## 3: Interpolation and Fitting

- Introduction
- Lagrangian polynomials
- Divided difference
- Interpolating with cubic spline
- Bezier and B-spline curve
- Polynomial approximation of surfaces
- Least square approximation

#### Introduction

#### Problems

- Given values of an unknown function corresponding to certain values of x, what is the behavior of the function?
  - Interpolation/Extrapolation
    - Do linear interpolation?
    - To approximate other values of the function
  - To estimate the integral of the function and its derivative
- Historically a most important task, began with the early study of astronomy

| <u>x</u> | f(x)    |
|----------|---------|
| 10.1     | 0.17537 |
| 22.2     | 0.37784 |
| 32.0     | 0.52992 |
| 41.6     | 0.66393 |
| 50.5     | 0.63608 |

#### Introduction

- Why do we study interpolation?
  - Interpolation methods are the basis for many methods in numerical differentiation and integration, and ODE/PDE
  - The methods demonstrate some important theory about polynomials and accuracy problem
  - Interpolation with polynomials is important for drawing smooth curves
  - History itself may hold a special fascination for some
    - There is a rich history behind interpolation.
    - It really began with the early studies of astronomy

- Linear interpolation assumes that the unknown function was linear between two points
  - Not good if the data are far from linear
- Better ways
  - Find a polynomial that fits a selected set of points of (x, f(x))
  - Do the approximation

#### Why polynomials?

#### – Weierstrass approximation theorem:

If f(x) is continuous on a finite interval [a,b], there exists a polynomial  $P_n(x)$  of degree n such that  $|f(x) - P_n(x)| < \text{ERROR}$ 

throughout the interval [a,b], for any given ERROR > 0.

- Problems with interpolating polynomials when data are not smooth
  - There are local irregularities
  - Fitting the data requires polynomials of high degree
    - Fitting to the irregularities, but deviate widely at other regions where the function is smooth
    - Oscillating problems
- Piecewise approximation with different polynomials -> continuity problems
- Piecewise spline approximation
  - Resolve the continuity problems

- Study of piecewise spline leads to Bezier and B-spline curves
  - Do not interpolate the data
  - Are very useful in sketching or designing smooth curves.
- For data that are not exact
  - Comes from experimental measurement
  - We don't need to fit the date exactly for such data
  - Least square method finds a polynomial that is more likely to approximate the curve values.

#### Undetermined coefficients

#### We want to fit a cubic to the data

 $f(x) = ax^3 + bx^2 + cx + d$  with unknown coefficients

#### Select 4 points to determine the cubic

$$f(3.2) = a(3.2)^3 + b(3.2)^2 + c(3.2) + d = 22.0$$

$$f(2.7) = a(2.7)^3 + b(2.7)^2 + c(2.7) + d = 17.8$$

$$f(1.0) = a(1.0)^3 + b(1.0)^2 + c(1.0) + d = 14.2$$

$$f(4.8) = a(4.8)^3 + b(4.8)^2 + c(4.8) + d = 38.3$$
Solution:  $a = -0.5275$   $b = 6.4952$   $c = -16.1177$   $d = 24.3499$ 
At  $x = 3.0$ , the estimate value is 20.212

## **Undetermined coefficients**

- This is a awkward procedure
  - Needs to re-compute if we want an interpolated polynomial of different degree or also fit at the 5<sup>th</sup> point
  - Leads to an ill-conditioned system of equations
    - The coefficient values could vary much! For example,  $x^3=0.001$  for x=0.1,  $x^3=1000$  for x=10

 Perhaps the simplest way to exhibit the existence of a polynomial for interpolating distinct, unevenly spaced data with no particular order

Pass a cubic through these four data pairs

$$P_{3}(x) = \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} f_{0} + \frac{(x - x_{0})(x - x_{2})(x - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} f_{1} + \frac{(x - x_{0})(x - x_{1})(x - x_{3})}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} f_{2} + \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})} f_{3}$$

- Lagrangian polynomial passes through each of the data points
  - Easy to verify
- Interpolating polynomial is ready
- Errors occur since the underlying function is often not a polynomial of the same degree
  - If the degree is the same, the interpolating polynomial is the underlying polynomial
  - We need to have the error of interpolation

#### • Error of the interpolation:

 $P_n(x)$  will pass exactly through data points, how much is different from f(x)? We develop an error function of  $P_n(x)$ , that has the known property: it is zero at those data pointa:

$$E(x) = f(x) - P_n(x)$$

$$= (x - x_0)(x - x_1) \cdots (x - x_n)g(x)$$

Obviously,

$$f(x) - P_n(x) - E(x) = 0$$
  

$$f(x) - P_n(x) - (x - x_0)(x - x_1) \cdots$$
  

$$(x - x_n) g(x) = 0$$

To determine g(x), we construct an auxiliary function

$$W(t) = f(t) - P_n(t) - (t - x_0)(t - x_1)$$
  
...(t - x\_n)g(x),

which is actually a function of t and x, but we are only interested in variations of t.

Now examine the zeros of W(t):

1. At 
$$t = x_0, x_1, \dots, x_n, W(t) = 0$$
.

2. If 
$$t = x$$
,  $W(t) = 0$ , since

$$f(x) - P_n(x) - E(x) = 0!!$$

So there are a total of n + 2 values of t make W(t) = 0!![By law of mean value] If W(t) is continuous and differentiable, there is a zero to its derivative W'(t) between each of the n+2 zeros of W(t), a total of n+1zeros.

Similarly, there will be n zeros of W''(t), and likewise n-1 zeros of W'''(t), and so on, until we reach  $W^{(n+1)}(t)$ , which must have at least one zero in the interval that has  $x_0, x_n$ , or x as endpoints. Call this value of  $t = \xi$ .

We then have

$$\begin{split} W^{(n+1)}(\xi) &= 0 \\ &= \frac{d^{(n+1)}}{dt^{(n+1)}} \big[ f(t) - P_n(t) - (t - x_0)(t - x_1) \cdots (t - x_n) g(x) \big]_{t=\xi} \\ &= f^{(n+1)}(\xi) - 0 - (n+1)! g(x). \end{split}$$

So

$$g(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!},$$

where  $\xi$  between  $(x_0, x_n, x)$ .

and the error function is

$$E(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

where  $\xi$  is in the smallest interval that contains  $\{x, x_0, x_1, \dots, x_n\}$ .

#### Error of the interpolation:

$$E(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

where  $\xi$  is in the smallest interval that contains  $\{x, x_0, x_1, \dots, x_n\}$ .

- It is interesting but is not always useful since f is often unknown
- But we can conclude that
  - If the underlying function is smooth, a low-degree polynomial should work satisfactory
  - Extrapolation will have larger errors than interpolation
  - The error is smaller if x is centered within the  $x_i$

- A word of caution
  - Never fit a polynomial of a degree higher than 4 or 5 to a set of points
    - Higher degree polynomial may oscillate and leads to large error for interpolation
  - If you need to fit to a set of more than 6 points, be sure to break up the set into subsets and fit separate polynomials to the subsets
    - A better way to fit a large number of points is to use spline curves

### **Neville's method**

- Problems of Lagrangian method
  - Degree of polynomial is not known
  - If the degree is too low, the interpolating polynomial does not give good estimate of f(x)
  - With too high degree, undesirable oscillations may occur
- Neville's method can overcome this difficulty
  - It essentially computes the interpolated value with polynomials of successively higher degree, stopping when the successive values are close enough

### **Neville's method**

 The successive approximations are actually computed by linear interpolation from the intermediate values:

$$P_{i,j} = \frac{(x - x_i) P_{i+1,j-1} + (x_{i+j} - x) P_{i,j-1}}{x_{i+j} - x_i}$$

- Examine the error function for the error term of Lagrange interpolation, the smallest error results when we use data pairs where the x<sub>i</sub>'s are closets to the x-value
  - To reduce error, Neville's method arranges data pairs so that successive values are in order of closeness of the x<sub>i</sub> to x.

## **Neville's method**

#### How to get the form?

The Lagrange formula for linear interpolation to get f(x) from two data points,  $(x_1, f_1)$  and  $(x_2, f_2)$ , is

$$P_1(x) = \frac{x - x_2}{x_1 - x_2} f_1 + \frac{x - x_1}{x_2 - x_1} f_2$$
$$= \frac{(x - x_2) f_1 + (x_1 - x) f_2}{x_1 - x_2}$$

2nd column of Neville's table:

$$P_{i,2} = \frac{(x - x_i)P_{i+1,1} + (x_{i+2} - x)P_{i,1}}{x_{i+2} - x_i}$$

1st column of Neville's table:

$$P_{i,1} = \frac{(x - x_i)P_{i+1,0} + (x_{i+1} - x)P_{i,0}}{x_{i+1} - x_i}$$

3rd column:

$$P_{i,3} = \frac{(x - x_i)P_{i+1,2} + (x_{i+3} - x)P_{i,2}}{x_{i+3} - x_i}$$

## Example 3.2

Given the following data

| <u>x</u> | f(x)    |
|----------|---------|
| 10.1     | 0.17537 |
| 22.2     | 0.37784 |
| 32.0     | 0.52992 |
| 41.6     | 0.66393 |
| 50.5     | 0.63608 |

 We want to interpolate for x=27.5. We first rearrange the data in order of closeness to

$$x = 27.5$$
:

| <i>i</i> | $ x-x_i $ | $x_i$ | $\underline{f_i} = P_{i0}$ |
|----------|-----------|-------|----------------------------|
| 0        | 4.5       | 32.0  | 0.52992                    |
| 1        | 5.3       | 22.2  | 0.37784                    |
| 2        | 14.1      | 41.6  | 0.66393                    |
| 3        | 17.4      | 10.1  | 0.17537                    |
| 4        | 23.0      | 50.5  | 0.63608                    |

## Example 3.2

Neville's table

| <i>i</i> | $x_i$ | $P_{i0}$ | _ <b>P</b> <sub>i1</sub> | $P_{i2}$ | $P_{i3}$ | $P_{i4}$ |
|----------|-------|----------|--------------------------|----------|----------|----------|
| 0        | 32.0  | 0.52992  | 0.46009                  | 0.46200  | 0.46174  | 0.45754  |
| 1        | 22.2  | 0.37784  | 0.45600                  | 0.46071  | 0.47901  |          |
| 2        | 41.6  | 0.66393  | 0.44524                  | 0.55843  |          |          |
| 3        | 10.1  | 0.17537  | 0.37379                  |          |          |          |
| 4        | 50.5  | 0.63608  |                          |          |          |          |

- The top line of the table represents
   Lagrange interpolates at x=27.5 using
   polynomials of degree equal to the second
   subscript of the P's (i.e., j of P<sub>ii</sub>)
  - Prove this in an exercise!!
  - Top line values get better and better until the last, when it diverges
    - Correct value for f(27.5)=0.46175

- Disadvantages of Lagrangian polynomial or Neville's method
  - It involves more arithmetic operations than divided-difference method
  - Need to start over in the computations when a point is added or deleted
- Divided-difference
  - Note that every nth-degree polynomial that passes through the same n+1 points is identical
  - Divided-difference obtain the same polynomial, but in different form
  - A clever method!!

#### Given

$$(x_0, f_0), (x_1, f_1), (x_2, f_2), (x_3, f_3), (x_4, f_4).$$
  
Suppose that  $P_2(x)$  has been derived, with addition of  $(x_3, y_3)$ , we want to find  $P_3(x)$  based on  $P_2(x)$ .

If  $a_3$  is chosen such that  $P_3(x_3) = f_3$ , then  $P_3(x)$  intepolates the first 4 points.

#### Consider

$$P_3(x) = P_2(x) + a_3(x - x_0)(x - x_1)(x - x_2)$$
  
We can easily verify that  
 $P_3(x_0) = P_2(x_0) = f_0, P_3(x_1) = f_1, P_3(x_2) = f_2.$ 

- a<sub>i</sub>'s are readily determined by using the divided differences of tabulated values
  - Without solving an equation for the unknown a<sub>i</sub>.

Consider the nth-degree polynomial:

$$P_n(x) = a_0 + (x - x_0)a_1 + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \cdot \dots \cdot (x - x_{n-1}).$$

If we chose  $a_i$  so that  $P_n(x) = f(x)$ at the n + 1 known data points, then is  $P_n(x)$  is an interpolating polynomial for  $x_0, x_1, ..., x_n$ .

#### Divided differences

First divided difference:

$$f[x_k, x_{k+1}] = \frac{f_{k+1} - f_k}{x_{k+1} - x_k}$$

Note:

 $f[x_k, x_{k+1}]$  is the slop of the line segment connecting two points.

Second divided difference:

$$f[x_k, x_{k+1}, x_{k+2}] = \frac{f[x_{k+1}, x_{k+2}] - f[x_k, x_{k+1}]}{x_{k+2} - x_k}$$

Note:

 $f[x_k, x_{k+1}, x_{k+2}]$  can be interpreted as (change of slop)/(change in x)

*n*-th divided difference :

$$f[x_{k}, \dots, x_{k+n}] = \frac{f[x_{k+1}, \dots, x_{k+n}] - f[x_{k}, \dots, x_{k+n-1}]}{x_{k+n} - x_{k}}$$

#### Divided difference table

Table 3.1

| $x_i$                                              | $f_i$             | $f[x_i, x_{i+1}]$                               | $f[x_i, x_{i+1}, x_{i+2}]$                           | $f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$           |
|----------------------------------------------------|-------------------|-------------------------------------------------|------------------------------------------------------|-----------------------------------------------|
| $x_0$ $x_1$ $x_2$                                  | $f_0$ $f_1$ $f_2$ | $f[x_0, x_1]$<br>$f[x_1, x_2]$<br>$f[x_2, x_3]$ | $f[x_0, x_1, x_2] f[x_1, x_2, x_3] f[x_2, x_3, x_4]$ | $f[x_0, x_1, x_2, x_3] f[x_1, x_2, x_3, x_4]$ |
| x <sub>2</sub><br>x <sub>3</sub><br>x <sub>4</sub> | $f_2$ $f_3$ $f_4$ |                                                 |                                                      | 3.1.2.3.                                      |

Table 3.2

| $x_i$      | $f_i$ | $f[x_i, x_{i+1}]$ | $f[x_i,\ldots,x_{i+2}]$ | $f[x_i,\ldots,x_{i+3}]$ | $f[x_i,\ldots,x_{i+4}]$ |
|------------|-------|-------------------|-------------------------|-------------------------|-------------------------|
| 3.2        | 22.0  | 8.400             | 2.856                   | -0.528                  | 0.256                   |
| 3.2<br>2.7 | 17.8  | 2.118             | 2.012                   | 0.0865                  | 2012/2010               |
| 1.0        | 14.2  | 6.342             | 2.263                   |                         |                         |
| 4.8        | 38.3  | 16.750            |                         |                         |                         |
| 5.6        | 51.7  |                   |                         |                         |                         |

#### The a<sub>i</sub>'s are given by these divided differences. How?

$$P_{n}(x) = a_{0} + (x - x_{0})a_{1} + (x - x_{0})(x - x_{1})a_{2}$$

$$+ \dots + (x - x_{0}) \dots (x - x_{n-1})a_{n}.$$
Set  $x = x_{0}, x_{1}, x_{2}, \dots, x_{n}$ , we have
$$x = x_{0} : P_{n}(x_{0}) = a_{0}$$

$$x = x_{1} : P_{n}(x_{1}) = a_{0} + (x_{1} - x_{0})a_{1}$$

$$x = x_{2} : P_{n}(x_{2}) = a_{0} + (x_{2} - x_{0})a_{1} + (x_{2} - x_{0})(x_{2} - x_{1})a_{2}$$

$$\vdots$$

$$x = x_{n} : P_{n}(x_{n}) = a_{0} + (x_{n} - x_{0})a_{1} + (x_{n} - x_{0})(x_{n} - x_{1})a_{2} + a_{n}$$

 $\cdots + (x_n - x_0) \cdots (x_n - x_{n-1}) a_n$ 

If  $P_n(x)$  is an interpolating polynomial, then  $P(x) = f \quad \text{for } i = 0.1.2$ 

$$P_n(x_i) = f_i$$
, for  $i = 0,1,2,...,n$ .

We get a triangular system, and each  $a_i$  can be computed in turn.

If  $P_n(x)$  is an interpolating polynomial, then

$$P_n(x_i) = f_i$$
, for  $i = 0,1,...,n$ .

We then have

$$a_0 = f_0 = f[x_0]$$

$$a_1 = \frac{f_1 - f_0}{x_1 - x_0} = f[x_0, x_1]$$

$$a_2 = \frac{f_2 - f_0 - (x_2 - x_0) \frac{f_1 - f_0}{x_1 - x_0}}{(x_2 - x_0)(x_2 - x_1)}$$

$$= \frac{f_2 - f_1 + f_1 - f_0 - (x_2 - x_0) \frac{f_1 - f_0}{x_1 - x_0}}{(x_2 - x_0)(x_2 - x_1)}$$

$$= \frac{(f_2 - f_1) + (f_1 - f_0) \left(1 - \frac{x_2 - x_0}{x_1 - x_0}\right)}{(x_2 - x_0)(x_2 - x_1)}$$

$$= \frac{(f_2 - f_1) - (f_1 - f_0) \left(\frac{x_2 - x_1}{x_1 - x_0}\right)}{(x_2 - x_0)(x_2 - x_1)}$$

$$a_{2} = \frac{\left(f_{2} - f_{1}\right) - \left(f_{1} - f_{0}\right) \left(\frac{x_{2} - x_{1}}{x_{1} - x_{0}}\right)}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

$$= \frac{f_{2} - f_{1}}{x_{2} - x_{1}} - \frac{f_{1} - f_{0}}{x_{1} - x_{0}}$$

$$= \frac{x_{2} - x_{1}}{x_{2} - x_{0}}$$

$$= f[x_{0}, x_{1}, x_{2}]$$

Similarily,

$$a_i = f[x_0, x_1, \dots, x_i]$$

We then have Show this is  $P_{n-1}(x)$  $P_n(x)$  $= f[x_0] + (x - x_0) f[x_0, x_1]$  $+(x-x_0)(x-x_1)f[x_0,x_1,x_2]$  $+(x-x_0)\cdots(x-x_{n-1})f[x_0,x_1,\ldots,x_n]$  $=P_{n-1}(x)+$  $(x-x_0)\cdots(x-x_{n-1})f[x_0,x_1,\ldots,x_n]$ 

#### General form

Given point  $x_0, x_1, \dots, x_n$ .

Once  $P_{n-1}(x)$  is known,

 $P_n(x)$  can be written as

$$P_n(x) = P_{n-1}(x) +$$

$$a_n(x - x_0) \cdots (x - x_{n-1}),$$

where  $a_n$  is obtained by

$$a_{n} = \frac{f_{n} - P_{n-1}(x_{n})}{(x_{n} - x_{0}) \cdots (x_{n} - x_{n-1})}$$
$$= f[x_{0}, x_{1}, \cdots, x_{n}]$$

With this, we can easily show that

$$a_n(x-x_0)\cdots(x-x_{n-1}), \qquad P_n(x_i)=f_i, \text{ for } i=0,1,\cdots,n.$$

#### Theorem

The interpolating polynomial for n + 1 points at  $x_0, x_1, \dots, x_n$  satisfies

$$P_n(x) = f[x_0, \dots, x_n] x^n + \text{lower - degree terms.}$$

Comparing to divided difference method,

$$P_n(x) = P_{n-1}(x) + a_n(x - x_0) \cdots (x - x_{n-1})$$

We can easily verify that

$$a_n = f[x_0, \cdots, x_n]$$

# Divided-Difference method Example 3.3

Find the interpolating polynomial of degree 3 that fits data in Table 3.2:

$$P_{0,3}(x) = \underline{22.0} + \underline{8.4}(x - 3.2)$$

$$+ \underline{2.856}(x - 3.2)(x - 2.7)$$

$$-\underline{0.528}(x - 3.2)(x - 2.7)(x - 1.0)$$

Adding  $x_4$ , we have

$$P_{0,4}(x)$$
=  $P_{0,3}(x)$   
+  $0.256(x-3.2)(x-2.7)$   
 $(x-1.0)(x-4.8)$ 

Table 3.2

| $x_i$      | $f_i$ | $f[x_i, x_{i+1}]$ | $f[x_i,\ldots,x_{i+2}]$ | $f[x_i,\ldots,x_{i+3}]$ | $f[x_i,\ldots,x_{i+4}]$ |
|------------|-------|-------------------|-------------------------|-------------------------|-------------------------|
| 3.2<br>2.7 | 22.0  | 8.400             | 2.856                   | -0.528                  | 0.256                   |
| 2.7        | 17.8  | 2.118             | 2.012                   | 0.0865                  | 25.25920                |
| 1.0        | 14.2  | 6.342             | 2.263                   |                         |                         |
| 4.8        | 38.3  | 16.750            |                         |                         |                         |
| 5.6        | 51.7  |                   |                         |                         |                         |

- Interpolation/Fitting
  - Given a set of n+1 points (x, f(x)) for the unknown f(x), find a function that fits all points
- Polynomial interpolation
  - Degree n polynomial for n+1 points
  - Undetermined coefficients
    - Solving a linear system of n+1 equations
    - Often an ill-conditioned problem
  - Lagrangian polynomial
    - Polynomial involved n+1 terms
    - Need to rewrite the form once data points added or deleted
    - Appropriate degree of the polynomial is not known

- Polynomial interpolation
  - Degree n polynomial for n+1 points
  - Undetermined coefficients
  - Lagrangian polynomial
  - Neville's method (computing interpolated value)
    - Form a degree n polynomial by linear interpolation from two degree n-1 interpolating polynomial

$$P_{i,j} = \frac{(x - x_i) P_{i+1,j-1} + (x_{i+j} - x) P_{i,j-1}}{x_{i+j} - x_i}$$

| <u>i</u> | $x_i$ | $P_{i0}$ | $P_{i1}$ | $P_{i2}$ | $P_{i3}$ | $P_{i4}$ |
|----------|-------|----------|----------|----------|----------|----------|
| 0        | 32.0  | 0.52992  | 0.46009  | 0.46200  | 0.46174  | 0.45754  |
| 1        | 22.2  | 0.37784  | 0.45600  | 0.46071  | 0.47901  |          |
| 2        | 41.6  | 0.66393  | 0.44524  | 0.55843  |          |          |
| 3        | 10.1  | 0.17537  | 0.37379  |          |          |          |
| 4        | 50.5  | 0.63608  |          |          |          |          |

- Form a table
  - Top line represents the Lagrangian interpolates at x'
  - Stop when the successive values are close together

#### Polynomial interpolation

- Degree n polynomial for n+1 points
- Undetermined coefficients
- Lagrangian polynomial
- Neville's method (computing interpolated value)
- Divided difference

$$P_n(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2]$$

$$+ \dots + (x - x_0) \dots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$

$$= P_{n-1}(x) + (x - x_0) \dots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$

#### Form a table

| $x_i$                             | $f_i$                             | $f[x_i, x_{i+1}]$                                                                   | $f[x_i, x_{i+1}, x_{i+2}]$                           | $f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$                |
|-----------------------------------|-----------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|
| $x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4$ | $f_0 \\ f_1 \\ f_2 \\ f_3 \\ f_4$ | $\begin{array}{c} f[x_0,x_1] \\ f[x_1,x_2] \\ f[x_2,x_3] \\ f[x_3,x_4] \end{array}$ | $f[x_0, x_1, x_2] f[x_1, x_2, x_3] f[x_2, x_3, x_4]$ | $f[x_0, x_1, x_2, x_3]$<br>$f[x_1, x_2, x_3, x_4]$ |

#### Polynomial interpolation

- Degree n polynomial for n+1 points
- Undetermined coefficients
- Lagrangian polynomial
- Neville's method (computing interpolated value)
- Divided difference
- Above methods produce identical polynomial
- Oscillation occurs for high degree polynomial
- Error of polynomial interpolation
  - f is unknown!
  - Approximate error
    - Next-term rule

$$E(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

where  $\xi$  is in the smallest interval that contains  $\{x, x_0, x_1, \dots, x_n\}$ .

## **DD** for a polynomial

Suppose the underlying function is the cubic polynomial

$$f(x) = 2x^3 - x^2 + x - 1$$

The divided difference table:

| $x_i$                                        | $f[x_i]$                                                 | $f[x_i, x_{i+1}]$                               | $f[x_i \dots x_{i+2}]$               | $f[x_i \dots x_{i+3}]$     | $f[x_i \dots x_{i+4}]$ | $f[x_i \dots x_{i+5}]$ |
|----------------------------------------------|----------------------------------------------------------|-------------------------------------------------|--------------------------------------|----------------------------|------------------------|------------------------|
| 0.30<br>1.00<br>0.70<br>0.60<br>1.90<br>2.10 | -0.7360 $1.0000$ $-0.1040$ $-0.3280$ $11.0080$ $15.2120$ | 2.4800<br>3.6800<br>2.2400<br>8.7200<br>21.0200 | 3.0000<br>3.6000<br>5.4000<br>8.2000 | 2.0000<br>2.0000<br>2.0000 | 0.0000<br>0.0000       | 0.0000                 |

#### **DD** for polynomials

#### Observations

- The third divided differences are all the same (2.0=a<sub>3</sub>)
- 3-rd derivative of f(x) is also a constant(= 3! \* 2 = 12 for this example)
- For an nth-degree polynomial,  $P_n(x)$ , whose highest-power term has the coefficient  $a_n$ ,
  - the n-th divided difference will always be equal to a<sub>n</sub>
  - n-th derivative of P<sub>n</sub>(x) (or f(x))

```
= a<sub>n</sub> n!
```

= n-th divided difference \* n!

 The relationship between divided difference and derivatives will be exploited in Chap 5

## **DD** for polynomials

# All n-th divided differences = $a_n$ iff all points used to get these DD lie on the curve of an n-th degree polynomial having leading term $a_n$ $x^n$

If all n-th DD formed from n + 1 consecutive points are equal to  $a_n$ , then all higher DD will be 0. It then follows that the interpolating polynomial for all points has 0 as its coefficient of  $x^j$  term for j > n and hence has degree n and has leading coefficient  $a_n$ .

Conversely, if these n + 1 points lie on the curve of an nth-degree polynomial p(x) having leading term  $a_n x^n$ , then  $P_n(x) = p(x)$  by uniqueness; hence n-th DD =  $a_n$ .

### **Identical polynomials**

- The interpolating polynomials obtained by the Lagrangian method and divided difference look different but they are really identical
- All polynomials of degree n that match at n+1 points are identical
  - Conceptually, n+1 data pairs are exactly enough to determine the n+1 coefficients, so any resulting polynomial is the same is intuitively true
- Formally, proved by contradiction

## **Identical polynomials**

Suppose  $P_n(x)$  and  $Q_n(x)$  are two different polynomials of degree n that agree at n+1 distinct points. Consider

$$D(x) = P_n(x) - Q_n(x)$$
,  
where  $D(x)$  is a polynomial of  
degree at most  $n$ .

D(x) = 0 at all n + 1 of these x - values; that is, D(x) is of degree at most n, but has n + 1 distinct zeros. This is impossible unless D(x) is identical to zero. Hence  $P_n(x) = Q_n(x)$ .

- A most important consequence of this uniqueness property
  - Their error terms are also identical
  - So we only need to derive the error term from one form of interpolating polynomial

## Error of interpolation from divided difference

• Same as that for the equivalent Lagrangian interpolation (since all polynomials of degree n that match at n+1 points are identical)

$$E(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

where  $\xi$  is in the smallest interval that contains  $\{x, x_0, x_1, \dots, x_n\}$ .

- Problem: the derivation of f(x) is unknown
  - If f(x) is almost the same as some polynomial of degree n, interpolating with an n-th degree polynomial should be nearly exact
    - (n+1)-th derivative of f(x) will be nearly 0, and the error of the nth degree interpolating polynomial will be

#### **Error estimation**

- What if we use a lower-degree polynomial?
   The error should be larger
- If f(x) is a known function, we can use the error term to bound the error

Here is a divided difference table for  $f(x) = x^2 e^{-x/2}$ 

| $x_i$ | $f(x_i)$ | $f_i^{[1]}$ | $f_i^{[2]}$ | $f_i^{[3]}$ | $f_i^{[4]}$ |
|-------|----------|-------------|-------------|-------------|-------------|
| 1.10  | 0.6981   | 0.8593      | -0.1755     | 0.0032      | 0.0027      |
| 2.00  | 1.4715   | 0.4381      | -0.1631     | 0.0191      |             |
| 3.50  | 2.1287   | -0.0511     | -0.0657     |             |             |
| 5.00  | 2.0521   | -0.2877     |             |             |             |
| 7.10  | 1.4480   |             |             |             |             |

Find the error of intepolates for f(1.75) using polynomials of degrees 1, 2, 3.

#### **Error estimation**

**Table 3.3** Errors of interpolation for f(1.75)

| Degree | Interpolated<br>value | Actual<br>error | f (n+1)<br>maximum | f <sup>(n+1)</sup><br>minimum | Upper<br>bound | Lower<br>bound |
|--------|-----------------------|-----------------|--------------------|-------------------------------|----------------|----------------|
| 1      | 1.25668               | 0.01996         | -0.3679            | 0.0594                        | 0.0299         | -0.00483       |
| 2      | 1.28520               | -0.00856        | -0.8661            | 0.1249                        | 0.0059         | -0.0408        |
| 3      | 1.28611               | -0.00947        | 1.1398             | -0.0359                       | 0.0014         | -0.0439        |

The error formula E(x) does bracket the actual error. The use of a cubic polynomial does not improve the accuracy, because we do not have the x-value well centered within the tabulated values; also the value of the derivative is not decreasing.

## Error estimation when f(x) is unknown: Next-term rule

 Often f(x) is unknown, but there is a way to estimate the error

*n*th-order divided difference  $f[x_0, x_1, ..., x_n]$  is itself an approximation for  $f^{(n)}(x)/n!$ .

This means that the error of the interpolation is given approximately by the value of the next term that would be added.

Next term rule:

$$E_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!}}_{(n+1)!}$$

$$= (\text{approximately}) \text{ the value of the next term would be added to } P_n(x).$$

$$\approx (x - x_0)(x - x_1) \cdots (x - x_n) \underbrace{f[x_0, x_1, \dots, x_{n+1}]}_{(n+1)!}$$

#### **Error estimation**

**Table 3.3** Errors of interpolation for f(1.75)

| Degree | Interpolated value | Actual<br>error | f (n+1)<br>maximum | f <sup>(n+1)</sup><br>minimum | Upper<br>bound | Lower<br>bound |
|--------|--------------------|-----------------|--------------------|-------------------------------|----------------|----------------|
| 1      | 1.25668            | 0.01996         | -0.3679            | 0.0594                        | 0.0299         | -0.00483       |
| 2      | 1.28520            | -0.00856        | -0.8661            | 0.1249                        | 0.0059         | 0.0408         |
| 3      | 1.28611            | -0.00947        | 1.1398             | -0.0359                       | 0.0014         | -0.0439        |

| Degree | Exact-error | Next-term-approximation |
|--------|-------------|-------------------------|
| 1      | 0.01996     | 0.02852                 |
| 2      | 0.00856     | 0.00091                 |
| 3      | - 0.00947   | -0.00249                |
|        |             |                         |

Example :  $a_3 = 0.00091$ 

0.00091 = 0.0032(1.75 - 1.10)(1.75 - 2.00)(1.75 - 3.50)

## Interpolation near the end of a table

 Interpolations using DD do not work well at end of the table

Newton forward formula:

$$P_n(x) = P_{n-1}(x) + (x - x_0) \cdots (x - x_{n-1}) f[x_0, \cdots, x_n]$$

| x <sub>0</sub>                | $f_0$          | $f_0^{[1]}$                 | $f_0^{[2]}$            | $f_0^{[3]}$             | $f_0^{[4]}$ |
|-------------------------------|----------------|-----------------------------|------------------------|-------------------------|-------------|
| $x_1$                         | $f_1$          | $f_1^{[1]}$                 | $f_1^{[2]}$            | $f_1^{[3]}$             |             |
| $x_2$                         | $f_2$          | $f_2^{[1]}$                 | $f_2^{[2]}$            |                         |             |
| <i>x</i> <sub>3</sub>         | $f_3$          | $f_3^{[1]}$                 |                        |                         |             |
| <i>x</i> <sub>4</sub>         | $f_4$          |                             |                        |                         |             |
|                               |                |                             |                        |                         |             |
| able 3.                       | <b>4(b)</b> Di | vided-diffe                 | erence tab             | le indexed              | upward      |
| Table 3. $x_4$                | <b>4(b)</b> Di | vided-diffe                 | erence tab             | le indexed              | upward      |
| x <sub>4</sub> x <sub>3</sub> | The state      | vided-different $f_3^{[1]}$ | erence tab             | le indexed              | upward      |
| x4                            | $f_4$          | 0.044 0.8                   | erence tab $f_2^{[2]}$ | le indexed              | upward      |
| x <sub>4</sub> x <sub>3</sub> | $f_4$ $f_3$    | $f_3^{[1]}$                 | 501000<br>Seson        | ole indexed $f_1^{[3]}$ | upward      |

#### **Example**

Forward divided difference formula: (Table 3.2)

$$P_{0,3}(x) = \underline{22.0} + \underline{8.4}(x - 3.2)$$

$$+ \underline{2.856}(x - 3.2)(x - 2.7)$$

$$-\underline{0.528}(x - 3.2)(x - 2.7)(x - 1.0)$$

$$P_{0,4}(x) = P_{0,3}(x) + 0.256(x - 3.2)(x - 2.7)(x - 1.0)(x - 4.8)$$

Backward divided difference formula:

$$P_{0,4}(x) = P_{1,4}(x) +$$

Table 3.2

$$0.256(x-2.7)(x-1.0)(x-4.8)(x-5.6)$$

| $x_i$ | $f_i$ | $f[x_i, x_{i+1}]$ | $f[x_i,\ldots,x_{i+2}]$ | $f[x_i,\ldots,x_{i+3}]$ | $f[x_i,\ldots,x_{i+4}]$   |
|-------|-------|-------------------|-------------------------|-------------------------|---------------------------|
| 3.2   | 22.0  | 8.400             | 2.856                   | -0.528                  | 0.256                     |
| 2.7   | 17.8  | 2.118             | 2.012                   | 0.0865                  |                           |
| 1.0   | 14.2  | 6.342             | 2.263                   |                         |                           |
| 4.8   | 38.3  | 16.750            |                         | Check the error diff    | erence for $P_{0.4}(5.2)$ |
| 5.6   | 51.7  |                   |                         |                         | 0,10                      |

#### **Evenly spaced data**

- For evenly space data, getting an interpolating polynomial is considerably simplified
- Instead of using divided differences, "ordinary difference" is used

Given 
$$(x_i, f_i), i = 0, \dots N$$
.

First - order difference:

$$\Delta f_i = f_{i+1} - f_i, i = 0, \dots, N-1.$$

Second - order difference:

$$\Delta^{2} f_{i} = \Delta f_{i+1} - \Delta f_{i} = f_{i+2} - 2 f_{i+1} + f_{i},$$
  
$$i = 0, \dots, N - 2.$$

nth - order difference:

$$\Delta^{n} f_{i} = f_{i+n} - n f_{i+n-1} + \frac{n(n-1)}{2!} f_{i+n-2} - \dots \pm f_{i},$$

$$i = 0, \dots, N - n.$$

The coefficients are the familiar binomial coefficients.

#### **Evenly spaced data**

$$P_{n}(x)$$

$$= f[x_{0}] + (x - x_{0}) \frac{f_{1} - f_{0}}{x_{1} - x_{0}}$$

$$+ (x - x_{0})(x - x_{1}) \frac{f_{2} - 2f_{1} + f_{0}}{(x_{2} - x_{0})h}$$

$$+ \cdots$$

$$+ (x - x_{0}) \cdots (x - x_{n-1}) f[x_{0}, x_{1}, \dots, x_{n}]$$

$$\frac{(x_s - x_0)(x_s - x_1)}{(x_2 - x_0)h} = \frac{(hs)[-(h - (x_s - x_0))]}{2h^2}$$

$$= \frac{(hs)[-(h - (hs))]}{2h^2}$$

$$= \frac{(hs)[-h(1-s)]}{2h^2}$$

$$= \frac{h^2s(s-1)}{2h^2} = \frac{s(s-1)}{2}$$

An interpolated polynomial of degree n,

with x evaluated at  $x_s$ :

$$P_n(x_s) = f_0 + s\Delta f_0 + \underbrace{\frac{s(s-1)}{2!}}_{2!} \Delta^2 f_0 + \cdots + \underbrace{\frac{s(s-1)\cdots(s-n+1)}{n!}}_{n!} \Delta^n f_0$$

where  $s = (x_s - x_0)/h$ , with  $h = \Delta x$ .

#### Note:

- 1. It is called Newton-Gregory forward polynomial.
- 2. The coefficients are the binomial coefficients.

#### The next-term rule:

The error of interpolation is approximated by the next term that would be added.

#### **Example**

| x   | f(x)  | $\Delta f$ | $\Delta^2 f$ | $\Delta^3 f$ | $\Delta^4 f$ |
|-----|-------|------------|--------------|--------------|--------------|
| 0.0 | 0.000 | 0.203      | 0.017        | 0.024        | 0.020        |
| 0.2 | 0.203 | 0.220      | 0.041        | 0.044        | 0.052        |
| 0.4 | 0.423 | 0.261      | 0.085        | 0.096        | 0.211        |
| 0.6 | 0.684 | 0.346      | 0.181        | 0.307        |              |
| 0.8 | 1.030 | 0.527      | 0.488        |              |              |
| 1.0 | 1.557 | 1.015      |              |              |              |
| 1.2 | 2.572 |            |              |              |              |

Find f(0.73) using a cubic interpolant: In order to center the x-values around 0.73, we must use x = 0.4, 0.6, 0.8, 1.0.

So 
$$x_0 = 0.4$$
 and  $s = (0.73 - 0.4)/0.2 = 1.65$ .  

$$f(0.73) = 0.423 + 1.65 * 0.261 + \frac{1.65 * 0.65}{2!} 0.085 + \frac{1.65 * 0.65 * -0.35}{3!} 0.096 = 0.893$$

The function is actually  $f(x) = \tan(x)$ , so the error is  $\tan(0.73) - 0.893 = 0.002$ .

The next-term rule estimates the error as  $\frac{1.65*0.65*-0.35*-1.35}{4!} 0.211 = 0.00445,$ 

which is a very good estimate.

#### Function difference (FD) vs. DD

- Function difference and divided difference tables are the same when the xvalues are evenly spaced
- Column 3:
  - Entries on DD=2, leading coefficient of f(x)
  - Entries on FD=DD\*(3!)(h³)
  - **-** =2\*6\*0.5^3=1.5
- Function difference vs. DD

$$f[x_i, \dots x_n] = \frac{\Delta^n f_i}{n! h^n}$$

| Table 3.5a | Table of function differences for $f(x) = 2x^3$ , $h = 0.5$ |              |                |                |                |                |  |  |
|------------|-------------------------------------------------------------|--------------|----------------|----------------|----------------|----------------|--|--|
| $x_i$      | $f_i$                                                       | $\Delta f_i$ | $\Delta^2 f_i$ | $\Delta^3 f_i$ | $\Delta^4 f_i$ | $\Delta^5 f_i$ |  |  |
| 0.00       | 0.00                                                        | 0.25         | 1.50           | 1.50           | 0.00           | 0.00           |  |  |
| 0.50       | 0.25                                                        | 1.75         | 3.00           | 1.50           | 0.00           | 0.00           |  |  |
| 1.00       | 2.00                                                        | 4.75         | 4.50           | 1.50           | 0.00           |                |  |  |
| 1.50       | 6.75                                                        | 9.25         | 6.00           | 1.50           |                |                |  |  |
| 2.00       | 16.00                                                       | 15.25        | 7.50           |                |                |                |  |  |
| 2.50       | 31.25                                                       | 22.75        |                |                |                |                |  |  |
| 2.00       | 5400                                                        |              |                |                |                |                |  |  |

| Table 3.5b | Table of divided d | lifferences for t | $f(x) = 2x^3, h = 0.5$ |
|------------|--------------------|-------------------|------------------------|
|------------|--------------------|-------------------|------------------------|

| $x_i$ | $f[x_i]$ | $f[x_i, x_{i+1}]$ | $f[x_i \dots x_{i+2}]$ | $f[x_i \dots x_{i+3}]$ | $f[x_i \dots x_{i+4}]$ | $f[x_i \dots x_{i+5}]$ |
|-------|----------|-------------------|------------------------|------------------------|------------------------|------------------------|
| 0.00  | 0.00     | 0.50              | 3.00                   | 2.00                   | 0.00                   | 0.00                   |
| 0.50  | 0.25     | 3.50              | 6.00                   | 2.00                   | 0.00                   |                        |
| 1.00  | 2.00     | 9.50              | 9.00                   | 2.00                   |                        |                        |
| 1.50  | 6.75     | 18.50             | 12.00                  | 2.00                   |                        |                        |
| 2.00  | 16.00    | 30.50             | 15.00                  |                        |                        |                        |
| 2.50  | 31.25    | 45.50             |                        |                        |                        |                        |
| 3.00  | 54.00    |                   |                        |                        |                        |                        |

#### Interpolate w/ spline curves

- Problem of interpolating with a single polynomial: Oscillation
- Example:
  - $f(x)=\cos^{10}(x)$ , has a maximum at x=0 and is near to x-axis for |x|>1



Polynomials of degrees 2, 4, 6, and 8 that fits at evenly spaced points over [-2, 2]





(b) Fitted with quadratic







- Break up the interval [-2, 2] into subintervals and fit separate polynomials to the function in these subintervals
  - A quadratic polynomial for [-0.65, 0.65]
  - P(x)=0 outside [-0.65, 0.65]



Figure 3.2

Problem: discontinuities in the slop between polynomials

- Both slope and curvatures at points must be continuous.
  - Linear splines
    - Discontinuous at joins
  - To have property that both slope and curvature everywhere continuous
    - At least degree 3 is required
    - Cubic splines are the most popular
      - We create a succession of cubic splines over successive intervals of the data
      - Each spline must join with its neighboring cubic polynomials at the knots where they join with the same slope and curvature
      - End spline: slope and curvature is not so constrained

#### A piecewise interpolation

For a set of n + 1 data points :

$$(x_i, y_i), i = 0, 1, 2, \dots, n.$$

We fit with a set of k-th-degree polynomials  $g_i(x)$  between each pair of adjacent points  $(x_i, y_i)$  and  $(x_{i+1}, y_{i+1})$ .



Denote the cubic spline  $g_i(x)$  on  $[x_i, x_{i+1}]$ :

$$g_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i.$$



So the interpolating cubic spline function is

$$g(x) = g_i(x)$$
 on interval  $[x_i, x_{i+1}]$ ,

for 
$$i = 0, 1, \dots, n-1$$

and meets these conditions:

$$\begin{cases} 1. \ g_{i}(x_{i}) = y_{i}, i = 0,1,\dots, n-1, \\ \text{and } g_{n-1}(x_{n}) = y_{n}; \\ 2. \ g_{i}(x_{i+1}) = g_{i+1}(x_{i+1}), i = 0,1,\dots, n-2; \\ 3. \ g'_{i}(x_{i+1}) = g'_{i+1}(x_{i+1}), i = 0,1,\dots, n-2; \\ 4. \ g''_{i}(x_{i+1}) = g''_{i+1}(x_{i+1}), i = 0,1,\dots, n-2. \end{cases}$$

Note:

There are 4\*n unknowns, but 4n-2 conditions (3n-3+n+1=4n-2). We will transform the problem to the

one with n+1 unknowns with n-1 conditions.

Cond. 1: 
$$g_i(x_i) = y_i, i = 0,1,\dots, n-1,$$
  
and  $g_{n-1}(x_n) = y_n$  implies that  $d_i = y_i, i = 0,1,\dots, n-1.$ 

$$g_i(x_{i+1}) = g_{i+1}(x_{i+1}), i = 0,1,\dots,n-2$$
 implies that

$$y_{i+1} = g_{i+1}(x_{i+1}) = g_i(x_{i+1})$$

$$= a_i(x_{i+1} - x_i)^3 + b_i(x_{i+1} - x_i)^2$$

$$+ c_i(x_{i+1} - x_i) + y_i$$

$$= a_i h_i^3 + b_i h_i^2 + c_i h_i + y_i,$$

$$i = 0.1, \dots, n-1.$$

To relate the slopes and curvatures of the joint splines, we differentiate  $g_i(x_i)$ :

$$g_{i}(x) = 3a_{i}(x - x_{i})^{2} + 2b_{i}(x - x_{i}) + c_{i}$$

$$g_{i}''(x) = 6a_{i}(x - x_{i}) + 2b_{i},$$
for  $i = 0, 1, \dots, n - 1$ .



Second derivative of a cubic is linear, so g''(x) is piecewise linear within  $[x_i, x_{i+1}]$ . Let  $S_i = g_i''(x_i)$  for  $i = 0, 1, \dots, n-1$ , and  $S_n = g_n''(x_n) = g_{n-1}''(x_n)$ .

#### Consider (Cond. 4)

$$g''(x) = g_i''(x)$$
 within  $[x_i, x_{i+1}]$ , we have
$$S_i = g_i''(x_i) = 6a_i(x_i - x_i) + 2b_i = 2b_i$$

$$S_{i+1} = g_{i+1}''(x_{i+1}) = g_i''(x_{i+1})$$

$$= 6a_i(x_{i+1} - x_i) + 2b_i = 6a_ih_i + 2b_i$$
So
$$b_i = S_i/2$$

$$S_{i+1} - S_i$$



#### Cond.2:

$$y_{i+1} = g_{i+1}(x_{i+1}) = g_i(x_{i+1})$$
$$= a_i h_i^3 + b_i h_i^2 + c_i h_i + y_i,$$
$$i = 0, 1, \dots, n-1.$$

Substitute  $a_i, b_i$ , and  $d_i$  into  $g_i(x)$ , we have

$$y_{i+1} = \left(\frac{S_{i+1} - S_i}{6h_i}\right) h_i^3 + \frac{S_i}{2} h_i^2 + c_i h_i + y_i$$

$$\Rightarrow \left(c_i = \frac{y_{i+1} - y_i}{h_i} - \frac{2h_i S_i + h_i S_{i+1}}{6}\right)$$

Consider condition of slope continuous at  $(x_i, y_i)$ . With  $x = x_i$ , we have

$$y_i' = g_i'(x_i)$$
  
=  $3a_i(x_i - x_i)^2 + 2b_i(x_i - x_i) + c_i = c_i$ .

In the previous interval  $[x_{i-1}, x_i]$ , the slpoe at right end:

$$y_{i}' = g_{i-1}'(x_{i})$$

$$= 3a_{i-1}(x_{i} - x_{i-1})^{2} + 2b_{i-1}(x_{i} - x_{i-1}) + c_{i-1}$$

$$= 3a_{i-1}h_{i-1}^{2} + 2b_{i-1}h_{i-1} + c_{i-1}$$

Equating these and substitute for a,b,c, and d, their relationships in terms of S and y, we have

#### Cond. 3:

$$y_{i}' = g'(x_{i}) = c_{i} = \frac{y_{i+1} - y_{i}}{h_{i}} - \frac{2h_{i}S_{i} + h_{i}S_{i+1}}{6}$$

$$y_{i}' = g_{i-1}'(x_{i}) = 3a_{i-1}h_{i-1}^{2} + 2b_{i-1}h_{i-1} + c_{i-1}$$

$$y_{i+1} - y_{i} - \frac{2h_{i}S_{i} + h_{i}S_{i+1}}{6}$$

$$= 3\left(\frac{S_{i} - S_{i-1}}{6h_{i-1}}\right)h_{i-1}^{2} + 2\left(\frac{S_{i-1}}{2}\right)h_{i-1}$$

$$+ \left(\frac{y_{i} - y_{i-1}}{h_{i-1}} - \frac{2h_{i-1}S_{i-1} + h_{i-1}S_{i}}{6}\right)$$

Last equation can be simplified to

$$h_{i-1}S_{i-1} + (2h_{i-1} + 2h_i)S_i + h_iS_{i+1}$$

$$= 6\left(\frac{y_{i+1} - y_i}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}}\right)$$

$$= 6\left(f[x_i, x_{i+1}] - f[x_{i-1}, x_i]\right),$$
for  $i = 1, 2, \dots, n-1$ .

Applying the equation at each internal points, from i = 1 to n - 1, gives n - 1 equations relating the n + 1 values of  $S_i$ .

We need two more conditions.

$$n-1$$
 conditions : for  $i=1,2,\cdots,n-1$ .

$$h_{i-1}S_{i-1} + (2h_{i-1} + 2h_i)S_i + h_iS_{i+1}$$
  
= 6(f[x<sub>i</sub>, x<sub>i+1</sub>] - f[x<sub>i-1</sub>, x<sub>i</sub>])

can be written in matrix form:

Constrain two unknowns using end conditions.

The matrix is always tridiagon al.

$$\begin{bmatrix} h_0 & 2(h_0 + h_1) & h_1 \\ h_1 & 2(h_1 + h_2) & h_2 \\ & h_2 & 2(h_2 + h_3) & h_3 \\ & & \ddots & \\ & & & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \end{bmatrix} \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \\ \vdots \\ S_{n-1} \\ S_n \end{bmatrix}$$

$$= 6 \begin{bmatrix} f[x_1, x_2] - f[x_0, x_1] \\ f[x_2, x_3] - f[x_1, x_2] \\ f[x_3, x_4] - f[x_2, x_3] \\ \vdots \\ f[x_{n-1}, x_n] - f[x_{n-2}, x_{n-1}] \end{bmatrix}.$$

#### Initial problem:

4*n* unknowns:

Four unknown coefficients for each of n splines  $g_i(x)$ .

4n-2 conditions.

$$a_i = \frac{S_{i+1} - S_i}{6h_i}$$
$$b_i = S_i / 2$$

#### Transformed problem:

n+1 unknowns:  $S_0, S_1, \dots, S_n$ 

n-1 conditions:

$$h_{i-1}S_{i-1} + (2h_{i-1} + 2h_i)S_i + h_iS_{i+1}$$

$$= 6(f[x_i, x_{i+1}] - f[x_{i-1}, x_i]),$$

$$i = 1, 2, \dots, n-1.$$

Users specify two more conditions.

After  $S_0, S_1, \dots, S_n$  are derived, the coefficients of  $g_i(x)$  can be computed:

$$c_i = \frac{y_{i+1} - y_i}{h_i} - \frac{2h_i S_i + h_i S_{i+1}}{6}, \quad d_i = y_i$$

## Interpolate w/ cubic spline **End conditions**

We can specify conditions pertaining to the end intervals.

To some extent, these end conditions are arbitrary.

Four possible strategies are often used:

1. 
$$S_0 = 0$$
 and  $S_n = 0$ 

May flatten the curve too much at the ends!!

2. Fix the slopes at  $x_0$  and  $x_n$  Probably the best end condition if reasonable slop estimates are available!!

3. 
$$S_0 = S_1$$
 and  $S_n = S_{n-1}$ 

4. Use linear extrapolation from nearby 2 points

$$S_0 = \frac{(h_0 + h_1)S_1 - h_0S_2}{h_1}$$
 May give too much curvature in the end intervals!! 
$$S_n = \frac{(h_{n-2} + h_{n-1})S_{n-1} - h_{n-1}S_{n-2}}{h_{n-2}}$$

## Interpolate w/ cubic spline End conditions

1. 
$$S_0 = 0$$
 and  $S_n = 0$ :

Called a "natural spline", makes the end cubics approach linearity at their extremities. May faltten the curve too much at the ends.

Matches preciously to the drafting device, and is used frequently.

2. Fix the slopes at  $x_0$  and  $x_n$  to specified values.

If 
$$f'(x_0) = A$$
 and  $f'(x_n) = B$ ,

From the equation :  $y' = c_i = A$ 

At left end:

$$2h_0S_0 + h_0S_1 = 6(f[x_0, x_1] - A).$$

At right end:

$$h_{n-1}S_{n-1} + 2h_{n-1}S_n = 6(B - f[x_{n-1}, x_n]).$$

This is probably the best end condition to use provided reasonable estimate of the derivative are available (estimated from the data point)!!

## Interpolate w/ cubic spline End conditions

3.  $S_0 = S_1$  and  $S_n = S_{n-1}$ . Equivalent to assuming that the end cubics approach parabolas at their

4. Take  $S_0$  as a linear extrapolation from  $S_1$  and  $S_2$ :

$$S_0 = \frac{(h_0 + h_1)S_1 - h_0S_2}{h_1}$$

Take  $S_n$  as a linear extrapolation from  $S_{n-1}$  and  $S_{n-2}$ :

$$S_n = \frac{(h_{n-2} + h_{n-1})S_{n-1} - h_{n-1}S_{n-2}}{h_{n-2}}$$

Only this condition gives cubic spline curves that match exactly to f(x) when f(x) is itself a cubic. But frequently suffers from the other extreme, giving too much curvature in the end intervals.

extremities.

$$n-1$$
 conditions: for  $i = 1, 2, \dots, n-1$ .  
 $h_{i-1}S_{i-1} + (2h_{i-1} + 2h_i)S_i + h_iS_{i+1}$   
 $= 6(f[x_i, x_{i+1}] - f[x_{i-1}, x_i])$ 

can be written in matrix form:

If we write the equation of  $S_1, S_2, \ldots, S_{n-1}$  [Eq. (3.17)] in matrix form, we get

$$\begin{bmatrix} h_0 & 2(h_0 + h_1) & h_1 \\ h_1 & 2(h_1 + h_2) & h_2 \\ h_2 & 2(h_2 + h_3) & h_3 \\ & & \ddots & \\ & & & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \end{bmatrix} \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \\ \vdots \\ S_{n-1} \\ S_n \end{bmatrix}$$

$$= 6 \begin{bmatrix} f[x_1, x_2] - f[x_0, x_1] \\ f[x_2, x_3] - f[x_1, x_2] \\ f[x_3, x_4] - f[x_2, x_3] \\ \vdots \\ f[x_{n-1}, x_n] - f[x_{n-2}, x_{n-1}] \end{bmatrix}.$$

Constrain two unknowns using end conditions.

The matrix is always tridiagon al.

Condition 1 
$$S_0 = 0, S_n = 0$$
:
$$\begin{bmatrix} 2(h_0 + h_1) & h_1 & & & \\ h_1 & 2(h_1 + h_2) & h_2 & & & \\ & & h_2 & 2(h_2 + h_3) & h_3 & & \\ & & & \ddots & & \\ & & & & h_{n-2} & 2(h_{n-2} + h_{n-1}) \end{bmatrix}$$

$$(n-1)x(n-1)$$

Condition 2 
$$f'(x_0) = A$$
 and  $f'(x_n) = B$ : 
$$\begin{bmatrix} 2h_0 & h_0 \\ h_0 & 2(h_0 + h_1) & h_1 \\ & h_1 & 2(h_1 + h_2) & h_2 \\ & & \ddots & \\ & & h_{n-1} & 2h_{n-1} \end{bmatrix}$$

$$(n+1)x(n+1)$$

Condition 3 
$$S_0 = S_1, S_n = S_{n-1}$$
:
$$\begin{bmatrix} (3h_0 + 2h_1) & h_1 & & & \\ h_1 & 2(h_1 + h_2) & h_2 & & \\ & h_2 & 2(h_2 + h_3) & h_3 & & \\ & & \ddots & & \\ & & & h_{n-2} & (2h_{n-2} + 3h_{n-1}) \end{bmatrix}.$$

$$(n-1)x(n-1)$$

Condition 4  $S_0$  and  $S_n$  are linear extrapolations:

With condition 4, we need to compute

$$S_{0} = \frac{(h_{0} + h_{1})S_{1} - h_{0}S_{2}}{h_{1}}$$

$$S_{n} = \frac{(h_{n-2} + h_{n-1})S_{n-1} - h_{n-1}S_{n-2}}{h_{n-2}}$$

 $\begin{bmatrix} \frac{(h_0+h_1)(h_0+2h_1)}{h_1} & \frac{h_1^2-h_0^2}{h_1} \\ h_1 & 2(h_1+h_2) & h_2 \\ h_2 & 2(h_2+h_3) & h_3 \\ & & \ddots \\ & & \frac{h_{n-2}^2-h_{n-1}^2}{h_{n-2}} & \frac{(h_{n-1}+h_{n-1})(h_{n-1}+2h_{n-2})}{h_{n-2}} \end{bmatrix} .$ 

After the  $S_i$  are obtained, coefficients  $a_i, b_i, c_i, d_i$  for  $g_i(x)$  are computed:

$$\begin{cases} a_{i} = \frac{S_{i+1} - S_{i}}{6h_{i}} \\ b_{i} = \frac{S_{i}}{2} \\ c_{i} = \frac{y_{i+1} - y_{i}}{h_{i}} - \frac{2h_{i}S_{i} + h_{i}S_{i+1}}{6} \\ d_{i} = y_{i} \end{cases}$$

## Interpolate w/ cubic spline Example 3.5

$$f(x) = 2e^x - x^2$$

Table 3.6

| x    | f(x)    |
|------|---------|
| 0.0  | 2.0000  |
| 1.0  | 4.4366  |
| 1.5  | 6.7134  |
| 2.25 | 13.9130 |
|      |         |

#### Problem:

Fit the data with a cubic spline and to interpolate g(0.66) and g(1.75):

#### Note that:

$$h_0 = 1.0, h_1 = 0.5, h_2 = 0.75$$
  
 $f[0,1] = 2.4366, f[1,1.5] = 4.5536,$   
 $f[1.5, 2.25] = 9.5995$ 

## Interpolate w/ cubic spline Example 3.5

Using condition  $1(S_0 = S_3 = 0)$ ,

we solve

$$\begin{bmatrix} 3.0 & 0.5 \\ 0.5 & 2.5 \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \end{bmatrix} = \begin{bmatrix} 12.7020 \\ 30.2754 \end{bmatrix}$$

$$\Rightarrow \begin{cases} S_1 = 2.2920 \\ S_2 = 11.6518 \end{cases}$$

Using the S's, we obtain  $g_i(x)$ :



Figure 3.3

| i | Interval    | $g_i(x)$                                                      |
|---|-------------|---------------------------------------------------------------|
| 0 | [0.0, 1.0]  | $0.3820(x-0)^3 + 0(x-0)^2 + 2.0546(x-0) + 2.0000$             |
| 1 | [1.0, 1.5]  | $3.1199(x-1)^3 + 1.146(x-1)^2 + 3.2005(x-1) + 4.4366$         |
| 2 | [1.5, 2.25] | $-2.5893(x-1.5)^3 + 5.8259(x-1.5)^2 + 6.6866(x-1.5) + 6.7134$ |

Fig 3.3: The cubic spline curve

We use  $g_0$  to find g(0.66)=3.4659 (True=3.4340)

We use  $g_2$  to find g(1.75)=8.7087 (True=8.4467)

# Interpolate w/ cubic spline Example 3.6

Fit cubic spline to  $f(x) = \cos^{10}(x)$  with knots at -2, -1, -0.5, 0, 0.5, 1, 2.





Figure 3.5

# Interpolate w/ cubic spline Example 3.6

**Table 3.9** A cubic spline fitted to the function  $f(x) = \cos^{10}(x)$ , end condition 1

| x-value | Spline value | f(x)   | Error   |  |
|---------|--------------|--------|---------|--|
| -2.00   | 0.0002       | 0.0002 | 0.0000  |  |
| -1.75   | -0.0046      | 0.0000 | 0.0046  |  |
| -1.50   | -0.0073      | 0.0000 | 0.0073  |  |
| -1.25   | -0.0058      | 0.0000 | 0.0058  |  |
| -1.00   | 0.0021       | 0.0021 | -0.0000 |  |
| -0.75   | 0.0467       | 0.0440 | -0.0027 |  |
| -0.50   | 0.2709       | 0.2709 | -0.0000 |  |
| -0.25   | 0.7283       | 0.7292 | 0.0009  |  |
| 0.00    | 1.0000       | 1.0000 | 0.0000  |  |
| 0.25    | 0.7283       | 0.7292 | 0.0009  |  |
| 0.50    | 0.2709       | 0.2709 | -0.0000 |  |
| 0.75    | 0.0467       | 0.0440 | -0.0027 |  |
| 1.00    | 0.0021       | 0.0021 | -0.0000 |  |
| 1.25    | -0.0058      | 0.0000 | 0.0058  |  |
| 1.50    | 0.0073       | 0.0000 | 0.0073  |  |
| 1.75    | -0.0046      | 0.0000 | 0.0046  |  |
| 2.00    | 0.0002       | 0.0002 | -0.0000 |  |

### **Bezier and B-spline curves**

- Widely used in computer graphics and CAD
- Not really interpolating splines, they don't pass all points
- Good features:
  - Convex-Hull property
  - Local effect of moving a point
    - The points are called *control points*
- They are parametric curves:

$$P(u) = \begin{pmatrix} P_x(u) \\ P_y(u) \end{pmatrix}$$

where *u* is called parameter, which normally ranges from 0 to 1.

#### **Bezier curve**

 Named after the French engineer P. Bezier, who developed Bezier curve and surface in early 1960s.

Given n+1 control points

$$p_i = (x_i, y_i), i = 0, \dots, n.$$

The n-th degree Bezier curve defined by n+1 points is

$$P(u) = \sum_{i=0}^{n} \binom{n}{i} (1-u)^{n-i} u^{i} p_{i}$$

where

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$



Figure 3.6

## Bezier curve Example

For 
$$n = 2$$

$$P(u) = \begin{bmatrix} P_x(u) \\ P_y(u) \end{bmatrix} = (1-u)^2 p_0 + 2(1-u)u p_1 + u^2 p_2$$
$$= \begin{bmatrix} (1-u)^2 x_0 + 2(1-u)ux_1 + u^2 x_2 \\ (1-u)^2 y_0 + 2(1-u)uy_1 + u^2 y_2 \end{bmatrix}$$

#### Note:

- 1. The Bezier curve passes through two end points.
- 2. Bezier equations are weighted sums of three polynomials in u, where the weighting factors are coordinates of the three points.

### **Cubic Bezier curve**

For n = 3

$$P(u) = \begin{bmatrix} P_x(u) \\ P_y(u) \end{bmatrix} = (1-u)^3 p_0 + 3(1-u)^2 u p_1 + 3(1-u)u^2 p_2 + u^3 p_3$$

$$= \begin{bmatrix} (1-u)^3 x_0 + 3(1-u)^2 u x_1 + 3(1-u)u^2 x_2 + u^3 x_3 \\ (1-u)^3 y_0 + 3(1-u)^2 u y_1 + 3(1-u)u^2 y_2 + u^3 y_3 \end{bmatrix}$$

#### Properties:

- 1.  $P(0) = p_0, P(1) = p_3.$
- 2. Slope of the curve at u = 0 is

$$dy/dx = (x_1 - x_0)/(y_1 - y_0)$$

which is the slop of the secant

line between  $p_0$  and  $p_1$ .

Similar for the other end.

- 3. Convex hull property: the whole curve is contained inside the convex hull determined by the four points.
- 4. Moving the control point changes the shape of the whole curve.

#### **Cubic Bezier curve**







### Joining cubic Bezier curves

Two cubic Bezier curves defined by

 $p_0$ ,  $p_1$ ,  $p_2$ ,  $p_3$  and  $p_3$ ,  $p_4$ ,  $p_5$ ,  $p_6$ , respectively.

To smoothly join these two curve at  $p_3$ ,  $p_2$ ,  $p_3$  and  $p_4$  must be collinear.



# Bezier curve Convex Hull property

- Convex hull of a set of points is the smallest convex set that contains the points
  - A set C is convex iff the line segment between any two points in the set lies entirely in set C





- Convex Hull property
  - The whole Bezier curve
     is inside the convex hull
     defined by the control points



Space of basis functions

# **Bezier curve Matrix form**

- It is often convenient to represent the Bezier curve in matrix form.
- For cubic Bezier cubics:

$$P(u) = \begin{bmatrix} x(u) \\ y(u) \end{bmatrix} = (1-u)^{3} p_{0} + 3(1-u)^{2} u p_{1}$$

$$+3(1-u)u^{2} p_{2} + u^{3} p_{3}$$

$$= \begin{bmatrix} (1-u)^{3} x_{0} + 3(1-u)^{2} u x_{1} + 3(1-u)u^{2} x_{2} + u^{3} x_{3} \\ (1-u)^{3} y_{0} + 3(1-u)^{2} u y_{1} + 3(1-u)u^{2} y_{2} + u^{3} y_{3} \end{bmatrix}$$

$$P(u) = \begin{bmatrix} u^{3}, u^{2}, u, 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{0} \\ p_{1} \\ p_{2} \\ p_{3} \end{bmatrix}$$

$$= u^{T} M p$$

- Like Bezier curve, but differ in
  - Do not pass through all points
  - Better convex hull property (smaller convex hull)
  - Slopes at end points have any relation with control points
  - Local control vs. global control in Bezier curves
  - Bezier curve is a special case of B-spline curve

- Cubic B-spline resemble the cubic spline discussed previously in Sec. 3.3:
  - A separate cubic is derived for each pair of points
  - But, B-spline need not pass through any point

Given points  $p_i = (x_i, y_i), i = 0,1,\dots,n$ , the cubic B-spline

for the interval  $(p_i, p_{i+1}), i = 1, 2, \dots, n-1$ , is

$$B_i(u) = \sum_{k=-1}^{2} b_k(u) p_{i+k},$$

where

$$b_{-1}(u) = \frac{(1-u)^3}{6}, \ b_0(u) = \frac{u^3}{2} - u^2 + \frac{2}{3}$$

$$b_1(u) = -\frac{u^3}{2} + \frac{u^2}{2} + \frac{u}{2} + \frac{1}{6}, \ b_2(u) = \frac{u^3}{6}, \ 0 \le u \le 1.$$

$$p_1$$
 $B_1$ 

Equivalently,

$$B_{i}(u) = \begin{bmatrix} \frac{(1-u)^{3}}{6} x_{i-1} + (\frac{u^{3}}{2} - u^{2} + \frac{2}{3})x_{i} + (-\frac{u^{3}}{2} + \frac{u^{2}}{2} + \frac{u}{2} + \frac{1}{6})x_{i+1} + \frac{u^{3}}{6} x_{i+2} \\ \frac{(1-u)^{3}}{6} y_{i-1} + (\frac{u^{3}}{2} - u^{2} + \frac{2}{3})y_{i} + (-\frac{u^{3}}{2} + \frac{u^{2}}{2} + \frac{u}{2} + \frac{1}{6})y_{i+1} + \frac{u^{3}}{6} y_{i+2} \end{bmatrix}$$

- b<sub>k</sub>(u) serves as basis and can be considered weighting factors applied to the 4 points
  - At u=0, weights are 1/6, 2/3, 1/6, 0
  - At u=1, weights are 0, 1/6, 2/3, 1/6
- Local control
  - Moving a point, affects 4 curve segments
    - Ex, Moving P<sub>2</sub> affects B<sub>0</sub>, B<sub>1</sub>, B<sub>2</sub>, B<sub>3</sub>



- A set of 4 points is required to generate only a portion of the B-spline
- Globally, B<sub>i</sub>(u) and B<sub>i+1</sub>(u) can be pieced together, sharing 3 points



Figure 3.9 Successive B-splines joined together

- Given n+1 points  $p_0, p_1, ...., p_{n_r}$  we want to form a piecewise B-spline.
- $b_k(u)$  are such that continuity requirement of the first and second derivatives met
- 1.  $B_i(u)$  and  $B_{i+1}(u)$  are pieced together so they agree at their joint in three ways:

a. 
$$B_i(1) = B_{i+1}(0) = \frac{p_i + 4p_{i+1} + p_{i+2}}{6}$$

b. 
$$B'_{i}(1) = B'_{i+1}(0) = \frac{-p_i + p_{i+2}}{2}$$

c. 
$$B_i''(1) = B_i''(0) = p_i - 2p_{i+1} + p_{i+2}$$



Figure 3.9 Successive B-splines joined together

- 2. Cubic B spline is  $C^2$  continuous within each segment and at the joint. This is automatically satisfied due to its definition.
- 3.  $p_0,...,p_n$  specify a series of n-2 curve segments  $B_1(u),B_2(u),\cdots,B_{n-2}(u)$ . We need two more segments.
- 4.  $B_i(u)$  is within the concex hull of the four points  $p_{i-1}$ ,  $p_i$ ,  $p_{i+1}$ , and  $p_{i+2}$ . This is a better convex-hull property than Bezier curves.
- 5. Local control: Moving  $p_i$  affects four segments  $B_{i-2}, B_{i-1}, B_i$ , and  $B_{i+1}$ .

1. Moving a control point influences 4 segments.



- If we have points  $p_0$ ,  $p_1$ , ....,  $p_n$ , we can construct  $B_1$ ,  $B_2$ , ...,  $B_{n-2}$ .
  - We need  $B_0$  and  $B_{n-1}$ 
    - Add one point coincide with the end point?
      - $B_0$  and  $B_{n-1}$  don't fit the end points!
    - Add two points coincide with the end points
      - Add  $p_{-2}$ ,  $p_{-1}$ ,  $p_{n+1}$ ,  $p_{n+2}$ , with  $p_{-2} = p_{-1} = p_0$  and  $p_n = p_{n+1} = p_{n+2}$
      - The new curves not only join properly with the portions already made, but start and end at the end points

$$B_0(0) = p_0 \text{ and } B_{n-1}(1) = p_n$$
  
 $B_0'(1) = B_1'(0) \text{ and } B_{n-2}'(1) = B_{n-1}'(0)$   
 $B_0''(1) = B_1''(0) \text{ and } B_{n-2}''(1) = B_{n-1}''(0)$ 

# B-spline curves Examples

 Defined by the same sets of points as the Bezier curves (on the left)









Fictitious points have been added!



# B-spline curves Examples

Defined by the same sets of points as the previous Bezier curves



#### Least-square approximations

- Until now, we have assumed that the data are accurate.
- But for measurement data, they have errors. For example,
  - The graph suggest a linear relationship:y=ax+b
  - Fitting a line that is
    - Unambiguous
    - Minimizes the deviation of the points from the line
      - Deviation: distance between line and points
        - » Depends on whether there are errors in both variables or in just one of them



Figure 3.13

#### Least-square approximations

#### Linear case

- Given a set of points, find a line y=ax+b that achieving some criterion:
  - Minimizing sum of absolute error (See next page)
  - Minimizing maximum error (rarely done!)
  - Minimizing the square sum: widely used since the minimization turns out to be easy

#### Nonlinear case

- Popular forms
  - y=axb
  - y=aebx



Figure 3.13

### Least-square approximations

- Minimize sum of deviations (errors)
  - Not an adequate criterior
  - Fig 3.14:
    - Best line passes two points
    - Line passing the midpoint has also a sum of errors 0
  - Fig 3.15:
    - Best line passes the average of the duplicated points
    - Any line falling between the dotted lines has the same error sum



Figure 3.14



Figure 3.15

#### Least square approximations

Given sample data  $(x_i, Y_i)$ ,  $i = 1, 2, \dots, N$ . Let  $Y_i$  represent an experimental value,  $y_i$  be a value from the equation

$$y_i = ax_i + b$$

where  $x_i$  is a particular value of the variable assumed to be free of error.

#### Goal:

To determine the best values for *a* and *b* so that the sum of squares of the error is minimized.

Let 
$$e_i = Y_i - y_i$$
.

Square of errors:

$$S = e_1^2 + e_2^2 + \dots + e_N^2$$

$$= \sum_{i=1}^{N} e_i^2$$

$$= \sum_{i=1}^{N} (Y_i - ax_i - b)^2$$

#### Least square approximations

At a minimum for S, the two partials  $\partial S / \partial a$  and  $\partial S / \partial b$  will both be zero.

$$\frac{\partial S}{\partial a} = 0 = \sum_{i=1}^{N} 2(Y_i - ax_i - b)(-x_i)$$

$$\frac{\partial S}{\partial b} = 0 = \sum_{i=1}^{N} 2(Y_i - ax_i - b)(-1)$$

Normal equations:

$$a \sum_{i=1}^{N} x_i^2 + b \sum_{i=1}^{N} x_i = \sum_{i=1}^{N} x_i Y_i$$
$$a \sum_{i=1}^{N} x_i + bN = \sum_{i=1}^{N} Y_i$$

Solving the equations gives a and b.

## Least square approximations Example



Figure 3.13

$$\sum T_i = 273.1, \ \sum T_i^2 = 18607.27$$
$$\sum R_i = 4438, \ \sum T_i R_i = 254932.5$$

#### Normal equation:

$$18607.27a + 273.1b = 254932.5$$
$$273.1a + 5b = 4438$$

Solution : 
$$a = 3.395, b = 702.2$$
  
 $R = 702 + 3.39T$ 

# Least square approximations Nonlinear case

Approximation by

```
y=ax<sup>b</sup>, or
y=ae<sup>bx</sup>
```

- Normal equations are nonlinear, which is much more difficult to solve
- Linearize by taking logarithms before determining the parameters by least square

```
In y= In a+b In x, or In y=In a +bx
```

So we fit z=In y as a linear function of In x or x

#### Least-square polynomials

- Least square polynomials
  - Polynomials can be readily manipulated, fitting polynomials to data that do not plot linearly is common
  - Its normal equations are linear!
- N: # of data pairs, n: polynomial degree
  - If N=n+1, the polynomial passes exactly through each point, so it is the interpolating polynomial
  - Here we have N > n+1

### Least-square polynomials

Given N points,  $(x_i, Y_i)$ ,  $i = 1, 2, \dots N$ . Find a polynomial of degree n to approximate the date in least - square sense.

Here, N > n + 1.

Assume the function relationship

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
with arrors defined by

with errors defined by

$$e_i = Y_i - y_i$$

$$= Y_i - a_0 - a_1 x_i - \dots - a_n x_i^n.$$

Sum of squares

$$S = \sum_{i=1}^{N} e_i^2$$

$$= \sum_{i=1}^{N} (Y_i - a_0 - a_1 x_i - a_2 x_i^2 - \dots - a_n x_i^n)^2$$

Normal equations:

$$\frac{\partial S}{\partial a_0} = 0 = \sum_{i=1}^{N} 2(Y_i - a_0 - a_1 x_i - \dots - a_n x_i^n)(-1)$$

$$\frac{\partial S}{\partial a_i} = 0 = \sum_{i=1}^{N} 2(Y_i - a_0 - a_1 x_i - \dots - a_n x_i^n)(-x_i)$$

$$\frac{\partial S}{\partial a_n} = 0 = \sum_{i=1}^{N} 2(Y_i - a_0 - a_1 x_i - \dots - a_n x_i^n) (-x_i^n)$$

## Least-square polynomials Normal equations

$$a_{0}N + a_{1}\sum x_{i} + a_{2}\sum x_{i}^{2} + \cdots + a_{n}\sum x_{i}^{n} = \sum Y_{i},$$

$$a_{0}\sum x_{i} + a_{1}\sum x_{i}^{2} + a_{2}\sum x_{i}^{3} + \cdots + a_{n}\sum x_{i}^{n+1} = \sum x_{i}Y_{i},$$

$$a_{0}\sum x_{i}^{2} + a_{1}\sum x_{i}^{3} + a_{2}\sum x_{i}^{4} + \cdots + a_{n}\sum x_{i}^{n+2} = \sum x_{i}^{2}Y_{i},$$

$$\vdots$$

$$a_{0}\sum x_{i}^{n} + a_{1}\sum x_{i}^{n+1} + a_{2}\sum x_{i}^{n+2} + \cdots + a_{n}\sum x_{i}^{2n} = \sum x_{i}^{n}Y_{i}.$$

$$(3.27)$$

$$B [a] = \begin{bmatrix} N & \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \dots & \sum x_{i}^{n} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \dots & \sum x_{i}^{n+1} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \sum x_{i}^{5} & \dots & \sum x_{i}^{n+2} \end{bmatrix} [a] = \begin{bmatrix} \sum Y_{i} \\ \sum x_{i}Y_{i} \\ \sum x_{i}^{2}Y_{i} \\ \vdots \\ \sum x_{i}^{n}Y_{i} \end{bmatrix}.$$
(3.28)
$$\vdots \\ \sum x_{i}^{n} & \sum x_{i}^{n+1} & \sum x_{i}^{n+2} & \sum x_{i}^{n+3} & \dots & \sum x_{i}^{2n} \end{bmatrix} (n+1)x(n+1)$$

### Least-square polynomials Problems

- Solving large set of normal equations is not a simple task. Moreover, it is ill-conditioned when the degree is high
  - Accumulated round-off in the summation
  - The system often becomes ill conditioned quite rapidly as *n* increases
    - Up to n=3 or 4, the problem is not too great.
      - Special methods tat use orthogonal polynomials are a remedy
    - Beyond that, are rarely needed, and can be handled by fitting a series of polynomials to subsets of the data
- There is polynomial wiggle if data do not exhibit a polynomial nature

# Least-square polynomials Use of orthogonal polynomials

Six data points generated by  $f(x) = \frac{1.44}{x^2} + 0.24x$ 



# Least-square polynomials Use of orthogonal polynomials

- The normal equation system is illconditioned when the degree is high
  - Even for a cubic least-square polynomial, the condition number of the coefficient matrix can be large
  - Example:
    - Fitting a cubic polynomial to 21 data points, the condition number was found to be 22000
  - If we fit the data with orthogonal polynomials such as Chebyshev polynomial (in Chap 4) the condition number was reduced to about 5.

## Least-square polynomials Solve normal eq.

For low - degree polynomial:

Design matrix :  $(n+1) \times N$ 



Significantly!

We can show that

$$B = AA^{T}$$
 and  $cond(AA^{T}) = cond(A)^{2}!!$ 

Ay = right - hand side of Eq 3.28

Rewrite Eq. 3.28 as

$$AA^{T}a = Ba = Ay$$

We can use Gaussian elimination to solve the system. However, because B has special properties, another method can be used to Elements could vary avoid the problem of ill - conditioning.

# Least-square polynomials Solve normal eq. by SVD

- 1.  $B = AA^T$  is symmetric and positive definite.
- 2. *B* can be diagonized by an orthogonal matrix *P*:

$$PBP^{T} = PAA^{T}P^{T} = D,$$
  
where the diagonal elements  
of  $D$  are the eigenvalue s of  $B$ .  
Note that  $PP^{T} = I$ .

3. *B* is positive definite, so all of its eigenvalue s are nonnegative. Thus, there is a *S* such that

$$S = \sqrt{D}$$

The diagonal elements of S are called the singular values of A.

4. Since  $PBP^{T} = D$ ,  $B = P^{T}DP$ .

Normal equation can be rewritten as

$$AA^{T}a = P^{T}DPa$$
  
=  $(SP)^{T}(SP)a = Ay$   
and  
 $a = P^{T}D^{-1}PAy$ 

# Least-square polynomials Solve normal eq. by SVD

Linear Algebra, by Leon, Page 344 - 348

- 1. A symmetric  $n \times n$  matrix B is said positive definite if  $x^T B x > 0$  for all nonzero x.
- 2. *B* is symmetric positive definite iff all its eigenvalue s are positive.
- 3. If *B* is symmetric positive definite, then *B* is nonsingular.
- 4. If B is symmetric positive definite, then B can be factored into  $B = LDL^T$ , where L is lower triangular with 1's along the diagonal and D is a diagonal matrix whose diagonal elements are all positive.
- 5. If *B* is symmetric positive definite, *B* can be diagonized by an orthogonal matrix *P*:

$$PBP^{T} = D$$
, i.e.,  $B = P^{T}DP$ 

where the diagonal elements of D are the eigenvale s of B.

Note that  $PP^T = I$ .

### Least-square polynomials Example

$$11a_0 + 6.01a_1 + 4.6545a_2 = 5.905,$$
  

$$6.01a_0 + 4.6545a_1 + 4.1150a_2 = 2.1839,$$
  

$$4.6545a_0 + 4.1150a_1 + 3.9161a_2 = 1.3357.$$

The result is  $a_0 = 0.998$ ,  $a_1 = -1.018$ ,  $a_2 = 0.225$ .

Lease square solution:  $y = 0.998 - 1.018x + 0.225x^2$ 

True: 
$$y = 1 - x + 0.2x^2$$
.

Table 3.14 Data to illustrate curve fitting

| $Y_i$                 |                       | 0.11<br>0.890 | 0.15<br>0.832      |                           |                      |  |  |                 |  |  | 1.171<br>0.104 |
|-----------------------|-----------------------|---------------|--------------------|---------------------------|----------------------|--|--|-----------------|--|--|----------------|
|                       | $\Sigma x_i = 6.01$   |               |                    | <i>N</i> = 11             |                      |  |  |                 |  |  |                |
|                       | $\sum x_i^2 = 4.6545$ |               |                    |                           | $\Sigma Y_i = 5.905$ |  |  |                 |  |  |                |
|                       |                       |               | $\sum x_i^3 = 4.1$ |                           |                      |  |  | $c_i Y_i = 2.1$ |  |  |                |
| $\sum x_i^4 = 3.9161$ |                       |               |                    | $\sum x_i^2 Y_i = 1.3357$ |                      |  |  |                 |  |  |                |



Figure 3.16

# Least-square polynomials Degree of polynomial

What degree polynomial should be used?

- For given N points, higher-degree polynomial reduces the error, but leading to wiggle problem
  - If the data points lie on a curve that is not polynomial-like, high-degree polynomial curves will oscillation between successive points when forced to go near them
    - The remedy for poor polynomial fit is a more suitable smooth function, not a polynomial of high degree
- When n=N-1, the least-square solution is an interpolating polynomial

# Least-square polynomials What degree ?

 One increases the degree of approximating polynomial as long as there is a statistically significant decrease in the variance:

$$\sigma^2 = \frac{\sum e_i^2}{N - n - 1}$$

- Example

**Table 3.15** 

Based on the criterion, we choose the optimum degree as 2.

| Degree | Equation                                                                                                                                                                                                                                                                   | $\sigma^2$ (Eq. 3.27) | $\sum e^2$ |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|
| 1      | $y = 0.95228 - 0.76041x$ $y = 0.99800 - 1.0180x + 0.22468x^{2}$ $y = 1.0037 - 1.0794x + 0.35137x^{2} - 0.06894x^{3}$ $y = 0.98810 - 0.83690x - 0.52680x^{2} + 1.0461x^{3} - 0.45635x^{4}$ $y = 1.0369 - 1.8241x + 4.8953x^{2} - 10.753x^{3} + 10.537x^{4}$ $- 3.6594x^{5}$ | 0.00106               | 0.00915    |
| 2      |                                                                                                                                                                                                                                                                            | 0.00023               | 0.00187    |
| 3      |                                                                                                                                                                                                                                                                            | 0.00026               | 0.00181    |
| 4      |                                                                                                                                                                                                                                                                            | 0.00027               | 0.00165    |
| 5      |                                                                                                                                                                                                                                                                            | 0.00013               | 0.00067    |