	Утвержден ЛМАП.402131.028-ЛУ
	МОДУЛЬ ИНЕРЦИАЛЬНЫЙ
	ГКВ-5
	Руководство по эксплуатации
	ЛМАП.402131.028РЭ
Подп и дата	
. Инв. № дубл.	
Взам. № подл.	
Подп. и дата	
Инв. № подл.	

		СОДЕРЖАНИЕ									
н.	.028	ВВЕДЕНИЕ									
Перв. примен	131	1 Описание и работа									
рв. пј	ЛМАП.402	1.1 Описание и работа изделия									
Пер	MAI	1.1.1 Назначение изделия									
	П	1.1.2 Технические характеристики									
		1.1.3 Состав изделия									
H		1.1.4 Устройство и работа									
		1.1.5 Назначение выводов									
		1.1.6 Маркировка и пломбирование									
$N_{\bar{o}}$		1.1.7 Упаковка									
прав.		2 Использование по назначению									
$C_{\mathcal{U}}$		2.1 Предельные и предельно-допустимые режимы работы									
		2.2 Подготовка изделия к использованию									
		2.2.1 Меры безопасности при подготовке изделия									
		2.2.2 Объем и последовательность внешнего осмотра изделия									
		2.2.3 Проверка готовности изделия к использованию									
		2.2.4 Указание об ориентировании изделия									
		2.2.5 Указание об установке ГКВ-5									
ıa		2.2.6 Указания о взаимосвязи (соединении) ГКВ-5 с другими изделиями									
і дата		2.2.7 Протокол информационного обмена									
Подп. и		2.2.8 Перечень возможных неисправностей изделия в процессе его подготовки и									
По		рекомендации по действиям при их возникновении									
<u> </u>		3 Хранение									
№ дубл.		4 Транспортирование									
		Приложение А Внешний вид ГКВ-524									
Инв.		Приложение Б Габаритные, установочные и присоединительные размеры27									
. $N_{ar{o}}$		Приложение В Обозначение контактов									
. инв.		Приложение Г Схема рабочего места входного контроля изделия									
Взам.		Приложение Д Инструкция по входному контролю технических характеристик изделия 35									
та											
$u \partial c$											
Тодп. и дата		TIMATI 402121 029D2									
I		ЛМАП.402131.028РЭ _{Изм} Лист № докум. Подп. Дата									
∂n .		Разраб. Михеев Модуль инерциальный Лит. Лист Листов									
№ подл		Пров. Каменский $\Gamma KB-5$									
нв. Л		Н.контр. Петрова Руководство по эксплуатации									
И	Утв.										

Модули предназначены для измерения угловых скоростей, линейных ускорений, углов наклона (крена и тангажа) и вычисления навигационных данных прямым способом (БИНС).

ГКВ может использоваться в составе систем движения, стабилизации, навигации, ориентации и систем различного назначения.

К работе с ГКВ-5 допускаются лица, ознакомленные с настоящим РЭ, прошедшие инструктаж по технике безопасности в соответствии с установленным в эксплуатирущей организации порядком, и имеющие группу электробезопасности не ниже II.

Данное РЭ распространяется на следующие исполнения ГКВ-5:

ГКВ-5-ХҮZ-А, ЛМАП.402131.028 - ЛМАП.402131.028-02

где XYZ – диапазон измерения угловой скорости по осям чувствительности;

А – диапазон измерения линейного ускорения,

ЛМАП.402131.028 – исполнение разъема.

Примечание — более подробная информация по исполнениям ГКВ-5 указана в 1.1.3 Состав изделия.

Подп. и датс

№ Инв. № дубл

Тодп. и дата

нв. № подл.

Изм Лист № докум. Подп. Дата

ЛМАП.402131.028РЭ

1 ОПИСАНИЕ И РАБОТА

1.1 Описание и работа изделия

1.1.1 Назначение изделия

ГКВ-5 — модуль инерциальный, который предназначен для измерения угловой скорости, линейного ускорения и параметров магнитного поля по трем осям.

Область применения ΓKB — системы, для которых необходимо вычислить характеристики движения, а также навигацию и ориентацию.

Диапазон рабочих температур от минус 50 до плюс 85 °C.

Масса не более 65 г.

Габаритные размеры 65,6×42×21,5 мм.

Средняя наработка до отказа не менее 50000 часов при температуре 20 °C.

Срок службы 12,5 лет.

Внешний вид ГКВ показан в приложении А.

1.1.2 Технические характеристики

Параметры информационного обмена по четырехпроводному интерфейсу RS-485 по умолчанию: скорость обмена 921600 бит/с, частота выдачи данных 1 кГц, алгоритм «данные с датчиков».

Скорость обмена, алгоритмы выдачи, частота выдачи, а также параметры могут быть определены потребителем согласно протоколу информационного обмена.

ГКВ-5 имеет дополнительный полудуплексный интерфейс RS-485, который может быть настроен на прием дополнительных данных (от ГНСС приемника, внешнего магнитометра, одометра и пр.).

№ дубл. Подп. и д

зам. инв. № Ин

Подп. и дата

з. *№ подл.*

Изм	Лист	№ докум.	Подп.	Дата

ЛМАП.402131.028РЭ

Таблица 1 а – Метрологические характеристики канала угловой скорости

	Знач	Значение		
Наименование характеристики	ГКВ-5- 111-A	ГКВ-5- 222-A		
Диапазон измерения угловой скорости, °/с	±900	±2700		
Пределы допускаемой абсолютной погрешности измерения угловой скорости, °/с - при измерении угловой скорости в диапазоне ±180 включ. °/с - сразу после включения - после предварительного прогрева (Тпрогр. =15 минут) - при измерении угловой скорости в диапазоне св. ±180 °/с	$^{\pm0,25}_{\pm0,15}_{\pm1}$	± 0,3 ± 0,2 ± 4		
Номинальное значение коэффициента преобразования, (°/c)-1	1			
Отклонение коэффициента преобразования от номинального значения, %, не более	0,1	0,14		
Смещение нуля выходного сигнала в диапазоне рабочих температур, °/c, не более	$\pm 0,1$			
Нелинейность выходного сигнала, %, не более	0,1	0,2		
Частотный диапазон измерения угловой скорости по уровню -3дБ, Гц	от 0 до 160			
Спектральная плотность, °/с/√Гц, не более	0,002	0,01		

Таблица 1 б – Метрологические характеристики канала линейного ускорения

_	Значение					
Наименование характеристики	ГКВ-5- ХҮZ-4	ГКВ-5- ХҮZ -5	ГКВ-5- ХҮZ -1	ГКВ-5- ХҮZ -2	ГКВ-5- ХҮZ -3	
Диапазон измерений линейного ускорения, м/c^2	±9,8	±24,5	±98	±294	±981	
Пределы допускаемой абсолютной погрешности измерения ускорения, м/c^2 - в диапазоне $\pm 9.8 \text{ м/c}^2$;	±9,8·10 ⁻³	±14,7·10 ⁻³	⊥ 10 6.10 ⁻³	± 20 4.10 ⁻³	± 49·10 ⁻³	
- в полном диапазоне измерений.	$\pm 9.8 \cdot 10^{-3}$		· -	± 2), + 10 ± 2	± 8,5	
Номинальное значение коэффициента преобразования, g-1			1			
Отклонение коэффициента	0,05	0,1	0,45	0,65	0,8	

Изм	Лист	№ докум.	Подп.	Дата

	Значение					
Наименование характеристики	ГКВ-5- ХҮZ-4	ГКВ-5- ХҮZ -5	ГКВ-5- ХҮZ -1	ГКВ-5- ХҮZ -2	ГКВ-5- ХҮZ -3	
преобразования от номинального значения, %, не более						
Смещение нуля выходного сигнала в диапазон рабочих температур, не более, $\mathrm{m/c}^2$	2,45·10 ⁻³	±9,81·10 ⁻³	±9,8·10 ⁻³	-19,6·10 ⁻³	±49·10 ⁻³	
Нелинейность выходного сигнала, %, не более	0,05	0,2	1	2	2	
Частотный диапазон измерения ускорения по уровню -3дБ, Гц	от 0 до 200					
Спектральная плотность шума, $_{\rm M}/{\rm c}^2/\sqrt{\Gamma}$ ц, не более	0,05	0,15	0,15	0,35	1,2	

Таблица 1 в – Общие технические характеристики

Наименование параметра	Значение
Количество измерительных осей	3
Долговременный дрейф смещения нуля в запуске (в течение 1 часа), не более, $^{\circ}$ /ч для диапазона \pm 900 $^{\circ}$ /с для диапазона \pm 2700 $^{\circ}$ /с	6 12
Долговременный дрейф смещения нуля в запуске (в течение 1 часа), не более, м/с² для диапазона \pm 9,8 м/с² для диапазона \pm 24,5 м/с² для диапазона \pm 98 м/с² для диапазона \pm 294 м/с² для диапазона \pm 294 м/с² для диапазона \pm 981 м/с²	0,01 0,02 0,03 0,09 0,3
Напряжение питания, В	5
Потребляемая мощность, не более, Вт	1,5
Масса, кг, не более	0,65
Габаритные размеры, не более, мм	65,6×42×21,5
Условия эксплуатации - температура окружающей среды, °С	от минус 50 до +85

Изм	Лист	№ докум.	Подп.	Дата

- относительная влажность воздуха при температуре 25°C, %, не более	98
- атмосферное давление, кПа	от 60 до 113
Средний срок службы, лет	12,5
Средняя наработка на отказ, ч	50 000

Таблица 1 г – Метрологические характеристики канала магнитометра

Наименование параметра	Мин.	Ном.	Макс.	Ед. изм.
Канал магнитом	иетра			113141
Диапазоны измерения магнитного поля	± 0,8			мТ
Разрядность выходных данных		18		бит
Среднеквадратичное отклонение (1000 Гц)		0,12		мкТ
Нелинейность			± 0,1	%

Примечания:

- 1. Диапазон измерения угловой скорости зависит от исполнения (см. таблицу 1 a).
- 2. Диапазон измерения линейного ускорения зависит от исполнения (см. таблицу 1 б).

Подп. и дата				
Инв. № дубл.				
Взам. инв. № Инв. № дубл.				
Подп. и дата				
подл.		 		

Подп.

№ докум.

По внешним воздействующим факторам ГКВ-5:

- стойкий к линейному ускорению до 100 g в 3-х взаимно перпендикулярных направлениях;
- стойкий к воздействию механического удара однократного действия с пиковым ударным ускорением 5000 м/с² (500 g) и длительностью действия ударного ускорения от 0.5-2 мс;
- стойкий к воздействию механического удара многократного действия с пиковым ударным ускорением 1500 м/с² (150 g) и длительностью ударного ускорения от 1 до 5 мс;
- прочный к воздействию пониженной температуры окружающей среды от минус $60\ ^{\circ}\mathrm{C}.$

Пист

Пооп. и оата Взам. ине. № Ине. № дубл. и дата Пооп. п да

№ докум.

Подп.

Комплект поставки:

- 1) Модуль инерциальный ГКВ-5;
- 2) Упаковка ЛМАП.402915.007;
- 3) Ведомость эксплуатационных документов ЛМАП.402131.028ВЭ;
- 4) Паспорт ЛМАП.402131.028ПС;
- 5) Руководство по эксплуатации ЛМАП.402131.028РЭ (поставляется согласно ЛМАП.402131.020ВЭ);
- 6) Вилка S102A059-130, FISHER;
- 7) Флеш-накопитель с описанием ГКВ-5, демонстрационным ПО, калибровочными коэффициентами.

ГКВ-5 поставляется в исполнениях согласно таблице 2.

Таблица 2 – Исполнения ГКВ-5

Тип изделия	Диапазон измерения угловой скорости X/Y/Z, °/с	Диапазон измерения линейного ускорения, X/Y/Z, g
ГКВ-5-111-1	$\pm 900/\pm 900/\pm 900$	$\pm 10/\pm 10/\pm 10$
ГКВ-5-111-2	$\pm 900/\pm 900/\pm 900$	$\pm 30/\pm 30/\pm 30$
ГКВ-5-111-3	$\pm\ 900/\pm\ 900/\pm\ 900$	$\pm 100/\pm 100/\pm 100$
ГКВ-5-000-4	-	± 1/± 1/± 1
ГКВ-5-111-5	$\pm\ 900/\pm\ 900/\pm\ 900$	$\pm 2,5/\pm 2,5/\pm 2,5$
ГКВ-5-222-1	± 2700/± 2700/± 2700	± 10/± 10/± 10
ГКВ-5-222-2	± 2700/± 2700/± 2700	± 30/± 30/± 30
ГКВ-5-222-3	± 2700/± 2700/± 2700	± 100/± 100/± 100
ГКВ-5-000-4	-	± 1/± 1/± 1
ГКВ-5-222-5	± 2700/± 2700/± 2700	$\pm 2,5/\pm 2,5/\pm 2,5$

Примечание — Диапазоны измерений угловой скорости и линейного ускорения могут подбираться индивидуально на каждую ось по запросу заказчика.

1.1.4 Устройство и работа

ГКВ-5 состоит из триады датчиков угловой скорости, триады датчиков линейного ускорения (акселерометров), трехосного магнитометра и вычислителя. Датчики уг-

Изм	Лист	№ докум.	Подп.	Дата

Взам.

ЛМАП.402131.028РЭ

1.1.4.1 Общие сведения о работе изделия

ГКВ-5 предназначен для измерения инерциальных воздействий и вычисления ориентации. Встроенные навигационные алгоритмы позволяют использовать ГКВ-10 в системах стабилизации и мониторинга пространственной ориентации объектов, вычислять истинный курс и координаты (при подключении внешнего ГНСС приемника).

Данные от инерциальных датчиков выдаются в калиброванном виде (а также могут передаваться в кодах АЦП, т.е. без калибровки). По умолчанию ГКВ-5 настроен на выдачу калиброванных данных с датчиков (тип пакета 0x0B), если иное не обговорено с заказчиком. Набор выдаваемых данных устанавливается в «Наборном пакете» (тип 0x27).

1.1.4.2 Алгоритмы работы изделия

Данные с датчиков

Данные с датчиков представляют собой калиброванные данные каналов угловой скорости и линейного ускорения. Сигналы от датчиков угловой скорости и линейного ускорения (акселерометров) оцифровываются 24-х разрядным сигма-дельта АЦП с частой 24000 выборки в секунду, фильтруются с разряжением до частоты 1 кГц и калибруются во всем диапазоне температур.

Общая модель датчиков описывается формулой 1.1.

$$S = K^{-1} \times (ADC - B0); \qquad (1.1)$$

где S – калиброванные данные датчика;

ADC – «сырые» данные от датчиков в кодах АЦП;

В0 – смещение нуля датчиков в кодах АЦП.

$$K = \begin{bmatrix} G_{11} & 0 & 0 \\ 0 & G_{22} & 0 \\ 0 & 0 & G_{33} \end{bmatrix} \times \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix},$$
(1.2)

где M — матрица поворотов (матрица направляющих косинусов) для приведения к ортонормированному базису;

G- матрица масштабных коэффициентов.

Инв. № подл. Подп

Изм	Лист	№ докум.	Подп.	Дата

ЛМАП.402131.028РЭ

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix};$$
(1.3)

$$G = \begin{bmatrix} G_{11} & 0 & 0 \\ 0 & G_{22} & 0 \\ 0 & 0 & G_{33} \end{bmatrix}; \tag{1.4}$$

Реальная модель датчика сложнее, зависит от типа датчика и имеет температурную зависимость.

Инклинометр

Данные с инклинометра представляют собой углы отклонения, α и β . Вычисляются по данным линейного ускорения, согласно формуле 1.5. В соответствии с формулой 1.5 видно, что наибольшая чувствительность и точность будет на углах близких к 0, наименьшая — на углах близких к 45 градусам.

$$\alpha = \arctan\left(\frac{A_X}{\sqrt{A_Y^2 + A_Z^2}}\right)$$

$$\beta = \arctan\left(\frac{A_Y}{\sqrt{A_X^2 + A_Z^2}}\right)$$
(1.5)

Примечания

1 Рекомендуется использовать "Наборный пакет" для получения необходимых параметров. Настроить ГКВ-5 можно согласно протоколу информационного обмена или с помощью демонстрационного программного обеспечения.

2 При выборе наборного пакета, необходимо следить за пропускной способностью выходного канала цифрового интерфейса.

3 ГКВ-5 имеет возможность обновления или доработки внутреннего ПО. Обновление происходит через демонстрационное ПО ГКВ-5, входящее в комплект поставки.

ЛМАП.402131.028РЭ

ИНВ. № поол.

1.1.5 Назначение выводов

Назначение выводов показано в таблице 3. Нумерация контактов указана в приложении B.

Таблица 3 – Назначение выводов разъема ГКВ-5

Цепь	Конт.	Назначение
Напряжение питания	8	Напряжение питания устройства 5 B ±5%, типовое по-
Общий	7	требление 0,2 А
RS422 TxD+ (B)	4	Основной четырехпроводной интерфейс RS-422 (линия
RS422 TxD- (A)	3	передачи данных)
RS422 RxD+ (B)	6	Основной четырехпроводной интерфейс RS-422 (линия
RS422 RxD- (A)	5	приема данных)
Выход синхрониза-	9	Основное исполнение: цифровой выход синхрониза-
ции / RS485- (A)		ции. Уровень лог. $1 - 3.3$ В. Уровень лог. $0 - 0$ В. Исполнение -01: цепь «А» интерфейса RS485
Не используется /	2	Основное исполнение: не используется. Уровень лог. 1
RS485+ (B)	2	-3,3 В. Уровень лог. $0-0$ В. Исполнение -01: цепь «А» интерфейса RS485
Вход синхронизации	1	Цифровой вход синхронизации. Вход доопределен до 3,3 В резистором 10 кОм

1.1.5.1 Цепи питания ГКВ-5

Контакты 8 (Плюс питания) и 7 (Общий) предназначены для подключения внешнего напряжения питания ГКВ-5 от 4,85 до 5,25 В. Имеется встроенная защита от неверного подключения полярности питания. Имеется встроенная защита от всплесков питания, превышающих максимальное напряжение питания.

1.1.5.2 Основной цифровой интерфейс

В качестве основного цифрового интерфейса используется четырехпроводный асинхронный интерфейс RS-485. По умолчанию ГКВ-5 непрерывно передает вычисленные данные с момента включения с частотой 1 кГц. Канал приема данных (5 и 6 контакты) предназначен для настройки ГКВ-5.

1.1.5.3 Сигнал синхронизации

Контакты 1 и 9 предназначены для формирования сигналов синхронизации. Контакт 9 имеет две функции — выход синхронизации и сигнал полудуплексного интерфейса RS-485-(A), для выбора функции сигнала выхода синхронизации необходимо, чтобы дополнительный интерфейс был отключен.

Возможен выбор режимов работы (выбор осуществляется согласно протоколу

Изм	Лист	№ докум.	Подп.	Дата

информационного обмена):

- Изменение состояния из «0» в «1» происходит по сигналу готовности данных от внутреннего АЦП, изменение состояния из «1» в «0» по сигналу обновления данных в буфере отправки. Длительность сигнала синхронизации зависит от времени обработки данных выбранным алгоритмом.
- Изменением состояния из «0» в «1» и из «1» в «0» происходит по сигналу готовности данных от внутреннего АЦП.

Примечание — Переключения происходят с учетом предделителя синхросигнала (см. протокол информационного обмена тип пакета 0х07). При выбранном предделителе 1 переключение осуществляется при каждом срабатывании сигнала готовности данных АЦП, при выборе 2 при каждом втором и т.д.

Вход сигнала синхронизации (1 контакт) доопределен до 3,3 В резистором 10 кОм. Значение входа синхронизации устанавливается в параметре «Статус», 0 бит.

Изм Лист № докум. Подп. Дата

 $N_{\bar{e}} \partial v \delta n$

Взам.

ЛМАП.402131.028РЭ

1.1.5.4 Дополнительный цифровой интерфейс

Дополнительный гальванически развязанный полудуплексный асинхронный интерфейс RS-485 предназначен для приема данных от внешних источников (ГНСС приемник, магнитометр, одометр и пр.).

Подключение дополнительных внешних приборов и их протоколы обмена согласовываются с производителем.

1.1.6 Маркировка и пломбирование

Кодирование при маркировке изделия: ГКВ-5М-ХҮХ-А, где

- 1. ГКВ-5 наименование изделия;
- 2. X диапазон измерения угловой скорости по оси X, десятичная цифра:
 - 0 ось не используется,
 - 1 диапазон измерения угловой скорости $\pm 900^{\circ}/c$,
 - 2 диапазон измерения угловой скорости $\pm 2700^{\circ}/c$;
- 3. У диапазон измерения угловой скорости по оси У, десятичная цифра:
 - 0 ось не используется,
 - 1 диапазон измерения угловой скорости $\pm 900^{\circ}/c$,

Изм	Лист	№ докум.	Подп.	Дата

№ дубл.

ЛМАП.402131.028РЭ

```
2 — диапазон измерения угловой скорости \pm 2700^{\circ}/c;
         4. Z – диапазон измерения угловой скорости по оси Z, десятичная цифра:
               0 – ось не используется,
               1 – диапазон измерения угловой скорости \pm 900^{\circ}/c,
               2 – диапазон измерения угловой скорости \pm 2700^{\circ}/c;
         5. А – диапазон измерения линейного ускорения, десятичная цифра:
               0 – датчики линейного ускорения отсутствуют,
               1 – диапазон измерения ускорений \pm 10 g по всем осям,
               2 – диапазон измерения ускорений \pm 30 g по всем осям,
               3 – диапазон измерения ускорений \pm 100 g по всем осям,
               4 – диапазон измерения ускорений \pm 1 g по всем осям,
               5 – диапазон измерения ускорений \pm 2.5 g по всем осям,
               6 — диапазон измерения ускорений \pm 100 g по оси X, \pm 10 g по осям Y,
Z,
               7 — диапазон измерения ускорений \pm 100 g по оси Y, \pm 10 g по осям X,
Z.
                                                                                     Пист
                                         ЛМАП.402131.028РЭ
                                                                                      15
```

№ докум.

Подп.

1.1.7 Упаковка

Упаковка представляет собой картонную коробку с легкой полиуретановой вставкой. Размеры упаковки предусматривают размещение в ней остальных компонент изделия (см. состав изделия -1.1.3).

в. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм	Лист	№ докум.	Подп.	Дата

2.1.1 Предельные и предельно-допустимые режимы работы указаны в таблице 4. Длительность воздействия предельных режимов не должна превышать 0,1 с в течение 10 мин.

Таблица 4 – Предельные и предельно-допустимые режимы работы

Hawayanayana wanayarna	Пределы	Предельно-допустимые		Предельные			Ед.
Наименование параметра	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.	изм.
Напряжение в цепи питания	4,75		5,25				В
Среднее напряжение на цепях прием данных (RX+ и RX-) по цифровым интерфейсам	минус 7	+ 12		минус 9	+ 14		В
Дифференциальное напряжение (по модулю) между цепями передачи данных (ТХ+ и ТХ-)							
- нагрузка 100 Ом	2	2,5		2	2,5		В
- нагрузка 54 Ом	1,5	2		1,5	2		В

Примечание – Присутствует защита от подачи напряжения обратной полярности.

ВНИМАНИЕ: НЕСОБЛЮДЕНИЕ ДАННЫХ УСЛОВИЙ ЭКСПЛУАТАЦИИ МОЖЕТ ПРИВЕСТИ К ВЫХОДУ ИЗДЕЛИЯ ИЗ СТРОЯ.

2.2 Подготовка изделия к использованию

2.2.1 Меры безопасности при подготовке изделия

Специальных мер безопасности при подготовке изделия не предъявляется.

2.2.2 Объем и последовательность внешнего осмотра изделия

Перед использованием необходимо выполнить внешний осмотр изделия и его составных частей.

На изделии, его составных частях и разъеме не должно быть механических повреждений, следов коррозии и нарушений целостности пломбирования (при наличии).

Маркировка изделия и его составных частей должна быть читаема и соответствовать прилагаемой эксплуатационной и сопроводительной документации.

Изм	Лист	№ докум.	Подп.	Дата

ЛМАП.402131.028РЭ

Взам.

2.2.3 Проверка готовности изделия к использованию

Проверка осуществляется один раз при первом включении изделия.

- 1) Выполнить внешний осмотр изделия в соответствии с п. 2.2.2.
- 2) Включить модуль
- 2.1) Подключить модуль согласно схеме подключения (Приложение Γ).
- 2.2) Включить лабораторный источник питания (ЛИПС) на выходное напряжение 5 В, мощность, потребляемая изделием, не должна превышать 1,5 Вт.
- 2.3) Для проведения входного контроля модуля рекомендуется запустить на ПК демонстрационное ПО. С его работой можно ознакомиться в руководстве оператора RU.ЛМАП.502900-01 34 01.
 - 3) Убедиться в корректности выдаваемой информации:
- убедиться в установленном алгоритме выдачи данных во вкладке настройки «данные с датчиков»;
- записать значение угловой скорости в покое, среднее значение угловой скорости за интервал не менее 10 с должно быть не более \pm 0,1 °/c, при этом СКО в полосе 1000 Гц должно быть не более 0,06 °/c для диапазона измерения угловой скорости \pm 900 °/c. Для диапазона \pm 2700 °/c за интервал не менее 10 с среднее значение угловой скорости не более \pm 0,3 °/c, при этом СКО в полосе 1000 Гц должно быть не более 0,2 °/c;
- записать значение линейного ускорения в покое, среднее значение длины вектора линейного ускорения за интервал не менее 10 с $(\sqrt{ax^2 + ay^2 + az^2})$ должно быть в пределах $(1\pm0,01)$ g.
- температура, выдаваемая модулем, должна быть в диапазоне от минус 2 до плюс 15 °C от температуры окружающей среды;
- магнитометр должен выдавать изменяющиеся во времени сигналы, реагировать на вращения или на металлические предметы.

В случае несоответствия выдаваемой информации запустить режим самотестирования и считать показания статуса. Если в параметре «Статус» присутствуют отказы каналов угловой скорости или линейного ускорения, то ГКВ-5 признается не прошедшим проверку, и в этом случае следует обратиться к производителю.

Примечание — следует иметь в виду, что при угловых скоростях, превышающих $1000~^{\circ}$ /с (для исполнения $\pm~900~^{\circ}$ /с) и $3000~^{\circ}$ /с (для исполнения $\pm~2700~^{\circ}$ /с), статусы отказов также могут быть сформированы.

Изм	Лист	№ докум.	Подп.	Дата

2.2.4 Указание об ориентировании изделия

Ориентация осей ГКВ-5 указана в Приложении А.

Ось X направлена от разъема, ось Z вниз, ось Y образует правую тройку. Положительным вращением считается вращение по часовой стрелке по направлению оси.

2.2.5 Указание об установке ГКВ-5

Допустимая плоскостность установки ГКВ-5 не более 0,03 мм на площадь 0,35 см 2 . Шероховатость установочной поверхности не должна быть более $\sqrt{Ra2.5}$.

2.2.6 Указания о взаимосвязи (соединении) ГКВ-5 с другими изделиями

ГКВ-5 подключается к другим изделиям по 4-х проводному интерфейсу RS-485 согласно ЛМАП.402131.028Э5. Рекомендуется устанавливать согласующие резисторы на концах линии передачи данных, особенно критично при высокой скорости — более 115200 бит/с и длине кабеля более 3-х метров. В ГКВ-5 установлен согласующий резистор номиналом 120 Ом по цепи приема данных.

Рисунок 2.2 – Схема подключения в одну сеть нескольких изделий Основные характеристики интерфейса RS-485:

- максимальная длина одного сегмента сети 1200 м;
- максимальное количество узлов в сети 256;

Изм	Лист	№ докум.	Подп.	Дата

№ дубл.

ЛМАП.402131.028РЭ

- максимальные скорости обмена данными при различных длинах линий связи:
 - 62,5 кбит/с 1200 м;
 - 375 кбит/с 500 м;
 - 500 кбит/с:
 - 1000 кбит/с;
 - 2400 кбит/с 100 м;
 - 10000 кбит/с 10 м;
 - 30000 кбит/с 5 м;

Примечание — на скоростях обмена свыше 500 кбит/с рекомендуется использовать экранированные витые пары.

Тип приёмопередатчиков – дифференциальный, потенциальный.

Предельные и предельно-допустимые режимы работы по цепям приема и передачи данных указаны в Таблице 4.

2.2.7 Протокол информационного обмена

Протокол информационного обмена описан в ЛМАП.402131.009Д1.

2.2.8 Перечень возможных неисправностей изделия в процессе его подготовки и рекомендации по действиям при их возникновении

- 1) Сбилась калибровка сигналов угловой скорости и линейного ускорения несоответствие сигналов модуля пункту 2.2.3:
- а) калибровка может быть неверной при стирании энергонезависимой памяти внутри модуля, которая может быть вызвана сбросом питания во время записи.

ВНИМАНИЕ: ИЗМЕНЕНИЕ НАСТРОЕК ГКВ-5 ПРИВОДИТ К ПЕРЕЗАПИСИ ФЛЕШ-ПАМЯТИ. В МОМЕНТ ЗАПИСИ НАСТРОЕК ПИТАНИЕ ГКВ-5 ДОЛЖНО БЫТЬ СТАБИЛЬНО. ЕСЛИ В МОМЕНТ ИЗМЕНЕНИЯ НАСТРОЕК ПРОИСХОДИТ СБРОС ПИТАНИЯ, ТО ДАННЫЕ С ФЛЕШ-ПАМЯТИ МОГУТ БЫТЬ ПОТЕРЯНЫ, В ТОМ ЧИСЛЕ КАЛИБРОВОЧНЫЕ КОЭФФИЦИЕНТЫ. ПРИ ОШИБКЕ ВО ФЛЕШ-ПАМЯТИ ГКВ-5 НЕОБХОДИМО ЗАНОВО ОБНОВИТЬ КАЛИБРОВОЧНЫЕ КОЭФФИЦИЕНТЫ ЧЕРЕЗ ДЕМОНСТРАЦИОННОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ГКВ-5 (КАЛИБРОВОЧНЫЕ КОЭФФИЦИЕНТЫ ЛЕЖАТ НА ФЛЕШ-НАКОПИТЕЛЕ В СОСТАВЕ КОМПЛЕКТА, А ТАКЖЕ ОНИ СОХРАНЕНЫ В БАЗЕ ДАННЫХ ПРОИЗВОДИТЕЛЯ).

Изм	Лист	№ докум.	Подп.	Дата

ЛМАП.402131.028РЭ

- б) выбран диапазон измерения угловой скорости без калибровки. Для модуля может быть выбран диапазон либо \pm 900 °/c, либо \pm 2700 °/c в зависимости от исполнения (см. таблицу 2).
 - 2) отказ канала угловой скорости, ускорения:

В параметр «Статус» выставлены значения (таблица 5)

Таблица 5 – «Статус» ГКВ

Биты	Обозначение			
3	«1» – отказа АЦП. «0» - годность АЦП			
4	«1» – отказ оси X канала угловой скорости			
5	«1» – отказ оси Y канала угловой скорости			
6	«1» – отказ оси Z канала угловой скорости			
7	«1» – отказ оси X канала линейного ускорения			
8	«1» – отказ оси Y канала линейного ускорения			
9	«1» – отказ оси Z канала линейного ускорения			

Лист

21

ЛМАП.402131.028РЭ

Подп. и дап			
Взам. инв. № Инв. № дубл.			
Взам. инв. №			
Подп. и дата			
ıв. <i>№ под</i> л.			

Изм Лист

№ докум.

Подп.

3 ХРАНЕНИЕ 3.1 До установки в основное изделие ГКВ-5 позволяет хранение в собственной упаковке в течение 4 лет в отапливаемых складских условиях. 3.2 Требования к условиям хранения устанавливаются с учетом ГОСТ В 9.003. Лист ЛМАП.402131.028РЭ

№ докум.

Подп.

22

4 ТРАНСПОРТИРОВАНИЕ

- 4.1 ГКВ-5 в собственной упаковке сохраняет свои характеристики при транспортировании:
- железнодорожным транспортом без ограничения скорости на расстояние не менее 23 000 км, из них не менее 15 000 км на этапе эксплуатации;
- воздушным и водным транспортом без ограничения расстояния, скорости и высоты;
- автомобильным транспортом на расстояние не менее 3500 км, из них не менее 3000 км на этапе эксплуатации, по дорогам с твердым покрытием со скоростью не более 60 км/ч, из них по грунтовым дорогам не менее 500 км со скоростью не более 40 км/ч;
- на транспортировочной тележке со скоростью до 20 км/ч по дорогам с твёрдым покрытием и со скоростью не более 10 км/ч по улучшенным грунтовым дорогам на расстояние до 250 км (суммарно за весь период эксплуатации).

р подл. и дата Взам. ине. № Ине. № дубл. Подп. и дата Взам. ине. № ине. № дубл. Подп. и дата Взам. ине. № ине. № дубл. Подп. и дата Взам. ине. № ине. № дубл. Подп. и дата Взам. ине. № ине. №

Изм Лист № докум. Подп. Дата

ЛМАП.402131.028РЭ

Рисунок Б.2 – Габаритный чертеж ГКВ-5 ЛМАП.402131.028-01

77					
10001					
01111	Изм	Лист	№ докум.	Подп.	Дата

Подп.

№ дубл.

Взам.

ЛМАП.402131.028РЭ

Рисунок Б.3 – Габаритный чертеж ГКВ-5 ЛМАП.402131.028-02

Изм Лист № докум. Подп. Дата

Nº dv6n

ЛМАП.402131.028РЭ

. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм Лист № докум. Подп. Дата

ЛМАП.402131.028РЭ

Лист

31

ЛМАП.402131.028РЭ

Подп. и дата				
Инв. № дубл.				
Взам. инв. №				
Подп. и дата				
è noдл.		 		

№ докум.

Лист

Подп.

Таблица В.1 – Обозначение проводов МС16-13

Цепь	Конт.	Цвет провода/ТУТ	Назначение
Напряжение питания	8	Красный	Напряжение питания устройства 5 В
Общий питания	7	Чёрный	±5%, типовое потребление 0,2 А
RS-485 TxD+ (B)	4	Синий	Основной четырехпроводной интерфейс RS-422 (линия передачи дан-
RS-485 TxD- (A)	3	Синий/черный	ных)
RS-485 RxD+ (B)	6	Зелёный	Основной четырехпроводной интер-
RS-485 RxD- (A)	5	Зелёный/черный	фейс RS-422 (линия приема данных)
Выход синхронизации / RS485- (A)	2	Жёлтый	Основное исполнение: цифровой выход синхронизации. Уровень лог. 1 — 3,3 В. Уровень лог. 0 — 0 В. Исполнение -01: цепь «А» интерфейса RS485
Не используется / RS485+ (B)	9	Жёлтый/черный	Основное исполнение: не используется. Уровень лог. 1 — 3,3 В. Уровень лог. 0 — 0 В. Исполнение -01: цепь «А» интерфейса RS485
Вход синхронизации	1	Белый	Цифровой вход синхронизации. Вход доопределен до 3,3 В резистором 10 кОм

Подп. и дата	
Инв. № дубл.	
Взам. инв. №	
Подп. и дата	
нв. № подл.	

Изм	Лист	№ докум.	Подп.	Дата

Инв. № подл.

Приложение Д

(справочное)

Инструкция по входному контролю технических характеристик изделия

Инструкция по входному контролю технических характеристик изделия предназначена для проведения входного контроля с использованием демонстрационного ПО производителя.

Необходимый перечень оборудования для проведения входного контроля:

- жгут ГКВ-5-02 ЛМАП.685621.004 или аналогичный;
- преобразователь интерфейсов USBHS-RS422485 ЛМАП.468351.002, MOXA Uport1130/1150 или аналогичный;
- ПК с операционной системой Windows7 или Windows10 и установленным пакетом Visual C++ Redistributable Packages for Visual Studio 2015 x86 (пакет можно установить с сайта https://www.microsoft.com/ или с флеш-накопителя в папке \Доп.ПО\Visual C++ Redistributable Packages for Visual Studio 2015 x86\ vc_redist.x86.exe);
- на ПК должна быть установлена программа для работы с таблицами (Microsoft Excel или LibreOffice Calc или другой подобный программный продукт);
- лабораторный источник постоянного напряжения (ЛИПС) с диапазоном выходного напряжения от 5 до 36 B, с ограничением тока не менее 1 A.
- Д.1 Собрать схему подключения изделия, согласно приложения Г. ЛИПС должен выдавать постоянное напряжение питания от 4.75 до 5,25 В, и иметь ограничение по току не менее 1 А.
 - Д.2 Подключить преобразователь интерфейсов в USB порт ПК.
- Д.3 Включить ЛИПС. Мощность потребления изделия не должна превышать 1,5 Вт.
 - Д.4 Открыть демонстрационное ПО (файл QInertsys.exe) на ПК.

Демонстрационное ПО передается с изделием на флеш-накопителе или можно получить по запросу.

Д.4.1 Зайти во вкладку «Настройки» (рис.Д1). Далее описаны действия для вкладки «Настройки».

Изм	Лист	№ докум.	Подп.	Дата

Рисунок Д2 – Группа «Порт» вкладки «Настройки» демонстрационного ПО

Д.4.1.2 В этой же группе нажать кнопку «Установки» и установить следующие параметры порта (рис.Д3):

- Скорость 921600;
- Бит данных 8;

Подп.

 $\partial v \delta n$

%

 \gtrsim

Взам.

- Четность No:
- Стоповые биты OneStop;

Изм	Лист	№ докум.	Подп.	Дата

 $N_{\bar{e}} \partial v \delta n$ Взам. - Контроль – NoFlowControl.

Сохранить параметры порта, нажав кнопку «ОК».

Рисунок ДЗ – Параметры последовательного порта

- Д.4.1.3 Нажать кнопку «Открыть» для открытия последовательного порта и начала приема данных от изделия.
- Д.4.1.4 После открытия порта через 2-3 секунды в группе «Команды» появится частота получения данных от ГКВ (рис.Д4). Частота получения данных для настроек изделия по умолчанию должна быть 1000 ± 50 Гц (разброс связан с драйвером последовательного порта ОС Windows).

Рисунок Д4 – Отображение частоты получения данных от изделия

Д.4.1.5 Нажать кнопку «Получить все» в группе «Параметры устройства». Демонстрационное ПО отправит в изделие запрос на передачу настроек. Настройки по умолчанию должны быть согласно рисунку Д5.

Для сохранения любых настроек необходимо нажать кнопку «Записать».

		Получить все		
аранетры Режим				
корость интерфейса:	921600	~		Записать
дрес:	0	A V	Широковещательный запрос	Записать
редделитель/скорость выдачи данных:	1 (1000Fu)	~		Записать
лгорити:	Данные с датчиков	v		Записать
Гиро X 900 град/сек	V Гиро Y 900 град/сек	∨ Гиро Z 900 град/с	cek ~	Записать
Акс по-умолчанию	V Магнетонетр 4 гаусс	¥		Записать
редделитель выходного синхросигнала:	1	*		Записать
ип входного синхросигнала:	Только статус	~		Записать
ип дополнительного RS485:	Отключен	y 921600	V	Записать
ропуск сэмплов ИНС с усреднением:	0	\$		Записать
Ускорение в м/с2	□ Угл. скорость	s nan/c	□ Углы в рад	
Параметры Режим — Ускороние в м/с?	□ Ven cropocti	. P pag/c	☐ Venue pag	
Преобразование осей:	XYZ		 ✓ ☐ Курс положительны 	ă
Перевернуть X	Перевернуть	Y	□ Перевернуть Z	
Наборный пакет данных	□ Синхросигнал	переключается	✓ Посылка данных по	мере готовности
Скорость от частоты АЦП	□ Обрезка набо	рного пакета		
	21 S 4 (1 - 1 - 1) C (1 - 1) C (1 - 1) C (1 - 1) C (1 - 1) C (1 - 1) C (1 - 1) C (1 - 1) C (1) C (1 - 1) C (1) C	Записать		

Рисунок Д5 – Настройки изделия по умолчанию

Д.4.1.6 В группе «Параметры устройства» во вкладке «Параметры» должны быть установлены следующие настройки изделия:

- «Адрес» 0 или 1;
- «Предделитель/скорость выдачи данных» $1 (1000 \, \Gamma \text{ц});$
- «Алгоритм» Данные с датчиков;
- Диапазон измерения угловой скорости по всем осям 900 град./с (для ГКВ диапазон измерения угловой скорости задается аппаратно и прописывается в этикетке на изделие);
 - «Предделитель выходного синхросигнала» 1;
 - «Тип входного синхросигнала» только статус;
 - «Тип дополнительного RS485» отключен;
 - «Пропуск сэмплов ИНС с усреднением» 0.

Д.4.1.7 В группе «Параметры устройства» во вкладке «Режим» должны быть установлены следующие настройки изделия:

- Поля «Ускорение в м/ c^2 », «Угл. скорость в рад/с», «Углы в рад», «Перевернуть X», «Перевернуть Y», «Перевернуть Z», «Синхросигнал переключается», «Скорость от частоты АЦП» должны быть пусты;

Изм	Лист	№ докум.	Подп.	Дата

Д.4.2 Визуальный контроль работы каналов измерения линейного ускорения и угловой скорости.

Д.4.2.1 Переключить на вкладку «Данные», подвкладку «Графики» (рис. Д6). Во вкладке в графическом представлении отображаются сигналы линейного ускорения (верхний график) и угловой скорости (нижний график). Установить время обновления 10 с (поле «Обработка за»).

Рисунок Д6 – Графики во вкладке «Данные»

Д.4.2.2 Установить изделие на горизонтальной поверхности в состоянии покоя осью Z вверх.

На верхнем графике сигнал оси Z (аz синий) канала линейного ускорения визуально должен быть близок к 1, а сигналы осей X, $Y - \kappa 0$.

На нижнем графике сигналы канала угловой скорости должны быть близки к $\,0.$

Д.4.3 Визуальный контроль направления осей канала линейного ускорения:

Д.4.3.1 последовательно расположить изделие осями X, Y, Z вверх, при этом на

V	Ізм	Лист	№ докум.	Подп.	Дата

No oven

ЛМАП.402131.028РЭ

а) ось X направлена вверх, б) ось Y направлена вверх, в) ось Z направлена вверх Рисунок Д7 – Проверка направления осей канала линейного ускорения.

Д.4.3.2 последовательно расположить изделие осями X, Y, Z вниз, при этом на графике значения сигналов осей канала линейного ускорения будут отрицательным (рисунок Д8).

Изм Лист № докум. Подп. Дата

No dyon.

Взам.

Š

ЛМАП.402131.028РЭ

а) ось X направлена вниз, б) ось Y направлена вниз, в) ось Z направлена вниз

Провести визуальный контроль направления осей канала угловой скорости (на рисунке Д9 изображены сигналы поворота вокруг оси Z по часовой стрелке и против часовой стрелки):

- а) повернуть изделие последовательно вдоль осей X, Y, Z по часовой стрелке, сигналы угловой скорости должны быть положительными;
- б) повернуть изделие последовательно вдоль осей X, Y, Z против часовой стрелки, сигналы угловой скорости должны быть отрицательными.

Изм	Лист	№ докум.	Подп.	Дата

 $\partial v \delta n$ %

Д.4.4.1 Установить изделие на неподвижное основание, обеспечить покой. Перейти на вкладку «Настройки» в группе «Запись в файл» из списка справа выбрать «CSV» и нажать на поле «Начать запись данных в файл» (начало записи файла, см. рис.Д10), далее выждать 10 с и повторно нажать на поле, «Остановить запись данных в файл». В корневой папке демонстрационного ПО будет создан файл с названием в виде текущей даты, временем, выбранным типом передаваемого пакета и расширением сsv (пример 2019-03-13 07.50.35.921_RawData.csv, где 2019-03-13 — дата записи, 07.50.35.921 — время записи, RawData — выбранный тип передаваемого пакета, дата и

Изм Лист № докум. Подп. Дата

 $\partial v \delta_{II}$

Ņ

Qlnertsys 1.4.24.0

ЛМАП.402131.028РЭ

— ~			
время демонстрационное ПО) попушает от	операнионной	CUCTEMLI)
времи демонетрационное 110	Inomy fact of	операционной	Crici Civibi j

Рисунок Д10 – Запись данных от изделия через демонстрационное ПО

Д.4.4.2 Открыть файл созданный в Д.4.4.1 с помощью программ Microsoft Excel или LibreOffice Calc (рис.Д11) или аналогичного ПО для работы с таблицами. Ячейки, соответствующие ячейкам М1, N1, O1, P1, Q1, R1 на рисунке Д11, назвать ах, ау, аz, wx, wy, wz соответственно.

				-	_	-	-				14					0	D	0	-		LE
4	A	В	C	D	to)	f o l	G	H	1	, fal	K	L	N	_	N	0		Q	R	S	٠Ľ
1	sample_cnt				a[2]	w[0]				t[1]		t[3]	ax		,			,	WZ		
2	28207,00000						0,0946975				37,37340			,00023	0,00676	1,00043 0,45203	-	-0,01374 0.04163	0.03936	Среднее	Н
4	28209.00000		-,	0.004697	-,	.,	0.087159			,	37,37340	,		,	-,			-,	-,	CKU	Н
-	28210.00000			0,004657	1,00266			-			37,35620		_	,00043	Длина вен	пора кажу	щегося ли	неиного ус	скорения		+
5	28210,00000				1,00200		-		-		37,35620										+
7	28211,00000		-,	0.008502		0.070386			46,74270	,	,	,									Н
0	28213,00000				-	0,070386	0,02508	-			37,35620										+
0	28214.00000					0,072243	-0,00507		-	45,58460	-										Н
10		,	-,	0.012485		0.035882	-0,05655			,	37,35620	,									Н
11	28215,00000			0,012485	1,00113		-0,07292				37,35620										Н
12			-	0.008463	0.999791	-	-0,07232		-		37,35620										1
13			-,	0.008997	-,	0.018926	-0.00733	-,		,	37.35620	,									Н
14	28219,00000			0.011566	-	0.078411	-0.00119	-0,06333			37,35190										Н
15	28220.00000			0.008697	1.00326		-		-		37.35190										1
16			-,	0.005857	1.00066	-0.1471	-0.00506	-,	46,74270	,	37.35620	,									1
17	28222,00000			0.007137	0.999612	-	-0.04179	-			37,35620										1
18	28223,00000	1025,00000	0,002514	0,00583	1,00034	0,052157	-0,04465	0,037576	46,74270	45,57450	37,35620	46,66850									1
19	28224,00000	1025,00000	0,001888	0,010866	0,996936	-0,00488	-0,04215	0,025206	46,73270	45,57450	37,35190	46,66850									
20	28225,00000	1025,00000	0,001773	0,007842	0,996841	-0,03737	-0,04303	-0,0529	46,73270	45,57450	37,35190	46,66850									
21	28226,00000	1025,00000	0,001619	0,007851	0,999089	-0,09728	0,036277	-0,06704	46,73270	45,57450	37,35190	46,66850									
22	28227,00000	1025,00000	0,00264	0,007294	1,00187	-0,00573	-0,12543	0,044838	46,73270	45,57450	37,35190	46,66850									
23	28228,00000	1025,00000	0,000221	0,007986	0,999016	0,058213	-0,11011	0,080792	46,73270	45,57450	37,35190	46,66850									
24	28229,00000	1025,00000	0,001678	0,00913	1,00157	0,055779	-0,02018	0,021177	46,73270	45,57450	37,35190	46,66850									
25	28230,00000	1025,00000	0,00142	0,006161	1,00388	-0,00189	0,025054	-0,0223	46,73270	45,57450	37,35620	46,66850									
26	28231,00000	1025,00000	0,004581	0,00709	1,00369	0,050776	-0,00597	-0,04503	46,73270	45,57450	37,35620	46,66850									
27	28232,00000	1025,00000	0,001409	0,00922	0,999327	0,061752	-0,04253	0,017489	46,73270	45,57450	37,35620	46,66850									

Рисунок Д11 — Вычисление харатеристик инерциальных датчиков изделия для проведения входного контроля.

Для последующих вычислений в программе Microsoft Excel точки, разделяющие целое от части должны быть запятыми (можно заменить все точки через команду ctrl+H). В ячейки M2, N2, O2, P2, Q2, R2 занести формулу вычисления среднего арифметического значения (Д.2) угловой скорости и линейного ускорения по осям x, y, z.

Для вычисления среднего арифметического значения линейного ускорения в ячейке M2 занести формулу

где СРЗНАЧ – функция вычисления среднего арифметического значения набора данных,

C2:C10001 — ячейки со значениями ускорений по оси X, соответствующих 10000 отсчетам или 10 с.

Для вычисления ускорений по осям Y, Z и угловых скоростей по осям X, Y, Z

Изм	Лист	№ докум.	Подп.	Дата

1100п. и оан

зам. инв. № 🛮 Инв. № дубл

Инв. № подл. По

воспользоваться формулой Д.2, заменив ячейки С на D, E, F, G, H (a[0] — ускорение по оси X, a[1] — ускорение по оси Y, a[2] — ускорение по оси Z, w[0] — угловая скорость по оси X, w[1] — угловая скорость по оси Y, w[2] — угловая скорость по оси Z).

Д.4.4.3 В ячейки М3, N3, O3, P3, Q3, R3 занести формулу вычисления среднеквадратического отклонение (СКО) значения линейного ускорения и угловой скорости (Д.3) для Microsoft Excel и (Д.4) для LibreOffice Calc по осям x, y, z:

$$=$$
СТОТКЛ(C2:C10001), (Д.4)

где СТАНДОТКЛОНА или СТОТКЛ — функция вычисления СКО набора данных,

C2:C10001 — ячейки со значениями ускорений по оси X, соответствующих 10000 отсчетам или 10 с.

Для вычисления ускорений по осям Y, Z и угловых скоростей по осям X, Y, Z воспользоваться формулой Д.2, заменив ячейки C на D, E, F, G, H (a[0] — ускорение по оси X, a[1] — ускорение по оси Y, a[2] — ускорение по оси Z, w[0] — угловая скорость по оси X, w[1] — угловая скорость по оси Y, w[2] — угловая скорость по оси Z).

Д.4.4.4 В ячейку М4 занести формулу вычисления длины вектора ускорения ($\sqrt{ax^2+ay^2+az^2}$):

$$=$$
KOPEHb(M2*M2+N2*N2 +O2*O2), (Д.5)

где КОРЕНЬ – функция вычисления квадратного корня.

Д.4.4.5 В результате Д.4.4.1 — Д.4.4.4 должна получиться таблица, как на рисунке Д11. Значения среднего арифметического значения сигналов канала угловой скорости за время усреднения 10 с не должно превышать \pm 0,1 °/с. Значение СКО сигналов канала угловой скорости за время 10 с для диапазона \pm 900 °/с не должно превышать 0,06 °/с, для диапазона \pm 2700 °/с не должно превышать 0,2 °/с. Значение СКО сигналов канала линейного ускорения должен быть согласно таблице Д1. Длина вектора линейного ускорения должна быть согласно таблице Д1.

Таблице Д1 — Длина вектора линейного ускорения

Диапазон измерения канала линейного ускорения, g	СКО канала ускорения, g	Длина вектора канала ускорения в покое, g
± 1	0,001	$1 \pm 0,001$
± 2,5	0,0016	$1 \pm 0,0015$
± 10	0,0025	$1 \pm 0,003$
± 30	0,003	$1 \pm 0,006$
± 100	0,03	$1 \pm 0,015$

При несоответствии работы изделия и его характеристик требованиям методики проведения входного контроля изделие считают не прошедшим входной контроль.

	1		
Подп. и дата			
Инв. № дубл.			
Взам. инв. № Инв. № дубл.			
Подп. и дата			
подл.			

№ докум.

Подп.

ЛМАП.402131.028РЭ

Лист

46

			J	Іист регі	ıстрациі	<i>измене</i>	гний				
		Номера лис			Всего ли-			Входящий №			
Изм.			аннулиро- ванных	стов (страниц) в докум.	№ докум.	вхооящии № сопрово- дительного докум. и дата	Подп.	Дата			