Sirepo – an open-source cloud-based software interface for X-ray source and optics simulations

Maksim Rakitin

NSLS-II, Brookhaven National Laboratory

Outline

- Overview of Sirepo:
 - Sirepo & SRW
 - Distribution of Sirepo
 - Source page
 - Beamline page
 - Selected features

Demonstration of Sirepo

Sirepo & SRW

- **SRW** (**Synchrotron Radiation Workshop**) allows to simulate synchrotron radiation and wavefront propagation through beamline optics
- SRW is written in C++ and has several interfaces
- **Sirepo** an open-source Python/JavaScript interface for cloud computing, developed in collaboration with RadiaSoft LLC within SBIR project

Distribution of Sirepo

Distribution:

- Source code:
 - https://github.com/ochubar/SRW
 - https://github.com/radiasoft/sirepo
- Docker containers:
 https://hub.docker.com/r/radiasoft/sirepo/tags/
- Vagrant boxes:
 https://atlas.hashicorp.com/radiasoft/boxes/sirepo

Servers:

https://beta.sirepo.com/light – globally available
https://expdev.nsls2.bnl.gov/light – behind BNL firewall
http://nsls2expdev1.bnl.gov/light – behind BNL firewall

Source page

Source page: definition of the beam

Source page: definition of the source

Beamline page

National Synchrotron

Dynamic access to external databases

Data is dynamically queried from:

- http://henke.lbl.gov/optical constants/
- http://x-server.gmca.aps.anl.gov/xoh.html
- Python API for data access, JS for GUI

Intensity image resizing and scaling

Image resizing option implemented in Sirepo and SRW using SciPy to optimize amount of data transferred from server to client

After Propagation (E=9646 eV)

Selection of scales (linear & logarithmic) implemented in Sirepo and SRW using NumPy to allow better insight into the resulted intensity

After Propagation (E=9646 eV)

Simulation of scattering experiments

SRW and Sirepo extension:

Sample scattering simulation using microscopy imaging: Python/NumPy/SciPy/Pillow image processing library

Chubar, et al. Proc. SPIE (2017), 10.1117/12.2274481

Data storage & exchange

Export:

- simulation

Self-Extracting Simulation: Tabulated Undulator Example

https://expdev.nsls2.bnl.gov

Send to Server

New to GitHub? Create an account.

Demonstration of Sirepo

https://expdev.nsls2.bnl.gov/light

Summary:

- A new user-friendly web-interface Sirepo for portable reproducible SRW simulations developed in collaboration with RadiaSoft LLC and deployed at NSLS-II
- Virtual beamlines implemented: NSLS-II CHX, SMI, SRX, HXN, FMX, ESM, and LCLS-SXR
- All commonly used optical elements for "Virtual Beamline" are available
- Dynamic access to X-ray optics material properties from community databases helps obtain optical constants for particular photon energy and material in one click
- Advanced import-export features allow for easier exchange of simulations between colleagues and collaborators
- Demonstration at SPIE'17: <a href="https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10388/2274031/Sirepo--a-web-based-interface-for-physical-optics-simulations/10.1117/12.2274031.full?SSO=1

Acknowledgements

Experiment development: Oleg Chubar

Aradiasoft

David Bruhwiler Robert Nagler Paul Moeller Mikhail Zhernenkov *Elaine DiMasi

Andrei Fluerasu Lutz Wiegart Yugang Zhang SRX team:

Juergen Thieme Garth Williams *Karen Chen-Wiegart ESM team:

Elio Vescovo Andrew Walter

Metrology group:

Mourad Idir Konstantine Kaznatcheev Lei Huang ID group:

*Charles Kitegi Dean Hidas Marco Musardo

