Hi, I'm Pan Xinxin

Personal Website: https://kingdaxing.github.io/

19 Feb 2025

1. Personal Introduction

2. Research & Work Experience

1. Personal introduction

Education

- MSc | National University of Singapore | 2023-2024
 Civil Engineering (Sustainable Climate Resilience)
- **BEng** | Hohai University in China | 2016-2020 Water and Hydropower Engineering

Work Experience

• Hydraulic and Coastal **Engineer** | 2020-2022; Sep 2024 - Present Shenzhen Water Planning & Design Institute Co., Ltd., China

• Expertise in Sediment & Wave Dynamics and Numerical Modelling

- Small-Scale **Sediment Transport** Analysis in Fluvial Processes (FLOW3D, MATLAB).
- Large-Scale **Morphologic** Analysis in Coastal Processes (Delft3D, Python/MATLAB).
- Fluid- & Wave-Structure Interaction Modeling (OpenFOAM, FLOW3D).
- Geospatial Data Visualization and Processing (QGIS, Civil3D).
 - Prediction using Artificial Neural Networks (ANNs-LSTM) and Statistical Analysis (Python, R).

Research Interests

- Coastal Hydro- & Morpho-Dynamics;
- Coastal Protection;
- Numerical Models & CFD;
- Shoreline Model & ML Algorithm;
- Nature-based Solutions (NbS).

1. Personal Introduction

2. Research & Work Experience

• Methods:

I. Proposed a MATLAB framework to assess bedload/suspende transport, with depth-integrated equations.

$$q_{s} = \int_{b_{*}}^{D} u c dz, \quad \Phi_{s} = \frac{q_{s}}{\sqrt{(s-1)gd^{3}}}$$
where: $b_{*} = \max\left\{b, \frac{k_{*}}{30}\right\}$

$$c = c_{b}\left(\frac{D-z}{z}\frac{b}{D-b}\right)^{w_{s}/(\kappa U_{f})}$$

$$w_{s} = \sqrt{\frac{(\gamma_{s}-\gamma)\frac{\pi}{6}d^{3}}{c_{D}\frac{1}{2}\rho\frac{\pi}{4}d^{2}}} = \sqrt{\frac{4(s-1)gd}{3c_{D}}}$$

- II. Conducted ADV measurements of velocity distributions above dunes/ripples as model validation.
- III. Visualized effect of grain size on sediment concentration profiles, and changes in flow resistance components & bedform transitions in currents.
- IV. Used Van Rijn's empirical method and CERC formula to analyse post-nourishment profile.

• Experience:

Solid background in sediment dynamics and analytical solutions in Matlab and experiments for sediment analysis.

Dunes and Ripples in a Lab Flume

Flow Resistance • Shields Criteria

Grain-Size Effect on SSC

Cross profile and sorting

2.1.2 Sediment Transport & Coastal Hydrodynamics

☐ Thermal Evaluation & Morphology Analysis in Ocean Simulation

 Objectives: Defined an optimal discharge location and the max. allowable discharge into the ocean around SG's JR Island. Analyzed the impact of +1m SLR on bedload transport.

• Solutions:

- I. Built a flexible mesh using regular grids;
- II. Selected a suitable *n* for model calibration;
- III. Defined a baseline, and compared heat diffusion extent to define a critical location.
- IV. Set up +1m SLR changes in water level for both initial and boundary conditions.

Model Calibration & T-H time Test

Comparison of
Thermal Impacts

• Comparison of
Bedload Transport

• Experience:

Proficiency with numerical modeling Delft3D in coastal processes and open-source software compiling.

2.1.3 Sediment Transport Analysis

☐ Erosion Assessment in a Widening Channel Affected by Weirs

• **Objectives:** Evaluated impacts of weirs on erosion and deposition in MATLAB framework, using flow conditions and TKE simulations from FLOW3D.

• Solutions: Simulated flow across weirs using *RNG k-ε* model. Compared sediment transport rates using my previous MATLAB framework, and analysed erosion condition in Shields Regime Diagram.

Bedload Transport Analysis

☐ A One-line Model for Longshore Sediment Transport Affected by Groynes

- **Solutions:** 1) Derived a one-line model for coastline development (Pelnard's) with simplifying boundary conditions. 2) Assessed long-shore sediment equilibrium profiles affected by groynes within various wave conditions using analytical solutions in MATLAB.
 - **Continuity Equation**
- Analytical Solution:

$$Y=Y_0'rac{1}{\sqrt{\pi}}\left[\sqrt{4K_1t}\exp\left(-rac{x^2}{4K_1t}
ight)-x\sqrt{\pi}\left(1-F\left(rac{x}{\sqrt{4K_1t}}
ight)
ight)
ight]$$

Long-shore Sediment Evaluation

☐ Rainfall-Runoff Modelling using ANN/RNN

Solutions:

- Trained a MLP model Keras platform in R, using given rainfall-runoff sequential data.
- Trained a LSTM model with TensorFlow and Keras platform in Python.

Performance Metrics for MLP

No.	MLP layer	Evaluation from loss & error	accuracy	RMSE
DL.3	8+16	Good-fit	0.6111	7.8209
DL.4 (S1)	4+8	Good-fit	0.9553	11.6950
DL.4-2	4+0	Good-fit	0.9840	11.5005

Performance Metrics for LSTM

No.	Wrapped	Input/ Lstm	epochs	accuracy	RMSE
LSTM.1	10	(10, 4)/8	80	0.9960	9.9919
LSTM.2	10	(10, 4)/4	80	0.9562	6.9175
LSTM.3	10	(10, 4)/5	70	0.9934	5.3363

Comparison of MLP & LSTM 60-min Forecast

Experience:

Machine Learning for Forecast & Bigdata Processing.

■ Watershed Analysis in QGIS

Solutions:

- I. Based on the given elevation points in a catchment, use GRASS tool to delineate streams.
- II. A sensitivity analysis of the impact of land use changes on rainfall-runoff processes: Developing a new processing algorithm as Python scripts to adapt land runoff coefficients to land use changes.

Flow Direction and Potential Outlet

Visualize Land Use Changes in Old/New Map

• Experience:

Geospatial Analysis and Processing Algorithm in QGIS.

2.4 Nature-based Solution & Wave-Structure Interaction

☐ Study of Flow Development within Seagrass Meadows

• **Objectives:** Modeled submerged and merged seagrass/mangrove, and applied into NbS design and flow assessment, thus connecting flow condition to sediment deposition/ evaluation.

Current Development (3D) and Wave Attenuation within NbS

□ Wave Barrier Design (OpenFOAM/Salome) - WSI

Objectives: Assessed the impact of tidal and wave conditions on both the inner bay water levels
and the maximum wave height outside the structure.

• Solutions:

- I. Modelled wave barrier structure and generated mesh grid in Salome;
- II. Applied *interFoam* solver in OpenFOAM to simulate two-phase flow in wave-structure interaction.

Modelling and Simulating

2.4 NbS - Living Shoreline Design

☐ Artificial Submerged Reefs at Byron Bay, AUS

- Solutions:
- Selected a suitable location with slow wavecurrent velocity, water depth in a surf zone, using SWASH modeling results of wave dynamics;
- II. Defined ARs array based on flow patterns.

ARs Cases

Hydraulic Data in SWASH model

☐ Hybrid Coastal Protection Design (Mangroves + Revetment)

- Objectives: Optimized the height and shape of seawall considering wave attenuation as mangroves in foreshore zone.
- Solutions: Assessed mangrove biomass and potential tidal-wave coupled scenarios to parameterize and estimate wave attenuation effect using NbS theoretical model and case comparison -> 40% wave attenuation. Conducted topographical analysis for site selection.

before - after

• Seawall Sketch Profile – Wave Attenuation as Mangroves

Thank you!

CUSTOMER SERVICE DEPT.

"Your satisfaction is our top priority. So if you could try to act really satisfied, that would be a big help."