Mark Galesi

1. State Space

- a. Initial State
 - 1. If each of the three beakers is defined in a triplet as (a,b,c), a being the 8ml beaker, b being 5ml, and c being 3ml, then the initial state is (8,0,0)
- b. Goal State
 - 1. The goal state is defined as having 4ml of the solution in either beaker a or beaker b. Goal states are described as (1,4,3) or (4,1,3) or (4,4,0)
- c. Operators
 - 1. There are 6 total operators pouring from A to B, from A to C, from B to A, from B to C, from C to A, and from C to B. Each pour is performed by pouring contents from beaker X into beaker Y until either beaker X is empty, or beaker Y is full, whichever comes first.

2. Graph

а	Thora	aro	16	states
а.	1000	are	ıη	STATES

ű.		States				
	1.(8,0,	0)			9.(4,1,3)	
	2.(3,5,	0)			10.	(5,0,3)
	3.(3,2,				11.	(0,5,3)
					12.	
	4.(6,2,0)					(5,3,0)
5.(6,0,2)				13.	(2,3,3)	
6.(1,5,2)				14.	(2,5,1)	
7.(1,4,3)				15.	(7,0,1)	
	8.(4,4,	0)			16.	(7,1,0)
b.	And 54 arcs	•				,
	1. 800 to	503			28.	701 to 251
	2. 800 to	350			29.	701 to 503
	3. 503 to 800				30.	701 to 710
	4. 503 to 530				31.	710 to 701
	5. 503 to 053				32.	710 to 800
	6. 530 to 503				33.	710 to 413
	7. 530 to 800				34.	710 to 350
	8. 530 to 233				35.	620 to 800
	9. 530 to 350				36.	620 to 602
	10.	350 to 800			37.	620 to 323
	11.	350 to 053			38.	620 to 350
	12.	350 to 323			39.	602 to 620
	13.	053 to 350			40.	602 to 800
	14.	053 to 503			41.	602 to 152
	15.	323 to 053			42.	602 to 503
	16.	323 to 350			43.	152 to 350
	17.	323 to 503			44.	152 to 053
	18.	323 to 620			45.	152 to 602
	19.	233 to 530			46.	152 to 143
	20.	233 to 053			47.	143 to 152
	21.	233 to 503			48.	143 to 503
	22.	233 to 251			49.	143 to 053
	23.	251 to 701			50.	143 to 440
	24.	251 to 053			51.	440 to 413
	25.	251 to 233			52.	440 to 143
	26.	251 to 350			53.	440 to 800
	27.	701 to 800			54.	440 to 350

- 3. The shortest path to a goal state is 6 operations
 - a. (8,0,0)

1.A to B

b. (3,5,0)

1.B to C

c. (3,2,3)

1.C to A

d. (6,2,0)

1.B to C

e. (6,0,2)

1.A to B

f. (1,5,2)

1.B to C

g. (1,4,3)

- 4. (3,3,2)
 - a. The state (3,3,2) is an impossible state, there is no way to obtain that state with the current set of operators available, so if it is to be represented as a state, it is an island on the graph and cannot be reached.