

GPU Optimization

Outline

- Recap
- Thread Cooperation in GPU Computing
- GPU Memory Model
 - Shared memory
 - Constant memory
 - Global memory
- Test cases

Data-Parallel Computing - Recap

- Performs operations on a data set organized into a common structure (ef. An array)
- A set of tasks work collectively and simultaneously on the same structure with each task operating on its own portion of the structure
- Tasks perform identical operations on their portions of the structure.
 Operations on each portion must be data independent
- CUDA provide built-in variables in order to access to different data
 Array[threadIdx] = ...

Data-Parallel Computing on the GPUs - Recap

- GPUs are suited for number crunching problems
- Identical operations executed on many data elements in parallel
- Lots of transistor are dedicated to the computation
 CPU

The CUDA Programming Model

- We know that GPUs are pieces of hardware that can run many threads
- Threads are organized in grid of blocks
- Threads are executed on Streaming Multiprocessors
- But, how well do we need to know the hardware in order to obtain good performance?
- GPUs has different memory levels

CUDA Thread Hierarchy

- Thread blocks and Grids can be 1D, 2D or 3D
- Dimensions set at launch time
- Thread blocks and grids do not need to have the same dimensionality, e.g. 1D grid of 2D blocks

The CUDA Programming Model

- Blocks from the grid are distributed across the SM
- The programmer has no control on this distribution
- A block will execute on one (and only one) SM

Blocks Must Be Independent!

- Any possible distribution of blocks could be valid
 - Can run in any order
 - Can run sequentially or concurrently
- Blocks might need to be synchronized once in a while
- Independence requirements gives scalability
- There is no reliable mechanism to communicate between blocks, because of the order independence

The CUDA Programming Model

- However, within a block, CUDA permits non data-parallel approaches
 - Implemented via control-flows statements in a kernel
 - Threads are free to execute unique paths through a kernel
- Since all threads within a block are active at the same time they can communicate between each other

Memory Hierarchy

- CUDA threads may access data from multiple memory spaces during their execution.
- Each thread has private local memory.
- Each thread block has shared memory visible to all threads of the block and with the same lifetime as the block.
- All threads have access to the same global memory.

GPU Memory Overview

- Transfer to/from CPU is very slow
- Global memory is slow
- Texture, Constant and Shared Memory are fast
- Registers are very fast

Global Memory

- Visible by all threads
- Read/write
- Shared between blocks and grids
- Shared between multiple kernel execution
- Very slow access
- Programmer explicitly manages allocation and deallocation with cuda API

Constant Memory

- Read-only in device
- Cached in multiprocessor
- Fairly quick, cache can broadcast to all active threads
- 64KB
- To use when:
 - All the threads access to the same location
 - Data are constant

Constant Memory

- Special region of device memory
- 64KB
- Read-only from kernel
- Constants are declared at file scope
- Constant values are set from host code
- cudaMemcpyToSymbol()
- __device___ _constant__

Texture Memory

- Texture caches are designed for graphics applications where memory access patterns exhibit a great deal of spatial locality.
- A thread is likely to read from an address "near" the address that nearby threads area

Shared Memory

- High performance memory
- Read/write per block
- Memory is shared within a block
- Generally quick
- 2 order of magnitude lower latency than global memory
- Order of magnitude higher bandwidth than global memory
- Up to 128 KB per multiprocessor, but a maximum of 48KB per block

Shared Memory

- Shared memory has block scope
- Only visible to threads in the same block
- Threads can share results, avoid redundant computation
- Threads can share memory access
- Similar benefits as CPU cache, however, must be explicitly managed by the programmer with the qualifier __shared__

Shared Memory

- When a variable is declared ins shared memory the compiler creates a copy of that variable for each block.
- Every thread within the blocks sees this memory, can access and modify its content. Threads from other blocks do not see this memory.
- This provides an excellent means by which threads within a block can communicate and collaborate on computations.
- However, threads have to be synchronized explicitly.

Local Memory

- Read/write per thread
- Slow
- Scratch space per thread
- Used for whatever does not fit into registers
- --maxrregcount
- http://developer.downloa d.nvidia.com/CUDA/traini ng/register_spilling.pdf

Local Memory

- Variable declared within a kernel is allocated per thread
- It is only accessible by the threads
- It has the lifetime of a thread

```
__global__ void kernel()
{
    // Each thread has its own copy of idx and array
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    float array[16];
}
```


Local Memory

- Compilers control
 where these variables
 are stored in physical
 memory
- Registers: fastest memory, on chip
- Local memory: when registers are not available compilers put off chip

Memory Issues

- Each multiprocessor has limited amount of memory
- Limits amount of blocks we can have
- #blocks x mem_used_per_block <= total memory
- Either get lots of blocks using little memory, or fewer using lots of

memory

Memory Issues

- Register memory is limited!
- Shared memory in blocks is limited!
- Can have many threads using fewer registers, or few threads using many registers

Memory Issues

- Global accesses: slow!
- Can be sped up when memory is contiguous
- All threads in a warp execute the same instruction
- During a load the hardware detect whether all threads access to consecutive memory locations.
- If thread 0 access location n, thread 1 to location n+1, thread 31 to location n+31 the all accesses are **coalesced**: combined in a single memory access.
- Coalesced access are: contiguous, in-order, aligned

Memory Coalescing, Aligning access

Bad alignment

- Built-in types force alignment
- float3(12B) takes up the same space as float4(16B)
- float3 arrays are not aligned;
- To align a struct use __align__(x) // x = 4, 8, 16
- CudaMalloc aligns the start of each block automatically

Memory Coalescing: Contiguous Access

- Contiguous = memory is together
- Example of non-contiguous memory
- Thread 3 and 4 swapped accesses

Memory Coalescing: In-order Accesses

- In-order access
- Do not skip addresses
- Access addresses in order in memory
- Examples of bad accesses
- Left: Address 140 skipped
- Right: Lots of addresses skipped

Let's put it to the test - mem access

```
template
 global void offset(T* a, int s)
 int i = blockDim.x * blockIdx.x + threadIdx.x + s;
 a[i] = a[i] + 1;
template
 global void stride(T* a, int s)
 int i = (blockDim.x * blockIdx.x + threadIdx.x) * s;
 a[i] = a[i] + 1;
```

SCITAS

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Offset performance

Effective Bandwidth vs. Offset for Single Precision

Stride performance

Effective Bandwidth vs. Stride for Single Precision

A deeper dive into shared memory

- It is on-chip memory -> much faster
- Latency can be ~100x lower than global memory access
- Allocated per block. All the threads can access to it.
- If thread A and B load data from global memory and write in shared there could be race conditions -> explicit synchronization

Static shared memory

```
__global__ void staticReverse(int *d, int n)
{
    __shared__ int s[64];
    int t = threadIdx.x;
    int tr = n-t-1;
    s[t] = d[t];
    __syncthreads();
    d[t] = s[tr];
}
```

- t and tr are the original and reverse order
- The threads copy d[t] from global memory to shared memory
- The reverse operation happen in shared memory

Dynamic shared memory

```
__global__ void dynamicReverse(int *d, int n)
{
    extern __shared__ int s[];
    int t = threadIdx.x;
    int tr = n-t-1;
    s[t] = d[t];
    __syncthreads();
    d[t] = s[tr];
}
```

- The amount of shared memory is not known till runtime
- The amount of memory must be specified as 3rd parameter when then kernel is launched

```
dynamicReverse<<<1, n, n*sizeof(int)>>>(d d, n);
```


Shared memory bank conflict

- To achieve high memory bandwidth for concurrent access, shared memory is divided into banks that can be access simultaneously.
- If multiple threads requested addresses map to the same memory bank, the accesses are serialized.
- The hardware splits a conflicting memory request into as many separate conflict-free requests as necessary, decreasing the effective bandwidth by a factor equal to the number of colliding memory requests.
- To minimize bank conflicts, it is important to understand how memory addresses map to memory banks.
- Shared memory banks are organized such that successive 32-bit words are assigned to successive banks and the bandwidth is 32 bits per bank per clock cycle.
- For devices of compute capability 2.0, the warp size is 32 threads and the number of banks is also 32.

Bank Conflics

Bad: many threads trying to access to the same bank

Bank Conflicts

Good: Few to no bank conflicts

Bank Conflicts for shared memory

Banks service 32-bit words at a time at addresses mod 64

• Bank 0 services 0x00, 0x40, 0x80, etc., bank 1 services 0x04, 0x44, 0x84, etc.

- Want to avoid multiple thread access to same bank
 - Usually a problem if many threads access to the same bank
 - Padding if necessary
 - Last thing to worry about for performance

An efficient Matrix Transpose in CUDA

- This exercise is based on https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/
- The code we wish to optimize is a transpose of a matrix of single precision values that operates out-of-place, i.e. the input and output are separate arrays in memory.
- For simplicity of presentation, we'll consider only square matrices whose dimensions are integral multiples of 32 on a side.
- All kernels in this study launch blocks of 32×8 threads (TILE_DIM=32, BLOCK_ROWS=8 in the code), and each thread block transposes (or copies) a tile of size 32×32.
- Using a thread block with fewer threads than elements in a tile is advantageous for the matrix transpose because each thread transposes four matrix elements, so much of the index calculation cost is amortized over these elements.

Let's start with matrix copy

```
__global__ void copy(float *odata, const float *idata)
{
   int x = blockIdx.x * TILE_DIM + threadIdx.x;
   int y = blockIdx.y * TILE_DIM + threadIdx.y;
   int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j+= BLOCK_ROWS)
   odata[(y+j)*width + x] = idata[(y+j)*width + x];
}</pre>
```

- Each thread copy TILE_DIM/BLOCK_ROWS values
- TILE DIM must be used to compute the index x,y
- Used as a reference

Naive matrix transpose

```
__global__ void transposeNaive(float *odata, const float *idata)
{
  int x = blockIdx.x * TILE_DIM + threadIdx.x;
  int y = blockIdx.y * TILE_DIM + threadIdx.y;
  int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j+= BLOCK_ROWS)
  odata[x*width + (y+j)] = idata[(y+j)*width + x];
}</pre>
```

- The only difference is that the indices for odata are swapped.
- The access to idata are coalesced while for odata is not. The data are allocated by row.

Naive matrix transpose

	Effective Bandwidth (GB/s, ECC enabled)		
Routine	Tesla M2050	Tesla K20c	
сору	105.2	136.0	
transposeNaive	18.8	55.3	

The transposeNaive bandwidth is a fraction of the copy

Coalesced transpose via shared memory

The remedy is to use the shared memory to avoid large strides through the global memory.

Coalesced transpose via shared memory

```
global void transposeCoalesced(float *odata, const float *idata)
shared float tile[TILE DIM][TILE DIM];
int x = blockIdx.x * TILE DIM + threadIdx.x;
int y = blockIdx.y * TILE DIM + threadIdx.y;
int width = gridDim.x * TILE DIM;
for (int j = 0; j < TILE DIM; j += BLOCK ROWS)
   tile[threadIdx.y+j][threadIdx.x] = idata[(y+j)*width + x];
 syncthreads();
x = blockIdx.y * TILE DIM + threadIdx.x; // transpose block offset
y = blockIdx.x * TILE DIM + threadIdx.y;
for (int j = 0; j < TILE DIM; j += BLOCK ROWS)
   odata[(y+j)*width + x] = tile[threadIdx.x][threadIdx.y + j];
```

- In the first do loop, a warp of threads reads contiguous data from idata into rows of the shared memory tile
- After recalculating the array indices, a column of the shared memory tile is written to contiguous addresses in odata
- Because threads write different data to odata than they read from idata, we must use a block-wise barrier synchronization __syncthreads()

Coalesced transpose via shared memory

	Effective Bandwidth (GB/s, ECC enabled)		
Routine	Tesla M2050	Tesla K20c	
сору	105.2	136.0	
transposeNaive	18.8	55.3	
transposeCoalesced	51.3	97.6	

- The results improved a lot but they are still far from copy.
- Copy data to shared memory and synchronization might be responsible for slow down.

Copy in shared memory

```
__global__ void copySharedMem(float *odata, const float *idata)
{
    __shared__ float tile[TILE_DIM * TILE_DIM];

int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
    tile[(threadIdx.y+j)*TILE_DIM + threadIdx.x] = idata[(y+j)*width + x];

__syncthreads();

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
    odata[(y+j)*width + x] = tile[(threadIdx.y+j)*TILE_DIM + threadIdx.x];
}</pre>
```

	Effective Bandwidth (GB/s, ECC enabled)		
Routine	Tesla M2050	Tesla K20c	
сору	105.2	136.0	
copySharedMem	104.6	152.3	
transposeNaive	18.8	55.3	
transposeCoalesced	51.3	97.6	

- The syncthreads is not needed technically
- Include to mimic the behavior
- The problem is not the barrier or the thread synchronization

Shared memory bank conflicts

- For a shared memory tile of 32 × 32 elements, all elements in a column of data map to the same shared memory bank.
- Worst case scenario: reading a column of data results in a 32-way bank conflict.
- the solution for this is simply to pad the width in the declaration of the shared memory tile, making the tile 33 elements wide rather than 32.

__shared__ float tile[TILE_DIM][TILE_DIM+1];

	Effective Bandwidth (GB/s, ECC enabled)		
Routine	Tesla M2050	Tesla K20c	
сору	105.2	136.0	
copySharedMem	104.6	152.3	
transposeNaive	18.8	55.3	
transposeCoalesced	51.3	97.6	
transposeNoBankConflicts	99.5	144.3	

