Superconductivity in fractal geometries

Matthijs Wanrooij | Gorterzaal

Principal supervisor Daily supervisor 2nd corrector : dr. K. Lahabi : dr. R. Fermin : dr. W. Löffler

Going between dimensions

Fractals: e.g. Sierpiński carpet (left)

en? From: Wikipedia (CC)

Characterization of dimensionality

Hausdorff dimension:

Generalisation of dimension from real vector spaces to arbitary metric spaces

Hausdorff dimension d reduces to usual dimension for non-fractal geometries (e.g. $d_{point} = 0$, $d_{line} = 1$ etc.)

No consensus on definition ('never-ending pattern')

Koch snowflake, Hausdorff dim. $2\ln(2) / \ln(3) \approx 1.26$

Wikipedia (CC)

Motivation

• STM paper: advances in the exploration of fractal geometries in

electronic quantum systems

Design and characterization of electrons in a fractal geometry

S. N. Kempkes^{1,3}, M. R. Slot^{2,3}, S. E. Freeney², S. J. M. Zevenhuizen², D. Vanmaekelbergh², I. Swart^{©2*} and C. Morais Smith^{©1*}

Link with superconductivity

Brief intro superconductivity

- Condensate: (bosonic) cooper pairs
- Ginzburg-Landau equations 2nd G-L equation:

$$oldsymbol{J} = -rac{\Phi_0}{2\pi\mu_0\lambda^2}igg(rac{2\pi}{\Phi_0}oldsymbol{A} +
abla\gammaigg)$$

- Characteristic length scales: ξ and λ
- Meissner effect

Josephson junctions, 3D

- Superconductors separated by weak-link
- Overlap between wave functions
- Interference:
- Fraunhofer pattern when plotting applied magnetic field vs critical current.
- Periodicity determined by effective junction length $2\lambda + d$.

Fermin, phd thesis, 2022

2D: thin film planar Josephson junctions

- Critical current solely determined by geometry (not λ)
- Thin film planar junctions + restricted in lateral size:

in the asymptotic limits critical current solely determined by area (not even geometry anymore!)

• Why 2D: we can simulate

TOP: Schematic of thin film eliptical laterally constrained

Josephson junction BOTTOM: Side view

Theory: background

• Finding y also from 2nd Ginzburg-Landau equation, assuming:

supercurrent conservation (1) Coulomb gauge (2)

$$\nabla \cdot \boldsymbol{J} = 0 \quad \nabla \cdot \boldsymbol{A} = 0$$

• G-L mapped onto Laplace equation:

$$oldsymbol{J} = -rac{\Phi_0}{2\pi\mu_0\lambda^2}igg(rac{2\pi}{\Phi_0}oldsymbol{A} +
abla\gammaigg) lacksymbol{
abla} oldsymbol{
abla}^2oldsymbol{\gamma} = oldsymbol{0}$$

$$abla^2 \gamma = 0$$

we can solve this (with appropriate B.C.'s)

Fractal Josephson junctions

• Fractals in COMSOL Sierpinski carpet: Hausdorff dim. 1.89

• Probing the limits
Looking for asymptotic behaviour

Distribution of γ % 2π on the surface of a 3rd iteration Sierpiński carpet in COMSOL

Simulations: phase distribution

Simulations: periodicity (I)

LEFT: dependence of periodicity on sample area for various geometries of the electrodes (Fermin, 2023) RIGHT: independent confirmation of same behaviour for rectangular electrodes

Simulations: periodicity (II)

LEFT: dependence of periodicity on sample area for various iterations of the Sierpinski carpet RIGHT: dependence of periodicity on sample with non-fractal geometry, but identical surface-to-hole area

Nanofabrication

FIB results (I)

Third order Sierpiński carpet electrodes:

- Non-unifom holes...
- Damage to weak link...

FIB results (II)

Second order Sierpiński carpet electrodes:

- Uniform holes
- No damage to weak link

Rectangular electrodes:

Compare results with literature

Challenges (I)

Weak attachment:

• Thicker elements

LEFT: unsuccessful lift-off

Challenges (II)

Solve weak attachment:

- Sticking layer: 4 nm MoGe
- MoGe superconducting > shorts the junction
- Switch to 5 nm Ti

Prevent FIB damage:

• 5 nm Ti capping layer against FIB-damage

MoGe sticking layer shorts the junction: no second transition

Resistance vs temperature

Electrode transition

- Two transitions:
 - □ electrodes
 - □ junction
- Fractal: higher normal state resistance
- Fractal: slightly lower T_o

SQI-patterns: Rectangular junction

- Periodicity agrees with simulations
- Long junction limit

$$W > \frac{\Phi_0}{4\pi\mu_0 \lambda^2 J_c(0)}$$

SQI-patterns: Fractal junction

- Maximum not @ zero T
- Visible oscillations have irregular periodicity
- Pattern irreproducible

Conclusion:

Vortex trapping

Vortex trapping

Vortex trapping

- Trapped vortex locally changes magnetic field
- Trapped vortex redistributes phase in vicinity > change in shielding currents

Heat sample to $T > T_c$ And slow cooldown

Isolating the contribution of geometry

• Higher temperatures:

$$2.3 \text{ K} \rightarrow 3.5 \text{ K}$$

- Limit probe currents below 100 μA
- Pattern reproduced multiple times with intermittent reheating to T > T_c
- Multiple periodicities

Critical current density distribution

Outlook

- Josephson junction networks: junction arrays
 - ☐ large: easier to structure
 - □ exciting physics: Giant (fractional) Shapiro steps, commensurability effects, collective rf-response

S. A. Wilkinson, 2018

• Direct imaging of vortex trapping with SQUID on tip?

F. S. Wells, 2015

Thank you

Final layer composition

Layer	Thickness	Sputtertime	Presputtertime
	(nm)	(s)	(s)
Ti	5	100	120
Ag	60	150	120
Ag MoGe	55	589	120
Ti	5	100	120