

PASSIVE LOSSLESS SNUBBERS FOR HIGH FREQUENCY PWM CONVERTERS

Sam Ben-Yaakov and Gregory Ivensky

Power Electronics Laboratory
Department of Electrical and Computer Engineering
Ben-Gurion University of the Negev

P. O. Box 653, Beer-Sheva 84105, ISRAEL Tel: +972-7-646-1561; Fax: +972-7-647-2949

Email: sby@ee.bgu.ee.ac.il

March 1999

OUTLINE

Chapter 1. Introduction

- 1. Seminar objectives
- 2. Hard versus soft switching
- 3. Diode reverse recovery
- 4. IGBT behavior under hard switching
- 5. Why soft switching?
- 6. Soft switching terminology
- 7. Soft switching by passive lossless snubbers
- 8. Simulation tools

Chapter 2. Passive lossless snubbers perspective

- 1. Passive lossless snubber approaches
- 2. Snubbers evolution
- 3. The switched inductor (SIM) model
- 4. Basic switching cell of common PWM converters
- 5. Fundamental principles
- 6. Practical aspects

Chapter 3. Basics of resonant networks

- 1. Reset of resonant elements
- 2. Resonant networks the vehicle of snubbing and energy circulation
- 3. Basic resonant network parameters
- 4. Ideal LC-network with ideal diode fed by a voltage source V_s
- 5. Some trivial cases and practical aspects
- 6. Resonant inductor design

Chapter 4. Switch turn-off lossless snubbers

- 1. The 'one way' capacitor. Versions 1 and 2 (SNB1 & SNB2)
- 2. Switch turn-off lossless snubber (SNB3)
- 3. Applying snubber SNB3 in a flyback converter
- 4. Applying snubber SNB3 in a forward converter
- 5. A switch turn-off lossless snubber for a boost converter (SNB4)

Chapter 5. Switch turn-on and diode turn-off snubbers

- 1. Flyback reset snubber. Versions 1 and 2 (SNB5 & SNB6). Practical aspects
- 2. Low stress turn-on snubber (SNB7). Experimental results. Implementation in APFC
- 3. RMS current of the snubber inductor in a boost converter implemented in APFC

Chapter 6. Turn-on and turn-off single switch snubbers

- 1. Generic LCC 'turn off' & 'turn on' snubber topology
- 2. Boost converter with LCC snubber: D type 'on' and S type 'off' (SNB8)
- 3. Some additional recent turn-on & turn-off passive lossless LCC snubbers (SNB9 SNB12)
- 4. LCC snubbers with improved reset (SNB13)
- 5. Boost converter with LLC-type snubber (SNB14)

- 6. Buck converter with LC-type snubber (SNB15)
- 7. Turn-on, turn-off and turn-on turn-off snubbers. Can parasitic elements be used?

Chapter 7. Rectifier diodes lossless snubbers

- 1. Phase shifted PWM (PSPWM) converters
- 2. Residual issues in PSPWM
 - 2.1. Circulating current. Lossless output snubbers SNB16 & SNB17
 - 2.2. Rectifier's diodes reverse recovery. Possible remedysaturable reactor. Snubber SNB18
- 3. Experimental PSPWM converter
- 4. Improved magnetic snubber for rectifier diodes in DC/DC converters (SNB19)

Chapter 8. Combining snubber and power supply functions

- 1. Turn-off snubber with energy recovery back to the input or into a local power supply (SNB20)
- 2. A local power supply with turn off snubber features
- 3. Application of proposed power supply in a boost APFC

Conclusions

References

Chapter 1	
INTRODUCTION	

SEMINAR OBJECTIVES

- To demonstrate the use and benefits of passive lossless snubbers in modern high frequency power electronics design.
 - Relevant topologies
 - Soft switching
 - Parasitic effects
 - Limitation pros & cons

HARD VERSUS SOFT SWITCHING

MOSFET switching stage

Switching waveforms (simulation)

- Switching losses are proportional to switching frequency
- Modern simulators include switching behavior

Hard switched boost stage

Basic waveforms (simulation)

- Diode reverse current and parasitic oscillations
- Natural 'softening' at 'turn off'
 - 'Turn On' more troublesome in MOSFETS
 - 'Turn On' & 'Turn off' problematic for IGBT -> ZCS

Diode Reverse Recovery [25, 39]

- Low voltage drop on diode in reverse recovery period
- High reverse currents
- High reverse voltage
- Parasitic oscillations

The reverse recovery problem in Boost topology

- Short circuit against Vout
- Occurs in all topologies

The reverse recovery problem in Boost topology

- High reverse currents
- High losses
- EMI emission

Diode switching circuit - reverse recovery

Diode reverse recovery switching waveforms

- Very high reverse currents
- A function of series inductance
- Detrimental effect in isolated and non isolated converters
- Becomes very important in high switching frequency converters

Trapped Energy as L becomes Larger

Assume: t_{rm} constant

Peak reverse current: $I_{rm} = \frac{V}{L} t_{rm}$

$$I_{rm} = \frac{V}{L} t_{rm}$$

Trapped energy
$$E = \frac{1}{2} (I_{rm})^2 L = \frac{(V t_{rm})^2}{2L}$$

- Trapped energy decreases as L becomes larger
- Adding inductance ---> Advantageous

Center Tap Rectifier

Leakage inductance at secondary

Experimental waveforms (no diode snubber)

- Greatly influenced by transformer leakage
- Forces the use of high voltage diodes

IGBT BEHAVIOR UNDER HARD SWITCHING [5, 16, 20, 21, 38]

- Current tail due to stored minority carriers
- Switching losses increase linearly with switching frequency
- Switching frequency limit is at about 25 kHz

Why Soft Switching?

Ideal Size/Switching frequency relationships

Practical size realization

Conflicting constraints

Soft switching helps to reduce EMI emission????

SOFT SWITCHING TERMINOLOGY

'True' soft switching calls for external active circuitry

'Pseudo' soft switching by lossless snubbers

Soft Switching by Passive Lossless Snubbers

- For MOSFETs -> OK
- For IGBTs -> ZCS at 'turn off' might be more desirable (current tail)
- This can not be accomplished with a Passive Snubber unless operating in constant 'off' time (quasi-resonant)

SIMULATION TOOLS

- ✓ Modern device models account for switching behavior
 - Old Models DO NOT account for switching behavior
 - Difficult to account for PCB parasitics
 - Simulation of switching losses is still unreliable
- **☆** Cycle-by-Cycle simulation
 - Can faithfully describe the basic switching phenomena
 - ✓ Very useful tool to examine snubber operation
- Average Simulation [3]
 - ✓ Can account for snubber effect on dynamics
 - ✓ Can be used to design the feedback loop

MODEL MUR860 D (IS=783U RS=30M N=4.82 BV=600 IBV=10U

- + CJO=330P VJ=.75 M=.333 TT=79.2N)
- * Motorola 600 Volt 8 Amp 55M us Si Diode 02-24-1994

.MODEL DN5406 D (IS=2.68P RS=7.31M N=1.17 BV=900 IBV=10U

- + CJO=124P VJ=.6 M=.333 TT=14.4U)
- * Motorola 600 Volt 3 Amp 15 us Si Diode 11-23-1990
- Parameters can be changed to test various aspects, e.g.TT for reverse recovery


```
.SUBCKT IRF150 10 20 30
  TERMINALS: D G S
M1 1 2 3 3 DMOS L=1U W=1U
RG 20 2 5.35
RD 10 1 4.3M
RDS 1 3 635K
CGD 4 1 2.75N
RCG 4 1 10MEG
MCG 4 5 2 2 SW L=1U W=1U
ECG 5 2 2 1 1
DGD 2 6 DCGD
MDG 6 7 1 1 SW L=1U W=1U
EDG 7 1 1 2 1
DDS 3 1 DSUB
LS 30 3 7.5N
.MODEL DMOS NMOS (LEVEL=3 VMAX=1.6MEG THETA=265.6M
VTO=3.3
+ KP=9 RS=8.12M IS=2.01P CGSO=2.65M)
.MODEL SW NMOS (LEVEL=3 VTO=0 KP=.45)
.MODEL DCGD D (CJO=2.75N M=.5 VJ=.41)
MODEL DSUB D (IS=2.01P RS=5.20M VJ=.8 M=.4 CJO=2.60N
TT = 720N)
.ENDS
* IR 100 Volt 28 Amp 45M Ohm N-Channel Power MOSFET 11-20-
1990
```

Chapter 2

PASSIVE LOSSLESS SNUBBERS PERSPECTIVE

RC SNUBBERS - Diode RC snubber

3 LOSSES
$$P_{d(min)} = \{\frac{(2V_o)^2 C}{2}\} f_s; P_{d(lkg)} = \{\frac{(I_{pkr})^2 L_{lkg}}{2}\} f_s$$

 $P_{d(min)} = minimum losses$

 V_0 = output voltage

C = snubber capacitor $I_{pkr} = peak reverse current$

 f_s = switching frequency L_{lkg} = leakage inductance

Resistor dissipation may reach 10's of Watts

PASSIVE LOSSLESS SNUBBER APPROACHES

- 1. Snubbing in multiple switch configuration (e.g. half bridge)
- 2. Auxiliary (dual) switch snubbers [4, 15, 33, 37]
- 3. Snubbers in single switch configuration (references given below)

No. # 1: Most effective

• Few extra components => economical

No. # 2: Effective but costly

- Calls for extra switches and drives
- Diminishing return

No. # 3: Good compromise

- Only passive elements needed
- Proven to improve efficiency
- Potentially lowers EMI emission
- This seminar will concentrate on single switch and diode snubbers for PWM converters

Snubbers Evolution

- SCR (1): RC snubbers high losses
- SCR (2): Lossless Snubbers help to turn off devices
- PWM (1): RC Snubbers high losses
- PWM (2): Quasi Resonant high stresses and conduction losses
- PWM (3): Auxiliary Switch complex
- PWM (4): Lossless Snubbers -optimal (as of now)

Passive Lossless Snubbers are comparable in performance to the Dual Switch approaches but are less expensive!

BASIC SWITCHING CELL OF COMMON PWM CONVERTERS

Topology	Vin	V _o	Topology	VAB	V _{CB}
Buck	V_{CB}	V_{CA}	Buck	V _{in} -V _o	V _{in}
Boost Buck-Boost	$egin{array}{c} V_{ m AB} \ V_{ m AB} \end{array}$	V _{CB} -V _{CA}	Boost Buck-Boost	V _{in} V _{in}	$V_{\rm o} = V_{\rm in} + V_{\rm o}$

Fundamental Principles

1. Controlling $\frac{dI}{dt}$ at 'Turn On' -> Pseudo ZCS

Turn-On snubber

D - type Turn-On snubber

Fundamental Principles

2. Controlling $\frac{dV}{dt}$ at 'Turn Off' -> Pseudo ZVS

S - type Turn-Off snubber D - type Turn-Off snubber L - type Turn-Off snubber

- The major objective: to circulate the trapped energy
 - In a lossless manner
 - Without increasing the switch and diode stresses
 - As quickly as possible (Don & Doff limitations)
 - Without generating new parasitic effects (of extra components)
 - Inexpensive to implement

Use the followings as check points for comparison

 $I_{pk}(switch)$

 $V_{max}(switch)$

 $V_{max}(diode)$

General Observation

Snubber solution is independent of (PWM) topology if confined to the 'A-B-C' domain

Practical Aspects (1)

Snubber inductor rms current:

Snubber inductor carries switch plus reverse recovery currents

• Snubber inductor carries diode plus reverse recovery currents

Practical Aspects (2)

Stirring capacitor's ripple current

- (a) Ripple stirred to 'ground' in Boost topology
- (b) Ripple stirred to output in Boost topology
- (c) Ripple stirred to input in Boost topology

Chapter 3
BASICS OF RESONANT NETWORKS

Reset of Resonant Elements

At steady-state:

 Volt-Sec of resonant inductor over switching cycle must be zero

$$\int_{T_s} V_{L_r} dt = 0$$

 Ampere- Sec of resonant capacitor over switching cycle must be zero

$$\int_{T_r} I_{C_r} dt = 0$$

- Sufficient time must be available for reset
 - This will cause restriction on duty cycle min & max

Resonant Networks

-the vehicle of Snubbing and Energy Circulation

- Energy circulation in passive lossless snubbers is made possible by lossless energy exchange of reactive elements (i.e. C, L)
- When the exchange is between L & C one deals with resonant phenomena

APEC

Basic Resonant Network Parameters

- Typical equivalent circuit of a lossless snubber
- → Series resonance
- \rightarrow R is normally small (to make the snubber "lossless")
- → May or may not include diode
- → Peak current equal or higher than main currents
- → Resonant frequency need to be shorter than switching frequency

Basic Resonant Network Parameters

- → Resonant frequency: $f_{\mathbf{r}} = \frac{1}{2 \pi \sqrt{L C}}$; $\omega_{\mathbf{r}} = \frac{1}{\sqrt{L C}}$; $T_{\mathbf{r}} = \frac{2\pi}{\omega_{\mathbf{r}}}$
- → Characteristic impedance : $Z_r = \sqrt{\frac{L}{C}}$

APEC

Ideal LC-network with ideal diode fed by a voltage source $V_{\rm S}$ i(0)= $I_{\rm o}-v_{\rm C}(0)\text{=}V_{\rm Co}$

$$i = \frac{V_s \text{-} V_{Co}}{Z_r} \sin(\omega_r t) \text{+} I_o cos(\omega_r t)$$

$$v_C \text{=} (V_s \text{-} V_{Co}) [1\text{-}cos(\omega_r t)] \text{+} I_o Z_r sin(\omega_r t) \text{+} V_{Co}$$

$$V_{Cp} = (V_s \text{-} V_{Co})[1\text{-}cos\psi] + I_o Z_r sin\psi + V_{Co}$$

$$\psi = \tan^{-1}(-\frac{I_0Z_r}{V_s-V_{Co}}) + \pi \qquad \qquad \psi < \pi$$

If
$$V_{Co}$$
 = 0 and I_o = 0 ψ = π and V_{Cp} = 2 V_s

If
$$V_{\rm Co}$$
 < 0 and $I_{\rm o}$ = 0 ψ = π and $V_{\rm Cp}$ > 2 $V_{\rm s}$

SOME TRIVIAL CASES

• Linear inductor discharge

$$\frac{dI_L}{dt} = \frac{V_S}{L}; \qquad i_L = I_L(0) - \frac{V_S}{L}t$$

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

• Linear capacitor discharge

$$\frac{dV_C}{dt} = \frac{I_S}{L}; \quad v_C = V_C(0) + \frac{I_S}{C}t$$

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

• Capacitor voltage reversal i(0)=0 $v_C(0)=V_{Co}$

Beginning

End

Practical Aspects (3)

Practical Snubber Components

• Reverse recovery of snubber diodes

Before reset

Diode snapped

~

Parasitic oscillations

Remedy -> Saturable Reactor

Practical Aspects (4)

Practical Snubber Components

- ESR of resonant Capacitor
- Tigh losses, high temperature
- Remedy -> Low ESR capacitors:
 Polypropylene
 Mica (the best !!)

• Interwinding capacitance of resonant inductor

- Parasitic oscillations, high losses, EMI emission
- Remedy -> Careful design, toroidal configuration, good coupling between windings

· Printed circuit layout

✔ Remedy -> Careful design

Resonant Inductor Design

Typical characteristics

Low inductance ; Typical range 3μH - 10μH

• High current; Typical range 1A -30A

Some basic relationships:

$$B_{\text{max}} = \frac{L I_{pk}}{n A_e}; \qquad L = \frac{n^2 \mu_o \mu_r A_e}{l_e};$$
$$\Delta B = \frac{\int V_L dt}{n A_e};$$

L - inductance (H)

I_{pk} - peak inductor current (A)

V_L - voltage across inductor (V)

t - time (Sec)

n - number of turns

B_{max} - limit of magnetic flux density (T)

 A_{e} - effective core area $\left(m^{2}\right)$

 l_e - effective magnetic length (m)

 μ_{0} - permeability (1.25 10-6 $\,$ H/m)

 μ_{r} - relative permeability

From above

$$\frac{I_{pk}}{L} = \frac{1}{L} \frac{B_{\text{max}} l_e}{n \mu_o \mu_r}$$

For high $\frac{I_{pk}}{L}$ ratios:

- Long l_e
- Small number of turns n
- Low relative permeability μ_r
- Winding window will no be full

Typical Construction

Toroid based design

Lower EMI emission

Suggested Design Procedure

- 1. Choose ΔB_{max} based of acceptable losses (mW/gr) from ferrite data (losses as a function of ΔB and frequency). Use f_r as an indicator but take into account the short period of snubbing by dividing the data sheet losses by (f_r/f_s)
- 2. Estimate $\{V \text{ Sec}\}$ across resonant inductor $\int V_L dt$ or by an approximation e.g. $V_L * t_{rr}$
- 3. Calculate nAe from the relationship:

$$nA_e = \frac{\int V_L dt}{\Delta B_{\text{max}}}$$

- 4. Select wire cross section according to rms current
- 5. Based on calculated nA_e and wire size, choose a core for a single layer winding
- 6. Gap the core for required L value

Chapter 4

SWITCH TURN-OFF LOSSLESS SNUBBERS

SWITCH "TURN OFF" LOSSLESS SNUBBER (SNB1)

The 'One Way' Capacitor: Version 1 [35]

- ullet Snubber capacitor C_1+C_2
- \bullet Resonant reset ($C_1\text{+}C_2,\,L)$

General Observations (1)

1. Snubbing

2. Reset

 V_{C} = 2 V_{CB}

$$\label{eq:continuous_vc1} \text{if} \quad \mathrm{C}_1 = \mathrm{C}_2 \quad \text{->} \qquad V_{C1} = V_{C2} = V_{CB}$$

Interval
$$t_0$$
- t_1

Assuming:
$$C_1=C_2=C$$

$$t_1-t_0=\frac{T_r}{2}=\pi\sqrt{\frac{LC}{2}}$$
 ;

$$i_L \text{=} i_{D3} \text{=} I_{pk} sin(2\pi \frac{t}{T_r})$$

$$I_{pk} = \frac{V_{CB}}{\sqrt{\frac{2L}{C}}} \qquad ; \qquad i_S = I_A + i_L$$

$$v_{C1} \!\!=\!\! v_{C2} \!\!=\!\! 0.5 V_{CB} [1 \!\!-\!\! \cos(2\pi \! \frac{t}{T_r})]$$

$$i_S=I_A$$
; $i_{D_0}=i_{D_1}=i_{D_2}=i_{D_3}=0$

$$v_{C1}=v_{C2}=V_{CB}\frac{I_A}{2C}(t-t_2)$$
;

$$v_{C1}(t_3)=v_{C2}(t_3)=0$$

$$\begin{array}{ll} v_{C1}(t_3) = v_{C2}(t_3) = 0 \\ \\ \text{from which:} \quad t_3 - t_2 = \frac{2CV_{CB}}{I_A} \quad \text{ and hence } (\frac{dv_S}{dt})_{t_2 - t_3} = \frac{I_A}{2C} \end{array}$$

$$^{\prime\prime}$$
 dt $^{\prime}$ t $_2$ -t $_3$

Interval
$$t_3$$
- (t_0+T_s)

$$Interval\ t_3\hbox{-}(t_0\hbox{+}T_s) \qquad i_{D0}\hbox{=}I_A\ ; i_S\hbox{=}i_{D1}\hbox{=}i_{D2}\hbox{=}i_{D3}\hbox{=}0$$

Typical Design

 $\label{eq:Given:VCB} \text{Given: } V_{CB}, \ I_A, \ (\frac{dv_S}{dt})_{t_2\text{-}t_3}, \ D_{min}, \ D_{max}$

1.
$$C \ge \frac{I_A}{2(\frac{dv_S}{dt})_{t_2-t_3}}$$
; 2. $t_{2-3} = \frac{2CV_{CB}}{I_A}$

2.
$$t_{2-3} = \frac{2CV_{CB}}{I_A}$$

3.
$$f_s \le \frac{1 - D_{max}}{t_{2,3}}$$

3.
$$f_s \le \frac{1-D_{max}}{t_{2-3}}$$
 4. $L = \frac{2(\frac{D_{min}}{f_s})^2}{\pi^2 C}$

5.
$$I_{pk} = \frac{V_{CB}}{\sqrt{\frac{2L}{C}}} \Rightarrow \frac{I_{pk}}{I_A} = \frac{\pi V_{CB}}{t_{on\ min} (\frac{dv_S}{dt})_{t_2-t_3}}$$

The diodes $D_1 \& D_2$ must be very fast and have a very low storage charge.

Example:

Assuming:
$$f_s \approx 100 \text{KHz}$$
; $t_{on~min} \approx 1 \mu S$; $(\frac{dv_S}{dt})_{t_2 - t_3} \approx 400 \text{V/}\mu S$ $\frac{I_{pk}}{I_A} = 0.78$

✓ Check points

$$I_{pk}(switch) = I_{A+} \frac{I_{A} \pi V_{CB}}{t_{on min} (\frac{dv_{S}}{dt})_{t_{2}-t_{3}}}$$

 $V_{max}(switch)$ = Same as original $V_{max}(diode)$ = Same as original

SWITCH 'TURN OFF' LOSSLESS SNUBBER

The 'One Way' Capacitor: Version 2 (SNB2) [35]

• Identical to Version 1 (normally drawn differently)


```
Case V_{CB}-V_{AB} > V_{AB}, i.e. V_{CB} > 2V_{AB}
                                      i_L=i_{D2}=I_{pk}sin(2\pi \frac{t}{T_r})
Interval t<sub>o</sub>-t<sub>1</sub>
         where
                         T_r=2\pi\sqrt{LC_1}
                         I_{pk} = \frac{V_{CB} - V_{AB}}{\sqrt{\frac{L}{C_1}}}
                         is=IA+iL
                         v_{C1}=(V_{CB}-V_{AB})cos(2\pi \frac{t}{T_{\tau}})
                          t<sub>1</sub> is found from the condition:
                         \begin{aligned} &(v_{C1})_{t1} \text{=-} V_{AB} \\ &t_1 \text{=} \frac{T_r}{2\pi} \text{cos}^{-1} (\frac{V_{AB}}{V_{CB} \text{--} V_{AB}}) \end{aligned}
                                          i_L = i_{D1} = i_{D2} = I_{pk} sin(2\pi \frac{t_1}{T_r}) - \frac{V_{AB}}{L}(t-t_1)
 Interval t_1-t_2
                                          t_2\text{-}t_1 is found from the condition: (i_L)_{t2} = 0
                                          t_2-t_1 = \frac{I_{pk}Lsin(2\pi \frac{t_1}{T_r})}{V_{AB}}
                                           iA=IAo-iL
                                                i_S=I_A ; i_{D_0}=i_{D_1}=i_{D_2}=0
  Interval t<sub>2</sub>-t<sub>3</sub>
                                               i_S=i_{Do}=i_{D2}=0
  Interval t<sub>3</sub>-t<sub>4</sub>
                                v_{C1} = -V_{AB} + \frac{I_{Ao}}{C_1} (t - t_3)
                                 t<sub>4</sub>-t<sub>3</sub> is found from the condition:
                                 \left(v_{C1}\right)_{t4} = V_{CB} - V_{AB}
                                 t_4-t_3 = \frac{C_1 V_{CB}}{I_{Ao}}
                                                           i_S=i_{D1}=i_{D2}=0 ; i_{Do}=I_{Ao}
   Interval t_4-(t_0+T_s)
```

Typical Design

$$Given: \ V_{CB}, \ I_{Lo}, \ (\frac{dv_{S}}{dt})_{t_{3}\text{-}t_{4}}, \quad \ D_{min} \geq 0.5, \ D_{max}$$

$$1. \quad C_1 \leq \frac{I_{L_0}}{(\frac{dv_S}{dt})_{t_3-t_4}} \quad ; \qquad 2. \quad t_{3-4} = \frac{C_1V_{CB}}{I_{L_0}} \; ; \qquad 3. \quad f_s \leq \frac{1-D_{max}}{t_{3-4}} \; ;$$

$$4. \quad L \approx \frac{(\frac{D_{min}}{f_s})^2}{\pi^2 C_1} \qquad \text{(assumption: i_L has a sine waveform not only} \\ \text{during} \qquad \qquad \text{interval t_o-$t_1 but also during t_1-$t_2)}$$

5.
$$I_{pk} = \frac{V_{CB}D_{max}}{\sqrt{\frac{L}{C_1}}}$$

✓ Check points

$$I_{pk}(switch) = I_{Lo} + \frac{\pi D_{max} V_{CB} I_{Lo}}{t_{on\ min}(\frac{dv_S}{dt})} \quad (no\ free\ lunch)$$

$$V_{pk}(switch)$$
 = Same as original $V_{pk}(diode)$ = Same as original

$$Limitation: \ V_{AB} \leq \frac{V_{CB}}{2}$$

In Boost Power Factor, hard switching when $V_{in} \ge \frac{V_0}{2}$

Applying snubber SNB3 in a flyback converter [6, 26, 28]

Basic topology

Equivalent circuit

L_m - output transformer magnetizing inductance

 L_{lkg} - output transformer leakage inductance

C - snubber capacitance

L - snubber inductance

Ro' - reflected load resistance

 $\mathrm{C}_{\,\text{o}}{}'$ - reflected capacitance of the output filter

S - switching transistor

Do - output diode

D₁, D₂- snubber diodes

V_{in} - input voltage

 $V_{o}{}^{\shortmid}$ - reflected output voltage

Equivalent circuit at different time intervals S ON 2. Snubbing 1 1. 3. Snubbing 2

General Observation

1. Switch maximum voltage $(V_{s\ pk})$

Capacitor's initial voltage $\rightarrow V_C(0) = V_{in}$

Capacitor maximum voltage $\rightarrow V_{Cpk} > 2 V_o' + V_{in}$

{ additional voltage contributed by energy removed from L_{lkg} } Switch maximum voltage $~~-->~~V_{s~pk}>2~(V_{in}~+V_{o}{}^{\prime})$ Advantages

- The snubber is simple and inexpensive [28]
- The operational duty cycle range is wider than in the case when this snubber is used in a boost converter

Disadvantage

 \bullet $\;$ High voltage stress on the transistor $V_{s\;pk}$

Reverse recovery of snubber diode

Resonant reset

Reverse recovery

Linear discharge

- Loss of C charge
- \bullet C must retain a voltage of at least V_{in} for proper ZVS at 'turn-off'

Applying snubber SNB3 in a forward converter [40]

Same advantages and disadvantages as for the flyback converter case:

- the snubber is simple and inexpensive
- high voltage stress $V_{s\;pk}$ on transistor.

 $V_{s pk} = V_{in} + V_{Cp}$ where

$$V_{Cp} = \sqrt{\frac{L_m I_m^2 + L_{lkg} I_{Sp}^2}{C}}$$

 L_{m} - magnetizing inductance of the transformer

 $L_{\mbox{\scriptsize lkg}}$ - primary leakage inductance

 I_{m} - magnetizing current of the transformer

 $I_{s\ pk}\$ - switch current in the moment when the switch is turned off

Experimental results [40]

1) V_{in} =17V; P_{out} =17W; D=2/3; $V_{s~pk}$ =52V

2) V_{in} =34V; P_{out} =36W; D=1/3; $V_{s~pk}$ =88V

A switch "turn-off" lossless snubber for a boost converter [30]

(SNB4)

Snubber elements:

L - the resonant inductor

C - the resonant capacitor

D₁, D₂ - snubber diodes

No common ground!

Equivalent circuits for different time intervals

 t_2 - t_3 , snubbing

$$\begin{split} \frac{dv_S}{dt} &= \frac{i_{Lo}}{C} &\quad ZVS! \\ v_{Do}(t) &= v_C(t)\text{-}V_o \\ v_C(t_3) &= V_o &\quad v_{Do}(t_3) \text{=}0 \end{split}$$

$$t_4$$
- t_5 , reset

$$v_C(t_4) = V_0$$
 $i_L = i_C = \frac{V_{in}}{Z_r} \sin(\omega_r t)$ $\omega_r = \frac{1}{\sqrt{LC}}$

$$\begin{split} Z_r &= \sqrt{\frac{L}{C}} \\ & i_S = i_{L_0} + i_C \qquad I_{Sp} = I_{L_0} + \frac{V_{in}}{Z_r} \\ & v_C(t_5) = v_{D2}(t_5) = 0 \end{split}$$

t₅-t₆, linear discharge

$$\begin{split} i_L(t) = i_{D1}(t) = i_L(t_5) & - \frac{V_0\text{-}V_{in}}{L} \, (t\text{-}t_5) \\ i_L(t_6) = & i_{D1}(t_6) = 0 \end{split}$$

A switch "turn-off" lossless snubber for a boost converter [30] (SNB4)

Advantages

• Soft switching at turn off. Efficiency was reported to increase by 5% to 97% [30].

Disadvantage

- \bullet Reverse recovery problems of diodes $D_o,\,D_1,\,and\,\,D_2$
- ullet High current stress of main switch during the interval t_4 t_5
- No common ground between input and output

Chapter 5

SWITCH TURN-ON AND DIODE TURN-OFF SNUBBERS

SWITCH 'TURN ON' AND DIODE 'TURN OFF' SNUBBER [35,39]

FLYBACK RESET SNUBBER (energy recovery via a catch winding)

Version 1 (SNB5)

Version 2 (SNB6)

A

Beware of leakage inductance

Not practical for HF high power levels

Analysis: Version 1 (SNB5)

Interval t_0 - t_1

$$i_S = \frac{V_{CB}t}{L_1}$$

 t_1 - t_0 is found from the condition: $i_S(t_1)$ = I_A

from where

$$t_1\text{-}t_o = \frac{L_1I_A}{V_{CB}}$$

 $V_{Do\ max} = V_{CB}(1+N)$

Interval t₂-t₃

$$i_D = \frac{I_A}{N} - \frac{V_{CB}}{N^2 L_1} (t - t_2)$$

 t_3 - t_2 is found from the condition: $i_D(t_3)$ =0

$$t_3$$
- t_2 = $\frac{I_AL_1N}{V_{CB}}$, $V_{S\ max}$ = $V_{CB}(1+\frac{1}{N})$

$$t_{3}\text{-}t_{2}\text{=}\frac{I_{A}L_{1}N}{V_{CB}} \quad ; \quad f_{s\;max}\text{=}\frac{1\text{-}D_{max}}{t_{3}\text{-}t_{2}}$$

$$V_{S~max} = V_{CB}(1 + \frac{1}{N}) \quad ; \quad V_{Do~max} = V_{CB}(1 + N)$$

The lower N, the shorter is t₃-t₂ and hence the higher is the upper limit of the switching frequency f_{s max}. The lower N, the higher is V_{S max}. The voltage across the main diode D₀ is high when N is high.

A major disadvantage of the converter is the leakage inductance between the primary and secondary of the coupled inductor: it will cause a large voltage spike across the switch. Beware of reverse recovery problems of the auxiliary diode D.

FLYBACK RESET SNUBBER Version 1 (SNB5)

Given:
$$V_{CB}$$
, I_A , $\left(\frac{di_S}{dt}\right)_{t_0-t_1}$, D_{min} , D_{max}

$$\begin{split} & \text{Typical Design} \\ & \text{Given: } V_{CB}, \ I_A, \ (\frac{di_S}{dt})_{t_0\text{-}t_1}, \ D_{min}, \ D_{max} \\ & 1. \quad L_1 \leq \frac{V_{CB}}{\left(\frac{di_S}{dt}\right)_{t_0\text{-}t_1}} \quad ; \quad 2. \quad t_{1\text{-}0} = \frac{L_1I_A}{V_{CB}} \quad ; \quad 3. \quad f_s \leq \frac{D_{min}}{t_{1\text{-}0}} \end{split}$$

$$4. \quad t_{2\text{-}3} \leq \frac{1\text{-}D_{max}}{f_s} \;\; ; \quad 5. \quad N = \frac{V_{CB}t_{2\text{-}3}}{L_1I_A} \qquad ; \quad 6. \quad V_{S\ max} = V_{CB}(1+\frac{1}{N})$$

7.
$$V_{Do\ max}=V_{CB}(1+N)$$

✓ Check points

$$I_{pk}(switch) = I_A$$

$$V_{max}(switch) = V_{CB} \left(1 + \frac{1}{N}\right) = V_{CB} \left(1 + \frac{I_A}{t_{off \; min}(\frac{di_s}{dt})_{\; t0\text{-}t1}}\right)$$

$$V_{max}(diode) = V_{CB} \left(1+N\right) = V_{CB} \left(1 + \frac{t_{off \, min}(\frac{di_s}{dt})_{t0-t1}}{I_A}\right)$$

LOW STRESS 'TURN ON' SNUBBER (SNB7) [17, 24]

Q - Main switch Dout - Main diode

D₁,D₂ - Auxiliary diodes

LS, CS - Resonant network

Practical requirement of peak reverse recovery current - I_{rm} If $I_{rm} < I_{in}$

To avoid the above undesired condition

$$I_{rm} > I_{in}$$

The coupled inductor realization

Dout - Main diode

D₁, D₂ - Auxiliary diodes

 $L_{\mathbf{S}},\,C_{\mathbf{S}}$ - Resonant network

 $L_m,\,L_1$ - Coupled inductors

n - turn ratio

Simplified equivalent circuits of the resonant elements with coupling inductor

$$V_{cpl \ on} = nV_{in}$$

$$V_{cpl \ off} = \frac{n}{1+n} (V_{out} - V_{in})$$

Basic waveforms of the lossless snubber with coupling inductor

 $V_{\mathrm{Cs}}(t_3)$ is larger and therefore $t_{3\text{--}4}$ is smaller

Components Stress

Transistor		Current		Voltage
or diode	Current stress	stress	Voltage stress	stress
		instance		instance
		or interval		or interval
Q	$I_{in}+I_{rm}$	t_1	$V_{ m out}$	t3-t4
	I_{in}	t5-t6	V _{out} +V _{Cmax}	t2
D_0	I_{rm}	t1		
D_1	$\sqrt{I_{\rm rm}^2 + rac{V_{ m cpl~on}^2 C_{ m S}}{L_{ m S}}}$	t ₁ <t<sub>e<t<sub>2</t<sub></t<sub>	V _{out} -V _{cpl} on	t ₀ -t ₁
D_2	Iin	t3-t5	v_{out}	t ₁ -t ₂

$$I_{rm} = \frac{(V_{out} + V_{cpl\ on})t_{rm}}{L_s}$$

$$t_{rm} \approx t_{rr}$$
 t_{rr} = formal reverse

recovery time

$$V_{cpl \ on} = nV_{in} = n(1-D)V_{out}$$

$$D = \frac{t_{on}}{T_{s}}$$

$$V_{Cmax} = I_{rm} \sqrt{\frac{L_s}{C_s}} \sin(\omega_r t_{1\text{-}2}) + V_{cpl~on} \left[\text{1-} \cos(\omega_r t_{1\text{-}2}) \right]$$

$$\omega_r t_{1\text{-}2} = tan^{\text{-}1}(-\frac{I_{rm}\sqrt{\frac{L_s}{C_s}}}{V_{cpl~on}}) ~+ \pi$$

An experimental 1kW Boost converter

Q - IRF460

 D_{out} - MUR860 t_{rr} = 60nsec.

D₁, D₂ - MUR460

 L_S - 3uH C_S - 100nF

n=1/7

Operational conditions

 F_S - 100KHz P_{out} - 1000W

 V_{in} - 200V V_{out} - 400V

 I_{in} - 5.8A D - 0.5

Typical waveforms of the experimental Boost converter

Vertical scales: 10V/div, 5A/div

Horizontal scale: $2\mu Sec/div$

✓ Smaller reverse recovery current of Do

o DC calibration points Power dissipation dropped by 19.6W

Additional Comments

- ✓ The main advantages of the lossless snubber:
 - ZCS in turn-on
 - Smaller reverse recovery current
- ✓ The preferred embodiment is coupled inductors
- X The main disadvantage of the snubber is limitation of the duty cycle range
- ✓ The overall efficiency of the experimental Boost converter was found to increase by 1%-2%

The snubber can be adopted to other PWM topologies

Proven to increase efficiency by $\approx 2\%$

Implementation in a buck-boost converter

Implementation in APFC

- Simple implementation
- Watch D_{onmin}

Proven to increase efficiency by $\approx 2\%$

RMS current of the snubber inductor in a boost converter implemented in APFC

Two ways of snubber inductor (L_s) connection:

(snubber elements except L_s are not shown)

RMS current of the snubber inductor in a boost converter implemented in APFC

Main assumptions

- 1. The duration of transient processes after the switch S is turned on and after S is turned off are neglected.
- 2. The input inductance L_m is sufficiently large that their current i_{in} is practical constant during one high frequency switching cycle T_s .

Under these conditions the current $i_{\rm Ls}$ of the snubber inductor has a rectangular waveform during one high frequency switching cycle $T_{\rm s}$.

For one switching cycle T_s (high frequency period)

$$I_{Ls \text{ rms hf}}(Fig. a) = i_{in}\sqrt{D}$$

$$\begin{split} I_{Ls~rms~hf}(Fig.~b) &= i_{in}\sqrt{\text{1-D}}\\ where~D &= \frac{t_{on}}{T_s} \end{split} \label{eq:ls} \tag{hf - high frequency}$$

RMS current of the snubber inductor in a boost converter implemented in APFC

Ideal APFC

$$v_{in} = V_{in \ m} sin\vartheta$$

$$i_{1n} = I_{in\ m} sin\vartheta$$

where

$$\vartheta = 2\pi f lft$$
 (flf =50 or 60 Hz) (lf - low frequency)

$$V_0 = const$$

In boost converter

$$\frac{V_0}{v_{in}} = \frac{1}{1-D} \rightarrow D=1-(1-D_{min})\sin\vartheta$$

where

$$D_{\min} = 1 - \frac{V_{\text{in m}}}{V_0}$$

RMS current of the snubber inductor in a boost converter implemented in APFC

Ideal APFC (cont.)

RMS current for low frequency period

$$\begin{split} I_{Ls \ rms \ lf \ (Fig. \ a)} &= \sqrt{\frac{1}{\pi}} \int\limits_{0}^{\pi} I_{in \ m^2} [\sin^2\!\vartheta \text{-} (1\text{-}D_{min}) \sin^3\!\vartheta] d\vartheta = \\ &= I_{in \ m} \sqrt{0.5\text{-}\frac{4}{3\pi} (1\text{-}D_{min})} \end{split}$$

$$\begin{split} I_{Ls \ rms} \ & \text{lf (Fig. b)} = \sqrt{\frac{1}{\pi} \int_{0}^{\pi} I_{in \ m}^{2} (1 - D_{min}) \sin^{3}\theta d\theta} = \\ & = I_{in \ m} \sqrt{\frac{4}{3\pi} (1 - D_{min})} \end{split}$$

Conclusion: Fig. a is preferable if D_{min} <0.4 and Fig. b is preferable if D_{min} >0.4.

Chapter 6			
Chapter 6			
TURN-ON AND TURN-OFF SINGLE SWITCH SNUBBERS			

TURN-ON AND TURN-OFF SINGLE SWITCH SNUBBERS

Possible Realizations:

- LCC one resonant inductor and two resonant capacitors [10, 16, 22, 31, 32, 34, 39, 46]
- LLC -two resonant inductors and one resonant capacitor [1, 23, 29, 45]
- LC one resonant inductor and one resonant capacitor [2, 22, 36, 41]

Generic LCC 'turn-off' & 'turn-on' snubber topology (see also [32])

Snubber analysis is identical for all connections

TURN-ON AND TURN-OFF SINGLE SWITCH SNUBBERS

Boost converter with LCC snubber: D type 'on' and S type 'off' (SNB8) [22, 31, 32]

(Modified turn-on snubber SNB7)

S - main switch

 D_{o} - main diode

D₁, D₂, D₃ - auxiliary diodes

Interval t₀-t₁

$$i_{\rm S}\!\!=\!\!\frac{V_o}{L_{\rm S}}\!t \qquad {\rm ZCS!}$$

$$\frac{di_s}{dt} = \frac{V_o}{L_s}$$

$$i_{\mathrm{Do}} = I_{\mathrm{in}} - i_{\mathrm{s}}$$

 t_1 - t_0 is found from the condition: $i_{D_0}(t_1)=0$

$$t_1\text{-}t_o = \frac{I_{in}L_s}{V_o}$$

$$v_{C1}=0$$
 ; $v_{C2}=V_0$

$$\begin{split} &\text{Interval } t_{1}\text{-}t_{2} & i_{s}\text{=}I_{in}\text{+}i_{L_{s}} \\ & i_{Ls}\text{=}i_{C1}\text{=}i_{C2}\text{=}i_{D2}\text{=}\frac{V_{o}}{\sqrt{\frac{L_{s}}{C_{12}}}}\text{sin}[\omega_{r12}(t\text{-}t_{1})] \end{split}$$

$$\begin{array}{ll} where \\ C_{12} \!\!=\!\! \frac{C_1 C_2}{C_1 \!\!+\! C_2} \, ; \quad \omega_{r12} \!\!=\!\! \frac{1}{\sqrt{L_s C_{12}}} \end{array}$$

$$v_{C1} \! = \! V_0 \frac{C_2}{C_1 \! + \! C_2} \! \{ 1 \text{-} \! \cos[\omega_{r12} (t \! - \! t_1)] \}$$

$$v_{C2}\text{=-}v_{D1}\text{=}V_{o}\frac{C_{2}}{C_{1}\text{+}C_{2}}\{1\text{+}\frac{C_{1}}{C_{2}}cos[\omega_{r12}(t\text{-}t_{1})]\}$$

 t_2 - t_1 is found from the condition: $v_{D1}(t_2)$ =0

$$t_2 - t_1 = \frac{1}{\omega_{r12}} cos^{-1}(-\frac{C_2}{C_1}) = \sqrt{L_s C_{12} cos^{-1}(-\frac{C_2}{C_1})}$$

$$i_{D_0}=i_{D_1}=i_{D_3}=0$$

APEC

$$\begin{split} & \text{Interval } t_2 \cdot t_3 \quad i_s = I_{in} \\ & i_{Ls} = i_{C1} = i_{D1} = i_{D2} = -\frac{V_{C1}(t_2)}{\sqrt{\frac{L_s}{C_1}}} sin[\omega_{r1}(t \cdot t_2)] + i_{Ls}(t_2) cos[\omega_{r1}(t \cdot t_2)] \\ & \text{where} \\ & \omega_{r1} = \frac{1}{\sqrt{L_sC_1}} \\ & t_3 \cdot t_2 \text{ is found from the condition: } i_{D1}(t_3) = i_{D2}(t_3) = 0 \\ & t_3 \cdot t_2 = \frac{1}{\omega_{r1}} tan^{-1}(\frac{i_{Ls}(t_2)\sqrt{\frac{L_s}{C_1}}}{v_{C1}(t_2)}) = \frac{1}{\omega_{r1}} tan^{-1}(\sqrt{\frac{C_1 \cdot C_2}{C_2}}) \\ & v_{C1} = v_{C1}(t_2) cos[\omega_{r1}(t \cdot t_2)] + i_{Ls}(t_2)\sqrt{\frac{L_s}{C_1}} sin[\omega_{r1}(t \cdot t_2)] = \\ & = V_0 \frac{C_2}{C_1} cos[\omega_{r1}(t \cdot t_2)] + V_0 \frac{\sqrt{C_2(C_1 \cdot C_2)}}{C_1} sin[\omega_{r1}(t \cdot t_2)] \\ & v_{C1}(t_3) = V_0 \sqrt{\frac{C_2}{C_1}} \\ & v_{D0} = i_{D1} = i_{D2} = i_{D3} = 0 \\ & v_{D0} = \cdot V_0 \\ & v_{C1} = v_{C1}(t_3) = V_0 \sqrt{\frac{C_2}{C_1}} \quad (C_2 < C_1) \\ & v_{C2} = 0 \\ & \text{Interval } t_4 \cdot t_5 \qquad i_s = 0 \\ & i_{D1} = I_{in} \\ & v_s = v_{C2} = \frac{I_{in}(t \cdot t_4)}{C_2} \qquad \frac{dv_s}{dt} = \frac{I_{in}}{C_2} \quad ZVS! \\ & C_1 = v_{C1}(t_3) = V_0 \sqrt{\frac{C_2}{C_1}} \quad v_{D3} = v_{C2} + v_{C1} \cdot V_0 \\ & t_5 \cdot t_4 \text{ is found from the condition: } v_{D3}(t_5) = 0 \\ & V_0 C_2(1 \cdot \sqrt{\frac{C_2}{C_1}}) \\ & t_5 \cdot t_4 = \frac{V_0 C_2(1 \cdot \sqrt{\frac{C_2}{C_1}})}{I_{in}} \end{aligned}$$

Interval t₅-t₆

$$i_s=0; i_{D_0}=i_{D_2}=0$$

$$\begin{split} &i_s \text{=} 0; \quad i_{D_0} \text{=} i_{D2} \text{=} 0 \\ &i_{D1} \text{=} I_{in} \, \frac{C_1}{C_1 \text{+} C_2} \, \{ &\frac{C_2}{C_1} \, \text{+} \text{cos} [\omega_{r12} (\text{t-t}_5)] \} \end{split}$$

$$v_{C2} = V_o(1 - \sqrt{\frac{C_2}{C_1}}) + \frac{I_{i\,n}}{\omega_{r12}(C_1 + C_2)} \left\{ \omega_{r12}(t - t_5) + \frac{C_1}{C_2} \sin[\omega_{r12}(t - t_5)] \right\}$$

Two operating modes are possible. They depend on the condition at to of the interval t5-t6:

Mode 1 will prevail if:

Mode 2 will prevail if:

 $\begin{aligned} &(v_{C2})_{t_6} = V_o & (i_{D1})_{t_6} > 0 \\ &(i_{D1})_{t_6} = 0 & (v_{C2})_{t_6} < V_o \end{aligned}$

Necessary condition for Mode 1: $\frac{V_0}{I_{in}} \sqrt{\frac{C_2}{L_s}} < k_C$

where:

 $k_{C} = \frac{1}{(1 + \frac{C_{2}}{C_{1}}) \sqrt{\frac{C_{1}}{C_{2}} + 1}} [cos^{-1}(-\frac{C_{2}}{C_{1}}) + \sqrt{(\frac{C_{1}}{C_{2}})^{2} - 1}]$

The dependence of $\mathbf{k}_{C}\,$ on $\frac{C_{1}}{C_{2}}$

• For Mode 1: $\frac{V_0}{I_{in}}\sqrt{\frac{C_2}{L_s}} < k_C$

APEC

 $t_6\text{-}t_5$ is found from the condition: $v_{D2}(t_6)\text{=}0;\ v_{C2}(t_6)\text{=}V_o$

 $i_{D1}=i_{D2}=I_{in}-i_{Ls}$

 t_7 - t_6 is found from the condition: $i_{D1}(t_7)=i_{D2}(t_7)=0$

$$t_{7}\text{-}t_{6}\text{=}\frac{1}{\omega_{r1}}sin^{-1}(\frac{I_{in}\sqrt{\frac{L_{s}}{C_{1}}}}{v_{C1}(t_{3})})\text{=}\frac{1}{\omega_{r1}}sin^{-1}(\frac{I_{in}\sqrt{\frac{L_{s}}{C_{2}}}}{V_{o}})$$

Interval t_7 - t_8 , Mode 1, i_s = i_{D_0} = i_{D_1} = i_{D_2} =0; i_{D_3} = I_{in}

$$v_{C1} \text{=} v_{C1}(t_7) \text{-} \frac{I_{in}(t\text{-}t_7)}{C_1}$$

 t_8 - t_7 is found from the condition: $v_{C1}(t_8)$ =0

$$t_8\text{-}t_7\text{=}\frac{v_{C1}(t_7)C_1}{I_{i\,n}}$$

$$v_s\approx V_o\text{-}v_{C1}$$

 $\label{eq:interval} \text{Interval t_8-$t_9} \;, \quad \text{Mode 1}, \qquad i_s = i_{D1} = i_{D2} = i_{D3} = 0;$

$$i_{Do}=I_{in}$$

$$v_{s} \approx V_{o} \quad ; \quad v_{C1} = 0 \quad ; \quad v_{C2} = V_{o} \label{eq:vs}$$

LOSSLESS TURN-ON AND TURN-OFF SNUBBER (SNB8)

Mode 2. Time interval before the switch Q is turned on

- Three auxiliary diodes are conducting
- Hard switching
- Coupling will help to avoid Mode 2.

TURN-ON TURN-OFF SNUBBER (SNB8)

Typical Design

 $\begin{array}{lll} \text{Given:} & V_o, & I_{in}, & (\frac{dis}{dt})_{t_0\text{-}t_1}, & (\frac{dvs}{dt})_{t_4\text{-}t_5}, & D_{min}, & D_{max} \end{array}$

1.
$$L_s \ge \frac{V_o}{(\frac{dis}{dt})_{t_0-t_1}}$$

1.
$$L_s \ge \frac{V_o}{(\frac{di_S}{dt})_{t_0-t_1}}$$
 2. $C_2 \ge \frac{I_{in}}{(\frac{dv_S}{dt})_{t_4-t_5}}$

$$3.~k_{C}~>~\frac{V_{o}}{I_{i\,n}}\sqrt{\frac{C_{2}}{L_{s}}}~>~1$$

4. Select C_1/C_2 using the plot $k_C = \varphi(\frac{C_1}{C_2})$.

5.
$$t_{on\ min} = \frac{I_{in}L_s}{V_o} + \sqrt{L_sC_{12}cos^{-1}(-\frac{C_2}{C_1})} + \sqrt{L_sC_1tan^{-1}(\sqrt{\frac{C_1-C_2}{C_2}})}$$

$$6. \ t_{off \ min} \approx \frac{V_o C_2}{I_{i \ n}} [1 + \sqrt{\frac{C_1}{C_2} (1 - \frac{I_{in}^2 L_s}{V_o^2 C_2})}] \ + \sqrt{L_s C_1 sin^{-1}} (\frac{I_{in} \sqrt{\frac{L_s}{C_2}}}{V_o})$$

- 7. $D_{min} = (t_{on \ min}) f_s$; $D_{max} = (1 t_{off \ min}) f_s$
- 8. Current stress of the switch S

$$I_{s pk} = I_{in} + V_o \sqrt{\frac{C_{12}}{L_s}}$$

9. Voltage stress of the switch S

$$V_{s pk} = V_{o}$$

Apply iteration to approach desired design goals

Some Additional Recent Turn-On & Turn-Off Passive Lossless LCC Snubbers

• Generic LCC 'turn-off' & 'turn-on' snubber topology

SNB8 discussed above (drawn differently)

Boost converter with LCC snubber: D type 'on' and S type 'off'

Moving the connection point to main inductor

Boost converter with LCC snubber: S type 'on' and S type 'off' (SNB9) [16, 32, 39]

Topologies similar to SNB8 and SNB9 with different capacitor C2 connections [31, 32, 34, 46]

Original

SNB10: D type 'on' and D type 'off' [34, 46]

 C_2 connected to output

Ripple to output

SNB11: D type 'on' and L type 'off' [32]

C₂ connected to input

Ripple stired to input

SNB12: D type 'on' and L type 'off' [31]

C₂ connected to switch

Stirs ripple to output

Generic LCC 'turn-off' & 'turn-on' snubber topology with improved reset

 \bullet V_{res} accelerates the reset phase

Turn-on and turn-off snubber for single switch converter

Improved Williams snubber SNB13 [10]

Operating process is based on a dual energy recovery circuit, improvement on SNB9.

• V_{res} replaced by transformer

Claimed to have:

- 1. Lower peak current in the switch S.
- 2. Shorter discharge time is needed for the capacitor C_1 at low load . Hence, wider operation range of load current and higher switching frequency.
- Reset through transformer (leakage and reset problems ?)
 See also snubbers with recovery transformers [11-13]

Coupled inductor

SNB14 Features

Pro

- 1. Soft switching at turn-on and turn-off in a wide load range without high current and voltage stresses.
- 2. Coupling decreases the minimal needed value of turn-off time of the switch.

Con

1. The resonant circuit L_1C_r is fed from the input voltage V_{in} . Hence, the peak capacitor's voltage cannot be higher $2V_{in}$. Consequently, when $V_0 > 2V_{in} =$ hard switching.

Buck converter with LC type snubber (SNB15) [2, 36] (one inductor and one capacitor)

• No common ground ! See boost converter with LC type snubber in [41]

{'Turn-on'}, {'turn-off'} and {'turn-on' - 'turn-off'} snubbers

Can parasitic elements be used?

1. 'Turn on'

- $\bullet \quad L_s \ \ relatively \ large \ \ inductance \ to \ lower \frac{dI}{dt} \ and \ hence$ diode peak reverse current and trapped energy
- Need a mechanism for recovering trapped energy
- Impractical to obtain by stray inductance such as interconnections
- Tan be part of transformer or flyback coupled inductor

2. 'Turn off'

- C_c significant inductance to lower $\frac{dV}{dt}$
- C_c is mainly needed while voltage on switch is low
- Switch output capacitance would be helpful and sometime sufficient
- 2. 'Turn off' cont.
- f internal capacitance is used:
 - fast gate 'turn off'
 - high sink current
 - low source inductance "fast switch"
- Look up new MOSFET generations (APT V)

Output Capacitance of MOSFETs A study by Simulation

- Nested AC analysis
- V₁ is swept from 0V to 100V
- I_{ac} is set to 1A (not to worry, used after linearization)
- Capacitance is calculated from:

$$C_{out} = \frac{1}{2 \pi \text{ frequency } v_{ds}}$$

'frequency' -> PSPICE variable

 $\label{eq:cont_pot} \mbox{Upper trace: C_{out} as a function of V_{DS}} \\ \mbox{Lower trace: C_{out} as a function of frequency for various V_{DS}}$

• About 1 nF at 50V

values.

 \bullet For significant improvement added snubber capacitance > 1nF

Simulating Snubbing Effects 'turn-off'

- Transient analysis
- C is swept 0nF 10nF

Drain clamped to 100V

Drain clamped to 20V

- Drain current reflects charging of internal capacitor
- Part of energy stored as $\frac{C V^2}{2}$ --> losses at 'turn-on'!
- Not all of $\{I_D*V_{DS}\}$ at 'turn off' duration is lost to heat

APEC

Chapter 7

RECTIFIER DIODES LOSSLESS SNUBBERS

PHASE SHIFTED PWM (PSPWM) [18, 19, 27]

ZVS of main switches

Basic Phase Shifted PWM Stage

- Leading and lagging legs (bridge non-symmetrical)
- Coupling capacitor Cc needed to block current
 - Asymmetry of control (+noise!)
 - Can be eliminated by applying peak current mode

control

 V_{AB} I_{Do1} I_{Do2} I_{Do2} I_{Do2} I_{Do2} I_{Do3} I_{Do4} I_{Do4} I_{Do5} I_{Do5} I_{Do5} I_{Do5} I_{Do5} I_{Do5} I_{Do5}

PSPWM DESIGN OVERVIEW

Basic Conventional Phase Shift PWM design equations

$$\frac{I_{off}^2 L_r}{2} \ge \frac{(C_A + C_B)V_{BUS}^2}{2}$$

 $C_A+C_B = total leg capacitance$

or:

$$I_{off} \sqrt{\frac{L_r}{C_A + C_B}} > V_{BUS} \implies I_{off} Z_r > V_{BUS}$$

where the characteristic impedance is defined as usual:

$$Z_r = \sqrt{\frac{L_r}{C_A + C_B}}$$

The transition time (need to be larger than 1/4 of the resonant period

$$t_d \ge \frac{2\pi\sqrt{L_r(C_A + C_B)}}{\Delta}$$

6

In the conventional scheme, L_1 need to be relatively large to store sufficient energy at low load current . This can be somewhat improved by making the primary current larger (lower L_m transformers magnetization inductance) .

If the short circuit (two diodes conducting) during t_{off} is avoided (only one diode conducts) L_1 can be small since the energy comes from the secondary

1. Circulating Current

Primary current

- Thermal design of power stage for duty cycle D ==>1
 =>The circulating current at D < 1 not a major problem
- ullet Possible Solution Apply the 'One Way' capacitor to block primary current at $t_{\rm off}$

Lossless output snubber SNB16 [18]

 \bullet L_r and C_s form a resonant circuit

2. Rectifier's diodes reverse recovery

Leakage inductance at secondary

- 2. Rectifiers' diodes reverse recovery
 - Possible Remedy -> Saturable reactor (SR) [7, 8, 9, 14,

43]

Simulation Circuit

- Using fast diode
- Current source establishes the forward current and abrupt change
- L_{sr} emulate "large" back inductance

APEC

Simulation waveforms $(L_{sr} = 50 \mu H)$

RESIDUAL ISSUES IN PSPW

2. Rectifiers' diodes reverse recovery

• Design equations overview

Magnetic flux swing (one sided)

$$\Delta B = \frac{VT}{2 \text{ n A}_c}$$

VT = volt-second across SR

 A_c = core effective cross section area

n= number of turns

For Amorphous Alloy 2714AF (Allied):

Core Losses: Pcore (W/Kg, mW/gr)) = $10^{-6} (f_s)^{1.73} (\Delta B)^{1.88}$

B = Magnetic flux (T); $f_s = Switching frequency (Hz)$

 $\Delta B = (Pcore/(10^{-6} (f_s)^{1.73}))^{(1/1.88)}$

Extrapolated from Allied's data (originally given up to 200KHz)

RESIDUAL ISSUES IN PSPWM [42, 43]

- 2. Rectifiers' diodes reverse recovery
- Implementation in PSPWM

- 2. Rectifiers' diodes reverse recovery
- Implementation in PSPWM

Situation at first commutation instance (power to t_{off})

Equivalent circuit during toff

RESIDUAL ISSUES IN PSPWM

• Theoretical considerations

APEC

Design Guidelines

1. Choose SR to keep core losses low say : 50 mW/gr

2. Estimate VT

Example: Diode reverse voltage 100V

 $t_{rr} \approx 100 \; nSec \qquad \text{=> V T} \; \approx 10 \; V \mu S$

For Amorphous Alloy 2714AF (Allied):

Pcore (W/Kg, mW/gr)) = 10^{-6} f^{1.73} Δ B^{1.88}

Assume Pcore = 50 mW/gr; f = 270 KHz

From loss equation $\Rightarrow \Delta B = 0.125T$

From
$$\Delta B = \frac{V T}{2 n A_c}$$
 => $A_c = 0.4 cm^2$

Using MP1906P-4AF (Allied):

OD = 21mm; ID = 10mm; Ac = 0.16 cm²; n=1; 6.1 gr

Need at least 3 units per leg

Effective frequency is much higher than switching frequency

Being a small body (small surface area), might get very hot. 4 units per leg were used in experimental converter.

Experimental PSPWM Converter

Transformer: Payton 3000W T250-12-4C

Nominal Operating frequency = 350KHz

Input Voltage = 360 - 390 Volt

Max. $VT = 864 V\mu S$

Primary to half secondary 6:1

Primary Max rms current: 11 Amp

Dielectric strength (primary to secondary) 2500 Vrms

Dielectric strength (secondary to core) $500\ Vdc$

Estimated power loss 65W (@ $60^{\circ}C$ base plate)

Estimated hot spot 110⁰C

Mechanical dimensions 88*65*30(h) mm

Experimental Results

Primary current (upper) and leg voltages (lower)

In circuit SR Performance`

 $\begin{array}{c} {\bf Improved\ magnetic\ snubber\ for\ rectifier\ diodes}\\ {\bf in\ DC/DC\ converters} \end{array}$

• Basic solution [42,43]

Diode reverse recovery switching waveforms

• Actual reverse recovery time is a function of series inductance

Improved magnetic snubber for rectifier diodes in DC/DC converters [44]

 $\label{eq:conditional_condition} Added \ elements: C_3, \, C_4, \, D_o, \ L_1 \, D_5 \, \& \ L_2 \, D_6$

-> Extra resonant circuit to sweep out stored charge

The stored charge of the diode D3 (D4) is pulled out rapidly ; therefore (t_{rr}) D3 and (t_{rr}) D4 desrease and hence core losses in SR1 and SR2 also reduce.

Chapter 8

COMBINING SNUBBER AND POWER SUPPLY FUNCTIONS

Turn-off snubber with energy recovery back to the input bus or into a local power supply (SNB20) [39]

C = Snubber capacitor

 C_0 = Filter capacitor

Negative polarity of voltage across Co !

- The main purpose of the device: turn-off snubber
- · Additional appointment: local power supply
- Watch for power level (in PS applications), might be too high

A local power supply with turn off snubber features [47]

LPS - local power supply

R_S - load resistance

 $C_2 \gg C_1$; D_Z - Zener diode

- Positive polarity of output voltage V_S
- The main purpose of the device: A local power supply.

Secondary objective: turn-off snubber

A local power supply with turn off snubber features

Main assumptions of analysis

- 1. Ideal diodes and ideal transistor. Parasitic capacitences of MOSFET are taken into account. It is assumed that these capacitences are linear.
- 2. Lin, Co and C2 are infinitely high

Equivalent circuits

• t₀-t₁: energy injection into LPS

Equivalent circuits

• t1-t2: no interconnection between the processes in the LPS and in the converter

Equivalent circuits

t2-t3: energy transfer from the capacitor C1 to the inductor L

 \bullet t3-t4: energy transfer from the inductor L to the C_2 - D_2 - R_8 circuit

Proposed Local Power Supply (LPS) connected in a boost converter

Main relationships

Energy injected to LPS during one switching period

$$E = \frac{C_1 V_0^2}{2} = V_s (I_s + I_z) T_s$$

$$I_s + I_Z = f_s C_1 \frac{V_o^2}{2V_s}$$

$$I_s + I_Z = f_s C_1 \frac{V_0^2}{2V_s}$$

$$I_{s \text{ max}} = f_s C_1 \frac{V_0^2}{2V_s} \text{ (when IZ=0)}$$

LPS loaded by the MOSFET's controller driver

The average input current to the gate of the MOSFET

$$I_{g-av} = C_{Qin}V_{gs}f_s = kI_{s-max}$$

k= fraction of I_s used to power the gate (k<1)

The required value of C₁

$$C_1 = \frac{2}{k} \frac{V_{gs}}{V_o} \left[C_{gd} \left(1 + \frac{V_{gs}}{V_o} \right) + C_{gs} \frac{V_{gs}}{V_o} \right]$$

$$C_1 \approx \frac{2}{k} \frac{V_{gs}}{V_0} C_{gd}$$

1

C₁ is of the same order of magnitude as the parasitic capacitences of the transistor!

If additional power is required (e. g. DC fans) C_1 will be larger.

Experimental boost converter with proposed LPS

 $Q = IRFP460; \ D_0 = MUR460; \ D_1 = 1N5819; \ D_2 = MUR160$

Power stage:

 $f_{\rm S}{=}100 {\rm kHz}; \ L_{\rm in}{=}1 {\rm mH}; \ L{=}24.2 \mu H; \ C_{\rm 0}{=}1 {\rm mF}; \ V_{\rm o}=260 V; \ P_{\rm 0}{=}85 W$

Snubber:

 $V_{S}\text{=}15V;$ $C_{2}\text{=}100\mu F;$ $R_{S}\text{=}10\text{-}64\Omega$; $C_{1}\text{=}1.0\text{-}5.5nF$

Experimental waveforms of the LPS operating in a soft switched APFC circuit

 $C_1 \!\!\approx\!\! 220 pF, \, V_{in} \!\!=\!\! 220 V_{rms}, \, V_0 \!\!=\!\! 380 V, \, V_s \!\!=\!\! 12.4 V, \, R_s \!\!\approx\!\! 170 \Omega$

CONCLUSIONS

- Passive lossless snubbers can improve performance of switch mode systems:
 - Controlled $\frac{di}{dt}$ and $\frac{dv}{dt}$
 - Increased efficiency at high switching

frequency

- Reduction of voltage and current spikes
- Relatively low cost
- High reliability
- The magnitude of the reverse recovery current of the diode may affect performance of the snubber
- Check points to watch:
 - Extra stresses
 - Duty cycle limitation
 - Current limitation
- Snubber/LPS combination could be useful in some applications
- Methods to increase the snubbing capacitor without increasing LPS power are now under investigation

REFERENCES

- L. R. Barbosa, J. B. Vieira Jr., L. C. de Freitas, V. J. Farias, "A family of PWM soft-single-switched converters with low voltage and current stresses". Proceedings PESC' 97, pp. 1192-1197.
- [2] L. R. Barbosa, J. B. Vieira Jr., L. C. de Freitas, M. Vilela, V. J. Farias, "A buck quadratic PWM soft-switching converter using a single active switch", *Proceedings PESC' 96*, pp. 69-75.
- [3] S. Ben-Yaakov, "Average simulation of PWM converters by direct implementation of behavioral relationships", *Int. J. Electronics*, vol. 77, no. 5, 1994, pp. 731-746.
- [4] S. Ben-Yaakov, G. Ivensky, O. Levitin, A. Treiner, "Optimization of the auxiliary switch components in ZVS PWM converters", *Int. J. Electronics*, vol. 81, no. 6, 1996, pp. 699-712.
- [5] S. Clemente, A. Dubhashi, B. Pelly, "IGBT characteristics and applications", *IGBT Designer's Manual (IGBT-2, Second Printing), Internatinal Rectifier*, 1991, pp. 93 108, AN-983.
- [6] M. Domb, R. Redl, N. O. Sokal, "Nondissipative turn-off snubber alleviates switching power dissipation, second breakdown stress and V_{CE} overshoot: analysis, design procedure and experimental verification", *Proceedings PESC'82*, pp. 445-454.
- [7] S. Hachamov and S. Ben-Yaakov, "Reduction of reverse recovery losses in soft—switched PWM converters by saturable reactors", *Proceedings ICPE'95*, pp. 361-365.
- [8] S. Hamada, T. Mii, E. Hiraki, M. Nakaoka, "Saturable reactor & lossless capacitor-assisted soft-switching asymmetrical PWM DC-DC converter with forward-flyback transformer link", *Proceedings PESC'96*, pp. 100-105.
- [9] S. Hamada, J. M. Sun, T. Shimizu, A. Kanbe, E. Hiraki, M. Nakaoka, "A novel zero-voltage soft-switched asymmetrical PWM DC-DC converter with high-frequency transformer link", *Proceedings PCIM'96*, pp. 275-287.
- [10] X. He, S. J. Finney, B. W. Williams, T. C. Green, "An improved passive lossless turn-on turn-off snubber", *Proceedings APEC'93*, pp. 385-392.

- [11] X. He, S. J. Finney, B. W. Williams, Z. M. Qian, "Novel passive lossless soft-clamped snubber for voltage source inverters", *Proceedings APEC'96*, pp. 200-206.
- [12] X. He, S. J. Finney, B. W. Williams, Z. M. Qian, "Novel passive lossless turn-on snubber for voltage source inverters", *IEEE Trans. on Power Electronics*, vol. 12, no. 1, January 1997, pp. 173-179.
- [13] J. Holtz, S. Salama, K. H. Werner, "A nondissipative snubber circuit for high-power GTO inverters", *IEEE Trans. on Industry Applications*. vol. 25, no.4, July/August 1989, pp. 620-626.
- [14] G. Hua, F. C. Lee, M. M. Jovanovic, "An improved zero-voltage-switched PWM converter using saturable inductor," *Proceedings APEC'91*, pp. 189-194.
- [15] G. Ivensky, D. Sidi, S. Ben-Yaakov, "A soft switcher optimized for IGBTs in PWM topologies", *Int. J. Electronics*, vol. 83, no. 5, 1997, pp. 703-716.
- [16] D. Izvorska, J. Leisten, I. Izvorski, R. Petkov, "Frequency limitation of IGBT devices in energy recovery snubber circuits", *Proceedings PCIM'96*, pp. 585-592.
- [17] I. D. Jitaru, "Soft transitions power factor correction circuit", *Proceedings HFPC*, May 1993, pp. 202-208.
- [18] E. S. Kim, K.Y. Joe, M. H. Kye, Y. H. Kim, B. D. Yoon, "An improved soft switching PWM FB dc/dc converter for reducing conduction losses". *Proceedings PESC'96*, pp. 651-656.
- [19] E. S. Kim, K. Y. Joe, M. H. Kye, Y. H. Kim, B. D. Yoon, "An improved ZVZCS PWM FB DC/DC using energy recovery snubber", *Proceedings APEC'97*, pp. 1014-1019.
- [20] A. Kurnia, H. Cherradi, D. M. Divan, "Impact of IGBT behavior on design optimization of soft switching inverter topologies", *IEEE Trans. on Industry Applications*, vol. 31, no. 2, March/April 1995, pp. 280-286.
- [21] A. Kurnia, O. H. Stielau, G. Venkataramanan, D. M. Divan, "Loss mechanisms in IGBT's under zero voltage switching", *Proceedings PESC'92*, pp.1011-1017.
- [22] N. H. Kutkut and K. W. Klontz, "Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler", *Proceedings APEC'97*, pp. 841-847.

- [23] J. A. Lambert, J. B. Vieira Jr., L. C. de Freitas, M. S. Vilela, V. J. Farias, "A boost PWM soft-single-switched converter without high stresses of voltage and current", *Proceedings APEC'96*, pp. 469-474.
- [24] H. Levy, I. Zafrany, G. Ivensky, S. Ben-Yaakov, "Analysis and evalution of lossless turn-on snubber", *Proceedings APEC'97*, pp. 757-763.
- [25] N. Mohan, T. M. Undeland, W. P. Robbins, "Power electronics", Second edition, *John Wiley & Sons, Inc.*, 1995, 802 p.
- [26] T. Ninomiya, T. Tanaka, K. Harada, "Analysis and optimization of a nondissipative LC turn-off snubber", *IEEE Trans. on Power Electronics*, vol. 3, no.2, April 1988, pp. 147-156.
- [27] H. Ould-Amrouche, D. Sadarnac, W. Abida, "New soft switching phase shifted PWM technique in DC-AC power supply", *Proceedings PCIM'96*, pp. 707-717.
- [28] R. Petkov, L. Hobson, "Optimum design of a nondissipative snubber", *Proceedings PESC'94*, pp. 1188-1195.
- [29] J. Pinto, A. Pereira, V. Farias, L. Freitas, J. Vicira Jr., "A new boost converter using a non-dissipative snubber", *Proceedings PESC'96*, pp. 397-401.
- [30] L. D. Salazar, P. D. Ziogas, G. Joos, "On the minimization of switching losses in dc-dc boost converters", *Proceedings APEC'92*, pp. 703-708.
- [31] K. M. Smith Jr. and K. M. Smedley, "Engineering design of lossless passive soft switching methods for PWM converters. I. With minimum voltage stress circuit cells", *Proceedings APEC'98*, pp. 1055-1062.
- [32] K. M. Smith Jr. and K. M. Smedley, "Properties and synthesis of passive, lossless soft-switching PWM converters", Proceedings of the 1st International Congress in Israel on Energy Power & Motion Control, May 1997, pp. 112-119.
- [33] R. Streit and D. Tollik. "High efficiency telecom rectifier using a novel soft-switched boost-based input current shaper", *Proceedings of Intelec* '91, November 1991, pp. 720-726.
- [34] Ching-Junk Tseng and Chern-Lin Chen, "Passive lossless snubbers for DC/DC converters", *Proceedings APEC'98*, pp. 1049-1054.
- [35] Ph. C. Todd, "Snubber circuits: theory, design and application", *Unitrode Corporation*, May 1993, pp. 2-1 2-17.

- [36] M. S. Vilela, E. A. A. Coelho, J. B. Vieira Jr., L. C. de Freitas, V. J. Farias, "PWM soft-switched converters using a single active switch", *Proceedings APEC'96*, pp. 305-310.
- [37] K. Wang, G. Hua, F. C. Lee, "Analysis, design and experiment results of ZCS-PWM boost converters", *VPEC Seminar Proceedings*, Blacksburg, Virginia, USA, 1994, pp. 251-256.
- [38] K. Wang, F. C. Lee, G. Hua, D. Borojevic, "A comparative study of switching losses of IGBT's under hard-switching, zero-voltage-switching and zero-current-switching", *Proceedings PESC'94*, pp. 1196-1204.
- [39] B. W. Williams, "Power electronics. Devices, drivers, applications, and passive components", Second edition, *McGraw-Hill, Inc.*, 1992.
- [40] E. H. Wittenbreder, V. D. Baggerly, H. C. Martin, "A duty cycle extension technique for single ended forward converters", *Proceedings APEC*'92, pp. 51-57.
- [41] L. R. Barbosa, J. B. Vieira Jr., L. C. de Freitas, V. J. Farias, "A boost PWM soft-single-switched converter", *Proceedings PESC* 98, pp. 401-406.
- [42] R. Farrington, M. M. Jovanovic, F. C. Lee, "A new family of isolated zero-voltage-switched converters", *Proceedings PESC'91*, pp. 209-215.
- [43] S. Hamada and M. Nakaoka, "Analysis and design of a saturable reactor assisted soft-switching full-bridge DC-DC converter", *Proceedings PESC'91*. pp. 155-162.
- [44] K. Harada, Y. Ishihara, T. Todaka, "An improved magnetic snubber circuit for the diode reverse recovery in DC-to-DC converters", *Proceedings PESC'98*, pp. 701-706.
- [45] J. A. Lambert, J. B. Vieira Jr., L. C. de Freitas, L. R. Barbosa, V. J. Farias, "A boost PWM soft-single-switched converter with low voltage and current stresses", *IEEE Trans. on Power Electronics*, vol. 13, no.1, January 1998, pp. 26-35.
- [46] Ching-Junk Tseng and Chern-Lin Chen, "A passive lossless snubber cell for nonisolated PWM DC/DC converters", *IEEE Trans. on Industry Electronics*, vol. 45, no. 4, August 1998, pp. 593-601.
- [47] S. Ben-Yaakov, I. Zeltser, G. Ivensky, "A resonant local power supply with turn off snubber features", *Proceedings APEC'99*.

