

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM03

(9665/FM03) Unit FP2 Pure Mathematics

Mark scheme

June 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
1	$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$	B2,1,0	If not B2 then award B1 for either $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ or } [\mathbf{M}=] \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} $ B2 cannot be awarded if the correct matrix for NM is obtained by using an incorrect matrix for N or M or if found by calculating MN
		2	

Question 1 Total	2	
------------------	---	--

Q	Answer	Marks	Comments
2(a)	$\alpha + \beta + \gamma = 4$ $\alpha \beta + \beta \gamma + \gamma \alpha = 3$	B1	For either $\alpha+\beta+\gamma=4$ or $\alpha\beta+\beta\gamma+\gamma\alpha=3$ seen or used
	$\alpha^{2} + \beta^{2} + \gamma^{2}$ $= (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $= 4^{2} - 2(3)$ $\alpha^{2} + \beta^{2} + \gamma^{2} = 16 - 6 = 10$	M1 A1	Correct formula seen/used CSO AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
2(b)	eta is a root of the [cubic] equation	E1	oe
		1	

Q	Answer	Marks	Comments
2(c)	$\alpha^3 + \beta^3 + \gamma^3$		
	$=4(\alpha^2+\beta^2+\gamma^2)-3(\alpha+\beta+\gamma)-3c$	M1	$oldsymbol{oe}$ in terms of c and expressions whose values have been stated/found
			eg $\alpha^{3} + \beta^{3} + \gamma^{3} = (\alpha + \beta + \gamma)^{3}$
	= 4(10) - 3(4) - 3c = 40 - 12 - 3c = 28 - 3c	A 1	$-3(\alpha+\beta+\gamma)(\alpha\beta+\beta\gamma+\alpha\gamma)+3(-c)$ AG Must be convincingly shown
		2	

Question 2 Tota	6	
-----------------	---	--

Q	Answer	Marks	Comments
3	$10 = \det(\mathbf{A})\det(\mathbf{B})$ $\det(\mathbf{A})\det(\mathbf{A}^{-1}) = 1; 5\det(\mathbf{A}) = 1$	M1	Either $det(\mathbf{AB}) = det(\mathbf{A})det(\mathbf{B})$ seen/used or $det(\mathbf{A})det(\mathbf{A}^{-1}) = 1$ seen/used
	$\det(\mathbf{A}) = \frac{1}{5}$	A 1	Correct value for $det(\mathbf{A})$ seen/used PI by use of $det(\mathbf{A})det(\mathbf{A}^{-1})=1$
	$\det(\mathbf{B}) = 50$	A1ft	ft 10 ÷ their value for det(A)
	Volume of $S_2 = 6 \times 50 = 300 \text{ [cm}^3\text{]}$	B1ft	ft 6×their det(B)
		4	

Question 3 Total 4

Q	Answer	Marks	Comments
4(a)	$y = x\sqrt{x} - \frac{1}{3}\sqrt{x} \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2}\sqrt{x} - \frac{1}{6\sqrt{x}}$	M1	ACF At least one correct term for $\frac{dy}{dx}$
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{9}{4}x - \frac{1}{2} + \frac{1}{36x}$ $= \left(\frac{3}{2}\sqrt{x} + \frac{1}{6\sqrt{x}}\right)^2 = \left(\frac{3}{2}x^{\frac{1}{2}} + \frac{1}{6}x^{-\frac{1}{2}}\right)^2$	A 1	A correct expression for $1+\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2$ in the form $\left(px^n+qx^{-n}\right)^2$
		2	

Q	Answer	Marks	Comments
4(b)	$S = 2\pi \int_{[1]}^{[4]} y \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \mathrm{d}x$		
	$=2\pi\int_{[1]}^{[4]} \left(x\sqrt{x} - \frac{1}{3}\sqrt{x}\right) \left(\frac{3}{2}\sqrt{x} + \frac{1}{6\sqrt{x}}\right) \left[dx\right]$	M1	Substitutes into a correct formula for the surface area S ; ft their derivative. Condone missing brackets
	$=2\pi \int_{1}^{4} \left(\frac{3}{2}x^{2} - \frac{1}{3}x - \frac{1}{18}\right) [dx]$	M1	Integrand $ax^2 + bx + c$ with at least one correct coefficient
	$=2\pi \left[\frac{x^3}{2} - \frac{x^2}{6} - \frac{x}{18}\right]_1^4$	A 1	
	$=2\pi\left[\left(\frac{64}{2}-\frac{16}{6}-\frac{4}{18}\right)-\left(\frac{1}{2}-\frac{1}{6}-\frac{1}{18}\right)\right]$		
	$=2\pi\left(\frac{63}{2}-\frac{15}{6}-\frac{3}{18}\right)=\pi\left(63-\frac{16}{3}\right)=\frac{173}{3}\pi$	A 1	AG Must be convincingly shown
		4	

4 Total 6	Question 4 Total
-----------	------------------

Q	Answer	Marks	Comments
5	$\int 9x^2 \ln x dx = 3x^3 \ln x - \int 3x^3 \left(\frac{1}{x}\right) dx$	M1	$u = \ln x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x}$ $\frac{\mathrm{d}v}{\mathrm{d}x} = 9x^2 \Rightarrow v = 3x^3 \mathbf{PI}$
	$\int 9x^2 \ln x dx = 3x^3 \ln x - x^3 [+c]$	A 1	Correct integration of $9x^2 \ln x$
	$\int_0^e 9x^2 \ln x dx = \lim_{a \to 0} \int_a^e 9x^2 \ln x dx$ $= \left(3e^3 - e^3\right) - \lim_{a \to 0} \left(3a^3 \ln a - a^3\right)$	М1	Evidence of limit 0 having been replaced by a (oe) at any stage and $\lim_{a\to 0}$ seen or taken at any stage with no remaining lim relating to e
	$\lim_{a\to 0} \left(a^3 \ln a\right) = 0$	B1	Accept if stated in the more general format.
	$\int \frac{4}{1+4x^2} dx = \int \frac{1}{\frac{1}{4}+x^2} dx$ $= 2\tan^{-1}(2x) [+c]$	M1 A1	M1: $k \tan^{-1}(kx)$ or $\lambda \tan^{-1}(kx)$ A1: $2 \tan^{-1}(2x)$
	$\int_{0}^{e} \left(9x^{2} \ln x + \frac{4}{1 + 4x^{2}}\right) dx$ $= 2e^{3} + 2\tan^{-1}(2e)$	A 1	2e ³ + 2tan ⁻¹ (2e) Must have scored all previous M and A marks and no errors when substituting limits.
		7	

Question 5 Total	7	
------------------	---	--

Q	Answer	Marks	Comments
6	I.F. is $e^{\int (8x(x^2+2)^{-1}) dx} = e^{4\ln(x^2+2)}$	M1	I.F. identified and integration attempted
	I.F. $=(x^2+2)^4$	A 1	Correct integrating factor
	$(x^2+2)^4 \frac{dy}{dx} + 8x(x^2+2)^3 y$		
	$=2x^{3}\left(x^{2}+2\right)^{4}+\frac{\left(x^{2}+2\right)^{4}}{\left(x^{2}+2\right)^{\frac{9}{2}}}$		
	$(x^2+2)^4 y = \int \left(2x^3(x^2+2)^4 + \frac{1}{\sqrt{x^2+2}}\right) dx$	M 1	Multiplying both sides of the given DE by their I.F. and integrating LHS to get $y \times$ I.F.
	Let $u = x^2 + 2$	M1	A relevant substitution or relevant integration by parts used to find an expression for the integral
	$\Rightarrow \int 2x^3 (x^2+2)^4 dx = \int (u-2)u^4 du$		of $2x^3(x^2+2)^4$
			PI by correct integration
			oe Correct integration of $2x^3(x^2+2)^4$
	$\int 2x^{3} (x^{2}+2)^{4} dx = \frac{(x^{2}+2)^{6}}{6} - \frac{2(x^{2}+2)^{5}}{5} [+A]$	A 1	eg $\frac{x^2(x^2+2)^5}{5} - \frac{(x^2+2)^6}{30} [+k]$ or
			$\frac{1}{6}x^{12} + \frac{8}{5}x^{10} + 6x^8 + \frac{32}{3}x^6 + 8x^4[+c]$
	$\int \left(\frac{1}{\sqrt{x^2 + 2}} \right) dx = \sinh^{-1} \left(\frac{x}{\sqrt{2}} \right) \left[+B \right]$	В1	Correct integration of $\frac{1}{\sqrt{x^2+2}}$
			oe , such as $\ln\left(x+\sqrt{x^2+2}\right)$ [+B]
	$y = \frac{\left(x^2 + 2\right)^2}{6} - \frac{2\left(x^2 + 2\right)}{5} + \frac{\sinh^{-1}\left(\frac{x}{\sqrt{2}}\right) + c}{\left(x^2 + 2\right)^4}$	A 1	Correct GS $y = f(x)$ with ACF for $f(x)$
		7	

Question 6 To	7
---------------	---

Q	Answer	Marks	Comments
7(a)	$\sum_{r=1}^{n} (u_{r+1} - u_r) = \sum_{r=1}^{n} (2u_r) + \sum_{r=1}^{n} 4$		
	r=1 $r=1$ $r=1$ $r=1$ LHS =		
	$u_2 - u_1 + u_3 - u_2 + u_4 - u_3 + + u_n - u_{n-1} + u_{n+1} - u_n$		Uses method of differences with $\sum_{n=1}^{\infty} (a_n) + \sum_{n=1}^{\infty} (a_n)$
	$= u_{n+1} - u_1$	M1	$\sum_{r=1}^{n} (u_{r+1} - u_r) = \sum_{r=1}^{n} (2u_r) + \sum_{r=1}^{n} 4$
	$RHS = \sum_{r=1}^{n} \left(2u_r \right) + 4n$	B1	$\sum_{r=1}^{n} 4 = 4n \text{ or } \sum_{r=1}^{n} 2 = 2n$
	$2\sum_{r=1}^{n} (u_r) + 4n = u_{n+1} - u_1; 2\sum_{r=1}^{n} (u_r) = u_{n+1} - 4n - 3$		
	$\Rightarrow \sum_{r=1}^{n} u_r = \frac{1}{2} u_{n+1} - 2n - \frac{3}{2}$	A 1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
7(b)	When $n = 1$, $u_1 = 5 \times 3^0 - 2 = 5 \times 1 - 2 = 5 - 2 = 3$ [Formula is true for $n = 1$]	B1	Correct values to show formula true for $n = 1$
	Assume formula true for $n=k$ (*), [integer $k \ge 1$,] so $u_{k+1} = 3\left(5 \times 3^{k-1} - 2\right) + 4$	M1	Assumes formula true for $n = k$ and considers $u_{k+1} = 3(5 \times 3^{k-1} - 2) + 4$ oe
	$u_{k+1} = 5 \times 3^k - 6 + 4$; $u_{k+1} = 5 \times 3^{(k+1)-1} - 2$	A 1	Be convinced
	Hence formula is true for $n = k + 1$ (**) and since true for $n = 1$ (***), formula $u_n = 5 \times 3^{n-1} - 2$ is true for $n = 1, 2, 3, \ldots$ by induction (****)	E1	Must have (*), (**), (***), present, previous 3 marks scored and a final statement (****) clearly indicating that it relates to positive integers and 'induction'
		4	

Q	Answer	Marks	Comments
7(c)	$\sum_{r=1}^{n} u_r = \frac{1}{2} (5 \times 3^n - 2) - 2n - \frac{3}{2}$ $= \frac{5}{2} \times (3^n - 1) - 2n$	B1	ACF Accept unsimplified
		1	

Question 7 Total 8	
--------------------	--

Q	Answer	Marks	Comments
8(a)	Aux. equation $m^2 + 2m = 0$; $m = -2$, 0	M1	Forming and solving the correct aux. equation. PI by correct values of <i>m</i> seen/used
	$y = A + B e^{-2x}$	A 1	Correct general solution
		2	

Q	Answer	Marks	Comments
8(b)	$[y_{CF} = A + B e^{-2x}];$ $y_{PI} = a x e^{-2x}$	M1	$y_{\rm Pl} = a x e^{-2x}$ seen or used
	$y'_{PI} = a e^{-2x} - 2a x e^{-2x}$ $y''_{PI} = -4a e^{-2x} + 4a x e^{-2x}$	M1	$y'_{\rm Pl}$ and $y''_{\rm Pl}$ both of the form $\pm c {\rm e}^{-2x} \pm d x {\rm e}^{-2x}$
	$-4ae^{-2x} + 4axe^{-2x} + 2ae^{-2x} - 4axe^{-2x} = 6e^{-2x}$ $\Rightarrow a = -3$	M1	Substitution into the DE to form an equation in x and solve to find a value for a
	$[y_{\rm Pl}=]-3x{\rm e}^{-2x}$	A 1	
	$[y_{GS} =] A + B e^{-2x} - 3x e^{-2x}$	B1ft	Their CF + their PI with exactly two arbitrary constants
	A+B=0; $4B+12=4$ (or $-2B-3=1$)		and many constants
	A=2 and $B=-2$	A 1	A=2 and $B=-2$
	$y=2-2e^{-2x}-3xe^{-2x}$ When $x=3$ $y=2-11e^{-6}$	A 1	2-11e ⁻⁶ oe
		7	

Question 8 Tota	9	
-----------------	---	--

Q	Answer	Marks	Comments
9(a)	$\det \mathbf{A} = 2k + 12$	B1	Correct expression for det A
	Cofactor matrix		
	$\begin{bmatrix} 1 & -3 & 4 \\ 3k+12 & -3k & 2k-12 \\ -4k-17 & 4k+3 & 16-2k \end{bmatrix}$	M1 A2	One complete row or column or diagonal correct All nine entries correct else A1 for at least six entries correct
	Inverse matrix $\mathbf{A}^{-1} =$ $= \frac{1}{2k+12} \begin{bmatrix} 1 & 3k+12 & -4k-17 \\ -3 & -3k & 4k+3 \\ 4 & 2k-12 & 16-2k \end{bmatrix}$	M1 A1	Transpose of their cofactors with no more than one further error and division by their det \mathbf{A} (\neq 0) Correct \mathbf{A}^{-1} scores 6 marks
		6	

Q	Answer	Marks	Comments
9(b)(i)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $= \frac{1}{2k+12} \begin{bmatrix} 1+3k+12-4k-17 \\ -3-3k+4k+3 \\ 4+2k-12+16-2k \end{bmatrix}$	M1 A1ft	 A⁻¹ v for their A⁻¹ with at least one ft component correct. At least two ft components correct.
	$x = -\left(\frac{k+4}{2k+12}\right)$ $y = \frac{k}{2k+12}$ $z = \frac{8}{2k+12}$	A 1	ACF All three correct
		3	

Q	Answer	Marks	Comments
9(b)(ii)	$0 < x + y + z < \frac{1}{3}$	B1	
		1	

Question 9 Tota	10	
-----------------	----	--

Q	Answer	Marks	Comments
10(a)(i)	$e^{\frac{i\theta}{2}} + e^{-\frac{i\theta}{2}} = 2\cos\left(\frac{\theta}{2}\right)$	B1	
		1	

Q	Answer	Marks	Comments
10(a)(ii)			Either $\frac{1}{e^{i\theta}+1} = \frac{e^{-\frac{i\theta}{2}}}{e^{\frac{i\theta}{2}}+e^{-\frac{i\theta}{2}}}$
	$\frac{1}{e^{i\theta}+1} = \frac{e^{-\frac{i\theta}{2}}}{e^{\frac{i\theta}{2}}+e^{-\frac{i\theta}{2}}} =$	M1	or $i \tan \left(\frac{\theta}{2}\right) = \left(\frac{e^{\frac{i\theta}{2}} - e^{-\frac{i\theta}{2}}}{\frac{i\theta}{2} + e^{-\frac{i\theta}{2}}}\right)$ seen/used
			$\frac{1}{2} - \frac{i}{2} \tan \left(\frac{\theta}{2}\right) = \frac{1}{2} - \frac{1}{2} \left[\frac{e^{\frac{i\theta}{2}} - e^{-\frac{i\theta}{2}}}{e^{\frac{i\theta}{2}} + e^{-\frac{i\theta}{2}}} \right]$
	$= \frac{\cos\left(\frac{\theta}{2}\right) - i\sin\left(\frac{\theta}{2}\right)}{2\cos\left(\frac{\theta}{2}\right)} = \frac{1}{2} - \frac{i}{2}\tan\left(\frac{\theta}{2}\right)$	A 1	AG Must be convincingly shown
		2	

Q	Answer	Marks	Comments
10(b)	$\frac{1}{e^{i(\pi-\theta)}+1} = \frac{1}{2} - \frac{i}{2} \tan\left(\frac{\pi}{2} - \frac{\theta}{2}\right) = \frac{1}{2} - \frac{i}{2} \cot\left(\frac{\theta}{2}\right)$	М1	
	$\frac{1}{-e^{-i\theta}+1} = \frac{1}{2} - \frac{i}{2}\cot\left(\frac{\theta}{2}\right)$	В1	$e^{i\pi} = -1$ seen or used at any stage
	$\frac{1}{-e^{-i\theta}+1}-1=-\frac{1}{2}-\frac{i}{2}\cot\left(\frac{\theta}{2}\right)$		
	$\frac{e^{-i\theta}}{1-e^{-i\theta}} = -\frac{1}{2} - \frac{i}{2} \cot\left(\frac{\theta}{2}\right)$		
	$\frac{1}{e^{i\theta}-1} = -\frac{1}{2} - \frac{i}{2}\cot\left(\frac{\theta}{2}\right)$	A 1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
10(c)	$\left(\frac{1}{e^{i\theta}+1}\right)\left(\frac{1}{e^{i\theta}-1}\right) = \frac{1}{e^{2i\theta}-1}$ $= \frac{1}{\cos 2\theta + i\sin 2\theta - 1}$ $\left(\frac{1}{e^{i\theta}+1}\right)\left(\frac{1}{e^{i\theta}-1}\right) =$	M 1	Considers a relevant combination of $\frac{1}{e^{i\theta}+1} \text{ and } \frac{1}{e^{i\theta}-1} \text{ to obtain either}$ $\frac{1}{\cos 2\theta + i \sin 2\theta - 1} \text{ or}$ $a + i b \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right) \text{ with } a \text{ or } b$ correct
	$\left(\frac{1}{2} - \frac{i}{2} \tan\left(\frac{\theta}{2}\right)\right) \left(-\frac{1}{2} - \frac{i}{2} \cot\left(\frac{\theta}{2}\right)\right)$ $= -\frac{1}{2} + \frac{i}{4} \left(\tan\left(\frac{\theta}{2}\right) - \cot\left(\frac{\theta}{2}\right)\right)$		oe eg $\frac{1}{2} \left(\frac{1}{e^{i\theta} - 1} - \frac{1}{e^{i\theta} + 1} \right) = \frac{1}{e^{2i\theta} - 1}$ $= \frac{1}{\cos 2\theta + i \sin 2\theta - 1}$
	$\frac{1}{\cos 2\theta - 1 + i \sin 2\theta}$ $= -\frac{1}{2} + i \frac{1}{4} \left(\tan \left(\frac{\theta}{2} \right) - \cot \left(\frac{\theta}{2} \right) \right)$	A 1	$\frac{1}{2} \left(\frac{1}{e^{i\theta} - 1} - \frac{1}{e^{i\theta} + 1} \right) =$ $\frac{1}{2} \left\{ -\frac{1}{2} - \frac{i}{2} \cot\left(\frac{\theta}{2}\right) - \left(\frac{1}{2} - \frac{i}{2} \tan\left(\frac{\theta}{2}\right)\right) \right\}$ $= -\frac{1}{2} + \frac{i}{4} \left(\tan\left(\frac{\theta}{2}\right) - \cot\left(\frac{\theta}{2}\right) \right)$ $\frac{1}{\cos 2\theta - 1 + i \sin 2\theta}$ $= -\frac{1}{2} + i \frac{1}{4} \left(\tan\left(\frac{\theta}{2}\right) - \cot\left(\frac{\theta}{2}\right) \right)$
		2	

Question 9 Total	8	
------------------	---	--

Q	Answer	Marks	Comments
11(a)	$\begin{bmatrix} -2\\1\\2 \end{bmatrix} \times \begin{bmatrix} 1\\-3\\4 \end{bmatrix} = \begin{bmatrix} 10\\10\\5 \end{bmatrix}$	B1	[10] 10] oe 5]
		1	

Q	Answer	Marks	Comments
11(b)	$ \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix} \bullet \begin{bmatrix} -4 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 10 \\ 10 \\ 5 \end{bmatrix} \bullet \begin{bmatrix} -4 \\ 3 \\ -2 \end{bmatrix} = $	M1	Correct method to evaluate a relevant scalar triple product; ft their (a) Condone a miscopy of sign from given vectors
	= $-40+30-10[=-20] \neq 0$ so they are not coplanar vectors	A1ft	Must see correct ft evaluation and explicit comparison with 0, or relevant initial statement involving 0, followed by a correct ft conclusion.
		2	

Q	Answer	Marks	Comments
11(c)	Direction vector for L : $\mathbf{d} = \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix}$ Direction of normal to the plane: $\mathbf{n} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$	B1ft	Seen or used; d correct and ft their answer to part (a) for n in a simplified or unsimplified form
	$n \cdot d = 4 + 6 - 6$	М1	Finds a numerical expression for the scalar product of their normal to Π and their ${\bf d}$ ${\bf Pl}$
	$\sqrt{2^2 + 2^2 + 1^2} \sqrt{2^2 + 3^2 + (-6)^2} \cos \theta = 4$	m1	ft their n and d PI
	$\sqrt{2^2 + 2^2 + 1^2} \sqrt{2^2 + 3^2 + (-6)^2} \cos \theta = 4$ $\cos \theta = \frac{4}{21}$		
	Angle between L and $\Pi = 90^{\circ} - \cos^{-1} \left(\frac{4}{21} \right)$		
	=11° to nearest degree	A 1	CAO 11° (Condone missing °)
		4	

Q	Answer	Marks	Comments
11(d)	Line L : $\mathbf{r} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + t \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix}$		
	General point on L is $(1+2t,3t,2-6t)$	M1	Finding a general point on L
	$1+2t = 1-2\lambda + \mu$ $3t = -2 + \lambda - 3\mu; 8t = -4-5\mu$ $2-6t = 3 + 2\lambda + 4\mu; 3-4t = 4+5\mu$ $t = -\frac{3}{4}$	M1	Eliminating r for <i>L</i> and Π , forming and solving three equations in three unknowns (or substituting general pt on <i>L</i> into $2x+2y+z=1$) to find a value for <i>t</i>
	$P\left(-\frac{1}{2}, -\frac{9}{4}, \frac{13}{2}\right)$	A 1	Correct coordinates or position vector for <i>P</i> PI or $\left -\frac{3}{4}\right \times \sqrt{2^2 + 3^2 + (-6)^2}$
	$PQ = \sqrt{1.5^2 + 2.25^2 + 4.5^2} = 5.25$	A 1	Correct distance for PQ
		4	

Q	Answer	Marks	Comments
11(d) ALT	Plane Π : $\mathbf{r} = \begin{bmatrix} 1 - 2\lambda + \mu \\ -2 + \lambda - 3\mu \\ 3 + 2\lambda + 4\mu \end{bmatrix}$		
	Sub in <i>L</i> : $\begin{bmatrix} -2\lambda + \mu \\ -2 + \lambda - 3\mu \\ 1 + 2\lambda + 4\mu \end{bmatrix} \times \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = 0$		
	$ 9-12\lambda + 6\mu = 0 2-8\lambda + 14\mu = 0 $	M1	Eliminating ${\bf r}$ for ${\it L}$ and Π , forming at least two equations in two unknowns
	$4 - 8\lambda + 9\mu = 0$ $\mu = \frac{2}{5}$ $\lambda = \frac{19}{20}$	M1	Solving three correct equations to obtain a value for each of the unknowns
	$P\left(-\frac{1}{2}, -\frac{9}{4}, \frac{13}{2}\right)$	A 1	Correct coordinates or position vector for P PI or $\left -\frac{3}{4}\right \times \sqrt{2^2 + 3^2 + \left(-6\right)^2}$
	$PQ = \sqrt{1.5^2 + 2.25^2 + 4.5^2} = 5.25$	A 1	Correct distance for PQ
		4	

Q	Answer	Marks	Comments
11(e)	Let T be the point on Π such that QT is perpendicular to Π . Q is a point on line L so angle PQT , is the angle θ from part (c) between normal to Π and line L . $QT = PQ \cos \theta$	M2	oe eg $QT = PQ \sin(90^{\circ} - \theta)$ condoning their rounded answer for $90^{\circ} - \theta$ found in part (c)
	Shortest distance = $5.25 \times \frac{4}{21} = 1$	A 1	CAO Do not accept 1 from non-exact values
		3	

Q	Answer	Marks	Comments
11(e) ALT	$1+2t = 1-2\lambda + \mu$ $2t = -2 + \lambda - 3\mu ; 6t = -4 - 5\mu$ $2+t = 3 + 2\lambda + 4\mu ; 3 + 3t = 4 + 5\mu$ $t = -\frac{1}{3}$	М1	Finds a general point on QT and eliminates ${\bf r}$ for QT and Π , forming and solving three equations in three unknowns ${\bf oe}$ to find a value for t
	$T\left(\frac{1}{3}, -\frac{2}{3}, \frac{5}{3}\right) \qquad Q(1, 0, 2)$ $QT = \sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2}$	m1	Finds coordinates of <i>T</i> and uses distance formula to find a value for the distance Q <i>T</i> oe
	Shortest distance = 1	A 1	CAO Must be from exact values.
		3	

Question 11 Total	14
-------------------	----

Q	Answer	Marks	Comments
12(a)	$y = e^{\frac{7}{25}x} \left(\cosh x\right)^{-1},$ $\frac{dy}{dx} = \frac{7}{25} e^{\frac{7}{25}x} \left(\cosh x\right)^{-1} - e^{\frac{7}{25}x} \left(\cosh x\right)^{-2} \sinh x$	M1 A1	Use of the product formula or quotient formula. ACF
	At P, $\frac{dy}{dx} = 0 \Rightarrow \frac{7}{25} \cosh x - \sinh x = 0$	M1	
	$\tanh x = \frac{7}{25}$	A 1	
	$x = \tanh^{-1} \left(\frac{7}{25}\right) = \frac{1}{2} \ln \left(\frac{1 + \frac{7}{25}}{1 - \frac{7}{25}}\right)$	М1	Using $\tanh^{-1}(n) = \frac{1}{2} \ln \left(\frac{1+n}{1-n} \right)$
	$x = \ln\left(\frac{4}{3}\right)$	A 1	$x = \ln\left(\frac{4}{3}\right)$
		6	

Q	Answer	Marks	Comments
12(b)	$y_P = e^{\frac{7}{25}(\ln k)} \operatorname{sech}(\ln k)$	M1	Attempts to find the y -coordinate of P , ft their value of k from part (a)
	$\operatorname{sech}(\ln k) = \frac{2k}{k^2 + 1} \; ; \; e^{\frac{7}{25}(\ln k)} = k^{\frac{7}{25}}$	B1ft	$e^{\frac{7}{25}(\ln k)} = k^{\frac{7}{25}}$ and $\operatorname{sech}(\ln k) = \frac{2k}{k^2 + 1}$ oe ft their k value
	Shortest distance = $\left(\frac{24}{25}\right)\left(\frac{4}{3}\right)^{\frac{7}{25}}$	A 1	oe but must be in the required printed form eg $\left(\frac{18}{25}\right)\left(\frac{4}{3}\right)^{\frac{32}{25}}$
		3	

Q	Answer	Marks	Comments
12(c)	Shortest distance $\left(\frac{24}{25}\right)\left(\frac{4}{3}\right)^{\frac{7}{25}} = 1.04$	B1	1.04
	Since $[-1<]$ tanh $x<1$, and line L , $y=1.04$ is above $y=1$, L does not intersect the curve $y=$ tanh x	E1ft	States $tanh x < 1$ and if (their shortest distance) < 1 states L intersects $y = tanh x$ oe if (their shortest distance) ≥ 1 states L does not intersect $y = tanh x$ oe
		2	

Question 12 Total	11	
-------------------	----	--

Q	Answer	Marks	Comments
13(a)	$\left[\ln(1+4x)=\right] 4x-8x^2+\frac{64}{3}x^3$	B1	Ignore higher order terms
	[valid for] $-\frac{1}{4} < x \le \frac{1}{4}$	B1	
		2	

Q	Answer	Marks	Comments
13(b)(i)	$y = \ln(\cos x - \sin x);$ $\frac{dy}{dx} = \frac{-\sin x - \cos x}{\cos x - \sin x} = 1 - \frac{2\cos x}{\cos x - \sin x};$	B1	ACF for the first derivative
	$\frac{d^2y}{dx^2} = \frac{2\sin x (\cos x - \sin x) + 2\cos x (-\sin x - \cos x)}{(\cos x - \sin x)^2}$	М1	Quotient rule used
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{-2\left(\sin^2 x + \cos^2 x\right)}{\cos^2 x + \sin^2 x - 2\sin x \cos x}$ $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{-2}{1 - \sin 2x}$	A 1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
13(b)(ii)	$\frac{d^3y}{dx^3} = \frac{0 + 2(-2\cos 2x)}{(1-\sin 2x)^2}$	B1	ACF for the third derivative
	y(0) = 0; y'(0) = -1; y''(0) = -2; y'''(0) = -4	M1	All 4 attempted with at least 2 correct
	$\ln\left(\cos x - \sin x\right) = 0 - 1x + \frac{\left(-2\right)x^2}{2!} + \frac{\left(-4\right)x^3}{3!}$		
	$\ln(\cos x - \sin x) = -x - x^2 - \frac{2}{3}x^3$	A 1	AG Must be convincingly shown
		3	

Q	Answer	Marks	Comments
13(c)	$ \ln\left[\left(1-\sin 2x\right)\sqrt{1+4x}\right] = \\ = \ln\left(1-\sin 2x\right) + \ln\sqrt{1+4x} $	M1	Seen or used
	$=2\ln(\cos x - \sin x) + \frac{1}{2}\ln(1+4x)$	M1	$\ln(1-\sin 2x) = 2\ln(\cos x - \sin x)$ seen or used
	$= 2\left(-x - x^2 - \frac{2}{3}x^3\right) + \frac{1}{2}\left(4x - 8x^2 + \frac{64}{3}x^3\right)$	A1ft	ft their 3-term expansion in part (a)
	$\lim_{x\to 0} \left[\frac{\ln\left(\left(1-\sin 2x\right)\sqrt{1+4x}\right)}{5x^2+6x^3} \right]$		
	$= \lim_{x \to 0} \left[\frac{-6x^2 + \frac{28}{3}x^3 \dots}{5x^2 + 6x^3} \right]$		Substitutes series expansions and divides numerator and denominator
	$= \lim_{x \to 0} \left[\frac{-6 + \frac{28}{3}x}{5 + 6x} \right]$ [so the limit exists]	М1	by x^2 to reach the form $\lim_{x\to 0} \left[\frac{P+O(x)}{Q+O(x)} \right], \text{ so limit exists } = \frac{P}{Q}$
	$\lim_{x \to 0} \left[\frac{\ln((1-\sin 2x)\sqrt{1+4x})}{5x^2 + 6x^3} \right] = -\frac{6}{5}$	A 1	cso
		5	

Question 13 To

Q	Answer	Marks	Comments
14(a)	$B\left(6+3\sqrt{2}, \frac{7\pi}{4}\right); OA = OB = 6+3\sqrt{2}$ Angle $AOB = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$	M1	Uses polar coordinates of A and B oe to find two relevant lengths and an angle to use in finding the required area PI
	Area of triangle $AOB = \frac{1}{2} (6+3\sqrt{2})^2 = \frac{1}{2} (54+36\sqrt{2}) = 27+18\sqrt{2}$	A 1	AG Must be convincingly shown
		2	

Q	Answer	Marks	Comments
14(b)	$r = \frac{3}{2}\operatorname{cosec}^2\left(\frac{\theta}{2}\right); r = \frac{3}{1-\cos\theta}$	M1	$r = \frac{3}{1 - \cos \theta}$ condone sign error
	$r-r\cos\theta=3$; $r=3+x$	M1	Use of $r\cos\theta = x$ to eliminate θ
	$r^2 = (3+x)^2$; $x^2 + y^2 = (3+x)^2$	M1	$r^2 = x^2 + y^2$ used at any stage
	$y^2 = 6x + 9$	A 1	$y^2 = 6x + 9$ oe for f(x)
		4	

Q	Answer	Marks	Comments
14(c)(i)	$\tan \theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3}, \theta = \frac{4\pi}{3}$		
	When $\theta = \frac{\pi}{3}$, $r = 6$ When $\theta = \frac{4\pi}{3}$, $r = 2$	B2,1,0	B2 any three correct; else B1 for any two correct
	Polar coordinates of P and Q are $\left(6, \frac{\pi}{3}\right)$, $\left(2, \frac{4\pi}{3}\right)$	B1	$\left(6,\frac{\pi}{3}\right), \left(2,\frac{4\pi}{3}\right)$
		3	

Q	Answer	Marks	Comments
14(c)(ii)	$\int \left(1 + \cot^2\left(\frac{\theta}{2}\right)\right) \csc^2\left(\frac{\theta}{2}\right) d\theta$		
	Let $u = \cot\left(\frac{\theta}{2}\right)$, $\frac{du}{d\theta} = -\frac{1}{2}\csc^2\left(\frac{\theta}{2}\right)$ $\int \csc^4\left(\frac{\theta}{2}\right) d\theta = \int (1+u^2)(-2) du$	M1	Uses a relevant substitution or integration by parts so as to require a single step to find the integral. PI by the A1 form below
	$= -2\cot\left(\frac{\theta}{2}\right) - \frac{2}{3}\cot^3\left(\frac{\theta}{2}\right) [+c]$	A2,1,0	If not A2 , award A1 for the form $k \left(\cot\left(\frac{\theta}{2}\right) + \frac{1}{3}\cot^3\left(\frac{\theta}{2}\right)\right) [+c]$ where $k = 2$ or $\frac{1}{2}$ or $-\frac{1}{2}$
		3	

Q	Answer	Marks	Comments
14(c)(iii)	Area = $\frac{1}{2} \int_{\left[\frac{\pi}{3}\right]}^{\left[\frac{4\pi}{3}\right]} \frac{9}{4} \operatorname{cosec}^4 \left(\frac{\theta}{2}\right) [d\theta]$	M1	Use of $\frac{1}{2}\int r^2 \left[\mathrm{d}\theta\right]$ oe with integration attempted. Condone missing or incorrect limits
	$= \frac{9}{8} \left[-2\cot\left(\frac{\theta}{2}\right) - \frac{2}{3}\cot^{3}\left(\frac{\theta}{2}\right) \right] \frac{4\pi}{3}$ $= \frac{9}{8} \left\{ -2\cot\left(\frac{2\pi}{3}\right) - \frac{2}{3}\cot^{3}\left(\frac{2\pi}{3}\right) \right\}$ $-\left\{ -2\cot\left(\frac{\pi}{6}\right) - \frac{2}{3}\cot^{3}\left(\frac{\pi}{6}\right) \right\} \right\}$ $= \frac{9}{8} \left\{ \left\{ -2\left(-\frac{1}{\sqrt{3}}\right) - \frac{2}{3}\left(-\frac{1}{\sqrt{3}}\right)^{3} \right\}$ $-\left\{ -2\left(\sqrt{3}\right) - \frac{2}{3}\left(\sqrt{3}\right)^{3} \right\} \right\}$ $= \frac{9}{8} \left\{ \left\{ \frac{2}{\sqrt{3}} + \frac{2}{9\sqrt{3}} \right\} - \left\{ -2\sqrt{3} - 2\sqrt{3} \right\} \right\}$ $= \frac{9}{8} \left\{ \frac{2}{\sqrt{3}} + \frac{2}{9\sqrt{3}} \right\} - \left\{ -2\sqrt{3} - 2\sqrt{3} \right\} \right\}$ $= \frac{9}{8} \left\{ \frac{2}{\sqrt{3}} + \frac{2}{9\sqrt{3}} \right\} - \left\{ -2\sqrt{3} - 2\sqrt{3} \right\} \right\}$	M1	Uses their answer to part (c)(ii) and substitutes their non-zero values for <i>θ</i> found in part (c)(i) as limits with the appropriate subtraction included. PI by the line above in the Answer column followed by the correct final answer.
	$=\frac{16}{3}\sqrt{3}$	A 1	CAO
		3	

Question 14 Tota
