$11a_9 (K11a_9)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{35} + u^{34} + \dots + 2b - 1, \ 3u^{35} + 4u^{34} + \dots + 2a - 2, \ u^{36} + 3u^{35} + \dots - 3u^2 - 1 \rangle$$

 $I_2^u = \langle -au + b, \ a^2 + a + 1, \ u^2 - u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 40 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{35} + u^{34} + \dots + 2b - 1, \ 3u^{35} + 4u^{34} + \dots + 2a - 2, \ u^{36} + 3u^{35} + \dots - 3u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{3}{2}u^{35} - 2u^{34} + \dots - \frac{5}{2}u + 1 \\ -\frac{1}{2}u^{35} - \frac{1}{2}u^{34} + \dots + 4u^{2} + \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 5u^{35} + \frac{13}{2}u^{34} + \dots + \frac{1}{2}u - \frac{5}{2} \\ 8u^{35} + 10u^{34} + \dots + 3u - 5 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{35} - u^{34} + \dots + \frac{11}{2}u + 1 \\ -\frac{1}{2}u^{35} - \frac{1}{2}u^{34} + \dots - 2u^{2} + \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{11}{2}u^{35} + 7u^{34} + \dots - \frac{1}{2}u - 3 \\ \frac{19}{2}u^{35} + \frac{23}{2}u^{34} + \dots + 3u - \frac{11}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{11}{2}u^{35} + 7u^{34} + \dots - \frac{1}{2}u - 3 \\ \frac{19}{2}u^{35} + \frac{23}{2}u^{34} + \dots + 3u - \frac{11}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{5}{2}u^{35} - 3u^{34} + \dots + \frac{23}{2}u^2 + \frac{5}{2}u$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{36} + 3u^{35} + \dots + 2u + 1$
c_2	$u^{36} + 19u^{35} + \dots + 2u + 1$
c_{3}, c_{8}	$u^{36} + u^{35} + \dots - 32u - 16$
<i>C</i> ₅	$u^{36} - 3u^{35} + \dots - 156u + 41$
c_6, c_7, c_9 c_{10}, c_{11}	$u^{36} + 3u^{35} + \dots - 3u^2 - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{36} + 19y^{35} + \dots + 2y + 1$
c_2	$y^{36} - y^{35} + \dots - 46y + 1$
c_3, c_8	$y^{36} + 25y^{35} + \dots + 896y + 256$
<i>C</i> 5	$y^{36} - 21y^{35} + \dots + 12482y + 1681$
$c_6, c_7, c_9 \\ c_{10}, c_{11}$	$y^{36} - 49y^{35} + \dots + 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.025520 + 0.116463I		
a = -1.031170 + 0.432608I	-4.16025 + 3.63915I	-10.15018 - 4.27650I
b = -2.09741 + 0.72386I		
u = -1.025520 - 0.116463I		
a = -1.031170 - 0.432608I	-4.16025 - 3.63915I	-10.15018 + 4.27650I
b = -2.09741 - 0.72386I		
u = 0.917325 + 0.063901I		
a = -0.133059 - 1.056750I	-2.00047 - 2.57631I	-10.63302 + 4.45192I
b = 0.317589 + 0.408768I		
u = 0.917325 - 0.063901I		
a = -0.133059 + 1.056750I	-2.00047 + 2.57631I	-10.63302 - 4.45192I
b = 0.317589 - 0.408768I		
u = 1.065990 + 0.299185I		
a = 0.322094 - 0.440855I	-5.13782 - 4.39791I	-8.11131 + 3.98843I
b = 1.56593 - 0.19350I		
u = 1.065990 - 0.299185I		
a = 0.322094 + 0.440855I	-5.13782 + 4.39791I	-8.11131 - 3.98843I
b = 1.56593 + 0.19350I		
u = 1.082360 + 0.370781I		
a = -0.558691 + 0.183985I	-8.00799 - 9.41273I	-10.73207 + 7.33022I
b = -2.00888 + 0.15748I		
u = 1.082360 - 0.370781I		
a = -0.558691 - 0.183985I	-8.00799 + 9.41273I	-10.73207 - 7.33022I
b = -2.00888 - 0.15748I		
u = -0.852163		
a = 0.572389	-1.51344	-5.97070
b = 1.20255		
u = 1.178870 + 0.253014I		
a = -0.540902 + 0.868497I	-9.53106 - 0.77090I	-13.03537 + 0.66876I
b = -1.39570 + 0.91291I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.178870 - 0.253014I		
a = -0.540902 - 0.868497I	-9.53106 + 0.77090I	-13.03537 - 0.66876I
b = -1.39570 - 0.91291I		
u = -0.465838 + 0.569982I		
a = -0.135891 - 0.713585I	-4.25762 - 2.03075I	-9.39588 + 0.30706I
b = 0.582474 + 0.680739I		
u = -0.465838 - 0.569982I		
a = -0.135891 + 0.713585I	-4.25762 + 2.03075I	-9.39588 - 0.30706I
b = 0.582474 - 0.680739I		
u = -0.680312 + 0.218264I		
a = 0.215818 - 0.256120I	-1.43730 + 0.46103I	-9.15571 - 0.89205I
b = 0.392517 - 0.767490I		
u = -0.680312 - 0.218264I		
a = 0.215818 + 0.256120I	-1.43730 - 0.46103I	-9.15571 + 0.89205I
b = 0.392517 + 0.767490I		
u = -0.294050 + 0.635512I		
a = -0.93728 - 1.18603I	-3.72424 + 5.98943I	-7.50022 - 6.65502I
b = 0.435962 + 0.264963I		
u = -0.294050 - 0.635512I		
a = -0.93728 + 1.18603I	-3.72424 - 5.98943I	-7.50022 + 6.65502I
b = 0.435962 - 0.264963I		
u = -0.300828 + 0.511616I		
a = 0.900271 + 0.580279I	-0.88449 + 1.61128I	-3.96504 - 4.05315I
b = -0.322840 - 0.451012I		
u = -0.300828 - 0.511616I		
a = 0.900271 - 0.580279I	-0.88449 - 1.61128I	-3.96504 + 4.05315I
b = -0.322840 + 0.451012I		
u = 1.60354 + 0.03866I		
a = -0.577687 - 1.062600I	-9.29333 - 1.36083I	0
b = -0.73772 - 1.35775I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.60354 - 0.03866I		
a = -0.577687 + 1.062600I	-9.29333 + 1.36083I	0
b = -0.73772 + 1.35775I		
u = 0.003501 + 0.334247I		
a = 2.06412 - 0.29075I	0.57956 + 1.37320I	1.27470 - 4.45868I
b = -0.222553 - 0.457483I		
u = 0.003501 - 0.334247I		
a = 2.06412 + 0.29075I	0.57956 - 1.37320I	1.27470 + 4.45868I
b = -0.222553 + 0.457483I		
u = 0.220883 + 0.210533I		
a = -2.72148 + 0.23613I	-0.27564 - 2.47765I	1.24066 + 5.09366I
b = 0.536583 + 0.437480I		
u = 0.220883 - 0.210533I		
a = -2.72148 - 0.23613I	-0.27564 + 2.47765I	1.24066 - 5.09366I
b = 0.536583 - 0.437480I		
u = 1.70560		
a = -2.31988	-10.7808	0
b = -2.94838		
u = -1.71389 + 0.01340I		
a = -0.457517 + 0.775429I	-11.48460 + 2.85990I	0
b = -0.66586 + 1.78211I		
u = -1.71389 - 0.01340I		
a = -0.457517 - 0.775429I	-11.48460 - 2.85990I	0
b = -0.66586 - 1.78211I		
u = 1.73373 + 0.02857I		
a = 2.85868 + 0.56360I	-14.0947 - 4.2255I	0
b = 3.62671 + 0.70465I		
u = 1.73373 - 0.02857I		
a = 2.85868 - 0.56360I	-14.0947 + 4.2255I	0
b = 3.62671 - 0.70465I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.74040 + 0.07931I		
a = -2.19385 - 0.26897I	-15.1592 + 5.9753I	0
b = -3.06657 + 0.17165I		
u = -1.74040 - 0.07931I		
a = -2.19385 + 0.26897I	-15.1592 - 5.9753I	0
b = -3.06657 - 0.17165I		
u = -1.74533 + 0.09973I		
a = 2.64626 + 0.43864I	-18.0669 + 11.3850I	0
b = 3.66599 + 0.11964I		
u = -1.74533 - 0.09973I		
a = 2.64626 - 0.43864I	-18.0669 - 11.3850I	0
b = 3.66599 - 0.11964I		
u = -1.76676 + 0.06022I		
a = 1.65403 + 0.87991I	19.3219 + 2.0938I	0
b = 2.26669 + 0.61564I		
u = -1.76676 - 0.06022I		
a = 1.65403 - 0.87991I	19.3219 - 2.0938I	0
b = 2.26669 - 0.61564I		

II.
$$I_2^u = \langle -au + b, \ a^2 + a + 1, \ u^2 - u - 1 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_2 = \begin{pmatrix} au + a \\ 2au \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a + u + 1 \\ au + 2u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ au \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -2au 3a u 8

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^2$
c_3,c_8	u^4
C4	$(u^2 - u + 1)^2$
c_{6}, c_{7}	$(u^2+u-1)^2$
c_9, c_{10}, c_{11}	$(u^2 - u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \\ c_5$	$(y^2+y+1)^2$
c_3, c_8	y^4
c_6, c_7, c_9 c_{10}, c_{11}	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -0.500000 + 0.866025I	-0.98696 + 2.02988I	-6.50000 - 1.52761I
b = 0.309017 - 0.535233I		
u = -0.618034		
a = -0.500000 - 0.866025I	-0.98696 - 2.02988I	-6.50000 + 1.52761I
b = 0.309017 + 0.535233I		
u = 1.61803		
a = -0.500000 + 0.866025I	-8.88264 + 2.02988I	-6.50000 - 5.40059I
b = -0.80902 + 1.40126I		
u = 1.61803		
a = -0.500000 - 0.866025I	-8.88264 - 2.02988I	-6.50000 + 5.40059I
b = -0.80902 - 1.40126I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 + u + 1)^2)(u^{36} + 3u^{35} + \dots + 2u + 1)$
c_2	$((u^2 + u + 1)^2)(u^{36} + 19u^{35} + \dots + 2u + 1)$
c_3, c_8	$u^4(u^{36} + u^{35} + \dots - 32u - 16)$
c_4	$((u^2 - u + 1)^2)(u^{36} + 3u^{35} + \dots + 2u + 1)$
c_5	$((u^2 + u + 1)^2)(u^{36} - 3u^{35} + \dots - 156u + 41)$
c_6, c_7	$((u^2 + u - 1)^2)(u^{36} + 3u^{35} + \dots - 3u^2 - 1)$
c_9, c_{10}, c_{11}	$((u^2 - u - 1)^2)(u^{36} + 3u^{35} + \dots - 3u^2 - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2 + y + 1)^2)(y^{36} + 19y^{35} + \dots + 2y + 1)$
c_2	$((y^2 + y + 1)^2)(y^{36} - y^{35} + \dots - 46y + 1)$
c_3,c_8	$y^4(y^{36} + 25y^{35} + \dots + 896y + 256)$
<i>C</i> ₅	$((y^2 + y + 1)^2)(y^{36} - 21y^{35} + \dots + 12482y + 1681)$
c_6, c_7, c_9 c_{10}, c_{11}	$((y^2 - 3y + 1)^2)(y^{36} - 49y^{35} + \dots + 6y + 1)$