Московский государственный технический университет им. Н.Э. Баумана.

Факультет «Информатика и управление»

Отчёт по домашнему заданию по курсу «**Основы телекоммуникаций**»

Вариант №8

Выполнила: Проверил: студентка группы ИУ5-52 преподаватель каф. ИУ5 Горбовцова К.М. Аксёнов А.Н. Подпись и дата: Подпись и дата:

Цель работы: Реализовать алгоритм кодирования и декодирования корректирующим кодом, определить реальную корректирующую способность этого кода.

Программа, выполняющая поставленную задачу, написана на языке Python3.6 Корректирующий код: код Хемминга [15,11]

Формирование слова для передачи:

Представлено генерацией для каждого из 11 битов случайной величины, принимающей значение либо нуля, либо единицы

Кодирование:

Алгоритм реализуется матричным методом.

- g_matrix порождающая матрица;
- Закодированная последовательность получается путем умножения по модулю 2 кодового слова на порождающую матрицу

Модель канала связи:

Для перебора всех возможных ошибок различных кратностей и сбора статистики реализованы циклы.

Декодирование и обнаружение ошибки:

- h_matrix проверочная матрица;
- Обнаружение ошибки происходит путем умножения по модулю 2 принятой кодовой последовательности на матрицу h_matrix1 (транспонированная проверочная матрица)
- Если полученный вектор ошибки состоит из одних нулей, то сообщение передано безошибочно, иначе номер бита с ошибкой соответствует номеру строки матрицы h_matrix1, совпадающей с вектором ошибки.
- Изменение значения ошибочного бита на противоположенное(0->1, 1->0)
- Результат полученная кодовая последовательность без добавочных битов

Вывод статистики:

С помощью средств языка Python3.6(библиотека pandas) формируются объекты типа Series для каждого элемента статистики (общее число ошибок данной кратности, корректирующая способность, число исправленных ошибок). Кратность ошибки индексируется от 0 до 15. Из полученных объектов формируется DataFrame и отображается в консоль для ознакомления.

Результат работы программы:

Передаваемое слово: 0 1 1 0 1 0 1 1 0 0 0

Статистика:

	CK	CNI	NK	
0	0.0	1.0	0	
1	1.0	15.0	15	
2	0.0	105.0	0	
3	0.0	455.0	0	
4	0.0	1365.0	0	
5	0.0	3003.0	0	
6	0.0	5005.0	0	
7	0.0	6435.0	0	
8	0.0	6435.0	0	
9	0.0	5005.0	0	
10	0.0	3003.0	0	
11	0.0	1365.0	0	
12	0.0	455.0	0	
13	0.0	105.0	0	
14	0.0	15.0	0	
15	0.0	1.0	0	
F-6				

Вывод:

Анализируя полученные результаты, видим, что код Хемминга позволяет корректно исправить все ошибки кратности 1. Результат, полученный практическим методом, совпадает с теорией. Расстояние Хемминга равно 3, следовательно, количество исправляемых ошибок dmin>=2*t+1, откуда t=1