

Que	Stions	JEE Maili Crasii Co	urse
1.	The value of $\tan^{-1} \left[\frac{\cos \left(\frac{15\pi}{4} \right) - 1}{\sin \left(\frac{\pi}{4} \right)} \right]$ is equal to		
/4.	12	$ \begin{array}{c} (2) - \frac{\pi}{8} \\ (4) - \frac{4\pi}{9} \end{array} $ mathongo /// mathongo /// mathongo ///	
2. ///.	The number of real roots of the equation $\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x^2}$ (1) 1 ongo mathongo mathongo mathongo (3) 4	$c+1=\frac{1}{4}$ is: (2) 2 athongo /// mathongo /// mathongo /// mathongo ///	
3. ///.	$\cos^{-1}(\cos(-5)) + \sin^{-1}(\sin(6)) - \tan^{-1}(\tan(12))$ is equal to: (The inverse trigonometric functions take the principal values) (1) $3\pi + 1$	/// mathongo /// mathongo /// mathongo /// mathongo ///	
4.	(3) $4\pi-11$ Let $(a,b)\subset (0,2\pi)$ be the largest interval for which $\sin^{-1}(\sin\theta)-\cos^{-1}(\sin\theta)$	(4) $4\pi - 9$ $\theta > 0, \theta \in (0, 2\pi)$, holds . If	
	$\alpha x^2 + \beta x + \sin^{-1}(x^2 - 6x + 10) + \cos^{-1}(x^2 - 6x + 10) = 0$ and $\alpha - \beta = 0$	$b-a$, then α is equal to; (2) $\frac{\pi}{48}$ mathongo m	
5. ///.	$\tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec^{-1}\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}} = \frac{1}{(1)\frac{\pi}{4}}$	mathongo /// mathongo /// mathongo /// mathongo ///	
6./	(3) $\frac{\pi}{3}$ Let $S = \left\{ x \in R : 0 < x < 1 \text{ and } 2 \tan^{-1} \left(\frac{1-x}{1+x} \right) = \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \right\}$. If $n(S)$ (1) $n(S) = 2$ and only one element in S is less then $\frac{1}{2}$	(4) $\frac{\pi}{6}$ denotes the number of elements in S then: mathongo // mathongo // (2) $n(S) = 1$ and the element in S is more than $\frac{1}{2}$	
///. 7.	(3) $n(S) = 1$ and the element in S is less then $\frac{1}{2}$	(2) $\ln(s) = 1$ and the element in β is more than $\frac{1}{2}$ (4) $\ln(s) = 0$ $\ln(s) = 0$ $\ln(s) = 0$ $\ln(s) = 1$ and the element in β is more than $\frac{1}{2}$ (4) $\ln(s) = 0$	
	take only principal values. If the solutions of the equation $x^2 - bx - 5 = 0$	are $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ and $\frac{\alpha}{\beta}$, then $\frac{b}{k^2}$ is equal to	
8.	(1) $\cos\left(\frac{2a}{\pi}\right)$	1 is mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// $(2) \sin\left(\frac{2a}{\pi}\right)$	
///.	(3) $\cos\left(\frac{4a}{\pi}\right)$ mathongo mathongo mathongo mathongo	$\sin\left(\frac{4u}{\pi}\right)_{go}$ /// mathongo /// mathongo /// mathongo ///	
9. ///.	If $0 < x < \frac{1}{\sqrt{2}}$ and $\frac{\sin^{-1}x}{\alpha} = \frac{\cos^{-1}x}{\beta}$, then a value of $\sin\left(\frac{2\pi\alpha}{\alpha+\beta}\right)$ is (1) $4\sqrt{(1-x^2)}(1-2x^2)$ (3) $2x\sqrt{(1-x^2)}(1-4x^2)$	(2) $4x\sqrt{(1-x^2)}(1-2x^2)$ (4) $4\sqrt{(1-x^2)}(1-4x^2)$	
10.	If $\sin^{-1}\frac{\alpha}{17}+\cos^{-1}\frac{4}{5}-\tan^{-1}\frac{77}{36}=0, 0<\alpha<13$, then $\sin^{-1}(\sin\alpha)+\cos^{-1}(\sin\alpha)$		
	(3) 0	(2) 16 thongo $///$ mathongo $///$ mathongo $///$ mathongo $///$	
11. ///.	$\tan\left(2\tan^{-1}\frac{1}{5} + \sec^{-1}\frac{\sqrt{5}}{2} + 2\tan^{-1}\frac{1}{8}\right)$ is equal to: (1) 1 (3) $\frac{1}{4}$	"// mathongo	
12.	•	tal tomathongo /// mathongo /// mathongo /// mathongo /// mathongo ///	
	(3) $\sin^{-1}\left(\frac{9}{5\sqrt{10}}\right)$ mathongo /// mathongo ///	(4) $\tan^{-1}\left(\frac{9}{5\sqrt{10}}\right)$ mathons $\sqrt{2}$ mathons $\sqrt{2}$ $=\pi,x\in\left[-\frac{1}{2},\frac{1}{2}\right]$. Then $\sum_{x\in S}2\sin^{-1}(x^2-1)$ is equal to	
13.		(2) = π , $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$. Then $\sum_{x \in S} 2\sin^{-1}(x^2 - 1)$ is equal to $(2) \frac{-2\pi}{3}$ $(4) \frac{-2\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)}{\pi - 2\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)}$ mathongo we mathongo with mathon with ma	
	` '		
14.	(1) ² 2 ¹ ongo /// mathongo /// mathongo	x^2 for $x \in [-1,1]$, and $[x]$ denotes the greatest integer less than or equal to x , is: (2) 0 atthongo	
15.	(3) 4 For $x \in (-1,1]$, the number of solutions of the equation $\sin^{-1} x = 2 \tan^{-1} x$	(4) Infinite \mathbf{r} is equal to \mathbf{r} then \mathbf{r} 16 \mathbf{r} is equal to	
16.	Let $x=\sin\left(2\tan^{-1}\alpha\right)$ and $y=\sin\left(\frac{1}{2}\tan^{-1}\frac{4}{3}\right)$. If $S=\left\{\alpha\in\mathbb{R}:y^2=1-\frac{1}{3}\right\}$	x , then $\sum_{\alpha \in S} 16\alpha^3$ is equal to	

