

PESQUISA OPERACIONAL

Prof. Anand Subramanian

Projeto:

Implementação do problema do Caixeiro Viajante com Janela de Tempo

Problemática

Uma empresa de prestação de serviço de fonoaudiologia, estabelecida na cidade de Campina Grande, realiza atendimento, em domicílio, de vários pacientes;

Cada paciente tem seus horários específicos com pouca ou, às vezes, nenhuma flexibilidade dos horários;

Deseja-se estabelecer a melhor rota, com menor tempo de deslocamento, de forma que se possa atender todos os pacientes.

Modelo matemático

Representação do modelo matemático

$$\begin{aligned} & \text{Min} \sum_{i=1,\,i\neq j,\,\,\,j=1}^{n} \sum_{j=1}^{n} c_{ij} \, x_{ij} \end{aligned} \qquad \begin{aligned} & \text{Minimizar o somatório das rotas, de um ponto } i \, \text{para} \, j \, ; \\ & i, j - \text{vértices das localidades} \\ & n - \text{número de pacientes (localidades) a serem visitados;} \end{aligned} \\ & x_{ij} \end{aligned} \qquad \begin{aligned} & \text{1 se o profissional vai de } i \, \text{para} \, j \\ & \text{0, nao vai} \end{aligned} \\ & c_{ij} \end{aligned} \qquad \begin{aligned} & \text{1 se o profissional vai de } i \, \text{para} \, j \\ & \text{Neste exemplo será medido em minutos} \end{aligned} \\ & \sum_{i=1,\,i\neq j} x_{ij} = 1, \quad (j=1,...,n) \end{aligned} \qquad \begin{aligned} & \text{O profissional se desloca de } i \, \text{para} \, j \, \text{se } xij = 1 \end{aligned} \\ & \sum_{j=1,\,i\neq j} x_{ij} = 1, \quad (i=1,...,n) \end{aligned} \qquad \end{aligned} \qquad \end{aligned} \qquad \end{aligned} \\ & \text{O profissional se desloca de } j \, \text{para} \, i \, \text{se } xij = 1 \end{aligned}$$

1 se o profissional vai de *i* para *j* 0, nao vai

 C_{ij} custo de deslocamento de i para jNeste exemplo será medido em minutos

O profissional se desloca de i para j se xij = 1

O profissional se desloca de j para i se xij = 1

Modelo matemático

$$t_i + c_{ij} - (1 - x_{ij}) * M \le t_j$$

$$\forall (i, j) \in A, j \ne l$$

Estabelece uma ordem nas variáveis de tempo *ti* - variável de tempo que indica o início do atendimento do cliente i;

$$a_i \le t_i \le b_i \ i = 1, ..., n$$

Garante que o atendimento do paciente *i* seja dentro de sua janela de tempo (*ai*, *bi*)

$$M = max \{ M_{ij}; (i, j) \in A \}$$

$$M_{ij} = max \{ b_i + c_{ij} - a_j, 0 \}$$

$$\forall (i, j) \in A$$

M – método M grande, proposto por Desrochers e Laporte 1990

Resultados

Caixeiro Viajante Janela Tempo.mod					Caixeiro Viajante Janela Tempo.dat Valor para ro												
Vertices (tempoho 15)	Vertices (tamanho 15)																
Vertices (tamanho 15)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		
2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0		
3	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0		
4	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0		
5	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0		
6	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0		
7	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0		
8	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0		
9	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0		
10	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0		
11	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0		
12	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0		
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		
14	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Resultados

```
// solution (optimal) with objective 84
// Quality Incumbent solution:
// MILP objective
                                                  8.4000000000e+01
// MILP solution norm |x| (Total, Max)
                                                  5.14400e+03 6.50000e+02
// MILP solution error (Ax=b) (Total, Max)
                                                  0.00000e+00 0.00000e+00
// MILP x bound error (Total, Max)
                                                  0.00000e+00 0.00000e+00
// MILP x integrality error (Total, Max)
                                                  0.00000e+00 0.00000e+00
// MILP slack bound error (Total, Max)
                                                  0.00000e+00 0.00000e+00
//
rota = \lceil \lceil 0 \rceil
             1000000000000000
             [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
             [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
             [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
             [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
             [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
             [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
             [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
             [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
             [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
             [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
             [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
             [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
             [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
             t = [0\ 50\ 60\ 110\ 160\ 200\ 280\ 410\ 400\ 485\ 540\ 545\ 619\ 620\ 650];
```

Resultados

