Dataset Distillation for Audio Classification:

A Data-Efficient Alternative to Active Learning

Gautham Krishna Gudur, Prof. Edison Thomaz

The University of Texas at Austin

Problem Statement and Motivation

- Audio classification often require large labeled datasets. Problems –
 - Computationally expensive to train
 - → Storage demands on resource-constrained devices
- Active Learning: reduce labeling efforts by selecting the most informative samples Problem – still requires thousands of audio segments from oracle (user)

What if we use Dataset Distillation (DD) as an alternative strategy to active learning?

select the most informative data subset from the original dataset Traditional Active Learning (Data Subset Selection) **Original Dataset Proposed Dataset Distillation** (Data Subset Generation) synthesize a distilled subset to represent the knowledge of the larger dataset

Proposed Data Distillation Approach

- Synthesize compact, high-fidelity data summaries to reduce labeled data requirements for audio classification
- We use the RFAD method which employs random feature approximation, with principles from Neural network Gaussian processes (NNGP) and kernel regression
- Baseline active learning acquisition functions
 - Max Entropy
 Variation Ratios
 Random
 - Bayesian Active Learning by Disagreement (BALD)

Algorithm 1 Our Proposed Approach

Input. Training set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, Initial coreset $\mathcal{C} = \{(x_i', y_i')\}_{i=1}^M$, Number of random networks N, Output dimension of random networks M, Regularization parameter λ , Learning rate

while not converged do

Sample a batch $\mathcal{B} \subset \mathcal{D}$

Initialize N random neural networks $\{f_{\theta_i}\}_{i=1}^N$

for each $x \in \mathcal{B}$ do

Compute random features $\Phi(x)$

end for

for each $x' \in \mathcal{C}$ do

Compute random features $\Phi(x')$

end for

Compute kernel matrices $K_{\mathcal{BC}}$ and $K_{\mathcal{CC}}$

Calculate predicted labels for the batch: $\hat{y}_{\mathcal{B}} = K_{\mathcal{BC}}(K_{\mathcal{CC}} + \lambda I)^{-1}y_{\mathcal{C}}$

Compute loss: $\mathcal{L} = \|y_{\mathcal{B}} - \hat{y}_{\mathcal{B}}\|^2$

Update coreset using gradient descent: $C \leftarrow C - \eta \nabla_C \mathcal{L}$

end while

Ensure: Distilled coreset C

Experiments and Results

Table 1: Comparison of test classification accuracy vs % of training samples for baseline methods and our proposed approach across all three datasets using a PasNet 18 model

	Google Speech Commands		UrbanSound8K		ESC-50	
Method	% Samples	Accuracy	% Samples	Accuracy	% Samples	Accuracy
Total Training Data	100%	89.92	100%	79.27	100%	69.36
	60%	72.2	60%	62.15	60%	50.2
	40%	69.6	40%	57.45	40%	45.12
Max Entropy	30%	65.1	30%	53.36	30%	41.25
	20%	57.25	20%	45.18	20%	36.75
	0.029%	9.15	0.063%	7.56	0.15%	5.12
	60%	73.36	60%	63.02	60%	51.25
	40%	70.85	40%	58.75	40%	45.36
Variation Ratios	30%	65.3	30%	54.12	30%	41.58
	20%	58.72	20%	46.78	20%	36.24
	0.029%	9.24	0.063%	7.15	0.15%	5.84
	60%	73.15	60%	63.12	60%	50.95
	40%	70.5	40%	58.95	40%	44.78
BALD	30%	65.1	30%	54.08	30%	40.75
	20%	58.55	20%	46.42	20%	35.16
	0.029%	9.38	0.063%	7.39	0.15%	5.5
	60%	73.15	60%	62.87	60%	50.67
	40%	70.25	40%	59.08	40%	44.95
Random	30%	65.36	30%	54.45	30%	39.25
	20%	58.48	20%	46.92	20%	33.18
	0.029%	9.27	0.063%	7.72	0.15%	4.95
	0.029%	72.24	0.063%	61.67	0.15%	49.65
Proposed Method	0.017%	61.13	0.038%	50.24	0.09%	31.25
	0.012%	51.68	0.025%	37.85	0.0625%	17.96

Table 2: Comparison of test classification accuracy vs % of training samples for baseline methods and our proposed approach agrees all three detects using a 1 layer CNINI madel

	Google Speech Commands		UrbanSound8K		ESC-50	
Method	% Samples	Accuracy	% Samples	Accuracy	% Samples	Accuracy
Total Training Data	100%	87.45	100%	77.24	100%	67.62
	60%	69.92	60%	59.36	60%	48.56
	40%	66.25	40%	53.15	40%	44.78
Max Entropy	30%	63.55	30%	50.65	30%	39.05
	20%	56.18	20%	43.55	20%	34.56
	0.029%	8.27	0.063%	6.25	0.15%	4.85
	60%	70.48	60%	59.75	60%	48.21
Variation Ratios	40%	66.95	40%	53.5	40%	44.35
	30%	63.15	30%	49.87	30%	38.67
	20%	55.86	20%	43.78	20%	34.95
	0.029%	8.75	0.063%	5.92	0.15%	4.72
	60%	70.27	60%	59.25	60%	47.75
	40%	66.18	40%	53.15	40%	43.85
BALD	30%	62.67	30%	49.33	30%	38.75
	20%	56.25	20%	42.95	20%	33.48
	0.029%	8.35	0.063%	6.04	0.15%	4.3
	60%	70.67	60%	59.27	60%	48.05
	40%	67.05	40%	52.92	40%	44.72
Random	30%	62.18	30%	49.45	30%	38.02
	20%	56.67	20%	43.15	20%	35.05
	0.029%	8.96	0.063%	6.36	0.15%	4.67
	0.029%	69.18	0.063%	58.52	0.15%	46.92
Proposed Method	0.017%	57.45	0.038%	48.15	0.09%	28.05
81.2	0.012%	45.67	0.025%	35.75	0.0625%	15.67

Number of Audio Samples per Class (AS/C)

Google Speech Commands		UrbanSoui	nd8K	ESC-50		
% Samples	AS/C	% Samples	AS/C	% Samples	AS/C	
0.029%	50	0.063%	50	0.15%	5	
0.017%	30	0.038%	30	0.09%	3	
0.012%	20	0.025%	20	0.0625%	2	

Upto ~3000x reduction in audio samples while offering competitive performance

Few other DD methods like -

- Data Condensation with Gradient Matching
- Differentiable Siamese Augmentation