JRAHS 2006 TRIAL HSC - EXT I

Question 1. Marks

- (a) Solve for x: $\frac{1}{x-2} \ge 2$.
- (b) Find: $\lim_{h\to 0} \left(\frac{\cos 2h-1}{h}\right)$.
- (c) The point P divides A(-1, 5) and B(3, -2) in the ratio r:1.
 - (i) Find the coordinates of P in terms of r.
 - (ii) Find the value of r when the line 2x 3y + 4 = 0 intersects the interval AB.

2

3

(d) Evaluate $\int_{0}^{1} (x^2 + 1)^3 dx$. 3

Question 2. [START A NEW PAGE]

(a) A plate is initially heated to 55° C, and it then cools to 41° C in 10 minutes. If the surrounding temperature, S° C, is 22° C and assuming Newton's Law of Cooling:

$$\frac{dT}{dt} = -k(T - S).$$

- (i) Find the temperature of the plate 25 minutes from the start of cooling (to 1 decimal place).
- (ii) Find the time for the plate to cool to 25^0 C (to 1 decimal place).
- (iii) Sketch the graph of the rate of temperature, $\frac{dT}{dt}$, versus the temperature T. 1
- (b) The displacement x metres of a particle after t seconds, is given by: $x = 5 \sin 3t - 7 \cos 3t$.
 - (i) Show that the motion of the particle is SHM.
 - (ii) Find the maximum displacement.
 - (iii) Find the time when the particle first passes through the centre of motion (correct to 1 decimal place).
 - (iv) Sketch the graph of the acceleration \ddot{x} versus displacement x.

Question 3. [START A NEW PAGE]

Marks

- (a) Differentiate $\cos^{-1}\left(-\frac{1}{x}\right)$ with respect to x. Answer in simplified form.
- (b) On the same set of axes, sketch the graphs of $y = \sin^{-1} x$ and $y = \tan^{-1} x$. 2
 - (ii) Given that: $\int_{0}^{1} \sin^{-1} x dx = \frac{\pi}{2} 1$, find the area of the region bounded by $y = \sin^{-1} x$, $y = \tan^{-1} x$ and x = 1.
- (c) Show that $y = e^{-x} \sin 2x$ is a solution to the differential equation: y'' + 2y' + 5y = 0.
 - (ii) Hence, or otherwise, find $\int e^{-x} \sin 2x \, dx$.

Question 4. [START A NEW PAGE]

(a) A fire truck arrives at a burning building 10 metres high and 15 metres wide. The water nozzle hose on the fire truck is 2 metres above the ground and *d* metres from the building, as shown in the diagram.

The angle of elevation of the hose, α , can be adjusted to range from 10^0 to 45^0 . The parametric equations for the water particles from the nozzle are given by: $x = 30t \cos \alpha$ and $y = 30t \sin \alpha - 5t^2$, where t is the time in seconds when g = 10.

(i) Show that the trajectory path of the water is given by the equation:

$$y = x \tan \alpha - \frac{x^2}{180} (1 + \tan^2 \alpha).$$

(ii) The hose nozzle is adjusted to an angle of elevation of 45⁰. 2 Find the distance, d, from the building if the water is to reach the furthest point B on top of the building as shown (answer to the nearest centimetre).

Q 4 continues over the page

1

Q 4 part (a) continued

Marks

(iii) Find the angle of elevation α of the nozzle, for the water to reach position A, when the hose nozzle is 20 metres from the burning building (answer to nearest minute).

1 a 1 K 5

3

- (b) Find $\int \frac{4x-7}{2x^2+1} dx.$
- (c) (i) For t > 0, find the limiting sum of: $e^{-t} + e^{-2t} + e^{-3t} + \dots$ 1
 - (ii) Hence, find an expression for the series; $e^{-t} + 2e^{-2t} + 3e^{-3t} + \dots$ 1
- (d) A semi-circle of radius r has the equation: $y = \sqrt{r^2 x^2}$.
 - (i) Find $\frac{dy}{dx}$ at the point P(x, y).
 - (ii) Prove that the tangent, at any point *P* on the semi-circle, is perpendicular to the radius.

Question 5. [START A NEW PAGE]

- (a) Find the greatest coefficient in the expansion of $(4x+5)^{11}$. (Leave the answer in index form).
- (b) A ping pong ball is initially placed 1 metre beneath the surface of the water, as shown in the diagram.

The ping pong ball is released in the water with an acceleration of \ddot{x} m/s², where $\ddot{x} = -625x$, and where x metres is the displacement of the motion measured from the water surface.

- (i) Is the motion of the ping pong ball only SHM? Give reasons. 1
- (ii) Prove that: $\frac{d}{dx} \left(\frac{v^2}{2} \right) = \ddot{x}$.
- (iii) Find the expression for the ping pong ball's velocity v m/s when it is in the water.
- (iv) Find the velocity of the ball at the water's surface.
 (v) Assuming there is no air resistance and the acceleration due to gravity

 2
- (v) Assuming there is no air resistance and the acceleration due to gravity is 10 m/s^2 , derive an expression for the displacement in air in terms of v
- (vi) Find the maximum height that the ping pong ball reaches above the surface of the water.

Page:3

Question 6. [START A NEW PAGE]

Marks

- How many groups of 2 men and 2 women can be hosen from 6 men (a) and 8 women?
- 2

2

- (b) Six letter words are formed from the letters of the word *CYCLIC*.
 - How many different 6-letter words can be formed? (i)
 - (ii) How many 6 letter words can be formed, if no 'C's are together?
 - 2 What is the probability of all the 'C's together, if it is known a vowel is 2 (iii) at the end?
- 4 (c) Prove, by the method of mathematical induction that: $\sin q + \sin 3q + \sin 5q + ... + \sin(2n-1)q = \frac{1-\cos 2nq}{2\sin q}$, for n = 1, 2, 3, ...

Question 7. [START A NEW PAGE]

- At the end of each month, for 15 years, a man invests \$400 at an interest rate (a) Which is paid monthly at 6% pa.
 - Show that the value of his first payment, at the end of 15 years, 2 (i) is \$976.75
 - Find the value of the man's total investment at the end of the 15 years. 2 (ii)
- A circle, centre O with a constant radius r, is such that the chords AC and BD (b) intersect at point E, $\angle CED = \theta$ radians and $\angle BOC = \frac{2\pi}{2}$ radians, as shown the diagram.

Not to scale

3

- (i) Show that the sum of the arcs AB and CD equal $2r\theta$, give reasons.
- Show that the perimeter P of the shape ABCD, where BC, AD are chords 2 (ii) and CD, AB are arc lengths, is given by:

$$P = r \left(2\theta + \sqrt{3} + 2\sin\left(\frac{\pi}{3} - \theta\right) \right).$$

Find the value of θ , in the domain $0 \le \theta \le \frac{\pi}{2}$ for the perimeter of ABCD 3 (iii) to have a maximum value. Justify your answer.