Quantum Physics

Marco Biroli

December 27, 2019

Contents

1	Hyd	rogen Atom.	
	1.1	Two Body problem and quantum mechanics	em and quantum mechanics.
	1.2	Central force movement	vement
		1.2.1 Behavior close to the origin	close to the origin
	1.3	Hydrogen Atom.	
2		roximation Methods.	
	2.1	Variational Method	od
		2.1.1 Infinite potential well	otential well
		2.1.2 Helium atom	tom
		2.1.3 Other Levels	vels
	2.2	Stationary perturbation method	rbation method
		2.2.1 The case where E_0 is not degenerated	where E_0 is not degenerated
		2.2.2 The case where E_0 is degenerated	where E_0 is degenerated

4 CONTENTS

Chapter 1

Hydrogen Atom.

1.1 Two Body problem and quantum mechanics.

We consider two particles described by $\vec{r_1}, \vec{r_2}, \vec{p_1}, \vec{p_2}, m_1$ and m_2 that interact with a potential $V(\vec{r_2} - \vec{r_1})$. Then the Hamiltonian is given by:

$$H = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + V(\vec{r_2} - \vec{r_1})$$

Now as usually done in classical physics we want to decompose the motion into the motion of the center of mass and a rotation around it. So we introduce:

$$\vec{P} = \vec{p_1} + \vec{p_2}, \vec{R} = \frac{m_1 \vec{r_1} + m_2 \vec{r_2}}{m_1 + m_2}, \vec{r} = \vec{r_1} - \vec{r_2}, \vec{p} = \frac{m_2 \vec{p_1} - m_1 \vec{p_2}}{m_1 + m_2}, M = m_1 + m_2, \mu = \frac{m_1 m_2}{m_1 + m_2}$$

Then the Hamiltonian is re-written as:

$$H = \underbrace{\frac{P^2}{2M}}_{H_{\text{CM}}} + \underbrace{\frac{p^2}{2\mu} + V(\vec{r})}_{H_{\text{rel}}}$$

And the commutation relations are given by:

$$[R_i, P_i] = i\hbar \delta_{ij}, [r_i, p_j] = i\hbar \delta_{ij}, [r_i, P_j] = 0, [R_i, p_j] = 0$$

We immediately see that [H, P] = 0, this is a result of the invariance by translation of the problem. Hence \vec{P} is a constant of the problem and \vec{P} and H share a common basis. The egein-values of the momentum of the center of mass are planes waves of the form:

$$e^{i\vec{k}\cdot\vec{R}}\psi(\vec{r})$$
 and $H_{\rm rel}\psi(\vec{r}) = E\psi(\vec{r}) \Rightarrow E_{\rm tot} = \frac{\hbar^2 k^2}{2M} + E_{\rm rel}\psi(\vec{r})$

Now if we look at the specific case of the hydrogen atom since $m_p \gg m_e$ we have:

$$\mu = \frac{m_e m_p}{m_e + m_p} = m_e \left[1 - \frac{m_e}{m_p} \right]$$

1.2 Central force movement.

Say we have a potential of the form $V(\vec{r}) = V(r)$ then we want to solve the T.I.S.E.:

$$\left[\frac{p^2}{2m} + V(r)\right]\psi = E\psi \Leftrightarrow \left[-\frac{\hbar^2}{2m}\frac{1}{r}\frac{\partial^2}{\partial r^2}r + \frac{L^2}{2mr^2} + V(r)\right]\psi = E\psi$$

Remember also that $[L^2, H] = [L^2, L_i] = 0$, so $[\vec{L}, H] = 0$. So we can now look for solution that eigenstates of L^2 and L_z which we know to be the spherical harmonics. So we decompose a given eigenstate in a radial component and a spherical harmonic component:

$$R_l(r)Y_{l,m}(\theta,\varphi)$$

Now plugging this into the T.I.S.E. we get:

$$\left[-\frac{\hbar^2}{2m} \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{l(l+1)\hbar^2}{2mr^2} + V(r) \right] R_l(r) = ER_l(r)$$

And normalization gives:

$$\int_{0}^{+\infty} \int_{0}^{\pi} \int_{0}^{2\pi} r^{2} \sin\theta d\theta d\varphi dr |R_{l}(r)|^{2} |Y_{l,m}(\theta,\varphi)|^{2} = \int_{0}^{+\infty} r^{2} |R_{l}(r)|^{2} dr =$$

Now to try and simplify the problem and reduce it to a 1D schrodinger equation we introduce a new function $u_l(r) = rR_l(r)$ we then have:

$$\int_0^{+\infty} |u_l(r)|^2 = 1$$

We also replace it in the T.I.S.E. which gives:

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} + \frac{l(l+1)\hbar^2}{2mr^2} + V(r) \right] u_l(r) = Eu_l(r)$$

We see that we get a central force term plus a centrifugal term. The role of this centrifugal force is to make the potential diverge to infinity when r goes to 0. A typical plot of this (for a coulomb potential) is as follows:

1.2.1 Behavior close to the origin.

We now write $u_l(r) \stackrel{r\to 0}{\sim} Cr^s$ and we assume that V(r) does not go to infinity faster than $\frac{1}{r}$. Then we see that for the solution to be well defined we need the first two terms to cancel otherwise the solution diverges. So we get:

$$-\frac{\hbar^2}{2m}s(s-1) + \frac{\hbar^2}{2m}l(l+1) = 0 \Leftrightarrow s = -l \lor s = l+1$$

We see that the first solution is impossible if $l \neq 0$ since u_l wouldn't be normalizable. It is also impossible when l=0 because in that case $u_l(r) \sim c$ and so $R_l(r) \sim \frac{C}{r}$, but then $\Delta R_l = -4\pi C\delta$ which is not a viable solution to the Schrodinger equation. So the only viable solution is s=l+1. So we now need to solve the following equation:

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} + \frac{l(l+1)\hbar^2}{2mr^2} + V(r) \right] u_l(r) = Eu_l(r) \quad \land \quad u_l(0) = 0$$

We know that there are discrete energies solution to this problem and actually for the coulomb potential case the energies will be given by: n' + l + 1 = n. We call n the principal quantum number.

1.3 Hydrogen Atom.

For the hydrogen atom the potential is given by: $V(r) = \frac{-q^2}{4\pi\varepsilon_0 r}$ to simplify the writing we introduce $e^2 = \frac{q^2}{4\pi\varepsilon_0}$ so that $V(r) = -\frac{e^2}{r}$. Then the T.I.S.E. is given by:

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} + \frac{l(l+1)\hbar}{2mr^2} - \frac{e^2}{r} \right] u_l(r) = Eu_l(r)$$

We want to make the problem dimensionless so we introduce $a_0 = \frac{\hbar^2}{me^2} = 0.53$ $\overset{\circ}{A}$ as a unit for length, $E_I = \frac{e^2}{2a_0} = \frac{m^2e^4}{2\hbar^2} = 13.6$ eV as a unit for energy. We now introduce the dimensionless parameters $\rho = \frac{r}{a_0}$ and $\varepsilon = -\frac{E}{E_I}$ and plugging them in the T.I.S.E. we get:

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} - \frac{l(l+1)}{\rho^2} + \frac{2}{\rho} - \varepsilon\right] u_l(\rho) = 0$$

1.3. HYDROGEN ATOM.

When $\rho \to \infty$ the equation simplifies to something that gives $e^{\pm\sqrt{\varepsilon}\rho}$ the plus being non-normalizable we keep only the minus and we introduce a new variable: $u_l(\rho) = y_l(\rho)e^{-\sqrt{\varepsilon}\rho}$ and plugging this in and introducing $\lambda = \sqrt{\varepsilon}$ we get:

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} - 2\lambda \frac{\mathrm{d}}{\mathrm{d}\rho} + \left[\frac{2}{\rho} - \frac{l(l+1)}{\rho^2}\right]\right] y_l = 0 \land y_l(0) = 0$$

To solve this we pass by the series decomposition of y_l :

$$y_l(\rho) = \rho^s \sum_{q=0}^{\infty} c_q \rho^q$$
 with $s > 0$ in order for $y_l(0) = 0$

Then the derivatives are given by:

$$\frac{\mathrm{d}y_l(\rho)}{\mathrm{d}\rho} = \sum_{q=0}^{+\infty} c_q \rho^{q+s-1}(q+s) \wedge \frac{\mathrm{d}^2 y_l(\rho)}{\mathrm{d}\rho^2} = \sum_{q=0}^{+\infty} c_q(q+s)(q+s-1)e^{q+s-2}$$

Then plugging this into the differential equation and using the uniqueness of the series expansion we get the following recursion relation:

$$c_q \left[q(q+2l+1) \right] = 2 \left[(q+l)\lambda - 1 \right] c_{q-1} \Rightarrow \frac{c_q}{c_{q-1}} \overset{q \to \infty}{\sim} \frac{2\lambda}{q} \Rightarrow y_l(\rho) \overset{q \to \infty}{\sim} e^{2\lambda \rho}$$

However if this was true then it would mean that $u_l(\rho) \stackrel{\rho \to \infty}{\sim} e^{\lambda \rho}$ which is impossible. Therefore it must be that c_q terminates for a certain $n' \in \mathbb{N}$. Hence:

$$(n'+1+l)\lambda - 1 = 0 \Rightarrow c_{n'+1} = 0$$

Then the energy is given by:

$$\varepsilon = \lambda^2 = \frac{1}{(n'+1+l)^2} \Leftrightarrow E = \frac{-E_I}{(n'+1+l)^2}$$

Now note that the degeneracy of a given energy is given by the amount of ways we can write n = n' + 1 + l changing n' and l. So for n given there are n possible values that l can take, for every l there are (2l+1) values that m can take. So the degeneracy of a state of principal quantum number n is given by:

$$g_n = \sum_{l=0}^{n-1} (2l+1) = n^2$$

Then the first eigenstates are given by:

$$R_{n=1,l=0} = 2(a_0)^{-3/2}e^{-r/a_0}, R_{n=2,l=0} = r(a_0)^{-3/2}(1 - \frac{r}{2a_0})e^{-r/2a_0}, R_{n=2,l=1} = (2a_0)^{-3/2}\frac{1}{\sqrt{3}}\frac{r}{a_0}e^{-r/2a_0}$$

Which look like:

Now note that:

$$\left\langle \psi_{n,l,m}\right|\frac{1}{r}\left|\psi_{n,l,m}\right\rangle \Rightarrow\left[H,\vec{r}\cdot\vec{p}\right]=-i\hbar\left[\frac{p^{2}}{m}+\frac{e^{2}}{r}\right]\Rightarrow\left\langle \psi_{n,l,m}\right|\left[H,A\right]\left|\psi_{n,l,m}\right\rangle =0\,\forall A$$

So we get that:

$$\langle \frac{p^2}{m} \rangle + \langle \frac{e^2}{r} \rangle = 0, \\ \langle \frac{p^2}{2m} - \frac{e^2}{r} \rangle = E \Rightarrow \langle \frac{e^2}{r} \rangle = -2E, \\ \langle \frac{p^2}{2m} \rangle = -E$$

....

Chapter 2

Approximation Methods.

2.1 Variational Method.

Let E_0 be the energy of the fondamental eigen state of the Hamiltonian H. Then we have that:

$$\forall |\psi\rangle, \langle \psi| H |\psi\rangle > E_0$$

From this we get the intuition that we can approximate E_0 by minimizing $\langle \psi | H | \psi \rangle$. Hence we introduce a family of wave functions $(|\psi(\alpha)\rangle)_{\alpha}$ indexed by the parameter α , then $\langle \psi(\alpha_0) | H | \psi(\alpha_0) \rangle$ is often a good approximation of E_0 if $\frac{\mathrm{d}}{\mathrm{d}\alpha} \langle \psi(\alpha) | H | \psi(\alpha) \rangle|_{\alpha_0} = 0$.

2.1.1 Infinite potential well.

The fundamental state of the infinite potential well is: $\psi(x) = \sqrt{\frac{2}{L}} \sin(\frac{\pi x}{L})$ and $E_0 = \frac{\pi^2 \hbar^2}{2mL^2}$. Now we take the following wave function: $\psi(x) = \frac{30}{L^5} x(x-L)$ (which respects the boundary conditions). We have that:

$$\langle \psi | H | \psi \rangle = \frac{5\hbar^2}{mL^2}$$

Knowing that $\frac{\pi^2}{2} = 4.93$ this is already a very good approximation.

2.1.2 Helium atom.

The Hamiltonian of the helium atom is given by:

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} - \frac{2e^2}{r_1} - \frac{2e^2}{r_2} + \frac{e^2}{|\vec{r_1} - \vec{r_2}|}$$

If we neglect the interaction term we get a separable Hamiltonian: $H = H_1 + H_2$. Then we have that:

$$E_0 = 2(4 \times E_I) = 108.8 \text{ eV}$$

And the fundamental state is given by:

$$\psi(\vec{r_1}, \vec{r_2}) = e^{-2r_1/a_0}e^{-2r_2/a_0}$$

We add an 'ecrantage' factor ξ to model the interaction term:

$$\psi_{\xi}(\vec{r_1}, \vec{r_2}) = \underbrace{\frac{\xi^2}{\pi a_0^2}}_{\text{normalization}} e^{-\xi r_1/a_0} e^{-\xi r_2/a_0}$$

Then the Hamiltonian is written as:

$$H = \left(\frac{p_1^2}{2m} - \frac{\xi e^2}{r_1}\right) + \left(\frac{p_2^2}{2m} - \frac{\xi e^2}{r_2}\right) + (\xi - 2)e^2\left(\frac{1}{r_1} + \frac{1}{r_2}\right) + \frac{e^2}{|\vec{r_1} - \vec{r_2}|}$$

Now looking individually at the contribution of each term:

• The first 2 terms gives and $\xi^2 E_I$ each.

- The third term gives $4\xi(\xi-2)E_I$.
- The last term gives: $\iint \left(\frac{\xi^2}{\pi a_0^2}\right)^2 e^{-2\xi r_1/a_0} e^{-2\xi r_2/a_0} \frac{1}{|\vec{r_1} \vec{r_2}|} d\vec{r_1} d\vec{r_2}.$

We know that:

$$\frac{1}{r} = \frac{4\pi}{(2\pi)^3} \int \frac{e^{i\vec{k}\cdot\vec{r}}}{k^2} d^3\vec{k} \Leftrightarrow \nabla^2 \frac{1}{r} = 4\pi\delta(\vec{r})$$

And we need to compute:

$$\left(\frac{\xi^2}{\pi a_0^2}\right)^2 \int \frac{1}{k^2} \underbrace{\left(\int e^{i\vec{k}\cdot\vec{r}e^{-2\xi r/a_0} d^3\vec{r}}\right)^2}_{\frac{16\xi/a_0}{(k^2+(2\xi/a_0)^2)^2}} d^3\vec{k} = \frac{5}{4}\xi E_I$$

Hence putting everything together we get that:

$$\langle \psi |_{\xi} H | \psi \rangle_{\xi} = 2E_I(\xi^2 - \frac{27}{8}\xi)$$
 which is minimal for $\xi = \frac{27}{16} \lesssim 2$

This then gives that: $E_{\min} = -\frac{729}{128}E_I = -77.5 \text{ eV}$ and the experimental value is $E_0 = -78.6 \text{ eV}$.

2.1.3 Other Levels.

Theorem:

 $|\psi\rangle$ is an eigenstate of H if and only if the differential of $|\phi\rangle\mapsto \frac{\langle\phi|H|\phi\rangle}{\langle\phi|\phi\rangle}$ cancels in $|\psi\rangle$.

Proof:

We first prove the left to right implication. Suppose that $|\psi\rangle$ is an eigenstate of H then:

$$\langle \delta\psi | H | \psi \rangle + \langle \psi | H | \delta\psi \rangle = E_{\psi} \langle \delta\psi | \rangle \psi + E_{\psi} \langle \psi | \delta\psi \rangle \Rightarrow \langle \delta\psi | H - E_{\psi} | \psi \rangle + \langle \psi | H - E_{\psi} | \delta\psi \rangle = 0$$

Now we suppose the right hand side. Let $|\delta\psi\rangle=\eta(H-E_{\psi})\,|\psi\rangle \Rightarrow \langle\psi|\,(H-E_{\psi})^2\,|\psi\rangle=0 \Rightarrow ||(H-E_{\psi})^2\,|\psi\rangle\,||=0.$

2.2 Stationary perturbation method.

Take a Hamiltonian $H = H_0 + \underbrace{W}_{\text{perturbation}} = H_0 + \lambda V$ where $\lambda \ll 1$, and the eigenvalues of V are of the same order of magnitude as those of H_0 . We then write:

$$\begin{cases} E = E_0 + \lambda E_1 + \lambda^2 E_2 + \cdots \\ |\psi\rangle = |\psi_0\rangle + \lambda |\psi_1\rangle + \lambda^2 |\psi_2\rangle + \cdots \end{cases}$$

Then the Schrödinger equation gives for the successive orders of λ :

- $H_0 |\psi_0\rangle = E_0 |\psi_0\rangle$.
- $H_0 |\psi_1\rangle + V |\psi_0\rangle = E_0 |\psi_1\rangle + E_1 |\psi_0\rangle$.
- $H_0 |\psi_2\rangle + V |\psi_1\rangle = E_0 |\psi_2\rangle + E_1 |\psi_1\rangle + E_2 |\psi_0\rangle$.

Furthermore the normalization of $|\psi\rangle$ gives:

$$\langle \psi_0 | \psi_0 \rangle = 1 \wedge \langle \psi_1 | \psi_0 \rangle + \langle \psi_0 | \psi_1 \rangle = 0 \Leftrightarrow \operatorname{Re}(\langle \psi_0 | \psi_1 \rangle) = 0$$

2.2.1 The case where E_0 is not degenerated.

For simplicity we write: $|\psi_0\rangle = |n\rangle$ and $E_0 = E_n$. Then we have that:

$$\langle n|H_0|\psi_1\rangle + \langle n|V|\psi_0\rangle = E_0\langle n|\psi_1\rangle + E_1\langle n|\psi_0\rangle \Leftrightarrow E_1 = \langle n|V|n\rangle$$

Then takes an eigenstate $\langle n|' \neq \langle n|$ then we have:

$$\langle n'|H_0|\psi_1\rangle + \langle n'|V|\psi_0\rangle = E_0 \langle n'|\psi_1\rangle + E_1\langle n'|\psi_0\rangle \stackrel{0}{\Leftrightarrow} \langle n'|\psi_1\rangle = \frac{\langle n'|V|n\rangle}{E_n - E_{n'}}$$

Furthermore if we impose that $\langle \psi | \rangle n \in \mathbb{R}$ then the condition $\text{Re}(\langle \psi_0 | \psi_1 \rangle) = 0$ gives: $\langle n | \psi_1 \rangle = 0$. Hence we get that at the first order:

$$|\psi\rangle = |n\rangle + \sum_{n' \neq n} \frac{\langle n' | V | n \rangle}{E_n - E_{n'}} |n'\rangle$$

Repeating the same process for the second order we get that:

$$E^{2} = \langle n | V | \psi^{1} \rangle = \sum_{n' \neq n} \frac{|\langle n' | V | n \rangle|^{2}}{E_{n} - E_{n'}}$$

Which gives:

$$E = E_n + \langle n | W | n \rangle + \sum_{n' \neq n} \frac{|\langle n' | V | n \rangle|^2}{E_n - E_{n'}}$$

Example for the non-degenerated harmonic oscillator.

We have the following Hamiltonian:

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 X^2 - qEX$$

Then $\langle n | qEX | n \rangle = 0$ which means that there is no first order correction. However at the second order we get:

$$E = \hbar\omega(n + \frac{1}{2}) + \sum_{n' \neq n} \frac{|\langle n'| \, qEX \, |n\rangle \,|^2}{E_n - E_{n'}} = \hbar\omega(n + \frac{1}{2}) - \frac{q^2 E^2}{2m\omega^2}$$

In this specific case it turns out that the second order is actually the exact answer.

2.2.2 The case where E_0 is degenerated.

Let $|\psi_0\rangle \in \ker(H - E_0 I)$ and we write: $|\psi_{n,q}^i\rangle$ with $q \in [1, g_n]$ instead of $|\psi_i\rangle$. Then we have that:

$$\left|\psi_{n,q}^{0}\right\rangle = \sum_{r=1}^{g_{n}} A_{q,r} \left|n,r\right\rangle$$

Now applying the same method as before we have that: $\sum_{r=1}^{g_n} A_{q,r} \langle n, r' | V | n, r \rangle = E_{n,q}^1 A_{q,r'}$. Then to solve the following problem one needs to diagonalize $V_{|\ker(H-E_nI)}$.