Math 104 HW7

Neo Lee

27/10/2023

Exercise 15.1

Determine whether the following series converges:

- (a) $\sum \frac{(-1)^n}{n}$ (b) $\sum \frac{(-1)^n n!}{2^n}$.

Solution.

- (a) Consider $(a_n) = \frac{1}{n}$, then a_n is an increasing sequence, and $\lim a_n = 0$. By Theorem 15.3, $\sum \frac{(-1)^n}{n}$ converges (Alternating Series).
- (b)

$$\lim \left| \frac{a_{n+1}}{a_n} \right| = \lim \left| \frac{(-1)^{n+1}(n+1)!}{2^{n+1}} \cdot \frac{2^n}{(-1)^n n!} \right|$$
$$= \lim \frac{n+1}{2}$$
$$= \infty.$$

Hence, by Theorem 10.7, $\liminf \left| \frac{a_{n+1}}{a_n} \right| = \lim \left| \frac{a_{n+1}}{a_n} \right| = \infty$. By Theorem 14.8, $\sum \frac{(-1)^n n!}{2^n}$ containing non-zero terms diverges.

Exercise 17.2

Let f(x) = 4 for $x \ge 0$, f(x) = 0 for x < 0, and $g(x) = x^2$ for all x. Thus dom f(x) = 0 for f(x

(a) Determine the following functions: $f+g,fg,f\circ g,g\circ f$. Be sure to specify their domain.

Solution.

(f+g):

$$f + g : \mathbb{R} \to \mathbb{R} = \begin{cases} 4 + x^2 & x \ge 0 \\ x^2 & x < 0. \end{cases}$$

(fg):

$$fg: \mathbb{R} \to \mathbb{R} = \begin{cases} 4x^2 & x \ge 0\\ 0 & x < 0. \end{cases}$$

 $(f \circ g)$:

$$f \circ g : \mathbb{R} \to \mathbb{R} = \begin{cases} 4 & x \ge 0 \\ 0 & x < 0. \end{cases}$$

 $(g \circ f)$:

$$g \circ f : \mathbb{R} \to \mathbb{R} = \begin{cases} 16 & x \ge 0 \\ 0 & x < 0. \end{cases}$$

(b) Which of the functions $f, g, f + g, fg, f \circ g, g \circ f$ is continuous?

Solution.

- (f): Not continuous. Consider $x_0 = 0$ and two sequences $(s_n) = \frac{1}{n}$, $(t_n) = \frac{-1}{n}$. Then Then $\lim s_n = \lim t_n = 0$, but $\lim f(s_n) = \lim 4 = 4 \neq 0 = \lim f(t_n) = \lim 0$.
- (g): Continuous. Consider $x_0 \in \mathbb{R}$. Then for any sequence $(s_n) \to x_0$, $\lim g(s_n) = \lim s_n^2 = \lim s_n \cdot \lim s_n = x_0^2 = g(x_0)$.
- (f+g): Not continuous. Consider $x_0=0$ and two sequences $(s_n)=\frac{1}{n},$ $(t_n)=\frac{-1}{n}$. Then $\lim s_n=\lim t_n=0$, but $\lim (f+g)(s_n)=\lim 4+\lim s_n\cdot \lim s_n=4\neq 0=\lim (f+g)(t_n)=\lim t_n\cdot \lim t_n$.
 - (fg): Continuous. Consider $(-\infty, 0)$, $(0, \infty)$, and 0. For $x_0 \in (-\infty, 0)$, let $\delta = |x_0 - 0|$, then $|x - x_0| < \delta \Longrightarrow f(x) = 0 = f(x_0) \Longrightarrow |f(x) - f(x_0)| < \epsilon$ for $\epsilon > 0$.

For $x_0 \in (0, \infty)$, consider any sequence $(s_n) \to x_0$. Let $\epsilon = |x_0 - 0|$, then $\exists N$ such that $|s_n - x_0| < \epsilon$ for n > N, which implies $s_n > 0$ for n > N. Then notice the limit of a sequence is independent of finite number of terms, hence $\lim_{n \to \infty} fg(s_n) = \lim_{n \to \infty} fg(s_n)$.

For $x_0 = 0$, take $\delta = \sqrt{\frac{\epsilon}{4}}$, then $|x - 0| < \delta \Longrightarrow |4x^2 - 0| = |f(x) - f(x_0)| < \epsilon$ for $x \ge 0$. If x < 0, f(x) = 0 and obviously $|f(x) - f(x_0)| = 0 < \epsilon$.

- $(f \circ g)$: Not continuous. Consider $x_0 = 0$ and two sequences $(s_n) = \frac{1}{n}$, $(t_n) = \frac{-1}{n}$. Then $\lim s_n = \lim t_n = 0$, but $\lim (f \circ g)(s_n) = \lim 4 \neq 0 = \lim (f \circ g)(t_n) = \lim 0$.
- $(g \circ f)$: Not continuous. Consider $x_0 = 0$ and two sequences $(s_n) = \frac{1}{n}$, $(t_n) = \frac{-1}{n}$. Then $\lim s_n = \lim t_n = 0$, but $\lim (g \circ f)(s_n) = \lim 16 \neq 0 = \lim (g \circ f)(t_n) = \lim 0$.

Exercise 17.13

(a)

Proposition 1. Let f(x) = 1 for $x \in \mathbb{Q}$ and f(x) = 0 for $x \in \mathbb{R} \setminus \mathbb{Q}$. Then f is discontinuous at every $x \in \mathbb{R}$.

Proof.

- Case 1: $x_0 \notin \mathbb{Q}$. Assume for the sake of contradiction that $\exists \delta > 0$ such that $|x x_0| < \delta \Longrightarrow |f(x) f(x_0)| < 1$. However, by the density of \mathbb{Q} , $\exists x \in (x_0 - \delta, x_0)$ such that x is rational, then $|f(x) - f(x_0)| = |1 - 0| = 1 \nleq 1$, which is a contradiction.
- Case 2: $x_0 \in \mathbb{Q}$. Assume for the sake of contradiction that $\exists \delta > 0$ such that $|x x_0| < \delta \Longrightarrow |f(x) f(x_0)| < 1$. However, by the density of irrationals, $\exists x \in (x_0 - \delta, x_0)$ such that x is irrational, then $|f(x) - f(x_0)| = |0 - 1| = 1 \nleq 1$, which is a contradiction.

Note: density of irrationals was not covered in the book. But the proof idea is by considering $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$, then there exists rational x in between. Multiplying the inequality by $\sqrt{2}$, we get $a < \sqrt{2}x < b$, where $\sqrt{2}x$ is irrational.

(b)

Proposition 2. Let h(x) = x for rational numbers x and h(x) = 0 for irrational numbers, then h is continuous at x = 0 and at no other point.

Proof.

- $x_0 = 0$: Let $\delta = \epsilon$, then if $x \in \mathbb{Q}$, $|x x_0| = |x 0| < \delta \Longrightarrow |h(x) h(x_0)| < \epsilon$. If $x \notin \mathbb{Q}$, h(x) is always 0, hence $|h(x) h(x_0)| = 0 < \epsilon$.
- $x_0 \neq 0, x_0 \in \mathbb{Q}$: Let $\epsilon = |x_0|$. Assume for the sake of contradiction that $\exists \delta > 0$ such that $|x x_0| < \delta \Longrightarrow |h(x) h(x_0)| < \epsilon$. However, by the density of irrationals, $\exists x \in (x_0 \delta, x_0)$ such that x is irrational, then $|h(x) h(x_0)| = |0 x_0| = |x_0| = \epsilon \not< \epsilon$, which is a contradiction.
- $x_0 \neq 0, x_0 \notin \mathbb{Q}$: Let $\epsilon = \frac{1}{2}|x_0|$. Assume for the sake of contradiction that $\exists \delta > 0$ such that $|x x_0| < \delta \Longrightarrow |h(x) h(x_0)| < \epsilon$. However, by the density of \mathbb{Q} , $\exists x \in (x_0 \min\{\delta, \frac{1}{2}|x_0|\}, x_0)$ such that x is rational, then $|h(x) h(x_0)| = |x 0| > \frac{1}{2}|x_0| \nleq \epsilon$, which is a contradiction.

Exercise 18.8

Proposition 3. Suppose f is a real-valued continuous function on \mathbb{R} and f(a)f(b) < 0 for some $a, b \in \mathbb{R}$, then there exists $x \in (a,b)$ such that f(x) = 0.

Proof. Note that $f(a) \neq 0$ and $f(b) \neq 0$ and f(a), f(b) cannot have the same sign. Without loss of generality, assume f(a) > 0 and 0 > f(b). Then, by the Intermediate Value Theorem, $\exists x \in (a,b)$ such that f(x) = 0. \Box