MATH 611 NOTES GROUPS ACTING ON SETS OR G-SETS

William A. Lampe

May 8, 2009

The notion of a group acting on a set is an old one. The groups studied by Galois consisted of groups of permutations of roots of a polynomial. The notion of a group acting on a set is a slightly more general notion. We will study this notion from the point of view of universal algebra. Some of the associated notions are clearer this way.

Definition. Let $\mathbf{G} = \langle G; \cdot, {}^{-1}, 1 \rangle$ be a group. A \mathbf{G} -set is a unary algebra $\mathbf{A} = \langle A; O \rangle$ where $O = (\overline{g} : g \in G)$ and $\overline{1}_{\mathbf{G}} = \iota_A$ and $\overline{g} \circ \overline{h} = \overline{g \cdot h}$ for all $g, h \in G$. Often we will use the more suggestive notation $\mathbf{A} = \langle A; G \rangle$ or $\mathbf{A} = \langle A; \overline{G} \rangle$ for a \mathbf{G} -set.

So given a group **G**, the class of all **G**-sets is a variety.

Proposition. If **G** is a group and $\mathbf{A} = \langle A; \overline{G} \rangle$ is a **G**-set, then:

- (1) for each $g \in G$, the mapping $\overline{g} : A \longrightarrow A$ is a bijection (or permutation);
- (2) the mapping which sends $g \longrightarrow \overline{g}$ is a homomorphism from \mathbf{G} onto $\langle \overline{G}; \circ, {}^{-1}, \iota_A \rangle$.

Definition. When **G** is a group and $\mathbf{A} = \langle A; \overline{G} \rangle$ is a **G**-set and the homomorphism of the above Proposition is 1–1, we say that the action of **G** on A is effective or faithful.

Examples. Suppose $\mathbf{G} = \langle G; \cdot, ^{-1}, 1 \rangle$ is a group.

- (1) Cayley's representation or "**G** acting on itself by left multiplication" $\langle G; (\lambda_g : g \in G) \rangle$ is a **G**-set. (Recall that $\lambda_g(x) = g \cdot x$ for all $x \in G$.)
- (2) **G** acting on itself by conjugation for $g \in G$ the mapping $\tau_g : G \longrightarrow G$ is defined by $\tau_g(x) = gxg^{-1}$. $\langle G; (\tau_g : g \in G) \rangle$ is a **G**-set.
- (3) **G** acting on Sub(**G**) by conjugation For $g \in G$ and $H \in \text{Sub}(\mathbf{G})$ we let $\hat{\tau}_g(H) = gHg^{-1}$. Then $\langle \text{Sub}(\mathbf{G}) ; (\hat{\tau}_g : g \in G) \rangle$ is a **G**-set.
- (4) **G** acting on G/H by left multiplication Let H be a subgroup of **G**. We take G/H to be the set of left cosets of **G** by H; that is, $G/H = \{aH : a \in G\}$. For $g \in G$ we define the function $\hat{\lambda}_g$ on G/H by $\hat{\lambda}_g(aH) = (ga)H$. Then $\langle G/H ; (\hat{\lambda}_g : g \in G) \rangle$ is a **G**-set.
- (5) \mathbf{S}_n If $\mathbf{G} = \mathbf{S}_n$, the full symmetric group on n, then $\langle n; S_n \rangle$ is a \mathbf{G} -set.

Cayley's representation gives a faithful (or effective) action of G on itself, while "G acting on itself by conjugation" is a faithful action iff the center of G is $\{1\}$.

By an abuse of notation, we will refer to the **G**-set $\langle G/H; (\hat{\lambda}_g : g \in G) \rangle$ in (4) as G/H.

Proposition on Reducts. Suppose that $\mathbf{G} = \langle G; \cdot, ^{-1}, 1 \rangle$ is a group and H is a subgroup of \mathbf{G} and $\mathbf{A} = \langle A; (\overline{g}; g \in G) \rangle$ is a \mathbf{G} -set. Then $\mathbf{A} = \langle A; (\overline{g}; g \in H) \rangle = \langle A; \overline{H} \rangle$ is an \mathbf{H} -set (where $\mathbf{H} = \langle H; \cdot, ^{-1}, 1 \rangle$).

So each of the above examples produces more examples by applying this Proposition.

Exercises

Suppose **G** is a group and $\mathbf{A} = \langle A; \overline{G} \rangle$ is a **G**-set.

- (1) If $a \in A$, then the subalgebra generated by $a (= [a]) = {\overline{g}(a) : g \in G}$.
- (2) If $a, b \in A$ and $b \in [a]$, then [b] = [a].
- (3) The one generated subalgebras of \mathbf{A} form a partition of A.
- (4) Suppose $A = B \cup C$ and B and C are distinct one generated subalgebras of \mathbf{A} . (We let $\mathbf{B} = \langle B; (\overline{g}|_B : g \in G) \rangle$ and similarly for \mathbf{C} .) If $\Phi \in \operatorname{Con}(\mathbf{B})$ and $\Psi \in \operatorname{Con}(\mathbf{C})$, then $\Phi \cup \Psi \in \operatorname{Con}(\mathbf{A})$.
- (5) State and prove a generalization of (4).

Definitions. Suppose **G** is a group and $\mathbf{A} = \langle A; \overline{G} \rangle$ is a **G**-set. The one generated subalgebras of **A** are called *orbits* or *the orbits of* **A** or *orbits of the action of* **G** on A. If **A** has only one orbit, then **A** is said to be *transitive*, or the action of **G** on A is said to be *transitive*, or \overline{G} is said to be a *transitive permutation group*.

Let $\sigma \in S_n$, and consider the \mathbf{S}_n -set $\langle n; S_n \rangle$. Then an orbit of σ is the same thing as an orbit of the reduct $\langle n; [\sigma] \rangle$, where $[\sigma]$ denotes the subgroup of \mathbf{S}_n generated by σ .

Definition. Suppose **G** is a group and $\mathbf{A} = \langle A; \overline{G} \rangle$ is a **G**-set and $a \in A$.

$$\operatorname{Stab}(a) = \{g \in G : \overline{g}(a) = a\}.$$

Stab(a) is called the *stabilizer* of a.

Stabilizer Proposition 1. Suppose **G** is a group and $\mathbf{A} = \langle A; \overline{G} \rangle$ is a **G**-set and $a \in A$. Then $\operatorname{Stab}(a)$ is a subgroup of **G**.

Stabilizer Proposition 2. Suppose G is a group and $A = \langle A; \overline{G} \rangle$ is a G-set and $a \in A$ and $b = \overline{g}(a)$. Then

$$\operatorname{Stab}(b) = g(\operatorname{Stab}(a))g^{-1}.$$

That is, elements belonging to the same orbit have conjugate stabilizers.

Some authors call isomorphic **G**-sets *equivalent*.

Theorem 1. Suppose **G** is a group and $\mathbf{A} = \langle A; \overline{G} \rangle$ is a **G**-set. If **A** is transitive, then **A** is isomorphic to the **G**-set $G/\operatorname{Stab}(a)$ for any $a \in A$.

Corollary 1. Suppose **G** is a group and $\mathbf{A} = \langle A; \overline{G} \rangle$ is a **G**-set. If **A** is transitive, then $|A| = [G : \operatorname{Stab}(a)]$, the index of the stabilizer of a in **G**.

Corollary 2. Suppose **G** is a group and $\mathbf{A} = \langle A; \overline{G} \rangle$ is a **G**-set. Then

$$|A| = \sum_{a \in R} [G : \operatorname{Stab}(a)]$$

where R is a set containing exactly one element from each orbit.

Corollary 3. Suppose G is a group. Then

$$|G| = |C| + \sum_{g \in T} [G : C(g)]$$

where C denotes the center of \mathbf{G} and C(g) denotes the centralizer of g (which $=\{x:xg=gx\}$) and T contains one element from each non trivial conjugacy class of \mathbf{G} .

The equation in Corollary 3 is called the *class equation* of \mathbf{G} .

Corollary 4. Let p be a prime number. Any finite group of prime power order has a center $C \neq \{1\}$.

Theorem 2. Suppose **G** is a group and $\mathbf{A} = \langle A; \overline{G} \rangle$ is a **G**-set. If **A** is transitive, then $\mathbf{Con}(\mathbf{A})$ is isomorphic to

$$\langle \{ H \in \mathrm{Sub}(\mathbf{G}) : H \supseteq \mathrm{Stab}(a) \} ; \subseteq \rangle$$

for any $a \in A$.

Some authors call a G-set *primitive* just in case it is simple. Recall that a simple algebra is one that has exactly two congruences.

Corollary. Suppose G is a group and $A = \langle A; \overline{G} \rangle$ is a transitive G-set. A is primitive iff for any $a \in A$, Stab(a) is a maximal subgroup of G.

References

Nathan Jacobson, Basic Algebra I, Second Edition, W. H. Freeman and Co., New York, 1985.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HAWAII

E-mail address: bill@math.hawaii.edu