3.6 DSSD 数据分析

目的:

- 根据相邻条关联和正背面关联,确认多重触发事件的入射位置、能量,并重新组织事件
- 根据位置-能量关联,对事件进行分类
- 得到多重粒子入射事件中,每个事件的pid,能量,位置等信息。

数据:

- d1-d3探测器的幅度已归一化。
- hit结构中能量按照由大到小排序。

```
In [1]: //%jsroot on
TFile *ipf = new TFile("cal_16C.root");
TTree *tree = (TTree*)ipf->Get("tree");
TCanvas *c1=new TCanvas("c1","c1");
```

观察事件多重性

用Scan观察事件特征,找到分析思路

1. 事件的整体特征

In [3]: tree->Scan("x1s:int(x1e):y1s:int(y1e)","","",10,1);

***	*****	**:	*****	***	****	**	****	**	*****	**	*****
*	Row	*	Instance	*	x1s	*	int(x1e)	*	y1s	*	int(yle) *
***	*****	**:	*****	***	*****	**	****	***	*****	**	*****
*	1	*	0	*	17	*	4924	*	18	*	5887 *
*	1	*	1	*	18	*	1007	*		*	*
*	2	*	0	*	23	*	3146	*	11	*	3365 *
*	2	*	1	*	24	*	339	*	10	*	115 *
*	3	*	0	*	23	*	5465	*	15	*	4568 *
*	3	*	1	*		*		*	16	*	911 *
*	4	*	0	*	21	*	5993	*	15	*	5743 *
*	4	*	1	*		*		*	14	*	270 *
*	5	*	0	*	11	*	4195	*	12	*	5320 *
*	5	*	1	*	12	*	1159	*		*	*
*	6	*	0	*	14	*	3889	*	16	*	4245 *
*	6	*	1	*	13	*	388	*		*	*
*	7	*	0	*	12	*	4612	*	9	*	4878 *
*	7	*	1	*	11	*	306	*		*	*
*	8	*	0	*	22	*	4127	*	9	*	3813 *
*	8	*	1	*		*		*	10	*	335 *
*	9	*	0	*	13	*	7003	*	12	*	6646 *
*	9	*	1	*	10	*	143	*	13	*	425 *
*	9	*	2	*	14	*	107	*		*	*
*	10	*	0	*	20	*	3986	*	8	*	3044 *
*	10	*	1	*		*		*	9	*	961 *
***	*****	* * :	*****	* * *	*****	k * :	*****	k * *	******	**	*****

- 事件2, 一个粒子入射
 - x:相邻两重, y:相邻两重; x总能量(3485), y总能量很接近(3480)
- 事件3, 4, 5, 6, 8, 10, 一个粒子入射

Typesetting math: 100% x, y:一重和相邻两重的组合; x能量, y能量很接近 事件1, 7

- x, y:一重和相邻两重的组合; x能量与y能量相差40左右
- 事件9、
 - x:三重,其中有两条相邻(13,14), y:相邻两重(12,13); x,y面相邻条总能量相近, x面另一条(10)?
 - 两侧总能量不一致。

2. 非相邻两重事件

In [4]: tree->Scan("x1s:int(x1e):y1s:int(y1e)","x1hit==2 && abs(x1s[0]-x1s[1])>1 && y1hit==2","",200,1);

***	*****	**:	****	***	****	***	****	**	*****	***	*****
*	Row	*	Instance	*	x1s	*	int(x1e)	*	y1s	*	int(yle) *
***	*****	**:	*****	* * *	*****	* * *	*****	**	*****	* * *	*****
*	23	*	0	*	4	*	634	*	7	*	630 *
*	23	*	1	*	10	*	486	*	23	*	486 *
*	41	*	0	*	3	*	1188	*	18	*	1187 *
*	41	*	1	*	11	*	401	*	13	*	434 *
*	48	*	0	*	26	*	1349	*	23	*	1350 *
*	48	*	1	*	29	*	445	*	21	*	448 *
*	80	*	0	*	25	*	484	*	27	*	484 *
*	80	*	1	*	27	*	429	*	20	*	428 *
*	105	*	0	*	13	*	2291	*	9	*	2291 *
*	105	*	1	*	10	*	1935	*	16	*	1934 *
*	126	*	0	*	26	*	946	*	16	*	944 *
*	126	*	1	*	28	*	513	*	9	*	514 *
*	166	*	0	*	18	*	1507	*	28	*	1506 *
*	166	*	1	*	25	*	680	*	5	*	680 *
***	*****	**:	*****	* * *	*****	***	*****	**	*****	***	*****

==> 14 selected entries

• 显示的非相邻两重事件, 的x-y都有很好的关联,可以明确指定位置组合。

3. 相邻两重事件

Typesetting math: 100%

In [5]: tree->Scan("x1s:int(x1e):y1s:int(y1e)","x1hit==2 && abs(x1s[0]-x1s[1])==1 && abs(x1e-y1e)<20 && y1hit==2","",1000,1);

***	*****	* * :	*****	* * *	*****	* * *	*****	* * :	******	* * *	******
*	Row	*	Instance	*	x1s	*	int(x1e)	*	y1s	*	int(yle) *
***	*****	**	*****	**	*****	k * ;	*****	**	*****	**	******
*	15	*	0	*	10	*	4785	*	17	*	4772 *
*	15	*	1	*	9	*	267	*	18	*	261 *
*	47	*	1	*	18	*	1062	*	14	*	1045 *
*	116	*	1	*	11	*	291	*	11	*	306 *
*	388	*	0	*	17	*	4138	*	11	*	4135 *
*	388	*	1	*	16	*	460	*	27	*	449 *
*	399	*	0	*	13	*	4651	*	16	*	4645 *
*	399	*	1	*	14	*	315	*	15	*	303 *
*	665	*	0	*	22	*	712	*	11	*	695 *
*	665	*	1	*	23	*	555	*	14	*	549 *
*	698	*	0	*	30	*	731	*	18	*	726 *
*	698	*	1	*	29	*	636	*	12	*	632 *
*	700	*	0	*	10	*	4099	*	9	*	4083 *
*	700	*	1	*	11	*	1241	*	8	*	1246 *
*	761	*	0	*	16	*	5752	*	12	*	5742 *
*	761	*	1	*	17	*	154	*	11	*	145 *
*	821	*	0	*	13	*	4582	*	10	*	4575 *
*	821	*	1	*	14	*	292	*	11	*	277 *
*	851	*	0	*	16	*	2728	*	12	*	2713 *
*	851	*	1	*	17	*	338	*	11	*	348 *
****	*****	**:	*****	**	*****	**	*****	k * :	*****	**	*****

==> 20 selected entries

• 很多相邻两重事件都是由两个入射粒子引起的。

4. 三重事件

In [6]: tree->Scan("x1s:int(x1e):y1s:int(y1e)", "x1hit==3 && abs(x1s[0]-x1s[1])>1", "",500,1);

***	*****	* * :	*****	* *	*****	**	*****	k * :	*****	* * :	*****	k *
*	Row	*	Instance	*	x1s	*	int(x1e)	*	y1s	*	int(y1e)	*
***	*****	**	*****	* *	*****	**	*****	**	*****	**	*****	k *
*	9	*	0	*	13	*	7003	*	12	*	6646	*
*	9	*	1	*	10	*	143	*	13	*	425	*
*	9	*	2	*	14	*	107	*		*		*
*	118	*	0	*	18	*	979	*	3	*	981	*
*	118	*	1	*	12	*	519	*	28	*	517	*
*	118	*	2	*	10	*	414	*	11	*	408	*
*	192	*	0	*	2	*	682	*	14	*	682	*
*	192	*	1	*	12	*	591	*	6	*	590	*
*	192	*	2	*	11	*	566	*	5	*	476	*
*	192	*	3	*		*		*	4	*	106	*
*	193	*	0	*	16	*	2604	*	18	*	2607	*
*	193	*	1	*	13	*	536	*	23	*	535	*
*	193	*	2	*	1	*	444	*	2	*	442	*
*	272	*	0	*	4	*	2099	*	17	*	2098	*
*	272	*	1	*	28	*	783	*	23	*	1319	*
*	272	*	2	*	27	*	563	*		*		*
*	282	*	0	*	13	*	1289	*	4	*	1296	*
*	282	*	1	*	9	*	587	*	24	*	606	*
*	282	*	2	*	6	*	575	*	23	*	152	*
*	282	*	3	*		*		*	21	*	148	*
*	289	*	0	*	8	*	1747	*	13	*	1751	*
*	289	*	1	*	14	*	487	*	25	*	490	*
*	289	*	2	*	13	*	157	*		*		*
*	386	*	0	*	8	*	821	*	21	*	821	*
*	386	*	1	*	13	*	763	*	13	*	760	*
*	386	*	2	*	15	*	463	*	23	*	461	*
*	398	*	0	*	12	*	1865	*	18	*	1858	*
*	398	*	1	*	5	*	532	*	24	*	531	*
*	398	*	2	*	13	*	187	*	17	*	189	*
*	429	*	0	*	10	*	4138	*	14	*	4137	*
*	429	*	1	*	12	*	404	*	4	*	401	*
*	429	*	2	*	6	*	130	*	5	*	132	*
***	*****	**	****	* *	*****	**	*****	**	*****	* *	******	k *

==> 32 selected entries

Type <CR> to continue or q to quit ==>

也可以清晰地看见有三个粒子入射的情况:

Typesetting math: 100% • 事件118:粒子1(18,3),粒子2(12,28),粒子3(10,11)

• 事件193:

其他:

- 事件192:粒子1(2,14),粒子2((12,11),(6,5,7))
- 事件398:x和y方向都有相邻条,但每条之间x, y能量都有很好的关联,因此很大概率是三个入射粒子。
- 事件9,289等两侧总能量不一致。

总结

- 1. 正背面关联关系可以对事件类型(是否为多重,相邻条crosstalk)做很好的区分。
- 2. 当两侧总能量不一致时,可以认为事件为而非正常事件。
 - 部分能量没有被记录,或有偶然符合
 - 非正常事件,做标记后待后续处理确认。
- 3. 新参数:
 - 每个探测器x方向总能量: sx1e,sx2e,sx3e;
 - y方向总能量: sy1e,sy2e,sy3e;

画图观察,并确定x-y关联的能量差范围

Typesetting math: 100%


```
In [8]: tree->Draw("sxle:sxle-syle>>(200,-400,400,200,0,8000)","","colz");
c1->Draw();
```


In [9]: tree->Draw("sxle:sxle-syle>>hxly1(200,-200,200,1000,0,8000)","x1hit==1&&y1hit==1","colz");
c1->Draw();//-10~+10

In [10]: tree->Draw("sxle:sxle-syle>>(200,-200,200,1000,0,10000)","x1hit>y1hit","colz");
c1->Draw(); //0~+60 x1hit>y1hit;

In [11]: tree->Draw("sxle:sxle-syle>>(200,-200,200,1000,0,10000)","xlhit<ylhit","colz");
cl->Draw(); //-60~+10;

In [12]: tree->Draw("sx1e:sx1e-sy1e>>(200,-200,200,1000,0,10000)","x1hit==2&&y1hit==2&&abs(x1s[0]-x1s[1])+abs(y1s[0]-y1s[1])>2","
c1->Draw();//-10~+10 ; x1hit=y1hit==2

In [13]: tree->Draw("sxle:sxle-syle>>(200,-200,200,1000,0,10000)", "x1hit==3&&y1hit==3&&abs(x1s[0]-x1s[1])+abs(y1s[0]-y1s[1])>2", ' c1 - Draw(); //-10 - +10 ; x1hit = y1hit = 3

总结

• 当两侧多重性不一致时: sx1e-sy1e 中心值不为零,向正(x1hit>y1hit),负(x1hit<y1hit)的一侧偏移

¬意味着在能量沉积大时,有些条的感应信号因为阈值(硬件pedal的阈值)没有被记录

Typesetting math: 100% $^{\prime\prime}$ 一但这个问题实际并不严重:在能量接近8000的时候最大偏移在50左右,对能量的相对影响为 $\Delta E/E=50/8000pprox0.006$,小于1%。

- 对于多粒子入射引起的x,y多重性事件: abs(sx1e-sy1e)<10
 - 当相邻条满足上述条件,也认为是两个粒子入射导致的。

新文件

• 重新对事件进行分类,确定每个事件的实际多重性(多重性=入射粒子数目)

部分代码示例

```
Int_t x1h,y1h,x2h,y2h,x3h,y3h;//final multiplicity
Double_t x1ea[100],x2ea[100],x3ea[100];//x-energy
Double_t y1ea[100],y2ea[100],y3ea[100];//y-energy
Int_t x1sa[100],x2sa[100],x3sa[100];//x-strip
Int_t y1sa[100],y2sa[100],y3sa[100];//y-strip
Int_t flag1,flag2,flag3;//event flag
```

```
//one-one DSSD1
              if(x1hit==1 && y1hit==1 && abs(sx1e-sy1e)<10) {
                  x1h=1; y1h=1;
                  x1ea[0]=x1e[0]; x1sa[0]=x1s[0];
                  ylea[0]=yle[0]; ylsa[0]=yls[0];
                  flag1=111;
                }
           //two-two DSSD1
              if(x1hit==y1hit && x1hit==2) {
                   if(abs(x1e[0]-y1e[0])<10 && abs(x1e[1]-y1e[1])<10) {
                      x1h=2; y1h=2;
                      for(int i=0;i<2;i++) {</pre>
                         xlea[i]=xle[i]; xlsa[i]=xls[i];
                         ylea[i]=yle[i]; ylsa[i]=yls[i];
                  flag1=222;
                  else if(sx1e-sy1e>-10 && sx1e-sy1e<60) {
                      if(abs(x1s[0]-x1s[1])==1 && abs(y1s[0]-y1s[1])==1)  {
                         x1h=1;y1h=1;
                         x1ea[0]=x1e[0]+x1e[1];
                         x1sa[0]=x1s[0];
                         ylea[0]=yle[0]+yle[1];
                         y1sa[0]=y1s[0];
                          flag1=221;
            //three-two DSSD1
             if(x1hit==2 && y1hit==3) {
               if(sx1e-sy1e>-35 && sx1e-sy1e<10) {</pre>
                 int ix=-1, iy=-1;
                 for(int i=0;i<2;i++)</pre>
Typesetting math: 100%
                  for(int j=0;j<3;j++) {</pre>
```

```
if(abs(xle[i]-yle[j])<10) {//search x-y pair</pre>
                          ix=i;
                          iy=j;
                       }
                    if(ix>-1) {
                      x1sa[0]=-1; x1sa[1]=-1;
                      y1sa[0]=-1; y1sa[1]=-1;
                      xlea[0]=xle[ix]; xlsa[0]=xls[ix];
                      ylea[0]=yle[iy]; ylsa[0]=yls[iy];
                      if(ix==0) {
                        x1ea[1]=x1e[1]; x1sa[1]=x1s[1];
                      }
                      else {
                        xlea[1]=xle[0]; xlsa[1]=xls[0];
                      if(iy==0 &&abs(y1s[1]-y1s[2])==1) {
                        ylea[1]=yle[1]+yle[2]; ylsa[1]=yls[1];
                      if(iy==1 &&abs(y1s[0]-y1s[2])==1) {
                        ylea[1]=yle[0]+yle[2]; ylsa[1]=yls[0];
                      if(iy==2 &&abs(y1s[0]-y1s[1])==1) {
                        ylea[1]=yle[0]+yle[1]; ylsa[1]=yls[0];
                      }
                      if(x1sa[0]>-1 && x1sa[1]>-1 &&y1sa[0]>-1 && y1sa[1]>-1) {
                        x1h=2; y1h=2;
                        flag1=232;
               if(x1hit==3 && y1hit==2) {
                  if(sx1e-sy1e>5 && sx1e-sy1e<65) {
                    int ix=-1, iy=-1;
Typesetting math: 100%
                    for(int i=0;i<3;i++)</pre>
```

```
for(int j=0; j<2; j++) {</pre>
         if(abs(xle[i]-yle[j])<10) {//search x-y pair</pre>
           ix=i;
           iy=j;
         }
       }
     if(ix>-1) {
       x1sa[0]=-1; x1sa[1]=-1;
       y1sa[0]=-1; y1sa[1]=-1;
       xlea[0]=xle[ix]; xlsa[0]=xls[ix];
       ylea[0]=yle[iy]; ylsa[0]=yls[iy];
       if(iy==0) {
         ylea[1]=yle[1]; ylsa[1]=yls[1];
       }
       else {
         ylea[1]=yle[0]; ylsa[1]=yls[0];
       if(ix==0 &&abs(x1s[1]-x1s[2])==1) {
         xlea[1]=xle[1]+xle[2]; xlsa[1]=xls[1];
       if(ix==1 &&abs(x1s[0]-x1s[2])==1) {
         x1ea[1]=x1e[0]+x1e[2]; x1sa[1]=x1s[0];
       if(ix==2 &&abs(x1s[0]-x1s[1])==1) {
         xlea[1]=xle[0]+xle[1]; xlsa[1]=xls[0];
       if(x1sa[0]>-1 && x1sa[1]>-1 &&y1sa[0]>-1 && y1sa[1]>-1) {
         x1h=2; y1h=2;
         flag1=232;
if((x1h>0 \&\& x1h==x2h \&\& x3h==0) | (x1h>0 \&\& x1h==x2h \&\& x2h==x3h)) tree->Fill();
```

```
In [15]: tr->Draw("x1e:x2e>>(200,0,9000,200,0,8000)","","colz");
c1->Draw();
```



```
In [16]: tr->Draw("x1e:x2e>>(200,0,9000,200,0,8000)","x1hit==1","colz");
c1->Draw();
```



```
In [17]: tr->Draw("x1e:x2e>>(200,0,8000,200,0,8000)","x1hit==2","colz");
c1->Draw();
```



```
In [18]: tr->Draw("x1e:x2e>>(200,0,8000,200,0,8000)","flag1==222 && flag2==222","colz");
c1->Draw();
```



```
In [19]: tr->Draw("x1e:x2e>>(200,0,8000,200,0,8000)","flag1==222 && flag2==222 &&abs(x1s-x2s)<2 && abs(y1s-y2s)<2","colz");
c1->Draw();
```



```
In [20]: tr->Draw("x2e:x3e>>(200,0,8000,200,0,8000)","flag2==222 && flag3==222 &&abs(x2s-x3s)<2 && abs(y2s-y3s)<2","colz");
         c1->Draw();
```

x2e:x3e {flag2==222 && flag3==222 &&abs(x2s-x3s)<2 && abs(y2s-y3s)<2}

遗留问题

In [21]: tr->Scan("x1s:x2s:x3s:y1s:y2s:y3s","flag1==222 &&abs(x1s-x2s)>2","",2000,1);

* * *	*****	* * :	*****	***	*****	* * *	******	***	******	* *	******	* *	******	*	*****	*
*	Row	*	Instance	*	x1s	*	x2s	*	x3s	*	y1s	*	y2s	*	y3s	*
***	*****	* * :	*****	***	*****	***	*****	***	******	* * *	*****	*	*****	*	*****	*
*	60	*	0	*	4	*	14	*	14	*	16	*	13	*	13	*
*	60	*	1	*	14	*	2	*	1	*	13	*	16	*	16	*
*	102	*	0	*	19	*	22	*	24	*	21	*	16	*	10	*
*	102	*	1	*	15	*	20	*	21	*	17	*	22	*	22	*
*	764	*	0	*	7	*	4	*	6	*	13	*	15	*	12	*
*	958	*	0	*	24	*	16	*	25	*	21	*	12	*	22	*
*	958	*	1	*	16	*	24	*	16	*	13	*	22	*	12	*
*	1082	*	0	*	19	*	22	*	23	*	9	*	10	*	9	*
*	1144	*	0	*	15	*	18	*	16	*	19	*	18	*	23	*
*	1334	*	1	*	11	*	8	*	10	*	21	*	9	*	25	*
*	1897	*	0	*	12	*	15	*	11	*	23	*	22	*	25	*
*	1897	*	1	*	15	*	12	*	15	*	21	*	24	*	23	*
***	*****	**:	*****	***	*****	***	*****	***	******	**	*******	**	*****	*	*****	*

==> 12 selected entries

• 事件 60, 958

■ 60: x1s-x2s错位

■ 958: x1s-x2s错位 正确匹配顺序应该为

//***	*****	t * *	*****	* * *	******	**>	*****	**	******	**	*****	* * :	*****	+ *	*****	
//*	Row	*	Instance	*	x1s	*	x2s	*	x3s	*	y1s	*	y2s	*	y3s *	
//***	*****	**	*****	* * *	******	**>	*****	**	*****	**	*****	* * :	*****	+ *	*****	
//*	60	*	0	*	14	*	14	*	14	*	13	*	13	*	13 *	
//*	60	*	1	*	4	*	2	*	1	*	16	*	16	*	16 *	
//*	958	*	0	*	24	*	24	*	25	*	13	*	22	*	22 *	
//*	958	*	1	*	16	*	16	*	16	*	21	*	12	*	12 *	

• 探测器间事件匹配错位,导致de-e图上的正确关联关系外的散点。

需要进行trak matching:

按照如下条件重新进行多探测器之间事件匹配

• 探测器之间的位置不能相差太多, 否则为粒子探测器上的散射或反应。

Typesetting math: 100%介探测器位置构建的位置要指向靶的有效区域。

部分事件无法进行trak matching

```
In [22]: tr->Scan("x1s:x2s:x3s:y1s:y2s:y3s","flag1==222 &&abs(x1s[0]-x1s[1])==1 && abs(x2s[0]-x2s[1])==1","",1000,1);
```

*	y3s	*	y2s	*	y1s	*	x3s	*	x2s	*	x1s	*	Instance	*	Row	*
*	******	****	*****	*****	*****	*****	*****	****	*****	*****	******	****	********	***	*****	***
*	7	*	7	*	8	*	7	*	7	*	7	*	0	*	277	*
*	13	*	13	*	12	*	5	*	6	*	6	*	1	*	277	*
*		*	11	*	6	*		*	8	*	9	*	0	*	620	*
*		*	5	*	11	*		*	9	*	8	*	1	*	620	*
*		*	12	*	12	*		*	9	*	10	*	0	*	747	*
*		*	10	*	11	*		*	8	*	9	*	1	*	747	*
*	13	*	13	*	13	*	17	*	17	*	17	*	0	*	980	*
*	27	*	26	*	24	*	16	*	16	*	16	*	1	*	980	*

==> 8 selected entries

• 事件277: 两个事件的x1s和x2s几乎一致,无法进行track matching

最终还要通过pid matching确定匹配顺序

• 观察哪种排列方法符合正确的pid关系

```
In [23]: !jupyter nbconvert 3.6_DSSD_data_analysis.ipynb --to html
```

[NbConvertApp] Converting notebook 3.6_DSSD_data_analysis.ipynb to html

[NbConvertApp] Writing 953124 bytes to 3.6_DSSD_data_analysis.html

```
In [ ]:
```