A GP Approach to QoS-Aware Web Service Composition including Conditional Constraints

Alexandre Sawczuk da Silva, Hui Ma, Mengjie Zhang

IEEE Congress on Evolutionary Computation, 25-28 May 2015

Introduction

Motivation •00000

> Service-Oriented Architecture (SOA): Organise processes and data in reusable modules for integration into new applications.

Web service

A functionality module that provides operations accessible over the network via a standard communication protocol.

Web Service Composition

The combination of Web services to achieve a more complex task. Fully automated scenario:

New weather by zip code service

A Composition Example with Branching

Certain compositions require alternative paths according to runtime values.

Example: Depending on balance, pay in full or pay in installments.

Composition Dimensions

- **Solution feasibility:** Service inputs and outputs must be properly linked (e.g. $City \rightarrow Location$, but not PhoneNumber \rightarrow Location).
- **2 Conditional constraints:** Condition leading to multiple possible execution paths (e.g. if *City* is a *NewZealandCity*, produce WindForecast instead of GeneralForecast).
- 3 Quality of Service (QoS): The overall quality of the composition (e.g. lowest execution time, lowest cost).

AI Planning

Build a solution service by service.

Dimensions: Solution feasibility, conditional constraints.

Evolutionary Computation (EC)

Improve population of solutions over multiple generations.

Dimensions: Solution feasibility, QoS.

Hybrid Approaches

Combine Al planning and EC ideas.

Dimensions: Solution feasibility, QoS.

Goal

To propose a Genetic Programming (GP) composition approach that simultaneously considers all dimensions.

- 1 Trees preserve solution feasibility.
- 2 Conditions encoded in trees.
- 3 Optimisation performed on QoS.

Candidate Representation

- Tree equivalent to graph composition.
- Parallel, sequential, and conditional represented as non-terminal nodes.
- Candidate services as terminal nodes.

Population Initialisation

An algorithm is used to create a candidate in graph format, and then translate it into a tree representation.

```
Input : 1. O1. O2. C. P
    Output: candidate tree T

    if O<sub>2</sub> ≠ ∅ then

         G_1 \leftarrow \text{createGraph}(I \cup C.if. O_1):
         G_2 \leftarrow \text{createGraph}(I \cup C.else, O_2):
         T_1 \leftarrow \text{toTree}(G_1.input):
         T_2 \leftarrow \text{toTree}(G_2.input);
          T_3 \leftarrow \text{new ConditionalNode}(C);
          T_3.leftChild \leftarrow T_1:
          T_3.rightChild \leftarrow T_2:
 9:
          if C \square / then
10:
              T_3.prob \leftarrow P;
              return T3:
11:
12-
         else
              G<sub>4</sub> ← createGraph(I, C,else):
13:
              T_4 \leftarrow \text{toTree}(G_4.input);
14:
               T_3.prob \leftarrow T_4.final.P;
15:
16:
               T \leftarrow \text{new SequenceNode()};
               T.leftChild \leftarrow T_4:
17:
              T.rightChild \leftarrow T_3:
18:
              return T:
20:
         end
21: else
         G \leftarrow \text{createGraph}(I, O_1);
22:
          T \leftarrow toTree(G.input):
24
         return T;
25: end
```


Mutation and Crossover

Mutation: Selects random node and replaces it with equivalent subtree.

Crossover: Swaps any two equivalent terminal nodes.

Fitness Function

Measures the overall quality of a composition candidate (minimising).

$$\mathit{fitness}_i = w_1(1-A_i) + w_2(1-R_i) + w_3 T_i + w_4 C_i$$
 where $\sum_{i=1}^4 w_i = 1$

Experiments

- Lack of datasets supporting composition with branching.
- Lack of comparable approaches that produce solutions with multiple output possibilities.

Experiments

Decision: Create datasets, execute for conditional compositions and also for each branch separately.

Parameters:

Independent runs	50	Elitism candidates	1
Population size	20	Tournament size	7
Crossover probability	0.9	Fitness weights	0.25 (all)
Mutation probability	0.1		

Creation of Datasets

Modified from WSC2008.

- Can be extended to contain QoS.
- Provides ontology of input and output values.

Tasks requiring branching were created.

	Conditional			
Set (size)	Avg. fitness	Avg. time (s)		
1 (158)	0.60 ± 0.01	1.29 ± 0.10		
2 (558)	0.71 ± 0.01	2.83 ± 0.25		
3 (604)	0.63 ± 0.01	13.29 ± 1.23		
4 (1041)	0.72 ± 0.05	6.15 ± 0.57		
5 (1090)	0.70 ± 0.01	11.76 ± 0.95		
6 (2198)	0.66 ± 0.02	92.39 ± 11.35		
7 (4113)	0.58 ± 0.01	97.34 ± 13.71		
8 (8119)	0.66 ± 0.01	326.39 ± 37.66		

Experiments 0000

	Non-conditional					
	If branch		Else branch			
Set (size)	Avg. fitness	Avg. time (s)	Avg. fitness	Avg. time (s)		
1 (158)	0.51 ± 0.00	0.56 ± 0.14	0.59 ± 0.04	0.72 ± 0.08		
2 (558)	0.59 ± 0.08	1.49 ± 0.53	0.69 ± 0.02	1.53 ± 0.19		
3 (604)	0.37 ± 0.00	4.39 ± 0.77	0.79 ± 0.00	7.10 ± 0.91		
4 (1041)	0.69 ± 0.06	4.51 ± 1.18	0.74 ± 0.43	3.57 ± 0.43		
5 (1090)	0.45 ± 0.00	5.73 ± 0.76	0.69 ± 0.01	6.49 ± 0.74		
6 (2198)	0.41 ± 0.06	58.30 ± 12.77	0.65 ± 0.02	52.31 ± 5.79		
7 (4113)	0.36 ± 0.00	44.84 ± 5.93	0.69 ± 0.03	51.73 ± 4.26		
8 (8119)	0.47 ± 0.00	106.12 ± 7.15	0.77 ± 0.00	186.90 ± 20.01		

Solution Example

Conclusions

Novel approach addresses three composition dimensions simultaneously (fully feasible, contain branches, quality-optimised).

 Solutions found with similar performance as non-branching technique.

Future work: More than two branches, more complex branching conditions, analysis of convergence behaviour.

Thank you!

Questions?

Conclusions