Semiconductor Devices

Instructor: M. B. Patil, IIT Bombay Assignment for Week 2 (January 1, 2017)

1.	Consider an <i>n</i> -channel silicon JFET with $N_d=1.4\times 10^{15}\mathrm{cm^{-3}},~a=2\mu\mathrm{m},~V_\mathrm{bi}=0.8\mathrm{V},~\mu_n=1000\mathrm{cm^2/V}$ -s, $L=5\mu\mathrm{m},~\mathrm{and}~Z=50\mu\mathrm{m}.$ What is the pinch-off voltage V_P ?
	(A) -2.40 V (B) -1.65 V (C) -3.52 V (D) -1.80 V
2.	For the JFET described in Q-1, what is the device resistance in the low V_{DS} region (e.g., $V_{DS}=20\mathrm{mV}$) for $V_{GS}=-2\mathrm{V}$?
	(A) $5.7 \mathrm{k}\Omega$ (B) $2.7 \mathrm{k}\Omega$ (C) $3.5 \mathrm{k}\Omega$ (D) $4.8 \mathrm{k}\Omega$
3.	An n -channel silicon JFET is to be designed with the channel thickness in the range $0.4\mu\mathrm{m} < 2a < 1.6\mu\mathrm{m}$. The pinch-off voltage is required to be $-3.5\mathrm{V}$. What should be the minimum value of N_d ? (Assume that $V_{\mathrm{bi}} \approx 0.9\mathrm{V}$, and $T = 300\mathrm{K}$.)
	(A) $2.3 \times 10^{15} \text{ cm}^{-3}$ (B) $8.9 \times 10^{15} \text{ cm}^{-3}$ (C) $1.5 \times 10^{16} \text{ cm}^{-3}$ (D) $7.0 \times 10^{16} \text{ cm}^{-3}$
4.	For the conditions described in Q-3, What should be the maximum value of N_d ?
	(A) $1.4 \times 10^{17} \text{ cm}^{-3}$ (B) $5.5 \times 10^{17} \text{ cm}^{-3}$ (C) $8.0 \times 10^{16} \text{ cm}^{-3}$ (D) $5.0 \times 10^{16} \text{ cm}^{-3}$
5.	Consider a p-channel silicon JFET with $V_{\rm bi}=0.9{\rm V},~N_a=8\times10^{16}{\rm cm^{-3}},$ operating at $T=300{\rm K}.$ With $V_{DS}=V_{GS}=0{\rm V},$ half of the channel is depleted of holes. What is the channel thickness (2a)?
	(A) $0.16 \mu\text{m}$ (B) $0.27 \mu\text{m}$ (C) $0.36 \mu\text{m}$ (D) $0.48 \mu\text{m}$
6.	Consider an <i>n</i> -channel silicon JFET at 300 K with $Z=20\mu\text{m}$, $L=4\mu\text{m}$, $N_a=5\times 10^{18}\text{cm}^{-3}$, $N_d=6\times 10^{16}\text{cm}^{-3}$, $\mu_n=1200\text{cm}^2/\text{V-s}$, and $a=0.3\mu\text{m}$. What is V_{bi} ?
	$(n_i = 1.5 \times 10^{10} \mathrm{cm}^{-3} \mathrm{at}300\mathrm{K.})$
	(A) $0.7\mathrm{V}$ (B) $0.78\mathrm{V}$ (C) $0.84\mathrm{V}$ (D) $0.9\mathrm{V}$
7.	For the JFET described in Q-6, What is the pinch-off voltage V_P ?
	(A) $-1.50 \mathrm{V}$ (B) $-2.38 \mathrm{V}$ (C) $-3.27 \mathrm{V}$ (D) $-2.73 \mathrm{V}$
8.	For the JFET described in Q-6, what is V_{DS}^{sat} for $V_{GS} = -1 \text{ V}$?

(D) 1.90 V

(A) 2.27 V

(B) $1.57 \,\mathrm{V}$ (C) $0.75 \,\mathrm{V}$

9. For the conditions described in Q-8, what is the saturation current I_D^{sat} ?

(A) $0.58 \,\mathrm{mA}$ (B) $0.92 \,\mathrm{mA}$ (C) $1.2 \,\mathrm{mA}$ (D) $1.54 \,\mathrm{mA}$

10. For the conditions described in Q-8, what is the transconductance g_m in saturation?

(A) 5.6 mV (B) 3.48 mV (C) 1.12 mV (D) 2.25 mV

11. For the JFET described in Q-6, what fraction of the channel is undepleted (conducting) for $V_{GS} = -1 \text{ V}$ and $V_{DS} = 0 \text{ V}$?

(A) 0.54 (B) 0.17 (C) 0.25 (D) 0.33