

Structure d'espace vectoriel

Le but de cette feuille d'exercices est de donner des exemples d'espaces vectoriels, et d'apprendre à tester l'indépendance linéaire d'une famille de vecteurs.

Exercice 1

- 1. En utilisant les opérations d'addition + et de multiplication \cdot de deux nombres, définir, pour chaque ensemble E de la liste ci-dessous :
 - une addition \oplus : *E* × *E* → *E*;
 - une multiplication par un nombre réel $\odot : \mathbb{R} \times E \to E$.
 - (a) $E = \mathbb{R}^n$;
 - (b) E = l'ensemble des trajectoires d'une particule ponctuelle dans l'espace \mathbb{R}^3 ;
 - (c) E = 1'ensemble des solutions $(x, y, z) \in \mathbb{R}^3$ de l'équation $\mathcal{S}_1 : x 2y + 3z = 0$;
 - (d) E = 1'ensemble des solutions $(x, y, z) \in \mathbb{R}^3$ du système d'équations.

$$\mathscr{S}_2: \left\{ \begin{array}{l} 2x+4y-6z=0\\ y+z=0 \end{array} \right. ;$$

- (e) E = 1'ensemble des solutions de l'équation différentielle y'' + 2y' + 3y = 0;
- (f) E = 1'ensemble des fonctions y(x) telles que

$$y''(x)\sin x + x^3y'(x) + y(x)\log x = 0, \ \forall x > 0;$$

(g) E = 1'ensemble des fonctions $\Psi(t,x)$, à valeurs complexes, solutions de l'équation de Schrödinger :

$$i\hbar \frac{\partial}{\partial t} \Psi(t, x) = -\frac{\hbar}{2m} \frac{\partial^2}{\partial x^2} \Psi(x, t) + x^2 \Psi(t, x)$$

où \hbar et m sont des constantes;

- (h) E = 1'ensemble des suites $(x_n)_{n \in \mathbb{N}}$ de nombres réels ;
- (i) E = 1'ensemble des polynômes P(x) à coefficients réels ;
- (j) E = 1'ensemble des polynômes P(x) à coefficients réels de degré inférieur ou égal à 3;
- (k) E = 1'ensemble des polynômes P(x) à coefficients réels divisibles par (x 1);
- (1) E = 1'ensemble des fonctions continues sur l'intervalle [0, 1] à valeurs réelles ;
- (m) E = l'ensemble des fonctions continues sur l'intervalle [0, 1] à valeurs réelles et d'intégrale nulle;
- (n) E = 1'ensemble des fonctions dérivables sur l'intervalle [0, 1] à valeurs réelles ;
- (o) E = 1'ensemble des fonctions réelles qui s'annulent en $0 \in \mathbb{R}$.
- (p) E = 1'ensemble des fonctions réelles qui tendent vers 0 lorsque x tend vers $+\infty$;
- 2. Pour les opérations d'addition \oplus construites, montrer que E possède un élément neutre (terme à définir), et que chaque élément de E possède un inverse.

[002778]

Exercice 2

Qu'est -ce qui empêche de définir les mêmes opérations que dans l'exercice précédent sur les ensembles suivants ?

- (a) E = 1'ensemble des solutions $(x, y, z) \in \mathbb{R}^3$ de l'équation $\mathscr{S}_3 : x 2y + 3z = 3$;
- (b) E = 1'ensemble des fonctions y(x) telles que $y''(x)\sin x + x^3y^2(x) + y(x)\log x = 0, \forall x > 0$;
- (c) $E = \mathbb{N}$;
- (d) $E = \mathbb{Z}$;
- (e) $E = \mathbb{R}^+$;
- (f) $E = \mathbb{Q}^n$;
- (g) E = 1'ensemble des suites $(x_n)_{n \in \mathbb{N}}$ de nombres positifs ;
- (h) E = 1'ensemble des fonctions réelles qui prennent la valeur 1 en 0;
- (i) E = 1'ensemble des fonctions réelles qui tendent vers $+\infty$ lorsque x tend vers $+\infty$;

[002779]

Exercice 3

Soient dans \mathbb{R}^3 les vecteurs $\vec{v_1} = (1, 1, 0)$, $\vec{v_2} = (4, 1, 4)$ et $\vec{v_3} = (2, -1, 4)$.

- 1. Montrer que $\vec{v_1}$ et $\vec{v_2}$ ne sont pas colinéaires. Faire de même avec $\vec{v_1}$ et $\vec{v_3}$, puis avec $\vec{v_2}$ et $\vec{v_3}$.
- 2. La famille $(\vec{v_1}, \vec{v_2}, \vec{v_3})$ est-elle libre?

[002780]

Exercice 4

Les familles suivantes sont-elles libres?

- 1. $\vec{v_1} = (1,0,1), \vec{v_2} = (0,2,2)$ et $\vec{v_3} = (3,7,1)$ dans \mathbb{R}^3 .
- 2. $\vec{v_1} = (1,0,0), \vec{v_2} = (0,1,1)$ et $\vec{v_3} = (1,1,1)$ dans \mathbb{R}^3 .
- 3. $\vec{v_1} = (1, 2, 1, 2, 1), \vec{v_2} = (2, 1, 2, 1, 2), \vec{v_3} = (1, 0, 1, 1, 0) \text{ et } \vec{v_4} = (0, 1, 0, 0, 1) \text{ dans } \mathbb{R}^5.$
- 4. $\vec{v_1} = (2,4,3,-1,-2,1), \vec{v_2} = (1,1,2,1,3,1) \text{ et } \vec{v_3} = (0,-1,0,3,6,2) \text{ dans } \mathbb{R}^6.$
- 5. $\vec{v_1} = (2, 1, 3, -1, 4, -1), \vec{v_2} = (-1, 1, -2, 2, -3, 3) \text{ et } \vec{v_3} = (1, 5, 0, 4, -1, 7) \text{ dans } \mathbb{R}^6.$

[002781]

Exercice 5

On suppose que $v_1, v_2, v_3, \dots, v_n$ sont des vecteurs indépendants de \mathbb{R}^n .

- 1. Les vecteurs $v_1 v_2, v_2 v_3, v_3 v_4, \dots, v_n v_1$ sont-ils linéairement indépendants ?
- 2. Les vecteurs $v_1 + v_2, v_2 + v_3, v_3 + v_4, \dots, v_n + v_1$ sont-ils linéairement indépendants ?
- 3. Les vecteurs $v_1, v_1 + v_2, v_1 + v_2 + v_3, v_1 + v_2 + v_3 + v_4, \dots, v_1 + v_2 + \dots + v_n$ sont-ils linéairement indépendants ?

[002782]

