

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY Chandubhai S. Patel Institute of Technology

CHARUSAT Campus, Highway 139, Off, Nadiad - Petlad Road, Changa, Gujarat 388421

B.TEC. CSE SEM-III YEAR 2023

SUBJECT & SUBJECT CODE: DISCRETE MATHEMATICS & ALGEBRA (MA253) CHAPTER: ABSTRACT ALGEBRA

TOPICS INCLUDED ARE

- **BASIC CONCEPT**
- **BINARY OPERATIONS**
- > COMPOSITION TABLE/ COMPOSITE TABLE.
- > ALEGBRAIC STRUCTURE
- > GROUPOID.
- > SEMI GROUP
- > MONOID
- > GROUP AND ABELIAN GROUP.
- > ORDER OF THE GROUP AND ELEMENT
- > SUBGROUP
- > LAGRANGE'S THEOREM
- > CYCLIC GROUP
- > PERMUTATION GROUP

BASIC CONCEPT

COMMON NUMBER SETS: There are sets of numbers that are used so often they have special names and symbols:

Symbol	Descriptions						
\mathbb{N}	Set of Natural Numbers.						
	Also known as Counting Numbers.						
	The set is $\mathbb{N} = \{1, 2, 3, 4, 5, 6, \dots \}$						
	Set of Whole Numbers.						
W	$W = \{0,1,2,3,4,5,\ldots\}$						
	$\mathbb{N} \subset W$						
	The whole numbers, {1,2,3,} negative whole numbers {, -3,-2,-1}						
	and zero {0}. So the set is {, -3, -2, -1, 0, 1, 2, 3,}						
\mathbb{Z} / I	-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10						

	$\mathbb{Z}/I = \{4, -3, -2, -1, 0, 1, 2, 3, 4, 5,\}$			
	$\mathbb{N} \subset W \subset \mathbb{Z}$			
	Set of Rational Numbers.			
Q	$\mathbb{Q} = \left\{ \frac{p}{q} : p \text{ and } q \text{ are int } egres \text{ and } q \neq 0 \right\}$			
	Property of rational number: Decimal expansion is terminating or			
	recurring			
	$\mathbb{N} \subset W \subset \mathbb{Z} \subset \mathbb{Q}$			
	No standard Notation			
Irrational	Number which are not rational numbers.			
Number	Property of irrational number: Decimal expansion is non-terminating			
	or non-recurring.			
	Set of real numbers.			
\mathbb{R}	All Rational and Irrational numbers. They can also be positive,			
	negative or zero.			
	$\mathbb{N} \subset W \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$			
\mathbb{C}	Set of Complex Number.			
	Set of real numbers and the numbers of the form <i>a+ib</i> .			
	$\mathbb{N} \subset W \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$			

From the figure, it is clear that $\mathbb{N} \subset W \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

BINARY OPERATION/BINARY COMPOSITION: A binary composition or binary operation on a non empty set A is a mapping $f: A \times A \to A$. Suppose $a, b \in A$, then the image of (a,b) under a binary composition/operation o defined by aob.

COMPOSITION TABLE: A binary composition (operation) on the non empty finite set A can be defined by table is called a composition table.

Example: The composition table for multiplication modulo 7 on the set

G={1,2,3,4,5,6}

× ₇	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

ALEGBRAIC STRUCTURE: A non empty set G with one or more binary operations is called an algebraic structure. Suppose * is a binary operation on G. Then (G,*) is an algebraic structure. (N,+), (Z,+), (Z,-) are all algebraic structure.

GROUPOID: Suppose G is non empty set and o is a binary composition/operation then (G,o) is called a groupoid if o is closed in G, that is , given any two elements $a,b \in G \Rightarrow aob \in G$

SEMI GROUP: A non empty set G together with binary operation o,(G,o) is a semi group if binary opaeration o is commutative.

IDENTITY ELEMENT: There exist an element *e* G such that

$$a * e = a = e * a, \forall a \in G$$

The element e is called the identity.

MONOID: A non empty set G together with a binary operation o,(G,o) is called a monoid if it satisfies the following properties:

- 1. o is closed in (G,o).
- 2. o is associative in (G,o)
- 3. There exist an identity element in (G,o)

Example: The set of all integers Z with operation defined by a*b=a+b+1.

- 1. Is Z Groupoid?
- 2. Is Z a Semi Group?
- 3. Is Z a monoid?

Solution:

Groupoid: To prove G is groupoid, prove that G is closed w.r.t *

Let $a,b \in Z \Rightarrow a+b+1 \in Z$ (Sum of integers is always an integer)

 $a*b \in G$

Therefore G is closed w.r.t to operation*.

G is a groupoid.

Semi Group: To prove G is Semigroup ,prove that * is associative i.e., to prove (a*b)*c=a*(b*c).

Dr Yogeshwari Patel SUBJECT INCHARGE

Discrete Mathematics & Algebra SUBJECT

MA253 SUB CODE Let $a,b,c \in Z$

L.H.S:
$$(a*b)*c = (a+b+1)*c = a+b+1+c+1 = a+b+c+2$$

R.H.S:
$$a*(b*c) = a*(b+c+1) = a+b+c+1+2 = a+b+c+2$$

Therefore * is associative.

Monoid: To prove G is monoid, G must satisfies closure property, Associative property, identity property.

Closure property: Let $a,b \in Z \Rightarrow a+b+1 \in Z$ (Sum of integers is always an integer)

$$a*b \in G$$

Therefore G is closed w.r.t to operation*.

Associative property: Let $a,b,c \in Z$

L.H.S:
$$(a*b)*c = (a+b+1)*c = a+b+1+c+1 = a+b+c+2$$

R.H.S:
$$a*(b*c) = a*(b+c+1) = a+b+c+1+2 = a+b+c+2$$

Therefore * is associative.

Existence of Identity: Let $e \in G$ be the identity element of G.

$$a*e = a = e*a \ \forall a \in G$$

Now

$$a*e = a$$
 $e*a = a$ $e+a+1=a$ $e=-1 \in G$ $e=-1 \in G$

Therfore -1 is the identity element.

G is a monoid

GROUP

GROUP:Let G be a non-empty set with a binary operator denoted by * .Then this algebraic structure (G,*) is a group, if the binary * satisfies the following properties:

- 1. Closure property: $a * b \in G \ \forall a, b \in G$
- 2. Associativity: $(a * b) * c = a * (b * c) \forall a, b \in G$
- 3. Existence of Identity: There exist an element e G such that

$$a * e = a = e * a$$
, $\forall a \in G$

The element e is called the identity.

4. **Existence of Inverse:** Each element of G possesses inverse i.e., $a*b=e=b*a, \forall a \in G$

ABELIAN GROUP: A group is said to be abelian or commutative if in addition to the above four properties the following properties is also satisfied i.e.

$$a * b = b * a, \forall a, b \in G$$

Commutative:

Dr Yogeshwari Patel Discrete Mathematics & Algebra MA253
SUBJECT INCHARGE SUBJECT SUB CODE

FINITE GROUP & INFINITE GROUP: If in a group G the underlying set G consists of a finite number of distinct elements then the group is called a finite group otherwise an infinite group.

EXAMPLE OF GROUP

Example: Show that the set I of all integers

is a group with respect to the operation of addition of integers.

Solution: Closure property: We know that the sum of two integers is also an integer. i.e., a+b | 1. Thus | is closed w.r.t to addition.

Associativity: We know that addition of integers is an associative .Therefore $a+(b+c)=(a+b)+c \forall a,b,c \in I$

Existence of Identity: The number $0 \epsilon I$. Also we have

0+a=a=a+0.

Therefore 0 is the identity element.

Existence of Inverse: If $a \in I$, then $-a \in I$. Also we have a+(-a)=0=(-a)+a.

Thus every integer possesses additive inverse.

Therefore I is group with respect to addition .Since addition of integer is a commutative operator.

Example: Show that the set of all positive rational number forms an abelian group under the composition defined by

$$a*b=\frac{ab}{2}$$

Solution: Let Q_+ denote the set of all positive rational number. To show: $(Q_+, *)$ is a group.

Closure Property:

We know that multiplication and division of two rational number is a rational number therefore $\frac{ab}{2}$ is a rational number. Thus for every a, $b \in Q_+ \Rightarrow a^*b \in Q_+$

Thus Q_+ is closed with respect to the operator *.

Associativity:Let $a,b,c \in Q_+$.Then

L.H.S:
$$a^*(b^*c)=a^*\left(\frac{bc}{2}\right)=\frac{abc}{4}$$

R.H.S:
$$(a*b)*c = (\frac{ab}{2})*c = \frac{abc}{4}$$

L.H.S=R.H.S

Commutativity: Let a,b∈ Q₊.Then

^{*} is associative.

$$a * b = \frac{ab}{2} = \frac{ba}{2} = b * a$$

Existence of Identity: Let e be the identity element in Q+.

By definition of identity element

$$a*e=a=e*a$$
 , $\forall a \in Q_+$

Now

$$a * e = a \Rightarrow \frac{ae}{2} = a \Rightarrow \left(\frac{a}{2}\right)(e-2) = 0 \Rightarrow e = 2 \text{ since } aeQ_+ \Rightarrow a \neq 0$$

 $e * a = a \Rightarrow \frac{ea}{2} = a \Rightarrow \left(\frac{a}{2}\right)(e-2) = 0 \Rightarrow e = 2 \text{ since } aeQ_+ \Rightarrow a \neq 0$

Therefore 2 is identity element.

Existence if Inverse: Let a be any element of Q₊.Let b be inverse of a then by definition of inverse

$$a * b = e = b * a$$

Now
$$a*b=e \Longrightarrow \frac{ab}{2}=2 \Longrightarrow b=\frac{4}{a}$$

Now
$$a \in Q_+ \Longrightarrow \frac{4}{a} \in Q_+$$

Now
$$a * \frac{4}{a} = 2 = \frac{4}{a} * a$$

Therefore $\frac{4}{a}$ is inverse of a .Thus each element of Q_+ is inversible.

Hence (Q₊, *) is a group.

Example: Show that the set $G=\left\{a+b\sqrt{2}:\ a,b,\in Q\right\}$ is group with respect to addition.

Solution:

Closure Property:Let x, y be any two elements of G. Then

$$x=a+b\sqrt{2}$$
; $y=c+d\sqrt{2}$

Now

$$x + y = a + b\sqrt{2} + c + d\sqrt{2}$$
$$= (a + c) + (c + d)\sqrt{2}$$

Since a+c and c+d are elements of Q, therefore $(a+c)+(c+d)\sqrt{2} \in G$.

Thus $x + y \in G$, $\forall x, y \in G$

Thus G is closed with respect to addition.

Associativity:The element of G are all real numbers and addition of real numbers is associative.

Existence of Identity: $0+0\sqrt{2}\in G$ since $0\in Q$. If $a+b\sqrt{2}$ is any element of G, then

$$(a + b\sqrt{2}) + 0 + 0\sqrt{2} = a + b\sqrt{2} = 0 + 0\sqrt{2} + (a + b\sqrt{2})$$

 $0 + 0\sqrt{2}$ is the identity element.

Existence of Inverse: $a + b\sqrt{2} \epsilon G \Rightarrow (-a) + (-b)\sqrt{2} \epsilon G$ since $a, b, \in Q \Rightarrow -a, -b, \in Q$

Now

$$(a + b\sqrt{2}) + ((-a) + (-b)\sqrt{2}) = 0 + 0\sqrt{2}$$

= $(-a) + (-b)\sqrt{2} + (a + b\sqrt{2})$

Therefore $(-a) + (-b)\sqrt{2}$ is inverse element.

Example: Show that the set of all matrices of the form $\begin{bmatrix} x & x \\ x & x \end{bmatrix}$, where x is a non zero

real number, is a group of singular martices for multiplication. Find the identity and inverse of an element.

Solution:Let
$$M = \left\{ \begin{bmatrix} x & x \\ x & x \end{bmatrix} : x \text{ is a non-zero real number} \right\}$$

Closure Property: Let $A = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \in M$, $B = \begin{bmatrix} y & y \\ y & y \end{bmatrix} \in M$ where x and y are non zero real number.

Now
$$AB = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \begin{bmatrix} y & y \\ y & y \end{bmatrix} = \begin{bmatrix} 2xy & 2xy \\ 2xy & 2xy \end{bmatrix} \in M$$
 because 2xy is also a non zero real number.

Associativity: Matrix Multiplication is always associative.

Existence of identity: Let $E = \begin{bmatrix} e & e \\ e & e \end{bmatrix} \in M$ such that $E.A = A \ \forall A \in M$. Let $A = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \in M$,

.Then

$$EA = A \Rightarrow \begin{bmatrix} e & e \\ e & e \end{bmatrix} \begin{bmatrix} x & x \\ x & x \end{bmatrix} = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \Rightarrow \begin{bmatrix} 2ex & 2ex \\ 2ex & 2ex \end{bmatrix} = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \Rightarrow 2ex = x \Rightarrow e = \frac{1}{2}\sin ce \ x \neq 0$$

Thus
$$E = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in M$$
 and is such that $E.A = A = A.E \quad \forall A \in M$

Existence of inverse: Let $C = \begin{bmatrix} c & c \\ c & c \end{bmatrix} \in M$ such that $C.A = E \ \forall A \in M$. Let $A = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \in M$,

.Then

$$CA = A \Rightarrow \begin{bmatrix} c & c \\ c & c \end{bmatrix} \begin{bmatrix} x & x \\ x & x \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \Rightarrow \begin{bmatrix} 2cx & 2cx \\ 2cx & 2cx \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \Rightarrow 2cx = \frac{1}{2} \Rightarrow c = \frac{1}{4x}$$

Thus
$$C = \begin{bmatrix} \frac{1}{4x} & \frac{1}{4x} \\ \frac{1}{4x} & \frac{1}{4x} \end{bmatrix} \in M$$
 and is such that $C.A = E = A.C \quad \forall A \in M$

Thus
$$C = \begin{bmatrix} \frac{1}{4x} & \frac{1}{4x} \\ \frac{1}{4x} & \frac{1}{4x} \end{bmatrix} \in M$$
 is inverse of A.

Hence M is a group w.r.t martix multiplication.

Example : Prove that the set S of all ordered pairs (a,b) of real numbers for which $a \ne 0$ with respect to the operation X defined by (a,b) X(c,d) = (ac, bc+d) is a group w.r.t X.

Solution: Closure Property: Let (a,b) and (c,d) be any two element of S.Then $a \ne 0$ and $c \ne 0$.

Now (a,b) $X(c,d) = (ac, bc+d) \in S$ (because $a \neq 0$ and $c \neq 0 \Rightarrow ac \neq 0$)

Hence S is closed with respect to the given composition(binary operation)

Associativity: Let (a,b), (c,d), (e,f) be any three element of S.

L.H.S
$$\lceil (a,b) \times (c,d) \rceil \times (e,f)$$

$$= (ac, bc + d) \times (e, f)$$

$$= (ace, (bc+d)e+f) = (ace, bce+de+f)$$

R.H.S

$$(a,b)\times[(c,d)\times(e,f)]$$

$$=(a,b)\times\lceil(ce,de+f)\rceil$$

$$=(ace,b(ce)+de+f)=(ace,bce+de+f)$$

L.H.S=R.H.S

Hence the given composition X is associative.

Existence of Identity: Let (x,y) be ientity element of S such that $(x,y)\times(a,b)=(a,b)=(a,b)\times(x,y)\Rightarrow(xa,ya+b)=(a,b)\Rightarrow xa=a;\ ya+b=b\Rightarrow x=1;\ y=0$

Therfore (1,0) is the identity element.

Dr Yogeshwari Patel SUBJECT INCHARGE

Discrete Mathematics & Algebra SUBJECT

MA253 SUB CODE **Existence of Inverse:** Let $(c,d) \in S$, $c \neq 0$ be inverse of $(a,b) \in S$.

Now
$$(a,b) \times (c,d) = (1,0) = (c,d) \times (a,b)$$

$$\Rightarrow$$
 (ac, bc+d) = (1,0)

$$\Rightarrow ac = 1$$
; $bc + d = 0 \Rightarrow c = \frac{1}{a} \neq 0$; $d = -\frac{b}{a}$

$$\left(\frac{1}{a}, -\frac{b}{a}\right)$$
 is inverse of element (a,b).

PRATICE EXAMPLE

- 1.Do the following sets form groups with respect to binary operation * defined on them as follows:
 - **a.** the set I of all integers with operation defined by a*b = a+b+1.
 - **b.** the set Q of all rational number other than 1 , with the operation defined by a*b=a+b-ab.
 - c. the set Q of all rational number other number than -1 with the operation defined by a*b=a+b+ab
- 2.Show that the set of all matrices $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$, and b being non-zero real numbers is a group under matrix multiplication .
- 3.If $G = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \text{ is any non-zero real number} \right\}$. Show that G is a commutative group under matrix multiplication.
- 4. Show that the fourth roots of unity i.e., {1,-1,i,-i} form a group with respect to multiplication.
- 5. Show that the set $G = \{1, \omega, \omega^2\}$, where ω is an imaginary cube root of unity is a group with respect to multiplication.
- 6. Which is the identity element in the group $G=\{2,4,6,8\}$ under multiplication modulo 10?
- 7.Show that the set Z ,of all integers is a group under the binary operation * defined by a*b=a+b+2 for $\forall a,b\in Z$.
- 8.Show that the set \mathbb{Q}^+ , of all positive rational numbers forms commutative group under the binary operation * defined by $a*b=\frac{ab}{4}$., a, b $\in \mathbb{Q}^+$

ORDER OF GROUP AND ORDER OF ELEMENT

Order of a group: The order of the group is defined as the number of element in the group.

Order of an element: Let G be a group with binary opaeration * .By the order of an element $a \in G$ is meant the least positive integer n, if one exists , such that $a^n = e$ (the identity of G) .It is denoted by o(a).

Dr Yogeshwari Patel SUBJECT INCHARGE

Discrete Mathematics & Algebra SUBJECT

MA253 SUB CODE **Remarks:**If there exists no positive integer n such that aⁿ=e, then we say that a is of infinite order or of zero order.

Example: Find the order of each element of the multiplicative group { 1,-1,i,-i}.

Solution: Since 1 is the identity element therefore o(1)=1.

-1	(-1) ¹ =-1				
	$(-1)^2 = 1$ (i.e., identity element) $\therefore o(-1) = 2$				
	$\therefore o(-1) = 2$				
	(i) ¹ =i				
	(i) ² = -1 (i.e., identitiy element)				
i	$(i)^3 = -i$				
	(i) ⁴ = 1 (i.e., identity element) $\therefore o(i) = 4$				
	$\therefore o(i) = 4$				
	(-i) ¹ =-i				
-i	(-i) ² = -1 (i.e., identitiy element)				
	(-i) ³ =i				
	(i) ⁴ = 1 (i.e., identity element) $\therefore o(-i) = 4$				
	$\therefore o(-i) = 4$				

Example: Find the order of each element of the group { 0,1,2,3,4,5} ,the composition being addition modulo 6.

Solution: Since 0 is the identity element therefore o(0)=1.

	$(1)^1=1$							
	$(1)^2 = 1 +_6 1 = 2$							
	$(1)^3 = 1 +_6 1 +_6 1 = 3$							
1	$(1)^4 = 1 + 61 + 61 + 61 = 4$							
	$(1)^5 = 1 +_6 1 +_6 1 +_6 1 +_6 1 = 5$							
	$(1)^6 = 1 + 61 + 61 + 61 + 61 + 61 = 0$ (i.e., identity element)							
	$\therefore o(i) = 6$							
	$(2)^1=2$							
2	$(2)^2 = 2 + 62 = 4$							
	$(2)^3=2+_62+_62=2$ 0(i.e., identity element)							
	$\therefore o(2) = 3$							
	$(3)^1=3$							
3	$(3)^2 = 3 +_6 3 = 0$ (i.e., identity element) : $o(3) = 2$							
	$(4)^1=4$							
4	$(4)^2 = 4 + 64 = 8$							
	$(4)^3 = 4 + 64 + 64 = 0$ (i.e., identity element)							
	$\therefore o(4) = 3$							
	$(5)^1=1$							

	$(5)^2 = 5 + 65 = 4$
5	$(5)^3 = 5 + 65 + 65 = 3$
	$(5)^4 = 5 + 65 + 65 + 65 = 2$
	$(5)^2 = 5 + 65 + 65 + 65 + 65 = 1$
	$(5)^2$ = 5+ ₆ 5+ ₆ 5+ ₆ 5+ ₆ 5+ ₆ 5=0(i.e., identity element)
	$\therefore o(5) = 6$

Example: In the infinite multiplicative group of non zero rational numbers. Find the order of each element.

Solution: Since "1" is the identity element therefore o(1)=1.

 $(-1)^1 = -1$; $(-1)^2 = 1$ (identity element) therefore 0(-1) = 2

Now $(2)^1 = 2$; $(2)^2 = 4$; $(2)^3 = 8$; $(2)^4 = 16$ and so on. Thus there exists no positive integer n such that $2^n = 1$ (identity element). Therefore 0(2) = 1 infinite. Similarly order of the remaining element is infinite.

Example: Find the order of each element in the additive group of integers.

Solution: Since "0" is the identity element therefore o(0)=1.

Now $(1)^1 = 1$; $(1)^2 = 1 + 1 = 2$; $(1)^3 = 1 + 1 + 1 = 3$; $(1)^4 = 1 + 1 + 1 + 1 = 4$ and so on. Thus there exists no positive integer n such that $1^n = 0$ (identity element). Therefore 0(1) = 1 = 1 = 1 infinite. Similarly order of the remaining element is infinite.

Remarks:

- 1. The order of every element of a finite group is finite and is less than or equal to the order of the group.
- 2. The order of an element of a group is same as that of its inverse a⁻¹.
- 3.In an infinite group lement may be of finite as well as of infinite order.

PRATICE EXAMPLE

1. Consider the group $G=\{1,2,4,7,8,11,13,14\}$ under multiplication modulo 15. Find the order of the group and and order of the element 8 .

SUBGROUP

SUBGROUP: A non empty subset H eof group is said to be subgroup of G if the binary operation in G is also a binary operation in H and for this operation H itself is a group.

Example:

1. The multiplicative group { 1,-1} is a subgroup of the multiplicative group { 1,-1,1,-i}.

- 2. The additive group of even integer is a subgroup of the additive group of all integers.
- 3. The multiplicative group of positive rational numbers is a subgroup of the multiplicative of all non zero rational number.

Remark:

- 1. Every set is a subset of itself. Therefore if G is a group, then G itself is a group of G.Also if e is the identity of G, then the subset of G containing only one element i.e., e is also a subgroup of g. These two are subgroup of any group. They are called trivial or improper subgroup. A subgroup other than these two is called proper subgroup.
- 2. The identity of a subgroup is same as that of the group.
- 3. The inverse of any element of a subgroup is same as the inverse of the same regareded as an element of the group.
- 4. The order of any element of subgroup is the same as the order of the element regarded as a member of the group.

CRITERION FOR A NON EMPTY SET TO BE A SUBGROUP

Theorem 1: A non empty subset H of a group G is a subgroup of G if and only if

(i).
$$a \in H, b \in H \Rightarrow ab \in H$$

(ii).
$$a \in H \Rightarrow a^{-1} \in H$$

Theorem 2: A necessary and sufficient condition for a non empty subset H of a group to be a subgroup is that $a \in H, b \in H \Rightarrow ab^{-1} \in H$ b⁻¹ is inverse of b in G.

INTERSECTION OF SUBGROUP

Theorem: If H_1 and H_2 are two subgroup of a group G ,then $H_1 \cap H_2$ is also a subgroup of G.

Proof: Let H_1 and H_2 be any subgroup of G.Then $H_1 \cap H_2 \neq \emptyset$, since at lest the identity e is common to both H₁ and H₂.

In order to prove that $H_1 \cap H_2$ is a subgroup of G it is sufficient to prove that

$$a \in H_1 \cap H_2$$
; $b \in H_1 \cap H_2 \Rightarrow ab^{-1} \in H_1 \cap H_2$
Now $a \in H_1 \cap H_2 \Rightarrow a \in H_1$ and $a \in H_2$
 $b \in H_1 \cap H_2 \Rightarrow b \in H_1$ and $b \in H_2$

But H₁ and H₂ are subgroups. Therefore

$$\begin{split} a &\in H_1; \ b \in H_1 \Rightarrow ab^{-1} \in H_1 \\ a &\in H_2; \ b \in H_2 \Rightarrow ab^{-1} \in H_2 \\ \text{Finally} \ \ ab^{-1} &\in H_1 \ \text{and} \ \ ab^{-1} \in H_2 \Rightarrow ab^{-1} \in H_1 \cap H_2 \,. \\ \text{Thus} \ \ a &\in H_1 \cap H_2; \ b \in H_1 \cap H_2 \Rightarrow ab^{-1} \in H_1 \cap H_2 \,. \\ \text{Hence} \ \ H_1 \cap H_2 \ \ \text{is a subgroup of G}. \end{split}$$

Remark: The union of two subgroup is not necessarily a subgroup.

For example, Let G be the additive group of integers.

Then
$$H_1=\{......6,-4,-2,0,2,4,6,....\}$$

 $H_2=\{.....-12,-9,-6,-3,0,3,6,9,12,....\}$ are two subgroup pf G.
 $H_1 \cup H_2=\{.....-12,-10,-9,-6,-4,-3,-2,0,2,3,4,6,9,10,12,.....\}$

Obviously $H_1 \cup H_2$ is not closed with respect to addition as $2 \in H_1 \cup H_2$; $3 \in H_1 \cup H_2 \Rightarrow 5 \notin H_1 \cup H_2$

Therefore $H_1 \cup H_2$ is not a subgroup with respect to addition.

Example: Let G be the additive group of integers. Then prove that the set of all multiples of integers by a fixed integer m is a subgroup of G.

Solution: G={.....-3,-2,-1,0,1,2,3,......} is the additive group of integer.

Let m be any fixed integer.

Then $H \subseteq G$.

To prove that H is subgroup we prove $a \in H$; $b \in H \Rightarrow a - b \in H$.

Let a=rm and b=sm be any two element of H where r and s are some integer. Then inverse of sm in G is (-s)m i.e., -b=-sm.

Now a-b=rm+(-s)m=(r-s)m $\in H$ since r-s is also some intger.

Thus $a \in H$; $b \in H \Rightarrow a - b \in H$.

Therefore H is subgroup of G.

Example: Let G be the set of all ordered pairs (a,b) of real number for which $a \neq 0$. Let a binary operation X on G be defined by the formula

$$(a,b) X(c,d)=(ac,bc+d)$$

Show that (G,X) is a non abelian group.

Does the subset H of all thoes elements of G which are of the form (1,b0 form a subgroup of G?

Solution: Closure Property: Let (a,b) and (c,d) be any two element of S.Then $a \neq 0$ and $c \neq 0$.

Now (a,b)
$$X(c,d) = (ac, bc+d) \in S$$
 (because $a \neq 0$ and $c \neq 0 \Rightarrow ac \neq 0$)

Hence S is closed with respect to the given composition(binary operation)

Associativity: Let (a,b), (c,d), (e,f) be any three element of S.

L.H.S
$$[(a,b)\times(c,d)]\times(e,f)$$

= $(ac,bc+d)\times(e,f)$
= $(ace,(bc+d)e+f)=(ace,bce+de+f)$

R.H.S

$$(a,b) \times [(c,d) \times (e,f)]$$
$$= (a,b) \times [(ce, de+f)]$$

$$=(ace,b(ce)+de+f)=(ace,bce+de+f)$$

L.H.S=R.H.S

Hence the given composition X is associative.

Existence of Identity: Let (x,y) be ientity element of S such that $(x,y)\times(a,b)=(a,b)\times(x,y)\Rightarrow(xa,ya+b)=(a,b)\Rightarrow xa=a;\ ya+b=b\Rightarrow x=1;\ y=0$

Therfore (1,0) is the identity element.

Existence of Inverse: Let $(c,d) \in S$, $c \neq 0$ be inverse of $(a,b) \in S$.

Now
$$(a,b)\times(c,d)=(1,0)=(c,d)\times(a,b)$$

$$\Rightarrow$$
 (ac, bc+d) = (1,0)

$$\Rightarrow ac = 1$$
; $bc + d = 0 \Rightarrow c = \frac{1}{a} \neq 0$; $d = -\frac{b}{a}$

$$\left(\frac{1}{a}, -\frac{b}{a}\right)$$
 is inverse of element (a,b).

The inverse of (a,b) of G has been found to be $\left(\frac{1}{a}, -\frac{b}{a}\right)$.

To Prove H is a subgroup of G or not.

Obviously H is a non empty subset of G.Let (1,b) and (1,c) be any two elements of H. Then

$$(1,b)X(1,c)^{-1}=(1,b)X(\frac{1}{1},-\frac{c}{1})=(1,b-c)$$
 (By definition of operation of G)

(1, b-c) is definitley an element of H.Thus

$$(1,b),(1,c) \in H \Rightarrow (1,b) \times (1,c)^{-1} \in H$$

Hence H is subgroup of G.

Example:Let G be the multilicative group of all positive real numbers and R the additive group of all real numbers.Is G a subgroup of R?

Solution: The set G of all positive real numbers is a subset of the set of R of all real numbers.But the group G is not a subgroup of the group R.The reason is that the composition/ binary operation in G is different from the composition/ binary operation in R.

LAGRANGE'S THEOREM: The order of each subgroup of a finite group is a divisor of the order of the group.

Note: Lagrange's theorem has every important applications. Suppose G is a finite group of order n.If m is not a divisor of n, then there can be no subgroup of order m. Thus if G is a group of order 6, then there can be no group of order 5 or 4. Similarly if G is a group of prime order p then G can have no proper subgroup.

CYCLIC GROUP

CYCLIC GROUP: A group G is called cyclic for some $a \in G$, every element $x \in G$ is of the form aⁿwhere n is some integer. The element **a** is then called a generator of G.

Example: The multiplicative group = $\{1,-1,i,-i\}$ is cyclic .We can write $G=\{i,i^2,i^3,i^4\}$. Thus G is a cyclic group and I is a generator. Also we can write $G=\{-i,(-i^2),(-i^3),(-i^4)\}$. Thus -i is the generator of G.

Example: The multiplicative group $\{1, \omega, \omega^2\}$ is cyclic. The generators are ω, ω^2 .

Example: The group $A=(\{0,1,2,3,4,5\},+_6\}$ is cyclic. This group is generated by 1 and another generator is 5.

Remarks:

- 1. Every cyclic group is an abelian.
- 2.If a is a generator of a cyclic group G, then a⁻¹ is also generator of G.
- 3.If "a" is a generator of an infinite cyclic group G, then the order of a must be infinite.If the order of a is finite ,then cyclic group generator by "a" is of finite order.Therefore the order of the cyclic group is equal to order of its generating element.
- 4.If a finite group of order n contains an element of order n, then group must be cyclic.
- 5. If the cyclic group G is generatted by an element a of order n, then a^m is generator of G if and only if the greatest common divisor of m and n is 1 i.e., m and n is relatively prime.
- 6.If G is a cyclic group of order n then total number of generators of G will be equal to number of integer less than n and prime to n.For example if a is generator of a cyclic group G of order 8, then a^3, a^5, a^7 will be the only generators of G.Since 4 is not prime to 8 therefore a^4 cannot be generator of G.Similarly a^2, a^6, a^8 cannot be generators of G.

Example : Show that the group $(\{1,2,3,4,5,6\},x_7)$ is cyclic .How many generators are there?

Solution:Let $G = \{1,2,3,4,5,6\}$. If there exists an element $a \in G$ such that O(a) = 6 i.e., the order of the group G then the group G will be cyclic group and a will be generator of G.

	(3)1=3
	$(3)^2 = 3X_73 = 2$
	$(3)^3 = 3X_73X_73 = 3$
3	$(3)^4 = 3X_73x_73x_73=4$
	$(3)^5 = 3X_73X_73X_73x_73=5$

(3)⁶=
$$3X_73X_73X_73X_73X_73=1$$
 (i.e., identity element)
 $\therefore o(3) = 6$

Since O(3)=6= order of the group therefore G is a cyclic group and 3 is a generator of G.

Now If a is a generator of a cyclic group G, then a⁻¹ is also generator of G.

Therefore 5 is also generator of the group.

PRATICE EXAMPLE

) Is the group G={ 1,3,5,7} cyclic w. r. t \times_{8} ? Justify your answer.

PERMUTATION GROUP

Definition: Suppose S is a finite set having n distinct elements. Then a one-one mapping of S onto itself is called a permutation of degree n.

The number of elements in the finite set S is known as the degree of permutation.

Total number of distinct permutation of degree:n!

Equality of two permutation: Two permutation f and g of degree n said to be equal if we have $f(a)=g(a) \ \forall a \in S$.

Product or Composite of two Permutation: The product or composite of two composite of two permutation f and g of degree n degree n denoted by fg , is obtained by first carrying out the operation defined by f and then by g.

Example: Let
$$f = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
 $g = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ be two permutation of degree 3.Then

$$fg = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$gf = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Obviously $fg \neq gf$

Example: Show the set P₃ of all permutaion on three symbols 1,2,3 is a finite non abelian group of order with respect to permutation multiplication as composition.

Let
$$f_1=I$$
, $f_2=(12)$, $f_3=(23)$, $f_4=(31)$, $f_4=(123)$, $f_5=(132)$

Product of	f_1	f ₂	f ₃	f ₄	f ₅	f ₆
Permutations						
f ₁	f_1	f_2	f ₃	f ₄	f_5	f ₆
f ₂	f_2	f_1	f_6	f_5	f ₄	f ₃
f ₃	f ₃	f_5	f_1	f_6	f ₂	f ₄
f ₄	f ₄	f_6	f ₅	f_1	f ₃	f ₂
f ₅	f_5	f_3	f ₄	f ₂	f_6	f_1
f ₆	f_6	f ₄	f_2	f ₃	f_1	f_5

Closure Property: Since all the entries in the table are elemet of P_3 , therefore P_3 is cosed with respect to multiplication of permutation.

Associative Property: Multiplication of permutation is always associative.

Existence of Identity : From the table , f_1 is the identity element.

Existence of Inverse:

$$(f_1)^{-1}=f_1;$$
 $(f_2)^{-1}=f_2;$ $(f_3)^{-1}=f_3;$ $(f_4)^{-1}=f_4;$ $(f_5)^{-1}=f_6;$ $(f_6)^{-1}=f_5$

Thus inverse of each element exist.

Since P_3 satisfies all the condition therefore P_3 is a group w.r.t permutation multiplication.