

시스템 분석과 설계

효과적인 비즈니스 정보시스템 개발

Chapter 05 자료흐름도 작성 단계

목차

- 01 자료흐름도의 단계화
- 02 자료흐름도의 분할 방법
- 03 논리적 모형의 구축

학습목표

- 자료흐름도의 작성 단계를 학습한 후 배경도와 분할도를 직접 작성해 본다.
- 자료흐름도의 분할 방법을 사례를 통해 학습한다.
- 시스템의 물리적 모형과 논리적 모형에 대해 이해한다.
- 논리적 모형의 구축을 위해 알아야 할 개념들을 학습한다.
- 자료흐름도의 작성 사례들을 평가하고 개선할 수 있도록 다양한 사례들을 검토한다.

1.1 단계화된 자료흐름도의 이점

■ 단계화된 자료흐름도의 이점

- 단계화된 자료흐름도는 분석을 하향식으로 수행하므로 시스템을 상위로부터조망해 볼 수 있음
- 분할된 페이지와 페이지를 연결하는 연결점이 필요 없음(한 장의 자료흐름도가 특정 업무영역을 완전히 표현하게 되기 때문)
- 한 장의 종이는 일곱 개 전후로 적절한 개수의 처리를 포함하고 있어 이해하기 쉬움

1.2 배경도와 분할도

■ 배경도

- 분석하고자 하는 시스템과 외부 세계와의 접속관계를 식별하기 위한 것
- 시스템 분석의 범위를 결정함

그림 5-1 도서주문 처리에 대한 자료흐름도 중 배경도의 예 [01]

1.2 배경도와 분할도

■ 분할도

■ 시스템의 복잡도에 따라 세분화된 자료흐름도를 통칭함

■ 분할을 어느 정도까지 하는 것이 좋은가에 대한 일반적인 지침

- 자료흐름에 주목하여 반영
- 개념적으로 의미있는 접속관계가 이루어지도록 분할함
- 상위 단계의 분할은 하위 단계보다 많게 이루어져도 무방함
- 자료흐름도의 분할은 이해도를 저하시키지 않는 한 많이 하는 것이 좋음
- 일곱 개 전후로 분할된 자료흐름도가 이해 및 작업하기가 용이함
- 절대적인 분할원칙을 고수하는 것보다는 자료흐름도를 명확히 표현하여 이해 가 쉽게 하는 것이 가장 좋음

1.2 배경도와 분할도

■ 최하위 단계를 결정하는 데 도움이 되는 지침

- 소단위 명세서로 한 페이지 이내에 기술할 수 있을 때까지 분할
- 처리에 대한 입력 자료흐름과 출력 자료흐름이 오직 하나씩 남을 때까지 분할
- 입력과 출력 사이에 일대일 또는 다대일의 관계가 갖는다면 분할이 충분히 이루어진 것임

그림 5-2 도서주문 처리에 대한 자료흐름도 중 분할도의 예

2. 자료흐름도의 분할 방법

■ 자료흐름도를 세분화하는 방법

- ① 자료흐름 중심 분할, 접속점 분할 : 자료흐름 중심으로 분할하는 방법
- ② 처리 중심 분할, 조각그림 짜맞추기 분할 : 처리 중심으로 분할하는 방법

■ 자료흐름 중심 분할

그림 5-4 자료흐름 중심 분할의 절차

■ 자료흐름 중심 분할

그림 5-5 자료흐름 중심 분할의 예 - 분할 전 [02]

■ 자료흐름 중심 분할

그림 5-6 자료흐름 중심 분할의 예 - 분할 후

■ 자료흐름 중심 분할의 특징

- 자료흐름 관점을 기반으로 분할도를 작성
- 처리순서에 따라 요구되는 자료들을 식별할 수 있음
- 입력 자료흐름과 출력 자료흐름 사이의 균형을 고려함
- 모호한 처리들을 구별할 수 있도록 도와줌
- 상대적으로 소규모 시스템에 적용하기에 적합함

그림 5-7 자료 중심 분할의 절차

그림 5-8 처리 중심 분할의 예 - 분할 전

그림 5-9 처리 중심 분할의 예 - 분할 과정 [03]

그림 5-10 처리 중심 분할의 예 - 분할 후

■ 처리 중심 분할의 특징

- 처리기 관점에서 분할도를 작성함
- 활동의 처리순서를 기준으로 순차적으로 분할함
- 처리 범위가 명확하게 정의된 보다 대규모의 시스템에 적용하기에 적합함
- 많고 상세한 처리기들 탓으로 너무 복잡해질 수 있음
- 자료흐름에 대한 적절한 이름이 사용되지 않은 경우 각각의 조각을 하나로 짜 맞추기가 어려움

■ 논리적 모형 구축을 위한 기본 개념 – 완전한 기술

- 완전한 기술 : 분석가가 요구사항을 논리적 관점에서 파악할 수 있도록 도와줌
- 기술 : 인간이 소기의 목적을 달성하기 위해 사용하는 수단 처리기와 저장기라는 두 가지 요소로 구성
- 완전한 기술 = 완전한 처리기 + 완전한 저장기

■ 완전한 기술의 관점에서 필수적 요구사항 정의

- 필수적 요구사항 : 완전한 기술을 이용하여 구현하더라도 시스템에 존재해야 하는 활동 및 자료
- 필수적 요구사항 = 필수적 기능 + 필수적 저장자료
- 필수적 기능 : 기본적 기능과 보관적 기능으로 구분됨

■ 논리적 모형 구축을 위한 기본 개념 – 완전한 기술

그림 5-11 논리적 모델의 기본형태

■ 논리적 모형 구축을 위한 기본 개념 – 완전한 기술

→ 논리적 모형은 시스템의 현존 그대로를 표현한 물리적 모형을 구축한 후, 이 중 완전한 기술을 이용하여 잘못된 요구사항을 제거함으로써 구축할 수 있음

■ 물리적 특성의 분류

표 5-1 물리적 특성의 분류

특성	내용
분편성	하나의 필수적 기능의 부분들이 여러 처리기에 의해 분산되어 수행되는 현상
통합성	서로 관련되지 않는 필수적 기능들의 단편들이 하나의 처리기 또는 저장기에 할당되는 현상
중복성	필수적 기능이 여러 처리기에 의해 중복되어 수행되거나 동일 자료가 여러 저장기에 중복되어 보관되는 현상
부가성	이용된 기술의 제한성을 보완하기 위하여 필수적 요구사항과는 무관한 추가적 기능이나 자료가 포함되는 현상으로, 처리기 간에 불필요하게 자료가 전송되는 통신적 부가성과 발생 가능한 오류를 방지하기 위한 관리적 부가성으로 분류됨
복잡성	필수적 요구사항이 기술적 한계로 인하여 매우 복잡하게 구현되어 이해를 곤란하게 하는 현상

- 논리적 모형 구축을 위한 기본 개념 사건과 반응
 - 사건 : 시스템의 내부 및 외부에서 발생하는 상태변화 내부적 사건과 외부적 사건이 있음
 - 반응 : 특정 사건이 발생할 때마다 시스템에 의해 수행되어야 할 일련의 동작과 그 결과로써 필수적 기능을 형성

■ 논리적 모형 구축을 위한 기본 개념 – 사건과 반응

그림 5-12 사건과 반응의 개념을 포함한 논리 모형의 기본 유형

3.2 물리적 모형 작성과 논리적 모형 작성

■ 현 물리모형

■ 현업의 업무를 중심으로 최초로 작성되는 자료흐름도

그림 5-13 급여계산의 현물리모형

3.2 물리적 모형 작성과 논리적 모형 작성

■ 현 논리모형

■ 순수하게 업무에 관계된 기능만 중심으로 재분석 작업을 통해 만들어진 모델

그림 5-14 급여계산의 현 논리모형

실습하기

대학 도서관 업무의 배경도 및 1차 분할도 작성

대부분의 대학 도서관들은 자동화된 시스템을 구축해 놓아 사용자들이 정보를 쉽게 이용할 수 있도록 제공하고 있다. 그리고 인터넷의 발달 덕분에 한 대학이 소장하고 있는 도서의 정보뿐만 아니라 네트워크로 연결된 다른 대학의 도서 정보도 손쉽게 검색할 수 있다. 실습을 위해 대학 도서관의 업무처리에 대해 설 명한 다음 사례를 참고하여 제시된 문제의 도해를 작성해 보자.

■ 대학 도서관 업무분석

① 수서 : 신규도서의 구매를 담당하는 부서

② 정리: 신규도서에 대한 분류, 목록 작성, 라벨 등의 일을 담당하는 부서

③ 열람 : 도서목록의 조회 서비스, 대출 서비스 등을 담당하는 부서

표 5-2 대학 도서관의 주요 자료 목록철

목록철	내용
도서 목록 철	대학 도서관에 비치된 도서 목록 을 체계적으로 정리해 놓은 자료
희망도서 목록철	대학 도서관에 비치되지 않은 도서목록으로, 이용자나 각 학과 교수들에 의해 작성된 구입희망 도서 목록
이용자 DB	대학 도서관 이용자의 기본사항을 생성해 놓은 자료
대출대장	도서대출 처리 과정에서 작성된 대출자, 대출도서 등에 관한 자료
연체자 목록	도서대출 기한을 초과한 대출자를 연체자로 분류해서 관리하는 자료

■ 대학 도서관 업무에 대한 배경도 작성

그림 5-15 대학 도서관 업무처리 배경도

■ 대학 도서관 업무처리에 대한 1차 분할도 작성

그림 5-16 대학 도서관 업무처리 1차 분할도 - 처리와 자료저장소의 작성

■ 대학 도서관 업무처리에 대한 1차 분할도 작성

그림 5-17 대학 도서관 업무처리 1차 분할도 - 자료흐름 작성

실습하기

대학 도서관 업무의 2차 분할도 작성

그림 5-18 대학도서관 업무처리 2차 분할도 - 3번, 4번 처리

실습하기

대학 도서관 업무의 2차 분할도 작성

그림 5-19 처리 3번과 4번의 분할 결과

Thank You