

Phase **transitoire** durant laquelle les tassements dus à un chargement se produisent.

On s'intéresse donc à l'évolution du tassement au cours du **temps** sous un chargement donné.

Diminution de volume

On s'intéresse ici à **l'amplitude du tassement** en fonction du chargement imposé.

Courbe de compressibilité

e en fonction de σ' en échelle logarithmique

CONTRAINTES (SOLS)

Vecteur contrainte, composantes normale et tangentielle

Contraintes ↔ Coupure (fictive) en deux parties

↔ Efforts internes, d'une partie sur l'autre

→ Répartition surfacique des efforts

 $\vec{e}(M,\vec{n})$: vecteur contrainte en M dans la direction \vec{n}

 σ : composante normale (> 0 en compression)

 τ : composante tangentielle (de cisaillement)

POSTULAT de TERZAGHI

Contraintes totales : le sol est vu de manière globale.

 σ : contrainte normale totale

 τ : contrainte tangentielle (de cisaillement) totale

Contraintes effectives : reprises par le squelette solide.

 σ' : contrainte normale effective

 τ' : contrainte tangentielle (de cisaillement) effective

Pression interstitielle: pression de l'eau

PERMÉABILITÉ

Unité: [m/s] Notation: k

Aptitude du sol à permettre l'écoulement de l'eau

Loi de Darcy : $v = \mathbf{k} \times i$

v, vitesse fictive [m/s]

 $v = \frac{\text{Débit de l'eau s'écoulant dans un tube de sol } [\text{m}^3/\text{s}]}{\text{Aire totale de la section du tube (vides + squelette solide)} [\text{m}^2]}$

i, gradient hydraulique [sans unité] = perte de charge par unité de longueur

	Argile	Limon	Sables	Gravier
k (m/s)	$10^{-13} \le k \le 10^{-9}$	$10^{-9} \le k \le 10^{-5}$	$10^{-5} \le k \le 10^{-3}$	$10^{-3} \le k \le 10^{-1}$

CONTRAINTES EFFECTIVES

Contraintes effectives : reprises par le squelette solide.

Notation : utilisation des symboles **primés** (')

 σ' : contrainte normale effective

 τ' : contrainte tangentielle (de cisaillement) effective

CONTRAINTES TOTALES

Contraintes totales: pas de distinction entre les phases fluide et solide; le sol est vu de manière globale.

 σ : contrainte normale totale

 τ : contrainte tangentielle (de cisaillement) totale

POIDS VOLUMIQUE, Y

Unité: [kN/m3]

$$\gamma = \frac{Poids}{Volume} = \frac{Masse \times g}{Volume} = \rho \times g$$

 ρ : masse volumique ; g: accélération de la pesanteur

 γ_w : poids volumique de l'eau (Water) = 10 kN/m³

 γ_d : poids volumique du sol sec (**D**ry)

 γ_h : poids volumique du sol Humide

 γ_{sat} : poids volumique du sol SATuré

 γ_s : poids volumique du squelette Solide = 26,5 kN/m³

Sert au calcul des contraintes!

Indice des Vides

 $\frac{\text{Volume des vides}}{\text{Volume du squelette solide}} = \frac{V_v}{V_s}$

Sans unité

Les vides = eau + air : $V_v = V_w + V_{air}$

Les vides = tout ce qui n'est pas solide : $V_v = V - V_S$

e peut être supérieur à 1, si $V_v > V_S$

e varie de

0,4 pour les sables à 13 pour les argiles

Mesurer V_s

V_sest le volume du squelette solide, la somme des volumes de tous les grains présents dans l'échantillon de sol. Un échantillon peut contenir plusieurs milliers de grains, de formes quelconques : il est inenvisageable de déterminer précisément le volume de chaque grain.

Mais la masse volumique du squelette solide est connue $(\rho_S \approx 2,65 \text{ t/m}^3)$. Il suffit donc de **peser l'échantillon de sol sec** pour lequel on souhaite déterminer \mathcal{V}_s . On note cette masse, \mathcal{M}_s . On obtient ensuite \mathcal{V}_s par $\mathcal{V}_s = \frac{\mathcal{M}_s}{\rho_s}$.

La démarche est analogue à celle consistant à déterminer un volume d'eau V_w , connaissant sa masse \mathcal{M}_w et sa masse volumique $\rho_w \approx 1 \text{ t/m}^3$.

Gradient hydraulique

Unité: aucune Notation: i

Perte de charge par unité de longueur

Dans un sol, la charge décroit dans le sens de l'écoulement = déperdition par frottements. Soient 2 points sur une ligne de courant, 1 et 2, distants de L_{12} , alors $i = \frac{\Delta h_{12}}{L_{12}}$ avec Δh_{12} , la différence de charge hydraulique entre 1 et 2.

Pressions interstitielles <i>u</i>	Charges hydrauliques $h = \frac{u}{\gamma_w} + z$
u_A = 0 kPa car A sur la surface libre	$h_A = z_A$
$u_B = \gamma_w (z_A - z_B)$ car eau statique dans le piézomètre	$h_B = z_A$
$u_C = 0$ kPa car C sur la surface libre	$h_C = z_C$
$u_D = \gamma_w (z_C - z_D)$ car eau statique dans le piézomètre	$h_D = z_C$

Perte de charge sur le trajet BD (de longueur $z_B - z_D$) : $h_B - h_D$ $h_B > h_D$: écoulement de B vers D En tout point du sol, *i* uniforme et $i = \frac{h_B - h_D}{z_B - z_D}$

Contrainte de préconsolidation

Contrainte maximale que le sol a connue au cours de son histoire

