COMPARACIÓN DE ALGORITMOS DE TEST DE PRIMALIDAD

Los test de primalidad, es decir algoritmos que nos permiten comprobar si un número es primo o compuesto, son usados en múltiples ámbitos principalmente en la seguridad. Cabe señalar que existen algoritmos determinísticos y probabilísticos, los primeros apuntan a demostrar fehacientemente si un número es primo, y los segundos tan solo con probabilidades pero son mucho más rápidos en el proceso.

En este estudio se compararon 3 algoritmos, Solovay-Strassen, Miller-Rabin y Fermat, los cuales se aplican probabilísticamente.

Test de Solovay-Strassen

Un algoritmo probabilístico que certifica la composición más que la primalidad. Este test ya no se usa en general ya que el test de Miller-Rabin lo superó.

La probabilidad de error es de $\frac{1}{2}$. Complejidad es $O(\log n)^3$.

Usa el Símbolo de Jacobi que es una mejora del símbolo de Legendre:

Símbolo de jacobi:

$$\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$$

$$\left(\frac{2}{n}\right) = (-1)^{\frac{n^2 - 1}{8}}$$

$$\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$$

$$\left(\frac{a}{n}\right) = \begin{cases} -\left(\frac{n}{a}\right) & \text{si } a \equiv n \equiv 3 \pmod{4} \\ \left(\frac{n}{a}\right) & \text{en otro caso} \end{cases}$$

La parte fundamental del algoritmo:

Se basa principalmente en:

$$\left(rac{a}{n}
ight)
eq a^{rac{n-1}{2}}\pmod{p}$$

Se busca que el símbolo de Jacobi y la exponenciación modular sean diferentes.

Pseudo-algoritmo:

Entrada: "n" entero.

Salida: "n" es primo o "n" es compuesto.

Solovay-Strassen(n)

1) Se elige al azar un número entre 2 y n - 1.

- 2) Se calcula si el mcd(a, n) es diferente de 1
 - a) Si lo es, está compuesto.
- 3) Si jacobi(a, n) es diferente de $a^{(n-1)/2} \mod n$
 - a) Si lo es, está compuesto.
- 4) Si no se aplica en lo anterior, probablemente es primo.

Seguimiento:

Cuando n = 17:

Se escoge 2 como "número aleatorio":

mcd(2, 17):

= 1

 $jacobi(2, 17) = -1 \pmod{17} = 16$

 $2^{8} \pmod{17} = 16$

Son iguales entonces, entonces 17 probablemente es primo

Implementación en C++:

```
bool solovay strassen(ZZ n)
{
    if ((n \& 1) == 0)
        return false;
    ZZ a(2);
    for (int i = 0; i < 10; i++)
        if(euclides clasico(a, n) != 1){
           return false;
        ZZ r = modulo(jacobi(a, n), n);
        ZZ r = exponenciacion_mod(a, (n-1)/2, n);
        if (r != _r){
            return false;
        do{
            a = RandomBnd(n);
        while(a < 2);
    return true;
```

Test de Miller-Rabin

El test probabilístico de Miller-Rabin es una extensión del test de Fermat, es uno de los más usados.

Se basa en la comprobación de diferentes bases para probarlo.

Probabilidad de error es de \(\frac{1}{4} \).

La complejidad O((log n)³)

La parte fundamental del algoritmo:

Se descompone \mathbf{n} en $\mathbf{n}^{s} \cdot d + 1$, donde d es impar, son enteros positivos.

Diremos que es probablemente primo si se cumple alguna de:

$$a^d \equiv 1 \pmod n$$

$$a^{2^r \cdot d} \equiv -1 \pmod n \ \ \, ext{para algún } 0 \, \leq \, r \, < s.$$

- Las únicas raíces cuadradas del 1 modulo n son 1 y -1 (mod n)

Pseudo-algoritmo:

Entrada: "n" entero.

Salida: "n" es primo o "n" es compuesto.

Miller-Rabin(n)

- 1) Descomponer **n 1** en **2**s * t**, donde **t** es impar.
- 2) Repetir **k** veces:
 - a) Un entero **a**, aleatorio entre **a** y **n 1**.
 - b) Un entero $x = a^{**}t \pmod{n}$
 - c) Si x es igual a 1, o, x es igual n 1
 - i) Continuar
 - d) Repetir s 1 veces:
 - i) $x = x^*2 \pmod{n}$

- ii) Si x es igual a 1:
 - (1) Es un número compuesto.
- iii) Si x es igual a n 1:
 - (1) Romper
- e) Si x es diferente de n 1:
 - i) Es un número compuesto:
- 3) Probablemente es un número primo.

Seguimiento:

Cuando **n** es igual a 19:

Descomponiendo n - 1 en 2**s * t.

$$s = 1 y t = 9$$

Repitiendo una sola vez: eligiendo a **2** como base **a**

Repitiendo s - 1 veces (0).

18 es igual a 18

Por lo tanto es 19 probablemente es primo.

Implementación en C++:

```
bool miller rabin(ZZ n){
    if ((n \& 1) == 0)
        return false;
    ZZ s(0);
    ZZ t = n - 1;
   while ((t \& 1) == 0) {
        s++;
        t >>= 1;
    ZZ a(2);
    for (int i = 0; i < 10; i++){
        ZZ x = exponenciacion mod(a, t, n);
        if (x == 1 | | x == (n-1))
            continue;
        for (ZZ r(0); r < (s-1); r++){
            x = exponenciacion mod(x, to ZZ(2), n);
            if(x == 1){
                return false;
            else if(x == n - 1)
               break;
        if(x != n - 1)
            return false;
        ZZ a = RandomBnd(n-3) + 3;
    return true;
```

Test de Fermat

Este algoritmo probabilístico es simple, y es la base de otros teoremas, como algoritmos, en este caso se usa de forma básica, y no es tan empleado.

Parte fundamental:

Si n es primo y a es coprimo con n:

$$a^{n-1} \equiv 1 \pmod{n}$$

Pseudo-algoritmo:

Entrada: "n" entero.

Salida: "n" es primo o "n" es compuesto.

Fermat(n):

- 1) tomando como base **a = 2**
- 2) Si a ** n 1 (mod n) es diferente de 1
 - a) Es un primo compuesto
- 3) Es probablemente un primo.

Seguimiento:

Cuando **n** es igual a 19:

eligiendo a 2 como base a

Como 1 no es diferente de 1 :

Por lo tanto es 19 probablemente es primo.

Implementación en C++:

```
bool fermat(ZZ n) {
    if ((n & 1) == 0)
        return false;
    ZZ a(2);
    for (int i = 0; i < 20; i++) {
        if (exponenciacion_mod(a, n - 1, n) != 1) {
            return false;
        }
        a = RandomBnd(n-2) + 2;
    }
    return true;
}</pre>
```

Comparación de algoritmos:

solovay 64bits
Tiempo: 0.000000106 sec

miller 64bits
Tiempo: 0.000000104 sec

fermat 64bits
Tiempo: 0.000000098 sec

solovay 128bits
Tiempo: 0.000026011 sec

miller 128bits
Tiempo: 0.000022918 sec

fermat 128bits
Tiempo: 0.000022714 sec

solovay 512bits
Tiempo: 0.00000182 sec

miller 512bits
Tiempo: 0.000000190 sec

fermat 512bits
Tiempo: 0.000000136 sec

solovay 1024bits
Tiempo: 0.001102376 sec
miller 1024bits
Tiempo: 0.001139183 sec
fermat 1024bits
Tiempo: 0.001055212 sec
solovay 2048bits
Tiempo: 0.006712559 sec
miller 2048bits
Tiempo: 0.006653939 sec
fermat 2048bits
Tiempo: 0.006543491 sec

Conclusiones

En cuanto a tiempo se refiere, se podría considerar a Fermat como un claro ganador. Pero también hay que considerar que es más probable que arroje resultados erróneos, por lo que Miller-Rabin tendrá mejor efecto en este caso.

Entonces podríamos decir que Miller-Rabin es el ganador.

Enlace de Github:

https://github.com/Brigham-CG/Brigham_CaceresGutierrez/tree/main/PrimalityTest

Bibliografía:

Breve Reseña sobre la Hipótesis de Riemann, Primalidad y el algoritmo AKS (José de Jesús Angel Angel Guillermo Morales-Luna, 2005).

Section 31.8: Primality testing». *Introduction to Algorithms* (Second edición). MIT