oHMMed

Ordered Hidden Markov Models for Compact Genomic Segmentations

Wassim Alkouri Maximilien Godin Université Libre de Bruxelles

Introduction

- ► Genomic tracks (GC content, SNV burden, histone marks) vary smoothly along chromosomes.
- \triangleright Classical HMMs detect domains but suffer from K^2 transitions and label-switching.
- **oHMMed** fixes this by ordering states, restricting transitions to neighbours, and sharing one dispersion parameter.

Data sets

Arabidopsis thaliana GC content

5 chromosomes, 100 kb windows, GC % from TAIR10 FASTA.

TCGA-BRCA tumour SNVs

Patient TCGA-BH-A201, 100 kb windows across chr1—22; SNVs counted with maftools.

Do the tracks justify an oHMMed?

Variance of first-differences vs. a shuffled control shows strong autocorrelation:

Dataset	$\hat{\sigma}_{orig}^2$	$\hat{\sigma}_{shuff}^2$
GC %	2.8×10^{-4}	6.1×10^{-4}
SNV	36.2	50.2

F-tests: $p < 2.2 \times 10^{-16}$ in both cases.

The oHMMed model

Hidden chain. Reversible, tridiagonal T with only 2K-2 free transition parameters. **Emissions (convex families with shared scale).**

$$y_I \mid \theta_I = i \sim \begin{cases} \mathcal{N}(\mu_I, \sigma) & \mathsf{GC\,\%} \text{ (continuous)} \\ \mathsf{Gamma-Poisson}(\alpha, \beta_I) & \mathsf{SNV} \text{ counts} \end{cases}$$

A common σ or α makes log-density ratios convex, so states can be ordered.

Neighbour rule. $T_{ij} = 0$ if |i - j| > 1, preventing unrealistic long-range jumps.

Graphical Representations of the model

Figure 1: Graphical representation of oHMMed with normal emission densities: Starting at the top of the graph, the hyperparameters from which the emitted densities are drawn must be set: The variance σ^2 is assumed to be drawn from a prior inverse chi-square distribution with prior degrees of freedom ν_0 and prior variance σ_0^2 ; the means are assumed to be drawn from a normal distribution with variance σ^2 (since we set the coupling constant $\kappa_0 = 1$) and prior means μ_0 . The priors for the transition matrix \mathbf{T} are omitted here. The sequence of hidden states θ_l near the bottom of the graph each 'select' a μ_i , and conditional on the chosen μ_i and σ^2 , the emitted/observed sequence of data points are drawn from the respective normal distribution.

Figure 2: Graphical representation of oHMMed with gamma-poisson emission densities: Starting at the top of the graph, the hyperparameters from which the emitted densities are drawn must be set: The rate parameters β_i are assumed to be drawn from exponential distributions with priors β_{0i} . The improper prior for the shape parameter α cannot be properly shown and the priors for the transition matrix \mathbf{T} are omitted. The sequence of hidden states θ_l near the bottom of the graph each 'select' a β_i , and conditional on the chosen β_i and α , the emitted sequence of data points y_l are drawn from the gamma normal distribution. These are rate parameters, which are used to draw the sequence of poisson distributed observed data points

Model Parameters selection

Gibbs sampler (8 k iters, 25 % burn-in)

- 1. Forward–Backward sample the full path $\theta_{1:L}$.
- 2. Update $\{\mu_i\}$ or $\{\beta_i\}$; sort to enforce order.
- 3. Update the tridiagonal T from its Dirichlet posterior.

Ordering eliminates label-switching and speeds convergence.

Selecting the number of states

Fit K = 2, ..., 9 and pick the elbow of the median log-likelihood curve. Both data sets favour K = 5.

The observed overall density (blue) of the GC proportion superimposed on the posterior (inferred) density, with the inferred means per chosen number of states plus the 68% confidence intervals drawn in vertical lines.

A. thaliana GC segmentation

- ightharpoonup Five domains with mean GC 0.337 ightharpoonup 0.415 and shared $\sigma=0.011$.
- ► Recovers AT- and GC-isochores with finer-scale structure compared to window-less Z-curveZhang&Zhang; centromeres are GC-rich.

Five-state GC segmentation of the *A. thaliana* genome (100 kb windows)

State track across chromosomes 1–5

Breast-cancer mutation landscape

- ▶ Gamma–Poisson, K = 5; 15 % of windows fall in high-burden states.
- ► Hyper-mutation on chr17 & chr19.

five-state SNV segmentation (100 kb windows)

Conclusion & Outlook

- **Compact**: 2K 2 transitions.
- ► **Stable**: no label-switching.
- ightharpoonup Interpretable: ordered emissions \rightarrow natural biological ranking.
- ► Versatile: same core handles continuous or count data; useful wherever tracks are autocorrelated.
- ► **Future**: relax shared-dispersion.

Key references

Vogl et al., BMC Bioinf 25:151 (2024) Alkouri & Godin, Tech. Report (2025) Zhang & Zhang, J Mol Evol 59:227 (2004)