蛋白质数据绘制火山图

2024-04-10

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1	摘要	1
2	前言	1
3	材料和方法 3.1 材料	1 1 1
4	分析结果	1
5	结论	1
6 Re	附: 分析流程 6.1 差异分析和火山图绘制	1
\mathbf{L}	ist of Figures 1 PRO Model vs Control DEPs	2
\mathbf{L}	ist of Tables	
	1 PRO data Model vs Control DEPs	
	2 RAW quantification	4

1 摘要

需求:蛋白质数据差异分析和火山图绘制

结果:

- Model vs Control 火山图见 Fig. 1,对应数据见 Tab. 1
- 除了 Model vs Control, 其他组别数据也已提供, 见 6.1.2

注: 分析所使用的数据来源于 http://101.66.242.136:5212/s/r7MTk?path=%2F 中的 'txt/peptides.txt'

- 2 前言
- 3 材料和方法
- 3.1 材料
- 3.2 方法

Mainly used method:

- R package Limma and edgeR used for differential expression analysis 1,2 .
- R version 4.3.2 (2023-10-31); Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.
- 4 分析结果
- 5 结论
- 6 附:分析流程
- 6.1 差异分析和火山图绘制
- 6.1.1 Model vs Control

Figure 1 (下方图) 为图 PRO Model vs Control DEPs 概览。

(对应文件为 Figure+Table/PRO-Model-vs-Control-DEPs.pdf)

Figure 1: PRO Model vs Control DEPs

```
adj.P.Val cut-off:
0.05

Log2(FC) cut-off:
1
```

(上述信息框内容已保存至 Figure+Table/PRO-Model-vs-Control-DEPs-content)

Table 1 (下方表格) 为表格 PRO data Model vs Control DEPs 概览。

(对应文件为 Figure+Table/PRO-data-Model-vs-Control-DEPs.csv)

注: 表格共有 2131 行 11 列,以下预览的表格可能省略部分数据;含有 1221 个唯一'gene_name'。

- 1. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 2. Ave Expr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'Marray LM' object
- 3. t: moderated t-statistic (omitted for 'topTableF')
- 4. P.Value: raw p-value
- 5. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')
- 6. gene_name: GENCODE gene name

Table 1: PRO data Model vs Control DEPs

rownames	id	gene_name	unipro	Proteins	$\log FC$	AveExpr	t	P.Value	adj.P.Val
27560	27559	Myh1	Q5SX40	$\mathrm{sp} \mathrm{Q5S}$	-2.136	7.3178	-21.38	2.3613	0.0011
19391	19390	Ighm	A0A075	$\mathrm{tr} \mathrm{A0A}$	-2.009	7.4110	-19.35	4.5213	0.0011
8591	8590	Hmgb1	A0A0J9	$\mathrm{tr} \mathrm{A0A}$	2.4353	7.7990	16.608	1.2218	0.0011
25892	25891	Hspa5	Q3U9G2	${\rm tr} {\rm Q3U}$	-1.099	8.8830	-17.93	7.4249	0.0011
534	533	Lmnb1	P14733	$\mathrm{sp} \mathrm{P}14$	1.7203	6.2488	15.712	1.7491	0.0011
3609	3608	Mmp9	Q3TTU7	${\rm tr} {\rm Q3T}$	2.4949	5.5360	14.767	2.6098	0.0011
11691	11690	Ca3	P16015	$\mathrm{sp} \mathrm{P}16$	-2.389	5.8003	-14.52	2.8998	0.0011
31046	31045	Hbbt1	A8DUP7	$\mathrm{tr} \mathrm{A8D}$	-5.345	4.7019	-14.37	3.1058	0.0011
12790	12789	Rps14	Q3UJS5	${\rm tr} {\rm Q3U}$	1.1565	7.2399	14.517	2.9129	0.0011
14192	14191	Lcp1	Q3U9M7	${\rm tr} {\rm Q3U}$	1.6660	6.4834	14.031	3.6264	0.0011
5699	5698	Ceacam1	Q3LFS5	${\rm tr} {\rm Q3L}$	-1.532	6.4558	-13.90	3.8427	0.0011
8092	8091	Tf	Q921I1	$\mathrm{sp} \mathrm{Q}92$	-1.233	8.0005	-14.77	2.5981	0.0011
16104	16103	Atp2a1	Q8R429	$\mathrm{sp} \mathrm{Q8R}$	-1.601	7.8387	-13.95	3.7611	0.0011
35	34	Alb	P07724	$\mathrm{sp} \mathrm{P07}$	-1.155	8.6863	-15.00	2.3523	0.0011
16588	16587	Rcc2	Q8BK67	${\rm sp} {\rm Q8B}$	1.2754	6.6191	13.589	4.4527	0.0011

6.1.2 Other Group

'All volcano plots' 数据已全部提供。

(对应文件为 Figure+Table/All-volcano-plots)

注:文件夹 Figure+Table/All-volcano-plots 共包含 6 个文件。

- 1. 1_Model Control.pdf
- 2. 2_Low Model.pdf
- 3. 3_Middle Model.pdf
- 4. 4_High Model.pdf
- 5. 5_High Middle.pdf
- 6. ...

'ALL data DEPs' 数据已全部提供。

(对应文件为 Figure+Table/ALL-data-DEPs)

注:文件夹 Figure+Table/ALL-data-DEPs 共包含 6 个文件。

- 1. 1_Model Control.csv
- 2. 2 Low Model.csv
- 3. 3_Middle Model.csv
- 4. 4_High Model.csv
- 5. 5_High Middle.csv
- 6. ...

Table 2 (下方表格) 为表格 RAW quantification 概览。

(对应文件为 Figure+Table/RAW-quantification.csv)

注: 表格共有 33174 行 27 列,以下预览的表格可能省略部分数据;含有 10461 个唯一'Proteins'。

Table 2: RAW quantification

Proteins	Mass	id	Intensity	Intens5	Intens6	Intens7	Intens8	Intens9	
tr Q6Z	2031.9895	0	177160	0	0	0	31867	0	
sp O70	3186.471	1	35665	0	0	13434	22230	0	
${\rm tr} {\rm Q5J}$	2047.0586	2	250350	0	67437	0	0	79893	
$\mathrm{sp} \mathrm{A2A}$	1888.8625	3	7268400	91029	140760	1236600	3638500	0	
$\mathrm{sp} \mathrm{P63}$	1520.6752	4	14545000	2117500	1889000	173690	747070	2088200	
$\mathrm{sp} \mathrm{Q}9\mathrm{R}$	1943.9912	5	38486	0	0	7531.9	10726	0	
$\mathrm{sp} \mathrm{P97}$	1503.7205	6	347290	18450	1878.3	80010	188040	19633	
$\mathrm{tr} \mathrm{Q3V}$	1313.6939	7	56784	0	0	0	31003	2961.5	
$\mathrm{tr} \mathrm{Q8C}$	1735.8853	8	1491800	43990	19935	93206	68419	228030	
$\mathrm{tr} \mathrm{Q0P}$	970.49444	9	295650	0	0	65125	101240	0	
$\mathrm{sp} \mathrm{Q9Z}$	2716.4119	10	366870	64761	19275	50407	53458	10873	
$\mathrm{sp} \mathrm{A2A}$	1051.6026	11	2913000	66586	63995	527650	1114700	1594.5	
$\mathrm{tr} \mathrm{A0A}$	1415.762	12	699510	54119	32114	71040	81738	0	
sp O70	936.51411	13	1152200	50337	56782	298300	406900	61515	
$\mathrm{tr} \mathrm{Z}4\mathrm{Y}$	1731.8614	14	42505	0	0	0	30772	9345.3	

Reference

1. Ritchie, M. E. et al. Limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids Research 43, e47 (2015).

2. Chen, Y., McCarthy, D., Ritchie, M., Robinson, M. & Smyth, G. EdgeR: Differential analysis of sequence read count data user's guide. 119.