Autoimmune Diseases: Causes and Mechanisms

Contents

1	Introduction			
2	Overview of Autoimmune Diseases			
3	Major Categories of Causes3.1 Genetic Factors	2		
	3.7 Lifestyle, Stress & Exposome	3		
4	Selected Examples: In-Depth4.1 Type 1 Diabetes4.2 Rheumatoid Arthritis4.3 Lupus (Systemic Lupus Erythematosus)4.4 Hashimoto's Thyroiditis	3 3		
5	Cross-disease Themes & Why Having One Raises Risk of Others			
6	How These Causes Intersect: Summary Table			
7	Conclusion & Practical Takeaways			

1 Introduction

Autoimmune disease occurs when the immune system mistakenly attacks the body's own tissues. There is no single cause; it results from multiple interacting factors.

2 Overview of Autoimmune Diseases

There are over 80–100 autoimmune diseases that can affect almost any organ system. Common examples include type 1 diabetes, rheumatoid arthritis, lupus, multiple sclerosis, and Hashimoto's thyroiditis.

3 Major Categories of Causes

3.1 Genetic Factors

Polygenic susceptibility: many small-effect gene variants increase risk. Some diseases run in families; twin studies show high concordance for certain conditions like Hashimoto's thyroiditis.

3.2 Environmental Triggers

Chemicals (solvents, pesticides, industrial toxins, hair dyes), ultraviolet light, and pollution can disrupt immune tolerance. Vitamin D deficiency can reduce immune regulation.

3.3 Infectious Agents & Molecular Mimicry

Viruses and bacteria can activate T cells, confusing the immune system into attacking self. Molecular mimicry occurs when pathogens share peptide sequences with self-antigens, leading to cross-reactivity.

3.4 Immune Regulation Failure & Dysregulation

Loss of self-tolerance, T-reg dysfunction, and mutations in immune checkpoint genes like CTLA-4 lead to autoimmunity. Chronic stress can increase inflammatory cytokines and dysregulate immune balance.

3.5 Gut Microbiome Imbalance (Dysbiosis)

Leaky gut, reduced tolerance to oral antigens, and unhealthy gut bacteria can contribute to autoimmunity.

3.6 Hormonal & Gender Influences

About 75–80% of autoimmune patients are women. Hormonal modulation, especially by estrogen, plays a role in disease risk.

3.7 Lifestyle, Stress & Exposome

Accumulated exposures across life such as poor diet, smoking, and chronic stress increase cumulative risk.

3.8 Rare Genetic Disorders: Inborn Errors of Immunity

Mutations in immune-regulating genes can cause both immunodeficiency and autoimmunity in rare cases.

4 Selected Examples: In-Depth

4.1 Type 1 Diabetes

Genetic risk plus environmental triggers such as viral infection or gut influences lead to T-cell destruction of insulin-producing beta cells.

4.2 Rheumatoid Arthritis

Genes, smoking, Epstein-Barr virus exposure, and gut bacteria similarity contribute to autoantibody production against joint tissues.

4.3 Lupus (Systemic Lupus Erythematosus)

Strong female predominance, genetic risk, and environmental triggers such as sunlight and infections lead to autoantibodies attacking multiple organs.

4.4 Hashimoto's Thyroiditis

Familial clustering, high twin concordance, and chromosomal disorder associations lead to immune-mediated destruction of thyroid cells.

5 Cross-disease Themes & Why Having One Raises Risk of Others

Shared gene networks, overlapping environmental triggers, and immune overactivity explain why many people with one autoimmune disease may develop others.

6 How These Causes Intersect: Summary Table

Cause Category	Mechanism	Example Contribution
Genetic	Polygenic variants	Hashimoto's family history
Environment	Toxins / UV / diet	Pesticides increasing rheumatoid arthritis risk
Infection /	Cross-reactivity	EBV triggering lupus or MS-
Mimicry		like autoimmunity
Immune Dysreg-	Treg defects / stress	CTLA-4 mutations, chronic IL-
ulation		6 elevation
Microbiome	Gut permeability, dys-	Leaky gut driving immune ac-
	biosis	tivation
Hormonal	Estrogen modulation	Explains high female preva- lence
Exposome	Cumulative risk expo-	Smoking plus poor diet and
(lifestyle)	sures	poor sleep increase risk
Inborn Immune	Rare gene defects	IEI causing autoimmune fea-
Errors		tures

7 Conclusion & Practical Takeaways

Autoimmune diseases result from a combination of genetics, environment, infections, and immune mis-regulation. Lifestyle factors such as vitamin D, healthy diet, sleep, stress management, and avoiding smoking may reduce risk or disease flares.