BIOESTATÍSTICA - ESTATÍSTICA BÁSICA

Prof. Dr. Uirá do Amaral

Medidas associadas a variáveis quantitativas

Objetivo:

Determinar o "centro" da distribuição dos dados de uma variável quantitativa em torno do qual os dados se distribuem.

- a. Medidas de posição central
- b. Medidas de dispersão
- c. Medidas separatrizes

Medidas de tendência central

Medidas de tendência central

MÉDIA	MODA	MEDIANA
$\frac{1}{x} = \frac{\sum x_i}{n}$	Valor que ocorre com mais frequência	 Se o n é impar, o valor é central. 2. Se o n é par, o valor é a média dos dois valores centrais

Medidas de tendência central

Mostrar:

Recuento				
4				
6				
8				
6				
1				

$$Media = 2.76$$

$$Mediana = 3$$

$$Moda = \{3\}$$

10

12

Medidas de tendência central

- A Média é sempre influenciada por valores extremos.
- A Moda é o elemento de maior frequência, e a maior frequência está no topo (no ponto mais alto da curva).
- A Mediana está sempre no meio do conjunto, dividindo-o em duas partes iguais.

Medidas de tendência central Aplicação

Exemplo 1. Dados os números 10, 8, 15 e 9, qual o valor da média aritmética simples ?

$$\frac{10+8+15+9}{4}=\frac{42}{4}=10,5$$

Medidas de tendência central Aplicação

Exemplo 2. Em uma unidade escolar, a média anual de cada matéria é calculada de acordo com os princípios da média ponderada. O peso das notas está relacionado ao número do bimestre. Assim, temos peso 1, 2, 3, 4 respectivamente para cada um dos quatro bimestres do ano. Determine a média anual de um aluno cujas notas estão relacionadas na tabela acompanhado dos respectivos pesos.

Bimestre	Peso	Nota do Aluno
1° Bimestre	1	7,0
2º Bimestre	2	5,5
3° Bimestre	3	8,3
4º Bimestre	4	7,5

Medidas de tendência central Aplicação

Resolução exemplo 2.

$$xp = \frac{x1 * p1 + x2 * p2 + \dots + xn * pn}{p1 + p2 + \dots + pn}$$

$$\frac{7,0*1+5,5*2+8,3*3+7,5*4}{1+2+3+4} = \frac{7,0+11+24,9+30}{10} = \frac{72,9}{10}$$
$$= 7,29$$

Medidas de tendência central Aplicação

Por exemplo:

Para a séria 15, 18, **22**, 23, e 25 a mediana é 22.

Para a série 23, 25, 27, 29, 31 e 33 a Mediana é (27+29)/2 = 28.

Medidas de tendência central Aplicação

O problema com a Moda é que ela pode não existir e, onde ela existe, ela pode não ser única.

Por exemplo, para a série 12, 13, 13, 14, 15 e 16 a Moda é 13 (unimodal), pois este é o valor com a maior frequência.

Por outro lado, a série 12, 13, 13, 13, 15, 16, 16, 16 e 19 possui duas modas: 13 e 16 (bimodal).

Medidas de dispersão

75cm

O valor da média não é suficiente para identificar uma série de dados, pois várias séries diferentes com números de elementos diferentes podem ter a mesma média.

Portanto, devemos adicionar uma medida que represente a forma como os elementos se dispersam ao redor da média.

Medidas de dispersão

A variância é uma medida de dispersão que pode ser calculada pelas equações relacionadas a seguir.

$$Variância (população) = \sum \frac{(xi - Média)^2}{n}$$
 $Variância (amostra) = \sum \frac{(xi - Média)^2}{n-1}$

sendo, xi = elemento do conjunto, Média = média do conjunto e n = número de observações

Medidas de dispersão

As equações dizem que a variância representa a soma dos quadrados a distância média dividida pelo número de observações do conjunto menos um. Vamos esclarecer isso observando o cálculo da variância no exemplo a seguir:

Dada a seguinte amostra de um conjunto 8, 7, 5, 4, 2, calcule a variância.

Medidas de dispersão

Passo 2 - calcular a variância

Passo 1 - vamos calcular a média aritmética do conjunto

$$M\acute{e}dia = \frac{8+7+5+4+2}{5} = \frac{25}{5} = 5$$

A variância da população é 4,6

Medidas de dispersão

Desvio padrão é a medida mais comum da dispersão estatística (representado pelo símbolo sigma, σ). Ele mostra o quanto de variação ou "dispersão" existe em relação à média (ou valor esperado). Um baixo desvio padrão indica que os dados tendem a estar próximos da média; um desvio padrão alto indica que os dados estão espalhados por uma gama de valores. É possível afirmar que o desvio padrão é a raiz quadrada da variância.

Desvio Padrão da População =
$$\sqrt{\sum} \frac{(xi - M\acute{e}dia)^2}{n}$$
Desvio Padrão da Amostra $\sqrt{\sum} \frac{(xi - M\acute{e}dia)^2}{n-1}$

Medidas de dispersão

Medidas de dispersão

$$CV = \frac{\sigma}{X}.100$$

$$CV = \frac{52,70}{500} *100$$

$$CV = 10,54\%$$

For menor ou igual a 15% → baixa dispersão: dados homogêneos For entre 15 e 30% → média dispersão For maior que 30% → alta dispersão: dados heterogêneos

Medidas separatrizes

Medidas separatrizes

Perguntaram-se as idades a um grupo de pessoas e registaram-se os dados na seguinte tabela:

xi	fi
56	1
58	1
59	1
60	3
61	2
62	2
64	1

	56	58	59	60	60	60	61	61	62	62	64
			Q1			Q2			Q3		
POSIÇÃO	19	29	30	49	5º	6º	79	85	99	10º	119

O 1º Quartil é 59, o 2º quartil é 60 e o 3º quartil é 62

Medidas separatrizes

Obrigado pela atenção!

