به نام خدا فاز اول پروژه معماری کامپیوتر سهیل نظری مندجین-هیربد بهنام-هیراد داوری-بنیامین ملکی تیم ما برای انجام این پروژه تصمیم گرفت که پردازنده مبتنی بر معماری MIPS طراحی کند. توضیحات فاز اول این پروژه به شرح زیر است.

MIPS Instructions:

R-Type:

دستور	

#	Instruction Name Meaning		Func
1	XOR	rd ← rs ^ rt	100110
2	SLL(Shift left logical)	$rd \leftarrow rt \le Sh.AMOUNT$	000000
3	SLLV(shift left logical variable	rd ← rt << rs	000100
4	SRL (Shift right logical)Unsigned right shift	$rd \leftarrow rt >> Sh.AMOUNT$	000010
5	SUB	rd ← rs – rt	100010
6	SRLV(shift right logical variable)	$rd \leftarrow rt \gg rs$	000110
7	SLT	rd ←rs <rt comparison<="" signed="" td=""><td>101010</td></rt>	101010
8	Syscall Syscall	Finish cpu opration	001100
9	SUBU(Subtract unsigned)	rd ← rs – rt	100011
10	OR	rd ← rs rt	100101
11	NOR	rd ← rs ~ rt	100111
12	ADDu(Add unsigned)	$rd \leftarrow rt + rs$	100001
13	MULT	$rd \leftarrow rs \times rt$	011000
14	DIV	rd ← rs ÷ rt	011010
15	AND	rd ← rs & rt	100100
16	ADD	rd ← rs + rt	100000
17	JR(Jump Reg)	PC← rs	001000
18	SRA(signed right shift)	$rd \leftarrow rt >> Sh.AMOUNT$	000011

I-Type:

يست دستورات

#	Instruction Name	Meaning	Opcode
1	ADDi	$rt \leftarrow rs + SIGN EXTEND (Imm)$	001000
2	ADDiu(unsigned)	$rt \leftarrow rs + SIGN EXTEND (Imm)$	001001
3	ANDi	rt← rs & SIGN EXTEND (Imm)	001100
4	XORi	rt←rs ~ SIGN EXTEND (Imm)	001110
5	ORi	rt←rs SIGN EXTEND (Imm)	001101
6	BEQ	$rs = rt: PC \leftarrow PC + SIGN EXTEND(Imm "00")$	000100
7	BNE	rs!= rt: PC \leftarrow PC + SIGN EXTEND (Imm "00")	000101
8	BLEZ	rs \leq = 0: PC \leftarrow PC + SIGN EXTEND (Imm "00")	000110
9	BGTZ	$rs > 0$: PC \leftarrow PC + SIGN EXTEND (Imm "00")	000111
10	BGEZ	$rs \ge 0$: PC \leftarrow PC + SIGN EXTEND (Imm "00")	000001
11	LW	$rt \leftarrow MEM \ [\$rs + SIGN \ EXTEND \ (Imm)]$	100011
12	sw	MEM [\$rs+ SIGN EXTEND (Imm)] \leftarrow rt	101011
13	LB	$rt[7:0] \leftarrow MEM [$rs+SIGN EXTEND (Imm)]$	100000
14	SB	MEM [\$rs+ SIGN EXTEND (Imm)] \leftarrow rt [7:0]	101000
15	SLTi	Set to 1 if Less, rs< SIGN EXTEND (Imm), rt=1	001010
16	Lui(load upper immediate)	The immediate value is shifted left 16 bits and store in register. The lower 16 bits are zeroes rt← {SIGN EXTEND (Imm),0*16}	001111

به نام خدا فاز اول پروژه معماری کامپیوتر سهیل نظری مندجین-هیربد بهنام-هیراد داوری-بنیامین ملکی

J-Type:

ليست دستورات:

#	Instruction Name	Meaning	opcode	Comments
١	j	PC←{(PC), address,00}	000010	Jump to target address
2	۵JAL	R[31] ←PC then go to procedure address PC←{(PC), address,00}	000011	Use when making procedure call. This saves the return address in \$31

CPU:

Datapath:

مسیر داده طراحی شده برای پروژه با توجه به دستور های داده شده به شکل زیر است:

به نام خدا فاز اول پروژه معماری کامپیوتر سهیل نظری مندجین-هیربد بهنام-هیراد داوری-بنیامین ملکی

Controller:

سیگنال های مسیر داده توسط کنترلر با توجه به opcode دستور فعلی، func در حالت r-type، و خروجی zero واحد ALU تعیین می شوند. نمونه ایی از این سیگنال های کنترلی در cu

به نام خدا فاز اول پروژه معماری کامپیوتر سهیل نظری مندجین-هیربد بهنام-هیراد داوری-بنیامین ملکی

Test Program:

پروژه ما در نهایت تمامی تست های انتخاب شده را نیز پاس می کند.

diff -u test/default/addtest.reg output/regdump.reg 1>&2
make[1]: Leaving directory '/home/hirad/arch-proj/project-kiavash'
□[1;32mAll tests passed! (7 tests)□[0m

برای مشاهده لاگ پاس شدن تست ها و محتوای رجیستر ها به فایل verify-all ضمیمه شده در گیت مراجعه کنید.