Math 550 Homework 4

Dr. Fuller

Due September 25

- 1. For each of the following, calculate the pullback $f^*\omega$ and simplify your answer as much as possible.
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(u, v) = (\cos u, \sin u, v)$, $\omega = z \, dx \wedge dy + y \, dz \wedge dx$
 - (b) $f: \mathbf{R}^2 \to \mathbf{R}^2, f(r,\theta) = (r\cos\theta, r\sin\theta), \omega = -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$
 - (ω is only defined on $\mathbb{R}^2 \{(0,0)\}$.)
- 2. Let $g: \mathbf{R}^n \to \mathbf{R}^n$ be differentiable. Prove that $g^*(dx_1 \wedge \cdots \wedge dx_n) = \det Dg \ dx_1 \wedge \cdots \wedge dx_n$. (Hint: It enough to just check this on the standard basis e_1, \dots, e_n .)
- 3. Let *S* denote the top half of the unit sphere in \mathbb{R}^3 . Let $\omega = z^2 dx \wedge dy$. Calculate $\int_S \omega$ using the parameterization $g(\theta, \varphi) = (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$ with $0 < \theta < 2\pi$, and $0 < \varphi < \frac{\pi}{2}$.
- 4. Let S be the surface in \mathbb{R}^3 parameterized by $g(\theta,z) = (\cos \theta, \sin \theta, z)$. where $0 < \theta < \pi$, and 0 < z < 1. Let $\omega = xyz \ dy \wedge dz$. Calculate $\int_S \omega$.
- 5. Calculate the differential of each of the following.
 - (a) $\omega = e^{xy} dx$
 - (b) $\omega = x_1x_2 dx_3 \wedge dx_4$
 - (c) $\omega = f(x, y) dx + g(x, y) dy$
 - (d) $\omega = f(x, y, z) dy \wedge dz g(x, y, z) dx \wedge dz + h(x, y, z) dx \wedge dy$
- 6. Determine if the following 2-forms are exact.
 - (a) $\omega = x dx \wedge dy$
 - (b) $\omega = z dx \wedge dy$
 - (c) $\omega = z dx \wedge dy + y dx \wedge dz + z dy \wedge dz$
- 7. (a) Let $\alpha \in \Omega^1(\mathbf{R}^3)$ satisfy $\alpha(p) \neq 0$ for all $p \in \mathbf{R}^3$. Prove that $\ker \alpha$ is a 2-dimensional subspace (i.e. a plane) of \mathbf{R}^3_p for all $p \in \mathbf{R}^3$.
 - (b) Let $\alpha_1 = dz$. Sketch the planes described in part (a).
 - (c) Let $\alpha_2 = x \, dy + dz$. Sketch the planes described in part (a).
 - (d) Show that $\alpha_1 \wedge d\alpha_1 = 0$ and $\alpha_2 \wedge d\alpha_2 \neq 0$ (at all $p \in \mathbf{R}^3$).