DATA MINING

Data Mining

- The extraction of useful information from data
- The automated extraction of hidden predictive information from (large) databases
- Business, huge data bases, customer data, mine the data
 - Also Medical, Genetic, Astronomy, etc.
- Data often unlabeled unsupervised clustering, etc.
- Focuses on learning approaches which scale to massive amounts of data
 - and potentially to a large number of features
 - sometimes requires simpler algorithms with lower big-O complexities (and which are more intelligible)

Data Mining Applications

- Often seeks to give businesses a competitive advantage
- Which customers should they target
 - For advertising more focused campaign
 - Customers they most/least want to keep
 - Most favorable business decisions

Associations

- Which products should/should not be on the same shelf
- Which products should be advertised together
- Which products should be bundled

Information Brokers

Make transaction information available to others who are seeking advantages

Data Mining

- Basically, a particular niche of machine learning applications
 - Focused on business and other large data problems
 - Focused on problems with huge amounts of data which needs to be manipulated in order to make effective inferences
 - "Mine" for "gems" of actionable information

Data Mining Popularity

- Recent Data Mining explosion based on;
- Data available Transactions recorded in data warehouses
 - From these warehouses specific databases for the goal task can be created
- Algorithms available Machine Learning and Statistics
 - Including special purpose Data Mining software products to make it easier for people to work through the entire data mining cycle
- Computing power available
- Competitiveness of modern business need an edge

Data Mining Process Model

- You will use much of this process in your group project
- 1. Identify and define the task (e.g. business problem)
- 2. Gather and Prepare the Data
 - Build Data Base for the task
 - Select/Transform/Derive features
 - Analyze and Clean the Data, remove outliers, etc.
- 3. Build and Evaluate the Model(s) Using training and test data
- 4. Deploy the Model(s) and Evaluate business related Results
 - Data visualization tools
- 5. Iterate through this process to gain continual improvements both initially and during life of task
 - Improve/adjust features and/or machine learning approach

Data Mining Process Model - Cycle

Monitor, Evaluate, and update deployment

Data Science and Big Data

- Interdisciplinary field about scientific methods, processes and systems to extract knowledge or insights from data
 - Machine Learning
 - Statistics/Math
 - CS/Database/Algorithms
 - Visualization
 - Parallel Processing
 - Etc.
- Increasing demand in industry!
- New DS emphasis in BYU CS began Fall 2019

Data Warehouses

- Companies have large data warehouses of transactions
 - Records of sales at a store
 - On-line shopping
 - Credit card usage
 - Phone calls made and received
 - Visits and navigation of web sites, etc...
- Many/Most things recorded these days and there is potential information that can be mined to gain business improvements
 - For better customer service/support and/or profits

Association Analysis – Link Analysis

- Used to discover relationships in large databases
- Relationships represented as association rules
 - Unsupervised learning, any data set
- One example is *market basket analysis* which seeks to understand more about what items are bought together
 - This can then lead to improved approaches for advertising, product placement, etc.
 - Example Association Rule: $\{Cereal\}$ ⇒ $\{Milk\}$

Transaction ID and Info	Items Bought
1 who, when, etc.	{Ice cream, milk, eggs, cereal}
2	{Ice cream}
3	{milk, cereal, sugar}
4	{eggs, yogurt, sugar}
5	{Ice cream, milk, cereal}

Association Discovery

- Association rules are not causal, show correlations
- *k*-item set is a subset of the possible items {Milk, Eggs} is a 2-item set
- Which item sets does transaction 3 contain
- Association Analysis/Discovery seeks to find frequent item sets

TID	Items Bought
1	{Ice cream, milk, eggs, cereal}
2	{Ice cream}
3	{milk, cereal, sugar}
4	{eggs, yogurt, sugar}
5	{Ice cream, milk, cereal}

The Big Picture: DBs, DWH, OLAP & DM

Summary

- Association Analysis useful in many real world tasks
 - Not a classification approach, but a way to understand relationships in data and use this knowledge to advantage
- Also standard classification and other approaches
- Data Mining continues to grow as a field
 - Data and features issues
 - Gathering, selection and transformation, preparation, cleaning, storing
 - Data visualization and understanding
 - Outlier detection and handling
 - Time series prediction
 - Web mining
 - etc.

Group Projects

- Review timing and expectations
 - Proposal due Friday May 30th
 - Project
 - Gathering, cleaning, transforming the data can be the most critical part of the project, so get that going ASAP!
 - Plenty of time to try some different ML models and some iterations on your features and/or ML models to get improvements.
 - Final report
- Questions?