# Content Validation and Internal Validation for Thesis

## Frederico Pedrosa

2025-05-03

# Contents

This document presents the analysis of judge ratings collected during the content validation phase of a thesis project, followed by an examination of its internal structure. The scale examined is called "Assessment Scale for Group Music Therapy in Substance Use Disorders (MTDQ)."

##Content validity

Load Libraries an preparing data

```
library(readxl)
library(psych)
```

## Warning: pacote 'psych' foi compilado no R versão 4.4.3

```
file_path <- "~/Doutorado/content_validity.xlsx"</pre>
raw_data <- read_excel(file_path)</pre>
# Remove the first two columns and convert to data frame
df_original <- as.data.frame(raw_data[, -c(1,2)])</pre>
# Define custom column names in English
custom_colnames <- c("profession", "city", "gender", "degree",</pre>
                      "1", "2", "2.1", "2.2", "3", "3.1", "3.2",
                      "4", "4.1", "4.2", "5", "5.1", "5.2",
                      "6", "6.1", "6.2", "7", "7.1", "7.2",
                      "8", "8.1", "8.2", "9", "9.1", "9.2",
                      "10", "10.1", "10.2", "11", "11.1", "11.2",
                      "12", "13", "14", "15", "16", "17", "18",
                      "19", "20", "21", "22")
# Assign names, making them syntactically valid
df_named <- setNames(df_original, make.names(custom_colnames))</pre>
# Display first few rows and column names to verify
print(colnames(df_named))
```

```
[1] "profession" "city"
                                    "gender"
                                                 "degree"
                                                               "X1"
##
   [6] "X2"
                                    "X2.2"
                                                 "X3"
                      "X2.1"
                                                               "X3.1"
## [11] "X3.2"
                                    "X4.1"
                      "X4"
                                                 "X4.2"
                                                               "X5"
## [16] "X5.1"
                      "X5.2"
                                    "X6"
                                                 "X6.1"
                                                               "X6.2"
## [21] "X7"
                      "X7.1"
                                    "X7.2"
                                                 "X8"
                                                               "X8.1"
## [26] "X8.2"
                      "X9"
                                   "X9.1"
                                                 "X9.2"
                                                               "X10"
## [31] "X10.1"
                      "X10.2"
                                   "X11"
                                                 "X11.1"
                                                               "X11.2"
## [36] "X12"
                                                 "X15"
                                                               "X16"
                      "X13"
                                   "X14"
## [41] "X17"
                      "X18"
                                    "X19"
                                                 "X20"
                                                               "X21"
## [46] "X22"
# Subset X: Items 2.1 to 11.2
subset_X_indices \leftarrow c(7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,29,31,32,34,35)
subset_X <- df_named[, subset_X_indices]</pre>
print(colnames(subset_X))
  [1] "X2.1" "X2.2" "X3.1" "X3.2"
                                         "X4.1"
                                                  "X4.2"
                                                           "X5.1"
                                                                   "X5.2" "X6.1"
## [10] "X6.2" "X7.1" "X7.2"
                                 "X8.1"
                                         "X8.2"
                                                  "X9.1"
                                                          "X9.2"
                                                                   "X10.1" "X10.2"
## [19] "X11.1" "X11.2"
# Subset Y: Items 1 to 11.2, plus 14 to 20
subset_Y_indices <- c(6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 2
subset_Y <- df_named[, subset_Y_indices]</pre>
print(colnames(subset_Y))
                                 "X3"
  [1] "X2"
                "X2.1" "X2.2"
                                          "X3.1"
                                                  "X3.2"
                                                           "X4"
                                                                   "X4.1"
                                                                           "X4.2"
## [10] "X5"
                "X5.1" "X5.2"
                                 "X6"
                                                           "X7"
                                                                   "X7.1" "X7.2"
                                          "X6.1"
                                                  "X6.2"
## [19] "X8"
                "X8.1" "X8.2" "X9"
                                          "X9.1"
                                                  "X9.2"
                                                           "X10"
                                                                   "X10.1" "X10.2"
## [28] "X11"
                "X11.1" "X11.2" "X12"
                                          "X15"
                                                  "X16"
                                                           "X17"
                                                                   "X18"
                                                                            "X19"
## [37] "X20"
                "X21"
# Subset Z: Items related to Q12/Q13
subset_Z_indices \leftarrow c(37, 38, 39, 40, 41, 42, 43, 44, 45)
subset_Z <- df_named[, subset_Z_indices]</pre>
print(colnames(subset_Z))
```

#### Analysis of objective Items

This section analyzes the quantitative ratings provided by the judges for the items included in Subset Y (Items 1-11.2, 14-20). We calculate the mean rating for each item and visualize them using a bar plot. A reference line is added at 0.8, which represent a target agreement threshold.

## [1] "X13" "X14" "X15" "X16" "X17" "X18" "X19" "X20" "X21"

```
# Converting columns that might be character/factor due to Excel import issues
subset_Y_numeric <- data.frame(lapply(subset_Y, function(x) {
   if(is.character(x) || is.factor(x)) {
     # Attempt conversion, return NA on failure
     suppressWarnings(as.numeric(as.character(x)))
} else {
   as.numeric(x) # Ensure it's numeric even if already integer
}</pre>
```

```
}))
# Calculate descriptive statistics
desc_stats_Y <- describe(subset_Y_numeric)</pre>
## Warning in FUN(newX[, i], ...): nenhum argumento não faltante para min;
## retornando Inf
## Warning in FUN(newX[, i], ...): nenhum argumento não faltante para max;
## retornando -Inf
# Define labels for the bar plot
item_labels_y <- colnames(subset_Y) # Use actual column names from the subset</pre>
# Create the bar plot
par(cex.lab = 1.2, cex.axis = 1.0, mar = c(6, 4, 2, 2) + 0.1) # Adjust margins if labels overlap
barplot(desc_stats_Y$mean,
        width = 1, space = 0.7,
        names.arg = item_labels_y,
        main = "Mean Judge Ratings per Item ", # Added title
        xlab = "Item",
        ylab = "Mean Rating", # Changed label to reflect the metric
        col = "light grey",
        las = 2)
agreement_threshold = 0.8
abline(h = agreement_threshold, col = "red", lwd = 2)
```



#### Analysis of Comprehensibility Items (Q12 & Q13)

Items 12 and 13 assessed the comprehensibility of specific sections or instructions and used categorical responses. These were handled separately.

```
# Responses
responses_q12_q13 <- data.frame(</pre>
  Q12 = factor(c("Fully comprehensible", "Partially comprehensible", "Partially comprehensible",
                 "Fully comprehensible", "Fully comprehensible", "Partially comprehensible",
                 "Fully comprehensible", "Partially comprehensible", "Fully comprehensible",
                 "Partially comprehensible"), levels = c("Fully comprehensible", "Partially comprehensi
  Q13 = factor(c("Fully comprehensible", "Partially comprehensible", "Fully comprehensible",
                 "Partially comprehensible", "Fully comprehensible", "Partially comprehensible",
                 "Fully comprehensible", "Fully comprehensible", "Fully comprehensible",
                 "Fully comprehensible"), levels = c("Fully comprehensible", "Partially comprehensible"
)
# Create frequency tables
freq_q12 <- table(responses_q12_q13$Q12)</pre>
freq_q13 <- table(responses_q12_q13$Q13)</pre>
# Create a data frame for plotting
# Handle cases where a category might have zero counts by accessing table elements by name
plot_data_q12_q13 <- data.frame(</pre>
  Question = c("Q12", "Q13"),
  `Fully comprehensible` = c(freq_q12["Fully comprehensible"], freq_q13["Fully comprehensible"]),
 `Partially comprehensible` = c(freq_q12["Partially comprehensible"], freq_q13["Partially comprehensib
```

```
check.names = FALSE # Prevent R from changing column names with spaces
)
# Replace NAs (if a category was missing) with 0
plot_data_q12_q13[is.na(plot_data_q12_q13)] <- 0

# Create the grouped bar plot
barplot(height = t(as.matrix(plot_data_q12_q13[, -1])),
    beside = TRUE,
    col = c("black", "light grey"),
    names.arg = plot_data_q12_q13$Question,
    main = "", # Added title
    xlab = "Question",
    ylab = "Number of Responses",
    legend.text = colnames(plot_data_q12_q13[, -1]), # Use translated colnames
    args.legend = list(x = "topleft", inset = c(0, -0.15), cex = 0.8),
    xpd = TRUE
)</pre>
```



##Internal Structure Validity

```
library(readxl)
library(dplyr)
```

##

```
## Anexando pacote: 'dplyr'
## Os seguintes objetos são mascarados por 'package:stats':
##
##
     filter, lag
## Os seguintes objetos são mascarados por 'package:base':
##
##
      intersect, setdiff, setequal, union
library(psych)
library(MVN)
library(semTools)
## Carregando pacotes exigidos: lavaan
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
##
## Anexando pacote: 'lavaan'
## O seguinte objeto é mascarado por 'package:psych':
##
##
      cor2cov
##
## This is semTools 0.5-6
## All users of R (or SEM) are invited to submit functions or ideas for functions.
## Anexando pacote: 'semTools'
## Os seguintes objetos são mascarados por 'package:psych':
##
##
     reliability, skew
library(lavaan)
library(semPlot)
# --- Ensure this path is correct ---
data <- read excel("~/Doutorado/dados.xlsx")</pre>
names(data) <- c("id", paste0("i", c(1:20)) , "age", "sex")</pre>
```

```
## Warning: The 'value' argument of 'names<-()' must have the same length as 'x' as of
## tibble 3.0.0.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
## Warning: The 'value' argument of 'names<-()' can't be empty as of tibble 3.0.0.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
Sociodemographics
nrow(data)
## [1] 202
# Sample consists of 202 participants
##Age
describe(data$age)
      vars n mean
                       sd median trimmed mad min max range skew kurtosis
      1 190 44.68 12.65
                                   45.43 13.34 18 69
                                                          51 -0.5
## X1
                              48
                                                                     -0.71 0.92
# Average = 44.7, SD = 12.7, min = 18 e max = 69. Obs: 12 missings
# Sex
describe(data$sex) # 77% male participants
      vars n mean sd median trimmed mad min max range skew kurtosis
      1 199 1.77 0.42
                             2
                                  1.84 0
                                            1
                                                2
                                                       1 -1.3 -0.31 0.03
Multivariate Normality Analysis
mvn_results <- mvn(data[, 2:21], mvnTest = "mardia")</pre>
print(mvn_results$multivariateNormality)
##
                                                   p value Result
                Test
                            Statistic
## 1 Mardia Skewness 2487.77624922984 8.76630059652458e-48
                                                               NO
## 2 Mardia Kurtosis 10.7565859820302
                                                               NO
## 3
                MVN
                                 <NA>
                                                      <NA>
                                                              NO
# Skewness: 2487.78, p < 0.001
# Kurtosis: 10.76, p < 0.001
# Data do not show multivariate normal distribution
# Use WLSMV estimator for CFA
```

Confirmatory Factor Analysis (CFA) Unidimensional Model (General Factor)

```
# Define the unidimensional model
model_uni <- '
general =~ i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 +
i11 + i12 + i13 + i14 + i15 + i16 + i17 + i18 + i19 + i20
# Fit the model using WLSMV estimator for ordered data
fit_model_uni <- cfa(model_uni, data = data, ordered = TRUE,</pre>
                     estimator = "WLSMV", std.lv=TRUE)
# Get fit measures
fitMeasures(fit_model_uni, fit.measures = c("chisq", "df", "cfi", "rmsea",
                                            "rmsea.ci.lower", "rmsea.ci.upper"))
##
                               df
                                                          rmsea rmsea.ci.lower
            chisq
                                             cfi
##
          283.290
                         170.000
                                           0.968
                                                           0.073
                                                                          0.058
## rmsea.ci.upper
##
            0.087
\# chisq(df=170) = 170.000, CFI = 0.968, RMSEA = 0.073 [0.058, 0.087]
# Model was not rejected
# Get summary with standardized loadings
summary(fit_model_uni, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 13 iterations
##
##
     Estimator
                                                      DWLS
##
     Optimization method
                                                    NLMINB
##
     Number of model parameters
                                                       100
##
##
                                                      Used
                                                                  Total
##
     Number of observations
                                                       127
                                                                    202
##
## Model Test User Model:
##
                                                  Standard
                                                                 Scaled
##
     Test Statistic
                                                   283.290
                                                                327.569
##
     Degrees of freedom
                                                        170
                                                                    170
                                                     0.000
                                                                  0.000
##
     P-value (Chi-square)
     Scaling correction factor
                                                                  1.164
##
##
     Shift parameter
                                                                 84.098
##
       simple second-order correction
##
## Model Test Baseline Model:
##
                                                  3742.984
                                                               1405.901
##
     Test statistic
                                                                    190
##
     Degrees of freedom
                                                        190
##
     P-value
                                                     0.000
                                                                  0.000
##
     Scaling correction factor
                                                                  2.922
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                     0.968
                                                                  0.870
```

| ##<br>##                                                 | ,                                                                                                                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                            | 0.8                                                                                                                                                             | 355                                                                                                                                                             |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ##                                                       |                                                                                                                                                                                                                                                              |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                 | 68                                                                                                                                                              |  |
| ##<br>##                                                 | Robust Tucker-Le                                                                                                                                                                                                                                             | wis Index                                                                                                                                                       | (TLI)                                                                                                                |                                                                                                                                                                                                     |                                                                                                                            | 0.6                                                                                                                                                             | 529                                                                                                                                                             |  |
|                                                          | Root Mean Square E                                                                                                                                                                                                                                           | Error of Ap                                                                                                                                                     | proximati                                                                                                            | on:                                                                                                                                                                                                 |                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                 |  |
| ##                                                       |                                                                                                                                                                                                                                                              |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                 |  |
| ##<br>##                                                 | RMSEA 90 Percent confi                                                                                                                                                                                                                                       | 0.073<br>0.058                                                                                                                                                  | 0.0                                                                                                                  |                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                 |  |
| ##                                                       |                                                                                                                                                                                                                                                              |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     | 0.087                                                                                                                      |                                                                                                                                                                 | . –                                                                                                                                                             |  |
| ##                                                       | P-value H_0: RMS                                                                                                                                                                                                                                             | SEA <= 0.05                                                                                                                                                     | 0                                                                                                                    | -                                                                                                                                                                                                   | 0.009                                                                                                                      | 0.0                                                                                                                                                             | 000                                                                                                                                                             |  |
| ##                                                       | P-value H_0: RMS                                                                                                                                                                                                                                             | SEA >= 0.08                                                                                                                                                     | 0                                                                                                                    |                                                                                                                                                                                                     | 0.215                                                                                                                      | 0.7                                                                                                                                                             | 759                                                                                                                                                             |  |
| ##                                                       | Dalas - DMCCA                                                                                                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                            | 0 1                                                                                                                                                             | 22                                                                                                                                                              |  |
| ##<br>##                                                 | Robust RMSEA 90 Percent confi                                                                                                                                                                                                                                | dence into                                                                                                                                                      | rwal - lo                                                                                                            | uer                                                                                                                                                                                                 |                                                                                                                            | 0.1<br>0.1                                                                                                                                                      |                                                                                                                                                                 |  |
| ##                                                       |                                                                                                                                                                                                                                                              |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                            | 0.1                                                                                                                                                             |                                                                                                                                                                 |  |
| ##                                                       |                                                                                                                                                                                                                                                              |                                                                                                                                                                 | _                                                                                                                    | P                                                                                                                                                                                                   |                                                                                                                            | 0.0                                                                                                                                                             |                                                                                                                                                                 |  |
| ##                                                       | P-value H_0: Rob                                                                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                            | 1.0                                                                                                                                                             |                                                                                                                                                                 |  |
| ##                                                       |                                                                                                                                                                                                                                                              |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                 |  |
|                                                          | Standardized Root                                                                                                                                                                                                                                            | Mean Squar                                                                                                                                                      | e Residua                                                                                                            | 1:                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                 |  |
| ##                                                       | CDMD                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     | 0 007                                                                                                                      | 0.0                                                                                                                                                             | 07                                                                                                                                                              |  |
| ##<br>##                                                 | SRMR                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     | 0.097                                                                                                                      | 0.0                                                                                                                                                             | 197                                                                                                                                                             |  |
|                                                          | Parameter Estimate                                                                                                                                                                                                                                           | es:                                                                                                                                                             |                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                 |  |
| ##                                                       |                                                                                                                                                                                                                                                              |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                 |  |
| ##                                                       | Parameterization                                                                                                                                                                                                                                             | l                                                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                     | Delta                                                                                                                      |                                                                                                                                                                 |                                                                                                                                                                 |  |
| ##                                                       | Standard errors                                                                                                                                                                                                                                              |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     | bust.sem                                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                 |  |
| ##                                                       | ## Information Expected                                                                                                                                                                                                                                      |                                                                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                 |  |
|                                                          |                                                                                                                                                                                                                                                              | - 4                                                                                                                                                             |                                                                                                                      |                                                                                                                                                                                                     | =                                                                                                                          |                                                                                                                                                                 |                                                                                                                                                                 |  |
| ##                                                       |                                                                                                                                                                                                                                                              | rated (h1)                                                                                                                                                      | model                                                                                                                |                                                                                                                                                                                                     | ructured                                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                 |  |
| ##<br>##                                                 | Information satu                                                                                                                                                                                                                                             | rated (h1)                                                                                                                                                      | model                                                                                                                |                                                                                                                                                                                                     | =                                                                                                                          |                                                                                                                                                                 |                                                                                                                                                                 |  |
| ##<br>##                                                 |                                                                                                                                                                                                                                                              |                                                                                                                                                                 |                                                                                                                      | Unst                                                                                                                                                                                                | ructured                                                                                                                   | Std.lv                                                                                                                                                          | Std.all                                                                                                                                                         |  |
| ##<br>##<br>##                                           | Information satu                                                                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                      | Unst                                                                                                                                                                                                | =                                                                                                                          | Std.lv                                                                                                                                                          | Std.all                                                                                                                                                         |  |
| ##<br>##<br>##<br>##                                     | Information satu                                                                                                                                                                                                                                             | Estimate 0.407                                                                                                                                                  | Std.Err                                                                                                              | Unst<br>z-value                                                                                                                                                                                     | ructured P(> z )                                                                                                           | 0.407                                                                                                                                                           | 0.407                                                                                                                                                           |  |
| ##<br>##<br>##<br>##<br>##<br>##                         | <pre>Information satu Latent Variables:   general =~    i1   i2</pre>                                                                                                                                                                                        | Estimate<br>0.407<br>0.687                                                                                                                                      | Std.Err<br>0.070<br>0.055                                                                                            | Unst<br>z-value<br>5.803<br>12.515                                                                                                                                                                  | P(> z ) 0.000 0.000                                                                                                        | 0.407<br>0.687                                                                                                                                                  | 0.407<br>0.687                                                                                                                                                  |  |
| ##<br>##<br>##<br>##<br>##<br>##                         | <pre>Information satu Latent Variables:   general =~    i1    i2    i3</pre>                                                                                                                                                                                 | Estimate<br>0.407<br>0.687<br>0.449                                                                                                                             | Std.Err<br>0.070<br>0.055<br>0.070                                                                                   | Z-value<br>5.803<br>12.515<br>6.422                                                                                                                                                                 | P(> z )  0.000 0.000 0.000                                                                                                 | 0.407<br>0.687<br>0.449                                                                                                                                         | 0.407<br>0.687<br>0.449                                                                                                                                         |  |
| ##<br>##<br>##<br>##<br>##<br>##                         | <pre>Information satu Latent Variables:  general =~    i1    i2    i3    i4</pre>                                                                                                                                                                            | Estimate<br>0.407<br>0.687<br>0.449<br>0.272                                                                                                                    | Std.Err<br>0.070<br>0.055<br>0.070<br>0.085                                                                          | Z-value<br>5.803<br>12.515<br>6.422<br>3.205                                                                                                                                                        | P(> z )  0.000 0.000 0.000 0.000 0.001                                                                                     | 0.407<br>0.687<br>0.449<br>0.272                                                                                                                                | 0.407<br>0.687<br>0.449<br>0.272                                                                                                                                |  |
| ##<br>##<br>##<br>##<br>##<br>##                         | <pre>Information satu Latent Variables:  general =~    i1    i2    i3    i4    i5</pre>                                                                                                                                                                      | 0.407<br>0.687<br>0.449<br>0.272<br>0.585                                                                                                                       | Std.Err<br>0.070<br>0.055<br>0.070<br>0.085<br>0.059                                                                 | Unst<br>z-value<br>5.803<br>12.515<br>6.422<br>3.205<br>9.907                                                                                                                                       | P(> z )  0.000 0.000 0.000 0.001 0.000                                                                                     | 0.407<br>0.687<br>0.449<br>0.272<br>0.585                                                                                                                       | 0.407<br>0.687<br>0.449<br>0.272<br>0.585                                                                                                                       |  |
| ##<br>##<br>##<br>##<br>##<br>##<br>##                   | <pre>Information satu Latent Variables:  general =~    i1    i2    i3    i4    i5    i6</pre>                                                                                                                                                                | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638                                                                                                              | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056                                                                         | Unst<br>z-value<br>5.803<br>12.515<br>6.422<br>3.205<br>9.907<br>11.499                                                                                                                             | P(> z )  0.000 0.000 0.000 0.001 0.000 0.000                                                                               | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638                                                                                                              | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638                                                                                                              |  |
| ##<br>##<br>##<br>##<br>##<br>##                         | <pre>Information satu Latent Variables:  general =~    i1    i2    i3    i4    i5</pre>                                                                                                                                                                      | 0.407<br>0.687<br>0.449<br>0.272<br>0.585                                                                                                                       | Std.Err<br>0.070<br>0.055<br>0.070<br>0.085<br>0.059                                                                 | Unst<br>z-value<br>5.803<br>12.515<br>6.422<br>3.205<br>9.907                                                                                                                                       | P(> z )  0.000 0.000 0.000 0.001 0.000                                                                                     | 0.407<br>0.687<br>0.449<br>0.272<br>0.585                                                                                                                       | 0.407<br>0.687<br>0.449<br>0.272<br>0.585                                                                                                                       |  |
| ##<br>##<br>##<br>##<br>##<br>##<br>##                   | <pre>Information satu Latent Variables:  general =~    i1    i2    i3    i4    i5    i6    i7</pre>                                                                                                                                                          | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537                                                                                                     | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056 0.064                                                                   | Unst<br>z-value<br>5.803<br>12.515<br>6.422<br>3.205<br>9.907<br>11.499<br>8.416                                                                                                                    | P(> z )  0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000                                                                   | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537                                                                                                     | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537                                                                                                     |  |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                   | <pre>Information satu Latent Variables:  general =~    i1    i2    i3    i4    i5    i6    i7    i8</pre>                                                                                                                                                    | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519                                                                          | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056 0.064 0.082 0.052 0.067                                                 | Z-value  5.803 12.515 6.422 3.205 9.907 11.499 8.416 3.749 12.273 7.699                                                                                                                             | P(> z )  0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000                                                       | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519                                                                          | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519                                                                          |  |
| ##<br>##<br>##<br>##<br>##<br>##<br>##<br>##<br>##       | <pre>Information satu Latent Variables:  general =~    i1    i2    i3    i4    i5    i6    i7    i8    i9    i10    i11</pre>                                                                                                                                | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559                                                                 | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056 0.064 0.082 0.052 0.067 0.061                                           | z-value 5.803 12.515 6.422 3.205 9.907 11.499 8.416 3.749 12.273 7.699 9.105                                                                                                                        | P(> z )  0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                 | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559                                                                 | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559                                                                 |  |
| ##<br>##<br>##<br>##<br>##<br>##<br>##<br>##<br>##       | <pre>Information satu Latent Variables:  general =~    i1    i2    i3    i4    i5    i6    i7    i8    i9    i10    i11    i12</pre>                                                                                                                         | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559                                                                 | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056 0.064 0.082 0.052 0.067 0.061 0.091                                     | Unst<br>z-value<br>5.803<br>12.515<br>6.422<br>3.205<br>9.907<br>11.499<br>8.416<br>3.749<br>12.273<br>7.699<br>9.105<br>-0.207                                                                     | P(> z )  0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                     | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019                                                       | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019                                                       |  |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                   | <pre>Information satu Latent Variables:  general =~     i1     i2     i3     i4     i5     i6     i7     i8     i9     i10     i11     i12     i13</pre>                                                                                                     | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522                                              | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056 0.064 0.082 0.052 0.067 0.061 0.091 0.067                               | Unst<br>z-value<br>5.803<br>12.515<br>6.422<br>3.205<br>9.907<br>11.499<br>8.416<br>3.749<br>12.273<br>7.699<br>9.105<br>-0.207<br>7.794                                                            | P(> z )  0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                     | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522                                              | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522                                              |  |
| ##<br>##<br>##<br>##<br>##<br>##<br>##<br>##<br>##<br>## | <pre>Information satu Latent Variables:  general =~     i1     i2     i3     i4     i5     i6     i7     i8     i9     i10     i11     i12     i13     i14</pre>                                                                                             | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538                                     | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056 0.064 0.082 0.052 0.067 0.061 0.091 0.067 0.080                         | Unst<br>z-value<br>5.803<br>12.515<br>6.422<br>3.205<br>9.907<br>11.499<br>8.416<br>3.749<br>12.273<br>7.699<br>9.105<br>-0.207<br>7.794<br>6.737                                                   | P(> z )  0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                         | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538                                     | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538                                     |  |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                   | <pre>Information satu Latent Variables:  general =~     i1     i2     i3     i4     i5     i6     i7     i8     i9     i10     i11     i12     i13     i14     i15</pre>                                                                                     | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716                            | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056 0.064 0.082 0.052 0.067 0.061 0.091 0.067 0.080 0.045                   | Z-value  5.803 12.515 6.422 3.205 9.907 11.499 8.416 3.749 12.273 7.699 9.105 -0.207 7.794 6.737 15.849                                                                                             | P(> z )  0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                         | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716                            | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716                            |  |
| ######################################                   | <pre>Information satu Latent Variables:  general =~     i1     i2     i3     i4     i5     i6     i7     i8     i9     i10     i11     i12     i13     i14</pre>                                                                                             | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538                                     | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056 0.064 0.082 0.052 0.067 0.061 0.091 0.067 0.080                         | Unst<br>z-value<br>5.803<br>12.515<br>6.422<br>3.205<br>9.907<br>11.499<br>8.416<br>3.749<br>12.273<br>7.699<br>9.105<br>-0.207<br>7.794<br>6.737                                                   | P(> z )  0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                         | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538                                     | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538                                     |  |
| ######################################                   | <pre>Information satu Latent Variables:  general =~     i1     i2     i3     i4     i5     i6     i7     i8     i9     i10     i11     i12     i13     i14     i15     i6     i7     i8     i9     i10     i11     i12     i13     i14     i15     i16</pre> | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716<br>0.703                   | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056 0.064 0.082 0.052 0.067 0.061 0.091 0.067 0.080 0.045 0.049             | Z-value  5.803 12.515 6.422 3.205 9.907 11.499 8.416 3.749 12.273 7.699 9.105 -0.207 7.794 6.737 15.849 14.335                                                                                      | P(> z )  0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                   | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716<br>0.703                   | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716<br>0.703                   |  |
| ######################################                   | <pre>Information satu Latent Variables:  general =~     i1     i2     i3     i4     i5     i6     i7     i8     i9     i10     i11     i12     i13     i14     i15     i16     i17     i18     i19</pre>                                                     | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716<br>0.703<br>0.726<br>0.771 | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056 0.064 0.082 0.067 0.061 0.091 0.067 0.080 0.045 0.049 0.046 0.044 0.046 | Unst<br>z-value<br>5.803<br>12.515<br>6.422<br>3.205<br>9.907<br>11.499<br>8.416<br>3.749<br>12.273<br>7.699<br>9.105<br>-0.207<br>7.794<br>6.737<br>15.849<br>14.335<br>15.812<br>17.430<br>16.025 | P(> z )  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716<br>0.703<br>0.726<br>0.771 | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716<br>0.703<br>0.726<br>0.771 |  |
| ######################################                   | <pre>Information satu Latent Variables:  general =~     i1     i2     i3     i4     i5     i6     i7     i8     i9     i10     i11     i12     i13     i14     i15     i16     i17     i18</pre>                                                             | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716<br>0.703<br>0.726<br>0.771 | Std.Err  0.070 0.055 0.070 0.085 0.059 0.056 0.064 0.082 0.052 0.067 0.061 0.091 0.067 0.080 0.045 0.049 0.046 0.044 | Unst<br>z-value<br>5.803<br>12.515<br>6.422<br>3.205<br>9.907<br>11.499<br>8.416<br>3.749<br>12.273<br>7.699<br>9.105<br>-0.207<br>7.794<br>6.737<br>15.849<br>14.335<br>15.812<br>17.430           | P(> z )  0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000       | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716<br>0.703<br>0.726<br>0.771 | 0.407<br>0.687<br>0.449<br>0.272<br>0.585<br>0.638<br>0.537<br>0.308<br>0.636<br>0.519<br>0.559<br>-0.019<br>0.522<br>0.538<br>0.716<br>0.703<br>0.726<br>0.771 |  |

| ## | Thresholds:    |                 |                |                 |         |                 |                 |
|----|----------------|-----------------|----------------|-----------------|---------|-----------------|-----------------|
| ## |                | Estimate        | Std.Err        | z-value         | P(> z ) | Std.lv          | Std.all         |
| ## | i1 t1          | -1.362          | 0.159          | -8.577          | 0.000   | -1.362          | -1.362          |
| ## | i1 t2          | -0.973          | 0.133          | -7.306          | 0.000   | -0.973          | -0.973          |
| ## | i1 t3          | -0.030          | 0.112          | -0.265          | 0.791   | -0.030          | -0.030          |
| ## | i1 t4          | 0.527           | 0.117          | 4.483           | 0.000   | 0.527           | 0.527           |
| ## | i2 t1          | -1.758          | 0.204          | -8.632          | 0.000   | -1.758          | -1.758          |
| ## | i2 t2          | -1.597          | 0.182          | -8.754          | 0.000   | -1.597          | -1.597          |
| ## | i2 t3          | -0.825          | 0.127          | -6.515          | 0.000   | -0.825          | -0.825          |
| ## | i2 t4          | 0.109           | 0.112          | 0.972           | 0.331   | 0.109           | 0.109           |
| ## | i3 t1          | -1.469          | 0.169          | -8.712          | 0.000   | -1.469          | -1.469          |
| ## | i3 t2          | -1.184          | 0.145          | -8.149          | 0.000   | -1.184          | -1.184          |
| ## | i3 t3          | -0.270          | 0.113          | -2.384          | 0.017   | -0.270          | -0.270          |
| ## | i3 t4          | 0.527           | 0.117          | 4.483           | 0.000   | 0.527           | 0.527           |
| ## | i4 t1          | -1.414          | 0.163          | -8.654          | 0.000   | -1.414          | -1.414          |
| ## | i4 t2          | -0.973          | 0.133          | -7.306          | 0.000   | -0.973          | -0.973          |
| ## | i4 t3          | -0.644          | 0.120          | -5.344          | 0.000   | -0.644          | -0.644          |
| ## | i4 t4          | -0.030          | 0.112          | -0.265          | 0.791   | -0.030          | -0.030          |
| ## | i5 t1          | -1.362          | 0.159          | -8.577          | 0.000   | -1.362          | -1.362          |
| ## | i5 t2          | -1.225          | 0.148          | -8.270          | 0.000   | -1.225          | -1.225          |
| ## | i5 t3          | -0.416          | 0.115          | -3.613          | 0.000   | -0.416          | -0.416          |
| ## | i5 t4          | 0.460           | 0.116          | 3.962           | 0.000   | 0.460           | 0.460           |
| ## | i6 t1          | -1.984          | 0.243          | -8.172          | 0.000   | -1.984          | -1.984          |
| ## | i6 t2          | -1.414          | 0.163          | -8.654          | 0.000   | -1.414          | -1.414          |
| ## | i6 t3          | -0.527          | 0.117          | -4.483          | 0.000   | -0.527          | -0.527          |
| ## | i6 t4          | 0.290           | 0.113          | 2.560           | 0.010   | 0.290           | 0.290           |
| ## | i7 t1          | -1.672          | 0.192          | -8.720          | 0.000   | -1.672          | -1.672          |
| ## | i7 t2          | -1.146          | 0.143          | -8.021          | 0.000   | -1.146          | -1.146          |
| ## | i7 t3          | -0.229          | 0.113          | -2.031          | 0.042   | -0.229          | -0.229          |
| ## | i7 t4          | 0.596           | 0.119          | 5.001           | 0.000   | 0.596           | 0.596           |
| ## | i8 t1          | -1.672          | 0.192          | -8.720          | 0.000   | -1.672          | -1.672          |
| ## | i8 t2          | -1.184          | 0.145          | -8.149          | 0.000   | -1.184          | -1.184          |
| ## | i8 t3          | -0.353          | 0.114          | -3.087          | 0.002   | -0.353          | -0.353          |
| ## | i8 t4          | 0.353           | 0.114          | 3.087           | 0.002   | 0.353           | 0.353           |
| ## | i9 t1          | -1.225          | 0.148          | -8.270          | 0.000   | -1.225          | -1.225          |
| ## | i9 t2          | -0.797          | 0.126          | -6.351          | 0.000   | -0.797          | -0.797          |
| ## | i9 t3<br>i9 t4 | -0.249          | 0.113          | -2.207          | 0.027   | -0.249          | -0.249          |
| ## | i10 t1         | 0.573<br>-1.758 | 0.119<br>0.204 | 4.829<br>-8.632 | 0.000   | 0.573<br>-1.758 | 0.573<br>-1.758 |
| ## | i10 t1         | -1.314          | 0.155          | -8.486          | 0.000   | -1.314          | -1.314          |
| ## | i10 t2         | -0.353          | 0.114          | -3.087          | 0.002   | -0.353          | -0.353          |
| ## | i10 t4         | 0.527           | 0.117          | 4.483           | 0.000   | 0.527           | 0.527           |
| ## | i11 t1         | -1.859          | 0.220          | -8.465          | 0.000   | -1.859          | -1.859          |
| ## | i11 t2         | -1.268          | 0.151          | -8.383          | 0.000   | -1.268          | -1.268          |
| ## | i11 t3         | -0.249          | 0.113          | -2.207          | 0.027   | -0.249          | -0.249          |
| ## | i11 t4         | 0.504           | 0.117          | 4.310           | 0.000   | 0.504           | 0.504           |
| ## | i12 t1         | -0.693          | 0.122          | -5.683          | 0.000   | -0.693          | -0.693          |
| ## | i12 t2         | -0.290          | 0.113          | -2.560          | 0.010   | -0.290          | -0.290          |
| ## | i12 t3         | 0.049           | 0.112          | 0.442           | 0.659   | 0.049           | 0.049           |
| ## | i12 t4         | 0.504           | 0.117          | 4.310           | 0.000   | 0.504           | 0.504           |
| ## | i13 t1         | -1.597          | 0.182          | -8.754          | 0.000   | -1.597          | -1.597          |
| ## | i13 t2         | -1.146          | 0.143          | -8.021          | 0.000   | -1.146          | -1.146          |
| ## | i13 t3         | -0.374          | 0.115          | -3.262          | 0.001   | -0.374          | -0.374          |
| ## | i13 t4         | 0.395           | 0.115          | 3.438           | 0.001   | 0.395           | 0.395           |

| ## | i14 t1     | -2.151   | 0.281   | -7.657  | 0.000   | -2.151 | -2.151  |
|----|------------|----------|---------|---------|---------|--------|---------|
| ## | i14 t2     | -1.530   | 0.175   | -8.748  | 0.000   | -1.530 | -1.530  |
| ## | i14 t3     | -0.882   | 0.129   | -6.837  | 0.000   | -0.882 | -0.882  |
| ## | i14 t4     | -0.069   | 0.112   | -0.619  | 0.536   | -0.069 | -0.069  |
| ## | i15 t1     | -2.415   | 0.364   | -6.629  | 0.000   | -2.415 | -2.415  |
| ## | i15 t2     | -1.758   | 0.204   | -8.632  | 0.000   | -1.758 | -1.758  |
| ## | i15 t3     | -0.825   | 0.127   | -6.515  | 0.000   | -0.825 | -0.825  |
| ## | i15 t4     | 0.270    | 0.113   | 2.384   | 0.017   | 0.270  | 0.270   |
| ## | i16 t1     | -1.984   | 0.243   | -8.172  | 0.000   | -1.984 | -1.984  |
| ## | i16 t2     | -1.314   | 0.155   | -8.486  | 0.000   | -1.314 | -1.314  |
| ## | i16 t3     | -0.596   | 0.119   | -5.001  | 0.000   | -0.596 | -0.596  |
| ## | i16 t4     | 0.438    | 0.116   | 3.787   | 0.000   | 0.438  | 0.438   |
| ## | i17 t1     | -1.859   | 0.220   | -8.465  | 0.000   | -1.859 | -1.859  |
| ## | i17 t2     | -1.469   | 0.169   | -8.712  | 0.000   | -1.469 | -1.469  |
| ## | i17 t3     | -0.825   | 0.127   | -6.515  | 0.000   | -0.825 | -0.825  |
| ## | i17 t4     | -0.010   | 0.112   | -0.088  | 0.930   | -0.010 | -0.010  |
| ## | i18 t1     | -1.984   | 0.243   | -8.172  | 0.000   | -1.984 | -1.984  |
| ## | i18 t2     | -1.362   | 0.159   | -8.577  | 0.000   | -1.362 | -1.362  |
| ## | i18 t3     | -0.825   | 0.127   | -6.515  | 0.000   | -0.825 | -0.825  |
| ## | i18 t4     | -0.069   | 0.112   | -0.619  | 0.536   | -0.069 | -0.069  |
| ## | i19 t1     | -1.859   | 0.220   | -8.465  | 0.000   | -1.859 | -1.859  |
| ## | i19 t2     | -1.672   | 0.192   | -8.720  | 0.000   | -1.672 | -1.672  |
| ## | i19 t3     | -0.693   | 0.122   | -5.683  | 0.000   | -0.693 | -0.693  |
| ## | i19 t4     | 0.169    | 0.112   | 1.502   | 0.133   | 0.169  | 0.169   |
| ## | i20 t1     | -1.859   | 0.220   | -8.465  | 0.000   | -1.859 | -1.859  |
| ## | i20 t2     | -1.469   | 0.169   | -8.712  | 0.000   | -1.469 | -1.469  |
| ## | i20 t3     | -0.527   | 0.117   | -4.483  | 0.000   | -0.527 | -0.527  |
| ## | i20 t4     | 0.290    | 0.113   | 2.560   | 0.010   | 0.290  | 0.290   |
| ## |            |          |         |         |         |        |         |
| ## | Variances: |          |         |         |         |        |         |
| ## |            | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
| ## | .i1        | 0.835    |         |         |         | 0.835  | 0.835   |
| ## | .i2        | 0.528    |         |         |         | 0.528  | 0.528   |
| ## | .i3        | 0.799    |         |         |         | 0.799  | 0.799   |
| ## | .i4        | 0.926    |         |         |         | 0.926  | 0.926   |
| ## | .i5        | 0.658    |         |         |         | 0.658  | 0.658   |
| ## | .i6        | 0.592    |         |         |         | 0.592  | 0.592   |
| ## | .i7        | 0.712    |         |         |         | 0.712  | 0.712   |
| ## | .i8        | 0.905    |         |         |         | 0.905  | 0.905   |
| ## | .i9        | 0.596    |         |         |         | 0.596  | 0.596   |
| ## | .i10       | 0.731    |         |         |         | 0.731  | 0.731   |
| ## | .i11       | 0.688    |         |         |         | 0.688  | 0.688   |
| ## | .i12       | 1.000    |         |         |         | 1.000  | 1.000   |
| ## | .i13       | 0.728    |         |         |         | 0.728  | 0.728   |
| ## | .i14       | 0.711    |         |         |         | 0.711  | 0.711   |
| ## | .i15       | 0.488    |         |         |         | 0.488  | 0.488   |
| ## | .i16       | 0.506    |         |         |         | 0.506  | 0.506   |
| ## | .i17       | 0.473    |         |         |         | 0.473  | 0.473   |
| ## | .i18       | 0.406    |         |         |         | 0.406  | 0.406   |
| ## | .i19       | 0.452    |         |         |         | 0.452  | 0.452   |
| ## | .i20       | 0.701    |         |         |         | 0.701  | 0.701   |
| ## | general    | 1.000    |         |         |         | 1.000  | 1.000   |
|    |            |          |         |         |         |        |         |

```
# Descriptive statistics of factor loadings:
loadings_model_uni <- standardizedsolution(fit_model_uni, type = "std.all")</pre>
# Selecting based on row indices
print(round(loadings_model_uni[1:20, ] %>% select(est.std) %>%
        summarise(mean = mean(abs(est.std)), sd = sd(abs(est.std)),
                  min = min(abs(est.std)), max = max(abs(est.std))), 2))
    mean
            sd min max
## 1 0.54 0.19 0.02 0.77
# Mean = 0.51, SD = 0.18, min = 0.02 and max = 0.72
# Reliability
print(round(reliability(fit_model_uni), 2))
## For constructs with categorical indicators, Zumbo et al.'s (2007) "ordinal alpha" is calculated in a
##
            general
## alpha
                0.85
## alpha.ord
                0.89
## omega
               0.86
               0.86
## omega2
## omega3
               0.87
## avevar
               0.33
source("comp_reliability.R")
comp_reliability(fit_model_uni)
## Warning: Use of .data in tidyselect expressions was deprecated in tidyselect 1.2.0.
## i Please use '"lhs"' instead of '.data$lhs'
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
## Warning: Use of .data in tidyselect expressions was deprecated in tidyselect 1.2.0.
## i Please use '"est" instead of '.data$est'
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
## Warning: Use of .data in tidyselect expressions was deprecated in tidyselect 1.2.0.
## i Please use '"op" instead of '.data$op'
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
## # A tibble: 1 x 2
            composite_reliability_ec
     lhs
##
     <chr>>
                                <dbl>
## 1 general
                                0.745
```



#### Two Correlated Factors Model

```
# Define the two-factor model
model_2f <- '
cog = i3 + i4 + i5 + i7 + i8 + i9 + i12 + i14 + i15 + i20
com =~ i1 + i2 + i6 + i10 + i11 + i13 + i16 + i17 + i18 + i19
# Fit the model
fit_model_2f <- cfa(model_2f, data = data, ordered = TRUE,</pre>
                    estimator = "WLSMV", std.lv=TRUE)
# Get fit measures
fitMeasures(fit_model_2f, fit.measures = c("chisq", "df", "cfi", "rmsea",
                                            "rmsea.ci.lower", "rmsea.ci.upper"))
##
            chisq
                              df
                                             cfi
                                                          rmsea rmsea.ci.lower
          267.859
##
                         169.000
                                           0.972
                                                          0.068
                                                                          0.052
```

```
## rmsea.ci.upper
##
            0.083
\# chisq(df=169) = 267.859, CFI = 0.972, RMSEA = 0.058 [0.052, 0.083]
# Model was not rejected
# Get summary
summary(fit_model_2f, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 20 iterations
##
##
     Estimator
                                                       DWLS
##
     Optimization method
                                                     NLMINB
     Number of model parameters
                                                        101
##
##
##
                                                                  Total
                                                       Used
##
     Number of observations
                                                        127
                                                                    202
##
## Model Test User Model:
##
                                                  Standard
                                                                 Scaled
##
     Test Statistic
                                                    267.859
                                                                314.998
##
     Degrees of freedom
                                                        169
                                                                    169
     P-value (Chi-square)
                                                     0.000
                                                                  0.000
##
     Scaling correction factor
                                                                  1.155
##
     Shift parameter
                                                                 83.036
##
##
       simple second-order correction
##
## Model Test Baseline Model:
##
                                                  3742.984
                                                               1405.901
##
     Test statistic
##
     Degrees of freedom
                                                        190
                                                                    190
##
     P-value
                                                     0.000
                                                                  0.000
##
     Scaling correction factor
                                                                  2.922
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                     0.972
                                                                  0.880
##
     Tucker-Lewis Index (TLI)
                                                     0.969
                                                                  0.865
##
     Robust Comparative Fit Index (CFI)
                                                                  0.685
##
     Robust Tucker-Lewis Index (TLI)
##
                                                                  0.645
##
## Root Mean Square Error of Approximation:
##
     RMSEA
                                                     0.068
                                                                  0.083
##
##
     90 Percent confidence interval - lower
                                                     0.052
                                                                  0.069
##
     90 Percent confidence interval - upper
                                                     0.083
                                                                  0.097
     P-value H_0: RMSEA <= 0.050
                                                     0.031
##
                                                                  0.000
##
     P-value H_0: RMSEA >= 0.080
                                                     0.100
                                                                  0.638
##
##
     Robust RMSEA
                                                                  0.130
##
     90 Percent confidence interval - lower
                                                                  0.116
##
     90 Percent confidence interval - upper
                                                                  0.144
```

0.000

##

P-value H\_0: Robust RMSEA <= 0.050

```
##
     P-value H_0: Robust RMSEA >= 0.080
                                                                    1.000
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                       0.094
                                                                    0.094
##
## Parameter Estimates:
##
##
     Parameterization
                                                       Delta
##
     Standard errors
                                                  Robust.sem
##
     Information
                                                    Expected
##
     Information saturated (h1) model
                                               Unstructured
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
##
     cog =~
##
                          0.476
                                    0.073
                                             6.522
                                                       0.000
                                                                          0.476
       i3
                                                                 0.476
                                             3.352
##
       i4
                          0.297
                                    0.089
                                                       0.001
                                                                 0.297
                                                                          0.297
##
       i5
                          0.617
                                    0.062
                                             9.989
                                                       0.000
                                                                 0.617
                                                                          0.617
##
       i7
                          0.571
                                    0.065
                                             8.791
                                                       0.000
                                                                 0.571
                                                                          0.571
##
       i8
                          0.323
                                    0.085
                                             3.794
                                                       0.000
                                                                 0.323
                                                                          0.323
##
       i9
                          0.677
                                    0.053
                                            12.754
                                                       0.000
                                                                 0.677
                                                                          0.677
##
                         -0.015
                                    0.094
                                            -0.159
                                                       0.874
                                                                         -0.015
       i12
                                                                -0.015
##
       i14
                          0.566
                                    0.082
                                             6.936
                                                       0.000
                                                                 0.566
                                                                          0.566
##
       i15
                          0.762
                                    0.045
                                            16.933
                                                       0.000
                                                                 0.762
                                                                          0.762
##
       i20
                          0.581
                                    0.068
                                             8.575
                                                       0.000
                                                                 0.581
                                                                          0.581
##
     com =~
                          0.417
                                    0.071
                                             5.857
                                                       0.000
                                                                          0.417
##
       i1
                                                                 0.417
##
       i2
                          0.697
                                    0.056
                                            12.510
                                                       0.000
                                                                 0.697
                                                                          0.697
                                    0.056
##
       i6
                          0.651
                                            11.632
                                                       0.000
                                                                 0.651
                                                                          0.651
##
       i10
                          0.530
                                    0.068
                                             7.794
                                                       0.000
                                                                 0.530
                                                                          0.530
##
       i11
                          0.570
                                    0.061
                                             9.285
                                                       0.000
                                                                 0.570
                                                                          0.570
                                    0.067
##
       i13
                          0.533
                                             7.918
                                                       0.000
                                                                 0.533
                                                                          0.533
##
                          0.718
                                    0.049
       i16
                                            14.774
                                                       0.000
                                                                 0.718
                                                                          0.718
##
       i17
                          0.742
                                    0.045
                                            16.329
                                                       0.000
                                                                 0.742
                                                                          0.742
##
       i18
                                    0.043
                                            17.982
                                                       0.000
                          0.782
                                                                 0.782
                                                                          0.782
##
       i19
                          0.754
                                    0.046
                                            16.542
                                                       0.000
                                                                 0.754
                                                                          0.754
##
## Covariances:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
##
     cog ~~
##
                          0.865
                                    0.038
                                            22.969
                                                       0.000
                                                                0.865
                                                                          0.865
       COM
##
## Thresholds:
##
                                Std.Err
                       Estimate
                                          z-value P(>|z|)
                                                               Std.lv
                                                                        Std.all
##
       i3|t1
                         -1.469
                                    0.169
                                            -8.712
                                                       0.000
                                                                         -1.469
                                                               -1.469
##
       i3|t2
                         -1.184
                                    0.145
                                            -8.149
                                                       0.000
                                                               -1.184
                                                                         -1.184
##
                         -0.270
                                    0.113
                                            -2.384
       i3|t3
                                                       0.017
                                                               -0.270
                                                                         -0.270
##
       i3|t4
                          0.527
                                    0.117
                                             4.483
                                                       0.000
                                                                0.527
                                                                          0.527
##
       i4|t1
                         -1.414
                                    0.163
                                            -8.654
                                                       0.000
                                                               -1.414
                                                                         -1.414
##
                         -0.973
                                    0.133
                                                       0.000
       i4|t2
                                            -7.306
                                                               -0.973
                                                                         -0.973
                                    0.120
##
       i4|t3
                         -0.644
                                            -5.344
                                                       0.000
                                                               -0.644
                                                                         -0.644
##
       i4|t4
                         -0.030
                                    0.112
                                            -0.265
                                                       0.791
                                                               -0.030
                                                                         -0.030
##
       i5|t1
                         -1.362
                                    0.159
                                            -8.577
                                                       0.000
                                                               -1.362
                                                                         -1.362
```

| ## | i5 t2  | -1.225 | 0.148 | -8.270 | 0.000 | -1.225 | -1.225 |
|----|--------|--------|-------|--------|-------|--------|--------|
| ## | i5 t3  | -0.416 | 0.115 | -3.613 | 0.000 | -0.416 | -0.416 |
| ## | i5 t4  | 0.460  | 0.116 | 3.962  | 0.000 | 0.460  | 0.460  |
| ## | i7 t1  | -1.672 | 0.192 | -8.720 | 0.000 | -1.672 | -1.672 |
| ## | i7 t2  | -1.146 | 0.143 | -8.021 | 0.000 | -1.146 | -1.146 |
| ## | i7 t3  | -0.229 | 0.113 | -2.031 | 0.042 | -0.229 | -0.229 |
| ## | i7 t4  | 0.596  | 0.119 | 5.001  | 0.000 | 0.596  | 0.596  |
| ## | i8 t1  | -1.672 | 0.192 | -8.720 | 0.000 | -1.672 | -1.672 |
| ## | i8 t2  | -1.184 | 0.145 | -8.149 | 0.000 | -1.184 | -1.184 |
| ## | i8 t3  | -0.353 | 0.114 | -3.087 | 0.002 | -0.353 | -0.353 |
| ## | i8 t4  | 0.353  | 0.114 | 3.087  | 0.002 | 0.353  | 0.353  |
| ## | i9 t1  | -1.225 | 0.148 | -8.270 | 0.000 | -1.225 | -1.225 |
| ## | i9 t2  | -0.797 | 0.126 | -6.351 | 0.000 | -0.797 | -0.797 |
| ## | i9 t3  | -0.249 | 0.113 | -2.207 | 0.027 | -0.249 | -0.249 |
| ## | i9 t4  | 0.573  | 0.119 | 4.829  | 0.000 | 0.573  | 0.573  |
| ## | i12 t1 | -0.693 | 0.122 | -5.683 | 0.000 | -0.693 | -0.693 |
| ## | i12 t2 | -0.290 | 0.113 | -2.560 | 0.010 | -0.290 | -0.290 |
| ## | i12 t3 | 0.049  | 0.112 | 0.442  | 0.659 | 0.049  | 0.049  |
| ## | i12 t4 | 0.504  | 0.117 | 4.310  | 0.000 | 0.504  | 0.504  |
| ## | i14 t1 | -2.151 | 0.281 | -7.657 | 0.000 | -2.151 | -2.151 |
| ## | i14 t2 | -1.530 | 0.175 | -8.748 | 0.000 | -1.530 | -1.530 |
| ## | i14 t3 | -0.882 | 0.129 | -6.837 | 0.000 | -0.882 | -0.882 |
| ## | i14 t4 | -0.069 | 0.112 | -0.619 | 0.536 | -0.069 | -0.069 |
| ## | i15 t1 | -2.415 | 0.364 | -6.629 | 0.000 | -2.415 | -2.415 |
| ## | i15 t2 | -1.758 | 0.204 | -8.632 | 0.000 | -1.758 | -1.758 |
| ## | i15 t3 | -0.825 | 0.127 | -6.515 | 0.000 | -0.825 | -0.825 |
| ## | i15 t4 | 0.270  | 0.113 | 2.384  | 0.017 | 0.270  | 0.270  |
| ## | i20 t1 | -1.859 | 0.220 | -8.465 | 0.000 | -1.859 | -1.859 |
| ## | i20 t2 | -1.469 | 0.169 | -8.712 | 0.000 | -1.469 | -1.469 |
| ## | i20 t3 | -0.527 | 0.117 | -4.483 | 0.000 | -0.527 | -0.527 |
| ## | i20 t4 | 0.290  | 0.113 | 2.560  | 0.010 | 0.290  | 0.290  |
| ## | i1 t1  | -1.362 | 0.159 | -8.577 | 0.000 | -1.362 | -1.362 |
| ## | i1 t2  | -0.973 | 0.133 | -7.306 | 0.000 | -0.973 | -0.973 |
| ## | i1 t3  | -0.030 | 0.112 | -0.265 | 0.791 | -0.030 | -0.030 |
| ## | i1 t4  | 0.527  | 0.117 | 4.483  | 0.000 | 0.527  | 0.527  |
| ## | i2 t1  | -1.758 | 0.204 | -8.632 | 0.000 | -1.758 | -1.758 |
| ## | i2 t2  | -1.597 | 0.182 | -8.754 | 0.000 | -1.597 | -1.597 |
| ## | i2 t3  | -0.825 | 0.127 | -6.515 | 0.000 | -0.825 | -0.825 |
| ## | i2 t4  | 0.109  | 0.112 | 0.972  | 0.331 | 0.109  | 0.109  |
| ## | i6 t1  | -1.984 | 0.243 | -8.172 | 0.000 | -1.984 | -1.984 |
| ## | i6 t2  | -1.414 | 0.163 | -8.654 | 0.000 | -1.414 | -1.414 |
| ## | i6 t3  | -0.527 | 0.117 | -4.483 | 0.000 | -0.527 | -0.527 |
| ## | i6 t4  | 0.290  | 0.113 | 2.560  | 0.010 | 0.290  | 0.290  |
| ## | i10 t1 | -1.758 | 0.204 | -8.632 | 0.000 | -1.758 | -1.758 |
| ## | i10 t2 | -1.314 | 0.155 | -8.486 | 0.000 | -1.314 | -1.314 |
| ## | i10 t3 | -0.353 | 0.114 | -3.087 | 0.002 | -0.353 | -0.353 |
| ## | i10 t4 | 0.527  | 0.117 | 4.483  | 0.000 | 0.527  | 0.527  |
| ## | i11 t1 | -1.859 | 0.220 | -8.465 | 0.000 | -1.859 | -1.859 |
| ## | i11 t2 | -1.268 | 0.151 | -8.383 | 0.000 | -1.268 | -1.268 |
| ## | i11 t3 | -0.249 | 0.113 | -2.207 | 0.027 | -0.249 | -0.249 |
| ## | i11 t4 | 0.504  | 0.117 | 4.310  | 0.000 | 0.504  | 0.504  |
| ## | i13 t1 | -1.597 | 0.182 | -8.754 | 0.000 | -1.597 | -1.597 |
| ## | i13 t2 | -1.146 | 0.143 | -8.021 | 0.000 | -1.146 | -1.146 |
| ## | i13 t3 | -0.374 | 0.115 | -3.262 | 0.001 | -0.374 | -0.374 |
|    |        |        |       |        |       |        |        |

```
i13|t4
                          0.395
                                   0.115
                                                      0.001
                                                                0.395
##
                                             3.438
                                                                         0.395
##
       i16|t1
                         -1.984
                                   0.243
                                            -8.172
                                                      0.000
                                                               -1.984
                                                                        -1.984
       i16|t2
                         -1.314
                                   0.155
                                            -8.486
                                                      0.000
##
                                                               -1.314
                                                                        -1.314
##
                         -0.596
                                   0.119
                                            -5.001
                                                      0.000
                                                               -0.596
                                                                        -0.596
       i16|t3
##
       i16|t4
                          0.438
                                   0.116
                                             3.787
                                                      0.000
                                                                0.438
                                                                         0.438
##
       i17|t1
                         -1.859
                                   0.220
                                           -8.465
                                                      0.000
                                                               -1.859
                                                                        -1.859
##
       i17|t2
                         -1.469
                                   0.169
                                            -8.712
                                                      0.000
                                                               -1.469
                                                                        -1.469
##
       i17|t3
                         -0.825
                                   0.127
                                            -6.515
                                                      0.000
                                                               -0.825
                                                                        -0.825
##
       i17|t4
                         -0.010
                                   0.112
                                            -0.088
                                                      0.930
                                                               -0.010
                                                                        -0.010
##
                         -1.984
                                   0.243
                                            -8.172
                                                      0.000
                                                               -1.984
                                                                        -1.984
       i18|t1
##
       i18|t2
                         -1.362
                                   0.159
                                            -8.577
                                                      0.000
                                                               -1.362
                                                                        -1.362
##
                                   0.127
       i18|t3
                         -0.825
                                            -6.515
                                                      0.000
                                                               -0.825
                                                                        -0.825
##
                                   0.112
       i18|t4
                         -0.069
                                            -0.619
                                                      0.536
                                                               -0.069
                                                                        -0.069
                                   0.220
##
       i19|t1
                         -1.859
                                           -8.465
                                                      0.000
                                                               -1.859
                                                                        -1.859
##
       i19|t2
                         -1.672
                                   0.192
                                            -8.720
                                                      0.000
                                                               -1.672
                                                                        -1.672
##
       i19|t3
                         -0.693
                                   0.122
                                            -5.683
                                                      0.000
                                                               -0.693
                                                                        -0.693
##
       i19|t4
                          0.169
                                   0.112
                                             1.502
                                                      0.133
                                                                0.169
                                                                         0.169
##
## Variances:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
##
      .i3
                          0.773
                                                                0.773
                                                                         0.773
##
      .i4
                          0.912
                                                                0.912
                                                                         0.912
##
                          0.619
                                                                0.619
                                                                         0.619
      .i5
##
      .i7
                          0.674
                                                                0.674
                                                                         0.674
##
      .i8
                          0.896
                                                                0.896
                                                                         0.896
##
      .i9
                          0.541
                                                                0.541
                                                                         0.541
##
      .i12
                          1.000
                                                                1.000
                                                                         1.000
##
      .i14
                          0.680
                                                                0.680
                                                                         0.680
##
      .i15
                          0.419
                                                                0.419
                                                                         0.419
##
      .i20
                          0.663
                                                                0.663
                                                                         0.663
##
      .i1
                          0.826
                                                                0.826
                                                                         0.826
##
      .i2
                          0.514
                                                                0.514
                                                                         0.514
##
      .i6
                          0.576
                                                                0.576
                                                                         0.576
##
      .i10
                          0.720
                                                                0.720
                                                                          0.720
##
      .i11
                          0.675
                                                                0.675
                                                                          0.675
##
      .i13
                          0.716
                                                                0.716
                                                                         0.716
##
      .i16
                          0.485
                                                                0.485
                                                                         0.485
##
      .i17
                          0.450
                                                                0.450
                                                                         0.450
##
      .i18
                          0.388
                                                                0.388
                                                                         0.388
##
      .i19
                          0.432
                                                                0.432
                                                                         0.432
##
                          1.000
                                                                1.000
                                                                          1.000
       cog
##
       com
                          1.000
                                                                1.000
                                                                          1.000
# Descriptive statistics of factor loadings:
loadings_fit_model_2f <- standardizedsolution(fit_model_2f, type = "std.all")</pre>
# Selecting based on row indices
print("Cog Factor Loadings Summary:")
```

```
## [1] "Cog Factor Loadings Summary:"
```

```
print(round(loadings_fit_model_2f[1:10, ] %>% select(est.std) %>%
    summarise(mean = mean(abs(est.std)), sd = sd(abs(est.std)),
    min = min(abs(est.std)), max = max(abs(est.std))), 2))
```

```
sd min max
    mean
## 1 0.49 0.22 0.01 0.76
# Loadings for cog: Mean = 0.49, SD = 0.16, min = 0.3 and max = 0.68
# Selecting based on row indices
print("Com Factor Loadings Summary:")
## [1] "Com Factor Loadings Summary:"
print(round(loadings_fit_model_2f[11:20, ] %>% select(est.std) %>%
        summarise(mean = mean(abs(est.std)), sd = sd(abs(est.std)),
                  min = min(abs(est.std)), max = max(abs(est.std))), 2))
   mean
          sd min max
## 1 0.64 0.12 0.42 0.78
# Loadings for com: Mean = 0.53, SD = 0.22, min = 0.01 and max = 0.76
# Reliability
print(round(reliability(fit_model_2f), 2))
## For constructs with categorical indicators, Zumbo et al.'s (2007) "ordinal alpha" is calculated in a
             cog com
## alpha
            0.72 0.83
## alpha.ord 0.77 0.87
## omega
            0.69 0.84
## omega2
            0.69 0.84
## omega3
            0.65 0.85
## avevar
            0.28 0.42
comp_reliability(fit_model_2f)
## # A tibble: 2 x 2
##
    lhs
           composite_reliability_ec
##
     <chr>
                              <dbl>
## 1 cog
                              0.523
## 2 com
                              0.702
\# Cog: alpha = 0.72, alpha ord. = 0.77, omega McDonald = 0.69, comp. reliability = 0.52
\# Com: alpha = 0.83, alpha ord. = 0.87, omega McDonald = 0.84, comp. reliability = 0.70
# Plot the model
semPaths(fit_model_2f, "std", layout="circle", residuals=FALSE, sizeLat=14, sizeLat2=14, edge.color="black", e
         mar=c(2.5, 2.5, 2.5, 2.5), esize=7, curvePivot = TRUE, intercepts=FALSE, thresholds = FALSE,
         nCharNodes=0,sizeMan=8, edge.label.position=0.5
```



# Bifactor Model (Orthogonal Factors)

```
# Define the bifactor model
model_bifactor <- '</pre>
cog = i3 + i4 + i5 + i7 + i8 + i9 + i12 + i14 + i15 + i20
com =~ i1 + i2 + i6 + i10 + i11 + i13 + i16 + i17 + i18 + i19
general =~ i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 +
    i11 + i12 + i13 + i14 + i15 + i16 + i17 + i18 + i19 + i20
# Fit the bifactor model with orthogonal factors
fit_model_bifactor <- cfa(model_bifactor, data = data, ordered = TRUE, orthogonal = TRUE,</pre>
                           estimator = "WLSMV", std.lv=TRUE)
fitMeasures(fit_model_bifactor, fit.measures = c("chisq","df","cfi", "rmsea",
                                                   "rmsea.ci.lower", "rmsea.ci.upper"))
##
                               df
                                                          rmsea rmsea.ci.lower
            chisq
                                             cfi
                         150.000
                                                           0.045
                                                                          0.020
##
          188.811
                                           0.989
## rmsea.ci.upper
            0.064
##
```

```
\# chisq(df=150) = 188.811, CFI = 0.989, RMSEA = 0.045 [0.020, 0.064]
# Model was not rejected
# Get summary
summary(fit_model_bifactor, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 42 iterations
##
##
     Estimator
                                                       DWLS
##
     Optimization method
                                                    NLMINB
     Number of model parameters
                                                        120
##
##
                                                                  Total
##
                                                       Used
##
     Number of observations
                                                        127
                                                                    202
##
## Model Test User Model:
                                                  Standard
                                                                 Scaled
##
##
     Test Statistic
                                                    188.811
                                                                264.567
##
    Degrees of freedom
                                                        150
                                                                    150
     P-value (Chi-square)
                                                     0.017
                                                                  0.000
##
##
     Scaling correction factor
                                                                  0.956
##
     Shift parameter
                                                                 66.963
##
       simple second-order correction
##
## Model Test Baseline Model:
##
                                                               1405.901
                                                  3742.984
##
    Test statistic
##
     Degrees of freedom
                                                       190
                                                                    190
##
     P-value
                                                     0.000
                                                                  0.000
##
     Scaling correction factor
                                                                  2.922
##
## User Model versus Baseline Model:
##
     Comparative Fit Index (CFI)
                                                     0.989
                                                                  0.906
##
##
     Tucker-Lewis Index (TLI)
                                                     0.986
                                                                  0.881
##
     Robust Comparative Fit Index (CFI)
                                                                  0.751
##
##
     Robust Tucker-Lewis Index (TLI)
                                                                  0.684
##
## Root Mean Square Error of Approximation:
##
##
    RMSEA
                                                     0.045
                                                                  0.078
##
     90 Percent confidence interval - lower
                                                     0.020
                                                                  0.062
##
     90 Percent confidence interval - upper
                                                     0.064
                                                                  0.093
##
     P-value H_0: RMSEA <= 0.050
                                                     0.637
                                                                  0.003
##
     P-value H_0: RMSEA >= 0.080
                                                     0.001
                                                                  0.421
##
     Robust RMSEA
##
                                                                  0.123
     90 Percent confidence interval - lower
##
                                                                  0.108
##
     90 Percent confidence interval - upper
                                                                  0.138
##
     P-value H_0: Robust RMSEA <= 0.050
                                                                  0.000
     P-value H_0: Robust RMSEA >= 0.080
##
                                                                  1.000
```

##

```
## Standardized Root Mean Square Residual:
##
                                                         0.078
##
     SRMR
                                                                      0.078
##
## Parameter Estimates:
##
                                                         Delta
##
     Parameterization
##
     Standard errors
                                                    Robust.sem
##
     Information
                                                      Expected
##
     Information saturated (h1) model
                                                 Unstructured
##
##
  Latent Variables:
##
                        Estimate Std.Err z-value P(>|z|)
                                                                  Std.lv
                                                                          Std.all
##
     cog =~
       i3
##
                           0.133
                                     0.103
                                               1.298
                                                         0.194
                                                                             0.133
                                                                   0.133
##
       i4
                           0.442
                                     0.122
                                               3.634
                                                         0.000
                                                                   0.442
                                                                             0.442
##
                          -0.280
                                     0.099
       i5
                                              -2.825
                                                         0.005
                                                                  -0.280
                                                                            -0.280
##
       i7
                           0.183
                                     0.092
                                               1.978
                                                         0.048
                                                                   0.183
                                                                             0.183
##
                           0.584
                                     0.101
                                               5.801
       i8
                                                         0.000
                                                                   0.584
                                                                             0.584
##
       i9
                           0.014
                                     0.106
                                               0.135
                                                         0.893
                                                                   0.014
                                                                             0.014
##
       i12
                           0.467
                                     0.125
                                               3.738
                                                         0.000
                                                                   0.467
                                                                             0.467
##
       i14
                           0.424
                                     0.106
                                               3.988
                                                         0.000
                                                                   0.424
                                                                             0.424
##
                           0.012
                                     0.100
                                                                   0.012
       i15
                                               0.116
                                                         0.907
                                                                             0.012
                           0.143
                                     0.113
                                               1.263
                                                         0.207
                                                                             0.143
##
       i20
                                                                   0.143
##
     com = ~
##
       i1
                           0.236
                                     0.121
                                               1.944
                                                         0.052
                                                                   0.236
                                                                             0.236
##
       i2
                          -0.010
                                     0.113
                                              -0.092
                                                         0.927
                                                                  -0.010
                                                                            -0.010
                                               1.800
##
       i6
                           0.198
                                     0.110
                                                         0.072
                                                                   0.198
                                                                             0.198
##
                           0.284
                                     0.093
                                               3.049
                                                         0.002
                                                                   0.284
       i10
                                                                             0.284
##
       i11
                           0.274
                                     0.112
                                               2.442
                                                         0.015
                                                                   0.274
                                                                             0.274
##
       i13
                           0.475
                                     0.088
                                               5.392
                                                         0.000
                                                                   0.475
                                                                             0.475
##
       i16
                           0.363
                                     0.077
                                               4.715
                                                         0.000
                                                                   0.363
                                                                             0.363
##
       i17
                           0.675
                                     0.067
                                              10.144
                                                         0.000
                                                                   0.675
                                                                             0.675
##
                           0.137
                                     0.089
                                               1.548
                                                         0.122
       i18
                                                                   0.137
                                                                             0.137
##
       i19
                           0.403
                                     0.082
                                               4.883
                                                         0.000
                                                                   0.403
                                                                             0.403
##
     general =~
##
       i1
                           0.357
                                     0.078
                                               4.545
                                                         0.000
                                                                   0.357
                                                                             0.357
##
       i2
                           0.724
                                     0.056
                                              12.868
                                                         0.000
                                                                   0.724
                                                                             0.724
##
       i3
                           0.464
                                     0.071
                                               6.527
                                                         0.000
                                                                   0.464
                                                                             0.464
##
       i4
                           0.262
                                     0.090
                                               2.914
                                                         0.004
                                                                   0.262
                                                                             0.262
##
                                     0.058
                                                         0.000
       i5
                           0.644
                                              11.024
                                                                   0.644
                                                                             0.644
##
       i6
                           0.608
                                     0.064
                                               9.567
                                                         0.000
                                                                   0.608
                                                                             0.608
##
       i7
                           0.553
                                     0.066
                                               8.375
                                                         0.000
                                                                   0.553
                                                                             0.553
##
       i8
                           0.280
                                     0.090
                                               3.101
                                                         0.002
                                                                   0.280
                                                                             0.280
##
                                     0.053
       i9
                           0.670
                                              12.528
                                                         0.000
                                                                   0.670
                                                                             0.670
##
                           0.454
                                     0.073
                                               6.220
                                                         0.000
       i10
                                                                   0.454
                                                                             0.454
##
       i11
                           0.500
                                     0.072
                                               6.895
                                                         0.000
                                                                   0.500
                                                                             0.500
                                     0.098
##
       i12
                          -0.061
                                              -0.621
                                                         0.534
                                                                  -0.061
                                                                            -0.061
##
       i13
                           0.407
                                     0.077
                                               5.256
                                                         0.000
                                                                   0.407
                                                                             0.407
##
       i14
                           0.522
                                     0.089
                                               5.868
                                                         0.000
                                                                   0.522
                                                                             0.522
##
                           0.760
                                     0.046
                                                         0.000
       i15
                                              16.568
                                                                   0.760
                                                                             0.760
                                     0.059
##
       i16
                           0.627
                                              10.543
                                                         0.000
                                                                   0.627
                                                                             0.627
##
       i17
                           0.559
                                     0.066
                                               8.470
                                                         0.000
                                                                   0.559
                                                                             0.559
##
       i18
                           0.767
                                     0.053
                                              14.402
                                                         0.000
                                                                   0.767
                                                                             0.767
```

| ##       | i19              | 0.640            | 0.063          | 10.102           | 0.000     | 0.640            | 0.640            |
|----------|------------------|------------------|----------------|------------------|-----------|------------------|------------------|
| ##       | i20              | 0.566            | 0.069          | 8.228            | 0.000     | 0.566            | 0.566            |
| ##       |                  |                  |                |                  |           |                  |                  |
| ##       | Covariances:     |                  |                |                  |           |                  |                  |
| ##       |                  | Estimate         | Std.Err        | z-value          | P(> z )   | Std.lv           | Std.all          |
| ##       | cog ~~           |                  |                |                  |           |                  |                  |
| ##       | com              | 0.000            |                |                  |           | 0.000            | 0.000            |
| ##       | general          | 0.000            |                |                  |           | 0.000            | 0.000            |
| ##       | com ~~           |                  |                |                  |           |                  |                  |
| ##       | general          | 0.000            |                |                  |           | 0.000            | 0.000            |
| ##       | m, , , , ,       |                  |                |                  |           |                  |                  |
| ##       | Thresholds:      | Patrimata.       | O+ 1 E         |                  | D(> I= I) | O+ 1 1           | O+ 1 - 11        |
| ##       | : 2 l ± 1        | Estimate         | Std.Err        | z-value          | P(> z )   | Std.lv           |                  |
| ##<br>## | i3 t1<br>i3 t2   | -1.469<br>-1.184 | 0.169<br>0.145 | -8.712<br>-8.149 | 0.000     | -1.469<br>-1.184 | -1.469<br>-1.184 |
| ##       | i3 t2            | -0.270           | 0.143          | -2.384           | 0.000     | -0.270           | -0.270           |
| ##       | i3 t4            | 0.527            | 0.117          | 4.483            | 0.000     | 0.527            | 0.527            |
| ##       | i4 t1            | -1.414           | 0.163          | -8.654           | 0.000     | -1.414           | -1.414           |
| ##       | i4 t2            | -0.973           | 0.133          | -7.306           | 0.000     | -0.973           | -0.973           |
| ##       | i4 t3            | -0.644           | 0.120          | -5.344           | 0.000     | -0.644           | -0.644           |
| ##       | i4 t4            | -0.030           | 0.112          | -0.265           | 0.791     | -0.030           | -0.030           |
| ##       | i5 t1            | -1.362           | 0.159          | -8.577           | 0.000     | -1.362           | -1.362           |
| ##       | i5 t2            | -1.225           | 0.148          | -8.270           | 0.000     | -1.225           | -1.225           |
| ##       | i5 t3            | -0.416           | 0.115          | -3.613           | 0.000     | -0.416           | -0.416           |
| ##       | i5 t4            | 0.460            | 0.116          | 3.962            | 0.000     | 0.460            | 0.460            |
| ##       | i7 t1            | -1.672           | 0.192          | -8.720           | 0.000     | -1.672           | -1.672           |
| ##       | i7 t2            | -1.146           | 0.143          | -8.021           | 0.000     | -1.146           | -1.146           |
| ##       | i7 t3            | -0.229           | 0.113          | -2.031           | 0.042     | -0.229           | -0.229           |
| ##       | i7 t4            | 0.596            | 0.119          | 5.001            | 0.000     | 0.596            | 0.596            |
| ##       | i8 t1            | -1.672           | 0.192          | -8.720           | 0.000     | -1.672           | -1.672           |
| ##       | i8 t2            | -1.184           | 0.145          | -8.149           | 0.000     | -1.184           | -1.184           |
| ##       | i8 t3            | -0.353           | 0.114          | -3.087           | 0.002     | -0.353           | -0.353           |
| ##<br>## | i8 t4<br>i9 t1   | 0.353<br>-1.225  | 0.114<br>0.148 | 3.087<br>-8.270  | 0.002     | 0.353<br>-1.225  | 0.353<br>-1.225  |
| ##       | i9 t1            | -0.797           | 0.146          | -6.351           | 0.000     | -0.797           | -0.797           |
| ##       | i9 t3            | -0.249           | 0.113          | -2.207           | 0.027     | -0.249           | -0.249           |
| ##       | i9 t4            | 0.573            | 0.119          | 4.829            | 0.000     | 0.573            | 0.573            |
| ##       | i12 t1           | -0.693           | 0.122          | -5.683           | 0.000     | -0.693           | -0.693           |
| ##       | i12 t2           | -0.290           | 0.113          | -2.560           | 0.010     | -0.290           | -0.290           |
| ##       | i12 t3           | 0.049            | 0.112          | 0.442            | 0.659     | 0.049            | 0.049            |
| ##       | i12 t4           | 0.504            | 0.117          | 4.310            | 0.000     | 0.504            | 0.504            |
| ##       | i14 t1           | -2.151           | 0.281          | -7.657           | 0.000     | -2.151           | -2.151           |
| ##       | i14 t2           | -1.530           | 0.175          | -8.748           | 0.000     | -1.530           | -1.530           |
| ##       | i14 t3           | -0.882           | 0.129          | -6.837           | 0.000     | -0.882           | -0.882           |
| ##       | i14 t4           | -0.069           | 0.112          | -0.619           | 0.536     | -0.069           | -0.069           |
| ##       | i15 t1           | -2.415           | 0.364          | -6.629           | 0.000     | -2.415           | -2.415           |
| ##       | i15 t2           | -1.758           | 0.204          | -8.632           | 0.000     | -1.758           | -1.758           |
| ##       | i15 t3           | -0.825           | 0.127          | -6.515           | 0.000     | -0.825           | -0.825           |
| ##       | i15 t4           | 0.270            | 0.113          | 2.384            | 0.017     | 0.270            | 0.270            |
| ##<br>## | i20 t1<br>i20 t2 | -1.859<br>-1.469 | 0.220<br>0.169 | -8.465<br>-8.712 | 0.000     | -1.859<br>-1.469 | -1.859<br>-1.469 |
| ##       | i20 t2           | -0.527           | 0.109          | -6.712<br>-4.483 | 0.000     | -1.469<br>-0.527 | -0.527           |
| ##       | i20 t3           | 0.290            | 0.117          | 2.560            | 0.010     | 0.290            | 0.327            |
| ##       | i1 t1            | -1.362           | 0.159          | -8.577           | 0.000     | -1.362           | -1.362           |
|          |                  | 2                |                |                  |           |                  |                  |

| ## | i1 t2      | -0.973   | 0.133   | -7.306  | 0.000   | -0.973 | -0.973  |
|----|------------|----------|---------|---------|---------|--------|---------|
| ## | i1 t3      | -0.030   | 0.112   | -0.265  | 0.791   | -0.030 | -0.030  |
| ## | i1 t4      | 0.527    | 0.117   | 4.483   | 0.000   | 0.527  | 0.527   |
| ## | i2 t1      | -1.758   | 0.204   | -8.632  | 0.000   | -1.758 | -1.758  |
| ## | i2 t2      | -1.597   | 0.182   | -8.754  | 0.000   | -1.597 | -1.597  |
| ## | i2 t3      | -0.825   | 0.127   | -6.515  | 0.000   | -0.825 | -0.825  |
| ## | i2 t4      | 0.109    | 0.112   | 0.972   | 0.331   | 0.109  | 0.109   |
| ## | i6 t1      | -1.984   | 0.243   | -8.172  | 0.000   | -1.984 | -1.984  |
| ## | i6 t2      | -1.414   | 0.163   | -8.654  | 0.000   | -1.414 | -1.414  |
| ## | i6 t3      | -0.527   | 0.117   | -4.483  | 0.000   | -0.527 | -0.527  |
| ## | i6 t4      | 0.290    | 0.113   | 2.560   | 0.010   | 0.290  | 0.290   |
| ## | i10 t1     | -1.758   | 0.204   | -8.632  | 0.000   | -1.758 | -1.758  |
| ## | i10 t2     | -1.314   | 0.155   | -8.486  | 0.000   | -1.314 | -1.314  |
| ## | i10 t3     | -0.353   | 0.114   | -3.087  | 0.002   | -0.353 | -0.353  |
| ## | i10 t4     | 0.527    | 0.117   | 4.483   | 0.000   | 0.527  | 0.527   |
| ## | i11 t1     | -1.859   | 0.220   | -8.465  | 0.000   | -1.859 | -1.859  |
| ## | i11 t2     | -1.268   | 0.151   | -8.383  | 0.000   | -1.268 | -1.268  |
| ## | i11 t3     | -0.249   | 0.113   | -2.207  | 0.027   | -0.249 | -0.249  |
| ## | i11 t4     | 0.504    | 0.117   | 4.310   | 0.000   | 0.504  | 0.504   |
| ## | i13 t1     | -1.597   | 0.182   | -8.754  | 0.000   | -1.597 | -1.597  |
| ## | i13 t2     | -1.146   | 0.143   | -8.021  | 0.000   | -1.146 | -1.146  |
| ## | i13 t3     | -0.374   | 0.115   | -3.262  | 0.001   | -0.374 | -0.374  |
| ## | i13 t4     | 0.395    | 0.115   | 3.438   | 0.001   | 0.395  | 0.395   |
| ## | i16 t1     | -1.984   | 0.243   | -8.172  | 0.000   | -1.984 | -1.984  |
| ## | i16 t2     | -1.314   | 0.155   | -8.486  | 0.000   | -1.314 | -1.314  |
| ## | i16 t3     | -0.596   | 0.119   | -5.001  | 0.000   | -0.596 | -0.596  |
| ## | i16 t4     | 0.438    | 0.116   | 3.787   | 0.000   | 0.438  | 0.438   |
| ## | i17 t1     | -1.859   | 0.220   | -8.465  | 0.000   | -1.859 | -1.859  |
| ## | i17 t2     | -1.469   | 0.169   | -8.712  | 0.000   | -1.469 | -1.469  |
| ## | i17 t3     | -0.825   | 0.127   | -6.515  | 0.000   | -0.825 | -0.825  |
| ## | i17 t4     | -0.010   | 0.112   | -0.088  | 0.930   | -0.010 | -0.010  |
| ## | i18 t1     | -1.984   | 0.243   | -8.172  | 0.000   | -1.984 | -1.984  |
| ## | i18 t2     | -1.362   | 0.159   | -8.577  | 0.000   | -1.362 | -1.362  |
| ## | i18 t3     | -0.825   | 0.127   | -6.515  | 0.000   | -0.825 | -0.825  |
| ## | i18 t4     | -0.069   | 0.112   | -0.619  | 0.536   | -0.069 | -0.069  |
| ## | i19 t1     | -1.859   | 0.220   | -8.465  | 0.000   | -1.859 | -1.859  |
| ## | i19 t2     | -1.672   | 0.192   | -8.720  | 0.000   | -1.672 | -1.672  |
| ## | i19 t3     | -0.693   | 0.122   | -5.683  | 0.000   | -0.693 | -0.693  |
| ## | i19 t4     | 0.169    | 0.112   | 1.502   | 0.133   | 0.169  | 0.169   |
| ## |            |          |         |         |         |        |         |
| ## | Variances: |          |         |         |         |        |         |
| ## |            | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
| ## | .i3        | 0.767    |         |         |         | 0.767  | 0.767   |
| ## | .i4        | 0.736    |         |         |         | 0.736  | 0.736   |
| ## | .i5        | 0.506    |         |         |         | 0.506  | 0.506   |
| ## | .i7        | 0.661    |         |         |         | 0.661  | 0.661   |
| ## | .i8        | 0.581    |         |         |         | 0.581  | 0.581   |
| ## | .i9        | 0.551    |         |         |         | 0.551  | 0.551   |
| ## | .i12       | 0.778    |         |         |         | 0.778  | 0.778   |
| ## | .i14       | 0.547    |         |         |         | 0.547  | 0.547   |
| ## | .i15       | 0.422    |         |         |         | 0.422  | 0.422   |
| ## | .i20       | 0.659    |         |         |         | 0.659  | 0.659   |
| ## | .i1        | 0.817    |         |         |         | 0.817  | 0.817   |
| ## | .i2        | 0.476    |         |         |         | 0.476  | 0.476   |
|    |            |          |         |         |         |        |         |

```
##
      .i6
                         0.591
                                                              0.591
                                                                       0.591
##
                         0.713
                                                                       0.713
      .i10
                                                              0.713
                         0.675
                                                                       0.675
##
      .i11
                                                              0.675
##
      .i13
                         0.609
                                                              0.609
                                                                       0.609
##
      .i16
                         0.475
                                                              0.475
                                                                       0.475
##
                         0.232
      .i17
                                                              0.232
                                                                       0.232
                         0.392
                                                                       0.392
##
      .i18
                                                              0.392
##
      .i19
                         0.429
                                                              0.429
                                                                       0.429
##
                         1.000
                                                              1.000
                                                                       1.000
       cog
##
       com
                         1.000
                                                              1.000
                                                                       1.000
##
       general
                         1.000
                                                              1.000
                                                                       1.000
# Descriptive statistics of factor loadings:
loadings_fit_model_bifactor <- standardizedsolution(fit_model_bifactor, type = "std.all")</pre>
# Selecting based on row indices
print(round(loadings_fit_model_bifactor[1:10, ] %>% select(est.std) %>%
        summarise(mean = mean(abs(est.std)), sd = sd(abs(est.std)),
                  min = min(abs(est.std)), max = max(abs(est.std))), 2))
##
    mean sd min max
## 1 0.27 0.2 0.01 0.58
# Loadings for cog: Mean = 0.27, SD = 0.2, min = 0.01 and max = 0.58
# Selecting based on row indices
print(round(loadings_fit_model_bifactor[11:20, ] %>% select(est.std) %>%
        summarise(mean = mean(abs(est.std)), sd = sd(abs(est.std)),
                  min = min(abs(est.std)), max = max(abs(est.std))), 2))
    mean
            sd min max
## 1 0.31 0.19 0.01 0.67
# Loadings for com: Mean = 0.31, SD = 0.19, min = 0.01 and max = 0.67
# Selecting based on row indices
print(round(loadings_fit_model_bifactor[21:40, ] %>% select(est.std) %>%
        summarise(mean = mean(abs(est.std)), sd = sd(abs(est.std)),
                  min = min(abs(est.std)), max = max(abs(est.std))), 2))
    mean
            sd min max
## 1 0.52 0.18 0.06 0.77
# Loadings for general: Mean = 0.52, SD = 0.18, min = 0.06 and max = 0.77
# Reliability of the latent variables in the model
print(round(reliability(fit_model_bifactor), 2))
## For constructs with categorical indicators, Zumbo et al.'s (2007) "ordinal alpha" is calculated in a
```

##

cog com general

```
## alpha
             0.72 0.83
                          0.85
## alpha.ord 0.77 0.87
                          0.89
## omega
             0.30 0.39
                          0.76
             0.15 0.19
                          0.77
## omega2
## omega3
             0.15 0.19
                          0.78
## avevar
               NA
                            NA
                    NA
```

## comp\_reliability(fit\_model\_bifactor)



Constrained Bifactor Model (Orthogonal Factors)

```
# Define the constrained bifactor model (fixing negative loadings to 0)
model bifactor <- '</pre>
cog = i3 + i4 + 0*i5 + i7 + i8 + i9 + i12 + i14 + i15 + i20
com = 11 + 0*i2 + i6 + i10 + i11 + i13 + i16 + i17 + i18 + i19
general =~ i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 +
   i11 + 0*i12 + i13 + i14 + i15 + i16 + i17 + i18 + i19 + i20
# Fit the constrained bifactor model
fit_model_bifactor <- cfa(model_bifactor, data = data, ordered = TRUE, orthogonal = TRUE,
                                       estimator = "WLSMV", std.lv=TRUE)
# Get fit measures
fitMeasures(fit_model_bifactor, fit.measures = c("chisq", "df", "cfi", "rmsea",
##
            chisq
                              df
                                             cfi
                                                          rmsea rmsea.ci.lower
##
          199.014
                         153.000
                                           0.987
                                                          0.049
                                                                          0.027
## rmsea.ci.upper
##
            0.067
\# chisq(df=153) = 199.014, CFI = 0.987, RMSEA = 0.045 [0.020, 0.064]
# Get summary
summary(fit_model_bifactor, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 40 iterations
##
##
    Estimator
                                                      DWI.S
##
     Optimization method
                                                    NLMINB
##
     Number of model parameters
                                                       117
##
                                                                 Total
##
                                                      Used
##
     Number of observations
                                                       127
                                                                    202
##
## Model Test User Model:
##
                                                  Standard
                                                                 Scaled
     Test Statistic
                                                   199.014
                                                                256.157
##
##
    Degrees of freedom
                                                       153
                                                                    153
     P-value (Chi-square)
                                                     0.007
                                                                 0.000
##
##
     Scaling correction factor
                                                                 1.090
##
     Shift parameter
                                                                 73.497
       simple second-order correction
##
##
## Model Test Baseline Model:
##
     Test statistic
                                                  3742.984
                                                               1405.901
##
##
    Degrees of freedom
                                                       190
                                                                    190
##
     P-value
                                                     0.000
                                                                  0.000
##
     Scaling correction factor
                                                                  2.922
##
```

```
## User Model versus Baseline Model:
##
     Comparative Fit Index (CFI)
                                                    0.987
##
                                                                0.915
     Tucker-Lewis Index (TLI)
                                                    0.984
                                                                0.895
##
##
##
    Robust Comparative Fit Index (CFI)
                                                                0.747
##
     Robust Tucker-Lewis Index (TLI)
                                                                0.685
##
## Root Mean Square Error of Approximation:
##
##
    RMSEA
                                                    0.049
                                                                0.073
##
     90 Percent confidence interval - lower
                                                    0.027
                                                                0.057
##
     90 Percent confidence interval - upper
                                                    0.067
                                                                0.089
##
     P-value H_0: RMSEA <= 0.050
                                                    0.525
                                                                0.010
##
     P-value H_0: RMSEA >= 0.080
                                                    0.001
                                                                0.242
##
##
    Robust RMSEA
                                                                0.123
##
     90 Percent confidence interval - lower
                                                                0.108
##
     90 Percent confidence interval - upper
                                                                0.138
    P-value H_0: Robust RMSEA <= 0.050
##
                                                                0.000
##
    P-value H_0: Robust RMSEA >= 0.080
                                                                1.000
## Standardized Root Mean Square Residual:
##
                                                    0.080
##
     SRMR
                                                                0.080
## Parameter Estimates:
##
##
     Parameterization
                                                    Delta
     Standard errors
##
                                               Robust.sem
##
     Information
                                                 Expected
##
     Information saturated (h1) model
                                             Unstructured
##
## Latent Variables:
##
                      Estimate Std.Err z-value P(>|z|) Std.lv Std.all
##
     cog =~
##
      i3
                         0.141
                                  0.107
                                           1.321
                                                    0.187
                                                             0.141
                                                                      0.141
##
       i4
                         0.465
                                  0.131
                                           3.544
                                                    0.000
                                                             0.465
                                                                      0.465
##
       i5
                         0.000
                                                             0.000
                                                                      0.000
##
                                                             0.155
      i7
                         0.155
                                  0.096
                                           1.609
                                                    0.108
                                                                      0.155
##
      i8
                         0.611
                                  0.119
                                           5.114
                                                    0.000
                                                             0.611
                                                                      0.611
##
      i9
                        -0.001
                                  0.105 -0.005
                                                    0.996 -0.001
                                                                    -0.001
##
      i12
                         0.396
                                  0.144
                                           2.747
                                                    0.006
                                                                      0.396
                                                             0.396
##
      i14
                                  0.109
                                                    0.000
                         0.413
                                           3.769
                                                             0.413
                                                                      0.413
##
      i15
                        -0.027
                                  0.102 -0.270
                                                    0.787
                                                            -0.027
                                                                     -0.027
##
      i20
                                  0.111
                                           1.779
                                                    0.075
                         0.198
                                                             0.198
                                                                      0.198
##
     com =~
##
                         0.237
                                  0.121
                                           1.961
                                                    0.050
                                                             0.237
                                                                      0.237
      i1
##
       i2
                         0.000
                                                             0.000
                                                                      0.000
##
                         0.193
                                  0.109
                                           1.771
                                                    0.077
                                                             0.193
      i6
                                                                      0.193
##
      i10
                         0.279
                                  0.094
                                           2.974
                                                    0.003
                                                             0.279
                                                                      0.279
##
      i11
                         0.273
                                  0.110
                                           2.484
                                                    0.013
                                                             0.273
                                                                      0.273
##
      i13
                         0.475
                                  0.088
                                           5.427
                                                    0.000
                                                             0.475
                                                                      0.475
##
                         0.349
                                  0.079
                                                    0.000
       i16
                                           4.411
                                                             0.349
                                                                      0.349
```

| ## | i17          | 0.674    | 0.068   | 9.877   | 0.000   | 0.674  | 0.674   |
|----|--------------|----------|---------|---------|---------|--------|---------|
| ## | i18          | 0.119    | 0.096   | 1.239   | 0.215   | 0.119  | 0.119   |
| ## | i19          | 0.395    | 0.081   | 4.873   | 0.000   | 0.395  | 0.395   |
| ## | general =~   |          |         |         |         |        |         |
| ## | i1           | 0.356    | 0.079   | 4.534   | 0.000   | 0.356  | 0.356   |
| ## | i2           | 0.721    | 0.055   | 13.223  | 0.000   | 0.721  | 0.721   |
| ## | i3           | 0.460    | 0.071   | 6.458   | 0.000   | 0.460  | 0.460   |
| ## | <b>i</b> 4   | 0.251    | 0.092   | 2.741   | 0.006   | 0.251  | 0.251   |
| ## | <b>i</b> 5   | 0.615    | 0.061   | 10.075  | 0.000   | 0.615  | 0.615   |
| ## | <b>i</b> 6   | 0.611    | 0.063   | 9.748   | 0.000   | 0.611  | 0.611   |
| ## | <b>i</b> 7   | 0.552    | 0.066   | 8.320   | 0.000   | 0.552  | 0.552   |
| ## | i8           | 0.265    | 0.086   | 3.094   | 0.002   | 0.265  | 0.265   |
| ## | <b>i</b> 9   | 0.672    | 0.054   | 12.477  | 0.000   | 0.672  | 0.672   |
| ## | i10          | 0.457    | 0.073   | 6.229   | 0.000   | 0.457  | 0.457   |
| ## | i11          | 0.502    | 0.072   | 6.967   | 0.000   | 0.502  | 0.502   |
| ## | i12          | 0.000    |         |         |         | 0.000  | 0.000   |
| ## | i13          | 0.409    | 0.076   | 5.359   | 0.000   | 0.409  | 0.409   |
| ## | i14          | 0.515    | 0.087   | 5.934   | 0.000   | 0.515  | 0.515   |
| ## | i15          | 0.767    | 0.046   | 16.773  | 0.000   | 0.767  | 0.767   |
| ## | i16          | 0.634    | 0.059   | 10.763  | 0.000   | 0.634  | 0.634   |
| ## | i17          | 0.563    | 0.064   | 8.774   | 0.000   | 0.563  | 0.563   |
| ## | i18          | 0.776    | 0.054   | 14.462  | 0.000   | 0.776  | 0.776   |
| ## | i19          | 0.645    | 0.060   | 10.669  | 0.000   | 0.645  | 0.645   |
| ## | i20          | 0.557    | 0.070   | 7.923   | 0.000   | 0.557  | 0.557   |
| ## |              |          |         |         |         |        |         |
| ## | Covariances: |          |         |         |         |        |         |
| ## |              | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
| ## | cog ~~       |          |         |         |         |        |         |
| ## | com          | 0.000    |         |         |         | 0.000  | 0.000   |
| ## | general      | 0.000    |         |         |         | 0.000  | 0.000   |
| ## | com ~~       |          |         |         |         |        |         |
| ## | general      | 0.000    |         |         |         | 0.000  | 0.000   |
| ## |              |          |         |         |         |        |         |
| ## | Thresholds:  |          |         |         |         |        |         |
| ## |              | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
| ## | i3 t1        | -1.469   | 0.169   | -8.712  | 0.000   | -1.469 | -1.469  |
| ## | i3 t2        | -1.184   | 0.145   | -8.149  | 0.000   | -1.184 | -1.184  |
| ## | i3 t3        | -0.270   | 0.113   | -2.384  | 0.017   | -0.270 | -0.270  |
| ## | i3 t4        | 0.527    | 0.117   | 4.483   | 0.000   | 0.527  | 0.527   |
| ## | i4 t1        | -1.414   | 0.163   | -8.654  | 0.000   | -1.414 | -1.414  |
| ## | i4 t2        | -0.973   | 0.133   | -7.306  | 0.000   | -0.973 | -0.973  |
| ## | i4 t3        | -0.644   | 0.120   | -5.344  | 0.000   | -0.644 | -0.644  |
| ## | i4 t4        | -0.030   | 0.112   | -0.265  | 0.791   | -0.030 | -0.030  |
| ## | i5 t1        | -1.362   | 0.159   | -8.577  | 0.000   | -1.362 | -1.362  |
| ## | i5 t2        | -1.225   | 0.148   | -8.270  | 0.000   | -1.225 | -1.225  |
| ## | i5 t3        | -0.416   | 0.115   | -3.613  | 0.000   | -0.416 | -0.416  |
| ## | i5 t4        | 0.460    | 0.116   | 3.962   | 0.000   | 0.460  | 0.460   |
| ## | i7 t1        | -1.672   | 0.192   | -8.720  | 0.000   | -1.672 | -1.672  |
| ## | i7 t2        | -1.146   | 0.143   | -8.021  | 0.000   | -1.146 | -1.146  |
| ## | i7 t3        | -0.229   | 0.113   | -2.031  | 0.042   | -0.229 | -0.229  |
| ## | i7 t4        | 0.596    | 0.119   | 5.001   | 0.000   | 0.596  | 0.596   |
| ## | i8 t1        | -1.672   | 0.192   | -8.720  | 0.000   | -1.672 | -1.672  |
| ## | i8 t2        | -1.184   | 0.145   | -8.149  | 0.000   | -1.184 | -1.184  |
| ## | i8 t3        | -0.353   | 0.114   | -3.087  | 0.002   | -0.353 | -0.353  |
|    |              |          |         |         |         |        |         |

| ## | i8 t4  | 0.353  | 0.114 | 3.087  | 0.002 | 0.353  | 0.353  |
|----|--------|--------|-------|--------|-------|--------|--------|
| ## | i9 t1  | -1.225 | 0.148 | -8.270 | 0.000 | -1.225 | -1.225 |
| ## | i9 t2  | -0.797 | 0.126 | -6.351 | 0.000 | -0.797 | -0.797 |
| ## | i9 t3  | -0.249 | 0.113 | -2.207 | 0.027 | -0.249 | -0.249 |
| ## | i9 t4  | 0.573  | 0.119 | 4.829  | 0.000 | 0.573  | 0.573  |
| ## | i12 t1 | -0.693 | 0.122 | -5.683 | 0.000 | -0.693 | -0.693 |
| ## | i12 t2 | -0.290 | 0.113 | -2.560 | 0.010 | -0.290 | -0.290 |
| ## | i12 t3 | 0.049  | 0.112 | 0.442  | 0.659 | 0.049  | 0.049  |
| ## | i12 t4 | 0.504  | 0.117 | 4.310  | 0.000 | 0.504  | 0.504  |
| ## | i14 t1 | -2.151 | 0.281 | -7.657 | 0.000 | -2.151 | -2.151 |
| ## | i14 t2 | -1.530 | 0.175 | -8.748 | 0.000 | -1.530 | -1.530 |
| ## | i14 t3 | -0.882 | 0.129 | -6.837 | 0.000 | -0.882 | -0.882 |
| ## | i14 t4 | -0.069 | 0.112 | -0.619 | 0.536 | -0.069 | -0.069 |
| ## | i15 t1 | -2.415 | 0.364 | -6.629 | 0.000 | -2.415 | -2.415 |
| ## | i15 t2 | -1.758 | 0.204 | -8.632 | 0.000 | -1.758 | -1.758 |
| ## | i15 t3 | -0.825 | 0.127 | -6.515 | 0.000 | -0.825 | -0.825 |
| ## | i15 t4 | 0.270  | 0.113 | 2.384  | 0.017 | 0.270  | 0.270  |
| ## | i20 t1 | -1.859 | 0.220 | -8.465 | 0.000 | -1.859 | -1.859 |
| ## | i20 t2 | -1.469 | 0.169 | -8.712 | 0.000 | -1.469 | -1.469 |
| ## | i20 t3 | -0.527 | 0.117 | -4.483 | 0.000 | -0.527 | -0.527 |
| ## | i20 t4 | 0.290  | 0.113 | 2.560  | 0.010 | 0.290  | 0.290  |
| ## | i1 t1  | -1.362 | 0.159 | -8.577 | 0.000 | -1.362 | -1.362 |
| ## | i1 t2  | -0.973 | 0.133 | -7.306 | 0.000 | -0.973 | -0.973 |
| ## | i1 t3  | -0.030 | 0.112 | -0.265 | 0.791 | -0.030 | -0.030 |
| ## | i1 t4  | 0.527  | 0.117 | 4.483  | 0.000 | 0.527  | 0.527  |
| ## | i2 t1  | -1.758 | 0.204 | -8.632 | 0.000 | -1.758 | -1.758 |
| ## | i2 t2  | -1.597 | 0.182 | -8.754 | 0.000 | -1.597 | -1.597 |
| ## | i2 t3  | -0.825 | 0.127 | -6.515 | 0.000 | -0.825 | -0.825 |
| ## | i2 t4  | 0.109  | 0.112 | 0.972  | 0.331 | 0.109  | 0.109  |
| ## | i6 t1  | -1.984 | 0.243 | -8.172 | 0.000 | -1.984 | -1.984 |
| ## | i6 t2  | -1.414 | 0.163 | -8.654 | 0.000 | -1.414 | -1.414 |
| ## | i6 t3  | -0.527 | 0.117 | -4.483 | 0.000 | -0.527 | -0.527 |
| ## | i6 t4  | 0.290  | 0.113 | 2.560  | 0.010 | 0.290  | 0.290  |
| ## | i10 t1 | -1.758 | 0.204 | -8.632 | 0.000 | -1.758 | -1.758 |
| ## | i10 t2 | -1.314 | 0.155 | -8.486 | 0.000 | -1.314 | -1.314 |
| ## | i10 t3 | -0.353 | 0.114 | -3.087 | 0.002 | -0.353 | -0.353 |
| ## | i10 t4 | 0.527  | 0.117 | 4.483  | 0.000 | 0.527  | 0.527  |
| ## | i11 t1 | -1.859 | 0.220 | -8.465 | 0.000 | -1.859 | -1.859 |
| ## | i11 t2 | -1.268 | 0.151 | -8.383 | 0.000 | -1.268 | -1.268 |
| ## | i11 t3 | -0.249 | 0.113 | -2.207 | 0.027 | -0.249 | -0.249 |
| ## | i11 t4 | 0.504  | 0.117 | 4.310  | 0.000 | 0.504  | 0.504  |
| ## | i13 t1 | -1.597 | 0.182 | -8.754 | 0.000 | -1.597 | -1.597 |
| ## | i13 t2 | -1.146 | 0.143 | -8.021 | 0.000 | -1.146 | -1.146 |
| ## | i13 t3 | -0.374 | 0.115 | -3.262 | 0.001 | -0.374 | -0.374 |
| ## | i13 t4 | 0.395  | 0.115 | 3.438  | 0.001 | 0.395  | 0.395  |
| ## | i16 t1 | -1.984 | 0.243 | -8.172 | 0.000 | -1.984 | -1.984 |
| ## | i16 t2 | -1.314 | 0.155 | -8.486 | 0.000 | -1.314 | -1.314 |
| ## | i16 t3 | -0.596 | 0.119 | -5.001 | 0.000 | -0.596 | -0.596 |
| ## | i16 t4 | 0.438  | 0.116 | 3.787  | 0.000 | 0.438  | 0.438  |
| ## | i17 t1 | -1.859 | 0.220 | -8.465 | 0.000 | -1.859 | -1.859 |
| ## | i17 t2 | -1.469 | 0.169 | -8.712 | 0.000 | -1.469 | -1.469 |
| ## | i17 t3 | -0.825 | 0.127 | -6.515 | 0.000 | -0.825 | -0.825 |
| ## | i17 t4 | -0.010 | 0.112 | -0.088 | 0.930 | -0.010 | -0.010 |
| ## | i18 t1 | -1.984 | 0.243 | -8.172 | 0.000 | -1.984 | -1.984 |
|    |        |        |       |        |       |        |        |

```
##
       i18|t2
                         -1.362
                                   0.159
                                            -8.577
                                                      0.000
                                                               -1.362
                                                                         -1.362
                                                               -0.825
                                                                         -0.825
##
       i18|t3
                         -0.825
                                   0.127
                                                      0.000
                                            -6.515
                                                                         -0.069
##
       i18|t4
                         -0.069
                                   0.112
                                            -0.619
                                                      0.536
                                                               -0.069
                                   0.220
##
       i19|t1
                         -1.859
                                            -8.465
                                                      0.000
                                                               -1.859
                                                                         -1.859
##
       i19|t2
                         -1.672
                                   0.192
                                            -8.720
                                                      0.000
                                                               -1.672
                                                                         -1.672
##
                                   0.122
                                                      0.000
                                                                         -0.693
       i19|t3
                         -0.693
                                            -5.683
                                                               -0.693
##
       i19|t4
                          0.169
                                   0.112
                                             1.502
                                                                          0.169
                                                      0.133
                                                                0.169
##
## Variances:
                       Estimate Std.Err z-value P(>|z|)
##
                                                               Std.lv Std.all
##
      .i3
                          0.768
                                                                0.768
                                                                          0.768
                          0.721
##
      .i4
                                                                0.721
                                                                          0.721
##
      .i5
                          0.622
                                                                0.622
                                                                          0.622
##
                                                                          0.672
      .i7
                          0.672
                                                                0.672
##
      .i8
                          0.557
                                                                0.557
                                                                          0.557
##
      .i9
                          0.549
                                                                0.549
                                                                          0.549
##
                          0.843
      .i12
                                                                0.843
                                                                          0.843
##
      .i14
                          0.564
                                                                0.564
                                                                          0.564
##
                          0.411
                                                                0.411
                                                                          0.411
      .i15
##
      .i20
                          0.650
                                                                0.650
                                                                          0.650
      .i1
##
                          0.817
                                                                0.817
                                                                          0.817
##
      .i2
                          0.480
                                                                0.480
                                                                          0.480
##
      .i6
                          0.590
                                                                          0.590
                                                                0.590
##
      .i10
                          0.713
                                                                          0.713
                                                                0.713
##
      .i11
                          0.674
                                                                0.674
                                                                          0.674
##
      .i13
                          0.607
                                                                0.607
                                                                          0.607
##
      .i16
                          0.477
                                                                0.477
                                                                          0.477
##
      .i17
                          0.229
                                                                0.229
                                                                          0.229
##
      .i18
                          0.384
                                                                0.384
                                                                          0.384
##
      .i19
                          0.428
                                                                0.428
                                                                          0.428
##
       cog
                          1.000
                                                                1.000
                                                                          1.000
##
       com
                          1.000
                                                                1.000
                                                                          1.000
##
       general
                          1.000
                                                                1.000
                                                                          1.000
# Descriptive statistics of factor loadings:
loadings_fit_model_bifactor <- standardizedsolution(fit_model_bifactor, type = "std.all")</pre>
print(round(loadings_fit_model_bifactor[1:9, ] %>% select(est.std) %>%
        summarise(mean = mean(abs(est.std)), sd = sd(abs(est.std)),
                  min = min(abs(est.std)), max = max(abs(est.std))), 2))
##
            sd min max
     mean
## 1 0.25 0.23
                 0 0.61
\# Mean = 0.27, SD = 0.2, min = 0.01 and max = 0.58
# Selecting based on row indices
print(round(loadings_fit_model_bifactor[10:18, ] %>% select(est.std) %>%
        summarise(mean = mean(abs(est.std)), sd = sd(abs(est.std)),
                  min = min(abs(est.std)), max = max(abs(est.std))), 2))
            sd min max
     mean
```

## 1 0.3 0.19

0 0.67

```
# Mean = 0.31, SD = 0.19, min = 0.01 and max = 0.67
# Selecting based on row indices
print(round(loadings_fit_model_bifactor[19:36, ] %>% select(est.std) %>%
        summarise(mean = mean(abs(est.std)), sd = sd(abs(est.std)),
                  min = min(abs(est.std)), max = max(abs(est.std))), 2))
    mean
          sd min max
## 1 0.46 0.21 0 0.77
# Mean = 0.52, SD = 0.18, min = 0.06 and max = 0.77
# Reliability
print(round(reliability(fit_model_bifactor), 2))
## For constructs with categorical indicators, Zumbo et al.'s (2007) "ordinal alpha" is calculated in a
##
              cog com general
## alpha
             0.71 0.81
                          0.87
## alpha.ord 0.76 0.86
                          0.90
            0.36 0.40
                          0.78
## omega
## omega2
             0.21 0.22
                          0.79
## omega3
             0.21 0.22
                          0.80
## avevar
               NA NA
                            NA
comp_reliability(fit_model_bifactor)
## # A tibble: 3 x 2
##
             composite_reliability
    lhs
     <chr>
                             <dbl>
                             0.465
## 1 cog
## 2 com
                             0.624
## 3 general
                             0.901
\# cog: alpha = 0.71, alpha ord. = 0.76, omega McDonald = 0.36, comp. reliability = 0.46
\# com: alpha = 0.81, alpha ord. = 0.86, omega McDonald = 0.40, comp. reliability = 0.62
\# geral: alpha = 0.87, alpha ord. = 0.90, omega McDonald = 0.78, comp. reliability = 0.90
# Plot the model
semPaths(fit_model_bifactor, "std", layout="tree2", residuals=FALSE, sizeLat=10, sizeLat2=10, edge.color="bla
         mar=c(2, 2, 2, 2), esize=4, curvePivot = FALSE, intercepts=FALSE, thresholds = FALSE,
         nCharNodes=0,sizeMan=3.5, edge.label.position=0.85, bifactor = "general")
```



#### Model Comparison

## R version 4.4.2 (2024-10-31 ucrt) ## Platform: x86\_64-w64-mingw32/x64

## Running under: Windows 11 x64 (build 26100)

```
# O melhor modelo foi o bifatorial
lavTestLRT(fit_model_uni, fit_model_2f, fit_model_bifactor)
##
## Scaled Chi-Squared Difference Test (method = "satorra.2000")
##
## lavaan->lavTestLRT():
      lavaan NOTE: The "Chisq" column contains standard test statistics, not the
##
##
     robust test that should be reported per model. A robust difference test is
##
      a function of two standard (not robust) statistics.
                       Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
##
## fit model bifactor 153
                                  199.01
## fit_model_2f
                                  267.86
                                                         16 8.265e-07 ***
                      169
                                             58.819
## fit_model_uni
                                  283.29
                                             13.562
                                                         1 0.0002308 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
sessionInfo()
```

```
##
## Matrix products: default
##
##
## locale:
## [1] LC COLLATE=Portuguese Brazil.utf8 LC CTYPE=Portuguese Brazil.utf8
## [3] LC MONETARY=Portuguese Brazil.utf8 LC NUMERIC=C
## [5] LC_TIME=Portuguese_Brazil.utf8
##
## time zone: America/Sao_Paulo
## tzcode source: internal
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    base
##
## other attached packages:
## [1] semPlot_1.1.6
                      semTools_0.5-6 lavaan_0.6-19 MVN_5.9
                                                                    dplyr_1.1.4
## [6] psych_2.5.3
                      readxl_1.4.3
## loaded via a namespace (and not attached):
##
     [1] Rdpack_2.6.4
                            mnormt_2.1.1
                                               pbapply_1.7-2
     [4] gridExtra_2.3
##
                            fdrtool_1.2.18
                                               sandwich_3.1-1
##
     [7] rlang_1.1.5
                            magrittr_2.0.3
                                               multcomp_1.4-26
##
   [10] rockchalk 1.8.157
                            compiler_4.4.2
                                               png 0.1-8
## [13] vctrs_0.6.5
                            reshape2_1.4.4
                                               OpenMx_2.21.13
## [16] gsl_2.1-8
                            quadprog_1.5-8
                                               stringr_1.5.1
## [19] crayon_1.5.3
                            pkgconfig_2.0.3
                                               fastmap_1.2.0
## [22] arm_1.14-4
                            backports_1.5.0
                                               energy_1.7-12
## [25] utf8_1.2.4
                            pbivnorm_0.6.0
                                               rmarkdown_2.29
## [28] nloptr_2.2.1
                            xfun_0.52
                                               kutils_1.73
##
   [31] jpeg_0.1-10
                            parallel_4.4.2
                                               cluster_2.1.6
##
  [34] R6_2.6.1
                            stringi_1.8.7
                                               car_3.1-3
##
   [37] boot_1.3-31
                            rpart_4.1.23
                                               cellranger_1.1.0
                                               knitr_1.50
  [40] estimability_1.5.1 Rcpp_1.0.14
                            base64enc_0.1-3
##
   [43] zoo 1.8-14
                                               Matrix 1.7-1
##
  [46] splines_4.4.2
                            nnet_7.3-19
                                               igraph_2.1.4
  [49] tidyselect 1.2.1
                            rstudioapi 0.17.1
                                               abind 1.4-8
## [52] yaml_2.3.10
                            codetools_0.2-20
                                               qgraph_1.9.8
##
   [55] lattice_0.22-6
                            tibble_3.2.1
                                               plyr_1.8.9
## [58] withr_3.0.2
                            coda_0.19-4.1
                                               evaluate_1.0.3
## [61] moments 0.14.1
                            foreign_0.8-87
                                               survival 3.7-0
## [64] RcppParallel_5.1.9 zip_2.3.1
                                               pillar 1.10.2
## [67] carData 3.0-5
                            checkmate_2.3.2
                                               nortest 1.0-4
## [70] stats4_4.4.2
                            reformulas_0.4.0
                                               generics_0.1.3
## [73] ggplot2_3.5.2
                            munsell_0.5.1
                                               scales_1.3.0
##
  [76] minqa_1.2.8
                            gtools_3.9.5
                                               xtable_1.8-4
## [79] glue_1.8.0
                            mi_1.1
                                               emmeans_1.10.6
##
  [82] Hmisc_5.2-3
                            tools_4.4.2
                                               data.table_1.17.0
  [85] lme4_1.1-37
                            openxlsx_4.2.7.1
                                               mvtnorm_1.3-3
##
   [88] XML_3.99-0.18
                            grid_4.4.2
                                               sem_3.1-16
## [91] rbibutils_2.3
                                               nlme_3.1-166
                            colorspace_2.1-1
## [94] htmlTable 2.4.3
                            Formula_1.2-5
                                               cli_3.6.4
## [97] glasso_1.11
                            corpcor_1.6.10
                                               gtable_0.3.6
## [100] digest_0.6.37
                            TH.data_1.1-3
                                               htmlwidgets 1.6.4
```

## [103] htmltools\_0.5.8.1 lifecycle\_1.0.4 lisrelToR\_0.3
## [106] MASS\_7.3-61