9 Hrs

			Semester: IV		
DISCR	ETI	E MATHEMATIO	CAL STRUCTURES AND COMBINA	ΑT	ORICS
		Category: PRO	OFESSIONAL CORE COURSE		
			(Theory)		
		(Commo	on to CS, IS, CD, AI & CY)		
Code	:	CS241AT	CIE	:	100 Marks
:: L:T:P	:	3:0:0	SEE	:	100 Marks
<u> </u>		4 = T	CEED (2 11

Credits: L:T:P	••	3:0:0	SEE	:	100 Marks
Total Hours	••	45L	SEE Duration	:	3 Hours

Unit-I

Fundamental Principles of Counting and Combinatorics

The Rule of Sum and Product, Permutations, Combinations, Principle of Inclusion and Exclusion, Derangements, The Binomial Theorem, Combinations with repetition.

Recursive Definitions, Recurrence Relations

Recursive definition, First order linear recurrence relation- Formulation problems and examples, Second order linear recurrence relations with constant coefficients- Homogeneous and Non homogeneous, Generating functions.

Unit – II 9 Hrs

Fundamentals of Logic

Basic Connectives and Truth Tables, Tautologies, Logical Equivalence: The laws of logic, Logical Implications, Rules of inference. Open Statement, Quantifiers, Definition and the use of Quantifiers, Definitions, and the proofs of theorems.

Unit –III 9 Hrs

Relations

Course

Properties of relations, Composition of Relations, Partial Orders, Hasse Diagrams, Equivalence Relations, and Partitions.

Functions

Functions-plain, One-to-one, onto functions, Stirling numbers of the second kind, Function composition and Inverse function, Growth of function.

Unit –IV 9 Hrs

Groups theory

Definition, Examples and Elementary properties, Abelian groups, Homomorphism isomorphism, cyclic groups, cosets and Lagrange's theorem.

Coding Theory:

Elementary coding theory, the hamming metric, the parity-Check and Generator Matrices

Unit-V 9 Hrs

Introduction to Graph Theory: Graphs and their basic properties - degree, path, cycle, complement, subgraphs, isomorphism, Computer representations of graphs. Eulerian and Hamiltonian graphs, Graph coloring, Planar graphs.

Trees: Definitions, Properties, and Examples, Routed Trees, Trees and Sorting, Spanning trees.

Course Outcomes: After completing the course, the students will be able to			
CO 1:	Apply the concepts of discrete mathematical structures for effective computation and		
	relating problems in the computer science domain.		
CO 2:	Analyze the concepts of discrete mathematics to various fields of computer science.		
CO 3:	Design solutions for complex problems using different concepts of discrete mathematical		
	structure as a logical predictable system.		
CO 4:	Explore/Develop new innovative ideas to solve some open problems in theoretical computer		
	science.		
CO 5:	Effectively communicate, work in groups in order to accomplish a task and engage in		
	continuing professional development.		

Reference Books:		
1.	Ralph P. Grimaldi and B V Ramana, Discrete and Combinatorial Mathematics- An Applied	
	Introduction, Pearson Education, Asia, 5 th Edition – 2017, ISBN 978-0321385024	
2.	J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer	
	Science, Tata – McGraw Hill, 1 st Edition 2017, ISBN 13:978-0074631133	
3.	Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata – McGraw Hill, 6 th Edition,	
	7 edition 2017, ISBN-(13): 978-0070681880	

EXPERIENTIAL LEARNING

Based on the concepts learnt in this course like relations, functions- problems on graph theory such as graph coloring, scheduling problems could be given for Experiential learning.

Also using the concepts of logical reasoning and group theory some of the NLP problems could also be given for Experiential learning.

	RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY	<u>'</u>)
#	COMPONENTS	MARKS
1.	QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks adding up to 20 Marks. THE SUM OF TWO QUIZZES WILL BE CONSIDERED AS FINAL QUIZ MARKS.	20
2.	TESTS: Students will be evaluated in test consisting of descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). TWO TESTS will be conducted. Each test will be evaluated for 50 Marks, adding up to 100 Marks. FINAL TEST MARKS WILL BE REDUCED TO 40 MARKS.	40
3.	EXPERIENTIAL LEARNING: Students will be evaluated for their creativity and practical implementation of the problem. Phase I (20) & Phase II (20) ADDING UPTO 40 MARKS .	40
	MAXIMUM MARKS FOR THE CIE THEORY	100

RUBRIC FOR SEMESTER END EXAMINATION	N (THEORY)
CONTENTS	MARKS
PART A	
Objective type questions covering entire syllabus	
PART B (Maximum of FOUR Sub-divisions only)
Unit 1 : (Compulsory)	16
Unit 2 : Question 3 or 4	16
Unit 3: Question 5 or 6	16
Unit 4 : Question 7 or 8	16
Unit 5: Question 9 or 10	16
TOTAL	100