The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-I ■ Assignment #7

(Improper Integral, Taylor's Theorem)

1. Test the convergence/divergence of the following improper integrals:
(a)
$$\int_0^1 \frac{dx}{\log(1+\sqrt{x})}$$
 (b) $\int_0^1 \frac{dx}{x-\log(1+x)}$ (c) $\int_0^1 \frac{\log x}{\sqrt{x}} dx$ (d) $\int_0^1 \sin\left(\frac{1}{x}\right) dx$ (e) $\int_1^\infty \frac{\sin\left(\frac{1}{x}\right)}{x} dx$ (f) $\int_0^\infty e^{-x^2} dx$ (g) $\int_0^{\pi/2} \frac{dx}{x-\sin x}$ (h) $\int_0^{\pi/2} \csc x dx$.

2. In each case, determine the values of p for which the following improper integrals converge

(a)
$$\int_0^\infty \frac{1 - e^{-x}}{x^p}$$
 (b) $\int_0^\infty \frac{t^{p-1}}{1 + t} dt$.

3. Show that the integrals $\int_0^\infty \frac{\sin^2 x}{x^2} dx$ and $\int_0^\infty \frac{\sin x}{x} dx$ converge. Further, prove that

$$\int_0^\infty \frac{\sin^2 x}{x^2} dx = \int_0^\infty \frac{\sin x}{x} dx.$$

- 4. Show that $\int_0^\infty \frac{x \log x}{(1+x^2)^2} dx = 0.$
- 5. Prove that $\int_{1}^{\infty} \frac{\sin x}{x^p} dx$ converges conditionally for 0 and absolutely for
- 6. Show that $\int_0^s \frac{1+x}{1+x^2} dx$ and $\int_{-s}^0 \frac{1+x}{1+x^2} dx$ do not approach a limit as $s \to \infty$. However $\lim_{s \to \infty} \int_{-s}^{s} \frac{1+x}{1+x^2} dx \text{ exists.}$
- 7. For x > -1, $x \neq 0$ prove that
 - (a) $(1+x)^{\alpha} > 1 + \alpha x$ whenever $\alpha < 0$, or $\alpha > 1$
 - (b) $(1+x)^{\alpha} < 1 + \alpha x$ whenever $0 < \alpha < 1$.
- 8. Using Taylor's theorem, for any $k \in \mathbb{N}$ and for all x > 0, show that

$$x - \frac{1}{2}x^2 + \ldots + \frac{1}{2k}x^{2k} < \log(1+x) < x - \frac{1}{2}x^2 + \ldots + \frac{1}{2k+1}x^{2k+1}$$