ДЗ 2. Норма оператора.

Вариант 12.

Выполнила: Пчелинцева Кристина Романовна, студентка группы 1384

Теоретические положения

1. Норма оператора

$$||A|| = \sup\{||Ax||, ||x|| \le 1\}$$

Можно показать, что норма оператора в l^1 будет равна максимуму среди сумм модулей в столбце, а в l^∞ - в строке

2. Число обусловленности

Число обусловленности определяет то, насколько чувствительна система ЛУ к изменению правой части. $\operatorname{cond}(A) = \|A\| \cdot \|A^{-1}\|$

Для систем
$$Ax=b; A(x+\Delta x)=b+\Delta b$$
 Справедливо неравенство $\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}$

Задана матрица
$$\mathbf{A} = \begin{bmatrix} 645 & -1422 & 954 & -1266 \\ -684 & 1521 & -1008 & 1332 \\ -1074 & 2412 & -1611 & 2154 \\ 246 & -522 & 342 & -435 \end{bmatrix}$$

Задание 1

Необходимо посчитать её норму в $l_{\scriptscriptstyle A}^1$ и $l_{\scriptscriptstyle A}^\infty$

Для l_4^1 норму можно посчитать как максимум столбцовых сумм. Она будет равна $5877\,$ И достигается норма на векторе

Для l_4^∞ норму можно посчитать как максимум строковых сумм. Она будет равна 7251 И достигается норма на векторе $\begin{bmatrix} -1\\1\\-1\\1\end{bmatrix}$

Необходимо посчитать норму A^{-1} в l_4^1 и l_4^∞

$$A^{-1} = \begin{bmatrix} -\frac{235}{81} & \frac{58}{9} & -\frac{122}{27} & \frac{470}{81} \\ \frac{4}{9} & -\frac{7}{9} & \frac{16}{27} & -\frac{20}{27} \\ 6 & -\frac{116}{9} & \frac{247}{27} & -\frac{314}{27} \\ \frac{206}{81} & -\frac{50}{9} & \frac{106}{27} & -\frac{403}{81} \end{bmatrix}$$

Для l_4^1 норму можно посчитать как максимум столбцовых сумм. Она будет равна $\frac{77}{3}$ И достигается норма на векторе $\begin{bmatrix} 0\\1\\0\\0\end{bmatrix}$

Для l_4^∞ норму можно посчитать как максимум строковых сумм. Она будет равна $\frac{119}{3}$ И достигается норма на векторе $\begin{bmatrix} 1\\-1\\1\\-1\end{bmatrix}$

Задание 3

Необходимо посчитать число обусловленности матрицы A в рассмотренных ранее пространствах.

$$\operatorname{cond}(A) = ||A|| \cdot ||A^{-1}||$$

1.
$$l_4^1$$
: cond(A) = $5877 \cdot \frac{77}{3} = 150843$

2.
$$l_4^{\infty}$$
: cond $(A) = 7251 \cdot \frac{119}{3} = 287623$

Задание 4

Получим матрицу $G=A^*A$

$$G = \begin{bmatrix} 2097873 & -4676454 & 3119148 & -4148064 \\ -4676454 & 10425753 & -6954012 & 9248742 \\ 3119148 & -6954012 & 4638465 & -6169284 \\ -4148064 & 9248742 & -6169284 & 8205921 \end{bmatrix} \approx \begin{bmatrix} 2.098 \cdot 10^6 & -4.676 \cdot 10^6 & 3.119 \cdot 10^6 & -4.148 \cdot 10^6 \\ -4.676 \cdot 10^6 & 1.043 \cdot 10^7 & -6.954 \cdot 10^6 & 9.249 \cdot 10^6 \\ 3.119 \cdot 10^6 & -6.954 \cdot 10^6 & 4.638 \cdot 10^6 & -6.169 \cdot 10^6 \\ -4.148 \cdot 10^6 & 9.249 \cdot 10^6 & -6.169 \cdot 10^6 & 8.206 \cdot 10^6 \end{bmatrix}$$

И найдём её собственные числа и вектора:

$$\lambda_1 = 0.0017, \lambda_2 = 72.9004, \lambda_2 = 1139.3792, \lambda_2 = 25366799.7187$$

$$d_1 = \begin{bmatrix} -1.1586 \\ 0.1479 \\ 2.3309 \\ 1.0 \end{bmatrix}, d_2 = \begin{bmatrix} -3.8096 \\ -3.9768 \\ -2.0702 \\ 1.0 \end{bmatrix}, d_2 = \begin{bmatrix} 0.8056 \\ -0.5227 \\ 0.0046 \\ 1.0 \end{bmatrix}, d_2 = \begin{bmatrix} -0.5056 \\ 1.1272 \\ -0.7519 \\ 1.0 \end{bmatrix}$$

Заметим, что все собственные числа положительны, откуда можно судить о положительной определённости матрицы G.

Матрица G позволяет определить норму матрицы A в l_4^2 в случае, когда $A
eq A^{-1}$.

$$||G|| = \max \lambda_i$$

$$||A||=\sqrt{\max\lambda_i}$$
 следует из того, что $||Ax||^2=(Ax,Ax)=(A^*Ax,x)=(Gx,x)=\sum_{i=1}^4\lambda_ix_i^2\leq \max\lambda_i||x||=\max\lambda_i$

Задание 5

Необходимо вычислить число обусловленности матрицы A в пространстве l_4^2

Норма A в этом пространстве выражается как корень из максимального из собственных чисел матрицы AA^* , т.е. G.

Таким образом,
$$||A||=\sqrt{\lambda_4}=\sqrt{25366799.7187}pprox 5037$$

Норму A^{-1} можно получить из того факта, что, если матрица A имеет собственные числа $\lambda_1,\dots,\lambda_n$, то матрица A^{-1} будет иметь собственные числа $\frac{1}{\lambda_1},\dots,\frac{1}{\lambda_n}$. Отсюда получаем, что норма A^{-1} будет равна корню из обратного к минимальному собственному числу матрицы G.

$$||A^{-1}||=rac{1}{\sqrt{\lambda_1}}=rac{1}{\sqrt{0.0017}}pprox 24.2$$

Тогда $\operatorname{cond}(A) = ||A|| \cdot ||A^{-1}|| \approx 5037 \cdot 24.2 = 121895.4$