Drumuri minime de sursă unică în grafuri aciclice DAG (fără circuite)

Ipoteze:

- Graful <u>nu</u> conţine circuite
- Arcele pot avea <u>şi cost negativ</u>

Amintim:

Când considerăm un vârf v, pentru a calcula d(s,v) ar fi util să ştim deja $\delta(s,u)$ pentru orice u cu uv \in E

· atunci putem calcula distanțele după relația

$$\delta(s,v) = \min\{\delta(s,u) + w(u,v) \mid uv \in E\}$$

Amintim:

Când considerăm un vârf v, pentru a calcula d(s,v) ar fi util să ştim deja $\delta(s,u)$ pentru orice u cu uv $\in E \implies$

 Ar fi utilă o ordonare a vârfurilor astfel încât dacă uv∈E, atunci u se află înaintea lui v

O astfel de ordonare <u>există</u> dacă graful <u>nu</u> conține circuite = sortarea topologică

Drumuri minime de sursă unică în grafuri aciclice DAG (fără circuite)

Pseudocod

- Considerăm vârfurile în ordinea dată de sortarea topologică
 - Pentru fiecare vârf u relaxăm arcele uv către vecinii săi (pentru a găsi drumuri noi către aceștia)

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
             daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre>
                   d[v] = d[u] + w(u,v)
                   tata[v] = u
scrie d, tata
```

Exemplu

Etapa 1 – determinăm o ordonare topologică a vârfurilor

Sortare topologică: 1 3 6 5 4 2

 <u>Etapa 2</u> - parcurgem vârfurile în ordinea dată de sortarea topologică și relaxăm pentru fiecare vârf arcele care ies din acesta

Sortare topologică 1, 3, 6, 5, 4, 2

Sortare topologică 1, 3, 6, 5, 4, 2

s=3 - vârf de start

Ordine de calcul distanțe:

1, 3, 6, 5, 4, 2

d/tata [α	$0/0, \qquad \frac{2}{\infty/0},$	0/0,	⁴ ∞/0,	∞ ⁵ /0,	$\infty/0$]
$u = 1$: α	o/o, ∞/o,	O /o,	$\infty/0$,	$\infty/0$,	∞/o]
$u = 3$: [\propto	o/o, 8/3,	0/0,	$\infty/0$,	4 /3,	∞/o]
$u = 6$: [\propto	o/o, 8/3,	0/0,	$\infty/0$,	4 /3,	∞/o]
$u = 5$: [\propto	o/o, 8/3,	0/0,	6/5,	4 /3,	∞/o]
$u = 4$: $[\propto$	0/0, 7/4,	0/0,	6/5,	4 /3,	∞/o]
$u = 2$: [\propto	7/4,	0/0,	6/5,	4 /3,	∞/0]

Sortare topologică

s=3 - vârf de start

Ordine de calcul distanțe:

d/tata 1 2 3 4 5 6
Soluție [
$$\infty/0$$
, 7/4, 0/0, 6/5, 4/3, $\infty/0$]

Un drum minim de la 3 la 2?

Observaţie

- Este suficient să considerăm în ordonarea topologică doar vârfurile accesibile din s
- În exemplu fără 1 și 6

Complexitate

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
             daca d[u]+w(u,v)<d[v] atunci //relaxam uv</pre>
                   d[v] = d[u] + w(u,v)
                   tata[v] = u
scrie d, tata
```

Complexitate

- Iniţializare
- Sortare topologică
- m * relaxare uv

$$-> O(m+n)$$

$$O(m + n)$$

Corectitudine

 Algoritmul funcționează corect și dacă există arce cu cost negativ - Inducție după numărul de iterații

Când algoritmul ajunge la vârful u avem

Varianta 2 de demonstrație - similar Dijkstra

Fie P s-u drum minim și x predecesorul lui u pe acest drum.

x este înaintea lui u în SortTop => (ip. inducție)

$$d[x] = \delta(s; x) = w([s P x])$$

după relaxarea arcului xu avem:

$$d[u] \le d[x] + w(xu) = w([s \underline{P} x]) + w(xu) =$$

$$= w([s \underline{P} u]) = \delta(s; u)$$

Dar $\delta(s; u) \leq d[u]$ (estimare superioară) => $\delta(s; u) = d[u]$

Aplicație – Drumuri critice

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - durata fiecărei activități
 - perechi (i, j) = activitatea i trebuie să se încheie înainte să înceapă j
 - activitățile se pot desfășura și în paralel

Se cere: timpul minim de finalizare a proiectului (dacă începe la ora 0) + planificarea activităților

- n = 6
 - Activitatea 1 durata 7
 - Activitatea 2 durata 4
 - Activitatea 3 durata 30
 - Activitatea 4 durata 12
 - Activitatea 5 durata 2
 - Activitatea 6 durata 5
 - · (1, 2)
 - · (2, 3)
 - · (3, 6)
 - · (4, 3)
 - · (2, 6)
 - · (3, 5)

$$w(i,j) = ?$$

w(i,j) = durata activității i

= întârzierea minimă între începutul activității i și începutul activității j (mai general)

w(i,j) = durata activității i

= întârzierea minimă între începutul activității i și începutul activității j (mai general)

Timpul minim de finalizare a proiectului = ?

Timpul minim de finalizare a proiectului = costul maxim al unui drum de la S la T

Timpul minim de finalizare a proiectului = costul maxim al unui drum de la S la T

Drum CRITIC

- Durata minimă a proiectului = costul maxim al unui drum de la S la T
 - Drum critic = drum de cost maxim de la S la T
 - Orice întârziere în desfășurarea unei activități de pe acest drum duce la creșterea timpului de terminare al proiectului
 - PERT/CPM Program Evaluation and Review Technique / Critical Path Method

- Durata minimă a proiectului = costul maxim al unui drum de la S la T
- Timpul minim de început al unei activități u = costul maxim al unui drum de la S la u

activitatea 1: intervalul de desfășurare (0,7)

activitatea 3: intervalul de desfășurare (12, 42)

Putem modifica algoritmul de determinare de drumuri minime în grafuri aciclice a.î. să determine drumuri maxime (de cost maxim) de la S la celelalte vârfuri

- Problema este echivalentă cu a determina drumuri minime din S în graful în care înlocuim fiecare pondere w(e) cu -w(e)
- Modificăm astfel doar inițializarea distanțelor (cu -∞ în loc de + ∞) și inversam condiția de la relaxarea arcelor pentru a calcula maxim în loc de minim
- Corectitudine rezultă din corectitudinea algoritmului pentru drumul minim

```
s - vârful de start
//initializam distante - ca la Dijkstra
pentru fiecare u∈V executa
       d[u] = -\infty; tata[u]=0
d[s] = 0
//determinăm o sortare topologică a vârfurilor
SortTop = sortare topologica(G)
pentru fiecare u ∈ SortTop
       pentru fiecare uv∈E executa
            daca d[u]+w(u,v) > d[v] atunci //relaxam uv
                   d[v] = d[u] + w(u,v)
                   tata[v] = u
scrie d, tata
```


Ordine de calcul distanțe: S, 1, 4, 2, 3, 5, 6, T

Drum critic ⇒ succesiune de activități care determină durata proiectului

- Durata minimă a proiectului: 47
- Activități critice: 4 3 6
- Intervalele de desfășurare pentru fiecare activitate:
 - 1: (0, 7)
 - 2: (7, 8)
 - 3: (12, 42)
 - 4: (0, 12)
 - 5: (12, 42)
 - 6: (42, 47)

Drumuri maxime

Putem modifica algoritmul lui Dijkstra de determinare de drumuri minime în grafuri (nu neapărat aciclice) a.î. să determine drumuri maxime (elementare) de la s la celelalte vârfuri?

Drumuri maxime

Putem modifica algoritmul lui Dijkstra de determinare de drumuri minime în grafuri (nu neapărat aciclice) a.î. să determine drumuri maxime (elementare) de la S la celelalte vârfuri

- Modificăm astfel doar inițializarea distanțelor (cu $-\infty$ în loc de $+\infty$) și inversam condiția de la relaxarea arcelor pentru a calcula maxim în loc de minim
 - Corectitudine probabil similar cu Dijkstra?!!

Temă - Drumuri de capacitate maximă

- Problemă: Într-o rețea orientată de comunicație
 - w(e) = capacitatea legăturii e (exp: lățimea de bandă, diametrul unei conducte etc)
 - Pentru un drum P
 - $w(P) = \min \{w(e) \setminus e \in E(P)\}$
 - = cantitatea de informație care se poate transmite
 de-a lungul drumui P
 - capacitatea minimă a arcelor ce îl compun (pentru ca informația să poată trece prin toate arcele drumului)

Date două vârfuri s și t, să se determine un drum de capacitate maximă de la s la t - Propuneți un algoritm bazat pe o idee similară cu cea din algoritmul lui Dijkstra. Justificați corectitudinea algoritmului propus.