Exam: Artificial IntelligenceAlgorithms and Application

Module Exam

Winter 2024/2025

Important Information

Date: 10.04.2025

INFORMATIK

- Please check your exam copy for completeness. It covers **19 pages** (cover sheet included).
- Fill out the cover sheet immediately after receiving the exam.
- Use only the examination paper to solve the tasks. If you do not have enough space, you can receive additional paper during the examination. Additional papers must also be marked with your name and matriculation number.
- Please leave a correction margin of 3 cm.
- You have a total of **90 minutes** to complete the exam.
- Except for a non-programmable calculator, no other aids are allowed in the exam.

We wish you much success!

Please fill out clearly in block letters.								
First Name	Last Name	Seat No						
Matr. No	Course of Study	☐ Master ☐ Diplom						
Repeater: ☐ yes ☐ no								

Section	Max. Points	Achieved Points	Exam Review ("Klausureinsicht"):
1	35		,
2	25		(do not fill out before the review)
3	30		I have reviewed the corrected exam:
Sum	90		There are no complaints about the
			correction. Complaints about the correction exist (see additional sheet).

Date:	 	 		 								 				

First Name	Last Name	Matr. No

1 Basic Concepts and Algorithms (35 Points)

1.1 Please provide the **definition of artificial intelligence** that has been defined during the **Dartmouth conference**. (1 P)

1.2 Please name the *three types* into which machine learning approaches can be categorized based on the problem type. (1.5 P)

First Name	Last Name	Matr. No

1.3 Please briefly **explain** the *k-fold cross-validation procedure* in the context of a **classification algorithm**. (6 P)

1.4 Is *feature scaling* in **general required** after a *normalization* has been applied? Please **briefly explain** your **decision**. (2 P)

Firs	t Name	Last Name	Matr. No
1.5	Please briefly explain : For What does the <i>k</i> stand for	r <i>which kind of problems</i> can you or? (2 P)	use k-NN algorithms ?
1.6	Please name three other reasoning. (1.5 P)	scientific domains of AI besides m	achine learning and knowledge
1.7	Please briefly explain the	significance of bias in a perceptro	on model. Why is it useful? (1 P)

	First Name	Last Name	Matr. No.
--	------------	-----------	-----------

1.8 A **delivery drone** needs to **optimize** its **route** in a **crowded city**.

Please explain: What algorithm would best suit this task? Justify your answer. (3 P)

1.9 Please briefly **explain**: **What** is the **difference** between "*explainability*" and "*interpretability*" in **AI**? Please also **provide** an **example** for **each** of the **two**. (4 P)

First Name	Last Name	Matr. No

1.10 Please define the "no free lunch" theorem in the context of AI. Why is it important? (4 P)

1.11 What are ensemble techniques in machine learning?

Please provide a definition and an example. (2 P)

First Name	Last Name	Matr. No
.12 Please briefly explain : V	What is CRISP-DM? Please also name	e its distinct process phases.(4P)
.13 Please briefly explain: \	What is the difference between the	Mc Culloch-Pitts Neuron and the
<i>perceptron</i> ? How do th	ey differ related to learning ? (3 P)	

First Name	Last Name	Matr. No.

2 Classification and Entropy (25 Points)

A company is developing an *AI-based email spam identifier*. The available dataset consists of email examples labelled as either Spam or Not Spam, based on different word occurrences.

Table 1 summarizes the dataset distribution for the phrase "Join me on Whatsapp" based on a qualified sample of the dataset.

Table 1		
Phrase: "Join me on Whatsapp"	Spam (count)	Not Spam (count)
TRUE	40	10
FALSE	20	30

2.1 Please name: What kind of machine learning problem is this? (1 P)

First Name	Last Name	Matr. No

2.2 Please calculate the *entropy* of the dataset <u>before</u> any classification based on the Spam and Not Spam labels (8 P).

Use the following formular for calculating entropy: - Σ (p * log₂ p)

First Name	Last Name	Matr. No

2.3 Please calculate the weighted entropy after splitting the dataset based on the presence of the suspicious phrase "Join me on Whatsapp". To compute the weighted entropy, calculate the entropy for each dataset and weight it based on the number of elements in each subset. (6 P)

First Name	Last Name	Matr. No

2.4 Please **compute** the *information gain* of **splitting** on the **phrase**. Use your values from the previous calculations. Please also **explain**: **Would** this be **a good split** for **classification**? **Why** or **why not**? (6 P)

Einst Nama	Last Name	Mote No
First Name	Last Name	Matr. No

2.5 Please explain: Does entropy as a criterion to build your *decision tree* guarantee the optimal split in each scenario? Why or why not? (4 P)

First Name	Last Name	Matr. No

3 Programming with Python (30 Points)

3.1 Please write a **Python function** named *load_data* that **accepts** a *filename*, **reads** a *CSV file* into a *Pandas DataFrame*, and **prints** the *first five rows*. (2 P)

Elect Manage	Last Maria	Marco No.
First Name	Last Name	Matr. No

3.2 Please write a new function named *handle_missing_values* that does the same as *load_data* but *fills* in *missing values* with the *mean* of their *columns* in the *created DataFrame* before printing its *first five rows*. (2 P)

First Name	Last Name	Matr. No

3.3 Please write a new function named save_clean_data that does the same as handle_missing_values but also saves the cleaned DataFrame to a new CSV file and adds a print statement when the data is successfully saved. (2 P)

First Name	Last Name	Matr. No

3.4 Please **write** a **short documentation** using **Python documentation** to **explain** the *purpose* and *parameters* of your function *save_clean_data*. (2 P)

First Name	Last Name	Matr. No

3.5 Please consider the following code snippet that is designed to predict fraud in a car insurance dataset using a simple logistic regression model. The code snippet contains 6 errors or logical mistakes that will result in a runtime error or incorrect results from your model. Please identify the 6 errors or logical mistakes and explain how to fix them. (12 P)

```
import pandas as pd
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score
from sklearn.preprocessing import StandardScaler
# Load data
data = pd.read_csv('car_insurance.csv')
# Prepare data
features = data[['age string', 'total claims']]
labels = data['fraud]
# Split data
X train, X test, y train, y test = train test split(features, labels,
test size=0.99, random state=42)
# Scale features
scaler = StandardScaler()
X_train_scaled = X_train
X test scaled = scaler.transform(X train)
# Initialize and train model
model = LogisticRegression()
model.fit(X_train_scaled, y_train)
# Predict and evaluate
predictions = model.predict(X test scaled)
accuracy = accuracy_score(y_train, predictions)
print(f' accuracy ')
```

First Name	Last Name	Matr. No

First Name	Last Name	Matr. No

3.6 Please assume you have a Pandas dataframe that contains the following columns: Car_Model, Car_Year, Failure_Type, Repair_Cost

Please provide **Python code** to **answer** the **following questions** about the dataframe. (10 P)

Question	Python Code
How can you extract all records where the Car_Model is 'Panamera'?	
How would you calculate the average Repair_Cost for each Failure_Type?	
How can you sort the DataFrame by the Car_Year in descending order?	
How do you find all entries where the Car_Year is before 2015 and the Repair_Cost is greater than \$1000?	
How can you summarize the total Repair_Cost per car_model?	