Rutherford Scattering

Sam McKagan February 14, 2007

Learning Goals

- Describe the qualitative difference between scattering off positively charged nucleus and electrically neutral plum pudding nucleus.
- For charged nucleus, describe qualitatively how angle of deflection depends on:
 - Energy of incoming particle
 - Impact parameter
 - Charge of target

Outline of Sim

- Gun fires alpha particles at atoms like in H atom sim but box is bigger and "show traces" is always on.
- Can control speed of alpha particles with "energy" slider in control panel.
- "Plum Pudding Atom" Panel:
 - Looks like plum pudding in H atom, but fills the whole box, contains 79* electrons, alpha particles just go straight through undeflected.
- "Rutherford Atom" Panel:
 - Nucleus in center contains number of protons and neutrons controlled by sliders in control panel.
 - Electrons pass through corners of box very unobtrusively.
 - Changing the number of neutrons does not change behavior, just picture of nucleus.
 - Changing the number of protons or energy of alpha particles changes the parameter D discussed in the Rutherford scattering document. I'll write out the details if we decide to proceed.

^{*79} is the atomic number of Gold, for which Rutherford did original experiment. Default number of protons in Rutherford panel should also be 79.

Ranges and Defaults

- Currently in alpha particle algorithm there is a parameter D which is set to L/16.
- Now set D = (L/16)*(p/p_d)*(v_d²/v²), where p is number of protons, and v is the velocity in units of dt.
- # of protons p: range : 1-100, default = 79
- # of neutrons n: range: 1-150, default = 118
- Velocity v: range: 0.5dt 3dt, default = 2dt

 v_d = default speed, p_d = default number of protons