Fonctions usuelles Corrigé

DARVOUX Théo

Septembre 2023

Exercices.	
Vocabulaire sur les fonctions	2
Exercice 4.1	2
Exercice 4.2	2
Étude de fonctions	2
Exercice 4.3	2
Exercice 4.4	3
Exercice 4.5	4
Exercice 4.6	4
Exercice 4.7	5
Exercice 4.8	6
Exercice 4.9	6
Exercice 4.10	7
Exercice 4.11	7
Bijections	8
Exercice 4.12	8
Exercice 4.13	g

Exercice 4.1 $[\blacklozenge \lozenge \lozenge]$

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2-périodique et 3-périodique. Montrer que f est 1-périodique. On a:

$$\forall x \in \mathbb{R} \begin{cases} x - 2 \in \mathbb{R} \\ f(x - 2) = f(x) \end{cases}$$
 et $\begin{cases} x + 3 \in \mathbb{R} \\ f(x + 3) = f(x) \end{cases}$

Alors:

$$\forall x \in \mathbb{R} \begin{cases} x - 2 + 3 \in \mathbb{R} \\ f(x - 2 + 3) = f(x - 2) = f(x) \end{cases}$$

Exercice 4.2 $[\blacklozenge \blacklozenge \blacklozenge]$

Déterminer toutes les fonctions croissantes $f: \mathbb{R} \to \mathbb{R}$ telles que

$$\forall x \in \mathbb{R} \ f(f(x)) = x.$$

Soit $x \in \mathbb{R}$ et f une solution du problème.

On remarque que $f: x \mapsto x$ est solution du problème.

Supposons f(x) > x, on a: f(f(x)) > f(x) par croissance de f. Or f(f(x)) = x donc x > f(x), ce qui est absurde.

Supposons f(x) < x, on a : f(f(x)) < f(x) par croissance de f. Or f(f(x)) = x donc x < f(x), ce qui est absurde.

Ainsi, la seule fonction de \mathbb{R} vers \mathbb{R} solution est $f: x \mapsto x$.

Exercice 4.3 $[\blacklozenge \lozenge \lozenge]$ S'entraîner tout seul à dériver.

Pour chacune des fonctions ci-dessous, donner un ou plusieurs intervalles sur lesquels la fonction est dérivable, et préciser sa dérivée.

$$A: x \mapsto x^{\pi}, \quad B: x \mapsto \pi^{x}, \quad C: x \mapsto \cos(5x), \quad D: x \mapsto \operatorname{th}(\operatorname{ch}(x)), \\ E: x \mapsto \ln\left(1+x^{3}\right)n \quad F: x \mapsto \cos\left(\sqrt{\ln(x)}\right), \quad G: x \mapsto \frac{1}{\sqrt{3x-1}}, \quad H: x \mapsto \sin|x+1|.$$

$$\bullet \ A' : \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \pi x^{\pi - 1} \end{cases}$$

•
$$D': \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{\sinh(x)}{\cosh^2(\cosh(x))} \end{cases}$$

•
$$G': x \mapsto -\frac{3}{2}(3x-1)^{3/2}$$

•
$$B': \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \ln(\pi)\pi^x \end{cases}$$
 • $E': \begin{cases} \mathbb{R} \setminus \{1\} \to \mathbb{R} \\ x \mapsto \frac{3x^2}{1+x^3} \end{cases}$

•
$$E': \begin{cases} \mathbb{R} \setminus \{1\} \to \mathbb{R} \\ x \mapsto \frac{3x^2}{1+x^3} \end{cases}$$

•
$$H'_{-}: \begin{cases}]-\infty, -1[\to \mathbb{R} \\ x \mapsto -\cos(-x-1) \end{cases}$$

•
$$C': \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -5\sin(5x) \end{cases}$$

•
$$C': \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -5\sin(5x) \end{cases}$$
 • $F': \begin{cases} 1, +\infty[\to \mathbb{R} \\ x \mapsto \frac{\sin(\sqrt{\ln(x)})}{2x\sqrt{\ln(x)}} \end{cases}$

•
$$H'_+: \begin{cases}]1, +\infty[\to \mathbb{R} \\ x \mapsto \cos(x+1) \end{cases}$$

Exercice 4.4 $[\Diamond \Diamond \Diamond]$

Donner le tableau de variations complet de

$$f: x \mapsto x^{x \ln(x)}$$
$$(f: x \mapsto e^{x \ln^2(x)})$$

On a:

$$f': \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \ln(x)(\ln(x) + 2)e^{x\ln^2(x)} \end{cases}$$

Son tableau de variations est donc :

x	0		e^{-2}		1		$+\infty$
f'(x)		+	0	_	0	+	
f			$\rightarrow e^{4/e^2}$				\rightarrow $+\infty$
J	1				1		

1. Démontrer que

$$\forall x \in]-1, +\infty[, \quad \frac{x}{1+x} \le \ln(1+x) \le x.$$

- 2. À l'aide du théorème des gendarmes, calculer $\lim_{x\to 0} \frac{\ln(1+x)}{x}$.
- 3. Retrouver ce résultat en faisant apparaître un taux d'accroissement.
- 1. Posons:

$$f: x \mapsto \frac{x}{1+x} - \ln(1+x)$$
 $g: x \mapsto \ln(1+x) - x$

Elles sont dérivables et tout et tout :

$$f': x \mapsto -\frac{x}{(1+x)^2} \qquad \qquad g': x \mapsto -\frac{x}{1+x}$$

x	-1		0		$+\infty$
f'(x)		+	0	_	
f	$-\infty$		0	***	$-\infty$

x	-1	0	$+\infty$
g'(x)		+ 0 -	
g	_	∞ 0	$-\infty$

L'inégalité est donc vérifiée car ces fonctions prennent des valeurs négatives.

2. Soit $x \in]-1, +\infty[$. On a:

$$\frac{x}{1+x} \le \ln(1+x) \le x$$

Et:

$$\lim_{x \to 0} \frac{1}{1+x} = 1$$
 et $\lim_{x \to 0} 1 = 1$

Donc, d'après le théorème des gendarmes :

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

3. On a:

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \frac{\ln(x+1) - \ln(1)}{x} = \ln'(1) = \frac{1}{1} = 1$$

Démontrer l'inégalité

$$\forall x \in \mathbb{R}_+, \qquad 0 \le x - \sin x \le \frac{x^3}{6}.$$

Posons:

$$f: x \mapsto x - \sin x$$

$$f: x \mapsto x - \sin x$$
 $g: x \mapsto x - \sin x - \frac{x^3}{6}$

Ces fonctions sont dérivables sur \mathbb{R}_+ :

$$f': x \mapsto 1 - \cos x$$

$$f': x \mapsto 1 - \cos x \qquad \qquad g': x \mapsto 1 - \cos x - \frac{x^2}{2}$$

La première inégalité est triviale car $\cos x \le 1$, ainsi $x - \sin x \ge 0$.

On a:

$$g'': x \mapsto \sin x - x$$

Et donc:

x	$0 + \infty$
g''(x)	<u> </u>
g'(x)	$0 \longrightarrow -\infty$
g	$0 \longrightarrow -\infty$

Ainsi, g prend des valeurs négatives sur \mathbb{R}_+ , donc : $x - \sin x \le \frac{x^3}{6}$.

Faire une étude complète de la fonction

$$f: x \mapsto \ln\left(\left|\frac{1+x}{1-x}\right|\right)$$

 \bigcirc Soit *x* ∈] − 1,1[.

On a:

$$f: x \mapsto \ln\left(\frac{1+x}{1-x}\right)$$
 $f': x \mapsto \frac{2}{1-x^2}$

$$f': x \mapsto \frac{2}{1 - x^2}$$

 \odot Soit $x \in]-\infty, -1[]1, +\infty[$.

On a:

$$f: x \mapsto \ln\left(-\frac{1+x}{1-x}\right)$$
 $f': x \mapsto \frac{2}{1-x^2}$

$$f': x \mapsto \frac{2}{1 - x^2}$$

Donc:

$$\forall x \in \mathbb{R} \setminus \{-1, 1\}, \qquad f': x \mapsto \frac{2}{1 - x^2}.$$

x	$-\infty$ -	1 1	$+\infty$
f'(x)	_	+	_
f	$0 \longrightarrow -\infty$	$-\infty$ $+\infty$	$+\infty$ 0

Pour les limites :

$$f: x \mapsto \ln\left(\left|\frac{\frac{1}{x}+1}{\frac{1}{x}-1}\right|\right)$$

Démontrer l'inégalité

$$\forall x \in]0,1[$$
 $x^x(1-x)^{1-x} \ge \frac{1}{2}.$

Soit $x \in]0,1[$.

On a:

$$x^{x}(1-x)^{1-x} = e^{x\ln x}e^{(1-x)\ln(1-x)} = e^{x\ln x + (1-x)\ln(1-x)}$$

Posons:

$$f: x \mapsto e^{x \ln x + (1-x) \ln(1-x)}$$
 $f': x \mapsto \ln\left(\frac{x}{1-x}\right) e^{x \ln x + (1-x) \ln(1-x)}$

x	(0.5	1
f'(x)		- 0 +	
f		$1 \longrightarrow \frac{1}{2} \longrightarrow 1$	

1. Étudier les variations de $f: x \mapsto \frac{x}{1+x}$ sur $[0, +\infty[$.

2. Prouver que

$$\forall x, y \in \mathbb{R}, \qquad \frac{|x+y|}{1+|x+y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}.$$

1. Soit $x \in [0, +\infty[$. On a:

$$f': x \mapsto \frac{1}{(1+x)^2}$$

x	$0 + \infty$
f'(x)	+
f	01

2. Soient $x, y \in \mathbb{R}$. Par inégalité triangulaire, on a :

$$|x+y| \le |x| + |y|$$

On applique f, fonction croissante sur \mathbb{R}_+ , ce qui ne change pas les inégalités:

$$\frac{|x+y|}{1+|x+y|} \le \frac{|x|+|y|}{1+|x|+|y|}$$

$$\le \frac{|x|}{1+|x|+|y|} + \frac{|y|}{1+|x|+|y|}$$

$$\le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}$$

Soit la fonction $f: x \mapsto \ln \left(\sqrt{x^2 + 1} - x \right)$.

- 1. Donner le domaine de définition de f.
- 2. Montrer que f est impaire.
- 3. Étudier ses variations et donner le tableau correspondant.

1 Soit a:	$ig(\mathbb{R} o \mathbb{R}$	On a $\cdot a' \cdot $	$\int \mathbb{R} o \mathbb{R}$
1. Soit $g: \zeta$	$\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \sqrt{x^2 + 1} - x \end{cases}$	On a : g : $\begin{cases} \\ \\ \end{cases}$	$\left(x \mapsto \frac{x}{\sqrt{x^2 + 1}} - 1\right)$

x	$-\infty$ $+\infty$
g'(x)	_
g	$+\infty$

f donc définie sur \mathbb{R} .

2. Soit $x \in \mathbb{R}$, on a:

$$-f(x) = -\ln\left(\sqrt{x^2 + 1} - x\right)$$

$$= \ln\left(\frac{1}{\sqrt{x^2 + 1} - x}\right)$$

$$= \ln\left(\frac{\sqrt{x^2 + 1} + x}{x^2 + 1 - x^2}\right)$$

$$= \ln\left(\sqrt{x^2 + 1} + x\right)$$

$$= f(-x)$$

3. On a:

$$f': \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -\frac{1}{\sqrt{x^2+1}} \end{cases}$$

x	$-\infty$ $+\infty$
f'(x)	_
f	$+\infty$ $-\infty$

Notons a le nombre

$$\sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}}.$$

- 1. Montrer que $a^3 = 6a + 40$.
- 2. En déduire la valeur de a.

1.

$$a^{3} = 40 + 3\sqrt[3]{(20 + 14\sqrt{2})^{2}(20 - 14\sqrt{2})} + 3\sqrt[3]{(20 + 14\sqrt{2})(20 - 14\sqrt{2})^{2}}$$

$$= 40 + 3\sqrt[3]{(20 + 14\sqrt{2})(400 - 392)} + 3\sqrt[3]{(20 - 14\sqrt{2})(400 - 392)}$$

$$= 40 + 6\sqrt[3]{20 + 14\sqrt{2}} + 6\sqrt[3]{20 - 14\sqrt{2}}$$

$$= 6a + 40$$

2. On a:

$$a^{3} - 6a - 40 = 0$$

$$\iff (a - 4)(a^{2} + 4a + 10) = 0$$

$$\iff a = 4$$

Exercice 4.12 $[\Diamond \Diamond \Diamond]$

Considérons la fonction

$$f: \begin{cases}]1, +\infty[\to \mathbb{R} \\ x \mapsto \exp(-\frac{1}{\ln(x)}) \end{cases}$$
.

- 1. Démontrer que f réalise une bijection de $]1,+\infty[$ dans un intervalle que l'on précisera.
- 2. Expliciter la réciproque de f. Peut-on écrire en conclusion que $f^{-1} = f$?

Soit $x \in]1, +\infty[$ et $y \in \mathbb{R}_+^*$. On a :

$$y = f(x)$$

$$\iff y = \exp(-\frac{1}{\ln(x)})$$

$$\iff \ln(y) = -\frac{1}{\ln(x)}$$

$$\iff -\frac{1}{\ln(y)} = \ln(x)$$

$$\iff x = \exp(-\frac{1}{\ln(y)})$$

L'équation a une unique solution, f réalise donc une bijection de $]1,+\infty[$ vers \mathbb{R}_+^* .

2. On a:

$$f^{-1}: \begin{cases} \mathbb{R}_+^* \to]1, +\infty[\\ x \mapsto \exp(-\frac{1}{\ln(x)}) \end{cases}$$

 $f \neq f^{-1}$ car leurs domaines de définition sont différents.

Exercice $4.13 \ [\spadesuit \spadesuit]$

- 1. Montrer que the est une bijection de \mathbb{R} dans]-1,1[et déterminer une expression explicite de sa réciproque, qu'on notera argth.
- 2. De deux façons différentes, montrer que argth est dérivable sur son intervalle de définition et calculer sa dérivée.
- 3. Montrer que pour tout $x \in \mathbb{R}$, $\operatorname{argth}\left(\frac{1+3\operatorname{th} x}{3+\operatorname{th} x}\right) = x + \ln\sqrt{2}$.
- 1. Soit $x \in \mathbb{R}$ et $y \in]-1,1[$. On a :

$$y = \operatorname{th} x$$

$$\iff y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\iff y = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\iff e^{2x} (1 - y) = y + 1$$

$$\iff e^{2x} = \frac{y + 1}{1 - y}$$

$$\iff x = \frac{1}{2} \ln \left(\frac{y + 1}{1 - y} \right)$$

L'équation a une unique solution, th réalise donc une bijection de \mathbb{R} dans]-1,1[.

Sa réciproque est argth : $\begin{cases}]-1,1[\to \mathbb{R} \\ x\mapsto \frac{1}{2}\ln\left(\frac{x+1}{1-x}\right) \end{cases}$

2. On peut montrer que argth est dérivable sur] -1,1[par le théorème de dérivée des réciproques ou en dérivant $x\mapsto \frac{1}{2}\ln\left(\frac{x+1}{1-x}\right)$ comme composée de fonctions dérivables. On retrouve dans les deux cas:

$$\operatorname{argth}': \begin{cases}]-1,1[\to \mathbb{R} \\ x \mapsto \frac{1}{1-x^2} \end{cases}$$

3. Soit $x \in \mathbb{R}$.

$$\operatorname{argth}\left(\frac{1+3\operatorname{th}x}{3+\operatorname{th}x}\right) = \frac{1}{2}\ln\left(\frac{\frac{1+3\operatorname{th}x}{3+\operatorname{th}x}+1}{1-\frac{1+3\operatorname{th}x}{3+\operatorname{th}x}}\right)$$

$$= \frac{1}{2}\ln\left(\frac{\frac{4+4\operatorname{th}x}{3+\operatorname{th}x}}{\frac{2-2\operatorname{th}x}{3+\operatorname{th}x}}\right)$$

$$= \frac{1}{2}\ln\left(\frac{2+2\operatorname{th}x}{1-\operatorname{th}x}\right)$$

$$= \frac{1}{2}\ln\left(\frac{\operatorname{ch}(x)+\operatorname{sh}(x)}{\operatorname{ch}(x)-\operatorname{sh}(x)}\right) + \frac{1}{2}\ln(2)$$

$$= \frac{1}{2}\ln\left(e^{2x}\right) + \ln(\sqrt{2})$$

$$= x + \ln\sqrt{2}$$