NTS
WE ENGINEER SUCCESS

EMC Test Data

The Environment and Color						
Client:	Visiplex, Inc	Job Number:	JD104072			
Model:	VTV 1	T-Log Number:	T104092			
	V1A-1	Project Manager:	Deepa Shetty			
Contact:	Ben Agam	Project Coordinator:	-			
Standard:	FCC parts 15 and 90	Class:	N/A			

Maximum Permissible Exposure / SAR Exclusion

Test Specific Details

Objective: Evaluate the RF Exposure requirements per FCC 1.1310, 2.1091 and RSS-102.

Date of Evaluation: 7/17/2017 Test Engineer: David Bare

General Test Configuration

Calculation uses the free space transmission formula:

 $S = (PG)/(4 \pi d^2)$

Where: S is power density (W/m²), P is output power (W), G is antenna gain relative to isotropic, d is separation distance from the transmitting antenna (m).

Summary of Results

Power Density requirements at 20cm separation:	
required separation distance (in cm):	

EMC Test Data

Client	Visiplex, Inc	Job Number:	ID104072
Ciletit.	violpica, inc		
Model:	VTV 1	T-Log Number:	1104092
	V1A-1	Project Manager:	Deepa Shetty
Contact:	Ben Agam	Project Coordinator:	-
Standard:	FCC parts 15 and 90	Class:	N/A

FCC MPE Calculation Use: General Antenna: 3.0 dBi

FOR 300-1500 MHz single transmitters (General use)

· · · · · · · · · · · · · · · · · · ·								
	El	JT	Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Po	wer	Loss	Gain	at Ant	EIRP	at 20 cm	at 20 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm^2	mW/cm^2
406.1	19.4	87.1	0	3	19.4	173.78	0.035	0.271
435	19.1	81.3	0	3	19.1	162.18	0.032	0.290
470	18.4	69.2	0	3	18.4	138.04	0.027	0.313

For the cases where S > the MPE Limit

	Dower Density (C)	MDF Limit	Diatanaa whara
	Power Density (S)	MPE Limit	Distance where
Freq.	at 20 cm	at 20 cm	S <= MPE Limit
MHz	mW/cm ²	mW/cm ²	cm
406.1	0.035	0.271	7.1
435	0.032	0.290	6.7
470	0.027	0.313	5.9