Introduction to Embedded System Design

Physical Interfacing-1

Dhananjay V. Gadre
Associate Professor
ECE Division
Netaji Subhas University of
Technology, New Delhi

Badri Subudhi
Assistant Professor
Electrical Engineering Department
Indian Institute of Technology,
Jammu

Interfacing to the Physical World: Input Devices

Input Devices (Human Inputs)

Push Button, Toggle switch, MPMT, Keypad (Matrix of push buttons), DIP Switch, Capacitive/Resistive Touch, JoyStick, Rotary Encoder (Absolute or Incremental)

Environment Inputs

Sound, Light, Temperature, Humidity, pH, air flow etc.

Interfacing to the Physical World: Switches

Connecting Switches

Pull-up and Pull-Down Resistor Values

Schmitt-Trigger Inputs, Ports Px

SLAS735J-APRIL 2011-REVISED MAY 2013

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	UNIT
V	Desitive asing input threshold voltage	111100000000000000000000000000000000000	100	0.45 V _{CC}		0.75 V _{CC}	V
V _{IT+} Positive-going input threshold voltage		3 V	1.35		2.25	V	
V _{IT} _	Negative-going input threshold voltage			0.25 V _{CC}		0.55 V _{CC}	V
			3 V	0.75		1.65	
V _{hys}	Input voltage hysteresis (V _{IT+} – V _{IT=})	,x	3 V	0.3		1	V
R _{Pull}	Pullup/pulldown resistor	For pullup: V _{IN} = V _{SS} For pulldown: V _{IN} = V _{CC}	3 V	20	35	50	kΩ
Cı	Input capacitance	V _{IN} = V _{SS} or V _{CC}			5		pF

Leakage Current, Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	V _{cc}	MIN MAX	UNIT
I _{lkg(Px_y)}	High-impedance leakage current	(1) (2)	3 V	±50	nA

- The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted.
- (2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled.

Outputs, Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	Vcc	V _{CC} MIN TYP		MAX	UNIT
V _{OH}	High-level output voltage	$I_{(OHmax)} = -6 \text{ mA}^{(1)}$	3 V	V	cc - 0.3		V
VOL	Low-level output voltage	$I_{(OLmax)} = 6 \text{ mA}^{(1)}$	3 V	V	/ _{SS} + 0.3		V

The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.

Output Frequency, Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	Vcc	MIN TYP	MAX	UNIT
f _{Px.y}	Port output frequency (with load)	Px.y, $C_L = 20 \text{ pF}$, $R_L = 1 \text{ k}\Omega^{(1)}$ (2)	3 V	12		MHz
fport_CLK	Clock output frequency	Px.y, C _L = 20 pF ⁽²⁾	3 V	16		MHz

- A resistive divider with two 0.5-kΩ resistors between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.
- (2) The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

Switch Bounce (With Pull-up Resistor)

Switch Bounce DSO Screen Capture

Switch Debounce

- Hardware option (not preferred)
- Software option

Interfacing to the Physical World: More Inputs

Matrix of Keys

Using an ADC To Read Multiple Switches

Rotary Encoder

Rotary Encoder

Interfacing to the Physical World: Output Devices

Output Devices (Human Outputs)

LED, RGB LED, Addressable RGB LED, Seven Segment Display, Dot-Matrix Display, LCD, Sound output

Other Outputs

Relay, Motor, Heater, Peltier Module, DC Motor, Stepper Motor.

Controlling LEDs

- LED1 and LED2: High Side Control
- LED3 and LED4: Low Side Control

Controlling LEDs

- What is the voltage drop across an LED?
- What is the value of the resistor?
- How to calculate the value

Driving LEDs (Or Other loads): Low Side Driver

