SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

- 1. The smallest alkane which can show optical isomerism possesses -
 - (A) 5 carbons
- (B) 6 carbons
- (C) 7 carbons
- (D) 8 carbons

2. The appropriate reagent for the transformation

- (A) Zn(Hg)/HCl
- (B) NH₂NH₂,OH⁻
- (C) H₂/Ni
- (D) NaBH₄
- 3. The relative reactivity of $1^{\circ}H$, $2^{\circ}H$ and $3^{\circ}H$ in bromination reaction has been found to be 1:82:1600 respectively. In the reaction -

the percentage yields of the products (A) and (B) are expected to be -

- (A) 99.4%, 0.6%
- (B) 50%, 50%
- (C) 0.6%, 99.4%
- (D) 80%,20%
- 4. The least reactive alkane towards free-radical substitution reactions is-
 - (A) CH₄
- (B) (CH₃)₃CH
- (C) CH₃CH₃
- (D) CH₃CH₂CH₃

5. For the reaction

the major product is:

- (A) = CH_2
- (B) _-CH
- (C) (
- (D)
- **6.** Propene is allowed to react with B_2D_6 and the product is treated with acetic acid. The final product obtained is -
 - (A) 1-deuteriopropane

(B) 2-deuteriopropane

(C) 1-deuteriopropene

- (D) 2-deuteriopropene
- 7. 1-Methylcyclohexene is allowed to react with B_2H_6 . The product is then treated with H_2O_2 and NaOH. The reaction is -

The product formed is

(A) 1-methylcyclohexanol

(B) 2-methylcyclohexanol

(C) methylcyclohexane

(D) cyclohexanol

8.	Propene on reaction with	ICl produces mainly -									
	(A) 1-chloro-2-iodoprop	ene	(B) 2-chloro-1-iodo	propane							
	(C) (\pm) -2-chloro-1-iodop	propane	(D) (±)-1-chloro-2-	iodopropane							
9.	Consider the reaction										
	CH, 	H ₃ OH—Heat									
	Which of the following is	formed in major amount									
	(A) $CH_2 = CH_2$		(B) CH ₃ CH=CH ₂								
	(C) Both (A) and (B) in ed	qual amount	(D) None, as no rea	ction takes place							
10.	In the addition of HBr to	propene in the absence	of a peroxide, the firs	at step involves the addition of -							
	(A) H ⁺	(B) Br ⁻	(C) H•	(D) Br*							
11.	In the reaction										
	$\text{CH}_{3}\text{CH}_{2}\text{CH=CH}_{2} \xrightarrow{\text{1.Hg(OAc}}$	±) ₂ ,H ₂ O ⇒D ₄									
	the product obtained is -										
	(A) CH ₃ CH ₂ CHOHCH ₂ D		(B) CH ₃ CH ₂ CHDCH	₂ OH							
	(C) CH ₃ CH ₂ CD(OH)CH ₃		(D) CH ₃ CH ₂ CD ₂ CH ₂	OH							
12.	The major product obtained in the reaction of 1,3-Butadiene with $$ HCl (1 mole) at a higher temperature (100°C or above) is										
	(A) 3,4-dichloro-1-buter	ne	(B) 3-chloro-1-bute	ene							
	(C) 1-chloro-2-butene		(D) 2-chloro-2-bute	ene							
13.	An optically active hydrocarbon (X) on catalytic hydrogenation gives an optically inactive compound (Y), C_6H_{14} . The hydrocarbon (X) is-										
	(A) 3-methyl-1-pentene		(B) 3-methyl-2-pentene								
	(C) 2-ethyl-1-butene		(D) 3-methylcyclope	entene							
14.	The addition of HCl to										
	(A) C ₆ H ₅ CHClCH ₂ CH ₃		(B) $C_6H_5CH_2CHCIO$	O .							
	(C) $C_6H_5CH_2CH_2CH_2CI$		(D) $C_6H_5CH(CH_3)C$	2							
15.		ne with ${ m H_2}$ in the presend		inoline gives-							
	(A) trans-4-octene	1 , 4 ,	(B) cis-4-octene	1 1 1 0 11							
1.6	(C) a mixture of cis-and			duced product $\mathrm{C_8H_{18}}$							
16.		f free radicals follows the	_								
	(A) $3^{\circ} > 2^{\circ} > 1^{\circ} > \overset{\bullet}{C} H_3$		(B) $CH_3 > 1^{\circ} > 2^{\circ} >$								
	(C) $1^{\circ} > 2^{\circ} > 3^{\circ} > CH_3$		(D) $2^{\circ} > 1^{\circ} > 3^{\circ} > CH$	H_3							
17.	Which of the following h	nas the lowest heat of hyd	drogenation per mole	-							
	(A) cis-2-Butene	(B) trans-2-Butene	(C) 1-Butene	(D) 1,3-Butadiene							
18.	The intermediate formed	during the addition of H	ICl to propene in the	presence of peroxide is-							
	(A) CH ₃ CHCH ₂ Cl	(B) CH ₃ CH ₂ CH ₂	(C) CH ₃ CHCH ₃	(D) $CH_3CH_2\overset{+}{C}H_2$							

19. The order of stability of the alkenes

is -

(A) I > II > III > IV > V

(B) I = II > III > IV > V

(C) II > I > IV > III > V

- (D) V > IV > III > I > II
- 20. Which of the following will not react with an ammonical silver nitrate solution:
 - (A) CH₃C≡CH
- (B) $(CH_3)_2CH-C\equiv H$
- (C) CH₃C≡CCH₃
- (D) HC≡CH

CHEC	K YO	UR C	GRASP	•				A	ANSWER KEY					EXERCISE -1						
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	С	В	Α	Α	С	В	В	В	Α	Α	Α	С	Α	Α	В	Α	D	С	Α	С

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

1.	Which of the following reactions will result in the formation of a chiral centre in the product -											
	(A) $CH_3CH=CHCH_3+HBr \longrightarrow$	(B) CH ₃ CH=CH ₂ +HOBr →										
	(C) $CH_3CH_2CH=CH_2+HBr \xrightarrow{H_2O_2}$	(D) CH ₃ CH ₂ CH=CH ₂ +H	Br →									
2.	Propene on reaction with N-bromosuc	ccinimide in CCl ₄ produces -										
	(A) 1, 2-dibromopropane	(B) 3-bromopropene										
	(C) 1-bromopropene	(D) 2-bromopropene										
3.	cis-2-Butene on reaction with Br_2 in	CCl ₄ produces mainly -										
	(A) 1-bromo-2-butene	(B) 2,3-dibromobutane										
	(C) meso-2,3-dibromobutane	(D) (±) 2,3-dibromobutar	ne									
4.	The bond dissociation energies of the following											
	CH3-H CH3CH2-H CH3-H C6H3-H											
	I II III	IV										
	vary in the order :											
		(C) IV > I > III	(D) II > I > IV > III									
5.	Which of the following decolourises	s alkaline KMnO ₄ solution										
	(A) C_3H_8 (B) C_2H_4	(C) CH ₄	(D) CCl ₄									
6.	Compounds capable of reacting with ammonical AgNO_3 solution are											
	(A) CH₃—CH—C≡CH (B) HC≡C CH₃	CH (C) 1- Butyne	(D) all the above									
7.	A hydrocarbon which decolourises k (A) Benzene (B) Acetyl	KMnO ₄ but does not give any precipit ene (C) Butyne	tate with ammoniated AgNO ₃ (D) 2-Butene									
8.		compound 'B', compound 'B' reacts wi sis of compound 'C' gives only HCHO										
	(A) C_2H_6 (B) C_2H_4	(C) C_4H_{10}	(D) C ₂ H ₅ Cl									
9.	Which reagent converts propene to	1-propanol										
	(A) H_2O , H_2SO_4	(B) B ₂ H ₆ , H ₂ O ₂ , OH	I -									
	(C) $Hg(OAc)_2$, $NaBH_4/H_2O$	(D) Aq. KOH										
10.	Which one of the following alkenes	will react faster with \boldsymbol{H}_{2} under cata	lytic hydrogenation conditions :									
	[R = Alkyl Substituent]											
	R / R R	R R R	R _{/H}									
	(A) R (B) H	H (C) H	(D) R H									

11. Arrange the following in order of increase/decrease in boiling point.

$$\begin{array}{cccc} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 & \text{(CH)}_2\text{CHCH}_2\text{CH}_3 & \text{(CH)}_4\text{C} \\ \text{I} & \text{II} & \text{III} \end{array}$$

- (A) I > II > III
- (B) II > I > III
- (C) III > I > II
- (D) III < II < I

12. What are the products obtained upon the ozonolysis of 2-pentene?

- (A) CH₃CH₂CHO
- (B) CH₃CHO
- (C) CH₃COCH₃
- (D)CH₃COCH₂CH₃

13. Which of the following can be used for the preparation of propane?

(A) $CH_3CH=CH_2 \xrightarrow{1.B_2H_6} \xrightarrow{1.B_2COOH}$

- (B) $CH_3CH_2CH_2Cl \xrightarrow{1.Mg/ether} 2.H_2O$
- (C) $CH_3CH_2CH_2I \xrightarrow{RedP/HI/150^{\circ}C}$
- (D) $CH_3CH_2CH_2COONa \xrightarrow{NaOH/CaO} \Delta$

14. Which of the following are correct:

(A)
$$H \xrightarrow{1.O_3} OHC-CH_2CH_2CH_2-CHO$$

(B)
$$H$$
 H $G_{\delta}H_{\delta}C-\inftyH$ $G_{\delta}H_{\delta}C$

15. 2-Bromo-3-phenylpropane can be synthesised by

- (A) $C_6H_5CH_2CH(OH)CH_3+PBr_3 \longrightarrow$
- (B) $C_6H_5CH=CHCH_3+HBr+$ benzoyl peroxide \longrightarrow
- (C) $C_6H_5CH_2CH_2CH_3+Br_2+ light \longrightarrow$
- (D) none of these

16. The nitration of propane with concentrated HNO_3 gives:

- (A) $CH_3CH_2CH_2NO_2$ (B) $CH_3CH_2CH_3$ (C) $CH_3CH_2NO_2$ (D) CH_3NO_2 NO₂
- 17. Which of the following will react with sodium metal:
 - (A) Ethyne
- (B) 1-Butyne
- (C) 2-Butyne
- (D) Ethane

 $A,\ B\ and\ C\ are$:

- (A) simple hydration
- (B) hydroboronation, mercuration-demercuration, hydration
- (C) hydration, hydroboronation, mercuration-demercuration
- (D) mercuration-demercuration, hydration, hydroboronation

19.
$$C_9H_{14} \xrightarrow{\text{ozonolysis}}$$

Hence A is:

20.
$$(Y)$$
 (X) (X) (X) (Y) (Y)

Select X and Y out of:

 $I:\ MnO_4^-/OH^-\quad II:HCO_3H$

(A) X -I, Y- II

(B) X -II, Y- I

(C) X -I, Y- I

(D) X -II, Y- II

BRAIN TEASERS ANSWER KEY								EXERCISE -2							
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	A, B,D	В	D	С	В	D	D	Α	В	В	A, D	A, B	A,BC,D	A,BC,D	A,B
Que.	16	17	18	19	20										
Ans.	A,BC,D	A, B	В	В	Α										

TRUE OR FALSE:

- 1. Although acetylene acidic in nature it does not react with NaOH/KOH.
- 2. Although C-H bond in acetylene has greatest bond energy of all C-H bond, yet it is most acidic.
- 3. $CH_2 = CH$ is less basic than HC = C
- 4. $-C \equiv C-$ has two π bond yet it is less reactive than -C=C- towards electrophilic addition reaction.
- **5.** Partial reduction of alkynes is either syn or anti.

FILL IN THE BLANKS:

- 1. Out of cis-2 butene and trans-2-butene, has the lower melting point.
- 2. A four-carbon alkyne having weakly acidic character is
- 3. Alkanes undergo reactions whereas alkynes give reaction.
- 4. is a versatile method for locating the position of the double bond in an alkene.
- 5. The valence atomic orbital on carbon in silver acetylide is hybridized.

MATCH THE COLUMN

1. Match the column I with column II.

	Column-I	$ ule{}$	Column-II
(A)	Wurtz reaction	(p)	Electrophilic substitution reaction
(B)	Hydration of alkenes	(q)	Free radical substitution
(C)	Nitration of alkane	(r)	Electrophilic addition reaction
(D)	Reaction of alkene with NBS	(s)	Nucleophilic substitution

2. Match the column I with column II.

	Column-I		Column-II
aH₃—aH=aH₂ -	(A) CH₃-CH₂-CH₂Br (B) CH₃-CHBr-CH₃ (C) CH₃-CHBr-CH₂Br	(p) (q) (r)	HBr HBr + peroxide NBS
	$\xrightarrow{\text{(D)}} \text{BrCH}_2 - \text{CH=CH}_2$	(s)	Br ₂ , low temp., dark

3. Match the column I with column II.

	Column-I	\sum	Column-II
(A)	Dehydrohalogenation	(p)	Kolbe reaction
	of alkyl halides		
(B)	Electrolysis of sodium salt	(q)	Alc. KOH
(C)	Ozonolysis	(r)	Addition product of ethylene
(D)	Dichloro ethylene	(s)	Sodalime
(E)	Decarboxylation	(t)	Alkene

ASSERTION & REASON QUESTION:

These questions contains, Statement-I (assertion) and Statement-II (reason).

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False.
- (D) Statement-I is False, Statement-II is True.
- 1. Statement-I: Of two isomeric alkenes shown,

Because

Statement-II: The alkene (II) has sp²-hybridized carbons.

2. Statement-I: Addition of HBr to 1-butene gives two optical isomers.

Because

Statement-II: The product contains one asymmetric carbon.

3. Statement-I: 1-Butene on reaction with HBr in the presence of a peroxide produces 1-bromobutane.

Because

Statement-II: It involves the formation of a primary radical.

4. Statement-I: Addition of Br₂- water containing dissolved NaCl to ethylene gives a mixture of 1, 2-dibromoethane, 1-bromo-2-chloroethane and 2-bromoethanol.

Because

Statement-II: Addition occurs through a carbocation intermediate.

5. Statement-I: Addition of bromine to trans-2-butene yields meso-2,3-dibromobutane.

Because

Statement-II: Bromine addition to an alkene is an electrophilic addition.

6. Statement-I: Alkynes are more reactive than alkenes towards electrophilic reagents like H⁺.

Because

Statement-II: The alkyl carbocation formed from alkene is more stable than the vinyl carbocation formed from alkyne.

7. **Statement-I**: Neopentane forms only one monochlorinated product.

Because

Statement-II: Neopentane has four identical methyl group attached to a quaternary carbon.

8. Statement-I: Buta-1,3-diene is less stable than Penta-1, 4-diene.

Because

Statement-II: Buta-1,3-diene has greater number of resonating structures and delocalised electron cloud,

9. Statement-I: Iodination of alkanes is carried out in the presence of iodic acid.

Because

Statement-II: Iodic acid removes I_2 gas from the reaction mixture.

10. Statement-I: Propene is more reactive than ethene with HCl.

Because

Statement-II: Propene is more stable than ethene.

COMPREHENSION BASED QUESTIONS:

Comprehension # 1

 $X(C_4H_9Br) \xrightarrow{\quad \text{alc.KOH} \quad} Y \xrightarrow{\quad Br_2 \quad} Z \text{ (Dibromide)} \xrightarrow{\quad NaNH_2 \quad} W \text{ (gas)} \xrightarrow{\quad AgNO_3 \quad} \text{white ppt. } X, \text{ } Y \text{ and } Z \text{ are } Y \text{ and } Y \text{ are } Y \text{$

	• /		301
1.	X	Y	Z
	(A) CH ₃ -CH ₂ CH ₂ CH ₂ Br	CH ₃ -CH=CH-CH ₃	CH3-CH-CH2-CH2 Br Br
	(B) CH ₃ -CH ₂ CH ₂ CH ₂ Br	CH ₃ -CH ₂ -CH=CH ₂	CH3-CH2-CH-CH2 Br Br
	(C) $CH_3 - CH_2 - CH_2 - CH_3$	CH ₃ -CH=CH-CH ₃	CH3-CH-CH-CH3 Br Br
	(D) CH ₃ —CH ₂ —CH—CH ₃ Br	CH ₃ -CH=CH-CH ₃	CH3-CH2-CH-CH2 Br Br

- 2. Reductive ozonolysis of Y yields:
 - (A) 2 moles of CH₃CHO

(B) CH₃CH₂CHO & HCHO

(C) CH₃—C—CH₃ & HCHO

- (D) $\mathrm{CH_{3}CH_{2}COOH}$ & HCOOH
- 3. Which of the following statement (s) is/are correct:
 - (A) Compound W has 2 DU
 - (B) Y & W are functional isomers
 - (C) W can be converted into Y with Lindlar catalyst
 - (D) W can be converted into Y with Ni/Pt

Comprehension # 2

Borane is an electron deficient compound. It has only six valence electrons, so the boron atom lacks an octet. Acquiring an octet is the driving force for the unusual bonding structure found in boron compounds. As an electron deficient compound, BH_3 is a strong electrophile, capable of adding to a double bond. This hydroboration of double bond is though to occur in one step, with the boron atom adding to the less highly substituted end of the double bond. In transition state, the boron atom withdraws electrons from the pi bond and the carbon at the other end of the double bond acquires a partial positive charge. This positive charge is more stable on the more highly substituted carbon atom. The second step is the oxidation of boron atom, removing it from carbon and replacing it with a hydroxyl group by using H_2O_2/OH^{\bullet} .

The simultaneous addition of boron and hydrogen to the double bond leads to a syn addition. Oxidation of the trialkyl borane replaces boron with a hydroxyl group in the same stereochemical position. Thus, hydroboration of alkene is an example of stereospecific reaction, in which different stereoisomers of starting compounds react to give different stereoisomers of the product.

2. Find the product of following reaction

$$(C) \bigcap_{OH} CH_3$$

Y is:

(C) both

(D) None of these

4.
$$CH_3 - C-CH - CH_2 \xrightarrow{\text{(i) BH}_3/\text{THF}} Z$$

$$CH_3 - C-CH - CH_2 \xrightarrow{\text{(ii) H}_2O_2/OH} Z$$

Z is :

(A) Optically active 1 -alcohol

(B) Optically active 2 -alcohol

(C) Optically inactive 1 -alcohol

(D) Optically inactive 3 -alcohol

(A) Threo cyclic alcohol

(B) Erythreo cyclic alcohol

(C) Optically active alcohol

(D) Both (B) and (C)

Comprehension # 3

Hydrocarbon (A) C_6H_{10} on treatment with H_2/Ni , $H_2/Lindlar's$ catalyst or Na/liq. NH_3 forms three different reduction products (B), (C), (D) respectively. (A) does not form any salt with ammonical $AgNO_3$ solution, but (E) forms salt on heating with $NaNH_2$ in an inert solvent. Compound (E) reacts with CH_3I to give (F). Compound (D) on oxidative ozonolysis gives n-butanoic acid along with other product.

- 1. (D) and (C) are
 - (A) Isomeric alkane

(B) Isomeric alkene

(C) Not isomers

- (D) (C) is an alkene and (D) is salt
- 2. If (E) is reacted with acetaldehyde followed by acidification, product is
 - (A) acid
- (B) ketone
- (C) ether
- (D) alcohol

- 3. (F) on ozonolysis will produce -
 - (A) acetic aicd
- (B) formic acid
- (C) propanoic acid
- (D) formaldehyde

MISCELLANEOUS TYPE QUESTION	ANS	SWER KE	Y		EXERCISE	-3
True / False						
1 . T 2. T	3 . F	4 . T	5. T			
<u>Fill in the Blanks</u>						
1. Cis-2-butene 2. 1-Butyne	3. Free	radical substi	tution, electr	ophilic substitut	ion	
4. Ozonolysis 5. sp						
Match the Column						
1. (A) \rightarrow s; B \rightarrow r; (C) \rightarrow p; (D)	\rightarrow q 2. (A) $-$	$\rightarrow q ; (B) \rightarrow p$	$; (C) \rightarrow s ; (D)$	$r \rightarrow r$		
3. (A) \rightarrow q; (B) \rightarrow p; (C) \rightarrow t; (D	$0) \rightarrow r ; (E) \rightarrow s$					
<u> Assertion - Reason Questi</u>	<u>ons</u>					
1 . C 2 . A	3 . C	4 . A	5 . B	6 . D	7 . A	
8 . D 9 . C	10 . B					
Comprehension Based Qu	<u>iestions</u>					
Comprehension #1 : 1. (B)	2 . (B)	3. (A, C)				
Comprehension #2 : 1. (B)	2 . (D)	3. (B)	4. (C)	5 . (D)		
Comprehension #3 : 1. (B)	2 . (D)	3. (A)				

1. (Y)
$$\stackrel{\text{Na,NH}_3}{\longleftarrow}$$
 $\stackrel{\text{C}\equiv\text{C}}{\longleftarrow}$ $\stackrel{\text{H}_2}{\longleftarrow}$ (X).

What are X and Y in above reaction.

2. Find out reagents involved in following conversions :

3. Select one from the following pair of isomer that has higher heat of combustion, justifying your choice.

4. The reaction of the diene shown below with dry HCl can lead to four products. Provide structural formula of all the products.

5. Write major product in the following reactions :

(a)
$$F_3C-CH = CH_2 + HI \longrightarrow$$

(b)
$$C_6H_5$$
-CH=CHCH $_3$ +HBr $\xrightarrow{Peroxide}$

(d)
$$C_6H_5-CH=CH_2+B_2H_6 \xrightarrow{H_2O_2} NaOH$$

(e)
$$CH_3$$
- CH = CH - CH = CH_2 \xrightarrow{HCl} $\xrightarrow{50^{\circ}C}$

6. Propose mechanism :

$$+ HBr \longrightarrow Br + Br$$

- 7. A hydrocarbon (A) was found to have vapour density 36. It forms only single mono chlorosubstitution product. Suggest (A).
- **8.** An olefin was treated with ozone and the resulting product on reductive hydrolysis gave 2-pentanone and acetaldehyde. What is the structure of olefin? Write reactions.
- 9. Why n-Pentane has higher boilign point than neopentane?
- 10. Write a plausible mechanism for the following transformation.

$$\xrightarrow{\text{conc.}} H_2\text{SO}_4 \longrightarrow H_2\text{O}$$

CONCEPTUAL SUBJECTIVE EXERCISE

ANSWER KEY

EXERCISE -4(A)

- 2. (a) $H_2O/Hg^{2+}/H^+$, (b) $(Sia)_2$ BH/H_2O_2 , OH, (c) 2HCI, (d) Na, CH_3 I, (e) Na, D-O-D
- **3**. (a) II; (b) I; (c) II; (d) I

7. Mol.wt of alkane = Vapour density 2 = 36 2 = 72

Alkane is C_nH_{2n+2}

 $\therefore 12n + 2n + 2 = 72$

 \therefore n = 5

∴ Alkane is C₅H₁₂

Thus alkane C_5H_{12} showing only one mono substitution product is

$$\begin{array}{cccc} CH_3 & CH_3 \\ | & | & | \\ CH_3-C-CH_3 & \xrightarrow{Cl_2} & CH_3-C-CH_2CI \\ | & | & | \\ CH_3 & CH_3 & CH_3 \end{array}$$

(A) (2,2-dimethylpropane)

8. (i) Olefin
$$\xrightarrow{O_3}$$
 ozonide $\xrightarrow{2H}$ $\xrightarrow{CH_3}$ $\xrightarrow{CH_2}$ $\xrightarrow{C=C+C+G+G+O}$ (ethanal) $\xrightarrow{CH_3}$

(ii) Thus olefin has 7 carbon atoms with two units round double bond as

$$\begin{array}{ccc} \text{CH}_3\text{CH}_2\text{CH}_2 & \text{C=O} \\ \text{H}_3\text{C} & \text{And} & \text{H} \end{array}$$

(iv) The reaction is

9. n-Pentane has higher b.p. (36.2 C) than neopentane (9.5 C). It is due to vander waals forces. n-Pentane has a rod-like shape, while neopentane is sphere-like. Rods can touch along their entire length, while the spheres touch only at a point. The more the contanct between molecules, the greater the vander waals forces and hence higher the b.p.

1.
$$\begin{array}{c} CH_2OH \\ \hline \\ & \\ \end{array}$$

$$\begin{array}{c} CH_2 \\ \hline \\ & \\ \end{array}$$

$$\begin{array}{c} CH_2 \\ \hline \\ & \\ \end{array}$$

$$+ \begin{array}{c} CH_2 \\ \hline \\ & \\ \end{array}$$

Give mechanism of this reaction.

2. Identify the products in the following, giving their configurations. (if any)

- 3. Write one reagent in each case to make distinction between
 - (a) 1-butyne and 2-butyne
- (b) 1-butene and 1-butyne
- (c) ethene and ethane
- 4. 2-Butyne undergoes following reactions in steps as indicated. Identify A to H.

5. Identify A, B, C with proper explanation.

- 6. A hydrocarbon $A(C_{10}H_{12})$ has no chiral carbon. A gives a white precipitate with ammonical solution of silver nitrate. A on traeatment with H_2/Pt gives $B(C_{10}H_{20})$. A on ozonolysis gives $C(C_8H_{12}O_4)$ as one product which on heating with soda lime gives $D(C_6H_{12})$. D on monochlorination with Cl_2/hv gives $C_6H_{11}Cl$ as sole isomer. Identify A to D.
- 7. Identify A to D in the following scheme.

$$CH_3Br \xrightarrow{Mg/\text{ether}} A \xrightarrow{D_2O} B \xrightarrow{Cl_2, \text{hv}} C \xrightarrow{Na/\text{ether}} D$$

Write structure of C_4H_9Cl .

- 9. Specify the reagents in which addition to alkene is syn or anti
 - (i) Br₂ water

(ii) H_2/pd

(iii) MnO_4^-/OH^-

(iv) HCO₃H

(v) MCPBA

- (vi) $\operatorname{OsO_4}$ in ether, followed by $\operatorname{OH}/\operatorname{H_2O}$
- 10. C_5H_{10} represents three isomeric alkenes A_1 , A_2 and A_3 . Each on hydrogenation gives 2-methylbutane. A_1 and A_2 on oxymercuration-demercuration give the same 3° alcohol. A_2 and A_3 on hydroboration oxidation give different 1° alcohol. Assign structures to A_1 , A_2 and A_3 and explain the reactions.

BRAIN STORMING SUBJECTIVE EXERCISE

ANSWER KEY

EXERCISE -4(B)

$$(a) \qquad \begin{array}{c} CH_2OH \\ & \downarrow \\ H_2OH_2 \\ \end{array}$$

Step (II):

(b)
$$\xrightarrow{-H_2O}$$
 (c)

Step (III) :

$$\begin{array}{c} \stackrel{\oplus}{\overset{\longleftarrow}{\text{CH}_2}} \\ \stackrel{\longleftarrow}{\overset{\longleftarrow}{\text{H}^+}} \\ \stackrel{\longrightarrow}{\overset{\longleftarrow}{\text{-H}^+}} \end{array} \begin{array}{c} \stackrel{\longleftarrow}{\overset{\longleftarrow}{\text{minor}}} \\ \stackrel{\longrightarrow}{\text{minor}} \\ \end{array}$$

Step (IV) :

$$\begin{array}{c}
\bigoplus_{\text{alkyl shift}} \\
& \xrightarrow{\text{alkyl shift}}
\end{array}$$

Step (V):

$$\stackrel{\oplus}{\longrightarrow}_{H}$$
 $\stackrel{-H^+}{\longrightarrow}$ $\stackrel{\text{major}}{\longrightarrow}$

- 2. (a) HO—H and its enantiomer-a case of syn addition. Mixture is optically inactive (racemic).
 - COOH

 H—OH

 meso form by anti addition. (c) HO—H and its enantiomer (racemic) by anti additon.

 COOH
 - COOH

 H——OH

 (d) H——OH meso by syn addition.

 COOH
- 4. A is obtained by syn addition

C is obtained by anti addition

 \boldsymbol{E} is obtained by syn addition

 $E: as \ A$

Addition of Br₂ is anti

$$G: \qquad \begin{matrix} CH_s \\ \\ Br \end{matrix} \begin{matrix} Br \end{matrix} \begin{matrix} Br \\ CH_s \end{matrix}$$
 trans

B is also obtained by syn addition

D is mixture of d-and l-(recemic mixture)

HD
| | |
CH₃-C-C-CH₃
D: DH
d- and
$$\ell$$
- (racemic)

 $H: as\ F$

6.
$$=$$
 $C_2H_5-C_2H_5$; $++\infty$ C C

10.
$$A_1, A_2 \text{ or } A_3 \xrightarrow{H_2} H_3 COHOH_2CH_3$$

$$CH_3$$

This shows that each of A_1 , A_2 and A_3 have same C-chain; only position of (C=C) is to be decided.

$$A_1,\ A_2 \xrightarrow{\quad \text{oxymercuration} \quad } 3^{\text{o}} \ \text{alcohol}$$

$$\text{hence } A_1 \text{ and } A_2 \text{ have } \left(= C \underbrace{CH_s} \right) \qquad \text{or} \quad \left(CH_2 = C - \right) \text{ groupings}.$$

 A_2 and $A_3 \xrightarrow{hydroboration \ oxidation} 1^{o}$ alcohol

This indicates presence of (CH $_{\!\scriptscriptstyle 2}\!^{}$ =) grouping at the terminal. Hence,

Y and Z are different 1° alcohols.

- EXERCISE 05 [A] JEE-[MAINS] : PREVIOUS YEAR QUESTIONS Which of these will not react with acetylene -[AIEEE-2002] (A) NaOH (B) ammonical AgNO₂ (C) Na (D) HCl 2. What is the product formed when acetylene reacts with hypochlorous acid -[AIEEE-2002] (C) Cl₂CHCHO (D) CICH, COOH (A) CH₂COCl (B) CICH_oCHO 3. 1-Butene may be converted to butane by reaction with -[AIEEE-2003] (A) Pd/H_{o} (B) Zn - HCl (C) Sn - HCl (D) Zn - Hg/HCl 4. On mixing a certain alkane with chlorine and irradiating it with ultraviolet light, it forms only one monochloroalkane. This alkane could be -[AIEEE-2003] (A) neopentane (B) propane (C) pentane (D) isopentane Which one of the following is reduced with Zn-Hg/HCl to give the corresponding hydrocarbon 5. (A) Butan-2-one (B) Acetic acid [AIEEE-2004] (C) Acetamide (D) Ethyl acetate Which one of the following has the minimum boiling point : 6. [AIEEE-2004] (B) 1-butyne (C) 1-butene (A) isobutane (D) n-butane 2-Methylbutane on reacting with bromine in the presence of sunlight gives mainly 7. [AIEEE-2005] (A) 2-bromo-2-methylbutane (B) 1-bromo-2-methylbutane (C) 1-bromo-3-methylbutane (D) 2-bromo-3-methylbutane 8. Alkyl halides react with dialkyl copper reagent to give [AIEEE-2005] (A) alkyl copper halides (B) alkenes (C) alkenyl halides (D) alkanes 9. Reaction of one molecule of HBr with one molecule of 1,3-butadiene at 40 C gives predominantly (A) 1-bromo-2-butene under thermodynamically controlled conditions [AIEEE-2005] (B) 3-bromobutene under kinetically controlled conditions (C) 1-bromo-2-butene under kinetically controlled conditions (D) 3-bromobutene under thermodynamically controlled conditions 10. Acid catalyzed hydration of alkenes except ethene leads to the formation of [AIEEE-2005] (A) secondary or tertiary alcohol (B) primary alcohol (C) mixture of secondary and tertiary alcohols (D) mixture of primary and secondary alcohols 11. Elimination of bromine from 2-bromobutane results in the formation of [AIEEE-2005]
- - (A) predominantly 2-butene

(B) equimolar mixture of 1 and 2-butene

(C) predominantly 2-butyne

(D) predominantly 1-butene

The alkene formed as a major product in the above elimination reaction is-

[AIEEE-2006]

(B) $CH_2 = CH_2$

- 13. Reaction of trans-2-phenyl-1-bromocyclo pentane on reaction with alcoholic KOH produces-
 - (A) 4-phenyl cyclopentene(B) 2-phenyl cyclopentene

[AIEEE-2006]

- (C) 1-phenyl cyclopentene(D) 3-phenyl cyclopentene
- 14. Phenyl magnesium bromide reacts with methanol to give-

[AIEEE-2006]

- (A) A mixture of anisole and Mg(OH)Br
- (B) A mixture of benzene and Mg(OMe)Br
- (C) A mixture of toluene and Mg(OH)Br
- (D) A mixture of phenol and Mg(Me)Br

	(A) $CH_3-C \equiv CH + 2HBr \longrightarrow$	(B) CH ₃ CH=CHBr + F	-HBr→
	(C) $CH \equiv CH + 2HBr \longrightarrow$	(D) $CH_3 - CH = CH_2$	$_2$ + HBr \longrightarrow
16.	In the following sequence of reactions, the alken		
	$CH_3CH=CHCH_3 \xrightarrow{O_3} A \xrightarrow{H_2O} B.$		
	The compound B is		
	(A) CH ₃ CH ₂ CHO (B) CH ₃ COCH ₃	(C) CH ₃ CH ₂ COCH ₃	(D) CH ₃ CHO
17.	The hydrocarbon which can react with sodium in	liquid ammonia is	[AIEEE-2008]
	(A) $CH_3CH_2CH_2C \equiv CCH_2CH_2CH_3$	(B) $CH_3CH_2C \equiv CH$	
	(C) CH ₃ CH=CHCH ₃	(D) $CH_3CH_2C \equiv CCH_2CH_3$	f_3
18.	The treatment of CH_3MgX with $CH_3C \equiv C-H$ pro	oduces	[AIEEE-2008]
		НН	
	(A) $CH_3 - CH = CH_2$ (B) $CH_3 C \equiv C - CH_3$		(D) OH
	(A) $CH_3 - CH = CH_2$ (B) $CH_3 C \equiv C - CH_3$	(C) CT3—C—C—CT3	(D) CH ₄
19.	The main product of the following reaction is		[AIEEE-2010]
	$C_6H_5CH_2CH(OH)CH(CH_3)_2 \xrightarrow{Conc. H_2SO_4} ?$		
	HCCHCH	HC> ZE	Ī
	$H_3C_6CH_2CH_2$ (A) $C = CH_2$	(B) H_5C_6 $C = C$	-
	H _C C	H	
	CHAH_ \ AH3	CH√ /C	H(CH ₂) ₂
	(C) $C = CH$	(D) $C = C$	4
20	One made of a summativisal alliance on arguments	airre ture meales of on aldel	- d. having a malasulan mass of
20.	One mole of a symmetrical alkene on ozonolysis 44 u. The alkene is :-	gives two moles of an aider	[AIEEE-2010]
	(A) ethene (B) propene	(C) 1-butene	(D) 2-butene
21.	Ozonolysis of an organic compound gives formald		
21.	:-	eriyae as one of the product	[AIEEE-2011]
	(A) an isopropyl group	(B) an acetylenic triple b	
	(C) two ethylenic double bonds	(D) a vinyl group	
22.	Ozonolysis of an organic compound 'A' produces	acetone and propionaldehye	de in equimolar mixture. Identify
	'A' from the following compounds :-		[AIEEE-2011]
	(A) 2 - Methyl - 1- pentene	(B) 1 - Pentene	
	(C) 2 - Pentene	(D) 2 - Methyl - 2 - pen	tene
23.	2-Hexyne gives trans -2-Hexene on treatment	with :-	[AIEEE-2012]
	(A) Li AlH_4 (B) Pt/H_2	(C) Li/NH ₃	(D) Pd/BaSO ₄

[AIEEE-2007]

15. Which of the following reactions will yield, 2, 2-dibromopropane

24. In the given transformation, which of the following is the most appropriate reagent? [AIEEE-2012]

- (A) NaBH₄
- (B) $NH_2 NH_2, \overset{\ominus}{O}H$
- (C) Zn Hg / HCl
- (D) Na, Liq.NH₃

JEE-[MAIN] : PREVIOUS YEAR QUESTIONS							ANSWER KEY				EXERCISE -5[A]					
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Ans	1	3	1	1	1	1	1	4	1	1	1	2	4	2	1	
Que.	16	17	18	19	20	21	22	23	24							
Ans	4	2	4	2	4	4	4	3	2							

Alcoholic solution of KOH is a specific reagent for -1. [IIT-90] (A) Dehydration (B) Dehydrogenation (C) Dehydro halogenation (D) Dehalogenation

2. Of the following, unsaturated hydrocarbons are -(A) Ethyne (B) Cyclohexane

[IIT-90]

3. 1-chlorobutane on reaction with alcoholic potash gives

[IIT-91]

(A) 1-butene (B) 1-butanol

(C) 2-butene

(D) 2-butanol

The hybridisation of carbon atoms in C-C single bond of $HC \equiv C - CH = CH_0$ 4.

[IIT-93]

(A) sp^3-sp^3

(B) sp^2-sp^3

(C) $sp-sp^2$

(C) n-propane

(D) sp^2-sp^2

(D) Ethane

5. The product (s) obtained via oxymercutation ($HgSO_4 + H_2SO_4$) of 1-butyne would be -[IIT-92]

(A)
$$CH_3 - CH_2 - C - CH_3$$

(B) CH₃-CH₂-CH₂-CHO

(C) CH₃-CH₉-CHO-HCHO

(D) CH_3 - CH_2 -COOH+HCOOH

6. Which is the decreasing order of strength of bases : [IIT-93]

 OH^- , NH_2^- , $HC \equiv C^-$ and $CH_3 - CH_2^-$

(A) $CH_3 - CH_2^- > NH_2^- > HC \equiv C^- > OH^-$ (B) $HC \equiv C^- > CH_3 - CH_2^- > NH_2^- > OH^-$

(C) $OH^{-} > NH_{2}^{-} > HC \equiv C^{-} > CH_{3} - CH_{2}^{-}$

(D) $NH_2^- > HC \equiv C^- > OH^- > CH_3 - CH_2^-$

7. The chief reaction product of reaction between n-butane and bromine at 130° C is - [IIT-95]

8. When cyclohexane is poured on water, it floats, because - [IIT-97]

(A) Cyclohexane is in 'boat' form

- (B) Cyclohexane is in 'chair' form
- (C) Cyclohexane is in 'crown' form
- (D) Cyclohexane is less dense than water
- 9. $(CH_3)_3$ CMgCl on reaction with D_2O produces

[IIT-97]

(A) (CH₃)₃CD

(B) (CH₃)₃OD

(C) $(CD_3)_3CD$

(D) (CD₃)₃OD

reacts with $Ph_3 \stackrel{\oplus}{P}-CHR$, the product is -10. When

[IIT-97]

11. The intermediate during the addition of HCl to propene in the presence of peroxide is : [IIT-97]

(A) CH₃ CHCH₂Cl

(B) $CH_3 \overset{\oplus}{C}HCH_3$ (C) $CH_3CH_2 \overset{\bullet}{C}H_2$

(D) CH₃CH₂CH₃

12. [IIT-98] Read the following statement and explanation and answer as per the option given below: **Assertion**: Addition of Br_2 to 1-butene gives two optical isomers. **Reason**: The product contains one asymmetric carbon. (A) If both assertion and reason are correct, and reason is the correct explanation of the assertion (B) If both assertion and reason are correct, but reason is not correct explanation of the assertion (C) If assertion is correct but reason is incorrect (D) If assertion is incorrect but reason is correct The reaction of $CH_3CH=CH$ 13. OH with HBr gives -[IIT-98] (A) CH₃CHBrCH₂ (B) CH₃CH₂CHBr OH (C) CH₃CHBrCH₂-(D) CH₃CH₂CHBr 14. In the compound CH_2 =CH- CH_2 - $C\equiv CH$, the C_2 - C_3 bon is of the type [IIT-99] (A) $sp-sp^2$ (D) sp^3-sp^3 (C) $sp-sp^3$ The product obtained via oxymecuration (${\rm HgSO_4} + {\rm H_2SO_4}$) of 1-Butyne would give -15. [IIT-99] O \parallel (A) CH₃CH₂ - C - CH₃ (B) CH₂CH₂CH₂-CHO (C) CH₃CH₂CHO + HCHO (D) CH₃CH₂COOH + HCOOH 16. Read the following statement and explanation and answer as per the option given below: [IIT-2000] Assertion: 1-Butene on reaction with HBr in the presence of a peroxide produces 1-bromobutane. Reason: It involves the formation of a primary radical. (A) If both assertion and reason are correct, and reason is the correct explanation of the assertion (B) If both assertion and reason are correct, but reason is not correct explanation of the assertion (C) If assertion is correct but reason is incorrect (D) If assertion is incorrect but reason is correct 17. Which one of the following alkenes will react fastest with \boldsymbol{H}_2 under catalytic hydrogenation condition -[IIT-2000] 18. Propyne and propene can be distinguished by -[IIT-2000]

19. Read the following statement and explanation and answer as per the option given below: [IIT-2001] Assertion: Addition of bromine to trans-2-butene yields meso-2, 3-dibromobutane.

Reason: Bromine addition to an alkene is an electrophilic addition.

- (A) If both assertion and reason are correct, and reason is the correct explanation of the assertion
- (B) If both assertion and reason are correct, but reason is not correct explanation of the assertion
- (C) If assertion is correct but reason is incorrect
- (D) If assertion is incorrect but reason is correct

- 31. Complete the following, giving the structures of the principal organic products. [IIT 1997]
 - (a) Ph Br + KNH_2 \longrightarrow A (b) $+ CHBr_3 + t-BuOK <math>\longrightarrow$ B
- 32. Match the following: [IIT 2006]
 - (A) $Ph-CH_2-CH_2-Br$ (p) E^1 reaction & $Ph-CD_2-CH_2-Br$ reacts with the same rate.
 - (B) Ph-CH-CH₃ reacts faster (q) E² reaction Br than Ph-CH-CD₃
 - (C) $\begin{array}{ccc} Ph-CH_2-CH_2-Br & \text{(r)} & E_{cb}^1 \text{ reaction} \\ & & \downarrow^{C_2H_5OD/C_2H_5O^-} \\ & & Ph-CD=CH_2 \end{array}$
- 33. $(CH_3)_2$ $C CH_2CH_3 \xrightarrow{alc. KOH}$? [IIT-1992]
- 34. $C_6H_5CH_2CHCH_3 \xrightarrow{\text{alc. KOH}} ? \xrightarrow{\text{HBr}} ?$ [IIT-1993]
- 35. $C(C_6H_{12})$, an optically active hydrocarbon which on catalytic hydrogenation gives an optically inactive compound, C_6H_{14} . [IIT-1993]
- 36. Draw the stereochemical structure of the product in the following reactions. [IIT-1994]

$$R - C \equiv C - R \xrightarrow{H_2} \xrightarrow{\text{Lindlar catalyst}}$$

37. Write down the structure of the stereoisomers formed when cis-2-butene is reacted with bromine.

[IIT-1995]

- An organic compound $E(C_5H_8)$ on hydrogenation gives compound $F(C_5H_{12})$. Compound E on ozonolysis gives formaldehyde and 2-ketopropanal. Deduce the structure of compound E. [IIT-1995]
- 39. Give the structures of the major organic products from 3-ethyl-2-pentene under each of the following reaction conditions.
 [IIT-1996]
 - (a) HBr in the presence of peroxide (b) $\mathrm{Br_2/H_2O}$ (c) Hg $\mathrm{(OAc)_2/H_2O}$; $\mathrm{NaBH_4}$

- An alkyl halide, (X) of formula $C_6H_{13}Cl$ on treatment with potassium tertiary butoxide gives two isomeric alkenes (Y) and (Z) (C_6H_{12}). Both alkenes on hydrogenation give 2, 3-dimethylbutane. Predict the structures of (X), (Y) and (Z). [IIT-1996]
- 3, 3-Dimethyl-butan-2-ol loses a molecule of water in the presence of concentrated sulphuric acid to give tetramethylethylene as a major product. Suggest a suitable mechanism. [IIT-1996]
- 42. One mole of the compound A (molecular formula C_8H_{12}), incapable of showing stereoisomerism, reacts with only one mole of H_2 on hydrogenation over Pd. A undergoes ozonolysis to give a symmetrical diketone B ($C_8H_{12}O_2$). What are the structure of A and B? [IIT-1997]
- 43. Compound (A) C_6H_{12} gives a positive test with bromine in carbon tetrachloride. Reaction of (A) with alkaline $KMnO_4$ yields only (B) which is the potassium salt of an acid. Write structure formulae and IUPAC name of (A) and (B). [IIT-1997]
- 44. The central carbon-carbon bond in 1, 3-butadiene is shorter than that of n-butane. Why ? [IIT-1998]
- 45. Write the intermediate steps for the following reaction. $C_6H_5CH(OH)C\equiv CH \ \to \ C_6H_5CH=CHCHO$ [IIT-1998]
- 46. Write the intermediate steps for the following reaction. [IIT-1998]

$$\stackrel{\mathrm{OH}}{\longrightarrow} \stackrel{\mathrm{H}^{+}}{\longrightarrow} \stackrel{\mathrm{O}}{\longleftarrow}_{\mathrm{CH}_{i}}$$

47. Complete the following - [IIT-1999]

48. Complete the following-

49. Carry out the following transformation in not more than three steps. [IIT 1999]

$$\begin{array}{c} \mathsf{CH}_3\mathsf{-}\mathsf{CH}_2\mathsf{-}\mathsf{C}{\equiv}\mathsf{C}\mathsf{-}\mathsf{H} \ \to \ \mathsf{CH}_3\mathsf{-}\mathsf{C}\mathsf{H}_2\mathsf{-}\mathsf{C}\mathsf{H}_2\mathsf{-}\mathsf{C}\mathsf{-}\mathsf{C}\mathsf{H}_3 \end{array}$$

- 50. $CH_2=CH^-$ is more basic than $HC=C^-$. Why? [IIT 2000]
- 51. What would be the major product in each of the following reaction? [IIT 2000]

$$CH_3$$
 H_2 Lindilar's Catalyst

52. On reaction with 4N alcoholic KOH at 175°C 1-pentyne is slowly converted into equilibrium mixture of 1.3% 1-pentyne (A), 95.2% 2-pentyne (B) and 3.5% 1, 2-pentadiene (C). Give the suitable mechanism of formation of A, B and C with all intermediates. [IIT-2001]

.(C) . (C) . (A) . (A) . (A) . (A) .(B) . (D) 11. (B) . (A) . (B) . (B) . (A) . (C) . (A) . (C) . (D) . (B) . (C) . (B) . (C) . (B) 24. (D) . (A) . (A) . (B) 27. (B) . (C) 29. (A) . (B)

(B)
$$CH_3$$
— CH_2 — C — CH (propanoic acid)

47. $1 \rightarrow \text{ ozonolysis } ;$ $2 \rightarrow \text{LiAlH}_4 ;$ $3 \rightarrow \text{H}_2\text{SO}_4$

48. (4) \rightarrow HO-Cl; (5) \rightarrow CH₂MgCl; (6) \rightarrow H₂O/H⁺

53. (x)
$$\rightarrow$$
 Et-C=C-Et (Y) \rightarrow H C=C H (Z) H O

(Z) is meso compound so optically inactive.

54. a. (A)
$$\rightarrow$$
 $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 \end{array}$ b. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 \end{array}$ b. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_2 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_3 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_3 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH=CH_2 \\ CH_3 - C-CH=CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH_3 - C-CH_2 \\ CH_3 - C-CH_2 \end{array}$ c. $\begin{array}{c} CH$