TOPOLOGICAL DATA ANALYSIS - EXERCISES

Lucas Moschen, EMAp/FGV

January 27, 2021

1 General topology

1.1 Important definitions

DEFINITION 1.1.1. A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- 1. $\emptyset \in \mathcal{T}, X \in \mathcal{T}$.
- 2. for every infinite collection $\{O_{\alpha}\}_{{\alpha}\in A}\subset \mathcal{T}$, we have $\bigcup_{{\alpha}\in A}O_{\alpha}\in \mathcal{T}$.
- 3. for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n} O_i \in \mathcal{T}$.

DEFINITION 1.1.2. Let $x \in \mathbb{R}^n$ and r > 0. The open ball of center x and radius r, denoted $\mathcal{B}(x,r)$, is defined as: $\mathcal{B}(x,r) = \{y \in \mathbb{R}^n, ||x-y|| < r\}$.

DEFINITION 1.1.3. Let $A \subset \mathbb{R}$ and $x \in A$. We say that A is open around x if there exists r > 0 such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.

DEFINITION 1.1.4. Let (X, \mathcal{T}) be a topological space, and $Y \subset X$. We define the subspace topology on Y as the following set:

$$T_{|Y} = \{O \cap Y, O \in \mathcal{T}\}$$

DEFINITION 1.1.5. Let $f: X \to Y$ be a map. We say that f is continuous if for every $O \in U$, the preimage $f^{-1}(O) = \{x \in X, f(x) \in O\}$ is in \mathcal{T} .

1.2 Exercises

EXERCISE 1.2.1. Let $X = \{0, 1, 2\}$ be a set with three elements. What are the different topologies that X admits?

As we know every Topology contains \emptyset and $\{0,1,2\}$, so we can disconsider when writing the topologies, that is, all below contain these subsets.

- (2) Basic: $\{\emptyset, \{0, 1, 2\}\}\$ $\mathcal{P}(\{0, 1, 2\})$.
- (8) With $\{0\}$: $\{\{0\}\} \{\{0\}, \{0, 1\}\} \{\{0\}, \{1, 2\}\} \{\{0\}, \{0, 2\}\} \{\{0\}, \{0, 2\}, \{0, 1\}\}\}$ $\{\{0\}, \{2\}, \{0, 2\}\} \{\{0\}, \{2\}, \{0, 2\}, \{1, 2\}\} \{\{0\}, \{2\}, \{0, 2\}, \{0, 1\}\}$
- (8) With $\{1\}$: $\{\{1\}\} \{\{1\}, \{0, 1\}\} \{\{1\}, \{1, 2\}\} \{\{1\}, \{0, 2\}\} \{\{1\}, \{1, 2\}, \{0, 1\}\}$ $\{\{0\}, \{1\}, \{0, 1\}\} - \{\{0\}, \{1\}, \{0, 1\}, \{1, 2\}\} - \{\{0\}, \{1\}, \{0, 2\}\}$
- (8) With $\{2\}$: $\{\{2\}\} \{\{2\}, \{0, 1\}\} \{\{2\}, \{1, 2\}\} \{\{2\}, \{0, 2\}\} \{\{2\}, \{0, 2\}, \{1, 2\}\}$ $\{\{1\}, \{2\}, \{1, 2\}\} - \{\{1\}, \{2\}, \{1, 2\}, \{0, 1\}\} - \{\{1\}, \{2\}, \{1, 2\}, \{0, 2\}\}$
- (3) No singleton: $\{\{0,1\}\} \{\{1,2\}\} \{\{0,2\}\}$

EXERCISE 1.2.2. Let \mathbb{Z} be the set of integers. Consider the *cofinite topology* \mathcal{T} on \mathbb{Z} , defined as follows: a subset $O \subset \mathbb{Z}$ is an open set if and only if $O = \emptyset$ or cO is finite. Here, ${}^cO = \{x \in \mathbb{Z}, x \notin O\}$ represents the complementary of O in \mathbb{Z}

1. Show that \mathcal{T} is a topology on \mathbb{Z} .

Let's verify the three axioms:

- (a) \emptyset is an open set by definition and \mathbb{Z} is open set because ${}^{c}\mathbb{Z} = \emptyset$ is finite.
- (b) Let $\{O_{\alpha}\}_{\alpha\in A}\subset \mathcal{T}$. So ${}^{c}O={}^{c}\left(\bigcup_{\alpha\in A}O_{\alpha}\right)=\bigcap_{\alpha\in A}{}^{c}O_{\alpha}\implies{}^{c}O\subset{}^{c}O_{\alpha}, \forall \alpha\in A$. If $\forall \alpha,O_{\alpha}=\emptyset$, then ${}^{c}O={}^{c}\emptyset\implies O=\emptyset$ and O is open. On the other hand, if there exists $\alpha\in A$ such that $O_{\alpha}\neq\emptyset$ we have ${}^{c}O_{\alpha}$ being finite, so is ${}^{c}O$, given the inclusion. We conclude O is open set.
- (c) Let $\{O_i\}_{1\leq i\leq n}\subset \mathcal{T}$. So ${}^cO={}^c\left(\bigcap_{1\leq i\leq n}O_i\right)=\bigcup_{1\leq i\leq n}{}^cO_i$. If $O_i=\emptyset$ for some $1\leq i\leq n,\,O=\emptyset$ because of the intersection. Alternatively, if $\forall i,O_i\neq\emptyset$ we have that cO_i is finite and a finite union of finites is finite. We conclude that O is open set.

By (a), (b) and (c), \mathcal{T} is a topology on \mathbb{Z} .

2. Exhibit an sequence of open sets $\{O_n\}_{n\in\mathbb{N}}\subset\mathcal{T}$ such that $\bigcap_{n\in\mathbb{N}}O_n$ is not an open set. Let $O_n=\ ^c\{1,...,n\}$. Thus $^cO_n=\{1,...,n\}$ is finite and

$$^{c}\left(\bigcap_{n\in\mathbb{N}}O_{n}\right)=\bigcup_{n\in\mathbb{N}}^{c}O_{n}=\bigcup_{n\in\mathbb{N}}\left\{ 1,...,n\right\} =\mathbb{N},$$

that is not finite. Therefore, this intersection is not an open set.

EXERCISE 1.2.3. Let $x \in \mathbb{R}^n$, and r > 0. Let $y \in \mathcal{B}(x,r)$. Show that

$$\mathcal{B}(y, r - ||x - y||) \subset \mathcal{B}(x, r)$$

Let $z \in \mathcal{B}(y, r - ||x - y||)$, so $||z - y|| < r - ||x - y|| \implies ||z - y|| + ||x - y|| < r$. We can conclude that, by the triangular inequality,

$$||x - z|| \le ||x - y|| + ||z - y|| < r.$$

In that sense, $z \in \mathcal{B}(x,r)$ and $\mathcal{B}(y,r-||x-y||) \subset \mathcal{B}(x,r)$.

Remark. In the notes, the exercise is to prove $\mathcal{B}(y,||x-y||) \subset \mathcal{B}(x,r)$, however, this does not hold, because if we take y next the border of $\mathcal{B}(x,r), ||x-y|| \approx r$ and $B(y,r-\epsilon) \not\subset B(x,r)$.

EXERCISE 1.2.4. Let $x, y \in \mathbb{R}^n$, and r = ||x - y||. Show that

$$\mathcal{B}\left(\frac{x+y}{2}, \frac{r}{2}\right) \subset \mathcal{B}(x,r) \cap \mathcal{B}(y,r)$$

Define $m=\frac{x+y}{2}$. Take $z\in\mathcal{B}\left(m,\frac{r}{2}\right)$. Thus, using the triangular inequality, $||x-z||\leq ||x-m||+||m-z||=\frac{1}{2}||x-y||+||m-z||< r/2+r/2=r$ $||y-z||\leq ||y-m||+||m-z||=\frac{1}{2}||y-x||+||m-z||< r/2+r/2=r$ So $z\in\mathcal{B}(x,r),\,z\in\mathcal{B}(y,r)$ and $z\in\mathcal{B}(x,r)\cap\mathcal{B}(y,r)$. Therefore $\mathcal{B}(m,\frac{r}{2})\subset\mathcal{B}(x,r)\cap\mathcal{B}(y,r)$.

EXERCISE 1.2.5. Show that the open balls $\mathcal{B}(x,r)$ of \mathbb{R}^n are open sets (with respect to the Euclidean topology).

We have to prove that for every $y \in \mathcal{B}(x,r)$, there exists $\epsilon > 0$ such that $\mathcal{B}(y,\epsilon) \subset \mathcal{B}(x,r)$. Put $\epsilon = r - ||x - y||$. As we have proved in exercise 3, $\mathcal{B}(y,\epsilon) \subset \mathcal{B}(x,r)$. So $\mathcal{B}(x,r)$ is open set.

EXERCISE 1.2.6. Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- 1. [0,1]. It's not open set because for every $\epsilon > 0$, $\mathcal{B}(0,\epsilon) = (-\epsilon,\epsilon) \not\subset [0,1]$. It's closed because $[0,1]^c = (-\infty,0) \cup (1,\infty)$ is an union of two open sets, as we prove in item 3.
- 2. [0,1). It's not open for the same reason as before. It's not closed because $B(1,\epsilon) = (1-\epsilon,1+\epsilon) \not\subset (-\infty,0) \cup [1,\infty]$.
- 3. $(-\infty, 1)$. It's open because: take x < 1. Put r = 1 x and take $z \in \mathcal{B}(x, r)$. If z > x, $|x z| < 1 x \implies z < 1$. If z < x, it follows z < 1. It proves z < 1 and $(-\infty, 1)$ is open. It's not closed cause $\forall \epsilon > 0, \mathcal{B}(1, \epsilon) \not\subset [1, \infty)$.
- 4. the singletons. It's not open cause $\forall \epsilon > 0, x + \epsilon/2 \in \mathcal{B}(x, \epsilon)$. It's close cause $(-\infty, x) \cup (x, \infty)$ is union of open sets.
- 5. \mathbb{Q} . It's not open because for every open ball around a rational, there is irrationals, that is, for $x \in \mathbb{Q}$ and $\forall \epsilon > 0$, exists $y \in (\mathbb{R} \mathbb{Q}) \cap \mathcal{B}(x, \epsilon)$. It's not closed for the same reason, for every irrational, there is rationals for every open ball.

EXERCISE 1.2.7. A map is continuous if and only if the preimage of closed sets are closed sets.

First we shall prove that $f^{-1}({}^{c}A) = {}^{c}(f^{-1}(A))$. Let's prove the double inclusion. Take $x \in f^{-1}({}^{c}A)$. So there exists $y \in {}^{c}A$ such that f(x) = y. Suppose that $x \in f^{-1}(A)$. It implies the existence of $z \in A$ such that y = f(x) = z, absurd. So $x \in {}^{c}(f^{-1}(A))$.

Now take $x \in {}^c(f^{-1}(A))$. Therefore, $\forall y \in A, f(x) \neq y$. In that case, $f(x) \in {}^cA \implies x \in f^{-1}({}^cA)$. Then we have showed the equality.

Now let's prove the equivalence. Suppose f is a continuous map and take a closed set F. We shall prove that $f^{-1}(F)$ is closed. Well, $c(f^{-1}(F)) = f^{-1}(cF)$ is open, because cF is open, by the continuity. We conclude that $f^{-1}(F)$ is closed.

Suppose that for every closed set F, we have $f^{-1}(F)$ being closed. We will use that A is open if cA is closed. This is true because ${}^c({}^c(A)) = A$. Take an open set A. ${}^c(f^{-1}(A)) = f^{-1}({}^cA)$ is closed, because cA is. Thus $f^{-1}(A)$ is open and we have proved the continuity of f.

2 Homeomorphisms

2.1 Important definitions

DEFINITION 2.1.1. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f: X \to Y$ a map. We say that f is a homeomorphism if

- 1. f is a bijection,
- 2. $f: X \to Y$ is continuos,
- 3. $f^{-1}: Y \to X$ is continuos.

If there exists such a homeomorphism, we say that the two topological spaces are homeomorphic.

2.2 Exercises