

Hypothesis testing & Graphic Methods
Session 9
Programación Estadística con Python

Alberto Sanz, Ph.D

asanz@edem.es

MASTER EN DATA ANALYTICS PARA LA EMPRESA

Goals (class session + extra topics)

- Hypothesis testing over the relatioship of two quantitative variables.
 - Numeric methods:
 - Pearson's r linear correlation coefficient +
 - Significante tests +
 - Kendall's Tau-b / Spearmann Rho (for ordinal variables)(To be developed)
 - Graphic methods:
 - Scatterplots

1. **Describe** the two variables involved in the hypothesis separately. Check and validate the integrity of the data prior to any analysis.

- 2. Graphic representation of bivariate relation: Scatterplot
- 3. Numeric representation of bivariate relation: Pearson's r
- 4. Inference test: p.values.
- 5. When posible, combine:
 - Scatterplot +
 - Pearson's r +
 - Inference test

Research Question

Why some days are rent more bikes?

Temperature ?

- □ HO.: There is no linear association (r=0) between the number of rentals and the temperature.
- \square H1.: There is a linear association (r \neq 0) between the number of rentals and the temperature.

Describing quantitative variables


```
x=wbr['cnt']
plt.hist(x, bins=10,
edgecolor='black')
plt.xticks(np.arange(0, 10000,
step=1000))
plt.title('Figure 4. Daily Bicycle
rentals in Washington DC'
           '\n'
           'by Capital bikeshare.
2011 - 2012')
plt.ylabel('Frecuency')
plt.xlabel('Number of rented
bicycles')
props = dict(boxstyle='round',
facecolor='white', lw=0.5)
textstr = \ \mathrm{n}=\%.0f\$'\%(n)
plt.text (-50,128, \text{ textstr})
bbox=props)
```


Describing quantitative variables

Frecuency


```
##histogram ver4
x=wbr['temp celsius']
plt.hist(x, bins=10,
edgecolor='black')
#plt.xticks(np.arange(0, 10000,
step=1000))
plt.title('Figure 5. Temperature in
Celsius'
          '\n')
plt.ylabel('Frecuency')
plt.xlabel('Temperature in Co')
props = dict(boxstyle='round',
facecolor='white', lw=0.5)
textstr = \ \mathrm{n}=\%.0f\$'\%(n)
plt.text (2,100, textstr,
bbox=props)
```

100 - n = 731

80 - ---- + 1 S.D.

40 - ---- 20 -

20

Temperature in Cº

25

30

35

10

15

Figure 5. Temperature in Celsius

1. Describe the two variables involved in hypothesis

Temperature

Rentals

2. Scatterplot

x=wbr.temp_Celsius
y=wbr.cnt
plt.scatter (x,y)

Figure 9. Daily bicycle rentals, by temperature.

3. Pearson's r

```
from scipy.stats.stats import pearsonr
res = pearsonr(x, y)
print (res)
```

[1] (0.62749400903349195, 2.8106223975901415e-81)

This is Perason's r

This is
The P.Value

#correlation


```
#correlation
from scipy.stats.stats import pearsonr
x=wbr.temp_celsius # Select the variable to plot
y=wbr.cnt # Select the variable to plot
res = pearsonr(x, y)
r = res[0]
p_val = res[1]
n = len (wbr.cnt)
```

Scatterplot + Pearson's r + test

Figure 9. Daily bicycle rentals, by temperature.

Scatterplot + Pearson's r + test

Figure 9. Daily bicycle rentals, by temperature.

Alberto Sanz, Ph.D. asanz@edem.es

Conclussion

Conclussion:

As P. Value < 0.000

We can reject H0 with a confidence higer tan 99.9

Temperatuce (Centigrades)

1000

Figure 9. Daily bicycle rentals, by temperature.

- \times HO.: There is no linear association (r=0) between the *number* of rentals and the temperature.
- \checkmark H1.: There is a linear association (r \neq 0) between the number of rentals and the temperature.

Tricks of the Trade: Split by year... EDEM

#Extra topic plt.scatter ('temp_celsius', 'cnt', data=wbr, c='yr')

Tricks of the Trade: Split by year

Figure 9. Daily bicycle rentals, by temperature.

Tricks of the Trade: Split by year

Figure 9. Daily bicycle rentals, by temperature.

Tricks of the Trade:

□ Split by Season

Figure 9. Daily bicycle rentals, by temperature.

Alberto Sanz, Ph.D. asanz@edem.es

Correlation. Summing UP

- ☐ General Remainder:
 - Allways describe/explore your data (numerically + graphically) prior to perform any statistical analysis.
- □ Main Numeric Procedure:
 - Pearson's Correlation
 - P.Value
- □ Main Graphic Procedure:
 - Scatterplot

Statistical Programming with Python

Questions?

Statistical Programming with Python

Thank you!

Alberto Sanz asanz@edem.es