1a)
$$M_0 = \frac{1}{\sum_{i=1}^{n} T_i} \sum_{i=1}^{\infty} \frac{T_i}{t^{-1}} Y_{i+}$$
 average across all observations,
$$= \frac{\sum_{i=1}^{n} T_i}{\sum_{i=1}^{n} T_i'} Y_i = M_{OLS}$$

$$= \frac{\sum_{i=1}^{n} T_i'}{\sum_{i=1}^{n} T_i'} \frac{1}{1}$$

(b)
$$\hat{U}_{IV} = \frac{\sum_{i=1}^{n} z_{i}^{i} Y_{i}}{\sum_{i=1}^{n} z_{i}^{i} 1_{i}}$$

$$= \frac{\sum_{i=1}^{n} z_{i}^{i} (M_{0} + \kappa_{i} 1_{i} + \epsilon_{i})}{\sum_{i=1}^{n} z_{i}^{i} 1_{i}}$$

$$= M_{0} + \frac{\sum_{i=1}^{n} z_{i}^{i} (\kappa_{i} 1_{i} + \epsilon_{i})}{\sum_{i=1}^{n} z_{i}^{i} 1_{i}}$$

$$\frac{\sum_{i=1}^{n} z_{i}^{1} \mathbf{1}_{i}}{\sum_{i=1}^{n} z_{i}^{1} \mathbf{var} (\kappa_{i} \mathbf{1}_{i} + \epsilon_{i}) \mathbf{2}_{i}}$$

$$= \sum_{i=1}^{n} z_{i}^{1} \mathbf{var} (\kappa_{i} \mathbf{1}_{i} + \epsilon_{i}) \mathbf{2}_{i}$$

$$(\sum_{i=1}^{n} z_{i}^{1} \mathbf{1}_{i})^{2}$$

=
$$\sum_{i=1}^{n} \frac{2i^{i} \Omega_{i} \cdot 2i}{2i^{2} \cdot 2i^{2} \cdot 1i^{2}}$$
, where

1c) Using cauchy Schwarz:

$$2i'1_i = 2i \Omega_i'^2 \Omega_i'^2 1_i \leq ||\Omega_i'^2 2i|| ||\Omega_i'^2 1_i||$$
and

 $(\sum_{i=1}^{n} z_i' 1_i)^2 \leq (\sum_{i=1}^{n} ||\Omega_i'^2 2_i|| ||\Omega_i'^2 1_i||)^2$
 $\leq \sum_{i=1}^{n} z_i' \Omega_i z_i \cdot \sum_{i=1}^{n} 1_i' \Omega_i' 1_i$

$$Var(\hat{M}_{1V}) = \frac{\sum_{i=1}^{n} z_{i}^{2} \cdot \Omega_{i} z_{i}}{(2_{i=1}^{n} z_{i}^{2} \cdot 1_{i})^{2}}$$

Let
$$\tilde{Z} = \Omega_i^{-1} 1_i$$
. Then the instrument has the variance
$$\frac{\sum_{i=1}^{n} \tilde{Z}_i^{-1} \Omega_i^{-1} \tilde{Z}_i}{\left(\sum_{i=1}^{n} \tilde{Z}_i^{-1} 1_i^{-1}\right)^2} = \frac{\sum_{i=1}^{n} 1_i^{-1} \Omega_i^{-1} 1_i}{\left(\sum_{i=1}^{n} 1_i^{-1} \Omega_i^{-1} 1_i\right)^2} = \frac{1}{\sum_{i=1}^{n} 1_i^{-1} \Omega_i^{-1} 1_i}$$

Id) Let
$$T_i = T$$
 for all 1. Using the Sherman Morrison formula,
$$\Omega_i^{-1} = \frac{1}{\sigma^2} \left(\frac{T_{\tau_i} - T_i \sigma_a^2}{T_i \sigma_a^2 + \sigma^2} \frac{1_i 1_i^{\prime}}{T_i} \right)$$

$$\Omega_{i}^{-1} = \underbrace{1}_{\sigma^{2}} \left(T_{Ti} - \underbrace{Ti \sigma_{\alpha}^{2}}_{Ti} \underbrace{1_{i} 1_{i}^{1}}_{Ti \sigma_{\alpha}^{2} + \sigma^{2}} \underbrace{Ti}_{Ti} \right)$$

$$So_{1} \quad \widetilde{Z}_{i} = \underbrace{\Omega_{i}^{-1} 1_{i}}_{\sigma^{2}} = \underbrace{1_{i}}_{\sigma^{2}} \left(1 - \underbrace{Ti \sigma_{\alpha}^{2}}_{Ti \sigma_{\alpha}^{2} + \sigma^{2}} \right) = \underbrace{1_{i}}_{Ti \sigma_{\alpha}^{2} + \sigma^{2}} = \underbrace{1_{i}}_{Ti \sigma_{\alpha}^{2} + \sigma^{2}} \underbrace{Ti \sigma_{\alpha}^{2} + \sigma^{2}}_{Ti \sigma_{\alpha}^{2} + \sigma^{2}}$$

Then
$$\hat{\mathcal{U}}_{GUS} = \frac{\sum_{i=1}^{n} \tilde{z}_{i} Y_{i}}{\sum_{i=1}^{n} \tilde{z}_{i}^{2} I_{1}}$$

$$= \frac{\sum_{i=1}^{n} \frac{\tilde{z}_{i}^{2} Y_{i}}{Y_{i}^{2} + \rho^{2}} \frac{1}{1} Y_{i}}{\sum_{i=1}^{n} \frac{\tilde{z}_{i}^{2} Y_{i}}{Y_{i}^{2} + \rho^{2}} \frac{1}{1} I_{1}}$$

Thus GLS and OLS are the same estimators when Ti=T for all i, GLS is not more efficient than OLS.

1e) Let
$$E_{i} = \frac{1}{T_{i}} \sum_{k=1}^{T_{i}} E_{ik}$$
. Then,
$$\hat{O}_{i}^{2} = \frac{1}{T_{i-1}} \sum_{k=1}^{T_{i}} (Y_{ik} - \overline{Y}_{i})^{2}$$

$$= \frac{1}{T_{i-1}} \sum_{k=1}^{T_{i}} (E_{ik} - \overline{E}_{i})^{2}$$

$$= \frac{1}{T_{i-1}} \sum_{k=1}^{T_{i}} (E_{ik} - \overline{E}_{i}) E_{ik}$$

$$= \frac{1}{T_{i-1}} \sum_{k=1}^{T_{i}} E_{ik}^{2} - \frac{1}{T_{i}(T_{i-1})} \sum_{k=1}^{T_{i}} \sum_{g \in I} E_{ik} E_{ik}$$

$$= \frac{1}{T_{i}} \sum_{k=1}^{T_{i}} E_{ik}^{2} - \frac{1}{T_{i}(T_{i-1})} \sum_{k=1}^{T_{i}} \sum_{g \in I} E_{ik} E_{ik}$$

$$= \frac{1}{T_{i}} \sum_{k=1}^{T_{i}} E_{ik}^{2} - \frac{1}{T_{i}(T_{i-1})} \sum_{k=1}^{T_{i}} E_{ik} E_{ik}$$
Note $E[E_{is} E_{ik}] = \sigma^{2} 1(s=t)$ is unbiased because $E[\hat{O}_{i}^{2}] = E[\frac{1}{T_{i}} \sum_{k=1}^{T_{i}} E_{ik}^{2} - \frac{1}{T_{i}(T_{i-1})} \sum_{k=1}^{T_{i}} E_{ik} E_{ik}]$

$$= \frac{1}{T_{i}} \sum_{k=1}^{T_{i}} \sigma^{2} - \frac{1}{T_{i}(T_{i-1})} \sum_{k=1}^{T_{i}} \sum_{k=1}^{T_{i}} \sigma^{2} e^{2}$$

$$= \frac{1}{T_{i}} \sum_{k=1}^{T_{i}} \sigma^{2} - \frac{1}{T_{i}(T_{i-1})} \sum_{k=1}^{T_{i}} \sum_{k=1}^{T_{i}} \sigma^{2} e^{2}$$

$$= \frac{1}{T_{i}} \sum_{k=1}^{T_{i}} \sigma^{2} - \frac{1}{T_{i}(T_{i-1})} \sum_{k=1}^{T_{i}} \sum_{k=1}^{T_{i}} \sigma^{2} e^{2}$$

$$= \frac{1}{T_{i}} \sum_{k=1}^{T_{i}} \sigma^{2} - \frac{1}{T_{i}(T_{i-1})} \sum_{k=1}^{T_{i}} \sigma^{2} e^{2}$$

 $\hat{\sigma}^2$ is unbiased since it is an average of independent unbiased estimators. Further, since $\hat{\sigma}^2$ is an average of independent random variables, $Var(\hat{\sigma}_i^2)$ is bounded and consistent.

$$\begin{aligned} \hat{f} = \frac{1}{T_{i}} \sum_{t=1}^{T_{i}} (Y_{1t} - M_{0})^{2} \\ &= \frac{1}{T_{i}} \sum_{t=1}^{T_{i}} (\chi_{i} + \xi_{it})^{2} \\ &= \chi_{i}^{2} + \frac{1}{T_{i}} \sum_{t=1}^{T_{i}} (2\chi_{i} \xi_{it} + \xi_{it}^{2}) \end{aligned}$$

continued on next page.

Note,
$$E[\alpha_i \in \beta_i] = 0$$
. So,

$$E[\hat{\sigma}_{\alpha_i}^2 (M_0) + \hat{\sigma}_{\epsilon_i}^2] = E\left[\alpha_i^2 + \frac{1}{T_i} \sum_{t=1}^{T_i} (2\alpha_i \in \beta_t + \epsilon_{it}^2)\right]$$

$$= g_{\mu}^2 + g^2$$

Along with part e, this shows that
$$\hat{\sigma}_{e,i}^2(\mu_0)$$
 is unbiased.

= Bo + E [Z + Xi+ Si+] - E [Z + Xi Ei+]

= $\delta_0 - E\left[Z_{t=1}^T \overline{X}_i E_{it}\right]$ Note $\overline{X} = \frac{\sum_{s=1}^T X_{is}}{T}$

= B. - E[Zt= Zs= Xis Eit] Xit= SEi,t-1 + Wit

E[Xis &it] = 8 5x 1 25=++13

Let
$$\hat{V} = \left(\sum_{i=1}^{n} \frac{T_i}{T_i \hat{s}_{\alpha}^2 + \hat{\sigma}^2}\right)^{-1}$$
 be an estimator for

2a)
$$\hat{\beta}_{FE} \rightarrow_{p} B_{o} + \frac{E\left[\sum_{t=1}^{T} (x_{it} - \bar{x}_{i}) \epsilon_{W}\right]}{E\left[\sum_{t=1}^{T} (x_{it} - \bar{x}_{i})^{2}\right]}$$

 $\frac{= \beta_0 - (T-1) \xi \sigma_X^2}{T(T-1) \sigma_X^2}$

continued on next page.

$$\left[\hat{\sigma}_{\kappa_{i}}^{2}\left(\mu_{0}\right)+\hat{\sigma}_{\varepsilon_{i}}^{2}\right]=E$$

2a)
$$\beta_{FD} \rightarrow \rho$$
 $\beta_0 + E[\Sigma_{t=2}^T (X_{ib} - X_{i_1t-1})(\xi_{ib} - \xi_{i_1b-1})]$

$$= [\Sigma_{t=2}^T (X_{ib} - X_{i_1t-1})^2]$$

$$= \beta_0 + E[\Sigma_{t=2}^T X_{ib} \xi_{ib} - X_{ib} \xi_{i_1b-1} - X_{i_1t-1} \xi_{ib} + \xi_{ib} \xi_{i_1b-1}]$$

$$= [\Sigma_{t=2}^T X_{ib}^2 - 2X_{ib} X_{i_1b-1} + X_{i_1b-1}^2]$$

$$= \beta_0 - \frac{(T-1)\delta\sigma_X^2}{2(T-1)\sigma_X^2}$$

$$= \beta_0 - \xi$$

$$= \beta \circ - \frac{8}{2}$$

2b) The asymptotic biases are the same if T=2

Question 3

Part A

	FE	OLS	δ_2	δ_3	δ_4	Robust LB	Robust UB	Cluster LB	Cluster UB
$\phi = 0, n = 40$	1.2214	2.3122	1.2101	0.73138	0.76984	0.68019	1.7627	0.72118	1.7217
$\phi = 0.8, n = 40$	1.3523	2.8034	0.77108	0.66489	0.60957	0.79652	1.908	0.49682	2.2077
$\phi = 0, n = 70$	0.66709	2.5265	0.95294	1.0104	1.0177	0.21289	1.1213	0.077479	1.2567
$\phi = 0.8, n = 70$	1.7096	3.7238	0.87402	0.62422	0.77745	1.2558	2.1633	1.0825	2.3366
$\phi = 0, n = 100$	0.84789	2.7105	0.98069	0.93457	1.1414	0.40468	1.2911	0.3488	1.347
$\phi = 0.8, n = 100$	0.97849	2.787	0.88999	0.87126	0.87842	0.66157	1.2954	0.49966	1.4573

Part B Simulations

			Robust	Cluster
	FE	OLS	Coverage	Coverage
$\phi = 0, n = 40$	1.019	2.6498	0.92	0.95
$\phi = 0.8, n = 40$	0.93012	2.5386	0.76	0.92
$\phi = 0, n = 70$	1.0452	2.7123	0.92	0.95
$\phi = 0.8, n = 70$	0.93225	2.729	0.87	0.96
$\phi = 0, n = 100$	0.97549	2.6976	0.85	0.89
$\phi = 0.8, n = 100$	1.0115	2.6827	0.81	0.92

30)

As we can see, the fixed effects estimator is unbiased, however the Ocs estimates are severely biased upwards. We can also see the clustered standard errors nave higher coverage, especially for higher values of the autoregressive parameter.