INTRODUCTION TO GENERATIVE SUPERVISED LEARNING MODELS

■ISE - 364 / 464

DEPT. OF INDUSTRIAL & SYSTEMS ENGINEERING

GRIFFIN DEAN KENT

OVERVIEW OF DISCRIMINATIVE VS. GENERATIVE MODELS

Discriminative Learning

- Models that directly aim at learning (or approximating) the posterior probability distribution $\mathbb{P}(Y|X)$.
- The posterior distribution $\mathbb{P}(Y|X)$ is the distribution of the target variable Y conditioned on observing a set of data features X.
- This distribution is given the name "posterior" distribution in reference to the probability of the target variable Y "post" (or after) observing the data X.
- Alternatively, we refer to $\mathbb{P}(Y)$ as the **prior distribution** since it is meant to represent our knowledge or belief in an outcome of interest Y before observing any data X, hence the name "**prior**".

Generative Learning

- Models that *still* predict posterior probabilities, but instead of learning the posterior distribution directly, generative models focus on learning the **underlying joint probability** distribution $\mathbb{P}(X,Y)$, after which **Baye's Theorem** can be applied to "generate" probabilities from the posterior distribution.
- Once the joint probability distribution $\mathbb{P}(X,Y)$ is learned, using **Baye's Theorem**, posterior probabilities are generated according to the equation

$$\mathbb{P}(Y|X) = \frac{\mathbb{P}(Y)\mathbb{P}(X|Y)}{\mathbb{P}(X)}.$$

GENERATIVE MODELS & BAYES' THEOREM

- As stated, the difference between discriminative models and generative models in supervised learning is that discriminative models aim at learning the posterior distribution $\mathbb{P}(y|x)$ directly whereas generative models aim at learning the joint distribution $\mathbb{P}(x,y)$ from which one can generate posterior probabilities via Bayes' Theorem.
- Recall from the *Probability & Statistics Slides* that conditional probability is defined as

$$\mathbb{P}(y|x) = \frac{\mathbb{P}(x,y)}{\mathbb{P}(x)}.$$

- However, in machine learning problems, we do not typically have access to "exact" information of the joint probability distribution $\mathbb{P}(x,y)$ (recall from the *Linear Regression Slides* that this is a direct approximation of the true underlying distribution that the data is drawn from, denoted by $\mathcal{P}(x,y)$).
- On the other hand, we do typically have information of the marginal "**prior**" $\mathbb{P}(y)$, the marginal $\mathbb{P}(x)$, and the conditional distribution $\mathbb{P}(x|y)$, which can be modeled by again using the definition of conditional probability as

$$\mathbb{P}(x|y) = \frac{\mathbb{P}(x,y)}{\mathbb{P}(y)}.$$

• Using this, we can solve for the joint distribution in terms of quantities that we do know

$$\mathbb{P}(x,y) = \mathbb{P}(y)\mathbb{P}(x|y).$$

• Lastly, substituting this into the equation for the posterior distribution above, we obtain Bayes' Theorem

$$\mathbb{P}(y|x) = \frac{\mathbb{P}(y)\mathbb{P}(x|y)}{\mathbb{P}(x)}.$$

Therefore, if one can <u>correctly model</u> the probability distributions $\mathbb{P}(y)$ and $\mathbb{P}(x|y)$, then one can generate posterior probabilities $\mathbb{P}(y|x)$ via Bayes' Theorem. This is the idea behind Generative Models.

WHAT MAKES GENERATIVE MODELS USEFUL?

- Although generative models "can" be used to predict a target variable y in a supervised learning context, they are typically only used for this purpose in scenarios when there is **not much data available** to train on.
- If relatively large amounts of data are available, then one would typically use a discriminative model which will almost always have higher predictive power.

So, then what are generative models used for?

- The reason that these models are given the moniker "generative" is because they are very useful for generating synthetic data that mimics the original "true" distribution $\mathcal{P}(x,y)$ (with the approximation obtained by $\mathbb{P}(x,y) = \mathbb{P}(y)\mathbb{P}(x|y)$).
- As a result, once the approximate joint distribution $\mathbb{P}(x,y)$ has been learned, one can sample new synthetic data from that distribution.
- This can be very useful for a variety of problems, such as class-imbalance problems (i.e., artificially increasing
 the number of instances for an underrepresented class), data cleaning (i.e., replacing missing data), and others.

GAUSSIAN DISCRIMINANT ANALYSIS

The first generative model that we will introduce is the **Gaussian Discriminant Analysis** model. This model (and all other generative models for that matter) assumes that the features and target variable of a dataset follow certain distributions, from which we can model relatively well.

The Gaussian Discriminant Analysis (GDA) Model

Consider some dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^m$, where $x^{(i)} \in \mathbb{R}^n$ and the target variable is **binary** $y \in \{0,1\}$.

- Therefore, the target variable y can be modeled as a **Bernoulli random variable** with probability parameter given by $\phi \in [0,1]$ such that $\mathbb{P}(y=1) = \phi$.
- Further, this model assumes that each feature vector $x \in \mathbb{R}^n$ comes from an n-dimensional multivariate Gaussian distribution when conditioned on y. More specifically, this means that given some mean vector $\mu_y \in \mathbb{R}^n$ and covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$, then it follows that $\mathbb{P}(x|y) \sim \mathcal{N}(\mu_y, \Sigma_y)$ for $y \in \{0,1\}$. Thus, we have that

$$\mathbb{P}(x|y;\mu_y,\Sigma_y) = \frac{1}{(2\pi)^{n/2} |\Sigma_y|^{1/2}} e^{-\frac{1}{2}(x-\mu_y)^T \Sigma_y^{-1}(x-\mu_y)}.$$

Therefore, when trying to classify a new datapoint (x, y), the GDA model h_{θ} (where the parameters $\theta = [\mu_0, \mu_1, \Sigma_0, \Sigma_1]$) utilizes Bayes' Theorem and chooses the value of $y \in \{0,1\}$ that maximizes the posterior probability $\mathbb{P}(y|x)$, i.e.,

$$h_{\theta}(x) \coloneqq \underset{y \in \{0,1\}}{\operatorname{argmax}} \mathbb{P}(y|x) = \underset{y \in \{0,1\}}{\operatorname{argmax}} \frac{\mathbb{P}(y)\mathbb{P}(x|y)}{\mathbb{P}(x)} = \underset{y \in \{0,1\}}{\operatorname{argmax}} \mathbb{P}(y)\mathbb{P}(x|y).$$

Since $\mathbb{P}(x)$ will only be a function in x and not y, we can omit it in the maximization over y.

• For the remainder of these slides, we will make the simplifying assumption that $\Sigma_0 = \Sigma_1 = \Sigma$ (i.e., equal covariances).

ILLUSTRATION OF GDA

This figure illustrates a **Gaussian Discriminative Analysis** (GDA) Model where the conditional distribution is a multivariate Gaussian distribution conditioned on a binary variable $Y \in \{0,1\}$, i.e., $f_{X|Y}(X|Y=y) \sim \mathcal{N}(\mu_V, \Sigma)$.

Recall from Homework Assignment 6 that a GDA model with the same covariance matrices (i.e., $\Sigma_0 = \Sigma_1 = \Sigma$) describing each of the Gaussians is equivalent to a Logistic Regression model.

LIKELIHOOD FUNCTION OF GDA

As with all probabilistic models that we have seen, we can go about "training" the GDA model by choosing the set of parameters θ that maximize the likelihood function of observing the data that was observed.

Likelihood Function for GDA

Under the assumptions that the datapoints, given by the set $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^m$, are i.i.d. and the prior distribution $\mathbb{P}(y^{(i)})$ is given by the **Bernoulli distribution**

$$\mathbb{P}(y^{(i)}) = \phi^{y^{(i)}} (1 - \phi)^{(1 - y^{(i)})},$$

and the conditional distribution $\mathbb{P}(x^{(i)}|y^{(i)})$ is given by the **multivariate Gaussian distribution** $\mathcal{N}\left(\mu_{y^{(i)}},\Sigma\right)$ written as

$$\mathbb{P}(x^{(i)}|y^{(i)}) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} e^{-\frac{1}{2}(x^{(i)} - \mu_{y^{(i)}})^T \Sigma^{-1}(x^{(i)} - \mu_{y^{(i)}})}.$$

Then, one can define the **likelihood** function of observing the data \mathcal{D} , given the set of model parameters $\theta \coloneqq [\mu_0, \mu_1, \Sigma]$, as

$$L\left(\theta; \{(x^{(i)}, y^{(i)})\}_{i=1}^{m}\right) = \prod_{i=1}^{m} \mathbb{P}(x^{(i)}, y^{(i)}) = \prod_{i=1}^{m} \mathbb{P}(y^{(i)}) \mathbb{P}(x^{(i)}|y^{(i)}).$$

Similarly, the corresponding log-likelihood function is given by

$$\ell\left(\theta; \{(x^{(i)}, y^{(i)})\}_{i=1}^{m}\right) = \sum_{i=1}^{m} \left[\log \mathbb{P}(y^{(i)}) + \log \mathbb{P}(x^{(i)}|y^{(i)})\right].$$

MAXIMUM LIKELIHOOD ESTIMATES FOR GDA

Training the GDA model amounts to solving the optimization problem of maximizing the likelihood function, i.e.,

$$\theta^* = \operatorname*{argmax}_{\theta} \ell \left(\theta; \left\{ \left(x^{(i)}, y^{(i)} \right) \right\}_{i=1}^m \right).$$

After some algebra, the explicit form of the log-likelihood can be written as

$$\ell(\theta) = \sum_{i=1}^{m} \left[y^{(i)} \log \phi + \left(1 - y^{(i)} \right) \log(1 - \phi) - \frac{1}{2} \left(x^{(i)} - \mu_{y^{(i)}} \right)^T \Sigma^{-1} \left(x^{(i)} - \mu_{y^{(i)}} \right) \right] - \frac{mn}{2} \log 2\pi - \frac{m}{2} \log |\Sigma|.$$

• An important point: this log-likelihood function is not concave in general... However, we can still solve for closed-form analytical solutions for the maximum-likelihood estimates (MLE) ϕ^* , μ_0^* , μ_1^* , and Σ^* because the partial derivatives with respect to each of these parameters reduces to solvable linear or quadratic equations, which do enable closed-form solutions. It can be shown that, by setting the partial derivatives of the parameters to zero, their optimal solutions can be derived as

$$\phi^* = \frac{1}{m} \sum_{i=1}^m y^{(i)} \quad and \quad \mu_y^* = \frac{\sum_{i=1}^m \mathbb{I}[y^{(i)} = y]x^{(i)}}{\sum_{i=1}^m \mathbb{I}[y^{(i)} = y]},$$

$$\Sigma^* = \frac{1}{m} \sum_{i=1}^m \left[[y^{(i)} = 0]x^{(i)}(x^{(i)})^T + [y^{(i)} = 1]x^{(i)}(x^{(i)})^T \right].$$

• Lastly, if the covariance matrices are not equivalent (i.e., $\Sigma_0 \neq \Sigma_1$), the other MLEs of the other parameters are the same, but the solutions Σ_0^* and Σ_1^* will take on different forms; however, they can still be derived by setting the respective partial derivatives of the log-likelihood equal to 0 and solving.

ATTRIBUTION & LICENSE

These lecture slides are part of the "Introduction to Machine Learning" course materials created by **Griffin Dean Kent**.

For the latest version, updates, and additional resources, visit the GitHub repository: https://github.com/GdKent/Introduction-to-Machine-Learning.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). You are free to share and adapt these materials, provided proper attribution is given and any derivatives are shared under the same license.