Foundations of Meta_n-Elementary Number Theory

Pu Justin Scarfy Yang

August 03, 2024

Abstract

This book develops the field of Meta_n-elementary number theory, providing rigorous definitions, theorems, and proofs. We explore the limiting behavior as $n \to \infty$ and utilize the projective limit to pack the results comprehensively. This document is designed to be indefinitely expandable, accommodating further research and findings.

Contents

1	Introduction	2
2	Foundational Definitions	2
3	Basic Properties	2
4	Advanced Theorems	3
5	Behavior as $n \to \infty$	4
6	Applications and Further Research	4
7	Conclusion	4

1 Introduction

Meta_n-elementary number theory is a generalized framework for elementary number theory, extended to an arbitrary natural number n. This theory aims to explore the properties and relationships of numbers within this broader context and investigate the implications as n tends to infinity.

2 Foundational Definitions

Definition 2.1 (Meta_n-Natural Numbers). The set of Meta_n-natural numbers, denoted by \mathbb{N}_n , is defined as follows:

$$\mathbb{N}_n = \{1_n, 2_n, 3_n, \ldots\},\$$

where k_n represents the k-th Meta_n-natural number.

Definition 2.2 (Meta_n-Prime Numbers). A Meta_n-prime number p_n is a Meta_n-natural number greater than 1 that has no Meta_n-divisors other than 1 and itself.

Definition 2.3 (Meta_n-Divisibility). A Meta_n-natural number a_n is said to divide another Meta_n-natural number b_n if there exists a Meta_n-natural number c_n such that:

$$b_n = a_n \cdot c_n$$
.

3 Basic Properties

Theorem 3.1 (Meta_n-Unique Factorization). Every Meta_n-natural number $k_n \in \mathbb{N}_n$ greater than 1 can be uniquely factored into Meta_n-primes, up to the order of the factors.

Proof. We proceed by induction on k_n .

Base Case: Let $k_n = 2_n$. Since 2_n is a Meta_n-prime, it is already uniquely factored.

Inductive Step: Assume that every Meta_n-natural number less than k_n can be uniquely factored into Meta_n-primes. Consider k_n .

1. If k_n is a Meta_n-prime, it is already uniquely factored. 2. If k_n is not a Meta_n-prime, then there exist Meta_n-natural numbers a_n and b_n such that $k_n = a_n \cdot b_n$ with $1 < a_n, b_n < k_n$.

By the inductive hypothesis, a_n and b_n can be uniquely factored into Meta_n-primes:

$$a_n = p_{1n} p_{2n} \cdots p_{rn}$$

$$b_n = q_{1n}q_{2n}\cdots q_{sn}$$

Therefore,

$$k_n = a_n \cdot b_n = (p_{1n}p_{2n}\cdots p_{rn})(q_{1n}q_{2n}\cdots q_{sn})$$

This factorization is unique up to the order of the factors. \Box

Theorem 3.2 (Meta_n-Divisor Function). The Meta_n-divisor function $d_n(k_n)$ counts the number of Meta_n-divisors of k_n .

Proof. For any Meta_n-natural number k_n , the Meta_n-divisors are precisely the products of the subsets of its unique Meta_n-prime factorization. If

$$k_n = p_{1n}^{e_1} p_{2n}^{e_2} \cdots p_{rn}^{e_r},$$

then each divisor d of k_n can be written as

$$d = p_{1n}^{f_1} p_{2n}^{f_2} \cdots p_{rn}^{f_r},$$

where $0 \le f_i \le e_i$.

Thus, the number of Meta_n-divisors is

$$d_n(k_n) = (e_1 + 1)(e_2 + 1) \cdots (e_r + 1).$$

4 Advanced Theorems

Theorem 4.1 (Meta_n-Euler's Totient Function). The Meta_n-Euler's totient function $\phi_n(k_n)$ counts the number of Meta_n-natural numbers less than k_n that are coprime to k_n .

Proof. Let $k_n = p_{1n}^{e_1} p_{2n}^{e_2} \cdots p_{rn}^{e_r}$. The number of Meta_n-natural numbers less than k_n that are not coprime to k_n is given by the principle of inclusion-exclusion:

$$\phi_n(k_n) = k_n \left(1 - \frac{1}{p_{1n}}\right) \left(1 - \frac{1}{p_{2n}}\right) \cdots \left(1 - \frac{1}{p_{rn}}\right).$$

5 Behavior as $n \to \infty$

Definition 5.1 (Projective Limit of Meta_n-Structures). The projective limit of the Meta_n-natural numbers as $n \to \infty$ is denoted by \mathbb{N}_{∞} and defined as:

$$\mathbb{N}_{\infty} = \varprojlim_{n \to \infty} \mathbb{N}_n.$$

Theorem 5.2 (Structure of \mathbb{N}_{∞}). The set \mathbb{N}_{∞} retains properties analogous to those in standard number theory but within the infinite Meta_n context.

Proof. We construct \mathbb{N}_{∞} as the projective limit of the inverse system of the Meta_n-natural numbers. Each \mathbb{N}_n is mapped to \mathbb{N}_{n-1} via a projection map $\pi_n : \mathbb{N}_n \to \mathbb{N}_{n-1}$. The limit \mathbb{N}_{∞} is the set of sequences (a_n) such that $\pi_n(a_n) = a_{n-1}$ for all n.

The properties of \mathbb{N}_{∞} are derived from the consistent properties of the \mathbb{N}_n and the continuity of the projection maps.

6 Applications and Further Research

- Investigation of Meta_n-analogues of classical theorems in number theory.
- Exploration of Meta_n-analytic number theory.
- Study of Meta_n-modular forms and their properties.
- Investigation of Meta_n-algebraic structures and their applications in cryptography.
- Analysis of Meta_n-dynamical systems and chaos theory.

7 Conclusion

Meta_n-elementary number theory provides a rich and expansive field for exploring number theoretic concepts in a generalized framework. The use of projective limits as $n \to \infty$ opens new avenues for research and deeper understanding of number theory. This book is designed to be indefinitely expandable to accommodate future developments and findings.

References