Table A. List of future capacity investments for scenarios GovP

		Capacity	Annual average		
year	Power Plant	(MW)	energy (GWh)	Туре	Source
2020	San Jose de Minas	6.0	40.0	RoRa	[1,2]
2021	Chorillos	4.0	27.4	RoR	[3,4]
	Huascachaca	50.0	122.6	Wind onshore	[5]
	Piatua	30.0	172.0	RoR	[6]
	Chalpi grande	7.6	33.2	RoR	[7]
	La Magdalena	20.0	114.0	RoR	[8]
2022	Ibarra Fugua	30.0	207.6	RoR	[9]
	Sabanilla	30.0	194.0	RoR	[10]
	Maravilla	8.2	61.6	RoR	[11]
	El Salto	30.0	247.0	RoR	[12]
	Quijos	50.0	355.0	RoR	[13]
	Soldados	7.0	30.6	Storage Hydro	[14]
	Yanuncay				[14]
	El Aromo	200.0	280.0	Solar PV Utility	[15]
	CCGT	400.0		Gas turbine	
	Yanuncai	14.6	63.9	Cascade system –	[14]
				Hydro-Soldados	
	CC_p	600.0	-	Gas turbine	
	Villonaco II y III	100.0	-	Wind on-shore	[16]
2025	Cardenillo	596.0	3355.8	Storage Hydro	[17]
2026	Geothermal	150.0		Geothermal	
	Santiago I, IIc	1200.0	4966.0	Storage Hydro	F10 103
2027	Santiago III, IVc	1200.0	4966.0	Storage Hydro	[18,19]

a: RoR: Run of the river. b: Combined cycle gas turbine. c: in 2019, the Ministry of Energy announced that the initial project was overestimated, the final capacity should decrease from 3.6 GW to 2.4 GW.

References

- [1] ARCONEL, Proyecto Hidroeléctrico San José de Minas ARCONEL, (n.d.). https://www.regulacionelectrica.gob.ec/proyecto-hidroelectrico-san-jose-de-minas/ (accessed February 25, 2020).
- [2] UNFCCC, CDM: San José de Minas Hydroelectric Project, (2008). https://cdm.unfccc.int/Projects/DB/SGS-UKL1207676097.8/view (accessed February 25, 2020).
- [3] ARCONEL, Proyecto Hidroeléctrico Chorrillos ARCONEL, (n.d.). https://www.regulacionelectrica.gob.ec/proyecto-hidroelectrico-chorrillos/ (accessed February 25, 2020).
- [4] SENPLADES, Proyectos emblematicos en Zamora Chinchipe, (2014). www.planificacion.gob.ec (accessed February 25, 2020).
- [5] ELECAUSTRO, Proyecto Central Eólica Minas de Huascachaca, (2019). http://www.elecaustro.com.ec/index.php?option=com_content&view=article&id=65&Itemid=457 (accessed February 25, 2020).
- [6] ARCONEL, Proyecto Hidroeléctrico Piatúa, (n.d.). https://www.regulacionelectrica.gob.ec/proyecto-hidroelectrico-coca-codo-sinclair/ (accessed February 25, 2020).
- [7] ARCONEL, Proyecto hidroeléctrico Chalpi Grande, (n.d.). https://www.regulacionelectrica.gob.ec/proyecto-hidroelectrico-chalpi-grande/ (accessed February 25, 2020).
- [8] EPP, Proyecto Hidroeléctrico Magdalena, 2018. http://epp.gob.ec/proyectos/energia/magdalena/magdalena_es.pdf (accessed February 25, 2020).
- [9] ARCONEL, Proyecto hidroeléctrico Ibarra Fugua, (n.d.). https://www.regulacionelectrica.gob.ec/proyecto-hidroelectrico-ibarra-fugua/ (accessed February 25, 2020).
- [10] ARCONEL, Proyecto hidroeléctrico Sabanilla, (n.d.). https://www.regulacionelectrica.gob.ec/proyecto-

- hidroelectrico-sabanilla/ (accessed February 25, 2020).
- [11] EPP, Proyecto Hidroeléctrico La Maravilla, 2018. http://epp.gob.ec/proyectos/energia/maravilla/lamaravilla es.pdf (accessed February 25, 2020).
- [12] EPP, Proyecto Hidroeléctrico el Salto, 2018. http://epp.gob.ec/proyectos/energia/elsalto/elsalto_es.pdf (accessed February 25, 2020).
- [13] MERNNR, Proyecto Hidroeléctrico Quijos, Minist. Energy Non-Renewable Natrual Resour. (n.d.). https://www.recursosyenergia.gob.ec/proyecto-hidroelectrico-quijos/ (accessed February 25, 2020).
- [14] ELECAUSTRO, Proyecto Múltiple Soldados Yanuncay, (2019). http://www.elecaustro.com.ec/index.php?option=com_content&view=article&id=64&Itemid=79 (accessed February 25, 2020).
- [15] MERNNR, El Aromo Photovoltaic project, Minist. Energy Non-Renewable Natrual Resour. (n.d.). http://proyectos.recursosyenergia.gob.ec/aromo.php (accessed February 25, 2020).
- [16] MERNNR, Villonaco 2&3 Wind Farm Project, (n.d.). http://proyectos.recursosyenergia.gob.ec/villonaco.php (accessed February 25, 2020).
- [17] CELEC, Información Técnica Proyecto Cardenillo, (2018). https://www.celec.gob.ec/hidropaute/proyectos/informacion-tecnica-cardenillo.html (accessed February 25, 2020).
- [18] CELEC, Información Técnica Proyecto Río Zamora Santiago, (2018). https://www.celec.gob.ec/hidropaute/proyectos/31-espanol/proyectos/index.php (accessed February 25, 2020).
- [19] IIGE, Transporte lidera estadísticas de consumo energético en Ecuador, Inst. Investig. Geológico y Energético, Visión Gub. Para El Desarro. Del Sect. Energía. (2018). https://www.geoenergia.gob.ec/transporte-lidera-estadísticas-de-consumo-energetico-en-ecuador/ (accessed February 25, 2020).