Syntax Analysis – Part VI

(LR(1) Parsing)

Yongjun Park
Hanyang University

From Last Time: LR(1) Parsing

- Get as much as possible out of 1 lookahead symbol parsing table
- LR(1) grammar = recognizable by a shift/reduce parser with 1 lookahead
- LR(1) parsing uses similar concepts as LR(0)
 - Parser states = set of items
 - LR(1) item = LR(0) item + lookahead symbol possibly following production
 - LR(0) item: $S \rightarrow .S + E$
 - LR(1) item: $S \rightarrow .S + E_{,+}$
 - Lookahead only has impact upon REDUCE operations, apply when lookahead = next input

LR(1) States

- LR(1) state = set of LR(1) items
- LR(1) item = $(X \rightarrow \alpha . \beta , y)$
 - Meaning: α already matched at top of the stack, next expect to see β y
- Shorthand notation

$$-(X \rightarrow \alpha . \beta, \{x1, ..., xn\})$$

- means:

•
$$(X \rightarrow \alpha . \beta, x1)$$

- . . .
- $(X \rightarrow \alpha . \beta, xn)$

$$S \rightarrow S.+E +,$$$

 $S \rightarrow S+.E$ num

LR(1) Closure

- LR(1) closure operation:
 - Start with Closure(S) = S
 - For each item in S:
 - $X \rightarrow \alpha . Y \beta , z$
 - and for each production Y $\rightarrow \gamma$, add the following item to the closure of S: Y $\rightarrow . \gamma$, FIRST(βz)
 - Repeat until nothing changes
- Similar to LR(0) closure, but also keeps track of lookahead symbol

LR(1) Start State

- Initial state: start with (S' → . S , \$), then apply closure operation
- Example: sum grammar

$$S' \rightarrow S \$$$

 $S \rightarrow E + S \mid E$
 $E \rightarrow num$

$$S' \rightarrow ... S$$
, \$

$$S' \rightarrow .S, \$$$

 $S \rightarrow .E + S, \$$
 $S \rightarrow .E, \$$
 $E \rightarrow .num, +, \$$

LR(1) Goto Operation

- LR(1) goto operation = describes transitions between
 LR(1) states
- Algorithm: for a state S and a symbol Y (as before)
 - If the item [X $\rightarrow \alpha$. Y β] is in I, then
 - Goto(I, Y) = Closure([X $\rightarrow \alpha$ Y $\cdot \beta$])

S1

$$S \rightarrow E.+S, \$$$

 $S \rightarrow E., \$$

Goto(S1, '+')

S2

Closure($\{S \rightarrow E + . S, \$\}$)

Grammar:

$$S' \rightarrow S\$$$

 $S \rightarrow E + S \mid E$
 $E \rightarrow num$

Class Problem

```
1. Compute: Closure(I = \{S \rightarrow E + ... S, \$\})
```

2. Compute: Goto(I, num)

$$S \rightarrow E + S \mid E$$

$$E \rightarrow num$$

LR(1) DFA Construction

$$\frac{\text{Grammar}}{\text{S'} \rightarrow \text{S}}$$
S \rightarrow E + S | E
E \rightarrow num

LR(1) Reductions

• Reductions correspond to LR(1) items of the form (X $\rightarrow \gamma$, y)

LR(1) Parsing Table Construction

- Same as construction of LR(0), except for reductions
- For a transition S → S' on terminal x:
 - Table[S,x] += Shift(S')
- For a transition S → S' on non-terminal N:
 - Table[S,N] += Goto(S')
- If I contains $\{(X \rightarrow \gamma ., y)\}$ then:
 - Table[I,y] += Reduce(X $\rightarrow \gamma$)

LR(1) Parsing Table Example

 $\frac{\text{Grammar}}{\text{S'} \rightarrow \text{S}}$ S \rightarrow E + S | E
E \rightarrow num

Fragment of the parsing table

	+	\$	E
1			g2
2	s3	S→E	

Class Problem

Compute the LR(1) DFA for the following grammar

$$E \rightarrow E + T | T$$

 $T \rightarrow TF | F$
 $F \rightarrow F^* | a | b$

LALR(1) Grammars

- Problem with LR(1): too many states
- LALR(1) parsing (aka LookAhead LR)
 - Constructs LR(1) DFA and then merge any 2 LR(1) states whose items are identical except lookahead
 - Results in smaller parser tables
 - Theoretically less powerful than LR(1)

$$\begin{vmatrix}
S \rightarrow id., + \\
S \rightarrow E., & +
\end{vmatrix}$$
+ $\begin{vmatrix}
S \rightarrow id., & \\
S \rightarrow E., +
\end{vmatrix}$ = ??

 LALR(1) grammar = a grammar whose LALR(1) parsing table has no conflicts

LALR Parsers

• LALR(1)

- Generally same number of states as SLR (much less than LR(1))
- But, with same lookahead capability of LR(1) (much better than SLR)
- Example: Pascal programming language
 - In SLR, several hundred states
 - In LR(1), several thousand states

LL/LR Grammar Summary

LL parsing tables

- Non-terminals x terminals → productions
- Computed using FIRST/FOLLOW

LR parsing tables

- LR states x terminals → {shift/reduce}
- LR states x non-terminals → goto
- Computed using closure/goto operations on LR states

A grammar is:

- LL(1) if its LL(1) parsing table has no conflicts
- same for LR(0), SLR, LALR(1), LR(1)

Classification of Grammars

$$LR(k) \subseteq LR(k+1)$$

 $LL(k) \subseteq LL(k+0)$

$$LL(k) \subseteq LR(k)$$

 $LR(0) \subseteq SLR$
 $LALR(1) \subseteq LR(1)$

not to scale ©

Automate the Parsing Process

Can automate:

- The construction of LR parsing tables
- The construction of shift-reduce parsers based on these parsing tables

• LALR(1) parser generators

- yacc, bison
- Not much difference compared to LR(1) in practice
- Smaller parsing tables than LR(1)
- Augment LALR(1) grammar specification with declarations of precedence, associativity
- Output: LALR(1) parser program

Associativity

$$S \rightarrow S + E \mid E$$

E \rightarrow num

$$E \rightarrow E + E$$

 $E \rightarrow num$

What happens if we run this grammar through LALR construction?

$$E \rightarrow E + E$$

 $E \rightarrow num$

$$E \rightarrow E + E \cdot , +$$

$$E \rightarrow E \cdot + E \cdot , +, \$$$

shift/reduce conflict

reduce: (1+2)+3

Associativity (2)

If an operator is left associative

- Assign a slightly higher value to its precedence if it is on the parse stack than if it is in the input stream
- Since stack precedence is higher, reduce will take priority (which is correct for left associative)

If operator is right associative

- Assign a slightly higher value if it is in the input stream
- Since input stream is higher, shift will take priority (which is correct for right associative)

Precedence

$$E \rightarrow E + E \mid T$$

T \rightarrow T x T | num | (E)

$$E \rightarrow E + E \mid E \times E \mid num \mid (E)$$

What happens if we run this grammar through LALR construction?

$$E \rightarrow E.+E, ...$$

 $E \rightarrow E \times E., +$

$$E \rightarrow E + E ., x$$

 $E \rightarrow E . x E, ...$

Shift/reduce conflict results

Precedence: attach precedence indicators to terminals Shift/reduce conflict resolved by:

- 1. If precedence of the input token is greater than the last terminal on parse stack, favor shift over reduce
- 2. If the precedence of the input token is less than or equal to the last terminal on the parse stack, favor reduce over shift

Abstract Syntax Tree (AST) - Review

- Derivation = sequence of applied productions
 - $-S \rightarrow E+S \rightarrow 1+S \rightarrow 1+E$ $\rightarrow 1+2$
- Parse tree = graph representation of a derivation
 - Doesn't capture the order of applying the productions
- AST discards unnecessary information from the parse tree

Implicit AST Construction

- LL/LR parsing techniques implicitly build AST
- The parse tree is captured in the derivation
 - LL parsing: AST represented by applied productions
 - LR parsing: AST represented by applied reductions
- We want to explicitly construct the AST during the parsing phase

AST Construction - LL

LL parsing: extend procedures for non-terminals

```
S \rightarrow ES'

S' \rightarrow \varepsilon \mid +S

E \rightarrow \text{num} \mid (S)
```

```
void parse_S() {
    switch (token) {
        case num: case '(':
            parse_E();
            parse_S'();
            return;
            default:
                 ParseError();
        }
}
```


AST Construction - LR

- We again need to add code for explicit AST construction
- AST construction mechanism
 - Store parts of the tree on the stack
 - For each nonterminal symbol X on stack, also store the sub-tree rooted at X on stack
 - Whenever the parser performs a reduce operation for a production X $\rightarrow \gamma$, create an AST node for X

AST Construction for LR - Example

$$S \rightarrow E + S \mid S$$

 $E \rightarrow num \mid (S)$

Before reduction: $S \rightarrow E + S$

input string: "1 + 2 + 3"

After reduction: $S \rightarrow E + S$

Problems

- Unstructured code: mixing parsing code with AST construction code
- Automatic parser generators
 - The generated parser needs to contain AST construction code
 - How to construct a customized AST data structure using an automatic parser generator?
- May want to perform other actions concurrently with parsing phase
 - E.g., semantic checks
 - This can reduce the number of compiler passes

Syntax-Directed Definition

Solution: Syntax-directed definition

- Extends each grammar production with an associated semantic action (code):
 - $S \rightarrow E + S \{action\}$
- The parser generator adds these actions into the generated parser
- Each action is executed when the corresponding production is reduced

Semantic Actions

- Actions = C code (for bison/yacc)
- The actions access the parser stack
 - Parser generators extend the stack of symbols with entries for user-defined structures (e.g., parse trees)
- The action code should be able to refer to the grammar symbols in the productions
 - Need to refer to multiple occurrences of the same nonterminal symbol, distinguish RHS vs LHS occurrence
 - $E \rightarrow E + E$
 - Use dollar variables in yacc/bison (\$\$, \$1, \$2, etc.)
 - expr ::= expr PLUS expr {\$\$ = \$1 + \$3;}

Building the AST

- Use semantic actions to build the AST
- AST is built bottom-up along with parsing

```
Recall: User-defined type for objects on the stack (%union)
```