

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 764 861 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 26.03.1997 Bulletin 1997/13

(51) Int CI.⁶: **G02B 6/28**, G02B 6/42, G03B 21/00

(11)

- (21) Application number: 96306878.8
- (22) Date of filing: 20.09.1996
- (84) Designated Contracting States: DE FR GB IT
- (30) Priority: 20.09.1995 US 530651
- (71) Applicant: GENERAL ELECTRIC COMPANY Schenectady, NY 12345 (US)
- (72) Inventors:
 - Allen, Gary Robert Chesterland, Ohio 44026 (US)

- Cassarly, William James
 Lyndhurst, Ohio 44124 (US)
- Davenport, John Martin Lyndhurst, Ohio 44124 (US)
- Hansler, Richard Lowell Pepper Pike, Ohio 44124 (US)
- (74) Representative: Goode, Ian Roy et al GE London Patent Operation, Essex House, 12/13 Essex Street London WC2R 3AA (GB)

(54) Optical coupling systems with bend

(57)Disclosed are optical couplers (10) and optical coupling systems for coupling a source of non-coherent light to a light distribution harness, wherein the couplers are polygonal in cross section to increase light mixing. The couplers have inlet (12) and outlet (14) arms and an intermediate bend region (16A) configured to achieve compactness and minimal light loss through the bend region. In one embodiment, the bend region is an integral part of the coupler, with the inlet arm having a different cross-sectional dimension (12A) from the outlet arm (14A) in such manner that substantially all light (30) directed from the inlet portion (12) to the bend portion (16A) reaches (31,32) the outlet arm portion (14), and light rays parallel to the inlet axis are reflected in the bend portion to be directed substantially parallel to the outlet axis. In a second embodiment, the bend region comprises a prism having a pair of parallel spaced surfaces, and inlet, outlet, and third surfaces that are nonparallel to the spaced surfaces. The inlet arm projects from the inlet surface, and the outlet arm projects from the outlet surface. One of the inlet and outlet surfaces forms a first interface with a first material having an index of refraction different from that of the prism, so that light rays within the prism totally internally reflect from the first interface.

25

35

Description

The present invention relates to optical couplers and optical coupling systems for coupling a source of non-coherent light to a light distribution harness, wherein the couplers are polygonal in cross section to increase light mixing and incorporate a bend to achieve compactness. More particularly, the present invention relates to the foregoing optical couplers and optical coupling systems wherein light is transmitted through the bend with minimal light loss.

Optical coupling systems employing polygonal optical couplers are known, for instance, from U.S. Patent 5,341,445 issued to J. Davenport and R. Hansler (also present inventors), and assigned to the present assignee. The '445 patent teaches the use of optical couplers for receiving light from a high brightness light source, and outputting the light into distribution harnesses for routing the light to remote optics. In particular, the '445 patent leaches the use of optical couplers whose cross sections are polygonal, e.g., square, rectangular, triangular, or hexagonal. Light from a non-coherent light source that passes into an inlet end of a polygonally shaped coupler becomes mixed to a high degree before passing through an outlet end into a light distribution harness for distribution to output optics (i.e., remote optical fixtures). The highly mixed light exhibits a high degree of uniformity in intensity and color, which is required in many lighting applications.

Using the polygonal couplers of the '445 patent, a desirable degree of light mixing can be achieved if the length of a coupler is sufficiently long. For instance, this may occur in a square, hollow, coupler having a length-to-cross section ratio of 7:1 where the coupler is used in a photographic slide projector or video projector. If the coupler were straight, the overall length of the slide or video projector would be correspondingly long.

One approach to minimizing the length of a coupler is to incorporate a (e.g. 90-degree) bend in the coupler. An initial approach to incorporating a bend in a coupler that is, for instance, square is to form a bend with a bend portion and inlet and outlet arms that are both square. The present inventors have discovered, however, that light transmission through such a coupler is less efficient than can be realized, due to light loss in the bend portion of the coupler.

It is therefore an object of the invention to provide rectangular optical couplers incorporating a bend and optical coupling systems using such couplers that more efficiently couple light from a source of light to a light distribution harness than the foregoing approach.

A first embodiment of the invention provides, in preferred form a coupling member for use in coupling noncoherent light from a source of light to a light distribution harness. The coupling member incorporates a bend, and includes a light transmissive body having an inlet arm for receiving light from the light source, and an outlet arm for providing light to a leading end of a light distribution harness. The light transmissive body further includes a bend portion from which the inlet and outlet arm portions project. The inlet and outlet arm portions have respective central longitudinal inlet and outlet axes which intersect in the bend portion to define a bend plane. The inlet arm portion has a cross section, with respect to the inlet axis, that is rectangular. A pair of inlet sides of the inlet arm portion are parallel to the bend plane. The outlet arm portion has a cross section, with respect to the outlet axis, that is rectangular. A pair of outlet sides of the outlet arm portion are parallel to the bend plane. The cross-sectional width of the pair of inlet sides at a position adjacent the bend portion is dimensioned smaller than the cross-sectional width of the pair of outlet sides at a position adjacent the bend portion in such manner that substantially all light directed from the inlet portion to the bend portion reaches the outlet arm portion, and light rays parallel to the inlet axis are reflected in the bend portion to be directed substantially parallel to the outlet axis: The foregoing coupling member may be incorporated into an optical coupling system including the mentioned source of non-coherent light.

A second embodiment of the invention provides, in preferred form, a coupler arrangement for use in coupling non-coherent light from a source of light to a light distribution harness. This coupler arrangement incorporates a bend, and includes a light transmissive body having an inlet arm for receiving light from the light source, and an outlet arm for providing light to a leading end of a light distribution harness. The inlet and outlet arms each have a respective rectangular cross section along an associated central longitudinal axis of the arm. A bend portion is included and comprises a prism having a pair of parallel spaced surfaces, and inlet, outlet, and third surfaces that are non-parallel to the spaced surfaces. The inlet arm projects from the inlet surface, and the outlet arm projects from the outlet surface. One of the inlet and outlet surfaces forms a first interface with a first material having an index of refraction different from that of the prism, so that light rays within the prism totally internally reflect from the first interface.

The foregoing, and further, objects and advantages of the invention will become apparent from the following description when read in conjunction with the drawing, in which like reference characters designate like or corresponding parts throughout the several views, and in which:

Fig. 1 is a top plan view of a prior art optical coupling member incorporating a bend to achieve compactness.

Figs. 1A and 1B respectively show side views of inlet region 12A and outlet region 14A of Fig. 1.

Fig. 2 is similar to Fig. 1, showing an optical coupling member according to the invention.

Figs. 2A and 2B show side views of inlet region 12A and outlet region 14A of Fig. 2.

Fig. 3 is a detail view of a bend portion of the coupler of Fig. 2.

Fig. 4 is similar to Fig. 2, showing an optical coupling

20

25

35

45

51 A2

member according to a particular embodiment of the invention.

Figs. 4A and 4B show side views of inlet region 12A and outlet region 14A of Fig. 4.

Figs. 5A and 5B respectively show top and side plan views of an optical coupling system using the coupler of Figs. 4, 4A and 4B.

Fig. 6 is similar to Fig. 2, showing an optical coupling member with a 120-degree bend according to the invention

Fig. 7 is similar to Fig. 2, but showing a limiting case where the angle of bend is 60 degrees, and the dimensions of inlet and outlet arms is the same.

Fig. 8 is a top plan view of a fragmentary portion of a further prior art optical coupling member incorporating a bend to achieve compactness.

Figs. 8A and 8B respectively show side views of an inlet region and an outlet region for the coupler of Fig. 8.

Fig. 9 is similar to Fig. 8, showing an optical coupling member according to a further embodiment of the invention.

Figs. 9A and 9B respectively show side views of an inlet region and an outlet region for the coupler of Fig. 9.

Fig. 10 is a schematic representation in block form of a light source coupled to output optics via an optical coupler and a light distribution harness.

Fig. 11 is a top view of a prism showing various modifications according to the invention.

Fig. 12 is a top plan view of an optical coupler incorporating tapered sections according to another embodiment of the invention.

Figs. 13 through 15 show upper plan views of optical couplers whose angle of bend, respectively, are orthogonal, acute and obtuse.

In the following description, terms such as "top," "bottom," "left," and "right" are used for convenience and are not to be construed as limiting terms.

To better illustrate the high optical efficiency achieved by optical couplers of the present invention, a less efficient coupler 10 is first described with respect to prior art Fig. 1. Such figure shows a top view of a coupler 10 having an input arm 12 for receiving light from a light source (not shown), an output arm 14 for outputting light to a distribution harness (not shown), and a bend portion 16 for achieving a 90-degree bend.

Side views of inlet region 12A of inlet arm 12, and of outlet region 14A, are respectively shown in Figs. 1A and 1B. Such surfaces are square and of equal size to each other as shown in Figs. 1A and 1B. If coupler 10 is hollow, phantom lines 13 and 15 in Figs. 1A and 1B, respectively, represent interiorly reflecting surfaces; if, alternatively, coupler 10 is a transparent solid, surfaces 13 and 15 are not present.

As shown in Figs. 1A and 1B, the square shape of inlet and outlet surfaces 12A and 14A (and of the remainder of inlet and outlet arms 12 and 14) facilitates the mixing of light that is passed through coupler 10, in the manner described, for instance, in the above-men-

tioned U.S. Patent 5,341,445 445. Increased light mixing results in increased uniformity of intensity and color of output light, and also less critical alignment of the light coupled into the coupler.

In some applications, the length of coupler 10 needs to be some multiple of the cross-sectional dimension of the coupler; for example, a 7:1 ratio is desirable where the coupler is used in a photographic slide projector or video projector(not shown). To minimize the size of the resulting slide or video projector, it is desirable to include a bend portion 16 so that coupler 10 can be compact. An exemplary bend of 90 degrees, for instance, is illustrated, although other bend angles can be used.

In forming bend portion 16, a 45-degree, mirrored surface 16A is used to provide for reflection of light ray 20, which is directed along the central longitudinal axis (not shown) of inlet arm 12, and is reflected upwardly as shown at point 21, along the central longitudinal axis (not shown) of outlet arm 14. It is desired that further light ray 22, which is angled with respect to the longitudinal axis of inlet arm 12, pass into outlet arm 14. Ray 22, however, after reflecting from mirrored surface 16A at point 23 (angles 24A and 24B being equal), reflects rearwardly in inlet arm 12, i.e., back towards inlet region 12A. The inability to pass ray 22 into outlet arm 14 lowers the optical efficiency of coupler 10, reducing the intensity of light output from outlet arm 14.

In accordance with a first embodiment of the invention, Fig. 2 shows a coupler 10, which, like coupler 10 of Fig. 1, has an input arm 12 for receiving light, an output arm 14, and a bend portion 16A for achieving, e.g. a 90-degree bend. Side views of inlet region 12A of inlet arm 12, and of outlet region 14A, are respectively shown in Figs. 2A and 2B; such side views are similar to the above-described side views of surfaces 12A and 14A of Figs. 1A and 1B. However, a dimension of inlet region 12A is reduced compared to the dimensions of outlet region 14A. That is, while corresponding input and output dimensions D2 and D4 are shown as equal, input dimension D1 is reduced from corresponding output dimension D3. Such change in dimension occurs on the sides of inlet arm 12 that are parallel to a plane (not shown) defined by the intersection of the respective central longitudinal axes (not shown) of inlet and outlet arms 12 and 14. Details of such reduction in dimension will be set forth below.

In the embodiment shown in Figs. 2 and 2B, outlet arm 14 has a square and uniform cross section along its longitudinal axis, whereby dimensions D3 and D4 in Fig. 2B are the same. Such dimensions, however, may alternatively be different from each other, whereby the cross section of outlet arm 14 would be rectangular. Further, inlet arm 12 is shown in Figs. 2, and 2A as being rectangular and uniform in cross section along its length; alternatively, it could be square. Moreover, one or both of inlet and outlet arms 12 and 14, rather than being uniform along their lengths, could be tapered in a manner known per se in the art to achieve an angle-to-area con-

20

25

30

35

40

5

version of light. In such conversion, considering a single input or output arm, the angle is with respect to the longitudinal axis of the arm, and the area refers to the respective cross sectional areas of light at the inlet and outlet portions of the arm. Where an especially large angle-to-area conversion is desired, the tapers may each define a compound parabolic reflector made in accordance with non-imaging optics, a technology known per se in the art.

Referring again to Fig. 2, a phantom line 28 shows the portion of inlet arm 12 that is absent in relation to inlet arm 12 of Fig. 1. The extent of the absent portion, i.e., the reduction to dimension D1 for inlet arm as shown in Fig. 2A, is determined by the goal of transmitting all light rays through coupler 10. from inlet region 12A to outlet region 12A. Thus, light ray 30, which reaches 45-degree, mirrored surface 16A at point 31, reflects at point 32 within outlet arm 14, to pass upwardly and be transmitted though outlet region 14A. With light ray 30 representing light deviating from the longitudinal axis (not shown) of inlet arm 12 at a maximum angle 34, determining the reduced dimension D1 (Fig. 2A), compared to dimension D3 of outlet arm 14 (Fig. 2B), is a matter of geometry. For the example shown, with a 90-degree bend in the coupler, D1 = D3 (1 + tangent of angle 34).

Fig. 3 is a detail view of bend portion 16 of a coupler 10, and of adjacent portions of inlet and outlet arms 12 and 14 of the coupler. A so-called backup, or separate, mirror 40 is shown mounted on angled surface 16A of the bend, and is preferably used rather than a mirrored surface 16A as described with the above embodiments where coupler 16 is a solid, rather than hollow, in construction. This is because a thin air layer that will exist between surface 16A and the mirror will cause much of the light reaching angled surface 16A to totally internally reflect within bend portion 16. As opposed to such lossless change of direction, about one-third of the light reaching surface 16A will be angled such that it passes outside of surface 16A to be reflected by the backup mirror, resulting in only one-third of the light having a mirrorabsorbed light loss on the order of ten percent.

Fig. 4 shows a coupler 10 whose inlet region 12A is square, as shown in Fig. 4A, and whose outlet region 14A is rectangular, as shown in Fig. 4B. For use in projecting video images from a photographic slide or liquid-crystal display (not shown), the aspect ratio of output dimension D3 to D4 (Fig. 4B) is typically 1.3:1. Determining the dimension D1 of inlet arm 12 (Fig. 4A), compared to dimension D3 of outlet arm 14 (Fig. 4B), can be accomplished in the same manner as determining the corresponding dimensions with respect to the embodiment of Figs. 2, 2A and 2B, as described above.

Figs. 5A and 5B respectively show top and side plan views of an optical coupling system using the coupler of Figs. 4, 4A and 4B. Within an enclosure 42, coupler 10 is arranged to receive light in inlet arm 12 from a source of light 44, via a mirror 46 shown in Fig. 5B. After passing

through coupler 10 to achieve a high degree of light mixing, light passes though an image-containing plate 46 before being directed, via a projection lens 48, to display optics (e.g., a viewing screen). In a limiting case, the image-containing plate is perfectly transparent, and the system is used for projecting a uniform area of light.

Fig. 6 shows an optical coupler 10 including a bend portion 16 with a 120-degree bend, or angle 50. As a general rule, bend surface 16A is oriented at an angle 52 of half angle 50, or 60 degrees for the case shown. Determining the relation between dimension D1, of inlet arm 12, and D3, of outlet arm 14, is done in the same manner as mentioned above with respect to Fig. 2, 2A and 2B. For the 120-degree angle 50 shown, dimension D3 is approximately four times dimension D1; for larger angles 50, dimension D3 will be scaled even more upwardly with respect to dimension D1.

Fig. 7 shows a limiting case where dimension D3 of outlet arm 14 is the same as dimension D1 on inlet arm 12, and light rays directed into inlet arm 12 are all passed into outlet arm 14. In this limiting case, the angle 50 of bend is 60 degrees. For angles in excess of 60 degrees, dimension D3 will exceed dimension D1 as, in the previous examples of the invention.

A further approach to forming a bend in an optical coupler is now described in connection with Fig. 8 and succeeding figures. Fig. 8 shows a prior art coupler 60 having input and output arms 62 and 64, and a bend region 66 with a mirrored surface 66A. As shown in Figs. 8A and 8B, inlet arms 62 and 64 may have respective, square, equal-size ends 62A and 64A (not shown in Fig. 8). If coupler 60 is hollow, phantom lines 63 and 65 in Figs. 8A and 8B, respectively, represent interiorly reflecting surfaces; if, alternatively, coupler 60 is solid, surfaces 63 and 65 are not present.

As shown in Fig. 8, a light ray 70 reflects from point 71 on mirrored surface 66A back into inlet arm 62, representing lost light. Similarly, light ray 72 passes straight through bend region 62 and exits output arm 64 at point 73; this is because the angle 74 it makes with respect to a central, longitudinal axis of outlet arm 64 is too high to allow the ray to totally internally reflect at point 73 back within outlet arm 64.

Fig. 9 shows an inventive coupler 60 which avoids the lost light of the coupler of prior art Fig. 8 described above. In Fig. 9, bend portion 66 comprises a prism with all surfaces polished, whose surface 66A may be mirrored if desired, as discussed below. Bend portion (or prism) 66 has an upwardly facing surface 66B, for receiving light from inlet arm 62, and a rightward facing surface 66C, through which light is passed into outlet arm 64. As shown in Figs. 9A and 9B, inlet arms 62 and 64 may have respective, rectangular equal-size ends 62A and 64A (not shown in Fig. 9), although the ends may be square. If coupler 60 is hollow, phantom lines 63 and 65 in Figs. 9A and 9B, respectively, represent interiorly reflecting surfaces; if, alternatively, coupler 60 is solid, surfaces 63 and 65 are not present.

25

35

40

45

50

Referring again to Fig. 9, a material 76 adjoins upwardly facing prism surface 66B and has an index of refraction differing from that of the prism. Likewise, a material 78 adjoins rightward facing surface 66C and has an index of refraction differing from that of the prism. Materials 76 and 78 may comprise air, water, or preferably a material with an index of refraction lower than that of air, such as magnesium fluoride bonded to the inlet and outlet arms with an optical glue having an index of refraction matched to magnesium fluoride. Owing to the differing indexes of refraction of the prism and of materials 76 and 78, light ray 70 received within prism 66 can be reflected at point 71A either by a mirrored surface 66A or, preferably, by total internal reflection within the prism. After totally internally reflecting again in the prism at point 71B, ray 70 will pass into outlet arm 64 assuming the angle it makes with prism surface 66C is above the maximum allowable angle for total internal reflection. In a similar manner, light ray 72 received into prism 66 totally internally reflects at point 73A in the prism, to be reflected at point 73B by a mirrored surface 66A, or preferably totally internally reflected, into outlet arm 64.

Prism 66 is preferably a triangular prism as shown in Fig. 9, for example. To minimize loss of light in the reflections within the prism, all of its surfaces should be polished, and beveling of its comers is preferably avoided. Input and output arms 62 and 64 to the prism may be square, as shown in Figs. 8A and 8B, respectively, or rectangular, as shown in Figs. 9A and 9B, respectively. Optimally, the input and output arms are of the same size and configuration, but differing sizes and configurations can be used if the attendant light loss is not prohibitive. Moreover, several input arms or several output arms can be used for a single prism, such as a bundle (not shown) of four output arms. Further, a single input arm may supply light to multiple (e.g. two) prisms (not shown), preferably stacked one atop the other; that is, referring to Fig. 9, a further prism (not shown) may be stacked beneath (or above) prism 66, with its output surface facing leftward and leading to a further output arm (not shown).

Fig. 10 schematically shows how light from a light source 80 is passed to display optics 84, via coupler 60 and a light distribution harness 82. Details of suitable light distribution harnesses will be apparent to those of ordinary skill in the art from, e.g., the above-cited U.S. Patent 5,341,445. For instance, a light distribution harness may comprise a bundle (not shown) of optical light conductors. Alternatively, for instance, it may comprise a photographic slide and a projection lens (not shown) for modulating and routing light to display optics such as a viewing screen (not shown).

Fig. 11 illustrates preferred features of a prism 66. A mirrored, reflecting surface may be provided on the angled surface 66A of the prism. It preferably is a separate, so-called backup mirror 40 (shown in phantom) attached to the prism in a manner allowing an air interface between the mirror and the prism. This is for the

reduced light loss explained above in connection with Fig. 3. Surfaces 66B and 66C of the prism are preferably coated with a low index of refraction material 76 and 78, such as magnesium fluoride, as mentioned above. A matching, low index of refraction optical glue can then be used to bond the ends of inlet arms 62 and 64 (Fig. 9), where solid, to material 76 and 78. This reduces optical losses that occur when a light ray refracts from one material to another. Thus, if materials 76 and 78 comprise air and the inlet and outlet arms are solid glass, an approximately 4 percent optical loss occurs in light refracting from the inlet arm to air 76, a similar loss occurs in light refracting from air 76 to the glass prism, and two further corresponding losses in connection with the refractions into and out of material 78. This yields a total light losses of about 16 percent. By using magnesium fluoride, as mentioned, the loss for each refraction is about 1.5 percent, reducing the total loss to about 6 per-

Fig. 12 shows a variation of the invention, where a coupler 60 includes a tapered inlet arm portion 62' and a non-tapered inlet arm portion 62; and preferably also includes a tapered outlet arm portion 64' and a non-tapered inlet arm portion 64. The tapers of inlet and outlet portions 62' and 64' achieve, in a manner known per se in the art, an angle-to-area conversion of light. In such conversion, considering a single input or output arm, the angle is with respect to the longitudinal axis of the arm, and the area refers to the respective cross sectional areas of light at the inlet and outlet portions of the tapered arm portion. Where an especially large angle-to-area conversion is desired, the tapers may each define a compound parabolic reflector made in accordance with non-imaging optics, a technology known per se in the art. Beneficially, in such embodiment, more light rays (not shown) become oriented so as to totally internally reflect within the prism on surface 66A, with essentially no light loss. If the light rays reflect off a mirrored surface 66A, on the other hand, a 5 to 10 percent light loss oc-

Optimal alignment of a prism with respect to input and output arms is now considered with respect to Figs. 13 through 15. These figures respectively relate to the cases where the angle 89 of bend is orthogonal, acute and obtuse.

Referring to Fig. 13, a person looking into inlet arm 62 from the perspective of arrow 90 should see only the interior of inlet arm 62 and mirror 66A, assuming that interface 91 between arm and prism is transparent. Similarly, a person looking into outlet arm 64 from the perspective of arrow 92 should see only the interior of outlet arm 62 and mirror 66A, assuming that interface 93 between arm and prism is transparent. The same procedure can be applied to the acute-angle 89 and obtuse-angle 89 cases of Figs. 14 and 15, respectively.

20

30

35

Claims

- A coupling member for use in coupling non-coherent light from a source of light to a light distribution harness, said coupling member incorporating a bend and comprising:
 - (a) a light transmissive body including an inlet arm for receiving light from the light source, and an outlet arm for providing light to a leading end of a light distribution harness; said light transmissive body further including a bend portion from which said inlet and outlet arm portions project;
 - (b) said inlet and outlet arm portions having respective central longitudinal inlet and outlet axes which intersect in said bend portion to define a bend plane;
 - (c) said inlet arm portion having a cross section, with respect to said inlet axis, that is rectangular; a pair of inlet sides of said inlet arm portion being parallel to said bend plane;
 - (d) said outlet arm portion having a cross section, with respect to said outlet axis, that is rectangular; a pair of outlet sides of said outlet arm portion being parallel to said bend plane; and (e) the cross-sectional width of said pair of inlet sides at a position adjacent said bend portion being dimensioned smaller than the cross-sectional width of said pair of outlet sides at a position adjacent said bend portion in such manner that substantially all light directed from said inlet portion to said bend portion reaches said outlet arm portion, and light rays parallel to said inlet axis are reflected in said bend portion to be directed substantially parallel to said outlet axis.
- The coupling member of claim 1, wherein said bend portion is configured to achieve a non-perpendicular bend or a perpendicular bend between said inlet and outlet axes.
- 3. The coupling member of claim 2, wherein said cross-sectional width of said pair of sides of said outlet arm portion is substantially equal to the mathematical product of said cross-sectional width of said pair of sides of said inlet arm portion and the sum of the value of one as augmented by the tangent of the maximum angle of light transmitted in said outlet arm portion with respect to said outlet longitudinal axis.
- The coupling member of claim 1, wherein at least one of said inlet and outlet arms is tapered along its central longitudinal axis.
- 5. An optical coupling system for coupling non-coher-

ent light from a source of non-coherent light to a light distribution harness, comprising:

- (a) a source of non-coherent light;
- (b) a coupling member according to any one of claims 1 to 5; and
- (c) a distribution harness comprising an imagecontaining plate positioned adjacent an output end of said outlet arm; and a projection lens spaced from said image-containing plate for projecting an image on said plate to another location.
- 6. A coupler arrangement for use in coupling non-coherent light from a source of light to a light distribution harness, said coupler arrangement incorporating a bend and comprising:
 - (a) a light transmissive body including an inlet arm for receiving light from the light source, and an outlet arm for providing light to a leading end of a light distribution harness; said inlet and outlet arms each having a respective rectangular cross section along an associated central longitudinal axis of said arm;
 - (b) a bend portion comprising a prism having a pair of parallel spaced surfaces, and inlet, outlet, and third surfaces that are nonparallel to said spaced surfaces; said inlet arm projecting from said inlet surface, and said outlet arm projecting from said outlet surface; and
 - (c) one of said inlet and outlet surfaces forming a first interface with a first material having an index of refraction different from that of said prism, so that light rays within said prism totally internally reflect from said first interface.
- 7. The coupler arrangement of claim 6, wherein the other of said inlet and outlet surfaces forms a second interface with a second material having an index of refraction different from that of said prism, so that light rays within said prism totally internally reflect from said second interface.
- 75 8. The coupler arrangement of claim 6, wherein said bend portion is configured to achieve a non-perpendicular bend or a perpendicular bend between said inlet and outlet arms.
- 50 9. The coupler arrangement of claim 6, wherein at least one of said inlet and outlet arms is tapered along its central longitudinal axis.
 - 10. The coupler arrangement of claim 6, wherein the index of refraction of material forming said prism and the angle of bend formed between respective central longitudinal axes of said inlet and outlet arms are chosen so that said substantially all light

rays reflecting from said third surface, within said prism, totally internally reflect from said surface.

25 ·

FIG. 1A PRIOR ART

FIG. 1B PRIOR ART

FIG. 5A

FIG. 5B

FIG. 8B PRIOR ART

FIG. 11

FIG. 12

FIG. 13

90 90 91 66 93 92 66A

FIG. 15

This Page Blank (uspto)

Europäisches atentamt

European Patent Office

Office européen des brevets

EP 0 764 861 A3

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 22.09.1999 Bulletin 1999/38
- (43) Date of publication A2:
- (21) Application number: 96306878.8

26.03.1997 Bulletin 1997/13

- (22) Date of filing: 20.09.1996
- (84) Designated Contracting States: **DE FR GB IT**
- (30) Priority: 20.09.1995 US 530651
- (71) Applicant: GENERAL ELECTRIC COMPANY Schenectady, NY 12345 (US)
- (72) Inventors:
 - Allen, Gary Robert Chesterland, Ohio 44026 (US)
 - Cassarly, William James
 Lyndhurst, Ohio 44124 (US)

(51) Int Cl.⁶: **G02B 6/28**, G02B 6/42, G03B 21/00

(11)

- Davenport, John Martin Lyndhurst, Ohio 44124 (US)
- Hansler, Richard Lowell Pepper Pike, Ohio 44124 (US)
- (74) Representative: Goode, lan Roy et al London Patent Operation General Electric International, Inc. Essex House 12-13 Essex Street London WC2R 3AA (GB)

(54) Optical coupling systems with bend

(57)Disclosed are optical couplers (10) and optical . coupling systems for coupling a source of non-coherent light to a light distribution harness, wherein the couplers are polygonal in cross section to increase light mixing. The couplers have inlet (12) and outlet (14) arms and an intermediate bend region (16A) configured to achieve compactness and minimal light loss through the bend region. In one embodiment, the bend region is an integral part of the coupler, with the inlet arm having a different cross-sectional dimension (12A) from the outlet arm (14A) in such manner that substantially all light (30) directed from the inlet portion (12) to the bend portion (16A) reaches (31,32) the outlet arm portion (14), and light rays parallel to the inlet axis are reflected in the bend portion to be directed substantially parallel to the outlet axis. In a second embodiment, the bend region comprises a prism having a pair of parallel spaced surfaces, and inlet, outlet, and third surfaces that are nonparallel to the spaced surfaces. The inlet arm projects from the inlet surface, and the outlet arm projects from the outlet surface. One of the inlet and outlet surfaces forms a first interface with a first material having an index of refraction different from that of the prism, so that light rays within the prism totally internally reflect from the first interface.

EUROPEAN SEARCH REPORT

Application Number

EP 96 30 6878

Category	Citation of document with of relevant par	indication, where appropriate, ssages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.C1.6)	
X	W.ANGST: "Leuchta Kunststoffplatten" TECHNICA, vol. 1, 1984, page * figures 4,7,8,11 * page 33 - page 3	s 33-41, XP002020544	1,2,4	G02B6/28 G02B6/42 G03B21/00	
(FR 2 381 365 A (AC 15 September 1978 * page 9, line 16 * page 10, line 1 * page 23, line 1 * page 22, line 16 * figures 1-3,41-4	1,2			
4	EP 0 075 705 A (SI 6 April 1983 (1983 * the whole docume	-04-06)	1,2		
A	PATENT ABSTRACTS 00 vol. 015, no. 110 of 15 March 1991 (1993 & JP 03 003491 A (March 1994) (1994) 9 January 1991 (1994) * abstract *	1,5	TECHNICAL FIELDS SEARCHED (Int.Cl.6) G02B F21V G03B		
	DE 29 31 368 A (AUI 19 February 1981 (1 * the whole documen	1,5			
	US 4 400 054 A (BIA 23 August 1983 (198 * column 6, line 30 * column 7, line 1 * figure 5 *	33-08-23)) - line 68 *	6-8,10		
		-/			
L	The present search report has	been drawn up for all claims	-		
	Place of search	Date of completion of the search		Examiner	
THE HAGUE		29 July 1999	1999 Mathyssek, K		
CATEGORY OF CITED DOCUMENTS X : particularly relevant if taken alone Y : particularly relevant if combined with another ducument of the same category L : document cited		e underlying the recument, but publiste in the application or other reasons	nvention shed an, or		

EPO FORM 1503 03.82 (P04C01)

Application Number

EP 96 30 6878

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten olaims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of Invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

EUROPEAN SEARCH REPORT

Application Number EP 96 30 6878

Category	Citation of document with inc	dication, where appropriate,	Relevant	CLASSIFICATION OF THE
Calogory	of relevant passa	yes	to claim	APPLICATION (Int.Cl.6)
X	US 3 870 398 A (LOVE 11 March 1975 (1975- * figures 2,3,5 * * column 3, line 24 * column 4 - column * column 6, line 1 -	03-11) - line 68 * 5 *	6-10	
Α	US 3 156 825 A (ALBE 10 November 1964 (19 * figures 1,2A,4 * * column 4, line 52 * column 5, line 1 -	- line 75 *	6,8,10	· · · · · ·
				TECHNICAL FIELDS SEARCHED (Int.Cl.6)
	The present search report has be	en drawn up for all claims		
Place of search		Date of completion of the search		Examiner
	THE HAGUE	29 July 1999	Mati	hyssek, K
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background C: non-written disclosure		E : earlier patent do after the tiling da or D : document cited i L : document cited f	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons &: member of the same patent family, corresponding	

EP 96306878 - B -

LACK OF UNITY OF INVENTION

The Search Division considers that the present European patent application does not comply with the requirement of unity of invention and relates to several inventions, or groups of inventions, namely:

- 1. Claims 1-5:
- refer to a coupling member incorporating a bend and comprising light transmissive body with inlet and outlet arms having rect-angular cross section, the axes of the arms intersect in the bend, the cross-sectional width of the inlet arm being smaller than that of the outlet arm and used in coupling a non-coherent light to a light distribution system.
- 2. Claims 6-10:

deal with a coupler arrangment incorporating a bend and comprising light transmissive body with inlet and outlet arms having rectangular cross section, the bend comprising a prism, one of the inlet and outlet surfaces forming a first interface with a first material having index of refraction diff of the prism and used in coupling a non-coherent light to a light distribution system.

EPO Form Supplementary Sheet B (1996)

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 96 30 6878

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-07-1999

	Patent document ted in search repo		Publication date	Patent family member(s)	Publication date
FR	2381365	Α	15-09-1978	DE 2707081 A	24-08-19
				AU 503159 A	23-08-19
				BE 864068 A	16-06-19
				CA 1093299 A	13-01-19
				DK 72678 A	
				GB 1598214 A	
				IT 1107292 B	
				JP 53103398 A	
				NL 7801825 A	
				SE 7801848 A	
				US 4214391 A	29-07-19
EΡ	0075705	Α	06-04-1983	DE 3138895 A	14-04-19
				JP 58068714 A	23-04-19
				US 4540237 A	10-09-19
JP	03003491	Α	09-01-1991	NONE	
DE	2931368	Α	19-02-1981	NONE	
US	4400054	A	23-08-1983	NONE	
US	3870398	Α	11-03-1975	NONE	
US	3156825	 A	10-11-1964	NONE	

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

mis Page Blank (uspto)