Spidden Markor Model
Viterbi Algorithm

= Hidden states Teansition prob prob = Observed states 3 R.G.B widen states directly affect the observed states

Basic Idea of HMM

There are some hidden states which we don't know about those hidden but they directly affect the observed states.

M; mood

Max P (C₁=9, C₂=B, C₃=R) Over whatis we most likely sequence of moods of the prof on these 3 days? \sim S D_1 D_2 D_3

How many possible seg of moode are there for 3 days? 2 2 2 2)

HMM sough the probe of seeing the color seg.

B A should be marinised the probe of widden states + obs states

Maximix the prob = Marinish the prob. of observed status & hidden & talts & find which combinal sequence of hidden Status?

A Ssumptions Transition prob =?

2 mission prob =?

worn on any given day (1) color suirt only depends on the mood of the professor on P (C o | Mo) that day 2 nothing Clse. Markov assumption

Mt Mt-1 Mood on any givenday depends directly on the mood on the very periors day

 $-1)(C_3|C_2,C_1,M_3,M_2,M_1)$ $PCC_3 \mid M_3$ PCE2/C,, M3, M2, M) PCIM2) \times P(C) M₃, M₂, M) \times PCC₁ M_1 $\times P(M_3 \mid M_2)$ $\gamma P(M_3) \backslash M_2, M_1 \rangle$ × P(M2 IM) > P(M2/M,) x - PCM, (S) 6 (W)

C={ P,48 }, M={H,5 Day 1 2 RGBR G

Londay 3?

Teansition matrix

emission matrix

		2	3
H	0'2	(Z/H)	314
	110		
	0.5	0.4	0 · 1

Observable states (+ in-neums a person cets) model data

weather: hidden states lan > H, C, 3 enni Snon : observed states

8 ~ Hidden states = 50 Bruleforce 50-) = million/billion Dynamic prog break down dater into smaller chembes & store off of intermediate steps to be used in later steps

P(A,B) = P(A|B).P(B) $\frac{8 + 4 + 1}{P(3)} = P(3 | H) \cdot P(H) = P(3 | H) \cdot P(H) = 0.32$ 1(2) (3) (1). P(C) = 0.2 = 0.02

P(H | H) D (114). XP ((/ ')

Step 2.

 $P(I,H) = P(1|H) \cdot P(H|H)$ $0-2 \times 0-1$ $P(1,C) = P(1/C) \cdot P(C/H)$ = 0.5 * 0.3 = 0.15

= P(1/H). P(H(C) P(1,Q)= 0.4 = 0.08 P () P (C / C) P (170) =0.5× 0.6 20.30 $= P(3|H) \cdot P(H|H).$ = 0.4× 0.7 = 0.28 = P(3|H).P(H|C)= 0.4 + 0.4 = 0.16 P(3/0). P(1) = 0.1× 8.3 = 0.03 P(3)(C). P(C)= 0.1* 0.6 = 0.06