Exercise 1. Let R be a commutative unital ring. Show that

$$M_n = \{ p \in R[x] \mid \deg p < n \}$$

is a submodule of R[x].

Exercise 2. Let M be an R-module, and $I \subset R$ an ideal.

- 1. Show that $IM = \{\sum_{i=1}^n r_i m_i \mid n \in \mathbb{N}, r_i \in I, m_i \in M\}$ is a submodule of M.
- 2. Show that M/IM is an R/I module, with multiplication given by

$$(r+I)(m+IM) = rm + IM$$
 for all $r+I \in R/I, m+IM \in M/IM$.

Exercise 3. Prove the Five Lemma: Let

$$A_{1} \longrightarrow A_{2} \longrightarrow A_{3} \longrightarrow A_{4} \longrightarrow A_{5}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}} \qquad \downarrow^{\alpha_{3}} \qquad \downarrow^{\alpha_{4}} \qquad \downarrow^{\alpha_{5}}$$

$$B_{1} \longrightarrow B_{2} \longrightarrow B_{3} \longrightarrow B_{4} \longrightarrow B_{5}$$

be a commutative diagram of R-module homomorphisms with each row exact

- (a) Show that if α_1 is surjective, and α_2 and α_4 are injective, then α_3 is also injective.
- (b) Show that if α_5 is injective, and α_2 and α_4 are surjective, then α_3 is also surjective.

Exercise 4. Let $f: A \to A$ be an R-module homomorphism. Show that if ff = f, then $A \cong \ker f \oplus \operatorname{Im} f$.

Exercise 5. Let $f: A \to B$ and $g: B \to A$ be R-module homomorphisms. Show that if $gf = \operatorname{id}$, then $B \cong \operatorname{Im} f \oplus \ker g$.