Rough Draft of Supplemental Material

Bradley Hintze

November 2014

Contents

1	Filtered Top8000 Residue Counts	2
2	Top8000 Filtered Dataset: Rotamer Frequency	3
3	χ and Covalent Bond Angle Central Values	6
	3.1 SER	6
	3.2 CYS	7
	3.3 THR	8
	3.4 VAL	Ĝ
	3.5 PRO	10
	3.6 LEU	11
	3.7 ILE	13
	3.8 ASN	15
	3.9 ASP	16
	3.10 HIS	17
	3.11 PHE	19
	3.12 TYR	20
	3.13 TRP	21
	3.14 MET	24
	3.15 GLU	28
	3.16 GLN	30
	3.17 ARG	33
	3.18 LVS	18

1 Filtered Top8000 Residue Counts

Residue			
Type	No Filter	Filter	%Kept
LYS	70035	34829	49.78%
GLU	88745	57462	64.82%
\overline{ARG}	64333	46380	72.18%
GLN	50112	37119	74.14%
ASP	88822	72336	81.52%
ASN	63553	53650	84.57%
MET	21764	18382	84.62%
HIS	33910	29791	87.99%
SER	84656	76186	90.21%
LEU	126451	115053	91.22%
ILE	78547	71693	91.51%
TYR	51638	47243	91.61%
PRO	65013	59515	91.74%
THR	82124	75180	91.80%
PHE	60306	56282	93.52%
TRP	19966	18715	93.90%
VAL	103690	97050	93.92%
CYS	17808	16708	94.15%
Total	1171473	983574	83.96%

Table 1: Residue counts with and without residue-level filters ordered by % kept after filtering. 'No Filter' means no RSCC, $2mF_o$ -DF_c sigma, and B filters but all other residue-level filters applied.

2 Top8000 Filtered Dataset: Rotamer Frequency

The following is a table describing counts of each of the 213 rotamers identified in the Top8000 filtered dataset. n is the count of each rotamer, % is the percent of the rotamer that occurs in the given residue type (e.g. 17.7% of CYS are \mathbf{p}). Also noted is the rarity of each rotamer, defined at two levels – a singe and double checkmark. The rarity metric is normalized by both the number of residues and the number of rotamer types in a given residue type. If the empirical count for a rotamer is < 8% or < 1% of the expected rotamer count then the rarity is marked with a single or double checkmark, respectively. The expected rotamer count is the number of residues in a rotamer bin if all residues were distributed equally to all rotamer bins for a given residue type. e.g. if SER had 3000 residues in the dataset then the expected count for each of the three rotamers would be 1000. Further, if one of these rotamers had an empirical count < 80 or < 10, the rarity would be marked with a single or double checkmark respectively.

residue	rotamer	n	%	rarity
	SER: TOTA	AL N =	76186	
SER	p	36901	48.44	-
SER	t	17502	22.97	-
SER	m	21558	28.30	-
SER	OUTLIER	225	0.30	-
	CYS: TOT.	AL N =	16708	
CYS	p	2962	17.73	-
CYS	t	4399	26.33	-
CYS	m	9301	55.67	-
CYS	OUTLIER	46	0.28	-
	THR : TOT	AL N =		
THR	p	36195	48.14	-
THR	t	5197	6.91	-
THR	m	33559	44.64	_
THR	OUTLIER	229	0.30	_
	VAL: TOT	AL N =	97050	
VAL	p	6015	6.20	_
VAL	t	73329	75.56	-
VAL	m	17410	17.94	_
VAL	OUTLIER	296	0.30	
	PRO: TOT	AL N =	59515	
PRO	Cg_exo	30128	50.62	_
PRO	Cg_endo	29192	49.05	_
PRO	OUTLIER	195	0.33	-
	LEU: TOTA		115053	
LEU	pp	521	0.45	
LEU	pt	378	0.33	
LEU	tp	34655	30.12	-
LEU	tt	1576	1.37	
LEU	tm	143	0.12	
LEU	mp	2711	2.36	
LEU	mt	74252	64.54	
LEU	mm	484	0.42	√
LEU	OUTLIER	333	0.29	
	ILE : TOTA	AL N =	71693	
ILE	pp	254	0.35	√
ILE	pt	8837	12.33	_
ILE	tp	1869	2.61	_
ILE	tt	4163	5.81	_
ILE	mp	623	0.87	√
ILE	mt	44470	62.03	
ILE	mm	11258	15.70	_
ILE	OUTLIER	219	0.31	_
	ASN : TOT			
ASN	p0	7513	14.00	
	r.	.010	11.00	

residue	rotamer	n	%	rarity
ASN	t0	15610	29.10	
ASN	t160	61	0.11	
ASN	m110	4003	7.46	-
ASN	m-40	26292	49.01	-
ASN	OUTLIER	171	0.32	
	ASP : TOTA	AL N =	72336	
ASP	p0	11746	16.24	-
ASP	t0	17107	23.65	-
ASP	t70	6029	8.33	-
ASP	m-30	37239	51.48	-
ASP	OUTLIER	215	0.30	-
	HIS: TOTA	AL N =	29791	
HIS	p90	1492	5.01	_
HIS	p-80	2203	7.39	_
HIS	t70	5068	17.01	
HIS	t-170	1332	4.47	
HIS	t-90	3553	11.93	
HIS	m170	2695	9.05	
HIS	m90	3914	13.14	
HIS	m-70	9453	31.73	_
HIS	OUTLIER	81	0.27	
	PHE : TOT	AL N =	56282	
PHE	p90	6289	11.17	_
PHE	t80	19289	34.27	_
PHE	m-10	3880	6.89	_
PHE	m-80	26665	47.38	
PHE	OUTLIER	159	0.28	
	TYR : TOT	AL N =	47243	
TYR	p90	5466	11.57	_
TYR	t80	16312	34.53	
TYR	m-10	2623	5.55	_
TYR	m-80	22683	48.01	-
TYR	OUTLIER	159	0.34	_
	TRP: TOT		18715	
TRP	p90	971	5.19	-
TRP	p-90	1937	10.35	-
TRP	t60	3385	18.09	_
TRP	t-100	2893	15.46	-
TRP	m100	6319	33.76	-
TRP	m-10	2196	11.73	-
TRP	m-90	961	5.13	_
TRP	OUTLIER	53	0.28	-
	$\overline{\text{MET}: \text{TOT}}$	AL N =	16794	
MET	ppp	50	0.30	√
MET	pp-130	27	0.16	√

residue	rotamer	n	%	rarity
MET	ptp	404	2.41	-
MET	ptt	260	1.55	-
MET	ptm	375	2.23	-
MET	pmt	7	0.04	√√
MET	pmm	42	0.25	√
MET	tpp	1138	6.78	_
MET	tpt	388	2.31	_
MET	ttp	1246	7.42	
MET	ttt	569	3.39	
MET	ttm	1124	6.69	
MET	tmt	34	0.20	
MET	tmm	276	1.64	-
MET	mpp	74	0.44	_
MET	mpt	34	0.20	√
MET	mpm	13	0.08	`
MET	mtp	2815	16.76	<u> </u>
MET	mtt	1542	9.18	
MET	mtm	1851	11.02	
MET		520	3.10	
MET	mmp	597	3.55	
MET	mmt	3354	19.97	
MET	mmm OUTLIER	54 54	$\frac{19.97}{0.32}$	
MIT I				
CITI	GLU: TOT		57462	
GLU	pp20	159	0.28	√
GLU	pt0	2800	4.87	
GLU	pm20	1485	2.58	
GLU	tp30	4616	8.03	
GLU	tt0	13610	23.69	
GLU	tm-30	862	1.50	-
GLU	mp0	3671	6.39	
GLU	mt-10	21021	36.58	-
GLU	mm-30	9080	15.80	-
GLU	OUTLIER	158	0.27	-
	GLN: TOT.		37119	
GLN	pp30	178	0.48	√
GLN	pt0	1885	5.08	-
GLN	pm20	487	1.31	-
GLN	tp40	3618	9.75	-
GLN	tp-100	534	1.44	-
GLN	tt0	6936	18.69	-
GLN	tm130	55	0.15	\checkmark
GLN	tm-30	547	1.47	-
GLN	mp10	1207	3.25	-
GLN	mp-120	87	0.23	<u>-</u> ✓
GLN	mt0	14370	38.71	_
GLN	mm110	1147	3.09	_
GLN	mm-40	5959	16.05	_
GLN	OUTLIER	109	0.29	_
	ARG : TOT		46380	
ARG	ppp80	10	0.02	√
ARG	ppp-140	4	0.02	
ARG	ppt170	57	0.01	√ √
ARG	ppt90	19	0.12	√
ARG	ppt-90	15	0.04	
ARG	ptp90	223	0.03	_
ARG		77	0.48	
	ptp-110			-
ARG	ptp-170	388	0.84	-
ARG	ptt180	820	1.77	
ARG	ptt90	814	1.76	-
ARG	ptt-90	726	1.57	-

residue	rotamer	n	%	rarity
ARG	ptm160	502	1.08	-
ARG	ptm-80	215	0.46	-
ARG	pmt100	4	0.01	√ √
ARG	pmt170	39	0.08	√
ARG	pmt-80	27	0.06	√
ARG	pmm150	12	0.03	√
ARG	pmm-80	19	0.04	
ARG	tpp80	363	0.78	<u> </u>
ARG	tpp-160	496	1.07	
ARG	tpt170	825	1.78	_
ARG	tpt90	652	1.41	_
ARG	tpt-90	365	0.79	_
ARG	tpm170	110	0.24	
ARG	tpm-80	20	0.24	<u>-</u> ✓
ARG	ttp80	1896	4.09	· ·
ARG	ttp-110	623	1.34	-
ARG	ttp-110	1533	3.31	
				-
ARG	ttt180	2339	5.04	-
ARG	ttt90	1057	2.28	-
ARG	ttt-90	1380	2.98	-
ARG	ttm110	725	1.56	-
ARG	ttm170	1317	2.84	-
ARG	ttm-80	1504	3.24	-
ARG	tmt170	104	0.22	-
ARG	tmt90	23	0.05	✓
ARG	tmt-80	62	0.13	-
ARG	tmm160	92	0.20	-
ARG	tmm-80	71	0.15	-
ARG	mpp80	54	0.12	√
ARG	mpp-170	64	0.14	-
ARG	mpt180	245	0.53	-
ARG	mpt90	46	0.10	√
ARG	mpt-90	85	0.18	-
ARG	mtp180	2504	5.40	-
ARG	mtp85	1857	4.00	-
ARG	mtp-110	470	1.01	-
ARG	mtt180	4592	9.90	-
ARG	mtt90	2460	5.30	_
ARG	mtt-85	2843	6.13	_
ARG	mtm110	781	1.68	_
ARG	mtm180	2407	5.19	
ARG	mtm-85	2848	6.14	_
ARG	mmp80	164	0.35	
ARG	mmp-170	123	$\frac{0.33}{0.27}$	
ARG	mmt180	1203	2.59	
ARG	mmt90		1.22	-
ARG		1428		
	mmt-90	1428	3.08	-
ARG	mmm160	951	2.05	-
ARG	mmm-85	1022	2.20	-
ARG	OUTLIER	138	0.30	-
	LYS : TOTA		34829	
LYS	pptt	25	0.07	✓
LYS	ptpp	89	0.26	-
LYS	ptpt	148	0.42	-
LYS	pttp	240	0.69	-
LYS	pttt	1385	3.98	-
LYS	$_{ m pttm}$	268	0.77	-
LYS	ptmt	187	0.54	-
LYS	ptmm	80	0.23	-
LYS	pmtt	10	0.03	√

LYS tppp 37 0.11 ✓ LYS tppt 272 0.78 - LYS tptp 409 1.17 - LYS tptt 1228 3.53 - LYS tptm 197 0.57 - LYS ttpp 229 0.66 - LYS ttpt 883 2.54 - LYS ttp 1233 3.54 - LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS tttm 1176 3.38 - LYS tttm 674 1.94 - LYS ttm 674 1.94 - LYS tmt 674 1.94 - LYS tmtm 197 0.57 - LYS tmt	residue	rotamer	n	%	rarity
LYS tptp 409 1.17 - LYS tptt 1228 3.53 - LYS tptm 197 0.57 - LYS ttpp 229 0.66 - LYS ttpt 4 0.01 √√ LYS ttpt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 √ LYS ttmm 197 0.57 - LYS tttm 1176 3.38 - LYS tttm 1176 3.38 - LYS ttmm 197 0.57 - LYS tmmm 197 0.57 - LYS tmmm 197 0.57 - LYS tmmt 82 0.24 - LYS tmtt 82 0.24 - LYS tmmm 33 0.09 √ LYS tmmm 8 0.02 √ LYS tmmm 8 0.02 √ LYS tmmm 197 0.57 - LYS tmmm 197 0.57 - LYS tmmm 197 0.57 - LYS tmtt 82 0.24 - LYS tmtt 10.03 √ LYS tmmt 10.03 √ LYS tmmt 10.00 √ LYS tmmm 10.00 √ LYS mptp 11 0.00 √ LYS mptp 11 0.00 √ LYS mptm 11 0.00 √ LYS mptm 11 0.00 √ LYS mttm 124 0.36 - LYS mttm 1357 3.90 - LYS mtpm 17 0.05 √ LYS mtpm 17 0.05 √ LYS mtpm 1414 4.06 - LYS mttm 1829 5.25 - LYS mttm 1829 5.25 - LYS mttm 1829 5.25 - LYS mtmm 424 1.22 - LYS mmmt 31 0.09 √ LYS mmtm 1314 3.77 - LYS mtmm 424 1.22 - LYS mmtm 425 5.25 - LYS mmtm 1544 1.56 - LYS mmtm 727 2.09 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		tppp	37	0.11	√
LYS tptt 1228 3.53 - LYS tptm 197 0.57 - LYS ttpp 229 0.66 - LYS ttpt 883 2.54 - LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttm 674 1.94 - LYS ttmt 674 1.94 - LYS tmtm 197 0.57 - LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmm 8 0.02 ✓ LYS mpt 31 0.09 ✓ LYS mpt 31 0.09 ✓ LYS mpt 11<	LYS	tppt	272	0.78	-
LYS tptm 197 0.57 - LYS ttpp 229 0.66 - LYS ttpt 883 2.54 - LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS ttmt 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mptp 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptm 11 0.03 ✓ LYS mtp 39		tptp	409	1.17	-
LYS ttpp 229 0.66 - LYS ttpt 883 2.54 - LYS ttpm 4 0.01 √√ LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 √ LYS ttmt 674 1.94 - LYS ttmm 197 0.57 - LYS tmtp 11 0.03 √ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 √ LYS tmmm 8 0.02 √ LYS mpt 31 0.09 √ LYS mpt 26 0.07 √ LYS mpt 124 0.36 - LYS mtp 392 </td <td>LYS</td> <td>tptt</td> <td>1228</td> <td>3.53</td> <td>-</td>	LYS	tptt	1228	3.53	-
LYS ttpt 883 2.54 - LYS ttpm 4 0.01 √√ LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 √ LYS ttmt 674 1.94 - LYS tmtm 197 0.57 - LYS tmtp 11 0.03 √ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 √ LYS tmmm 8 0.02 √ LYS mpt 31 0.09 √ LYS mptp 26 0.07 √ LYS mpt 124 0.36 - LYS mtp 392 1.13 - LYS mtp 1357<	LYS	tptm	197	0.57	-
LYS ttpm 4 0.01 ✓√ LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS tmtm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmm 8 0.02 ✓ LYS mpt 31 0.09 ✓ LYS mpt 31 0.09 ✓ LYS mpt 26 0.07 ✓ LYS mpt 124 0.36 - LYS mtp 392 1.13 - LYS mtp 1357 <td>LYS</td> <td>ttpp</td> <td>229</td> <td>0.66</td> <td>-</td>	LYS	ttpp	229	0.66	-
LYS tttp 1233 3.54 - LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS ttmm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mptp 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtp 1357 3.90 - LYS mtp 17<	LYS	ttpt	883	2.54	-
LYS tttt 5043 14.48 - LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS ttmt 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mpt 31 0.09 ✓ LYS mpt 124 0.36 - LYS mpt 124 0.36 - LYS mtp 392 1.13 - LYS mtp 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mtt 1414 <td>LYS</td> <td>ttpm</td> <td>4</td> <td>0.01</td> <td>√ √</td>	LYS	ttpm	4	0.01	√ √
LYS tttm 1176 3.38 - LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS ttmm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mpt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mpt 124 0.36 - LYS mpt 1357 3.90 - LYS mtp 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mtt 1829 5.25 - LYS mtt 1829	LYS	tttp	1233	3.54	-
LYS ttmp 9 0.03 ✓ LYS ttmt 674 1.94 - LYS ttmm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mpt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mpt 124 0.36 - LYS mpt 130 √ LYS mtp 392 1.13 - LYS mtp 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mtt 1829 5.25 - LYS mtm 1829 5.25	LYS	tttt	5043	14.48	-
LYS ttmt 674 1.94 - LYS ttmm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mptp 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpp 392 1.13 - LYS mtp 1357 3.90 - LYS mtp 1414 4.06 - LYS mtt 8597 24.68 - LYS mtm 1829	LYS	tttm	1176	3.38	-
LYS ttmm 197 0.57 - LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmptm 8 0.02 ✓ LYS mptp 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mpt 124 0.36 - LYS mpt 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtp 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mtt 18597 24.68 - LYS mtm 1829 5.25 - LYS mtm 1314 3.77 - LYS mtm 1314 </td <td>LYS</td> <td>ttmp</td> <td>9</td> <td>0.03</td> <td>√</td>	LYS	ttmp	9	0.03	√
LYS tmtp 11 0.03 ✓ LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmptm 8 0.02 ✓ LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpp 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mtt 8597 24.68 - LYS mtm 1829 5.25 - LYS mtm 1829 5.25 - LYS mtm 1314 3.77 - LYS mtm 1314	LYS	ttmt	674	1.94	-
LYS tmtt 82 0.24 - LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpp 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mttm 1829 5.25 - LYS mtmt 1829 5.25 - LYS mtmt 1314 3.77 - LYS mtmt	LYS	ttmm	197	0.57	-
LYS tmtm 20 0.06 ✓ LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mtt 8597 24.68 - LYS mtm 1829 5.25 - LYS mtm 1314 3.77 - LYS mtmt 1314 3.77 - LYS mtmt 424 1.22 - LYS mmtp <td< td=""><td>LYS</td><td>tmtp</td><td>11</td><td>0.03</td><td>√</td></td<>	LYS	tmtp	11	0.03	√
LYS tmmt 33 0.09 ✓ LYS tmmm 8 0.02 ✓ LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtp 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mtt 1829 5.25 - LYS mtm 1829 5.25 - LYS mtm 1314 3.77 - LYS mtm 424 1.22 - LYS mmtm 424 1.22 - LYS mmtp 463 1.33 - LYS mmtt 31		tmtt	82	0.24	-
LYS tmmm 8 0.02 ✓ LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mtt 8597 24.68 - LYS mtm 1829 5.25 - LYS mtmp 9 0.03 ✓ LYS mtm 1314 3.77 - LYS mtm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmt 3137 9.01 - LYS mmt 727 2.09 - LYS mmm 544 </td <td>LYS</td> <td>tmtm</td> <td>20</td> <td>0.06</td> <td>✓</td>	LYS	tmtm	20	0.06	✓
LYS mppt 31 0.09 ✓ LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mtt 8597 24.68 - LYS mtmp 9 0.03 ✓ LYS mtmp 9 0.03 ✓ LYS mtmt 1314 3.77 - LYS mtm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt	LYS	tmmt	33	0.09	√
LYS mptp 26 0.07 ✓ LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mtt 8597 24.68 - LYS mtmp 9 0.03 ✓ LYS mtmp 9 0.03 ✓ LYS mtmt 1314 3.77 - LYS mtm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm <td< td=""><td>LYS</td><td>tmmm</td><td>8</td><td>0.02</td><td>√</td></td<>	LYS	tmmm	8	0.02	√
LYS mptt 124 0.36 - LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mttp 1414 4.06 - LYS mttt 8597 24.68 - LYS mttm 1829 5.25 - LYS mtmp 9 0.03 ✓ LYS mtmt 1314 3.77 - LYS mtmm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mppt	31	0.09	
LYS mptm 11 0.03 ✓ LYS mtpp 392 1.13 - LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mtt 8597 24.68 - LYS mtm 1829 5.25 - LYS mtmp 9 0.03 ✓ LYS mtmt 1314 3.77 - LYS mtmm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mptp	26	0.07	√
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mptt	124	0.36	-
LYS mtpt 1357 3.90 - LYS mtpm 17 0.05 ✓ LYS mttp 1414 4.06 - LYS mttt 8597 24.68 - LYS mtm 1829 5.25 - LYS mtmp 9 0.03 ✓ LYS mtmt 1314 3.77 - LYS mtmm 424 1.22 - LYS mmpt 31 0.09 ✓ LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mptm	11	0.03	√
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mtpp	392	1.13	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mtpt	1357	3.90	-
LYS mttt 8597 24.68 - LYS mttm 1829 5.25 - LYS mtmp 9 0.03 √ LYS mtmt 1314 3.77 - LYS mtmm 424 1.22 - LYS mmpt 31 0.09 √ LYS mmtp 463 1.33 - LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -	LYS	mtpm	17	0.05	√
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mttp	1414		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mttt	8597		-
LYS mtmt 1314 3.77 - LYS mtmm 424 1.22 - LYS mmpt 31 0.09 √ LYS mmtp 463 1.33 - LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -	LYS	mttm	1829	5.25	-
LYS mtmm 424 1.22 - LYS mmpt 31 0.09 √ LYS mmtp 463 1.33 - LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mtmp	-	0.03	✓
LYS mmpt 31 0.09 ✓ LYS mmtp 463 1.33 - LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mtmt	1314	3.77	-
LYS mmtp 463 1.33 - LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -	LYS	mtmm	424	1.22	-
LYS mmtt 3137 9.01 - LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mmpt	31	0.09	✓
LYS mmtm 727 2.09 - LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -		mmtp	463	1.33	-
LYS mmmt 544 1.56 - LYS mmmm 90 0.26 -	LYS	mmtt	3137	9.01	-
LYS mmmm 90 0.26 -	LYS	mmtm	727	2.09	-
		mmmt	544	1.56	-
LYS OUTLIER 114 0.33 -		mmmm	90	0.26	-
	LYS	OUTLIER	114	0.33	-

3 χ and Covalent Bond Angle Central Values

The following tables report the central χ and covalent bond angles for each rotamer identified in the Top8000. The central χ values are calculated by taking the center-of-mass (COM) of the smoothed contours in the given rotamer bin as described in Section 2.4. The mean for the covalent bond angles is a simple mean.

3.1 SER

SE	$SER \mathbf{p} = 36901$				
χ	Smooth COM	StdDev	χ		
chi1	65.916	8.614	chi1		
Bond Angle	Mean	StdDev	Bond		
$C\alpha_{-}C\beta_{-}OG$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $N_{-}C\alpha_{-}C$ $N_{-}C\alpha_{-}C\beta$	111.001 120.458 109.930 111.621 110.666	1.348 0.922 1.393 2.519 1.118	Cα_C Cα_C Cβ_C N_Cα N_Cα		
/-					

SER t n = 17502				
χ	Smooth COM	StdDev		
chi1	178.650	9.008		
Bond Angle	Mean	StdDev		
$C\alphaC\betaOG$	110.709	1.422		
$C\alphaCO$	120.567	0.818		
$C\betaC\alphaC$	109.799	1.449		
$N_{-}C\alpha_{-}C$	110.491	2.405		
$N_{-}C\alpha_{-}C\beta$	110.057	1.210		

$SER \mathbf{m} n = 21558$				
χ	Smooth COM	StdDev		
chi1	-63.982	7.667		
Bond Angle	Mean	StdDev		
$C\alphaC\betaOG$	110.527	1.459		
$C\alphaCO$	120.485	0.850		
$C\betaC\alphaC$	109.476	1.447		
$N_C\alpha_C$	111.471	2.440		
$N_{-}C\alpha_{-}C\beta$	110.563	1.028		

3.2 CYS

$CYS \mathbf{p} n = 2962$				
Smooth COM	StdDev			
64.543	8.969			
Mean	StdDev			
114.646	1.684			
120.521	0.978			
110.473	1.502			
111.297	2.778			
110.904	1.232			
	Smooth COM 64.543 Mean 114.646 120.521 110.473 111.297			

$CYS \mathbf{t} n = 4399$				
Smooth COM	StdDev			
-177.599	8.222			
Mean	StdDev			
113.679	1.938			
120.488	0.861			
110.333	1.295			
109.702	2.435			
110.020	1.370			
	Smooth COM -177.599 Mean 113.679 120.488 110.333 109.702			

$CYS \mathbf{m} n = 9301$					
χ	Smooth COM	StdDev			
chi1	-65.374	8.203			
Bond Angle	Mean	StdDev			
$C\alpha_C\beta_SG$	113.554	1.864			
$C\alphaCO$	120.431	0.871			
$C\beta_{-}C\alpha_{-}C$	109.474	1.632			
$N_C\alpha_C$	111.518	2.424			
$N_{-}C\alpha_{-}C\beta$	110.613	1.065			

3.3 THR

THR p $n = 36195$					
χ	Smooth COM	StdDev			
chi1	61.450	7.652			
Bond Angle	Mean	StdDev			
$C\alphaC\betaC\gamma_2$	110.976	1.009			
$C\alphaC\betaOG1$	109.502	0.971			
$C\alphaCO$	120.473	0.956			
$C\beta C\alpha C$	108.833	1.702			
$N_{-}C\alpha_{-}C$	111.374	2.770			
$N_C\alpha_C\beta$	111.784	1.258			
${ m OG1_C}eta_{ m C}\gamma2$	109.207	1.712			

THR \mathbf{t} n = 5197					
χ	Smooth COM	StdDev			
chi1	-172.707	7.389			
Bond Angle	Mean	StdDev			
$C\alphaC\betaC\gamma_2$	111.729	1.103			
$C\alphaC\betaOG1$	109.533	0.990			
$C\alphaCO$	120.619	0.834			
$C\beta_{-}C\alpha_{-}C$	110.967	1.904			
$N_{-}C\alpha_{-}C$	110.117	2.331			
$N_{-}C\alpha_{-}C\beta$	111.298	1.337			
${\rm OG1_C}\beta_{\rm C}\gamma2$	109.060	1.810			

THR $m = 33559$					
χ	Smooth COM	StdDev			
chi1	-60.109	6.107			
Bond Angle	Mean	StdDev			
$C\alpha_{-}C\beta_{-}C\gamma_{2}$	111.146	0.939			
$C\alphaC\betaOG1$	108.916	0.972			
$C\alphaCO$	120.533	0.810			
$C\beta C\alpha C$	110.050	1.532			
$N_{-}C\alpha_{-}C$	110.213	2.307			
$N_{-}C\alpha_{-}C\beta$	110.718	1.188			
$OG1_C\beta_C\gamma2$	108.767	1.669			

3.4 VAL

VAL p n = 6015					
χ	Smooth COM	StdDev			
chi1	64.912	7.166			
Bond Angle	Mean	StdDev			
$C\alpha_{-}C\beta_{-}C\gamma 1$	111.517	1.091			
$C\alphaC\betaC\gamma_2$	110.755	1.020			
$C\alphaCO$	120.598	0.828			
$C\beta C\alpha C$	111.418	1.568			
$C\gamma 1_C\beta_C\gamma 2$	111.030	1.204			
$N_{-}C\alpha_{-}C$	110.312	2.482			
$N_{-}C\alpha_{-}C\beta$	111.580	1.263			

$VAL \mathbf{t} n = 73329$					
χ	Smooth COM	StdDev			
chi1	175.704	6.352			
Bond Angle	Mean	StdDev			
$C\alphaC\betaC\gamma 1$	110.746	0.936			
$C\alpha_{-}C\beta_{-}C\gamma_{2}$	110.161	0.946			
$C\alphaCO$	120.549	0.788			
$C\beta _C\alpha _C$	110.193	1.510			
$C\gamma 1_C\beta_C\gamma 2$	110.464	1.126			
$N_{-}C\alpha_{-}C$	109.421	2.363			
$N_{-}C\alpha_{-}C\beta$	111.340	1.112			

$VAL \mathbf{m} n = 17410$					
χ	Smooth COM	StdDev			
chi1	-61.900	5.694			
Bond Angle	Mean	StdDev			
$C\alpha_{-}C\beta_{-}C\gamma 1$	110.354	0.917			
$C\alpha_{-}C\beta_{-}C\gamma_{2}$	111.323	1.023			
$C\alphaCO$	120.553	0.913			
$C\beta C\alpha C$	109.824	1.600			
$C\gamma 1C\betaC\gamma 2$	110.892	1.165			
$N_{-}C\alpha_{-}C$	111.118	2.687			
$N_{-}C\alpha_{-}C\beta$	112.271	1.177			

3.5 PRO

PRO ($Cg_exo n = 3012$	28	PRO C	$Cg_endo n = 291$	192
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-24.512	7.169	chi1	26.645	7.653
chi2	35.520	7.825	chi2	-34.137	8.897
chi3	-31.747	7.122	chi3	27.789	9.234
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	104.229	1.397	$C\alpha_{-}C\beta_{-}C\gamma$	104.233	1.468
$C\alphaCO$	120.180	1.031	$C\alphaCO$	120.227	1.070
$C\alpha_N_C\delta$	111.654	0.806	$C\alpha_N_C\delta$	111.798	0.843
$C\betaC\alphaC$	110.809	1.300	$C\beta C\alpha C$	110.911	1.411
$C\beta C\gamma C\delta$	104.701	2.311	$C\beta C\gamma C\delta$	105.301	2.361
$N_{-}C\alpha_{-}C$	112.655	2.417	$N_{-}C\alpha_{-}C$	112.933	2.596
$N_{-}C\alpha_{-}C\beta$	103.312	0.589	$N_{-}C\alpha_{-}C\beta$	103.192	0.719
$NC\deltaC\gamma$	102.715	0.876	$NC\deltaC\gamma$	103.063	0.876

3.6 LEU

LE	$U \mathbf{pp} n = 521$		LF	$EU \mathbf{pt} \ n = 378$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	61.357	8.227	chi1	72.738	8.508
chi2	83.113	9.465	chi2	164.797	10.798
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_C\beta_C\gamma$	119.083	2.531	$C\alpha_C\beta_C\gamma$	118.709	2.155
$C\alphaCO$	120.578	0.835	$C\alphaCO$	120.802	0.831
$C\beta C\alpha C$	111.537	1.381	$C\betaC\alphaC$	110.423	1.451
$C\betaC\gammaC\delta 1$	111.539	1.890	$C\beta C\gamma C\delta 1$	109.794	1.542
$C\betaC\gammaC\delta_2$	109.789	1.678	$C\betaC\gammaC\delta_2$	111.556	1.845
$C\delta1_C\gamma_C\delta2$	109.695	1.226	$C\delta1_C\gamma_C\delta2$	110.437	1.240
$N_{-}C\alpha_{-}C$	110.691	2.359	$N_{-}C\alpha_{-}C$	110.447	2.450
$N_{-}C\alpha_{-}C\beta$	111.107	1.151	$N_{-}C\alpha_{-}C\beta$	111.556	1.184
LE	$U \mathbf{tp} n = 34655$		LE	$U \mathbf{tt} n = 1576$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-177.276	8.235	chi1	-172.476	8.492
chi2	62.594	6.963	chi2	153.401	10.535
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	116.491	2.056	$C\alphaC\betaC\gamma$	117.300	2.706
$C\alphaCO$	120.525	0.788	$C\alphaCO$	120.592	0.860
$C\beta C\alpha C$	110.192	1.205	$C\betaC\alphaC$	111.070	1.256
$C\betaC\gammaC\delta 1$	111.069	1.554	$C\betaC\gammaC\delta 1$	110.121	1.530
$C\betaC\gammaC\delta_2$	109.781	1.495	$C\betaC\gammaC\delta_2$	111.610	1.837
$C\delta1_C\gamma_C\delta2$	110.707	1.134	$C\delta1_C\gamma_C\delta2$	110.437	1.320
$N_C\alpha_C$	110.165	2.380	$N_C\alpha_C$	109.108	2.499
$N_{-}C\alpha_{-}C\beta$	110.303	1.147	$N_{-}C\alpha_{-}C\beta$	110.213	1.253
LE	$U \mathbf{tm} n = 143$		LE	$U \mathbf{mp} n = 2711$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-171.753	5.901	chi1	-77.359	12.530
chi2	-75.044	6.356	chi2	71.504	15.741
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	120.365	2.303	$C\alphaC\betaC\gamma$	116.579	2.638
$C\alphaCO$	120.583	0.802	$C\alphaCO$	120.462	0.850
$C\beta _C\alpha _C$	111.264	1.174	$C\beta C\alpha C$	109.681	1.568
$C\beta C\gamma C\delta 1$	112.297	1.918	$C\beta C\gamma C\delta 1$	111.644	2.035
$C\betaC\gammaC\delta_2$	111.622	1.690	$C\betaC\gammaC\delta_2$	109.937	1.583
$C\delta1C\gammaC\delta2$	111.421	1.438	$C\delta1C\gammaC\delta2$	110.503	1.455
$N_{-}C\alpha_{-}C$	108.547	2.317	$N_{-}C\alpha_{-}C$	110.165	2.644
$N_{-}C\alpha_{-}C\beta$	109.930	1.129	$N_{-}C\alpha_{-}C\beta$	111.085	1.027

LEU	mt n = 74252		LE	$U \mathbf{mm} n = 484$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDe
chi1	-65.787	8.164	chi1	-82.802	10.17
chi2	174.346	8.051	chi2	-63.907	9.998
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDe
$C\alphaC\betaC\gamma$	115.859	2.169	$C\alphaC\betaC\gamma$	117.810	2.626
$C\alphaCO$	120.431	0.820	$C\alphaCO$	120.323	0.893
$C\beta C\alpha C$	109.811	1.421	$C\beta C\alpha C$	110.092	1.579
$C\beta_{-}C\gamma_{-}C\delta 1$	109.882	1.466	$C\betaC\gammaC\delta 1$	110.866	1.604
$C\betaC\gammaC\delta 2$	110.965	1.547	$C\betaC\gammaC\delta_2$	111.876	1.719
$C\delta1_C\gamma_C\delta2$	110.777	1.107	$C\delta1_C\gamma_C\delta2$	110.701	1.403
$N_{-}C\alpha_{-}C$	111.393	2.340	$N_{-}C\alpha_{-}C$	111.081	2.614
$N_{-}C\alpha_{-}C\beta$	110.599	0.985	$N_{-}C\alpha_{-}C\beta$	111.033	0.983

3.7 ILE

IL	$E \mathbf{pp} \ n = 254$			IL	$E \mathbf{pt} \ n = 8837$	
χ	Smooth COM	StdDev	•	χ	Smooth COM	StdDev
chi1	57.851	7.686		chi1	62.073	6.094
chi2	84.312	12.800		chi2	170.331	7.581
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma 1$	112.503	1.280		$C\alphaC\betaC\gamma 1$	111.339	1.083
$C\alphaC\betaC\gamma_2$	109.866	1.145		$C\alphaC\betaC\gamma_2$	110.176	0.938
$C\alphaCO$	120.547	0.873		$C\alphaCO$	120.535	0.937
$C\betaC\alphaC$	111.344	1.607		$C\beta C\alpha C$	110.110	1.671
$C\beta C\gamma 1C\delta 1$	115.059	1.803		$C\beta C\gamma 1C\delta 1$	113.605	1.254
$C\gamma 1_C\beta_C\gamma 2$	110.044	1.960		$C\gamma 1_C\beta_C\gamma 2$	111.381	1.533
$N_{-}C\alpha_{-}C$	112.012	2.513		$N_{-}C\alpha_{-}C$	111.361	2.736
$N_{-}C\alpha_{-}C\beta$	112.286	1.249		$N_{-}C\alpha_{-}C\beta$	112.260	1.195
IL	$\mathbf{E} \; \mathbf{tp} \; \mathbf{n} = 1869$			IL	E tt $n = 4163$	
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev
chi1	-167.339	7.836		chi1	-169.614	7.748
chi2	65.770	7.313		chi2	166.622	6.871
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma 1$	111.105	1.130		$C\alphaC\betaC\gamma 1$	110.680	1.065
$C\alphaC\betaC\gamma_2$	111.437	1.028		$C\alphaC\betaC\gamma_2$	111.396	1.038
$C\alphaCO$	120.365	0.819		$C\alphaCO$	120.604	0.827
$C\betaC\alphaC$	111.532	1.459		$C\beta C\alpha C$	111.636	1.480
$C\beta C\gamma 1C\delta 1$	114.167	1.154		$C\beta C\gamma 1C\delta 1$	113.490	1.268
$C\gamma 1_C\beta_C\gamma 2$	110.819	1.695		$C\gamma 1_C\beta_C\gamma 2$	111.706	1.614
$N_{-}C\alpha_{-}C$	111.577	2.333		$N_{-}C\alpha_{-}C$	110.129	2.516
$N_{-}C\alpha_{-}C\beta$	111.454	1.272		$N_{-}C\alpha_{-}C\beta$	111.350	1.316
IL	$E \mathbf{mp} n = 623$			ILE	mt n = 44470	
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev
chi1	-62.667	11.611		chi1	-62.999	6.427
chi2	88.683	16.573		chi2	169.237	7.398
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma 1$	111.150	1.110		$C\alphaC\betaC\gamma 1$	109.984	1.081
$C\alpha_{-}C\beta_{-}C\gamma_{2}$	110.473	1.090		$C\alpha_{-}C\beta_{-}C\gamma_{2}$	110.617	0.918
$C\alphaCO$	120.462	0.812		$C\alphaCO$	120.542	0.790
$C\beta C\alpha C$	110.134	1.635		$C\betaC\alphaC$	110.366	1.581
$C\beta C\gamma 1C\delta 1$	114.582	1.667		$C\beta C\gamma 1C\delta 1$	113.966	1.223
$C\gamma 1_C\beta_C\gamma 2$	109.324	1.870		$C\gamma 1_C\beta_C\gamma 2$	110.762	1.437
$N_{-}C\alpha_{-}C$	108.335	2.264		$N_{-}C\alpha_{-}C$	109.405	2.337
$N_{-}C\alpha_{-}C\beta$	111.949	1.287		$N_{-}C\alpha_{-}C\beta$	111.245	1.145

ILE	ILE mm $n = 11258$					
χ	Smooth COM	StdDev				
chi1	-59.020	7.075				
chi2	-61.129	7.343				
Bond Angle	Mean	StdDev				
$C\alphaC\betaC\gamma 1$	110.904	1.123				
$C\alphaC\betaC\gamma_2$	110.751	0.967				
$C\alphaCO$	120.513	0.804				
$C\beta_{-}C\alpha_{-}C$	109.837	1.605				
$C\betaC\gamma_1C\delta_1$	114.776	1.211				
$C\gamma 1_C\beta_C\gamma 2$	111.277	1.468				
$N_{-}C\alpha_{-}C$	109.449	2.450				
$N_{-}C\alpha_{-}C\beta$	111.304	1.149				

3.8 ASN

AS	$N \ \mathbf{p0} \ n = 7513$		ASN t0 n = 15610			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	63.756	7.767	chi1	-171.473	10.505	
chi2	6.662	43.284	chi2	-1.493	54.857	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	113.139	0.878	$C\alphaC\betaC\gamma$	112.733	0.917	
$C\alphaCO$	120.389	0.966	$C\alphaCO$	120.615	0.874	
$C\beta_{-}C\alpha_{-}C$	111.273	1.683	$C\betaC\alphaC$	110.613	1.307	
$C\beta_C\gamma_N\delta 2$	116.347	0.911	$C\betaC\gammaN\delta 2$	116.453	0.851	
$C\beta C\gamma O\delta 1$	121.130	0.982	$C\betaC\gammaO\delta 1$	120.906	0.917	
$N_{-}C\alpha_{-}C$	111.973	2.774	$N_C\alpha_C$	110.128	2.820	
$N_{-}C\alpha_{-}C\beta$	111.073	1.286	$N_C\alpha_C\beta$	110.094	1.446	
$O\delta1_{-}C\gamma_{-}N\delta2$	122.498	0.716	$O\delta1_C\gamma_N\delta2$	122.613	0.680	
AS	ASN t160 n = 61			ASN m110 n = 4003		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
			Λ	винеен сом	buabev	
chi1	-161.337	7.377	chi1	-63.571	9.647	
chi1 chi2	-161.337 163.600					
		7.377	chi1	-63.571	9.647	
chi2	163.600	7.377 9.123	chi1 chi2	-63.571 114.583	9.647 28.436	
chi2 Bond Angle	163.600 Mean	7.377 9.123 StdDev	chi1 chi2 Bond Angle	-63.571 114.583 Mean	9.647 28.436 StdDev	
chi2 Bond Angle $C\alpha C\beta C\gamma$	163.600 Mean 114.235	7.377 9.123 StdDev 1.524	chi1 chi2 Bond Angle $C\alpha - C\beta - C\gamma$	-63.571 114.583 Mean 112.723	9.647 28.436 StdDev 1.153	
chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C-C$	163.600 Mean 114.235 120.433	7.377 9.123 StdDev 1.524 0.848	chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha CO$	-63.571 114.583 Mean 112.723 120.501	9.647 28.436 StdDev 1.153 0.902	
chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma N\delta C$ $C\beta C\gamma C\delta C$	163.600 Mean 114.235 120.433 111.294	7.377 9.123 StdDev 1.524 0.848 1.376	chi1 chi2 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _C$ $C\beta _C\alpha _C$ $C\beta _C\alpha _C$ $C\beta _C\gamma _N\delta 2$ $C\beta _C\gamma _O\delta 1$	-63.571 114.583 Mean 112.723 120.501 109.543	9.647 28.436 StdDev 1.153 0.902 1.841	
chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma N\delta 2$	163.600 Mean 114.235 120.433 111.294 117.029	7.377 9.123 StdDev 1.524 0.848 1.376 2.099	chi1 chi2 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$ $C\betaC\alphaC$ $C\betaC\gammaN\delta 2$	-63.571 114.583 Mean 112.723 120.501 109.543 116.643	9.647 28.436 StdDev 1.153 0.902 1.841 1.136	
chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma N\delta C$ $C\beta C\gamma C\delta C$	Mean 114.235 120.433 111.294 117.029 120.496	7.377 9.123 StdDev 1.524 0.848 1.376 2.099 2.021	chi1 chi2 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _C$ $C\beta _C\alpha _C$ $C\beta _C\alpha _C$ $C\beta _C\gamma _N\delta 2$ $C\beta _C\gamma _O\delta 1$	-63.571 114.583 Mean 112.723 120.501 109.543 116.643 120.710	9.647 28.436 StdDev 1.153 0.902 1.841 1.136 1.173	
chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\gamma$ $C\alpha C\gamma$ $C\beta C\alpha C$ $C\beta C\gamma N\delta 2$ $C\beta C\gamma O\delta 1$ $C\beta C\alpha C$	Mean 114.235 120.433 111.294 117.029 120.496 110.034	7.377 9.123 StdDev 1.524 0.848 1.376 2.099 2.021 1.950	chi1 chi2 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$ $C\betaC\alphaC$ $C\betaC\gammaN\delta_2$ $C\betaC\gammaO\delta_1$ $NC\alphaC$	-63.571 114.583 Mean 112.723 120.501 109.543 116.643 120.710 112.046	9.647 28.436 StdDev 1.153 0.902 1.841 1.136 1.173 2.783	
chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\alpha C$ $C\beta C\gamma N\delta 2$ $C\beta C\gamma N\delta 1$ $C\alpha C$ $C\beta C\gamma N\delta 2$ $C\beta C\gamma N\delta 1$	163.600 Mean 114.235 120.433 111.294 117.029 120.496 110.034 109.281	7.377 9.123 StdDev 1.524 0.848 1.376 2.099 2.021 1.950 1.457 0.778	chi1 chi2 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$ $C\beta_C\gamma_N\delta2$ $C\beta_C\gamma_O\delta1$ $N_C\alpha_C$ $N_C\alpha_C\beta$	-63.571 114.583 Mean 112.723 120.501 109.543 116.643 120.710 112.046 110.629	9.647 28.436 StdDev 1.153 0.902 1.841 1.136 1.173 2.783 1.196	
chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\gamma$ $C\alpha C\gamma$ $C\beta C\alpha C$ $C\beta C\gamma N\delta 2$ $C\beta C\gamma C\delta 1$ $C\beta C\gamma C\delta 1$ $C\beta C\gamma C\delta 1$ $C\alpha C$ $C\beta C\gamma C\delta 1$	163.600 Mean 114.235 120.433 111.294 117.029 120.496 110.034 109.281 122.428	7.377 9.123 StdDev 1.524 0.848 1.376 2.099 2.021 1.950 1.457 0.778	chi1 chi2 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$ $C\beta_C\gamma_N\delta2$ $C\beta_C\gamma_O\delta1$ $N_C\alpha_C$ $N_C\alpha_C\beta$	-63.571 114.583 Mean 112.723 120.501 109.543 116.643 120.710 112.046 110.629	9.647 28.436 StdDev 1.153 0.902 1.841 1.136 1.173 2.783 1.196	

-69.790

-41.669

Mean

9.121

26.314

 StdDev

chi1

chi2

Bond Angle

3.9 ASP

ASP p0 n = 11746			ASP t0 n = 17107			
$\frac{\chi}{\chi}$	Smooth COM	StdDev	$\frac{\chi}{\chi}$	Smooth COM	StdDev	
chi1 chi2	62.914 -2.097	7.504 31.033	chi1 chi2	-171.502 -1.704	10.156 23.754	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}O\delta 1 \end{array} $	113.477 120.397 111.293 119.658	1.018 0.909 1.647 1.560	Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C Cβ_Cγ_Oδ1	113.211 120.704 110.867 119.520	0.911 0.890 1.230 1.387	
$C\beta C\gamma O\delta 2$ $N C\alpha C$ $N C\alpha C$ $N C\alpha C\beta$ $O\delta 1 C\gamma O\delta 2$	118.192 112.193 111.140 122.124	1.768 2.551 1.255 1.639	$C\beta C\gamma O\delta 2$ $N C\alpha C$ $N C\alpha C$ $N C\alpha C\beta$ $O\delta 1 C\gamma O\delta 2$	118.084 108.896 109.695 122.372	1.734 2.647 1.453 1.580	
ASP t70 n = 6029						
ASI	P t70 n = 6029		ASP	m-30 n = 37239)	
ASI	P t70 n = 6029 Smooth COM	StdDev	χ ASP	m-30 n = 37239 Smooth COM	StdDev	
		StdDev 9.206 19.764				
$\frac{\chi}{\text{chi1}}$	Smooth COM -174.210	9.206	$\frac{\chi}{\text{chi1}}$	Smooth COM -68.819	StdDev 8.157	
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ \end{array}$	Smooth COM -174.210 74.194 Mean 112.428 120.495 110.144	9.206 19.764 StdDev 0.833 0.800 1.274	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.819 -29.214 Mean 112.905 120.451 109.353	8.157 22.379 StdDev 0.946 0.856 1.669	
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha\text{-C}\beta\text{-C}\gamma \\ \\ \text{C}\alpha\text{-C}\text{-O} \\ \end{array}$	Smooth COM -174.210 74.194 Mean 112.428 120.495	9.206 19.764 StdDev 0.833 0.800	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha\text{-C}\beta\text{-C}\gamma \\ \\ \text{C}\alpha\text{-C-O} \end{array}$	Smooth COM -68.819 -29.214 Mean 112.905 120.451	StdDev 8.157 22.379 StdDev 0.946 0.856	

3.10 HIS

HIS p90 n = 1492			HIS p-80 $n = 2203$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	62.492	9.692	chi1	64.769	9.896	
chi2	86.558	21.799	chi2	-80.838	16.239	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	114.189	1.053	$C\alpha_{-}C\beta_{-}C\gamma$	114.073	1.065	
$C\alphaCO$	120.635	0.945	$C\alphaCO$	120.392	0.980	
$C\betaC\alphaC$	110.826	1.567	$C\betaC\alphaC$	110.369	1.531	
$C\betaC\gammaC\delta_2$	131.000	0.858	$C\betaC\gammaC\delta_2$	131.015	0.802	
$C\beta C\gamma N\delta 1$	122.773	0.915	$C\betaC\gammaN\delta 1$	122.746	0.806	
$C\epsilon 1_N\epsilon 2_C\delta 2$	108.808	0.592	$C\epsilon 1_N\epsilon 2_C\delta 2$	108.828	0.584	
$C\gamma_C\delta_2N\epsilon_2$	107.271	0.501	$C\gamma_{-}C\delta_{2}N\epsilon_{2}$	107.240	0.521	
$C\gamma N\delta 1C\epsilon 1$	109.201	0.717	$C\gamma N\delta 1C\epsilon 1$	109.201	0.610	
$N\delta1$ _ $C\epsilon1$ _ $N\epsilon2$	108.528	0.659	$N\delta1$ _ $C\epsilon1$ _ $N\epsilon2$	108.521	0.605	
$N\delta1_{-}C\gamma_{-}C\delta2$	106.170	0.534	$N\delta1_{-}C\gamma_{-}C\delta2$	106.187	0.514	
$N_{-}C\alpha_{-}C$	111.257	2.740	$N_{-}C\alpha_{-}C$	112.010	2.426	
$N_{-}C\alpha_{-}C\beta$	110.998	1.361	$N_{-}C\alpha_{-}C\beta$	111.016	1.324	
HIS $t70 \text{ n} = 5068$						
HIS	5 t70 n = 5068		HIS	t-170 n = 1332		
ΗIS	St70 n = 5068 Smooth COM	StdDev	HIS χ	t-170 n = 1332 Smooth COM	StdDev	
		StdDev 10.035			StdDev 9.701	
χ	Smooth COM		χ	Smooth COM		
$\frac{\chi}{\text{chi1}}$	Smooth COM -178.423	10.035	$\frac{\chi}{\text{chi1}}$	Smooth COM -173.314	9.701	
χ chi1 chi2	Smooth COM -178.423 73.865	10.035 17.323	χ chi1 chi2	Smooth COM -173.314 -167.114	9.701 21.613	
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -178.423 73.865 Mean	10.035 17.323 StdDev	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -173.314 -167.114 Mean	9.701 21.613 StdDev	
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$_$C}\beta$_$C}\gamma \end{array}$	Smooth COM -178.423 73.865 Mean 113.614	10.035 17.323 StdDev 1.068	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$_$C}\beta$_$\text{$\text{C}}\gamma \\ \end{array}$	Smooth COM -173.314 -167.114 Mean 114.240	9.701 21.613 StdDev 1.024	
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$_$C}\beta$_$C}\gamma \\ \hline \text{$\text{C}\alpha$_C_$C} \end{array}$	Smooth COM -178.423 73.865 Mean 113.614 120.573	10.035 17.323 StdDev 1.068 0.830	χ chi1 chi2 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$	Smooth COM -173.314 -167.114 Mean 114.240 120.601	9.701 21.613 StdDev 1.024 0.807	
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha\text{-}\text{C}\beta\text{-}\text{C}\gamma \\ \\ \text{C}\alpha\text{-}\text{C}\text{-}\text{O} \\ \\ \text{C}\beta\text{-}\text{C}\alpha\text{-}\text{C} \\ \end{array}$	Smooth COM -178.423 73.865 Mean 113.614 120.573 110.127	10.035 17.323 StdDev 1.068 0.830 1.337	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{-}\text{C}\beta\text{-}\text{C}\gamma \\ \\ \text{C}\alpha\text{-}\text{C}\text{-}\text{O} \\ \\ \text{C}\beta\text{-}\text{C}\alpha\text{-}\text{C} \\ \end{array}$	Smooth COM -173.314 -167.114 Mean 114.240 120.601 110.900	9.701 21.613 StdDev 1.024 0.807 1.306	
χ chi1 chi2 Bond Angle Cα_Cβ_Cγ Cα_C, Cγ Cβ_Cα_C Cβ_Cγ_Cδ2	Smooth COM -178.423 73.865 Mean 113.614 120.573 110.127 131.028	10.035 17.323 StdDev 1.068 0.830 1.337 0.815	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_C$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta2$} \end{array}$	Smooth COM -173.314 -167.114 Mean 114.240 120.601 110.900 131.372	9.701 21.613 StdDev 1.024 0.807 1.306 0.975	
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ \hline \text{$C\alpha_C_O$} \\ \hline \\ \hline \\ \hline \text{$C\beta_C\alpha_C$} \\ \hline \\ $	Smooth COM -178.423 73.865 Mean 113.614 120.573 110.127 131.028 122.666	10.035 17.323 StdDev 1.068 0.830 1.337 0.815 0.792	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ $	Smooth COM -173.314 -167.114 Mean 114.240 120.601 110.900 131.372 122.414	9.701 21.613 StdDev 1.024 0.807 1.306 0.975 1.049	
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta2$} \\ \text{$C\beta_C\gamma_N\delta1$} \\ \text{$C\epsilon1_N\epsilon2_C\delta2$} \\ \end{array}$	Smooth COM -178.423 73.865 Mean 113.614 120.573 110.127 131.028 122.666 108.853	10.035 17.323 StdDev 1.068 0.830 1.337 0.815 0.792 0.519	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta$_$C}\gamma \\ \text{$C\alpha$_$C$_$O} \\ \text{$C\beta$_$C}\alpha$_$C} \\ \text{$C\beta$_$C}\gamma$_$C}\delta 2 \\ \text{$C\beta$_$C}\gamma$_$N}\delta 1 \\ \text{$C\epsilon 1$_$N}\epsilon 2.C\delta 2 \\ \end{array}$	Smooth COM -173.314 -167.114 Mean 114.240 120.601 110.900 131.372 122.414 108.773	9.701 21.613 StdDev 1.024 0.807 1.306 0.975 1.049 0.553	
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_\text{C}\beta_\text{C}\gamma$} \\ \text{$C\alpha_\text{C}$-$C$} \\ \text{$C\beta_\text{C}\gamma_\text{C}\delta2$} \\ \text{$C\beta_\text{C}\gamma_\text{N}\delta1$} \\ \text{$C\epsilon1_\text{N}\epsilon2_\text{C}\delta2$} \\ \text{$C\gamma_\text{C}\delta2_\text{N}\epsilon2$} \\ \hline \end{array}$	Smooth COM -178.423 73.865 Mean 113.614 120.573 110.127 131.028 122.666 108.853 107.197	10.035 17.323 StdDev 1.068 0.830 1.337 0.815 0.792 0.519 0.456	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta_\text{$C\gamma$} \\ \text{$C\alpha$_$C$_$O} \\ \text{$C\beta$_$C}\alpha_\text{$C$} \\ \text{$C\beta$_$C}\gamma_\text{$C\delta2$} \\ \text{$C\beta$_$C}\gamma_\text{$N\delta1$} \\ \text{$C\epsilon1$_$N$$\epsilon2$_$C}\delta2 \\ \text{$C\gamma$_$C}\delta2_\text{$N\epsilon2$} \\ \hline \end{array}$	Smooth COM -173.314 -167.114 Mean 114.240 120.601 110.900 131.372 122.414 108.773 107.239	9.701 21.613 StdDev 1.024 0.807 1.306 0.975 1.049 0.553 0.449	
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\gamma_C\delta2$} \\ \text{$C\beta_C\gamma_N\delta1$} \\ \text{$C\epsilon1_N\epsilon2_C\delta2$} \\ \text{$C\gamma_C\delta2_N\epsilon2$} \\ \text{$C\gamma_N\delta1_C\epsilon1$} \end{array}$	Smooth COM -178.423 73.865 Mean 113.614 120.573 110.127 131.028 122.666 108.853 107.197 109.172	10.035 17.323 StdDev 1.068 0.830 1.337 0.815 0.792 0.519 0.456 0.621	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -173.314 -167.114 Mean 114.240 120.601 110.900 131.372 122.414 108.773 107.239 109.216	9.701 21.613 StdDev 1.024 0.807 1.306 0.975 1.049 0.553 0.449 0.658	
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ \text{$C\alpha_C_O$} \\ \hline \\ \text{$C\beta_C\alpha_C$} \\ \hline \\ \text{$C\beta_C\gamma_C\delta2$} \\ \hline \\ \text{$C\beta_C\gamma_N\delta1$} \\ \hline \\ \text{$C\epsilon1_N\epsilon2_C\delta2$} \\ \hline \\ \text{$C\gamma_C\delta2_N\epsilon2$} \\ \hline \\ \text{$C\gamma_N\delta1_C\epsilon1$} \\ \hline \\ \text{$N\delta1_C\epsilon1_N\epsilon2$} \\ \hline \end{array}$	Smooth COM -178.423 73.865 Mean 113.614 120.573 110.127 131.028 122.666 108.853 107.197 109.172 108.505	10.035 17.323 StdDev 1.068 0.830 1.337 0.815 0.792 0.519 0.456 0.621 0.557	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -173.314 -167.114 Mean 114.240 120.601 110.900 131.372 122.414 108.773 107.239 109.216 108.565	9.701 21.613 StdDev 1.024 0.807 1.306 0.975 1.049 0.553 0.449 0.658 0.625	

HIS t-90 n = 3553		HIS m170 $n = 2695$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-173.491	10.385	chi1	-67.985	8.200
chi2	-86.784	18.450	chi2	170.975	21.745
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.698	1.010	$C\alphaC\betaC\gamma$	113.732	0.930
$C\alphaCO$	120.474	0.846	$C\alphaCO$	120.396	0.880
$C\beta C\alpha C$	110.440	1.219	$C\beta C\alpha C$	109.708	1.788
$C\betaC\gammaC\delta 2$	130.907	0.830	$C\betaC\gammaC\delta_2$	131.144	0.993
$C\betaC\gammaN\delta 1$	122.790	0.749	$C\betaC\gammaN\delta 1$	122.596	1.037
$C\epsilon 1_N\epsilon 2_C\delta 2$	108.840	0.525	$C\epsilon 1_N\epsilon 2_C\delta 2$	108.792	0.528
$C\gamma_C\delta_2N\epsilon_2$	107.199	0.482	$C\gamma_C\delta_2N\epsilon_2$	107.215	0.471
$C\gamma N\delta 1C\epsilon 1$	109.174	0.721	$C\gamma N\delta 1C\epsilon 1$	109.180	0.692
$N\delta 1_C\epsilon 1_N\epsilon 2$	108.510	0.617	$N\delta1_{-}C\epsilon1_{-}N\epsilon2$	108.559	0.624
$N\delta1_{-}C\gamma_{-}C\delta2$	106.247	0.554	$N\delta1_{-}C\gamma_{-}C\delta2$	106.227	0.530
$N_{-}C\alpha_{-}C$	109.908	2.468	$N_{-}C\alpha_{-}C$	111.531	2.540
$N_{-}C\alpha_{-}C\beta$	110.079	1.464	$N_{-}C\alpha_{-}C\beta$	110.742	1.152
HIS m90 $n = 3914$		HIS m-70 n = 9453			
	m90 n = 3914		HIS	m-70 n = 9453	
$\frac{1115}{\chi}$	$\frac{\text{m90 n} = 3914}{\text{Smooth COM}}$	StdDev	χ	$\frac{\text{m-70 n} = 9453}{\text{Smooth COM}}$	StdDev
		StdDev 9.782			StdDev 10.014
χ	Smooth COM		χ	Smooth COM	
$\frac{\chi}{\text{chi1}}$	Smooth COM -65.658	9.782	χ chi1	Smooth COM -64.458	10.014
χ chi1 chi2	Smooth COM -65.658 88.477	9.782 17.472	χ chi1 chi2	Smooth COM -64.458 -75.228	10.014 19.348
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -65.658 88.477 Mean	9.782 17.472 StdDev	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -64.458 -75.228 Mean	10.014 19.348 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$-$\text{C}\beta$-$\text{C}\gamma$} \end{array}$	Smooth COM -65.658 88.477 Mean 113.467	9.782 17.472 StdDev 1.110	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{_C}\beta\text{_C}\gamma \end{array}$	Smooth COM -64.458 -75.228 Mean 113.370	10.014 19.348 StdDev 1.064
χ chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C-C$	Smooth COM -65.658 88.477 Mean 113.467 120.484	9.782 17.472 StdDev 1.110 0.896	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \end{array}$	Smooth COM -64.458 -75.228 Mean 113.370 120.407	10.014 19.348 StdDev 1.064 0.875
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759	9.782 17.472 StdDev 1.110 0.896 1.956	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \end{array}$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866	10.014 19.348 StdDev 1.064 0.875 1.886
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923	9.782 17.472 StdDev 1.110 0.896 1.956 0.854	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054	10.014 19.348 StdDev 1.064 0.875 1.886 0.818
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{$C\alpha$-C\beta$-$Cγ} \\ \hline \\ \hline \text{$C\alpha$-C-C0} \\ \hline \\ \hline \text{$C\beta$-C\alpha$-$C$} \\ \hline \\ \hline \\ \hline \text{$C\beta$-C\gamma$-$Cδ2} \\ \hline \\ \hline \\ \hline \text{$C\beta$-C\gamma$-$Nδ1} \\ \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923 122.786	9.782 17.472 StdDev 1.110 0.896 1.956 0.854 0.821	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054 122.620	10.014 19.348 StdDev 1.064 0.875 1.886 0.818 0.801
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta$_\text{$C\gamma$} \\ \hline \\ \text{$C\alpha$_C_$C} \\ \hline \\ \text{$C\beta$_$C$$\alpha$_$C} \\ \hline \\ \text{$C\beta$_$C$$\gamma$_$C$$\delta2} \\ \hline \\ \text{$C\beta$_$C$$\gamma$_$N$$\delta1} \\ \hline \\ \text{$C\epsilon1$_$N$$\epsilon2$_$C$$\delta2} \\ \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923 122.786 108.852	9.782 17.472 StdDev 1.110 0.896 1.956 0.854 0.821 0.557	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054 122.620 108.856	10.014 19.348 StdDev 1.064 0.875 1.886 0.818 0.801 0.517
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ \text{$C\alpha_C_O$} \\ \hline \\ \text{$C\beta_C\alpha_C$} \\ \hline \\ \text{$C\beta_C\gamma_C\delta2$} \\ \hline \\ \text{$C\beta_C\gamma_N\delta1$} \\ \hline \\ \text{$C\epsilon1_N\epsilon2_C\delta2$} \\ \hline \\ \text{$C\gamma_C\delta2_N\epsilon2$} \\ \hline \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923 122.786 108.852 107.207	9.782 17.472 StdDev 1.110 0.896 1.956 0.854 0.821 0.557 0.499	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054 122.620 108.856 107.184	10.014 19.348 StdDev 1.064 0.875 1.886 0.818 0.801 0.517 0.469
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta2$} \\ \text{$C\beta_C\gamma_N\delta1$} \\ \text{$C\epsilon1_N\epsilon2_C\delta2$} \\ \text{$C\gamma_C\delta2_N\epsilon2$} \\ \text{$C\gamma_N\delta1_C\epsilon1$} \\ \hline \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923 122.786 108.852 107.207 109.189	9.782 17.472 StdDev 1.110 0.896 1.956 0.854 0.821 0.557 0.499 0.640	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054 122.620 108.856 107.184 109.178	10.014 19.348 StdDev 1.064 0.875 1.886 0.818 0.801 0.517 0.469 0.630
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta$_$C}\gamma \\ \text{$C\alpha$_$C}-C \\ \text{$C\beta$_$C}\alpha$_$C \\ \text{$C\beta$_$C}\gamma$_$C}\delta 2 \\ \text{$C\beta$_$C}\gamma$_$C}\delta 2 \\ \text{$C\beta$_$C}\gamma$_$N}\delta 1 \\ \text{$C\epsilon 1.N}\epsilon 2.C}\delta 2 \\ \text{$C\gamma$_$C}\delta 2.N\epsilon 2 \\ \text{$C\gamma$_$N}\delta 1.C}\epsilon 1 \\ \text{$N\delta 1.C}\epsilon 1.N\epsilon 2 \\ \hline \end{array}$	Smooth COM -65.658 88.477 Mean 113.467 120.484 109.759 130.923 122.786 108.852 107.207 109.189 108.501	9.782 17.472 StdDev 1.110 0.896 1.956 0.854 0.821 0.557 0.499 0.640 0.615	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -64.458 -75.228 Mean 113.370 120.407 109.866 131.054 122.620 108.856 107.184 109.178 108.498	10.014 19.348 StdDev 1.064 0.875 1.886 0.818 0.801 0.517 0.469 0.630 0.562

3.11 PHE

PHE p90 n = 6289		PHE t80 $n = 19289$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	63.561	9.566	chi1	-178.297	9.973
chi2	-89.699	9.411	chi2	75.767	17.432
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.408	0.965	$C\alpha_{-}C\beta_{-}C\gamma$	113.786	1.072
$C\alphaCO$	120.711	0.891	$C\alphaCO$	120.598	0.802
$C\betaC\alphaC$	110.881	1.459	$C\betaC\alphaC$	110.336	1.300
$C\betaC\gammaC\delta 1$	120.730	0.618	$C\betaC\gammaC\delta 1$	120.648	0.723
$C\betaC\gammaC\delta_2$	120.607	0.579	$C\betaC\gammaC\delta 2$	120.537	0.684
$C\delta 1_C\epsilon 1_C\zeta$	119.892	0.604	$C\delta1_C\epsilon1_C\zeta$	119.859	0.588
$C\delta1C\gammaC\delta2$	118.617	0.534	$C\delta1C\gammaC\delta2$	118.764	0.551
$C\epsilon 1 C\zeta C\epsilon 2$	119.823	0.628	$C\epsilon 1 C\zeta C\epsilon 2$	119.922	0.630
$C\gammaC\delta 1C\epsilon 1$	120.858	0.589	$C\gamma C\delta 1C\epsilon 1$	120.767	0.581
$C\gamma_C\delta_2C\epsilon_2$	120.855	0.575	$C\gammaC\delta_2C\epsilon_2$	120.790	0.589
$C\zetaC\epsilon_2C\delta_2$	119.920	0.592	$C\zeta_C\epsilon_2C\delta_2$	119.864	0.587
$N_{-}C\alpha_{-}C$	110.871	2.566	$N_{-}C\alpha_{-}C$	110.337	2.307
$N_{-}C\alpha_{-}C\beta$	111.393	1.319	$N_{-}C\alpha_{-}C\beta$	110.203	1.503
PHE m-10 n = 3880					
PHE	m-10 n = 3880		PHE	m-80 n = 26665	Ď
PHE	m-10 n = 3880 Smooth COM	StdDev	χ	m-80 n = 26665 Smooth COM	StdDev
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM -68.127	StdDev 9.328	$\frac{\chi}{\text{chi1}}$	Smooth COM -66.760	StdDev 10.140
χ chi1 chi2	Smooth COM -68.127 -14.743	StdDev 9.328 19.837	χ chi1 chi2	Smooth COM -66.760 -80.589	StdDev 10.140 16.828
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -68.127 -14.743 Mean	9.328 19.837 StdDev	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM -66.760 -80.589 Mean	StdDev 10.140 16.828 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \end{array}$	Smooth COM -68.127 -14.743 Mean 114.792	9.328 19.837 StdDev 0.955	χ chi1 chi2 Bond Angle $C\alphaC\betaC\gamma$	Smooth COM -66.760 -80.589 Mean 113.517	StdDev 10.140 16.828 StdDev 1.023
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \end{array}$	Smooth COM -68.127 -14.743 Mean 114.792 120.423	9.328 19.837 StdDev 0.955 0.872	χ chi1 chi2 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$	Smooth COM -66.760 -80.589 Mean 113.517 120.453	StdDev 10.140 16.828 StdDev 1.023 0.861
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta1$} \\ \text{$C\beta_C\gamma_C\delta2$} \\ \end{array}$	Smooth COM -68.127 -14.743 Mean 114.792 120.423 108.945	9.328 19.837 StdDev 0.955 0.872 1.776	χ chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\alpha C$	Smooth COM -66.760 -80.589 Mean 113.517 120.453 109.811	StdDev 10.140 16.828 StdDev 1.023 0.861 1.992
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{C} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta1 \\ \end{array}$	Smooth COM -68.127 -14.743 Mean 114.792 120.423 108.945 121.549	9.328 19.837 StdDev 0.955 0.872 1.776 1.215	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}.\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta1 \\ \end{array}$	Smooth COM -66.760 -80.589 Mean 113.517 120.453 109.811 120.579	StdDev 10.140 16.828 StdDev 1.023 0.861 1.992 0.602
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta$_$C}\gamma \\ \text{$C\alpha$_$C$_$O} \\ \text{$C\beta$_$C}\alpha$_$C} \\ \text{$C\beta$_$C}\gamma$_$C}\delta1 \\ \text{$C\beta$_$C}\gamma$_$C}\delta2 \\ \text{$C\delta1$_$C}\epsilon1.C\zeta \\ \text{$C\delta1$_$C}\gamma$_$C}\delta2 \\ \hline \end{array}$	Smooth COM -68.127 -14.743 Mean 114.792 120.423 108.945 121.549 119.886	9.328 19.837 StdDev 0.955 0.872 1.776 1.215 1.159	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.517 120.453 109.811 120.579 120.569	StdDev 10.140 16.828 StdDev 1.023 0.861 1.992 0.602 0.590
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 114.792 120.423 108.945 121.549 119.886 119.897	9.328 19.837 StdDev 0.955 0.872 1.776 1.215 1.159 0.614	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.517 120.453 109.811 120.579 120.569 119.862	StdDev 10.140 16.828 StdDev 1.023 0.861 1.992 0.602 0.590 0.580
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta$_$C}\gamma \\ \text{$C\alpha$_$C$_$O} \\ \text{$C\beta$_$C}\alpha$_$C} \\ \text{$C\beta$_$C}\gamma$_$C}\delta1 \\ \text{$C\beta$_$C}\gamma$_$C}\delta2 \\ \text{$C\delta1$_$C}\epsilon1.C\zeta \\ \text{$C\delta1$_$C}\gamma$_$C}\delta2 \\ \hline \end{array}$	Smooth COM -68.127 -14.743 Mean 114.792 120.423 108.945 121.549 119.886 119.897 118.521	9.328 19.837 StdDev 0.955 0.872 1.776 1.215 1.159 0.614 0.565	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.517 120.453 109.811 120.579 120.569 119.862 118.798	StdDev 10.140 16.828 StdDev 1.023 0.861 1.992 0.602 0.590 0.580 0.527
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 114.792 120.423 108.945 121.549 119.886 119.897 118.521 119.840	9.328 19.837 StdDev 0.955 0.872 1.776 1.215 1.159 0.614 0.565 0.619	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.517 120.453 109.811 120.579 120.569 119.862 118.798 119.894	StdDev 10.140 16.828 StdDev 1.023 0.861 1.992 0.602 0.590 0.580 0.527 0.607
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 114.792 120.423 108.945 121.549 119.886 119.897 118.521 119.840 120.784	9.328 19.837 StdDev 0.955 0.872 1.776 1.215 1.159 0.614 0.565 0.619 0.600	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.517 120.453 109.811 120.579 120.569 119.862 118.798 119.894 120.768	StdDev 10.140 16.828 StdDev 1.023 0.861 1.992 0.602 0.590 0.580 0.527 0.607 0.562
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta1$} \\ \text{$C\beta_C\gamma_C\delta2$} \\ \text{$C\delta1_C\varsigma1_C\zeta$} \\ \text{$C\delta1_C\varsigma_C\delta2$} \\ \text{$C\epsilon1_C\zeta_C\epsilon2$} \\ \text{$C\gamma_C\delta1_C\epsilon1$} \\ \text{$C\gamma_C\delta1_C\epsilon1$} \\ \text{$C\gamma_C\delta2_C\epsilon2$} \\ \hline \end{array}$	Smooth COM -68.127 -14.743 Mean 114.792 120.423 108.945 121.549 119.886 119.897 118.521 119.840 120.784 120.989	9.328 19.837 StdDev 0.955 0.872 1.776 1.215 1.159 0.614 0.565 0.619 0.600 0.612	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.517 120.453 109.811 120.579 120.569 119.862 118.798 119.894 120.768 120.766	StdDev 10.140 16.828 StdDev 1.023 0.861 1.992 0.602 0.590 0.580 0.527 0.607 0.562 0.570

3.12 TYR

TYR p90 n = 5466		TYR $t80 \text{ n} = 16312$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	63.561	10.553	chi1	-178.297	10.473
chi2	-89.699	10.123	chi2	75.767	16.674
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.846	1.875	$C\alphaC\betaC\gamma$	113.708	2.135
$C\alphaCO$	120.663	0.933	$C\alphaCO$	120.621	0.799
$C\betaC\alphaC$	110.645	1.410	$C\betaC\alphaC$	110.305	1.253
$C\betaC\gammaC\delta 1$	120.995	0.651	$C\betaC\gammaC\delta 1$	120.905	0.663
$C\betaC\gammaC\delta_2$	120.859	0.602	$C\betaC\gammaC\delta_2$	120.836	0.646
$C\delta1_C\epsilon1_C\zeta$	119.526	0.622	$C\delta 1_C\epsilon 1_C\zeta$	119.513	0.600
$C\delta1_C\gamma_C\delta2$	118.104	0.554	$C\delta1_C\gamma_C\delta2$	118.209	0.523
$C\epsilon 1 C\zeta C\epsilon 2$	120.448	0.664	$C\epsilon 1 C\zeta C\epsilon 2$	120.505	0.653
$C\epsilon 1C\zetaOH$	119.792	1.246	$C\epsilon 1C\zetaOH$	119.748	1.279
$C\gamma C\delta 1C\epsilon 1$	121.166	0.582	$C\gamma_{-}C\delta 1_{-}C\epsilon 1$	121.095	0.555
$C\gamma C\delta 2C\epsilon 2$	121.163	0.550	$C\gamma_{-}C\delta_{2}C\epsilon_{2}$	121.137	0.560
$C\zetaC\epsilon_2C\delta_2$	119.562	0.624	$C\zeta_{-}C\epsilon_{2}C\delta_{2}$	119.508	0.628
$N_{-}C\alpha_{-}C$	111.069	2.657	$N_{-}C\alpha_{-}C$	110.391	2.248
$N_{-}C\alpha_{-}C\beta$	111.212	1.224	$N_{-}C\alpha_{-}C\beta$	110.211	1.442
$\mathrm{OH}_{-}\mathrm{C}\zeta_{-}\mathrm{C}\epsilon 2$	119.743	1.241	$\mathrm{OH}_{-}\mathrm{C}\zeta_{-}\mathrm{C}\epsilon 2$	119.729	1.278
TYR m-10 $n = 2623$					
TYR	n = 2623		TYR	m-80 n = 22683	3
ΥΥR	m-10 n = 2623 Smooth COM	StdDev	χ	m-80 n = 22683 Smooth COM	StdDev
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM -68.127	StdDev 9.935	$\frac{\chi}{\text{chi1}}$	Smooth COM -66.760	StdDev 10.437
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$C\alpha$-C\beta$-$C$\gamma} \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769	9.935 20.169 StdDev 1.568	χ chi1 chi2 Bond Angle $C\alpha C\beta C\gamma$	Smooth COM -66.760 -80.589 Mean 113.205	StdDev 10.437 16.848 StdDev 2.043
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{_C}\beta\text{_C}\gamma \\ \\ \text{C}\alpha\text{_C-O} \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769 120.432	9.935 20.169 StdDev 1.568 0.845	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \end{array}$	Smooth COM -66.760 -80.589 Mean 113.205 120.442	StdDev 10.437 16.848 StdDev 2.043 0.877
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$C\alpha$-$C}\beta$-$C\gamma$ \\ \hline \text{$C\alpha$-$C-$O} \\ \hline \text{$C\beta$-$C\alpha$-$C} \\ \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056	9.935 20.169 StdDev 1.568 0.845 1.746	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \\ \text{C}\alpha_\text{C}_\text{O} \\ \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \end{array}$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \text{Bond Angle} \\ \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_C$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta1$} \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580	9.935 20.169 StdDev 1.568 0.845 1.746 1.013	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta_\text{$C\gamma$} \\ \hline \\ \text{$C\alpha$_$C$_$C} \\ \hline \\ \text{$C\beta$_$C$$\alpha$_$C} \\ \hline \\ \text{$C\beta$_$C$$\gamma$_$C$$\delta1} \\ \hline \\ \text{$C\beta$_$C$$\gamma$_$C$$\delta2} \\ \hline \\ \text{$C\delta$1$_$C$$\epsilon1$_$C$\zeta} \\ \end{array}$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010 120.405	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570 0.650	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240 120.500	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580 0.733
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010 120.405 120.080 121.075	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570 0.650 1.320 0.598	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240 120.500 119.719 121.099	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580 0.733 1.238 0.856
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010 120.405 120.080 121.075 121.325	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570 0.650 1.320 0.598 0.575	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240 120.500 119.719 121.099 121.096	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580 0.733 1.238 0.856 0.860
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010 120.405 120.080 121.075	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570 0.650 1.320 0.598 0.575 0.642	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240 120.500 119.719 121.099 121.096 119.515	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580 0.733 1.238 0.856 0.860 0.903
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010 120.405 120.080 121.075 121.325 119.652 111.382	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570 0.650 1.320 0.598 0.575	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240 120.500 119.719 121.099 121.096 119.515 111.429	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580 0.733 1.238 0.856 0.860
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Smooth COM -68.127 -14.743 Mean 115.769 120.432 109.056 121.580 120.368 119.496 118.010 120.405 120.080 121.075 121.325 119.652	9.935 20.169 StdDev 1.568 0.845 1.746 1.013 0.936 0.618 0.570 0.650 1.320 0.598 0.575 0.642	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Smooth COM -66.760 -80.589 Mean 113.205 120.442 109.633 120.859 120.851 119.505 118.240 120.500 119.719 121.099 121.096 119.515	StdDev 10.437 16.848 StdDev 2.043 0.877 1.925 0.627 0.617 0.900 0.580 0.733 1.238 0.856 0.860 0.903

3.13 TRP

TRP p90 n = 971			TRP p-90 n = 1937		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	60.293	9.937	chi1	61.771	9.829
chi2	87.822	14.661	chi2	-89.374	12.891
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	115.031	2.042	$C\alpha_{-}C\beta_{-}C\gamma$	115.039	1.903
$C\alphaCO$	120.569	0.863	$C\alphaCO$	120.457	0.933
$C\betaC\alphaC$	110.664	1.413	$C\betaC\alphaC$	110.457	1.434
$C\betaC\gammaC\delta 1$	127.002	0.699	$C\betaC\gammaC\delta 1$	126.859	0.673
$C\betaC\gammaC\delta_2$	126.749	0.757	$C\betaC\gammaC\delta_2$	126.898	0.711
$C\delta1_C\gamma_C\delta2$	106.201	0.376	$C\delta1_C\gamma_C\delta2$	106.193	0.435
$C\delta 1_N\epsilon 1_C\epsilon 2$	108.926	0.597	$C\delta 1_N\epsilon 1_C\epsilon 2$	108.956	0.459
$C\delta 2 C\epsilon 2 C\zeta 2$	122.451	0.368	$C\delta 2C\epsilon 2C\zeta 2$	122.437	0.342
$C\delta 2_C\epsilon 3_C\zeta 3$	118.690	0.344	$C\delta 2C\epsilon 3C\zeta 3$	118.715	0.472
$C\epsilon 2_C\delta 2_C\epsilon 3$	118.827	0.360	$C\epsilon 2_C\delta 2_C\epsilon 3$	118.806	0.387
$C\epsilon 2_C\delta 2_C\gamma$	107.259	0.313	$C\epsilon 2_C\delta 2_C\gamma$	107.248	0.330
$C\epsilon 3 C\zeta 3C\eta 2$	121.028	0.417	$C\epsilon 3 C\zeta 3C\eta 2$	121.029	0.457
$C\gamma_C\delta_1N\epsilon_1$	110.152	0.498	$C\gamma C\delta 1N\epsilon 1$	110.152	0.461
$C\gamma_{-}C\delta_{2}C\epsilon_{3}$	133.896	0.337	$C\gamma C\delta 2C\epsilon 3$	133.932	0.413
$C\eta_2C\zeta_2C\epsilon_2$	117.467	0.446	$C\eta_2 C\zeta_2 C\epsilon_2$	117.524	0.444
$C\zeta_3 C\eta_2 C\zeta_2$	121.507	0.461	$C\zeta_3 C\eta_2 C\zeta_2$	121.463	0.462
$N\epsilon 1C\epsilon 2C\delta 2$	107.442	0.366	$N\epsilon 1C\epsilon 2C\delta 2$	107.431	0.341
$N\epsilon 1_C\epsilon 2_C\zeta 2$	130.095	0.402	$N\epsilon 1_C\epsilon 2_C\zeta 2$	130.118	0.406
$N_{-}C\alpha_{-}C$	111.204	2.410	$N_{-}C\alpha_{-}C$	112.137	2.597
$N_{-}C\alpha_{-}C\beta$	111.115	1.260	$N_{-}C\alpha_{-}C\beta$	111.096	1.241

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.596 5.367 5tdDev 2.320 0.869 0.328 0.685 0.710 0.425 0.425 0.453 0.363
chi2 64.773 32.759 chi2 -102.575 1 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.267 2.142 $C\alpha_C\beta_C\gamma$ 113.566 2 $C\alpha_C_O$ 120.658 0.805 $C\alpha_C_O$ 120.574 0 $C\beta_C\alpha_C$ 110.556 1.354 $C\beta_C\alpha_C$ 110.338 1 $C\beta_C\gamma_C\delta1$ 127.131 0.791 $C\beta_C\gamma_C\delta1$ 126.901 0 $C\beta_C\gamma_C\delta2$ 126.521 0.816 $C\beta_C\gamma_C\delta2$ 126.744 0 $C\delta1_C\gamma_C\delta2$ 106.292 0.480 $C\delta1_C\gamma_C\delta2$ 106.290 0 $C\delta1_N\epsilon1_C\epsilon2$ 108.908 0.510 $C\delta1_N\epsilon1_C\epsilon2$ 108.932 0 $C\delta2_C\epsilon2_C\zeta2$ 122.396 0.397 $C\delta2_C\epsilon2_C\zeta2$ 122.411 0 $C\delta2_C\epsilon3_C\zeta3$ 118.696 0.418 $C\delta2_C\epsilon3_C\epsilon3$ 118.696 0 $C\epsilon2_C\delta2_C\epsilon3$ 118.868 0.376 $C\epsilon2_C\delta2_C\epsilon3$ 118.847 0	5.367 StdDev 3.320 3.869 3.28 3.685 3.710 3.425 3.453 3.363
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.267 2.142 $C\alpha_C\beta_C\gamma$ 113.566 2 $C\alpha_C_O$ 120.658 0.805 $C\alpha_C_O$ 120.574 0 $C\beta_C\alpha_C$ 110.556 1.354 $C\beta_C\alpha_C$ 110.338 1 $C\beta_C\gamma_C\delta1$ 127.131 0.791 $C\beta_C\gamma_C\delta1$ 126.901 0 $C\beta_C\gamma_C\delta2$ 126.521 0.816 $C\beta_C\gamma_C\delta2$ 126.744 0 $C\delta1_C\gamma_C\delta2$ 106.292 0.480 $C\delta1_C\gamma_C\delta2$ 106.290 0 $C\delta1_N\epsilon1_C\epsilon2$ 108.908 0.510 $C\delta1_N\epsilon1_C\epsilon2$ 108.932 0 $C\delta2_C\epsilon2_C\zeta2$ 122.396 0.397 $C\delta2_C\epsilon2_C\zeta2$ 122.411 0 $C\delta2_C\epsilon3_C\zeta3$ 118.696 0.418 $C\delta2_C\epsilon3_C\epsilon3$ 118.696 0 $C\epsilon2_C\delta2_C\epsilon3$ 118.868 0.376 $C\epsilon2_C\delta2_C\epsilon3$ 118.847 0	3.320 0.869 0.328 0.685 0.710 0.425 0.453 0.363
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.320 0.869 0.328 0.685 0.710 0.425 0.453 0.363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.869 328 0.685 0.710 0.425 0.453 0.363
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.328 0.685 0.710 0.425 0.453
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.685 0.710 0.425 0.453 0.363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.710 0.425 0.453 0.363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$).425).453).363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.453 0.363
$\begin{array}{ccccccccc} C\delta 2 - C\epsilon 2 - C\zeta 2 & 122.396 & 0.397 & C\delta 2 - C\epsilon 2 - C\zeta 2 & 122.411 & 0\\ C\delta 2 - C\epsilon 3 - C\zeta 3 & 118.696 & 0.418 & C\delta 2 - C\epsilon 3 - C\zeta 3 & 118.696 & 0\\ C\epsilon 2 - C\delta 2 - C\epsilon 3 & 118.868 & 0.376 & C\epsilon 2 - C\delta 2 - C\epsilon 3 & 118.847 & 0 \end{array}$.363
$C\delta_2$ _C ϵ_3 _C ζ_3 118.696 0.418 $C\delta_2$ _C ϵ_3 _C ζ_3 118.696 0 $C\epsilon_2$ _C δ_2 _C ϵ_3 118.868 0.376 $C\epsilon_2$ _C δ_2 _C ϵ_3 118.847 0	
$C\epsilon_2 C\delta_2 C\epsilon_3$ 118.868 0.376 $C\epsilon_2 C\delta_2 C\epsilon_3$ 118.847 0	
	0.451
$C\epsilon_2 - C\delta_2 - C\gamma$ 107.260 0.380 $C\epsilon_2 - C\delta_2 - C\gamma$ 107.214 0	0.349
	0.324
$C\epsilon_3 C\zeta_3 C\eta_2$ 120.994 0.476 $C\epsilon_3 C\zeta_3 C\eta_2$ 121.008 0	0.479
$C\gammaC\delta_1N\epsilon_1$ 110.066 0.533 $C\gammaC\delta_1N\epsilon_1$ 110.106 0	0.476
$C\gamma C\delta 2C\epsilon 3$ 133.854 0.427 $C\gamma C\delta 2C\epsilon 3$ 133.922 0	0.366
$C\eta_2 - C\zeta_2 - C\epsilon_2 = 117.487$ 0.458 $C\eta_2 - C\zeta_2 - C\epsilon_2 = 117.507$ 0	.446
$C\zeta_3-C\eta_2-C\zeta_2$ 121.531 0.477 $C\zeta_3-C\eta_2-C\zeta_2$ 121.503 0	0.457
$N\epsilon 1 C\epsilon 2C\delta 2 = 107.451$ 0.384 $N\epsilon 1C\epsilon 2C\delta 2 = 107.437$ 0	.338
$N\epsilon 1_{-}C\epsilon 2_{-}C\zeta 2$ 130.137 0.461 $N\epsilon 1_{-}C\epsilon 2_{-}C\zeta 2$ 130.137 0	.434
· · · · · · · · · · · · · · · · · · ·	2.424
$N_{-}C\alpha_{-}C\beta$ 109.969 1.424 $N_{-}C\alpha_{-}C\beta$ 110.288 1	.416
TRP $m100 \text{ n} = 6319$ TRP $m-10 \text{ n} = 2196$	
χ Smooth COM StdDev χ Smooth COM S	StdDev
chi1 -67.358 10.774 chi1 -68.163 8	8.989
<u>chi2</u> 97.262 16.989 <u>chi2</u> -7.490 2	1.670
Bond Angle Mean StdDev Bond Angle Mean S	StdDev
$C\alpha_C\beta_C\gamma$ 113.176 2.218 $C\alpha_C\beta_C\gamma$ 114.734 1	.637
$C\alpha_{-}C_{-}O$ 120.433 0.860 $C\alpha_{-}C_{-}O$ 120.481 0	.882
00 0 0 100 000 101 - 00 0 0 100 100	.715
$C\beta_C\alpha_C$ 109.632 1.917 $C\beta_C\alpha_C$ 109.190 1	0.711
$C\beta_{-}C\gamma_{-}C\delta 1$ 127.022 0.664 $C\beta_{-}C\gamma_{-}C\delta 1$ 127.548 0	.767
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.767
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.767 0.445
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$).767).445).452
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432 0.481 0.391
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432 0.481 0.391
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432 0.481 0.391 0.467
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.767 0.445 0.452 0.407 0.434 0.380 0.376 0.432 0.481 0.391 0.467 0.462

TRP m-90 n = 961							
χ	Smooth COM	StdDev					
chi1	-67.780	12.415					
chi2	-89.279	13.788					
Bond Angle	Mean	StdDev					
$C\alpha_{-}C\beta_{-}C\gamma$	113.837	2.475					
$C\alphaCO$	120.475	0.855					
$C\beta C\alpha C$	109.396	2.035					
$C\betaC\gammaC\delta 1$	126.707	0.719					
$C\betaC\gammaC\delta 2$	126.952	0.778					
$C\delta1_C\gamma_C\delta2$	106.279	0.441					
$C\delta1_N\epsilon1_C\epsilon2$	108.930	0.474					
$C\delta 2_C\epsilon 2_C\zeta 2$	122.433	0.348					
$C\delta 2_C\epsilon 3_C\zeta 3$	118.702	0.453					
$C\epsilon 2_C\delta 2_C\epsilon 3$	118.842	0.382					
$C\epsilon 2_C\delta 2_C\gamma$	107.196	0.323					
$C\epsilon 3 C\zeta 3C\eta 2$	121.019	0.460					
$C\gamma_{-}C\delta 1_{-}N\epsilon 1$	110.124	0.496					
$C\gamma_{-}C\delta_{2}C\epsilon_{3}$	133.947	0.378					
$C\eta_2 C\zeta_2 C\epsilon_2$	117.505	0.430					
$C\zeta^{3}$ _ $C\eta^{2}$ _ $C\zeta^{2}$	121.472	0.453					
$N\epsilon 1_C\epsilon 2_C\delta 2$	107.451	0.346					
$N\epsilon 1_C\epsilon 2_C\zeta 2$	130.101	0.430					
$N_{-}C\alpha_{-}C$	110.581	2.879					
$N_{-}C\alpha_{-}C\beta$	110.698	1.125					

3.14 MET

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MI	ET ppp $n = 50$		MET	Γ pp-130 n = 27	,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi3 70.700 9.878 chi3 -154.200 27.756 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha.C\beta.C\gamma$ 115.688 1.786 $C\alpha.C\beta.C\gamma$ 115.400 1.176 $C\alpha.C.O$ 120.690 0.904 $C\alpha.C.O$ 120.921 0.655 $C\beta.C\gamma.SD$ 114.396 2.327 $C\beta.C\gamma.SD$ 113.705 2.013 $C\gamma.SD.C\epsilon$ 100.530 4.023 $C\gamma.SD.C\epsilon$ 100.847 1.954 N.Cα.C 111.830 2.718 N.Cα.C 110.987 1.836 N.Cα.Cβ 110.925 1.021 N.Cα.Cβ 110.899 0.988 MET ptp n = 404 χ Smooth COM StdDev χ Smooth COM StdDev chi1 64.508 8.469 chi1 65.361 8.250 chi2 -176.358 11.392 chi3 179.354 15.601 Bond Angle Mean StdDev Bond Angle Mean StdDev	chi1	61.248	9.313	chi1	64.331	7.151
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha . C\beta . C\gamma$ 115.688 1.786 $C\alpha . C\beta . C\gamma$ 115.400 1.176 $C\alpha . C.O$ 120.690 0.904 $C\alpha . C.O$ 120.921 0.655 $C\beta . C\alpha . C$ 111.199 1.571 $C\beta . C\alpha . C$ 111.108 0.909 $C\beta . C\gamma . SD$ 114.396 2.327 $C\beta . C\gamma . SD$ 113.705 2.013 $C\gamma . SD . C\epsilon$ 100.530 4.023 $C\gamma . SD . C\epsilon$ 100.847 1.954 $N. C\alpha . C$ 111.830 2.718 $N. C\alpha . C$ 110.987 1.836 $N. C\alpha . C\beta$ 110.925 1.021 $N. C\alpha . C\beta$ 110.899 0.988 MET ptp n = 404 χ Smooth COM StdDev ζ Smooth COM StdDev χ Smooth COM StdDev ζ Smooth COM StdDev χ Smooth COM StdDev ζ Smooth COM StdDev χ Smooth COM StdDev	chi2	78.960	10.968	chi2	82.303	4.909
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi3	70.700	9.878	chi3	-154.200	27.756
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaC\betaC\gamma$	115.688	1.786	$C\alphaC\betaC\gamma$	115.400	1.176
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaCO$	120.690	0.904	$C\alphaCO$	120.921	0.655
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\betaC\alphaC$	111.199	1.571	$C\betaC\alphaC$		0.909
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\betaC\gammaSD$	114.396	2.327	$C\betaC\gammaSD$	113.705	2.013
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100.530	4.023		100.847	1.954
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		111.830	2.718	$N_{-}C\alpha_{-}C$	110.987	1.836
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{-}C\alpha_{-}C\beta$	110.925	1.021	$N_{-}C\alpha_{-}C\beta$	110.899	0.988
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ME	ET $\mathbf{ptp} \ n = 404$		MI	ET ptt $n = 260$	
chi2 -176.358 11.392 chi2 -178.195 9.143 chi3 73.220 11.597 chi3 179.354 15.601 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_{-}C\beta_{-}C\gamma_{-}$ 114.589 1.803 $C\alpha_{-}C\beta_{-}C\gamma_{-}$ 114.719 1.689 $C\alpha_{-}C$ O 120.674 0.921 $C\alpha_{-}C_{-}C$ 112.592 0.945 $C\beta_{-}C\alpha_{-}C$ 110.290 1.464 $C\beta_{-}C\alpha_{-}C$ 110.343 1.486 $C\beta_{-}C\gamma_{-}SD$ 112.889 2.185 $C\beta_{-}C\gamma_{-}SD$ 111.033 2.395 $C\gamma_{-}SD_{-}C\epsilon$ 100.792 1.939 $C\gamma_{-}SD_{-}C\epsilon$ 99.817 2.318 N_{-}C\alpha_{-}C 110.626 2.559 N_{-}C\alpha_{-}C 111.139 2.697 N_{-}C\alpha_{-}C\beta 111.047 1.233 N_{-}C\alpha_{-}C\beta 111.125 1.299 MET ptt n = 375 χ Smooth COM StdDev chi1 64.860 8.163 chi1 71.340 3.364	χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi3 73.220 11.597 chi3 179.354 15.601 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha . C\beta . C\gamma$ 114.589 1.803 $C\alpha . C\beta . C\gamma$ 114.719 1.689 $C\alpha . C . O$ 120.674 0.921 $C\alpha . C. O$ 120.592 0.945 $C\beta . C\alpha . C$ 110.290 1.464 $C\beta . C\alpha . C$ 110.343 1.486 $C\beta . C\gamma . SD$ 112.889 2.185 $C\beta . C\gamma . SD$ 111.033 2.395 $C\gamma . SD . C\epsilon$ 100.792 1.939 $C\gamma . SD . C\epsilon$ 99.817 2.318 $N . C\alpha . C\beta$ 111.047 1.233 $N . C\alpha . C\beta$ 111.125 1.299 MET ptm n = 375 χ Smooth COM StdDev chi1 64.860 8.163 chi1 71.340 3.364 chi2 179.370 10.168 chi2 -74.720 3.186 chi3 -72.053 11.599 chi3 -162.328 4.884 Bond Angle	chi1	64.508	8.469	chi1	65.361	8.250
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.589 1.803 $C\alpha_C\beta_C\gamma$ 114.719 1.689 $C\alpha_C_O$ 120.674 0.921 $C\alpha_C_O$ 120.592 0.945 $C\beta_C\alpha_C$ 110.290 1.464 $C\beta_C\alpha_C$ 110.343 1.486 $C\beta_C\gamma_SD$ 112.889 2.185 $C\beta_C\gamma_SD_C\epsilon$ 111.033 2.395 $C\gamma_SD_C\epsilon$ 100.792 1.939 $C\gamma_SD_C\epsilon$ 99.817 2.318 $N_C\alpha_C$ 110.626 2.559 $N_C\alpha_C$ 111.139 2.697 $N_C\alpha_C\beta$ 111.047 1.233 $N_C\alpha_C\beta$ 111.125 1.299 MET ptm n = 375 χ Smooth COM StdDev chi1 64.860 8.163 chi1 71.340 3.364 chi2 179.370 10.168 chi2 -74.720 3.186 chi3 -72.053 11.599 chi3 -162.328 4.884 Bond Angle Mean St	chi2	-176.358	11.392	chi2	-178.195	9.143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi3	73.220	11.597	chi3	179.354	15.601
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaC\betaC\gamma$	114.589	1.803	$C\alphaC\betaC\gamma$	114.719	1.689
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaCO$	120.674	0.921	$C\alphaCO$	120.592	0.945
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\betaC\alphaC$	110.290	1.464	$C\betaC\alphaC$	110.343	1.486
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\betaC\gammaSD$	112.889	2.185	$C\betaC\gammaSD$	111.033	2.395
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100.792	1.939		99.817	2.318
MET ptm n = 375 MET pmt n = 7 χ Smooth COM StdDev χ Smooth COM StdDev chi1 64.860 8.163 chi1 71.340 3.364 chi2 179.370 10.168 chi2 -74.720 3.186 chi3 -72.053 11.599 chi3 -162.328 4.884 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alphaC\betaC\gamma$ 114.625 1.646 $C\alphaC\betaC\gamma$ 114.786 0.770 $C\alphaC$ -C 120.634 0.935 $C\alphaC$ -C 120.997 0.636 $C\betaC\alphaC$ 110.349 1.438 $C\betaC\alphaC$ 111.122 1.130 $C\betaC\gammaSD$ 112.773 2.109 $C\betaC\gammaSD$ 111.744 2.285 $C\gammaSDC\epsilon$ 100.903 1.820 $C\gammaSDC\epsilon$ 100.246 1.914 $NC\alphaC$ 110.872 2.766 $NC\alphaC$ 109.009 1.550		110.626	2.559	$N_{-}C\alpha_{-}C$	111.139	2.697
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{-}C\alpha_{-}C\beta$	111.047	1.233	$N_{-}C\alpha_{-}C\beta$	111.125	1.299
chi1 64.860 8.163 chi1 71.340 3.364 chi2 179.370 10.168 chi2 -74.720 3.186 chi3 -72.053 11.599 chi3 -162.328 4.884 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.625 1.646 $C\alpha_C\beta_C\gamma$ 114.786 0.770 $C\alpha_C_O$ 120.634 0.935 $C\alpha_C_O$ 120.997 0.636 $C\beta_C\alpha_C$ 110.349 1.438 $C\beta_C\alpha_C$ 111.122 1.130 $C\beta_C\gamma_SD$ 112.773 2.109 $C\beta_C\gamma_SD$ 111.744 2.285 $C\gamma_SD_C\epsilon$ 100.903 1.820 $C\gamma_SD_C\epsilon$ 100.246 1.914 $N_C\alpha_C$ 110.872 2.766 $N_C\alpha_C$ 109.009 1.550	ME	T ptm n = 375		M	ET pmt $n = 7$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi3 -72.053 11.599 chi3 -162.328 4.884 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.625 1.646 $C\alpha_C\beta_C\gamma$ 114.786 0.770 $C\alpha_C_O$ 120.634 0.935 $C\alpha_C_O$ 120.997 0.636 $C\beta_C\alpha_C$ 110.349 1.438 $C\beta_C\alpha_C$ 111.122 1.130 $C\beta_C\gamma_SD$ 112.773 2.109 $C\beta_C\gamma_SD$ 111.744 2.285 $C\gamma_SD_C\epsilon$ 100.903 1.820 $C\gamma_SD_C\epsilon$ 100.246 1.914 $N_C\alpha_C$ 110.872 2.766 $N_C\alpha_C$ 109.009 1.550	chi1	64.860	8.163	chi1	71.340	3.364
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.625 1.646 $C\alpha_C\beta_C\gamma$ 114.786 0.770 $C\alpha_C_O$ 120.634 0.935 $C\alpha_C_O$ 120.997 0.636 $C\beta_C\alpha_C$ 110.349 1.438 $C\beta_C\alpha_C$ 111.122 1.130 $C\beta_C\gamma_SD$ 112.773 2.109 $C\beta_C\gamma_SD$ 111.744 2.285 $C\gamma_SD_C\epsilon$ 100.903 1.820 $C\gamma_SD_C\epsilon$ 100.246 1.914 $N_C\alpha_C$ 110.872 2.766 $N_C\alpha_C$ 109.009 1.550	chi2	179.370	10.168	chi2	-74.720	3.186
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi3	-72.053	11.599	chi3	-162.328	4.884
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C\alpha_{-}C\beta_{-}C\gamma$	114.625	1.646	$C\alphaC\betaC\gamma$	114.786	0.770
Cβ_Cγ_SD 112.773 2.109 Cβ_Cγ_SD 111.744 2.285 Cγ_SD_C ϵ 100.903 1.820 Cγ_SD_C ϵ 100.246 1.914 N_C α _C 110.872 2.766 N_C α _C 109.009 1.550	$C\alphaCO$	120.634	0.935		120.997	0.636
$C\gamma_SD_C\epsilon$ 100.903 1.820 $C\gamma_SD_C\epsilon$ 100.246 1.914 $N_C\alpha_C$ 110.872 2.766 $N_C\alpha_C$ 109.009 1.550	$C\betaC\alphaC$	110.349	1.438	$C\beta C\alpha C$	111.122	1.130
$N_{-}C\alpha_{-}C$ 110.872 2.766 $N_{-}C\alpha_{-}C$ 109.009 1.550	$C\betaC\gammaSD$	112.773	2.109	$C\beta C\gamma SD$	111.744	2.285
	-	112.110				
N_{-} Cα_Cβ 111.166 1.207 N_{-} Cα_Cβ 111.648 1.281				$C\gamma_SD_C\epsilon$	100.246	1.914
	$C\gamma_SD_C\epsilon$	100.903	1.820	,		

ME	$T \mathbf{pmm} \ n = 42$		ME	$T \mathbf{tpp} \ n = 1138$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	72.629	7.847	chi1	-174.981	9.366
chi2	-68.668	6.731	chi2	63.633	7.983
chi3	-68.863	8.148	chi3	72.405	12.028
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	115.484	0.858	$C\alphaC\betaC\gamma$	114.191	1.355
$C\alphaCO$	120.618	0.788	$C\alphaCO$	120.501	0.842
$C\betaC\alphaC$	110.176	1.220	$C\betaC\alphaC$	110.324	1.130
$C\betaC\gammaSD$	115.246	2.537	$C\beta C\gamma SD$	113.667	2.023
$C\gamma_SD_C\epsilon$	101.108	1.585	$C\gamma_SD_C\epsilon$	100.683	1.769
$N_{-}C\alpha_{-}C$	112.287	2.688	$N_{-}C\alpha_{-}C$	110.665	2.235
$N_{-}C\alpha_{-}C\beta$	110.768	1.207	$N_{-}C\alpha_{-}C\beta$	110.488	1.169
MI	ET $\mathbf{tpt} \ \mathbf{n} = 388$		ME	$T \mathbf{ttp} \ n = 1246$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-173.452	8.736	chi1	-177.766	8.645
chi2	65.814	7.811	chi2	179.141	11.418
chi3	-156.289	31.222	chi3	71.790	10.585
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.077	1.391	$C\alphaC\betaC\gamma$	113.559	1.653
$C\alphaCO$	120.521	0.742	$C\alphaCO$	120.611	0.853
$C\betaC\alphaC$	110.486	1.134	$C\beta C\alpha C$	110.039	1.168
$C\beta C\gamma SD$	112.447	1.994	$C\beta C\gamma SD$	112.805	2.114
$C\gammaSDC\epsilon$	100.425	2.088	$C\gammaSDC\epsilon$	100.741	2.073
$N_{-}C\alpha_{-}C$	110.446	2.248	$N_{-}C\alpha_{-}C$	110.270	2.150
$N_{-}C\alpha_{-}C\beta$	110.324	1.364	$N_{-}C\alpha_{-}C\beta$	110.378	1.313
MI	ET $\mathbf{ttt} \; \mathbf{n} = 569$		ME	$T \mathbf{ttm} \ n = 1124$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-176.725	8.762	chi1	-175.045	9.346
chi2	176.823	9.513	chi2	179.637	8.225
chi3	176.456	15.483	chi3	-71.855	13.081
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.692	1.716	$C\alphaC\betaC\gamma$	113.533	1.706
$C\alphaCO$	120.590	0.958	$C\alphaCO$	120.521	0.803
$C\betaC\alphaC$	110.139	1.307	$C\beta_{-}C\alpha_{-}C$	109.956	1.173
$C\beta C\gamma SD$	110.615	2.198	$C\betaC\gammaSD$	112.759	2.157
$\text{C}\gamma_{-}\text{SD}_{-}\text{C}\epsilon$	100.115	1.656	$C\gammaSDC\epsilon$	100.808	1.735
$N_{-}C\alpha_{-}C$	110.201	2.431	$N_{-}C\alpha_{-}C$	110.136	2.395
$N_{-}U\alpha_{-}U$	110.201	4.401	11-04-0	110.100	2.000
$N_{-}C\alpha_{-}C\beta$	110.201	1.385	$N_{-}C\alpha_{-}C\beta$	110.414	1.331

MI	ET tmt n = 34		$MET \mathbf{tmm} \ n = 276$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-179.131	6.701	chi1	-177.257	7.306	
chi2	-85.941	7.575	chi2	-81.707	6.798	
chi3	173.719	24.401	chi3	-72.167	10.514	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.856	1.126	$C\alphaC\betaC\gamma$	114.995	1.371	
$C\alphaCO$	120.669	0.563	$C\alphaCO$	120.520	0.782	
$C\betaC\alphaC$	110.695	1.236	$C\betaC\alphaC$	111.023	1.239	
$C\betaC\gammaSD$	112.753	1.775	$C\betaC\gammaSD$	114.026	2.121	
$C\gamma_SD_C\epsilon$	100.340	1.369	$C\gamma_SD_C\epsilon$	100.840	1.640	
$N_{-}C\alpha_{-}C$	110.002	2.892	$N_{-}C\alpha_{-}C$	109.902	2.105	
$N_{-}C\alpha_{-}C\beta$	110.086	1.223	$N_{-}C\alpha_{-}C\beta$	110.096	1.162	
ME	T mpp n = 74		MF	ET mpt $n = 34$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-76.610	13.735	chi1	-69.557	11.736	
chi2	73.172	12.266	chi2	74.032	10.961	
chi3	73.993	11.907	chi3	167.387	18.642	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.617	1.359	$C\alphaC\betaC\gamma$	114.581	0.956	
$C\alphaCO$	120.531	0.886	$C\alphaCO$	120.388	0.881	
$C\betaC\alphaC$	109.865	1.627	$C\beta C\alpha C$	109.316	1.399	
$C\beta C\gamma SD$	114.327	2.245	$C\beta C\gamma SD$	113.183	2.024	
$C\gammaSDC\epsilon$	101.176	2.262	$C\gammaSDC\epsilon$	100.105	2.397	
$N_{-}C\alpha_{-}C$	110.743	2.686	$N_{-}C\alpha_{-}C$	110.123	2.780	
$N_{-}C\alpha_{-}C\beta$	110.760	1.199	$N_{-}C\alpha_{-}C\beta$	110.956	1.118	
ME	T mpm $n = 13$		ME	Γ mtp n = 2815		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-77.183	5.132	chi1	-66.650	7.058	
chi2	63.994	5.469	chi2	177.074	9.262	
chi3	-101.774	5.027	chi3	70.464	10.090	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	116.136	1.018	$C\alphaC\betaC\gamma$	113.148	1.645	
$C\alphaCO$	120.662	0.735	$C\alphaCO$	120.492	0.844	
$C\beta _C\alpha _C$	109.135	1.274	$C\beta _C\alpha _C$	109.955	1.587	
$C\beta C\gamma SD$	115.853	2.314	$C\beta C\gamma SD$	112.850	2.081	
$C\gammaSDC\epsilon$	100.367	1.563	$C\gammaSDC\epsilon$	100.766	1.731	
$N_{-}C\alpha_{-}C$	110.742	1.813	$N_{-}C\alpha_{-}C$	111.257	2.348	
$N_{-}C\alpha_{-}C\beta$	111.036	1.046	$NC\alphaC\beta$	110.469	1.007	

MET $\mathbf{mtt} \ \mathbf{n} = 1542$				
χ	StdDev			
chi1	-67.154	7.717		
chi2	179.723	8.705		
chi3	-176.816	16.539		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	113.586	1.708		
$C\alphaCO$	120.527	0.825		
$C\betaC\alphaC$	109.380	1.673		
$C\betaC\gammaSD$	110.388	2.192		
$C\gamma_SD_C\epsilon$	100.144	1.974		
$N_C\alpha_C$	111.150	2.271		
$N_{-}C\alpha_{-}C\beta$	110.658	0.996		

$MET \mathbf{mtm} \ n = 1851$				
χ	Smooth COM	StdDev		
chi1	-66.363	7.865		
chi2	-177.825	10.672		
chi3	-73.985	10.774		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	113.170	1.716		
$C\alphaCO$	120.494	0.902		
$C\betaC\alphaC$	109.943	1.631		
$C\betaC\gammaSD$	112.920	2.146		
$C\gamma_SD_C\epsilon$	100.758	1.779		
$N_{-}C\alpha_{-}C$	111.074	2.323		
$N_{-}C\alpha_{-}C\beta$	110.665	1.072		

$MET \mathbf{mmp} \ n = 520$				
χ	Smooth COM	StdDev		
chi1	-65.195	5.298		
chi2	-61.634	6.333		
chi3	102.180	9.255		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	114.212	1.410		
$C\alphaCO$	120.324	0.802		
$C\beta C\alpha C$	110.229	1.552		
$C\beta C\gamma SD$	113.849	2.144		
$C\gammaSDC\epsilon$	101.224	2.184		
$N_{-}C\alpha_{-}C$	111.490	2.153		
$N_{-}C\alpha_{-}C\beta$	110.838	1.099		

MET mmt $n = 597$				
χ	Smooth COM	StdDev		
chi1	-64.971	8.734		
chi2	-63.753	9.443		
chi3	172.207	18.496		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	113.918	1.444		
$C\alphaCO$	120.423	0.802		
$C\beta C\alpha C$	109.926	1.551		
$C\beta C\gamma SD$	112.060	2.042		
$C\gammaSDC\epsilon$	100.263	1.993		
$N_{-}C\alpha_{-}C$	111.450	2.253		
$N_C\alpha_C\beta$	110.610	0.944		

MET mmm $n = 3354$				
χ	Smooth COM	StdDev		
chi1	-65.551	8.867		
chi2	-60.977	8.775		
chi3	-69.165	10.156		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	114.003	1.286		
$C\alphaCO$	120.359	0.857		
$C\betaC\alphaC$	110.042	1.527		
$C\beta C\gamma SD$	113.654	1.948		
$C\gamma_SD_C\epsilon$	100.895	1.737		
$N_{-}C\alpha_{-}C$	111.629	2.379		
$NC\alphaC\beta$	110.711	1.020		

3.15 GLU

GLU	U pp20 n = 159		GL	$U \mathbf{pt0} n = 2800$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	61.255	8.074	chi1	65.363	8.357
chi2	85.644	7.983	chi2	-177.309	10.089
chi3	19.654	17.191	chi3	1.201	51.015
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.555	1.282	$C\alphaC\betaC\gamma$	114.597	1.602
$C\alphaCO$	120.440	0.848	$C\alphaCO$	120.524	0.927
$C\betaC\alphaC$	111.591	1.836	$C\betaC\alphaC$	110.513	1.498
$C\betaC\gammaC\delta$	114.078	1.297	$C\betaC\gammaC\delta$	112.902	1.527
$C\gammaC\deltaO\epsilon 1$	119.034	1.429	$C\gammaC\deltaO\epsilon 1$	118.928	1.384
$C\gammaC\deltaO\epsilon 2$	118.356	1.340	$C\gammaC\deltaO\epsilon 2$	118.169	1.352
$N_{-}C\alpha_{-}C$	110.829	2.541	$N_{-}C\alpha_{-}C$	111.272	2.667
$N_{-}C\alpha_{-}C\beta$	111.446	1.254	$N_{-}C\alpha_{-}C\beta$	111.061	1.180
$O\epsilon 1_C\delta_O\epsilon 2$	122.590	1.020	$O\epsilon 1_C\delta_O\epsilon 2$	122.878	1.149
GLU	pm20 n = 1485	ó	GLU	U tp30 n = 4616	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	69.039	8.839	chi1	-178.170	9.848
chi2	-84.712	8.551	chi2	64.992	9.169
chi3	15.811	21.665	chi3	25.784	26.065
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.558	1.350	$C\alphaC\betaC\gamma$	114.624	1.386
$C\alphaCO$	120.191	0.834	$C\alphaCO$	120.486	0.798
$C\betaC\alphaC$	110.506	1.246	$C\betaC\alphaC$	110.645	1.209
$C\betaC\gammaC\delta$	114.466	1.447	$C\betaC\gammaC\delta$	113.769	1.354
$C\gammaC\deltaO\epsilon 1$	119.771	1.714	$C\gammaC\deltaO\epsilon 1$	119.284	1.459
$C\gammaC\deltaO\epsilon 2$	117.692	1.688	$C\gammaC\deltaO\epsilon 2$	118.037	1.380
$N_{-}C\alpha_{-}C$	112.900	1.826	$N_{-}C\alpha_{-}C$	110.857	2.089
$N_{-}C\alpha_{-}C\beta$	110.887	1.055	$N_{-}C\alpha_{-}C\beta$	110.284	1.123
$O\epsilon 1_C\delta_O\epsilon 2$	122.520	1.102	$O\epsilon 1_C\delta_O\epsilon 2$	122.658	1.073
GLU	U tt0 n = 13610		GLU	1 tm-30 n = 862	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-176.677	8.634	chi1	-170.330	8.580
chi2	177.900	10.314	chi2	-83.400	9.158
chi3	1.122	41.445	chi3	-28.718	17.284
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.479	1.738	$C\alphaC\betaC\gamma$	114.520	1.347
$C\alphaCO$	120.579	0.766	$C\alphaCO$	120.511	0.838
$C\betaC\alphaC$	110.135	1.168	$C\betaC\alphaC$	110.969	1.333
$C\betaC\gammaC\delta$	113.090	1.500	$C\betaC\gammaC\delta$	113.819	1.465
$C\gammaC\deltaO\epsilon 1$	118.950	1.273	$C\gammaC\deltaO\epsilon 1$	119.014	1.362
$C\gammaC\deltaO\epsilon 2$	117.962	1.269	$C\gammaC\deltaO\epsilon 2$	118.207	1.249
$N_{-}C\alpha_{-}C$	110.583	2.260	$N_{-}C\alpha_{-}C$	110.226	2.465
$N_{-}C\alpha_{-}C\beta$	110.351	1.366	$N_{-}C\alpha_{-}C\beta$	110.236	1.156
$O\epsilon 1_C\delta_O\epsilon 2$	123.063	1.067	$O\epsilon 1_C\delta_O\epsilon 2$	122.755	1.171

GLU	GLU mp0 $n = 3671$				
χ	Smooth COM	StdDev			
chi1	-66.877	7.274			
chi2	82.550	9.362			
chi3	3.347	27.520			
Bond Angle	Mean	StdDev			
$C\alphaC\betaC\gamma$	114.352	1.344			
$C\alphaCO$	120.431	0.818			
$C\betaC\alphaC$	109.695	1.424			
$C\betaC\gammaC\delta$	114.166	1.404			
$C\gammaC\deltaO\epsilon 1$	119.771	1.659			
$C\gammaC\deltaO\epsilon 2$	117.760	1.471			
$N_C\alpha_C$	112.041	1.999			
$N_C\alpha_C\beta$	110.602	1.057			
$O\epsilon 1_C\delta_O\epsilon 2$	122.450	1.179			

GLU	GLU mt-10 $n = 21021$				
χ	Smooth COM	StdDev			
chi1	-66.989	7.750			
chi2	179.213	11.417			
chi3	-6.596	37.250			
Bond Angle	Mean	StdDev			
$C\alphaC\betaC\gamma$	113.038	1.846			
$C\alphaCO$	120.491	0.823			
$C\betaC\alphaC$	110.020	1.731			
$C\betaC\gammaC\delta$	113.253	1.500			
$C\gammaC\deltaO\epsilon 1$	119.081	1.288			
$C\gammaC\deltaO\epsilon 2$	117.940	1.286			
$N_{-}C\alpha_{-}C$	111.364	2.321			
$N_C\alpha_C\beta$	110.595	1.004			
$O\epsilon 1_C\delta_O\epsilon 2$	122.955	1.064			

GLU mm-30 $n = 9080$				
χ	Smooth COM	StdDev		
chi1	-66.002	8.689		
chi2	-66.544	10.569		
chi3	-31.662	26.859		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	114.037	1.414		
$C\alphaCO$	120.415	0.828		
$C\beta C\alpha C$	109.927	1.502		
$C\betaC\gammaC\delta$	113.361	1.338		
$C\gamma_C\delta_O\epsilon 1$	119.153	1.345		
$C\gammaC\deltaO\epsilon 2$	118.206	1.265		
$N_{-}C\alpha_{-}C$	111.483	2.356		
$N_C\alpha_C\beta$	110.748	1.014		
$O\epsilon 1_C\delta_O\epsilon 2$	122.622	1.092		

3.16 GLN

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GLI	N pp30 n = 178		GL	N pt0 n = 1885	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi3 29.841 20.903 chi3 -2.755 75.227 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha.C\beta.C\gamma$ 115.880 1.278 $C\alpha.C\beta.C\gamma$ 114.518 1.528 $C\alpha.C.O$ 120.321 0.946 $C\alpha.C.O$ 120.546 0.962 $C\beta.C\alpha.C$ 111.398 1.618 $C\beta.C\alpha.C$ 110.361 1.519 $C\beta.C\gamma.C\delta$ 113.604 1.401 $C\beta.C\alpha.C$ 110.497 1.466 $C\gamma.C\delta.Dc2$ 116.446 0.892 $C\gamma.C\delta.Nc2$ 116.505 0.954 $C\gamma.C\delta.Oc1$ 120.885 0.949 $C\gamma.C\delta.Oc1$ 120.841 0.973 N.Cα.C 111.003 2.550 N.Cα.C 111.263 2.631 N.Cα.Cβ 111.99 1.154 N.Cα.Cβ 110.949 1.178 Oc1.Cδ.Nc2 122.630 0.669 Oc1.Cδ.Nc2 122.629 0.748 GLN pm20 n = 487 C C C C C C C	chi1	62.991	7.802	chi1	64.891	8.125
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha.C\beta.C\gamma$ 115.880 1.278 $C\alpha.C\beta.C\gamma$ 114.518 1.528 $C\alpha.C.O$ 120.321 0.946 $C\alpha.C.O$ 120.546 0.962 $C\beta.C\alpha.C$ 111.398 1.618 $C\beta.C\alpha.C$ 110.361 1.519 $C\beta.C\gamma.C\delta$ 113.604 1.401 $C\beta.C\alpha.C$ 110.361 1.519 $C\gamma.C\delta.Ne2$ 116.446 0.892 $C\gamma.C\delta.Oe1$ 120.841 0.973 $N.C\alpha.C$ 111.003 2.550 $N.C\alpha.C$ 111.263 2.631 $N.C\alpha.C\beta$ 111.519 1.154 $N.C\alpha.C\beta$ 110.949 1.178 $Oe1.C\delta.Ne2$ 122.630 0.669 $Oe1.C\delta.Ne2$ 122.629 0.748 GLN pm20 n = 487 χ Smooth COM StdDev CBL pm20 n = 487 χ Smooth COM StdDev CBLN pm20 n = 487 χ Smooth COM StdDev CBL pm20 n = 537 χ Smooth COM<	chi2	83.801	8.473	chi2	-177.468	11.284
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi3	29.841	20.903	chi3	-2.755	75.227
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaC\betaC\gamma$	115.880	1.278	$C\alphaC\betaC\gamma$	114.518	1.528
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaCO$	120.321	0.946	$C\alphaCO$	120.546	0.962
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\betaC\alphaC$	111.398	1.618	$C\beta C\alpha C$	110.361	1.519
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\betaC\gammaC\delta$	113.604	1.401	$C\beta C\gamma C\delta$	112.497	1.466
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\gamma_C\delta_N\epsilon_2$	116.446	0.892	$C\gammaC\deltaN\epsilon_2$	116.505	0.954
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\gammaC\deltaO\epsilon 1$	120.885	0.949	$C\gammaC\deltaO\epsilon 1$	120.841	0.973
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{-}C\alpha_{-}C$	111.003	2.550	$N_{-}C\alpha_{-}C$	111.263	2.631
	$N_{-}C\alpha_{-}C\beta$	111.519	1.154	$N_{-}C\alpha_{-}C\beta$	110.949	1.178
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$O\epsilon 1_C\delta_N\epsilon 2$	122.630	0.669	$O\epsilon 1_C\delta_N\epsilon 2$	122.629	0.748
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GLN	$N \ pm20 \ n = 487$		GLI	V tp40 n = 3618	
chi2 -84.394 9.313 chi2 66.430 8.230 chi3 16.576 32.336 chi3 41.056 24.195 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_{-}C\beta_{-}C\gamma$ 115.686 1.408 $C\alpha_{-}C\beta_{-}C\gamma$ 113.949 1.419 $C\alpha_{-}C$ 120.304 0.925 $C\alpha_{-}C$ 120.428 0.793 $C\beta_{-}C\alpha_{-}C$ 110.423 1.352 $C\beta_{-}C\alpha_{-}C$ 110.237 1.153 $C\beta_{-}C\gamma_{-}C\delta$ 113.925 1.430 $C\beta_{-}C\gamma_{-}C\delta$ 112.883 1.238 $C\gamma_{-}C\delta_{-}N\epsilon^2$ 116.256 0.863 $C\gamma_{-}C\delta_{-}N\epsilon^2$ 116.593 0.838 $C\gamma_{-}C\delta_{-}O\epsilon_{1}$ 121.254 0.986 $C\gamma_{-}C\delta_{-}O\epsilon_{1}$ 120.792 0.874 N_{-}C\alpha_{-}C 112.420 2.222 NC\alpha_{-}C 111.017 2.005 N_{-}C\alpha_{-}C\beta_{-} 111.150 1.131 NC\alpha_{-}C\beta_{-} 110.571 1.130 O\ell_1-C\della_N\elleq 2 122.594 0.6	χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi3 16.576 32.336 chi3 41.056 24.195 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 115.686 1.408 $C\alpha_C\beta_C\gamma$ 113.949 1.419 $C\alpha_C_O$ 120.304 0.925 $C\alpha_C_O$ 120.428 0.793 $C\beta_C\alpha_C$ 110.423 1.352 $C\beta_C\alpha_C$ 110.237 1.153 $C\beta_C\gamma_C\delta$ 113.925 1.430 $C\beta_C\gamma_C\delta$ 112.883 1.238 $C\gamma_C\delta_N\epsilon^2$ 116.256 0.863 $C\gamma_C\delta_N\epsilon^2$ 116.593 0.838 $C\gamma_C\delta_O\epsilon$ 1 121.254 0.986 $C\gamma_C\delta_O\epsilon$ 1 120.792 0.874 N_Cα_C 112.420 2.222 N_Cα_C 111.017 2.005 N_Cα_Cβ 111.150 1.131 N_Cα_Cβ 110.571 1.130 Oϵ1_Cδ_Nϵ2 122.470 0.718 Oϵ1_Cδ_Nϵ2 122.594 0.646 C C C C C C C C C	chi1	69.577	9.904	chi1	-176.823	8.734
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alphaC\betaC\gamma$ 115.686 1.408 $C\alphaC\betaC\gamma$ 113.949 1.419 $C\alphaC$ _O 120.304 0.925 $C\alphaC$ _O 120.428 0.793 $C\betaC\alphaC$ 110.423 1.352 $C\betaC\alphaC$ 110.237 1.153 $C\betaC\gammaC\delta$ 113.925 1.430 $C\betaC\gammaC\delta$ 112.883 1.238 $C\gammaC\deltaN\epsilon^2$ 116.256 0.863 $C\gammaC\deltaN\epsilon^2$ 116.593 0.838 $C\gammaC\deltaO\epsilon$ 1 121.254 0.986 $C\gammaC\deltaO\epsilon$ 1 120.792 0.874 NC\alphaC 112.420 2.222 NC\alphaC 111.017 2.005 NC\alphaC\beta 111.150 1.131 NC\alphaC\beta 110.571 1.130 O\ellC\deltaN\ell_2 122.470 0.718 O\ellC\deltaN\ell_2 122.594 0.646 GLN tp-100 n = 534 GLN tt0 n = 6936 \tag{CLN tt0 n}	chi2	-84.394	9.313	chi2	66.430	8.230
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi3	16.576	32.336	chi3	41.056	24.195
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alpha_{-}C\beta_{-}C\gamma$	115.686	1.408	$C\alpha_{-}C\beta_{-}C\gamma$	113.949	1.419
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\alphaCO$	120.304	0.925	$C\alphaCO$	120.428	0.793
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\betaC\alphaC$	110.423	1.352	$C\beta _C\alpha _C$	110.237	1.153
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\betaC\gammaC\delta$	113.925	1.430	$C\betaC\gammaC\delta$	112.883	1.238
N.Cα.C 112.420 2.222 N.Cα.C 111.017 2.005 N.Cα.Cβ 111.150 1.131 N.Cα.Cβ 110.571 1.130 Oε1.Cδ.Nε2 122.470 0.718 Oε1.Cδ.Nε2 122.594 0.646 GLN tp-100 n = 534 GLN tt0 n = 6936 χ Smooth COM StdDev chi1 -176.963 8.680 chi1 -176.317 8.500 chi2 62.135 8.823 chi2 177.556 10.804 chi3 -104.704 27.530 chi3 2.032 60.871 Bond Angle Mean StdDev Bond Angle Mean StdDev $Cα.Cβ.Cγ$ 113.566 1.797 Cα.C.O 120.576 0.762 $Cβ.Cα.C$ 110.517 1.240 $Cβ.Cα.C$ 110.144 1.180 $Cβ.Cγ.Cδ$ 113.047 1.311 $Cβ.Cγ.Cδ$ 112.612 1.504 $Cγ.Cδ.Nε2$ 116.553 0.949 $Cγ.Cδ.Nε2$ 116.455 0.840 $Cγ.$	$C\gamma_C\delta_N\epsilon_2$	116.256	0.863	$C\gammaC\deltaN\epsilon_2$	116.593	0.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C\gammaC\deltaO\epsilon 1$	121.254	0.986	$C\gammaC\deltaO\epsilon 1$	120.792	0.874
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{-}C\alpha_{-}C$	112.420	2.222	$NC\alphaC$	111.017	2.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{-}C\alpha_{-}C\beta$	111.150	1.131	$NC\alphaC\beta$	110.571	1.130
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$O\epsilon 1_C\delta_N\epsilon 2$	122.470	0.718	$O\epsilon 1_C\delta_N\epsilon 2$	122.594	0.646
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GLN	tp-100 n = 534	1	GL	N tt0 $n = 6936$	
chi2 62.135 8.823 chi2 177.556 10.804 chi3 -104.704 27.530 chi3 2.032 60.871 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.443 1.567 $C\alpha_C\beta_C\gamma$ 113.566 1.797 $C\alpha_C_O$ 120.563 0.834 $C\alpha_C_O$ 120.576 0.762 $C\beta_C\alpha_C$ 110.517 1.240 $C\beta_C\alpha_C$ 110.144 1.180 $C\beta_C\gamma_C\delta$ 113.047 1.311 $C\beta_C\gamma_C\delta$ 112.612 1.504 $C\gamma_C\delta_N\epsilon 2$ 116.553 0.949 $C\gamma_C\delta_N\epsilon 2$ 116.455 0.840 $C\gamma_C\delta_O\epsilon 1$ 120.860 0.852 $C\gamma_C\delta_O\epsilon 1$ 120.819 0.883 $N_C\alpha_C$ 110.364 2.260 $N_C\alpha_C$ 110.448 2.271 $N_C\alpha_C\beta$ 110.382 1.236 $N_C\alpha_C\beta$ 110.304 1.362	χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi3 -104.704 27.530 chi3 2.032 60.871 Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.443 1.567 $C\alpha_C\beta_C\gamma$ 113.566 1.797 $C\alpha_C_O$ 120.563 0.834 $C\alpha_C_O$ 120.576 0.762 $C\beta_C\alpha_C$ 110.517 1.240 $C\beta_C\alpha_C$ 110.144 1.180 $C\beta_C\gamma_C\delta$ 113.047 1.311 $C\beta_C\gamma_C\delta$ 112.612 1.504 $C\gamma_C\delta_N\epsilon 2$ 116.553 0.949 $C\gamma_C\delta_N\epsilon 2$ 116.455 0.840 $C\gamma_C\delta_O\epsilon 1$ 120.860 0.852 $C\gamma_C\delta_O\epsilon 1$ 120.819 0.883 $N_C\alpha_C$ 110.364 2.260 $N_C\alpha_C$ 110.448 2.271 $N_C\alpha_C\beta$ 110.382 1.236 $N_C\alpha_C\beta$ 110.304 1.362						
Bond Angle Mean StdDev Bond Angle Mean StdDev $C\alpha_C\beta_C\gamma$ 114.443 1.567 $C\alpha_C\beta_C\gamma$ 113.566 1.797 $C\alpha_C_O$ 120.563 0.834 $C\alpha_C_O$ 120.576 0.762 $C\beta_C\alpha_C$ 110.517 1.240 $C\beta_C\alpha_C$ 110.144 1.180 $C\beta_C\gamma_C\delta$ 113.047 1.311 $C\beta_C\gamma_C\delta$ 112.612 1.504 $C\gamma_C\delta_N\epsilon 2$ 116.553 0.949 $C\gamma_C\delta_N\epsilon 2$ 116.455 0.840 $C\gamma_C\delta_O\epsilon 1$ 120.860 0.852 $C\gamma_C\delta_O\epsilon 1$ 120.819 0.883 $N_C\alpha_C$ 110.364 2.260 $N_C\alpha_C$ 110.448 2.271 $N_C\alpha_C\beta$ 110.382 1.236 $N_C\alpha_C\beta$ 110.304 1.362	chi2	62.135	8.823	chi2	177.556	10.804
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi3	-104.704	27.530	chi3	2.032	60.871
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C\alphaC\betaC\gamma$		1.567	· · ·	113.566	1.797
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C\alphaCO$	120.563	0.834		120.576	0.762
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C\betaC\alphaC$	110.517	1.240	$C\betaC\alphaC$	110.144	1.180
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C\betaC\gammaC\delta$	113.047	1.311	$C\betaC\gammaC\delta$	112.612	1.504
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C\gammaC\deltaN\epsilon_2$	116.553	0.949	$C\gamma_C\delta_N\epsilon_2$	116.455	0.840
$N_{-}C\alpha_{-}C\beta$ 110.382 1.236 $N_{-}C\alpha_{-}C\beta$ 110.304 1.362	$C\gammaC\deltaO\epsilon 1$	120.860	0.852	$C\gammaC\deltaO\epsilon 1$	120.819	0.883
	$N_{-}C\alpha_{-}C$	110.364	2.260	$N_{-}C\alpha_{-}C$	110.448	2.271
$Oε1_Cδ_Nε2$ 122.560 0.637 $Oε1_Cδ_Nε2$ 122.701 0.714	$N_{-}C\alpha_{-}C\beta$	110.382	1.236	$NC\alphaC\beta$	110.304	1.362
	$O\epsilon 1_C\delta_N\epsilon 2$	122.560	0.637	$O\epsilon 1_C\delta_N\epsilon 2$	122.701	0.714

GLN	V tm 130 n = 55		GLN	$t_{m-30 n} = 547$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-171.730	9.735	chi1	-171.950	10.144
chi2	-75.893	10.370	chi2	-85.646	10.144 10.982
chi3	127.247	16.058	chi3	-29.401	20.284
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.897	1.440	$C\alphaC\betaC\gamma$	114.618	1.348
$C\alphaCO$	120.546	0.938	$C\alphaCO$	120.534	0.826
$C\betaC\alphaC$	111.262	1.629	$C\betaC\alphaC$	110.944	1.310
$C\betaC\gammaC\delta$	114.423	2.701	$C\betaC\gammaC\delta$	113.510	1.404
$C\gammaC\deltaN\epsilon_2$	117.082	1.285	$C\gamma_C\delta_N\epsilon_2$	116.459	0.713
$C\gammaC\deltaO\epsilon 1$	120.469	1.172	$C\gamma_C\delta_O\epsilon 1$	120.874	0.812
$N_{-}C\alpha_{-}C$	108.797	3.399	$N_{-}C\alpha_{-}C$	110.153	2.506
$N_{-}C\alpha_{-}C\beta$	110.136	1.370	$N_{-}C\alpha_{-}C\beta$	110.287	1.242
$O\epsilon 1_C\delta_N\epsilon 2$	122.423	0.743	$O\epsilon 1_C\delta_N\epsilon 2$	122.641	0.676
GLN	mp10 n = 1207	7	GLN	mp-120 n = 87	7
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-66.517	8.985	chi1	-72.531	9.965
chi2	81.837	11.441	chi2	69.333	11.372
chi3	17.344	37.547	chi3	-119.632	13.002
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.240	1.363	$C\alphaC\betaC\gamma$	114.359	1.549
$C\alphaCO$	120.433	0.836	$C\alphaCO$	120.487	0.882
$C\betaC\alphaC$	109.775	1.525	$C\beta C\alpha C$	109.672	1.790
$C\betaC\gammaC\delta$	113.448	1.294	$C\betaC\gammaC\delta$	113.610	1.567
$C\gamma_C\delta_N\epsilon_2$	116.318	0.819	$C\gamma_C\delta_N\epsilon_2$	116.625	0.650
$C\gammaC\deltaO\epsilon 1$	121.139	0.951	$C\gammaC\deltaO\epsilon 1$	120.632	1.086
$N_C\alpha_C$	111.608	2.346	$N_{-}C\alpha_{-}C$	111.577	2.757
$N_C\alpha_C\beta$	110.830	1.095	$N_C\alpha_C\beta$	110.738	1.006
$O\epsilon 1 C\delta N\epsilon 2$	122.522	0.603	$O\epsilon 1 C\delta N\epsilon 2$	122.722	0.842
GLN	$\mathbf{mt0} \ \mathbf{n} = 14370$		GLN	mm110 n = 114	17
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-66.588	7.494	chi1	-65.092	8.598
chi2	179.220	11.203	chi2	-62.550	10.868
chi3	-3.560	62.564	chi3	109.265	24.134
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	113.241	1.815	$C\alphaC\betaC\gamma$	113.964	1.562
$C\alphaCO$	120.494	0.850	$C\alphaCO$	120.379	0.849
$C\betaC\alphaC$	109.919	1.708	$C\beta C\alpha C$	109.984	1.528
$C\betaC\gammaC\delta$	112.644	1.530	$C\betaC\gammaC\delta$	112.879	1.429
$C\gammaC\deltaN\epsilon_2$	116.444	0.847	$C\gamma_C\delta_N\epsilon_2$	116.587	0.920
$C\gammaC\deltaO\epsilon 1$	120.849	0.897	$C\gammaC\deltaO\epsilon 1$	120.788	0.941
$N_{-}C\alpha_{-}C$	111.415	2.256	$N_{-}C\alpha_{-}C$	111.589	2.280
$N_{-}C\alpha_{-}C\beta$	110.567	1.042	$N_{-}C\alpha_{-}C\beta$	110.721	1.066
$O\epsilon 1_C\delta_N\epsilon 2$	122.680	0.696	$O\epsilon 1_C\delta_N\epsilon 2$	122.597	0.683

GLN mm-40 $n = 5959$				
χ	Smooth COM	StdDev		
chi1	-63.698	8.629		
chi2	-66.032	10.427		
chi3	-38.665	24.730		
Bond Angle	Mean	StdDev		
$C\alphaC\betaC\gamma$	113.884	1.423		
$C\alphaCO$	120.457	0.869		
$C\betaC\alphaC$	109.908	1.491		
$C\betaC\gammaC\delta$	112.838	1.280		
$C\gamma_C\delta_N\epsilon_2$	116.518	0.909		
$C\gammaC\deltaO\epsilon 1$	120.856	0.911		
$N_C\alpha_C$	111.383	2.451		
$N_C\alpha_C\beta$	110.631	1.036		
$O\epsilon 1_C\delta_N\epsilon 2$	122.604	0.776		

3.17 ARG

ARG ppp80 n = 10		ARG ppp-140 $n = 4$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	62.201	5.082	chi1	58.431	3.025
chi2	86.595	6.961	chi2	91.756	4.604
chi3	57.216	3.753	chi3	62.263	10.579
chi4	79.687	8.472	chi4	-143.455	12.578
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	116.109	0.884	$C\alphaC\betaC\gamma$	115.223	0.896
$C\alphaCO$	120.837	0.551	$C\alphaCO$	120.687	0.538
$C\beta C\alpha C$	111.013	1.509	$C\beta _C\alpha _C$	111.973	1.456
$C\betaC\gammaC\delta$	113.944	0.819	$C\beta C\gamma C\delta$	112.231	1.497
$C\delta_N\epsilon_C\zeta$	125.029	0.341	$C\delta_N\epsilon_C\zeta$	125.872	1.184
$C\gammaC\deltaN\epsilon$	112.507	1.082	$C\gammaC\deltaN\epsilon$	113.783	2.259
$N\epsilonC\zetaN\eta 1$	120.628	0.683	$N\epsilonC\zetaN\eta 1$	120.992	1.242
$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.754	0.628	$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	120.128	1.383
$N\eta_1 C\zeta N\eta_2$	119.607	0.318	$N\eta_1 C\zeta N\eta_2$	118.855	0.611
$N_{-}C\alpha_{-}C$	111.134	2.176	$N_{-}C\alpha_{-}C$	113.626	2.343
$N_{-}C\alpha_{-}C\beta$	111.870	1.188	$N_{-}C\alpha_{-}C\beta$	111.211	1.258
${\text{ARG } \mathbf{ppt170} \text{ n} = 57}$					
ARG	ppt170 n = 57		ARC	G ppt90 n = 19	
ARG	$\frac{1}{2} \mathbf{ppt170} \text{ n} = 57$ $\mathbf{Smooth} \text{ COM}$	StdDev	ARC	G ppt90 n = 19 Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$			χ chi1		StdDev 5.887
χ chi1 chi2	Smooth COM 59.128 87.628	9.858 12.300	χ chi1 chi2	Smooth COM 63.537 99.251	5.887 7.971
χ chi1 chi2 chi3	Smooth COM 59.128 87.628 173.545	9.858 12.300 12.300	χ chi1	Smooth COM 63.537 99.251 -179.890	5.887 7.971 9.835
χ chi1 chi2	Smooth COM 59.128 87.628	9.858 12.300	χ chi1 chi2	Smooth COM 63.537 99.251	5.887 7.971
χ chi1 chi2 chi3	Smooth COM 59.128 87.628 173.545	9.858 12.300 12.300	χ chi1 chi2 chi3	Smooth COM 63.537 99.251 -179.890	5.887 7.971 9.835
chi1 chi2 chi3 chi4	Smooth COM 59.128 87.628 173.545 173.353	9.858 12.300 12.300 17.309	chi1 chi2 chi3 chi4	Smooth COM 63.537 99.251 -179.890 87.261	5.887 7.971 9.835 12.995
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$}$}$} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$}$}$} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$}$}$} \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean	9.858 12.300 12.300 17.309 StdDev	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$	Smooth COM 63.537 99.251 -179.890 87.261 Mean	5.887 7.971 9.835 12.995 StdDev 1.885 0.834
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$}}$} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$}}$} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$}}$} \\ \hline \text{$\text{C}\beta$-$\text{$\text{C}\alpha$-$\text{$\text{C}$}$}$} \\ \hline \text{$\text{C}\beta$-$\text{$\text{C}\alpha$-$\text{$\text{C}$}$}$} \\ \hline \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237	9.858 12.300 12.300 17.309 StdDev 1.393	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$}$}$} \\ \text{$\text{C}\alpha$-$\text{$\text{C}$-$\text{C}$}$} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}$-$\text{C}$}$} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}$-$\text{C}$}$} \\ \hline \text{$\text{C}\beta$-$\text{$\text{C}\alpha$-$\text{C}$}$} \\ \hline \text{$\text{C}\beta$-$\text{$\text{C}\alpha$-$\text{C}$}$} \\ \hline \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366	5.887 7.971 9.835 12.995 StdDev 1.885
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$}$}$} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$}$}$} \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$}$}$} \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372	9.858 12.300 12.300 17.309 StdDev 1.393 1.040	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762	5.887 7.971 9.835 12.995 StdDev 1.885 0.834
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240	9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$}$}$} \\ \hline \\ \text{$\text{C}\alpha$-$\text{$\text{C}\beta$-$\text{$\text{C}\gamma$-$\text{$\text{C}\delta$}$}$} \\ \hline \\ \text{$\text{C}\beta$-$\text{$\text{C}\alpha$-$\text{$\text{C}$}$}$} \\ \hline \\ \text{$\text{C}\beta$-$\text{$\text{C}\gamma$-$\text{$\text{C}\delta$}$}$} \\ \hline \\ \text{$\text{C}\delta$-$\text{$\text{N}\epsilon$-$\text{$\text{C}\zeta$}$}$} \\ \hline \\ \text{$\text{C}\gamma$-$\text{$\text{C}\delta$-$\text{$\text{N}\epsilon$}$}$} \\ \hline \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240 111.386	9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371 1.628 1.282 1.601	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$-C\beta$-$Cγ} \\ \text{$C\alpha$-C-C0} \\ \text{$C\beta$-C\alpha$-$C$} \\ \text{$C\beta$-$Cγ-C\delta$} \\ \text{$C\delta$-$Nϵ-C\zeta$} \\ \text{$C\delta$-$Nϵ-C\zeta$} \\ \text{$C\gamma$-$Cδ-N\epsilon$} \\ \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397 113.143	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700 2.407 1.126 2.891
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta \\ C\gamma_C\delta_N\eta \\ \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240 111.386 120.500	StdDev 9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371 1.628 1.282 1.601 1.081	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$-C\beta$-$Cγ} \\ \text{$C\alpha$-C-C0} \\ \text{$C\beta$-C\alpha$-$C$} \\ \text{$C\beta$-$Cγ-C\delta$} \\ \text{$C\delta$-$Nϵ-C\zeta$} \\ \text{$C\gamma$-$Cδ-N\epsilon$} \\ \text{$N\epsilon$-$Cζ-N\eta$1} \\ \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397 113.143 120.860	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700 2.407 1.126 2.891 1.089
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta_\text{$C\gamma$} \\ \text{$C\alpha$_$C$_$C} \\ \text{$C\beta$_$C}\alpha_\text{$C$} \\ \text{$C\beta$_$C}\gamma_\text{$C\delta$} \\ \text{$C\delta$_$N$$\epsilon$_$C$\zeta} \\ \text{$C\gamma$_$Cδ_N\epsilon$_$C$\zeta} \\ \text{$C\gamma$_$Cδ_N\epsilon$} \\ \text{$N\epsilon$_$Cζ_N\eta$1} \\ \text{$N\epsilon$_$Cζ_N\eta$2} \\ \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240 111.386 120.500 119.821	9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371 1.628 1.282 1.601 1.081 0.871	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$-C\beta$-$Cγ} \\ \text{$C\alpha$-C-C0} \\ \text{$C\beta$-C\gamma$-$Cδ} \\ \text{$C\delta$-N\epsilon$-$Cζ} \\ \text{$C\delta$-N\epsilon$-$Cζ} \\ \text{$C\gamma$-C\delta$-$Nϵ} \\ \text{$N\epsilon$-C\zeta$-$Nη1} \\ \text{$N\epsilon$-C\zeta$-$Nη2} \\ \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397 113.143 120.860 119.873	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700 2.407 1.126 2.891 1.089 1.094
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_Cβ_C\gamma$} \\ \text{$C\alpha$_C$_O$} \\ \text{$C\beta$_C$\alpha$_C$} \\ \text{$C\beta$_Cα_C$} \\ \text{$C\beta$_C$\alpha$_C$} \\ \text{$C\delta$_Nϵ_Cζ} \\ \text{$C\gamma$_Cδ_N\epsilon$} \\ \text{$N\epsilon$_C$\zeta$_N$\eta$1} \\ \text{$N\epsilon$_C$\zeta$_N$\eta$2} \\ \text{$N\eta1_C\zeta$_N$\eta$2} \\ \hline \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240 111.386 120.500 119.821 119.657	StdDev 9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371 1.628 1.282 1.601 1.081 0.871 0.701	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_\text{C}\beta_\text{C}\gamma$} \\ \text{$C\alpha_\text{C}_{-}\text{C}_{0}$} \\ \text{$C\beta_\text{C}\gamma_\text{C}\delta$} \\ \text{$C\beta_\text{C}\gamma_\text{C}\delta$} \\ \text{$C\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \text{$C\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \text{$N\epsilon_\text{C}\zeta_\text{N}\eta1$} \\ \text{$N\epsilon_\text{C}\zeta_\text{N}\eta2$} \\ \text{$N\eta1_\text{C}\zeta_\text{N}\eta2$} \\ \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397 113.143 120.860 119.873 119.235	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700 2.407 1.126 2.891 1.089 1.094 0.792
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta_\text{$C\gamma$} \\ \text{$C\alpha$_$C$_$C} \\ \text{$C\beta$_$C}\alpha_\text{$C$} \\ \text{$C\beta$_$C}\gamma_\text{$C\delta$} \\ \text{$C\delta$_$N$$\epsilon$_$C$\zeta} \\ \text{$C\gamma$_$Cδ_N\epsilon$_$C$\zeta} \\ \text{$C\gamma$_$Cδ_N\epsilon$} \\ \text{$N\epsilon$_$Cζ_N\eta$1} \\ \text{$N\epsilon$_$Cζ_N\eta$2} \\ \end{array}$	Smooth COM 59.128 87.628 173.545 173.353 Mean 116.237 120.372 111.948 112.408 124.240 111.386 120.500 119.821	9.858 12.300 12.300 17.309 StdDev 1.393 1.040 1.371 1.628 1.282 1.601 1.081 0.871	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$-C\beta$-$Cγ} \\ \text{$C\alpha$-C-C0} \\ \text{$C\beta$-C\gamma$-$Cδ} \\ \text{$C\delta$-N\epsilon$-$Cζ} \\ \text{$C\delta$-N\epsilon$-$Cζ} \\ \text{$C\gamma$-C\delta$-$Nϵ} \\ \text{$N\epsilon$-C\zeta$-$Nη1} \\ \text{$N\epsilon$-C\zeta$-$Nη2} \\ \end{array}$	Smooth COM 63.537 99.251 -179.890 87.261 Mean 115.366 120.762 110.804 111.852 125.397 113.143 120.860 119.873	5.887 7.971 9.835 12.995 StdDev 1.885 0.834 1.700 2.407 1.126 2.891 1.089 1.094

	1 1 00 15		4.D.C	1 1 00 000	
ARG ppt-90 n = 15		ARG ptp90 n = 223			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	61.770	9.125	chi1	65.165	9.396
chi2	90.213	11.134	chi2	178.845	11.322
chi3	177.663	5.499	chi3	64.039	8.635
chi4	-92.246	14.372	chi4	87.873	11.117
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.763	1.382	$C\alphaC\betaC\gamma$	114.956	1.706
$C\alphaCO$	120.637	0.931	$C\alphaCO$	120.464	0.957
$C\betaC\alphaC$	111.235	1.747	$C\betaC\alphaC$	110.461	1.385
$C\betaC\gammaC\delta$	113.040	1.278	$C\betaC\gammaC\delta$	111.807	1.560
$C\delta_N\epsilon_C\zeta$	124.988	0.738	$C\delta_N\epsilon_C\zeta$	124.916	1.152
$C\gamma_C\delta_N\epsilon$	111.689	1.956	$C\gammaC\deltaN\epsilon$	112.153	2.179
$N\epsilonC\zetaN\eta 1$	120.569	1.315	$N\epsilon C\zeta N\eta 1$	120.771	1.065
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.890	1.166	$N\epsilonC\zetaN\eta 2$	119.714	0.970
$N\eta 1_C\zeta_N\eta 2$	119.520	0.600	$N\eta 1C\zetaN\eta 2$	119.498	0.797
$N_{-}C\alpha_{-}C$	111.578	3.116	$N_{-}C\alpha_{-}C$	110.918	2.815
$N_C\alpha_C\beta$	111.579	1.236	$N_{-}C\alpha_{-}C\beta$	111.106	1.187
ARG	ptp-110 n = 77	7	,	ptp-170 n = 386	
$\frac{\lambda}{\chi}$		StdDev	,		
	ptp-110 n = 77		ARG	ptp-170 n = 38	8
χ	ptp-110 n = 77 Smooth COM	StdDev	$\frac{\lambda}{\chi}$	ptp-170 n = 38 Smooth COM	8 StdDev
χ chi1	ptp-110 n = 77 Smooth COM 67.597	StdDev 8.250	$\frac{\chi}{\text{chi1}}$	ptp-170 n = 38 Smooth COM 67.375	8 StdDev 7.654
χ chi1 chi2	ptp-110 n = 77 Smooth COM 67.597 -179.670	StdDev 8.250 11.900	ARG χ chi1 chi2	ptp-170 n = 38 Smooth COM 67.375 -175.630	8 StdDev 7.654 12.219
χ chi1 chi2 chi3	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784	8.250 11.900 10.049	ARG	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232	8 StdDev 7.654 12.219 9.651
chi1 chi2 chi3 chi4	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305	8.250 11.900 10.049 9.865	$\begin{array}{c} \lambda \\ \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \end{array}$	ptp-170 n = 386 Smooth COM 67.375 -175.630 68.232 -172.286	8 StdDev 7.654 12.219 9.651 15.957
χ chi1 chi2 chi3 chi4 Bond Angle	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean	8.250 11.900 10.049 9.865 StdDev	ARG $ \begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \end{array} $ Bond Angle $ \begin{array}{c} \text{C}\alpha_{\text{-}}\text{C}\beta_{\text{-}}\text{C}\gamma \\ \text{C}\alpha_{\text{-}}\text{C}_{\text{-}}\text{O} \end{array} $	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean	8 StdDev 7.654 12.219 9.651 15.957 StdDev
χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792	8.250 11.900 10.049 9.865 StdDev 1.933	ARG $\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha\text{_C}\beta\text{_C}\gamma \end{array}$	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$_$C}\beta$_$C}\gamma \\ \text{$\text{C}\alpha$_$C$_$O} \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741	8.250 11.900 10.049 9.865 StdDev 1.933 1.224	ARG $ \begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \end{array} $ Bond Angle $ \begin{array}{c} \text{C}\alpha_{\text{-}}\text{C}\beta_{\text{-}}\text{C}\gamma \\ \text{C}\alpha_{\text{-}}\text{C}_{\text{-}}\text{O} \end{array} $	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416	ARG χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C _ C$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \\ \hline \text{$\text{C}\alpha_\text{C}_{-}\text{C} \text{C}$} \\ \hline \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \\ \hline \\ \hline \text{$\text{C}\delta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \\ \hline \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \hline \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403 111.895	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416 1.473 1.443 2.285	ARG χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C _ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408 111.291 124.582 111.416	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567 1.743
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403 111.895 125.606 111.728 120.996	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416 1.473 1.443 2.285 1.421	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C_{-}O $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta_{1}$	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408 111.291 124.582 111.416 120.454	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567 1.743 1.140 1.628 0.937
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ \text{$C\alpha_C_O$} \\ \hline \\ \text{$C\beta_C\alpha_C$} \\ \hline \\ \text{$C\beta_C\gamma_C\delta$} \\ \hline \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \hline \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403 111.895 125.606 111.728 120.996 119.559	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416 1.473 1.443 2.285 1.421 1.566	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C_{-}O $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta_{1} $ $ N\epsilon_{-}C\zeta_{-}N\eta_{2} $	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408 111.291 124.582 111.416 120.454 119.760	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567 1.743 1.140 1.628 0.937 0.930
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403 111.895 125.606 111.728 120.996 119.559 119.421	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416 1.473 1.443 2.285 1.421 1.566 1.129	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C_{-}C $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta 1 $ $ N\epsilon_{-}C\zeta_{-}N\eta 2 $	ptp-170 n = 380 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408 111.291 124.582 111.416 120.454 119.760 119.756	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567 1.743 1.140 1.628 0.937 0.930 0.920
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ \text{$C\alpha_C_O$} \\ \hline \\ \text{$C\beta_C\alpha_C$} \\ \hline \\ \text{$C\beta_C\gamma_C\delta$} \\ \hline \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \hline \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	ptp-110 n = 77 Smooth COM 67.597 -179.670 64.784 -108.305 Mean 114.792 120.741 110.403 111.895 125.606 111.728 120.996 119.559	8.250 11.900 10.049 9.865 StdDev 1.933 1.224 1.416 1.473 1.443 2.285 1.421 1.566	ARG $ \chi $ chi1 chi2 chi3 chi4 Bond Angle $ C\alpha_{-}C\beta_{-}C\gamma $ $ C\alpha_{-}C_{-}O $ $ C\beta_{-}C\alpha_{-}C $ $ C\beta_{-}C\gamma_{-}C\delta $ $ C\delta_{-}N\epsilon_{-}C\zeta $ $ C\gamma_{-}C\delta_{-}N\epsilon $ $ N\epsilon_{-}C\zeta_{-}N\eta_{1} $ $ N\epsilon_{-}C\zeta_{-}N\eta_{2} $	ptp-170 n = 38 Smooth COM 67.375 -175.630 68.232 -172.286 Mean 114.528 120.563 110.408 111.291 124.582 111.416 120.454 119.760	8 StdDev 7.654 12.219 9.651 15.957 StdDev 1.455 0.963 1.567 1.743 1.140 1.628 0.937 0.930

ARG ptt180 n = 820		ARG ptt90 $n = 814$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	65.305	8.301	chi1	64.935	7.600
chi2	-177.454	10.432	chi2	178.802	12.292
chi3	-179.814	10.417	chi3	176.614	8.719
chi4	179.152	17.466	chi4	87.625	9.814
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.577	1.525	$C\alphaC\betaC\gamma$	114.818	1.433
$C\alphaCO$	120.578	1.008	$C\alphaCO$	120.575	0.864
$C\betaC\alphaC$	110.520	1.503	$C\betaC\alphaC$	110.208	1.412
$C\betaC\gammaC\delta$	111.129	2.013	$C\betaC\gammaC\delta$	110.988	1.946
$C\delta_N\epsilon_C\zeta$	124.433	1.099	$C\delta_N\epsilon_C\zeta$	124.876	0.920
$C\gamma_C\delta_N\epsilon$	110.745	1.990	$C\gamma C\delta N\epsilon$	111.873	2.472
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.477	0.941	$N\epsilon C\zeta N\eta 1$	120.762	0.988
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.617	0.893	$N\epsilon C\zeta N\eta 2$	119.679	0.912
$N\eta_1 C\zeta N\eta_2$	119.887	0.877	$N\eta 1_C\zeta_N\eta 2$	119.540	0.696
$N_{-}C\alpha_{-}C$	111.325	2.492	$NC\alphaC$	110.780	2.513
$N_{-}C\alpha_{-}C\beta$	111.010	1.124	$N_{-}C\alpha_{-}C\beta$	111.050	1.153
ARG ptt-90 n = 726		ARG ptm160 n = 502			
ARG	ptt-90 n = 726		ARG	ptm160 n = 50	2
χ	$\frac{\text{ptt-90 n} = 726}{\text{Smooth COM}}$	StdDev	χ	$\frac{\mathbf{ptm160} \text{ n} = 50}{\text{Smooth COM}}$	2 StdDev
	-		-		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM 66.303	StdDev 7.908	χ chi1	Smooth COM 63.484	StdDev 8.731
χ chi1 chi2	Smooth COM 66.303 -175.118	StdDev 7.908 12.037	χ chi1 chi2	Smooth COM 63.484 -179.108	StdDev 8.731 14.966
χ chi1 chi2 chi3	Smooth COM 66.303 -175.118 -176.524	7.908 12.037 8.892	chi1 chi2 chi3	Smooth COM 63.484 -179.108 -67.148	8.731 14.966 9.716
chi1 chi2 chi3 chi4	Smooth COM 66.303 -175.118 -176.524 -87.098	7.908 12.037 8.892 11.825	chi1 chi2 chi3 chi4	Smooth COM 63.484 -179.108 -67.148 165.337	8.731 14.966 9.716 25.706
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean	7.908 12.037 8.892 11.825 StdDev	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \end{array}$	Smooth COM 63.484 -179.108 -67.148 165.337 Mean	StdDev 8.731 14.966 9.716 25.706 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840	7.908 12.037 8.892 11.825 StdDev 1.508	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$	Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588	StdDev 8.731 14.966 9.716 25.706 StdDev 1.635
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486	7.908 12.037 8.892 11.825 StdDev 1.508 0.935	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \end{array}$	Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504	8.731 14.966 9.716 25.706 StdDev 1.635 0.978
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C C$ $C\beta C\alpha C$	Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438	8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455 110.983	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554 2.037	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \end{array}$	Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438 111.713	8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556 1.805
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455 110.983 124.865	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554 2.037 1.144	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _C$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$	Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438 111.713 124.678	8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556 1.805 1.394
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455 110.983 124.865 111.656	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554 2.037 1.144 2.664	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \end{array}$	Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438 111.713 124.678 111.548	StdDev 8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556 1.805 1.394 2.110
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta-N\eta1$} \\ \hline \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455 110.983 124.865 111.656 120.763	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554 2.037 1.144 2.664 1.014		Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438 111.713 124.678 111.548 120.580	StdDev 8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556 1.805 1.394 2.110 1.282
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta$} \\ \text{$N\epsilon_C\zeta$} \\ \text{$N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \end{array}$	Smooth COM 66.303 -175.118 -176.524 -87.098 Mean 114.840 120.486 110.455 110.983 124.865 111.656 120.763 119.688	7.908 12.037 8.892 11.825 StdDev 1.508 0.935 1.554 2.037 1.144 2.664 1.014 1.138	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \hline \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \hline \\ \text{C}\alpha_\text{C}_\text{O} \\ \hline \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \hline \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \hline \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \hline \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta1 \\ \hline \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta2 \\ \\ \end{array}$	Smooth COM 63.484 -179.108 -67.148 165.337 Mean 114.588 120.504 110.438 111.713 124.678 111.548 120.580 119.717	StdDev 8.731 14.966 9.716 25.706 StdDev 1.635 0.978 1.556 1.805 1.394 2.110 1.282 1.123

ARG ptm-80 n = 215		ARG $pmt100 n = 4$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	65.373	8.260	chi1	70.210	7.245
chi2	-178.472	14.370	chi2	-90.541	9.055
chi3	-66.034	10.269	chi3	-174.190	5.432
chi4	-84.515	10.828	chi4	97.849	2.006
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.564	1.281	$C\alphaC\betaC\gamma$	115.830	0.421
$C\alphaCO$	120.421	0.844	$C\alphaCO$	120.581	0.283
$C\betaC\alphaC$	110.304	1.382	$C\betaC\alphaC$	110.812	0.494
$C\betaC\gammaC\delta$	111.894	1.743	$C\betaC\gammaC\delta$	112.728	0.575
$C\delta_N\epsilon_C\zeta$	124.963	1.432	$C\delta_N\epsilon_C\zeta$	125.083	0.125
$C\gamma_C\delta_N\epsilon$	112.362	2.279	$C\gammaC\deltaN\epsilon$	111.181	0.920
$N\epsilonC\zetaN\eta 1$	120.717	1.214	$N\epsilon C\zeta \eta 1$	120.967	0.288
$N\epsilonC\zetaN\eta 2$	119.898	1.456	$N\epsilon C\zeta \eta 2$	119.634	0.266
$N\eta 1_C\zeta_N\eta 2$	119.365	0.871	$N\eta 1C\zetaN\eta 2$	119.397	0.052
$N_{-}C\alpha_{-}C$	111.616	2.543	$NC\alphaC$	110.231	1.442
$N_{C}\alpha_{C}\beta$	110.971	1.307	$N_{-}C\alpha_{-}C\beta$	111.390	0.423
ARG pmt170 n = 39			ARG pmt-80 $n = 27$		
ARG	pmt170 n = 39)	ARG	pmt-80 $n = 27$	
χ ARG	pmt170 n = 39 Smooth COM	StdDev	χ	$\frac{\text{pmt-80 n} = 27}{\text{Smooth COM}}$	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM 73.963	StdDev 11.193	χ chi1	Smooth COM 81.229	StdDev 9.292
χ chi1 chi2	Smooth COM 73.963 -78.972	StdDev 11.193 15.367	χ chi1 chi2	Smooth COM 81.229 -68.144	StdDev 9.292 7.568
χ chi1 chi2 chi3	Smooth COM 73.963 -78.972 -169.420	StdDev 11.193 15.367 10.139	χ chi1 chi2 chi3	Smooth COM 81.229 -68.144 -176.905	StdDev 9.292 7.568 10.963
χ chi1 chi2	Smooth COM 73.963 -78.972	StdDev 11.193 15.367	χ chi1 chi2	Smooth COM 81.229 -68.144	StdDev 9.292 7.568
χ chi1 chi2 chi3	Smooth COM 73.963 -78.972 -169.420	StdDev 11.193 15.367 10.139	χ chi1 chi2 chi3	Smooth COM 81.229 -68.144 -176.905	StdDev 9.292 7.568 10.963
χ chi1 chi2 chi3 chi4	Smooth COM 73.963 -78.972 -169.420 -169.441	StdDev 11.193 15.367 10.139 15.119	χ chi1 chi2 chi3 chi4	Smooth COM 81.229 -68.144 -176.905 -84.063	9.292 7.568 10.963 8.317
χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$	Smooth COM 73.963 -78.972 -169.420 -169.441 Mean	StdDev 11.193 15.367 10.139 15.119 StdDev	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$	Smooth COM 81.229 -68.144 -176.905 -84.063 Mean	9.292 7.568 10.963 8.317 StdDev
χ chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	Smooth COM 73.963 -78.972 -169.420 -169.441 Mean 116.291	StdDev 11.193 15.367 10.139 15.119 StdDev 1.188	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$	Smooth COM 81.229 -68.144 -176.905 -84.063 Mean 115.767	9.292 7.568 10.963 8.317 StdDev 1.164
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \end{array}$	Smooth COM 73.963 -78.972 -169.420 -169.441 Mean 116.291 120.751	StdDev 11.193 15.367 10.139 15.119 StdDev 1.188 0.702	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \end{array}$	Smooth COM 81.229 -68.144 -176.905 -84.063 Mean 115.767 120.964	9.292 7.568 10.963 8.317 StdDev 1.164 0.647
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \hline \text{$C\alpha_C\beta_C\gamma$} \\ \hline \text{$C\alpha_C_O$} \\ \hline \text{$C\beta_C\alpha_C$} \\ \hline \text{$C\beta_C\gamma_C\delta$} \\ \hline \text{$C\beta_N\epsilon_C\zeta$} \\ \hline \end{array}$	Smooth COM 73.963 -78.972 -169.420 -169.441 Mean 116.291 120.751 110.782 112.734 124.390	StdDev 11.193 15.367 10.139 15.119 StdDev 1.188 0.702 1.123 1.257 1.048	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \end{array}$	Smooth COM 81.229 -68.144 -176.905 -84.063 Mean 115.767 120.964 110.281	9.292 7.568 10.963 8.317 StdDev 1.164 0.647 1.017
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ \end{array}$	Smooth COM 73.963 -78.972 -169.420 -169.441 Mean 116.291 120.751 110.782 112.734 124.390 111.561	StdDev 11.193 15.367 10.139 15.119 StdDev 1.188 0.702 1.123 1.257 1.048 1.865	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \hline \end{array}$	Smooth COM 81.229 -68.144 -176.905 -84.063 Mean 115.767 120.964 110.281 113.254 124.929 112.132	9.292 7.568 10.963 8.317 StdDev 1.164 0.647 1.017 1.792 0.992 1.754
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta-N\eta1$} \\ \hline \end{array}$	Smooth COM 73.963 -78.972 -169.420 -169.441 Mean 116.291 120.751 110.782 112.734 124.390 111.561 120.368	StdDev 11.193 15.367 10.139 15.119 StdDev 1.188 0.702 1.123 1.257 1.048	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta1 \\ \end{array}$	Smooth COM 81.229 -68.144 -176.905 -84.063 Mean 115.767 120.964 110.281 113.254 124.929 112.132 120.989	StdDev 9.292 7.568 10.963 8.317 StdDev 1.164 0.647 1.017 1.792 0.992 1.754 0.889
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ \end{array}$	Smooth COM 73.963 -78.972 -169.420 -169.441 Mean 116.291 120.751 110.782 112.734 124.390 111.561	StdDev 11.193 15.367 10.139 15.119 StdDev 1.188 0.702 1.123 1.257 1.048 1.865	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta2 \\ \end{array}$	Smooth COM 81.229 -68.144 -176.905 -84.063 Mean 115.767 120.964 110.281 113.254 124.929 112.132	9.292 7.568 10.963 8.317 StdDev 1.164 0.647 1.017 1.792 0.992 1.754
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \text{$N\eta1_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM 73.963 -78.972 -169.420 -169.441 Mean 116.291 120.751 110.782 112.734 124.390 111.561 120.368 119.973 119.646	StdDev 11.193 15.367 10.139 15.119 StdDev 1.188 0.702 1.123 1.257 1.048 1.865 0.782 0.643 0.558	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta 1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta 2 \\ \text{N}\eta 1_\text{C}\zeta_\text{N}\eta 2 \\ \hline \end{array}$	Smooth COM 81.229 -68.144 -176.905 -84.063 Mean 115.767 120.964 110.281 113.254 124.929 112.132 120.989 119.623 119.368	StdDev 9.292 7.568 10.963 8.317 StdDev 1.164 0.647 1.017 1.792 0.992 1.754 0.889 0.599 0.601
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM 73.963 -78.972 -169.420 -169.441 Mean 116.291 120.751 110.782 112.734 124.390 111.561 120.368 119.973	StdDev 11.193 15.367 10.139 15.119 StdDev 1.188 0.702 1.123 1.257 1.048 1.865 0.782 0.643	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta2 \\ \end{array}$	Smooth COM 81.229 -68.144 -176.905 -84.063 Mean 115.767 120.964 110.281 113.254 124.929 112.132 120.989 119.623	9.292 7.568 10.963 8.317 StdDev 1.164 0.647 1.017 1.792 0.992 1.754 0.889 0.599

ARG	pmm150 n = 15	2	ARG	ARG pmm-80 n = 19		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	75.579	3.166	chi1	73.642	12.608	
chi2	-75.440	5.561	chi2	-75.958	11.183	
chi3	-64.975	6.260	chi3	-56.789	8.115	
chi4	151.999	15.442	chi4	-81.265	7.401	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	116.190	1.499	$C\alphaC\betaC\gamma$	115.931	1.019	
$C\alphaCO$	120.267	0.926	$C\alphaCO$	120.769	0.553	
$C\betaC\alphaC$	110.409	1.045	$C\betaC\alphaC$	110.942	1.227	
$C\betaC\gammaC\delta$	112.425	1.153	$C\betaC\gammaC\delta$	113.505	1.558	
$C\delta_N\epsilon_C\zeta$	125.348	2.473	$C\delta_N\epsilon_C\zeta$	125.145	1.080	
$C\gammaC\deltaN\epsilon$	111.569	2.064	$C\gammaC\deltaN\epsilon$	112.540	1.304	
$N\epsilon_{-}C\zeta_{-}N\eta 1$	121.076	1.741	$N\epsilonC\zetaN\eta 1$	120.428	0.947	
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.660	1.033	$N\epsilonC\zetaN\eta 2$	120.291	0.953	
$N\eta_1 C\zeta N\eta_2$	119.218	1.385	$N\eta 1C\zetaN\eta 2$	119.271	0.671	
$N_{-}C\alpha_{-}C$	109.038	0.995	$N_{-}C\alpha_{-}C$	109.672	2.434	
$N_{-}C\alpha_{-}C\beta$	112.126	0.964	$N_{-}C\alpha_{-}C\beta$	111.608	1.001	
ARG	tpp80 n = 363		ARG	tpp-160 $n = 49$	6	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-177.765	10.251	chi1	178.900	9.622	
chi2	65.211	10.679	chi2	65.564	10.745	
chi3	59.806	9.544	chi3	65.339	9.826	
chi4	84.211	9.112	chi4	-167.680	19.748	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.925	1.369	$C\alphaC\betaC\gamma$	114.753	1.301	
$C\alphaCO$	120.516	0.750	$C\alphaCO$	120.521	0.835	
$C\beta _C\alpha _C$	110.476	1.234	$C\beta C\alpha C$	110.424	1.291	
$C\beta C\gamma C\delta$	112.970	1.585	$C\betaC\gammaC\delta$	112.686	1.753	
$C\delta_N\epsilon_C\zeta$	124.999	1.053	$C\delta_N\epsilon_C\zeta$	124.533	1.383	
$C\gamma_C\delta_N\epsilon$	112.587	2.062	$C\gammaC\deltaN\epsilon$	111.868	1.817	
$N\epsilonC\zetaN\eta 1$	120.720	0.868	$N\epsilonC\zetaN\eta 1$	120.495	1.034	
$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.749	0.827	$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.796	1.090	
$N\eta 1_C \zeta_N \eta 2$	119.512	0.717	$N\eta 1_C\zeta_N\eta 2$	119.690	0.837	
$N_{-}C\alpha_{-}C$	110.795	2.025	$N_{-}C\alpha_{-}C$	110.619	2.297	
$N_{-}C\alpha_{-}C\beta$	110.349	1.121	$N_{-}C\alpha_{-}C\beta$	110.242	1.093	

ARG tpt170 n = 825			ARG tpt90 n = 652		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-178.826	8.985	chi1	178.926	8.381
chi2	66.313	10.376	chi2	65.741	7.685
chi3	177.963	11.716	chi3	178.589	9.896
chi4	171.354	19.311	chi4	86.350	10.296
Bond Angle	Mean	StdDev	Bond Angle Mean		StdDev
$C\alphaC\betaC\gamma$	114.515	1.233	$C\alphaC\betaC\gamma$	114.718	1.274
$C\alphaCO$	120.510	0.735	$C\alphaCO$	120.469	0.802
$C\betaC\alphaC$	110.571	1.154	$C\betaC\alphaC$	110.288	1.182
$C\betaC\gammaC\delta$	112.241	1.705	$C\betaC\gammaC\delta$	112.118	1.671
$C\delta_N\epsilon_C\zeta$	124.487	1.136	$C\delta_N\epsilon_C\zeta$	124.798	0.923
$C\gamma_C\delta_N\epsilon$	110.851	1.868	$C\gammaC\deltaN\epsilon$	111.919	2.267
$N\epsilon C\zeta \eta 1$	120.532	0.938	$N\epsilon C\zeta \eta 1$	120.812	0.967
$N\epsilon C\zeta N\eta 2$	119.674	0.880	$N\epsilon C\zeta \eta 2$	119.714	0.888
$N\eta_1 C\zeta N\eta_2$	119.775	0.857	$N\eta 1_C\zeta N\eta 2$	119.453	0.822
$N_{-}C\alpha_{-}C$	110.743	1.989	$NC\alphaC$	111.449	2.056
$N_{-}C\alpha_{-}C\beta$	110.225	1.192	$N_{-}C\alpha_{-}C\beta$	110.205	1.088
ARG	tpt-90 n = 365		ARG	tpm170 n = 110)
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	179.343	8.403	chi1	178.317	8.113
chi1 chi2	179.343 67.144	8.403 10.829	chi1 chi2	178.317 70.416	8.113 10.901
chi2	67.144	10.829	chi2	70.416	10.901
chi2 chi3	67.144 -179.669	10.829 8.849	chi2 chi3	70.416 -85.345	$10.901 \\ 12.809$
chi2 chi3 chi4	67.144 -179.669 -89.385	10.829 8.849 12.210	chi2 chi3 chi4	70.416 -85.345 171.668	10.901 12.809 18.570
chi2 chi3 chi4 Bond Angle	67.144 -179.669 -89.385 Mean	10.829 8.849 12.210 StdDev	chi2 chi3 chi4 Bond Angle	70.416 -85.345 171.668 Mean	10.901 12.809 18.570 StdDev
chi2 chi3 chi4 Bond Angle	67.144 -179.669 -89.385 Mean 114.741	10.829 8.849 12.210 StdDev 1.251	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$	70.416 -85.345 171.668 Mean 115.637	10.901 12.809 18.570 StdDev 1.263
chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$	67.144 -179.669 -89.385 Mean 114.741 120.494	10.829 8.849 12.210 StdDev 1.251 0.717	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha CO$	70.416 -85.345 171.668 Mean 115.637 120.626	10.901 12.809 18.570 StdDev 1.263 0.802
chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$	67.144 -179.669 -89.385 Mean 114.741 120.494 110.562	10.829 8.849 12.210 StdDev 1.251 0.717 1.204	chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$	70.416 -85.345 171.668 Mean 115.637 120.626 110.602	10.901 12.809 18.570 StdDev 1.263 0.802 1.333
chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$	67.144 -179.669 -89.385 Mean 114.741 120.494 110.562 112.371	10.829 8.849 12.210 StdDev 1.251 0.717 1.204 1.618	chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$	70.416 -85.345 171.668 Mean 115.637 120.626 110.602 112.785	10.901 12.809 18.570 StdDev 1.263 0.802 1.333 2.167
chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$	67.144 -179.669 -89.385 Mean 114.741 120.494 110.562 112.371 124.855	10.829 8.849 12.210 StdDev 1.251 0.717 1.204 1.618 1.145	chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$	70.416 -85.345 171.668 Mean 115.637 120.626 110.602 112.785 124.702	10.901 12.809 18.570 StdDev 1.263 0.802 1.333 2.167 2.252
chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$ $C\alpha _C _O$ $C\beta _C\alpha _C$ $C\beta _C\gamma _C\delta$ $C\delta _N\epsilon _C\zeta$ $C\gamma _C\delta _N\epsilon$	67.144 -179.669 -89.385 Mean 114.741 120.494 110.562 112.371 124.855 111.131	10.829 8.849 12.210 StdDev 1.251 0.717 1.204 1.618 1.145 2.518	chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$ $C\beta _ C\alpha _ C$ $C\beta _ C\gamma _ C\delta$ $C\delta _ N\epsilon _ C\zeta$ $C\gamma _ C\delta _ N\epsilon$	70.416 -85.345 171.668 Mean 115.637 120.626 110.602 112.785 124.702 111.970	10.901 12.809 18.570 StdDev 1.263 0.802 1.333 2.167 2.252 2.147
chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$	67.144 -179.669 -89.385 Mean 114.741 120.494 110.562 112.371 124.855 111.131 120.736	10.829 8.849 12.210 StdDev 1.251 0.717 1.204 1.618 1.145 2.518 1.033	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$	70.416 -85.345 171.668 Mean 115.637 120.626 110.602 112.785 124.702 111.970 120.476	10.901 12.809 18.570 StdDev 1.263 0.802 1.333 2.167 2.252 2.147 1.046
chi2 chi3 chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$ $N\epsilon_{-}C\zeta_{-}N\eta_{2}$	67.144 -179.669 -89.385 Mean 114.741 120.494 110.562 112.371 124.855 111.131 120.736 119.671	10.829 8.849 12.210 StdDev 1.251 0.717 1.204 1.618 1.145 2.518 1.033 1.050	chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\alpha C\beta C$ $C\alpha C$	70.416 -85.345 171.668 Mean 115.637 120.626 110.602 112.785 124.702 111.970 120.476 119.776	10.901 12.809 18.570 StdDev 1.263 0.802 1.333 2.167 2.252 2.147 1.046 0.905

ARG	ARG $\mathbf{tpm-80} \ n = 20$			ARG ttp80 n = 1896		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-177.264	5.162	chi1	-177.383	8.162	
chi2	78.524	8.234	chi2	179.646	13.425	
chi3	-80.359	10.382	chi3	62.978	9.944	
chi4	-79.824	9.071	chi4	82.895	9.577	
Bond Angle	Mean	StdDev	Bond Angle Mean		StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	115.170	1.379	$C\alphaC\betaC\gamma$	113.686	1.495	
$C\alphaCO$	120.653	1.054	$C\alphaCO$	120.681	0.798	
$C\betaC\alphaC$	110.318	1.131	$C\betaC\alphaC$	110.045	1.208	
$C\betaC\gammaC\delta$	113.047	1.221	$C\betaC\gammaC\delta$	112.080	1.526	
$C\delta_N\epsilon_C\zeta$	125.229	1.191	$C\deltaN\epsilonC\zeta$	124.882	1.039	
$C\gammaC\deltaN\epsilon$	113.709	2.206	$C\gammaC\deltaN\epsilon$	112.575	1.938	
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.646	0.958	$N\epsilonC\zetaN\eta 1$	120.750	0.949	
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	120.052	0.924	$N\epsilon C\zeta N\eta 2$	119.766	0.857	
$N\eta_1 C\zeta N\eta_2$	119.284	0.631	$N\eta 1C\zetaN\eta 2$	119.465	0.753	
$N_{-}C\alpha_{-}C$	110.800	1.483	$N_{-}C\alpha_{-}C$	110.748	2.056	
$N_{-}C\alpha_{-}C\beta$	109.849	1.128	$N_{-}C\alpha_{-}C\beta$	110.433	1.201	
ARG	ttp-110 n = 623	3	ARG	ttp-170 n = 153	3	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-174.744	8.457	chi1	-175.447	9.345	
chi2	177.160	12.953	chi2	179.359	13.232	
chi3	64.599	10.746	chi3	66.850	8.993	
chi4	-113.458	9.867	chi4	-171.036	17.274	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	113.826	1.633	$C\alphaC\betaC\gamma$	113.660	1.651	
$C\alphaCO$	120.605	0.798	$C\alphaCO$	120.595	0.757	
$C\betaC\alphaC$	110.158	1.233	$C\beta C\alpha C$	110.009	1.236	
$C\beta C\gamma C\delta$	112.012	1.748	$C\betaC\gammaC\delta$	111.642	1.683	
$C\delta_N\epsilon_C\zeta$	125.367	1.360	$C\delta_N\epsilon_C\zeta$	124.480	1.169	
$C\gamma_C\delta_N\epsilon$	111.876	2.159	$C\gammaC\deltaN\epsilon$	111.497	1.581	
$N\epsilonC\zetaN\eta 1$	121.079	1.283	$N\epsilon C\zeta N\eta 1$	120.455	0.896	
$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.474	1.161	$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.763	0.881	
$N\eta 1_C\zeta_N\eta 2$	119.427	0.887	$N\eta 1_C\zeta_N\eta 2$	119.764	0.703	
$N_{-}C\alpha_{-}C$	110.684	2.176	$N_{-}C\alpha_{-}C$	110.456	2.209	
$N_C\alpha_C\beta$	110.314	1.287	$N_{-}C\alpha_{-}C\beta$	110.433	1.313	

ARG ttt180 n = 2339			ARG ttt90 n = 1057			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-176.225	9.097	chi1	-176.157	9.260	
chi2	176.468	11.186	chi2	176.118	10.807	
chi3	178.543	11.535	chi3	176.454	9.628	
chi4	179.245	18.746	chi4	86.745	10.847	
Bond Angle	Mean	StdDev	Bond Angle Mean		StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	113.475	1.785	$C\alphaC\betaC\gamma$	113.859	1.696	
$C\alphaCO$	120.570	0.812	$C\alphaCO$	120.572	0.794	
$C\betaC\alphaC$	110.176	1.171	$C\betaC\alphaC$	110.230	1.247	
$C\betaC\gammaC\delta$	111.351	2.189	$C\betaC\gammaC\delta$	111.326	2.078	
$C\delta_N\epsilon_C\zeta$	124.329	1.194	$C\delta_N\epsilon_C\zeta$	124.757	1.007	
$C\gamma_C\delta_N\epsilon$	110.653	1.920	$C\gamma_C\delta_N\epsilon$	111.615	2.616	
$N\epsilon C\zeta \eta 1$	120.399	0.902	$N\epsilon C\zeta \eta 1$	120.741	1.016	
$N\epsilon C\zeta N\eta 2$	119.608	0.915	$N\epsilon C\zeta N\eta 2$	119.607	0.998	
$N\eta_1 C\zeta N\eta_2$	119.974	0.814	$N\eta 1_C\zeta_N\eta 2$	119.628	0.738	
$N_{-}C\alpha_{-}C$	110.517	2.410	$NC\alphaC$	110.528	2.396	
$N_{-}C\alpha_{-}C\beta$	110.183	1.389	$N_{-}C\alpha_{-}C\beta$	110.355	1.373	
ARG	ttt-90 n = 1380)	ARG ttm110 n = 725		-	
	000 00 H = 1000)	Ang	timilion = 726)	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
$\frac{\chi}{\text{chi1}}$			-			
	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	Smooth COM -176.754	StdDev 9.438	χ chi1	Smooth COM -175.260	StdDev 8.991	
chi1 chi2	Smooth COM -176.754 177.849	StdDev 9.438 11.450	χ chi1 chi2	Smooth COM -175.260 178.639	StdDev 8.991 9.463	
chi1 chi2 chi3	Smooth COM -176.754 177.849 -178.261	9.438 11.450 9.915	chi1 chi2 chi3	Smooth COM -175.260 178.639 -64.314	StdDev 8.991 9.463 10.708	
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	Smooth COM -176.754 177.849 -178.261 -89.587	9.438 11.450 9.915 12.519	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$	Smooth COM -175.260 178.639 -64.314 112.805	8.991 9.463 10.708 9.769	
chi1 chi2 chi3 chi4 Bond Angle	Smooth COM -176.754 177.849 -178.261 -89.587 Mean	9.438 11.450 9.915 12.519 StdDev	chi1 chi2 chi3 chi4 Bond Angle	Smooth COM -175.260 178.639 -64.314 112.805 Mean	StdDev 8.991 9.463 10.708 9.769 StdDev	
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964	9.438 11.450 9.915 12.519 StdDev 1.616	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _C\beta _C\gamma$	Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881	StdDev 8.991 9.463 10.708 9.769 StdDev 1.635	
chi1 chi2 chi3 chi4 Bond Angle $C\alphaC\betaC\gamma$ $C\alphaCO$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540	9.438 11.450 9.915 12.519 StdDev 1.616 0.793	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$	Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589	8.991 9.463 10.708 9.769 StdDev 1.635 0.780	
chi1 chi2 chi3 chi4 Bond Angle Cα_Cβ_Cγ Cα_C_O Cβ_Cα_C	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256		Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255	8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228	
chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$ $C\beta_C\alpha_C$ $C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272 110.941	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256 2.077	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \end{array}$	Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255 112.165	8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228 1.691	
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta C\delta C$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272 110.941 124.821	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256 2.077 1.167		Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255 112.165 125.322	8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228 1.691 1.226	
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\gamma C\delta$ $C\delta C\delta C$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272 110.941 124.821 111.802	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256 2.077 1.167 2.580	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \end{array}$	Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255 112.165 125.322 111.648	StdDev 8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228 1.691 1.226 1.927	
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\gamma$ $C\beta C\gamma C\delta$ $C\beta C\gamma C\delta$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272 110.941 124.821 111.802 120.801	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256 2.077 1.167 2.580 1.078		Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255 112.165 125.322 111.648 121.010	StdDev 8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228 1.691 1.226 1.927 1.241	
chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C$ $C\beta C\gamma$ $C\alpha C C$ $C\beta C\alpha C$ $C\alpha C\beta C\alpha C$ $C\alpha C\alpha C\alpha $	Smooth COM -176.754 177.849 -178.261 -89.587 Mean 113.964 120.540 110.272 110.941 124.821 111.802 120.801 119.565	9.438 11.450 9.915 12.519 StdDev 1.616 0.793 1.256 2.077 1.167 2.580 1.078 1.015		Smooth COM -175.260 178.639 -64.314 112.805 Mean 113.881 120.589 110.255 112.165 125.322 111.648 121.010 119.531	StdDev 8.991 9.463 10.708 9.769 StdDev 1.635 0.780 1.228 1.691 1.226 1.927 1.241 1.123	

ARG ttm170 n = 1317			ARG ttm-80 n = 1504		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-177.285	9.924	chi1	-174.135	9.435
chi2	176.943	12.449	chi2	179.281	9.905
chi3	-67.797	9.912	chi3	-64.732	10.575
chi4	171.206	17.554	chi4	chi4 -84.522	
Bond Angle	Mean	StdDev	Bond Angle Mean		StdDev
$C\alphaC\betaC\gamma$	113.752	1.740	$C\alphaC\betaC\gamma$	113.668	1.664
$C\alphaCO$	120.583	0.815	$C\alphaCO$	120.532	0.789
$C\betaC\alphaC$	110.105	1.164	$C\betaC\alphaC$	110.241	1.238
$C\betaC\gammaC\delta$	111.482	1.826	$C\betaC\gammaC\delta$	111.990	1.645
$C\delta_N\epsilon_C\zeta$	124.437	1.166	$C\delta_N\epsilon_C\zeta$	124.859	1.304
$C\gammaC\deltaN\epsilon$	111.263	1.652	$C\gammaC\deltaN\epsilon$	112.437	2.033
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.519	0.959	$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.726	1.016
$N\epsilonC\zetaN\eta^2$	119.735	0.929	$N\epsilon C\zeta \eta 2$	119.733	1.037
$N\eta_1$ _ $C\zeta$ _ $N\eta_2$	119.728	0.835	$N\eta 1C\zetaN\eta 2$	119.521	0.763
$N_{-}C\alpha_{-}C$	110.279	2.382	$N_{-}C\alpha_{-}C$	110.578	2.257
$N_{-}C\alpha_{-}C\beta$	110.267	1.337	$N_{-}C\alpha_{-}C\beta$	110.372	1.356
			$ARG \mathbf{tmt90} \text{ n} = 23$		
ARG	tmt170 n = 104	1	ARC	3 tmt90 n = 23	
$\frac{\Lambda}{\chi}$	tmt170 n = 104 Smooth COM	StdDev	ARC	G tmt90 n = 23 Smooth COM	StdDev
$\frac{\chi}{\text{chi1}}$	Smooth COM -173.869	StdDev 12.307	$\frac{\chi}{\text{chi1}}$	Smooth COM -178.402	9.228
χ	Smooth COM	StdDev	χ chi1 chi2	Smooth COM	
$\frac{\chi}{\text{chi1}}$	Smooth COM -173.869	StdDev 12.307	$\frac{\chi}{\text{chi1}}$	Smooth COM -178.402	9.228
χ chi1 chi2	Smooth COM -173.869 -91.306	StdDev 12.307 12.725	χ chi1 chi2	Smooth COM -178.402 -93.565	9.228 9.120
chi1 chi2 chi3	Smooth COM -173.869 -91.306 -173.542	StdDev 12.307 12.725 9.380	χ chi1 chi2 chi3	Smooth COM -178.402 -93.565 -177.879	9.228 9.120 11.168
χ chi1 chi2 chi3 chi4	Smooth COM -173.869 -91.306 -173.542 -170.971	StdDev 12.307 12.725 9.380 17.524	chi1 chi2 chi3 chi4	Smooth COM -178.402 -93.565 -177.879 87.027	9.228 9.120 11.168 11.977
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$_$C}\beta$_$C}\gamma \\ \hline \text{$\text{C}\alpha$_$C}.\text{CO} \end{array}$	Smooth COM -173.869 -91.306 -173.542 -170.971 Mean	StdDev 12.307 12.725 9.380 17.524 StdDev	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$	Smooth COM -178.402 -93.565 -177.879 87.027 Mean	9.228 9.120 11.168 11.977 StdDev
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \text{$\text{C}\alpha_\text{C}_\text{O}$} \\ \text{$\text{C}\beta_\text{C}\alpha_\text{C}$} \end{array}$	Smooth COM -173.869 -91.306 -173.542 -170.971 Mean 115.031 120.633 110.891	StdDev 12.307 12.725 9.380 17.524 StdDev 1.334	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha _ C\beta _ C\gamma$ $C\alpha _ C_ O$ $C\beta _ C\alpha _ C$	Smooth COM -178.402 -93.565 -177.879 87.027 Mean 115.152	9.228 9.120 11.168 11.977 StdDev 1.485 0.982 1.327
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \end{array}$	Smooth COM -173.869 -91.306 -173.542 -170.971 Mean 115.031 120.633	StdDev 12.307 12.725 9.380 17.524 StdDev 1.334 0.742	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \end{array}$	Smooth COM -178.402 -93.565 -177.879 87.027 Mean 115.152 120.604	9.228 9.120 11.168 11.977 StdDev 1.485 0.982
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_N\epsilon_C\zeta$} \\ \end{array}$	Smooth COM -173.869 -91.306 -173.542 -170.971 Mean 115.031 120.633 110.891	StdDev 12.307 12.725 9.380 17.524 StdDev 1.334 0.742 1.069	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \end{array}$	Smooth COM -178.402 -93.565 -177.879 87.027 Mean 115.152 120.604 110.471	9.228 9.120 11.168 11.977 StdDev 1.485 0.982 1.327
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ \end{array}$	Smooth COM -173.869 -91.306 -173.542 -170.971 Mean 115.031 120.633 110.891 112.702 124.499 110.712	StdDev 12.307 12.725 9.380 17.524 StdDev 1.334 0.742 1.069 1.716	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \hline \text{$\text{C}\alpha_\text{C}_{-}\text{C} $} \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \text{$\text{C}\beta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \hline \end{array}$	Smooth COM -178.402 -93.565 -177.879 87.027 Mean 115.152 120.604 110.471 112.863 125.096 111.403	9.228 9.120 11.168 11.977 StdDev 1.485 0.982 1.327 2.341
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_N\epsilon_C\zeta$} \\ \end{array}$	Smooth COM -173.869 -91.306 -173.542 -170.971 Mean 115.031 120.633 110.891 112.702 124.499	StdDev 12.307 12.725 9.380 17.524 StdDev 1.334 0.742 1.069 1.716 0.904	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \end{array}$	Smooth COM -178.402 -93.565 -177.879 87.027 Mean 115.152 120.604 110.471 112.863 125.096	9.228 9.120 11.168 11.977 StdDev 1.485 0.982 1.327 2.341 1.261
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ \end{array}$	Smooth COM -173.869 -91.306 -173.542 -170.971 Mean 115.031 120.633 110.891 112.702 124.499 110.712	StdDev 12.307 12.725 9.380 17.524 StdDev 1.334 0.742 1.069 1.716 0.904 1.619	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha_\text{C}\beta_\text{C}\gamma$} \\ \hline \text{$\text{C}\alpha_\text{C}_\text{C}$} \\ \hline \text{$\text{C}\alpha_\text{C}_{-}\text{C} $} \\ \hline \text{$\text{C}\beta_\text{C}\gamma_\text{C}\delta$} \\ \hline \text{$\text{C}\beta_\text{N}\epsilon_\text{C}\zeta$} \\ \hline \text{$\text{C}\gamma_\text{C}\delta_\text{N}\epsilon$} \\ \hline \end{array}$	Smooth COM -178.402 -93.565 -177.879 87.027 Mean 115.152 120.604 110.471 112.863 125.096 111.403	9.228 9.120 11.168 11.977 StdDev 1.485 0.982 1.327 2.341 1.261 2.847
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta_N\eta1 \\ N\epsilon_C\zeta_N\eta2 \\ N\eta1_C\zeta_N\eta2 \\ \hline \end{array}$	Smooth COM -173.869 -91.306 -173.542 -170.971 Mean 115.031 120.633 110.891 112.702 124.499 110.712 120.677	StdDev 12.307 12.725 9.380 17.524 StdDev 1.334 0.742 1.069 1.716 0.904 1.619 1.032	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta2 \\ \text{N}\eta1_\text{C}\zeta_\text{N}\eta2 \\ \end{array}$	Smooth COM -178.402 -93.565 -177.879 87.027 Mean 115.152 120.604 110.471 112.863 125.096 111.403 120.873	9.228 9.120 11.168 11.977 StdDev 1.485 0.982 1.327 2.341 1.261 2.847 1.858
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha$_$C}\beta_\text{$C\gamma$} \\ \text{$C\alpha$_$C}_2\text{C} \\ \text{$C\alpha$_$C}_2\text{$C$} \\ \text{$C\beta$_$C}\gamma_\text{$C\delta$} \\ \text{$C\delta$_$N}\epsilon_\text{$C\zeta$} \\ \text{$C\gamma$_$C}\delta_\text{$N\epsilon$} \\ \text{$N\epsilon$_$C}\zeta_\text{$N\eta1$} \\ \text{$N\epsilon$_$C}\zeta_\text{$N\eta2$} \\ \end{array}$	Smooth COM -173.869 -91.306 -173.542 -170.971 Mean 115.031 120.633 110.891 112.702 124.499 110.712 120.677 119.571	StdDev 12.307 12.725 9.380 17.524 StdDev 1.334 0.742 1.069 1.716 0.904 1.619 1.032 0.805	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta1 \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta2 \\ \end{array}$	Smooth COM -178.402 -93.565 -177.879 87.027 Mean 115.152 120.604 110.471 112.863 125.096 111.403 120.873 119.647	9.228 9.120 11.168 11.977 StdDev 1.485 0.982 1.327 2.341 1.261 2.847 1.858 1.458

ARG	$\frac{1}{6}$ tmt-80 n = 62		ARG	ARG tmm160 n = 92		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-174.441	10.751	chi1	-172.150	10.890	
chi2	-92.932	11.363	chi2	-90.073	11.146	
chi3	-177.757	10.023	chi3	-61.282	11.279	
chi4	-84.998	11.504	chi4	163.764	18.601	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.665	1.340	$C\alphaC\betaC\gamma$	114.825	1.323	
$C\alphaCO$	120.545	0.772	$C\alphaCO$	120.627	0.803	
$C\betaC\alphaC$	111.341	1.330	$C\betaC\alphaC$	111.278	1.113	
$C\betaC\gammaC\delta$	112.460	1.924	$C\betaC\gammaC\delta$	112.552	1.822	
$C\delta_N\epsilon_C\zeta$	124.688	1.117	$C\delta_N\epsilon_C\zeta$	124.630	1.190	
$C\gamma_C\delta_N\epsilon$	111.211	2.142	$C\gamma_C\delta_N\epsilon$	111.887	1.925	
$N\epsilon C\zeta \eta 1$	120.610	0.908	$N\epsilon C\zeta N\eta 1$	120.655	1.000	
$N\epsilon C\zeta \eta 2$	119.729	0.896	$N\epsilon C\zeta N\eta 2$	119.705	0.893	
$N\eta_1 C\zeta N\eta_2$	119.637	0.627	$N\eta 1_C\zeta_N\eta 2$	119.616	0.813	
$NC\alphaC$	110.062	2.449	$N_{-}C\alpha_{-}C$	109.950	2.048	
$N_{-}C\alpha_{-}C\beta$	110.064	1.027	$N_{-}C\alpha_{-}C\beta$	110.061	1.132	
ARG	tmm-80 n = 71	_	ARG	mpp80 n = 54		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-174.294	9.153	chi1	-76.744	11.753	
chi2	-86.372	8.784	chi2	81.853	11.964	
chi3	-56.434	10.717	chi3	57.995	7.391	
chi4	-82.108	8.527	chi4	84.630	10.143	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	115.257	1.317	$C\alphaC\betaC\gamma$	115.469	1.724	
$C\alphaCO$	120.621	0.778	$C\alphaCO$	120.418	1.087	
$C\betaC\alphaC$	111.061	1.008	$C\beta_{-}C\alpha_{-}C$	109.200	1.982	
$C\betaC\gammaC\delta$	113.720	2.294	$C\betaC\gammaC\delta$	113.558	1.616	
$C\delta_N\epsilon_C\zeta$	124.893	1.247	$C\delta_N\epsilon_C\zeta$	124.998	1.163	
$C\gammaC\deltaN\epsilon$	112.553	1.891	$C\gammaC\deltaN\epsilon$	113.125	2.284	
$N\epsilonC\zetaN\eta 1$	120.861	1.095	$N\epsilon C\zeta N\eta 1$	120.782	1.174	
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.709	0.923	$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.773	1.129	
$N\eta 1_C\zeta_N\eta 2$	119.397	0.720	$N\eta 1_C\zeta_N\eta 2$	119.423	0.733	
$N_{-}C\alpha_{-}C$	109.672	1.698	$N_{-}C\alpha_{-}C$	109.653	2.541	
$N_{-}C\alpha_{-}C\beta$	110.067	1.009	$N_{-}C\alpha_{-}C\beta$	111.451	1.261	

ARG	ARG mpp-170 $n = 64$			ARG mpt180 n = 245		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-78.876	12.884	chi1	-84.592	7.996	
chi2	81.734	17.402	chi2	69.331	13.073	
chi3	65.059	7.427	chi3	173.629	9.351	
chi4	-166.895	16.426	chi4	174.437	16.771	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.639	1.431	$C\alphaC\betaC\gamma$	114.779	1.423	
$C\alphaCO$	120.527	0.677	$C\alphaCO$	120.561	0.858	
$C\betaC\alphaC$	109.707	1.574	$C\betaC\alphaC$	109.479	1.658	
$C\betaC\gammaC\delta$	112.675	1.744	$C\betaC\gammaC\delta$	113.013	1.809	
$C\delta_N\epsilon_C\zeta$	124.456	1.194	$C\delta_N\epsilon_C\zeta$	124.423	1.453	
$C\gamma_C\delta_N\epsilon$	111.467	1.342	$C\gamma_C\delta_N\epsilon$	110.690	1.999	
$N\epsilon C\zeta \eta 1$	120.599	1.057	$N\epsilon C\zeta \eta 1$	120.410	1.021	
$N\epsilon C\zeta \eta 2$	119.723	0.761	$N\epsilon C\zeta N\eta 2$	119.733	0.916	
$N\eta_1 C\zeta N\eta_2$	119.659	0.703	$N\eta 1_C\zeta N\eta 2$	119.829	0.881	
$N_{-}C\alpha_{-}C$	109.974	3.124	$NC\alphaC$	109.972	2.748	
$N_{-}C\alpha_{-}C\beta$	111.366	1.108	$N_{-}C\alpha_{-}C\beta$	111.150	1.151	
ARC	6 mpt90 n = 46		ARG	mpt-90 $n = 85$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-76.133	12.907	chi1	-78.778	13.914	
chi2	84.673	13.588	chi2	74.660	16.331	
chi3	170.244	9.730	chi3	177.663	9.619	
chi4	93.427	11.198	chi4	-87.847	13.667	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.631	1.635	$C\alphaC\betaC\gamma$	114.921	1.261	
$C\alphaCO$	120.402	0.642	$C\alphaCO$	120.436	0.752	
$C\betaC\alphaC$	109.251	1.434	$C\beta_{-}C\alpha_{-}C$	109.954	1.553	
$C\beta C\gamma C\delta$	112.529	1.552	$C\betaC\gammaC\delta$	112.861	2.301	
$C\delta_N\epsilon_C\zeta$	125.102	0.846	$C\delta_N\epsilon_C\zeta$	124.891	0.998	
$C\gammaC\deltaN\epsilon$	111.041	2.030	$C\gammaC\deltaN\epsilon$	111.632	2.525	
$N\epsilonC\zetaN\eta 1$	121.088	0.907	$N\epsilon C\zeta N\eta 1$	120.590	1.067	
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.381	0.679	$N\epsilon_{-}C\zeta_{-}N\eta 2$	119.828	0.834	
$N\eta 1_C\zeta_N\eta 2$	119.512	0.586	$N\eta 1_C\zeta_N\eta 2$	119.561	0.667	
$N_{-}C\alpha_{-}C$	109.965	2.682	$N_{-}C\alpha_{-}C$	110.431	2.708	
$N_C\alpha_C\beta$	111.296	1.245	$N_C\alpha_C\beta$	110.866	1.019	

ARG	ARG mtp180 n = 2504			ARG mtp85 n = 1857		
$\overline{\chi}$	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-66.448	8.145	chi1	-66.328	8.550	
chi2	178.975	13.041	chi2	177.775	11.188	
chi3	66.423	9.133	chi3	64.643	9.713	
chi4	-171.573	16.500	chi4	87.715	10.960	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	113.196	1.788	$C\alphaC\betaC\gamma$	113.275	1.819	
$C\alphaCO$	120.474	0.834	$C\alphaCO$	120.493	0.910	
$C\betaC\alphaC$	110.040	1.648	$C\betaC\alphaC$	110.136	1.676	
$C\betaC\gammaC\delta$	111.714	1.807	$C\betaC\gammaC\delta$	112.055	1.715	
$C\delta_N\epsilon_C\zeta$	124.376	1.212	$C\delta_N\epsilon_C\zeta$	124.893	1.199	
$C\gammaC\deltaN\epsilon$	111.554	1.558	$C\gammaC\deltaN\epsilon$	112.285	1.990	
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.437	0.999	$N\epsilonC\zetaN\eta 1$	120.785	1.055	
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.768	0.969	$N\epsilonC\zetaN\eta 2$	119.683	1.040	
$N\eta 1_C C\zeta_N \eta 2$	119.779	0.774	$N\eta 1C\zetaN\eta 2$	119.513	0.811	
$N_{-}C\alpha_{-}C$	111.426	2.415	$N_{-}C\alpha_{-}C$	111.102	2.410	
$N_{-}C\alpha_{-}C\beta$	110.537	1.046	$N_{-}C\alpha_{-}C\beta$	110.598	1.049	
ARG	mtp-110 n = 47	0	ARG	mtt180 n = 459	2	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-65.062	8.129	chi1	-67.383	7.802	
chi2	179.092	10.812	chi2	179.853	11.020	
chi3	66.411	11.580	chi3	-179.128	10.659	
chi4	-109.636	9.635	chi4	177.093	17.916	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	113.354	1.662	$C\alphaC\betaC\gamma$	112.906	1.753	
$C\alphaCO$	120.369	0.947	$C\alphaCO$	120.449	0.847	
$C\betaC\alphaC$	110.075	1.684	$C\beta C\alpha C$	109.969	1.657	
$C\beta C\gamma C\delta$	112.354	1.634	$C\betaC\gammaC\delta$	111.523	2.022	
$C\delta_N\epsilon_C\zeta$	125.306	2.055	$C\delta_N\epsilon_C\zeta$	124.359	1.101	
$C\gamma_C\delta_N\epsilon$	111.671	1.878	$C\gammaC\deltaN\epsilon$	110.625	1.820	
$N\epsilon_{-}C\zeta_{-}N\eta 1$	121.057	1.200	$N\epsilon C\zeta N\eta 1$	120.426	0.894	
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.441	1.295	$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.625	0.896	
$N\eta 1_C \zeta_N \eta 2$	119.478	0.895	$N\eta 1_C \zeta_N \eta 2$	119.931	0.794	
$N_{-}C\alpha_{-}C$	111.125	2.585	$N_{-}C\alpha_{-}C$	111.576	2.328	
$N_C\alpha_C\beta$	110.743	1.052	$N_{-}C\alpha_{-}C\beta$	110.570	1.047	

ARG	ARG mtt90 n = 2460			ARG mtt-85 n = 2843			
χ	Smooth COM	StdDev	$\overline{\chi}$	Smooth COM	StdDev		
chi1	-67.677	7.504	chi1	-67.013	7.843		
chi2	179.859	13.535	chi2	-178.550	10.650		
chi3	178.901	10.625	chi3	-176.240	9.240		
chi4	90.605	15.148	chi4	-88.795	11.677		
Bond Angle	Mean	StdDev	Bond Angle Mean		StdDev		
$C\alpha_{-}C\beta_{-}C\gamma$	113.347	1.719	$C\alpha_{-}C\beta_{-}C\gamma$	113.460	1.703		
$C\alphaCO$	120.443	0.802	$C\alphaCO$	120.445	0.822		
$C\betaC\alphaC$	109.894	1.726	$C\betaC\alphaC$	109.838	1.651		
$C\betaC\gammaC\delta$	111.540	2.042	$C\betaC\gammaC\delta$	111.361	1.969		
$C\delta_N\epsilon_C\zeta$	124.859	1.138	$C\delta_N\epsilon_C\zeta$	124.795	1.053		
$C\gamma_C\delta_N\epsilon$	111.010	2.492	$C\gamma_C\delta_N\epsilon$	111.412	2.434		
$N\epsilon_{-}C\zeta_{-}N\eta 1$	120.854	1.069	$N\epsilon C\zeta N\eta 1$	120.794	1.020		
$N\epsilon_{-}C\zeta_{-}N\eta_{2}$	119.529	1.057	$N\epsilon C\zeta N\eta 2$	119.578	0.926		
$N\eta_1 C\zeta N\eta_2$	119.591	0.803	$N\eta 1_C\zeta N\eta 2$	119.609	0.768		
$N_{-}C\alpha_{-}C$	111.444	2.403	$N_{-}C\alpha_{-}C$	111.436	2.299		
$N_{-}C\alpha_{-}C\beta$	110.565	1.121	$N_{-}C\alpha_{-}C\beta$	110.636	1.045		
ARG	mtm110 n = 78	1	ARG 1	ntm180 n = 240)7		
χ	$\frac{\mathbf{mtm110} \text{ n} = 78}{\mathbf{Smooth COM}}$	1 StdDev	ARG 1	mtm180 n = 240 Smooth COM	O7 StdDev		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev		
$\frac{\chi}{\text{chi1}}$	Smooth COM -68.128	StdDev 8.152	χ chi1	Smooth COM -66.409	StdDev 8.111		
χ chi1 chi2	Smooth COM -68.128 -177.015	StdDev 8.152 9.719	χ chi1 chi2	Smooth COM -66.409 179.025	StdDev 8.111 12.715		
χ chi1 chi2 chi3	Smooth COM -68.128 -177.015 -68.916	8.152 9.719 10.245	chi1 chi2 chi3	Smooth COM -66.409 179.025 -67.433	8.111 12.715 8.823		
χ chi1 chi2 chi3 chi4	Smooth COM -68.128 -177.015 -68.916 112.867	8.152 9.719 10.245 10.583	chi1 chi2 chi3 chi4	Smooth COM -66.409 179.025 -67.433 172.922	8.111 12.715 8.823 15.154		
χ chi1 chi2 chi3 chi4 Bond Angle	Smooth COM -68.128 -177.015 -68.916 112.867 Mean	8.152 9.719 10.245 10.583 StdDev	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha_C\beta_C\gamma$ $C\alpha_C_O$	Smooth COM -66.409 179.025 -67.433 172.922 Mean	StdDev 8.111 12.715 8.823 15.154 StdDev		
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \end{array}$	Smooth COM -68.128 -177.015 -68.916 112.867 Mean 113.128	8.152 9.719 10.245 10.583 StdDev 1.811	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$	Smooth COM -66.409 179.025 -67.433 172.922 Mean 113.294	StdDev 8.111 12.715 8.823 15.154 StdDev 1.630		
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \end{array}$	Smooth COM -68.128 -177.015 -68.916 112.867 Mean 113.128 120.427 110.057 112.410	8.152 9.719 10.245 10.583 StdDev 1.811 0.902	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \hline \text{Bond Angle} \\ \hline \text{$\text{C}\alpha$_$C}\beta$_$C}\gamma \\ \hline \text{$\text{C}\alpha$_$C}_2\text{$\text{C}\alpha$_$C} \\ \hline \text{$\text{C}\beta$_$C}\gamma$_$C}\delta \\ \hline \\ \hline \text{$\text{C}\beta$_$C}\gamma$_$C}\delta \\ \hline \end{array}$	Smooth COM -66.409 179.025 -67.433 172.922 Mean 113.294 120.456	8.111 12.715 8.823 15.154 StdDev 1.630 0.891		
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \text{Bond Angle} \\ \hline C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ \end{array}$	Smooth COM -68.128 -177.015 -68.916 112.867 Mean 113.128 120.427 110.057	8.152 9.719 10.245 10.583 StdDev 1.811 0.902 1.759 1.719 1.518	χ chi1 chi2 chi3 chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C C C$ $C\beta C\alpha C$	Smooth COM -66.409 179.025 -67.433 172.922 Mean 113.294 120.456 109.865	8.111 12.715 8.823 15.154 StdDev 1.630 0.891 1.623		
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \text{$C\alpha_C_O$} \\ \text{$C\beta_C\alpha_C$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\beta_C\gamma_C\delta$} \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \end{array}$	Smooth COM -68.128 -177.015 -68.916 112.867 Mean 113.128 120.427 110.057 112.410	8.152 9.719 10.245 10.583 StdDev 1.811 0.902 1.759 1.719	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \\ \text{Bond Angle} \\ \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{C} \\ \text{C}\beta_\text{C}\alpha_\text{C} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \end{array}$	Smooth COM -66.409 179.025 -67.433 172.922 Mean 113.294 120.456 109.865 111.632	8.111 12.715 8.823 15.154 StdDev 1.630 0.891 1.623 1.675		
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta \\ C\gamma_C\delta_N\eta1 \\ \hline \end{array}$	Smooth COM -68.128 -177.015 -68.916 112.867 Mean 113.128 120.427 110.057 112.410 125.312 112.087 121.057	8.152 9.719 10.245 10.583 StdDev 1.811 0.902 1.759 1.719 1.518 1.885 1.278	$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{C}\alpha_\text{C}\beta_\text{C}\gamma \\ \text{C}\alpha_\text{C}_\text{O} \\ \text{C}\beta_\text{C}\gamma_\text{C}\delta \\ \text{C}\delta_\text{N}\epsilon_\text{C}\zeta \\ \text{C}\gamma_\text{C}\delta_\text{N}\epsilon \\ \text{N}\epsilon_\text{C}\zeta_\text{N}\eta 1 \\ \hline \end{array}$	Smooth COM -66.409 179.025 -67.433 172.922 Mean 113.294 120.456 109.865 111.632 124.437 111.358 120.426	StdDev 8.111 12.715 8.823 15.154 StdDev 1.630 0.891 1.623 1.675 1.082 1.691 0.896		
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta \\ C\gamma_C\delta_N\eta1 \\ N\epsilon_C\zeta_N\eta2 \\ \end{array}$	Smooth COM -68.128 -177.015 -68.916 112.867 Mean 113.128 120.427 110.057 112.410 125.312 112.087 121.057 119.445	8.152 9.719 10.245 10.583 StdDev 1.811 0.902 1.759 1.719 1.518 1.885 1.278 1.122		Smooth COM -66.409 179.025 -67.433 172.922 Mean 113.294 120.456 109.865 111.632 124.437 111.358 120.426 119.771	StdDev 8.111 12.715 8.823 15.154 StdDev 1.630 0.891 1.623 1.675 1.082 1.691 0.896 0.882		
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ C\alpha_C\beta_C\gamma \\ C\alpha_C_O \\ C\beta_C\alpha_C \\ C\beta_C\alpha_C \\ C\beta_C\gamma_C\delta \\ C\delta_N\epsilon_C\zeta \\ C\gamma_C\delta_N\epsilon \\ N\epsilon_C\zeta_N\eta1 \\ N\epsilon_C\zeta_N\eta2 \\ N\eta1_C\zeta_N\eta2 \\ \hline \end{array}$	Smooth COM -68.128 -177.015 -68.916 112.867 Mean 113.128 120.427 110.057 112.410 125.312 112.087 121.057 119.445 119.479	StdDev 8.152 9.719 10.245 10.583 StdDev 1.811 0.902 1.759 1.719 1.518 1.885 1.278 1.122 0.917		Smooth COM -66.409 179.025 -67.433 172.922 Mean 113.294 120.456 109.865 111.632 124.437 111.358 120.426 119.771 119.785	StdDev 8.111 12.715 8.823 15.154 StdDev 1.630 0.891 1.623 1.675 1.082 1.691 0.896 0.882 0.768		
$\begin{array}{c} \chi \\ \text{chi1} \\ \text{chi2} \\ \text{chi3} \\ \text{chi4} \\ \hline \\ \text{Bond Angle} \\ \hline \\ \text{$C\alpha_C\beta_C\gamma$} \\ \hline \\ \text{$C\alpha_C_O$} \\ \hline \\ \text{$C\beta_C\alpha_C$} \\ \hline \\ \text{$C\beta_C\gamma_C\delta$} \\ \hline \\ \text{$C\delta_N\epsilon_C\zeta$} \\ \hline \\ \text{$C\gamma_C\delta_N\epsilon$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta1$} \\ \hline \\ \text{$N\epsilon_C\zeta_N\eta2$} \\ \hline \end{array}$	Smooth COM -68.128 -177.015 -68.916 112.867 Mean 113.128 120.427 110.057 112.410 125.312 112.087 121.057 119.445	8.152 9.719 10.245 10.583 StdDev 1.811 0.902 1.759 1.719 1.518 1.885 1.278 1.122		Smooth COM -66.409 179.025 -67.433 172.922 Mean 113.294 120.456 109.865 111.632 124.437 111.358 120.426 119.771	StdDev 8.111 12.715 8.823 15.154 StdDev 1.630 0.891 1.623 1.675 1.082 1.691 0.896 0.882		

ARG	ARG mtm-85 n = 2848			$ARG \mathbf{mmp80} \text{ n} = 164$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-68.282	8.114	chi1	-62.526	6.654	
chi2	-171.664	9.296	chi2	-75.134	12.697	
chi3	-63.903	9.515	chi3	74.408	11.683	
chi4	-88.066	8.888	chi4	77.834	6.858	
Bond Angle	Mean	StdDev	Bond Angle Mean		StdDev	
$C\alphaC\betaC\gamma$	113.529	1.560	$C\alphaC\betaC\gamma$	114.756	1.393	
$C\alphaCO$	120.475	0.810	$C\alphaCO$	120.405	0.951	
$C\betaC\alphaC$	110.037	1.494	$C\betaC\alphaC$	109.795	1.486	
$C\betaC\gammaC\delta$	111.973	1.573	$C\betaC\gammaC\delta$	113.417	1.619	
$C\delta_N\epsilon_C\zeta$	124.892	1.167	$C\delta_N\epsilon_C\zeta$	125.034	1.158	
$C\gamma_C\delta_N\epsilon$	112.687	1.963	$C\gamma_C\delta_N\epsilon$	113.473	2.231	
$N\epsilon C\zeta \eta 1$	120.777	1.028	$N\epsilon C\zeta \eta 1$	120.554	0.995	
$N\epsilon C\zeta \eta 2$	119.743	1.003	$N\epsilon C\zeta \eta 2$	119.976	0.857	
$N\eta_1 C\zeta N\eta_2$	119.464	0.785	$N\eta 1_C\zeta_N\eta 2$	119.450	0.642	
$N_{-}C\alpha_{-}C$	111.343	1.972	$NC\alphaC$	111.399	1.818	
$N_{-}C\alpha_{-}C\beta$	111.054	1.026	$N_{-}C\alpha_{-}C\beta$	110.883	0.931	
ARG r	mmp-170 n = 12	23	ARG 1	mmt180 n = 120)3	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-64.124	7.185	chi1	-61.912	9.054	
chi2	-65.485	14.262	chi2	-68.373	12.909	
chi3	85.873	9.711	chi3	-176.971	11.256	
chi4	-167.047	19.760	chi4	-176.339	17.437	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	115.470	1.274	$C\alphaC\betaC\gamma$	114.493	1.380	
$C\alphaCO$	120.374	0.989	$C\alphaCO$	120.394	0.872	
$C\betaC\alphaC$	109.451	1.525	$C\beta _C\alpha _C$	109.365	1.625	
$C\betaC\gammaC\delta$	112.812	1.743	$C\betaC\gammaC\delta$	112.048	1.715	
		4 04 5	$C\delta_N\epsilon_C\zeta$	104 400	1 107	
$C\delta_N\epsilon_C\zeta$	124.848	1.315			1.187	
$C\deltaN\epsilonC\zeta$ $C\gammaC\deltaN\epsilon$	124.848 111.535	1.315 1.611	C_{γ} _ C_{δ} _ N_{ϵ}	$124.422 \\ 110.995$	1.187 1.829	
$C\gammaC\deltaN\epsilon$	111.535	1.611	$C\gammaC\deltaN\epsilon$	110.995	1.829	
$C\gammaC\deltaN\epsilon$ $N\epsilonC\zetaN\eta 1$	111.535 120.505 119.752 119.724	1.611 1.207	$C\gammaC\deltaN\epsilon$ $N\epsilonC\zetaN\eta 1$	110.995 120.487	$1.829 \\ 0.873$	
$C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$ $N\epsilon C\zeta N\eta 2$	111.535 120.505 119.752	1.611 1.207 1.096	$ ext{C}\gamma_{ ext{-}} ext{C}\delta_{ ext{-}} ext{N}\epsilon \ ext{N}\epsilon_{ ext{-}} ext{C}\zeta_{ ext{-}} ext{N}\eta 1 \ ext{N}\epsilon_{ ext{-}} ext{C}\zeta_{ ext{-}} ext{N}\eta 2$	110.995 120.487 119.663	1.829 0.873 0.872	

ARG mmt90 n = 567			ARG mmt-90 n = 1428		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-60.697	8.808	chi1	-63.806	6.649
chi2	-68.408	12.498	chi2	-68.992	8.052
chi3	179.437	10.449	chi3	-175.179	7.656
chi4	90.018	12.895	chi4	-91.022	11.109
Bond Angle	Mean	StdDev	Bond Angle Mean		StdDev
$C\alphaC\betaC\gamma$	114.636	1.391	$C\alphaC\betaC\gamma$	114.535	1.429
$C\alphaCO$	120.470	0.870	$C\alphaCO$	120.522	0.849
$C\betaC\alphaC$	109.542	1.648	$C\betaC\alphaC$	109.577	1.636
$C\betaC\gammaC\delta$	112.219	1.613	$C\betaC\gammaC\delta$	112.031	1.668
$C\delta_N\epsilon_C\zeta$	124.948	1.236	$C\delta_N\epsilon_C\zeta$	124.921	0.997
$C\gamma_C\delta_N\epsilon$	111.566	2.487	$C\gammaC\deltaN\epsilon$	111.800	2.277
$N\epsilon C\zeta \eta 1$	120.843	1.216	$N\epsilonC\zetaN\eta 1$	120.940	0.997
$N\epsilon C\zeta \eta 2$	119.554	1.095	$N\epsilonC\zetaN\eta^2$	119.615	0.880
$N\eta 1_C \zeta_N \eta 2$	119.578	0.717	$N\eta 1_C\zeta_N\eta 2$	119.419	0.824
$N_{-}C\alpha_{-}C$	111.367	2.715	$NC\alphaC$	110.068	2.671
$N_{-}C\alpha_{-}C\beta$	110.685	1.076	$N_{-}C\alpha_{-}C\beta$	110.879	1.109
ARG r	mm160 n = 95	51	ARG n	nmm-85 n = 100	22
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-61.827	9.224	chi1	-63.497	9.155
chi2	-66.167	13.742	chi2	-67.585	10.864
chi3	-64.223	9.924	chi3	-60.741	9.180
			chi4 -86.156		9.100
chi4	163.153	24.183			10.081
chi4 Bond Angle		24.183 StdDev			
Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$	163.153		$\frac{\text{chi4}}{\text{Bond Angle}}$ $\frac{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}{\text{C}\gamma}$	-86.156	10.081
Bond Angle	163.153 Mean	StdDev	chi4 Bond Angle	-86.156 Mean	10.081 StdDev
Bond Angle $C\alphaC\betaC\gamma$	163.153 Mean 114.464	StdDev 1.598	$\frac{\text{chi4}}{\text{Bond Angle}}$ $\frac{\text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma}{\text{C}\gamma}$	-86.156 Mean 114.631	10.081 StdDev 1.520
Bond Angle $ \begin{array}{c} \text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma \\ \text{C}\alpha_{-}\text{C}_{-}\text{O} \end{array} $	163.153 Mean 114.464 120.403	StdDev 1.598 0.880		-86.156 Mean 114.631 120.548	10.081 StdDev 1.520 0.882
Bond Angle $ \begin{array}{c} \text{C}\alpha_{-}\text{C}\beta_{-}\text{C}\gamma \\ \text{C}\alpha_{-}\text{C}_{-}\text{O} \\ \text{C}\beta_{-}\text{C}\alpha_{-}\text{C} \\ \text{C}\beta_{-}\text{C}\gamma_{-}\text{C}\delta \\ \text{C}\delta_{-}\text{N}\epsilon_{-}\text{C}\zeta \end{array} $	163.153 Mean 114.464 120.403 109.780	StdDev 1.598 0.880 1.544		-86.156 Mean 114.631 120.548 109.688	10.081 StdDev 1.520 0.882 1.537
Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \end{array} $	163.153 Mean 114.464 120.403 109.780 112.547	1.598 0.880 1.544 1.734		-86.156 Mean 114.631 120.548 109.688 112.840	10.081 StdDev 1.520 0.882 1.537 1.621
Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \\ N\epsilon_{-}C\zeta_{-}N\eta_{1} \end{array} $	Mean 114.464 120.403 109.780 112.547 124.581	1.598 0.880 1.544 1.734 1.313	chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$	-86.156 Mean 114.631 120.548 109.688 112.840 124.979	10.081 StdDev 1.520 0.882 1.537 1.621 1.088
Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \end{array} $	Mean 114.464 120.403 109.780 112.547 124.581 111.850	1.598 0.880 1.544 1.734 1.313 1.891	chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$	-86.156 Mean 114.631 120.548 109.688 112.840 124.979 112.452	10.081 StdDev 1.520 0.882 1.537 1.621 1.088 2.260
Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$	Mean 114.464 120.403 109.780 112.547 124.581 111.850 120.567	1.598 0.880 1.544 1.734 1.313 1.891 1.167	chi4 Bond Angle $C\alpha_{-}C\beta_{-}C\gamma$ $C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}N\epsilon_{-}C\zeta$ $C\gamma_{-}C\delta_{-}N\epsilon$ $N\epsilon_{-}C\zeta_{-}N\eta_{1}$	-86.156 Mean 114.631 120.548 109.688 112.840 124.979 112.452 120.857	10.081 StdDev 1.520 0.882 1.537 1.621 1.088 2.260 1.007
Bond Angle $ \begin{array}{c} C\alpha_{-}C\beta_{-}C\gamma \\ C\alpha_{-}C_{-}O \\ C\beta_{-}C\alpha_{-}C \\ C\beta_{-}C\gamma_{-}C\delta \\ C\delta_{-}N\epsilon_{-}C\zeta \\ C\gamma_{-}C\delta_{-}N\epsilon \\ N\epsilon_{-}C\zeta_{-}N\eta_{1} \\ N\epsilon_{-}C\zeta_{-}N\eta_{2} \end{array} $	Mean 114.464 120.403 109.780 112.547 124.581 111.850 120.567 119.783	1.598 0.880 1.544 1.734 1.313 1.891 1.167 1.115	chi4 Bond Angle $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\alpha C\beta C\gamma$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\beta C\alpha C$ $C\delta N\epsilon C\zeta$ $C\gamma C\delta N\epsilon$ $N\epsilon C\zeta N\eta 1$ $N\epsilon C\zeta N\eta 2$	-86.156 Mean 114.631 120.548 109.688 112.840 124.979 112.452 120.857 119.638	10.081 StdDev 1.520 0.882 1.537 1.621 1.088 2.260 1.007 0.965

3.18 LYS

LYS pptt $n = 25$				LYS $\mathbf{ptpp} \ n = 89$			
χ	Smooth COM	StdDev	χ		Smooth COM	StdDev	
chi1	64.183	7.527	chi1		65.327	6.803	
chi2	89.871	8.334	chi2		178.405	8.068	
chi3	175.578	11.861	chi3		72.033	9.721	
chi4	179.092	7.380	chi4		66.034	8.135	
Bond Angle	Mean	StdDev	Bond	l Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	116.057	1.244		$C\betaC\gamma$	114.569	1.201	
$C\alphaCO$	120.408	0.698	$C\alpha_{-}C$		120.169	0.968	
$C\betaC\alphaC$	111.303	1.430	$C\beta_{-}C$		110.070	1.280	
$C\betaC\gammaC\delta$	112.212	1.704		${ m C}\gamma_{-}{ m C}\delta$	112.209	1.294	
$C\deltaC\epsilonN\zeta$	111.319	1.822		$\epsilon_N\zeta$	112.484	1.716	
$C\gammaC\deltaC\epsilon$	110.556	1.940	$\mathrm{C}\gamma_{ extsf{-}}\mathrm{C}$		112.719	1.335	
$NC\alphaC$	111.714	2.089	NCc	$\alpha_{-}C$	111.895	2.034	
$N_{-}C\alpha_{-}C\beta$	111.577	1.190	$N_{-}Cc$	$\alpha_{-}C\beta$	110.924	1.307	
LY	S ptpt n = 148			LY	S pttp n = 240		
χ	Smooth COM	StdDev	χ		Smooth COM	StdDev	
chi1	64.802	8.153	chi1		67.562	8.269	
chi2	179.088	11.802	chi2		-179.054	10.390	
chi3	72.966	10.396	chi3		178.259	11.216	
chi4	174.545	11.210	chi4		66.699	12.279	
Bond Angle	Mean	StdDev	Bond	l Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.721	1.636	$C\alpha_{-}C$	$C\betaC\gamma$	114.794	1.433	
$C\alphaCO$	120.525	0.854	$C\alpha_{-}C$	C_O	120.380	0.901	
$C\beta _C\alpha _C$	110.518	1.433	$C\beta_{-}C$	$C\alpha_{-}C$	110.362	1.449	
$C\betaC\gammaC\delta$	112.144	1.650	$C\beta_{-}C$	${ m C}\gamma_{-}{ m C}\delta$	110.892	1.675	
$C\deltaC\epsilonN\zeta$	111.436	2.103	$C\delta_{-}C$	$\epsilon N\zeta$	112.359	2.336	
$C\gammaC\deltaC\epsilon$	112.378	1.854	$\mathrm{C}\gamma_{-}\mathrm{C}$	$^{\mathrm{C}\delta}$ $^{\mathrm{C}\epsilon}$	111.720	1.424	
$N_{-}C\alpha_{-}C$	111.237	2.936	N_Ca	$\alpha_{-}C$	111.801	2.552	
$N_{-}C\alpha_{-}C\beta$	111.124	1.321	$N_{-}Cc$	$\alpha_{-}C\beta$	110.983	1.091	
LYS	S pttt $n = 1385$			LYS	S pttm $n = 268$		
χ	Smooth COM	StdDev	χ		Smooth COM	StdDev	
chi1	65.436	7.578	chi1		64.251	6.915	
chi2	-178.083	8.650	chi2		-177.627	9.133	
chi3	-179.332	9.673	chi3		-178.897	9.970	
chi4	-179.680	9.634	chi4		-67.053	11.673	
Bond Angle	Mean	StdDev	Bond	l Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.839	1.455		$C\betaC\gamma$	114.862	1.467	
$C\alphaCO$	120.431	0.948	$C\alpha_{-}C$		120.393	0.977	
$C\betaC\alphaC$	110.437	1.381	$C\beta_{-}C$		110.414	1.447	
$C\betaC\gammaC\delta$	110.833	1.793	$C\beta_{-}C$	${ m C}\gamma_{-}{ m C}\delta$	110.696	2.050	
$C\deltaC\epsilonN\zeta$	111.334	2.005	$C\delta_{-}C$	$\epsilon N\zeta$	112.324	2.369	
$C\gamma C\delta C\epsilon$	111.005	1.621	$\mathrm{C}\gamma_{ extsf{-}}\mathrm{C}$	$^{\mathrm{C}\delta}$ $^{\mathrm{C}\epsilon}$	111.942	1.508	
$N_{-}C\alpha_{-}C$	111.317	2.768	$N_{-}Cc$	$\alpha_{-}C$	111.970	2.550	
$N_{-}C\alpha_{-}C\beta$	111.134	1.099	N_Ca	$\alpha_{-}C\beta$	110.983	1.162	

LYS ptmt $n = 187$			LYS ptmm $n = 80$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	66.652	8.246	chi1	66.614	8.388	
chi2	-175.856	12.044	chi2	-177.929	9.983	
chi3	-71.430	11.735	chi3	-69.614	9.844	
chi4	-175.836	10.337	chi4	-66.129	7.000	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.548	1.572	$C\alphaC\betaC\gamma$	114.458	1.301	
$C\alphaCO$	120.513	0.972	$C\alphaCO$	120.630	1.032	
$C\betaC\alphaC$	110.429	1.608	$C\betaC\alphaC$	109.915	1.495	
$C\betaC\gammaC\delta$	112.146	1.576	$C\betaC\gammaC\delta$	112.342	1.435	
$C\deltaC\epsilonN\zeta$	111.541	2.110	$C\deltaC\epsilonN\zeta$	112.989	1.776	
$C\gammaC\deltaC\epsilon$	112.363	1.870	$C\gammaC\deltaC\epsilon$	112.999	1.154	
$N_{-}C\alpha_{-}C$	111.050	2.718	$N_{-}C\alpha_{-}C$	110.495	2.702	
$N_{-}C\alpha_{-}C\beta$	111.011	1.103	$N_{-}C\alpha_{-}C\beta$	110.827	1.205	
LY	S pmtt $n = 10$		LY	S tppp $n = 37$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	73.156	8.365	chi1	-177.926	11.531	
chi2	-74.065	10.515	chi2	62.258	10.078	
chi3	-168.029	10.580	chi3	65.517	7.785	
chi4	-174.606	10.738	chi4	67.940	11.330	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	116.445	1.641	$C\alphaC\betaC\gamma$	115.134	1.503	
$C\alphaCO$	120.801	0.552	$C\alphaCO$	120.707	0.872	
$C\betaC\alphaC$	110.351	1.279	$C\beta_{-}C\alpha_{-}C$	110.330	0.746	
$C\betaC\gammaC\delta$	112.587	2.234	$C\betaC\gammaC\delta$	113.479	1.870	
$C\delta_{-}C\epsilon_{-}N\zeta$	111.694	2.248	$C\deltaC\epsilonN\zeta$	112.983	1.698	
$C\gammaC\deltaC\epsilon$	111.327	1.312	$C\gammaC\deltaC\epsilon$	113.390	1.737	
$N_C\alpha_C$	109.953	2.378	$N_{-}C\alpha_{-}C$	110.891	1.930	
$N_{-}C\alpha_{-}C\beta$	112.145	2.128	$N_{-}C\alpha_{-}C\beta$	110.228	1.115	
LY	S tppt $n = 272$		LYS $\mathbf{tptp} \ n = 409$			
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev	
chi1	-178.194	7.887	chi1	-179.932	7.986	
chi2	63.490	8.924	chi2	67.443	10.399	
chi3	69.535	9.197	chi3	173.601	13.550	
chi4	177.447	9.361	chi4	66.191	12.980	
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	114.823	1.234	$C\alphaC\betaC\gamma$	114.807	1.338	
			$C\alphaCO$	120 520	0.826	
$C\alphaCO$	120.535	0.743		120.530		
$C\alphaCO$ $C\betaC\alphaC$	110.620	1.101	$C\betaC\alphaC$	110.226	1.227	
$C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$	110.620 113.177	1.101 1.543	$C\betaC\alphaC$ $C\betaC\gammaC\delta$	$110.226 \\ 112.085$	1.227 1.487	
$C\alphaCO$ $C\betaC\alphaC$ $C\betaC\gammaC\delta$ $C\deltaC\epsilonN\zeta$	110.620 113.177 111.201	1.101 1.543 1.842	$C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta$ $C\delta_C\epsilon_N\zeta$	110.226 112.085 112.676	1.227 1.487 1.952	
$C\alpha_{-}C_{-}O$ $C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}C\epsilon_{-}N\zeta$ $C\gamma_{-}C\delta_{-}C\epsilon$	110.620 113.177 111.201 112.378	1.101 1.543 1.842 1.445	$C\beta_{-}C\alpha_{-}C$ $C\beta_{-}C\gamma_{-}C\delta$ $C\delta_{-}C\epsilon_{-}N\zeta$ $C\gamma_{-}C\delta_{-}C\epsilon$	110.226 112.085 112.676 112.158	1.227 1.487 1.952 1.313	
$C\alphaCO$ $C\betaC\alphaC$ $C\betaC\gammaC\delta$ $C\deltaC\epsilonN\zeta$	110.620 113.177 111.201	1.101 1.543 1.842	$C\beta_C\alpha_C$ $C\beta_C\gamma_C\delta$ $C\delta_C\epsilon_N\zeta$	110.226 112.085 112.676	1.227 1.487 1.952	

LYS tptt $n = 1228$			LYS $\mathbf{tptm} \ n = 197$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-178.908	9.092	chi1	-177.928	7.615
chi2	69.056	9.015	chi2	67.158	9.702
chi3	175.565	10.063	chi3	-179.368	11.396
chi4	177.246	12.306	chi4	-66.243	13.423
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	114.773	1.314	$C\alpha C\beta C\gamma$	114.983	1.451
$C\alphaCO$	120.549	0.775	$C\alphaCO$	120.391	0.767
$C\betaC\alphaC$	110.423	1.219	$C\betaC\alphaC$	110.392	1.099
$C\betaC\gammaC\delta$	112.033	1.596	$C\betaC\gammaC\delta$	111.930	1.409
$C\deltaC\epsilonN\zeta$	111.116	2.237	$C\deltaC\epsilonN\zeta$	112.550	2.065
$C\gammaC\deltaC\epsilon$	111.028	1.474	$C\gammaC\deltaC\epsilon$	111.891	1.350
$N_{-}C\alpha_{-}C$	110.655	2.152	$N_{-}C\alpha_{-}C$	110.288	2.061
$N_{-}C\alpha_{-}C\beta$	110.224	1.113	$N_{-}C\alpha_{-}C\beta$	110.274	1.138
LY	$S \mathbf{ttpp} \ n = 229$		LY	$S \mathbf{ttpt} \ n = 883$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-178.427	8.557	chi1	-178.343	8.129
chi2	174.058	14.474	chi2	174.555	12.116
chi3	71.618	11.151	chi3	73.017	11.886
chi4	68.201	10.487	chi4	175.105	11.316
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	113.658	1.575	$C\alphaC\betaC\gamma$	113.777	1.645
$C\alphaCO$	120.629	0.777	$C\alphaCO$	120.604	0.755
$C\betaC\alphaC$	110.131	1.263	$C\betaC\alphaC$	110.066	1.179
$C\betaC\gammaC\delta$	112.134	1.677	$C\betaC\gammaC\delta$	112.121	1.474
$C\delta_{-}C\epsilon_{-}N\zeta$	112.810	2.349	$C\deltaC\epsilonN\zeta$	111.088	2.074
$C\gammaC\deltaC\epsilon$	112.800	1.569	$C\gammaC\deltaC\epsilon$	112.173	1.575
$N_{-}C\alpha_{-}C$	110.229	2.480	$N_{-}C\alpha_{-}C$	110.329	2.318
$N_{-}C\alpha_{-}C\beta$	110.369	1.468	$N_{-}C\alpha_{-}C\beta$	110.243	1.317
LY	$TS \mathbf{ttpm} \ n = 4$		LYS	$LYS \ tttp \ n = 1233$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-176.905	10.026	chi1	-177.650	8.068
chi2	175.311	6.851	chi2	175.444	9.877
chi3	87.099	18.038	chi3	173.929	10.830
chi4	-84.400	4.171	chi4	65.901	12.780
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.353	1.109	$C\alphaC\betaC\gamma$	113.932	1.516
$C\alphaCO$	120.752	0.322	$C\alphaCO$	120.582	0.750
$C\betaC\alphaC$	110.281	0.444	$C\betaC\alphaC$	110.189	1.092
$C\betaC\gammaC\delta$	111.616	0.992	$C\betaC\gammaC\delta$	111.148	1.611
$C\deltaC\epsilonN\zeta$	113.892	1.178	$C\deltaC\epsilonN\zeta$	112.268	1.984
$C\gammaC\deltaC\epsilon$	113.140	0.242	$C\gammaC\deltaC\epsilon$	111.826	1.347
$N_{-}C\alpha_{-}C$	110.149	1.306	$N_{-}C\alpha_{-}C$	110.703	2.222
$NC\alphaC\beta$	110.149	0.835	$N_{-}C\alpha_{-}C\beta$	110.410	1.138

LYS tttt n = 5043 LYS tttm n = 1176 χ Smooth COM StdDev χ Smooth COM chi1 -175.451 8.188 chi1 -176.393 chi2 176.592 8.732 chi2 177.818 chi3 179.677 9.233 chi3 -176.243 chi4 -179.889 10.261 chi4 -67.353 Bond Angle Mean StdDev Bond Angle Mean Cα-Cβ-Cγ 113.874 1.525 Cα-Cβ-Cγ 113.887 Cα-C-O 120.583 0.778 Cα-C-O 120.552 Cβ-Cα-C 110.243 1.137 Cβ-Cα-C 110.254	8.096 9.663 10.489 12.094 StdDev 1.596
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.663 10.489 12.094 StdDev
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.663 10.489 12.094 StdDev
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.489 12.094 StdDev
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.094 StdDev
Bond Angle Mean StdDev Bond Angle Mean $C\alpha_Cβ_Cγ$ 113.874 1.525 $C\alpha_Cβ_Cγ$ 113.887 $C\alpha_C_O$ 120.583 0.778 $C\alpha_C_O$ 120.552	StdDev
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$C\alpha_{-}C_{-}O$ 120.583 0.778 $C\alpha_{-}C_{-}O$ 120.552	1.596
$C\beta C\alpha C$ 110.243 1.137 $C\beta C\alpha C$ 110.254	0.824
00.0 05 111.140 1.744 00.0 05 111.000	1.139
$C\beta C\gamma C\delta$ 111.148 1.744 $C\beta C\gamma C\delta$ 111.029	1.702
$C\delta_C\epsilon_N\zeta$ 111.156 1.986 $C\delta_C\epsilon_N\zeta$ 112.329	1.971
$C\gammaC\deltaC\epsilon$ 111.042 1.543 $C\gammaC\deltaC\epsilon$ 111.847	1.465
$N_{-}C\alpha_{-}C$ 110.545 2.283 $N_{-}C\alpha_{-}C$ 110.514	2.115
N_{-} Cα_Cβ 110.335 1.206 N_{-} Cα_Cβ 110.424	1.165
LYS ttmp $n = 9$ LYS ttmt $n = 674$	
χ Smooth COM StdDev χ Smooth COM	StdDev
chi1 -174.170 4.238 chi1 -174.573	9.441
chi2 -179.415 8.457 $chi2$ -177.288	10.835
chi3 -95.701 18.562 chi3 -73.479	11.719
chi4 76.743 25.218 chi4 -175.112	11.548
Bond Angle Mean StdDev Bond Angle Mean	StdDev
$C\alpha_C\beta_C\gamma$ 113.206 1.243 $C\alpha_C\beta_C\gamma$ 113.686	1.546
$C\alpha_{-}C_{-}O$ 120.593 0.500 $C\alpha_{-}C_{-}O$ 120.604	0.865
$C\beta_{-}C\alpha_{-}C$ 110.316 1.623 $C\beta_{-}C\alpha_{-}C$ 110.214	1.180
$C\beta _C\gamma _C\delta$ 112.630 1.745 $C\beta _C\gamma _C\delta$ 112.161	1.524
$C\delta_{-}C\epsilon_{-}N\zeta$ 114.038 1.362 $C\delta_{-}C\epsilon_{-}N\zeta$ 110.881	2.322
$C\gamma C\delta C\epsilon$ 112.905 0.737 $C\gamma C\delta C\epsilon$ 112.229	1.651
$N_{-}C\alpha_{-}C$ 110.754 1.510 $N_{-}C\alpha_{-}C$ 110.307	2.331
$N_{-}C\alpha_{-}C\beta$ 111.426 1.042 $N_{-}C\alpha_{-}C\beta$ 110.339	1.250
LYS ttmm $n = 197$ LYS tmtp $n = 11$	
χ Smooth COM StdDev χ Smooth COM	StdDev
chi1 -174.055 8.490 chi1 -176.649	7.525
chi2 179.742 9.943 chi2 -97.994	8.314
chi3 -71.028 11.891 chi3 -178.365	12.353
	7.821
chi4 -67.045 11.420 chi4 65.083	
chi4 -67.045 11.420 chi4 65.083 Bond Angle Mean StdDev Bond Angle Mean	StdDev
Bond AngleMeanStdDevBond AngleMean $C\alpha_C\beta_C\gamma$ 113.6431.459 $C\alpha_C\beta_C\gamma$ 114.616	1.223
Bond Angle Mean StdDev Bond Angle Mean $C\alpha_Cβ_Cγ$ 113.643 1.459 $C\alpha_Cβ_Cγ$ 114.616 $C\alpha_C_O$ 120.558 0.817 $C\alpha_C_O$ 120.800	1.223 0.413
Bond Angle Mean StdDev Bond Angle Mean $C\alpha_Cβ_Cγ$ 113.643 1.459 $C\alpha_Cβ_Cγ$ 114.616 $C\alpha_C_O$ 120.558 0.817 $C\alpha_C_O$ 120.800 $Cβ_Cα_C$ 110.229 1.285 $Cβ_Cα_C$ 110.486	1.223 0.413 0.704
Bond Angle Mean StdDev Bond Angle Mean $C\alpha_C\beta_C\gamma$ 113.643 1.459 $C\alpha_C\beta_C\gamma$ 114.616 $C\alpha_C_O$ 120.558 0.817 $C\alpha_C_O$ 120.800 $C\beta_C\alpha_C$ 110.229 1.285 $C\beta_C\alpha_C$ 110.486 $C\beta_C\gamma_C\delta$ 112.136 1.574 $C\beta_C\gamma_C\delta$ 112.010	1.223 0.413
Bond Angle Mean StdDev Bond Angle Mean $C\alpha_C\beta_C\gamma$ 113.643 1.459 $C\alpha_C\beta_C\gamma$ 114.616 $C\alpha_C_O$ 120.558 0.817 $C\alpha_C_O$ 120.800 $C\beta_C\alpha_C$ 110.229 1.285 $C\beta_C\alpha_C$ 110.486	1.223 0.413 0.704
Bond Angle Mean StdDev Bond Angle Mean $C\alpha_C\beta_C\gamma$ 113.643 1.459 $C\alpha_C\beta_C\gamma$ 114.616 $C\alpha_C_O$ 120.558 0.817 $C\alpha_C_O$ 120.800 $C\beta_C\alpha_C$ 110.229 1.285 $C\beta_C\alpha_C$ 110.486 $C\beta_C\gamma_C\delta$ 112.136 1.574 $C\beta_C\gamma_C\delta$ 112.010	1.223 0.413 0.704 1.506
Bond Angle Mean StdDev Bond Angle Mean $C\alpha_C\beta_C\gamma$ 113.643 1.459 $C\alpha_C\beta_C\gamma$ 114.616 $C\alpha_C_O$ 120.558 0.817 $C\alpha_C_O$ 120.800 $C\beta_C\alpha_C$ 110.229 1.285 $C\beta_C\alpha_C$ 110.486 $C\beta_C\gamma_C\delta$ 112.136 1.574 $C\beta_C\gamma_C\delta$ 112.010 $C\delta_C\epsilon_N\zeta$ 112.648 2.300 $C\delta_C\epsilon_N\zeta$ 113.099	1.223 0.413 0.704 1.506 3.033

LY	S tmtt n = 82		LY	S tmtm $n = 20$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-172.661	8.464	chi1	-172.233	10.447
chi2	-91.117	9.621	chi2	-90.510	5.572
chi3	-176.853	11.750	chi3	-172.543	15.072
chi4	-178.511	10.695	chi4	-64.869	7.732
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alpha_{-}C\beta_{-}C\gamma$	114.500	1.145	$C\alphaC\betaC\gamma$	115.452	1.619
$C\alphaCO$	120.778	0.610	$C\alphaCO$	120.586	0.646
$C\betaC\alphaC$	110.869	1.093	$C\betaC\alphaC$	110.984	0.853
$C\betaC\gammaC\delta$	111.882	1.443	$C\betaC\gammaC\delta$	112.208	1.226
$C\delta_{-}C\epsilon_{-}N\zeta$	110.842	2.070	$C\deltaC\epsilonN\zeta$	112.679	1.691
$C\gamma_{-}C\delta_{-}C\epsilon$	111.015	1.375	$C\gammaC\deltaC\epsilon$	111.998	1.546
$N_{-}C\alpha_{-}C$	110.180	1.891	$N_{-}C\alpha_{-}C$	110.089	1.720
$N_{-}C\alpha_{-}C\beta$	110.078	0.810	$N_{-}C\alpha_{-}C\beta$	109.782	0.789
LYS	S tmmt $n = 33$		LYS	S tmmm $n = 8$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-179.225	9.981	chi1	-177.527	11.864
chi2	-93.418	12.058	chi2	-81.761	7.499
chi3	-70.433	8.917	chi3	-63.102	8.026
chi4	-179.549	10.245	chi4	-64.475	4.939
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.020	1.846	$C\alphaC\betaC\gamma$	116.243	2.695
$C\alphaCO$	120.544	0.877	$C\alphaCO$	120.272	0.848
$C\betaC\alphaC$	110.741	1.116	$C\betaC\alphaC$	111.246	1.126
$C\betaC\gammaC\delta$	113.459	1.734	$C\betaC\gammaC\delta$	114.871	1.367
$C\deltaC\epsilonN\zeta$	110.756	2.859	$C\deltaC\epsilonN\zeta$	113.141	1.476
$C\gammaC\deltaC\epsilon$	112.411	2.864	$C\gammaC\deltaC\epsilon$	114.998	1.617
$N_{-}C\alpha_{-}C$	109.953	2.155	$N_{-}C\alpha_{-}C$	108.983	2.013
$N_{-}C\alpha_{-}C\beta$	109.895	1.083	$N_{-}C\alpha_{-}C\beta$	109.523	1.258
LYS	S mppt $n = 31$		LYS $mptp n = 26$		
χ	Smooth COM	StdDev	χ	Smooth COM	StdDev
chi1	-82.599	8.918	chi1	-74.901	18.526
chi2	73.518	14.873	chi2	86.563	18.186
chi3	69.157	8.044	chi3	171.631	8.992
chi4	177.385	5.414	chi4	65.232	12.143
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDev
$C\alphaC\betaC\gamma$	115.111	1.987	$C\alphaC\betaC\gamma$	114.682	1.564
$C\alphaCO$	120.424	0.890	$C\alphaCO$	120.477	1.133
$C\betaC\alphaC$	109.879	1.228	$C\betaC\alphaC$	110.099	1.428
$C\betaC\gammaC\delta$	113.688	1.564	$C\betaC\gammaC\delta$	113.211	2.501
$C\delta_{-}C\epsilon_{-}N\zeta$	111.358	1.922	$C\delta_{-}C\epsilon_{-}N\zeta$	113.419	2.262
$C\gammaC\deltaC\epsilon$	112.185	1.373	$C\gammaC\deltaC\epsilon$	112.501	2.718
$N_{-}C\alpha_{-}C$	108.768	1.973	$N_{-}C\alpha_{-}C$	110.602	2.774
$N_{-}C\alpha_{-}C\beta$	110.907	0.923	$NC\alphaC\beta$	110.868	1.039

LYS mptt	n = 124		LYS mptm $n = 11$			
	th COM StdDev		Smooth COM	StdDev		
chi1 -79.91	1 13.282	 chi1	-91.748	6.662		
chi2 72.964		chi2	61.180	11.061		
chi3 176.12		chi3	-173.655	5.358		
chi4 175.09		chi4	-60.981	13.466		
Bond Angle Mean	StdDev	Bond Angle	e Mean	StdDev		
$C\alpha_{-}C\beta_{-}C\gamma$ 114.89	96 1.389	$C\alpha_{-}C\beta_{-}C\gamma$	114.614	0.809		
$C\alpha_{-}C_{-}O$ 120.55		$C\alpha_{-}C_{-}O$	120.670	0.565		
$C\beta_{-}C\alpha_{-}C$ 109.74	1.534	$C\betaC\alphaC$	110.693	0.842		
$C\betaC\gammaC\delta$ 112.63	19 2.029	$C\betaC\gammaC\delta$	112.838	0.654		
$C\delta_{-}C\epsilon_{-}N\zeta$ 110.8	77 2.274	$C\deltaC\epsilonN\zeta$	113.434	1.681		
$C\gamma_{-}C\delta_{-}C\epsilon$ 111.16	1.603	$C\gammaC\deltaC\epsilon$	111.830	0.502		
N_Cα_C 110.57	79 2.594	$N_{-}C\alpha_{-}C$	110.770	2.188		
N_Cα_Cβ 110.83		$N_{-}C\alpha_{-}C\beta$	110.642	0.906		
LYS mtpp	n = 392	LY	VS mtpt $n = 1357$	7		
χ Smoo	th COM StdDev	χ	Smooth COM	StdDev		
chi1 -68.53		chi1	-69.197	8.061		
chi2 176.98	54 10.868	chi2	174.242	11.340		
chi3 70.47	1 10.847	chi3	70.524	11.811		
chi4 67.722	2 10.865	chi4	175.197	10.445		
Bond Angle Mean	StdDev	Bond Angle	e Mean	StdDev		
$C\alphaC\betaC\gamma$ 113.23	35 1.656	$C\alphaC\betaC\gamma$	113.256	1.539		
$C\alpha_{-}C_{-}O$ 120.43		$C\alphaCO$	120.481	0.839		
$C\beta_{-}C\alpha_{-}C$ 110.15		$C\betaC\alphaC$	109.985	1.646		
$C\beta_{-}C\gamma_{-}C\delta$ 112.40		$C\betaC\gammaC\delta$	112.293	1.551		
$C\delta_{-}C\epsilon_{-}N\zeta$ 112.83		$C\deltaC\epsilonN\zeta$	110.841	2.155		
$C\gamma_{-}C\delta_{-}C\epsilon$ 112.70	04 1.415	$C\gammaC\deltaC\epsilon$	112.343	1.491		
N_Cα_C 111.30		$N_{-}C\alpha_{-}C$	111.357	2.211		
$N_{-}C\alpha_{-}C\beta$ 110.49	95 1.009	$N_{-}C\alpha_{-}C\beta$	110.670	1.031		
LYS mtpr		_	LYS $\mathbf{mttp} \ \mathbf{n} = 1414$			
χ Smoo	th COM StdDev	χ	Smooth COM	StdDev		
chi1 -70.32	6.135	chi1	-65.910	8.334		
chi2 174.83		chi2	-179.442	10.679		
chi3 90.638	14.675	chi3	176.319	11.179		
chi4 -70.02	24 12.061	chi4	66.691	13.607		
Bond Angle Mean	StdDev	Bond Angle	e Mean	StdDev		
$C\alphaC\betaC\gamma$ 113.50		$C\alphaC\betaC\gamma$	113.442	1.732		
$C\alpha_{-}C_{-}O$ 120.30		$C\alphaCO$	120.510	0.841		
$C\beta_{-}C\alpha_{-}C$ 109.78		$C\betaC\alphaC$	110.097	1.628		
$C\betaC\gammaC\delta$ 112.29		$C\betaC\gammaC\delta$	111.258	1.746		
$C\delta_{-}C\epsilon_{-}N\zeta$ 113.38	1.869	$C\deltaC\epsilonN\zeta$	112.223	1.982		
$C\gammaC\deltaC\epsilon$ 113.18	1.587	$C\gammaC\deltaC\epsilon$	111.751	1.466		
0 / 200 200 113.10						
N_Cα_C 110.8° N_Cα_Cβ 110.5°		$N_{-}C\alpha_{-}C$ $N_{-}C\alpha_{-}C\beta$	111.268	2.491		

LYS mttt $n = 8597$				LYS mttm $n = 1829$			
$\overline{\chi}$	Smooth COM	StdDev		χ	Smooth COM	StdDev	
chi1	-67.654	7.111		chi1	-66.855	7.320	
chi2	-178.811	9.067		chi2	-177.777	10.020	
chi3	-179.106	9.781		chi3	-176.656	10.842	
chi4	179.484	10.347		chi4	-67.384	12.838	
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev	
$C\alpha_{-}C\beta_{-}C\gamma$	113.453	1.623		$C\alpha_{-}C\beta_{-}C\gamma$	113.406	1.737	
$C\alpha_{-}C_{-}O$	120.467	0.827		$C\alpha_{-}C_{-}O$	120.484	0.849	
$C\betaC\alphaC$	109.998	1.557		$C\betaC\alphaC$	110.086	1.544	
$C\beta$ _ $C\gamma$ _ $C\delta$	111.143	1.850		$C\beta C\gamma C\delta$	111.204	1.726	
$C\deltaC\epsilonN\zeta$	111.119	2.099		$C\deltaC\epsilonN\zeta$	112.211	2.034	
$C\gammaC\deltaC\epsilon$	111.049	1.601		$C\gammaC\deltaC\epsilon$	111.752	1.469	
$N_{-}C\alpha_{-}C$	111.334	2.236		$N_{-}C\alpha_{-}C$	111.378	2.375	
$N_{-}C\alpha_{-}C\beta$	110.665	0.988		$N_{-}C\alpha_{-}C\beta$	110.611	1.003	
		0.000		,			
	$\frac{\text{S mtmp n} = 9}{\text{Gartingork}}$	G. ID			$\frac{\mathbf{mtmt} \ \mathbf{n} = 1314}{\mathbf{n} + \mathbf{n} = 1314}$		
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev	
chi1	-67.465	5.792		chi1	-66.838	6.886	
chi2	-175.781	8.346		chi2	-173.335	9.847	
chi3	-95.844	7.431		chi3	-73.733	11.654	
chi4	73.531	12.322		chi4	-175.371	10.598	
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	113.802	1.228		$C\alphaC\betaC\gamma$	113.209	1.595	
$C\alphaCO$	120.633	0.607		$C\alphaCO$	120.408	0.857	
$C\betaC\alphaC$	109.891	1.198		$C\betaC\alphaC$	110.085	1.557	
$C\betaC\gammaC\delta$	111.699	1.976		$C\betaC\gammaC\delta$	112.313	1.519	
$C\deltaC\epsilonN\zeta$	113.681	2.374		$C\deltaC\epsilonN\zeta$	111.041	2.184	
$C\gammaC\deltaC\epsilon$	112.703	0.792		$C\gammaC\deltaC\epsilon$	112.107	1.451	
$N_{-}C\alpha_{-}C$	110.375	2.291		$N_{-}C\alpha_{-}C$	111.319	2.137	
$N_{-}C\alpha_{-}C\beta$	110.828	0.914		$N_{-}C\alpha_{-}C\beta$	110.673	0.960	
LYS	$\mathbf{mtmm} \ \mathrm{n} = 424$			LYS mmpt $n = 31$			
χ	Smooth COM	StdDev		χ	Smooth COM	StdDev	
chi1	-63.898	6.909		chi1	-60.371	7.013	
chi2	-177.154	10.058		chi2	-70.556	19.521	
chi3	-70.378	10.902		chi3	93.615	14.476	
chi4	-66.004	9.830		chi4	175.537	10.679	
Bond Angle	Mean	StdDev		Bond Angle	Mean	StdDev	
$C\alphaC\betaC\gamma$	113.456	1.534		$C\alphaC\betaC\gamma$	115.281	1.118	
$C\alphaCO$	120.488	0.838		$C\alphaCO$	120.359	0.888	
$C\betaC\alphaC$	109.818	1.557		$C\beta_{-}C\alpha_{-}C$	109.807	1.683	
$C\betaC\gammaC\delta$	112.288	1.374		$C\betaC\gammaC\delta$	113.354	1.803	
$C\deltaC\epsilonN\zeta$	112.759	2.097		$C\deltaC\epsilonN\zeta$	111.539	1.766	
$C\gammaC\deltaC\epsilon$	112.869	1.500		$C\gammaC\deltaC\epsilon$	112.040	1.404	
$N_{-}C\alpha_{-}C$	111.524	2.392		$N_{-}C\alpha_{-}C$	111.535	2.365	
$N_{-}C\alpha_{-}C\beta$	110.573	1.029		$N_{-}C\alpha_{-}C\beta$	111.168	1.386	
			-				

LYS	$\mathbf{mmtp} \ \mathbf{n} = 463$		LYS	mmtt n = 3137	,
χ	Smooth COM	StdDev	χ	Smooth COM	StdDe
chi1	-61.499	8.157	chi1	-61.713	8.298
ehi2	-68.646	12.048	chi2	-67.230	9.794
chi3	179.724	11.913	chi3	-176.776	10.146
chi4	67.912	13.158	chi4	-178.237	10.966
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDe
$C\alphaC\betaC\gamma$	114.716	1.514	$C\alphaC\betaC\gamma$	114.531	1.322
$C\alpha_{-}C_{-}O$	120.405	0.904	$C\alphaCO$	120.435	0.906
$C\betaC\alphaC$	109.563	1.559	$C\betaC\alphaC$	109.619	1.555
$C\betaC\gammaC\delta$	112.024	1.545	$C\betaC\gammaC\delta$	111.910	1.487
$C\delta_C\epsilon_N\zeta$	112.649	2.339	$C\deltaC\epsilonN\zeta$	111.069	2.082
$C\gammaC\deltaC\epsilon$	111.879	1.343	$C\gammaC\deltaC\epsilon$	111.132	1.533
$N_{-}C\alpha_{-}C$	111.141	2.596	$N_C\alpha_C$	111.465	2.473
$N_{-}C\alpha_{-}C\beta$	110.702	1.044	$N_{-}C\alpha_{-}C\beta$	110.691	1.009
LYS	mmtm n = 727	,	LYS	LYS mmmt $n = 544$	
χ	Smooth COM	StdDev	χ	Smooth COM	StdDe
chi1	-60.188	8.246	chi1	-62.678	7.662
chi2	-65.555	10.785	chi2	-64.116	10.733
chi3	-173.090	11.157	chi3	-70.703	9.725
chi4	-68.899	13.356	chi4	-176.812	9.766
Bond Angle	Mean	StdDev	Bond Angle	Mean	StdDe
$C\alphaC\betaC\gamma$	114.540	1.397	$C\alphaC\betaC\gamma$	114.613	1.313
$C\alphaCO$	120.538	0.866	$C\alphaCO$	120.383	0.968
$C\betaC\alphaC$	109.750	1.568	$C\betaC\alphaC$	109.622	1.455
$C\betaC\gammaC\delta$	111.934	1.429	$C\betaC\gammaC\delta$	113.105	1.508
$C\deltaC\epsilonN\zeta$	112.437	1.969	$C\deltaC\epsilonN\zeta$	111.154	2.215
$C\gammaC\deltaC\epsilon$	111.964	1.439	$C\gammaC\deltaC\epsilon$	112.301	1.533
$N_{-}C\alpha_{-}C$	111.442	2.525	$N_{-}C\alpha_{-}C$	111.767	2.314
$N_{-}C\alpha_{-}C\beta$	110.623	1.025	$N_{-}C\alpha_{-}C\beta$	110.671	1.052
LYS	mmmm n = 90)			
χ	Smooth COM	StdDev			
chi1	-61.396	8.320			
chi2	-61.832	10.421			
chi3	-66.893	10.843			
chi4	-64.659	10.880			
Bond Angle	Mean	StdDev			
$C\alphaC\betaC\gamma$	114.738	1.388			
$C\alphaCO$	120.417	1.064			
$C\betaC\alphaC$	109.517	1.525			

1.432

2.734

1.865

2.469

1.112

113.153

112.644113.176

111.658

110.501

 $C\beta_-C\gamma_-C\delta$

 $C\delta_{-}C\epsilon_{-}N\zeta$ $C\gamma_{-}C\delta_{-}C\epsilon$

 $N_C\alpha_C$

 $N_C\alpha_C\beta$