Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Vincent Sitzmann

Michael Zollhöfer

Gordon Wetzstein

Single image camera pose intrinsics

Novel Views

Surface Normals

What can we learn about underlying 3D scenes?

Vision: Learn rich representations just by watching video!

2D baseline: Autoencoder

2D baseline: Autoencoder

Doesn't capture 3D properties of scenes.

Trained on ~2500 shapenet cars with 50 observations each.

Need 3D inductive bias!

Related Work

Scene Representation Learning

Tatarchenko et al., 2015 Worrall et al., 2017 Eslami et al., 2018

. . .

2D Generative Models

Goodfellow et al., 2014 Kingma et al., 2013 Kingma et al., 2018

. . .

3D Computer Vision

Choy et al., 2016 Huang et al., 2018 Park et al., 2018

. . .

Voxel-based Representations

Sitzmann et al., 2019 Lombardi et al., 2019 Phuoc et al., 2019

. . .

3D inductive bias / 3D structure

- Memory inefficient: $O(n^3)$.
- Doesn't parameterize scene surfaces smoothly.
- Generalization is hard.

Scene Representation Networks

Scene Representation Networks

Model scene as function Φ that maps coordinates to features.

Scene Representation Network parameterizes Φ as MLP.

Scene Representation Network parameterizes Φ as MLP.

Can sample anywhere, at arbitrary resolutions.

Parameterizes scene surfaces smoothly.

Memory scales with scene complexity.

Scene Representation Networks

Scene Representation Networks

Neural Renderer.

Neural Renderer.

Neural Renderer.

Neural Renderer Step 1: Intersection Testing.

Neural Renderer Step 1: Intersection Testing.

Neural Renderer Step 1: Intersection Testing.

Neural Renderer Step 1: Intersection Testing.

Neural Renderer Step 2: Color Generation

Neural Renderer Step 1: Intersection Testing.

Neural Renderer Step 2: Color Generation

Can now train end-to-end with posed images only!

Generalizing across a class of scenes

Each scene represented by its own SRN.

Each scene represented by its own SRN.

 ϕ_i live on k-dimensional subspace of \mathbb{R}^l , k < l.

Each scene represented by its own SRN.

embedding $z_0 \in \mathbb{R}^k$

embedding $z_1 \in \mathbb{R}^k$

embedding $z_2 \in \mathbb{R}^k$

low-dimensional embedding

Represent each scene with

parameters $\phi_2 \in \mathbb{R}^l$

parameters $\phi_n \in \mathbb{R}^l$

Each scene represented by its own SRN.

embedding $z_0 \in \mathbb{R}^k$

embedding $z_1 \in \mathbb{R}^k$

embedding $z_2 \in \mathbb{R}^k$

embedding $z_n \in \mathbb{R}^k$

Novel View Synthesis – Baseline Comparison

Shapenet v2 – *single-shot reconstruction* of objects in held-out test set

Tatarchenko et al. 2015

Worrall et al. 2017

Deterministic GQN, adapted Eslami et al. 2018

Training

- Shapenet cars / chairs.
- 50 observations per object.

Testing

- Cars / chairs from unseen test set
- Single observation!

Input pose

SRNs

Novel View Synthesis – SRN Output

Shapenet v2 – single-shot reconstruction of objects in held-out test set

Sampling at arbitrary resolutions

Generalization to unseen camera poses

Generalization to unseen camera poses

Latent code interpolation

RGB

Latent code interpolation

Surface Normals

Scene Representation Networks: Continuous 3D-structure-aware Neural Scene Representations

Vincent Sitzmann

Michael Zollhöfer

Gordon Wetzstein

Find me at Poster # 71!

Looking for research positions in scene representation learning.

vsitzmann.github.io

@vincesitzmann

Interpolation

Single-shot reconstruction

Camera pose extrapolation