## kek

### UFPB - Regressão I

Paulo Ricardo Seganfredo Campana Gabriel de Jesus Pereira 2 de novembro de 2023

#### Resumo

ESCREVER MERDA

## Introdução

O concreto é um dos matérias de construção mais utilizados na engenharia civil devido à sua durabilidade, versatilidade e resistência. Ele é composto por agregados, água e principalmente cimento. Analisando o cenário e as necessidades da engenharia civil, foi proposto a modelagem da força compressiva do concreto para a possibilidade de expandir o conhecimento sobre concreto de alta performance na indústria. Para isso, utilizamos um banco com dados experimentais de diferentes combinações de substâncias que compõem o concreto, o tempo que a mistura foi deixada para secar e a força compressiva final.

Fazendo uso desses dados, da modelagem e análise estatística, foi possível chegar em modelos de regressão linear múltipla, focaremos em um modelo mais simples, com o intuito de poder saber o que leva um concreto a ser mais resistente do que outro e para previsão da força compressiva de certa mistura baseado nas variáveis de estudo.

# Metodologia

As análises a seguir foram realizadas usando a linguagem de programação R (R Core Team 2023) com o framework de modelagem estatística tidymodels (Kuhn e Wickham 2020). Os códigos utilizados estão disponíveis no github (Campana e J. Pereira 2023) e os documentos do relatório e apresentação foram feitos com Quarto (Allaire et al. 2022), um sistema de escrita e publicação científica.

No conjunto de dados sobre concreto de alta performance (Yeh 2006) estudamos um modelo de regressão linear múltipla em que a força\_compressiva do concreto é explicada a princípio pelas variáveis que achamos importantes no estudo: o tempo de secagem da mistura final (em dias) e os matérias que compõem a mistura: cimento, escória\_de\_aço, cinzas\_pulverizadas, água, superplastificante, agregado\_graúdo e agregado\_miúdo (em quilogramas por metro cúbico). Algumas destas variáveis não estiveram presente no modelo final devido a não serem significantes no modelo linear.

Sendo assim, ajustamos dois modelos, um primeiro mais simples utilizando apenas 4 dos regressores e algumas transformações com o objetivo de estabelecer uma relação compreensível das substâncias que mais interferem na força compressiva do concreto. O segundo modelo é mais complexo, trazendo a interação entre as variáveis e composição das mesmas em novas medidas, este foca no poder preditivo da regressão. Porém a complexidade deste segundo modelo, mesmo que significativa, não se provou útil para a melhoria das métricas de performance, então decidimos não incluir nos resultados finais.

Fizemos uso da transformação Yeo-Johnson (Yeo e Johnson 2000), que de maneira similar a Box-Cox, é uma transformação feita para tornar a distribuição dos regressores mais normais e estabilizar a variância, com a vantagem de também funcionar para dados que contém valores 0 e números negativos. O parâmetro  $\lambda$  é estimado por máxima verossimilhança.

$$\psi(\lambda, x) = \begin{cases} [(1+x)^{\lambda} - 1]/\lambda & \lambda \neq 0, \ x \geqslant 0 \\ \ln(1+x) & \lambda = 0, \ x \geqslant 0 \\ [(1-x)^{2-\lambda} - 1]/(\lambda - 2) & \lambda \neq 2, \ x < 0 \\ -\ln(1-x) & \lambda = 2, \ x < 0 \end{cases}$$

A escolha de variáveis e transformações usadas foram julgadas através das métricas de performance do coeficiente de determinação  $(R^2)$  e raiz do erro quadrático médio (RMSE ou  $\sigma$ ) porém mantendo todos os coeficientes do modelo significativos nos testes de hipótese individuais.

$$R^2 = 1 - \frac{SS_{\text{resid}}}{SS_{\text{total}}}$$
 
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=0}^{n} (\hat{y}_i - y_i)^2}$$

#### Resultados

#### Construção do modelo

Primeiramente, escolhemos as variáveis que foram mais importantes para o alcance dos objetivos citados acima: cimento, escória\_de\_aço, água e tempo. Realizamos uma

transformação de raiz quadrada na variável resposta, força\_compressiva e transformações Yeo-Johnson em todos os regressores exceto água, onde a estimativa de  $\lambda$  foi muito próximo de 1, desse modo temos as seguintes variáveis transformadas:

Tabela 1: Transformações realizadas nas variáveis do modelo

| Variável          | λ      | Transformação                   |
|-------------------|--------|---------------------------------|
| força_compressiva |        | $y' = \sqrt{y}$                 |
| cimento           |        | $x' = 5.065[(1+x)^{0.197} - 1]$ |
| escória_de_aço    | 0.066  | $x' = 15.16[(1+x)^{0.066} - 1]$ |
| tempo             | -0.006 | $x' = \ln(1+x)$                 |

Devido a relação entre a força compressiva e o tempo de secagem ser não linear, criamos duas variáveis com o tempo transformado: tempo ao quadrado e tempo ao cubo. Ajustando um modelo sem intercepto com essas variáveis temos a seguinte relação entre a força compressiva do concreto (y'), a quantidade de cimento  $(x'_1)$ , água  $(x'_2)$ , escória de aço  $(x'_3)$  e o tempo de secagem  $(x'_t)$ :

$$\hat{y}' = 0.769x_1' + 0.186x_2' - 0.023x_3' + 0.396x_t'^2 - 0.050x_t'^3$$

#### Verificação das suposições do modelo linear

#### Normalidade dos resíduos

É uma suposição importante para a construção de intervalos de confiança e predição para a força compressiva, para os coeficientes e para o cálculo da estatística F do modelo, porém pequenos desvios da normalidade não afetam o modelo.

Tabela 2: Resultado dos testes para normalidade

| Teste            | Estatística | p-valor |
|------------------|-------------|---------|
| Anderson-Darling | A = 0.812   | 0.035   |
| Cramer-von Mises | W = 0.155   | 0.020   |
| Lilliefors       | D = 0.034   | 0.007   |
| Pearson          | P = 29.97   | 0.467   |
| Shapiro-Francia  | W = 0.998   | 0.263   |
| Shapiro-Wilk     | W = 0.998   | 0.217   |
| Jarque-Bera      | JB = 1.578  | 0.454   |

Mais da metade dos testes da Tabela 2 não rejeitam a hipótese de normalidade dos resíduos, e gráficamente pelo Q-Q plot da Figura 1 os resíduos parecem sim ter distribuição aproximadamente normal pois se assemelham aos quantis teóricos da distribuição normal, isso já cumpre as necessidades para a correta utilização dos intervalos de confiança que se baseiam na normalidade.



Figura 1: Q-Q plot dos resíduos padronizados do modelo

#### Linearidade

Suposição essencial para o uso de um modelo de regressão linear

Tabela 3: Resultado dos testes para linearidade

| Teste            | Estatística            | p-valor                         |
|------------------|------------------------|---------------------------------|
| RESET<br>Rainbow | R = 0.800<br>R = 1.407 | $0.371 \\ 5.797 \times 10^{-5}$ |

Os testes para linearidade do modelo discordam entre si, pelo gráfico da Figura 2, os valores estimados do modelo para a força compressiva do concreto parecem estar de acordo com os valores observados, exceto talvez para valores baixos da força compressiva, onde o modelo parece superestimar a mesma como vista na cauda esquerda do gráfico.

Figura 2: Gráfico dos valores observados versus valores estimados pelo modelo





Como se tratam de dados experimentais sobre o concreto, esse conjunto inclui várias combinações de valores diferentes entre os regressores, desse modo, a correlação entre as variáveis é baixa, atingindo no máximo 50%.

### Referências

Allaire, J. J., Charles Teague, Carlos Scheidegger, Yihui Xie, e Christophie Dervieux. 2022. «Quarto». 2022. https://quarto.org.

Campana, Paulo R. S., e Gabriel de J. Pereira. 2023. «Códigos dos modelos de regressão e análise». 2023. https://github.com/cowvin0/conkrekt.

Kuhn, Max, e Hadley Wickham. 2020. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles. https://www.tidymodels.org.

R Core Team. 2023. R: A Language and Environment for Statistical Computing (versão 4.3.1). Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Yeh, I-Cheng. 2006. «Analysis of Strength of Concrete Using Design of Experiments and Neural Networks». *Journal of Materials in Civil Engineering* 18 (4): 597–604. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597).

Yeo, In-Kwon, e Richard A. Johnson. 2000. «A New Family of Power Transformations to Improve Normality or Symmetry». *Biometrika* 87 (4): 954–59. http://www.jstor.org/stable/2673623.