Fotorealistyczna Grafika Komputerowa

Punkt, wektor, promień, prymityw, przecięcie

Adam Błaszczyk 239636 Antonina Matuszek 239687

1 Indeks Hierarchiczny	2
•	
1.1 Hierarchia klas	2
2 Indeks Klas	3
2.1 Lista Klas	3
3 Dokumentacja Klas	4
3.1 Referencja klasy plane.Plane	4
3.2 Referencja klasy ray.Ray	4
3.3 Referencja klasy sphere.Sphere	5
3.4 Referencja klasy tests.Test	5
	6
3.6 Referencja klasy vector.Vec3	6
Index	8

Chapter 1

Indeks Hierarchiczny

1.1 Hierarchia klas

Klasy występujące w programie:

plane.Plane	4
ay.Ray	4
sphere.Sphere	5
TestCase	
tests.Test	. 5
vector.Vec2	6
vector.Vec3	6

Chapter 2

Indeks Klas

2.1 Lista Klas

Lista klas: :

plane.Plane	. 4
ray.Ray	. 4
sphere.Sphere	. 5
tests.Test	. 5
vector.Vec2	. 6
vector.Vec3	. 6

Chapter 3

Dokumentacja Klas

3.1 Referencja klasy plane.Plane

Metody publiczne

- def __init__ (self, normal_vector, d)
- def __str__ (self) # Wyświetla atrybuty płaszczyzny
- def get_intersection (self, ray) # Zwraca punkt przecięcia płaszczyzny z promieniem

Atrybuty publiczne

- · normal_vector # Wektor normalny
- a # Pierwsza współrzędna wektora normalnego
- **b** # Druga współrzędna wektora normalnego
- c # Trzecia współrzędna wektora normalnego
- d # Przesunięcie, wzdłuż normalnej, płaszczyzny od środka układu współrzędnych

Klasa zaimplementowana w pliku:

· plane.py

3.2 Referencja klasy ray.Ray

Metody publiczne

- def __init__ (self, origin=Vec3(0, 0, 0), direction=Vec3(1, 1, 1), length=math.inf)
- def __str__ (self) # Wyświetla atrybuty promienia
- def is_point_on_ray (self, point) # Sprawdza, czy punkt leży na promieniu
- def set_direction (self, new_direction) # Ustawia nowy wektor kierunkowy
- def get_plane_intersection (self, plane)
- def get_sphere_intersections (self, sphere)

Atrybuty publiczne

- origin # Początek promienia
- direction # Wektor kierunkowy
- length # Długość

Klasa zaimplementowana w pliku:

ray.py

3.3 Referencja klasy sphere. Sphere

Metody publiczne

- def __init__ (self, centre=Vec3(0, 0, 0), radius=math.inf)
- def get_centre (self) # Zwraca środek sfery
- def get_radius (self) # Zwraca promień sfery
- def surface_area (self) # Zwraca pole powierzchni sfery
- def get_volume (self) # Zwraca objętość sfery
- def __str__ (self) # Wyświetla atrybuty sfery
- def get_ray_intersections (self, ray) # Zwraca punkty przecięcia sfery z promieniem

Atrybuty publiczne

- centre # Środek sfery
- radius # Promień sfery
- area # Pole powierzchni sfery
- volume # Objętość sfery

Klasa zaimplementowana w pliku:

· sphere.py

3.4 Referencja klasy tests. Test

Testy jednostkowe programu.

3.5 Referencja klasy vector. Vec2

Metody publiczne

- def __init__ (self, x, y)
- def add (self, other) # Dodawanie
- def iadd (self, other) # Dodawanie w miejscu
- def __sub__ (self, other) # Odejmowanie
- def __isub__ (self, other) # Odejmowanie w miejscu
- def eq (self, other) # Porównanie
- def __abs__ (self) # Wartość bezwględna
- def __ne__ (self, other) # Porównanie
- def __neg__ (self) # Negacja
- def __pos__ (self) # +x
- def __str__ (self) # Wyświetla atrybuty wektora
- def length (self) # Zwraca długość wektora
- def distance (self, other) # Zwraca odległość między wektorem, a punktem
- def __truediv__ (self, other) # Dzielenie
- def __itruediv__ (self, other) # Dzielenie w miejscu
- def __mul__ (self, other) # Mnożenie
- def __imul__ (self, other) # Mnożenie w miejscu
- def __rmul__ (self, other) # Mnożenie

Atrybuty publiczne

- x # Współrzędna x wektora
- y # Współrzędna y wektora

Klasa zaimplementowana w pliku:

· vector.py

3.6 Referencja klasy vector. Vec3

Metody publiczne

- def __init__ (self, x, y, z)
- def __add__ (self, other) # Dodawanie
- def __iadd__ (self, other) # Dodawanie w miejscu
- def __sub__ (self, other) # Odejmowanie
- def __isub__ (self, other) # Odejmowanie w miejscu
- def __eq__ (self, other) # Porównanie
- def abs (self) # Wartość bezwględna
- def ne (self, other) # Porównanie
- def __neg__ (self) # Negacja
- def __pos__ (self) # +x
- def __str__ (self) # Wyświetla atrybuty wektora
- def length (self) # Zwraca długość wektora
- def distance (self, other) # Zwraca odległość między wektorem, a punktem
- def is_point_on_ray (self, ray)
- def __truediv__ (self, other) # Dzielenie
- def __itruediv__ (self, other) # Dzielenie w miejscu
- def __mul__ (self, other) # Mnożenie
- def imul (self, other) # Mnożenie w miejscu
- def __rmul__ (self, other) # Mnożenie
- def cross (self, other) # Zwraca iloczyn wektorowy

Atrybuty publiczne

- **x** # Współrzędna x wektora
- y # Współrzędna y wektora
- **z** # Współrzędna z wektora

Klasa zaimplementowana w pliku:

· vector.py

Index

```
plane.Plane, 4
ray.Ray, 4
sphere.Sphere, 5
tests.Test, 5
vector.Vec2, 6
vector.Vec3, 6
```