UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa Cálculo III

30 de Setembro de 20	16

1	
2	
3	
4	
5	
Total	

Aluno(a):....

- (1) Calcule a integral dupla $\int_{1}^{2} \int_{\pi/2}^{\pi} x \cos(xy) \ dxdy$.
- (2) Calcule a integra tripla $\iiint_B xy\ dV$, onde B é o cilindro parabólico delimitado pelas equações $x=y^2,\ y=x^2,\ z=0$ e z=x+y.
- (3) Utilizando coordenadas polares, calcule a integral $\iint_R (x^2 + y^2)^{3/2} dA$, onde R é a metade superior do círculo unitário de centro na origem.
- (4) Calcule o trabalho realizado pelo campo $F(x,y)=(3+2xy,x^2-3y^2)$ ao mover uma partícula ao longo do caminho parametrizado por $r(t)=(e^t \operatorname{sent},e^t \operatorname{cos} t),$ com $0 \le t \le \pi.$
- (5) (a) Enuncie as hipóteses do Teorema de Green.
 - (b) Dada a integral de linha $\int_C y \ dx x \ dy$, onde C é a curva que percorre o triângulo de vértices (0,0), (2,0), (0,4), (0,0), nessa ordem. É possível aplicar o Teorema de Green para resolver essa integral? Resolva a integral.

Boa Prova!