A U-turn on Double Descent: Rethinking Parameter Counting in Statistical Learning

(NeurIPS 2023 Oral presentation)

OptiML Group Meeting March 7, 2024

Background: Model size vs. Test error

generalization curve

- Classical theory on the relationship btw model complexity & prediction error
- Under-fitting: Low model capacity, High bias
- Over-fitting: High model capacity, High variance

Background: Double descent

generalization curve

- Belkin et al. [BHMM19]:
 - "Double Descent" happens if the total # of params P FURTHER grows.
 - "Interpolation regime": # of data n < P & train-error = 0.

Overview

Q. But how is the model complexity being computed?

Figure 1: A 3D generalization plot with two complexity axes unfolding into double descent. A generalization plot with two complexity axes, each exhibiting a convex curve (left). By increasing raw parameters along different axes sequentially, a double descent effect appears to emerge along their composite axis (right).

 For non-deep ML methods, the double descent phenomenon can be explained under existing paradigms by <u>rethinking the parameter counting</u> [CJvdS23].

Experimental setup

Non-deep ML methods: trees, gradient boosting, and linear regressions.
 [BHMM19]

- Classification of MNIST (n = 10000)
- Minimizing the squared loss / One-vs-rest strategy

Part 1. Revisiting existing results [BHMM19]

Revisiting the evidence for double descent in non-deep ML models

- "There's more than one complexity axis along which the param count grows."
- "The location of the second descent is not tied to the interpolation threshold (P = n)."

Double descent in trees

- P^{leaf} : maximum allowed number of terminal leaf nodes of a tree.
- $P^{leaf} \leq n$ (when every leaf contains only one instance)
- To further increase the model complexity, [BHMM19] manipulate:
- P^{ens} : number of different trees grown to full depth. \rightarrow multiple trees.

Double descent in gradient boosting **

The gradient boosted trees algorithm. We consider gradient boosting with learning rate η and the squared loss as $L(\cdot, \cdot)$:

- 1. Initialize $f_0(x) = 0$
- 2. For $p \in \{1, ..., P^{boost}\}$
 - (a) For $i \in \{1, \ldots, n\}$ compute

$$g_{i,p} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f = f_{p-1}}$$
(11)

- (b) Fit a regression tree to $\{(x_i, g_{i,p})\}_{i=1}^n$, giving leaves l_{jp} for $j=1,\ldots,J_p$
- (c) Compute optimal predictions for each leaf $j \in \{1, \ldots, J_p\}$:

$$\gamma_{jp} = \arg\min_{\gamma \in \mathbb{R}} \sum_{x_i \in l_{jp}} L(y_i, f_{p-1}(x_i) + \gamma) = \frac{1}{n_{l_{jp}}} \sum_{x_i \in l_{jp}} (y_i - f_{p-1}(x_i))$$
(12)

- (d) Denote by $\tilde{f}_p(x) = \sum_{j=1}^{J_p} \mathbf{1}\{x \in l_{jp}\}\gamma_{jp}$ the predictions of the tree built in this fashion
- (e) Set $f_p(x) = f_{p-1}(x) + \eta \tilde{f}_p(x)$
- 3. Output $f(x) = f_{P^{boost}}(x)$

Working of Gradient Boosting Algorithm

- Boosting: sequentially training weak learners and constructing a strong (ensembled) model
- Recursively learning and accumulating "residuals" with weak learners
- A gradient of squared loss == (negative) residual! \(\bigcirc\) use gradients for general loss.

Double descent in gradient boosting **

- P^{boost} : number of boosting rounds (number of weak learners to make a single final model)
- P^{ens} : number of independent final models for ensembling

Double descent in Linear regression of

A review on Linear regression (1)

- Ordinary linear regression:
 - Inputs $\mathbf{X} \in \mathbb{R}^{n \times d}$ and labels $\mathbf{y} \in \mathbb{R}^n$ to learn $\boldsymbol{\beta} \in \mathbb{R}^d$ that fits $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}$.
 - P = d...!

Double descent in Linear regression @

A review on Linear regression (2)

- Linear regression with Random Fourier Features (RFF)
 - Given a feature matrix $\Phi \in \mathbb{R}^{n \times P^{\phi}}$, learn $\beta \in \mathbb{R}^{P^{\phi}}$ that fits $\mathbf{y} = \Phi \beta$.
 - . The feature matrix $\mathbf{\Phi} = \left[\phi_j(\mathbf{x}_i)\right]_{i,j}$ is randomly generated as:
 - $\phi_j(\mathbf{x}) = \Re[\exp(\sqrt{-1}\mathbf{v}_j^{\mathsf{T}}\mathbf{x})]$ for all $j \in [P^{\phi}]$, where each $\mathbf{v}_j \stackrel{\text{iid}}{\sim} \mathcal{N}(\mathbf{0}, (1/5)\mathbf{I}_d)$.
- Still, there appears to be only one way to increase the number of parameters.

Double descent in Linear regression ©

A review on Linear regression (3)

- For $P^{\phi} \leq n$, there is a unique (least-square) solution $\hat{\beta} = (\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}y$.
- For $P^{\phi} > n$, there are infinitely many solutions.
 - [BHMM19] rely on the minimum- ℓ_2 -norm solution $\hat{\pmb{\beta}} = \mathbf{\Phi}^{\mathsf{T}} (\mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}})^{-1} \mathbf{y}$.

Double descent in Linear regression © Connection between min-norm sol & dimensionality reduction

- The *true* parameter count does not increase in P^{ϕ} once $P^{\phi} > n$:
 - : $\hat{\beta} = \Phi^{\mathsf{T}}(\Phi\Phi^{\mathsf{T}})^{-1}\mathbf{y}$ is a projection of \mathbf{y} onto the row space of Φ (whose rank is at most n).
- Finding a min-norm solution (when $P^{\phi} > n$) can be thought of as two steps:
 - 1. Unsupervised step: Dimensionality reduction of data into n-dimension
 - 2. Supervised step: Fitting *n*-dimensional regression coefficient
- Linear regression with RFF is thus a special case of Principal Component (PC) Regression.
 - Dimensionality reduction to $P^{PC} \leq \min\{P^{\phi}, n\}$ dimension while removing excess $P^{ex} = P^{\phi} P^{PC}$ dimensions.
 - Then perform Ordinary Least Squares on the space with a reduced dimension.

Double descent in Linear regression of

Experiments

Moving the peak

Multiple descents

Part 1. Revisiting existing results [BHMM19]

Revisiting the evidence for double descent in non-deep ML models

- "There's more than one complexity axis along which the param count grows."
- "The location of the second descent is not tied to the interpolation threshold."
 - ...but tied to the transition of the complexity axis.

Part 2: Rethinking parameter counting

Through a classical statistics lens

- Redefine a measure of the effective number of parameters of a model: "generalized effective parameter measure" $p_{\hat{\mathbf{s}}}^0$
- Using $p_{\hat{\mathbf{s}}}^0$ to measure complexity, the double descent curves fold back into traditional U-shapes!

Smoothers

A unifying non-parametric statistical framework

- Let $\mathcal{D}^{train} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \mathbf{y}_{train} = [y_1, ..., y_n]^{\mathsf{T}}$
- The prediction of a smoother [HT90]: $\hat{f}(\tilde{\mathbf{x}}) = \hat{\mathbf{s}}(\tilde{\mathbf{x}})^{\mathsf{T}} \mathbf{y}_{\mathrm{train}}$
 - $\hat{\mathbf{s}}(\tilde{\mathbf{x}}) \in \mathbb{R}^n$ is a smoother's weight
 - $\hat{s}^i(\tilde{\mathbf{x}}) = [\hat{\mathbf{s}}(\tilde{\mathbf{x}})]_i$ is a function of $\tilde{\mathbf{x}}$ and (\mathbf{x}_i, y_i) (analogous to the concept of "kernel")
- Trees, boosting, and linear regressions: can be interpreted as smoothers. [CJvdS23]
- [CJvdS23] adapt the effective parameter definition for smoothers [HT90] and propose the generalized effective parameter measure (**Definition 1**): for an arbitrary set of inputs $\{\tilde{\mathbf{x}}_j\}_{j\in\mathcal{I}_{\text{test}}}$,

$$p_{\hat{\mathbf{s}}}^0 = \frac{n}{|\mathcal{I}_{\text{test}}|} \sum_{j \in \mathcal{I}_{\text{test}}} ||\hat{\mathbf{s}}(\tilde{\mathbf{x}}_j)||^2$$

Smoothers

A brief motivation on generalized effective parameter measure

• An effective number of parameters is originally defined just for the training set:

$$p_e = \sum_{i \in \mathcal{I}_{\text{train}}} \|\hat{\mathbf{s}}(\mathbf{x}_i)\|^2$$

- [CJvdS23] adapt this definition to an arbitrary set of inputs indexed by $\mathcal{F}_{\mathrm{test}}$
- The scale of the original p_e depends on n: the recalibration factor $\frac{n}{|\mathcal{I}_{\text{test}}|}$ is introduced.

Raw v.s. effective number of parameters?

• The effective number of parameters measured on the test set does NOT increase as the raw parameter count increases.

Back to U: "U-turn" on Double Descent curve

• Putting $p_{\hat{\mathbf{s}}}^0$ (instead of raw parameter count) to the x-axis in [BHMM19]'s setup:

- blue points \bigcirc : first axis ($P^{leaf}, P^{boost}, P^{PC}$)
- red points \blacksquare : second axis $(P^{ens}, P^{ens}, P^{ex})$

Part 2: Rethinking parameter counting

Through a classical statistics lens

- Redefine a measure of the effective number of parameters of a model: "generalized effective parameter measure" $p_{\hat{\mathbf{s}}}^0$
- Using $p_{\hat{\mathbf{s}}}^0$ to measure complexity, the double descent curves fold back into traditional U-shapes!

Discussion

- A resolution of the tension between non-deep double descent and classical statistical intuition on U-shaped curve.
- Still, "Deep Double Descent [NKB+21]" is out of the scope.
 - In deep learning, Double descent occurs in terms of #param & #epochs

References

- * [BHMM19] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019.
- * [CJvdS23] Alicia Curth, Alan Jeffares, and Mihaela van der Schaar. A U-turn on double descent: Rethinking parameter counting in statistical learning. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
- * [HT90] Trevor Hastie and Robert Tibshirani. Generalized additive models. *Monographs on statistics and applied probability. Chapman & Hall*, 43:335, 1990.
- * [NKB+21] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124003, 2021.