

FIG. 1

FIG. 2

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 4A

5/13

FIG. 4B

FIG. 4C

TPS1 from

S. cerevisiae
S. lactis
S. alibicans
S. pombe
A. niger

1001 AGCGATGAAA TCGCAGACTT AC . TCTACAA CTGGTTCA GT AATTCTATTC ACTGACGAG TTGCTGTACTT TC ATTACAA CGGATTTCG AACCTCATTC AGTGAATACCA TTGCTGTATT AC ATTATAA TGGGTTTCG AATAGTATT GATGATGAGA CTCGCCGACCG CC ATTACAA CGGATTTAGT AACAGCATT CTGAGGGCC TTGCTTGCTG ACGGATATCC ACTGCTCAC AACTCCATT	1050 AGTGCCTT ATTCCATTAC CATCCTTGG AGATCAATT CGACGAGAT TATGGCCATT GTTCCATTAC CATCCTTGG AGATCACTT CGATGACACT TATGGCCATT TTGCCATTAC CATCCTTGG AAATGAACTT TGATGAAAT TATGGCCATT GTTCCATTAC CATCCTTGG AAATTAACTT TCACCGAGGA TATGGCCATT GTTCCATTAC CATCCTTGG AGATTACCTT TGACCGAGTCC	1100 GCGTGGTGG CATAACCGA GCGAACCCAG ACGTTACCA AGGAGATTC GCATCTTGC CGTACACCGA GGCAAATATG GCTTTGGCG ATGAAATTTGA GCGTGGCAG CATATATGA AGCCAAATAC AGTTTGCAT TGGAAATAGT CCTATGGAGG CCTATGGTGC GGCTAACTAC GCTTTGGCC AGCCCAATGT GCCTGGAAAG CATAACCGA GGCACACCGT CTTTCCCGA AGGGGTTC	1150 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1200 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1250 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1300 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1350 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1400 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1450 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1500 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1550 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1600 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1650 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1700 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA	1750 GCGTGGCCTC AGAAGTTGCA AGAAGTTGCA GGTGTTCCCTC AGAAGTTACA GGTGTTCCCG AAAAATTACA GGTGTTCCC AAAAATTCCA GGTGTTCCCA AGAAGTTACA
---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---

S. cerevisiae
S. lactis
S. alibicans
S. pombe
A. niger

conserved regions

S. cerevisiae
S. lactis
S. alibicans
S. pombe
A. niger

FIG. 5

FIGUR 6

SEQ ID NO:8 (nucleic acid sequence)
 SEQ ID NO:7 (amino acid sequence)

-792	CTTAAATACCACAATAGGAAAATTATCAATAAAGCTTTCTGGATTTCATTACGGTTATAATC	-733
-732	GCAAAAAAAATAGTCGAGCTTCTGAACCGTTCTGTAATAAAAAAAATAGTTTTTCAGATT	-673
-672	TCTATGTGAGGCAGTCACGATAGAATTCCATCGAACACTCGTCAGCGCCAAATGTGAATGCG	-613
-612	GCTTTCAAAGCTTGTGAATTGGATGGGAATCCATGAATCGAAGATGTCAAAATGG	-553
-552	GGGATCACAAAAGTACACTCACGAGGAAATCAAACCTCTCGTACCTTTAACACATAC	-493
-492	GGAAATGATCGATCGATTGAGAAGATTCTCAATGATTTCGTATATAGGTATCTG	-433
-432	AGGTATTATGGACCGATTCTGAATAACATCATACATCGGCTTGTCCCTGTCCCAG	-373
-372	AGATTTGATGAAAAAAGCGAATTTTATTCTAATAATTGAGCATGCCAAACATGGGCA	-313
-312	GTTGATTGTGTGAGGGTAAAATATCATGAATTGCACCCATCAAATGCAGCAAGATATTG	-253
-252	ACCAATCTATAATAGAAAACAGACTTACCCACAAATAGATTGTGATGACGATATTATGAA	-193
-192	TCTCCAGATGAAAGGCTGAAAGCTATGAAGCCCTTGTGAAACATTTCATGGTGAGATAAT	-133
-132	ATTTGAAATTTCACGAACTTCTAAACGCAATTATTGAAATATAAGGAAAAATAATA	-73
-72	TTTCCATATAGCAAGCAAATCAAGCTGACTCCTCATCCTAAACTAATAATCTTAC	-13
-12	CATTTGATACCAATGGTCAAAGGTAAATGTTATAGGGTTCAAATAGAATCCCAGTCACT	48
1	MetValLysGlyAsnValIleValValSerAsnArgIleProValThr	16
49	ATTAAGAAGACTGAAGATGATGAAAATGGAAAATCAAGATACGACTATACAATGTCATCA	108
17	IleLysLysThrGluAspAspGluAsnGlyLysSerArgTyrAspTyrThrMetSerSer	36
109	GGCGGATTAGTGACGGCATTACAAGGGCTCAAAAATCCATTTCGATGGTTGGATGGCCT	168
37	GlyGlyLeuValThrAlaLeuGlnGlyLeuLysAsnProPheArgTrpPheGlyTrpPro	56
169	GGGATGTCIGTTGATAGCGAACAGGGACGACAAACTGTCGAGCGGGATTGAAAGGAAAAG	228
57	GlyMetSerValAspSerGluGlnGlyArgGlnThrValGluArgAspLeuLysGluLys	76
229	TTCAATTGTTATCGATATGGTTAAGTGACGAAAATGCACTTACATTATAACGGCTTT	288
77	PheAsnCysTyrProIleTrpLeuSerAspGluIleAlaAspLeuHisTyrAsnGlyPhe	96
289	AGCAATTCTATACTTGGCCATTGTCACATACCCCCAGGGGAGATGAATTGATGAA	348
97	SerAsnSerIleLeuTrpProLeuPheHisTyrHisProGlyGluMetAsnPheAspGlu	116
349	ATTGCTGGGCCATTGGAAGCAAATAAACTGTTTGCCAAACGATCTTAAAGGAG	408
117	IleAlaTrpAlaAlaTyrLeuGluAlaAsnLysLeuPheCysGlnThrIleLeuLysGlu	136
409	ATAAAAGACGGGACGTTATCTGGGTACATGATTATCATCTCATGTTGTTGCCCTCACTG	468
137	IleLysAspGlyAspValIleTrpValHisAspTyrHisLeuMetLeuLeuProSerLeu	156
469	CTAAGAGACCAACTTAATAGTAAGGGCTACCGAATGTCAAAATTGGCTTTCCCTTCAT	528
157	LeuArgAspGlnLeuAsnSerLysGlyLeuProAsnValLysIleGlyPhePheLeuHis	176
529	ACTCCTTTCTCAAGCGAAATATACAGGATACTCCTGTAAGGAAAGAAATTCTCGAA	588
177	ThrProPheProSerSerGluIleTyrArgIleLeuProValArgLysGluIleLeuGlu	196
589	GGAGTGCTTAGTTGTGATTGATAGGGTTCCACACCTATGATTATGTCGTCACTTTCTT	648
197	GlyValLeuSerCysAspLeuIleGlyPheHisThrTyrAspTyrValArgHisPheLeu	216
649	AGTCGGTTGAAAGAATATGAAATTGCGAACGGAGCCCACAAGGTGTTGTCTATAATGAT	708
217	SerSerValGluArgIleLeuLysLeuArgThrSerProGlnGlyValValTyrAsnAsp	236

FIGUR 6

(cont.)

709	AGACAGGTGACTGTAAGTGCTTATCOGATTGGCATTGACGTGACAAATTCTGAATGGT	768
237	ArgGlnValThrValSerAlaTyrProIleGlyIleAspValAspLysPheLeuAsnGly	256
769	CTTAAGACTGATGAGGTCAAAAGCAGGATAAAACAGCTGGAAACCAGATTGGTAAAGAT	828
257	LeuLysThrAspGluValLysSerArgIleLysGlnLeuGluThrArgPheGlyLysAsp	276
829	TGTAAACTTATTATTGGGTGGACAGGCTGGATTACATCAAAGGTGTACCTCAAAACTC	888
277	CysLysLeuIleIleGlyValAspArgLeuAspTyrIleLysGlyValProGlnLysLeu	296
889	CACGCCTTGAAATTTCCTGGAGAGACACCCCTGAGTGGATTGGAAAAGTTGTTTGATA	948
297	HisAlaPheGluIlePheLeuGluArgHisProGluTrpIleGlyLysValValLeuIle	316
949	CAGGTGGCTGTCCCCCTCACGAGGGGACGGTGAAGAATATCAATCTTGAGGGCAGCTGTA	1008
317	GlnValAlaValProSerArgGlyAspValGluGluTyrGlnSerLeuArgAlaAlaVal	336
1009	AATGAGCTAGTGGGAAGAACATCAATGGTAGATTGGTACCGTCGAATTGTTCCATATCCAT	1068
337	AsnGluLeuValGlyArgIleAsnGlyArgPheGlyThrValGluPheValProIleHis	356
1069	TTCCTTCATAAAAGCGTGAACCTCCAAGAGCTGATATCTGTCACGCTGCTAGTGATGTT	1128
357	PheLeuHisLysSerValAsnPheGlnGluLeuIleSerValTyrAlaAlaSerAspVal	376
1129	TGTGTAGTGTATCGACACGGGACGGAATGAATTGGTCAGITATGAATACTTGCTTGT	1188
377	CysValValSerSerThrArgAspGlyMetAsnLeuValSerTyrGluTyrIleAlaCys	396
1189	CAACAAAGATCGAAAGGGATCTCTAGTACTAAGTGAATTGGCGGGAGCTGCTCAGTCATTA	1248
397	GlnGlnAspArgLysGlySerLeuValLeuSerGluPheAlaGlyAlaAlaGlnSerLeu	416
1249	AATGGCGCTCTCGTAGTGAATCCATGGAATACAGAACGAACTCAGTGAAGCTATTACGAA	1308
417	AsnGlyAlaLeuValValAsnProTrpAsnThrGluGluLeuSerGluAlaIleTyrGlu	436
1309	GGCTTGATCATGAGTGAAGAGAAAAGGAGGGCAATTTCAGAAGATGTTCAAGTACATT	1368
437	GlyLeuIleMetSerGluGluLysArgArgGlyAsnPheGlnLysMetPheLysTyrIle	456
1369	GAGAAATATACTGCAAGTTATTGGGAGAGAACTTGTGAAAGAATTGACGAGAGTGTGA	1428
457	GluLysTyrThrAlaSerTyrTrpGlyGluAsnPheValLysGluLeuThrArgVal	476
1429	TTACTGTGGTTGCAAGGTTAATTGAAATGTTCACTTGTACTTGAAGAATTATATTAT	1488
1489	ATACATGTTATACATCAATAGGATAAAAATTAAAGTAGACAAAGTTATCATTTGTTGGC	1548
1549	TGTAAAAATTGAAACGATAACAATATATTGACAAAATTAAATTGATCTAATTGAGCTGGA	1608
1609	GGGCGTAATATATTGGTTCTGTAATCATCTTGTAGATCACAATATGGGGCAGCTTCTT	1668
1669	TCGCAGCCGATCACAGAGAACACATCACACTTGTCCAACATGATCACATATCGCATTCA	1728
1729	ATCGGGGAAATGCAAGGATACAGGTGACCATGGAAGACCGGTTCTGTGATTGAACGAA	1788
1789	AGAATATTGTCGTGACGGAAGAGGGACTTGACATCAGAAAACAAGACGAGAATACAGAGGT	1848
1849	GATCTGGAGTCTCTCAAATTAAACATTATGGTGTCTTGACGGACATGGCGGTT	1903

FIG. 7

0 999 888 777 666 555 444 333 222 111

FIG. 8

© 1992 by the American Society for Microbiology

FIG. 9

FIG. 10A

FIG. 10B

FIG. 11