Лабораторна робота 5:

"Стиснення зображень"

Виконав:

Білобрицький Денис Анатолійович

544 група

Мета: Метою даної лабораторної роботи ϵ набуття знань про існуючи методи стиснення зображень та ознайомитися з основними з них.

Хід роботи:

Спочатку завантажуємо зображення для роботи:

```
I1 = imread('Images/cat.jpg');
I2 = imread('Images/dog.jpg');
I3 = imread('cameraman.tif');

imshow(I1);
title('Зображення 1');
```

Рисунок 1 – Завантаження зображень ти вивід одного з них

3 використанням функції **rgb2gray** перетворюємо кольорові зображення в чорно-білі.

Рисунок 2 – Перетворення кольорового зображення

3 використанням функції **dct2** виконаємо дискретне косинусне перетворення зображень, а також відобразимо результат ДКП у вигляді зображення з використанням функції **imshow**.

Рисунок 3 – ДКП у вигляді зображення

I таке перетворення ми виконуємо до кожного зображення. Далі за допомогою функції **idct2** відновлюємо зображення за його ДКП спектру.

Рисунок 3 – Відновлене зображення

Далі виконаємо квантування ДКП спектру з кроками 5,10,30 за допомогою коду:

```
% квантування
N = 5; % крок квантування
J1q = N * round(J1 / N);
J2q = N * round(J2 / N);
J3q = N * round(J3 / N);
figure, imshow(log(abs(J1q)),[]), title('Квантований DCT - 1 (5)');
```


Рисунок 4 – Квантування ДКП спектру одного із зображень

Так як і раніше все повторюємо для кожного зображення. Після чого відновлюємо зображення, і тільки з кроком 30 і вище вже чітко видно втрату якості.

Рисунок 5 — Вигляд відновленого квантованого зображення з кроком 30

Як бачимо, на зображені з'явився помітний шум.

Поясніть, як працює ця процедура, і що отримаємо в результаті.

Процедура квантування зменшує точність результатів ДКП, роблячи їх дискретними, залежно від значення кроку N. Малий крок зберігає деталі, великий — збільшує стиснення, але втрачає якість. Це дає можливість балансувати між компресією та якістю зображення.

Поясніть, яка мета досягається квантуванням коефіцієнтів ДКП.

Квантування дозволяє відкинути малозначущі (візуально) частоти, що дає змогу зменшити обсяг даних для збереження або передачі зображення.

Чи можливо добитися аналогічної мети й результату, квантуючи вихідне зображення, а не коефіцієнти його ДКП?

Спробуємо реалізувати це за допомогою коду нижче:

```
% квантування одразу
n = 30;
Iq1_ = round(double(I1)/n)*n;
Iq2_ = round(double(I2)/n)*n;
Iq3_ = round(double(I3)/n)*n;
figure, imshow(uint8(Iq1_)), title('Квантоване зображення 1(простір)');
```

Квантоване зображення 1(простір)

Рисунок 6 – Квантування вихідного зображення

Як результат, квантування пікселів прямо в просторі знижує якість у всій області рівномірно (втрата градацій), на відміну від DCT, де переважно відкидаються малопомітні частоти. Ось зображення, де це краще видно:

Рисунок 7 – Квантування вихідного зображення (втрата градацій)

Які недоліки ви бачите в стисненні зображень із використанням його ДКП і квантування коефіцієнтів ДКП?

Недоліки DCT + квантування: втрата якості при сильному стисненні, чутливість до блокування (ефект "блоків" при високому стисненні, видно на зображенні вище), не підходить для зображень з різкими межами, а також чутливий до зміни параметрів.