

Lecture 1 Review

Paramate Horkaew

School of Computer Engineering, Institute of Engineering Suranaree University of Technology

Raster Devices

Raster Devices

คืออุปกรณ์แสดงผล ที่พบได้โดยทั่วไป ได้แก่ จอภาพ และ เครื่องพิมพ์

ลักษณะจำเพาะคือ แต่ละจุด หรือ **Pic**ture **El**ement (Pixel) ซึ่งประกอบกันขึ้นเป็น ภาพบนอุปกรณ์แสดงผล จะอ้างถึง (Map) หน่วยความจำ แบบ Random Access (RAM) ซึ่งสามารถเข้าถึงได้ โดย CPU หรือ Register ควบคุม

@0004

หน่วยความจำบัฟเฟอร์

อุปกรณ์แสดงผล

Raster Terminology (Review)

Pixel depth คือขนาดแต่ของหน่วยความจำแต่ละตำแหน่ง (บิต) ซึ่งกำหนดพิสัย ของความเข้มของจุดภาพนั้น เช่น 1 บิต หมายถึงจุดภาพนั้น ดับ หรือ สว่าง 8 บิต หมายถึง จุดภาพมีความเข้มแตกต่างกัน 256 ระดับ

Color คือจำนวนสีพื้นฐาน ที่ประกอบขึ้นเป็นจุดภาพนั้นๆ เช่น จอภาพ CRT มี 3 สี ได้แก่ แดง (R) เขียว (G) น้ำเงิน (B) แต่ละสีมี Pixel depth 8 บิต จะแสดงจุดภาพ ที่มีสีที่สว่างแตกต่างกันได้ 16 ล้านสี หรือ Pixel depth รวม 24 บิต

Resolution คือ จำนวนจุดภาพทั้งหมด ที่ปรากฏบนอุปกรณ์แสดงผล

Application Programmer's Interface

บรรยายครั้งนี้กล่าวถึง Algorithm ในการแปลงคำสั่ง Uniform Graphics เป็น API พื้นฐาน ซึ่งมักอยู่ในรูปของ Library ที่มีพร้อมมากับ Compiler ทั่วไป

Lecture 2 Raster Algorithms

Paramate Horkaew

School of Computer Engineering, Institute of Engineering Suranaree University of Technology

Lecture Outline

- Frame Buffer Class
- Simple Graphic Primitive Algorithms
 - Line Drawing Algorithms (Direct v.s. Integer Arithmetic)
 - Circle Drawing Algorithms
 - Rasterization of Arbitrary Curves
 - Polynomial Curve and Spline Drawing Algorithms
- Filled-Area Primitives
 - Polygon Filling
 - Flood-Fill Algorithm
 - Inside-Outside Tests
- Picture Approximation using Halftone
- Text Generation

Device Independence

เทคนิคหนึ่งที่พยายามทำให้โปรแกรมกราฟิก ขึ้นอยู่กับความสามารถของอุปกรณ์ ให้น้อยที่สุด คือ พยายามสร้างฟังก์ชันกราฟิกพื้นฐานขึ้นมาเอง

MFC Library Reference

CDC::Ellipse

Draws an ellipse.

```
BOOL Ellipse(
   int x1,
   int y1,
   int x2,
   int y2
);
BOOL Ellipse(
   LPCRECT lpRect
);
```

ถึงแม้ว่าจะมีผลทำให้ความเร็วของการทำงาน ลดลง แต่โปรแกรมจะมีความยืดหยุ่น สูง เทคนิคนี้ ใช้กันมาก โดย ผู้เขียนโปรแกรม Micro-controller สำหรับ แสดงผล และ ผู้ผลิตระบบพัฒนาโปรแกรม (Integrated Development Environment : IDE) เช่น ชุดคำสั่ง GDI ของ Microsoft Foundation Class เพื่อ อำนวยความสะดวก ให้กับ ผู้เขียนโปรแกรม ได้เรียกใช้

http://msdn.microsoft.com/developercenters/

Frame Buffer Class

บทนี้เน้นแนวคิด โครงสร้างข้อมูล และขั้นตอนวิธี การสร้างชุดคำสั่งกราฟิกประเภท Device Independent โดยเฉพาะอย่างยิ่ง การนำ array ชนิด byte (unsigned character) มาสร้างหน่วยความจำแสดงผล (Frame Buffer) ซึ่งออกแบบใน ลักษณะ OOP ดังนี้

```
#include <windows.h>
class ofbuffer
public:
     cfbuffer ();
    ~cfbuffer ();
public:
             init (long ex, long ey);
    void
    world
             clearresource (void);
public:
             setpixel (long ix, long iy, unsigned char i);
    void
             setpixel (long ix, long iy, unsigned char r, unsigned char g, unsigned char b);
    void
    void
             getpixel (long ix, long iy, unsigned char *i);
             getpixel (long ix. long iv. unsigned char *r. unsigned char *g. unsigned char *b);
    void
            clrscr (void);
    void
            display (HDC hdc)
    void
protected:
                    *m_ai; // rgb components of size 3 * m cx * m cv
    unsigned char
                                   // frame buffer size
    long
                     \mathbf{m}_{\perp}\mathbf{C}\mathbf{x};
    long
                       \mathbf{m}_{-}\mathbf{c}\mathbf{y};
```


Pixel Coordinates

การอ้างถึงตำแหน่งใน frame buffer โดยกำหนดค่าพิกัด (x, y) สามารถทำได้ ด้วยการคำนวณ ตำแหน่งใน array ขนาด 1 มิติ ดังนี้

```
void cfbuffer::setpixel (long ix, long iy, unsigned char r, unsigned char g, unsigned char b)
    long
            pos;
    pos = ix + (m_cy - iy - 1) * m_cx;
    mai [3 * pos + 0] = r;
                                                                                        1 pixel
   m_ai [3 * pos + 1] = g;
m_ai [3 * pos + 2] = b;
                                                  m_cx
                            (0, m_{cy-1})
                                                             (m_cx-1, m_cy-1)
 y
                                                                                      m_cy
                              (0, 0)
                                        (1, 0)
                                                                   (m_cx-1, 0)
```


Device Dependence Function

จากการประกาศ class จะเห็นว่ามีเพียงฟังก์ชันเดียว ที่อ้างอิงกับระบบปฏิบัติการ Windows นั้นคือ การเรียกใช้ pointer (handle) ไปยัง Device Context (DC)

```
void cfbuffer::display (HDC hdc)
    BITMAPINFO bmi:
    ::memset (&bmi, 0, sizeof (bmi));
                                    = sizeof (BITMAPINFOHEADER);
    bmi.bmiHeader.biSize
    bmi.bmiHeader.biWidth
                                    = (int) m_cx;
                                    = (int) m cv;
    bmi.bmiHeader.biHeight
    bmi.bmiHeader.biPlanes
                                    = 1:
    bmi.bmiHeader.biBitCount
                                     = 24:
    bmi.bmiHeader.biCompression
                                    = BI RGB:
                                    = m cx * m cy * 3;
    bmi.bmiHeader.biSizeImage
    bmi.bmiHeader.biXPelsPerMeter
                                    = 0:
    bmi.bmiHeader.biYPelsPerMeter
                                    = 0:
    bmi.bmiHeader.biClrUsed
                                    = 0:
                                    = 0:
    bmi.bmiHeader.biClrImportant
    ::SetDIBitsToDevice (hdc, 0, 0, m_cx, m_cy, 0, 0, 0, m_cy,
                         m ai, &bmi, DIB RGB COLORS);
```

การส่งข้อมูลใน Frame Buffer ออกทางจอภาพทำได้โดยเรียกฟังก์ชันของ OS

Implementation Example

การเรียกใช้ class cfbuffer สามารถทำได้ดังนี้

- 1) กำหนดขนาดของหน่วยความจำ (init)
- 2) ตั้งค่าปริยายให้กับหน่วยความจำเป็นศูนย์ (clrscr)
- 3) กำหนดค่าสีของแต่ละจุด (setpixel)
- 4) แสดงผลออกหน้าจอ (display)

```
void CMainFrame::TestFrameBuffer (HWND hwnd)
                                                                                               xmax
    HDC
    cfbuffer
               fbuffer:
    long
                x, y;
            = ::GetDC (hwnd);
    fbuffer.init (256, 256);
    fbuffer.clrscr ():
    for (y = 0; y < 256; y ++)
        for (x = 0; x < 256; x ++)
            fbuffer.setpixel (x, y, x, 255-y, x);
    fbuffer.display (hdc);
                                                              ymax
    ::ReleaseDC (hwnd, hdc);
```


Line Drawing Algorithms

การวาดเส้นตรงบนจอภาพสามารถแสดงได้ โดยเริ่มจากการศึกษาสมการเส้นตรง

$$y = m \cdot x + b$$

โดยที่ m และ b คือ ความชัน และ จุดตัดแกน y ของเส้นตรง ตามลำดับ ถ้ากำหนด จุดปลายสองจุด คือ (x₁, y₁) และ (x₂, y₂) ตัวแปรสมการเขียนได้เป็น

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$b = y_1 - m \cdot x_1$$

Digital Differential Analyzer (DDA)

จากการสังเกตพบว่า ความแตกต่างตามแกน x ($\Delta x = x2 - x1$) และ แกน y ($\Delta y = y2 - y1$) จะสัมพันธ์ กับค่าความชัน m ตามสมการ

$$\Delta y = m \Delta x$$
 และ $\Delta x = \Delta y / m$

เนื่องจากใน Computer Graphics เราจะพิจารณา Frame Buffer ซึ่งมีระบบปริภูมิ แบบ Discrete นั่นคือ ∆ จะมีค่าเป็นจำนวนเต็มหน่วยเท่านั้น (pixels) ดังนั้น แบ่ง การพิจารณาเป็น 2 กรณี **เมื่อ m แล**ะ ∆**x มีค่าเป็นบวก**

กรณีที่ 1) m น้อยกว่าหรือเท่ากับ 1 กรณีที่ 2) m มากกว่า 1

$$y_{k+1} = y_k + m$$
 $x_{k+1} = x_k + \frac{1}{m}$

์ถ้า ∆x มีค่าเป็นลบก็เพียงแต่เปลี่ยนเครื่องหมายหน้า m จาก + เป็น -

Digital Differential Analyzer (DDA)

ในทำนองเดียวกัน กรณีที่ m มีค่าเป็นลบ จะพิจารณาจากค่าสัมบูรณ์ของ m

กรณีที่ 1) |m| น้อยกว่าหรือเท่ากับ 1 กรณีที่ 2) |m| มากกว่า 1

$$y_{k+1} = y_k + m$$

$$x_{k+1} = x_k + \frac{1}{m}$$

DDA Algorithm จะเร็วกว่าทำการคำนวณจากสมการตรงๆ โดยการตัดกระบวนการ คูณ (พิกัด x กับความชัน m) ทิ้ง แล้วแทนที่ด้วยการบวก จำนวนจริง

อย่างไรก็ดี ข้อควรระวังคือ หากเส้นตรงมีความยาวมาก ความผิดพลาดจะสะสม จน กระทั่งเบี่ยงเบนไปจาก เส้นตรงที่ต้องการอย่างเด่นชัด อาจแก้ไขโดยการบวกค่า สะสมเป็นจำนวนจริง แล้วปัดเศษเป็นจำนวนเต็ม ก่อนจะวาดจุดภาพ ทว่าวิธีนี้จะใช้ เวลา CPU ค่อนข้างมาก

Digital Differential Analyzer (DDA)

DDA Algorithm สามารถเขียนด้วย C++ บน class cfbuffer ได้ดังนี้

```
void cfbuffer::lineDDA (int x1, int y1, int x2, int y2)
           dx, dy, steps, k;
    int
   double xincrement, yincrement;
   double x, y;
   dx = x2 - x1:
   dv = v2 - v1:
   steps = (abs (dx) > abs (dy)) ? abs (dx) : abs (dy);
   xincrement = (double) dx / steps;
   vincrement = (double) dv / steps;
    x = x1;
   v = v1;
   setpixel ((int) (x + 0.5), (int) (y + 0.5), 0, 0, 0);
   for (k = 0; k <= steps; k ++)
            = x + xincrement;
           = v + xincrement;
       setpixel ((int) (x + 0.5), (int) (y + 0.5), 0, 0, 0);
```


Bresenham's Line Algorithm

เป็น algorithm เพื่อใช้สำหรับวาดเส้นตรง ที่มีประสิทธิภาพ และเที่ยงตรง คิดค้น โดย Bresenham ในปี 1961 ซึ่งคำนวณ โดยใช้เพียงเลขจำนวนเต็ม อีกทั้งยัง สามารถนำไป ประยุกต์ ใช้สำหรับวาดเส้นโค้ง ต่างๆได้อีกด้วย

เพื่อความสะดวก ในที่นี้จะสมมติให้ ความชัน มีค่าเป็นจำนวนบวก (m<1) โดยเริ่ม พิจารณา จากจุดปลายทางซ้ายมือ จากรูปจะเห็นว่าเมื่อวาดจุดภาพ ที่ตำแหน่งที่ (x_k , y_k) แล้ว ในการ วนรอบครั้งต่อไปต้องการ หา ตำแหน่งของจุดที่ k+1 ซึ่ง algorithm จะตัดสินเลือก ระหว่าง จุด (x_k +1, y_k) และ (x_k +1, y_{k+1})

Discrete and Exact Lines

ที่ตำแหน่งพิกัดที่ x_k+1 กำหนดให้ d1 และ d2 เป็นระยะห่างในพิกัดแนวดิ่งจาก เส้นตรงจริง y = m (x_k+1) + b ทางด้านล่าง และ ด้านบน ตามลำดับ

$$d_{1} = y - y_{k}$$

$$= m(x_{k} + 1) + b - y_{k}$$

$$d_{2} = (y_{k} + 1) - y$$

$$= y_{k} + 1 - m(x_{k} + 1) - b$$

ความแตกต่างของระยะทั้งสองคือ

$$d_1 - d_2 = 2m(x_k + 1) - 2y_k + 2b - 1$$

Decision Parameter p_k

กำหนดให้ $m=\Delta y/\Delta x$ และ นิยามตัวแปลสำหรับเลือกตำแหน่ง y ดังนี้

$$p_k = \Delta x (d_1 - d_2)$$

$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c$$

$$c = 2\Delta y + \Delta x (2b - 1)$$

ในที่นี้เนื่องจาก ∆x มีค่าเป็นบวก p_k จะมีเครื่องหมายเดียวกับ d₁-d₂ นั่นคือ

- ถ้า p_k เป็นลบแสดงว่า $d_1 < d_2$ หรือ y_k ใกล้เส้นจริงมากกว่า $y_k + 1$ *เลือก* y_k
- ถ้า p_k เป็นบวกแสดงว่า $d_1 > d_2$ หรือ $y_k + 1$ ใกล้เส้นจริงมากกว่า y_k *เลือก* $y_k + 1$

Integer Arithmetic

ปรับสมการให้อยู่ในรูปของตัวแปล p เป็นฟังก์ชันของ k เท่านั้น

$$p_{k} = 2\Delta y \cdot x_{k} - 2\Delta x \cdot y_{k} + c$$

$$p_{k+1} = 2\Delta y \cdot x_{k+1} - 2\Delta x \cdot y_{k+1} + c$$

$$p_{k+1} = p_{k} + 2\Delta y - 2\Delta x (y_{k+1} - y_{k})$$

$$p_{0} = 2\Delta y - 2\Delta x$$

สังเกตว่า $y_{k+1} - y_k$ จะมีค่าเป็น 0 หรือ 1 ขึ้นอยู่กับเครื่องหมายของ pk ค่า Δy , Δx และ Δy - Δx เป็นจำนวนเต็ม ค่าคงที่ชึ่งคำนวณ เพียงครั้งเดียว

Bresenham's Implementation

ในกรณีที่ 0 < m < 1 algorithm สามารถเขียนด้วย C++ ได้ดังนี้

```
void cfbuffer::lineBres (int x1, int y1, int x2, int y2)
    int
            dx, dy, x, y, xEnd, p;
    dx = abs (x2 - x1);
    dy = abs (y2 - y1);
        = 2*dv - dx:
    // determine which point to use as start, which as end
             = (x1 > x2) ? x2 : x1;
    X
             = (x1 \rightarrow x2) ? y2 : y1;
    xEnd = (x1 \rightarrow x2) ? x1 : x2:
                                                         Step v, Dec x
                                                                         Step y, Inc x
    setpixel (x, y, 0, 0, 0);
    while (x < xEnd)
             = x + 1;
        if (p < 0)
             p = p + 2*dy;
                                                                              Step x, Inc y
                                                      Step x, Dec y
        else
                                                      Step x, Inc y
                 = v + 1;
                                                                              Step x, Dec y
             p = p + 2*(dv - dx);
        setpixel (x, y, 0, 0, 0);
                                                       Step y, Inc x
                                                                         Step y, Dec x
```


Homework

กำหนดให้จุดปลายทั้งสองจุดของเส้นตรงเป็น (20, 10) และ (30, 16) จง

- 1) คำนวณความชั้นของเส้นตรง
- 2) หาสมการของเส้นตรง
- 3) ใช้ DDA Algorithm ในการหาพิกัดจุดลำดับที่ k
- $oldsymbol{4}$) หาค่าตัวแปรตัดสินใจที่ตำแหน่งเริ่มต้น $(oldsymbol{p}_0)$
- 5) ใช้ Bresenham′s Algorithm ในการหาค่าตัวแปรตัดสินใจ (p_k) และพิกัดจุด ลำดับที่ k

กำหนดให้ k = 0 ถึง 9 แจกจางค่าผลลัพธ์ที่ได้ในตาราง โดยใช้ตารางของผล จาก ข้อ 3 และ ข้อ 5 แยกกัน

(ส่งวันพฤหัสหน้า)

Drawing A Circle

วงกลมที่มีจุดศูนย์กลางที่ (x_c, y_c) และรัศมี r มีสมการ ดังนี้

$$(x-x_c)^2 + (y-y_c)^2 = r^2$$

ีวิธีรวาดวงกลมที่กำหนดอย่างง่ายที่สุดคือ กำหนดค่า x แล้ววาดจุดที่ตำแหน่ง y

$$y = y_c \pm \sqrt{r^2 - (x_c - x)^2}$$

ข้อเสียวิธีนี้คือ

- การคำนวณที่ใช้เวลาของ CPU มาก
- ระยะห่างระหว่างจุดไม่สม่ำเสมอ การ เลื่อนค่า x ที่ละน้อย ไม่แก้ปัญหา เพราะว่าทำให้ใช้เวลามากขึ้นไปอีก

Midpoint Circle Algorithm

เนื่องจากสมการวงกลมแบบเต็มรูป มีความซับซ้อน เราอาจจะเลื่อนวงกลมมาที่จุด กำเนิดก่อน (x_c, y_c) = (0, 0) แล้วหลังจากนั้นจึงเลื่อนไปยังจุดที่ถูกต้อง โดยการ บวกจุดภาพที่ได้ด้วยค่าพิกัด (x_c, y_c) นอกจากนี้วงกลมยังมีความสมมาตรเทียบกับ แกน x = ±y และแกน x และ y ดังรูป

ดังนั้นเราจึงสามารถคำนวณเพียงแค่ใน ส่วนที่ x = 0 ถึง x = y แล้ว สะท้อน พิกัดจุดไปยัง octant ต่างๆ

ด้วยคุณสมบัติของวงกลม ค่าความชัน ใน octant นี้มีค่าตั้งแต่ 0 ถึง -1 เราจึง สามารถใช้ Bresenham's Algorithm ที่เพิ่มค่าในแกน x ทีละ 1 จุดได้

Implicit Circle Function

็นิยามฟังก์ชัน (implicit) ของวงกลมดังนี้

$$f_c(x, y) = x^2 + y^2 - r^2$$

ค่าของฟังก์ชันที่ (x, y) สามารถแยกพิจารณาได้ 3 กรณี

- ค่าเป็นลบ หมายถึง (x, y) อยู่ภายในวงกลม
- ค่าเป็นศูนย์ หมายถึง (x, y) อยู่บนเส้นรอบวงของวงกลม
- ค่าเป็นบวก หมายถึง (x, y) อยู่ภายนอกวงกลม

ซึ่งสามารถใช้แทนตัวแปรตัดสินใจในทำนองเดียวกับ Bresenham's Algorithm

Deriving Decision Parameter

สมมติว่าเราได้วาดจุด (x_k, y_k) ไปแล้ว ขั้นต่อไปคือพิจารณาเลือกระหว่างจุด y_k และ y_k -1 สำหรับพิกัด x_k +1 ซึ่งทำได้โดยคำนวณค่าตัวแปรตัดสินใจที่ midpoint

$$p_{k} = f_{c}\left(x_{k} + 1, y_{k} - \frac{1}{2}\right)$$
$$= \left(x_{k} + 1\right)^{2} + \left(y_{k} - \frac{1}{2}\right)^{2} - r^{2}$$

- ค่าเป็นลบ หมายถึง midpoint อยู่ภายในวงกลม
- ค่าเป็นบวก หมายถึง midpoint อยู่ภายนอกวงกลม

Successive Decision Parameter

ตัวแปลตัดสินใจ ณ รอบที่ k+1 สามารถคำนวณได้ในทำนองเดียวกัน

$$p_{k+1} = f_c \left(x_{k+1} + 1, y_{k+1} - \frac{1}{2} \right)$$

$$= (x_k + 1 + 1)^2 + \left(y_{k+1} - \frac{1}{2} \right)^2 - r^2$$

$$p_{k+1} = p_k + 2(x_k + 1) + \left(y_{k+1}^2 - y_k^2 \right) - \left(y_{k+1} - y_k \right) + 1$$

สังเกตว่า $\mathbf{y}_{\mathsf{k}+1}$ จะมีค่าเป็น \mathbf{y}_{k} หรือ \mathbf{y}_{k} -1 ขึ้นอยู่กับเครื่องหมายของ \mathbf{p}_{k}

$$p_{k+1} = \begin{cases} p_k + 2x_{k+1} + 1 & p_k < 0 \\ p_k + 2x_{k+1} + 1 - 2y_{k+1} & p_k \ge 0 \end{cases}$$

Algorithm Summary

- 1) เลื่อนวงกลมไปที่จุดกำเนิด คำนวณตัวแปรตัดสินใจเริ่มต้น p₀
- 2) คำนวณพิกัดที่ $(x_{k+1},\ y_{k+1})$ โดยใช้ตัวแปรตัดสินใจที่ p_k โดยที่ $x_{k+1}=x_k+1$ และ $y_{k+1}=y_k$ หรือ y_k-1
- 3) สะท้อนจุดที่คำนวณได้ไปยังอีก 7 octants ที่เหลือ
- 4) เลื่อนวงกลมไปที่จุดศูนย์กลางที่ต้องการ ทำซ้ำขั้นตอนที่ 2-4 ขณะที่ x < y

$$(x_0, y_0) = (0, r)$$

$$p_0 = f_c \left(1, r - \frac{1}{2} \right)$$

$$= 1 + \left(r - \frac{1}{2} \right)^2 - r^2 = \frac{5}{4} - r$$

$$\approx 1 - r \quad , r \in \mathbb{N}$$

แบบฝึกหัด จงเขียนฟังก์ชัน C++ จากคำอธิบายขั้นตอนวิธี midpoint circle drawing algorithm

Rasterization of Curves

จากตัวอย่างการใช้ตัวแปรตัดสินใจของ Bresenham สำหรับเส้นตรง และขั้นตอน วิธี midpoint ของ วงกลม เราสามารถขยายผล เพื่อนำมาใช้สร้าง เส้นโค้งใดๆ ได้

นิยามเส้นโค้งในรูปของ implicit function กล่าวคือ f (x, y) = 0 จะเป็นการแบ่ง ปริภูมิ Cartesian ออกเป็นสองระนาบ ดังรูป

Rasterization of Curves

การหาขั้นตอนวิธีสร้างเส้นโค้งใดๆ สามารถทำได้ดังนี้

- หาสมการ ค่าตัวแปรตัดสินใจในรูปของพิกัด x และ y (p_k)
- หาสมการ recursive $p_{k+1} = p_k + g(x_k, y_k, x_k \pm 1, y_k \pm 1)$
- ทั้งนี้ต้องระวังในเรื่องของ เครื่องหมาย เนื่องค่าความชันของเส้นโค้งเป็นไปได้ ทั้ง + และ และค่าสัมบูรณ์ อาจจะมีค่ามากกว่าหรือน้อยกว่า 1 ก็ได้

อีกวิธีหนึ่งที่ง่ายกว่าคือ การหาตำแหน่งจุด ที่ ฟังก์ชันของเส้นโค้ง เปลี่ยนเครื่องหมาย แต่ ว่า การทำงานจะชำกว่า มาก ดังรูป

Conclusion

- Frame Buffer Class
- Simple Graphic Primitive Algorithms
 - Line Drawing Algorithms (Direct v.s. Integer Arithmetic)
 - Circle Drawing Algorithms
 - Rasterization of Arbitrary Curves
 - Polynomial Curve and Spline Drawing Algorithms
- Filled-Area Primitives
 - Polygon Filling
 - Flood-Fill Algorithm
 - Inside-Outside Tests
- Picture Approximation using Halftone
- Text Generation