Digital Signal Processing

Chapter VI. Implementation of Digital Systems

Structures for implementation

- ▶ We will see different methods of implementing systems
 - mostly LTI systems
- Differences
 - computational complexity (number of operations)
 - memory requirements
 - finite-precision effects
 - flexibility
- Block diagrams (structures)
 - can be implemented either in HW or SW

Direct-Form I

► A LTI system is described by the difference equation

$$y[n] = -\sum_{k=1}^{N} a_k y[n-k] + -\sum_{k=1}^{M} b_k x[n-k]$$

= -a₁y[n-1] - a₂y[n-2] - ... - a_Ny[n-N] + b₀x[n] + b₁x[n-1]

- ▶ **Direct-Form I** structure = directly implementing this equation
- ▶ Main disadvantage: too many delay blocks (approx. 2x filter order)

Direct-Form I

Figure 1: Direct-Form I structure

[image from "Digital Signal Processing", Proakis & Manolakis, 3rd ed.]

Direct-Form II

- ▶ Swap the two halves of a Direct-Form I structure
 - (convolution is commutative)
- ► Advantage: number of delay blocks = filter order
- ▶ Is not straightforwardly related to the difference equation
- Known as Direct-Form II or canonical form

Direct-Form II

Figure 2: Direct-Form II structure

[image from "Digital Signal Processing", Proakis & Manolakis, 3rd ed.]

Transposed forms

- ► Transposition of a graph = reverse the direction of all branches, swap input and output
- ► Theorem: If a structure is transposed, the transfer function stays the same
 - summing nodes become branching nodes
 - branching nodes become sum nodes
- Direct-Form I and II Transposed
 - transpose the form
 - different structures than the originals

FIR systems

- ▶ For FIR systems, $a_i = 0$ so the graphs become simpler
- ▶ There is a single Direct-Form, and a single Direct-Form Transposed

Cascade and parallel implementations

- ▶ If a system function H(z) can be written as a **sum** of smaller parts, the system can be implemented in a **parallel structure**
 - ▶ implement each smaller part
 - same input, sum the outputs
- ▶ If a system function H(z) can be written as a **product** of smaller parts, the system can be implemented in a **cascade structure** (or **series**)
 - ▶ implement each smaller part, connect in series
 - order does not matter

Cascade and parallel implementations

- A system function H(z) can always be written as a sum of **partial** fractions
 - a parallel implementation is always possible
- A system function H(z) can always be written as a product of $\frac{(z-z_k)}{(p-p_k)}$ terms
 - ▶ a series implementation is always possible
- ► To avoid complex-number coefficients, must group conjugate zeros and conjugate poles together
 - resulting in polynomials of degree 2

Second-order sections

- ► In practice, due to finite-precision calculations, small rounding errors may appear in coefficients or signal values
- ► The most robust implementation to these errors is the series implementation
 - using as many terms as possible
 - but always keeping conjugate zeros and conjugate poles together
- ▶ **Second-order sections** structure = implementation as a series of small systems of degree at most 2
 - very robust to finite-precision errors