

Recommender Systems Recommendations in Networks

Professor Robin Burke Spring 2019

+ Homework 4

- Due today
- What questions?

Network-based Recommendations

- Covering three approaches
 - Different types of networks
- Reference-based recommendation
 - PageRank and personalized PageRank
- Trust-based recommendation
 - In addition to regular user/item data
 - You have trust links between users
 - Could be friends or other links
 - May also have "distrust" links
- Bipartite User-Item Networks
 - Treat the user-item association as edges in a bipartite network

* Network vs Graph

- Networks are real-world phenomena
- Graphs are mathematical and computational representations
- Graphs
 - Nodes / vertices
 - Edges / links / ties etc.

Types of graphs

■ Directed vs undirected

One-mode vs two-mode (bipartite)

Movement on a graph

- On a graph you can move from node to node
 - via edges
- Might be actual movement
 - messages in a communication network
- Or it might be more implicit
 - social influence

+ Walk

- Sequence of edges
 - such that the node ending each step is the beginning of the next
- B-A-C-A is a walk...
- Length
 - # of edges

+ Path

- A walk where no vertex appears more than once
- B-A-C-A is not a path
- B-A-C-D is a path

+ Cycle

- A walk where the beginning and endings nodes are repeated
 - but no others
- B-A-B is a cycle
- B-A-C-A is not a cycle
- B-A-C-D-B is a cycle

Cyclic / acyclic graphs

- Distinction for directed graphs
- Cyclic graph is one with cycles
- Acyclic has no cycles

Shortest path / geodesic

- There may be multiple paths from one node to another
- B-A
 - B-A (length 1)
 - B-D-C-A (length 3)
 - B-D-C-D-C-A
 - not a path
- Shortest path aka
 - geodesic

+ No path

- It is possible that there is no path between two nodes
 - D-E no path
 - length = ∞

+ Random walk

- A sequence of edges
 - Following the "walk" definition
- Where the edge to traverse is chosen randomly at each node

Alice and Bob live in GraphLand. All the streets are directed edges. Alice tells Bob "I'm going out for a Walk". Bob could:

- A. Call his divorce lawyer because Alice is never coming back to their home node
- B. Ask if he can Cycle along
- C. Ask if she can stop at the GroceryNode before returning
- D. B or C

- Alice and Bob live in GraphLand. All the streets are directed edges. Bob tells Alice "I'm going out to go out on the garden Path". Alice could:
 - A. Call her divorce lawyer because Bob is never coming back to their home node
 - B. Ask if she can Walk along
 - C. Ask if he can stop at the GroceryNode before returning
 - D. B or C

Adjacency Matrix

- Most important graph representation is an adjacency matrix
- Square grid with an entry for each pair of nodes
 - there's a non-zero entry if the nodes are connected
- Matrix cells = edges
 - Can be weighted

+ Example

Matrix derivation of walks

- Movement in the graph = matrix multiplication
- \blacksquare M x [1 0 0 0 0]^T = [0 1 1 0 1]^T
 - because you can get to B, C, and E from A

+ Γ₀ 1 1 1

$$M = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M^{3} = \begin{bmatrix} 4 & 6 & 6 & 4 & 6 \\ 6 & 2 & 2 & 1 & 5 \\ 6 & 2 & 2 & 1 & 5 \\ 4 & 1 & 1 & 0 & 2 \\ 6 & 5 & 5 & 2 & 4 \end{bmatrix}$$

Diagonal represents...

- All triangles
 - All 3 step walks from n back to itself
 - Divide by 2 for directionality
 - **[**2 1 1 0 <u>2</u>]
 - Sum and divide by 3 for symmetry
 - **2**

$$M^{3} = \begin{bmatrix} 4 & 6 & 6 & 4 & 6 \\ 6 & 2 & 2 & 1 & 5 \\ 6 & 2 & 2 & 1 & 5 \\ 4 & 1 & 1 & 0 & 2 \\ 6 & 5 & 5 & 2 & 4 \end{bmatrix}$$

Matrix derivation of walks

- Means that ideas like
 - Reachability
 - Clustering
 - Random walks
 - Node centrality
- Can be represented as matrix operations
 - Linear algebra
- Like user-item matrices
 - Very sparse

+ Degree

- Most basic notion of popularity
 - How "connected" is each node?
- High degree nodes have many neighbors
 - more potential for exchange

Types of degree

- in degree
 - how many directed edges are incident (coming in)?
- out degree
 - how many directed edges originate (go out)?
- degree
 - number of edges connected to a node
 - usually applied for undirected networks

Weighted degree

- If edges have weight,
 - might make sense to take this into account
- Example: communication network
 - if weight = # of emails
 - degree = # of contacts
 - weighted degree = total amount of email

In-degree vs out-degree

- These measure very different things
- Which one I care about
 - depends on my question
- Do I want to know about in-flow or out-flow
- In social networks
 - in-degree is often associated with prestige
 - people want to connect to you

I have a weighted directed graph where there is an edge pointing from a user to users whose posts they have commented on. The weight associated with an edge is the number comments made. A user that has high weighted out-degree is one:

- A. Who likes to comment on many people's posts
- B. Whose posts get many comments
- C. Whose posts many users have commented on
- D. Who likes to write many comments

I have a directed graph where there is an edge pointing from a user to users whose posts they have commented on. A user that has high in-degree is one:

- A. Who likes to comment on many people's posts
- B. Whose posts get many comments
- C. Whose posts many users have commented on
- D. Who likes to write many comments