VM501ML 规格书

简介

VM501ML 是稳控科技系列化振弦测读模块的小体积版本,外形尺寸不足一枚硬币大小,高集成度、高测量精度,UART 和 I2C 数字通讯接口、频率转模拟信号输出以及智能频率获取 SFC、远距离两线测温 LDC 等核心技术一应俱全,灵活的测量参数和广泛的传感器兼容性。所有这些特性,使 VM501ML 特别适用于嵌入到振弦类自动化仪器仪表内部,减少研发成本、缩短研发周期。

主要特性

■ **小体积:** 24.5mm x 17.0mm

■ 低功耗:

休眠电流: <1.5mA@DC3.3V 工作电流: <35mA@DC3.3V

■ 工业温度: -40~80℃

■ 数字接口:

RS232,通讯速率 1200⁹21600bps I2C,通讯速率 400kHz MODBUS 通讯协议。 I2C 地址可配置

■ 测频特性

频率范围: 100~8000Hz, 可自由定义范围精度: 优于 0.05Hz 测频方法: 专利技术 SFC 扫频^①

■ 测温特性:

温度传感器类型: 两线制 18B20^①、NTC1[~]10k

测温距离: >800 米

温度范围: -25~220℃@3kNTC

测温精度: 优于 0.3℃

测温方法:智能线阻校正 LDC

■ 其它特性:

信号幅值、信号质量显示、谐振倍频检测,信号噪声评估、信号波形输出;频率→模拟信号输

■ 环境湿度: <90%

■ **封装:** 2.0mm 间距半孔 28P

①固件版本 SF3. 50 专有, SF3. 33 无此功能

外形尺寸

24.5mm x 17.0mm

引脚定义

序号	名称	说明				
1	S+	振弦传感器线圈正/负极接入				
2	S-	测灯公尺:100 亩 5人 四 11. / 贝仅按八				
3	TMP	温度传感器正极接入①				
4	DAO	频率转电压信号输出				
5	SIG	频率信号质量指示输出,高电平表示信号优良				
6	NC	预留功能扩展, 应保持悬空				
7	GND	电源负极				
8	VDD	工作电源正极,DC3.3V				
9	NC	预留功能扩展, 应保持悬空				
10	NC	预留功能扩展, 应保持悬空				
11	NC	预留功能扩展, 应保持悬空				
12	NC	预留功能扩展, 应保持悬空				
13	NC	预留功能扩展,应保持悬空				
14	VSEN	振弦传感器激励电压输入,建议 DC5~12V				
15	GND	电源负极				
16	TXD	UART 发送引脚				
17	RXD	UART 接收引脚				
18	NC	预留功能扩展, 应保持悬空				
19	NC	预留功能扩展,应保持悬空				
20	485CR	UART 发送指示,可用于控制 RS485 芯片收发引脚				
01	SDA/RST	I2C 接口 SDA, 需要外接 2k~4.7k 上拉电阻				
21		开机时为参数复位功能,低电平有效				
22	RUN	运行状态指示,高电平表示"正忙"				
23	NC	预留功能扩展,应保持悬空				
24	NC	预留功能扩展,应保持悬空				
25	GND	电源负极				
26	SCL	I2C 接口 SCL,需要外接 2k~4.7k 上拉电阻				
27	NC	预留功能扩展,应保持悬空				
28	NC	预留功能扩展,应保持悬空				
注①: 温	度传感器的负极	接任意 GND 即可。				

绝对最大值/标准值

参数	条件(备注)	最小值 ^①	典型值	最大值 ^①	单位
环境温度		-40		85	$^{\circ}$
储存温度		-65		150	\mathbb{C}
V _{SEN}		-0.3	5. 0	12	V
V_{DD}		-0.3	3. 3	4.0	V
V _{1/0}		-0.3		VDD+0.3	V

特性与指标

测试条件: 室温 25°C, V_{DD} =3.3V, V_{SEN} =8.5V,传感器 1300Hz,线圈电阻 500 Ω

参数	条件/说明	最小值	典型值	最大值	単位
	电源				
	空闲	22	25	31	mA
$\mathbf{I}_{ exttt{TOTAL}}$	忙		125	135	mA
	休眠	1. 1	1. 25	1.5	mA
	频率测量	t			
频率分辨率	@1000Hz	0.02			Hz
频率测量范围		100		8000	Hz
扫频输出精度				0.05	%
扫频电压			8. 5	12	V
随机读数误差 (标准信号)	30~12000Hz	± 0.001		± 0.01	Hz
频率绝对误差 (标准信号)	300~6000Hz		± 0.05	± 0.15	Hz
重复性				0.01	Hz
And destinate who	首次		2. 2 ^①		秒
测频速度	追踪重测		0.5		秒
11. A4 11. H. 17.44	输出电压范围	0.05		VDD	V
模拟电压输出	电压稳定性		0.1	0.15	%
	温度传感	器		'	
温度分辨率			0.1		$^{\circ}$ C
温度测量范围	3kNTC	-25		220	$^{\circ}$
随机读数误差			0.05		$^{\circ}$
温度测量精度			0.3	1.0	${\mathbb C}$
	NTC		2000		米
测量距离	18B20@两线制(SF3. 50)		800	1200	米
	其它				
UART 通讯速率		1200	9600	921600	bps
IIC 通讯速率		100	400	500	KHz
①: 固件 SF3.50	,激励方法为"SFC 扫频"。				