Anomalies Detection

Introduction

What is Anomaly Detection

- Anomaly detection involves identifying the differences, deviations and exceptions from the norm in a dataset.
- Also called outliers' detection
- Anomaly detection makes this data not only useful but powerful for Algorithm Building

Types in Anomalies Detection

- Point
- Collective
- Contextual

Point Anomalies

- A point anomaly is where a single datapoint stands out from the expected pattern, range, or norm.
- In other words, the datapoint is unexpected.
- Examples can be unusually high values or low values

Example of Point Anomalies

Time Series with Point Anomalies

Collective Anomalies

 Collective anomalies are defined as sequences of observations that are not necessarily anomalous when considered individually, but together form an anomalous pattern.

Example of Collective Anomalies

Time Series with Collective Anomalies

Contextual Anomalies

- Contextual anomalies refer to data points that deviate significantly within a specific context but appear normal outside of that context.
- e.g. High spending during festive occasions may be a routine. But the same high spendings when others have low spendings

Example of Contextual Anomaly

Time Series with Contextual Anomalies

Methods of Detection

- Supervised
- Unsupervised

Supervised Anomalies Detection

- Supervised anomaly detection uses labeled data to train a classifier that can distinguish between normal and anomalous instances.
- The labels indicate whether an instance belongs to the normal class or one of the predefined anomaly classes.

Unsupervised Anomalies Detection

- Unsupervised anomaly detection does not require labeled data to identify outliers.
- Instead, it relies on statistical or distance-based measures to assess how different an instance is from the rest of the data.
- For example, we can use clustering techniques, Isolation Forest