[P-ONE] Ongoing Roadmap

January 19, 2016

Contents

1	Introduction & Purpose	2
2	Literature Review	3
	2.1 Jarrow & Kwok (JoEctrcs, 2015)	
	- Specification tests of calibrated option pricing models	3
	2.1.1 Set-up & Notation	3
3	Modeling	7

1 Introduction & Purpose

Tentative Title:

Asymptotic properties of extremum estimators and latent states in option price panels

Broad goals:

- 1. Derive asymptotic distribution (consistency/bias/asymptotic distribution) for the parameters of an AJD.
- 2. Find a better way to do specification testing.
- 3. Apply framework for a couple of well-established AJD models.

Specific goals:

- 1. Derive consistency for estimator with latent vol state in SV (Heston) model.
- 2. Extend set-up to cover:
 - 1 noisy option price;
 - noisy option price panels;
 - several latent states states/extensions of SV model;

Roadmap:

Tentative: Express $v_t(C, \theta)$ analytically \longrightarrow compute derivative of moment condition analytically \longrightarrow derive asymptotic distribution for a generic extremum criterion function.

2 Literature Review

2.1 Jarrow & Kwok (JoEctrcs, 2015)

- Specification tests of calibrated option pricing models -

This paper proposes sets of assumptions under which the consistency and asymptotic distribution for estimators of option pricing model parameters can be established.¹ Most results are directly applicable for the Black-Scholes option pricing (uni-variate option pricing model with implied volatility as the estimated parameter).

Under the null assumption of a correctly specified model, statistical tests for misspecification are formulated for both the case in which the parameter estimate is obtained by inverting the option pricing function (e.g., backing out Black-Scholes implied volatility) and the case in which the parameter is estimated using a non-linear least squares procedure aimed at minimizing model pricing errors over a time-series of option prices.

Some of the assumptions needed for the asymptotics (notably in the set-up in which the option pricing function is inverted to obtain parameter estimates) are difficult to check, even in the univariate Black-Scholes set-up.

2.1.1 Set-up & Notation

We observe a panel of option prices over a cross-section of n options and a sample period [0, T]. Let $m_{it}(i = 1, ..., n; t = 1, ..., T)$ be the observed price of the ith option at time t, with strike price K_{it} and time to maturity τ_{it} . Suppose all options are written on the same underlying S_t , with dividend rate q_t . Let r_t denote the risk free interest rate. Collect all the observables in a vector $z_{it} = (K_{it}, \tau_{it}, S_t, q_t, r_t)$.

Modeler chooses a parametric option pricing model $M(\theta)$ indexed by a parameter θ so that $M_{it}(\theta) := M(\theta; z_{it})$ is the theoretical model price for the option.

Observed option prices m_t are assumed to be noisy, in the following sense:

$$m_t = \mathring{m}_t + v_t. (2.1)$$

 v_t denotes the observation noise.

A necessary assumption for the results to be derived is:

Assumption SM: The option pricing function $M_t(\theta)$ is strictly monotone in θ .

¹Sample counterparts of the asymptotic variance expressions would not constitute feasible estimators (?).

Error Minimization Calibration

 θ is assumed constant across the entire sample².

The modeler defines a loss function, e.g., L_2 with equal weights: $L_2 = \sum_{t=1}^{T} (M_t(\theta) - m_t)^2$, which it then minimizes w.r.t. θ to obtain an estimator based on the F.O.C.:

$$0 = \sum_{t=1}^{T} \underbrace{\frac{\partial M_t(\hat{\theta})}{\partial \theta}}_{:=\nabla_t(\hat{\theta})} (M_t(\hat{\theta}) - m_t)$$

$$= \sum_{t=1}^{T} \nabla_t(\hat{\theta}) \left(\underbrace{M_t(\theta_0) + \nabla_t(\tilde{\theta})^{\top}(\hat{\theta} - \theta_0)}_{\text{Taylor expansion of } M_t(\hat{\theta})} - m_t \right)$$

$$= \sum_{t=1}^{T} \nabla_t(\hat{\theta}) \left(M_t(\theta_0) + \nabla_t(\tilde{\theta})^{\top}(\hat{\theta} - \theta_0) - \underbrace{\mathring{m}_t + v_t}_{=m_t \text{ cf. (2.1)}} \right)$$

$$(2.2)$$

For this derivation to hold it is required that:

Assumption D: The model $M_t(\theta)$ is continuously differentiable in θ so that $\nabla_t = \nabla_t(\theta) := \frac{\partial M_t(\theta)}{\partial \theta}$ exists.

By further assuming:

Assumption H₀: No model misspecification, i.e. $\mathring{m}_t = M_t(\theta_0)$,

the F.O.C. in (2.2) further simplifies to:

$$0 = \sum_{t=1}^{T} \nabla_t(\hat{\theta}) \left(\nabla_t(\tilde{\theta})^{\top} (\hat{\theta} - \theta_0) - v_t \right)$$
$$\sum_{t=1}^{T} \nabla_t(\hat{\theta}) v_t = \sum_{t=1}^{T} \nabla_t(\hat{\theta}) \nabla_t(\tilde{\theta})^{\top} (\hat{\theta} - \theta_0)$$
(2.3)

Using the following additional assumptions:

Assumption SE: $\mathbb{E}(v_t|z) = 0$, $\forall t = 1, ..., T$, \mathbb{P} -a.s. or Assumption WE: $\mathbb{E}(v_t|z_t) = 0$, $\forall t = 1, ..., T$, \mathbb{P} -a.s.

Assumption LC: The model $M_t(\theta)$ is strictly convex in θ in a neighborhood around θ_0 .

²Latent state models are claimed to be accommodated within this framework (?).

³The cross-section i = 1, ..., n dimension of the option panel is dropped in the derivations(?).

Assumption PL_a^{errmin} : A uniform weak LLN applies to $\hat{S}_{\nabla\nabla} := \frac{1}{T} \sum_{t=1}^{T} \nabla_t(\theta) \nabla_t(\theta)^{\top}$ (for a=1) or $\hat{S}_{\nabla\nabla} := \frac{1}{T} \sum_{t=1}^{T} \sigma_t^2 \nabla_t(\theta) \nabla_t(\theta)^{\top}$ (for a=2), so that their probability limits $S_{\nabla\nabla}$ and $S_{\sigma^2\nabla\nabla}$ exist in a neighborhood Θ_0 of θ_0 . Furthermore, $S_{\nabla\nabla}$ is invertible.

the following theorems can be stated:

Theorem 1: Under Assumptions SE, LC, and H₀, $\hat{\theta}$ is biased "in finite samples", i.e., $\mathbb{E}(\hat{\theta}) \neq \theta_0$.

Theorem 2: Under Assumptions WE and H_0 , $\hat{\theta}$ is consistent in large samples, i.e., $\hat{\theta} \xrightarrow{p} \theta_0$ as $T \to \infty$.

Theorem 3: Under Assumptions WE, D, CV_a , PL_a^{errmin} (a=1,2) and H_0 , $\hat{\theta}$ is asymptotically normally distributed:

 $\sqrt{T}\left(\hat{\theta}-\theta_0\right) \stackrel{d}{\to} \mathrm{N}(0,V_a^{errmin})$ as $T\to\infty,$ with asymptotic variance:

$$V_a^{errmin} = \begin{cases} \sigma^2 S_{\nabla\nabla}^{-1}, & \text{for } a = 1. \\ S_{\nabla\nabla}^{-1} S_{\sigma^2 \nabla\nabla} S_{\nabla\nabla}^{-1}, & \text{for } a = 2. \end{cases}$$

Exact calibration

Exact calibration finds a solution for each t. The solution $\hat{\theta}_t$ varies across observations such that $\hat{\theta}_t$ satisfies for each t:

$$M_t(\hat{\theta}_t) = m_t = \mathring{m}_t + v_t \tag{2.4}$$

The estimator for θ_0 is then defined to be the sample mean of the calibrated parameters:

$$\bar{\theta} = \sum_{t=1}^{T} \hat{\theta}_{t}$$

$$= \sum_{t=1}^{T} M_{t}^{-1}(m_{t})$$

$$= \sum_{t=1}^{T} \left(\underbrace{M_{t}^{-1}(\mathring{m}_{t}) + \frac{\partial M_{t}^{-1}(\tilde{m}_{t})}{\partial m_{t}} (m_{t} - \mathring{m}_{t})}_{\text{Taylor expansion}} \right)$$

$$= \sum_{t=1}^{T} \left(M_{t}^{-1}(\mathring{m}_{t}) + \frac{\partial M_{t}^{-1}(\tilde{m}_{t})}{\partial m_{t}} v_{t} \right)$$

$$(2.5)$$

Further assuming H_0 (no misspecification) leads to the simplified expression for the estimator:

$$\bar{\theta} = \sum_{t=1}^{T} \theta_0 + \sum_{t=1}^{T} \frac{\partial M_t^{-1}(\tilde{m}_t)}{\partial m_t} v_t$$

$$= \theta_0 + \sum_{t=1}^{T} \frac{\partial M_t^{-1}(\tilde{m}_t)}{\partial m_t} v_t$$
(2.7)

The observation noise v_t is therefore transferred to the parameter space through this estimation approach.

3 Modeling