





# KONKURS CHEMICZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

# ETAP WOJEWÓDZKI

23 lutego 2022 r. godz. 12:00



### Uczennico/Uczniu:

- 1. Arkusz składa się z 21 zadań, na rozwiązanie których masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. W rozwiązaniach zadań otwartych przedstawiaj swój tok rozumowania za napisanie samej odpowiedzi nie otrzymasz maksymalnej liczby punktów.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

| Maksymalna liczba punktów   | 40 | 100% |
|-----------------------------|----|------|
| Uzyskana liczba punktów     |    | %    |
| Podpis Przewodniczącej/-ego |    |      |

# <u>Uwaga:</u> w zadaniach 1.-5. wybierz prawidłową odpowiedź poprzez <u>wyraźne</u> otoczenie pętlą <u>jednej z liter</u>: A, B, C lub D

# **Zadanie 1.** (0-1)

W celu otrzymania 500 cm³ roztworu siarczanu(VI) sodu, w którym stężenie kationów sodu wynosi 0,500 mol·dm⁻³, należy:

- A. Rozpuścić 0,125 mola Na<sub>2</sub>SO<sub>4</sub> w małej objętości wody, a następnie dopełnić kolbę miarową wodą destylowaną, do objętości roztworu równej 500 cm<sup>3</sup>
- B. Rozpuścić 0,500 mol Na<sub>2</sub>SO<sub>4</sub> w małej objętości wody, a następnie dopełnić kolbę miarową wodą destylowaną, do objętości roztworu równej 500 cm<sup>3</sup>
- C. Rozpuścić 0,125 mol Na<sub>2</sub>SO<sub>4</sub> w 500 cm<sup>3</sup> wody destylowanej
- D. Rozpuścić 0,500 mol Na<sub>2</sub>SO<sub>4</sub> w 500 cm<sup>3</sup> wody destylowanej

# **Zadanie 2.** (0-1)

W trzech probówkach umieszczono w przypadkowej kolejności: etanol, kwas octowy (kwas etanowy) oraz octan etylu (etanian etylu). W celu identyfikacji zawartości probówek wprowadzono do każdej z nich po 5 cm³ wodnego roztworu oranżu metylowego. Wyniki opisanego doświadczenia przedstawiono poniżej:



Wskaż odpowiedź, w której poprawnie zidentyfikowano zawartości probówek:

| A. | 1 - kwas octowy. | 2 - etanol. | 3 - octan etvlu |
|----|------------------|-------------|-----------------|
|    |                  |             |                 |

### Zadanie 3.

**Zadanie 4.** (0-1)

A. 50

C. 51

Reforming katalityczny to proces przeróbki benzyny i nafty polegający na izomeryzacji nierozgałęzionych cząsteczek węglowodorów, prowadzący do powstawania cząsteczek węglowodorów o łańcuchach rozgałęzionych. Izomeryzacji może towarzyszyć również częściowe odwodornienie i cyklizacja, czyli zamknięcie łańcucha węglowego węglowodoru w strukturę pierścienia utworzonego z atomów węgla.

Kraking to również jeden z katalitycznych procesów przeróbki frakcji węglowodorów, polegający na zrywaniu wiązań pomiędzy atomami węgla w cząsteczkach węglowodorów. W wyniku tego procesu, z łańcuchów alifatycznych, zawierających wiele atomów węgla, powstają cząsteczki alkanów i alkenów o mniejszej liczbie atomów węgla.

Z cząsteczek oktanu, w wyniku procesów reformingu katalitycznego oraz krakingu, można otrzymywać różne produkty, których modele cząsteczek przedstawiono poniżej:



D. 26

Sumaryczna liczba protonów, zawartych w jądrach atomów tworzących jedną cząsteczkę

B. 49

kwasu deuterosiarkowego(VI), o wzorze sumarycznym HDSO<sub>4</sub> wynosi:

# Zadanie 5.

Przeprowadzono doświadczenie, którego schemat przedstawiono poniżej:



roztwór białka jaja kurzego

# **Zadanie 5.1.** (0-1)

...../1

Wskaż numery probówek, w których zaobserwowano wytrącenie się osadu:

D. we wszystkich.

# **Zadanie 5.2.** (0-1)



Wskaż numery probówek, w których zaszedł proces denaturacji białka:

C. 
$$w 1, 3, 5$$

D. we wszystkich.

### **Zadanie 6.** (0-2)



Narysuj wzór półstrukturalny (grupowy) łańcuchowego izomeru heksanu, który zawiera wyłącznie jeden czwartorzędowy atom węgla. Podaj nazwę systematyczną tego izomeru.

Wzór półstrukturalny:

Nazwa systematyczna:\_\_\_

**Zadanie 7.** (0-2)

Klatraty metanu, to inaczej uwodnione kryształy tego związku, nazywane hydratami metanu. Mogą się one tworzyć z wody i metanu w odpowiednio niskiej temperaturze i pod działaniem wysokiego ciśnienia. Warunki takie mogą panować np. w pobliżu podwodnych wulkanów, na dnie oceanów lub w rurach gazociągów. Ogólny wzór klatratu metanu można przedstawić jako  $mCH_4 \cdot nH_2O$ .

W pewnym złożu klatratu metanu współczynniki m i n we wzorze wynoszą odpowiednio m=4 i n=23. Oblicz objętość metanu (w przeliczeniu na warunki normalne), jaką można otrzymać z 50 kg tego klatratu metanu. Wynik podaj w  $m^3$ , w zaokrągleniu do jednej cyfry po przecinku.



| <b>Z</b> adanie <b>8</b> . (0-1) | /1 |
|----------------------------------|----|

Bor, łącząc się z wodorem, tworzy związki zwane borowodorami (boranami). Związki te, tak jak węglowodory, tworzą szereg homologiczny. Poniżej przedstawiono wzory sumaryczne pięciu kolejnych, rozpoczynających szereg homologiczny, borowodorów:

 $B_2H_6$   $B_3H_7$   $B_4H_8$   $B_5H_9$   $B_6H_{10}$ 

Napisz wzór ogólny szeregu homologicznego borowodorów, przyjmując oznaczenie n dla liczby atomów boru w cząsteczce borowodoru oraz podaj wzór sumaryczny borowodoru zawierającego 16 atomów boru.

| Wzór ogólny borowodorów:   |                    |  |  |
|----------------------------|--------------------|--|--|
| Wzór horowodoru zawierając | ago 16 atomów boru |  |  |

**Zadanie 9.** (0-2)

W celu przeprowadzenia spalenia całkowitego pewnego gazowego alkanu, należy zmieszać go z tlenem, w stosunku objętościowym  $V_{\rm alkan}$ :  $V_{\rm O_2}=2:13$ . Stosując odpowiednie obliczenia, ustal wzór sumaryczny tego alkanu.



# Zadanie 10.

Polipropylen (PP) powstaje w wyniku procesu polimeryzacji propenu, nazywanego zwyczajowo propylenem. Polipropylen jest jednym z dwóch, obok polietylenu, najczęściej stosowanych tworzyw sztucznych.

**Zadanie 10.1.** (0-1)

Narysuj wzór półstrukturalny fragmentu cząsteczki polipropylenu, przedstawiający 3 mery łańcucha tego związku.

**Zadanie 10.2.** (0-2)



Jedna cząsteczka polipropylenu, wytworzona w danym procesie technologicznym, posiada masę wynoszącą ok.  $3.00 \cdot 10^{-18}$  g. Oblicz, jaką liczbę merów zawiera jedna cząsteczka polipropylenu otrzymana w opisanym procesie.



### Zadanie 11.

W wyniku przeprowadzenia reakcji addycji chlorowodoru do pewnego alkenu X powstają, z różną wydajnością, dwie izomeryczne chloropochodne tego alkanu, oznaczone jako A i B. Ich modele cząsteczkowe przedstawiono poniżej:



**Zadanie 11.1.** (0-1)

..... / 1

Napisz nazwę systematyczną alkenu X.

| <b>Zadanie 11.2.</b> (0-1) | / 1 |
|----------------------------|-----|
|----------------------------|-----|

Rozstrzygnij i uzasadnij, która z chloropochodnych: A czy B, jest produktem głównym (powstaje z wyższą wydajnością) w reakcji alkenu X z chlorowodorem.

| 7ε ι          |      |  |
|---------------|------|--|
| Uzasadnienie: | <br> |  |

# **Zadanie 12.** (0-2)

Podczas całkowitej redukcji 44,64 g tlenku ołowiu(II), zużyto 1,80 g węgla. Powstające gazy tworzyły mieszaninę tlenku węgla(II), CO i tlenku węgla(IV), CO<sub>2</sub>. Przedstawiony proces można opisać za pomocą równań reakcji biegnących następczo:

$$PbO + C \rightarrow Pb + CO$$
  
 $PbO + CO \rightarrow Pb + CO_2$ 

lub jednym równaniem sumarycznym:

Rozstrzygniecie:

$$PbO + xC \rightarrow Pb + (2x-1)CO + (1-x)CO_2$$

Oblicz stosunek liczby moli CO do liczby moli CO<sub>2</sub> powstałych w tym procesie po zakończeniu reakcji.



### Informacja do zadań 13. – 16.

Aminokwasy to związki, których cząsteczki posiadają dwie grupy funkcyjne: aminową –NH<sub>2</sub> oraz karboksylową –COOH. Z tego powodu cząsteczki aminokwasów ulegają reakcjom charakterystycznym zarówno dla amin, jak i kwasów karboksylowych.

Cząsteczki aminokwasów mogą ulegać reakcji typu kondensacji, z wydzieleniem cząsteczek wody, w wyniku czego powstają cząsteczki peptydów. Kolejność aminokwasów w cząsteczce peptydu podajemy zawsze od lewej do prawej strony w taki sposób, by pierwszym był aminokwas posiadający wolną grupę aminową, a ostatnim – aminokwas posiadający wolną grupę karboksylową. Poniżej przedstawiono schemat reakcji kondensacji trzech cząsteczek aminokwasów (jednej cząsteczki waliny i dwóch cząsteczek alaniny) do cząsteczki tripeptydu:

Walina + Alanina + Alanina → Walina-Alanina-Alanina + 2 H<sub>2</sub>O

**Zadanie 13.** (0-1)

Napisz, w formie jonowej skróconej, stosując wzory półstrukturalne związków organicznych, równanie reakcji przebiegającej pomiędzy roztworem wodnym glicyny (H<sub>2</sub>N–CH<sub>2</sub>–COOH) i roztworem wodorotlenku sodu.

Zadanie 14. (0-1)

Napisz, stosując wzory półstrukturalne, równanie reakcji przebiegającej pomiędzy dwiema cząsteczkami glicyny, prowadzącej do powstania dipeptydu.

**Zadanie 15.** (0-1)

W wyniku częściowej hydrolizy pewnego pentapeptydu otrzymano m.in. dwa tripeptydy i jeden dipeptyd, których sekwencje przedstawiono poniżej:

Glicyna–Prolina–Walina Metionina–Glicyna Prolina–Walina–Alanina

Podaj sekwencję aminokwasów w cząsteczce badanego pentapeptydu.

### Zadanie 16.

Jedną z technik stosowanych do ustalania składu polipeptydów jest chromatografia cienkowarstwowa (TLC – *Thin Layer Chromatography*). Badany peptyd poddaje się całkowitej hydrolizie, a otrzymaną mieszaninę aminokwasów nanosi się na płytkę chromatograficzną i rozdziela za pomocą odpowiedniego rozpuszczalnika (tzw. eluenta). Parametrem pozwalającym na jednoznaczną identyfikację aminokwasu jest współczynnik  $R_f$ , (*retardation factor*), który jest zdefiniowany jako:

$$R_{\rm f} = \frac{ \mbox{Odległość środka plamki badanej substancji od miejsca startu} }{ \mbox{Odległość linii rozpuszczalnika od miejsca startu} }$$

Morficeptyna to tetrapeptyd (peptyd powstały w wyniku kondensacji czterech cząsteczek aminokwasów), wykazujący silne działanie przeciwbólowe i przeciwbiegunkowe. Próbkę morficeptyny poddano całkowitej hydrolizie, a otrzymaną mieszaninę naniesiono na płytkę chromatograficzną w punkcie oznaczonym jako START. Płytkę włożono do komory chromatograficznej z odpowiednio dobranym rozpuszczalnikiem. Po pewnym czasie płytkę wyjęto i zaznaczono ołówkiem linię, do której dotarł rozpuszczalnik. W celu uwidocznienia plamek utworzonych przez aminokwasy na płytce spryskano ją roztworem ninhydryny, która z aminokwasami tworzy związki posiadające charakterystyczne, intensywne barwy. Obok przedstawiono otrzymany chromatogram:



| Zadanie 16.1. (0-<br>Morficeptyna jest<br>plamki (A, B i o<br>morficeptyny. Na<br>(zawartości amino | tetrape<br>C), odp<br>podstav | owiadają<br>vie tej ob | ce trzem<br>oserwacji  | aminol              | xwasom                    | powstały             | ym w procesie h                       | ydrolizy         |
|-----------------------------------------------------------------------------------------------------|-------------------------------|------------------------|------------------------|---------------------|---------------------------|----------------------|---------------------------------------|------------------|
| Zadanie 16.2. (0-                                                                                   | -2)                           |                        |                        |                     |                           |                      |                                       | /2               |
| Stosując bezpośr<br>dla plamek A,                                                                   | _                             | -                      | • •                    | •                   | -                         |                      | • •                                   |                  |
| Zidentyfikuj amir                                                                                   |                               |                        | =                      |                     |                           |                      | och cyn po pi                         | izeciliku.       |
| Plamka                                                                                              |                               | A                      |                        |                     | В                         |                      | С                                     |                  |
| Współczynnik<br>R <sub>f</sub>                                                                      |                               |                        |                        |                     |                           |                      |                                       |                  |
| Aminokwas                                                                                           | R <sub>f</sub>                |                        | Amino                  | kwas                | $\mathbf{R}_{\mathbf{f}}$ |                      | Aminokwas                             | $R_{\mathrm{f}}$ |
| Lizyna                                                                                              | 0,12                          |                        | Alan                   | ina                 | 0,33                      |                      | Metionina                             | 0,51             |
| Arginina                                                                                            | 0,16                          |                        | Cyste                  | eina                | 0,37                      |                      | Izoleucyna                            | 0,52             |
| Asparagina                                                                                          | 0,20                          |                        | Tyroz                  | zyna                | 0,44                      |                      | Tryptofan                             | 0,57             |
| Prolina                                                                                             | 0,27                          |                        | Wal                    | ina                 | 0,49                      |                      | Fenyloalanina                         | 0,62             |
| Aminokwasy wch                                                                                      | nodzące                       |                        | -                      | •                   | www.reac                  | chdevices            | .com/TLC_aminoa<br>[dostęp: listop    |                  |
| Zadanie 17. Amoniak i siarko w gazowym stanie słabych, które ule 20 °C, można roz                   | e skupie<br>gają czę          | nia. Gazy<br>ściowej c | te rozpu<br>lysocjacji | szczając<br>elektro | się w wo<br>litycznej     | odzie two<br>. W 1 d | orzą roztwory elel<br>m³ wody, w temp | ktrolitów        |
| Zadanie 17.1. (0-<br>Napisz równani<br>siarkowodoru, uw                                             | a dyso                        |                        | •                      | •                   | -                         |                      | •                                     | /1<br>oztworze   |
| Równanie pierws:                                                                                    | zego eta                      | pu dysoc               | jacji:                 |                     |                           |                      |                                       |                  |
| Równanie drugies                                                                                    | go etapu                      | dysocia                | cii:                   |                     |                           |                      |                                       |                  |



Różna rozpuszczalność siarkowodoru i amoniaku w wodzie wynika z obecności różnych oddziaływań międzycząsteczkowych między cząsteczkami tych związków a cząsteczkami wody.

Oceń prawdziwość podanych zdań. Otocz pętlą literę  $\mathbf{P}$  – jeśli zdanie jest prawdziwe lub literę  $\mathbf{F}$  – jeśli zdanie jest fałszywe.

|    | Zdanie                                                                                                                |   |   |
|----|-----------------------------------------------------------------------------------------------------------------------|---|---|
| 1. | Cząsteczki wody, siarkowodoru i amoniaku mają budowę polarną (są dipolami).                                           | P | F |
| 2. | W wodnym roztworze siarkowodoru, pomiędzy cząsteczkami wody a cząsteczkami siarkowodoru, występują wiązania wodorowe. | P | F |
| 3. | W wodnym roztworze amoniaku, pomiędzy cząsteczkami wody a cząsteczkami amoniaku, występują wiązania wodorowe.         | P | F |

# **Zadanie 17.3.** (0-1)

Zmieszano 500 cm³ wodnego roztworu siarkowodoru o stężeniu 0,1 mol·dm⁻³ (roztwór A) i 500 cm³ wodnego roztworu amoniaku o stężeniu 0,1 mol·dm⁻³ (roztwór B). Napisz wzór sumaryczny i nazwę soli, której roztwór otrzymano na skutek zmieszania roztworów A i B. Załóż, że podczas opisanej reakcji powstała wyłącznie jedna sól, a substraty przereagowały całkowicie.

| Wzór sumaryczny soli | Nazwa soli |
|----------------------|------------|
|                      |            |
|                      |            |

### Zadanie 18.

Poniżej przedstawiono czteroetapowy schemat otrzymywania etanianu etylu (octanu etylu) z acetylenu (etynu).

# **Zadanie 18.1.** (0-1)

Uzupełnij schemat, wpisując z wyznaczone miejsca wzory strukturalne lub półstrukturalne odpowiednich reagentów.



| <b>Zadanie 18.2.</b> (0-1) | /1 |
|----------------------------|----|
|                            |    |

Napisz pełne równanie reakcji IV. (stosując wzory strukturalne lub półstrukturalne dla reagentów organicznych) zachodzącej w ostatnim etapie opisanej syntezy.

# Informacja do zadań 19. – 21.

Świeżo stracony osad wodorotlenku miedzi(II) jest ważnym odczynnikiem, wykorzystywanym w wielu reakcjach charakterystycznych dla określonych grup związków organicznych. Pozwala on między innymi rozróżnić alkohole monohydroksylowe (zawierające w czasteczce jedna grupe –OH) od alkoholi polihydroksylowych (zawierających w cząsteczce minimum dwie grupy -OH, przyłączone do dwóch sąsiednich atomów węgla). Z alkoholami monohydroksylowymi wodorotlenek miedzi(II) nie reaguje, z alkoholami polihydroksylowymi tworzy ciemnoniebieskie (szafirowe), klarowne roztwory. Wodorotlenek miedzi(II) pozwala także na odróżnienie wybranych cukrów redukujących od nieredukujących. Z kwasami organicznymi związek ten reaguje analogicznie jak z kwasami nieorganicznymi.

# Zadanie 19.

Uczeń planował otrzymać czysty osad wodorotlenku miedzi(II). W tym celu zaproponował przeprowadzenie trzech reakcji, polegających na zmieszaniu odpowiednich odczynników:



**Zadanie 19.1.** (0-1)

Rozstrzygnij, i uzasadnij, czy w probówce 1. uczeń otrzymał czysty osad wodorotlenku miedzi(II).

| Rozstrzygnięcie: |  |      |  |
|------------------|--|------|--|
|                  |  |      |  |
| Uzasadnienie:    |  | <br> |  |
|                  |  |      |  |
|                  |  |      |  |

| Zadanie 19.2. (0-2)  Napisz, w formie jonowej skróconej, równanie reakcji zachodzącej w probówce 2.  Rozstrzygnij, i uzasadnij, czy uczeń uzyskał w probówce 2. czysty osad wodorotlenku miedzi(II).                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Równanie reakcji:                                                                                                                                                                                                                                                                                                                            |
| Rozstrzygnięcie:                                                                                                                                                                                                                                                                                                                             |
| Uzasadnienie:                                                                                                                                                                                                                                                                                                                                |
| Zadanie 19.3. (0-1)  Strąconego osadu wodorotlenku miedzi(II) nie można długo przechowywać ani ogrzewać, gdyż ulega on reakcji rozkładu. Uczeń zaobserwował, że niebieski osad otrzymany w probówce 3. po dłuższym czasie zaczął zmieniać barwę na czarną. Napisz równanie reakcji odpowiadającej za zmianę barwy osadu.                     |
| Zadanie 20. (0-1)  W celu zidentyfikowania próbek zawierających etanol, glicerol i kwas octowy (etanowy), do probówek zawierających wymienione substancje (w nieznanej kolejności), dodano świeżo strącony wodorotlenek miedzi(II). Zawartości probówek wymieszano. Na poniższych fotografiach przedstawiono wyniki opisanego doświadczenia. |
|                                                                                                                                                                                                                                                                                                                                              |
| 1. 2. 3.                                                                                                                                                                                                                                                                                                                                     |
| Zidentyfikuj zawartości probówek $1-3$ . Podaj nazwy lub wzory sumaryczne substancji obecnych w probówkach.                                                                                                                                                                                                                                  |
| Probówka 1: Probówka 2:                                                                                                                                                                                                                                                                                                                      |

Probówka 3: \_\_\_\_\_

### Zadanie 21.

Wodorotlenek miedzi(II) wykorzystano do odróżnienia roztworu glukozy od roztworu sacharozy. Do probówki zawierającej wodny roztwór siarczanu(VI) miedzi(II) dodano niewielki nadmiar roztworu wodorotlenku sodu, co spowodowało wytrącenie osadu wodorotlenku miedzi(II). Do tak przygotowanego odczynnika dodano roztwór wodny analizowanego cukru, zawartość probówki wymieszano i ogrzano w łaźni wodnej. Kolejne etapy doświadczenia przedstawiono na poniższych fotografiach.



# Brudnopis

(nie podlega ocenie)



# Tablica Rozpuszczalności soli i wodorotlenków w wodzie

|                              | OH- | <b>F</b> - | Cl- | Br- | I- | NO <sub>3</sub> - | S <sup>2-</sup> | SO <sub>3</sub> <sup>2</sup> - | SO4 <sup>2-</sup> | CO3 <sup>2-</sup> | SiO <sub>3</sub> <sup>2</sup> - | CrO <sub>4</sub> <sup>2</sup> – | PO4 <sup>3-</sup> |
|------------------------------|-----|------------|-----|-----|----|-------------------|-----------------|--------------------------------|-------------------|-------------------|---------------------------------|---------------------------------|-------------------|
| Na <sup>+</sup>              | R   | R          | R   | R   | R  | R                 | R               | R                              | R                 | R                 | R                               | R                               | R                 |
| <b>K</b> +                   | R   | R          | R   | R   | R  | R                 | R               | R                              | R                 | R                 | R                               | R                               | R                 |
| NH <sub>4</sub> <sup>+</sup> | R   | R          | R   | R   | R  | R                 | R               | R                              | R                 | R                 |                                 | R                               | R                 |
| Cu <sup>2+</sup>             | N   | R          | R   | R   | _  | R                 | N               | N                              | R                 |                   | N                               | N                               | N                 |
| Ag <sup>+</sup>              | _   | R          | N   | N   | N  | R                 | N               | N                              | T                 | N                 | N                               | N                               | N                 |
| Mg <sup>2+</sup>             | N   | N          | R   | R   | R  | R                 | R               | R                              | R                 | N                 | N                               | R                               | N                 |
| Ca <sup>2+</sup>             | T   | N          | R   | R   | R  | R                 | Т               | N                              | T                 | N                 | N                               | T                               | N                 |
| Ba <sup>2+</sup>             | R   | N          | R   | R   | R  | R                 | R               | N                              | N                 | N                 | N                               | N                               | N                 |
| <b>Z</b> n <sup>2+</sup>     | N   | N          | R   | R   | R  | R                 | N               | T                              | R                 | N                 | N                               | T                               | N                 |
| Al <sup>3+</sup>             | N   | R          | R   | R   | R  | R                 |                 | _                              | R                 |                   | N                               | N                               | N                 |
| Pb <sup>2+</sup>             | N   | N          | T   | T   | N  | R                 | N               | N                              | N                 | N                 | N                               | N                               | N                 |
| Mn <sup>2+</sup>             | N   | R          | R   | R   | R  | R                 | N               | N                              | R                 | N                 | N                               | N                               | N                 |
| Fe <sup>2+</sup>             | N   | R          | R   | R   | R  | R                 | N               | N                              | R                 | N                 | N                               | _                               | N                 |
| Fe <sup>3+</sup>             | N   | R          | R   | R   | _  | R                 | N               | _                              | R                 |                   | N                               | N                               | N                 |
| Cr <sup>3+</sup>             | N   | R          | R   | R   | R  | R                 | R               | R                              | R                 | N                 | N                               | R                               | N                 |

R – substancja dobrze rozpuszczalna

T – substancja trudno rozpuszczalna, osad może się strącić, jeżeli stężenia roztworów są duże (0,01-0,2 mol·dm<sup>-3</sup>)

N – substancja praktycznie nierozpuszczalna, osad może się strącić nawet z rozcieńczonych roztworów symbol — oznacza, że w roztworze zachodzą złożone reakcje lub substancja nie została otrzymana

# Szereg aktywności metali

Li K Ba Ca Na Mg Al Zn Fe Pb  $\mathbf{H_2}$  Cu Ag Pt Au

|              | 1                                           | Układ Okresowy Pierwiastków Chemicznych |                                   |                                                                                      |                                |                                                                               |                                |                               |                                      |                                              |                                |                              |                              |                                       |                                 |                                             | 18                                            |                               |   |
|--------------|---------------------------------------------|-----------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------|--------------------------------|-------------------------------|--------------------------------------|----------------------------------------------|--------------------------------|------------------------------|------------------------------|---------------------------------------|---------------------------------|---------------------------------------------|-----------------------------------------------|-------------------------------|---|
| 1            | 1 <b>11</b><br>wodór<br>1,0<br><b>2,2</b>   | 2                                       | 13 14 15 16 17                    |                                                                                      |                                |                                                                               |                                |                               |                                      |                                              |                                |                              |                              |                                       |                                 |                                             |                                               | <sub>2</sub> He<br>hel<br>4,0 | 1 |
| 2            | 3Li<br>lit<br>7,0<br>1,0                    | 4Be<br>beryl<br>9,0<br>1,5              |                                   | liczba atomowa  IH  wodór 1,0  symbol chemiczny pierwiastka  średnia masa atomowa, u |                                |                                                                               |                                |                               |                                      |                                              |                                |                              | 5B<br>bor<br>10,8<br>2,0     | 6C<br>wegiel<br>12,0<br>2,6           | 7N<br>azot<br>14,0<br>3,0       | 8O<br>tlen<br>16,0<br>3,4                   | <sub>9</sub> F<br>fluor<br>19,0<br><b>4,0</b> | 10Ne<br>neon<br>20,2          | 2 |
| 3            | 11Na<br>sód<br>23,0<br>0,9                  | 12Mg<br>magnez<br>24,3<br>1,3           | 3                                 | 4                                                                                    | 5                              | 6                                                                             | 7                              | 8                             | 9                                    | 10                                           | 11                             | 12                           | 13Al<br>glin<br>27,0<br>1,6  | 14 <b>S</b> i<br>krzem<br>28,1<br>1,9 | 15P<br>fosfor<br>31,0<br>2,2    | 16 <b>S</b><br>siarka<br>32,1<br><b>2,6</b> | 17Cl<br>chlor<br>35,5<br>3,2                  | 18Ar<br>argon<br>40,0         | 3 |
| 4            | 19 <b>K</b> potas 39,1 <b>0,8</b>           | 20Ca<br>wapń<br>40,1<br>1,0             | 21Sc<br>skand<br>45,0<br>1,4      | 22 <b>Ti</b><br>tytan<br>47,9<br><b>1,5</b>                                          | 23V<br>wanad<br>51,0<br>1,6    | 24 <b>Cr</b><br>chrom<br>52,0<br>1,7                                          | 25Mn<br>mangan<br>54,9<br>1,6  | 26Fe<br>żelazo<br>55,9<br>1,8 | 27Co<br>kobalt<br>58,9<br>1,9        | 28 <b>Ni</b><br>nikiel<br>58,7<br><b>1,9</b> | 29Cu<br>miedź<br>63,6<br>1,9   | 30Zn<br>cynk<br>65,4<br>1,7  | 31Ga<br>gal<br>69,7<br>1,8   | 32Ge<br>german<br>72,6<br>2,0         | 33As<br>arsen<br>74,9<br>2,0    | 34 <b>Se</b><br>selen<br>79,0<br>2,6        | 35Br<br>brom<br>79,9<br>3,0                   | 36Kr<br>krypton<br>83,8       | 4 |
| 5            | 37 <b>Rb</b><br>rubid<br>85,5<br><b>0,8</b> | 38 <b>S</b> r<br>stront<br>87,6<br>1,0  | 39 <b>Y</b><br>itr<br>88,9<br>1,2 | 40Zr<br>cyrkon<br>91,2<br>1,3                                                        | 41Nb niob 92,9 1,6             | $\begin{array}{c} 42 \text{Mo} \\ \text{molibden} \\ 96,0 \\ 2,2 \end{array}$ | 43Tc<br>technet<br>97,9<br>2,1 | 44Ru<br>ruten<br>101,1<br>2,2 | 45Rh<br>rod<br>102,9<br>2,3          | 46Pd<br>pallad<br>106,4<br>2,2               | 47Ag<br>srebro<br>107,9<br>1,9 | 48Cd<br>kadm<br>112,4<br>1,7 | 49In<br>ind<br>114,8<br>1,8  | 50Sn<br>cyna<br>118,7<br>2,0          | 51Sb<br>antymon<br>121,8<br>2,1 | 52Te<br>tellur<br>127,6<br>2,1              | 53 <b>I</b><br>jod<br>126,9<br>2,7            | 54Xe<br>ksenon<br>131,3       | 5 |
| 6            | 55 <b>C</b> S<br>cez<br>132,9<br><b>0,8</b> | 56Ba<br>bar<br>137,3<br>0,9             | †                                 | 72Hf hafn 178,5 1,3                                                                  | 73Ta<br>tantal<br>181,0<br>1,5 | 74 <b>W</b><br>wolfram<br>183,8<br>1,7                                        | 75Re<br>ren<br>186,2<br>1,9    | 76OS<br>osm<br>190,2<br>2,2   | 77 <b>Ir</b><br>iryd<br>192,2<br>2,2 | 78Pt<br>platyna<br>195,1<br>2,2              | 79Au<br>złoto<br>197,0<br>2,4  | 80Hg<br>rtęć<br>200,6<br>1,9 | 81T1<br>tal<br>204,4<br>1,8  | 82Pb<br>ołów<br>207,2<br>1,8          | 83Bi<br>bizmut<br>209,0<br>1,9  | 84Po<br>polon<br>209,0<br>2,0               | 85At<br>astat<br>210,0<br>2,2                 | 86Rn<br>radon<br>222,0        | 6 |
| 7            | 87Fr<br>frans<br>233,0<br>0,7               | 88Ra<br>rad<br>226,0<br><b>0,9</b>      | <b>*</b>                          | 104Rf<br>rutherford<br>267,1                                                         | 105Db<br>dubn<br>268,1         | 106 <b>S</b> g<br>seaborg<br>271,1                                            | 107 <b>Bh</b> bohr 272,14      | 108Hs<br>has<br>270,1         | 109Mt<br>meitner<br>276,2            | 110Ds<br>darmsztadt<br>(281)                 | 111Rg<br>rentgen<br>(282)      | 112Cn<br>kopernik<br>(285)   | 113Nh<br>nihon<br>(286)      | 114Fl<br>flerow<br>(289)              | 115Mc<br>moskow<br>(290)        | 116LV<br>liwermor<br>(293)                  | 117 <b>Ts</b><br>tenes<br>(294)               | 118Og<br>oganeson<br>(294)    | 7 |
| † Lantanowce |                                             | 57La<br>lantan<br>138,9                 | 58Ce<br>cer<br>140,1              | 59Pr<br>prazeodym<br>140,9                                                           | 60Nd<br>neodym<br>144,2        | 61Pm<br>promet<br>144,9                                                       | 62Sm<br>samar<br>150,4         | 63Eu<br>europ<br>152,0        | 64Gd<br>gadolin<br>157,3             | 65 <b>Tb</b><br>terb<br>158,9                | 66Dy<br>dysproz<br>162,5       | 67Ho<br>holm<br>164,9        | 68 <b>Er</b><br>erb<br>167,3 | 69Tm<br>tul<br>168,9                  | 70 <b>Yb</b><br>iterb<br>173,0  | 71Lu<br>lutet<br>175,0                      |                                               |                               |   |
| ‡ Aktynowce  |                                             | 89Ac<br>aktyn<br>227,0                  | 90 <b>Th</b><br>tor<br>232,0      | 91Pa<br>protaktyn<br>231,0                                                           | 92 <b>U</b><br>uran<br>238,0   | 93Np<br>neptun<br>237,1                                                       | 94Pu<br>pluton<br>244,1        | 95Am<br>ameryk<br>243,1       | 96 <b>Cm</b> kiur 247,1              | 97Bk<br>berkel<br>247,1                      | 98Cf<br>kaliforn<br>251,1      | 99Es<br>einstein<br>252,1    | 100Fm<br>ferm<br>257,1       | 101Md<br>mendelew<br>258,1            | 102No<br>nobel<br>259,1         | 103 <b>Lr</b><br>lorens<br>262,1            |                                               |                               |   |