King Saud University College of Computer and Information Sciences Department of Computer Science

CSC212 Tutorial 12 Hashing

Problem 1: Use the hash function H (key) = key % 7 to store the following sequence of keys in a hash table: 28, 71, 43, 11, 56, 17, 63, 6, 7. If there is no place for some keys in the table indicate that the table is full.

- 1. Use linear rehashing (take c = 1), and show the number of probes
- 2. Use external chaining
- **3.** Use coalesced chaining with a cellar size of 3. Show the final location of *epla*

Solution:

1.

Linear Rehashing

	Hash	Probs
0	28	1
1	71	1
2	43	2
3	56	4
4	11	1
5	17	3
6	63	7

(No space for 6 and 7)

Key	28	71	43	11	56	17	63
Position	0	1	2	4	3	5	6
Number of Probes	1	1	2	1	4	3	7

2.

External Rehashing

$$\begin{array}{c|c} 0 & \rightarrow 28 \rightarrow 56 \rightarrow 63 \rightarrow 7 \\ 1 & \rightarrow 71 \rightarrow 43 \\ 2 & \\ 3 & \rightarrow 17 \\ 4 & \rightarrow 11 \\ 5 & \\ 6 & \rightarrow 6 \end{array}$$

Key	28	71	43	11	56	17	63	6	7
Position of the key within the list	1	1	2	1	2	1	3	1	4
Index of the list	0	1	1	4	0	3	0	6	0

3.

Coalesced chaining

0	28	
1	71	\
2	epla\	$\backslash \backslash$
3 4 5	17	
4	11	\
5	_z 7	
6 7 8	$\int 6$	
7	√ 63	//
8	$\frac{1}{56}$	
9	$43 \checkmark$	

Key	28	71	43	11	56	17	63	6	7
Position	0	1	9	4	8	3	7	6	5
Index of next element	8	9	-1	-1	7	-1	5	-1	-1

Problem 2: Assuming the keys are integers, denoted by $d_n d_{n-1} ... d_k ... d_2 d_1$, where d_i is the *i-th* decimal digit in the key, d_n being the leftmost decimal digit.

The hash function H(key) is given by: $H(key) = (d_1d_2 + d_{n-1}d_n + d_k) \mod 11$

where d_1d_2 is a two-digit number (composed by swapping the rightmost two digits) $d_{n-1}d_n$ is also a two-digit number (composed by swapping the leftmost two digits), and $k = \lceil n/2 \rceil$

Example: $H(70934) = (43 + 07 + 9) \mod 11 = 59 \mod 11 = 4$

Assume the keys are: 1234, 519, 911, 7346, 0, 999, 99834, 54 and 40015.

- (a) Compute H(key) for each of the above keys
- (b) Insert the above keys (in the same order) in a hash table with open addressing (linear rehashing)
- (c) Find the number of probes required to search for keys 54 and 11 in the above hash table

Solution:

- H(1234) = (43 + 21 + 3) % 11 = 67 % 11 = 1
- H(519) = (91 + 15 + 1) % 11 = 107 % 11 = 8
- H(911) = (11 + 19 + 1) % 11 = 31 % 11 = 9
- H(7346) = (64 + 37 + 4) % 11 = 105 % 11 = 6
- H(0) = (0 + 0 + 0) % 11 = 0 % 11 = 0
- H(999) = (99 + 99 + 9) % 11 = 207 % 11 = 9
- H(99834) = (43 + 99 + 8) % 11 = 150 % 11 = 7
- H(54) = (45 + 45 + 4) % 11 = 94 % 11 = 6
- H(40015) = (51 + 04 + 0) % 11 = 55 % 11 = 0

0	0	1
1	1234	1
2	54	8
3	40015	4
4	empty	0
5	empty	0
6	7346	1
7	99834	1
8	519	1
9	911	1
10	999	2

Number of probes to search for 54 is 8, and for 11 (H(11) = (11+11+1)%11 = 23%11 = 1) it's 4.

Problem 3: Develop a hashing function to convert a character key k of 15 characters into integers in the range of 0 to 999.

Solution:

```
public static int charHash(char[] k) {
    int hash = 0;
    for (char c : k)
        hash += c;
    return hash %= 1000;
}
```