1. Emlékeztető

1.1. Definíció: Oszcilláció halmazon, lokális oszcilláció

Legyen $f \in \mathbb{R} \to \mathbb{R}$, és $A \subseteq \mathbb{R}$ olyan halmaz, hogy $A \cap \mathcal{D}_f \neq \emptyset$. Ekkor

$$\mathcal{O}(f,A) := \sup \left\{ \left| f(x) - f(y) \right| : x, y \in A \cap \mathcal{D}_f \right\}$$

az f függvény **oszcillációja** az A halmazon. Továbbá egy $z \in \mathcal{D}_f$ helyen

$$o_z(f) := \inf \Big\{ \mathcal{O}(f,I) \, : \, I \subset \mathbb{R} \text{ intervallum, } z \in \operatorname{int}(I) \Big\}$$

az f függvény lokális oszcillációja a z pontban.

Legyen $f:[a,b]\to\mathbb{R}$ korlátos függvény,

$$\tau \coloneqq \{a = x_0 < \dots < x_n = b\}$$

egy felosztás. Ekkor

$$\omega(f,\tau) \coloneqq \sum_{I \in \mathcal{F}(\tau)} \mathcal{O}(f,I) \cdot |I|$$

az f függvény **oszcillációs összege**.

1.2. Lemma: Lokális oszcilláció és a folytonosság kapcsolata

Legyen $f \in \mathbb{R} \to \mathbb{R}$, valamint $z \in \mathcal{D}_f$ egy adott pont. Ekkor

$$f \in \mathfrak{C}\{z\} \iff o_z(f) = 0.$$

1.3. Lemma: Borel-féle lefedési lemma

Legyen $[a,b] \subset \mathbb{R}$ egy korlátos és zárt intervallum, vagyis $a,b \in \mathbb{R},\ a < b$. Ha van olyan $\Gamma \neq \emptyset$ indexhalmaz, hogy az I_{γ} ($\gamma \in \Gamma$) nyílt intervallumokra

$$[a,b]\subseteq\bigcup_{\gamma\in\Gamma}I_\gamma$$

teljesül, akkor kiválasztható olyan $\Gamma_0 \subseteq \Gamma$ véges indexhalmaz, amellyel

$$[a,b] \subseteq \bigcup_{\gamma \in \Gamma_0} I_{\gamma}.$$

2. Lebesgue-kritérium

2.1. Definíció: Nullamértékű számhalmaz

Azt mondjuk, hogy az $A \subseteq \mathbb{R}$ halmaz **nullamértékű**, ha minden $\varepsilon > 0$ -hoz létezik intervallumoknak egy olyan $I_n \subseteq \mathbb{R}$ $(n \in \mathbb{N})$ sorozata, hogy

$$A\subseteq \bigcup_{n=0}^{\infty}I_n \qquad \text{és} \qquad \sum_{n=0}^{\infty}\left|I_n\right|<\varepsilon.$$

Az előbbi definíció alapján könnyen meggondolhatóak az alábbi állítások.

Tétel. Legyenek $A, A_n \subseteq \mathbb{R}$ $(n \in \mathbb{N})$ adott halmazok, $I \subseteq \mathbb{R}$ pedig egy intervallum.

- 1. Ha A véges, akkor A nullamértékű.
- 2. HaAmegszámlálható, akkorAnullamértékű.
- 3. HaAnullamértékű, akkor minden $B\subseteq A$ halmaz nullamértékű.
- 4. Ha minden A_n $(n \in \mathbb{N})$ halmaz nullamértékű, akkor $\bigcup_{n=0}^{\infty} A_n$ nullamértékű.
- 5. Ha |I| > 0, akkor I nem nullamértékű.

Ha egy bizonyos tulajdonság egy nullamértékű halmaz pontjainak a kivételével igaz valamilyen halmaz pontjaiban, akkor a szóban forgó tulajdonság (az illető halmaz pontjaira nézve) $majdnem\ minden\"{u}tt$ (vagy másképp fogalmazva $majdnem\ minden\ pontban$) igaz (röviden: m.m.).

2.2. Tétel: Lebesgue-kritérium

Legyen $f:[a,b]\to\mathbb{R}$ korlátos függvény, valamint

$$\mathcal{A}_f := \Big\{ x \in [a, b] \mid f \notin \mathfrak{C}\{x\} \Big\}.$$

Ekkor $f \in \Re[a,b]$ azzal ekvivalens, hogy az \mathcal{A}_f halmaz nullamértékű.

Bizonyítás.

 \implies Tegyük fel, hogy $f \in \Re[a,b]$. Ekkor az 1.2. lemma alapján

$$\mathcal{A}_f = \left\{ z \in [a,b] \mid o_z(f) > 0 \right\} = \bigcup_{n=1}^{\infty} \left\{ z \in [a,b] \mid o_z(f) > \frac{1}{n} \right\} =: \bigcup_{n=1}^{\infty} A_n.$$

Elegendő lenne azt belátni, hogy A_n nullamértékű¹. Sőt azt igazoljuk, hogy

$$A_{\delta} := \left\{ z \in [a, b] \mid o_z(f) > \delta \right\} \qquad (\delta > 0)$$

nullamértékű. A továbbiak szempontjából legyen $\delta>0$ egy tetszőlegesen rögzített érték. Mivel az f Riemann-integrálható, ezért bármely $\varepsilon>0$ -hoz

$$\exists \tau \subset [a, b] \text{ felosztás}: \quad \omega(f, \tau) < \varepsilon.$$

Legyen \mathcal{I} azon τ felosztás szerinti osztásintervallumoknak a halmaza, amik a belsejükben tartalmaznak A_{δ} -beli pontot (lásd 1. ábra), azaz

$$\mathcal{I} \coloneqq \Big\{ J \in \mathcal{F}(\tau) \ \Big| \ \operatorname{int}(J) \cap A_{\delta} \neq \emptyset \Big\}.$$

Világos, hogy ekkor $\tau \cup \mathcal{I}$ lefedi az A_{δ} halmazat. Továbbá²

$$\varepsilon > \omega(f,\tau) = \sum_{I \in \mathcal{F}(\tau)} \mathcal{O}(f,I) \cdot |I| \geq \sum_{J \in \mathcal{I}} \mathcal{O}(f,J) \cdot |J| \geq \sum_{J \in \mathcal{I}} \delta \cdot |J|.$$

Következésképpen az \mathcal{I} -beli intervallumok hosszösszege így becsülhető:

$$\sum_{J \in \mathcal{I}} |J| < \frac{\varepsilon}{\delta}.$$

Mivel τ véges halmaz, ezért nullamértékű. Következésképpen minden $z\in\tau$ osztóponthoz hozzárendelhető egy olyan $J_z\subset\mathbb{R}$ intervallum, amellyel

$$\tau \subset \bigcup_{z \in \tau} J_z$$
 és $\sum_{z \in \tau} |J_z| < \varepsilon$.

Összességében elmondható, hogy

$$A_\delta \subseteq \mathcal{I} \cup \bigcup_{z \in \tau} J_z \quad \text{ és } \quad \sum_{z \in \tau} |J_z| + \sum_{J \in \mathcal{T}} |J| < \varepsilon + \frac{\varepsilon}{\delta} = \varepsilon \bigg(1 + \frac{1}{\delta} \bigg).$$

Ez pedig pontosan azt jelenti, hogy az A_{δ} halmaz nullamértékű.

 $f \in \Re[a, b] \iff \text{az } f \text{ m. m. folytonos.}$

¹ Megszámlálhatóan sok nullamértékű halmaz uniója szintén nullamértékű.

1. ábra. Az \mathcal{I} halmaz szemléltetése.

- A felosztás: $\tau = \{x_0, \dots, x_6\}.$
- A szakadások: $A_{\delta} = \{z_1, \dots, z_5\}.$
- $\mathcal{I} = \{ [x_0, x_1], [x_2, x_3], [x_4, x_5] \}.$

 2 Mivel adott $J\in\mathcal{I}$ intervallumhoz van olyan $z\in A_\delta$ szakadási pont, hogy

$$z \in \operatorname{int}(J)$$
 és $o_z(f) > \delta$,

ezért elmondható az alábbi becslés:

$$\mathcal{O}(f,J) \ge o_z(f) > \delta.$$

Most legyen az \mathcal{A}_f halmaz nullamértékű. Ekkor tetszőleges $\varepsilon > 0$ -hoz van olyan $I_n \subset \mathbb{R}$ korlátos és zárt intervallumsorozat $(n \in \mathbb{N})$, amellyel³

$$\mathcal{A}_f \subseteq \bigcup_{n=0}^{\infty} \operatorname{int}(I_n)$$
 és $\sum_{n=0}^{\infty} |I_n| < \varepsilon$.

Ha pedig $x \in [a, b]$ folytonossági pontja f-nek, akkor az 1.2. lemma alapján

$$f \in \mathfrak{C}\{x\} \iff o_x(f) = 0.$$

Így a lokális oszcilláció jelentése miatt van olyan $J_x\subset\mathbb{R}$ intervallum, hogy

$$x \in \operatorname{int}(J_x), \quad \mathcal{O}(J_x, f) = \sup \left\{ \left| f(u) - f(v) \right| : u, v \in J_x \cap [a, b] \right\} < \varepsilon. \quad (*)$$

Ezek alapján könnyen megadhatunk egy lefedését az [a, b] intervallumra⁴

$$[a,b] \subset \left(\bigcup_{n=0}^{\infty} \operatorname{int} I_n\right) \cup \left(\bigcup_{x \in \mathcal{A}_f^c} \operatorname{int} J_x\right).$$

Ugyanakkor a Borel-lemma alapján az előbbi nyílt lefedésből kiválasztatunk olyan véges $A \subset \mathbb{N}$ és $B \subset \mathcal{A}_f^c$ halmazokat, amelyekkel szintén lefedhetjük az [a,b] intervallumot az alábbi módon:

$$[a,b] \subset \left(\bigcup_{n \in A} \operatorname{int} I_n\right) \cup \left(\bigcup_{x \in B} \operatorname{int} J_x\right).$$

Most vezessük be azt a $\tau \subset [a, b]$ felosztást, ami az I_n, J_x $(n \in A, x \in B)$ intervallumok végpontjait és az a, b számokat tartalmazza. Ekkor az

$$U := \left\{ I \in \mathcal{F}(\tau) \mid I \subseteq I_n \quad (n \in A) \right\}$$
$$V := \left\{ J \in \mathcal{F}(\tau) \mid J \subseteq J_x \quad (x \in B) \right\}$$

osztásintervallumoknak (a nem feltétlenül diszjunkt) szétosztását tekintve

$$\omega(f,\tau) = \sum_{I \in \mathcal{F}(\tau)} \mathcal{O}(I,f) \cdot |I| \le \sum_{I \in U} \mathcal{O}(I,f) \cdot |I| + \sum_{J \in V} \mathcal{O}(J,f) \cdot |J|.$$

Mivel feltettük, hogy az fkorlátos, ezért egy alkalmas $C \geq 0$ számmal 5

$$|f(x)| \le C \quad (x \in [a,b]) \implies \mathcal{O}(I,f) \le 2C \quad (I \in U).$$

Ennek és a (*)-os becslésnek a felhasználásával kapjuk, hogy

$$\omega(f,\tau) \le \sum_{I \in U} 2C \cdot |I| + \sum_{J \in V} \varepsilon \cdot |J| \le 2C \cdot \sum_{n=0}^{\infty} |I_n| + \varepsilon \cdot \sum_{J \in \mathcal{F}(\tau)} |J|$$
$$< 2C\varepsilon + \varepsilon(b-a) = \varepsilon(2C + b - a).$$

Következésképpen $f \in \Re[a, b]$.

Megjegyzés. A Lebesgue-kritérium csak korlátos függvényre alkalmazható, hiszen

$$f:[0,1] \to \mathbb{R}, \qquad f(x) \coloneqq \begin{cases} 1/x, & \text{ha } x \neq 0, \\ 0, & \text{ha } x = 0 \end{cases}$$

egyedül a nullában nem folytonos, de f nem Riemann-integrálható (lásd 2. ábra).

³ Emlékeztetés gyanánt, ha $x \in [a, b]$:

$$x \in \mathcal{A}_f \iff f \notin \mathfrak{C}\{x\}.$$

⁴ Tehát az f-nek minden szakadási és nem szakadási pontját lefedjük a fenti halmazok segítségével. Itt

$$\mathcal{A}_f^c = [a, b] \setminus \mathcal{A}_f.$$

⁵ A háromszög-egyenlőtlenség alapján

$$\mathcal{O}(I, f) = \sup \left\{ \left| f(x) - f(y) \right| : x, y \in I \right\}$$

$$\leq \sup \left\{ \left| f(x) \right| + \left| f(y) \right| : x, y \in I \right\}$$

$$< 2C.$$

2. ábra. Az f függvény grafikonja.