Modern Convolutional Neural Networks architectures

Nikola Konstantinov Deep Learning with Tensorflow 2017

In this talk

- Present some standard practises for designing modern ConvNets
- 2 Example application of ConvNets: for semantic segmentation

Recap on ConvNets

- Every neuron has a receptive field
- At every convolutional layer, multiple filters that learn different features are applied
- Three types of layers:
 - convolutional
 - pooling
 - fully connected

E.g. AlexNet

Issues with standard ConvNets

- Lots of different design choices, often task-specific
- Lack of a unified framework for building layers
- What are the most important elements of a ConvNet?
- Deep CNNs contain a lot of parameters and are hard/slow to optimize

In this talk

- Designing modern ConvNets
 - Very Deep Learning
 - Fully Convolutional Networks

Semantic Segmentation

Very Deep ConvNets for Large-Scale Image Recognition ¹

Main ideas:

- Is adding more and more layers good for a model?
- Fix all other parameters in the system and check.
- Use smaller receptive fields (3×3) to reduce computation.
- Structure is deliberately designed to be simple (e.g. only ReLu non-linearity, no Local Response Normalization)

Modern ConvNet architectures

Details of the architecture

- Reception field is 3 × 3 with stride of 1
 - Compensate by adding more layers
 - ullet Three convolutional layers achieve an effective receptive field of 7 imes 7
 - This includes more non-linearity
 - Also reduces the number of parameters
- Also include layers with 1×1 receptive fields.

ConvNet Configuration						
A	A-LRN	В	C	D	E	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
input (224 × 224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
maxpool						
FC-4096						
FC-4096						
FC-1000						
soft-max						

Table 2: Number of parameters (in millions).

	Network	A,A-LRN	В	C	D	E
Ī	Number of parameters	133	133	134	138	144

ConvNet config. (Table 11)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train (S)	test (Q)	•	
A	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
E	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

In this talk

- Designing modern ConvNets
 - Very Deep Learning
 - Fully Convolutional Networks

Semantic Segmentation

Striving for Simplicity: The All Convolutional Net²

- Can ConvNets be considered from a more unified perspective?
- A convolutional layer with stride bigger than 1 is similar to pooling
- The network then learns how to perform the dimensionality reduction
- Use global average pooling, instead of fully connected layers

Convolution with stride 2 is like pooling

M	odel
147	ouci

A	В	С			
Input 32 × 32 RGB image					
5×5 conv. 96 ReLU	5 × 5 conv. 96 ReLU	3 × 3 conv. 96 ReLU			
	1 × 1 conv. 96 ReLU	3 × 3 conv. 96 ReLU			
	3 × 3 max-pooling stride 2				
5×5 conv. 192 ReLU	5×5 conv. 192 ReLU	3×3 conv. 192 ReLU			
	1 × 1 conv. 192 ReLU	3×3 conv. 192 ReLU			
3 × 3 max-pooling stride 2					
3 × 3 conv. 192 ReLU					
1×1 conv. 192 ReLU					
1×1 conv. 10 ReLU					
global ave	eraging over 6×6 spatial d	imensions			

10 or 100-way softmax

Model

Wiodel						
Strided-CNN-C	ConvPool-CNN-C	All-CNN-C				
	Input 32 × 32 RGB image					
3 × 3 conv. 96 ReLU	3 × 3 conv. 96 ReLU	3 × 3 conv. 96 ReLU				
3×3 conv. 96 ReLU	3 × 3 conv. 96 ReLU	3 × 3 conv. 96 ReLU				
with stride $r=2$	3 × 3 conv. 96 ReLU					
	3 × 3 max-pooling stride 2	3 × 3 conv. 96 ReLU				
		with stride $r=2$				
3 × 3 conv. 192 ReLU	3 × 3 conv. 192 ReLU	3 × 3 conv. 192 ReLU				
3×3 conv. 192 ReLU	3 × 3 conv. 192 ReLU	3×3 conv. 192 ReLU				
with stride $r=2$	3×3 conv. 192 ReLU					
	3 × 3 max-pooling stride 2	3 × 3 conv. 192 ReLU				
		with stride $r=2$				

CIFAR-10 classification error

Model	Error (%)	# parameters			
without data augmentation					
Model A	12.47%	$\approx 0.9 \mathrm{M}$			
Strided-CNN-A	13.46%	$\approx 0.9 \mathrm{M}$			
ConvPool-CNN-A	10.21 %	$\approx 1.28 \text{ M}$			
ALL-CNN-A	10.30%	$\approx 1.28 \text{ M}$			
Model B	10.20%	$\approx 1 \text{ M}$			
Strided-CNN-B	10.98%	$\approx 1 \text{ M}$			
ConvPool-CNN-B	9.33%	$\approx 1.35 \text{ M}$			
ALL-CNN-B	9.10 %	$\approx 1.35 \text{ M}$			
Model C	9.74%	$\approx 1.3 \mathrm{M}$			
Strided-CNN-C	10.19%	$\approx 1.3 \mathrm{M}$			
ConvPool-CNN-C	9.31%	$\approx 1.4 \mathrm{M}$			
ALL-CNN-C	9.08 %	$\approx 1.4 \mathrm{M}$			

In this talk

- Designing modern ConvNets
 - Very Deep Learning
 - Fully Convolutional Networks

Semantic Segmentation

Semantic segmentation

Fully Convolutional Nets can give spatial output

Tuesday 19th December, 2017

Upsampling

Noh et al. 2015

Transposed convolution (deconvolution)

Deconvolution networks

Links to shallow layers help to recover local information

Tuesday 19th December, 2017

Summary

- Using 3×3 convolutions reduces computation and (often) works
- The deeper the network, the better
- Simple designs are often sufficient
- Fully Convolutional Nets are useful for encoding spatial information
- Can use connections from multiple previous layers
- But ... deep networks are hard to train

Thank you for your attention!

References I

- Krizhevsky, A. and G. Hinton (2009). "Learning multiple layers of features from tiny images". In:
- Krizhevsky, A., I. Sutskever, et al. (2012). "Imagenet classification with deep convolutional neural networks". In: Advances in neural information processing systems, pp. 1097–1105.
- Long, J. et al. (2015). "Fully convolutional networks for semantic segmentation". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440.
- Noh, H. et al. (2015). "Learning deconvolution network for semantic segmentation". In: *Proceedings of the IEEE International Conference on Computer Vision*, pp. 1520–1528.

References II

- Ronneberger, O. et al. (2015). "U-net: Convolutional networks for biomedical image segmentation". In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 234–241.
- Russakovsky, O. et al. (2015). "ImageNet Large Scale Visual Recognition Challenge". In: International Journal of Computer Vision (IJCV) 115.3, pp. 211-252. DOI: 10.1007/s11263-015-0816-y.
- Simonyan, K. and A. Zisserman (2014). "Very deep convolutional networks for large-scale image recognition". In: arXiv preprint arXiv:1409.1556.
- Springenberg, J. T. et al. (2014). "Striving for simplicity: The all convolutional net". In: arXiv preprint arXiv:1412.6806.