Лекция 2. Задачи типизации $\lambda_{
ightarrow}$.

Выразительная сила λ_{\rightarrow} .

Основные задачи типизации λ -исчисления

Pассмотрим $? \vdash ? :?.$

- 1. Проверка типа: выполняется ли $\Gamma \vdash M : \sigma$ для контекста Γ , терма M и типа σ Компиляция в языке программирования, типизированном по Чёрчу. Проверка доказательства.
- 2. Реконструкция типа: ? ⊢ M : ?.

Компиляция в языке программирования, типизированном по Карри. Это бывает чаще, чем кажется.

```
template <class A, class B>
auto min(A a, B b) -> decltype(a < b ? a : b) {
   return (a < b) ? a : b;
}</pre>
```

Обитаемость типа: Γ ⊢? : σ.
 Поиск доказательства.

Все задачи разрешимы.

Построение системы по терму M

Будем строить систему рекурсией по структуре терма M (предполагаем, что все имена для связанных переменных уникальны). Каждой переменной x сопоставим свежую типовую переменную α_x . Также каждой аппликации P Q в терме сопоставим свежую типовую переменную β_{PQ} .

По терму M и по всем его подтермам рекурсивно построим пару $\langle \mathcal{E}_M, \sigma_M
angle$ так:

$$\langle \mathcal{E}_{M}, \sigma_{M} \rangle := \begin{cases} \langle \varnothing, \alpha_{x} \rangle, & M = x \\ \langle \mathcal{E}_{P}, \alpha_{x} \to \sigma_{P} \rangle, & M = \lambda x.P \\ \langle \mathcal{E}_{P} \cup \mathcal{E}_{Q} \cup \{\sigma_{P} = \sigma_{Q} \to \beta_{PQ}\}, \beta_{PQ} \rangle, & M = P Q \end{cases}$$

Теорема

Если $S=\mathcal{U}(\mathcal{E}_M)$, то наиболее общим решением задачи типизации будет $\langle \{x: S(\alpha_x) \mid x \in FV(M)\}, S(\sigma_M) \rangle$

Доказательство.

Индукция по структуре M.

Пример вывода типов

- 1. Выберем пример $(M = \lambda f. \lambda x. f (f x))$ и индуктивно составим систему:
 - ▶ Для f x: $\langle \{\alpha_f = \alpha_x \rightarrow \beta_{fx}\}, \beta_{fx} \rangle$
 - ▶ Для f (f x): $\langle \{\alpha_f = \alpha_x \rightarrow \beta_{fx}, \alpha_f = \beta_{fx} \rightarrow \beta_{ffx} \}, \beta_{ffx} \rangle$
 - ▶ Для $\lambda x.f$ (f x): $\langle \{\alpha_f = \alpha_x \to \beta_{fx}, \alpha_f = \beta_{fx} \to \beta_{ffx}\}, \alpha_x \to \beta_{ffx} \rangle$
 - ▶ Для $\lambda f.\lambda x.f$ (f x): $\langle \{\alpha_f = \alpha_x \to \beta_{fx}, \alpha_f = \beta_{fx} \to \beta_{ffx}\}, \alpha_f \to \alpha_x \to \beta_{ffx} \rangle$
- 2. Приводим систему к разрешённой форме:

 - $\alpha_f = \alpha_{\mathsf{x}} \to \beta_{\mathsf{fx}}, \alpha_{\mathsf{x}} \to \beta_{\mathsf{fx}} = \beta_{\mathsf{fx}} \to \beta_{\mathsf{ffx}}$, правило (d)
 - $\alpha_f = \alpha_x \rightarrow \beta_{fx}, \alpha_x = \beta_{fx}, \beta_{fx} = \beta_{ffx},$ правило (c)
 - \bullet $\alpha_f = \beta_{fx} \rightarrow \beta_{fx}, \alpha_x = \beta_{fx}, \beta_{fx} = \beta_{ffx},$ правило (d)
 - ▶ $\alpha_{\it f} = \beta_{\it ffx} \rightarrow \beta_{\it ffx}, \alpha_{\it x} = \beta_{\it ffx}, \beta_{\it fx} = \beta_{\it ffx}$, правило $(\it d)$
- 3. Строим функцию подстановки: $S_0(lpha_f)=eta_{\it ffx} oeta_{\it ffx}, S_0(lpha_x)=S_0(eta_{\it fx})=eta_{\it ffx}$
- 4. Наиболее общая пара: $\langle \varnothing, S(\alpha_f \to \alpha_x \to \beta_{ffx}) \rangle$, то есть

$$\vdash \lambda f.\lambda x.f\ (f\ x): (\beta_{ffx} \to \beta_{ffx}) \to \beta_{ffx} \to \beta_{ffx}$$

Проверка типа

- 1. Задача реконструкции типа находит наиболее общую типизацию.
- 2. Сведём задачу проверки $\Gamma \vdash M : \sigma$ к задаче реконструкции типа $? \vdash M : ?$ и найдём $\langle \Gamma', \sigma' \rangle$.
- 3. Проверим, является ли $\langle \Gamma, \sigma \rangle$ частным случаем $\langle \Gamma', \sigma' \rangle$.

Обитаемость типа

- 1. Задача поиска M, что $\Gamma \vdash M : \sigma$.
- 2. Эквивалентно поиску доказательства утверждения σ в ИИП (разрешимо).
- 3. По доказательству затем получим его краткую запись в виде терма.

Выразительная сила

Определение

Расширенный полином, где P(x), P(x,y) — полиномы (выражения, составленные из сложения, умножения, аргументов и натуральных констант), с — константа:

$$E(m,n) := \left\{ \begin{array}{ll} c, & m=0, n=0 \\ P_1(m), & n=0 \\ P_2(n), & m=0 \\ P_3(m,n), & m>0, n>0 \end{array} \right.$$

Теорема

Пусть $\eta=(\alpha \to \alpha) \to (\alpha \to \alpha)$. Если $F:\eta \to \eta \to \eta$, то найдётся такой расширенный полином E(m,n), что при всех $m,n\in \mathbb{N}_0$ выполнено $F\ \overline{m}\ \overline{n}=_{\beta}\ \overline{E(m,n)}$, либо $F\ \overline{m}\ \overline{n}=_{\beta}\lambda f.f$ при E(m,n)=1.

Расширение языка: полное ИИВ

- ▶ Попробуем увеличить выразительную силу, воспользовавшись изоморфизмом Карри-Ховарда. Рассмотрим полное ИИВ.
- Расширим язык:

$$\Lambda$$
 ::= $x \mid (\Lambda \Lambda) \mid (\lambda x. \Lambda)$
 $\mid \langle \Lambda, \Lambda \rangle \mid (\pi_L \Lambda) \mid (\pi_R \Lambda)$ термы для &
 $\mid (In_L \Lambda) \mid (In_R \Lambda) \mid (Case \Lambda \Lambda \Lambda)$ термы для \vee
 $\mid (Absurd \Lambda)$ термы для \perp

Связки ИИВ не выражаются друг через друга

Теорема (случай связки (→))

Какое бы ни было выражение $\varphi(A,B)$, составленное из связок (&), (\lor) , \bot , найдётся оценка, что $[\![A \to B]\!] \neq [\![\varphi(A,B)]\!]$

Доказательство.

Рассмотрим алгебру Гейтинга на \mathbb{R} , пусть $\llbracket A \rrbracket = (0,\infty)$ и $\llbracket B \rrbracket = \varnothing$. Заметим, что связки замкнуты относительно множества $\{\varnothing,\mathbb{R},(0,\infty)\}$:

$$\begin{array}{c|cccc} (\bot) & (\&) & (\lor) \\ \hline & \mathbb{R} \cap X = X & \mathbb{R} \cup X = \mathbb{R} \\ \varnothing & \varnothing \cap X = \varnothing & \varnothing \cup X = X \\ (0, \infty) \cap X \in \{\varnothing, (0, \infty)\} & (0, \infty) \cup X \in \{(0, \infty), \mathbb{R}\} \end{array}$$

Однако,
$$\llbracket A o B
rbracket = (-\infty,0)$$
 .

Новые связки требуют отдельных правил

▶ Упорядоченная пара в бестиповом лямбда-исчислении.

MkPair ::=
$$\lambda a.\lambda b.\underbrace{(\lambda p.p \ a \ b)}_{\mathsf{MkPair} \ \mathsf{a} \ \mathsf{b}}$$
 Fst ::= $\lambda p.p \ \mathsf{T}$ Snd ::= $\lambda p.p \ \mathsf{F}$

▶ Какой тип у MkPair a b?

MkPair a b =
$$\lambda p^{\alpha \to \beta \to \gamma} . p \ a^{\alpha} \ b^{\beta} : (\alpha \to \beta \to \gamma) \to \gamma$$

lacktriangle Тип зависит от типа результата γ : при левой проекции $lpha=\gamma$

$$\mathsf{Fst} = \lambda p. p^{(\alpha \to \beta \to \gamma) \to \gamma} \mathsf{T}^{\alpha \to \beta \to \alpha} : \gamma$$

При правой проекции $\beta=\gamma$: Snd $=\lambda p.p^{(\alpha\to\beta\to\gamma)\to\gamma}$ $\mathsf{F}^{\alpha\to\beta\to\beta}:\gamma$

• Из-за невыразимости связок друг через друга в ИИВ никакая формула не сможет типизировать упорядоченную пару. Однако, в данном варианте типизации может помочь квантор по γ или схема аксиом (правил вывода).

Дополнительные правила для расширенного языка

1. Типизация дизъюнкции (алгебраического типа)

$$\frac{\Gamma \vdash A : \varphi}{\Gamma \vdash In_{L} A : \varphi \lor \psi} \qquad \frac{\Gamma \vdash B : \psi}{\Gamma \vdash In_{R} B : \varphi \lor \psi}$$

$$\frac{\Gamma \vdash L : \varphi \lor \psi, \quad \Gamma \vdash f : \varphi \to \tau, \quad \Gamma \vdash g : \psi \to \tau}{\Gamma \vdash \mathsf{Case} \ L \ f \ g : \tau}$$

2. Типизация конъюнкции (упорядоченной пары)

$$\frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \psi}{\Gamma \vdash \langle A, B \rangle : \varphi \& \psi} \qquad \frac{\Gamma \vdash P : \varphi \& \psi}{\Gamma \vdash \mathsf{Fst} \ P : \varphi} \qquad \frac{\Gamma \vdash P : \varphi \& \psi}{\Gamma \vdash \mathsf{Snd} \ P : \psi}$$

3. Типизация лжи

$$\frac{\Gamma \vdash A : \bot}{\Gamma \vdash \mathsf{Absurd}\ A : \varphi}$$

Нормализуемость

Определение

- Терм A назовём слабо нормализуемым, если существует последовательность редукций, приводящих его в нормальную форму.
- ► Терм A назовём сильно нормализуемым, если не существует бесконечной последовательности его редукций.
- Исчисление назовём сильно нормализуемым, если любой его терм сильно нормализуем.

Теорема

Бестиповое лямбда-исчисление не является сильно нормализуемым Доказательство.

$$\Omega \rightarrow_{\beta} \Omega$$

Теорема

Просто типизированное лямбда-исчисление является сильно нормализуемым

Сильно нормализуемые множества

Определение

SN- множество всех сильно нормализуемых лямбда-термов. Насыщенное множество $\mathcal{X} \subseteq SN-$ такое, что:

1. для любых $n \geqslant 0$ и $M_1, \ldots, M_n \in SN$

$$\times M_1 \dots M_n \in \mathcal{X}$$

2. для любых $n\geqslant 1$, $M_1,\ldots,M_n\in SN$ и $N\in\Lambda$

$$N[x:=M_1]$$
 $M_2\dots M_n\in \mathcal{X}$ влечёт $(\lambda x.N)$ M_1 $M_2\dots M_n\in \mathcal{X}$

Лемма

SN — насыщенное.

Интересен пункт 2: если $N[x:=M_1]$ $M_2\dots M_n\in SN$, то $(\lambda x.N)$ M_1 $M_2\dots M_n\in SN$. Подстановка подчёркнутого возвращает к редукции посылки, бесконечная «локальная» подстановка может быть повторена с посылкой.

Определение

Если $\mathcal{A},\mathcal{B}\subseteq \Lambda$, то $\mathcal{A}\to\mathcal{B}=\{X\in\Lambda\mid \forall Y\in\mathcal{A}:X\ Y\in\mathcal{B}\}$

Пример

 $\{\lambda x.\lambda y.x\} \rightarrow \{X \mid X =_{\beta} \lambda x.\lambda y.y\} = \{Not, \lambda t.F, Xor \ T, \dots\}$

Определение

$$\llbracket \sigma \rrbracket = \left\{ \begin{array}{ll} SN, & \sigma = \alpha \\ \llbracket \tau_1 \rrbracket \to \llbracket \tau_2 \rrbracket, & \sigma = \tau_1 \to \tau_2 \end{array} \right.$$

Лемма

Если \mathcal{A},\mathcal{B} насыщены, то $\mathcal{A} \to \mathcal{B}$ насыщено $[\![\sigma]\!]$ насыщено.

Лемма

 $\llbracket \sigma \rrbracket \subseteq \mathit{SN}$

Оценка

Определение

Оценка $\rho: \mathcal{V} \to \Lambda$ — отображение переменных в лямбда-термы.

 $M_{
ho}:=M[x_1:=
ho(x_1),\ldots,x_n:=
ho(x_n)]$, где x_i — все свободные переменные M.

Будем писать $\rho \models M : \sigma$, если $M_{\rho} \in \llbracket \sigma \rrbracket$. Будем писать $\rho \models \Gamma$, если $\rho(x) \in \llbracket \sigma \rrbracket$ для всех $x : \sigma \in \Gamma$.

 $\Gamma \models M$: σ , если для любой оценки ρ из $\rho \models \Gamma$ следует $\rho \models M$: σ .

Теорема

 $\Gamma \vdash M : \sigma$ влечёт $\Gamma \models M : \sigma$.

Доказательство индукцией по структуре вывода $\Gamma \vdash M : \sigma$ со следующим разбором случаев.

Аксиома

Вывод имеет вид:

$$\overline{\Gamma, x : \sigma \vdash x : \sigma}$$

Фиксируем
$$\rho \models \Gamma \cup \{x : \sigma\}$$
, тогда $x_{\rho} = \rho(x) \in \llbracket \sigma \rrbracket$
Отсюда $\Gamma, x : \sigma \models x : \sigma$

Применение

Вывод имеет вид:

$$\frac{\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma}{\Gamma \vdash M N : \tau}$$

Фиксируем $\rho \models \Gamma$. По индукционному предположению, $\Gamma \models M : \sigma \to \tau$ и $\Gamma \models N : \sigma$, так что $\rho \models M : \sigma \to \tau$ и $\rho \models N : \sigma$, что означает, что $M_{\rho} \in \llbracket \sigma \rrbracket \to \llbracket \tau \rrbracket$ и $N_{\rho} \in \llbracket \sigma \rrbracket$. Тогда $(M,N)_{\rho} = M_{\rho}, N_{\rho} \in \llbracket \tau \rrbracket$.

Абстракция

Вывод имеет вид:

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x.M : \sigma \to \tau} \ x \notin FV(\Gamma)$$

Пусть $\rho \models \Gamma$. Чтобы показать $(\lambda x.M)_{\rho} \in \llbracket \sigma \to \tau \rrbracket$, надо для всех $N \in \llbracket \sigma \rrbracket$ показать $(\lambda x.M)_{\rho}$ $N \in \llbracket \tau \rrbracket$.

Фиксируем $N \in [\![\sigma]\!]$. Тогда $\rho^{x:=N} \models \Gamma, x:\sigma$. По индукционному предположению, $\Gamma, x:\sigma \models M:\tau$, так что $\rho^{x:=N} \models M:\tau$ (по определению \models). То есть, $M_{\rho^{x:=N}} \in [\![\tau]\!]$. Произведём редукцию:

$$(\lambda x.M)_{\rho}N = (\lambda x.M)^{y_1:=\rho(y_1),...,y_n:=\rho(y_n)} N \to_{\beta} M^{y_1:=\rho(y_1),...,y_n:=\rho(y_n),x:=N} = M_{\rho^{x:=N}}$$

Заметим, $N \in \llbracket \sigma \rrbracket \subseteq SN$ и $M_{\rho^{x:=N}} \in \llbracket \tau \rrbracket$. Заметим ещё, что $M_{\rho^{x:=N}} = M_{\rho}[x:=N]$. По определению насыщенного множества из $M_{\rho}[x:=N] \in \llbracket \tau \rrbracket$ следует требуемое $(\lambda x.M)_{\rho} \ N \in \llbracket \tau \rrbracket$.

Основная теорема

Теорема

 $\Gamma \vdash M : \sigma$ влечёт $M \in SN$

Доказательство.

По предыдущей теореме, $\Gamma \models M : \sigma$. Построим «тождественную» оценку, $\rho(x) = x$ для всех $x : \tau \in \Gamma$.

Рассмотрим каждый $x:\tau$ из контекста. По лемме выше, $[\![\tau]\!]$ насыщенное. По определению насыщенного, $x\in[\![\tau]\!]$. Поэтому $\rho\models\Gamma$.

Поскольку $\Gamma \models M : \sigma$, то $M = M_{\rho} \in \llbracket \sigma
rbracket$. А по лемме выше, $\llbracket \sigma
rbracket \subseteq SN$.

О свойстве сильной нормализуемости

Правило сечения в S_{∞} (без одной боковой формулы):

$$\frac{\sigma \vee \neg \beta \qquad \beta}{\sigma}$$

Или перепишем в привычной грамматике (подобно Modus Ponens):

$$\frac{\beta \to \sigma \qquad \beta}{\sigma}$$

И заметим нечто похожее в просто-типизированном лямбда-исчислении:

$$\frac{(\lambda x.P): \tau \to \sigma}{(\lambda x.P) \ Q: \sigma} \ \beta$$
 — редекс

Поэтому добавим пункты к изоморфизму Карри-Ховарда:

Логика	$\lambda_{ ightarrow}$
Правило сечения, М.Р.	Бета-редекс
Устранение сечения	Бета-редукция
Теорема об устранении сечений	Нормализуемость