

100001/EC600C INFORMATION THEORY & CODING

MODULE 1- PART II SOURCES & SOURCE CODING

Anila Kuriakose, Assistant Professor, Department of ECE, RSET

Discrete Memoryless Sources

Encoding

Contents

- Basic Properties of Codes
- Construction of Instantaneous codes
- Kraft Inequality
- Code efficiency and Redundancy

Coding - Objectives

- □ To increase the efficiency
 - More information in shorter duration
 - Less redundancy
 - → SOURCE ENCODING

- □ To reduce the transmission errors
 - → CHANNEL ENCODING

Encoding

□ Let a source be characterised by the symbols

$$S = \{s_1, s_2, s_3,...,s_q\} \rightarrow Source Alphabet$$

Consider another set X comprising of r symbols

$$X=\{x_1, x_2, x_3,...,x_r\} \rightarrow Code alphabet$$

 \neg Coding \rightarrow Representing every symbol of S by a sequence of symbols of X with a one to one relationship.

The sequence of symbols of X to specify a source alphabet \rightarrow Codeword

The number of symbols in codeword \rightarrow Word length

1. Block Codes

A particular source symbol is encoded into the fixed codeword. The code can be of fixed length or variable length.

Code words are always Fixed Sequence Codes.

eg.

$$S=\{s_1, s_2, s_3, s_4\}, X=\{0,1\}, Code word set C=\{01, 00, 10, 11\}$$

2. Non Singular codes

A block code is said to be non-singular if all the words of code set C are distinct.

$$S = \{s1, s2, s3, s4\}, X = \{0, 1\}; Codes, C = \{0, 11, 10, 01\}$$

-" non- singular in the small " but "Singular in the large". ???

Clue: Consider the sequence 00110.

3. Uniquely Decodable Codes

A non singular code is uniquely decodable if every word in a sequence of words can be uniquely identified.

$$S = \{s1, s2, s3, s4\}, C = \{0, 11, 10, 01\}$$

$$S^{2} = \{s_{1}s_{1}, s_{1}s_{2}, s_{1}s_{3}, s_{1}s_{4}; s_{2}s_{1}, s_{2}s_{2}, s_{2}s_{3}, s_{2}s_{4}, s_{3}s_{1}, s_{3}s_{2}, s_{3}s_{3}, s_{3}s_{4}, s_{4}s_{1}, s_{4}s_{2}, s_{4}s_{3}, s_{4}s_{4}\}$$

Source	Codes	Source	Codes	Source	Codes	Source	Codes
Symbols		Symbols		Symbols		Symbols	
s_1s_1	00	$s_2 s_1$	110	s_3s_1	100	S ₄ S ₁	010
s_1s_2	011	s ₂ s ₂	1111	s ₃ s ₂	1011	S ₄ S ₂	0111
s_1s_3	010	S ₂ S ₃	1110	S ₃ S ₃	1010	S ₄ S ₃	0110
S_1S_4	001	S ₂ S ₄	1101	S ₃ S ₄	1001	S ₄ S ₄	0101

Uniquely decodable codes \rightarrow "The nth extension of the code be non-singular for every finite n."

4. Instantaneous Codes

- A uniquely decodable code is said to be "instantaneous" if the end of any code word is recognizable with out the need of inspection of succeeding code symbols.
- □ That is there is no time lag in the process of decoding.

Source symbols	Code A	Code B	Code C
s_{I}	00	0	0
S 2	01	10	0 1
S 3	10	110	011
S 1	11	1110	0111

Prefix property: "A necessary and sufficient condition for a code to be 'instantaneous' is that no complete code word be a prefix of some other code word".

	Classes of Codes						
X	Singular	Nonsingular, But Not Uniquely Decodable	Uniquely Decodable, But Not Instantaneous	Instantaneous			
1	0	0	10	0			
2	0	010	00	10			
3	0	01	11	110			
4	0	10	110	111			

□ Prefix Property:

A necessary and sufficient condition for a code to be instantaneous is that no complete codeword be a prefix of some other codeword.

The four symbols A, B, C, D are encoded using the following sets of codewords. In each case state whether the code is (i) non-singular, (ii) uniquely decodable and (iii) instantaneous code.

- (a) $\{1, 01, 000, 001\}$
- (b) {0, 10, 000, 100}
- (c) {01, 01, 110, 100}
- (d) {0, 01, 011, 0111}
- (e) {10, 10, 0010, 0111}

Construction of Instantaneous Codes

Encode a 5 symbol source into binary instantaneous Codes.

$$S = \{s_1, s_2, s_3, s_4, s_5\}, X = \{0,1\}$$

1. Assign 0 to s_1

$$s_1 \rightarrow 0$$

2. S_2 cannot be set to 1 to satisfy the prefix property.

$$s_2 \rightarrow 10$$

3. Remaining codeword should start with 11

$$s_3 \rightarrow 110$$

4. 111 is a 3 bit prefix unused.

$$s_4 \rightarrow 1110$$

$$s_5 \rightarrow 1111$$

Construction of Instantaneous Codes

We can have more freedom if we select a 2 bit codeword for s_1 .

4 prefixes are possible 00, 01, 10 and 11.

$$s_1 \rightarrow 00$$

$$s_2 \rightarrow 01$$

$$s_3 \rightarrow 10$$

$$s_4 \rightarrow 110$$

11 is used to construct codewords of length 3.

$$s_5 \rightarrow 111$$

Observation: Shorter we make the first few code words, the longer we will have to make the later code words.

5. Optimal Codes:

□ An instantaneous code is said to be optimal code if it has the

minimum average length 'L'

One may wish to construct an instantaneous code by pre-specifying the word lengths. The necessary and sufficient conditions for the existence of such a code are provided by the 'Kraft's Inequality'.

Kraft Inequality

- \square Given a source $S = \{s_1, s_2, ..., s_q\}$.
- Let the word lengths of the codes of these symbols be $l_1, l_2, ..., l_q$ and the code alphabet be $X = \{x_1, x_2, ..., x_r\}$.

Then an instantaneous code for source exists iff

$$\sum_{k=1}^{q} r^{-lk} \le 1$$

This equation is called *Kraft inequality*.

A six symbol source is encoded into Binary codes shown below. Which of these codes are instantaneous? Test it using Krafts inequality and prefix property.

Source	Code A	Code B	Code C	Code D	Code E
symbol					
s_1	00	0	0	0	0
s_2	01	1000	10	1000	10
S 3	10	1100	110	1110	110
S_4	110	1110	1110	111	1110
S 5	1110	1101	11110	1011	11110
S 6	1111	1111	11111	1100	1111
$\sum_{k=0}^{6} 2^{-l_k}$	1	$\frac{13}{16}$ < 1	1	$\frac{7}{8} < 1$	$1\frac{1}{32} > 1$
k=1		10	_	o	32

Given $S = \{s1, s2, s3, s4, s5, s6, s7, s8, s9\}$ and $X = \{0, 1\}$. Further if 11 = 12 = 2 and 13 = 14 = 15 = 16 = 17 = 18 = 19 = k, find the minimum value of k for the code to be instantaneous and write the codes.

Code Efficiency and Redundancy

☐ The average length L of the code

$$L = \sum_{i=1}^{q} p_i l_i$$

 $p_1, p_2,...,p_q$ are the probabilities of the source symbols $s_1,s_2,...,s_q$ and $l_1, l_2,...,l_q$ are the respective codeword lengths.

The entropy

$$H(S) = \sum_{k=1}^{q} P_k log(\frac{1}{P_k})$$
 bits/symbol

- \Box L \geq H(S) for binary codes
- \Box L \geq H_r(S) for r-ary codes (r \rightarrow number of symbols in code alphabet)

$$H_r(S) = \frac{H(S)}{\log_2 r}$$

□ The coding efficiency is:

$$\eta = \frac{H(S)}{L}$$

$$\eta = \frac{H_r(S)}{L}$$

 \Box The coding redundancy is $R=1-\eta$

$$P = \left\{ \frac{1}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{6} \right\}$$

$$C = \{0, 10, 110, 111\}$$

$$H(S) = 2 \times \frac{1}{3} \log 3 + 2 \times \frac{1}{6} \log 6$$

$$\log 3 + \frac{1}{3} = 1.918 \text{ bits/sym}$$

$$\eta_c = \frac{H(S)}{L \log r} = \frac{1.918}{2 \log_2 2} = 0.959 \text{ or } 95.9\%$$

$$E_c = 1 - \eta_c = 0.041 \text{ or } 4.1\%$$

$$L=1.\frac{1}{3}+2.\frac{1}{3}+3.\frac{1}{6}+3.\frac{1}{6}=2binits / symbol,$$

□ Let the source have four messages $S = \{s1, s2, s3, s4\}$ with $P = \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

$$H(S) = \frac{1}{2} \log 2 + \log 4 + 2 \times \frac{1}{8} \log 8 = 1.75 \text{ bits/sym.}$$

$$L = \sum_{k=1}^{4} l_k p_k = 1.\frac{1}{2} + 2.\frac{1}{4} + 3.\frac{1}{8} + 3.\frac{1}{8} = 1.75 binits/symbol$$

Proof of Kraft Inequality

- \Box Consider a zero memory source, S with q-symbols $\{s1, s2...sq\}$ and symbol probabilities $\{p1, p2, ..., pq\}$
- Let us encode these symbols into r- ary codes (Using a code alphabet of r- symbols) with word lengths l1, l2...lq.
- \square Assume $11 \le 12 \le ... \le 1q$
- Since code alphabet has only r symbols, there can be at the most r instantaneously decodable sequences of length 1 satisfying the prefix property.
- □ Let nk denote the number of messages encoded into codewords of length 'k'.
- \square n1 \leq r

The number of instantaneous codes of length 2 must obey the rule,

$$n_2 \le (r - n_1)r$$

$$n_2 \le r^2 - n_1 r$$

- The first symbol can be from only r-n₁ remaining symbols not used in forming code words of length 1 and the second symbol can be any of the r symbols.
- □ Similarly

$$n_3 \le [r^2 - n_1 r - n_2]r = r^3 - n_1 r^2 - n_2 r$$

□ In general

$$n_k \le r^k - n_1 r^{k-1} - n_2 r^{k-2} - \dots - n_{k-1} r$$

 \square Multiplying throughout by r^{-k} we get

$$n_k r^{-k} + n_{k-1} r^{-(k-1)} + n_{k-2} r^{-(k-2)} + \dots + n_1 r^{-1} \le 1$$

$$\sum_{j=1}^k n_j r^{-j} \le 1$$

$$\sum_{j=1}^{k} n_j r^{-j} \le 1$$

$$\sum_{j=1}^{k} n_j r^{-j} = \sum_{n_1} r^{-1} + \sum_{n_2} r^{-2} + \dots + \sum_{n_k} r^{-k}$$

$$n_1 + n_2 + \dots + n_k = q$$

Codeword lengths are $l_1, l_2, ..., l_q$

Hence

$$\sum_{k=1}^{q} r^{-lk} \le 1$$

Huffman Coding

Procedure:

- 1. The source symbols are arranged in the order of decreasing probabilities.
- 2. The two symbols of lowest probability are assigned 0 and 1.
- 3. These two symbols are combined into a new symbol with probability equal to the sum of the two original probabilities. The probability of the new symbol is placed in the list in the order of decreasing probabilities.
- 4. The procedure is repeated until we are left with a final list of symbols of only two for which a 0 and 1 are assigned.
- 5. The code for each source symbol is found by working backward and tracing the sequence of 0s and 1s assigned to that symbol.

Q) Given a source with symbols s_1, s_2, s_3, s_4, s_5 with probabilities **0.4**, **0.2**, **0.1** and **0.1**.Construct a binary code by applying **Huffman** encoding procedure. Find **H(S)**,average code length, code efficiency and variance of the code.

$$H(S) = \sum_{i=1}^{q} p(s_i) \log_2 \frac{1}{p(s_i)}$$

$$L = \sum_{i=1}^{q} p_i l_i$$

$$\eta_c = \frac{\mathsf{H}(\mathsf{S})}{\mathsf{L}}$$

$$R_{\eta_c}=1-\eta_c$$

Variance,
$$\sigma = \sum_{i=1}^q p_i (l_i - L)^2$$

Type 2: Composite Symbol as high as possible

S	Code	Length
	00	2
	10	2
	11	2
	010	3
	011	3

Q. Given a source with 8 alphabets A to H with probabilities 0.22, 0.2, 0.18, 0.15, 0.1, 0.08,0.05 and 0.02. Construct a compact binary & ternary code. Also find code efficiency and draw code tree for the ternary code.

S	Code	Length
Α	10	2
В	11	2
С	000	3
D	010	3
Е	011	3
F	0010	4
G	00110	5
Н	00111	5

IMPORTANT

 $q = r + \alpha (r-1)$ where α must always be an integer

 $8=3+2\alpha$ $\alpha=2.5$ which is not an integer

If q=9 α =3 . So add one dummy message symbol so that α becomes an integer.

S	Code	Length
Α	2	1
В	00	2
С	01	2
D	02	2
E	10	2
F	11	2
G	120	3
Н	121	3

Advantage of Huffman Coding Scheme: It is an optimal source coding method.

Drawbacks

- Impractical for real time applications as the source symbol probabilities are not always known aprior.
- 2. Not the best choice for a source with memory.

- * Illustrating Shannon's noiseless coding theorem.
- * Consider a source $S = \{s_1, s_2, s_3\}$ with $P = \{1/2, 1/3, 1/6\}$

Solution

*	S	Р	pding s1	
	s ₁	1/2 ~	1/2	0
	s ₂	1/3 =	1/2	1
	s ₃	1/6 =		

S	Code	Length
s ₁	1	1
s ₂	00	2
s ₃	01	2

*
$$H(S) = \sum_{i=1}^{q} p(s_i) \log_2 \frac{1}{p(s_i)}$$

 $= \frac{1}{2} \log_2(2) + \frac{1}{3} \log_2(3) + \frac{1}{6} \log_2(6)$
 $= 1.459147917 \ bits/symbol$

S	Р	Length
s ₁	1/2	1
s ₂	1/3	2
s ₃	1/6	2

*	L	=	\sum_{i}^{α}	i=1	p	$l_i l_i$	į				
			_	$\frac{1}{2}$	ı	2	_	2			
			_	2	•	3	Т	6			
			=	1.	5	bi	ni	ts/	[/] sy	mk	ool

s ₁	s ₂	s ₃
1/2	1/3	1/6

Second extension $[H(S^2)]$ of this source will have $3^2 = 9$ symbols and the corresponding probabilities are:

s ₁ s ₁	1/4	s ₂ s ₁	1/6	s ₃ s ₁	1/12
s ₁ s ₂	1/6	s ₂ s ₂	1/9	s ₃ s ₂	1/18
s ₁ s ₃	1/12	s ₂ s ₃	1/18	s ₃ s ₃	1/36

* Messages are now labeled ' m_k ' and are arranged in the decreasing order of probability.

$$* M = \{m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8, m_9\}$$

$$P = \left\{ \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{9}, \frac{1}{12}, \frac{1}{12}, \frac{1}{18}, \frac{1}{18}, \frac{1}{36} \right\}$$

s ₁	s ₂	\$ 3	
1/2	1/3	1 /6	
1/2	1/3	1/0	

* For the codes of second extension, we have the following:

$$H(S^2) = 2 H(S)$$

*
$$H(S) = \sum_{i=1}^{q} p(s_i) \log_2 \frac{1}{p(s_i)}$$

= 1.459147917 bits/symbol

*
$$L = \sum_{i=1}^{q} p_i l_i$$

= 2.9722 binits/symbol

S ²	Р	Code	Length
m ₁	1/4	10	2
m_2	1/6	000	3
m_3	1/6	001	3
m_4	1/9	011	3
m_5	1/12	111	3
m ₆	1/12	0100	4
m ₇	1/18	0101	4
m ₈	1/18	1100	4
m ₉	1/36	1101	4

$$H(S^2) = 2 H(S)$$

- $H(S) = 1.459147917 \ bits/symbol$
- L = 2.9722 binits/symbol

$$\eta_c = \frac{H(S^2)}{L} = \frac{2 \times H(S)}{L}$$
$$= \frac{2 \times 1.459147917}{2.9722}$$
$$= 98.186\%$$

S ²	Р	Code	Length
m ₁	1/4	10	2
m_2	1/6	000	3
m_3	1/6	001	3
m_4	1/9	011	3
m_5	1/12	111	3
m ₆	1/12	0100	4
m ₇	1/18	0101	4
m ₈	1/18	1100	4
m ₉	1/36	1101	4

Inference

- * An increase in efficiency of 0.909 % (absolute) is achieved.
- * This problem illustrates how encoding of extensions increase the efficiency of coding in accordance with Shannon's noiseless coding theorem.

Shannon's First theorem (Noiseless Coding theorem)

"Given a code with an alphabet of r-symbols and a source with an alphabet of q-symbols, the average length of the code words per source symbol may be made as arbitrarily close to the lower bound $H_r(s)$ i.e, $H(s)/\log r$ as desired by encoding extensions of the source rather than encoding each source symbol individually".

- We know that each individual code word will have an integer number of code symbols.
- * L be the average word length of the code
- We know,

$$l_k = log_r \left(\frac{1}{p_k}\right)$$

Suppose we choose lk to be the next integer value greater than logr(1/pk)

$$\log_r \frac{1}{p_k} \le l_k \le \log r \frac{1}{p_k} + 1$$

Furthermore, equation (1) can be rewritten as (change of basis from 'r' to '2'):

$$\frac{\log(1/p_k)}{\log r} \le l_k \le \frac{\log(1/p_k)}{\log r} + 1$$

Multiplying throughout by pk and summing for all values of k,

$$\sum_{k=1}^{q} \frac{p_k log \frac{1}{p_k}}{log r} \le \sum_{k=1}^{q} p_k l_k \le \sum_{k=1}^{q} \frac{p_k log \frac{1}{p_k}}{log r} + \sum_{k=1}^{q} p_k \text{ , or }$$

$$\left| \frac{H(S)}{logr} \le L \le \frac{H(S)}{logr} + 1 \right| \tag{2}$$

 \Box To obtain better efficiency, one will use the nth extension of s, giving Ln as the new average word length.

 \square Since Eq. (2) is valid for any zero- memory source, it is also valid for Sn, and hence, we have

$$\frac{H(S^n)}{logr} \le L_n \le \frac{H(S^n)}{logr} + 1 \quad ---- \quad (3)$$

Since,

$$H(S^n) = n H(S) \qquad (4)$$

Substituting (4) in (3)

With n
$$\rightarrow \infty$$

$$\frac{H(S)}{logr} \le \frac{L_n}{n} \le \frac{H(S)}{logr} + \frac{1}{n}$$

$$\lim_{n \to \infty} \frac{L_n}{n} = \frac{H(S)}{logr}$$

Noiseless
Coding
Theorem/
Shannon's First
Fundamental
Theorem