Сборник заметок по линейной алгебре и сопряженным вопросам

Подвойский А.О.

Содержание

1	Мера обусловленности матрицы	1	
2	Линейно зависимые и линейно независимые системы 2.1 Свойства линейно зависимых и линейно независимых столбцов	2 2	
3	Система m линейных алгебраических уравнений с n неизвестными	3	
4	Теорема (правило) Крамера	3	
5	Условие совместности системы линейных уравнений. Теорема Кронекера-Капелл	ти	4
6	Общее решение системы линейных алгебраических уравнений	4	
7	Решение систем уравнений с помощью полуобратных матриц	5	
8	Псевдорешения системы линейных уравнений	6	
9	Свойства решений однородной системы	7	
10	Функциональные матрицы скалярного аргумента	7	
11	Производные скалярной функции по векторному аргументу	8	
12	Производные от векторной функции векторного аргумента	10	
13	Правила дифференциирования по векторному аргументу	10	
14	Производные матричной функции по векторному аргументу	12	
15	Линейные и квадратичные формы	12	
Cī	исок литературы	13	

1. Мера обусловленности матрицы

Мера (или число) обусловленности матрицы А определяется как [3, стр. 306]

$$\nu(A) = ||A|| \, ||A^{-1}||$$

Поскольку <u>любая</u> норма матрицы не меньше своего наибольшего по модулю собственного значения, то $\|A\|\geqslant \max |\lambda_A|$ и поскольку собственные значения матриц A и A^{-1} взаимо обратны,

$$||A^{-1}|| \geqslant \max \frac{1}{|\lambda_A|} = \frac{1}{\min |\lambda_A|}$$

Таким образом, мера обусловленности матрицы A

$$|
u(A) \geqslant \frac{\max |\lambda_A|}{\min |\lambda_A|} \geqslant 1$$

В частности, при $A = A^T$ (то есть если матрица симметричная) имеем $||A||_2 = \max |\lambda_A|$. Следовательно, в случае нормы $||\cdot||_2$

$$\nu(A) = \frac{\max |\lambda_A|}{\min |\lambda_A|}.$$

2. Линейно зависимые и линейно независимые системы

Система из k столбцов A_1, \ldots, A_k называется *линейно зависимой*, если существуют такие числа $\alpha_1, \ldots, \alpha_k$ не все равные нулю одновременно, что [1, стр. 128]

$$\alpha_1 A_1 + \alpha_2 A_2 + \dots + \alpha_k A_k = 0,$$

где о – нулевой вектор соответствующего размера.

То есть другими словами система k столбцов называется *линейно зависимой*, если эти столбцы *суммируются в нулевой столбец* для нетривиального случая коэффициентов α_i (когда эти коэффициенты не все одновременно равны нулю).

Система из k столбцов называется линейно независимой, если $\sum\limits_{j=1}^k \alpha_j A_j = o$ возможно только в тривиальном случае, т.е. когда $\alpha_1 = \alpha_2 = \ldots = \alpha_k = 0$.

2.1. Свойства линейно зависимых и линейно независимых столбцов

Замечание

Понятия линейной зависимости и линейной независимости формулируются одинаково как для строк, и так для столбцов

- Если в систему входит нулевой столбец, то она линейно зависима,
- Если в систему входит два равных столбца, то она линейно зависима,
- \circ Если в системе столбцов имеется два пропорциональных столбца $A_i = \lambda A_j$, то она линейно зависима,
- Любые столбцы, входящие в линейно независимую систему, образуют линейно независимую подсистему,
- о Система столбцов, содержащая линейно зависимую подсистему, сама линейно зависима,
- \circ Если система столбцов A_1, \ldots, A_k линейно независима, а после присоединения к ней столбца A оказывается линейно зависимой, то столбец A можно разложить по столбцам A_1, \ldots, A_k и притом единственным образом, т.е. коэффициенты определяются однозначно.

3. Система m линейных алгебраических уравнений с n неизвестными

Матричная запись неоднородной системы уравнений имеет вид

$$Ax = b$$
,

а однородной

$$Ax = o$$

где o в правой части обозначает нулевой столбец размеров $m \times 1$.

Эту матричную запись неоднородной системы уравнений можно представить в эквивалентной форме

$$\begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} x_1 + \begin{pmatrix} a_{12} \\ \vdots \\ a_{m2} \end{pmatrix} x_2 + \ldots + \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} x_n = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Тогда решение системы представляется столбцом

$$x = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

и удовлетворяте равенству

$$\begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} \alpha_1 + \begin{pmatrix} a_{12} \\ \vdots \\ a_{m2} \end{pmatrix} \alpha_2 + \ldots + \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} \alpha_n = \begin{pmatrix} b_1 \\ \vdots \\ b_m, \end{pmatrix}$$

т.е. столбец свободных членов b является линейной комбинацией столбцов матрицы системы.

4. Теорема (правило) Крамера

Система называется **совместной**, если она имеет *хотя бы одно решение*. Система называется **несовместной**, если она *не имеет ни одного решения*.

Если определитель $\Delta = \det A$ матрицы системы n линейный независимых уравнений с n неизвестными отличен от нуля $(\det A \neq 0)$, то система имеет $e\partial uncmbehnoe$ решение, которое находится по формулам

$$x_i = \frac{\Delta_i}{\Delta}, \ i = 1, \dots, n, \quad (\Delta = \det A \neq 0),$$

где Δ_i — определитель матрицы, полученной из матрицы системы $A=[a_{ij}]_{i,j=1}^n$ заменой i-ого столбца столбцом свободных членов.

ЗАМЕЧАНИЕ: на практике при больших n правило Крамера не применяется!

Если $\Delta=0$ (матрица коэффициентов системы вырождена) и хотя бы один определитель $\Delta_i\neq 0$, то система *несовместна*, т.е. не имеет ни одного решения. Если же $\Delta=\Delta_1=\Delta_2=\ldots,\Delta_n=0$,

то возможны два случая: либо система несовместна (не имеет ни одного решения), либо система имеет бесконечно много решений [1, стр. 188].

5. Условие совместности системы линейных уравнений. Теорема Кронекера-Капелли

Рассмотрим систему m линейных уравнений с n неизвестными. Составим блочную матрицу, приписав к матрице A справа столбец свободных членов b. Получим расширенную матрицу системы

$$(A \mid b) = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ a_{21} & \dots & a_{2n} & b_2 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

Эта матрица содержит всю информацию о системе уравнений, за исключением обозначений неизвестных.

 $Teopema\ Kponekepa-Kanennu.$ Система $Ax=b\ coemecmna$ (т.е. имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы $\operatorname{rg} A=\operatorname{rg}(A\mid b).$

Если $\operatorname{rg} A \neq \operatorname{rg}(A \mid b)$, то система несовместна – не имеет решений.

Если система имеет решение, то столбец свободных членов есть линейная комбинация столбцов матрицы системы. Поэтому при вычеркивании столбца b из расширенной матрицы $(A \mid b)$ ее ранг не изменяется. Следовательно, $\operatorname{rg}(A \mid b) = \operatorname{rg} A$.

ЗАМЕЧАНИЕ: теорема Кронекера-Капелли дает лишь критерий существования решения системы, но не указывает способа отыскать этого решения.

6. Общее решение системы линейных алгебраических уравнений

Неизвестные, которым соответствуют столбцы, входящие в базисный минор, называются *базисными переменными*, остальные неизвестные – *свободными переменными*.

Общее решение системы, выржающее базисные переменные через свободные, имеет вид [1, стр. 192]

$$\begin{cases} x_1 = b'_1 - a'_{1,r+1}x_{r+1} - \dots - a'_{1,n}x_n, \\ \dots \\ x_r = b'_r - a'_{r,r+1}x_{r+1} - \dots - a'_{r,n}x_n, \end{cases}$$

где x_1, x_2, \ldots, x_r – базисные переменные; $x_{r+1}, x_{r+2}, \ldots, x_n$ – свободные переменные.

Частное решение системы – решение системы, получающееся из общего решения, заданием конкретных значений свободными переменным.

Пусть x – решение неоднородной системы. Тогда любое решение x неоднородной системы можно представить в виде $x = x^{\rm H} + x^{\rm o}$, где $x^{\rm o}$ – решение однородной системы.

Говорят, что *общее решение* неоднородной системы есть сумма *частного решения* неоднородной системы и *общего решения* соответствующей однородной системы [1, стр. 200]

$$x = x^{\mathrm{H}} + C_1 \varphi_1 + C_2 \varphi_2 + \ldots + C_{n-r} \varphi_{n-r}.$$

7. Решение систем уравнений с помощью полуобратных матриц

Требуется решить систему линейных уравнений

$$Ax = b$$
.

где A – произвольная матрица размера $m \times n$.

Если матрица системы нулевая A=O, то система либо несовместна (при b=o), либо имеет бесконечное множество решений (при b=o любой подходящий по размерам столбец x является решением). Далее рассматривается случай ненулевой матрицы A.

Пусть A^{-1} — матрица, полуобратная к матрице системы A. Используя определение полуобратной матрицы, неоднородную систему Ax = b можно переписать так

$$AA^{\neg 1}Ax = b.$$

Если x – решение системы, то подставляя Ax = b в левую часть последнего соотношения

$$AA^{\neg 1}Ax = b, \quad \to \quad AA^{\neg 1}b = b.$$

Тогда

$$(E_m - AA^{-1})b = o.$$

Это необходимое и достаточное условие совместности системы.

Решением системы будет $x=A^{\neg 1}b$. Но поскольку *полуобратная матрица* определена *неоднозначно*, то эта формула фактически задает множество решений системы. Преобразуем так, чтобы была видна структура этого множества, в частности, выявим количество независимых параметров

$$A_0^{-1} = T\Lambda^T S = T \left(\begin{array}{c|c} E_r & O \\ \hline O & O \end{array} \right) S,$$

где S и T — элементарные матрицы порядков n и m соответственно, Λ — матрица простейшего вида, эквивалентная матрице A ($\Lambda \sim A$), rg A.

Теорема о совместности неоднородной системы и о структуре ее общего решения. Неоднородная система Ax=b совместна тогда и только тогда, когда столбец свободных членов является решением однородной системы $\Psi b=o$. Если система Ax=b совместна, то ее общее решение имеет вид [1, стр. 205]

$$x = x^{\mathrm{H}} + x^{\mathrm{o}} = A_0^{-1} b + \Psi c = T \left(\begin{array}{c|c} E_r & O \\ \hline O & O \end{array} \right) S \, b + T \left(\begin{array}{c|c} O \\ \hline E_{n-r} \end{array} \right) c, \quad \Psi = \left(\begin{array}{c|c} O & E_{m-r} S \end{array} \right),$$

где T, S – элементарные преобразующие матрицы, $c = (C_1 \dots C_{n-r})^T$ – столбец произвольных постоянных.

Алгоритм применения полуобратной матрицы:

- 1. Привести матрицу A системы Ax = b к простейшему виду: $\Lambda = SAT$. При этом находятся элементраные преобразующие матрицы S и T, а также ранг $r = \operatorname{rg} A \geqslant 1$.
- 2. Проверить условие совместности системы $\Psi b = o$. При r = m система совместна. Если r < m, то составить матрицу $\Psi = (O \mid E_{m-r}) S$ и проверить условие $\Psi b = o$. Если условие выполняется, то система совместна. В противном случае система несовместна и процесс решения заканчивается.
- 3. Найти частное решение неоднородной системы по формуле

$$x^{\mathrm{H}} = A_o^{-1} b = T \left(\begin{array}{c|c} E_r & O \\ \hline O & O \end{array} \right) S b$$

4. Составить фундаментальную матрицу

$$\Phi = T\left(\frac{O}{E_{n-r}}\right)$$

5. Записать общее решение системы в виде

$$x = x^{\mathrm{H}} + \Phi c,$$

где $c = (C_1 \dots C_{n-r})^T$ – столбец произвольных постоянных.

8. Псевдорешения системы линейных уравнений

Система m линейных алгебраических уравнений с n неизвестными Ax = b может иметь единственное решение, бесконечно много решений или вообще не иметь решений. Нужно изменить понятие решения так, чтобы любая система линейных уравнений имела бы единственное в некотором смысле «решение».

Поставим каждому столбцу в соответсвие неотрицательное действительное число, а именно норму (модуль)

$$|x| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}.$$

 $\Pi ceedope meние м$ системы линейных уравнений называется наименьший по норме столбец \tilde{x} среди всех столбцов, минимизирующих величину |Ax-b|.

ЗАМЕЧАНИЕ: любая система имеет единственное псевдорешение [1, стр. 209]

$$\tilde{x} = A^{\sim 1}b$$
,

где $A^{\sim 1}$ – псевдообратная матрица для матрицы системы.

Понятие псевдорешения позволяет обойти не только факт неединственности, но и факт несуществования решений.

Если система несовместна, то псевдорешение \tilde{x} обеспечивает наименьшую величину погрешности $\varepsilon(x) = |Ax - b|$.

Если система совместна, то псевдорешение \tilde{x} является ее решением, т.е. $\varepsilon(\tilde{x})=0$, причем наименьшим по норме.

Алгоритм нахождения псевдорешения неоднородной системы:

- 1. Найти псевдообратную матрицу $A^{\sim 1}$.
- 2. Найти псевдорешение $\tilde{x} = A^{\sim 1}b$.

ЗАМЕЧАНИЕ: *полуобратная* матрица определена <u>неоднозначно</u> и потому задает не конкретное решение, а *множество решений* системы. *Псевдорешение*, полученное с помощью псевдообратной матрицы, всегда вычисляется в *конкретное решение*.

9. Свойства решений однородной системы

Общее решение однородной системы Ax = o имеет вид [1, стр. 194]

$$\begin{cases} x_1 = -a'_{1,r+1}x_{r+1} - \dots - a'_{1,n}x_n, \\ \dots \\ x_r = -a'_{r,r+1}x_{r+1} - \dots - a'_{r,n}x_n. \end{cases}$$

Некоторые свойства:

- \circ Если столбцы $\varphi_1, \varphi_2, \dots, \varphi_k$ решения однородной системы уравнений, то любая их линейная комбинация $\alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \dots + \alpha_k \varphi_k$ также является решением однородной системы,
- \circ Если ранг матрицы однородной системы равен r, то система имеет (n-r) линейно независимых решений.

Любая совокупность (n-r) линейно независимых решений $\varphi_1, \varphi_2, \dots, \varphi_{n-r}$ однородной системы называется $\phi y H \partial a M e H man h h o i cucme mo i pewehu i.$

Теорема об общем решении однородной системы. Если $\varphi_1, \varphi_2, \dots, \varphi_{n-r}$ – фундаментальная система решений однородной системы уравнений, то столбец

$$x = C_1 \varphi_1 + C_2 \varphi_2 + \ldots + C_{n-r} \varphi_{n-r} \tag{1}$$

при любых значениях произвольных постоянных $C_1, C_2, \ldots, C_{n-r}$ также является решением системы Ax = o, и, наоборот, для каждого решения x этой системы найдутся такие значения произвольных постоянных $C_1, C_2, \ldots, C_{n-r}$, при которых это решение x удовлетворяет равенству (1).

10. Функциональные матрицы скалярного аргумента

 Φ ункциональной матрицей скалярного аргумента t называется матрица, элементы которой являются функциями независимой переменной t

$$A(t) = \left[a_{ij}(t) \right]_{i,j=1}^{m,n}$$

Производная функциональной матрицы

$$\frac{dA(t)}{dt} = \left[\frac{da_{ij}(t)}{dt}\right]_{i,j=1}^{m,n}.$$

Производная обратной матрицы (если она существует)

$$\frac{dA^{-1}(t)}{dt} = -A^{-1}(t) \frac{dA(t)}{dt} A^{-1}(t).$$

Производная определителя квадратной матрицы A(t) n-ого порядка

$$\frac{d}{dt}\det A(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}(t) \frac{da_{ij}(t)}{dt} = \operatorname{tr}\left[A^{+}(t) \frac{dA(t)}{dt}\right],$$

где $A_{ij}(t)$ – алгебраическое дополнение элемента $a_{ij}(t)$ матрицы A(t); $A^+(t)$ – присоединенная матрица.

11. Производные скалярной функции по векторному аргументу

Рассмотрим скалярную (числовую) функцию нескольких переменных $f(x_1, x_2, ..., x_n)$. Упорядоченный набор переменных $x_1, x_2, ..., x_n$ будем называть векторным аргументом этой функции.

 Π ервый дифференциал функции $f(x)=f(x_1,x_2,\ldots,x_n)$ имеет вид

$$df(x) = \frac{\partial f(x)}{\partial x_1} dx_1 + \frac{\partial f(x)}{\partial x_2} dx_2 + \ldots + \frac{\partial f(x)}{\partial x_n} dx_n.$$

Сумму в правой части можно представить как произведение строки $\frac{df(x)}{dx} = \left(\frac{\partial f(x)}{\partial x_1} \dots \frac{\partial f(x)}{\partial x_n}\right)$ на столбец $dx = (dx_1 \dots dx_n)^T$, либо как произведение строки dx^T на столбец $dx = \frac{df(x)}{dx^T} = \left(\frac{df(x)}{dx}\right)^T$. Так как первый дифференциал df(x) – это одноэлементная матрица (а одноэлементая матрица

совпадает со своей транспонированной), то $df(x) = \left(df(x)\right)^T$ 1×1 1×1

$$df(x) = \frac{df(x)}{dx} dx \atop 1 \times n dx = \left(\frac{df(x)}{dx} dx\right)^T = dx^T \left(\frac{df(x)}{dx}\right)^T = dx^T \frac{df(x)}{dx}.$$

Второй дифференциал функции имеет вид

$$d^{2}f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}} dx_{i} dx_{j}.$$

Обозначим через $\frac{d^2f(x)}{dx^Tdx} = \left[\frac{\partial^2f(x)}{\partial x_i^2\partial x_j^2}\right]_{i,j=1}^n$ квадратную матрицу частных производных второго порядка (матрицу Гессе). Определитель матрицы Гессе называется гессианом.

Тогда можно переписать

$$d^{2}f(x) = dx \operatorname{T} \frac{d^{2}f(x)}{dx^{T}dx} dx \underset{n \times n}{dx}.$$

Для скалярной функции скалярного аргумента второй дифференциал будет иметь вид

$$d^2 f(x) = \frac{d^2 f(x)}{dx^2} dx^2.$$

Для записи производных можно использовать символические векторы (столбцы или строки)

$$\nabla = \frac{d}{dx} = \left(\frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_n}\right), \quad \nabla^T = \frac{d}{dx^T} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix}.$$

При этом дифференциирование функции формально записывается как как умножение функции на символический вектор производных. Например, градиент функции есть произведение вектора ∇ на функцию f(x)

$$\nabla f(x_1, \dots, x_n) = \left(\frac{\partial f}{\partial x_1} \dots \frac{\partial f}{\partial x_n}\right),$$

$$\nabla^T \nabla_{n \times 1} \nabla_{1 \times n} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \dots \\ \frac{\partial}{\partial x_n} \end{pmatrix} \left(\frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_n}\right) = \left[\frac{\partial^2}{\partial x_i \partial x_j}\right]_{i,j=1}^n.$$

Найти первую и вторую производные сложной функции $g(t) = f(x_1(t), \dots, x_n(t))$, применяя матричные обозначения.

Находим производные функции, заменяя суммирование операциями умножения соответствующих матриц. Первая производная

$$\frac{dg(t)}{dt} = \frac{d}{dt} \Big(f(x_1(t), \dots, x_n(t)) \Big) = \sum_{i=1}^n \frac{\partial f(x(t))}{\partial x_i} \cdot \frac{dx_i(t)}{dt} = \frac{df(x(t))}{dx} \cdot \frac{dx(t)}{dt}$$

В случае скалярной функции скалярного аргумента первая производная от функции g(x) будет выглядеть так же.

Вторая производная скалярной функции векторного аргумента

$$\frac{d^2g(t)}{dt^2} = \sum_{j=1}^n \sum_{i=1}^n \frac{\partial^2 f(x(t))}{\partial x_j \partial x_i} \cdot \frac{dx_i(t)}{dt} \cdot \frac{dx_j(t)}{dt} + \sum_{i=1}^n \frac{\partial f(x(t))}{\partial x_i} \cdot \frac{dx_i^2}{dt^2} = \dots$$

$$\dots = \left(\frac{dx(t)}{dt}\right)^T \frac{d^2 f(x(t))}{dx^T dx} \cdot \frac{dx(t)}{dt} + \frac{df(x(t))}{dx} \cdot \frac{d^2 x(t)}{dt^2}.$$

В случае скалярной функции скалярного аргумента вторая производная будет выглядеть так

$$\frac{d^2g(t)}{dt^2} = \frac{d^2f(x(t))}{dx^2} \left(\frac{dx(t)}{dt}\right)^2 + \frac{df(x(t))}{dx} \cdot \frac{d^2x(t)}{dt^2}.$$

Выражения для первой производной совпадают, а для второй производной – отличаются незначительно, причем полное совпадение будет, если учесть, что $x^T=x$ для cкалярной величины x.

12. Производные от векторной функции векторного аргумента

Пусть задан столбец

$$f(x) = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{pmatrix}$$

функций нескольких переменных (говорят, что задана вектор-функция векторного аргумента). Первый дифференциал вектор-функции имеет вид

$$df(x) = \begin{pmatrix} df_1(x_1, \dots, x_n) \\ \vdots \\ df_m(x_1, \dots, x_n) \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n \frac{\partial f_1(x_1, \dots, x_n)}{\partial x_j} dx_j \\ \vdots \\ \sum_{j=1}^n \frac{\partial f_m(x_1, \dots, x_n)}{\partial x_j} dx_j \end{pmatrix} = \sum_{j=1}^n \begin{pmatrix} \frac{\partial f_1(x)}{\partial x_j} \\ \vdots \\ \frac{\partial f_m(x)}{\partial x_j} \end{pmatrix} dx_j$$

Обозначим через

$$\frac{df(x)}{dx} = \begin{pmatrix} \frac{\partial f_1(x)}{\partial x_1} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \cdots & \frac{\partial f_m(x)}{\partial x_n} \end{pmatrix} = \left[\frac{\partial f_i(x)}{\partial x_j} \right]_{i,j=1}^{m,n}$$

матрицу частных производных первого порядка заданных функций (матрицу Якоби).

Тогда выражение для первого дифференциала можно записать в виде $df(x)=\frac{df(x)}{dx}dx$, т.е. $\frac{df(x)}{dx}$ — производная вектор-функции векторного аргумента. Как и в случае с аргументом x, упорядоченный набор функций можно считать не матрицей-

Как и в случае с аргументом x, упорядоченный набор функций можно считать не матрицейстолбцом, а матрицей-строкой $(f(x))^T$. Этот случай сводится к предыдущему, учитывая, что операции дифференциирования и транспонирования можно выполнять в любом порядке, так как $d(f^T) = (df)^T$. Тогда из равенства $df = \frac{df}{dx} dx$ получаем $df^T = (dx)^T \left(\frac{df}{dx}\right)^T = (dx)^T \frac{df^T}{dx^T}$, где

$$\left(\frac{df(x)}{dx}\right)^{T} = \frac{df^{T}}{dx^{T}} = \begin{pmatrix} \frac{\partial f_{1}(t)}{\partial x_{1}} & \cdots & \frac{\partial f_{m}(x)}{\partial x_{1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{1}(x)}{\partial x_{n}} & \cdots & \frac{\partial f_{m}(x)}{\partial x_{n}} \end{pmatrix}$$

транспонированная матрица Якоби вектор-функции векторного аргумента.

13. Правила дифференциирования по векторному аргументу

Векторный аргумент x, его приращение dx считаем вектор-столбцами размеров $n \times 1$.

Первый дифференциал скалярной функции векторного аргумента $f(x_1,\ldots,x_n)$ (одноэлементная матрица) имеет вид

$$df = \frac{df}{dx} dx = dx^T \frac{df}{dx^T},$$

где $\frac{df}{dx} = \left(\frac{df}{dx_1} \dots \frac{df}{dx_n}\right)$ – градиент функции, а $\left(\frac{df}{dx}\right)^T = \frac{df}{dx^T}$, так как функция скалярная. Второй дифференциал скалярной функции векторного аргумента $f(x_1, \dots, x_n)$

$$d^2f = dx^T \frac{d^2f}{dx^T dx} dx,$$

где
$$\frac{d^2f}{dx^Tdx}=\left[\frac{\partial^2f(x)}{\partial x_i\partial x_j}\right]_{i,j=1}^n$$
 – матрица Гессе.

Первый дифференциал вектор-функции векторного аргумента (вектора-столбца) f(x) имеет вид

$$df = \frac{df(x)}{dx}dx,$$

где $\frac{df(x)}{dx}$ — матрица Якоби.

Первый дифференциал вектора-строки

$$(df)^T = d(f^T) = dx^T \frac{df^T}{dx^T}.$$

В частном случае, когда $f(x_1,\ldots,x_n)=(x_1,\ldots,x_n)$, получаем

$$\frac{dx}{dx} = E, \quad \frac{dx^T}{dx^T} = E,$$

где E – единичная матрица n-ого порядка.

Числовую матрицу C соответствующих размеров можно выносить за знак производной

$$\frac{d(Cf)}{dx} = C \frac{df}{dx}, \quad \frac{d(f^TC)}{dx^T} = \frac{df^T}{dx^T} C$$

Производные суммы, разности и произведения вектор-функций векторного аргумента u(x) и v(x) одинаковых размеров $m\times 1$

$$\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}, \quad \frac{d(u-v)}{dx} = \frac{du}{dx} - \frac{dv}{dx},$$
$$\frac{d(u^Tv)}{dx} = u^T \frac{dv}{dx} + v^T \frac{du}{dx}, \quad \frac{d(u^Tv)}{dx^T} = \frac{du^T}{dx^T}v + \frac{dv^T}{dx^T}u.$$

Производная сложной функции z(y(x)), где $z=z(y)=\begin{pmatrix} z_1(y)\\ \vdots\\ z_k(y) \end{pmatrix}$ и $y=y(x)=\begin{pmatrix} y_1(x)\\ \vdots\\ y_m(x) \end{pmatrix},$

вычисляется по формуле $\frac{dz(y(x))}{dx} = \frac{dz(y(x))}{dy} \frac{dy(x)}{dx}$ или, опуская аргументы, $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$.

След матрицы Якоби (при m=n) определяет дивергенцию

$$\operatorname{div} f = \operatorname{tr} \frac{df}{dx} = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i},$$

где f(x) – векторная функция векторного аргумента.

14. Производные матричной функции по векторному аргументу

Рассмотрим функциональную матрицу A(x), элементами которой служат скалярные функции $a_{ij}(x)$ векторного аргумента x. То есть такая матрица представляет собой трехмерную сущность, в которой на пересечении строки и столбца стоит скалярная функция, имеющая «глубину» в виде вектора аргументов.

Первый дифференциал этой функции

$$dA(x) = \sum_{i=1}^{n} \frac{\partial A(x)}{\partial x_i} dx_i,$$

где $\frac{\partial A(x)}{\partial x_i}$ — частная производная матрицы по одной переменной.

Совокупность частных производных (градиент функциональной матрицы) представляет собой объект, элементы которого $\frac{\partial a_{ij}(x)}{\partial x_k}$ нумеруются тремя индексами: номер строки, номер столбца и номер переменной дифференциирования. Поэтому заменить операцию суммирования в правой части формулы операцией умножения матриц в данном случае не представляется возможным. Необходимо вводить тензоры и операции над ними.

Элементы матрицы $A=(a^i_j)$ обозначаются a^i_j , где i – номер строки, а j – номер столбца. В частности, $x=(x^i)$ – столбец, а $y=(y_j)$ – строка.

Частную производную функции F(x) (склалярной, векторной или матричной), то по ним производится суммирование (хотя знак суммы не указывается). Например, если $A=(a_j^i)$ – матрица размеров $m\times n, \ x=(x^j)$ – столбец размеров $n\times 1, \ y=(y_i)$ – строка размеров $1\times m$, то

$$a_j^i x^j = \sum_{j=1}^n a_j^i x^j, \quad a_j^i y_i = \sum_{i=1}^m a_j^i y_i, \quad a_j^i x^j y_i = \sum_{i=1}^m \sum_{j=1}^n a_j^i x^j y_i,$$

т.е. $a^i_j x^j - i$ -ый элемент столбца $Ax; a^i_j y_i - j$ -ый элемент строки $yA; a^i_j x^j y_i$ – число yAx. Применяя эти соглашения, запишем дифференциалы

$$df = f_{(i)}dx^{i}, \quad d^{2}f = f_{(i)(j)}dx^{i}dx^{j},$$
$$df^{i} = f_{(j)}^{i}dx^{j},$$
$$df_{j}^{i} = f_{j(k)}^{i}dx^{k},$$

где $f^i_{j(k)} = \frac{\partial f^i_j}{\partial x^k}$ — частная производная первого порядка элемента f^i_j функциональной матрицы F по переменной x^k .

15. Линейные и квадратичные формы

Многочлен первой степени от n переменных x_1,\ldots,x_n называется выражением вида

$$p_1(x) = c_1x_1 + c_2x_2 + \ldots + c_nx_n + c_0$$

где c_0, c_1, \ldots, c_n – коэффициенты многочлена (предполагается, что среди коэффициентов есть отличные от нуля); коэффициент c_0 называется свободным членом. Многочлен перовой степени

называется однородным, если $p_1(\lambda x) = \lambda p_1(x)$ для любого числа λ (это возможно только когда $c_0 = 0$).

 \mathcal{J} инейной формой переменных x_1,\ldots,x_n называется однородный многочлен первой степени

$$g(x) = \sum_{i=1}^{n} c_i x_i,$$

где $\{c_i\}_{i=1}^n$ – коэффициенты линейной формы.

Составляя из коэффициентов строку $c = (c_1 \dots c_n)$, а из переменных – столбец $x = (x_1 \dots x_n)^T$, линейную форму можно записать в виде

$$q(x) = cx$$
.

Многочлен второй степени от n переменных x_1, \ldots, x_n называется выражение

$$p_2(x) = \sum_{i=1}^n \sum_{j=1}^m a_{ij} x_i x_j + \sum_{i=1}^n b_i x_i + c_0,$$

где числа a_{ij}, b_i, c_0 – коэффициенты многочлена: a_{ij} – страшие коэффициенты; b_i – коэффициенты линейных членов; c_0 – свободный член.

Многочлен второй степени называется однородным, если $p_2(\lambda x) = \lambda^2 p_2(x)$ (это возможно только когда $b_1 = b_2 = \ldots = b_n = 0, c_0 = 0$).

 $Kea \partial pamuчной формой$ переменных x_1, \dots, x_n называется однородный многочлен второй степени

$$q(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j, \quad a_{ij} = a_{ji}.$$

Симметрическая матрица $A = (a_{ij})$, составленная из коэффициентов квадратичной формы, называется матрицей квадратичной формы.

Квадратичная форма называется *вырожденной*, если ее матрица вырожденая $(\operatorname{rg} A < n)$, в противном случае, когда матрица невырожденная $(\operatorname{rg} A = n)$, квадратичная форма называется невырожденной.

Составляя из переменных столбец $x=(x_1\dots x_n)^T$, квадратичную форму можно записать в виде

$$q(x) = x^T A x.$$

Список литературы

- 1. Бортаковский А.С. Линейная алгебра в примерах и задачах. М.: Высш. шк., 2005. 591 с.
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1972. 368 с.
- 3. Бахвалов Н. С. Численные методы. М.: Лаборатория Базовых Знаний, 2000. –624 с.
- 4. Лагутин М.Б. Наглядная математическая статистика. М.: БИНОМ, 2009. 472 с.
- 5. *Кобзаръ А.И*. Прикладная математическая статистика. Для инженеров и научных работников. М.: ФИЗМАТЛИТ, 2012.-816 с.