Московский	Государственны	лй Университет	тимени М.В.	Ломоносова
Факу	льтет вычислите	ельной математ	чки и кибер	нетики

Отчет по практическому заданию 2 в рамках курса «Суперкомпьютерное моделирование и технологии»

Решение краевой задачи для уравнения Пуассона с потенциалом методом конечных разностей

> Выполнил студент 610 группы Афанасьев Виталий Игоревич

1 Постановка задачи

В прямоугольнике $\Pi=\{(x,y):A_1<=x<=A_2,B_1<=y<=B_2\},$ граница Γ состоит из отрезков:

$$\gamma_R = (A_2, y) : B_1 <= y <= B_2,
\gamma_L = (A_1, y) : B_1 <= y <= B_2,
\gamma_T = (x, B_2) : A_1 <= x <= A_2,
\gamma_B = (x, B_1) : A_1 <= x <= A_2,$$

рассматривается дифференциальное уравнение Пуассона с потенциалом:

$$-\Delta u + q(x, y)u = F(x, y),$$

в котором оператор Лапласа имеет вид:

$$\Delta u = \frac{\partial}{\partial x} \left(k(x, y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(k(x, y) \frac{\partial u}{\partial y} \right)$$

Для выделения единственного решения уравнение дополняется граничными условиями первого рода:

$$u(x,y) = \varphi(x,y)$$

В данном варианте предлагается решить данное уравнение для функций:

$$u(x,y) = exp(1 - (x + y)^2), \quad \Pi = [-1, 2][-2, 2],$$

 $q(x,y) = (x + y)^2,$
 $k(x,y) = 4 + x,$

Подстановкой предложенных функций нетрудно получить функцию F:

$$F(x,y) = u(x,y) (6x + 2y + 16 - (x+y)^{2} (8x + 31));$$

2 Разностная схема

Для решения предложенной задачи составим разностную схему:

$$q_{ij}u_{ij} - \frac{1}{h_x} \left(k(x_i + 0.5h_x, y_j) \frac{u_{i+1j} - u_{ij}}{h_x} - k(x_i - 0.5h_x, y_j) \frac{u_{ij} - u_{i-1j}}{h_x} \right) - \frac{1}{h_y} \left(k(x_i, y_j + 0.5h_y) \frac{u_{ij+1} - u_{ij}}{h_y} - k(x_i, y_j - 0.5h_y) \frac{u_{ij} - u_{ij-1}}{h_y} \right) = F_{ij} \quad i = \overline{2, M - 2}, j = \overline{2, N - 2}$$

$$q_{1j}u_{1j} - \frac{1}{h_x} \left(k(x_1 + 0.5h_x, y_j) \frac{u_{2j} - u_{1j}}{h_x} - k(x_1 - 0.5h_x, y_j) \frac{u_{1j}}{h_x} \right) - \frac{1}{h_y} \left(k(x_1, y_j + 0.5h_y) \frac{u_{1j+1} - u_{1j}}{h_y} - k(x_1, y_j - 0.5h_y) \frac{u_{1j} - u_{1j-1}}{h_y} \right) = F_{1j} + k(x_1 - 0.5h_x, y_j) \frac{u_{0j}}{h_x^2}, \quad j = \overline{2, N-2}$$

$$q_{M-1j}u_{M-1j} - \frac{1}{h_x} \left(-k(x_{M-1} + 0.5h_x, y_j) \frac{u_{M-1j}}{h_x} - k(x_{M-1} - 0.5h_x, y_j) \frac{u_{M-1j} - u_{M-2j}}{h_x} \right)$$

$$- \frac{1}{h_y} \left(k(x_{M-1}, y_j + 0.5h_y) \frac{u_{M-1j+1} - u_{M-1j}}{h_y} - k(x_{M-1}, y_j - 0.5h_y) \frac{u_{M-1j} - u_{M-1j-1}}{h_y} \right)$$

$$= F_{M-1j} + k(x_{M-1} + 0.5h_x, y_j) \frac{u_{Mj}}{h_x^2}, \quad j = \overline{2, N-2}$$

$$q_{i1}u_{i1} - \frac{1}{h_x} \left(k(x_i + 0.5h_x, y_1) \frac{u_{i+11} - u_{i1}}{h_x} - k(x_i - 0.5h_x, y_1) \frac{u_{i1} - u_{i-11}}{h_x} \right)$$

$$- \frac{1}{h_y} \left(k(x_i, y_1 + 0.5h_y) \frac{u_{i2} - u_{i1}}{h_y} - k(x_i, y_1 - 0.5h_y) \frac{u_{i1}}{h_y} \right)$$

$$= F_{i1} + k(x_i, y_1 - 0.5h_y) \frac{u_{i0}}{h_y^2}, \quad i = \overline{2, M - 2}$$

$$q_{iN-1}u_{iN-1} - \frac{1}{h_x} \left(k(x_i + 0.5h_x, y_{N-1}) \frac{u_{i+1N-1} - u_{iN-1}}{h_x} - k(x_i - 0.5h_x, y_N - 1) \frac{u_{iN-1} - u_{i-1N-1}}{h_x} \right)$$

$$- \frac{1}{h_y} \left(-k(x_i, y_{N-1} + 0.5h_y) \frac{u_{iN-1}}{h_y} - k(x_i, y_{N-1} - 0.5h_y) \frac{u_{iN-1} - u_{iN-2}}{h_y} \right)$$

$$= F_{iN-1} + k(x_i, y_{N-1} + 0.5h_y) \frac{u_{iN}}{h_y^2}, \quad i = \overline{2, M-2}$$

$$q_{11}u_{11} - \frac{1}{h_x} \left(k(x_1 + 0.5h_x, y_1) \frac{u_{21} - u_{11}}{h_x} - k(x_1 - 0.5h_x, y_1) \frac{u_{11}}{h_x} \right)$$

$$- \frac{1}{h_y} \left(k(x_i, y_j + 0.5h_y) \frac{u_{12} - u_{11}}{h_y} - k(x_1, y_1 - 0.5h_y) \frac{u_{11}}{h_y} \right)$$

$$= F_{11} + k(x_1 - 0.5h_x, y_1) \frac{u_{01}}{h_x^2} + k(x_1, y_1 - 0.5h_y) \frac{u_{10}}{h_y^2}$$

$$q_{M-11}u_{M-11} - \frac{1}{h_x} \left(-k(x_{M-1} + 0.5h_x, y_1) \frac{u_{M-11}}{h_x} - k(x_{M-1} - 0.5h_x, y_1) \frac{u_{M-11} - u_{M-21}}{h_x} \right)$$

$$- \frac{1}{h_y} \left(k(x_{M-1}, y_1 + 0.5h_y) \frac{u_{M-12} - u_{M-11}}{h_y} - k(x_{M-1}, y_1 - 0.5h_y) \frac{u_{M-11}}{h_y} \right)$$

$$= F_{M-11} + k(x_{M-1}, y_1 - 0.5h_y) \frac{u_{M-10}}{h_y^2} + k(x_{M-1} + 0.5h_x, y_1) \frac{u_{M1}}{h_x^2}$$

$$\begin{aligned} q_{1N-1}u_{1N-1} \\ &- \frac{1}{h_x} \Big(k(x_1 + 0.5h_x, y_{N-1}) \frac{u_{2N-1} - u_{1N-1}}{h_x} - k(x_1 - 0.5h_x, y_{N-1}) \frac{u_{1N-1}}{h_x} \Big) \\ &- \frac{1}{h_y} \Big(- k(x_1, y_{N-1} + 0.5h_y) \frac{u_{1N-1}}{h_y} - k(x_1, y_{N-1} - 0.5h_y) \frac{u_{1N-1} - u_{1N-2}}{h_y} \Big) \\ &= F_{1N-1} + k(x_1 - 0.5h_x, y_{N-1}) \frac{u_{0N-1}}{h_x^2} + k(x_1, y_{N-1} + 0.5h_y) \frac{u_{1N}}{h_y^2} \end{aligned}$$

$$-\frac{1}{h_x}\left(-k(x_{M-1}+0.5h_x,y_{N-1})\frac{u_{M-1N-1}}{h_x}-k(x_{M-1}-0.5h_x,y_{N-1})\frac{u_{M-1N-1}-u_{M-2N-1}}{h_x}\right)$$

$$-\frac{1}{h_y}\left(-k(x_{M-1},y_{N-1}+0.5h_y)\frac{u_{M-1N-1}}{h_y}-k(x_{M-1},y_{N-1}-0.5h_y)\frac{u_{M-1N-1}-u_{M-1N-2}}{h_y}\right)$$

$$=F_{M-1N-1}+k(x_{M-1}+0.5h_x,y_{N-1})\frac{u_{MN-1}}{h_x^2}+k(x_{N-1},y_{N-1}+0.5h_y)\frac{u_{M-1N}}{h_y^2}$$

3 Оценка точности разностной схемы

u(x, y) (m=160, n=160)

Рис. 1: Точное решение 160х160

Рис. 2: Численное решение 160х160

Для оценки точности реализован последовательный алгоритм для приближенного решения методом наименьших невязок.

Число точек сетки MxN	Максимальная ошибка
20x20	0.01619
40x40	0.00386
80x80	0.00094
160×160	0.00037

Erorr u(x, y) (m=20, n=20)

Рис. 3: Ошибка численного решение на сетки 20 x 20

Erorr u(x, y) (m=40, n=40)

Рис. 4: Ошибка численного решение на сетки 40х40

Erorr u(x, y) (m=80, n=80)

Рис. 5: Ошибка численного решение на сетки 80х80

Erorr u(x, y) (m=160, n=160)

Рис. 6: Ошибка численного решение на сетки 160х160

4 Описание параллельного алгоритма

Параллельная реализация алгоритма:

- 1. Разбиваем расчетную область Π на подобласти, так чтобы количество узлов по переменным x и y в каждой подобласти принадлежало диапазону [0.5,2] и количество узлов по переменным x и y любых двух подобластей отличалось не более, чем на единицу.
- 2. Цикл пока не достигнута точность делать шаги 3,4,5
- 3. Обмен значений на граничных узлах между соседними подобластями
- 4. Расчет невязки
- 5. Обмен значений невязки на граничных узлах между соседними подобластями
- 6. Рассчитывается итерационный параметр, для расчета скалярного произведения используется MPI_ALLREDUCE

5 Результаты

Число процессов	Число точек сетки MxN	Время решения Т	Ускорение S
4	500×500	152.85	1.00
8	500×500	80.15	1.90
16	500×500	48.89	3.12
32	500×500	26.38	5.79
4	500×1000	295.42	1.00
8	500×1000	153.68	1.92
16	500×1000	92.70	3.18
32	500×1000	51.19	5.77

Рис. 7: Ускорение на сетки 500х500 на Polus

Рис. 8: Ускорение на сетки 500×1000 на Polus

Рис. 9: Время выполнения на сетки $500\mathrm{x}1000$ на BlueGene/P MPI и MPI+OpenMP реализации

Рис. 10: Время выполнения на сетки 1000х1000 на BlueGene/P MPI и MPI+OpenMP реализации

Рис. 11: Ускорение на сетки $500\mathrm{x}1000$ на BlueGene/P MPI и MPI+OpenMP реализации

Рис. 12: Ускорение на сетки 1000х1000 на BlueGene/P MPI и MPI+OpenMP реализации

MPI реализация:

Число процессов	Число точек сетки MxN	Время решения Т	Ускорение S
128	500x1000	110.11	1.0
256	500×1000	57.02	1.9
512	500×1000	29.57	3.7
128	1000x1000	219.74	1.0
256	1000×1000	114.32	1.9
512	1000×1000	60.23	3.6

MPI+OpenMP реализация:

Число процессов	Число точек сетки MxN	Время решения Т	Ускорение S
128	500×1000	31.28	1.0
256	500×1000	17.77	1.7
512	500×1000	10.99	2.8
128	1000x1000	59.90	1.0
256	1000×1000	32.81	1.8
512	1000×1000	18.94	3.1

6 Вывод

В данной работе было произведено исследование алгоритма численного решения задачи Пуассона с потенциалом. Представленный алгоритм показал очень хорошие показатели масштабируемости. МРІ реализация обладает лучшей масштабируемостью, но уступает по времени выполнения МРІ+ОрепМР реализации.