Lecture 6: PDEs in higher dimensions

Advection

1D: $u_t + au_x = 0$.

In 2D:

$$u_t + a(x, y)u_x + b(x, y)u_y = 0.$$

Or more generally, we can write this as:

$$u_t + \nabla \cdot (\vec{w}u) = 0,$$

with a vector field $\vec{w}(x,y)$.

Advection and the wave equation are quite different from diffusion: they are hyperbolic and "information" about the solution travels along characteristics. These are the lines traced out my the vector field w(x, y).

The numerics are a bit different too: this code uses "upwinding" finite differences which are appropriate for advection-dominited problems, but we haven't talked about them in this course.

But we could look more carefully about constructing the matrices in this code. . .

Heat equation

$$u_t = \nabla^2 u = u_{xx} + u_{yy}$$

on a square or rectangle. We can apply centered 2nd-order approximation to each derivative. In the method of lines approach, we write

$$u_{xx} + u_{yy} \approx \frac{v_{i-1,j}^n - 2v_{ij}^n + v_{i+1,j}^n}{h^2} + \frac{v_{i,j-1}^n - 2v_{ij}^n + v_{i,j+1}^n}{h^2}.$$

This gives a stencil in *space* (then still need to deal with time).

Using forward or backward Euler, accuracy is $O(k + h^2)$.

And a stability restriction for FE of $k < h^2/4$.

In principle, our "finite difference Laplacian" maps a matrix of 2D grid data to another such, and is thus a "4D tensor". However, in practice we stretch out 2D to 1D, so that the tensor becomes a matrix:

$$\frac{v}{dt} = Lv.$$

How does this "stretch" work? It defines an ordering of the grid points. In Matlab: meshgrid() and (:), see later.

Matrix structure

Let's look at the structure of L. We choose an ordering for the grid points (why this one? see below) and assume zero boundary conditions:

^ _V						
1		0	0	0		
	0	1	0	10	0	
	0	X4	Х8	x12	0	
i	0	x3	x7	x11	0	
1		•				
1	0	x2	х6	x10	0	
i	0	x1	x5	x9	0	
1						
 +-		0	0	0	>	x

with corresponding unknowns v_1, \ldots, v_{12} . The discrete Laplacian now looks like this: