Αριθμητική Αναλύση

Ασκήσεις Εργαστηρίου 10

1. Εφαρμόστε τη μέθοδο forward Euler για την επίλυση της διαφορικής εξίσωσης

$$y' = \cos x - x \sin x$$

στο διάστημα [0,3], με y(0)=2.0. Τυπώστε τη λύση ανά h=0.01. Συγκρίνετε με την ακριβή λύση, $y(x)=2+x\cos x$.

- 2. Χρησιμοποιήστε τη μέθοδο backward Euler για να βρείτε προσεγγιστικά την τιμή της συνάρτησης y(x) στο σημείο x=0.2 αν στο x=0 έχει τιμή 1.0 και ικανοποιεί τη σχέση $0.02y'+y-\cos x=0$. Συγκρίνετε με τη σωστή λύση $y(x)=(\mathrm{e}^{-50x}+2500\cos(x)+50\sin(x))/2501$.
- 3. Εφαρμόστε τις μεθόδους forward και backward Euler για την επίλυση της διαφορικής εξίσωσης

$$y' = \cos x - \sin y + x^2$$

στο διάστημα [-1, 1], με y(-1) = 3.0. Τυπώστε τη λύση ανά h = 0.01.

- 4. Εφαρμόστε τη μέθοδο Taylor με 5 όρους για την επίλυση της διαφορικής εξίσωσης της προηγούμενης άσκησης.
- 5. Να βρείτε την τιμή y(0.6) αν η y(x) ικανοποιεί τη διαφορική εξίσωση $y'=x^2+x-y$ με y(0)=0. Χρησιμοποιήστε τις μεθόδους Heun και Ralston. Συγκρίνετε με την τιμή που υπολογίζεται από τη λύση $y(x)=1-\mathrm{e}^{-x}+x^2-x$.
- 6. Γράψτε συνάρτηση που να δέχεται ένα Butcher tableau (δηλαδή τους πίνακες ${\pmb A}, {\pmb b}, {\pmb c}$) κάποιας explicit μεθόδου Runge–Kutta, το αρχικό σημείο x_0 , την τιμή της συνάρτησης y_0 εκεί και το τελικό σημείο x_1 και να υπολογίζει την τιμή y_1 εφαρμόζοντας τη μέθοδο Runge–Kutta που περιγράφεται στο συγκεκριμένο tableau.

Χρησιμοποιήστε τη για να εφαρμόσετε την κλασική Runge–Kutta τέταρτης τάξης ώστε να βρείτε την τιμή y(2) όταν η συνάρτηση y(x) ικανοποιεί τη διαφορική εξίσωση

$$y' = (y+x)/(y-x),$$

 $y(0) = 1.$

Συγκρίνετε με την ακριβή λύση, $y(x) = x + \sqrt{1 + 2x^2}$.

Μπορείτε να τροποποιήσετε τον κώδικά σας για implicit Runge-Kutta;

7. Η συνάρτηση y(x) ικανοποιεί τη διαφορική εξίσωση

$$y' = \frac{x - 2y}{x + 2y} \ .$$

Ποια τιμή πρέπει να έχει στο x = 0 ώστε στο x = 2 να έχει την ίδια τιμή;

Υπόδειξη: Σχηματίστε τη συνάρτηση $g(y_{\text{αρχικό}})$. Αυτή θα δέχεται την αρχική τιμή του y, θα λύνει τη διαφορική εξίσωση ώστε να βρεί το $y_{\text{τελικό}}$ και θα επιστρέφει τη διαφορά $y_{\text{τελικό}}-y_{\text{αρχικό}}$. Κατόπιν, βρείτε για ποιο $y_{\text{αρχικό}}$ μηδενίζεται.

8. Εφαρμόστε τη μέθοδο Taylor με 4 όρους για την επίλυση του συστήματος ΔΕ

$$y' = y + z^2 - x^3$$

$$z' = z + y^3 + \cos x$$

με αρχικές συνθήκες, στο $x=0,\ y=0.3$ και z=0.1. Τυπώστε τις τιμές των y,z στο διάστημα [0,1] με βήμα 0.01.

- 9. Να εφαρμόσετε μια μέθοδο Runge–Kutta $2^{\rm nc}$ τάξης για την εύρεση της κίνησης σώματος μάζας $m=2\,{\rm kg}$, εξαρτώμενου από ελατήριο με δύναμη επαναφοράς $F(x)=x-0.01x^3$. Το σώμα αφήνεται για t=0 ελεύθερο, χωρίς αρχική ταχύτητα, στη θέση $x=2.5\,{\rm cm}$.
- 10. Να βρείτε την κίνηση εκκρεμούς για το οποίο ισχύει

$$\ddot{\theta} = -\sin\theta \; ,$$

όπου θ η γωνία απομάκουνσης από την κάθετο. Το εκκοεμές αφήνεται ελεύθερο, χωρίς αρχική ταχύτητα σε γωνία $\theta=45^\circ$.

Για μικρές γωνίες θ ισχύει $\sin \theta \approx \theta$. Εφαρμόστε την προσέγγιση αυτή και συγκρίνετε τη λύση της νέας ΔE με τη λύση της ακριβούς ΔE .

11. Να λύσετε τη ΔΕ $\psi'' = (x^2 - 5)\psi$ με αρχική συνθήκη $\psi(0) = -(2\sqrt{\pi})^{-1/2}$, $\psi'(0) = 0$. Τυπώστε 100 ισαπέχουσες τιμές στο διάστημα [-2,2].

Υπόδειξη Να λύσετε δύο προβλήματα αρχικών τιμών, τη ΔΕ στα διαστήματα [0,2] και [-2,0].