BME TMIT 2022

14/7 Németh Gá<u>bor</u>

Funkcionális programozás C++-ban

Funktorok

Funktorok és C++ függvényobjektumok

- funktor ≠ C++ függvény objektum
 - sajnos sokan zsargonként használják a "funktor" főnevet C++ függvényobjektumok azonosítására
 - ▶ ne tegyük!

Funktorok

- a funktor leképzés kategóriák között, amely megőrzi a struktúrát
- ▶ az $F: \mathbf{C} \to \mathbf{D}$ funktor a \mathbf{C} és \mathbf{D} kategória között,
 - ha a C kategória valamennyi x objektumához létezik $F(x) \in D$ objektum
 - ha a C kategória valamennyi $x \xrightarrow{f} y$ morfizmusához létezik $F(x) \xrightarrow{F(f)} F(y)$ morfizmus D-ben
 - illetve, ha
 - F-re érvényesek a kompozíció szabályai, azaz $F(g \circ f) = F(g) \circ F(f)$ D-ben, ha g és f komponálható morfizusok C-ben
 - F az identitásmorfizmusokat identitásmorfizmusokba képezi, azaz $F(id_x)=id_{F(x)}$ ${\cal C}$ valamennyi x objektumára.

Funktortörvények

- ► Legyen *C* és *D* két kategória
- ► *I*.

$$\forall o \in ob(\mathbf{C}) \exists F(o) \in ob(\mathbf{D})$$

- ► II. $\forall o \in ob(\mathbf{C}), F(id_o) = id_{F(o)}, \text{ ahol } id_{F(o)} \in mor(\mathbf{D})$
- ► III. $\forall t, x, y \in mor(\mathbf{C}), \text{ahol } t = y \circ x, F(t) = F(y) \circ F(x)$

A Fibonacci sorozat funktor I.

► A természetes számok az oszthatósággal mint morfizmussal kategória.

A Fibonacci sorozat funktor II.

- ▶ legyen $F: \mathbb{N} \to \mathbb{N}$ egy függvény amely az n természetes számhoz hozzárendeli a n-edik Fibonacci számot, azaz $F(n) := F_n$
- ekkor n|m-ből következik, hogy $F_n|F_m$, $\forall n,m \geq 1$
- ▶ objektumok összerendelése: $n \rightarrow F_n$
- morfizusok megfeltetése:

Speciális funktorok

- endo-funktor
 - b ha C és D megegyezik, azaz F C-ből C-be képez, akkor F az egy endo-funktor
 - programozásban endo-funktorokkal dolgozunk, hiszen a típusrendszerünk maga egy kategória, és azon a rendszeren belül tudunk csak mozogni
- kovariáns funktor
 - simán csak funktorként hivatkozunk rá
- kontravariáns funktor
 - úgy képzi le a morfizmusokat, hogy azok iránya megfordul

ADT és funktorok

ADT Maybe funktor

ADT-k és funktorok

- Minden algebrai adattípus funktoriális
 - ▶ nem bizonyítjuk

A Maybe funktor

típus → típus

$$T \rightarrow \text{Maybe} < T >$$

► függvény → függvény

$$int \text{ add}_5(int); \rightarrow \text{Maybe} < int > \text{add}_5(\text{Maybe} < int >);$$

ho megjegyzés: gyakorlatban ezt fmap-nak hívják, pl. $(fmap \ add_5) \ Nothing == Nothing$

ex_0: Maybe funktor

A Maybe funktor?

- Egy tetszőleges függvényre
 - ① (fmap f)(just(x)) = just(f(x))② (fman f)(Nothing)
 - (2) (fmap f)(Nothing) = Nothing
- - $(3) id o = o, \forall o \in ob(C)$

- *F* teljesíti a *funktor törvényeket*
 - I. minden típust be tudunk "csomagolni" Maybe-be, triviális
 - II. az identitás megmarad

$$fmap \ id \ Nothing = \dots = id \ Nothing$$

$$fmap \ id \ Nothing \xrightarrow{2} Nothing = \dots = id \ Nothing$$

$$fmap \ id \ Nothing \xrightarrow{2} Nothing = Nothing \xrightarrow{3} id \ Nothing$$

$$fmap id just(x) = \dots = id just(x)$$

$$fmap id just(x) \xrightarrow{1} just(id(x)) = \dots = id just(x)$$

$$fmap id just(x) \xrightarrow{1} just(id(x)) \xrightarrow{3} just(x) = just(x) \xleftarrow{3} id just(x)$$

A Maybe funktor?

- ► F teljesíti a funktor törvényeket (folyt.)
 - III. a kompozíció megmarad

 $fmap(g \circ f) Nothing = \dots = (fmap g) \circ (fmap f) Nothing$

```
fmap (g \circ f) Nothing \xrightarrow{(2)} Nothing = \dots = (fmap g) \circ (fmap f) Nothing
   fmap (g \circ f) \ Nothing \xrightarrow{(2)} Nothing = \dots = (fmap g) ((fmap f)(Nothing)) \xrightarrow{g \circ f} x = g(f(x)) (fmap g) \circ (fmap f) \ Nothing
   fmap \ (g \circ f) \ Nothing \xrightarrow{2} Nothing = \dots = fmap(g) \ Nothing \xrightarrow{2} (fmap \ g) \big( (fmap \ f) (Nothing) \big) \xrightarrow{g \circ f} x = g(f(x)) (fmap \ g) \circ (fmap \ f) \ Nothing \xrightarrow{2} (fmap \ g) \circ (fmap \ f) \cap (fmap \ g) \circ (fmap \ f) \cap (fmap \ g) \circ (fmap \
    fmap\ (g\circ f)\ Nothing \xrightarrow{(2)} Nothing = = Nothing \xleftarrow{(2)} (fmap\ g)\ Nothing \xrightarrow{(2)} (fmap\ g) ((fmap\ f)(Nothing)) \xrightarrow{g\circ f} x=g(f(x)) (fmap\ g)\circ (fmap\ f)\ Nothing
   fmap(g \circ f) just(x) = ... = (fmap g) \circ (fmap f) just(x)
 fmap(g \circ f) just(x) \xrightarrow{(1)} just(g \circ f x) = \dots = (fmap g) \circ (fmap f) just(x)
 fmap \ (g \circ f) \ just(x) \xrightarrow{\text{(1)}} just(g \circ f \ x) \xrightarrow{g \circ f} x = g(f(x)) \atop \longrightarrow just \left(g(f(x))\right) = \dots = (fmap \ g) \left((fmap \ f) just(x)\right) \xrightarrow{g \circ f} x = g(f(x)) \atop \longleftarrow (fmap \ g) \circ (fmap \ f) \ just(x)
fmap(g \circ f) just(x) \xrightarrow{(1)} just(g \circ f x) \xrightarrow{g \circ f x = g(f(x))} just(g(f(x))) = \dots
                                                                                                                                                           = (fmap\ g) \left(just(f(x))\right) \stackrel{\text{(1)}}{\leftarrow} (fmap\ g) \left((fmap\ f)\ just(x)\right) \stackrel{g \circ f}{\leftarrow} x = g(f(x)) \\ (fmap\ g) \circ (fmap\ f)\ just(x)
fmap (g \circ f) just(x) \xrightarrow{\text{(1)}} just(g \circ f x) \xrightarrow{g \circ f} x = g(f(x)) just(g(f(x))) =
                                                                                                                                                          = just\left(g\big(f(x)\big)\right) = \stackrel{\textcircled{1}}{\leftarrow} (fmap\ g)\left(just\big(f(x)\big)\right) \stackrel{\textcircled{1}}{\leftarrow} (fmap\ g)\big((fmap\ f)\ just(x)\big) \stackrel{g\circ f}{\leftarrow} x = g\big(f(x)\big) (fmap\ g)\circ (fmap\ f)\ just(x)
```

Természetes transzformációk

Természetes transzformációk I.

- Legyen F és G két funktor a G és G kategória között. A g: $F \implies G$ természetes transzformáció az alábbi tulajdonságokkal rendelkezik
 - létezik a $F(x) \xrightarrow{\eta_x} G(x)$ morfizmus \boldsymbol{C} minden x objektumára
 - ha $x \xrightarrow{f} y$ morfizmus a C kategóriában, akkor $G(f) \circ \eta_x = \eta_y \circ F(f)$, azaz az alábbi diagram kommutatív

$$F(x) \xrightarrow{\eta_{x}} G(x)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(y) \xrightarrow{\eta_{y}} G(y)$$

 $ilde{}$ vegyük észre, hogy a η természetes transzformáció az összes η_x morfizmus összessége: $\eta=(\eta_x)_{x\in\mathcal{C}}$

Természetes transzformációk II.

- a természetes transzformáció leképezés egy diagramról és másikra
- ezekkel a transzformációkkal kiegészítve a kapott diagram kommutatív

Speciális természetes transzformációk I.

- ► F és G is konstans
 - ▶ Legyenek $F, G: \mathbf{C} \to \mathbf{D}$ konstans funktorok.
 - képezze F a C kategória valamennyi objektumát a $d \in D$ objektumba, míg G képezze a C kategória objektumait a $d' \in D$ objektumba
 - képezze F a C minden morfizmusát a id_d D kategóriabeli morfizmusba
 - képezze G a C minden morfizmusát a $id_{d'}$ D kategóriabeli morfizmusba
 - Ekkor a természetes transzformáció F és G között a $d \stackrel{\eta}{\rightarrow} d'$ morfizmus

Speciális természetes transzformációk II.

► F konstans

- ▶ legyen F konstans valamely $d \in D$ képpel
- ▶ legyen *G* tetszőleges funktor
- ekkor $\eta: F \implies G$ természetes transzformáció a $d \stackrel{\eta_x}{\to} G(x)$ $\forall x \in C$ leképezések összessége, amelyek teljesítik a $G(f) \circ \eta_x = \eta_y$
- ► kúp *G* felett

G konstans

- ▶ legyen G konstans valamely $d \in D$ képpel
- ▶ legyen *F* tetszőleges funktor
- ekkor $\eta: F \implies G$ természetes transzformáció a $F(x) \stackrel{\eta_x}{\rightarrow} d$ $\forall x \in C$ leképezések összessége, amelyek teljesítik a $\eta_y \circ F(x) = \eta_x$
- ► kúp *F* alatt

Lista, Maybe, természetes transzformáció

- legyen head egy függvény, amely visszaadja egy lista első elemét, ha az létezik (just(a)), egyébként Nothing-ot
 - ightharpoonup head: [a]
 ightharpoonup Maybe a
 - ▶ head [] = Nothing
 - ightharpoonup head (x:xs) = just(x)
- mutassa meg, hogy a head természetes transzformáció

$$G(f) \circ \eta_{\chi} = \eta_{\gamma} \circ F(f)$$

 $(fmap\ f\ \circ\ head)\ []=(fmap\ f)(head\ [])=(fmap\ f)\ Nothing=Nothing$ $(head\ \circ\ fmap\ f)\ []=(head)\big((fmap\ f)[]\big)=head\ []=Nothing$

 $(fmap\ f\ \circ head)(x:xs) = (fmap\ f)(head\ (x:xs)) = (fmap\ f)(just(x)) = just(f\ x)$ $(head\ \circ fmap\ f)(x:xs) = head\ (f(x):fmap\ f\ xs) = just(f\ x)$

Ha úgy gondolunk a funktorra mint konténerre, akkor a természetes transzformáció módosítja a konténert, de a tartalmát nem.

Funktorok kategóriája

Funktorok kategóriája

- a természetes leképezés leképezés funktorok között
- funktorok kategóriája
 - valamennyi C és D párra
 - ▶ objektumok: funktorok C és D között
 - morfizmusok: természetes transzformációk a funktorok között
 - identitás természetes transzformáció: 1_F , amelynek az elemei az $id_{F(x)}$: $F(x) \to F(x)$ morfizmusok
- kompozíció
 - funktor és természetes transzformáció kompozíciójának nincs értelme
 - $ightharpoonup F^2 = F \circ F$
 - $ightharpoonup F^3 = F \circ F^2$

Monádok

A monád I.

- egy $M = (T, \mu, \eta)$ monád nem más mint egy
 - T endo-funktor
 - ho μ : $T^2
 ightharpoonup T$, természetes transzfromáció (join), ahol $T^2 = T \circ T$
 - $\vdash \mu_a: T(T \ a) \to T \ a, \forall a \in ob(C)$
 - ho $\eta: I \to T$, természetes transzformáció (*return*)
 - $\vdash \eta_a: a \to T \ a, \forall a \in ob(C)$
- ahol az alábbiaknak teljesülnek (monad-laws):
 - $\vdash \mu \circ 1_T \circ \mu = \mu \circ \mu \circ 1_T$
 - $\triangleright \quad \mu \circ 1_T \circ \eta = \mu \circ \eta \circ 1_T = 1_T$
 - ightharpoonup ahol 1_T az identitás természetes transzformáció

A monád II.

 a monád törvények törvények vizuálisan az endo-fuktorok kategóriájában az alábbi diagramokkal szemléltethetőek

A monád gyakorlati értelmezése

- Mit jelent a gyakorlatban az η (return) és μ (join):
 - $\eta\colon 1_{\mathcal C} o T$ (return): Ha van egy T endo-funktorom , akkor létezik $\eta_x\colon 1_{\mathcal C}x o Tx$ morfizmus, $1_{\mathcal C}x=x$, azaz $\eta_x\colon x o Tx$
 - ez általában a konstruktort reprezentálja
 - pl.: Maybe<int>(3)
 - ho $\mu: T^2 \to T$ (join): ehhez nehezebb analógiát rendelni
 - de szemléletesen,tudunk-e
 - Maybe<Maybe<int>> -ből Maybe<int>-et csinálni
 - List<List<double>> -ből List<double>-t csinálni
 - és ha igen, hogyan?

Kompozíciók és monádok

Minden a kompozícióról szól!

• $M = (T, \mu, \eta)$ monád

ex_1: Monád

Köszönöm a figyelmet!

Folytatjuk...