

For more important questions visit: www.4ono.com

CHAPTER 2

INVERSE TRIGONOMETRIC FUNCTIONS

IMPORTANT POINTS

- $\sin^{-1} x$, $\cos^{-1} x$, ... etc., are angles.
- If $\sin \theta = x$ and $\theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$ then $\theta = \sin^{-1} x$ etc.

•	Function	Domain	Range (Principal Value Branch)
	sin ^{−1} <i>x</i>	[–1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
	cos ⁻¹ x	[–1, 1]	[Ο, π]
	tan ⁻¹ x	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
	cot ⁻¹ x	R	(0, π)
	sec ⁻¹ x	R - (-1, 1)	$\left[0,\pi\right]-\left\{\frac{\pi}{2}\right\}$
	cosec ⁻¹ x	R - (-1, 1)	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$

- $\sin^{-1} (\sin x) = x \ \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
 - $\cos^{-1}(\cos x) = x \ \forall \ x \in [0, \pi] \text{ etc.}$
- $\sin (\sin^{-1} x) = x \ \forall \ x \in [-1, 1]$ $\cos (\cos^{-1} x) = x \ \forall \ x \in [-1, 1] \text{ etc.}$

$$\bullet \quad \sin^{-1} x = \csc^{-1} \left(\frac{1}{x} \right) \, \forall x \in [-1, 1]$$

$$tan^{-1}x = cot^{-1} (1/x) \forall x > 0$$

$$\sec^{-1} x = \cos^{-1} (1/x), \ \forall \ |x| \ge 1$$

•
$$\sin^{-1}(-x) = -\sin^{-1}x \ \forall \ x \in [-1, 1]$$

$$tan^{-1}(-x) = -tan^{-1}x \ \forall \ x \in R$$

$$cosec^{-1}(-x) = -cosec^{-1}x \ \forall \ |x| \ge 1$$

•
$$\cos^{-1}(-x) = \pi - \cos^{-1}x \ \forall \ \times \in [-1, \ 1]$$

$$\cot^{-1}(-x) = \pi - \cot^{-1}x \ \forall \ x \in -R$$

$$\sec^{-1}(-x) = \pi - \sec^{-1}x \ \forall \ |x| \ge 1$$

•
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, x \in [-1, 1]$$

$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \ \forall \ x \in R$$

$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2} \quad \forall |x| \ge 1$$

•
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x + y}{1 - xy} \right); \quad xy < 1.$$

•
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right); \quad xy > -1.$$

•
$$2 \tan^{-1} x = \tan^{-1} \left(\frac{2x}{1 - x^2} \right), |x| < 1$$

2 tan⁻¹
$$x = \sin^{-1}\left(\frac{2x}{1+x^2}\right), |x| \le 1,$$

$$2\tan^{-1} x = \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right), x \ge 0.$$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

Write the principal value of

(i)
$$\sin^{-1}(-\sqrt{3}/2)$$

(ii)
$$\cos^{-1}\left(\sqrt{3}/2\right)$$
.

(iii)
$$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)$$

(iv)
$$cosec^{-1} (-2)$$
.

(v)
$$\cot^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
.

(vi)
$$sec^{-1} (-2)$$
.

(vii)
$$\sin^{-1}\left(\frac{-\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{-1}{2}\right) + \tan^{-1}\left(-1/\sqrt{3}\right)$$

2. What is value of the following functions (using principal value).

$$\text{(i)} \quad \tan^{-1} \left(\frac{1}{\sqrt{3}}\right) - \sec^{-1} \left(\frac{2}{\sqrt{3}}\right). \quad \text{(ii)} \quad \sin^{-1} \left(-\frac{1}{2}\right) - \cos^{-1} \left(\frac{\sqrt{3}}{2}\right).$$

(iii)
$$tan^{-1} (1) - cot^{-1} (-1)$$

(iii)
$$tan^{-1} (1) - cot^{-1} (-1)$$
. (iv) $cosec^{-1} (\sqrt{2}) + sec^{-1} (\sqrt{2})$.

(v)
$$tan^{-1}(1) + cot^{-1}(1) + sin^{-1}(1)$$
.

$$\text{(vi)} \quad \sin^{-1}\!\left(\sin\frac{4\pi}{5}\right).$$

(vii)
$$\tan^{-1}\left(\tan\frac{5\pi}{6}\right)$$
.

$$\text{(viii)} \quad \operatorname{cosec}^{-1} \bigg(\operatorname{cosec} \frac{3\pi}{4} \bigg) \,.$$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

3. Show that
$$\tan^{-1} \left(\frac{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}} \right) = \frac{\pi}{4} + \frac{x}{2}$$
. $x \in [0, \pi]$

4. Prove

$$\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)-\cot^{-1}\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right)=\frac{\pi}{4} \qquad x\in\left(0,\pi/2\right).$$

5. Prove
$$\tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right) = \sin^{-1}\frac{x}{a} = \cos^{-1}\left(\frac{\sqrt{a^2-x^2}}{a}\right).$$

6. Prove

$$\cot^{-1} \left[2 \tan \left(\cos^{-1} \frac{8}{17} \right) \right] + \tan^{-1} \left[2 \tan \left(\sin^{-1} \frac{8}{17} \right) \right] = \tan^{-1} \left(\frac{300}{161} \right).$$

7. Prove
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right) = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2.$$

8. Solve
$$\cot^{-1} 2x + \cot^{-1} 3x = \frac{\pi}{4}$$
.

9. Prove that
$$\tan^{-1}\left(\frac{m}{n}\right) - \tan^{-1}\left(\frac{m-n}{m+n}\right) = \frac{\pi}{4}, m, n > 0$$

10. Prove that
$$\tan \left[\frac{1}{2} \sin^{-1} \left(\frac{2x}{1+x^2} \right) + \frac{1}{2} \cos^{-1} \left(\frac{1-y^2}{1+y^2} \right) \right] = \frac{x+y}{1-xy}$$

11. Solve for
$$x$$
, $\cos^{-1}\left(\frac{x^2-1}{x^2+1}\right) + \frac{1}{2}\tan^{-1}\left(\frac{-2x}{1-x^2}\right) = \frac{2\pi}{3}$

12. Prove that
$$\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$

13. Solve for
$$x$$
, $\tan(\cos^{-1}x) = \sin(\tan^{-1}2)$; $x > 0$

14. Prove that
$$2\tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{4}\right) = \tan^{-1}\left(\frac{32}{43}\right)$$

15. Evaluate
$$\tan \left[\frac{1}{2} \cos^{-1} \left(\frac{3}{\sqrt{11}} \right) \right]$$

16. Prove that
$$\tan^{-1} \left(\frac{a \cos x - b \sin x}{b \cos x + a \sin x} \right) = \tan^{-1} \left(\frac{a}{b} \right) - x$$

Prove that 17.

$$\cot\left\{\tan^{-1}x + \tan^{-1}\left(\frac{1}{x}\right)\right\} + \cos^{-1}\left(1 - 2x^2\right) + \cos^{-1}\left(2x^2 - 1\right) = \pi, \ x > 0$$

- Prove that $\tan^{-1}\left(\frac{a-b}{1+ab}\right) + \tan^{-1}\left(\frac{b-c}{1+bc}\right) + \tan^{-1}\left(\frac{c-a}{1+ca}\right) = 0$ where a, b,
- 19. Solve for x, 2 tan⁻¹(cos x) = tan⁻¹ (2 cosec x)
- $\sin^{-1}(x\sqrt{1-x}-\sqrt{x}\sqrt{1-x^2})$ in simplest form. 20.
- If $tan^{-1}a + tan^{-1}b + tan^{-1}c = \pi$, then 21. prove that a + b + c = abc
- 22. If $\sin^{-1} x > \cos^{-1} x$, then x belongs to which interval?

ANSWERS

- 1.
- (i) $-\frac{\pi}{3}$ (ii) $\frac{\pi}{6}$ (iii) $\frac{-\pi}{6}$

- $\text{(v)} \quad \frac{\pi}{3} \qquad \qquad \text{(vi)} \quad \frac{2\pi}{3} \qquad \qquad \text{(vii)} \quad \frac{\pi}{6} \, .$

- 2.

- (i) 0 (ii) $\frac{-\pi}{3}$ (iii) $-\frac{\pi}{2}$ (iv) $\frac{\pi}{2}$

- (v) π (vi) $\frac{\pi}{5}$ (vii) $\frac{-\pi}{6}$ (viii) $\frac{\pi}{4}$

11.
$$\tan \frac{\pi}{12} = 2 - \sqrt{3}$$

13.
$$\frac{\sqrt{5}}{3}$$

15.
$$\sqrt{\frac{\sqrt{11}-3}{3+\sqrt{11}}}$$

$$19. \quad x = \frac{\pi}{4}.$$

20
$$\sin^{-1} x - \sin^{-1} \sqrt{x}$$
.

22.
$$\left(\frac{1}{\sqrt{2}}, 1\right]$$

21. *Hint:* Let
$$tan^{-1} a = \alpha$$

$$tan^{-1} b = \beta$$

$$tan^{-1} c = \gamma$$

then given, $\alpha+\beta+\gamma=\pi$

$$\therefore \qquad \alpha + \beta = \pi - \gamma$$

take tangent on both sides,

$$tan (\alpha + \beta) = tan (\pi - \gamma)$$

For more important questions visit:

www.4ono.com