Teoría de Números 2023

Lista 05

02.octubre.2023

- 1. Suponga que $b \equiv a^{67} \pmod{91}$ y que (a,91) = 1. Hallar un entero positivo k tal que $b^k \equiv a \pmod{91}$. Si $b \equiv 53 \pmod{91}$, ¿cuánto vale $a \pmod{91}$?
- 2. Sea m=pq producto de dos primos distintos, y sea $\varphi=\varphi(m)=(p-1)(q-1)$ el valor de la función totiente de Euler en m. Hallar una fórmula para p y para q en términos de m y φ .

Asumiendo que m=39,247,771 es producto de dos primos distintos, usar esta fórmula para encontrar p y q, sabiendo que $\varphi(m)=39,233,944$.

- 3. Muestre que si $d \mid n$, entonces $\varphi(d) \mid \varphi(n)$.
- 4. Usar el Lema de Hensel para hallar las 6 soluciones de la ecuación $x^2 + x + 7 \equiv 0 \pmod{189}$ que vimos en clase.
- 5. Resolver las congruencias
 - a) $x^5 + x^4 + 1 \equiv 0 \pmod{34}$,
 - b) $x^3 + x + 57 \equiv 0 \pmod{53}$,
 - c) $x^2 + 5x + 24 \equiv 0 \pmod{36}$,
 - d) $x^11 + x^8 + 5 \equiv 0 \pmod{7}$.
- 6. Haga una implementación en Python del método ρ de Pollard para hallar factores no triviales. Use este método, en conjunto con el test de Fermat (simple o fuerte), para hallar la factoración en primos de los siguiente números:
 - a) 8,131,
 - b) 16,019,
 - c) 199, 934, 971.