Séance 1
 Séance 2
 Séance 3
 Séance 4

 000
 0000
 00000

Projet PCSN El2018

Modélisation VHDL de l'algorithme de chiffrement AES

Jean-Max Dutertre, Olivier Potin, Guillaume Reymond, Jean-Baptiste Rigaud

Mercredi 4 décembre 2019

Objectifs des séances

- Séance 1
 - S-box
 - SubBytes
- Séance 2
- 3 Séance 3
- 4 Séance 4

Séance 4

Séance 3

- Séance 1
- 2 Séance 2
 - ShiftRows
 - AddRoundKey
- 3 Séance 3
- 4 Séance 4

 Séance 1
 Séance 2
 Séance 3
 Séance 4

 •00
 0000
 00000

ShiftRows

Permutation cyclique (ou rotation)

- Permute les octets de chaque ligne de l'état (State)
- Le décalage dépend de l'indice (0...3) de la ligne

ShiftRows

$S'_{0,0}$	$S'_{0,1}$	$S'_{0,2}$	S' _{0,3}
	$S'_{1,2}$	$S'_{1,3}$	$S'_{1,0}$
$S'_{2,2}$	$S'_{2,3}$	$S'_{2,0}$	$S'_{2,1}$
S' _{3,3}	S' _{3,0}	$S'_{3,1}$	S' _{3,2}

Implémentation

- Aucune fonction logique n'est appliquée
- Nécessite uniquement des fils pour assurer le décalage de chaque ligne

AddRoundKey

Ajout de la clé de ronde

- Ajoute la clé de ronde courante (ronde 0...10) à l'état courant
- L'addition dans *GF*(2⁸) est un OU-exclusif (XOR)
- Le XOR est appliqué bit à bit pour chaque octet

Objectifs des séances

- Séance 1
- 2 Séance 2
- Séance 3
 - MixColumns
 - Round Execution
- 4 Séance 4

MixColumns

Transformation linéaire colonne par colonne

Multiplication matricielle

$$\begin{bmatrix} S_{0,c}' \\ S_{1,c}' \\ S_{2,c}' \\ S_{3,c}' \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} S_{0,c} \\ S_{1,c} \\ S_{2,c} \\ S_{3,c} \end{bmatrix}$$

MixColumns

Multiplication dans $GF(2^8)$

- Chaque élément est traité comme un polynôme dans $GF(2^8)$
- Multiplication notée \otimes , modulo le polynôme irréductible $x^8 + x^4 + x^3 + x + 1$, ou b'100011011

Multiplication par 02

- La valeur de l'octet est décalé à gauche (ex. 0xD4) : $b'11010100 \ll 1 = b'11010100$
- Si le bit de poids fort vaut '1', réduction en utilisant un OU-exclusif avec b'100011011: $b'11010100 \oplus b'100011011 = b'010110011 = 0xB3$

Multiplication par 03 : on notera que 03 = 02 + 01

On pourra écrire : $\{03\} \otimes S_{r,c} = (\{02\} \otimes S_{r,c}) \oplus S_{r,c}$

MixColumns

Séance 1

Multiplication matricielle

$$\begin{bmatrix} S_{0,c}' \\ S_{1,c}' \\ S_{2,c}' \\ S_{3,c}' \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} S_{0,c} \\ S_{1,c} \\ S_{2,c} \\ S_{3,c} \end{bmatrix}$$

Ce qui est équivalent à :

$$\begin{array}{lll} S_{0,c}' & = & (\{02\} \otimes S_{0,c}) \oplus (\{03\} \otimes S_{1,c}) \oplus S_{2,c} \oplus S_{3,c} \\ S_{1,c}' & = & S_{0,c} \oplus (\{02\} \otimes S_{1,c}) \oplus (\{03\} \otimes S_{2,c}) \oplus S_{3,c} \\ S_{2,c}' & = & S_{0,c} \oplus S_{1,c} \oplus (\{02\} \otimes S_{2,c}) \oplus (\{03\} \otimes S_{3,c}) \\ S_{3,c}' & = & (\{03\} \otimes S_{0,c}) \oplus S_{1,c} \oplus S_{2,c} \oplus (\{02\} \otimes S_{0,c}) \end{array}$$

Séance 3

- Une ronde est constitué des 4 opérations SubBytes, ShiftRows, MixColumns et AddRoundKey
- Sauf pour la dernière ronde sans MixColumns
- L'entité MixColumns doit donc prévoir une entrée *enable*

Séance 3

Objectifs des séances

- Séance 1
- 2 Séance 2
- 3 Séance 3
- 4 Séance 4
 - Registre de l'état courant State
 - Compteur
 - Machine d'états finis

Registre de l'état courant State

Pour chaque ronde, il est nécessaire de mémoriser l'état courant dans un registre.

Modification de RoundExecution

- Ajout d'un registre après l'instance AddRoundKey
- Ajout de l'horloge et du reset

```
signal state_s : bit128;
...
seq_0 : process (clock_i, reset_i) is
begin -- process seq_0
   if reset_i = '0' then -- asynchronous reset (active-low)
        state_s <= (others <= '0');
   elsif clock_i'event and clock_i = '1' then -- rising clock
        state_s <= AddRoundKey_output_s;
   end if;
end process seq_0;</pre>
```

 Séance 1
 Séance 2
 Séance 3
 Séance 4

 000
 0000
 0 ● 0000

Compteur

Utilisation du compteur de ronde

- Si le compteur est activé (enable = 1)
 - Si init = 1, le compteur vaut 0
 - Sinon, le compteur est incrémenté
- Sinon le compteur conserve sa valeur

Modélisation par un process VHDL

```
signal counter_s : bit4;
. . .
seq_0 : process (clock_i, reset_i, enable_i, init_i) is
begin -- process seq_0
   if reset_i = '0' then -- asynchronous reset (active-low)
      counter s <= X"0":
   elsif clock_i'event and clock_i = '1' then -- rising clock
      if (enable i = '1') then
         if (init i = '1') then
            counter_s <= X"0";
         else
            counter_s <= counter_s + 1;</pre>
         end if:
      end if:
   else
      counter s <= counter s:
   end if:
end process seq_0;
```

 Séance 1
 Séance 2
 Séance 3
 Séance 4

 000
 0000
 000 ● 00

Machine d'états finis

Rôle de la machine d'état

La machine d'état finis gère l'exécution de l'algorithme AES

- Lancement du chiffrement lorsque start_i = 1
- Sélection de la clé de ronde
- Gestion du compteur de ronde
- Fin de calcul : aes_on_o remis à 1

Elle pilote les blocs Round Execution et Key Expansion

Key expansion

Séance 1

Fonctionnement

L'entité key expansion fournit une clé de ronde expansion_key_o en fonction de round_i

- Entrées : clé key_i, start_i, round_i
- L'ensemble des clés de ronde sont prêtes lorsque end_o = 1
- Sorties : sous-clé expansion_key_o de la ronde round_i

Il faut donc attendre $end_o = 1$ (fin de l'expansion de clé) avant de lancer l'exécution des rondes

Séance 1 Séance 2 Séance 3 Séance 4

Machine d'états finis

