

# High Linearity Broadband SP2T 5MHz to 10GHz

### Description

The F2972 is a single-pole double-throw (SP2T) reflective RF switch featuring high linearity and wide bandwidth. This device is optimized from 5MHz to 1.8GHz to support downstream cable modern future migration for DOCSIS 3.1 applications, and operates at up to 10GHz to support a multitude of wireless RF applications. Superb performance is achieved when used in either  $50\Omega$  or  $75\Omega$  terminating impedance applications.

The F2972 uses a single positive supply voltage of either +3.3V or +5.0V and is compatible with either 1.8V or 3.3V control logic.

### **Competitive Advantage**

The F2972 provides extremely low insertion loss across the entire bandwidth while providing superb distortion performance.

- Optimized for DOCSIS 3.1 applications up to 1.8GHz
- Optimized for Wi-Fi applications up to 5.9GHz
- Low insertion loss
- High isolation
- Fast switching
- No external matching required

### **Typical Applications**

- Broadband cable DOCSIS 3.0 / 3.1
- Set top box
- CATV filter bank switching
- Wi-Fi
- Cellular BTS
- General purpose

#### **General Features**

- Supply voltage: +2.5V to +5.25V
- 1.8V and 3.3V compatible control logic
- 2mm x 2mm, 12-pin TQFN package

### Features $(75\Omega)$

- Low insertion loss:
  - 0.23dB at 204MHz
  - 0.34dB at 1.8GHz
- High Isolation: 40dB at 1.8GHz
- P0.1dB compression of +37dBm at 204MHz
- Second Harmonic: -100dBc at 204MHz
- Third Harmonic: -120dBc at 204MHz
- Composite Second Order Distortion > 100dBc
- Composite Triple Beat Distortion > 100dBc

### Features (50 $\Omega$ )

- Low insertion loss:
  - 0.40dB at 2.4GHz
  - 0.55dB at 8GHz
- High Isolation:
  - 34dB at 2.4GHz
- High Linearity:
  - IIP2 +125dBm at 2.4GHz
  - IIP3 +77dBm at 2.4GHz
- P0.1dB compression of +40dBm at 2.4GHz
- Second Harmonic: -100dBc at 2.4GHz
- Third Harmonic: -110dBc at 2.4GHz

### **Block Diagram**

#### Figure 1. Block Diagram





### **Pin Assignments**

Figure 2. Pin Assignments for 2mm x 2mm x 0.5mm 12-pin TQFN, NEG12 – Top View



### **Pin Descriptions**

Table 1. Pin Descriptions

| able I. | Pili Descrip     | n bescriptions                                                                                                                                                                                                                                                             |  |  |  |  |
|---------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Number  | Name             | Description                                                                                                                                                                                                                                                                |  |  |  |  |
| 1       | GND              | Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.                                                                                                                                                                  |  |  |  |  |
| 2       | RFC              | RF Common Port. If this pin is not 0V DC, then an external coupling capacitor must be used.                                                                                                                                                                                |  |  |  |  |
| 3       | GND              | Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.                                                                                                                                                                  |  |  |  |  |
| 4       | GND              | Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.                                                                                                                                                                  |  |  |  |  |
| 5       | RF1              | RF1 Port. If this pin is not 0V DC, then an external coupling capacitor must be used.                                                                                                                                                                                      |  |  |  |  |
| 6       | GND              | Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.                                                                                                                                                                  |  |  |  |  |
| 7       | V <sub>CTL</sub> | Logic control pin.                                                                                                                                                                                                                                                         |  |  |  |  |
| 8       | EN               | Active high enable pin. If low, neither RF1 nor RF2 are connected to RFC. Pin is internally pulled up to 2.5V through a 500kΩ resistor.                                                                                                                                    |  |  |  |  |
| 9       | V <sub>CC</sub>  | Power supply. Bypass to GND with capacitors shown in the Typical Application Circuit as close as possible to pin.                                                                                                                                                          |  |  |  |  |
| 10      | GND              | Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.                                                                                                                                                                  |  |  |  |  |
| 11      | RF2              | RF2 Port. If this pin is not 0V DC, then an external coupling capacitor must be used.                                                                                                                                                                                      |  |  |  |  |
| 12      | GND              | Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.                                                                                                                                                                  |  |  |  |  |
|         | EP               | Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the specified RF performance. |  |  |  |  |



### **Absolute Maximum Ratings**

Stresses beyond those listed below may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

**Table 2. Absolute Maximum Ratings** 

| Par                                                            | ameter                        | Symbol              | Minimum           | Maximum                               | Units |
|----------------------------------------------------------------|-------------------------------|---------------------|-------------------|---------------------------------------|-------|
| V <sub>CC</sub> to GND                                         |                               | Vcc                 | -0.3              | +5.5                                  | V     |
| V <sub>CTL</sub> , EN                                          |                               | V <sub>LOGIC</sub>  | -0.3              | Lower of (V <sub>CC</sub> + 0.3, 3.9) | V     |
| RF1, RF2, RFC                                                  |                               | $V_{RF}$            | -0.3              | +0.3                                  | V     |
|                                                                | $5MHz \le f_{RF} \le 10MHz$   | P <sub>ABSCW1</sub> |                   | 30                                    |       |
| Maximum Input CW                                               | $10MHz < f_{RF} \le 25MHz$    | P <sub>ABSCW2</sub> |                   | 32                                    |       |
| Power, $50\Omega$ , $T_{EP} = 25$ °C, $Vcc = 5.25V$ (any port, | $25MHz < f_{RF} \le 200MHz$   | P <sub>ABSCW3</sub> |                   | 33                                    | dBm   |
| insertion loss state) [a,b]                                    | $200MHz < f_{RF} \le 6000MHz$ | P <sub>ABSCW4</sub> |                   | 34                                    |       |
| ,                                                              | f <sub>RF</sub> > 6000MHz     | P <sub>ABSCW5</sub> |                   | 33                                    |       |
|                                                                | $5MHz \le f_{RF} \le 10MHz$   | P <sub>ABSPK1</sub> |                   | 35                                    |       |
| Maximum Peak Power,                                            | $10MHz < f_{RF} \le 25MHz$    | P <sub>ABSPK2</sub> |                   | 37                                    |       |
| $50\Omega$ , $T_{EP} = 25^{\circ}C$ , $Vcc = 5.25V$ (any port, | $25MHz < f_{RF} \le 200MHz$   | P <sub>ABSPK3</sub> |                   | 38                                    | dBm   |
| insertion loss state) [a, b, c]                                | $200MHz < f_{RF} \le 6000MHz$ | P <sub>ABSPK4</sub> |                   | 39                                    |       |
|                                                                | f <sub>RF</sub> > 6000MHz     | P <sub>ABSPK5</sub> |                   | 38                                    |       |
| Maximum Junction Temper                                        | rature                        | $T_{JMAX}$          |                   | +140                                  | °C    |
| Storage Temperature Rang                                       | ge                            | T <sub>ST</sub>     | -65               | +150                                  | °C    |
| Lead Temperature (solderi                                      | T <sub>LEAD</sub>             |                     | +260              | °C                                    |       |
| Electrostatic Discharge – F<br>(JEDEC/ESDA JS-001-201          | V <sub>ESDHBM</sub>           |                     | 2500<br>(Class 2) | V                                     |       |
| Electrostatic Discharge – C<br>(JEDEC 22-C101F)                | CDM                           | V <sub>ESDCDM</sub> |                   | 1000<br>(Class C3)                    | V     |

a. In a  $50\Omega$  system, dBmV = dBm  $[50\Omega]$  + 47. In a  $75\Omega$  system, dBmV = dBm  $[75\Omega]$  + 48.75.

b.  $T_{EP}$  = Temperature of the exposed paddle.

c. 5% duty cycle of a 4.6ms period.



### **Recommended Operating Conditions**

Table 3. Recommended Operating Conditions

| Parameter                      | Symbol           | Condition                                   | Minimum | Typical | Maximum          | Units |  |
|--------------------------------|------------------|---------------------------------------------|---------|---------|------------------|-------|--|
| Supply Voltage                 | V <sub>CC</sub>  |                                             | 2.5     | 3.3     | 5.25             | V     |  |
| Operating Temperature Range    | T <sub>EP</sub>  | Exposed Paddle                              | -40     |         | +105             | °C    |  |
| DE Fraguenou Danga             | t                | 75Ω                                         | 0.005   |         | 1.8              | GHz   |  |
| RF Frequency Range             | $f_{RF}$         | 50Ω                                         | 0.005   |         | 10               |       |  |
| Maximum Operating Input Power  | P <sub>MAX</sub> | Insertion Loss State $Z_S = Z_L = 50\Omega$ |         |         | See Figure 3 [a] | dBm   |  |
| Port Impedance (RFC, RF1, RF2) | 7                | 75Ω System                                  |         | 75      |                  | 0     |  |
| For impedance (RFC, RF1, RF2)  | $Z_{RF}$         | 50Ω System                                  |         | 50      |                  | Ω     |  |

a. In a  $50\Omega$  system, dBmV = dBm  $[50\Omega]$  + 47. In a  $75\Omega$  system, dBmV = dBm  $[75\Omega]$  + 48.75.

Figure 3. Maximum Operating RF Input Power ( $Z_S = Z_L = 50\Omega$ )





### **General Specifications**

#### Table 4. General Specifications

See F2972 Typical Application Circuit. Specifications apply when operated with  $V_{CC}$  = +3.3V,  $T_{EP}$  = +25°C, EN = HIGH, single tone signal applied at RF1 or RF2 and measured at RFC, unless otherwise noted.

| Parameter                               | Symbol                            | Condition                                                                                                                                            |                      | Minimum  | Typical | Maximum                          | Units |
|-----------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|---------|----------------------------------|-------|
| Logic Input High Threshold              | V <sub>IH</sub>                   | V <sub>CTL</sub> , EN pins                                                                                                                           |                      | 1.17 [b] |         | Lower of (V <sub>CC</sub> , 3.6) | V     |
| Logic Input Low Threshold               | $V_{IL}$                          | V <sub>CTL</sub> , EN pins                                                                                                                           |                      | -0.3     |         | 0.6                              | V     |
| Logic Current                           | I <sub>IH</sub> , I <sub>IL</sub> | V <sub>CTL</sub> , EN pins (ea                                                                                                                       | ach pin)             | -10 [a]  |         | +10                              | μA    |
| DC Current ()/                          | 1                                 | Normal Operatio                                                                                                                                      | n                    |          | 80      | 150                              |       |
| DC Current (V <sub>CC</sub> )           | I <sub>CC</sub>                   | Standby (EN = LOW)                                                                                                                                   |                      |          | 20      | 35                               | μA    |
| Switching Rate                          | SW <sub>RATE</sub>                |                                                                                                                                                      |                      |          |         | 25                               | kHz   |
| Charles Time                            | T <sub>STRTUP</sub>               | From Standby<br>State, 50% EN<br>to 90% RF                                                                                                           | No Change in RF Path |          | 1.0     |                                  | μs    |
| Startup Time                            |                                   |                                                                                                                                                      | Change in RF Path    |          | 1.6     |                                  |       |
| Maximum Video Feed-Through,<br>RFC Port | VID <sub>FT</sub>                 | Peak transient during switching. $Z_S = Z_L = 75\Omega$ . Measured with 20ns rise time, 0V to 3.3V (3.3V to 0V) control pulse applied to $V_{CTL}$ . |                      |          | 5       |                                  | mVp-p |
| Switching Time [c]                      | SW <sub>TIME</sub>                | 50% V <sub>CTL</sub> to 90%                                                                                                                          | or 10% RF            |          | 1.5     | 3                                | μs    |

a. Items in min/max columns in **bold italics** are guaranteed by test.

b. Items in min/max columns that are not bold italics are guaranteed by design characterization.

c. Measured at  $f_{RF} = 1GHz$ .



#### **Electrical Characteristics**

#### Table 5. Electrical Characteristics - 75Ω SPECIFICATION

See F2972 75 $\Omega$  Application Circuit. Specifications apply when operated with V<sub>CC</sub> = +3.3V, T<sub>EP</sub> = +25°C. Z<sub>S</sub> = Z<sub>L</sub> = 75 $\Omega$ , EN = HIGH, single tone signal applied at RF1 or RF2 and measured at RFC, EVKit trace and connector losses are de-embedded, unless otherwise noted.

| Parameter                                           | Symbol | Condition                                            | Minimum | Typical | Maximum  | Units |  |
|-----------------------------------------------------|--------|------------------------------------------------------|---------|---------|----------|-------|--|
|                                                     |        | f <sub>RF</sub> = 5MHz                               |         | 0.20    |          |       |  |
|                                                     |        | 5MHz < f <sub>RF</sub> ≤ 204MHz                      |         | 0.23    | 0.43 [b] | ٩D    |  |
| Insertion Loss (RFC to RF1, RF2)                    | IL     | 204MHz < f <sub>RF</sub> ≤ 1.2GHz                    |         | 0.32    | 0.52     | dB    |  |
|                                                     |        | 1.2GHz < f <sub>RF</sub> ≤ 1.8GHz                    |         | 0.34    | 0.54     |       |  |
|                                                     |        | f <sub>RF</sub> = 5MHz                               |         | 77      |          |       |  |
| Isolation (All Paths)                               | ISO1   | $5MHz < f_{RF} \le 204MHz$                           |         | 60      |          | dB    |  |
| Isolation (All Paths)                               | 1301   | $204MHz < f_{RF} \le 1.2GHz$                         |         | 44      |          | ] ub  |  |
|                                                     |        | 1.2GHz < f <sub>RF</sub> ≤ 1.8GHz                    |         | 40      |          |       |  |
|                                                     |        | $f_{RF} = 5MHz$                                      |         | 35      |          |       |  |
| Return Loss (RFC, RF1, RF2)                         | RL     | $5MHz < f_{RF} \le 204MHz$                           |         | 30      |          | dB    |  |
| (Insertion Loss States)                             | KL     | $204MHz < F_{RF} \le 1.2GHz$                         |         | 17      |          | _ ub  |  |
|                                                     |        | $1.2GHz < F_{RF} \le 1.8GHz$                         |         | 16      |          |       |  |
|                                                     |        | f <sub>IN</sub> = 27MHz P <sub>OUT</sub> = 20dBm [□] |         | -80     | -70      | _     |  |
| 2 <sup>nd</sup> Harmonic                            | H2     | $f_{IN} = 204MHz P_{OUT} = 20dBm$                    |         | -100    | -90      | dBc   |  |
|                                                     |        | $f_{IN} = 800MHz P_{OUT} = 20dBm$                    |         | -120    | -110     |       |  |
|                                                     |        | $f_{IN}$ = 17MHz $P_{OUT}$ = 20dBm                   |         | -95     | -80      |       |  |
| 3 <sup>rd</sup> Harmonic                            | Н3     | $f_{IN} = 204MHz P_{OUT} = 20dBm$                    |         | -120    | -105     | dBc   |  |
|                                                     |        | $f_{IN} = 800MHz P_{OUT} = 20dBm$                    |         | -115    | -100     |       |  |
|                                                     |        | $f_{RF} = 5MHz$                                      |         | 37      |          |       |  |
| Input 0.1dB Compression Point [4] (RFC to RF1, RF2) | P0.1dB | f <sub>RF</sub> =204MHz                              |         | 37      |          | dBm   |  |
| ( • to 1) 1, 1 to 2)                                |        | f <sub>RF</sub> =1.8GHz                              |         | 38      |          |       |  |
| Composite Second Order                              | CSO    | 41 dBmV / channel                                    |         | >100    |          | - dBc |  |
| Composite Triple Beat                               | CTB    | 137 channels [e]                                     |         | >100    |          | ubc   |  |

- a. Items in min/max columns in **bold italics** are guaranteed by test.
- b. Items in min/max columns that are not bold italics are guaranteed by design characterization.
- c.  $dBmV = dBm [75\Omega] + 48.75$ .
- d. The input 0.1dB compression point is a linearity figure of merit. Refer to Figure 3 for the maximum operating RF input power levels.
- e. Total power = -7.75dBm [ $75\Omega$ ] +  $10*\log(137)$  = +13.62dBm [ $75\Omega$ ].



#### **Electrical Characteristics**

#### Table 6. Electrical Characteristics - 50Ω SPECIFICATION

See F2972 50 $\Omega$  Application Circuit. Specifications apply when operated with  $V_{CC}$  = +3.3V,  $T_{EP}$  = +25°C.  $Z_S$  =  $Z_L$  = 50 $\Omega$ , EN = HIGH, single tone signal applied at RF1 or RF2 and measured at RFC, EVKit trace and connector losses are de-embedded, unless otherwise noted.

| Parameter                                              | Symbol | Condition                         | Minimum | Typical | Maximum  | Units |
|--------------------------------------------------------|--------|-----------------------------------|---------|---------|----------|-------|
|                                                        |        | f <sub>RF</sub> = 5MHz            |         | 0.25    | 0.45 [b] |       |
|                                                        |        | 5MHz < f <sub>RF</sub> ≤ 1GHz     |         | 0.33    | 0.53     |       |
|                                                        |        | 1GHz < f <sub>RF</sub> ≤ 2GHz [0] |         | 0.36    | 0.56 [a] |       |
| Insertion Loss                                         |        | 2GHz < f <sub>RF</sub> ≤ 3GHz     |         | 0.40    |          | 10    |
| (RFC to RF1, RF2)                                      | IL     | 3GHz < f <sub>RF</sub> ≤ 6GHz     |         | 0.45    |          | dB    |
|                                                        |        | 6GHz < f <sub>RF</sub> ≤ 8GHz     |         | 0.55    |          |       |
|                                                        |        | 8GHz < f <sub>RF</sub> ≤ 9GHz     |         | 0.65    |          |       |
|                                                        |        | 9GHz < f <sub>RF</sub> ≤ 10GHz    |         | 0.80    |          |       |
|                                                        |        | 5MHz < f <sub>RF</sub> ≤ 1GHz     | 43      | 48      |          |       |
|                                                        |        | 1GHz < f <sub>RF</sub> ≤ 2GHz     | 36      | 42      |          |       |
| Isolation                                              | 1004   | 2GHz < f <sub>RF</sub> ≤ 3GHz     | 31      | 37      |          | dB    |
| (RFC to RF1, RF2)                                      | ISO1   | 3GHz < f <sub>RF</sub> ≤ 6GHz     |         | 27      |          |       |
|                                                        |        | 6GHz < f <sub>RF</sub> ≤ 8GHz     |         | 22      |          |       |
|                                                        |        | 8GHz < f <sub>RF</sub> ≤ 10GHz    |         | 18      |          |       |
|                                                        |        | $5MHz < f_{RF} \le 1GHz$          | 40      | 45      |          |       |
|                                                        |        | $1GHz < f_{RF} \le 2GHz$          | 33      | 38      |          |       |
| Isolation                                              | ISO2   | 2GHz < f <sub>RF</sub> ≤ 3GHz     | 29      | 34      |          | dB    |
| (RF1 to RF2, RF2 to RF1)                               | 1302   | $3GHz < f_{RF} \le 6GHz$          |         | 26      |          | ub    |
|                                                        |        | $6GHz < f_{RF} \le 8GHz$          |         | 21      |          |       |
|                                                        |        | $8GHz < f_{RF} \le 10GHz$         |         | 18      |          |       |
|                                                        |        | $5MHz < f_{RF} \le 1GHz$          |         | 28      |          |       |
|                                                        |        | 1GHz < f <sub>RF</sub> ≤ 2GHz     |         | 26      |          |       |
| Deturn Less (DEC. DE1, DE2)                            |        | $2GHz < f_{RF} \le 3GHz$          |         | 26      |          |       |
| Return Loss (RFC, RF1, RF2)<br>(Insertion loss states) | RL     | 3GHz < f <sub>RF</sub> ≤ 6GHz     |         | 25      |          | dB    |
| (                                                      |        | 6GHz < f <sub>RF</sub> ≤ 8GHz     |         | 23      |          |       |
|                                                        |        | $8GHz < f_{RF} \le 9GHz$          |         | 18      |          |       |
|                                                        |        | $9GHz < f_{RF} \le 10GHz$         |         | 16      |          |       |

a. Items in min/max columns in bold italics are guaranteed by test.

b. Items in min/max columns that are not bold italics are guaranteed by design characterization.

c. Minimum or maximum specification guaranteed by test at 2GHz and by design characterization over the whole frequency range.



#### **Electrical Characteristics**

#### Table 7. Electrical Characteristics - 50Ω SPECIFICATION

See F2972 50 $\Omega$  Application Circuit. Specifications apply when operated with  $V_{CC}$  = +3.3V,  $T_{EP}$  = +25°C.  $Z_S$  =  $Z_L$  = 50 $\Omega$ , EN = HIGH, single tone signal applied at RF1 or RF2 and measured at RFC, EVKit trace and connector losses are de-embedded, unless otherwise noted.

| Parameter                   | Symbol             | Condition                                                                                | Minimum | Typical | Maximum | Units |  |
|-----------------------------|--------------------|------------------------------------------------------------------------------------------|---------|---------|---------|-------|--|
|                             |                    | f <sub>RF</sub> = 2.4GHz                                                                 |         | 40      |         |       |  |
| Input 0.1dB Compression [6] | P0.1dB             | $f_{RF} = 6.0GHz$                                                                        |         | 40      |         | dBm   |  |
|                             |                    | $f_{RF} = 8.0GHz$                                                                        |         | 40      |         |       |  |
| Input IP3 (RF1, RF2 to RFC) |                    | $f_{RF}$ = 2.4GHz<br>$P_{IN}$ = +24dBm/tone<br>100MHz spacing                            |         | 77      |         | dBm   |  |
| Input IP2                   | IIP2               | $f_1$ = 700MHz<br>$f_2$ = 1.7GHz<br>$P_{IN}$ = +24dBm/tone<br>Measure 2.4GHz product     |         | 125     |         | dDas  |  |
| (RF1, RF2 to RFC)           | IIPZ               | $f_1 = 2.4 GHz$<br>$f_2 = 3.5 GHz$<br>$P_{IN} = +24 dBm/tone$<br>Measure 5.9 GHz product |         | 120     |         | - dBm |  |
| Second Harmonic             | H2                 | $f_{IN} = 2.4GHz, P_{IN} = +24dBm$                                                       |         | -100    | -90 [b] | -ID-  |  |
| (RF1, RF2 to RFC)           | ПΖ                 | $f_{IN} = 5.9GHz, P_{IN} = +24dBm$                                                       |         | -90     | -80     | dBc   |  |
| Third Harmonic              | Н3                 | f <sub>IN</sub> = 2.4GHz, P <sub>IN</sub> = +24dBm                                       |         | -110    | -95     | dDo   |  |
| (RF1, RF2 to RFC)           | пэ                 | f <sub>IN</sub> = 5.9GHz, P <sub>IN</sub> = +24dBm                                       |         | -100    | -85     | dBc   |  |
| Spurious Output             | P <sub>SPUR1</sub> | f <sub>OUT</sub> ≥ 5MHz<br>All unused ports terminated                                   |         | -133    |         | dBm   |  |
| (No RF Applied)             | P <sub>SPUR2</sub> | f <sub>OUT</sub> < 5MHz<br>All unused ports terminated                                   |         | -120    |         | UDIII |  |

a. Items in min/max columns in **bold italics** are guaranteed by test.

b. Items in min/max columns that are not bold italics are guaranteed by design characterization.

c. The input 0.1dB compression point is a linearity figure of merit. Refer to Figure 3 for the maximum RF operating input power levels.



### **Thermal Characteristics**

**Table 8. Package Thermal Characteristics** 

| Parameter                                                                   | Symbol        | Value | Units |
|-----------------------------------------------------------------------------|---------------|-------|-------|
| Junction to Ambient Thermal Resistance                                      | $\theta_{JA}$ | 102   | °C/W  |
| Junction to Case Thermal Resistance (Case is defined as the exposed paddle) | θјс_вот       | 56    | °C/W  |
| Moisture Sensitivity Rating (Per J-STD-020)                                 |               | MSL 1 |       |

### **Typical Operating Conditions (TOCs)**

Unless otherwise noted:

- V<sub>CC</sub> = +3.3V
- EN = HIGH
- $Z_L = Z_S = 75\Omega$
- $Z_L = Z_S = 50\Omega$
- All temperatures are referenced to the exposed paddle
- Evaluation Kit traces and connector losses are de-embedded

### Typical Performance Characteristics - $75\Omega$ Performance

Figure 4. RF1 to RFC Insertion Loss



Figure 6. RF1 to RFC Isolation [RF2 On State]



Figure 8. RF1 to RF2 Isolation [RF1 On State]



Figure 5. RF2 to RFC Insertion Loss



Figure 7. RF2 to RFC Isolation [RF1 On State]



Figure 9. RF1 to RF2 Isolation [RF2 On State]





### Typical Performance Characteristics - $75\Omega$ Performance

#### Figure 10. RFC Return Loss [RF1 On State]



Figure 12. RF1 Return Loss [RF1 On State]



Figure 11. RFC Return Loss [RF2 On State]



Figure 13. RF2 Return Loss [RF2 On State]



### Typical Performance Characteristics - $50\Omega$ Performance

Figure 14. RF1 to RFC Insertion Loss



Figure 16. RF1 to RFC Isolation [RF2 On State]



Figure 18. RF1 to RF2 Isolation [RF1 On State]



Figure 15. RF2 to RFC Insertion Loss



Figure 17. RF2 to RFC Isolation [RF1 On State]



Figure 19. RF1 to RF2 Isolation [RF2 On State]



12

### Typical Performance Characteristics - $50\Omega$ Performance

#### Figure 20. RFC Return Loss [RF1 On State]



Figure 22. RF1 Return Loss [RF1 On State]



Figure 24. Switching Time [Isolation to Insertion Loss State]



Figure 21. RFC Return Loss [RF2 On State]



Figure 23. RF2 Return Loss [RF2 On State]



Figure 25. Switching Time [Insertion Loss to Isolation State]





#### **Control Mode**

Table 9. Switch Control Truth Table

| V <sub>CTL</sub> (pin 7) | EN (pin 8) | Switch State                    |  |
|--------------------------|------------|---------------------------------|--|
| LOW                      | HIGH       | RFC to RF1 Insertion Loss State |  |
| HIGH                     | HIGH       | RFC to RF2 Insertion Loss State |  |
| Don't Care               | LOW        | Standby                         |  |

#### **Application Information**

#### **Power Supplies**

A common  $V_{CC}$  power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than  $1V / 20\mu s$ . In addition, all control pins should remain at 0V (+/-0.3V) while the supply voltage ramps up or while it returns to zero.

#### **Control Pin Interface**

If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of each control pin is recommended. This applies to control pins 7 and 8 as shown below.

Figure 26. Control Pin Interface Schematic





### 75 $\Omega$ Evaluation Kit Picture

Figure 27. Top View (75 $\Omega$ )



Figure 28. Bottom View (75 $\Omega$ )





### $50\Omega$ Evaluation Kit Picture

Figure 29. Top View (50 $\Omega$ )



Figure 30. Bottom View (50 $\Omega$ )





### $75\Omega$ Evaluation Kit / Applications Circuit

Figure 31. Electrical Schematic (75 $\Omega$ )





### $50\Omega$ Evaluation Kit / Applications Circuit

Figure 32. Electrical Schematic (50 $\Omega$ )





Table 10.  $75\Omega$  Bill of Material (BOM)

| Part Reference | QTY | Description                                    | Manufacturer Part # | Manufacturer |
|----------------|-----|------------------------------------------------|---------------------|--------------|
| C1             | 1   | 0.1µF ±10%, 16V, X7R, Ceramic Capacitor (0402) | GRM155R71C104KA88D  | Murata       |
| C2, C4         | 2   | 100pF ±5% 50V, C0G, Ceramic Capacitor (0402)   | GRM1555C1H101JA01D  | Murata       |
| C3             | 1   | 0.01µF ±5% 50V, X7R, Ceramic Capacitor (0603)  | GRM188R71H103JA01D  | Murata       |
| R2, R3         | 2   | 100Ω 1/10W, Resistor (0402)                    | ERJ-2RKF1000X       | Panasonic    |
| J1 – J5        | 5   | F-Type Edge Mount                              | 222181              | Amphenol RF  |
| J6             | 1   | Conn Header Vert 5x1 Pos Gold                  | 68002-205HLF        | Amphenol FCI |
| U1             | 1   | SP2T Switch 2mm x 2mm 12-pin TQFN              | F2972NEGK           | IDT          |
|                | 1   | Printed Circuit Board                          | F2972 75Ω PCB       | IDT          |

Table 11.  $50\Omega$  Bill of Material (BOM)

| Part Reference             | QTY | Description                         | Manufacturer Part # | Manufacturer       |
|----------------------------|-----|-------------------------------------|---------------------|--------------------|
| C1 – C7                    | 0   | Not Installed (0402)                |                     |                    |
| R1– R3                     | 3   | 0Ω 1/10W, Resistor (0402)           | ERJ-2GE0R00X        | Panasonic          |
| J1 – J5                    | 5   | SMA Edge Mount                      | 142-0761-881        | Cinch Connectivity |
| J6                         | 1   | Conn Header 10 Pos 0.100" Str 15 Au | 68602-210HLF        | Amphenol FCI       |
| TP1, TP2, TP3, TP4,<br>TP5 | 0   | Not Installed Test Point Loop       |                     |                    |
| U1                         | 1   | SP2T Switch 2mm x 2mm 12-pin TQFN   | F2972NEGK           | IDT                |
|                            | 1   | Printed Circuit Board               | F2972 50Ω PCB       | IDT                |



### **Evaluation Kit (EVKit) Operation**

#### **External Supply Setup**

Set up a V<sub>CC</sub> power supply in the voltage range of 2.5V to 5.25V with the power supply output disabled.

For the 75 $\Omega$  EVKit, connect the disabled Vcc supply connection to J6 pin 2 and GND to J6 pins 1 or 5.

For the  $50\Omega$  EVKit, connect the disabled Vcc supply connection to J6 pin 3 and GND to J6 pin 1, 2, 4, 6, 8, 9, or 10.

#### **Logic Control Setup**

With the logic control lines disabled set the HIGH and LOW logic levels to satisfy the levels stated in the electrical specifications table.

For the 75 $\Omega$  EVKit, connect the disabled logic control lines to J6 EN (pin 3) and V<sub>CTL</sub> (pin 4).

For the  $50\Omega$  EVKit, connect the disabled logic control lines to J6 EN / LS (pin 5) and V<sub>CTL</sub> (pin 7).

See Table 9 for the logic truth table.

#### **Turn On Procedure**

Setup the supplies and EVKit as noted in the External Supply Setup and Logic Control Setup sections above.

Enable the V<sub>CC</sub> supply.

Enable the logic control signals.

Set the logic setting to achieve the desired Table 9 configuration. Note that external control logic should not be applied without V<sub>CC</sub> being present.

#### **Turn Off Procedure**

Set the logic control pins to a logic LOW.

Disable the  $V_{CC}$  supply.



### **Package Drawings**

Figure 33. Package Outline Drawing NEG12 PSC-4642





#### **Recommended Land Pattern**

Figure 34. Recommended Land Pattern NEG12 PSC-4642





### **Marking Diagram**

2972 YW\*\*

Line 1 - 2972 = Abbreviated part number.

Line 2 - Y = Year code.

Line 2 - W = Work week code.

Line 2 - \*\* = Sequential alpha for lot traceability.

### **Ordering Information**

| Orderable Part Number | Package                      | MSL Rating | Shipping Packaging | Temperature     |
|-----------------------|------------------------------|------------|--------------------|-----------------|
| F2972NEGK             | 2mm x 2mm x 0.5mm 12-VFQFP-N | MSL1       | Cut Reel           | -40°C to +105°C |
| F2972NEGK8            | 2mm x 2mm x 0.5mm 12-VFQFP-N | MSL1       | Tape and Reel      | -40°C to +105°C |
| F2972EVBI-75OHM       | 75Ω Evaluation Board         |            |                    |                 |
| F2972EVBI-50OHM       | 50Ω Evaluation Board         |            |                    |                 |



## **Revision History**

| Revision | Revision Date | Description of Change |
|----------|---------------|-----------------------|
| Rev O    | 2017-Apr-19   | Initial Release       |

#### **Notice**

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

### Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

#### Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

### Renesas Electronics:

F2972NEGK F2972EVBI-75OHM F2972EVBI-50OHM F2972NEGK8