Theorem: Intermediate Value Theorem

Intermediate Value Theorem

A Continuity function from a Connected Space space to the real numbers attains all intermediate values.

Statement

Let $f: X \to \mathbb{R}$ be a continuous function where X is a connected topological space. If $a, b \in f(X)$ with a < b, then for every $c \in (a, b)$, there exists $x \in X$ such that f(x) = c.

Classical Version

For the special case where $X = [a, b] \subseteq \mathbb{R}$ is a closed interval:

If $f:[a,b] \to \mathbb{R}$ is continuous and f(a) < c < f(b) (or f(b) < c < f(a)), then there exists $x_0 \in (a,b)$ such that $f(x_0) = c$.

Proof Idea

The proof relies on the fact that: 1. The continuous image of a connected space is connected 2. Connected subsets of \mathbb{R} are intervals 3. Intervals contain all intermediate values

Applications

- Finding roots of continuous functions
- Proving existence of fixed points
- Establishing properties of continuous functions on intervals
- Analysis of differential equations

Example

Any polynomial of odd degree has at least one real root, since: $-\lim_{x\to\infty} P(x) = \infty$ and $\lim_{x\to-\infty} P(x) = -\infty$ (or vice versa) - By IVT, P(x) = 0 for some x

Dependency Graph

Local dependency graph