Homework 7

张思源 *21110850018*

November 11, 2021

1 Ex1

Sol 1.1 首先导入数据,将列名更改为特征名称,并打印前 5 行可以得到结果如下图:

	MedInc	HouseAge	AveRooms	 Ave0ccup	Latitude	Longitude
0	8.3252	41.0	6.984127	 2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	 2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	 2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	 2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	 2.181467	37.85	-122.25

Figure 1: Head of the data

然后, 打印房价 (即 target) 的最值, 可以发现其最大值为 5.00001, 最小值为 0.14999. 进而计算模型的 VIF(方差膨胀系数): 可以得到 8 个特征的 VIF 系数依次为: 11.51,7.20,45.99, 43.59,2.94,1.10, 559.87,633.71, 可以看出第 1 个、第 3 个、第 4 个特征的 VIF 系数超过了 10, 第 7 个和第 8 个特征的 VIF 系数更是超过了 100, 说明数据存在多重共线性.

对数据集分别利用多元线性回归、岭回归和 Lasso 回归模型,可以得到模型的 MSE 和 $adjustR^2$ 分别如下图所示,其中

$$adjustR^{2} = 1 - \frac{(1 - R^{2})(n - 1)}{n - p - 1}$$

2 EX2 2

多元线性回归模型的MSE为: 0.5184748325959323

多元线性回归模型的adjustR2为: 0.6058229760432433

岭回归模型的MSE为: 0.518481946320414

岭回归模型的adjustR2为: 0.6058175677445774

Lasso回归模型的MSE为: 0.5194862502452575

Lasso模型的R2为: 0.6050540330320808

Figure 2: MSE and $adjustR^2$ of 3 models

最后, 比较不同的正则化项可得下表:

	Lasso(L1 正则项)	Ridge(L2 正则项)
相同点	都可以用来解决过拟合问题	
不同点	可以用来做 feature selection,	不可以做 feature selection, 更
	更容易使得权重变为 0	容易使得权重接近 0

2 Ex2

Sol 2.1 首先, 计算得:

$$\begin{split} \frac{\partial E}{\partial w_{kj}} &= \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial net_k} \frac{\partial net_k}{\partial w_{kj}} \\ &= (o_k - d_k) f(\sum_{j=0}^m w_{kj} y_j) (1 - (\sum_{j=0}^m w_{kj} y_j)) y_j \\ &= (o_k - d_k) o_k (1 - o_k) y_j \end{split}$$

所以 $\Delta w_{kj} = -\eta(o_k - d_k)o_k(1 - o_k)y_j$. 并且可以计算得:

$$\frac{\partial E}{\partial v_{ji}} = \sum_{k=1}^{l} \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial net_k} \frac{\partial net_k}{\partial y_j} \frac{\partial y_j}{\partial net_j} \frac{\partial net_j}{\partial v_{ji}}$$

$$= \sum_{k=1}^{l} (o_k - d_k) f(\sum_{j=0}^{m} w_{kj} y_j) (1 - f(\sum_{j=0}^{m} w_{kj} y_j)) w_{kj} f(\sum_{i=0}^{n} v_{ji} x_i) (1 - f(\sum_{i=0}^{n} v_{ji} x_i)) x_i$$

$$= \sum_{k=1}^{l} (o_k - d_k) o_k (1 - o_k) w_{kj} y_j (1 - y_j) x_i$$

2 EX2 3

所以 $\Delta v_{ji} = -\eta \sum_{k=1}^l (o_k-d_k) o_k (1-o_k) w_{kj} y_j (1-y_j) x_i$.

REFERENCES 4

References

- [1] 李航. 统计学习方法 [M]. 清华大学出版社, 2012.
- $[2]\,$ Goodfellow, Ian, et al. Deep Learning [M]. MIT Press, 2016.