CAPÍTULO 6 Circuitos com Amplificadores Operacionais - Parte I

André Prado Procópio - 2022055566 Lucas Ribeiro da Silva - 2022055564 Mariana Pinho Barroso Sousa - 2022055793

Belo Horizonte, 11/05/2025

6.1 Introdução

O comportamento dos terminais dos amplificadores operacionais é caracterizado por restrições de tensão e corrente dadas pelas limitações dos componentes eletrônicos dos quais é formado. Essas limitações produzem uma função de transferência muito peculiar ao AmpOp. Podemos dividir sua função de transferência em três regiões: a região linear, a saturação positiva e a saturação negativa. Mais informações podem ser encontradas no Capítulo 5 do livro texto (Nilsson&Riedel, 2016), seções 1 e 2.

Pré-relatório: Elabore uma introdução teórica sobre o amplificador operacional (AmpOp) em malha aberta e o AmpOp funcionando como comparador de tensões.

AmpOp em malha aberta

O Amplificador Operacional em malha aberta opera sem realimentação entre sua saída e entrada, apresentando um ganho de tensão de ordens muito altas (10^5 ou 10^6) ou seja, mesmo uma diferença muito pequena de tensão entre os terminais de entrada V^+ e V^- pode levar o amplificador ao valor de saturação, ou seja, o valor máximo e mínimo permitido pela alimentação do circuito.

AmpOp como comparador de tensões

O Amplificador Operacional como comparador de tensões tem a função de comparar as tensões de entrada dos terminais e caso $V^+ > V^-$, ele leva o amplificador ao nível de saturação positivo, caso contrário, o amplificador fica em saturação negativa. O comparador de tensões é útil para detectar quando uma determinada tensão de entrada ultrapassa um nível de referência.

6.1.1 Objetivos

1. Obter uma visão geral do amplificador operacional e fazer uma análise experimental de seu funcionamento básico.

6.2 Materiais e Métodos

6.2.1 Pré-relatório: Análise e memória de cálculo

Parte A - Característica de transferência DC de amplificadores operacionais

1. Construa no LTspice (ou outro *software* de sua preferência) o circuito mostrado na Figura 6.1. Não se esqueça de alimentar o circuito corretamente e inserir o aterramento.

Figura 6.1: Circuito para determinação de característica de transferência DC.

2. Faça uma simulação de transferência DC ("DC sweep"), variando a tensão de entrada de -2V a +2V com intervalos de 0,1V. Apresente o Gráfico na seção de "Resultados e Discussão". Depois, identifique as regiões de saturação negativa, positiva e a região linear.

Parte B - O amplificador operacional como um comparador de tensão

1. Para avaliar o circuito comparador você deverá projetar dois circuitos, um para acionamento de um LED e o outro para gerar uma tensão de referência. Para tanto, siga os seguintes procedimentos.

Um LED é um diodo que, quando polarizado diretamente, emite luz. Para evitar uma avalanche da corrente sobre o dispositivo, normalmente utiliza-se um resistor conectado em série. LEDs verdes e vermelhos, comumente utilizados em instrumentos sinalizadores, operam com $V_L = 1,7V$ e I = 5mA. Com base nessas informações, calcule o valor do resistor R mostrado na Figura 6.2, considerando que a tensão $V_S = 15V$.

Figura 6.2: Circuito para acendimento do LED.

Memória de Cálculo de R.

Calculando o Valor da Resistência do Diodo

$$\frac{V - V_L}{R} = 5 \text{ mA} \tag{58}$$

Substituindo V = 15V e $V_L = 1.7$ V

$$\frac{15 - 1.7}{R} = 5 \text{ mA} \tag{59}$$

(60)

Então

$$R = \frac{13.3}{5\text{m}} = 2660\Omega \tag{61}$$

2. Faça o projeto de um divisor resistivo que gere uma tensão de referência V_{ref} de 1V a partir de uma fonte V_{CC} = 15V, conforme mostrado na Figura 6.3. Determine os valores dos resistores considerando que a corrente não deve ser maior do que 10mA.

Figura 6.3: Circuito para geração da tensão de referência.

Memória de Cálculo de R.

Pelo Divisor de Tensão

$$V_{ref} = \frac{V_{cc} \cdot R_2}{R_1 + R_2} \tag{62}$$

Logo

$$V_{ref} \cdot (R_1 + R_2) = V_{cc} \cdot R_2 \tag{63}$$

Substituindo $V_{cc}=15\mathrm{V}$ e $V_{ref}=1\mathrm{V}$

$$1 \cdot (R_1 + R_2) = 15 \cdot R_2 \tag{64}$$

$$R_1 = 14 \cdot R_2 \tag{65}$$

Limitando pela corrente

$$\frac{V_{ref}}{R_1 + R_2} \le 10 \text{ m}\Lambda$$

$$\frac{15}{15 \cdot R_1} \le 10 \text{ m}\Lambda$$
(66)

$$\frac{15}{15 \cdot R_4} \le 10 \text{ m}\Lambda \tag{67}$$

$$R_1 \ge 100\Omega \tag{68}$$

Seja $R_1=150\Omega$ então $R_2=2100\Omega$

3. Construa no LTspice um circuito composto por um amplificador operacional, o circuito do LED e o divisor resistivo, conforme mostrado na Figura 6.4.

Figura 6.4: Circuito para análise do comparador de tensão.

4. Utilize um gerador de sinais para gerar uma onda senoidal de 10Hz e amplitudes de 0,5V, 1V e 2V. Faça uma simulação de transitório ("Transient") durante 1s, mostrando as tensões V_{in} , V_{ref} e V_{out} . Apresente os gráficos para os 3 valores de V_{in} , na seção de "Resultados e Discussão" e descreva o que foi observado.

6.2.2 Parte prática

Material necessário: Fonte de tensão contínua, multímetro, potenciômetros, capacitor, LED e AmpOp LM741 ou TL071.

Parte A - Característica de Transferência DC

Neste experimento, vamos observar a característica de transferência de tensão de um amplificador Operacional.

1. Monte o circuito da Figura 6.5. A pinagem do circuito integrado a ser utilizado encontra-se no final desta prática (Figura 6.7).

Figura 6.5: Circuito para determinação da característica de Transferência DC do Amplificador Operacional.

2. Descreva a função das fontes V_1 e V_2 e do potenciômetro de $10k\Omega$.

Essas duas fontes são conectadas em série com polaridades opostas (uma "subindo" e outra "descendo"), e alimentam as extremidades do potenciômetro. Isso cria uma tensão diferencial ao longo do potenciômetro. A diferença $V_1 - V_2$ define a faixa de variação de tensão possível no cursor (terminal central do potenciômetro).

3. Descreva a função do capacitor de 33nF.

O capacitor atua filtrando ruídos de alta frequência ou variações rápidas que possam estar presentes no sinal proveniente do cursor do potenciômetro. Ele suaviza o sinal de entrada, garantindo que o V_{IN} aplicado ao amplificador seja mais estável.

- 4. Ajuste as tensões $V_1 = +2V$ e $V_2 = -2V$. Variando o valor do potenciômetro, varie a tensão de entrada V_{IN} em intervalos de 200mV.
- 5. Anote todos os valores obtidos para os pares V_{OUT} x V_{IN} na Tabela 6.1, e trace um gráfico da curva de transferência de tensão do dispositivo.

OBS.: Os pontos da curva de transferência para $V_{IN} = 0$ (e muito próximos de zero) são de difícil obtenção. Determiná-los demanda maior precisão de medição e variações muito pequenas da tensão de entrada, não sendo o objetivo deste experimento.

Parte B - O Amplificador Operacional como um Comparador

Neste experimento, vamos utilizar um Amplificador Operacional como um comparador de tensão, e analisar o seu comportamento por meio de uma indicação visual, utilizando um diodo emissor de luz (LED).

- 1. Monte o circuito da Figura 6.2 utilizando um LED, o resistor calculado no pré-relatório e uma fonte de tensão $V_s = 15V$. Verifique o seu funcionamento.
- 2. Altere o circuito de forma que a saída do amplificador operacional acione o LED. Insira também o divisor resistivo para gerar a tensão de referência $V_{REF} = 1V$ na entrada inversora do amplificador operacional, como mostrado na (Figura 6.6).

Figura 6.6: Circuito do amplificador operacional como comparador de tensão.

3. Use uma das fontes variáveis para a tensão VIN. Eleve gradativamente o seu valor a partir de 0V e meça o menor valor que faz com que o LED acenda.

Parte C - Funcionamento AC

- 1. Substitua a fonte de tensão DC pelo gerador de sinais, como simulado no pré-relatório e mostrado na Figura 6.4.
- 2. Use um sinal senoidal de 10Hz, 0,5V de pico (0,5V_P). Meça os sinais na entrada e na saída com o osciloscópio e registre as formas de onda resultantes. Apresente o registro na seção "Resultados e Discussão".
- 3. Aumente o valor da tensão V_{IN} para 1V de pico $(1V_P)$ e registre novamente as formas de onda. Apresente o registro na seção "Resultados e Discussão".
- 4. Repita para V_{IN} = 2V de pico (2 V_P) e registre as formas de onda. Apresente o registro na seção "Resultados e Discussão".

OBS: 1V de pico $(1V_P)$ é o mesmo que 2V pico a pico $(2V_{PP})$, ou seja, correspondem a uma onda que vai de -1V até +1V.

6.3 Resultados e Discussão

Simulação

Gráfico da Função de Transferência do AmpOP obtida por simulação (DC Sweep).

A região de saturação negativa inclui os pontos de $-\infty$ até -0.1V, que então dá início a fase linear, que dura até 0.1V, onde começa a região positiva que inclui os pontos de 0.1V até $+\infty$. Embora seja notório que, como se trata de um amplificador ideal, a região linear deve-se ao passo de 0.1 utilizado na simulação.

Gráfico de V_{in} , V_{ref} e V_{out} para V_{in} = 0,5V simulado.

Para a amplitude de V_{in} limitado em 0.5V, percebe-se que a V_{in} permanece menor a V_{ref} para toda a execução do programa e por isso, o V_{out} permanece saturado negativo durante toda a execução da simulação.

Gráfico de V_{in} , V_{ref} e V_{out} para V_{in} = 1V simulado.

Para a amplitude de V_{in} limitado em 1V, percebe-se que a V_{in} tem os seus picos em 1V e por isso, o V_{out} começa a exibir alguns picos onde ele tenta transitar para a saturação positiva, entretanto, a senóide retorna para um valor menor a V_{ref} de 1V rapidamente, o que faz com que os picos nem cheguem a saturação positiva de 14V.

Gráfico de V_{in} , V_{ref} e V_{out} para V_{in} = 2V simulado.

Para a amplitude de V_{in} limitado em 2V, percebe-se que a V_{in} começa a oscilar para além de V_{ref} e permanece mais além da V_{ref} por alguns instantes de tempo, logo o V_{out} começa a exibir alguns degraus consistentes onde ele transita para a saturação positiva, comparando efetivamente o V_{ref} com o V_{in} e exibindo a saída em V_{out} .

Parte Prática

1. Compare o resultado da medição para a curva $V_{\rm IN}$ x $V_{\rm OUT}$ com o simulado no pré-relatório. Compare a curva obtida com a de um amplificador operacional ideal.

Tabela 6.1: V_{OUT} x V_{IN}

V_{IN} (mV)	$V_{OUT}(V)$
0	-15
0,25	-15
0,5	-15
0,75	-15
1	-15
1,25	15
1,5	15

Gráfico da Função de Transferência do AmpOP obtida por medição.

Gráfico de V_{in} , V_{ref} e V_{out} para V_{in} = 0,5V obtido por medição.

Gráfico de $V_{\text{in}},\,V_{\text{ref}}$ e V_{out} para V_{in} = 1V obtido por medição.

Gráfico de V_{in} , V_{ref} e V_{out} para V_{in} = 2V obtido por medição.

2. Para que valor de tensão DC o LED acendeu? Como se comportou o LED durante a medição com o sinal AC?

O LED acendeu para o valor de 1,035V para o caso DC e para os sinais AC, com 0,5V o LED não acende em momento algum, em 1V o LED acende por curtos momentos enquanto para o caso de 2V o LED acende e apaga por momentos longos de mesmo tamanho.

3. Compare os resultados obtidos a partir da simulação com os obtidos por medição

Os resultados obtidos pela simulação e pela medição são praticamente iguais e compatíveis, desprezando ruídos de medições e sensibilidades.

6.4 Questões para o relatório

1. Considere amplificadores operacionais reais, modelos TL071 e LM741. Pesquise as informações sobre os mesmos e preencha as Tabelas 6.2 e 6.3.

	Características	Valor Real (TL071)	Valor Ideal
v. •	Ganho de malha aberta	106 dB	Infinito
$ \begin{array}{c c} R_{in} & R_{out} \\ \hline A(v_{a} - v_{a}) \end{array} $	Corrente de Polarização	65 pA	0 A
V.	Impedância de Entrada	1 ΤΩ	Infinita
	Impedância de Saída	125 Ω	0 Ω

Tabela 6.2: Tabela de Especificações do AmpOp TL071.

	Características	Valor Real (LM741)	Valor Ideal
v. • • • • • • • • • • • • • • • • • • •	Ganho de malha aberta	106 dB	Infinito
$\begin{cases} R_{in} & R_{out} \\ A(v_{+} - v_{-}) \end{cases}$	Corrente de Polarização	80 nA	0 A
v, - +	Impedância de Entrada	2 ΜΩ	Infinita
	Impedância de Saída	75 Ω	0 Ω

Tabela 6.3: Tabela de Especificações do AmpOp LM741.

2. Proponha um procedimento para melhor caracterizar a curva de transferência DC entre as regiões de saturação positiva e negativa (região linear).

Para melhor caracterizar a curva de transferência DC entre as regiões de saturação do amplificador operacional, é necessário utilizar passos menores na variação da tensão de entrada (V_{IN}) durante a simulação ou medição experimental. Um procedimento sugerido seria reduzir o intervalo de variação da tensão V_{IN} na região próxima de 0 V, onde ocorre a transição da saturação negativa para a positiva. Por exemplo, variar V_{IN} de -0.2 V até +0.2 V com passos de 10 mV ou menos.

6.5 Pinagem dos Amplificadores Operacionais 741 e 071

Figura 6.7: Pinagem dos Amplificadores Operacionais LM741 e TL071.