# ANÁLISIS DE DATOS MASIVOS

#### ALGORITMOS DEL MODELO MAP-REDUCE

Blanca Vázquez

9 de septiembre de 2024

#### **CONTEXTO**



Imagen tomada de https://www.abc.es/

# CONTEXTO (2)

- · Sincronización de tareas
  - Las operaciones de mapeo y reducción se ejecutan de manera simultánea
  - Los nodos de reducción reciben las llaves de manera ordenadas
- Creación de estructuras algebraicas que contribuyan a optimizar los procesos

#### ALGORITMOS DEL MODELO MAPREDUCE

El modelo de programación implementa diversos algoritmos matemáticos para dividir una tarea en pequeñas partes y para asignarlas a múltiples nodos.

- · Ordenamiento
- · Búsqueda
- Índice invertido

#### ORDENAMIENTO

- · Tarea: ordenar un conjunto de archivos, un valor por línea
- Algoritmo
  - Toma ventaja de las propiedades del reductor pares (llave,valor) las cuales son procesados en orden por llave.
     Los reductores se ordenan ellos mismos.
- Función de mapeo
  - La llave será el nombre de archivo y número de línea, el valor será el contenido de línea
  - Regresa el valor como llave  $(k, v) \implies (v, v)$
- · Función de reducción
  - · Función de identidad

# ORDENAMIENTO (2)

Aprovecha el ordenamiento de llaves por sistema de manejo de tareas, se define una función de partición tal que  $k_1 < k_2 \implies hash(k_1) < hash(k_2)$ 

- · Es usado por prueba de velocidad de Hadoop
- Es un carrera de resistencia .entradas-salidas"

## BÚSQUEDA

- Tarea: encontrar documentos que contiene un patrón dado
- · Función de mapeo
  - La llave será el nombre de archivo y número de línea, el valor será el contenido de línea
  - Regresa nombre de archivo como llave si se encuentre el patrón en el contenido
- · Función de reducción
  - Identidad

# Búsqueda (2)

- Una vez que se identificó al documento con el patrón, es necesario marcar ese documento (una sola vez)
- Se usa la función *Combiner* para convertir pares redundantes en un solo archivo (*filename*, )
- · Reduce la entradas / salidas de la red

## FUNCIÓN COMBINAR



Imagen tomada de Kyuseok Shim, 2013.

## FUNCIÓN COMBINAR



Imagen tomada de Kyuseok Shim, 2013.

# FUNCIÓN COMBINAR



Imagen tomada de Kyuseok Shim, 2013.

## ÍNDICE INVERTIDO

Este algoritmo es el más utilizado en los sistemas de recuperación de información (ej., motores de búsqueda).

# ¿Cómo trabaja este algoritmo?

- Para cada término t, guardamos todos los documentos que contienen t
- Identificamos cada documento por un docID, el cuál es un número incremental

## ÍNDICE INVERTIDO



Imagen tomada de Kyuseok Shim, 2013.

# ¿Qué es un grafo?

- G = (V, E)
  - · V representa un conjunto de vértices (nodos)
  - E representa un conjunto de aristas (enlaces)
  - Tanto vértices como aristas pueden contener información adicional
- · Tipos de grafos
  - · Dirigidos o no dirigidos
  - · Con y sin ciclos
- · Los G están en todas partes:
  - · Redes sociales
  - · Estructura de hipervínculos en la web
  - · Estructuras físicas de las computadoras

#### ALGUNOS PROBLEMAS CON LOS GRAFOS

- · Encontrar la ruta más corta
  - · Tráfico en internet
- · Búsqueda de árboles mínimos
  - · Tendido de fibra óptica
- · Encontrar el flujo máximo
  - · Programación de aerolíneas
- · Identificar comunicaciones 'especiales'
  - Terrorismo / conspiraciones
  - Enfermedades

#### **GRAFOS Y MAPREDUCE**

- El procesamiento con grafos involucra:
  - Ejecutar cálculos en cada uno de los nodos: basados en características de los nodos y de las aristas.
  - · Propagar los cálculos 'atravesando' el grafo.
- · Preguntas claves
  - · ¿Cómo representar los datos de un grafo en MapReduce?
  - · ¿Cómo recorrer el grafo usando MapReduce?

# REPRESENTACIÓN DE LOS GRAFOS

• Los grafos comúnmente son representados como una matriz de adyacencias o una lista de adjacencias.

|   | I | 2 | 3 | 4 |
|---|---|---|---|---|
| I | 0 | I | 0 | I |
| 2 | I | 0 | I | I |
| 3 | I | 0 | 0 | 0 |
| 4 | I | 0 | I | 0 |



Imagen tomada de Jimmy Lin, 2013.

#### VENTAJAS DE LAS MATRICES DE ADYACENCIAS

- Ventajas
  - · Manipulación accesible de los datos
  - Iteración sobre filas y columnas, correspondientes con los enlaces salientes y entrantes
- Desventajas
  - Muchos zeros
  - · Ocupan gran cantidad de espacio

## LISTAS DE ADYACENCIAS

|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 1 |
| 2 | 1 | 0 | 1 | 1 |
| 3 | 1 | 0 | 0 | 0 |
| 4 | 1 | 0 | 1 | 0 |

Imagen tomada de Jimmy Lin, 2013.

## ENCONTRAR EL CAMINO MÁS CORTO

```
1: class Mapper
       method Map(nid n, node N)
           d \leftarrow N.\text{Distance}
3:
4:
           Emit(nid n, N)
                                                                 ▶ Pass along graph structure
           for all nodeid m \in N. Adjacency List do
 5.
               Emit(nid m, d + 1)
                                                         ▷ Emit distances to reachable nodes
 6.
 1: class Reducer
        method Reduce(nid m, [d_1, d_2, ...])
2:
           d_{min} \leftarrow \infty
3.
           M \leftarrow \emptyset
4:
           for all d \in \text{counts } [d_1, d_2, \ldots] do
 5.
               if IsNode(d) then
6.
                   M \leftarrow d
                                                                     ▷ Recover graph structure
7:
               else if d < d_{min} then
                                                                   ▶ Look for shorter distance
8:
                   d_{mir} \leftarrow d
9:
           M.Distance \leftarrow d_{min}
                                                                    ▶ Update shortest distance
10-
           Emit(nid m, node M)
11:
```

Algoritmo BFS

#### RECORDEMOS..

- · Las tareas de mapeo y reducción
  - · Son hilos independientes en cada nodo
- Funciones de combinar
  - · Reduce el tamaño de las funciones de mapeo
  - · Ejecuta mini-funciones de reducción en cada nodo
  - · Disminuye el costo para el ordenamiento
- Cada tarea de mapeo y reducción puede opcionalmente usar dos funciones: init() y close()
  - · init() llamado al inicio de cada tarea
  - · close() llamado al final de cada tarea