# A QCQP Solver

Chuwen Zhang

October 26, 2021

## **QCQP**

Recall QCQP:

Maximize 
$$x^T Q x + q^T x$$
  
s.t.  $x^T A_i x + a_i^T x (\leq, =, \geq) b_i$  (1)  
 $0 \leq x \leq e$ 

### **MSC**

Consider MSC relaxation with spectral decomposition,  $Q = V_0 \mathbf{diag}(\lambda_0) V_0^T, A_i = V_i \mathbf{diag}(\lambda_i) V_i^T$ 

(MSC) Maximize: 
$$y_0^T \lambda_0$$
  
s.t.  $V_i^T x = z_i, V_i p_i / \# / x$   $i = 0, ..., m$   
 $y_i^T \lambda_i + a_i^T x \le b_i$   $i = 1, ..., m$   
 $y_i \ge z_i \circ z_i$   $i = 0, ..., m$   
 $y_i^T e \le x^T e$   $i = 0, ..., m$  (2)

Let  $\Omega$  defines the set of second-order cones for (x, y, z)

$$\Omega = \begin{cases}
V_i^T x = z_i & i = 0, ..., m \\
(x, z, y) : y_i^T \lambda_i + a_i^T x \le b_i & i = 1, ..., m \\
y_i \ge z_i \circ z_i & i = 0, ..., m
\end{cases}$$
(3)

### MSC on the surface of norm balls

#### Optimal conditions for MSC,

- if  $(y^*)^T e = ||x^*||^2$ , then  $(x^*, y^*)$  is the solution
- we notice  $y_i^T e \ge ||z_i||^2 = ||x||^2$  is guaranteed.
- we want to have,

$$y_i^T e \leq ||x||^2$$

which is clearly nonconvex

## Norm-constrained MSC (NMSC)

Notice,

$$\|x\|^2 = \max_{\|\xi\| < \sqrt{s}} \xi^T x \tag{4}$$

So we add slack variable  $s, t, \xi$  and bilinear constraint.

(MSC) Maximize: 
$$y_0^T \lambda_0$$
 (5)

s.t. 
$$(y, z, x) \in \Omega$$
 (6)

$$y_i^T e \le t \qquad \qquad i = 0, \cdots, m \tag{7}$$

$$(\kappa) \quad t = s \qquad \qquad i = 0, \cdots, m \tag{8}$$

$$(\mu) \quad \xi^{\mathsf{T}} x = t \tag{9}$$

$$\xi^{\mathsf{T}}\xi \le \mathsf{s} \tag{10}$$

If  $s, t, \xi, y, z, x$  is the solution, then y, z, x is the optimal solution for MSC.

### NMSC: the ADMM approach

This allows the augmented Lagrangian function,

$$\mathscr{L}(x, y, z, \xi, s, \kappa, \mu) = -y_0^T \lambda_0 + \kappa(t - s) + \mu(\xi^T x - t) + \frac{\rho}{2}(t - s)^2 + \frac{\rho}{2}(\xi^T x - s)^2$$

The ADMM iteration,

$$\begin{split} \left(x,y,z,t\right)^{k+1} &= \arg\min_{(x,y,z) \in \Omega, t \geq 0} L\left(x,y,z,\xi^k,s^k,\kappa^k,\mu^k\right) \\ \left(s,\xi\right)^{k+1} &= \arg\min_{(s,\xi) \in \mathscr{Q}} L\left(\left(x,y,z,t\right)^{k+1},\xi,s,\kappa^k,\mu^k\right) \\ \kappa^{k+1} &= \kappa^k + \rho\left(t^{k+1} - s^{k+1}\right) \\ \mu^{k+1} &= \mu^k + \rho\left(\langle \xi^{k+1},x^{k+1}\rangle - s^{k+1}\right) \end{split}$$

where  $\mathcal{Q}(\cdot)$  forms a simple SOCP for  $s, \xi$ ,

$$\mathscr{Q}(x) = \left\{ (s, \xi) : \|\xi\|^2 \le s \right\} \tag{11}$$



# Simple test on ADMM

|   | n:m:id     | t       | best_bound | best_obj | relax_obj | nodes | method   |
|---|------------|---------|------------|----------|-----------|-------|----------|
| 0 | 5:5:0      | 0.03    | 5.56       | 5.56     | 5.56      | 29.0  | grb      |
| 1 | 5:5:0      | 8.44    | 5.56       | 5.56     | 5.56      | 171.0 | admm_msc |
| 0 | 50:20:0    | 200.00  | 189.34     | 87.69    | 189.34    | 839.0 | grb      |
| 1 | 50:20:0    | 200.04  | 123.06     | 122.99   | 123.00    | 248.0 | admm_msc |
| 0 | 50:50:0    | 200.00  | 197.20     | 68.50    | 197.20    | 395.0 | grb      |
| 1 | 50:50:0    | 200.39  | 159.97     | 157.23   | 157.36    | 86.0  | admm_msc |
| 0 | 100:20:0   | 400.00  | 777.92     | 90.51    | 777.92    | 65.0  | grb      |
| 1 | 100:20:0   | 402.83  | 385.68     | 383.19   | 383.28    | 130.0 | admm_msc |
| 0 | 100:50:0   | 400.01  | 817.60     | 115.00   | 817.60    | 12.0  | grb      |
| 1 | 100:50:0   | 406.29  | 367.47     | 358.75   | 359.59    | 61.0  | admm_msc |
| 0 | 200:5:0    | 1000.00 | 3205.11    | 111.11   | 3205.11   | 2.0   | grb      |
| 1 | 200:5:0    | 1002.45 | 519.80     | 519.37   | 519.38    | 375.0 | admm_msc |
| 0 | 200:20:0   | 1000.01 | 4050.97    | 135.87   | 4050.97   | 1.0   | grb      |
| 1 | 200:20:0   | 1006.92 | 528.21     | 519.58   | 519.88    | 74.0  | admm_msc |
| 0 | QPLIB_1055 | 200.00  | 33.28      | 33.03    | 33.28     | 911.0 | grb      |
| 1 | QPLIB_1055 | 200.58  | 33.05      | 33.04    | 33.04     | 231.0 | admm_msc |