Pompe à palettes ★

C2-09

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe). De plus, on note :

- ► $G_1 = A$ le centre d'inertie du solide **1**, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}_1}$ sa matrice d'inertie ;
- ► G_2 le centre d'inertie du solide **2** tel que $\overrightarrow{BG_2} = -\ell \overrightarrow{i_1}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\Re_2}$ sa matrice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide **1**, $F_h \overrightarrow{i_1}$ l'action du fluide sur **2** (le fluide agissant sur les solides **1** et **2**). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice ??.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble 1+2.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble 1+2.

Question 4 Déterminer \mathscr{E}_c (1 + 2/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir .