L5: Building Direct Link Networks III

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

Acknowledgements

- □ Some pictures used in this presentation were obtained from the Internet
- □ The instructor used the following references
 - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
 - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010
 - James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach, 5th Ed., Addison Wesley, 2009
 - Larry L. Peterson's (http://www.cs.princeton.edu/~llp/) Computer Networks class web site

Direct Link Networks

- □ Types of Networks
 - Point-to-point
 - Multiple access

- Encoding
 - Encoding bits onto transmission medium
- **□** Framing
 - Delineating sequence of bits into messages
- Error detection
 - Detecting errors and acting on them
- **□** Reliable delivery
 - Making links appear reliable despite errors
- Media access control
 - Mediating access to shared link

Reliable Transmission

- How to make unreliable links appear to be reliable?
- What to do when a receiver detects that the received frame contains an error?

Acknowledgment and Time-Out

- Two fundamental mechanisms to make channels appear to be error-free
 - Acknowledgements (ACK)
 - Time out
- Automatic Repeat Request (ARQ)
 - Stop-and-Wait
 - Sliding Window
- □ Discuss Stop-and-Wait and Sliding Window protocols in *the context of point-to-point links*

Stop-and-Wait

- □ Sender transmits a frame
- Sender *waits* for an acknowledgement before transmitting the next frame
- □ If no acknowledgement arrives after a *time-out*, the sender times out and *retransmits* the original frame

Stop-and-Wait

9/9/2015

CSCI 445 - Fall 2015

Performance

■ Performance analysis for the stop-and-wait protocol with point-to-point links

8

Example

- □ Link bandwidth: 10 Gbps
- \square RTT = 40 ms
- \square Frame size = 1500 bytes
- □ Acknowledgement size = 64 bytes
- \square Timeout: 2 × RTT
- \square Assume processing delay is 0
- □ Stop-and-Wait protocol: receiver transmits acknowledge frame upon receiving the data frame
- □ Q: what is the **maximum** throughput (effective bandwidth)?

Throughput

Q: what is the **maximum** throughput (effective bandwidth)?

- Note: tp = p1 + p2 = 1 RTT
- Transfer time = tx1 + tx2 + tp
- □ Throughput =
 Transfer size/Transfer time
- Q: Is this a good protocol?

Timeout?

□ How long should the receiver wait?

□ Timeout: 2 x RTT or more ...

9/9/2015 CSCI 445 – Fall 2015 11

Exercise L5-1

- \Box Data frame size (data) = 1500 bytes
- \Box Acknowledgement frame size (ack) = 64 bytes
- Processing delay is 0
- □ Stop-and-Wait protocol: receiver is forced to wait 1 RTT before transmitting acknowledgement frame after having received data frame
- □ Draw timing-diagram first, and then compute throughputs and link bandwidth utilization for *one* of the following,
 - Dial-up
 - RTT = $87 \mu s$; Link bandwidth: 56 Kbps
 - Satellite
 - RTT = 230 ms; Link bandwidth: 45 Mbps

Stop-and-Wait

- Advantage
 - Simple
 - Achieve reliable transmission on non-reliable medium
- Disadvantage
 - Performance is poor
 - Could you give an *intuitive* explanation why the performance is *poor*?

Stop-and-Wait

- □ Does not keep the pipe full!
 - Q: How much data are needed to keep the pipe full?
 - Product of Delay × Link Bandwidth
 - $(1 \times RTT) \times 10 \text{ Gbps} = 1 \times 40 \text{ ms} \times 10 \text{ Gbps} = 400 \text{ Mb} = 50 \text{ MB}$
 - \circ 50 MB/1500 bytes = 33333 frames
 - 1500 bytes << the product → low link utilization

	Bandwidth	Distance		
Link Type	(Typical)	(Typical)	Round-trip Delay	$\text{Delay} \times \text{BW}$
Dial-up	56 Kbps	10 km	87 μs	5 bits
Wireless LAN	54 Mbps	50 m	0.33 μs	18 bits
Satellite	45 Mbps	35,000 km	230 ms	10 Mb
Cross-country fiber	10 Gbps	4,000 km	40 ms	400 Mb

Q: How to keep the pipe full?

How to keep the "pipe" full?

- ☐ The amount of data needed to keep the pipe full
- **□** Example
 - Link bandwidth: 10 Gbps
 - \blacksquare RTT = 40 ms
 - Stop-and-Wait protocol: receiver transmitting acknowledgement frame upon receiving data frame
 - Data frame size = 1500 bytes
- \Box Delay × Bandwidth = ?
- How many frames that needed to keep the pipe full?
- What is the throughput?

How to keep the "pipe" full?

□ Free discussion

Sliding Window Algorithm

- □ Allow multiple
 unacknowledged frames
 (send a few frames in a
 batch) → try to fill the
 pipe
- □ Define a time window (threshold, or upper bound) on unacknowledged frames
 - Sending window
 - Receiving window
- Have variations

Sliding Windows Algorithm: Sender

- Assign sequence number to each frame (SeqNum)
- Maintain three state variables:
 - Send Window Size (SWS)
 - Last Acknowledgment Received (LAR)
 - Last Frame Sent (LFS)
- Maintain invariant: LFS LAR <= SWS</p>
- Advance LAR when ACK arrives
- Buffer up to SWS frames

9/9/2015

CSCI 445 - Fall 2015

18

Sliding Windows Algorithm: Receiver

- Maintain three state variables
 - Receive Window Size (RWS)
 - Largest Acceptable Frame (LAF)
 - Last Frame Received (LFR)
- Maintain invariant: LAF LFR <= RWS</p>
- Frame_{SeqNum} arrives:
 - if LFR < SeqNum <= LAF, accept the frame
 - if SeqNum < = LFR or SeqNum > LAF, discard the frame
- □ SeqNumToAck: largest sequence number not yet acknowledged
- \square ACK is *cumulative* \rightarrow ACK all frames with less or equal SeqNum

Example: No Frame "Loss"

9/9/2015

Example: Frame "Loss"

□ Assume that sender does not have more data frame to transmit

Sliding Window Algorithm: SWS and RWS

- SWS should be determined by the product of delay × bandwidth
- □ RWS does not have to be equal to SWS
 - RWS = 1, does not buffer any frames that arrive out of order
 - RWS > SWS is meaningless, since it is impossible for more than SWS frames to arrive out of order

Examples

- Consider following sliding window algorithm
 - Caution: Parameters chosen for demos only. In reality they need to be carefully chosen. Check footnote in page 108.
 - \blacksquare Timeout = 2 × RTT
 - SWS (send window size) = 4
 - Determined by delay × bandwidth. Again check footnote in page 108.
 - RWS (receive window size) = 4
- Show timing diagrams for the following scenarios
 - Frame 5 lost
 - Frame 6 lost
 - Frames 5-8 lost
 - ACK 6 lost
 - ACK 8 lost and no more frames to send (for an extended period of time)

Sliding Window Algorithm: Implementation – Data Structures

```
typedef u char SwpSegno;
 typedef struct {
     SwpSeqno SeqNum; /* sequence number of this frame */
     SwpSegno AckNum; /* ack of received frame */
     u_char Flags; /* up to 8 bits worth of flags */
 } SwpHdr;
typedef struct {
    /* sender side state: */
    SwpSeqno LAR; /* seqno of last ACK received */
    SwpSeqno LFS; /* last frame sent */
    Semaphore sendWindowNotFull;
    SwpHdr hdr; /* pre-initialized header */
    struct sendQ_slot {
        Event timeout:
               /* event associated with send-timeout */
       Msg
               msg;
    } sendQ[SWS];
    /* receiver side state: */
    SwpSegno
               NFE:
               /* segmo of next frame expected */
    struct recv0 slot {
        int
               received; /* is msg valid? */
        Msq
             msq;
    } recv0[RWS];
} SwpState;
                           CSCI 445 - Fall 2015
```

9/9/2015

Sliding Window Algorithm: Implementation – Sending

```
static int
sendSWP(SwpState *state, Msg *frame)
    struct sendQ slot *slot;
   hbuf[HLEN];
    /* wait for send window to open */
    semWait(&state->sendWindowNotFull);
    state->hdr.SeqNum = ++state->LFS;
    slot = &state->sendQ[state->hdr.SeqNum % SWS];
    store swp hdr(state->hdr, hbuf);
   msgAddHdr(frame, hbuf, HLEN);
   msgSaveCopy(&slot->msg, frame);
    slot->timeout = evSchedule(swpTimeout, slot,
        SWP SEND TIMEOUT);
    return send(LINK, frame);
```

Sliding Window Algorithm: Implementation – Receiving (1)

```
static int
deliverSWP(SwpState state, Msg *frame)
    SwpHdr
             hdr:
    char
             *hbuf;
   hbuf = msgStripHdr(frame, HLEN);
   load_swp_hdr(&hdr, hbuf)
   if (hdr->Flags & FLAG_ACK_VALID)
        /* received an acknowledgment---do SENDER side */
        if (swpInWindow(hdr.AckNum, state->LAR + 1,
            state->LFS))
        {
            do
                struct sendQ_slot *slot;
                slot = &state->sendQ[++state->LAR % SWS];
                evCancel(slot->timeout);
                msgDestroy(&slot->msg);
                semSignal(&state->sendWindowNotFull);
            } while (state->LAR != hdr.AckNum);
    }
```

Sliding Window Algorithm: Implementation – Receiving (2)

```
if (hdr.Flags & FLAG_HAS_DATA)
    struct recvQ_slot *slot;
    /* received data packet---do RECEIVER side */
    slot = &state->recvQ[hdr.SeqNum % RWS];
    if (!swpInWindow(hdr.SeqNum, state->NFE,
                                                  if (hdr.SeqNum == state->NFE)
        state->NFE + RWS - 1))
    {
                                                      Msg m;
        /* drop the message */
        return SUCCESS;
                                                      while (slot->received)
   msgSaveCopy(&slot->msg, frame);
                                                          deliver(HLP, &slot->msg);
    slot->received = TRUE;
                                                          msgDestroy(&slot->msg);
                                                          slot->received = FALSE;
                                                          slot = &state->recv0[++state->NFE % RWS];
                                                      /* send ACK: */
                                                      prepare_ack(&m, state->NFE - 1);
                                                      send(LINK, &m);
                                                      msgDestroy(&m);
                                             return SUCCESS;
```

Exercise L5-2

- □ Draw a timeline diagram for the sliding window algorithm with SWS=RWS=3 frames in the following two situations (draw two time diagrams for each situation). Use a timeout interval of 2 × RTT
 - Frame 4 is lost
 - Frame 4-6 are lost

Discussion

- □ Alternatives or improvement
 - Negative Acknowledgement (NAK)
 - Selective Acknowledgement
- ☐ Finite sequence numbers and sliding window
- ☐ Frame order and flow control

Summary

- □ Reliable delivery
 - Timeout and Acknowledgement
- □ Stop-and-Wait
- □ Sliding Window
- □ Idea: keep the pipe full
 - Many different algorithms exist, e.g., concurrent logical channels
- How to implement?
 - Consult the book