Segmentation and recognition of symbols for printed and handwritten music scores

Colloque de Master Recherche Informatique

Author
Kwon-Young Choi

Supervisors
Bertrand Coüasnon
Yann Ricquebourg

Music score definition

- Written form of a music composition
- Used to save and share music
- Characteristics
 - Complex bidimensional organization
 - High density of symbols
 - High connectivity of symbols

Music score definition

- Written form of a music composition
- Used to save and share music
- Characteristics
 - Complex bidimensional organization
 - High density of symbols
 - High connectivity of symbols

Optical Music Recognition

Use to transform an image of a score into a machine readable format

- Steps of a classic ascending OMR system [Rebelo 2012] [Fornes 2014]
 - Pre-processing
 - Staves recognition and removal
 - Music symbols segmentation and recognition
 - Music notation reconstruction

Optical Music Recognition systems

- Problem of bottom-up system like presented in [Rebelo 2009]
 - Context information is not used during segmentation and recognition
- DMOS: « Description and MOdification of Segmentation » [Coüasnon 2001]
 - Use a grammar to describe the document organization
 - Grammar guide segmentation and recognition
 - Use the context during segmentation and recognition phase

Segmentation and recognition of music symbols

- Main problematics
 - Connected and overlapping symbols
 - Broken symbols because of the staff removal
- Internship hypothesis
 - Merging segmentation and recognition will improve the recognition rate

Segmentation and recognition of music symbols

- Main problematics
 - Connected and overlapping symbols
 - Broken symbols because of the staff removal
- Internship hypothesis
 - Merging segmentation and recognition will improve the recognition rate

Merging segmentation and recognition in OMR

- Hidden Markov Model (HMM) on old and very simple scores [Pugin 2006]
 - Features on a sliding window
 - HMM: discrete stochastic modelling:
 - Markov property
- Problems
 - Simple and old score
 - Difficult to scale up
 - Limited use of context (HMM property)

Merging segmentation and recognition in text recognition

- By using Recurrent Neural Network (RNN) [Graves 2009]
 - Long Short-Term Memory LSTM
 - Use of context with Multi-Dimensional RNN
 - Connectionist Temporal Classification layer
 - Training and evaluating the network with no explicite segmentation
 - State-of-the-art results
- Problem: used only on classifying one dimensional sequence

Merging segmentation and recognition in text recognition

Resolving bidimensionality

- Maurdor international contest: complex document recognition
- Segmentation/recognition using previous RNN [Moysset 2014]
 - Input: block of text (bidimension)
 - Prior explicit segmentation of text lines
- Similarly, use of DMOS to roughly segment the score
 - Contextual selection of the symbol recognizer input

Object localization and identification

Another way to resolve bidimensionality:

- Deep Convolutional Neural Network [Erhan 2014]
 - Supervised training: learn features
 - DNN generate bounding box with confidence score
- Interests
 - multiple objects localization
 - With bounding boxes
- However
 - Need annotated data for training
 - None available dataset with groundtruth on music scores

Object localization and identification

Another way to resolve bidimensionality:

- Deep Convolutional Neural Network [Erhan 2014]
 - Supervised training: learn features
 - DNN generate bounding box with confidence score

- multiple objects localization
- With bounding boxes
- However
 - Need annotated data for training
 - None available dataset with groundtruth on music scores

Visual attention model

- Use multiple recurrent neural networks layers to localize an object in an image (Mnih 2014)
 - Use of glimpses to explore an image
 - RNN used to predict next glimpse location, to recognize digit
- Pros : can localize an object in a two-dimensional space
- Not tested on complicated data

Visual attention model

- Use multiple recurrent neural networks layers to localize an object in an image (Mnih 2014)
 - Use of glimpses to explore an image
 - RNN used to predict next glimpse location, to recognize digit
- Pros : can localize an object in a two-dimensional space
- Not tested on complicated data

Conclusion

- Problematic: joint segmentation and recognition of music symbol
 - MD LSTM RNN
 - use of context
 - only handle one-dimensional sequence
 - DCNN
 - multiple object recognition, produce bounding boxes
 - need annotated data for training
 - Visual attention model
 - can localize a symbol in an image, robust to noise
 - only tested on simple recognition tasks
- Internship: study collaboration Neural Network/DMOS musical grammar
 - Rough segmentation with DMOS grammar
 - Fine segmentation and recognition with Neural Network