CLAIMS

What is claimed is:

1 1. An organophotoreceptor comprising:

(a) a charge transport composition comprising molecules having the

formula

2

3

4

5

6

7

8

9

10

where n is an average of a distribution of integers in which n is at least 2;

R₁, R₂, R₃, and R₄ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;

X comprises an (N,N-disubstituted)arylamine group; and

Y is a bridging group;

- (b) a charge generating compound; and
- 11 (c) an electrically conductive substrate over which the charge transport 12 composition and the charge generating compound are located.
- 2. An organophotoreceptor according to claim 1 wherein X is selected from the group consisting of a carbazole group, a julolidine group, a triarylamine group, a dialkylarylamine group, and an alkyldiarylamine group.
- 3. An organophotoreceptor according to claim 1 wherein Y comprises a -(CH₂)_m- group where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, Si, B, P, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₅ group, a CR₆, or a CR₇R₈ group where R₅, R₆, R₇, and R₈ are, each independently, a bond, H, hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
- 1 4. An organophotoreceptor according to claim 3 wherein Y is selected from 2 the group consisting of the formulae:

$$\begin{array}{c} OH \\ X_1 \\ Q \\ \end{array}$$
 and
$$OH$$

 X_3 X_4 X_5 X_4 X_4 X_5 X_4 X_5 X_4 X_5 X_4 X_5 X_5 X_5 X_6 X_6 X_6 X_7 X_8 X_8

3

4

where Q, X₁, X₂, X₃, and X₄ are, each independently, O, S, or NR' where R' comprises H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group.

- 1 5. An organophotoreceptor according to claim 1 further comprising an 2 electron transport compound.
- 1 6. An organophotoreceptor according to claim 1 wherein said 2 organophotoreceptor is in the form of a drum or a belt.
- 1 7. An organophotoreceptor according to claim 1 comprising:
- 2 (a) a charge transport layer comprising said charge transport composition 3 and a polymeric binder; and
- 4 (b) a charge generating layer comprising said charge generating compound and a polymeric binder.
- 1 8. An organophotoreceptor according to claim 1 wherein n is at least 5.
- 1 9. An electrophotographic imaging apparatus comprising:
- 2 (a) a light imaging component; and
- 3 (b) an organophotoreceptor oriented to receive light from the light 4 imaging component, the organophotoreceptor comprising an electrically

5 conductive substrate and a photoconductive element on the electrically conductive 6 substrate, the photoconductive element comprising:

7 (i) a charge transport composition comprising molecules having 8 the formula

where n is an average of a distribution of integers in which n is at least 2;

11 R₁, R₂, R₃, and R₄ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;

13 X comprises an (N,N-disubstituted)arylamine group; and

Y is a bridging group; and

9

14

15

(ii) a charge generating compound.

- 1 10. An electrophotographic imaging apparatus according to claim 9 wherein X 2 is selected from the group consisting of a carbazole group, a julolidine group, a 3 triarylamine group, a dialkylarylamine group, and an alkyldiarylamine group.
- 1 1. An electrophotographic imaging apparatus according to claim 9 wherein Y comprises a -(CH₂)_m- group where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, Si, B, P, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₅ group, a CR₆, or a CR₇R₈ group where R₅, R₆, R₇, and R₈ are, each independently, a bond, H, hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
- 1 12. An electrophotographic imaging apparatus according to claim 11 wherein 2 Y is selected from the group consisting of the formulae:

$$\begin{array}{c|c} OH & OH \\ \hline & X_1 & OH \\ \hline & & \\ \end{array}$$
 and

4

5

1

7

8

$$X_3$$
 X_4 OH

where Q, X₁, X₂, X₃, and X₄ are, each independently, O, S, or NR' where R' comprises H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group.

- 1 13. An electrophotographic imaging apparatus according to claim 9 2 comprising a toner dispenser.
- 1 14. An electrophotographic imaging apparatus according to claim 9 further 2 comprising an electron transport compound.
- 1 15. An electrophotographic imaging apparatus according to claim 9 wherein n 2 is at least 5.
 - 16. An electrophotographic imaging process comprising:
- 2 (a) applying an electrical charge to a surface of an organophotoreceptor 3 comprising an electrically conductive substrate and a photoconductive element on the 4 electrically conductive substrate, the photoconductive element comprising:
- 5 (i) a charge transport composition comprising molecules having 6 the formula

where n is an average of a distribution of integers in which n is at least 2;

9 R₁, R₂, R₃, and R₄ comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;

X comprises an (N,N-disubstituted)arylamine group; and

12 Y is a bridging group; and

11

13

17

- (ii) a charge generating compound;
- 14 (b) imagewise exposing the surface of the organophotoreceptor to 15 radiation to dissipate charge in selected areas and thereby form a pattern of 16 charged and uncharged areas on the surface;
 - (c) contacting the surface with a toner to create a toned image; and
- 18 (d) transferring the toned image to a substrate.
- 1 17. An electrophotographic imaging process according to claim 16 wherein X 2 is selected from the group consisting of a carbazole group, a julolidine group, a 3 triarylamine group, a dialkylarylamine group, and an alkyldiarylamine group.
- 1 18. An electrophotographic imaging process according to claim 16 wherein Y comprises a -(CH₂)_m- group where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, Si, B, P, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₅ group, a CR₆, or a CR₇R₈ group where R₅, R₆, R₇, and R₈ are, each independently, a bond, H, hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
 - 19. An electrophotographic imaging process according to claim 18 wherein Y is selected from the group consisting of the formulae:

$$\begin{array}{c|c} OH & OH \\ \hline & X_1 & OH \\ \hline & A & A & A \\ \hline & A & A &$$

4

3

1

2

$$X_3$$
 X_4 OH

7

8

where Q, X₁, X₂, X₃, and X₄ are, each independently, O, S, or NR' where R' comprises H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group.

1

- 20. An electrophotographic imaging process according to claim 16 wherein 2 the toner comprises a dispersion of colorant particles.
- 1 21. An electrophotographic imaging process according to claim 16 further 2 comprising an electron transport compound.
- 1 22. An electrophotographic imaging process according to claim 14 wherein n 2 is at least 5.
- 1
- 23. A charge transport composition comprising molecules having the formula

2

- 3 where n is an average of a distribution of integers in which n is at least 2;
- 4 R₁, R₂, R₃, and R₄ comprise, each independently, H, an alkyl group, an alkenyl 5 group, a heterocyclic group, or an aromatic group;
- 6 X comprises an (N,N-disubstituted)arylamine group; and
- 7 Y is a bridging group.
- 1
- 24. A charge transport composition according to claim 23 wherein X is
- 2 selected from the group consisting of a carbazole group, a julolidine group, a triarylamine
- 3 group, a dialkylarylamine group, and an alkyldiarylamine group.

- 25. A charge transport composition according to claim 23 wherein Y comprises a -(CH₂)_m- group where m is an integer between 1 and 30, inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C, Si, B, P, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, an NR₅ group, a CR₆, or a CR₇R₈ group where R₅, R₆, R₇, and R₈ are, each independently, a bond, H, hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
- 1 26. A charge transport composition according to claim 25 wherein Y is 2 selected from the group consisting of the formulae:

4

5

3

$$X_1$$
 X_2 X_2 X_3 X_4 X_4

where Q, X₁, X₂, X₃, and X₄ are, each independently, O, S, or NR' where R' comprises H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group.

- 1 27. A charge transport composition according to claim 25 wherein n is at least 2 5.
- 1 28. A charge transport composition prepared by the reaction of a multi-2 functional compound with a di-reactive-ring compound having the formula

$$E_1 \xrightarrow{N_1} N \xrightarrow{R_2'} R_3' \xrightarrow{R_4'} E_2$$

- where R₁', R₂', R₃', and R₄' comprise, each independently, H, an alkyl group, an
- 5 alkenyl group, a heterocyclic group, or an aromatic group;
- 6 X' comprises an (N,N-disubstituted)arylamine group; and
- Y_1 and Y_2 are, each independently, a linking group; and
- 8 E_1 and E_2 are, each independently, a reactive ring group.
- 1 29. A charge transport composition according to claim 28 wherein X' is
- 2 selected from the group consisting of a carbazole group, a julolidine group, a triarylamine
- 3 group, a dialkylarylamine group, and an alkyldiarylamine group.
- 1 30. A charge transport composition according to claim 28 wherein Y_1 and Y_2 ,
- 2 each independently, comprise a -(CH₂)_k- group where k is an integer between 1 and 30,
- 3 inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C,
- 4 Si, B, P, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester
- 5 group, an NR₁₆ group, a CR₁₇, or a CR₁₈R₁₉ group where R₁₆, R₁₇, R₁₈, and R₁₉ are, each
- 6 independently, a bond, H, hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an
- 7 alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
- 1 31. A charge transport composition according to claim 28 wherein E_1 and E_2 ,
- 2 each independently, are selected from the group consisting of 3-, 4-, 5-, 7-, 8-, 9-, 10-, 11-
- 3 and 12-membered heterocyclic ring groups.
- 1 32. A charge transport composition according to claim 31 wherein E_1 and E_2 ,
- 2 each independently, are selected from the group consisting of 3-, 4-, 5-, 7-, 8-, 9-, 10-, 11-
- 3, and 12-membered cyclic ethers, cyclic amines, cyclic sulfides, cyclic amides, N-
- 4 carboxy-a-amino acid anhydrides, lactones, and cyclosiloxanes.
- 1 33. A charge transport composition according to claim 32 wherein E_1 and E_2 ,
- 2 each independently, are selected from the group consisting of epoxides, oxetanes,
- 3 aziridines, thiiranes, 2-azetidinone, 2-pyrrolidone, 2-piperidone, caprolactam,
- 4 enantholactam, and capryllactam.

- 1 34. A charge transport composition according to claim 28 wherein the multi-2 functional compound is a di-functional compound.
- 1 35. A charge transport composition according to claim 34 wherein the difunctional compound is selected from the group consisting of a triol, a triamine, a trithiol,
- 3 a diol, a dithiol, a diamine, a dicarboxlyic acid, a hydroxylamine, an amino acid, a
- 4 hydroxyl acid, a thiol acid, a hydroxythiol, and a thioamine.
- 1 36. An organophotoreceptor comprising:

2 (a) a polymeric charge transport composition prepared by the reaction of a multi-functional compound with a di-reactive-ring compound having the formula

- where R₁', R₂', R₃', and R₄' comprise, each independently, H, an alkyl group, an alkenyl group, a heterocyclic group, or an aromatic group;
- 7 X' comprises an (N,N-disubstituted)arylamine group; and
- 8 Y_1 and Y_2 are, each independently, a linking group; and
- E_1 and E_2 are, each independently, a reactive ring group; and
- 10 (b) a charge generating compound; and
- 11 (c) an electrically conductive substrate over which the charge transport 12 composition and the charge generating compound are located.
- 1 37. An organophotoreceptor according to claim 36 wherein X' is selected 2 from the group consisting of a carbazole group, a julolidine group, a triarylamine group, a 3 dialkylarylamine group, and an alkyldiarylamine group.
- 1 38. A charge transport composition according to claim 36 wherein Y₁ and Y₂, 2 each independently, comprise a -(CH₂)_k- group where k is an integer between 1 and 30, 3 inclusive, and one or more of the methylene groups is optionally replaced by O, S, N, C,

- 4 Si, B, P, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester
- 5 group, an NR₁₆ group, a CR₁₇, or a CR₁₈R₁₉ group where R₁₆, R₁₇, R₁₈, and R₁₉ are, each
- 6 independently, a bond, H, hydroxyl, thiol, carboxyl, an amino group, an alkyl group, an
- 7 alkenyl group, a heterocyclic group, an aromatic group, or part of a ring group.
- 1 39. A charge transport composition according to claim 36 wherein E_1 and E_2 ,
- 2 each independently, are selected from the group consisting of 3-, 4-, 5-, 7-, 8-, 9-, 10-, 11-
- 3 and 12-membered heterocyclic ring groups.
- 1 40. A charge transport composition according to claim 39 wherein E₁ and E₂,
- 2 each independently, are selected from the group consisting of 3-, 4-, 5-, 7-, 8-, 9-, 10-, 11-
- 3 and 12-membered cyclic ethers, cyclic amines, cyclic sulfides, cyclic amides, N-carboxy-
- 4 a-amino acid anhydrides, lactones, and cyclosiloxanes.
- 1 41. A charge transport composition according to claim 40 wherein E_1 and E_2 ,
- 2 each independently, are selected from the group consisting of epoxides, oxetanes,
- 3 aziridines, thiiranes, 2-azetidinone, 2-pyrrolidone, 2-piperidone, caprolactam,
- 4 enantholactam, and capryllactam.
- 1 42. A charge transport composition according to claim 36 wherein the multi-
- 2 functional compound is a di-functional compound.
- 1 43. A charge transport composition according to claim 36 wherein the di-
- 2 functional compound is selected from the group consisting of a triol, a triamine, a trithiol,
- a diol, a dithiol, a diamine, a dicarboxlyic acid, a hydroxylamine, an amino acid, a
- 4 hydroxyl acid, a thiol acid, a hydroxythiol, and a thioamine.