Event Study

Question: Whether an economic event has immediately impact on the asset price.

Outline:

- I. Event Definition
- 2. Selection Criteria
- 3. Normal and Abnormal Returns
- 4. Estimation Procedure
- 5. Hypothesis Testing Procedure
- 6. Cross-sectional Models
- 7. Interpretation and Conclusions

Event Study – Example

Impacts of Stock Repurchase on Stock Price RQ: Whether stock repurchase announcement have any impacts on stock return.

Objectives:

- I. To reveal the <u>existence</u> of <u>abnormal return</u> of the stock before, during, and after the announcement of stock repurchase.
- 2. To study the <u>determinants the abnormal returns</u> of the stock caused by stock repurchase.
- 3. To analyze the factors that have impacts on the decision of the firms to implement stock repurchase strategy.

I. Definition of Event

Stock Repurchase is defined as the day that firms announce their stock repurchase.

2. Selection Criteria

Determine selection criteria for the inclusion of a given firm in the study, such as SET SET50 or Banking Sector.

3. Normal & Abnormal Returns

Abnormal Return = Actual Return - Normal Return

Actual Return Determination $R_{tt} = \frac{P_t}{P_{t-1}} - 1$ Normal Return Determination

- 1. Constant-Mean-Return Model $R_{it} = \mu_i + \xi_{it}$
- 2. <u>Market Model</u> $R_{it} = \alpha_i + \beta_i R_{mt} + \varepsilon_{it}$ where R_{mt} is return of market portfolio In practice, the market portfolio is usually determined broad-based stock index, such as SET or SET50 index.
- 3. Other Models Multifactor models, market-adjusted-return model.

2

4. Estimation Procedures

Time Line for Event Study:

 $\tau = 0$ as the event date.

 $\tau = T_1 + 1$ to T_2 as the event window.

 $\tau = T_0 + 1$ to T_1 as the estimation window.

 $\tau = T_2 + 1$ to T_3 as the post-event window.

4. Estimation Procedures I. Estimate market model using e

- 1. Estimate market model using estimation window data obtain $\hat{\alpha}_i$ and $\hat{\beta}_i$.
- 2. Determine Abnormal Return (AR) in event windows and post-event windows using the estimated result of estimated market model

$$AR_{i\tau} = R_{i\tau} - \hat{\alpha}_i - \hat{\beta}_i R_{m\tau}$$

- 3. Compute Average Abnormal Return (AAR), Cumulative Abnormal Return (CAR), and Cumulative Average Abnormal Return (CAAR).
- 4. Compute statistical test.

5. Hypothesis Testing Procedure

- I. Parametric Tests t-test
- 2. Power of event-study test
- 3. Nonparametric Tests Sign test

6. Cross-sectional Models

Cross-sectional model is used to analyze whether there exists impacts of characteristics specific to the event observation on the magnitude of abnormal return.

<u>Event Study – Example</u> (cont.) Determining Abnormal Return

Actual Return vs Normal Return (Market model)

$$R_{jt} = \frac{P_t - P_{t-1}}{P_{t-1}}$$

$$\hat{R}_{jt} = \hat{\alpha} + \hat{\beta}R_{mt}$$

$$where R_{mt} = \frac{SET_t - SET_{t-1}}{SET_{t-1}}$$

Abnormal Return = Actual Return - Normal Return

$$AR_{js} = R_{js} - \hat{\alpha}_{j} - \hat{\beta}_{j} R_{ms}$$

Cumulative Abnormal Return $CAR_{jT} = \sum_{t=T_1}^{T_2} AR_{jt}$ Variance of CAR $S_{jT}^2 = \hat{\sigma}_j^2 \left[1 + \frac{T^2}{N} + \frac{T^2 \left(\bar{R}_{mT} - \bar{R}_m \right)^2}{\sum_{t=T_1}^{N} \left(R_{mt} - \bar{R}_m \right)^2} \right]$

7

<u>Event Study – Example</u> (cont.) Ist Obj. -- Hypothesis Testing

 H_0 : Abnormal Return = 0 or $\mu_{CAR} = 0$

This hypothesis can be tested by using t-test. If reject H_0 , it means that there exists abnormal return. If not, there is no abnormal return.

$$t = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \sum_{t=T_1}^{T_2} \left(\frac{AR_{jt}}{S_{jT}} \right)$$

<u>Event Study – Example</u> (cont.) 2nd Obj. -- Hypothesis Testing

The model: $CAR_j = \beta_0 + \beta_1 DE_j + \beta_2 PE_j + \beta_3 PRE_j + \varepsilon_j$

Where

 CAR_j = Cumulative Abnormal Return of stock j from t = 0 to +20

 DE_i = Debt-Earning Ratio of Stock j

 PE_i = Price-Earning Ratio of Stock j

 $PRE_i = CAR$ from t = -20 to -1 of stock j

 ε_i = Stochastic error term

9

Event Study – Example (cont.) 3nd Obj. -- Hypothesis Testing

The model: $Y_{it} = f(PE_{it}, ROA_{it}, NP_{it})$

Where

 $Y_{it} = 1$ if stock repurchase at time t

= 0 if no stock repurchase at time t

 PE_{it} = Price-Earning Ratio at time t

 ROA_{it} = Return on Asset at time t

 NP_{it} = Net Profit at time t

f(.) is Logistic Distribution Function

10