

Многослойные печатные платы

Пронкин А. Н.

Введение

Достоинства МПП

- Увеличение плотности монтажа и возможность микро миниатюризации изделий, например, BGA компонеты.
- Монолитные структуры с заданной величиной импеданса линий передачи сигналов (полосковые линии) при высокой помехозащищенности.
- Сочетание материалов с различными диэлектрическими характеристиками в одном основании.
- Возможность 3-х мерного моделирования
- Обеспечение эффективного теплоотвода от теплонапряженных элементов и силовых цепей

Недостатки МПП

- Повышение сложности проектирования и изготовления
- Увеличение стоимости изготовления.
- Снижение циклов монтаж демонтаж
- Низкая ремонтопригодность

Конструкции МПП

- Жесткие
- Гибкие
- Гибко-жесткие
- С комбинированным основанием

Терминология

- Thru hole сквозное отверстие
- Blind via "глухие" отверстия
- Buried via "скрытые " отверстия
- МПП МСО Метод сквозной металлизации
- МПП МСО ПП Метод сквозной металлизации с попарными переходами

Сквозное отверстие

- Базовая фольга ТОР = 18 мкм
- Базовая фольга INT1 = 18 мкм
- Металлизация (затяжка) = 4,8 мкм
- Гальваническая металлизация в отверстии 38 мкм

Скрытое отверстие

Последовательность формирования структуры скрытого переходного отверстия

- 1. Изготовление 2-х слойного основания методом МСО
- 2. Напрессовка медной фольги для изготовления внешних слоев через препрег
- 3. Сверление сквозных отверстий на заданную глубину.
- 4. Завершающая операция изготовления МПП

Глухое отверстие

Глухое переходное отверстие со стороны

TOP – INT1

- 1. Базовый слой фольги около 18 мкм
- 2. Два слоя гальванической металлизации, каждый около 25мкм

В итоге, мы получаем толщину фольги на внешних слоях около 70 мкм.

ЛАМИНАТЫ Kingboard

- FR 4 ML Стеклотекстолит фольгированный листовой
- КВ Логотип красного цвета расположенный в четвертом слое стеклотекстолита толщиной 1,6 мм.
- Класс горючести 94V-0
- ПРЕПРЕГ слоистый наполнитель, в котором стеклоткань пропитана термореактивным связующим веществом, частично отвержденным

Режущий инструмент

MPK Kemmer (Германия)

ТСТ (Тайвань)

- СВЕРЛА: Ø0.3 мм - Ø6.0 мм, с шагом 0.1 мм
- ФРЕЗЫ: Обработка контура Ø1.0 мм; Ø2.0 мм

Скрайбирование: угол реза 30°

Материалы

Стандарт материала	Толщина материала, мм	Толщина фольги (базовая), мкм
KB6160 FR-4 ML	0.25; 0.3; 0.5; 0.7; 0.8	18*
KB6160 FR-4 ML	0.25; 0.3; 0.5; 0.7; 0.8; 1.0	35*
KB-6050/606X 1080	0.06	
KB-6050/606X 2116	0.12	
KB-6050/606X 7628	0.18	
Фольга		18
Фольга		35

^{*} Толщина фольги в толщину стеклотекстолита не входит

Свойства ламината Kingboard

	Значение		
Показатель	IPC-4101A	KB-6160 ML	
Усилие отрыва, Kg/cm при 288°C / 10сек	≥ 1.4	1.7	
Термоудар при 288°C, сек	≥ 60	180	
Температура стеклования, Tg	≥ 130	138	
Диэлектрическая проницаемость, 1 MHz	≤ 5.4	4.4	
Тангенс потерь, 1 MHz	≤ 0.035	0.022	
Поверхностное сопротивление, МΩ	≥10⁴	10 ⁷	
Объёмное сопротивление, МΩ-ст	≥ 10 ⁶	10 ⁹	
Влагопоглощение, %	≤ 0.35	0.25	
Изгиб / кручение	≤ 1.0	0.17 / 0.13	

Свойства препрега Kingboard

Показатель	Препрег RB-6050			
TIONASATOJIB	1080	2116	7628	
Объем смолы, %	63	53	44.5	
Время гелеобразования, сек	110 ± 30	110 ± 30	110 ± 30	
Текучесть смолы, %	42	32	23	
Диэлектрическая проницаемость, 1 MHz	3.9	4.25	4.6	
Толщина, мм	0.06	0.12	0.18	

Выбор конструкции МПП

- Размещение слоев
- Расположение в слоях
- Виды и размещение переходных отверстий
- Выбор материалов

РЕЗОНИТ Тала

Типовые конструкций МПП на срочном производстве

- С внутренними ядрами МПП МСО
- С внешними ядрами МПП МСО ПП

МПП с внутренними ядрами

Сборка МПП 6

Последовательность производственных операций

- Сверловка скрытых отверстий в ядрах
- Создание топологии ядер металлизация травление
- Сборка пакета прессование
- Сверление сквозных отверстий
- Создание топологии ТОР-ВОТ металлизация травление

Сборка МПП 4			
Фольга ТОР	18 мкм		
Препрег TOP-INT1	2 * 1080 (2*0,06)		
Ядро INT1-INT2	FR-4 ML 0,8 35/35		
Препрег INT2-BOT	2 * 1080 (2*0,06)		
Фольга ВОТ	18 мкм		

Сборка МПП 6			
Фольга ТОР	18 мкм		
Препрег TOP-INT1	2 * 1080 (2*0,06)		
Ядро INT1-INT2	FR-4 ML 0,3 35/35		
Препрег INT2-INT3	2 * 7628 (2*0,18)		
Ядро INT3-INT4	FR-4 ML 0,3 35/35		
Препрег INT4-BOT	2 * 1080 (2*0,06)		
Фольга ВОТ	18 мкм		

МПП с внешними ядрами

Сборка МПП 4			
Ядро TOP-INT1 FR-4 ML 0,5 18/18			
Препрег INT1-INT2	2 * 1080 (2*0,06)		
Ядро INT2-BOT FR-4 ML 0,5 18/18			

<u>Соорка</u>	<u>MHH16</u>		
TOP		71	
INT1			
INT2			
INT3			
INT4			
BOT			

Сборка МПП 6				
Ядро INT1-INT2	FR-4 ML 0,3 35/35			
Препрег INT1-INT2	2 * 7628 (2*0,18)			
Ядро INT2-INT3	FR-4 ML 0,3 35/35			
Препрег INT3-INT4	2 * 7628 (2*0,18)			
Ядро INT4-BOT	FR-4 ML 0,3 35/35			

Последовательность производственных операций

- Сверловка скрытых отверстий ядер
- Создание топологии на внутренних сторонах ядер металлизация травление
- Сборка пакета прессование
- Сверление сквозных отверстий
- Создание топологии ТОР-ВОТ металлизация травление

Технологические возможности

- Количество слоев до 8
- Максимальный размер платы 345 х 285 мм
- Общая толщина платы от 0.8 мм 2.0 мм
- Допуск по толщине (t ≥ 1.5 mm) ± 0.3 мм
- Допуск по толщине (t < 1.5 mm) ± 0.2 мм

Технологические возможности

Минимальная ширина проводника / минимальный зазор

Внешние слои

- Для фольги 18 мкм 0.15 / 0.15 мм
- Для фольги 35 мкм 0.24 / 0.24 мм

Внутренние слои

- для фольги 18 мкм 0.20 / 0.20 мм
- для фольги 35 мкм 0.24 / 0.24 мм

Гехнологические возможности

Ø Отверстия	Мин ∅ К. П.
0,2	0,6
0,3 - 1,1	+ 0,5
1,2 - 1,6	+ 0,55
1,6 - 6,0	+ 0,8

• Отношение диаметра отверстия к толщине ПП — 1:5

- Минимальный отступ полигона от КП: Для фольги 18 мкм 0,20 мм Для фольги 35 мкм 0,24 мм
- Минимальный отступ полигона от отверстия на внутреннем слое — 0,4 мм
- Отступ металла от края платы во внутренних слоях 0,4 мм

Возможные типы переходных отверстий:

- Скрытые*
- Сквозные

4-х слойная плата МСО фольга 18 мкм

Тип	Толщина платы, мм				
материала	8.0	1.0	1.5	1.6	2.0
Фольга	0.018	0.018	0.018	0.018	0.018
Препрег	0.12	0.18	0.30	0.36	0.54
Фольга	0.018	0.018	0.018	0.018	0.018
Ядро FR-4	0.5	0.5	0.7	0.7	0.7
Фольга	0.018	0.018	0.018	0.018	0.018
Препрег	0.12	0.18	0.30	0.36	0.54
Фольга	0.018	0.018	0.018	0.018	0.018
Итого	0.81	0.93	1.37	1.49	1.85

^{*} наличие скрытых отверстий приводит к увеличению стоимости изготовления

Возможные типы переходных отверстий:

- Скрытые*
- Сквозные

6-и слойная плата МСО фольга 18 мкм					
Тип моторионо		Толш	ина пла	ты, мм	
Тип материала	1.2	1.5	1.6	1.8	2.0
Фольга	0,018	0,018	0,018	0,018	0,018
Препрег	0.12	0.12	0.18	0.24	0.3
Фольга	0,018	0,018	0,018	0,018	0,018
Ядро 1 FR-4	0.3	0.5	0.5	0.5	0.5
Фольга	0,018	0,018	0,018	0,018	0,018
Препрег	0.12	0.12	0.18	0.24	0.3
Фольга	0,018	0,018	0,018	0,018	0,018
Ядро 2 FR-4	0.3	0.5	0.5	0.5	0.5
Фольга	0,018	0,018	0,018	0,018	0,018
Препрег	0.12	0.12	0.18	0.24	0.3
Фольга	0,018	0,018	0,018	0,018	0,018
Итого	1.07	1.47	1.59	1.71	1.95

^{*} наличие скрытых отверстий приводит к увеличению стоимости изготовления

Возможные типы переходных отверстий:

- Глухие
- Сквозные

*** Минимальный зазор / проводник 0,24 / 0,24

4-х слойная плата МСО ПП Фольга 18 мкм					
CTOU	Turkerenuere	Толщ	ина плат	Ы, MM	
Слои	Тип материала	1,0 мм	1,5 мм	2,0 мм	
***	Cu	0,035	0,035	0,035	
TOP	Фольга	0,018	0,018	0,018	
	Ядро FR-4	0,3	0,5	0,7	
INT1	Фольга	0,018	0,018	0,018	
	Препрег	0,3	0,3	0,36	
INT2	Фольга	0,018	0,018	0,018	
	Ядро FR-4	0,3	0,5	0,7	
ВОТ	Фольга	0,018	0,018	0,018	
***	Cu	0,035	0,035	0,035	
	Итого:	1,00	1,41	1,90	

Возможные типы переходных отверстий:

- Глухие
- Скрытые
- Сквозные

*** Минимальный зазор / проводник 0,24 / 0,24

6-и слойная плата МСО ПП Фольга 18 мкм			
Слои	Тип материала	Толщина платы, мм	
		1,5 мм	2,0 мм
***	Cu	0,035	0,035
TOP	Фольга	0,018	0,018
	Ядро 1 FR-4	0,3	0,3
INT1	Фольга	0,018	0,018
	Препрег	0,18	0,3
INT2	Фольга	0,018	0,018
	Ядро 2 FR-4	0,3	0,5
INT3	Фольга	0,018	0,018
	Препрег	0,18	0,3
INT4	Фольга	0,018	0,018
	Ядро 3 FR-4	0,3	0,3
ВОТ	Фольга	0,018	0,018
***	Cu	0,035	0,035
	Итого:	1,40	1,88

Рекомендации проектирования

• Сложная форма

Создание удерживающих перемычек (ТАВ)

- Мультипликация плат
- Электроконтроль

Рекомендации проектирования

- Ширина проводников не выполняйте все проводники минимальной ширины, делайте это только там где необходимо.
- Контролируйте расстояние от отверстия до металла во внутреннем слое.
- Проверяйте корректность подсоединения слоев питания на предмет минимальных зазоров и изолированных областей
- Используйте отдельные КП для каждого шарика BGA не подсоединяйте КП к полигонам напрямую.

Рекомендации проектирования

- Расстояние от металла до края платы оставляйте достаточный зазор с учетом погрешности фрезерования контура
- Помните, что существует ограничения на минимально допустимы размер ПП и минимальную толщину
- Выбирайте симметричную структуру ПП
- Добивайтесь равномерного заполнения медью слоев.

Пути уменьшения себестоимости

- Прежде всего, не допускайте излишнего сложности проекта в части количества слоев, проводников / зазоров, структуры ПП, наличия глухих и скрытых отверстий.
- Не допускайте необоснованного применения большего числа разных типов глухих и скрытых отверстий.
- Для МПП используйте структуры с внутренними ядрами структура с внешними ядрами равноценна увеличению количества слоев на 2.
- Для СВЧ плат используйте комбинированную структуру СВЧ материал только для слоев, где это необходимо остальное стандартный FR4.

Пути уменьшения себестоимости

• Заключительный совет дизайнерам ПП – постоянно консультируйтесь у своего производителя ПП по всем вопросам конструкции и топологии ПП.

Спасибо за внимание!