NATIONAL INSTITUTE OF TECHNOLGY PATNA DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

B. Tech: CSE -VIIth semester Course Code: CS7452

Maximum Time: 3 Hours

End Semester Examination Dec-2022 ester Course Name: Recommendation Systems

Max. Marks: 60

Instructions:

1. Attempt all questions.

2. Assume any suitable data, if necessary.

3. Answer all parts of question at the same place.

Q1. Given below a user-item rating matrix (R), where rows represent users and columns represent items.

Users	Items						
		I_1	I_2	I_3	I4		
	U_1	3 1		2 0	1-1	2	
2	U ₂	3 .2	1 -4	2 -3	4 -1	5	5
-	U_3	1 -1	3 1			2	10
↓	U ₄	2 -2.5	5-05	3-25	1-45	5.5	5
▼	U_5	5 -2	4-3	5-2		7	

Entries inside the user-item rating matrix represent ratings of different users. U is the number of users and I is the number of items. When applied SVD to the matrix R then U and V^T matrix are as follows:

U=-0.29 0.335	-0.42 0.26 -	-0.74	$V^{T} = -0.65 -0.10 \ 0.73 \ 0.14$
-0.00 -0.53	-0.69 0.37 0	1.29	
-0.83 -0.34	0.38 0.19 0.	02	0.33 -0.46 0.37 -0.72
0.47 -0.41	0.41 0.51 -0	.42	-0.34 0.68 -0.08 -0.63
0.00 0.55 (0.12 '0.69 0.4	3	0.58 0.55 0.55 (0.19

Consider only K=3 latent features and apply matrix factorization techniques to generate P (i.e. UxK) and Q^T (i.e. KxI) matrix. Generate the predicted rating of User 3 (U₃) for Item 3 (I₃). Consider the biases of users and items while generating the predicted rating. [CO1, CO3] [L2, L3] 15 marks

- Q2. a. According to *Burke*, what are the main categories of hybrid recommender system? Explain each in short.

 [CO1, CO3] [L1] 10 marks
 - b. What are the general goals of evaluation design? Explain each in short. [CO3] [L1] 5 marks
- Q3. a. Consider user profiles are represented by vector of five terms, in the user-term (C) matrix, It is shown below.

Users	Items					
		T_1	T ₂	T_3	T ₄	T ₅
	U_1	3	0	2	1	2
	U_2	3	1	2	4	1
	U_3	1	3	0	0	1
↓	U_4	2	5	3	1	2
Martine .	U_5	5	4	5	0	1

Use normalized term frequencies (TF) to generate user vectors, and then find the most similar user to the target user U_I based on the cosine similarity. [CO1, CO3] [L2, L3] 10 marks

- b. How rule based classifiers are used to generate the recommendations for the users. [CO1, CO3] [L1] 5 marks
- Q4. a. What is item based collaborative filtering? How significance weighing is used to deemphasize the importance of the pair of users that have very small number of ratings in common? [CO1, CO3] [L1] 5 marks
- b. Given below a user-item rating matrix (R), where rows represent users and columns represent items.

Users	Item	s —		→	
	8	I_1	I_2	I_3	
- 1	U_1	2		3	
	U_2	5	2		
	U_3	3	3	1	· .
	U_4		2	2	
5					

Use item based collaborative filtering and adjusted cosine similarity, to find the predicted rating of an item I_2 for the target user U_1 . [CO1, CO3] [L2, L3] 10 marks