东北大学应用数理统计笔记

概率论基础

0.1 概率 P(A)

0.1.1 事件间的关系

事件独立: P(AB) = P(A)P(B)

事件互斥: P(AB) = 0

条件概率: $P(B \mid A) = \frac{P(AB)}{P(A)}$

0.1.2 概率的计算公式

加法公式:

1.
$$P(A \cup B) = P(A) + P(B) - P(AB)$$

2.
$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$

3. 如果事件互斥: $P(A \cup B) = P(A) + P(B)$

减法公式:

1.
$$P(A - B) = P(A) - P(AB)$$

2. 如果事件互斥:
$$P(A - B) = P(A)$$

乘法公式:

1.
$$P(AB) = P(A)P(B \mid A)$$

2.
$$P(ABC) = P(A)P(B \mid A)P(C \mid AB)$$

全概率公式: $P(A) = \sum_{i=1}^{N} P(B_i) P(A \mid B_i)$

贝叶斯公式: $P\left(B_j \mid A\right) = rac{P\left(B_j\right)P\left(A \mid B_j\right)}{\sum_{i=1}^{N}P\left(B_i\right)P\left(A \mid B_i\right)}$

0.2 随机变量 X

0.2.1 随机变量的概率分布 P

离散型——分布律: $P\{X = x_k\} = P_k$

特别地:

$$P\left\{N=n\right\} = P\left\{N\leqslant n\right\} - P\left\{N\leqslant n-1\right\} = F\left(n\right) - F\left(n-1\right)$$

$$P\left\{ N=n\right\} =P\left\{ N\geqslant n\right\} -P\left\{ N\geqslant n+1\right\}$$

连续型——概率密度: $f(x) = \frac{dF(x)}{dx}$

0.2.2 随机变量的分布函数 F(x)

离散型: $F(x) = P\{X \leqslant x_k\} = \sum_{x_k \leqslant x} P_k$

连续型:
$$F(x) = P\{X \leq x\} = \int_{-\infty}^{x} f(t)dt$$

0.2.3 随机变量的数学期望 E(X)

离散型: $\mathrm{E}(\mathrm{X}) = \sum_{k=1}^{\infty} x_k p_k$

连续型: $E(X) = \int_{-\infty}^{\infty} xf(x)dx$

性质:

1.
$$E(C) = C$$

2.
$$E(CX) = CE(X)$$

3.
$$E(X \pm Y) = E(X) \pm E(Y)$$

4. 如果 X 与 Y 互不相关: E(XY) = E(X)E(Y)

0.2.4 随机变量的方差 D(X)

定义: $D(X) = E\{[X - E(X)]^2\}$

性质:

1.
$$D(X) = E(x^2) - [E(x)]^2$$

2.
$$D(C) = 0$$

3.
$$D(aX + b) = a^2D(X)$$

4.
$$D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X, Y)$$

5. 如果 X 与 Y 互不相关:
$$D(X \pm Y) = D(X) + D(Y)$$

$\mathbf{0.2.5}$ 随机变量的矩 $\mathbf{a}_k, \mathbf{b}_k$

k 阶原点矩: $a_k = E(X^k)$

k 阶中心矩: $b_k = E\{[X - E(X)]^k\}$

k+l 阶混合矩: $E(X^kY^l)$

k + l 阶中心矩: $E\{[X - E(X)]^k[X - E(X)]^l\}$

性质:

1.
$$a_1 = E(X)$$

2.
$$a_2 = E(X^2)$$

3.
$$b_2 = D(X)$$

0.2.5 随机变量的协方差 Cov(X,Y)

定义: $Cov(X, Y) = E\{[X - E(X)][Y - E(Y)]\}$

性质:

1.
$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

2.
$$Cov(X, Y) = Cov(Y, X)$$

3.
$$Cov(aX, bY) = abCov(X, Y)$$

4.
$$Cov(X_1 \pm X_2, Y) = Cov(X_1, Y) \pm Cov(X_2, Y)$$

相关系数: $\rho_{xy} = \frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}}$

独立条件: X , Y 都服从正态分布, 且协方差为 0 , 可以推 X , Y 独立

0.3 随机向量 η

随机向量: $\eta = \begin{bmatrix} X_1 & X_2 & \dots & X_n \end{bmatrix}^T$

随机向量的期望向量: $\theta = \begin{bmatrix} \mu_1 & \mu_2 & \dots & \mu_n \end{bmatrix}^T$

随机向量的协方差矩阵:

$$\Sigma = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) & \dots & \operatorname{Cov}(X_2, X_n) \\ \dots & \dots & \dots & \dots \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \dots & \operatorname{Cov}(X_n, X_n) \end{bmatrix}$$

 $\eta \sim N\left(\theta, \Sigma\right)$

性质: $A\eta \sim N(A\theta, A\Sigma A^T)$

0.4 Chebyshev 不等式

1.
$$P\{|X - \mu| \geqslant \epsilon\} \leqslant \frac{\sigma^2}{\epsilon^2}$$

2.
$$P\{|X - \mu| < \epsilon\} \geqslant 1 - \frac{\sigma^2}{\epsilon^2}$$

0.5 中心极限定理

$$\frac{\frac{\sum_{k=1}^{n}X_{i}-nE\left(X\right)}{\sqrt{nD\left(X\right)}}\sim N\left(0,1\right)$$

1 抽样分布

1.1 统计量 T

1.1.1 样本均值 X

定义:
$$\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n_1} \mathbf{X}_i$$

性质:

1.
$$E(\overline{X}) = E(X)$$

2.
$$D(\bar{X}) = \frac{D(X)}{n}$$

1.1.2 样本方差 S^2

定义:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2$$

性质:

1.
$$E(S^2) = D(X)$$

2.
$$D(S^2) = \frac{2D(X)^2}{n-1}$$

1.1.3 样本矩 A_k, B_k

k 阶样本原点矩: $A_k = \frac{1}{n} \sum_{i=1}^{n_1} X_i^k$

k 阶样本中心矩:
$$B_k = \frac{1}{n} \sum_{i=1}^n \left(X_i - \bar{X} \right)^k$$

性质:

1.
$$A_1 = \overline{X}$$

2.
$$A_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

3.
$$B_2 = \frac{n-1}{n}S^2$$

1.1.4. 顺序统计量 $X_{[i]}$

极小统计量: $X_{[1]} = \min(X_i)$

极大统计量: $X_{[n]} = \max(X_i)$

经验分布: $F_n(X) = \frac{k}{n}, \quad X_{[k]} \leqslant X < X_{[k+1]}$

性质:

1.
$$P\left\{X_{[1]}\leqslant x\right\}=1-P\left\{X_{[1]}>x\right\}=1-[P\left\{X>x\right\}]^{n}=1-[1-P\left\{X\leqslant x\right\}]^{n}$$

2.
$$P\left\{X_{[n]}\leqslant x\right\}=[P\left\{X\leqslant x\right\}]^n$$

3.
$$P\{X_{[1]} = x\} = n[1 - P\{X \leqslant x\}]^{n-1}P\{X = x\}$$

4.
$$P\{X_{[n]} = x\} = n[P\{X \leqslant x\}]^{n-1}P\{X = x\}$$

1.2 常用的分布

1.2.1 常用的离散型分布

分布	记作	$P\left\{ X=k\right\}$	E(X)	D(X)
0-1分 布	$egin{array}{c} { m X} \sim \ { m B} \left({ m 1,p} ight) \end{array}$	$P\left\{X=k\right\} = p^k(1-p)^{1-k}$	E(X) = p	$\mathrm{D}(\mathrm{X}) = \mathrm{p}(1-\mathrm{p})$
二项分布	$egin{array}{c} X \sim \ B\left(n,p ight) \end{array}$	$\begin{array}{l} P\left\{X=k\right\} = \\ C_n^k p^k (1-p)^{n-k} \end{array}$	E(X) = np	D(X) = np(1 - p)
几何分布	$X \sim G(p)$	$\begin{array}{c} \mathrm{P}\left\{ \mathrm{X}=\mathrm{k}\right\} =\mathrm{p}(1-\\ \mathrm{p})^{\mathrm{k}-1} \end{array}$	$E(X) = \frac{1}{p}$	$D(X) = \frac{1-p}{p^2}$
超几何分布	$egin{array}{c} X \sim \ H(n,M,N) \end{array}$	$\begin{array}{c} P\left\{X=k\right\} = \\ \frac{C_N^k C_N^{n-k}}{C_N^k} \end{array}$	$\mathrm{E}(\mathrm{X}) = rac{\mathrm{nM}}{\mathrm{N}}$	$\mathrm{D}(\mathrm{x}) = rac{\mathrm{nM}}{\mathrm{N}}(1-rac{\mathrm{M}}{\mathrm{N}})rac{\mathrm{N}-\mathrm{n}}{\mathrm{N}-\mathrm{1}}$
Poisson 分布	$X \sim P(\lambda)$	$P\left\{X=k\right\}=\tfrac{\lambda^k}{k!}e^{-\lambda}$	$\mathrm{E}(\mathrm{X}) = \lambda$	$\mathrm{D}(\mathrm{X})=\lambda$

1.2.2 常用的连续型分布

连续型	记作	f(x)	E(X)	D(X)
均匀分布	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	$f(x) = \tfrac{1}{b-a}, a \leqslant x \leqslant b$	$\mathrm{E}(\mathrm{X}) = rac{\mathrm{a}+\mathrm{b}}{2}$	$\mathrm{D}(\mathrm{X}) = rac{(\mathrm{b-a})^2}{12}$
指数分布	$X \sim E(\lambda)$	$f(x)=\lambda e^{-\lambda x}, a\leqslant x\leqslant b$	$\mathrm{E}(\mathrm{X}) = rac{1}{\lambda}$	$\mathrm{D}(\mathrm{X}) = rac{1}{\lambda^2}$
正态分布	$egin{array}{c} X \sim \ N \left(\mu, \sigma^2 ight) \end{array}$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$E(X) = \mu$	$D(X) = \sigma^2$
Γ 分布	$egin{array}{c} { m X} \sim \ \Gamma \left(lpha , \lambda ight) \end{array}$	$f(x) = rac{\lambda^{lpha}}{\Gamma(lpha)} x^{lpha-1} \mathrm{e}^{-\lambda x}, x>0$	$\mathrm{E}(\mathrm{X}) = rac{lpha}{\lambda}$	$\mathrm{D}(\mathrm{X}) = rac{lpha}{\lambda^2}$
IΓ分 布	$egin{array}{c} ext{X} \sim \ ext{I}\Gamma\left(lpha,\lambda ight) \end{array}$	$\begin{array}{c} f(x) = \\ \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{-\alpha-1} e^{-\frac{\lambda}{x}}, x > 0 \end{array}$	$\mathrm{E}(\mathrm{X}) = rac{\lambda}{lpha - 1}$	$\frac{D(X)}{\frac{\lambda^2}{(\alpha-1)^2(\alpha-2)}}$
B分布	$egin{array}{c} { m X} \sim \ { m B}\left(lpha,eta ight) \end{array}$	$egin{aligned} f(x) &= rac{1}{B(lpha,eta)} x^{lpha-1} (1-x)^{eta-1}, x>0 \end{aligned}$	$\mathrm{E}(\mathrm{X}) = rac{lpha}{lpha + eta}$	$\mathrm{D}(\mathrm{X}) = rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$

1.2.3 常用的统计分布

分布	记作	f(x)	E(X)	D(X)
χ ² 分 布	${ m X} \sim \ \chi^2 ({ m n})$	$k_n(x) = \tfrac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} e^{-x/2}$	$\mathrm{E}(\mathrm{X}) = n$	D(X) = 2n
t 分	$X \sim t (n)$	$\begin{array}{c} t_n(x) = \\ \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} \end{array}$	E(X) = 0	$\mathrm{D}(\mathrm{X}) = rac{\mathrm{n}}{\mathrm{n}-2}$
F 分 布	$egin{aligned} ext{X} \sim \ ext{F (m,n)} \end{aligned}$	$\begin{array}{c} f_{m,n}(x) = \\ \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)} m^{\frac{m}{2}} n^{\frac{n}{2}} \frac{x^{\frac{m}{2}-1}}{(n+mx)^{\frac{m+n}{2}}} \end{array}$	$\mathrm{E}(\mathrm{X}) = rac{\mathrm{n}}{\mathrm{n}-2}$	$D(X) = {2n^2(m+n-2) \over m(n-2)^2(n-4)}$

1.2.4 具有可加性的分布

前提: X 与 Y 独立

分布	分布 X	分布 Y	分布 X + Y
二项分布	$X \sim B\left(n_1,p\right)$	$Y \sim B (n_2,p)$	$X+Y\sim B(n_1+n_2,p)$
Poisson分 布	$X \sim P \; (\lambda_1)$	$Y\sim P\left(\lambda_2\right)$	$X+Y\sim P\left(\lambda_1+\lambda_2\right)$
正态分布	$egin{aligned} ext{X} \sim \ ext{N}\left(\mu_1, \sigma_1^2 ight) \end{aligned}$	$rac{ m Y}{ m N} \sim \ m N \left(\mu_2, \sigma_2^2 ight)$	$egin{aligned} X+Y \sim \ N\left(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2 ight) \end{aligned}$
Γ 分布	$X \sim \Gamma\left(\alpha_1,\lambda\right)$	$\mathrm{Y} \sim \Gamma \left(\alpha _{2},\lambda \right)$	$X+Y\sim\Gamma\left(\alpha_1+\alpha_2,\lambda\right)$
χ^2 分布	$X \sim \chi^2 \left(n_1 \right)$	$Y\sim\chi^2(n_2)$	$X+Y\sim\chi^2(n_1+n_2)$

1.2.5 具有无记忆性的分布

P(X > s + t|X > t) = P(X > s)

分布	事件
几何分布	"扔了9次硬币正面,第10次反面概率还是 1/2"
指数分布	"等了9小时没出现客人,接下来的1小时出现第一位客人的概率还是不变"

1.2.6 0-1 分布 $X \sim B(1,p)$

事件: 掷1次硬币, 出现正面的概率

1.2.7 二项分布 $X \sim B(n, p)$

事件: 掷 n 次硬币, 出现 k 次正面的概率

1.2.8 几何分布

事件: 掷到第 k 次硬币, 才出现正面的概率

1.2.9 超几何分布

事件: 在 N 件产品中有 M 件次品,从中一次性抽取 n 件产品,有 k 件次品的概

1.2.10 Poisson分布 $X \sim P(\lambda)$

事件:一段时间内,发生 k 次的概率

Poisson定理: n 很大, p 很小时: $B(n,p) \approx P(np)$

1.2.11 均匀分布 $X \sim U(a,b)$

分布函数:
$$F(x) = \left\{ egin{array}{ll} 0 & , & x < a \\ rac{x-a}{b-a} & , & a \leqslant x < b \\ 1 & , & b \leqslant x \end{array} \right.$$

1.2.12 指数分布 $X \sim E(\lambda)$

事件:发生一次事件,所需要的时间。

和 P oisson分布 一同理解:假如 $\lambda=2$,一小时平均发生两次,发生一次平均需要半小时。

分布函数:
$$F(x) = \left\{ egin{array}{ll} 1 - e^{-\lambda x} & , x > 0 \\ 0 & , x \leqslant 0 \end{array}
ight.$$

建立服从 χ^2 分布检验量: $2\lambda n \bar{X} \, \sim \chi^2(2n)$

1.2.13 正态分布 $X \sim N \; (\mu, \sigma^2)$

分布函数:
$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2} dt}$$

1.2.14 二维正态分布 $(X,Y) \sim N \left(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho\right)$

概率密度函数:
$$f(x,y) = \left(2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}\right)^{-1}\exp\left[-\frac{1}{2(1-\rho^2)}\left(\frac{(x-\mu_1)^2}{\sigma_1^2}-\frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right)\right]$$

1.2.15 Γ 分布 $X \sim \Gamma(\alpha, \lambda)$

 Γ 分布性质:

1. cX
$$\sim \Gamma\left(\alpha, \frac{\lambda}{c}\right)$$

2.
$$E(\lambda) = \Gamma(1, \lambda)$$

3.
$$\chi^2(n) = \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$$

$$\Gamma$$
 函数: $\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx, \alpha > 0$

 Γ 函数性质:

1.
$$\Gamma(1) = 1$$

2.
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

3.
$$\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$$

4.
$$\Gamma(n+1) = n\Gamma(n) = n!$$

1.2.16 I Γ 分布 $X \sim I\Gamma(\alpha, \lambda)$

$$X \sim \Gamma(\alpha,\lambda)$$
,则 $\frac{1}{X} \sim I\Gamma(\alpha,\lambda)$

1.2.17 B 分布 $X \sim B(\alpha, \beta)$

B 函数:
$$B(\alpha, \beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx \quad (\alpha > 0)$$

B 函数性质:

1.
$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

1.2.18 χ^2 分布 $X \sim \chi^2 \left(n \right)$

1.2.19 t 分布 $\mathrm{X} \sim \mathrm{t}\,(\mathrm{n})$

t 分布性质:

1.
$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

2.
$$t(n)^2 = X(n)$$

1.2.20 F 分布 $X \sim F$ (m, n)

F 分布性质:

1.
$$F_{1-\alpha}(m,n) = 1/F_{\alpha}(n,m)$$

1.3 常用的抽样分布

1.3.1 一个正态总体的抽样分布

1.
$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\sim N\left(0,1\right)$$

2.
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

3.
$$\frac{\sqrt{n}(\vec{X}-\mu)}{S} \sim t(n-1)$$

4.
$$\frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$$

1.3.2 两个正态总体的抽样分布

1.
$$\frac{(ar{X}-ar{Y}\,)-(\mu_1-\mu_2)}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}}\sim N\left(0,1
ight)$$

2. 如果
$$\sigma_1^2 = \sigma_2^2$$
:

$$S_W^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

$$\frac{(\bar{X} - \bar{Y}\,) - (\mu_1 - \mu_2)}{SW\,\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

3.
$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F \; (n_1-1,n_2-1)$$

4.
$$\frac{\sum_{i=1}^{n_1}(X_i-\mu_1)^2/n_1\sigma_1^2}{\sum_{i=1}^{n_2}(Y_i-\mu_2)^2/n_2\sigma_2^2}\sim F\left(n_1,n_2\right)$$

1.3.3 一个指数总体的抽样分布

1.
$$2\lambda n \overline{X} \sim \chi^2(2n)$$

1.3.4 一个二项总体的抽样分布

1.
$$rac{\mathrm{X-np}}{\sqrt{\mathrm{np}(1-\mathrm{p})}}\sim\mathrm{N}(0,1)$$

2.
$$\frac{p_{s}-p}{\sqrt{\frac{p(1-p)}{2}}} \sim N(0,1)$$

1.3.5 一个非正态总体均值的抽样分布

1.
$$rac{ar{ ext{X}}- ext{E}(ext{X})}{\sqrt{ ext{D}(ext{X})/ ext{n}}}\sim ext{N}\left(0,1
ight)$$

2.
$$rac{ar{X}-E(X)}{\sqrt{S^2/n}}\sim N\left(0,1
ight)$$

1.3.6 两个总体的组合的抽样分布

1.
$$\chi^2(n_1) + \chi^2(n_2) = \chi^2(n_1 + n_2)$$

2.
$$\frac{\chi^{2}(n_{1})/n_{1}}{\chi^{2}(n_{2})/n_{2}}=F\left(n_{1},n_{2}\right)$$

3.
$$\frac{N(0,1)}{\sqrt{\chi^2(n)/n}} = t(n)$$

2 参数估计

2.1 点估计

2.1.1 矩估计

1.
$$A_k$$
 估计 a_k , $A_k = a_k$

2.
$$B_k$$
 估计 b_k , $B_k = b_k$

2.1.2 极大似然估计

- 1. 似然函数取对数,再求导
- 2. 前后项比较, 求出极值点
- 3. 边界条件与极小极大统计量的关系

2.1.3 评价估计量好坏的标准

无偏性: $E(\hat{\theta}) = \theta$

有效性:

2.2 区间估计

2.2.1 一个总体的置信区间

$$P\left\{k_1 < \theta < k_2\right\} = 1 - \alpha$$

2.2.2 两个总体的置信区间

1.
$$P\left\{k_1 < \theta_1 - \theta_2 < k_2\right\} = 1 - \alpha$$

2.
$$P\left\{k_1 < \theta_1/\theta_2 < k_2\right\} = 1 - \alpha$$

2.3 Bayes 估计

2.3.1 核

1.
$$e^{-\frac{(x-\mu)^2}{2\sigma^2}}\colon\thinspace X \sim N \; \big(\mu,\sigma^2\big)$$

2.
$$x^{\alpha-1}e^{-\lambda x}$$
: $X \sim \Gamma(\alpha, \lambda)$

3.
$$x^{-\alpha-1}e^{-\frac{\lambda}{X}}$$
: $X \sim I\Gamma(\alpha, \lambda)$

4.
$$x^{\alpha-1}(1-x)^{\beta-1}$$
: $X \sim B(\alpha, \beta)$

2.3.2 损失函数

1.
$$(\theta - d)^2$$
: $\hat{\theta} = E(\theta)$

2.
$$\lambda(\theta)(\theta - d)^2$$
: $\hat{\theta} = \frac{E[\theta\lambda(\theta)]}{E[\lambda(\theta)]}$

author: virgilwjj

3 假设检验

3.1 拒绝域

H_0	${ m H}_1$	拒绝域
$a = a_0$	$\mathrm{a} \neq \mathrm{a}_0$	$\hat{a} \neq a_0$
$a = a_0$	$a > a_0$	$\hat{a} > a_0$
$a = a_0$	$\mathrm{a}=\mathrm{a}_1(\mathrm{a}_0<\mathrm{a}_1)$	$\hat{a} > a_0$
$a\leqslant a_0$	$a > a_0$	$\hat{a} > a_0$
$a = a_0$	$a < a_0$	$\hat{a} < a_0$
$a = a_0$	$\mathrm{a}=\mathrm{a}_1(\mathrm{a}_0>\mathrm{a}_1)$	$\hat{a} < a_0$
$\mathrm{a}\geqslant\mathrm{a}_0$	$a < a_0$	$\hat{a} < a_0$

3.2 两类错误

3.1.1 第一类错误 弃真

 $P{拒绝了H₀ | H₀为真} = \alpha$

3.1.2 第二类错误 采假

 $P{接受了H_0 \mid H_0为假} = \beta$

3.2 参数检验

3.3 非参数检验

3.3.1 χ² 检验

$$H_0: P(X) = P_0(X)$$

 $H_1: P(X) \neq P_0(X)$

检验统计量: $K^2 = \sum_{i=1}^k \frac{n}{\hat{p}_i} \left(\frac{v_i}{n} - \hat{p}_i \right)^2 = \sum_{i=1}^k \frac{(v_i - n\hat{p}_i)^2}{n\hat{p}_i} = \frac{1}{n} \sum_{i=1}^k \frac{v_i^2}{\hat{p}_i^2} - n$ 拒绝域: $K^2 > \chi^2_{\alpha}(k-r-1)$

r:未知的参数的个数,即需要做点估计的参数的个数;不需要做点估计的参数或题目告诉你的,算已知。

3.3.2 χ^2 分析

 H_0 : P(AB) = P(A)P(B)

 $H_1: P(AB) \neq P(A)P(B)$

检验统计量: $K^2 = \sum_{i=1}^s \sum_{j=1}^t \frac{(n_{ij} - n\hat{p}_i \hat{q}_j)^2}{n\hat{p}_i \hat{q}_j}$

拒绝域: $K^2 > \chi^2_{\alpha}((s-1)(t-1))$

当2*2时:

检验统计量: $K^2 = \frac{n(n_{11}n_{22}-n_{12}n_{21})^2}{n_{1.}n_{2.}n_{.1}n_{.2}}$

拒绝域: $K^2 > \chi^2_{\alpha}(1)$

3.3.3 秩和检验

检验统计量: 第二个样本的秩和 W

拒绝域:

1. F(x), G(x) 是两个总体分布函数

H_0	H_1	拒绝域
$F\left(x\right) \leqslant G(x)$	$F\left(x\right) >G(x)$	$W \geqslant d$
$F\left(x\right) \geqslant G(x)$	$F\left(x\right) < G(x)$	$W\leqslant c$
$F\left(x\right) =G(x)$	$F\left(x\right) \neq G(x)$	$W\leqslant c\cup W\geqslant d$

2. μ1, μ2 是两个总体的均值

H_0 H_1		拒绝域	
$\mu_1\geqslant \mu_2$	$\mu_1 < \mu_2$	$W\geqslant d$	
$\mu_1\leqslant\mu_2$	$\mu_1 > \mu_2$	$W\leqslant c$	
$\mu_1=\mu_2$	$\mu_1 eq \mu_2$	$W\leqslant c\cup W\geqslant d$	

建立服从正态分布检验量: $R_1 \sim N(\frac{n_1(n1+n2+1)}{2}, \frac{n_1n_2(n1+n2+1)}{12})$

 R_1 为第一个样本的秩和

3.3.4 符号检验

单样本:与中位数的差的绝对值的秩和检验

双样本:对应的差的绝对值的秩和检验

4 方差分析

4.1 方差分析的常用统计量

误差方差估计: $\hat{\sigma}^2 = \frac{RSS}{n-r}$

总平方和: $TSS = \sum_{i=1}^r \sum_{j=1}^{n_i} \left(y_{ij} - \bar{y}\right)^2 = (n-1)S^2$

自变量平方和: $CSS = \sum_{i=1}^r \sum_{j=1}^{n_i} \left(\bar{y}_i - \bar{y} \right)^2$

残差平方和: RSS = $\sum_{i=1}^r \sum_{j=1}^{n_i} (y_{ij} - \bar{y_i})^2 = \sum_{i=1}^r (n_i - 1) S_i^2$

性质:

1.
$$TSS = CSS + RSS$$

2.
$$\frac{\mathrm{RSS}}{\sigma^2} = \frac{(n-r)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-r)$$

3.
$$\frac{\mathrm{CSS}}{\mathrm{S}^2} \sim \chi^2(\mathrm{r}-1)$$

4.2 方差分析

 $H_0\colon \, \mu_1=\mu_2=\ldots=\mu_r$

 H_1 : $\mu_1, \mu_2, \ldots, \mu_r$ 不完全相等

检验统计量: $F = \frac{CSS/(r-1)}{RSS/(n-r)}$

拒绝域: F > F(r-1,n-r)

方差来源	平方和	自由度	均方	F
分类变量	CSS	r-1	$\mathrm{CSS}/(\mathrm{r}-1)$	$\frac{\mathrm{CSS/(r-1)}}{\mathrm{RSS/(n-r)}}$
残差变量	RSS	n-r	$\mathrm{RSS}/(\mathrm{n}-\mathrm{r})$	
总计	TSS	n-1	TSS/(n-1)	

5 线性回归模型

5.1 一元线性回归

5.1.1 —元回归分析

$$Y\,=X\beta+\epsilon$$

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{bmatrix}$$

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 & \beta_1 \end{bmatrix}^T$$

$$\epsilon \sim N\left(0,\sigma^2 I_n
ight)$$

$$Y \sim N(X\beta, \sigma^2 I_n)$$

$$S = X^T X$$

$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 & \hat{\beta}_1 \end{bmatrix}^T$$

$$\hat{\beta} \sim N(\beta, \sigma^2 S^{-1})$$

$$S^{-1} = \frac{1}{L_{xx}} \begin{bmatrix} \frac{\sum_{i=1}^n x_i^2}{n} & -\overline{x} \\ -\overline{x} & 1 \end{bmatrix}$$

5.1.1 最小二乘法

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

回归系数估计:
$$\hat{eta}_1 = rac{L_{xy}}{L_{xx}}$$

误差方差估计:
$$\hat{\sigma}^2 = \frac{RSS}{n-2}$$

总平方和:
$$TSS = \sum_{i=1}^n \left(y_i - \bar{y}\right)^2 = L_{yy}$$

回归平方和:
$$\operatorname{RegSS} = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 = \frac{L_{xy}^2}{L_{xx}}$$

残差平方和
$$\mathrm{RSS} = \sum_{i=1}^n \left(y_i - \hat{y_i} \right)^2$$

相关系数
$$\mathbf{r}^2 = \frac{\text{RegSS}}{\text{TSS}} = \frac{\text{L}_{xy}^2}{\text{L}_{xx}\text{L}_{yy}}$$

性质:

1.
$$TSS = RegSS + RSS$$

2.
$$\frac{RSS}{\sigma^2} = \frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-2)$$

3.
$$\frac{\text{RegSS}}{\sigma^2} \sim \chi^2(1)$$

4.
$$\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{\pi^2}{L_{xx}}\right)\right) = N\left(\beta_0, \frac{\sigma^2\sum_{i=1}^n x_i^2}{nL_{xx}}\right)$$

5.
$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{L_{xx}}\right)$$

6.
$$\hat{\beta}_0$$
 与 $\hat{\beta}_1$ 不独立,协方差为 $Cov\left(\hat{\beta}_0,\hat{\beta}_1\right) = -\sigma^2 \frac{\bar{x}}{L_{xx}}$

5.1.2 回归关系检验—— F 检验法

 $H_0: \beta_1 = 0$

 $H_1\colon \beta_1 \neq 0$

检验统计量:
$$F = \frac{RegSS}{RSS/(n-2)} = \frac{(n-2)L_{xx}^2}{L_{xx}L_{yy}-L_{xy}^2} = \frac{(n-2)r^2}{1-r^2}$$

拒绝域: F > F(1, n-2)

方差来源	平方和	自由度	均方	F
回归变量	RegSS	1	RegSS	$\frac{\text{RegSS}}{\text{RSS}/(\text{n}-2)}$
残差变量	RSS	n-2	$\mathrm{RSS}/(\mathrm{n}-2)$	
总计	TSS	n-1	TSS/(n-1)	

5.1.3 回归关系检验—— t 检验法

$$\hat{eta}_1 \sim N\left(eta_1, rac{\sigma^2}{L_{xx}}
ight)$$

$$rac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-2)$$

检验统计量:
$$t=rac{\hat{eta}_1-eta_1}{\hat{eta}}\sqrt{L_{xx}}\sim t(n-2)$$

拒绝域: $|t| > t_{\alpha/2}(n-2)$

5.1.4 回归关系检验—— r 检验法

检验统计量:
$$\mathbf{r} = \sqrt{\frac{\text{RegSS}}{\text{TSS}}} = \sqrt{\frac{L_{xy}^2}{L_{xx}L_{yy}}}$$

拒绝域: $|\mathbf{r}| > \mathbf{r}_{\alpha}(\mathbf{n}-2)$

5.1.5 利用回归方程进行预测(\mathbf{y}_0 的区间估计, \mathbf{x}_0 对区间的控制)

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 = (1, x_0) (\hat{\beta}_0, \hat{\beta}_1)^T$$

$$\hat{y}_0 \sim N(\beta_0 + \beta_1 x_0, \sigma^2 [\tfrac{1}{n} + \tfrac{(x_0 - \overline{x})^2}{L_{xx}}])$$

$$y_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \epsilon_0$$

$$y_0 \sim N(\beta_0 + \beta_1 x_0, \sigma^2)$$

$$y_0 - \hat{y}_0 \sim N(0, \sigma^2[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{L_{xx}}])$$

$$rac{(n-2)\hat{\sigma}^2}{\sigma^2}\sim \chi^2(n-2)$$

检验统计量:
$$t=rac{y_0-\hat{y}_0}{\hat{\sigma}\sqrt{1+rac{1}{n}+rac{(x_0-\bar{x})^2}{L_{XX}}}}\sim t(n-2)$$

置信区间: $|t| < t_{\alpha/2}(n-2)$

5.1.6 β_0 的区间估计

$$\hat{\beta}_0 \sim N \, \left(\beta_0, \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{L_{xx}}\right)\right)$$

$$\frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-2)$$

检验统计量:
$$t=rac{\hat{eta}_0-eta_0}{\hat{\sigma}\sqrt{rac{1}{n}+rac{\overline{v}^2}{L_{XX}}}}\sim t(n-2)$$

置信区间:
$$|\mathsf{t}| < \mathsf{t}_{\alpha/2}(\mathsf{n}-2)$$