

Relatório

Licenciatura em Engenharia Informática Unidade Curricular Base de Dados

Discentes: Guilherme Grilo, nº48921

Hélder Godinho, nº42741

Docente: Prof.ª Irene Pimenta Rodrigues

Conteúdo

Introdução
Exercícios resolvidos
 Para o problema acima, construa um diagrama Entidade-Relação que descreva a informação. No diagrama não se esqueça de indicar as restrições das relações e as chaves primárias das entidades4
O diagrama E-R segue também em anexo no ficheiro "ER_diagram.png"4
2. Transforme o modelo E-R em tabelas. Nas tabelas não se esqueça de indicar as chaves primárias e as chaves candidatas4
3. Defina o conjunto de dependências funcionais que a base de dados deve verificar5
4. Apresente a Base de Dados na forma normal de Boyce Codd, BCNF6
5. Indique justificando se a sua base de dados tem informação redundante6
6. Indique se a base de dados que apresentou na forma normal de Boyce-Codd preserva as dependências
7. Para cada relação da base de dados na BCNF indique as chaves primárias, candidatas e estrangeiras6
8. Indique os comandos SQL para a criação das tabelas que constituem esta base de dados. E construa esta base de dados no Postgres7
9. Indique as expressões em SQL para inserir a seguinte informação na sua base de dados e insira-a.10
10. Indique a expressão em SQL para responder às seguintes perguntas (no relatório indique também o resultado):14
(a) Em que locais do zoo se podem visitar aves?14
(b) Em que locais do zoo não há carnívoros?15
(c) Indique os irmãos da Kilu15
(d) Indique os telefones do tratador responsável pela Kata
(e) Indique os telefones do responsável pelo auxiliar responsável pela local onde está a Kata 16
(f) Indique os tratamentos (data e tratamento) que a Mali já fez no zoo16
(g) Indique os nomes dos veterinários que já diagnosticaram uma gravidez a um carnívoro17
(h) Indique para cada família da ordem artiodáctilos quantos animais tem o zoo17
(j) Qual é a ordem com mais animais no zoo?17
(k) Qual é a ordem dos animais que têm mais de 5 consultas por ano (diagnóstico ou tratamento).
(I) Indique o número de animais nascidos em cativeiro
(m) Qual é o animal (nome e espécie) mais velho do zoo?
(n) Qual é o local húmido com mais mamíferos?19
(o) Para cada tratador indique o número de mamíferos por que é responsável?19
(p) Indique o nome dos animais que já foram tratados por todos os veterinários?20
Conclusão
Referências bibliográficas

Introdução

Neste trabalho pretendemos colocar em prática os nossos conhecimentos aprendidos ao longo do presente semestre na U.C. de Base de Dados tais como: desenvolver um diagrama E-R e transformá-lo em tabelas; definir dependências funcionais nas mesmas; criar tabelas, inserir e selecionar informação das mesmas em linguagem Postgresql; identificar chaves primárias e chaves candidatas de cada tabela; normalizar as tabelas e as relações entre as mesmas numa base de dados através da Forma Normal de Boyce-Codd.

Este trabalho está dividido em 10 partes/exercícios onde são abordados e postos em prática todos os conhecimentos anteriormente referidos.

A metodologia utilizada para a realização deste trabalho foi essencialmente pesquisa web gráfica, como por exemplo a visualização dos powerpoints desta U.C. ou recurso aos documentos oficiais da linguagem Postgresql.

Exercícios resolvidos

1. Para o problema acima, construa um diagrama Entidade-Relação que descreva a informação. No diagrama não se esqueça de indicar as restrições das relações e as chaves primárias das entidades.

O diagrama E-R segue também em anexo no ficheiro "ER_diagram.png".

2. Transforme o modelo E-R em tabelas. Nas tabelas não se esqueça de indicar as chaves primárias e as chaves candidatas.

animals(register, nameA, sex, localA)

Chaves primárias- {register}

Chaves candidatas- {register}

habitat(local, area, atmosphere, environment)

Chaves primárias- {local}

Chaves candidatas- {local}

class_bio(species, registerA, class, orderA, family)

Chaves primárias- {species, registerA}

Chaves candidatas- {registerA}, {species, registerA}

captivity(birthdayA, registerA, registerDad, registerMom)

Chaves primárias- {birthdayA, registerA}

Chaves candidatas- {birthdayA, registerA}, {registerDad, registerMom, registerA}

capture(birthdayA, dateC, localC, registerA)

Chaves primárias- {dateC, registerA}

Chaves candidatas- {dateC, registerA}

employees(nameE, nif, dateS)

Chaves primárias- {nif}

Chaves candidatas- {nif}

keeper(nifE, registerA)

Chaves primárias- {nifE, registerA}

Chaves candidatas- {nifE, registerA}

aux_keeper(nifE, localH)

Chaves primárias- {nifE, localH}

Chaves candidatas- {nifE, localH}

veterinary(nifE)

Chaves primárias- {nifE}

Chaves candidatas-{nifE}

admin(nifE)

Chaves primárias- {nifE}

Chaves candidatas- {nifE}

responsible(nifresp, niftrab)

Chaves primárias- {niftrab}

Chaves candidatas- {niftrab}

telephone(nifE, numberTele)

Chaves primárias- {nifE, numberTele}

Chaves candidatas- {nifE, numberTele}

consultations(consult date, nifE, registerA, diagnosis)

Chaves primárias- {consult_date, nifE, registerA, diagnosis}

Chaves candidatas- { consult_date, nifE, registerA, diagnosis }

3. Defina o conjunto de dependências funcionais que a base de dados deve verificar.

local -> aux_keeper

animals -> keeper

species -> family

family -> orderA

orderA -> class

consultations -> veterinary

consultations -> animals

employees -> nif

employees -> responsible

employees -> telephone

consultations -> consult date

4. Apresente a Base de Dados na forma normal de Boyce Codd, BCNF. register -> nameA, sex, localA

local -> area, atmosphere, environment

species, registerA -> family, orderA, class

birthdayA, registerA-> registerMom, registerDad

dateC, registerA -> birthdayA, localC

nif -> dateS, nameE

nifE -> registerA

registerA -> nifE

nifE -> localH

localH -> nifE

niftrab -> nifresp

numbertele -> nifE

- 5. Indique justificando se a sua base de dados tem informação redundante. Não, na minha perspetiva as minhas tabelas não possuem qualquer informação que possa ser considerada redundante.
- 6. Indique se a base de dados que apresentou na forma normal de Boyce-Codd preserva as dependências.

A minha base de dados, na forma normal de Boyce-Codd, preserva as dependências tal como foi provado no exercício 4.

7. Para cada relação da base de dados na BCNF indique as chaves primárias, candidatas e estrangeiras.

register -> nameA, sex, localA

Chaves primárias – {register}

Chaves candidatas – {register}, {nameA, sex, localA}

local -> area, atmosphere, environment

nameA varchar(100), sex varchar(20), localA VARCHAR(10)

);

```
Chaves primárias- {local}
Chaves candidatas- {local}
species, registerA -> family, orderA, class
Chaves primárias- {species, registerA}
Chaves candidatas— {species, registerA}
Chaves estrangeiras- {registerA}
birthdayA, registerA-> registerMom, registerDad
Chaves primárias- {birthdayA, registerA}
Chaves candidatas- {birthdayA, registerA}
Chaves estrangeiras- {registerA}, {registerDad}, {registerMom}
dateC, registerA -> birthdayA, localC
Chaves primárias- {dateC, registerA}
Chaves candidatas- {dateC, registerA}
Chaves estrangeiras- {registerA}
nif -> dateS, nameE
Chaves primárias- {nif}
Chaves candidatas- {nif}, {dateS, name}
niftrab -> nifresp
Chaves primárias- {niftrab}
Chaves candidatas- {niftrab}
Chaves estrangeiras- {niftrab}, {nifresp}
8. Indique os comandos SQL para a criação das tabelas que constituem esta
base de dados. E construa esta base de dados no Postgres.
Também disponível em anexo no ficheiro "create tables.txt".
animals(register, nameA, sex, localA)
DROP TABLE IF EXISTS animals CASCADE;
CREATE TABLE animals(
  register DECIMAL PRIMARY KEY,
```

habitat(<u>local</u>, area, atmosphere, environment)

```
DROP TABLE IF EXISTS habitat CASCADE;
CREATE TABLE habitat(
local varchar(10) PRIMARY KEY,
area varchar(100),
atmosphere varchar(100),
environment varchar(100));
```

class_bio(species, registerA, class, orderA, family)

```
DROP TABLE IF EXISTS class_bio CASCADE;

CREATE TABLE class_bio(
    species varchar(100),
    registerA DECIMAL,
    class varchar(100),
    orderA varchar(100),
    family varchar(100),
    PRIMARY KEY (species, registerA),
    FOREIGN KEY (registerA) REFERENCES animals ON DELETE RESTRICT);
```

captivity(birthdayA, registerA, registerDad, registerMom)

```
DROP TABLE IF EXISTS captivity CASCADE;
CREATE TABLE captivity(
birthdayA DATE,
registerA DECIMAL,
registerDad DECIMAL,
registerMom DECIMAL,
PRIMARY KEY (birthdayA, registerA),
FOREIGN KEY (registerA) REFERENCES animals ON DELETE RESTRICT
);
```

capture(birthdayA, dateC, localC, registerA)

```
DROP TABLE IF EXISTS capture CASCADE;
CREATE TABLE capture(
birthdayA DATE,
dateC DATE,
localC varchar(100),
registerA DECIMAL,
PRIMARY KEY (dateC, registerA),
FOREIGN KEY (registerA) REFERENCES animals on DELETE RESTRICT);
```

```
employees(nameE, nif, dateS)
```

```
DROP TABLE IF EXISTS employees CASCADE;
CREATE TABLE employees(
nameE varchar(100),
nif DECIMAL PRIMARY KEY,
dateS DATE
);
```

keeper(nifE, registerA)

```
DROP TABLE IF EXISTS keeper CASCADE;
CREATE TABLE keeper(
    nife DECIMAL,
    registerA DECIMAL,
    PRIMARY KEY (nife, registerA),
    FOREIGN KEY (nifE) REFERENCES employees ON DELETE RESTRICT,
    FOREIGN KEY (registerA) REFERENCES animals ON DELETE RESTRICT);
```

aux_keeper(nifE, localH)

```
DROP TABLE IF EXISTS aux_keeper CASCADE;
CREATE TABLE aux_keeper(
    nife DECIMAL,
    localH varchar(10),
    PRIMARY KEY (nife, localH),
    FOREIGN KEY (nife) REFERENCES employees ON DELETE RESTRICT,
    FOREIGN KEY (localH) REFERENCES habitat ON DELETE RESTRICT);
```

veterinary(nifE)

```
DROP TABLE IF EXISTS veterinary CASCADE;
CREATE TABLE veterinary (
    nife DECIMAL PRIMARY KEY,
    FOREIGN KEY (nife) REFERENCES employees ON DELETE RESTRICT
);
```

admin(nifE)

```
DROP TABLE IF EXISTS admin CASCADE;
CREATE TABLE admin (
    nife DECIMAL PRIMARY KEY,
    FOREIGN KEY (nife) REFERENCES employees ON DELETE RESTRICT
);
```


responsible(nifresp, niftrab)

```
DROP TABLE IF EXISTS responsible CASCADE;

CREATE TABLE responsible(
    nifresp DECIMAL,
    niftrab DECIMAL PRIMARY KEY,
    FOREIGN KEY (nifresp) REFERENCES employees ON DELETE RESTRICT,
    FOREIGN KEY (niftrab) REFERENCES employees ON DELETE RESTRICT);
```

telephone(nifE, numberTele)

```
DROP TABLE IF EXISTS telephone CASCADE;
CREATE TABLE telephone(
    nife DECIMAL,
    numberTele DECIMAL,
    PRIMARY KEY (nife, numberTele),
    FOREIGN KEY (nife) REFERENCES employees ON DELETE RESTRICT
);
```

consultations(consult date, nifE, registerA, diagnosis)

```
DROP TABLE IF EXISTS consultations CASCADE;

CREATE TABLE consultations(
    consult_date DATE,
    nife DECIMAL,
    registerA DECIMAL,
    diagnosis varchar(100),
    PRIMARY KEY (nife, registerA, consult_date, diagnosis),
    FOREIGN KEY (nife) REFERENCES employees ON DELETE RESTRICT,
    FOREIGN KEY (registerA) REFERENCES animals ON DELETE RESTRICT);
```

9. Indique as expressões em SQL para inserir a seguinte informação na sua base de dados e insira-a.

Disponível também em anexo no ficheiro "new_inserts.txt".

```
INSERT INTO animals VALUES(123456, 'Taji', 'masculino', 'A3'); INSERT INTO animals VALUES(222456, 'Mali', 'feminino', 'A3'); INSERT INTO animals VALUES(322456, 'Aka', 'feminino', 'A3'); INSERT INTO animals VALUES(422456, 'TaTa', 'masculino', 'A4'); INSERT INTO animals VALUES(432456, 'Cáta', 'feminino', 'A5.1'); INSERT INTO animals VALUES(522456, 'Kata', 'feminino', 'A5.1'); INSERT INTO animals VALUES(622456, 'Mata', 'masculino', 'A4'); INSERT INTO animals VALUES(123444, 'Hipo', 'masculino', 'A1'); INSERT INTO animals VALUES(323444, 'Hita', 'feminino', 'A1'); INSERT INTO animals VALUES(323444, 'Hita', 'feminino', 'A1'); INSERT INTO animals VALUES(123666, 'Kaki', 'masculino', 'A2');
```



```
INSERT INTO animals VALUES(223666, 'Kalu', 'feminino', 'A2');
INSERT INTO animals VALUES(323666, 'Kilu', 'feminino', 'A2');
INSERT INTO animals VALUES(423666, 'Luka', 'feminino', 'A2');
INSERT INTO animals VALUES(524666, 'Kuli', 'masculino', 'A2');
INSERT INTO animals VALUES(123555, 'Ará', 'masculino', 'A5.2');
INSERT INTO animals VALUES(133555, 'Zará', 'masculino', 'A5.2');
INSERT INTO animals VALUES(223555, 'Rará', 'feminino', 'A5.2');
INSERT INTO animals VALUES(323555, 'Rara', 'masculino', 'A5.2');
INSERT INTO animals VALUES(423555, 'Zula', 'feminino', 'A5.2');
INSERT INTO animals VALUES(523555, 'Zura', 'feminino', 'A5.2');
INSERT INTO habitat VALUES('A3', 1200, 'quente e húmida', 'terrestre');
INSERT INTO habitat VALUES('A4', 1100, 'quente e húmida', 'terrestre');
INSERT INTO habitat VALUES('A5.1', 1100, 'quente e húmida', 'terrestre');
INSERT INTO habitat VALUES('A1', 2000, 'quente e seca', 'misto');
INSERT INTO habitat VALUES('A2', 1500, 'fria e seca', 'terrestre');
INSERT INTO habitat VALUES('A5.2', 500, 'quente e húmida', 'terrestre');
INSERT INTO class bio VALUES('tigre', 123456, 'mamíferos', 'carnívoros', 'felinos');
INSERT INTO class bio VALUES('tigre', 222456, 'mamíferos', 'carnívoros', 'felinos');
INSERT INTO class bio VALUES('tigre', 322456, 'mamíferos', 'carnívoros', 'felinos');
INSERT INTO class_bio VALUES('tigre', 422456, 'mamíferos', 'carnívoros', 'felinos');
INSERT INTO class_bio VALUES('tigre', 432456, 'mamíferos', 'carnívoros', 'felinos');
INSERT INTO class_bio VALUES('tigre', 522456, 'mamíferos', 'carnívoros', 'felinos');
INSERT INTO class bio VALUES('tigre', 622456, 'mamíferos', 'carnívoros', 'felinos');
INSERT INTO class_bio VALUES('hipópotamo comum', 123444, 'mamíferos', 'artiodáctilos',
'hipopótamos');
INSERT INTO class bio VALUES('hipópotamo comum', 223444, 'mamíferos', 'artiodáctilos',
'hipopótamos');
INSERT INTO class bio VALUES('hipópotamo comum', 323444, 'mamíferos', 'artiodáctilos',
'hipopótamos');
INSERT INTO class bio VALUES('veado', 123666, 'mamíferos', 'artiodáctilos', 'cervídeos');
INSERT INTO class_bio VALUES('veado', 223666, 'mamíferos', 'artiodáctilos', 'cervídeos');
INSERT INTO class bio VALUES('veado', 323666, 'mamíferos', 'artiodáctilos', 'cervídeos');
INSERT INTO class_bio VALUES('veado', 423666, 'mamíferos', 'artiodáctilos', 'cervídeos');
INSERT INTO class_bio VALUES('veado', 524666, 'mamíferos', 'artiodáctilos', 'cervídeos');
INSERT INTO class bio VALUES('arara-azul-pequena', 123555, 'aves', 'psittaciformes',
'psittacidae');
INSERT INTO class bio VALUES('arara-azul-pequena', 133555, 'aves', 'psittaciformes',
'psittacidae');
INSERT INTO class bio VALUES('arara-azul-pequena', 223555, 'aves', 'psittaciformes',
'psittacidae');
INSERT INTO class bio VALUES('arara-azul-pequena', 323555, 'aves', 'psittaciformes',
'psittacidae');
INSERT INTO class bio VALUES('arara-azul-pequena', 423555, 'aves', 'psittaciformes',
'psittacidae');
INSERT INTO class bio VALUES('arara-azul-pequena', 523555, 'aves', 'psittaciformes',
'psittacidae');
```



```
INSERT INTO captivity VALUES('2005/12/12', 322456, 123456, 222456);
INSERT INTO captivity VALUES('2006/01/20', 422456, 123456, 222456);
INSERT INTO captivity VALUES('2007/03/02', 522456, 422456, 432456);
INSERT INTO captivity VALUES('2008/02/02', 622456, 123456, 522456);
INSERT INTO captivity VALUES('2006/09/01', 323444, 123444, 223444);
INSERT INTO captivity VALUES('2008/04/03', 323666, 123666, 223666);
INSERT INTO captivity VALUES('2008/03/04', 524666, 123666, 423666);
INSERT INTO captivity VALUES('2009/05/07', 323555, 123555, 223555);
INSERT INTO captivity VALUES('2009/05/07', 423555, 123555, 223555);
INSERT INTO captivity VALUES('2009/05/07', 523555, 123555, 223555);
INSERT INTO capture VALUES('2003/05/24', '2004/06/02', 'India, Agra', 123456);
INSERT INTO capture VALUES('2003/02/27', '2004/03/16', 'India, Deli', 222456);
INSERT INTO capture VALUES('2004/09/01', '2005/01/01', 'India, Calcutá', 432456);
INSERT INTO capture VALUES('2003/05/30', '2004/06/06', 'África, Madagascar', 123444);
INSERT INTO capture VALUES('2003/12/02', '2004/06/06', 'África, Madagascar', 223444);
INSERT INTO capture VALUES('2005/11/11', '2006/05/14', 'Europa, Pirenéus', 123666);
INSERT INTO capture VALUES('2006/01/07', '2006/07/10', 'Europa, Ourense', 223666);
INSERT INTO capture VALUES('2006/10/01', '2007/02/08', 'Europa, Gerês', 423666);
INSERT INTO capture VALUES('2005/12/12', '2006/06/12', 'América do Sul, Paraná', 123555);
INSERT INTO capture VALUES('2006/02/11', '2006/06/12', 'América do Sul, Paraná', 133555);
INSERT INTO capture VALUES('2007/04/09', '2007/07/02', 'América do Sul, Uruguai', 223555);
INSERT INTO employees VALUES('Joaquim Silva', 123123123, '2003/02/01');
INSERT INTO employees VALUES('Manuel Santos', 123123124, '2003/04/01');
INSERT INTO employees VALUES('Maria Gomes', 123123125, '2003/01/01');
INSERT INTO employees VALUES('Mariana Silva', 123123126, '2004/02/01');
INSERT INTO employees VALUES('Jorge Gomes', 123123127, '2004/03/01');
INSERT INTO employees VALUES('Francisco Jorge', 123123128, '2004/03/01');
INSERT INTO employees VALUES('Manuel Ferreira', 123123129, '2004/02/01');
INSERT INTO employees VALUES('Manuela Torres', 123123130, '2004/04/01');
INSERT INTO employees VALUES('Pedro Vale', 123123131, '2004/05/01');
INSERT INTO employees VALUES('Isabel Soares', 123123132, '2004/06/01');
INSERT INTO keeper VALUES(123123123, 123456);
INSERT INTO keeper VALUES(123123123, 222456);
INSERT INTO keeper VALUES(123123123, 322456);
INSERT INTO keeper VALUES(123123123, 422456);
INSERT INTO keeper VALUES(123123123, 432456);
INSERT INTO keeper VALUES(123123123, 522456);
INSERT INTO keeper VALUES(123123123, 622456);
INSERT INTO keeper VALUES(123123124, 123444);
INSERT INTO keeper VALUES(123123124, 223444);
INSERT INTO keeper VALUES(123123124, 323444);
INSERT INTO keeper VALUES(123123124, 123666);
INSERT INTO keeper VALUES(123123124, 223666);
INSERT INTO keeper VALUES(123123124, 323666);
INSERT INTO keeper VALUES(123123124, 423666);
INSERT INTO keeper VALUES(123123124, 524666);
```

```
INSERT INTO keeper VALUES(123123125, 133555);
INSERT INTO keeper VALUES(123123125, 223555);
INSERT INTO keeper VALUES(123123125, 323555);
INSERT INTO keeper VALUES(123123125, 423555);
INSERT INTO keeper VALUES(123123125, 523555);
INSERT INTO aux keeper VALUES(123123126, 'A3');
INSERT INTO aux_keeper VALUES(123123126, 'A4');
INSERT INTO aux_keeper VALUES(123123126, 'A5.1');
INSERT INTO aux keeper VALUES(123123127, 'A1');
INSERT INTO aux_keeper VALUES(123123128, 'A2');
INSERT INTO aux_keeper VALUES(123123128, 'A5.2');
INSERT INTO veterinary VALUES(123123131);
INSERT INTO veterinary VALUES(123123132);
INSERT INTO admin VALUES(123123129);
INSERT INTO admin VALUES(123123130);
INSERT INTO responsible VALUES(123123125, 123123123);
INSERT INTO responsible VALUES(123123125, 123123124);
INSERT INTO responsible VALUES(123123130, 123123125);
INSERT INTO responsible VALUES(123123130, 123123126);
INSERT INTO responsible VALUES(123123130, 123123127);
INSERT INTO responsible VALUES(123123130, 123123128);
INSERT INTO responsible VALUES(123123130, 123123129);
INSERT INTO responsible VALUES(123123129, 123123130);
INSERT INTO responsible VALUES(123123129, 123123131);
INSERT INTO responsible VALUES(123123131, 123123132);
INSERT INTO telephone VALUES(123123123, 919999999);
INSERT INTO telephone VALUES(123123123, 266787809);
INSERT INTO telephone VALUES(123123124, 919999998);
INSERT INTO telephone VALUES(123123124, 266787808);
INSERT INTO telephone VALUES(123123125, 919999997);
INSERT INTO telephone VALUES(123123125, 266787807);
INSERT INTO telephone VALUES(123123126, 919999996);
INSERT INTO telephone VALUES(123123126, 266787806);
INSERT INTO telephone VALUES(123123127, 919999995);
INSERT INTO telephone VALUES(123123127, 266787806);
INSERT INTO telephone VALUES(123123128, 919999994);
INSERT INTO telephone VALUES(123123128, 266787806);
INSERT INTO telephone VALUES(123123129, 919999996);
INSERT INTO telephone VALUES(123123129, 266787806);
```

INSERT INTO keeper VALUES(123123125, 123555);


```
INSERT INTO telephone VALUES(123123130, 919999996);
INSERT INTO telephone VALUES(123123130, 266787806);
INSERT INTO telephone VALUES(123123131, 919999986);
INSERT INTO telephone VALUES(123123131, 266787816);
INSERT INTO telephone VALUES(123123132, 919999976);
INSERT INTO telephone VALUES(123123132, 266787826);
```

```
INSERT INTO consultations VALUES('2005/08/12', 123123131, 222456, 'grávida');
INSERT INTO consultations VALUES('2005/09/12', 123123131, 222456, 'cálcio injetado');
INSERT INTO consultations VALUES('2005/12/12', 123123131, 222456, 'parto');
INSERT INTO consultations VALUES('2006/07/12', 123123131, 222456, 'infeção');
INSERT INTO consultations VALUES('2006/07/12', 123123131, 222456, 'antibiótico injetado');
INSERT INTO consultations VALUES('2009/05/12', 123123131, 123666, 'infeção');
INSERT INTO consultations VALUES('2009/05/12', 123123131, 123666, 'antibiótico injetado');
INSERT INTO consultations VALUES('2009/05/12', 123123131, 123555, 'infeção');
INSERT INTO consultations VALUES('2009/05/12', 123123131, 123555, 'antibiótico injetado');
INSERT INTO consultations VALUES('2009/05/12', 123123131, 423555, 'infeção');
INSERT INTO consultations VALUES('2009/05/12', 123123131, 423555, 'antibiótico injetado');
INSERT INTO consultations VALUES('2007/08/12', 123123131, 223444, 'infeção');
INSERT INTO consultations VALUES('2007/08/12', 123123131, 223444, 'antibiótico injetado');
INSERT INTO consultations VALUES('2006/07/12', 123123132, 223444, 'grávida');
INSERT INTO consultations VALUES('2006/07/12', 123123132, 223444, 'cálcio injetado');
INSERT INTO consultations VALUES('2006/09/12', 123123132, 223444, 'parto');
INSERT INTO consultations VALUES('2007/07/12', 123123132, 223444, 'infeção');
INSERT INTO consultations VALUES('2007/07/12', 123123132, 223444, 'antibiótico injetado');
INSERT INTO consultations VALUES('2007/07/12', 123123132, 223444, 'grávida');
INSERT INTO consultations VALUES('2007/07/12', 123123132, 223444, 'cálcio injetado');
INSERT INTO consultations VALUES('2007/09/12', 123123132, 223444, 'parto');
INSERT INTO consultations VALUES('2009/06/12', 123123132, 423555, 'infeção');
INSERT INTO consultations VALUES('2009/06/12', 123123132, 423555, 'antibiótico injetado');
```

10. Indique a expressão em SQL para responder às seguintes perguntas (no relatório indique também o resultado):

(a) Em que locais do zoo se podem visitar aves?

SELECT DISTINCT locala

FROM animals

JOIN class_bio ON animals.register = class_bio.registera

WHERE class like 'aves';

localA	
A5.2	

(b) Em que locais do zoo não há carnívoros? SELECT DISTINCT locala

from animals

JOIN class_bio ON animals.register = class_bio.registera WHERE ordera not like 'carnívoros';

localA
A1
A2
A5.2

(c) Indique os irmãos da Kilu.

SELECT namea

from animals

JOIN captivity ON animals.register = captivity.registera

WHERE registermom = (SELECT registermom

FROM captivity

JOIN animals ON captivity.registera = animals.register

WHERE animals.namea LIKE 'Kilu')

or

registerdad = (

SELECT registerdad

FROM captivity

JOIN animals ON captivity.registera = animals.register

WHERE animals.namea LIKE 'Kilu')

EXCEPT

SELECT namea

FROM animals

WHERE namea LIKE 'Kilu';

namea	
Kuli	

(d) Indique os telefones do tratador responsável pela Kata.

SELECT numbertele

FROM telephone

JOIN keeper ON telephone.nife = keeper.nife

JOIN animals ON keeper.registera = animals.register

WHERE animals.namea LIKE 'Kata';

numbertele
919999999
266787809

(e) Indique os telefones do responsável pelo auxiliar responsável pela local onde está a Kata.

WITH teleN as (select nife

from aux_keeper

JOIN animals ON aux_keeper.localh = animals.locala

where animals.namea LIKE 'Kata')

select numbertele

from telephone

join teleN on teleN.nife= telephone.nife

join responsible on responsible.niftrab = telephone.nife;

	numberTele
	919999996
Γ	266787806

(f) Indique os tratamentos (data e tratamento) que a Mali já fez no zoo.

SELECT consult_date, diagnosis

FROM consultations

JOIN animals ON consultations.registera = animals.register

WHERE animals.namea LIKE 'Mali';

consult_date	diagnosis
2005-08-12	grávida
2005-09-12	cálcio injetado
2005-12-12	parto
2006-07-12	infeção
2006-07-12	antibiótico injetado

(g) Indique os nomes dos veterinários que já diagnosticaram uma gravidez a um carnívoro.

SELECT DISTINCT namee

FROM employees

JOIN consultations ON employees.nif = consultations.nife

NATURAL INNER JOIN class_bio

WHERE consultations.nife = employees.nif AND consultations.registera = class_bio.registera AND class_bio.ordera LIKE 'carnívoros';

namee	
Pedro Vale	

(h) Indique para cada família da ordem artiodáctilos quantos animais tem o zoo.

SELECT family, COUNT(ordera) AS animalsN FROM class_bio WHERE ordera LIKE 'artiodáctilos' GROUP BY family;

family	ordera
cervídeos	5
hipopótamos	3

(j) Qual é a ordem com mais animais no zoo? SELECT ordera, COUNT(ordera) AS orderN FROM class_bio GROUP by ordera Order by orderN DESC LIMIT 1;

ordera	COUNT
artiodáctilos	8

(k) Qual é a ordem dos animais que têm mais de 5 consultas por ano (diagnóstico ou tratamento).

SELECT ordera, count(ordera)
from class_bio
natural INNER join consultations
where class_bio.registera = consultations.registera
group by ordera
HAVING COUNT(ordera) > 5;

ordera	COUNT
artiodáctilos	12
psittaciformes	6

(I) Indique o número de animais nascidos em cativeiro. WITH animalsN as (SELECT registera, count(registera) as captive from captivity group by registera) select SUM(captive) from animalsN;

SUM	
10	

(m) Qual é o animal (nome e espécie) mais velho do zoo? WITH oldA AS (SELECT birthdaya AS age , registera

FROM captivity

UNION

SELECT birthdaya AS age, registera

FROM capture)

SELECT namea FROM animals

WHERE register =

(SELECT registera

FROM oldA

WHERE age = (SELECT MIN(age)

FROM oldA));

namea	
Mali	

(n) Qual é o local húmido com mais mamíferos?

WITH mammals AS (SELECT register FROM animals

JOIN class_bio ON animals.register = class_bio.registera

WHERE class LIKE 'mamíferos'),

mammalszone AS (SELECT local, COUNT(animals) AS numanimals

FROM habitat

JOIN animals ON habitat.local = animals.locala

JOIN mammals ON animals.register = mammals.register

WHERE habitat.atmosphere LIKE '%húmida%'

group by local)

SELECT local FROM habitat

WHERE local = (SELECT local

FROM mammalszone

WHERE numanimals = (SELECT MAX(numanimals)

FROM mammalszone));

local	
А3	

(o) Para cada tratador indique o número de mamíferos por que é responsável?

WITH mammals AS (SELECT register FROM animals

JOIN class_bio ON animals.register = class_bio.registera

WHERE class LIKE 'mamíferos'),

mammalsPerKeeper AS (SELECT nife, registera

FROM keeper

join mammals ON keeper.registera = mammals.register)

SELECT namee, COUNT(mammalsPerKeeper.nife)

AS mammalkeeper

FROM employees

JOIN mammalsPerKeeper ON employees.nif = mammalsPerKeeper.nife

GROUP BY namee;

namee	COUNT
Joaquim Silva	7
Manuel Santos	8

(p) Indique o nome dos animais que já foram tratados por todos os veterinários?

WITH vetIsabel as (Select registera from consultations
NATURAL INNER JOIN veterinary
JOIN employees ON consultations.nife = employees.nif
WHERE employees.namee LIKE 'Isabel Soares'),
vetPedro as (Select registera from consultations
NATURAL INNER JOIN veterinary
JOIN employees ON consultations.nife = employees.nif
WHERE employees.namee LIKE 'Pedro Vale')
select DISTINCT namea from animals
join vetPedro ON animals.register = vetPedro.registera
join vetIsabel ON animals.register = vetIsabel.registera;

namea	
Tapi	
Zula	

Conclusão

Neste trabalho abordámos todas as temáticas lecionadas na unidade curricular de Base de Dados e concluímos que conseguimos criar uma Base de Dados exceto normalizar a mesma na forma normal de Boyce-Codd (FNBC), onde revelámos muitas dificuldades acabando por não o conseguir fazer.

Conseguimos cumprir quase todos os objetivos delineados para este trabalho com exceção, tal como referido acima, de normalizar a nossa Base de Dados na FNBC, pois não entendemos como fazer

Este trabalho foi bastante importante para a consolidação dos conhecimentos adquiridos nesta unidade curricular ao longo deste semestre visto que nos permitiu desenvolver e consolidar tudo o que foi lecionado na mesma.

Referências bibliográficas

Rodrigues, Irene. "Aulas de Base de Dados", 2021. Universidade de Évora

Rodrigues, Irene. "trab2.pdf". Universidade de Évora's MOODLE

https://www.postgresql.org/docs/

https://www.geeksforgeeks.org/postgresql-tutorial/