Mesh Networks and Routing

Mesh Networks

Characteristics:

- Not centralized (form of Ad Hoc Network)
- Can be strongly connected, not required (partially connected)
- Self-configuring/Self-healing
- Need a gateway to facilitate client to mesh communication

- Applications:
 - o IoT: Internet of Things GoogleNest
 - Drone Swarms:
 - Creates wireless infrastructure (Google Loon)
 - Catastrophe recovery (connectedness)
 - Balloon Mesh for Navy

Failure Tolerance

- No single point of failure
- Redundant: i.e. Flooding (broadcast)
- Highly dependent on Routing
- Gateways are important as points of failures

Efficiency

- Minimal infrastructure (low hardware components)
- Nodes entering and leaving have a big effect on overhead
- Larger bandwidth: if you load/split (too many hops can lead of higher transmission delay which leads to a decrease in throughput)
- Designated routing algorithm has a huge effect on efficiency

- Limit of Usability:
 - Capacity (bandwidth of each node)
 - Memory of each node for routing/forwarding
 - Protocol overhead (existing messages)
 - Requires a minimum # of nodes

Mesh Network Architecture

Infrastructure:

Internet

Werdess mesh
Backbone

Mesh router
with gateway bridge

With dateway bridge

With gateway bridge

Werdess

Response

Res

Client:

Hybrid:

Mesh Routing

- Proactive Routing:
 - Every node maintains one or more tables representing entire topology network
 - Topology info needs to be exchanged between node on a regular basis
 - Routes will always be available on request
 - Ex. Optimized Link State Routing Protocol (OLSR)

Mesh Routing (con.)

- Reactive Routing
 - Route discovery process initiated until a route is required/requested
 - Higher latency but lower overhead
 - Ex. Ad Hoc On-Demand Distance Vector routing protocol (AODV)

B.A.T.M.A.N. Routing Protocol

- B.A.T.M.A.N adv Characteristics
 - Proactive routing protocol
 - Distance vector approach and routing metric that incorporates reliability of radio links
 - Each node maintains a routing table containing potential next hops to all other nodes
 - Layer 2 routing instead of Layer 3
 - Decentralized knowledge of applications

B.A.T.M.A.N Routing (con.)

Failure Tolerance:

 Relatively consistent, may take more time than other protocols because of rapid changes in Traffic Quality (TQ) values

Efficiency

 Transmission quality metric based on Expected Transmission Count to find tradeoff between low hop count and stable links

B.A.T.M.A.N Routing (con.)

How it Works:

- Every node broadcasts hello messages (OGMs) in fixed intervals to neighbors
- Nodes measure the fraction of hello messages they receive from a given neighbor (Receive Quality, RQ)
- Neighbors rebroadcast received OGMs, so nodes more than one hop away are aware of node's existence
- Nodes measure fraction of their own OGMs that are retransmitted by neighbors (Echo Quality)