Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

Eletrônica Básica – EEL 7061 Recuperação – 2015/2 (08/12/2015)

<u>Questão 1:</u> [2,0 pontos] Determine a tensão de saída V_x após o fechamento da chave S_1 . Considere que os diodos apresentam uma queda de 0,7V quando estão conduzindo. Em corte a corrente no diodo é nula.

Questão 1: [2,0 pontos] Considerando os A.O. ideais, R_1 =1kΩ, R_2 =9kΩ e R_3 =100kΩ, determine a impedância de entrada, entre o terra e o terminal $v_i(t)$: (a) de forma literal; (b) de forma numérica.

Questão 2: [4,0 pontos] Assumindo que os transistores são idênticos (complementares), atuam na RAD, $|V_{BE}|=0,7V$, $\beta=100$ e $|VA|\rightarrow\infty$, determine I_{BQ1} em função dos parâmetros do circuito (de forma literal).

Questão 4: [2,0 pontos] Na figura a seguir é apresentado o circuito de uma porta lógica digital CMOS. Determine: (a) a rede abaixadora; (b) a função lógica.

Concurso para Engenheiro de Equipamentos Júnior Petrobras, 2012

FORMULÁRIO

• MOSFET reforço (enriquecimento, acumulação, intensificação):

NMOS	Equações	PMOS
$V_T > 0 V_{DS} > 0$	$K = k_n \left(\frac{W}{L}\right)$ $k_n = \mu_n C_{ox} , \lambda = 1/V_A$	$V_T < 0 V_{DS} \le 0$
$V_{GS} < V_T$	(a) Região de Corte I _D =0	$V_{GS} \ge V_T$
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} < V_{GS} - V_T \\ V_{GD} \ge V_T \end{cases}$	(b) Região de Triodo $I_D = K \left[\left(V_{GS} - V_T \right) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} > V_{GS} - V_T \\ V_{GD} \leq V_T \end{cases}$
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} \ge V_{GS} - V_T \\ V_{GD} \le V_T \end{cases}$	(c) Região de Saturação $I_D = \frac{K}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} \leq V_{GS} - V_T \\ V_{GD} \geq V_T \end{cases}$
(c) V _{os} V _{os} V _{os} V _{os}		V ₀₈₂ (c) (b) (b) (v ₀₈₁ (a)

- Modelo de pequenos sinais para o transistor NPN: $g_m=I_{CQ}/v_T; r_\pi=\beta/g_m; r_o=V_A/I_C; v_T=25mV$

• Modelo de Ebers-Moll para o transistor NPN: v_T=25mV

$$\begin{split} i_{DE} &= I_{SE} \left(e^{\frac{v_{BE}}{v_T}} - 1 \right); \ i_{DC} &= I_{SC} \left(e^{\frac{v_{BC}}{v_T}} - 1 \right); \\ I_{SE} &= \frac{I_S}{\alpha_F}; \ I_{SC} = \frac{I_S}{\alpha_R} \end{split}$$

