

WORKS FOR ME 1

Fluorescent image acquisition and processing using Axiovert 200M microscope and ImageJ software

COMMENTS 0

DOI

dx.doi.org/10.17504/protocols.io.ewov1o98plr2/v1

<u>Electra Brunialti</u>¹, Alessandro Maria Villa¹, Paolo Ciana¹

¹Department of Health Sciences, University of Milan , Milan, Italy

Electra Brunialti

ABSTRACT

Fluorescent image acquisition and processing using Axiovert 200M microscope and ImageJ software to analyze morphological and dynamic changes of primary fluorescent microglia.

DOI

dx.doi.org/10.17504/protocols.io.ewov1o98plr2/v1

PROTOCOL CITATION

Electra Brunialti, Alessandro Maria Villa, Paolo Ciana 2022. Fluorescent image acquisition and processing using Axiovert 200M microscope and ImageJ software. **protocols.io** https://dx.doi.org/10.17504/protocols.io.ewov1098plr2/v1

FUNDERS ACKNOWLEDGEMENT

4

The work was supported by the EU Joint Programme - Neurodegenerative Disease Research (JPND) project GBA-PaCTS, 01ED2005B

LICENSE

This is an open access protocol distributed under the terms of the <u>Creative Commons</u>

<u>Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Nov 24, 2022

LAST MODIFIED

Nov 24, 2022

PROTOCOL INTEGER ID

73221

Step 1: Acquire live microglia images using Axiovert 200M microscop

1

Citation: Electra Brunialti, Alessandro Maria Villa, Paolo Ciana Fluorescent image acquisition and processing using Axiovert 200M microscope and ImageJ software https://dx.doi.org/10.17504/protocols.io.ewov1098plr2/v1

1	Insert the cell culture plate in the microscope holder, and set chamber parameters: T 37°C and CO2 5%.
2	Using X20 magnification chose 20 random fields;
3	Set exposition of the fluorescent channel to have a sharp image of microglia bodies and branches;
4	Records the live fluorescent microglia for 2 h taking a picture every 5 min.
5	Save the recorded file as a ".zvi".
	Step 2: Elaborate the acquired images using Fiji software (ImageJ, N
6	Step 2: Elaborate the acquired images using Fiji software (ImageJ, No. 2009) Open ".zvi" file with Fiji software as hyperstack and tick the "split channel" option;
6	
	Open ".zvi" file with Fiji software as hyperstack and tick the "split channel" option;

10	apply despeckle function "Process > Noise > Despeckle" (identifier:legacy:ij.plugin.filter.RankFilters("despeckle"));
11	apply smoothing function "Process > Smooth" (identifier: legacy:ij.plugin.filter.Filters("smooth"));
12	set the measurement: "Analyze > Set Measurements" (identifier: legacy:ij.plugin.filter.Analyzer("set")), and tick "Area", "Center of Mass", "Feret's Diameter" and "Shape Descriptors";
13	for each microglia select the area that contains the microglia in each time-frames using "Edit › Options › Roi Defaults" (identifier:legacy:ij.gui.RoiDefaultsDialog);
14	run analyze particles "Analyze > Analyze Particles" (identifier:legacy:ij.plugin.filter.ParticleAnalyzer), set size (micron^2):130-infinity, circularity: 0.00-1.00; tick "display results";
15	process "all images";
16	copy the data in an Excell file;
17	repeat the steps from 13 to 16 for each microglia.
18	Among the "Shape Descriptors", keep the values of "Area", "Solidity", "FeretAngle", "XM" and "YM";
19	to calculate the distance covered by the cell during the time-lapse use the coordinates of the center of mass and sum the distance covered in each time frame assuming that the distance between frames corresponds to

	the cathetus of a right triangle made by X-axis and Y-axis displacement;
20	to calculate the rotation sum the "FeretAngle" taking into account that it is the angle among Ferret's diameter and parallel line to the cell contour only on x-axis;
21	calculate the median and the CV% of "Solidity" and "Area";
22	to perform the cluster analysis use each parameter obtained from the analysis; use the values of the vehicle and treated cells and identify the median parameter for the experiment;
23	use the identified median as a threshold to cluster the cells in two groups (over or under the median);
24	combine two parameters to generate four different clusters.