CS202: COMPUTER ORGANIZATION

Chapter 5

Large and Fast: Exploiting Memory Hierarchy

Memory Hierarchy

Various storage devices in computers:

Registers 1KB 1 cycle L1 data or instruction
Cache
32KB
2 cycles

L2 cache 2MB 15 cycles Memory 1GB 300 cycles

Disk 80 GB 10M cycles

Larger, slower, cheaper, denser

Memory Technology

 Access time and price per bit vary widely among different technologies

Memory technology	Typical access time	\$ per GiB in 2012
SRAM semiconductor memory	0.5–2.5 ns	\$500-\$1000
DRAM semiconductor memory	50–70 ns	\$10-\$20
Flash semiconductor memory	5,000–50,000 ns	\$0.75-\$1.00
Magnetic disk	5,000,000-20,000,000 ns	\$0.05-\$0.10

Data in 2012

- Ideal memory
 - Access time of Cache
 - Capacity and cost/GB of disk

Outline

- Cache (CPU ← → memory)
 - Direct mapped cache
 - Set associative cache
 - Multi-level cache
- Virtual memory (memory ← → disk)
- Dependable memory
- Real examples

Cache Hierarchies

- Data and instructions are stored on DRAM chips
 - DRAM is a technology that has high bit density, but relatively poor latency
 - an access to data in memory can take as many as 300 cycles!
- Hence, some data is stored on the processor in a structure called the cache
 - caches employ SRAM technology, which is faster, but has lower bit density
- Internet browsers also cache web pages same concept

Memory hierarchy

- Store everything on disk initially
- Copy recently accessed (and nearby) items from disk to smaller DRAM memory
 - Main memory
- Copy more recently accessed (and nearby) items from DRAM to smaller SRAM memory
 - Cache memory attached to CPU

Memory Hierarchy Levels

- The memory in upper level is originally empty
- If accessed data is absent
 - Miss: block copied from lower level
 - Time taken: miss penalty
 - Miss ratio: misses/accesses
 - Block (also called line): unit of copying
 - May be multiple words
 - If accessed data is present in upper level
 - Hit: access satisfied by upper level
 - Hit ratio: hits/accesses = 1 miss ratio
 - Then accessed data supplied from upper level

Locality

- Why do caches work?
 - ◆ Temporal locality: if you used some data recently, you will likely use it again a=b+c d=b-c
 - Spatial locality: if you used some data recently, you will likely access its neighbors
- No hierarchy:
 - average access time for data = 300 cycles
- 32KB 1-cycle L1 cache that has a hit rate of 95%:
 - ◆ average access time = 0.95 x 1 + 0.05 x (301) = 16 cycles

SRAM Technology

not need to

■ Static RAM ← ROM: used for instruction

Memory arrays with
 a single read/write port

- It's Volatile
 - The data will lost when SRAM is not powered
- Compared with DRAM
 - Don't need to refresh, use 6-8 transistors to install a bit
- Used in CPU cache, integrated onto the processor chip

DRAM Technology

- Data stored as a charge in a capacitor
 - Single transistor used to access the charge
 - Must periodically be refreshed
 - Read contents and write back
 - Performed on a DRAM "row"

Usually read one row. The block is usually a row.

Rd/Wr

Pre

Row

Advanced DRAM Organization

- Bits in a DRAM are organized as a rectangular array
 - DRAM accesses an entire row
 - Burst mode: supply successive words from a row with A lot of data reduced latency
- Synchronous DRAM

- Synchronization Will make it faster

 ◆ A clock is added, the memory and processor are synchronized
 - Allows for consecutive accesses in bursts without needing to send each address
 - Improves bandwidth
- Double data rate (DDR) DRAM
 - Transfer on rising and falling clock edges
 - DDR4-3200 DRAM: 3200M times of transfer per second

Flash Storage

To against nonvolatile

- Nonvolatile semiconductor storage
 - ◆ 100× 1000× faster than disk
 - Smaller, lower power, more robust
 - But more \$/GB (between disk and DRAM)
- Flash bits wears out after 1000's of accesses
 - Not suitable for direct RAM or disk replacement
 - Wear leveling: remap data to less used blocks

Disk Storage

Nonvolatile, rotating magnetic storage

Disk Sectors and Access

- Each sector records
 - Sector ID
 - Data (512 bytes, 4096 bytes proposed)
 - Error correcting code (ECC)
 - Used to hide defects and recording errors
- Access to a sector involves
 - Queuing delay if other accesses are pending
 - Seek: move the heads
 - Rotational latency
 - Data transfer
 - Controller overhead

Cache Memory

- Cache memory
 - The level of the memory hierarchy closest to the CPU
- Given accesses $X_1, ..., X_{n-1}, X_n$

X ₄
X ₁
X _{n-2}
X _{n-1}
X ₂
X ₃

X ₄
X ₁
X _{n-2}
X _{n-1}
X ₂
X_n
X ₃

- How do we know if the data is present?
- Where do we look?

a. Before the reference to X_n b. After the reference to X_n

Memory Structure

- Address and data
 - Address is the index, are not stored in memory
 - Address can be in unit of byte or in unit of word
 - Only data is stored in memory

Direct Mapped Cache

Memory size: 32 words, cache size: 8 words, block size: 1 word

The address is in unit of word

Memory

Direct Mapped Cache

Memory

Memory size: 32 words, cache size: 8 words, block size: 1 word

The address is in unit of word A or B? If 0 is now in 0 and now we access 1, then 1 will replace 0 in the catch 0. Cache Cache B is better as we usually use continuous data. Use b style will prevent us from copying many time. В Memory

Direct Mapped Cache

 Memory size: 32 words, cache size: 8 words, block size: 1 word

The address is in unit of word

Direct mapped cache:

Location determined by address memory is 5

 One data in memory is mapped to only one location in cache

- Use low-order address bits or highorder bits?
- The lower bits defines the address of the cache
- Index: which block to select

Tags and Valid Bits

- How do we know which particular block is stored in a cache location?
 - Store block address as well as the data
 - Actually, only need the high-order bits
 - Called the tag
- What if there is no data in a location?
 - Valid bit: 1 = present, 0 = not present
 - Initially 0

- 8-blocks, 1 word/block, direct mapped
- Initial state

Valid bit The 2 more significant bits of index

Index V Tag Data 000 Ν 001 Ν 010 Ν 011 Ν 100 Ν 101 Ν 110 Ν 111 Ν

Word addr	Binary addr	Hit/miss	Cache block
22	10 110	Miss	110

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	N		
111	N		

Word addr	Binary addr	Hit/miss	Cache block
22	10 110	Miss	110

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	Y	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
26	11 010	Miss	010

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
26	11 010	Miss	010

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
22	10 110	Hit	110
26	11 010	Hit	010

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
16	10 000	Miss	000
3	00 011	Miss	011
16	10 000	Hit	000

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
16	10 000	Miss	000
3	00 011	Miss	011
16	10 000	Hit	000

Index	V	Tag	Data
000	Y	10	Mem[10000]
001	N		
010	Υ	11	Mem[11010]
011	Y	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
18	10 010	Miss	010

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Y	11	Mem[11010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Word addr	Binary addr	Hit/miss	Cache block
18	10 010	Miss	010

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	10	Mem[10010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Memory in unit of byte

- How about the memory is in unit of byte? Assume:
- Memory size:
 - 32 words = 128 bytes
- Cache size:
 - 8 words = 32 bytes
- Block size:
 - 1 word = 4 bytes
- How to determine cache index and tag?
 The lest two bits

The last two bits
determined your position
in a word, which contains 4 8
bytes, indexing from 0 to 3.
(Not 1 to 4!!!!!

Address Subdivision

Larger Block Size

How about the block size is larger? Assume:

Memory size:

256 words = 1024 bytes

Cache size:

• 64 words = 256 bytes

- Block size:
 - ♦ 8 word = 32 bytes
- How to determine cache index and tag?

Assume:

32 hit

- 32-bit address
- Direct mapped cache
- ◆ 2ⁿ number of blocks, so n bit for index
- ◆ Block size: 2^m words, so m bit for the word within the block

Calculate:

- Size of tag field: 32-(n+m+2)
- Size of cache: 2^{n*}(block size + tag size +valid field size)

Example: Larger Block Size

- 64 blocks, 16 bytes/block
 - To what block number does address 1200 map?
- Block address = \[1200/16 \] = 75

 shift right 4 hits
- Block number = 75 modulo 64 = 11

Block Size Considerations

- Larger blocks should reduce miss rate
 - Due to spatial locality
- But in a fixed-sized cache
 - ◆ Larger blocks ⇒ fewer of blocks

For smaller blocks, it may increase the miss rate, and it will decrease the time to copy(miss penalty

- More competition ⇒ increased miss rate
- Larger blocks ⇒ more transfer time upon missing ⇒ Larger miss penalty

- Miss penalty is the time to copy.

 Early restart and critical-word-first can help
- We should find a suitable block size to achieve a good trade-off between miss rate and miss penalty

Block Size Considerations

Cache Misses

- On cache hit, CPU proceeds normally
- On cache miss
 - Read miss vs. write miss
 - Stall the CPU pipeline
 - Fetch block from next level of hierarchy
 - Instruction cache miss
 - Restart instruction fetch
 - Data cache miss
 - Complete data access

- On data-write hit, could just update the block in cache
 - But then cache and memory would be inconsistent
- Write through: also update memory
- But makes writes take longer
 - e.g., if base CPI = 1, 10% of instructions are stores, write to memory takes 100 cycles
 - Effective CPI = 1 + 0.1×100 = 11
- Solution: write buffer

But it can't solve the problem

- Holds data waiting to be written to memory
- CPU continues immediately
 - Only stalls on write if write buffer is already full

Write-Back

- Alternative: On data-write hit, just update the block in cache
 - Keep track of whether each block is dirty
- When a dirty block is replaced
 - Write it back to memory
 Write memory only when the block is replaced
 - Can use a write buffer to allow replacing block to be read first

Write Allocation

- What should happen on a write miss?
- Alternatives for write-through
 - Allocate on miss: fetch the block
 - Write around: don't fetch the block
 - Since programs often write a whole block before reading it (e.g., initialization)
- For write-back
 - Usually fetch the block

Write Policies Summary

- If that memory location is in the cache? ヒュ ۱
 - Send it to the cache
 - Should we also send it to memory right away?
 (write-through policy)
 - Wait until we kick the block out (write-back policy)
- If it is not in the cache?
 - Allocate the line (put it in the cache)?
 (write allocate policy)
 - Write it directly to memory without allocation?
 (no write allocate policy)

Example: Intrinsity FastMATH

- **Embedded MIPS processor**
 - 12-stage pipeline
 - Instruction and data access on each cycle
- Split cache: separate I-cache and D-cache
 - Each 16KB: 256 blocks × 16 words/block
 D-cache: write-through or write-back

- SPEC2000 miss rates
 - I-cache: 0.4%
 - D-cache: 11.4%
 - Weighted average: 3.2%

Example: Intrinsity FastMATH

