第十章作业

16337341 朱志儒

思考题

10.1 Diffie-Hellman 密钥交换: 素数 q 和其本原根 a 是两个公开的整数。假定用户 A 和 B 希望交换密钥,那么用户 A 选择一个随机整数 $X_A < q$,并计算 $Y_A = a^{X_A} \mod q$,用户 B 也 独立地选择一个随机整数 $X_B < q$,并计算 $Y_B = a^{X_B} \mod q$,A 和 B 保持其 X 是私有的,Y 是公开可访问的,用户 A 计算 $K = (Y_B)^{X_A} \mod q$ 并将其作为密钥,用户 B 计算 $K = (Y_A)^{X_B} \mod q$ 并将其作为密钥。

10.2 椭圆曲线: 椭圆曲线与计算椭圆周长的方程相似, 一般, 椭圆曲线的三次方程形为 y^2 + $axy + by = x^3 + cx^2 + dx + e$, 其中 a, b, c, d, e 是实数, x 和 y 在实数集上取值。

- 10.3 椭圆曲线的零点是加法的单位元。
- 10.4 椭圆曲线上同在一条直线上的三个点的和为 0。

习题

10.1 (a)
$$Y_A = 7^5 \mod 71 = 51$$

(b)
$$Y_B = 7^{12} \mod 71 = 4$$

(c)
$$K = 4^5 \mod 71 = 30$$

10.2 (a)
$$\varphi(11) = 10$$

$$2^{10} = 1024 = 1 \mod 11$$

$$2^{n} \neq 1 \mod 11 \ (n < 10)$$

(b)
$$X_A=6$$
, 因为 $2^6\ mod\ 11=9_\circ$

(c)
$$K = 3^6 \mod 11 = 3$$

10.4
$$X_A = 5, X_B = 3, K = (3^3)^5 = 14348907$$

(b)
$$C_2 = 29$$

10.7 (a)
$$2Q = 0$$

(b)
$$3Q = 2Q + Q = 0 + Q = Q$$

方程右边 =
$$4^3 - 5 \times 4 + 5 = 49$$

所以点(4,7)在椭圆曲线上。

10.10 计算 R = P + Q:

$$\Delta = (8.5 - 9.5)/(-2.5 + 3.5) = -1$$

$$x_R = 1 + 3.5 + 2.5 = 7$$

$$y_R = -8.5 - (-3.5 - 7) = 2$$

$$R = (7, 2)$$

计算 2P:

$$x_r = [(36.75 - 36)/19]^2 + 7 \approx 7$$

$$y_R = [(36.75 - 36)/19](-3.5 - 7) - 9.5 \approx 9.9$$

10.12

Х	$(x^3 + x + 6) \mod 11$	模 p 的平方根?	у
0	6	no	
1	8	no	
2	5	yes	4, 7

3	3	yes	5, 6
4	8	no	
5	4	yes	2, 9
6	8	no	
7	4	yes	2, 9
8	9	yes	3,8
9	7	no	
10	4	yes	2, 9

10.14

2G = (5, 2)	3G = (8, 3)	4G = (10, 2)	5G = (3, 6)
6G = (7, 9)	7G = (7, 2)	8G = (3, 5)	9G = (10, 9)
10G = (8, 8)	11G = (5, 9)	12G = (2, 4)	13G = (2,7)

10.16 (a)
$$P_B = n_B x G = 7 x (2, 7) = (7, 2)$$

(b)
$$C_m = \{kG, P_m + kP_B\} = \{3(2,7), (10,9) + 3(7,2)\} = \{(8,3), (10,9) + (3,5)\} = \{(8,3), (10,2)\}$$

(c)
$$P_{m} = (10, 2) - 7(8, 3) = (10, 2) - (3, 5) = (10, 2) + (3, 6) = (10, 9)$$