CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

A method of progressive time stamp resolution in a multimedia presentation comprising the steps of:

supplying a player of a multimedia presentation with information comprising two labels, one for a multimedia object's start time and one for the multimedia object's end time relative to other multimedia object start and stop times, and three durations, a minimum duration, a maximum duration and a preferred duration for each multimedia object prior to starting playback of the multimedia object; and

resolving the durations of multimedia objects using said information based on actual multimedia object durations and arrival of information of multimedia objects to be played.

1 2

2. The method of progressive time stamp resolution in a multimedia presentation recited in claim 1 wherein the step of resolving comprises the steps of:

5

calculating minimum and maximum end times for over all multimedia objects;

calculating actual end times that are shared by all multimedia objects; and

recalculating a preferred duration of each multimedia object.

150)	3. The method of progressive time stamp resolution in a multimedia
2 "(presentation recited in claim 1 wherein the step of resolving comprises the
3	steps of:
4	collecting all the dependency relations for the label Px, by taking all
5	objects n that have Px as the label for their end time:
6	
7	where t_n is the start time of object n , and N is the number of objects;
8	using the N relations to calculate the tightest bounds on t_x :
9	$\min\{t_x\} \le t_x \le \max\{t_x\}$
10	with \
11	$\min_{n=1,\ldots,N} \{t_n + \min(n)\} \qquad n = 1,\ldots,N$
12	$\max \{t_x\} = \min\{t_n + \max(n)\} \qquad n = 1, \ldots, N;$
13	recalculating the bounds on the durations of each object n , by using:
14	$\operatorname{duration}(n) = t_x - t_n$
15	to get
16	$\min\{t_x\}$ - $t_n \leq \operatorname{duration}(n) \leq \max\{t_x\}$ - $t_n = 1, \ldots, N$; and
17	recalculating the preferred duration of each object n according to the
18	process:
19	if $(\operatorname{preferred}(n) < \min\{t_x\} - t_n)$ then
20	$\operatorname{preferred}(n) = \min\{t_x\} - t_n$
21	else if (preferred $(n) > \max\{t_x\} - t_n$) then
22	$\operatorname{preferred}(n) = \max\{t_x\} - t_n$
23	end if.

- 4. The method of progressive time stamp resolution in a multimedia
- 2 presentation recited in claim 3 wherein the step of resolving further comprises
- 3 the steps of:

- 4 using as the general error criterion for resolving the duration of each
- 5 multimedia object:

$$E = \sum_{n=1}^{N} \{\operatorname{duration}(n) - \operatorname{preferred}(n)\}^{2}$$

7 or, substituting duration(n) =
$$t_x - t_n$$
:

$$E = \sum_{n=1}^{N} \{t_x - t_n - \operatorname{preferred}(n)\}^2$$

- and taking the derivative of E with respect to t_x , and setting this to 0 to obtain
- the optimal solution for the absolute time t_x of label Px as:

11
$$t_x = \frac{1}{N} \sum_{n=1}^{N} \{t_n + \operatorname{preferred}(n)\}; \text{ and }$$

- calculating the corresponding duration of multimedia object n as:
- 13 $\operatorname{duration}(n) = t_x t_n.$

