Ecperiment2-1: Naive Bayes

Time: 2022/3/11

Location: Science_Building_119

Name: 易弘睿 Number: 20186103

Part I: Review

朴素贝叶斯法是典型的生成学习方法。生成方法由训练数据学习联合概率分布P(X,Y),然后求得后验概率分布P(Y|X)。具体来说,利用训练数据学习P(X|Y)和P(Y)的估计,得到联合概率分布:P(X,Y)=P(X|Y)P(Y)。计算公式如下:

Part II: Introduction

对初始代码的修改主要如下:

- 1. 对代码按照不同部分功能进行命名;
- 2. 对代码进行每行注释;
- 3. 对贝塞尔函数部分label和sample的定义区分开。

Part III: Annotation

1. 数据库的导入

In [1]:

```
import pandas as pd # 导入pandas库
import numpy as np # 导入numpy库
```

2. 数据的导入

In [2]:

```
data = pd.read_csv("西瓜.csv")
y = data['好瓜'].values.tolist() #将数组转化为列表
x = data[['色泽','根蒂','敲声','纹理','脐部','触感']].values.tolist()
data
```

Out[2]:

	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
0	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
1	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
3	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
4	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
5	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
6	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
7	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
8	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
9	青绿	硬挺	清脆	清晰	平坦	软粘	否
10	浅白	硬挺	清脆	模糊	平坦	硬滑	否
11	浅白	蜷缩	浊响	模糊	平坦	软粘	否
12	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
13	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
14	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
15	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
16	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

In [3]:

```
len(list(set(y)))
```

Out[3]:

2

3. 贝塞尔函数的定义

```
def naive bayes(x, y, predict): # 设置函数
   unique_y = list(set(y))
                            # unique_y中存储两类,"是"表示好瓜,"否"表示怀瓜
   label num = len(unique y)
                             #长度为2(是、否)
   sample num = len(x)
                             # sample num中存储总的数据量
                             # 标签个数
   \dim = \operatorname{len}(x[0])
   joint_p = [1] * label_num
                             # 初始化两种类别的概率都为1
   # 把所有的类别都过一遍, 计算P(c)
   for (label_index, label) in enumerate(unique_y):
                                                              # enumerate() 函数用于将一个
      p_c = len(data[data['好瓜'].isin([label])]) / sample_num
                                                             #'好瓜'的概率(isin函数判例
                                                              # 把所有的类别都过一遍, 计算
      for (feature index, x i) in enumerate (predict):
          tmp = data[data['好瓜'].isin([label])].values
                                                             #每个特征瓜个数(如果label)
          print(label, x i)
          print(len([t for t in tmp[:,feature_index] if t == x_i]) / len(tmp))
                                                                       # 计算每个特征的
          joint p[label index] *= len(
          [t for t in tmp[:,feature_index] if t == x_i]) / len(tmp) # 计算P(特征|类别), 比如P(
      joint p[label index] *= p c
                                                             #几个标签出现最后满足好瓜的机
   print(joint_p)
   # 输出最后的预测结果(是/否)
   tmp = joint_p[0]
   max_index = 0
   # 比较两个类别的概率,如果"是"的概率较大,那么最终判定这个西瓜为好瓜,否则为坏瓜
   for (i, p) in enumerate(joint_p):
      if tmp < p:
          tmp = p
          max_index = i
   return unique y[max index]
```

4. 数据的测试

In [5]:

```
out = naive_bayes(x, y, ["青绿","蜷缩","沉闷","稍糊","稍凹","硬滑"]) print(out)
```

```
否 青绿
```

0.33333333333333333

否 蜷缩

0. 33333333333333333

否 沉闷

0. 33333333333333333

否 稍糊

否 稍凹

0. 33333333333333333

否 硬滑

是 青绿

0.375

是 蜷缩

0.625

是 沉闷

0.25

是 稍糊

0.125

是 稍凹

0.375

是 硬滑

0.75

[0.0019365770999757923, 0.000969381893382353]

否