Here are detailed notes for Module 2 of your HSMC-501 course covering Critical Path Method (CPM) and Programme Evaluation Review Technique (PERT):

2.1 CPM and PERT

Meaning:

Critical Path Method (CPM):

- A project management technique used to plan, schedule, and control activities in a project.
- Focuses on determining the longest path (critical path) in the network diagram to identify activities that directly affect project completion time.

Programme Evaluation Review Technique (PERT):

- A statistical tool used for project management that analyzes and represents the tasks involved in completing a project.
- Suitable for projects where activity durations are uncertain, using probabilistic time estimates.

Features:

1.

CPM:

- Based on deterministic time estimates.
- Focuses on time-cost trade-offs.
- Primarily used for repetitive projects (e.g., construction).
- Identifies the critical path for time optimization.

2.

PERT:

- Based on probabilistic time estimates (optimistic, pessimistic, and most likely times).
- Handles uncertainty and complexity.
- Best suited for R&D projects.

Differences between CPM and PERT:

Aspect	СРМ	PERT
Time Estimates	Deterministic (fixed)	Probabilistic (variable)
Focus	Time-cost optimization	Time estimation under uncertainty
Application	Construction, manufacturing projects	Research, development projects

Nature	Activity-oriented	Event-oriented
Critical Path	Critical path is well-defined	Critical path may vary with probabilities

Applications:

- CPM:
 - Used in construction, production scheduling, and plant maintenance.
- PERT:
 - Ideal for research projects, software development, and new product launches.

2.2 Terms Used in Network Diagram

- 1. Event (Node): A point that marks the start or end of an activity.
- 2. Activity: A task or set of tasks that consume time and resources.
- 3. Dummy Activity: A representation of dependency without time or resource consumption.
- 4. Critical Path: The longest path through the network with zero float.
- 5. Float (Slack): The amount of time an activity can be delayed without affecting the project timeline.
- 6. Earliest Start Time (EST): The earliest time an activity can begin.
- 7. Latest Finish Time (LFT): The latest time an activity must be completed.

Network Diagram for a Real-Life Project

Example Project: Building a House

Activities:

- 1. Design approval
- 2. Site preparation
- 3. Foundation laying
- 4. Wall construction
- 5. Roofing
- 6. Plumbing
- 7. Electrical wiring
- 8. Interior finishing
- 9. Painting
- 10. Final inspection

Network Diagram:

Start --> (1) Design Approval --> (2) Site Prep --> (3) Foundation --> (4) Wall Construction --> (5) Roofing --> (6) Plumbing & (7) Electrical --> (8) Interior --> (9) Painting --> (10) Final Inspection --> End

Computation of LPO and EPO:

Earliest Possible Occurrence (EPO):

- Calculated by moving forward in the network.
- Add the duration of preceding activities to the starting time.

2.

Latest Possible Occurrence (LPO):

- Calculated by moving backward in the network.
- Subtract the duration of succeeding activities from the ending time.

Determination of Critical Path:

- Add activity durations along all possible paths.
- Identify the path with the longest duration as the critical path.

Floats:

•

Types of Floats:

- 1. Total Float (TF): The total time an activity can be delayed without affecting the project.
- 2. Free Float (FF): The time an activity can be delayed without delaying the next activity.
- 3. Independent Float (IF): The time an activity can be delayed without affecting the earliest start of succeeding activities.

Formulae:

- TF = LFT EST Duration
- FF = EST of Next Activity EST Duration

Crashing of Network:

- **Definition**: Shortening the project duration by allocating extra resources to critical activities.
- Steps:
 - 1. Identify critical activities.
 - 2. Calculate the cost of crashing per unit time.
 - 3. Select activities with the least crashing cost.

Updating the Network:

• **Definition**: Revising the network to reflect changes in the project.

• Applications:

- Accommodating delays.Reallocating resources.Managing changes in project scope.