we set the hyperparameters?

Very problem-dependent.

Must try them all out and see what works best.

Try out what hyperparameters work best on test set.

Trying out what hyperparameters work best on test set:

Very bad idea. The test set is a proxy for the generalization performance!

Use only VERY SPARINGLY, at the end.

train data

test data

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

k-Nearest Neighbor on raw images is never used.

- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive

(all 3 images have same L2 distance to the one on the left)

Before moving on

K-NN: the Rodney Dangerfield of classifiers

- Convergence of K-NN to the Bayes error rate.
- Universality of K-NN.

Linear Classification

Example dataset: CIFAR-10
10 labels
50,000 training images
each image is 32x32x3
10,000 test images.

Parametric approach

image parameters
f(x,W)

10 numbers, indicating class scores

[32x32x3]
array of numbers 0...1
(3072 numbers total)

Parametric approach: Linear classifier

$$f(x, W) = Wx$$

[32x32x3] array of numbers 0...1 10 numbers, indicating class scores

Parametric approach: Linear classifier

Parametric approach: Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Interpreting a Linear Classifier

$$f(x_i, W, b) = Wx_i + b$$

Q: what does the linear classifier do, in English?

Interpreting a Linear Classifier (poll)

$$f(x_i, W, b) = Wx_i + b$$

Example trained weights of a linear classifier trained on CIFAR-10:

Interpreting a Linear Classifier

$$f(x_i, W, b) = Wx_i + b$$

[32x32x3] array of numbers 0...1 (3072 numbers total)

Interpreting a Linear Classifier

$$f(x_i, W, b) = Wx_i + b$$

Q2: what would be a very hard set of classes for a linear classifier to distinguish?

So far: We defined a (linear) score function: $f(x_i, W, b) = Wx_i + b$

really *affine*

Example class scores for 3 images, with a random W:

airplane	-3.45
automobile	-8.87
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

-3.45	-0.51
-8.87	6.04
0.09	5.31
2.9	-4.22
4.48	-4.19
8.02	3.58
3.78	4.49
1.06	-4.37
-0.36	-2.09
-0.72	-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

$$f(x, W) = Wx$$

Coming up:

- Loss function
- Optimization
- Neural nets!

(quantifying what it means to have a "good" W)

(start with random W and find a W that minimizes the loss)

(tweak the functional form of f)

Summary so far... Linear classifier

[32x32x3] array of numbers 0...1 (3072 numbers total)

image parameters
f(x,W)

10 numbers, indicating class scores

Recall from last time... Going forward: Loss function/Optimization

3 42

airplane	-3.45
automobile	-8.87
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

-0.51	
6.04	
5.31	
-4.22	
-4.19	
3.58	
4.49	
-4.37	
-2.09	
-2.93	

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

- 10		A		
а	9	ø		
趨	м	9	w	
g.		ক্র		
			,	

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

3.2 cat 5.1 car -1.7

2.9 Losses:

frog

1.3

2.2

4.9

2.5

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$ $+\max(0, -1.7 - 3.2 + 1)$

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 1.3 - 4.9 + 1)$$

$$+\max(0, 2.0 - 4.9 + 1)$$

$$= max(0, -2.6) + max(0, -1.9)$$

$$= 0 + 0$$

$$= 0$$

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 2.2 - (-3.1) + 1)$$

$$+\max(0, 2.5 - (-3.1) + 1)$$

$$= \max(0, 6.3) + \max(0, 6.6)$$

$$= 6.3 + 6.6$$

$$= 12.9$$

cat **3.2**

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

and the full training loss is the mean over all examples in the training data:

$$L = rac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$

= **5.3**

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: what if the sum was instead over all classes? (including j = y_i)

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: what if we used a mean instead of a sum here?

cat **3.2**

1.3

2.2

car

5.1 **4.9**

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q3: what if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

 cat
 3.2
 1.3
 2.2

 car
 5.1
 4.9
 2.5

 frog
 -1.7
 2.0
 -3.1

 Losses:
 2.9
 0
 12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: what is the min/max possible loss?

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s_i = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: usually at initialization W are small numbers, so all s ~= 0. What is the loss?

						7
	55	lo.	40		87	4
-1		ы		σ.	7	
		ø	39		,	
			鏸			
				w		
				в.		

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog

-1.7

2.0

-3.1

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

and the full training loss is the mean over all examples in the training data:

$$L = rac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 10.9)/3$$

= **5.3**

Multiclass SVM Loss:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

- 1. What happens to loss if car scores change a bit?
- 2. What is the min/max possible loss?
- 3. At initialization W is small so all s≈ 0. What is the loss?
- 4. What if the sum was over all classes? (including j = y_i)
- 5. What if we used mean instead of sum?
- 6. What if we used squared SVM loss?

Example numpy code:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

Coding tip: Keep notes on dimensions:

```
N = X.shape[0]
D = X.shape[1]
C = W.shape[1]
scores=X.dot(W) # (N,D)*(D,C)=(N,C)
```