ОСНОВЫ ТЕОРИИ И ТЕХНИКИ РАДИОСИСТЕМ И КОМПЛЕКСОВ УПРАВЛЕНИЯ

Семинар №1 Траектории движения объектов управления и системы координат

Учебные вопросы:

- 1. Траектории наведения.
- 2. Основные системы координат.
- 3. Методы наведения.
- 4. Двухточечные методы наведения (самонаведения).

Литература

- **1. Авиационные системы радиоуправления**: учебник для военных и гражданских ВУЗов и научно-исследовательских организаций. / Меркулов В.И., Чернов В.С., Гандурин В.А., Дрогалин В.В., Савельев А.Н. Под ред. В.И. Меркулова. М.: Изд. ВВИА им. проф. Н.Е. Жуковского, 2008 423 с.
- **2.** Радиосистемы и комплексы управления. Учебник / Под ред. В.А.Вейцеля. М.: Вузовская книга, 2016. 574.: ил.+CD.
- **3.** Ярлыков М.С., Богачев А.С., Меркулов В.И., Дрогалин В.В. **Радиоэлектронные комплексы навигации, прицеливания и управления оружием летательных аппаратов. Т.1. Теоретические осно**вы / Под ред. М.С. Ярлыкова. М.: Радиотехника, 2012, 504 с.: ил.

- 4. Ярлыков М.С., Богачев А.С., Меркулов В.И., Дрогалин В.В. Радиоэлектронные комплексы навигации, прицеливания и управления оружием летательных аппаратов. Т.2. Применение авиационных радиоэлектронных комплексов при решении боевых и навигационных задач / Под ред. М.С. Ярлыкова. М.: Радиотехника, 2012, 504 с.: ил.
- **5.** Демидов В.П., Кутыев Н.Ш. **Управление зенитными ракетами**. 2-е изд., перераб. и доп. М.: Воениздат, 1989. 335 с.: ил.
- **6.** Неупокоев Ф.К. **Стрельба зенитными ракетами**. 3-е изд., перераб. и доп. М.: Воениздат, 1991. 343 с.: ил.
- 7. Радиоуправление реактивными снарядами и космическими аппаратами / Гуткин Л.С., Борисов Ю.П., Валуев А.А., Зиновьев А.Л., Лебедев С.В., Первачев Е.П., Полищук Е.П., Пономарев Д.А. М.: «Сов. радио», 1968. 680.
- 8. Основы радиоуправления: Учебное пособие для вузов / Березин Л.В., Вейцель В.А., Волковский С.А., Жодзишский А.И., Жодзишский М.И., Карандасов В.И., Типугин В.Н., Чалов В.К. Под ред. В.А.Вейцеля и В.Н. Типугина. М.: «Сов. радио», 1973, 464 с.

1 Траектории наведения

1.1 Основные понятия и определения

Кинематическая траектория – расчетная линия, по которой движется ОУ при идеальном выполнении закона управления (ОУ рассматривается как материальная точка, СУ идеализируется в смысле отсутствия инерционности и случайных возмущающих возмущений, ИВС – отсутствие ошибок измерения датчиков).

Кинематическую траекторию определяет метод наведения (способ сближения).

- ▶ Динамическая траектория расчетная линия движения ОУ с учетом его инерционных свойств, а также его системы управления (СУ).
- Фактическая траектория реальная траектория движения ОУ, которая получается при учете влияния инерционных свойств ОУ и его СУ, случайных возмущений и ошибок измерения датчиков.
- ▶ Фиксированные траектории при наведении на цель известными, неизменными или изменяющимися по известному закону координатами, хи хранится в памяти на ПУ или ОУ, вид траектории хт задается до пуска, управление Дх осуществляется по программе (программное управление) с использованием текущих значений ху.
- ▶ Нефиксированные траектории координаты цели *хц* известны неточно (движущиеся, маневрирующие), или неизвестны (в том числе неподвижные).

1.2 Особенности движения объектов по криволинейной траектории

Рисунок 1 - Составляющие ускорения ОУ при криволинейном движении:

 $j_H = W_H$ - нормальное ускорение; $j_{\tau} = W_{\tau}$ - тангенциальное ускорение; $j_{cб\pi} = W_{cб\pi}$ - ускорение сближения

Нормальное ускорение определяет отклонение от прямолинейного движения (правление полетом/траекторией):

$$j_{H} = V_{P} \dot{\Theta}; \tag{1}$$

$$j_H = \frac{V_P^2}{\rho_T} \tag{2}$$

При угловой скорости разворота:

$$\dot{\Theta} = \frac{V_P}{\rho_T},\tag{3}$$

где $ho_{\!\scriptscriptstyle T}$ - радиус искривления траектории.

- У Чем больше кривизна траектории движения (чем меньше ρ_{τ}), тем большие нормальные ускорения может развивать объект при движении по этой траектории.
- ightharpoonup Перегрузка n=j / g отношение ускорения объекта к ускорению свободного падения.
- ▶ Потребная перегрузка необходимая для движения ОУ по кинематической траектории (определяется методом наведения).
- ▶ Располагаемая перегрузка фактически развиваемая ОУ при максимальном отклонении органов управления (ограничивается конструкцией ОУ, параметрами и условиями полета).

2 Основные системы координат

Выбор опорной СК определяется областью применения объекта управления.

Основные требования к СК:

- решение задач навигации/наведения с требуемой точностью;
- получение наиболее простых математических соотношений (математическое описание);
- охват достаточной по площади территории для использования единой системы координат;
- наглядную информацию о местоположении ОУ относительно линии заданного пути (ЛЗП) или основных ее точек;
- программирование/предсказание заданной траектории в возможно более короткие сроки.

Виды СК по масштабам (охвату):

- космические (горизонтальная; первая и вторая экваториальные; эклиптическая; галактическая, геоцентрическая, гелиоцентрическая);
- глобальные (географическая; геосферическая; ортодромическая);
- местные (сферическая, декартовая, полярная).

- **2.1 Глобальные системы координат** охватывают всю поверхность Земли, или ее значительную часть.
- Виды глобальных СК в зависимости от требуемой точности решения задач навигации/наведения:
 - географическая;
 - геосферическая;
 - ортодромическая.

Рисунок 3

– Географическая(геодезическая) СК

Рисунок 4

– Геосферическая СК

Рисунок 5

- Ортодромическая СК

Географическая (геодезическая) система координат:

- поверхность Земли аппроксимируется эллипсоидом вращения, который наиболее близок по форме к земной поверхности;
- положение точки на поверхности эллипсоида вращения определяется географическими широтой *B* и долготой *L*;
- географическая широта точки M угол между нормалью к поверхности эллипсоида в этой точке и плоскостью экватора (отсчитывается от плоскости экватора к полюсам от 0 до $\pm 90^{\circ}$ северная или южная).
- географической долгота точки M двугранный угол между плоскостями Гринвичского меридиана и меридиана, проходящего через точку M (измеряется в обе стороны от Гринвичского меридиана в пределах от 0 до $\pm 180^{\circ}$ восточная или западная).
- Поверхность эллипсоида вращения имеет строгое математическое описание и позволяет получить формулы для решения задач навигации с высокой точностью.
- Формулы оказываются достаточно сложными и практически реализуются в современных пилотажно-навигационных комплексах (ПНК) на основе применения высокопроизводительных БЦВМ.

Геосферическая система координат:

- эллипсоид вращения заменяется сферой;
- положение точки на поверхности определяется широтой φ и долготой λ ;
- геосферическая широта точки *M* угол между радиусом-вектором из центра сферы в точку *M* и плоскостью экватора;
- понятие геосферической долготы соответствует понятию географической долготы.
- Позволяет упростить формульные зависимости, описывающие процессы навигации/наведения.

Ортодромическая СК:

- произвольная сферическая система координат (определяется основной плоскостью отчета);
- *смена ППМ определяет* смещение плоскости ортодромического экватора и положение ортодромического полюса C_0 относительно геосферического полюса C.
- *угол сходимости меридиан* ⊿ угол между геосферическим и ортодромическим меридианами;
- положение точки на поверхности определяется широтой σ и долготой μ ;

- *ортодромическая широта σ точки М* угол между радиусом-вектором, проведенным из центра сферы в точку *М*, и плоскостью условного экватора;
- *ортодромическая долгота µ* двугранный угол между плоскостью условного начального меридиана и плоскостью меридиана, проведенного через точку *M*.
- \blacktriangleright Движение ОУ, как правило, осуществляется в области ортодромического экватора при малых углах ортодромической широты (алгоритмы вычислений упрощаются за счет замены тригонометрических функций $sin \sigma \approx \sigma$, $cos \sigma \approx 1$).
- При смене участков маршрута полета (после пролета очередного ППМ) изменяется положение ортодромической системы координат так, чтобы на каждом частном участке маршрута ортодромический экватор совпадал с линией заданного пути. Такая система координат называется частной ортодромической системой координат.

2.2 Местные системы координат

- Охватывают ограниченную часть земной поверхности и используются при перемещениях ОУ на расстояния до 300...400 км (по классификации РСБН до 500 км), когда кривизной земной поверхности можно пренебречь без ущерба для точности решения навигационной задачи.
- ➤ Местные СК начало которых находится в точке на поверхности Земли (сферическая, прямоугольная декартовая (нормальная) и полярная).
- Прямоугольные нормальные СК могут быть неподвижными и подвижными.

2.2.1 Нормальная система координат $OX_{g}Y_{g}Z_{g}$:

- *начало СК* совпадает с центром масс ОУ;
- *ось ОY_g* направлена вверх по местной вертикали;
- *оси ОХ_g и ОZ_g* выбирают в соответствии с решаемой задачей:
 - > ось ОХ_g направлена с юга на север по касательной к географическому меридиану;
 - ightarrow ось OZ_g параллельно географической параллели по касательной с запада на восток.

Местная вертикаль - прямая, совпадающая с направлением в рассматриваемой точке силы тяжести $\vec{G} = m\vec{g}$, где \vec{g} - ускорение свободного падения.

Рисунок 4 — Положение нормальной СК по отношению к геоцентрической

Рисунок 5 — Нормальная СК

- ▶ Прямоугольная нормальная неподвижная нормальная СК О₀ Х₀ Y₀Z₀:
 - начало СК пункт управления, условная точка на поверхности Земли;
 - *ось* OY_g по местной вертикали;
 - оси $O_0 X_g$ и $O Z_g$ неизменны и относительно Земли (в соответствии с решаемой задачей) ориентированы по касательным к географическому меридиану (на север) и географической параллели (на восток).
- \succ Прямоугольная нормальная *подвижная* нормальная СК *О X_gY_gZ_g*:
 - *начало СК* центр масс ОУ;
 - $\mathit{och}\ \mathit{OY}_g$ по местной вертикали;
 - оси OX_g , OZ_g в соответствии с решаемой задачей (при небольших расстояниях между центрами неподвижной и подвижной СК параллельно осям подвижной земной нормальной СК !!!).
- При описании динамики полета в атмосфере земные СК обычно считаются инерциальными, а Земля считается плоской:
 - допускается пренебрежение вращением местной вертикали при движении ОУ;
 - вектор абсолютной скорости движения ЦМ ОУ заменяется на вектор земной скорости (скорость ОУ относительно воздушной среды + скорость ее перемещения относительно Земли);
 - вектор абсолютной угловой скорости заменяется на вектор угловой скорости относительно нормальной земной СК (земной угловой скорости).

2.2.2 Связанная система координат ОХҮΖ (подвижная):

Рисунок 6 - Связанная СК

- *начало СК* совпадает с характерной точкой ЛА (центр масс);
- **ось ОХ**_{СВ} = **ОХ**₁ продольная ось ЛА, лежащая в плоскости симметрии и направленная вперед (от «хвоста» к «носу» вдоль главной оси инерции или аэродинамической хорде);
- **ось ОY**_{CB} = **ОY**₁ нормальная ось, лежащая в плоскости симметрии и перпендикулярная продольной оси (вверх);
- *ось ОZ_{CB}* = *OZ*₁ поперечная ось, перпендикулярная плоскости симметрии (вправо).

2.2.3 Ориентация ЛА в пространстве (положение связанной СК относительно нормальной):

Рисунок 7 - Ориентация связанной СК относительно нормальной

- Ψ угол рыскания угол между осью OX_g нормальной СК и проекцией продольной оси связанной СК на горизонтальную плоскость OX_gZ_g (положителен при повороте оси OX_g для совмещения с проекцией продольной оси поворотом вокруг оси OY_g по часовой стрелке, если смотреть в направлении оси OY_g);
- ⁹ угол тангажа угол между продольной осью ОХ и горизонтальной плоскостью ОХ_gZ_g нормальной СК (положителен, если продольная ось направлена вверх по отношению к плоскости);
 - γ *угол крена* угол между поперечной осью *OZ* и осью *OZ*_g нормальной СК (положителен, когда смещенная ось *OZ*_g совмещается с поперечной осью *OZ* поворотом по часовой стрелке, если смотреть в направлении продольной оси *OX*).
- ➤ **Курс ВС** угол в горизонтальной плоскости между проекцией продольной оси ЛА и северным направлением меридиана («север» истинный, магнитный, ортодромический).

Рисунок 8 - Углы пространственной ориентации летательного аппарата

2.2.4 Скоростная система координат *ОХ_VY_VZ_V* (подвижная):

Рисунок 9 - Скоростная СК

- ▶ Воздушная скорость скорость полета ЛА относительно воздушной среды (приборная, индикаторная, истинная).
- Скоростная СК:
 - *начало СК* совпадает с характерной точкой ЛА (центр масс);
 - ось ОХ_V по вектору воздушной скорости ЛА;
 - ось OY_V ось подъемной силы в плоскости симметрии ЛА (вверх при обычных условиях);
 - *ось ОZ_V* боковая ось, перпендикулярная плоскости симметрии (вправо).
- У Истинная воздушная скорость фактическая скорость летательного аппарата относительно воздуха.
- ightharpoonup Скорость среды относительно какой-либо из земных СК.
- ightharpoonup Земная скорость \vec{V}_3 скорость начала связанной СК относительно какой-либо земной СК (в т.ч. скорость среды: воздушная скорость + скорость воздушной среды).
- ightharpoonup Путевая скорость $\vec{V}_{\!\!\!/\!\!\!/}$ проекция земной скорости на плоскость OX_gZ_g нормальной СК (векторная сумма горизонтальных составляющих воздушной скорости и скорости ветра/среды).
- ▶ Приборная (индикаторная) воздушная скорость воздушная скорость на выходе прибора (приемник воздушного давления) при нормальных условиях (давление 1013,25 гПа (260 мм.рт.ст.) и 15°С), а также с поправками на плотность воздуха.

2.2.5 Ориентация скоростной СК и относительно связанной:

Рисунок 10 - - Ориентация скоростной СК относительно связанной

- α угол атаки угол между проекцией воздушной скорости ЛА на плоскость ОХУ и продольной осью связанной СК (считается положительным, если проекция вектора скорости на нормальную ось отрицательна);
- β угол скольжения угол между проекцией воздушной скорости ЛА на плоскость ОХΖ и продольной осью связанной СК (считается положительным, если проекция вектора скорости на поперечную ось положительна).

2.2.6 Ориентация скоростной СК относительно нормальной СК

Рисунок 11 - Ориентация скоростной СК относительно нормальной

- ψ_a скоростной угол рыскания угол между проекцией вектора скорости на плоскость ОХ_gZ_g и осью ОХ_g нормальной СК;
- $\mathcal{G}_a = \Theta$ скоростной угол тангажа (угол наклона траектории) угол между скоростной осью OX_V и горизонтальной плоскостью OX_gZ_g нормальной СК;
- γ_a **скоростной угол крена** угол между боковой осью **О** Z_V и осью **О** Z_g нормальной СК, смещенной в положение, при котором скоростной угол рыскания равен нулю.

3 Методы наведения

3.1 Общие сведения о методах наведения

- Метод наведения закон изменения во времени требуемых фазовых координат, который должен обеспечить выполнение целевого назначения РСКУ (нахождение ОУ на требуемой фазовой траектории, закон сближения ОУ с объектом преследования):
 - налагает требования на характер движения ОУ;
 - устанавливает связь между характером движения цели и законом движения ОУ;
 - определяет состав и алгоритмы функционирования датчиков информации.
- Основные требования к методу наведения (способу формирования траектории):
 - 1) минимум времени наведения;
 - 2) максимальная дальность действия;
 - 3) минимальные мгновенные перегрузки ОУ;
 - 4) минимальный расход энергии управляющих сигналов;
 - 5) минимальный расход топлива;
 - 6) минимум ошибок управления (наведения);
 - 7) практическая реализуемость;
 - 8) независимость от условий применения (инвариантность);
 - 9) сопряжение с методами наведения при сопряжении этапов;
- **10)** сопряжение методов наведения носителя с методами наведения транспортируемых (доставляемых) объектов управления.

3.2 Классификация методов наведения

3.2.1 По количеству объектов-участников процесса наведения:

- **двухточечные (самонаведения)** ОУ и цель;
- *трехточечные* ПУ, ОУ и цель.

3.2.2 По наличию/отсутствию упреждения:

- без упреждения;
- с упреждением.

Таблица 1 – Классификация методов наведения

Классы	Двухточечные (самонаведения)	Трехточечные
Без упреждения	• прямой;	• совмещения, нало-
(прямые)	• погони, флюгерный, путевой	жения, накрытия.
С упреждением	 прямой с постоянным углом упреждения; параллельного сближения (в мгновенную точку встречи); пропорционального наведения (со/без смещения смещением); модификация прямого и пропорционального наведения. 	 полного спрямления; половинного спрямиления.

4 Двухточечные методы наведения (самонаведения)

4.1 Метод прямого наведения - продольная ось ОУ $OX_1 = OX_{CB}$ в каждый момент времени должна совмещаться с направлением на цель, требуемый угол q_T должен быть равным нулю.

Рисунок 1 – Кинематическая схема метода прямого наведения

 O_p и U – местоположение ОУ и цели в вертикальной плоскости;

 ε - угол наклона ЛВ «ОУ - цель» относительно горизонта - оси OX_g нормальной СК;

 \mathcal{G} - угол тангажа ОУ;

 $arphi_{ extsf{L}}$ - угол между продольной осью ОУ (ось $OX = OX_1 = OX_{CB}$ связанной СК) и ЛВ «ОУ - Ц»;

Взаимная связь углов:
$$\varphi_{\mu} = \theta - \varepsilon$$
. (4)

Уравнение прямого метода (уравнение идеальной связи):

$$\varphi_{\mathcal{U}} = 0$$
 ;

$$\theta = \varepsilon$$
. (6)

Параметр рассогласования прямого метода (алгоритм траекторного управления):

$$\Delta = \varphi_{\mathcal{L}_{1}}; \tag{7}$$

$$\Delta = \mathcal{G} - \varepsilon \,. \tag{8}$$

Достоинства:

- инвариантность к дальности наведения и высоте полета цели и ОУ;
- относительная простота ИВС:
 - ✓ для реализации необходимо измерять непосредственно бортовые пеленги φ_{ε} и φ_{ε} (БРЛС, РГС, ТГС) или углы \mathcal{G} и ε с их последующим вычитанием;
 - ✓ возможность применения неподвижного координатора при совпадении осей ОУ и координатора.

Недостатки:

- *ограниченность применения* только по неподвижным целям (скорость цели много меньше скорости ОУ);
- *низкая точность наведения* большие поперечные (нормальные) перегрузки УО конечном этапе наведения (даже по неподвижным целям);
- влияние ветра искривление траектории за счет сноса.

Рисунок 2 – Влияние ветра на траекторию УО

- точки О_{с0}, О_{с1}, О_{с2}... и оси О_{с0}X_{с0}, О_{с1}X_{с1}... текущие положения ОУ и направление его продольной оси в моменты времени t₀<t₁<t₂ при идеальном наведении;
- V_в вектор скорости ветра.

Кривизна траектории будет тем больше, чем меньше скорость ОУ и больше скорость ветра в поперечном направлении.

Рисунок 3 – Графическое построение траектории прямых методов самонаведения

4.2 Метод прямого наведения с постоянным углом упреждения – в течение всего времени полета ОУ угол между продольной осью и линией визирования остается постоянным (развитие метода прямого наведения).

Рисунок 4 – Кинематическая схема метода прямого наведения с постоянным углом упреждения

 $\varphi_{\mathcal{U}}$ - текущий угол между продольной осью ОУ (ось $OX_1 = OX_{CB}$ связанной СК) и ЛВ (пеленг);

 φ_0 - требуемый угол между продольной осью ОУ (ось $OX_1 = OX_{CB}$ связанной СК) и ЛВ;

Уравнение метода (уравнение идеальной связи):

$$\varphi_{\perp} = \varphi_0; \tag{9}$$

$$\vartheta - \varepsilon = \varphi_0. \tag{10}$$

Параметр рассогласования метода (алгоритм траекторного управления):

$$\Delta = \varphi_{\mathcal{U}} - \varphi_0; \tag{11}$$

$$\Delta = \theta - \varepsilon - \varphi_0. \tag{12}$$

Метод обеспечивает меньшую кривизну траектории. Реализация – аналогична прямому.

- **4.3 Метод погони** с ЛВ «ОУ цель» непрерывно совмещается **вектор истинной ско- рости ОУ**.
- Флюгерный метод с ЛВ «ОУ цель» непрерывно совмещается вектор воздушной скорости ОУ.
- При движении ОУ в невозмущенной атмосфере оба метода идентичны.

Рисунок 5 – Кинематическая схема метода погони

 $O_P X_K$ - направление оси координатора (визира, ГСН); φ_{\sqcup} - текущий угол между продольной осью ОУ (ось $OX_1 = OX_{CB}$ связанной СК); q - угол отклонения вектора скорости ОУ относительно ЛВ «ОУ - Ц».

Уравнение метода (уравнение идеальной связи):

$$q=0; (13)$$

$$\Theta = \varepsilon$$
; (14)

$$\varphi_{\mathcal{U}} = \alpha. \tag{15}$$

Параметр рассогласования метода:

$$\Delta = q \; ; \tag{16}$$

$$\Delta = \Theta - \varepsilon; ag{17}$$

$$\Delta = \varphi_{\perp} - \alpha. \tag{18}$$

Особенности метода погони:

- ОУ независимо от своего положения относительно цели в момент начала наведения стремится выйти на одно и то же направление строго в «хвост» цели;
- при угле скольжения (атаки) $\alpha=0$ ($\beta=0$) метод вырождается в метод прямого наведения, т.к. $\varphi_{\mathit{L}\!\!\!/B}=q_{\!_B}+\alpha$ (в вертикальной плоскости), $\varphi_{\mathit{L}\!\!\!/\Gamma}=q_{\!_\Gamma}+\beta$ (в горизонтальной плоскости).

Достоинства:

- инвариантность к дальности наведения и высоте полета цели и ОУ;
- компенсирует наличие угла атаки и скольжения.

Недостатки:

- ограниченность применения только по неподвижным целям и при отсутствии ветра:
- искривление траектории за счет движения цели или бокового ветра;
- несовпадение мгновенного направления взаимного перемещения цели и ОУ, определяемого направлением вектора относительной скорости, с направлением на цель (необходимость угла упреждения треугольник скоростей);
- кривизна траектории будет тем больше, чем больше скорость ОУ и больше скорость цели (ветра) в поперечном направлении;
- увеличение ошибок и времени наведения;
- уменьшение дальности действия.

Рисунок 6 - Треугольник скоростей при движении цели (необходимость угла упреждения)

- сложность выполнения маневра в диапазоне допустимых перегрузок на среднем и конечном этапах наведения (зависит от соотношения скоростей УО и цели);
- усложнение ИВС по сравнению с реализацией прямого метода наведения:

 - \checkmark измерение пеленга φ_{μ} и угла атаки / скольжения α/β (угломер БРЛС, РГС или ТГС, Φ Д флюгерный датчик).

4.4 Метод параллельного сближения (в мгновенную точку встречи)

- в любой момент времени вектор скорости ОУ направлен в упрежденную точку (линия визирования перемещается параллельно сама себе).

Рисунок 7 – Кинематическая схема метода параллельного сближения:

 $\omega = \dot{\varepsilon}$ - угловая скорость вращения ЛВ; ε_{D_0} - угол наклона ЛВ в момент начала наведения.

Условия выполнения:

$$\omega = \dot{\varepsilon} = \frac{V_P \sin q_P - V_{U} \sin q_{U}}{D} \approx 0; \quad (19)$$

Уравнение метода (варианты):

$$\dot{\varepsilon} = 0;$$
 (20)

$$\varepsilon = \varepsilon_{D_0};$$
 (21)

$$q_{PT} \approx \frac{V_{U}}{V_{P}} \sin q_{U}$$
 (22)

Параметр рассогласования (варианты):

$$\Delta = \dot{\varepsilon}; \tag{23}$$

$$\Delta = \varepsilon - \varepsilon_{D_0}; \tag{24}$$

$$V_{\perp} \sin q_{\perp} = V_{P} \sin q_{P}$$
, или (25)

$$\Delta = q_P - \frac{V_U}{V_P} \sin q_U.$$
 (26)

Рисунок 8 - Метод параллельного сближения

- При наведении на неманеврирующую цель траектория ОУ прямолинейна.
- Для реализации метода необходим состав измерителей (датчиков), аналогичный реализации метода погони.

4.5 Метод пропорционального наведения

> Уравнение оптимального метода пропорционального наведения (согласно ТАУ):

$$\boldsymbol{J}_{yO}^{Tpe6} = N_0 \left| \dot{r} \right| \omega + 1.5 \boldsymbol{J}_{\mathcal{U}}, \tag{27}$$

где $N_0 = 3$ - навигационная постоянная, \dot{r} - скорость сближения, J_{μ} - нормальное (боковое) ускорение цели.

Уравнение упрощенного метода пропорционального наведения (цель движется равномерно и прямолинейно) – техническое упрощение оптимального правила (не надо измерять ускорение цели):

*
$$\mathbf{J}_{yO}^{Tpe6} = N_0 |\dot{r}| \omega$$
. (28)

- ightharpoonup При пропорциональном наведении управление безынерционного объекта формируется пропорционально ускорению цели $m{J}_{\!\scriptscriptstyle L}$
- Параметр рассогласования оптимального и упрощенного методов пропорционального наведения:

$$\Delta = N_0 \left| \dot{r} \right| \omega + 1.5 J_{\perp} - J_{yO}; \tag{29}$$

*
$$\Delta = N_0 |\dot{r}| \omega - J_{yO}$$
. (30)

$$ightharpoonup$$
 При учете $J_{yO} = V_{yO}\dot{\Theta} \Rightarrow V_{yO}\dot{\Theta} = N_0 |\dot{r}|\omega$: $\dot{\Theta} = \frac{N_0 |\dot{r}|}{V_{yO}}\omega = C\omega$. (31)

- Метод пропорционального наведения: в любой момент времени угловая скорость вращения вектора скорости ОУ в плоскости управления должна быть пропорциональна угловой скорости линии визирования ОУ Ц (вариант 1).
- Уравнение метода пропорционального наведения (вариант 1):

$$\dot{\Theta}^{\mathsf{Tpe6}} = C\dot{\varepsilon} = C\omega.$$
 (31)

Параметр рассогласования (вариант 1):

$$\Delta = \dot{\Theta} - \mathbf{C}\omega. \tag{33}$$

При
$$J_{yO} = V_{yO}\dot{\Theta}$$
 (34)

Уравнение метода пропорционального наведения (вариант 2):

$$\mathbf{J}_{yO}^{Tpe6} = C\mathbf{V}_{yO}\omega = N_0 |\dot{r}|\omega$$
 (35)

▶ в любой момент времени нормальное (боковое) ускорение ОУ в плоскости управления должно быть пропорционально угловой скорости линии визирования ОУ – Ц и скорости ОУ (вариант 2).

Параметр рассогласования *(вариант 2)*:

$$\Delta = CV_{VO}\omega - J_{VO}. \tag{36}$$

4.6 Обобщения метода пропорционального наведения

ightharpoonup при C=1: $\dot{\Theta}=C\dot{\varepsilon}, \qquad \Rightarrow \Theta=\varepsilon+q,$

где q -постоянная интегрирования, или начальный угол упреждения;

$$\Rightarrow \dot{\Theta} = \dot{\varepsilon} + \dot{q}; \qquad \Rightarrow \dot{q} = \dot{\Theta} - \dot{\varepsilon} = (C - 1)\dot{\varepsilon} = 0; \qquad \Rightarrow q = const = 0$$
 (37)

метод пропорционального наведения совпадает с методом погони (в процессе наведения вектор скорости ОУ совпадает с ЛВ);

$$ightharpoonup$$
 при $C
ightharpoonup \infty$: $\dot{\varepsilon} = \frac{\mathbf{J}_{yO}^{Tpe6}}{C\mathbf{V}_{yO}}
ightharpoonup 0$, (38)

- ⇒ метод пропорционального наведения совпадает с методом параллельного сближения (в процессе наведения ОУ линия визирования перемещается параллельно сама себе);
- при маневре цели (изменении величины и направления ее вектора скорости) угол упреждения должен изменяться (нефиксированность траектории);
- ightharpoonup навигационная постоянная $C \in [1, \infty[$ оказывает существенное влияние на вид траектории ОУ (от кривизны при методе погони до прямолинейности при методе параллельного сближения) и должна соответствовать условиям наведения;

- > для реализации метода пропорционального наведения необходимо:
 - *измерять угловую скорость вращения ЛВ* в фиксированной СК (например, в земной или гироскопической);
 - **вырабатывать нормальное (боковое) ускорение ОУ**, пропорциональное угловой скорости ЛВ;
 - выбирать коэффициент пропорциональности (навигационную постоянную) в зависимости от условий применения (полусфера наведения (ракурс), дальность и соотношение скоростей объектов по величине и направлению, определяющие угловую скорость вращения ЛВ);
 - при C = 4 6 форма траектории достаточно близка к идеальной кинематической ($c = N_o \to \infty$);

4.7 Модификация прямого метода и метода пропорционального наведения (последовательных упреждений)

- дополнительный угол упреждения выбирают пропорциональным угловой скорости линии визирования.
- > Параметр рассогласования (алгоритм траекторного управления):

$$\Delta_{\Pi Y} = K_{\omega} \varphi + K_{\omega} \omega, \tag{39}$$

где K_{φ} и K_{ω} – постоянные коэффициенты, значения которых выбираются так, чтобы траектория наведения была близка к прямолинейной;

 φ – бортовой пеленг цели (относительно оси ОУ);

- ω угловая скорость ЛВ.
- **Состав датчиков (измерителей) ИВС:** угломер, формирующий оценки углов φ и угловых скоростей ω .

Задание для самостоятельной работы:

1. *Отработать материалы* семинара с использованием рекомендованной литературы.

2. Знать:

классификацию траекторий;

особенности движения объектов по криволинейной траектории;

факторы, определяющие классификацию систем координат;

классификацию и особенности систем координат;

основные параметры, характеризующие положение и движение объектов в различных системах координат;

понятие метода наведения и основные требования к ним;

факторы, определяющие классификацию методов наведения;

особенности основных методов самонаведения (трактовка, кинематическая схема, основные параметры и уравнения идеальной связи, алгоритмы траекторного управления, достоинства и недостатки, состав датчиков/измерителей);

3. Уметь:

моделировать и анализировать фрагменты криволинейной траектории;

изобразить кинематическую схему методов наведения в системе координат плоскости управления;

строить кинематическую траекторию графоаналитическим методом.

4. *Быть готовым:* ответить на вопросы для самоконтроля;

Вопросы для самоконтроля

- 1. Поясните различие между различными видами траекторий наведения, определяющих их классификацию.
- 2. Охарактеризуйте возможную область применения нормальной неподвижной системы координат.
- 3. Охарактеризуйте нормальную неподвижную систему координат. Опишите возможную область применения и особенности нормальной подвижной системы координат.
- 4. Для чего необходима связанная система координат ОУ, предложите версии ее применения, и какие приборы/оборудование/датчики/измерители необходимы для этого ?
- 5. Какие системы координат позволяют охарактеризовать пространственную ориентацию ОУ, и какие приборы/оборудование/датчики/измерители необходимы для этого ?
- 6. Опишите возможную процедуру определения направления и скорости движения ОУ и какие приборы/оборудование/датчики/измерители необходимы для этого?
- 7. Чем отличаются связанная и скоростная системы координат ОУ? Опишите указанные системы координат, их взаимную ориентацию.
 - 8. Охарактеризуйте понятие маневренности ОУ и факторы ее определяющие.
 - 9. Что необходимо для сокращения радиуса разворота ОУ, чем он ограничен ?
- 10. Охарактеризуйте факторы, обеспечивающие движение ОУ по криволинейной траектории.

- 11. На что влияет метод наведения при управлении объектом?
- 12. Перечислите и охарактеризуйте основные классы методов наведения?
- 13. Изобразите кинематическую схему прямого метода наведения, запишите уравнения метода. Охарактеризуйте сущность метода.
- 14. Охарактеризуйте достоинства и недостатки прямого метода наведения, возможные варианты его реализации.
- 15. Постройте графически траекторию ОУ при наведении на маневрирующую/неманеврирующую цель при использовании прямого метода. Охарактеризуйте особенности метода.
- 16. Опишите особенности применения прямого метода с постоянным упреждением. Изобразите кинематическую схему.
- 17. Изобразите кинематическую схему метода погони, запишите уравнения метода. Охарактеризуйте сущность метода.
- 18. Охарактеризуйте достоинства и недостатки метода погони, возможные варианты его реализации.
- 19. Постройте графически траекторию ОУ при наведении на маневрирующую/неманеврирующую цель при использовании метода погони.
 - 20. Объясните особенности реализации флюгерного метода наведения.
- 21. Изобразите кинематическую схему метода параллельного сближения, запишите уравнения метода. Охарактеризуйте сущность метода.

- 22. Охарактеризуйте достоинства и недостатки метода параллельного сближения, возможные варианты его реализации.
- 23. Постройте графически траекторию ОУ при наведении на маневрирующую/неманеврирующую цель при использовании метода параллельного сближения.
- 24. Изобразите кинематическую схему метода пропорционального наведения, запишите уравнения метода.
- 25. Охарактеризуйте достоинства и недостатки метода пропорционального наведения, возможные варианты его реализации.
- 26. Охарактеризуйте особенности реализации модификаций прямого метода и метода пропорционального наведения.
- 27. Поясните условия трансформации метода пропорционального наведения в методы погони/прямой.