GR 12 MATHS

PAPER 1: Notes & Summaries

BASIC ALGEBRA

Types of Numbers

- Algebraic Expressions
 Products; Factors and Fractions
- Algebraic Expressions & Equations compared
- Function Notation

EXPONENTS & SURDS

Notes and Worked Examples

Compliments of

ANSWER

Series ... your key to exam success

N

_

FUNDAMENTAL CONCEPTS

NUMBERS

MODULE

Module 1: NUMBERS & FUNDAMENTAL CONCEPTS

TOPIC OUTLINE

- ▶ Types of numbers
- ► Algebraic expressions, fractions, equations and inequalities
- ► Non-standard number patterns

Types of Numbers

Numbers can be whole or fractional, positive or negative, rational or irrational, real or non-real (imaginary) . . .

Natural numbers, counting numbers & integers

It is important to know the names of the various sets of numbers and how they fit together.

We recall:

Natural numbers: $\mathbb{N} = \{1; 2; 3; \ldots\}$

Counting numbers: $\mathbb{N}_0 = \{0; 1; 2; 3; \ldots\}$

Integers: $\mathbb{Z} = \{...; -2; -1; 0; 1; 2; 3 ...\}$

Fractions

There are common fractions, e.g. $-\frac{1}{4}$; $\frac{2}{3}$; $\frac{5}{2}$ & decimal fractions, e.g. -0.25; 1,4; 0,6

Proper fractions are fractions which lie between -1 and 1,

e.g.
$$-\frac{4}{5}$$
; $\frac{2}{3}$; ... the numerator is < the denominator.

Improper fractions have values less than -1 or greater than 1,

e.g.
$$-\frac{3}{2}$$
; $\frac{11}{5}$... the numerator is > the denominator

(Improper fractions can be converted to mixed fractions)

Rational and Irrational numbers

Rational numbers

Examples of rational numbers are:

integers: -7; 0; 20 & fractions:
$$\frac{1}{4} = 0.25$$
; $\frac{13}{10} = 1.1$; $\frac{0}{4} = 0$

NB: $\frac{5}{0}$ is undefined.

Division by zero is undefined.

Also:
$$\frac{2}{3} = 0,666... (= 0,6)$$
; $\frac{9}{11} = 0,818181... (= 0,81)$

Given a decimal fraction which is infinite, but recurring, it is possible to write it as a common fraction. See the following method:

How to write an infinite, RECURRING decimal as a fraction

Example: 0,3, i.e. 0,333... even though you know it equals $\frac{1}{3}$

Let
$$x = 0,333....$$

then
$$10x = 3,3333...$$

9 - 0:
$$\therefore 9x = 3$$

 $\div 9:$ $\therefore x = \frac{3}{9} = \frac{1}{2}$

$$\therefore 0,3 = \frac{1}{3} \checkmark \text{ So, } 0,3 \text{ is rational}$$

This method clarifies the definition of a rational number.

The definition of a Rational number

A rational number is any number which can be written as a fraction

i.e. as
$$\frac{\text{an integer}}{\text{an integer}}$$
, or $\frac{a}{b}$ where $a \& b \in \mathbb{Z}$; $b \neq 0$

Examples of irrational numbers are:

Irrational numbers

FUNDAMENTAL CONCEPTS

Ø

NUMBERS

MODULE

$$\sqrt{2}$$
 = 1,414213562...; $\sqrt[3]{16}$ = 2,5198421...

These decimals are infinite and non-recurring. Their values cannot be found exactly, but they do exist on the number line:

$$\sqrt{2}$$
 lies between $\sqrt{1}$ and $\sqrt{4}$

$$\sqrt{1} = 1 \qquad \int \sqrt{4} = 2$$

$$\sqrt[3]{16}$$
 lies between $\sqrt[3]{8}$ and $\sqrt[3]{27}$

What about π ?

 π is an irrational number because $\pi = 3.1415926...$ an infinite non-recurring decimal.

3,14 and $\frac{22}{7}$ are very useful to use as approximate values of π , but:

$$3,14 = \frac{314}{100}$$
 and $\frac{22}{7} = 3,142857 142857 \dots$ infinite and recurring

 \therefore 3,14 and $\frac{22}{7}$ are both **rational** numbers.

But, π *itself* is **irrational**!

1.2

The definition of an Irrational number

An irrational number can only be written in number form with never-ending, non-repeating digits after the decimal comma. An irrational number cannot be written as a fraction.

Real and Imaginary numbers

Real numbers

The number line consists of all the rational (Q) and irrational (Q') numbers which together form the set of Real numbers (R).

Imaginary numbers

 $\sqrt{-25}$ is an example of an imaginary number. There is no number which, if squared, would equal -25. $\sqrt{-25}$ does not exist on the number line. The real numbers and the imaginary numbers together form the set of complex numbers.

Representations of the Number System

Sets and subsets

EXERCISE 1.1: Types of numbers

Answers on page A1.1

1. Classify the following numbers by placing a √ in the appropriate column(s):

	Complex	Non-real	Real	Irrational	Rational	Integer	\mathbb{N}_{0}	N
10								
-4								
-3,2								
$4\frac{2}{3}$								
π								
0,6								
$\sqrt{25}$								
- ∜32								
√35								
$\sqrt{1\frac{11}{25}}$								
√-36								
³ √-27								
0 6 6 0								
<u>6</u> 0								

- Between which two integers does $\sqrt{48}$ lie?
- Between which two integers do ALL PROPER FRACTIONS, negative and positive lie?
- 4. Express each of the following in interval notation (where possible) and represent each on a number line:

4.1 {
$$x \mid x > -1$$
; $x \text{ a real number}$ }

4.2
$$\{x \mid -4 \le x < 1; x \in \mathbb{R}\}$$

4.3 {
$$x \mid x < 3$$
; $x \in \mathbb{N}_0$ }

4.4
$$\{x \mid -2 \le x \le 2; x \in \mathbb{Z}\}$$

5. Express the following in interval notation and algebraically:

6. Express the following algebraically:

NB: In Q5.2: x is > -7 **AND** x is ≤ 4 : ... 1 piece on the no. line whereas, in Q6: x is \leq -2 **OR** x is \Rightarrow 3: ... 2 pieces on the no. line

- 7. If x is an integer and lies in the interval [-4; 3), write down:
 - 7.1 the minimum value of x
- 7.2 the maximum value of x
- 8. In which intervals do ALL IMPROPER FRACTIONS, negative and positive, lie?
- 9. If $\frac{x-1}{y+3} = 0$, what can you say:
 - (a) about x if y = 0?
- (b) about y if x = 1? (c) if x = 1 and y = -3?
- 10. If (x 1)(y + 3) = 0 what can you say:
 - (a) about x if y = -3? (b) about x if y = 2?
- 11. If M = $\sqrt{p-3}$, for which values of p is M a real number?

- 12. If M = $\sqrt{\frac{2}{2x+5}}$: (a) Show that M is a rational number if x = 1.5
 - (b) Determine the values of x for which M is a real number.
- 13. If P = $\frac{(x-2)(2x-1)}{3-x}$, for which value(s) of x will P be:
 - (a) equal to zero
- (b) undefined

- 14. Given P = $\frac{\sqrt{3-x}}{x^2-x}$: Determine the values of x for which

 - (a) P = 0 (b) P is undefined
- (c) P is real
- (d) P is positive

- 15. Given $a^x = 1$, state the values of a if
 - (a) x = 0

- (b) $x \neq 0$
- 16. Given: $x = 4 + \sqrt{3k}$

Write **only one** of the three words 'rational, irrational, non-real' alongside (a), (b) and (c), that describes x best for the given value of k:

k	<i>x</i> is
-6	(a)
1	(b)
12	(c)

& FUNDAMENTAL CONCEPT

NUMBERS

MODULE

Algebraic Expressions, Fractions and Equations

Algebraic Expressions

► Products: The distributive property

$$a(b+c) = ab+ac$$
 $(a+b)(c+d)$ $(a+b)(c+d+e)$

$$= (a+b)c+(a+b)d = ac+ad+ae+bc+bd+be$$

$$= ac+bc+ad+bd$$
monomial × binomial binomial × trinomial

- a linear expression × a linear expression = a quadratic expression (x - 1)(x + 5)
- a linear expression × a quadratic expression = a cubic expression: $(x^2 - x + 2)$ = $x^3 + 2x^2 - x + 6$ (x + 3)

How?

$$(x+3)(x^2-x+2) = x^3 - x^2 + 2x + 3x^2 - 3x + 6$$

= $x^3 + 2x^2 - x + 6$

Perfect squares: $(a + b)^2 = a^2 + 2ab + b^2$; $(a - b)^2 = a^2 - 2ab + b^2$ whereas: $(a + b)(a - b) = a^2 - b^2$... diff. between squares

Trinomials

Trinomials are extremely important. See how quickly and accurately you can factorise the following trinomials.

1. $x^2 - 5x - 6$ 2. $x^2 + 5x - 6$ 3. $x^2 - 5x + 6$ 4. $x^2 + 5x + 6$

9.
$$8x^2 + 10x + 3$$
 10. $8x^2 - 10x + 3$ 11. $8x^2 + 10x - 3$ 12. $8x^2 - 10x - 3$ = ()() = ()()

Answers

1.
$$(x-6)(x+1)$$
 2. $(x+6)(x-1)$ 3. $(x-2)(x-3)$ 4. $(x+2)(x+3)$ 5. $(x+12)(x-2)$ 6. $(x-12)(x+2)$ 7. $(x+6)(x+4)$ 8. $(x-6)(x-4)$ 9. $(4x+3)(2x+1)$ 10. $(4x-3)(2x-1)$ 11. $(4x-1)(2x+3)$ 12. $(4x+1)(2x-3)$

▶ Factorisation

Note: Multiplying and factorising are reverse processes

The Five Ways to Factorise

- **▶ Common Factor** . . . always look out for this! no matter how many terms e.g. $2x^3 + 10x = 2x(x^2 + 5)$
- ► The Difference between Two Squares ... appropriate when there are 2 terms e.g. $4x^2 - 16 = 4(x^2 - 4) = 4(x + 2)(x - 2)$
- ► **Trinomial** ... appropriate when there are 3 terms e.g. $x^2 - 7x + 12 = (x - 3)(x - 4)$
- ▶ Grouping ... appropriate when there are 4 (or 5) terms

e.g.
$$3x^2 - 12 - 4xy + 8y$$

= $3(x^2 - 4) - 4y(x - 2)$
= $3(x + 2)(x - 2) - 4y(x - 2)$
= $(x - 2)[3(x + 2) - 4y]$
= $(x - 2)(3x + 6 - 4y)$

- ▶ Sum & Difference of Cubes ... appropriate when there are 2 terms
- e.g. $8x^3 + 27y^3 = (2x + 3y)(4x^2 6xy + 9y^2)$ $x^6 - 1 = (x^2 - 1)(x^4 + x^2 + 1)$

& FUNDAMENTAL CONCEPTS

NUMBERS

MODULE

The Most Fundamental Algebra

- PASTE THIS ON YOUR WALL -

$$(x + y)^{2} = (x + y)(x + y)$$

$$= x^{2} + xy + xy + y^{2}$$

$$= x^{2} + 2xy + y^{2}$$

$$= x^{2} - 2xy + y^{2}$$
The same signs in the brackets cause a 'doubling up' of the middle term.

The same signs in

whereas
$$(x + y)(x - y) = x^2 - xy + xy - y^2$$

= $x^2 - y^2$

Know these products!!!

The different signs in the brackets make the middle terms fall away.

NOW, THE NEXT 'LEVEL':

So, what product will give us an answer of just $x^3 + y^3$ or $x^3 - y^3$. with NO MIDDLE TERMS?

We know that a linear × a quadratic = a cubic!

So:
$$(x + y)(???) = x^3 + y^3$$
 & $(x - y)(???) = x^3 - y^3$
 $\therefore (x + y)(x^2?xy + y^2) = x^3 + y^3$ $\therefore (x - y)(x^2?xy + y^2) = x^3 - y^3$
 $\therefore (x + y)(x^2 - xy + y^2) = x^3 + y^3$ $\therefore (x - y)(x^2 + xy + y^2) = x^3 - y^3$

& backwards ...
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$
 sum of cubes $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ DIFF. OF CUBES

Algebraic Fractions

Signs of a fraction

A fraction has 3 signs: ± ±

The following fractions are EQUAL to each other:

$$-\frac{8}{-4}$$

$$-\frac{8}{-4}$$
 + $\frac{-8}{-4}$ - $\frac{-8}{4}$ + $\frac{+8}{+4}$... they all equal + 2

You can change any 2 signs to keep the value the same.

e.g.
$$-\frac{2-a}{5} = \frac{a-2}{5}$$

e.g.
$$-\frac{2-a}{5} = \frac{a-2}{5}$$
; $+\frac{x-y}{y-x} = -\frac{x-y}{x-y} = -1$

'=' means 'has the same value as'

Simplifying fractions

$$\frac{a+b}{a}$$
 cannot be simplified

$$\frac{a+b}{a}$$
 cannot be simplified $\frac{a^2+ab}{a}=\frac{a(a+b)}{a}=a+b$

never cancel terms

only cancel factors

Note: A fraction $\frac{a}{b}$ is only defined if $b \neq 0$.

Multiplying and dividing fractions

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$
; $a \times \frac{b}{c} = \frac{ab}{c}$

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$
; $\frac{2\frac{1}{4}}{1\frac{1}{3}} \times \frac{12}{12} = \frac{27}{16}$ $\therefore \frac{1}{4} = \frac{3}{12}$; $\frac{1}{3} = \frac{4}{12}$

Equivalent fractions:

$$\frac{a}{b} = \frac{2a}{2b} = \frac{3a}{3b}$$
, etc.

$$\frac{1}{4} = \frac{1}{12} ; \frac{1}{3} = \frac{1}{12}$$
(see examples below)

Adding and subtracting fractions

In order to add or subtract fractions, they need to be written over the l.c.m.

e.g.
$$\frac{1}{4} + \frac{1}{3}$$

$$= \frac{3+4}{12}$$

$$= \frac{7}{12} \checkmark$$

$$= \frac{85-8x}{20x} \checkmark$$

$$\frac{\frac{3a}{4} - \frac{2a-3}{3}}{12}$$

$$= \frac{9a-4(2a-3)}{12}$$

$$= \frac{9a-8a+12}{12} \checkmark$$

$$= \frac{a+12}{12} \checkmark$$

Algebraic Expressions and Equations

NUMBERS & FUNDAMENTAL CONCEPTS

MODULE

It is extremely important to differentiate between expressions and equations. Observe the following examples.

Expressions

• Simplify: $\frac{x}{2} + 3$

$$\frac{x^2}{2} + 3$$

$$= \frac{x+6}{2} \checkmark$$

Do not multiply.

Equations

• Solve for x: $\frac{x}{2}$ + 3 = 0

$$\frac{x}{2} + 3 = 0$$

$$\times 2) \quad \therefore \quad x + 6 = 0$$

x = -6 ... a solution

Do

multiply.

• Multiply:
$$(x - 2)(x + 5)$$

$$(x-2)(x+5)$$
 ... factors
= $x^2 - 2x + 5x - 10$
= $x^2 + 3x - 10$... terms

The value of the expression must not change.

• Factorise: x^2 - 9

$$x^2 - 9$$
 ... terms
= $(x + 3)(x - 3)$... factors

Note the equal signs (≡) down the

• Solve for x: (x-2)(x+5) = 0

Don't multiply. You need the factors for a zero product:

$$(x-2)(x+5) = 0$$

 $\therefore x-2 = 0 \text{ or } x+5 = 0 \text{ logic}$

• Solve for x: $x^2 - 9 = 0$

Method 1:
$$(x + 3)(x - 3) = 0$$

 $\therefore x + 3 = 0$ or $x - 3 = 0$

$$\therefore x = -3 \qquad \therefore x = 3$$

Method 2:

$$x^2 - 9 = 0 \implies x^2 = 9$$

$$x = \pm 3$$

• Factorise: $-2x^2 + 14x - 24$

$$-2x^{2} + 14x - 24 \dots a trinomial$$

$$= -2(x^{2} - 7x + 12)$$

$$= -2(x - 4)(x - 3)$$

Keep the value: so, keep the -2 • Solve for x: $-2x^2 + 14x - 24 = 0$

$$-2x^{2} + 14x - 24 = 0$$

$$\div (-2) \quad \therefore x^{2} - 7x + 12 = 0$$

$$\therefore (x - 4)(x - 3) = 0$$

$$\therefore x = 4 \quad \text{or} \quad x = 3$$

Logic allows you to **DIVIDE** both sides of the equation by -2.

• Factorise: $3x^2 - 6x$

$$3x^2 - 6x$$
 ... terms
= $3x(x-2)$... factors

The expression was transformed by taking out a common factor, and

keeping it!

• Solve for x: $3x^2 - 6x = 0$

$$3x^2 - 6x = 0$$

Divide only **by 3**, not 3x

÷ **3)**
$$\therefore x^2 - 2x = 0$$

$$\therefore x(x-2) = 0$$

$$x = 0$$
 or $x - 2 = 0$

$$\therefore x = 2$$

If we had divided by x, we would've lost this solution!

• Evaluate: $x^2 - x - 6$

(a) If
$$x = -3$$
 & (b) If $x = -2$

(a) If
$$x = -3$$
: $x^2 - x - 6$
= $(-3)^2 - (-3) - 6$
= $9 + 3 - 6$

(b) If
$$x = -2$$
: $x^2 - x - 6$
= $(-2)^2 - (-2) - 6$
= $4 + 2 - 6$

Here we are finding the value of the expression for various values of x

Is there another value of x which would make the expression $x^2 - x - 6$ have a value of 0?

• Given the equation: $x^2 - x - 6 = 0$

(a) If
$$x = -3$$
: $x^2 - x - 6 \neq 0$ (see lhs)

(b) If
$$x = -2$$
: $x^2 - x - 6$ does = 0 (see lhs)

Here we are testing the truth of the statement that says:

$$x^2 + x - 6 \text{ must} = 0$$

A root is a value of x that makes this statement true.

• Solve the equation $x^2 - x - 6 = 0$:

$$\therefore (x-3)(x+2) = 0$$

$$\therefore x = 3$$
 or $x = -2$

1.6

So, which is the 'other root'? Why?

Check the root x = 3, i.e. check that x = 3 makes the equation true:

When
$$x = 3$$
: $x^2 - x - 6$ = $3^2 - 3 - 6$

the equation

 \therefore The statement: $x^2 - x - 6 = 0$ is true when x = 3

:. 3 is the 'other root'

Copyright © The Answer

N

FUNDAMENTAL CONCEPTS

∞ಶ

NUMBERS

--

MODULE

Algebraic Equations

Linear equations

Solve the following equations for *x* by inspection:

1.
$$x + 3 = 7$$

2.
$$3 - x = 5$$

3.
$$3x = 1$$

4.
$$5x = 0$$

5.
$$x + 2 = x$$

6.
$$2(x + 5) = 2x + 10$$

Answers

1.
$$x = 4$$

2.
$$x = -2$$

3.
$$x = \frac{1}{3}$$

4.
$$x = 0$$

Linear inequalities

Solve for x and show the solutions on a number line:

1.
$$x + 3 \le 7$$

2.
$$2x + 5 > -1$$

3.
$$-5x \ge x - 18$$

4.
$$-2 \le 2x + 4 < 3$$

4.
$$-2 \le 2x + 4 < 3$$
 5. $2x < 6$ or $-x < -5$

Answers

2.
$$2x > -6$$

$$-6x \ge -18$$

$$\div$$
 (-6) $\therefore x \leq 3$

$$\therefore -6 \le 2x < -1$$

Divide by 2:
$$\therefore -3 \le x < -\frac{1}{2}$$

Number line:

Quadratic equations

Solve for x and describe the nature of the roots (type of number). Say whether there are 2 roots, 1 root or no roots.

1.
$$x^2 + x - 6 = 0$$

2.
$$x(x + 4) = 0$$

3.
$$x^2 = 7$$

4.
$$(x-3)^2=0$$

5.
$$x^2 = -25$$

Answers

1.
$$x^2 + x - 6 = 0$$

$$(x + 3)(x - 2) = 0$$

$$x + 3 = 0$$
 or $x - 2 = 0$
 $x = -3$ or $x = 2$

Remember the **principle** of solving quadratic equations:

If $a \times b = 0$, then . . . either a = 0 or b = 0 (or both)

This is referred to as a zero product.

The nature of the roots: Real, rational, integral. There are 2 roots.

2.
$$x(x + 4) = 0$$

$$x = 0$$
 or $x + 4 = 0$

$$\therefore x = -4$$

The nature of the roots: Real, rational and integral. There are 2 roots.

3.
$$x^2 = 7$$

$$x = \pm \sqrt{7}$$

$$+\sqrt{7}$$
 and $-\sqrt{7}$ are additive inverses:

$$(+\sqrt{7}) + (-\sqrt{7}) = 0$$

The nature of the roots: Real and irrational. There are 2 roots.

$$4. \quad (x-3)^2 = 0$$

4.
$$(x-3)^2 = 0$$
 Note: perfect square = 0

$$\therefore x - 3 = 0 \qquad \therefore x = 3$$

The nature of the roots: Real, rational and integral. There is only 1 root.

5.
$$x^2 = -25$$

$$\therefore x = \pm \sqrt{-25}$$

The nature of the roots: imaginary. There are no roots.

EXERCISE 1.2: Equations

Answers on page A1.2

1. Solve for x in each of the following equations and then describe the 'nature of the roots'. Choose whichever of the following words are applicable when describing the roots: real, imaginary, rational, irrational and integral.

1.1
$$2x + 18 = 10$$

1.2
$$\frac{2}{3}x = 1$$

2. Solve for x in each of the following quadratic equations and then describe the nature of the roots (real, non-real, rational, irrational). Mention the number of roots.

2.1
$$x^2 - 9 = 0$$

2.2
$$(3x-2)(x+1)=0$$
 2.3 $x^2+8x+16=0$

$$2.3 x^2 + 8x + 16 = 0$$

$$2.4 x^2 - 7 = 0$$

2.4
$$x^2 - 7 = 0$$
 2.5 $x(2x + 1) = 0$

$$2.6 \ x^2 + 9 = 0$$

N

Function Notation and Algebraic Expressions

- 1
 - We use $\mathbf{f}(\mathbf{x})$ instead of \mathbf{y} when referring to a straight line graph, e.g. instead of $\mathbf{y} = 2x + 1$, we write $\mathbf{f}(\mathbf{x}) = 2x + 1$.
 - Consider the graph $y = x^2 x 6$ and use the symbol f(x) instead of y: $f(x) = x^2 - x - 6$
 - ▶ Determine f(-1), i.e. the value of f(x) when x = -1: $f(-1) = (-1)^2 - (-1) - 6 = 1 + 1 - 6 = -4$
 - ► Without substituting, write down the value of f(-2) and f(3): f(-2) and f(3) both equal 0.

Reason: We proved that -2 & 3 were the roots of the equation x^2 - x - 6 = 0. (See page 1.6)

These notes include excerpts from various **Answer Series** publications.

We hope you find them useful as you build your strong foundation.

We wish you all the best.

The Answer Series Team

NOTES

EXPONENTS AND

MODULE

Module 2: EXPONENTS AND SURDS

EXPONENTS

The definition of a power, a^m

m is the 'instruction' for how many times a must \times by itself.

 $a^m = a \times a \times a \dots$ for m factors of a, $m \in \mathbb{N}$; **a** is the base and **m** is the exponent

$$\dots 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^6 = 64$$

The Laws of Exponents

The multiplication of powers

1.
$$a^m \times a^n = a^{m+n}$$

e.g.
$$x^3 \times x^2 = x \times x \times x \times x \times x \times x = x^5$$
;
 $2^x \times 2^y = 2^{x+y}$: $s^p \times s^q = s^{p+q}$

When we multiply powers with the same bases, we add the exponents.

The division of powers

2.
$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

e.g.
$$\frac{x^5}{x^2} = \frac{x \times x \times x \times x \times x}{x \times x} = x^3;$$
$$\frac{2^x}{2^y} = 2^{x-y}; \frac{s^p}{s^q} = s^{p-q}$$

When we divide powers with the same bases, we subtract the exponents.

The power of a power

3.
$$(a^{m})^{n} = a^{mn}$$

e.g.
$$(x^2)^3 = x \times x \times x \times x \times x \times x = x^6$$
;
 $(5^a)^b = 5^{ab}$; $(s^p)^q = s^{pq}$

In equations:
$$x^3 = 8$$

 $\therefore x = \sqrt[3]{8} = 2 \blacktriangleleft$

When we find the power of a power, we multiply the exponents.

The root of a power

4.
$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

e.g.
$$\sqrt{x^6} = x^{\frac{6}{2}} = x^3$$
;
 $\therefore \sqrt{x^6} = \sqrt{x \times x \times x \times x \times x \times x} = x^3$
 $\sqrt[3]{2^{12}} = 2^{\frac{12}{3}} = 2^4$; $\sqrt[3]{5^b} = 5^{\frac{b}{a}}$

In equations:
$$\sqrt[3]{x} = 2$$

 $\therefore x = 2^3 = 8$

When we find the root of a power, we divide the exponents.

The power of a product

5.
$$(ab)^n = a^n b^n$$

e.g.
$$(x^2y^3)^2 = (x^2)^2(y^3)^2 = x^4y^6$$
;
 $(2x^2)^5 = (2)^5(x^2)^5 = 32x^{10}$

The exponent of the product is the exponent of each factor.

The power of a quotient

6.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, b \neq 0$$

e.g.
$$\left(\frac{p}{q}\right)^6 = \frac{p^6}{q^6}$$
; $\left(\frac{-2}{x}\right)^5 = \frac{(-2)^5}{(x)^5} = \frac{-32}{x^5}$

$$\left(\frac{3x^3}{y^2}\right)^3 = \frac{(3)^3(x^3)^3}{(y^2)^3} = \frac{27x^9}{y^6}$$

The exponent of the quotient is the exponent of the factors in the numerator and the numerator and the denominator.

Prime factors

$$6 = 2 \times 3$$
; $12 = 2^2 \times 3$; $18 = 2 \times 3^2$; $54 = 2 \times 3^3$; $50 = 2 \times 5^2$

Further examples, applying laws 1 to 6

1.
$$\star x^5 \cdot x^7 = x^{12}$$

$$y^{3}.y = y^{4}$$

1.
$$\star x^5 \cdot x^7 = x^{12}$$
 $\star y^3 \cdot y = y^4$ $\star x^a \cdot x^b = x^{a+b} \star a^{2b} \cdot a^{4b} = a^{6b}$

•
$$y^{2n} \cdot y^5 = y^{2n+5}$$

$$z^{2x} \cdot z^{3x} = z^{3x}$$

$$x^2x^3x^4 = x^9$$

•
$$y^{2n}$$
. $y^5 = y^{2n+5}$ • z^{2x} . $z^{3x} = z^{5x}$ • $x^2x^3x^4 = x^9$ • $(x+y)^3(x+y)^4 = (x+y)^7$

2.
$$\bullet 9^7 \div 9^5 = 9^2$$
 $\bullet y^8 \div y^3 = y^5$ $\bullet a^{3n} \div a^n = a^{2n}$ $\bullet x^{n+1} \div x^n = x$

$$\bullet v^8 \div v^3 = v$$

$$\bullet$$
 $a^{3n} \div a^n =$

$$x^{n+1} \div x^n = x$$

•
$$y^{3n+4} \div y^{n+1} = y^{2n+3}$$

•
$$(x + y)^5 \div (x + y)^2 = (x + y)^3$$

3.
$$(y^3)^5 = y^{15}$$
 $(2^4)^3 = 2^{12}$ $(3^x)^x = 3^{x^2}$

$$\bullet (2^4)^3 = 2^{12}$$

$$\bullet (3^x)^x = 3^{x^2}$$

•
$$(3^x)^2 = 3^{2x}$$

4.
$$\sqrt[4]{x^8} = x^{\frac{8}{2}} = x^4$$
 $\sqrt[4]{y^{15}} = y^5$ $\sqrt[4]{r^4} = r$

$$\bullet \sqrt[3]{y^{15}} =$$

$$\bullet \sqrt[3]{a^3b^6} = ab^2$$

5.
$$\bullet$$
 (ab)⁴ = a⁴b⁴ \bullet (x²y)⁷ = x¹⁴y⁷

•
$$(x^2y)^7 = x^{14}y^{11}$$

$$\bullet$$
 $(-5a)^3 = -125a$

$$(-2x^2y^3)^3 = -8x^6y^9$$

$$\bullet \left(\frac{1}{2}x^2\right)^4 = \frac{1}{16}x^8$$

•
$$(-3y^3)^2 = 9y^6$$

$$6. \quad \bullet \left(\frac{a}{b}\right)^3 = \frac{a^3}{b^3}$$

$$\bullet \left(\frac{2x^2}{3y^3}\right)^3 = \frac{8x^6}{27y^9}$$

$$\oint \left(-\frac{3c}{d^3}\right)^4 = \frac{81c^4}{d^{12}}$$

The laws reversed

2

1.
$$a^{m+n} = a^m \cdot a^n$$

e.g.
$$2^{x+3} = 2^x . 2^3$$
; $2^{x-1} = 2^x . 2^{-1}$

2.
$$a^{m-n} = \frac{a^m}{a^n}$$

e.g.
$$3^{2-a} = \frac{3^2}{3^a}$$

3.
$$a^{mn} = (a^m)^n \text{ or } (a^n)^m$$

e.g.
$$3^{2x} = (3^2)^x$$
 or $(3^x)^2$; $x^{\frac{1}{2}} = (x^{\frac{1}{4}})^2$; $x^{\frac{2}{3}} = (x^{\frac{1}{3}})^2$

4.
$$\frac{\mathbf{a}^{\mathbf{m}}}{\mathbf{a}^{\mathbf{n}}} = \sqrt[n]{\mathbf{a}^{\mathbf{m}}} \text{ or } (\sqrt[n]{\mathbf{a}})^{\mathbf{m}}$$

e.g.
$$8^{\frac{2}{3}} = \sqrt[3]{8^2}$$
 or $8^{\frac{2}{3}} = (\sqrt[3]{8})^2$
= $\sqrt[3]{64}$ = 2^2
= 4 = 4

5.
$$a^nb^n = (ab)^n$$

e.g.
$$5^x \cdot 3^x = (5.3)^x = 15^x$$

6.
$$\frac{\mathbf{a}^{\mathbf{n}}}{\mathbf{b}^{\mathbf{n}}} = \left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{\mathbf{n}}$$

e.g.
$$\frac{6^n}{2^n} = \left(\frac{6}{2}\right)^n = 3^n$$

Expressions to be simplified

Worked Example 1

1.
$$64^{\frac{2}{3}}$$
 2. $3^{m+2} - 8.3^m - 3^m$

3.
$$(\sqrt[3]{a}.\sqrt{b})^6$$

4.
$$\sqrt{9^3}$$

5.
$$\frac{2x^3}{(2x)^3}$$

EXPONENTS AND SURDS

MODULE 2:

5.
$$\frac{2x^3}{(2x)^3}$$
 6. $\left(\frac{2ab^3}{c^2}\right)^4$

7.
$$\sqrt{a^{3n}} \cdot \left(a^{\frac{n}{4}}\right)^2$$

Answers

1.
$$\left(64^{\frac{1}{3}}\right)^2 = 4^2 = 16$$
 < 2. $3^m \cdot 3^2 - 8 \cdot 3^m - 3^m$ 3. $\left(a^{\frac{1}{3}} \cdot b^{\frac{1}{2}}\right)^6$

or:
$$(2^6)^{\frac{2}{3}} = 2^4 = 16$$
 = $3^m(9 - 8 - 1)$ = $0 <$

2.
$$3^{m} \cdot 3^{2} - 8 \cdot 3^{m} - 3^{m}$$

= $3^{m} (9 - 8 - 1)$

3.
$$\left(a^{\frac{1}{3}}.b^{\frac{1}{2}}\right)$$

$$= \left(a^{\frac{1}{3}}\right)^{6}.\left(b^{\frac{1}{2}}\right)^{6}$$

$$= a^{2}.b^{3} \blacktriangleleft$$

4.
$$\sqrt{9^3} = (\sqrt{9})^3 = 3^3 = 27$$

5. $\frac{2x^3}{8x^3}$
6. $\frac{(2ab^3)^4}{(c^2)^4}$
7. $a^{\frac{3n}{2}} \cdot a^{\frac{n}{2}}$
12. (a) $(\sqrt{8})^6 = [(2^3)^{\frac{1}{2}}]$
13. (b) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
14. (c) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
15. (a) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
16. $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
17. $a^{\frac{3n+n}{2}} \cdot a^{\frac{n}{2}}$
18. (a) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
19. (b) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
19. (a) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
19. (b) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
19. (a) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
19. (b) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
19. (c) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
19. (a) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
19. (b) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
19. (c) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
19. (d) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$
19. (e) $\sqrt{8^6} = [(2^3)^{\frac{1}{2}}]$

5.
$$\frac{2x^3}{8x^3}$$

6.
$$\frac{(2ab^3)^4}{(c^2)^4}$$

7.
$$a^{\frac{3n}{2}} \cdot a^{\frac{n}{2}}$$

$$= a^{\frac{3n+n}{2}}$$

$$= a^{2n} \checkmark$$

Factor type expressions

$$8. \ \frac{8^{n+3} \cdot 32^{-n-1} \cdot 6^{2n}}{9^n}$$

9.
$$\frac{25^{n}.36^{n+1}}{81.30^{2n}}$$

Answers

$$= \frac{2^{3n+9} \cdot 2^{-5n-5} \cdot 2^{2n} \cdot 3^{2n}}{3^{2n}}$$

$$= 2^{3n+9-5n-5+2n}$$

$$= 2^4$$

9.
$$\frac{(5^{2})^{n} \cdot (2^{2} \cdot 3^{2})^{n+1}}{3^{4} \cdot (2 \cdot 3 \cdot 5)^{2n}}$$

$$= \frac{5^{2n} \cdot 2^{2n+2} \cdot 3^{2n+2}}{3^{4} \cdot 2^{2n} \cdot 3^{2n} \cdot 5^{2n}}$$

$$= 2^{2n+2-2n} \cdot 3^{2n+2-4-2n}$$

$$= 2^{2} \cdot 3^{-2}$$
Remember:

> Term type expressions

10.
$$\frac{2^{x+3}-2.2^x}{2^x}$$

11.
$$\frac{6^{2x-1}-36^x}{6^{2x}}$$

Answers

= 16 ≺

10.
$$\frac{2^{x} \cdot 2^{3} - 2 \cdot 2^{x}}{2^{x}}$$
$$= \frac{2^{x} \cdot (8 - 2)}{2^{x}} = 6$$

- 12. Express the following as a power of 2: (a) $(\sqrt{8})^6$
- 13. Determine the value of $(x^{\frac{1}{2}} y^{\frac{1}{2}}) (x y)^{\frac{1}{2}}$ if x = 100 and y = 64.
- 14. Write down the values of a, b and c: $64^a = 8$; $64^b = 4$; $64^c = 2$

Answers

12. (a)
$$(\sqrt{8})^6 = [(2^3)^{\frac{1}{2}}]^6$$

= $\mathbf{2^9} \blacktriangleleft$

13.
$$\left(100^{\frac{1}{2}} - 64^{\frac{1}{2}}\right) - (100 - 64)^{\frac{1}{2}}$$

14.
$$a = \frac{1}{2}$$

b)
$$\sqrt{8^6} = \left[\left(2^3 \right)^6 \right]^{\frac{1}{2}}$$

$$c = \frac{1}{4} \checkmark$$

(b)
$$\sqrt{8^6} = [(2^3)^6]^{\frac{1}{2}}$$

Equations to be solved

In some equations, x is in the base: in others, x is in the exponent.

Worked Example 2

> x in the base

1. $x^{\frac{1}{3}} = 4$

2. $3x^{\frac{1}{5}} = 6$

3. $x^{\frac{3}{2}} = 8$

4. $2x^{\frac{3}{4}} = 54$

5. $2x^2 = 18$

 $6 \quad x^{\frac{2}{3}} = 25$

7. $16x^{\frac{2}{3}} = 1$

8. $16x^4 + 1 = 0$

9. $x - \sqrt{x} - 6 = 0$

Answers

NB: Powers and roots are opposite operations. In equations: If you have the power, take the root. If you have the root, raise to the power.

- 1. $\sqrt[3]{x} = 4$
 - $x = 4^3$
- or: $(x^{\frac{1}{3}})^3 = 4^3$
- 2. $x^{\frac{1}{5}} = 2$
- $\therefore \sqrt[5]{x} = 2$
- 3. $\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} = 8^{\frac{1}{3}}$
 - $x^{\frac{1}{2}} = 2 \dots \sqrt[3]{7}$
- $\therefore \sqrt{x} = 2$

6. $x^{\frac{2}{3}} = 25$

 $\therefore x = 2^2 \dots ()^2$

 $\therefore x^{\frac{1}{3}} = \pm 5 \dots \sqrt{}$

 $\therefore x = \pm 125 < \dots ()^3$

- 4. $x^{\frac{3}{4}} = 27$

 - $\therefore x = 81 < \dots ()^4$
- 7. $x^{\frac{2}{3}} = \frac{1}{16}$
- $\therefore x^{\frac{1}{3}} = \pm \frac{1}{4} \quad \dots \checkmark \qquad \qquad \therefore x^4 = -\frac{1}{16} \checkmark$
- $\therefore x = \left(\pm \frac{1}{4}\right)^3 \dots \text{ ()}^3 \qquad An \text{ even power}$
- $\therefore x = \pm \frac{1}{64} \blacktriangleleft$

- 5. $x^2 = 9$
- $\therefore x^{\frac{1}{4}} = 3 \dots \sqrt[3]{}$
 - Because the given power is **even**. there are 2 possible answers.
 - 8. $16x^4 = -1$

 - No solution.

cannot be negative.

- 9. **NB**: $\sqrt{x} \cdot \sqrt{x} = x$
 - $\therefore (\sqrt{x})^2 \sqrt{x} 6 = 0$
 - $\therefore (\sqrt{x} 3)(\sqrt{x} + 2) = 0$
- $\therefore \sqrt{x} = 3 \qquad \boxed{\sqrt{x} \neq -2}$ $\therefore x = 9 < | \cdot \cdot \cdot \sqrt{x} \ge 0$

> x in the exponent

- The logic we use: If $a^m = a^n$, then m = n
- i.e. If powers are equal and their bases are the same. then their exponents are equal.
- Apply the laws when necessary.
- 10. $9^{2x-3} = 27$
- 11. $25^x = \sqrt{125}$

12. $7^{\frac{1}{x}} = 49$

- 13. $\frac{8^x}{2^{x-1}} = 32$
- 14. $3.2^x = 24$

15. $p^x . p^{x+1} = p^9$

- And, when there is more than 1 term on one side, it is necessary to factorise it is necessary to factorise.
- 16. $5^{x+1} + 5^x = 30$ 17. $3^{x+1} 3^x = 54$

11. $(5^2)^x = (5^3)^{\frac{1}{2}}$

 $5^{2x} = 5^{\frac{3}{2}}$

 \therefore 2x = $\frac{3}{2}$

 $x = \frac{3}{4}$

14. Divide by 3:

 $\cdot 2^{x} = 8$

NB: $3.2^x \neq (3.2)^x$

x = 3

- 18. (a) Solve the equation: $a^2 a 12 = 0$, and hence:
 - (b) solve the equation: $2^{2x} 2^x 12 = 0$
- 19. (a) Solve the equation: $a + \frac{9}{a} = 10$, and **hence**:
 - (b) solve the equation: $3^{x} + 3^{2-x} = 10$

EXPONENTS AND SURDS

8

MODULE

Answers

- 10. $(3^2)^{2x-3} = 3^3$
 - $3^{4x-6} = 3^3$
 - $\therefore 4x 6 = 3$ \therefore 4x = 9
- - $2^{3x-(x-1)} = 2^5$
 - $\therefore 2x + 1 = 5$ \therefore 2x = 4
 - x = 2
- 16. 5^x .5 + 5^x = 30 $5^{x}(5+1) = 30$
 - $5^x = 5$ x = 1
- $3^{x}(3-1) = 54$ $3^x = 27$ x = 3 <

17. 3^x .3 - 3^x = 54

 $\therefore 2x = 8$

x = 4 <

12 $7^{\frac{1}{x}} = 7^2$

 $x = \frac{1}{2}$

15. $p^{x+x+1} = p^9$

2

Answers

18. (a)
$$a^{-} - a - 12 = 0$$

 $\therefore (a - 4)(a + 3) = 0$

$$a^2 - a - 12 = 0$$

Compare (b)
$$(2^x)^2 - (2^x) - 12 = 0$$

$$(b) (2) - (2) - 12 - 0$$

$$(2^{x} - 4)(2^{x} + 3) = 0$$

$$\therefore 2^x =$$

$$\therefore 2^x = 4$$
$$\therefore x = 2 \checkmark$$

$$2^{x} \neq -3$$
because
$$2^{x} > 0 \text{ for all } x$$

19. (a)
$$a + \frac{9}{3} = 10$$

 \therefore a = 4 or -3 \triangleleft

×a)
$$\therefore a^2 + 9 = 10a$$

 $\therefore a^2 - 10a + 9 = 0$
 $\therefore (a - 1)(a - 9) = 0$

 \therefore a = 1 or 9 \triangleleft

Compare |

$$3^x + \frac{3^2}{3^x} = 10$$

$$\times$$
 3 x)

$$\times 3^{x}$$
) $\therefore (3^{x})^{2} + 9 = 10.(3^{x})$
 $\therefore (3^{x})^{2} - 10.(3^{x}) + 9 = 0$

$$\therefore (3^{x} - 1)(3^{x} - 9) = 0$$

$$3^x = 1$$
 or $3^x = 9$

or
$$3^x =$$

$$\therefore x = 0 < \qquad \therefore x = 2 <$$

$$x = 2$$

Rational Exponents

The laws of exponents have been explored for natural numbers. These laws can be applied for all rational numbers.

Consider the meaning of exponents which are

- ▶ zero
- negative
- fractional

The meaning of a zero exponent

SURDS

EXPONENTS AND

MODULE 2:

What does a mean?

We know:
$$\frac{a^3}{a^3}$$

We know:
$$\frac{a^3}{a^3} = 1$$

& Law 2: $\frac{a^3}{a^3} = a^{3-3} = a^0$

Also,
$$\mathbf{a^0} \times \mathbf{a^3} = \mathbf{a^{0+3}} = \mathbf{a^3} \Rightarrow \mathbf{a^0} = 1 \dots identity element$$

e.g.
$$5^0 = 1$$
; $5.2^0 = 5 \times 1 = 5$; $(5 \times 2)^0 = 10^0 = 1$;

$$2^{x-3} = 1 \implies x = 3 \dots only 2^{0} = 1$$
;

$$2^x = 5^x \Rightarrow x = 0$$
 ... no other way that a power of $2 = a$ power of 5

▶ The meaning of a negative exponent

What does a⁻ⁿ mean?

& Law 2:
$$\frac{2^4}{2^7} = 2^{4-7} = 2^{-7}$$

We know: $\frac{2^4}{2^7} = \frac{1}{2^3}$ & Law 2: $\frac{2^4}{2^7} = 2^{4-7} = 2^{-3}$

Also,
$$2^{-3} \times 2^3 = 2^{-3+3} = 2^0 = 1 \implies 2^{-3} = \frac{1}{2^3}$$
 ... multiplicative inverse

e.g.
$$a^{-5} = \frac{1}{a^5}$$
; $\frac{1}{a^{-5}} = a^5$; $\frac{a^{-1}}{b^{-2}} = \frac{b^2}{a}$
 $3^{-1} = \frac{1}{3}$; $(\frac{1}{5})^{-1} = 5$; $(\frac{2}{3})^{-3} = (\frac{3}{2})^3 = \frac{27}{8}$

▶ The meaning of a fractional exponent

What does $a^{\frac{1}{q}}$ mean?

We know:
$$(x^{\frac{1}{2}})^2 = x^{\frac{1}{2} \times 2} = x$$
 $\therefore x^{\frac{1}{2}} = \sqrt{x}$
8. Law 3: $(x^{\frac{1}{3}})^3 = x^{\frac{1}{3} \times 3} = x$ $\therefore x^{\frac{1}{3}} = \sqrt[3]{x}$

e.g.
$$9^{\frac{1}{2}} = (3^2)^{\frac{1}{2}} = 3$$
; $8^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} = 2^{3 \times \frac{1}{3}} = 2^1$

$$\therefore 9^{\frac{1}{2}} \text{ means } \sqrt{9} \qquad \qquad \therefore 8^{\frac{1}{3}} \text{ means } \sqrt[3]{8}$$

$$\therefore 8^{\frac{1}{3}}$$
 means $\sqrt[3]{8}$

And $\mathbf{a}^{\mathbf{q}}$? p is the power; q is the root; either can be found I^{st}

$$8^{\frac{2}{3}} = (8^2)^{\frac{1}{3}} = 64^{\frac{1}{3}} = 4$$
 ... the power 1^{st} , then the root

or,
$$8^{\frac{2}{3}} = \left(8^{\frac{1}{3}}\right)^2 = 2^2 = 4$$
 ... the root 1^{st} , then the power

$$8^{\frac{2}{3}} = \sqrt[3]{8^2}$$
 or $8^{\frac{2}{3}} = (\sqrt[3]{8})^2$

e.g. Write in surd form:

$$a^{\frac{2}{3}} = \sqrt[3]{a^2}$$
 ; $a^{\frac{1}{4}} = \sqrt[4]{a}$; $x^{\frac{b}{c}} = \sqrt[c]{x^t}$

Write with fractional exponents:

$$a^{\frac{2}{3}} = \sqrt[3]{a^2}$$
; $a^{\frac{1}{4}} = \sqrt[4]{a}$; $x^{\frac{b}{c}} = \sqrt[c]{x^b}$ $\sqrt{p^3} = p^{\frac{3}{2}}$; $\sqrt[5]{a} = a^{\frac{1}{5}}$; $\sqrt{x^2} = x^{\frac{2}{2}} = x$

Popular powers to know

 $2^6 = 64$

i opulai powers to know							
Powers of 2	Powers of 3	Powers of 4	Powers of 5				
$2^2 = 4$	$3^2 = 9$	$4^2 = 16$	$5^2 = 25$				
$2^3 = 8$	$3^3 = 27$	$4^3 = 64$	$5^3 = 125$				
$2^4 = 16$	$3^4 = 81$		× (m)/3				
$2^5 = 32$	Note: 64 = 2 ⁶	8 64 = 4 ³ &	64 = 8 ²				

Perfect Squares and Square Roots

$1^2 = 1 \times 1 = 1$	∴ √1 = 1	$8^2 = 8 \times 8 = 64$	∴ √64 = 8
$2^2 = 2 \times 2 = 4$	∴ √4 = 2	$9^2 = 9 \times 9 = 81$	∴ √81 = 9
$3^2 = 3 \times 3 = 9$	∴ √9 = 3	$10^2 = 10 \times 10 = 100$	∴ √100 = 10
$4^2 = 4 \times 4 = 16$	∴ √16 = 4	$11^2 = 11 \times 11 = 121$	∴ √121 = 11
$5^2 = 5 \times 5 = 25$	∴ √25 = 5	$12^2 = 12 \times 12 = 144$	∴ √144 = 12
$6^2 = 6 \times 6 = 36$	∴ √36 = 6	$13^2 = 13 \times 13 = 169$	∴ √169 = 13
$7^2 = 7 \times 7 = 49$	∴ √49 = 7	$14^2 = 14 \times 14 = 196$	∴ √196 = 14

EXERCISE 2.1: EXPONENTIAL EXPRESSIONS

Answers on page A2.1

Simplify the following expressions:

- 1. (a) 5⁻¹

- (g) 8^{-1} (h) $8^{\frac{1}{3}}$ (i) $8^{\frac{2}{3}}$ (j) $8^{-\frac{2}{3}}$ (k) 16^{-1} (l) $16^{\frac{1}{2}}$ (m) $16^{-\frac{1}{2}}$ (n) $16^{-\frac{3}{2}}$ (o) $\left(\frac{8}{27}\right)^{-\frac{2}{3}}$ (p) $(-2)^{-3}$ (q) $(3^{-1} + 2^{-1})^{-1}$ (e) $2^x = 0.125$ (f) $(0.2)^x = 25$ (g) $2^{-x} = 32$ (h) $4^x = \frac{1}{64}$ (i) $3.2^x = 24$ (j) $3.9^{x+1} = 27^{-x}$ (k) $125^{3x-2} = 25^{4x+10}$ (l) $2^{x(x-3)} = 0.25$

- (x) $(-64)^{\frac{2}{3}}$ (y) $\left(-\frac{2}{3}\right)^{-3}$ (z) $\sqrt[3]{(a+b)^6}$

- (d) $\frac{8^{n-3} \cdot 32^{-n+1} \cdot 6^{2n}}{a^n}$ (e) $\frac{4^{n-3} \cdot 10^{n+2}}{8^{n-1} \cdot 5^{1+n}}$ (f) $\frac{12^{n+1} \cdot 27^{n-2}}{18^{2n-1}}$

- 4. (a) $\frac{3^{n+1}-3^n}{3^{n-1}}$ (b) $\frac{2 \cdot 3^x 3^{x-1}}{5 \cdot 3^x}$ (c) $\frac{2^{x+3}-2 \cdot 2^x}{2^{x+1} \cdot 8}$
- (d) $\frac{3^{x+1}-3^{x-1}}{3 \cdot 3^{x-2}}$ (e) $\frac{9^x+3^{2x+1}}{18^x \cdot 2^{-x}}$ (f) $\frac{a^{x+3}+2a^{x+2}}{a^x+2a^{x-1}}$
- 5. (a) $\sqrt{\frac{15^x \cdot 3^x}{9^{x+1} \cdot 5^{x-2}}}$ (b) $\sqrt{\frac{2^{x+3} 2^{x+1}}{2 \cdot 2^x} + 1}$ (c) $\frac{9^{2a} 3^{3a}}{27^a}$

6. Given: $A = \frac{3^n - 4}{6^n - 2^{n+2}}$. (a) Simplify A (b) Hence, determine $\sqrt[n]{A}$

EXERCISE 2.2: EXPONENTIAL EQUATIONS

Answers on page A2.2

Solve for x:

- (b) 3.2^{0} (c) $3^{-1}.2^{0}$ (d) $\left(\frac{1}{2}\right)^{-3}$ (e) $\left(\frac{1}{4}\right)^{-2}$ (f) $2^{-1}-2^{-2}$ 2. (a) $x-3x^{\frac{1}{2}}=0$ (b) $x^{\frac{1}{2}}-x^{\frac{1}{4}}-6=0$ (c) $x^{\frac{2}{3}}-x^{\frac{1}{3}}-12=0$ (d) $x-5\sqrt{x}=0$

- 5. (a) $16.\left(\frac{1}{2}\right)^{x-1} = 1$ (b) $2^x \times 3^{x+1} = 108$ (c) $3a^{\frac{2}{3}} = 48a^{-\frac{2}{3}}$

AND SURDS

MODULE 2: EXPONENTS

SURDS

The definition of a surd

Surds are irrational numbers and cannot be determined exactly.

e.g. $\sqrt{2}$; $\sqrt[3]{10}$; $\sqrt{27}$... all infinite non-recurring decimals

Restrictions

- ▶ If n is even: $\sqrt[n]{p}$ is only defined if $p \ge 0$. e.g. \sqrt{p} , $\sqrt[4]{p}$, ... are only defined if $p \ge 0$
- $\sqrt{-9}$ is imaginary,

- $\triangleright \sqrt{\mathbf{p}}$ is read as $+\sqrt{\mathbf{p}}$, by definition. Even though $p^2 = 25$ \Rightarrow $p = \pm 5$, $\sqrt{25} = +\sqrt{25} = +5$ only
- ► The 'root of a power': $\sqrt[q]{a^p} = a^{\frac{p}{q}}$... as introduced on page 2.1 This law enables one to convert between exponents and surds.
 - > Squaring and taking the square root

If we square a number: $9^2 = 81$ and then take the square root: $\sqrt{81} = 9$, we notice that the 2 operations cancel each other, and, could do so in any order:

$$\therefore \sqrt{9^2} = 9$$
, but also $(\sqrt{9})^2 = 9$

$$\therefore (\sqrt{2})^2 = 2$$

$$(\sqrt{2})^2 = 2$$
 [Also: $(\sqrt[3]{4})^3$ or $\sqrt[3]{4^3} = 4$]

The order of taking the mth power and the nth root

Law 1:
$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

Law 1:
$$\sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m \dots \left[\text{Proof: } \sqrt[n]{a^m} = a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^m = \left(\sqrt[n]{a}\right)^m \right]$$

e.g. $\sqrt[3]{8^2} = \sqrt[3]{64} = 4$ & $(\sqrt[3]{8})^2 = 2^2 = 4$: Choose whichever order is convenient.

► Multiplying and dividing surds

Law 2:
$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab} \quad \dots \left[\text{Proof: } \sqrt[n]{a} \cdot \sqrt[n]{b} = a^{\frac{1}{n}} \cdot b^{\frac{1}{n}} = (ab)^{\frac{1}{n}} = \sqrt[n]{ab} \right]$$

Law 3:
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$
 ...

Law 3:
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$
 ... $\left[\text{Proof: } \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = \left(\frac{a}{b}\right)^{\frac{1}{n}} = \sqrt[n]{\frac{a}{b}} \right]$

e.g.
$$\sqrt{2} \cdot \sqrt{8} = \sqrt{2 \times 8} = \sqrt{16} = 4$$
 ; $(\sqrt{5})^2 = 5$; $\frac{\sqrt{27}}{\sqrt{3}} = \sqrt{\frac{27}{3}} = \sqrt{9} = 3$

Worked Example 1

Simplify:

- (a) $(\sqrt{25})^2$
- (b) $\sqrt{3^2}$
- (c) $(\sqrt{5})^2$
- (d) $\sqrt{2}\sqrt{3}$

- (e) $\sqrt{12}\sqrt{3}$
- (g) $2\sqrt{3}.5\sqrt{3}$

(h)
$$\frac{\sqrt{x^9}}{\sqrt{x}}$$

Answers

- (a) **25 ≺**
- (b) 3 **≺** (c) 5 **≺**
- (d) √**6** ≺

- (e) $\sqrt{36} = 6 <$ (f) $\sqrt{4} = 2 <$ (g) 10.3 = 30 < (h) $\sqrt{\frac{x^9}{x}} = \sqrt{x^8} = x^4$

▶ Simplifying surds

Apply the reverse of law 2: $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$

e.g.
$$\sqrt{8} = \sqrt{4 \times 2} = \sqrt{4}\sqrt{2} = 2\sqrt{2}$$
 $\sqrt[3]{54} = \sqrt[3]{27 \times 2} = \sqrt[3]{27} \cdot \sqrt[3]{2} = 3 \cdot \sqrt[3]{2}$

$$\sqrt[3]{54} = \sqrt[3]{27} \times 2 = \sqrt[3]{27} \cdot \sqrt[3]{2} = 3 \cdot \sqrt[3]{2}$$

$$\sqrt{48} = \sqrt{16 \times 3} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$$

$$\sqrt{48} = \sqrt{16 \times 3} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$$
 $\sqrt{x^5} = \sqrt{x^4 \cdot x} = \sqrt{x^2} \cdot \sqrt{x} = x \cdot \sqrt{x}$

▶ Adding and Subtracting surds

Only like surds can be added or subtracted.

e.g.
$$\sqrt{2} + 3\sqrt{2} = 4\sqrt{2}$$
 ... $x + 3x = 4x$

$$4\sqrt{2} + \sqrt{3} - \sqrt{2} - 2\sqrt{3} = 3\sqrt{2} - \sqrt{3} \dots 4x + y - x - 2y = 3x - y$$

Worked Example 2

Simplify: $(\sqrt{3} + \sqrt{12})^2$

Answer:

$$(\sqrt{3} + \sqrt{4 \times 3})^2 = (\sqrt{3} + 2\sqrt{3})^2 = (3\sqrt{3})^2 = 9.3 = 27$$

► Rationalising the denominator

The denominators in the following examples are irrational. Observe the techniques to rationalise the denominators, while preserving the value of the expressions:

•
$$\frac{5}{\sqrt{2}}$$
 $\frac{5}{\sqrt{2}} = \frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{5\sqrt{2}}{2}$

$$\bullet$$
 $\frac{2}{\sqrt{2}}$

•
$$\frac{5}{\sqrt{2}}$$
 $\frac{5}{\sqrt{2}} = \frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{5\sqrt{2}}{2}$ • $\frac{2}{\sqrt{2}}$ = $\frac{2}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2}$ $\frac{9}{3} = 3$

•
$$\frac{1}{\sqrt{3} + \sqrt{2}}$$
 $\frac{1}{\sqrt{3} + \sqrt{2}} = \frac{1}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} = \frac{\sqrt{3} - \sqrt{2}}{3 - 2} = \sqrt{3} - \sqrt{2}$

Note the use of: $(a + b)(a - b) = a^2 - b^2$, the difference of squares.

Surd Equations

A surd equation is one that contains a surd. The surd needs to be on its own on one side of the equation. Squaring both sides of the equation then eliminates the radical sign $(\sqrt{\ })$, but also results in the need to **check** the solutions.

Checking the solutions of a surd equation

Remember: \sqrt{x} is defined as $+\sqrt{x}$ $\therefore \sqrt{x}$ can only be positive or zero.

Worked Examples

Compare these two equations while solving for *x*:

(1)
$$3 + \sqrt{x-1} = x$$

(2)
$$3 - \sqrt{x-1} = x$$

Answers

Surd alone on one side (the line to be checked)

$$(1) \sqrt{x-1} = x-3 \blacktriangleleft$$

(2)
$$-\sqrt{x-1} = x-3$$

Square both sides of the equation

$$(\sqrt{x-1})^2 = (x-3)^2$$

$$(-\sqrt{x-1})^2 = (x-3)^2$$

$$\therefore \left(-\sqrt{x-1}\right)^2 = (x-3)^2$$

$$x - 1 = x^2 - 6x + 9$$

$$0 = x^2 - 7x + 10$$

$$\therefore (x-2)(x-5) = 0$$

$$\therefore x = 2 \text{ or } x = 5$$

Now. **check** these answers in the line marked **←** above

For
$$x = 2$$
: LHS = $\sqrt{2-1} = \sqrt{1} = 1$

For
$$x = 5$$
: LHS = $\sqrt{5-1} = \sqrt{4} = 2$
RHS = $5-3=2$

∴ Accept
$$x = 5$$
 ∴ LHS = RHS ∴ Reject $x = 5$ ↓ ... LHS ≠ RHS

For
$$x = 2$$
: LHS = $\sqrt{2-1} = \sqrt{1} = 1$
RHS = $2-3=-1$
RHS = $2-3=-1$
RHS = $2-3=-1$

∴ Reject
$$x = 2$$
 ∴ LHS ≠ RHS ∴ Accept $x = 2$ ∴ LHS = RHS

For
$$x = 5$$
: LHS = $-\sqrt{5-1} = -\sqrt{4} = -2$
RHS = $5 - 3 = 2$

The solution

$$\therefore$$
 Only $x = 5 \blacktriangleleft$

$$\therefore$$
 Only $x = 2 \blacktriangleleft$

These 2 examples illustrate why 2 solutions appeared, but 1 had to be rejected in each case.

EXERCISE 2.3: SURDS

No calculator to be used.

Answers on page A2.4

Simplify the following expressions:

- 1. (a) $\sqrt{21} \cdot \sqrt{60} \cdot \sqrt{35}$ (b) $6\sqrt{45} \div 3\sqrt{5}$ (c) $(\sqrt{2} + 2)^2 2\sqrt{8}$

- (d) $(\sqrt{50} \sqrt{162})^2$ (e) $(\sqrt{5} + \sqrt{3})(\sqrt{5} \sqrt{3})$
 - (f) $(2\sqrt{3} + \sqrt{7})(2\sqrt{3} \sqrt{7})$
- 2. (a) $\frac{\sqrt{8} + \sqrt{8}}{\sqrt{2} \sqrt{8}}$ (b) $\frac{\sqrt{75} + \sqrt{48}}{\sqrt{12}}$ (c) $\frac{\sqrt{27} \sqrt{18}}{\sqrt{8} \sqrt{12}}$

- (d) $\frac{\sqrt{98} \sqrt{50}}{\sqrt{2}}$ (e) $\sqrt{2 + \sqrt{3}} \cdot \sqrt{2 \sqrt{3}}$ (f) $\frac{2\sqrt{8} \sqrt{50}}{(1 \sqrt{2})(1 + \sqrt{2})}$

- 3. Arrange in descending order:
 - (a) $4\sqrt{5}$: $6\sqrt{2}$: $5\sqrt{3}$
- (b) $\sqrt[3]{5}$; $\sqrt{3}$; $\sqrt[6]{26}$

- 4. Rationalise the denominators:
- (b) $\frac{\sqrt{6} \sqrt{8}}{\sqrt{2}}$

5. Refer to the figure.

A rectangle has sides of $\sqrt{5} + \sqrt{3}$ and $\sqrt{5} - \sqrt{3}$.

Calculate:

- (a) the length of the diagonal, leaving your answer in simplest surd form.
- (b) the area of the rectangle.
- 6. Solve for x:

- (a) $\sqrt{x-4} = 5$ (b) $\sqrt{x-4} = -5$ (c) $\sqrt{2-x} = x$ (d) $\sqrt{x+1} = x-1$
- (e) $\sqrt{1-x} = 2x-1$ (f) $\sqrt{2x} x + 4 = 0$ (g) $2x 3\sqrt{x} 2 = 0$
- 7. Calculate the exact value of: $\frac{\sqrt{10^{2009}}}{\sqrt{10^{2011}}}$ (Show ALL calculations.)
- 8. Simplify:

8.1
$$\left(1 + \sqrt{2x^2}\right)^2 - \sqrt{8x^2}$$

8.1
$$\left(1 + \sqrt{2x^2}\right)^2 - \sqrt{8x^2}$$
 8.2 $\left(\frac{\sqrt{y} + \sqrt{y^3}}{\sqrt{y}} - 1\right)^2$, $y > 0$

- 9. If $\frac{14}{\sqrt{63} \sqrt{28}} = a\sqrt{b}$ determine, without using a calculator, the value(s) of a and b if a and b are integers.
- 10. Without using a calculator, show that $\frac{9-\sqrt{54}}{6\sqrt{2}}$ is equal to $\frac{3\sqrt{2}-2\sqrt{3}}{4}$.

SURDS

EXPONENTS

;

MODULE

ANSWERS TO MODULE EXERCISES

EXERCISE 1.1: Types of numbers

Questions on page 1.3

	Complex	Non-real	Real	Irrational	Rational	Integer	\mathbb{N}_0	N
10	√		✓		✓	✓	✓	✓
-4	✓		✓		✓	✓		
-3,2	✓		✓		✓			
$4\frac{2}{3}$	✓		✓		✓			
π	✓		✓	✓				
0,6	✓		✓		✓			
$\sqrt{25}$	✓		✓		✓	✓	✓	✓
- ⁵ √32	✓		✓		✓	✓		
√35	✓		✓	✓				
$\sqrt{1\frac{11}{25}}$	✓		✓		✓			
√-36	✓	✓						
3√-27	✓		✓		✓	✓		
<u>0</u>	✓		✓		✓	✓	✓	
0 6 6 0	Division by zero is undefined!							

- 2. $\sqrt{36} < \sqrt{48} < \sqrt{49}$
 - $\therefore 6 < \sqrt{48} < 7$
 - $\therefore \sqrt{48}$ lies between 6 and 7
- 3. Between -1 and 1

A very important example of this (which includes ±1) is:

For ALL values of θ : $-1 \le \sin \theta \le 1$ and $-1 \le \cos \theta \le 1$

5.

Interval notation is only used for x real, i.e. for $x \in \mathbb{R}$

5.1 $[-3; \infty)$; $x \ge -3$; $x \in \mathbb{R}$

- 5.2 (-7; 4]; $-7 < x \le 4$; $x \in \mathbb{R}$
- 6. $x \le -2$ or x > 3; $x \in \mathbb{R}$...

There are two separate intervals indicated separately.

 \therefore Either $x \le -2$ or x > 3

- 7. x an integer and $x \in [-4, 3)$ \Rightarrow x = -4, -3, -2, -1, 0, 1 or 2
- 7.1 The minimum value of x is -4 . . . the smallest
- 7.2 The maximum value of x is 2 ... the biggest
- 8. The negative improper (and mixed) fractions lie in the interval ($-\infty$; -1), i.e. x < -1& the positive improper (and mixed) fractions lie in the interval (1; ∞)), i.e. x > 1

- 9. (a) $x = 1 < \dots$ a fraction only equals 0 when the numerator = 0
 - (b) y can be any real number except -3 ... division by 0 is undefined
 - (c) if y = -3, the fraction is undefined \triangleleft ... the denominator = 0
- 10. (a) x can be any real number \triangleleft ... any number $\times 0 = 0$
 - (b) $x = 1 < \dots If y = 2$, then $y + 3 \neq 0$. So, x 1 must be 0.
- 11. p 3 \geq 0 ... $\sqrt{a \text{ negative number}}$ is imaginary ∴ p ≥ 3 **<**

NUMBERS & FUNDAMENTAL CONCEPTS ANSWERS

--

MODULE

EXERCISE 1.2: Equations

- 1.1 By inspection, the solution (or 'root') is: x = -4 ... root is real, rational and integral
 - We don't always need to solve an equation formally! In this example, by inspection, we say: What plus 18 = 10?... -8; then
- 1.2 By inspection, the root is: $x = \frac{3}{2}$... this root is real and rational
 - **NB**: Remember the **principle** of solving quadratic equations!

- 2.1 (x + 3)(x 3) = 0x + 3 = 0 or x - 3 = 0
 - $\therefore x = -3$ or x = 3 ... roots are real and rational

This quadratic eauation has 2 roots

- Or: $x^2 = 9 \implies x = \pm 3$... Take $\sqrt{\ }$ on both sides
- 2.2 3x 2 = 0 or x + 1 = 0 $\therefore 3x = 2 \qquad \therefore x = -1$ $\therefore x = \frac{2}{2} \qquad \dots roots are real and rational$
- This quadratic equation has 2 roots

 $2.3 (x+4)^2 = 0$ x + 4 = 0

. . . root is real and rational

This quadratic equation has only 1 root

2.4 $(x + \sqrt{7})(x - \sqrt{7}) = 0$... Compare to O 2.1! $x + \sqrt{7} = 0$ or $x - \sqrt{7} = 0$

This auadratic equation has 2 roots

 $\therefore x = -\sqrt{7}$ or $x = \sqrt{7}$... roots are real and irrational

- Or: $x^2 = 7 \implies x = \pm \sqrt{7}$... Take $\sqrt{\ }$ on both sides
- 2.5 x = 0 or $x = -\frac{1}{2}$... roots are real and rational

This quadratic equation has 2 roots

- 2.6 $x^2 = -9$ \Rightarrow we cannot factorise $x^2 + 9!$
- This quadratic equation has no roots
- $\therefore x = \pm \sqrt{-9}$... roots are imaginary, because $\sqrt{\text{negative number}}$ is imaginary.

- 12. (a) If x = 1.5: $M = \sqrt{\frac{2}{2(1.5) + 5}} = \sqrt{\frac{2}{8}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$

 - \therefore M is rational because it can be written as $\frac{a}{b}$ where a and b are integers and b $\neq 0$.
 - (b) M is real when $\frac{2}{2x+5}$ is positive (or 0)
 - > This fraction will never be 0 because the numerator ≠ 0.
 - > It will be positive when 2x + 5 > 0 ... $\frac{+}{-} = +$
 - $\therefore 2x > -5$
 - $\therefore x > -\frac{5}{2} <$
- 13. (a) P = 0 when (x 2)(2x 1) = 0 ... when the numerator = 0
 - \therefore when x 2 = 0 or when 2x 1 = 0
 - x = 2
- $\therefore 2x = 1$
- $\therefore x = \frac{1}{2} \blacktriangleleft$
- (b) P is undefined when 3 x = 0 \dots denominator = 0 x = 3
- 14. (a) P = 0 when:

- (b) P is undefined when:
- $\sqrt{3-x} = 0$

- (c) P is real when 3 x > 0 ... $\sqrt{a \text{ negative number is imaginary}}$ ∴ -x > -3
 - \times (-1) \therefore x < 3; BUT, $x \neq 2$ and $x \neq -2$... See 14(b)
 - $\therefore x < 3; x \neq \pm 2 <$
- (d) $\sqrt{3-x}$ is always positive ... + $\sqrt{ }$
 - \therefore The fraction is positive when x^2 4 is positive
 - \therefore When x^2 is greater than 4
 - (x < 3)
 - $\therefore x < -2 \text{ or } x > 2$; BUT, $x < 3 \ldots See 14(c)$
 - $\therefore x < -2 \text{ or } 2 < x < 3 <$
- 15. (a) If x = 0, a can be any real number $\neq 0$
- (b) If $x \neq 0$, then a = 1

Try values of x < -2 or

x > 2 and evaluate x^2

- 16. (a) imaginary
- (b) irrational
- (c) rational

EXPONENTS AND SURDS

MODULE 2:

EXERCISE 2.1: Exponential Expressions

Questions on page 2.5

Note: The methods below promote an understanding of the meaning of each exponent.

(b)
$$3 \times 1 = 3$$

(c)
$$\frac{1}{3} \times 1 = \frac{1}{3}$$

(d)
$$2^3 = 8$$

e)
$$4^2 = 16$$

(d)
$$2^3 = 8$$
 (e) $4^2 = 16$ (f) $\frac{1}{2} - \frac{1}{4} = \frac{1}{4}$

(g)
$$\frac{1}{8}$$

(i)
$$2^2 = 4$$

(j)
$$\left[\left(\frac{1}{8} \right)^{\frac{1}{3}} \right]^2 = \left(\frac{1}{2} \right)^2 = \frac{1}{4}$$

(k)
$$\frac{1}{16}$$

(m)
$$\frac{1}{4}$$

(n)
$$\left[\left(\frac{1}{16} \right)^{\frac{1}{2}} \right]^3 = \left(\frac{1}{4} \right)^3 = \frac{1}{64}$$
 (o) $\left[\left(\frac{27}{8} \right)^{\frac{1}{3}} \right]^2 = \left(\frac{3}{2} \right)^2 = \frac{9}{4}$

(o)
$$\left[\left(\frac{27}{8} \right)^{\frac{1}{3}} \right]^2 = \left(\frac{3}{2} \right)^2 = \frac{9}{4}$$

(p)
$$\left(-\frac{1}{2}\right)^3 = -\frac{1}{8}$$

(p)
$$\left(-\frac{1}{2}\right)^3 = -\frac{1}{8}$$
 (q) $\left(\frac{1}{3} + \frac{1}{2}\right)^{-1} = \left(\frac{5}{6}\right)^{-1} = \frac{6}{5}$

(r)
$$\frac{2}{a}$$

(s)
$$\frac{1}{2a}$$

(t)
$$\frac{a^2}{3.(3a)^2} = \frac{a^2}{27a^2} = \frac{1}{27}$$
 (u) $(\sqrt[4]{81})^3 = 3^3 = 27$

$$(\sqrt[4]{81})^3 = 3^3 = 27$$

(v)
$$(\sqrt[5]{32})^2 = 2^2 = 4$$
 (w) $(4)^{\frac{1}{2}} = 2$

(w)
$$(4)^{\frac{1}{2}} = 2$$

(x)
$$(-4)^2 = 16$$
 (y) $\left(-\frac{3}{2}\right)^3 = -\frac{27}{8}$ (z) $(a+b)^{\frac{6}{3}} = (a+b)^2$

(a)
$$\frac{1.5}{3^2} = \frac{5}{9}$$

(b)
$$5^2 + 2^3 = 25 + 8 = 33$$

(c)
$$1+4+4=9$$
 (d) $\left(2+\left(\frac{1}{2}\right)^2\right)^{\frac{1}{2}}=\left(\frac{9}{4}\right)^{\frac{1}{2}}=\frac{3}{2}$

(e)
$$(-64x^6)^{\frac{2}{3}} = (-4x^2)^2 = 16x^4$$

(f)
$$3a^{\frac{1}{2}} \cdot b \times 4a^{\frac{3}{2}} \cdot b^{-4} \div 6a^{2}b^{-2}$$

= $2a^{\frac{1}{2} + \frac{3}{2} - 2} \cdot b^{1 - 4 + 2}$
= $2a^{0}b^{-1}$
= $\frac{2}{b} \leftarrow \dots a^{0} = 1$

(a)
$$\frac{(2^2)^{n+1} \cdot (2^3)^{2n}}{(2^4)^{2n-1}}$$
$$= \frac{2^{2n+2} \cdot 2^{6n}}{2^{8n+4}}$$
$$= 2^{2n+2+6n-(8n+4)}$$

(b)
$$\frac{(5^2)^n \times 5^{k-1}}{5^{3k-1}}$$

$$= 5^{2k+k-1-(3k-1)}$$

$$= 5^0$$

$$= 1 \blacktriangleleft$$

$$= 2^{-2}$$
$$= \frac{1}{4} \checkmark$$

(c)
$$\frac{(3^2)^{n-1} \cdot (3^3)^{3-1}}{(3^4)^{2-n}}$$

(c)
$$\frac{\left(3^2\right)^{n-1}.\left(3^3\right)^{3-2n}}{\left(3^4\right)^{2-n}}$$
 (d) $\frac{\left(2^3\right)^{n-1}.\left(2^5\right)^{-n+1}.\left(2.3\right)^{2n}}{\left(3^2\right)^n}$

$$= \frac{3^{2n-2} \cdot 3^{9-6n}}{3^{8n-4n}}$$

$$= 3^{2n-2+9-6n-(8-4n)}$$

$$= 3^{-1}$$

$$= \frac{2^{3n} \cdot 2^{3n} \cdot 2^{3n}}{3^{2n}}$$
$$= 2^{3n-9-5n+5+2n}$$

e)
$$\frac{(2^{2})^{n-3} \cdot (2.5)^{n+2}}{(2^{3})^{n-1} \cdot 5^{1+n}}$$

$$= \frac{2^{2n-6} \cdot 2^{n+2} \cdot 5^{n+2}}{2^{3n-3} \cdot 5^{1+n}}$$

$$= 2^{2n-6+n+2-3n+3} \cdot 5^{n+2-1-n}$$

$$= 2^{-1} \cdot 5$$

$$= \frac{5}{2} \checkmark$$

a)
$$\frac{3^{n} \cdot 3 - 3^{n}}{3^{n} \cdot 3^{-1}}$$

$$= \frac{3^{n} \cdot (3 - 1)}{3^{n} \cdot \frac{1}{3}}$$

$$= 2 \times \frac{3}{1}$$

$$= 6 \quad \blacktriangleleft$$

(b)
$$\frac{2.3^{x} - 3^{x}.3^{-1}}{5.3^{x}}$$

$$= \frac{3^{x} \left(2 - \frac{1}{3}\right)}{5.3^{x}}$$

$$= \frac{5}{3} \times \frac{1}{5}$$

$$= \frac{1}{3} \checkmark$$

(c)
$$\frac{2^{x} \cdot 2^{3} - 2 \cdot 2^{x}}{2^{x} \cdot 2 \cdot 8}$$

$$= \frac{2^{x} \cdot (8 - 2)}{2^{x} \cdot 16}$$

$$= \frac{6}{16}$$

$$= \frac{3}{8} \checkmark$$

(d)
$$\frac{3^{x} \cdot 3 \cdot 3^{x} \cdot 3^{x}}{3 \cdot 3^{x} \cdot 3^{-2}}$$

$$= \frac{3^{x} \left(3 - \frac{1}{3}\right)}{3^{x} \cdot 3^{-1}}$$

$$= \frac{8}{3} \cdot 3$$

$$= 8 \checkmark$$

(f)
$$\frac{a^{x} \cdot a^{3} + 2a^{x} \cdot a^{2}}{a^{x} + 2a^{x} \cdot a^{-1}}$$

$$= \frac{a^{x} \cdot a^{2}(a+2)}{a^{x} \left(1 + \frac{2}{a}\right)} \times \frac{\mathbf{a}}{\mathbf{a}}$$

$$= \frac{a^{3}(a+2)}{(a+2)}$$

Module 2: Exercise 2.2

(a)
$$\sqrt{\frac{(3.5)^x \cdot 3^x}{(3^2)^{x+1} \cdot 5^{x-2}}}$$

$$= \sqrt{\frac{3^x \cdot 5^x \cdot 3^x}{3^{2x+2} \cdot 5^{x-2}}}$$

$$= \sqrt{\frac{3^x \cdot 5^x \cdot 3^x}{3^{2x+2} \cdot 5^{x-2}}}$$
$$= \sqrt{3^{x+x-2x-2} \cdot 5^{x-x+2}}$$

$$=\sqrt{3^{-2}.5^2}$$

$$= 3^{-1}.5$$

(c)
$$\frac{\left(3^2\right)^{2a} - 3^{3a}}{\left(3^3\right)^a}$$
$$= \frac{3^{4a} - 3^{3a}}{3^{3a}}$$

$$= \frac{3^{3a} (3^{a} - 1)}{3^{3a}}$$

(a)
$$A = \frac{3^n - 4}{2^n \cdot 3^n - 2^n \cdot 2^2} = \frac{(3^n - 4)}{2^n (3^n - 4)} = \frac{1}{2^n} = \left(\frac{1}{2}\right)^n \checkmark$$

(b) :
$$\sqrt[n]{A} = A^{\frac{1}{n}} = \left[\left(\frac{1}{2} \right)^n \right]^{\frac{1}{n}} = \frac{1}{2}$$

EXERCISE 2.2: Exponential Equations

Questions on page 2.5

EXPONENTS AND SURDS

MODULE 2:

(a)
$$\frac{1}{x} = \frac{1}{5}$$

 $\therefore x = 5 \blacktriangleleft$

(b)
$$x^2 = 9$$

 $x = +3$

(c)
$$\left(x^{\frac{1}{3}}\right)^3 = 4^3$$

(d)
$$x^{\frac{1}{5}} = \frac{1}{2}$$
$$\therefore \left(x^{\frac{1}{5}}\right)^5 = \left(\frac{1}{2}\right)^5$$

$$\therefore (x^{\overline{5}}) = \left(\frac{1}{2}\right)^{3}$$
$$\therefore x = \frac{1}{32} \checkmark$$

 $\therefore x^{\frac{1}{4}} = 2 \qquad \dots \sqrt[3]{}$ $\therefore x = 16 < \dots ()^4$

(f)
$$\div 2$$
) $x^{\frac{3}{5}} = 27$

$$\therefore x^{\frac{1}{5}} = 3$$

$$\therefore x = 24$$

(h)
$$x^{+\frac{3}{2}} = \frac{1}{64} \dots ()^{-1}$$

$$\therefore x^{\frac{1}{2}} = \frac{1}{4} \quad \dots \sqrt[3]{$$

$$\therefore x = \frac{1}{16} \checkmark \dots ()^2$$

(j)
$$5^x = 0.2$$

$$\therefore 5^x = 5^{-1} \dots 0.2 = \frac{1}{5} = 5^{-1}$$

$$\therefore x = -1 \prec$$

2.

(a) $x^{\frac{1}{2}} \left(x^{\frac{1}{2}} - 3 \right) = 0$

(b) $\left(\frac{1}{x^{\frac{1}{4}}}\right)^{2} - \left(\frac{1}{x^{\frac{1}{4}}}\right) - 6 = 0$ $\therefore \left(x^{\frac{1}{4}} - 3\right) \left(x^{\frac{1}{4}} + 2\right) = 0$

$$\therefore x^{\frac{1}{2}} = 3 \dots x^{\frac{1}{2}} > 0$$
$$\therefore x = 9 \blacktriangleleft$$

 $\therefore x^{\frac{1}{4}} = 3 \qquad \dots x^{\frac{1}{4}} > 0$

$$x = 81 \blacktriangleleft$$

(c)
$$\left(x^{\frac{1}{3}} - 4\right)\left(x^{\frac{1}{3}} + 3\right) = 0$$
 (d) $(\sqrt{x})^2 - 5\sqrt{x} = 0$

$$\therefore x^{\frac{1}{3}} = 4 \quad \text{or } -3$$

$$\therefore \sqrt{x}(\sqrt{x} - 5) = 0$$

$$\therefore x = 64 \text{ or } -27 \blacktriangleleft$$

$$\therefore \sqrt{x} = 5 \qquad \dots \sqrt{x} > 0$$

$$\therefore x = 25 \blacktriangleleft$$

- (a) $13^x = 13^0$ x = 1
- (b) $(7^2)^{-x} = 7$ $\cdot 7^{-2x} = 7^1$ \therefore -2x = 1

 $\therefore x = -\frac{1}{2} <$

- - $\therefore 4x 6 = 3$
 - $\therefore x = \frac{9}{4} \blacktriangleleft$
- (d) $(2^{-1})^{x-3} = 4$ $2^{-x+3} = 2^2$
- (e) $2^x = \frac{1}{8}$ $\therefore 2^x = \frac{1}{2^3}$ $2^x = 2^{-3}$ x = -3 <

(q) $2^{-x} = 2^5$

- - $(5^{-1})^x = 5^2$

 - ∴ x = -2 **<**
- (h) $4^x = 4^{-3}$ x = -3 <
- (i) $\div 3$) $\therefore 2^{x} = 8$ x = 3 <

 $5^{9x-6} = 5^{8x+20}$

 $\therefore 9x - 6 = 8x + 20$

x = 26 <

x = -5 <

- (j) $3^1 \cdot (3^2)^{x+1} = (3^3)^{-x}$ $3^{1}.3^{2x+2} = 3^{-3x}$ $3^{1+2x+2} = 3^{-3x}$
 - 2x + 3 = -3x
 - \therefore 5x = -3
 - $\therefore x = -\frac{3}{5} <$

EXPONENTS AND SURDS

MODULE 2:

(a)
$$3^{x} \cdot 3^{1} - 3^{x} = 54$$

 $\therefore 3^{x} (3 - 1) = 54$
 $\therefore 3^{x} \cdot 2 = 54$
 $\therefore 3^{x} = 27$
 $\therefore x = 3 \checkmark$

(b)
$$3.2^{x} + 2^{x}.2^{-2} = 26$$
 (c) $(2^{x}) - (2^{x})$

$$\therefore 2^{x} \left(3 + \frac{1}{4}\right) = 26 \qquad \therefore (2^{x} - 3)(2^{x})$$

$$\therefore 2^{x}.\frac{13}{4} = 26$$

$$\times \frac{4}{13} \qquad \therefore 2^{x} = 8$$

x = 3

(b) $3.2^x + 2^x.2^{-2} = 26$ (c) $(2^x)^2 - (2^x) - 6 = 0$ $(2^x - 3)(2^x + 2) = 0$ \therefore 2^x = 3 < $2^x > 0$ for all $x \in \mathbb{R}$

5.

(a)
$$2^4 \cdot (2^{-1})^{x-1} = 1$$
 (b) $2^x \times 3^x \times 3^1 = 108$
 $\therefore 2^4 \cdot 2^{-x+1} = 1$ $\therefore (2.3)^x \times 3 = 108$
 $\therefore 2^{4-x+1} = 1$ $\div 3$ $\therefore 6^x = 36$
 $\therefore 5-x = 0 \dots a^0 = 1$ $\therefore x = 2 \checkmark$

 $\frac{\mathbf{a}^{x} \cdot a^{\frac{2}{x}}}{\mathbf{a}^{5-x}} = 1$

 $\therefore 2x - 5 + \frac{2}{x} = 0$

(2x-1)(x-2) = 0

 $\therefore x = \frac{1}{2} \text{ or } 2 \blacktriangleleft$

 $\times x$) $\therefore 2x^2 - 5x + 2 = 0$

 \dots to get x on the left

6. (a)

(a) Let $4^x = 8$ (b) Let $4^x = \sqrt{32}$ $(2^2)^x = 2^3$ $\therefore 2^{2x} = 2^{\frac{5}{2}}$ $\therefore 2x = \frac{5}{2}$ $\therefore 8 = 4^{\frac{3}{2}} \blacktriangleleft$ $x = \frac{5}{4}$

EXERCISE 2.3: Surds

Questions on page 2.7

(c) $a^x - a^{3x^2} = 0$

 $\therefore x(3x-1) = 0$

 $\therefore x = 3x^2$

1. (a)
$$\sqrt{3 \times 7} \cdot \sqrt{2^2 \times 3 \times 5} \cdot \sqrt{5 \times 7}$$
 (b) $\frac{6\sqrt{45}}{3\sqrt{5}}$

$$= \sqrt{3^2 \times 2^2 \times 5^2 \times 7^2}$$

$$= 3 \times 2 \times 5 \times 7$$

$$= 210 \checkmark$$

$$= 2\sqrt{9}$$

$$= 2.3$$

$$= 6 \checkmark$$

(d)
$$(\sqrt{25 \times 2} - \sqrt{81 \times 2})^2$$
 (e) $(\sqrt{5})^2 - (\sqrt{3})^2$
 $= (\sqrt{25}\sqrt{2} - \sqrt{81}\sqrt{2})^2$ $= 5 - 3$
 $= (5\sqrt{2} - 9\sqrt{2})^2$ $= (-4\sqrt{2})^2$ (f) $(2\sqrt{3})^2 - (\sqrt{7})^2$
 $= 16.2$ $= 4.3 - 7$
 $= 32 \checkmark$ $= 5 \checkmark$

(c) $(\sqrt{2})^2 + 2.2\sqrt{2} + 2^2 - 2.\sqrt{4 \times 2}$

 $= 2 + 4\sqrt{2} + 4 - 2.\sqrt{4}\sqrt{2}$

 $= 6 + 4\sqrt{2} - 4\sqrt{2}$

Module 2: Exercise 2.4

EXPONENTS AND SURDS

2

MODULE

(e)
$$\sqrt{(2+\sqrt{3})(2-\sqrt{3})}$$

= $\sqrt{2^2 - (\sqrt{3})^2}$
= $\sqrt{4-3}$
= $\sqrt{1}$
= 1 \checkmark

 $= \frac{4\sqrt{2} - 5\sqrt{2}}{1 - 2}$ $= \frac{-\sqrt{2}}{-1}$ = √2 **≺**

3. (a) Write as a single surd.

$$4\sqrt{5} = \sqrt{16}\sqrt{5} = \sqrt{16 \times 5} = \sqrt{80}$$

$$6\sqrt{2} = \sqrt{36}\sqrt{2} = \sqrt{36 \times 2} = \sqrt{72}$$

$$5\sqrt{3} = \sqrt{25}\sqrt{3} = \sqrt{25 \times 3} = \sqrt{75}$$

∴ Desc.: $4\sqrt{5}$: $5\sqrt{3}$: $6\sqrt{2}$ <

(b) Express all as ⁶√ :

$$\sqrt[3]{5} = 5^{\frac{1}{3}} = 5^{\frac{2}{6}} = \sqrt[6]{5^2} = \sqrt[6]{25}$$
 $\sqrt{3} = 3^{\frac{1}{2}} = 3^{\frac{3}{6}} = \sqrt[6]{3^3} = \sqrt[6]{27}$

∴ Desc.: $\sqrt{3}$; $\sqrt[6]{26}$; $\sqrt[3]{5}$ <

4. (a) $\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ (b) $\frac{\sqrt{2}\sqrt{3} - 2\sqrt{2}}{\sqrt{2}}$

 $= \frac{\sqrt{2}(\sqrt{3}-2)}{\sqrt{2}}$ $= \sqrt{3} - 2 <$

(c) $\frac{1}{\sqrt{5} - \sqrt{3}} = \frac{1}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}$ $=\frac{\sqrt{5}+\sqrt{3}}{(\sqrt{5})^2-(\sqrt{3})^2}$

 $=\frac{\sqrt{5}+\sqrt{3}}{5-3}=\frac{\sqrt{5}+\sqrt{3}}{2}$

5. (a) $(\text{The diagonal})^2 = (\sqrt{5} + \sqrt{3})^2 + (\sqrt{5} - \sqrt{3})^2$ $= 5 + 2\sqrt{5}\sqrt{3} + 3 + 5 - 2\sqrt{5}\sqrt{3} + 3$

∴ The diagonal = 4 units ≺

(b) The area of the rectangle = $(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})$

$$= (\sqrt{5})^2 - (\sqrt{3})^2$$

= 5 - 3

= 2 units² <

6. (a) $(\sqrt{x-4})^2 = 5^2$ (b) $(\sqrt{x-4}) = -5$

 $\therefore x-4 = 25 \qquad \therefore \text{ No solution } \checkmark$ $\therefore x = 29 \checkmark \qquad \dots \sqrt{x-4} \ge 0 \text{ always}$

 $\sqrt{2-x} = x$ \leftarrow checking line

$$\therefore 2 - x = x^2$$
$$\therefore 0 = x^2 + x - 2$$

(x + 2)(x - 1) = 0

 $\therefore x = -2 \text{ or } 1$

But, $x \ge 0$... see checking line

 \therefore Only x = 1 <

 $\sqrt{x+1} = x-1$ \leftarrow checking line

 $(\sqrt{x+1})^2 = (x-1)^2$

 $x + 1 = x^2 - 2x + 1$

 $\therefore 0 = x^2 - 3x$

x(x-3) = 0

 $\therefore x = 0 \text{ or } 3$

But, $x \ne 0$: LHS = 1; RHS = -1

 \therefore Only $x = 3 < \dots$ LHS = RHS = 2

 $(\sqrt{1-x})^2 = (2x-1)^2$

 $\therefore 1 - x = 4x^2 - 4x + 1$

 $0 = 4x^2 - 3x$

 $\therefore x(4x-3)=0$

 $\therefore x = 0 \text{ or } \frac{3}{4}$

But, $x \ne 0$: LHS = 1; RHS = -1

 \therefore Only $x = \frac{3}{4} < \dots$ LHS = RHS = $\frac{1}{2}$

 $\sqrt{2x} = x - 4$ • checking line

 $\therefore 2x = x^2 - 8x + 16$

 $0 = x^2 - 10x + 16$

(x-2)(x-8) = 0

x = 2 or 8

But. $x \ne 2$: LHS = 2: RHS = -2

 \therefore Only $x = 8 < \dots$ LHS = RHS = 4

A2.4

(a) $2(\sqrt{x})^2 - 3\sqrt{x} - 2 = 0$

 $(2\sqrt{x} + 1)(\sqrt{x} - 2) = 0$

 $\therefore \sqrt{x} = -\frac{1}{2}$ or 2

But, \sqrt{x} cannot equal $-\frac{1}{2}$ because $\sqrt{x} \ge 0$ by definition

 \therefore Only $\sqrt{x} = 2$

x = 4

7. Let $10^{2007} = x$: then the expression is:

$$\frac{\sqrt{x \times 10^2}}{\sqrt{x \times 10^4} - \sqrt{x}} = \frac{\sqrt{x} \cdot 10}{\sqrt{x} \cdot 10^2 - \sqrt{x}} = \frac{10\sqrt{x}}{\sqrt{x} (100 - 1)} = \frac{10}{99}$$

8.1 $(1+x\sqrt{2})^2 - x \cdot 2\sqrt{2}$ = $1+2\sqrt{2}x + 2x^2 - 2\sqrt{2} \cdot x$ 8.2 $\left(\frac{\sqrt{y}+y\sqrt{y}}{\sqrt{y}}-1\right)^2$ $= \left(\frac{\sqrt{y}(1+y)}{\sqrt{y}} - 1\right)^2$

 $= (1 + y - 1)^2$ $= v^2 \checkmark$

9 $\sqrt{63} = \sqrt{9 \times 7} = \sqrt{9} \sqrt{7} = 3\sqrt{7}$

& $\sqrt{28} = \sqrt{4 \times 7} = \sqrt{4} \sqrt{7} = 2\sqrt{7}$

The denominator must be rationalised : The expression

 $=\frac{14}{3\sqrt{7}-2\sqrt{7}}=\frac{14}{\sqrt{7}}$ $\times \frac{\sqrt{7}}{\sqrt{7}}=\frac{14\sqrt{7}}{7}=2\sqrt{7}$

 \therefore a = 2 and b = 7 \checkmark

10. $\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}$

Rationalising the / denominator

:. The expression = $\frac{9 - 3\sqrt{6}}{6\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2} \cdot 3(3 - \sqrt{6})}{2 \cdot 6 \cdot 2}$ $= \frac{3\sqrt{2} - 2\sqrt{3}}{4} \quad \dots \quad \sqrt{2}\sqrt{2} = 2$

