

数学实验

Experiments in Mathematics

实验5 线性方程组的解法

2000-10-27

为什么要学习线性方程组 的数值解法

- 许多实际问题归结为线性(代数)方程组
 - 机械设备、土建结构的受力分析

经济计划

输电网络、管道系统的参数计算

企业管理

- 大型的方程组需要有效的数值解法
- 数值解法的稳定性和收敛性问题需要注意

实验5的主要内容

- 1. 两类数值解法: 直接方法; 迭代方法
- 2. 实际问题中方程组的数值解。
- 3*.数值解法的稳定性和收敛性——向量和矩阵的范数

2000-10-27

线性方程组的一般形式、两类解法

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\dots$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n}$$

$$AX=b$$

直接法 经过有限次算术运算求出精确解(实际上由于有舍入误差只能得到近似解)--- 高斯(Gauss)消元法及与它密切相关的矩阵LU分解迭代法 从初始解出发,根据设计好的步骤用逐次求出的近似解逼近精确解 ---- 雅可比(Jacobi)迭代法和高斯—塞德尔(Gauss—Seidel)迭代法

消
元
过
程

$$a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)}$$

$$a_{22}^{(2)}x_2 + \dots + a_{2n}^{(2)}x_n = b_2^{(2)}$$

$$\dots$$

$$a_{n2}^{(2)}x_2 + \dots + a_{nn}^{(2)}x_n = b_n^{(2)}$$

$$a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)}$$

$$a_{22}^{(2)}x_2 + \dots + a_{2n}^{(2)}x_n = b_2^{(2)}$$

$$\dots$$

$$a_{kk}^{(k)} \neq 0$$

$$(k = 1, 2, \dots, n)$$

$$a_{nn}^{(n-1)}x_{n-1} + a_{n-1,n}^{(n-1)}x_n = b_n^{(n-1)}$$
程

直接法一列主元素消元法

高斯消元法条件 $a_{kk}^{(k)} \neq 0 (k = 1, 2, \dots, n)$

 $a_{kk}^{(\kappa)}$ (绝对值)很小时, 用它作除数会导致舍入误 差的很大增加 $a_{kk}^{(k)}x_k + \cdots + a_{kn}^{(k)}x_n = b_k^{(k)}$ …… $a_{nk}^{(k)}x_k + \cdots + a_{nn}^{(k)}x_n = b_n^{(k)}$

2000-10-27

$$a_{kk}^{(k)}x_k + \dots + a_{kn}^{(k)}x_n = b_k^{(k)}$$
.....

最大的一个(列主元)

$$a_{nk}^{(k)}x_k + \cdots + a_{nn}^{(k)}x_n = b_n^{(k)}$$

将列主元所在行与第k行交换后, 再按上面的高斯消元 法进行下去,称为列主元素消元法。

直接法 - 高斯消元法的矩阵表示

高斯消元法的第一次消元

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

$$a_{n2}^{(2)}x_2 + \dots + a_{nn}^{(2)}x_n = b_n^{(2)}$$

三角阵M₁

2000-10-27

直接法 - 高斯消元法的矩阵表示

第二次消元相当于再左乘单位下三角阵M。

$$M_1Ax = M_1b$$
 \square $M_2M_1Ax = M_2M_1b$

最终消元形式 $M_{n-1}\cdots M_2M_1Ax = M_{n-1}\cdots M_2M_1b$

记
$$M_{n-1}\cdots M_2M_1=M,$$

M出下三角阵

$$\begin{array}{c}
a_{11}^{(1)}x_1 + a_{12}^{(1)}x \\
a_{22}^{(2)}x_2
\end{array}$$

对角元素 $a_{kk}^{(k)} \neq 0$

$$\begin{align*} \begin{align*} \b$$

$$x = U^{-1}Mb$$

直接法一矩阵LU分解

$$a_{kk}^{(k)} \neq 0$$
 公的顺序主子式 $D = \begin{vmatrix} a_{11} \cdots a_{1k} \\ \vdots & \vdots \\ a_{k1} \cdots a_{kk} \end{vmatrix} \neq 0, (k = 1, \cdots n)$

高斯消元法通过左乘M,使MA=U

M单位下三角阵, U上三角阵

记 L=M-1,L为 单位下三角阵

若A可逆且顺序主子式不为零,则A可分解为一个单位下三角阵L和一个上三角阵U的积 A=LU。这种分解是唯一的,称 矩阵LU分解。

2000-10-27

直接法一矩阵LU分解

若A可逆, 但顺序主子式 D≠0不成立

消元中会遇到某个 $a_{kk}^{(k)} = 0$,但必存在 $a_{ik}^{(k)} \neq 0$ ($i = k + 1, \dots n$)

第ⅰ行与第ⅰ行交换 □ 乘以初等交换阵

 $MA = U \Rightarrow MPA = U$

P~交换阵(单位阵经若干次行交换)

若A可逆,则存在交换阵 P 使 PA=LU L为单位下三角阵,U为上三角阵。

直接法 - 正定对称矩阵的分解

正定对称矩阵 A 可分解成对角元素为正的下三角阵 L 与它的转置矩阵之积,即

$$A = LL^T$$
 $\vec{\mathfrak{Z}}$ $A = LDL^T$

其中 L 是单位下三角阵,D 是元素为正的对角阵。 这种分解称三角分解或 Cholesky 分解。

2000-10-27

直接法-MATLAB的用法

- 1. 求解Ax=b 用左除: $x=A\setminus b$, 输出方程的解x
- 2. 矩阵LU分解

若 A 可逆且顺序主子式不为零, 输出 x 为单位下三角阵 L,y 为上三角阵 U,使 A = LU;若 A 可逆,x 为一交换阵与单位下三角阵之积.

若 A 可逆,输出 x 为单位下三角阵 L, y 为上三角阵 U, p 为一交换阵 P,使PA = LU.

对正定对称矩阵 A 的 Cholesky 分解,输出 u 为上三角阵 U,使 $A=U^TU$

例. 解
$$\begin{cases} 10x_1 + 3x_2 + x_3 = 14 \\ 2x_1 - 10x_2 + 3x_3 = -5 \\ x_3 + 3x_2 + 10x_3 = 14 \end{cases}$$

shiyan51

并对系数矩阵 作LU分解

若第1个方程改为 $3x_2+x_3=14$ 结果如何

> 2000-10-27 13

Ax = b,如果解x对b或A的扰动敏感,就称方程组是 病态的,也称系数矩阵A是病态的。

向量和矩阵的范数 度量向量、矩阵大小的数量指标

设 $x = (x_1, \dots x_n)^T$, 范数记作 ||x||向量范数

最常用的向量范数是 2-范数 $||x||_2 = (x_1^2 + \dots + x_n^2)^{1/2}$

矩阵范数 $\partial A = (a_{ij})_{n \times n}$,范数记作 ||A||

 $||A||_2 = \sqrt{\lambda_{\text{max}}(A^T A)}$ (2 - 范数) λ_{max} 表示最大特征根

 $||A||_1 = \max_{j} \sum_{i=1}^{n} |a_{ij}| (1 - \overline{n} \underline{w}) ||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}| (\infty - \overline{n} \underline{w})$

向量和矩阵范数的相容性条件 $||Ax|| \le ||A|| \cdot ||x||$

条件数与误差分析

 $Ax = b \quad ||Ax|| \le ||A|| \cdot ||x||$

1)设b有扰动 δb ,分析x的误差 δx

$$A(x + \delta x) = b + \delta b$$

$$A(x + \delta x) = b + \delta b \qquad \Box \qquad A \, \delta x = \delta b$$

$$\Rightarrow \delta x = A^{-1} \delta b$$

$$||b|| \le ||A|| \cdot ||x||$$

$$||b|| \le ||A|| \cdot ||x|| \qquad \qquad ||x|| \ge ||b|| / ||A||$$

定义A的条件数为 $Cond(A) = ||A^{-1}|| \cdot ||A||$

A的条件数越大, (由 b的扰动引起的) x的误差可能越大

条件数与误差分析

Ax = b

2) 设A有扰动 δA ,分析x的误差 δx

$$(A + \delta A)(x + \delta x) = b$$

A的条件数越大, (由A的扰动引起的) x的误差越大

x的(相对)误差不超过b的(相对)误差的Cond(A)倍,也大致上是A的(相对)误差的Cond(A)倍。

条件数大的矩阵是病态矩阵

2000-10-27

直接法-MATLAB的用法

3. 范数 条件数

输入x为向量或矩阵,输出为x的2-范数输入x为矩阵,输出为x的2-条件数输入x为方阵,输出为x条件数倒数

4. Hilbert 矩阵:

输出 为n阶 Hilbert 矩阵

$$H = \begin{bmatrix} 1 & 1/2 & \cdots & 1/n \\ 1/2 & 1/3 & \cdots & 1/(n+1) \\ \vdots & \vdots & \vdots \\ 1/n & 1/(n+1) & \cdots & 1/(2n-1) \end{bmatrix}$$

当n很大时Hilbert 矩阵呈病态

观察Hilbert矩阵的病态性

例. Hx=b, 其中 H=hilb(5), b=[1,...1]^T

> x x1 1.0e+003 * 0.0050 0.0680 -0.1200 -1.3800 0.6300 6.3000 -1.1200 -9.9400 0.6300 5.0400

> > 4.7661e+005

2000-10-27

迭代法 --- 一 个 例 子

$$\begin{cases} 10x_1 + 3x_2 + x_3 = 14 \\ 2x_1 - 10x_2 + 3x_3 = -5 \\ x_3 + 3x_2 + 10x_3 = 14 \end{cases} \qquad \Box \begin{cases} x_1 = -0.3x_2 - 0.1x_3 + 1.4 \\ x_2 = 0.2x_1 + 0.3x_3 + 0.5 \\ x_3 = -0.1x_1 - 0.3x_2 + 1.4 \end{cases}$$

$$\begin{cases} x_3 + 3x_2 + 10x_3 = 14 \\ x_3 = -0.1x_1 - 0.3x_2 + 1.4 \end{cases}$$

$$\begin{cases} x_1^{(k+1)} = -0.3x_2^{(k)} - 0.1x_3^{(k)} + 1.4 \\ x_2^{(k+1)} = 0.2x_1^{(k)} + 0.3x_3^{(k)} + 0.5 \\ x_3^{(k+1)} = -0.1x_1^{(k)} - 0.3x_2^{(k)} + 1.4 \end{cases}$$

$$k = 0,1,2,\cdots$$

$$x_1^{(0)} = x_2^{(0)} = x_3^{(0)} = 0$$
 \Rightarrow $x_1^{(1)} = 1.4, x_2^{(1)} = 0.5, x_3^{(1)} = 1.4$

精确解
$$x_1 = x_2 = x_3 = 1$$

2000-10-27

迭代法 - 雅可比 (Jacobi) 迭代

将A分解为A = D - L - U,其中 $D = diag(a_{11}, a_{22}, \cdots a_{nn})$,

$$L = - egin{bmatrix} 0 & & & & & & \ a_{21} & 0 & & & & \ dots & \ddots & \ddots & & \ a_{n1} & a_{n2} \cdots a_{n,n-1} & 0 \end{pmatrix}, \qquad U = - egin{bmatrix} 0 & a_{12} \cdots & a_{1n} & & \ 0 & \ddots & dots & & \ & \ddots & a_{n-1,1} & & \ & & 0 & & \ \end{pmatrix}$$

设对角阵D非奇异(即 $a_{ii} \neq 0, i = 1, \dots n$) Ax = b

迭代法 - 高斯-塞德尔 (Gauss-Sedeil) 迭代

Jacobi迭代公式 $Dx^{(k+1)} = Lx^{(k)} + Ux^{(k)} + b$

$$x_{1}^{(k+1)} = -0.3x_{2}^{(k)} - 0.1x_{3}^{(k)} + 1.4$$

$$x_{2}^{(k+1)} = 0.2x_{1}^{(k)} + 0.3x_{3}^{(k)} + 0.5$$

$$x_{3}^{(k+1)} = -0.1x_{1}^{(k)} - 0.3x_{2}^{(k)} + 1.4$$

$$x_{2}^{(k+1)} = 0.2x_{1}^{(k+1)} + 0.3x_{3}^{(k)} + 0.5$$

$$x_{3}^{(k+1)} = -0.1x_{1}^{(k+1)} - 0.3x_{2}^{(k+1)} + 1.4$$

Gauss-Seideil 迭代公式 $Dx^{(k+1)} = Lx^{(k+1)} + Ux^{(k)} + b$

在
$$D$$
非奇异的假设下 $(D-L)$ 可逆,于是得到
$$B_2 = (D-L)^{-1}U, \quad f_2 = (D-L)^{-1}b$$

$$x^{(k+1)} = B_2 x^{(k)} + f_2 \quad (k = 0,1,2\cdots)$$

2000-10-27 22

迭代法的收敛性

$$x^{(k+1)} = B_1 x^{(k)} + f_1$$

$$B_1 = D^{-1} (1 + 1)$$

$$f_1 = D^{-1} b$$

$$B_1 = D^{-1}(L + U)$$

$$f = D^{-1}h$$

$$x^{(k+1)} = B_2 x^{(k)} + f_2$$

Gauss-Seideil 迭代
$$x^{(k+1)} = B_2 x^{(k)} + f_2$$
 $f_2 = (D-L)^{-1} U$

一般迭代形式
$$x^{(k+1)} = Bx^{(k)} + f$$

原方程组的解 x^* 满足: $x^* = Bx^* + f$

迭代k次得到 $x^{(k)} - x^* = B^k(x^{(0)} - x^*)$

序列收敛 $x^{(k)} \rightarrow x^*(k \rightarrow \infty)$ 的充要条件

 $B^k \to 0 (k \to \infty)$ \$\iff B\$的所有特征根(取模)小于1

B的谱半径 $\rho(B) = \max_{1 \le i \le n} |\lambda_i|$

 \Box $\rho(B) < 1$

 $\lambda_i(i=1,\cdots n)$ 是B的特征根

23

迭代法的收敛性

序列收敛 $x^{(k)} \rightarrow x^*(k \rightarrow \infty)$ 的充分条件

- 1) 若A是严格对角占优的,即 $\left|b_{ii}\right| > \sum_{i\neq i} \left|b_{ij}\right| (i=1,\cdots n)$, 则雅可比和高斯-赛德尔迭代均收敛;
- 2) 若 A 对称正定,则高斯一塞德尔迭代收敛;
- 3) 若||B|| = q < 1,则迭代公式 $x^{(k+1)} = Bx^{(k)} + f$ 收敛

且
$$\|x^{(k+1)} - x^*\| \le \frac{q}{1-q} \|x^{(k+1)} - x^{(k)}\|, q$$
越小收敛越快

谱半径性质: $\rho(B)$ \leq |B| 其中|B| 是任何一种矩阵范数 2000-10-27

迭代法-MATLAB的用法

1. 提取(产生)对角阵

输入向量x,输出v是以x为对角元素的

对角阵;

输入矩阵x,输出v是x的对角元素构成的向量;

输入矩阵x,输出v是x的对角元 素构成的对角阵,可用于迭代法中从A中提取D。

2. 提取(产生)上(下)三角阵

输入矩阵 x,输出 v 是 x 的上三角阵; 输入矩阵 x,输出 v 是 x 的下三角阵;

2000-10-27

输入矩阵 x, 输出 v 是 x 的上三角阵, 但对角元素为 0, 可用于迭代法中从 A 中提取 U; 输入矩阵 x, 输出 v 是 x 的下三角阵, 但对角元素为 0, 可用于迭代法中从 A 中提取 L。

shiyan53

	x ^T (雅可比)	x ^T (高斯一塞德尔)
0	(0, 0, 0) (1.4, 0.5, 1.4) (1.11, 1.20, 1.11) (0.929, 1.055, 0.929) (0.9906, 0.9645, 0.9906)	(0, 0, 0)
1	(1.4, 0.5, 1.4)	(1.4, 0.78, 1.026)
2	(1.11, 1.20, 1.11)	(1.0634, 1.0205, 0.9875)
3	(0.929, 1.055, 0.929)	(0.9951, 0.9953, 1.0019)
4	(0.9906, 0.9645, 0.9906)	(1.0012, 1.0008, 0.9996)

稀疏矩阵的处理 ~ MATLAB进行大规模计算的优点

在第 行、第 列输入数值 ,矩阵共 行 列,输出 为稀疏矩阵,只 给出 及

输入稀疏矩阵 , 输出 为满矩阵 (包含零元素)

输出

2000-10-27

例. 分别用稀疏矩阵和满矩阵求解Ax=b, 比较计算时间

$$\frac{1}{12} A = \begin{bmatrix}
4 & 1 & & \mathbf{0} \\
1 & 4 & 1 & \mathbf{0} \\
& 1 & 4 & \ddots \\
& & \ddots & \ddots & 1 \\
& \mathbf{0} & & 1 & 4
\end{bmatrix}_{\text{max}}$$

$$b = [1, 2, \cdots n]^T$$

Shiyan54

t₁, **t2**相差巨大,说明用稀疏矩阵计算的优点 (**y=yy** 用于简单地验证两种方法结果的一致)

2000-10-27

实例1 投入产出模型

表 1 国民经济各个部门间的关系

** =								
分配去向 投入来源	农业	制造业	服务业	外部需求	总产出			
农业	15	20	30	35	100			
制造业	30	10	45	115	200			
服务业	20	60	/	70	150			
初始投入	35	110	75					
总投入	100	200	150					

假定每个部门 的产出与各部 门对它的投入 成正比,得到 投入系数。 表2 投入产出表

分配去向 投入来源	农业	制造业	服务业
农业	0.15	0.10	0.20
制造业	0.30	0.05	0.30
服务业	0.20	0.30	0

2000-10-27

29

实例1 投入产出模型

- 1)设有n个部门,已知投入系数,给定外部需求,建立求解各部门总产出的模型。
- 2)设投入系数如表2所给,如果今年对农业、制造业和服务业的外部需求分别为50,150,100亿元,问这三个部门的总产出分别应为多少。
- 3)如果三个部门的外部需求分别增加1个单位,它们的总产出应分别增加多少。
- 4)如果对于任意给定的、非负的外部需求,都能得到非负的总产出,模型就称为可行的。问为使模型可行,投入系数应满足什么条件?

2000-10-27

1) 基本模型

x::第i个部门的产出,

 x_{ii} : 第i个部门对第 j个部 门的投入,

d: 第i个部门的外部需求

平衡关系

$$\sum_{j=1}^{n} x_{ij} + d_{i} = x_{i} (i = 1, 2, \dots, n)$$

投入系数 $a_{ij} = x_{ij} / x_{j}$

投入系数矩阵 $A = (a_{ij})_{n \times n}$ 产出向量 $x = (x_1, \dots x_n)^T$ 需求向量 $d = (d_1, \cdots d_n)^T$

产出投入	部门 1	部门 i	部门n	外部需求	总产出
部门1	x_{II}	x_{Ii}	x_{In}	$d_{_{I}}$	x_{I}
部门 i	x_{il}	x_{ii}	X _{in}	d_i	x_i
部门 n	X_{nl}	x_{ni}	X _{xn}	d_n	x_n
初始投入	$x_{\theta I}$	$x_{\theta i}$	x_{gn}		
总投入	x_{I}	x_i	X_n		

平便大系
$$\sum_{j=1}^{n} x_{ij} + d_i = x_i (i = 1, 2, \dots, n)$$

$$\Rightarrow \sum_{j=1}^{n} a_{ij} x_j + d_i = x_i (i = 1, 2, \dots, n)$$

$$x = Ax + d$$

$$(I - A)x = d$$

$$x = (I - A)^{-1}d$$
₃

2) 设农业、制造业和服务业的外部需求分别为 50, 150, 100亿元, 求三个部门的总产出。

基本模型 $x=(I-A)^{-1}d$

$$A = \begin{bmatrix} 0.15 & 0.1 & 0.2 \\ 0.3 & 0.05 & 0.3 \\ 0.2 & 0.3 & 0 \end{bmatrix}$$

shiyan55

 $d = [50 \ 150 \ 100]^T$

 $x=(139.2801, 267.6056, 208.1377)^{\mathrm{T}}$

2000-10-27

3) 若三部门的外部需求分别增加1个单位, 求它们的总产出的增量。

基本模型
$$x=(I-A)^{-1}d$$
 记 $C=(I-A)^{-1}$

$$C = (I - A)^{-1}$$

当需求增加 Δ d时,总产出增量 $\Delta x = C\Delta d$

C=1.3459 0.2504 0.3443

MATLAB 5.3.1nk

shiyan55

0.5634 1.2676 0.4930

0.4382 0.4304 1.2167

门总产出应分别增加1.3459,0.5634,0.4382单位。

即C的第1列。 C的第2,3列给出了什么?

4) 如果对于任意给定的、非负的外部需求,都能 得到非负的总产出,模型就称为可行的。问为使模 型可行,投入系数应满足什么条件?

基本模型 $x = (I - A)^{-1}d$, 其中 $A \ge 0$

模型可行 $\forall d \ge 0 \Rightarrow x \ge 0 \ (I - A)^{-1} \ge 0$

$$(I-A)(I+A+\cdots+A^k) = I-A^{k+1}$$

$$(I-A)(I+A+\cdots+A^k) = I-A^{k+1}$$

$$A^k \to 0 \ (k \to \infty) \quad \Box \qquad (I-A)^{-1} = \sum_{k=0}^{\infty} A^k$$

问 $A^k \to 0 (k \to \infty)$ 是否成立?

2000-10-27

模型可行 $\forall d \geq 0 \Rightarrow x \geq 0 \ (\Box A^k \to 0 (k \to \infty))$

矩阵范数定义 $||AB|| \le ||A|| \cdot ||B|| \quad \Box \quad ||A^k|| \le ||A||^k$

$$||A||_{1} < 1 \Rightarrow ||A||^{k} \to 0 \Rightarrow A^{k} \to 0$$

$$||A||_{1} = \max_{j} \sum_{i=1}^{n} |a_{ij}|$$

$$||A||_1 < 1 \Leftrightarrow \sum_{i=1}^n a_{ij} < 1 \Leftrightarrow \sum_{i=1}^n x_{ij} < x_j \ (j=1,\dots n)$$

只要初始投入非负,

模型可行

2000-10-27

35

实例2 输电网络

- 1) 列出求各负载上电流 I1, I2, ... In 的方程;
- 2)设 $R_1=R_2=...=R_n=R$, $r_1=r_2=...=r_n=r$, 在 r=1, R=6, V=18, n=10的情况下求 I₁, I₂,...I_n及总电流 I₀;
- 3) 讨论 n→∞的情况。

2000-10-27

1)记
$$r_1, \dots r_n$$
上的电流为 $i_1 \dots i_n$,由电路定律得
$$\begin{cases} r_1 i_1 + R_1 I_1 = V \\ r_2 i_2 + R_2 I_2 = R_1 I_1 \\ \dots \\ r_n i_n + R_n I_n = R_{n-1} I_{n-1} \end{cases}$$
 和
$$\begin{cases} I_1 + i_2 = i_1 \\ I_2 + i_3 = i_2 \\ \dots \\ I_{n-1} + i_n = i_{n-1} \\ I_n = i_n \end{cases}$$
 剂 者
$$\begin{cases} (R_1 + r_1)I_1 + r_1 I_2 + \dots + r_1 I_n = V \\ -R_1 I_1 + (R_2 + r_2) + \dots + r_2 I_n = 0 \\ \dots \\ -R_{n-1} I_{n-1} + (R_n + r_n)I_n = 0 \end{cases}$$

$$R = \begin{bmatrix} R_1 + r_1 & r_1 & r_1 & \dots & r_1 \\ -R_1 & R_2 + r_2 & r_2 & \dots & r_2 \\ \dots & \dots & \dots & \dots \\ -R_{n-1} & R_n + r_n \end{bmatrix}$$

$$I = [I_1, I_2, \dots I_n]^T$$

$$E = [V, 0, \dots 0]^T$$

3) 讨论 n→∞的情况。

为求出总电阻 R_0 ,考察第 n 段电路(从右向左数)和第 n+1 段电路的等效电阻 $R_0(n)$ 和 $R_0(n+1)$

$$R_0(n+1) = r + \frac{R \cdot R_0(n)}{R + R_0(n)}$$

$$n \to \infty$$
时有 $R_0 = r + \frac{R \cdot R_0}{R + R_0}$

$$\Box \rangle \quad R_0 = \frac{r + \sqrt{r^2 + 4rR}}{2}$$

$$r = 1, R = 617$$
 $R_0 = 3$

2000-10-27

总电流
$$I_0 = \frac{V}{R_0} = 6$$

$$I_{n+1} = \frac{R}{R + R_0} \cdot I_n = \frac{2}{3} I_n$$

30

40

布置实验

目的

- 1. 用MATLAB软件掌握线性方程组的解法,对 迭代法的收敛性和解的稳定性作初步分析
- 2. 通过实例练习用线性方程组求解的实际问题

内容

预备:编写雅可比迭代的程序

1)(用直接法和迭代法解Ax=b), b, d; 4)

补充材料 向量和矩阵的范数

向量范数 设 $x \in \mathbb{R}^n$,若存在实函数 $\mathbb{N}(x) = ||x||$,满足

- a) ||x||≥0, 且仅当x=0时, ||x||=0,
- b) $\forall k \in \mathbb{R}, ||kx|| = |k|||x||,$
- c) $\forall y \in \mathbb{R}^n$, $||x+y|| \le ||x|| + ||y||$.

最常用的向量范数是 2-范数 $\|x\|_2 = (x_1^2 + \dots + x_n^2)^{1/2}$

矩阵范数 设 $A \in \mathbb{R}^{n \times n}$,若存在实函数N(A)=||A||,满足

- a)||A||≥0, 且仅当A=0时, ||A||=0,
- b) $\forall k \in R, ||kA|| = |k|||A||,$
- c) $\forall B \in \mathbb{R}^{n \times n}, ||A+B|| \le ||A|| + ||B||,$

2000-10-27 **d)** \forall **B** \in **R**^{n×n}, $||AB|| \le ||A|| ||B||$.

41

向量和矩阵范数的相容性条件

 $x \in R^n$, $A \in R^{n \times n}$, $||Ax|| \le ||A|| ||x||$.

矩阵A的 算子范数

$$\mathbf{x} \in \mathbf{R}^{\mathbf{n}}$$
 , $\mathbf{A} \in \mathbf{R}^{\mathbf{n} \times \mathbf{n}}$, 定义 $\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$

(符合相容性条件)

一些特殊的矩阵A的算子范数

$$||A||_2 = \sqrt{\lambda_{\max}(A^T A)}$$
 (2 - 范数) λ_{\max} 表示最大特征根

$$\|A\|_{1} = \max_{j} \sum_{i=1}^{n} |a_{ij}| (1 - \overline{n}) \|A\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}| (\infty - \overline{n})$$

2000-10-27 42

谱半径

设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 为**A**的特征根,则**A**的谱半径定义为:

$$\rho(A) = \max_{1 \le i \le n} |\lambda_i|$$

谱半径性质

ho(A) \leq |A| 其中|A| 是任何一种矩阵范数

条件数
$$Cond(A) = ||A^{-1}|| \cdot ||A||$$

 $\left\|A\right\|_2, \left\|A\right\|_1, \left\|A\right\|_{\infty} \Rightarrow cond_2(A), cond_1(A), cond_{\infty}(A)$

2000-10-27 43