Categorical predictors

Stat 230

April 15 2022

Overview

Today:

- Indicator variables
- No interaction model
- Interaction model
- Model interpretation

MLR Variables

- Y = quantitative response
- $x_1, \ldots, x_p : p$ explanatory (predictor) variables
 - \circ X_j can be *either* quantitative or categorical
 - Today: adding and interpreting categorical predictors

Quantitative predictors

- Quantitative predictor effects on Y are interpreted by quantitative changes: How does the mean response change for
 - a one unit increase in x
 - \circ a 10% reduction in x
- In a "basic" model (e.g. no interactions, polynomial terms, etc)
 - \circ any one unit increase in x_j results in a eta_j change in $\mu_{y|x}$

Categorical predictors

Categorical predictor effects on Y are interpreted by changing the level of the categorical variable: How does the mean response differ when

- comparing level "A" to level "B"
- comparing level "A" to level "C"

In a "basic" model (e.g. no interactions, polynomial terms, etc)

- we don't assume that the difference in $\mu_{y|x}$ is the same for all level combinations
- the mean difference between levels "A" and "B" is not necessarily the same as the difference between levels "A" and "C"

Palmerpenguins dataset

```
library(palmerpenguins) # package hosting penguins data
library(dplyr) # package for data wrangling
penguins %>% glimpse() # get a glimpse of your data
```

```
Rows: 344
Columns: 8
$ species
                   <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adelie
$ island
                    <fct> Torgersen, Torgersen, Torgersen, Torgerse...
$ bill_length_mm
                   <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, ...
$ bill_depth_mm
                  <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, ...
$ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186...
$ body_mass_g
                   <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, ...
$ sex
                   <fct> male, female, female, NA, female, male, female, male...
$ year
                   <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007...
```

Indicator variables

Categorical variables are represented in regression models as **indicator** (aka dummy) variables

- entries are either "1" or "0"
- a "1" indicates one particular level
- if we have k levels, we need k-1 indicator variables

species	indicator_Chinstrap	indicator_Gentoo
Adelie	0	0
Gentoo	0	1
Adelie	0	0
Chinstrap	1	0
Chinstrap	1	0
• • •	• • •	•••

Indicator variables

species	indicator_Chinstrap	indicator_Gentoo
Adelie	0	0
Gentoo	0	1
Adelie	0	0
Chinstrap	1	0
Chinstrap	1	0
• • •	• • •	•••

- The baseline level is the level that doesn't have an indicator variable
- Adelie is the baseline level in penguins example
- R will automatically create indicator variables when using a factor or character variable in an lm
- In R, the baseline level is the first level of a variable with order usually determined alphabetically

Mean function without interaction (parallel lines model)

$$\mu_{\text{mass}|x} = \beta_0 + \beta_1 \text{ bill } + \beta_2 \text{ speciesChinstrap } + \beta_3 \text{ speciesGentoo}$$

Mean function for Adelie

$$egin{aligned} \mu_{ ext{mass} \, | \, ext{bill} \, , \, ext{Adelie}} &= eta_0 + eta_1 \, \, ext{bill} \, + eta_2(0) + eta_3(0) \ &= eta_0 + eta_1 \, \, ext{bill} \end{aligned}$$

Mean function for Chinstrap

$$\mu_{ ext{mass } | ext{ bill }, ext{ Chinstrap }} = eta_0 + eta_1 ext{ bill } + eta_2(1) + eta_3(0)$$

$$= eta_0 + eta_2 + eta_1 ext{ bill }$$

Mean function for Gentoo

$$egin{aligned} \mu_{ ext{mass} \mid ext{bill} \;, \; ext{Gentoo}} &= eta_0 + eta_1 \; ext{bill} \; + eta_2(0) + eta_3(1) \ &= eta_0 + eta_3 + eta_1 \; ext{bill} \end{aligned}$$

Example: Penguins

- β_1 : effect of bill length on mass, holding species fixed
- β_2 : holding bill length fixed, β_2 is the difference in mean mass between Chinstrap and Adelie

$$\mu_{
m mass \, | \, \, Chinstrap \,} - \mu_{
m mass \, | \, Adelie \,} = eta_2$$

• β_3 : holding bill length fixed, β_3 is the difference in mean mass between Gentoo and Adelie

$$\mu_{
m mass \, | \, \, Gentoo} \, - \mu_{
m mass \, | \, \, Adelie} \, = eta_3$$

• $\beta_2-\beta_3$: holding bill length fixed, $\beta_2-\beta_3$ is the difference in mean mass between Chinstrap and Gentoo

$$\mu_{
m mass \, | \, Chinstrap} - \mu_{
m mass \, | \, \, Gentoo} = eta_2 - eta_3$$

Visualizing the fitted parallel lines (No interaction!)

```
library(moderndive)
peng_parallel_lm <- lm(body_mass_g ~ bill_length_mm
peng_parallel_points <- get_regression_points(peng_p
ggplot(peng_parallel_points,
   aes(bill_length_mm, body_mass_g, color = species))
   theme(legend.position = "bottom") +
   geom_point() +
   geom_line(aes(y = body_mass_g_hat), size = 1) +
   labs(title = "Regression of mass on bill length and
theme(plot.title = element_text(hjust=0.5, size=9, f</pre>
```


Example: Penguins

Example: Penguins

Does the effect of bill length on body mass differed by species?

 If yes, then we need an interaction to create separate lines for each species!

$$\mu_{\text{mass} | x} = \beta_0 + \beta_1 \text{ bill } + \beta_2 \text{ speciesChinstrap } + \beta_3 \text{ speciesGentoo}$$
 $+ \beta_4 \text{ bill } \times \text{ speciesChinstrap } + \beta_5 \text{ bill } \times \text{ speciesGentoo}$

Mean function for Adelie

$$egin{aligned} \mu_{ ext{mass} \mid x} &= eta_0 + eta_1 ext{ bill } + eta_2(0) + eta_3(0) + eta_4 bill imes (0) + eta_5 bill imes (0) \ &= eta_0 + eta_1 ext{ bill } \end{aligned}$$

Mean function for Chinstrap

$$egin{align} \mu_{ ext{mass} \mid x} &= eta_0 + eta_1 ext{ bill } + eta_2(1) + eta_3(0) + eta_4 bill imes (1) + eta_5 bill imes (0) \ &= eta_0 + eta_2 + (eta_1 + eta_4) ext{ bill }
onumber \end{aligned}$$

Mean function for Gentoo

$$egin{aligned} \mu_{mass|x} &= eta_0 + eta_1 ext{ bill } + eta_2(0) + eta_3(1) + eta_4 bill imes (0) + eta_5 bill imes (1) \ &= eta_0 + eta_3 + (eta_1 + eta_5) ext{ bill } \end{aligned}$$

- Effect of bill length on mass (slope) depends on species
 - β_1 : effect of bill length on mass for Adelie (baseline)
 - \circ $\beta_1 + \beta_4$: effect of bill length on mass for Chinstrap
 - \circ $\beta_1 + \beta_5$: effect of bill length on mass for Gentoo

- Difference between mean mass between species depends on bill length
- Holding bill length fixed, $eta_2 + eta_4 bill$ is the difference in mean mass between Chinstrap and Adelie

$$\mu_{ ext{mass} \mid ext{Chinstrap}} - \mu_{ ext{mass} \mid ext{Adelie}} = [eta_0 + eta_2 + (eta_1 + eta_4) \, bill] - [eta_0 + eta_1 \, ext{bill}]$$

$$= eta_2 + eta_4 bill$$

- Difference between mean mass between species depends on bill length
- Holding bill length fixed, $\beta_3 + \beta_5 bill$ is the difference in mean mass between Gentoo and Adelie

$$\mu_{ ext{mass | Gentoo}} - \mu_{ ext{mass | Adelie}} = \left[eta_0 + eta_3 + \left(eta_1 + eta_5 \right) bill \right] - \left[eta_0 + eta_1 \text{ bill } \right]$$

$$= eta_3 + eta_5 bill$$

- Difference between mean mass between species depends on bill length
- Holding bill length fixed, $(\beta_2 \beta_3) + (\beta_4 \beta_5)$ bill is the difference in mean mass between Chinstrap and Gentoo

$$\mu_{\text{mass | Chinstrap}} - \mu_{\text{mass | Gentoo}} = [\beta_0 + \beta_2 + (\beta_1 + \beta_4) \text{ bill }] - [\beta_0 + \beta_3 + (\beta_1 + \beta_5) \text{ bill }]$$
$$= (\beta_2 - \beta_3) + (\beta_4 - \beta_5) \text{ bill }$$

Fit the model with interaction

```
library(moderndive) # call the library
# can use either y ~ x1*x2 or y ~ x1 + x2 + x1:x2
peng_interaction_lm <- lm(body_mass_g ~ bill_length_mm*species, data = penguins)
peng_table_interaction <- get_regression_table(peng_interaction_lm)
knitr::kable(peng_table_interaction, digis= 4, format = "html")</pre>
```

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	34.883	443.176	0.079	0.937	-836.866	906.632
bill_length_mm	94.500	11.398	8.291	0.000	72.080	116.920
species: Chinstrap	811.260	799.806	1.014	0.311	-761.997	2384.517
species: Gentoo	-158.711	683.191	-0.232	0.816	-1502.582	1185.160
bill_length_mm:speciesChinstrap	-35.382	17.747	-1.994	0.047	-70.291	-0.474
bill_length_mm:speciesGentoo	14.959	15.786	0.948	0.344	-16.093	46.012

```
\mu_{\text{mass}\,|x} = 34.88 + 94.50 \text{ bill } + 811.26 \text{ speciesChinstrap } -158.71 \text{ speciesGentoo} -35.38 \text{ bill } \times \text{ speciesChinstrap } +14.96 \text{ bill } \times \text{ speciesGentoo}
```


05:00

Work through Problem 2 of the categorical predictors worksheet with a neighbor