Introduction
Background Information
The Friendship Theorem
Proof
Discussion
Conclusions

### The Friendship Theorem

Michelle Hewson, Maxwell Pitney, & Dakota Thompson

October 13, 2021 Math 479 Project #2



 Suppose there's a party where not everyone is acquainted, but any pair of people have one common friend.

- Suppose there's a party where not everyone is acquainted, but any pair of people have one common friend.
- What can this look like?

- Suppose there's a party where not everyone is acquainted, but any pair of people have one common friend.
- What can this look like?



- Suppose there's a party where not everyone is acquainted, but any pair of people have one common friend.
- What can this look like?



- Suppose there's a party where not everyone is acquainted, but any pair of people have one common friend.
- What can this look like?



Introduction
Background Information
The Friendship Theorem
Proof
Discussion

### Introduction

• This concept is the **Friendship Theorem**.

This concept is the Friendship Theorem.

#### Theorem

Suppose in a group of people we have the situation that any pair of persons have precisely one common friend. Then there is always a person (the "politician") who is everybody's friend.

This concept is the Friendship Theorem.

#### $\mathsf{Theorem}$

Suppose in a group of people we have the situation that any pair of persons have precisely one common friend. Then there is always a person (the "politician") who is everybody's friend.

• Although the problem's creator is unknown, there are several famous proof methods.

This concept is the Friendship Theorem.

#### $\mathsf{Theorem}$

Suppose in a group of people we have the situation that any pair of persons have precisely one common friend. Then there is always a person (the "politician") who is everybody's friend.

- Although the problem's creator is unknown, there are several famous proof methods.
- We'll tackle this proof using graph theory and linear algebra.



• A vertex is a point on a graph that connects edges together.

- A vertex is a point on a graph that connects edges together.
- An **edge** can be used to define a relationship between vertices.

- A **vertex** is a point on a graph that connects edges together.
- An edge can be used to define a relationship between vertices.
- A path is a finite sequence of adjacent vertices and adjacent edges where neither can be repeated.

• An example of a graph:



### Linear Algebra

• An identity matrix:

$$I_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$I_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$I_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I_{n} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

### • An adjacency matrix:



### Linear Algebra

ullet Eigenvalues  $(\lambda)$  are special scalars that have the property,

$$Ax = \lambda x$$
,

if x is the eigenvector where  $x \in \mathbb{R}^n \neq \mathbf{0}$  and A is a matrix.

### Linear Algebra

ullet Eigenvalues  $(\lambda)$  are special scalars that have the property,

$$Ax = \lambda x$$
,

if x is the eigenvector where  $x \in \mathbb{R}^n \neq \mathbf{0}$  and A is a matrix.

 The trace of a square matrix is the sum of the elements in the main diagonal.

 The theorem can be translated to and proven in graph-theoretic terms:

 The theorem can be translated to and proven in graph-theoretic terms:

#### $\mathsf{Theorem}$

Suppose that G is a finite graph in which any two vertices have precisely one common neighbor. Then there is a vertex which is adjacent to all other vertices.

 The theorem can be translated to and proven in graph-theoretic terms:

#### Theorem

Suppose that G is a finite graph in which any two vertices have precisely one common neighbor. Then there is a vertex which is adjacent to all other vertices.

• The *vertices* represent the people.

 The theorem can be translated to and proven in graph-theoretic terms:

#### $\mathsf{Theorem}$

Suppose that G is a finite graph in which any two vertices have precisely one common neighbor. Then there is a vertex which is adjacent to all other vertices.

- The vertices represent the people.
- Any given two people that are considered friends will be represented with a connecting edge.



# Visualization of The Friendship Theorem

 Graphs that fulfill the properties of the Friendship Theorem are windmill graphs.



Idea of the proof:

• We will prove the Friendship Theorem using a contradiction.

### Idea of the proof:

- We will prove the Friendship Theorem using a contradiction.
- To do this, we will create a counterexample graph.

 Towards a contradiction, suppose that the graph G is a counterexample.

- Towards a contradiction, suppose that the graph G is a counterexample.
- Note that *G* still must adhere to the condition of being a friendship graph.

- Towards a contradiction, suppose that the graph G is a counterexample.
- Note that G still must adhere to the condition of being a friendship graph.
- Claim: The graph G is a regular graph, or that d(u) = d(v) for all vertices u and v.

Our first step is proving that *non-adjacent* vertices have equal degree.

Our first step is proving that *non-adjacent* vertices have equal degree.

• Suppose d(u) = k, where  $w_1, w_2, \dots, w_k$  are the neighbors of u.

Our first step is proving that *non-adjacent* vertices have equal degree.

- Suppose d(u) = k, where  $w_1, w_2, \dots, w_k$  are the neighbors of u.
- Without loss of generality, let  $w_2$  be adjacent to v and exactly one other  $w_i$  be adjacent to  $w_2$ , we'll say  $w_1$ .

Our first step is proving that *non-adjacent* vertices have equal degree.

- Suppose d(u) = k, where  $w_1, w_2, \dots, w_k$  are the neighbors of u.
- Without loss of generality, let  $w_2$  be adjacent to v and exactly one other  $w_i$  be adjacent to  $w_2$ , we'll say  $w_1$ .
- Then we know that  $w_i$  must also have precisely one common neighbor,  $z_i$ , where  $i \ge 2$ , with v.

• This gives us this diagram of G.



• This gives us this diagram of G.



• We can now conclude that  $d(v) \ge k = d(u)$ , and by symmetry, d(u) = d(v) = k.

Now we need to prove that *adjacent* vertices have the same degree.

Now we need to prove that *adjacent* vertices have the same degree.

 Note that any vertex, except for w<sub>2</sub>, is only adjacent to either u or v, but not both.

Now we need to prove that *adjacent* vertices have the same degree.

- Note that any vertex, except for w<sub>2</sub>, is only adjacent to either u or v, but not both.
- Using what we just concluded, we know that any of these vertices must have degree k.

Now we need to prove that *adjacent* vertices have the same degree.

- Note that any vertex, except for w<sub>2</sub>, is only adjacent to either u or v, but not both.
- Using what we just concluded, we know that any of these vertices must have degree k.
- Recall that G is a counterexample, so there is no politician. This means there must exist some non-neighbor of  $w_2$ , therefore  $w_2$  must also have degree k.

• We find the formula for the number of vertices, n, is

$$n=k^2-k+1.$$

• We find the formula for the number of vertices, n, is

$$n = k^2 - k + 1.$$

•  $k^2$  is given by summing the degrees of the k neighbors of u.

• We find the formula for the number of vertices, *n*, is

$$n=k^2-k+1.$$

- $k^2$  is given by summing the degrees of the k neighbors of u.
- -k+1 is given by subtracting all of the k common neighbors of u, except for u.

• We find the formula for the number of vertices, n, is

$$n=k^2-k+1.$$

- $k^2$  is given by summing the degrees of the k neighbors of u.
- -k+1 is given by subtracting all of the k common neighbors of u, except for u.
- This concludes the first part of this proof.

• Note that if k = 0 or k = 1, we get  $k^2 - k + 1 = 1 = n$ .

- Note that if k = 0 or k = 1, we get  $k^2 k + 1 = 1 = n$ .
- If k = 2, we get  $k^2 k + 1 = 3 = n$ .

- Note that if k = 0 or k = 1, we get  $k^2 k + 1 = 1 = n$ .
- If k = 2, we get  $k^2 k + 1 = 3 = n$ .
- These k and n values result in  $K_1$  and  $K_3$ . Both graphs have a "politician" vertex.



 Consider the adjacency matrix A that represents the neighbors in G.

- Consider the adjacency matrix A that represents the neighbors in G.
- Each row has *k* 1's and each pair of rows has one column where they both have a 1 entry.

- Consider the adjacency matrix A that represents the neighbors in G.
- Each row has k 1's and each pair of rows has one column where they both have a 1 entry.
- The diagonal of A consists of only 0's because a vertex cannot be its own neighbor  $(a_{ij} \neq 1 \text{ when } i = j)$ .

- Consider the adjacency matrix A that represents the neighbors in G.
- Each row has k 1's and each pair of rows has one column where they both have a 1 entry.
- The diagonal of A consists of only 0's because a vertex cannot be its own neighbor  $(a_{ij} \neq 1 \text{ when } i = j)$ .
- A must be symmetric because  $a_{ij} = a_{ji}$ .

Introduction
Background Information
The Friendship Theorem
Proof
Discussions

#### Proof of the Friendship Theorem

• Now consider the matrix  $A^2$ .

• Now consider the matrix  $A^2$ .

$$A^2 = \begin{bmatrix} k & 1 & \cdots & 1 \\ 1 & k & & 1 \\ \vdots & & \ddots & \vdots \\ 1 & \cdots & 1 & k \end{bmatrix}$$

• Now consider the matrix  $A^2$ .

$$A^2 = \begin{bmatrix} k & 1 & \cdots & 1 \\ 1 & k & & 1 \\ \vdots & & \ddots & \vdots \\ 1 & \cdots & 1 & k \end{bmatrix}$$

•  $A^2$  can be rewritten as  $A^2 = (k-1)I + J$ .

• Now consider the matrix  $A^2$ .

$$A^2 = \begin{bmatrix} k & 1 & \cdots & 1 \\ 1 & k & & 1 \\ \vdots & & \ddots & \vdots \\ 1 & \cdots & 1 & k \end{bmatrix}$$

•  $A^2$  can be rewritten as  $A^2 = (k-1)I + J$ .

$$A^{2} = \begin{bmatrix} k-1 & 0 & \cdots & 0 \\ 0 & k-1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & k-1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & & 1 \\ \vdots & & \ddots & \vdots \\ 1 & \cdots & 1 & 1 \end{bmatrix}$$

 The matrix J has eigenvalues n (of multiplicity 1) and 0 (of multiplicity n - 1).

- The matrix J has eigenvalues n (of multiplicity 1) and 0 (of multiplicity n - 1).
- Therefore,  $A^2$  has eigenvalues  $k-1+n=k^2$  (of multiplicity 1) and k-1 (of multiplicity n 1).

Introduction
Background Information
The Friendship Theorem
Proof
Discussion

### Proof of the Friendship Theorem

• Since A is symmetric, it must be diagonalizable.

- Since *A* is symmetric, it must be diagonalizable.
  - Thus, A has eigenvalues k of multiplicity 1 and  $\pm \sqrt{k-1}$  of multiplicity n-1.

- Since A is symmetric, it must be diagonalizable.
  - Thus, A has eigenvalues k of multiplicity 1 and  $\pm \sqrt{k-1}$  of multiplicity n-1.
- Let r represent the eigenvalues equal to  $\sqrt{k-1}$ .
- Let s represent the eigenvalues equal to  $-\sqrt{k-1}$ .

- Since *A* is symmetric, it must be diagonalizable.
  - Thus, A has eigenvalues k of multiplicity 1 and  $\pm \sqrt{k-1}$  of multiplicity n-1.
- Let r represent the eigenvalues equal to  $\sqrt{k-1}$ .
- Let s represent the eigenvalues equal to  $-\sqrt{k-1}$ .
- Note that r + s = n 1.

• Note Trace A = 0.

- Note Trace A = 0.
- Since the sum of the eigenvalues equals the trace, it follows

$$k + r\sqrt{k-1} - s\sqrt{k-1} = 0.$$

- Note Trace A = 0.
- Since the sum of the eigenvalues equals the trace, it follows

$$k + r\sqrt{k-1} - s\sqrt{k-1} = 0.$$

• Since  $s \neq r$ ,

$$(r-s)^2(k-1)=k^2.$$

- Note Trace A = 0.
- Since the sum of the eigenvalues equals the trace, it follows  $k + r\sqrt{k-1} s\sqrt{k-1} = 0$ .
- Since  $s \neq r$ ,

$$(r-s)^2(k-1)=k^2.$$

• This means (k-1) divides  $k^2$ .

- Note Trace A = 0.
- Since the sum of the eigenvalues equals the trace, it follows  $k + r\sqrt{k-1} s\sqrt{k-1} = 0$ .
- Since  $s \neq r$ ,

$$(r-s)^2(k-1)=k^2.$$

- This means (k-1) divides  $k^2$ .
- It must be that k = 2.

- Note Trace A = 0.
- Since the sum of the eigenvalues equals the trace, it follows  $k + r\sqrt{k-1} s\sqrt{k-1} = 0$ .
- Since  $s \neq r$ ,

$$(r-s)^2(k-1)=k^2.$$

- This means (k-1) divides  $k^2$ .
- It must be that k = 2.







Introduction
Background Information
The Friendship Theorem
Proof
Discussion
Conclusions

#### Recap

• Introduced the *counterexample* graph *G*.

- Introduced the counterexample graph G.
- Proved that all vertices are of degree k.

• Found *n*, the number of vertices in the graph.

$$n = k^2 - k + 1$$

• Found *n*, the number of vertices in the graph.

$$n = k^2 - k + 1$$

• Showed that the adjacency matrix A is symmetric and diagonalizable.

• Found *n*, the number of vertices in the graph.

$$n = k^2 - k + 1$$

- Showed that the adjacency matrix A is symmetric and diagonalizable.
- Used the eigenvalues of A to produce a contradiction.

#### **Further Discussion**

 Note that the Friendship Theorem only works with finite graphs.

#### Further Discussion

- Note that the Friendship Theorem only works with finite graphs.
- Windmill graphs are only possible with the presence of a politician.

### Further Discussion

- Note that the Friendship Theorem only works with finite graphs.
- Windmill graphs are only possible with the presence of a politician.
- A counterexample can be constructed beginning with a 5 cycle:



### Further Discussion

- Note that the Friendship Theorem only works with finite graphs.
- Windmill graphs are only possible with the presence of a politician.
- A counterexample can be constructed beginning with a 5 cycle:



• What if we rephrased the Friendship Theorem to say *G* is a graph with the property that there is exactly one path of length 2 between any two vertices?



• What if we rephrased the Friendship Theorem to say *G* is a graph with the property that there is exactly one path of length 2 between any two vertices?



 This reconstruction is another way to present the friendship condition.

• What if we rephrased the Friendship Theorem to say *G* is a graph with the property that there is exactly one path of length 2 between any two vertices?



- This reconstruction is another way to present the friendship condition.
- What if the path length is greater than 2?



#### Theorem

Let  $\ell > 2$ , then there are no finite graphs with the property that between any two vertices there is precisely one path of length  $\ell$ .

#### **Theorem**

Let  $\ell > 2$ , then there are no finite graphs with the property that between any two vertices there is precisely one path of length  $\ell$ .

• This has been verified for all  $\ell \leq 33$ .

#### **Theorem**

Let  $\ell > 2$ , then there are no finite graphs with the property that between any two vertices there is precisely one path of length  $\ell$ .

- This has been verified for all  $\ell \leq 33$ .
- A general proof of this conjecture has yet to be formulated.

Introduction
Background Information
The Friendship Theorem
Proof
Discussion
Conclusions

### Conclusion

 This proof, which was presented by Paul Erdös, is the first of several different proofs for this theorem.

### Conclusion

- This proof, which was presented by Paul Erdös, is the first of several different proofs for this theorem.
- It uses applications of both graph theory and linear algebra.

### Conclusion

- This proof, which was presented by Paul Erdös, is the first of several different proofs for this theorem.
- It uses applications of both graph theory and linear algebra.
- The Friendship Theorem is a fascinating example of a real life problem that can be translated to and solved with mathematics.

### References

- Amulya Bhattaram, The Friendship Theorem. Aug. 2020, http://simonrs.com/eulercircle/pftb2020/amulya-friendship.pdf.
- [2] Elizabeth Walker. The Friendship Theorem. https://math.mit.edu/~ apost/courses/18.204-2016/18.204\_Elizabeth\_Walker \_final\_paper.pdf.
- [3] Jacob Fox, Lecture 20: Friends and Politicians 1 ... MIT Mathematics. http://math.mit.edu/∼fox/MAT307-lecture20.pdf.
- [4] Katie Leonard, The Friendship Problem and Projective Planes. 7 Dec. 2005, http://web.pdx.edu/~caughman/Katie.pdf.
- [5] Martin Aigner, and Günter M. Ziegler, "Of Friends and Politicians". Proofs from THE BOOK, Springer, New York, 2004, pp. 223–225.