Ju. LURIE

Handbook of Analytical Chemistry

MIR PUBLISHERS
MOSCOW

16.00

78/3

EXHIBITION COPY

Ю. Ю. Лурье

СПРАВОЧНИК ПО АНАЛИТИЧЕСКОЙ ХИМИИ

Издательство «Химия»

Ju. LURIE

Handbook of Analytical Chemistry

Translated from the Russian by Nicholas Bobrov

MIR PUBLISHERS
MOSCOW

First published 1975

Second printing 1978

S.E.ERT. WB LIBRARY 10.8.98 Date Accn. No. 96.93

На английском языке

© English translation, Mir Publishers, 1975

TO THE READER

Mir Publishers welcome your comments on the content, translation and design of this book. We would also be pleased to receive any proposals you care to make about our future publications.

Our address is: USSR, 129820, Moscow I-110, GSP Pervy Rizhsky Pereulok, 2

Mir Publishers

Printed in the Union of Soviet Socialist Republics

Contents

Preface	9
Preliminary Remarks	11
Table 1. Atomic Weights of the Elements	17
Table 2. Radioactive Elements	21
Table 3. Ion Radii	22
Table 4. Ionization Potentials of Atoms and Ions	27
Table 5. Structures of Outer Electron Layers, Ion Potentials and Analytical Groups of Cations	30
Table 6. Atomic Weights, Molecular Weights, Weights of Atomic Groups, and Their Logarithms	31
Table 7. Analytical and Stoichiometric Multipliers (Factors)	70
Table 8. Solubilities of Inorganic and Some Organic Compounds in Water	76
Table 9. Solubilities of Some Inorganic Compounds in Organic Solvents at 18-25 °C	100
Table 10. Solubility Products of the Chief Sparingly Soluble Substances	105
Table 11. Activity Coefficients of Various Ions	117
Table 12. Activity Coefficients of Various Ions at High Values of the Ionic Strength of a Solution	120
Table 13. Calibration of Glassware	121
Table 14. Calculation of the Results of Volumetric-Analytical Determinations	123 123 125 129 130
Table 15. Masking Reagents in Titration with Complexone III	132
Table 16. Calculation of the Results of Gas and Gasometric Analyses A. Bringing the Gas Volume to Standard Conditions B. Vapour Pressure over Water and over Absorbing Solutions	136 138
tions	155 156

ing bubstances	158
Table 17. Conversion Formulas for Solution Concentrations	159
A. Densities and Concentrations of Solutions	160 160
C. Densities and Concentrations of Hydrochloric Acid	164
 D. Densities and Concentrations of Phosphoric Acid Solutions E. Densities and Concentrations of Perchloric Acid Solutions 	165
tions	167
F. Densities and Concentrations of Acetic Acid Solutions G. Densities and Concentrations of Potassium Hydroxide	169
	169
I. Densities and Concentrations of Ammonia Solutions J. Densities and Concentrations of Sodium Carbonate Solu-	172
K. Densities and Concentrations of Selected Commercial	173 174
	176
Thore 13. Chief Acid-Dase Indicators	
Table 20. Ionic Product of Water at Temperatures Ranging from 0 °G to 100 °G.	198
Table 21. Colorimetric Determination of the pH of Solutions	199
Table 22. Ionization Constants of Indicators	$\frac{200}{200}$
Table 23. Some Mixed Indicators	201
Table 24. Universal Indicators	203
Table 25. Chief Fluorescent Indicators	204
Table 26. Selected Chemiluminescent Indicators	214
Table 27. Principal Adsorption Indicators	216
	220
Table 29. Hydrogen Ion Exponent (pH) Evaluated in Terms of	252
Table 30. Preparation of Buffer Solutions	253
A. Buffer Solutions with pH 1.10-3.50	253
B. Buffer Solutions with pH 1 10-4 96	254
	$\frac{255}{256}$
E. Buffer Solutions with pH 4 06 6 60	257
F. Buffer Solutions with pH 4 90 9 00	257
G. Buffer Solutions with pH 7.71-9.23	258

II. Buffer Solutions with pH 9.23-11.02	259 260
Table 31. Acetic-Acetate Buffer Solutions	262
Table 32. Universal Buffer Mixture	263
Table 33. Buffer Solutions from Individual Substances	264
Table 34. Determination of Electrode Potentials Λ . Values of ϑ at $n=1$ and Temperatures Ranging from	265
O °C to 50 °C	267
Table 35. Electrometric Determination of pH	268 269
A. Standard Quinhydrone Electrode Potential (E ⁰ _{quin./hydr.})	209
at Temperatures Ranging from 0 °C to 50 °C	270
Ranging from 0 °C to 50 °C. C. Difference between the Standard Quinhydrone Electrode Potential (Equin./hydr.) and the Potentials of the Reference Calomel Electrodes (ECR) at Temperatures	271
Ranging from 0 °C to 50 °C	272
Table 36. Change of pH in Precipitation of Metal Hydroxides	273
Table 37. Ionization Constants of Chief Acids and Bases	274
Table 38. Dissociation Constants of Complex Ions	283 299
Table 40. Standard Oxidizing Potentials (E0) Relative to the Potential of a Standard Hydrogen Electrode at 25 °C	300
Table 41. Chief Oxidation-Reduction Indicators	314
Ionic Strength of a Solution	316
Table 42. Spectral Wavelengths and Colours Corresponding to	320
Table 43. Photometric Methods of Determining Various Ions	321
Table 44. Properties of Selected Solvents	332
Table 45. Extraction with Organic Solvents	336
zonates	336
B. Extraction of Various Elements in the Form of Diethyl	340
Dithiocarbamates	
ronates . D. Extraction of Various Elements in the Form of Hydro-	343
xyquinolates , , , , ,	344

Hve	raction drobrom ume of	ic. H	vdr	oio	dic	an	d l	Vit	ric	Ac	ids	by	, a	n	Eq	ua	al
A. Clas	ssification Beha	on of	In	div	ridu r t	ial he	Ac	om	pou	ind of	So	Acome	cor	di Re	ng	en	ts
D. Wi Is I E. Sep	npositio rious O oups . despread Difficult aration	to of M	npo Fore ixtu	und ese	ds e	wh	ose	· B	elo	ong	ing	. t	0 1	a .	Gr	ou :	р :
A. Dry B. Dry	ubstance ring of ring of	es U: Gase Liqu	sed s . uids	for	. D:	ryii	ng		:				:		:		:
Table 48.	Prepara	tion	of	Н	gro	sta	ts								*		
B. In t	Principa the Alph the Alph ed	abet	ical	Or Or	der	of	th	e I e E	Rea	ner	nts	Be	ing	g]	De	te:	r-
Table 50. U	SSR St	anda	rd S	Sie	ves												
Table 51. with a	Half-Wa Droppi	ive I	Pote	nti	ials El	ect	n roc	Po le	lar	ogr	apl	hic		An	al;	ys ·	is
Table 52. A	mperon	netrio	Ti	tra	tio	n o	f S	Sel	ect	ed	Sı	ıbs	tai	nce	es		
Table 53. C larized	ondition Indicat	or E	Am	per	rom	etr	ic	Ti	tra	tion	n w	it!	h '	Tw	,	Po	
Table 54. O		ge of	Ну	dre	oge	n ai	nd	02	cyg	en	at	Va	ric	ous	3 1	Ele	8-
Table 55. P	otential f Select	ls of ed C	Ele	ctr	ode	D D	eco	om	pos	iti	on	of	1	N ·	Se.	olı	1-
Table 56. F	lame P	hotor	netr	У							٠.						
Table 57. B		nd Ar	neri	car	n W	Veic	ht	g	and	l M	eas	ur	09	in	C	on	1-
Table 58. S	implifie	d Tal	ole o	of 1	Fiv	e-P	lac	ea l	[.00	rari	th	ms					
A. Log	arithms																
D. And	Hogariu	ims															
Appendices. Table 7		les (of U	sir	ig S	Som	e '	Га	ble	s.					٠		
Table .	14			•			•					•	•	•		•	
Table .																	
Table Table																	
Table 2																	
Table 4							0										
Index					•		•		•		•	•	•	•	•	٠	

Handbook of Analytical Chemistry is intended for scientific workers, and chemistry students in universities, polytechnics, and technical colleges. It can be used in solving various problems (both calculating and experimental) concerning general chemistry, analytical chemistry,

chemical technology, and so forth.

The tables of solubility products, of ionization constants of weak acids and bases, and of oxidation-reduction potentials have been drawn up according to recent data. When those tables were being drawn up, the following works were used: J. Bjerrum, G. Schwarzenbach, L. G. Sillén, Stability Constants of Metal-ion Complexes, with Solubility Products of Inorganic Substances, London, 1958; W. M. Latimer, The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, N.Y., 1952; N. V. Axelrud and Ya. A. Fialkov, Ukrainskii khimicheskii zhurnal, 16, 75, 283, 296 (1950), and other articles from Soviet and foreign journals.

As we know, the results published by various authors concerning the determination of given quantities greatly differ from one another. It is therefore extremely difficult to select the "most probable" value of every constant. There is no international body to annually publish such "most probable" values of the given constants, as is done, for instance, by the International Commission concerning atomic weights. The selection I have made from numerous literary data is therefore inevitably subjective. I will be very grateful for information pointing out cases when this selection was made incorrectly, and will take account of such comments in the subsequent publications of the book.

The tables of the densities and concentrations of various acids and

bases are drawn up for 20 °C.

The temperature values in all tables are given in degrees Celsius (°C). Tables 22, 32, 33, 34B, 35, 39, 47, 48, 51-55 have been compiled by P. K. Agasyan, docent of the analytical chemistry department of the Moscow State University.

Instead of the ordinary table of five-place logarithms, a "simplified" table of five-place logarithms and antilogarithms is given at the end of the book. It takes up the same space as the tables of four-place logarithms, because instead of the real values of the differences between mantissas, their mean values are given for every line of the table. Errors that arise when using this table are not over 0.00002. The other tables in the handbook give exact values of the five-place mantissas of logarithms.

Ju.Ju. Lurie

The numerical expression of the results of weighings and other measurements, and the subsequent calculations with these numbers necessitate a strict observance of several rules.

Rule 1. All numerical values, whether they are obtained directly by measurements or whether they are the derivatives of these measurements. must have a certain number of significant digits so that the last figure alone is questionable; the second-last figure must be accurate.

For instance, the number 20.24 (ml), which expresses the reading of an ordinary burette, contains a proper number of figures, since figure 4 was obtained by an approximate (visual) estimate of the distance between the edge of the meniscus and the nearest scale division. Consequently, this figure is dubious: another observer could read the measurement of the burette as 20.23 or 20.25 ml. If upon measuring the solution by a burette, the lower boundary of the meniscus exactly touches the scale division showing 15 ml, the measurement result must be expressed by the number 15.00 (ml), since the observation error is not over 0.01-0.02 ml. Both zeroes in the number 15.00 (ml) will be significant digits. The zeroes standing at the beginning of the number before the first figure which is not a zero are not regarded as significant digits. Hence, the number expressing the mass of the filter ash 0.00004 (g) contains only one significant digit: 4.

If the mass is determined in grams and expressed by the number 23.4 (g) in which the last figure is inaccurate, in order to represent this mass in milligrams one must write not 23 400 mg, which would give a wrong idea about the accuracy of the weighing, but 234.102 mg.

or 2.34.104 mg.

Rule 2. When discarding the last figure if it is equal to or more

than 5, the preceding figure must be increased by unity.

Thus, in discarding the last figure in the number 16.236, we obtain 16.24.

Rule 3. Upon addition (and subtraction) of several numbers, there will remain, as a result of calculation, a certain number of figures after the point that are in the addend with the least number of decimals.

Rule 4. Upon multiplication or division, the maximum relative error of the product or quotient cannot be less than the relative error in the

least accurate number from the numbers taken.

Relative errors are usually expressed in per cent: it is the ratio of the maximum possible error of the number to the number itself multiplied by 100.

If, for instance, it is necessary to multiply 0.0123.24.62.1.07461 and if it is taken that the maximum absolute error in each of these numbers is not over unity in the last figure, then the corresponding relative errors will be:

$$\frac{1}{123}100 = 0.8\%$$

$$\frac{1}{2462}100 = 0.04\%$$

$$\frac{1}{107461}100 = 0.001\%$$

The first number has the greatest relative error (0.8%). It follows that the maximum relative error is not less than 0.8 per cent in the product as well. If the first three significant digits 0.325 are kept in the product, the last digit will already be inaccurate, since 0.8 per

cent from 0.325 comes to about 0.003.

In cases when rule 1 is observed, i.e., when all numbers used in the calculation contain not more than one inaccurate figure, it is possible to apply the more simple (although less accurate) rule 4,a.

Rule 4,a. Upon multiplication and division, as a result of calculation, it is necessary to keep a certain number of significant digits which are in the number having these digits least of all among the numbers used in the calculation.

In the example given above, the first cofactor has three, the second has four, and the third has six significant digits. Consequently, we must leave in the product three significant digits and discard the rest; the result will be 0.325.

Rule 5. In all the intermediate results, it is necessary to keep one figure more than is required by the preceding rules. In the final result, this "reserve figure" is discarded.

Rule 6. If some data have more decimals (upon addition and subtraction) or more significant digits (upon multiplication and division) than others, they must first be rounded, keeping one extra figure (see rule 5).

Rule 7. Upon multiplication and division with the aid of logarithms, it is sufficient to have as many figures in the mantissas as there are significant digits in the least accurate multiplier.

Therefore, for most calculations, we can confine ourselves to the logarithmic table on page 448 of this book.

Together with an excessive as well as an unsubstantiated accuracy of calculations (a long series of figures after the decimal point, when already the first one of them is dubious, the use of multi-place logarithmic tables, and so forth), another error is very common: the unnecessary accuracy of individual measurements that leads to the finding of figures which is not account. finding of figures which in any case will be discarded upon subsequent

Analytical chemists, for instance, have grown accustomed to making all weighings on an analytical balance with an accuracy of up to 0.0001 g, and they spent much time sitting by the balance, determining the correct figure in the fourth decimal. At the same time this accuracy is often pointless. Here are a few everylas: time, this accuracy is often pointless. Here are a few examples:

1. Antimony is determined in red copper in which the Sb content is not more than 0.003%. For analysis, a portion of copper weighing 10 g is taken. With what accuracy must the copper shaving be weighed?

10 g is taken. With what accuracy must the copper shaving be weighted? The result obtained must have not more than two significant digits, since copper containing even 0.0031% Sb must be discarded. Great accuracy is not needed, and in essence it is unattainable by the analytical methods used. Hence, the maximum absolute error in the final result is $\pm 0.0001\%$, which makes up $\pm 3.3\%$ of the maximum permissible Sb content in the metal. The calculation is made by the formula

$$x = \frac{a \cdot 100}{g} \%$$

where a = antimony content found;

g = weighed portion.

If a weighed portion of copper is taken with an accuracy of up to one-tenth of a gram $(\pm 0.1 \text{ g})$, then with respect to the entire portion weighing 10 g, the relative error will be $\pm 1\%$, which is far less than $\pm 3.3\%$. In other words, if instead of 10 g of copper, 9.9 g or 10.1 g are weighed, then with a Sb content of 0.30 mg, this will give, in the first case, 0.00303% and, in the second case, 0.00297%, which in both cases will be rounded off to 0.0030%. It follows that a weighing can be made on technical scales with an accuracy of up to 0.1 g.

2. The accuracy of the colorimetric methods of analysis (if the optical density of solutions is measured visually and not photocolorimetrically or spectrophotometrically) is usually not over $\pm 5\%$ of the relative errors, while by some other methods, the relative error comes to $\pm 10\%$ and more. According to rule 4, the accuracy of the result cannot be higher than the accuracy of the least accurate measurement, and therefore, no matter how accurately a test is weighed for analysis, if this analysis ends with a colorimetric determination, the accuracy of the results will not be higher than the aforementioned $\pm 5\%$. It follows that if 1 g of a test is weighed with an accuracy of ± 0.01 g, i.e., with a maximum relative error of $\pm 1\%$, this accuracy is high enough.

Visual colorimetric methods are used only to determine the components contained in very small amounts in the substance being analysed, when a great relative error is permissible in the result obtained. The determination of iron in iron ore by the visual colorimetric method

leads to impermissible errors.

Note. It must not be assumed that, in determining small amounts, the colorimetric methods of analysis are less accurate than other methods. On the contrary, if in the preceding example Sb is determined not by the colorimetric method (as is usually done), but by the gravimetric method, we would have to weigh about $0.0003~\rm g$ of $\rm Sb_2O_4$, which on an ordinary analytical balance can scarcely be made with a maximum error less than $\pm 30\%$ of the relative errors. In addition, no account is taken of the inevitable significant error due to impurities present in the calcined precipitate, an error which cannot be eliminated even when a microbalance is used.

3. In the calculation of the results of volumetric-analytical determinations, the least accurate figure is the number of millilitres of a titrating solution used for titration. Since the hundredth parts of a millilitre are marked approximately, it can be accepted that the maximum measurement error is not less than ± 0.02 ml. The error due to the remaining residue is also ± 0.02 ml. Therefore, the overall error can be as much as 0.04 ml*. With the total expenditure of 20 ml of the titrating solution, this will come to 0.2% of the relative errors. It follows that, taking 1 g for analysis, the weighing can be performed with an accuracy of up to 1 mg. This gives a relative error of ± 0.5 mg, or 0.05%. If less than 20 ml of the titrating solution are used for titration, less accuracy is needed in taking a weighed portion. On the other hand, the weighing of a starting substance for esta-

blishing the titre must be performed with an accuracy of up to unity in the fourth decimal, since in this case a portion weighing only about 0.2 g is taken and about 40 ml of the titrating solution are used for

titration.

If one wishes to increase the accuracy of the volumetric-analytical methods, one must use gravimetric burettes instead of ordinary ones, ** which completely precludes errors due to inaccurate measurement, remaining residue and a difference in temperature. The weighing of a sample now becomes a less accurate operation, and it should be performed with a relative error which is determined by the accuracy required in the final result ($\pm 0.01\%$ and less).

The foregoing should not lead to the conclusion that the weighed portion can always be taken with an accuracy of ± 1 mg or less. On the contrary, there are some analytical operations when the entire accuracy of an analytical balance must be used, and when even the accuracy of a microbalance is not high enough. Here are two examples.

4. Red electrolytic copper must contain 99.95% of Cu. The analytical determination of Cu in this case is made by electrolysis. What

accuracy must the weighing be made with?

The error in the final result, expressed in per cent, must not be more than $\pm 0.004\%$. It is apparently necessary to have no lesser accuracy in weighing a test of red copper as in weighing a platinum electrode before and after Cu is deposited on it. If one gram of a test is taken for an analysis, then, with the maximum accuracy of the weighing on an analytical balance being ±0.2 mg, the relative error will be $\pm 0.02\%$, which is far more than is permissible. Therefore, in the given case, it is necessary to use a balance that is more accurate than the ordinary analytical one, or (as is usually done) to take not less than 5 g of the substance being analysed.

5. Suppose that for determining Zn in a copper-zinc alloy containing about 20% of Zn, a portion weighing 0.02 g is taken, whether owing to the small amount of shavings which an analyst has or with due regard to some advantages in the techniques of working with small amounts of a substance. The analysis is concluded by weighing

^{*} See I. M. Koltgof and E. B. Sendel, Kolichestvennyi analiz (Quantitative Analysis), Moscow, 1948, p. 459.

** See, for instance, I. M. Koltgof and E. B. Sendel, Kolichestvennyi analiz
(Quantitative Analysis), Moscow, 1948, p. 561; I. M. Koltgof and V. A. Stenger, Ob'emnyi analiz (Volumetric Analysis), Vol. II, Moscow, 1952, p. 25.

the precipitate in the form of Zn₂P₂O₇. What accuracy must the

weighing be made with?

The result of the analysis must be expressed with an accuracy of up to a hundredth part of a per cent (for instance, 19.84%), i.e., with a permissible error of $\pm 0.01\%$ of the absolute errors; since the Zn content is 20%, this will come to $\pm 0.05\%$ of the relative errors. The same accuracy must be obtained when weighing the portion of shavings and the calcined precipitate Zn₂P₂O₇. When a portion weighs 20 mg, the value $\pm 0.05\%$ comes to ± 0.01 mg; the same percentage of the mass of the calcined precipitate (~ 8 mg) is still less, being about ± 0.004 mg. A microchemical balance gives an error of about ± 0.01 mg. It follows that, in the given case, the weighing performed even with a microchemical balance does not ensure the required accuracy.

Atomic Weights of the Elements

The atomic weights of various elements are determined with different accuracy which is expressed by a different number of figures after the decimal point. When the number expressing atomic weight ends with one or several zeroes, the latter are significant digits showing the accuracy with which the atomic weight of the corresponding element is determined (see rule 1, p. 11).

The results of chemical analyses must not be expressed with a precision greater than that of the atomic weight. This limitation must be especially reckoned with when determining some platinum and

rare-earth elements, and also rhenium.

The table contains relative atomic weights published by the Com-

mission on Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) in 1965.

The Commission adopted a resolution whereby the old "oxygen chemical unit" of atomic weights (1/16 of the average atomic weight of the natural isotopic mixture of oxygen atoms) is replaced by the "carbon physical unit" (1/12 of the atomic mass of the carbon iso-

tope 12C).

For all the elements, besides those given below, the number expressing the atomic weight is given with an error not exceeding ±0.5 in the last digit after the decimal point. The deviations of the atomic weight values for the given six elements are as follows: boron ± 0.003 ; hydrogen ± 0.00001 ; oxygen ± 0.0001 ; silicon ± 0.001 ; sulphur ± 0.003 ; carbon ± 0.00005 . These deviations are due to variations in the natural isotopic composition of the elements.

Owing to the experimental inaccuracies in the determination of the atomic weights of the six elements listed below, their values deviate within the following limits: bromine ± 0.001 ; iron ± 0.003 ; copper ± 0.001 ; silver ± 0.001 ; chlorine ± 0.001 ; chromium ± 0.001 .

The atomic weights of radioactive elements are given only for thorium and uranium; for other radioactive elements, the mass number of the isotope with the longest half-life is given in square brackets.

Element	Symbol	Atomic number	Atomic weight, a	log a
Actinium	Ac	89	[227]	35 603
Silver	Ag	47	107.868	03 289
Aluminium	Al	13	26.9815	43 106
Americium	Am	95	[243]	38 561
Argon	Ar	18	39.948	60 150
Arsenic	As	33	74.9216	87 461
Astatine	At	85	[210]	32 222
Gold	Au	79	196.967	29 440
Boron	B	5	10.811	03 387
Barium	Ba	5	137.34	13 780

Table 1 (continued)

Element	Symbol	Atomic number	Atomic weight, a	log a
Beryllium	Be	4	9.0122	95 483
Bismuth	Bi	83	208.980	32 010
Berkelium	Bk	97	[247]	39 620
Bromine	Br	35	79.904	90 257
Carbon	C	6	12.01115	07 958
Calcium Cadmium Cerium Californium Chlorine	Ca	20	40.08	60 293
	Cd	48	112.40	05 077
	Ce	58	140.12	14 650
	Cf	98	[252]	41 040
	Cl	17	35.453	54 965
Curium	Cm	96	[247]	39 270
Cobalt	Co	27	58.9332	77 036
Chromium	Cr	24	51.996	71 597
Caesium	Cs	55	132.905	12 354
Copper	Cu	29	63.546	80 309
Dysprosium	Dy	66	162.50	21 085
Erbium	Er	68	167.26	22 340
Einsteinium	Es	99	[254]	40 483
Europium	Eu	63	151.96	18 173
Fluorine	F	9	18.9984	27 872
Iron	Fe	26	55.847	74 700
Fermium	Fm	100	[257]	40 993
Francium	Fr	87	[223]	34 830
Gallium	Ga	31	69.72	84 336
Gadolinium	Gd	64	157.25	19 659
Germanium	Ge	32	72.59	86 088
Hydrogen	H	1	1.00797	00 345
Helium	He	2	4.0026	60 235
Hafnium	Hf	72	178.49	25 162
Mercury	Hg	80	200.59	30 231
Holmium	Ho	67	164.930	21 730
Iodine	I	53	126.9044	10 348
Indium	In	49	114.82	06 002
Iridium	Ir	77	192.2	28 375
Potassium	K	19	39.102	59 220
Krypton	Kr	36	83.80	92 324
Kurchatovium	Ku	104	[264]	42 160

Table 1 (continued)

Element	Symbol	Atomic number	Atomic weight, a	log a
Lanthanum	La	57	138.91	14 273
Lithium	Li	3	6.939	84 130
Lawrencium	Lr	103	[256]	40 824
Lutetium	Lu	71	174.97	24 297
Mendelevium	Md	101	[257]	40 993
Magnesium	Mg	12	24.305	38 570
Manganese	Mn	25	54.9380	73 987
Molybdenum	Mo	42	95.94	98 200
Nitrogen	N	7	14.0067	14 634
Sodium	Na Nb	11 41	22.9898 92.906	36 154
Niobium	Nd	60	144.24	96 804
Neodymium	No Ne	10	20.179	15 909 30 490
Neon Nickel	Ni	28	58.71	76 871
Nickel	141		50.71	
Nobelium	No	102	[255]	40 654
Neptunium	Np	93	[237]	37 475
Oxygen	0	8	15.9994	20 410
Osmium	Os	76	190.2	27 921
Phosphorus	P	15	30.9738	49 099
Protactinium	Pa	91	[231]	36 361
Lead	Pb	82	207.19	31 637
Palladium	Pd	46	106.4	02 694
Promethium	Pm	61 84	[145]	16 137
Polonium	Po	84	[210]	32 222
Praseodymium	Pr	59	140.907	14 893
Platinum	Pt	78 94	195.09	29 024
Plutonium	Pu Ra	88	[244] [226]	38 739 35 411
Radium Rubidium	Rb	37	85.47	93 181
Rhenium	Re	75	186.2	26 998
Rhodium	Rh	45	102,905	01 244
Radon	Rn	86 44	[222] 101.07	34 635
Ruthenium	Ru	16	32.064	00 462
Sulphur	S	10	52,004	50 602
Antimony	Sb	51	124.75	08 547
Scandium	Sc	21	44.956	65 279

Table 1 (continued)

Element	Symbol	Atomic number	Atomic weight, a	log a
Selenium	Se	34	78.96	89 741
Silicon	Si	14	28.086	44 849
Samarium	Sm	62	150.35	17 711
Tin	Sn	50	118.69	07 441
Strontium	Sr	38	87.62	94 260
Tantalum	Ta	73	180.948	25 755
Terbium	Tb	65	158.924	20 119
Technetium	Tc	43	[99]	99 564
Tellurium	Te	52	127.60	10 585
Thorium	Th	90	232.038	36 556
Titanium	Ti	22	47.90	68 034
Thallium	Tl	81	204.37	31 042
Thulium	Tm	69	168.934	22 772
Uranium	U	92	238.03	37 663
Vanadium	V	23	50.942	70 708
Tungsten	W	74	183.85	26 446
Xenon	Xe	54	131.30	11 826
Yttrium	Y	39	88.905	94 893
Ytterbium	Yb	70	173.04	23 815
Zinc	Zn	30	65.37	81 538
Zirconium	Zr	40	91.22	96 009

Table 2

Radioactive Elements

Element	Sym- hol	Ato- mic num- her	Mass number of the lon- gest living isotope	Half-life*	Decay mode
Actinium	Ac	89 95	227 243	22 y $^{7.8} \times ^{10^3}$ y	α, β-
Americium Astatine	Am At	85	210	8.3 h	α, Electron capture
Berkelium	Bk	97	247	$1.4 \times 10^3 \text{ y}$	α
Californium	Cf	98	252 247	$^{360}_{1.6 \times 10^7}$ y	α
Curium Einsteinium	Cm Es	96 99	254	$2.7 \times 10^2 \mathrm{d}$	α
Fermium	Fm	100	257	3 d	Electron capture,
Francium	Fr	87	223	22 min	α, β-
Lawrencium Mendelevium	Lr Md	103 101	256 257	8 s 1.5 h	Electron capture
Neptunium	Np	93	237	$2.1 \times 10^6 \text{ y}$	α
Nobelium	No	102	255 244	-8 s 3.8 × 10 ⁵ y	α
Plutonium	Pu Po	94 84	210	138.4 d	α
Polonium Promethium	Pm	61	145	18 y	β-
Protactinium	Pa	91	231	$3.2 \times 10^4 \text{ y}$	α
Radium	Ra	88	226	1,622 y 3,83 d	αα
Radon	Rn	86 43	222 99	$2.1 \times 10^{5} \text{ y}$	β-
Technetium	Tc Th	90	232	$1.4 \times 10^{10} \text{ y}$	α
Thorium Uranium	U	92	238	$4.5 \times 10^9 \text{ y}$	α

^{*} s, second; min, minute; h, hour; d, day; y, year.

Date No. 969 3

Ion Radii

The values of ion radii are given in angstroms (Å) with a coordination number of 6. When the coordination number is 4, the correction comes to -6%, with the coordination number of 8, it is +3%, and with the coordination number of 12, it comes to +12%.

Substance Ionic charge	Tonia	Si	ze of radius	s, A, according	g to
	Goldschmidt	Pauling	Belov and Boky	other sources	
Ac	+3	_	_	1.11	1.19
Ag	+1	1.13	1.26	1.13	1
Al	+3	0.57	0.50	0.57	_
Am	+4	0,0,	0.00	0.85	
	+3		_	1.00	0.99
As	15	_	0.47		0.55
AS	$+5 \\ +3$	0.69	0.47	0.47	0.58
	-3		2.22	0.69	0.00
	-3	=	4.22	1.91	0.89
Au	$^{+4}_{+3}$	_	_	0.05	0.90
Au	14	_	1.37	0.85	0.90
В	$+1 \\ +3$	_	1.37	1.37	_
_	73	_	0.20	0.21	2.28
BF ₄	$-1 \\ +2$	1 10	4 05		2.20
Ba	+2	1.43 0.34	1.35	1.38	
Be	$^{+2}_{+5}$	0.34	0.31	0.34	
Bi	+5	_	0.74	0.74	- 10
	+3	_	-	1.20	1.16
	-3	_	_	2.13	_
Br	+7		0.39	0.39	0.47
	+5		_		0.47
_	-1	1.96	1.95	1.96	_
C	+4	0.2	0.15	0.20	_
CN	_4 _1	_	2.60	2.60	- 00
CN-	-1		-	-	1.92
Ca Cd	+2	1.06	0.99	1.04	- 00
Ce	+2	1.03	0.97	0.99	0.92
Ce	+4	1.02	1.01	0.88	0.93; 0.8
01	+3	1.18	-	1.02	1.00; 1.0
Cl	+7	-	0.26	0.26	
	+5	_	-	-	0.34
010	$-1 \\ -1$	1.81	1.81	1.81	-
ClO4	-1	-			2.36
Co	+3	0.64	-	0.64	0.72
C-	+2	0.82	0.72	0.78	0.78; 0.8
Cr	+6	0.35		0.35	

Table 3 (continued)

		Size of radius, Å, according to							
Substance Ionic charge	Goldschmidt	Pauling	Belov and Boky	other sources					
	. 0			0.64	0.62				
1	+3	0.00		0.83					
	+2	0.83		_	3.00				
CrO2-	-2	1.65	1.69	1.65	_				
Cs	+1		1.00	0.80	0.69; 0.82				
Cu	+2	0.70	0.96	0.98	0.95				
_	+1	1 07	0.50	0.88	0.91				
Dy	4-3	1.07	_	0.85	0.87				
Er	+3			0.97	0.96				
Eu	+3	1.13	_		1.09; 1.24				
-	+2	_	0.07	0.07					
F	+7	1.33	1.36	1.33					
_	-1		1.00	0.67	0.73				
Fe	+3	0.67	0.75	0.80	0.75				
	+2	0.83	0.62	0.62	_				
Ga	+3	0.62	0.02	0.94	0.94				
Gd	+-3	1.11	0.53	0.44	_				
Ge	+4	0.44	0.00	0.65	0.98; 0.73				
	+2	_	2.72		_				
	-4		2.08	1.36	_				
H	-1	1.54	2.00	0.82	0.86				
Hf	+4	1 40	1.10	1.12	1.05				
Hg	+2	1.12	1.10	0.86	0.89				
Ho	+3	1.05	0.50	0.50	_				
I	+7	0.04	0.00		0.98				
	+5	0.94			1.30				
	+1	- 20	2.16	2.20	2.19				
	-1	2.20	0.81	0.92					
In	+3	0.92	0.01	1.30	_				
	+1	0.00	0.64	0.65	0.75; 0.68				
Ir	+4	0.66	0.01		0.81				
	+3	_	_		0.89				
	+2	1.33	1.33	1.33	_				
K	+1	1.33	_	0.90	_				
La	+4	1.22	1.15	1.04	-				
	+3	0.78	0.60	0.68	_				
Li	+1	0.78	_	0.80	0.84				
Lu	+3	0.78	0.65	0.74	- Colonia				
Mg	+2	0.70	0.46	0.46					
Mn	+7	0.52	0.50	0.52	_				
	+4	0.52	_	0.70	0.67				
	+3	0.70	0.80	0.91	_				
	+2	0.91	0.62	0.65	_				
Mo	6	0.68	0.66	0.68	-				

Table 3 (continued)

	T	Size of radius, A, according to							
Substance charg	Ionic charge	Goldschmidt	Pauling	Belov and Boky	other sources				
MoO ₄ -N NH ⁴ / _{NO₃} Na Nb Nd Ni Np O OH-OH ⁴ / ₃ Os P PO ⁴ / ₄ Pb Pd Ph	$-\frac{25}{3}$ $\frac{3}{1}$ $\frac{1}{1}$ $\frac{1}{5}$ $\frac{4}{4}$ $\frac{3}{4}$ $\frac{2}{1}$ $\frac{1}{1}$	0.15 - 1.43 - 0.98 0.69 0.69 0.69 1.15 0.35 0.78 1.32 - 0.67 0.35 1.00 1.16 1.52 1.49	0.11	0.15 1.48 - 0.98 0.66 0.67 0.99 - 0.74 - 0.88 1.02 0.09 1.36 - 0.65 - 0.35 - 1.86 - 0.91 1.06 0.76 1.26 0.64 - 0.98 1.00 0.64 - 0.98 1.00 0.64 - 0.86 1.02 1.44 1.49	3.45 0.13 0.16 1.30 1.59 1.89; 2.55 				

Table 3 (continued)

		Si	ze of radius	, A, according	to
Substance	Ionic charge	Goldschmidt	Pauling	Belov and Boky	other
Re	+7	_	_	_	0.56
	+6	_	-	0.52	0.55
	+4	_	-	0.72	0.71
Rh	+4	-	_	0.65	0.62
D.,	+3	0.05	0.63	0.75 0.62	$0.62 \\ 0.71$
Ru	+4	0.65	0.05	0.02	0.74
	$+3 \\ +2$		_	_	0.85
S	$^{+2}_{+6}$	0.34	0.29	0.30	-
	+4	-	_		0.37
	-2	1.74	1.84	1.86	1.90
SH-	-1	_	-		2.00
SO2-	-2		-	_	2.95
IISO-	-1	-	0 (2)	0.62	2.06
Sb	+5	0.00	0.62	0.62	_
	+3	0.90	2.45	2.08	-
Sc	-3	0.83	0.81	0.83	_
Se	$^{+3}_{+6}$	0.65	_	0.35	0.42
	+4	_	_	0.69	0.56
	-2	1.91 0.39	1.98	1.93	1.91
Si	+4	0.39	0.41	0.39	-
	-4	-	2.71	_	2.90
SiO4-	4		_	0.97	0.97
Sm	+3	1.13	_	0.57	1.11
0-	+2	0.74	0.71	0.67	
Sn	+4	0.74	-	1.02	_
	$+\frac{2}{-4}$	_	2.94		-
Sr	$\frac{-4}{+2}$	1.27	1.13	1.20	1.10
Ta	+5	-	_	0.66	$0.73 \\ 0.92$
Tb	+3	1.09	0.50	0.89	0.92
Te	+6	0.00	0.56 0.81	0.89	0.01
	+4	0.89	2.21	2.22	-
Th	-2	1.10	1.02	0.95	0.99
- n	$^{+4}_{+3}$		ments.	1.08	1.08
Ti	+3	0.64	0.68	0.64	-
	+3	0.69	-	0.69	-
	+2	0.80		0.78	0.76
rı	+3	1.05	0.95	1.05	-
	+1	1.49	1.44	1.36	0.00
Γm	+3	1.04		0.85	0.86

Table 3 (continued)

	wi.	Si	ze of radius	s, Å, according	g to
Substance	Ionic charge	Goldschmidt	Pauling	Belov and Boky	other sources
U	$^{+6}_{+5}$	de la comp	_	_	0.83 0.87
v	$^{+4}_{+3}_{+5}_{+4}$	1.05 0.4 0.61	0.97 0.59 0.59	$0.95 \\ 1.04 \\ -0.61$	0.93; 0.89 1.03 0.59 0.64
w	+3 $+2$ $+6$ $+4$	0.65 0.72 0.68	_	$\begin{array}{c} 0.67 \\ 0.72 \\ 0.65 \end{array}$	
Y Yb Zn	+3 +3	1.06 1.00	0.66	0.68 0.97 0.81	0.85
Zr	+4	0.83 0.87	0.74	$\frac{0.83}{0.82}$	0.70

Ionization Potentials of Atoms and Ions

The ionization potential is the minimum voltage of the electric field needed for tearing away one electron from an atom or ion.

The table gives the potentials of the ionization of atoms and ions, i.e., the potentials required for separating one electron from a neutral unexcited atom $(X-e\to X^+)$ and the potentials required for tearing away one electron from a single-charge (positive) unexcited ion $(X^+-e\to X^{2+})$, from a two-charge unexcited ion $(X^{2+}-e\to X^{3+})$ and so forth.

Insufficiently reliable data are given in parentheses.

Element	$X-e \rightarrow X^{+}$	X+-e - X2+	X2+-e - X3+	X3+-e - X4+	X4+-e - X5+	$X^{6+-e} \rightarrow X^{6+}$
Ac Ag Al Ar As As Ba Be Be CCad CCc CCc CCy ECC CCy EG GG GG He	6.89 7.57 5.98 15.76 9.81 9.22 8.30 5.81 9.32 7.29 11.84 11.26 6.11 8.99 6.91 13.01 7.86 6.76 3.89 7.72 6.82 5.67 17.42 7.90 6.00 6.16 7.88 13.60 24.58	11.5 21.48 18.82 27.62 18.7 20.5 25.15 10.00 18.21 19.3 21.6 24.38 11.87 16.90 12.3 23.80 17.05 16.49 25.1 20.29 11.24 34.98 16.18 20.51 12 15.93	6.10 28.44 40.90 28.3 30.5 37.92 37 153.9 25.6 35.9 47.86 51.21 44.5 19.5 39.9 33.5 31 34.6 36.83 — 62.65 30.64 30.70 — 34.21	(52) 119.96 59.79 50.1 (44) 259.30 (49) 217.7 45.3 47.3 64.48 67.3 (55) 36.7 53.3 (53) (51) (46) (59) — 87.23 (56) 64.2 — 45.7 —	(70) 153.8 75.0 62.9 (58) 340.13 (62) 56.0 59.7 392.0 84 (73) (70) 67.8 (82) 73 (62) (83) — 114.2 (79) (90) — 93.4 —	(89) 190.4 91.3 127.5 (73) (80) 94.4 88.6 489.8 109 (94) (85) 96.6 (109) 90.6 (74) (109) — 157.1 103 (118) — (123)

Table 4 (continued)

Element	$X - e \rightarrow X^+$	X+-e - X2+	X2+-e - X3+	X3+-e + X4+	V3+-e- X5+	X5+-e - X6+
HI HI I I I K K L L L L L L L L L L L L L L L L L L	5.5 10.43 10.44 5.79 4.34 14.00 5.61 5.39 6.15 7.64 7.43 7.43 14.54 6.31 21.56 7.63 13.61 8.7 10.55 7.42 8.33 8.2 5.76 8.36 8.37 7.45 8.37 8.37 8.37 8.37 8.37 8.37 8.37 8.37	14.9 18.75 19.0 18.86 31.8 24.56 11.43 75.62 14.7 15.03 15.64 15.72 29.60 47.29 13.90 	(21) 34.2 33 28.0 45.9 36.9 19.17 122.4 (19) 78.2 33.69 29.6 47.43 71.65 28.1 63.5 30.16 31.93 (33) 27.3 (29) (34) 40 (26) 32.8 29.4 30.3 34.8 24.8 24.75 32.0 33.46 30.7 43.6 (22)	(31) (46) (42) 58 61.1 52.5 (52) 	(61) 71 (77) 82.6 64.7 (66)	(77) 83 (98) 99.4 78.5 (80) 186.8 100 67 552 172.4 110.4 — 157.9 113 138.1 68 220.4 84 (90) (73) — (75) (76) 84.4 (65) (85) (67) (81) 88.0 119 111 82.1 205.1 (103) 90.8

Table 4 (continued)

Element	$X-e \rightarrow X^+$	X+-c - X2+	X2+-e - X3+	X3+-e → X4+	X4+-e - X5+	X5+-e - X6+
Tc Te Th Ti Tl V W Xe Y Yb Zn Zr	7.23 9.01 	14.87 18.8 11.5 13.57 20.42 14.2 17.7 21.2 12.23 12.10 17.96 12.92	31.9 31 20.0 28.14 29.8 29.7 (24) 32.1 20.5 — 39.70 24.8	(43) 38 28.7 43.24 50 48.0 (35) (45) 61.8 — (62) 33.97	(59) 66 (65) 99.8 (64) 65.2 (48) (57) 77.0 — (86) 82.3	(76) 83 (80) 119 (81) 128.9 (61) 89 93.0 — (114) 99.4

Structures of Outer Electron Layers, Ion Potentials and Analytical Groups of Cations (according to N. I. Blok)

(Under the cation symbols, we give the values of ionic potentials Z/R: the ratio of the charge of an ion to its radius)

Incomplete 18-electum Mn2+ Fe2+ Co2+ Ni2+ Fe3+ Cr3 2.2 2.4 2.4 2.6 4.5 4.6 2nd subgroup of III group Complete 18-electro Au+ Ag+ Cu+ Hg2+ Cd2+ Zn2+ In3+ 0.7 0.9 1.0 1.8 1.9 2.4 3.3 IV group External electron T + Pb2+ Sn2+ Bi3+
--

Atomic Weights, Molecular Weights*, Weights of Atomic Groups, and Their Logarithms

In compiling this table, all additions of atomic weights have been made in conformity with rules 2 and 3 (p. 11), the needless decimals having been discarded.

The atomic weights of all elements (apart from the 12 elements given below) are expressed in numbers in which errors are within the

limits of ± 0.5 in the last figure.

When a fractional part of an atomic weight is being found, the error in its magnitude apparently passes over to the next decimal, which now becomes the first of dubious figures. The total number of figures after the decimal point thus increases by unity. If, for instance, the atomic weight of titanium (Ti) is 47.90, then one-half of this atomic weight (1/2 Ti) will be not 23.95, but 23.950; Sn = 118.69, 1/2 Sn = 59.345.

When a multiple of an atomic weight is being found, the error increases. If, for instance, it is necessary to increase the atomic weight 10 times, its value must be rounded off by reducing the number of figures after the decimal point by one figure. For example, the atomic weight of nitrogen (N) is 14.0067; while 10 N is not 140.067, but

140.07.

The multiplication of the atomic weight of iron only by 2 gives an error within the limits of ± 0.006 and, consequently, an error can be made in the preceding figure; therefore, if Fe = 55.847, then 2 Fe will be not 111.694, but 111.69. When dividing the atomic weight of iron by 3, we have the maximum error within the limits of ± 0.0001 and, consequently, the number of figures after the decimal point will not increase: 1/3 Fe = 18.615.

One must be guided by such considerations also when adding the

One must be guided by such considerations also when adding the atomic weights of various elements: if the sum of the maximum possible errors is either equal to or more than ± 5 in the last figure, a rounding must be made by reducing the number of figures after the decimal

point by unity.

		Fo	rn	nul	a					Weight, a	log a
Ag 2Ag	:	:	:		:	:	:		:	107.868 215.736 323.604	03 289 33 392 51 001
3Ag g ₃ AsO ₃										446.524 462.523	64 984 66 513
Ag_3AsO_4 $AgBr$:								187.772	27 363

^{*} The molecular weights of solvents and organic reagents not included in this table are given in tables 44 and 49, respectively.

Table 6 (continued)

Formula	Weight, a	log a
AgC ₂ H ₃ O ₂	166.913	22 249
AgC ₇ H ₄ NS ₂ (mercaptobenzothiazolide)	274.11	43 792
AgCN .	100	10 102
Ag ₂ CO ₂	133.886	12 674
AgCl	275.741	44 050
Ag ₂ CrO ₄	143.321	15 631
$Ag_2Cr_2O_7$	331.730	52 078
AgF	431.730 126.866	63 521
Ag ₃ Fe(CN) ₆	535.56	10 335
Ag ₄ Fe(CN) ₆	643.43	72 881
AgI	234.772	80 850 37 065
AgNO ₂	153.874	18 717
Ag ₂ O	169.873	23 012
AgOCN	231.735	36 499
g ₃ PO ₄	149.885	17 576
g ₂ S	418.575	62 177
gSCN	247.80	39 410
g ₂ SO ₄	165.950	21 998
gVO ₂	311.80	49 388
g ₃ VO ₄	206.808	31 555
	438.544	64 201
1		
1/ ₃ Al	26.9815	43 106
2Å1	8.99383	95 394
3A1 .	53.9630	73 210
4A1	80.9445	90 819
5Al	107.9260	03 313
6Al	134.9075	13 003
C. H. C.	161.8890	20 922
(C ₂ H ₃ O ₂) ₃ acetate)	266.694 204.117	42 601
((CoH-ON)	204.117	30 988
hydroxyquinolate)	459.444	66 223
Clarett O	133.341	12 496
H .	241.433	38 280
T a	83.9767	92 416
K(SO.) 4217 0	140.9719	14 913
NH ₄ (SO ₄) ₂ ·12H ₂ O (NO ₂)-12H ₂ O	See KAl(S)	04)2·12H2O
(NO ₃) ₈ OH O	See NH.Al	(SO ₄) ₂ ·12H ₂ O
(NO ₃) ₃ ·9H ₂ O	212.996	32 837
203	375.134	57 419
	101.9612	00 843

Table 6 (continued)

Formula	Weight, a	log a
1/ ₆ Al ₂ O ₃	16.9935 78.0036 121.953 342.15 666.42	23 028 89 211 08 619 53 422 82 375
As 1/2As 1/3As 1/3As 1/5As 2As AsBr3 AsCl3 AsCl3 AsO3 AsO4 As2O3 1/4As2O3 As2O5 As2O7 AsS4 As2S3 As2S6	74.9216 37.46080 24.97387 14.98432 149.8432 314.634 181.281 252.187 77.9455 122.9198 138.9192 197.8414 49.4603 229.8402 261.8390 203.18 246.04 310.16	87 461 57 358 39 748 17 564 17 564 49 781 25 835 40 172 89 179 08 962 14 276 29 632 69 426 36 143 41 803 30 788 39 101 49 159
Au 1/ ₃ Au 2Au AuCN Au(CN) ₂ Au(CN) ₄ AuCl ₃ AuCl ₃ AuCl ₄ B 1/ ₃ B 2B 3B 4B	196.967 65.6557 393.934 222.985 249.003 301.038 303.326 339.357 338.779 	29 439 81 727 59 542 34 828 39 620 47 862 48 191 53 066 52 992

Table 6 (continued)

Formula	Weight, a	log a
BBr ₃	250.52	39 884
BCl ₃	117,17	06 882
BF ₃	67.806	83 127
BF ₄	86,805	93 854
BO ₂	42.810	63 155
$\begin{array}{c} \mathrm{BO_3^2} \\ \mathrm{B_2O_3} \end{array}$	58,809	76 944
$B_4^2O_7^3$	69.62	84 273
D ₄ O ₇	155.24	19 100
		1
Ba	137.34	13 780
2Ba	68.670	83 677
3Ba	274.68	43 883
BaBr ₂	412.02	61 492
BaBr ₂ ·2H ₂ O	297.15	47 298
BaCO ₃	333.18	52 268
$Ba(C_2H_3O_2) \cdot H_2O$	197.35	29 524
(acetate)	273.45	43 688
BaC ₂ O ₄	225.36	35 288
BaCl ₂ · 2H ₂ O	208.25	31 859
Ba(ClO ₃) ₂ ·H ₂ O	244.28	38 789
BaClO ₄	322.26	50 821
BaClO ₄ ·3H ₂ O	236.79	37 436
SaCrO.	290.84	46 365
BaF ₂	253.33	40 369
Ba(NO ₃) ₂	175.34	24 388
BaO	261.35	41 722
1/aBaO	153.34	18 566
Sa().	76.67	88 463
Ba(OH).	169.34	22 876
a(OH) 8H.O	171.35	23 388
1/2 Ra/OH) OH G	315.48	49 899
	157.74	19 794
aso	217.40	35 679
aSeO ₄	233.40	36 810
BaSiF ₆	280.30	44 762
	279.42	44 626
1/ ₂ Be	9.0122	05 /02
2Be	4.50610	95 483
	18.0244	65 380

Table 6 (continued)

Formula	Weight, a	log a
BeCO ₃	69.0216	83 898
Beco. AH O	141.0829	14 947
RoCl	79.918	
RoCl 4H O		90 264
BoE	151.980	18 179
Der ₂	47.0090	67 218
BeCl ₂ ·4H ₂ O BeF ₂ BeF ₄ Be(NO ₃) ₂ ·3H ₂ O	85.0058	92 945
$B_{0}O$ $B_{0}O$ $B_{0}O$ $B_{0}O$ $B_{0}O$ $B_{0}O$ $B_{0}O$	187.068	27 200
BeÒ	25.0116 43.0269	39 814
Be(OH) ₂	404 000	63 374 28 323
Bos O	101.000	02 149
Boso (III o	103.074	24 830
5650 ₄ .4H ₂ O	177.133	
Be ₂ P ₂ O ₇ BeSO ₄ BeSO ₄ · 4H ₂ O		
Bi,	208.980	32 010
¹/3Bi	69.6600	84 298
2Bi	417.960	62 113
BiC _e H _e O _e	332.069	52 123
BiC ₆ H ₃ O ₃ (pyrogallate)	211 110	00.710
$\operatorname{Bi}(C_9H_6\operatorname{ON})_3$	641.443	80 716
(hydroxyquinolate) $ii(C_9H_6ON)_3$ $ii(C_9H_6ON)_3$ $ii(C_9H_6ON)_3$ $ii(C_9H_6ON)_3$	659.458	81 919
$O(C_0H_6ON)_3 \cdot H_2O \cdot \cdot \cdot \cdot \cdot$	009.400	01 919
Si(C-H-ONS)-H-O	875.85	94 243
$\mathrm{GI}(\mathrm{C}_{12}\mathrm{H}_{10}\mathrm{ONS})_3\cdot\mathrm{H}_2\mathrm{O}$ (thionalide)		
(thionalide) iCl ₃	315.339	49 878
iCr(SCN),	609.47	78 495
ile	589.693	77 063
il	716.598	85 528
iI ₄	862.768	93 589
(hydroxyquinoline)	000 500	00.101
$\operatorname{BiI_4H}(C_{10}\operatorname{H_9N})$	860.796	93 490
(quinaldine)	394.995	59 659
(NO) 5H O	485.071	68 580
(NO ₃) ₃ ·3H ₂ O	465.958	66 834
1203 CO. 1/ H.O.	518.976	71 515
iOP=	304.883	
(quinaldine) i(NO ₃) ₃ ·5H ₂ O i(NO ₃) ₃ ·5H ₂ O i(O ₂ O ₃ ·1/ ₂ H ₂ O iOBr	260.432	48 413
	665.947	41 569
CNO TI	305,000	82 344
DO	303.951	48 430
PO ₄	514.15	48 280
iO) ₂ Cr ₂ O ₇		71 109

Table 6 (continued)

l, a log a	
04 90 257 08 20 360 12 37 968 16 50 466 2 68 07: 03 98 18: 02 10 688 170 32 873	0 9 3 4 2 3 8
03 36 421	1114554887227000842143353391355921
1	135 18 812

Tuble 6 (continued)

Formula	Weight, a	log a
CHCl ₃	119.378	07 692
CH ₃ Cl	50.488	70 319
CHE	34.0335	53 191
CH ₃ I	141.9395	15 210
CH ₂ N ₂	42.0405	62 367
2011 N	84.0810	92 470
2ĈH ₂ N ₂	60.0995	77 887
C ₂ H ₈ N ₂	00.0555	11 001
C_bH_bN	79.1023	89 819
2C ₅ H ₅ N	158.2046	19 922
C20H16N4	312.3773	49 468
(nitron) C ₂₀ H ₁₆ N ₄ ·HClO ₄	412.836	61 578
C ₂₀ H ₁₆ N ₄ ·HNO ₃	375.3902	57 448
CH ₂ O	30.0265	47 750
CH ₃ O	31.0345	49 184
2CH ₃ O	62.0689	79 287
	32.0424	50 573
C ₂ H ₃ O	43.0456	63 393
211 ₆ O	46.0695	66 341
21160	148.0729	17 048
tartrate-ion)	94.1141	97 365
Gell ₆ O		37 303
phenol)	136.1314	13 396
anthranilate-ion)	144.1543	15 883
nydroxyguinolate-ion)	145.1622	16 185
₀ H ₇ ON	140.1022	10 100
(hydroxyquinoline)	26.0179	41 527
2CN	52.0357	71 630
3CN	78.0536	89 239
4CN	104.0714	01 733
5CN	130.0893	11 424
6CN	156.1071	19 342
NO see OCN		
NS see SCN	28.0106	44 732
0	60.0558	77 855
O(NH ₂) ₂	44.0100	64 355
	22.0050	34 252
1/°CO° · · · · · · ·	88.0199	
2000	and the same	94 458
300	132.0299	12 067
) ₈ 1/ ₂ CO ₃	60.0094	77 822
1/2CO,	30.0047	47 719

Table 6 (continued)

Formula	Weight, a	log a
2CO ₃	120.0187	07 986
3CO ₃	180.0281	25 534
C_2O_4	88.0199	94 458
CO ₂ H	45.0179	65 339
CS ₂	76.139	88 161
$CS(NH_2)_2$	76.120	88 150
		00 100
Ca 1/2Ca	40.08	60 293
2Ca	20.040	30 190
3Ca	80.16	90 396
CaBr ₂	120.24	08 005
CaBr ₂ ·6H ₂ O	199.89	30 079
CaC ₂	307.98	48 852
Ca(CHO ₂) ₂	64.10	80 686
(Iormate)	130.12	11 434
$Ca(C_0H_0O_0)_0$	158.17	
Ca(C ₃ H ₅ O ₃) ₂	138.17	19 912
(lactate)	218.22	33 889
$Ca_3(C_6H_5O_3)_2 \cdot 5II_2O$ $Ca_3(C_6H_5O_7)_2$	308.30	48 897
(citiate)	498.45	69 762
Ca ₃ (C ₆ H ₅ O ₇) ₂ ·4H ₂ O	570.51	75 626
$Ca(C_{10}H_7N_4O_5)_2 \cdot 8H_2O$	710.58	85 161
CaCN ₂		03 101
(cyanamide) CaCO ₃	80.10	90 363
¹/°CaCO	100.09	00 039
CaC ₂ O ₄	50.045	69 936
¹/°CaC°O	128.10	10 755
CaC.O. H O	64.050	80 652
CaCla	146.12	16 471
CaCl ₂ ·6H ₂ O	110.99	04528
Ca(ClO) ₂	219.08	34 060
Ca(CIO). AH O	142.98	15 528
Cacro.	215.05	33 254
CaCrO ₄ ·2H ₂ O	156.07	19 332
LAR.	192.10	28 353
Call Call	78.08	89 254
Still 1	508.30	70 612
Ca(HCO ₃) ₂	42.10	62 428
CaHPO Ca(HCO ₃) ₂	162.11	20 981
CaHPO ₄	81.057	90 879
	136.06	13 373

Table 6 (continued)

Formula	Weight, a	log a
CaHPO ₄ ·2H ₂ O	172.09 234.05 252.07 214.32 202.22 293.89 200.02 164.09 236.15 56.08 28.040 112.16 74.09	23 576 36 931 40 152 33 106 30 582 46 818 30 107 21 508 37 319 74 881 44 778 04 984 86 976
1/ ₂ Ca(OH) ₂ Ca(PO ₃) ₂ Ca ₃ (PO ₄) ₂ CaS CaS CaSO ₃ CaSO ₃ CaSO ₄ CaSO ₃ CaSO ₄ CaSO ₆ CaS ₂ O ₃ C	37.047 198.02 310.18 72.14 120.14 156.17 136.14 145.15 172.17 152.21 260.30 182.16	56 875 29 671 49 161 85 818 07 969 19 360 13 399 16 182 23 596 18 244 41 547 26 045
CaSiF ₆ CaSiO ₃ CaWO ₄	116.16 287.93	06 506 45 929
Cd	112.40 56.200 224.80 272.21 344.27 230.49	05 077 74 974 35 180 43 490 53 690 36 265
$Cd(C_2H_3O_2)_2 \cdot 2H_2O \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot Cd(C_2H_3O_2)_2 \cdot 2H_2O \cdot \cdot$	266.52 386.77	42 573 58 745
(pyridine) Cd(C ₅ H ₅ N) ₄ (SCN) ₂ Cd(C ₇ H ₄ NS ₂) ₂	544.97 444.89	73 637 64 825
(mercaptobenzothiazolide) Cd(C ₂ H ₆ O ₂ N) ₂	384.66	58 508
(anthranifaté) $Cd(C_0H_6ON)_2$	400.71	60 283

Table 6 (continued)

Formula	Weight, a	log a
$Cd(C_9H_6ON)_2 \cdot 2H_2O$	436.74 456.73	64 022 65 966
Cd(CN) ₂	164,44 172,41 183,31 201,32 228,34	24 601 23 656 26 319 30 389 35 858
CdI ₂	545.32 366.24 243.43 236.40 308.47	73 665 56 373 38 637 37 365 48 921
$\begin{array}{c} {\rm Cd}({\rm OH})_2 \ . \\ {\rm Cd}_2 {\rm P}_2 {\rm O}_7 \ . \\ {\rm CdS} \ . \\ {\rm CdSO}_4 \ . \\ {\rm CdSO}_4 \ . \\ {\rm 8/_3 H}_2 {\rm O} \end{array}$	128.40 146.41 398.74 144.46 208.46	10 857 16 557 60 069 15 975 31 902
	256.50	40 909
Ce 1/4Ce 1/3Ce 2Ce Ce(C ₂ H ₁₀ N ₂) ₂ (SO ₄) ₄ -7H ₂ O (ethylene diammonium)	140.12 35.030 46.707 280.24 774.70	14 650 54 444 66 938 44 753 88 913
(hydrovyo)3	572.58	75 784
Ce ₂ (C ₂ O ₄) ₃ Ce ₂ (C ₂ O ₄) ₃ Ce ₂ (C ₂ O ₄) ₃ CeCl ₃ ·3·9H ₂ O CeCl ₃ ·7·H ₂ O Ce(NH ₄) ₄ (NO ₃) ₆ Ce(NH ₄) ₂ (NO ₃) ₆ Ce(NH ₄) ₄ (SO ₄) ₁ ·2·H ₂ O Ce(NO ₃) ₃ Ce(NO ₃) ₃ Ce(NO ₃) ₃ Ce(NO ₃) ₃ Ce(O ₂ Ce ₂ O ₃ Ce ₃ O ₄ Ce(SO ₄) ₂ ·4·H ₂ O	544.30 706.44 246.48 372.59 548.23 584.26 632.55 326.13 434.23 172.12 328.24 484.36 235.09	73 584 84 908 39 178 57 123 73 896 76 661 80 109 51 339 63 772 23 583 51 619 68 517 37 123

Table 6 (continued)

Formula	Weight, a	log a
Ce ₂ (SO ₄) ₃	568.42 712.55	75 467 85 282
$Ce_2(SO_4)_3 \cdot 8H_2O$	112.00	00 202
Cl	35.453	54 965
2Cl	70.906	85 068
3Cl	106.359	02 677
4Cl	141.812	15 171
5Cl	177.27	24 864
6Cl	212.72	32 781
Clo	51.452	71 140
ClO ₂	67.452	82 899
ClO ₃	83.451	92 143
ClO ₄	99.451	99 761
3.04		
		200
Co	58.9332	77 036
1/ ₃ Co	19.64440	29 324
1/2Co	29.46660	46 933
2Co	117.8664	07 139
3Co	176.7996	24 748
CoBr ₂	218.741	33 993
CoBr ₂ ·6H ₂ O	326.833	51 433
Co(C ₂ H ₃ O ₂) ₂ ·4H ₂ O	249.085	39 635
(acetate)	491.51	69 153
$Co(C_5H_5N)_4(SCN)_2$	007 000	79 731
$Co_3(C_6H_5O_7)_2 \cdot 4H_2O \cdot \cdot \cdot \cdot \cdot$	627.066	19 191
(citrate)	331.196	52 009
Co(C ₇ H ₆ O ₂ N) ₂	001,100	02 000
(anthranilate)	383.272	58 351
Co(C ₀ H ₆ ON) ₂ ·2H ₂ O	244 450	70 007
Co(C ₁₀ H ₆ O ₂ N) ₃ ·2H ₂ O · · · · · · · · · · · · · · · · · · ·	611.458	78 637
(α-nitroso-β-naphtholate)	182.984	26 241
$COC_0O_4 \cdot 2H_0O_4 \cdot \cdots \cdot $	129.839	11 341
CoCi	237.931	37 645
CoCl. 6H.O	174.927	24 286
CoCrO ₄	491.85	69 183
Colle/SCN)	182.943	26 232
$Co(NO_3)_2$	291.035	46 395
Co(NO ₃) ₂	74.9326	87 467
Co ₂ O ₃	165.8646	21 975
$\operatorname{Co_8O_4}$	240.797	38 165

Table 6 (continued)

Formula	Weight, a	log a
Co ₂ P ₂ O ₇ CoS	291.810 90.997 154.995 281.102	46 510 95 904 19 032 44 886
Cr	51.996 17.3320 103.992 155.988 122.902 158.355 266.447 See K Cr(See Cor(See Cor	71 597 23 885 01 700 19 309 08 956 19 963 42 561 04)2 .12H2O 37 660 60 222 83 248 99 997 06 444 58 731 18 182 88 079 33 443 55 628 01 291 16 722 59 349 85 519
Cs 2Cs CsAl(SO ₄) ₂ ·12H ₂ O Cs ₂ CO ₃ CsCl CsClO ₄ Cs ₂ CrO ₄ Cs ₂ Cr ₂ O ₇ CsI CsNO ₃ Cs ₂ O CsOH	132.905 265.810 568.19 325.819 168.358 232.356 381.804 481.798 259.809 194.910 281.809 149.912	12 354 42 457 75 449 51 298 22 623 36 615 58 184 68 287 41 465 28 983 44 995 17 584

Table 6 (continued)

Formula	Weight, a	log a
$Cs_2PtCl_6 \dots Cs_2SO_4 \dots$	673.62 361.872	82 842 55 856
Cu	63.546	80 309 50 206
¹ / ₂ Cu	31.7730	10 412
2Cu	127.092	28 021
3Cu	190.638	34 899
CuBr ₂	223.354	30 027
$Cu(C_2H_3O_2)_2 \cdot H_2O$	199,651	30 021
(acetate) $Cu(C_5H_5N)_2(SCN)_2 \cdots$	337.91	52 880
(pyridine)	335.809	52 609
(salicylaldoximate or anthranilate) Cu(C ₉ H ₆ ON) ₂	351.855	54 636
(hydroxyquinolate) Cu(C ₁₀ H ₆ O ₂ N) ₂ ·H ₂ O · · ·	425.891	62 930
(quinaldinate)	514.13	71 107
$Cu(C_{12}H_{10}ONS)_2 \cdot H_2O$ (thionalide) $CuC_1H_1O_2N$	288.796	46 059
CuC ₁₄ H ₁₁ O ₂ N ₂	89.564	95 213
GuCN	98.999	99 563
CuCl	134.452	12 857
CuCla	170.483	23 168
CuCl ₂ ·2H ₂ O	496.46	69 588
CuHo(SCN).	190.450	27 978
Cart	187.556	27 313
$Cu(NO_3)_2$	241.602	38 310
Cu(NO ₃) ₂	295.648	47 077
$Cu(NO_3)_2 \cdot 6H_2O$	79.545	90 061
	39.773	59 959
1/ (20)	97.561	98 928
Cu(OH) ₂	143.091	15 561
	221.116	34 462
Cu ₂ (OH) ₂ CO ₃	95.610	98 050
Cus	159.16	20 183
Cu ₂ S	121.628	08 503
Cusco	159.608	20 305
CuSO ₄	249.685	39 739
GUSU4.5H2U		

Table 6 (continued)

Formula	Weight, a	log a
F 2F 3F 4F 5F 6F	18.9984 37.9968 56.9952 75.9936 94.9920 113.9904	27 872 57 974 75 584 88 078 97 769 05 687
Fe	55.847 18.616 27.924 111.69 167.54 295.559 403.651 179.55 488.310	74 700 26 989 44 598 04 801 22 412 47 064 60 601 25 419 68 870
Fe(CN) ₆ Fe(CN) ₆ Fe(C) ₃ Fe(Cl ₂ Fe(Cl ₂ Fe(Cl ₂ Fe(Cl ₃ F	211.954 115.856 126.75 198.81 162.21 270.30 177.881 482.19 392.14 241.862 349.95 71.846 159.69 26.615 79.846 231.54 106.869 150.818 87.91 119.98 151.91 278.02 399.88 562.02	32 624 06 392 10 295 29 844 21 008 43 185 25 013 68 322 59 344 38 357 54 401 85 640 20 328 42 513 90 225 36 463 02 885 17 845 94 404 07 911 18 159 44 408 60 193 74 975

Table 6 (continued)

Formula	Weight, a	log a
Ga 2Ga	69.72 139.44 502.18	84 336 14 439 70 086
Ga(C ₉ H ₆ ON) ₃ (hydroxyquinolate)	975.55	98 925
$\frac{\text{Ga}(\text{C}_9\text{H}_4\text{Br}_2\text{ON})_3}{(\text{bromohydroxyquinolate})}$ $\frac{\text{GaCl}_3}{\text{GaCl}_3}$	176.08	24 571
$Gacl_3$	187.44	27 286
111111111		
Ge	72.59	86 088
2Ge	145.18 214.40	16 191 33 122
GeCl ₄	104.59	01 949
GeS ₂	136.72	13 583
Н	1.00797 2.01594	00 345 30 448
3H	3.02391 4.03188	48 057 60 551
5H	5.0399	70 242 78 160
6H	6.0478 7.0558	84 855
8H	8.0638	90 654 15 211
H ₃ AsO ₄	141.9431 411.848	61 474
IAuCl ₄ ·4II ₂ O	43.818	64 165
1 ₃ BO ₃	61.833 80.912	79 122 90 801
1BrO	96.911	98 637 11 029
HBrO ₃	128.910 46.0259	66 300
formic acid) ${\rm IC}_2{\rm H}_3{\rm O}_2$	60.0530	77 853
Acetic)	90.0795	95 463
IC ₄ H ₄ O ₆	149.081	17 342
hydrotartrate-ion)	118.090	07 221
succinic) I ₂ C ₄ H ₄ O ₅	134.089	12 739
malic) I ₂ C ₄ H ₄ O ₈	150.089	17 635

Table 6 (continued)

Weights a	log a
192.126	28 358
210.142 173.192	32 251 23 853
209.222 122.125	32 061 08 680
138.124	14 027
137.139	13 716
165.127	21 782
166.135	22 046
218.186	33 882
254.217 173.173	40 520 23 848
209.203 292.248	32 057 46 575
27.0258 45.0179 90.036 135.054 61.0173 62.0253 90.036	43 178 65 339 95 442 13 051 78 545 79 257 95 442
126.067 63.0333 36.461 52.460 84.459 100.459 118.010 218.004 20.0064 127.9124 143.9118 175.9106 191.9100 227.941	10 060 79 957 56 183 71 983 92 665 00 199 07 192 33 846 30 117 10 691 15 810 24 529 28 310 35 782
143 175 191 227 179	.9118 .9106 .9100 .941

Table 6 (continued)

Formula	Weight, a	log a
HNO ₃	63.0129	79 943
	18.0153	25 564
H_2O	36.0307	55 667
2H ₂ O	54.0460	73 276
3H ₂ O	72.0614	85 770
4H ₂ O	90.077	95 461
5H ₂ O	108.092	03 379
6H ₂ O	126.107	10 074
7H ₂ O	144.123	15 873
8H ₂ O	34.0147	53 167
H_2O_2	17.0074	23 064
1/2H2O2	68.0295	83 270
2 2	79.9800	90 298
$^{\mathrm{HPO_3}}$	95.9794	98 218
HPO4	96.9873	98 671
H ₂ PO ₄	65.9965	81 952
H_3PO_2	81.9959	91 379
H ₃ PO ₃	97.9953	99 121
H ₃ PO ₄	177.975	25 036
$H_4P_2O_7$	251.2	40 002
HReO4		
HS see SH H ₂ S	34.080	53 250
1/11 6	17.040	23 147
1/ ₂ H ₂ S	59.090	77 151
HSO ₃	81.070	90 886
nsu ₃	162.14	20 989
2HSO ₃	82.078	91 423
H ₂ SO ₃	97.070	98 709
4 80	98.078	99 157
H ₂ SO ₄	49.039	69 054
2H ₂ SO ₄	196.16	29 261
$H_2S_2O_3$	114.14	05 744
	114.077	05 720
H-Se	80.98	90 838
H ₂ Se	128.97	11 049
H ₂ SeO ₄	144.97	16 128
HoTe	129.62	11 267 28 697
H ₂ Te H ₂ TeO ₄	193.63	
$H_6 TeO_6$	229.64	36 105
H_2WO_4	249.86	39 770

Table 6 (continued)

Formula	Weight, a	log a
	200.59	30 231
(g	100.295	00 128
1/2Hg		60 334
2Hg	401.18	55 678
IgBr ₂	360.40	50 335
$\operatorname{Hg}(C_2H_3O_2)_2 \dots \dots \dots$	318.68	90 999
(acetate) Ig(C ₅ H ₅ N) ₂ Cr ₂ O ₇	574.78	75 950
(pyridine) $Ig(C_7H_6O_2N)_2$	472.85	67 472
(anthranifate) Hg(C ₁₂ H ₁₀ ONS) ₂	633.16	80 151
(thionalide)	288.61	46 031
(oxalate)	050.00	40 248
$Hg(CN)_2 \dots \dots$	252.63	43 377
$HgCl_2$	271.50	67 402
Hg_2Cl_2	472.09	
HgCrO4	316.58	50 048
HgI ₂	454.40	65 744
III (NO.)	324.60	51 135
$Hg(NO_3)_2$	342.62	53 481
$Hg(NO_3)_2 \cdot H_2O \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	525.19	72 032
$Hg_2(NO_3)_2 \dots \dots$		74 913
$Hg_3(NO_3)_2 \cdot 2H_2O \cdot \cdot \cdot \cdot \cdot \cdot$	561.22	33 564
HgO	216.59	62 032
Hg ₂ O	417.18	62 052
HgS	232.65	36 670
Hg,S	433.24	63 673
	316.75	50 072
$Hg(SCN)_2$	517.34	71 378
$\text{Hg}_2(\text{SCN})_2 \dots \dots$		47 224
HgSO ₄	. 296.65	69 657
Hg_2SO_4	. 497.24	69 691
I	126.9044	10 348
21	253.8088	40 451
31	380.7132	58 060
		70 554
4I	. 507.6176	80 245
51	. 634.5220	88 163
6I	. 761.4264	
ICl	. 162.357	21 047
ICl ₃	233.263	36 785
1 10	142.9038	15 504
IO ₃		24 280
10 1/6103	. 174.9026	46 464
IO4 16103	. 29.1504	28 081
1	. 190.9020	20 001

Table 6 (continued)

Formula	Weight, a	log a
In	114.82	06 002 58 289
¹ / ₃ In	38.273	36 105
21n	229.64	73 821
$In(C_9H_6ON)_3$	547.28	13 021
(hydroxyquinolate)	221.18	34 475
InCl ₃	277.64	44 348
In_2O_3	209.79	32 178
$\operatorname{Inr} \mathcal{O}_4$		
	192.2	28 375
Ir	48.05	68 169
1/4lr	96.10	98 272
1/2 Ir	298.6	47 509
IrCl ₃	334.0	52 375
IrCl ₄	404.9	60 735
IrCl ₆	224.2	35 064
Ir(OH) ₃	243.2	38 596
Ir(OH) ₄	260.2	41 531
IrS	224.3	35 083
115		
	39,102	59 220
К	78.204	89 323
2K	117.306	06 932
3K	156.408	19 426
4K	195.510	29 117
5K	234.612	37 035
6K	474.39	67 614
K Al(SO ₄) ₂ ·12H ₂ O · · · · · · ·	278.337	44 457
KAlSi ₃ O ₈	125.907	10 005
KBr	119.006	07 557
K Hwf)	167.004	22 273
1/ K BrO	27.834	44 458
1/ ₆ KBrO ₃ KC ₂ H ₃ O ₂	98.147	99 187
(acetate)	235.285	37 159
$K_2C_4H_4O_6 \cdot 1/_2H_2O$		1, , , ,
(tartrate)	358.340	55 430
$K(C_6H_5)_4B$	324.424	51 111
(citrate)	65,120	81 371
KCN	138.213	14 055
K2CO2	101 000	26 538
K ₂ C ₂ O ₄ ·H ₂ O	74.555	87 248
KCl	14.000	01 240

Formula	Weight, a	log a
KC10-	122.553	08 832
1/2KClOa	20.426	31 018
KClO ₃	138.553	14 162
K Co(NO ₂)	452.272	65 540
$K_3Co(NO_2)_6$	437.35	64 083
K-CrO.	194 . 198	28 824
1/ _c K ₋ CrO.	64.733	81 113
K-Cr-O-	294.192	46 863
K ₂ Cr ₂ O ₇	49.032	69 048
1/ ₂ K ₂ Cr ₂ O ₇	147.096	16 760
$Cr(SO_4)_2 \cdot 12H_2O$	499.41	69 846
(F	58.100	76 418
K ₃ Fe(CN) ₆	329.26	51 754
4Fe(CN) ₆	368.36	56 627
Fo(CN) 3H O	422.41	62 573
$(4 \text{Fe}(\text{CN})_6 \cdot 3 \text{H}_2\text{O} \cdot \cdot$	503.26	70 179
$(H_2AsO_4)_2 \cdot 12H_2O$	180.037	25 536
Z ₂ HAsO ₄	218.131	33 872
HC H O	188.183	27 458
(hydrotartrate)	100.100	27 400
KHC ₄ H ₄ O ₆	204.229	31 012
(hydrophthalate) (HCO ₃	100.119	00 052
CHC,O,·H,O	146.145	16 478
(H ₀ (C ₀ O ₄) ₀ ·2H ₀ O	254.196	40 517
CHF.	78.107	89 269
$\langle H(\tilde{I}O_n)_n \rangle$. 389.915	59 097
1/4°K H(10°)°	32.4929	51 179
(H-PO-	104.091	01 741
CH.PO.	136.089	13 382
C ₂ HPO ₄	174.183	24 101
CHSO3	120.172	07 980
KHSO4	136.172	13 409
(1	. 1 466.006	22 012
KI ₂	419 815	62 306
KIO ₃	214.005	33 042
KIO ₃	35.6674	55 227
(10).	220 004	36 174
KMnO ₄	158.038	19 876
1/5KMnO	31.6075	49 979
1/2KMnO.	52,6792	72 164
KMnO ₄ 1/ ₅ KMnO ₄ 1/ ₃ KMnO ₄ 2KMnO ₄	316.075	49 979
KN(CoHo)o(NO-)	477.307	67 880
(dipicrylaminate)	477.307	07 000
$KN(C_6H_2)_2(NO_2)_6$ (diplorylaminate) KNO_2 KNO_3	. 85.108	92 997
KNO.	101,107	00 478

Table 6 (continued)

Formula	Weight, a	log a
KNaC ₄ H ₄ O ₆ ·4H ₂ O	282,226	45 060
K ₂ O	94.203	97 406
1/.K.O	47.102	67 304
KY8C ₄ H ₄ O ₆ ·4H ₂ O	81.119	90 913
KOH	56.109	74 903
K ₃ PO ₄	212.277	32 690
K ₂ PtCl ₆	486.01	68 665
KReO ₄	289.3	46 135
K ₂ S	110.268	04 245
K C KII O	200 345	30 178
K CON	97.184	98 759
KSCN	158,266	19 939
K ₂ SU ₃	194.297	28 847
K ₂ SU ₃ ·2H ₂ U	174.266	24 121
K ₂ SU ₄	222.33	34 700
$K_2S_2O_5$	254.33	40 540
K ₂ S ₂ O ₇	270.33	43 189
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	333.93	52 366
K SiF	220.280	34 298
KaTiFa	240.09	38 037
K ₂ TiF ₆	326.05	51 328
La	138.91	14 273
1/ ₃ La	46.303	66 561
-/3La	277.82	44 376
2La	343.07	53 538
$La(C_2H_3O_2)_3 \cdot 1 + H_2O$	371.38	56 982
LaCl ₃ ·7H ₂ O	195.91	29 206
Lar ₃	433.02	63 651
La(NO ₃) ₃ ·6H ₂ O · · · · · ·	325.82	51 298
Ja ₂ U ₃	566.00	75 282
$\begin{array}{l} {\rm LaCl_3 \cdot 7H_2O} \\ {\rm LaF_3} \\ {\rm La(NO_3)_3 \cdot 6H_2O} \\ {\rm La_2O_3} \\ {\rm La_2(SO_4)_3} \end{array}$		
i	6.939	84 130
	13.878	14 233
2Li	20.817	31 842
3Li	86.843	93 873
iBr	281.981	45 022
(Cifrate)	73,887	86 857
i ₂ CO ₃	42.392	62 728
iCl	25.937	
iF	25.937	41 392

Formula	Weight, a	log a
LiH LiI LiI LiI .3H ₂ O LiNO ₃ LiNO ₃ .3H ₂ O Li ₂ O Li ₂ O LiOH Li ₃ PO ₄ Li ₂ SO ₄ Li ₂ SO ₄	7.947 133.843 187.889 68.944 122.990 29.877 23.946 115.788 109.940 127.955	90 020 12 660 27 390 83 850 08 987 47 534 37 923 06 366 04 116 10 706
Mg 1/2Mg 2Mg 3Mg 3Mg Mg2As2O7 MgBr2 MgBr2·6H2O Mg(C ₉ H ₆ ON)2 (hydroxyquinolate) Mg(C ₉ H ₆ ON)2·2H2O MgCO3 MgCl2 MgCl2·6H2O MgCl2·6H2O Mg(ClO4)2 Mg(ClO4)2 Mg(HCO3)2 MgNH4ASO4·6H2O MgNH4PO4·6H2O Mg(NO3)2 Mg(NO3)3 Mg(OH)2 MgSO4 MgSO4 MgSO4 MgSO3 MgSO3	245.407 148.315 256.407 40.304 20.152 58.320 222.553 120.367 246.474	38 570 08 466 68 673 86 282 49 199 26 508 46 569 49 501 54 238 92 590 97 869 30 814 34 871 52 022 79 450 16 536 46 143 38 988 17 119 40 893 60 535 30 432 76 582 34 743 08 051 39 177 00 169 14 828

Table 6 (continued)

Formula	Weight, a	log a
Mn	54.9381 27.46905 109.8762 164.8143 245.089	73 987 43 884 04 090 21 699 38 932
Mn(C ₅ H ₅ N) ₄ (SCN) ₂	487.51	68 798
(pyridiné) MnCO ₃ MnCl ₂ MnCl ₂ MnCl ₂ MnNH ₄ PO ₄ ·H ₂ O MnNH ₄ PO ₄ ·H ₂ O Mn(NO ₃) ₂ Mn(NO ₃) ₂ ·6H ₂ O MnO MnO MnO ₂ MnO ₄ Mn ₂ O ₃ Mn ₃ O ₄ Mn(OH) ₂ Mn ₂ P ₂ O ₇ MnS MnSO ₄	114.9475 125.844 197.905 185.956 178.948 287.040 70.9375 86.9369 118.9357 157.8744 228.8119 88.9528 283.820 87.002 151.000 223.061 241.076 277.107	06 050 09 983 29 646 26 941 25 273 45 794 85 088 93 920 07 531 19 831 35 948 94 916 45 304 93 953 17 898 34 842 38 215 44 265
Mo 2Mo 3Mo MoO ₃ MoO ₄ MoO ₂ (C ₉ H ₆ ON) ₂ (hydroxyquinolate) MoS ₂	95.94 191.88 287.82 143.94 159.94 416.25	98 200 28 303 45 912 15 818 20 396 61 935 20 431 28 360
MoS ₃	192,10	
N	14,0067 28,0134 42,0201 56,0268 70,0335	14 634 44 737 62 346 74 840 84 531

Formula	Weight, a	log a
037	84.0402	92 449
6N ("reletin")	77.7372	89 063
5.55N ("gelatin")	87.5419	94 222
- 6.25N ("albumen")	89.2227	95 048
6.37N ("casein")	15.0147	17 652
NH	16.0226	20 473
NH ₂ · · · · · · · · · · · · · · · · · · ·	32.0453	50 576
2NH ₂	48.0679	68 186
3NH ₂	17.0306	23 123
NH ₃	34.0612	53 226
NH ₃	51.0918	70 835
3N113	68.1224	83 329
4NH ₃	85.1531	93 020
$5NH_3$	102.1837	00 938
6NH ₃		25 620
NH ₄	18.0386	55 723
2NH ₄	36.0772 54.1157	73 332
3NH ₄		50 576
N ₂ H ₄	32.0453	83 573
N ₂ H ₄ ·HCl	68.506	02 105
N ₂ H ₄ ·2HCl	104.967	69 950
$N_2H_4\cdot H_2O$	50.0606	11 435
$N_2H_4 \cdot H_2SO_4 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	130.123	51 886
NH ₂ OH	33.0262	84 190
NH ₂ OH·HCl	69.487	21 521
$NH_2^{\circ}OH \cdot HCl \dots \dots$	164.138	98 719
NH ₂ SO ₃ H	97.093	
$NH_4Al(SO_4)_2 \cdot 12H_2O$	453.33	65 642
NH ₄ Dr	97.948	99 100
$NH_4C_2H_3O_2$	77.0836	88 696
(acetate)	96.0865	98 266
(NH ₄) ₂ CO ₃	114.102	05 729
$(NH_4)_2CO_3$	142:112	15 263
(1114)20204.1130	548.23	73 896
(NH ₄) ₂ Ce(NO ₃) ₆	632.55	80 109
(NH ₄) ₄ Ce(SO ₄) ₄ ·2H ₂ O NH ₄ Cl	53.492	72 829
NH ₄ ClO ₄	117.489	07 000
NH ₄ ClO ₄	152.071	18 205
(NH ₄) ₂ CrO ₄	252.065	40 151
(NH ₄) ₂ Cr ₂ O ₇		56 864
NH ₄ Fe(SO ₄) ₂ ·12H ₂ O	37.0370	68 322
(NH) Fo(SO) SHO	482.19	59 341
(NH ₄) ₂ Fe(SO ₄) ₂ ·6H ₂ O	392.11	
NH HE	79.0559	89 793
NH_4HF_2 $NH_4H_2PO_4$	57.0434	75 621
NH ₄ H ₂ PO ₄	115.026	06 080
(NII ₄) ₂ HPO ₄	. 132.057	12 076

Table 6 (continued)

Formula	Weight, a	log a
NH ₄ HS	51,111	70 851
NH ₄ HS	115.108	06 111
NH ₄ HSU ₄	468.99	67 116
NH ₄ HSO ₄	144.9430	16 120
NH ₄ I	1235.9	09 197
(NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O		80 648
NH_4NO_2	64.0441	
NH ₄ NO ₃	80.0435	90 333
NH ₄ NO ₃	209.069	32 029
NH.OH	35,0460	54 464
(NH.) PO. 12MoO2	1876.3	27 330
$(NH_4)_2$ PdCl ₆	355.2	55 047
(NH.) PtCla	443.89	64 728
	68.141	83 341
NH SCN	76.120	88 150
$(NH_4)_2S$ NH_4SGN $(NH_4)_2SO_3$ $(NH_4)_2SO_4$	116.139	06 498
(NH ₄) ₂ SO ₃	132.139	12 103
(NH ₄) ₂ SU ₄	228.20	35 832
$(NH_4)_2S_2O_8$	178.154	25 080
$(NH_4)_2S_2S_6$		56 525
$(NH_4)_2SnCl_6$	116.979	06 811
NH_4VO_3	30.0061	47 721
NO		66 281
NO ₂	92.011	96 384
2NO ₂	138.017	13 993
3NO-	100.000	26 487
4NO.	230.028	36 178
5 N O	200.020	44 096
		79 243
NO.	104.010	09 346
9 N(1)		26 955
2010	100.010	
ANO		39 449
NI ()		64 358
N ₂ O ₃		88 088
N O		96 384
		03 346
N ₂ O ₅		
Na	22.9898	36 154
	45.9796	66 257
2Na	68.9694	83 866
3Na	91.9592	96 360
4Na	114.9490	06 051
5Na	137.9398	13 969
6No	209.9413	32 210
No Alto	262.225	41 867
NaAlSi ₃ O ₈	202.220	11 007

Table 6 (continued)

Formula	Weight, a	log a
NaAsO ₂	129.9102	11 364
Na ₃ AsO ₄ ·12H ₂ O	424.073	62 744
NaB(C ₆ H ₅) ₄	342.229	53 432
No DU	37.833	57 787
NaBH ₄	137.861	13 944
NaBO ₂ ·4H ₂ O	153.860	18 713
NaBO ₃ ·4H ₂ O	201.22	30 367
Na ₂ B ₄ O ₇		00 264
Na ₂ B ₄ O ₇	100.61	58 135
Na ₂ B ₄ O ₇ ·10H ₂ O	381.37	28 033
1/2Na ₃ B ₄ O ₇ ·10H ₂ O	190.69	44 711
NaDio3	279.968	01 239
NaBr	102.894	
NaBr-2H ₂ U	138.925	14 278
NaBrO ₃	150.892	17 867
1/aNaBrO ₂	25.1487	40 052
NaC ₂ H ₃ O ₂	82.0348	91 400
(acetate)	136.081	13 380
NaC ₂ H ₃ O ₂ ·3H ₂ O		36 188
Na ₂ Č ₄ H̃ ₄ Õ ₆ ·2H̃ ₂ O	230.083	30 100
Na ₃ C ₆ H ₅ O ₇ ·5 ¹ / ₂ H ₂ O	357.156	55 286
(citrate)	007.100	
Na ₂ C ₂ H ₄ O ₄	210.098	32 242
Na ₂ C ₈ H ₄ O ₄		-5 -0.5
NaCN	49.0077	69 026
Na ₂ CO ₂	105.9890	02526
1/oNaoCO	52.9945	72 423
Na CO · 10HO	286,142	45 658
Na ₂ CO ₃ ·10H ₂ O	143.071	15 555
Na ₂ C ₂ O ₄	134.000	12 710
(oxalate)	101,000	
1/2Na ₂ C ₂ O ₄	67.0000	82 607
	58.443	76 673
NaClO	74.442	87 182
NaClO ₃	106.441	02 711
NaClO ₄	122,440	08 792
Na ₂ Co(NO ₂) ₂	403.936	60 631
Na ₂ CrO ₄ · 4H ₂ O · · · · · · · · · · · · · · · · · · ·	161.973	20.944
Na ₂ CrO ₄ ·4H ₂ O	234.035	36 928
Na ₂ Cr ₂ O ₂	261.967	41 825
Na ₂ Cr ₂ O ₇ · 2H ₂ O Na _F · CN · 40H O	297.998	47 421
NaF		62 313
Na Fe(CN) 10H O	41.9882	68 491
Nac Fe(CN) NOL SHO	484.07	47 415
NaF Na ₄ Fe(CN) ₆ ·10H ₂ O Na ₂ [Fe(CN) ₅ NO]·2H ₂ O (nitroprussiate)	297.953	47 415
Na ₂ HAsO ₃	169.9074	23 021
	109.9074	20 001

Table 6 (continued)

Formula	Weight, a	log a
1	185.907	26 930
Na ₂ HASU ₄	312.014	49 417
Na ₂ HAsO ₄ ·/H ₂ O · · · · · ·	402.091	60 432
Na ₂ HAsO ₄	172.071	23 571
(hydrotartrate) NaHC ₈ H ₄ O ₄ (hydrophthalate)	188.116	27 443
(hydrophthalate) Na ₂ H ₂ C ₁₀ H ₁₂ O ₈ N ₂ (ethylenediaminetetraacetate, com-	336.211	52 661
(ethylenediaminetetraacetate, com- plexone III, trilon B)	372.242	57 083
Na ₂ H ₂ C ₁₀ H ₁₂ O ₈ N ₂ ·2H ₂ O (ethylenediaminetetraacetate, dihyd-	312.242	31 000
rate)	84.0071	92 432
NaHCO ₃	112.018	04 929
NaHC ₂ O ₄	130.033	11 405
NaHC ₂ O ₄ ·H ₂ O · · · · · · ·	87.9783	94 438
NaH ₂ PO ₂	119.977	07 910
NaH ₂ PO ₄	156.008	19 315
NaH ₂ PO ₄ ·2H ₂ O	141.959	15 216
Na ₂ HPO ₄ ·2H ₂ O	177.990	25 040
Na ₂ HPO ₄ ·2H ₂ O · · · · · · ·	358.143	55 406
Na ₂ HPO ₄ ·12H ₂ O·····	56.062	74 867
NaHS	104.060	01 728
NaHSO ₃ · · · · · · · · · · · · · · · · · · ·	120.059	07 939
Naliso ₄	150.96	17 886
NaHSO ₃	149.8942	17 578
Nal	197.8924	29 643
NaIO ₃	213.892	33 019
NaHSeO ₃ NaI NaIO ₃ NaIO ₄ NaKC ₄ H ₄ O ₆ \cdot 4H ₂ O (rartrate)	282.226	45 060
NaMg(UO ₂) ₃ (C ₂ H ₃ O ₂) ₉ ·6H ₂ O Na ₂ MoO ₄ Na ₂ MoO ₄ ·2H ₂ O Na ₃ N ₃	1496.88	17 518
NaMg(UO2)3(C2H3O2)9 0112	205.92	31 370
Na ₂ MoU ₄	241.95	38 373 81 298
Na ₂ MoU ₄ ·2H ₂ U	65.0099	59 120
NaN ₃ NaNH ₂	39.0124	13 675
NaNH ₂ NaNH ₄ HPO ₄ NaNH ₄ HPO ₄ .4H ₂ O	137.008	32 029
NaNH UDO AH-O	209.069	83 882
NaNO ₂	68.9953	92 939
Ivalvua	84.9947	79 224
NaNO ₂	61.9790	49 121
IVagU	30.9895	89 197
No O	77.9784	
Na ₂ U ₂ · · · · · · · · · · · · · · · · · · ·	39.9972	60 203
NaUH	101.9618	00 844
NaNO ₃ Na ₂ O 1/ ₂ Na ₂ O Na ₂ O Na ₂ O NaOH NaPO ₃ Na ₃ PO Na ₂ PO Na ₂ PO Na ₃ PO	163.941	21 469
Na ₃ PO ₄ Na ₃ PO ₄ ·12H ₂ O	380.125	57 993

Table 6 (continued)

Formula	Weight, a	log a
Na ₄ P ₂ O ₇ · 10H ₂ O Na ₄ P ₂ O ₇ · 10H ₂ O Na ₂ S · 10H ₂ O Na ₂ S · 9H ₂ O Na ₂ SO ₃ · 7H ₂ O Na ₂ SO ₄ · 10H ₂ O Na ₂ SO ₄ · 10H ₂ O Na ₂ SO ₃ · 1/ ₂ Na ₂ S ₂ O ₃ Na ₂ S ₂ O ₃ · 5H ₂ O 1/ ₂ Na ₂ S ₂ O ₃ · 5H ₂ O Na ₂ S ₂ O ₄ · 2H ₂ O Na ₂ S ₂ O ₄ · 2H ₂ O Na ₂ S ₂ O ₅ · S Na ₂ S ₂ O ₆ · 2H ₂ O Na ₂ S ₂ O ₆ · Na ₂ S ₂ O ₈ · Na ₂ S ₂ O ₈ · Na ₂ S ₁ O ₈ · Na ₂ S ₁ O ₈ · Na ₂ S ₁ O ₉ · Na ₂ S ₂ O ₉ · Na ₂ S ₁ O ₉ · Na ₂ S ₂ O ₉ · Na ₂ C	265.903 446.056 78.044 240.182 81.072 126.042 252.149 142.041 322.195 158.11 79.053 248.18 124.091 174.11 210.14 190.10 238.10 481.11 172.94 188.056 122.064 266.71 634.04 742.13 193.991 293.81 329.84 1537.94	42 472 64 939 89 234 38 054 90 887 10 051 40 166 15 241 50 812 19 896 89 792 39 477 09 374 24 082 32 251 27 898 37 676 68 224 23 790 27 429 08 659 42 604 80 212 87 048 28 778 46 807 51 830 18 694
Nb 2Nb	92.906 185.812 270.17 265.809	96 804 26 907 43 164 42 457
Ni $\frac{1/_2N_1}{2N_1}$ $2N_1$ $2N_1$ $Ni(C_2H_3O_2)_2 \cdot 4H_2O$ (acetate) $Ni(C_4H_7O_2N_2)_2$ (dimethylglyoximate)	58.71 29.355 117.42 248.86 288.94	76 871 46 768 06 974 39 596 46 081

Table 6 (continued)

Formula W	Veight, a	log a
$Ni(C_5H_5N)_4(SCN)_2$ 4	91.28	69 133
(maral dima)	30.97	51 979
(anthranilate)	47.02	54 035
d' l'a alatal	83.05	58 326
N:CO	18.72	07 452
Ni(CO)	70.75	23 236
NiCl 6H O	37.71	37 605
	29.62	11 267
Ni(NO)	82.72	26 179
Ni(NO) SHO	90.81	46 361
	95.00	59 660
	74.71	87 338
N: O	65.42	21 859
N; DO	91.36	46 443
	90.77	95 794 18 969
Nich	54.77	44 852
NiSO ₄ ·7H ₂ O	80.88	44 032
111504.71120		
	15.9994	20 410
0	7.9997	90 307
1/20	31.9988	50 513
0.6	47.9982	68 122
	63.9976	80 616
	79.997	90 307
50	95.996	98 225
60	11.996	04 920
70	27.995	10 719
80	31.0345	49 184
OCH ₃	45.0616	65 381
OC_2H_5	42.0173	62 343
OCN	17.0074	23 064
	34.0147	53 167
2OH	51.0221	70 776
	68.0295	83 270
4OH .	85.037	92 961
5OH	02.044	00 879
60H		
Os	190.2	27 921

Table 6 (continued)

Table 6 (continued)

Formula	Weight, a	log a
PbCl ₄ PbClF PbCrO ₄ PbF ₂ PbI ₂ PbMoO ₄ Pb(NO ₃) ₂	349.00 261.64 323.18 245.19 461.00 367.13 331.20	54 283 41 770 50 944 38 950 66 370 56 482 52 009
PbO PbO ₂ Pb ₃ O ₄	223.19 239.19 685.57 241.20 239.25 287.25	34 867 37 874 83 605 38 238 37 885 45 826
PbSO ₄	303.25 455.04 	48 180 65 805
2Pd	212.8 336.6 378.7	32 797 52 711 57 830
Pa(CoffgON)	394.7	59 627
(hydroxyquinolate) Pd(CN) ₂ PdCl ₂ PdCl ₂ PdCl ₂ ·2H ₂ O PdCl ₄ PdCl ₆ PdL ₂ Pd(NO ₃) ₂ PdO PdS PdS	158.4 177.3 213.3 248.2 319.1 360.2 230.4 122.4 138.5 202.5 238.5	19 976 24 871 32 899 39 480 50 393 55 654 36 248 08 778 14 145 30 643 37 749
PdSO ₄ ·2H ₂ O · · · · · · · ·	230.3	01 149
Pt	195.09 48.773 97.545 390.18 336.90 407.81 227.15	29 024 68 818 98 921 59 127 52 750 61 046 35 631

Table 6 (continued)

Formula	Weight, a	log a
Rb 2Rb	85.47 170.94 520.76 230.95 120.92 184.92 212.37 147.47 186.94 578.75 267.00	93 181 23 284 71 664 36 352 08 250 26 698 32 709 16 870 27 170 76 249 42 651
Re 2Re	186.2 372.4 292.6 363.5 218.2 234.2 250.2 484.4	26 998 57 101 46 627 56 050 33 885 36 959 39 829 68 520
Rh 2Rh	102.905 205.810 209.264 134.904 253.808	01 244 31 347 32 069 13 002 40 451
Ru 2Ru RuO ₄ S	101.07 202.14 165.07	00 462 30 565 21 767
2S	32.064 64.13 96.19 128.26 160.32 192.38 58.082 116.16	50 602 80 706 98 313 10 809 20 499 28 416 76 404 06 506

Table 6 (continued)

Formula	Weight, a	log a
3SCN	174.25	24 117
4SCN	232.33	36 611
5SCN	290.41	46 301
	348.49	54 219
6SCN	33.072	51 946
SH		82 046
2SH	66.14	0= 0 = 0
3SH	99.22	99 660
SO ₂	64.063	80 661
SO ₂	80.062	90 343
SO ₃ H	81.070	90 885
2SO ₃ H	162.14	20 989
SO ₃ Na	103.052	01 306
200 No	206.10	31 408
2SO ₃ Na	96.062	98 255
504	192.12	28 357
SO ₄	288.18	45 966
$3SO_A$	112.13	04 972
S_2O_3		10 765
$S_2^2O_4$	128.13	24 581
S_2O_7	176.12	
$S_2^{\bullet}O_8$	192.12	28 357
$S_4^2O_6$	224.25	35 073
5406		
	121.75	08 547
Sb		00 050
	24 350	38 650
1/ ₅ Sb	24.350	38 650 60 834
1/ ₅ Sb	24.350 40.583	60 834
1/ ₅ Sb	24.350 40.583 60.875	60 834 78 444
1/ ₅ Sb	24.350 40.583 60.875 243.50	60 834 78 444 38 650
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb	24.350 40.583 60.875	60 834 78 444
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb SbC-H-O	24.350 40.583 60.875 243.50 262.85	60 834 78 444 38 650 41 971
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb SbC ₆ H ₆ O ₄ (pyrograllate)	24.350 40.583 60.875 243.50	60 834 78 444 38 650
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogallate) Sb(C ₆ H ₄ ON) ₂	24.350 40.583 60.875 243.50 262.85 554.21	60 834 78 444 38 650 41 971 74 367
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogaliate) Sb(C ₉ H ₆ ON) ₃ .	24.350 40.583 60.875 243.50 262.85	60 834 78 444 38 650 41 971
1/ ₅ Sh 1/ ₃ Sh 1/ ₂ Sh 2Sh 2Sh ShC ₆ H ₅ O ₄ (pyrogallate) Sh(C ₉ H ₆ ON) ₃ (hydroxyquinolate) Sh(C ₁₂ H ₁₀ ONS) ₃ (thioragide)	24.350 40.583 60.875 243.50 262.85 554.21 770.60	60 834 78 444 38 650 41 971 74 367 88 683
1/ ₅ Sh 1/ ₃ Sh 1/ ₂ Sh 2Sh 2Sh ShC ₆ H ₅ O ₄ (pyrogallate) Sh(C ₉ H ₆ ON) ₃ (hydroxyquinolate) Sh(C ₁₂ H ₁₀ ONS) ₃ (thioragide)	24.350 40.583 60.875 243.50 262.85 554.21 770.60 228.11	60 834 78 444 38 650 41 971 74 367 88 683 35 814
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogallate) Sb(C ₉ H ₆ ON) ₃ (hydroxyquinolate) Sb(C ₁₂ H ₁₀ ONS) ₃ (thionalide) SbCl ₂	24.350 40.583 60.875 243.50 262.85 554.21 770.60 228.11 299.02	60 834 78 444 38 650 41 971 74 367 88 683 35 814 47 570
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogaliate) Sb(C ₉ H ₈ ON) ₃ (hydroxyquinolate) Sb(C ₁₂ H ₁₀ ONS) ₃ (thionalide) SbCl ₃ SbCl ₄	24.350 40.583 60.875 243.50 262.85 554.21 770.60 228.11 299.02 502.46	60 834 78 444 38 650 41 971 74 367 88 683 35 814 47 570 70 110
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogallate) Sb(C ₉ H ₆ ON) ₃ (hydroxyquinolate) Sb(C ₁₂ H ₁₀ ONS) ₃ (thionalide) SbCl ₃ SbCl ₃ SbCl ₅ SbI ₉	24.350 40.583 60.875 243.50 262.85 554.21 770.60 228.11 299.02 502.46 173.20	60 834 78 444 38 650 41 971 74 367 88 683 35 814 47 570 70 110 23 855
1/ ₅ Sb 1/ ₃ Sb 1/ ₃ Sb 2Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogallate) Sb(C ₉ H ₆ ON) ₃ (hydroxyquinolate) Sb(C ₁₂ H ₁₀ ONS) ₃ (thionalide) SbCl ₃ SbCl ₃ SbSl ₃ SbOCl	24.350 40.583 60.875 243.50 262.85 554.21 770.60 228.11 299.02 502.46 173.20 291.50	60 834 78 444 38 650 41 971 74 367 88 683 35 814 47 570 70 110 23 855 46 464
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogallate) Sb(C ₉ H ₆ ON) ₃ (hydroxyquinolate) Sb(C ₁₂ H ₁₀ ONS) ₃ (thionalide) SbCl ₅ SbCl ₅ SbCl ₅ SbI ₃ SbOCl Sb ₉ O ₉	24.350 40.583 60.875 243.50 262.85 554.21 770.60 228.11 299.02 502.46 173.20 291.50 323.50	60 834 78 444 38 650 41 971 74 367 88 683 35 814 47 570 70 110 23 855 46 464 50 987
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogaliate) Sb(C ₉ H ₈ ON) ₃ (hydroxyquinolate) Sb(C ₁₂ H ₁₀ ONS) ₃ (thionalide) SbCl ₃ SbCl ₅ SbI ₃ SbCl ₅ SbJ ₁₃ SbOCl Sb ₂ O ₃ Sb ₂ O ₃	24.350 40.583 60.875 243.50 262.85 554.21 770.60 228.11 299.02 502.46 173.20 291.50	60 834 78 444 38 650 41 971 74 367 88 683 35 814 47 570 70 110 23 855 46 464
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogallate) Sb(C ₀ H ₄ ON) ₃ (hydroxyquinolate) Sb(C ₁₂ H ₁₀ ONS) ₃ (thionalide) SbCl ₃ SbCl ₅ SbI ₃ SbCl ₅ SbI ₃ SbOCl Sb ₂ O ₃ Sb ₂ O ₅ SbS,	24.350 40.583 60.875 243.50 262.85 554.21 770.60 228.11 299.02 502.46 173.20 291.50 323.50 250.01	60 834 78 444 38 650 41 971 74 367 88 683 35 814 47 570 70 110 23 855 46 464 50 987
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogallate) Sb(C ₀ H ₆ ON) ₃ (hydroxyquinolate) Sb(C ₁₂ H ₁₀ ONS) ₃ (thionalide) SbCl ₃ SbCl ₅ SbI ₃ SbCl ₅ SbI ₃ SbOCl Sb ₂ O ₃ Sb ₂ O ₅ SbS ₄ Sb ₂ S ₉	24.350 40.583 60.875 243.50 262.85 554.21 770.60 228.11 299.02 502.46 173.20 291.50 323.50 250.01 339.69	60 834 78 444 38 650 41 971 74 367 88 683 35 814 47 570 70 110 23 855 46 464 50 987 39 796 53 108
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogallate) Sb(C ₀ H ₆ ON) ₃ (hydroxyquinolate) Sb(C ₁₂ H ₁₀ ONS) ₃ (thionalide) SbCl ₃ SbCl ₅ SbI ₃ SbCl ₅ SbI ₃ SbOCl Sb ₂ O ₃ Sb ₂ O ₅ SbS ₄ Sb ₂ S ₉	24.350 40.583 60.875 243.50 262.85 554.21 770.60 228.11 299.02 502.46 173.20 291.50 323.50 250.01	60 834 78 444 38 650 41 971 74 367 88 683 35 814 47 570 70 110 23 855 46 464 50 987 39 796
1/ ₅ Sb 1/ ₃ Sb 1/ ₂ Sb 2Sb 2Sb SbC ₆ H ₅ O ₄ (pyrogallate) Sb(C ₀ H ₄ ON) ₃ (hydroxyquinolate) Sb(C ₁₂ H ₁₀ ONS) ₃ (thionalide) SbCl ₃ SbCl ₅ SbI ₃ SbCl ₅ SbI ₃ SbOCl Sb ₂ O ₃ Sb ₂ O ₅ SbS,	24.350 40.583 60.875 243.50 262.85 554.21 770.60 228.11 299.02 502.46 173.20 291.50 323.50 250.01 339.69	60 834 78 444 38 650 41 971 74 367 88 683 35 814 47 570 70 110 23 855 46 464 50 987 39 796 53 108

Table 6 (continued)

Formula	Weight, a	log a
Sc 2Sc Sc ₂ O ₃	44.956 89.912 137.910	65 279 95 382 13 960
Se	78.96 157.92 110.96 126.96 142.96	89 741 19 844 04 517 10 367 15 521
Si 2Si 3Si 4Si 5Si 6Si 5Si 6Si 5Si 6Si 5Si 3Si 3Si 3Si 3Si 3Si 3Si 4Si 5Si	28.086 56.172 84.258 112.344 140.43 168.52 40.097 169.90 104.080 142.076 32.118 60.085 76.085 76.084 152.168 228.253 304.34 92.084 184.167 168.168 212.253	44 849 74 952 92 561 05 055 14 746 22 665 60 311 23 019 01 737 15 252 50 675 77 877 88 129 18 232 35 842 48 336 96 418 26 521 22 574 32 685
Sn	118.69 29.673 59.345 237.38 189.60 225.63 260.50 134.69 150.69	07 441 47 236 77 338 37 544 27 784 35 340 41 581 12 934 17 808

Table S (continued)

Formula	Weight, a	log a
SnS	150.75 182.82 214.88	17 826 26 202 33 220
	1 07 00	
Sr	87.62 43.810 175.24 214.72	94 260 64 157 24 363 33 187
(acetate) SrC ₂ O ₄ SrC ₂ O ₄ SrC ₂ O ₄ SrCO ₃ SrCl ₂ SrC	175.64 193.66 147.63	24 462 28 704 16 917
SrCl ₂	158.53 266.62 203.61 211.63	20 011 42 589 30 880 32 558
$Sr(NO_3)_2 \cdot 4H_2O$	283.69 103.62	45 284 01 544 08 504 42 449
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	265.76 167.68 183.68 199.75	22 448 26 406 30 049
		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180.948 361.896 358.21 441.893	25 755 55 858 55 414 64 532
		i
Te	127.60 255.20 159.60 175.60 191.60	10 585 40 688 20 303 24 452 28 240
TeO ₄		
Th	232.038 464.076 808.655	36 556 66 659 90 776
Th(C ₉ H ₆ ON) ₄	000.000	

Table 6 (continued)

Formula	Weight, a	log a
Th(C ₉ H ₆ ON) ₄ ·(C ₉ H ₇ ON) (hydroxyquino-line) (hydroxyquino-	953.817	97 947
Th(C ₁₀ H ₇ O ₅ N ₄) ₄ ·H ₂ O	1302.818	11 488
Th(C ₂ O ₄) ₂ ·6H ₂ O	516.170	71 279
ThCl ₄ Th(NO ₃) ₄ Th(NO ₃) ₄ ·4H ₂ O Th(NO ₃) ₄ ·12H ₂ O ThO ₂ Th(SO ₄) ₂ Th(SO ₄) ₂ Th(SO ₄) ₂ .9H ₂ O	373.850 480.058 552.119 696.242 264.037 424.16 586.30	57 270 68 129 74 203 84 276 42 166 62 753 76 812
Ti	47.00	00.02/
$^{1/4}$ Ti $^{1/3}$ Ti 2 Ti TiCl ₃ TiCl ₄ TiO(C ₉ H ₆ ON) ₂	47.90 11.975 15.967 95.80 154.26 189.71 352.21	68 034 07 828 20 322 98 137 18 825 27 809 54 681
TiO ₂	79.90 301.74 159.96	90 255 47 963 20 401
Tl	204.37 408.74 284.27 370.61	31 042 61 145 45 373 56 892
(thionalide)	420.65	62 392
TICl . Tl ₂ CrO ₄	239.82 524.73 331.27 266.37 424.74 456.74 221.38	37 989 71 994 52 018 42 549 62 812 65 967 34 514
Tl ₂ S	816.55 440.80	91 198 64 424

Table 6 (continued)

Formula	Weight, a	log a
Tl ₂ SO ₄	504.80	70 312
U	238.03	37 663
1/ ₆ U	39.672	59 848
1/4U	59.508	77 458
21)	476.06	67 766
3U	714.09	85 375
UCl4	379.84	57 960
UF ₄	314.02	49 696
UF ₆	352.02	54 657
UO.	270.03	43 141
UO_2°	540.06	73 244
110	286.03	45 641
UO ₃	302.03	48 005
UO,	842.09	92 536
U_3O_8		
$UO_2(C_2H_3O_2)_2$	388.12	58 897
(acetate)	101.15	62 752
HO/CHO/2HO	424.15	84 726
$UO_2(C_9H_6ON)_2 \cdot (C_9H_7ON)$ (hydroxyquinolate) (hydroxyquinolate)	703.50	04 720
(hydroxyquinolate) (hydroxyquinoline)	394.04	59 554
$UO_{\mathfrak{g}}(NO_{\mathfrak{g}})_{\mathfrak{g}}$	502.13	70 082
$UO_2(NO_3)_2 \cdot 6H_2O \cdot \cdot \cdot \cdot \cdot$	1496.88	17 518
$(UO_2)_3$ NaMg $(C_2H_3O_2)_9 \cdot 6H_2O$	1537.94	18 694
$(IIO_{-})_{-}N_{0}Z_{1}(C_{0}H_{0}U_{0})_{0}\cdot 0\Pi_{0}U$.	714.00	85 370
(110) P ()	366.09	56 359
UO,SO,	420.14	62 339
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	420,14	02 000
	50.942	70 708
V .,,	10.1884	00 810
1/6V	12.7355	10 502
1/4V	101.884	00 810
2V	192.754	28 500
VCl ₄ · · · · · · · · · · · · · · · · · · ·	66.941	82 569
70	137.847	13 940
OCl ₂	82.941	91 877
/0,	98.940	99 537
/0,	114.940	06 047
/O ₄	149.882	17 575
V_2O_3		

Table 6 (continued)

Formula	Weight, a	log a
V ₂ O ₃ (C ₉ H ₆ ON) ₄	726.499	86 124
V ₂ O ₅ (hydroxyquinolate)	404 004	05 050
	181.881	25 979
W	1	
2W	183.85	26 446
WC WC	367.70	56 549
WCl ₅	195.86	29 195
$WO_2(C_0H_6ON)_2$	361.12	55 765
(hydrowness Incloses)	504.16	70 257
W O ₂	004.05	00 404
WO4	231.85	36 521
	247.85	39 419
Υ	88.905	07.000
2Y	177.810	94 893
Y ₂ O ₃	225.819	24 996
	220.019	35 374
Zn		
1/2Zn	65.37	81 538
2Zn	32.685	51 435
3Zn	130.74	11 641
$\operatorname{In}(\operatorname{C}_2\operatorname{H}_3\operatorname{O}_2)_2$	196.11	29 250
(acetate)	183.46	26 354
In(CoHoOo)oo2HO		
II(CEHEN) (SCN)	219.49	34 141
(Dyridine)	339.74	53 115
n(C ₇ H ₆ O ₂ N) ₂ (anthranilate)	337.63	52 844
In(CoHoON)		
(Hydroxyguinolate)	353.68	54 861
(quinaldinate)	427 74	
(quinaldinate) n(CN) ₂	427.71	63 115
anco.	117.41	06 971
nCl ₂	125.38	09 823
nHo(SCM)	136.28	13 443
nNH ₄ PO ₄	498.29	69 748
	178.38	25 135
IN(NO)		25 135 27 733
(n(NO ₃) ₂ ·6H ₂ O	189.38	
	297.47 81.37	47 344 91 046

Table 6 (continued)

Formula	Weight, a	log a
Zn ₃ (PO ₄) ₂ ·4H ₂ O	. 458.11	66 097
ZnoPoO	. 304.68	48 384
$Zn_2P_2O_7$. 97.43	98 869
ZnSO,	. 161.43	20 798
$ZnSO_4$. 287.54	45 870
_	04.00	00,000
Zr	91.22	96 009
2Zr	182.44	26 112
$Zr(C_9H_6ON)_4$	667.84	82 467
ZrC ₆ H ₆ ON) ₄	233.03	36 741
DICIA		53 051
$Zr(NO_3)_4$	429.32	63 278
$Zr(NO_3)_4 \cdot 5H_2O$	123.22	09 068
ZrO_2	322.25	50 819
ZrOCl ₂ ·8H ₂ O	G.M.M. C.M. C.	42 351
ZrP_2O_7	283.34	45 231
ZrP ₂ O ₇	355.40	55 072
$Zr(SO_4)_2 \cdot 4H_2O \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	102.20	26 316
ZrŠiO ₄	183.30	20 010

Table 7

Analytical and Stoichiometric Multipliers (Factors)*

If g is the weighed portion of a substance taken for an analysis, a is the mass of a dried or calcined precipitate (gravimetric form) and f is the multiplier found in the given table, then the percentage of the unknown substance can be found according to the formula:

$$x = \frac{a \cdot f \cdot 100}{g} \%, \qquad \log x = \log a + \log f + 2 - \log g$$

where a and g are expressed in the same units.

Calculations must be made by discarding the characteristics of logarithms and leaving only the mantissas. Then, every calculation is reduced to the addition of three numbers

$$\log a + \log f + (1 - \log g)$$

In this table, the multipliers and their logarithms occasionally do not exactly conform to one another because the multipliers are rounded, while the logarithms of the multipliers—the intermediate stage of calculations—are given in more accurate numbers.

Substance being deter- mined	Weighed portion	Multiplier, f	log f
Ag	AgBr AgCl AgI	0.5745 0.7526 0.4595	75 926 87 658 66 224
Al	$Al(C_0H_6ON)_3$ (hydroxyquinolate) Al_2O_3 $AlPO_4$	0.05873 0.5293 0.2212	76 883 72 367 34 487
Ba	BaCrO ₄	0.5421 0.5884	73 411 76 970
BaCl ₂ BaCl ₂ ·2H ₂ O	BaSO ₄	0.8923 1.0466	95 049 01 979
Ве	BeO	0.3603	55 669

^{*} For the use of the table, see p. 460.

Table 7 (continued)

Substance being deter- mined	Weighed portion	Multiplier, f	log f
Bi	BiC ₆ H ₃ O ₃	0:6293	79 887
	(pyrogaliate) Bi(CpH ₆ ON) ₃	0.3258	51 294
	$Bi(C_{12}H_{10}ONS)_3 \cdot H_2O$ (thionalide)	0.2386	37 767
	$Bi_{2}O_{3}$	0.8970 0.8024	95 279 90 441
	BiŌČl	0.6875	83 730
Br	AgBr	0.4255	62 894
C	CO ₂	0.2729 0.06086	43 603 78 434
	Baco ₃		
CN	AgCN	0.1943	28 853
CO_2	BaCO ₃	0.2230 0.4397	34 831 64 316
	CaCO ₃		
CO ₃	BaCO ₃	0.3041	48 298
J			
Ca	$CaCO_3$	0.4004 0.2743	60 254 43 822
	(oxalate)	0.7147	85 412
	CaSO ₄	0.2944	46 894
CaCOa	CO	2.274	35 684
ausog	CaÖ	1.785	25 158
(1)		0.2527	40 252
Cd	$\begin{array}{c} Cd(C_7H_4NS_2)_2 \\ \text{(mercaptobenzothiazolide)} \\ Cd(C_7H_6O_2N)_2 \end{array}$	0.2922	46 569
	(anthranilate)	0.2805	44 794
	Cd(C ₀ H ₆ ON) ₂ (hydroxyquinolate)	0.2461	39 111
	Cd(C ₁₀ H ₆ O ₂ N) ₂ · · · · · · · · · · · · · · · · · · ·	0.8754	94 220
	CdoPoO ₂	0.5638	75 111

Table 7 (continued)

Substance being deter- mined	Weighed portion	Multiplier, f	log f
Cl	AgCl	0.2474	39 334
ClO ₃	AgCl	0.5823	76 512
ClO ₄	AgCl	0.6939	84 130
Со	Co ₂ P ₂ O ₇	0.4039	50 629
Cr	BaCrO ₄	0.2053	31 228
CrO_4	BaCrO ₄	0.4579	66 075
Cr ₂ O ₇	BaCrO ₄	0.4263	62 971
Cu	$\begin{array}{c} \operatorname{Cu}(C_5H_5N)_2(\operatorname{SCN})_2 \\ \text{(pyridine)} \\ \operatorname{Cu}(C_9H_6\operatorname{ON})_2 \\ \text{(hydroxyquinolate)} \\ \operatorname{Cu}C_1H_{11}O_2\operatorname{N} \\ \text{.} \\ \operatorname{CuC}_1H_{11}O_2\operatorname{N} \\ \text{CuO} \\ \end{array}$	0.1881 0.1806 0.2200 0.7989	27 429 25 673 34 250 90 248
F	CaF ₂ PbClF	0.4866 0.07261	68 721 86 102
Fe	Fe ₂ O ₃	0.6994	84 473
H	H ₂ O	0.1119	04 884
HBr	AgBr	0.4309	63 438
HCN	AgCN	0.2019	30 504
HI	AgI	0.5448	73 626
HNO	C ₂₀ H ₁₆ N ₄ ·HNO ₃	0.1679	22 495

Table 7 (continued)

Substance being deter- mined		Multiplier, f	log f
H ₃ PO ₄	Mg ₂ P ₂ O ₇	0.8806	94 478
H ₂ SO ₄	BaSO ₄	0.4202	62 347
К	$\begin{array}{c} K\left(C_6H_5\right)_4B \\ KCl \\ KClO_4 \\ KN\left(C_6H_2\right)_2(NO_2)_6 \\ \text{(dipicrylaminate)} \\ K_2PtCl_6 \\ K_2SO_4 \end{array}.$	0.1091 0.5245 0.2822 0.08192 0.1609 0.4489	03 790 71 972 45 058 91 340 20 658 65 212
Li	Li ₃ PO ₄	0.1798	25 476
Mg	$Mg(C_0H_6ON)_2$ (hydroxyquinolate) $Mg_2P_2O_7$	0.07775	89 069 33 930
Mn	Mn ₂ P ₂ O ₇	0.3871	58 786
Мо	MoO ₃	0.6665 0.2613	82 382 41 718
MoO ₄	PbMoO ₄	0.4357	63 914
N	Pt	0.1436	15 713
NH ₄	Pt	0.1849	26 699
Na	$\begin{array}{c} \operatorname{Na_2SO_4} \\ \operatorname{NaZn}(\operatorname{UO_2})_3 \cdot (\operatorname{C_2H_3O_2})_{\mathfrak{g}} \times \\ \times \operatorname{6H_2O} \end{array}$	0.3237 0.01495	51 016 17 460
li İ	NiC ₈ H ₁₄ N ₄ O ₄	0.2032 0.7858	30 790 89 533

Table 7 (continued)

Substance being deter- mined	Weighed portion	Multiplier, f	$\log f$
Ni	NiSO ₄	0.3793	57 902
P	$Mg_2P_2O_7$	0.2783 0.01651 (theoretic) 0.01639	44 456 21 769 21 464
	P ₂ O ₅ ·24MoO ₃	(empiric) 0.01722	23 614
Pb	PbCrO ₄	0.6411 0.5644 0.6832	80 693 75 155 83 457
S	BaSO ₄	0.1374	13 792
SCN	AgSCN	0.2500	34 831 64 316
SO ₄	BaSO ₄	0.4116	61 445
Si	SiO ₂	0.4674	66 972
Sn	SnO ₂	0.7876	89 633
Sr	SrC ₂ O ₄ ·H ₂ O	0.4524 0.8456 0.4770	65 556 92 716 67 854
Ti	TiO ₂	0 5005	77 779
Tl	Tl ₂ CrO ₄	0.7790	89 151 79 024
U	U ₃ O ₈	0.8490	92 839
W	WO ₃ .		89 925

Table 7 (continued)

Substance being deter- mined	Weighed portion	Multiplier, f	log f
Zn	$Zn(C_5H_5N)_2(SCN)_2$	0.1924	28 423
	$Zn(C_7H_6O_2N)_2$ (anthrantlate)	0.1936	28 694
	Zn(C ₉ H ₆ ON) ₂	0.1848	26 677
	ZnHg(SCN) ₄	0.1312	11 790
	ZnO	0.8034	90 492
	$Zn_2P_2O_7$	0.4291	63 257
Zr	ZrO ₉	0.7403	86 941

Table 8

Solubilities of Inorganic and Some Organic Compounds

The table shows the number of grams (P) of an anhydrous substance, given in the second column, which is dissolved in 100 g of water at a temperature indicated in the upper line of the table. When expressing these data in weight percentage $(P_1\%)$, i.e., in grams of an anhydrous substance contained in 100 g of a saturated solution, the calculation is made by the formula $P_1 = \frac{P \cdot 100}{100 + P}$.

S.Ph. stands for solid phase, i.e., a crystallohydrate which is in an equilibrium with a saturated solution. The third column gives the number of water molecules in a crystallohydrate (S.Ph.) which is in an equilibrium with a saturated solution. If the solubilities of two or more crystallohydrates of the same substance are given for the same temperature (for instance, at 0 °C the solubility of Na₂SO₄·10H₂O

						Tempera
No.	Formula	S. Ph.	0	10	20	30
Z			Solub	ility of an	anhydrous	substance in
1 2 3 4 5	$\begin{array}{c} \operatorname{AgC_2H_3O_2} \\ \operatorname{AgF} \\ \operatorname{AgNO_2} \\ \operatorname{AgNO_3} \\ \operatorname{AgNO_3} \\ \operatorname{Ag_2SO_4} \end{array}.$	2H ₂ O	0.72 0.155 122 0.57	0.88 119.8 0.220 170 0.69	1.04 172.0 0.340 222 0.79	1.21 190.1 0.510 300 0.88
6 7 8	$AlCl_3$ $Al(NO_3)_3$ $Al_2(SO_4)_3$	$\begin{array}{c} 6 H_2 O \\ 9 H_2 O \\ 18 H_2 O \end{array}$	43.8 61 31.2	44.9 67 33.5	45.9 75.4 36.4	46.6 81 40.4
9	As_2O_3 As_2O_5	_	1.21 59.5	62.1	2.04 (25 °C) 65.9	69.5
1	B ₂ O ₃	-	1.1	1.5	2.2	_
12 13 14 15 16 17 18 19 20	$\begin{array}{c} {\rm BaBr_2} \\ {\rm Ba(BrO_3)_2} \\ {\rm Ba(C_2H_3O_2)_2} \\ {\rm Ba(C_2H_3O_2)_2} \\ {\rm BaCl_2} \\ {\rm Ba(ClO_3)_2} \\ {\rm Ba(ClO_4)_2} \\ {\rm BaI_2} \\ {\rm BaI_2} \\ \\ {\rm BaI_2} \end{array}$	3H ₂ O H ₂ O 2H ₂ O	98 0.287 59 31.6 20.33 205.8 166.6	101 0.441 63 33.3 26.95 184.1	104 · 2.656 71 · 35.7 33.80 289.2 203.1	109 0.96 -75 38.2 41.70 -219.6

in Water

is 5.0 g per 100 g, and the solubility of Na2SO4.7H2O is 19.5 g per 100 g), then the crystallohydrate having the poorest solubility will be in a stable equilibrium with the saturated solution, and the other crystallohydrates in a metastable equilibrium.

The solubility values of sparingly soluble salts are estimated by

their solubility products (see Table 10).

In the table, the substances are arranged in the alphabetical order of the elements included in the formula which is written in the most common way. This must be taken into account when looking in the table for acid, base, double and complex salts whose formulas are occasionally written differently.

The solubilities of gases are given at a pressure of 760 mm Hg.

40	50	60	70	80	90	100	
100 g of v	vater at a g	iven tempe	erature, g				-
1.41	1.64	1.89	2.18	2.52	-	-	1
222.0		-	_	_	_	-	1
0.715	0.995	1.363	_	669	_	952	1
376 0.98	455 1.08	525 1.15	1.23	1.30	1.36	1.41	
0.86	1.00	1.10	1.20	1	1	1.11	1
47.3	_	48.1	_	48.6	_	49.0	1
89	96	108	120	132.5	153	159	1
45.7	52.2	59.2	66.2	73.1	86.8	89.0	
2.93	3.43	4.44	5.62	_	-	8.17	
71.2		73.0	(75 °C)	75.2	_	75.7	
11.2					1		1
4.0	-	6.2	_	9.5	-	15.7	
114	118	123	128	135	-	149	1
1.33	1.75	2.32	3.01	3.65	4.45	5.7	
-	-				_		
79	77	74	74	52.4		75	1
40.7	43.6	46.4	49.4	84.84	_	58.8	
49.61	_	66.80 426.3		495.2	_	104.9	
358.7	_	420.3	_	100.2		562.2	
223.7	234.3	241.3	246.6	257.1	270.4	284.5	

						Tempera
	Formula	S. Ph.	0	10	20	30
No.			Solubi	lity of an	anhydrous s	ubstance in
21 22 23 24 25 26 27	$BaSO_4$ $BaSiF_6$ $Be(NO_3)_3$	H ₂ O 8H ₂ O — 4H ₂ O 4H ₂ O	5.0 1.67 — 49.4 37.0	7.0 2.48 2×10-4 —	67.5 9.2 3.89 2.4×10 ⁻⁴ 2.1×10 ⁻² 39.9	$\begin{array}{c} -11.6 \\ 5.59 \\ 2.8 \times 10^{-4} \\ 2.7 \times 10^{-2} \\ 52.3 \\ 43.8 \end{array}$
28	Br ₂	_	4.22	3.4	3.20	3.13
29	co	_	4.4×10 ⁻³	3.5× ×10 ⁻³	2.8×10 ⁻³	2.4×10 ⁻³
30	CO ₂	_	0.3346	0.2318	0.1688	0.1257
31 32 33 34 35	$\begin{array}{cccc} {\rm CaBr_2} & & \\ {\rm CaBr_2} & & \\ {\rm Ca(C_2H_3O_2)_2} \\ {\rm Ca(C_2H_3O_2)_2} \\ {\rm CaCO_3} & \end{array}$	$\begin{array}{c} 6\mathrm{H}_{2}\mathrm{O} \\ 4\mathrm{H}_{2}\mathrm{O} \\ 2\mathrm{H}_{2}\mathrm{O} \\ \mathrm{H}_{2}\mathrm{O} \\ \end{array}$	125 37.4 8.1×10 ⁻³	132 36.0 7.0×	$ \begin{array}{r} 143 \\$	33.8 - 5.2×10 ⁻³
36 37 38 39	$CaCl_2$ $CaCl_2$ $Ca(HCO_3)_2$ $Ca(H_2PO_2)_2$	6H ₂ O 2H ₂ O —	59.5 — 0.1615 —	×10 ⁻³ 65.0 — —	74.5 — 0.1660 15.4	102 _ _ _
40 41 42 43 44 45 46 47	CaI ₂ Ca(IO ₃) ₂ Ca(IO ₃) ₂ Ca(NO ₂) ₂ Ca(NO ₂) ₂ Ca(NO ₃) ₂ Ca(NO ₃) ₂	$\begin{array}{c} -\\ 6\mathrm{H}_2\mathrm{O}\\ \mathrm{H}_2\mathrm{O}\\ 4\mathrm{H}_2\mathrm{O}\\ 2\mathrm{H}_2\mathrm{O}\\ 4\mathrm{H}_2\mathrm{O}\\ 3\mathrm{H}_2\mathrm{O} \end{array}$	182.5 0.10 62.1 102.1	194.1 0.17 — — 115.3	(25 °C) 208.6 — 76.7 — 129.3	222.5 0.42 — — — — 152.6
48 49	$Ca(NO_3)_2$ $Ca(OH)_2$ $CaSO_3$		0.185	0.176	0.165 4.3×10^{-3}	0.153 —
50	CaSO ₄	$2H_2O$	0.1759	0.1928	0.2036	0.209
51 52 53 54	$\begin{array}{cccc} \operatorname{CdBr_2} & \cdot & \cdot & \cdot \\ \operatorname{CdCl_2} & \cdot & \cdot & \cdot \\ \operatorname{CdCl_2} & \cdot & \cdot & \cdot \\ \operatorname{CdI_2} & \cdot & \cdot & \cdot \end{array}$	$^{4\mathrm{H}_2\mathrm{O}}_{^{2^1\!/}_2\mathrm{H}_2\mathrm{O}}$ $^{\mathrm{H}_2\mathrm{O}}_{-}$	56.2 90.01 - 79.8	75.4 122.8 135.1 83.2	98.8 — 134.5 86.2	128.8 89.7

Table 8 (continued)

40	50	60	70	80	90	100	
100 g of	water at a gi	ven tempe	rature, g			,	No
101.2 14.2 8.22 3×10 ⁻² 46.7	17.1 13.12 3.3×10 ⁻³ 58.6	141.9 20.3 20.94 — 64.0 55.5	23.6 35.6 — — 62	205.8 27.0 101.4 4×10-4	30.6	300 34.2 — 9×10-2 100	2 2 2 2 2 2 2 2 2
-	-	-	_	-	-	-	28
2.1×10-	3 1.8×10-3	1.5× ×10 ⁻³	1.3× ×10-3	1.0× ×10-3	6×10-4	-	29
0.097	0.0761			-	_	_	30
68.1	=	73.5	_	74.7	_	=	32
33.2 4.4×10-	32.8 - 3.8×10-3	32.7	33.0	33.5	31.1	29.7	33 34 35
	-	136.8 0.1750	141.7 —	147.0 0.1795	152.7 —	159.0 0.1840 12.5	36 37 38 39
242.4 0.61 0.52 — 196.0 237.5 — 0.141	281.5 — 0.128	284.5 1.38 0.65 — 132.5 — 0.116	151.9 - - - 0.106 4.5×	354.6 		426.3 	40 41 42 43 44 45 46 47 48
6.3×10^{-3} 0.2097	_	0.2047	$\times 10^{-3}$ 0.1974	×10 ⁻³ 0.1966	×10 ⁻³	$\times 10^{-3}$ 0.1619	50
151.9 - 135.3	_	152.9		155.1 — 140.5	=	160.8 147.0	51 52 53

						Tempera
	Formula	S. Ph.	0	10	20	30
No.			Solubi	lity of an o	nhydrous S	ubstance in
55 56 57 58 59	$\begin{array}{c} \operatorname{Cd}(\operatorname{NO}_3)_2 & \dots \\ \operatorname{Cd}(\operatorname{NO}_3)_2 & \dots \\ \operatorname{Cd}(\operatorname{NO}_3)_2 & \dots \\ \operatorname{CdSO}_4 & \dots \\ \operatorname{CdSO}_4 & \dots \end{array}$	${^{9\mathrm{H}_2\mathrm{O}}_{4\mathrm{H}_2\mathrm{O}}\atop{-}\atop{^{8/_3\mathrm{H}_2\mathrm{O}}\atop{\mathrm{H}_2\mathrm{O}}}}$	106 75.4 	- - 76.1	153	77.7
60 61 62 63 64 65	$\begin{array}{c} \text{Ce(NH}_4)_2(\text{NO}_3)_6\\ \text{CeNH}_4(\text{SO}_4)_2\\ \text{Ce}_2(\text{SO}_4)_3\\ \text{Ce}_2(\text{SO}_4)_3\\ \text{Ce}_2(\text{SO}_4)_3\\ \text{Ce}_2(\text{SO}_4)_3\\ \text{Ce}_2(\text{SO}_4)_3\\ \end{array}.$	$\begin{array}{c} -\\ 4 H_2 O\\ 9 H_2 O\\ 8 H_2 O\\ 5 H_2 O\\ 4 H_2 O\end{array}$	20.98 16.96	111111	129.3 5.33 10.08 9.52	153.8 6.79 — —
66	Cl ₂	-	1.46	0.980	0.716	0.562
67 68 69 70 71 72 73 74 75 76	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6H ₂ O 2H ₂ O 6H ₂ O 2H ₂ O 6H ₂ O 3H ₂ O 7H ₂ O 6H ₂ O H ₂ O	43.5 138.1 84.05 0.076 25.5	47.7 159.7 — — 0.24 —	52.9 	59.7 233.3 0.52 111.4 0.60 —
77	CrO ₃	-	164.8	166.0	167.4	169.5
78 79 80 81 82 83 84 85 86	001109	12H ₂ O — — 1 ¹ / ₂ H ₂ O — —	0.34 161.4 2.46 0.8 — — — 9.33	174.7 3.8 1.0 — — 2.15 (15°C) 14.9 79.41	0.46 186.5 6.2 1.6 366.6 (18°C) 2.6 (24°C)	197.3 9.5 2.6 — — — 33.9 75.18

Table 8 (continued)

ture, °C	1 50	60	1 70	80	1 00	1	-
	vater at a gi		1	80	90	100	No.
199 78.6	77.1	619	70.3	646 67.6	64.5	682 58.4	55 56 57 58
183.0 3.29 5.95 6.05	4.67 — 3.42	196.5 3.88 4.04 3.25 2.35		219.6 — — 1.20 1.01	1.05	0.46 0.41	60 61 62 63 64 65
0.451	0.386	0.324	0.274	0.219	0.125	0	66
69.5 300.0 126.8 0.84 49.9	88.7 376.1 0.67 — — —	93.8 	95.3	97.6 400.0 — 220.5 — 73.8	101.2 334.8 	106.2 1.33 - - - 83.9	67 68 69 70 71 72 73 74 75
174.0	182.5	186.5	-	194.1	198.6	206.7	77
0.89 208.0 13.8 4.0	218.3 19.4 5.4	2.00 229.7 26.2 7.3 160	239.5 34.7 9.8	5.49 250.0 45.0 14.4	260.1 58.0 20.5	. 42.54 270.5 79.0 30.0	78 79 80 81 82
- 1	-	-	-	-	-	-	83
-	-	-	_	-	_	-	8
47.2	64.4	83.8 —	107.0	134.0	163.0	197.0	8.8

1						Tempera
	Formula	S. Ph.	0	10	20	30
Š			Solubil	ity of an	anhydrous Si	ubstance in
87	Cs ₃ PtCl ₆	-	4.7×10 ⁻³	6.4× ×10 ⁻³	8.6×10 ⁻³	11.9× ×10 ⁻³
88	Cs ₂ SO ₄	_	167.1	173.1	178.7	184.1
89 90 91 92 93	CuCl ₂ CuCl ₂	4H ₂ O 4H ₂ O 2H ₂ O	107.5 68.6 —	116.0 70.9	126.8 72.7 1.107	127.7 — 77.3 —
94 95 96 97	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ H_{2}O $ $ 2H_{2}O $ $ 6H_{2}O $ $ 3H_{2}O $ $ 5H_{2}O $	28.24 81.8 14.3	100.0 - 17.4	0.153 35.05 124.8 — 20.7	154.4 25.0
98 99 100 101 102 103 104 105 106	FeBr ₂	6H ₂ O 4H ₂ O 2H ₂ O 6H ₂ O 2H ₂ O — 6H ₂ O 7H ₂ O H ₂ O	102.1 — 74.4 — 78.03 15.65	64.5 81.8 — — 20.5	115.0 — 91.9 — 83.03 26.5	122.3 73.0 — 106.8 — — 32.9
107	H ₂	-	1.982× ×10-4	1.740× ×10-4	1.603× ×10-4	1.474× ×10-4
108 109 110 111 112	H ₃ BO ₃ H _B r H ₂ C ₂ O ₄ H ₂ C ₄ H ₄ O ₄ (succinic) H ₂ C ₄ H ₄ O ₆ (tartaric) H ₃ C ₆ H ₅ O ₇	2H ₂ O	2.66 221.2 3.54 2.80	3.57 210.3 6.08 4.50 126.3	5.04 198.2 9.52 6.91 139.2	6.72 14.3 10.62 156.4
114	H ₃ C ₆ H ₅ O ₇	H ₂ O	96 - 0.17	118 - 0.21	146 — 0.29	183
116	HC7H5O3	-	0.090	0.14	0.22	0.30
117	HCI.	=	82.3 236.7	_	257,1	67.3

Table 8 (continued)

40	50	60	70	80	90	100	
	vater at a g	iven tempe	rature, g			1	
15.8× ×10 ⁻³ 189.9	21.2× ×10 ⁻³ 194.9	29.0× ×10 ⁻³ 199.9	38.9× ×10 ⁻³ 205.0	52.5× ×10 ⁻³ 210.3	67.5× ×10 ⁻³ 214.9	91.5× ×10 ⁻³ 220.3	
- 80.8 - 43.82 - 163.1 28.5	131.4 84.2 — — 171.8 33.3	87.6 56.57 181.8 40.0	92.3 — — — — 194.1 47.1	96.1 — 76.56 207.8	103,6 	110.0 0.65 — 247.3 75.4	
128.3 77.3 — — — 40.2	82.5 — 315.2 — 48.6	143.9 88.7 — — 166.6 —	50.9	159.7 100.0 — — 525.0 — 43.6	105.3 	177.8 105.8 — 536.9 —	111111111111111111111111111111111111111
1.384× ×10 ⁻⁴	1.287× ×10-4	1.178× ×10 ⁻⁴	1.021× ×10-4	0.790× ×10 ⁻⁴	0.461× ×10-4	0	1
8.72 21.5 16.1	11.54 171.3 31.4 24.4	14.81 44.3 35.9	18.62 65.0 51.1	23.62 84.5 70.9	30.38 119.8	40.3 130.0 121.3	111111
176.2	195.0	218.5	244.8	273.2	-	344.4	1
_	-	-	-	_	_	_	1
216 0.56	244 0.78	278 1.16	_	371 2.71	=	526 5.88	1
0.42	0.64	0.90	1.39	2.26	3.89	8.12	1
63.3 280.2	59.6	56.1 314.9	=	360.8	_	420.8	1

						Tempera			
	Formula	S. Ph.	0	10	20	30			
No.			Solub	Solubility of an anhydrous substance in					
119 120 121	H_2S H_2SeO_3 H_2SeO_4	_ H ₂ O	0.699 90.1 426.3	0.502 122.3	0.378 166.6 566.6	0.294 235.6			
122 123	H ₂ SeO ₄	6H ₂ O	18.17	35.52	-	132.5			
124	H ₂ TeO ₄	2H ₂ O	-	33.85	_	50.05			
125 126	HgBr ₂ · · · · Hg(CN) ₂ · · ·	Ξ	0.3	0.4 9.3	0.55	0.65			
127 128	HgCl ₂ · · · · · · · · · · · · · · · · · · ·	=	4.3 1.4×10-4	(13.5 °C) 5.6 —	6.6 2×10 ⁻⁴	8.3 7×10 ⁻⁴			
129	I ₂	-	1.62× ×10 ⁻²	1.9× ×10 ⁻²	2.9×10-2	4.0×10 ⁻²			
30 131	KAl(SO ₄) ₂ KAuBr ₄	12H ₂ O 2H ₂ O	3.0	4.0 18.3	5.9	8.4			
132 133	KAuCl ₄ KBeF ₃	$2H_2O$	-	(15 °C) 38.3	61.8	94.9			
34	KBr	_	53.5 3.1	59.5	2.0 65.5	70.6 9.5			
36	KC ₂ H ₃ O ₂ KC ₂ H ₃ O ₂	$^{11/_{2}}_{2}H_{2}O$	216.7	4.8 233.9	$\frac{6.9}{255.6}$	283.8			
38	KCN	_	63	=	71.6	_			
39 40 41	K ₂ CO ₃ · · · · · · · · · · · · · · · · · · ·	$^{11/}_{2}H_{2}O$ $H_{2}O$	105.3 20.3	108.3 23.7	(25 °C) 110.5 26.4	113.7 28.6			
42	KClO ₃	=	27.6 3.3	31.0 5.0	34.0 7.4	37.0 10.5			
44	KClO ₄ K ₂ CrO ₄	_	0.75 58.2	1.05	1.80	2.6			
45	K ₂ Cr ₂ O ₇ KCr(SO ₄) ₂	12H ₂ O	5.0	8.5	61.7 13.1 12.51	63.4 18.2			
147	KF	4H ₀ O	44.72	53.55	(25 °C)	_			
149	KF · · · ·	2H ₂ O	_	_	94.93	108.1			
151 152	K ₃ Fe(CN) ₆ K ₄ Fe(CN) ₆	3H ₂ O	~30	36.6	42.9	_			
.02	KHCO3	_	14.9 22.6	21.2 27.7	28.9 33.3	36.8 39.1			

Table 8 (continued)

40	50	60	70	80	90	100	
100 g of v	vater at a g	iven temp	erature, g				
0.232 344.4	0.186 380.7	0.146 383.0	0.109 383.0	0.076 383.0	0.041 385.4	0.000	
1718	2753	00	-	-	-	_	
57.19	_	77.54	_	106.4	_	155.3	
0.91	1.27	1.68	=	2.8	=	4.9 53.85	
9.9	11.1	14.9	17.2	24.2	37.2	63.6	
5.6×10-2	7.8×10-2	10.6× ×10 ⁻²	-	-	_	-	
11.7	17.0	24.8	40.0	71.0	109.0	154 192	
145	233	405	_	_	_	_	
75.5 13.2	80.2 17.5	85.1 22.7	90.0	95.0 34.0	99.2	5.2 104.0 50.0	
323.3	337.3 81	350.0	364.8	380.1 95	396.3	122	
116.9 30.8 40.0 14.0 4.4 65.2 29.2	121.3 33.0 42.6 19.3 6.5 66.8 37.0	126.8 35.1 45.5 25.9 9.0 68.6 50.5	133.5 37.2 48.1 32.5 11.8 70.4 61.5	139.8 39.5 51.1 39.7 14.8 72.1 73.0	147.5 41.3 54.0 47.7 18.0 73.9 96.2	155.7 44.0 56.7 56.2 21.8 75.6 102.0	The state of the state of
=	=	_	=	=	_	-	
61.3 42.7 45.3	_ 52.0	42.2 71.0 55.9 60.0	_ 57.5	150.1 81.8 68.6	- 74.8	91.6 77.8	

1						Tempera
No.	Formula	S. Ph.	0	10	20	30
2			Solub	ility of an	anhydrous s	substance in
153	KH3(C2O4)2	2H ₂ O	1.27			4.29
154	KHC4H4O6	-	0.32	0.40	0.53	0.90
155	KHC ₈ H ₄ O ₄ (hydrophtha-	-	- 0.02	0.40	10	0.90
	(hydrophtha- late)				10	
156	KHF.	_	24.53	30,10	39.18	_
157	KH ₂ PO ₄	-	14.8	18.4	22.6	_
158	KHSO4	-	36.3	_	51.4	
159 160	KI	_	127.5	136	144	152
161	KIO ₃ KIO ₄	_	4.73	_	8.13	11.73
162	KMnO ₄	_	0.17		0.42	_
163	KNO ₂	_	2.83 278.8	4.4	6.4	9.0
164	KNO3		13.3	20.9	298.4	45.8
165	KNaC4H4O6	4H ₂ O	28.4	40.6	31.6 54.8	76.4
166	КОН	2H ₂ O	97	103	112	126
167	КОН	H_2O	_	_		
168 169	K ₂ PtCl ₆ KSCN	_	0.74	0.90	1.12	1.41
170	K ₂ SO ₃	_	177	196	217.5	255
171	K ₂ SO.		106.2 7.35	106.6	106.0	40.07
172	K ₂ S ₂ O ₈	_	28.4	9.22 36.2	11.11	12.97
173	K,S,O,		1.8	2.7	44.7	7.7
174	KSbOC ₄ H ₄ O ₆	$^{1}/_{2}H_{2}O$	_	5.3	8.0	12.2
175	K ₂ SiF ₆	_	_	_	0.12	_
176	La2(SO4)3	9H ₂ O	3.0			1.9
			0.0		_	1.9
177	LiBr	2H ₂ O	143	166	477	404
178 179	LiBr	H_2O		100	177	191
180	Li ₂ CO ₃ LiCl	_	1.54	1.43	1.33	1.25
181	LiF	H_2O	67	72	78.5	84.5
		_	-	_	0.26	-
182	LiI	3H ₂ O	AEA	4.50	(18 °C)	
183	LiI	H ₂ O	151	157	165	171
184 185	LINO.	3H ₂ O	53.4	61.0	7/ -	132.5
186		1/2H2O	00.4	01.0	74.5	132.5
187	LiNO ₃ LiOH	_	_		_	
188	Li ₂ SO ₄	H ₂ O	12.7	12.7	12.8	12.9
	4	H ₂ O	35.3	35.0	34.2	33.5

Table 8 (continued)

40	50	60	70	80	90	100	
100 g of v	vater at a g	iven tempe	erature, g		1	1	No.
1.3	1.8	12.0 2.5 —	=	4.6	=	66.7 7.0 33	153 154 155
56.37 33.5 67.3 160 12.8 0.93 12.56 334.8 63.9 — 136 1.76 290 108.7 14.76 64.0 11.0 —	168 16.89 85.5 140 2.17 325 16.56	78.83 50.1 — 176 18.5 2.16 22.2 350 110.0 — 147 2.64 372 — 18.17 83.2 — —	184 	114.0 70.4 192 24.8 4.44 376 169 	83.5 200 200 202 202 4.45 575 122.3 22.4 119.3	121.6 208 32.2 7.87 412.9 240 178 5.18 674 24.1 35.9 0.954	156 157 158 159 160 161 162 163 164 165 166 167 171 172 173 174
_	1.5	-	-	_	-	0.69	176
205 1.17 90.5	214 1.08 97	224 1.01 103	=======================================	245 0.85 115	111111	226 0.72 127.5	177 178 179 180 181
179 ————————————————————————————————————	187 — 156.4 — 13.3 32.5	202 174.8 13.8 31.9	230 194.1 	435 — — 15.3 30.7	1111111	481 — — 17.5 29.9	182 183 184 185 186 187

						Tempera		
No.	Formula	S. Ph.	0	10	20	30		
Z			Solubility of an anhydrous substance in					
189 190 191 192 193 194 195 196	MgCl ₂ MgI ₂ MgNH ₄ AsO ₄ MgNH ₄ PO ₄ Mg(NO ₃) ₂ MgSO ₄	6H ₂ O 6H ₂ O 8H ₂ O 6H ₂ O 6H ₂ O 6H ₂ O 7H ₂ O 6H ₂ O H ₂ O	91.0 52.8 120.8 - 2.3×10 ⁻² 62.6 - 40.8	94.5 53.5 — — 30.9 42.3	96.5 54.5 139.8 3.8×10 ⁻² 5.2×10 ⁻² 70.1 35.5 44.5	99.2 — — 74.8 40.8 45.4		
198 199 200 201 202 203 204 205 206 207 208	MnBr ₂ MnCl ₂ MnCl ₂ Mn(NO ₃) ₂ Mn(NO ₃) ₂ Mn(NO ₃) ₂ MnSO ₄ MnSO ₄ MnSO ₄	4H ₂ O 2H ₂ O 4H ₂ O 2H ₂ O H ₂ O 6H ₂ O 3H ₂ O 7H ₂ O 5H ₂ O 4H ₂ O H ₂ O	127.3 63.4 — 102.0 53.23 —	135.8 68.1 0.19 (14 °C) 117.9 60.01 59.5	146.9 73.9 — 142.8 — 62.9 64.5	157.0 80.7 - 206.5 67.76 66.4		
209	MoO ₃	-	- 1	_	0.138	0.264		
210	NH ₃	-	89.7	68.3	52.9	40.9		
211 212 213 214 215 216 217	$\begin{array}{c} {\rm NH_4Al(SO_4)_2} \\ {\rm NH_4Br} \\ \cdot \\ \cdot \\ ({\rm NH_4)_2C_2O_4} \\ {\rm NH_4Cl} \\ \cdot \\ \cdot \\ {\rm NH_4ClO_4^{\pm \pm}} \\ \cdot \\ \cdot \\ ({\rm NH_4)_2Co(SO_4)_2} \\ \cdot \\ ({\rm NH_4)_2CrO_4} \end{array}$	12H ₂ O H ₂ O = 6H ₂ O	2.72 60.6 2.4 29.4 11.56 6.0 25.01	4.81 68 3.2 33.3 9.5	7.17 75.5 4.5 37.2 20.85 13.0 32.96	10.10 83.2 6.0 41.4 — 17.0 40.4		
218 219	$(NH_4)_2Cr_2O_7$ $NH_4Cr(SO_4)_2$ (violet)	12H ₂ O	18.26 3.9	=	35.6	46.5 11.9		

^{*}S. Ph. with 6H₂O. ** For NH₄ClO₄, solubility is expressed in g of anhydrous NH₄ClO₄ contained

Table 8 (continued)

40	50	60	70	80 .	90	100	
100 g of w	ater at a g	iven tempe	rature, g				
101.6 57.5 173.2 - 4×10 ⁻² 78.9 45.6	104.1 - - 84.5 - 50.4	107.5 61.0 — 4×10 ⁻² 91.2 — 55.0	59.5	113.7 66.0 185.7* 2.4×10 ⁻² 1.9×10 ⁻² 106.2 	138.1	120.2 73.0 — — — — 73.9 68.3	
168.9 88.6 —	181.8 98.2 0.69	196.7	212.5 — 110.6 —	224.7 112.7	225.7 114.1 —	227.9 115.3	4444
68.8	72.6 58.2	<u>-</u> 55.0	<u>-</u> 52.0	48.0	42.5	34.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0.476	0.687	1.206	2.055	2.106	_	-	2
31.6	23.5	16.8	11.1	6.5	3.0	0.0	2
14.29 91.1 8.2 45.8 30.58 22.0 58.5 18.3	19.1 99.2 10.7 50.4 27.0 51.87	26.8 107.8 - 55.2 39.05 33.5 - 86.0	37.7 116.8 — 60.2 — 40.0 81.83 (75°C)	53.9 126.0 ————————————————————————————————————	98.2 135.6 71.3 —	120.7 145.6 - 77.3 57.01 - 155.6	24 54 54 54 54 54 54 54 54 54 54 54 54 54

in 100 ml of a saturated solution.

						Tempera
No.	Formula	S. Ph.	0	10	20	30
Z			Solub	llity of an	anhydrous s	ubstance in
220	NH ₄ Cr(SO ₄) ₂ (green)	$12H_2O$	3.9	-		19.0
221	NH ₄ F	_	50	74		
222	(NH ₄) ₂ Fe(SO ₄) ₂	$6H_2O$	17.8	-	26.9	
223	NH ₄ Fe(SO ₄) _a	$12\ddot{H}_2O$	_	_	124	_
224	NH4HCO3	-	11.9	15.8	21	27
225	NH ₄ H ₂ PO ₃		171	190	-	260
226	NH4H2PO4		22.7	(14.5 °C)	00.0	
227	$(NH_4)_{\circ}HPO_{\bullet}$		42.9	57.5	36.8	
228	NH ₄ I	-	154.2	163.2	68.6 172.3	181.4
229	NH ₄ LiSO ₄	-	-	55.24	112.0	55.94
230	NH ₄ NO ₃	-	118.3	_	192.0	241.8
231 232	(NH ₄) ₂ PtCl ₆ NH ₄ SCN	-	_	0.7	_	_
233	NH SCN	_	119.8	143.9	170.2	207.7
234	(NH ₄) ₂ SO ₄ (NH ₄) ₂ S ₂ O ₈	-	70.6	73.0	75.4	78.0
235	(NH ₄) ₃ SbS ₄	$4H_2O$	58.2 71.2	_	91.2	119.8
236	(NH ₄) ₂ SeO ₄		11.2	1.22	91.2	119.0
000	(3777)			(12 °C)		
237 238	(NH ₄) ₂ SiF ₆ NH ₄ VO ₃	-	_		18.6	_
100	1114 1 03		_	_	4.8	8.4
239	NO	_	9.84×	7.57×	6.18×	5.17×
0.40			× 10-3	$\times 10^{-3}$	$\times 10^{-3}$	$\times 10^{-3}$
240	N ₂ O	-	-	0.171	0.121	-
241	Na ₂ B ₄ O ₇	40II 0	1			1
242	Na _a B _a O _a	$10H_2O$ $5H_2O$	1.3	1.6	2.7	3.9
243	NaBeF.	-	_		1.4	_
244	NaBr .	$2H_2O$	79.5		90.5	97.6
245 246	NaBr	-	_	_	_	_
247	NaBrO ₃ NaC ₂ H ₃ O ₂	277.0	27.5	_	34.5	_
248	NaCoFla()	$3H_2O$	36.3	40.8	46.5	54.5
249	IVa _o CO _o	10H ₂ O	7	40.5	01.5	126
250	Na ₂ CO ₂	H ₂ O	- '	12.5	21.5	38.8 50.5
251	IVa, CoO.	_			3.7	30.0
252 253	NaCl	-	35.7	35.8	36.0	36.3
254	NaClO	-	29.4	36.4	53.4	100.0
255	NaClO ₃	77 0	79	89	101	113
256	NaClO ₄ NaClO ₄	H_2O	167	_	181	_
		-	-	_		

Table 8 (continued)

40	50	60	70	80	90	100	ء ا۔
100 g of w	ater at a gi	ven temper	rature, g				- S
32.8	1 _	1_	-	-	_	-	22
02.0		111	_	_	_	_	22
38.5	_	53.4	-	73.0	=	-	22 22
-	_	-		_	_	400_	22
36.6	_	_	_	_	_	_	22
EC 7		82.9		120.7	_	174	22
56.7 81.8	_	97.6	106.0		_	250.3	22 22
190.5	199.6	208.9	218.7 56.70	228.8	_	230.3	22
297.0	56.24 344.0	421.0	499.0	580.0	740.0	871.0	23
297.0	344.0	-	_	-	_	1.25	23 23
_	235	-	347	95.3	_	103.3	23
81.0	_	88.0	_	_	-	_	23 23
_	_	-	_	_	_	_	23
_	-	_	_			55.5	23
13.2	17.8	=	30.5	=	_	-	23
		3.24×	2.67×	1.99×	1.14×	0	23
4.40×10^{-3}	3.76×10^{-3}	$\times 10^{-3}$	$\times 10^{-3}$	× 10 ⁻³	× 10-3	_	24
_	-	-	_		!	1	1
0.7	10.5	20.3	_	-		52.5	24
6.7	10.5	_	24.4	31.5	41.0	2.8	2
105.0	-		_	-	-	_	2
105.8	116.0	_	-	118.8	_	121.3	2
50.2	_	62.5		13.1	_	-	2
65.5 129.5	83 134	139 139.5	146	153	161	170	2
-	134	_	46.2	45.8	45.7	45.5	2
48.5	_	46.4	40.2	_	-	6.33	2
36.6	37.0	37.3	37.8	38.4	39.0	39.8	2
110.5	129.9	_	172	189	_	230	2
126	140	155	-	_	-	224	2
243	_	289	_	304		324	2

						Tempera
	Formula	S. Ph.	0	10	20	30
No.			Solub	ility of an	anhydrous	substance in
257	Na ₂ CrO ₄	10H ₂ O	31.70	50.17	88.7	_
258	Na ₂ CrO ₄	$4H_2\bar{O}$		_	_	88.7
259	Na ₂ CrO ₄		_	_	_	00
260	Na ₂ Cr ₂ O ₂	$2H_2O$	163.0	170.2	180.1	196.7
261	$Na_2C_2O_7$	-	_	1.0.2	100.1	100.7
262	NaF	_	3.53	4.01 (15 °C)	4.17	4.20
263	Na ₄ Fe(CN) ₆	10H2O	_	(15 C)	17.9	_
264	Na ₂ HAsO ₄	12H ₂ O	5.9	16.4	33.9	49.3
265	NaHCO.		6.9	8.15	9.6	11.1
266	NaH, PO,	2H ₂ O	57.9	69.9	85.2	106.5
267	NaHaPO	H_2O	-	05.5	00.2	100.0
268	NaH ₂ PO ₄					
269	Na ₂ HPO ₄	12H ₂ O	1.67	3.6	7.7	20.8
270	Na ₂ HPO ₄	$7H_2O$	1.07	3.0	7.1	20.0
271	Na ₂ HPO ₄	$2H_2O$		_	_	_
272	Na ₂ HPO ₄ .	-1120			_	
273	NaI.	$2H_2O$	158.7	168.6	178.7	190.3
274	Nal .	-1120	100.7	100.0	110.1	190.5
275	NaIO ₃	H_2O	2.5	4.6	9.0	11.0
276	NaIO ₃	1120	2.0	4.0	9.0	11.0
277	Na ₂ MoO ₄	10H ₂ O	44.3	64.7	_	_
278	Na ₂ MoO ₄	$2H_2O$	44.0	04.7	05.0	66.1
279	NaNO.	21120	72.1	77.9	65.0	
280	NaNO3		73		84.5	91.6
281	NaOH	4H ₂ O	42	80	88	96
282	SI OTY		42	51	-	
283	NaOH	H_2O	_	_	109	119
284	Na ₃ PO ₄	12H ₂ O	1 -			00
285	Na ₄ P ₂ O ₇	10H ₂ O	1.5 3.16	4.1	11	20 9.95
286	Na ₂ S	9H ₂ O	3.16	3.95	6.23	
287	Na ₂ S	$6H_2O$		15.42	18.8	22.6
88	Na ₂ SO ₂	$7H_2O$	13.9	20	20.0	36
289	Na ₂ SO ₂	. 1120	15.5	20	26.9	30
290	Na ₂ SO ₄	10H ₂ O	5.0	9.0	19.4	40.8
291	Na ₂ SO ₄	$7H_2O$	19.5	30		40.0
292	Na _a SO ₄		10.0	30	44	50.4
293	Na ₂ S ₂ O ₂	5H ₂ O	52.5	64.0	70.0	
294	Massous .	$2H_2O$	04.0	61.0	70.0	84.7
295	IVa Do U.	21120	_	-	_	_
296	Na ₂ S ₂ O ₂	7H ₂ O	15 5	_		_
297	IVa DoUs	11120	45.5	_	_	_
298	Na ₂ SeO ₄	10H ₂ O	12.00	_	65.3	
	4	TOIT ₂ O	13.30	****		78.74

Table 8 (continued)

40	50	60	70	80	90	100	
100 g of w	ater at a g	iven tempe	rature, g				
100 8 01 11	I att a g	1	I		1	1	1
		_	_	_	_	_	1
95.94	104.1	114.6	_	_	_	_	1
93.94	104.1	114.0	123.1	124.8	_	126.2	1
222	0.40	283.1	323.8	385.4	_	_	1
220.5	248.4	283.1	020.0	_	_	431.9	1
4.40	4.55	4.68	_	4.89	_	5.08	1
4.40	4.00	4.00				63	1
30	_	_	_	59	400	198	1
69.5	99.4	144	184	186	189	1190	
12.7	14.45	16.4		Decon	nposes		1
138.2	14.40	-	_	-	_		1
200.2	158.6	_	_	_	005 0	246.6	
	100.0	179.3	190.3	207.3	225.3	240.0	1
_	_	_	-	-	_		1
51.8	_	_	_	_	100.0	_	
01.0	80.2	82.9	88.1	92.4	102.9	102.2	1
_	00.2	02.0	_	_	_	102.2	1
205.0	227.8	256.8	_	_	-	302	
200.0	221.0	200.0	294	296	300	302	
13.3	16.3	19.8	23.5	_	29.5	33.0	
10.5	10.5	-	-	28.5	29.5	33.0	
_			_	_	_	83.8	
_	70.7	-	_	100 5	_	163.1	1
98.4	104.1	-	_	132.5		180	1
104	114	124	-	148	_	100	1
10-1	114	_	_	_	_		1
129	145	174	_		_	347	1
129	140		299	313.7	_	108	1
31	43	55	_	81	_	40.26	
13.50	17.45	21.83	-	30.04	-	40.20	
28.5	17.45	_	43.31	10 15	57.28		
40.0	36.4	39.1	43.31	49.15	31.28		
	30.4		_	20.0	_	26.6	
37.0	_	33.2	-	29.0	_	20.0	
01.0		_	_	_		_	
		_	1	43.7	42.9	42.5	
48.8	46.7	45.3	44.1	43.7	42.0	12.0	
102.6	40.	_	_		_	_	
.00.0		206.6	-	245		266	
		_	_	245		200	
		_	-	88.7		100	
71.1	_	79.9	_	88.7		100	
71.1		-	_	_	_		

						Tempera
No.	Formula	S. Ph.	0	10	20	30
Z			Solubi	lity of an	anhydrous:	substance in
299	Na ₂ SeO ₄	_	_			
300	Na ₂ SiF ₂	_	0.43	_	0.73	_
301	NaVO.	_			0.73	_
302	Na ₂ WO ₄	10H,0	57.58		_	
303	Na ₂ WO ₄	$2H_2\ddot{O}$	71.61	_	72.4	_
304	Nd ₂ (SO ₄) ₃	8H ₂ O	9.6	_	7.1	5.3
305	NiBr ₂	3H ₂ O	112.8	122.3	130.9	1 420 4
306	IVICIA .	6H,0	51.7	122.5		138.1
307	IVICIO .	4H ₂ O	-		55.3	
308	111010	2H ₂ O	_	_	_	
309	Nil.	_	124.3	135.3	148.1	161.1
310	Ni(NHA) (SO.)	6H2O	_	3.2	5.9	7.8
311	Ni(NO ₂) ₂	6H ₀ O	79.58	-	96.32	7.0
312	$N1(NO_0)_0$	4H,0	_	_	00.02	
313	INI(INO _n) _n	2H.O	_		_	_
314 315	MISO.	$7H_2O$	27.22	32	_	42.46
013	NiSO4	6H ₂ O	_	_	-	-
316	O ₂		6.948×	5.370×		0 500 1
	•		× 10-3	$\times 10^{-3}$	1.000/	3.508 × × 10-3
317	O _a	-	3.9×	$\stackrel{\sim}{2}.9\times$	$\begin{array}{c} \times 10^{-3} \\ 2.1 \times \end{array}$	7×10-4
			× 10-9	\times 10 ⁻³	$\times 10^{-3}$	1 × 10
318	PbBr ₂					
319	Pb(C2H3O2)2	3H ₂ O	0.4554	_	0.85	1.15
		01120	_	45.6	55.0	_
320	PbCl ₂		0.6728	(15 °C)	(25 °C)	4.00
321	PbCrO ₄	_	0.6728	-	0.99	1.20
220				_	4.3×	_
322	PbI ₂	-	4.42×		$\begin{array}{c} \times 10^{-6} \\ 6.8 \times \end{array}$	9.0×
323	Dh/NO \		× 10-2		$\times 10^{-2}$	× 10 ⁻²
324	Pb(NO ₃) ₂ PbSO ₄	-	38.8	48.3	56.5	66
- 1	1 0004	_	2.8×	3.5×	4.1×	4.9×
_!			× 10-3	× 10-3	$\times 10^{-3}$	× 10 ⁻³
325	RbAl(SO ₄) ₂	12H ₂ O	0.70			
326	D DCI	121120	0.72	-	2.59	_
327	RhClO	_	77.0	84.4	91.1	97.6
328 329	R bClO.		2.14	_	5.4	8.0
029	RbNO3	_	0.5 19.5	0.6	1.0	1.5
			10.0	33.0	53.3	81.3

Table 8 (continued)

	40	50	60	70	80	90	100	
100	g of w	ater at a gi	ven temper	rature, g				S
		80.15	_	_	-	_	72.83	29
	1.03	00.10	_	_	1.86		2.46	30
	6.23	_	32.97	36.9	_	_	_	30
4	0.20	_	-	_	-	-	-	30
7	7.9	_		_	91.2	_	97.2	30
	4.1	3.3	2.8	2.5	-	1.2	1.2	30
14	4.5	150.0	152.5	_	153.8	_	155.1	30
14	4.5	150.0	102.0	_	_	_	_	30
7	2.5	_	80.5	_	_	_	-	30
1 "		_	-	_	86.9		88.0	30
174	4.0	183.2	184.1	185.7	187.4	188.2	_	30
	1.5	14.4	17.0	19.8	25.5	_	_	31
	2.3	_	_		_	_	_	31
	_	-	163.1	177.4	_	235.2	_	31
	-	_	_	_	_	200.2	_	31
	_	50.15	54.80	59.44	63.17	-	76.7	31
3.0)81 ×	2.657×	2.274×	1.857 × × 10 ⁻³	1.381× × 10 ⁻³	7.87× × 10-4	0	31
	10 ⁻³ < 10 ⁻⁴	$\begin{array}{c} \times 10^{-3} \\ 1 \times 10^{-4} \end{array}$	$\times 10^{-3}$	X 10	× -	-	_	31
	1.53	1.94	2.36	_	3.34	=	4.75	31
	_	_	_	_	_		200	1
							3.34	32
			4 00	_	2.62			132
1	1.45	1.70	1.98	=	2.62			104
	_	-	- 19.7×		- 30.2×		43.6×	
12	_ .5×	- 16.4×	1.98 - 19.7× × 10 ⁻²	1 1 1	- 30.2× × 10 ⁻²	_	$\times 10^{-2}$	32
12	.5× 10 ⁻²	-	- 19.7×		- 30.2×	-		32
12 × 75 5.	.5× 10 ⁻² 5	- 16.4× × 10 ⁻²	- 19.7× × 10 ⁻²	11 1 11	- 30.2× × 10 ⁻²		$\times 10^{-2}$	32
12 × 75 5.	.5× 10 ⁻²	- 16.4× × 10 ⁻²	19.7× × 10 ⁻² 95		30.2× × 10 ⁻² 115	-	$\times 10^{-2}$	32 32 32
12 × 75 5. ×	.5× 10 ⁻² 5 .6× 10 ⁻³	16.4× × 10 ⁻² 85 —	- 19.7× × 10 ⁻² 95 - 7.39		- 30.2× × 10 ⁻²	133.1	× 10 ⁻² 138.8 - 69 138.9	32 32 32 32
12 × 75 5. ×	.5× 10 ⁻² 5 .6× 10 ⁻³	16.4× × 10 ⁻² 85 —	19.7× × 10 ⁻² 95	121.4	30.2× × 10 ⁻² 115 - 43.25 127.2		138.8 - 69 138.9 62.8	32 32 32 32 32 32 32
12 × 75 5. ×	.5× 10 ⁻² 5 .6× 10 ⁻³	16.4× × 10 ⁻² 85 —	- 19.7× × 10 ⁻² 95 - 7.39	6.72	30.2× × 10 ⁻² 115 -	133.1	× 10 ⁻² 138.8 - 69 138.9	32 32 32 32

						Tempera
No.	Formula	S. Ph.	0	10	20	30
Z			Solub	ility of an	anhydrous	substance in
330	Rb2PtCl6	_	13.7×	20.0×	28.2×	39.7×
331	Rb ₂ SO ₄		$\times 10^{-3}$	$\times 10^{-3}$	$\times 10^{-3}$	$\times 10^{-3}$
-	1102504	_	36.4	42.6	48.2	53.5
332	SO ₂	-	22.83	16.21	11.29	7.81
333 334		_	601.6	I -	931.5	1068.0
334	SbF ₃	-	384.7	_	444.7	563.6
335	SnCl ₂	2H ₂ O	83.9		000 0	
336		21120	6,60	_	269.8 (15 °C)	_
337	SnI ₂	_	_	-	1.0	1.2
			_	_	19	_
338	SrBr ₂	6H ₂ O	85.2	93.0	102.4	111.9
339 340	$Sr(C_2H_3O_2)_2$ $Sr(C_2H_3O_2)_2$	4H,0	36.9	43.61	102.4	-
341	SrCla	$^{1/}_{2} ilde{ ext{H}}_{2} ext{O} \\ 6 ext{H}_{2} ext{O}$	43.5	42.95	41.6	39.5
342 343	DIGIO .	2H ₂ O	_	47.7	52.9	58.7
344	SrI ₂ SrI ₂	$^{6\mathrm{H}_{2}^{2}\mathrm{O}}_{2\mathrm{H}_{2}\mathrm{O}}$	165.3	_	177.8	_
345	Sr(NO ₂) ₂	H_2O	52.7	-	-	-
346 347	Sr(NO ₂) ₂	$4H_2O$	40.1	-	63.95 70.5	_
348	$\frac{\text{Sr(NO_3)_2}}{\text{Sr(OH)_2}}$	8H ₂ O	_	-	-	88.6
	(calculated for SrO)	on ₂ O	0.35	0.48	0.69	1.01
349	Th(SO ₄) ₂	0 H O				
350 351	In(SO.)-	$9H_2O$ $8H_2O$	0.74 1.0	0.98	1.38	1.995
352	$\begin{array}{c} Th(SO_4)_2 \\ Th(SO_4)_2 \end{array}$	6H ₂ O	1.50	1.25	1.62 1.90	2.45
353	$Th(SeO_4)_2$	4H ₂ O	0.498	-	_	_
354			0.498	-	_	_
	TlBrO ₂	-	-	_	3.46×	_
355	TICI	_	0.21	0.0=	$\times 10^{-3}$	0.40
356 357	TlClO ₃ TlClO ₄	-	2.0	0.25	0.33	0.42
358	THO.	_	6.0	8.04	3.92	19.72
359	TlNO3	_	3.91	- 00	0.058	
			0.01	6.22	9.55	14.3

Table 8 (continued)

40	50	60	70	80	90	100	
100 g of w	vater at a g	iven temper	rature, g				No
56.5× × 10 ⁻³ 58.5	63.1	99.7× × 10 ⁻³ 67.4	71.4	182 × × 10 ⁻³ 75.0	78.7	334 × × 10 ⁻³ 81.8	33
5.41	4.5	3.2	2.6	2.1	1.8	-	33
1368.0	1917.0	4531.0	=		=	=	33
_	İ _	-	_		_	-	33
1.4	1.7	2.1	2.5	3.0	3.4	4.0 18	33 33
123.2 — 65.3 191.5 — 90.1 1.50	135.8 37.35 72.4 — 83.5 — 2.18	150.0 	36.24 85.9 	181.8 36.10 90.5 270.4 	36.24 	222.5 36.4 100.8 383.1 138.7 24.2	33 34 34 34 34 34 34 34 34
2.998 4.04	5.22 — 2.54	6.64 1.63	1.09	= = =	= = =	= = = = = = = = = = = = = = = = = = = =	34 35 35 35 35
7.36×	_	-	_	-	-	-	35
× 10 ⁻² 0.52 — —	0.63 12.67 39.62	0.8	65.32	1.2 36.65 81.49	-	1.8 57.31 166.6	35 35 35
20.9	30.4	46.2	69.5	111.0	200.0	414.0	3

						Tempera
	Formula	S. Ph.	0	10	20	30
No.			Solubi	lity of an o	nhydrous	substance in
360 361 362	$\begin{array}{cccc} \text{TlOH} & . & . & . \\ \text{Tl}_2\text{SO}_4 & . & . & . \\ \text{Tl}_2\text{SeO}_4 & . & . & . \end{array}$	=	25.44 2.70	3.70 2.13	4.87 2.8	39.9 6.16
363	$\mathrm{UO_2(NO_3)_2}$	6H ₂ O	98.0	108.3	125.7	_
364	$Yb_2(SO_4)_3$	8H ₂ O	44.2	_	38.4	-
365 366 367 368 369 370 371 372 373 374 375 376 377	ZnBr ₂ ZnR ₂ ZnCl ₂ ZnCl ₂ ZnCl ₂ ZnCl ₂ Zn(ClO ₃) ₂ Zn(ClO ₃) ₂ ZnI ₂ ZnI ₂ ZnI ₂ ZnI ₂ ZnI ₂ ZnI ₂ ZnN ₂ Zn(NO ₃) ₂ Zn(NO ₃) ₂ ZnSO ₄ ZnSO ₄	2H ₂ O 6H ₂ O	389.0 207.7 	271.7 152.5 457.3 2 47.0	446.4 — 367.3 — 200.3 484.9 — 118.4 — 54.4	209.2

Table 8 (continued)

40	50	60	70	80	90	100	1.
100 g of	water at a g	iven tempe	rature, g				- N
49.5 —	9.21	73.8 10.92	12.74	106.0 14.61 8.5	126.1 16.53	148.3 18.45 10.86	36 36 36
-	203.1	365.2	-	-	426	476	363
21.0	-	10.4	7.22	6.92	5.83	4.67	364
	_		_	644.6	_	- 0	365
592.6	=	618.4		044.0		672.0	366 367
_	_		_	_	_	_	368
452.5	_	488.3		541.1	-	614.4	369
_	_	_	_		_	_	370
223.1	273.2	-	_	_		_	371
-	_	-	_	490.0		510.5	372
445.2	_	467.3	_	490.0	_	510.5	373 374
206.9	=		_	_		_	375
200.5	_	-	_	_	_	_	376
70.1	77.0	_	_	_		_	377
_	_	-	_	86.6	83.5	80.8	378

Table 9

Solubilities are expressed in grams of an anhydrous substance (if there are no other indications) per 100 g of a pure anhydrous solvent Solubilities of Some Inorganic Compounds in Organic Solvents at 18-25 °C

Formula (a	ethanol (absolute)				
		methanol	acetono	pyridine	other solvents
	6 × 10-8	7×10^{-7}	1	ı	ı
	1.5 × 10-6	6 × 10-6	1.3×10^{-6}	1.95	1
Apl	6 × 10-9	2×10^{-7}	1	1	1
AgNO.	2.1	3.8	0.44	34	0.02; 1
	1	1	ı	4.0	Benzene: 125; carbon disulphi-
AICI,	1	1	ı	1	Benzene: 0.02; carbon tetrachlo-
				000	ride: 0.01; chloroform: 0.05
Alls	1	ı	1	0.83	Etherless Almosl. 46 9
Al ₂ (SO ₄) ₃ · · · ·	18	- 17	0 026	!	Isoamvi alcohol: 0.02
BaCl	2: 1	2.2	1	I	Glycerin: 9.8
Bal	77	1	1	8.2	1
Ba(No.). 1.8	1.8 × 10-3	90.0	5 × 10-3	ſ	
3 0,0	1	-1	18.0	I	Ethyl acetate: 1.8
Bill,	3.5	1	1	1	1
Bi(NO.), 5H,0	1	1	41.7	1	1
	53.8	56.2	2.73	1	Isoamyl alcohol: 25.6

Table 9 (continued)

			22	solubility in	
Formula	ethanol (absolute)	methanol	acetone	pyridine	other solvents
CaCl ₂	25.8	29.2	0.01	1.69	Isoamyl alcohol: 7.0
Cal	1	127	89	1	1
Ca(NO3)2	51	138	16.9	1	Amyl alcohol: 7.5
Caso 4	1 8	1	1	1	Glycerin: 5.2
Cabra	35	16.1	18.1	1	Diethyl ether: 0.4
Call	1.5	1.7	1 5	0.70	
Caso.	113	223	47.8	0.45	Diethyl ether: 0.2
CoB	77.03	0.035	1	1	1
CODI2		43	64	1	1
Coch	54	40	3.0	9.0	Diethyl ether: 0.02
CO(1NO3)2	1	1	1	1	Ethylene glycol: 400
C0504	0.05	0.40	1	1	
CuCl2 · · · ·	55.5	57.5	2.96	0.34	Diethyl ether: 0.11; isoamyl al-
				1	cohol: 12
Cal	1	1.	1	1.74	1
CusO4	1	1.5	1	1;	1
rebra	1	1	1	0.5	1
Fecus	145	150	67.9	1	1
Fe2(SO4)3.9H20.	12.7	1	1	1	1
FeSO4	1	1	1	1	Ethylene glycol: 6.0
H ₃ BO ₃	11	I	0.5	7.1	Glycerin: 22; dioxane: 1.3
HCI	69.5	88.7	1	1	Diethyl ether: 33.2; benzene: 1.9
H ₃ PO ₄	1	1	1	1	Diethyl ether: 525
HgBr ₂	30	09	51	39.6	Benzene: 0.7
Hg(CN)	9.5	44.1	10.3	65	1

and a stop

			S	Solubility in	
Formula	ethanol (absolute)	methanol	acetone	pyridine	other solvents
HoCl	47	67	141	25	Diethyl ether: 7
Hglz	2.2	3.8	3.4	31	Chloroform: 0.07; diethyl ether:
I	26	1	1	1	Chloroform: 2.7; carbon tetrachlo-
			000		ride: 2.5; carbon disulphide: 16
KBr	0.46	2.1	0.03	I	Isoamyl alcohol: 0.002
KCN	0.88	4.91	1	I	Glycerin: 32
KCI	0.03	0.5	9.0 × 10-6	I	Glycerin: 3.7; propyl alcohol: 0.006
KF	0.11	0.19	2.2	1 6	Propyl alcohol: 0.34
· · · · · · · I	1.75	16.4	2.35	0.3	Glycerin: 40; ethylene glycol: 50
KNO3	1	1	1	l	Trichloroethylene: 0.01
но:	39	55	ı	1	ı
SCN	1	1	20.8	6.15	1
iBr	70	ı	18.1	ı	Ethylene glycol: 60
Licl	25	43.4	1.2	12	Glycerin: 11
LiI	250	343	43	1	Ethylene glycol: 39
Lino,	1	1	31	33	Isoamyl alcohol: 10
gBr,	15.1	27.9	2.0	0.2	Diethyl alcohol: 2.5
gCl.	5.6	16.0	1	I	1
MgSO	0.025	0.3	1	I	Glycerin: 26
oSO, 7H,0	ı	43	1	1	1
nCl.	1	1	1	1.3	1
nSO.	0.01	0.13	1	١	I
NH.	12.8	24	1	1	ī
In Da	7 8	19.5	1	1	ı

Table 9 (continued)

Formula	ethanol (absolute)	methanol	acetone	pyridine	other solvents
VH.CI	0.6	3.3	1	1	ı
CH CLO	6.1	8.9	2.2	1	1
NH NO.	2.5	17.1	1	0.3	ı
NHSCN	23.5	59	1	1	1
NHIL	26.3	1	1	ı	ı
NoRE	0.47	4.4	1	1	1
NaBr	2.4	16.7	0.008	1	Diethyl ether: 0.08; amyl alco-
					hol: 0.12
Na CO	1	1	1	1	Glycerin: 98
NaCl	0.1	1.5	3×10^{-5}	1	Ethylene glycol: 46.5
Na CrO.	1	0.36	1	1	1
Nak	0.10	0.42	1 × 10-4	1	I
Icz	97	72.7	26	1	1
NaNO	0.31	4.4	1	1	1
ONEN	0.04	0.43	I	1	1
NaOH	17.3	31	1	1	ı
NOSan	20	35	7	1	1
No SO	00.00	0.02	1	1	ı
NiBr	1	35	08.0	1	ı
Nicla .	10	1	1	1	Ethylene glycol: 18
NI:/NO	1	1	1	1	Ethylene glycol: 8
M:CO 3/2	0 05	0.08	1	1	Ethylene glycol: 10
TO TO TO THE TOTAL PARTY OF THE	0.3	1	0.14	1	Carbon disulphide: 900; benze-
)				ne: 3.2; carbon tetrachloride:
					1.2; diethyl ether: 1.0; glycer- in: 0.3

				Solubility in	
Formula	ethanol (absolute)	methanol	acetone	pyridine	other solvents
PbBr ₂ PbC ₂ PbC ₃ SbC ₁ SbC ₃ SnC ₁ SnC ₂ SnC ₂ ZnC ₁ ZnC ₂ ZnC ₂ ZnC ₂ ZnC ₃	64 64 64 64 64 64 64 64 64 64 64 64 64 6	1.4 0.03 160 117 117 0.73	0.02 0.02 538 56 0.6 1.5 43.3	0.0 0.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	Carbon disulphide: 43; carbon tetrachloride: 0.85; chloroform: 1.2; benzene: 1.7; glycerin: 0.14 Benzene: 4.2 Ethyl acetate: 4.4 Isoamyl alcohol: 31 Isopropyl alcohol: 0.06 Diethyl ether: 0.96 Clycerin: 50 Glycerin: 35

Table 10

Solubility Products of the Chief Sparingly Soluble Substances

The solubility product (SP) of substance Ct_mAn_n , which breaks up into ions according to the equation

$$Ct_mAn_n \Rightarrow mCt + nAn$$

is SP = $a_{Ct}^m \cdot a_{An}^n$, where a_{Ct} is the activity of cation Ct, and a_{An} is the activity of anion An. The indicator of the solubility product pSP is the logarithm of the solubility product taken with an inverse size.

When calculating the solubility of a sparingly soluble salt in water or in a solution of other salts by the value of the solubility product, account must be taken of: (1) the reaction of cations being formed with the hydroxyl ions of water; (2) the reaction of anions being formed with hydrogen ions; (3) the ionic strength of a solution on which the activity coefficients depend, and in some cases also (4) the potentialities of complex-ion formation. The ways of making such calculations are described in the textbooks of analytical chemistry.

In addition, account must be taken of the presence, in the solution, of non-dissociated molecules of a dissolved salt whose concentrations are found by dividing the SP by the corresponding value of K (Table 38; figures marked with an asterisk).

Form	ula of substance	SP	pSP=-log SP
Ac(C ₂ O ₄) ₃ . Ac(OH) ₃ . Ag ₃ AsO ₃ . Ag ₃ AsO ₄ . Ag ₃ Bo ₂ . Ag ₃ BrO ₃ . Ag ₂ CO ₃ . Ag ₂ CO ₃ . Ag ₃ ClO ₂ . Ag ₃ ClO ₂ . Ag ₃ ClO ₂ . Ag ₃ ClO ₃ . Ag ₃ ClO ₃ . Ag ₃ ClO ₃ . Ag ₃ ClO ₃ .		$\begin{array}{c} 2\times10^{-24}\\ 1\times10^{-15}\\ 1\times10^{-15}\\ 1\times10^{-17}\\ 1\times10^{-22}\\ 4\times10^{-1}\\ 5.3\times10^{-13}\\ 5.5\times10^{-5}\\ 4\times10^{-3}\\ 1.4\times10^{-16}\\ 8.2\times10^{-12}\\ 3.5\times10^{-11}\\ 1.78\times10^{-10}\\ 2\times10^{-4}\\ 5.0\times10^{-2}\\ 1.1\times10^{-12}\\ 1\times10^{-22}\\ \end{array}$	23.7 15 17 22 0.4 12.28 4.26 2.4 15.84 11.09 10.46 9.75 3.7 1.3 11.95

Formula of substance	SP	pSP =-log SP
Ag ₄ Fe(CN) ₆	1.5×10^{-41}	40.82
Ag ₂ HVO ₄ (2Ag+, HVO ² -)	2×10^{-14}	13.7
AgI	8 3 × 10-17	16.08
AgIO _a	2 0 × 40-8	7.52
AgMnO ₄	1.6×10^{-3}	2.79
Ag_2MOO_4	2 8 × 10-12	11.55
AgN ₃	2.9×40^{-9}	8.54
Agnu.	A C > AO-A	3.80
$Ag_2U(Ag^+, OH^-)$	1.6×10^{-8}	7.80
AgOCN	2.3×10^{-7}	6.64
AgOCN . Ag ₂ PO ₃ F(2Ag+, PO ₃ F ² -)	8.9×10^{-4}	3.05
Ag_3PO_4	1.3×10^{-20}	19.89
AgReO ₄	7.95×10^{-5}	4.10
Ag ₂ S	6 3 \ 10-50	49.20
AgSCN	1.1×10^{-12}	11.97
Ag ₂ SO ₂	1 50 × 10-14	13.82
$AgSU_{2}NH_{2}(Ag+S)_{2}NH_{2}$	1×10^{-1}	1
Ag_2SO_4	1.6×10^{-5}	4.80
AgSeCN	4.0×10^{-16}	15.40
Ag ₂ SeO ₃	9.0×10^{-16}	15.01
Ag ₂ SeO ₄	5.6×10^{-8}	7.25
AgVO ₃	5 V 10-7	6.3
Ag ₂ WO ₄	5.5×10^{-12}	11.26
AlAsO4	1.6×10^{-16}	15.80
Al(OH) ₃ (Al ³⁺ , 3OH-) (AlOH ²⁺ , 2OH-) (H ⁺ , AlO ₂ ⁻)	1×10^{-32}	32.0
(AIOH2+, 2OH-)	1×10^{-23}	23.0
AlPO ₄	1.6×10^{-13}	12.80
ALF UA	5.75×10^{-19}	18.24
$Am(OH)_3$	2.7×10^{-20}	19.57
Am(OH) ₄	1×10^{-56}	56
AuBr ₃	5.0×10^{-17}	16.3
AuCl	4.0×10^{-36}	35.4
	2.0×10^{-13}	12.7
Au(OH)	3.2×10^{-25}	24.5
Aul	5.5×10^{-46}	45.26
Aula	1.6×10^{-23}	22.8
Dasiasii	1×10^{-46}	46
Dat BrO_1	7.8×10^{-51}	50.11
	5.5×10^{-6}	5.26
Data.	5.1×10^{-9}	8.29
Dacro4	1.1×10^{-7}	6.96
Dar.	1.2×10^{-10}	9.93
Da ₂ Fe(CN)	1.1×10^{-6}	5.98
Ba(IO ₃) ₂	3×10^{-8}	7.5
	1.50×10^{-9}	8.82

Table 10 (continued)

Formula of substance	SP	pSP=-log SP
BaMnO ₄	2.5×10^{-10}	9.60
BaMoO ₄	4×10^{-8}	7.40
$ BaMoO_4 $	4.5×10^{-3}	2.35
Ba(OH) ₂	5.0×10^{-3}	2.3
BaPO, F(Ba2+, PO, F2-)	4×10^{-7}	6.4
Ddg [CU4] a	0.00 / 10	38.22
$Ba_2P_2O_7$	3×10^{-11}	10.5
$Ba_2P_2O_7^{\prime\prime}$	4×10^{-3}	2.4
$Ba(ReO_4)_0$	3.23 X 10 -	1.28
BaSO,	8.0 × 10-	6.1
BaSO,	1.1 × 10-10	9.97
BaS.O	1.6×10^{-3}	4.79 10.55
$3aSeO_A$	2.0 × 10	3
BeCO.	1 X 10	1.50
BeMoO_{4}	3.2×10^{-2}	21.2
BeMoO ₄ Be(OH) ₂ (Be ²⁺ , 2OH ⁻)	6.3×10^{-22}	13.7
(BeOH+, OH-)	2 / 10	9.36
DIASO.	2.0 10	18.09
5110	0.1 \ 10	8.85
BiOCl(BiO+, Cl-)	1 X 10 '	0.00
$\begin{array}{c} {\rm BiOCl(BiO^+,Cl^-)} \\ {\rm (BiOCl+H_2O=Bi^{3+}+} \\ {\rm +2OH^-+Cl^-)} \end{array}$	1.8×10^{-31}	30.75
+2OH-+Cl-)	4×10^{-10}	9.4
BiOOH(BiO+, OH-)	3.2×10^{-32}	31.5
$^{(OH)_3}$	1.3×10^{-23}	22.90
0100.	1.0 /	97
Bi_2S_3	6.8×10^{-19}	18.17
$(AsO_4)_2$	7.7×10^{-7}	6.11
48 C. H ()	1 11 / 1	
(tartrate) CaCO ₃ CaC ₂ O ₄	4.8×10^{-9}	8.32
aco ₃	2.3×10^{-9}	8.64
aC ₂ O ₄	7.1×10^{-4}	3.15
CaCrO ₄	4.0 × 10-11	10.40
CaF ₂	2.7×10^{-7}	6.57
a(H.PO) (Ca2+ 2HaPO)	1×10^{-3}	3
a(NH.) Fo(CN)	4×10^{-8}	7.4
Ca(IO ₂)	7.0×10^{-7}	$\frac{6.15}{5.26}$
$^{\text{Ca}(H_2PO_4)_2(\text{Ca}^{2+}, \text{HPO}_4^{2})}$	5.5×10^{-6}	3.86
(CaOH+, OH-) · · · · ·	1.4×10^{-4}	28.70
Ca ₂ (PO ₄)	$2.0 \times 10^{-29} \ 4 \times 10^{-3}$	2.4
CaPO F(Ca2+ POF2-) · · · ·	4 X 10 58	57.8
Cas (PO.) OH	1.6×10^{-58}	7.89
CaSO.	1.3×10^{-8}	5.04
Ca(OH) ₂ (Ca ²⁺ , 2OH ⁻) (CaOH+, OH ⁻) Ca ₃ (PO ₄) ₂	9.1×10^{-6}	
2000	4.7×10^{-6}	5.53

Formula of substance	SP	pSP=-log SF
CaSiF ₆	8.1 × 10-4	3.09
Cawo	9.0×10^{-9}	8.06
$\operatorname{Cd}_3(\operatorname{AsO}_4)_2$	2.2×10^{-33}	32.66
Cd(CN) ₂	1 0 1 10 9	8.0
CdCO ₃	5.2×10^{-12}	11.3
	4 5 14 40 0	7.8
Cd ₂ Fe(CN) ₆	3.2×10^{-17}	16.49
Latinhala (BF.)	2×10^{-6}	5.7
Cd(OH)2	2.2×10^{-14}	13.66
(freshly-precipitated)	2.2 × 10	10.00
La(OH) ₂	5.9×10^{-15}	14.23
(after ageing)		0.114
CdS	7.9×10^{-27}	26.10
CdSeO ₃	1.30×10^{-9}	8.89
Jawo,	2×10^{-6}	5.7
$\theta_2(U_2U_3)_{q}$	2.5×10^{-29}	28.60
Je(10 ₃) ₃	3.2×10^{-10}	9.50
Je(10 ₂),	5×10^{-17}	16.3
Ce(OH)3	1.5×10^{-20}	19.82
$CeO_{\bullet}(CeO^{2+} 2OH^{-})$	1×10^{-24}	24.0
GeO ₂ (Ce ⁴⁺ , 4OH-)	2.5×10^{-51}	50.6
$-e_2(50_4)_3$	2×10^{-2}	1.7
$\cup e_2(SeU_3)_3$	3.75×10^{-25}	24.43
$\cup O_3(ASU_4)_2$	7.6×10^{-29}	28.12
U0U0	1 4 × 40-19	12.84
$CoC_{2}O_{4}$	6.3×10^{-8}	7.2
CoC ₂ O ₄	1.8×10^{-15}	14.74
SOLIS COLIN LA COST HOUSE IN 12-1	1.50×10^{-6}	5.82
JUI 1 Unla	1 0 34 40-4	4.0
Co(NH ₃) ₆ (BF ₄) ₂		5.4
$\operatorname{Co}(\operatorname{NH}_3)_6(\operatorname{ReO}_4)_3$	4×10^{-6}	11.77
Co(OH) ₂	1.7×10^{-12}	14.20
	6.3×10^{-15}	14.20
Co(OH)	2.0×10^{-15}	14.80
	2.0 % 10	
Co(OH) ₂	2.0×10^{-16}	15.70
Co(OH) ₃ · · · · · · · · · · · · · · · · · · ·		
405 a	4×10^{-45}	44.4
CoS β	4.0×10^{-21}	20.40
CoSeO · · · · · · · · · · · · · · · · · · ·	2.0×10^{-25}	24.70
	1.6×10^{-7}	6.8
CrAsO ₄ Cr(NH ₃) ₈ (BF ₄) ₃ Cr(NH ₂) ₂ (MpO ₂)	7.8×10^{-21}	20.11
Cr(NH) (BF4)3	6.2×10^{-5}	4.21
Cr(NH ₃) ₆ (MnO ₄) ₃	4.0×10^{-8}	7.40
Cr(NH3)6(SO ₃ F) ₃	4.3 × 10-4	3.9
Cr(NH ₃) ₆ (MnO ₄) ₃ Cr(NH ₃) ₆ (SO ₃ F) ₃ Cr(NH ₃) ₆ (ReO ₄) ₃	7.7×10^{-12}	11.11
478	1.1 × 10-12	11.11

Table 10 (continued)

Formula of substance	SP	pSP=-log SP
Cr(OH) ₂	1.0×10^{-17}	17.0
$Cr(OH)_3(Cr^{3+}, 3OH^{-})$	6.3×10^{-31}	30.20
(CrOH ²⁺ , 2OH ⁻)	6.3×10^{-21}	20.20
CrPO4	1.0×10^{-17}	17.00
CrPO ₄	2.4×10^{-23}	22.62
(green) CsAuCl ₄ (Cs ⁺ , AuCl ₄)	1 × 10-3	3
$CsBF_4(Cs^+, BF_{\overline{4}_1})$		4.7
CsBH ₄ (Cs ⁺ , BH ₄)	2.5×10^{-7}	6.6
CsBrO ₃	2×10^{-2}	1.7
CsClO ₃	4 X 10-4	1.4
CsClO ₄	4×10^{-3}	2.4
CsClO ₄ Cs ₃ Co(NO ₂) ₆ [3Cs ⁺ , Co(NO ₂) ₆ ⁵ -]	5.8×10^{-16}	15.24
CsHgCla(Cs+, HgCla)	2×10^{-3}	2.7
CsHgCl ₃ (Cs+, HgCl ₃)	1.0×10^{-2}	2.0
CsIO ₄	4.4 X 10	2.36
CsMnO ₄	9.1×10^{-5}	4.08
Cs.PtCl.	3 × 10	7.44
Cs_2PtF_6		$\frac{5.62}{3.40}$
USReO	1.0 / 10 5	4.90
Cs_2SiF_6 $Cs_2SnCl_6(2Cs^+, SnCl_6^{2-})$	1.26×10^{-5}	7.44
$Cs_2SnCl_6(2Cs^+, SnCl_6^{2-})$	3.6×10^{-8} 7.6×10^{-36}	35.12
$Cu_3(AsO_4)_0$	7.0 / 10-9	8.28
CuBr	0.20 10 00	19.49
CuCO ₃	2.5×10^{-10}	9.6
CuCO ₃	3×10^{-8}	7.5
CuC _o O ₄	1 0 14 40-6	5.92
CuCl	0.0 1 10-6	5.44
CuCrO ₄		15.89
Cu ₂ Fe(CN) ₆		11.96
Cul	7.4×10^{-8}	7.13
Cu(IO ₃) ₂	5 0 × 10-9	8.3
CuN ₃	1 × 10-14	14.0
Cn(OH) (Cn2+ 2OH-)	2.2×10^{-20}	19.66
Cu ₂ O(2Cu ⁺ , OH ⁻)	2.2×10^{-13}	12.66
Charlet (CO	- 10 10	33.78
CIL-P-O	10 00	15.08
		35.20
GIL-S	1 0 15	47.60
CuSCN	4.8×10^{-15}	14.32 49
Cusa	1 × 10 ⁻⁴⁹	7 00
CuSeO ₃	2.1×10^{-8}	7.68
ChWO	- 0	5 20.24
FeAsO4	5.8×10^{-21}	20.24

Formula of substance	SP	pSP=-log SI
FeCO ₃	3.47×10^{-11}	10.46
reCoO ₄	2×10^{-7}	6.7
Fe ₄ [Fe(CN) ₆] ₃	3.0×10^{-41}	40.52
PR(UH) ~ (PA** 20H-)	1×10^{-15}	15.0
(FeOH+, OH-)	5×10^{-10}	9.3
(FeOH+, OH-) Fe(OH) ₃ (Fe ³ +, 3OH-)	3.2×10^{-38}	37.50
(FeOH2+, 2OH-)	2×10^{-26}	25.70
[Fe(OH)‡, OH-]	4×10^{-17}	16.40
FePO ₄	1.30×10^{-22}	
	5×10^{-18}	17.3
$^{6}\text{eS}_{2}(\text{Fe}^{2+}, \text{S}_{2}^{2-})$	6.3×10^{-31}	30.2
rese .	1×10^{-26}	26
$G_{2}(SeO_{3})_{3}$ $G_{4}[Fe(CN)_{6}]_{3}$	2×10^{-31}	30.7
Gad Fe(CN) al	1.5×10^{-34}	33.82
	7 4 > 40-38	35.15
GeO ₂ (Ge ⁴⁺ , 4OH-)	1×10^{-57}	57.0
	1 × 10-35	34.5
IfO(OH) ₂ (HfO ²⁺ , 2OH-)	3×10^{-35} 4×10^{-26}	25.4
Ig ₂ Br ₂ (Hg ²⁺ , 2Br ⁻)	5.8×10^{-23}	22.24
IgoCOo(Hg2+, CO2-)	8.9×10^{-17}	16.05
Ig ₂ Cl ₂ (Hg ₂ ²⁺ , 2Cl ₂)	1×10^{-13} 1.3×10^{-18}	13 17.88
Ig ₂ Cl ₂ (Hg ₂ ²⁺ , 2Cl ⁻) Ig ₂ CrO ₄ (Hg ₂ ²⁺ , CrO ₄ ²⁻) Ig ₂ L ₂ (Hg ₃ ²⁺ , 2I ⁻)	5.0×10^{-9}	8.70
Ig. I. (Hg3+ 21-)	4.5×10^{-29}	28.35
$Ig_2(IO_3)_2(Hg_2^{2+}, 2IO_3^-)$	2.45×10^{-14}	13.71
IgoHPOA(Hož+ HPO2-)	1 0 14 40 12	
IgO(Hg ²⁺ , 2OH-)	4.0×10^{-13}	12.40
Ig ₂ O(Hg ₂ ²⁺ , 2OH-)	3.0×10^{-26}	25.52
IgS*	1.6×10^{-23}	22.8
olack)	1.6×10^{-52}	51 8
gS	4.0×10^{-53}	52.40
$\lg_2 S(Hg_2^{2+}, S^{2-})$	1 × 10-47	47.0
Ig ₂ (SCN) ₂ (Hg ₂ ²⁺ , 2SCN-)	3.0×10^{-20}	19.52
IgoDUa(Hgg+ SO2-)	1×10^{-27}	27.0
$Ig_2SO_4(Hg_2^2+, SO_4^3-)$	6.8×10^{-7}	6.17

^{*}The solubility products of mercuric salts (with the exception of HgS and HgSe) are not given here, since their very small values can give rise to incorrect ideas about the correspondingly sparing solubilities of these salts. In fact, upon a transition of mercuric salts to a solution, a very small samount of free ions (the product of whose concentrations gives the value of SP) but a relatively great amount of non-dissociated molecules — Hg(CN)2. The degree of dissociation of mercuric salts must be determined according to the constants given in Table 38.

Table 10 (continued)

Formula of substance	SP	pSP=-log SP
$\begin{array}{c} \text{HgSe} \\ \text{Hg}_2\text{SeO}_3(\text{Hg}_2^{2+}, \text{SeO}_4^{2-}) \\ \text{Hg}_2\text{WO}_4(\text{Hg}_3^{2+}, \text{WO}_4^{2-}) \\ \text{Hg}_2\text{WO}_4(\text{Hg}_3^{2+}, \text{WO}_4^{2-}) \\ \text{In}_4[\text{Fe}(\text{CN})_6]_3 \\ \text{In}(\text{IO}_3)_3 \\ \text{In}(\text{OH})_3 \\ \text{In}_2\text{S}_3 \\ \text{IrO}_2(\text{Ir}^{4+}, 4\text{OH}^-) \\ \text{Ir}_2\text{O}_3(2\text{Ir}^{3+}, 3\text{OH}^-) \\ \text{IrS}_2 \\ \text{K}_3\text{AlF}_6(3\text{K}^+, \text{AlF}_3^{3-}) \\ \text{KBF}_4(\text{K}^+, \text{BF}_4^-) \\ \text{KBF}_4(\text{K}^+, \text{BH}_4^-) \\ \text{K}(\text{C}_6\text{H}_5)_4\text{B[K}^+, (\text{C}_6\text{H}_5)_4\text{B}^-] \\ \text{KClO}_4 \\ \text{K}_3\text{Co}(\text{NO}_2)_6[3\text{K}^+, \text{Co}(\text{NO}_2)_6^{3-}] \\ \end{array}$	$\begin{array}{c} 1\times 10^{-59} \\ 6.3\times 10^{-15} \\ 1.10\times 10^{-17} \\ 1.9\times 10^{-44} \\ 3\times 10^{-3} \\ 5\times 10^{-94} \\ 1\times 10^{-88} \\ 1.6\times 10^{-72} \\ 2\times 10^{-48} \\ 1\times 10^{-75} \\ 1.6\times 10^{-9} \\ 2\times 10^{-3} \\ 1.3\times 10^{-3} \\ 2.25\times 10^{-8} \\ 1.1\times 10^{-2} \\ 4.3\times 10^{-10} \\ \end{array}$	59.0 14.2 16.96 43.72 2.5 33.3 88 71.8 47.7 75 8.80 2.7 2.9 7.65 1.97 9.37
K ₂ NaCo(NO ₂) ₆ 2K+, Na+, Co(NO ₂) ₆ -] K ₂ GeF ₆ (2K+, GeF ₆ ² -) K ₂ HiF ₆ (2K+, HiF ₆ ² -) K ₂ HiF ₆ (2K+, FrCl ₆ ² -) KiO ₄ K ₂ PdCl ₄ (2K+, PdCl ₂ ² -) K ₂ PdCl ₆ (2K+, PdCl ₃ ² -) K ₂ PtCl ₆ (2K+, PtCl ₆ ² -) K ₂ PtCl ₆ (2K+, PtCl ₆ ² -) K ₂ PtCl ₆ (2K+, PtCl ₆ ² -) K ₂ PtF ₆ (2K+, PtF ₆ ² -) K ₂ PtF ₆ (2K+, TiF ₆ ² -) K ₂ PtF ₆ (2K+, TiF ₆ ² -) K ₂ C ₂ TiF ₆ (2K+, ZiF ₆ ² -) La(BrO ₃) ₃ La ₂ (BoO ₄) ₃ La ₂ (MoO ₄) ₃ La ₃ (MoO ₄) ₃ La ₄ C ₃ C ₃ LiF LiOH Li ₃ PO ₄ Mg ₃ (AsO ₄) ₂ MgCO ₃ MgCO ₃ MgCO ₃ MgCO ₃	$\begin{array}{c} 2.2 \times 10^{-11} \\ 3.0 \times 10^{-5} \\ 2 \times 10^{-3} \\ 6.8 \times 10^{-6} \\ 8.3 \times 10^{-4} \\ 1.6 \times 10^{-5} \\ 6.0 \times 10^{-5} \\ 6.0 \times 10^{-5} \\ 1.9 \times 10^{-3} \\ 1.1 \times 10^{-5} \\ 2.9 \times 10^{-5} \\ 1.9 \times 10^{-3} \\ 8.7 \times 10^{-7} \\ 5 \times 10^{-4} \\ 3 \times 10^{-3} \\ 2.5 \times 10^{-27} \\ 6.2 \times 10^{-12} \\ 4 \times 10^{-21} \\ 2.0 \times 10^{-19} \\ 2.0 \times 10^{-19} \\ 2.0 \times 10^{-13} \\ 3.98 \times 10^{-3} \\ 3.98 \times 10^{-3} \\ 3.98 \times 10^{-3} \\ 3.2 \times 10^{-9} \\ 2.1 \times 10^{-20} \\ 2.1 \times 10^{-5} \\ 8.6 \times 10^{-5} \\ \end{array}$	10.66 4.52 2.7 4.17 3.08 4.9 5.2 2.1 4.96 4.54 2.72 6.06 3.3 3.3 2.5 26.60 11.21 20.4 18.7 12.70 4.5 2.40 2.42 1.4 8.5 19.68 4.67 4.1

Formula of substance	SP	pSP=-log SP
MgF ₂	6.5 × 10 ⁻⁹	8.19
MgF ₂		2.5
Mg(IO ₃) ₂	3×10^{-3}	
MgK ₂ Fe(CN) ₆	5×10^{-9}	8.3
Mg(NH ₄) ₂ Fe(CN) ₆	4×10^{-8}	7.4
MgNH ₄ PO ₄	2.5×10^{-13}	12.6
$Mg(OH)_2$	6.0×10^{-10}	9.22
Mg(OH) ₂	0,0 /(10	
$Mg(OH)_{2}(Mg^{2+}, 2OH^{-})$	1.8×10^{-11}	10.74
(MgOH+, OH-)	2.3×10^{-7}	6.64
(arter agerny)		
$Mg_3(PO_4)_2$	1×10^{-13}	13
MgSO ₃ · · · · · · · · · · · · · · · · · · ·	3×10^{-3}	2.5
MgSeO ₃	1.30×10^{-6}	4.89
Mn ₃ (AsO ₄) ₂	1.9×10^{-29}	28.72
MnCO ₃	1.8×10^{-11}	10.74
MnC.O.		
MnC ₂ O ₄	5×10^{-6}	5.3
Mn ₂ Fe(CN) ₆	7.9×10^{-13}	12.10
MnNH ₄ PO ₄	1×10^{-12}	12
$Mn(OH)_2(Mn^{2+}, 2OH^{-})$	1.9×10^{-13}	12.72
(MILOH , OH)	1.5×10^{-9}	8.82
mn(OH)	1×10^{-36}	36
MnS*	2.5×10^{-10}	9.60
(Hesh-coloured)		
MnS*	2.5×10^{-13}	12.60
(green)		
MnSeO ₃	1.26×10^{-7}	6.9
MO(OH) _A	1×10^{-50}	50.0
(NH ₄) ₂ AlF ₄ (3NH+ AlF3-)	1.6×10^{-3}	2.80
(NO 13-1	7.6×10^{-6}	5.12
TITAL OILUIA		4.5
(NH ₄) ₂ PtCl ₆	3×10^{-6}	5.05
Na ₃ AlF ₆	9×10^{-6}	9.39
Na ₃ AlF ₆ Na ₂ BeF ₄	4.1×10^{-10}	
NaIO.	7×10^{-3}	2.15
NaShiOH) INat Chionis	3×10^{-3}	2.5
$NaIO_4$ $NaSb(OH)_6[Na^+, Sb(OH)_6^-]$ Na_2SiF_6	4×10^{-8}	7.4
Na ₂ SiF ₆ Ni ₈ (AsO ₄) ₂ Ni(CN) ₆	2.8×10^{-4}	3.56
Ni(CN) 4)2 · · · · · · ·	3.1×10^{-26}	25.51
Ni(CN)	3×10^{-23}	22.5
Nico,	1.3×10^{-7}	6.87
NiC ₂ O ₄	4×10^{-10}	9.4
	4 × 10-10	1

^{*}The values of SPMns are given according to A. Ringbom, "Solubilities of Sulfides" (Report to Analytical Section IUPAC, July, 1953); they considerably differ from many of those found earlier, for example for the modification of flesh-coloured: 7×10-16 (Bruner, Zawadski), 1.1×10-15 (Kapustinsky); for the modification of green colour: 6.2×10-22 (Bruner, Zawadski).

Table 10 (continued)

Formula of substance	SP	pSP=-log SP
Ni/ClO)	1 × 10-4	4
$Ni(ClO_3)_2$	1.3×10^{-15}	14.89
Ni(IO)	1.40×10^{-8}	7.85
Ni/NLI (DE)	1 × 10-6	6
Ni(IO ₃) ₂	5.1×10^{-4}	3.29
		14.70
(roshly produtated)	B.0 / 20	
Ni(OH) ₂ freshly-precipitated) Ni(OH) ₂	6.3×10^{-18}	17.20
after ageing)		12.77
after ageing)	1.7×10^{-13}	18.50
1100		
		$24.0 \\ 25.70$
NiS p NiSeO ₃ NpO ₂ (OH) ₂ (NpO ₃ ²⁺ , 2OH ⁻)	2.0×10^{-26}	5.0
ViSeO.	1.0×10^{-5}	
InO. (OH) (NnO2+ 2OH-)	2.5×10^{-22}	21.6
$^{\circ}$ $^{\circ}$	4.1×10^{-36}	35.39
bBr ₂	1 9 1 × 10-0	5.04
b(BrO ₃) ₂	7.99×10^{-6}	5.10
bCO ₃	7.49×10^{-14}	13.13
bC ₂ O ₄ · · · · · · · · · ·	1.48×10^{-10}	9.32
bC ₂ U ₄		4.79
DCI2	2.8×10^{-9}	8.55
PbClF	1.8×10^{-14}	13.75
	0 7 \ 40-0	7.57
bF ₂	3.5×10^{-15}	14.46
D-ROIL W	1 1 X 10-9	8.98
DI.	2.6×10^{-13}	12.58
(0)	1-01-A	5.4
		8.59
Ph(N ₃) ₂ Ph(OH) ₂ (Ph ²⁺ , 2OH ⁻)	1.1×10^{-20}	19.96
Ob(OH) _o (Pb ²⁺ , 2OH ⁻) · · · ·	8.7×10^{-14}	13.06
		14.7
		13.7
PbOHCI	3.0×10^{-66}	65.5
$^{\circ}bO_{\circ}(Pb^{4+}, 4OH^{-}) \cdot \cdot \cdot \cdot \cdot$	5.3×10^{-51}	50.28
$^{\circ}b_{3}O_{4}(2Pb^{2}+, PbO_{4}^{4}-)$ · · · ·	7.9×10^{-43}	42.10
2b ₃ 0 ₄ (2Pb ²⁺ , Pb0 ⁴⁻)	7.5×10^{-80}	79.12
$\mathrm{Ph}_{5}(\mathrm{PO}_{4})_{3}^{2}\mathrm{Cl}$	1×10^{-7}	7.0
bPO _g F	2.5×10^{-27}	26.60
bs	2.0×10^{-5}	4.70
Pb(PO ₄) ₃ Cl	1.6×10^{-8}	7.80
PbSq	4.0×10^{-7}	6.40
bS.O	1×10^{-38}	38
hSe	3×10^{-12}	11.5
PhSeO.	1.45×10^{-7}	6.84
PbSeO ₃	1.45×10^{-7} 4.5×10^{-7}	6.35
Phwo.	4.5 × 10	0.00

Formula of substance	SP	pSP=-log SP
Pb(OH) ₄	6.5×10^{-71}	70.2
PoS	5×10^{-20}	28.3
$Po(SO_4)_2$	2.6×10^{-7}	6.58
PtBr ₄	3×10^{-41}	40.5
PtGL	8.0×10^{-29}	28.1
Pt(OH)	1×10^{-35}	5
PtO ₂ (Pt ⁴⁺ , 4OH-)	1.6×10^{-72}	71.8
PtS	8×10^{-73}	72.1
Pu(OH) ₃	2×10^{-20}	19.7
Pu(OH).	1×10^{-52}	52
PuO ₂ OH(PuO ₇ , ()H-)	1×10^{-3}	3
PuO ₂ (OH) ₂ (PuO ²⁺ , 2OH-)	3.2×10^{-21}	20.5
$Pu(10_3)_4$,	5×10^{-13}	12.3
$\text{Ma}(10_3)_2$	8.8×10^{-10}	9.06
$Ra(NO_3)_9$	6.2×10^{-3}	2.21
nasu ₄	4.3×10^{-11}	10.37
ADBF4	1×10^{-3}	3.0
ADBH ₄	2.5×10^{-4}	3.6
ADDIO,	2×10^{-2}	1.7
(DCIO ₄	2.5×10^{-3}	2.60
$Rb_3Co(NO_2)_6[3Rb^+, Co(NO_2)^2-1]$	1.48×10^{-15}	14.83
ADIO ₄	5.5×10^{-4}	3.26
1DM n().	2.9×10^{-3}	2.54
Rb ₂ PtCl ₂ (2Rb+, PtCl ₂ -)	9×10^{-8}	7.2
ADPTE (ZRD+, PtF2-)	7.63×10^{-7}	6.12
ibReO4	9.6×10^{-4}	3.02
Rb ₂ SiF ₆	5 × 10-7	6.3
	5.5×10^{-5}	4.26
Rh ₂ O ₃ (Rh ³⁺ , 3OH ⁻) . Ru ₂ O ₃ (Ru ³⁺ , 3OH ⁻) . Ru ₂ O ₃ (Sb ³⁺ , 3OH ⁻) . (SbO ⁺ , OH ⁻)	2×10^{-48}	47.7
${\rm u_2O_3(Ru^{3+}, 3OH^{-})}$	1 × 10-36	36
$b_2O_3(Sb^{3+}, 3OH^{-})$	4×10^{-42}	41.4
(SbO+, OII-)	7.9×10^{-18}	17.1
203	1.6 × 10-93	92.8
c(OH) ₃	1×10^{-27}	27
n(OH) (C-2; por; · · · ·	1.0×10^{-4}	4.0
n(OH) ₂ (Sn ²⁺ , 2OH-)	6.3×10^{-27}	26.20
(2001, 014-)	4.6×10^{-15}	14.34
ne	1×10^{-57}	57
	1×10^{-25}	25.0
r ₃ (AsO ₄) ₂ rCO ₃	1.3×10^{-18}	17.79
	1.1×10^{-10}	9.96
rC ₂ O ₄	5.6×10^{-8}	7.25
rCrO ₄	3.6×10^{-5}	4.44
r(10 ₃) ₂	2.5×10^{-9}	8.61
. 3/2	3.3×10^{-7}	6.48

Table 10 (continued)

Formula of substance	SP	pSP=-log SI
SrMoO ₄	2 × 10-7	6.7
Sr(OH),		3.50
$\operatorname{Sr}_3(\operatorname{PO}_4)_2$		31
SrPO ₃ F		2.5
SrSO ₃		7.4
SrSO ₄		6.49
$SrSeO_3$		6.07
SrSeU ₃	1.5×10^{-2}	1.82
SrSiF ₆	2.2×10^{-10}	9.77
SrWO ₄	3.0×10^{-54}	53.52
$\Gamma_{\rm e}({\rm OH})_4$	2.0×10^{-5}	4.70
$\Gamma h(C_2O_4)_2 \dots \dots$	10 15	14.6
$\Gamma h(I\tilde{O}_3)_4$	3.2×10^{-45}	44.5
Th(OH),	2.57×10^{-79}	78.59
$\Gamma_{3}(PO_{4})_{4}$	4×10^{-3}	2.4
$(SO_4)_2 \dots \dots$	1 × 10 ⁻²⁹	29
rh(SO ₄) ₂ . riO(OH) ₂ (TiO ²⁺ , 2OH ⁻)	1 X 10 -6	5.41
IDI	0.00	3.41
IBro.	3.89×10^{-4}	2.4
1,CO,	4 / 10	3.76
IGI		1.4
Cicio,	4×10^{-2}	16.00
$I_3C_0(NO_2)_6[3T]^+$, $C_0(NO_2)_6^{3-1}$	1.0×10^{-16}	12.01
LoCrO.	9.8×10^{-13}	9.3
14Fe(CN)	5×10^{-10}	7.19
11	6.5×10^{-8}	5.51
110.		45.20
I(OH).	6.3×10^{-46}	7.18
12PO.	6.7×10^{-8}	11.4
I ₂ PtCl ₂	4×10^{-12}	4.92
IReO.	1.2×10^{-5}	20.30
1.8	5.0×10^{-21}	3.77
ISCN	1.7×10^{-4}	3.2
1,50,	6.3×10^{-4}	2.4
1,50.	4×10^{-3}	6.70
loSo()	$2.0 \times 10^{-7} \ 1 \times 10^{-5}$	5
1000	1×10^{-5} 1×10^{-11}	11
4 V 0 () -	4	3.4
		13.15
$O_2)_{\circ} Fe(CN)_{\circ}$	3.2×10^{-11}	10.50
$0_{2}^{1})_{2}^{2}$ Fe(CN) ₆ 0_{2} HAsO ₄ (UO ₂ ²⁺ , HAsO ₄ ²⁻) 0_{2} HPO ₄ (UO ₂ ²⁺ , HPO ₄ ²⁻)	3.2×10^{-11} 2.14×10^{-11}	10.67
O2HPO (UO2+, HPO2-)	3×10^{-8}	7.5
		22.60
O.K ASO.	2.5×10^{-23}	23.11
O ₂ K A _S O ₄	7.8×10^{-24}	
O.NH ASO	1.7×10^{-24}	23.77

Formula of substance	SP	pSP==-log SP
O NH.PO.	4.4 × 10 ⁻²⁷	26.36
$O_2NH_4PO_4$ O_2NaAsO_4	1.3×10^{-22}	21.87
(OH)3	1×10^{-19}	19.0
(OH)	1×10^{-45}	45.0
(OH) ₄	1×10^{-22}	22.0
O(OH)	7.4×10^{-23}	22.13
O(OH) ₂	1.6×10^{-15}	14.8
205(VO2, OII)	8×10^{-25}	24.1
$(OH)_4$	1×10^{-50}	50.0
(OH) ₃	6.3×10^{-25}	24.2
n (AcO)	1.07×10^{-27}	26.97
n(CN)		12.59
n(ĈN) ₂	1.45×10^{-11}	10.84
nCO3	1.5×10^{-9}	8.8
nC ₂ O ₄	4.1×10^{-16}	15.39
$n_2 \tilde{F}e(CN)_6$ $nHg(SCN)_4[Zn^{2+}, Hg(SCN)_4^{2-}]$	2.2×10^{-7}	6.66
HHg(SCN)4(ZII-, Hg(SCN)4 1	2.0×10^{-8}	7.7
$n(IO_3)_2$	7.1×10^{-18}	17.15
(7-OH+ OH-)	1.8×10^{-13}	12.75
(ZnOH+, OH-)	9.1×10^{-33}	32.04
	1.6×10^{-24}	23.80
nSα		
nS β	2.5×10^{-22}	21.60
vurcite)		21
nSe	1×10^{-31}	31
$nSeO_3$	2.57×10^{-7}	6.59
$(rO(OH)_{\alpha} \dots \dots \dots \dots \dots$	2 × 10-24	23.7
$Zr(OH)_4(Zr^{4+}, 4OH^{-})$	1.1×10^{-54}	53.96
[Zr(OH)2+, 2OH-]	3.2×10^{-26}	25.50
Zr ₃ (PO ₄) ₄	1×10^{-132}	132

Table 11

Activity Coefficients of Various Ions

		Values o	f activity co	oefficients	Values of activity coefficients at the given ionic strength u*	ionic strei	ngth u*	
Ions	0.0005	0.001	0.0025	0.005	0.01	0.025	0.05	0.1
		Ions of	Ions of inorganic	compounds	sp			
t t t t t t t t t t t t t t t t t t t	0.975 0.975 0.975	0.967 0.965 0.964	0.950 0.948 0.945	0.933 0.929 0.924	0.914 0.907 0.898	0.88 0.87 0.85	0.86	0.83 0.80 0.75
, Cl-, Br-, I-, CN-, NO ₂ , NO ₃ H-, F-, HS-, ClO ₃ ,	0.975	0.964	0.945	0.925	668.0	0.85	0.805	0.755
ClO4, BrO3, 104, MnO4, OCN-SCN- Na+ CdCl+ ClO5, 105,	0.975	0.964	976.0	0.926	0.900	0.855	0.81	0.76
CO ₃ , H ₂ PO ₄ , H 2ASO ₃ 2 SO ₂ - S ₂ O ₃ - S	0.975	0.964	0.947	0.928	0.905	98.0	0.82	0.775
S202-, Se02-, Cr02-, HPO2-	0.903	0.867	0.803	0.740	099.0	0.545	0.445	0.355
* Tonic Strength u=	C2Z2+C3Z3	$c_1 z_1^2 + c_2 z_2^2 + c_3 z_3^2 + \dots + c_n z_n^2$	-	C1, C2, C3,	where $c_1, c_2, c_3, \ldots, c_n$ are the concentrations of all ions pre-	the concen	trations of a	Il fons I
sent in the solution, and Zi, Z2, Z3,, Zn are the corresponding values of the charges of these lons.	Z2, Z3,,	Zn are the	correspondi	ng values	of the charge	es of these	lons.	

11		Value	Values of activity coefficients at the given ionic strength u	y coefficien	ts at the giv	ven ionic st	rength u	
Tons	0.0005	0.001	0.0025	0.005	0.01	0.025	0.02	0.1
		Ions of	inorganic	Ions of inorganic compounds	sp			
, SOg-, Raz+	0.903	0.868	0.802	0.742	0.665	0.55	0.455	0.37
S203	0.903	898.0	0.805	0.744	0.67	0.555	0.465	0.38
+ .	0.905 0.906 0.796	0.870 0.872 0.725	0.809 0.813 0.612	0.749 0.755 0.505	0.675 0.69 0.395	0.57 0.595 0.25	0.485 0.52 0.16	0.405 0.45 0.095
Y 2+ La 3+ In 3+ Ce 3+, Pr3+ Nd 3+ Sm 3+ [Fe(CN) ₆] ⁴⁻ Th 4+ Zr 4+ Ce 4+ Sn 4+	0.802 0.668 0.678	0.738 0.57 0.588	0.632 0.425 0.455	0.54 0.31 0.35	0.445 0.20 0.255	0.325 0.10 0.155	0.245 0.048 0.10	0.18 0.021 0.065
		lons of	organic c	compounds				
HCOO-, H ₂ C ₆ H ₅ O ₇ , CH ₃ NH ₃ , (CH ₃) ₂ NH ₂ -OOCCH ₂ NH ₃ , (CH ₂), NH+	0.975	0.964	0.946	0.926	0.900	0.855	0.81	0.76
C2H5COO-, (CH3),N+,	0.975	0.964	0.947	0.927	0.901	0.855	0.815	0.77
NH2CH2COO-	0.975	0.964	276.0	0.928	0.905	0.86	0.82	0.775

Table II (continued

0.0005 0.001 0.0025 0.005 0.01 0.025 0.05	Tons		Value	Values of activity coefficients at the given ionic strength µ	coefficients	at the give	en ionic stre	ength µ	
Ions of organic compounds 1-3	TOTAL STATE OF THE	0.0005	0.001	0.0025	0.005	0.01	0.025	0.05	0.1
Cl ₃ COO-, C ₃ H ₇ NH ^{$\frac{1}{3}$ 0.975 0.964 0.947 0.928 0.904 0.865 0.83 OHCOO-, OO-,}			Ions of	organic con	spunod u				
0.975 0.965 0.948 0.929 0.907 0.87 0.835 0.975 0.965 0.948 0.930 0.909 0.875 0.845 0.903 0.867 0.804 0.744 0.662 0.55 0.465 0.903 0.878 0.809 0.744 0.67 0.555 0.465 0.905 0.870 0.809 0.749 0.675 0.57 0.485 0.796 0.728 0.616 0.51 0.405 0.27 0.485	Cl,COO-, CCl,COO-, C,H,),NH+, C,H,NH [‡] 1,COO-, C,H,OHCOO-, 4,H,ClCOO-, 6,H,CH,COO-,	0.975	0.964	0.947	0.928	0.904	0.865	0.83	0.79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.c=CHCH.COO-, C2H5,1.N+, (CH5)2.C=CHCOO-, (CH5,2.NH2,	0.975	0.965	0.948	0.929	0.907	0.87	0.835	0.80
0.903 0.868 0.805 0.744 0.67 0.555 0.465 0.905 0.870 0.809 0.749 0.675 0.57 0.485 0.728 0.616 0.51 0.405 0.27 0.485	(C ₃ H ²) ₃ NH ⁴ 00) ₂ HC ₆ H ₅ O ₂ (C(COO) ₂ (CH ₅ COO) ₂	$0.975 \\ 0.903$	0.965	0.948	0.930	0.909	0.875	0.845	0.81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(CHOHCOO)2- H-(COO)2-	0.903	0.868	0.805	0.744	0.67	0.555	0.465	0.38
	H,C(CH,COO); CH,CH,COO); H,O;	0.905	0.870	0.809	0.749	0.675	0.57	0.485	0.40

Activity Coefficients of Various Ions at High Values of the Ionic Strength of a Solution

(Approximate Values)

The table has been compiled by L. Meites* according to the Davis formula:

$$-\frac{\log f_i}{Z_i^2} = \frac{0.511 \sqrt{\mu}}{1 + 1.5 \sqrt{\mu}} - 0.2\mu$$

where μ is the ionic strength of a solution, f_i is the activity coefficient of an ion, Z_i is an ion charge (from 1 to 6). A mean value of ion radii was taken as an effective ion radius.

μ	$-\frac{\log f_i}{2}$	f _i at Z _i equal to					
	Z_i^2	1	2	3	4	5	6
0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	0.076 0.090 0.097 0.094 0.086 0.075 0.063 0.050 0.035 0.020 0.0044	0.84 0.81 0.80 0.81 0.82 0.84 0.87 0.89 0.92 0.96 0.99	0.50 0.44 0.41 0.42 0.45 0.50 0.56 0.63 0.72 0.83 0.96	0.21 0.16 0.14 0.14 0.17 0.21 0.27 0.36 0.48 0.66 0.91	0.062 0.037 0.028 0.032 0.042 0.062 0.098 0.16 0.27 0.48	0.013 0.0058 0.0038 0.0046 0.0072 0.013 0.027 0.058 0.13 0.31 0.78	0.0019 0.00060 0.00033 0.00043 0.00082 0.0020 0.0054 0.016 0.054 0.19 0.69

^{*} L. Meltes, Handbook of Analytical Chemistry, London, 1963.

Calibration of Glassware

Correction A is equal to the difference between 1000 g (mass of one litre of water in a vacuum at 4°C) and the mass of one litre of water in a vacuum at a temperature indicated in the first column.

Correction B for weighing in air with the aid of brass weights (the density of brass is 8.4 g/cm3) is calculated with an allowance that barometric pressure differs little from the standard one (760 mm Hg) and that the relative humidity of air is about 50%. Since with a change in barometric pressure by 10 mm Hg the value of B changes on average by 14 mg, it is necessary, if pressure deviates greatly from 760 mm, to use a more accurate value B' = B + (P - 760) 1.4 mg, where P is

the barometric pressure.

Correction C for the expansion (or compression) of a vessel depending on whether the temperature is above or below the standard one (20°C) is calculated according to the mean expansion coefficient of

glass, equal to 25×10^{-6} .

The last column gives the mass of water in air at experiment temperature occupying at 20 °C a volume of one litre. When calibrating vessels with a smaller capacity, one should take the corresponding part of this mass.

Tem- pera- ture, °C	Mass of 1000 ml of water in a vacuum, g (d·1000)	Cor- rec- tion A, g	Correction B, g	Cor- rec- tion C, g	A+B+C,	1000 - - (A+B+C), g
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	999.81 999.73 999.63 999.52 999.40 999.27 999.13 998.80 998.62 998.43 998.23 998.02 997.80 997.57 997.33 997.08	0.19 0.27 0.37 0.48 0.60 0.73 0.87 1.03 1.28 1.57 1.77 1.98 2.20 2.43 2.67 2.92 3.18	1.10 1.09 1.09 1.08 1.08 1.07 1.07 1.07 1.06 1.06 1.05 1.05 1.05 1.04 1.04 1.03 1.03	+0.28 +0.25 +0.25 +0.20 +0.18 +0.15 +0.13 +0.00 +0.03 -0.03 -0.05 -0.08 -0.10 -0.13 -0.15	1.57 1.61 1.69 1.77 1.86 1.96 2.07 2.20 2.35 2.49 2.66 2.82 3.00 3.20 3.39 3.61 3.82 4.06	998.43 998.39 998.31 998.23 998.14 998.04 997.93 997.65 997.51 997.34 997.18 997.00 996.80 996.61 996.39 996.18

Table 13 (continued)

Tem- pera- ture, °C	Mass of 1000 ml of water in a vacuum, g (d·1000)	Cor- rec- tion A, g	Correction B, g	Cor- rec- tion C, g	A+B+C,	1000 - - (A+B+C), g
27	996.55	3.45	1.03	-0.18	4.30	995.70
28	996.27	3.73	1.02	-0.20	4.55	995.45
29	995.98	4.02	1.02	-0.23	4.81	995.49
30	995.68	4.32	1.01	-0.25	5.08	994.92
31	995.37	4.63	1.01	-0.28	5.36	994.64
32	995.06	4.94	1.01	-0.30	5.65	994.35
33	994.73	5.27	1.00	-0.33	5.94	994.06
34	994.40	5.60	1.00	-0.35	6.25	993.75
35	994.06	5.94	0.99	-0.38	6.55	993.45

Calculation of the Results of Volumetric-Analytical Determinations*

One millilitre of a titrating solution titrates $N_s E_x$ mg of a substance being determined (N_s is the normality of the titrating solution**, E_x is the equivalent weight of the substance being determined that is given in the table). If g is the weighed portion of the material being analysed in mg and V is the amount of the titrating solution used in titration, then the percentage of substance x being determined is:

$$x = \frac{VN_sE_x \cdot 100}{g}$$

A. Acid-Base Titrations (Acidimetry and Alkalimetry)

Substances used for titration and the concentrations of their normal solutions:

(a) Acids

Formula HNO2 H.C.O. .2H.O II.SO4 HCl Concentration of 1N 63.0333 49.039 63.0129 solutions (g/l) . . 36.461 (b) Alkalies Formula NaOH KOH Ba(OH), .8H,O Concentration of 1N solu-157.74 39.9972 56,109 tions (g/l)

Substance being determined	$\frac{E}{M^*}$	Equivalent weight, E	log E
Al B (titration of H ₃ BO ₃ with phe-	1/3	8.99383	95 394
nolphthalein in the presence of mannitol or glycerin)	1 1/2 1/2 1/2 1/2 1/2	10.811 85.675 157.74 22.0050 30.0047 59.0450	03 387 93 285 19 794 34 252 47 719 77 118

^{*}For the use of the table, see p. 462.

** In the notation N_s , E_{χ} , etc., given here and in the following tables, symbol s, written as a subscript, applies to the titrating solutions, and symbol x applies to the titrates of a substance being determined.

Table 14 (continued)

Substance being determined	E M	Equivalent weight, E	$\log E$
CaCO ₃	1/2 1/2 1/2	50.045 81.057 28.040	69 936 90 879 44 778
H ₃ BO ₃ (with phenolphthalein in	1/2	37.047	56 875
the presence of mannitol or gly- cerin)	1	61.833	79 122
HBr	1 1	80.912 46.0259	90 801 66 300
(formic acid) HC ₂ H ₃ O ₂ (acetic)	1	60.0530	77 853
H ₂ C ₄ H ₄ O ₄	1/2	59.045	77 118
H ₂ C ₄ H ₄ O ₆	1/2	75.0445	87 532
H ₃ C ₆ H ₅ O ₇	1/3	64.0420	80 646
H ₃ C ₆ H ₅ O ₇ ·H ₂ O	1/3	70.0473 122.125	84 539 08 680
H ₂ C ₂ O ₄	1/2	45.0179	65 339
(oxalic) H ₂ C ₂ O ₄ ·2H ₂ O HCl	1/2	63.0333	79 957
HClO ₄	1	36.461 100.459	56 183
HF HI	1	20.0064	30 117 10 691
HIO ₃ HNO ₃	1	127.9124 175.9106	24 529 79 943
H ₃ PO ₄ (with methyl orange, or methyl yellow, or bromocresol	1	63.0129	79 945
blue) H ₃ PO ₄ (with thymolphthalein, or phenolphthalein, or thymol blue	1	97.9953	99 121
HaPO4 (with phenol	1/2	48.9977	69 018
H ₃ PO ₄ (titration of pt	1/3	32.6651	51 408
H.SO.	1/23	4.2607	62 948 69 054
nolphthele thymol blue or phe-	1/2	49.039	14 055
methyl organical yellow, or	1	138,213	14 050
blue, or bromocresol blue)	1/2	69.107	83 952 00 052

Table 14 (continued)

Substance being determined	$\frac{E}{M}$	Equivalent weight, E	log E
THC H O.	1	188.183	27 458
$(HC_4H_4O_6$	1	204,229	31 012
(hydrophthalate)	1	389.915	59 097
$\Pi(10_3)_2$	1	54.109	74 903
COH Li ₂ CO ₃ (with thymol blue or phe- nolphthalein) Li ₂ CO ₃ (with methyl yellow, or	1	73.887	86 857
blue, or bromocresol blue)	1/2 1/2 1/2	36.944 42.157 20.152	56 754 62 487 30 432
MgO Kieldahl)	1/2	14.0067	14 634
3.25 N ("albumen")	_	87.5419 89.2227	94 222 95 048
5.37 N ("casein")	_	77.7372	89 063
NITT	1	17.0306 18.0386	23 123 25 620
NH; NH; NH;Cl	1	53.492	72 829 82 000
(NH4)2804th alkali and phe-	1/2	66.070	82 000
nolphthalein of precipitate	1/10 1/2	2.29898 190.69	36 154 28 033
Na ₂ B ₄ O ₇ ·10H ₂ O	1	105,9890	02 52
nolphthalell) vellow, or			
	1/2	52.9945	72 42
blue, or promocresor blue,	1/2	143.071	15 55 92 43
NaHCO	1	84.0071 39.9972	60 20
NaOH	1/23	1.3467	12 92
Pogration of phosphoromolyb- date precipitate)	1/23	4.1292	61 58

B. Oxidation-Reduction Methods (Manganatometry, Chromatometry, Iodometry, Bromatometry, Ceriometry, etc.)

Substances used for titration and the concentrations of their normal solutions:

KMnO₄ Ce(NH₄)₄(SO₄)₄·2H₂O Co(SO₄)₂·4H₂O (a) Oxidizing Agents Concentration of 1N 404.30 632.55 solution (g/l) . . 31.6075

Table 14 (continued) Formula I2 $KBrO_3$ K2Cr2O7 Concentration of 1N solution (g/l) 126.9044 27.835 49.032Formula KIO₃ Concentration of 1N Ca(ClO), NH₄VO₃ solution (g/l) 35,6674 35.745 116.979 (b) Reducing Agents Formula Formula . . . Na₂S₂O₃.5H₂O Fe(NH₄)₂(SO₄)₂.6H₂O FeSO₄.7H₂O Concentration of 1Nsolution (g/l)248.18 392,14 278.02 Formula C6H8O8 Hg2(NO3)2 · 2H2O (ascorbic acid) Concentration of

1Nsolution

(g/l) 88.064

280 64

Substance being determined	$\frac{E}{M}$	Equivalent weight, E	$\log E$
Al (after precipitation with hydro-			
xyquinoline) As (As ³⁺ ≠ As ⁵⁺) Ba (after precipitation in the form	1/12	2.24846	35 189
Ra (after As ⁵⁺)	1/2	37.46080	57 358
of Proceipitation in the form		01,100	
	1/3	45.780	66 068
	., 0	10.100	
a y quinoffile)	1/12	17.4150	24 092
BrO ₃ -	1	79.904	90 257
HOH Chi	1/6	21,3170	32 873
phenol) (according to Koppeshaar)	1/6	15.6857	19 550
N- (iodometrically and and	-, -	10,0001	
to Schulek)			
a (after proci-it-it	1/2	13.00895	11 424
of CaC.O.			30 190
of CaC ₂ O ₄). Cd (after precipitation with hydro- xyquinoline)	1/2	20.040	30 190
xyquinoline)	4.46		14 768
e (after precipitation	1/8	14.050	14 700
xyquinoline)	1110		06 733
(active)	1/12	11.677	54 965
cl (active)	1	35.453	54 965
210-	1/2	35.453	34 900
	1/2	25.726	41 037
o lafter precipitation in the	1/6	13.9035	14 312
o lafter precipitation in the form of K ₃ Co(NO ₂),			72 897
. 2/61	1/11	5.3576	12 00

Table 14 (continued)

Substance being determined	E M	Equivalent weight, E	$\log E$
Co (after precipitation with hydro-			
xyquinoline)	1/8	7.3667	86 727
$Cr (Cr_2O_2^{7-} \rightarrow 2Cr^{3+})$	1/3	17,3320	23 885
$Cr(Cr_2O_7 \rightarrow 2Cr_1) \dots \dots$	1/3	38.6647	58 731
CrO ₃	1/6	35.9980	55 628
$\operatorname{Cr}_2\operatorname{O}_7^{2-}$			80 309
Cu (iodometrically)	1	63.546	80 309
Cu (titration of precipitate CuSCN	. 10	10 5010	00 101
with permanganate)	1/6	10.5910	02 494
Cu (after precipitation with hydro-			
xyquinoline)	1/8	7.9433	90 000
Fe $(Fe^{3+} \rightarrow Fe^{2+})$	1	55.847	74 700
Fe (Fe ³⁺ \(\pm \) Fe ²⁺)			
vyquinoline)	1/12	4.6539	66 782
$Fe(CN)_6[Fe(CN)_6^{3-} \rightarrow Fe(CN)_6^{4-}]$	1	211.954	32 624
Fe(VII) (CO) CII O	1	392.14	59 344
$\operatorname{Fe}(\operatorname{NH}_4)_2(\operatorname{SO}_4)_2 \cdot \operatorname{6H}_2\operatorname{O} \cdot \cdot \cdot \cdot \cdot$	i	71.846	85 640
eò	1/2	79.846	90 225
$[e_2O_3 \ldots \ldots]$	1/2	151.91	18 159
FeSO_4	1	278.02	44 408
$FeSO_4 \cdot 7H_2O$	1	218.02	44 400
FeSO ₄	4/10	= 010	76 418
Yvaninoline)	1/12	5.810	10 418
ICN (iodometrically and according			10 0==
to Schulek)	1/2	13.5129	13 075
I ₂ C ₂ O ₄	1/2	45.0180	65 339
ovalie	4.10	40 0000	79 957
I ₂ C ₂ O ₄ ·2II ₂ O	1/2	63.0333	
11	1	127.9124	10 691
INO,	1/2	23.5068	37 119
I_2O_2	1/2	17.0074	$23\ 064$
	1/2	17.040	23 147
I ₂ S (iodometrically)			
128 (bromatometrically and man	1/8	4.2600	62 941
ganatometrically)	1/6	9.8483	99 336
ISCN (manganatometrically)			
ISCN (iodometrically according to	1/8	7.3863	86 843
Rupp and Schied)	1/2	41.039	61 320
2SO ₃ (through barium chromate)	1/3	32.693	51 445
2SO4 (through barium chromate)	1	126.9044	10 348
	1	120.3044	10 346
(after oxidation to iodine with	1	126.9044	10 348
5 midmid s \	1	120.9044	10 348
- (after oxidation to IO3 with	110	04 4505	00 500
bromine)	1/6	21.1507	32 533
0-	1/6	29,1504	46 464
O ₃ n (after precipitation with hydro-			
xyquinoline)	1/12	9.5682	98 083
xyquinoline)			

Substance being determined	$\frac{E}{M}$	Equivalent weight, E	$\log E$
KBrO ₃	1/6	27.834	44 458
KClO ₃	1/6	20.426	31 018
K ₂ CrÖ ₄	1/3	64.733	81 113
K ₂ Cr ₂ O ₇	1/6	49.032	69 048
K _o Fe(CN) _o	1	329.26	51 754
K ₄ Fe(CN) ₆	1	368.36	56 627
K ₄ Fe(CN) ₆ ·3H ₂ O	1	422.41	62 573
KH(1Ua)a	1/12	32,4929	51 179
KIO ₃	1/6	35.6674	55 227
KMnO ₄	1/5	31.6075	49 979
KNO ₂	1/2	42.554	62 894
KNO ₂ Mg (after precipitation with hydro-		22.002	
xyquinoline)	1/8	3.0381	48 260
Mn (by the bismuthate method).	1/5	10,9876	04 090
Mn (by Volhard's method)	3/10	16.4814	21 699
Mn (by Ford-William's or Hampe's I			
method)	1/2	27.4690	43 884
Mn (after precipitation with hydro-			
xyquinoline)	1/8	6.5782	81 811
MnO ₂ (treatment with FeSO ₄ - 1			
KMnO ₄)	1/2	43.4685	63 817
Mo (iodometrically)	1	95.94	98 200
Mo (after reduction with zinc)	1/3	31.980	50 488
Mo (after precipitation with hydro-			
xyquinoline)	1/8	11.993	07 893
NH ₀ OH	1/2	16.5131	21 783
$NO_{\overline{2}}^{2}$	1/2	23,0028	36 178
No [dissolution of precipitate			
NaZn(UO ₂) ₃ ·(C ₂ H ₃ O ₂) ₉ ·6H ₂ O, reduction with zinc and titration			
duction with zinc and titration]	1/6	3.8316	58 338
Na ₂ C ₂ O ₄ .	1/2	67.000	82 607
Nacio	1/2	37.221	57 079
$ \begin{array}{c} \text{NaNO}_2\\ \text{Na}_2\text{S} \text{ (S}^{2-} \rightarrow \text{S}^0)\\ \text{Na}_2\text{S} \text{ (S}^{2-} \rightarrow \text{S}^0) \end{array} $	1/2	34.4977	53 779
$Na_2S (S^{2-} \rightarrow S^0)$	1/2	39.022	59 131
Na ₂ SO ₃	1/2	63.021	79 949
Na ₂ S ₂ O ₃	1	158.11	19 896
Na ₂ SO ₃ Na ₂ S ₂ O ₃ Na ₂ S ₂ O ₃ ·5H ₂ O	î	248.18	39 477
Nb	1/2	46.453	66 701
Nb (empirically)	1/2	49.9	69 810
WI (aller precinitation with barden		40,0	00 01
xyquinoline)	1/8	7.339	86 564
	1/2	7.9997	90 307
03	1/2	23.9991	38 019
P (titration of phosphoromelyhdata	1/2	25,9991	30 010
P (titration of phosphoromolybdate precipitate with permanganate			
after reduction with zinc)	1/36	0.8638	93 469

Table 14 (continued)

Substance being determined	$\frac{E}{M}$	Equivalent weight, E	log E
Pb (after precipitation of PbC ₂ O ₄)	1/2	103.595	01 534
Pb (after precipitation of PbCrO ₄) Pb (after precipitation with hydro-	1/3	69.063	83 925
xyguinoline)	1/8	25.899	41 328
$S(S^{2-} \rightarrow S^{0})$	1/2	16.032	20 499
S (S2> SO2-)	1/8	4.008	60 293
$S(S^2- \rightarrow SO_3^2-)$	1/6	9,6803	98 589
D	1/8	7.2603	86 093
Rupp and Sement	1/2	32.032	50 558
SO2-	1/2	40.031	60 240
02- (through barium chromate)	1/3	32.021	50 543
$S_{\bullet}O_{\bullet}^{2-}$ (2S ₀ O ₀ ²⁻ \rightarrow S ₁ O ₀ ²⁻) \cdots	1	112.13	04 972
$3.02 - (S.02 \rightarrow 2SO_3^2) \cdot \cdot \cdot \cdot$	1/8	14.016	14 663
Rupp and Schied) $SO_2 = SO_2^2 - (through barium chromate)$ $S_2O_3^2 - (2S_2O_3^2 \rightarrow S_4O_5^2)$ $S_2O_3^2 - (S_2O_3^2 \rightarrow 2SO_4^2)$ $S_2O_3^2 - (S_2O_3^2 \rightarrow 2SO_4^2)$ $S_2O_3^2 - (S_2O_3^2 \rightarrow 2SO_4^2)$	1/2	60.875	78 444
on tatter precipitation with	1/12	10.146	00 629
xyquinoline)	1/2	59.345	77 338
xyquinoline)	17		
Th (after precipitation with nyar	1/16	14.502	16 143
Yuquinolino)	1	47.90	68 034
ri Fi (after precipitation with hydro-	1/8	5.988	77 728
Y Vaninolina)	1/2	119.015	07 560
	1/2	1101010	
(often manainitation William William	1/12	19.836	29 745
xyquinoline) $(VO^{2+} \rightarrow VO_{3})$ with hydro-	1	50,942	70 708
$V(VO^{2+} \rightarrow VO_{3}^{-}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	•		
	1/8	6.368	80 400
xyquinoline) In (after precipitation with hydro-	1/8	8.171	94 228
xyquinoline) Zr (after precipitation with hydro- xyquinoline)	1/16	5.701	75 595

C. Methods of Precipitation and Complexing*

Substances used for titration and the concentrations of their nor-

Substances used	for titration	illu vito		
mal solutions:		Hg(NO3)2·H2O	KSCN	NaCl
Formula Concentration of 1	AgNO ₃	_	97.184	58.443
solution (g/l) . Formula	169.873 NH ₄ SCN	$Hg_2(NO_3)_2 \cdot 2H_2O$		K ₂ CrO ₄
Concentration of 1	N 76.120	280.61		97.099
solution (g/l) .	, 70.120	towana TIT. See Sec	tion D, p.	130.

^{*} For methods of titration with complexone III, see section D, p. 130.

Table 14 (continued)

Substance being determined	$\frac{E}{M}$	Equivalent weight, E	$\log E$
Ag	1	107.868	03 289
AgNO ₃	1	169.873	23 012
AgNO ₃	1/2	68.670	83 677
Br- CN- (according to Mohr, Volhard,	1	79.904	90 257
CN- (according to Mohr, Volhard,			
Fajans)	1	26.0179	41 527
CN (according to Liebig, Deniges)	1 2 1	52.0357	71 630
F- (after precipitation in the form	1	35.453	54 965
F- (after precipitation in the form			
OI FDCIF)	1	18.9984	27 872
HBr	1	80.912	90 801
HUN (according to Mohr. Volhard.)			
Fajans)	1	27.0258	43 178
Fajans) HCN (according to Liebig, Denigès)	2	54.0516	73 281
nci	2 1 1	36.461	56 183
HI		127.9124	10 691
HSCN (according to Volhard)	1	59.090	77 151
Hg (with rhodanide)	1/2	100.295	00 128
1	1	126.9044	10 348
KBr	1	119,006	07 557
KCN (according to Mohr, Volhard,			
Fajans)	1	65.120	81 371
Fajans) KCN (according to Liebig, Deniges)	1 2 1	130,240	11 474
KCI	1	74.555	87 248
KI	1	166.006	22 012
NH ₄ Cl	1	53.492	72 829
NaBr	1	102.894	01 239
NaCl	1	58.443	76 673
NaI	1	149.8942	17 578
SCN- (according to Volhard)	1	58.082	76 404

D. Methods of Titration with Complexone III

(g/1)

(with sodium ethylenediaminetetraacetate, EDTA, trilon B)

Substances used for titration and the concentrations of their normal (molar) solutions:

Formula Na₂H₂C₁₀H₁₂O₈N₂ Na₂H₂C₁₀H₁₂O₈N₂·2H₂O Concentration of 1N (1M)solution

(g/l)		372.2	42
Substance being determined	E M	Equivalent weight, E	log E
Ag [after adding K ₂ Ni(CN) ₄] Al	2	215.736 26.9815	33 392 43 106

Table 14 (continued)

Substance being determined	$\frac{E}{M}$	Equivalent weight, E	$\log E$
As (in the form of MgNII ₄ AsO ₄)	1	74.9216	87 461
AsO3- (in the form of MgNH4AsO4)	1	138.9192	14 276
Ba	1	137.34	13 780
Bi	1	208.980	32 010
Br (through AgBr)	2	159.808	20 360
CN- (after adding Ni ²⁺ salt)	4	104.0714	01 733
Ca	î	40.08	60 293
Cd	1	112.40	05 077
	1	140.12	14 650
	2	70.906	85 068
Cl (through AgCl)	1	58.9332	77 036
Co	1	51.996	71 597
Cr	1	63.546	80 309
P (-St 11) - C-2+ colt)	9	37.9968	57 974
F (after adding Ca ²⁺ salt) F (through PbClF)	1	18.9984	27 872
r (through PbClr)	1	55.847	74 700
Fe	1	69.72	
Ga	1		84 336
Hg		200.59	30 231
I (through Agl)	2	253.8088	40 451
In , ,		114.82	06 002
Ir	1	192.2	28 375
Ir	2	78.204	89 323
La	1	138.91	14 273
Mg	1	24.305	38 570
Mn	1	54.9381	73 987
Mo (in the form of CaMoO ₄) Na (in the form of	1	95.94	98 200
$NaZn(UO_2) \cdot (C_2H_3O_2)_9 \cdot 6H_2O$	1	22.9898	36 154
Ni	1	58.71	76 871
P (in the form of MgNH ₄ PO ₄).	1	30.9738	49 099
PO3- (in the form of MgNH ₄ PO ₄)	1	94.9714	97 759
Dh	1	207.19	31 637
Pd [after adding K2Ni(CN)4]	1	106.4	02 694
Pt lafter adding KaNi(CN)	1	195.09	29 024
S (in the form of BaSO ₄)	1	32.064	50 602
SCN- (through AgSCN)	2	116.16	06 506
CO2- (in the form of BaSU.)	1	96.062	98 255
Sn(II)	1	118.69	07 441
Sr	1	87.62	94 260
Th	1	232.038	36 556
Ti	1	47.90	68 034
Ti	1	204.37	31 042
11	2	476.06	67 766
U	1	50.942	
V(IV)	1	183.85	70 708
W (in the form of CaWO ₄)	1	65.37	26 446
Zn	1	91.22	81 538
Zr	1	91.22	96 009

Table 15

Masking Reagents in Titration with Complexone III

Masking reagent	Hd	Indicator (or method)	Ions being masked	Ions being titrated
Ascorbic acid	2.5	Pyrocatechol violet	Cu ²⁺ , Hg ²⁺ , Fe ³⁺	Bi3+, Th ^{IV}
Ascorbic acid + + KCN	10	Eriochrome Black T	Fe^{3+} and all ions being Mn^{2+} , Pb^{2+} , masked by KCN Sr^{2+} , Ba^{2+}	Mn ²⁺ , Pb ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺
Ascorbic acid + KI or ascorbic acid + KSCN	5-6	PAN*	Cu ²⁺ , Hg ²⁺	$\mathrm{Zn^{2+}}$
Citrate-ion	5-6	PAN*	UO2+, ThIV, ZrIV, Sn2+	Zn^{2+}
Citrate-ion	7	Potentiometric- ally	UO_2^{2+} , Th^{1V} , Zr^{1V} , Sb^{3+} , Cd^{2+} , Cu^{2+} , Ti^{1V} , Nb^{V} , Ta^{V} , Mo^{VI} , Zn^{2+} , Y^{3+} , W^{VI} , Be^{2+} , Fe^{3+} , Cr^{3+}	Cd ²⁺ , Cu ²⁺ , Hg ²⁺ , Pb ²⁺ , Zn ²⁺ , Y ³⁺
Cyanide-ion	10	Eriochrome Black T	$Cu^{2+}, Co^{2+}, Hg^{2+}, Ni^{2+}, Zn^2+, Cd^2+, Pt^{2+}, Pd^{2+}, Ag^+, Tl^3+. The addition of formaldehyde or chloral hydrate demasks Cd^{2+} and Zn^{2+}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
* PAN: 1-(2-pyridy	l-azo)-?	** RE: rare-earth elements (lanthanoids, Y and Sc).	3c).	

Table 15 (continued)

Masking reagent	μd	Indicator (or method)	Ions being masked	Ions being titrated
Diethyl dithiocar- bamate	10	Eriochrome Black T	Hg2+, Pb2+, Cu2+, Pd2+, Bl3+	Zn ²⁺ , Mn ²⁺ , Co ²⁺ , Ni ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺
2,3-Dimercaptopro- panol (dimercap- rol, dicaptol, BAL)	10	Eriochrome Black T	Hg ²⁺ , Cd ²⁺ , Zn ²⁺ , Pb ²⁺ , Sh ³⁺ , Sn ³⁺ , Sn ³⁺ , Sn ³⁺ , Sn ³⁺ , Sn ³⁺ , Mn ³⁺ and Fe ³⁺ only in small quantities, since their complexes with the masking reagent are strongly coloured)	Ca ³⁺ , Mg ²⁺ , Sr ²⁺ , Ba ²⁺ (and Mn ²⁺ , in the presence of hydroxylamine and triethanolamine)
Fluoride-ion	9	PAN*	Be2+, NbV, TaV, TiIV	Cu ²⁺ , Zn ²⁺
Fluoride-ion	9	Pyrocatechol violet	Als+, Ti ^{IV}	Cu2* (Fe3+ by back titra-tion)
Fluoride-ion	10	Eriochrome Black T	Al3+, Mg2+, Ca2+, Sr2+, Ba2+ (RE3+)**	Sr ²⁺ , Zn ²⁺ , Cd ²⁺ , Mn ²⁺ (Ni ²⁺ and Co ²⁺ by back titration)
Formic acid or formaldehyde	2.5	Pyrocatechol violet	Hg2+	Bia+, ThIV
* PAN: 1-(2-pyridy1-azo)-2-naphthol.	l-azo)-	* PAN: 1-(2-pyridyl-azo)-2-naphthol.		

Masking reagent	hd	Indicator (or method)	Ions being masked	Ions being titrated
Hydrogen peroxide	10	Eriochrome Black T	Ti ^{IV} , UO ₂ +	Zn ²⁺ , Mg ²⁺
Iodide-ion	2-6	PAN*	Hg ²⁺ , Cu ²⁺ , Tl ³⁺	Zn ²⁺
°. Oxalate-ion	2	Pyrocatechol violet	Sn ²⁺ , (RE ³⁺)**	Bi ³⁺
Pentandion-2,4	7	Potentiometric- ally	Ala+, UO2+	La ³⁺ , (RE ³⁺)**, Zn ²⁺
Pentandion-2,4 + + citrate-ion	7	Potentiometric- ally	Al3+, ThIV	Zn ²⁺
Sulphosalicylic acid	4.5	Potentiometric- ally	U02+, Al3+	(RE3+)**, Y3+, ThIV
Tartrate-ion	2-6	PAN*	U02+, Sb3+	Zn2+, Cd2+, Co2+, Ni2+, Cu2+, (RE3+)**

Table 15 (continued)

Masking reagent	hd	Indicator (or method)	Ions being masked	Ions being titrated
Tartrate-ion	7	Potentiometric- ally	Mo ^{IV} , Nb ^V , Sb ³⁺ , W ^{VI} ,	Zn2+, Cd2+, Cu2+, Hg2+,
Thiomalate	3	Pyrocatechol violet	Fe ³⁺ , Bi ³⁺	ThIV
Thiourea	2-6	PAN*	Cu ²⁺ , Hg ²⁺	Zn ²⁺
Thiosemicarbazide	5	PAN*	Cu2+, Hg2+	Zn ²⁺ , Cd ²⁺ , Pb ²⁺
Thiosulphate-ion	9	PAN*	Cu2+	Zn2+, Cd2+, Ni2+
Triethanolamine	10	10 Eriochrome Black T 11-12 Murexide	Al ³⁺ , Fe ³⁺ , Sn ^{IV} Al ³⁺ , Fe ³⁺ , (Mn ^{III})	Mg ²⁺ , Zn ²⁺ , Cd ²⁺ [Mn ²⁺ in the presence of ascorbic acid, Ph ²⁺ and (RE ²⁺)**] Ca ²⁺ , Ni ²⁺
Unithiol (sodium 2,3-dimercapto- propansulphona-	10-11	Eriochrome Black T	Zn ²⁺ , Cd ²⁺ , Hg ²⁺ , Pb ²⁺ , Sn ²⁺ , Sn ^{IV} , As ^{III} , As ^V , Sb ^{III} , Sb ^V , Bi ³⁺ , Ag ⁺	Ca ²⁺ , Mg ²⁺ , Sr ²⁺ , Ba ²⁺
* PAN: 1-(2-pyridyl-azo)-2-naphthol.	l-azo)-2	-naphthol.	Sc).	

Calculation of the Results of Gas and Gasometric Analyses*

If an analysis of a substance is reduced to the preparation of a certain gas whose volume is measured, then, for further estimates, this volume must be brought to standard conditions, i.e., to a temperature of 0°C and a pressure of 760 mm Hg.

Here, three cases are possible:

1. Gas collected dry over mercury

In this case the gas volume under standard conditions (V_0) is found by the approximate but sufficiently accurate formula:

$$V_0 = V \frac{P_0}{(1+\alpha t)760} = V$$

where V = measured gas volume;

t = gas temperature; $\alpha = 0.003670;$

 P_0 = barometer reading brought to 0°C.

$$F = \frac{P_0}{(1 + \alpha t) 760}$$

Value P_0 is found by the formula:

$$P_0 = \left(P_t - \frac{1}{8}t'\right) \text{ mm Hg}$$

where P_t = barometer reading; t' = temperature of mercury in the barometer (the temperature of the air around the barometer is measured).

$$\log V_0 = \log V + \log F$$

The values of $\log F$ for various values of t and P_0 are given in Table 16,A.

2. Gas collected over water

In this case a correction for mercury temperature must be made in the barometer reading and water vapour pressure at temperature t must be deducted:

$$P_0 = P_t - \frac{1}{8} t' - P_B$$

where P_B is the water vapour pressure at the corresponding temperature of gas over water; it is given in section B of this table.

^{*} For the use of the table, see p. 468.

3. Gas collected over KOH solution or over a saturated NaCl solution

In this case the value of water vapour pressure over the corresponding absorbing aqueous solution must be deducted from the value of P ::

$$P_0 = P_t - \frac{1}{8}t' - P_B$$

The values of P_B for aqueous solutions are given in Table 16,B. If the collected gas is the component whose content is determined in the substance being analysed, then, to find the mass of this gas, the found volume V_0 must obviously be multiplied by the density ρ of this gas under standard conditions; hence, the percentage (x) of the unknown component is:

$$x = \frac{V_0 \times \rho \times 100}{g}$$

where g is the weighed portion of the substance being analysed.

The corresponding values of the mass of one litre of gas in grams or of one millilitre of gas in milligrams and their logarithms are

given in Table 16,B.

But if, according to the mass of collected gas, a calculation is made of the percentage of a certain component of a substance which is being analysed and from which this gas is separated, then the mass found must be multiplied by the value of f'. Table 16,D gives the value of f'. values of f', which are the product of the conversion factor and gas

The conversion factor is estimated on the basis of the reaction density. as a result of which the gas being measured is obtained. Thus, in determining Al according to the amount of liberated H₂, we find that there H₂

that three H atoms are formed per Al atom:

f' =
$$\frac{a_{\text{Al}}}{(3a_{\text{H}})(\rho_{\text{H}})} + \frac{a_{\text{Al}}\rho_{\text{H}}}{3a_{\text{H}}} = \frac{26.982 \times 0.08988}{3 \times 1.0080} = 0.8020$$

where a_{A1} = atomic weight of Al; a_{H} = atomic weight of H; p_{H} = density of m_{2} according to Table 16,C.

Thus, the percentage of the unknown compound m_{2} is found by the formula:

$$x = \frac{V_0 f' \times 100}{g}$$

or

$$x = \frac{VFf' \times 100}{g}$$

Table 16 (continued)

A. Bringing the Gas Volume to Standard Conditions

Tem- pera-		Correc	eted bar	ometer re	eading Po	, mm H	3	Propor-
ture, °C	660	661	662	663	664	665	666	tional parts
					multipli	er F	'	
5 6 7 8 9	93 083 92 927 92 771 92 616 92 462	92 993 92 837 92 682	92 903 92 748	93 134 92 969 92 814	93 189 93 034 92 879	93 410 93 254 93 099 92 944 92 789	93 476 93 320 93 164 93 009 92 855	66 1 6. 2 13. 3 19. 4 26. 5 33.
10 11 12 13 14	92 308 92 154 92 001 91 849 91 697		92 439 92 286 92 133 91 980 91 828	92 352 92 199	92 570 92 417 92 264 92 111 91 959	92 635 92 482 92 329 92 176 92 024	92 701 92 547 92 394 92 242 92 090	154 1 15. 2 30. 3 46.
15 16 17 18 19	91 546 91 395 91 245 91 095 90 946		91 526 91 376 91 226	91 743 91 592 91 442 91 292 91 143	91 808 91 657 91 507 91 357 91 208	91 873 91 722 91 572 91 422 91 273	91 939 91 788 91 638 91 488 91 339	3 46. 4 61. 5 77. 6 92. 7 107. 8 123. 9 138.
20 21 22 23 24	90 797 90 649 90 501 90 354 90 207	90 862 90 714 90 567 90 420 90 273	90 928 90 780 90 632 90 485 90 338	90 994 90 846 90 698 90 551 90 404	91 059 90 911 90 763 90 616 90 469	91 124 90 976 90 828 90 681 90 534	91 190 91 042 90 894 90 747 90 600	148 1 14. 2 29. 3 44. 4 59. 5 74. 6 88. 7 103.
26	90 061 89 915 89 770 89 625 89 481	90 127 89 980 89 836 89 690 89 547	90 192 90 046 89 901 89 756 89 612	90 258 90 112 89 967 89 822 89 678	90 323 90 177 90 032 89 887 89 743	90 388 90 242 90 097 89 952 89 808	90 454 90 308 90 163 90 018 89 874	142 1 14.2 2 28.4 3 42.6
31 32 33	89 051 88 909	89 260 89 117 88 975	89 469 89 326 89 183 88 041 88 899	89 534 89 391 89 248 89 106 88 964	89 600 89 457 89 314 89 172 89 030	89 665 89 522 89 379 89 237 89 095	89 730 89 587 89 444 89 302 89 160	56.8 56.8 71.0 85.2 7 99.4 8 113.6 9 127.8

Table 16 (continued)

Tem- pera-		Corrèc	ted bar	ometer r	eading P	o, mm H	g		ropor-
ture,	667	668	669	670	671	672	673		ional parts
		L	ogarith	m of m	ultiplie	r F			
5 6 7 8 9	93 541 93 385 93 229 93 074 92 920	93 606 93 450 93 294 93 139 92 985	93 671 93 515 93 359 93 205 93 050		93 801 93 645 93 490 93 339 93 180	93 866 93 710 93 554 93 399 93 244	93 931 93 775 93 619 93 464 93 309	1 2 3 4	65 6.5 13.0 19.5
10 11 12 13 14	92 766 92 612 92 459 92 307 92 155	92 831 92 677 92 524 92 372 92 220	92 896 92 742 92 589 92 437 92 285	92 961 92 807 92 654 92 502 92 350	93 026 92 872 92 719 92 567 92 415	93 090 92 937 92 784 92 631 92 479	93 155 93 062 92 849 92 696 92 544	5 6 7 8 9	26.0 32.5 39.0 45.5 52.0 58.5
15 16 17 18 19	92 004 91 854 91 703 91 553 91 404	92 069 91 918 91 768 91 618 91 469	92 134 91 983 91 833 91 683 91 533	92 199 92 048 91 898 91 748 91 599	92 264 92 113 91 963 91 813 91 664	92 328 92 174 92 027 91 877 91 728	92 393 92 242 92 092 91 942 91 793	1 2 3 4	151 15.1 30.2 45.3 60.4
20 21 22 23 24	91 255 91 107 90 959 90 812 90 665	91 320 91 172 91 024 90 877 90 730	91 385 91 237 91 089 90 942 90 795	91 450 91 302 91 154 91 007 90 860	91 515 91 367 91 219 91 072 90 925	91 579 91 431 91 283 91 136 90 989	91 644 91 496 91 348 91 201 91 054	5 6 7 8 9	75.5 90.6 105.7 120.8 135.9
25 26 27 28 29	90 519 90 373 90 228 90 083 89 939	90 584 90 438 90 293 90 148 90 004	90 649 90 503 90 358 90 213 90 069	90 714 90 568 90 423 90 278 90 134	90 779 90 633 90 488 90 343 90 199	90 843 90 697 90 552 90 407 90 263	90 908 90 762 90 617 90 472 90 328	1 2 3 4 5	145 14.5 29.0 43.5 58.0 72.5
30 31 32 33 34	89 796 89 653 89 510 89 368 89 226	89 861 89 718 89 575 89 433 89 291	89 926 89 783 89 640 89 498 89 356	89 990 89 847 89 704 89 562 89 420	90 055 89 912 89 769 89 627 89 485	90 120 89 977 89 834 89 692 89 550	90 185 90 042 89 899 89 757 89 615	6789	72.5 87.0 101.5 116.0 130.5

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer r	eading Po	, mm Hg	5	Propor-
ture, °C	674	675	676	677	678	679	680	tional parts
		1	Logarit	hm of r	nultipli	er F		
5 6 7 8 9	93 995 93 839 93 683 93 528 93 373	93 904	94 124 93 968 93 812 93 657 93 502	94 188 94 032 93 876 93 721 93 566	94 252 94 096 93 940 93 785 93 630	94 316 94 160 94 004 93 849 93 694	94 380 94 224 94 068 93 913 93 758	64 1 6. 2 12. 3 19. 4 25. 5 32. 6 38. 7 44. 8 51.
10 11 12 13 14	93 219 93 066 92 913 92 761 92 609	93 284 93 131 92 978 92 826 92 674	93 348 93 195 93 042 92 889 92 737	93 412 93 259 93 106 92 954 92 802	93 476 93 323 93 170 93 018 92 866	93 540 93 387 93 234 93 082 92 930	93 604 93 451 93 298 93 145 92 993	154 1 15. 2 30.
15 16 17 18 19	92 458 92 307 92 156 92 006 91 857	92 522 92 371 92 221 92 071 91 922	92 586 92 435 92 285 92 135 91 986	92 651 92 500 92 349 92 199 92 050	92 715 92 564 92 413 92 263 92 114	92 779 92 628 92 478 92 327 92 178	92 842 92 691 92 541 92 391 92 242	3 46. 4 61. 5 77. 6 92. 7 107. 8 123. 9 138.
20 21 22 23 24	91 708 91 560 91 412 91 265 91 118	91 773 91 625 91 477 91 330 91 183	91 837 91 689 91 541 91 394 91 247	91 901 91 753 91 605 91 458 91 311	91 965 91 817 91 669 91 522 91 375	92 029 91 881 91 733 91 586 91 439	92 093 91 945 91 797 91 650 91 503	148 1 14. 2 29. 3 44. 4 59. 5 74. 6 88. 7 103. 8 118.
25 26 27 28 29	90 972 90 826 90 681 90 536 90 392	91 037 90 891 90 746 90 601 90 457	91 101 90 955 90 810 90 665 90 521	91 165 91 019 90 874 90 729 90 585	91 229 91 083 90 938 90 793 90 649	91 293 91 147 91 002 90 857 90 713	91 357 91 211 91 066 90 911 90 777	142
30 31 32 33 34	90 249 90 106 89 963 89 821 89 679	90 313 90 170 90 027 89 885 89 743	90 378 90 235 90 092 89 950 89 808	90 442 90 299 90 156 90 014 89 872	90 506 90 363 90 220 90 078 89 936	90 570 90 427 90 284 90 142 90 000	90 634 90 491 90 348 90 206 90 064	2 28. 3 42. 4 56. 5 71. 6 85. 7 99. 8 113. 9 127.

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer r	eading P	, mm Hg	;	Propor- tional
ture,	681	682	683	684	685	686	687	parts
]	Logarit	hm of r	nultipli	er F		
5 6 7 8 9	94 444 94 288 94 132 93 977 93 822		94 571 94 415 94 259 94 104 93 950	94 634 94 478 94 323 94 168 94 013	94 698 94 544 94 387 94 232 94 077	94 761 94 605 94 449 94 294 94 140	94 825 94 669 94 513 94 358 94 203	63 1 6.3 2 12.6 3 18.9
10 11 12 13 14	93 668 93 515 93 362 93 209 93 057	93 732 93 578 93 425 93 273 93 121	93 796 93 644 93 489 93 337 93 185	93 705	93 923 93 769 93 616 93 464 93 312	93 986 93 832 93 679 93 527 93 375	94 049 93 896 93 743 93 590 93 438	1 12 . 6 3 18 . 6 4 25 . 2 5 31 . 5 6 37 . 4 5 0 . 4 9 5 6 . 7
15 16 17 18 19	92 906 92 755 92 605 92 455 92 306	92 970 92 819 92 669 92 519 92 370	93 034 92 883 92 733 92 583 92 434	93 097 92 946 92 796 92 646 92 497	93 161 93 010 92 860 92 710 92 561	93 224 93 073 92 923 92 773 92 624	93 287 93 136 92 986 92 836 92 687	151 1 15.1 2 30.2 3 45.3 4 60.4
20 21 22 23 24	92 157 92 009 91 861 91 714 91 567	92 221 92 073 91 925 91 778 91 631	92 285 92 137 91 989 91 842 91 695	92 348 92 200 92 052 91 905 91 758	92 412 92 264 91 116 91 969 91 822	92 475 92 327 92 179 92 032 91 885	92 538 92 390 92 242 92 095 91 948	5 75.8 90.6 7 105.7 8 120.8 9 135.8
25 26 27 28 29	91 421 91 275 91 130 90 975 90 841	91 485 91 339 91 194 91 049 90 905	91 549 91 403 91 258 91 113 90 969	91 612 91 466 91 321 91 176 91 032	91 676 91 530 91 385 91 240 91 096	91 739 91 593 91 448 91 303 91 159	91 802 91 656 91 511 91 366 91 222	145 1 14.: 2 29. 3 43.: 4 58.: 5 72.:
30 31 32 33 34	90 698 90 555 90 412 90 270 90 128	90 618 90 475 90 333	90 825 90 682 90 539 90 397 90 255	90 889 90 746 90 603 90 461 90 319	90 952 90 809 90 666 90 524 90 382	91 015 90 872 90 729 90 587 90 445	91 079 90 936 90 793 90 651 90 509	6 87.6 7 101.5 8 116.6 9 130.5

Table 16 (continued)

Tem- pera-		Corre	cted ba	rometer	reading F	o, mm H	g	Propor-
ture, °C	688	689	690	691	692	693	694	tional parts
			Logari	thm of	multipli	er F		
5 6 7 8 9	94 888 94 732 94 576 94 421 94 266	94 795 94 639 94 484	94 858 94 702 94 547	94 921 94 765 94 610	95 139 94 983 94 828 94 673 94 518	95 202 95 046 94 891 94 736 94 581	95 265 95 109 94 953 94 798 94 643	63 1 6 2 12 3 18 4 25 5 31 6 37 7 44
10 11 12 13 14	94 112 93 959 93 806 93 653 93 501	94 022 93 869	94 238 94 085 93 932 93 779 93 627	94 148 93 995	94 364 94 210 94 057 93 905 93 753	94 427 94 273 94 120 93 968 93 816	94 489 94 336 94 183 94 030 93 878	154 1 154
15 16 17 18 19	93 350 93 199 93 049 92 899 92 750	93 413 93 262 93 112 92 962 92 813	93 476 93 325 93 175 93 025 92 876		93 602 93 451 93 301 93 151 93 002	93 665 93 514 93 364 93 214 93 065	93 727 93 576 93 426 93 276 93 127	2 30.3 3 46.3 4 61.6 5 77.6 6 92.7 7 107.6 8 123.3 9 138.6
20 21 22 23 24	92 601 92 453 92 305 92 158 92 011	92 664 92 516 92 368 92 221 92 074	92 727 92 579 92 431 92 284 92 137	92 790 92 642 92 494 92 347 92 200	92 853 92 705 92 557 92 410 92 263	92 916 92 768 92 620 92 473 92 326	92 979 92 830 92 682 92 535 92 388	148 1 14.8 2 29.6 3 44.4 4 59.2 5 74.6 6 88.8 7 101.6
26	91 719 91 574	91 782 91 637 91 492	91 991 91 845 91 700 91 555 91 411	92 054 91 908 91 763 91 618 91 474	92 117 91 971 91 826 91 681 91 537	92 180 92 034 91 889 91 744 91 600	92 242 92 096 91 951 91 806 91 662	142 1 14.2 2 28.4
31 32 33	90 999 90 856 90 714	91 061 90 919 90 777	91 268 91 125 90 982 90 840 90 698	91 331 91 188 91 045 90 903 90 761	91 394 91 251 91 108 90 966 90 824	91 456 91 313 91 170 91 028 90 886	91 519 91 376 91 233 91 091 90 949	2 28.4 3 42.6 4 56.8 5 71.0 6 85.2 7 99.4 8 113.6 9 127.8

Table 16 (continued)

Tem- pera-		Corre	ected ba	rometer	reading F	P ₀ , mm H	g	Propor-
ure,	695	696	697	698	699	700	701	tional parts
			Logarit	hm of	multipli	er F		
5 6 7 8 9	95 328 95 172 95 015 94 861 94 706	95 234 95 078 94 923	95 296 95 140 94 986	95 358 95 203	95 577 95 421 95 265 95 110 94 955	95 639 95 483 95 327 95 172 95 017	95 701 95 545 95 389 95 234 95 079	62 1 6.1 2 12.3 3 18.6
10 11 12 13 14	94 552 94 399 94 246 94 093 93 941	94 461 94 308	94 677 94 524 94 370 94 218 94 066	94 739 94 585 94 432 94 280 94 128	94 801 94 648 94 495 94 342 94 190	94 863 94 710 94 557 94 404 94 252	94 925 94 772 94 619 94 466 94 314	4 24.4 5 31.6 6 37.2 7 43.4 8 49.6 9 55.8
15 16 17 18 19	93 790 93 639 93 489 93 339 93 190	93 852 93 701 93 551 93 401 93 252	93 915 93 764 93 614 93 464 93 315	93 977 93 826 93 676 93 526 93 377	94 039 93 888 93 738 93 588 93 439	94 101 93 950 93 800 93 650 93 501	94 163 94 012 93 862 93 712 93 563	151 1 15.1 2 30.2 3 45.3 4 60.4
20 21 22 23 24	93 041 92 893 92 745 92 598 92 451	93 103 92 955 92 807 92 660 92 513	93 166 93 018 92 870 92 723 92 576	93 228 93 080 92 932 92 785 92 638	93 290 93 142 92 994 92 847 92 700	93 352 93 204 93 056 92 909 92 762	93 414 93 266 93 118 92 975 92 824	5 75.6 90.6 7 105.4 8 120.8 9 135.9
25 26 27 28 29	92 305 92 159 92 014 91 869 91 725	92 367 92 221 92 076 91 931 91 787	92 430 92 284 92 139 91 994 91 850	92 492 92 346 92 201 92 056 91 912	92 554 92 408 92 263 92 118 91 974	92 616 92 470 92 325 92 180 92 036	92 678 92 532 92 387 92 242 92 098	145 1 14.5 2 29.0 3 43.5 5 72.6 6 87.0
30 31 32 33 34	91 581 91 438 91 295 91 153 91 011	91 501 91 358 91 216	91 706 91 563 91 420 91 278 91 136	91 769 91 626 91 483 91 341 91 199	91 831 91 688 91 545 91 403 91 261	91 893 91 750 91 607 91 465 91 323	91 955 91 812 91 669 91 527 91 385	5 72.5 6 87.0 7 101.0 8 116.0 9 130.5

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer r	eading Po	, mm Hg		Propor-
ture,	702	703	704	705	706	707	708	tional parts
		I	Logarit	hm of n	nultiplic	er F		
5 6 7 8 9	95 763 95 606 95 451 95 296 95 141			95 948 95 792 95 636 95 481 95 327	96 009 95 859 95 698 95 543 95 388	96 071 95 915 95 759 95 604 95 450	96 132 95 976 95 820 95 665 95 511	62 1 12. 3 18. 4 24. 5 31. 6 37. 7 43. 49.
10 11 12 13 14	94 987 94 834 94 681 94 528 94 376	95 049 94 896 94 743 94 590 94 438	95 111 94 957 94 804 94 652 94 500	95 173 95 019 94 866 94 718 94 562	95 234 95 080 94 927 94 775 94 623	95 296 95 142 94 989 94 837 94 685	95 357 95 203 95 050 94 898 94 746	154 1 15:
15 16 17 18 19	94 225 94 074 93 924 93 774 93 625	94 287 94 136 93 986 93 836 93 687	94 349 94 198 94 048 93 898 93 749	94 411 94 260 94 110 93 960 93 811	94 472 94 321 94 171 94 021 93 872	94 534 94 383 94 233 94 083 93 934	94 595 94 444 94 294 94 144 93 995	3 46. 4 61. 5 77. 6 92. 7 107. 8 123. 9 138.
20 21 22 23 24	93 476 93 328 93 180 93 033 92 886	93 538 93 390 93 242 93 095 92 948	93 452 93 304 93 157	93 662 93 514 93 366 93 219 93 072	93 723 93 575 93 427 93 280 93 133	93 785 93 637 93 489 93 342 93 195	93 846 93 698 93 550 93 403 93 256	148 1 14. 2 29. 3 44. 4 59. 5 74. 6 88. 7 103.
25 26 27 28 29	92 740 92 594 92 449 92 304 92 160	92 656 92 511 92 366		92 926 92 780 92 635 92 490 92 346	92 987 92 841 92 696 92 551 92 407	93 049 92 903 92 759 92 613 92 469	93 110 92 964 92 819 92 674 92 530	142 1 142 1 2 28 3 42
30 31 32 33 34	92 017 91 874 91 731 91 589 91 447	91 936 91 793 91 651	91 997 91 854 91 712	91 774	92 263 92 120 91 977 91 835 91 693	92 325 92 482 92 039 91 897 91 755	92 386 92 243 92 100 91 958 91 816	56 71 85 71 85 7 99 8 113 9 127

Table 16 (continued)

Tem- pera-		Correc	eted bare	meter re	eading Po	, mm Hg		Propor- tional
ture,	709	710	711	712	713	714	715	parts
		Lo	garith	m of m	ultiplier	F		
5 6 7 8 9	96 194 96 038 95 882 95 727 95 572	96 255 96 099 95 943 95 788 95 633	96 160 96 004 95 849	96 377 96 221 96 065 95 910 95 755	96 438 96 282 96 126 95 971 95 816	96 499 96 343 96 187 96 032 95 877	96 560 96 404 96 248 96 093 95 938	61 1 6.1 1 12.2 3 18.3 4 24.4 5 30.6
10 11 12 13 14	95 418 95 265 95 112 94 959 94 807	95 479 95 326 95 173 95 020 94 868	95 540 95 387 95 234 95 082 94 930	95 601 95 448 95 295 95 143 94 991	95 662 95 509 95 356 95 204 95 052	95 723 95 570 95 417 95 264 95 112	95 784 95 631 95 478 95 325 95 173	5 30.5 6 36.5 7 42.5 8 48.8 9 54.5
15 16 17 18 19	94 656 94 505 94 355 94 205 94 056	94 717 94 566 94 416 94 266 94 117	94 778 94 627 94 478 94 327 94 178	94 839 94 688 94 538 94 388 94 239	94 900 94 749 94 599 94 449 94 300	94 961 94 810 94 660 94 510 94 361	95 022 94 871 94 721 94 571 94 422	151 1 15. 2 30. 3 45. 4 60.
20 21 22 23 24	93 907 93 759 93 611 93 464 93 317	93 968 93 820 93 672 93 525 93 378	93 881 93 734 93 586	94 090 93 942 93 795 93 648 93 501	94 151 94 003 93 856 93 709 93 562	94 212 94 064 93 916 93 769 93 622	94 273 94 125 93 977 93 830 93 683	5 75. 6 90. 7 105. 8 120. 9 135.
25 26 27 28 29	93 171 93 025 92 880 92 735 92 591	92 941	93 148 93 003 92 858	93 209 93 064 92 919	93 416 93 270 93 125 92 980 92 835	93 476 93 330 93 185 93 040 92 896	93 537 93 391 93 246 93 101 92 957	145 1 14. 2 29. 3 43. 4 58. 5 72. 6 87.
30 31 32 33 34	92 448 92 305 92 162 92 020 91 878	92 366 92 223 92 081	92 427 92 284 92 142	92 488 92 345 92 203	92 692 92 549 92 406 92 264 92 122	92 753 92 610 92 467 92 325 92 183	92 814 92 671 92 528 92 386 92 244	5 72. 6 87. 7 101. 8 116. 9 130.

Tem- pera-		Corre	cted ba	rometer	reading P	0, mm H	g	P	ropor-
ture,	716	717	718	719	720	721	722		tional parts
		L	ogarith	nm of m	ultiplie	r F			
5 6 7 8 9	96 620 96 464 96 308 96 153 95 999	96 525 96 369 96 214	96 741 96 585 96 429 96 274 96 120	96 646 96 490 96 335	96 862 96 706 96 500 96 395 96 241	96 922 96 767 96 611 96 456 96 301	96 983 96 827 96 671 96 516 96 361	1 2 3 4 5 6 7	61 12.2 18.3 24.4 30.5 36.6
10 11 12 13 14	95 845 95 691 95 538 95 386 95 234	95 752 95 599 95 447	95 966 95 812 95 659 95 507 95 355	95 873 95 720 95 568	96 087 95 933 95 780 95 628 95 476	96 147 95 994 95 841 95 688 95 536	96 207 96 054 95 901 95 748 95 596	1 2 3	42.7 48.8 54.9 154 15.4 30.8
15 16 17 18 19	95 083 94 932 94 782 94 632 94 483	95 144 94 993 94 843 94 693 94 544	95 204 95 053 94 903 94 753 94 604	95 114	95 325 95 174 95 024 94 874 94 725	95 385 95 234 95 084 94 934 94 785	95 445 95 394 95 144 94 994 94 845	3 4 5 6 7 8 9	46.2 61.6 77.0 92.4 107.8 123.2 138.6
20 21 22 23 24	94 334 94 186 94 038 93 891 93 744	94 395 94 247 94 099 93 952 93 805	94 455 94 307 94 159 94 012 93 865	94 516 94 368 94 220 94 073 93 926	94 576 94 428 94 280 94 133 93 986	94 636 94 488 94 340 94 193 94 046	94 696 94 548 94 400 94 253 94 106	1 2 3 4 5 6 7	148 14.8 29.6 44.4 59.2 74.0 88.8 103.6
25 26 27 28 29	93 598 93 452 93 307 93 162 93 018	93 659 93 513 93 368 93 223 93 079	93 719 93 573 93 428 93 288 93 139	93 780 93 634 93 489 93 344 93 199	93 840 93 694 93 549 93 404 93 259	93 900 93 754 93 609 93 464 93 320	93 960 93 814 93 669 93 524 93 380	8 9	118.4 133.2 142 14.2 28.4
30 31 32 33 34	92 874 92 731 92 588 92 446 92 304	92 792 92 649 92 507	92 995 92 852 92 709 92 567 92 425	93 056 92 913 92 770 92 628 92 486	93 116 92 973 92 830 92 688 92 546	93 177 93 034 92 891 92 749 92 607	93 237 93 094 92 951 92 809 92 667	3 4 5 6 7 8 9	42.6 56.8 71.0 85.2 99.4 113.6 127.8

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer r	eading P	o, mm He			por-
ture, °C	723	724	725	726	727	728	729		nal rts
		L	ogarith	nm of m	ultiplie	er F			
5 6 7 8 9	97 043 96 887 96 731 96 576 96 421	96 947 96 791	97 163 97 007 96 851 96 696 96 541	97 067 96 911	97 283 97 127 96 971 96 816 96 661	97 342 97 186 97 030 96 875 96 721	97 402 97 246 97 090 96 935 96 781		60 6.0 12.0 18.0 24.0 30.0
10 11 12 13 14	96 267 96 114 95 961 95 808 95 656	96 174 96 021 95 868	96 387 96 234 96 081 95 928 95 776	96 447 96 294 96 141 95 988 95 836	96 507 96 354 96 201 96 048 95 896	96 567 96 413 96 260 96 108 95 956	96 637 96 473 96 320 96 168 96 016	7 8	24.(30.(36.(42.(48.(54.(
15 16 17 18 19	95 505 95 354 95 204 95 054 94 905	95 414 95 264 95 114	95 625 95 474 95 324 95 174 95 025	95 685 95 534 95 384 95 234 95 085	95 475 95 594 95 444 95 294 95 145	95 805 95 654 95 514 95 354 95 205	95 865 95 714 95 564 95 414 95 265	3 4	1 15.1 30.2 15.3 30.4
20 21 22 23 24	94 756 94 608 94 460 94 313 94 166	94 816 94 668 94 520 94 373 94 226	94 876 94 728 94 580 94 433 94 286	94 936 94 788 94 640 94 493 94 346	94 996 94 848 94 700 94 553 94 406	95 056 94 908 94 760 94 613 94 466	95 116 94 968 94 820 94 673 94 526	5 7 6 9 7 10 8 12	5.5 10.6 15.7 20.8 15.9
25 26 27 28 29	94 020 93 874 93 729 93 584 93 440	94 080 93 934 93 789 93 644 93 500	94 140 93 994 93 849 93 704 93 569	94 200 94 054 93 909 93 764 93 620	94 260 94 114 93 969 93 824 93 680	94 320 94 174 94 029 93 885 93 740	94 380 94 234 94 089 93 944 93 800	3 4 5	5 4.5 9.0 3.5 8.0 2.5 7.0
30 31 32 33 34	93 011 92 869	93 214 93 071 92 929	93 417 93 274 93 131 92 989 92 847	93 477 93 334 93 191 93 049 92 907	93 536 93 393 93 250 93 108 92 966	93 596 93 453 93 310 93 168 93 026	93 656 93 513 93 370 93 228 93 086	8 11	2.5 7.0 1.5 6.0 0.5

Tem- pera-		Correc	ted bar	ometer re	eading Po	, mm Hg		Propor-
ture,	730	731	732	733	734	735	736	tional parts
		L	ogarith	m of m	ultiplier	F		
5 6 7 8 9	97 461 97 305 97 149 96 994 96 840	97 521 97 365 97 209 97 054 96 899	97 580 97 424 97 268 97 113 96 958	97 640 97 484 97 328 97 173 97 018	97 699 97 543 97 387 97 232 97 077	97 758 97 602 97 446 97 291 97 136	97 817 97 661 97 505 97 350 97 195	59 1 11.8 3 17.3 4 23.5 5 29.5 6 35.4 7 41.3
10 11 12 13 14	96 686 96 532 96 379 96 227 96 075	96 745 96 592 96 439 96 287 96 135	96 804 96 651 96 498 96 346 96 194	96 864 96 711 96 558 96 406 96 253	96 923 96 770 96 617 96 465 96 312	96 982 96 829 96 676 96 524 96 371	97 041 96 888 96 735 96 583 96 430	154
15 16 17 18 19	95 924 95 773 95 623 95 473 95 324	95 984 95 833 95 683 95 533 95 384	96 043 95 892 95 742 95 592 95 443	96 102 95 951 95 801 95 651 95 502	96 161 96 010 95 860 95 710 95 561	96 220 96 069 95 919 95 769 95 620	96 279 96 128 95 978 95 828 95 679	1 30. 3 46. 4 61. 5 77. 6 92. 7 107. 8 123. 9 138.
20 21 22 23 24	95 175 95 027 94 879 94 732 94 585	95 235 95 086 94 939 94 791 94 645	95 294 95 145 94 998 94 850 94 704	95 353 95 205 95 057 94 910 94 763	95 412 95 264 95 116 94 969 94 822	95 471 95 323 95 175 95 028 94 881	95 530 95 382 95 234 95 087 94 940	148 1 14. 2 29. 3 44. 59. 5 74. 6 88. 7 103.
25 26 27 28 29	94·439 94 293 94 148 94 003 93 859	94 498 94 353 94 208 94 063 93 918	94 557 94 412 94 267 94 122 93 977	94 617 94 471 94 336 94 181 94 037	94 676 94 530 94 385 94 240 94 096	94 735 94 589 94 444 94 299 94 155	94 794 94 648 94 503 94 358 94 214	142 1 14. 2 28.
30 31 32 33 34	93 715 93 572 93 429 93 287 93 145	93 775 93 632 93 489 93 347 93 205	93 834 93 691 93 548 93 406 93 264	93 893 93 750 93 607 93 465 93 323	93 953 93 810 93 667 93 525 93 383	94 012 93 869 93 726 93 584 93 442	94 071 93 928 93 785 93 643 93 501	2 28. 3 42. 56. 71. 6 85. 7 9 113. 9 127.

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer r	eading P_0	, mm Hg		Propor
ture,	737	738	739	740	741	742	743	tional parts
		L	ogarith	m of m	ultiplie	r F		
5 6 7 8 9	97 876 97 720 97 564 97 409 97 254	97 779 97 623 97 468	97 838 97 682 97 527	98 052 97 896 97 740 97 585 97 431	98 111 97 955 97 799 97 644 97 490	98 170 98 013 97 857 97 702 97 548	98 222 98 078 97 916 97 761 97 607	59 1 5 2 11 3 17 4 23 5 29
10 11 12 13 14	97 100 96 947 96 794 96 642 96 489	97 159 97 006 96 853 96 701 96 548	97 218 97 065 96 912 96 760 96 607	97 277 97 123 96 970 96 818 96 666	97 336 97 182 97 029 96 877 96 725	97 394 97 240 97 087 96 935 96 783	97 453 97 299 97 146 96 994 96 842	4 23 5 29 6 35 7 41 8 47 9 53
15 16 17 18 19	96 338 96 187 96 037 95 887 95 738	96 397 96 246 96 096 95 946 95 797	96 456 96 305 96 155 96 005 95 856	96 515 96 364 96 214 96 064 95 915	96 574 96 423 96 273 96 123 95 974	96 632 96 481 96 331 96 181 96 032	96 691 96 540 96 390 96 240 96 091	151 1 15 2 30 3 45 4 80
20 21 22 23 24	95 589 95 441 95 293 95 146 94 999	95 648 95 500 95 352 95 205 95 058	95 707 95 559 95 411 95 264 95 117	95 766 95 618 95 470 95 323 95 176	95 825 95 677 95 529 95 382 95 235	95 883 95 735 95 587 95 440 95 293	95 942 95 794 95 646 95 499 95 352	5 75 6 90 7 105 8 120 9 135
25 26 27 28 29	94 753 94 707 94 562 94 417 94 273	94 912 94 766 94 621 94 476 94 332	94 971 94 825 94 680 94 535 94 391	95 030 94 884 94 739 94 594 94 449	95 089 94 943 94 798 94 653 94 508	95 147 95 001 94 856 94 711 94 567	95 206 95 060 94 915 94 770 94 626	145 1 14 2 29 3 43 4 58 5 72
30 31 32 33 34	94 130 93 987 93 844 93 702 93 560	94 189 94 046 93 903 93 761 93 619	94 247 94 104 93 961 93 819 93 677	94 306 94 163 94 020 93 878 93 736	94 365 94 222 94 079 93 937 93 795	94 423 94 280 94 137 93 995 93 853	94 482 94 339 94 196 94 054 93 912	58 5 72 6 87 7 101 8 116 9 130

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer r	cading P	, mm Hg	3	Propor
ture, °C	744	745	746	747	748	749	750	tional parts
		L	ogarith	m of m	ultiplie	r F		
5 6 7 8 9	98 286 98 130 97 974 97 819 97 665	98 345 98 189 98 033 97 878 97 724	98 403 98 247 98 091 97 936 97 781	98 461 98 305 98 149 97 994 97 839	98 519 98 363 98 207 98 052 97 898	98 577 98 421 98 265 98 110 97 956	98 635 98 479 98 323 98 168 98 013	58 1 5. 2 11. 3 17. 4 23. 5 29. 6 34. 7 40.
10 11 12 13 14	97 511 97 357 97 204 97 052 96 900	97 569 97 416 97 263 97 110 96 959	97 627 97 474 97 321 97 168 97 017	97 686 97 532 97 379 97 227 97 075	97 744 97 590 97 437 97 285 97 133	97 802 97 648 97 495 97 343 97 191	97 859 97 706 97 553 97 401 97 249	8 46. 9 52.
15 16 17 18 19	96 749 96 598 96 448 96 298 96 149	96 807 96 656 96 506 96 356 96 207	96 865 96 714 96 564 96 414 96 265	96 924 96 773 96 622 96 472 96 323	96 982 96 831 96 680 96 530 96 381	97 040 96 889 96 738 96 588 96 439	97 098 96 947 96 796 96 646 96 497	2 30. 3 46. 4 61. 5 77. 6 927. 8 128. 9 138.
20 21 22 23 24	96 000 95 852 95 705 95 558 95 411	96 058 95 910 95 763 95 616 95 469	96 116 95 968 95 821 95 674 95 527	96 174 96 026 95 879 95 732 95 585	96 232 96 034 95 937 95 790 95 643	96 290 96 142 95 995 95 848 95 701	96 348 96 200 96 053 95 906 95 759	148 1 14 2 29 3 44 4 59 5 74 6 88 7 103
25 26 27 28 29	95 264 95 118 94 973 94 828 94 684	95 322 95 176 95 031 94 886 94 742	95 380 95 234 95 089 94 944 94 800	95 439 95 293 95 148 95 003 94 858	95 497 95 351 95 206 95 061 94 916	95 555 95 409 95 264 95 119 94 974	95 613 95 467 95 322 95 177 95 032	8 118 9 133
30 31 32 33 34	94 540 94 397 94 254 94 112 93 970	94 599 94 456 94 313 94 171 94 029	94 657 94 514 94 371 94 229 94 087	94 715 94 572 94 429 94 287 94 145	94 773 94 630 94 487 94 345 94 203	94 831 94 688 94 545 94 403 94 261	94 889 94 746 94 603 94 461 94 319	2 28 3 42 4 56 7 71 6 85 7 89 113 9 127

Table 16 (continued)

Tem- pera-		Corre	cted bat	rometer r	eading P	o, mm H	3	Propor-	
ture,	751	752	753	754	755	756	757	tional parts	
		L	ogarith	m of m	ultiplie	r F			
5 6 7 8 9	98 693 98 537 98 381 98 226 98 071	98 595 98 439	98 809 98 653 98 497 98 342 98 187	98 866 98 710 98 554 98 399 98 244	98 924 98 768 98 612 98 457 98 302	98 981 98 825 98 669 98 514 98 360	99 039 98 883 98 727 98 572 98 417	58 1 5.8 2 11.6 3 17.4	
10 11 12 13 14	97 917 97 764 97 611 97 459 97 307	97 975 97 822 97 669 97 516 97 364	98 033 97 880 97 727 97 574 97 422	98 090 97 937 97 784 97 632 97 480	98 148 97 995 97 842 97 690 97 538	98 206 98 052 97 899 97 747 97 595	98 263 98 110 97 957 97 805 97 653	1 11.6 3 11.6 4 23.2 5 29.0 6 34.8 7 46.4 9 52.2	
15 16 17 18 19	97 156 97 005 96 854 96 704 96 555		97 271 97 120 96 970 96 820 96 671	97 329 97 178 97 028 96 878 96 729	97 387 97 236 97 086 96 936 96 787	97 444 97 293 97 143 96 993 96 844	97 501 97 350 97 200 97 050 96 901	151 1 15.1 2 30.2 3 45.3 4 60.4	
20 21 22 23 24	96 406 96 258 96 111 95 964 95 817	96 464 96 316 96 168 96 021 95 874	96 522 96 374 96 226 96 079 95 932	96 580 96 432 96 284 96 137 95 990	96 638 96 490 96 342 96 195 96 048	96 695 96 547 96 399 96 252 96 105	96 752 96 604 96 456 96 309 96 162	5 75.5 6 90.6 7 105.7 8 120.8 9 135.9	
25 26 27 28 29	95 671 95 525 95 380 95 235 95 090	95 728 95 582 95 437 95 292 95 148	95 786 95 640 95 495 95 350 95 206	95 844 95 698 95 553 95 408 95 263	95 902 95 756 95 611 95 466 95 321	95 959 95 813 95 668 95 523 95 378	96 016 95 870 95 725 95 580 95 436	145 1 14.5 2 29.0 3 43.5 4 58.0 5 72.5	
30 31 32 33 34	94 947 94 804 94 661 94 519 94 377	94 577	95 062 94 919 94 776 94 634 94 492	95 120 94 977 94 834 94 692 94 550	95 178 95 035 94 892 94 750 94 608	95 235 95 092 94 949 94 807 94 665	95 293 95 150 95 007 94 865 94 723	6 87.0 7 101.5 8 116.0 9 130.5	

Table 16 (continued)

Tem- pera-		Correc	ted bar	ometer re	eading Po	, mm Hg		Propor-
ture, °C	758	759	760	761	762	763	764	tional parts
		Le	garith	m of m	ultiplier	F		
5 6 7 8 9	99 096 98 940 98 784 98 629 98 474	99 153 98 997 98 841 98 636 98 531	99 210 99 054 98 898 98 743 98 589	99 267 99 111 98 956 98 801 98 646	99 324 99 168 99 013 98 858 98 703	99 381 99 225 99 070 98 915 98 760	99 438 99 282 99 126 98 971 98 817	57 1 1 5 1 2 11 4 3 17 1 4 22 5 6 34 6 7 39 8
10 11 12 13 14	98 320 98 167 98 014 97 862 97 710	98 377 98 224 98 071 97 919 97 767	98 435 98 281 98 128 97 976 97 824	98 492 98 338 98 185 98 033 97 881	98 549 98 395 98 242 98 090 97 938	98 606 98 452 98 299 98 147 97 995	98 663 98 509 98 356 98 204 98 052	8 45. 9 51.
15 16 17 18 19	97 558 97 407 97 257 97 107 96 958	97 464 97 315 97 165	97 683 97 522 97 372 97 222 97 083	97 730 97 579 97 429 97 279 97 130	97 787 97 636 97 486 97 336 97 187	97 844 97 693 97 543 97 393 97 244	97 901 97 750 97 600 97 450 97 301	1 15. 2 30. 3 46. 4 61. 5 77. 6 92. 7 107. 8 123. 9 138.
20 21 22 23 24	96 809 96 661 96 513 96 366 96 219	96 867 96 719 96 571 96 424 96 277	96 924 96 776 96 628 96 481 96 334	96 981 96 833 96 685 96 538 96 391	97 038 96 890 96 742 96 595 96 448	97 095 96 947 96 799 96 652 96 505	97 152 97 004 96 856 96 709 96 562	148 1 14. 2 29. 3 44. 4 59. 5 74. 6 88. 7 103.
25 26 27 28 29	96 073 95 927 95 782 95 637 95 493	96 131 95 985 95 840 95 695 95 551	96 188 96 042 95 897 95 752 95 608	96 245 96 099 95 954 95 809 95 665	96 302 96 156 96 011 95 866 95 722	96 359 96 213 96 068 95 923 95 779	96 416 96 270 96 125 95 980 95 836	142 1 142 1 2 28 3 42 4 56
30 31 32 33 34	95 350 95 207 95 064 94 922 94 780	95 407 95 264 95 121 94 979 94 837	95 464 95 321 95 178 95 036 94 894	95 521 95 378 95 235 95 093 94 951	95 578 95 435 95 292 95 150 95 008	95 635 95 492 95 349 95 207 95 065	95 692 95 549 95 406 95 264 95 122	3 56. 5 71. 6 85. 7 99. 8 113. 9 127.

Table 16 (continued)

Tem-		Correc	ted bard	meter re	ading Po	, mm Hg		Propor- tional
ture, °C	765	766	767	768	769	770	771	parts
		Lo	garith	m of m	ultiplier	F		
5 6 7 8 9	99 495 99 339 99 183 99 028 98 874		99 609 99 453 99 297 99 142 98 987	99 665 99 509 99 353 99 198 99 043	99 722 99 566 99 410 99 255 99 100	99 778 99 622 99 466 99 311 99 156	99 834 99 678 99 523 99 368 99 213	56 1 5.6 2 11.3 3 16.8 4 22.4
10 11 12 13 14	98 720 98 566 98 413 98 261 98 109	98 776 98 623 98 470 98 317 98 165	98 833 98 680 98 527 98 374 98 222	98 889 98 736 98 583 98 431 98 279	98 946 98 793 98 640 98 488 98 336	99 002 98 849 98 696 98 544 98 392	99 059 98 906 98 753 98 600 98 448	22.4 5 28.0 6 33.6 7 39.3 8 44.8 9 50.4
15 16 17 18 19	97 958 97 807 97 657 97 507 97 358	98 014 97 863 97 713 97 563 97 414	98 071 97 920 97 770 97 620 97 471	98 128 97 977 97 827 97 677 97 528	98 185 98 034 97 884 97 734 97 585	98 241 98 090 97 940 97 790 97 641	98 297 98 146 97 996 97 846 97 697	151 1 15. 2 30. 3 45. 4 60.
20 21 22 23 24	97 209 97 061 96 913 96 766 96 619	97 117 97 969 96 822	97 322 97 174 97 026 96 879 96 732	97 379 97 231 97 083 96 936 96 789	97 436 97 287 97 139 96 992 96 845	97 492 97 343 97 195 97 048 96 901	97 548 97 406 97 252 97 105 96 958	5 75. 6 90. 7 105. 8 120. 9 135.
25 26 27 28 29	96 473 96 327 96 182 96 037 95 893	96 529 96 383 96 238 96 093 95 949	96 586 96 440 96 295 96 150 96 006	96 643 96 497 96 352 96 207 96 062	96 699 96 553 96 408 96 263 96 119	96 755 96 609 96 464 96 319 96 175	96 812 96 666 96 521 96 367 96 232	145 1 29. 3 43. 4 58. 5 72. 6 87.
30 31 32 33 34	95 749 95 606 95 463 95 321 95 179	95 663 95 520 95 378	95 863 95 720 95 577 95 435 95 293	95 919 95 776 95 633 95 491 95 349	95 976 95 833 95 690 95 548 95 406	96 032 95 889 95 746 95 604 95 462	96 088 95 945 95 802 95 660 95 518	6 87. 7 101. 8 116. 9 130.

Table 16 (continued)

Tem- pera-		Corre	cted ba	rometer r	eading P	, mm He	3	F	ropor-
ture, °C	772	773	774	775	776	777	778	1	ional parts
		L	ogarith	m of m	ultiplie	r F			
5 6 7 8 9	99 890 99 734 99 579 99 424 99 269	99 635 99 480	99 846 99 691 99 536	99 902 99 747	00 114 99 958 99 803 99 648 99 493	00 170 00 014 99 859 99 704 99 549	00 226 00 070 99 914 99 759 99 605	1234567	56 11. 16. 22. 28. 33. 39.
10 11 12 13 14	99 115 98 962 98 809 98 656 98 504	99 171 99 018 98 865 98 712 98 560	99 227 99 073 98 920 98 768 98 616	99 283 99 129 98 976 98 824 98 672	99 339 99 185 99 032 98 880 98 728	99 395 99 241 99 089 98 937 98 784	99 451 99 297 99 144 98 992 98 840	8 9	154
15 16 17 18 19	98 353 98 202 98 052 97 902 97 753	98 409 98 258 98 108 97 958 97 800	98 465 98 314 98 164 98 014 97 865	98 521 98 370 98 220 98 070 97 921	98 577 98 426 98 276 98 126 97 977	98 633 98 482 98 332 98 182 98 033	98 689 98 538 98 388 98 238 98 089	2 3 4 5 6 7 8 9	46. 61. 77. 92. 107. 123.
20 21 22 23 24	97 604 97 456 97 308 97 161 97 014	97 660 97 512 97 364 97 217 97 070	97 716 97 568 97 420 97 273 97 126	97 772 97 624 97 476 97 329 97 182	97 828 97 680 97 532 97 385 97 238	97 904 97 736 97 588 97 441 97 294	97 940 97 792 97 644 97 497 97 350	1 2 3 4 5 6 7	148 14. 29. 44. 59. 74. 88.
25 26 27 28 29	96 868 96 722 96 577 96 432 96 288	96 924 96 778 96 633 96 488 96 344	96 980 96 834 96 689 96 544 96 400	97 036 96 890 96 745 96 600 96 456	97 092 96 946 96 801 96 656 96 512	97 148 97 002 96 858 96 712 96 568	97 204 97 058 96 913 96 768 96 624	1 2 3	118. 133. 142 14. 28.
30 31 32 33 34	96 145 96 002 95 859 95 717 95 575	96 201 96 058 95 915 95 773 95 631	96 257 96 114 95 971 95 829 95 687	96 313 96 170 96 027 95 885 95 743	96 369 96 226 96 083 95 941 95 799	96 425 96 282 96 139 95 997 95 855	96 481 96 338 96 195 96 053 95 911	3 4 5 6 7 8 9	42. 56. 71. 85. 99. 113. 127.

Table 16 (continued)

B. Vapour Pressure over Water and over Absorbing Solutions

	Water	KOH so	olution, OH in a of w	concent g per 10 ater	ration 0 g	Saturated NaCl	Tempera- ture, °C	
Tempera- ture, °C	,,,,,,,	10	20	30	40	solution		
		v	apour p	ressure	(P_B) , m	m Hg		
5	6.5	6.1	5.7	5.2	4.6	4.9	5	
6	7.0	6.5	6.1	5.6	4.9	5.3	6	
7	7.5	7.0	6.5	6.0	5.3	5.7	7	
8	8.0	7.5	7.0	6.4	5.7	6.1	8	
9	8.6	8.0	7.5	6.8	6.1	6.5	9	
10	9.2	8.6	8.0	7.3	6.5	6.9	10	
11	9.8	9.2	8.6	7.8	6.9	7.4	11	
12	10.5	9.8	9.2	8.3	7.4	7.9	12	
13	11.2	10.5	9.8	8.9	7.9	8.5	13	
14	12.0	11.2	10.4	9.5	8.4	9.1	14	
15	12.8	11.9	11.1	10.1	9.0	9.7	15	
16	13.6	12.7	11.8	10.8	9.6	10.3	16	
17	14.5	13.6	12.6	11.5	10.2	11.0	17	
18	15.5	14.5	13.4	12.3	10.9	11.7	18	
19	16.5	15.4	14.3	13.1	11.6	12.4	19	
20	17.5	16.4	15.2	13.9	12.4	13.2	20	
21	18.7	17.4	16.2	14.8	13.2	14.1	21	
22	19.8	18.5	17.2	15.8	14.0	15.0	22	
23	21.1	19.7	18.3	16.8	14.9	15.9	23	
24	22.4	20.9	19.5	17.8	15.8	16.9	24	
25	23.8	22.2	20.7	18.9	16.8	17.9	25	
26	25.2	23.6	22.0	20.1	17.9	19.0	26	
27	26.7	25.1	23.3	21.3	19.0	20.2	27	
28	28.3	26.6	24.7	22.6	20.2	21.4	28	
29	30.0	28.1	26.2	23.9	21.4	22.7	29	
30	31.8	29.7	27.7	25.3	22.4	24.0	30	
31	33.7	31.4	29.3	26.8	23.7	25.3	31	
32	35.7	33.3	31.0	28.4	25.2	26.8	32	
33	37.7	35.2	32.8	30.0	26.7	28.4	33	
34	39.9	37.2	34.7	31.7	28.2	30.0	34	

C. Densities of Gases and Vapours (ρ)

(Mass of one litre of gas or vapour in grams or one millilitre in milligrams under standard conditions)

Formula	Name	ρ, g/l (mg/ml)	log ρ
Ar	Argon	1.7837	25 132
AsF ₅	Argon	7.71	88 705
AsH ₃	Arseniuretted hydrogen, ar-		57 287
BF ₃	Boron fluoride	3.740	50 650
CF_2Cl_2	Dichlorodilluoromethane fre-	3.21	
CH ₄	on 12	5.510	74 115
C_2H_2	Methane	0.7168	85 540
$C_2^2H_4^2$	Acetylene, ethyne	1.173	06 930
$C_2^{2H_4}$	Ethylene, olefiant gas, ethene	1.2604	10 051
C ₃ H ₆	Ethane	1.3566	13 245
C ₃ H ₈	Propylene, propene	1.937	28 713
C_4H_{10}	Propane	2.0096	30 311
C ₄ H ₁₀	Butane	2.5190	40 123
C_5H_{12}	Isobutane, methylpropane	2.6726	42 693
C ₇ H ₁₆	Pentane	3.457	53 870
C ₈ H ₁₈	neptane	4.459	64 924
CH ₃ Cl	Octane	5.030	70 157
CH ₃ F	Methyl chloride	2.3073	36 310
CHCl ₃	Methyl fluoride	1.5452	18 898
	Chioroform	5.283	72 288
CH ₃ NH ₂	Methylamine.	1.396	14 489
CH ₃) ₂ NH	Dimethylamine	2.089	31 994
(CH ₃) ₃ N	1 11 meth Viamino	2.619	41 814
C ₂ H ₅ NH ₂	Ethylamine Methanol, methyl alcohol	2.0141	30 408
CH₃OH *	Methanol, methyl alcohol	1.426	15 412
C ₂ H ₅ OH		2.043	31 027
C ₄ H ₉ OH	Dutanol, but vi alcohol	3.244	51 108
CN) ₂	Cyan, dicvan	2.335	36 829
$(CH_3)_2O$	Diffethyl ether	2.1098	32 424
CO,	Carbon monovide	1.2504	09 705
	Carbon dioxide	1.9769	29 598
COCl ₂ COS	Carbon oxychloride phosgone	3.89	58 995
	Larnon ovveninhide	2.721	43 473
12	Chlorine	3.214	50 705
	Chlorine dioxide	3.21	50 654
F ₂		1.696	22 943
GeH4	Germanium hydride	3.42	53 403
Ge ₂ H ₆	Digermane.	7.23	85 914
Ha	Livurogen	0.08988	95 366
HBr	Hydrogen bromide	3.6445	56 164

Table 16 (continued)

Formula	Name	ρ, g/l (mg/ml)	log p
HCOH HCI HF HI H ₂ O H ₂ S H ₂ Se H ₂ Te He Kr N ₂ — NH ₃ NO NO NO NO NO NO NO NO NO NO NO NO NO	Formaldehyde Hydrogen chloride Hydrogen fluoride Hydrogen iodide Steam Hydrogen selenide Hydrogen selenide Hydrogen telluride Helium Krypton Nitrogen Air, mean value Ammonia Nitrous oxide Nitrogen dioxide Nitrogen dioxide Nitrosyl fluoride Nitrosyl fluoride Nitrosyl fluoride Neon Oxygen Oxygen Oxygen Hydrogen phosphide, phosphine Phosphorus pentafluoride Phosphorus trifluoride Phosphorus oxyfluoride Radon Sulphur hexafluoride Sulphur dioxide Sulphuryl fluoride Antimony hydride, stibine Tetrafluorosilane Silane, silicane Disilicane Disilicane Dimethylsilane Methylsilane Methylchlorosilane Methyldichlorosilane Trifluorosilane Trifluorosilane Trifluorosilane Trifluorosilane Tungsten fluoride Xenon	12.9	12 716 21 463 95 134 76 261 88 536 18 724 56 467 76 418 25 157 56 914 09 710 11 156 88 705 29 618 12 717 31 281 47 595 34 850 95 441 15 502 33 122 38 399 18 452 76 380 59 184 68 124 98 811 84 386 46 641 67 062 15 836 45 41 67 062 15 836 45 110 72 428 56 110 72 428 56 76 723

Table 16 (continued)

D. Gasometric (Volumetric) Determination of Gas-Forming Substances

1	Unknown substance		i ml of measured gas under stan-		
formula	name	Mea- sured gas	dard condi- tions corres- ponds to f' mg of the unknown substance	log f'	
Al C CO3- CO(NH ₂) ₂ CaC ₂ CaCO ₃ CaF ₂ F F F H NO ₃ H 2O ₂ K M nO ₄ K NO ₃ M g M g CO ₃ N NH 4 NO ₃ NO 3 N ₂ O ₃ N ₂ O ₅ N Ni Na 2O ₂ Z n	Aluminium Carbon Carbonate-ion Urea Calcium carbide Calcium carbonate Calcium fluoride Fluorine Iron Nitric acid Hydrogen peroxide (treated with KMnO ₄) Hydrogen peroxide (catalytic decomposition) Potassium permanganate (treated with H ₂ O ₂) Potassium nitrate Magnesium Magnesium Carbonate Nitrogen Ammonium nitrate Nitrate-ion Nitrous anhydride Nitric anhydride Sodium peroxide Zinc	$egin{array}{lll} H_2 & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & $	0.8019 0.53954 2.6956 2.6809 2.8877 4.4960 7.0278 3.4200 2.4899 2.8144 1.5191 3.0382 2.8231 4.5159 1.0839 3.7877 0.62560 3.5751 2.7694 1.6975 2.4121 3.7962 2.6175 6.965 2.9145	90 416 73 202 43 066 42 828 46 055 65 283 84 682 53 403 39 618 44 939 18 158 48 261 45 073 65 474 03 500 57 838 79 630 55 329 44 2981 38 239 57 935 41 789 84 291 46 456	

Table 17

Conversion Formulas for Solution Concentrations

Notation: d = density of a solution, g/ml; $M_w = molecular$ weight of a solute; E = equivalent weight of a solute

Concentration	A	В	C	N	M	L
In per cent (g per 100 g of a solution, wt. %), A=	A	100 <i>B</i>	100	$\frac{NE}{10d}$	$\frac{MM_w}{10d}$	$\frac{100LM_w}{1000+LM_w}$
In grams of a solute per 100 g of a solvent, $B =$	100A 100 — A	В	$\frac{100C}{1000d - C}$	1000NE 1000d NE	$\frac{100MM_w}{1000d-MM_w}$	$\frac{LM_w}{10}$
In grams per litre of a solution (g/l), $C =$	10Ad	1000Bd 100+B	C	NE	MM_{ω}	$\frac{1000LM_wd}{1000+LM_w}$
Normal, $N=$	10Ad E	$\frac{1000Bd}{(100+B)E}$	C	N	$\frac{MM_w}{E}$	$\frac{1000LM_{w}}{(1000+LM_{w})E}$
Molar, $M=$	$\frac{10Ad}{M_{W}}$	$\frac{1000Bd}{(100 + B)M_{w}}$	$\frac{C}{M_{W}}$	$\frac{NE}{M_w}$	M	$\frac{1000Ld}{1000+M_{\omega}L}$
Molal (number of moles of a solute per 1000 g of a solvent), $L = \frac{1}{2}$	$\frac{1000A}{(100 - A)M_{w}}$	$\frac{10B}{M_{w}}$	$\frac{1000C}{(1000d-C)M_{W}}$	$ \frac{1000NE}{(10000d - NE)M_{W}} \frac{10000d - MM_{W}}{10000d - MM_{W}} $	1000M $1000d - MM_{W}$	T

Table 18

Densities and Concentrations of Solutions

A. Densities and Concentrations of Nitric Acid Solutions*

HNO3 conce	entration		HNO3 conce	entration
g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/
0.3333 1.255 2.164 3.073 3.982 4.883 5.784 6.661 7.530 8.398 9.259 10.12 10.97 11.81 12.65 13.48 14.31 15.13 15.95 16.76 17.58 18.39 19.19 20.00 20.79 21.59 22.38 23.16 23.94 24.71 25.48 26.24 27.00	0.05231 0.2001 0.3468 0.4950 0.6445 0.7943 0.9454 1.094 1.243 1.393 1.543 1.694 1.845 1.997 2.148 2.301 2.453 2.605 2.759 2.913 3.068 3.224 3.381 3.539 3.696 3.224 4.312 4.489 4.489 4.849 4.849 4.840 4.970	1.175 1.180 1.185 1.190 1.195 1.200 1.205 1.210 1.215 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255 1.260 1.265 1.270 1.275 1.280 1.285 1.290 1.295 1.300 1.315 1.310 1.315 1.320 1.325	29.25 30.00 30.74 31.47 32.21 32.94 33.68 34.41 35.16 35.93 36.70 37.48 38.25 39.80 40.58 41.36 42.14 42.92 43.70 44.48 45.27 46.06 46.85 47.63 48.42 49.21 50.00 50.85 51.71 52.56 53.41 54.27	5.455 5.618 5.780 5.943 6.407 6.278 6.956 7.135 7.497 7.863 8.049 8.237 8.426 8.049 8.237 8.426 8.9001 9.195 9.394 9.590 9.789 9.789 9.900 10.19 10.83 11.05 11.27 11.49 11.72
	g per 100 g of solution (wt. %) 0.3333 1.255 2.164 3.073 3.982 4.883 5.784 6.661 7.530 8.398 9.259 10.12 10.97 11.81 12.65 13.48 14.31 15.13 15.95 16.76 17.58 18.39 19.19 20.00 20.79 21.59 22.38 23.16 23.94 24.71 25.48 26.24	oft solution (wt.%) mole/l 0.3333 1.255 2.164 3.073 3.982 0.6445 4.883 0.7943 5.784 0.9454 6.661 7.530 1.243 8.398 1.393 9.259 1.543 10.12 1.694 10.97 11.81 1.997 12.65 2.148 13.48 2.301 14.31 2.453 15.13 2.605 15.95 2.759 16.76 2.913 17.58 3.068 18.39 3.224 19.19 3.381 20.00 3.539 20.79 3.854 4.012 23.16 4.171 23.94 4.330 24.71 25.48 4.649 26.24 4.810 27.00 4.970	g per 100 g of solution (wt. %) 0.3333	g per 100 g of solution (wt.%) 0.3333

^{*} For the use of the table, see p. 470.

Table 18 (continued)

	HNOs conce	ntration		HNO3 conce	ntration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.350 1.355 1.360 1.365 1.370 1.375 1.380 1.385 1.390 1.395 1.400 1.405 1.415 1.420 1.425 1.430 1.435 1.435 1.445 1.445 1.445 1.450	56.95 57.87 58.78 59.69 60.67 61.69 62.70 63.72 64.74 65.84 66.97 68.10 69.23 70.39 71.63 72.86 74.09 75.35 76.71 78.07 79.43 80.88	12.20 12.44 12.68 12.93 13.46 13.73 14.01 14.57 14.88 15.18 15.49 15.81 16.14 16.47 16.81 17.16 17.53 17.90 18.28 18.68	1.460 1.465 1.470 1.475 1.480 1.485 1.490 1.501 1.501 1.502 1.503 1.504 1.505 1.506 1.507 1.508 1.507 1.508 1.509 1.510 1.511 1.512 1.513	82.39 83.91 85.50 87.29 89.07 91.13 93.49 95.46 96.73 96.98 97.23 97.49 97.74 97.99 98.25 98.50 98.76 99.01 99.26 99.52 99.77 100.00	19.09 19.51 19.95 20.43 20.92 21.48 22.11 22.65 23.02 23.10 23.48 23.25 23.33 23.40 23.48 23.56 23.63 23.79 23.86 23.94 24.01

B. Densities and Concentrations of Sulphuric Acid Solutions*

	H2SO4 conce	entration		H ₂ SO ₄ conce	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040	0.2609 0.9855 1.731 2.485 3.242 4.000 4.746 5.493 6.237	0.02660 0.1010 0.1783 0.2595 0.3372 0.4180 0.4983 0.5796 0.6613	1.045 1.050 1.055 1.060 1.065 1.070 1.075 4.080 1.085	6.956 7.704 8.415 9.129 9.843 10.56 11.26 11.96 12.66	0.7411 0.8250 0.9054 0.9865 1.066 1.152 1.235 1.317 1.401

^{*} For the use of the table, see p. 470.

Table 18 (continued)

	H2SU4 conce	entration		H ₂ SO ₄ conce	entration
Density at 20°C, g/cm ³		Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	
1.090 1.095 1.100 1.105 1.110 1.115 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.190 1.205 1.210 1.215 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255 1.260 1.265 1.270 1.275 1.280 1.285 1.290 1.285	13.36 14.04 14.73 15.41 16.08 16.76 17.43 18.09 18.76 19.42 20.08 20.73 21.38 22.03 22.67 23.31 23.95 24.58 25.21 25.84 26.47 27.10 27.72 28.33 28.95 29.57 30.18 30.79 31.40 32.01 32.61 33.22 33.82 34.42 35.01 35.60 36.19 36.78 37.95 38.53 39.10	1.484 1.567 1.652 1.735 1.820 1.990 2.075 2.161 2.247 2.334 2.420 2.507 2.594 2.681 2.768 2.857 2.945 3.033 3.122 3.311 3.302 3.211 3.302 3.3121 3.391 3.481 3.572 3.663 3.754 3.846 3.938 4.031 4.123 4.216 4.310 4.404 4.498 4.592 4.686 4.781 4.876 4.972 5.068 5.163	1.300 1.305 1.310 1.315 1.320 1.325 1.330 1.335 1.340 1.345 1.350 1.365 1.370 1.375 1.380 1.385 1.380 1.385 1.390 1.395 1.400 1.405 1.411 1.415 1.420 1.425 1.430 1.435 1.440 1.445 1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.485 1.490 1.495 1.500 1.505	39.68 40.25 40.82 41.39 41.95 42.51 43.07 43.62 44.17 44.72 45.26 45.80 46.33 46.86 47.39 47.92 48.45 48.97 49.99 50.50 51.01 51.52 52.02 52.51 53.01 53.50 54.40 54.49 55.45 55.93 56.41 56.89 57.84 59.24 59.70 60.17 60.62	5.259 5.356 5.452 5.549 5.646 5.743 6.03 6.13 6.22 6.32 6.42 6.52 6.62 6.718 6.81 7.10 7.208 7.30 7.406 7.503 7.603 7.702 7.803 7.702 7.803 7.702 8.000 8.293 8.297 8.397 8.397 8.497 8.598 8.699 8.799 8.699 8.790 9.100 9.202 9.303

Table 18 (continued)

	H2SO4 concentration			H ₂ SO ₄ concentration		
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	
1,510 1,515 1,520 1,525 1,530 1,535 1,536 1,545 1,550 1,555 1,560 1,565 1,570 1,575 1,580 1,585 1,595 1,600 1,605 1,615 1,615 1,620 1,625 1,630 1,635 1,640 1,645 1,645 1,650 1,665 1,670 1,665 1,670 1,675 1,680 1,685 1,690 1,695 1,700	61.08 61.54 62.00 62.45 62.91 63.36 63.81 64.26 64.71 65.15 65.59 66.91 67.35 67.79 68.23 68.66 69.09 69.53 69.96 70.82 71.25 71.67 72.09 72.52 72.52 73.37 73.80 74.22 74.64 75.92 76.34 77.92 77.63	9.404 9.506 9.608 9.711 9.813 9.916 10.02 10.12 10.23 10.33 10.54 10.64 10.74 10.85 11.06 11.16 11.27 11.38 11.48 11.59 11.70 11.80 11.91 12.02 12.13 12.24 12.34 12.45 12.78 12.89 13.00 13.12 13.34 13.46	1.705 1.710 1.715 1.725 1.730 1.735 1.730 1.735 1.740 1.745 1.750 1.755 1.760 1.765 1.770 1.775 1.780 1.785 1.800 1.815 1.800 1.815 1.820 1.821 1.822 1.823 1.824 1.825 1.826 1.827 1.828 1.829 1.830 1.831 1.832 1.833 1.834 1.835	78.06 78.49 78.93 79.37 79.81 80.25 80.70 81.16 81.62 82.09 82.57 83.06 83.57 84.08 84.61 85.16 85.74 86.35 86.99 87.69 88.43 89.23 90.12 91.11 91.33 91.56 91.78 92.00 92.25 92.51 92.77 93.03 93.33 93.64 93.94 94.72 95.72	13.57 13.69 13.80 13.92 14.04 14.16 14.28 14.40 14.52 14.65 14.78 14.90 15.04 15.17 15.31 15.46 15.61 15.76 15.92 16.68 16.91 17.06 17.11 17.72 17.22 17.34 17.40 17.77 17.22 17.54 17.70 17.79 17.91	

Table 18 (continued)

C. Densities and Concentrations of Hydrochloric Acid Solutions*

	HCl concer	ntration		HCl conce	ntration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.095	0.3600 1.360 2.364 3.374 4.388 5.408 6.433 7.464 8.490 9.510 10.52 11.52 12.51 13.50 14.49 ₅ 15.48 ₅ 16.47 17.45 18.43 19.41 20.39	0.09872 0.3748 ! 0.6547 0.9391 1.227 1.520 1.817 2.118 2.421 2.725 3.029 3.333 3.638 3.944 4.253 4.565 4.878 5.192 5.509 ₅ 5.829 6.150	1.105 1.110 1.115 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.190 1.195	21.36 22.33 23.29 24.25 25.22 26.20 27.18 28.18 29.17 30.14 31.14 32.14 33.16 34.18 35.20 36.23 37.27 38.32 39.37 40.00	6.472 6.796 7.122 7.449 7.782 8.148 8.459 9.159 9.505 9.863 10.22 ₅ 10.59 ₅ 10.97 11.34 11.73 12.11 12.50 12.90 13.14

Concentrations of Hydrochloric Acid Having Constant Boiling Point

Atmospheric pres- sure during dis- tillation, mm Hg Hydrochloric acid concentration	780	770	760	750	740	730
(reduced to a vacuum), g of HCl per 100 g of solution	20.173	20.197	20.221	20.245	20,269	20.293
(weighing per- formed in air), g	180.621	180,407	180 193	179 979	179 766	179.551

^{*} For the use of the table, see p. 470.

Table 18 (continued)

D. Densities and Concentrations of Phosphoric Acid Solutions*

	H ₃ PO ₄ concentration			H ₃ PO ₄ concentration		
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.100 1.105 1.100 1.115 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.190	0.296 1.222 2.148 3.074 4.000 4.926 5.836 6.745 7.643 8.536 9.429 10.32 11.19 12.06 12.92 13.76 14.60 15.43 16.26 17.07 17.87 18.68 19.46 20.25 21.03 21.80 22.56 23.32 24.07 24.82 25.57 26.31 27.05 27.78 28.51 29.23 29.94 30.65 31.35	0.030 0.1253 0.2214 0.3184 0.4164 0.5152 0.6134 0.7124 0.8110 0.911 1.010 1.111 1.210 1.311 1.510 1.609 1.708 1.807 1.906 2.005 2.105 2.204 2.304 2.403 2.502 2.602 2.702 2.800 2.900 3.000 3.000 3.203 3.304 3.404 3.404 3.505 3.606 3.707 3.806	1.195 1.200 1.205 1.210 1.215 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255 1.260 1.265 1.270 1.275 1.280 1.285 1.290 1.295 1.300 1.305 1.310 1.315 1.320 1.325 1.330 1.335 1.340 1.345 1.350 1.355 1.360 1.365 1.370 1.375 1.380 1.375 1.380 1.375 1.380 1.375 1.380 1.375	32.05 32.75 33.44 34.13 34.82 35.50 36.17 36.84 37.51 38.17 38.83 39.49 40.14 40.79 41.44 42.09 42.73 43.37 44.00 44.63 45.26 45.88 46.49 47.10 47.70 48.30 48.89 49.48 50.07 50.66 51.25 51.84 52.42 53.57 54.14 54.71 55.28 55.85	3.908 4.010 4.112 4.317 4.420 4.522 4.624 4.829 4.932 5.036 5.1454 5.559 5.655 5.771 5.875 5.981 6.087 6.191 6.296 6.610 6.716 6.828 7.034 7.141 7.247 7.355 7.678 7.784 7.894	

^{*} For the use of the table, see p. 470.

Table 18 (continued)

	H ₃ PO ₄ concentration			H ₃ PO ₄ concentration		
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	
1.390 1.395 1.400 1.395 1.400 1.405 1.410 1.415 1.420 1.425 1.430 1.435 1.440 1.445 1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.485 1.490 1.495 1.500 1.515 1.520 1.525 1.530 1.535 1.540 1.555 1.550 1.555 1.550 1.555 1.550 1.555 1.550 1.555 1.550 1.555 1.550 1.555 1.550 1.555 1.550 1.555 1.550 1.555 1.550 1.555 1.550 1.555 1.550 1.555 1.550 1.555	56.42 56.98 57.54 58.09 58.64 59.19 59.74 60.29 60.84 61.38 61.92 62.45 62.98 63.51 64.03 64.55 65.07 65.58 66.09 66.60 67.10 68.60 67.10 68.60 69.09 69.58 70.07 70.56 71.04 71.52 72.00 72.48 72.95 73.42 73.89 74.83 75.76 76.22 76.68 77.14	8.004 8.112 8.221 8.328 8.437 8.547 8.658 8.766 8.878 8.989 9.099 9.208 9.322 9.432 9.541 9.651 9.761 9.870 9.982 10.21 10.31 10.42 10.53 10.64 10.76 10.86 10.98 11.09 11.20 11.32 11.42 11.53 11.65 11.76 11.88 11.99 12.11 12.22 12.33 12.45 12.56	1.600 1.605 1.610 1.615 1.620 1.625 1.630 1.635 1.640 1.645 1.650 1.665 1.660 1.665 1.670 1.675 1.680 1.685 1.690 1.705 1.710 1.715 1.720 1.725 1.730 1.735 1.740 1.745 1.750 1.755 1.760 1.765 1.770 1.775 1.770 1.775 1.770 1.775 1.780 1.785 1.790 1.795 1.780 1.785 1.790 1.795 1.780 1.785 1.790 1.795 1.800 1.805	77.60 78.05 78.05 78.50 78.95 79.40 79.85 80.30 80.75 81.20 81.64 82.08 82.52 82.96 83.39 83.82 84.25 84.68 85.11 85.54 85.96 86.38 86.80 87.22 87.64 88.06 88.48 89.31 89.72 90.13 90.54 90.95 91.36 91.77 92.17 92.57 93.37 94.17 94.57	12.67 12.78 12.90 13.01 13.12 13.24 13.36 13.48 13.59 13.71 13.82 13.94 14.06 14.17 14.29 14.40 14.52 14.63 14.75 14.98 15.10 15.22 15.33 15.45 15.57 15.70 15.81 16.65 16.77 16.89 17.00 17.13 17.25 17.37 17.50	

Table 18 (continued)

Density at 20°C, g/cm ³	H ₃ PO ₄ conc	entration	Density at 20°C, g/cm ³	H ₃ PO ₄ concentration		
	g per 100 g of solu- tion (wt.%)	mole/l		g per 100 g of solu- tion (wt.%)	mole/l	
1.810 1.815 1.820 1.825 1.830 1.835 1.840	95.37 95.76 96.15 96.54 96.93 97.32 97.71	17.62 17.74 17.85 17.98 18.10 18.23 18.34	1.845 1.850 1.855 1.860 1.865 1.870	98.10 98.48 98.86 99.24 99.62 100,00	18.47 18.60 18.72 18.84 18.96 19.08	

E. Densities and Concentrations of Perchloric Acid Solutions*

	HClO4 concentration			HClO4 concentration	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion '(wt.%)	mole/l
1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.095 1.100	1.00 1.90 2.77 3.61 4.43 5.25 6.07 6.88 7.68 8.48 9.28 10.06 10.83 11.58 12.33 13.08 13.83 14.56 15.28 16.00 16.72 17.45 18.16	0.1004 0.1910 0.2799 0.3665 0.4520 0.5383 0.6253 0.7122 0.7989 0.8863 0.9745 1.061 1.148 1.233 1.319 1.406 1.494 1.580 1.665 1.752 1.839 1.928 2.015	1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.190 1.195 1.200 1.205 1.210 1.215 1.220 1.225 1.230	18.88 19.57 20.26 20.95 21.64 22.32 22.99 23.65 24.30 24.94 25.57 26.82 27.44 28.05 28.66 29.26 29.86 30.45 31.04 31.61 32.18 32.74	2.105 2.191 2.279 2.367 2.544 2.632 2.719 2.806 2.892 2.978 3.150 3.237 3.495 3.582 3.667 3.754 3.839 3.924 4.008

^{*} For the use of the table, see p. 470.

Table 18 (continued)

	HClO4 concentration			HClO ₄ concentration		
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	
1.235 1.240 1.245 1.250 1.255 1.260 1.265 1.270 1.275 1.280 1.285 1.290 1.305 1.300 1.305 1.310 1.315 1.320 1.325 1.330 1.335 1.340 1.345 1.350 1.355 1.360 1.365 1.370 1.375 1.380 1.385 1.390 1.395 1.400 1.405 1.410 1.415 1.420 1.425 1.430 1.435 1.440	33.29 33.85 34.40 34.95 35.49 36.03 36.56 37.08 37.60 38.10 38.60 39.10 39.60 40.10 40.59 41.08 41.56 42.02 42.97 43.43 43.89 44.35 44.81 45.61 46.16 46.61 47.05 47.49 47.93 48.37 48.80 49.23 49.68 50.10 50.51 50.90 51.31 51.71 52.11 52.51	4.092 4.178 4.263 4.349 4.633 4.519 4.604 4.687 4.772 4.854 4.937 5.021 5.105 5.189 5.273 5.357 5.440 5.521 5.668 5.771 5.854 5.937 6.021 6.104 6.188 6.272 6.356 6.439 6.523 6.692 6.776 6.860 6.948 7.032 7.114 7.196 7.278 7.360 7.443 7.527	1.445 1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.485 1.490 1.495 1.500 1.515 1.520 1.525 1.530 1.525 1.530 1.535 1.540 1.555 1.560 1.565 1.575 1.580 1.585 1.575 1.580 1.585 1.590 1.595 1.600 1.605 1.600 1.615 1.620 1.625 1.630 1.635 1.640 1.645 1.640 1.645 1.640	52.89 53.27 53.65 54.03 54.41 54.79 55.17 55.55 55.93 56.31 56.69 57.06 57.44 57.81 58.17 58.54 59.28 59.66 60.04 60.78 61.15 61.52 61.89 62.26 62.63 63.00 63.37 63.74 64.12 64.50 64.88 65.26 66.01 66.39 66.76 67.13 67.51 67.59 68.26	7.607 7.689 7.770 7.852 7.934 8.017 8.100 8.183 8.267 8.352 8.436 8.519 8.605 8.689 8.772 8.942 9.028 9.116 9.203 9.279 9.377 9.465 9.553 9.641 9.730 9.819 9.998 10.09 10.18 10.27 10.37 10.46 10.55 10.64 10.74 10.93 11.02 11.12 11.21	

Table 18 (continued)

	HClO4 concentration			HClO4 concentration	
Density at 20°G, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solution (wt. %) 69.77 70.15	mole/l
1.655 1.660 1.665	68.64 69.02 69.40	11.31 11.40 11.50	1.670 1.675		11.60 11.70

F. Densities and Concentrations of Acetic Acid Solutions*

	CH3COOH cor	ncentration		CH3COOH concentration	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 26°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040	1.20 4.64 8.14 11.7 15.4 19.2 23.1 27.2 31.6 36.2	0.200 0.777 1.37 1.98 2.61 3.27 3.96 4.68 5.46 6.30	1.050 1.055 1.060 1.065 1.070 1.065 1.060 1.055 1.050	40.2 46.9 53.4 61.4 77-79** 91.2 95.4 98.0 99.9	7.03 8.24 9.43 10.9 13.7-14.4 16.2 16.8 17.2 17.5

** Acetic acid, in the given limits of concentration, has a density of 1.0700 g/cm³ with deviations of less than 0.0001. Since density decreases with a further increase in concentration, then in order to determine the concentration from two possible ones that meets the density found (for examconcentration from two possible ones that meets the density found (for examconcentration of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the solution is 1.060 g/cm³; will its concentration be ple, the density of the given case, 53.4%).

G. Densities and Concentrations of Potassium Hydroxide Solutions*

	KOH concentration			KOH concentration	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1,000 1,005 1,010	0.197 0.743 1.29 ₅	0.0351 0.133 0.233	1.015 1.020 1.025	1.84 2.38 2.93	0.333 0.433 0.536

^{*} For the use of the table, see p. 470.

Table 18 (continued)

	KOH concentration			KOH concentration	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.095 1.100 1.105 1.110 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.180 1.185 1.190 1.195 1.200 1.205 1.210 1.225 1.220 1.225 1.230 1.235	3.48 4.03 4.58 5.12 5.66 6.20 6.74 7.28 7.28 8.36 8.89 9.43 9.96 10.49 11.03 11.56 12.08 12.61 13.14 13.66 14.19 14.70 ₅ 15.22 15.74 16.78 17.29 17.81 18.32 18.84 19.35 19.86 20.37 20.88 21.38 21.38 22.88 23.38 23.87 24.37 24.86	0.639_5 0.744 0.848 0.954 1.06 1.17 1.27 1.38 1.49 1.60 1.71 1.82 1.94 2.05 2.16 2.28 2.51 2.62 2.74 2.97_5 3.09 3.21 3.35 3.45 3.70 3.82 3.94 4.07 4.19	1.240 1.245 1.245 1.250 1.255 1.260 1.265 1.270 1.275 1.280 1.285 1.390 1.305 1.310 1.315 1.320 1.325 1.330 1.335 1.340 1.345 1.350 1.355 1.360 1.365 1.375 1.380 1.385 1.380 1.385 1.380 1.385 1.390 1.395 1.400 1.405 1.410 1.415 1.420 1.425 1.430 1.425 1.430 1.445	25.36 25.85 26.34 26.83 27.32 27.80 28.29 28.77 29.25 29.73 30.21 30.68 31.15 31.62 32.09 32.56 33.03 33.50 33.50 33.50 33.50 33.51 34.43 34.90 35.36 35.82 36.73 ₅ 37.19 37.65 38.10 ₅ 38.10 ₅ 48.24 48.24 48.34 48.34 48.39 48.39 48.36	5.60 5.74 5.87 6.00 6.13 6.27 6.34 6.67 6.84 6.95 7.49 7.63 7.77 7.91 8.05 8.19 8.33 8.48 8.76 8.90 9.05 9.19 9.34 9.63 9.78 9.93 10.07 10.37 10.82

Table 18 (continued)

Density at 20°C, g/cm ³	KOH conc	entration	Density at 20°C, g/cm ³	KOH concentration	
	g per 100 g of solu- tion (wt. %)	mole/l		g per 100 g of solu- tion (wt. %)	mole/l
1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.485 1.490	44.79 45.23 45.66 46.09_5 46.53 46.96 47.39 47.82 48.25	11.58 11.73 11.88 12.04 12.19 12.35 12.50 12.66 .12.82	1.495 1.500 1.505 1.515 1.515 1.520 1.525 1.530 1.535	48.67 ₅ 49.10 49.53 49.95 50.38 50.80 51.22 51.64 52.05	12.97 13.13 13.29 13.45 13.60 13.76 13.92 14.08 14.24

H. Densities and Concentrations of Caustic Soda Solutions*

	NaOH conc	NaOH concentration		NaOH concentration	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.095	0.159 0.602 1.045 1.49 1.94 2.39 2.84 3.29 3.745 4.20 4.655 5.11 5.56 6.02 6.47 6.93 7.38 7.83 8.28 8.74 9.19	0.0398 0.151 0.264 0.378 0.494 0.611 0.731 0.851 0.971 1.097 1.222 1.347 1.474 1.602 1.731 1.862 1.992 2.123 2.257 2.391 2.527	1.105 1.110 1.115 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.190 1.195 1.200 1.205	9.64 ₅ 10.10 10.55 ₅ 11.01 11.46 11.92 12.37 12.83 13.28 13.73 14.18 14.64 15.09 15.54 16.89 17.34 ₅ 17.80 18.25 ₅ 18.71	2.664 2.802 2.942 3.082 3.224 3.367 3.510 3.655 3.801 3.947 4.095 4.244 4.395 4.545 4.6850 5.004 5.160 5.317 5.636

^{*} For the use of the table, see p. 470.

Table 18 (continued)

	NaOH cone	centration		NaOH con	centration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.210 1.215 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.260 1.265 1.260 1.265 1.275 1.280 1.285 1.290 1.295 1.300 1.305 1.310 1.315 1.320 1.325 1.330 1.335 1.340 1.345 1.350 1.355 1.360 1.365 1.370	19.16 19.62 20.07 20.53 20.98 21.44 21.90 22.36 22.82 23.73 24.19 24.64 ₅ 25.10 25.56 26.02 26.48 27.41 27.87 28.33 28.80 29.26 29.73 30.20 30.67 31.14 31.62 32.10 32.58 33.06 33.54 34.03	5.796 5.958 6.122 6.286 6.451 6.619 6.788 6.958 7.302 7.475 7.650 7.824 8.000 8.178 8.357 8.539 8.722 8.906 9.092 9.278 9.466 9.847 10.04 10.23 10.63 11.03 11.03 11.24 11.45 11.65	1.375 1.380 1.385 1.390 1.395 1.400 1.405 1.410 1.415 1.420 1.425 1.430 1.435 1.440 1.445 1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.485 1.490 1.495 1.500 1.505 1.510 1.515 .520 1.525 1.530	34.52 35.01 35.50 ₅ 36.00 36.49 ₅ 36.99 37.49 37.99 38.49 39.49 ₅ 40.00 40.51 ₅ 41.03 41.03 41.55 42.07 42.59 43.12 43.64 44.69 ₅ 45.22 45.75 46.27 46.80 47.33 47.85 48.90 ₅ 49.44 49.97 50.50	11.86 12.08 12.29 12.51 12.73 12.95 13.17 13.39 13.61 13.84 14.07 14.30 14.53 14.77 15.01 15.25 15.49 15.74 15.98 16.48 16.98 17.75 18.00 18.26 17.75 18.00 18.26 17.75 18.00 18.52 19.05 19.05

I. Densities and Concentrations of Ammonia Solutions*

	NH3 concentration		Ammonia	NH3 concentration	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 400 g	mole/l
0.998 0.996	0.0465 0.512	0.0273 0.299	0.994 0.992	0.977	0.570 0.834

^{*}For the use of the table, see p. 470.

Table 18 (continued)

	g per 100 g of solution (wt. %) NH3 concentration mole/l			NH3 concentration	
Density at 20°C, g/cm ³			Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
0.990 0.988 0.986 0.984 0.982 0.980 0.976 0.976 0.972 0.970 0.968 0.964 0.962 0.960 0.958 0.956 0.954 0.952 0.950 0.954	1.89 2.35 2.82 3.30. 3.78 4.27 4.76 5.25 5.75 6.25 6.75 7.26 7.77 8.29 8.82 9.34 9.87 10.40 ₅ 10.95 11.49 12.03 12.58 13.14	1.10 1.36 ₅ 1.91 2.18 2.46 2.73 3.01 3.29 3.57 3.84 4.12 4.41 4.69 4.98 5.27 5.55 5.84 6.42 6.71 7.00 7.29 7.29	0.934 0.932 0.930 0.928 0.926 0.924 0.922 0.920 0.918 0.916 0.914 0.912 0.910 0.908 0.906 0.904 0.902 0.900 0.898 0.896 0.894 0.892 0.890 0.888	16.65 17.24 17.85 18.45 19.06 19.67 20.27 20.88 21.50 22.12 ₅ 22.75 23.39 24.03 24.68 25.33 26.00 26.67 27.33 28.00 28.67 29.33 30.00 30.68 ₅ 31.37	9.13 9.44 9.75 10.06 10.37 10.67 11.28 11.59 11.52 12.21 12.52 12.84 13.16 13.48 13.48 14.42 14.76 15.08 15.71 16.04 16.36
0.944 0.942 0.940 0.938	13.14 13.71 14.29 14.88 15.47	7.60 7.91 8.21 8.52 8.83	0.888 0.886 0.884 0.882 0.880	31.37 32.09 32.84 33.59 ₅ 34.35	16.36 16.69 17.05 17.40 17.75

J. Densities and Concentrations of Sodium Carbonate Solutions

	Na ₃ CO ₃ (anhydrous) concentration			Na ₂ CO ₃ (anhydrous) concentration	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.000 1.005 1.010 1.045 1.020	0.49 0.67 1.14 1.62 2.10	0.018 0.063_{5} 0.109 0.155 0.202	1.025 1.030 1.035 1.040 1.045	2.57 3.05 3.54 4.03 4.50	0.248 0.296 0.346 0.395 0.444

	Na ₂ CO ₃ (anhydrous) concentration			Na ₂ CO ₃ (anhydrous) concentration	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.095 1.100 1.105 1.110	4.98 5.47 5.95 6.43 6.90 7.38 7.85 8.33 8.80 9.27 9.75 10.22 10.68 11.14 11.60	0.493 0.544 0.595 0.696 0.748 0.800 0.853 0.905 0.958 1.012 1.065 1.118 1.172 1.226	1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.180	12.05 12.52 13.00 13.45 13.90 14.35 14.75 15.20 15.60 16.03 16.45 16.87 17.30 17.70	1.279 1.335 1.392 1.446 1.501 1.557 1.663 1.714 1.769 1.823 1.878 1.934 1.987

K. Densities and Concentrations of Selected Commercial Reagents

Reagent	Density at	Concentration		
	20°C, g/cm ³	wt. %	mole/l	
Acetic acid, analytical grade and pure	≪1.0549	≥ 98	≥ 17.21	
Ammonia solution, concen-	≪1.0503	≥ 99.8	≥ 17.45	
trated	0.901-0.907 1.486	25.0-27.0 46.85	13.32-14.28	
Hydrofluoric acid, analyti- cal grade	1.174-1.185 ≥1.128	35.0-38.0	11.27-12.38 ≥22.55	
Hydrofluoric acid, pure Hydroiodic acid	\$1.126 \$1.116 1.50-1.55 1.372-1.405	\geqslant 40 \geqslant 35 45.3 45.8 60.7-68.0	\$19.52 5.31-5.55 13.28-15.10	
Nitric acid, "weak"	1.337-1.367	54.0-60.0	11.41-13.0	

Table 18 (continued)

	nthu of	Concentration		
Reagent	Density at 20°C, g/cm ³	wt. %	mole/l	
Perchloric acid Phosphoric acid, analytical grade Phosphoric acid, pure Sulphuric acid	1.206-1.220 ≥1.719 ≥1.713 1.83-1.835	30.0-31.61 >88 >87.5 93.56-95.60	$3.60-3.84$ $\geqslant 15.43$ $\geqslant 15.29$ $17.46-17.88$	

Table 19
Chief Acid-Base Indicators*
(in the order of the growth in the pH range)

pH range and the indicator colour	0.13-0.5 yellow green	0.0-1.0 green—yellow
Solvent	Water	0.05 70% alcohol
Con- cent- ration,	0.1 and 0.05	0.02
Formula	(H ₃ C) ₂ N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	но-
Indicator	Methyl violet; first change (see Nos. 7 and 15)	α-Naphtholben- zoin; first chan- ge (see No. 57)
.oN	4	2

3 Picric acid (2,4,6- trinitrophenol) On No No No (H ₃ C) ₂ N NO NO (H ₃ C) ₂ N OH NO OH OO OO OO OO OO OO O	0.04 50% alcohol 0.2-1.8 red - yellow	
(4,6-	HO (CH3)2 CI- HO (CH3)2 CI- H-3C (CH2)	SO3
Picri trii trii Methi	5 Gresol red (o-cresol ruphoph-thelin); first	CHANGE

eFor the use of the table, see p. 472.

r e	ा सु	1	1	3
pH range and the indicator colour	0.13-2.0 yellow — bluish green	1.0-1.5 green—blue	1.2-2.3 red — yellow	1.1-2.8 purple—yellow
Solvent	Water	Water	Water	50% alcohol with an addition of
Con- cent- ration,	0.1	0.1	0.1	0.01
Formula	(H ₃ C) ₂ N (CH ₃) ₂ Cl-	See No. 1		
Indicator	Malachite green; first change (see No. 69)	7 Methyl violet (see Nos. 1 and 15; second change)	Metanil yellow (victoria yellow, tropeolin G)	Benzene azodi- phenylamine
.eN	9	-	00	- 60

	1.2-2.8 red — yellow	1.2-2.8 red — yellow \(\lambda_{max} 544-430 \) nm
1 ml of 1N HCl per 100 ml of solution	20% alcohol	(a) 20% alcohol; (b) water with han addition of 4.3 ml of 0.05N NaOH per 100 mg of the indicator
	70.0	0.1
	HO C CH ₃	H ₃ C CH ₃ H ₃ C CH ₃ CH H ₀ H ₂ C CH CH CH CH CH CH CH CH CH CH CH CH CH C
	m-Cresol purple (m-cresolsul-phophthalein); first change, (see No. 50)	Thymol blue (thymolsulphophthalein); first change (see No. 53)
	10	1

	Indicator	Formula	Con- cent- ration,	Solvent	pH range and the indicator colour
N	Xylenol blue (p-xylenolsul-phophthalein); hirst change (see No. 54)	CH ₃ CH ₃	0.05	(a) 20% alcoloi; hoi; (b) water with an addition of 5.3 ml of 0.05N NaOH per 100 mg of the indicator	1.2-2.8 red — brown- yellow
	Pentamethoxy red	OCH ₃ H ₃ CO C O OCH ₃ OCH ₃	0.1	70% alcohol	1.2-3.2 red-violet— colourless

1.4-3.2 red — yellow	2.0-3.0	blue — violet	1.9-3.3 red — yellow	1.9-3.3 red — yellow	1.3-4.0 bluish violet— orange
Water	Water		Water	Water	Water 90% alcohol
1.0,	and 0.01 0.1		0.1	0.05	0.1
H—	$\langle = \rangle - \dot{N} - \langle = \rangle - \dot{N} = \dot{N} - \langle = \rangle - SO_3N_3$ See No. 1		$O_2N - \langle - \rangle - N = N - \langle - \rangle - OH \rangle$ $COONa$	$\begin{pmatrix} H & H \\$	NH2 H ₃ C CH ₃ NH ₂ NH ₂
14 Tropeolin 00 (orange IV; di-	l orange)	third change (see Nos. 1 and 7)	16 Alizarin Yellow R; first change	17 Benzyl orange	18 Benzopurpurin 4B; first change (see No. 74)

Table 19 (continued)

Indicator	Formula	cent- ration,	Solvent	pH range and the indicator colour
β-Dinitrophenol (2,6-dinitro- phenol)	O ₂ N NO ₂	0.1; 0.05 and 0.04	Water	2.4-4.0 colourless— yellow
a-Dinitrophenol (2,4-dinitro-phenol)	OH NO ₂	Saturated and 0.04	Water	2.8-4.4 colourless— yellow
Methyl yellow (butter yellow)	$(CH_3)_2N - \bigcirc -N = N - \bigcirc$	0.1 and 0.01	90% alcohol	2.9-4.0 red—yellow
Methyl orange (Helianthine B; orange III)	$(CH_3)_2N - $ $ -$	0.1	Water	3.1-4.4 red—orange- yellow \(\lambda_{max} \)

3.0-4.6 yellow — blue \lambda max 436-592 nm	3.0-4.8 yellow — purple	3.0-5.2 bluish violet— red
(a) 20% alcohol; (b) water with an addition of 3.0 ml of 0.05N NaOH per 100 mg of the indicator	(a) 20% alcohol hol an addition of 3.2 ml of 0.05N NaOH per 100 mg of the indica-	Water
0.1	0.04	0.1 and 1.0
Br Br Br Br C So ₃ H	HO Br Br Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl	H ₂ N N N N N N N N N N
23 Bromophenol blue (tetrabromo-phenolsulphoph-thalein)	24 Bromochlorophenol blue	25 Congo red

(continued)	A STATE OF THE PERSON NAMED IN
19	
Table	

Gent- ration, Solvent	0.1 Water	0.1 (a) 20% alcohol; (b) water with an addition of 2.9 ml of 0.05N NaOH per 100 mg of the indicator	0.1 70% alcohol
Formula	O OH OH OH SO ₃ Na	Br Br Br Br Br Br Br Br Br Br Br Br	$\langle = \rangle - N = N - \langle - \rangle - NH_2$
Indicator	Alizarin Red S (Alizarin S, sodium alizarin sulphonate); first change (see No. 61)	Bromocresol blue (bromocresol green)	28 a-Naphthyl red

	er 4.0-5.4 colourless — yellow	ohol 4.0-6.4 red — blue	4.2-6.2 red — yellow \lambdamax 530-427 nm	er 4.0-7.0 orange—yellow	sponding colourless—acid is dis-solved in 70% alcohol)
-	0.1 Water and 0.025	2 90% alcohol 5	0.1 60% alcohol and 0.2	0.1 Water	0.1 Water (corresponding acid is dispended in 70% alcoho
-	0.0	0.2 and 0.5	080		
	O ₂ N OH	$\mathbf{C_{12}H_{0}O_{3}N}$	$H00C$ $(H_3C)_2N - $ $=$ $N = N - $		HO I O I O I
1	29 y-Dinitrophenol (2,5-dinitro-phenol)	Lacmoid	Methyl red	32 Chrysoidine	Jodeosin (tetraio-dofluorescein)

Table 19 (continued)

Н	Indicator	Formula	Con- cent- ration,	Solvent	pH range and the indicator colour
B	Hematoxylin	HO CH2 CH2 CH2 CH2 H-C CH2	0.5	90% alcohol	5.0-6.0 yellow— violet
ich ich in)	Chlorophenol red (dichlorophe- nolsulphophtha- lein)	Ho CI CI CI SO ₃ H	0.1	(a) 20% alcohol; (b) water with an addition of 4.7 ml of 0.05N NaOH per 100 mg of the indicator	5.0-6.6 yellow – red

5.0-6.8 yellow—red	5.0-7.0 colourless— yellow	5.2-6.8 yellow — purple \$\langle \lambda_{\text{max}} \text{433-591 nm}
(a) 20% alcohol; (b) water with an addition of 3.9 ml of 0.05N NaOH per 100 mg of the indicator	50% alcohol	(a) 20% alcohol; (b) water with an addition of 3.7 ml of 0.55N NaOH per 100 mg of the indicator
0.1 and 0.04	0.1	0.1
HO SO ₃ H	OH NO ₂	HO CH ₃ CH ₃ HO CH ₃ SO ₃ H
Bromophenol red (dibromophe- nolsulphophtha- lein)	37 o-Nitrophenol	Bromocresol purple (dibro- mine-o-cresolsul- phophthalein)
36	37	38

nd the	0 blue-	9 8 7	S slue
pH range and the indicator colour	6.0-7.0 yellow—blue- violet	5.6-7.6 colourless-	6.0-7.6 yellow—blue Amax 433-617 nm
Solvent	Water	Water	(a) 20% alcohol; hol; an addition of 3.2 ml of 0.05N NaOH per 100 mg of the indicator
Con- cent- ration,	0.1	0.1	0.05 and 0.1
Formula	$\begin{pmatrix} v & OH & NO_2 \\ & & & \\ & $	OH No ₂	HO CH ₃ H ₃ C O CH ₃ H ₃ C CH(CH ₃) ₂
Indicator	39 Nitrazine yellow	40 p-Nitrophenol	41 Bromothymol blue (dibro- mothymolsul- phophtha- lein)
.oN	0		

6.8-8.4 red—yellow- brown	6.8-8.4 yellow—red ^{Amax} 433-558 nm
60% alcohol	(a) 20% alcohol; hol; hol; an addition of 5.7 ml of 0.05N NaOH per 100 mg of the indicator
0.1	0.1 and 0.05
(H ₃ C) ₂ N CH ₃ · HCl	о С С С С С С С С С С С С С С С С С С С
Neutral red	Phenol red (phenol red) nolsulphoph- thalein)
	(H ₃ C) ₂ N CH ₃ .HCl 60% alcohol (H ₃ C) ₂ N NH ₂

Con- cent- ration, Solvent pH range and the indicator colour	1.0 90% alcohol 7.0-8.0 colourless—violet	.3 Water 6.8-8.4 colourless—yellow	(a) 50% alcohol; amber yellow-bol; an addition of 5.3 ml of 0.05N NaOH per 100 mg of the indi-cator
rati		0.3	0.1
Formula	$\begin{bmatrix} H_{11}C_5-N & H & \\ & & & $	OH NO ₂	H ₃ C CH ₃
Indicator	45 Quinoline blue (cyanine)	46 m-Nitrophenol	7 Cresol red (o-cresolsulphoph-thalein)
.oN	45	95	- 27

7.4-8.6 yellow-pink— blue-green	7.4-9.0 colourless—blue	7.4-9.0 yellow—purple	7.6-8.9 yellow-green pink
70% alcohol	Alcohol		Water
0.1 and 1.0	0.1		0.1 and 1.0
о он он он он он он он он он он он он он	I	See No. 10	HO
α-Naphtholph- thalein	Ethyl-bis-(2,4- dinitrophenyl)- acetate	m-Cresol purple; second change (see No. 10)	Tropeolin 000
	49	20	51

Curcumin; first change (see No. 11) Kylenol blue; second change (see No. 11) Kylenol blue; second change (see No. 12) Cresolohthalein	Formula center solvent pH range and the indicator colour %	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	See No. 11 8.0-9.6 yellow—blue Amax 430-596 nm	See No. 12 8.0-9.6 yellow—blue	CH ₃ CH ₃ 0.2 90% alcohol 8.2-9.8
.55 54 No.	Indicator		Thymol blue; second change (see No. 11)	Xylenol blue; second change (see No. 12)	o-Cresolphthalein

8.2-10.0 colourless— purple \lambda_max 553 nm	8.4-10.0 yellow — blue	9.3-10.5 colourless — blue
60% alcohol co.	yel	40% alcohol
0.1 and 1.0		0.1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	See No. 2	но СН3 Н3С О О Н3С Н3С О О О О О О О О О О О О О О О О О О О
56 Phenolphthalein	57 α-Naphtholben- zoin; second change (see No. 2)	58 p-Xylenolphtha- lein
29	- 22	82

	Indicator	Formula	Con- cent- ration,	Solvent	pH range and the indicator colour
Thy	Thymol phthalein	H ₃ C CH ₃ H ₃ C CH ₃ CH HO HO H ₃ C CH ₃ CH CH CH CH CH CH CH CH CH CH CH CH CH	0.04	90% alcohol 50% alcohol	9.3-10.5 colourless— blue \$\lambda_{\text{max}}\$ 598 nm
Vile	Nile blue	$\begin{bmatrix} (C_2H_5)_2 \mathring{N} & 0 & NH_2 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$	0.1	Water	10.1-11.1 blue – red
Ali s	Alizarin Red S; second change (see No. 26)	See No. 26			10.0-12.0 violet — pale yellow

10.2-11.8 brown-red — orange-yellow	10.0-12.1 orange-yel- low — violet	10.0-12.1 light yellow— dark orange	10.1-12.1 yellow — lilac	10.1-12.1 light yellow—brown-red
	Water	Water	Water.	Water
-	0.04	0.1	0.1	0.1
See No. 52	NaO_3S NaO_3S NaO_3S OH	$HO - \left\langle \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\rangle - N = N - \left\langle \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\rangle$ $COONa$	$HO - \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle - N = N - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - NO_2$ $COONa$	HO
Curcumin; second change (see No. 52)	β-Naphthol violet	Alizarin Yellow GG (salicyl yellow; mor- dant yellow)	Alizarin Yellow	Alizarin Yellow RS
62	63	25	65	99

	Indicator	Formula	Con- cent- ration,	Solvent	pH range and the indicator colour
	67 Alizarin Blue BS	OOH OH SINAHSO3	0.02	Water	11.0-13.0 orange-yel- low — green- blue
	Tropeolin 0 (gold yellow; chrysoine; resorcinol yellow)	$HO - \bigcirc - N = N - \bigcirc - SO_3N_0$ OH	0.1	Water	11.0-13.0 yellow-orange- brown
S	69 Malachite green; second change (see No. 6)	See No. 6			11.5-13.2 bluish green— colourless
	70 2,4,6-Trinitroto- luene	O ₂ N CH ₃ NO ₂	0.1 and 0.5	90% alcohol	11.5-13.2 colourless— orange

HO NaO ₃ S — N=N—N=N—SO ₃ Na NaO ₃ S — NaO ₃ S	urin See No. 18
72 Indigo carmine (sodium indigo disulphonate) 73 1,3,5-Trinitrobenzene	74 Renzonirnirin

Ionic Product of Water at Temperatures Ranging from 0 °C to 100 °C

 $K_{\rm W} = a_{\rm H^+} \times a_{\rm OH^-} \quad \sqrt{K_{\rm W}} = a_{\rm H^+} = a_{\rm OH^-}$

t, °C
0

Colorimetric Determination of the pH of Solutions*

Salt corrections for the most important indicators at different ionic strength of a solution (Ionic strength of the reference buffer solutions used is equal to 0.1)

				Ionic strength	ength			
Indicator	0.0025	0.005	0.01	0.03	0.05	0.1	0.5 (KCl)	0.5 (NaCl)
			S	Salt correction	tion			
Bromocresol blue (bromocresol green) Bromophenol blue Bromothymol blue Chlorophenol red Methyl orange Methyl red Phenol red Phenol plue; first change Thymol blue; first change ge Thymol blue; second change	+0.21 +0.15 +0.14 -0.00 +0.00 -1.14	++0.18 ++0.15 -0.00 0.00 ++0.12 +0.12 +0.18	+0.16 +0.14 +0.11 -0.02 -0.00 +0.12 +0.12 +0.12	++0.14 +0.07 +0.07 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00	+0.05 +0.05 +0.05 +0.05 +0.05 +0.05 +0.05 +0.05	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-0.12 -0.10 -0.16 -0.00 -0.00 -0.20 -0.16 -0.12 -0.13	-0.16 -0.18 -0.19 -0.00 -0.29 -0.29 -0.19

* For the use of the table, see p. 473.

Ionization Constants of Indicators (pK1; at different ionic strength)

(t = temperature of experiment)

A. Monochromatic Indicators

	pK1 (at a zero		pI	$C_1 (t=2)$	0°C)
Indicator	and different		Ioni	c stren	gth, μ
	temperatures) $A=t-20$ °C	0.01	0.05	0.1	0.5
Pentamethoxy red	1.86 + 0.008 A		1.86	1.86	_
Quinaldine red	2.63 - 0.007 A	2.80	_	2.90	3.10
α-Dinitrophenol	4.10 - 0.006 A	-	3.95	3.90	3.80 (KCl)
β-Dinitrophenol	3.70 - 0.006 A	_	3.95	3.90	3.80 (KCl)
γ-Dinitrophenol	5.20 - 0.0045A		5.12	5.10	5.00 (NaCl
p-Nitrophenol	7.00 - 0.011 A	-	-	_	_
m-Nitrophenol	8.35 - 0.01 A	_	8.30	8.25	8.15 (NaCl

B. Dichromatic Indicators

			p	$K_1 (t=2)$	20°C)
Indicator	(lonic strength $=$		Ioni	c stren	gth, μ
	=0)	0.01	0.05	0.1	0.5
Thymol blue (acid			1		
region)*	1.65 (15-30 °C)	_	1.65	1.65	1.65
Methyl orange*	3.46 - 0.014	3.46		3.46	
D	$(t = 20 {}^{\circ}\text{C})$				
Bromophenol blue	4.10 (15-20 °C)	4.06	4.00	3.85	3.75 (KCl)
Bromocresol blue (bromocresol					
green)	4.90 (15-30 °C)	4.80	4.70	4.66	4.50 (KCl)
	1.00 (10-00 C)	4.00	4.70	4.00	4.42 (NaCl)
Methyl red*	5.00 - 0.006	5.00	5.00	5.00	5.00
	$(t = 20 {}^{\circ}\text{C})$	-100	0.00	0.00	
Chlorophenol red	6.25 - 0.005	6.15	6.05	6.00	5.9 (KCl)
Bromocresol purple	$(t = 20 ^{\circ}\text{C})$		1.0	1	5.85 (NaCl)
Bromocresor purple	6.40 - 0.005	6.28	6.21	6.12	5.9 (KCl) 5.8 (NaCl)
Bromothymol blue	$(t = 20 ^{\circ}\text{C})$	7 40	7 40	7 40	5.8 (NaCl) 6.9 (KCl)
	7.30 (15-30 °C)	7.19	7.13	7.10	6.8 (NaCl)
Phenol red	8.00 - 0.007	7.92	7.84	7.81	7.6 (KCl)
	$(t = 20 ^{\circ}\text{C})$	02	04	1.01	7.5 (NaCl)
Thymol blue	9.20 (15-30 °C)	9.01	8.95	8.90	_

^{*}Methyl orange, methyl red and thymol blue (acid region) have an advantageous feature, i.e., their constants are scarcely affected by the electrolytes present, up to an ionic strength of 0.5.

Some Mixed Indicators*

Titration index pT is the pH value whereby the observer clearly sees the change in the indicator's colour and recognizes titration as complete. This is a somewhat conditional quantity which differs from person to person who performs titration.

Titra-			Indicator Colour	Colour
(pT)	Components	Ratio of volumes	in actidic medium	in alkaline medi um
3.25	Methyl yellow, 0.1% solution in alcohol Methylene blue, 0.1% solution in alcohol	1:1	Blue-violet.	Creen
4.1	Methyl orange, 0.1% solution in water Indigo carmine, 0.25% solution in water	1:1	Violet	Green
4.3	Bromocresol blue, sodium salt, 0.1% solution in water Methyl orange, 0.2% solution in water	1:1	Yellow	3lue-green
5.1	Bromocresol blue, 0.1% solution in alcohol Methyl red, 0.2% solution in alcohol	3:1	Wine red	Green
5.4	Methyl red, 0.2% solution in alcohol Methylene blue, 0.1% solution in alcohol	1:1	Red-violet	Greem
6.1	Bromocresol blue, sodium salt, 0.1% solution in water Chlorophenol red, sodium salt, 0.1% solution in water	1:1	Yellow- green	Blue-violet

* Indicators are kept in flasks of dark glass.

Titra-			Indicate	Indicator colour
(pT)	Components	Ratio of volumes	in acidic medium	in alkaline medium
6.7	Bromocresol purple, sodium salt, 0.1% solution in water Bromothymol blue, sodium salt, 0.1% solution in water	1:1	Yellow	Blue-violet
7.0	Neutral red, 0.1% solution in alcohol Methylene blue, 0.1% solution in alcohol	1:1	Violet-blue	Green
7.2	Neutral red, 0.1% solution in alcohol Bromothymol blue, 0.1% solution in alcohol	1:1	Pink	Green
7.5	Bromothymol blue, sodium salt, 0.1% solution in water Phenol red, sodium salt, 0.1% solution in water	1:1	Yellow	Violet
8.3	Cresol red, sodium salt, 0.1% solution in water Thymol blue, sodium salt, 0.1% solution in water	1:3	Yellow	Violet
8.9	α-Naphtholphthalein, 0.1% solution in alcohol Phenolphthalein, 0.1% solution in alcohol	1:3	Pale pink	Violet
9.0	Thymol blue, 0.1% solution in 50% alcohol Phenolphthalein, 0.1% solution in 50% alcohol	1:3	Yellow	Violet
9.6	Phenolphthalein, 0.1% solution in alcohol Thymolphthalein, 0.1% solution in alcohol	1:1	Colourless	Violet
10.2	Thymolphthalein, 0.1% solution in alcohol Alizarin yellow, 0.1% solution in alcohol	2:1	Yellow	Violet

Universal Indicators

1. 100 mg of phenolphthalein, 200 mg of methyl red, 300 mg of methyl yellow, 400 mg of bromothymol blue and 500 mg of thymol blue are dissolved in 500 ml of 96% alcohol, then 0.1 N solution of caustic soda is added until the appearance of a pure yellow colour (pH 6).

Colour Red Orange Yellow Green Blue PH . . . 2.0 4.0 6.0 8.0 10.0

2. 15 ml of 0.1% solution of methyl yellow, 5 ml of 0.1% solution of methyl red, 20 ml of 0.1% solution of bromothymol blue, 20 ml of 0.1% solution of phenolphthalein and 20 ml of 0.1% solution of thymolphthalein are mixed.

Colour pH	:				Pink 1.0	Red-orange 3.0	Orange 4.0
Colour pH	:			:	Yellow-orange 5.0	Lemon yellow 6.0	Yellow-green 7.0
Colour pH					Green 8.0	Blue-green 9.0	Violet 10.0

3. 70 mg of tropeolin 00, 100 mg of methyl orange, 80 mg of methyl red, 400 mg of bromothymol blue, 500 mg of phenolphthalein and 100 mg of alizarin yellow R are dissolved in 100 ml of 50% alcohol.

Colour pH			:	Orange-red	Red-orange 3.0	Orange 4.0
Colour pH			:	Yellow-orange 5.0	Orange-yellow 6.0	Yellow 6.5
Colour pH				Green-yellow 7.0	Green 8.0	Green-blue 9.0
Colour .		:		Blue-violet 9.5	Violet 10.0	Red-violet 12.0

4. 100 mg of methyl red, 100 mg of bromothymol blue, 100 mg of α -naphtholphthalein, 100 mg of phenolphthalein and 100 mg of thymolphthalein are dissolved in 500 ml of 96% alcohol.

Colour	Red 4.0	Orange 5.0	Yellow 6.0	Green-yellow 7.0
Colour pH	Green	Blue-green 9.0	Blue-violet 10.0	Red-violet

Chief Fluorescent Indicators

(in the order of the growth of the pH of fluorescence change)

No.	Indicator	Pormula	pH range	Change in fluorescence
	β-Methylumbelliferone (4-methylumbelliferone; 7-hydroxy-4-methylcouma- rin); first change (see No. 18)	но о о о о о о о о о о о о о о о о о о	0.0-2.0	Green—pale blue
73	Benzoflavin	H ₂ N + NH ₂ CI-	0.3-1.7	Yellow—green

Green—blue	Absence—blue	Intensification of yellow-orange fluores- cence
1.4-3.2	1.5-2.0	2.0-4.0
OG ₂ H ₅	C ₆ H ₁₁ O ₅ -O ₁	NH ₂
4-Ethoxyacridone	Esculin	1,5-Naphthylaminesulphamide; first change
<i>m</i>	7	ro

Table 25 (continued)

Change in fluorescence	Absence—yellow-orange	Intensification of blue fluorescence
pH range	2.0-4.0	2.5-3.5
Formula	CI COOH Br C Br O O OH Br	ОН
Indicator	Phloxine (3', 6'-dichloro-2, 4, 5, 7-tetrabromofluorescein)	Salicylic acid
No.	9	-

Intensification of yel- low-green fluorescence	Intensification of violet fluorescence	Intensification of blue- green fluorescence
2.5-4.5	2.8-4.4	3.0-4.2
Br CCOOH	NH ₂	I COOH
Eosine (tetrabromofluorescein)	β-Naphthylamine (2-naphthylamine)	Erythrosine (tetraiodofluores-cein)
∞	6	10

11 Di		Follmana	pH range	Change in fluorescence
_	Dimethylnaphtheirhodine	(CH ₃) ₂ N	3.2-3.8	Lilac—orange
12 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	α-Naphthylamine (1-naphthy- lamine); first change (see No. 32)	NH ₂	3.4-4.8	Intensification of blue fluorescence
13 Chr	Chromotropic acid	HO OH	3.5-6.0	Intensification of blue fluorescence

C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₆ H ₇ (OH) ₄ COOH C ₇ ON	β-Methylumbelliferone; second change (see No. 1) See No. 1 5.0-7.6 Intensification of blue fluorescence	5.0-8.0 Brilliant blue—pale	
--	--	---	-----------------------------

Table 25 (continued)

Change in fluorescence	Green—yellow-green	blue	Pale blue—blue-violet
Change	Стееп.	Absence—blue	Pale blu
pH range	6.0-8.0	6.5-7.6	7.0-8.5
Formula	O HO S HO O HO	НО	но
Indicator	3,6-Dioxyphthalimide	Umbelliferone	β-Naphthol (2-naphthol)
No.	50	22	ZZ

	ion of blue	wo	ion of blue ce
Blue—green	Intensification of blue fluorescence	Green—yellow	Intensification of blue fluorescence
6.8-8.8	7.4-9.0	7.0-10.0	8.0-10.6
OH CN CN OH	KO ₃ S KO ₃ S	он о он о он но он	NaO ₃ S SO ₃ Na
2,3-Dicyanhydroquinone	G-Salt	Morin (3, 5, 7, 2', 4'-pentao- xyflavone)	R-Salt
23	24	25	26

No.	Indicator	Formula	pH range	Change in fluorescence
	Euchrysine 3R (base of acridine orange)	(CH ₃) ₂ N N(CH ₃) ₂	8.4-10.4	Orange—green
	Quinine; second change (see No. 16)	See No. 16	9.5-10.5	Violet—absence
	1,5-Naphthylaminesulpha- mide; second change (see No. 5)	See No. 5	9.5-13.0	Yellow-orange—greefi
	Coumarin	0=0	9.8-12.0	Dark green—light yellow

Violet—green	Weakening of blue fluorescence	Violet-blue—bluish green
10.0-12.0	12.0-13.0	11.5-14.0
H ₂ N OH HO ₃ S	See No. 12	NH ₂
SS-Acid	α-Naphthylamine; second change (see No. 12)	Naphthionic acid
33	32	65

Selected Chemiluminescent Indicators

Indicator	Formula	pH at which luminescence occurs
N, N'-Dimethylbiacridene	H_3C-N $=$ $N-CH_3$	6~
Lophine (2, 4, 5-Triphenylimidazole; 2, 4, 5-triphenylglyoxaline		8.9-9.4

8.0-8.5	9.0-10.0
$\begin{array}{c} H & H \\ H & \downarrow \\ O = C \\ \hline \\ H_2N - C = 0 \end{array}$	NO ₃ H ₃ C - [†]
Luminol	Lucigenin

Table 27 Principal Adsort

ors
lical
Inc
tion
sorp
Ad
ipal
ne

	Indicator	Formula	Ion of titrat- ing rea- gent	Ion being determi- ned	Change in colour
A.	Alizarin Red S (0.4% aqueous solution)	See Table 19, No. 26 (p. 184)	Pb2+		Fe(CN) del Yellow—
Be	Bengali pink (3', 6'- dichloro-2, 4, 5, 7- tetraiodofluoresce- in, potash salt) (0.5% aqueous so- lution)	HO I O I O I O I O I O I O I O I O I O I	Ag*	-I	Pink—violet
Br	Bromocresol blue (bromocresol green) (1% solution in 20% alcohol)	See Table 19, No. 27 (p. 184)	Ag+	CI-	Violet— greenish blue
Br	Bromophenol blue (0.1% alcohol solu- tion or 0.1% aque- ous solution of sodium salt)	See Table 19, No. 23 (p. 183)	Ag+	Cl-, Br-, SCN- I-	Yellow— blue Yellow- green— blue-green

Cl-, Br-, Red-blue	Cl-, Br- Red-violet— blue-violet SCN- Violet violet Yellow- green— orange	Cl-, Br- Colourless—	Light red— violet Yellow— green Pink—blue
Cl-, Br-, I-	SCN- 1-	Cl-, Br-	Cl- Br-, I- SCN-
Ag+ (Ag+	Hg ₂ ² +	Ag+
See Table 19, No. 25 (p. 183)	о о о о о о о о о о о о о о о о о о о	H H H H	H H
Ouc)	ofluores- % solution ; alcohol, olution of salt in	4	arbazone lcohol
Congo red (0.1% aqueous solution)	3,6-Dichlorofluores- cein (0.1% solution in 60-70% alcohol, or 0.1% solution of sodium salt in water)	Diphenylcar- bazide	Diphenylcarbazone (0.2% alcohol solution)

Table 27 (continued)

Change in	Orange—in-	Orange-	y, Yellow- green- pink Yellow- green- orange	Red-violet— pink Orange— pink Bluish— pink
Ion being determi- ned	Br-, I-, SCN-	MoO4-	Cl-, Br-, SCN-	CI- Br-, I- SCN-
Ion of titra- ting rea-	Ag+	Pb2+	Ag+	Ag+
Formula	See Table 25, No. 8 (p. 207)	See Table 25, No. 10 (p. 207)	See Table 25, No. 14 (p. 209)	H_2N H_3C G H_3C H_3C H_2N H_2N + H_2N + H_2N +
Indicator	Eosine (0.5% solution of sodium salt in water or 0.1% solution of eosine in 60-70% alcohol)	Erythrosine (0.5% aqueous solution)	Fluorescein (0.1% alcohol solution)	Fuchsin (0.1% alcohol solution)
No.	6	10	11	12

Violet—pink Red-violet— blue	Br-, Cl- Red-violet-	Cl-, Br-, Yellow- I-, green- SCN- yellow- brown	Yellow— pink
Cl- Br-	Br-, Cl-	Cl-, Br- I-, SCN-	-I3
Ag+	Ag+	Ag+	Ag+
H ₂ N N CI-	H ₅ C ₂ HN O THC ₂ H ₅ Cl- COOC ₂ H ₅	$\begin{array}{c c} \text{NaO}_3\text{S} - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - \text{N} = \text{N} - \text{CH} - \text{C} = 0 \\ \text{NaOOC} - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - \text{SO}_3\text{Na} \end{array}$	See Table 19, No. 14 (p. 181)
Phenosafranine (0.1% aqueous solution)	Rhodamine 6G (0.1% aqueous solution)	Tartrazine	Tropeolin 00 (1% aqueous solution)
	14	15	16

Table 28

Indicators Commonly Used in Complexonometry

No.	Indicator	Pormula
1	Acid Chrome Black Spe- cial (Chro- me Black Special ET 00; Eriochro- me Black T)	$\begin{array}{c} OH \\ NaO_3S \\ \hline \\ O_2N \end{array}$

^{*} RE stands for rare-earth elements, lanthanoids.

Concentration	Ions being determined *	Conditions of determination	Change in colour
Mixture of indicator (1 wt. %) and solid	A13+	pH 7-8; back titra- tion with a zinc salt solution in the presence of pyridine	Wine red—blue
sodium chloride	Ba ²⁺	pH 10; titration in the presence of magnesium comp- lexonate	
	Bi ³⁺	pH 9-10; back titra- tion with a zinc salt solution	
	Ca ²⁺	pH 10; addition of magnesium complexonate	
	Cd ²⁺ , Co ³⁺ , Mg ²⁺ , Zn ²⁺	рН 10	
	Cr ³⁺	Alkaline medium; back titration with a manganese salt solution	
	Fe ³⁺ , Ti ^{IV}	Back titration with a zinc salt solu- tion in the pre- sence of pyridine	
	Ga ³⁺	pH 6.5-9.5; back tit- ration with a zinc salt solution	
	Hg ²⁺	pH 9-10; addition of magnesium complexonate	
	In ³⁺	pH 8-10; in the pre- sence of potas- sium-sodium tar- trate	
	Mn ²⁺	pH 10; addition of hydroxylamine	

No.	Indicator	Formula
1	Acid Chrome Black Spe- cial (Chro- me Black Special ET 00; Erioch- rome Black T)	$\begin{array}{c} OH \\ OH \\ O_{2}N \end{array}$
2	Acid Chrome Blue K	HO HO OH N=N NaO ₃ S SO ₃ Na
3 /	Acid Chrome Dark Green G (palatine chrome green)	OH OH NH ₂ NaO ₃ S SO ₃ Na
	Alizarin Red S	See Table 19, No. 26 (p. 184)

Table 28 (continued)

Concentration	Jons being determined	Conditions of determination	Change in colour
Mixture of indicator (1 wt. %) and solid sodium chloride	Ni ²⁺ , Pb ²⁺ Tl ³⁺	pH 10; back titration with a magnesium salt or a zinc salt solution pH 10; back titration with a magnesium salt solution or an addition of magnesium complexonate pH 10; back titration with a manganese salt solution	Wine red—blue
Aqueous solu- tion	Ca ²⁺ Mg ²⁺ Cd ²⁺ , Zn ²⁺ Mn ²⁺ Pb ²⁺	pH 12 pH 10-11; ammonia buffer pH 9-10; ammonia buffer pH 10; ammonia buffer pH 10; in the pre- sence of tartrate	Pink-gray-blue
0.5% aqueous solution	Ca ²⁺	pH > 12. Used in mixture with 0.25% aqueous solution of naphthol yellow in the ratio of 1:2 (hydrone II) pH 3	Brownish oran- ge—green
0.05% aqueous solution	Th ^{IV} , RE Sc ³⁺ Al ³⁺	pH 2.2-3.4 pH 2 pH 3.5-3.6; back tit- ration with a tho- rium nitrate solu- tion	Pink—yellow Yellow—pink

No.	Indicator	Formula
5	Arsenazo I	See Table 49, No. 7 (p. 362)
6	Benzidine	H_2N — NH_2
7	Beryllon II	NaO ₃ S SO ₃ Na SO ₃ Na AH ₂ O OH OH NaO ₃ S SO ₃ Na
8	Bromopyro- gallol red, BPR	C SO ₃ H

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
-	PuIV ThIV UIV RE Ca ²⁺ , Mg ²⁺	0.1-0.2M HCl pH 1.6-3 pH 1.7 pH 7 pH 10	Violet—pink
1% solution in glacial ace- tic acid	Al ³⁺ , Bi ³⁺ , Fe ³⁺ , Ga ³⁺ , Sn ^{IV} , Ti ^{IV}	Buffer solution: 500 g of ammonium ace- tate and 20 ml of glacial acetic acid in one litre. Addi- tion of Fe(CN) ₆ ⁴ - and Fe(CN) ₆ ³ -, and back titration with a zinc acetate so- lution	Colourless—blue
0.02% aqueous solution	Be ²⁺ Mg ²⁺	pH 12-13.2 pH 10	Blue—violet Blue-violet— violet-red
0.5% solution in 50% al- cohol	Bi ³⁺ Pb ²⁺ Ni ²⁺ , Co ²⁺ , Cd ²⁺ Mg ²⁺ , Mn ²⁺	pH 2-3; HNO ₃ pH 5-6 pH 9.3; ammonia buffer pH 10; ammonia	Red—orange- yellow Blue-violet— red Blue—wine red Blue—violet- red
	Pd ²⁺ , Tl ³⁺ , Fe ³⁺ , In ³⁺ , Ga ³⁺	Back titration with a lead salt or a bis- muth salt solution	red

No.	Indicator	Formula
9	Calcein: see	Fluorexone, No. 24 (p. 232)
10	Calces (Pat- ton-Reeder Dye; HHSNN)	NaO ₃ S - N = N - COOH
11	Calcion	HO N N N N N N N N N N N N N N N N N N N
112	Calcon (Acid Alizarin Red V; Eriochro- me Red RE)	COOH HO SO ₃ Na SO ₃ Na
.3	Chalcone (Eriochro- me Blue- Black R; Erio R)	HO HO N=N

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in cold
Mixture of indicator (1 wt. %) and solid sodium chloride	Ca ²⁺	pH 12-14	Wine red—bl
_	Ca ²⁺	pH > 12	Crimson—bri liant blue
0.35% aqueous solution (10 ml) with the addition of 0.02% aqueous solution of methylene blue (10 ml), 0.4% solution of potassium salt (calculated on the basis of Ca ²⁺) (5 ml) and water (25 ml)	Ca ²⁺	pH 13	Yellow—oran ge-red
-	Ca ²⁺ Cd ²⁺ Mg ²⁺ , Mn ²⁺ , Zn ²⁺	pH 14.5; NH ₃ ; pH 12.5-13; NaOH pH 11.5; NH ₃ pH 10; ammonia buffer	Pink—blue

No.	Indicator	Formula
14	Chromasurol S (Erioch- romasurol S; albe- rone)	HOOC CI COOH SO ₃ H
15	Chromogen Bla	ck Special ET 00: See Acid Chrome Black Spe-
16	Chromoxane Green GG	HOOC CH ₃ CH ₃ O COOH N=N — CH ₃ OH COOH

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
0.4% aqueous solution	Al ³⁺	pH 4; acetate buffer,	Violet—yellow orange
Boldalou	Ca ²⁺	pH 11; NH ₃	Pale red-oran- ge-yellow
	Cu ²⁺	pH 6-6.5; acetate	Blue or blue- violet-green
		pH 8-10; NH ₃	Violet—yellow or yellow- green
	Fe ³⁺	pH 2-3; chloroacetic- acetate buffer, 60 °C	Greenish blue- yellow-orange
	Mg ²⁺	pH 11; NH ₃	Dirty red—yel- low
	Ni ²⁺	pH 11; NH ₃	Blue-violet— vellow
	RE3+	pH 8; pyridine+ +NH ₃	Violet—yellow
	ThIV	pH 1-3; HNO ₃	Red-violet— orange
	VO2+	pH 4; acetate buffer	Blue-violet— red-orange

cial, No. 1 (p. 220)

Mg ²⁺ , Ca ²⁺ Cu ²⁺ Ni ²⁺ Th ^{IV} VO ²⁺	pH 11 pH 8 pH 11 pH 4.8 pH 4	Red—green Red—orang Red—green Violet—red

No.	Indicator	Formula
17	3, 3'-Dime- thylnaph- thidine (DMN)	H_2N $ NH_2$ CH_3
18	Diphenyl carbazone	See Table 27, No. 8 (p. 217)
19	Dithizone	See Table 49, No. 43 (p. 376)
20	Eriochrome Blac	ck T: See Acid Chrome Black Special, No. 1

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
1% solution in glacial acetic acid	Zn ²⁺ Al ³⁺ , Cd ²⁺ , Cu ²⁺ , Ni ²⁺ , Pd ³⁺	pH 5; in the presence of Fe(CN)?- pH 5; back titration in the presence of Fe(CN)?-	Violet—colour- less
0.2% alcohol solution	Hg ²⁺ Pb ²⁺	pH 1; HCl-KCl pH 4.5-6.5; acetic- acetate buffer	Blue-violet— colourless Red—colourles
0.075% solu- tion in ethyl alcohol	Cd ²⁺ Zn ²⁺	pH 4.5; 50% alcohol pH 4-6; 50% alcohol or dimethyl ketone	Pink—yellow Pink—blue, green or yel low, depen- ding on pH
	Ni ²⁺ Ph ²⁺	pH 4.5; 60% alcohol pH 4.7-5.4; 50% al- cohol in the pre- sence of urotropi- ne buffer	Pink—yellow Pink—yellow
	Al ³⁺	pH 4-5; 50% alcohol; back titration with a zinc salt solu- tion	

(p. 220)

	$C_{a^{2+}}, C_{d^{2+}}$ $Mg^{2+}, Z_{n^{2+}}$ U^{IV} $Z_{r^{IV}}$	pH 11.5; NH ₃ pH 10; ammonia buffer 0.01-0.2M HCl, hot solution 0.01-0.5M HCl; 50% methanol, hot so- lution	Red—blue Red—blue Blue—red Blue—red
--	---	--	--

No.	Indicator	Formula
22	Eriochrome Red B	$ \begin{array}{c c} & H_3C - C = N \\ & N = N - C = C \end{array} $ OH
23	Eriochrome Cyanine R	H ₃ C CH ₃ O COOH
24	Fluorexone (calcein, fluorescein complexo- ne)	HOOCH ₂ C N-H ₂ C COOH CH ₂ COOH

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
	Ca ²⁺	pH 10; ammonia	Red—yellow
	Cu2+	buffer pH 2; chloroacetic	Purple—yellow
	Mn ²⁺	acid pH 4; acetate buffer pH 8-10; ammonia buffer; ascorbic	Purple—green Red—yellow
	Ni ²⁺	pH 4-6; acetate buffer	Purple—pale yellow
	Pb2+	pH 10; ammonia buffer; tartrate	Orange red— yellow
	Zn ²⁺	pH 6.5; urotropine buffer	Red—yellow
0.4% aqueous solution	Al ³⁺	pH 5-6.3; acetate buffer, back titra- tion with a zinc salt solution,	Yellow—violet
	Zr^{IV}	70-80 °C pH 1.4; hot solution	Pink-colour-
	Fe ³⁺	pH 2-3; cloroacetic acid-acetate, 60 °C	less Violet—yellow or green
	Th^{1}	pH 2-2.5	Purple—pink
2% aqueous solution or	Ca ²⁺	pH>12; KOH or	Fluorescence— blue or green
solid mixtu- re with	Ba ²⁺ , Sr ²⁺	pH 11.5; NH ₃ or pH 12.5; KOH	pink, almost
KNO ₃ in the ratio of	Cu ²⁺	pH 10-11; ammonia buffer	J01041 1035
1:100	Mn ²⁺	pH 8-11; ammonia buffer + NH ₂ OH	

No.	Indicator	Formula
25	Glycinthy- mol blue (GTB)	H ₃ C CH ₃ H ₃ C CH ₃ CH HO CH CH CH CH CH ₃ CCH ₂ NHCH ₂ COOH CH ₃
26	Glyoxal-bis- (2-hydro- xyanil) (GBHA)	OH HO $N = CH - CH = N$
27	Hematoxy- lin	See Table 19, No. 34 (p. 186)
28	Hydroxyhy- droquinone pink (hy- droxyhy- droquinone sulphoph- thalein)	HO COOH
29	Magneson	NaO ₃ S OH HO N=N- H ₂ O

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
0.1% aqueous solution	Cu ²⁺ Zn ²⁺	pH 5-6; urotropine buffer pH 7.5; pyridine buffer	Blue—yellow
-	Ca2+	pH 13 (in the presence of KCN, the end point is more distinct)	Pink—yellow
0.5% solution in 90% al- cohol	Al ³⁺ Bi ³⁺ Th ^{IV} Zr ^{IV}	pH 6; back titration with an alumi- nium salt solution pH 1-2; HNO ₃ pH 2 pH 1-1.5	Yellow-green— pink Pink—pale yellow Orange—yellow Pink—yellow
0.1% aqueous solution	Th ^{IV} , Bi ³⁺	pH 2.4-3; acetate buffer	Pink—yellow
0.01% solution in water or acetone	Mg ²⁺ Ca ²⁺ , Cd ²⁺ Ba ²⁺ , Sr ²⁺ Ni ²⁺	pH 9.8-11.2 pH 11.5; NH ₃ pH 12.5; (C ₂ H ₅) ₂ NH acetate buffer pH 4; hot solution	Red—blue Red—orange

No.	Indicator	Formula
30	Metallphthal	ein: See Phthalein complexone, No. 39 (p. 242)
31	Methylthy- mol blue (MTB)	H ₃ C CH ₃ H ₃ C CH ₃ CH CH HO HOOCH ₂ C N-CH ₂ CH ₃ C CH ₂ COOH CH ₃ CH ₂ COOH SO ₃ H

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colo
Solid mixture of the indi-	Ba ²⁺ , Sr ²⁺	pH 10-11; ammonia buffer	Blue—gray
cator with KNO ₃ in the ratio of	$\mathrm{Ca^{2+}}$ $\mathrm{Mg^{2+}}$	pH 12; NH ₃ or NaOH pH 10-11.5; ammonia buffer	Dillow
1:100	Bi ³⁺ Cd ²⁺ , Co ²⁺	pH 1-3; HNO ₃ pH 5-6; urotropine buffer	Blue-yellow
		pH 12; NH ₃	colourless Blu —colour-
4	Cu ²⁺	pH 11.5; NH ₃	less or gray
	Fe ²⁺	pH 4.5-6.5; urotro- pine buffer pH 6; urotropine	Blue—yellow
	Hg ²⁺ In ³⁺	buffer	Dive vellow
	Mn ²⁺	pH 6-6.5; urotropine	Blue—yellow Blue—gray
	Pb ²⁺	pH 11.5; NH ₃ pH 6; urotropine buffer	Blue-yellow
		pH 12; NH ₃ in the presence of tart-	Blue-gray
	RE	rate pH 6; urotropine buffer	Blue-yellow
	Sn ²⁺	pH 2.2; HNO ₃ pH 5.5-6; pyridine+ +acetate+F-	Blue—yellow
	Zn ²⁺	pH 6-6.5; urotropine buffer	Blue-yellow Blue-gray
	Zr ^{IV}	pH 12; NH ₃ pH 1-2; chloroacetic acid, 90 °C	Blue-red
	Ga ³⁺ , In ³⁺	pH 4.5-6; acetate buffer	Disappearance of fluores- cence

No.	Indicator	Formula
32	Morin: See T	able 25, No. 25 (p. 211)
33	Murexide	$\begin{array}{c ccc} HN-CO & OC-NH \\ \hline 0C & C-N=C & CO \\ \hline HN-C & OC-NH \\ \hline 0NH_4\cdot H_2O \end{array}$
34	Naphthol yellow	NaO NO ₂
35	Naphthyla- zoxine	$ \begin{array}{c} \text{HO}_{3}S \\ \text{OH} \end{array} $
86	PAN[1-(2-py- ridylazo)- naph- thol-2]	N = N = N

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
	Ga ³⁺ , In ³⁺	pH 4.5-6; acetate buffer	Disappearance of fluores- cence
Mixture of the indicator (0.2 wt. %) and solid sodium chloride	Ca ²⁺ Co ²⁺ Cu ²⁺ Ni ²⁺ Ag ⁺ Pd ²⁺	$ \begin{array}{c} pH \geqslant 12 \\ pH \ 8; \ NH_3 \\ pH \ 7-8; \ NH_3 \\ pH \ 8.5-9.5; \ NH_3 \\ pH \ 10-11.5; \ NH_3 \\ Addition \ of \\ K_2Ni(CN)_4 + \\ +NH_4OH \end{array} $	Red—violet Orange—violet Red—violet Yellow—violet
Used in mix	ture with Ac	eid Chrome Dark Green	1 G (No. 3)
Used in mix			Yellow—red
Used in mix	Cu ²⁺ Mn ²⁺ Ni ²⁺ Pb ²⁺	pH 3.5-6.5; acetate buffer pH 9.3; ammonia buffer pH 6.7-7.0; acetate buffer pH 5.5-6.5; acetate or pyridine buffer pH 6-6.5: acetate or	
Used in mix 0.1% solution in ethanol or methanol	Cu ²⁺ Mn ²⁺ Ni ²⁺	pH 3.5-6.5; acetate buffer pH 9.3; ammonia buffer pH 6.7-7.0; acetate buffer pH 5.5-6.5; acetate or pyridine buffer	Yellow-red Yellow-green-

1	Indicator	Formula
36	PAN [1-(2- pyridyla- zo)-naph- thol-2]	N = N - HO
7 1	PAR [4-(2- pyridyla- zo)-resor- cinol]	N = N - OH

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
0.1% solution in ethanol	Cd2+	pH 5-6; acetate buffer	Pink-yellow- green
or methanol	Cu ²⁺	pH 3-5; acetate buffer, 70-80 °C pH 9-10; ammonia buffer, 50 °C	Violet-yellow
	In ³⁺	pH 2.3-2.5; acetate buffer, hot solution	Red-yellow
	Ni ²⁺	pH 4; 25% metha- nol, 50-70 °C	Violet-red— yellow
	Th ^{IV} Tl ³⁺	pH 2-3.5; HNO ₃ pH > 1.8; chloroace- tic acid, hot solu- tion	Red—yellow
	Zn ²⁺	pH 4-6; acetate buffer	
	Al ³⁺ , Ca ²⁺ , Co ²⁺ , Fe ³⁺ , Ilg ²⁺ , Ga ³⁺ , Mg ²⁺ , Mn ²⁺ , Ni ²⁺ , Pb ²⁺ , RE, UO ²⁺ , VO ²⁺ ,	Back titration with a cupric salt solu- tion	
0.1% aqueous solution	Bi ³⁺ Tl ³⁺ In ³⁺ Hg ²⁺	pH 1-2; HNO ₃ pH 1.7; hot solution pH 2.3-2.5; 60-70 °C pH 3-6	Red—yellow Red—yellow-
	Cd2+	pH 6-11.5; ammonia or urotropine buffer	orange Red—yellow
	Cu ²⁺	pH 5; acetate buffer pH 6; urotropine buffer pH 11.5; ammo- nia buffer	Wine red—yel- low or green

No.	Indicator	Formula
37	PAR [4-(2- pyridyl- azo)-resor- cinol]	N = N - OH
38	Patton-Reeder	Dye: See Calces, No. 10 (p. 226)
39	Phthalein complexo- ne (metall- phthalein; pht halein purple; cresolph- thalexone)	HOOCH ₂ C N CH ₂ COOH HOOCH ₂ C N CH ₂ COOH H ₂ C CH ₂ HO CH ₂ COOH CH ₂ COOH
40	Pyrocate- chin violet (pyrocate- chin sul- phophtha- lein)	HO OH SO ₃ II

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colou
0.1% aqueous solution	Mn ²⁺ Ni ²⁺ Pb ²⁺ RE and Y ³⁺ Zn ²⁺	pH 9; ammonia buffer pH 5; acetate buffer, 90°C pH 5-9.6; urotropine or ammonia buffer pH 6; acetate buffer pH 5-11.5; urotropi- ne or ammonia buffer	Red—yellow Red—yellow Red—yellow Red—yellow Red—yellow
(a) 0.5% aqueous solution (b) mixture of 0.1 g of phthalein complexone, 0.005 g of methyl red and 0.005 g of diamine green in 100 ml of water	Ba ²⁺ , Sr ²⁺ Mg ²⁺ Ca ²⁺ Cd ²⁺	pH 10.5-11; addition of ethanol pH 10-11; NH ₃ ; addition of ethanol pH 10-11 pH 10; ammonia buffer + 30% of ethanol	(a) Red-violet- pale pink or colourless (b) Red—pale gray
0.1% aqueous solution	Bi ³⁺ Cd ²⁺ Co ²⁺ Ni ²⁺ Cu ²⁺	pH 2-3; HNO ₃ pH 10; ammonia buffer pH 9.3; ammonia buffer pH 8-9.3; ammonia buffer pH 5-6.5; acetate buffer pH 6-7; pyridine buffer pH 9.3; ammonia buffer	Blue—yellow Greenish blue- red-violet Blue—yellow Blue—red-vio- let

No.	Indicator	Formula
40	Pyrocate- chin violet (pyrocate- chin sul- phophtha- lein)	HO OH O SO ₃ H
41	Pyrogallol red	HO OH OH OH OH OH OH OH OH OH OH

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
0.1% aqueous solution	Fe ³⁺ Ga ³⁺ In ³⁺ Mg ²⁺ , Zn ²⁺ Mn ²⁺ Th ^{IV} Pb ²⁺ Al ³⁺ , Fe ³⁺ , Ga ³⁺ , In ³⁺ , Pd ²⁺ , Th ^{IV} Tl ³⁺ , Sn ^{IV}	pH 5-6; pyridine-acetate buffer pH 3-3.8; acetate buffer pH 5; acetate buffer, hot solution pH 10; ammonia buffer pH 9.3; ammonia buffer+NH ₂ OH pH 2.5-3.5; HNO ₃ , 40 °C pH 5.5; urotropine buffer Back titration with a cupric or bismuth salt solution pH 5; back titration with a zinc salt solution, 70-80 °C	Blue—yellow- green Blue—yellow Blue—yellow Greenish blue- red-violet Red—yellow Blue—yellow
0.05% solution in 50% etha- nol	Bi ³⁺ Co ²⁺ , Ni ²⁺ Pb ²⁺ Cu ²⁺ , Fe ³⁺ , Ga ³⁺ , In ³⁺ , Pd ²⁺ , Th ^{IV}	pH 2-3; HNO ₃ pH 9.3; ammonia buffer pH 5-6; acetate buffer Back titration with a lead salt or a bismuth salt solu- tion	Red—orange- yellow Blue—wine red Violet—red

No.	Indicator	Formula
42	SPADNS	OH OH N=N-SO ₃ Na NaO ₃ S
43	Sulpharsa- sene (plu- mbone)	$N = N - NH$ SO ₃ Na H_2O_3As $N = N - NH$ SO ₃ Na $N = N - NH$ SO ₃ Na
44	Sulphonazo	HO_3S $N = N$ $OH \ NH_2$ SO_2 $OH \ OH \ NH_2$ $N = N$
45	Sulphosali- cylic acid	HO ₃ S COOH
46	Thiourea	$H_2N-C-NH_2$

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
0.4% aqueous solution 0.02% aqueous solution	${ m Zr^{IV}} \over { m Th^{IV}}.$	pH 1.5-2.5; HNO ₃ pH 2.5-3.5; HNO ₃	Red-pink— orange-red Violet-blue— purple-red
0.05% aqueous solution with an addition of 1-2 drops of 5% ammonia solution	Pb ²⁺ Zn ²⁺	pH 9.8-10 in the presence of tarta- ric acid and am- monia pH 9.3-9.6 in the presence of tarta- ric acid and am- monia	Orange-pink— lemon yellow ditto
0.02% aqueous solution	Sc ³⁺ In ³⁺	рН 5	Blue—violet- pink Blue-violet— violet-pink
5% aqueous solution	Fe ³⁺	pH 2-3; acetate buffer, hot solution	Red—yellow
Aqueous solu-	Bi ³⁺	pH 1.5-2.0; HNO ₃ or HClO ₄	Yellow—colour less

No.	Indicator	Formula
47	Thoron (thorin, APANS)	See Table 49, No. 93 (p. 396)
48	Thymolph- thalexone	HOOCH ₂ C N CH ₂ COOH HOOCH ₂ C N CH ₂ COOH HOOCH ₂ C CH ₂ CH ₂ COOH HOOCH ₂ C CH ₂ CH ₃ CH ₂ COOH CH HC O CH ₃ CH ₃ CH ₃ CH ₃ C CH ₃ CH ₃
49	Thyron	OH OH SO ₃ H
50	Variamine Blue B	CH ₃ O — NH — NH ₂ ·HCl

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
Aqueous solu- tion	Bi ³⁺ Th ^{IV} U ^{IV}	pH 2-3; HNO ₃ pH 1-3; HNO ₃ pH 1-1.8; 30 °C	Red—yellow Violet—yellow Red-orange— orange-yellow
0.5% aqueous solution or solid mixture with KNO ₃ in the ratio of 1:100	Ba ²⁺ , Sr ²⁺ Ca ²⁺ Mn ²⁺	pH 10-11; NaOH or NH ₃ pH 10.5-12; NaOH or NH ₃ pH 10-11; NH ₃ , NaOH	Blue—gray or colourless Blue—colour- less
2% aqueous solution	Fe ³⁺	pH 2-3; acetate buffer, hot solution	Blue—colour- less
1% aqueous solution	Fe ³⁺ Cd ²⁺ , Zn ²⁺	pH 1.7-3 pH 5; in the presence of traces of Fe(CN) and	Blue violet— yellow Violet—colour- less
	Al ³⁺ , Pb ²⁺ , Zr ^{IV}	Fe(CN)3- Fe(CN)3- Back titration with a zinc salt solu- tion	

No.	Indicator	Formula		
51	Xylenol orange	HOOCH ₂ C N-CH ₂ H ₂ C-N CH ₂ COOH HOOCH ₂ C CH ₂ COOH CH ₂ COOH SO ₃ H		
552	Zincon	COOH HO N HN SO ₃ H		

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colou
0.5% solution in ethanol	Bi ³⁺ Th ^{IV}	pH 1-3; HNO ₃ pH 1.7-3.5; HNO ₃	Red-yellow
	ZrIV	HNO ₃ ; 1M, 90 °C	
	Sc3+	pH 2.2-5	
	In ³⁺	pH 3-3.5; acetate buffer, hot solution	
	Hg ²⁺ , Tl ³⁺	pH 4-5; acetate bu- ffer	
	Cd ²⁺ , Fe ²⁺	pH 5-6; urotropine buffer	Red-violet-
	Co ²⁺	pH 5-6; urotropine buffer, 80 °C	yellow Red—yellow
	RE ³⁺	pH 5-6; urotropine buffer, hot solu-	neu-yenou
	Pb ²⁺	tion pH 5; acetate buffer or pH 6; urotro- pine buffer	
	Zn^{2+}	pH 5-6; acetate bu- ffer: pH 7; urotro-	
	Fe ³⁺	pine buffer pH 1.5; in the pre- sence of Fe ²⁺ , CO ₂ atmosphere, 60 °C	Blue-violet— yellow
	Al ³⁺ , Fe ³⁺ , Ga ³⁺ , Ni ²⁺ , Pd ²⁺ , Sn ^{IV} , U ^{IV} , VO ²⁺	Back titration with a thorium (IV) salt solution	
0.130 g of the indicator and 2 ml of 1M NaOH solution in 100 ml of water	Ca ²⁺ , Ge ^{IV} , Co ²⁺ , Cu ²⁺ , Fe ³⁺ , In ³⁺ , Mn ²⁺ ,	pH 9-10; back titra- tion with a zinc salt solution	
	Pb ²⁺ Zn ²⁺	pH 9-10; ammonia buffer	Blue-yellov

Hydrogen Ion Exponent (pH) Evaluated in Terms of the Activity of Hydrogen Ions (aH+) and Vice Versa (pH = $-\log a_{\text{H}+}$)

The table can be used to convert the indices of the solubility product pSP into the solubility product SP, the indices of constants pK into constants K, and in other similar cases.

	60. 80.		0.832 0.813	-	_	0.417 0.407	_	_	-	0.166 0.162	-	_
	1 20.		0.851	0.676	0.537	0.427	0.339	-	_	0.170		_
Hd	90.		0.871	0.692	0.550	0.437	0.347	0.275	0.219	0.174	0.138	0.110
	90.	+Hp Jo	0.891	0.708	0.562	0.447	0.355	0.282	0.224	0.178	0.141	0.112
Centesimal fractions of	70.	values of	0.912	0.725	0.575	0.457	0.363	0.288	0.229	0.182	0.145	0.115
3	.03		0.933	0.741	0.589	0.468	0.372	0.295	0.234	0.186	0.148	0.117
	.02		0.955	0.759	0.603	0.479	0.380	0.302	0.240	0.191	0.151	0.120
	10.		0.977	992.0	0.617	0.490	0.389	0.309	0.245	0.195	0.155	0.123
	00.		1.000	0.794	0.631	0.501	0.398	0.346	0.254	0.200	0.158	0.126
	fractions	Hd Jo	0.	**	2	65	4.	r.	9 9	0.1	00	ō

To calculate a_{H} by a known pH, the first digit of the mantissa of the pH value is found in the first vertical column, and the second digit of this mantissa is found in the first horizontal line. The value of a_{H} is obtained at the intersection of the lines which start from the figures found. This value must be multiplied by 10 to the power equal to the characteristic of the pH taken with a negative sign. For example: pH = 6.27; $a_{H^+} = 0.537 \times 10^{-6}$.

in the table and, proceeding from it to the left and upward, two digits are obtained after the decimal in the pH value. The characteristic of the pH will be equal to the power to which 10 is raised in the number of a_{H^+} , but with a positive sign. For example, $a_{H^+} = 2.41 \times 10^{-7} = 0.241 \times 10^{-6}$; pH = 6.62. To calculate the pH by a known value of aH+, the latter should be expressed by a number which starts with 0 and is multiplied by 10 to a certain negative power. Then, this number (or one close to it) is found

Preparation of Buffer Solutions

(pH ranging from 1.10 to 12.90; t = 20 °C)

Stock solutions

hydrochloric acid, 0.1N.

glycocoll NH2CH2COOH (aminoacetic acid, glycin), Solution No. 1: (7.507 g of glycocoll + 5.85 g of NaCl in Solution No. 2:

one litre). hydrophthalate, KHC₈H₄O₄ 0.2M Solution No. 3:

(40.846 g in one litre). sodium citrate, 0.1M (21.014 g of H₃C₆H₅O₇·H₂O+ + 200 ml of 1N NaOH solution in one litre). caustic soda, 0.1N. Solution No. 4:

Solution No. 5:

potassium dehydrophosphate, 1/15M (9.073 g of KH₂PO₄ in one litre). sodium hydrophosphate, 1/15M (11.866 g of Na₂HPO₄·2H₂O in one litre). Solution No. 6:

Solution No. 7:

Lution No. 8: sodium tetraborate, 0.05M (12.367 g of H₃BO₃ + + 100 ml of 1N NaOH solution in one litre).

Chemically pure sodium chloride is recrystallized twice and dried Solution No. 8:

at a temperature of 120 °C; chemically pure boric acid is recrystallized twice out of boiling water and dried at a temperature of not over twice out of boiling water and dried at a temperature of not over \$0 °C\$; chemically pure potassium dehydrophosphate is recrystallized twice and dried at a temperature of 110-120 °C; chemically pure sodium twice and dried at a temperature of 110-120 °C; chemically pure sodium the last crystallization of the last crystallization. hydrophosphate is recrystallized twice (during the last crystallization, the temperature of the solution must not be over 90 °C), then damped with a solution must not be over 90 °C), then damped with a solution must not be over 90 °C). ped with water and dried for two days in a thermostat at a temperature of 36 °C; chemically pure citric acid is recrystallized twice (during the last crystallization, the temperature must not be higher than 60 °C); potassium hydrophthalate is recrystallized twice and dried at a temperature of 110-120 °C.

A. Buffer Solutions with pH 1.10-3.50 (HCl-NH2CH2COOH)

Every given ar ount of the solution (solution No. 2, see above) is brought up to 100 ml with solution No. 1 (see above)

pH	0	1	2	3	4	5	6	7	8	9
1.1	5.7	6.6	7.5	8.4	9.3	10.2	11.1	40.6	12.8	13.7
2	14.6	15.4	16.2	17.0	17.8	18.6	19.4		21.0	21.8
3	22.6	23.2	23.9	24.5	25.2	25.8	26.4		27.7	28.3
4	28.9	29.4	30.0	30.5	31.1	31.6	32.0		32.9	33.4
5	33.8	34.2	34.6	35.0	35.4	35.8	36.2		37.1	37.6
6	38.0	38.4	38.7	39.1	39.4	39.8	40.2		40.9	41.3
7	41.7	42.1	42.4	42.8	43.1	43.5	43.9		44.6	44.9

Table 30 (continued)

pН	0	1	2	3	4	5	6	7	8	9
8	45.3 48.9	45.6 49.2	46.0 49.5	46.3 49.8	46.7 50.1	47.0 50.4	47.4 50.7	47.8 51.0	48.1	48.5
2.0 1 2 3 4 5 6 7 8 9	51.9 54.9 57.6 60.3 63.6 66.6 69.6 72.8 76.0 79.2	52.2 55.2 57.9 60.6 63.9 66.9 69.9 73.1 76.3 79.5	52.5 55.4 58.2 61.0 64.2 67.2 70.2 73.4 76.6 79.8	52.8 55.7 58.4 61.3 64.5 67.5 70.5 73.8 77.0 80.1	53.1 55.9 58.7 61.7 64.8 67.8 70.8 74.1 77.3 80.4	53.4 56.2 59.0 62.0 65.1 68.1 71.1 74.4 77.6 80.7	53.7 56.5 59.3 62.3 65.4 68.4 71.4 74.7 77.9 81.0	54.0 56.7 59.5 62.6 65.7 68.7 71.8 75.0 78.2 81.3	54.3 57.0 59.8 63.0 66.0 69.0 72.1 75.4 78.6 81.5	54.6 57.3 60.0 63.3 66.3 72.5 75.7 78.9 81.8
3.0 1 2 3 4 5	82.1 84.8 87.1 89.2 91.0 92.5	82.4 85.0 87.3 89.4 91.2	82.7 85.3 87.5 89.6 91.3	82.9 85.5 87.8 89.7 91.5	83.2 85.8 88.0 89.9 91.6	83.5 86.0 88.2 90.1 91.8	83.8 86.2 88.4 90.3 91.9	84.0 86.4 88.6 90.5 92.1	84.3 86.7 88.8 90.6 92.2	84.5 86.9 89.0 90.8 92.4

B. Buffer Solutions with pH 1.10-4.96 (HCl-Na $H_2C_6H_5O_7$)

Every given amount of the solution (solution No. 4, see p. 253) is brought up to 100 ml with solution No. 1 (ibid)

pН	0	1	2	3	4	5	6	7	8	9
1.1 23 4 56 7 8 9 2.0 1 2 3 4	4.8 11.1 15.9 19.3 22.2 24.6 26.5 28.2 29.5 30.6 31.7 32.6 33.6 34.5	5.6 11.6 16.2 19.6 22.4 24.8 26.7 28.3 29.6 30.7 31.8 32.7 33.7 34.6	6.4 12.1 16.6 19.9 22.7 25.0 26.9 28.5 29.7 30.8 31.9 32.8 33.8 34.7	7.1 12.5 16.9 20.2 22.9 25.2 27.0 28.6 29.9 31.0 31.9 32.9 33.8 34.8	7.8 13.0 17.3 20.5 23.2 25.4 27.2 28.8 30.0 31.1 32.0 33.0 33.9 34.9	8.4 13.5 17.6 20.8 23.4 25.6 27.4 28.9 30.1 31.2 32.1 33.1 34.0 35.0	9.0 14.0 17.9 21.1 23.6 25.8 27.6 29.0 30.2 31.3 32.2 33.2 33.2 34.1 35.1	9.6 14.5 18.3 21.4 23.9 26.0 27.7 29.1 30.3 31.4 32.3 33.3 34.2 35.2	10.1 14.9 18.6 21.6 24.1 26.1 27.9 29.3 30.4 31.5 32.4 33.4 34.3 35.2	10.6 15.4 19.0 21.9 24.4 26.3 28.0 29.4 30.5 31.6 32.5 33.5 34.4 35.3

Table 30 (continued)

pН	0	1	2	3	4	5	6	7	8	9
5	35.4	35.5	35.6	35.7	35.8	35.9	36.0	36.1	36.2	36.3
6	36.4	36.5	36.6	36.7	36.8	36.9	37.0	37.1	37.1	37.2
7	37.3	37.4	37.5	37.6	37.7	37.8	37.9	38.0	38.1	38.2
8	38.3	38.4	38.5	38.6	38.7	38.8	38.9	39.0	39.1	39.2
9	39.3	39.4	39.5	39.6	39.7	39.8	39.9	40.0	40.1	40.2
3.0	40.3	40.4	40.5	40.7	40.8	40.9	41.0	41.1	41.3	41.4
1	41.5	41.6	41.7	41.8	41.9	42.0	42.1	42.3	42.4	42.6
2	42.7	42.8	42.9	43.1	43.2	43.3	43.4	43.6	43.7	43.9
3	44.0	44.1	44.3	44.4	44.6	44.7	44.8	45.0	45.1	45.3
4	45.4	45.5	45.7	45.8	46.0	46.1	46.2	46.4	46.5	46.7
5	46.8	47.0	47.1	47.3	47.4	47.6	47.8	47.9	48.1	48.2
6	48.4	48.6	48.8	48.9	49.1	49.3	49.5	49.6	49.8	49.9
7	50.1	50.3	50.5	50.6	50.8	51.0	51.2	51.4	51.5	51.7
8	51.9	52.1	52.3	52.5	52.7	52.9	53.1	53.3	53.4	53.6
9	53.8	54.0	54.2	54.5	54.7	54.9	55.1	55.3	55.6	55.8
4.0 1 2 3 4 5 6 7 8 9	56.0 58.5 61.1 64.3 67.9 71.9 76.9 82.2 88.0 95.6	56.3 58.7 61.4 64.7 68.3 72.4 77.4 82.8 88.7 96.3	56.5 59.0 61.7 65.1 68.7 72.9 78.0 83.3 89.4 97.1	56.8 59.2 62.0 65.4 69.0 73.4 78.5 83.9 90.0 97.8	57.0 59.5 62.3 65.7 69.4 73.9 79.1 84.4 90.7 98.5	57.3 59.7 62.6 66.0 69.8 *74.4 79.6 85.0 91.4 99.3	57.5 60.0 62.9 66.4 70.2 74.9 80.1 85.6 92.2 100.0	57.8 60.3 63.3 66.8 70.6 75.4 80.6 86.2 93.1	58.0 60.5 63.6 67.1 71.1 75.9 81.2 86.6 93.9	58.3 60.8 64.0 67.5 71.5 76.4 81.7 87.4 94.8

C. Buffer Solutions with pH 2.20-3.80 (HCl-KHC₈H₄O₄)

50.0 ml of solution No. 3 (see p. 253) is added to every given amount of the solution (solution No. 1, ibid), and the amount of the mixture is brought up to 200 ml with water

Hq	0	1	2	3	4	5	6	7	8	9
2.2 3 4 5 6 7	93.20 86.20 79.20 72.60 66.00 59.40	78.54 74.04	77.88 74.28	77.22 70.62	76.56 69.96	75.90 69.30	75.24 68.64	74.58 67.98 64.38	67.32 60.72	66.6 60.0

Table 30 (continued)

pH	0	1	2	3	4	5	6	7	8	9
8 9	53.00 46.80	52.38 46.20	51.76 45.60	51.14 45.00	50.52 44.40	49.90 43.80	49.28 43.20	48.66 42.60	48.04 42.00	47.4
3.0 1 2 3 4 5 6 7 8	40.80 35.00 29.60 24.60 19.90 15.70 12.00	40.22 34.44 29.08 24.12 19.46 15.30 11.66	39.64 33.88 28.56 23.64 19.02 14.90 11.32	39.06 33.32 28.04 23.16 18.58 14.52 10.98	38.48 32.78 27.54 22.68 18.16 14.16 10.64	37.90 32.24 27.04 22.20 17.74	37.32 31.70 26.54 21.72 17.32 13.44	36.74 31.16 26.04 21.26 16.90 13.08 9.62	36.16 30.64 25.56 20.80	35.58 30.12 25.08 20.34 16.10

D. Busser Solutions with pH 4.00-6.20 (NaOH-KHC8H4O4)

50.0 ml of solution No. 3 (see p. 253) is added to every given amount of the solution (solution No. 5, *ibid*), and the amount of the mixture is brought up to 200 ml with water

pH	0	1	2	3	4	5	6	7	8	9
8 9 .0 1	15.00 19.30 24.30 29.70 35.40 41.40 47.70 53.90 55.90 65.70 70.90 75.60 79.70 88.60 88.60 90.90	4.44 7.74 11.38 15.42 19.76 24.84 30.26 35.98 42.04 48.32 54.50 60.50 66.24 71.38 76.04 80.08 83.40 86.28 88.84	4.76 8.08 11.76 15.84 20.24 25.38 30.82 36.56 42.68 48.94 55.10 61.10 66.78 71.86 76.46 80.44 83.70 86.56 89.08	5.10 8.42 12.14 16.26 20.72 25.92 31.38 37.14 43.32 49.56 55.70 61.70 67.32 72.34 76.88 80.80 84.00 86.84 89.32	5.42 8.78 12.54 16.68 21.22 26.46 31.94 37.74 43.96 50.18 56.30 62.28 67.84 72.82 77.30 81.14 84.30 87.10 89.56	5.76 9.14 12.94 17.10 21.72 27.00 32.50 38.34 44.60 50.80 62.86 68.36 77.72 81.48 84.60 89.80 91.90	6.08 9.50 13.34 17.54 22.22 27.54 33.08 38.94 45.22 51.42 57.50 63.44 68.88 73.76 78.12 81.82 84.88 87.62 90.02	3.12 6.42 9.86 13.74 17.98 22.74 28.08 33.66 39.54 45.84 52.04 58.10 64.02 69.40 74.22 78.52 82.14 85.16 87.88 90.24	3.44 6.74 10.24 14.16 18.42 23.26 28.62 34.24 40.16 46.46 52.66 58.70 64.58 69.90 74.68 78.92 282.46 85.44 88.12 90.46	3.78 7.08 10.62 14.58 18.80 23.78 29.16 34.82 40.78 47.08 53.28 59.30

Table 30 (continued)

E. Buffer Solutions with pH 4.96-6.69 (NaOH-NaH2C6H5O7)

Every given amount of the solution (solution No. 5, p. 253) is brought up to 100 ml with solution No. 4 (ibid)

pH	0	i	2	3	4	5	6	7	8	9
4.9	-	-	i -	-	-	-	0.0	0.9	1.8	2.7
5.0	3.6	4.3	5.0	5.6	6.3	7.0	7.5	8.1	8.6	9.2
1	9.7	10.2	10.8	11.3	11.9	12.4	12.9	13.4	13.9	14.4
2	14.9	15.4	15.9	16.5	17.0	17.5	17.9	18.3	18.8	19.2
3	19.6	20.0	20.4	20.8	21.2	21.6	22.0	22.4	22.9	23.3
4	23.7	24.1	24.5	24.9	25.3	25.7	26.1	26.5	26.9	27.3
5	27.7	28.0	28.4	28.7	29.1	29.4	29.7	30.0	30.4	30.7
6	31.0	31.3	31.6	31.9	32.2	32.5	32.8	33.1	33.4	33.7
7	34.0	34.3	34.5	34.8	35.0	35.3	35.5	35.8	36.0	36.2
8	36.4	36.6	36.8	37.1	37.3	37.5	37.7	37.9	38.1	38.3
9	38.5	38.7	38.9	39.1	39.3	39.5	39.7	39.9	40.0	40.2
6.0	40.4	40.6	40.8	41.0	41.2	41.4	41.5	41.6	41.7	41.9
1	42.0	42.1	42.3	42.4	42.6	42.7	42.8	43.0	43.1	43.3
2	43.4	43.5	43.6	43.8	44.0	44.1	44.2	44.3	44.4	44.5
3	44.6	44.7	44.8	44.9	45.0	45.1	45.2	45.3	45.3	45.4
4	45.5	45.6	45.7	45.7	45.8	45.9	46.0	46.1	46.1	46.2
5	46.3	46.4	46.5	46.5	46.6	46.7	46.8	46.8	46.9	46.9
6	47.0	47.1	47.1	47.2	47.2	47.3	47.3	47.4	47.4	47.5

F. Buffer Solutions with pH 4.80-8.00 (KH2PO4-Na2HPO4)

Every given amount of the solution (solution No. 7, p. 253) is brought up to 100 ml with solution No. 6 (ibid)

pH	0	í	2	3	4	5	6	7	8	S
4.8	0.35	0.37	0.39	0.41	0.43	0.45 0.75	0.48 0.79	0.51	0.54	0.5
5.0 1 2 3 4 5 6 7 8 9	0.95 1.35 1.80 2.30 3.00 3.90 4.90 6.20 7.90 9.80	0.99 1.39 1.85 2.37 3.09 3.99 5.02 6.35 8.10	1.03 1.43 1.90 2.44 3.18 4.08 5.14 6.50 8.25 10.2	1.07 1.47 1.95 2.51 3.27 4.17 5.26 6.70 8.45	1.11 1.51 2.00 2.58 3.36 4.26 5.38 6.85 8.60 10.6	1.15 1.55 2.05 2.65 3.45 4.35 5.50 7.00 8.80 10.8	1.19 1.60 2.10 2.72 3.54 4.46 5.62 7.20 9.00 11.1	1.23 1.65 2.15 2.79 3.63 4.57 5.75 7.35 9.20 11.3	1.27 1.70 2.20 2.86 3.72 4.68 5.90 7.55 9.40 11.6	1.3 1.7 2.2 2.9 3.8 4.7 6.0 7.7 9.6 11.8

Table 30 (continued)

pH	0	1	2	3	4	5	6	7	8	9
6.0 1 2 3 4 5 6 7 8 9	12.1 15.0 18.4 22.1 26.4 31.3 37.1 43.0 49.2 55.2	12.4 15.3 18.7 22.5 26.9 31.9 37.7 43.6 49.8 55.8	12.7 15.7 19.1 22.9 27.3 32.4 38.3 44.2 50.4 56.4	12.9 16.0 19.4 23.4 27.8 33.0 38.9 44.8 51.0 57.0	13.2 16.4 19.8 23.8 28.2 33.5 39.4 45.4 51.6 57.6	13.5 16.7 20.1 24.2 28.7 34.1 40.0 46.0 52.2 58.2	13.8 17.0 20.5 24.6 29.2 34.7 40.6 46.6 52.8 58.8	14.1 17.4 20.9 25.1 29.7 35.3 41.2 47.3 53.4 59.4	14.4 17.7 21.3 25.5 30.3 35.9 41.8 47.9 54.0 60.0	14.7 18.1 21.7 26.0 30.8 36.5 42.4 48.6 60.6
7.0 1 2 3 4 5 6 7 8 9	61.2 67.0 72.6 77.7 81.8 85.2 88.5 91.2 93.6 95.5	61.8 67.6 73.2 78.1 82.1 85.5 88.8 91.4 93.8 95.6	62.4 68.1 73.7 78.6 82.5 85.9 89.1 91.7 94.0 95.8	63.0 68.7 74.3 79.0 82.8 86.2 89.3 91.9 94.2 95.9	63.6 69.2 74.8 79.5 83.2 86.6 89.6 92.2 94.4 96.1	64.2 69.8 75.4 79.9 83.5 86.9 89.9 92.4 94.6 96.2	64.8 70.4 75.9 80.3 83.8 87.2 90.2 92.6 94.8 96.3	65.4 70.9 76.3 80.7 84.2 87.5 90.4 92.9 95.0 96.5	65.9 71.5 76.8 81.0 84.5 87.9 90.7 93.1 95.1 96.6	66.5 72.0 77.2 81.4 84.9 88.2 90.9 93.4 95.3
3.0	96.9									1

G. Buffer Solutions with pH 7.71-9.23 (Na₂B₄O₇-HCl)

Every given amount of the solution (solution No. 8, p. 253) is brought up to 100 ml with solution No. 1 (ibid)

pH	0	1	2	3	4	5	6	7	8	9
7.7 89 8.0 1 2 3 4 5 6	58.65	56.0 57.25 58.8 60.95 63.2	59.0 61.15 63.45 65.75	56.25 57.5 59.2 61.4 63.65 66.05	57.65 59.4 61.6 63.9	55.25 56.5	55.35 56.6 57.95 59.8	56.75 58.1 60.0	53.2 54.4 55.6 56.9 58.3 60.2 62.5 64.8 67.5 70.4	53.3 54.5 55.7 57.0 58.4 60.4 62.7 65.0 67.7 70.8

Table 30 (continued)

pH	0	1	2	3	4	5	6	7	8	9
7 8 9	71.2 75.5 80.5	71.6 76.0 81.0	72.0 76.5 81.5	72.4 77.0 82.0	72.8 77.5 82.5	73.2 78.0 83.0	73.6 78.5 83.5	74.0 79.0 84.0	74.5 79.5 84.5	75.0 80.0 85.0
9.0	85.6 91.9 98.1	86.25 92.5 98.75	93.1	87.5 93.75 100.0		88.75 -95.0	89.4 95.6	90.0 96.25	91.6 96.9	91.25 97.5

H. Buffer Solutions with pH 9.23-11.02 (Na₂B₄O₇-NaOH)

Every given amount of the solution (solution No. 5, p. 253) is brought up to 100 ml with solution No. 8 (ibid)

pH	0	1	2	3	4	5	6	7	8	9
9.2 3 4 5 6 7 8 9	8.90 15.40 21.0 26.8 32.3 36.3 39.0	9.60 16.0 21.6 27.4 32.8 36.6 39.3	10.3 16.6 22.2 28.0 33.3 36.9 39.6	0.72 11.0 17.2 22.8 28.6 33.7 37.2 39.8	2.16 11.7 17.7 23.4 29.2 34.1 37.5 40.0	3.60 12.4 18.2 23.9 29.8 34.5 37.7 40.2	4.90 13.0 18.8 24.5 30.3 34.9 38.0 40.4	6.05 13.6 19.4 25.1 30.8 35.3 38.3 40.6	7.10 14.2 20.0 25.7 31.3 35.7 38.6 40.8	8.05 14.8 20.5 26.3 31.8 36.0 38.8 40.9
0.0 1 2 3 4 5 6 7 8 9	41.0 42.7 44.0 45.2 46.3 47.2 48.0 48.6 49.1 49.5	41.2 42.9 44.2 45.4 46.4 47.3 48.05 48.65 49.15 49.55	48.7	41.6 43.2 44.4 45.6 46.6 47.45 48.2 48.75 49.2 49.6	41.8 43.3 44.5 45.7 46.7 47.5 48.25 48.8 49.25 49.65	48.85	42.1 43.6 44.8 45.9 46.9 47.7 48.35 48.9 49.35 49.75	42.3 43.7 44.9 46.0 46.95 47.75 48.4 48.95 49.4 49.8	42.5 43.8 45.0 46.1 47.05 47.85 48.5 49.0 49.4 49.8	42.6 43.9 45.1 46.2 47.1 47.9 48.55 49.05 49.45
1.0	49.9	49.95	50.0							

Table 30 (continued)

I. Buffer Solutions with pH 8.53-12.90 (NH2CH2COOH-NaOH)

Every given amount of the solution (solution No. 5, p. 253) is brought up to 100 ml with solution No. 2 (ibid)

pH	0	1	2	3	4	5	6	7	8	9
8.5 6 7 8 9	5.80 7.10 8.60 10.4	7.24	6.04 7.38 8.94 10.8	5.00 6.16 7.52 9.12 11.0	5.11 6.28 7.66 9.30 11.2	5.22 6.41 7.81 9.48 11.4	5.33 6.54 7.96 9.66 11.6	5.44 6.68 8.12 9.84 11.8	5.56 6.82 8.28 10.02 12.0	5.68 6.96 8.44 10.21 12.2
9.0 1 2 3 4 5 6 7 8 9	12.4 14.6 17.0 19.7 22.3 25.2 28.0 31.0 33.8 36.2	12.6 14.8 17.2 19.9 22.5 25.4 28.3 31.3 34.1 36.5	12.8 15.1 17.4 20.1 22.8 25.6 28.6 31.6 34.4 36.7	13.0 15.3 17.6 20.3 23.1 25.9 28.9 31.9 34.7 36.9	13.2 15.6 17.9 20.5 23.4 26.2 29.2 32.2 35.0 37.1	13.4 15.8 18.2 20.8 23.7 26.5 29.5 32.5 35.2 37.3	13.6 16.0 18.5 21.1 24.0 26.8 29.8 32.8 35.4 37.5	13.8 16.3 18.8 21.4 24.3 27.1 30.1 33.1 35.6 37.7	14.0 16.5 19.1 21.7 24.6 27.4 30.4 33.4 35.8 37.9	14.3 16.8 19.4 22.0 24.9 27.7 30.7 33.6 36.0 38.1
10.0 1 2 3 4 5 6 7 8 9	40.2 41.9 43.5 44.8 45.8 46.7	44.9 45.9	42.2 43.75 45.0 46.0 46.85 47.5	42.4 43.9 45.1 46.05	47.0 47.65 48.2	45.3 46.25 47.05	44.3 45.4 46.35 47.1 47.75	43.0 44.4 45.5 46.45 47.2 47.8 48.35	39.9 41.55 43.2 44.55 45.6 46.5 47.25 47.9 48.4 48.8	40.05 41.75 43.35 44.7 45.7 46.6 47.35 47.95 48.45 48.85
11.0 1 2 3 4 5 6 7 8 9	48.9 49.35 49.8 50.2 50.6 51.0 51.4 51.95 52.6 53.4	49.85 50.25 50.65 51.05 51.45	49.45 49.9 50.3 50.7 51.1	49.9 50.3 50.7 51.1 51.55 52.15	49.55 49.95 50.35 50.75 51.15 51.6 52.2	50.0 50.4 50.8	49.6 50.05 50.45 50.85 51.25 51.75	49.65 50.1 50.5 50.9 51.3 51.8	50.1 50.5 50.9 51.3 51.85 52.45	49.7 50.1 50.5 50.9 51.3 51.9 52.5

Table 30 (continued)

pH	0	1	2	3	4	5	6	7	8	9
12.0	54.45	54.6	54.75	54.85		55.15			55.55	55.65
1	55.8	55.95	56.1	56.3	56.45	56.6	56.75		57.1	57.25
2	57.4	57.6	57.8	58.0	58.2	58.4	58.6	58.8	59.0	59.2
2 3	59.4	59.65	59.9	60.1	60.35	60.6	60.85	61.1	61.3	61.55
5	61.8	62.2	62.5	62.9	63.2	63.6	64.0	64.3	64.7	65.0
5	65.4	65.9	66.3	66.8	67.2	67.7	68.2	68.6	69.1	69.5
6	70.0	70.5	71.0	71.5	72.0	72.5	73.0	73.5	74.0	74.5
7	75.0	75.6	76.2	76.8	77.4	78.0	78.6	79.2	79.8	80.4
7 8	81.0	81.6	82.3	83.1	84.0	84.9	85.8	86.7	87.7	88.8
9	90.0						-			

Acetic-Acetate Buffer Solutions

To prepare a buffer solution of the required pH value, the given amount of 1N acetic acid solution is measured, 50 ml of 1N caustic soda solution is added to it, and the mixture is brought up to 500 ml with distilled water.

pH	Acetic acid, iN, ml	pH	Acetic acid, 1N, ml	pH	Acetic acid, 1N ml
3.8	421.5	4.67	100.0	5.5	57.4
3.9	345.1	4.7	96.8	5.6	55.9
4.0	284.4	4.8	87.2	5.7	54.7
4.1	236.2	4.9	79.5	5.8	53.7
4.2	197.9	5.0	73.4	5.9	53.0
4.3	167.4	5.1	68.6	6.0	52.3
4.4	143.3	5.2	64.8	6.1	51.9
4.5	124.1	5.3	61.7	6.2	51.5
4.6	108.9	5.4	59.3	6.3	51.5

Universal Buffer Mixture

A mixture of phosphoric, acetic and horic acids (0.04M, respectively) is prepared. To obtain a buffer solution of the required pH value, the given amount of 0.2N NaOH solution is poured into 100 ml of the mixture.

NaOH, 0.2N, ml	Hd	NaOH, 0.2N, ml	Hd	NaOH, 0.2N, ml	Hd	NaOH, 0.2N, ml	Hd
0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5	1.81 1.89 1.98 2.09 2.21 2.36 2.56 2.56 2.87 3.29 3.78	25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5	4.10 4.35 4.56 4.78 5.02 5.33 5.72 6.09 6.37 6.59	50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5	6.80 7.00 7.24 7.54 7.96 8.36 8.69 8.95 9.15 9.37	75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 100.0	9.62 9.91 10.38 10.88 11.20 11.40 11.58 11.70 11.82 11.98

Buffer Solutions from Individual Substances

Substance	рН		
Saturated potassium hydrotartrate solution (~0.025M) KHC ₄ H ₄ O ₆ (molecular weight: 188.183)	3.59 (16°C)		
Saturated piperazine phosphate* solution (~0.065M) C ₄ H ₁₂ N ₂ HPO ₄ ·H ₂ O (molecular	6.36 (16°C)		
weight: 202.148) 0.05M sodium tetraborate solution Na ₂ B ₄ O ₇ ×	6.34 (18°C) 9.18 (25°C)		
× 10H ₂ O (molecular weight: 381.37)	9.07 (38°C)		

^{*}Piperazine phosphate is prepared by mixing, at room temperature, equimolecular quantities of piperazine and phosphoric acid with the subsequent crystallization of separated white lamellar crystals.

Determination of Electrode Potentials

For the reaction

$$Me^{n+} + ne \Rightarrow Me^0$$
,

the mathematical expression of the potential value of the metallic electrode immersed into a solution containing its ions is determined by the formula:

$$E_{\text{Me}^{n+}/\text{Me}^0} = E_{\text{Me}^{n+}/\text{Me}^0}^0 + \frac{RT}{nF} \ln a_{\text{Me}^{n+}}$$

For an oxidation-reduction reaction with the participation of hydrogen ions

$$a \text{ Ox.} + m \text{ H}^+ + ne \Rightarrow b \text{ Red.} + \frac{m}{2} \text{ H}_2\text{O}$$

the potential value of an electrode from platinum or other noble metal immersed into a solution of a mixture of oxidized and reduced forms of a given compound is determined by the formula:

$$E_{\mathrm{Ox./Red.}} = E_{\mathrm{Ox./Red.}}^{0} + \frac{RT}{nF} \ln \frac{a_{\mathrm{Ox.}}^{a}}{a_{\mathrm{Red.}}^{b}} a_{\mathrm{H+}}^{m}$$

If hydrogen ions do not participate in the given reaction, the expression assumes the following form:

$$E_{\text{Ox./Red.}} = E_{\text{Ox./Red.}}^0 + \frac{RT}{nF} \ln \frac{a_{\text{Ox.}}^a}{a_{\text{Red.}}^b}$$

In all these formulas

 $E = {
m electrode \ potential}$ $E^0 = {
m constant \ value \ which \ is \ characteristic \ of \ the given reaction (standard electrode poten-$

R = gas constant

T = absolute temperature

n = number of electrons participating in the

reaction
F = Faraday's constant (96 500 coulombs)

 $a_{\text{Me}^{n+}}, a_{\text{Ox.}}, a_{\text{Red.}}, a_{\text{H+}} = \text{activities of the components participating}$ in the reaction

a, b, m = stoichiometric coefficients of the components participating in the reaction.

(when n=1)

$$E_{\text{Ox./Red.}} = E_{\text{Ox./Red.}}^0 + \vartheta \log \frac{a_{\text{Ox.}}^a}{a_{\text{Red.}}^b} a_{\text{H+}}^m$$

Table 34 (continued)

The values of ϑ , equal to 0.0591 + 0.0002 (t - 25°C), are given in Table 34,A, for temperatures ranging from 0 °C to 50 °C. When $a_{\rm Ox.}$, $a_{\rm Red.}$ and $a_{\rm H^+}$ or $a_{\rm Me}$ ⁿ⁺ are equal to unity

$$E = E^0$$

In accepted usage, E^0 is called the standard electrode potential. The oxidation-reduction system is represented as a reduction reaction:

Ox.
$$+ ne \rightarrow \text{Red.}$$
 or $Me^{n+} + ne \rightarrow Me \downarrow$

The potential of a single isolated electrode cannot be measured. and therefore the electromotive force (emf) of an electrochemical cell consisting of two half-cells is measured; the value of the emf is equal to the difference of the electrode potentials of the two half-cells. If electrochemical cells are always formed with the same electrode whose potential remains constant and with various other electrodes, then upon measuring the emf, the value of the electrode potentials of the oxidation-reduction systems can be found relative to the potential of the selected electrode, which in the given case serves as a refer-

ence electrode (E_{ref}).

The standard hydrogen electrode (SHE) is used as a reference electrode. It consists of a platinized platinum electrode immersed into an acid solution having $a_{\rm H^+}=1$ (1N ${\rm H_2SO_4}$ solution) at a pressure of purified hydrogen gas equal to 1 atm. The potential of the standard hydrogen electrode $(E_{\mathrm{II}^{+}/\mathrm{H}_{2}}^{0})$ is conventionally taken as zero

at any temperature.

The standard potentials (E^0) of various oxidation-reduction (redox) systems relative to the potential of the standard hydrogen electrode are given in Table 40 (p. 300). The "+" and "-" signs of these potentials show the direction in which reaction occurs at the electrodes in question (provided that they are in the standard state) when they form a galvanic cell with a standard hydrogen electrode.

A minus (-) sign of the potential value indicates that the spontaneous reaction occurring at the electrode in question is the oxidation of the reduced form of the redox couple, and a plus (-|-) sign, the

reduction of the oxidized form.

In practice, it is easier to work not with a hydrogen electrode, but with other reference electrodes whose potentials are constant and determined relative to $E_{\rm SHE}$. Table 34,B (p. 268) gives the compositions and potentials ($E_{\rm ref}$) of the most commonly used reference electrodes

When calculating the electrode potential of a redox system (E_x) according to the result of the measurement of the emf of the galvanic cell in which the second electrode is one of the reference electrodes (see Table 34,B, p. 268), account must be taken of the sign of the electrode being examined. When the spontaneous reaction at the electrode in question is oxidation (i.e., when the electrode potential has a negative sign), then

$$emf = E_{ref} - E_{r}$$

Table 34 (continued)

or, conversely, when this reaction is reduction, then

$$emf = E_x - E_{ref}$$

Hence, in the first case,

$$E_x = E_{ref} - emf$$

and in the second,

$$E_r = E_{ref} + emf$$

For example, the measured emf of a galvanic cell consisting of a saturated reference calomel electrode ($E_{\rm Sat.CE.}=0.247~\rm V$, see Table 35,B, p. 271) and a zinc electrode immersed in a solution (in which $a_{\rm Zn^2+}=1$) has an absolute value of 1.007 V. Since, in such a galvanic cell, the spontaneous reaction is the oxidation of metallic zinc ("—" sign):

$$Zn\downarrow - 2e \rightarrow Zn^{2+}$$

consequently:

E_{Z₂2+/Zn} =
$$E_{\text{ref}}$$
 - emf = 0.247 - 1.007 = -0.760 V

If an electrochemical cell consists of a saturated reference calomel electrode and a platinum electrode immersed into an iron salt solution having $a_{\rm Fe^{3+}}=a_{\rm Fe^{2+}}=1$, then the emf value of this cell is +0.524 V. Since the spontaneous reaction at the electrode being considered is reduction ("+" sign), iron (III) is reduced to iron (II):

$$Fe^{3+} + e = Fe^{2+}$$

then

$$E_{\text{Fe}^{3+/\text{Fe}^{2+}}}^{0} = E_{\text{ref}} + \text{emf} = 0.247 + 0.524 = 0.771 \text{ V}$$

A. Values of ϑ at n=1 and Temperatures Ranging from 0 °C to 50 °C $(\vartheta=0.0001983T=0.0591+0.0002~(t-25$ °C)

Tem- pera- ture, °C	ð	log v	Tem- pera- ture, °C	ð	log 🕈	Tem- pera- ture, °C	Ŷ	log v
0 1 2 3 4 5 6 7		73 480 73 640 73 799 73 957 74 115 74 273	8 9 10 11 12 13 14	0.0557 0.0559 0.0561 0.0563 0.0565 0.0567 0.0569 0.0571	74 586 74 741 74 896 75 051 75 205 75 358 75 511 75 664	16 17 18 19 20 21 22 23	0.0573 0.0575 0.0577 0.0579 0.0581 0.0583 0.0585 0.0587	75 815 75 967 76 118 76 268 76 418 76 567 76 710 76 864

Tem- pera- ture, °C	Ð	log ở	Tem- pera- ture, °C	Ů	log v	Tem- pera- ture, °C	v	log v
24 25 26 27 28 29 30 31 32	0.0589 0.0591 0.0593 0.0595 0.0597 0.0599 0.0601 0.0603 0.0605	77 012 77 159 77 305 77 452 77 597 77 743 77 887 78 032 78 176	33 34 35 36 37 38 39 40 41	0.0607 0.0609 0.0611 0.0613 0.0615 0.0617 0.0619 0.0621 0.0623	78 319 78 462 78 604 78 746 78 888 79 029 79 169 79 309 79 449	42 43 44 45 46 47 48 49 50	0.0625 0.0627 0.0629 0.0631 0.0633 0.0635 0.0637 0.0639 0.0641	79 865 80 003 80 140 80 277 80 414

B. Composition and Potential of Selected Reference Electrodes Relative to the Standard Hydrogen Electrode (at 20 °C)

Reference electrode	Composition of reference electrode	Potentia, E _{ref} , V
Standard hydrogen electrode (SHE) Pt, H ₂ H ⁺	Platinized platinum plate in 1M H ₂ SO ₄ solution, saturated with H ₂ under a pressure of 1 atm	0.000
Mercuriodide electrode (MIE) Hg HgI ₂ , KI, KCl	Metallic mercury, 4.2 g of KI and 1.3 g of HgI ₂ in 100 ml of saturated KCl solution	+0.02
Chlorosilver electrode (CSE) Ag AgCl, Cl-	Metallic silver, coated with a layer of AgCl, in an HCl or KCl solution hav- ing the following concen- trations:	
Calomel electrodes (CE) Hg Hg ₂ Cl ₂ , KCl	0.1N 1.0N Metallic mercury, paste of metallic mercury and Hg ₂ Cl ₂ in a KCl solution having the following con-	$+0.290 \\ +0.237$
0.1 (0.1 SCE) 1.0 (SCE) 3.5 (3.5 SCE) Saturated electrode (Sat.CE)	centrations: 0.1N 1.0N 3.5N Saturated	+0.337 $+0.284$ $+0.250$ $+0.247$
Mercurosulphate elec- trode (MSE) Hg Hg ₂ SO ₄ , H ₂ SO ₄	Metallic mercury, paste of metallic mercury and Hg ₂ SO ₄ in 2N H ₂ SO ₄ solu- tion	+0.682

Electrometric Determination of pH

The hydrogen ion exponent pH = $-\log a_{H^+}$. In the electrometric determination of the pH, the emf of one of the following cells is

(1) Indicator electrode: hydrogen electrode; reference electrode: SHE*. Then,

$$emf = E_{SHE} - E_{2H^{+}/H_{2}}$$

Since $E_{SHE} = 0$ and

$$E_{2H^{+}/H_{2}} = \vartheta \log a_{H^{+}} = -\vartheta pH$$

then

$$pH = \frac{emf}{2}$$

(2) Indicator electrode: hydrogen electrode; reference electrode: one of the calomel electrodes (CE). Then,

$$emf = E_{CE} - E_{2H+/H_2}$$

hence.

$$emf = E_{CE} + \vartheta pH$$

and

$$pH = \frac{emf - E_{CE}}{\vartheta}$$

(3) Indicator electrode: quinhydrone electrode; reference electrode: SHE. Then,

$$\mathrm{emf} = E_{\mathrm{quin./hydr.}} - E_{\mathrm{SHE}}$$

 $E_{\text{quin./hydr.}} = E_{\text{quin./hydr.}}^0 + \vartheta \log a_{\text{H+}} = E_{\text{quin./hydr.}}^0 - \vartheta \text{ pH}$

hence.

$$emf = E_{quin./hydr.}^0 - \vartheta pH - E_{SHE}$$

Since $E_{SHE} = 0$, then

$$pH = \frac{E_{\text{quin./hydr.}}^0 - \text{emf}}{\vartheta}$$

(4) Indicator electrode: quinhydrone; reference electrode: CE. Then,

$$\operatorname{emf} = E_{\operatorname{quin./hydr.}}^{0} - E_{\operatorname{CE}}$$

hence

$$\operatorname{emf} = E_{\operatorname{quin./hydr.}}^{0} - \vartheta \operatorname{pH} - E_{\operatorname{CE}}$$

^{*} Standard hydrogen electrode.

and

$$pH = \frac{E_{\text{quin./hydr.}}^0 - E_{\text{GE}} - \text{emf}}{\vartheta}$$

The values of $E_{\rm quin./hydr.}^{\rm o}$, $E_{\rm CE}$ and $E_{\rm quin./hydr.}^{\rm o}$ — $E_{\rm CE}$ at different temperatures are given in Table 35,A (p. 270), 35,B (p. 271)

and 35,C (p. 272).

When the pH is being found by methods (3) and (4), account must be taken of what was said on p. 266. As the pH value increases, the $E_{\rm quin./hydr.}$ potential decreases. The latter can decrease by so much that the spontaneous reaction at the quinhydrone electrode will be the oxidation of hydroquinone into quinone ("-" sign). Then, the calculating formulas change accordingly:

for method (3):

$$\begin{split} \operatorname{emf} &= E_{\mathrm{SHE}} - E_{\mathrm{quin./hydr.}} = - \left(E_{\mathrm{quin./hydr.}}^{\mathrm{0}} - \vartheta \, \mathrm{pH} \right) = \\ &= \vartheta \, \mathrm{pH} - E_{\mathrm{quin./hydr.}}^{\mathrm{0}} \\ \operatorname{pH} &= \frac{\operatorname{emf} + E_{\mathrm{quin./hydr.}}^{\mathrm{0}}}{\vartheta} \end{split}$$

for method (4):

$$\begin{split} \mathrm{emf} = & E_{\mathrm{CE}} - E_{\mathrm{quin./hydr.}} = E_{\mathrm{CE}} - (E_{\mathrm{quin./hydr.}}^{0} - \vartheta \ \mathrm{pH}) = \\ = & E_{\mathrm{CE}} + \vartheta \ \mathrm{pH} - E_{\mathrm{quin./hydr.}}^{0} \\ \mathrm{pH} = & \frac{\mathrm{emf} + E_{\mathrm{quin./hydr.}}^{0} - E_{\mathrm{CE}}^{0}}{\vartheta} \end{split}$$

A. Standard Quinhydrone Electrode Potential ($E_{\text{quin./hydr.}}^0$) at Temperatures Ranging from 0 °C to 50 °C, $E_{\text{quin./hydr.}}^0$ = =0.7175-0.00074t, V

Tem- pera- ture, °C	Equin./hydr.,	Tem- pera- ture, °C	$E_{ ext{quin./hydr.}}^0$,	Tem- pera- ture, °C	$E_{ ext{quin./hydr.'}}^0$
0	0.7175	9	0.7108	18	0.7042
1	0.7168	10	0.7101	19	0.7034
2	0.7160	11	0.7094	20	0.7027
3	0.7153	12	0.7086	21	0.7020
4	0.7145	13	0.7079	22	0.7012
5	0.7138	14	0.7071	23	0.7005
6	0.7131	15	0.7064	24	0.6997
7	0.7123	16	0.7057	25	0.6990
8	0.7116	17	0.7049	26	0.6983

Table 35 (continued)

Tem- pera- ture, °C	$E_{ ext{quin./hydr.}}^{0}$,	Tem- pera- ture, °C	$E_{ ext{quin./hydr.}}^{0}$	Tem- pera- ture, °C	Equin./hydr.
27	0.6975	35	0.6916	43	0.6857
28	0.6968	36	0.6909	44	0.6849
29	0.6960	37	0.6901	45	0.6842
30	0.6953	38	0.6894	46	0.6835
31	0.6946	39	0.6886	47	0.6827
32	0.6938	40	0.6879	48	0.6820
33	0.6931	41	0.6872	49	0.6812
34	0.6923	42	0.6864	50	0.6805

B. Potentials of Calomel Electrodes at Temperatures Ranging from 0 $^{\circ}\text{C}$ to 50 $^{\circ}\text{C}$

$$\begin{split} E_{0.1\text{SCE}} &= 0.3365 - 0.00006 \ (25 - t) \ \text{V} \\ E_{\text{SCE}} &= 0.2828 - 0.00024 \ (25 - t) \ \text{V} \\ E_{\text{Sat.CE}} &= 0.2438 - 0.00065 \ (25 - t) \ \text{V} \end{split}$$

Tem-	I	otential,	v	Tem- pera-	I	Potential,	v
pera- ture, °C	E _{0.1SCE}	$E_{ m SCE}$	E _{Sat.CE}	ture, °C	$E_{0.1SCE}$	$E_{ m SCE}$	E _{Sat.CE}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.3380 0.3379 0.3379 0.3378 0.3376 0.3376 0.3376 0.3375 0.3375 0.3373 0.3373 0.3372 0.3372 0.3371 0.3370 0.3370 0.3370	0.2888 0.2886 0.2883 0.2881 0.2876 0.2874 0.2871 0.2869 0.2866 0.2864 0.2862 0.2859 0.2857 0.2859 0.2854 0.2854 0.2854 0.2854 0.2854	0.2601 0.2594 0.2588 0.2581 0.2575 0.2568 0.2562 0.2555 0.2549 0.2549 0.2536 0.2529 0.2536 0.2516 0.2516 0.2510 0.2503 0.2497 0.2490 0.2483	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	0.3369 0.3368 0.3367 0.3366 0.3366 0.3365 0.3364 0.3363 0.3363 0.3361 0.3361 0.3360 0.3360 0.3359 0.3358	0.2842 0.2840 0.2838 0.2835 0.2833 0.2830 0.2828 0.2823 0.2821 0.2818 0.2816 0.2814 0.2814 0.2809 0.2809 0.2806 0.2804 0.2802	0.2477 0.2464 0.2458 0.2451 0.2445 0.2438 0.2431 0.2425 0.2418 0.2112 0.2399 0.2393 0.2386 0.2379 0.2366 0.2366

Table 35 (continued)

Tem- pera-	I	Potential,	V	Tem-	1	Potential,	v
ture,	E _{0.1SCE}	E_{SCE}	E _{Sat.CE}	pera- ture, °C	E _{0.1SCE}	FSCE	E _{Sat.CE}
38 39 40 41 42 43 44	0.3357 0.3357 0.3356 0.3355 0.3355 0.3354 0.3354	0.2797 0.2794 0.2792 0.2790 0.2787 0.2785 0.2782	0.2353 0.2347 0.2340 0.2334 0.2327 0.2321 0.2314	45 46 47 48 49 50	0.3353 0.3352 0.3352 0.3351 0.3351 0.3350	0.2780 0.2778 0.2775 0.2773 0.2770 0.2768	0.2308 0.2301 0.2295 0.2288 0.2282 0.2275

C. Difference between the Standard Quinhydrone Electrode Potential ($E^{o}_{\mathrm{quin./hydr.}}$) and the Potentials of the Reference Calomel Electrodes (E_{CE}) at Temperatures Ranging from 0 °C to 50 °C ($E^{o}_{\mathrm{quin./hydr.}} - E_{\mathrm{CE}}$)

1	quin./	hydr 1	CE)				
Temperature, °C	Equin./hydr - E0.1 SCE	Equin./hydr:	Equin./hydr. — -Esat.CE	Temperature, °C	$E_{ m quin./hydr.}^0$ – $E_{ m 0.1~SCE}$	Equin./hydr ESCE	Equin./hydr Esat.CE
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0.3795 0.3788 0.3781 0.3775 0.3768 0.3761 0.3754 0.3747 0.3741 0.3720 0.3720 0.3713 0.3707 0.3693 0.3686 0.3679 0.3673 0.3666 0.3659 0.3652 0.3645 0.3632 0.3632 0.3632	0.4287 0.4282 0.4277 0.4262 0.4262 0.4257 0.4252 0.4257 0.4252 0.4237 0.4232 0.4227 0.4222 0.4217 0.4202 0.4197 0.4192 0.4187 0.4182 0.4177 0.4182 0.4177 0.4167 0.4162	0.4575 0.4574 0.4573 0.4572 0.4570 0.4569 0.4566 0.4566 0.4565 0.4564 0.4563 0.4561 0.4561 0.4561 0.4558 0.4557 0.4557 0.4555 0.4555 0.4555 0.4555 0.4555 0.4555 0.4555 0.4555 0.4555 0.4555 0.4555 0.4555 0.4555 0.4555	26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	0.3618 0.3611 0.3605 0.3598 0.3598 0.3577 0.3571 0.3564 0.3557 0.3550 0.3543 0.3537 0.3530 0.3523 0.3516 0.3503 0.3489 0.3489 0.3482 0.3475 0.3469 0.3462 0.3455	0.4157 0.4152 0.4147 0.4142 0.4137 0.4132 0.4127 0.4122 0.4117 0.4112 0.4097 0.4097 0.4092 0.4087 0.4082 0.4077 0.4062 0.4067 0.4062 0.4057 0.4062 0.4057 0.4062 0.4047 0.4042 0.4047	0.4551 0.4550 0.4548 0.4548 0.4546 0.4545 0.4545 0.4544 0.4543 0.4542 0.4541 0.4539 0.4539 0.4538 0.4537 0.4536 0.4535 0.4534 0.4533 0.4534 0.4533 0.4533 0.4533 0.4533 0.4533

Change of pH in Precipitation of Metal Hydroxides (Approximate Values with Account Taken of the Formation of Hydroxocomplexes)*

			pH values		
Hydroxide	pitation initial cor of the i	g of preci- with the accentration on being ed equal to	complete precipita- tion (resi- dual con- centration being less than	beginning of dissolution of the preci- pitate (preci- pitation cea- ses to be	complete dissolu- tion of the pre- cipitate
	1M	0.01M	10-5 M)	complete)	
Sn(OH) ₄ TiO(OH) ₂ Sn(OH) ₂ ZrO(OH) ₂ HgO Fe(OH) ₃ Al(OH) ₃ Cr(OH) ₄ Be(OH) ₂ Zn(OH) ₂ Ag ₂ O Fe(OH) ₂ Co(OH) ₂ Ni(OH) ₂ Cd(OH) ₂ Mn(OH) ₂ Mg(OH) ₂	0 0.9 1.3 1.5 3.3 4.0 5.2 5.4 6.2 6.5 6.6 6.7 7.2 7.8 9.4	0.5 0.5 2.1 2.25 2.4 2.3 4.0 4.9 6.2 6.4 8.2 7.5 7.6 7.7 8.2 8.8 10.4	1 2.0 4.7 3.75 5.0 4.1 5.2 6.8 8.8 8.0 11.2 9.7 9.5 9.7 10.4 12.4	13 10 	15 13.5 - 10.8 15 12-13 - - -

^{*}It should be noted that when hydroxides are being precipitated by an addition of an alkaline solution to a corresponding salt solution, a local growth in the pH value and the precipitate amount occur in places where the precipitant drops fall. Upon stirring, a back dissolution of the precipitate formed does not often take place (see Table 10 for various values of the solubility products of hydroxides during precipitation and after some ageing).

Ionization Constants of Chief Acids and Bases

The table gives the thermodynamic ionization constants of acids and bases at 25 °C:

$$K_{a} = \frac{a_{\text{H}} + a_{\text{A}}}{a_{\text{H}} A} = \frac{[\text{H}^{+}][A^{-}]}{[\text{H}A]} \times \frac{f_{\text{H}} + f_{\text{A}}}{f_{\text{H}} A}$$

$$K_{b} = \frac{a_{\text{Ct}} + a_{\text{OH}}}{a_{\text{CtOH}}} = \frac{[\text{Ct}^{+}][\text{OH}^{-}]}{[\text{CtOH}]} \times \frac{f_{\text{Ct}} + f_{\text{OH}}}{f_{\text{CtOH}}}$$

where a_{H^+} , a_{A^-} , etc. = activities of ions or molecules $[H^+]$, $[A^-]$, etc. = concentrations of ions or molecules f_{H^+} , f_{A^-} , f_{Ct^+} , etc. = activity coefficients of ions or molecules.

Acids

Мате	Formula	K_{α}	pKa
Acetic	CH-COOH		
Acid Chrome Black	See Table 28.	1.74×10^{-3}	4.76
Special K1	No. 1 (p. 220)	5.0×10^{-7}	6.3
Acrylic A2	CH. == CHCOOH	2.8×10^{-12}	11.5
Adipic K1	1100C(CI12),COOH	3.9×10^{-3}	4.26
Aminoacetic (Glycine)	NH,CH,COOH	5.1×10^{-6}	5.30
α-Aminopropionic (α-Alanine)	CH ₃ CH (NII ₂)COOH	1.35×10^{-10}	9.87

Table 37 (continued)

Name	Formula	K_{α}	pK_a
B-Aminopropionic	NH ₂ (CH ₂) ₂ C00II	5.9 × 10-11	10.23
Antimonic Arsenic $\frac{K_1}{K_1}$	$H[Sb(OH)_6]$ H_3AsO_4	XXX	4.4
Arsenous K3	$\rm H_3AsO_3$	1.05×10^{-12} 2.95×10^{-12} 5.1×10^{-10}	0.38 9.29
Ascorbic K,	$CH_2(OH)CH(OH)CHC(OII) = C(OII)CO$	X	4.04
Azelaic K1	HOOC(CH ₂) ₇ COOH	XX	4.54
Renzoic K2	C.F.COOH	2.8 × 10-6 6.9 × 10-5	5.55
rtho-)	H ₃ BO ₃	×	9.24
Boric (tetra-) K	H2B407	1.8 × 10-4	3.74
Bromous	HBro	<×	200
	(CH ₃) ₂ CHC00H	X	4.86
Butyric (normal)	CH,CH,CH,COOH	X	4.82
Caprole	CH ₃ (CH ₂) ₄ COOH	1.31×10^{-3}	88.4
Carbonic K1	CO ₂ (aq.) + H ₂ O	X	6.35
K_2			10.32
Chlorous	CH2CLOURI HClO.	1.4×10^{-3}	2.86

Name	Formula	K_a	pK_{α}
Chromic K1	H2CrO4	1.1 × 10-1	0.98
K ₂	11 00° 110° 11		6.50
Chromotropic A1	C10H6(OH)2(SO3H)2		5.3
A A STATE OF THE PARTY OF THE P	TO OCH CHI CHI		15.6
Cinnamic (cis-)	CH CH-CHCOOH	1.3 × 10-4	3.88
Citric K,	HOOCCH,COOH)COOH	7.4 × 10-4	4 65
K_2			4.76
Ks			6.40
m-Cresol	CH ₃ C ₆ H ₄ OH	X	10.0
o-Cresol	CH ₃ C ₆ H ₄ OH	6.3×10^{-11}	10.20
p-Cresol	CH ₃ C ₆ H ₄ OH	6.7×10^{-11}	10.17
Crotonic (B-methylacrylic)	CH ₃ —CH=CHCOOH	2.0×10^{-5}	4.70
Cyanic	HUNO	3.5×10^{-4}	3.46
Dichloroacetic	CHCl ₂ COOH	X	1.30
Dichromic K2	H2Cr2O,	X	1.64
imolybdenic	H2M02O7	9.55×10^{-6}	5.05
Dithionic K,	H.S.O.	6.3×10^{-1}	0.2
K_2^-		4.0×10^{-4}	3.4
Distributions (see in yposurprinteds) Ensurthic	CH-/CH-/-COOH	1 3 × 40-5	08 7
Ethylanadiamina tatraacatic K.	HOOCCH,	(×	1 99
K	CH2COOH	×	2.67
K	-CH2-CH2-N	X	6.27
K	нооссия спасоси	X	10.95
Ferrocyanide Ka	H,Fe(CN)	X	2.57
× ×		4 5 × 10-5	4 35

Table 37 (continued)

Name	Formula	K_a	pKa
Fluorophosphoric K ₁	H ₂ [PO ₃ F]	X	0.55
K2		1.6 × 10-3	9.80
Formic K.	HCOOH HOOCHC=CHCOOH	9.3 × 10-4	3.03
		X	4.38
Gallic K	C ₆ H ₂ (OH) ₃ COOH	3.9×10^{-5} 1.7×10^{-9}	4.41
K-	POOPET	2.0×10^{-13}	12.7
Gluconic	СН.ОН(СНОН),СООН	X	3.86
ic	HOOC(CH2)2CH(NH2)COOH	4.7×10^{-5}	4.33
Glutaric K	H000C/CH3/C00H	4.6×10^{-5}	4.9
	110006611100011	5.4 × 10-6	5.27
Glyceric	CH,(0H)CH(0H)COOH	X	3.52
Glycolic	CH, (OH)COOH	1.3×10^{-4}	33.
Hydrazoic	HN3	1.9×10^{-5}	4.7
Hydroffuoric	HF	6.8×10^{-4}	3.1
Hydrogen cyanide	HCN	6.2×10^{-10}	9.2
Hydrogen neroxide	H.O.	2.0×10^{-12}	11.7
Hydrogen suneroxide	HO	6.3×10^{-3}	2.2
Hydroduinone	C.H. (OH), (1.4)	×	6.6
Hydrosolonions K.	H-Se	X	3.8
III cholocologic		1.0×10^{-11}	11.0
Hydrosulphuric K.	H.S	X	6.9
K. Jaiosuiphuile K.) N	×	12.89
Hudrotollurous K.	H.Te	X	2.6
in spanning out		1×10^{-11}	44

Name	Formula	K_{a}	pK_a
8-Hydroxyquinoline	C,H,ON	1.3 × 10-10	9.90
Hypoculorous	HIO	×	7.30
Hyponitrous K ₁	H ₃ N ₃ O ₃	6.9×10^{-11}	10.64
K ₂	a	<×	17.77
Hypophosphoric K ₁	H4P2O6	X	2.20
N. Z		X	2.81
N. Y.		X)	7.27
Hypophosphorous		8.3 × 10-11	10.03
Hyposulphurous (dithionous) K2	H2S2O4	3.55×10^{-3}	2.73
lodic	HIO3	X	0.79
Lactic V	CH ₃ CH(OH)COOH	X	3.86
	HOOCCH=CHCOOH	×	1.92
Malic K.	HOOS HOWHOWHOOD H	×	6.23
	HOOCCH(OH)CH2COOH	X	3.46
Malonic K1	HOOCCH,COOH	8.9 × 10-9	9.05
K		< >	20.7
Mandelic	C ₆ H ₅ CH(OH)COOH		3.41
anganic K ₁	$ m H_2MnO_4$	-11	~
Molech Jenis V		X	10.15
oryndenic A ₁	H ₂ MoO ₄	×	2.54
m-Nitrohenzeic	NO C II COOM	X	3.86
o-Nitrobenzoic	NO.C.H.COOH	6.8 × 10-4	3.45
p-Nitrobenzoic	HOOJ H JON	()	77.7

Table 37 (continued)

Name	Formula	K_a	pK_a
Nitrous Oxalic Kı	HNO ₂ H ₂ C ₂ O ₄	XXX	3.29
Periodic K_1 K_2	H104; H5106	2.4×10^{-3} 2.8×10^{-2} 5.4×10^{-9}	1.55
rtho)	C ₆ H ₅ OH H ₃ PO ₄	XXXX	14.98 10.0 2.12 7.21
Phosphoric (pyro) K_1 K_2 K_3	H ₄ P ₂ O ₇	$\times \times \times \times$	12.38 1.52 2.64 6.70
	H ₃ PO ₃	XX	0 4 6
m -Phthalic K_1	C ₆ H ₄ (COOH) ₂	2.02.2.05 2.00 × 10-10-10-10-10-10-10-10-10-10-10-10-10-1	3.7.6
o-Phthalic K_1	C ₆ H ₄ (COOH) ₂	XXX	2.95
p -Phthalic K_1	C ₆ H ₄ (COOH) ₂	2.9 × 10-4	3.54
	HOC ₆ H ₂ (NO ₂) ₃	<×>	0.29
Propionic Pyrocatechin K_1	C. H. (OH) (1,2)	(XX	9.45
Resorcinor	C6H4(0H)C00H	X	2.97

Sehacic K.	Formula	K_{a}	pK_a
A Congo	HOOC(CH ₂) ₉ COOH		4.40
Selenic K_3 Selenious K_1	H ₀ SeO ₄	6.0 × 10-6 1.3 × 10-2 2.4 × 10-3	1.88
Silicic (ortho-) K ₁	H _s SiO ₄	4.8 × 10-9 1.3 × 10-11	9.80
Succinic K ₁	HOOCCH ₂ CH ₂ COOH	×××	13.7
	H ₂ NC,H ₄ SO,H	XXX	5.63 0.98 3.20
approximation of Ka	Con (COOH) SO 10	1.4×10^{-3} 1.8×10^{-12}	11.74
Sulphuric K_2 Sulphurous K_1	H ₂ SO ₄	XX	1.94
Tartaric K1	НООССН(ОН)СН(ОН)СООН	6.2×10^{-8} 9.1×10^{-4}	7.20
K_2 Telluric K_1	HgTeOg	4.3×10^{-6} 2.0×10^{-8}	4.37
K ₃		1.1×10^{-11}	10.95
Tellurous K_1	H ₂ TeO ₃	<×	2.57
Thiocyanic Ma	HSCN	1.8×10^{-8} 1.4×10^{-1}	7.74
Thiosulphuric K1	$H_2S_2O_3$	2.5×10^{-1}	09.0

Table 37 (continued)

Маше	Formula	K_a	pKa
Trichloroacetic Tungstic Valeric (iso-) Valeric (normal) Vanadic (ortho-) K ₂	CCl ₃ COOH H ₂ WO ₄ (CH ₃) ₂ CHCH ₂ COOH CH ₃ (CH ₂) ₃ COOH H ₃ VO ₄	2.0 6.3 × 10-5 1.7 × × 10-5 1.1 × × 10-5 4.0 × 10-5	0.70 4.2 4.78 4.86 8.95 14.4

Bases

Name	Formula	Kb	pK_b
Ammonia solution	NH ₃ + H ₂ 0	1.76×10^{-5}	4.755
Aniline Rarium budravida E	$ C_6H_5NH_2 + H_2O_3$	4.2×10^{-10}	9.38
Benzidine K,	H,NC,H,C,H,NH, + H,O	9.3 × 10-10	9.03
K2	H2NC6H4C6H4NH3+ H2O	5.6 × 10-11	10.25
Calcium hydroxide K ₂ Diethylamine	$(C_0H_1)_2$ H_2O_1	$\times \times$	3.02
Dimethylamine	(CH3)2NH + H20	1.1×10^{-3}	2.97
Diphenylamine	$(C_nH_5)_2NH + H_2O$	X	13.15
Ethanolamine	H,NCH,CH,OH+H20	1.8×10^{-5}	4.75
Ethylamine	CH,CH,NH, + H,0	X	3.33
Ethylenediamine K.	H,NCH,=CH,NH,+ H,0	X	4.04
Ka		X	6.82

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
and incoling K_1 K_2 K_2 oxide ine ine	XX
$\begin{array}{l} \text{no} \\ \text{inoline} \\ \text{de } K_1 \\ K_2 \\ \text{oxide} \\ \text{ine} \\ \text{ine} \\ \text{ine} \\ \\ \text{ne} \end{array}$	XX
$\begin{array}{c} A_1 \\ K_2 \\ X_3 \\ \text{oxide} \\ \text{oxide} \\ \text{ine} \\ \text{ine} \\ \text{ine} \end{array}$	9.6×10^{-9} 1.0×10^{-9}
oxide ine ine ine	X
ine ine ne	8.0 × 10-8 6.8 × 10-1
ine ine ine	X
пе	X 10-11
	1.6 × 10-9 8.80
	× 10-9
Semicarbazide	6.3×10^{-10}
droxide	× 10-3
	× 10-13
Trimethylamine $(CH_3)_3N + H_2O$	8.1 × 10-5
opine (hexamethylene tet-	<
ramine) (CH ₂) $_{6}$ N ₄ + H ₂ O	1.4×10^{-9}

Dissociation Constants of Complex Ions

The subscripts of K denote the number of groups of a ligand of a central atom of a complex which is dissociated by one step, for example, for Fe^{3+} complexes with chloride ions:

$$\begin{split} K_1 &= \frac{\text{[FeCl$^{2+}$] [Cl$^{-}$]}}{\text{[FeCl$^{2+}$]}}\;; & K_2 &= \frac{\text{[FeCl$^{2+}$] [Cl$^{-}$]}}{\text{[FeCl2]}}\;; \\ K_3 &= \frac{\text{[FeCl1] [Cl$^{-}$]}}{\text{[FeCl$_{3}$]}}\;; & K_4 &= \frac{\text{[FeCl$_{3}$] [Cl$^{-}$]}}{\text{[FeCl4]}} \end{split}$$

Two or more subscripts are written for complete dissociation constants of complexes with the corresponding number of groups of a ligand, for example:

$$\begin{split} K_{1,\;2} = & \frac{[\mathrm{Fe^{3+}}] \; [\mathrm{Cl^{-}}]^{2}}{[\mathrm{FeCl_{2}^{+}}]} \; ; \quad K_{1,\;2,\;3} = \frac{[\mathrm{Fe^{3+}}] \; [\mathrm{Cl^{-}}]^{3}}{[\mathrm{FeCl_{3}}]} \; ; \\ K_{1,\;2,\;3,\;4} = & \frac{[\mathrm{Fe^{3+}}] \; [\mathrm{Cl^{-}}]^{4}}{[\mathrm{FeCl_{4}^{+}}]} \end{split} \label{eq:K12}$$

Evidently, $K_{1,2} = K_1 \cdot K_2$; $K_{1,2,3} = K_1 \cdot K_2 \cdot K_3$, etc. The table gives their indices, and not the constants themselves, i.e., the logarithms of the constants taken with an inverse sign:

$$pK_1 = -\log K_1$$
; $pK_2 = -\log K_2$; $pK_{1,2} = -\log K_{1,2}$, etc.

The indices of only complete dissociation constants are given; however, it follows from the above that the indices of the constants of separate dissociation steps can easily be found by the differences:

$$pK_2 = pK_{1,2} - pK_1$$
; $pK_3 = pK_{1,2,3} - pK_{1,2}$, etc. All data are given at temperatures of 20-30 °C.

Central fon	pK1	pK _{1,2}	pK _{1,2,3}	pK _{1,2,3,4}	pK _{1,2,3,4,5}	pK1,2,3,4,5,6	Ionic strength
	I		exes with lexes with			ds	
Ag+ Au+ Au ³⁺ Cd ²⁺ Co ²⁺ Co ³⁺	3.32 ? ? 2.51 1.99 7.3	7.24 27 ? 4.47 3.50 14.0	? 5.77 4.43 20.1	30 6.56 5.07 25.7	6.26 5.13 30.8	4.56 4.39 35.21	0 ? ? 0 0 2

Central ion	pKı	pK _{1,2}	$pK_{1,2,3}$	pK _{1,2,3,4}	pK _{1,2,3,4,5}	pK1,2,3,4,5,6	Ionic strength
Cu ⁺ Cu ²⁺ Fe ²⁺ Hg ²⁺ Mg ²⁺ Mn ²⁺ Tl ²⁺ Tl ³⁺ Zn ²⁺	5.93 3.99 1.4 8.8 0.23 0.8 2.67 -0.9 ?	10.86 7.33 2.2 17.5 0.08 1.3 4.79 - ?	10.06 ? 18.5 -0.34 ? 6.40 ? 6.74	12.03 3.7 19.3 -1.04 ? 7.47 17 (?) 8.70	11.43 — -1.99 ? 8.10 —	8.9 	2 0 0 2 2 2 0 2 ? 0
		Bro	mide con	nplexes (Br-)		
Ag+ Au+ Au+3+ Bi3+ Cd2+ Ce3+ Co2+ Cu2+ Fe3+ Hg2+ Hn3+ Ni2+ Pb2+ Pt2+ SnOH+ Tl3+ UO2+ Zn2+	4.38* ? 2.26 2.23 0.38 -2.30 ? -0.03 0.55 9.05 1.20 -0.12 2.23 ? 0.73 0.70* 0.95 9.7 -0.20 -0.8	7.34 12.46 ? 4.45 3.00* — 5.92 ? 0.82 17.33* 1.78 —3.24* 3.00* ? 1.14* 1.01 16.6 ? —2.2*	8.00 ? 6.33* 2.83 — — 19.74 2.48* ? 2.83 ? 1.35 — 0.6 21.2* — —	8.73 31.5 7.84 2.93 21.00 3.33 21.30 20.5	9.42	9.52	0 ? ? 2 0 0 0 0 0 .5 1 ? 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0.10		Complexe	s with 1	hydrazine	(N ₂ H ₄)		
Cd ²⁺ Ni ²⁺ Zn ²⁺	2.25 2.76 3.40	2.40 5.20 3.70	2.78 7.35 3.78	3.89 9.20 3.88	10.75	11.99	$\begin{bmatrix} 1\\0.5\\1 \end{bmatrix}$
Zn2+	Com. 0.40	plexes w	ith hyd	roxylamin	ie (NH ₂	OH)	1 1
* N		ecules in	-	1 -	-	-	1

Table 38 (continued)

Central ion	pK1	pK _{1,2}	pK _{1,2,3}	pK _{1,2,3,4}	pK _{1,2,3,4,5}	pK1,2,3,4,5,6	Ionic strength
		Hydi	roxocomp	lexes (OH	-)		
Ag ⁺ Al ³⁺ AsO ⁺ Ba ²⁺ Ba ²⁺ Bca ²⁺ Cca ²⁺ Cca ²⁺ Cco ²⁺ Cr ³⁺ Ccu ²⁺ Fe ³⁺ Hg ²⁺ Hg ²⁺ Hg ²⁺ Hg ²⁺ Hg ²⁺ La ³⁺ Li ⁺ Mn ²⁺ Sb ³⁺ Ssn ²⁺ Ssn ²⁺ Tl ⁴⁺ Tl ³⁺ U ⁴ U ² VO ²⁺ VO ²⁺ VO ²⁺ VO ²⁺ Zr ⁴⁺	2.30* 9.04 14.33* 0.85 7.48 12.4 1.46 4.17 4.6 13.28 4.4 10.1 7.0 5.56 11.87 11.0 9.0 10.30 9.9 3.30 0.17* 2.58 3.90 4.97 6.9 ? 11.86 ? 0.82* 12.86 13.3 9.8 11.1 8.6 ? 4.40 14.32 (eutral mole)	4.0 ? 18.73 - 15.8 - 8.33* - 27.06 4.6* 17.8 13.68* 9.77* 21.17 21.70* 19.8 ? ? ? ? 8.55* 10.8* 24.3 20.64* ? - 21.2 - 25.37 ? 18.6* 25.2 11.3* 28.26	5.2 ? 20.60 	33.0 21.2 	38.0 	40.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Central ion	pKi	pK _{1,2}	pK _{1,2,3}	pK _{1,2,3,4}	pK _{1,2,3,4,5}	pK _{1,2,3,4,5,6}	Ionic strength
		Hypoph	osphite C		(H ₂ PO ₂)		
$\mathrm{Fe^{3+}}$	2.77	-	1 -	1 -	1 -	1 -	1 ?
		Ind	ate comp	lexes (I	$O_3^-)$	•	
Ag ⁺ Ba ²⁺	0.63*	1.90	-	1 -	1 -	-	1 0
Ca ²⁺	1.1						0
Cu2+	0.89	_	-	_	Wine.	_	0
Mg ²⁺	$0.82 \\ 0.72$		· ·			-	0
Sr2+	0.72	_	-	_	_		0
ThIV			_		_		0
Tl+	2.88	4.79	7.15	-	-	_	0.5
11.	0.50*	-	_	_	-	_	0
		Io	dide com	plexes (I	-)	•	
Ag+	6.58*	11.74	13,68	13.10	í -		1 0
Bi ³⁺ Cd ²⁺	2.89	3	?	14.95	16.80	19.1	0
Cu+	2.28	3.92*	5.00	6.10	-		0
Fe ³⁺	?	8.85	_	-	_	_	0
Hg2+	1.88	3	3		_		0
In3+	1.64	23.82*	27.60	29.83			0.5
Pb2+	1.26	2.56	2.48*	, -	_	_	0.7
Tl+	1.41*	2.80* 1.82	3.42	3.92		-	1
T]3+	11.41	20.88	2.0	1.6	_		5
Zn2+	-2.9	-1.6*	27.60*	31.82		_	0
	2.0		-1.7	-2.3	-		4.5
7 0.		Carbon	ate comp	lexes** ($CO_3^{2-})$		
Ca ²⁺ Cu ²⁺	3.2*	-	-	_	1	1	1 0
Mg ²⁺	6.0*	10.0	_	_	_		0
UO2+	3.40*	-	-		1		0
002	r	14.6	18.3	-	_		0
1 0 +		Nitr	ate comp	lexes (NO)=)		,
Ag+ Ba ²⁺	-0.29*	-	-	- (3 /	1	1 0
Bi ³⁺	0.92	-	_				0
Ca ²⁺	1.26	-	-	-			0.1
Cd2+	0.28	-	-				0
Ce3+	0.40	-	-	-			0
Fe3+	1.04	1.51		1111	=		2 0
-	1.0	lecules in		_			0

^{*} Neutral molecules in solution. ** For Ca(HCO₃)₂ and Mg(HCO₃)₂, pK₁ is equal to 1.26 and 1.16, respectively.

Table 38 (continued)

Central Ion	pKı	pK,,2	pK _{1,2,3}	pK _{1,2,3,4}	pK1,2,3,4,5	pK _{1,2,3,4,5,6}	lonic strength
Hf ^{IV} Hg ² ₂ + Hg ² ₂ + La ³ ₃ + Pb ² ₄ - PuIV Sr ² ₇ + ThIV UO ² ₂ + Zr ^{IV}	0.92 0.08 0.35 -0.26 1.48 0.54 0.82 0.78 0.33* 0.92 0.36 -1.4* 0.34	1.51 -0.24* -0* 1.11 0.47 -1.4* 0.11	1.89 1.00 0.42 -0.5 -0.26	2.08* 0.74* 0.18*0.82*	2.08	1.81	4 0.5 1 0 1 0 2 0 0.6 4 1
Ag+ Cd ²⁺ Cu ²⁺ Hg ²⁺	1.88* 1.80 1.26	2.83 3.01* 1.56*	3.81 1.16 ?	exes (NO 3.1 13.54		- - -	? 3 5 ?
Ce ³⁺ Fe ³⁺ Hg ₂ ²⁺	1.91 1.15 -0.05	Perchlo	orate com — —	plexes (C		=	0 0 ?
Ba ²⁺ Ca ²⁺ Cd ²⁺ Ce ³⁺ Co ²⁺ Cu ²⁺ Fe ³⁺ Li ⁺ Mg ²⁺ Na ⁺	4.64 5.00 5.6 17.15 4.0 ? 5.20 ? 2.3 2.39 5.70 2.22 5.82	Pyrophos 4.18 26.72 10.30 5.55 7.19	phate col	nplexes (P ₂ 0 ⁴ -)	111111111111	? 3.5 ? ? ? 0.02 0.1

Central ion	pK_1	$pK_{1,2}$	pK _{1,2,3}	PK1,2,3,4	pK _{1,2,3,4,5}	pK1,2,3,4,5,6	Ionic strength
Pb ²⁺ Sn ²⁺ Sr ²⁺ Tl ⁺ Zn ²⁺	11.24 14 4.66 1.69 8.7	16.5 — 1.9 11.0	11111	11111	11111	- - - -	0.1 ? ? 2 ?
C. 24 1			phate con	nplexes ((HP ₂ O ₇ ³⁻)		
Cu ²⁺ Li ⁺ Na ⁺	6.4 1.03 1.52	10.0	-		_	=	? 1 0
	P	yrophosp	hate con	plexes (H ₂ P ₂ O ₇ ²⁻)		
Sn ²⁺ SnOH+	4.48* 5.48	6.08 7.30	_	=	_	-	2 2
		Rhoda	nide com	plexes (S	CN-)		
Ag+ Au ³⁺ Au ³⁺ Bi ³⁺ Cd ²⁺ Co ²⁺ Cr ³⁺ Cu ²⁺ Fe ³⁺ Hg ²⁺ In ³⁺ Ni ²⁺ Pb ²⁺ TioH ³⁺ TioH ³⁺ Ud ⁴⁺ Uo ² ₂ + Zn ²⁺ ZnOH+	0.80* 1.49 0.93 1.7	8.23 25 ? 2.26 2.33* 4.8 12.11 3.65* 0.07* 4.33 17.47* 3.60 1.64* 2.52* ? 0.65 1.95 0.91* ?	9.45 ? ? 2 2.3 5.8* 9.90 5.19 4.63* 1.81 ? 1.78 0.2 2.18 1.35 2.2 2.66	9.67 42.00 3.41 ~3 2.2 6.1 10.05 6.52 4.53 19.77 — 0.85 — 0 — 3.7 —	42.00 ? - 5.4 9.59 - 4.23 - ? - - -	42.04 4.23 	0 0 0 0 0 1 0 0 0 2 2 1 1 0 0 1 1

^{*} Neutral molecules in solution.

Table 38 (continued)

Central ion	pK1	pK1,2	pK _{1,2,3}	pK1,2,3,4	pK1,2,3,4,5	pK1,2,3,4,5,6	Ionic strength
		Selena	te compl	lexes (Set	02-)		
Cd2+	2.27* 2.19*	-	-	-	_	_	0 0
Zn2+	2.19*						1 0
			ite compi	lexes (Se	$O_{3}^{5-})$		
Cd2+	5	5.15	-	****		_	1 1
Hg ²⁺	3	12.48	_	_	_	_	1 1
		Sulph	ate comp	olexes (St	$O_4^{9-})$		
Al3+	3.2	5.1	-	-	-		0
Ag+	0.23	0.28	-	_		_	3 0
Ba2+	2.36*	_	-		_		0
Ca2+	2.31*	? ? 7.4 5.58*	3	-	***		0
Cd2+	2.31*	3	ľ	_	_	_	0
Ce3+	3.37	_	_	_			9
Ce4+	3.3			_	_		0
Co2+	2.47*	_	_		_	_	2 7
Co3+	1.34	2	_		_	_	0.,
Cu2+	2.36*	r	_		-		0
Fe ²⁺	2.30*	7 4		_	-	_	ő
Fe3+	4.18	5 50#		_		-	0 2 0 2.7 0 0 0 0 2.5
Hf4+	3.11	2.40			_	-	0.5
Hg2+	1.30*	2.3	-	_	_	-	0.5
Hg ²⁺ In ³⁺	1.85	2.60	3.00	_	-	_	1
K+	0.96		0.00	_	-	-	1 0
La ³⁺	3.82	_	_	_			0
Li+	0.64			-	-	-	0
Mg ²⁺	2.36*	_	_	-	_		0
Mn ²⁺	2.28*		_		-	-	0
Na+	0.72	_	_	-		_	0
Ni2+	2.34*	_		_			0
Pb2+	3.7*	1.62	_		-		0
Pu3+	1.0	1.62	_	-		-	2
Pu4+	3.66	_	6.46	4.44			1
Th4+	3.32	5.70*	_		_		2
TiO2+	2.40*	_		-		_	5
Tl+	1.37	-	6.46				0 0 2 1 2 ? 0 2
U4+	3.24	5.42*	- Grands		_	-	2

Central ion	pK1	pK _{1,2}	pK _{1,2,3}	pK _{1,2,3,4}	pK1,2,3,4,5	pK _{1,2,3,4,5,6}	Tonic strength
UO_{2}^{2+} VO_{2+} Zn_{2+} Zr_{4+}	2.72* 2.48* 2.34* 3.79	4.20 - 6.64*	7.77	-	-	= = =	0 0 0 2
Ag+	1 5 60			plexes (SC)3-)		
Cd ²⁺ Cu ⁺ Hg ²⁺ Tl ³⁺	5.60 ? 7.85 ? ?	8.68 4.19 8.70 24.07	9.00 9.36 24.96 ?	34		=======================================	0 1 1 0 0 ?
			phate con	mplexes ($S_2O_3^{2-})$		
Ag+ Ba2+ Ca2+ Cd2+ Cu+ Fe3+ Hg2+ K+ La3+ Mg2+ Mn2+ Ni2+ Pb2+ Sr2+ Tl+ Tl3+ Zn2+	8.82 2.33* 1.91* 3.94* 2.05* 10.27 ? 2.0* 2.10 1.00 0.8 1.79* 1.95* 0.58 2.06* 2.7* 2.04* 1.91 ?	13.46 	14.15 - 8.2 13.84 - 32.26 - - 6.35 - ?	? 			000000000000000000000000000000000000000
Ba ²⁺ Ca ²⁺ La ³⁺ Mg ²⁺	5.42 6.66 5.17	trametap	1111	complexe.	(P ₄ O ₁₂)	=	0 0 0 0

Table 38 (continued)

Central ion	pKı	pK _{1,2}	pK1,2,3	PK4,2,3,4	pK1,2,3,4,5	pK1,2,3,4,5,6	Ionic strength
Mn ²⁺ Ni ²⁺ Sr ²⁺	5.74 4.95 5.15		-		=		0 0 0
	7	rimetaph	osphate	complexe	s (P ₃ O ₉ ³ -))	
Ba ²⁺ Ca ²⁺ La ³⁺ Mg ²⁺ Mn ²⁺ Na ⁺ Ni ²⁺ Sr ²⁺	3.35 3.45 5.70 3.31 3.57 1.17 3.22 3.35	- - - - - -					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		_	hate com	plexes (I	O ₄ -)		
Ce3+	18.53*	•	l — hate comp	1 —	—	1 -	1 0
Ca^{2+} Fe^{3+} Mg^{2+}	2.70* 9.75 2.50*	=	=	=	=	-	0 0 0
PuIV	12.9	23.7*	33.4	43.2	52.0	_	2
			ate comp	lexes (H ₂	$PO_4^-)$		
Al^{3+} Ca^{2+} Cu^{2+} Fe^{3+} UO_2^{2+}	1.08 ? 3.5 3.00	~5.3 - 1.49* ? 5.43*	~7.6* - ? 7.33	9.15			0.1 0 0 ?
		Phosph	ate comp	lexes (H	$_3PO_4)$		
$rac{\mathrm{Pu}^{\mathrm{IV}}}{\mathrm{Th}^{\mathrm{IV}}}$ UO_{2}^{2+}	2.3 1.89 <1.8	3.9	5.3		- -	-	2 2 0
		Fluo	ride com	plexes (1	F-)		
Ag+ Al³+ Ba²+	0.36* 7.10 <0.45	11.98	15.83*	18.53	20.20	20.67	0 0
* N	eutral mol	ecules in s	olution.				

Central ion	pK1	$^{ m pK_{1,2}}$	PK1,2,3	$^{\mathrm{p}K_{1,2,3,4}}$	PK1,2,3,4,5	pK1,2,3,4,5,6	Ionic strength
Be^{2+} Ca^{2+} Cd^{2+} Cd^{2+} Ce^{3+} Cr^{3+} Ga^{3+} Hg^{2+} In^{3+} Ia^{3+} Mg^{2+} Mn^{3+} Sc^{3+} Sh^{4+} Th^{4+} Th^{4+} Th^{4+} TiO^{2+} YO^{2+} Yo^{3+} Zn^{2+} Zn^{2+}	5.89 <1.04 0.46 3.99 5.20 1.23 6.04 4.5 1.56 4.63 3.56 1.82 5.76 7.94 7.08 4.85 ? 7.65 0.10* 5.4 4.3 4.81 1.26 9.80	10.83* - 0.53* - 8.54 - 10.74 8.3 - 7.41 12.88 ? 13.46 9.8* 7.7* 5.5* 8.54 - 17.37	14.39* 11.02* 13.74* 11.0* 10.23* 17.33* 17.97 13.8 10.3 7.2 12.14* 23.45	16.38	16.10 12.8 ————————————————————————————————————	~16.10	? 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
_		Chlo	rate comp	lexes (Cl	O_3^-)		
Ba ²⁺ Ag ⁺ Th ⁴⁺ Tl ⁺	0.7 0.22* 0.26 0.47*		1111	-	=	=	0 0 0.5 0
		Chlo	oride com	plexes ((Cl-)		
Ag+ Au+ Au3+ Bi3+ Cd2+ Ce3+ Cr3+ Cu+	3.04* ? 2.43 2.05 0.22 0.60 ?	5.04 9.42 ? 4.7 2.60* -0.11 5.35	5.04 ? 5.0* 2.4 — 5.63	5.30 21.30 5.6 2.9	6.1	6.42	0 0 0 1 0 0 ?

Table 38 (continued)

Central fon	pK1	pK _{1,2}	pK _{1,2,3}	pK _{1,2,3,4}	pK1,2,3,4,5	pK1,2,3,4,5,6	Ionic strength
Cu ²⁺ Fe ²⁺ Fe ³⁺ Ga ³⁺ Hg ²⁺ In ³⁺ Ir ³⁺ La ³⁺ Mn ³⁺ MnO ²⁺ Pb ²⁺ Pt ²⁺ Pu ⁴⁺ PuO ²⁺ SnOH+ Tl ³⁺ Ud+ UO ²⁺ VO ²⁺ Zn ²⁺	0.07 0.36 1.45 -0.6 6.74 1.0 ? -0.15 0.95 -0.3 1.62 6.1 ? 1.17 -0.25 0.10 1.51 1.04* 1.38 0.52* 8.14 0.85 -0.1 0.04 -0.9	-0.57* 0.40* 2.10 -2.3 13.22* 1.5 ? -0.8* 2.44* 10.5* ? -0.35* 2.24* -0.38 0.09 13.60 -0.92* -1.0* 1.3	-2.1 -1.10* -4.5* 14.07 1.55*2.69 2.04 12.9 14.00 - 2.03 -0.23 -0.8 15.78*2.62 - 0.0 1.5		13.4	14.00	0 2 0 0 0 0 0 1 2 0 0 0 0 0 1 2 0 0 0 0
	0.0	Cyana	•	lexes (C)	NO-)		0.0
Ag+	?	5.00	_	-	1 –	1 -	0
8	•		nide comp	olexes (C)	N-)		0
Ag+ Au+ Au3+ Cd2+ Co2+ Co3+ Cu+ Fe2+ Fe3+	? ? 5.18 ? ?	19.85 38.3 ? 9.60* — 24.0	20.55 -? 13.92 ? ? 28.6	19.42 56 17.11 ? ? 30.3 ?	15.7	19.09 64 — 24 31	0 0 0 ? 5 ? 0

Central ion	pKı	PK4.2	pK _{1,2,3}	pK _{1,2,3,4}	pK1,2,3,4,5	pK1,2,3,4,5,6	Ionic strength
Hg ²⁺ Ni ²⁺ Tl ³⁺ Zn ²⁺	18.0	34.70* ? ? ?	38.53 ? ? 17	41.51 31.0 35 19	30.3		0 0 0 ?
B. Con	nplexes w			nds res (CH ₃ C	COO-)		
$\begin{array}{c} Ag^{+}\\ Ba^{2+}\\ Ca^{2+}\\ Ca^{2+}\\ Cd^{2+}\\ Ce^{3+}\\ Cu^{2+}\\ Fe^{3+}\\ In^{3+}\\ Mg^{2+}\\ Mn^{2+}\\ Mi^{2+}\\ Fb^{2+}\\ Tl^{3+}\\ UO_{2}^{2+}\\ Zn^{2+} \end{array}$	0.73* 0.41 0.77 1.30 1.68 2.24 3.2 3.50 0.82 1.2 1.12 2.52 0.44 -0.11* ? 2.38 1.57	0.64 	2.42 3.23* - 8.3 7.90* - 6.4 - ? 6.34	2.00 2.00 			0 0 0 3 1 0 0 0.1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{array}{c} {\rm Al}^{3+} \\ {\rm Ba}^{2+} \\ {\rm Be}^{2+} \\ {\rm Ca}^{2+} \\ {\rm Cd}^{2+} \\ {\rm Co}^{2+} \\ {\rm Cu}^{2+} \\ {\rm Fe}^{2+} \\ {\rm Fe}^{3+} \\ {\rm Mg}^{2+} \\ {\rm Mn}^{2+} \end{array}$	7.3 2.3* ~4* ~3* 4.00* 6.52 4.7* 6.7* ? 9.4 2.55* 3.82*	Oxala 13 -6.5 -5.77 10.48 6.7 10.3 4.52 16.2 4.38 5.25	16.3 11.30 9.7 5.22 20.2	dexes (CC	00)2-		0 0 0 0 0 0 0 0 0.3 0.5 0

Table 38 (continued)

Gentral fon	pK1	${\rm p}K_{1,2}$	pK1,2,3	pK1,2,3,4	pK1,2,3,4,5	pK1,2,3,4,5,6	Ionic strength
Mn ³⁺ Nd ³⁺ Ni ²⁺ Pb ²⁺ Sr ²⁺ Tl ⁺ Yb ³⁺ Zn ²⁺	9.98 7.21 >5.3* ? 2.54* 2.03 7.30 5.00*	16.57 11.51 6.51 6.54 11.89 7.36	19.42 >13.5 ~14 	- - - - - - - xyquinoli		 NO)-	2 0 0 0 0 0 0 0
$\begin{array}{c} \text{Ba}^{2+} \\ \text{Ca}^{2+} \\ \text{Cd}^{2+} \\ \text{Cd}^{2+} \\ \text{Cu}^{2+} \\ \text{Fe}^{2+} \\ \text{Fe}^{3+} \\ \text{Mg}^{2+} \\ \text{Mn}^{2+} \\ \text{Ni}^{2+} \\ \text{Fb}^{2+} \\ \text{Sr}^{2+} \\ \text{Th}^{4+} \\ \text{UO}^{2+}_{2+} \\ \text{Zn}^{2+} \end{array}$	2.07 3.27 7.2 9.1 12.2 8.0 12.3 4.74 6.8 9.9 9.02 2.56 10.45 11.25 8.50		33.9* 				0 0 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0 0
Ag+ Cd ²⁺ Co ²⁺ Cu+ Cu ²⁺ Fe ²⁺ Hg ²⁺ Ni ²⁺ Zn ²⁺	1.97 1.27 1.14 ? 2.52 0.71 5.1 1.78 1.41	4.35 2.14 1.54 3.3 4.38 ? 10.0 2.82 1.11	2.3 — 5.69 ? 10.4 3.13 1.61	yridine (-		0 0.1 0.5 7 0.5 0.5 0.5 0.5 0.5
Al ³⁺ **Ca ²⁺	14.11 0.36*	Salicylate Colecules in Ca ²⁺ + H	solution.	-	=	=	0 0.16

Central fon	pKı	pK _{1,2}	PK1,2,3	PK1.2.3.5	pK1,2,3,4,5	PK1,2,3,4,5,6	Ionic strength
Cu ²⁺ Fe ²⁺ Fe ³⁺ Ni ²⁺ Th ⁴⁺ UO ₂ ²⁺	10.6* 6.55* 16.48 6.95* 4.25 4.91*	18.45 11.25 28.16 11.75 7.60*	36.84	11.60		-	0.1 0.1 0.25 0.1 0.1
. 10.		salicylate		es [CoH30	O(COO)(S	$[O_3)]_{3-}$	
Al ³⁺ Be ²⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Mn ²⁺ UO ²⁺	13.20* 11.71 9.52 5.90 15.02* 5.24 11.14	22.83 20.81 16.45 9.90 25.76 8.24 19.20	28.89 — — 32.60 —	-			0.1 0.1 0.1 0.1 0.1 0.1
	Te	artrate c	omplexes	(CHOH) ₂	(COO)]2-	0	
Ba ²⁺ Ca ²⁺ Cu ²⁺ Fe ³⁺ Mg ²⁺ Pb ²⁺ Sr ²⁺ Zn ²⁺	2.54* 2.98* 3.00* 7.49 1.36* 3.78* 1.59* 2.68*	9.01 5.11 — — —	5.76	6.20			0 0 1 ? 0.2 ? 0.46 0.2
	Com	plexes w	ith phen	anthrolin	e (C ₁₂ H ₈	N_2)	
Ag ⁺ Ca ²⁺ Cd ²⁺ Co ²⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Zn ²⁺	5.02 0.5 6.4 7.25 9.25 5.85 6.5 6.43	12.07 	15.8 19.90 21.35 21.3 23.5 17.0				0.1 0.5 0.1 0.1 0.1 0 0.1 0.1
	Cit	rate comp	olexes [(C	H ₂) ₂ C(OH	I)(COO)3]3-	
Ba ²⁺ Be ²⁺ Ca ²⁺	2.84 4.52 4.85	_		=	=		0.08

Table 38 (continued)

Central ion	pKı	pK1,2	pK _{1,2,3}	pK _{1,2,3,1}	pK _{1,2,3,4,5}	PK1,2,3,4,5,6	Ionicstrength
Cd2+	5.36	_	_	_		-	0 0.06 0 1 0.1
Co2+	4.83	Section 2	-	game.			0.06
Cu ²⁺	14.21	-	_	0000	111111		0
Fe ²⁺	3.08	-		was			1
Fe ³⁺	11 7*		111111			-	0.1
Mg ²⁺	11.7* 3.29		-	-		-	1 - 0.09
Mn ²⁺	3.67				ew nam		0.15 0.15
Ni2+	5.11		-	-	1	-	0.15
Pb2+	6.50	-		-		-	0 0.15
Sr2+	2.90		-	-	-	errigina.	0.15
UO2+	7.40	married .	-	1			0.1
	Citrate	complexe	s [(CH ₂) ₂	C(OH)(C	оон)(со	O)2]2-	
Be ²⁺	2.22*		-	_			0.15
Ca ²⁺	3.29*		_				0
Fe ²⁺	2 12*		=	_ _ _	_	- - -	0 0 1 0
Fe ³⁺	2.12* 6.3	_	_	-	-	-	1
Pb2+	5.72*				-	_	0

Ethylenediaminetetraacetate complexes

(Ethylenediam inetetra acetic acid, H_4Y) (Ionic strength = 0.1)

Central ion	pK ₁ HY3-	pK_1Y^{4-}	Central ion	pK ₁ HY3-	pK ₁ Y4-
Ag+	3.07	7.32	Ba ²⁺	2.07	7.78
Al ³⁺		16.13	Ca ²⁺	3.51	10.57

Table 38 (continued)

Central ion	pK ₁ HY3-	pK ₁ Y4-	Central ion	pK ₁ HY3-	pK ₁ Y4-
Cd ²⁺ Ce ³⁺ Co ²⁺ Co ³⁺ Cr ³⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Ga ³⁺ Hg ²⁺ In ³⁺ La ³⁺ Mg ²⁺ Mn ²⁺	9.10 ? 9.15 ? ? 11.54 6.86 16.2* 11.39* 14.6 ? ? 2.28 6.9	16.59 16.01 16.21 36 24.0 18.80 14.33 25.10 20.27 21.80 24.95 15.19 8.69 14.04	Na+ Ni ²⁺ Pb ²⁺ Pd ³⁺ Sc ³⁺ Sr ²⁺ Ti ³⁺ TiO ²⁺ TiJ ³⁺ V ²⁺ V ³⁺ VO ²⁺ Zn ²⁺	-11.56 10.61 ? ? 2.30 ? ?	1.66 18.62 18.04 18.5 23.1 8.63 23.2* 21.3 17.3 5.8 12.70 25.9 18.77 16.50

Mobility of Selected Ions at 25 $^{\circ}\mathrm{C}$ and Infinite Dilution

Equivalent conductivity (ohm-1-cm²) of the electrolyte λ_{BA} is numerically equal to the sum of the mobilities of both ions: $\lambda_{BA}==\lambda_{B^+}+\lambda_{A^-}$

Cations	λВ+	Anions	λ _A -
1+ 3+	362 76 76 75 73 68 66 64 62 62 57 56 55 54 52 39	OH- 1/4 Fe(CN) ₆ ⁴ - 1/3 Fe(CN) ₆ ⁵ - 1/2 SO ₄ ² - 1/2 CrO ₄ ² - Br- 1/3 PO ₄ ³ - I- Cl- NO ₃ 1/2 C ₂ O ₄ ² - ClO ₄ 4/2 CO ₃ ² - HCO ₃ CH ₃ CO ₂ IO ₃	205 114 104 83 82 81 80 79 74 74 77 70 46 42 41

Standard Oxidizing Potentials (E^0) Relative to the Potential of a Standard Hydrogen Electrode* at 25 °C

(\downarrow = saturated solution in the presence of a solid or liquid substance; \uparrow = solution saturated with gas under a pressure of 1 atm)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Ag	Ag ²⁺ Ag ⁺ Ag ⁺ AgBr \(\) AgBrO ₂ \(\) AgCo ₁ \(\) AgCo ₂ \(\) AgCN \(\) Ag(CN) \(\) Ag(CN) \(\) Ag(CN) \(\) Ag(CN) \(\) Ag(CO) \(\) Ag2CO ₃ \(\) Ag2CO ₄ \(\) Ag2CrO ₄ \(\) Ag2Fe(CN) \(\) Ag1 \(\) Ag1 \(\) Ag1 \(\) Ag1 \(\) Ag1 \(\) Ag1 \(\) Ag1 \(\) Ag1 \(\) Ag1 \(\) Ag1 \(\) Ag1 \(\) Ag2MoO ₄ \(\) Ag1 \(\) Ag1 \(\) Ag1 \(\) Ag2MoO ₂ \(\) Ag1 \(\) Ag2MoO ₂ \(\) Ag2MoO ₂ \(\) Ag2MoO ₃ \(\) Ag2NO ₃ \(\) Ag2NO ₃ \(\) Ag2O ₃ \(\) Ag2O ₃ \(\) Ag2O ₃ \(\) Ag2O ₃ \(\) Ag2SO ₄ Ag2SO ₄ Ag2WO ₄ \(\)	+e +e +e +e +e +e +2e +2e +4e +e +2e +e +e +2e +e +e +e +e +e +e +e +e +e +e +e +e +e	Ag+ Ag	$\begin{array}{c} +2.00 \\ +0.7994 \\ +0.071 \\ +0.55 \\ +0.64 \\ -0.04 \\ -0.29 \\ -0.51 \\ +0.41 \\ +0.46 \\ +0.472 \\ +0.494 \\ -0.152 \\ +0.35 \\ +0.39 \\ +0.39 \\ +0.60 \\ \sim +2.1 \\ +0.344 \\ -0.71 \\ +0.09 \\ +0.373 \\ +0.59 \\ +0.60 \\ \sim +2.1 \\ +0.344 \\ -0.71 \\ +0.09 \\ +0.35 \\ -0.53 \\ +0.53 \\ +0.53 \\ \end{array}$
Al	Al ³⁺ AlO ₂ + 2H ₂ O Al(OH) ₃ \ AlF ₈ -	+3e +3e +3e +3e	Al + 40H- Al + 30H- Al + 6F-	$\begin{array}{r} -1.66 \\ -2.35 \\ -2.31 \\ -2.07 \end{array}$

^{*}For the use of the table, see p. 476.

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
As	$As \downarrow + 3H^{+}$ $As \downarrow + 3H_{2}O$ $HAsO_{2} + 3H^{+}$ $H_{3}AsO_{4} + 2H^{+}$ $AsO_{2}^{-} + 2H_{2}O$ $AsO_{3}^{3} - + 2H_{2}O$	+3e +3e +3e +2e +3e +2e	$AsH_3 \uparrow + 3OH^- \\ As \downarrow + 2H_2O \\ HAsO_2 + 2II_2O \\ As \downarrow + 4OH^- \\ AsO_7 + 4OH^-$	$\begin{array}{c} -0.60 \\ -1.37 \\ +0.247 \\ +0.56 \\ -0.68 \\ -0.71 \end{array}$
Au	$\begin{array}{c} {\rm Au^{3+}} \\ {\rm Au^{3+}} \\ {\rm Au^{+}} \\ {\rm AuBr_{4}^{-}} \\ {\rm AuBr_{4}^{-}} \\ {\rm AuCl_{2}^{-}} \\ {\rm AuCl_{4}^{-}} \\ {\rm AuCl_{4}^{-}} \\ {\rm AuCSCN)_{2}^{-}} \\ {\rm Au(SCN)_{4}^{-}} \\ {\rm Au(SCN)_{4}^{-}} \\ {\rm Au(SCN)_{4}^{-}} \end{array}$	+2e +3e +c +2e +3e +c +2e +3e +2e +3e +3e +3e	$\begin{array}{c} Au^{+} \\ Au \downarrow \\ Au \downarrow \\ Au \downarrow + 2Br^{-} \\ AuBr_{2}^{-} + 2Br^{-} \\ Au \downarrow + 4Br^{-} \\ Au \downarrow + 2CN^{-} \\ Au \downarrow + 2Cl^{-} \\ Au \downarrow + 2Cl^{-} \\ Au \downarrow + 4Cl^{-} \\ Au \downarrow + 4Cl^{-} \\ Au \downarrow + 4SCN^{-} \\ Au \downarrow + 4SCN^{-} \\ Au \downarrow + 4SCN^{-} \end{array}$	$\begin{array}{c} +1.41 \\ +1.50 \\ +1.68 \\ +0.96 \\ +0.82 \\ +0.87 \\ -0.61 \\ +1.11 \\ +0.93 \\ +0.99 \\ +0.7 \\ +0.69 \\ +0.66 \end{array}$
В	${}^{\mathrm{H_3BO_3}}_{\mathrm{H_2BO_3}} + {}^{\mathrm{3H^+}}_{\mathrm{H_2O}}_{\mathrm{BF_4^-}}$	+3e +3e +3e	B ↓ + 3H ₂ O B ↓ + 4OH- B ↓ + 4F-	-0.87 -1.79 -1.04
Ba	Ba ²⁺	+2e	Ba↓	-2.90
Be	$\frac{\mathrm{Be^{2+}}}{\mathrm{Be_{2}O_{3}^{2-}}} + 3\mathrm{H_{2}O}$	+2e +4e	Be↓ 2Be↓+6OH-	-1.85 -2.62
Bi	$\begin{array}{c} \text{BiO}^{+} + 2\text{H}^{+} \\ \text{Bi}\downarrow + 3\text{H}^{+} \\ \text{NaBiO}_{3}\downarrow + 4\text{H}^{+} \\ \text{BiCl}_{4}^{-} \\ \text{Bi}_{2}\text{O}_{4}\downarrow + 4\text{H}^{+} \\ \text{Bi}_{2}\text{O}_{3}\downarrow + 3\text{H}_{2}\text{O} \\ \text{BiOCl}\downarrow + 2\text{H}^{+} \end{array}$	+3e +3e +2e +3e +2e +2e +6e +3e	$\begin{array}{c} \text{Bi} \downarrow + \text{H}_2\text{O} \\ \text{BiH}_3 \uparrow \\ \text{BiO}^+ + \text{Na}^+ + 2\text{H}_2\text{O} \\ \text{Bi} \downarrow + 4\text{Cl}^- \\ 2\text{BiO}^+ + 2\text{H}_2\text{O} \\ \text{Bi}_2\text{O}_3 \downarrow + 2\text{OH}^- \\ 2\text{Bi} \downarrow + 6\text{OH}^- \\ \text{Bi} \downarrow + \text{H}_2\text{O} + \text{Cl}^- \end{array}$	$\begin{array}{c} +0.32 \\ < -0.8 \\ > +1.8 \\ +0.16 \\ +1.59 \\ +0.56 \\ -0.46 \\ +0.16 \end{array}$
Br	$\frac{\text{Br}_2}{\text{Br}_3}$ 2HBrO + 2H+ 2BrO- + 2H ₂ O	+2e +2e +2e +2e	2Br ⁻ 3Br ⁻ Br ₂ + 2H ₂ O Br ₂ + 4OH ⁻	+1.087 $+1.05$ $+1.6$ $+0.45$

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E°, V
Br	$\begin{array}{c} {\rm HBrO} + {\rm H}^{+} \\ {\rm BrO}^{-} + {\rm H}_{2}{\rm O} \\ {\rm BrO}^{-}_{3} + 5{\rm H}^{+} \\ {\rm BrO}^{-}_{3} + 2{\rm H}_{2}{\rm O} \\ 2{\rm BrO}^{-}_{3} + 12{\rm H}^{+} \\ 2{\rm BrO}^{-}_{3} + 6{\rm H}_{2}{\rm O} \\ {\rm BrO}^{-}_{3} + 6{\rm H}^{+} \\ {\rm BrO}^{-}_{3} + 3{\rm H}_{2}{\rm O} \end{array}$	$ \begin{array}{r} +2e \\ +2e \\ +4e \\ +4e \\ +10e \\ +6e \\ +6e \\ \end{array} $	$\begin{array}{c} {\rm Br^- + H_2O} \\ {\rm Br^- + 2OH^-} \\ {\rm HBrO + 2H_2O} \\ {\rm BrO^- + 4OH^-} \\ {\rm Br_2 + 6H_2O} \\ {\rm Br_2 + 12OH^-} \\ {\rm Br^- + 3H_2O} \\ {\rm Br^- + 6OH^-} \end{array}$	+1.34 +0.76 +1.45 +0.54 +1.52 +0.50 +1.45 +0.61
С	$\begin{array}{c} \text{CH}_3\text{OH} + 2\text{H}^+ \\ \text{C}_2\text{H}_5\text{OH} + 2\text{H}^+ \\ \text{C}_6\text{H}_4\text{O}_2 + 2\text{H}^+ \\ \text{(quinone)} \\ \text{(CN)}_2 \uparrow + 2\text{H}^+ \\ 2\text{HCNO} + 2\text{H}^+ \\ \text{HCNO} + 2\text{H}^+ \\ \text{CNO}^- + \text{H}_2\text{O} \\ \text{HCHO} + 2\text{H}^+ \\ \text{CH}_3\text{CHO} + 2\text{H}^+ \\ \text{HCOOH} + 2\text{H}^+ \\ \text{HCOOH} + 2\text{H}^+ \\ \text{CH}_3\text{COOH} + 2\text{H}^+ \\ \text{CO}_2 \uparrow + 2\text{H}^+ \\ \text{CO}_2 \uparrow + 2\text{H}^+ \\ \text{CO}_2 \uparrow + 2\text{H}^+ \\ \text{CO}_2 \uparrow + 2\text{H}^+ \\ \text{2CO}_2 \uparrow + 2\text{H}^+ \\ \text{2CO}_2 \uparrow + 2\text{H}^+ \\ \end{array}$	+2e +2e +2e +2e +2e +2e +2e +2e +2e +2e	$\begin{array}{c} \text{CH}_4 \uparrow + \text{H}_2\text{O} \\ \text{C}_2\text{H}_6 \uparrow + \text{H}_2\text{O} \\ \text{C}_6\text{H}_4(\text{OH})_2 \\ \text{(hydroquinone)} \\ \text{2HCN} \\ \text{2H}_2\text{O} + (\text{CN})_2 \uparrow \\ \text{HCN} + \text{H}_2\text{O} \\ \text{CN} + \text{2OH} - \\ \text{CH}_3\text{OH} \\ \text{C}_2\text{H}_5\text{OH} \\ \text{HCHO} \\ \text{CH}_3\text{CHO} \\ \text{HCHO} + \text{3OH} - \\ \text{CO} \uparrow + \text{H}_2\text{O} \\ \text{CO(NH}_2)_2 + \text{H}_2\text{O} \\ \text{(urea)} \\ \text{HCOOH} \\ \text{H}_2\text{C}_2\text{O}_4 \end{array}$	$\begin{array}{c} +0.59 \\ +0.46 \\ +0.6994 \\ +0.37 \\ +0.33 \\ +0.35 \\ -0.97 \\ +0.19 \\ +0.19 \\ -0.01 \\ -0.12 \\ +1.07 \\ -0.12 \\ +0.1 \\ -0.20 \\ -0.49 \end{array}$
Ca	Ca ²⁺ Ca(OH) ₂ ↓	$^{+2e}_{+2e}$	Ca \downarrow + 2OH-	$-2.87 \\ -3.03$
Cd	$\begin{array}{c} Cd^{2+} \\ CdCO_{3} \downarrow \\ Cd(CN)_{2}^{2-} \\ Cd(NH_{3})_{4}^{2+} \\ Cd(OH)_{2} \downarrow \\ CdS \downarrow \end{array}$	+2e +2e +2e +2e +2e +2e +2e	$\begin{array}{c} \text{Cd} \downarrow \\ \text{Cd} \downarrow + \text{CO}_3^2 - \\ \text{Cd} \downarrow + 4\text{CN}^- \\ \text{Cd} \downarrow + 4\text{NH}_3 \\ \text{Cd} \downarrow + 2\text{OH}^- \\ \text{Cd} \downarrow + \text{S}^2 - \end{array}$	$\begin{array}{c c} -0.402 \\ -0.74 \\ -1.09 \\ -0.61 \\ -0.81 \\ -1.17 \end{array}$
Ce	Ce^{3+} $Ce(ClO_4)_{6}^{2-}$ $Ce(NO_3)_{6}^{2-}$ $Ce(SO_4)_{3}^{2-}$	+3e +e +e +e	$Ce \downarrow Ce^{3+} + 6ClO_4^- Ce^{3+} + 6NO_3^- Ce^{3+} + 3SO_4^{2-}$	$ \begin{array}{r} -2.33 \\ +1.70 \\ +1.60 \\ +1.44 \end{array} $
Cl	$\frac{\text{Cl}_2}{2\text{HOCl}}$ + 2H+	$\begin{array}{c} +2e \\ +2e \end{array}$	2Cl- Cl ₂ ↑ + H ₂ O	$+1.359 \\ +1.63$

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Cl	$\begin{array}{c} 2\text{ClO}^- + 2\text{H}_2\text{O} \\ \text{HClO} + \text{H}_2\text{O} \\ \text{HClO}_2 + 2\text{H}_2\text{O} \\ \text{HClO}_2 + 2\text{H}_2\text{O} \\ \text{2} + 2\text{H}_2\text{O} \\ \text{ClO}_2 + 2\text{H}_2\text{O} \\ \text{ClO}_3 + 2\text{H}_2\text{O} \\ \text{ClO}_3 + 2\text{H}_2\text{O} \\ \text{ClO}_3 + 2\text{H}_2\text{O} \\ \text{ClO}_3 + 2\text{H}_2\text{O} \\ \text{ClO}_3 + 2\text{H}_2\text{O} \\ \text{ClO}_3 + 2\text{H}_2\text{O} \\ \text{ClO}_3 + 2\text{H}_2\text{O} \\ \text{ClO}_3 + 2\text{H}_2\text{O} \\ \text{ClO}_3 + 2\text{H}_2\text{O} \\ \text{ClO}_3 + 4\text{H}_2\text{O} \\ \text{ClO}_3 + 4\text{H}_2\text{O} \\ \text{ClO}_3 + 4\text{H}_2\text{O} \\ \text{ClO}_4 + 4\text{H}_2\text{O} \\ \text{ClO}_4 + 2\text{H}_2\text{O} \\ \text{ClO}_4 + 4\text{H}_2\text{O} \\ \end{array}$	+2c +2e +2e +2e +6e +4e +2e +2e +6e +10e +5e +5e +2e +2e +2e +8e +8e	$Cl^{-} + 6OH^{-}$ $Cl^{-} + 2H_{2}O$ $Cl^{-} + 4OH^{-}$ $ClO_{3}^{-} + H_{2}O$ $ClO_{3}^{-} + 2OH^{-}$	+0.40 +1.50 +0.88 +1.64 +1.63 +1.56 +0.66 +0.77 +1.21 +0.33 +1.15 +1.47 +0.63 +1.47 +0.63 +1.50 +0.85 +1.19 +0.36 +1.38 +0.56
Co	Co ³⁺ Co ³⁺ Co ²⁺ CoCO ₃ ↓ Co(NH ₃) ₈ + Co(NH ₃) ₂ + Co(OH) ₂ ↓ Co(OH) ₃ ↓ CoS α ↓ CoS β ↓	+c +3e +2e +2e +e +2e +2e +e +2e +2e +2e	$\begin{array}{c} \text{Co}^{2+} \\ \text{Co} \downarrow \\ \text{Co} \downarrow \\ \text{Co} \downarrow + \text{CO}_3^{2-} \\ \text{Co} (\text{NH}_3)_5^{2+} \\ \text{Co} \downarrow + 6\text{NH}_3 \\ \text{Co} \downarrow + 2\text{OH}^- \\ \text{Co} (\text{OH})_2 \downarrow + \text{OH}^- \\ \text{Co} \downarrow + \text{S}^{2-} \\ \text{Co} \downarrow + \text{S}^{2-} \end{array}$	$\begin{array}{c} +1.84 \\ +0.33 \\ -0.28 \\ -0.64 \\ +0.1 \\ -0.42 \\ -0.73 \\ +0.17 \\ -0.88 \\ -1.01 \end{array}$
Cr	Cr^{3+} Cr^{3+} Cr^{2+} $Cr(OH)_3 \downarrow$ $Cr(OH)_2 \downarrow$ $CrO_2^{-} + 2H_2O$ $Cr_2O_7^{2-} + 14H^+$ $CrO_4^{2-} + 4H_2O$	+e +3e +2e +3e +2e +3e +6e +3e	Cr^{2+} $Cr\downarrow$ $Cr\downarrow$ $Cr\downarrow$ $+3OH^{-}$ $Cr\downarrow$ $+2OH^{-}$ $Cr\downarrow$ $+4OH^{-}$ $2Cr^{3+}$ $+7H_{2}O$ $Cr(OH)_{3}\downarrow$ $+5OH^{-}$	$\begin{array}{c} -0.41 \\ -0.74 \\ -0.91 \\ -1.3 \\ -1.4 \\ -1.2 \\ +1.33 \\ -0.13 \end{array}$

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Cs	Cs+	+e	Cs↓	-2.914
Cu	$\begin{array}{c} \text{Cu}^{2+} \\ \text{Cu}^{+} \\ \text{Cu}^{2+} \\ \text{Cu}^{2+} + \text{Br}^{-} \\ \text{Cu}^{2+} + \text{Cl}^{-} \\ \text{Cu}^{2+} + \text{I}^{-} \\ \text{CuBr}^{\downarrow} \\ \text{Cu}(\text{CN})^{-}_{2} \\ \text{CuCl}^{\downarrow} \\ \text{CuI}^{\downarrow} \\ \text{Cu(NH_{3})}^{2+}_{4+} \\ \text{Cu(NH_{3})}^{2+}_{4+} \\ \text{Cu(NH_{3})}^{2+}_{4+} \\ \text{Cu(OH)}_{2}^{\downarrow} \\ \text{Cu}_{2}\text{O}^{\downarrow} + \text{H}_{2}\text{O} \end{array}$	+2e +e +e +e +e +e +e +e +e +e +e +e +e +e	$ \begin{array}{c} Cu \downarrow \\ Cu \downarrow \\ Cu \downarrow \\ Cu^+ \\ CuBr \downarrow \\ CuCl \downarrow \\ CuI \downarrow \\ Cu \downarrow + Br^- \\ Cu \downarrow + 2CN^- \\ Cu \downarrow + Cl^- \\ Cu \downarrow + 1^- \\ Cu \downarrow + 4NH_3 \\ Cu \downarrow + 4NH_3 \\ Cu \downarrow + 4NH_3 \\ Cu \downarrow + 4OH^- \\ + H_2O \\ 2Cu \downarrow + 2OH^- \\ \end{array} $	+0.337 $+0.521$ $+0.153$ $+0.64$ $+0.54$ $+0.86$ $+0.033$ -0.43 $+0.137$ -0.185 -0.01 -0.12 -0.07 -0.08 -0.36
	$Cu(OH)_2 \downarrow$ $CuS \downarrow$ $Cu_2S \downarrow$ $CuSCN \downarrow$	+2e +2e +2e +2e +e	$\begin{array}{c} \text{Cu} \downarrow + 2\text{OH}^- \\ \text{Cu} \downarrow + 2\text{OH}^- \\ \text{Cu} \downarrow + \text{S}^2 - \\ 2\text{Cu} \downarrow + \text{S}^2 - \\ \text{Cu} \downarrow + \text{SCN}^- \end{array}$	$ \begin{array}{r} -0.32 \\ -0.70 \\ -0.88 \\ -0.27 \end{array} $
F	F ₂ †	+2e	2F-	+2.87
Fe	Fe^{3+} Fe^{3+} Fe^{2+} $Fe(CN)_{5}^{3-}$ $Fe(C_{12}H_{8}N_{2})_{3}^{3+}$ (1,10-phenanthroline) $Fe(OH)_{3} \downarrow$ $Fe(OH)_{2} \downarrow$	+e +3e +2e +e +2e +e +e	$\begin{array}{c} \text{Fe}^{2+} \\ \text{Fe} \downarrow \\ \text{Fe} \downarrow \\ \text{Fe}(\text{CN})^{4-} \\ \text{Fe}(\text{C})^{4-} \\ \text{Fe} \downarrow + \text{CO}^{2-} \\ \text{Fe}(\text{C}_{12}\text{H}_8\text{N}_2)^{2+} \\ \text{Fe}(\text{OH})_2 \downarrow + \text{OH}^- \\ \text{Fe} \downarrow + 2\text{OH}^- \end{array}$	+0.771 -0.036 -0.440 $+0.356$ -0.756 $+1.06$ -0.56 -0.877
	$FeO_4^{2-} \stackrel{+}{+} 8H^+$ $Fe_3O_4 \downarrow + 8H^+$ $FeS \downarrow$	+3e +8e +2e	$Fe^{3+} + 4H_{2}O$ $3Fe \downarrow + 4H_{2}O$ $Fe \downarrow + S^{2-}$	>+1.9 -0.085 -0.95
Ga	${^{\rm Ga^{3+}}_{\rm 2}}_{\rm GaO_3^-} + {\rm H_2O}$	+3e +3e	Ga↓ Ga↓+ 40H-	$-0.56 \\ -1.22$
Ge	$Ge \downarrow + 4H^+$ Ge^{2+} $GeO \downarrow + 2H^+$	$^{+4e}_{+2e}_{+2e}$	$GeH_4\uparrow Ge\downarrow H_2O$	$ < -0.3 \\ 0.0 \\ -0.29 $

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Ge	$\begin{array}{l} {\rm GeO_2} \downarrow + 4{\rm H}^+ \\ {\rm H_2GeO_3} + 4{\rm H}^+ \\ {\rm GeO_2} \downarrow + 2{\rm H}^+ \\ {\rm HGeO_3} + 2{\rm H_2O} \end{array}$	+4e +4e +2e +4e	$\begin{array}{c} \operatorname{Ge} \downarrow + 2\operatorname{H}_2\operatorname{O} \\ \operatorname{Ge} \downarrow + 3\operatorname{H}_2\operatorname{O} \\ \operatorname{GeO} \downarrow (\operatorname{brown}) + \operatorname{H}_2\operatorname{O} \\ \operatorname{Ge} \downarrow + 5\operatorname{OH}^- \end{array}$	-0.15 -0.13 -0.12 -1.0
Н	$2H^{+}$ $2H^{+}(10^{-7}M)$ $H_{2}\uparrow$ $2H_{2}O$ $H_{2}O_{2} + 2H^{+}$ $HO_{2}^{-} + H_{2}O$	+2e +2e +2e +2e +2e +2e +2e	$ \begin{array}{c} H_2 \uparrow \\ H_2 \uparrow \\ 2H - \\ H_2 \uparrow + 2OH - \\ 2H_2O \\ 3OH - \end{array} $	± 0.0000 -0.414 -2.25 -0.828 $+1.77$ $+0.88$
Hf	$HfO^{2+} + 2H^{+} \\ HfO_{2} \downarrow + 4H^{+} \\ HfO(OH)_{2} \downarrow + \\ + H_{2}O$	+4e +4e +4e	$\begin{array}{c} \text{HI}\downarrow + \text{H}_2\text{O} \\ \text{HI}\downarrow + 2\text{H}_2\text{O} \\ \text{HI}\downarrow + 4\text{OH}^- \end{array}$	-1.70 -1.57 -2.50
Нд	$\begin{array}{c} 2Hg^{2+} \\ Hg^{2+} \\ Hg^{2+} \\ Hg^{2+} \\ Hg_{2}Br_{2} \downarrow \\ Hg(CN)^{\frac{1}{4}-} \\ Hg_{2}(CH_{3}COO)_{2} \downarrow \\ Hg_{2}C_{2}O_{4} \downarrow \\ Hg_{2}I_{2} \downarrow \\ Hg_{2}I_{2} \downarrow \\ Hg_{2}(IO_{3})_{2} \downarrow \\ HgO \downarrow (red) + H_{2}O \\ HgS \downarrow (black) \\ HgS \downarrow (red) \\ HgS \downarrow (red) \\ HgS \downarrow (red) \\ HgS \downarrow SO_{4} \downarrow \end{array}$	+2e +2e +2e +2e +2e +2e +2e +2e +2e +2e	$\begin{array}{c} Hg_{2}^{2+} \\ Hg \downarrow \\ Hg \downarrow \\ Hg \downarrow \\ 2Hg \downarrow + 2Br^{-} \\ Hg \downarrow + 4CN^{-} \\ 2Hg \downarrow + 2CH_{s}COO^{-} \\ 2Hg \downarrow + 2CG^{-} \\ 2Hg \downarrow + 2I^{-} \\ 2Hg \downarrow + 2IO_{3}^{-} \\ Hg \downarrow + 2OH^{-} \\ Hg \downarrow + S^{2-} \\ Hg \downarrow + SO_{4}^{2-} \end{array}$	$\begin{array}{c} +0.907 \\ +0.850 \\ +0.792 \\ +0.1392 \\ -0.37 \\ +0.510 \\ +0.415 \\ +0.2680 \\ -0.040 \\ +0.394 \\ +0.098 \\ -0.67 \\ -0.70 \\ +0.614 \end{array}$
I	$I_{2}\downarrow$ I_{2} I_{3} $2IBr$ $2IBr_{2}$ ICN $2ICN + 2H^{+}$ $2ICI$ $2ICI_{2}$ $2ICI_{3}$ $2HIO + 2H^{+}$ $2IO^{-} + H_{2}O$	+2e +2e +2e +2e +2e +2e +2e +2e +2e +2e	$\begin{array}{c} 2I - \\ 2I - \\ 3I - \\ 3I - \\ 1_2 \downarrow + 2Br - \\ 1_2 \downarrow + 4Br - \\ I - + CN - \\ I_2 \downarrow + 2HCN \\ I_2 \downarrow + 2CI - \\ I_2 \downarrow + 4CI \\ I_2 \downarrow + 6CI - \\ I_2 \downarrow + 2H_2O \\ I_2 \downarrow + 4OH - \end{array}$	+0.536 $+0.621$ $+0.545$ $+1.02$ $+0.87$ $+0.63$ $+1.19$ $+1.06$ $+1.28$ $+1.45$ $+0.45$

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
I	$\begin{array}{c} \text{HIO} + \text{H}^{+}\\ \text{IO}^{-} + \text{H}_{2}\text{O}\\ \text{IO}_{3}^{-} + 5\text{H}^{+}\\ \text{IO}_{3}^{-} + 2\text{H}_{2}\text{O}\\ \text{2IO}_{3}^{-} + 42\text{H}^{+}\\ \text{2IO}_{3}^{-} + 6\text{H}_{2}^{+}\\ \text{IO}_{3}^{-} + 6\text{H}^{+}\\ \text{IO}_{3}^{-} + 3\text{H}_{2}\text{O}\\ \text{H}_{5}\text{IO}_{6}^{-} + \text{H}^{+}\\ \text{H}_{3}\text{IO}_{6}^{2-} + 3\text{H}_{2}\text{O} \end{array}$	+2e +2e +4e +4e +10e +10e +6e +2e +2e +8e +8e		$\begin{array}{c} +0.99 \\ +0.49 \\ +1.14 \\ +0.14 \\ +1.19 \\ +0.21 \\ +1.08 \\ +0.26 \\ \sim +1.6 \\ \sim +0.7 \\ \sim +1.24 \\ \sim +0.37 \end{array}$
In	In ³⁺ In ³⁺ In(OH) ₃ ↓	+3e +2e +3e	In↓ In+ In↓+ 30H-	$ \begin{array}{c c} -0.33 \\ -0.40 \\ -1.0 \end{array} $
Ir	$\begin{array}{l} Ir^{3+} \\ IrCl_{3}^{3-} \\ IrCl_{5}^{2-} \\ IrCl_{5}^{2-} \\ IrO_{2} \downarrow + 4H^{+} \\ IrO_{2} \downarrow + 2H_{2}O \\ Ir_{2}O_{3} \downarrow + 3H_{2}O \end{array}$	+3e +3e +e +4e +4e +4e +6e	$Ir \downarrow + 6Cl^{-}$ $IrCl_{3}^{3}$ $Ir \downarrow + 6Cl^{-}$ $Ir \downarrow + 6Cl^{-}$ $Ir \downarrow + 2H_{2}O$ $Ir \downarrow + 4OH^{-}$ $2Ir \downarrow + 6OH^{-}$	$ \begin{array}{c} \sim +1.15 \\ +0.77 \\ +1.02 \\ +0.83 \\ +0.93 \\ +0.1 \\ +0.1 \end{array} $
K	K+	+e	Κ↓	-2.925
La	La ³⁺ La(OH) ₃ ↓	+3e +3e	La↓ La↓+ 3OH-	$-2.52 \\ -2.90$
Li	Li ⁺	+e	Li↓	-3.03
Mg	$^{\mathrm{Mg^{2+}}}_{\mathrm{Mg(OH)_{2}}}\downarrow$	$\begin{vmatrix} +2e \\ +2e \end{vmatrix}$	Mg↓ Mg↓+ 2OH-	$-2.37 \\ -2.69$
Mn	Mn³+ Mn²+ Mn(CN)³- MnCO₃↓ Mn(OH)₂↓ Mn(OH)₃↓ MnO₂ + 4H+	+e +2e +e +2e +2e +e +2e	Mn^{2+} $Mn\downarrow$ $Mn(CN)_{6}^{4-}$ $Mn\downarrow + CO_{3}^{2-}$ $Mn\downarrow + 2OH^{-}$ $Mn(OH)_{2}\downarrow + OH^{-}$ $Mn^{2+} + 2H_{2}O$	$\begin{array}{c c} +1.51 \\ -1.19 \\ -0.244 \\ -1.48 \\ -1.18 \\ +0.1 \\ +1.23 \end{array}$

Table 40 (continued

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Mn	$\begin{array}{c} MnO_4^{2-} + 4H^+ \\ MnO_4^{2-} + 2H_2O^- \\ MnO_4^{2-} + 4H^+ \\ MnO_4^{2-} + 4H^+ \\ MnO_4^{2-} + 2H_2O \\ MnO_4^{2-} + 8H^+ \end{array}$	$\begin{vmatrix} +2e \\ +2e \\ +e \\ +3e \\ +3e \\ +5e \end{vmatrix}$	$\begin{array}{c} \text{MnO}_2 \downarrow + 2\text{H}_2\text{O} \\ \text{MnO}_2 \downarrow + 4\text{OH}^- \\ \text{MnO}_4^{3-} \\ \text{MnO}_2 + 2\text{H}_2\text{O} \\ \text{MnO}_2 \downarrow + 4\text{OH}^- \\ \text{Mn}^{2+} + 4\text{H}_2\text{O} \\ \end{array}$	+2.26 $+0.6$ $+0.56$ $+1.69$ $+0.60$ $+1.51$
Мо	Mo^{3+} $Mo(CN)_{8}^{3-}$ $MoO_{2}^{2} + 4H^{+}$ MoO_{2}^{2+} $H_{2}MoO_{4} + 6H^{+}$ $MoO_{4}^{2-} + 4H_{2}O$	+3e +e +2c +e +6e +6e	$\begin{array}{c} \text{Mo} \downarrow \\ \text{Mo}(\text{CN})_8^4-\\ \text{Mo}^3++2\text{H}_2\text{O} \\ \text{MoO}_2^{\pm} \\ \text{Mo} \downarrow +4\text{H}_2\text{O} \\ \text{Mo} \downarrow +8\text{OH}^- \end{array}$	$\begin{array}{c} -0.2 \\ +0.73 \\ \sim 0.0 \\ +0.48 \\ 0.0 \\ -1.05 \end{array}$
	$\begin{array}{c} HN_3 + 11H^+ \\ N_3^- + 7H_2O \\ 3N_2 \uparrow + 2H^+ \\ 3N_2 \uparrow \\ N_2 \uparrow + 2H_2O + \\ + 4H^+ \end{array}$	+8e +6e +2e +2e +2e	$3NH_{4}^{\dagger}$ $N_{2}H_{4}^{\dagger}$ + NH_{3} + $7OH_{5}^{\dagger}$ $2N_{5}^{\dagger}$ $(2NH_{2}OH)H_{5}^{\dagger}$	+0.69 -0.62 -3.1 -3.4 -1.87
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} +2e \\ +4e \\ +4e \\ +6e \\ +6e \\ +2e \\ +2e \\ +2e \end{array} $	$2NH_{2}OH + 2OH^{-}$ $(N_{2}H_{4})H^{+}$ $N_{2}H_{4} + 4OH^{-}$ $2NH_{4}^{+}$ $2NH_{4}OH + 6OH^{-}$ $2NH_{4}^{+}$ $2NH_{4}OH + 2OH^{-}$ $NH_{4}^{+} + H_{2}O$	$\begin{array}{c} -3.04 \\ -0.23 \\ -1.16 \\ +0.26 \\ -0.74 \\ +1.27 \\ +0.1 \\ +1.35 \end{array}$
N	+2H+ NH ₂ OH + 2H ₃ O H ₃ N ₂ O ₂ + 2H+ H ₂ N ₂ O ₂ + 6H+ 2HNO ₂ + 4H+ HNO ₂ + H+ NO ₃ + H ₂ O 2HNO ₂ + 4H+ 2HNO ₂ + 6H+ 2NO ₃ + 4H ₂ O	+2e +2e +4e +4e +e +e +4e +6e +6e	$\begin{array}{c} \mathrm{NH_4OH} + 2\mathrm{OH^-} \\ \mathrm{N_2} \uparrow + 2\mathrm{H_2O} \\ (2\mathrm{NH_2OH})\mathrm{H^+} \\ \mathrm{H_2N_2O_2} + 2\mathrm{H_2O} \\ \mathrm{NO} \uparrow + \mathrm{H_2O} \\ \mathrm{NO} \uparrow + 2\mathrm{OH^-} \\ \mathrm{N_2O} \uparrow + 3\mathrm{H_2O} \\ \mathrm{N_2} \uparrow + 4\mathrm{H_2O} \\ \mathrm{N_2} \uparrow + 8\mathrm{OH^-} \end{array}$	+0.42 $+2.65$ $+0.50$ $+0.89$ -0.46 $+1.29$ $+1.44$ $+0.41$
	$2NO_{2}^{-} + 4H_{2}O$ $+ NO_{2} + 7H^{+}$ $+ NO_{3}^{-} + 6H_{2}O$ $+ 2H^{+}$ $+ N_{2}O + H_{2}O$ $+ 2NO + 4H^{+}$ $+ 2NO + 2H_{2}O$	$+6e \\ +6e \\ +2e \\ +2e \\ +4e \\ +4e$	$ \begin{array}{c} NH_4^+ + 2H_2O \\ NH_4OH + 7OH^- \\ N_2^+ + H_2O \\ N_2^+ + 2OH^- \\ N_2^+ + 2H_2O \\ N_2^+ + 4OH^- \end{array} $	$ \begin{array}{r} +0.86 \\ -0.15 \\ +1.77 \\ +0.94 \\ +1.68 \\ +0.85 \end{array} $

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
N	$\begin{array}{c} N_2O_4 \uparrow + 2H^+ \\ N_2O_4 \uparrow + 8H^+ \\ N_2O_4 \uparrow + 8H^+ \\ N_2O_4 \uparrow + 4H_2O \\ NO_3 + 3H^+ \\ NO_3 + H_2O \\ NO_3 + 2H^+ \\ NO_3 + H_2O \\ NO_3 + 4H^+ \\ NO_3 + 2H_2O \\ 2NO_3 + 12H^+ \\ NO_3 + 8H^+ \\ 2NO_3 + 10H^+ \\ NO_3 + 10H^+ \\ NO_3 + 7H_2O \\ \end{array}$	+2e +2e +8e +2e +2e +e +3e +3e +10e +6e +14e +8e +8e	$(NH_{0}OH)H^{+} + 2H_{0}O$	$\begin{array}{c} +1.07 \\ +0.88 \\ +1.35 \\ +0.53 \\ +0.94 \\ +0.01 \\ +0.80 \\ -0.86 \\ +0.96 \\ -0.14 \\ +1.24 \\ +0.73 \\ +0.87 \\ -0.12 \end{array}$
Na	Na+	+e	Na↓	-2.713
Nb	$\begin{array}{c} {\rm Nb^{3+}} \\ {\rm Nb_2O_5} \downarrow + 10{\rm H^+} \\ {\rm NbO^{3+}} + 2{\rm H^+} \\ {\rm NbO(SO_4)_2^-} + \\ + 2{\rm H^+} \\ {\rm NbO(SO_4)_2^-} + \\ + 2{\rm H^+} \\ {\rm NbO(SO_4)_2^-} + \\ + 2{\rm H^+} \end{array}$	$+3e \\ +10e \\ +2e \\ +2e \\ +5e$	$\begin{array}{c} \text{Nb} \downarrow \\ \text{Nb} \downarrow + 5 \text{H}_2 \text{O} \\ \text{Nb}^{3+} + \text{H}_2 \text{O} \\ \text{Nb}^{3+} + \text{H}_2 \text{O} + \\ + 2 \text{SO}_4^{2-} \\ \text{Nb} \downarrow + \text{H}_2 \text{O} + 2 \text{SO}_4^{2-} \end{array}$	-1.1 -0.65 -0.34 -0.1 -0.63
Ni	$\begin{array}{c} Ni^{2+} \\ Ni(CN)^{2-} \\ Ni(C3) \downarrow \\ Ni(OH)_{2} \downarrow \\ Ni(NH_{3})^{2+} \\ NiO_{2} \downarrow + 4H + \\ NiO_{2} \downarrow + 2H_{2}O \\ NiO_{4}^{2-} + 8H + \\ NiS \alpha \downarrow \\ NiS \gamma \downarrow \end{array}$	+2e +e +2e +2e +2e +2e +4e +2e +2e +2e	$\begin{array}{c} \text{Ni} \downarrow \\ \text{Ni}(\text{CN})_3^{2-} + \text{CN}^{-} \\ \text{Ni} \downarrow + \text{CO}_3^{2-} \\ \text{Ni} \downarrow + 2\text{OH}^{-} \\ \text{Ni} \downarrow + 6\text{NH}_3 \\ \text{Ni}^{2+} + 2\text{H}_2\text{O} \\ \text{Ni}(\text{OH})_2 \downarrow + 2\text{OH}^{-} \\ \text{Ni}^{2+} + 4\text{H}_2\text{O} \\ \text{Ni} + \text{S}^{2-} \\ \text{Ni} \downarrow + \text{S}^{2-} \end{array}$	$\begin{array}{c} -0.23 \\ < -0.4 \\ -0.45 \\ -0.72 \\ -0.49 \\ +1.68 \\ +0.49 \\ > +1.8 \\ +0.76 \\ -0.99 \end{array}$
0	$\begin{array}{c} O_2 \uparrow + 4H^+ \\ O_2 \uparrow + 4H^+ (10^{-7}M) \\ O_2 \uparrow + 2H_2O \\ O_2 \uparrow + 2H^+ \\ O_2 \uparrow + H_2O \\ H_2O_2 + 2H^+ \\ HO_2 \uparrow + H_2O \\ O_3 \uparrow + 2H^+ \\ O_3 \uparrow + H_2O \end{array}$	+4e +4e +4e +2e +2e +2e +2e +2e +2e +2e	$\begin{array}{c} 2H_{2}O \\ 2H_{2}O \\ 4OH^{-} \\ H_{2}O_{2} \\ HO_{7} + OH^{-} \\ 2H_{2}O \\ 3OH^{-} \\ O_{2} \uparrow + H_{2}O \\ O_{2} \uparrow + 2OH^{-} \end{array}$	$\begin{array}{c} +1.229 \\ +0.815 \\ +0.401 \\ +0.682 \\ -0.076 \\ +1.77 \\ +0.88 \\ +2.07 \\ +1.24 \end{array}$

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Os	Os ²⁺ OsCl ₆ ²⁻ OsCl ₈ ³⁻ OsCl ₈ ³⁻ OsC ₄ + 6Cl ⁻ +	+2e +e +3e +e +4e	$ \begin{array}{c} \text{Os} \downarrow \\ \text{OsCl}_{6}^{3-} \\ \text{Os} \downarrow + 6\text{Cl}^{-} \\ \text{Os}^{2+} + 6\text{Cl}^{-} \\ \text{OsCl}_{6}^{2-} + 4\text{H}_{2}\text{O} \end{array} $	$ \begin{array}{r} +0.85 \\ +0.85 \\ +0.71 \\ +0.4 \\ +1.0 \end{array} $
	$+8H^{+}$ $OsO_{4}\downarrow +8H^{+}$ $HOsO_{5}-4H_{2}O$	+8e +8e	$0s\downarrow + 4H_2O$ $0s\downarrow + 9OH^-$	$^{+0.85}_{+0.02}$
P	$\begin{array}{c} P \downarrow + 3H^{+} \\ P \downarrow + 3H_{2}O \\ H_{3}PO_{2} + H^{+} \\ H_{2}PO_{2}^{-} \\ H_{3}PO_{3} + 3H^{+} \\ H_{3}PO_{3} + 2H^{+} \\ HPO_{3}^{3} - + 2H_{2}O \\ H_{4}P_{2}O_{6} + 2H^{+} \\ H_{3}PO_{4} + 5H^{+} \\ H_{3}PO_{4} + 2H^{+} \\ H_{3}PO_{4} + 2H^{+} \\ PO_{3}^{3} - + 2H_{2}O \end{array}$	+3e +3e +e +e +3e +2e +2e +2e +2e +2e +2e +2e +2e +2e	$\begin{array}{c c} PH_3 \uparrow \\ PH_3 \uparrow \\ PH_3 \uparrow \\ PH_3 \uparrow \\ PH_2O \\ P\downarrow + 20H^- \\ P\downarrow + 3H_2O \\ H_3PO_2 + H_2O \\ H_2PO_2^- + 3OH^- \\ 2H_3PO_3 \\ P\downarrow + 4H_2O \\ H_3PO_2 + 2H_2O \\ H_4P_2O_6 + 2H_2O \\ H_4PO_3^- + 3OH^- \\ HPO_3^- + 3OH^- \\ \end{array}$	$\begin{array}{c} +0.06 \\ -0.89 \\ -0.51 \\ -2.05 \\ -0.50 \\ -0.50 \\ -1.57 \\ +0.38 \\ -0.41 \\ -0.39 \\ -0.94 \\ -0.276 \\ -1.12 \end{array}$
РЬ	Pb^{2+} Pb^{4+} Pb^{4+} $PbBr_2 \downarrow$ $PbCO_3 \downarrow$ $PbCl_2 \downarrow$ $PbF_2 \downarrow$ $PbF_2 \downarrow$ $PbO_2 \downarrow$ P	+2e +2e +2e +2e +2e +2e +2e +2e +2e +2e	$\begin{array}{c} Pb \downarrow \\ Pb^{2+} \\ Pb \downarrow \\ Pb \downarrow \\ Pb \downarrow \\ + 2Br^{-} \\ Pb \downarrow \\ + 2Cl^{-} \\ Pb \downarrow \\ + 2F^{-} \\ Pb \downarrow \\ + 2I^{-} \\ Pb \downarrow \\ + 2OH^{-} \\ Pb \downarrow \\ + 3OH^{-} \\ PbO \downarrow \\ + 2OH^{-}	$\begin{array}{c} -0.126 \\ +1.8 \\ +0.84 \\ -0.274 \\ -0.506 \\ -0.266 \\ -0.350 \\ -0.58 \\ -0.54 \\ +0.28 \\ +1.455 \\ +1.68 \end{array}$
	$+SO_4^2$ - PbO_3^2 - $+H_2O$ $PbS\downarrow$ $PbSO_4\downarrow$	$^{+2e}_{+2e}_{+2e}$	$PbO_{2}^{2-} + 2OH^{-}$ $Pb \downarrow + S^{2-}$ $Pb \downarrow + SO_{4}^{2-}$	$^{+0.2}_{-0.91}_{-0.356}$
Pd	Pd ²⁺ PdCl ₂ ²⁻ PdCl ₂ ²⁻ PdCl ₂ ²⁻ Pd(OH) ₂ \(\psi\)	+2e +2e +2e +4e +2e	$Pd\downarrow$ + $4Cl$ - $PdCl_4^2$ + $2Cl$ - $Pd\downarrow$ + $6Cl$ - $Pd\downarrow$ + $2OH$ -	+0.987 +0.623 +1.29 +0.96 +0.07

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Pd	Pd(OH)₄↓	+2c	Pd(OH) ₂ ↓ + 2OH-	~+0.73
Pt	Pt^{2+} $PtCl_{4}^{2-}$ $PtCl_{6}^{2-}$ $Pt(OH)_{2} \downarrow$ $Pt(OH)_{2} \downarrow$ + 2H+	$\begin{vmatrix} +2e \\ +2e \\ +2e \\ +2e \\ +2e \end{vmatrix}$	$\begin{array}{c} \text{Pt} \downarrow \\ \text{Pt} \downarrow + 4\text{Cl}^- \\ \text{PtCl}_4^2 + 2\text{Cl}^- \\ \text{Pt} \downarrow + 2\text{OH}^- \\ \text{Pt} \downarrow + 2\text{H}_2\text{O} \end{array}$	$\begin{array}{c} \sim +1.2 \\ +0.73 \\ +0.720 \\ +0.15 \\ +0.98 \end{array}$
Pu	$\begin{array}{c} {\rm Pu^{3+}} \\ {\rm Pu^{4+}} \\ {\rm PuO_{2}^{2+}} \\ {\rm PuO_{2}^{2+}} \dotplus {\rm 4H^{+}} \\ {\rm Pu(OH)_{3}} \\ {\rm Pu(OH)_{4}} \\ \end{array}$	+3e +e +e +2e +3e +e	$\begin{array}{c} Pu \downarrow \\ Pu^{3+} \\ PuO_{2}^{+} \\ PuO_{3}^{+} \\ Pu^{4+} + 2H_{2}O \\ Pu \downarrow + 3OII - \\ Pu(OH)_{3} \downarrow + OH - \end{array}$	$\begin{array}{c} -2.03 \\ +0.970 \\ +0.916 \\ +1.04 \\ -2.42 \\ -0.95 \end{array}$
Ra	Ra ²⁺	+2e	Ra↓	-2.92
Rb	Rb÷	+e	Rb↓	-2.93
Re	$\begin{array}{c} \text{Re} \downarrow \\ \text{Re}^{+} \\ \text{Re}^{3+} \\ \text{Re}O_{2} \downarrow + 4\text{H}^{+} \\ \text{Re}O_{3} \downarrow + 2\text{H}^{+} \\ \text{Re}O_{4}^{-} + 8\text{H}^{+} \\ \text{Re}O_{4}^{-} + 4\text{H}^{+} \\ \text{Re}O_{4}^{-} + 4\text{H}_{2}O \\ \text{Re}O_{4}^{-} + 2\text{H}_{2}O \end{array}$	+e +2c +3e +4e +2e +7e +3e +7e +7e +3e	$\begin{array}{c} \text{Re}^{-} \\ \text{Re} \\ \text{Re} \\ \downarrow \\ \text{Re} \\ \downarrow \\ + 2 \text{H}_{2} \text{O} \\ \text{ReO}_{2} \\ \downarrow \\ + 4 \text{H}_{2} \\ \text{O} \\ \text{ReO}_{2} \\ \downarrow \\ + 2 \text{H}_{2} \\ \text{O} \\ \text{ReO}_{3} \\ \downarrow \\ + 2 \text{H}_{2} \\ \text{O} \\ \text{ReO}_{3} \\ \downarrow \\ + 4 \text{OH}^{-} \\ \text{ReO}_{2} \\ \downarrow \\ + 4 \text{OH}^{-} \\ \end{array}$	$ \begin{vmatrix} -0.4 \\ -0.23 \\ \sim +0.3 \\ +0.26 \\ +0.4 \\ +0.37 \\ +0.51 \\ +0.77 \\ -0.584 \\ -0.595 \end{vmatrix} $
Rh	$\begin{array}{c} {\rm Rh^{3+}} \\ {\rm RhCl_{3^{-}}^{3}} \\ {\rm Rh_{2}O_{3}} \downarrow + 6{\rm H^{+}} \\ {\rm RhO_{2}} + 4{\rm H^{+}} + \\ + 6{\rm Cl^{-}} \\ {\rm RhO^{2+}} + 2{\rm H^{+}} \\ {\rm RhO_{4^{-}}^{2}} + 6{\rm H^{+}} \end{array}$	$+3e \\ +3e \\ +6e \\ +e \\ +e \\ +2e \\$	$\begin{array}{c} {\rm R}h\downarrow + 6{\rm Cl}^- \\ {\rm R}h\downarrow + 3{\rm H}_2{\rm O} \\ {\rm R}h{\rm Cl}_6^{3-} + 2{\rm H}_2{\rm O} \\ {\rm R}h{\rm Cl}_6^{3+} + {\rm H}_2{\rm O} \\ {\rm R}h{\rm O}^{2+} + 3{\rm H}_2{\rm O} \end{array}$	$\begin{array}{c} \sim +0.8 \\ +0.44 \\ +0.87 \\ > +1.4 \\ +1.40 \\ +1.46 \end{array}$
Ru	Ru ²⁺ RuCl ₃ RuCl ₅ RuCl ₅ OH ^{2−} H+ RuO ₄ RuO ₄ ↓	+2e +3e +2e +e +e +e	$\begin{array}{c} \text{Ru} \downarrow \\ \text{Ru} \downarrow + 3\text{Cl}^{-} \\ \text{Ru}^{2+} + 5\text{Cl}^{-} \\ \text{RuCl}_{5}^{2-} + \text{H}_{2}\text{O} \\ \text{RuO}_{4}^{2-} \\ \text{RuO}_{4}^{-} \end{array}$	$ \begin{array}{r} +0.45 \\ +0.68 \\ +0.3 \\ +1.3 \\ +0.59 \\ +1.00 \end{array} $

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
S	$\begin{array}{c} \text{S} \downarrow \\ \text{S} \uparrow + 2\text{H}^{+} \\ \text{5S} \downarrow \\ (\text{SCN})_{2} \uparrow \\ \text{S}_{4}^{\circ} \text{S}^{-} + 6\text{H}^{+} \\ 2\text{H}_{2}^{\circ} \text{S}_{3}^{-} + 6\text{H}^{+} \\ 2\text{S}_{2}^{\circ} \text{S}_{3}^{-} + 3\text{H}_{2}^{\circ} \\ 2\text{H}_{2}^{\circ} \text{SO}_{3}^{\circ} + 2\text{H}_{2}^{\circ} \\ \text{SO}_{3}^{\circ} - + 2\text{H}_{2}^{\circ} \\ \text{SO}_{3}^{\circ} - + 4\text{H}^{+} \\ \text{SO}_{3}^{\circ} - + 4\text{H}^{+} \\ \text{SO}_{3}^{\circ} - + 4\text{H}_{2}^{\circ} \\ \text{SO}_{3}^{\circ} - + 4\text$	+2e +2e +2e +2e +4e +4e +4e +2e +2e +2e +6e +6e +8e +8e +2e	$\begin{array}{c} S^{2-} \\ H_{2}S \uparrow \\ S^{3-}_{5} \\ 2SCN^{-} \\ 2S_{2}O_{3}^{2-} \\ 2S \uparrow + 3H_{2}O \\ S_{2}O_{3}^{2-} + 40H^{-} \\ H_{3}CO_{4}^{2-} + 40H^{-} \\ H_{2}SO_{3} + H_{2}O \\ SO_{5}^{2-} + 5H_{2}O \\ SO_{5}^{2-} + 5H_{2}O \\ SO_{5}^{2-} + 5H_{2}O \\ SO_{5}^{2-} + 44H_{2}O \\ S\downarrow + 80H^{-} \\ H_{2}S + 4H_{2}O \\ S^{2-} + 80H^{-} \\ 2SO_{4}^{2-} \\ \end{array}$	$\begin{array}{c} -0.48 \\ +0.14 \\ -0.34 \\ +0.77 \\ +0.09 \\ +0.5 \\ +0.40 \\ -0.58 \\ -0.08 \\ -1.12 \\ +0.17 \\ -0.93 \\ +0.29 \\ -0.76 \\ +0.36 \\ -0.75 \\ +0.31 \\ -0.68 \\ +2.0 \end{array}$
Sb	$\begin{array}{c} \text{Sb} \downarrow + 3\text{H}^{+} \\ \text{SbO}^{+} + 2\text{H}^{+} \\ \text{Sb}_{2}\text{O}_{3} \downarrow + 6\text{H}^{+} \\ \text{SbO}_{2}^{-} + 2\text{H}_{2}\text{O} \\ \text{Sb}_{2}\text{O}_{4} \downarrow + 4\text{H}^{+} \\ \text{Sb}_{2}\text{O}_{5} \downarrow + 6\text{H}^{+} \\ \text{Sb}_{2}\text{O}_{5} \downarrow + 6\text{H}^{+} \\ \text{SbO}_{3}^{-} + \text{H}_{2}\text{O} \end{array}$	+3e +3e +6e +3e +2e +4e +4e +2e	$\begin{array}{c} {\rm SbH_3} \\ {\rm Sb}\downarrow + {\rm H_2O} \\ {\rm 2Sb}\downarrow + 3{\rm H_2O} \\ {\rm Sb}\downarrow + 4{\rm OH^-} \\ {\rm 2SbO^+} + 2{\rm H_2O} \\ {\rm Sb}_2{\rm O}_3\downarrow + 2{\rm H_2O} \\ {\rm 2SbO^+} + 3{\rm H_2O} \\ {\rm SbO_2^-} + 2{\rm OH^-} \end{array}$	$\begin{array}{c} -0.51 \\ +0.212 \\ +0.152 \\ -0.675 \\ +0.68 \\ +0.69 \\ +0.58 \\ -0.43 \end{array}$
Sc	Sc3+	+3e	Sc↓	-2.08
Se	$\begin{array}{c} \text{Se} \downarrow + 2\text{H}^{+} \\ \text{H}_{2}\text{SeO}_{3} + 4\text{H}^{+} \\ \text{SeO}_{3}^{2-} + 3\text{H}_{2}\text{O} \\ \text{SeO}_{4}^{2-} + 4\text{H}^{+} \\ \text{SeO}_{4}^{2-} + \text{H}_{2}\text{O} \end{array}$	+2e +4e +4e +2e +2e	$ \begin{array}{l} H_2Se \uparrow \\ Se \downarrow + 3H_2O \\ Se \downarrow + 6OH^- \\ H_2SeO_3 + H_2O \\ SeO_3^2 + 2OH^- \end{array} $	$\begin{array}{r} -0.40 \\ +0.74 \\ -0.366 \\ +1.15 \\ +0.05 \end{array}$
Si	$\begin{array}{c} \text{Si} \downarrow + 4\text{H}^{+} \\ \text{Si} \downarrow + 4\text{H}_{2}\text{O} \\ \text{SiF}_{6}^{2-} \\ \text{SiO}_{2} \downarrow + 4\text{H}^{+} \\ \text{H}_{2}\text{SiO}_{3} \text{(hydrous)} + \\ + 4\text{H}^{+} \\ \text{SiO}_{3}^{2-} + 3\text{H}_{2}\text{O} \end{array}$	+4e +4e +4e +4e +4e +4e	$\begin{array}{c} \text{SiH}_4 \uparrow + 4\text{OH}^-\\ \text{SiH}_4 \uparrow + 6\text{F}^-\\ \text{Si} \downarrow + 6\text{F}^-\\ \text{Si} \downarrow + 2\text{H}_2\text{O}\\ \text{Si} \downarrow + 3\text{H}_2\text{O} \\ \text{Si} \downarrow + 6\text{OH}^- \end{array}$	$ \begin{array}{r} +0.10 \\ -0.73 \\ -1.2 \\ -0.86 \\ -0.79 \\ \end{array} $

of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Sn	$\begin{array}{c} {\rm Sn^{2+}} \\ {\rm Sn^{4+}} \\ {\rm Sn^{4+}} \\ {\rm Sn^{4+}} \\ {\rm HSnO_2^-} + {\rm H_2O} \\ {\rm Sn(OH)_6^{2-}} \end{array}$	$^{+2e}_{+2e}_{+4e}_{+2e}_{+2e}$	$\begin{array}{c} \text{Sn}\downarrow \\ \text{Sn}^{2+} \\ \text{Sn}\downarrow \\ \text{Sn}\downarrow + 3\text{OH}^- \\ \text{HSnO}_{2}^{-} + 3\text{OH}^- + \\ + \text{H}_{2}^{-} \text{O} \end{array}$	$\begin{array}{c c} -0.140 \\ +0.15 \\ +0.01 \\ -0.91 \\ -0.93 \end{array}$
Sr	Sr ²⁺	+2e	Sr↓	-2.89
Ta	$Ta_2O_5\downarrow + 10H^+$	+10e	$2\text{Ta}\downarrow+5\text{H}_2\text{O}$	-0.81
Те	$\begin{array}{c} \text{Te} \downarrow + 2\text{H}^{+} \\ \text{Te} \downarrow \\ \text{TeO}_{2} \downarrow + 4\text{H}^{+} \\ \text{TeO}_{2} \text{H}^{+} + 3\text{H}^{+} \\ \text{TeO}_{3}^{2} - + 3\text{H}_{2}\text{O} \\ \text{H}_{6} \text{TeO}_{6} \downarrow + 2\text{H}^{+} \\ \text{TeO}_{3}^{2} - + \text{H}_{2}\text{O} \end{array}$	+2e +2e +4e +4e +4e +2e +2e	$\begin{array}{c} {\rm H_2Te} \uparrow \\ {\rm Te^2} - \\ {\rm Te} \downarrow + 2{\rm H_2O} \\ {\rm Te} \downarrow + 2{\rm H_2O} \\ {\rm Te} \downarrow + 6{\rm OH^-} \\ {\rm TeO_2} \downarrow + 4{\rm H_2O} \\ {\rm TeO_3} - 2{\rm OH^-} \end{array}$	$ \begin{vmatrix} -0.72 \\ -1.14 \\ +0.53 \\ +0.56 \\ -0.57 \\ +1.02 \\ >+0.4 \end{vmatrix} $
Th	Th⁴- Th(OH) ₄ ↓	+4e +4e	Th↓ Th↓+ 40H-	-1.90 -2.48
Ti	Ti^{2+} $TiO_2 \downarrow + 4H^*$ $TiO^{2+} + 2H^*$ $TiO^{2+} + 2H^*$ Ti^{3+} TiF_6^{2-}	+2e +4e +4e +e +e +e +e +4e	$ \begin{array}{c c} Ti \downarrow & + 2H_2O \\ Ti \downarrow & + H_2O \\ Ti^{3+} & + H_2O \\ Ti^{2+} & Ti \downarrow & + 6F^{-} \end{array} $	$\begin{array}{c} -1.63 \\ -0.86 \\ \sim -0.88 \\ \sim +0.1 \\ -0.37 \\ -1.19 \end{array}$
Tl	$\begin{array}{c} {\rm Tl}^{+} \\ {\rm TlBr} \downarrow \\ {\rm TlCl} \downarrow \\ {\rm TlOH} \\ {\rm Tl}^{3+} \\ {\rm Tl}_{2}{\rm O}_{3} \downarrow + 3{\rm H}_{2}{\rm O} \end{array}$	$\begin{array}{c} +e \\ +e \\ +e \\ +e \\ +2e \\ +4e \end{array}$	TI	$\begin{array}{c} -0.336 \\ -0.656 \\ -0.557 \\ -0.344 \\ +1.28 \\ +0.02 \end{array}$
U	$\begin{array}{c} U^{3+} \\ U^{4+} \\ U(OH)_3 \downarrow \\ UO_2 \downarrow + 2H_2O \\ UO_2 + 4H^+ \\ UO_2^{2+} \\ UO_2^{2+} + 4H^+ \end{array}$	+3e +e +3e +4e +e +2e +2e	$\begin{array}{c} U \downarrow \\ U^{3+} \\ U \downarrow + 30 H^{-} \\ U \downarrow + 40 H^{-} \\ U^{4+} + 2 H_{2} 0 \\ UO_{2} \downarrow \\ U^{4+} + 2 H_{2} 0 \end{array}$	$\begin{array}{c c} -1.8 \\ -0.64 \\ -2.17 \\ -2.39 \\ +0.55 \\ +0.45 \\ +0.33 \end{array}$

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
V	V^{2+} V^{3+} $VO^{2+} + 2H^{+}$ $VO^{2+} + 2H^{+}$ $VO^{2} + 4H^{+}$ $VO^{2} + 4H^{+}$ $VO^{2} + 4H^{+}$ $VO^{3-} + 6H^{+}$ $H_{2}VO^{3-} + 4H^{+}$	+2e $+e$ $+e$ $+e$ $+2e$ $+3e$ $+5e$ $+2e$ $+e$	$\begin{array}{c} V \downarrow \\ V^{2+} \\ V^{3+} + H_2O \\ VO^+ \\ VO^2 + H_2O \\ V^{3+} + 2H_2O \\ V^{2+} + 2H_2O \\ V \downarrow + 2H_2O \\ VO^+ + 3H_2O \\ VO^2 + 3H_2O \\ VO^2 + 3H_2O \end{array}$	$\begin{array}{c} -1.18 \\ -0.255 \\ +0.337 \\ -0.044 \\ +0.9994 \\ +0.668 \\ +0.360 \\ -0.25 \\ +1.26 \\ +1.31 \end{array}$
W	$\begin{array}{c} WO_{2}\downarrow + 4H^{+} \\ W(CN)_{3}^{3-} \\ W_{2}O_{5}\downarrow + 2H^{+} \\ WO_{3}\downarrow + 6H^{+} \\ 2WO_{3}\downarrow + 2H^{+} \\ WO_{4}^{2-} + 8H^{+} \\ WO_{4}^{2-} + 4H_{2}O \end{array}$	+4e +e +2e +6e +2e +6e +6e	$\begin{array}{c} W \downarrow + 2H_2O \\ W(CN)_5^{4-} \\ 2WO_2 \downarrow + H_2O \\ W \downarrow + 3H_2O \\ W_2O_5 \downarrow + H_2O \\ W \downarrow + 4H_2O \\ W \downarrow + 8OH^- \end{array}$	$\begin{array}{c} -0.12 \\ +0.457 \\ -0.04 \\ -0.09 \\ -0.03 \\ +0.05 \\ -1.05 \end{array}$
Y	Y3+	+3e	Y↓	-2.37
Zn	Zn^{2+} $Zn(CN)_{4}^{2-}$ $Zn(NH_{3})_{4}^{2+}$ $Zn(OH)_{2}^{1+}$ $ZnO_{2}^{2-} + 2H_{2}O$ $ZnS \downarrow \text{ (wurtzite)}$	+2e +2e +2e +2e +2e +2e +2e		-0.7628 -1.26 -1.04 -1.245 -1.216 -1.40
Zr	$ZrO_{2}^{2+} + 2H^{+} ZrO_{2}^{2} \downarrow + 4H^{+} H_{2}ZrO_{3}^{} \downarrow + H_{2}O$	+4e +4e +4e	$\begin{array}{c} \operatorname{Zr}\downarrow + \operatorname{H}_2\operatorname{O} \\ \operatorname{Zr}\downarrow + 2\operatorname{H}_2\operatorname{O} \\ \operatorname{Zr}\downarrow + 4\operatorname{OH}^- \end{array}$	$ \begin{array}{c c} -1.57 \\ -1.43 \\ -2.36 \end{array} $

Chief Oxidation-Reduction Indicators

(in the order of their standard oxidation potentials)

A. Indicators not Sensitive to Changes in the pH and the Ionic Strength of a Solution

Todionton	E			Colour of	r of
marcaror	Formula	Solution	Ε, ν	oxidized form reduced form	reduced form
2, 2'-Dipyridyl (complex with ruthe- nium)	$Ru^{3+}\left(\left\langle \begin{array}{c} \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \end{array} \right\rangle \right)_3$	In diluted HCl +1.33 Colourless	+1.33	Colourless	Yellow
Nitro-o-phe- nanthroline (nitrofer10- in), complex with Fe ²⁺	$F_{\theta^{2+}}\left(\begin{array}{c} NO_2 \\ \\ \\ \\ \\ \end{array}\right)_3$	0.025M soluti- +1.25 Pale blue on in water	+1.25	Pale blue	Red Amax = = 510 nm
N-Phenyl-an- thranylic acid	H000H	(a) 0.2% solution in water (b) 0.1% solution in 0.2% Na ₂ CO ₃ solution	+1.08		Colourless

Red \[\lambda_{max} = \] == 510 nm	Yellow	Red	Red	Colourless
+1.06 Pale blue	Red	Pale blue	Yellow- green	Red
+1.06	+1.00	+0.97	+0.97	+0.85
0.025M solution; 1.624 g of phenanthrolline hydrochloride and 0.695 g of FeSO ₄ in water	In water	In diluted HCl	0.025M solution in water	In diluted HCl
$Fe^{2+}\left(\begin{array}{c} \\ \\ \end{array} \right)_3$	$C_2H_5O-\langle - \rangle - N = N - \langle - \rangle - NH_2 \cdot HC1$ H_2N	$Fe^{2+}\left(\left\langle \begin{array}{c} \\ \\ \end{array}\right\rangle \left\langle \begin{array}{c} \\ \\ \end{array}\right\rangle \left\langle \begin{array}{c} \\ \\ \end{array}\right\rangle \right)_3$	$Fe^{2+}\left(\begin{array}{c} H_3C & CH_3 \\ \\ = N \end{array}\right)_3$	H_3CO OCH_3 H_2N $ NH_2$
1,40-Phenan- throline (ferroin), complex with Fe ²⁺	p-Ethoxy chrysoidine	2, 2'-Dipyridyl (complex with Fe ²⁺)	5,6-Dimethyl- 1,10-phenan- throline (complex with Fe ²⁺)	o-Dianisidine

Indicator	Pormit		1	0	Colour of	JC JC
marcaro	Follitaia	Solution	E., V	oxidized form reduced form	rm rec	fuced form
Sodium or ba- rium diphe- nylamine sulphonate		0.05% solution +0.84 Red-violet in water	+0.84	Red-viole		Colourless
Diphenyl ben- zidine		1% solution in +0.76 Violet Concentrated H ₂ SO ₄	+0.76	Violet	ŏ	Colourless
Diphenyla- mine		1% solution in +0.76 concentrated H ₂ SO ₄	+0.76	Violet	3	Colourless
dicators Se	B. Indicators Sensitive to a Change in the pH and the Ionic Strength of a Solution	Ionic Strength	of a Solu	ıtion		
			E°, V when the pH is equal to	hen the rual to	Colo	Colour of
Indicator	Formula	Solution	0	7	oxidi- zed form	reduced

Colourless

Blue

0.02% solution +0.64 +0.22 in water

2,6-Dibromobenzene indophenol (sodium salt)

-

Colour- less	Colour- less	Colour- less	Colour- less
Blue	Blue	Violet	Blue
+0.22	+0.19	+0.06	+0.01
+0.64 +0.22	+0.62 +0.19	+0.56 +0.06	+0.53 +0.01
0,02% solution in water	0.02% solution in water	0.05% solution in 60% al- cohol	0.05% solution in water
$0 = \begin{cases} CI \\ O = \\ CI \end{cases} = N - \begin{cases} O \\ O \\ O \end{cases}$	$0 = \left\langle \begin{array}{c} CH_3 \\ \end{array} \right\rangle = N - \left\langle \begin{array}{c} CH_3 \\ \end{array} \right\rangle$	H ₂ N Gl-	CI- (CH ₃) ₂ N (CH ₃) ₂ CI-
2,6-Dichloro- phenol indo- phenol (so- dium salt)	o-Cresol indo- phenol (so- dium salt)	Thionine (diaminophenothiazine; Lauth's violet)	Methylene blue

Colour- less	Colour- less	Colour- less	Colour- less
Blue	Red	Vio- let- red	Red
-0.16	-0.25	-0.29	-0.33
+0.26 -0.16	+0.28	+0.24	+0.24 -0.33
0.05% solution in water	0.05% solution in water	0.05% solution +0.24 in water	0.01% solution in 60% alco-
0 0 C C C C C C NH HN	$\begin{bmatrix} H_2N & & & \\ & & &$	$\begin{bmatrix} H_3C \\ H_2N \\ \end{bmatrix}_{h} CH_3$ $\begin{bmatrix} H_2N \\ \\ \end{bmatrix}_{h} CH_2$ $\begin{bmatrix} CH_3 \\ \\ \\ \end{bmatrix}_{h} CI_{h}$	See Table 19, No. 43 (p. 189)
Indigo mono- sulphonic acid	Phenosafra- nine	Safranine T	Neutral red

Spectral Wavelengths and Colours Corresponding to Them

Ranges of the wave- lengths of the light being absorbed, nm	Colour of the radiation being absorbed	Supplementary colour (observed colour of solution)
400-450 450-480 480-490 490-500 500-560 560-575 575-590 590-625 625-750	Violet Blue Green-blue Blue-green Green Yellow-green Yellow Orange Red	Yellow-green Yellow Orange Red Purple Violet Blue Green-blue Blue-green

Table 43

Photometric Methods of Determining Various Ions

Ion being deter- mined	Reagent	Solvent	pH or acidity	Amax'	Molar coefficient of light absorption g.10-3
Al3+	Aluminon Arsenazo Morin Hydroxyquinoline Stilbazo	Water Water 95% alcohol Chloroform	4.5	525 600 415 405 260 500	24 13.0 18 4.9 80 19.5
Ag+	Eriochrome cyanine R Dithizone Diethyl dithiocarbamate Rhodanine (p-dimethyl- aminobenzylidene rho- danine)	Water Carbon tetrachloride Carbon tetrachloride Water + ethanol, 4% by	4-6 H ₂ SO ₄ , 0.5 <i>N</i> 1.3	2340 340 595	30.5 5.4 23.2
As3+ As03-	Diethyl dithiocarbamate Ammonium molybdate + hydrazine sulphate Sodium molybdate + sodium molybdate +	Carbon tetrachloride Water Butanol Water	3-6 1-1.3 HCl, diluted (1:3) HCl, 1N	340 840 370 400	25. 5.1 2.5

Table 43 (continued)

deter- mined	Reagent	Solvent	pH or acidity	Amax'	coefficient of light absorption e.10-3
AuBra AuCla	Hydrobromic acid Rhodamine B Methyl violet	Water Benzene Trichloroethylene	~1 HCl, 1N HCl, 1N	380 565 600	4.8 97 115
B 3 ⁺	Brilliant green + HF Carminic acid Curcumin Curcumin + oxalic acid Methylene blue + HF Quinalizarin	Benzene H ₂ SO ₄ , concentrated Ethanol, methanol or acetone tone Ethanol Dichloroethane H ₃ SO ₄ , concentrated	~ ~	585 555 540 645 620	20 180 40 14
Be ²⁺	Acetylacetone Aluminon Beryllon Eriochrome cyanine R	Chloroform Water Water Water	7.7.12-13.2	295 535 600 512	31.6 2.2 4.0
Bi3+	Dithizone Diethyl dithiocarbamate Potassium iodide Potassium iodide Complexone III Hydrocyquinoline Hydrochloric acid, 6N Thiourea	Carbon tetrachloride Carbon tetrachloride Isoamyl alcohol Water Chloroform Water	6 7-10 H ₂ SO ₃ , 1 <i>N</i> 4.5 4-5.2 HNO ₃ , 0.4-1.2 <i>N</i>	490 400 450 337 264 395 327 327	80 6.3 7.6.5 111 14.9 35.8 35.8

!	Br- RG	CN- Py Py Py Py Py Py Py	Ca ²⁺ Az Ar Ph	Cd ²⁺ D	Ce ³⁺ Aı	CO-2-4 AII
	Rosaniline Hypochlorite + H ₂ SO ₄	Pyridine + benzidine Pyridine + sulphanilic acid Pyridine + barbituric acid	Azo-azoxy BN Arsenazo III Phthalein complexone Murexide	Dithizone Diethyl dithiocarbamate Cadion + acetone	Arsenazo III Hydroxyquinoline Colour of ions themselves	Hg ²⁺ + diphenyl carbazone o-Tolidine Arsenazo Dithizone Diethyl dithiocarbamate α-Nitroso-β-naphthol
	Benzyl alcohol Carbon tetrachloride	Water Water Water	Carbon tetrachloride Water Water Water	Carbon tetrachloride Carbon tetrachloride Water	Water Chloroform Water	Water Water Water Carbon tetrachloride Chloroform
	H ₂ SO ₄ , 18N H ₂ SO ₄ , 2N	1) 1	NaOH, 1N 6.5 10-11 11.3	4-12 9 9.4	$^{3.0}_{10}_{\rm H_2SO_4,\ 1N}$	3.2 1.6 6.8 6.3 4-5.5
	585	520 450 584	485 655 575 506	520 440 490	665 480 320	520 438 600 542 650 317
	68 0.2	69 62 124	20 10 30 11.3	88 0.21 13	47 2 5.6	26.5 25.5 59.2 0.5 26.5 26.5

Ion being deter- mined	Reagent	Solvent	pH or acidity	Amax'	Molar coefficient of light absorption e.10-3
Co2+	β-Nitroso-α-naphthol Nitroso-R-salt Hydroxyquinoline PAN Ammonium rhodanide	Water Toluene Water Chloroform Chloroform Isoamyl alcohol	NH ₃ , 0.15 <i>N</i> 5.0 6.8 6.8 3-4	550 530 420 420 590 590 620	26.5 23 23 7.8 6.8
Cr3+ Cr04- Cr ₂ O ₇ -	Hydroxyquinoline Colour of ions themselves Colour of ions themselves Diphenyl carbazide Chromotropic acid	Cyclohexane Chloroform Water Water Water	Alkaline solution H ₂ SO ₄ , 0.9N 1.2-2.6 H ₂ SO ₄ , 0.5-5N	620 420 370 455 540 400	20 7.7 4.9 1.8 34.6 3.4
Cu ²⁺	Ammonia α-Benzoin oxime Dithizone	Water Chloroform Carbon tetrachloride	NH4, 3N 11.3-12.3 HCl, 0.1N	620 440 545 445	0.12 2.8 45 22.7
	2,2'-Diquinoline Diethyl dithiocarbamate 8-Mercaptoquinoline Hydroxyquinoline Pyridine + rhodanide	Isoamyl alcohol Chloroform Toluene Chloroform Chloroform	5-6 9-9.2 HCl, 2.5 <i>N</i> 2.7-14 Weak acid solution	540 440 432 410 415	12.5 8 1.6 1.6

	$\begin{array}{l} {\rm Alizarin~S + Th^{IV}} \\ {\rm SPADNS + Zr^{IV}} \\ {\rm Alizarin~S + Zr^{IV}} \\ {\rm Sulphosalicylic~acid} + \\ {\rm + Fe^{3+}} \end{array}$	Water Water Water	2 HCl, diluted (7:3) H ₂ SO ₄ , 0.6-1M	525 570 525 500	4.4
Fe2+	Diethyl dithiocarbamate Dimethyl glyoxime α,α'-Dipyridyl α-Nitroso-β-naphthol	Chloroform Water Water Ethylacetate	0-10 Ammonia solution 3-9 Weak alkaline	515 550 522 700	2.7 10 8.65 6.3
Fe(CN)4- Fe3+		Water Water Chloroform Chloroform	solution 2-9 2-2.5 0-10 H,SO ₄ (1:9)	508 610 515 420	11.1 5.7 3.6
	α-Nitroso-β-naphthol Hydroxyquinoline Ammonium rhodanide Salicylic acid Sulphosalicylic acid Ferron (7-iodo-8-quinolin-	Chloroform Chloroform Water Water Water	Weak acid solution 0.3-1.2 2.6-2.8 8.2 2.7-3.1	407 470 480 520 420 610	2004 2004 2006 2006 2006 2006 2006 2006
Fe(CN)8-	Hydrochloric acid Ferric salt	Water Water	HCI, 6.7N 2-2.5	342 610	2.9
HIV	Arsenazo III	Water	HCl, 9N	665	95
Hg2+	Dithizone Diethyl dithiocarbamate	Chloroform Carbon tetrachloride	5-6	492	70

Table 43 (continued)

Ion being deter- mined	Reagent	Solvent	pH or acidity	,max,	Molar coefficient of light absorption e.10-3
I2	Colour of the substance	Chloroform	1	510	0.46
		Chloroform Benzene	1 1	360	14.2
In3+	Dithizone Hydroxyquinoline	Carbon tetrachloride Chloroform	3.5	510 395	119
K+	Dipicrylamine	Acetone (1:1)	10-11	200	8.0
Li+	Thoron	Acetone (7:3)	13	486	9
Mg ²⁺	Hydroxyquinoline Titanium yellow Acid, Chrome Black Spe-	Chloroform Water Water	11.2-11.3 >12 10	380 545 540	5.6 33.8
Mn ³⁺	Colour of ions themselves	Carbon tetrachloride Water	6-9 7	505	3.7
Mo ⁵⁺	Ammonium rhodanide	Diethyl ether Isoamyl alcohol	HCl, 0.8 <i>N</i> HCl, 1 <i>N</i>	470	19.5
MoVI	Dithiol	Isoamyl acetate or pe- troleum ether	HCl, 4N	089	18

	8-Mercaptoquinoline Hydroxyquinoline	Toluene Chloroform	IICI, 2.5.V	420 369	8.2
*HN	Sodium phenolate + hy-	Water	NaOH, 0.8N	625	3.5
20N	Nessler's reagent Sulphanilic acid	Water Water	13 2-2.5	400	6.2
N03	2,4-Phenol disulphonic	Water	1	410	9.4
	Brucine	Water	H_2SO_4 , diluted $(2:1)$	410	1.5
NPV	$PAR + H_2O_2$ Hydrogen peroxide	Water Sulphuric acid, concen- trated	ro	540 365	32 0.86
	Pyrogallol	Water	H2SO4, diluted	400	9.9
	Ammonium rhodanide +	Water + acetone (1:1)	HCl, 2-3N	383	38
	- chois.	Diethyl ether	HCl, 4N	385	36.2
Ni2+	Dimethyl glyoxime	Chloroform	Weak alkaline solu-	375	3.5
	Ammonia Diethyl dithiocarbamate	Water Carbon tetrachloride	NH ₃ , 1.5 <i>N</i> 4-11	582	0.006
	Dithizone Hydroxyguinoline	Chloroform	$NH_4OH, 0.3N$ >6.7	480	27.
	Salicylaldoxine \alpha-Furfuryl dioxime	Chloroform Dichlorobenzene	7.5-8.3	400	17.6

Ion being deter- mined	Reagent	Solvent	pH or acidity	λ _{max} , nm	Molar coefficient of light absorption e.10-3
Ni ³⁺	Dimethyl glyoxime + + oxidizer Ammonium molybdate Ammonium molybdate + + SnCl ₂ Ammonium molybdate + + ammonium molybdate +	Water Water Water	Ammonia solution HNO ₃ , 0.25 <i>N</i> HNO ₅ , 0.25 <i>N</i> HCl, 0.05 <i>N</i>	360 735 315 400	13 4.8 18.5 20 2.5
Pb2+	Arsenazo III Dithizone Diethyl dithiocarbamate Sulpharsazene	Water Carbon tetrachloride Carbon tetrachloride Water	4.5 8.5 9.2	655 520 340 515	10 68.8 9.3
Pd2+	Dithizone Dimethyl glyoxime Potassium iodide 8-Mercaptoquinoline α-Furfuryl dioxime	Carbon tetrachloride Chloroform Water Water Chloroform	H ₂ SO ₄ , 0.5 <i>M</i> HCl, 0.2-0.3 <i>N</i> HCl, up to 2 <i>N</i> HCl, ub as a Strong acid solution	450 383 408 485 380	34.4 1.6 9.4 8.0 23.8
PtCl3-	p-Nitrosomethylaniline Potassium iodide Tin dichloride	80% ethanol Water Water	2-5 1.6 HCl, diluted (1:9)	525 495 405	67 12 10

Sn ²⁺ Quercetin Pyrocatechin violet Ta ^V Dimethyl fluorone Pyrogallol + oxalate Brilliant green Brilliant green Brilliant green Brilliant green Benzene Benzene Benzene Benzene Benzene Carbon tetrachloride Water Thiourea Thiourea Thiourea Thiourea Thoron Thiounea Thy Arsenazo III Water Water	Reagent		Solvent	pH or acidity	λ _{max} ,	Molar coefficient of light absorption e.10-3
Dimethyl fluorone Pyrogallol + oxalate Brilliant green Methyl violet Diethyl dithiocarbamate Bismuthol II Thiourea Arsenazo III Carboxygallanilide Morin PAR Thoron Hydrogen peroxide Sulphosalicylic acid Thyrone Chromotropic acid	Quercetin Syrocatechin viole Shenylfluorone			2.3-4.5	440 610 490	-
Diethyl dithiocarbamate Bismuthol II Thiourea Arsenazo III Carboxygallanilide Morin PAR Thoron Hydrogen peroxide Sulphosalicylic acid Thyrone Chromotropic acid	timethyl fluorone yrogallol + oxalat rilliant green ethyl violet		пе	HCl, 6N 0.6-2.0 2.3	530 365 600 580	68 100 100
Arsenazo III Carboxygallanilide Morin PAR Thoron Hydrogen peroxide Sulphosalicylic acid Thyrone Chromotropic acid	iethyl dithiocar ismuthol II hiourea		ı tetrachloride form	4-8.8 6.5 6.5 H ₂ SO ₄ , 1.8 <i>N</i>	428 400 335 320	3.2 14.7 28 16
Hydrogen peroxide Sulphosalicylic acid Thyrone Chromotropic acid	rsenazo III rrboxygallanilide orin AR horon	Water Water Water Water Water		HCI, 8 <i>N</i> 4.5 2.0 6.4-6.7 0.8	665 413 410 500 545	127 25 42 38.9 16.5
	ydrogen peroxide ulphosalicylic aci hyrone Chromotropic acid			H ₂ SO ₄ , 1.8 <i>N</i> 3.2-4.9 4.3-9.6 2.7-4.6	410 370 410 470	0.72 15 16 11.5

Tl3+	Ulv UO2+	ΛΛ	WVI	Zn^{2+}	ZrIV
Dithizone Diethyl dithiocarbamate Methyl violet Hydroxyquinoline	Arsenazo III Arsenazo I Arsenazo III Diberzoyl methane (1,3-diphenyl-1,3-propanedione) Diethyl dithiocarbamate K ₄ Fe(CN) _e	Wolframite + H ₂ PO ₄ Diethyl dithiocarbamate Hydroxyquinoline Hydrogen peroxide	Vanadicophosphoric acid Dithiol Rhodanide + SnCl ₂ Hydroxyquinoline	Dithizone PAN	Alizarin S Arsenazo I Arsenazo III Quercetin Xylenol orange SPADNS
Chloroform Carbon tetrachloride Benzene Chloroform	Water Water Water Water Chloroform Water	Isobutyl alcohol Carbon tetrachloride Chloroform Water	Water Amyl acetate Water Diethyl ether 60% acetone Chloroform	Carbon tetrachloride Carbon tetrachloride	Water Water Water 30% ethanol Water Water
NaOH, 0.8N 4-11 HCl, 0.5N 4-8	HCI, 4N 4.2 2.0 6.5-8.5 6.5-7.2 6.8-7.5	HNO ₃ , 0.5 <i>N</i> 4-5.9 4 H ₂ SO ₄ , 1.5 <i>N</i>	H ₃ PO ₄ , diluted (1: 100) 0.5-2.0 HCl, 9N	8.3	0.6-1.5 HCl, 9N HCl, 0.5N HCl, 0.5N 1.5 0.9-1.1
505 426 560 401	670 555 665 395 380 525 610	400 400 550 460	400 400 405 398 357	535	520 665 665 550 570
33 1.3 56 6.8	130 53 18 18 4.0 4.0 3.7 2.8	2.2 3.8 3.3 0.27	0.62 20 11.5 18.3 17.6 3.3	94 28.7	6.5 120 31.4 52 18.9

Table 44

Properties of Selected Solvents

No.	Solvent	Formula	Molecular weight, M	Den- sity at 20 °C, g/cm ³	Refra- ctive index
1	Acetic acid	СН3СООН	60.054	1.049	1.372
2	Acetone	CH ₃ COCH ₃	58.081	0.791	1.359
3	Amyl acetate (iso)	CH ₃ COOCH ₂ CH ₂ CH CH ₃	130.190	0.856	1.400
4	Amyl alcohol (iso)	CH-CH ₂ -CH ₂ OH	88.151		1.406
5	Aniline	C ₆ H ₅ NH ₂	93.130	1.022	1.586
6	Benzene	СаНа	78.144	0.8790	1.5014
7	Benzyl alcohol	C ₆ H ₅ CH ₂ OH	108.141	4 045	1.539
8	Butanol (iso)	(CH ₃) ₂ CHCH ₂ OH	74.124	0.803	1.396
9	Butanol (normal)	C ₄ H ₉ OH	74.124	0.810	1.399
10	Butyl acetate (normal)	CH ₃ COOC ₄ H ₉	116.162	0.882	1.395
11	Butylamine (normal)	$C_4H_9NH_2$	73.140	0.740	1.401
12	Butyl cellosolve (ethylene gly- col mono-n- butyl ether)	HO-CH ₂ -CH ₂ -O-C ₄ H ₉	118.178	0.902	1.417
13	Carbon disul- phide	CS ₂	76.143	1.263	1.627
14	Carbon tetrach- loride	CC14	153.839	1.595	1.461
15	Chlorobenzene (mono)	C ₆ H ₅ Cl	112.563	1.107	1.525
16	Chloroform	CHCl3	119.390	1.489	1.446
17	Cyclohexane			0.779	1.426
18	Cyclohexanol	$C_{6}H_{12}$	84.163	0.778	4 465
19	Cyclohexanone	C ₆ H ₁₁ OH	100.162	0.494	1.452
20	Decalin (deca-	$C_6H_{10}O$	98.146	0.949	1.475
	hydronaphtha- lene)	C ₁₀ H ₁₈	138.255	0.890	1.4.

Mel- ting point, °C	Boiling point, °C	Vapour pressure, cm Hg	Surface tension at 20 °C, dy- nes/cm	Solubility in water, g/100 ml	Dielect- ric constant, (~20°C)	Flash point, °C	No
+16.6	118.1	1.5 (25 °C)	27.8	00	9.5	40	1 2
-94.9	56.1	22.9 (25 °C)	23.7	00	21.3	-10.7	-
-75	135.5	15.7 (20 °C)	-	0.25 (15 °C)	5.26	25	3
-134	128	0.2 (20 °C)	23.7	2.67 (25 °C)	15.8	42	4
-6.0	184.25	0.24 (50 °C)	42.9	3.66 (25 °C)	7.2	-71	5
+5.5	80.8	9.6 (25 °C)	28.9	0.175 (20 °C)	2.3	-8	6
-15.3	206	0.1 (60 °C)	38.3	3.66 (20 °C)	13.1	-	7
-108	108	1.8 (31 °C)	-	8.5 (20 °C)	18.8	34	8
-79.9	117.7	0.64 (25 °C)	24.6	7.9 (20 °C)	17.8	42	8
-77	125	18 (20 °C)	-	2.3 (20 °C)	5.0	22	10
-50.6	77.8	_	21.6	œ	5.4	-	11
-40	170.6	0.9 (20 °C)	-	50	-	60	12
-112.8	46.25	29.8 (20 °C)	33.6	0.18 (20 °C)	2.7	-20	13
-22.9	76.7	11.5 (25 °C)	26	0.08 (20 °C)	2.2	Does	14
-45	132.0	0.88 (20 °C)	33.2	0.049 (30 °C)	5.7	ignite 29	1:
-63.5	61.2	19.9 (25 °C)	27.1	0.82(20°C)	5.1	Does not ignite	1
0 =		- 0 (05 00)	_	0.01 (20 °C)	2.0	17	1
6.5	81	7.8 (25 °C)	34.0	4.0 (20 °C)	10	68-72	18
T 24	161.5	1.0 (56 °C) 0.85 (20 °C)	_	2.4 (30 °C)	- '	40	1
-125	155 189-192	0.85 (20 °C) 0.06 (20 °C)	-	practically insoluble	-	57-58	2

No.	Solvent	Formula	Molecular weight, M	Den- sity at 20 °C, g/cm ³	Refra- ctive index
21	o-Dichloroben-	$C_6H_4Cl_2$	147.012	1.305	1.552
22	Dichloroethane (ethylene dichloride)	CH_2Cl-CH_2Cl	98.968	1.257	1.444
23	Diethyl ether (ethyl ether)	$C_2H_5OC_2H_5$	74.124	0.714	1.354
24	Disopropyl ether (isopropyl ether)	CH-O-CH CH3	102.178	0.715	1.368
0- 1	4.4.70	H ₃ C CH ₃			
25 26	1,4-Dioxane	$(CII_2)_4O_2$	88.108	1.033	1.422
	Ethanol	C_2H_5OH	46.070	0.789	1.362
27	Ethanolamine	H2NCH2CH2OH	61.086	1.010	1.454
28	Ethyl acetate	CH3COOC2H5	88.108	0.901	1.372
29	Ethylene glycol	HOCH2CH2OH	62.070	1.114	1.431
30	Furfurol	C4H3CHO2	96.087	1.160	1.526
31	Glycerin	СН2ОНСНОНСН2ОН	92.097	1.261	1.473
32	Hexane (normal)	C6H14	86.178	0.6603	1.3754
33	Methanol	CH ₃ OH	32.043	0.792	1.329
34	we (ethylene glycol mono- methyl ether)	HO-CH ₂ -CH ₂ -O-CH ₃	76.097	0.965	1.103
35	Methyl ethyl ketone	$\mathrm{CH_{3}COC_{2}H_{5}}$	72.108	0.805	1.379
36	Methyl isobutyl ketone (hexone).	(CH ₃) ₂ CHCH ₂ COCH ₃	100.162	0.800	1.396
37	Nitrobenzene	C6H5NO2	123.114	1.203	1.552
38	Octane (iso)	C8H18	114.232	0.708	1.401
40	Octane (normal)	C8H18	114.232	0.703	1.398
41	Propanol (iso)	C ₃ H ₇ OH	60.097	0.789	1.381
41	Propanol (nor- mal)	C ₃ H ₇ OH	60.097	0.804	1.385
43	Pyridine	CoHoN	79.103	0.982	1.509
43	Sulphuric acid	H ₂ SO ₄	98.082	1.834	1.429
44	Tetralin	C ₁₀ H ₁₂	132.207	0.971	1.543
45	Toluene	C ₆ H ₅ CH ₃	92.141	0.866	1.496
46	Turpentine	-01100113	32.141	0.85-0.88	-1.47
47	Water	H ₂ O	18.016	0.85-0.85	1.333
48	Xylene (mixture of isomers)	C_8H_{10}	106.169	0.88	1.506

Table 44 (continued)

Mel- ting point, °C	Boiling point, °C	Vapour pressure, cm Hg	Surface tension at 20 °C, dy- nes/cm		Dielect- ric constant, (~20 °C)	Flash point, °C	No.
-16.7	180.2	0.13 (25 °C)		0.014 (25 °C)	7.5	77	21
-35.3	83.5	7.7 (25 °C)	0.84	0.87 (20 °C)	10.5	12	22
-117.6	34.6	53.7 (25 °C)	16.5	6.95 (20 °C)	4.3	-40	23
<-60	68	15.8 (20 °C)	32	1.2 (25 °C)	-	-22	24
+11.7	101.1	2.7 (20 °C)	36.5	00	3.0	5	25
-111.8	78.32	5.9 (25 °C)	21.9	00	25.0	11	26
+10.5	172.2	3.3(25 0)	_	00	-	-	27
-83.6	77.15	7.3 (20 °C)	23.75	·7.9 (20 °C)	6.2	4.4	28
-17.4	197.4	3.9 (120 °C)	47.7	00	41.2	-	29
-39	162.1	2.5 (72 °C)	43.5	8.3 (20 °C)	41.9	94	30
+18.2	290	0.1 (125 °C)	64.5	00	43	160	31
-94	68.8	15.1 (25 °C)	18.4	0.014 (16 °C)	1.9	-31 6.5	32
-94.9	64.65	12.4 (25 °C)	22.5	00	32.3	36	33
-	124.5	6.2 (20 °C)	_	00	17.2	50	0.4
-86	79.6	9.84 (25 °C)	24.6	27.3 (20 °C)	18.4	-7.2	35
-84	115.65	2.0 (25 °C)	-	2.3 (25 °C)	-	15.6	36
+5.7	210	0.75 (80 °C)	43.6	0.19 (20 °C)	35.5	90	37
-60	118	0.73 (80 0)	_	-	-	<-12	38
-57	125.0	1.1 (20 °C)		0.0015 (20 °C)	2.0	+17	39
-88.5	82.3	10.0 (39 °C)	21.7	00	18.6	18.8	40
-127	97.2	1.45	23.6	00	-	20	41
2.5			36.6	00	12.5	20	42
-38.2		1.54	(55)	00	>84	Does	43
+10.5	(330)	<0.001 (25 °C)	(33)			not ignite	
-35	207 2	0.03 (20 °C)	_	~0.001 (20 °C)	-	78	44
-95	207.3	2.8 (25 °C)	28.4	0.047 (20 °C)	2.4	5	45
_	153-180	0.45 (20 °C)	14.4	~0.2(15 °C)	2.17	30-37	46
0.00	100.0	2.38 (25 °C)	72.75	-	80	Does	47
	100.0	2.00(2.				not	
-25.3	136-145	1.0 (20 °C)	28	0.013 (25 °C)	2.4	20	48

Extraction with Organic Solvents

A. Extraction of Various Elements in the Form of Dithizonates (Dr. dithizone ion)

Reagent — dithizone solution in chloroform or carbon tatrachloride; E—extracted by both organic solvents; N—cannot be extracted; N-E—weakly extracted

Ele- ment	Complex	Colour	Maximum light ab- sorption \$\lambda\$, nm	Solubi- lity in CHCl3 or CCl4	pH of extraction solution	Remarks
Ag+	AgHDz	Yellow	760	田	Diluted mineral-	
	Ag ₂ Dz	Violet-red	ı	Z	Alkaline solution	Insignificantly soluble in
1n3+	Au3+ Au(HDz)3	Yellow	450	ত্র	Diluted mineral- acid solution	Solutions are sensitive to light. Direct extraction titration and the plo-
	Au ₂ Dz ₃	Red-brown	ı	덢	Alkaline solution	tometric method are used Dissolves weakly in CCI ₄ . Solutions are sensitive to light. Direct extraction titration alone is used
Bi3+	Bi(HDz)3	Orange	490 and	ப	>2 (CCl ₄)	1
	$\mathrm{Bi}_2\mathrm{Dz}_3$	Orange-red	505	ध	Alkaline solution	Reacts likewise in the
Cd2+	Cd(HDz)2	Red	520	臼	Alkaline solution	Stable when being shaken with 1N NaOH solution

The dithizonate solution in an organic solvent is quite stable relative to diluted mineral acids	Decomposition products	may appear	Only insignificantly solu-	The determination according to mixed colour should be made when	λ = 510 nm or 625 nm Can form also in a weak acid solution when cop- per ions are in the pre-	sence of excessive di- thizone Fe ^{III} does not form a com- plex, but it oxidizes dithizone in an alkaline	the presence of cyanide	Ī
7-9 (CCI ₄)	Strong alkaline so-	Diluted mineral- acid solution	$(\sim 0.1N)$ Alkaline solution	Diluted mineral- acid solution	Alkaline solution	7-9 (CCl ₄)	Diluted mineral-	Alkaline solution
घ	回	回	回	Ħ	回	回	ভ	Z-Z
542	1	1	ı	545-550	450	520	1	485
Violet-red	Brown	Violet, the solu- tion in CCl4	is brown Red-brown	Violet-red	Yellow-brown	Red	Orange	Purple
Co2+ Co(HDz)2	CoDz(?)	CuHDz	Cu2Dz	Cu(HDz) ₂	CuDz	Fe(HDz)2	Hg ₂ (HDz) ₂	Hg ₂ Dz
Co2+		Cu+		Cu ²⁺		F 62+	11824	

	dithi- dithi- sitive cermi-	acid sre is icien-	the ide	stitu- nickel ved in d by h dif-	- does
Remarks	Can form in a weak alkaline solution with dithizone excess. Sensitive to light. The determination according to min	nade when $\lambda = 500$ nm or 610 nm can form in a weak acid solution when there is a dithizone insufficien-	Reacts likewise in the presence of cyanide Solution is very unstable; haven followed.	te when CCl ₄ substitu- tes CHCl ₃ When CCl ₄ is used, nickel dithizonate dissolved in it is decomposed by mineral acids with dif-	ficulty The presence of CN-does not inhibit reaction
pH of extraction solution	Diluted mineral- acid solution	Alkaline solution	5-6 (CCI ₄); 8.3-9.6 (CHCI ₃) ~10	Weak alkaline so- lution	8.5-11 (optimal in CHCl ₃)
Solubi- lity in CHCl ₃ or CCl ₄	回	E	E CHCl ₃	闰	Ħ
Maximum light ab- sorption λ , nm	485	520	510	285, 480, 665	520
Colour	Orange-yellow	Red	Red Violet-brown	Brown-violet (when extract- ed from strong alkaline solu-	tions, it is gray)
Complex	Hg(HDz)2	HgDz	$In(HDz)_3$ $Mn(HDz)_2$	Ni(HDz)2	Pb(HDz)2
Ele- ment	Hg ²⁺	Hg ²⁺	In ³⁺	N i 2+	Pb2+

Can be obtained by adding dithizone to a PdDz solution. Stable in respect of 6N NaOH and 6N H ₂ SO ₄ . The determination according to mixed	colour is made when $\lambda = 620$ nm and 280 nm In organic solvents, it is soluble only partially, forming a dark-violet	solution. Reaction occurs slowly Reaction is effected in the presence of $SnCl_2$; violet flakes occasionally appear. Platinous dithizonate is insoluble	in CHCl ₃ . Platinum (IV) and other tetravalent and trivalent platinum metals do not react Unstable	Forms likewise in the pre-	Sence of CN- With dithizone excess, complete reaction occurs also in a weak acid me- dium. The presence of thiosulphate does not inhibit reaction
I	Diluted mineral- In	HCI, 1.5-3N		11-14.5	Neutral or weak alkaline solution (optimal at pH = = 8.3 in a citrate buffer solution by the extraction by the with CHCL.)
E	N-E	7 [00	E	臼	臼
280, 640	1	710, 490 and 260	520	505	53 52
Brownish green; the solution in CHCl ₃ is pale green	Brownish red	Brown-yellow	Red	Orange-red	Purple
Pd ²⁺ Pd(HDz) ₂	PdDz	Pt(HDz)2	$\operatorname{Sn}(\operatorname{HDz})_2$	TIHDz	Zn(HDz)2
Pd ²⁺		Pt2+	Sn^{2+}	T1+	Zn ²⁺

Action of Masking Agents during Extraction in the Form of Dithizonates

Extraction conditions	Elements reacting with dithizone
Alkaline solution containing cyanide Weak acid solution containing cyanide Diluted acid solution containing rhodanide Diluted acid solution containing promide and cyanide Eiluted acid solution containing bromide or iodide Diluted acid solution containing ethylenediaminetetrancetate Weak acid solution (pH = 5) containing thiosulphate (dithizone	Pb ²⁺ , Sn ²⁺ , Tl ⁺ , Bi ³⁺ Pd ²⁺ , Hg ²⁺ , Ag ⁺ , Cu ²⁺ Hg ²⁺ , Cu ³⁺ Pb ³⁺ , Cu ³⁺ Hg ²⁺ , Cu ³⁺ Hg ²⁺ , Au ³⁺ Hg ²⁺ , Ag ⁺ Pd ²⁺ , Sn ²⁺ , Zn ²⁺ (Cd ²⁺ , Co ³⁺ , Ni ²⁺)
is dissolved in CCl_4) Weak acid solution (pH = 4-5) containing thiosulphate and evanide	Zn ²⁺ , Sn ²⁺
Citrate and tartrate in an alkaline medium	Usually does not inhibit dithizo- nate extraction

B. Extraction of Various Elements in the Form of Diethyl Dithiocarbamates

Element	Optimal pH values in extraction	Extractant and extraction conditions
Ag+ Asm Bj3+	3 4-11 4-5.6 1-10 11-12	Ethyl acetate Carbon tetrachloride ditto Chloroform, diethyl ether, ethyl acetate Carbon tetrachloride in the presence of ethylenediamine- tetraacetate and KCN

Ethyl acetate Carbon tetrachloride in the presence of KCN Chloroform ditto	ditto Ethyl acetate in the presence of ethylenediaminetetra- acetate; the subsequent acid treatment allows separation from other elements being extracted under the	tions Carbon tetrachloride Chloroform Ethyl acetate Ethyl acetate Carbon tetrachloride is the control of the co	Ethyl acetate Carbon tetrachloride in the presence of ethylenediamine- Ethyl acetate Carbon tetrachloride in the presence of KCN Ethyl acetate (a reagent excess is required) Chloroform in the presence of citrate Ethyl acetate	Carbon tetrachloride Chloroform, ethyl acetate Chloroform Carbon tetrachloride	Diethyl ether, ethyl acetate Carbon tetrachloride in the presence of KCN Carbon tetrachloride in the presence of ethylenediamine- tetraacetate
3 6-8 0-6	1-3.5 Alkaline solution	4-11 0-10 3 3 11	3 9 6.5 7.5-8.0	4-5.5 0-10 2.2 7-9 (extraction is slow and	Strong acid solution 11 11
Co2+	ţ,	Fe ²⁺ Fe ³⁺ Ga ³⁺ Hg ²⁺	In ³⁺ Mn ²⁺ MoVI	Nb v Ni2+ Osvi	Pb2+ Pd2+

Diethyl ether, chloroform	Weak alkaline solution	_
Carbon tetrachloride	11	Zn2+
Ethyl acetate	1-1.5	WVI
Amyl acetate in the presence of tartaric acid	0.4-0.5	
Chloroform	4.5-5.0	
Ethyl acetate		1:1
Chloroform, amyl acetate, diethyl ether	6.5-8.5	UVI
tetraacetate and KCN		,
Carbon tetrachloride in the presence of ethylenediamine-	11	Tl3+
Ethyl acetate (a reagent excess is required)	3	TI+
Carbon tetrachloride in the presence of ethylenediamine-	8.5-8.8	
Chloroform, benzene	5N H+-3.3	
Ethyl acetate	က	TelV
ditto	5-6	Sn^{IV}
ditto	5-6	Selv
Carbon tetrachloride	4-9.5	Spill
Ethyl acetate	HCl, concentrated	ReVI
Extractant and extraction conditions	Optimal pH values in extraction	Element

Action of Masking Agents during Extraction in the Form of Diethyl Dithiocarbamates

Extraction conditions	Elements reacting with diethyl dithlocarbamate
In the presence of ethylenediaminetetraacetate at Ag+, Bi3+, Cu2+, Hg2+, Pd2+, Tl3+ pH 11	Ag+, Bi3+, Cu2+, Hg2+, Pd2+, Tl3+
In the presence of KCN at pH 9 Likewise at pH 11	Bi ²⁺ , In ³⁺ , Mn ²⁺ , Sb ³⁺ , Te ^{IV} , Tl ³⁺ Bi ³⁺ , Cd ²⁺ , Pb ²⁺ , Tl ³⁺
hylenediaminetetraacetate and	Bi3+, Sb3+, Te ^{IV} , Tl3+
Likewise at pH 11	Bi3+, Tl3+

C. Extraction of Various Elements in the Form of Cuplerronates

2000	Optimal conditions of extraction	Extractant
A13+	pH 2-5	Chloroform
Bi3+	HCI. H.SO.	Toluga mother other learner
Cd2+	Neutral solution	Rolling diethyl ethyl Ketone
Ce4+	pH 2	Butyl acetate
Co2+	CH3COOH, diluted	Ethyl acelate or diethyl other
Cu2+	HCl, diluted (1:9)	Chloroform
Fe3+	H ₂ SO ₄ or HCl, diluted (1:9)	Chloroform, diethyl other othyl acetate
GeIV	Weak acid solution	Methyl isobutyl betone
Hg2+	Neutral solution	Benzene chloreform
(n3+	Diluted acid	ditto
Mn2+	Neutral solution	Diethyl ether
MoVI	HCl, diluted (2:9)	Ethyl acetate, chloroform
NPA	Acid solution	Chloroform
+5!N	Neutral solution	Various organic solvents
Pa	1-4N acid	Benzene, diethyl ether. chloroform
Spin	H2SO4, diluted (1:9)	Chloroform
Sn ^{z+}	1.5N acid	Benzene, chloroform
VI o	Crystal violet + TiCl3	4-Heptanone
Snr	HCI, diluted (1:9)	Ethyl acetate
$Th^{\perp V}$	HCl, diluted (1:9)	Ethyl acetate, butyl acetate
VI.m.	pH 0.3-0.8	Benzene - isoamyl alcohol
1.1	HCI, diluted (1:9)	Chloroform, ethyl acetate
VI	Ammonium tartrate, pH 5	Isoamyl alcohol
	H_2SO_4 , diluted (1:9)	Diethyl ether
AA	HCl or H ₂ SO ₄ , diluted (1:9)	Ethyl acetate or ether
WVI	HCl, diluted (1:9)	Ethyl acetate (incomplete extraction)
Zn2+	Neutral solution	Diethyl ether (incomplete extraction)
Zr IV	H ₂ SO ₄ , diluted (1:9)	Ethyl acetate

D. Extraction of Various Elements in the Form of Hydroxyquinolates (1% hydroxyquinoline solution in chloroform)

Element	Optimal pH values in extraction	Extractant and extraction conditions
A18+ R:3+	4.8-6.7; 8.2-11.5	1 1
Ca 2+	11.5	Butyl cellosolve + chloroform Chloroform or, better, 0.2M butylamine so- lution in chloroform
Cest	9.9-10.5	Incomplete extraction The presence of KCN is permissible
Cost	2.8-14	At high pH values, tartrate is added
Fest Gast	1.9-12.5	At high pH values, tartrate is added
Ins+ Mg2+	>3.0	Butyl cellosolve + chloroform
Mn ²⁺	10.5-13.6 12.5	0.2M butylamine solution in chlorotorm In the presence of tartrate and hexacyano- ferrate (II)
MoVI	1.6	Likewise in the presence of ethylenediami- netetraacetate
Nbv Nds+	NH40H, 1N >8.5 4.5-9.5	Citrate medium
Pa+ Phz+	(NH ₄) ₂ CO ₃ , saturated solution 8.4-12.3	Incomplete extraction

Pd2+	HCl, diluted	1
Purv	8-7	Amyl acetate
RuIII	Acetate medium	!
Sc3+	9.7-10.5	Benzene
SnIV	2.5-5.5	1
Sr2+	11.3	1M hydroxyquinoline solution in chloroform
ThIV	6.9	Chloroform or methyl isobutyl ketone
TiIV	3.8-5.0	In the presence of hydrogen peroxide
	8-9	In the presence of ethylenediaminetetraace-
	1 1	tate
T13+	0.5-7.0	85-89% is extracted
IAI	4.7-8.0	1
	8.8	In the presence of ethylenediaminetetraace- tate
Δ.Λ	3.3-4.5	1
	5.0	In the presence of an ethylenediaminetetra- acetate complex with calcium ions
WVI	2.4	In the presence of ethylenediaminetetra- acetate
Zn2+	4.6-13.4	Incomplete extraction
	Acetate buffer	1

Action of Masking Agents during Extraction in the Form of Hydroxyquinolates

Extraction conditions	Slements reacting with 8-hydroxyquinoline
In the presence of ethylenediaminetetraacetate, at pH 8 and higher, masking of Al ³⁺ , Co ²⁺ , Fe ³⁺ , Mn ²⁺ and Ni ²⁺ occurs At pH 7.9-9.0	

E. Extraction of Various Elements from Hydrochloric, Hydrobromic, Hydroiodic and Nitric Acids by an Equal Volume of Diethyl Ether

Separation of Organic Compounds

A. Classification of Individual Compounds According to Their Behaviour under the Action of Some Reagents

A test of the examined compound is consecutively treated with the following reagents: (a) distilled water, (b) diethyl ether, (c) 1.2N hydrochloric acid, (d) 1.5N sodium bicarbonate solution, (e) 2.5N caustic soda solution, (f) concentrated sulphuric acid, and (g) 85% phosphoric acid.

These reagents are used to treat separate portions of the test in the given order. A test is considered to be soluble in one reagent or another if it dissolves upon shaking for two minutes at room temperature in a quantity which is 30 times greater in mass than the given reagent.

Table 46 (continued)

B. Composition of Groups (see Table 46,A) (the chief compounds of every group are italicized)

Group P1

Mainly monofunctional compounds with five or less carbon atoms in a molecule.

1. Presence of only C, H and O Alcohols
Aldehydes and ketones
Carboxyl acids
Acetals
Anhydrides
Ethers and esters
Some glycols
Lactones

Phenols (partially)
2. Presence of N

Amides
Amines
Heterocyclic amines
Nitriles

Nitroparaffins Oximes

3. Presence of a halogen Halogen-substituted compounds of subgroup I

4. Presence of S
Oxyheterocyclic S-compounds
Mercapto acids
Thioacids

 Presence of N and halogens Halogenated amines, amides, nitriles

 Presence of N and S Aminoheterocyclic compounds

Group P2

Substances having an average molecular weight, with two or more polar groups (except for sulphonic and sulphinic acids, which belong to the P₂ group, although they have only one polar group in a molecule).

1. Presence of only C, H and O Dibasic and polybasic acids Hydroxyacids Polybasic alcohols Polybasic phenols Simple carbohydrates

2. Presence of metals

Acid and phenol salts

Various metal-containing compounds

3. Presence of N
Amine and organic-acid salts
Amino acids
Ammonium salts
Amides
Amines
Amino alcohols
Semicarbazides
Semicarbazones
Ureas

Presence of halogens
 Halogen acids
 Acyl halogenides (as a result of hydrolysis)
 Halogen alcohols, halogen aldehydes, etc.

5. Presence of S
Sulphonic acids
Alkyl sulphonic acids
Sulphinic acids

6. Presence of N and a halogen Amine and halogen-acid salts

7. Presence of N and S
Aminodisulphinic acids
Hydrosulphates of weak
Cyanosulphonic acids
Nitrosulphonic acids

Group O: Bases

Diaryl- and triaryl-amines, and also carbazols, belong to the M group. In addition to the listed below the O group includes a small number of oxygen-containing compounds which form oxonium salts when treated with HCl.

Amines (Amines with sufficiently strong negative components belong to the M group)

Amino acids

Amphoteric compounds (aminophenols, aminothiophenols, aminosulphoamides) Aryl-substituted hydrazines N-Dialkylamides

Group A1: Strong Acids

 Presence of only C, H and O Acids (usually, the number of carbon atoms in a molecule is less than 10)

1s less than 10)

2. Presence of N
Amino acids
Nitro acids
Cyano acids
Heterocyclic nitric and carboxylic acids
Polynitrophenols

3. Presence of S
Sulphonic acids
Sulphinic acids
4. Presence of halogen
Halogen acids

Polyhalogenophenols
5. Presence of N and S
Aminosulphonic acids
Nitrothiophenols
Sulphates of weak bases

6. Presence of S and halogens Sulphohalogenides

Group A2: Weak Acids

Presence of only C, H and O
 Acids (high-molecular)
 Anhydrides
 Phenols (including esters of phenol acids)

Enols
2. Presence of N
Nitrophenols
Amides (including N-monoalkylamides)
Aminophenols
Amphoteric compounds
Cyanophenols
Imides
N-Monoalkyl aromatic unines
N-Substituted hydroxylamines
Amino acids
Oximes

Nitroparaffins, primary and secondary Trinitro aromatic hydrocarbons Ureides

3. Presence of halogens
Halogenophenols

4. Presence of S Mercaptanes Thiophenols

5. Presence of N and halogens Polynitrohalogenated aromatic hydrocarbons

Substituted phenols
6. Presence of N and S
Aminosulphonamides
Aminosulphonic acids
Aminothiophenols
Sulphamides
Thioamides

Group M

Neutral compounds containing nitrogen or sulphur. Only a few of them are distilled with vapour.

(Only the most common classes are given)

Presence of N
 Anilides and toluidides

A mides
Nitroarylamines

Nitro hydrocarbons Aminophenols

Azo, hydrazo and azoxy compounds

Di- and tri-arylamines Dinitrophenyl hydrazines

Nitrates Nitrites 2. Presence of S Mercaptanes

> N-Dialkyl sulphoamides Sulphates, sulphonates Sulphides, disulphides

Sulphones Thioethers

Thiourea derivatives
3. Presence of N and S

Sulphamides
4. Presence of N and halogen
Halogenated amines, amides,
nitriles

Group H

Neutral compounds not containing nitrogen and sulphur. Distilled off with vapour. The H₁ subgroup includes compounds containing not more than 7-8 carbon atoms in a molecule; the H₂ subgroup contains the remaining compounds of this group.

Alcohols Aldehydes and ketones

Esters Ethers

Unsaturated hydrocarbons (Acyclic unsaturated hydrocar-

bons and the cyclic unsaturated hydrocarbons which easily

sulphurize)

Anhydrides Lactones

Polysaccharides (they carbonize in concentrated H₂SO₄)

Group I: Inert Compounds

Hydrocarbons (including most cyclic hydrocarbons and all saturated acyclic hydrocarbons)

Halogen derivatives of hydrocarbons Diaryl ethers

Table 46 (continued)

C. Various Organic Compounds Belonging to the Main Groups

Chloroacetic α -Chloropropionic Crotonic Isovaleric Valeric $Alcohols$ Ert -Amyl Benzyl H_1 H_2 -I H_2	Acids n-Butyric Chloroacetic α -Chloropropionic Crotonic Isodurene Alcohols tert-Amyl Benzyl n-Butyl Cyclopentanol Isoamyl Isopropyl methyl carbinol Aldehydes n-Butyric Isobutyric Isobutyramide P1-P2 P1-P3 P1-P4 P	Compound	Group	Compound	Group
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n-Butyric Chloroacetic α-Chloropropionic Crotonic Isovaleric	P_1 P_1 P_1 P_1 - K_1	thyl benzene (Isodurene) 1,3,5-Trimethyl benzene (Mesitylene) m-Xylene o-Xylene	H ₂ H ₂ -1 H ₂ -I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tert-Amyl Benzyl n-Butyl Cyclopentanol Isoamyl Isopropyl methyl carbinol Aldehydes n-Butyric	H ₁ P ₁ H ₁ P ₁ -H ₁ P ₁ -H ₁	Amines n-Amylamine Aniline Benzylamine Diethylamine Di-n-butylamine Di-n-propylamine Isoamylamine Piperidine Tri-n-propylamine	P ₁ O P
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A mides A cetamide Acetanilide Butyramide Formamide	$ \begin{array}{c} P_1 - P_2 \\ M \\ P_1 - M \\ P_1 - P_2 \end{array} $	Benzyl acetate n-Butyl acetate sec-Butyl acetate n-Butyl carbonate n-Butyl formate	H ₁ H ₁ H ₁ -H ₂ P ₁ -H ₁

Compound	Group	Compound	Group
n-Propyl acetate n-Propyl formate Nitriles n-Butyronitrile Isobutyronitrile Propionitrile Ketones Acetophenone Benzophenone Benzyl ketone Cyclohexanone Cyclohexanone Cyclopentanone Di-n-butyl ketone Ethyl methyl ketone Isopropyl methyl ketone	$\begin{array}{c} P_{1}\text{-}H_{1} \\ P_{1} \\ \end{array}$ $\begin{array}{c} M \\ P_{1}\text{-}M \\ P_{1} \\ \end{array}$ $\begin{array}{c} H_{1} \\ H_{2} \\ H_{2} \\ H_{2} \\ P_{1}\text{-}H_{1} \\ P_{1} \\ \end{array}$ $\begin{array}{c} H_{1} \\ H_{2} \\ P_{1} \\ \end{array}$ $\begin{array}{c} P_{1} \\ P_{1} \\ \end{array}$	Methyl-n-propyl ketone Pinacoline Succinonitrile Trimethylene cyanide Nitro compounds Nitrobenzene Nitroethane Nitromethane Phenols Chlorohydroquinone Hydroquinone Phenol Phloroglucinol	P ₁ -H ₁ P ₁ -H ₁ P ₁ -H ₂ P ₂ -M P ₂ -M M K ₂ P ₁ -K ₂ P ₁ -K ₂ P ₁ -K ₂

D. Widespread Compounds Whose Belonging to a Group Is Dfficult to Foresee

Compound	Group	Compound	Group
Acetal Acetamide Acetophenone Acetoxime Acetyl piperidine Adipic acid Allyl alcohol β-Aminoethyl alcohol α-Aminoisobutyric acid m-Aminophenol ρ-Aminophenol	P ₁ -H ₁ P ₁ -P ₂ H ₁ P ₁ P ₁ R ₁ P ₁ P ₁ F ₁ P ₁ P ₂ R ₂ P ₁ -P ₂ -K ₂ P ₁ -P ₂ -K ₂ K ₂ K ₂ (O) P ₁ -H ₁	tert-Amyl alcohol n-Amylamine Aniline Anthranilic acid Azelaic acid Benzene sulphinic acid Benzene sulphinic acid Benzidine Benzidine Benzoyl acetone Benzoyl acetone Benzyl alcohol Benzylamine Benzyl malonic acid Benzyl salicylate Biuret	P ₁ P ₁ O K ₁ (O) K ₁ K ₁ P ₁ -K ₁ P ₂ O H ₂ P ₁ H ₁ P ₁ P ₁ -K ₁

Table 46 (continued)

Compound	Group	Compound	Group
Bromal	P ₁	Diethylamine	P ₁
z-Bromopropionic	- 1	β-Diethyl amino-	1 1
acid	P_1 - K_1	ethyl other	P_1
	H_1	Diethyl barbitur-	1 1
-Butyl acetate	111	ic acid	17
ec-Butyl acetate	H_1		K ₂
-Butyl alcohol	P_1	Diethyl ether	$P_1 - H_1$
-Butyl carbonate	H_1 - H_2	Diethyl ketone	P_1-H_1
-Butyl ether	H_2	Dimethyl acetal	P_1 - H_1
2-Butyl formate	$P_1-\tilde{H}_1$	2,4-Dinitroaniline	O-M
2-Butyl oxalate	Ĥ ₂	Di-n-propylamine	P ₁ -O
-Butyraldehyde	P_1-H_1	Diphenyl methane	112-I
-Butyramide	P_1	Dioxane	P_1
a-Butyric acid	$\mathbf{P_1}$	Durene (1,2,4,5-	
2-Butyronitrile	\mathbf{M}	Tetramethyl	
n-Butyryl chloride	P_1 - H_1	benzene)	H ₂
Camphor	H_2	Ethyl acetate	P_1 - H_1
Carbon disulphi-		Ethyl acetoacetate	P_1
de	M	Ethyl benzoate	H_2
Chloral	P_1	Ethyl carbonate	P_1 - Π_1
B-Chloroethyl ace-		Ethyl lactate	P_1-H_1
tate	$\mathbf{H_1}$	Ethyl malonate	H_2
Chlorohydroquino-		Ethyl mercaptan	P_1-M
ne	P1-K2	Ethyl methyl	
z-Chloropropionic		ether	P_1
acid	P_1	Ethyl methyl ke-	
Citric acid	$\mathbf{P_2}$	tone	P_1 P_1 -M
Cyanoacetic acid	$\mathbf{P_1}^{\mathbf{z}}$	Ethyl nitrate	P_1-M
Cyclohexanol	H_1	Ethyl-o-formate	P_1-H_1
Cyclohexanone	P_1 - H_1	Ethyl oxalate	Pi-Hi
Cyclohexyl aceta-	. 1 1	Ethyl phthalate	H
	H_2	Ethyl salicylate	K ₂
te Cyclohexylamine	P_1	Ethyl succinate	Π_1^2
	H	Ethylal	P_1-H_1
Cyclopentanol	Î	Ethylene diamine	P_2
Cymene Diacetone alcohol	$\vec{P_1}$	Ethylene giycol	P_2^2
Dibenzoyl metha-	1 1	Formamide	P1-P2
	H_2	Formanilide	$P_1 - M$
ne χ,β-Dibromopro-	**3	Fumaric acid	K ₁
pionic acid	P_1 - K_1	Furfuryl alcohol	P_1
5-Dichlorohydro-	1 1 11	Glutaric acid	P_2^1
	K_2	Glycerin	\mathbf{p}^2
quinone	112	Glycin	$\frac{P_2}{P}$
,α-Dichlorome-	P_1	Guanidine	P ₂
thyl ether	1	Hydroquinone	P_2^2
2,6-Dichloro-4-ni-	3.5	Tydrodamone	P_1^2
troaniline	M	1	

Table 46 (continued)

Compound	Group	Compound	Group
p-Hydroxybenz-		Madhan .	
aldehyde	K2-H1	Methyl isovalera-	
o-Hydroxybenzyl	1 2-111	te	H_1
alcohol	D V	Methyl levulinate	P_1 - H_1
Indene	P ₁ -K ₂	Methyl malonate	P_1 - H_1
Indole	H_2	Methyl-n-butyrate	$P_1 - H_1$
Isoamyl alcohol	M	Methyl nitrate	P_1-M
Isoamylamine	P_1-H_1	Methyl-n-propyl	1
Isoamyl salicylate	P_1	carbinol	H_1
Isobutyl formate	K_2 - H_2	Methyl-n-propyl	1
Isobutyramide	P_1	ketone	P_1 - H_1
Isobutyranide	P_1	Methyl-o-formate	$P_1 - H_1$
Isobutyric aldehy-		Methyl propionate	P_1
	P_1	m-Nitroaniline	0
Isobutyronitrile	P_1-M	o-Nitroaniline	O-M
Isobutyryl chlo-		p-Nitroaniline	O
ride	P_1	Nitroguanidine	
Isodurene (1,2,3,5-		Nitromethane	K ₂ -M
Tetramethyl-		p-Nitrosodiphe-	P_1 - K_2
benzene)	H_2	nylamine	** **
Isopropyl acetate	P ₁	Nitrourea	K ₂ -M
Isopropyl methyl	1	Oxamide	K ₂ -M
ketone	P_1	Paraldehyde	M
Isovaleric aldehy-	- 1	Phenol	P_1 - H_1
ae	H_1	Phonographic	P_1 - K_2
Isovaleryl chlori-	1	Phenoxyacetic	
de	P_1-H_1	acid	P_1 - K_1
Lactic acid	P_2	m-Phenylenedi-	
Maleic acid	$P_{1}^{1}-P_{2}$	amine	P_1-P_2
Malonic acid	D 2	o-Phenylenedi-	
landelic acid	$\frac{P_1}{P_1}$	amine	P_1-P_2
desitylene	H_2	p-Phenylenedi-	
lesityl ovida	H_1^2	amine	P_2
N-Methyl acet-	111	Phenyl hydrazine	O
anilide	O-M	Phioroglycinol	P2-K2
fethyl acetoace-	O-M	Phthalic acid	K ₁
tate	p	Phthalic anhydri-	
lethylal	P_1 P_1 - H_1	de	H_1
-Methyl benzyl-	1 1 111	Phthalimide	K_2
amme	0	Picric acid	K_1
lethyl carbonate	P_1-H_1	Pimelic acid	P_1 - K_1
lethyl chloroace-	1-111	Pinacol	$\mathbf{P_1}$
tate	D II	Piperidine	P_1
ethyl citrate	P ₁ -H ₁	Polyoxymethy-	
ethyl isobutyra-	P_1-H_1	lene	P_2 - H_2
te	DII	Propionamide	$P_{1}^{2}-P_{2}^{2}$
	P_1-H_1		1 - 2

Table 46 (continued)

Compound	Group	Compound	Group
Propionitrile Propionyl chloride n-Propyl acetate n-Propyl formate Propylene glycol Protocatechuic aldehyde Pyridine Pyrocatechin Pyrrole Resorcinol Sebacic acid Succinimide Succinitrile Sulphanilic acid Triacetin (glycerin triacetate) 2,4,6-Tribromoaniline	P ₁ P ₁ -H ₁ P ₁ -H ₁ P ₁ P ₁ P ₁ P ₁ P ₁ P ₁ P ₁ P	2,4,6-Tribromophenol 2,4,6-Trichloroaniline 2,4,6-Trichlorophenol Trimethylene glycol Trimethylene cyanide Tri-n-propylamine α-Triphenyl guanidine Urea Vanillin n-Valeric acid n-Valeric aldehyde Xylenes	K ₁ O-M K ₁ P ₂ P ₂ -M O O-M P ₂ K ₁ K ₁ H ₁ H ₂ -I

blue paper - and extracted with ether 9. Neutralized in the presence of the external indicator - bromothymol Water used to wash away NaOH, drying with sodium sulphate, decantation and the distilling off of 8

the volume, cooled, acidiffed to pH = 1 (thyblue), extracted Evaporated up to half Water solution orange and extracted 10. Acidified in the presence of methyl Water solution with ether Ether is distil- 11. Na₂SO₄, ether is distilled off Ether solution Cther solution Dried with Group K2 off led Groups H and I Distillate*** Groups M, H and I Distilling off with vapour

Group M Residue

with ether, extract is dried with Na₂SO₄, dried with Na₂SO₄, ether is distilled off

mol

Strong acids of group K1

rage strength of group K₁

acids of ave-

phenols and

substituted

Negatively-

* This residue may contain: many dinitro-derivatives of aromatic hydrocarbons and their amino-, oxy- and acid derivative sulpinoic acids, a few amides and infles; henry!- and rehangen derivatives of anthracene, some amino-substituted sulpinoic acids, a few amides and infles; henry!- and relatives, some derivatives of anthracquinone. Some amino-substituted polyaminoquinones and quinolines, a few aminophenols, amides and antildes, vey few amines. **** This generate group I, use can be made of the inertness of the compounds which belong to this group, oxidizing the compounds of group II, binding aldehydes and ketones by the saturated NaHSO4 solution, and other methods. The presence of group I can be determined with the ald of concentrated H2SO4 using a part of the test.

Substances Used for Drying

A. Drying of Gases

Substance	Character istics	Amount of steam, mg, remaining in 1 litre of gas upon passing it at a rate of 1-5 l/h; t=30.5 °C
CuSO ₄	Anhydrous	2.8
CaCl ₂	Granulated; average com-	1.5
CaCl ₂	position: CaCl ₂ ·H ₂ O Technically anhydrous;	1.25
ZnCl ₂ Ba(ClO ₄) ₂ NaOH CaCl ₂ Mg(ClO ₄) ₂ ·3H ₂ O KOH Silica gel CaSO ₄ CaO H ₂ SO ₄ Mg(ClO ₄) ₂ Al ₂ O ₃ BaO P ₂ O ₅	average composition: CaCl ₂ ·1/4H ₂ O Stick Anhydrous Stick Anhydrous Stick Anhydrous - Stick Anhydrous - Anhydrous - 100% Anhydrous	0.98 0.82 0.80 0.36 0.031 0.014 0.006 0.005 0.003 0.003 0.002 0.001

B. Drying of Liquids

Liquid	Drier
Acids Alcohols Aldehydes Amines Bases Carbon disulphid c Esters Ethers Hydrazines Hydrazines Hydrocarbons halogen-derivative ones Ketones Nitriles Nitro compounds Phenols	$\begin{array}{c} \text{Na}_2 \text{SO}_4 \\ \text{K}_2 \text{CO}_3, \text{CuSO}_4, \text{CaO}, \text{Na}_2 \text{SO}_4 \text{(but not } \text{CaCl}_2, \text{CaCl}_2, \text{CaCl}_2, \text{Mg}(\text{ClO}_4)_2 \\ \text{CaCl}_2, \text{Mg}(\text{ClO}_4)_2 \\ \text{NaOH}, \text{KOH}, \text{K}_2 \text{CO}_3 \text{(but not } \text{CaCl}_2) \\ \text{KOH}, \text{K}_2 \text{CO}_3, \text{BaO} \\ \text{CaCl}_2, \text{Mg}(\text{ClO}_4)_2 \\ \text{Na}_2 \text{SO}_4, \text{CaCl}_2, \text{Mg}(\text{ClO}_4)_2 \\ \text{CaCl}_2, \text{Na}, \text{CaC}_2, \text{K}_2 \text{CO}_3, \text{Mg}(\text{ClO}_4)_2 \\ \text{CaCl}_2, \text{Na}, \text{CaC}_2, \text{Mg}(\text{ClO}_4)_2 \\ \text{CaCl}_2, \text{Mg}(\text{ClO}_4)_2 \text{(but not Na)} \\ \text{K}_2 \text{CO}_3, \text{CaCl}_2, \text{Mg}(\text{ClO}_4)_2 \text{(for higher ketones)} \\ \text{K}_2 \text{CO}_3, \text{CaCl}_2, \text{Na}_2 \text{SO}_4, \text{Mg}(\text{ClO}_4)_2 \\ \text{Na}_2 \text{SO}_4, \text{Na}_2 \text{SO}_4, \text{Mg}(\text{ClO}_4)_2 \\ \text{Na}_2 \text{SO}_4, \text{Na}_2 \text{SO}_4, \text{Mg}(\text{ClO}_4)_2 \\ \text{Na}_2 \text{SO}_4, \text{Na}_2 \text{SO}_4, \text{Mg}(\text{ClO}_4)_2 \\ \end{array}$

Preparation of Hygrostats

Relative pressure of water vapour over mixtures of solid salts with their saturated aqueous solutions, over mixtures of anhydrous salts with their hydrates and over mixtures of two differing hydrates; water vapour pressure at a given temperature is taken as unity.

		Те	mperature,	°C	
Mixture	10	15	20	25	30
	re	lative v	vater vapou	r pressu	re
P ₂ O ₅	_		< 0.01	-	-
KOH	_	_	0.05	_	_
NaOH	_		0.06	0.47	0.45
CaBr ₂ ·6H ₂ O	0.23	0.21	0.19	0.17	0.15
CaCl ₂ ·6H ₂ O	0.38	0.35	0.32	0.29	0.26
$K_2CO_3 \cdot 2H_2O$	_		0.44	0.45	0 15
$Ca(NO_2)_{\circ} \cdot 4H_{\circ}O$	0.65	0.60	0.55	0.50	0.45
NaBr·2H _o O	0.63	0.61	0.59	0.57	0.55
NH ₄ NO ₃	0.69	0.66	0.63	0.60	0.57
NaCl	0.75	0.75	0.75	0.75	0.75
NaNO ₃	0.77	0.76	0.75	0.74	0.73
KCl	_	_	0.86	0.85	0.85
Na ₂ SO ₄ ·10H ₂ O	-	0.95	0.90	0.85	0.78
$Na_2CO_3 \cdot 10H_2O$	-		0.91	0.89	0.87
KNO ₃		-	0.95	0.94	0.94
$Na_2B_4O_7 \cdot 10H_2O \dots$	-	-	0.99	_	
$MgCl_2 + MgCl_2 \cdot 2H_2O \cdot \cdot \cdot$			0.0005		0.00
KOH + KOH · H ₂ O · · · · ·	_			-	0.02
CaCl ₂ + CaCl ₂ ·H ₂ O · · · ·		-	0.15	-	-
Na SO - Na SO - 10H-O	0.69	0.72	0.76	0.80	-
$Na_2SO_4 + Na_2SO_4 \cdot 10H_2O$	_	_	0.03	_	_
$NaOH + NaOH \cdot H_2O \cdot \cdot \cdot \cdot K_2CO_3 + K_2CO_3 \cdot 2H_2O \cdot \cdot \cdot \cdot$		-	_	0.05	-
$NaI + NaI \cdot 2H_2O$	_	0.12	0.13	0.14	0.15
$Na_2CO_3 + Na_2CO_3 \cdot H_2O$	_	_	-	0.20	_
$Na_2B_4O_7 + Na_2B_4O_7 \cdot 5H_2O_7$	_	_	0.25	_	
$Na_2HPO_4 + Na_2HPO_4 \cdot 2H_2O$	_	0.27	0.28	0.29	-
No Dr. No Dr. 2H O	0.30	0.32	0.34	0.36	0.3
$NaBr + NaBr \cdot 2H_2O$ $CaCl_2 \cdot H_2O + CaCl_2 \cdot 2H_2O$	_	0.05	-	_	_
$CaCl_2 \cdot H_2O + CaCl_2 \cdot 2H_2O$ $CaCl_2 \cdot 2H_2O + CaCl_2 \cdot 6H_2O$	0.21	0.21	0.22	0.22	0.2
No B O SH O No B O X					
$Na_2B_4O_7 \cdot 5H_2O + Na_2B_4O_7 \times$		_	0.39	_	_
× 10H ₂ O · · · · · · · · · · · · · · · · · ·					
× 10H ₂ O	0.50	0.53	0.56	0.59	0.6
		0.69	0.72	0.76	_
Na ₂ CO ₃ ·H ₂ O + Na ₂ CO ₃ ·10H ₂ O	0.00	0,00			
Na _o HPO ₄ ·7H _o O + Na ₂ III O ₄ ^	0.65	0.70	0.75	0.81	_
× 12H ₂ O	10.00	10.10	1 0.10	10.01	-

Table 49

Principal Organic Reagents

Abbreviations used: grav. for gravimetric analysis; vol. for volumetric and similar analyses. In cases of gravimetric and volumetric one atom of a metal is given in parentheses in the sixth column.

A. In the Alphabetical Order of the Reagents

No.	Reagent	Synonymous names
1	HOOC CH3 CH3 HOOC COOH CI CI SO3H	Dichlorosulphodi- methyloxyfuch- sone dicarboxylic acid; chromoxane pure blue dye BLD
2	Alizarin O OH OH OH OH	1,2-Dioxyanthra- quinone
3	Alizarin Red S O OH OH SO ₃ Na	Alizarin S; sodium alizarin sulpho- nate; 1,2-dihyd- roxyanthraquino- ne-3-sulphoni c acid, sodium salt

metric analysis; phot. for colorimetric, spectrophotometric, fluorodeterminations, the number of molecules of a reagent bounded with

Molecul	ar weight	total determined	Method	
M	$\log M$	Elements being determined	Method	
539.35	73 188	Be ²⁺ , Al ³⁺	Phot.	
240.22	38 061	Al ³⁺ , Zr ^{IV} , Th ^{IV} , F-	Phot.	
360,28	55 664	Al ³⁺ , Zr ^{IV} , Th ^{IV} , Ga ³⁺ , F-, Ti ^{IV} , UO ²⁺	Phot.	
		F-, Ti ¹ , UO ₂		

No.	Reagent	Synonymous names
4	Aluminon HO OH COONH4 COONH4	Ammonium salt of aurine tricarbo- xylic acid
5	Anthranilic acid COOH NH2	o-Aminohenzoic acid
6	Arsasene	1", 4-Diazoamino- 1,1'-azobenzene- 4"-nitrobenzene arsonic acid-2"
7	Arsenazo I AsO(OH) ₂ OH OH N=N NaO ₃ S SO ₃ Na	Benzene-2'-arsonic acid-(1'-azo-2)- 1,8-dihydroxyna- phthalene-3,6-di- sulphonic acid, disodium salt; uranon
8	Arsenazo III (HO) ₂ OAs N HO N HO SO ₃ H * RE: rare-earth elements (lanthanoids, Y and S	Benzene-2'-arsonic acid-(1'-azo-2)- benzene-2"-arso- nic acid-(1"-azo- 7)-1,8-dihydroxy- naphthalene-3,6- disulphonic acid

Table 49 (continued)

Molecular weight			
M	log M	Elements being determined	Method
473.45	67 528	Al ³⁺ , F-, Be ²⁺	Phot.
137.14	13 716	Cd^{2+} , Co^{2+} , Cu^{2+} , Hg^{2+} , Mn^{2+} , Ni^{2+} , Pb^{2+} , Zn^{2+} (in the form of MeR_2)	Grav.
470.28	_	Pb ²⁺ , Zn ²⁺	Phot.
592.30	77 254	Al ³⁺ , Be ²⁺ , Ce ^{IV} , In ³⁺ , Nb ^V , RE*, Ta ^V , Th ^{IV} , Ti ^{IV} , UO ²⁺ , V ^{IV} , Zr ^{IV}	Phot.
776.38	89 008	Ce ^{IV} , Hf ^{IV} , Np ^{IV} , Pa ^V , Pu ^{IV} , RE*, Th ^{IV} , U ^{IV} , UO ₂ ²⁺ , Zr ^{IV}	Phot.

Reagent	Synonymous names
Azo-azoxy BN $ \begin{array}{c} $	2-[2"-Hydroxynaph- thalene-(1"-azo- 2')-phenylazoxy]- 4-methylphenol
Bathophenanthroline H_5C_6 $=$ N N	4,7-Diphenyl-1-10- phenanthroline
α-Benzoin oxime C-C-CH HO-N OH	Cupron
α-Benzyl dioxime C-C-C- H HON NOH	α-Diphenyl dioxime, nickelon
Beryllon II NaO ₃ S N OH ·4H ₂ O HO OH	3,6-Disulphonaph- thol-(8-azo-7')-1', 8'-dioxy-3', 6'- disulphonaphtha- lene, tetrasodium salt
	Azo-azoxy BN OH OH OH OH OH OH OH OH CH3 Bathophenanthroline H ₅ C ₆ N C ₆ H ₅ C ₆ H ₅ C-C-CH HO-N OH C-Benzyl dioxime C-C-C-C HON NOH Beryllon II NaO ₃ S N OH OH OH OH OH OH OH OH OH

Table 49 (continued)

	r weight		
M	log M	Elements being determined	Method
398.43	60 035	Ca ²⁺	Phot.
350.44	54 461	Fe ²⁺	Phot.
227.27	35 654	Cu ²⁺ (in the form of MeR ₂)	Grav.
240.27	38 070	Ni ²⁺ (in the form of MeR ₂)	Grav.
810.58	90 882	Be ²⁺	Phot.

No.	Reagent	Synonymous names
14	$\begin{array}{c} \text{Bis-salicylalethylenediamine} \\ \text{OH} \\ \text{CH} = \text{N} - \text{CH}_2 - \text{CH}_2 - \text{N} = \text{HC} \end{array}$	_
15	Brilliant green $(C_2H_5)_2N$ N N N N N N N N N	
16	Bromobenzothiazo HO Br N N N N N N N N N N N N N N N N N N	_
17	Brucine C ₂₃ H ₂₆ O ₄ N ₂	-
18	Cadion $O_2N - \left(\begin{array}{c} N - N - N - N - N - N - N - N - N - N $	p-Nitrophenyl- azoaminobenze- ne-p-azohenzene
19	Cadion S (water-soluble) SO_3Na $O_2N- \bigcirc -N-N-N- \bigcirc -N=N- \bigcirc -S$ II	- GO ₃ Na

Table 49 (continued)

Molecula	weight	Elements being determined	Method
M	log M	Elements being determined	, inclined
268.32	42 865	Mg ²⁺	Phot. (lumines- cence)
482.65	68 363	Sb ^V , Tl ³⁺ , Zn ²⁺	Phot.
372.25	57 083	Cd ²⁺	Phot.
394.48	59 603	NO3	Phot.
346.35	53 952	Cd2+	Qualitative (phot.)
550.46	74 073	Cd ²⁺	Phot.

No.	Reagent	Synonymous names
20	P-Carboxygallanilide HO HO C-N HO HO HO HO HO HO HO HO HO HO HO HO HO	3, 4, 5-Trioxyben-i zoyl-para-amino- benzoic acid
21	Carboxyarsenazo COOH HO OH AsO(OH) ₂ N=N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	2-Phenylcarboxylic acid-(1-azo-2') 1',8'-dioxynapht- halene-3', 6'-di- sulphonic acid- (7'-azo-1") 2"-phenylarsonic acid, disodium salt
22	Carminic acid H ₃ C O OH CO - (CHOH) ₄ - CH ₃ HOOC O OH	-
23	Chromotropic acid, disodium salt HO OH NaO ₃ S SO ₃ Na	1,8-Dioxynaphtha- lene-3,6-disulph- onic acid, diso- dium salt
24	Complexone III HOOC-CH2 NaOOC-CH2 N-CH2-CH2-N CH2-COOH	EDTA (sodium ethylene- diaminetetraace- tate, trilon B, versene, chela- ton 3)
-	* RE: rare-earth elements (lanthanoids, Y and S	Ge).

Table 49 (continued)

No.	Reagent	Synonymous names
25	Crystal viole [†] $(CH_3)_2N$ C $(CH_3)_2CI$ O	
	$N(CH_3)_2$	
26	Cupferron NO ONH4	N-Nitrosophenyl- hydroxylamine, ammonium salt
27	Curcumin $CO-CH=CH-CH-OH$ CH_2 $CO-CH=CH-CH-OH$ OCH_3	Bis-(4-hydroxy-3- methoxycinna- moyl)-methane
28	Cyclohexane diondioxime-1,2 $\begin{array}{c} CH_2\\ H_2C & C \end{array}$ $\begin{array}{c} NOH\\ H_2C & C \end{array}$ $\begin{array}{c} NOH\\ CH_2 \end{array}$	Nioxime
29	$\begin{array}{c} Diallyl dithiocarbamid ohydrazine \\ C_3H_5NHCSNHNHCSNHC_3H_5 \end{array}$	

Table 49 (continued)

Molecula	r weight	Elements being determined	Method	
M	$\log M$	Elements being determined	Method	
570.14	75 598	Sb ^V , Zn ²⁺ , Tl ³⁺ , Cd ²⁺ , Hg ²⁺	Phot.	
155.16	12 078	Al ³⁺ , Bi ³⁺ , Cu ²⁺ , Fe ³⁺ , Ga ³⁺ , Nb ^V , Sn ^{IV} , Ta ^V , Ti ^{IV} , Th ^{IV} , V ^V , Zr ^{IV} , U ^{IV} (in the form of MeR _n , where n is the valency of metal; or the pre- cipitates are calcined to the oxides)	Grav.	
368.39	56 631	B ^{III} , Be ²⁺	Phot.	
142.16	15 278	Ni ²⁺ , Fe ²⁺ , Pd ²⁺	Phot.	
230.36	36 241	Cu ²⁺ , Pb ²⁺ , Zn ²⁺ , Ni ²⁺ , Ag ⁺	Grav.	

No.	Reagent	Synonymous names
30	3, 3'-Diaminobenzidine $\begin{array}{c} H_2N - $	Tetraaminodiphe- nyl
31	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
32	2, 7-Dichlorochromotropic acid HO OH Cl	1, 8-Dioxy-2, 7-di- chloronaphthale- ne-3, 6-disulpho- nic acid, diso- dium salt
33	p -Dimethylaminobenzylidene rhodanine $HN-C=0$ $C C$ $S CH-N(CH_3)_2$	-
34	p-Dimethylaminophenylfluorone HO C O O O O O O O O O O O O O O O O O	Dimethyl fluorone; 2, 6, 7-trioxy-9- (4"-dimethylami- nophenyl)-3-fluo- rone

Table 49 (continued)

Molecul	ar weight			
M	log M	Elements being determined	Method	
214.28	33 098	Se ^{IV}	Phot.	
388.48	58 937	Cd ²⁺ , Ti ^{IV} , Fe ³⁺ , Bi ³⁺ , Co ²⁺	Grav.	
469.18	67 134	Ti ^{IV}	Phot.	
264.38	42 223	Ag ⁺ , Au ⁺ , Hg ²⁺ , Pd ²⁺ , Cu ⁺ Ag ⁺ , Pt ^{IV} , CN ⁻	Phot. Vol.	
363.37	56 035	Ta ^V	Phot.	
363.37	56 035	Ta ^V	Phot.	

No.	Reagent	Synonymous names
35	Dimethylglyoxime CH ₃ -C-C-CH ₃ HO-N N-OH	Diacetyl dioxime, Chugaev's rea- gent
36	Diphenylcarbazide HN-NH-C-NH-NH O	1, 5-Diphenylcarbo- hydrazide
37	Diphenylcarbazone HN-NH-C-N=N O	_
38	Dipicrylamine $O_2N - \left(\begin{array}{c} NO_2 & O_2N \\ -NH & - \\ NO_2 & O_2N \end{array}\right) - NO_2$	Hexanitrodipheny- lamine
39	2, 2'-Dipyridyl	α, α'-Dipyridyl
40	2, 2'-Diquinolyl	2, 2'-Diquinoline; cuproin

Table 49 (continued)

Molecula	r weight	The second secon	Method	
M	$\log M$	Elements being determined	Method	
116.12	06 491	Ni ²⁺ , Pd ²⁺ (in the form of MeR ₂) Fe ²⁺ , Co ²⁺ , Cu ²⁺ (together with pyridine)	Grav., vol., phot. Phot.	
242.29	98 433	Cr^{VI} , Hg^{2+} , Pb^{2+} (indirect), (Cd^{2+})	Phot.	
240.27	38 070	Hg ²⁺ , Ag ⁺	Phot.	
439.23	64 269	K+, Rb+, Cs+ (in the form of MeR)	Grav., phot	
156.19	19 365	Fe ²¹	Phot.	
256.30	40 875	Cu ⁺ , (Ti ³⁺)	Phot.	

No.	Reagent	Synonymous names
41	8, 8'-Diquinolyldisulphide N S S S	-
42	CH ₃	1-Methyl-3,4-di- mercaptobenzene
43	Dithizone N=N-C-NH-NH S	Diphenylthiocar- bazone
44	Eriochrome Cyanine R See Table 28, No.	23 (p. 232)
45	α-Furfuryl dioxime HC-CH Neoniclon	
46	Gallion OH NH ₂ OH NH ₂ \sim NO ₂ \sim HO ₃ S \sim SO ₃ H	2-Hydroxy-3-chlo- ro-5-nitrobenze- ne-(1-azo-2')-1'- hydroxy-8'-naph- thylamine-3', 6'-disulphonic acid

Table 49 (continued)

Molecu	lar weight	- Later determined	Method	
M	log M	Elements being determined	Method	
320.44	50 575	Cu+	Phot.	
156.27	19 388	Sn ²⁺ , W ^{VI} , Mo ^{VI}	Phot.	
256.34	40 882	Ag ⁺ , Bi ³⁺ , Cd ²⁺ , Co ²⁺ , Cu ²⁺ , Hg ²⁺ , Pb ²⁺ , Zn ²⁺ , Ni ²⁺ , In ³⁺ , Tl ⁺ , Sn ²⁺	Phot.	
470.46	67 252	Al ³⁺ , Be ²⁺ , Zr ^{IV} , F ⁻	Phot.	
238.21	37 696	Ni ²⁺ , Pd ²⁺ (in the form of MeR ₂), Pt ^{IV} , Re ^{VII}	Grav., phot.	
536.88	72 989	Ga ³⁺	Phot.	

No.	Reagent	Synonymous names
47	Gallocyanine COOH N O O OH	
48	Hemp-like datisca (extract) OH HO O OH HO OH O OH	Substitute for morin. Parent substance: 3, 5, 7, 2'-tetraoxyflavone
8 8	Hydroxyquinoline	o-Hydroxyquinoli- ne, oxine
D L	umogallion HO ₃ S OH HO CI OH OH	2, 2', 4'-Trioxy-5- chloro-(1-azo-1')- benzene-3-sul- phonic acid

^{*} Thorium and uranium precipitate in the form of ThR4-HR and

Table 49 (continued)

Molecular weight			Marked .
M	log M	Elements being determined	Method
0.27	47 751	Ga ³⁺ , Hg ²⁺ , Pb ²⁺	Vol. (comple- xonometry)
86.25	45 675	Al ³⁺ , Ga ³⁺ , Zr ^{IV} , Th ^{IV}	Phot. (lumi- nescence)
5.16	16 185	Al ³⁺ , Mg ²⁺ , Zn ²⁺ , Bi ³⁺ , Cd ²⁺ , Co ²⁺ , Cu ²⁺ , Ga ³⁺ , In ³⁺ , TiO ²⁺ , Zr ⁴⁺ , MoO ²⁺ , WO ²⁺ , Mn ²⁺ , Fe ³⁺ , Ni ²⁺ , V ₂ O ³⁺ , Pb ²⁺ , Pd ²⁺ , Sb ³⁺ , Cr ³⁺ (in the form of MeR _n , where n is the valency of metal)*	Grav., vol., phot.
4.74	53 749	Ga ³⁺	Phot. (lumi- nescence)
	M 00.27 36.25 5.16	M log M 10.27 47 751 36.25 45 675 5.16 16 185	Elements being determined 10.27 47 751 Ga ³⁺ , Hg ²⁺ , Pb ²⁺ 16.25 45 675 Al ³⁺ , Ga ³⁺ , Zr ^{IV} , Th ^{IV} 15.16 16 185 Al ³⁺ , Mg ²⁺ , Zn ²⁺ , Bi ³⁺ , Cd ²⁺ , Co ²⁺ , Cu ²⁺ , Ga ³⁺ , In ³⁺ , TiO ²⁺ , Zr ⁴⁺ , MoO ²⁺ , WO ²⁺ , Mn ²⁺ , Fe ³⁺ , Ni ²⁺ , V ₂ O ⁴⁺ , Pb ²⁺ , Pd ²⁺ , Sb ³⁺ , Cr ³⁺ (in the form of MeR _n , where n is the valency of metal)*

UO2R2. HR; niobium precipitate is of an unknown composition.

No.	Reagent	Synonymous names
51	Lumomagneson $\begin{array}{c c} NaO_3S & OH & HO \\ \hline & N=N-C & C-N \\ \hline & C-N & H \end{array}$	2-Hydroxy-3-sul- pho-5-chloroben- zene-1-azobarbi- turic acid
52	Magneson CS OH HO SO ₃ Na -N=N- Cl	2-Naphthol-(1-azo- 2')-4'-chlorophe- nol-6'-sodium sulphonate
53	Mercaptobenzothiazole N C-SH	Captax
54	Mercaptophenylthiothiodiazolone N - N - N C C S S S SH	5-Mercapto-3-phe- nyl-2-thio-1, 3, 4-thiodiazolone; bismuthol II
55	8-Mercaptoquinoline, sodium salt N SNa	Thiooxine, thio-xine

Table 49 (continued)

Molecular weight		Elements being determined	Method
M	log M	Elements being determined	Method
384.69	58 511	Mg ²⁺	Phot. (luminescence)
418.79	62 201	Mg ²⁺ , Zn ²⁺	Phot.
167.26	22 341	Ag+, Au ³⁺ , Bi ³⁺ , Cd ²⁺ , Cu ²⁺ , Pb ²⁺ , Tl ³⁺	Grav.
226.35	35 478	Bi ³⁺	Phot.
237.25	37 521	Pd ²⁺ , Cu ²⁺ , Mo ^{VI} , Re ^{VII} , In ³⁺ , Mn ²⁺ , V ^{IV} , Co ²⁺ , Ru ³⁺ , Os ³⁺ , Tl ⁺	Phot.

No.	Reagent	Synonymous names
56	Methyl violet (CH ₃) ₂ N N(CH ₃) ₂ Cl- NHCH ₂ (predominantly)	_
57	Morin HO O O HO OH	3, 5, 7, 2', 4'-Pen- taoxyflavone
58	Murexide, See Table 28, No. 33, p. 238	1
59	β-Naphthoquinoline	Naphthin, 5, 6-ben zoquinoline

Table 49 (continued)

Molecular weight			37-412	
M	log M	Elements being determined	Method	
	_	Sb ^V , Zn ²⁺ , Cd ²⁺ , Tl ³⁺ , Hg ²⁺ , Re ^{VII} , Ta ^V	Phot.	
298.26	47 459	Al ³⁺ , Ca ³⁺ , Zr ^{IV} , Th ^{IV} , In ³⁺	Phot. (luminescence)	
302.21	48 031	Ca ²⁺ , Sr ²⁺	Phot.	
179.22	25 339	Cd ²⁺ (the precipitate is calcined to the oxide)	Grav.	

No.	Reagent	Synonymous names
60	Nitrochromoazo NO2 NO2 NO2 SO3H HO3S N HO [OH N HO3S SO3H	Bis-[2, 7-(4-nitro- 2-sulpho-1-azo- benzene)]-1, 8- dioxynaphthale- ne-3, 6,-disul- phonic acid
61	Nitron $ \begin{array}{c c} C_6H_5-N-N \\ C_6H_5\\ N\\ HC C\\ N\\ C_6H_5 \end{array} $	1,4-Diphenyl-(3,5- endoanyl)-dihy- dro-1, 2, 4-tria- zole
62	α-Nitroso-β-naphthol NO OH	Ilyinsky's reagent; 1-nitroso-2-naph- thol
63	β-Nitroso-α-naphthol OH NO	2-Nitroso-1-naph- thol

Table 49 (continued)

Molecula	r weight		Method
M	log M	Elements being determined	Method
778.65	89 134	Ba ²⁺ , SO ²⁻	Vol.
312.38	49 468	ReO ₄ , NO ₅ , ClO ₅ , ClO ₄ (in the form of RAn, where An is an anion)	Grav.
173.17	23 848	Co ²⁺ , Fe ³⁺ , Pd ²⁺ , Cu ²⁺ (in the form of MeR _n , where n is the valency of metal; otherwise the precipitates are calcined to the oxides)	Grav., phot
173.17	23 848	Co2+	Phot.

No.	Reagent	Synonymous names
64	Nitroso-R-salt NO OH NaO ₃ S	1-Nitroso-2-naph- thol-3, 6-disul- phonic acid, diso- dium salt
65	1, 10-Phenanthroline N = N · H ₂ O	-
66	Phenazo $\begin{array}{c} O_2N \\ NO_2 \\ N$	3, 3'-Dinitro-4, 4'- bis-(4"-hydroxy- benzeneazo)-bi- phenyl
67	Phenylarsonic acid AsO(OH) ₂	-
68	Phenylfluorone C ₆ H ₅ OH OH	9-Phenyl-2, 3, 7-tri- oxyfluorone-6
69	Picrolonic acid $O_2N - \left\langle \begin{array}{c} CO - CH - NO_2 \\ N = C - CH_3 \end{array} \right $	1-(p-Nitrophenyl)- 3-methyl-4-nit- ropyrazolone-5
70	2, 2'-Potassium bicinchonine KOOC COOK C C C	-

Table 49 (continued)

	r weight	manufacture determined	Method
M	log M	Elements being determined	Method
377.27	57 665	Co ²⁺ , K ⁺ (indirect)	Phot.
198.23	29 717	Fe ²⁺	Phot.
484.30	68 511	Mg 2+	Phot.
202.03	30 542	Nb ^V , Ta ^V , Zr ^{IV} , Bi ³⁺ , Hf ^{IV} , Sn ^{IV} , Th ^{IV} (precipitates are calcined to the oxides)	Grav.
320.31	50 557	Ge ^{IV} , Sn ^{IV} , Ta ^V , Zr ^{IV} , Sh ^{III}	Phot.
264.21	42 195	Pb ²⁺ , Ca ²⁺ , Sr ²⁺ , Mg ²⁺ , Th ^{IV} (in the form of McR _n , where n is the valency of metal)	Grav.
420.52	62 379	Ca ²⁺ Cu ⁺	Phot.

No.	Reagent	Synonymous names
71	Purpurin O OH O OH O OH O OH	1, 2, 4-Trioxyanth- raquinone
72	Pyrogallol OH HO OH	1, 2, 3-Trioxyben- zene
73	Quinaldic acid COOH	α-Quinoline carbo- xylic acid
74	Quinalizarin HO O OH HO O	1, 2, 5, 8-Tetrao- xyanthraquinone
75	Rhodamine B $(C_2H_5)_2N$ C	Rhodamine S: tet- raethyldiamino- o-carboxyphenyl- xanthenyl chlo- ride

Table 49 (continued)

morecuia	ar weight	Elements being determined	Method
M	log M	Estiments being determined	Method
256.22	40 861	Zr ^{IV} , F-	Phot.
126.11	10 075	Bi ³⁺ , Sb ³⁺ (in the form of MeR) B ^{III} , Ta ^V , Nb ^V	Grav.
210.21	32 265	Cu ²⁺ , Pb ²⁺ , Ag ⁺ , Mn ²⁺ , Ni ²⁺ , Co ²⁺ , Fe ²⁺ , Cd ²⁺ , Zn ²⁺ , UO ³⁺ , FeOH ²⁺ , AlOH ²⁺ , CrOH ²⁺ (in the form of MeR _n , where n is the valency of metal)	Grav.
272.22	43 492	Be ²⁺ , B ^{III} , Mg ²⁺ , Al ³⁺ , Ga ³⁺	Phot.
479.03	68 037	Sb ^V , Zn ²⁺ , Ga ³⁺ , Tl ³⁺ , W ^{VI} ,	Phot. (luminescence)

No.	Reagent	Synonymous names
76	Rhodamine 6G H_5C_2HN O \uparrow hHC_2H_5Cl $COOC_2H_5$	Ethyl ether of di- ethylamino-o- carboxyphenyl- xanthenyl chlo- ride
77	Rubeanic acid $HN = C - C = NH$ $\begin{vmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $	Dithioxamide
78	Salicylaldoxime OH $CH = N - OH$	-
79	Salicylal-o-aminophenol OH HO - CH = N	2, 2'-Dioxybenzyli- denaniline
80	Salicylic acid OH COOH	o-Hydroxybenzoic acid
81	Sodium diethyldithiocarbomate $(C_2H_5)_2N-C {\stackrel{S}{\swarrow}}_{SNa\cdot 3H_2O}$	-

Table 49 (continued)

	Molecular weight			
	M	log M	Elements being determined	Method
	450.97	65 415	Re ^{VII} , In ³⁺ , Tl ⁺	Phot. (lumi- nescence)
	120.20	07 990	Cu ²⁺ , Co ²⁺ , Ru ^{IV} , Pd ²⁺ , Ag ⁺	Phot.
	137.14	13 716	Cu^{2+} , Bi^{3+} , Pb^{2+} , Pd^{2+} (in the form of MeR_2) Fe^{3+}	Grav. Phot.
	213.24	32 887	Al ³⁺ Mn ²⁺	Phot. (lumi- nescence) Phot.
	138.13	14 029	Fe ³⁺ , Cu ²⁺	Phot.
1	225.34	35 284	Cu ²⁺ , UO ₂ ²⁺ , Ni ²⁺	Phot.

No.	Reagent	Synonymous names
82	Sodium sulphosalicylate HOOC HO — SO ₃ Na·2H ₂ O	-
83	Sodium tetraphenylborate Sodium tetraphenylborate Na	Kalignost
84	Stilbazo HO N=N- SO ₃ NH ₄ HO- N=N- CH HO- HO SO ₃ NH ₄	Stilben-2-2'-disul- phonic acid-4, 4'- bis-(azo-1")-3"- 4"-dioxybenzene, diammonium salt
85	$\begin{array}{c c} \text{HOOCH}_2\textbf{C} & \text{SO}_3\text{Na} \\ \text{HOOCH}_2\textbf{C} & \text{CH} \\ \text{HOOCH}_2\textbf{C} & \text{N} & \text{CH} \\ \text{HOOCH}_2\textbf{C} & \text{N} & \text{CH} \\ \text{SO}_3\text{Na} & \text{SO}_3\text{Na} \end{array}$	4, 4'-Diaminostil- ben-(N, N, N', N'- tetracarboxyme- thyl)-2-2'-disul- phonic acid, diso- dium salt
36	Sulpharsasene $\begin{array}{c} AsO_3H_2\\ O_2N- & -N=N\\ NaO_3S- & -N=N- & -NH \end{array}$	Plumbone; 4"-nit-robenzene-(1", 4)-diazoamino- (1-azo-1')-benze- ne-2"-arsono-4'- sodium sulpho- nate

Table 49 (continued)

Molecula	r weight		Method
M	log M	Elements being determined	li ethou
254.22	40 521	Fe ³⁺ , Fe ²⁺	Phot.
342.24	53 433	K+, Rb+, Cs+, Tl+, NH ₄	Grav., vol., phot.
646.66	81 068	Al3+	Phot.
646.51	81 058	Fe ³⁺	Phot. (lumi nescence)
572.32	75 764	Pb ²⁺ , Zn ²⁺ , Cd ²⁺	Phot., vol.

No.	Reagent	Synonymous names
87	Sulphonazo HO_3S $N = N$ $OH $	Sulphon-bis-[4-hyd-roxyphenyl-(3-azo-2')]-1'-hydro-xy-8'-aminona-phthalene-3', 6'-disulphonic acid
88	Tannin $C_{76}H_{52}O_{46}$	-
89	Thioacetamide CH_3-C-NH_2	-
90	Thioglycolic acid HSCH ₂ COOH	-
91	Thionalide NH-CO-CH ₂ -SH	β-Aminonaphtha- lide of thiogly- colic acid
92	Thiourea $H_2N-C-NH_2$	Thiocarbamide

Table 49 (continued)

Molecula	r weight	ight determined	
M	log M	Elements being determined	Method
976.93	98 986	Sc ³⁺ , V ^V	Phot.
~1700	-	$\begin{array}{c} Be^{2+},\ Al^{3+},\ Ga^{3+},\ Ge^{IV},\ Mo^{VI},\\ Nb^{V},\ Sn^{IV},\ Ta^{V},\ Ti^{IV},\ UO_{2}^{2+},\\ W^{VI},\ Zr^{IV},\ Th^{IV} \ \ \ (precipitates are calcined to the oxides) \end{array}$	Grav.
75.13	87 581	Bi ³⁺ , As ³⁺ , Sb ³⁺ , Cd ²⁺ , Pb ²⁺ , Sn ²⁺ , Hg ⁺ , MoO ² / ₂ ⁺ , Cu ²⁺ , Pb ²⁺ Cu ²⁺	Grav.
92.120	96 435	Fe ²⁺ , W ^{VI} , Sn ²⁺ (a reagent is added when tin is being determined by dithiol)	Phot.
217.29	33 704	Tl+, As ^{III} , Sb ^{III} , Sn ²⁺ , Ag ⁺ , Au ^{III} , Cu ²⁺ , Hg ²⁺ , Pd ²⁺ , Bi ³⁺ , Rh ^{III} , Ru ^{III} , Mn ²⁺ , Pb ²⁺ , Ni ²⁺ , Co ²⁺ (in the form of MeR _n , where n is the valency of metal)	Grav.
76.125	88 153	Bi3+, OsVI, RuIV, ReVII, TeIV	Phot.

No.	Reagent	Synonymous names
93	Thoron AsO(OH)(ONa) HO SO ₃ Na SO ₃ Na	Benzene-2'-arsonic acid-(1'-azo-1)-2- hydroxynaphtha- lene-3, 6-disul- phonic acid, tri- sodium salt; tho- rin, naphthar- son, APANS
94	Titanium yellow $H_3C - $	Bis-4, 4'-[6-methyl- benzothiazol-(1, 3)]-diazoamino- benzene-(2, 2')-so- dium disulphona- te; mimosa; thi- azo yellow
95	$o ext{-Tolidine} \ H_2N - $	_
96	8-Tosylaminoquinoline $\begin{array}{c} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	8-(p-Toluene sul- phamido)-quino- line
97	Zirconon OH N=N-SO ₃ H CH ₃	2-Hydroxy-5-me- thylazobenzene- 4'-sulphonic acid

Table 49 (continued)

Molecular weight		- tolar determined	Method	
M	log M	Elements being determined	11001104	
598.29	77 691	Th ^{IV} , F-, U ^{IV} , Zn ²⁺ , Zr ^{IV} , Ta ^V , Nb ^V , RE*, Bi ³⁺ , Li ⁺ , Be ²⁺	Phot.	
695.75	84 245	Mg ²⁺	Phot.	
212.30	32 695	OsO ₄ , RuO ₄ , Ag ^{III} , V ^V , halogens	Phot.	
298.35	47 473	Zn ²⁺ , Cd ²⁺	Phot. (lumi nescence)	
292.32	46 586	ZrIV (the precipitate is calcined to the oxide)	Grav.	

B. In the Alphabetical Order of the Elements Being Determined

Element being determined	(No. according to Table A)	Method
Aluminium	26, 49, 73, 88	-
	24, 49	Grav.
	1 2 3 4 7 44 40 40 7	Vol.
	1, 2, 3, 4, 7, 44, 48, 49, 57, 74, 79, 84	Phot.
Ammonium	83	
	00	Grav., vol.
Antimony	49, 72, 89, 91	Phot.
	49, 72, 89, 91	Grav.
		Vol.
Arsenic	15, 25, 49, 56, 75 89, 91	Phot.
Barium	21, 24, 60	Grav.
Beryllium	88	Vol.
		Grav.
Bismuth	1, 4, 7, 13, 27, 44, 74, 93	Phot.
	1 20,01,49, 33, 67, 79, 70, 00, 04	Grav.
		Vol.
Boron	43, 49, 54, 92, 93	Phot.
Cadmium	1 22, 21. 1/2 1/4	Phot.
	1 01, 40, 33 50 72 00	Grav.
		Vol.
	16, 18, 19, 25, 36, 43, 49, 56 75, 86, 96	Phot.
Calcium	75, 86, 96, 25, 36, 43, 49, 56 69	I Hot.
	24	Grav.
		Vol.
Cesium	9, 58, 69	Phot.
	38, 83	
Cerium	83	Grav., phot.
hlomat	7, 8	Vol.
perchlorates and	61	Phot.
Chromium (III)		Grav.
montrain (III)	49, 73	
Chromium (VI)	24, 49	Grav.
Cobalt	23, 36	Vol., phot.
Day	5, 31, 49, 62, 72, 04	Phot.
	-1, 40	Grav.
Copper	24, 35, 43 40 55 60 00 00	Vol.
PPOL		Phot.
	78, 89, 91, 23, 49, 53, 73,	Grav.
1	24, 49	
	33, 35, 40, 44, 49, 40, 55, 50	Vol.
Vanida	33, 35, 40, 41, 43, 49, 55, 62 70, 77, 80, 81, 89	Phot.
yanides	33, 77, 80, 81, 89	
luorine allium	2, 3, 4, 44, 71, 93	Vol.
amm	26, 49, 88	Phot.
	24, 49	Grav.
	3, 46, 48, 49, 50, 57, 74, 75	Vol.
	75, 20, 49, 50, 57, 74, 75	Phot.

Table 49 (continued)

Element being determined	Reagent (No. according to Table A)	Method
Germanium	68, 88	Phot.
Gold	53, 91	Grav.
	24	Vol.
	33, 95	Phot.
Hafnium	67	Grav.
- and and	8	Phot.
Indium	49	Grav.
	24, 49	Vol.
	43, 49, 55, 76	Phot.
Iron (II)	73	Grav.
()	24	Vol.
	10, 28, 35, 39, 65, 82, 90	Phot.
Iron (III)	26, 31, 49, 62, 73	Grav.
(24, 49	Vol.
	49, 62, 78, 80, 82, 85	Phot.
Lead	5, 29, 49, 53, 69, 73, 77, 78, 89	Grav.
	24, 47, 49, 86, 91	Vol.
	6, 36, 43, 49, 86, 89	Phot.
Lithium	93	Phot.
Magnesium	49, 69	Grav.
8-00-4-11	24. 49	Vol.
	14, 49, 51, 52, 66, 74, 94	Phot.
Manganese	5, 49, 73, 91	Grav.
9	24, 49	Vol.
	24, 49, 55, 79	Phot.
Mercury	5, 89, 91	Grav.
•	24, 47	Vol.
	25, 33, 36, 37, 43, 56	Phot.
Molybdenum	49, 88, 89	Grav.
•	49	Vol.
	42, 49, 55	Phot.
Neptunium	8	Phot.
Nickel	5, 12, 29, 35, 45, 49, 73, 91	Grav. Vol.
	24, 35, 49	Phot.
	35, 43, 45, 49, 81	Grav.
Niobium	26, 67, 88	Phot.
	7, 72, 93	Grav.
Vitrates	61	Phot.
	17	Phot.
Osmium	55, 92, 95	Grav.
Palladium	35, 45, 49, 78, 91	Vol.
	24, 35, 49	Phot.
	28, 33, 35, 45, 49, 55, 62, 77	Grav.
Platinum	45	Phot.
	33, 45	1 1100.

Element being determined	(No. according to Table A)	Method
Plutonium	8	Phot.
Potassium	38, 83	
- O UNIODI (III)	83	Grav.
	38, 64, 83	Vol.
Protactinium	8	Phot.
RE*	24	Phot.
1(2	7, 8, 93	Vol.
Rhenium	61	Phot.
a thousand		Grav.
Rhodium	55, 56, 76, 92	Phot.
Rubidium	91	Grav.
- Cabiaiai	38, 83	Grav.
Ruthenium	83	Vol.
Tru chen lini	91	Grav.
Scandium	55, 91, 95	Phot.
beaudium	24	Vol.
Colonium	8, 87	Phot.
Selenium Silver	30	Phot.
Silver	29, 53, 73, 91	Grav.
	24, 33	Vol.
C41:	33, 37, 43, 77	Phot.
Strontium	69	Grav.
	24	Vol.
0.1.1.	58	Phot.
Sulphates	21, 60	Vol.
Tantalum	26, 67, 88	Grav.
	7, 34, 56, 68, 72, 93	Grav.
Thallium	53, 83, 91	Phot.
	24, 83	Grav.
	15 25 40 42 55 50 55 50	Vol.
Thorium	15, 25, 40, 43, 55, 56, 75, 76, 83 26, 67, 69, 88	Phot.
	24, 67, 69, 88	Grav.
		Vol.
Tin	2, 3, 7, 8, 48, 57, 93 67, 88, 89, 91	Phot.
	24	Grav.
		Vol.
Titanium	42, 43, 68, 90	Phot.
	26, 31, 49, 88	Grav.
	24, 49	Vol.
Tungsten	24, 49 3, 7, 20, 23, 32, 40, 49	Phot.
Helskin	1 10, 00	Grav., vol
Ilmaniama	1 42, 49, 75, 90	Phot.
Uranium	26, 73, 88 3, 7, 8, 81, 93 26, 49	Grav.
Van. 1:	3, 7, 8, 81, 93	Phot.
Vanadium	26, 49	Grav.

Table 49 (continued)

Element being determined	(No. according to Table A)	Method
Vanadium	24, 49 7, 49, 55, 87, 95	Vol. Phot.
Wolfram Zinc	see Tungsten 5, 29, 49, 73 24, 49, 86 6, 15, 25, 43, 49, 56, 75, 86,	Grav. Vol. Phot.
Zirconium	93, 96 26, 49, 67, 88, 97 24, 49 2, 3, 7, 8, 44, 48, 49, 57, 68, 93	Grav. Vol. Phot.

USSR Standard Sieves

Number of ope- nings per cm	Number of ope- nings per inch (mesh number)	Width of ope- ning, mm	Diameter of wire, mm
125 106 93 79 66 56 47 40 34 29 24 20 18 15 13 11 9 8 7 6 5 4 3.5 3.7 2.7 2.7 2.7 1.4 1.2	325 270 230 200 170 140 120 100 80 70 60 50 45 40 35 30 25 20 18 16 14 12 10 8 7 6 5 2 5 2 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8	0.044 0.053 0.062 0.074 0.088 0.105 0.125 0.149 0.177 0.21 0.25 0.30 0.35 0.42 0.50 0.59 0.71 0.84 1.00 1.19 1.41 1.68 2.00 2.38 2.83 3.36 4.00 4.76 5.66 6.72 8.00	0.036 0.041 0.046 0.053 0.063 0.074 0.086 0.102 0.119 0.140 0.162 0.188 0.22 0.25 0.29 0.33 0.37 0.42 0.48 0.54 0.61 0.69 0.76 0.84 0.92 1.02 1.12 1.27 1.45 1.65 1.85

Half-Wave Potentials in Polarographic Analysis with a Dropping Mercury Electrode

Composition of the solution (background)	Valency change	Half-wave potential $E_{1/2}$, V
0.5.V BaCl ₂ (the evolution of H ₂ is possible)	3 → 0 (?)	-1.7
tin	3 → 0	-0.7
latin	$3 \rightarrow 5$	-0.26
$0.5M \text{K} \text{NaC}_4 \text{H}_4 \text{O}_6 + 0.01\%$	3 → 0	-0.04
pH 4.5	$\begin{array}{c} 3 \rightarrow 0 \\ 3 \rightarrow 0 \end{array}$	-0.29 -0.70
gelatin	3 → 0	-1.00
Buffer solution, pH 1.0	$5 \rightarrow (-1)$	-0.43
Tetramethyl ammonium salt solutions	$2 \rightarrow 0$	-2.22
0.1N HCl	$\begin{array}{c} 2 \rightarrow 0 \\ 2 \rightarrow 0 \end{array}$	$-0.60 \\ -0.79$
		-0.81
		-0.71
1M KSCN		-1.2
0.1M ethylenediamine	$2 \rightarrow 3$	-1.03 -0.456
0.7M HCl	$2 \rightarrow 3$	-0.58
0.1N KCl	$\begin{cases} 3 \rightarrow 2 \end{cases}$	-0.81
		-1.50
		-1.03
In Initalia		-0.25 -0.54
	0.5N BaCl ₂ (the evolution of H ₂ is possible) 1M H ₂ SO ₄ + 0.01% gelatin 0.5N NaOH + 0.025% gelatin 1N H ₂ SO ₄ + 0.01% gelatin 0.5M KNaC ₄ H ₄ O ₆ + 0.01% gelatin pH 4.5 pH 9 0.5M NaKC ₄ H ₄ O ₆ + + + 0.01% gelatin pH 4.5 Buffer solution, pH 1.0 Tetramethyl ammonium salt solutions 0.1N HCl 6N HCl 1N NH ₄ Cl + 1N NH ₄ OH 0.1M ethylenediamine 0.25M KCl 1M KSCN 0.1M ethylenediamine	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Element being determined	Composition of the solution (background)	Valency change	Half-wave potential $E_{1/2}$. V
Cu ^{II}	0.5M H ₂ SO ₄ + 0.01% ge- latin	$2 \rightarrow 0$	-0.00
Fe ^{II}	0.5 <i>M</i> Na ₂ C ₄ H ₄ O ₆ , pH 12 1 <i>M</i> Na ₂ C ₂ O ₄	$\begin{array}{c} 2 \rightarrow 0 \\ 3 \rightleftharpoons 2 \\ 2 \rightleftharpoons 3 \end{array}$	-0.38 -0.24 -0.24
Fe ^{III}	$\begin{array}{c} 0.5M \text{ (NH}_4)_2\text{C}_4\text{H}_4\text{O}_5 + \\ + 1M \text{ NH}_4\text{OH} + 0.005\% \end{array}$	$2 \to 0$ $\int 3 \to 2$	-1.37 -0.98
Ga ^{III}	gelatin	$\begin{cases} 2 \to 0 \\ 3 \to 0 \\ 3 \to 0 \end{cases}$	-1.53 -0.85 -1.58
Ge ^{IV}	0.5M HCl 4M H ₂ SO ₄	$\begin{array}{c} 2 \rightarrow 0 \\ 2 \rightarrow 4 \end{array}$	-0.42 -0.10
HI	NH ₄ Cl	$ \begin{array}{c} 4 \rightarrow 2 \\ 4 \rightarrow 0 \\ 1 \rightarrow 0 \end{array} $	-1.45 -1.3
H ₂ O ₂	0.1M KCl 0.1M Li ₂ SO ₄	$(-1) \rightarrow 0$ $(-1) \rightarrow (-2)$ $(-1) \rightarrow 0$	-1.58 -0.88 -0.17
I ^v In ^{III}	0.05M KCl	$5 \rightarrow (-1)$ $3 \rightarrow 0$	-1.28 -1.0
other al- kaline	6N HCl 0.1M tetramethyl ammo- nium	$3 \to 0$ $1 \to 0$	-0.68 -2.13
metals Mn ^{II}	0.5M NH ₄ OH + 0.5N NH ₄ Cl · · · · · · · · · · · · · · · · · · ·	$2 \rightarrow 0$	-1.54
377	+ 5% KNaC ₄ H ₄ O ₆	$\left\{\begin{array}{c} 2 \to 3 \\ 2 \to 0 \end{array}\right.$	$-0.4 \\ -1.7$
No VI	3M HClO ₄	$\begin{cases} 6 \to 5 \\ 5 \to 3 \\ 6 \to 5 \end{cases}$	-0.14 -0.79 -0.29
m)	Buffer solution, pH 9	$ \begin{cases} 5 \to 3 \\ 5 \to 3 \end{cases} $ $ \begin{cases} 3 \to 2 \\ 2 \to 1 \end{cases} $	-0.25 -0.74 -0.45 -0.70

Table 51 (continued)

Element being determined	Composition of the solution (background)	Valency change	Half-wave potential $E_{1/2}$. V
NV	0.1M LiCl	$5 \rightarrow (?) \\ 5 \rightarrow (?)$	$-2.1 \\ -1.2$
Nb^V	0.1M Lacia; 0.1M Goda 0.1M H ₂ C ₂ O ₄ , pH 1.2-5.5 0.06M HNO ₃	$5 \rightarrow 4 \\ 5 \rightarrow 3 \ (?)$	-1.5 -0.84
$_{\mathrm{Ni}}\mathbf{n}$	HClO ₄ , pH 0-2, 1N KCl 1M NH ₄ OH + 0.2M NH ₄ Cl	$2 \rightarrow 0$	-1.1
	+ 0.005% gelatin	$ \begin{array}{c} 2 \to 0 \\ 0 \to (-1) \end{array} $	-1.06 -0.05
O_2	Buffer solution, pH 1-10	$ \begin{cases} (-1) \rightarrow \\ \rightarrow (-2) \end{cases} $	-0.04
$_{\mathrm{Os}}$ vi	Ca(OH) ₂ saturated		-1.41 -1.16
$P_{\mathbf{p_{II}}}$	1M KCl	$\begin{array}{c} 2 \rightarrow 0 \\ 2 \rightarrow 0 \end{array}$	-0.431 -0.765
Pd^{II}	1M NH ₄ OH + 1M NH ₄ Cl+ + 0.001% methyl red 2M NaOH or KOH	$\begin{array}{c} 2 \rightarrow 0 \\ 2 \rightarrow 0 \end{array}$	-0.72 -1.41
Pt^{II}	0.5M KSCN $+$ $0.05M$ ethylene diamine	2 → 0	-0.51
R_{θ} VII	2M KCl	$7 \rightarrow (-1) \\ 7 \rightarrow 4 \ (?)$	-1.43 -0.45
Rh ^{III} Sb ^{III}	1M NH ₄ OH + 1M NH ₄ Cl 2M HCl	$\begin{array}{c} 3 \to 1 \\ 3 \to 0 \end{array}$	-0.93 -0.22
Shiii	1M NaOH	$\begin{cases} 3 \to 5 \\ 3 \to 0 \end{cases}$	-0.45 -1.15
$Sb^{\mathbf{V}}$	2M HCl	$5 \to 0 \ (?)$	-0.24
SeTV	0.1M NH ₄ Cl + 0.003% ge- latin	4 → (-2)	-1.50 -0.46
SnII	1M H ₂ SO ₄	$\begin{array}{c} 2 \rightarrow 0 \\ 2 \rightarrow 4 \end{array}$	-0.1
	tin	$\left\{\begin{array}{c} 2 \to 4 \\ 2 \to 0 \end{array}\right.$	-0.73 -1.22
SnIV	1M HCl $+$ $4M$ NH ₄ Cl $+$ $+$ 0.005% gelatin	$\left\{\begin{array}{c} 4 \to 2 \\ 2 \to 0 \end{array}\right.$	-0.25 -0.52
Tav	NaF	$4 \rightarrow 2$ $5 \rightarrow (?)$	-1.2 -1.16

Element being determined	Composition of the solution (background)	Valency change	Half-wave potential $E_{1/2}$. V
Te ^{IV}	0.1M NaOH + 0.003% ge- latin	4 → (-2)	-1.22
m VI	0.1M (NH ₄) ₂ C ₄ H ₄ O ₆ + + 0.003% gelatin, pH 9.0	4 → (0)?	-0.76
TeVI	0.1M NaOH + 0.03% ge-	$6 \rightarrow (-2)$	-1.66
	0.1M NH ₄ Cl + NH ₄ OH + + 0.0005% gelatin pH 6.2	6 → (-2)	
TiIII	pH 9.2 0.1M HCl	$6 \rightarrow (-2)$	-1.17 -1.34
TiIV	0.1M HCI	$3 \rightarrow 4$ $4 \rightarrow 3$	-0.14
	0.2M H ₂ C ₄ H ₄ O ₆	$4 \rightarrow 3$ $4 \rightarrow 3$	-0.81 -0.38
	0.4M Na ₂ C ₄ H ₄ O ₆ + + 0.005% gelatin		-0.30
Ti ^I	pH 11.8	4 → 3	-1.65
***	0.2M NaOH	$1 \rightarrow 0$	-0.482
UIV	U.IM MaCIO.	1 -> 0	-0.49
$U^{\mathbf{V}}$	0.1N KCl + HCl, pH 3	$4 \rightarrow 3$ $5 \rightarrow 6$	-0.92
U^{VI}	0.5N HCl	$\begin{cases} 3 \to 6 \\ 6 \to 5 \end{cases}$	-0.18
V^{II}	0.416 % 63	$\left\{\begin{array}{c} 0 \rightarrow 5 \\ 5 \rightarrow 3 \end{array}\right\}$	-0.20 -0.92
	0.1M KCl	$2 \rightarrow 3$	-0.50
	Na ₂ B ₄ O ₇ saturated, pH 5.1	$\int 2 \rightarrow 3$	-0.55
VIII		$\left\{\begin{array}{c} 3 \to 4 \\ 4 \to 5 \end{array}\right.$	-0.03
	$0.1M \text{ CO}_3^2 + \text{CO}_2 \text{ satura-}$	(4→5	+0.13
VIV	$0.1M \text{ H}_2SO_4 + 0.005\%$	3 → 5	-0.06
	1M NaOH + 0.08M Na ₂ SO ₃ + 1M KCl	4 -> 2	-0.85
v ^v	IM NH.OH - AM NEW	4 → 5	-0.39
,,VI	+ 0.005% gelatin	$\begin{cases} 5 \rightarrow 4 \end{cases}$	-0.97
WVI	12M HCl	$\begin{pmatrix} 4 \rightarrow 2 \\ \end{pmatrix}$	-1.26
		$\begin{cases} 6 \rightarrow 5 \\ 5 \rightarrow 2 \end{cases}$	*
	irectly at the potential of mercu	$5 \rightarrow 3$	-0.54

Table 51 (continued)

Element being determined	Composition of the solution (background)	Valency change	Half-wave potential, $E_{1/2}$, V
WVI	4M HCl	$5 \rightarrow 3$	-0.66
ZnII	1M KCl 1M NH ₄ OH + 0.2M	$2 \rightarrow 0$	-1.02
	1M NH ₄ OH + 0.2M NH ₄ Cl + 0.005% gela- tin	$\begin{array}{c} 2 \rightarrow 0 \\ 2 \rightarrow 0 \end{array}$	-1.33 -1.49
Zr^{IV}	0.1M KCl, pH 3	$4 \rightarrow 0$	-1.65

Amperometric Titration of Selected Substances (according

Abbreviations used: a - anodic (oxidizing) current; c - cathodic (re Forms of titration curves

Ion or molecule which pro- duces	rode	Potential of the platinum indicator microelectrode relative to the reference electrode		Composition of background
diffusion current	reac- tion	microelect- rode, V	saturated calomel electrode, V	solution
Ag ^I	С	0	-0.25	HNO ₃ , KNO ₃ , CH ₃ COONa
	С	0	-0.25	HNO ₃ , KNO ₃ , CH ₃ COONa
	С	+0.40	+0.15	H ₂ SO ₄
	С	+0.40	+0.15	H ₂ SO ₄
	С	from 0 to +0.40	from -0.25 to +0.15	$\mathrm{NH_4OH} + \mathrm{NH_4Cl}$
AsIII	a	+1.30	+1.05	HCl, H ₂ SO ₄

to O. A. Songina)
ducing) current

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
I	Ag ^I	I-, Br-, Cl- and others which form sparingly soluble precipi- tates with Ag ^I	-
11	Cl-, Br-, I-, SCN- and others which form sparingly soluble preci- pitates with Ag ^I	Ag ^I	_
I	Ag ^I	I and others which form sparingly solu- ble precipita- tes with Ag ^I	Titration can be con- ducted in the pre sence of Cu ^{II}
II	Cl- and others which form sparingly solu- ble precipita-	$Ag^{\mathbf{I}}$	ditto
II	tes with AgI	Ag ^I	-
I	As ^{III}	BrO ₃	_

Ion or molecule which pro- duces	Nature of elect- rode	indicator r	f the platinum nicroelectrode the reference ctrode	Composition of background
diffusion current	reac- tion	microelect- rode, V	saturated calomel electrode, V	solution
Au ^{III}	С	from 0 to +0.40	from -0.25 to +0.15	IICl, H ₂ SO ₄ , KNO ₃ , NaNO ₃
	c	+0.40	+0.15	KNO3, NH4NO3, H2SO4
Bi ^{III}	С	+0.1	-0.15	HClO ₄ , pH 1.2 HNO ₃ , pH 1.5
Br ₂	c c	+0.45 +0.40	+0.20 +0.15	$NaHCO_3 + KBr$ $HCl, 2N$ $H_2SO_4, 4N + Cl$
Br-	a	+1.30	+1.05	H_2SO_4 , $2N$
Ce ^{IV}	с	+0.75	+0.50	H ₂ SO ₄
	c	+0.45	+0.20	HCl

Table 52 (continued)

Form of titra- tion curve	Substance being titrated	Titrant	Remarks	
I	Aulii	S ₂ O ₃ ²⁻ and various organic compounds; for example, mercaptothiazole, hydroquinone, thiourea	Titration of Au ^{III} with reducing agents is conduct- ed more conve- niently according to the current of their oxidation; for example, thi- ourea at the micro- electrode potenti- al equal to +0.8 V (microelectrode). In this case, the titration curve is of the II shape	
1	Au ^{III}	Fe(CN)4-	— — —	
II	PO4-	Bi ^{III}	_	
II	As ^{III} , NH ₃ As ^{III} , Sb ^{III}	BrO-, ClO- BrO3	If the test solution contains Hg ^{II} , Cu ^{II} Ag ^I and others, titration is conducted at the microelectrode potential equal to +0.70 V	
II	TlIII	Br-	_	
II	Oxalate, VIV, Fe ^{II} , Tl ^I	Ce ^{TV}	If, under these conditions, the reducing agent yields an anodic current then the titration curve has the reversible III shape	
II	Sn ^{II}	Ce ^{IV}	iii shap	

Ion or molecule which pro- duces diffusion current	Nature of elect- rode	Potential of the platinum indicator microelectrode relative to the reference electrode		Composition of background solution	
	reac- tion	microelect- rode, V	saturated calomel elec- trode, V	Solution	
Ce ^{1V}	С	+1.00	+0.75	H ₂ SO ₄	
Ce ^{III}	a	+1.60	+1.35	CH ₃ CO ₂ Na + ethanol	
Cl ₂	С	+0.70	+0.45	HCI	
Cl-	a	+1.50	+1.25	HCl	
Cr ^{V1}	С	+0.40 +0.40 +0.70 +0.90	+0.15 +0.15 +0.45 +0.65	$\begin{array}{c} \text{HCl.} \leqslant 6N \\ \text{H}_2\text{SO}_4, \ 4\text{-}6N \\ \text{H}_2\text{SO}_4, \ 8\text{-}12N \\ \text{H}_2\text{SO}_4, \ > 12N \end{array}$	
CrII	a	+0.65	1+0:40	H ₂ SO ₄	
Cu ^{II}	С	<+0.30	<+0.05	Indifferent electroly- tes, diluted acids	

Table 52 (continued)

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
III	Various organic compounds; for example, hydroquinone, methol, pyrocatechin, p-amidophenol and others	Ce ^{IV}	Before the equivalence point—the organic-compound oxidation current; after the equivalence point—the Ce ^{IV} reduction current
11	PO3-	Ce ^{III}	_
-	-	-	The value of the Clareduction current is used to determine chlorine in water
_	-		In a hydrochloride medium, the chloride oxidation cur rent may inhibit other anodic processes
_	Various reducing agents, for example, Fe ^{II} , Sb ^{III} , As ^{III}		The form of the tit ration curve do pends on the re ductant being ti rated and the m croelectrode potential
111	MoVI, WVI	CrII	_
-		_	In amperometric ti ration, the Cu ^{II} i duction current not used, but can hinder the d termination other substances

Ion or molecule which pro- duces	Nature of elect- rode	of electrode relative to the reference electrode	he reference	Composition of backgroun
diffusion current	reac- tion	microelect- rode, V	saturated calomel elec- trode, V	
Fe ^{III}	c c	-0.15 0 0	-0.40 -0.25 -0.25	H ₂ SO ₄ + (NH ₄) ₂ SO ₄ HCl, ~1.2N Depending on the sub- stance being deter- mined
Fe ^{II}	a	+1.25	+1.00	H ₂ SO ₄
	a	+1.10	+0.85	H ₂ SO ₄ , HCl
Fe(CN) ₈ -	c	+0.05	-0.20	NII4OH + NH4Cl
	c	+0.20	-0.05	NaOH
Fe(CN)4-	a	from +0.70 to 1.00	from +0.45 to +0.75	_

Table 52 (continued)

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
II I V	Ti ^{III} Fe ^{III} Zr ^{IV} , Al ^{III} , Be ^{II}	Fe ^{III} Ascorbic acid F-	Titration is conducted in the presence of Fe ^{III} (indicator method)
П	MnVII, CrVI, VV,	Fe ^{II}	If, under these con- ditions, the oxidiz- ing agent produces a cathodic current, then the titration curve has the III shape
I	Fe ^{II}	$MnO_{4}^{-}, Cr_{2}O_{7}^{2-}, VO_{3}^{-}, Ce^{IV}$	Ditto
II	CoII	Fe(CN) ₅ -	It is possible to tit rate Fe(CN) ³ with a standard Co ^{II} so lution, then the titration curve ha the I form
II	TlI	Fe(CN) ₅ ³⁻	Titration with hexa cyanoferrate is con ducted in the pre sence of a catalyst OsO ₄
	ZnII, PbII, CdII, CaII, CuII, MnII, ZnIII, AgI and others which form sparingly solu- ble precipita- tes. AuIII: by reduc-		The microelectrod potential, the bac ground composition and, consequently, the form of the titration curv depend on the substance being determined

Ion or molecule which pro- duces diffusion current	Nature of elect- rode	relative to	the platinum nicroelectrode the reference ctrode	Composition of background	
	reac- tion	microelect- rode, V	saturated calomel electrode, V	solution	
Hg ^{II}	с	+0.40	+0.15	NaNO ₃ , NH ₄ NO ₃ , H ₂ SO ₄	
	С	+0.40	+0.15	$NaNO_3$, NH_4NO_3 , H_2SO_4	
Hg ^I	с	+0.40	+0.15	NaNO ₃ , NH ₄ NO ₃	
		Beginning	of reduction		
H ₂ O	С	-0.70 -0.40 0	$ \begin{array}{r} -0.95 \\ -0.65 \\ -0.25 \end{array} $	Alkaline medium Neutral medium Acidic medium	
	a	Beginning	of oxidation		
		$+0.80 \\ +1.20 \\ +1.50$	+0.55 +0.95 +1.25	Alkaline medium Neutral medium Acidic medium	
I ₂	c c	+0.20 0	$ \begin{array}{c c} -0.05 \\ -0.25 \end{array} $	HCl, ≥9N CH ₃ CO ₂ Na	
	c	+0.45	+0.20	Seignette salt +	
	С	+0.40	+0.15	+ NaHCO ₃ HCl, 2N; H ₂ SO ₄ , 2N + + KCl	
I-	a	+1.00	+0.75	H ₂ SO ₄ , pH 1-2	
	a	+1.00	+0.75	KNO ₃ , NH ₄ NO ₃	
	a	+1.00	+0.75	$HCl \geqslant 6N$	
Ir ^{IV}	С	+0.70	+0.45	HCl	

Table 52 (continued)

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
I	HgII	I-, Cl-	_
11	C1-	Hg ^{II}	-
II	Pyrophosphate, Mo ^{VI} , W ^{VI}	Hg ¹	-
-	-	-	Water-reduction cur- rent limits the ca- thodic region of electrode reaction
-	_	-	Water-oxidation cur- rent limits the ano- dic region of elec- trode reaction
IV I	As ^V , Se ^{IV}	1- S ₂ O ₃ ² -	This reaction is used to determine Cu ^{II} Fe ^{III} , As ^V after ad ding an excess of I to the test solution
II	SnII, AsIII, SbIII	I ₂	
11	Sb ^{III} , Tl ^I	105	-
11	Ag ^I , Hg ^{II} , Pd ^{II}	1-	_
11	TII , IIg , Id	I-	-
11	SeIV	1-	_
I	Ir ^{IV}	Ascorbic acid, hydroquinone	_

Ion or molecule which pro- duces diffusion current	Nature of elect- rode	relative to the reference electrode	Composition of background solution	
	reac- tion	microelect- rode, V	saturated calomel electrode, V	30,4110.11
MnVII	с	+0.80	+0.55	$H_2SO_4 \leqslant 8N$
	С	+0.75	+0.50	HCl, 1N
	С	+0.40	+0.15	CH ₃ CO ₂ Na + ZnO
	c	$+0.40 \\ +0.40$	+0.15	K ₄ P ₂ O ₇ , pH 6-7
	"	70.40	+0.15	NaOH, 1N
Mn ^{III}	С	+0.90	+0.65	$H_2SO_4 \geqslant 9N$
	c	+0.90	+0.65	$H_3PO_4 \geqslant 10N$
Mn ^{II}	a	+1.20	+0.95	Acid, neutral, CH ₃ CO ₂ Na

Table 52 (continued)

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
1	Various reducing agents, for example, oxalate, ferrocyanide, VIV, Fe ^{II} , As ^{III} ,	MnO ₄	The form of the titration curve depends on the substance being titrated
	Sb ^{III} , Sn ^{II}	MnO-	_
II	MnII	MnO ₄	_
II	MnII	MnO ₄	_
II	Te ^{IV}	MnO ₄	_
II	Te	mio 4	
I	Mn ^{III}	H ₂ C ₂ O ₄	This reaction is use to determine Pro after adding an ex cess of Mn ^{II} to th test solution
I	Mn I II	Fe ^{II}	It is possible to the rate Mn ^{III} according to the Fe ^{II} ox dation current whether microelectrod potential is +1.3 In this case, the titration curve here.
_	_	_	In amperometric t ration, the Mn oxidation curre is not used, but can hinder the otermination other substances

Ion or molecule which pro- duces	of	elect- electrode		Composition of background	
diffusion	reac- tion	microelect- rode, V	saturated calomel elect- rode, V	Bolditon	
NO ₂	С	from +0.40 to +1.00 depending concent	on HNO.		
		+			
NO ₂	a	+1.30	+1.05	H ₂ SO ₄ , 0.05N	
O ₂	c	Beginning			
		+0.10 +0.40 +0.80	-0.15 +0.15 +0.55	Alkaline medium Neutral medium Acid medium	
РРп	c	-0.60	-0.85	CH ₃ CO ₂ Na, CH ₃ CO ₂ NH ₄	

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
1	-		In amperometric titration, the NO ₂ reduction current is not used, but it can hinder the determination of other substances if the HNO ₃ concentration used as a background is ≥5N
I	NO 2	Strong oxidiz- ers, for examp- le, MnO ₄ , Ce ^{IV} sulphanilic acid	For the amperometric titration of NO ₂ , against the background of ammonium citrate (pH 4-4.5) it is also possible to use chloroamine T as a titrant with its reduction current, at the microelectrode potential equal to +0.3 V
	_	_	The O ₂ reduction current is used in the polarographic determination of dissolved oxygen. In amperometric titration, the O ₂ reduction current hinders the determination of other substances
I	РЫП	$Cr_2O_7^{2-}$, MoO_4^{2-} ,	-

Ion or molecule which pro- duces	Nature of elect- rode	of relative to the reference electrode		Composition of background	
diffusion current	reac- tion	microelect- rode, V	saturated calomel electrode, V	solution	
РЫІ	С	+1.80	+1.55	CH ₃ CO ₂ NH ₄ or CH ₃ CO ₂ Na, 0.5 <i>N</i>	
Sn ^{II}	a	-0.20	-0.45	Alkaline solution of complexone III	
Te ^{IV}	c	+0.60	+0.35	H ₂ SO ₄ , 6.V	
Ti ^{III}	a a a	+0.75 +1.00 +1.00	+0.50 +0.75 +0.75	$H_2SO_4 + (NH_4)_2SO_4$ $H_2SO_4, 10N$ $H_2SO_4, 1N + H_4P_2O_7$	
TlIII	С	+0.50	+0.25	KNO ₃ , CH ₃ CO ₂ Na and others	

Table 52 (continued)

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
11	SO ₄ 2-	ьР _П	The titrant is the solution of lead acceptate salt containing 4-5% of acetiacid
III	SnII	HgII	The titrant is the solution of mercuric chloride salted Beyond the equivalence point—the Hg II reduction current
	-	_	In amperometric tit ration, the Te ^{IV} re duction current in not measured, but it can hinder the determination other substances
I II II	Ti ^{III} VV, Cr ^{VI} UVI	$Cr_2O_7^{2-}$ Ti^{III} Ti^{III}	<u>-</u> -
I	TlIII	Various reducing agents, for example, thiourea	Amperometric titration of Tliii with thiourea is more convenient to conduct according to the current of the oxidation of the latter at the microelectrode potent al equal to +0.80 Market in this case, the titration current is the step of the current in the case, the current is the step of the current in the case, the current is the current in the current is the current in the cur

Ion or molecule which pro- duces	Nature of elect- rode	indicator n	the platinum nicroelectrode the reference trode	Composition of background solution	
diffusion current	reac- tion	microelect- rode, V	saturated calomel electrode, V	BOLUTION	
Tl ^I	c a	-0.60 + 1.40	-0.85 +1.15	CH ₃ CO ₂ Na KNO ₃ , NH ₄ NO ₃ , H ₂ SO ₄	
n ₁₁₁	a	+0.20	-0.05	H ₂ SO ₄	
v	c	+0.50	+0.25	H ₂ SO ₄ , 12-16N	
	С	+1.00	+0.75	H ₂ SO ₄ , 18-24N	
VIV	a	+0.85	+0.60	CH ₃ CO ₂ H + CH ₃ CO ₂ Na, pH 4	
VII	a a	+0.85 +0.45	+0.60 +0.20	$\begin{array}{c} H_2SO_4 + H_5PO_4 \\ H_2SO_4 \end{array}$	

Table 52 (continued)

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
1	Tl ^I —	i	In amperometric titration, the Tloxidation current is not used, but it can hinder the determination of other substances
111	UIII	Fe ^{III}	Beyond the equival- ence point—the Fe ^{III} reduction current
111	Various reducing agents, for example, Fe ^{II}	VO ₃	Beyond the equival ence point—th Fe ^{II} oxidation cur rent
11	Complexone III	VO2+	This reaction is used to determin Al ^{III} , Zr ^{IV} , Th ^{II} and other substances after adding a excess of complex one III to the tessolution
II	MoVI, VIV	VII	_

Conditions of Amperometric Titration with Two Polarized Forms of titration curves

In amperometric titration with two polarized electrodes, the latter must be in the titrate simultaneously and must have a sufficiently large surface (this being the difference in respect of classical amperometric titration with a microelectrode). Voltage is applied to the electrodes with the aid of a voltage divider from an external source of direct current with a small output voltage (~2-4 V). The amount of voltage applied to the electrodes is controlled (without trying to achieve great accuracy) by a d.c. voltmeter which is connected to the circuit parallel to the electrodes.

The fourth column of the table gives approximate voltages applied to the electrodes, at which the latter are depolarized before the equi-

valence point or after it, or in the entire process of titration.

The fifth column gives the oxidation-reduction systems whose components provide an indicator current, which arises due to the

Substance being de- termined	Titrant	Electrode material	Voltage being applied,	Electrode reactions indicator	
			mV	before the equiva- lence point	
Ag*	Cl-, Br-,	Hg	from 1 to 10	Ag ^I /IIg \	
AlIII	F-	Pt	100	_	
AslII	BrO ₃ -	Pt Pt	50 200	-	

Indicator Electrodes (according to O. A. Songina)

depolarization of electrodes. The dashes in this column indicate the absence of the indicator current either before or after the equivalence point at a given voltage applied to the indicator electrodes. This occurs when, in the process of titration, the components of an oxidation reduction in the titrate tion-reduction system either being formed or present in the titrate cannot, at a given voltage, be oxidized and reduced at the electrodes, or when one of the conjugated forms of the redox pair is absent.

In some cases, depending on the composition and amount of voltage applied to the electrodes, an oxidized form of one and a reduced form of another redox system can participate in electrochemical reactions, thus providing an indicator current before and (or) after the equival-

ence point.

In the sixth column, Roman numerals indicate the forms of titration curves near the equivalence point.

which induce the current	Form of titration curves near the	Remarks	
after the equivalence point	equiva- lence point		
-	I	As electrodes, ground mercury is used. Before the equivalence point is reached, the electrode material—Hg \(\) (anode)—is oxidized, and Ag \(\) is reduced at the cathode	
-	IV	Titration is conducted in the presence of the redox pair Fe ^{III} /Fe ^{II}	
Br ₂ /Br-	11	Titration is conducted in the pres	
Fe(CN) 3-/Fe(CN) 4-	11	Titration is conducted in the pres ence of an OsO ₄ catalyst	

Substance being de- termined	Titrant	Electrode material	Voltage	Electrode reactions indicator
		Idaterial	being applied mV	before the equiva- lence point
AuIII	Ascorbic acid	Pt	100	Au ^{III} /Cl-
Ba ^{II}	F-	Pt	100	_
Br-	AgI	Ag	10	_
	Hg ^I	Hg	from 1 to 10	-
Ca ^{II}	F-	Pt	100	
	Complex- one III	Cathode: Pt anode: amalga-	130	-
	Fe(CN)4-	mated Ag Pt	400	-
Cq11	Fe(CN)4-	Pt	200	_
e ^{IV}	Ascorbic acid, oxalic	Pt	200	CeIV/CeIII
	acid Fe ^{II}	Pt	200	Ce ^{IV} /Ce ^{III}

Table 53 (continued)

which induce the current	Form of titration curves near the	Remarks	
after the equiva- lence point	equiva- lence point		
-	I	Titration is conducted in a hydro- chloric acid medium. Before the equivalence point is reached Au ^{III} is reduced at the cathode, and Cl- is oxidized at the anode	
-	IV	Titration is conducted in the pres- ence of the redox pair Fe ^{III} /Fe ^{II}	
Ag ^I /Ag ↓	П	Beyond the equivalence point, the electrode material—Ag \(\psi \) (anode)— is oxidized	
Hg ^I /Hg ↓	П	As electrodes, ground mercury is used. Beyond the equivalence point, the electrode material—Hg \(\psi \) (anode)—is oxidized	
-	IV	Titration is conducted in the pres- ence of the redox pair Fe ^{III} /Fe ^{II}	
-	IV	ence of the redox pair re Titration is conducted in an alkaline medium in the presence of Hg ^I	
H+/Fe(CN)4-	11	As a titrant, (NH ₄) ₄ Fe(CN) ₆ is used. Beyond the equivalence point, His reduced at the cathode and Fe(CN) ₆ ⁴⁻ is oxidized at the anode	
Fe(CN)3-/Fe(CN)4-	II	Titration is conducted in the pres ence of Fe(CN).	
-	I	-	
Fe ^{III} /Fe ^{II}	III	-	

Substance being de- termined	Titrant	Electrode material	Voltage being applied	Electrode reactions indicator
termined		material	being applied, mV	before the equiva- lence point
CeIV	N-Benzoyl- phenyl- hydro- xylamine	Pt	800	Ce ^{IV} /H ₂ O or background
	Cupferron	Pt	1000	Ce ^{IV} /Ce ^{III}
C1-	Ag^{I}	Ag	from 1	
	IIg ^I	Hg	to 10 from 1 to 10	_
Colli	Ascorbic acid	Pt	100	The mechanism
Соп	Ce ^{IV} , Cr ₂ O ₇ ²⁻ ,	Pt	100	The mechanism
	Fe ^{III}	Pt	1000	The mechanism
	Fe ^{II}	Pt Pt	100	=
Cu ^{II}	Complex- one III	Cu	20	Cu ^{II} /Cu↓

Table 53 (continued)

which induce the current	Form of titration curves near the	Remarks	
after the equiva- lence point	equiva- lence point	Remarks	
_	I	Before the equivalence point is reached, Ce ^{IV} is reduced at the cathode and, at the anode, water or the background electrolyte is oxidized, for example Cl-, if titration is conducted in a sulphuric acid medium or in the presence of chloride	
H+/cupferron	111	Before the equivalence point is reached, cupferron reduces Ce ^{IV} . Beyond the equivalence point, H ⁺ is reduced at the cathode, and cupferron is oxidized at the anode	
Ag ^I /Ag ↓	11	Beyond the equivalence point, the electrode material—Ag \(\) (anode)— is oxidized	
Hg ^I /Hg ↓	11	As electrodes, ground mercury is used. Beyond the equivalence point, the electrode material— lig \(\) (anode)—is oxidized	
is not established	_	The titrate is the cobaltic carbonate complex solution	
is not established	-	Titration is conducted in the pres- ence of complexone III	
is not established	-	Titration is conducted in the presence of phenanthroline	
Fe ^{III} /Fe ^{II} Fe ^{III} /Fe ^{II}	II II	Titration is conducted with a ferrous perchlorate solution in glacial acetic acid	
-	I	Before the equivalence point is reached, the electrode material—Cu \(\) (anode)—is oxidized, and Cu \(\) is reduced at the cathode	

Substance being de-	Titrant	Electrode	Voltage	Electrode reactions indicator	
termined	11111111	material	being applied, mV	before the equiva- lence point	
Cu^{II}	Complex- one III	Pt, gra- phite	From 1000 to 1400	_	
Fe ^{III}	Complex- one III	Pt, gra- phite	from 1000 to 1400	_	
	Ascorbic acid	Pt	100	Fe ^{III} /Fe ^{II}	
FeII	Ce ^{IV} , MnO ₄ , Cr ₂ O ₇ ²	Pt	100	Fe ^{III} /Fe ^{II}	
	CrO ₃	Pt	150	Fe ^{III} /Fe ^{II}	
Fe(CN)3-	AsO ₂	Pt	150	Fe(CN) ₆ ³⁻ /Fe(CN) ₆ ⁴⁻	
Fo/CNiV4=	l v o				
Fe(CN) ₆ -	MnO ₄ Ce ^{IV} Zn ^{II}	Pt Pt Pt	150 150 150	Fe(CN)3-/Fe(CN)4- Fe(CN)3-/Fe(CN)4- Fe(CN)3-/Fe(CN)4-	
GaIII	Fe(CN)4-	Pt	200	_	

which induce the current	Form of titration curves near the	Remarks			
after the equiva- lence point	equiva- lence point				
H++ cupric com- plexonate/com- plexone III	11	Beyond the equivalence point, H* and cupric complexonate are reduc- ed simultaneously, and complex- one III is oxidized at the anode			
H++ ferric com- plexonate/com- plexone III	II	Beyond the equivalence point, H+ and ferric complexonate are reduc- ed simultaneously, and complex- one III is oxidized at the anode			
~	I	-			
-	I	-			
-	I	Titration is conducted in glacial acetic acid with a ferrous per- chlorate solution			
-	I	Titration is conducted in the presence of an OsO ₄ catalyst. This reaction can be used to indirectly determine Hg ^I , Co ^{II} , Sn ^{II} , Sb ^{III} As ^{III} , Se ^{IV} and others by the tit ration of the excess of Fe(CN) ₈ .			
CeIV/CeIII	I III I	Titration is conducted in the presence of Fe(CN) ³ ₆ . As a titranguse can also be made of other cations which form sparingly so uble precipitates with ferrocyanide, hexacyanoferrate (II); for example, Cd ^{II}			
Fe(CN)3-/Fe(CN)4-	II	Titration is conducted in the pre- ence of Fe(CN) ₆ -			

Titrant	Electrode	Voltage being applied.	Electrode reactions indicator
"	Material	m V	before the equiva- lence point
Fisher's reagent	Pt	30	-
Complex- one III	Нд	from 1 to 10	Hg ^{II} /Hg↓
I-	Pt	30	_
CN-, SCN- Cl-, Br-, I-	, Hg	from 1 to 10	Hg ^I /Hg↓
Fe(CN)4-	Pt	200	_
$AsO_{2}^{-}, \\ S_{2}O_{3}^{2-}, \\ N_{2}H_{4} \times \\ \times HCl$	Нд	30	I ₂ /I-
Ag ^I	Ag	10	
Ag^{I}	Pt	30	I ₂ /I-
Ag+	Ag	25	-
Fe(CN)4-	Pt	/00	, I
	Fisher's reagent Complexone III I- CN-, SCN-Cl-, Br-, I- Fe(CN)4- AsO2, S2O3-, N2H4 × HCl AgI AgI	Fisher's reagent Complex-one III I- CN-, SCN-, Hg Cl-, Br-, I- Fe(CN)4- Fe(CN)4- ASO2, S2O3-, N2H4 × XHCl AgI AgI AgI AgI AgI Ag Ag Ag A	Titrant Electrode material heing applied, my

which induce the current	Form of titration curves near the	
after the equiva- lence point	equiva- lence point	Remarks
I ₂ /I-	П	This reaction is used to determine water in organic and inorganic materials
-	I	As electrodes, ground mercury is used. Before the equivalence point is reached, the electrode mate-
I ₂ /I-	П	rial—IIg↓ (anode)—is oxidized Titration is conducted in the pres- ence of Cr ₂ O ₇ ²⁻ or I ₂
_	I	As electrodes, ground mercury is used. Before the equivalence point is reached, the electrode material—Hg \(\) (anode)—is oxidized
Fe(CN) ₆ -/Fe(CN) ₆ -	II	Titration is conducted in the presence of Fe(CN)3-
-	I	This reaction can be used to indirectly determine Cl_2 , $\operatorname{H}_2\operatorname{O}_2$, O_2 Cu^{II} , Tl^{III} , Se^{IV} and others by the titration of I_2 , which separates after adding an excess of iodide
Ag ^I /Ag↓	H	Beyond the equivalence point, the electrode material—Ag \(\) (anode)—is oxidized
-	I	Titration is conducted in the presence of I2
Ag ^I /Ag↓	I	Titration of potassium tetraphenyl- borate is conducted in acetone Beyond the equivalence point the electrode material—Ag↓ (ano- de)—is oxidized
H+/Fe(CN)4-	П	Beyond the equivalence point, His reduced at the cathode

Substance being de- termined	Titrant	Electrode	Voltage heing applied	Electrode reactions indicator
		materia)	being applied, mV	hefore the equiva- lence point
Mg ^{II}	BrO3	Pt	50	-
	Complex- one III	Cathode: Pt, anode: amalga- mated Ag	210	-
MnO₄	Fe ^{II}	Pt Pt	100 150	-
Mn ^{II}	MnO-	Cathode: Pt, anode: Ag	Without the ap- plication of volt- age	
Mo ^{VI}	PpII	Pt	1300	-
NO ₃	FeII	Pt	100	_
Ni ^{II}	Dimethyl- glyoxime	Cathode: amalgam- ated Ag, anode:	1500	Ni ^{II} /OH-
	I ₂	Pt Pt	30	_
SO3-	ICI	Pt	800	_
S ₂ O ₂ -	I ₂ , 10 3	Pt	from 30 to 100	-

which induce the current after the equiva- lence point	Form of titration curves near the equiva- lence point	Remarks
Br ₂ /Br ⁻ Mercuric complexonate/Hg \(\psi \)	I1 IV	The titration of magnesium hydroxy- quinolate is conducted in the presence of Br- Titration is conducted in an ammo- nia buffer solution in the pres- ence of Hg ^{II}
Fe ^{III} /Fe ^{II} Fe ^{III} /Fe ^{II}	II	Titration is conducted with ferrous perchlorate solution in glacial acetic acid
MnO₃/Ag↓	II	Beyond the equivalence point, the electrode material—Ag↓ (anode)—is oxidized, and MnO₄ is reduced at the cathode
H+/Pb ^{II}	П	Beyond the equivalence point, He is reduced at the cathode, and Pb ^{II} is oxidized at the anode
Fe ^{III} /Fe ^{II}	II	_
-	I	Before the equivalence point is reached, Ni ^{II} is reduced at the cathode, and OH- is oxidized as the anode (alkaline medium)
I ₂ /I-	11	Titration is conducted in the pres
I ₂ /I-	II	Titration is conducted in glacia acetic acid
I ₂ /I-	II	-

Substance being de- termined	Titrant	Electrode	Voltage	Electrode reactions indicator
termined		material	being applied, mV	before the equiva- lence point
SCN-	CeTV	Pt	200	-
Sb ^{III}	BrO ₃	Pt	from 50 to 100	_
SnII	I ₂	Pt	30	_
ThIV	Complex- one III	Pt	100	-
Ti ^{III}	CeIV	Pt	100	_
Tl ^I	Complex- one III	Graphite, Pt	from 1000 to 1400	-
	Fe(CN)4-	Pt	400	_
	CeIV	Pt ·	100	
ⁿ ın	VO ₃ Fe ^{III} Complexone III	Pt Pt Pt	from 200 to 300 100 500	H+\/\O_1\alpha
v	F ₀ II	Pt	100	

Table 53 (continued)

_	which induce the current	Form of titration curves near the equiva-	Remarks
	after the equiva- lence point	lence	
	Ce ^{IV} /Ce ^{III}	П	Titration is conducted in the presence of pyridine and an ICl catalyst. This reaction can be used to indirectly determine Cu ^{II} , Co ^{II} , Cd ^{II} , Ni ^{II} by the titration of an excess of SCN-
	Br ₂ /Br-	II	_
	I ₂ /I-	11	_
	_	IV	Titration is conducted in the presence of the Fe ^{III} /Fe ^{II} redox pair
	Ce ^{IV} /Ce ^{III}	II	_
	H++ thallic com- plexonate/com- plexone III	II	Beyond the equivalence point, H+ and thallic complexonate are re- duced simultaneously at the ca- thode, and complexone III is oxidized at the anode
	H+/Fe(CN)4-	11	Beyond the equivalence point, H+ is reduced at the cathode, and Fe(CN) ⁴ - is oxidized at the anode
	Ce ^{IV} /Ce ^{III}	II	To(GIV)6 IS OBTAINED AT THE MINUTE
	v ^v /v ^{Iv}	II	
	Fe ^{III} /Fe ^{II}	II	Before the equivalence point is reached, H ⁺ is reduced at the cathode, and U ^{IV} is oxidized at the anode
	Fe ^{III} /Fe ^{II}	II	

Substance being de-	Titrant	Electrode	Voltage	Electrode reactions indicator	
being de- termined	rivane	material	being applied, mV	before the equiva- lence point	
WAI	PpII	Pt	1500	-	
YIII	Cupferron	PtII	from 1000 to 1200	-	
ZnII	Fe(CN)4-	Pt	200	_	

which induce the current	Form of titration curves	Remarks			
after the equiva- lence point	near the equiva- lence point	Remarks			
H+/PPII	II	Beyond the equivalence point, H ⁺ is reduced at the cathode, and Pb ^{II} is oxidized at the anode			
H+/cupferron	П	Beyond the equivalence point, H ⁺ is reduced at the cathode, and cupferron is oxidized at the anode			
Fe(CN)3-/Fe(CN)4-	II	Titration is conducted in the presence of Fe(CN)?			

Overvoltage of Hydrogen and Oxygen at Various Electrodes

(at room temperature)

The dependence of the hydrogen overvoltage $\eta_{\rm H_2}$ on current density is expressed by the equation

$$\eta_{\rm H_2} = 0.116 \log i + k$$

wher ... is a constant which depends on the nature of the electrode. With a rise in temperature, the value of overvoltage decreases by 3 mV/°C. In an alkaline medium, hydrogen overvoltage is as a rule somewhat greater (by 0.1-0.3 V) than in an acidic medium. The overvoltage of oxygen in an alkaline medium is approximately one volt greater than in an acidic medium. The overvoltage of electroseparation of metals is considerably less than that of gases.

		Cı	irrent	density,	A/cm ²	
Electrode	Composition of the solution	0.00005 and less	0.0001	0.001	0.01	0.1
			ove	voltage	, v	
D. II. 1.	1	Hydrogen				
Palladium Platinum (platinized) Platinum (smooth) Gold Cobalt Silver Vanadium Nickel Tungsten Molybdenum Iron Chromium Copper	$ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \mathrm{ditto} \\ \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ 5N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ 5N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ 5N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 1N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 1N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 1N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2N \ \ \mathrm{H_2SO_4} \\ \end{array} \right. \end{array} \right. \end{array} $	0.017 0.067 0.97 0.135 0.138 - 0.157 0.168 0.175 - 0.182	0.04 0.33 0.45 0.18 0.18 0.32 0.83	0.10 0.44 - 0.57 - 0.28 0.29 - 0.33 - 0.94	0.03 0.07 0.22 0.39 0.55 0.69 0.69 0.56 0.46 0.46 0.58	0.04

Table 54 (continued)

		C	urrent	density,	A/cm ²	
Electrode	Composition of the solution	0.00005 and less	0.0001	0.001	0.01	0.1
			over	voltage,	v	
Antimony Titanium Aluminium Carbon Arsenic Bismuth Cadmium Tin Lead Zinc Mercury	2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄ 2N H ₂ SO ₄	0.233 0.236 0.296 0.335 0.369 0.388 	0.98 0.93	0.88 	1.0 - 1.13 - 1.08 1.21 0.75 1.16 1.04	1.00
3	1 (2N H ₂ 504	Oxygen				
Platinum	In acidic	-	_	-	~0.4*	-
(smooth) From lead	$\begin{cases} \text{medium} \\ 0.2N \text{ H}_2\text{SO}_4 \\ 8N \text{ H}_2\text{SO}_4 \end{cases}$	=	0.67 0.97	0.78 1.08	1.19	=
dioxide Iron	2N NaOH	-	0.44	0.48	0.52	_

Potentials of Electrode Decomposition of 1 N Solutions of Selected Compounds

Compound	Decomposi- tion poten- tial, V	Compound	Decomposition potential, V		
Salts AgNO ₃ CuSO ₄ Pb(NO ₃) ₂ CoCl ₂ ZnBr NiCl ₂ CdCl ₂ CdCl ₂ CoSO ₄ Cd(NO ₃) ₂ CdSO ₄ NiSO ₄ A cids HI	0.70 1.49 1.52 1.78 1.80 1.85 1.88 1.92 1.98 2.03 2.09 2.35	HBr (COOH) ₂ HCl HClO ₄ H ₂ SO ₄ HNO ₃ CH ₂ (COOH) ₂ H ₃ PO ₄ CH ₂ CICOOH Bases KOH NaOH NH ₄ OH	0.94 0.95 1.31 1.65 1.67 1.69 1.70 1.72		

Flame Photometry

Recommended wavelengths of the spectral lines and the molecular-band maxima for determining the elements with the aid of a spectro-photometer having glass optics and with the use of an air-acetylene flame

(the wavelengths of molecular-band maxima are italicized)

Element	Wavelength, nm	Element	Wavelength, nm
Barium Boron Calcium Calcium Cosium Chromium Chromium Gallium Indium Iron Lanthanum Lanthanum	870.0 545.0-548.0 422.7 622.0 852.1 425.4 459.4 417.2 451.1 386.0 438.0 794.0	Lithium	670.8 384.0 403.1-403.4 548.0 766.5-769.9 794.8 589.0-589.6 460.7 535.1 398.8 613.0-616.6

British and American Weights and Measures in Comparison with the Metric System of Measurement

Name	Metric equivalent
Linear Measures	
1 mile = 1760 yards = 5280 feet = 63,360 inches 1 yard = 3 feet = 36 inches 1 foot = 12 inches 1 inch	1,6093 km 0,9144 m 0,3048 m 2,5400 cm
Liquid Measures	
1 gallon (Br.) = 4 quarts = 8 pints = 32 gills = = 160 fluid ounces	4.546 1
= 128 fluid ounces	3.785 l 4.546 l
= 160 fluid drachms = 9600 minims 1 pint (Am.) = 4 gills = 16 fluid ounces = 128 fluid drachms = 7680 minims	0.5683 1
1 dulid dulice (Br.) = 8 fluid drachma - 100	0.4/32 1
1 fluid ounce (Am.) = 8 fluid drachms - 200 -	28.41 ml
1 fluid drachm (Br.) = 60 minims = 3 fluid	29.57 ml
1 fluid drachm (Am.) 1 fluid scruple (Br.) = 20 minims 1 minim (Br.) 1 minim (Am.)	3.552 ml 3.697 ml 1.184 ml 0.05919 ml 0.06161 ml
A voirdupois Weight	
1 Br. pound (1b) = 16 ounces = 256 drachms = 7000 grains 1 Br. long ton = 2240 pounds 1 Br. short ton = 2000 pounds 1 ounce = 16 drachms = 437.5 grains 1 drachm = 27.34 grains	453.59 g 1016.05 kg 907.185 kg 28.35 g 1.772 g 0.0648 g
Units of Energy	3
Br. foot pound = 0.1383 kgf·m	1.356 J
$= 274,000 \text{ kgf} \cdot \text{m} = 1.014 \text{ hp} \cdot \text{h} = 0.746 \text{ kWh} = 1.014 \text{ hp} \cdot \text{h} \text{ (metric system)}$	4690 kJ

Name	Metric equivalent
1 British thermal unit (BTU) = quantity of heat that raises the temperature of 1 Br. pound of water by 1°F	0.252 kcal
1 Br. foot pound/second = 0.0018144 hp (metric system)	1.356 W 0.746 kW

Simplified Table of Five-Place Logarithms

Every line gives the proportional parts of the *mean* values of the of their real values). Such a simplification leads to errors in mantissas and convenient to use as the tables of four-place logarithms.

A. Logarithms

N	0 .	1	2	3	4	5	6
10	00 000	00 432	00 860	01 284	01 703	02 119	02 531
11	04 139	04 532	04 922	05 308	05 690	06 070	06 646
12	07 918	08 279	08 636	08 991	09 342	09 691	10 037
13	11 394	11 727	12 057	12 385	12 710	13 033	13 354
14	14 613	14 922	15 229	15 534	15 836	16 137	16 435
15	17 609	17 898	18 184	18 469	18 752	19 033	19 312
16	20 412	20 683	20 951	21 219	21 484	21 748	22 011
17	23 045	23 300	23 553	23 805	24 055	24 304	24 551
18	25 527	25 768	26 007	26 245	26 482	26 717	26 951
19	27 875	28 103	28 330	28 556	28 780	29 003	29 226
20 21 22	30 103 32 222 34 242	30 320 32 428 34 439	30 535 32 634 34 635	30 750 32 838 34 830	30 963 33 041 35 025	31 175 33 244 35 218	31 387 33 445 35 411

differences between the numbers which stand on the given line (instead of logarithms, but they are not over 0.00002. This table is as easy

			Pro	port	ional p	arts of	the 7	nean v	alues o		
7	8	9	i	2	3	4	5	в	7	8	9
02 938	03 342	03 743	42 40	85 81	127 121	170 162	212 202	254 242	297 283	339 323	381 364
06 819	07 188	07 555	37 37	77 74	116 111	154 148	193 185	232 222	270 259	309 296	348 333
10 380	10 721	11 059	36 34	71 68	106 102	142 136	177 170	213 204	248 238	284 272	319 307
13 672	13 988	14 301	33 32	66 63	98 95	131 126	164 158	197 190	229 221	262 253	295 284
16 732	17 026	17 319	30 29	61 59	91 88	122 118	152 147	183 177	213 206	244 236	274 265
19 590	19 866	20 140	28 28	57 55	85 83	114 110	142 138	171 165	199 193	228 221	256 248
22 272	22 531	22 789	27 26	53 52	80 78	107 104	134 130	160 156	187 182	214 208	240 233
24 797	25 042	25 285	26 25	50 49	76 73	101 58	126 122	151 147	176 171	201 196	227 220
27 184	27 416	27 646	24 23	48 46	71 69	95 93	119 116	143 139	167 162	190 185	214 208
29 447	29 667	29 885	23 22	45 44	68 66	90 88	113 110	135 132	158 154	180 176	
31 597 33 646 35 603	31 806 33 846 35 793	32 015 34 044 35 984	21 20 20	43 41 39	64 61 58	85 81 77	106 101 97	127 121 116	148 141 135	170 162 154	182

²⁹⁻¹⁸⁴⁵

Logarithms

N	0	1	2	3	4	5	6
23	36 173	36 361	36 549	36 736	36 922	37 107	37 291
24	38 021	38 202	38 382	38 561	38 739	38 917	39 094
25	39 794	39 967	40 140	40 312	40 483	40 654	40 824
26	41 497	41 664	41 830	41 996	42 160	42 325	42 488
27	43 136	43 297	43 457	43 616	43 775	43 933	44 091
28	44 716	44 871	45 025	45 179	45 332	45 484	45 637
29	46 240	46 389	46 538	46 687	46 835	46 982	47 129
30	47 712	47 857	48 001	48 144	48 2 87	48 430	48 572
31	49 136	49 276	49 415	49 554	49 693	49 831	49 969
32	50 515	50 650	50 786	50 920	51 054	51 188	51 322
33	51 851	51 983	52 114	52 244	52 375	52 504	52 634
34	53 148	53 275	53 403	53 529	53 656	53 782	53 908
35	54 407	54 531	54 654	54 777	54 900	55 023	55 145
36	55 630	55 751	55 871	55 991	56 110	56 229	56 348
37	56 820	56 937	57 054	57 171	57 287	57 403	57 519
38	57 978	58 092	58 206	58 320	58 433	58 546	58 659
39	59 106	59 218	59 329	59 439	59 550	59 660	59 770
40	60 206	60 314	60 423	60 531	60 638	60 746	60 853
41	61 278	61 384	61 490	61 595	61 700	61 805	61 909
42	62 325	62 428	62 531	62 634	62 737	62 839	62 941
43	63 347	63 448	63 548	63 649	63 749	63 849	63 949
44	64 345	64 444	64 542	64 640	64 738	64 836	64 933
45	65 321	65 418	65 514	66 610	65 706	65 801	65 896
46	66 276	66 370	66 464	66 558	66 652	66 745	66 839
47	67 210	67 302	67 394	67 486	67 578	67 669	67 761
48	68 124	68 215	68 305	68 395	68 485	68 574	68 664
49	69 020	69 108	69 197	69 285	69 373	69 461	69 548
50	69 897	69 984	7.0 070	70 157	70 243	70 329	70 415
51	70 757	70 842	70 927	71 012	71 096	71 181	71 265
52	71 600	71 684	71 767	71 850	71 933	72 016	72 099
53	72 428	72 509	72 591	72 673	72 754	72 835	72 916
54	73 239	73 320	73 400	73 480	73 560	73 640	73 719
55	74 036	74 115	74 194	74 273	74 351	74 429	74 507
56	74 819	74 896	74 974	75 051	75 128	75 205	75 282
57	75 587	75 664	75 740	75 815	75 891	75 967	76 042
58	76 343	76 418	76 492	76 567	76 641	76 716	76 790
59	77 085	77 159	77 232	77 305	77 379	77 452	77 525

Table 58 (continued)

			Pro	port	ional p	arts of	the	mean v	alues o	f diffe	renc
7	8	9	1	2	3	4	5	6	7	8	9
37 475 39 270	37 658 39 445	37 840 39 620	19 18	37 35	56 53	74 71	93 89	111 106	130 124		167 159
40 993 42 651 44 248 45 788 47 276	41 162 42 813 44 404 45 939 47 422	41 330 42 975 44 560 46 090 47 567	17 16 16 15 15	34 33 32 30 29	51 49 47 46 44	68 66 63 61 59	85 82 79 76 74	98 95 91 88	119 115 111 107 103	136 131 126 122 118	153 148 142 137 132
48 714 50 106 51 455 52 763 54 033	48 855 50 243 51 587 52 892 54 158	48 996 50 379 51 720 53 020 54 283	14 14 13 13 13	29 28 27 26 25	43 41 40 39 38	57 55 54 52 50	72 69 67 65 63	86 83 80 78 76	100 97 94 91 88	114 110 107 104 101	129 124 121 117 113
55 267 56 467 57 634 58 771 59 879	55 388 56 585 57 749 58 883 59 988	55 509 56 703 57 864 58 995 60 097	12 12 12 11 11	24 24 23 23 22	37 36 35 34 33	49 48 46 45 44	61 60 58 57 55	73 71 70 68 66	85 83 81 79 77	98 95 93 90 88	110 104 104 102 99
60 959 62 014 63 043 64 048 65 031	61 066 62 118 63 144 64 147 65 128	61 172 62 221 63 246 64 246 65 225	11 10 10 10 10	21 21 20 20 20	32 31 31 30 29	43 42 41 40 39	54 53 51 50 49	64 63 61 60 59	75 74 71 70 68	86 84 82 80 78	97 95 92 90 88
65 992 66 932 67 852 68 753 69 636	66 087 67 025 67 943 68 842 69 723	66 181 67 117 68 034 68 931 69 810	10 9 9 9	19 19 18 18 18	29 28 27 27 26	38 37 36 36 35	48 47 46 45 44	57 56 55 53 53	67 65 64 63 62	76 74 73 72 70	86 84 82 81 79
70 501 71 349 72 181 72 997 73 799	70 586 71 433 72 263 73 078 73 878	70 672 71 517 72 346 73 159 73 957	9 8 8 8	17 17 17 16 16	26 25 25 24 24	34 34 33 32 32	43 42 42 41 40	52 50 50 49 48	60 59 58 57 56	69 67 66 65 64	77 76 75 73 72
74 586 75 358 76 118 76 864 77 597	74 663 75 435 76 193 76 938 77 670	74 741 75 511 76 268 77 012 77 743	8 8 7 7	16 15 15 15 15	23 23 23 22 22	31 30 30 29	39 39 38 37 37	47 46 45 44 44	55 54 53 52 51	63 62 60 59 58	70 69 68 67 66

Logarithms

N	0	1	2	3	4	5	6
60 61 62 63 64	77 815 78 533 79 239 79 934 80 618	78 604 79 309 80 003	77 960 78 675 79 379 80 072 80 754	78 032 78 746 79 449 80 140 80 821	78 104 78 817 79 518 80 209 80 889	78 176 78 888 79 588 80 277 80 956	78 247 78 958 79 657 80 346 81 023
65	81 291	81 358	81 425	81 491	81 558	81 624	81 690
66	81 954	82 020	82 086	82 151	82 217	82 282	82 347
67	82 607	82 672	82 737	82 802	82 866	82 930	82 995
68	83 251	83 315	83 378	83 442	83 506	83 569	83 632
69	83 885	83 948	84 011	84 073	84 136	84 198	84 261
70	84 510	84 572	84 634	84 696	84 757	84 819	84 880
71	85 126	85 187	85 248	85 309	85 370	85 431	85 491
72	85 733	85 794	85 854	85 914	85 974	86 034	86 094
73	86 332	86 392	86 451	86 510	86 570	86 629	86 688
74	86 923	86 982	87 040	87 099	87 157	87 216	87 274
75	87 506	87 564	87 622	87 679	87 737	87 795	87 852
76	88 081	88 138	88 195	88 252	88 309	88 366	88 423
77	88 649	88 705	88 762	88 818	88 874	88 930	88 986
78	89 209	89 265	89 321	89 376	89 432	89 487	89 542
79	89 763	89 818	89 873	89 927	89 982	90 037	90 091
80	90 309	90 363	90 417	90 472	90 526	90 580	90 634
81	90 848	90 902	90 956	91 009	91 062	91 116	91 169
82	91 381	91 434	91 487	91 540	91 593	91 645	91 698
83	91 908	91 960	92 012	92 064	92 117	92 169	92 221
84	92 428	92 480	92 531	92 583	92 634	92 686	92 737
85	92 942	92 993	93 044	93 095	93 146	93 197	93 247
86	93 450	93 500	93 551	93 601	93 651	93 702	93 752
87	93 952	94 002	94 052	94 101	94 151	94 201	94 250
88	94 448	94 498	94 547	94 596	94 645	94 694	94 743
89	94 939	94 988	95 036	95 085	95 134	95 182	95 231
90	95 424	95 472	95 521	95 569	95 617	95 665	95 713
91	95 904	95 952	95 999	96 047	96 095	96 142	96 190
92	96 379	96 426	96 473	96 520	96 567	96 614	96 661
93	96 848	96 895	96 942	96 988	97 035	97 081	97 128
94	97 313	97 359	97 405	97 451	97 497	97 543	97 589

Table 58 (continued)

7	8	9	_	_		1		_		valuec			_
-	-		1	2	3	'		5	6	7		8	:
78 31 79 02 79 72 80 41 81 09	9 79 099 7 79 796 4 80 482	79 169 79 865 80 550	7 7 7 7	14 14 14 14 13	22 21 21 20 20	2 2 2	8 8 7	36 36 35 34 34	43 43 41 41 40	5 5 4 4 4 4	0 5 8 5 8 5	58 57 55 44 4	65 64 62 61 60
81 75° 82 41° 83 05° 83 69° 84 32°	82 478 9 83 123 6 83 759	81 889 82 543 83 187 83 822 84 448	7 7 6 6 6	13 13 13 13	20 20 19 19	2 2 2 2 2 2	6 3 6 3 5 3	33 33 32 32 31	40 39 38 38 37	46 46 45 44 43	5 5 5	2 1 0	59 59 58 57 56
84 942 85 552 86 153 86 747 87 332	85 612 86 213 86 806	85 065 85 673 86 273 86 864 87 448	6 6	12 12 12 12 12	19 18 18 18 17	25 24 24 25	3 3	0	37 37 36 35 35	43 43 42 41 41	48	3 .	56 55 54 53 52
87 910 88 480 89 042 89 597 90 146	88 536 89 098 89 653	88 024 88 593 89 154 89 708 90 255	6 : 6 :	11 11 11	17 17 17 17 17	23 23 22 22 22	28 28 28	9 .	35 34 34 33 33	41 40 39 39 39	46 45 44 44		52 51 50 50
90 687 91 222 91 751 92 273 92 788	90 741 91 275 91 803 92 324 92 840	90 795 91 328 91 855 92 376 92 891	5 1 5 1 5 1	1 :	16 16 16 16 16	22 21 21 21 21 20	27 27 27 26 26	7 60 60	32 32 32 31	38 37 37 36 36	43 42 42 42 41	444	9 8 7 6
93 298 93 802 94 300 94 792 95 279	93 349 93 852 94 349 94 841 95 328	93 399 93 902 94 399 94 890 95 376	5 1 5 1 5 1 5 1 5 1	0 1 0 1 0 1	5 5 5 5 5	20 20 20 20 19	26 25 25 25 24	3	81 80 80 9	36 35 35 34 34	41 40 40 39 39		4
95 761 96 237 96 708 97 174 97 635	96 284 96 755 97 220	96 332 96 802 97 267	-	1 1 1 1 1	4 4 4	19 19 19 18 18	24 24 24 23 23	20 20 20 20 20 20 20 20 20 20 20 20 20 2	8 8	33 33 32	38 38 38 38 38	43 43 43	2.2

Logarithms

N	0	1	2	3	4	5	6
95	97 772	97 818	97 864	97 909	97 955	98 000	98 046
96	98 227	98 272	98 318	98 363	98 408	98 453	98 498
97	98 677	98 722	98 767	98 811	98 856	98 900	98 945
98	99 123	99 167	99 211	99 255	99 300	99 344	99 388
99	99 564	99 607	99 651	99 695	99 739	99 782	99 826

B. Antilogarithms

log	0	1	2	3	4	5	6
.00	10 000	10 023	10 046	10 069	10 093	10 116	10 139
.01	10 233	10 257	10 280	10 304	10 328	10 351	10 375
.02	10 471	10 495	10 520	10 544	10 568	10 593	10 617
.03	10 715	10 740	10 765	10 789	10 814	10 839	10 864
.04	10 965	10 990	11 015	11 041	11 066	11 092	11 117
.05 .06 .07 .08	11 220 11 482 11 749 12 023 12 303	11 246 11 508 11 776 12 050 12 331	11 272 11 535 11 803 12 078 12 359	11 298 11 561 11 830 12 106 12 388	11 324 11 588 11 858 12 134 12 417	11 350 11 614 11 885 12 162 12 445	11 376 11 641 11 912 12 190 12 474
.10 .11 .12 .13	12 589 12 882 13 183 13 490 13 804	12 618 12 912 13 213 13 521 13 836	12 647 12 942 13 243 13 552 13 868	12 677 12 972 13 274 13 583 13 900	12 706 13 002 13 305 13 614 13 932	12 735 13 032 13 335 13 646 13 964	12 764 13 062 13 366 13 677 13 996
.15	14 125	14 158	14 191	14 223	14 256	14 289	14 322
.16	14 454	14 488	14 521	14 555	14 588	14 622	14 655
.17	14 791	14 825	14 859	14 894	14 928	14 962	14 997
.18	15 136	15 171	15 205	15 241	15 276	15 311	15 346
.19	15 488	15 524	15 560	15 596	15 631	15 668	15 704
20	15 849	15 885	15 922	15 959	15 996	16 032	16 069
21	16 218	16 255	16 293	16 331	16 368	16 406	16 444
22	16 596	16 634	16 672	16 711	16 749	16 788	16 827
23	16 982	17 022	17 061	17 100	17 140	17 179	17 219
24	17 378	17 418	17 458	17 498	17 539	17 579	17 620

Table 58 (continued)

7			Proportional parts of the mean values of differen									
	8	9	1	2	3	4	5	6	7	36 36 36 35	8	
98 091 98 543 98 989 99 432 99 870	98 137 98 588 99 034 99 476 99 913	98 182 98 632 99 078 99 520 99 957	5 5 4 4 4	9 9 9 9	14 14 13 13	18 18 18 18	23 23 22 22 22 22	27 27 27 26 26	32 32 31 31 31		41 41 40 40 39	

7	8	9	_	_		-			values of		
			í	2	3	4	5	6	7	8 19 19 20 20 20 21 21 22 22 23 24 24 25 26 27 28 28 29 30 30 31 32	9
10 162	10 186	10 209	2	5	7	9	12	14	16	19	21
10 399	10 423	10 447	2	5	7	10			17		21
10 641	10 666	10 691	2	5	7	10			17		22
10 889	10 914	10 940	3	5	8	10			18	20	
11 143	11 169	11 194	2 2 2 3 3	5 5 5 5 5	8	10			18	20	23
11 402	11 429	11 455	3	5	8	11	13		18		24
11 668	11 695	11 722	3	5 5 5	8	11	13		19		24
11 940	11 967	11 995	3 3 3 3	5	8 8 8 9	11	14		19		25
12 218	12 246	12 274	3	6	8	11	14		20		25
12 503	12 531	12 560	3	6	9	11	14	17	20	23	26
12 794	12 823	12 853	3	6	9	12	15	18	21		26
13 092	13 122	13 152	3 3 3 3	6	9	12	15	18	21		27
13 397	13 428	13 459	3	6	9	12	15	18	21		28
13 709	13 740	13 772	3	6	9	13	16	19	22		28
14 028	14 060	14 093	3	6	10	13	16	19	22	26	29
14 355	14 388	14 421	3	7	10	13	16	20	23		30
14 689	14 723	14 757	3 3 4	7	10	13	17	20	24		30
15 031	15 066	15 101	3	7	10	14	17	21	24 25		31 32
15 382	15 417	15 453		7	11	14	18 18	21 22	25 25		32
15 740	15 776	15 812	4	7	11	14	10	24	20	49	04
16 106	16 144	16 181	4	7	11	15	18	22	26		33
16 482	16 520	16 558	4		11	15	19	23	26		34
16 866	16 904	16 943	4	8	12	15	19	23	27		35
17 258	17 298	17 338	4		12	16	20	24			36
17 660	17 701	17 742	4	8	12	16	20	24	28	32	36

Antilogarithms

og	0	1	2	3	4	5	6
. 25	17 783	17 824	17 865	17 906	17 947	17 989	18 030
. 26	18 197	18 239	18 281	18 323	18 365	18 408	18 450
. 27	18 621	18 664	18 707	18 750	18 793	18 836	18 880
. 28	19 055	19 099	19 143	19 187	19 231	19 275	19 320
. 29	19 498	19 543	19 588	19 634	19 679	19 724	19 770
.30 .31 .32 .33	19 953 20 417 20 893 21 380 21 878	19 999 20 464 20 941 21 429 21 928	20 045 20 512 20 989 21 478 21 979	20 091 20 559 21 038 21 528 22 029	20 137 20 606 21 086 21 577 22 080	20 184 20 654 21 135 21 627 22 131	20 230 20 701 21 184 21 677 22 182
.35	22 387	22 439	22 491	22 542	22 594	22 646	22 699
.36	22 909	22 961	23 014	23 067	23 121	23 174	23 227
.37	23 442	23 496	23 550	23 605	23 659	23 714	23 768
.38	23 988	24 044	24 099	24 155	24 210	24 266	24 322
.39	24 547	24 604	24 660	24 717	24 774	24 831	24 889
.40 .41 .42 .43	25 119 25 704 26 303 26 915 27 542	25 177 25 763 26 363 26 977 27 606	25 236 25 823 26 424 27 040 27 669	25 293 25 882 26 485 27 102 27 733	25 351 25 942 26 546 27 164 27 797	25 410 26 002 26 607 27 227 27 861	25 468 26 062 26 669 27 290 27 925
.45	28 184	28 249	28 314	28 379	28 445	28 510	28 576
.46	28 840	28 907	28 973	29 040	29 107	29 174	29 242
.47	29 512	29 580	29 648	29 717	29 785	29 854	29 923
.48	30 200	30 269	30 339	30 409	30 479	30 549	30 620
.49	30 903	30 974	31 046	31 117	31 189	31 261	31 333
.50	31 623	31 696	31 769	31 842	31 916	31 989	32 063
.51	32 359	32 434	32 509	32 584	32 659	32 735	32 809
.52	33 113	33 189	33 266	33 343	33 420	33 497	33 574
.53	33 884	33 963	34 041	34 119	34 198	34 277	34 356
.54	34 674	34 754	34 834	34 914	34 995	35 075	35 156
.55 .56 .57 .58	35 481 36 308 37 154 38 019 38 905	35 563 36 392 37 239 38 107 38 994	35 645 36 475 37 325 38 194 39 084	35 727 36 559 37 411 38 282 39 174	35 810 36 644 37 497 38 371 39 264	35 892 36 728 37 584 38 459 39 355	35 975 36 813 37 670 38 548 39 446

Table 58 (continued)

9	8	7	6	5	4	2	2	-	9		8		7
_			-		-	3	2	1					_
37	33	29	25	21	17	40	0						40
38	34		25	21	17	12	8	4	18 155		18	072	
39	35		26	22	17	13	8	4	18 578		18 5	493	
40	35	31	26	22	18	13	9	4	19 011		189	923	10
41	36	32	27	23	18	13	9	5	19 454		19	364 815	19
42	07	00			10	1-1	ð	9	19 907	501	198	013	10
43	37 38	32 33	28	23	19	14	9	5	20 370	324	20:	277	20
44	39		29	24	19	14	10	5	20 845		20	749	20
45	40		29	$\frac{24}{25}$	19	15	10	5	21 330		21 3	232	21
46	41	36	31	25	20 20	15	10	5	21 826		21	727	
				20	20	15	10	5	22 336	284	22	233	22
47 48	42 43	37	31	26	21	16	10	5	22 856	803	22	751	22
49	43	37 38	32	27	21	16	11	5	23 388	336		281	23
50	45	39	34	27	22	16	11	5	23 933	878		823	23
51	46	40	34	28 29	22 23	17	11	6	24 491	434		378	24
				20	23	17	11	6	25 061	003	25	946	24
53 54	47 48	41 42	35	29	23	18	12	6	25 645	586	25	527	25
55	49	42	36 37	30	24	18	12	6	26 242	182		122	26
56	50	44	38	31	24	18	12	6	26 853	792		730	26
58	51	45	39	32	25 26	19	13	6	27 479	416		353	27
	-0			ULI	20	19	13	6	28 119	054	28	990	27
59 60	52	46	39	33	26	20	13	7	28 774	700	90	642	28
	54 55	47	40	34	27	20	13	7	29 444	708 376		309	29
	56	48	41	34	28	- 1	14	7	30 130	061		992	29
-	58	50	42 43	35	28	21	14	7	30 832	761		690	30
	-	30	40	36	29	22	14	7	31 550	477		405	31
	59	52	44	37	29	22	15	7		044	20	137	32
	60 62	53 54	45	38	30	23	15	8	32 285 33 037	211 961		885	32
	63	55	46 47	39	31	23	15	8	33 806	729		651	33
	65	56	48	40	32	24	16	8	34 594	514		435	34
			-10	40	32	24	16	8	35 400	318		237	35
	66 68	58 59	50	41	33	25	16	8	36 224	4/4	20	058	36
	69	61	51	42	34	25	17	8	37 068	141		898	36
	71	62	52 53	43	35	26	17	9	37 931	983 844		757	37
	72	63	54	44	35	27	18	9	38 815	726		637	38
0	14	00	9.4	45	36	27	18	9	39 719	628		537	39
								1	50 , 20	320	00	50.	

Antilogarithms

log	0	1	2	3	4	5	6
.60 .61 .62 .63	39 811 40 738 41 687 42 658 43 652	39 902 40 832 41 783 42 756 43 752	39 994 40 926 41 879 42 855 43 853	40 087 41 020 41 976 42 954 43 954	40 179 41 115 42 073 43 053 44 055	40 272 41 210 42 170 43 152 44 157	40 365 41 305 42 267 43 251 44 259
.65 .66 .67 .68	44 668 45 709 46 774 47 863 48 978	44 771 45 814 46 881 47 973 49 091	44 875 45 920 46 989 48 084 49 204	44 978 46 026 47 098 48 195 49 317	45 082 46 132 47 206 48 306 49 431	45 186 46 238 47 315 48 417 49 545	45 290 46 345 47 424 48 529 49 659
.70 .71 .72 .73 .74	50 119 51 286 52 481 53 703 54 954	50 234 51 404 52 602 53 827 55 081	50 350 51 523 52 723 53 951 55 208	50 466 51 642 52 845 54 075 55 336	50 582 51 761 52 966 54 200 55 463	50 699 51 880 53 088 54 325 55 590	50 816 52 000 53 211 54 450 55 719
.75 .76 .77 .78 .79	56 234 57 544 58 884 60 256 61 659	56 364 57 677 59 020 60 395 61 802	56 494 57 810 59 156 60 534 61 944	56 624 57 943 59 293 60 674 62 087	56 754 58 076 59 429 60 814 62 230	56 855 58 210 59 566 60 954 62 373	57 016 58 345 59 704 61 094 62 517
.80 .81 .82 .83 .84	63 096 64 565 66 069 67 608 69 183	63 241 64 714 66 222 67 764 69 343	63 387 64 863 66 374 67 920 69 503	63 533 65 013 66 527 68 077 69 663	63 680 65 163 66 681 68 234 69 823	63 826 65 313 66 834 68 391	63 973 65 464 66 988 68 549 70 146
.85 .86 .87 .88 .89	70 795 72 444 74 131 75 858 77 625	70 958 72 611 74 302 76 033 77 804	71 121 72 778 74 473 76 208 77 983	71 285 72 946 74 645 76 384 78 163	71 450 73 114 74 817 76 560 78 343	69 984 71 614 73 282 74 989 76 736 78 524	71 779 73 451 75 162 76 913 78 705
.91 .92 .93 .94 .95	79 433 81 283 83 176 85 114 87 096	79 616 81 470 83 368 85 310 87 297	79 799 81 658 83 560 85 507 87 498	79 983 81 846 83 753 85 704 87 700	80 168 82 035 83 946 85 901 87 902	80 353 82 224 84 140 86 099 88 105	80 538 82 414 84 333 86 298 88 308
96 97 98 99	89 125 91 201 93 325 95 499 97 724	89 331 91 411 93 541 95 719 97 949	89 536 91 622 93 756 95 940 98 175	89 743 91 833 93 972 96 161 98 401	89 950 92 045 94 189 96 383 98 628	90 157 92 257 94 406 96 605 98 855	90 365 92 470 94 624 96 828 96 083

Table 58 (continued)

			Prop	orti	onal pa	arts of	the m	can va	lues of			
7	8	9	1	2	3	4	5	6	7	8	9	
40 458 41 400 42 364 43 351 44 361	40 551 41 495 42 462 43 451 44 463	40 644 41 591 42 560 43 551 44 566	9 9 10 10 10	19 19 19 20 20	28 28 29 30 30	37 38 39 40 41	46 47 49 50 51	55 57 58 60 61	65 66 68 70 71	74 76 78 80 81	83 85 87 89 91	
45 394 46 452 47 534 48 641 49 774	45 499 46 559 47 643 48 753 49 888	45 604 46 666 47 753 48 865 50 003	10 11 11 11	21 21 22 22 23	31 32 33 33 34	42 43 44 45 46	52 53 54 56 57	62 64 65 67 68	73 75 76 78 80	83 85 87 89 91	94 96 98 100 103	
50 933 52 119 53 333 54 576 55 847	51 050 52 240 53 456 54 702 55 976	51 168 52 360 53 580 54 828 56 105	12 12 12 13 13	23 24 24 25 26	36 37 38	47 48 49 50 51	58 60 61 63 64	70 72 73 75 77	82 84 85 88 90	93 96 98 100 102	105 108 110 113 115	
57 148 58 479 59 841 61 235 62 661	57 280 58 614 59 979 61 376 62 806	57 412 58 749 60 117 61 518 62 951		26 27 27 28 29	40 41 42	52 54 55 56 58	66 67 69 70 72	79 80 82 84 86	92 94 96 98 101	105 107 110 112 115	118 121 123 126 130	
64 121 65 615 67 143 68 707 70 307	64 269 65 766 67 298 68 865 70 469	64 417 65 917 67 453 69 024 70 632	15 15 16	29 30 31 32 32	45 46 47	59 60 62 63 64	74 75 77 79 81	88 90 92 95 97	103 105 108 110 113	118 120 123 126 129	132 135 139 142 145	
71 945 73 621 75 336 77 090 78 886	72 111 73 790 75 509 77 268	72 277 73 961 75 683 77 446 79 250	17 17 17 18	33 34 35 35 36	51 52 53	66 68 69 71 72	83 85 87 89 91	99 101 104 107 109	116 118 121 125 127	132 135 138 142 145	159 163	
80 724 82 604 84 528 86 497 88 512	80 910 82 794 84 723 86 696	81 096 82 985 84 918 86 896 88 920	19 19 20	39	3 57 9 58 9 60	74 76 78 79 81	93 95 97 99 102	111 113 116 119 122	130 132 136 139 142		170 173 173 175 18	
90 573 92 683 94 842 97 051 99 312	90 782 92 897 95 060 97 275	90 991 93 111 95 280 97 499	21 21 21 22 22 22	4:	2 64 3 65 4 67	83 85 87 89 91	104 106 109 111 114	125 127 130 133 137	146 149 152 155 160	170 174 178	19 4 19 3 20	

Appendices

Examples of Using Some Tables

Table 7

Analytical and Stoichiometric Multipliers (Factors)

The table is intended above all for calculations connected with analytical determinations by gravimetric methods.

When the content of a component is being determined in some

material, two cases are possible.

1. The unknown component is weighed in the form in which it is desirable to express its content in the substance being analysed; for example, in determining the Cu content in bronze, copper is separated by electrolysis and weighed as such, and in another case, SiO2 from the mineral is weighed in the form of SiO₂, whose form usually expresses the unknown component is calculated here cases, the percentage of the unknown component is calculated by the simple formula

$$x = \frac{a \times 100}{g} \%$$

where a = mass of the separated component;

g = weighed portion of a substance taken for analysis (a and

g are expressed in the same mass units).

For calculation, two logarithms must be found without using Table 7. 2. The unknown component is weighed in a form that is different me the one in which it is desired. from the one in which it is desirable to express the result of the analysis; for example, the determination of P is completed by weighing a calcined precipitate of Ma.P.O. or in detacompleted by weighing a calcined precipitate of Ma.P.O. or in detacompleted by weighing a calcined precipitate of Ma.P.O. or in detacompleted by weighing a calcined precipitate of Ma.P.O. or in detacompleted by weighing a calcined precipitate of Ma.P.O. or in detacompleted by weighing a calcined precipitate of Ma.P.O. or in detacompleted by weighing a calcined precipitate of Ma.P.O. or in detacompleted by weighing a calcined precipitate of Ma.P.O. or in detacompleted by weighing a calcined precipitate of Ma.P.O. or in detacompleted by weighing a calcined precipitate of Ma.P.O. or in detacompleted recipitate of Ma.P.O. or in detacomplete precipitate of Ma.P.O. or in detacomplete precipitate of Ma.P.O. or in detacomplete precipitate of Ma.P.O. or in detacomplete precipitate precipit ed precipitate of Mg₂P₂O₇ or, in determining Si in steel, the analysis is completed likewise by weighing SiO₂, as in the case of analysing the mineral, but the result must be SiO₂, as in the case of analysing the mineral, but the result must be expressed in the percentage of the element (Si). Sometimes the mineral present in the percentage of the element (Si). Sometimes, the weighed substance does not contain the element being determined. the element being determined. Thus, in determining N in ammonium salt. salt, ammonium is occasionally precipitated in the form of (NH₄)₂PtCl₈ which is then calcined; Pt obtained is weighed. The content of Pt is used to calculate the content of Pt is used to calculate the percentage of N in the salt being

In all these cases it is obviously necessary to calculate the amount of the unknown component to which the found mass of the weighed substance (a) correspond. substance (a) corresponds. Therefore, in determining Si, mass a must be divided by the malacular transfer in determining Si, mass a must be the be divided by the molecular weight of SiO₂ and multiplied by the

atomic weight of Si, i.e., $\frac{a \text{ Si}}{\text{SiO}_2}$; in determining P, the found mass a must be divided by the molecular weight of Mg₂P₂O₇ and multiplied by the double atomic weight of P (since the Mg₂P₂O₇ molecule con-

tains 2P), i.e., $\frac{a2P}{Mg_2P_2O_7}$; in determining N, the found mass a must be divided by the atomic weight of Pt and multiplied by the double atomic weight of N, i.e., $\frac{a \, 2N}{Pt}$, since in the (NH₄)₂PtCl₆ compound, two atoms of N combine with one atom of Pt. All the values of these fractions, i.e., $\frac{Si}{SiO_2}$, $\frac{2P}{Mg_2P_2O_7}$, $\frac{2N}{Pt}$, etc., and their logarithms, are given in Table 7, where they are called multipliers and designated by the latter of the state of by the letter f (they are also called factors, conversion factors, chemical multipliers). Thus, the content of the component being determined in the weighed substance will be af, and its percentage in the material being analysed will be:

 $x = \frac{af \times 100}{g} \%$

Thus, the calculation is performed by finding three logarithms (one from Table 7, and two from the common logarithm table), adding

two of them and subtracting the third one.

Since the operation of addition and subtraction cannot be performed in one column, it is necessary to learn how to quickly find its complement to unity by logarithm. Then, the entire operation consists in adding three mantissas: $\log x = \log a + \log f + (1 - \log g)$. The characteristics and the whole number $2(\log 100 = 2)$ are not taken into account. When the operation is completed and the number x is found by is found by its logarithm, it is easy to find the proper place of the decimal point in it, since it is always known whether the material being analysed contains, say, 8.3 or 83 or 0.83 per cent of the component being determined.

To find the complement of log g to unity, the last figure of the mantissa is subtracted from 10, and the remaining figures are sub-tracted from 9; for example, if the mantissa of log g is 34 906, its

complement to unity is 65 094.

Examples of Calculating the Results of Gravimetric, Analytical Determinations

Example 1. To determine Cu in brass, a portion of a shaving g weighing 1.1238 g is taken. The mass of a pure platinum electrode is 12.4826 and the control of the control o

is 12.4826 g; the mass of the same electrode coated with deposited Cu is 13.2965 g after drying. Find the percentage of Cu in the alloy. The mass of deposited Cu a=43.2965 g -12.4826 g =0.8139 g. The unknown percentage of Cu is $x=\frac{0.8139\times100}{1.1238}$ %. We find the the logarithms in Table 58 (p. 448) and write down the mantissas without the characteristics: 91 057

05 069 $\log x = 85\ 988;\ x = 72.42\%$

It is easy to see from the calculating formula that the final result will have two digits before the decimal point. In working out this example, we did not have to use the multipliers of Table 7, since the component of brass (Cu) being determined was weighed in the form

of metal.

Example 2. To determine Mg in limestone, a portion weighing 1.2456 g is taken. After SiO₂, Fe, Al and Ca are separated, Mg is precipitated in the form of MgNH₄PO₄ which by calcination is converted to $Mg_2P_2O_7$; the mass of the calcined precipitate a=0.0551 g. Find the percentage of magnesium in the limestone.

We find in the common logarithm table: $\log g = \log 1.2456 =$ = 09 540; $\log a = \log 0.0551 = 74$ 115. As in the preceding example,

we find only the mantissas.

In Table 7 we find Mg in the first column, Mg2P2O7 in the next column, and then on the same line the value of multiplier f equal to 0.2184, and log f equal to 33 930. Now we add:

The Mg content is 0.966 or 0.97%.

Since in the mass of the calcined precipitate weighing 0.0551 g, the maximum absolute error is ±0.0002 g (an inaccuracy of ordinary weighings on an analytical balance), which is 0.4% of the relative error, the same maximum relative error will be also in the final result (rule 4, p. 11), i.e., the answer will be 0.966 ± 0.004%. We see that the answer must not have more than three figures after the decimal point, since the third figure is already dubious. However, considering that during the analysis there may be other sources of errors besides the inaccuracy in weighing, it is expedient to round the result obtained

Table 14

Calculation of the Results of Volumetric-Analytical

In finding the results of volumetric-analytical determinations, unnecessary and intricate calculations are often performed. For example, in calculating the example, in calculating the amount of Fe titrated with the KMnO₄ solution, the amount of KMnO₄ that has reacted is calculated at first, and then the stoichiometer that has reacted is calculated at first, and then the stoichiometric ratio (1 mole of KMnO₄: 5 moles of Fe²⁺) is used to determine the stoichiometric ratio (1 mole of KMnO₄: 5 moles of Fe2+) is used to determine the Fe content. This is an intricate way of calculation, and therefore the Fe content. of calculation, and therefore it is unacceptable. To simplify similar calculations the content of the content o calculations the concentrations of solutions are expressed in normalities.

The normality or the normal concentration of a solution is the other of gram-equivalents of number of gram-equivalents of a solute in one litre of the solution or the number of millioners of a solute in one litre of the solution. or the number of milligram equivalents in one millilitre of the solution.

Chemical equivalent in one millilitre of the solution.

Chemical equivalent is a term applied to the active part of an atom or a molecule which:

(a) in neutralization reactions corresponds to one hydrogen ion H+

or one hydroxyl ion OH- that forms water.

For example, in the reaction H₃PO₄ + 2NaOH = Na₂HPO₄ + + 2H₂O₄, two ions of H+ and two ions of OH- form two molecules of H2O. It follows that there are 1/2 molecule of H3PO4 and one molecule (2NaOH) of caustic soda per one ion of H+ or OH-. These values

are their equivalents; (b) in oxidation-reduction reactions corresponds to one electron that a molecule or an ion of a substance accepts or gives off in a given

reaction.

For example, KMnO₄ reacts as an oxidizing agent in an acid medium according to the equation:

$$MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$$

It follows that there is 1/5MnO₄ or 1/5KMnO₄ per electron, which are equivalents. Oxalic acid H2C2O4 reacts as a reducing agent according to the equation

$$C_2O_4^{2-} - 2e \rightarrow 2CO_2$$

it follows that there is 1/2C₂O₄²-, or 1/2H₂C₂O₄, or 1/2H₂C₂O₄·2H₂O

per one electron; these values are the equivalents;

(c) in precipitation and complexing reactions corresponds to one ion of a univalent metal, 1/2 ion of a bivalent metal, and so forth, that form a precipitate or a complex compound. Thus, in titrating cyanide with silver salt according to Mohr:

Ag+ +
$$CN$$
- = AgCN or $AgNO_3$ + KCN = $AgCN$ + KNO_3

the equivalent of KCN is equal to one molecule, and in titrating the same cyanide according to Deniges:

Ag⁺ +
$$2\text{CN}^-$$
 = Ag(CN)₂ or AgNO₃ + 2KCN = KAg(CN)₂+KNO₃

the equivalent of KCN is equal to two molecules.

From the above examples, we see that the chemical equivalent of a substance is not a constant number, but depends on the reaction in

Gram-equivalent (or milligram-equivalent) weight of an element which the substance participates. or compound is its equivalent weight expressed in grams (or milli-

If the concentration (titre) of a titrating solution (sometimes grams). called a standard solution) is expressed by its normality N_s , and E_s is its analysis of the solution will contain is its equivalent weight, every millilitre of the solution will contain $N_s E_s$ mg of the titrating substance. Having used V ml of the solution in the titration, we introduced $V N_s E_s$ mg of the titrating substance into the resulting substance into the resulting substance. into the reaction. Since a reaction occurs always between the quantities of the substances proportional to their equivalents, the quantity of the titrated substance (being determined) will be VN_sE_x mg, where E_x is the equivalent weight of the substance being determined. It follows that for calculations, it is necessary to know only the normality of the titrating solution N_s and the equivalent weight E_x of the substance being determined. The latter can be found in Table 14.

The percentage (x) of the substance being determined in the weighed portion (g) is calculated by the formula:

$$x = \frac{VN_sE_x \times 100}{g} \% \text{ or } \frac{VN_sE_x}{g' \cdot 10} \%$$

where g is expressed in mg, and g' in grams.

A. Determination of the Normality of a Titrant (Finding of the Titre)

In establishing the normality of a solution, a certain amount of a starting substance gs is weighed. The weighed portion is dissolved and the solution obtained is titrated with the solution whose normality (N_x) is to be determined. Suppose V ml is used in titration. Then

$$N_x = \frac{g_s}{VE_s}$$

where E_s is the equivalent weight of the starting substance which can be found in Table 14; the value of g_s is expressed in mg.

The weighed portion of the substance is dissolved in a suitable solvent (usually water) in a volume g_s . solvent (usually water) in a volumetric flask, diluted with it to volume $(V_1 \text{ ml})$, and a certain volume $(V_2 \text{ ml})$ is taken for the titration with

$$N_x = \frac{g_s V_2}{V_1 V E_s}$$

Example 1. A portion of pure sodium oxalate Na₂C₂O₄ dried at 105-110 °C weighing 0.2712 g is dissolved in water. On adding H₂SO₄, the solution is titrated with 30 °C mlocal in water. the solution is titrated with 39.88 ml of the KMnO, solution. Calculate In Table 14, we find:

$$E_{\text{Na}_2\text{C}_2\text{O}_4} = 67~000;~\log E_s = 82~607 \\ \log g_s = \log 271.2 = 43~329 \\ 1 - \log V = 1 - \log 39.88 = 39~924 \\ 1 - \log E_s = 1 - \log 67~000 = 17~393 \\ \log N_s = 00.848$$

$$\log N_x = 00 646; N_x = 0.1015$$

If the normality of a solution (N_1) is determined according to another solution of known normality (N_2) , then V_1 ml of the former used in the titration. Then

$$V_1 N_1 = V_2 N_2 N_1 = N_2 \frac{V_2}{V_4}$$

Example 2. The normality of the NaOH solution (N_1) is established ording to 0.09854N HCl solution and of N_1 is established according to 0.09854N HCl solution. For the titration of 20.00 ml of the former, 21.12 ml of the lattern. For the titration of 20.00 ml of the former, 21.12 ml of the latter are used. Calculate the normality of the NaOH solution

$$N_1 = \frac{0.09854 \times 21.12}{20.00}$$

$$\log 0.09854 = 99\ 362$$

$$\log 21.12 = 32\ 469$$

$$1 - \log 20.00 = 69\ 897$$

$$\log N_1 = 01\ 728;\ N_1 = 0.1041$$

In practice, the concentration of the titrant $(T_{s/x})$, titre of the solution according to the substance being determined) is very often expressed in the amount (in mg or g) of the substance being determined that titrates 1 ml of the T_x solution. Knowing the normality of the solution, it is easy to find its titre by the following formula relative to any substance being determined: $T_{s/x} = N_s E_x$ (E_x can be found in Table 14). For example, the titre of 0.1023N KMnO₄ solution relative to iron is $T_{\text{MnO}_4^-/\text{Fe}} = N_s E_{\text{Fe}} = 0.1023 \times 55.847$ mg/ml; its titre relative to iron oxide is $T_{\text{MnO}_4^-/\text{Fe}_2\text{O}_3} = N_s E_{\text{Fe}_2\text{O}_3} = 0.1023 \times 79.846$, etc. The percentage of the substance being determined is

$$x = \frac{VN_sE_x \times 100}{g} = \frac{VT_{s/x} \times 100}{g} \%$$

where g and $T_{s/x}$ are expressed in the same units.

If a titre of a solution relative to a substance is known and if it is necessary to find its normality or titre relative to another substance, the following formulas can be used:

$$N = \frac{T_a}{E_a} = \frac{T_b}{E_b} = \dots = \frac{T_n}{E_n}$$

hence

$$T_b = T \frac{T_a}{E_a} E_b = NE_b = \dots$$
; $T_n = \frac{T_a}{E_a} E_n = NE_n$

Example 3. The titre of the KMnO₄ solution relative to Fe is 0.005483 g/ml. Find the normality of this solution and its titre relative to Cr.

$$N = \frac{T_{\rm MnO_4^-/Fe}}{E_{\rm Fe}} \; ; \quad \log T_{\rm MnO_4^-/Fe} = \log 0.005483 = 73\;902$$

$$\underline{1 - \log E_{\rm Fe} = 1 - \log 55.847 = 25\;300}_{\rm log\;N} = 99\;202$$

$$N = 0.09818$$

$$T_{\mathrm{MnO_{\overline{4}}/Cr}} = \frac{T_{\mathrm{MnO_{\overline{4}}/Fe}} E_{\mathrm{Cr}}}{E_{\mathrm{Fe}}} \, ; \label{eq:mno_fermion}$$

$$\begin{split} \log T_{\rm MnO_{\overline{4}}/Fe} = & 1 - \log 55.847 = 73\,902 \\ 1 - \log E_{\rm Fe} = & 1 - \log 55.85 = 25\,300 \\ \frac{\log E_{\rm Cr} = \log 47.332 = 23\,885}{\log T_{\rm MnO_{\overline{4}}/Cr} = 23\,087} \\ T_{\rm MnO_{\overline{4}}/Cr} = & 0.001702\,\mathrm{g} \end{split}$$

B. Determination of the Percentage of the Unknown Component in a Test

Example 1. To determine the Na₂CO₃ content in a soda meit, a portion of it weighing 1.100 g is dissolved in water and the solution obtained is titrated with 0.5012N H₂SO₄ solution in the presence of a bromophenol blue indicator. What is the percentage of Na₂CO₃ if 35.00 ml of the acid are used in the titration?

Using Table 14 (see A, Acid-Base Titration), we find that $E_{Na_2CO_3}$ with a bromophenol blue indicator, is 52.995, $\log E = 72423$.

$$\begin{array}{c} \log V = \log 35.00 = 54\ 407 \\ \log N_s = \log 0.5012 = 70\ 001 \\ \log E_x = \log 52.995 = 72\ 423 \\ 1 - \log g = 1 - \log 1.100 = 95\ 861 \end{array}$$

 $\log x = 92692$; x = 84.51%

Example 2. Using the same data as in Example 1, find the percentage of CO2 in the soda melt.

The solution remains the same, but instead of $E_{\text{Na}_2\text{CO}_3}$, we find $E_{\text{CO}_2} = 22.005$; log E = 34 252 in Table 14.

Summing up:

$$\log V = 54 \ 407$$

$$\log N_s = 69 \ 897$$

$$\log E_x = 34 \ 252$$

$$1 - \log g = 95 \ 861$$

$$\log x = 54 \ 417; \ x = 35.01\%$$

Example 3. Calculate the percentage of Fe in a sample of iron ore if on dissolving a portion of the ore weighing 0.7872 g and reducing Fe by metallic Zn, 47.24 ml of 0.1105N KMnO₄ solution were used

From Table 14 (see B, Oxidation-Reduction Methods) we have: $E_{\text{Fe}} = 55.85$; log E = 74.702. Addition gives

$$\log V = \log 47.24 = 67 \text{ 434}$$

$$\log N_s = \log 0.1105 = 04 \text{ 336}$$

$$\log E_x = \log 55.847 = 74 \text{ 700}$$

$$1 - \log g = 1 - \log 0.7872 = 10 \text{ 394}$$

 $\log x = 56\,858; x = 37.03\%$

Example 4. To determine Mn in steel by the bismuthate method, a portion weighing 1.1452 g is dissolved in HNO₃. In the solution obtained, Mn is oxidized with sodium bismuthate NaBiO₃ to HMnO₄. The latter is determined by the addition of 40.00 ml of 0.02842N solution of Mohr's salt and a back titration with 13.50 ml of 0.03012N KMnO₄ solution. Find the percentage of Mn in the solution.

Since the product VN gives the number of mg-equiv of any substance, it is expedient to perform the calculation by the following

formula:

$$x = \frac{(V_a N_a - V_b N_b) E_x \cdot 100}{g} \%$$

where V_a and N_a = volume and normality of the solution of Mohr's

and V_b and N_b = volume and normality of the KMnO₄ solution. In Table 14 we find that in determining manganess by the bismuthate method, $E_x = E_{\rm Mn} = 10.9876$; log $E_x = 04090$.

We have:

$$V_a N_a = 40.00 \times 0.02842 = 1.1368 \text{ mg-equiv} \\ V_b N_b = 13.50 \times 0.03012 = 0.4066 \text{ mg-equiv} \\ V_a N_a - V_b N_b = 1.1368 - 0.4066 = 0.7302 \text{ mg-equiv} \\ \log 0.7302 = 86 344 \\ \log E_{\text{Mn}} = 04 090 \\ 1 - \log 1.1452 = 94 110 \\ \log x = 84 544; \ x = 0.70\% \\ \end{bmatrix}$$

Example 5. How much of the KMnO₄ solution of the same concentration would be used in the titration of a portion weighing 1.1452 g of the same steel (see Example 4) if Mn was determined not by the bismuthate method, but by Volhard's method?

$$x = \frac{VN_s E_x \cdot 100}{g} \%$$

Here g is the weighed portion expressed in milligrams. In Table 14, we find that, when Mn is determined by Volhard's method, $E_{\rm Mn}$ is 16.4814, $\log E = 21$ 699.

$$0.70 = \frac{V \times 0.03012 \times 16.4814 \times 400}{1145.2}; \quad V = \frac{0.70 \times 1145.2}{0.03012 \times 16.4814 \times 100}$$

$$\log 0.70 = 84 510$$

$$\log 1145.2 = 05 889$$

$$1 - \log 0.03012 = 52 115$$

$$1 - \log 16.4814 = 78 301$$

$$\log V = 20 815; \quad V = 16.15 \text{ ml}$$

Table 16

Calculation of the Results of Gas and Gasometric Analyses

Here are examples of calculations made according to the formulas

given on p. 136.

Example 1. The volume of gas (V), measured over water, is 25.6 ml. The temperature of gas t = 22.8 °C. Barometer reading $P_t =$ =720.4 mm Hg. The temperature of air, measured near the barometer,

" = 22.4°C. Bring the volume of gas to standard conditions. First of all, the barometer reading is corrected. To bring it to 0°C, we should subtract t'/8 mm from it. Then, since the gas is collected over water, its pressure in the vessel is less than the pressure of the surrounding air by the value of P_B which is the water vapour pressure at $t=22.8\,^{\circ}\mathrm{C}$. This value must also be subtracted from the barometer reading.

In Table 16, in the "Water" column with t = 22 °C we have $P_{B_{11}}$ = 19.8 mm Hg, and with $t=23\,^{\circ}\text{C}$, $P_B=21.1$ mm Hg. The difference between them is 1.3 mm Hg. We find 0.8 of this difference: 0.8 \times 1.3 = 1.0 mm and add it to 19.8 mm Hg. It follows that P_B at 22.8 °C is 19.8 + 1.0 = 20.8 mm Hg.

Hence,

$$P_0 = 720.4 - \frac{22.4}{8} - 20.8 = 696.8 \text{ mm Hg}$$

The unknown volume of gas $V_0 = VF$. To find log F, we use section A.

We have:

t, °C
$$P_0 = 696 \text{ mm}$$
 Hg $P_0 = 696.8 \text{ mm}$ Hg $P_0 = 697 \text{$

The difference between 92 807 and 92 870 is 63. In the table of differences, we find 0.8 of this number and add it to 92 807, we obtain 92 857. The difference between 92 807 and 92 660 is 147. In the table of differences, we find 448 of differences, we find 148, which is the nearest number to it and of which 0.8 is 118.5, subtracting this number from 92 857 we get approxi-

$$\log V = 40 824$$

$$\log F = 92 739$$

$$\log V_0 = 33 563; V_0 = 21.66 \approx 21.7 \text{ ml}$$

It should be noted that in most analytical cases there is no need to make a correction for decimal fractions of a millimetre of pressure and decimal fractions of a degree of temperature: rounding the respective figures, we obtain results of sufficient accuracy. Thus, if we take $P_B=21.1$ mm Hg, the value corresponding to 23 °C, we would obtain $P_0=696.5\approx 697$ mm Hg. From Table 16,A, for t=23 °C and

 $P_0=697$ mm Hg we would have $\log F=92723$, and finally $V_0=21.65$ ml, which differs little from the preceding result. Example 2. What is the weight of 43.7 ml of NO, measured over 28.6% KOH solution at 17 °C and a barometer reading of 757 mm Hg? Suppose the temperature of mercury in the barometer is also 17 °C:

$$P_0 = 757 - \frac{17}{8} - 10.2 \approx 745 \text{ mm Hg}$$

The value of 10.2 mm Hg is found in Table 16,B (17 °C, KOH 28.6%).

The unknown mass is equal to $VF\rho$; we find log F in Table 16,A,

and log p in Table 16,C:

$$\log V = \log 43.7 = 64 048$$

$$\log F = 96 506$$

$$\log \rho = \log 1.3402 = 12 717$$

$$\log x = 73 271; x = 54.0 \text{ mg}$$

Example 3. From 1.200 g of commercial calcium carbide, 395 ml of acetylene (C_2H_2) is obtained at 17.5 °C and $P_t=755.3$ mm Hg (the pressure is measured at 16 °C). The gas is collected over a saturated NaCl solution. Calculate the percentage of CaC₂ in commercial carbide.

$$P_0 = 755.3 - \frac{16}{8} - 11.4 = 741.9 \text{ mm Hg}$$

The value of 11.4 is found in Table 16,B, interpolating between the numbers 11.0 and 11.7.

The unknown percentage is

$$x = \frac{VFf' \times 100}{g} \%$$

The value of F is found in Table 16,A, and f' in Table 16,D.

$$\log V = \log 395 = 59 660$$

$$\log F = 96 256$$

$$\log f' = \log 2.8877 = 46 055$$

$$1 - \log g = 1 - \log 1200 = 92 082$$

$$\log x = 94 053; x = 87.20\%$$

Example 4. In the reaction of an acid with 0.250 g of zinc dust, 79.6 ml of H₂ is evolved, the latter being measured over water at 19.5 ml of H₂ is evolved, the latter being ineasured over water at 20 °C and a pressure of 742 mm Hg (the temperature of mercury in the barometer is also 20 °C). Calculate the Zn content in the zinc dust.

$$P_0 = 742 - \frac{20}{8} - 17.5 = 722 \text{ mm Hg}$$

$$x = \frac{VFf' \cdot 100}{g} \%$$

$$\log V = \log 79.6 = 90 \ 091$$

$$\log F = 94 \ 696$$

$$\log f' = \log 2.9145 = 46 \ 456$$

$$1 - \log g = 1 - \log 250 = 60 \ 206$$

 $\log x = 91 \ 449; \ x = 82.13 \cong 82.1\%$

The final result must not have more than three significant figures, since only three significant figures contain the results of weighing and volumetric measurement.

In some instruments, gas burettes are calibrated in a way that they directly read the percentage of the substance being determined if the weighed portion is constant (usually 1 g or 0.5 g) and if the gas in the burette is at a definite temperature and pressure. But when the temperature and gas pressure do not coincide with those indicated on the burette, a corresponding recalculation must be made.

on the burette, a corresponding recalculation must be made.

Example 5. In determining C in steel by the combustion method in the O₂ current, the volume of CO₂ formed is measured with a gas burette of the Wirtz-Strölein instrument showing the percentage of C when the weighed portion of steel is 1000 g and when the temperature and gas pressure in the burette are 16 °C and 760 mm Hg. A portion of steel weighing 1000 g is taken; the temperature and gas pressure are 20 °C and 740 mm Hg. The burette reading is 0.52% G.

pressure are 20 °C and 740 mm Hg. The burette reading is 0.52% C. What is the real content of C in steel? In Table 16A, we find $\log F_{760,16}$ °C = 97 522; $\log F_{740,20}$ °C = 95 766. The first logarithm must be subtracted from the logarithm of the percentage of C found, and the second logarithm must be added to it:

The difference in the values of vapour pressure over the concentrated alkaline solution at different temperatures is neglected here. If the temperature of the measured gas deviates from 16 °C only by several degrees, the error arising from this is not over 0.01%.

Table 18

Densities and Concentrations of Solutions

In literature dealing with analytical chemistry, concentrations of acids and bases are expressed in different ways: (1) in terms of density (for example: "5 ml of hydrochloric acid with a density of 1.19 is added"); (2) in terms of the dilution of concentrated commercial acids [for example: "10 ml of diluted (1:9) sulphuric acid is added mercial sulphuric acid is diluted with nine volumes of concentrated comterms of the percentage of the reagent (for example: "2 ml of 25% solution.") and, finally, (4) in terms of the normality of the

An analyst has therefore to convert the concentrations in calculating reagents used in the reaction on the basis of the solutions whose concentrations are expressed in different ways, and so forth. The conversion tables serve the purpose. It is the easiest to perform stoichiometric calculations if the concentrations of reagents are expressed in their normalities. Therefore, the tables give the normal concentra-tions of acid and base solutions.

Here are a few examples concerning calculations with these tables. Example 1. In analysing tin bronze, nitric acid with a density of 1.2 g/cm3 is used to dissolve it. How can the acid be prepared from concentrated commercial nitric acid with a density of 1.4 g/cm³ without the aid of an areometer? The normality of nitric acid with a density of 1.200 is 6.273N (Table 18,A); it follows that one litre of it must contain 6.273 g-equiv. The normality of concentrated nitric acid with a density of 1.400 is 14.88N; one litre of it contains 14.88 g-equiv. The required quantity (6.273) of gram-equivalents of HNO₃ is contained in $\frac{6.273}{14.88} \times 1000 = 421.6$ ml of concentrated

nitric acid. Measuring out this volume and diluting it with water

to one litre, we obtain nitric acid whose density is 1.2.

Example 2. In the course of an analysis, 5 ml of diluted (1:4)

HNO₃ are added to a neutral solution and then neutralized with

ammonia. How many millilitres of concentrated (25%) ammonia solution will be used in the neutralization reaction?

The expression "diluted (1:4) nitric acid" implies that one volume of concentrated (25%) ammonia of concentrated nitric acid with a density of 1.400 is diluted with four volumes of water. The normality of concentrated acid with a density of 1.400 is 14.88N, and that of the diluted acid will apparently be 14.88: 5 = 2.98N. Five millilitres of this acid are added to the above of the same of ammonia to the solution being analysed; to neutralize it, 5 ml of ammonia solution of the same normality (2.98N) are apparently necessary. The normality of concentrated 25% ammonia solution is 13.32N

(Table 18,I). It follows that, to neutralize nitric acid, $\frac{3\times2.9}{13.32}$

= 1.12 ml of concentrated ammonia solution will be used. Example 3. A portion of rock weighing 1 g is melted in a platinum crucible with six times as much anhydrous Na₂CO₃. The melt is leached with water and oxidized with diluted (1:1) hydrochloric acid. How many millilitres of this acid must be added to completely neutralize Na₂CO₃ without the acid being too excessive?

6g of Na₂CO₃ contain
$$\frac{6}{1/2\text{Na}_2\text{CO}_3} = \frac{6}{52.9945}$$
 g-equiv

or

$$\frac{6000}{52.9945}$$
 = 113.23 mg-equiv

For neutralization, it is necessary to add the same quantity of milligram-equivalents of HCl. The normality of concentrated hydrochloric acid with a density of 1.190 is 12.50N, and that of diluted (1:1) acid is consequently 6.25N, i.e., 1 ml of the latter contains

6.25 mg-equiv of HCl. It follows that Na_2CO_3 is neutralized by $\frac{413.23}{6.25}$

= 18.12 ml of diluted (1:1) hydrochloric acid. If 20 ml of the acid are added, it would not be too excessive.

These examples show how much easier it is to perform calculations when concentrations of acids and bases are expressed in their normalities. Table 18 helps convert differently expressed concentrations. The reliability of the table is so great that its data can be used when preparing titrants of acids and alkalies according to density. The titre of the prepared solution must nevertheless be checked by a weighed portion of a parent substance. Here is an example of calculation when a titrating solution is being prepared.

Example 4. To prepare 1N HCl titrant, an acid available in the laboratory is taken, its density determined with an areometer is

equal to 1.082 g/cm3.

From Table 18,C we have: the acid with a density of 1.080 g/cm3 has a concentration of 4.878N and that with a density of 1.085 g/cm³, 5.192N. By interpolation, we obtain the following normality for a density of 1.082:

$$4.878 + \frac{2}{5}$$
 (5.192 – 4.878) = $4.878 + \frac{2}{5} \times 0.314 = 5.004$

It follows that one volume of the available acid must be diluted to 5.004 of the volume. For this purpose, we can measure out, for example, 200 ml of the acid with a density of 1.082, pour it into a one-litre volumetric flask, dilute it with water up to the volume and add another 0.8 ml of water (1:5.004 = 200:1000.8).

Table 19

Chief Acid-Base Indicators

For volumetric-analytical titrations (acidimetry-alkalimetry me thods), it is necessary to select indicators that change colour in the pH range as little as possible. Such indicators as azolitmin, which changes colour at pH values from 5.0 to 8.0, are not suitable at all for titration. Of little values from 5.0 to 8.0, are not suitable at hoth for titration. Of little use are also indicators whose colours of both forms lie in a spectrum too close to forms lie in a spectrum too close to one another, for example, indicators which change their colour from road to which change their colour from red to orange, from orange or orange red to vellow from blue right to do orange, from orange or orange. red to yellow, from blue-violet to blue, and so forth. In recent years, indicators which charply about to blue, and so forth. In recent years, indicators which sharply change their colours to spectrally opposite ones in very narrow pH limits have been synthesized; for example, nitrazine yellow, which changes its colour from yellow to blue-violet within pH 6.0-7.0, or quinoline blue, which is colourless at pH 7.0 and violet at pH 8.0. and violet at pH 8.0.

The main rule in selecting an indicator for volumetric-analytical erminations is that the title and indicator for volumetric-analytical determinations is that the titration index pT of an indicator must be as close as possible to the pH of th as close as possible to the pH of the solution at the end of titration, i.e., when the equivalence point is the pH when the equivalence point is reached. The titration index pT is the pH at which the observer can elected. The titration index pT is the pH at which the observer can clearly see the colour change and recognize titration as complete. This titration as complete. This is a conditional value which differs for different persons who perform titration. If the eye could easily detect the slightest change in colour, the pT would obviously coincide with the equivalence point. But since titration is usually completed at visible colour change, it can be assumed that, with dichromatic indicators, the pT is approximately at one-quarter of an interval from its corresponding limit.* With monochromatic indicators (phenolphthalein, nitrophenols), the pT almost coincides with the beginning of the appearance of colour, provided that the indicator is used in the dilution at which its colour change was determined.

For analyses of great accuracy, it is always necessary to separately prepare a buffer solution with a pH which coincides with the pH of the equivalence point and add the indicator to it, and then titrate the solution being analysed until its colour coincides with the colour

of the prepared reference solution.

When a weak acid is titrated with caustic soda, at the end of the titration a solution of sodium salt of the acid is formed which, as a result of the hydrolysis of the salt, has an alkaline reaction. Knowing the ionization constant of the acid, the pH of the solution formed can be determined and, in accordance with this pH, a suitable indicator can be selected. This is also true of acid titration of a weak base solution, when a salt is formed which has an acid reaction in the solution as a result of hydrolysis.

In hydrochloric acid titration of a salt solution of an alkali metal and weak acid (for example, Na2CO3), the solution will contain, at the end of the titration, neutral chloride of the alkali metal and free weak acid, consequently having an acid reaction. Knowing the ionization constant of this acid, we can calculate the pH of its diluted solution obtained at the end of titration and select a suitable indicator.

When a strong acid is titrated with a strong alkali solution (or vice versa), a solution of neutral non-hydrolyzing salt with the pH of about 7 is obtained. But there is no need to use an indicator which changes its colour at pil close to 7, since the smallest drop of the titrant sharply displaces the pli to an acid (in acid titration) or an alkaline region (in alkali titration). In such titrations, any indicator can be used; nevertheless, when titration is performed with a greatly diluted solution of acid or alkali (for example, 0.01N) whose drop contains a very small amount of the titrant, the indicators showing colour change in the pH range of 5 to 9 should be used.

Table 21

Colorimetric Determination of the pH of Solutions

For the colorimetric determination of the pH of solutions, indicators which change colour within a small pH range are of little use. Most useful are dichromatic indicators which, within a sufficiently large pH range, show noticeable changes in shades when the pH changes by 0.1-0.2. Use is also made of monochromatic indicators whose colour becomes, as the pH changes, more or less intense while retaining

^{*} Some analysts believe that the pT is in the middle of the interval of the indicator colour change.

^{31 - 1845}

shade. In both cases, the colour is determined that the indicator assumes in the test solution and in a set of standard buffer solutions having different pH values preliminarily found by the electrometric method. The pH of the test solution is equal to the pH of the buffer solution whose colour is the closest to that of the test solution.

In the colorimetric determination of the pH, account must be taken of the following possible sources of errors which should also be

considered when selecting an indicator.

(a) Influence of foreign salts. Let us denote the ionization constant

of an indicator as K_{Ind} . Then, $K_{\mathrm{Ind}} = \frac{a_{\mathrm{H}^+} a_{\mathrm{I}^-}}{a_{\mathrm{HI}}}$, where a_{I^-} is the activity of the indicator anions formed as a result of dissociation, a_{HI} is the activity of its undissociated part. In the example, the indicator is a weak acid, and if the indicator is a base, further reasonings do not change in the main. Having replaced the activities by the products of concentrations and activity coefficients, we obtain:

$$\frac{[HI] f_0}{[I^-] f_1} = \frac{a_{H^+}}{K_{\text{ind}}}$$

where f_0 is the activity coefficient of the coloured or colourless undissociated part of the indicator; f_1 is the activity coefficient of the coloured anion; the corresponding concentrations are in square brackets.

The colour of the solution depends on the ratio $\frac{[HI]}{[I^-]}$, and therefore the solutions having the same ratio will have the same colour. But will the solutions having the same ratio $\frac{[HI]}{|I^-|}$ have the same pH? Let us present the above expression in the following form:

$$\frac{[HI]}{[I^-]} = \frac{a_{H+}f_1}{K_{\text{ind}}f_0}$$

If the solutions have different ionic strength, the values of f_1 will also differ (and, to a very small extent, those of f_0 , which can be neglected). With increasing ionic strength of a solution, the activity coefficients of ions decrease and, consequently, so does f_1 . When the colour of the solution does not change, i.e., it has the same ratio [HI], the value of a_{H^+} must accordingly be greater: the solution will yield the same colour with the indicator, being more acidic. Conversely, with decreasing ionic strength, f_1 increases, and a_{H^+} must accordingly be less when the solution has the same colour. The pH value of buffer solutions is determined electrometrically usually at the ionic strength of 0.1. If the ionic strength of a solution being analysed is greater than 0.1 (owing to the presence of a large amount of salts), the solution will have the colour which corresponds to that of the buffer solution with higher hydrogen-ion concentration (lower pH). Consequently, it is necessary to make a correction which has a negative value in this case. If the ionic strength of a solution being

analysed is less than 0.1 (the solution contains a small amount of salts), then with the same colour that the indicator has in the buffer solution, the solution will be less acidic (higher pH) and the correction will have a positive sign. This correction is called salt correction. It should be noted that this correction depends not only on the ionic strength of a solution, but also on individual properties of the indicator and the nature of ions that are present. If use is made of the indicators whose acidic form is a single-charge anion and whose alkaline form is a double-charge anion (phenolphthalein, sulphophthaleins), the correction will be greater than when use is made of the indicators whose acidic form is an undissociated molecule and its alkaline form is a single-charge anion (mononitrophenols). Dimethylaminoazobenzene-sulphonic acid (methyl orange) and dimethylaminoazobenzene-ocarboxylic acid (methyl red) cause a very small salt error owing to their amphoteric nature, and therefore they are mainly used in determining the pH of solutions having a variable content of salts. If the ionic strength of a solution is greater than 0.1, the correction value is considerably influenced by the nature of salt ions (the size of ion radii) in a solution.

(b) Influence of the buffer capacity of a solution. Indicators used to determine the pH of solutions are themselves acids or bases, and if the solution being analysed has low buffer capacity (distilled water, solutions of neutral salts in distilled water, solutions of very weak acids or bases, etc.), the indicator can sharply change its pH. If, for example, 0.1 ml of 0.04% methyl red solution is added to 10 ml of distilled water (pH 7), then even this small quantity of the indicator $(K_{1nd} = 1 \times 10^{-5})$ will change the pH of the water from 7.0 to 5.0.

In determining the pH of such low buffer capacity solutions, their pH will not change if we add to the solution being analysed the indicator solution having the same pH. According to Fausette and Acri,* such solutions of indicators are called isohydric. It has been proved that the pH of a solution of low buffer capacity does not change even that the pH of an isohydric solution of an indicator is added to it. This underlies the method of determining the pH of such solutions. A set of solutions of an indicator having different pH values is prepared and the solution being analysed is added to every one of them. The indicator solution that does not change its colour is isohydric relative to the solution being analysed.

(c) Protein error. A number of proteins greatly affect indicators, making the determination of the pH in their presence impossible. The influence of proteins is specific and depends on the nature of the protein and of the indicator. Therefore, in the presence of proteins, the results of the colorimetric determination of the pH cannot be relied on, having to be verified by the electrometric method.

(d) Other sources of errors. In the presence of colloids and sometimes of coarser dispersed particles, an indicator can change colour as a result of one of its forms ("acidic" or "alkaline") being sorbed on the surface of particles. The ionization constant of an indicator changes also at the air-liquid interface. This explains the frequently observed phenomenon when, in shaking a solution of an indicator, the colour

^{*} Ind. Eng. Chem., An. Ed., 2,78 (1930).

of the foam being formed sharply differs from the colour of the solution. When the solution contains finely-dispersed particles of another phase, the result of the determination of the pH must be verified by using two different indicators (acidic and basic) or comparing them with the results of the electrometric determination.

Indicators sharply change colour at pH constant if a non-aqueous solvent-alcohol, acetone, etc.-is added to a solution, and also when

the temperature changes.

Table 40

Standard Oxidizing Potentials Relative to the Potential of a Standard Hydrogen Electrode at 25 °C

If a plate of noble metal is immersed in a solution which contains an oxidizing agent and the product of its reduction, there will be a difference of potentials between the plate and the solution, which is called the oxidizing potential of a given system.

1. For the system

oxidizing agent + ne = reducing agent

the oxidizing potential relative to the standard hydrogen potential is expressed by the formula

$$E = E^0 + \frac{RT}{nF} \ln \frac{a_{\text{OX}}}{a_{\text{Red}}}$$

(where R = gas constant, T = absolute temperature of a solution,n = number of electrons which in the given system make the transition from a reducing agent to an oxidizing agent, F = faraday constant = 96,500 coulombs, a_{Ox} and a_{Red} = ion activities of exidizing and reducing agents in a solution). Having replaced natural logarithms with common logarithms and having substituted all values of constants in the equation, we obtain for t = 25 °C:

$$E = E^0 + \frac{0.0591}{n} \log \frac{a_{\text{OX}}}{a_{\text{Red}}}$$

If $a_{Ox} = a_{Red}$, then $E = E^0$. The standard potential is the potential of the electrode immersed in a solution which contains both forms (oxidized and reduced) having equal activities.

2. If an oxidizing agent is reduced with the participation of hydrogen ions

$$Ox + mH^+ + ne = Red + qH_2O$$

then

$$E = E0 + \frac{RT}{nF} \ln \frac{a_{\text{Ox}} a_{\text{H}^+}^m}{a_{\text{Red}}}$$

In this case, the standard potential is the potential of the electrode immersed in a solution containing both forms (oxidized and reduced) having equal activities, and also, hydrogen ions whose activity is equal

to unity. This applies, for example, to such systems as

$$MnO_4^- + 8H^+ + 5e \Rightarrow Mn^{2+} + 4H_0O$$

or

$$VO_3^- + 4H^+ + e \Rightarrow VO^{2+} + 2H_0O$$

3. When the potential between the metal and the solution of its salt is being determined, i.e., of the systems $Me^{n+} + ne \Rightarrow Me$ (for example, $Zn^{2+} + 2e \Rightarrow Zn$), and the activity of the solid phase is taken as unity, then

$$E = E^0 + \frac{RT}{nF} \ln a_{\text{Me}^{n+}}$$

In this case, $E = E^0$, when $a_{Me} n^+ = 1$. Here, the standard potential is the potential between the metal and the solution of its salt.

when the activity of the metal ions equals unity.

4. When one or the two forms (oxidized and reduced) are sparingly soluble solids or complex compounds, the number of ions formed in the solution will be very insignificant. Let us take, for example, the system

$$AgCl + e \Rightarrow Ag + Cl$$

For it

$$E_{\rm Ag^+,\ Ag} = E_{\rm Ag^+,\ Ag}^0 + \frac{RT}{F} \ln a_{\rm Ag^+}$$

The value of aAg+, the activity of silver ions in the solution, is very small and depends on the solubility product of silver chloride SPAgCl and on the activity of chloride-ions in the solution:

$$a_{Ag^+} = SP_{AgCl/a_{Cl}}$$

If the activity of chloride ions equals unity, the right-hand part of the equation for the potential will assume the form:

$$E_{\text{Ag+, Ag}}^{0} + \frac{RT}{F} \ln \text{SP}_{\text{AgCl}} = E_{\text{AgCl, Ag}}^{0'}$$

The quantity $E_{\text{AgCl, Ag}}^{o'}$ is called the *standard* ("observed") potential of AgCl/Ag system. It can be defined as the potential which is formed in the system containing solids or complex compounds in which all ions participating in the process, except elementary ions that are separated by precipitates or complexes, have an activity equal to unity.

The aforementioned equation can be used to calculate the solubility products of sparingly soluble substances by the measured values

of the oxidizing potentials.

Here is another example of the formation of a complex compound.

For the system

$$Ag(CN)_2 + e \Rightarrow Ag + 2CN$$

we also have

$$E_{Ag^+, Ag} = E_{Ag^+, Ag}^0 + \frac{RT}{F} \ln a_{Ag^+}$$

The value of a_{Ag^+} depends on the stability of the complex $Ag(CN)_2$ and is determined by the dissociation constant $K_{Ag(CN)_2}$

= $\frac{a_{\mathrm{Ag}+}a_{\mathrm{CN}^{-}}^{2}}{2}$. If the solution being examined contains free ions CNand complex ions Ag(CN)2 in concentrations whereby their activities

equal unity, then

$$K_{Ag(CN)_2} = a_{Ag^+}$$

and

$$E_{\mathrm{Ag+,\ Ag}}^{0} + \frac{RT}{F} \ln K_{\mathrm{Ag(CN)}\overline{2}} = E_{\mathrm{Ag(CN)}\overline{2}}^{0'}, \mathrm{Ag}$$

Similar formulas are used to find the dissociation constants of complexes by the data of potentiometric determinations. The table gives several such standard ("observed") potentials of the systems containing precipitates and soluble complex compounds.

5. If, in the aforementioned oxidation-reduction system, one of the forms is a gaseous substance, the activity of this substance will be determined by gas pressure, and the standard potential of the gas electrode can be defined as the potential of the electrode in which this gas is under a pressure of 1 atm; the ions which are formed when this gas is reduced (or oxidized) have an activity of unity in the solu-

The equation of the potential $E = E^0 + \frac{RT}{nF} \ln \frac{a_{\text{OX}}}{a_{\text{Red}}}$ includes ion activities of oxidized and reduced forms, and not concentrations. It follows that, when the concentrations of ions of both forms are the same, the values of potentials in two solutions can nevertheless differ if the salt composition of these solutions and the ionic strength related to it are different. The potential of, say, the system $Ce^{4+} + e \Rightarrow Ce^{3+}$ is

$$\begin{split} E_{\text{Ce4+, Ce3+}} &= E_{\text{Ce4+, Ce3+}}^0 + \frac{RT}{F} \ln \frac{a_{\text{Ce4+}}}{a_{\text{Ce3+}}} = \\ &= E_{\text{Ce4+, Ce3+}}^0 + \frac{RT}{F} \ln \frac{[\text{Ce4+}]}{[\text{Ce3+}]} \frac{f_4}{f_3} \end{split}$$

where f_4 and f_3 are the activity coefficients of four- and three-charge Ce ions. As the ionic strength of a solution increases, f_4 will decrease considerably faster than f_3 and, consequently, the value of E will triple in calculations and reasonings connected with exceptances. tials in calculations and reasonings connected with various problems of analytical chemistry, where solutions with a high ionic strength

The table gives the potentials of various elements having different valence; the potentials of the direct transition from the highest valence to the lowest one (for example, V^V_V^{II}), and several potentials of the stage-by-stage transition (for example, V^V_V^{IV}, V^{IV}_V^{III}, V^{III}_V^{III}). These potentials are interconnected by the so-called *Luther rule* which states that if an element exists in three degrees of valence m, n and p, and m > n > p, then:

and
$$m > n > p$$
, then:
 $(m-p) E_{m, p}^0 = (m-n) E_{m, n}^0 + (n-p) E_{n, p}^0$

where $E_{m, p}^{0}$, $E_{m, n}^{0}$ and $E_{n, p}^{0}$ are the standard potentials of transitions from valence m to valence p, from m to n and from n to p. For example, Fe exists in the form of ions Fe³⁺ (valence of 3) and Fe²⁺ (valence of 3), and in the form of metal (valence of 0). (valence of 2), and in the form of metal (valence of 0). According to Luther's rule

$$3E_{\text{Fe3+, Fe}}^{0} = E_{\text{Fe3+, Fe2+}}^{0} + 2E_{\text{Fe2+, Fe}}^{0}$$

A number of potentials which are very difficult or even impossible to determine experimentally were calculated by Luther's formula.

Acetic acid 332 β-Aminonaphthalide of thioglydensity and concentration colic acid 394 of solutions 169, 174 Ammonia Acetone 332 density and concentration of Acetylacetone 322 solutions 172, 174 Acid Alizarin Red V 226 use as a reagent 324, Acid Chrome Black Special 222, Ammonium (sodium) molybdate 321, 328, 329 228, 230, 326 Acid Chrome Blue K 222 Ammonium rhodanide 324, 327 Acid Chrome Dark Green G 222. Amperometric titration 408 with two indicator electro-239 Acid-base titration, calculation des 426 of results 123 Amyl acetate 332 Acidimetry Amyl alcohol 332 calculation of results 123 Analytical cation groups 30 Analytical multipliers 70, 460 indicators 472 Acids Aniline 332 density and concentration Anthranilic acid 362 of solutions 160, 174 Antilogarithms 456 ionization constants 274 APANS 248, 396 Acridine 209 Arsasene 362 Acridine orange base 212 Arsenazo 321 Activity Arsenazo I 224, 331, 362 Arsenazo III 323, 325, 328, 331, hydrogen ions, recalculated for the pH 252 362 ion coefficients 117 Atomic weights 17, 31 upon a high ionic strength Aurin 189 of a solution 120 Alberone 223, 360 Aurine tricarboxylic acid, ammonia salt 362 Alizarin 360 Avoirdupois weight 446 Alizarin Blue BS 196 Azo-azoxy BN 323, 364 Alizarin Red S 184, 194, 216, 222, 360 Barbituric acid 323 Alizarin S 184, 325, 331, 360 Bases, ionization constants 274, Alizarin Yellow GG 195 Alizarin Yellow R 181, 195, 203 Bathophenanthroline 364 Alizarin Yellow RS 195 Bengali pink 216 Alkalimetry Benzene 332 calculation of results 123 Benzene azodiphenylamine 178 indicators 472 Benzene-2'-arsonic acid-(1'-azo-Aluminon 321, 362 2)-benzene-2"-arsonic acid-(1"o-Aminobenzoic acid 362 azo-7)-1,8-dioxynaphthalenep-Aminodimethylamine 329 3,6-disulphonic acid 362

Butanol 332 acid-(1'-Benzene-2'-arsonic Butter yellow 182 azo-2)-1,8-dioxynaphthalene-3,6-disulphonic acid, disodium Butyl acetate 332 Butyl cellosolve 332 salt 362 Butylamine 332 Benzene-2'-arsonic acid-(1'-azo-1)-2-hydroxynaphthalene-3,6-Cadion 323, 366 disulphonic acid, trisodium Cadion C 366 salt 396 Calcein 226, 232 Benzidine 224, 323 Calces 226, 242 Calcion 226 Benzoflavin 204 α-Benzoin oxime 324, 364 Benzopurpurine 4B 181, 197 Calcon 226 Calculation 5,6-Benzoquinoline 382 of gas and gasoresults Benzyl alcohol 332 metric analyses 468 α-Benzyl dioxime 364 results of volumetric-analy-Benzyl orange 181 tical determination 462 Beryllon II 224, 322, 364 rules of performance 11 Bis-4,4'-[6-methylbenzothiazol-Calibration of glassware 121 (1,3)]-diazoaminobenzene-Calomel electrodes, potentials 272 2,2'-sodium disulphonate 396 Captax 380 Bismuthol II 330, 380 Carbon disulphide 332 Bis-[2,7-(4-nitro-2-sulpho-1-azo-Carbon tetrachloride 332 benzene)]-1,8-dioxynaphthale-Carboxyarsenazo 368 ne-3,6-disulphonic acid 384 p-Carboxygallanilide 330, 368 Bis-(4-hydroxy-3-methoxyci n n a-Carminic acid 322, 368 moyl)-methane 370 Caustic potash, density and con-Bis-salicylalethylenediamine 366 centration of solutions 169 BPR 224 Caustic soda, density and con-Brilliant green 322, 330, 366 centration of solutions 171 Bromatometry, calculation of re-Ceriometry, calculation of results sults 125 Bromobenzothiazo 366 Bromochlorophenol blue 183 Chalcone 226 Chelaton 3, 368 Bromocresol blue 184, 201, Chlorobenzene 332 Bromocresol green 184, 216 Chloroform 332 202Bromocresol purple 187, Chlorophenol red 186, 199, 201 ionization constant 224 ionization constant 200 Bromophenol blue 183, 216 Chromatometry, calculation of reionization constant 200 sults 125 salt correction 199 Chrome Black Special ET Bromophenol red 187 228, 230 Bromopyrogallol red 224 Bromothymol blue 188, 203 Chromoazurol C 228 Chromogen Black Special ET 00 ionization constant 200 salt correction 199 Chromotropic acid 208, 324, 330, Brucine 327, 366 Buffer capacity of solutions 475 368 Chromoxane Green GG 228 Buffer solutions 253 Chromoxane pure blue BLD 360 acetic-acetate ones 262 from individual substances Chrysoidine 185 Chrysoin 196 Chugaev's reagent 374 universal ones 263

Coefficients of ion activity 117, Diaminophenothiazine 317 4,4'-Diaminostilben-(N,N,N',N'-Colours corresponding to the spectetracarboxymethyl)-2,2'-disultral wavelengths 320 phonic acid 392 Complexes, instability constants o-Dianisidine 315 Diantipyryl methane 372 Complexing methods, calcula-1",4-Diazoamino-1,1'-azobenzenetion of results 129 4"-nitrobenzene Complexing reactions 463 acid-2" 362 Complexone III 130, 132, 322, Dibenzoyl methane 331 Dibromine-o-cresol sulphophtha-Concentration of solutions 159, lein 187 470 2,6-Dibromobenzene indophenol Congo red 183, 217 Constants Dibromophenolsulphophthalein instability of complexes 283 ionization of acids and bases Dibromothymolsulphophthalein ionization of indicators 200 3',6'-Dichloro-2,4,5,7-tetrabro-Conversion factors for gravimofluorescein 206 metric analysis 70 3',6'-Dichloro-2,4,5,7-tetraio-Corallinophthalein 189 dofluorescein 206, 216 Coraline yellow 189 o-Dichlorobenzene 334 Coumarin 212 2,7-Dichlorochromotropic acid o-Cresol indophenol 317 m-Cresol purple 179, 191 Dichloroethane 334 Cresol red 177, 190, 202 3,6-Dichlorofluorescein 217 o-Cresolphthalein 192 2,6-Dichlorophenol indophenol Cresolphthalexone 242 m-Cresolsulphophthalein 179 Dichlorophenolsulphophthalein o-Cresolsulphophthalein 177, 190 Cupferron 325, 370 Dichlorosulphodimethyloxyfuchuse in extraction 343 sone dicarboxylic acid 360 Cuproin 374 2,3-Dicyanhydroquinone 211 Cupron 364 Diethyl ether 334, 347 Diisopropyl ether 334 Dimethyl fluorone 330, 372 Curcumin 192, 195, 322, 370 Cyanine 190 Cyclohexane diondioxime-1,2 370 Dimethyl glyoxime 325, 327, 374 Cyclohexanol 332 p-Dimethylaminobenzylidene rho-Cyclohexanone 332 danine 321, 372 p-Dimethylaminophenyl fluorone Davies' formula 120 Decahydronaphthalene 332 N,N'-Dimethylbiacridine 214 Decalin 332 Dimethylnaphtheirhodine 208 Density 3,3'-Dimethylnaphthidine 230 gases and vapours 156 5,6-Dimethyl-1,10-phenanthrosolutions 160, 470 line 315 Diacetyl dioxime 374 3,3'-Dinitro-4,4'-bis-(4"-hydro-Diallyldithiocarbamidohydrazixybenzene-azo)-biphenyl 386 ne 370 α-Dinitrophenol (2,4-dinitrophe-Diamine green 243 nol) 182 3,3'-Diaminobenzidine 329, 372 ionization constant 200

β-Dinitrophenol (2,6-dinitrophenol) 182 ionization constant 200 y-Dinitrophenol (2,5-dinitrophenol) 185 ionization constant 200 1.4-Dioxane 334 1,2-Dioxyanthraquinone 360 1,2-Dioxyanthraquinone-3-sulphonic acid, sodium salt 360 2,2-Dioxybenzylidene aniline 390 1,8-Dioxy-2,7-dichloronaphthalene-3,6-disulphonic acid 372 1,8-Dioxynaphthalene-3,6-disulphonic acid, disodium salt 368 3,6-Dioxyphthalimide 210 Diphenyl benzidine 316 Diphenyl carbazide 323, 324.374 z-Diphenyl dioxime 364 Diphenyl orange 181 Diphenylamine 316 Diphenylamine sulphonate 316 Diphenylcarbazone 217, 230, 374 1,5-Diphenylcarbohydrazide 374 Diphenylthiocarbazone 376 1,4-Diphenyl-(3,5-endoanyl)-dihydro-1,2,4-triazol 384 4,7-Diphenyl-1,10-phenanthroline 364 1,3-Diphenyl-1,3-propanedione 331 Dipicrylamine 326, 374 (\alpha, \alpha' - dipyridyl) 2,2'-Dipyridyl 315, 325, 374 2,2'-Diquinoline 324, 374 8,8'-Diquinolyldisulphide 376 3,6-Disulphonaphthol-(8-azo-7')-1',8'-dioxy-3',6'-disulphonaphthalene, tetrasodium salt 364 Dithiol 326, 329, 331, 376 Dithioxamide 390 Dithizone 230, 321-328, 331, 376 use for extraction 336 DMN 230 Drying 358

EDTA 130, 368 Electrode potentials, determination 265 Electrodes calomel 272 mercury, drop 403 overvoltage of hydrogen and oxygen 442 quinhydrone 270, 272 reference 268 standard, hydrogen 266 Electron layers of cations 30 Eosin 207, 218 Equivalent 462 Equivalence point 473 Erio R 226 Eriochrome Black T 222, 230 Eriochrome Blue-Black B 230 Blue-Black Eriochrome 226 Eriochrome Cyanine R 232, 321, 322, 376 Eriochrome Red B 232 Eriochrome Red RE 226 Eriochromazurol S 228 Errors, relative 11 Erythrosine 207, 218 Esculin 205 Ethanol 334 Ethanolamine 334 4-Ethoxyacridone 205 p-Ethoxychrysoidine 315 Ethyl acetate 334 Ethyl-bis-(2,4-dinitrophenyl)-acetate 191 Ethyl ether 334 Ethyl ether, diethylamino-o-carboxyphenylxanthenyl chloride 390 Ethylene dichloride 334 Ethylene glycol 334 Ethylene glycol mono-n-butyl cther 332 glycol monomethyl Ethylene ether 334 Ethylenediaminetetraacetic acid Euchrysine 3R 212 Extraction 336

Ferroin 315
Ferron 325
Flame photometry 445
Fluorescein 209, 218
Fluorescein complexone 232

Fluorexone 226, 232 Hydrogen peroxide 327, 330 Hydroiodic acid Fuchsin 218 Furfurol 334 density and concentration a-Furfuryl dioxime 327, 376 of solutions 174 use for extraction 346 Gallion 376 Hydrone II 223 Gallocyanine 378 Hydroxocomplexes 273 Gas analysis, calculation of reo-Hydroxybenzoic acid 390 sults 136, 468 2-Hydroxy-3-chloro-5-nitroben-Gases zene-(1-azo-2')-1'-hydroxy-8'bringing the volume to stannaphthylamine-3',6'-disulphodard conditions 138 nic acid 376 density 156 Hydroxyhydroquinone pink 234 drying 358 Hydroxyhydroquinone sulphoph-Gasometric analysis 158 thalein 234 calculation of results 136. 2-Hydroxy-5-methylazobenzene-4'-sulphonic acid 396 GBHA 234 7-Hydroxy-4-methylcoumarin Glycerin 334 Glycinthymol blue 234 2-[2'-Hydroxynaphthalene-(1"-Glyoxal-bis-(2-oxyanil) 234 Gold yellow 196 azo-2)-phenylazoxy]-4-methylphenol 364 Gram-equivalent 463 Hydroxyquinoline Gravimetric analysis, conversion (o-Hydroxyfactors 70, 461 quinoline) 321, 325-327, 378 Gravimetric form 70 use in extraction 344 2-Hydroxy-3-sulpho-5-chloroben-G-salt 211 zene-1-azobarbituric acid 380 GTB 234 Hygrostats, preparation 359 Helianthine B 182 Hematoxylin 186, 234, 329 Ilyinsky's reagent 384 Hemp-like datisca (extract) 378 Indicators Hexane 334 Hexanitrodiphenylamine 374 acid-base 176, 472 adsorption 216 Hexone 334 chemiluminescent 214 HHSNN 226 Hydrobromic acid complexonometric 221 dichromatic 200, 473 fluorescent 204 density and concentration of solutions 174 ionization constants 200 use for extraction 346 isohydric solutions 475 use as a reagent 322 mixed 201 Hydrochloric acid monochromatic 200 density and concentration oxidation-reduction 314 of solutions 164, 174 salt correction 199 ase as a reagent 322, 325 universal 203 use for extraction 346 Indigo carmine 197, 201, 318 Hydrofluoric acid Indigosulphonic acids 318 density and concentration lodeosine 185 of solutions 174 Iodometry, calculation of results Hydrogen exponent, see pH Hydrogen, overvoltage on the 7-Iodo-8-quinolinol-5-sulphonic electrode 442 acid 325

Ion mobility 299
Ion radii 22
Ionic product of water 198
Ionic strength 117, 120, 199, 200, 314, 316, 474, 475
Isoamyl acetate 332
Isoamyl alcohol 332
Isopropanol 334
Isopropyl ether 334

Lacmoid 185
Lauth's violet 317
Linear measures 446
Liquid measures 446
Liquids, drying 330
Logarithms 448
Lophine 214
Lucigenin 215
Luminol 215
Lumogallion 378
Lumomagneson 380
Luther's rule 478

Magneson CS 234, 380 Malachite green 178, 196 Measures, comparison with metric measures 446 Mercaptobenzothiazole 380 5-Mercapto-3-phenyl-2-thio-1,3-4-thiodiazolone (mercaptophenylthiothiodiazolone) 380 8-Mercaptoquinoline 324, 327, 328, 380 Metallphthalein 236, 242 Methanol 334 Methanyl yellow 178 Methyl cellosolve 334 1-Methyl-3,4-dimercaptobenzene 376 Methyl ethyl ketone 334 Methyl green 177 Methyl isobutyl ketone 334 Methyl orange 182 ionization constant 200 salt correction 199 Methyl red 185, 200, 201 ionization constant 200 salt correction 199 Methyl violet 176, 178, 181, 322, Methyl yellow 178, 201 329, 382

Methylaurin 189
Methylene blue 201, 202, 317, 322
Methylthymol blue 236
β-Methylumbelliferone (4-methylumbelliferone) 204, 209
Milligram-equivalent 463
Mimosa 396
Molecular weights 31
Monochlorobenzene 332
Morin 211, 238, 321, 330, 382
Mordant yellow 195
MTB 236
Murexide 238, 323, 382

Naphtharsone 396 Naphthin 382 Naphthionic acid 213 β-Naphthol (2-naphthol) 210 β-Naphthol violet 195 Naphthol yellow 238 2-Naphthol-(1-azo-2')-4'-chlorophenol-6,'-sodium sulphonate 380 α-Naphtholbenzoin 176, 193 α-Naphtholphthalein 191, β-Naphthoquinoline 209, 382 α-Naphthyl red 184 (1-naphthylaα-Naphthylamine mine) 208, 213 (2-naphthyβ-Naphthylamine lamine) 207 1,5-Naphthylaminosulphamide 205, 212 Naphthylazoxine 238 Nessler's reagent 327 Neutralization reactions 463 Neutral red 189, 202, 319 Nickelon 364 Nile blue 194 Nioxime 370 Nitrazine yellow 188 Nitric acid density and concentration of solutions 160, 174 use for extraction 346 Nitrobenzene 334 4"-Nitrobenzene-(1",4)-diazoamino-(1-azo-1')-benzene-2"-arsone-4'-sodium sulphate 392 Nitrochromoazo 384 Nitroferroin 314 Nitron 384

m-Nitrophenol 190 ionization constant 200 o-Nitrophenol 187 p-Nitrophenol 188 ionization constant 200 Nitro-o-phenanthroline 314 p-Nitrophenyl-azoaminobenzenep-azobenzene 366 1-(p-Nitrophenyl)-3-methyl-4nitropyrazolone-5 386 α-Nitroso-β-naphthol 323, 384 β-Nitroso-α-naphthol 324, 384 1-Nitroso-2-naphthol-3,6-disulphonic acid, disodium salt 386 N-Nitrosophenylhydroxylamine, ammonium salt 370 Nitroso-R-salt 324, 386 Normality of solutions 462

Octane 334 Orange G 197 Orange III 182 Orange IV 181 Organic compounds, separation Organic reagents 360 Overvoltage of hydrogen and oxygen 442 Oxidation-reduction methods, calculations of results 125 reactions 463 Oxidizing agents 125 Oxine 378 Oxygen, overvoltage on the electrode 442

PAN 238, 324, 331
PAR 240, 327, 330
Paton-Reeder Dye 226, 242
Pentamethoxy red 180
ionization constant 200
Pentaoxy red 180
3,5,7,2',4'-Pentaoxyflavon 211, 382
Perchloric acid, density and concentration of solutions 167, 175

Palatine chrome green 222

Permanganatometry, calculation of results 125

Hqcolorimetric determination electrometric determination evaluated in terms of the activity of hydrogen ions precipitation of metal hydroxides 273 1,10-Phenanthroline 315, 325, 386 Phenazo 386 2,4-Phenol disulphonic acid 327 Phenol red 189, 202 ionization constant 200 salt correction 199 Phenolphthalein 193, 202, 203 salt correction 199 Phenolsulphophthalein 189 Phenosafranine 219, 319 N-Phenyl-anthranilic acid 314 Phenylarsonic acid 384 2-Phenylcarboxylic acid-(1-2')-1',8'-dioxynaphthaleneacid-(1-azo-3',6'-disulphonic acid-(7'-azo-1")-2"-phenylarsonic acid 368 Phenylfluorone 330, 384 9-Phenyl-2,3,7-trioxyfluorone-6 Phloxine 206 Phosphoric acid, density and concentration of solutions 165, Photometric methods of determining ions 321 Phthalein complexone 236, 242, 323Phthalein purple 242 Picric acid 177 Picrolonic acid 386 Plumbone 246, 392 2,2'-Potassium bicinchonine 386 Potassium iodide 322, 328 Potentials calomel electrode 271, decomposition 445 electrode, determination 265 ionic, cations 30 ionization 27 polarographic half-waves 403 quinhydrone electrode 270,

Potentials reference electrodes 268 standard oxidizing 300, 476 Precipitation methods, calculation of results 129 Protein error 334 Propanol 334 Purpurin 388 Pyridine 323, 324, 329, 334 1-(2-Pyridylazo)-naphthol-2 4-(2-Pyridylazo)-resorcinol 240 Pyrocatechin sulphophthalein 242 Pyrocatechin violet 242, 330 Pyrogallol 327, 330, 388 Pyrogallol red 244

Quercetin 330, 331
Quinaldic acid 388
Quinaldine red, ionization constant 200
Quinalizarin 322, 331, 388
Quinhydrone electrode, standard potential 270, 272
Quinic acid 209
Quinine 209, 212
α-Quinoline carboxylic acid 388

Radioactive elements 21
Reagents
density and concentration
174
masking 132, 345
organic 360
Resorcin yellow 196
Rhodamine B 322, 388
Rhodamine S 388
Rhodamine 6G 219, 390
Rhodanine 321
Rosaniline 323
Rosolic acid 189
R-salt 211
Rubeanic acid 390
Rules
calculation 11

Safranine T 318, 329
Salt correction
of indicators 199
Salicyl yellow 195

Luther's 478

Salicylal-o-aminophenol 390 Salicylaldoxime 327, 390 Salicylic acid 206, 325, 390 Separation of organic compounds 347 Sodium alizarin sulphonate 184, Sodium carbonate, density and concentration of solutions 173 Sodium diethyldithiocarbamate 321, 390 use in extraction 327 Sodium ethylenediaminetetraacetate 130, 368 Sodium indigo disulphonate 197 Sodium sulphosalicylate 392 Sodium tetraphenylborate 392 Solubility in organic solvents 100 in water 77 Solubility product 105 conversion of the pH 252 Solutions absorbing, vapour pressure buffer capacity 475 concentration 470 density 470 ionic strength 120 normality 462 titre 463 Solvents 332 SPADNS 246, 325, 331 Spectrum wavelengths 320 SS-acid 213 Standard oxidizing potentials Standard sieves 402 Stilbazo 321, 392 Stilben-2-2'-disulphonic acid-4, 4'-bis-(azo-1")-3",4"-dioxybenzene, diammonium salt 392 Stilbexone 392 Stoichiometric multipliers 70, Sulphanilic acid 323 Sulpharsasene 246, 328, 392 Sulphonazo 246, 394 Sulphon-bis-4-hydroxyphenyl-(3-azo-2')-1'-hydroxy-8'-aminonaphthalene-3',6'-disulphonic

acid 246

Sulphosalicylic acid 246, 325, 330 Sulphuric acid 334 density and concentration of solutions 161, 174

Tannin 394 Tartrazine 219 Tetraaminodiphenyl 372 Tetrabromofluorescein 207 Tetrabromophenolsulphophthalein 183 Tetrachloride, carbon 332 Tetraethyldiamino-o-carboxyphenylxanthenyl chloride 388 Tetraiodofluorescein 185, 207 Tetralin 334 1,2,5,8-Tetraoxyanthraquinone 3,5,7,2'-Tetraoxyflavon 378 Thiazo yellow 396 Thioacetamide 394 Thiocarbamide 394 Thioglucolic acid 394 Thionalide 394 Thionine 317 Thiooxine 380 Thiourea 246, 322, 330, 394 Thioxine 380 Thorin 248, 396 Thoron 248, 326, 330, 396 Thymol blue 179, 192, 202, 203 ionization constant 200

salt correction 199
Thymolphthalein 194, 202, 203
salt correction 199
Thymolphthalexone 248
Thymolsulphophthalein 179

Tin dichloride 328 Titanium yellow 326, 396

Titration

amperometric 408, 426 calculation of results 123 index 201

indicators 472 Titre, establishment o-Tolidine 323, 396 Toluene 334

8-(p-Toluene sulphamido)-quinoline 396

8-Tosylaminoquinoline 396 Trilon B 130, 368

1,3,5-Trinitrobenzene 197 2,4,6-Trinitrophenol 177 2,4,6-Trinitrotoluene 196 1,2,4-Trioxyanthraquinone 388 1,2,3-Trioxybenzene 388 3,4,5-Trioxybenzoylpara-aminobenzoic acid 368 2,2',4'-Trioxy-5-chloro-(1-azo-1')-benzene-3-sulphonic acid 2,6,7-Trioxy-9-(4"-dimethylaminophenyl)-3-fluorone 372 2,4,5-Triphenylglyoxaline 214 2,4,5-Triphenylimidazol Tropeolin G 178 Tropeolin 0 196 Tropeolin 00 181, 203, 219 Tropeolin 000 191 Turpentine 334 Tyron 248, 330

Umbelliferone 210 Units of energy 446 Units of power 447 Uranol 362

Vanadicophosphoric acid 331
Vapour pressure over water and
over absorbing solutions 155
Vapours, density 156
Variamine Blue B 248
Versene 368
Victoria yellow 178
Volumetric determination 158
Volumetric-analytical determinations
calculation of results 13, 123
indicators, selection 472

Water 334 ionic product 198 vapour pressure 155 Wolframite 331

Xylene 334, 355 Xylenol blue 180, 192 Xylenol orange 250, 331 p-Xylenol phthalein 193 p-Xylenol sulphophthalein 180

R. T. WZhronon 396

COURSE OF ANALYTICAL CHEMISTRY

By A.P. Kreshkov, A.A. Yaroslavtsev

Volume 1

QUALITATIVE ANALYSIS

This volume presents the principles of the theory, methods, and techniques of qualitative analysis of inorganic substances. Attention is particularly given to general practical instructions and safety when working in analytical laboratories. The book gives methodical instructions in analysing mixtures of cations and anions.

Volume 2

QUANTITATIVE ANALYSIS

This volume presents the theory and practice of quantitatively analysing inorganic substances. A detailed description is given of the methods of work, apparatus and instruments, and also the methods of calculating the analytical results.

Volume 1 and Volume 2 are intended for students of chemical higher technical schools and may be used for training and improving the skill of analysts.

PROBLEMS AND EXERCISES IN ORGANIC CHEMISTRY

By A. Agronomov et al.

A textbook by a group of lecturers in Moscow State University, for university undergraduates, postgraduate and research students, and teachers of chemistry in technical and teacher-training colleges. Consists of nine chapters, the first of which deals with the nomenclature of organic compounds. Each of the subsequent chapters consists of an introduction to the key elements in the subject studied and rational approach to the solution of problems and a collection of problems and exercises with answers and solutons.

BASIC METHODS OF ORGANIC MICROANALYSIS

By V.A. Klimova

This book gives a detailed description of the basic methods used in modern microanalysis of organic substances. It describes procedures for determining carbon, hydrogen, nitrogen, sulphur, germanium, oxygen, carbonyl group, amine nitrogen, nitrogen of nitroparaffins, alkoxyl group, and water. Moreover, this book gives hints on how to use the analytical balance and other laboratory apparatus. The book is a practical manual for scientists engaged in microanalysis of organic compounds. It can be of value to both undergraduate and graduate students.