Exercise Regression 2.2

Emil H. Andersen May 18, 2016

The exercise uses information from the data set indicator.txt

Task a)

```
data <- read.table("indicators.txt",header=TRUE)
data</pre>
```

##		MetroArea	PriceChange	LoanPaymentsOverdue
##	1	Atlanta	1.2	4.55
##	2	Boston	-3.4	3.31
##	3	Chicago	-0.9	2.99
##	4	Dallas	0.8	4.26
##	5	Denver	-0.7	3.56
##	6	Detroit	-9.7	4.71
##	7	LasVegas	-6.1	4.90
##	8	LosAngeles	-4.8	3.05
##	9	${\tt MiamiFt.Lauderdale}$	-6.4	5.63
##	10	${\tt MinneapolisStPaul}$	-3.4	3.01
##	11	NewYork	-3.8	3.29
##	12	Phoenix	-7.3	3.26
##	13	Portland	3.8	1.93
##	14	SanDiego	-7.8	3.45
##	15	SanFrancisco	-4.1	2.29
##	16	Seattle	6.9	1.65
##	17	Tampa	-8.8	4.60
##	18	WashingtonDC	-7.2	3.14

First, we look at the scatterplot of the PriceChange and LoanPaymentsOverdue You can also embed plots, for example:

We can observe from the scatterplot that it very slightly resembles a negative relation, which is good news, since this is what we want to show!

Now, we fit a linear model based on this data

```
fit <- lm(data$PriceChange~data$LoanPaymentsOverdue)
summary(fit)</pre>
```

```
##
## Call:
## lm(formula = data$PriceChange ~ data$LoanPaymentsOverdue)
##
  Residuals:
##
##
                1Q Median
                                ЗQ
   -4.6541 -3.3419 -0.6944
                            2.5288
                                    6.9163
##
##
## Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                              4.5145
                                          3.3240
                                                   1.358
                                                           0.1933
                             -2.2485
                                                 -2.489
  data$LoanPaymentsOverdue
                                          0.9033
                                                           0.0242 *
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 3.954 on 16 degrees of freedom
## Multiple R-squared: 0.2792, Adjusted R-squared: 0.2341
## F-statistic: 6.196 on 1 and 16 DF, p-value: 0.02419
```

We can observe from this summary, specifically from the intercept estimate and the "data\$LoanPaymentsOverdue" estimates, that the least squares best of fit is defined as: $y = 4.5145 - 2.2485 \cdot x$

```
x \leftarrow seq(0,7,0.1)

y \leftarrow 4.5145 - 2.2485*x
```

Plotting this on top of the scatter plot results in:

Now, we calculate the residuals, to use to calculate the standard error of β_1 :

```
y2 <- 4.5145 - 2.2485*data$LoanPaymentsOverdue

error <- data$PriceChange - y2

S <- sqrt((1/(length(error)-2))*sum(error^2))

SXX <- sum((data$LoanPaymentsOverdue - mean(data$LoanPaymentsOverdue))^2)

seB <- S/sqrt(SXX)

B1 <- -2.2485

error

## [1] 6.916175 -0.471965 1.308515 5.864110 2.790160 -3.624065 0.403150

## [8] -2.456575 1.744555 -1.146515 -0.916935 -4.484390 3.625105 -4.557175

## [15] -3.465435 6.095525 -2.971400 -4.654210

seB
```

[1] 0.9033113

We can also test the hypothesis $H_0: \beta_1 = 0$ against $H_A: \beta_1 \neq 0$:

```
Tt <- (-2.2485-1)/seB
Tt
```

[1] -3.596213

```
1-pt(Tt,18-2)
```

[1] 0.9987908

To get a confidence interval of 95%, the slope of the regression line is given by: $(\hat{\beta}_1 - t(\alpha/2, n-2)se(\hat{\beta}_1), \hat{\beta}_1 + t(\alpha/2, n-2)se(\hat{\beta}_1))$

```
= (-2.2485 - t(0.025, 16)0.9033113, -2.2485 + t(0.025, 16)0.9033113)
```

Where t is a t-distribution. We have that:

```
c(-qt(0.975,16)*seB,qt(0.975,16)*seB)
```

```
## [1] -1.914934 1.914934
```

So a 95% confidence interval for B1 would be -2.2485 ± 1.914934 . As such, we can see that there must be a negative linear relation Price Change and Loan Payments Overdue, even with the very large interval that it has.

Task b)

We estimate E(Y|X=4) using the fitted regression model from before:

```
y3 <- 4.5145 - 2.2485*4
y3
```

```
## [1] -4.4795
```

Then we find a 95% confidence interval for E(Y|X=4):

```
## [1] -8.58072 8.58072
```

So we have a confidence interval of [-13.06022, 4.10122]. Note that 0 is in fact in the interval, so 0% is a reasonable result for E(Y|X=4).