Первое задание.

Матричные вычисления.

№1

$$\begin{split} d\|Ax\|_2 &= d\sqrt{<}Ax, Ax> = \frac{1}{2} < Ax, Ax>^{-1/2} d < Ax, Ax> = \\ &= \frac{1}{2\|Ax\|_2} \cdot 2 < Ax, dAx> = < \frac{A^TAx}{\|Ax\|_2}, dx> = < \nabla, dx> \\ \nabla &= \frac{A^TAx}{\|Ax\|_2} \end{split}$$

№2

$$\begin{split} \log \det(X + \Delta X) &= \log \det(X (I + X^{-1/2} \Delta X X^{-1/2})) = \\ &= \log \det X + \log \det(I + X^{-1/2} \Delta X X^{-1/2}) = \log \det X + \\ &+ \log \prod_{i=1}^n \lambda_i (I + X^{-1/2} \Delta X X^{-1/2}) = \log \det X + \sum_{i=1}^n \log(1 + \lambda_i (X^{-1/2} \Delta X X^{-1/2})) \end{split}$$

Рассмотрим малые приращения $\Delta^2 X \ll X$, тогда $_{\mathfrak{i}}^2 \ll 1$, и следовательно $\log(1+\lambda_{\mathfrak{i}}(X^{-1/2}\Delta XX^{-1/2})) \approx \lambda_{\mathfrak{i}}(X^{-1/2}\Delta XX^{-1/2}) - \frac{1}{2}\lambda_{\mathfrak{i}}^2(X^{-1/2}\Delta XX^{-1/2}).$ Подставляем:

$$\begin{split} \log \det(X + \Delta X) &= \log \det X + \sum_{i=1}^n \left(\lambda_i (X^{-1/2} \Delta X X^{-1/2}) - \frac{1}{2} \lambda_i^2 (X^{-1/2} \Delta X X^{-1/2}) \right) = \\ &= \log \det X + \operatorname{tr}(X^{-1/2} \Delta X X^{-1/2}) - \sum_{i=1}^n \frac{1}{2} \lambda_i^2 (X^{-1/2} \Delta X X^{-1/2}) = \\ &= \log \det X + \operatorname{tr}(X^{-1} \Delta X) - \frac{1}{2} \operatorname{tr}((X^{-1/2} \Delta X X^{-1/2})^2) \end{split}$$

Здесь мы использовали, что $tr(AB) = tr(BA), \lambda_i^2(A) = \lambda_i(A^2).$

$$\frac{\partial}{\partial X} \|X\|_F^2 = \frac{\partial Tr(XX^T)}{\partial X} = \frac{\partial (XX^T)}{\partial X} \cdot \mathbf{E} = \frac{\partial (XX^T)}{\partial X}$$

Здесь использовалось, что якобиан от следа матрицы есть единичная матрица:

$$(\frac{\partial trA}{\partial A}) = (\frac{\partial \sum_{i=1}^{n} x_{ii}}{\partial x_{ij}})_{i,j=1}^{n} = \mathbf{E}$$

Далее

$$\begin{split} (\frac{\partial (XX^T)}{\partial X})_{ij} &= (\frac{\partial (\sum_{i=1}^n x_i x_i^T)}{\partial X})_{ij} = (\frac{\partial (\sum_{i=1}^n x_i x_i^T)}{\partial x_{ij}}) = 2x_{ij} \\ &\Rightarrow \frac{\partial}{\partial X} \|X\|_F^2 = 2X \end{split}$$

№4

$$df = d \ln \langle Ax, x \rangle = \frac{d \langle Ax, x \rangle}{\langle Ax, x \rangle} = \frac{2 \langle Ax, dx \rangle}{\langle Ax, x \rangle} = \langle 2 \frac{Ax}{\langle Ax, x \rangle}, dx \rangle$$
$$\Rightarrow \nabla f(x) = 2 \frac{Ax}{\langle Ax, x \rangle}$$

Выпуклые множества.

№1

Докажите, что если множество выпукло, его внутренность также выпукла. Верно ли обратное?

Пусть S данное множество, а $x_1, x_2 \in \text{int}(S)$. Тогда $\exists \varepsilon = \min(\varepsilon_1, \varepsilon_2) > 0$: $B_{\varepsilon}(x_1) \in S$, $B_{\varepsilon}(x_2) \in S$. Предположим, что int(S) не выпукло. Тогда, $\exists \theta : x_1\theta + (1-\theta)x_2 = x_3 \notin \text{int}(S)$. Но т. к. само множество S выпукло: $x_3 \in S$. $\Rightarrow \forall \varepsilon_0 > 0 \exists x_4 \in B_{\varepsilon_0}(x_3) : x_4 \notin S$. Пусть $\varepsilon_0 = \varepsilon$, введем вектор $\varepsilon = x_4 - x_3$. $|\varepsilon| \leq \varepsilon$. Заметим, что точки $x_5 = x_1 + \varepsilon$, $x_6 = x_2 + \varepsilon$, лежат в соответствующих окесностях x_2 и x_1 , а значит $x_5, x_6 \in S$.

$$\Rightarrow x_7 = \theta x_5 + (1 - \theta) x_6 \in S$$

$$x_7 = \theta(x_1 + \varepsilon) + (1 - \theta)(x_2 + \varepsilon) = \theta x_1 + (1 - \theta)x_2 + \varepsilon = x_3 + \varepsilon = x_4 \in S$$

Противоречие. Т. к. $x_4 \notin S. \Rightarrow$ Предположение неверно. Если множество выпукло, то его внутренность также выпукла, ч. т. д.

Обратное неверно. Контрпример:

Рассмотрим множество S в \mathbf{R}^1 : интервал (1,2) и точки 2,5. Int(S)=(1,2). Это, очевидно, выпуклое множество. При этом само множество невыпукло, точка принадлежит отрезку между 2,5, но не принадлежит S.

№2

 Δ окажите что, множество S квадратратных симметричных положительно определенных матриц выпукло.

Пусть A, B две произвольные квадратные симметричные положительно определенные матрицы, т. е. \in S. Из свойств матриц $\forall \alpha > 0 \longrightarrow \alpha A \in S. \ \forall C, D \in S \longrightarrow C + D \in S \ (*).$

$$\Rightarrow \forall \theta \in (0,1) : \theta A + (1-\theta)B \in S$$
.

При $\theta=0, \theta A+(1-\theta)B=(1-\theta)B\in S.$ Аналогично, при $\theta=1.$

$$\Rightarrow \forall \theta \in [0,1] \longrightarrow \theta A + (1-\theta)B \in S$$

 \Rightarrow S выпукло по определению.

* Докажем, что $\forall C, D \in S : C + D \in S$. Очевидно, что сумма сохраняет симметричность и квадратную форму. Проверим положительную определенность. $\forall x \equiv 0(x, Cx) > 0, (x, Dx) > 0$.

 \Rightarrow $(x,(C+D)x)=(x,Cx)=(x,Dx)>0\Leftrightarrow (C+D)$ - положительно определена.

№3

Покажите, что гиперболический набор $x\in\mathbb{R}^n_+|\prod_{i=1}^nx_i\geq 1$ выпуклый. Подсказка: для $0\leq\theta\leq 1,$ $\alpha^\theta b^{1-\theta}\leq \theta\alpha+(1-\theta)b$ с не -отрицательна, b.

Пусть $x=(x_1,\dots,x_n),y=(y_1,\dots,y_n)$ лежат в гиперболическом наборе. Тогда $z=\theta x+(1-\theta)y=(\dots,\theta x_i+(1-\theta)y_i,\dots).$ $z_i\geq x_i^\theta y_i^{(1-\theta)}$

$$\begin{split} & \Rightarrow \prod_{i=1}^{n} z_{i} \geq \prod_{i=1}^{n} x_{i}^{\theta} y_{i}^{(1-\theta)} = (\prod_{i=1}^{n} x_{i})^{\theta} \cdot (\prod_{i=1}^{n} y_{i})^{1-\theta} \geq \\ & \geq (min(\prod_{i=1}^{n} x_{i}, \prod_{i=1}^{n} y_{i}))^{\theta} \cdot (min(\prod_{i=1}^{n} x_{i}, \prod_{i=1}^{n} y_{i}))^{1-\theta} \\ & \geq min(\prod_{i=1}^{n} x_{i}, \prod_{i=1}^{n} y_{i}) \geq 1 \end{split}$$

Последнее неравенство следует из того, что $x,y \in S \Leftrightarrow \prod_{i=1}^n x_i \geq 1, \prod_{i=1}^n y_i \geq 1.$ $\Rightarrow \forall \theta \in [0,1], x,y \in Sz = \theta x + (1-\theta)y \longrightarrow \prod_{i=1}^n z_i \geq 1 \Leftrightarrow S$ выпукло,

ч. т. д..

№4

Докажите, что множество $S\subseteq\mathbb{R}^n$ выпукло тогда и только тогда, когда $(\alpha+\beta)S=\alpha S+\beta S$ для всех неотрицательных α и β .

Если $(\alpha+\beta)S=\alpha S+\beta S$, то подставив $\alpha=\theta,\beta=1-sigma$, получим: $S=\theta S+(1-\theta)S$.

$$\Rightarrow \forall x, y \in S \longrightarrow \theta x + (1 - \theta)y \in S$$

Значит, Ѕ выпукло.

Если S выпукло:

Обозначим $S_1=(\alpha+\beta)S, S_2=\alpha S+\beta S$. Пусть αS_2 , т. е. $\alpha=\alpha x+\beta y$, где $x,y\in S$. Т. к. S выпукло, взяв $\theta=\frac{\alpha}{\alpha+\beta}\in [0,1]$ (т. к. $\alpha,\beta\geq 0$), получим $z=\frac{\alpha}{\alpha+\beta}x+\frac{\beta}{\alpha+\beta}y\in S$.

$$\Rightarrow$$
 d = $(\alpha + \beta)z \in S_1$.

$$d = (\alpha + \beta) \frac{\alpha}{\alpha + \beta} x + \frac{\beta}{\alpha + \beta} y = \alpha x + \beta y = \alpha \in S_1$$

Таким образом, $S_2 \subseteq S_1$.

Пусть, $b \in S_2$, $b = (\alpha + \beta)x$, $x \in S$.

$$b = \alpha x + \beta x \in S_2$$

$$\Rightarrow S_1 \subseteq S_2$$

$$\Rightarrow S_1 = S_2 \Leftrightarrow (\alpha + \beta)S = \alpha S + \beta S$$

Значит, множество $S\subseteq \mathbb{R}^n$ выпукло тогда и только тогда, когда $(\alpha+\beta)S=\alpha S+\beta S$ для всех неотрицательных α и β , ч. т. д..

№5

Очевидно, что все множество вероятностных векторов выпукло (докво аналогично 2ой части док-ва в задаче №3).

а) Оно выпукло. Докажем это: Если $\alpha > \alpha_n$, то набор пустой и является выпуклым. Если $\alpha \leq \alpha_1$, то набор векторов совпадает с вероятностным пространством векторов и также выпуклый.

Пусть теперь $a_{k-1} < \alpha \le a_k$. Тогда:

 $\mathbb{P}(x > \alpha) \leq \beta \Leftrightarrow \sum_{i=k}^{n} p_i \leq \beta \ (1).$

Рассмотрим два вектора c,b, удовлетворяющие этому условию. $\forall \theta \in [0,1]$ Рассмотри $p=\theta c+(1-\theta)b.$

$$\sum_{i=k}^{n} p_i = \sum_{i=k}^{n} c_i \theta + \sum_{i=k}^{n} b_i (1-\theta) \leq \max(\sum_{i=k}^{n} c_i, \sum_{i=k}^{n} b_i) \leq \beta$$

Последнее неравенство выполняется, т. к. для векторов c, b выполнено условие (1). Но тогда значит для p тоже выполнено это условие, т. е. p так же принадлежит данному набору. Таким образом, данный набор выпуклый.

b) Вектор р принадлежит набор $\Leftrightarrow \mathbb{E}|x^{201}| = \sum_{i=1}^n p_i |a_i^{201}| \leq \alpha \sum_{i=1}^n p_i |a_i|$ Рассмотрим, $p = \theta c + (1-\theta)b$, где c,b принадлежат данному набору, $\theta \in [0,1]$.

$$\sum_{i=1}^n p_i |\alpha_i^{201}| = \theta \sum_{i=1}^n c_i |\alpha_i^{201}| + (1-\theta) \sum_{i=1}^n b_i |\alpha_i^{201}| \le$$

$$\leq \theta \alpha \sum_{i=1}^{n} c_{i} |a_{i}| + (1-\theta) \alpha \sum_{i=1}^{n} b_{i} |a_{i}| = \alpha \sum_{i=1}^{n} (\theta c_{i} + (1-\theta)b_{i}) |a_{i}| = \alpha \sum_{i=1}^{n} p_{i} |a_{i}|$$

Значит, р принадлежит данному набору. \Rightarrow даннй набор выпуклый. в) Вектор р принадлежит набор $\Leftrightarrow \mathbb{E}|\mathbf{x}^2| = \sum_{i=1}^n p_i |a_i^2| \geq \alpha$. Рассмотрим, $\mathbf{p} = \mathbf{\theta}\mathbf{c} + (\mathbf{1} - \mathbf{\theta})\mathbf{b}$, где \mathbf{c} , \mathbf{b} принадлежат данному набору, $\mathbf{\theta} \in [0,1]$.

$$\sum_{i=1}^{n} p_i |\alpha_i^2| = \theta \sum_{i=1}^{n} p_i |c_i^2| + (1-\theta) \sum_{i=1}^{n} b_i |\alpha_i^2| \ge \theta \alpha + (1-\theta) \alpha \ge \alpha$$

 \Rightarrow Вектор р так же принадлежит этому набору. Значит, данный набор выпуклый.

г)

$$\mathbb{V}X = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \sum_{i=1}^n x \alpha_i^2 - (\sum_{i=1}^n x \alpha_i)^2$$

Рассмотрим, $x,y\in S,\theta\in[0,1].$ Тогда, $\sum_{i=1}^n x\alpha_i^2\geq (\sum_{i=1}^n x\alpha_i)^2+\alpha$,

$$\sum_{i=1}^n y \alpha_i^2 \ge (\sum_{i=1}^n y \alpha_i)^2 + \alpha$$

Пусть $z = \theta x + (1 - \theta)y$:

$$V(Z) = \theta \sum_{i=1}^{n} \alpha_{i}^{2}x + (1 - \theta) \sum_{i=1}^{n} \alpha_{i}^{2}y - \theta^{2} (\sum_{i=1}^{n} \alpha_{i}x)^{2} - (1 - \theta)^{2} (\sum_{i=1}^{n} \alpha_{i}y)^{2} - 2\theta (1 - \theta) \sum_{i=1}^{n} \alpha_{i}x \sum_{i=1}^{n} \alpha_{i}y \ge \theta \alpha + \theta (1 - \theta) ((\sum_{i=1}^{n} \alpha_{i}y)^{2} + (\sum_{i=1}^{n} \alpha_{i}x)^{2} - 2\sum_{i=1}^{n} \alpha_{i}x \sum_{i=1}^{n} \alpha_{i}y \ge \alpha + (\sum_{i=1}^{n} \alpha_{i}x + \sum_{i=1}^{n} \alpha_{i}y)^{2} \ge \alpha$$

$$\Rightarrow z \in S$$

Значит, Ѕ выпуклое множество.

Проекции.

Норма Фробениуса

Пусть SVD матрицы: X = UDV, где в D сингулярные значения стоят на диагонали в порядке убывания: $\sigma_1 \geq \sigma_2 \geq \dots$ Покажем, что $X_k = \sum_{i=1}^k \sigma_i u_i v_i^\mathsf{T}$, где u_i, v_i і-ые столбцы V, U, есть искомая проекция.

$$||X - X_k||_F^2 = ||\sum_{i=k+1}^n \sigma_i u_i v_i^T||_F^2 = \sum_{i=k+1}^n \sigma_i^2$$

Покажем, что для любой матицы Y ранга k выполняется, $\|X-Y\|_{\text{F}}^2 \geq \|X-X_k\|_{\text{F}}^2$:

 $\|X-X_k\|_F^2$: Учтем, нер-во для сингуляных значений: $\sigma_{i+j-1}(A+B) \leq \sigma_i(A) + \sigma_j(B)$,

 $orall 1 \leq i,j \leq n, i+j-1 \leq n.$ (1) Т. к. у Y ранг k, то $\sigma_{k+1}(Y)=0$. подставив j=k+1, B=Y, A=X-Y

$$\Rightarrow \|X-Y\|_F^2 \geq \sum_{i=1}^{n-k} \sigma_i^2(X-Y) \geq \sum_{i=1}^n |\sigma_i^2(X) = \|X-X_k\|_F^2$$

в неравенство, получим: $\sigma_{i+k}(X) \leq \sigma_i(X-Y) \forall i: 1 \leq n-k$

Значит, X_k искомая проекция.

Спектральная норма Покажем, что для любой матицы Y ранга k выполняется, $\|X-Y\|_2^2 \geq \|X-X_k\|_2^2 = \|\sum_{i=k+1}^n \sigma_i u_i v_i^T\|_2^2 = \sigma_{k+1}^2$: Из нер-ва (1): $\sigma_{k+1}(X) \leq \sigma_1(X-Y)$.

$$\Rightarrow \|X - Y\|_2^2 > \sigma_1^2(X - Y) > \sigma_{k+1}(X) = \|X - X_k\|_2^2$$

А значит, $X_k = \sum_{i=1}^k \sigma_i u_i v_i^\mathsf{T}$ искомая проекция по спектральной норме.

Выпуклые функции.

№4

Среднее арифметическое выпуклая функция, т. к. f(x) линейная, а значит выпуклая функция, а при сложение с положительными коэффициентами выпуклость сохраняется.

Среднее геометрическое вогнутая функция, т.к $h(x) = -g(x) = -(x_1...x_n)^{1}$

выпукла. Покажем это:

Найдем гессиан функции.

$$-H_{ij} = \frac{\partial^2 h(g)}{\partial x_i \partial x_j} = \frac{\partial^{\frac{(x_1 \dots x_n)^{(1/n)-1}(x_1 \dots x_n)}{nx_i}}}{\partial x_j} = \begin{cases} (1-n)x_i^{-2} & \text{ если } i = j \\ x_i^{-1}x_j^{-1} & \text{ если } i \equiv j \end{cases}$$

$$\begin{split} \forall \nu \in \mathbf{R}^n &\longrightarrow \nu^T H \nu = -\sum_{i=1}^n \sum_{j=1}^n \nu_i^2 A_{ij} = -\sum_{j=1}^n \sum_{i=1}^n \nu_i^2 x_i^{-1} x_j^{-1} + n \sum_{i=1}^n \nu_i^2 x_i^{-2} = \\ &= -(\sum_{i=1}^n \nu_i x_i^{-1})^2 + n \sum_{i=1}^n (\nu_i x_i^{-1})^2 \geq 0 \end{split}$$

Последнее неравенство получено подставлением в нер-во Коши-Буняковс единичного вектора и вектора $(\nu_i x_i^{-1}). \Rightarrow h$ выпукла, а значит g вогнута.

№2

$$D(p,q) = \sum_{i=1}^{n} (p_i \log(p_i/q_i) - p_i + q_i)$$

Рассмотрим, $f(p) = \sum_{i=1}^n p_i \log p_i$. Заметим, что

$$H_{ij} = rac{\partial}{\partial x_j} (1 + \log p_i) = egin{cases} p_i^{-1} & & ext{если } i = j \ 0 & & ext{если } i \equiv j \end{cases}$$

 $\Rightarrow \nabla^2 f(x) \geq \max(p_1^{-1}, \dots p_n^{-1}) I$. Значит по второму критерию строгой выпуклости, f, определенная на впуклом множестве, строго выпуклая функция. Тогда, по первому критерию:

$$H(p,q) = f(p) - f(q) - \nabla f^{\mathsf{T}}(q)(p-q) \ge \frac{\mu}{2} \|p - q\|^2$$

$$(\nabla(q)^T)_i=1+\log q_i$$
, $\Rightarrow \nabla(q)^T(p-q)=\sum_{i=1}^n(1+\log q_i)(p_i-q_i).$ Тогда:

$$H(p,q) = \sum_{i=1}^{n} p_i \log p_i - \sum_{i=1}^{n} q_i \log q_i - \sum_{i=1}^{n} (p_i - q_i) + \sum_{i=1}^{n} q_i \log q_i - \sum_{i=1}^{n} p_i \log q_i = \sum_{i=1}^{n} p_i \log$$

$$\begin{split} &= \sum_{i=1}^n p_i \log p_i - \sum_{i=1}^n (p_i - q_i) - \sum_{i=1}^n p_i \log q_i = \sum_{i=1}^n (p_i \log (p_i / q_i) - p_i + q_i) = \\ &= D(p,q) \geq \frac{\mu}{2} \|p - q\|^2 \geq 0, \end{split}$$

где равенство достигаетя только при p = q, ч. т. д.

№3

Как было показано в 5ой задаче из выпуклых множеств, р выпуклое множество.

- 1) Математическое ожидание линейная функция, \Rightarrow это одновременно и выпуклая и вогнутая функция.
- 2) Если $\alpha > a_n$, то $P(p) = 0 \forall p$, выпуклая функция. Аналогично, при $\alpha < a_1$. Пусть $a_i < \alpha \leq a_i + 1$, тогда: $P(p) = \sum_{j=i+1}^n p_j$ линейная функция, а значит является и выпуклой и вогнутой. 3) Аналогично предыдущему, $a_i < \alpha \leq a_i + 1$, $a_j \leq \beta < a_j + 1$.

$$P(p) = \sum_{k=i+1}^{j} p_k$$

- линейная функция, а значит является и выпуклой и вогнутой.
- 4) Из первой части задачи 2 по второму критерию следует что это строго выпуклая функция.
- 5) $V(x) = \mathbb{E}(x^2) \mathbb{E}(x)^2$

$$V(\lambda p_1 + (1 - \lambda)p_2) = \sum_{i=1}^{n} \alpha_i^2 (\lambda p_{1_i} + (1 - \lambda)p_{2_i}) - (\sum_{i=1}^{n} \alpha_i (\lambda p_{1_i} + (1 - \lambda)p_{2_i}))^2$$

$$\lambda V(p_1) + (1 - \lambda)V(p_2) = \lambda \sum_{i=1}^{n} \alpha_i^2 p_{1_i} - \lambda (\sum_{i=1}^{n} \alpha_i p_{1_i})^2 + (1 - \lambda) \sum_{i=1}^{n} \alpha_i^2 p_{2_i} - \frac{1}{2} \sum_{i=1}^{n} \alpha_i p_{1_i} + \frac{1}{2} \sum_{i=1}^{n} \alpha_i p_{2_i} - \frac{1}{2} \sum_{i=1}^{n} \alpha_i p_{2_i} + \frac{1}{2} \sum_{i=1}^{n} \alpha_i p_{2_i} - \frac{1}{2} \sum_{i=1}$$

$$-(1-\lambda)(\sum_{i=1}^n\alpha_ip_{2_i})^2$$

$$\begin{split} \lambda V(p_1) + (1-\lambda)V(p_2) - V(\lambda p_1 + (1-\lambda)p_2) &= (\sum_{i=1}^n \alpha_i(\lambda p_{1_i} + (1-\lambda)p_{2_i}))^2 + \\ -\lambda (\sum_{i=1}^n \alpha_i p_{1_i})^2 - (1-\lambda)(\sum_{i=1}^n \alpha_i p_{2_i})^2 &= \\ &= \lambda(\lambda - 1)((\sum_{i=1}^n \alpha_i p_{1_i})^2 + (\sum_{i=1}^n \alpha_i p_{2_i})^2 - 2\sum_{i=1}^n \alpha_i p_{1_i} \sum_{i=1}^n \alpha_i p_{2_i}) = \\ &= (\sum_{i=1}^n \alpha_i p_{1_i} - \sum_{i=1}^n \alpha_i p_{2_i})^2 \leq 0, \end{split}$$

при $0 < \lambda < 1$.

- \Rightarrow Это вогнутая функция.
- 6) Мн-во значений данной функции лежит в множестве $\{a_1, \dots a_n\}$. Значит, оно дискретно. Тогда эпиграф данной функции ері $f = \{[x, \mu] \in S$ очевидно не выпуклое множество. Эпиграф функции —f также не выпуклый, т. к. мн-во ее значений по-прежнему дискретно. \Rightarrow мн-во не является выпуклым и не является вогнутым.

 Λ емма Если $g:\mathbb{R}^{\ltimes}\to\mathbb{R}$ вогнута $h:R\to\mathbb{R}$ выпукла и не возрастает ни по одному аргументу, то f(x)=h(g(x)) выпукла.

Док-во (для $x \in R$) По второму дифференциальному критерию g,h вогнута и выпукла соответственно $\Leftrightarrow \nabla^2 g < 0, \ \nabla^2 h > 0$. Т.к. h не возрастает, $(\nabla h)_i \leq 0$.

$$f'' = \underbrace{g'(x)^T \nabla^2 h(g(x)) g'(x)}_{\geq 0} + \underbrace{\nabla h(g(x)) g''(x)}_{\geq 0} \geq 0$$

 \Rightarrow f выпукла.

$$f(x) = \frac{1}{h_1(x)}$$

$$h_i(x) = x_i - \frac{1}{h_{i+1}(x)}$$

Заметим, что $\nu(x)=1/x:\mathbb{R}\to\mathbb{R}$ выпуклая функция, т. к. $\nu"(x)=\frac{2}{x^3}>0.$

 $h_n(x) = x_n$ - вогнутая функция. $t_i(x) = x_i$ - вогнутая функция. Предположим, что $h_i(x)$ так же вогнутая функция (1 < i < n). По-

кажем, что тогда $h_{i-1}(x)$ так же вогнутая функция:

 $p(x)=rac{1}{h_i(x)}=
u(h_i(x))$ выпуклая функция по лемме, т. к. $\nu(x)=1/x$ выпкулая не возрастающая функция, а $h_i(x)$ вогнутая по предположению. $\Rightarrow (-rac{1}{h_i(x)})$ вогнутая функция. Тогда $h_{i-1}(x)=x_{i-1}-rac{1}{h_i(x)}$ вогнута как сумма вогнутых функций с положительными коэффициентами.

Значит, $\forall i: 1 \leq i \leq n \longrightarrow h_i$ вогнута. h_1 вогнута, а значит по нашей лемме $f(x) = \frac{1}{h_1(x)}$ выпукла, ч. т. д..

№6

 $x \in (0,1), (0,1)$ -выпуклое множество. f(x) = -(p(x) + p(1-x)), где $p(x) = x \ln(x).$ $\nabla p(x) = (1+), \Rightarrow \nabla^2 p(x) = 1/x > \mu > 0.$ р строго выпуклая функция. $\Rightarrow h(x) = p(x) + p(1-x) = 1/x$

-f(x) так же стого выпуклая функция. Значит, f(x) - строго вогнутая функция, т. е. невыпуклая.

№1a)

Заметим, что мн-во на котором определена функкция выпукло. Введем $g(t)=f(x+t\nu),\ x\in S^n_{++}, \nu\in S^n_-.$

$$\begin{split} g(t)&=\mathrm{tr}((x+t\nu)^{-1})=\mathrm{tr}(x^{-1}(\mathsf{E}+tx^{-1/2}\nu x^{-1/2})^{-1})=\mathrm{tr}(x^{-1}(\mathsf{E}+tV\lambda V^\mathsf{T})^{-1})=\\ &=\mathrm{tr}(x^{-1}V(\mathsf{E}+t\lambda)^{-1}V^\mathsf{T})=\mathrm{tr}(V^\mathsf{T}x^{-1}V(\mathsf{E}+t\lambda)^{-1})=\sum_{i=1}^n(V^\mathsf{T}x^{-1}V)_{ii}(1+t\lambda_i)^{-1}=\\ &=\sum_{i=1}^nC_ig_i(t),\ \text{где }C_i>0,\ g_i(t)=(1+t\lambda_i)^{-1}\text{-}\ \text{выпуклая функция как}\\ \text{было показано в 5ой задаче.}&\Rightarrow g(t)\ \text{выпуклая функция.}\ \text{Значит, }f(x) \end{split}$$

№1б)

так же выпуклая функция.

Заметим, что мн-во на котором определена функкция выпукло. Введем $f(t) = g(x + t\nu), x \in S_{++}^n, v \in S_-^n$.

$$f(t) = (det(x+t\nu))^{1/n} = (detx^{1/2}det(E+tx^{-1/2}\nu x^{-1/2})detx^{1/2})^{1/n} =$$

 $=(detx)^{1/n}(\prod_{i=1}^n(1+t_i))^{1/n}$, где λ_i собственные значения $x^{-1/2}\nu x^{-1/2}$. $(detx)^{1/n}>0$. Второй множитель есть композиция функия геометрического произведения от вогнутой функции (суммы). Из 4ой и 5ой задачи это так же вогнутая функция. \Rightarrow f(t) вогнутая функция. Значит, g(x) вогнутая функция.