## PCT

#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: (11) International Publication Number: **WO 94/21268** A61K 33/08, 33/10, 9/22 A1 (43) International Publication Date: 29 September 1994 (29.09.94)

HU

(21) International Application Number: PCT/EP94/00829

(22) International Filing Date: 16 March 1994 (16.03.94)

18 March 1993 (18.03.93)

(71) Applicant (for all designated States except US): SYNEPOS AKTIENGESELLSCHAFT [LI/LI]; FL-9488 Schellenberg (LI).

(72) Inventors; and

(30) Priority Data: 7404/93

(75) Inventors/Applicants (for US only): RÁCZ, István [HU/HU]; 544 u. 6, H-1183 Budapest (HU). PLACHY, János [HU/HU]; Mandula u. 18, H-1025 Budapest (HU). ANTAL, István [HU/HU]; Oesszefogás sétány 4, H-1165 Budapest

(74) Agent: PATENTBUERO DR. BUECHEL; Letzanaweg 25-27. FL-9495 Triesen (LI).

(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KG, KP, KR, KZ, LK, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

#### Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments

(54) Title: ALUMINIUM CONTAINING PHARMACEUTICAL PREPARATION WITH CONTROLLED RELEASE



#### (57) Abstract

A pharmaceutical preparation containing at least one aluminium compound for antacid and/or abstringent and adsorbent actions is manufactured by treating 2-300 parts by weight of a water-swellable compound of limited swelling ability with 2-50 parts by weight of water and thereafter admixing it with a powder comprising at least one of the group consisting of 100 parts by weight of said at least one aluminium compound, 2-150 parts by weight of at least one phosphate compound and at least one auxiliary material. The mixture may be granulated and dried, and thereafter either pressed to tablets or filled into capsules; it may also be transformed into a suspension.

BNSDOCID: <WO\_\_ \_9421268A1 | >

# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT | Austria                  | GB      | United Kingdom                        | MR | Mauritania               |
|----|--------------------------|---------|---------------------------------------|----|--------------------------|
| ΑU | Australia                | GE      | Georgia                               | MW | Malawi                   |
| BB | Barbados                 | GN      | Guinea                                | NE | Niger                    |
| BE | Belgium                  | GR      | Greece                                | NL | Netherlands              |
| BF | Burkina Faso             | HU      | Hungary                               | NO | Norway                   |
| BG | Bulgaria                 | Œ       | Ireland                               | NZ | New Zealand              |
| BJ | Benin                    | П       | Italy                                 | PL | Poland                   |
| BR | Brazil                   | JР      | Japan                                 | PT | Portugal                 |
| BY | Beiarus                  | KE      | Kenya                                 | RO | Romania                  |
| CA | Canada                   | KG      | Kyrgystan                             | RU |                          |
| CF | Central African Republic | KP      |                                       |    | Russian Federation       |
| CG | Congo                    | <b></b> | Democratic People's Republic of Korea | SD | Sudan                    |
| CH | Switzerland              | KR      |                                       | SE | Sweden                   |
| CI | Côte d'Ivoire            |         | Republic of Korea                     | SI | Slovenia                 |
|    |                          | KZ      | Kazakhstan                            | SK | Słovakia                 |
| CM | Cameroon                 | LI      | Liechtenstein                         | SN | Senegal                  |
| CN | China                    | LK      | Sri Lanka                             | TD | Chad                     |
| cs | Czechoslovakia           | LU      | Lutembourg                            | TG | Togo                     |
| CZ | Czech Republic           | LV      | Latvia                                | TJ | Tajikistan               |
| DE | Germany                  | MC      | Monaco                                | TT | Trinidad and Tobago      |
| DK | Deumark                  | MD      | Republic of Moldova                   | ŪA | Ukraine                  |
| ES | Spain                    | MG      | Madagascar                            | US | United States of America |
| FI | Finland                  | ML      | Mali                                  | UZ |                          |
| FR | France                   | MN      | Mongolia                              | VN | Uzbekistan               |
| GA | Gabon                    | MATA    | Monte                                 | VN | Viet Nam                 |

BNSDOCID: <WO\_\_\_\_\_9421268A1\_I\_>

WO 94/21268 PCT/EP94/00829

Aluminium containing pharmaceutical preparation with controlled release

## FIELD OF THE INVENTION

The invention relates to an antacid and/or adstringent and absorbent pharmaceutical preparation containing at least one aluminium compound, as well as a process for the production of such preparations.

#### BACKGROUND OF THE INVENTION

The disequilibirum between protective and aggressive factors, such as hydrochloric acid, pepsin, bile acid, lysolecithin, nicotine, alcohol, stress, Helicobacter pylori etc. leads to different pathogenic events, such as ulcer, in the gastroduodenal area. Most antacid preparations used for the treatment of ulcer and pre-ulcer hyperacidity contain aluminium compounds. However, when aluminium is taken into the organism and absorbed, this may cause osteomalacia, osteodystrophia, neuropathy, Alzheimer disease etc. These disadvantages are described by C.Gitzinger, Fortschritte der Medizin, 105, 3/Suppl.19/,1987; and by W.Kurtz, ibid. 105, 5/Suppl.19/,1987.

According to EP-A1-220,849, the probability of aluminium absorption and hence of unwanted side effects is increased with decreasing the final pH in the aluminium-based (e.g. aluminium hydroxide, magnesium-aluminium-hydrate, magaldrate etc.) liquid preparation (oral suspension) to pH=2.20-3.25 assuming cytoprotective effects.

According to US-A-4,704,278, the same consequence occurs
when the system contains a significant amount of citrate,
which is added partly from a colloidal point of view, partly
to ensure a quick start of the action. All factors increas-

5

ing the solubility of aluminium compounds, such as the citrate ion, increase the risk of aluminium absorption.

The process according to US-A-4,639,362 proposes combined molecules of magnesium and aluminium components such as magaldrate), in which the aluminium content is lower than in the usual antacid formulae. On the other hand, the higher magnesium content may result in an undesired laxative effect.

10

It has therefore been one object of the invention to provide an antacid and/or adstringent and absorbent pharmaceutical preparation which avoids the drawbacks related to the absorption of aluminium in the body of a patient. Another object of the invention relates to the provision of a pharmaceutical preparation with sustained release of the antacid and/or adstringent and absorbent compounds.

### SUMMARY OF THE INVENTION

20

These objects are achieved by the inventive measures based on the surprising novel recognition that the dissolution of absorbable aluminium in aqueous media can significantly be decreased or completely inhibited by applying certain types of macromolecular hydrocolloids and water-soluble and/or water-insoluble phosphate compounds in the presence of each other.

This phenomenon was observed in every case, i.e. in a tablet as well as in a suspension preparation, when the aluminium compound was applied and treated in mixture with at least one hydrocolloid of limited swelling ability and at least one water-soluble and/or water-insoluble phosphate compound, resulting in a limited or inhibited aluminium release due to the contact with gastric fluids by swelling of the hydrocolloid. The limited swelling ability is influenced by the pH and the presence of Al<sup>3+</sup> and can be characterized for the

3.

various hydrocolloids by viscosimetry. Usually, about 10% of the hydrocolloids - given as examples hereinafter - are indeed swelled.

5 The principle of the invention is a phosphate delivery system controlled by the swelling mechanism of the hydrocolloid.

### BRIEF DESCRIPTION OF THE DRAWINGS

- 10 In Fig.1, the top left rectangle symbolizes the magaldrate example. Excess acid (AC) in the gastric fluid is neutralized (N) by the OH--flux. The resulting Al<sup>3+-</sup>flux is bound by the phosphate P and the swelled (arrow B) hydrocolloid HY to the phosphate/hydro-colloid/aluminium system (PHAS). The phosphate/hydrocolloid system (P+HY) controls the dissolution and binding of the aluminium as shown in
- Fig.2 (left of the dotted line: stomach ST; right of the dotted line: intestines IN) partly through an oscillating reaction mechanism influenced by the change of the intragastric pH-value, partly by binding the aluminium to the hydrocolloid, advantageously to a crosslinked polymer.
- shows the principle of the aluminium capture based 25 Fig.3 partly on the significant difference in the solubility of aluminium hydroxide and aluminium phosphate; partly, it is also based on the function of the hydrocolloid-phosphate system, which binds the aluminium and is activated by the swelling of 30 the hydrocolloid. The described aluminium capturing system does not decrease the acid neutralization capacity of the aluminium compound at the acidic pH of the stomach (ST) but inhibits the absorption of alu-35 minium from the stomach (ST) and the duodenum (intestines (IN), see Fig.2) of higher pH.

Fig.4 demonstrates the function of the control mechanism by experimental observations obtained from the pHpotentiometric titration. When titrating 500 ml of a 5 0.01 M HCl solution (pH=2) with 1.0 M NaOH in the presence of several components (AlCl3, Nymcel ZSB10(R) as hydrocolloid of limited swelling ability, NaH2PO4.2aq), the potentiometric curves differ. Curve 1 designates 500 ml 0.01 N HCl solution con-10 taining 0.01 mol AlCl<sub>3</sub>; Curve 2 designates 500 ml 0.01 N HCl solution containing 0.01 mol AlCl3 and 0.001 mol NaH<sub>2</sub>PO<sub>4</sub>; Curve 3 designates 500 ml 0.01 N HCl solution containing 0.01 mol AlCl3 and 1 g Nymcel ZSB-10 $^{(R)}$ ; Curve 4 designates 500 ml 0.01 N HCl solution containing 0.01 mol AlCl3, 1 g Nymcel 15 ZSB-10 (R) and 0.001 mol  $NaH_2PO_4$ . The inflexion point of the potentiometric curve is at much lower alkali consumption in the case of the AlCla-hydrocolloidphosphate components.

20

25

In vivo experimental data of human male volunteers demonstrate the decrease in the aluminium absorption (Table 1):
The mixture according to the invention may be prepared by first swelling the water-swellable compound of limited swelling ability in water and thereafter admixing thereto or embedding in it a powder comprising at least one of the group consisting of 100 parts by weight of aluminium compound, 2-150 parts by weight of at least one phosphate compound, and at least one auxiliary material. The proper combination of the hydrocolloid with the phosphate compound results in the desired sustained release effect.

On the other hand, a tablet preparation may also be produced wherein the components are mixed under dry conditions

35 whereby the swelling and sustained release occurs in the digestive system. On the other hand, the final mixture may be transformed into a suspension or filled into capsules.

Table I. - Change of the aluminium amount excreted by the urine of 5 patients over 24 hours after administration of 750 mg magaldrate compared to the control value of the previous day:

| 5  |                        | μg Al/24    | h eliminated by urine  |
|----|------------------------|-------------|------------------------|
|    | Subject                | magaldrate  | magaldrate with the    |
|    |                        |             | phosphate-hydrocolloid |
|    |                        |             | system acc. example 3  |
|    | #1                     | + 13.8      | + 8.6                  |
| 10 | #2                     | + 19.2      | + 9.0                  |
|    | #3                     | + 4.0       | - 7.1                  |
|    | #4                     | + 13.0      | - 22.2                 |
|    | #5                     | + 18.0      | + 14.0                 |
|    | Average:               | + 13.6      | + 0.46                 |
| 15 | s <sub>x</sub> (S.E.M) | 2.677 μg    | 6.683 µg               |
|    | t-value experimental   | 5.081       | 0.0688                 |
|    | Probability            | <0.05       | >0.05                  |
|    | Difference             | significant | not significant        |

 $s_{x}$  (S.E.M.) is the standard deviation of the mean value; 0 the t-value is the Student-t at 5% significance level.

The aluminium compound may be selected from a wide range of inorganic and organic salts or complex compounds, such as aluminium hydroxide, aluminium glycinate (dihydroxyaluminium aminoacetate hydrate, USP XXII p. 445), aluminiumsodium trisilicate, aluminium hydroxycarbonate (dihydroxyaluminium sodium carbonate, USP XXII p.447), basic aluminium carbonate gel (USP XXII p.50), aluminium phosphate (USP XXII p.53), aluminium magnesium silicate (B.P.), natural or synthetic aluminium— and magnesium—containing compounds, preferably aluminiummagnesium hydroxycarbonate (hydrotalcite) and aluminiummagnesium hydroxysulphate (magaldrate).

The water-swellable compounds may be selected from the group comprising cellulose glycolic acid, starch glycolic acid, polyacrylic acid, copolymers of acrylic acid-methacrylic acid, alginic acid (polymannuronic acid, USNF XVII), poly-

30

vinylpyrrolidone, calcium alginate (BPC), sodium alginate (USNF XVII), Carbopol(R) 934P (carbomer, USNF XVII), carboxymethylcellulose calcium (USNF XVII), carboxymethylcellulose sodium (carmellose, USP XXII), carrageenan (USNF XVII), 5 croscarmellose sodium (USNF XVII, Ac-Di-Sol(R)), cross-linked polyvinylpyrrolidone (USNF XVII, Polyplasdone XL(R)), hydroxypropylmethylcellulose (USP XXII), carboxymethylcellulose sodium of low substitution grade (Nymcel ZSB-10(R)), sodium starch glycolate (USNF XVII,  $Primojel^{(R)}$ ), tragacanth (USNF XVII), xanthan gum (USNF XVII).

The phosphate compound may be selected from the group comprising mono-, di- and tribasic calcium phosphate; mono-, di- and tribasic magnesium phosphate; mono- and dibasic 15 sodium phosphate; mono- and dibasic potassium phosphate; mono- and dicalcium glycerophosphate.

Auxiliary materials may be disintegrants such as starch, microcellulose, cross-linked polyvinylpyrrolidone etc.; 20 tableting aids, such as lubricants, e.g. talc, magnesium stearate etc.; sweeteners such as saccharose, glucose, saccharin-sodium, sodium cyclamate, aspartame etc.; flavouring agents such as lemon, orange and cassis aroma; fillers such as lactose.

25

10

## DETAILED DESCRIPTION OF THE INVENTION

The invention is further explained by way of the following examples.

30

#### Example 1

500g hydrotalcite and 70g tribasic calcium phosphate powder (components of the inner phase) are homogenized. 90g of cross-linked polyvinylpyrrolidone are swelled with 60-75 ml water (required for wet granulation) during 2 hours and then mixed with the powder mixture and kneaded. The wet mass is granulated by passing it through a sieve with openings of

7

1.4 mm. The granules are dried to a moisture content of 2.5% and then regranulated through a sieve with openings of 0.8 mm. 10g of cross-linked polyvinylpyrrolidone, 20g talc and 10g magnesium stearate (powder components of the outer phase) are passed through a sieve with openings of 0.32 mm and mixed with the dry granules. The mixture is compressed to give 1000 tablets each of 0.7 g average weight.

## Example 2

10 The same procedure is followed as in Example 1 with the following compounds (for 1000 tablets of 0.75 g average weight each):

|    | Inner | phase: | aluminium hydroxycarbonate                 | 600 g     |
|----|-------|--------|--------------------------------------------|-----------|
|    |       |        | tribasic magnesium phosphate               | . 34 g    |
| 15 |       |        | carboxymethylcellulose sodium o            | £         |
|    |       |        | low substitution grade                     | 10 g      |
|    |       |        | cross-linked carboxymethyl-                |           |
|    |       |        | <pre>cellulose sodium (Ac-Di-Sol(R))</pre> | 10 g      |
|    |       |        | water                                      | 80-100 ml |
| 20 | outer | phase: | potato starch (disintegrant)               | 50 g      |
|    |       |        | talc                                       | 24 g      |
|    |       |        | magnesium stearate                         | 12 g      |
|    |       |        | Nymcel ZSB 10(R)                           | 10 g      |

### 25 Example 3

The same procedure is followed as in Example 1 with the following compounds (for 1000 tablets of 1.3 g average weight each):

|    | Inner phase: | magaldrate                | 750 g     |
|----|--------------|---------------------------|-----------|
| 30 |              | dibasic calcium phosphate | 450 g     |
|    |              | Nymcel ZSB 10(R)          | 273 g     |
|    |              | water                     | 80-100 ml |
|    | outer phase: | magnesium stearate        | 25 g      |
|    |              | Nymcel ZSB 10(R)          | 200 g     |
| 35 |              | water                     | 80-100 ml |

#### Example 4:

The same procedure is followed as in Example 1 with the following compounds (for 1000 tablets for 1.5 g average weight each):

| 5 | Inner phase: | aluminium hydroxide        | 375 g     |
|---|--------------|----------------------------|-----------|
|   |              | tribasic calcium phosphate | 100 g     |
|   |              | Nymcel ZSB 10(R)           | 200 g     |
|   |              | water                      | 80-100 ml |
|   | outer phases |                            |           |

outer phase: microcrystalline cellulose

10 Avicel PH 102(R) 825 g

### Example 5

The same procedure is followed as in Example 4 with the following compounds (for 1000 tablets of 1.5 g average

15 weight each), with the exception that double-layered tablets are formed. The antacid active ingredient is pressed as the first layer, onto which the second layer containing the other components and the microcrystalline cellulose is pressed:

20

|    | First layer: | aluminium hydroxide             | 375 g     |
|----|--------------|---------------------------------|-----------|
|    |              | microcrystalline cellulose      | _         |
|    |              | (Avicel PH 102 <sup>(R)</sup> ) | 400 g     |
|    | second layer | :Nymcel ZSB 10(R)               | 200 g     |
| 25 |              | tribasic calcium phosphate      | 100 g     |
|    |              | water                           | 80-100 ml |
|    |              | microcrystalline cellulose      |           |
|    |              | (Avicel PH 102(R))              | 425 g     |

## 30 Example 6

The same procedure is followed as in Example 4 - with the exception that three-layered tablets are formed - with the following compounds (for 1000 tablets of 1.5 g average weight each):

|    | First layer: | Aluminium hydroxide             | 375 g    |    |
|----|--------------|---------------------------------|----------|----|
|    |              | microcrystalline cellulose      |          |    |
|    |              | (Avicel PH 102 <sup>(R)</sup> ) | 400 g    |    |
|    | second layer | :Nymcel ZSB 10(R)               | 200 g    |    |
| 5  |              | microcrystalline cellulose      |          |    |
|    |              | (Avicel PH 102 <sup>(R)</sup> ) | 250 g    |    |
|    |              | water                           | 80-100 r | ml |
|    | third layer: | tribasic calcium phosphate      | 100 g    |    |
|    |              | microcrystalline cellulose      |          |    |
| 10 |              | (Avicel PH 102 <sup>(R)</sup> ) | 175 g    |    |

### Example 7

The same procedure is followed as in Example 4 - with the exception that the particles of the phosphate compound are coated by spraying on them (and afterwards drying) an isopropanolic solution of Eudragit L100-55 - with the following compounds (for 1000 tablets of 1.5 g average weight each):

Inner phase (aluminium):

| 20 |              | aluminium hydroxide             | 375 g     |
|----|--------------|---------------------------------|-----------|
|    | inner phase  | (phosphate):                    |           |
|    |              | tribasic calcium phosphate      | 100 g     |
|    | coatir       | ng:                             |           |
|    |              | Eudragit L 100-55 <sup>6</sup>  | 7.5 g     |
| 25 |              | isopropanol                     | 60 g      |
|    |              | Nymcel ZSB 10(R)                | 200 g     |
|    |              | water                           | 80-100 ml |
|    | outer phase: | microcrystalline cellulose      |           |
|    |              | (Avicel PH 102 <sup>(R)</sup> ) | 825 g     |
| 30 |              |                                 |           |

### Example 8

The same procedure is followed and composition used as in Example 7 with the exception that the tribasic calcium phosphate is coated with a solution of 4.5 g

35 celluloseacetatephtalate in 30 ml of acetone.

## Example 9

1000 ml of an antacid suspension are prepared, having the following composition:

|    | magaldrate                          | 200 g   |
|----|-------------------------------------|---------|
| 5  | cross-linked carboxymethylcellulose | _       |
|    | sodium (Ac-Di-Sol(R))               | 50 g    |
|    | tribasic calcium phosphate          | 75 g    |
|    | tribasic magnesium phosphate        | 75 g    |
|    | hydroxy-propylmethylcellulose 4000  | 12 g    |
| 10 | methylparaben                       | 10 g    |
|    | alcohol                             | 10 g    |
|    | water, deionized to                 | 1000 ml |

Ac-Di-Sol(R) is swelled in a 2% solution of the viscosity increasing agent HPMC 4000 (viscosity 4000 cP); then, the homogenous mixture of the various powder components is suspended in it. Finally, the alcoholic solution of the microbiological preservative (methylparaben) is added.

### Example 10

20 Example 9 is repeated except that the composition differs as follows:

|    | aluminium hydroxide           |      |    | 100    | α   |
|----|-------------------------------|------|----|--------|-----|
|    | alginic acid                  |      |    | 140    | _   |
|    | monobasic sodium phosphate    |      |    | 140    | _   |
| 25 | hydroxy-propylmethylcellulose | 4000 |    | 12     | g   |
|    | propylparaben                 |      |    | 2.5    | g   |
|    | methylparaben                 |      |    | 2.5    | g   |
|    | alcohol                       |      |    | 10     | g   |
|    | water, deionized              |      | to | 1000 π | n l |

The alginic acid is first swelled in the acidic hydroxypropylmethylcellulose solution containing monobasic sodium phosphate to produce the limited swelling form of the hydrocolloid.

## 35 Example 11

The following powder components for 1000 capsules:

| aluminium hydroxide        | 250 g |
|----------------------------|-------|
| monobasic sodium phosphate | 100 g |
| alginic acid               | 100 g |

are mixed and granulated in the dry state or by adding water and drying; then, 0.5 g Aerosil R972<sup>(R)</sup> lubricant is mixed with the dry granules. A 0.40-0.45 g portion of the mixture is filled into a hard gelatine capsule.

## Example 12

10 A tablet preparation with antacid and adstringent effect is formulated with the following composition for 1000 tablets:

|    | aluminium hydroxide          | 500 g |  |
|----|------------------------------|-------|--|
|    | aluminium glycinate          | 500 g |  |
|    | cellulose glycolic acid      | 250 g |  |
| 15 | Carbopol 934P(R)             | 25 g  |  |
|    | tribasic magnesium phosphate | 100 g |  |
|    | magnesium stearate           | 23 g  |  |
|    | Aerosil R972 <sup>(R)</sup>  | 2 g   |  |

The process is completed in the usual way: the cellulose glycolic acid is swelled in the Carbopol 934P<sup>(R)</sup> solution. This liquid is used for the wet granulation of the powder mixture. The tablet preparation is formed as described in Example 1.

15

#### CLAIMS

- 1. Process for the manufacture of a pharmaceutical preparation containing at least one aluminium compound for antacid and/or adstringent and absorbent action, wherein 2-300 parts by weight of a water-swellable compound of limited swelling ability selected from the group consisting of the dry compound and the compound after treatment with 2-50 parts by weight of water is admixed with 100 parts by weight of said at least one aluminium compound and 2-150 parts by weight of at least one phosphate compound.
  - 2. Process according to claim 1, wherein at least one auxiliary material selected from the group consisting of tableting vehicles, diluents, sweeteners and flavouring agents is further added to the mixture.
  - 3. Process according to claim 1 or 2 wherein the mass is granulated and dried.
- 4. Process according to claim 1, wherein said aluminium compound is selected from the group consisting of aluminium hydroxide, aluminium glycinate (dihydroxyaluminium aminoacetate hydrate), aluminiumsodium trisilicate, aluminium hydroxycarbonate (dihydroxyaluminium sodium carbonate), basic aluminium carbonate gel, aluminium phosphate, aluminium magnesium silicate, natural or synthetic aluminium— and magnesium—containing compounds, such as aluminiummagnesium hydroxycarbonate (hydrotalcite) and aluminiummagnesium hydroxysulphate (magaldrate).
- 5. Process according to claim 1, wherein said water-swellable compound is selected from the group consisting of
  cellulose glycolic acid, starch glycolic acid, polyacrylic acid, copolymers of acrylic acid-methacrylic acid,
  alginic acid, polyvinylpyrrolidone, calcium alginate,

5

10

15

13

sodium alginate, carbomer, carboxymethylcellulose calcium, carboxymethylcellulose sodium (carmellose), carrageenan, croscarmellose sodium, hydroxypropylmethylcellulose, carboxymethylcellulose sodium of low substitution grade, sodium starch glycolate, tragacanth and xanthan gum.

- 6. Process according to claim 1, wherein said phosphate is selected from the group consisting of mono-, di- and tribasic calcium phosphate; mono-, di- and tribasic magne-sium phosphate; mono- and dibasic sodium phosphate; mono- and dibasic potassium phosphate; mono- and dicalcium glycerophosphate.
- 7. Process according to claim 6, wherein the particles of said phosphate are coated per 100 parts by weight of said phosphate compound(s) with 2.5 to 15 parts by weight of a sustained release coating material.
- 8. Process according to claim 1, wherein the mixture is further granulated and dried.
- 9. Process according to claim 8, wherein the dried20 mixture is pressed to tablets.
  - 10. Process according to claim 8, wherein the dried mixture is filled into capsules.
  - 11. Process according to claim 1, wherein the mixture is further transformed into an aqueous suspension.
- 25 12. Pharmaceutical preparation containing at least one aluminium compound for antacid and/or adstringent and absorbent action, wherein said aluminium compound is present in admixture with at least one water-swellable compound selected from the group consisting of hydrocolloids, synthetic polymers and natural polymers, and with at least one pharmaceutically acceptable phosphate compound.

- 13. Pharmaceutical preparation according to claim 12, wherein said aluminium salt is selected from the group consisting of aluminium hydroxide, aluminium glycinate (dihydroxyaluminium aminoacetate hydrate),
- aluminiumsodium trisilicate, aluminium hydroxycarbonate (dihydroxyaluminium sodium carbonate), basic aluminium carbonate gel, aluminium phosphate, aluminium magnesium silicate, natural or synthetic aluminium— and magnesium containing compounds, such as aluminiummagnesium
- hydroxycarbonate (hydrotalcite) and aluminiummagnesium hydroxysulphate (magaldrate).
  - 14. Pharmaceutical preparation according to claim 12, wherein said water-swellable compound is selected from the group consisting of cellulose glycolic acid, starch
- glycolic acid, polyacrylic acid, copolymers of acrylic acid-methacrylic acid, alginic acid, polyvinylpyrrolidone, calcium alginate, sodium alginate, carbomer, carboxymethylcellulose calcium, carboxymethylcellulose sodium (carmellose), carrageenan, croscarmellose sodium,
- hydroxypropylmethylcellulose, carboxymethylcellulose sodium of low substitution grade, sodium starch glycolate, tragacanth and xanthan gum.
- 15. Pharmaceutical preparation according to claim 12 wherein said phosphate compound is selected from the group consisting of mono-, di- and tribasic calcium phosphate; mono-, di- and tribasic magnesium phosphate; mono- and dibasic sodium phosphate; mono- and dibasic potassium phosphate; mono- and dicalcium glycerophosphate.
- 30 16. Pharmaceutical preparation according to claim 12 or 15, wherein the particles of said phosphate compound(s) are coated per 100 parts by weight of said phosphate compound(s) with 2.5 to 15 parts by weight of a sustained release coating material.

WO 94/21268 PCT/EP94/00829

15

- 17. Pharmaceutical preparation according to claim 12, further comprising at least one auxiliary compound selected from the group consisting of tableting vehicles, diluents, sweeteners and flavouring agents.
- 5 18. Pharmaceutical preparation according to claim 12, wherein any one compound of the group consisting of the aluminium compound, the phosphate compound and the auxiliary material is embedded in said swellable compound.
- 10 19. Pharmaceutical preparation according to claim 12, characterized in that it is in the form of a tablet.
  - 20. Pharmaceutical preparation according to claim 12, characterized in that it is in the form of a suspension.
- 21. Pharmaceutical preparation according to claim 12, char-acterized in that it is contained in a capsule.

BNSDOCID: <WO\_\_\_\_\_9421268A1\_I\_>





Fig.2





# INTERNATIONAL SEARCH REPORT

onal Application No PCT/EP 94/00829

A. CLASSIFICATION OF SUBJECT MATTER IPC 5 A61K33/08 A61K33 A61K33/10 A61K9/22 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 5 **A61K** Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category \* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X EP,A,O 003 589 (THE WELLCOME FOUNDATION 12-21 LIMITED) 22 August 1979 Α see the whole document 1-11 see page 16 - page 17; example 4 X FR, A, 2 512 344 (LABORATORIOS A.F. 12-15, APLICACIONES FARMACEUTICAS SA.) 11 March 17,20 1983 see page 6 - page 7; example 1 X US,A,3 591 680 (GREENE ET AL.) 6 July 1971 12-15, 17.20 see column 5; example 2 Y WO, A, 88 00051 (RACZ ET AL.) 14 January 1-21 1988 see the whole document -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 02.08.94 25 July 1994 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Benz, K

Form PCT/ISA/210 (second sheet) (July 1992)

## INTERNATIONAL SEARCH REPORT

Inte. ..ional Application No PCT/EP 94/00829

| (Continu | DOCUMENTS CONSIDERED TO BE BELEVANT                                                                                            | PCT/EP 94/00829 |                       |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|--|
| tegory * | ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages |                 | Palmane en alai N     |  |
| gory     | Charles of document, with minimator, where appropriate, of the relevant passages                                               |                 | Relevant to claim No. |  |
|          | US,A,3 579 634 (BROWN) 18 May 1971<br>see the whole document<br>see column 7, line 19 - line 73                                |                 | 1-21                  |  |
| 1        | EP,A,O 484 106 (MERCK & CO. INC.) 6 May<br>1992<br>see the whole document<br>see page 4; example 3                             |                 | 1-21                  |  |
|          | DE,A,22 01 752 (LABORATOIRES BIOTHERAX) 29 March 1973 see the whole document                                                   |                 | 1-21                  |  |
|          |                                                                                                                                |                 |                       |  |
|          |                                                                                                                                |                 |                       |  |
|          |                                                                                                                                |                 |                       |  |
|          | ·                                                                                                                              |                 |                       |  |
|          |                                                                                                                                |                 |                       |  |
|          |                                                                                                                                |                 |                       |  |
|          |                                                                                                                                |                 |                       |  |
|          |                                                                                                                                |                 |                       |  |

1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

## INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte. . .ional Application No PCT/EP 94/00829

|                                        |                  | PC1/EP 94/00829         |          |                  |  |
|----------------------------------------|------------------|-------------------------|----------|------------------|--|
| Patent document cited in search report | Publication date | Patent family member(s) |          | Publication date |  |
| EP-A-0003589                           | 22-08-79         | GB-A-                   | 1601833  | 04-11-81         |  |
|                                        |                  | AU-B-                   | 525122   | 21-10-82         |  |
|                                        |                  | AU-A-                   | 4392179  | 16-08-79         |  |
|                                        |                  | CA-A-                   | 1117418  | 02-02-82         |  |
|                                        |                  | JP-A-                   | 54119022 | 14-09-79         |  |
| FR-A-2512344                           | 11-03-83         | NONE                    |          |                  |  |
| US-A-3591680                           | 06-07-71         | NONE                    | ·        |                  |  |
| WO-A-8800051                           | 14-01-88         | AU-B-                   | 604721   | 03-01-91         |  |
|                                        |                  | AU-A-                   | 7548187  | 29-01-88         |  |
|                                        |                  | CH-A-                   | 674148   | 15-05-90         |  |
|                                        |                  | DE-T-                   | 3790355  | 23-06-88         |  |
|                                        |                  | GB-A-                   | 2201594  | 07-09-88         |  |
|                                        |                  | JP-T-                   | 63503541 | 22-12-88         |  |
|                                        |                  | US-A-                   | 4921707  | 01-05-90         |  |
|                                        |                  | US-A-                   | 5087447  | 11-02-92         |  |
| US-A-3579634                           | 18-05-71         | BE-A-                   | 731695   | 20-10-69         |  |
|                                        |                  | CA-A-                   | 959760   | 24-12-74         |  |
|                                        |                  | CH-A-                   | 536114   | 30-04-73         |  |
|                                        |                  | DE-A-                   | 1919802  | 06-11-69         |  |
|                                        |                  | FR-A-                   | 2007475  | 09-01-70         |  |
|                                        |                  | GB-A-                   | 1269987  | 12-04-72         |  |
|                                        |                  | NL-A-                   | 6906087  | 21-10-69         |  |
|                                        |                  | SE-B-                   | 388356   | 04-10-76         |  |
| EP-A-0484106                           | 06-05-92         | CA-A-                   | 2054526  | 02-05-92         |  |
|                                        |                  | JP-A-                   | 4316518  | 06-11-92         |  |
| DE-A-2201752                           | 29-03-73         | FR-A-                   | 2153174  | 04-05-73         |  |
|                                        |                  | CA-A-                   | 1004981  | 08-02-77         |  |
|                                        |                  | US-A-                   | 4139612  | 13-02-79         |  |

Form PCT/ISA/218 (patent family annex) (July 1992)