Коллоквиум 1

Денис Козлов Telegram

Версия от 15.10.2020 12:42

0.1 Сформулируйте признак Лейбница равномерной сходимости знакочередующегося функционального ряда.

Рассмотрим знакочередующийся функциональный ряд: $\sum_{n=1}^{\infty} (-1)^n u_n(x), \ u_n(x) \geqslant 0$ на D.

Если $u_n(x)\downarrow_{(n)}$ и $u_n\stackrel{D}{\rightrightarrows}0$, то ряд сходится равномерно.

0.2 Выведите формулу Коши-Адамара для радиуса сходимости степенного ряда.

Для степенного ряда $\sum_{n=0}^{\infty} c_n \cdot (x-x_0)^n$, где $\{c_n\}$ - числовая посл-ть, $x_0 \in \mathbb{R}$ фиксирован, $x \in \mathbb{R}$ - переменная, радиус сходимости R вычислим по формуле Коши-Адамара:

$$R = \frac{1}{\overline{\lim} \sqrt[n]{|c_n|}}$$

Доказательство. В нашем ряде $a_n(x) = c_n \cdot (x - x_0)^n$. Применим радикальный признак Коши:

$$\sqrt[n]{|a_n(x)|} = \sqrt[n]{|c_n|} \cdot |x - x_0| \implies \overline{\lim} \sqrt[n]{|a_n(x)|} = \overline{\lim} \sqrt[n]{|c_n|} \cdot |x - x_0| = |x - x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|} \implies \overline{\lim} \sqrt[n]{|a_n(x)|} = \overline{\lim$$

если $|x-x_0|\cdot\overline{\lim}\sqrt[n]{|c_n|}<1$, то ряд сх-ся;

если $|x-x_0|\cdot \overline{\lim}\sqrt[n]{|c_n|}>1$, то ряд расх-ся.

Введем $R := \frac{1}{\overline{\lim} \sqrt[n]{|c_n|}}.$

Из полученных результатов ясно, что $|x-x_0| < R \iff |x-x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|} < 1$ и ряд сходится;

 $|x-x_0|>R\iff |x-x_0|\cdot\overline{\lim}\sqrt[n]{|c_n|}>1$ и ряд расходится. А это определение радиуса сходимости.

0.3 Сформулируйте и докажите утверждение о единственности разложения функции в степенной ряд.

Если $f(x) = \sum_{n=0}^{\infty} c_n \cdot (x-x_0)^n$, $|x-x_0| < \delta$ (говоря иначе, функция представлена степенным рядом в некой окр-ти x_0); то этот степенной ряд - ее ряд Тейлора.

Доказательство.

$$f^{(k)}(x) = \sum_{n=0}^{\infty} c_n \cdot n \cdot (n-1) \dots (n-k+1) \cdot (x-x_0)^{n-k} = \sum_{n=k}^{\infty} c_n \cdot n \cdot (n-1) \dots (n-k+1) \cdot (x-x_0)^{n-k} \implies$$

$$f^{(k)}(x_0) = c_k \cdot k! \implies c_k = \frac{f^{(k)}(x_0)}{k!}.$$

(Мы заменили в первом переходе нижнюю границу суммирования с нуля на k, так как все предыдущие слагаемые зануляются)

То есть функция может быть представлена в виде степенного ряда единственным образом - и это будет ее р.Т.

2