

SDS 384 11: Theoretical Statistics

Lecture 2: Stochastic Convergence

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Convergence of expectations: exchanging limit and integral

Lemma (Fatou's lemma)

If $X_n \geq Y \ \forall n$ for some random variable Y with $E|Y| < \infty$ then

$$\lim \inf_{n \to \infty} E[X_n] \ge E[\lim \inf_n X_n]$$

Theorem (Monotone convergence theorem)

If
$$0 \le X_1 \le X_2 \le \cdots \le X_n \uparrow X$$
, then

$$E[X_n] \rightarrow E[X]$$

Theorem (Dominated convergence theorem)

If
$$X_n \stackrel{a.s.}{\to} X$$
 and $|X_n| \leq Y$ with $E[|Y|] < \infty$, then

$$E[X_n] \rightarrow E[X]$$

• Since $X_n \ge 0$ and $E[\liminf_n X_n] = E[X]$

- Since $X_n \ge 0$ and $E[\liminf_n X_n] = E[X]$
- $\lim \inf_{n} E[X_n] \ge E[\lim \inf_{n} X_n] = E[X]$

- Since $X_n \ge 0$ and $E[\liminf_n X_n] = E[X]$
- $\lim \inf_{n} E[X_n] \ge E[\lim \inf_{n} X_n] = E[X]$
- Since $X_n \uparrow X$ and integration preserves monotonicity, $E[X_1] \leq \cdots \leq E[X_n] \leq E[X]$

- Since $X_n \ge 0$ and $E[\liminf_n X_n] = E[X]$
- $\lim \inf_{n} E[X_n] \ge E[\lim \inf_{n} X_n] = E[X]$
- Since $X_n \uparrow X$ and integration preserves monotonicity, $E[X_1] \leq \cdots \leq E[X_n] \leq E[X]$
- So $\limsup_n E[X_n] \leq E[X]$

- Since $X_n \ge 0$ and $E[\liminf_n X_n] = E[X]$
- $\lim \inf_{n} E[X_n] \ge E[\lim \inf_{n} X_n] = E[X]$
- Since X_n ↑ X and integration preserves monotonicity,
 E[X₁] ≤ · · · ≤ E[X_n] ≤ E[X]
- So $\limsup_{n} E[X_n] \leq E[X]$
- $E[X] \ge \limsup_n E[X_n] \ge \liminf_n E[X_n] \ge E[\liminf_n X_n]$

Things you should know

Consider *n* i.i.d. random variables $X_i \sim F$.

Definition (Empirical distribution function)

The empirical distribution function is defined as:

$$F_n(x) = \frac{1}{n} \sum_i 1(X_i \le x).$$

Theorem (Glivenko-Cantelli)

The random variable $\sup_{x} |F_n(x) - F(x)|$ almost surely converges to zero.

$$P\left(\sup_{x}|F_{n}(x)-F(x)|\to 0\right)=1$$

Things you should know

Let $X_1, \ldots X_n$ be i.i.d random variables with $E[|X_1|] \leq \infty$, mean μ .

Theorem (Weak law of large numbers)

$$\bar{X}_n \stackrel{P}{\rightarrow} \mu$$

Theorem (Strong law of large numbers)

$$\bar{X}_{n}\stackrel{a.s.}{\rightarrow}\mu$$

Theorem (Central limit theorem)

If
$$E[X_i^2] = \sigma^2$$
, $\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\rightarrow} N(0, \sigma^2)$.

Things you should know

Let $X_1, \ldots X_n$ be i.i.d random variables with $E[|X_1|] \leq \infty$, mean μ .

Theorem (Berry Esseen)

If
$$E[X_i^2] = \sigma^2$$
, and $E[|X_i|^3] = \rho < \infty$,

$$\left| P\left(\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \le x \right) - \Phi(x) \right| \le \frac{C\rho}{\sigma^3 \sqrt{n}} \qquad \forall x, \text{ and } n,$$

where $\Phi(x)$ is the CDF of the standard normal and c is an universal constant known to be greater than 0.4097 and less that 0.7975.

Lindeberg-feller CLT for triangular arrays

$$X_{11}$$
 X_{21}, X_{22}
 X_{21}, X_{22}, X_{23}

Theorem

For each n let $(X_{ni})_{i=1}^n$ be independent random variables with mean zero and variance σ_{ni}^2 . Let $Z_n = \sum_{i=1}^n X_{ni}$ and $B_n^2 = var(Z_n)$. Then $Z_n/B_n \stackrel{d}{\to} N(0,1)$, as long as the **Lindeberg condition** holds.

The Lindeberg condition

Definition (Lindeberg condition)

For every $\epsilon > 0$,

$$\frac{1}{B_n^2} \sum_{j=1}^n E[X_{nj}^2 1(|X_{nj}| \ge \epsilon B_n)] \to 0 \text{ as } n \to \infty$$
 (1)

Converse: If $\frac{\sigma_{nj}^2}{B_n^2} \to 0$ as $n \to \infty$, i.e. no one variance plays a significant role in the limit, and if $Z_n/B_n \stackrel{d}{\to} N(0,1)$, then the Lindeberg condition holds.

Necessary and Sufficient: If $\frac{\sigma_{nj}^2}{B_n^2} \to 0$, the the Lindeberg condition is necessary and sufficient to show the CLT.

Let X_1,\ldots,X_n be independent random variables with mean zero and variance one. Do you think $\sqrt{n}\bar{X}_n\stackrel{d}{\to} N(0,1)$?

Let X_1, \ldots, X_n be independent random variables with mean zero and variance one. Do you think $\sqrt{n}\bar{X}_n \stackrel{d}{\to} N(0,1)$?

•

$$X_{nj} = \begin{cases} 2j & \text{w.p. } \frac{1}{8j^2} \\ 0 & \text{w.p. } 1 - \frac{1}{4j^2} \\ -2j & \text{w.p. } \frac{1}{8j^2} \end{cases}$$

Let X_1,\ldots,X_n be independent random variables with mean zero and variance one. Do you think $\sqrt{n}\bar{X}_n\stackrel{d}{\to} N(0,1)$?

$$X_{nj} = \begin{cases} 2j & \text{w.p. } \frac{1}{8j^2} \\ 0 & \text{w.p. } 1 - \frac{1}{4j^2} \\ -2j & \text{w.p. } \frac{1}{8j^2} \end{cases}$$

• $E[X_{nj}] = 0$ and $var(X_{nj}) = 1$. $B_n^2 = n$.

Let X_1,\ldots,X_n be independent random variables with mean zero and variance one. Do you think $\sqrt{n}\bar{X}_n\stackrel{d}{\to} N(0,1)$?

•

$$X_{nj} = \begin{cases} 2j & \text{w.p. } \frac{1}{8j^2} \\ 0 & \text{w.p. } 1 - \frac{1}{4j^2} \\ -2j & \text{w.p. } \frac{1}{8j^2} \end{cases}$$

- $E[X_{nj}] = 0$ and $var(X_{nj}) = 1$. $B_n^2 = n$.
- Lets check the Lindeberg condition with $\epsilon = 1$.

$$\frac{1}{n}\sum_{j}E[X_{nj}^{2}1(|X_{nj}|\geq\sqrt{n})]=\frac{1}{n}\sum_{j}2\times4j^{2}1(2j\geq\sqrt{n})\frac{1}{8j^{2}}=\frac{1}{n}\sum_{j\geq\sqrt{n}/2}1\to1$$

Let X_1,\ldots,X_n be independent random variables with mean zero and variance one. Do you think $\sqrt{n}\bar{X}_n\stackrel{d}{\to} N(0,1)$?

$$X_{nj} = \begin{cases} 2j & \text{w.p. } \frac{1}{8j^2} \\ 0 & \text{w.p. } 1 - \frac{1}{4j^2} \\ -2j & \text{w.p. } \frac{1}{8j^2} \end{cases}$$

- $E[X_{nj}] = 0$ and $var(X_{nj}) = 1$. $B_n^2 = n$.
- Lets check the Lindeberg condition with $\epsilon = 1$.

$$\frac{1}{n}\sum_{j}E[X_{nj}^{2}1(|X_{nj}|\geq\sqrt{n})]=\frac{1}{n}\sum_{j}2\times4j^{2}1(2j\geq\sqrt{n})\frac{1}{8j^{2}}=\frac{1}{n}\sum_{j\geq\sqrt{n}/2}1\to1$$

• Since $\sigma_{nj}^2/B_n^2=1/n\to 0$, this implies that the CLT does not hold for the sum.

Permutation Tests

Consider 2n paired experimental units with measurement $(X_i, Y_i)_{i=1}^n$ in which X_i is the result of the treatment and Y_i is the result of control.

• H_0 is that the treatment has had no effect, i.e. $Z_j = X_j - Y_j$ conditioned on the magnitude $|Z_j|$ is symmetric, i.e. $P(Z_j = |z_j|) = P(Z_j = -|z_j|) = 1/2$.

Permutation Tests

Consider 2n paired experimental units with measurement $(X_i, Y_i)_{i=1}^n$ in which X_j is the result of the treatment and Y_j is the result of control.

- H_0 is that the treatment has had no effect, i.e. $Z_j = X_j Y_j$ conditioned on the magnitude $|Z_j|$ is symmetric, i.e. $P(Z_j = |z_j|) = P(Z_j = -|z_j|) = 1/2$.
- Thus, under H_0 , $(Z_1, ..., Z_n)$ has 2^n possible values $(\pm |z_1|, ..., \pm |z_n|)$.

Permutation Tests

Consider 2n paired experimental units with measurement $(X_i, Y_i)_{i=1}^n$ in which X_i is the result of the treatment and Y_i is the result of control.

- H_0 is that the treatment has had no effect, i.e. $Z_j = X_j Y_j$ conditioned on the magnitude $|Z_j|$ is symmetric, i.e. $P(Z_j = |z_j|) = P(Z_j = -|z_j|) = 1/2$.
- Thus, under H_0 , $(Z_1, ..., Z_n)$ has 2^n possible values $(\pm |z_1|, ..., \pm |z_n|)$.
- Conditioned on the magnitudes of the differences, $B_n^2 = \sum_i z_i^2$.

 Assume that $\max_i z_i^2/B_n^2 \to 0$. Then $\sum_i Z_i/B_n \stackrel{d}{\to} N(0,1)$ using the Lindeberg-feller theorem.

Permutation tests: proof

Proof.

• Lets check the Lindeberg condition:

$$\begin{split} \frac{\sum_{j=1}^{n} E[Z_{j}^{2} 1(|Z_{j}| \geq \epsilon B_{n})||Z_{1}|, \dots, |Z_{n}|]}{B_{n}^{2}} &= \frac{\sum_{j} Z_{j}^{2} 1(|Z_{j}| \geq \epsilon B_{n})}{B_{n}^{2}} \\ &\leq \frac{(\sum_{j} Z_{j}^{2}) 1(\max_{j} |Z_{j}| \geq \epsilon B_{n})}{B_{n}^{2}} \\ &= 1(\max_{j} |Z_{j}| \geq \epsilon B_{n}) \end{split}$$

• Since $\max_{i} z_{i}^{2}/B_{n}^{2} \to 0$, the above is zero for all sufficiently large n.

Tail probabilities

- Most often, we are interested in the question, how far is an empirical quantity from its "population variant"?
- This empirical quantity can be an eigenvalue of a matrix, or the weight vector learned using linear regression and so on.
- For rest of today, and a few more lectures we will brush up on tail inequalities.
- Lets start with the mean?

- How will you bound $P(|\bar{X}_n \mu| \ge t)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
 - Moment based:

- How will you bound $P(|\bar{X}_n \mu| \ge t)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
 - Moment based: Markov (first), Chebyshev (second)

- How will you bound $P(|\bar{X}_n \mu| \ge t)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
 - Moment based: Markov (first), Chebyshev (second)
 - Moment generating function based bounds:

- How will you bound $P(|\bar{X}_n \mu| \ge t)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
 - Moment based: Markov (first), Chebyshev (second)
 - Moment generating function based bounds: Hoeffding, Chernoff, Bernstein, subgaussian and subexponential random variables

- How will you bound $P(|\bar{X}_n \mu| \ge t)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
 - Moment based: Markov (first), Chebyshev (second)
 - Moment generating function based bounds: Hoeffding, Chernoff, Bernstein, subgaussian and subexponential random variables
 - Martingale based methods:

- How will you bound $P(|\bar{X}_n \mu| \ge t)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
 - Moment based: Markov (first), Chebyshev (second)
 - Moment generating function based bounds: Hoeffding, Chernoff, Bernstein, subgaussian and subexponential random variables
 - Martingale based methods: Azuma-Hoeffding, McDiarmid