

SEQUENCE LISTING

<110> Ternansky, Robert J.
Allan, Amy L.
Donate, Fernando
Hopkins, Stephanie A.
Gladstone, Patricia L.
Mazar, Andrew
O'Hare, Sean M.
Parry, Graham
Plunkett, Marian
Yoon, Won Hyung

<120> PEPTIDES WHICH INHIBIT ANGIOGENESIS, CELL MIGRATION,
CELL INVASION AND CELL PROLIFERATION, COMPOSITIONS
AND USES THEREOF

<130> 9715-023-999

<140> 10/723, 144
<141> 2003-11-25

<150> 60/429, 174
<151> 2002-11-25

<150> 60/475, 539
<151> 2003-06-02

<160> 50

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(beta,beta-dimethyl)

<400> 1
Pro His Ser Xaa Asn
1 5

<210> 2
<211> 5

<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<400> 2
Pro His Ser Cys Asn
1 5

<210> 3
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(benzyl)

<400> 3
Pro His Ser Xaa Asn
1 5

<210> 4
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(4-methyl-benzyl)

<400> 4
Pro His Ser Xaa Asn
1 5

<210> 5
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Met(O)

<400> 5
Pro His Ser Xaa Asn
1 5

<210> 6
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Met(O₂)

<400> 6
Pro His Ser Xaa Asn
1 5

<210> 7
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(methyl)

<400> 7
Pro His Ser Xaa
1

<210> 8
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(4-MeO-Phenyl)

<400> 8
Pro His Ser Xaa Asn
1 5

<210> 9
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(parra-MeOBzl)

<400> 9
Pro His Ser Xaa Asn
1 5

<210> 10
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(Ph)

<400> 10
Pro His Ser Xaa Asn
1 5

<210> 11
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(S-tBu)

<400> 11
Pro His Ser Xaa Asn
1 5

<210> 12
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(tBu)

<400> 12
Pro His Ser Xaa Asn
1 5

<210> 13
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 3
<223> Xaa = Cys(SMe)

<400> 13
His His Xaa Asn
1

<210> 14
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 3
<223> Xaa = Cys(SMe)

<400> 14
His Ser Xaa Asn
1

<210> 15
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(SO2Bn)

<400> 15
Pro His Ser Xaa Asn
1 5

<210> 16
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>

<221> VARIANT
<222> 4
<223> Xaa = HoCys(SO₂Ph)

<400> 16
Pro His Ser Xaa Asn
1 5

<210> 17
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = HoCys(SOBn)

<400> 17
Pro His Ser Xaa Asn
1 5

<210> 18
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(Bz)

<400> 18
Pro His Ser Xaa Asn
1 5

<210> 19
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<400> 19
Pro His Ser Cys Asn
1 5

<210> 20
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys((phenylthio)acetyl)

<400> 20
Pro His Ser Xaa Asn
1 5

<210> 21
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

```
<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(Alloc)

<400> 21
Pro His Ser Xaa Asn
1 5

<210> 22
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(Piv)

<400> 22
Pro His Ser Xaa Asn
1 5

<210> 23
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(cyclohexanoyl)

<400> 23
Pro His Ser Xaa Asn
1 5
```

<210> 24
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(nicotinoyl)

<400> 24
Pro His Ser Xaa Asn
1 5

<210> 25
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(thiophene-2-carbonyl)

<400> 25
Pro His Ser Xaa Asn
1 5

<210> 26
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(allyl)

<400> 26
Pro His Ser Xaa Asn
1 5

<210> 27
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(methoxyethane)

<400> 27
Pro His Ser Xaa Asn
1 5

<210> 28
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(SMe)

<400> 28
Pro His Ser Xaa Asn
1 5

<210> 29
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(SPh)

<400> 29
Pro His Ser Xaa Asn
1 5

<210> 30
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(SCH₂-(R)-CH(NH₂)CO₂H)

<400> 30
Pro His Ser Xaa Asn
1 5

<210> 31
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = HoCys(Bz)

<400> 31
Pro His Ser Xaa Asn
1 5

<210> 32
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 8
<223> Xaa = Lys(biotin)

<400> 32
Pro Phe Ser Cys Asn Gly Gly Lys
1 5

<210> 33
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>

<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = HoCys(Piv)

<400> 33
Pro His Ser Xaa Asn
1 5

<210> 34
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = HoCys(thiophene-2-carbonyl)

<400> 34
Pro His Ser Xaa Asn
1 5

<210> 35
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT

<222> 4
<223> Xaa = HoCys(methoxyethane)

<400> 35
Pro His Ser Xaa Asn
1 5

<210> 36
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = HoCys(Bn)

<400> 36
Pro His Ser Xaa Asn
1 5

<210> 37
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = HoCys(SMe)

<400> 37
Pro His Ser Xaa Asn
1 5

<210> 38

<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = HoCys(SPh)

<400> 38
Pro His Ser Xaa Asn
1 5

<210> 39
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Ala(beta-SO2Bn)

<400> 39
Pro His Ser Xaa Asn
1 5

<210> 40
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION

<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = HoCys(Ph)

<400> 40
Pro His Ser Xaa Asn
1 5

<210> 41
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<400> 41
Pro His Ser Ser Asn
1 5

<210> 42
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 8
<223> Xaa = Lys(biotin)

<400> 42
Pro Phe Ser Cys Asn Gly Gly Lys
1 5

<210> 43
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<400> 43
Pro Phe Ser Cys Asn
1 5

<210> 44
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(Me)

<400> 44
Pro His Ser Xaa Asn
1 5

<210> 45
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(acetyl)

<400> 45
Pro His Ser Xaa Asn
1 5

<210> 46
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 4
<223> Xaa = Cys(acetamidomethyl)

<400> 46
Pro His Ser Xaa Asn
1 5

<210> 47
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<220>
<221> VARIANT
<222> 3
<223> Xaa = Cys(Me)

<400> 47
Pro Ser Xaa Asn
1

<210> 48
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION

<222> 5

<220>
<221> VARIANT
<222> 3
<223> X = Cys(ethyl)

<400> 48
Pro Ser Xaa Asn
1

<210> 49
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<400> 49
Pro His Ser Ala
1

<210> 50
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthesized peptide

<220>
<221> ACETYLATION
<222> 1

<220>
<221> AMIDATION
<222> 5

<400> 50
Pro His Ser Met Asn
1 5