

| -> Plotkin Bound                                                              |
|-------------------------------------------------------------------------------|
| $M \leq \frac{d}{d-\theta n}, d > \theta n$ $0 \leq \frac{1-\frac{1}{q}}{q}.$ |
| $d = \frac{1}{d - \theta n}$                                                  |
| $\gamma$                                                                      |
| ailbert - Varshamov Bound                                                     |
|                                                                               |
| Previous bounds are infeasibility results.                                    |
| - Actievability                                                               |
| •                                                                             |
| Theorem Let F be a field & n, k, d be<br>the integers such that               |
| tre integers such that                                                        |
| $\frac{d-2}{\sum_{k=0}^{\infty} \binom{h-1}{k} \binom{q-1}{k}} < q^{h-k}.$    |
| $\left(\frac{1}{2}\right)^{(q-1)^{3}} < q^{-1}$                               |
| L=0                                                                           |
| In that case, there exists a linear tode                                      |
| In that case, there exists a mican rock                                       |
| over the field I such that dimin > d.                                         |
| Proof le Proof by Construction.                                               |
| - Construct a parity check matrix H.                                          |
| Cuch that any (d-1) columns of M are                                          |
| Such that any (d-1) Columns of Mare linearly independent (82d-1) => dmin > d. |
|                                                                               |
|                                                                               |

## Recursive procedure to construct H:

- 1) Pick the first Column h, to be any nonzero vector in Fn-k.
- 2) Pick the second Column hz as army non zero vector in Fr-k which is not a multiple of hi.
- 3) Suppose you have picked

  h, ... hi-1, pick his so that it is

  not contained in the span of

  any d-2 columns of hi... hi-1,

Let Vi denote the roof vectors which are in the span of any d-2 Columns of hi- hi-1.

$$\frac{V_{2} = 9/-1.}{V_{i}^{2} \cdot \sum_{j=0}^{d-2} {i-1 \choose 2} (9/-1)^{j} \cdot \sum_{j=0}^{d-2} {j-1 \choose 2} (9/-1)^{j} \cdot \sum_{j=0}^{d-2} (9/-1)^{j} \cdot \sum_{j=0}^{d-2} {j-1 \choose 2} (9/-1)^{j} \cdot \sum_{j=0}^{d-2} (9/-1)^{j} \cdot \sum_{$$

 $V_2 = 1 + (9-1)$ .

| If Vi < qn-K (say), there exists a                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| hi to be added in the its round of your                                                                                                              |
| In the thosem statement, the bondition is                                                                                                            |
| recursion.  In the theorem statement, the hondition is $\frac{d^{-2}}{2} \binom{n-1}{2} \binom{q-1}{2} \binom{q-1}{2} \binom{q-1}{2} \binom{q-1}{2}$ |
| $\frac{\sqrt{n} \times 9^{n-k}}{\sqrt{n}}$                                                                                                           |
| Based on defin of $V_1$ ; $V_1 \leq V_2 \leq \dots \leq V_n \leq Q^{n-k}$                                                                            |
| The Condition in the theorem statement                                                                                                               |
| guarantées that we are execute n rounds                                                                                                              |
| of recursion =) We can find a H matrix of                                                                                                            |
| size (n-k)×n such that any d-2 columns                                                                                                               |
| of H are linearly independent.                                                                                                                       |

## finite Fields (Poine Fields)



A field (F,+,·) is a set F. with operators of + addition & "." multiplication which salsty the following Conditions!
(F, +) -> Abelian group Commutative

-> Associative

Existence of
identity (i) + a, b ∈ F, a. b ∈ F, closure under multiplication (i) a(bc) = (ab)c - Associative (iv) Existence of 1, 1.a=a.1= a. (v) Existence of inverse -. a.a. a.a. 1.

(non zero elements)

(vi) Distributive (aw a.(b+c). a.b+ a.c.



| If p is a prime number; then                                                      |
|-----------------------------------------------------------------------------------|
| (Fp, +,.) is a finite field                                                       |
| $(\mu_{\rho}, \tau, \cdot)$                                                       |
| under + is (mod p) addition &                                                     |
| · is (mod p) multiplication                                                       |
| · · · · · · · · · · · · · · · · · · ·                                             |
| Every finite field has a size of that                                             |
| is a power of prime q=pm m=12                                                     |
| pua prime number.                                                                 |
| 2 3 4 5 6 7 8 9 10                                                                |
| 11 12 13 14 15                                                                    |
| There does not exist a finite field with                                          |
| 6, 10, 12, 14, 15 · no · of clements ·                                            |
|                                                                                   |
| Prime Fields                                                                      |
| $\overline{T}$                                                                    |
| If $\alpha \in \mathbb{F}_{p}$ , $(-\alpha) = (p-\alpha)$ $\alpha \neq 0$         |
|                                                                                   |
| Existence of multiplicative inverse for                                           |
| Existence of multiplicative inverse for every element is a montrivial property to |
| prove.                                                                            |

1) Extended Euclidean division algorithm. allows you to express the gcd as linear combination of the elements  $a, b \in \mathbb{Z}$  gcd(a,b) = an+by when Since p is a prime; If a e Fp, then g cd (a, p) = 1- = 7 we over = ax+ py: 1 = Jintegers. a.x (mod p) = 1  $a^{-1} = \chi(mod p)$ . Example: p=31, a=5, (f3, +,.). a (mod 31) = 25 25.5= 125 mod 31 (×3) + 5(-6): 1. Remainders 31 5 Qnotent.)

31 5 1 0

5 6 0 1 6

1 -6 5 Qnotest.)

Which properly of finite field does Fo not satisfy? g(d(a,p)  $\neq 1.=$ ) a may not have any inverse.

So, 1, 2, 3, 4,5}

2 does not have an inverse. Fp= o,1,2,--, p-13. All ronzero elemente in the finite field can be expressed as powers of a single element Primitive element of the first field.  $3^{0} = 1$   $3^{1} = 3$   $3^{1} = 3$   $3^{1} = 4$ 3 = 9 = 2 (mod 7) 35 = 5 3 = 1