STAC51 TUT02 Week2

Lehang Zhong 21 January, 2021

Tutorial Overview

- TA: Lehang Zhong (lehang.zhong@mail.utoronto.ca)
- PhD Student in Biostatistics (Statistical Genetics)
- Goal:
 - Answer questions
 - R help session
 - Practice problems
- Attendance: Google Forms
- Communication: interactive and efficient

(Tentative) Weekly Schedule

	Week	Tutorial Activity			
1	Jan. 11 – Jan. 15	No Tutorial			
2	Jan. 18 – Jan. 22	How to make R Markdown File			
3	Jan. 25 – Jan. 29	Likelihood function demonstration, Binomial Test			
4	Feb. 1 – Feb. 5	Assignment 1 deadline, Quiz1			
5	Feb. 8 – Feb. 12	Contingency tables – Chi-squre test			
6	Feb. 15 – Feb. 19	Reading week			
7	Feb. 22 – Feb. 26	Assignment 2 deadline, Quiz2			
8	Mar. 1 – Mar. 5	Generalized linear model – Poisson regression			
9	Mar. 8 – Mar. 12	Simple or multiple logistic regression			
10	Mar. 15 – Mar. 19	Assignment 3 deadline Quiz3			
11	Mar. 22 – Mar. 26	Logistic regression model selection			
12	Mar. 29 – Apr. 2	Logistic regression model diagnostics			
13	Apr. 5 – Apr. 9	Final Project Help Hour			

R Markdown

- R Markdown is an integrated tool for
 - Analysis: save and execute code
 - Report: generate high quality reports that can be shared with an audience
- Embed R code in a LaTeX(pdf)/html/word document
 - Show R results (in figures and tables)
- Pandoc's markdown requires less formatting than LATEX
 - Can always use latex code in markdown document for customized options

What do you need to make an R Markdown file?

- Rstudio
- Some great R packages: tidyverse & knitr
- TinyTeX
- Some great resources:
 - R Markdown lessons: (https://rmarkdown.rstudio.com/lesson-1.html)
 - Cheatsheet: (https://github.com/rstudio/cheatsheets/raw/m aster/rmarkdown-2.0.pdf)
 - Reference: (https://rstudio.com/wpcontent/uploads/2015/03/rmarkdown-reference.pdf)

Demo on generating reports using R Markdown

Create a Rmd document

Figure 1: Create a RMarkdown Document in RStudio

Basic formatting

Pandoc's Markdown

Write with syntax on the left to create effect on right (after render)

Plain text
End a line with two spaces
to start a new paragraph.
italics and **bold**
'verbatim code
sub/superscript'2^~2~
---strikethrough~escaped: \"_\\
endash: --, emdash: --endash: --endash: --endash: --endash: ---

equation: \$A = \pi*r^{2}\$ equation block: \$\$E = mc^{2}\$\$

> block quote

Header1 {#anchor} ## Header 2 {#css_id}

Header 3 {.css_class}

Header 4

Header 5

Header 6

\textbf{Tex ignored in HTML} HTML ignored in pdfs

http://www.rstudio.com [link](www.rstudio.com) Jump to [Header 1](#anchor) image:

![Caption](smallorb.png)

* unordered list + sub-item 1 + sub-item 2 - sub-sub-item 1

* item 2

Continued (indent 4 spaces)

1. ordered list 2. item 2 i) sub-item 1 Plain text
End a line with two spaces
to start a new paragraph.
Italics and bold
verbatim code
sub/superscript²₂
strikethrough

escaped: $^{-}$ \ endash: $^{-}$, emdash: $^{-}$ equation: $A=\pi*r^2$ equation block:

 $E = mc^2$ block quote

Header1

Header 2

Header 3 Header 4

Header 5 Header 6

HTML ignored in pdfs http://www.rstudio.com

Jump to Header 1 image:

Caption

unordered list
sub-item 1
sub-item 2
subsubitem 2

Continued (indent 4 spaces)

sub-sub-item 1

ordered list
 item 2
 i. sub-item 1

7

Mathtype

- complex equations may require \usepackage{amsmath} and \usepackage{mathtools}
- inline math mode: \$...\$

 $\end{array}\to \end{array}\to \pi^{y}(1-\pi)^{n-y}$

- likelihood function of $Bin(n,\pi) : \ell(\pi \mid y) = \left(\begin{array}{c} n \\ y \end{array} \right) \pi^y (1-\pi)^{n-y}$
- \$\$...\$\$ equation block

$$\ell(\pi \mid y) = \begin{pmatrix} n \\ y \end{pmatrix} \pi^y (1 - \pi)^{n - y}$$

Score CI

$$\begin{split} \hat{\pi}\left(\frac{n}{n+z_{\alpha/2}^2}\right) + \frac{1}{2}\left(\frac{z_{\alpha/2}^2}{n+z_{\alpha/2}^2}\right) \pm \\ z_{\alpha/2}\sqrt{\frac{1}{n+z_{\alpha/2}^2}\left[\hat{\pi}(1-\hat{\pi})\frac{n}{n+z_{\alpha/2}^2} + \frac{1}{4}\left(\frac{z_{\alpha/2}^2}{n+z_{\alpha/2}^2}\right)\right]} \end{split}$$

- $\ \left(\frac{n}{n+z_{\alpha}}\right) \$
- 2}^{2}}\right)+\frac{1}{2}\left(\frac{z_{\lambda} / 2}^{2}}{n+z_{\lambda} / 2}^{2}}
- 2}^{2}}\right) \pm \\ z_{\alpha / 2} \sqrt{\frac{1}{n+z_{\alpha / 2}}}
- $2 ^{2}}\left[\hat{pi}(1-\hat{pi}) \frac{n+z_{\alpha}}{n+z_{\alpha}} \right]$
- $2}^{2}}+\frac{1}{4}\left(\frac{z_{\alpha} / 2}^{2}}{n+z_{\alpha} / 2}^{2}}{n+z_{\alpha} / 2}^{2}}\right)$
- $2}^{2}\right) \simeq \frac{1}{2}\right) \simeq \frac{1}{2}$

Code Chunks:

Lecture 2 page 2 example:

 $```{r ex1, echo=T}$

set.seed(123)

```
dbinom(0:5, 5, p=1/4)
set.seed(123)
dbinom(0:5, 5, p=1/4)

## [1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250
## [6] 0.0009765625
```

Basic code chunk options

- echo = FALSE: prevents code, but not the results from appearing in the finished file. This is a useful way to embed figures.
- include = FALSE prevents code and results from appearing in the finished file. R Markdown still runs the code in the chunk, and the results can be used by other chunks.

Figure 3: Simple code chunk setting

Code Chunks with figures

```
```{r p30,echo=F}
par(mfrow=c(2,2))
plot(0:5, dbinom(0:5, 5, 1/4), type="h", xlab="y",
 ylab="P(y)",col="red", lwd=2)
plot(0:100, dbinom(0:100, 100, 1/4), type="h", xlab="y",
 ylab="P(y)", col="red", lwd=2)
pbinom(2, 5, 1/4)
[1] 0.8964844
 4.0
 0.3
 90.0
 3
 0.2
 0.1
 0.0
 2
 0
 20
 40
 60
 80
 100
```

# More figure code chunk options

```
```{r p31,echo=FALSE,fig.cap= "This is a figure caption", out.width='0.7\\textwidth'}
plot(0:100, dbinom(0:100, 100, 1/4), type="h", xlab="y",
    ylab="P(y)", col="red", lwd=2)
...
```


Figure 4: This is a figure caption.

Muliple figures with captions

Only supported in PTEXpdf output, requires LaTeX package subfig
 ""{r, fig.cap='Combine multiple plots with subcaptions', fig.subcap=c('F1', 'F2', 'F3', 'F4'), fig.ncol = 4, out.width = "25%", fig.align = 'center'} plot(0:5, 5, 1/4), type="h", xlab="y",ylab="P(y)",col="red", lud=2) plot(0:100, dbinom(0:100, 100, 1/4), type="h", xlab="y",ylab="P(y)", col="red", lud=2)

```
ploc(0:5, dbinom(0:5, 5, 1/4), type="h", xlab="y",ylab="P(y)",col="red", lud=2)
plot(0:100, dbinom(0:100, 100, 1/4), type="h", xlab="y",ylab="P(y)", col="red", lud=2)
plot(cars, pch = 19)
boxplot(Sepal.Width - Species, data = iris)
...
```


Figure 5: Combine multiple plots with subcaptions

Tables

- knitr::kable function format R output into tables.
- format="latex" should be consistent with your file.

Table 1: Example from Lec4 page 4

method	X	n	mean	lower	upper
agresti-coull	4	400	0.01	0.0029	0.0264
exact	4	400	0.01	0.0027	0.0254
lrt	4	400	0.01	0.0031	0.0231
wilson	4	400	0.01	0.0039	0.0254

```
```{r,out.width='0.5\\textwidth'}
library(binom)
knitr::kable(binom.confint(x=4, n=400, conf.level=.95, methods =c("ac","wilson", "lrt","exact")),
format="latex",digits=4,caption = 'Example from Lec3 page 10')
...
```