

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ID
- UDP
- ТСР
- DNS
- WWW(Socket)
- Programmierung)

Kapitel 1

Grundlagen der Datenübertragung

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- _ ID
- UDP
- TCP
- DNS
- WWW
- (Socket Programmierung)

Strukturierung in Schichten (Layers)

- Kommunikation
- Vorlesung

Grundlagen der Datenübertragung – Strukturierung

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- I.D.
- UDP
- TCP
- DNSWWW
- (Socket Programmierung)

- Globale Kommunikation ist ein komplexe Aufgabe
- ... kann aber gut in einfachere Teilaufgaben zerlegt werden, deren Lösungen aufeinander aufbauen
- Beispiel: Kommunikation per Brief

Welche Teilaufgaben laufen hier ab?

1.0 Strukturierung Brief: Analogie des Internets

- 11

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- IP
- UDP
- TCP
- DNSWWW
- (Socket Programmierung)

1.0 Strukturierung Brief: Analogie des Internets

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- _ IP
- UDP
- ТСР
- DNSWWW
- (Socket)
- Programmierung)

1.0 Strukturierung Internet

<u>Inhalt</u>

Grundlagen

- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- IP
- UDP
- TCP
- DNSWWW
- (Socket
- Programmierung)

Endgeräte (PC, Server, Tablet, Smartphone, Drucker, Scanner, IP-Drucksensor...) bezeichnet man auch als Hosts.

Keine Endgeräte sind **Router** und **Switch**es, die befinden sich innerhalb des Internets ("**Core**")

Einschub: Aus Kapitel "Organisation"

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- _ ID
- UDI
- TCP
- DNSWWW
- (Socket Programmierung)

- Weltweite Kommunikation zwischen Rechnern ist heute eine Selbstverständlichkeit das *Internet*.
- Doch wie funktioniert das im Hintergrund?

Milliarden verbundener Geräte (*devices*):

- Hosts = Endsysteme
- führt Netzwerk-"apps" am Rande "edge" des Internets aus

Packet switches: leiten ("forward")
Pakete (Datenstücke) weiter

Router, Switche

Kommunikationsleitungen ("links")

- Glasfaser, Kupfer, Radio, Satellit
- Übertragungsrate: bandwidth

Netzwerke

 Menge an Geräten, Router und Switche: verwaltet durch eine Organisation

1.0 Strukturierung Abstraktion: Schichtenmodel

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- _ ID
- UDP
- TCP
- DNS
- WWW
- (Socket Programmierung)

Physikalisches Medium

- Strukturierte Einteilung von Aufgaben u. Vorgängen in Schichten.
- Jede Schicht bietet der darüber liegenden "Dienste" an.
- Instanzen einer Schicht interagieren über spezifizierte "Protokolle"

1.0 Strukturierung Was sind Dienste und Protokolle?

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ...
- UDP
- TCP
- DNS
- WWW(Socket
- Programmierung)

- Dienste, die die Post dem Kunden anbietet (Beispiele):
 - -Eilzustellung
 - Empfangsbestätigung
 - -Gewöhnlicher Briefdienst
 - **—**...
- Protokoll

Ein Protokoll definiert das
Format und die Reihenfolge des
Nachrichtenaustausches
zwischen kommunizierenden
Entitäten sowie die Handlungen,
die bei der Übertragung
und/oder Empfang einer
Nachricht oder anderer
Ereignisse ausgeführt werden.
(Aus Computernetzwerke von Kurose und Ross)

Abbildung 1.2: Vergleich zwischen einem menschlichen Protokoll und einem Netzwerkprotokoll.

(Aus Computernetzwerke von Kurose und Ross)

"Ort- (x-Achse) Zeit- (y-Achse) Darstellung" eines Nachrichtenaustausches

1.0 Strukturierung Referenzmodelle

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ._
- UDP
- TCP
- DNS
- www
- (Socket Programmierung)

Referenzmodell des Internets (TCP/IP)

-Vier Schichten

1.0 Strukturierung Referenzmodelle

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- _ ID
- UDP
- TCP
- DNS
- WWW(Socket)
- Programmierung)

Referenzmodell ISO-OSI

–"Open System Interconnect"

TCP/IP Modell

ISO-OSI Referenzmodell

1.0 Strukturierung Referenzmodelle

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
-
- UDP
- TCP
- DNS
- WWW
- (Socket Programmierung)

Hybridmodell nach Andrew S. Tanenbaum: Verwenden wir in der Vorlesung

1.0 Strukturierung Referenzmodelle

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ID
- UDP
- ТСР
- DNS
- www
- (Socket Programmierung)

Aufbau der Vorlesung

1.0 Strukturierung Die Schichten und ihre Bedeutung

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- _ ID
- UDP
- ТСР
- DNS
- WWW
- (Socket Programmierung)

Nr.	Name	Anwendungsspezifische Protokolle (z.B. HTTP, SMTP (E-Mail) oder FTP).			
7	Anwendung Applikation				
6	Darstellung	Betriebssystemunabhängige Formate zur Darstellung von Daten (z.b. Zeichenkodierung, String-Formate, Kompression).			
5	Sitzung	ung Verwaltung von Sitzungen, z.B. Synchronisation, Checkpointing, Wiederherstellung bei Abbruch von Verbindungen			
4	Transport	Ende-zu-Ende Transportdienste zwischen Netzwerkteilnehmern u. Anwendungen (z.B. TCP, UDP). Verschiedene Diensklassen hinsichtlich Verbindung, Zuverlässigkeit,			
3	Vermittlung	Adressierung und Routing von Paketen durch das Netzwerk, nicht nur zwischen durch ein physikalisches Netzwerk verbundenen Rechnern.			
2	Sicherung	Verpackung in Datenrahmen, Versenden der Datenrahmen über Netzwerkinterfaces an ein Netzwerk. Außerdem Prüfsummen, Fehlerkorrektur, → Gesicherte Kanäle zwischen Netzwerkknoten.			
1	Bitübertragung	Datenübertragung über das Medium ("Bits auf dem Draht").			

- Internet: Applikation muss sich selbst darum kümmern
- Notwendig?

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- _ ID
- UDP
- TCP
- DNS
- www
- (Socket Programmierung)

Layer 1

Bitübertragungsschicht

Grundlagen der Datenübertragung – 1.1 Einleitung

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- 11-5
- UDP
- TCP
- DNS
- WWW
- (Socket Programmierung)

1.1 Einleitung

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ...
- UDP
- TCP
- DNS
- WWW
- (Socket Programmierung)

• Beispiele von Energieformen und zugehörigen Medien:

Energieform	Medium		
Elektr. Strom	Kupferkabel		
Radiowellen (λ = cm km)	Luft, Vakuum		
Licht (λ = nm μm)	Lichtwellenleiter		

- -Jede Energieform hat andere Eigenschaften
- -Unterschiedl. Anforderungen an Sender und Empfänger je nach Energieform und Medium

1.1 Einleitung

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ID
- UDP
- TCP
- DNSWWW
- (Socket
- Programmierung)

Umwandlung und Rückwandlung Daten ↔ Energie bedarf spezieller Hardware:

• Transmitter und Receiver; beides zusammen: Transceiver

• Teil der Netzwerkkarte (**NIC**: Network Interface Card)

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- IP
- UDP
- TCP
- DNS
- WWW(Socket)
- Programmierung)

Verdrilltes Kupferkabel (*TP*: <u>Twisted Pair</u>)

Unshielded twisted pair (UTP)

Vorteile:

- preisgünstig
- einfache Handhabe
- relativ einfache Verlegung (aber Wandarbeit nötig)
- ≥100m Signalstrecke möglich: reicht für Gebäudevernetzung
- Medium des klassischen Telefonnetzes:
 - →große Installationsbasis

→ Derzeit primäres Übertragungsmedium für Gebäudevernetzung (LAN: Local Area Network)

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- UDP
- TCP
- DNS
- WWW
- (Socket Programmierung)

Verdrilltes Kupferkabel – Fortsetzung

Warum verdrillen?

• Interferenzproblem:

- -Datenübertragung in einem Draht verursacht Störung im anderen
- -Prinzip: Radiosender Empfangsantenne
- -Maximale Störung: paralleler Drahtverlauf =====
- -Minimale Störung: senkrechter Drahtverlauf
- -verdrillter Drahtverlauf: geringe Störung, beide Drähte lassen sich gemeinsam vom Empfänger zum Sender verlegen

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- UDP
- TCP
- DNS
- WWW
- (Socket Programmierung)

Verdrilltes Kupferkabel – Fortsetzung:

• Wie stark verdrillen?

Je stärker umso besser/teurer

- Kategorien:
 - -Cat 1 bis 7

UTP Kategorie 5

1: analoge Sprachübertragung (Telefonnetz)

3: digitales Telefon (ISDN)

5: heutige LANs (bis Gbps)

6/7: Zukunft (ab 10Gbps)

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ID
- UDP
- TCP
- DNS

WWW

(Socket Programmierung)

Koaxialkabel

- -Medium des klassischen Fernsehkabels
- –Konzept des abgeschirmten Drahtes → minimalste Interferenzen
- -teurer und schlechter zu handhaben als TP
- Der Glasfaser technisch unterlegen
- → heute kaum mehr verwendet (aber: Manche "Last-Mile" Zugangsnetze wie "Vodafone Kabel Internet" basieren auf vorhandene Fernsehkoaxialinfrastruktur)

Koaxialkabel

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- Netzwerk-Technologien
- Routing
- **IP-Adressen**
- UDP
- TCP
- DNS
- www (Socket
- Programmierung)

Glasfaser bzw. Lichtwellenleiter (LWL)

Funktionsprinzip:

Lichtleitung durch **Totalreflexion**

- -höchste Datenraten (Terabit/s möglich)
- −längste Signalstrecken (~100km)
- –Keine Abstrahlung (-> kann nur sehr schwer abgehört werden)
- -teuer und schlechte Handhabe
- –primäres kabelgebundenes Medium für WANs (Wide Area Network)
- -Trend für LANs nimmt zu

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ID
- UDP
- TCP
- DNS
- WWW(Socket
- Programmierung)

Funk

- Medium der klassischen Radio- und Fernsehübertragung
- Medium: Luft bzw. Vakuum
 - → keine Verlegung notwendig!
- Verwendung:
 - Satellitenübertragung
 - Mikrowellenübertragung in WANs
 - WLAN (drahtloses lokales Computernetz)
 - Bluetooth
 - Mobilfunk (GSM, UMTS, LTE, 5G, ...)
 - ..
- Nachteil: hohe Störempfindlichkeit
 - Reflexionen
 - Verschattungen
 - Interferenzen
 - Andere Sender
 - Störquellen (E-Motor,...)

1.3 Digitale Kommunikation

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- " /
- UDP
- TCP
- DNSWWW
- (Socket Programmierung)

Ausgangpunkt:

Computer verwenden Binärziffern (0,1) zur Darstellung ("Kodierung") von Informationen

• Szenario: (PTP: <u>Point to Point Verbindung</u>) zwei Geräte, die mittels eines Mediums verbunden sind

1.3 Digitale Kommunikation

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- _ ID
- UDP
- TCPDNS
- www
- (Socket Programmierung)

• Definition (NRZ: Non Return To Zero)

- –Spannungspegel 2 = logische 1
- -Spannungspegel 1 = logische 0

1.3 Digitale Kommunikation

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ID
- UDP
- TCP
- DNS
- WWW
- (Socket Programmierung)

•NRZ: einfach, <u>aber der Teufel liegt im Detail:</u>

Beispiel:

- -Sender überträgt 1000 Einsbits, d.h. er legt lange Pegel 2 an.
- -Empfänger misst lange Pegel 2. Waren es nun 999 oder 1000 Einsbits?
- →extrem genaue und synchronisierte Zeitgeber beim Empfänger und Sender notwendig
- → man verwendet meist aufwendigere/ kompliziertere Formen der Kodierung
- → andere Vorlesung: Signalverarbeitung

NRZ-L-Code

1.4 Standardisierung

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ...
- UDP
- ТСР
- DNS
- WWW
- (Socket Programmierung)

- Beispiel NRZ: Reihe von Detailfragen:
 - -Wie lange dauert ein Bit genau?
 - -In welchem Spannungsbereich darf der Pegel 2 liegen?
 - **-....**
- Detailfragen müssen <u>herstellerübergreifend</u> festgelegt werden, damit **verschiedene** Geräte miteinander kommunizieren können.
- Standardisierung

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- Netzwerk-Technologien
- Routing
- **IP-Adressen**
- UDP
- TCP
- DNS WWW
- (Socket Programmierung)

- wichtige Standardisierungsgremien
 - -ISO (International Organisation for Standardization)
 - •z.B. ISO OSI Model

- -IEEE (Institute of Electrical and Electronics Engineers):
 - •Ethernet (IEEE 802.3)
 - •WLAN (IEEE 802.11)

•....

- -IAB (Internet Architecture Board)/IETF (Internet Engineering Taks Force)
 - •IP: RFC 791
 - •HTTP: RFC 2616

•....

1.5 Grundlegender Ablauf der Kommunikation

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- IP
- UDP
- TCP
- DNS
- WWW(Socket)
- Programmierung)

1.6 Begriffe

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ...
- UDP
- TCP
- DNS
- WWW
- (Socket Programmierung)

• Der *Duplex*begriff

- -Richtungen der Datenübertragung auf dem Medium
- –Legende: TX = Transmitter, Rx = Receiver

Simplex-Verbindung:

- * Daten unidirektional von Sender an Empfänger
- * Kein Rückkanal
- * Beispiel: Radio , Fernsehen

Halbduplex-Verbindung:

- * Abwechselndes Senden und Empfangen
- * Datenrichtung auf dem Medium ändert sich
- * Beispiel: Walkie-Talkie, gute Vorlesung

Vollduplex-Verbindung:

- * Gleichzeitiges Senden und Empfangen
- * Medium wird bidirektional genutzt
- * Beispiel: heutiges Ethernet, Telefon, Streitgespräch

1.6 Begriffe

Inhalt

- Grundlagen
- Pakete, Rahmen, Fehlererkennung
- Netzwerk-Technologien
- Routing
- **IP-Adressen**

- UDP
- TCP
- DNS WWW
- (Socket

Programmierung)

• Datenübertragungsrate/Bitrate R:

[bit/s]

[bps] (bits per second)

[B/s] (1 Byte = 8 bit)

Bitrate

Anzahl der gesendeten Bits

Benötigte Sendezeit

R: link transmission rate

Zahlenpräfixe

Name	Symbol	Wert	Name	Symbol	Wert gemäß SI
kibi	Ki	$2^{10} = 1024^1 = 1.024$		k	$10^3 = 1.000$
mebi	Mi	$2^{20} = 1024^2 = 1.048.576$		М	10 ⁸ = 1.000.000
gibi	Gi	2 ³⁰ = 1024 ³ = 1.073.741.824	Giga	G	10 ⁹ = 1.000.000.000
tebi	Ti	2 ⁴⁰ = 1024 ⁴ = 1.099.511.627.776	Tera	Т	10 ¹² = 1.000.000.000.000
pebi	Pi	2 ⁵⁰ = 1024 ⁵ = 1.125.899.906.842.624	Peta	Р	10 ¹⁵ = 1.000.000.000.000
exbi	Ei	2 ⁶⁰ = 1024 ⁶ = 1.152.921.504.606.846.976	Exa	Е	10 ¹⁸ = 1.000.000.000.000.000.000
zebi	Zi	2 ⁷⁰ = 1024 ⁷ = 1.180.591.620.717.411.303.424	Zetta	Z	10 ²¹ = 1.000.000.000.000.000.000.000
yobi	Yi	2 ⁸⁰ = 1024 ⁸ = 1.208.925.819.614.629.174.706.176	Yotta	Υ	10 ²⁴ = 1.000.000.000.000.000.000.000.000

Beispiele für R:

- * R = 100 Mbit/s = $100*10^6$ bit/s = $(100*10^6)/8$ B/s = 12,5 MB/s 100BASE-TX Ethernet
- * R = 1Kibps = 1024 bit/s = 128 * 8bit/s = 128 B/s
- * R = 1,5Mibit/s = 1572864bps = 1,572864Mbps = 1,572864Mbit/s= 192KiB/s

1.6 Begriffe

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- _ IP
- UDP
- TCP
- DNS
- WWW
- (Socket Programmierung)

- Verzögerungszeit/Laufzeit/Latenz:
 - = Differenz zwischen Empfangs- und Sendezeit.

Analogie: Rohr mit Bällen, Senderate vs. Laufzeit

Es wird zwar jede Sekunde ein Ball gesendet (R = 1Ball/s), aber laufzeitbedingt kommt ein Ball erst nach 8 s (t_L) beim Empfänger an. Eine Sekunde später folgt dann der nächste Ball ,etc. Dabei befinden sich 8 Bälle gleichzeitig im Rohr (= auf dem Medium) und das Rohr ist nahezu voll (= das Medium ist fast ausgelastet).

1.6 Begriffe

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- _ ID
- UDP
- TCP
- DNSWWW
- (Socket Programmierung)

• Bitfehlerrate

$$BER = \frac{N_{ERR}}{N_{TOTAL}}$$

BER: Bit Error Rate

N_{ERR}: Anzahl der fehlerhaften BitsN_{TOTAL}: Anzahl der gesendeten Bits

- -Gründe: Störeinflüsse (z.B. Elektromagnetische Strahlung bei elektrischen Signalen), Dämpfung durch langen Kanal, ... (Stichwort: Signalrauschabstand, SNR)
- -Beispiel:
 - •BER = 3*10⁻⁶ = 3/1.000.000: von 1 Million übertragener Bits sind durchschnittlich 3 Bits falsch

Zusammenfassung

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,
 Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- I.D.
- UDP
- ТСР
- DNS
- www
- (Socket Programmierung)

• Behandelt:

- -Wie können Informationen übertragen werden
- -Gängige Übertragungsmedien
- -Bitwandlung
- -Punkt-zu-Punkt Übertragung (PTP) auf Bitebene
- -Wichtige Begriffe
- Die hier behandelten Detailfragen/Festlegungen ordnet man der sogenannten Bitübertragungsschicht (physical layer)
- zu. Sie ist die physikalische Grundlage der Computernetze.

Ausblick: Die nächsten zwei Kapiteln

<u>Inhalt</u>

- Grundlagen
- Pakete, Rahmen,Fehlererkennung
- Netzwerk-Technologien
- Routing
- IP-Adressen
- ._
- UDP
- TCP
- DNSWWW
- (Socket Programmierung)

- Logik (=,,Software") für fehlerfreie und faire Übertragung.
- Ausweitung der Kommunikationsmöglichkeiten auf mehrere Teilnehmer (Netzwerk)
- Die dazu notwendige Hardware.

• Beides zusammen ordnet man der Sicherungsschicht (Data Link Layer) zu