

Fast Collapsed Gibbs Sampler for Dirichlet Process Gaussian Mixture Models using Rank 1 Cholesky updates

Rajarshi Das

rajarshd@cs.cmu.edu
http://www.cs.cmu.edu/~rajarshd/

c-lab lecture

7th October 2014

template adapted from

https://www.sharelatex.com/templates/presentations/radboud-university-beamer-(version-1)

Rajarshi Das 1 / 49

Overview

- Distributions of interest
- Dirichlet Process
- 3 Finite, Infinite and Dirichlet Process Mixture Models
- Oirichlet Process Gaussian Mixture Models
- 6 Gibbs sampler for DPGMM
- 6 Linear Algebra Crash Course
- Fast Gibbs Sampler for DPGMM
- 8 Results

Rajarshi Das 2 / 49

Overview

- ① Distributions of interest
- ② Dirichlet Process
- 3 Finite, Infinite and Dirichlet Process Mixture Models
- Oirichlet Process Gaussian Mixture Models
- 6 Gibbs sampler for DPGMM
- 6 Linear Algebra Crash Course
- Fast Gibbs Sampler for DPGMM
- 8 Results

Rajarshi Das 3 / 49

Gaussian Distribution

• 2 parameter distribution (μ and σ)

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Rajarshi Das 4 / 49

images from https://en.wikipedia.org/wiki/Normal_distribution

Multivariate Gaussian Distribution

- Multivariate generalization of Gaussian distribution
- μ is a vector and σ becomes covariance matrix Σ

$$f_{\mathbf{x}}(x_1,\ldots,x_k) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

Normal Inverse Wishart

• 4 parameter family $(\mu_0, \kappa_0, \Sigma_0, \nu_0)$

$$\begin{split} \Sigma|\Sigma_0,\nu_0 &\sim & W^{-1}(\Sigma|\Sigma_0,\nu_0) \\ \mu|\mu_0,\kappa_0,\Sigma &\sim & \textit{N}(\mu|\mu_0,\frac{1}{\kappa_0}\Sigma) \\ (\mu,\Sigma) &\sim & \textit{N}(\mu|\mu_0,\frac{1}{\kappa_0}\Sigma)W^{-1}(\Sigma|\Sigma_0,\nu_0) \end{split}$$

Rajarshi Das 6 / 49

Multivariate t

- Multivariate generalization of student's t-distribution
- 3 paramters (μ, Σ, ν)

$$\frac{\Gamma\left[(\nu+p)/2\right]}{\Gamma(\nu/2)\nu^{p/2}\pi^{p/2}\left|\Sigma\right|^{1/2}\left[1+\frac{1}{\nu}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]^{(\nu+p)/2}}$$

Dirichlet Distribution

- A dirichlet distribution is a probability distribution over categorical distributions, parameterized by a vector α of fixed length K.
- $X = \langle x_1, x_2, ..., x_K \rangle, x_i \in [0, 1], \sum_i x_i = 1$, is dirichlet distributed with parameter α if,

Rajarshi Das 8 / 4

Dirichlet Distribution

- A dirichlet distribution is a probability distribution over categorical distributions, parameterized by a vector α of fixed length K.
- $X = \langle x_1, x_2, ..., x_K \rangle, x_i \in [0, 1], \sum_i x_i = 1$, is dirichlet distributed with parameter α if,

pdf

$$p(X|\alpha) = \frac{\Gamma(\sum_{i} \alpha_{i})}{\prod_{k=1}^{K} \Gamma(\alpha_{k})} \prod_{i=1}^{K} x_{i}^{\alpha_{i}-1}$$

Rajarshi Das 9 / 49

Overview

- ① Distributions of interest
- Dirichlet Process
- 3 Finite, Infinite and Dirichlet Process Mixture Models
- 4 Dirichlet Process Gaussian Mixture Models
- 6 Gibbs sampler for DPGMM
- 6 Linear Algebra Crash Course
- Fast Gibbs Sampler for DPGMM
- 8 Results

Rajarshi Das 10 / 49

Dirichlet Process

- A Dirichlet Process (DP) is also a distribution over discrete distributions.
 - This time with no fixed dimensions. In other words the 'K' is not fixed (could be infinite!)
- A DP has 2 parameters
 - \bigcirc base distribution G_0
 - 2 concentration parameter α

Rajarshi Das 11 / 49

Definition

$$G \sim DP(G_0, \alpha)$$

if for any partition $(A_1,, A_K)$ of a measurable space X

$$(G(A_1),....,G(A_K)) \sim Dirichlet(\alpha G_0(A_1),.....,\alpha G_0(A_K))$$

Rajarshi Das 12 / 49

 $^{^2} Image \ from \ http://www.columbia.edu/~jwp2128/Teaching/E6892/papers/mlss2007.pdf$

Example (slide adapted from https://www.cs.cmu.edu/~kbe/dp_tutorial.pdf)

• For example, if the base distribution G_0 is a Gaussian.

• The sampled distribution $G \sim DP(G_0, \alpha)$ would look like

Example

Realizations From the Dirichlet Process Look Like a Used Dartboard.³

 $^{^3{\}rm https://www.ee.washington.edu/techsite/papers/documents/UWEETR-2010-0006.pdf}$

Posterior Predictive distribution of DP

$$\begin{array}{ccc} G & \sim & DP(G_0,\alpha) \\ \theta_1,....,\theta_n & \sim & G \\ \theta_{n+1}|\theta_1,....,\theta_n & \sim & \frac{1}{(\alpha+n)}(\alpha G_0 + \sum_{i=1}^n \delta_{\theta_i}) \end{array}$$

- Also known as Blackwell-MacQueen Urn Scheme
- Has the rich getting richer property
- Chinese Restaurant Process!

Rajarshi Das 15 / 49

Chinese Restaurant Process

4

http://nlp.stanford.edu/~grenager/papers/dp_2005_02_24.ppt

⁴Graphic from

Chinese Restaurant Process

5

http://nlp.stanford.edu/~grenager/papers/dp_2005_02_24.ppt

⁵Graphic from

Chinese Restaurant Process

http://nlp.stanford.edu/~grenager/papers/dp_2005_02_24.ppt

⁶Graphic from

Chinese Restaurant Process

http://nlp.stanford.edu/~grenager/papers/dp_2005_02_24.ppt

⁷Graphic from

Chinese Restaurant Process

http://nlp.stanford.edu/~grenager/papers/dp_2005_02_24.ppt

⁸Graphic from

Overview

- ① Distributions of interest
- Dirichlet Process
- **3** Finite, Infinite and Dirichlet Process Mixture Models
- 4 Dirichlet Process Gaussian Mixture Models
- 6 Gibbs sampler for DPGMM
- 6 Linear Algebra Crash Course
- Fast Gibbs Sampler for DPGMM
- 8 Results

Rajarshi Das 21 / 49

Finite Mixture Models (FMM)

• In FMM, we assume data is generated from K distributions.

$$egin{array}{lll} orall k, heta_k | \lambda & \sim & G_0(\lambda) \ \pi | lpha_0 & \sim & Dir(lpha_0/K, lpha_0/K,, lpha_0/K) \ z_i | \pi & \sim & Discrete(\pi) \ x_i | z_i, \{ heta_k \} & \sim & F(heta_{z_i}) \end{array}$$

Rajarshi Das 22 / 49

Infinite Mixture Models (IMM)

 In Infinite mixture models, we don't know how many mixtures generated the data, so we donot fix a value of K and let the data decide!

Rajarshi Das 23 / 49

Dirichlet Process Mixture Models (DPMM)

$$G \sim DP(G_0, \alpha)$$

 $\forall i, \phi_i \sim G$
 $\forall i, x_i \sim F(\phi_i)$

Rajarshi Das 24 / 49

DPMM and IMM are the same!

• Turns out that IMM are same as DPGMM when $K \to \infty$

$$P(z_i=k|z_{-i})=$$

$$\begin{cases} \frac{n_{i,k}+\frac{\alpha}{K}}{n-1+\alpha} & \text{if } k \text{ is seen before} \\ \frac{\alpha}{n-1+\alpha} & \text{if } k \text{ is new} \end{cases}$$

Rajarshi Das 25 / 49

Overview

- ① Distributions of interest
- Dirichlet Process
- 3 Finite, Infinite and Dirichlet Process Mixture Models
- Oirichlet Process Gaussian Mixture Models
- 6 Gibbs sampler for DPGMM
- 6 Linear Algebra Crash Course
- Fast Gibbs Sampler for DPGMM
- 8 Results

Rajarshi Das 26 / 49

DPGaussianMM

In DPGMM, each table is endowed with a Gaussian distribution.

$$G \sim DP(G_0, \alpha)$$

 $\forall i, \phi_i \sim G$
 $\forall i, x_i \sim F(\phi_i)$

- F is Gaussian distribution.
- if G₀ is a conjugate distribution to F, then inference via Gibbs sampling becomes easy^a.
 - if covariance is fixed, then G_0 is Normal
 - else if both mean and covariance are unknown, then G_0 is Normal Inverse Gamma (univariate) or Normal Inverse Wishart (multivariate)

Rajarshi Das 27 / 49

^aAlgorithm 1,2,3 of Neal(2000)

Overview

- ① Distributions of interest
- Dirichlet Process
- 3 Finite, Infinite and Dirichlet Process Mixture Models
- 4 Dirichlet Process Gaussian Mixture Models
- 6 Gibbs sampler for DPGMM
- 6 Linear Algebra Crash Course
- Fast Gibbs Sampler for DPGMM
- 8 Results

Rajarshi Das 28 / 49

Posterior Inference for DPGMM

- So I believe, that the data has been generated by a Dirichlet Process Mixture Model. Now from the observed data we want to infer the parameters of the distributions which generated the data. (a.k.a Bayesian Inference)
- What are the params of my Posterior distribution?
 - The mean and variances associated with each table.
 - we don't know a priori how many of them are there, btw!
 - The table assignment of each data point (customer).
 - $p(\{z\}, \{\mu, \Sigma\}| \text{ Data, Hyperparams}) = p(\{\mu, \Sigma\}| \text{Hyperparams})$ * $p(\{z\}| \text{Everything})$
 - If the prior of the table params is conjugate to the likelihood, then we can integrate out $\{\mu, \Sigma\}$ collapsing!
 - p({z}| Data, Hyperparams)

Rajarshi Das 29 / 49

- Exact computation of posterior is intractable, however we can use MCMC techniques to sample from posterior distribution.
- Collapsed Gibbs Sampler

$$p(z_i = k|z_{-i}, X, \alpha, \lambda) = p(z_i = k|z_{-i}, \alpha)p(X|z, \lambda)$$

- $p(z_i = k | z_{-i}, \alpha)$ is well defined by CRP.
- $p(X|z,\lambda)$ is the data likelihood. Essentially reduces to computing $p(x_i|x_{-i},z,\lambda)$
- After some math, $p(x_i|x_{-i}, z, \lambda)$ reduces to

$$t_{v_{N-1}-D+1}\left(x_i|\mu_{N-1},\frac{\sum_{N-1}(k_{N-1}+1)}{k_{N-1}(v_{N-1}-D+1)}\right)$$

Rajarshi Das 30 / 49

Gibbs sampler for Inference

- Now that we have analytical form of everything, the Gibbs sampling algorithm becomes
- Randomly initialize customer to tables. Calculate the table params. (μ and Σ)
- For each customer
 - Remove it from the current table. Update the parameters of the table.
 - for each table 1...K
 - Compute prior prob for the customer to sit in that table.
 - Compute posterior predictive likelihood to sit in the table.
 - Multiply them to get $p(z_i = k | z_{-i}, X, \alpha, \lambda)$
 - Normalize the vector of probabilities and sample for a table number. Update the parameters of the table.

Rajarshi Das 31 / 49

Updating the table parameters

- Every table has 2 parameters a μ and Σ matrix (which define a gaussian distribution)
- For conjugacy we have put a NIW $(\mu_0, \Sigma_0, \kappa_0, \nu_0)$ prior on them.
- Since Gaussian and NIW form a conjugate prior, the posterior distribution of μ and Σ also forms a NIW distribution with the following parameters

$$\mu_n = \frac{\kappa_0 \mu_0 + n\bar{x}}{\kappa_0 + n}$$

$$\Sigma_n = \Sigma_0 + \sum_{i=1}^N (x_i - \bar{x})(x_i - \bar{x})^T + \frac{\kappa_0 n}{\kappa_0 + n}(\bar{x} - \mu_0)(\bar{x} - \mu_0)^T$$

$$\kappa_n = \kappa_0 + n$$

$$\nu_n = \nu_0 + n$$

Rajarshi Das 32 / 49

Runtime Analysis

- Lets look at the following code snippet from the Gibbs sampler algorithm
 - for each table 1...K
 - Compute prior prob for the customer to sit in that table.
 - Compute posterior predictive likelihood to sit in the table. (this is a multivariate t-distribution)
 - Computing the density under *t*-distribution requires computing the determinant and inverse of a covariance matrix.
 - Both of these operations are very expensive. $O(D^3)$ operations, for a DXD matrix
 - Therefore the loop takes $O(KD^3)$ operations.

Rajarshi Das 33 / 49

Runtime Analysis -II

- Randomly initialize customer to tables. Calculate the table params. (μ and Σ)
 - for μ O(D) for each table
 - for Σ $O(D^2)$ for each table
 - Also for each Σ
 - Σ^{-1} and $|\Sigma|$ $O(D^3)$
- For the number of iterations you want to run.
- For each customer
 - Remove it from the current table. Update the parameters of the table. O(D) for μ and $O(D^2)$ for Σ
 - for each table 1...K
 - Compute prior prob for the customer to at table. O(1)
 - Compute posterior predictive likelihood to sit in the table.
 O(D²)
 - Multiply them to get $p(z_i = k | z_{-i}, X, \alpha, \lambda)$ O(1)
 - Normalize the vector of probabilities and sample for a table number. Update the parameters of the table. $O(K) + O(D) + O(D^2) + O(D^3)$

Overview

- ① Distributions of interest
- Dirichlet Process
- 3 Finite, Infinite and Dirichlet Process Mixture Models
- Oirichlet Process Gaussian Mixture Models
- 6 Gibbs sampler for DPGMM
- 6 Linear Algebra Crash Course
- Fast Gibbs Sampler for DPGMM
- 8 Results

Rajarshi Das 35 / 49

Linear Algebra Crash Course

 Cholesky decomposition: Decomposition of a symmetric positive definite matrix into the product of a lower triangular matrix and its conjugate transpose.

$$A = LL^{T}$$

$$\begin{pmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{pmatrix} = \begin{pmatrix} 2 & & \\ 6 & 1 & \\ -8 & 5 & 3 \end{pmatrix} \begin{pmatrix} 2 & 6 & -8 \\ 1 & 5 \\ & & 3 \end{pmatrix}$$

• Computing the cholesky decomposition takes $O(D^3)$ time!.

Rajarshi Das 36 / 49

Cholesky updates

- Suppose A is a positive definite matrix with L as its cholesky decomposition.
- Now if we obtain A' from A by an update of the form

$$A' = A + xx^T$$

- then the cholesky decomposition L' of A' can be obtained by an update operation on L. (Rank 1 update)
- Similarly if we have $A = A' xx^T$, then we can perform a Rank1 downdate to get L from L'

37 / 49

Cholesky updates

```
function [L] = cholupdate(L,x)
    p = length(x);
    x = x';
    for k=1:p
        r = sqrt(L(k,k)^2 + x(k)^2);
        c = r / L(k, k);
        s = x(k) / L(k, k);
        L(k, k) = r;
        L(k,k+1:p) = (L(k,k+1:p) + s*x(k+1:p)) / c;
        x(k+1:p) = c*x(k+1:p) - s*L(k, k+1:p);
    end
end
```

• This algorithm is $O(D^2)$!

Rajarshi Das 38 / 49

⁹Image from http://en.wikipedia.org/wiki/Cholesky_decomposition

Nice properties

• |A| can be computed from L by

$$log(|A|) = 2 * \sum_{i=1}^{D} log(L(i,i))$$

• Now lets try to compute $b^T A^{-1} b$

$$b^{T}A^{-1}b = b^{T}(LL^{T})^{-1}b$$

= $b^{T}(L^{-1})^{T}L^{-1}b$
= $(L^{-1}b)^{T}(L^{-1}b)$

• Therefore compute $(L^{-1}b)$ and multiply its transpose with itself

• $(L^{-1}b)$ is the solution of

$$Lx = b$$

• Remember L is a lower triangular matrix, therefore the above equation can be solved very efficiently using forward substitution!

40 / 49

Overview

- Distributions of interest
- Dirichlet Process
- 3 Finite, Infinite and Dirichlet Process Mixture Models
- 4 Dirichlet Process Gaussian Mixture Models
- 6 Gibbs sampler for DPGMM
- 6 Linear Algebra Crash Course
- Fast Gibbs Sampler for DPGMM
- 8 Results

Rajarshi Das 41 / 49

Putting back in perspective

Recall the posterior update equation for covariance matrix

$$\Sigma_{n} = \Sigma_{0} + \sum_{i=1}^{N} (x_{i} - \bar{x})(x_{i} - \bar{x})^{T} + \frac{\kappa_{0}n}{\kappa_{0} + n}(\bar{x} - \mu_{0})(\bar{x} - \mu_{0})^{T}$$

$$= \Sigma_{0} + \sum_{i=1}^{N} x_{i}x_{i}^{T} - (\kappa_{0} + n)\mu_{n}\mu_{n}^{T} + \kappa_{0}\mu_{0}\mu_{0}^{T}$$

Now we can write the above definition recursively as

$$\Sigma_{n} = \Sigma_{n-1} + x_{n}x_{n}^{T} - (\kappa_{0} + n)\mu_{n}\mu_{n}^{T} + (\kappa_{0} + n - 1)\mu_{n-1}\mu_{n-1}^{T}$$
$$= \Sigma_{n-1} + \frac{\kappa_{0} + n}{\kappa_{0} + n - 1}(x_{n} - \mu_{n})(x_{n} - \mu_{n})^{T}$$

• Looks similar to $A' = A + xx^T$?

Putting back in perspective

• Recall pdf of multi-variate t-distribution

$$\frac{\Gamma\left[(\nu+p)/2\right]}{\Gamma(\nu/2)\nu^{p/2}\pi^{p/2}\left|\Sigma\right|^{1/2}\left[1+\frac{1}{\nu}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]^{(\nu+p)/2}}$$

• If we know the cholesky decomposition of Σ , then we can compute $(x - \mu)^T \Sigma^{-1} (x - \mu)$ from L using similar trick shown before for computing $b^T L^{-1} b$

Rajarshi Das 43 / 49

Runtime Analysis -II

- Randomly initialize customer to tables. Calculate the table params. (μ and Σ)
 - for μ O(D) for each table
 - for Σ (do not need to compute Σ)
 - Also for each Σ
 - Σ^{-1} and $|\Sigma|$ $O(D^2)$
- For the number of iterations you want to run.
- For each customer
 - Remove it from the current table. Update the parameters of the table. O(D) for μ and $O(D^2)$ for Σ
 - for each table 1...K
 - Compute prior prob for the customer to at table. O(1)
 - Compute posterior predictive likelihood to sit in the table.
 O(D²)
 - Multiply them to get $p(z_i = k | z_{-i}, X, \alpha, \lambda)$ O(1)
 - Normalize the vector of probabilities and sample for a table number. Update the parameters of the table. $O(K) + O(D) + O(D^2)$

Rajarshi Das 44 / 49

Overview

- ① Distributions of interest
- ② Dirichlet Process
- 3 Finite, Infinite and Dirichlet Process Mixture Models
- Dirichlet Process Gaussian Mixture Models
- **6** Gibbs sampler for DPGMM
- 6 Linear Algebra Crash Course
- Fast Gibbs Sampler for DPGMM
- 8 Results

Rajarshi Das 45 / 49

Speed Test 1

- Just 100 word vectors each of 100 dimensions.
- Both sampler run for 10,20,50,100,500,1000,10000 iterations.

Rajarshi Das 46 / 49

Caveats

- All of these is possible if the prior covariance Σ_0 is positive definite.
- In practice, we often tend to put Identity as Σ_0 , which is positive definite.

47 / 49

Code

- Java Implementation available at https://github.com/rajarshd/DPGMM
- Plan to implement in C++ too.

Rajarshi Das 48 / 49

Acknowledgements

 Thanks to my friend Manzil Zaheer for introducing me to Cholesky decomposition and proving that the covariance update was indeed a rank 1 update.

Rajarshi Das 49 / 49