JULY 14, 2019

Du Jianxing

Feng Jianyu

ABSTRACT

This is a note about [1]. The conctent is in Chapter 3 Section 1.

1 Definition of Lattices

First, we start with the difinition of lattices.

Definition 1. we say that $\Gamma \subset \mathbb{R}^d$ is a lattice if there exists d vectors b_1, \ldots, b_d such that

$$\Gamma = \mathbb{Z}b_1 \oplus \cdots \oplus \mathbb{Z}b_d$$

and $\langle \Gamma \rangle_{\mathbb{R}} = \mathbb{R}^d$.

Let Γ be a lattice in \mathbb{R}^d , then the group \mathbb{R}^d/Γ is a compact Abelian group, namely a d-dimension torus. We could choose representatives of \mathbb{R}^d/Γ in \mathbb{R}^d may be like

$$\mathrm{FD}_{\Gamma} := \left\{ \sum_{i=1}^d \alpha_i b_i | 0 \le \alpha_i < 1 \text{ for all } i \right\}$$

which is called the fundamental domain of Γ . Therefore, a lattice in \mathbb{R}^d is a co-compact discrete subgroup of it.

Remark. I don't know whether that a co-compact discrete subgroup of \mathbb{R}^d is always a lattice, but in the proof of Proposition 1 one use this claim.

Lemma 1. Any lattice is a Meyer set.

Since the translate of a lattice is not always a lattice, we define the generalisation of lattices.

Definition 2. A non-empty point set $\Lambda \subset \mathbb{R}^d$ is called a crystallographic point packing in \mathbb{R}^d if there is a lattice Γ in \mathbb{R}^d and a finite point set F such that $\Lambda = \Gamma + F$.

2 Periodicity

The objects we considering here are point sets $\Lambda \in \mathbb{R}^d$. We say that $t \in \mathbb{R}^d$ is a period of Λ when $t + \Lambda = \Lambda$. The set

$$per(\Lambda) := \{ t \in \mathbb{R}^d | t + \Lambda = \Lambda \}.$$

is called the set of period Λ . $\operatorname{per}(\Lambda)$ has a group structure in \mathbb{R}^d . Its \mathbb{R} -span is a subspace of \mathbb{R}^d , which dimension is called the rank of $\operatorname{per}(\Lambda)$.

A point set Λ is called periodic if $\operatorname{per}(\Lambda)$ is non-trivial. A point set Λ is called crystallographic if $\operatorname{per}(\Lambda)$ is a lattice. So, even a non-crystallographic set can still have non-trivial periods. For example, we can choose a point set in \mathbb{R}^2 whose set of periodic only lies in one dimension. The term aperiodic which we will introduce later is a stronger property than non-periodic.

The next proposition explains the relation between crystallographic point sets and crystallographic point packings.

Proposition 1. A locally finite point set $\Lambda \subset \mathbb{R}^d$ is crystallographic if and only if there is a lattice Γ in \mathbb{R}^d and a finite point set $F \subset \mathbb{R}^d$ such that $\Lambda = \Gamma \oplus F$.

Proof. Let $\Gamma \subset \mathbb{R}^d$ be a lattice and $F \subset \mathbb{R}^d$ be a finite set. Let $\Lambda = \Gamma + F$. Considering the decompose of Λ , we get that Λ is locally finite. Thus $\operatorname{per}(\Lambda)$ is a discrete subgroup of \mathbb{R}^d . Since Λ is a lattice, $\Lambda - \Lambda = \Lambda$, so $\Gamma \subset \operatorname{per}(\Lambda)$. Therefore $\operatorname{per}(\Lambda)/\Gamma$ is finite, and consequently $\mathbb{R}^d/\operatorname{per}(\Lambda)$ is compact. So that $\operatorname{per}(\Lambda)$ is a lattice, whence Λ is crystallographic.

Conversely, let Λ be a crystallographic with $\Gamma := \operatorname{per}(\Lambda)$ as a lattice. Let C be a fundamental domain of Γ . Then, one has $\mathbb{R}^d = \sqcup_{t \in \Gamma} (t + C)$, and $F := C \cap \Lambda$ is a finite set that satisfies $\Lambda = F \oplus \Gamma$.

This proposition shows that the locally finite, crystallographic point sets are precisely the crystallographic point packings.

3 More Lattices

A subset Γ' of a lattice Γ that is itself a lattice is called a sublattice of Γ . The gruop index $[\Gamma:\Gamma']$ is referred to as the index of Γ' in Γ .

Lemma 2. If Γ' is a sublattice of the lattice $\Gamma \subset \mathbb{R}^d$ of index n, the lattice $n\Gamma$ is a sublattice of Γ' .

The index is related to the volumes of the fundamental domains via

$$[\Gamma:\Gamma'] = \frac{\operatorname{vol}(\operatorname{FD}_{\Gamma'})}{\operatorname{vol}(\operatorname{FD}_{\Gamma})}.$$

If Γ is a lattice in \mathbb{R}^d , an important related lattice is the so-called dual lattice Γ^* , which is defined as

$$\Gamma^* = \{ y \in \mathbb{R}^d | \langle x | y \rangle \in \mathbb{Z} \text{ for all } x \in \Gamma \}$$
.

Clearly, the unique basis of Γ^* is vectors $\{b_1^*, \dots, b_d^*\}$ satisfying $\langle b_i^* | b_j \rangle = \delta_{i,j}$, which is called the dual basis and implies that Γ^* is indeed a lattice.

In general, if B is the basis matrix of a lattice Γ that contains the basis vectors columnwise, the dual basis matrix is given by $(B^{-1})^T$.

A useful quantity is the corresponding Gram matrix

$$G := B^T B$$

which satisfies $G_{ij} = \langle b_i | b_j \rangle$. One has

$$\det(G) = (\det(B))^2 = (\text{vol}(FD_{\Gamma}))^2 > 0,$$

which is the discriminant of Γ .

4 Through Measure Eyes

Given a locally finite point set $\Lambda \subset \mathbb{R}^d$, we can define a measure

$$\delta_{\Lambda} = \sum_{x \in \Lambda} \delta_x,$$

where δ_x is the normalised point measure at x. Let $\mathcal{M}(\mathbb{R}^d)$ be the set of all measures on \mathbb{R}^d . Notice that

$$\delta_t * \delta_{\Lambda} = \delta_{t+\Lambda},$$

where * denotes the convolution of measures. We can reconstruct the contents above through measure eyes.

If $\mu \in \mathcal{M}(\mathbb{R}^d)$, the set

$$per(\mu) := \left\{ t \in \mathbb{R}^d | \delta_t * \mu = \mu \right\}$$

is called the set of periods of μ . It is a subgroup of \mathbb{R}^d .

Definition 3. A measure $\mu \in \mathcal{M}(\mathbb{R}^d)$ is called periodic when $per(\mu)$ is not trivial. Moreover, the measure μ is called crystallographic when $per(\mu)$ contains a lattice in \mathbb{R}^d .

Remark. Why does the definition of crystallographic in Definition 3 require $per(\mu)$ "contains" a lattice but not "be" a lattice?

It is beacause that there is no obvious ananlogue of Proposition 1. If $\Gamma \subset \mathbb{R}^d$ is a lattice and ϱ a finite measure, the convolution $\mu = \varrho * \delta_{\Gamma}$ is well-defined and a crystallographic (per(μ) $\subset \Gamma$). However, per(μ) need not be a lattice, but can be a much larger group. An example is

$$\mu = \varrho * \delta_{\mathbb{Z}^2} \quad \text{ with } \quad \varrho = \mathbf{1}_{[0,1) \times \left[0,\frac{1}{2}\right)} \lambda,$$

where λ is Lebesgue measure and $1_{\{\cdot\}}$ denotes the characteristic function. $\operatorname{per}(\mu) = \mathbb{R} \times \mathbb{Z}$. The geometric meaning of $\mu(A)$ is the size of area belongs to both A and $\cup_{\mathbb{Z}}(\mathbb{R} \times [n,n+1/2])$. It is reasonable to distinguish measures according to their groups of periods.

References

[1] Michael Baake and Uwe Grimm. Aperiodic order, volume 1. Cambridge University Press, 2013.