Образец оформления ИДЗ

Индивидуальное домашнее задание по теме «Энергетика химических реакций» студента группы №_____ ФИО Вариант № _____

Задание № 28.

- 1. Переписать условие задачи из методических указаний.
- 2. Написать уравнение реакции из заданного варианта.
- 3.Сформировать таблицу справочных данных для участников реакции

Формула вещества	$\Delta_{ m f} { m H^o}$ $_{298}$ кДж·моль $^{-1}$

- 4. Записать конкретную формулу закона Гесса для своей реакции
- 5.Произвести подстановку цифровых значений величин и вычислить тепло вой эффект реакции.
- 6.Сделать вывод о характере реакции: экзо- или эндотермическая.

Задание № 29.

- 1. Переписать условие задачи из методических указаний.
- 2. Написать уравнение реакции из заданного варианта.
- 3. Сформировать таблицу справочных данных для участников реакции

Формула вещества	$\Delta_{\mathrm{f}}\mathrm{H}^{\mathrm{o}}$ 298 кДж·моль ⁻¹	S°, Дж·моль-1·К-1

- 4. Рассчитать $\Delta_r G^o$ реакции и сделать вывод о возможности ее протекания в прямом направлении в стандартных условиях.
- 5. Если протекание реакции возможно, рассчитать константу равновесия реакции по уравнению изотермы.
- 6. Если протекание реакции в прямом направлении в стандартных условиях невозможно, то рассчитать температуру, при которой процесс начнется.

- 8) C_6H_{14} ; 9) C_7H_{16} ; 10) C_8H_{18} ; 11) $CH_3OH_{(*)}$; 12) $C_2H_5OH_{(*)}$. Сделайте вывод о практической ценности топлив.
- 28. Вычислите тепловые эффекты химических реакций при стандартных условиях. Определите тип реакции (эндо- или экзотермическая реакция).

№ варианта	Термохимическое уравнение
1	$4NH_{3(r)} + 5O_{2(r)} = 6H_2O_{(r)} + 4NO_{(r)}$
2	$CaO_{(\kappa)} + 3C_{(rpa\phi \mu r)} = CaC_{2(\kappa)} + CO_{(r)}$
3	$4HCl_{(r)} + O_{2(r)} = 2H_2O_{(r)} + 2Cl_{2(r)}$
4	$\operatorname{Cr_2O_{3(\kappa)}} + 2\operatorname{Al}_{(\kappa)} = 2\operatorname{Cr}_{(\kappa)} + \operatorname{Al_2O_{3(\kappa)}}$
5	$CaCO_{3(\kappa)} = CaO_{(\kappa)} + CO_{2(r)}$
6	$Fe_3O_{4(\kappa)} + H_{2(r)} = 3FeO_{(\kappa)} + H_2O_{(r)}$
7	$Ca(OH)_{2(\kappa)} + CO_{2(r)} = CaCO_{3(\kappa)} + H_2O_{(r)}$
8	$2CO_{(r)} + SO_{2(r)} = S_{(\kappa)} + 2CO_{2(r)}$
9	$2H_2S_{(r)} + 3O_{2(r)} = 2H_2O_{(r)} + 2SO_{2(r)}$
10	$4NH_{3(r)} + 3O_{2(r)} = 2N_{2(r)} + 6H_2O_{(r)}$
11	$WO_{3(\kappa)} + 3Ca_{(\kappa)} = W_{(\kappa)} + 3CaO_{(\kappa)}$
12	$Fe_2O_{3(\kappa)} + 3H_{2(r)} = 2Fe_{(\kappa)} + 3H_2O_{(r)}$
13	$H_{2(r)} + CO_{2(r)} = H_2O_{(r)} + CO_{(r)}$
14	$Fe_2O_{3(\kappa)} + 3H_{2(r)} = 2Fe_{(r)} + 3H_2O_{(x)}$
15	$CO_{(r)} + 3H_{2(r)} = CH_{4(r)} + H_2O_{(r)}$
16	$4CO_{(r)} + 2SO_{2(r)} = 2S_{(\kappa)} + 4CO_{2(r)}$
17	$3MgO_{(\kappa)} + 2Al_{(\kappa)} = 3Mg_{(\kappa)} + Al_2O_{3(\kappa)}$
18	$N_2H_{4(x)} + 2H_2O_{2(x)} = N_{2(r)} + 4H_2O_{(x)}$
19	$Fe_3O_{4(\kappa)} + CO_{(r)} = 3FeO_{(\kappa)} + CO_{2(r)}$
20	$2H_2S_{(r)} + CO_{2(r)} = 2H_2O_{(r)} + CS_{2(r)}$
21	$4H_2S_{(r)} + 2SO_{2(r)} = 6S_{(\kappa)} + 4H_2O_{(r)}$

№ варианта	Термохимическое уравнение
22	$CH_{4(r)} + 2H_2S_{(r)} = CS_{2(r)} + 4H_{2(r)}$
23	$Fe_2O_{3(\kappa)} + 3C_{(rp)} = 2Fe_{(\kappa)} + 3CO_{(r)}$
24	$2HI_{(r)} = H_{2(r)} + I_{2(r)}$
25	$Cr_2O_{3(\kappa)} + 3H_{2(r)} = 2Cr_{(\kappa)} + 3H_2O_{(\kappa)}$
26	$CH_3OH_{(**)} + {}^3/_2O_{2(r)} = 2H_2O_{(**)} + CO_{2(r)}$

√ 29. Определите возможность протекания реакции при стандартных условиях. Если реакция возможна, то рассчитайте константу её равновесия. Как нужно изменить температуру проведения реакции, чтобы увеличить выход продуктов реакции. Дайте обоснованный ответ.

№ варианта	Термохимическое уравнение
1,	$ZnO_{(\kappa)} + CO_{(r)} = Zn_{(\kappa)} + CO_{2(r)}$
2	$2NO_{(r)} + O_{2(r)} = 2NO_{2(r)}$
3	$2CO_{2(r)} = 2CO_{(r)} + O_{2(r)}$
4	$2CO_{(r)} + 2NO_{(r)} = 2CO_{2(r)} + N_{2(r)}$
5	$FeO_{(\kappa)} + CO_{(r)} = CO_{2(r)} + Fe_{(\kappa)}$
6	$CO_{(r)} + 2H_{2(r)} = CH_3OH_{(xc)}$
7	$NH_{3(r)} + HCl_{(r)} = NH_4Cl_{(r)}$
8	$H_{2(r)} + CO_{2(r)} = CO_{(r)} + H_2O_{(x)}$
9	$CO_{2(r)} + 4H_{2(r)} = CH_{4(r)} + 2H_2O_{(x)}$
10	$2H_2S_{(r)} + 3O_{2(r)} = 2H_2O_{(x)} + 2SO_{2(r)}$
11	$2Al_{(\kappa)} + 3FeO_{(\kappa)} = 3Fe_{(\kappa)} + Al_2O_{3(\kappa)}$
12	$4HCl_{(r)} + O_{2(r)} = 2H_2O_{(xc)} + 2Cl_{2(r)}$
13	$Fe_2O_{3(\kappa)} + 3H_{2(r)} = 2Fe_{(r)} + 3H_2O_{(r)}$
14	$CO_{(r)} + 3H_{2(r)} = CH_{4(r)} + H_2O_{(r)}$
15	$Fe_2O_{3(\kappa)} + 3C_{(rpa\phi HT)} = 2Fe_{(r)} + 3CO_{(r)}$

№ варианта	Термохимическое уравнение
16	$4NH_{3(r)} + 5O_{2(r)} = 6H_2O_{(r)} + 4NO_{(r)}$
17	$8Al_{(\kappa)} + 3Fe_3O_{4(\kappa)} = 9Fe_{(\kappa)} + 4Al_2O_{3(\kappa)}$
18	$Fe_2O_{3(\kappa)} + 3CO_{(r)} = 2Fe_{(\kappa)} + 3CO_{2(r)}$
19	$PbO_{2(\kappa)} + Pb_{(\kappa)} = 2PbO_{(\kappa)}$
20	$2Ca_{(\kappa)} + CO_{2(r)} = 2CaO_{(\kappa)} + C_{(rp)}$
21	$C_2H_5OH_{(xx)} + 3,5O_{2(r)} = 2CO_{2(r)} + 3H_2O_{(xx)}$
22	$4NH_{3(r)} + 3O_{2(r)} = 2N_{2(r)} + 6H_2O_{(x)}$
23	$2Ca_3(PO_4)_{2(\kappa)} + 6SiO_{2(\kappa)} + 5C_{(rp)} = 6CaSiO_{3(\kappa)} + 4P_{(\kappa pachsiŭ)} + 5CO_{2(r)}$
24	$4CO_{(r)} + 2SO_{2(r)} = 2S_{(\kappa)} + 4CO_{2(r)}$
25	$WO_{3(\kappa)} + 3C_{(rp)} = W_{(\kappa)} + 3CO_{(r)}$
26	$WO_{3(\kappa)} + 3Ca_{(\kappa)} = W_{(\kappa)} + 3CaO_{(\kappa)}$

- 30. Одним из способов решения проблемы «парникового» эффекта является снижение выбросов углекислого газа. Если заменить тепловую станцию, работающую на метане с КПД 40%, на электрохимическую электростанцию с КПД 60%, то насколько снизится выброс углекислого газа на 1 МДж вырабатываемой энергии?
- 31. На сколько литров снизится выброс CO_2 (н. у.) за 140 км пути из транспортного средства мощностью 80 кВт, работающего на метане и двигающегося со скоростью 70 км/ч, при замене автомобиля с КПД 20% на электромобиль с топливными элементами с КПД 40%?
- 32. На сколько литров снизится выброс CO_2 (н. у.) за 140 км пути из транспортного средства мощностью 80 кВт, работающего на метаноле и двигающегося со скоростью 70 км/ч, при замене автомобиля с КПД 20% на электромобиль с топливными элементами с КПД 40%?
- 33. На сколько м³/сутки (н. у.) снизится выброс углекислого газа от электростанции мощностью 100 МВт, работающей на метане, при замене тепловой станции с КПД 40% на электрохимическую станцию с КПД 60%?
 - 34. Возможно ли самопроизвольное протекание реакции $4NO_{(r)}+CH_{4(r)}\!=\!\!2N_{2(r)}+CO_{2(r)}+2H_2O_{(r)}$

- 5. Измерить изменение температуры в ходе химической реакции.
- 6. Рассчитать тепловой эффект, константу равновесия химической реакции для стандартных условий по экспериментальным данным.

Студент должен овладеть методикой определения теплового эффекта химической реакции.

5. СТАНДАРТНЫЕ ΔH^0_{298} , ЭНТРОПИИ S^0_{298} НЕКОТОРЫХ ВЕЩЕСТВ ПРИ 298 К (25°C)

Таблица 2

Вещество .	ΔH^0_{298} , кДж / моль	S_{298}^{0} , Дж / моль · К
1	2	3
$Al_{(\kappa)}$	0	28,31
$Al_2O_{3(\kappa)}$	-1675,0	50,94
B_2H_6	-31,40	232,9
С(графит)	0	5,74
$CO_{(r)}$	-110,5	197,4
$CO_{2(r)}$	-393,51	213,6
$CS_{2(r)}$	115,3	237,8
$C_2H_{2(r)}$	226,75	200,8
$C_2H_{4(r)}$	52,28	219,4
CH _{4(r)}	-74,85	186,19
C ₂ H _{6(r)}	-84,67	229,49
$C_3H_{8(r)}$	-103,85	269,91
C ₄ H _{10(r)}	-126,15	310,12
С ₆ Н _{6(ж)}	+49,03	173,26
C ₆ H _{14(ж)}	-198,82	296,02
С ₇ Н _{16(ж)}	-224,54	328,79
С8Н18(ж)	-249,95	360,79
$C_2H_5OH_{(w)}$	-227,6	160,7
CH ₃ OH _(*)	-238,7	126,7

1	2	3
Ca _(k)	0	41,62
CaO _(ĸ)	-635,1	39,7
CaC _{2(x)}	-62,7	70,3
$Ca(OH)_{2(\kappa)}$	-986,2	83,4
CaSiO _{3(x)}	-1579,0	87,45
Ca ₃ (PO ₄) _{2(к)}	-4125,0	240,9
CaCO _{3(k)}	-1206,0	92,9
Cl _{2(r)}	0	223,0
HCl _(r)	-92,3	186,7
$\operatorname{Cr}_{(\kappa)}$	0	23,76
$Cr_2O_{3(\kappa)}$	1141,0	81,1
$Cu_{(\kappa)}$	0	33,3
CuO _(κ)	-165,3	42,64
$CuCl_{2(\kappa)}$	-205,9	113,0
Fe _(K)	0	27,15
FeO _(k)	-266,68	58,79
Fe ₂ O _{3(K)}	-821,32	89,96
Fe ₃ O _{4(K)}	-1120	145,5
Fe(OH) _{2(K)}	-569,02	79,90
Fe(OH) _{3(K)}	-824,25	96,23
H _{2(r)}	0	130,6
$H_2O_{(r)}$	-241,84	188,74
H ₂ O _(**)	-285,84	69,96
Н ₂ О _{2(ж)}	-187,36	105,86
$HI_{(r)}$	25,94	206,33
$Mg_{(\kappa)}$	0	32,55
$\mathrm{MgO}_{(\kappa)}$	-601,24	26,94
MgCO _{3(K)}	-1096,21	65,69

Окончание табл. 2

1	2	3
N _{2(κ)}	0	191,5
N ₂ O _(r)	81,55	220,0
NO _(r)	90,37	210,62
NO _{2(r)}	33,89	240,45
NH _{3(r)}	-46,19	192,5
N ₂ H _{4(r)}	50,4	121,3
NH ₄ Cl _(r)	-315,39	94,56
NH ₄ NO _{3(r)}	-365,4	151
Ni _(K)	0	29,9
NiO _(K)	-239,7	38,0
O _{2(r)}	0	205,03
Р _(красный)	-18,41	22,8
$Pb_{(\kappa)}$	0	64,9
$PbO_{(\kappa)}$	-217,86	67,4
PbO _{2(κ)}	-276,6	76,44
$S_{(\kappa)}$	0	31,88
SO _{2(r)}	-296,9	248,1
$H_2S_{(r)}$	-20,15	205,64
SiO _{2(κ)}	-859,3	42,09
$W_{(\kappa)}$	0	32,6
$WO_{3(\kappa)}$	-843,0	76,1
$Zn_{(\kappa)}$	0	41,59
$ZnO_{(\kappa)}$	-349,0	43,5
Ti _(K)	0	30,6
TiCl _{4(r)}	-758,9	353,1