AP Physics Class 10 & 11: Electrostatics & Gauss's Law

The questions in this homework assignment cover AP 1 and C exams. Some of the questions are not typically questions.

- 1. Two electric objects experience a repulsive force. What happens to that force if the distance between the objects is doubled?
 - (a) It decreases to one-fourth its value.
 - (b) It decreases to one-half its value.
 - (c) It stays the same.
 - (d) It doubles.
 - (e) It quadruples.
- 2. A pith ball is a tiny piece of Styrofoam that is covered with a conductive paint. One pith ball initially has a charge of 6.4×10^{-8} C, and it touches an identical, neutral pith ball. After the pith balls are separated, what is the charge on the pith ball that had the initial charge?
 - (a) $6.4 \times 10^{-8} \,\mathrm{C}$
 - (b) $3.2 \times 10^{-8} \,\mathrm{C}$
 - (c) 0 C
 - (d) -3.2×10^{-8} C
 - (e) -6.4×10^{-8} C
- 3. Glass becomes positively charged when it is rubbed with silk. Which of the following is the best description of whats happening?
 - (a) Electrons are rubbed off the glass onto the silk.
 - (b) Electrons are rubbed off the silk onto the glass.
 - (c) Protons are rubbed off the glass onto the silk.
 - (d) Protons are rubbed off the silk onto the glass.
 - (e) Neutrons in the glass have an affinity for positive charge.
- 4. Consider an isolated, neutral system consisting of wool fabric and a rubber rod. If the rubber rod is rubbed with wool to become negatively charged, what can be said about the wool fabric?
 - (a) It becomes equally negatively charged.
 - (b) It becomes equally positively charged.
 - (c) It becomes negatively charged but not equally.
 - (d) It becomes positively charged but not equally.
 - (e) In a neutral system, neither object can become charged.
- _____ 5. An electron and a proton are separated by $1.50 \times 10^{-10}\,\mathrm{m}$. If they are released, which one will accelerate at a greater rate, and what is the magnitude of that acceleration?
 - (a) The electron; $1.12 \times 10^{22} \,\mathrm{m/s^2}$
 - (b) The proton; 1.12×10^{22} m/s²
 - (c) The electron; $6.13 \times 10^{18} \,\mathrm{m/s^2}$
 - (d) The proton; $6.13 \times 10^{18} \,\mathrm{m/s^2}$
 - (e) They both accelerate at the same rate; $1.02 \times 10^{-8} \, \text{m/s}^2$

Free-Response Questions:

1. A charged spherical shell