

Internet Evolution... João Neves, 2020

IP Addresses Assignment History

- 1º Stanford Research Institute Network Information Center (SRI-NIC)
- 2º SRI International Inc, Menlo Park, CA
- 3º InterNIC, Internet Network Information Center
- 4° Delegation by region/continent
 - Regional Internet Registries (RIR):
 - 1992 Réseaux IP Européens (RIPE-NCC);
 - 1996 Asia Pacific Network Information Centre (APNIC);
 - 1997 American Registry for Internet Numbers (ARIN);
 - 2002 Latin-American and Caribbean Network Information Centre (LACNIC);
 - 2005 African Network Information Center (AfriNIC)
 - Internet Service Providers ⇔ Local Internet Registries (LIR)

Internet IPv4 Addressing

Class	Addresses	Status
A	0.0.0.0	Reserved
	1.0.0.0 to 126.0.0.0	Available
	127.0.0.0	Reserved, loopback network
В	128.0.0.0	Reserved
	128.1.0.0 to 191.254.0.0	Available
	191.255.0.0	Reserved
С	192.0.0.0	Reserved
	192.0.1.0 to 223.255.254.0	Available
	223.255.255.0	Reserved
D	224.0.0.0 to 239.255.255.255	Multicast
E	240.0.0.0 to 255.255.255.255	Reserved

* 127.0.0.1 loopback, localhost

João Neves, 2020

11

Internet IPv4 Addressing

Example: let's consider the IP address 192.168.246.10

"hosts" field

When we want to send a packet to all the stations of a network we use the broadcast address; the broadcast address allows you to simultaneously address all the stations in a network.

IP Addresses Format

■IPv4 address 32-bit

Decimal, 1 octet fields, period separation 192.168.246.10

■IPv6 address 128-bit

Hexadecimal, 2 octet fields, colon separation 2001:0DB8:0000:0001:02A0:C9FF:FE61:1216

João Neves, 2020 13

IPv6 Addresses

- IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces [RFC4291]
- Types of addresses (There are no broadcast addresses in IPv6, their function being superseded by multicast addresses)
 - Unicast: An identifier for a single interface; a packet sent to a unicast address is delivered to the interface identified by that address.
 - Anycast: An identifier for a set of interfaces (typically belonging to different nodes); a packet sent to an anycast address is delivered to one of the interfaces identified by that address (the "nearest" one, according to the routing protocols' measure of distance).
 - Multicast: An identifier for a set of interfaces; a packet sent to a multicast address is delivered to all interfaces identified by that address.

João Neves, 2020

14

ifconfig

root@homer# /sbin/ifconfig -a

lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000

ge0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 194.117.24.1 netmask ffffff00 broadcast 194.117.24.255
 ether 8:0:20:d1:d4:97

hme0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 3
 inet 192.35.246.1 netmask fffffff00 broadcast 192.35.246.255
 ether 8:0:20:d1:d4:97

lo0: flags=2000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6> mtu 8252 index 1
 inet6 ::1/128

hme0: flags=2000841<UP,RUNNING,MULTICAST,IPv6> mtu 1500 index 3
 ether 8:0:20:d1:d4:97

inet6 fe80::a00:20ff:fed1:d497/10

João Neves, 2020 15

netstat

root@animal# /usr/bin/netstat -in

Name	Mtu	Net/Dest	Address	Ipkts	Ierrs	Opkts	0errs	Collis	Queue
100	8232	127.0.0.0	127.0.0.1	8286631	0	8286631	0	0	0
ge0	1500	194.117.24.0	194.117.24.1	6487926	178	21581387	0	0	0
hme0	1500	192.35.246.0	192.35.246.1	91261455	0	91172209	0	0	0
11									

root@homer# /usr/bin/netstat -rn

Routing Table: IPv4

Destination	Gateway	Flags	Ref	Use	Interface
194.117.24.0	194.117.24.1	U	1	424815	ge0
192.35.246.0	192.35.246.1	U	1	7051	hme0
224.0.0.0	192.35.246.1	U	1	0	hme0
default	192.35.246.254	UG	1	450384	
127.0.0.1	127.0.0.1	UH	5	16148	100
[]					

Subnetting

Masks for the subnetting of a class C network

Bits of the subnet	Bits for hosts	Hex Mask	Decimal Mask
0	8	0	0
1	7	0x80	128
2	6	0xC0	192
3	5	0xE0	224
4	4	0xF0	240
5	3	0xF8	248
6	2	0xFC	252
7	1	0xFE	254
8	0	0xFF	255

Sub Addressing

Example of sub addressing of a class C network

 Net:
 192.168.246.0
 192.168.246.0
 192.168.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.0
 128.246.

Example of sub addressing of a class B network

 Net:
 172.20.26.0
 172.20.26.0
 26.0
 0

 Mask:
 255.255.240.0
 255.255.255.240.0
 255.255.255.240.0
 255.255.255.240.0
 0

Sub Addressing...

How to split a Class C Network to address Point-to-Point links?

```
192 · 168 · 246 · 0
255 · 255 · 255 · <mark>252 -> 1111 1100</mark>
```

Net: 192.168.246.0 Mask: 255.255.255.252

252 = 256 - 4 4 is the block size!

João Neves, 2020

21

Sub Addressing...

How to split a Class C Network to address Point-to-Point links?

```
192 . 168 . 246 . 0
255 . 255 . 255 . <mark>252 -> 1111 1100</mark>
```

Net: 192.168.246.0 Mask: 255.255.255.252

And a subnet with 64 addresses?

```
192 . 168 . 246 . 0
255 . 255 . 255 . <mark>192 -> 1100 0000</mark>
```

Net: 192.168.246.0 Mask: 255.255.255.192

 1st block
 0000
 0000
 -> 0011
 1111

 2nd block
 0100
 0000
 -> 0111
 1111

 3rd block
 1000
 0000
 -> 1011
 1111

 4th block
 1100
 0000
 -> 1111
 1111

Problem

Split the network 200.17.30.0 into subnets with 32 addresses.

- 1. Which mask to apply?
- 2. How many subnets?
- 3. Which are they?
- 4. Which is the broadcast address?

João Neves, 2020

23

Problem

Split the network 200.17.30.0 into subnets with 32 addresses.

1. Which mask to apply?

1110 0000 -> 255.255.255.224

- 2. How many subnets? 8
- 3. Which are they?
- 4. Which is the broadcast address?

Problem

Split the network 200.17.30.0 into subnets with 32 addresses.

1. Which mask to apply? 1110 0000 -> 255.255.255.224

2. How many subnets? 8

3. Which are they?

4. Which is the broadcast address?

 200.17.30.0
 200.17.30.31

 200.17.30.32
 200.17.30.63

 200.17.30.64
 200.17.30.95

 200.17.30.128
 200.17.30.159

 200.17.30.190
 200.17.30.191

 200.17.30.192
 200.17.30.223

200.17.30.224 - 200.17.30.255

25

João Neves, 2020

Problem

Split the network 200.17.30.0 into subnets with 32 addresses.

1. Which mask to apply? 1110 0000 -> 255.255.255.224

2. How many subnets? 8

3. Which are they?

4. Which is the broadcast address?

 200.17.30.0
 200.17.30.31

 200.17.30.32
 200.17.30.63

 200.17.30.64
 200.17.30.95

 200.17.30.128
 200.17.30.159

 200.17.30.191
 200.17.30.223

200.17.30.255

200.17.30.224 -

What if I want to create 2 subnets with 64 addresses?

Problem Split the network 200.17.30.0 into subnets with 32 addresses. 1. Which mask to apply? 1110 0000 -> 255.255.255.224 2. How many subnets? 8 3. Which are they? 200.17.30.0 200.17.30.31 4. Which is the broadcast address? 200.17.30.63 200.17.30.32 200.17.30.64 200.17.30.95 200.17,30.96 200.17.30.127 200.17.30.64 -> 200.17.30.95 0100 0000 0101 1111 200.17.30 128 200.17.30.159 200.17.30.96 -> 200.17.30.127 0110 0000 200.17.30.191 200.17.30.163 0111 1111 200.17.30.19 200.17.30.223 200.17.30.160 -> 200.17.30.191 1010 0000 1011 1111 200 17.30.224 0.17.30.255 200.17.30.192 -> 200.17.30.223 1100 0000 1101 1111 João Neves, 2020 28

Supernetting, why?

RFC1519 - Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy

- Exhaustion of the address space of class B networks
- Route Aggregation
 - Two Class C Networks Instead One Class B ...
 - Reduction of Routing Tables of Backbone Routers
- There are not enough IPv4 addresses

João Neves, 2020 33

Increase of the Advertisements....

	MM/YY	ROUTES ADVERTISED*	MM/YY	ROUTES ADVERTISED*
	Dec-92	8561	Sep-90	1988
	Nov-92	7854	Aug-90	1894
	Oct-92	7354	Jul-90	1727
	Sep-92	6640	Jun-90	1639
	Aug-92	6385	May-90	1580
	Jul-92	6031	Apr-90	1525
	Jun-92	5739	Mar-90	1038
	May-92	5515	Feb-90	997
	Apr-92	5291	Jan-90	927
	Mar-92	4976	Dec-89	897
	Feb-92	4740	Nov-89	837
	Jan-92	4526	Oct-89	809
	Dec-91	4305	Sep-89	745
	Nov-91	3751	Aug-89	650
	Oct-91	3556	Jul-89	603
	Sep-91	3389	Jun-89	564
	Aug-91	3258	May-89	516
	Jul-91	3086	Apr-89	467
6 13	Jun-91	2982		410
ource for the	May-91	2763	Feb-89	384
ting table	Apr-91	2622	Jan-89	346
e data is	Mar-91	2501	Dec-88	334
IT	Feb-91	2417	Nov-88	313
	Jan-91	2338	Oct-88	291
	Dec-90	2190	Sep-88	244
João Neves, 2020	Nov-90	2125	Aug-88	217 ₃₄
3330 140 403, 2020	Oct-90	2063	Jul-88	173

- A route is an address plus the mask (number of consecutive '1's)
- Netid / Mask
- Used in BGP

	CLASS 'A' NETWORKS		
BINARY	11111111.00000000.00000000.00000000		
DECIMAL	255.0.0.0		
CIDR	/8		
	CLASS 'B' NETWORKS		
BINARY	11111111.111111111.00000000.00000000		
DECIMAL	255.255.0.0		
CIDR	/16		
	CLASS 'C' NETWORKS		
BINARY	11111111.11 <mark>111111</mark> .111111111.000000000		
DECIMAL	255.255.255.0		
CIDR	/24		
	1/2 CLASS 'C' NETWORK		
BINARY	11111111.111111111.11111111.10000000		
DECIMAL	255.255.255.128		
CIDR	/25		

Example of Supernetting

Because class C addresses are consecutive we can aggregate them!

```
194.117.24.0 -> 1100 0010 . 0111 0010 . 0001 1000 . 0000 0000 194.117.25.0 -> 1100 0010 . 0111 0010 . 0001 1001 . 0000 0000 194.117.26.0 -> 1100 0010 . 0111 0010 . 0001 1010 . 0000 0000 194.117.27.0 -> 1100 0010 . 0111 0010 . 0001 1011 . 0000 0000 194.117.28.0 -> 1100 0010 . 0111 0010 . 0001 1100 . 0000 0000 194.117.29.0 -> 1100 0010 . 0111 0010 . 0001 1101 . 0000 0000 194.117.30.0 -> 1100 0010 . 0111 0010 . 0001 1110 . 0000 0000 194.117.31.0 -> 1100 0010 . 0111 0010 . 0001 1111 . 0000 0000
```

João Neves, 2020 37

With the CIDR notation, the 194.117.24 / 21 network has 21 bits and 2048 addresses.

A good solution:

No. of Addresses	BI ock	No. bi ts	Network Address	Broadcast Address	Bits of Mask
200+Ro+N+B	256	8	200.23.48.0	200.23.48.255	24
150+Ro+N+B	256	8	200.23.49.0	200.23.49.255	24
110+Ro+N+B	128	7	200.23.50.0	200.23.50.127	25
60+Ro+N+B	64	6	200.23.50.128	200.23.50.191	26
56+Ro+N+B	64	6	200.23.50.192	200.23.50.255	26
20+Ro+N+B	32	5	200.23.51.0	200.23.51.31	27
20+Ro+N+B	32	5	200.23.51.32	200.23.51.63	27
3+N+B	8	3	200.23.51.64	200.23.51.71	29
2+N+B	4	2	200.23.51.72	200.23.51.75	30

Private Address Space

RFC1918, BCP0005 - Address Allocation for Private Internets

```
10.0.0.0 10.255.255.255 (10/8)
172.16.0.0 172.31.255.255 (172.16/12)
192.168.0.0 192.168.255.255 (192.168/16)
```

- Block of addresses reserved for internal use of a network without direct connectivity to the Internet.
- Different Private Networks can have the same network address.
- Addresses filtered on the external access router (either on the in or output traffic!).
- They are not expected to be routable on the global Internet.

João Neves, 2020 41

Unique Local Addresses

RFC4193 - Unique Local IPv6 Unicast Addresses

7 bits 1			64 bits	ļ
Prefix L	Global ID	Subnet ID	•	ĺ

Prefix FC00::/7 prefix to identify Local IPv6 unicast addresses

The block FC00::/8 has not been defined yet;

The block FD00::/8 is defined for /48 prefixes.

L Set to 1 if the prefix is locally assigned.

Set to 0 may be defined in the future.

Global ID 40-bit global identifier used to create a globally unique prefix.

Subnet ID 16-bit identifier of a subnet within the site.

Interface ID 64-bit Interface ID

 Private addresses can not be used for direct connections to the Internet but can access through indirect access via proxy servers, with or without NAT (Network Address Translation) and PAT (Port Address Translation).

João Neves, 2020 43

Other addresses to refuse...

RFC3330 - Special-Use IPv4 Addresses

0.0.0.0 0.0.0.0 0.0.0.0 255.0.0.0 127.0.0.0 255.0.0.0 192.0.2.0 255.255.255.0 224.0.0.0 255.240.0.0

 Addresses filtered at the border router with the outside (either at the exit or at the entrance!).

IPv4 Special Addresses

Address Block	Present Use	Reference
0.0.0.0/8	"This" Network	[RFC1700]
10.0.0.0/8	Private-Use Networks	[RFC1918]
14.0.0.0/8	Public-Data Networks	[RFC1700]
24.0.0.0/8	Cable Television Networks	
39.0.0.0/8	Reserved but subject to allocation	[RFC1797]
127.0.0.0/8	Loopback	[RFC1700]
128.0.0.0/16	Reserved but subject to allocation	
169.254.0.0/16	Link Local	
172.16.0.0/12	Private-Use Networks	[RFC1918]
191.255.0.0/16	Reserved but subject to allocation	
192.0.0.0/24	Reserved but subject to allocation	
192.0.2.0/24	Documentation, Test-Net	[RFC5737]
192.88.99.0/24	6to4 Relay Anycast	[RFC3068]
192.168.0.0/16	Private-Use Networks	[RFC1918]
198.18.0.0/15	Network Interconnect	
	Device Benchmark Testing	[RFC2544]
198.51.100.0/24	Documentation, Test-Net	[RFC5737]
203.0.113.0/24	Documentation, Test-Net	[RFC5737]
223.255.255.0/24		
224.0.0.0/4	Multicast	[RFC3171]
240.0.0.0/4	Reserved for Future Use	[RFC1700]

João Neves, 2020

Special-Use IPv6 Addresses

RFC6890 - Special-Purpose Address Registries

Address Block	Present Use	Reference
::1/128 ::/128 64:ff9b::/96 ::ffff:0:0/96 100::/64 2001::/23 2001::/32	Loopback Address Unspecified Address IPv4-IPv6 Translation IPv4-mapped Address Discard-Only Address Block IETF Protocol Assignments TEREDO	[RFC4291] [RFC4291] [RFC6052] [RFC4291] [RFC6666] [RFC2928] [RFC4380]
2001:2::/48 2001:10::/28 2001:db8::/32 2002::/16 fc00::/7 fe80::/10	Benchmarking ORCHID Documentation 6to4 Unique-Local Linked-Scoped Unicast	[RFC5180] [RFC4843] [RFC3849] [RFC3056] [RFC4193] [RFC4291]

Special Addresses IPv4 vs. IPv6

Multicast

IPv4: 224/8 - 239.255.255.255/8 [RFC2365]

IPv6: **ffxx:x:x:x:x:x:**

Anycast [RFC1546]
 Unicast, but with multiple advertisers

Site-local

IPv4: 10/8, 172.16/12, 192.168/16 [RFC1918]
IPv6: FEC0:0:0:<Subnet ID>:<Interface ID>

Link-local

IPv4: 169.254/16 [RFC3927]
IPv6: FE80:0:0:0:<Interface ID>

Loopback

IPv4: 127.0.0.1/8

IPv6: 0:0:0:0:0:0:1/128 (::1/128)

João Neves, 2020

IPv6 Multicast Addresses

47

• FF02::1 : "All nodes" on link, scope is link-local

• FF02::2 : "All routers" on link

• FF02::9 : "All RIP routers" on link

• FF02::1:FFXX:XXXX : Solicited-node multicast on link (XX:XXXX are

lower 24 bits of target IPv6 address)

• FF05::101 : "All NTP servers" in the site, scope is site-local

IPv4 Exhaustion

 In 2010 this was estimated exhaustion time and rate of IPv4, and the growing adoption of IPv6...

http://ipv6.he.net/statistics/

João Neves, 2020

49

IPv4 Exhaustion

Today, in 2018, the estimate is...

http://ipv6.he.net/statistics/

Additional Reading

Comer, Douglas E.
Internetworking with TCP/IP (VOL I)

Pearson, 6th Edition (2014)
ISBN-10: 0-13-608530-X
ISBN-13: 978-0-13-608530-0