Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Извекова Мария Петровна

Содержание

Цель работы	5
Задание	6
Постановка задачи	7
Выполнение лабораторной работы	8
Построение модели	8
Оптимизация модели двух стратегий обслуживания	12
Выводы	23
Библиография	24

Список иллюстраций

1	Построение модели 1	9
2	Отчет модели 1	10
3	Отчет модели 1	10
4	Построение модели для второй стратегии	11
5	Отчет модели второй стратегии	11
6	Первая оптимизация для первой модели	13
7	Отчет первой оптимизации	14
8	Вторая оптимизация для первой модели	15
9	Отчет второй оптимизации	16
10	Отчет второй оптимизации	16
11	Третья оптимизация для первой модели	17
12	Отчет третий оптимизации	18
13	Отчет третий оптимизации	19
14	Первая оптимизация для второй модели	20
15	Отчет первой оптимизации второй модели	20
16	Вторая оптимизация для второй модели	21
17	Отчет второй оптимизации второй модели	22

Список таблиц

1	Сравнение стратегий	{#tbl:strategy}:	12	
---	---------------------	------------------	----	--

Цель работы

Построить 2 модели с двумя очередями обслуживания и с одной очередью обслуживания в gpss. обозначить оптимальное количество пропускных пунктов.

Задание

Построить модели: 1. модель с двумя очередями обсуживания 2. с одной очередью обслуживания 3. Сделать сравнение двух моделей и обозначить оптимальное количество пропускных пунктов

Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей: 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска; 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: $\mu = 1$, 75 мин, a = 1 мин, b = 7 мин

Выполнение лабораторной работы

Построение модели

Целью моделирования является определение:

характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска; наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля; оптимального количества пропускных пунктов. В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

коэффициенты загрузки системы; максимальные и средние длины очередей; средние значения времени ожидания обслуживания. Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. [-@fig:001]).

```
GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obs1_2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obs1_1 ; длина оч. 1= длине оч. 2
TRANSFER 0.5, Obsl_1, Obsl_2 ; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punktl ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punktl ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE : автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 1: Построение модели 1

После запуска симуляции получим отчёт (рис. [-@fig:002]).

	субба	ота, мая 24, 20	25 11:01:44		
	START TIME	END TI	ME BLOCKS	FACILITIES	STORAGES
	0.000	10080.00			
	NAME		VALUE		
	OBSL_1		5.000		
	OBSL_2 OTHER1		11.000 10000.000		
	OTHER2		10000.000		
	PUNKT1		10001.000		
	PUNKT2		10003.000		
	TOWNIZ	•	10002.000		
LABEL		BLOCK TYPE			
		GENERATE	5853	-	0
		TEST		0	
		TEST	4162	0	0
	4	TRANSFER QUEUE	2431	0 387	0
OBSL_1			2431 2928		
		SEIZE	2541	0	
		DEPART	2541	0	0
		ADVANCE RELEASE	2541 2540	1 0	0
		KELEASE TERMINATE		0	0
OBSL 2		QUEUE		388	
0551_2		SEIZE	2537	0	
		DEPART	2537	0	
		ADVANCE	2537	1	0
		RELEASE	2536	0	0
		TERMINATE			0
		GENERATE	1	0	
		TERMINATE	1	0	-
FACILITY	ENTRIES	UTIL. AVE.	TIME AVAIL.	OWNER PEND	INTER RETRY DELAY
PUNKT2					
PUNKT1	2541	0.997	3.955 1	5079 0	0 0 388 0 0 387

Рис. 2: Отчет модели 1

QUEUE OTHER1		MAX CONT. 393 387	ENTRY 2928		AVE.CONT	. AVE.TIME 644.107	AVE.(-0)	
OTHER2		393 388				644.823		_
		222	3.0071					
FEC XN	PRI	BDT	ASSEM		r next	PARAMETER	VALUE	
5855	0	10081.102	5855	0	1			
5079	0	10083.517	5079	8	9			
5078	0	10083.808	5078	14	15			
	0	20160.000	5856	0	17			

Рис. 3: Отчет модели 1

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. [-@fig:004], [-@fig:005]).

```
punkt STORAGE 2
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди 1
ENTER punkt; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt; освобождение пункта 1
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 4: Построение модели для второй стратегии

	START	TIME	END TIME	BLOCKS F	FACILITIES	STORAGES
	0	.000	10080.000	9	0	1
	NAM	Ε		VALUE		
	OTHER			001.000		
	PUNKT		100	000.000		
LABEL		LOC BLO	CK TYPE I	ENTRY COUNT	CURRENT CO	OUNT RETRY
		1 GEN	ERATE	5719	0	0
		2 QUE	JE	5719	668	0
		3 ENT	ER	5051	0	0
		4 DEP	ART	5051	0	0
		5 ADV	ANCE	5051	2	0
		6 LEA	/E	5049	0	0
		7 TERI	MINATE	5049	0	0
		8 GENI	ERATE	1	0	0
		9 TERI	MINATE	1	0	0
OUEUE		MAY CONT	PHTDV PHTDV	(O) AUE CON	יד אטיב דדאו	E AVE.(-0) RETRY
OTHER						607.562 0
OTHER		000 000	3/13	311.100	007.130	007.302
STORAGE		CAP. REM.	MIN. MAX.	ENTRIES AVI	. AVE.C. U	JTIL. RETRY DELAY
PUNKT		2 0	0 2	5051 1	2.000	1.000 0 668
FEC XN			ASSEM CURI		PARAMETER	VALUE
	0	10080.466) 1		
5051	0		5051			
5052	0	10083.431	5052			
5722	0	20160.000	5722 (8		

Рис. 5: Отчет модели второй стратегии

Составим таблицу по полученной статистике (табл. [-@tbl:strategy]).

Таблица 1: Сравнение стратегий {#tbl:strategy}:

	стратегия 1	стратегия 1	стратегия 1 в	стратегия
Показатель	пункт 1	пункт 2	целом	2
Поступило	2928	2925	5853	5719
автомобилей				
Обслужено	2540	2536	5076	5049
автомобилей				
Коэффициент	0,997	0,996	0,9965	1
загрузки				
Максимальная	393	393	786	668
длина очереди				
Средняя длина	187,098	187,114	374,212	344,466
очереди				
Среднее время	644,107	644,823	644,465	607,138
ожидания				

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95]; среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3; среднее время ожидания обслуживания не должно превышать 4 мин. Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. [-@fig:006]).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди 1

SEIZE punkt; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

RELEASE punkt; освобождение пункта 1

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; ренерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

ТЕRMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 6: Первая оптимизация для первой модели

После симуляции получим следующий отчет (рис. [-@fig:007]).

Рис. 7: Отчет первой оптимизации

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. [-@fig:008]- [-@fig:010]).

```
TRANSFER 0.33,go,Obsl_3 go TRANSFER 0.5,Obsl_1,Obsl_2 ; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl 1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punktl ; занятие пункта 1
DEPART Otherl ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punktl ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl_2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3; обслуживание на пункте 2
RELEASE punkt2; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 3
Obsl 3 QUEUE Other3 ; присоединение к очереди 3
SEIZE punkt3 ; занятие пункта 3
DEPART Other3 ; выход из очереди 3
ADVANCE 4,3 ; обслуживание на пункте 3
RELEASE punkt3 ; освобождение пункта 3
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
               ; указывающего на окончание рабочей недели
                ; (7 дней \times 24 часа \times 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 8: Вторая оптимизация для первой модели

	START T	IME 000		END 10080	TIME .000	BLOCKS 23	FAC	ILITIE 3	S S	TORAG 0	ES	
	NAME					VALUE						
	GO					3.000						
	OBSL 1					4.000						
	OBSL 2					10.000						
	OBSL 3					16.000						
	OTHER1					04.000						
	OTHER2					00.000						
	OTHER3				100	02.000						
	PUNKT1				100	05.000						
	PUNKT2				100	01.000						
	PUNKT3				100	03.000						
LABEL		TOC	BIOCI	Z TVDF	-	NTRY CO	INT C	HODENT	COIII	NT DE	TDV	
TAULU		1	GENE	RATE	E.	5547		OWENI		NI KE		
		2	TRAN	SFER		5547			0		0	
GO		3	TRANS	RATE SFER SFER		3682			0		0	
OBSL 1		4	QUEU	Ξ.		1853			1		0	
		5	SEIZI	Ξ		1852			0		0	
		6	DEPA	E E RT		1852			0		0	
		7	ADVA	NCE		1852			i		0	
						1851			0		0	
		9	TERM	ASE INATE		1851			0		0	
BSL 2		10	QUEU	Ξ		1829			0		0	
_			SEIZE			1829			0		0	
		12				1829			0		0	
		13				1829			0		•	
		14	RELEA	ASE		1829			0			
		15	TERM:	INATE		1829			0		0	
OBSL_3		16	QUEU	Ε		1865			3		0	
			SEIZI			1862			0		0	
		18				1862			0		U	
		19				1862			1		0	
		20				1861			0		0	
				INATE		1861			0		•	
		22				1			0		-	
		23	TERM.	INATE		1			U		0	
FACILITY	E	NTRIES	UTI	L. AV	E. TII	ME AVAI	L. OW	NER PE	ND I	NTER	RETRY	DELAY
PUNKT2				717	3.	952 1	-	0	0	0	0	0
PUNKT3		1862	0.	740	4.	006 1	5	534	0	0	0	3
PUNKT1		1852			3.	952 1 006 1 957 1	5	546	0	0	0	1
OUEUE		MAX C	ONT.	ENTRY F	NTRY	0) AVE.	CONT	AVE T	TME	AVE	C. (=0)	RETEV
OTHER2		11	0	1829	508	J.	112	6.	126	AVE	8.482	0
OTHER3		13	3	1865	513	1.	134	6.	132		8.458	0

Рис. 9: Отчет второй оптимизации

FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	VALUE	
5549	0	10081.799	5549	0	1			
5534	0	10082.440	5534	19	20			
5546	0	10085.099	5546	7	8			
5550	0	20160.000	5550	0	22			

Рис. 10: Отчет второй оптимизации

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. [-@fig:011], [-@fig:013]).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TRANSFER 0.5, a, b
a TRANSFER 0.5, Obsl 1, Obsl 2
b TRANSFER 0.5, Obs1_3, Obs1_4
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl 1 QUEUE Otherl ; присоединение к очереди 1
SEIZE Punktl ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE Punktl ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2 ; присоединение к очереди 2
SEIZE Punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE Punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 3
Obsl_3 QUEUE Other3 ; присоединение к очереди 3
SEIZE Punkt3 ; занятие пункта 3
DEPART Other3 ; выход из очереди 3
ADVANCE 4,3 ; обслуживание на пункте 3
RELEASE Punkt3 ; освобождение пункта 3
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 4
Obsl 4 QUEUE Other4 ; присоединение к очереди 4
SEIZE Punkt4 ; занятие пункта 4
DEPART Other4 ; выход из очереди 4
ADVANCE 4,3 ; обслуживание на пункте 4
RELEASE Punkt4 ; освобождение пункта 4
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 11: Третья оптимизация для первой модели

суббота,	мая 24, 2025 12:35:5	6	
START TIME	END TIME BLOCKS	FACILITIES	STORAGES
0.000	10080.000 30	4	0
NAME	VALUE		
A	3.000		
В	4.000		
OBS1 1	5.000		
OBS1 2	11.000		
OBS1 3	17.000		
OBS1 4	23.000		
OTHER1	10006.000		
OTHER2	10004.000		
OTHER3	10002.000		
OTHER4	10000.000		
PUNKT1	10007.000		
PUNKT2	10005.000		
PUNKT3	10003.000		
PUNKT4	10001.000		
10111111	200021000		

Рис. 12: Отчет третий оптимизации

LABEL	LOC BL	OCK TYPE	ENTRY	COUNT	CURRENT	COUNT	RETRY	
	1 GE	NERATE	56	22		0	0	
	2 TR	ANSFER		22		0	0	
A	2 TR 3 TR 4 TR 5 QU	ANSFER	28	31		0	0	
В	4 TR	ANSFER	27	91		0	0	
OBS1_1	5 QU	EUE	14	65		0	0	
	6 SE	IZE	14	65		0	0	
	7 DE	PART	14	65		0	0	
		VANCE	14	65		1	0	
		LEASE	14	64		0	0	
		RMINATE	14	64		0	0	
OBS1_2	_	EUE	13	66		0	0	
		IZE	13	66		0	0	
	13 DE	PART	13			0	0	
		VANCE	13	66		0	0	
		LEASE	13			0	0	
		RMINATE	13			0	0	
OBS1_3	_	EUE	13			0	0	
		IZE	13			0	0	
		PART	13			0	0	
		VANCE	13			0	0	
		LEASE	13			0	0	
		RMINATE	13			0	0	
OBS1_4		EUE	14			0	0	
		IZE		13		0	0	
		PART		13		0	0	
	26 AD	VANCE	14			1	0	
	27 RE	LEASE	14			0	0	
		RMINATE		12		0	0	
	29 GE 30 TE	NERATE		1		0	0	
	30 TE	RMINATE		1		0	0	
	ENTRIES U				ornien ne		D DEED!	
FACILITY					5623			
PUNKT4 PUNKT3	1413 1378	0.545	3.989				0	
PUNKT2		0.545						
PUNKT1		0.541	3.993	1	0 5621	0 0		0
PUNKII	1402	0.554	4.018	1	5021	0 0	U	U
QUEUE	MAX CONT	. ENTRY EN	TRY(0) A	VE.CON	T. AVE.T	IME A	VE. (-0)	RETRY
OTHER4	7 0						5.325	
OTHER3	8 0	1378		0.345		527	4.816	
OTHER2	6 0	1378 1366	625	0.363		676	4.934	
OTHER1	6 0	1465	590				5.667	
								-
FEC XN PRI	BDT	ASSEM	CURRENT	NEXT	PARAMET	ER V	ALUE	
5624 0	10080.041	5624	0	1				
5621 0	10080.398	5621	8	9				
5623 0	10082.255	5623	26	27				
5625 0	20160.000		0	29				

Рис. 13: Отчет третий оптимизации

В этом случае все критерии выполнены, поэтому 4 пункта являются оптимальным количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. [-@fig:014], [-@fig:015]).

```
🔣 Untitlea Model 2
 punkt STORAGE 3;
 GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
 ; моделирование работы пункта 1
 QUEUE Other ; присоединение к очереди
 ENTER punkt ; занятие пункта
 DEPART Other ; выход из очереди
 ADVANCE 4,3 ; обслуживание на пункте
 LEAVE punkt ; освобождение пункта
 TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
 GENERATE 10080 ; генерация фиктивного транзакта,
 ; указывающего на окончание рабочей недели
 ; (7 дней х 24 часа х 60 мин = 10080 мин)
 TERMINATE 1 ; остановить моделирование
 START 1 ; запуск процедуры моделирования
```

Рис. 14: Первая оптимизация для второй модели

```
GPSS World Simulation Report - Untitled Model 2.31.1
                      суббота, мая 24, 2025 12:39:34
                                END TIME BLOCKS FACILITIES STORAGES 10080.000 9 0 1
                NAME
            OTHER
                                               10001.000
                         LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
                                               ENTRY COUNT CUR
5683
5683
5683
5683
5683
5680
5680
LABEL
                                GENERATE
                              QUEUE
ENTER
                               DEPART
                              ADVANCE
LEAVE
TERMINATE
GENERATE
                             GENERATE
TERMINATE
                    MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 12 0 5683 2521 1.063 1.885 3.388 0
OUEUE
OTHER
STORAGE
                       CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 3 0 0 3 5683 1 2.243 0.748 0 0
                                       ASSEM CURRENT NEXT PARAMETER VALUE
FEC XN PRI
                          BDT
                      BDT A5521
10080.434 5680
10080.631 5683
10082.068 5685
10085.592 5684
20160.000 5686
 5680 0
5683 0
5685 0
5684 0
5686 0
                                      5680 5
5683 5
                                                             6
```

Рис. 15: Отчет первой оптимизации второй модели

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. [-@fig:016], [-@fig:017]).

```
рипкт STORAGE 4;

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; моделирование работы пункта 1
QUEUE Other; присоединение к очереди
ENTER punkt; занятие пункта
DEPART Other; выход из очереди
ADVANCE 4,3; обслуживание на пункте
LEAVE punkt; освобождение пункта
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 16: Вторая оптимизация для второй модели

	GPS	S World Sim	ulation R	eport -	Untitl	ed Model 3.1	1.1	
		суббота,	мая 24, 2	025 12:4	4:49			
	START	TIME	END T	IME BLO	CKS F	ACILITIES S	STORAGES	
						0		
	NAM	E		VALU	E			
	OTHER			10001.0	00			
	PUNKT			10000.0	00			
LABEL		LOC BLO	CK TYPE			CURRENT COL		
		1 GEN	ERATE	57			0	
			UE				0	
			ER				0	
		4 DEP 5 ADV	ART	57	19	0		
			ANCE VE		19 15	4	0	
							0	
			MINATE ERATE	31	1	0		
			MINATE		1	0	0	
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-	· ·	· ·	
QUEUE							AVE.(-0) R	
OTHER		7 0	5719	4356	0.194	0.341	1.431	0
STORAGE		CAP REM	MIN MAX	FNTRT	FS AVI.	AVE C III	IL. RETRY DE	T.AV
PUNKT							.563 0 (
					_			-
						PARAMETER	VALUE	
	0	10082.346	5718	5	6			
5717	0	10082.412 10083.393 10084.393	5717	5	6			
5719	0	10083.393	5719	5	6			
5721	0	10084.393	5721	0	1			
		10085.162						
5722	0	20160.000	5722	0	8			
I								

Рис. 17: Отчет второй оптимизации второй модели

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случе второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

Выводы

В результате была реализована с помощью gpss:

- 1. модель с двумя очередями обсуживания
- 2. с одной очередью обслуживания
- 3. Сделать сравнение двух моделей и обозначить оптимальное количество пропускных пунктов

Библиография

- 1. Королькова А. В., Кулябов Д. С. Модели обработки заказов
- 2. Королькова А. В., Кулябов Д. С. Имитационное моделирование в GPSS