Randomized and Big Data Algorithms, Approximate Nearest Neighbor Search

Anton Belyy

Roadmap

- Nearest neighbor search
 - Task definition
 - Naïve approaches
 - LSH
- Minwise hashing
 - Motivation
 - Connection to LSH
 - Efficient algorithm

NN and c-ANN search: recap

Given a set P of n points in \mathbb{R}^d (assuming $d\gg 1$) and a metric D, construct a data structure that, given any point q in \mathbb{R}^d ...

Nearest Neighbor Search (NN): return the closest point $p \in P$, such that $p = \operatorname*{argmin} D(p,q)$ $p \in P$

c-Approximate Nearest Neighbor Search (*c*-ANN): return a close point $p \in P$, such that $D(p,q) \le c \min_{p'} D(p',q)$

Naïve Approaches to NN search

```
    Approach #1: Brute Force

      preprocessing time: O(1)
      query time: O(nd)
      space: O(nd)
• Approach #2: Binary Search Tree (d = 1)
      preprocessing time: O(n \log n)
      query time: O(\log n)
      space: O(n)
```

Less Naïve Approaches to NN search

• Voronoi Diagram (d=2)

preprocessing time: $O(n \log n)$

query time: $O(\log n)$

space: O(n)

k-d Tree (small d)

preprocessing time: $O(nd \log n)$

query time: $O(\log n + 2^d)$

space: O(nd) "Curse of dimensionality"

Solve c-ANN with dimensionality reduction?

JL Lemma: Given a set of P points in \mathbb{R}^d , there exists a mapping $f: \mathbb{R}^d \mapsto \mathbb{R}^k$, such that for any two points p_i and p_j , their distance $\left\| p_i - p_j \right\|_2$ is preserved with $(1 \pm \varepsilon)$ multiplicative error, and $k = O\left(\frac{1}{\varepsilon^2}\log n\right)$

Corollary: k-d trees with JL dimensionality reduction has:

preprocessing time: $O\left(n\frac{\log^2 n}{\varepsilon^2}\right)$

query time: $n^{O(1/\epsilon^2)}$

space: $O\left(n\frac{\log n}{\varepsilon^2}\right)$

Sublinear time algorithms for c-ANN

We will show an alternative way of distance-preserving dimensionality reduction from d to k, based on **locality sensitive** hash functions.

Using a simple lookup over multiple hash tables, we will solve c-ANN problem in provably **sublinear** time.

All we need is to construct a locality-sensitive **hash family** for a given metric *D* we care about.

Locality-Sensitive Hashing (LSH) Framework (Indyk and Motwani, 1998)

Definition: A hash family $\mathcal{H} = \{h: U \mapsto S\}$ is called (r_1, r_2, p_1, p_2) -**LSH** for a metric function D, if for all points $x, y \in U$,

1. If
$$D(x,y) \le r_1$$
, then $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \ge p_1$

2. If
$$D(x,y) > r_2$$
, then $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le p_2$

Compare:

2-universal hashes:
$$\Pr[h(x) = h(y)] \le \frac{1}{|S|}$$

Locality sensitive hashes:
$$\Pr[h(x) = h(y)] \propto \frac{1}{D(x,y)}$$

Locality-Sensitive Hashing (LSH) Framework (Indyk and Motwani, 1998)

Exercise (LSH for Hamming distance):

$$\begin{split} & \text{U} = \{0,1\}^{\text{d}}, \ \mathcal{H} = \{h_i \colon h_i(x) = x_i, i \in [d]\}, \\ & D(x,y) = \sum_{i=1}^d [x_i \neq y_i]. \text{ Show that } \mathcal{H} \text{ is } \left(r, cr, 1 - \frac{r}{d}, 1 - \frac{cr}{d}\right) \text{-LSH}. \end{split}$$

(c,r)-ANN: a bridge between LSH and c-ANN

(c,r)-ANN: Given a set P of points in \mathbb{R}^d , construct a data structure for the set P, such that given any point q in \mathbb{R}^d ,

- 1. If there exists $p \in P$ such that $D(p,q) \le r$, return **YES** and *any* point $p' \in P$ with $D(p',q) \le cr$
- 2. If there is no point $p \in P$ s.t. $D(p,q) \le cr$, return **NO**

Using (c,r)-ANN to solve c-ANN

Lemma 1: Given an algorithm for $(1 + \varepsilon, r)$ -ANN (for all r), there exists an algorithm for $(1 + \varepsilon)$ -ANN

Idea: construct (c,r)-ANN instances over increasing radii r:

$$D_{min}$$
, $(1+\varepsilon)D_{min}$, $(1+\varepsilon)^2D_{min}$, ..., D_{max}

Use **binary search** to find the smallest ball that contains points from *P*.

Theorem 1: Given an (r, cr, p_1, p_2) -LSH family for a metric D, there exists an algorithm for (c, r)-ANN, which succeeds with probability > 0 and uses:

preprocessing time: $O(n^{1+\rho} \log n)^*$

query time: $O(n^{\rho} \log n)^*$

space:
$$O(n^{1+\rho} \log n)$$
, where $\rho = \frac{\ln 1/p_1}{\ln 1/p_2} < 1$

We will prove this constructively, i.e. by showing an algorithm.

Corollary: Having LSH for a metric *D* allows for a sublinear (c,r)-ANN search, since $O(n^{\rho} \log n) = o(n)$.

^{*} measured in the number of hash evaluations

Index: for each data point $p \in P$, compute L hash signatures of size K each, using LSH (denoted as $g_i(p)$, $i = 1 \dots L$), and store p in L hash tables $(HT_i, i = 1 \dots L)$, where each HT_i is indexed by $g_i(p)$:

```
for i \in \{1,2,...L\} do // Initialize L empty hash tables HT_i = \text{HashTable}() forall p \in P do // Insert p's into L hash tables for i \in \{1,2,...L\} do HT_i[g_i(p)]. \operatorname{add}(p)
```

Query: given a query q, look for potential c-ANN candidates of q in each of HT_i hash tables. Stop after checking exactly 2L candidates.

```
num_checked = 0 

for i \in \{1,2,...L\} do 

for p' \in HT_i[g_i(q)]: 

num_checked += 1 

if D(p',q) \leq cr: return (YES,p') 

if num_checked == 2L: return NO 

return NO
```

Correctness proof:

We need to show that, given a query q,

- 1) there are at most 2L-1 "false positives" (D(p',q)>cr), but $\exists j': g_{j'}(p')=g_{j'}(q)$
- 2) if there is a "true positive" c-ANN $p \in P$, then $\exists j : g_j(p) = g_j(q)$

With probability > 0

Claim #1: there are at most 2L-1 "false positives" (D(p',q)>cr, but $\exists j':g_{j'}(p')=g_{j'}(q))$ with probability > 1/2

Recall from LSH that, if D(p',q) > cr, then $\Pr_{h \in \mathcal{H}}[h(p') = h(q)] \le p_2$ If we compute K independent hashes, then the probability is $\le p_2^K$ Since we have n points and L hash tables, we can upper bound:

E[false positives]
$$\leq p_2^K \cdot n \cdot L = \frac{1}{n} \cdot n \cdot L = L$$
 (choose $K = \log_{1/p_2} n$)

Then, by Markov's inequality:

$$\Pr[\text{false positives} > 2L] \le \frac{E[\text{false positives}]}{2L} \le \frac{L}{2L} \le \frac{1}{2}.$$

Claim #2: if there is a "true positive" c-ANN $p \in P$, then $\exists j : g_j(p) = g_j(q)$

Recall from LSH that if $D(p,q) \le r$, then $\Pr_{h \in \mathcal{H}}[h(p) = h(q)] \ge p_1$ If we compute K independent hashes, then the probability is at least

$$p_1^K = p_1^{\log_{1/p_2} n} = n^{-\frac{\ln 1/p_1}{\ln 1/p_2}} = n^{-\rho}$$

Considering all L hash tables (and choose $L=n^{\rho}$), we get:

$$1 - (1 - n^{-\rho})^{L} = 1 - (1 - n^{-\rho})^{n^{\rho}} \ge 1 - \frac{1}{e} \ge \frac{1}{2}$$

$$\left(1 - \frac{1}{x}\right)^x < \frac{1}{e}$$

Since both claims are true w.p. at least 0.5, then by the union bound,

$$Pr[(1 \text{ is true}) \text{ AND } (2 \text{ are true})] = 1 - Pr[(1 \text{ is false}) \text{ OR } (2 \text{ is false})]$$

 $\geq 1 - Pr[1 \text{ is false}] - Pr[2 \text{ is false}] > 1 - \frac{1}{2} - \frac{1}{2} > 0.$
\end{proof}

Thus, with a constant probability, we can find c-ANNs by "mapping" to to hash signatures of size K*L, and checking at most 2*L candidates.

How small is this compared to n? n*d?

Discussion

- Computing many hash signatures per data point is a bottleneck of LSH:
 - Theorem 1 requires a signature of size $K * L = O(n^{\rho} \log_{1/p_2} n)$:

$n \setminus (p_1, p_2)$	(0.6, 0.4)	(0.7, 0.3)	(0.8, 0.2)	(0.9, 0.1)
$n = 10^5$	7,702	290	35	8
$n = 10^6$	33,365	687	58	11
$n = 10^7$	140,518	1586	94	15

$$\rho = \frac{\ln 1/p_1}{\ln 1/p_2}$$

- In practice, K*L is around 100..1000
- ⇒ Fast computation of signatures is key to practical success in LSH

Outline

- Nearest neighbor search
 - Task definition
 - Naïve approaches
 - LSH
- Minwise hashing
 - Motivation
 - Connection to LSH
 - Efficient algorithm

Fingerprints for Duplicate Web Page Detection

Parallel to LSH framework, a method to filter duplicate web pages in search results was developed by Andrei Broder

Idea: compute short fingerprints of web pages, such that similar web pages get similar fingerprints, where similarity is measured by Jaccard Index

This could be seen as a special case LSH where *D* = 1 - Jaccard Index

Andrei Broder

Minwise Hashing

Jaccard Index is a similarity function between two sets A and B, defined as

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Lemma 2 (Minwise Hashing): Let A and B be subsets of [d] and $h_{\pi}(X) = \min_{x \in X} \pi(x)$, where π is a permutation of [d]. Then $\Pr_{\pi}[h_{\pi}(A) = h_{\pi}(B)] = J(A, B)$

Corollary: $\mathcal{H} = \{h_{\pi}: \pi \text{ is a permutation of } [d]\}$ is $(r_1, r_2, 1 - r_1, 1 - r_2)$ -LSH for Jaccard distance: D(A, B) = 1 - J(A, B)

Minwise Hashing

Corollary: $\mathcal{H} = \{h_{\pi} : \pi \text{ is a permutation of } [d] \}$ is $(r_1, r_2, 1 - r_1, 1 - r_2)$ -LSH for Jaccard distance: D(A, B) = 1 - J(A, B)

Practical Issues with Minwise Hashing

- Suppose we want to compute m hashes ⇒ need m permutations of [d]
- Storing m permutations naively requires $m \log d! = O(md \log d)$ bits
 - Typically m $\sim 10^2 \dots 10^3$ and $d=2^{32} \dots 2^{64}$, so this is not acceptable
- Later, Broder et al.* showed this to be sufficient for π (for any $X \subseteq [d]$ and any $x \in X$):

$$\Pr_{\pi \sim S_d}[\min\{\pi(X)\} = \pi(x)] = \frac{1}{|X|}$$

	π_1	π_2	π_3	π_4
2	2	3	10	3
3	6	4	4	6
4	15	14	16	15
6	11	10	7	5
7	8	7	5	1

 $d = 2^4$

^{*} Broder, Charikar, and Mitzenmacher. Min-Wise Independent Permutations. 1998

Practical Issues with Minwise Hashing

- In practice, $\pi(x)$ is replaced with a 2-universal hash g(x) for $x \in X$
- There might be collisions, i.e. $g(x_1) = g(x_2)$ when $x_1 \neq x_2$
 - When d is large and $n \ll d$, this can be neglected
- Still, time complexity O(nm), where m is the number of hashes
- In LSH, we need 1000s of hashes ⇒ this is not acceptable

	g_1	g_2	g_3	${g_4}$
2	15	14	12	5
3	1	8	10	15
4	6	3	4	9
6	5	8	9	8
7	3	1	15	7

 $d = 2^4$

Minwise Hashing with Exponential Sampling

- Suppose we replace 2-universal hash g(x) with a random variable $\widetilde{g_x} \sim Exp(1)$ $(x \in X \subset [d])$
- **Lemma 3:** Let A and B be subsets of [d] and $h_{\widetilde{g}}(X) = \min_{x \in X} \widetilde{g}_x$, where \widetilde{g}_x 's are i.i.d. r.v.s drawn from Exp(1). Then $\Pr_{\widetilde{g}}[h_{\widetilde{g}}(A) = h_{\widetilde{g}}(B)] = J(A, B)$

_	$ ilde{g}_1$	${ ilde g}_2$	$ ilde{g}_3$	$\widetilde{\mathcal{G}}_4$
	0.80	1.26	0.92	0.78
3	0.55	1.04	0.58	2.22
	3.31	0.48	1.57	0.75
5	0.84	2.60	0.07	0.09
,	0.02	1.79	1.51	2.04

X

$$d = 2^4$$

Minwise Hashing with Exponential Sampling

Lemma 3: Let A and B be subsets of [d] and $h_{\widetilde{g}}(X) = \min_{x \in X} \widetilde{g}_x$, where \widetilde{g}_x 's are i.i.d. r.v.s drawn from Exp(1). Then $\Pr_{\widetilde{g}}[h_{\widetilde{g}}(A) = h_{\widetilde{g}}(B)] = J(A, B)$

Minwise Hashing with Poisson Processes

- Why sample n values and throw away (n-1) of them, when we can sample the minimum of exponentials directly?
- This can be done with Poisson processes*

Intro to Poisson Processes

Definition:

time

- Continuous time process with parameter λ
- Number of arrivals in disjoint time intervals are independent
- Number of arrivals in interval of duration τ , or N_{τ} , is $Poisson(\lambda \tau)$ -distributed and is the same for any interval $[t_0; t_0 + \tau]$
- For very small intervals δ : $P(k,\delta) \approx \begin{cases} 1-\lambda\delta, & \text{if } k=0\\ \lambda\delta, & \text{if } k=1\\ 0, & \text{if } k>1 \end{cases}$
- Useful property: X_1 time of the 1st arrival is $Exp(\lambda)$ -distributed, i.e. $P(X_1 > t) = e^{-\lambda t}$

Minwise Hashing with Poisson Processes

- Why sample n values and throw away (n-1) of them, when we can sample the minimum of exponentials directly?
- This can be done with Poisson processes*
- Idea: per each $x \in X$, start a Poisson process P_x that generates hash values for all m signatures and stops, when cannot improve current min

Minwise Hashing with Poisson Processes

- Why sample n values and throw away (n-1) of them, when we can sample the minimum of exponentials directly?
- This can be done with Poisson processes*
- Idea: per each $x \in X$, start a Poisson process P_x that generates hash values for all m signatures and stops, when cannot improve current min

1.6

0.8

{2, 3}

2.0

0.1

ProbMinHash algorithm (TKDE 2020)

- Each arrival is labeled with a hash signature label $L \sim Uniform(\{1,2,...,m\})$
- By the **split** property, a *sub-process* where all labels are $L=l_i$ is also Poisson with rate $\frac{\lambda}{m}$
- If $\lambda = m$, then the arrival time of the first event in each sub-process is Exp(1)-distributed

ProbMinHash algorithm (TKDE 2020)

- Processing of the first element takes $O(m \log m)$ time (Coupon Collector argument)
- Processing of the *i*-th element takes $O(\frac{1}{i}m\log m)$ time (due to early stop)
- Overall, the algorithm runs in $O\left(n + \sum_{i=1}^{n} \frac{1}{i} m \log m\right) = O(n + m \log^2 m) \text{ time}$
- Substantial improvement over O(nm) in Broder's method!

```
Output: h_1, h_2, ..., h_m
h_1, h_2, \dots, h_m \leftarrow (\infty, \infty, \dots, \infty)
forall x \in X do
    R \leftarrow \text{new} PRNG \text{ with seed } x
    h \leftarrow R[Exp(1)]
    while h < h_{max} do
        k \leftarrow R[Uniform(\{1,2,...,m\})]
         if h < h_k then
            h_k \leftarrow h
         h_{max} \leftarrow \max(\{h_1, h_2, ..., h_m\})
if h \ge h_{max} then break
h \leftarrow h + R[Exp(1)]
```

Input: X

early stop

Summary

- NN search is challenging in high-dimensional settings
- ullet Exact algorithms scale at least linearly with either n or d
- LSH provides sublinear algorithms for c-ANN search
- Minwise hashing is a conceptually simple way to do c-ANN search with Jaccard distance as a target metric
- Poisson process-based sampling provides a much faster and statistically equivalent way to perform Minwise Hashing