MEGR 3090/7090/8090: Advanced Optimal Control

$$V_{n}\left(\mathbf{x}_{n}\right) = \min_{\left\{\mathbf{u}_{n}, \mathbf{u}_{n+1}, \cdots, \mathbf{u}_{N-1}\right\}} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k}\right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right]$$

$$\begin{aligned} V_{n}(\mathbf{x}_{n}) &= \min_{\left[\mathbf{u}_{n}, \mathbf{u}_{n-1}, \cdots, \mathbf{u}_{N-1}\right]} \left[\frac{1}{2} \sum_{k=n}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k} \right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right] \\ &= \min_{\mathbf{u}_{k}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + \min_{\left[\mathbf{u}_{n-1}, \cdots, \mathbf{u}_{N-1}\right]} \left[\frac{1}{2} \sum_{k=n+1}^{N-1} \left(\mathbf{x}_{k}^{T} \mathbf{Q}_{k} \mathbf{x}_{k} + \mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k} \right) + \frac{1}{2} \mathbf{x}_{N}^{T} \mathbf{Q}_{N} \mathbf{x}_{N} \right] \right] \\ &= \min_{\mathbf{u}_{k}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + V_{n+1} \left(\mathbf{x}_{n+1} \right) \right] \end{aligned}$$

$$V_{n}\left(\mathbf{x}_{n}\right) = \min_{\mathbf{u}_{n}} \left[\frac{1}{2} \left(\mathbf{x}_{n}^{T} \mathbf{Q}_{n} \mathbf{x}_{n} + \mathbf{u}_{n}^{T} \mathbf{R} \mathbf{u}_{n} \right) + V_{n+1} \left(\mathbf{x}_{n+1} \right) \right]$$

Lecture 12 September 28, 2017

Review – Unconstrained Optimization Problem and Optimality Conditions

General optimization problem: Minimize $J(\mathbf{u})$

Necessary condition for optimum: $\nabla J(\mathbf{u}^*) = 0$

Sufficiency conditions:

- \mathbf{u}^* is a local minimizer if $J(\mathbf{u})$ is **locally convex** around \mathbf{u}^*
- \mathbf{u}^* is a global minimizer if $J(\mathbf{u})$ is **globally convex**

Review – Solution Techniques for Unconstrained Problems

Special case – quadratic objective function given by $J(\mathbf{u}) = \mathbf{u}^T Q \mathbf{u} + \mathbf{r}^T \mathbf{u}$, Q > 0:

• Unique global minimizer given by $\mathbf{u}^* = -\frac{1}{2}Q^{-1}\mathbf{r}$

General case – Gradient descent method:

- At each iteration (k), approximate $J(\mathbf{u})$ linearly around u_k : $J(\mathbf{u}) \approx J(\mathbf{u}_k) + \nabla J(\mathbf{u}_k)(\mathbf{u} \mathbf{u}_k)$
- Choose the next candidate point (\mathbf{u}_k) in the direction of $\nabla J(\mathbf{u}_k)$, using a line search to determine α_k :

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \alpha_k \nabla J(\mathbf{u}_k)$$

Newton's method (unconstrained sequential quadratic programming (SQP)):

• At each iteration (k), approximate $J(\mathbf{u})$ quadratically around \mathbf{u}_k :

$$J(\mathbf{u}) \approx J(\mathbf{u}_k) + \nabla J(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k) + 0.5(\mathbf{u} - \mathbf{u}_k)^T H(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k)$$

• Choose the next candidate point (\mathbf{u}_k) in the direction of the minimizer of the quadratic approximation, either using a line search to choose α_k or taking $\alpha_k = 1$ ("pure" Newton's method):

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \alpha_k H^{-1}(\mathbf{u}_k) \nabla J(\mathbf{u}_k)$$

Review – Solution Techniques for Unconstrained Problems

Suppose that
$$J(u) = J_0 + C^T u + u^T Q u$$
 $QJ = C^T + 2u^T Q$
 $\Rightarrow C^T + 2u^* T Q = Q$
 $\Rightarrow 2u^* T Q = -C^T$
 $\Rightarrow 2u^* T Q = -C^T$

Review – Constrained Optimization Problem and Optimality Conditions

Optimization problem: Minimize $J(\mathbf{u})$

Subject to:
$$g(\mathbf{u}) \leq \mathbf{0}$$

 $h(\mathbf{u}) = \mathbf{0}$

Optimality requirements: $\nabla J(\mathbf{u}^*) + \boldsymbol{\mu}^T \nabla g(\mathbf{u}^*) + \boldsymbol{\lambda}^T \nabla h(\mathbf{u}^*) = 0$

Complementary slackness: $\mu_i g_i(\mathbf{u}^*) = 0$, $\forall i$

Feasibility: $\mu_i \geq 0$, $\forall i$

Constraint satisfaction: $g(\mathbf{u}^*) \leq 0$ $h(\mathbf{u}^*) = \mathbf{0}$ Combines additional terms from inequality and equality constraints

Note: If \mathbf{u}^* is a minimizer, then the KKT conditions will be satisfied (i.e., they are necessary). In general, however, satisfaction of the KKT conditions does not guarantee that \mathbf{u}^* is a unique global minimizer (or even a minimizer)!

Review – Constrained Optimization Problem and Optimality Conditions

Linear program (LP): Minimize: $J(\mathbf{u}) = \mathbf{k}^T \mathbf{u}$ Subject to: $A_1 \mathbf{u} - \mathbf{b}_1 \leq \mathbf{0}$ $A_2 \mathbf{u} - \mathbf{b}_2 = \mathbf{0}$

LP solution – synopsis:

- Simplex method Start at a vertex of the constraint set, then move to a vertex in the direction of decreasing J
- Implemented in MATLAB using the syntax: [u_opt, J_opt] = linprog(k, A1, b1, A2, b2, [], [], options);

Quadratic program (QP): Minimize: $J(\mathbf{u}) = \mathbf{u}^T Q \mathbf{u} + R \mathbf{u}$ Subject to: $A_1 \mathbf{u} - \mathbf{b}_1 \leq \mathbf{0}$ $A_2 \mathbf{u} - \mathbf{b}_2 = \mathbf{0}$

QP solutions:

- Active set methods Generalization of the simplex method...solutions can lie on constraint surfaces, not just vertices
- Interior point method Soften inequality constraints with a barrier function
- QP can be implemented in MATLAB using the syntax:

```
[u_opt, J_opt] = quadprog(Q, r, A1, b1, A2, b2);
```


QP: Minimize
$$J(\underline{u}) = \underline{u}^T Q \underline{u} + \underline{c}^T \underline{u}$$

Subj. to: $A_1 \underline{u} - b_1 \leq \underline{b}$
 $L(\underline{u}, \underline{\mu}, \underline{a}) = \underline{u}^T Q \underline{u} + \underline{c}^T \underline{u} + \underline{h}^T (A_1 \underline{u} \cdot b_1) + \underline{h}^T (A_1 \underline{u} \cdot b_1)$

$$\sum_{L_{\underline{u}}} = 2\underline{u}^{T}Q + \underline{u}^{T}A_{1} + \underline{\lambda}^{T}A_{2}$$

$$\sum_{\underline{u}} (\underline{u}^{+}) = 2\underline{u}^{+T}Q + \underline{\mu}^{T}A_{1} + \underline{\lambda}^{T}A_{2} = 0$$
Linear in \underline{u}

Active set methods of interior point methods work very well when the only nonlinearities in the KKT conditions come from Complementary stackness.

Sequential Quadratic Programming (SQP) – A <u>General Case</u> Technique for Constrained Optimization Problem

General nonlinear optimization problem (NLP): Minimize $J(\mathbf{u})$

Subject to: $g(\mathbf{u}) \leq \mathbf{0}$

 $h(\mathbf{u}) = \mathbf{0}$

Sequential quadratic programming (SQP) – basic process:

- At each iteration (k), approximate the **optimization problem** (objective function and constraints) as a quadratic program (QP) this is called the **QP subproblem**
- Solve the QP (we have tools for this from last lecture)
- Apply a correction to deal with possible constraint violations (due to the fact that the
 original optimization problem was <u>approximated</u> as a QP) this is tricky!
- Repeat

General optimization problem (reminder): Minimize $J(\mathbf{u})$ Subject to: $g(\mathbf{u}) \leq \mathbf{0}$ $h(\mathbf{u}) = \mathbf{0}$

Local approximations of $J(\mathbf{u})$, $g(\mathbf{u})$, and $h(\mathbf{u})$ (based on a Taylor expansion):

$$J(\mathbf{u}) \approx J(\mathbf{u}_k) + \nabla J(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k) + 0.5(\mathbf{u} - \mathbf{u}_k)^T H(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k)$$
$$g(\mathbf{u}) \approx g(\mathbf{u}_k) + \nabla g(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k) \qquad h(\mathbf{u}) \approx h(\mathbf{u}_k) + \nabla h(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k)$$

Resulting QP subproblem:

$$\mathbf{u}_{k+1} = \arg\min_{\mathbf{u}} (J(\mathbf{u}_k) + \nabla J(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k) + 0.5(\mathbf{u} - \mathbf{u}_k)^T H(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k))$$
Subject to:
$$g(\mathbf{u}_k) + \nabla g(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k) \le 0 \qquad h(\mathbf{u}_k) + \nabla h(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k) = 0$$

Siven
$$g(u)$$
, 1st order Taylor expansion around u_k is $g(u) \approx g(u_k) \cdot D_g(u_k)(u-u_k)$
 $h(u) \approx h(u_k) + D_h(u_k)(u-u_k)$
 $h(u) \approx h(u_k) + D_h(u_k)(u-u_k)$
 $h(u) \approx h(u_k) + D_h(u_k)(u-u_k)$
 $h(u) \approx h(u_k) + D_h(u_k)(u-u_k) = 0$
 $h(u_k) + D_h(u_k)(u-u_k) = 0$

Option 1 – Tighten inequality constraints:

- Suppose that $g(\mathbf{u}_{k+1}) > 0$ (a constraint violation)... It will be necessary to choose \mathbf{u}_{k+2} such that $\nabla g(\mathbf{u}_{k+1})(\mathbf{u}_{k+2} \mathbf{u}_{k+1}) \le -g(\mathbf{u}_{k+1})$. Note that the inequality constraint is **automatically tightened** at step k+2, so constraint violations won't accumulate
- To protect against any constraint violations, we can modify an original problem with only inequality constraints by imposing stricter constraints than the original problem. Thus, a small constraint violation in the modified problem may not lead to a constraint violation in the original problem.

Original problem:

Modified problem:

Minimize $J(\mathbf{u})$

Minimize $J(\mathbf{u})$

Subject to: $g(\mathbf{u}) \leq \mathbf{0}$

Subject to: $g(\mathbf{u}) \leq -K$

where K > 0

Option 2 – Line search (very similar to the line search for gradient descent and Newton's method):

• Solution to each iteration's QP subproblem represents a *search direction*:

$$\mathbf{s}_k = \arg\min_{\mathbf{s}} (J(\mathbf{u}_k) + \nabla J(\mathbf{u}_k)\mathbf{s} + 0.5\mathbf{s}^T H(\mathbf{u}_k)\mathbf{s})$$

Subject to:

$$g(\mathbf{u}_k) + \nabla g(\mathbf{u}_k)\mathbf{s} \le 0$$

$$h(\mathbf{u}_k) + \nabla h(\mathbf{u}_k)\mathbf{s} = 0$$

• Perform a one-dimensional search along \mathbf{s}_k , verifying constraint satisfaction for candidate points:

$$\mathbf{u}_{k+1} = \mathbf{u}_k + \alpha_k \mathbf{s}_k$$

where:
$$\alpha_k = \arg\min_{\alpha} (J(\mathbf{u}_k + \alpha \mathbf{s}_k))$$
 Subject to: $g(\mathbf{u}_k + \alpha \mathbf{s}_k) \leq 0$ User-defined $|h(\mathbf{u}_k + \alpha \mathbf{s}_k)| \leq \varepsilon$

Option 3 – Project the iterate (u_k) onto the constraint surface(s):

• First, solve the QP subproblem as usual:

$$\mathbf{u}_{k+1}^{prelim} = \arg\min_{\mathbf{u}} (J(\mathbf{u}_k) + \nabla J(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k) + 0.5(\mathbf{u} - \mathbf{u}_k)^T H(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k))$$
Subject to:
$$g(\mathbf{u}_k) + \nabla g(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k) \le 0 \qquad h(\mathbf{u}_k) + \nabla h(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k) = 0$$

- Next, identify all inequality constraints that are violated...denote this vector of constraints by g'(u), and define $z(\mathbf{u}) \triangleq \begin{bmatrix} {g'}^T(\mathbf{u}) & h^T(\mathbf{u}) \end{bmatrix}^T$
- Orthogonally project the preliminary iterate ($\mathbf{u}_{k+1}^{prelim}$) onto the active constraint surface:

$$\mathbf{u}_{k+1} = \underbrace{(I - \nabla z(\mathbf{u}) (\nabla z(\mathbf{u})^T \nabla z(\mathbf{u}))^{-1} \nabla z(\mathbf{u}))}_{\text{Projection operator}} \mathbf{u}_{k+1}^{prelim}$$

Important point: Regardless of whether a correction mechanism is in place, SQP works in such a way that constraint violations aren't designed to accumulate. If a constraint is violated at one iteration, SQP will work to meet the original constraint at the next iteration.

Unconstrained SQP = Newton's Method

Unconstrained nonlinear program (NLP): Minimize $J(\mathbf{u})$ Subject to NOTHING

Local approximation of the objective function:

$$J(\mathbf{u}) \approx J(\mathbf{u}_k) + \nabla J(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k) + 0.5(\mathbf{u} - \mathbf{u}_k)^T H(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k)$$

Resulting QP subproblem:

$$\mathbf{u}_{k+1} = \arg\min_{\mathbf{u}} (J(\mathbf{u}_k) + \nabla J(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k) + 0.5(\mathbf{u} - \mathbf{u}_k)^T H(\mathbf{u}_k)(\mathbf{u} - \mathbf{u}_k))$$

Solution (if this doesn't look familiar, review your Newton's method notes!):

$$\mathbf{u}_{k+1} = (H(\mathbf{u}_k))^{-1} \nabla J(\mathbf{u}_k)$$

Perform one iteration of SQP for the following optimization problem:

Minimize
$$J(\mathbf{u}) = u_1 u_2^{-2} + u_2 u_1^{-1}$$

Subject to:

$$u_1 + u_2 \ge 1$$
$$u_1 u_2 = 1$$

For your initial guess, take $\mathbf{u}_{init} = [2 \quad 0.5]^T$


```
5QP Steps:
1) Set up QP subproblem
 21 Solve QP subproblem
 3) Apply corrections for constraint violations
                Today we will "roll the dice"
```


See m-file on Canvas for MATLAB implementation.

Another (Relatively) Simple SQP Example Problem

Perform four iterations of SQP for the following optimization problem:

Minimize
$$J(\mathbf{u}) = e^{-u_1} + (u_2 - 2)^2$$

Subject to:

$$u_1u_2 \le 1$$

For your initial guess, take $\mathbf{u}_{init} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$

Another (Relatively) Simple SQP Example Problem

$$9 \times 2 : J(u) = e^{-u_1} (u_1 \cdot 1) = 0$$
 $1 \cdot (u_1 \cdot 1) = 0$
 $1 \cdot (u_1$

See m-file on Canvas for MATLAB implementation.

Preview of Upcoming Lectures

Using SQP for more complex optimal control problems, using off-the-shelf SQP solvers:

- Modifying the QP subproblem to deal with problematic nonlinear constraints
- fmincon (MATLAB)

Dynamic programming:

- Leads to a *globally optimal* solution for very general discrete-time optimal control problems
- Can be very computationally intensive, but still more efficient than an exhaustive grid search