Unit 14 Ratio And Proportion

THEOREM 14.1.1

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

Given:

In $\triangle ABC$ line I is intersecting the sides \overline{AC} and \overline{AB} at points E and D respectively such that $\overline{ED}||\overline{CB}|$.

To prove:

$$m\overline{AD}$$
: $m\overline{DB} = m\overline{AE}$: $m\overline{EC}$

Construction:

Join B to E and C to D and draw \overline{DM} and \overline{EL} perpendiculars from D and E on \overline{AC} and \overline{AB} to meet at the points M and L respectively.

Statements	Reasons
In triangles BED and AED,	
$m\overline{EL}$ is the common perpendicular	
$\Delta BED = \frac{1}{2} \times m \; \overline{BD} \; \times m \; \overline{EL} \dots (i)$	Area of a triangle = $\frac{1}{2}$ (base × height)

 $\Delta AED = \frac{1}{2} \times m \overline{AD} \times m \overline{EL} \dots (ii)$

$$\frac{\Delta BED}{\Delta AED} = \frac{m\overline{BD}}{m\overline{AD}} \qquad (a)$$

Dividing (i) by (ii)

Similarly

$$\frac{\Delta CDE}{\Delta ADE} = \frac{m\overline{EC}}{m\overline{AE}} \qquad (b)$$

But $\triangle BED = \triangle CDE$.

Areas of triangles with common base and same altitudes are equal. $\overline{ED}||\overline{CD}|$ given, so altitudes are equal

: From (a) and (b), we have

$$\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EC}}$$

 $\therefore m\overline{AD}: m\overline{DB} = m\overline{AE}: m\overline{EC}$

THEOREM 14.1.2 Converse of THEOREM 14.1.1

If a line segment intersects the two sides of a triangle in the same ratio, then it is parallel to the third side.

Solution:

Given:

In triangle ABC, \overline{ED} intersects \overline{AB} and \overline{AC} such that \overline{mAD} : \overline{mDB} : \overline{mBEC}

To prove:

 $\overline{ED}||CB$

Construction:

If $\overline{ED} \nparallel \overline{CB}$, then draw $\overline{BF} || \overline{DE}$ to meet \overline{AC} produced at F.

Proof:

	
Statements	Reasons
In Δ <i>ABF</i>	
$\overline{DE} \overline{BF} $	Construction
$\therefore \frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EF}} \qquad \dots \qquad (i)$	A line parallel to one side
$\frac{1}{m \overline{DB}} = \frac{1}{m\overline{EF}} \qquad \dots$	of a triangle divides the
C+1101)	other two sides
11510	proportionally
: 1111	(Theorem 4)
But $\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EC}}$ (ii)	Given
$m\overline{AE}$ $m\overline{AE}$	From (i) and (ii)
$\frac{\overline{m}\overline{EF}}{m\overline{EF}} = \frac{\overline{m}\overline{EC}}{m\overline{EC}}$	(, 2 (,
or $m\overline{EF} = m\overline{EC}$	
Which is possible only if	Property of real numbers
point F is coincident with C.	
∴ Our supposition is wrong	
Hence $\overline{ED} \overline{CB} $	1

SEDINFO.NET

THEOREM 14.1.3

The internal bisector of an angle of a triangle divides the sides opposite to it in the ratio of the lengths of the sides containing the angle.

Given:

In $\triangle ABC$ internal angle bisector of angle A intersects \overline{CB} at the point D.

To Prove:

 $m\overline{BD}: m\overline{DC} = m\overline{AB}: m\overline{AC}$

Construction:

Draw a line segment $\overline{BE}||\overline{DA}|$ to meet \overline{CA} produced, at E.

Reasons	
Constructions	
Corresponding angles	
Alternate angles	
Construction (given)	
Construction	

THEOREM 14.1.4

If two triangles which are similar then measures of their corresponding sides are proportional.

Solution:

Given:

In correspondence of $\triangle ABC \leftrightarrow \triangle DEF$

i.e.,
$$\angle A \cong \angle D$$
, $\angle B \cong \angle E$ and $\angle C \cong \angle F$

To Prove:

$$\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$$

Construction:

- (a) Suppose that $m\overline{AB} > m\overline{DE}$
- (b) $m\overline{AB} < m\overline{DE}$ On \overline{AB} take a point L such that $m\overline{AL} = m\overline{DE}$ On \overline{AC} take a point M such that $m\overline{AM} = m\overline{DF}$, Join L and M by the line segment \overline{LM} .

Statements	Reasons
In the correspondence of	•
ΔALM ↔ ΔDEF	
$\angle A \cong \angle D$	Given
$\overline{AL} \cong \overline{DE}$	Construction

 $\overline{AM} \cong \overline{DF}$

Thus $\triangle ALM = \triangle DEF$

And $\angle L \cong \angle E$, $\angle M \cong \angle F$

Now $\angle E \cong \angle B$ and $\angle F = \angle C$

 \therefore $\angle L \cong \angle B$, $\angle M \cong \angle C$

Thus LM | BC.

Hence $\frac{m\overline{AL}}{m\overline{AB}} = \frac{m\overline{AM}}{m\overline{AC}}$

 $Or \quad \frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{DF}}{m\overline{AC}}$

Similarly by intercepting segments on \overline{BA} and \overline{BC} we can prove that

Thus $\frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{DF}}{m\overline{AC}} = \frac{m\overline{EF}}{m\overline{BC}}$

or
$$\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$$

(b) If $m\overline{AB} < m\overline{DE}$ it can similarly be proved by taking intercepts on the sides of ΔDEF .

If $m\overline{AB} = m\overline{DE}$

Then in the correspondence of

 $\triangle ABC \leftrightarrow \triangle DEF$

 $\angle A \cong \angle D$

 $\angle B \cong \angle E$

and $\overline{AB} \cong \overline{DE}$

Construction

SAS Postulate

Corresponding angles of congruent triangles
Given

Transitivity of congruence

Corresponding angles are equal.

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

 $m\overline{AL} = m\overline{DE}$ (construction)

 $m \overline{AM} = m \overline{DF}$

By (i) and (ii)

By taking reciprocals.

Given

Given

Construction ^{*}

so
$$\triangle ABC \cong \triangle DEF$$
 ASA \cong ASA

Thus $\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}} = 1$

Thus result is true for all cases $\overline{BC} \cong \overline{EF}$

EXERCISE 14.2

- Q1. In \triangle ABC as shown in the figure, \overrightarrow{CD} bisects \angle C and meets \overrightarrow{AB} at D. \overrightarrow{mBD} is equal to
 - (a) 5 (b) 16 (c) 10 (d) 18

Solution:

In \triangle ABC, \overline{CD} bisect \angle C meets \overline{AB} at D.

As \overline{CD} is the internal

bisector of ∠C

Q2. In $\triangle ABC$ shown in the figure, \overrightarrow{CD} bisects $\angle C$. If $\overrightarrow{mAC} = 3$, $\overrightarrow{mCB} = 6$ and $\overrightarrow{mAB} = 7$, then find \overrightarrow{mAD} and \overrightarrow{mDB} .

Solution:

In $\triangle ABC$, $\overrightarrow{mAC} = 3$ $\overrightarrow{mCB} = 6$, $\overrightarrow{mAB} = 7$ Let $\overrightarrow{mAD} = x$ then $\overrightarrow{mDB} = 7 - x$ As \overrightarrow{CD} is internal bisector of $\angle C$

EXERCISE 14.1

Q1. In $\triangle ABC$, $\overline{DE} \parallel \overline{BC}$. Solution:

(iii)
$$\frac{\overline{AD}}{\overline{DB}} = \frac{3}{5}$$
, $\overline{AC} = 4.8$, $\overline{AE} = ?$
In $\triangle ABC$, $\overline{DE} \parallel \overline{BC}$

As $\frac{\overline{mAD}}{m\overline{DB}} = \frac{\overline{mAE}}{m\overline{EC}}$
 $\frac{3}{5} = \frac{\overline{AE}}{E\overline{C}}$
 $\frac{3}{5} + 1 = \frac{\overline{AE}}{E\overline{C}} + 1$
 $\frac{8}{5} = \frac{\overline{AE} + 1}{E\overline{C}}$
 $\frac{8}{5} = \frac{\overline{AE}}{E\overline{C}} = \frac{\overline{AC}}{E\overline{C}}$
 $\frac{8}{5} = \frac{4.8}{E\overline{C}} = 24$
 $\overline{EC} = \frac{24}{8} = 3$
 $\overline{mAE} = \overline{mAC} - \overline{mEC} = 4.8 - 3 = 1.8 \text{ cm}$
(iv) $\overline{AD} = 2.4 \text{ cm}$, $\overline{AE} = 3.2 \text{ cm}$, $\overline{DE} = 2 \text{ cm}$, $\overline{BC} = 5 \text{ cm}$
find \overline{AB} , \overline{DB} , \overline{AC} , \overline{CE} .
In $\triangle ABC$, $\overline{DE} \parallel \overline{BC}$
 $\overline{AB} = \frac{\overline{AC}}{\overline{AC}} = \frac{\overline{AC}}{\overline{AC}}$
 $\overline{AB} = \frac{\overline{AC}}{\overline{AC}} = \frac{\overline{AC}}{\overline{AC}}$
 $\overline{AB} = \frac{\overline{AC}}{\overline{AC}} = \frac{\overline{AC}}{\overline{AC}}$
 $\overline{AB} = \frac{12}{2} = 6 \text{ cm}$
 $\overline{AC} = \frac{16}{2} = 8 \text{ cm}$
 $\overline{DE} = \overline{AB} - \overline{AD}$
 $\overline{AC} = \frac{16}{2} = 8 \text{ cm}$
 $\overline{DE} = \overline{AB} - \overline{AD}$
 $\overline{AC} = \frac{16}{2} = 8 \text{ cm}$
 $\overline{DE} = \overline{AC} - \overline{AE}$
 $\overline{AB} = 8 - 3.2 = 4.8 \text{ cm}$
(v) $\overline{AD} = 4x - 3$, $\overline{AE} = 8x - 7$, $\overline{BD} = 3x - 1$, $\overline{CE} = 5x - 3$, find x ,
In $\triangle ABC$, $\overline{DE} \parallel \overline{BC}$
 $\overline{AD} = \frac{\overline{AC}}{\overline{AC}} = \frac{\overline{AC}}{\overline{AC}}$
 $\overline{AD} = \frac{\overline{AC}}{\overline{AC}} = \frac{\overline{AC}}{\overline{AC}} = \frac{\overline{AC}}{\overline{AC}}$
 $\overline{AD} = \frac{\overline{AC}}{\overline{AC}} = \frac{\overline{$

or
$$20x^2 - 24x^2 - 27x + 29x + 9 - 7 = 0$$

 $-4x^2 + 2x + 2 = 0$
or $2x^2 - x - 1 = 0$
 $2x^2 - 2x + x - 1 = 0$
 $2x(x - 1) + (x - 1) = 0$
 $(x - 1)(2x + 1) = 0$
 $x = 1, -\frac{1}{2}$
For $x = -\frac{1}{2}$ sides become negative.
So $x = 1$

If \triangle ABC is an isosceles triangle, \angle A is vertex **Q2.** angle and \overline{DE} intersects the sides \overline{AB} and \overline{AC} as shown in the figure so that

 \overline{MAD} : \overline{MDB} = \overline{MAE} : \overline{MEC}

Prove that AADE is also an isosceles triangle

Solution:

Given:

In
$$\triangle ABC$$
, $\overline{AB} \cong \overline{AC}$

and
$$\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EC}}$$

To prove:

ΔADE is isosceles.

Pro

oof:	$ \sim$ \sim \sim \sim \sim \sim \sim \sim \sim \sim
Statements	Reasons
$\overline{\text{mAD}} = \overline{\text{mAE}}$	Given
mDB mEC	
$\frac{\overline{\text{mAD}}}{\overline{\text{mDB}}} + 1 = \frac{\overline{\text{mAE}}}{\overline{\text{mEC}}} + 1$	
Or $\frac{\overline{mAD} + \overline{mDB}}{\overline{mDB}} = \frac{\overline{mAE} + \overline{mEC}}{\overline{mEC}}$	
i.e. $\frac{\overline{mAB}}{\overline{mDB}} = \frac{\overline{mAC}}{\overline{mEC}}$	Given $\overline{AB} \cong \overline{AC}$.
\Rightarrow m \overline{DB} = m \overline{EC}	From figure
$m\overline{AB} - m\overline{DB} = m\overline{AC} - m\overline{EC}$	
$\overline{\text{mAD}} = \overline{\text{mAE}}$	
or $\overline{AD} \cong \overline{AE}$	
.: ΔADE is isosceles.	

Q3. In an equilateral triangle ABC shown in the figure, $m\overline{AE}$: $m\overline{AC}$ = $m\overline{AD}$: $m\overline{AB}$. Find all the three angles of Δ ADE and name it also.

Proof:

Statements $\frac{m\overline{AC}}{m\overline{AF}} = \frac{m\overline{AB}}{m\overline{AD}}$ $\frac{m\overline{AC}}{m\overline{AE}} - 1 = \frac{m\overline{AB}}{m\overline{AD}} - 1$ $\frac{m\overline{AC} - m\overline{AE}}{m\overline{AE}} = \frac{m\overline{AB} - m\overline{AD}}{m\overline{AD}}$ $\frac{m\overline{EC}}{m\overline{AE}} = \frac{m\overline{DB}}{m\overline{AD}}$ or $\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EC}}$ $\therefore DE \parallel BC$ $\therefore DE \parallel BC$ $\therefore AED \cong \angle ACD \cong 60^{\circ}$ $\therefore Each angle of \Delta ADE has measure of 60^{\circ}$ So $\triangle ADE$ is equiangular or	Proof:	
$ \frac{\overline{MAF}}{\overline{MAE}} = \overline{MAD} $ $ \frac{\overline{MAC}}{\overline{MAE}} - 1 = \frac{\overline{MAB}}{\overline{MAD}} - 1 $ $ \frac{\overline{MAC} - \overline{MAE}}{\overline{MAE}} = \frac{\overline{MAB} - \overline{MAD}}{\overline{MAD}} $ $ \frac{\overline{MEC}}{\overline{MAE}} = \frac{\overline{MDB}}{\overline{MAD}} $ or $ \frac{\overline{MAD}}{\overline{MDB}} = \frac{\overline{MAE}}{\overline{MEC}} $ $ \therefore \overline{DE} \parallel \overline{BC} \qquad (i) $ $ \overline{MAD} = \overline{MAD} \qquad Given $ From (i) $ \angle AED \cong \angle ACD \cong 60^{\circ} $ $ \therefore Each angle of \Delta ADE has $ measure of 60°	Statements	Reasons
$\frac{\overline{mAC}}{\overline{mAE}} - 1 = \frac{\overline{mAB}}{\overline{mAD}} - 1$ $\frac{\overline{mAC} - \overline{mAE}}{\overline{mAE}} = \frac{\overline{mAB} - \overline{mAD}}{\overline{mAD}}$ $\frac{\overline{mEC}}{\overline{mAE}} = \frac{\overline{mDB}}{\overline{mAD}}$ $or \frac{\overline{mAD}}{\overline{mDB}} = \frac{\overline{mAE}}{\overline{mEC}}$ $\therefore \overline{DE} \parallel \overline{BC} \qquad (i)$ $m\angle A = m\angle B = m\angle C = 60^{\circ}$ $\angle AED \cong \angle ACD \cong 60^{\circ}$ $\therefore Each angle of \Delta ADE has measure of 60^{\circ}$	1	Given
$\frac{\overrightarrow{mAC} - \overrightarrow{mAE}}{\overrightarrow{mAE}} = \frac{\overrightarrow{mAB} - \overrightarrow{mAD}}{\overrightarrow{mAD}}$ $\frac{\overrightarrow{mEC}}{\overrightarrow{mAE}} = \frac{\overrightarrow{mDB}}{\overrightarrow{mAD}}$ $or \frac{\overrightarrow{mAD}}{\overrightarrow{mDB}} = \frac{\overrightarrow{mAE}}{\overrightarrow{mEC}}$ $\therefore \overrightarrow{DE} \parallel \overrightarrow{BC} \qquad (i)$ $m\angle A = m\angle B = m\angle C = 60^{\circ}$ $\angle AED \cong \angle ACD \cong 60^{\circ}$ $\therefore Each angle of \Delta ADE has measure of 60^{\circ}$	· •	$\sim O(V)$
$\frac{\overrightarrow{mAC} - \overrightarrow{mAE}}{\overrightarrow{mAE}} = \frac{\overrightarrow{mAB} - \overrightarrow{mAD}}{\overrightarrow{mAD}}$ $\frac{\overrightarrow{mEC}}{\overrightarrow{mAE}} = \frac{\overrightarrow{mDB}}{\overrightarrow{mAD}}$ $or \frac{\overrightarrow{mAD}}{\overrightarrow{mDB}} = \frac{\overrightarrow{mAE}}{\overrightarrow{mEC}}$ $\therefore \overrightarrow{DE} \parallel \overrightarrow{BC} \qquad (i)$ $m\angle A = m\angle B = m\angle C = 60^{\circ}$ $\angle AED \cong \angle ACD \cong 60^{\circ}$ $\therefore Each angle of \Delta ADE has measure of 60^{\circ}$	$\frac{m\overline{AC}}{1} = \frac{m\overline{AB}}{1} = 1$	
$\frac{mEC}{mAE} = \frac{mDB}{mAD}$ or $\frac{mAD}{mDB} = \frac{mAE}{mEC}$ ∴ $\frac{mEC}{mDB} = \frac{mAE}{mEC}$ ∴ $\frac{mEC}{mAD} = \frac{mAE}{mEC}$ ∴ $\frac{mEC}{mBD} = \frac{mAE}{mEC}$ ∴ $\frac{mEC}{mBD} = \frac{mAE}{mEC}$ ∴ $\frac{mEC}{mDB} = \frac{mAE}{mEC}$ ∴ $\frac{mEC}{mEC} = \frac{mDB}{mEC}$ ∴ $\frac{mEC}{mBDB} = \frac{mAE}{mEC}$ ∴ $\frac{mEC}{mEC} = \frac{mDB}{mEC}$ ∴ $\frac{mEC}{mEC} = \frac{mDB}{mEC}$ ∴ $\frac{mEC}{mEC} = \frac{mAE}{mEC}$ ∴ $\frac{mEC}{mEC} = \frac{mEC}{mEC}$ ∴ $\frac{mEC}{mEC} = \frac{mAE}{mEC}$ ∴ $\frac{mEC}{mEC} = \frac{mEC}{mEC}$	IIIAE IIIAD	DK.
$\frac{mEC}{mAE} = \frac{mDB}{mAD}$ or $\frac{mAD}{mDB} = \frac{mAE}{mEC}$ ∴ $DE \parallel BC$ ∴ $DE \parallel BC$ ∴ $m∠A = m∠B = m∠C = 60^{\circ}$ $∠AED \cong ∠ACD \cong 60^{\circ}$ ∴ Each angle of Δ ADE has measure of 60°		
or $\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{mEC}$ Given ∴ $\overline{DE} \parallel \overline{BC}$ (i) $m\angle A = m\angle B = m\angle C = 60^{\circ}$ From (i) $\angle AED \cong \angle ACD \cong 60^{\circ}$ ∴ Each angle of Δ ADE has measure of 60°		,
or $\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{mEC}$ Given ∴ $\overline{DE} \parallel \overline{BC}$ (i) $m\angle A = m\angle B = m\angle C = 60^{\circ}$ From (i) $\angle AED \cong \angle ACD \cong 60^{\circ}$ ∴ Each angle of Δ ADE has measure of 60°	$\frac{\overline{mEC}}{\overline{mEC}} = \frac{\overline{mDB}}{\overline{mDB}}$	
∴ DE I BC(i) m∠A = m∠B = m∠C = 60° ∠AED ≅ ∠ACD ≅ 60° ∴ Each angle of Δ ADE has measure of 60°		
∴ DE I BC(i) m∠A = m∠B = m∠C = 60° ∠AED ≅ ∠ACD ≅ 60° ∴ Each angle of Δ ADE has measure of 60°	$or \frac{mAD}{mAE} = mAE$	Given
m∠A = m∠B = m∠C = 60° From (i) ∠AED \cong ∠ACD \cong 60° ∴ Each angle of Δ ADE has measure of 60°	mDB mEC	
∠AED ≅ ∠ACD ≅ 60° ∴ Each angle of Δ ADE has measure of 60°		
Each angle of Δ ADE has measure of 60°	$m \angle A = m \angle B = m \angle C = 60^{\circ}$	From (i)
measure of 60°	∠AED ≅ ∠ACD ≅ 60°	
	∴ Each angle of Δ ADE has	
So A ADE is equiangular or	measure of 60°	
oo a fibe is oquiangulal of	So Δ ADE is equiangular or	
equilateral	·	

Q4. Prove that the line segment drawn through the mid-point of one side of a triangle and parallel to another side bisects the third side.

Solution:

Given:

In ΔABC, D is mid-point of AB. DE || BC

To prove:

 $\overline{EA} \cong \overline{EC}$

Construction:

Take EF | AB

Take EF AB	,
roof:	
Statements	Reasons
DE BF	Given Ok.
EF BD	Construction
∴ DBEF is a parallelogram	
$\overline{EF} \cong \overline{DB}$ (i)	Opposite sides
$\overline{AD} \cong \overline{DB}$ (ii).	Given
∴ EF ≅ AD (iii)	From (i), (ii)
∠1 ≅ ∠B	Corresponding angles
And ∠2 ≅ ∠B	·
∴ ∠1 ≅ ∠2 (iv)	
In correspondence	
ΔADE ← ΔEFC	Francisco (in)
∠2 ≅ ∠1	From (iv)
∠3 ≅ ∠C	Corresponding angles
AD ≅ EF	From (ii)
Hence ∆ADE ≅ ∆EFC	A.A.S ≅ A.A.S
$: \overline{EA} \cong \overline{EC}$	Corresponding sides of congruent angles.

Q5. Prove that the line segment joining the midpoints of any two sides of a triangle is parallel to the third side.

Solution:

. Given:

In Δ ABC, the mid-points of \overline{AB} and \overline{AC} are L and M respectively.

To prove:

LM | BC

Construction:

Join M to L and produce \overline{ML} to N such that $\overline{ML}\cong \overline{LN}$. Join N to B and in the figure, name the angles as $\angle 1$, $\angle 2$ and $\angle 3$.

Statements	Reasons
In ΔBLN ← → ΔALM	
$\overline{BL} \cong \overline{AL}$	Given
∠1 ≅ ∠2	Vertical angles
NL ≅ ML	Construction
∴ ABLN ≅ AALM	S.A.S. postulate
And ∠A ≅ ∠3 (i)	
NB ≅ AM (ii)	Corresponding angles of
V •	congruent triangles
NB AM	Corresponding angles of
	congruent triangles
Thus NB MC (iii)	
$\overline{MC} \cong \overline{AM}$ (iv)	(M is mid-point of \overline{AC})
$\overline{NB} \cong \overline{AM}$ (v)	Given
∴ BCMN is a parallelogram	from (ii) and (iv)
BC LM	From (i) and (v)
or $\overline{BC} \parallel \overline{NL}$ (vi)	Opposite sides of a
	parallelogram (BCMN)

so
$$\triangle ABC \cong \triangle DEF$$
 ASA \cong ASA

Thus $\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}} = 1$

Thus result is true for all cases $\overline{BC} \cong \overline{EF}$

EXERCISE 14.2

- Q1. In \triangle ABC as shown in the figure, \overrightarrow{CD} bisects \angle C and meets \overrightarrow{AB} at D. \overrightarrow{mBD} is equal to
 - (a) 5 (b) 16 (c) 10 (d) 18

Solution:

In \triangle ABC, \overline{CD} bisect \angle C meets \overline{AB} at D.

As \overline{CD} is the internal

bisector of ∠C

Q2. In $\triangle ABC$ shown in the figure, \overrightarrow{CD} bisects $\angle C$. If $\overrightarrow{mAC} = 3$, $\overrightarrow{mCB} = 6$ and $\overrightarrow{mAB} = 7$, then find \overrightarrow{mAD} and \overrightarrow{mDB} .

Solution:

In $\triangle ABC$, $\overrightarrow{mAC} = 3$ $\overrightarrow{mCB} = 6$, $\overrightarrow{mAB} = 7$ Let $\overrightarrow{mAD} = x$ then $\overrightarrow{mDB} = 7 - x$ As \overrightarrow{CD} is internal bisector of $\angle C$

$$x = \frac{21}{9}$$

$$m\overline{AD} = \frac{21}{9} = \frac{7}{3}$$

$$m\overline{DB} = m\overline{AB} - m\overline{AD}$$

$$m\overline{DB} = 7 - \frac{21}{9} = \frac{63 - 21}{9} = \frac{42}{9} = \frac{14}{3}$$

Q3. Show that in any corresponding of two triangles, if two angles of one triangle are congruent to the corresponding angles of the other, then the triangles are similar.

Solution:

Let the two Δs be ABC and LMN

It is given that

$$m\angle A = m\angle L +$$

$$m \angle B = m \angle M$$

As sum of the angles of a triangle is 180°

$$m \angle A + m \angle B + m \angle C = 180^{\circ}$$

$$m \angle L + m \angle M + m \angle C = m \angle L + m \angle M + m \angle N$$

$$m\angle L + m\angle M + m\angle C = m\angle L + m\angle M + m\angle N$$

$$m\angle C = m\angle N$$

. The two triangles ABC and LMN are similar.

Q4. If line segments AB and CD are intersecting at point X and $\frac{m\overline{AX}}{m\overline{X}\overline{B}} = \frac{m\overline{CX}}{m\overline{X}\overline{D}}$

Solution:

Given:

Line segment \overline{AB} and \overline{CD} intersect at X and \overline{mAX} \overline{mCX}

$$\frac{\overline{m}\overline{A}\overline{X}}{\overline{m}\overline{X}\overline{B}} = \frac{\overline{m}\overline{C}\overline{X}}{\overline{m}\overline{X}\overline{D}}$$

To prove:

ΔAXC and ΔBXD are similar.

Proof:

Statements	Reasons
$ \underline{mAX} = \underline{mCX} $	Given
$\overline{m\overline{X}\overline{B}} - \overline{m\overline{X}\overline{D}}$	
So AC BD ,	
In Δs AXC and BXD	1
m∠AXC = m∠BXD	Vertical angles
m∠A = m∠B	Alternate angles
m∠C = m∠D	Alternate angles
So the triangles are similar.	

REVIEW EXERCISE 14

Q1. Which of the following are true and which are false?

- (i) Congruent triangles are of same size and shape.
- (ii) Similar triangles are of same shape but different sizes.
- (iii) Symbol used for congruent is '~'.
- (iv) Symbol used for similarity is '≅'.
- (v) Congruent triangles are similar.
- (vi) Similar triangles are congruent.
- (vii) A line segment has only one mid-point.
- (viii) One and only one line can be drawn through two points.
- (ix) Proportion is non-equality of two ratios.
- (x) Ratio has no unit.

Answers:

(i) T	(ii) T	(iii) F	(iv) F	(v) T
(vi) F	(vii) T	(viii) T	(ix) F	(x) T

Q2. Define the following:

(i) Ratio

- (ii) Proportion
- **Congruent Triangle** (iii)
- Similar Triangles (iv)

Solution:

(i) Ratio

The ratio of two quantities a and b of same kind is denoted as a : b and is defined as:

$$a:b=a \div b$$

 $p = \frac{a}{h}$ is the comparison of two like The ratio a quantities 'a' and 'b' are called terms of 'a' ratio 'b'. Terms must be expressed in the same units.

Proportion (ii)

The statement of equality of two ratios is called proportion.

if a : b = c : d then a, b, c and d are said to be in i.e. proportion.

Congruent Triangles (iii)

symbolically as ≅, if there exists a correspondence between them such that all the corresponding sides and angles are congruent.

If
$$\{ \overline{AB} \cong \overline{DE} \}$$
 $\angle A \cong \angle D$ $\angle B \cong \angle E \}$ and $\angle B \cong \angle E \}$ $\angle C \cong \angle F \}$

Then ∆ABC ≅ ∆DEF

Similar Triangles (iv)

If in ∆ABC ← → ∆DEF $\angle A \cong \angle D$, $\angle B \cong \angle E$, $\angle C \cong \angle F$

 $\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}} = \frac{\overline{CA}}{\overline{FD}}$ And

Then AABC and ADEF are called a similar triangle which is symbolically written as ΔABC ~ ΔDEF.

Q3. In \triangle LMN shown in the figure, $\overline{MN} \parallel \overline{PQ}$ Solution:

(i) $m\overline{LM} = 5 \text{ cm}, \qquad m\overline{LP} = 2.5 \text{ cm}, \\ m\overline{LQ} = 2.3 \text{ cm}, \qquad m\overline{LN} = ?$ $PO \parallel \overline{MN}$

PQ || MN

$$\frac{m\overline{LP}}{m\overline{LM}} = \frac{m\overline{LQ}}{m\overline{LN}}$$

 $\frac{2.5}{5} = \frac{2.3}{m\overline{LN}}$
 $2.5(m\overline{LN}) = (2.3) \times = 11.5$
 $m\overline{LN} = \frac{11.5}{2.5} = \frac{11.5}{25} = \frac{23}{5} = 4.6$ cm

(ii) mLM = 6 cm, mLQ = 2.5 cm, mQN = 5 cm, mLP = ?<math>mLP = ? mLQ + mQN = 2.5 cm + 5 cm = 7.5 cm

As $\frac{\overline{PQ} \parallel \overline{MN}}{\overline{mLP}} = \frac{\overline{mLQ}}{\overline{mLN}}$ $\frac{\overline{mLP}}{6} = \frac{2.5}{7.5}$ $\overline{mLP} = \frac{2.5}{7.5} \times 6 = \frac{25}{75} \times 6 = 2 \text{ cm}$

Q4. In the shown figure, let $\overline{mPA} = 8x - 7$, $\overline{mPB} = 4x - 3$, $\overline{mAQ} = 5x - 3$, $\overline{mBR} = 3x - 1$. Find the value of x if $\overline{AB} \parallel \overline{QR}$.

Solution:

$$m\overline{PA} = 8x - 7, m\overline{PB} = 4x - 3$$

$$m\overline{AQ} = 5x - 3, m\overline{BR} = 3x - 1$$
As
$$\overline{AB} \parallel \overline{QR}$$

$$\frac{m\overline{PA}}{m\overline{AQ}} = \frac{m\overline{PB}}{m\overline{BR}}$$

$$\frac{8x-7}{5x-3} = \frac{4x-3}{3x-1}$$

$$(8x - 7) (3x - 1) = (4x - 3) (5x - 3)$$

$$24x^2 - 8x - 21x + 7 = 20x^2 - 12x - 15x + 9$$

$$24x^{2} - 20x^{2} - 29x + 27x + 7 = 9$$

$$4x^{2} - 2x + 7 = 9$$

$$4x^{2} - 2x - 2 = 0$$

$$2x^{2} - x - 1 = 0$$

$$2x^{2} - 2x + x - 1$$

$$2x(x - 1) + (x - 1) = 0$$

$$(x - 1)(2x + 1) = 0$$

$$4x^2 - 2x + 7 = 9$$

$$4x^2 - 2x - 2 = 0$$

$$2x^2 - x - 1 = 0$$

$$2x^2 - 2x + x - 1$$

$$2x(x-1) + (x-1) = 0$$

$$(x - 1)(2x + 1) = 0$$

$$x = 1, -\frac{1}{2}$$

x = 1 is the required value.

In Δ LMN show in the figure, \overrightarrow{LA} bisect $\angle L$. mLN = 4 mLM = 6, mMN = 8, then find mMA and mAN.

Solution:

 $\overline{mLN} = 4$, $\overline{mLN} = 6$, $\overline{mMN} = 8$ LA is bisector of ∠L

$$\frac{\overline{mMA}}{\overline{mNA}} = \frac{\overline{mLM}}{\overline{mLN}} = \frac{6}{4}$$
i.e.
$$\overline{mMA} : \overline{mNA} = 6 : 4$$
but
$$\overline{mMN} = \overline{mMA} + \overline{mAN} = 8$$

$$\overline{mMA} = \frac{6}{10} \times 8 = \frac{48}{10} = 4.8$$
and
$$\overline{mAN} = \frac{4}{10} \times 8 = \frac{32}{10} = 3.2$$

Q6. In isosceles $\triangle PQR$ shown in the figure, find the value of x and y.

Solution:

 $\overline{PQ} \cong \overline{PR}$

x = 10 cm

PM I QR where PQR is an isosceles triangle

 $\therefore \qquad m\overline{MQ} = m\overline{MR}$

⇒ y = 6 cm