Les calculatrices sont interdites

PROBLÈME

Introduction

Dans ce sujet, une série de fonctions L_a est une série de fonctions $\sum_{n\geq 1} a_n \frac{x^n}{1-x^n}$ où $(a_n)_{n\geq 1}$ est une suite de réels telle que la série entière $\sum_{n\geq 1} a_n x^n$ soit de rayon 1 (c'est à dire que la série converge absolument si |x| < 1 et diverge si |x| > 1).

Partie I - Propriétés

Q1. Déterminer le domaine de convergence des séries de fonctions $\sum_{n\geq 1} nx^n$ et $\sum_{n\geq 1} (-1)^{n-1} \frac{x^n}{n}$

Q2. Montrer que la série $\sum_{n\geq 1} nx^n$ est normalement convergente sur tout segment de]-1,1[mais pas sur]-1,1[.

En déduire à l'aide du théorème de dérivation des séries de fonctions que pour tout $x \in]-1,1[$ on a

$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}$$

Q3. En utilisant le mêm type de raisonnement qu'à la question précédente, démontrer que pour tout $x \in]-1,1[$ on a

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = \ln(1+x)$$

On considère la série de fonctions $L_a: \sum_{n\geq 1} a_n \frac{x^n}{1-x^n}$.

Q4. Soit $x \in]-1,1[$, donner un équivalent de $1-x^n$ pour n au voisinage de $+\infty$. Démontrer que pour tout $x \in]-1,1[$, la série $\sum_{n\geq 1} a_n \frac{x^n}{1-x^n}$ converge absolument.

Remarque : la série L_a peut parfois converger en dehors de l'intervalle] -1,1[. Donner un exemple de suite $(a_n)_{n\geq 1}$ telle que la série L_a converge en au moins un point x_0 n'appartenant pas à l'intervalle] -1,1[.

Q5. Démontrer que la série de fonctions $\sum_{n\geq 1} a_n \frac{x^n}{1-x^n}$ converge uniformément sur tout segment [-b,b] inclus dans l'intervalle]-1,1[.

Q6. On pose, pour tout $x \in]-1,1[, f(x) = \sum_{n=1}^{+\infty} a_n \frac{x^n}{1-x^n}.$

Justifier que la fonction f est continue sur l'intervalle]-1,1[et démontrer ensuite que la fonction f est de classe C^1 sur l'intervalle]-1,1[. Donner la valeur de f'(0).

Q7. Expression sous forme de série entière.

On note $A = \mathbb{N}^* \times \mathbb{N}^*$.

a) Lorsque $(u_{n,p})_{(n,p)\in A}$ est une famille sommable de réels, justifier que

$$\sum_{n=1}^{+\infty} \left(\sum_{p=1}^{+\infty} u_{n,p} \right) = \sum_{n=1}^{+\infty} \left(\sum_{(k,p) \in I_n} u_{k,p} \right) \text{ où } I_n = \{ (k,p) \in A, kp = n \}.$$

- b)Démontrer que pour tout $x \in]-1,1[$, la famille $(a_nx^{np})_{(n,p)\in A}$ est sommable.
- c) En déduire que pour tout $x \in]-1,1[$, $\sum_{n=1}^{+\infty} a_n \frac{x^n}{1-x^n} = \sum_{n=1}^{+\infty} b_n x^n$ où $b_n = \sum_{d|n} a_d$. (d|n signifiant d divise n).

Partie II - Exemples

- **Q8.** Dans cette question, pour $n \ge 1$, $a_n = 1$ et on note d_n le nombre de diviseurs de n. Exprimer pour $x \in]-1,1[$, $f(x) = \sum_{n=1}^{+\infty} a_n \frac{x^n}{1-x^n}$ comme la somme d'une série entière.
- **Q9.** Dans cette question, pour $n \ge 1$, $a_n = \varphi(n)$ où n est le nombre d'entiers naturels premiers à n et inférieurs à n.

Justifier que la série entière $\sum_{n\geq 1} a_n x^n$ est de rayon 1.

On admet que pour $n \geq 1,$ $n = \sum_{d|n} \varphi(d)$. Vérifier ce résultat pour n = 12.

Pour $x \in]-1,1[$, exprimer $\sum_{n=1}^{+\infty} \varphi(n) \frac{x^n}{1-x^n}$ sous forme d'un quotient de deux polynômes.

- **Q10.** En utilisant le théorème de la double limite, établir à l'aide du développement en série entière de la fonction $x \mapsto \ln(1+x)$ sur l'intervalle]-1,1[, la valeur de la somme $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$.
- **Q11.** Dans cette question et la suivante, pour $n \ge 1$, $a_n = (-1)^n$ et pour tout $x \in]-1,1[$,

$$f(x) = \sum_{n=1}^{+\infty} a_n \frac{x^n}{1 - x^n}.$$

En utilisant le théorème de la double limite calculer $\lim_{x\to 0} \frac{f(x)}{x}$ et donner un équivalent de f(x) au voisinage de 0. Retrouver le dernier résultat de la question **Q6.**

Q12. Démontrer qu'au voisinage de 1, $f(x) \sim \frac{-\ln 2}{1-x}$.

On pourra remarquer que pour $x \in]0,1[,$ $\frac{1-x}{1-x^n} = \frac{1}{1+x+x^2+\cdots+x^{n-1}}.$