Project 2: SVD & PCA

Christopher Stoll & Michael Crouse

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

- Implementation
 - C++ with Eigen library
 - Python with Numpy

	M				M = U					* s					* Vt											
	1	2	3	4	5	6		1	2	3	4	5		1	2	3	4	5	6		1	2	3	4	5	6
1	48.13	348.1	348.1	348.1	348.1	348.13		1	1	1	1	1		32	0	0	0	0	0		1	1	1	1	1	1
2	48.13	348.1	348.1	348.1	348.1	348.13		1	1	1	1	1		0	16	0	0	0	0		1	1	1	1	1	1
3	48.13	348.1	348.1	348.1	348.1	348.13		1	1	1	1	1		0	0	0.08	0	0	0		1	1	1	1	1	1
4	48.13	348.1	348.1	348.1	348.1	348.13		1	1	1	1	1		0	0	0	0.04	0	0		1	1	1	1	1	1
5	48.13	348.1	348.1	348.1	348.1	348.13		1	1	1	1	1		0	0	0	0	0.01	0		1	1	1	1	1	1
6								10	val	ues				2 1	valı	ies					1	1	1	1	1	1
																					12	val	ues			
1								32	16	0.08	0.04	0.01	0													
2								32	16	0.08	0.04	0.01	0	10	+ 2	2 +	- 1	2 =	: 2	4 ۱	/al	ue	S	sto	ore	b
3								32	16	0.08	0.04	0.01	0													
4								32	16	0.08	0.04	0.01	0		(m	ste	ad	0	ıσ		0 =	= ა	U,		
5								32	16	0.08	0.04	0.01	0													

- Issues
 - PGM Pixel -- 1 byte
 - SVD Eigenvalues -- 8 byte double
 - SVD Eigenvector values -- 2 byte float

"Compressed" image LARGER than uncompressed

The first eigenvalue

The second eigenvalue

The third eigenvalue

The first 4 eigenvalues combined

• The first 16 eigenvalues combined

• The first 64 eigenvalues combined

The original image

The first eigenvalue

The first 2 eigenvalues combined

The first 3 eigenvalues combined

The original image

- Example 1
 - 800x600
 - k > 256 to be indistinguishable from original
- Example 2
 - 672x504
 - k >= 3 to be indistinguishable from original

SVD on High Contrast Images

- With B&W most of the white comes from the top eigenvalues
- Can take advantage of this to reduce artifacts
- Scale each eigenvector by a factor of k

SVD on High Contrast Images

SVD Empirical Results

	Size	Original	Binary	Rate	Cmprs Size	Rate
A	200x115	88K	22K	75%	19K	14%
В	400x300	423K	117K	72%	41K	65%
C	400x300	429K	117K	73%	41K	65%

Principal Component Analysis (PCA)

- Rotate mean-centered data around a new set of axes — the principal components
- Project data to lower dimensional space
- Removes redundant information
- Use SVD on data to determine the principal components

PCA Data Set One

- Barberton Police Records
 - March 2002 February 2011
 - People involved in incidents
 - Demographic information
 - Count of involvement types

PCA with Weka

	V1	V2		V1	V1
dobYear	0.3871	0.144	gender=0.0	-0.4351	-0.2022
height	0.3255	-0.0718	gender=M	0.2065	-0.2858
race=0.0	-0.4333	-0.2112	gender=F	0.045	0.411
race=W	0.3543	0.3232	gender=U	0.001	-0.0101
race=U	-0.0002	-0.0166	medicalCount	0.0608	0.015
race=B	0.0139	-0.1981	offenseCount	0.1162	0.0374
race=A	-0.0069	-0.007	warrantCount	0.2222	-0.4074
race=K	0.0004	-0.0244	lastWarrantBail	0.1677	-0.324
race=M	-0.0064	-0.0028	involveCountVictim	0.0433	-0.0072
race=L	-0.0001	-0.02	involveCountSuspect	0.194	-0.2922
race=l	-0.0004	-0.0066	involveCountArrestee	0.2391	-0.3668
race=P	-0.003	-0.0095	involveCountComplain	0.0725	0.0149
race=N	-0.002	-0.0056			

PCA with Weka

- First principal component race=B is 0.0139 / race=W is 0.3543
 - The ratio is about .039
 - The B/W population ratio is about .065
- First principal component gender=M is 0.2065 / gender=F is 0.045
 - Notes
 - dobYear and height over-represented by 0 values (unknown)
 - race=0.0 means race is not recorded, often the victim

PCA with Weka

