CSE 565 Computer Security Fall 2018

Lecture 5: Public Key Cryptography

Department of Computer Science and Engineering University at Buffalo

Public-Key Cryptography

- What we already know
 - symmetric key cryptography enables confidentiality
 - achieved through secret key encryption
 - symmetric key cryptography enables authentication and integrity
 - achieved through MACs
- In all of the above the sender and received must share a secret key
 - need a secure channel for key distribution
 - not possible for parties with no prior relationship
 - more powerful public-key cryptography can aid with this

Public-Key Cryptography

- Public-key encryption
 - a party creates a public-private key pair
 - the public key is pk
 - the private or secret key is sk
 - the public key is used for encryption and is publicly available
 - the private key is used for decryption only

$$D_{sk}(E_{pk}(M)) = M$$

- knowing the public key and the encryption algorithm only, it is computationally infeasible to find the secret key
- public-key crypto systems are also called asymmetric

Public-Key Cryptography

- Digital signatures
 - a party generated a public-private signing key pair
 - private key is used to sign a message
 - public key is used to verify a signature on a message
 - can be viewed as one-way message authentication
- (Public-key) Key agreement or key distribution
 - prior to the protocols the parties do not share a common secret
 - after the protocol execution, they hold a key not known to any eavesdropper

How Public-Key Cryptography Works

- Public-key constructions often use number theory and are based on a special function f with the following properties
 - given f and x, it is easy to compute f(x)
 - given f(x), it is hard to compute x
 - given f(x) and an additional secret t, it is easy to find x
 - function f is called a one-way trapdoor function and t is called the trapdoor of f
- \bullet Given such a function f, we construct encryption as follows:
 - f is equivalent to encryption E_{pk}
 - the private key serves the purpose of the trapdoor
 - given $f(x) = E_{pk}(x)$ and the trapdoor sk, decryption of x is easy

Public-Key Encryption

- Similar to symmetric encryption, we can formulate a number of attacks on public-key encryption
 - ciphertext only attack
 - known plaintext attack
 - chosen plaintext attack
 - chosen ciphertext attack
- Which types are not meaningful and which adequately model adversarial capabilities?

Public-Key Encryption

- Almost all public-key encryption algorithms use number theory and modular arithmetic
 - RSA is based on the hardness of factoring large numbers
 - ElGamal is based on the hardness of solving discrete logarithm problem
- RSA is the most commonly used public-key encryption algorithm invented by Rivest, Shamir, and Adleman in 1978
 - sustained many years of attacks on it
 - relies on the fact that factoring large numbers is hard
 - let n = pq, where p and q are large primes
 - given only n, it is hard to find p or q, which are used as a trapdoor

CSE 565 —

RSA Cryptosystem

- RSA key generation
 - generate two large prime numbers p and q of the same length
 - compute n = pq
 - choose a small prime number e
 - compute the smallest d such that $ed \mod (p-1)(q-1) = 1$
 - here $\phi(n) = (p-1)(q-1)$ is Euler's totient function
- Public key is (e, n)
- Private key is d

RSA Cryptosystem

• Encryption

- given a message m such that 0 < m < n
- given a public key pk = (e, n)
- encrypt as $c = E_{pk}(m) = m^e \mod n$

• Decryption

- given a ciphertext c (0 < c < n)
- given a public key pk = (e, n) and the corresponding private key sk = d
- decrypt as $m = D_{sk}(c) = c^d \mod n$

CSE 565 —

RSA Cryptosystem

• RSA Example

key generation

•
$$p = 11, q = 7, n = pq = 77, \phi(n) = 60$$

- $e = 37 \Rightarrow d = 13$ (i.e., ed = 481; $ed \mod 60 = 1$)
- public key is pk = (37,77) and private key is sk = 13
- encryption
 - let m = 15
 - $c = E(m) = m^e \mod n = 15^{37} \mod 77 = 71$
- decryption
 - $m = D(c) = c^d \mod n = 71^{13} \mod 77 = 15$

Security of RSA

- Existing attacks on RSA
 - brute force search (try all possible keys)
 - number theoretic attacks (factor n)
 - complicated factoring algorithms that run in sub-exponential (but super-polynomial) time in the length of n exist
 - a 768-bit modulus was factored in 2009
 - 1024-bit moduli could be factored very soon
 - moduli of length 2048 are expected to be secure until 2030
 - special use cases
 - ullet e.g., encrypting small messages with small e
- Plain (or textbook) RSA is not close to secure

Towards Safe Use of RSA

Padded RSA

- plain RSA is deterministic
- this is even worse than in case of symmetric encryption
 - ullet anyone can search for m encrypting various messages
- we can randomize ciphertext by padding each m with random bits
 - now a message can be at most k-t bits long
 - random t bits are added to it such that 2^t work is infeasible
- PKCS #1 v1.5 is a widely used standard for padded RSA
 - PKCS = RSA Laboratories Public-Key Cryptography Standard
 - it is believed to be CPA-secure

Towards Safe Use of RSA

- PKCS #1 v2.0 utilizes OAEP (Optimal Asymmetric Encryption Padding)
 - the newer version mitigates some attacks on v1.5 and is known to be CCA-secure
- Making factoring infeasible
 - choose n to be long enough (we can choose any n!)
 - for a security parameter k, compute n with |n| = k
- A good implementation will also have countermeasures against implementation-level attacks
 - timing attacks, special cases of e and d, etc.

Other Public-Key Algorithms

- Many popular public-key algorithms rely on the difficulty of discrete logarithm problem
 - ElGamal encryption and ElGamal signature
 - Digital Signature Algorithm (DSA)
 - Diffie-Hellman key exchange
 - **–** ...
- Given an appropriate setup with g, p, and $h = g^x \mod p,$ it is difficult for someone to compute x
 - x is called the discrete logarithm of h to the base g
 - groups in which the discrete logarithm problem is hard use prime modulus p (conventional and elliptic curve settings)

Symmetric vs Public-Key Encryption

- Public-key operations are orders of magnitude slower than symmetric encryption
 - an exponentiation modulo n requires close to $O(|n|^3)$ work
 - public-key encryption is not used to communicate large volumes of data
 - it is rather used to communicate (or agree on) a symmetric key
 - the data itself is sent encrypted with the symmetric key

- A digital signature scheme is a method of signing messages stored in electronic form and verifying signatures
- Digital signatures can be used in very similar ways conventional signatures are used
 - paying by a credit card and signing the bill
 - signing a contract
 - signing a letter
- Unlike conventional signatures, we have that
 - digital signatures are not physically attached to messages
 - we cannot compare a digital signature to the original signature

- Digital signatures allows us to achieve the following security objectives:
 - authentication
 - integrity
 - non-repudiation
 - note that this is the main difference between signatures and MACs
 - a MAC cannot be associated with a unique sender since a symmetric shared key is used
- What security property do we want from a digital signature scheme?
- A digital signature scheme consists of key generation, message signing, and signature verification algorithms

- Key generation creates a public-private key pair (pk, sk)
- Signing algorithm takes a messages and uses private signing key to output a signature
- Signature verification algorithm takes a message, a signature on it, and the signer's public key and outputs a yes/no answer
- RSA can be used for signing messages
 - create a key pair as before
 - signing is done by decrypting a message with the private key $sig(m) = D_{sk}(m)$
 - verification is performed by encrypting the signature with the public key and comparing to the message $E_{pk}(sig(m)) \stackrel{?}{=} m$

- Plain RSA is not a secure signature scheme
 - both existential and selective forgeries are easy
 - the "hash-and-sign" paradigm is used in many constructions to achieve adequate security
 - e.g., in RSA $sig(m) = D_{sk}(h(m))$ and verify $E_{pk}(sig(h(m)) \stackrel{?}{=} h(m)$
 - this additionally improves efficiency
 - the hash function must satisfy all three security properties
 - preimage resistance
 - weak collision resistance
 - strong collision resistance

• RSA signatures

- key generation
 - choose prime p and q, compute n = pq
 - choose prime e and compute d s.t. $ed \mod (p-1)(q-1)=1$
 - signing key is d, verification key is (e, n)
- message signing
 - given m, compute h(m)
 - output $sig(m) = h(m)^d \mod n$
- signature verification
 - given m and sig(m), first compute h(m)
 - check whether $sig(m)^e \mod n \stackrel{?}{=} h(m)$

Digital Signature Standard (DSS)

- Digital Signature Standard (DSS) or Digital Signature Algorithm (DSA) was adopted as a standard in 1994
 - its design was influenced by prior ElGamal and Schnorr signature schemes
 - it assumes the difficulty of the discrete logarithm problem
 - no formal security proof exists

CSE 565 — Fall 2018

21

Digital Signature Standard (DSS)

- DSS was published in 1994 as FIPS PUB 186
 - it was specified to hash the message using SHA-1 before signing
 - it was specified to produce a 320-bit signature on a 160-bit hash
- The current version is FIPS PUB 186-4 (2013)
 - DSA can now be used with a 1024-, 2048-, or 3072-bit modulus
 - the message size is 320, 448, or 512 bits

Digital Signature Security

- Thorough evaluation of security of a signature scheme is crucial
 - often a message can be encrypted and decrypted once and long-term security for the key is not required
 - signatures can be used on legal documents and may need to be verified many years after signing
 - choose the key length to be secure against future computing speeds

CSE 565 — Fall 201

23

The Big Picture

• How we address security goals using different tools

Security goal	Symmetric key setting	Public key setting
Secrecy / confidentiality	block ciphers with enc- ryption modes (AES); stream ciphers	public key encryption (RSA, ElGamal, etc.)
Authenticity / integrity	message authentication codes (CBC-MAC, HMAC)	digital signatures (RSA, DSA, etc.)

- Diffie-Hellman key exchange protocol
 - Alice and Bob want to compute a shared key, which must be unknown to eavesdroppers
 - Alice and Bob share public parameters: modulus p, element 1 < g < p, and modulus q for computation in the exponent
 - Alice randomly chooses $x \in \mathbb{Z}_q$ and sends $g^x \mod p$ to Bob: $A \stackrel{g^x \mod p}{\longrightarrow} B$
 - Bob randomly chooses $y \in \mathbb{Z}_q$ and sends $g^y \mod p$ to Alice: $A \stackrel{g^y \mod p}{\longleftarrow} B$

- Diffie-Hellman key exchange protocol
 - the shared secret is set to $g^{xy} \mod p$
 - Alice computes it as $(g^y)^x \mod p = g^{xy} \mod p$
 - Bob computes it as $(g^x)^y \mod p = g^{xy} \mod p$
 - it is believed to be infeasible for an eavesdropper to compute g^{xy} given g^x and g^y

- Diffie-Hellman key exchange
 - the security property holds only against a passive attacker
 - the protocol has a serious weakness in the presence of an active adversary
 - this is called a man-in-the-middle attack
 - Mallory will intercept messages between Alice and Bob and substitute her own
 - Alice establishes a shared key with Mallory and Bob also establishes a shared key with Mallory

• Man-in-the-middle attack on Diffie-Hellman key exchange

- Alice shares the key $g^{ab'}$ with Mallory
- Bob shares the key $g^{a^\prime b}$ with Mallory
- Alice and Bob do not share any key
- what is Mallory capable of doing?

- Alice and Bob need to make sure they are exchanging messages with each other
 - there is a need for authentication
 - preceding this protocol with an authentication scheme is not guaranteed to solve the problem
 - authentication needs to be a part of the key exchange
 - this is called authenticated key exchange
- A solution that addresses the problem relies on certificates and digital signatures

Bit Security

- All constructions studied so far rely on the fact that an adversary is limited in computational power
 - if it has more resources than we anticipate, cryptographic algorithms can be broken
- Today, 112–128-bit security is considered sufficient
 - this means approximately that for 128-bit security, 2^{128} operations are needed to violate security with high probability
- This translates into the following parameters
 - symmetric key encryption: the key size is at least 112 bits
 - hash functions: the hash size is at least 224 bits
 - public key encryption: the modulus is at least 2048 bits long

Conclusions

- Proper use of cryptographic tools requires great care
- Safe use of such algorithms involves
 - familiarity with known attacks
 - adequate choice of parameters
 - including countermeasures against known attacks on implementations
 - using a cryptographically strong source of randomness
- No security by obscurity!