

Student's Name: Ishaan Gupta Mobile No: 9179242114

Roll Number: B20292 Branch: Mechanical Engineering

Table 1 Mean, median, mode, minimum, maximum and standard deviation for all the attributes

| S. No. | Attributes        | Mean    | Median | Mode  | Min.  | Max. | S.D.    |
|--------|-------------------|---------|--------|-------|-------|------|---------|
| 1      | pregs             | 3.845   | 3      | 1     | 0     | 17   | 3.370   |
| 2      | plas              | 120.895 | 117    | 100   | 0     | 199  | 31.973  |
| 3      | pres (in mm Hg)   | 69.105  | 72     | 70    | 0     | 122  | 19.356  |
| 4      | skin (in mm)      | 20.536  | 23     | 0     | 0     | 99   | 15.952  |
| 5      | test (in mu U/mL) | 79.799  | 30.5   | 0     | 0     | 846  | 115.244 |
| 6      | BMI (in kg/m²)    | 31.993  | 32     | 32    | 0     | 67.1 | 7.884   |
| 7      | pedi              | 0.472   | 0.373  | 0.254 | 0.078 | 2.42 | 0.331   |
| 8      | Age (in years)    | 33.241  | 29     | 22    | 21    | 81   | 11.760  |

### Inferences:

1

- 1. If standard deviation is close to zero; then mean, median and mode are close to each other.
- 2. If standard deviation is lesser than mean and median then the values of mean and median are close to each other.



### 2 a.



Figure 1 Scatter plot: Age (in years) vs. pregs

- 1. There is no correlation between both the attributes as when age increases from 20 to 50 years the number of times pregnant does not goes up or down.
- 2. High density is seen when age is 20-30 years and number of times pregnant is 0-4 times.





Figure 2 Scatter plot: Age (in years) vs. plas

- 1. There is no correlation between both the attributes as when age increases Plasma glucose concentration 2 hours in an oral glucose tolerance test is not increasing or decreasing.
- **2.** High density is seen when age is 20-35 years and Plasma glucose concentration 2 hours in an oral glucose tolerance test is between 70-140.





Figure 3 Scatter plot: Age (in years) vs. pres (in mm Hg)

- 1. There is no correlation between both the attributes as when age increases Diastolic blood pressure is not increasing or decreasing.
- **2.** High density is seen when age is 20-35 years and Diastolic blood pressure is between 50-90 mm Hg.





Figure 4 Scatter plot: Age (in years) vs. skin (in mm)

- 1. There is no correlation between both the attributes as when age increases Triceps skin fold thickness is not increasing or decreasing.
- 2. High density is seen when age is 20-35 years and Triceps skin fold thickness is between 10-40 mm.





Figure 5 Scatter plot: Age (in years) vs. test (in mm U/mL)

- 1. There is a positive correlation between both the attributes as when age increases 2-Hour serum insulin is also increasing.
- 2. High density is seen when age is 20-30 years and 2-Hour serum insulin is between 0-200 mm U/ml.





Figure 6 Scatter plot: Age (in years) vs. BMI (in kg/m²)

- 1. There is no correlation between both the attributes as when age increases BMI is not increasing or decreasing.
- 2. High density is seen when age is 20-40 years and BMI is between 20-40 kg/m<sup>2</sup>.





Figure 7 Scatter plot: Age (in years) vs. pedi

### Inferences:

- 1. There is weak negative correlation between both the attributes as when age increases Diabetes pedigree function is decreasing with a few points only.
- 2. High density is seen when age is 20-40 years and Diabetes pedigree function is 0-1.

b.





Figure 8 Scatter plot: BMI (in kg/m²) vs. pregs

- 1. There is no correlation between both the attributes as when BMI increases number of times pregnant is not increasing or decreasing.
- 2. High density is seen when BMI is 20-40 kg/m<sup>2</sup> and number of times pregnant is between 0-8.





Figure 9 Scatter plot: BMI (in kg/m²) vs. plas

- 1. There is no correlation between both the attributes as when BMI increases Plasma glucose concentration 2 hours in an oral glucose tolerance test is not increasing or decreasing.
- 2. High density is seen when BMI is 20-45 kg/m<sup>2</sup> and Plasma glucose concentration 2 hours in an oral glucose tolerance test is between 75-165.





Figure 10 Scatter plot: BMI (in kg/m²) vs. pres (in mm Hg)

- 1. There is no correlation between both the attributes as when BMI increases Diastolic blood pressure is not increasing or decreasing.
- 2. High density is seen when BMI is 20-40  $kg/m^2$  and Diastolic blood pressure is between 60-90 mm Hg .





Figure 11 Scatter plot: BMI (in kg/m²) vs. skin (in mm)

### Inferences:

1. There is a positive correlation between both the attributes as when BMI increases Triceps skin fold thickness is increasing .

 $\textbf{2.} \quad \text{High density is seen when BMI is 20-40 kg/m}^2 \text{ and Triceps skin fold thickness is between 10-50 mm}$ 

.





Figure 12 Scatter plot: BMI (in kg/m²) vs. test (in mm U/mL)

### Inferences:

1. There is a weak negative correlation between both the attributes as when BMI increases 2-Hour serum insulin is decreasing.

 $\textbf{2.} \quad \text{High density is seen when BMI is 20-40 kg/m}^2 \text{ and 2-Hour serum insulin is between 0-200 mm U/mL}$ 

.





Figure 13 Scatter plot: BMI (in kg/m²) vs. pedi

- 1. There is no correlation between both the attributes as when BMI increases Diabetes pedigree function is not increasing or decreasing.
- 2. High density is seen when BMI is 20-45 kg/m<sup>2</sup> and Diabetes pedigree function is between 0-1.





Figure 14 Scatter plot: BMI (in kg/m²) vs. Age (in years)

### Inferences:

- 1. There is no correlation between both the attributes as when BMI increases Age is not increasing or decreasing.
- 2. High density is seen when BMI is 20-40 kg/m<sup>2</sup> and Age is between 20-40 years.

### 3 a.

Table 3 Correlation coefficient value computed between age and all other attributes

| S. No. | Attributes      | <b>Correlation Coefficient Value</b> |  |  |
|--------|-----------------|--------------------------------------|--|--|
| 1      | pregs           | 0.544                                |  |  |
| 2      | plas            | 0.264                                |  |  |
| 3      | pres (in mm Hg) | 0.240                                |  |  |
| 4      | skin (in mm)    | -0.114                               |  |  |



| 5 | test (in mu U/mL) | -0.042 |
|---|-------------------|--------|
| 6 | BMI (in kg/m²)    | 0.036  |
| 7 | pedi              | 0.034  |
| 8 | Age (in years)    | 1.000  |

#### Inferences:

- 1. As age increases pregs increases.
- 2. As age increases plas increases.
- 3. As age increases pres increases.
- 4. As age increases skin decreases.
- 5. As age increases test decreases.
- 6. As age increases BMI increases.
- 7. As age increases pedi increases.
- 8. As age increases age increases.

b.

Table 4 Correlation coefficient value computed between BMI and all other attributes

| S. No.           | Attributes        | <b>Correlation Coefficient Value</b> |  |
|------------------|-------------------|--------------------------------------|--|
| 1                | pregs             | 0.018                                |  |
| 2                | plas              | 0.221                                |  |
| 3                | pres (in mm Hg)   | 0.282                                |  |
| 4                | skin (in mm)      | 0.393                                |  |
| 5                | test (in mu U/mL) | 0.198                                |  |
| 6                | BMI (in kg/m²)    | 1.000                                |  |
| 7                | pedi              | 0.141                                |  |
| 8 Age (in years) |                   | 0.036                                |  |



- 1. As BMI increases pregs increases.
- 2. As BMI increases plas increases.
- 3. As BMI increases pres increases.
- 4. As BMI increases skin increases.
- 5. As BMI increases test increases.
- 6. As BMI increases BMI increases.
- 7. As BMI increases pedi increases.
- 8. As BMI increases age increases.

### 4 a.



Figure 15 Histogram depiction of attribute pregs

- 1. Frequency from 0-1.67=240
- 2. Frequency from 1.67-3.34=175
- 3. Frequency from 3.34-5=125
- 4. Frequency from 5-6.68=50



### 5. Mode=(1.67-0)/2=0.835



Figure 16 Histogram depiction of attribute skin

- 1. Frequency from 0-10=250
- 2. Frequency from 10-20=100
- 3. Frequency from 20-30=160
- 4. Frequency from 30-40=170
- 5. Mode=(10-0)/2=5



### IC 272: DATA SCIENCE - III LAB ASSIGNMENT – III

Data visualization and statistics from data

5



Figure 17 Histogram depiction of attribute pregs for class 0





Figure 18 Histogram depiction of attribute pregs for class 1

- 1. Mode in class\_0= (1.33-0)/2=0.66 and in class\_1= (1.67-0)/2=0.83.
- 2. Frequency sharply decreases in class\_0 and in case of class\_1 it decreases then increases.



6



Figure 19 Boxplot for attribute pregs

### Inferences:

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)





Figure 20 Boxplot for attribute plas

#### Inferences:

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)





Figure 21 Boxplot for attribute pres(in mm Hg)

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)

  Note: The boxplot above is for illustration purpose. Replace it with the boxplot obtained by you.

  Rename x-axis legend and y-axis legends with appropriate attribute names with units.





Figure 22 Boxplot for attribute skin(in mm)

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)

  Note: The boxplot above is for illustration purpose. Replace it with the boxplot obtained by you.

  Rename x-axis legend and y-axis legends with appropriate attribute names with units.





Figure 23 Boxplot for attribute test (mu U/mL)

#### Inferences:

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)





Figure 24 Boxplot for attribute BMI (in kg/m²)

### Inferences:

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)





Figure 25 Boxplot for attribute pedi

### Inferences:

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)





Figure 26 Boxplot for attribute Age (in years)

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Inference 5(You may add or delete the number of inferences)

  Note: The boxplot above is for illustration purpose. Replace it with the boxplot obtained by you.

  Rename x-axis legend and y-axis legends with appropriate attribute names with units