Lecture 6: Gaussian process for learning

Tianpei Xie

Jul. 15th., 2015

Contents

1	\mathbf{Defi}	initions	2
	1.1	Gaussian process with feature space as index	2
	1.2	Covariance function	:

1 Definitions

1.1 Gaussian process with feature space as index

• Let $f: \mathcal{X} \to \mathcal{Y}$ be a measureable functions in a RKHS $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$ associated with kernel K, where $\mathcal{X} \subset \mathbb{R}^d$ is the feature domain and $\mathcal{Y} \subset \mathbb{R}$ is the decision space. Define a linear functional $\eta: \mathcal{H} \to \mathbb{R}$, $f \mapsto \eta(f)$ and $\eta \in \mathcal{H}^* \simeq \mathcal{H}$, the space of all linear functionals. In specific, $\{\phi_i\}$ is the set of eigenfunctions of K associated with eigenvalue $\{\lambda_i\}$, which also forms a set of orthonormal basis in \mathcal{H} ,

$$\lambda_{i}\phi_{i}(x) = \langle K(\cdot, x), \phi_{i} \rangle = \int_{\mathcal{X}} \phi_{i}(z)K(z, x)d\mu(z), \forall x \in \mathcal{X}$$

$$K(x, x') = \sum_{i} \lambda_{i}\phi_{i}(x)\phi_{i}(x')$$

$$f = \sum_{i} \beta_{i}\phi_{i} = \sum_{i} e_{i}\sqrt{\lambda_{i}}\phi_{i}, \qquad \sum_{i=1}^{\infty} \beta_{i}^{2}/\lambda_{i} = \sum_{i=1}^{\infty} e_{i}^{2} < \infty$$

$$= \sum_{m} \widehat{\beta}_{m}K(\cdot, x_{m})$$

$$\eta(\cdot) = \langle \cdot, \eta \rangle = \sum_{i} \alpha_{i} \langle \cdot, \phi_{i} \rangle_{\mathcal{H}} = \sum_{n} \widehat{\alpha}_{n} \langle \cdot, K(\cdot, x_{n}) \rangle$$

$$\eta(f) = \sum_{i} \alpha_{i}\beta_{i} = \sum_{n,m} \widehat{\alpha}_{n}\widehat{\beta}_{m}K(x_{n}, x_{m})$$

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{i=1}^{\infty} \frac{f_{i}g_{i}}{\lambda_{i}} = \langle K^{-1}f, g \rangle,$$

$$f(x) = \langle f, K(\cdot, x) \rangle_{\mathcal{H}}.$$

- A random function on feature domain is given by $f: \mathcal{X} \times \Omega \to \mathbb{R}$. Note that the index set is the feature domain \mathcal{X} not the conventional time domain T. Assume that the domain space \mathcal{X} is Hausdorff, locally convex and separable so that the results in previous sections hold in general.
- A random function f can be seen as generated by the while noise Gaussian measure (Wiener measure) W on $\ell^2 \subset \mathbb{R}^{\infty}$.

Let $e \equiv (e_i, i = 1, ...) \in \ell^2$ with $\sum_i^{\infty} e_i^2 < \infty$. Then a white noise Gaussian measure $\mathcal{W}(e)$ has zero mean and

$$\int_{\ell^2} e_i e_j \mathcal{W}(de) = \delta_{i,j} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Then $f \sim \mathcal{G}(\mathcal{H})$, if and only if

$$f(\cdot) = \sum_{i} \sqrt{\lambda_i} \phi_i(\cdot) e_i$$

where $\{\phi_i\}$ is the set of eigenfunctions of K associated with eigenvalue $\{\lambda_i\}$, with respect to Lebesgue measure μ on \mathcal{X} .

• The function space \mathcal{H} is equipped with σ -algebra \mathscr{B} generated by the collection of all cylinder sets $\{f \in \mathcal{H} : (\eta_1(f), \dots, \eta_k(f)) \in A\}$ for all k, all $\eta_1, \dots, \eta_k \in \mathcal{H}^*$ are linear functionals on \mathcal{H} and all $A \in \mathcal{B}(\mathbb{R}^k)$. A induced probability measure $\mathcal{P} \equiv \mathbb{P} \circ f^{-1}$ defined on \mathscr{B} is given as

$$\mathcal{P}(C) \equiv \mathbb{P}\left\{\omega : f \equiv f(\cdot, \omega) \in C\right\}, C \in \mathscr{B}$$

• In practice, one could define a sampling map $S: T \to \mathcal{X}$ that induced a sampling ordering from T over the field \mathcal{X} , then the sample path is $f(\mathbf{x}_t, \omega)$ not $f(t, \omega)$ for $t \in T$. Since \mathcal{X} is separable, the image $\overline{S}(T) = \mathcal{X}$ is dense.

We may consider a random function $g: T \times \Omega \to \mathbb{R}$ with sample path $g(\cdot, \omega) = f(\cdot, \omega) \circ S$ as a conventional process.

• Given \mathcal{H} , the random function $f \sim \mathcal{G}(\mathcal{H})$, the Gaussian measure on function space \mathcal{H} , if and only if all its linear functionals $\eta(f) \in \mathcal{H}^*$ yields a Gaussian distribution on \mathbb{R} .

1.2 Covariance function

- The dual space \mathcal{H}^* has all linear functional I(f). Note that the evaluation functional of f at ξ is a linear functional, as $\xi(f) \equiv f(\xi)$.
- The linear operator $K: \mathcal{H} \to \mathcal{H}$ is called the *covariance operator* of a measure \mathcal{P} if for any $\xi, \eta \in \mathcal{H}^* \simeq \mathcal{H}$, the following equality holds,

$$\xi(K(\eta)) = \int_{\mathcal{H}} \xi(f - m)\eta(f - m)\mathcal{P}(df)$$

• Note that $\xi(f) \equiv f(\xi) = \langle f, K(\cdot, \xi) \rangle_{\mathcal{H}} \in \mathcal{H}^*$ and $\eta(f) \equiv f(\eta) = \langle f, K(\cdot, \eta) \rangle_{\mathcal{H}} \in \mathcal{H}^*$ are two

functionals on \mathcal{H} . Therefore,

$$cov(f(\xi), f(\eta)) \equiv \xi (K(\eta)) = \int_{\mathcal{H}} \xi(f) \eta(f) \mathcal{P}(df)$$

$$= \int_{\mathcal{H}} \langle f, K(\cdot, \xi) \rangle_{\mathcal{H}} \langle f, K(\cdot, \eta) \rangle_{\mathcal{H}} \mathcal{P}(df)$$

$$= \int_{\mathbb{R}^{\infty}} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \beta_{i} \beta_{j} \langle \phi_{i}, K(\cdot, \xi) \rangle_{\mathcal{H}} \langle \phi_{j}, K(\cdot, \eta) \rangle_{\mathcal{H}} \mathcal{W}(d\beta)$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \left(\int_{\mathbb{R}^{\infty}} \beta_{i} \beta_{j} \mathcal{W}(d\beta) \right) \phi_{i}(\xi) \phi_{j}(\eta)$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \lambda_{i} \delta_{i}(j) \phi_{i}(\xi) \phi_{j}(\eta)$$

$$= \sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(\xi) \phi_{i}(\eta)$$

$$= K(\xi, \eta)$$

where $\mathcal{W}(d\boldsymbol{\beta}) = \mathcal{N}(0, \operatorname{diag}(\lambda_1, \dots,))d\boldsymbol{\beta}$ so that $\sum_{i=1}^{\infty} \beta_i^2/\lambda_i < \infty$