Lecture 2.b Networking 1 Protocol Stacks

Dr. Gabriele Pierantoni 27.01.2020

Protocol Hierarchies

- Reduce the complexity of network communication design
- Organise network communication as a series of layers

Layers

- Layering the model allows us to solve a different problem at each layer.
 - Each layer builds on services of the layer below and offer its functionalities to other higher levels through an *interface*
 - Higher layers are shielded from lower level implementation details (transparency)
- Physical communication takes place at the lowest layer.
- Logically layer n on one machine carries on a conversation with layer n on another machine
 - Equivalent layers are known as peers
 - Notice though that the actual communication takes place down the layer stack
- Rules and conventions used in a logical conversation are called the layer n protocol

Layers

Headers 1

- Each entity may add some additional information intended only for its peer
 - Each translator may include translator's notes and clarifications, or if there are several translators working on either side, a translator name
 - Secretary may attach a cover sheet to the fax, or a greeting in the email message
- These extra pieces of information are stripped away by each peer on the other side before passing the message on to the higher layer

Protocol Suite/Stack

- A set of related protocols that are designed for compatibility is called a protocol suite
- Protocol suite designers:
 - Analyse communication problem
 - Divide problems into sub-problems
 - Design a protocol for each sub-problem
- A well-designed protocol suite
 - Is **efficient and effective** solves the problem without redundancy and makes the best use of network capacity
 - Allows replacement of individual protocols without changes to other protocols (this is called "modularity")

Why layering?

- Allows network designers to break up the complex issues in communication.
 - Explicit structure allows identification and modelling of the relationships of the pieces of a complex system
 - Generally we use the 7-layered OSI model as a reference model
 - Breaking communication task into modules eases maintenance and updating of systems
 - Change of implementation of any layers service should be transparent to rest of the system.
 - i.e. change in procedure in one layer shouldn't effect the rest of system.

OSI Reference Model

 The ISO have divided up these issues over a layered hierarchy of 7 levels called the ISO Open Systems Interconnection (OSI) Reference Model

OSI vs TCP/IP

Internet Protocol Stack (TCP/IP)

- Application: how one particular application uses the network. This Species
 details of how an application program on one machine makes a request and
 how the application machine responds.
- Transport: details of reliable data transfer between two hosts (perhaps distant)
 - Fragments incoming byte stream (from application layer) into segments and passes them to the internet layer (which routes them)
 - At the destination, the receiving TCP process reassembles the segments in to an output stream
 - Handles flow control fast sender cannot swamp a slow receiver
 - Congestion control: slows down if it detects network congestion
- Network: details of routing of datagrams from source to destination
 - Permit hosts to inject packets into any network and have them travel independently to the destination (often via another network)
 - Analogy with snail mail
 - IP, routing protocols

Internet Protocol Stack (TCP/IP)

- Link: Controls the link between adjacent nodes
 - Concerned with using physical layer to transmit chunks (frames) of information reliably from node to node
 - Handles sharing of the medium
 - Provides flow control and error handling
 - Provides frame transmission/reception service to the layer above it
- Physical: Implements a "bit pipe"
 - Provides unreliable bit transmission/reception service to layer above
 - Concerned with wiring and electrical standards