Topics for today

- Boolean Logic
- Sets

Boolean Logic

- is a branch of mathematics
- results can be true or false
- 1 = T = true
- 0 = F = false

Truth Tables

1

AND

20					
p	q	pΛq			
Т	Т	Т			
Т	F	F			
F	Т	F			
F	F	F			
F F	T F				

4

 \Rightarrow

р	q	p⇒q	
Т	Т	Т	
Т	F	F	
F	Т	Т	
F	F	Т	

2

OR

р	q	pγq	
Т	Т	Т	
Т	F	Т	
F	Т	Т	
F	F	F	

5

 \Leftrightarrow

р	q	p⇔q	
Т	Т	Т	
Т	F	F	
F	Т	F	
F	F	Т	

3

XOR

р	q	p • q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Truth Tables - Practice

!P /				
P	Q	!P	P-> Q	!P AND (P -> Q)
T	Т			
T	F			
F	T			
F	F			

(P AND Q) XOR (P OR Q)					
P	Q	P AND Q	P OR Q	(P AND Q) XOR (P OR Q)	
T	Т			0.00	
T	F		51		
F	Т				
F	F		2.0		

Truth tables. Practice!

$$(\neg p \land q) \Rightarrow (r \lor \neg t)$$
 is false when:

Bitwise operations.

	00011101		00110110		00101010
OR	01101101	AND	00101010	XOR	01011010

Bitwise operations.

19 AND 13

13 >> 2

9 << 3

13 >> 2 XOR 9 << 3

Sets

Sets

- A set is a well-defined collection of distinct objects
- Represented using capital letters (S, A, B, U)
- The objects are called elements/members
- No duplicates in sets
- Examples:
 - \circ A = {1, 10, 12, 15}
 - \circ B = {5, 99, 2, 67, 12} = {2, 5, 12, 67, 99}
 - C = {} or Φ (phi greek) or ∅ (miniscule -Danish/Norwegian)

Sets (contd...)

Universal set "U" is a set which consists of all the

elements of the relevant

sets.

$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{3, 4, a, b, c\}$$

$$U = \{1, 2, 3, 4, 5, a, b, c\}$$

Sets. Union.

The union of sets refers to the combination of all elements from the sets

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

$$A = \{1, 2, 3, 4\}$$

 $B = \{3, 4, 5, 6\}$

$$A \cup B = \{1, 2, 3, 4, 5, 6\}$$

Sets. Intersection.

The intersection of sets refers to the common elements between the given sets

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

$$A = \{1, 2, 3, 4\}$$

 $B = \{3, 4, 5, 6\}$

$$A \cap B = \{3,4\}$$

Sets. Relative complement.

The relative complement also referred to as set difference of a set with respect to another set

$$A - B = \{x : x \in A \text{ and } x \notin B\}$$

$$A = \{1, 2, 3, 4\}$$

 $B = \{3, 4, 5, 6\}$

$$A - B = \{1, 2\}$$

Sets. Complement.

The complement of a set is the set of all elements in universal set U that is not in a given set.

$$A' = U - A = \{x : x \in U \text{ and } x \notin A\}$$

$$U = \{1, 2, 3, 4, 5, 6\}$$

 $A = \{3, 6\}$

$$A' = \{1, 2, 4, 5\}$$

Sets. Practice!

What are the elements of the set expressed as:

$$A = \{ x \mid x \in N, x < 6, x \mod 2 == 1 \}$$

Sets. Practice!

A = $\{ x \mid x \in N, x < 4 \}$ B = $\{ x \mid x \in N, x > 11, x <= 15 \}$

What is A U B?

Sets. Practice!

What is A - B?

Let A = set of characters from "different"

Let B = set of characters from "effort"

THE END