Lecture5: Small-signal analysis

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Example 3.6 (Razavi)

An OR gate

Limiter

Level-shift for both half cycles

Simulation result

An input voltage with 3 V amplitude

4

A simple math

- Taylor series expansion
 - Consider a function, f(x).
 - Then, at $x_0 + \Delta x$ (Δx is small.), the function value would be similar to that at x_0 :

$$f(x_0 + \Delta x) \approx f(x_0)$$

– A better approximation?

$$f(x_0 + \Delta x) \approx f(x_0) + \frac{df(x)}{dx} \Big|_{x=x_0} \Delta x$$

Nonlinear function → linearly approximated!

Nonlinear system

A diode: Input V_D, output I_D

$$V_D \longrightarrow I_D = I_S \exp \frac{V_D}{V_T} \longrightarrow I_D$$

Smaller amplitude of input

- When $V_{in} = 0.6 + 0.001 \sin 2\pi f t$,
 - I_D is almost sinusoidal.

Small-signal analysis

General case

$$V_{D,DC} + \underbrace{V_{D,DC} + I_{D}}_{V_{D,AC}(t)} \longrightarrow I_{D} = I_{S} \exp \frac{V_{D}}{V_{T}} \longrightarrow I_{D,DC} + \underbrace{i_{D,AC}(t)}_{I_{D,AC}(t)}$$

- "Small-signal" case
 - When $v_{D,AC}(t)$ is small, then, the AC current is given by

$$i_{D,AC}(t) \approx I_{D,DC} \frac{v_{D,AC}(t)}{V_T}$$

$$v_{D,AC}(t) \longrightarrow I_{D,AC}(t) = I_{D,DC} \frac{v_{D,AC}(t)}{V_T} \longrightarrow i_{D,AC}(t)$$

Example3.18 (Razavi)

- A diode is biased at a current of 1 mA.
 - Determine the current change if V_D changes by 1 mV.

$$i_D = \frac{I_D}{V_T} v_D \approx 40 \mu A$$

- Small-signal resistance
 - As far as small changes in the diode current and voltage are concerned, the device behaves as a linear resistor.

$$r_d = \frac{V_T}{I_D}$$

Example3.19 (Razavi)

- When the small change in the diode voltage is time-varying,
 - What happens?

$$I_D(t) = I_S \exp \frac{V_{D,DC} + \Delta V \cos \omega t}{V_T} = I_S \exp \frac{V_{D,DC}}{V_T} \exp \frac{\Delta V \cos \omega t}{V_T}$$

$$I_D(t) \approx I_{D,DC} \left(1 + \frac{\Delta V \cos \omega t}{V_T} \right)$$

– The output current has the same frequency!

Homework#3 (1)

- Due: 09:00, March 26
- Write another program, which reads two input files.
 - One represents a square matrix, A. The first line shows the size. It
 is followed by triplets: a row index, a column index, and an entry. If
 not specified otherwise, the entry is assumed to be zero. For
 example, a 2x2 identity matrix is given by

```
21 1 1.02 2 1.0
```

- The other represents a vector, b. The first line shows the size. The
 rest of the file specifies the entries.
- The program calculates a vector, $x = A^{-1}b$.
- Data files (A.dat and b.dat) will be uploaded.

Homework#3 (2)

- Solve the following problems of the mid-term exam in 2017.
 - P1
 - P2
 - P3
 - P4
 - P5
 - P7
 - P8
 - P9