GEX612 – Organização de Computadores

Prof. Luciano L. Caimi Icaimi@uffs.edu.br

Tecnologia Computacional

- Melhoria de performance devido:
 - I. Melhorias na tecnologia de semicondutores
 Lei de Moore:
 tamanho do transistor; frequência do clock;
 tecnologia de fabricação....
 - II. Melhorias na arquitetura dos computadores

Tecnologia Computacional

- Melhoria de performance devido:
 - I. Melhorias na tecnologia de semicondutores

II. Melhorias na arquitetura dos computadores. Princípios:

Localidade – Espacial e Temporal, ex. caches

Predição – sem mudanças de estado, ex. branch prediction

Especulação – com mudanças de estado, e.g. prefetching

Indireção – ex. virtualização

Paralelismo – ILP, TLP, RLP, ex. pipelining, OoO, vectors

Especialização – ISA, Aceleradores, ex. GPUs, NE, CriptoCores

Evolução dos processadores

Transistores

- Lei de Moore
 - 10 microns em 1971 para 0,003* microns em 2023
- Performance do transistor escala linearmente
- Densidade de integração escala quadraticamente

Fios

 Delay no fio não escala linearmente com o tamanho devido a capacitâncias parasitas

Logic/Foundry Process Roadmaps (for Volume Production)

	2016	2017	2018	2019	2020	2021	2022
Intel	14nm+	10nm (limited) 14nm++		10nm	10nm+	10nm++	Znm
Samsung	10nm		8nm	7nm 6nm	18nm FDSOI 5nm	4nm	3nm GAA
тѕмс	10nm	12nm	nm	7pm+	5nm 6nm	5nm+	4nm 3nm
GlobalFoundries		22 F0	nm 12nm SOI finFET	N. C.	12nm PDSOI F	DSOI 12nm+ finFET	
SMIC				14nm finFET	12nm finFET	8-1	Onm FET
имс		14nm finFET			22nm planar		

Transistores

Dies per wafer =
$$\frac{\pi \times (\text{Wafer diameter/2})^2}{\text{Die area}} - \frac{\pi \times \text{Wafer diameter}}{\sqrt{2 \times \text{Die area}}}$$

CPU time = Instruction count \times Cycles per instruction \times Clock cycle time

Tecnologia Computacional

- Dispositivos móveis pessoais (PMD)
 Consumo de energia eficiente e tempo-real (tablets, celulares, etc)
- Desktops
 Relação preço/performance
- Servidores
 Disponibilidade, escalabilidade e vazão (throughput)
- Clusters / Datacentes / Comp. em nuvem
 Software como um serviço (SaaS)
 Disponibilidade e relação preço/performance
 Sub-classe: supercomputadores; performance de ponto flutuante
- Computadores embarcados preço UFFS - Universidade Federal da Fronteira Sul – Organização de Computadores

UFFS - Universidade Federal da Fronteira Sul – Organização de Computadores

2020 Rank	2019 Rank	Company	Headquarters	2019 Total IC	Z019 Total O-S-D	2019 Total Semi	2020F Total IC	Z020F Total O-S-D	2020F Total Semi	2020/2019 % Change
1	1	Intel	U.S.	70,797	0	70,797	73,894	0	73,894	4%
2	2	Samsung	South Korea	52,486	3,223	55,709	56,899	3,583	60,482	9%
3	3	TSMC (1)	Taiwan	34,668	0	34,668	45,420	0	45,420	31%
4	4	SK Hynix	South Korea	22,578	607	23,185	25,499	971	26,470	14%
5	5	Micron	U.S.	22,405	0	22,405	21,659	0	21,659	-3%
6	7	Qualcomm (2)	U.S.	14,391	0	14,391	19,374	0	19,374	35%
7	6	Broadcom Inc. (2)	U.S.	15,521	1,722	17,243	15,362	1,704	17,066	-1%
8	10	Nvidia (2)	U.S.	10,618	0	10,618	15,884	0	15,884	50%
9	8	TI	U.S.	12,812	839	13,651	12,275	813	13,088	-4%
10	9	Infineon (3)	Europe	7,734	3,404	11,138	7,438	3,631	11,069	-1%
11	16	MediaTek (2)	Taiwan	7,972	0	7,972	10,781	0	10,781	35%
12	14	Kioxia	Japan	8,760	0	8,760	10,720	0	10,720	22%
13	15	Apple* (2)	U.S.	8,015	0	8,015	10,040	0	10,040	25%
14	11	ST	Europe	6,475	3,058	9,533	6,867	3,085	9,952	4%
15	18	AMD (2)	U.S.	6,731	0	6,731	9,519	0	9,519	41%
-	_	Top-15 Total		301,963	12,853	314,816	341,631	13,787	355,418	13%

UFFS - Universidade Federal da Fronteira Sul – Organização de Computadores

SaaS – Software como serviço

Paas – Plataforma como um serviço

laas – Infraestrutura como um serviço

000100.010001000,2012

UFFS - Universidade Federal da Fronteira Sul – Organização de Computadores

■ Talacom Global Embedded System Market Revenue, 2015- 2021 (USD Billion) 800 225.34 700 € 600 **■** 500 99 400 ₹ 300 ₹ 200 159.0 100 2015 2016 2017 2018 2019 2020 2021 Revenue

Source: Zion Research Analysis 2016

Retail

Leading MCU Suppliers (\$M)

2021 Rank	Company	Headquarters	2020	2021	21/20 % Chg	2021 Marketshare
1	NXP	Europe	2,980	3,795	27%	18.8%
2	Microchip	U.S.	2,872	3,584	25%	17.8%
3	Renesas	Japan	2,748	3,420	24%	17.0%
4	ST	Europe	2,506	3,374	35%	16.7%
5	Infineon	Europe	1,953	2,378	22%	11.8%

Source: Company reports, IC Insights

160 Bil

■ Manufacturing

■Militiary & defense Source: gminsights.com

■ Media & Entertainment

I da Fronto

Desafios

- Não há mais espaço de evolução no paralelismo a nível de instrução (Instruction Level Paralelism – ILP)
 - Aumento de performance em processadores com um único núcleo estagnou a partir de 2003
- Novos modelos para performance
 - Paralelismo a nível de dados (DLP)
 - Paralelismo a nível de threads (TLP)
 - Paralelismo a nível de requisições (RLP)

Paralelismo

- Classes de paralelismo em aplicações:
 - Paralelismo a nível de dados (DLP)
 - Paralelismo a nível de tarefas
- Classes de paralelismo arquitetural:
 - Paralelismo a nível de Instruções (ILP)
 - Arquiteturas vetoriais / GPUs
 - Paralelismo a nível de Thread (TLP)
 - Paralelismo a nível de Requisições (RLP)

- DRAM (memória principal)
 - Capacidade: 25% 40% / ano
 - Latência: ??

- Flash (SSDs, pendrive, SDCards)
 - Capacidade: 50% 60% / ano
 - Preço: 15 20x mais barata (por bit) que a DRAM

UFFS - Universidade Federal da Fronteira Sul – Organização de Computadores

- Discos Magnéticos
 - Capacidade: 40% / ano
 - Preço: 15x 25x mais barato (por bit) que a FLASH
 - Preço: 300x 500x mais barato (por bit) que a DRAM

Largura de banda: se refere à capacidade de transmissão de dados de um ponto para outro em um determinado tempo

Latência: corresponde ao tempo decorrido entre o pedido e a entrega da informação solicitada

Problema: get power in, get power out

- potência que entra deve ser dissipada

TDP – Thermal Design Power

- métrica de projeto que corresponde ao consumo sustentado de energia para o qual o sistema será projetado (energia e sistema de resfriamento);
- valor menor que o pico de consumo e maior que o consumo médio;
- diminuição da frequência de clock dinamicamente para limitar o consumo

Energia dinâmica:

- Ocorre devido ao chaveamento do transistor 0→1 ou 1→0

- proporcional a capacitância da carga: C_L
- quadrática com a tensão de alimentação: VDD²

Potência dinâmica:

- Ocorre devido ao chaveamento do transistor 0→1 ou 1→0

- proporcional a frequência de chaveamento: f
- proporcional a capacitância da carga: C₁
- quadrática com a tensão de alimentação: V_{DD}²

Reduzir a frequência reduz a potência, mas não reduz a energia

- Intel 80386 consumia ~ 2 W
- Intel Core i7 consome +140 W
- Calor tem que ser dissipado de um chip 1,7 x 1,7 cm
- Este é o limite que pode ser resfriado com ar

- Técnicas de redução de potência dinâmica
 - Desabilitar relógio de módulos inativos (clock gating)
 - Escalonamento dinâmico de voltagem/frequência (DVFS)
 - Colocar DRAMs e discos em modo baixa potência
 - Cores mistos (ARM Big.little)
 - Overclocking

Potência estática

- Corrente_{estática} x Tensão
- Escala com o número de transistor
- Devido a:
 - capacitâncias parasitas
 - distância dos fios
- Técnicas para minimizar
 - Power gating
 - Desligar módulos/cores (dark silicon)

Visão de projeto de uma arquitetura

- Visão antiga
 - Projeto do conjunto de instruções (ISA Instruction Set Architecture)
 - Decisões visando definir: registradores; modos de endereçamento; operandos das instruções; codificação das instruções; instruções controle de fluxo, etc
- Visão atual
 - Atender requisitos específicos da máquina alvo
 - Projeto para maximizar performance considerando restrições de custo, consumo energético e disponibilidade
 - Inclui o ISA, microarquitetura e o hardware