

Mathematics I Series

Amit K. Verma

Department of Mathematics IIT Patna

Infinite Series, nth Term, Partial Sum, Converges, Sum

Consider infinite series

$$a_1+a_2+a_3+\cdots+a_n+\cdots.$$

- 2 The sequence $\{s_n\}$ defined by $s_n = \sum_{k=1}^n a_k$ is the sequence of partial sums of the series, the number s_n being the n^{th} partial sum.
- If the sequence of partial sums converges to a limit L, we say that the series converges and that its sum is L.
- In this case, we also write

$$\mathbf{a_1} + \mathbf{a_2} + \mathbf{a_3} + \dots + \mathbf{a_n} + \dots = \sum_{k=1}^{\infty} \mathbf{a_k} = \mathbf{L}.$$

If the sequence of partial sums of the series does not converge, we say that the series diverges.

Amit K. Verma (IITP) MA101 2/1 2 / 1

Combining Series

THEOREM

If $\sum a_n$ and $\sum b_n$ are convergent series, then

- **②** Difference Rule: $\sum (a_n b_n) = \sum a_n \sum b_n = A B$.
- **3** Constant Multiple Rule: $\sum ka_n = k \sum a_n = kA$.

Corollary

As corollaries of above Theorem, we have

- Every nonzero constant multiple of a divergent series diverges.
- ② If $\sum a_n$ converges and $\sum b_n$ diverges, then $\sum (a_n + b_n)$ and $\sum (a_n b_n)$ both diverge. CAUTION

3/1

Adding or Deleting Terms

We can add a finite number of terms to a series or delete a finite number of terms without altering the series' convergence or divergence, although in the case of convergence this will usually change the sum.

Reindexing

As long as we preserve the order of its terms, we can reindex any series without altering its convergence. To raise the starting value of the index h units, replace the n in the formula for a_n by n-h.

Known Examples

Geometric Series Consider the geometric series

$$a + ar + ar^2 + \cdots + ar^{n-1} + \cdots$$

- **2** $|\mathbf{r}| < 1$, geometric series is Convergent and it converges to $\frac{\mathbf{a}}{1-\mathbf{r}}$.
- 3 if $|\mathbf{r}| \geq 1$ then geometric series is Divergent.
- $\textbf{4 Nongeometric but Telescoping Series} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$

THEOREM

If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\lim_{n \to \infty} a_n = 0$.

Caution:

Converse of this theorem is not true (Condition
$$\lim_{n\to\infty} a_n = 0$$
 Necessary but not sufficient) that is if $\lim_{n\to\infty} a_n = 0$ no conclusion can be drawn about the convergence of the series $\sum_{n=0}^{\infty} a_n$. For Example $\sum_{n=0}^{\infty} (\frac{1}{n})$

the convergence of the series
$$\sum_{n=1}^{\infty} a_n$$
. For Example $\sum \left(\frac{1}{n}\right)$

Corollary

If $\lim_{n\to\infty}a_n$ fails to exist or is different from zero, then $\sum a_n$ is divergent.

Amit K. Verma (IITP) MA101 6/1 6/1

Does $\sum a_n$ converge?

- In this section and the next two, we study series that do not have negative terms.
- The reason for this restriction is that the partial sums of these series form nondecreasing sequences and
- onndecreasing sequences that are bounded from above always converge (Theorem 6, Section 11.1, Thomas Calculus).
- **1** To show that a series of nonnegative terms converges, we need only show that its **partial sums are bounded from above**.

Suppose that $\sum_{n=1}^\infty a_n$ is an infinite series with $a_n \geq 0$ for all n. Then sequence of partial sums s_n satisfies $s_1 \leq s_2 \leq \cdots \leq s_n \leq s_{n+1} \leq \cdots$.

Amit K. Verma (IITP) MA101 7/1 7 / 1

Corollary of Theorem

A series $\sum_{n=1}^{\infty} a_n$ of nonnegative terms converges if and only if its partial sums are bounded from above.

The Harmonic Series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

is divergent, but this does not follow from the n^{th} -Term Test. The n^{th} term 1/n does go to zero, but the series still diverges. The reason it diverges is because there is no upper bound for its partial sums.

Amit K. Verma (IITP) MA101 8/1 8/1

Given $\sum a_n$.

Once $\lim_{n\to\infty}a_n=0$ then Further test is needed.

 \downarrow

For that we assume that $a_n \geq 0$ so that $\{s_n\}$ is Nondecreasing and as soon as $\{s_n\}$ is bounded above we are done.

 \downarrow

As in that case

$$\lim_{n\to\infty}s_n=Finite$$

gives the sum of the series and also indicates that $\sum a_n$ is convergent.

Improper Integration

$$\int_a^\infty f(x)dx = \text{Finite then Integral is said to be convergent and if} \\ \int_a^\infty f(x)dx = \infty \ (or \ -\infty \ or \ does \ not \ exist) \ \text{then integral is said to be} \\ \text{divergent (a is some positive number)}.$$

Amit K. Verma (IITP)

MA101

Cauchy Criterion

 $\sum a_n$ satisfies Cauchy's criterion if its sequence $\{s_n\}$ of partial sums is a Cauchy Sequence, i.e., for each $\epsilon > 0$ there a positive integer N such that

$$m, n > N \Rightarrow |s_n - s_m| < \epsilon;$$

or for each $\epsilon > 0$ there a positive integer N such that

$$n \geq m > N \Rightarrow |s_n - s_{m-1}| < \epsilon;$$

or for each $\epsilon > 0$ there a positive integer N such that

$$n \ge m > N \Rightarrow |\sum_{k=m}^{n} a_k| < \epsilon.$$

Amit K. Verma (IITP)

The Integral Test

EXAMPLE : Does the following series converge?

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots + \frac{1}{n^2} + \dots$$

11/1 Amit K. Verma (IITP) MA101 11/1

Caution The series and integral need not have the same value in the convergent case, e.g., we compute $\sum_{n=1}^{\infty} \frac{1}{n^2} < 2$ but $\sum_{n=1}^{\infty} \left(\frac{1}{n^2}\right) = \frac{\pi^2}{6}$.

Geometrical Interpretation of Integral Test

12/1 Amit K. Verma (IITP) MA101 12/1

THEOREM: The Integral Test

- ① Let $\{a_n\}$ be a sequence of positive terms.
- 2 Suppose that $a_n = f(n)$ where,
- \odot f is a continuous, positive, decreasing function of x for all x > N (N a positive integer).
- Then the series

$$\sum_{n=N}^{\infty} a_n$$

and the integral

$$\int_{\mathbf{N}}^{\infty} \mathbf{f}(\mathbf{x}) d\mathbf{x}$$

both converge or both diverge.

Amit K. Verma (IITP) MA101 13/1 13/1

Convergence and Divergence of the p-series

The **p**-series

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots + \frac{1}{n^p} + \dots$$

(p a real constant) converges if p > 1, and diverges $p \le 1$.

The p-series with $\mathbf{p} = \mathbf{1}$ is the harmonic series. The p-Series Test shows that the harmonic series is just **barely divergent**; if we increase \mathbf{p} to 1.000000001, for instance, the series converges!

Comparison Tests

- The Comparison Tests
- 2 Limit Comparison Tests

Amit K. Verma (IITP) MA101 14/1 14/1

The Comparison Test

THEOREM: The Comparison Test

Let $\sum a_n$ be a series of non-negative terms. Then,

- (a) $\sum a_n$ converges if there is a convergent series $\sum c_n$ with $a_n \le c_n$ for all n > N, for some integer N.
- (b) $\sum a_n$ diverges if there is a divergent series $\sum d_n$ with $a_n \ge d_n$ for all n > N, for some integer N.

Amit K. Verma (IITP) MA101 15/1 15/1

The Limit Comparison Test

We now introduce a comparison test that is particularly useful for series in which is \mathbf{a}_n is a rational function of \mathbf{n} .

THEOREM: Limit Comparison Test

Suppose that $a_n > 0$, $b_n > 0$ and $c_n > 0$ for all $n \ge N$ (N an integer).

- 1. If $\lim_{n\to\infty}\frac{a_n}{b_n}=c>0 \ \ \text{then } \sum a_n \ \text{and } \sum b_n \ \text{both converge or both diverge}.$
- 2. If $\lim_{n\to\infty}\frac{a_n}{b_n}=0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- 3. If $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Amit K. Verma (IITP) MA101 16/1 16/1

The Ratio Test

THEOREM: The Ratio Test

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{\mathbf{n}\to\infty}\frac{\mathbf{a}_{\mathbf{n}+1}}{\mathbf{a}_{\mathbf{n}}}=\rho.$$

Then

- (a) the series converges if $\rho < 1$,
- (b) the series diverges if $\rho > 1$ or ρ is infinite,
- (c) the test is inconclusive if $\rho = 1$.

The Root Test

THEOREM: The Root Test

Let $\sum a_n$ be a series with $a_n \geq 0$ for $n \geq N$, suppose that

$$\lim_{\mathbf{n}\to\infty}\sqrt[n]{\mathbf{a_n}}=\rho.$$

Then

- (a) the series converges if $\rho < 1$,
- (b) the series diverges if $\rho > 1$ or ρ is infinite,
- (c) the test is inconclusive if $\rho = 1$.

Amit K. Verma (IITP) MA101 18/1

18/1

- **3** $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^2}$ LCT (3), $b_n = (1/n)$ Div.
- **6** $\sum_{n=0}^{\infty} \frac{(\ln n)^2}{n^3}$ LCT (2), $b_n = (1/n^2)$ Conv.

Amit K. Verma (IITP) MA101 19/1 19/1

- $\bullet \ \sum_{n=1}^{\infty} \frac{a^n}{n!} \ \ \text{Ratio, Conv.}$

Problem

Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^{\frac{3}{2}}}$.

Solution: Given $a_n = \frac{(\ln n)^2}{n^{\frac{3}{2}}}$. Let $b_n = \frac{1}{n^a}$. Consider

 $\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{(\ln n)^2}{n^{\frac{3}{2}-a}}. \text{ Under what condition on a we can apply L'Hopital rule: } a<(3/2). \text{ Converting in to functions and applying L'Hopital rule we get}$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2}{((3/2) - a)^2 n^{(3/2) - a}} = 0, \quad \ a < (3/2).$$

But to conclude from LCT the series $\sum b_n$ should be convergent. For that we must have 1 < a. So for this exercise any value of a between 1 and 3/2 will work. For example b_n can be chosen as $b_n = \frac{1}{n^{1.25}}$. Final answer:

 $\sum_{n=1}^{\infty} \frac{(\ln n)^2}{\frac{3}{n^2}}$ is Convergent from LCT (2).

Alternating Series

A series in which the terms are alternately positive and negative is an alternating series.

Examples:

- 1 $-\frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} + \cdots + \frac{(-1)^{n+1}}{n} + \cdots$. Convergent (we will see very soon.)
- 2 $-2+1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots+\frac{(-1)^n 4}{2^n}+\cdots$. Convergent (being a Geometric Series)
- **3** $1-2+3-4+5-6+\cdots+(-1)^{n+1}n+\cdots$ Divergent (nth term test) (What is the important point to be observed here???)

THEOREM: The Alternating Series Test (Leibnitz's Theorem)

The series

$$\sum_{n=1}^{\infty} (-1)^{n+1}u_n = u_1 - u_2 + u_3 - u_4 + \cdots$$

converges if all three of the following conditions are satisfied:

- AS1. The $\mathbf{u_n}$'s are all positive.
- AS2. $\mathbf{u_n} \ge \mathbf{u_{n+1}}$ for all for $\mathbf{n} \ge \mathbf{N}$, some integer \mathbf{N} .
- AS3. $\mathbf{u_n} \to \mathbf{0}$, i.e., $\lim_{\mathbf{n} \to \infty} \mathbf{u_n} = \mathbf{0}$.

Example: $\sum (-1)^{n+1} \frac{1}{n}$ is convergent Leibnitz's Theorem.

Important Result

For a sequence $\{a_n\}$ the terms of even index are denoted by a_{2k} and the terms of odd index by $\mathbf{a_{2k+1}}$. Prove that if $\mathbf{a_{2k}} \to \mathbf{L}$ and $\mathbf{a_{2k+1}} \to \mathbf{L}$ then $\mathbf{a_n} \to \mathbf{L}$.

Amit K. Verma (IITP) MA101 23/1 23/1 Consider that n is even (i.e., n = 2m) let us write the partial sum

$$s_{2m} = (u_1 - u_2) + (u_3 - u_4) + \dots + (u_{2m-1} - u_{2m}) \,.$$

Using (AS2) we have $s_{2m+2} \geq s_{2m} \ (\{s_{2m}\}$ is Non-decreasing Sequence). Also

$$s_{2m} = u_1 - \{(u_2 - u_3) + (u_4 - u_5) + \dots + (u_{2m-2} - u_{2m-1}) + u_{2m}\}$$

gives $s_{2m} \le u_1$. Thus $\{s_{2m}\}$ is nondecreasing and bounded above by u_1 it must have a limit say L. That is

$$\lim_{m\to\infty}s_{2m}=\mathbf{L}.$$

If n is odd say n=2m+1. Then $s_{2m+1}=s_{2m}+u_{2m+1}$. By AS3 we have

$$\lim_{m\to\infty}s_{2m+1}=\lim_{m\to\infty}s_{2m}=L.$$

Therefore by (Section 11.1, Exercise 119 Thomas Calculus 11th Edition) we have $\lim_{n\to\infty} s_n = L$.

DEFINITION : Absolutely Convergent

A series $\sum \mathbf{a_n}$ converges absolutely (is absolutely convergent) if the corresponding series of absolute values, $\sum |\mathbf{a_n}|$, converges. Example: $\sum (-1)^{n+1} \frac{1}{n^2}$ is absolutely convergent.

DEFINITION: Conditionally Convergent

A series that converges but does not converge absolutely converges conditionally. Example: $\sum (-1)^{n+1} \frac{1}{n}$ is conditionally convergent.

THEOREM: The Absolute Convergence Test

If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

^aCAUTION We can rephrase above Theorem to say that every absolutely convergent series converges. However, the converse statement is false: Many convergent series do not converge absolutely such as the alternating harmonic series $\sum (-1)^{n+1} \frac{1}{n}$.

Proof of Absolute Convergence Test

Proof.

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \left(a_n + |a_n| - |a_n| \right) = \sum_{n=1}^{\infty} \left(a_n + |a_n| \right) - \sum_{n=1}^{\infty} |a_n| = S_1 - S_2(say).$$

The Series $S_2=\sum_{n=1}^\infty |a_n|$ is given to be convergent. So if we can establish the convergence of $S_1=\sum_{n=1}^\infty \left(a_n+|a_n|\right)$ we are done. Consider

$$-|a_n| \leq a_n \leq |a_n| \quad \Rightarrow \quad 0 \leq a_n + |a_n| \leq 2|a_n|.$$

By Direct Comparision Test we achieve the convergence of $\sum_{n=1}^{\infty} (a_n + |a_n|)$. Which completes the proof of the theorem.

Amit K. Verma (IITP) MA101 26/1 26 / 1

Exercise

Home Work: Discuss convergence of the following.

- **1** $\sum a_n$ where $a_{n+1} = \frac{n}{n+1} a_n$, $a_1 = 3$.
- ② $\sum a_n$ where $a_{n+1} = \frac{n + \ln n}{n + 10} a_n$, $a_1 = 1/2$.

Dirichlet Test

Let $a_n \ge 0$, $a_n \ge a_{n+1}$ and $\lim_{n\to\infty} a_n = 0$. Suppose there exists a number M such that $\left|\sum_{n=1}^N b_n\right| \le M$ for all N (partial sums of $\sum b_n$ are bounded). Then $\sum_{n=1}^\infty a_n b_n$ converges.

Apply Dirichlet's test to discuss the convergence of the following.

- $\bullet \quad \sum_{n=1}^{\infty} \frac{\sin^2 n}{n}.$

Cauchy's Condensation Test

Given series $\sum a_n$. If a_n is decreasing sequence of positive numbers, then $\sum a_n$ converges if and only if $\sum 2^n a_{2^n}$ converges.

- $\sum \frac{1}{n^p}$. For p > 0, $\frac{1}{n^p}$ is positive and monotonically decreasing hence the Cauchy's condensation test is applicable.

Power Series

DEFINITIONS Power Series, Center, Coefficients

A power series about $\mathbf{x} = \mathbf{0}$ is a series of the form

$$\sum_{n=0}^{\infty}c_nx^n=c_0+c_1x+c_2x^2+\cdots+c_nx^n+\cdots.$$

A power series about $\mathbf{x} = \mathbf{a}$ is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots \,,$$

in which the center a and the coefficients $c_0,\,c_1,\,c_2,\,\cdots\,,\,c_n,\,\cdots$ are constants.

- What is the meaning of the convergence of a Power Series?
- For what values of x does a power series converge? (Use Mathematica)

Amit K. Verma (IITP) MA101 30/1 30/1

EXAMPLE: Testing for Convergence Using the Ratio Test

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} \cdots$$

THEOREM: The Convergence Theorem for Power Series

Consider the power series

$$\sum_{n=0}^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots.$$

- ① If it converges for $\mathbf{x} = \mathbf{c} \neq \mathbf{0}$, then it converges absolutely for all \mathbf{x} with $|\mathbf{x}| < |\mathbf{c}|$.
- ② If the series diverges for $\mathbf{x} = \mathbf{d}$, then it diverges for all \mathbf{x} with $|\mathbf{x}| > |\mathbf{d}|$.

Remark The power series $\sum c_n(x-a)^n$ behaves in one of three possible ways.

- ① It might converge only at $\mathbf{x} = \mathbf{a}$ or
- converge everywhere, or
- **3** converge on some interval of radius \mathbf{R} centered at $\mathbf{x} = \mathbf{a}$.

Amit K. Verma (IITP) MA101 32/1 32 / 1

COROLLARY

The convergence of the series $\sum c_n(x-a)^n$ is described by one of the following three possibilities:

- There is a positive number \mathbf{R} such that the series diverges for \mathbf{x} with $|\mathbf{x} \mathbf{a}| > \mathbf{R}$ but converges absolutely for \mathbf{x} with $|\mathbf{x} \mathbf{a}| < \mathbf{R}$. The series may or may not converge at either of the endpoints $\mathbf{x} = \mathbf{a} \mathbf{R}$ and $\mathbf{x} = \mathbf{a} + \mathbf{R}$.
- ② The series converges absolutely for every \mathbf{x} ($\mathbf{R} = \infty$).
- 3 The series converges at x = a and diverges elsewhere (R = 0).

Radius of Convergence

- R is called the radius of convergence of the power series
- and the interval of radius R centered at x = a is called the interval of convergence.
- The interval of convergence may be open, closed, or half-open, depending on the particular series.
- At points **x** with $|\mathbf{x} \mathbf{a}| < \mathbf{R}$ the series converges absolutely.
- If the series converges for all values of x, we say its radius of convergence is infinite.
- If it converges only at x = a we say its radius of convergence is zero.
- Note that a power series always converges for the center. So, our aim is to determine for what non-zero values of x-a, or values of $x \neq a$, it can converge.

Problem

Discuss the convergence of the following

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+2)^n}{n}.$$

Solution:

$$\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|<1\Rightarrow\lim_{n\to\infty}\left|\frac{(x+2)^{n+1}}{n+1}\cdot\frac{n}{(x+2)^n}\right|<1\Rightarrow|x+2|<1.$$

Which gives -3 < x < -1. At x = -3 we have $\sum_{n=1}^{\infty} \frac{1}{n}$ which is Divergent (Harmonic Series). At x = -1 we have $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ which is convergent by Alternating Series Test but does not converge absolutely.

- Radius is 1. Interval of absolute convergence (-3, -1).
- Interval of convergence (-3, -1].
- The Series is conditionally convergent at $\mathbf{x} = -1$.

35/1

Taylor's Theorem

If f and its first n derivatives $f', f'', \dots, f^{(n)}$ are continuous on the closed interval between a and b, and $f^{(n)}$ is differentiable on the open interval between a and b, then there exists a number c between a and b such that

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^n(a)}{n!}(b-a)^n + \frac{f^{n+1}(c)}{(n+1)!}(b-a)^{n+1}.$$
 (1)

Taylor's Theorem is generalization of the Mean Value Theorem.

Amit K. Verma (IITP)