Exercices de mécanique

Martin Andrieux

Rembobinage d'un fil

Un fil inextensible et sans masse de longueur L est raccordé tangentiellement à une bobine circulaire plate de rayon R. À son extrémité libre est accroché un point matériel M de masse m. Le fil étant tendu, on lance M dans le plan de la bobine, avec une vitesse $\overrightarrow{\nu_0}$ prependiculaire au fil, et dans le sens correspondant à l'enroulement. On note θ l'angle correspondant au fil enroulé $(\theta=0$ à t=0)1. On néglige le poids de M. Il est conseillé d'utiliser pour les calculs la base $(\overrightarrow{u_\rho},\overrightarrow{u_\theta})$ (cf. figure).

- a) Quelle relation existe-t-il entre L, R, θ et $\rho = IM$?
- b) Calculer la vitesse $\vec{\nu}$ et l'accélération $\vec{\alpha}$ dans la base $(\vec{u_\rho}, \vec{u_\theta})$. Faire le lien avec la base de Frénet; quel est le centre de courbure de la trajectoire?
- c) Montrer que le mouvement est uniforome (ν constant).
- d) Calculer la durée τ du rembobinage.
- e) Calculer la tension $\overrightarrow{T}(t)$ du fil en fonction du temps. Commenter.

