CS241 #21 Virtual Memory. Page Tables. IPC

1 Warm up. Explain the purpose of this code. 01 void aquire(pmt*mutexA, pmt*mutexB){

assert(mutexA&&mutexB && mutexA != mutexB);
if(mutexA < mutexB) p_m_lock(mutexA);</pre>

04 p_m_lock(mutexB);
05 if(mutexB < mutex</pre>

if(mutexB < mutexA) p_m_lock(mutexA);</pre>

06 }

2. Virtual Memory Addressing

A Running Process:

My expensive and useful RAM:

Argv, Env	•
Stack	

~ ~

Heap Heap

Неар

Globals

Program

22 hit addragge

Program

4096 bytes
4096 bytes

4096 bytes

32	ı D	Iι	au	uı	62	5.													

3. What is a page table? How is it used?

20 bits

12 bits

	or a 32 bit system if each page is 4KB. How many entries are re? How many bytes are required to store the entire page table?
	sing the above page design, how many memory reads are uired to read a byte at address 0x200?
6. U	sing the two-level page table with page size 4KB, how many
	mory reads are required to read a byte at address 0x200?
7. W	What is an TLB? Why is it useful? How is it used?
	-

How much memory does a 2 level page table require (assume data segment requirement requires 2 pages and the stack requires 2 pages; assume each entry in the directory contains 1024 page entries and each entry is 4 bytes)

20 bits 12 bits

Why might a page be missing in memory? Where can it be found?

Argv,, Env Stack

~

Heap
Heap
Globals
Program
Program

4096 bytes

What is the dirty bit? Why is it useful?
What else can we store about each page?
Can two processes shared the same piece of RAM?
Why is this useful?
Practice Interview Questions:
What is IPC? Give some examples and explain how they work!
A madabilia lavo
Amdahl's law.
My problem takes 100 seconds to calculate an answer? 25 seconds of
My problem takes 100 seconds to calculate an answer? 25 seconds of that is non- izable.
My problem takes 100 seconds to calculate an answer? 25 seconds of
My problem takes 100 seconds to calculate an answer? 25 seconds of that is non- izable.
My problem takes 100 seconds to calculate an answer? 25 seconds of that is non- izable.
My problem takes 100 seconds to calculate an answer? 25 seconds of that is non- izable.
My problem takes 100 seconds to calculate an answer? 25 seconds of that is non- izable.
My problem takes 100 seconds to calculate an answer? 25 seconds of that is non- izable.