★ Login (/user/login)

2.2 ESTIMAÇÃO DOS PARÂMETROS DO MODELO

(/Início (/) / Análise de Regressão (/analise-de-regressao) / Regressão Linear Múltipla (/analise-deregressao/regressao-linear-multipla) / 2.2 Estimação dos Parâmetros do Modelo

Suponha que temos n observações (n>p) da variável resposta e das p variáveis explicativas. Assim, y é o valor da variável resposta na i-ésima observação enquanto que x_{ij} é o valor da variável x_j na i-ésima observação, $j=1,\ldots,p$. Os dados de um MRLM podem ser representados da seguinte forma:

y	x_1	x_2		x_p
y_1	x ₁₁	x_{12}		x_{1p}
y_2	x_{21}	x_{22}		x_{2p}
:	:	:	:	:
y_n	x_{n1}	x_{n2}		x_{np}

Tabela 2.2.1: Representação dos dados.

em que cada observação satisfaz

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + \varepsilon_i, \quad i = 1, \ldots, n.$$

2.2.1 Método dos Mínimos Quadrados

ANÁLISE DE REGRESSAO

- ▶ 1. Regressão Linear Simples (/analise-deregressao/regressao-linearsimples)
- ▼ 2. Regressão Linear Múltipla (/analise-deregressao/regressao-linearmultipla)
- 2. Regressão Linear Múltipla (/analisede-regressao/regressao-linear-multipla)
- 2.1 Modelo Estatístico Vanalise-de-regressao/21-

O objetivo é minimizar a função

$$L = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \dots - \beta_p x_{ip})^2.$$

modelo-estatistico)
2.2 stir (ção dos
Para netros o Node
Vacalise-de-cess /22-

Derivando L em função dos \(\beta\)'s obtemos

$$\frac{\partial L}{\partial \beta_0} = -2\sum_{i=1}^n [Y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \dots - \beta_p x_{ip}],\tag{0}$$

$$\frac{\partial L}{\partial \beta_j} = -2\sum_{i=1}^n [Y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \dots - \beta_p x_{ip}] x_{ji}, \quad j = 1, 2, \dots, p.$$

Igualando as derivadas parciais a zero e substituindo $\beta_0, \beta_1, \dots, \beta_p$ por $\widehat{\beta}_0, \widehat{\beta}_1, \dots, \widehat{\beta}_p$ temos o sistema de equações

$$\begin{cases} n\widehat{\beta}_{0} + \widehat{\beta}_{1} \sum_{i=1}^{n} x_{i1} + \widehat{\beta}_{2} \sum_{i=1}^{n} x_{i2} + \ldots + \widehat{\beta}_{p} \sum_{i=1}^{n} x_{ip} = \sum_{i=1}^{n} Y_{i} \\ \widehat{\beta}_{0} \sum_{i=1}^{n} x_{i1} + \widehat{\beta}_{1} \sum_{i=1}^{n} x_{i1}^{2} + \widehat{\beta}_{2} \sum_{i=1}^{n} x_{i1} x_{i2} + \ldots + \widehat{\beta}_{p} \sum_{i=1}^{n} x_{i1} x_{ip} = \sum_{i=1}^{n} x_{i1} Y_{i} \\ \vdots \\ \widehat{\beta}_{0} \sum_{i=1}^{n} x_{ip} + \widehat{\beta}_{1} \sum_{i=1}^{n} x_{ip} x_{i1} + \widehat{\beta}_{2} \sum_{i=1}^{n} x_{ip} x_{i2} + \ldots + \widehat{\beta}_{p} \sum_{i=1}^{n} \widehat{z}_{ip}^{2} = \sum_{i=1}^{n} x_{ip} Y_{i}. \end{cases}$$

Resolvendo este sistema, obtemos os estimadores de mínimos quadrados $\widehat{\beta}_0, \ldots, \widehat{\beta}_p$ dos parâmetros do modelo em questão.

2.2.2 Representação matricial do MRLM

Notemos que os estimadores de mínimos quadrados dos parâmetros do "Modelo 2.2" (/content/21-modelo-estatístico#MRLM) podem ser facilmente encontrados considerando a notação matricial dos dados, que é de fácil manipulação. Desta forma,

estimacao-dosparametros-do-modelo)

- 2.3 Propriedades dos
 Estimadores (/analise-de-regressao/23-propriedades-dos-estimadores)
- 2.4 Análise de Variância
 (Teste F) Medidas de
 Associação (/analise-de regressao/24-analise-de variancia-teste-f-medidas de-associação)
- 2.5 Testes Individuais e Intervalos de Confiança para os Parâmetros (/analise-de-regressao/25testes-individuais-eintervalos-de-confiancapara-os-parametros)
- 2.6 Intervalo de Confiança para Resposta Média e Predição Vanalise-deregressao/26-intervalo-de-

considerando a entrada de dados apresentada na Tabela 2.2.1. o modelo de Regressão

Linear Múltipla pode ser escrito como

$$Y = X\beta + \varepsilon$$
,

com

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}^{(f)} \text{ e } \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}, \quad \text{o 2.8 Análise de Resíduos na Regressão Linear Múltipla (Vanalise-de-regressao/28-vices)}$$

em que

- $Y \in \text{um vetor } n \times 1 \text{ cujos componentes corresponde às n respostas;}$
- X é uma matriz de dimensão $n \times (p+1)$ denominada matriz do modelo;
- ε é um vetor de dimensão $n \times 1$ cujos componentes são os erros e
- β é um vetor $(p+1) \times 1$ cujos elementos são os coeficientes de regressão.

O método de mínimos quadrados tem como objetivo encontrar o vetor $\widehat{\beta}$ que minimiza

$$L = \sum_{i=1}^{n} \varepsilon_i^2 = \varepsilon' \varepsilon = (Y - X\beta)'(Y - X\beta) =$$

$$= Y'Y - Y'X\beta - \beta'X'Y + \beta'X'X\beta = Y'Y - 2\beta'X'Y + \beta'X'X\beta,$$

sendo que $Y'X\beta = \beta'X'Y$ pois o produto resulta em um escalar. A notação X'representa o transposto da matriz X enquanto que $Y' \in \beta'$ representam os transpostos dos vetores $Y \in \mathcal{B}$, respectivamente. Usando a técnica de derivação (em termos matriciais) obtemos

$$\frac{\partial L}{\partial \beta} = -2X'Y + 2X'X\beta.$$

Igualando a zero e substituindo o vetor β pelo vetor $\hat{\beta}$, temos

$$(X'X)\widehat{\beta} = X'Y.$$

confianca-para-resposta-

selecao-de-variaveis)

- analise-de-residuos-naregressao-linear-multipla)
- 3. Análise dos Resíduos (/analise-deregressao/analise-dosresiduos)
- 4. Regressão Logística (/analise-deregressao/regressaologistica)
- ▶ 5 Aplicações (/analise-deregressao/aplicacoes)
- 6. Exercícios (/analise-deregressao/exercicios)
- Referências Bibliográficas (/analise-deregressao/referenciasbibliograficas)

Em geral, a matriz (X'X) é não singular, ou seja, tem determinante diferente de zero, e portanto é invertível. Desta forma, conclui-se que os estimadores para os pr r et β_1 , $j=0,\ldots,p$ são dados pelo vetor

$$\widehat{\beta} = (X'X)^{-1}X'Y.$$

Portanto, o modelo de regressão linear ajustado e o vetor de resíduos são respectivamente

$$\hat{Y} = X\hat{\beta}$$
 e $e = Y - \hat{Y} = Y - \hat{Y}$.

Ao substituirmos os estimadores de mínimos quadrados, obtemos que $\widehat{Y}=HY$ no qual $H=X(X'X)^{-1}X'$ é a matriz chapéu, ou matriz de projeção do vetor de respostas Y no vetor de respostas ajustadas \widehat{Y} .

Exemplo 2.2.1

Com os dados do exemplo na "Motivação 2" (/content/2-regressão-linear-múltipla#motivacao2), obter as estimativas dos parâmetros do "Modelo 2.2" (/content/21-modelo-estatístico#MRLM).

clique aqui para efetuar o download dos dados utilizados nesse exemplo (/sites/default/files/analise_regressao/planilhas/RegMult1.xls)

Solução:

Sejam a variável resposta Ganho (Y) e as variáveis explicativas Tempo (x_1) e Dose (x_2).

Temos que
$$n=14,\sum\limits_{i=1}^{14}Y_i=17.495;\sum\limits_{i=1}^{14}x_{i1}=3.155$$
 e $\sum\limits_{i=1}^{14}x_{i2}=60$, 72. Além disso,
$$\sum\limits_{i=1}^{14}x_{i1}^2=716.425;\sum\limits_{i=1}^{14}x_{i2}^2=264,2584;\sum\limits_{i=1}^{14}x_{i1}x_{i2}=13.683,50;\sum\limits_{i=1}^{14}x_{i1}Y_i=4.001.120$$
 e $\sum\limits_{i=1}^{14}x_{i2}Y_i=75.738,30$.

As equações normais serão

(/agenda-cursospresenciais)

Campinas - SP

Análise dos Sistemas de Medição (MSA) - 4a Edição Vcurso-presencial/19-10-2018/analise-dos-sistemas-demedicao-msa-4a-edicao) - 19 e 20 de outubro de 2018 Estatística para Metrologistas e Cálculo de Incerteza (/cursopresencial/26-10-2018/estatistica-parametrologistas-e-calculo-deincerteza) - 26 e 27 de outubro de 2018 Estatística Básica (/cursopresencial/10-11-2018/estatistica-basica) - 09 e 10 de novembro de 2018 Controle Estatístico do Processo (CEP) - 2a Edição (/cursopresencial/23-11-2018/controle-

$$\begin{cases} n\widehat{\beta}_0 + \widehat{\beta}_1 \sum_{i=1}^n x_{i1} + \widehat{\beta}_2 \sum_{i=1}^n x_{i2} = \sum_{i=1}^n Y_i \\ \widehat{\beta}_0 \sum_{i=1}^n x_{i1} + \widehat{\beta}_1 \sum_{i=1}^n x_{i1}^2 + \widehat{\beta}_2 \sum_{i=1}^n x_{i1} x_{i2} = \sum_{i=1}^n x_{i1} Y_i \\ \widehat{\beta}_0 \sum_{i=1}^n x_{i2} + \widehat{\beta}_1 \sum_{i=1}^n x_{i1} x_{i2} + \widehat{\beta}_2 \sum_{i=1}^n x_{i2}^2 = \sum_{i=1}^n x_{i2} Y_i \end{cases}$$

Substituindo os valores para esse exemplo, temos

$$\begin{cases} 14 \, \widehat{\beta}_0 \, + \, 3.155 \, \widehat{\beta}_1 \, + \, 60, 72 \, \widehat{\beta}_2 \, = \, 17.495 \\ 3.155 \, \widehat{\beta}_0 \, + \, 716.425 \, \widehat{\beta}_1 \, + \, 13.683, \, 50 \, \widehat{\beta}_2 \, = \, 4.001.120 \\ 60, \, 72 \, \widehat{\beta}_0 \, + \, 13.683, \, 50 \, \widehat{\beta}_1 \, + \, 264, \, 2584 \, \widehat{\beta}_2 \, = \, 75.738, \, 30 \end{cases}$$

Resolvendo o sistema, obtemos

$$\hat{\beta}_0 = -520, 08, \hat{\beta}_1 = 10, 78 \text{ e } \hat{\beta}_2 = -152, 15.$$

Na representação matricial temos

2018/planejamento-deexperimentos-doe) - 07 e 08 de dezembro de 2018

$$(X'X) = \begin{bmatrix} 14,00 & 3.155,00 & 60,72 \\ 3.155,00 & 716.425,00 & 13.683,50 \\ 60,72 & 13.683,50 & 264,26 \end{bmatrix}$$

$$(X'X)^{-1} = \begin{bmatrix} 30,24760 & -0,04172 & -4,78994 \\ -0,04172 & 0,00018 & 0,00004 \\ -4,78994 & 0,00004 & 1,10244 \end{bmatrix}$$
e

$$X'y = \begin{bmatrix} 17.495, 0 \\ 4.001.120, 0 \\ 75.738, 3 \end{bmatrix}.$$

Logo, as estimativas \widehat{A} são dadas por

$$\widehat{\beta} = (X'X)^{-1}X'y = \begin{bmatrix} -520,08\\ 10,78\\ -152,15 \end{bmatrix}.$$

e portanto, $\hat{y} = -520, 08 + 10, 78x_1 - 152, 15x_2$.

Não podemos afirmar que a variável x_1 aumenta o ganho, pois as variáveis x_1 e x_2 estão em unidades diferentes. No exemplo 2.2.3 abaixo, as variáveis foram transformadas para que figuem na mesma unidade.

Exemplo 2.2.2

Solução:

Com os dados do exemplo na "Motivação 2" (/content/2-regressão-linearmúltipla#motivacao2), obtemos o modelo

$$E(Y \mid x) = -520,08 - 152,15 Dose + 10,78 Tempo.$$

Se o Tempo = 225 (constante), então

$$E(Y \mid x) = 1.905, 42 - 152, 15 Dose.$$

Assim,

 $\beta_1 = -152, 15$ indica que a cada acréscimo de uma unidade na D_{OSE} a resposta média decrescerá 152, 15 unidades;

 $\beta_2 = 10,78$ indica um acréscimo na resposta média de 10,78 unidades para cada acréscimo de uma unidade na variável Dose.

2.2.3 Transformação de dados

Em determinadas situações é usual transformarmos as variáveis explicativas dos dados originais para que fiquem na mesma unidade (escala), facilitando a interpretação dos resultados. Suponha que $\xi_1, \xi_2, \dots, \xi_p$ são as variáveis explicativas originais do modelo. A expressão para transformar as variáveis explicativas ξ é dada por

$$x_{ij} = \frac{\xi_{ij} - \frac{[max(\xi_{ij}) + min(\xi_{ij})]}{2}}{[max(\xi_{ij}) - min(\xi_{ij})]},$$

em que j indica a variável que está sendo transformada, $j=1,\ldots,p$. Desta for no, temos que os valores das variáveis explicativas transformadas estão todos entre -1 e 1.

Notemos que os valores das estimativas dos parâmetros do modelo de regressão linear múltipla não são os mesmos considerando as variáveis originais e as variáveis transformadas.

Exemplo 2.2.3

Considerando os dados do Exemplo 2.2.1, transformar as variáveis explicativas para que fiquem na mesma unidade (escala). Então, ajustar o modelo de regressão linear múltipla aos dados transformados.

clique aqui para efetuar o download dos dados utilizados nesse exemplo (/sites/default/files/analise_regressao/planilhas/RegMult1.xls)

Considerando que ξ_1 e ξ_2 são as variáveis explicativas no conjunto de dados original, temos que as variáveis explicativas transformadas, denotadas por x_1 e x_2 são dadas por

Para *x*_{i1}:

$$x_{i1} = \frac{\xi_{i1} - 225}{30}.$$

• Para x_{i2} :

$$x_{i2} = \frac{\xi_{i2} - 4, 36}{0, 36}.$$

Observação	Tempo (min) (ξ_1)	Dose de fons 10^{14} (ξ_2)	x_1	x_2	Gan 10 (y.	Portal Ac
1	195	4	-1	-1	(/)1.004	
2	255	4	1	-1	1.636	
3	195	4,6	-1	0,6667	852	
4	255	4,6	1	0,6667	1.506	
5	225	4,2	0	-0,4444	1.272	
6	225	4,1	0	-0,7222	1.270	
7	225	4,6	0	0,6667	1.269	
8	195	4,3	-1	-0,1667	903	
9	255	4,3	1	-0,1667	1.555	
10	225	4	0	-1	1.260	
11	225	4,7	0	0,9444	1.146	
12	225	4,3	0	-0,1667	1.276	
13	225	4,72	0	1	1.225	
14	230	4,3	0,1667	-0,1667	1.321	

Tabela 2.2.2: Dados Transformados.

Considerando os dados transformados, temos que a matriz X e o vetor y são dados respectivamente por

Assim, a matriz X'X é

$$(X'X) = \begin{bmatrix} 14 & 0,1667 & -0,8889 \\ 0,1667 & 6,0278 & -0,0278 \\ -0,8889 & -0,0278 & 7,0556 \end{bmatrix}$$

$$(X'X)^{-1} = \begin{bmatrix} 0,0720 & -0,0019 & 0,0091 \\ -0,0019 & 0,1660 & 0,0004 \\ 0,0091 & 0,0004 & 0,1429 \end{bmatrix} e$$

$$X'y = \begin{bmatrix} 17495 \\ 2158, 167 \\ -1499, 722 \end{bmatrix}.$$

Portanto, as estimativas 🗿 são

$$\widehat{\beta} = (X'X)^{-1}X'y = \begin{bmatrix} 1242, 31 \\ 323, 43 \\ -54, 77 \end{bmatrix}.$$

Assim, a equação da regressão é dada por

$$\hat{y} = 1.242, 31 + 323, 43 \ x_1 - 54, 77 \ x_2.$$

Usando o **software Action** temos os seguintes resultados:

Considerando a escala original dos dados

	Coeficientes			
Preditor	Estimativa	Desvio Padrão	Estat. T	P-Valor
Intercepto	-520,0766769	192,1070916	-2,707222688	0,020391846
Tempo	10,78115789	0,474319633	22,72973146	1,34912E-10
Dose_de_ions	-152,1488747	36,67543895	-4,148522255	0,001620499

Considerando a transformação

	Coeficientes			my.		U I		1		Λ	
Preditor	Estimativa	Desvio Padrão	Estat. T	V /	/a/o						
Intercepto	1242,314755	9,374475111	132,520993	F 5F6	()E 1						
x1	323,4347368	14,229589	22,72973146	1,3	' !E 1(_	
x2	-54,77359489	13,20315802	-4,148522	C 0()	€ 10 9					7 7	

modelos/modelo-deregressao-linear-simplessobre-tratamentotermico-0)

Para entender como executar essa função do *Software***Action*, você pode consultar o manual do usuário.

(/manual-modelos/modelo-de-regressao-linear-simples-sobre-tratamento-termico-0)

< 2.1 Modelo Estatístico (/analise-de-regressao/21-modelo-estatistico)</p>
(/analise-de-regressao/21-modelo-estatistico)
(/analise-de-regressao/23-propriedades-dos-de-regressao/regressao/regressao/regressao-linear-multipla)

Dúvidas sobre esse conteúdo? Comente:

SOBRE O PORTAL ACTION

O Portal Action é mantido por *Estatcamp - Consultoria Estatística e Qualidade* e por *DIGUP - Desenvolvimento de Sistemas e Consultoria Estatística*, com o objetivo de disponibilizar uma ferramenta estatística em conjunto com uma fonte de informação útil aos profissionais interessados.

ESTATCAMP (http://www.estatcamp.com.br)

LINKS IMPORTANTES

- Home (http://www.portalaction.com.br/)
- Action Stat (/sobre-o-action)
- Sobre o Action Stat (/sobre-o-action)
- Action Stat Pro (/action-stat-pro)
- Action Stat Quality (/action-stat-quality)
- Action Stat Pharma (/action-stat-pharma)

Manual do Usua io (/annual action- tal) FAQ (/faq-page) Ambiente de Aprenoizado (/annoience-virtual-ue-aprenoizado)

- ► Serviços ((servicos)
- Loja (http://loja.portalaction.com.br)

Download (/content/download-action)

Contato (/contato)

FACEBOOK (

CONTATO

- Maestro Joao Seppe, 900, São Carlos SP | CEP 13561-180
- **Contract Contract Co**
- **✓** E-Mail: estatistica@estatcamp.com.br

