Spring Force Activity

Siddharth Nema

Partner: Andy Zhang

SPH4U0 | Ms. Ally

April 14, 2022

1 Observations

Table 1: Force and Displacement Data for Two Springs

Mass (kg)	Force (N)	$\begin{array}{c} \text{Spring A} \\ \text{Displacement (cm)} \end{array}$	Spring B Displacement (cm)
0.20	1.96	2.20	0.270
0.40	3.92	10.3	0.450
0.60	5.67	19.1	0.920
0.80	7.85	28.1	1.43
1.0	9.81	37.6	1.91
1.2	11.8	45.1	2.40

2 Analysis

Figure 1: Force Vs. Displacement for Spring A

Figure 2: Force Vs. Displacement for Spring B

1. Calculating Slope of Each Graph:

(a) Spring A

The trendline's equation for Spring A is: y = 0.225x + 1.48

 \therefore The slope of trendline is 0.225.

(b) Spring B

The trendline's equation for Spring B is: y = 4.38x + 1.44

 \therefore The slope of trendline is 4.38.

2. Relationship Between Force and Displacement:

There is a linear relationship between force and displacement, where force is directly proportional to displacement $(\vec{F} \propto \vec{\Delta d})$.

3. Physical Quantity the Slope Represents:

The physical quantity the slope represents is the spring constant, which determines the stiffness of the spring. The two springs have different values because each spring has a different spring constant, where a higher slope value represents a stiffer spring. This holds true because Spring B has a larger slope than Spring A, meaning it is more stiff, evident through Spring B's smaller displacement values.

4. Equation of Line from Proportionality Statement:

Let k represent the slope of the line.

$$\vec{F} = k\vec{\Delta d}$$

5. Properties of an "Ideal Spring":