Методы обучения ранжированию (Learning to Rank)

2 ноября 2017

Содержание

- Признаки и функционалы качества
 - Построение признаков
 - Функционалы качества ранжирования
- Основные подходы к ранжированию
 - Поточечный подход
 - Попарный подход
 - Списочный подход
- Обучение ранжированию по кликам
 - Balanced interleaving
 - Teamdraftinterleaving(TDI)
 - Проблемы подхода

Определения и обозначения

X — множество объектов $X^\ell=\{x_1,\ldots,x_\ell\}$ — обучающая выборка $i\prec j$ — правильный порядок на парах $(i,j)\in\{1,\ldots,\ell\}^2$

Задача:

построить ранжирующую функцию $a\colon X \to \mathbb{R}$ такую, что

$$i \prec j \Rightarrow a(x_i) < a(x_j)$$

Линейная модель ранжирования:

$$a(x; w) = \langle x, w \rangle$$

где $x\mapsto (f_1(x),\ldots,f_n(x))\in\mathbb{R}^n$ — вектор признаков объекта x

Ранжирование 3 / 29

Пример 1. Задача ранжирования поисковой выдачи

D — коллекция текстовых документов (documents)

Q — множество запросов (queries)

 $D_q \subseteq D$ — множество документов, найденных по запросу q $X = Q \times D$ — объектами являются пары «запрос, документ»:

$$x \equiv (q, d), q \in Q, d \in D_q$$

Y — упорядоченное множество рейтингов $y\colon X \to Y$ — оценки релевантности, поставленные асессорами: чем выше оценка y(q,d), тем релевантнее документ d запросу q

Правильный порядок определён только между документами, найденными по одному и тому же запросу q:

$$(q,d) \prec (q,d') \Leftrightarrow y(q,d) < y(q,d')$$

Именно об этой задаче сегодня пойдет речь.

Ранжирование 4 / 29

Пример 2. Коллаборативная фильтрация

U — пользователи, users I — предметы, items (фильмы, книги, и т.п.) $X = U \times I$ — объектами являются пары «user, item»

Правильный порядок определён между предметами, которые выбирал или рейтинговал один и тот же пользователь:

$$(u,i) \prec (u,i') \Leftrightarrow y(u,i) < y(u,i')$$

Рекомендация пользователю u — это список предметов i, упорядоченный с помощью функции ранжирования a(u, i)

В роли признаков объекта x = (u, i) могут выступать y(u',i) — рейтинги, поставленные другими пользователями u'То есть, поиск коллаборации ⇔ отбор признаков

5/29

Задача ранжирования поисковой выдачи:типы признаков

- функции только документа d
- функции только запроса q
- ullet функции запроса и документа (q,d)
- текстовые
 - слова запроса q встречаются в d чаще обычного
 - слова запроса q есть в заголовках или выделены в d
- ссылочные
 - на документ d много ссылаются
 - документ d содержит много полезных ссылок
- кликовые
 - на документ d часто кликают
 - на документ d часто кликают по запросу q

Могут быть и другие варианты: например, свежесть документа.

$\mathsf{TF}\mathsf{-}\mathsf{IDF}(q,d)$ — классический текстовый признак

TF-IDF(q,d) — мера релевантности документа d запросу q n_{dw} (term frequency) — число вхождений слова w в текст d; N_w (document frequency) — число документов, содержащих w; N — число документов в коллекции D;

 N_w/N — оценка вероятности встретить слово w в документе; $(N_w/N)^{n_{dw}}$ — оценка вероятности встретить его n_{dw} раз; $P(q,d) = \prod_{w \in q} (N_w/N)^{n_{dw}}$ — оценка вероятности встретить

в документе d слова запроса $q = \{w_1, \dots, w_k\}$ чисто случайно;

Оценка релевантности запроса q документу d:

$$-\log P(q,d) = \sum_{w \in q} \underbrace{n_{dw}}_{\mathsf{TF}(w,d)} \underbrace{\log(N/N_w)}_{\mathsf{IDF}(w)} \ o \ \mathsf{max} \,.$$

 $TF(w, d) = n_{dw}$ — term frequency; $IDF(w) = log(N/N_w)$ — inverted document frequency.

PageRank — классический ссылочный признак

Документ d тем важнее,

- чем больше других документов c ссылаются на d,
- чем важнее документы c, ссылающиеся на d,
- чем меньше других ссылок имеют эти документы c.

Вероятность попасть на страницу d, если кликать случайно:

$$\mathsf{PR}(d) = \frac{1 - \delta}{\mathsf{N}} + \delta \sum_{c \in D_d^{in}} \frac{\mathsf{PR}(c)}{|D_c^{out}|},$$

 $D_d^{in}\subset D$ — множество документов, ссылающихся на d, $D_c^{out}\subset D$ — множество документов, на которые ссылается c, $\delta=0.85$ — вероятность продолжать клики (damping factor), N — число документов в коллекции D.

Sergey Brin, Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. 1998.

8 / 29

Кликовые признаки

Можно придумать множество различных «кликовых функций»

- Кликнутые против некликнутых.
- Длинные клики против коротких кликов или некликнутых.

Решение подзадач для формирования признаков:

- Классификация: есть ли длинный клик на документе?
- Регрессия: насколько длинный клик ожидаем?
- Попарная классификация: будет ли клик на один документ более длинным, чем на другой?

Онлайн- и офлайн-признаки

- Офлайн-признаки: можем вычислить в любой момент для любой поисковой системы без использования пользовательской информации
 - Собираем много запросов, по ним много документов, оцениваем на «релевантность» силами асессоров
- Онлайн-признаки: меняем ранжирование для некоторой группы пользователей и следим за их поведением
 - АВ-тестирование: разбиваем пользователей на две группы («контроль» и «эксперимент»), вносим изменение для одной из этих групп и затем сравниваем группы по каким-нибудь показателям
 - Высокоуровневые признаки: количество запросов/кликов (конвертируются в долю). Низкоуровневые признаки: доля запросов без кликов, количество инверсий, позиция первого клика, средняя длина клика и т.п.

Точность и средняя точность

Пусть $Y = \{0,1\}$, y(q,d) — релевантность, a(q,d) — искомая функция ранжирования, $d_q^{(i)}$ — i-й документ по убыванию a(q,d).

Precision, точность — доля релевантных среди первых n:

$$P_n(q) = \frac{1}{n} \sum_{i=1}^n y(q, d_q^{(i)})$$

Average Precision, средняя P_n по позициям релевантных документов:

$$AP(q) = \sum_{n} y(q, d_q^{(n)}) P_n(q) / \sum_{n} y(q, d_q^{(n)})$$

Mean Average Precision, средняя AP по всем запросам:

$$MAP = \frac{1}{|Q|} \sum_{q \in Q} AP(q)$$

Доля «дефектных пар»

Пусть $Y \subseteq \mathbb{R}$, y(q,d) — релевантность, a(q,d) — искомая функция ранжирования, $d_q^{(i)}$ — i-й документ по убыванию a(q,d).

Доля инверсий порядка среди первых n документов:

$$DP_n(q) = \frac{2}{n(n-1)} \sum_{i < j}^n \left[y(q, d_q^{(i)}) < y(q, d_q^{(j)}) \right].$$

Связь с коэффициентом ранговой корреляции (au Кенделла):

$$\tau(a,y)=1-2\cdot DP_n(q).$$

Связь с AUC (area under ROC-curve) в задачах классификации с двумя классами $Y=\{-1,+1\}$, $a\colon X\to Y$

$$AUC_n(q) = \frac{1}{\ell_-\ell_+} \sum_{i,j=1}^n \left[y_i < y_j \right] \left[a(x_i) < a(x_j) \right] = 1 - \frac{n(n-1)}{2\ell_-\ell_+} \cdot DP_n(q).$$

 ℓ_- и ℓ_+ —количество объектов в классах -1 и +1 соответственно.

DCG — Discounted Cumulative Gain

Пусть $Y \subseteq \mathbb{R}$, y(q,d) — релевантность, a(q,d) — искомая функция ранжирования, $d_q^{(i)}$ — i-й документ по убыванию a(q,d).

Дисконтированная (взвешенная) сумма выигрышей:

$$DCG_n(q) = \sum_{i=1}^n \underbrace{G_q(d_q^{(i)})}_{\text{gain}} \cdot \underbrace{D(i)}_{\text{discount}}$$

 $G_q(d) = (2^{y(q,d)}-1)$ — бо́льший вес релевантным документам $D(i) = 1/\log_2(i+1)$ — бо́льший вес в начале выдачи

Нормированная дисконтированная сумма выигрышей:

$$NDCG_n(q) = \frac{DCG_n(q)}{\max DCG_n(q)}$$

 $\max DCG_n(q)$ — это $DCG_n(q)$ при идеальном ранжировании

pFound — модель поведения пользователя

Пусть $Y \subseteq [0,1]$,

y(q,d) — релевантность, оценка вероятности найти ответ в d, a(q,d) — искомая функция ранжирования, $d_{q}^{(i)} = i$ -й документ по убыванию a(q,d).

Вероятность найти ответ в первых n документах:

$$pFound_n(q) = \sum_{i=1}^n P_i \cdot y(q, d_q^{(i)}),$$

где P_i — вероятность дойти до i-го документа:

$$P_1 = 1;$$

$$P_{i+1} = P_i \cdot (1 - y(q, d_q^{(i)})) \cdot (1 - P_{out}),$$

где P_{out} — вероятность прекратить поиск без ответа

pFound — модель поведения пользователя

Параметры критерия pFound:

- $P_{out} = 0.15$ вероятность прекратить поиск без ответа;
- y(q,d) оценка вероятности найти ответ в документе:

оценка асессора	y(q,d)
Vital	0.61
Useful	0.41
Relevant +	0.14
Relevant—	0.07
Not Relevant	0.00

Гулин А., Карпович П., Расковалов Д., Сегалович И. Оптимизация алгоритмов ранжирования методами машинного обучения // РОМИП-2009.

Основные подходы к ранжированию

- Point-wise поточечный
- Pair-wise попарный
- List-wise списочный

Переход к гладкому функционалу качества ранжирования:

$$Q(a) = \sum_{i \prec j} \underbrace{\left[\underbrace{a(x_j) - a(x_i)}_{\mathsf{Margin}(i,j)} < 0 \right]} \leqslant \sum_{i \prec j} \mathscr{L} \left(a(x_j) - a(x_i) \right) \ \to \ \mathsf{min}$$

где a(x) — алгоритм ранжирования;

 $\mathscr{L}(M)$ — убывающая непрерывная функция отступа $\mathsf{Margin}(i,j)$:

•
$$\mathscr{L}(M) = (1 - M)_+ - \mathsf{RankSVM}$$

•
$$\mathcal{L}(M) = \exp(-M)$$
 — RankBoost

•
$$\mathscr{L}(M) = \log(1 + e^{-M})$$
 — RankNet

Непрерывные аппроксимации пороговой функции потерь

Часто используемые непрерывные функции потерь $\mathscr{L}(M)$:

$$V(M) = (1-M)_+$$
 — кусочно-линейная (SVM); $H(M) = (-M)_+$ — кусочно-линейная (Hebb's rule); $L(M) = \log_2(1+e^{-M})$ — логарифмическая (LR); $Q(M) = (1-M)^2$ — квадратичная (FLD); $S(M) = 2(1+e^{M})^{-1}$ — сигмоидная (ANN); $E(M) = e^{-M}$ — экспоненциальная (AdaBoost); — пороговая функция потерь.

Напоминание: SVM — метод опорных векторов

Линейный классификатор:

$$a(x) = sign(\langle w, x \rangle - w_0), \quad w, x \in \mathbb{R}^n, \ w_0 \in \mathbb{R}.$$

Задача обучения SVM:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi}; \\ M_i(w, w_0) \geqslant 1 - \xi_i, & i = 1, \dots, \ell; \\ \xi_i \geqslant 0, & i = 1, \dots, \ell. \end{cases}$$

где
$$M_i(w, w_0) = y_i(\langle w, x_i \rangle - w_0)$$
 — отступ объекта x_i .

Эквивалентная задача безусловной минимизации:

$$Q(w, w_0) = \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}.$$

Ранговая классификация OC-SVM (Ordinal Classification SVM)

Пусть
$$Y=\{1,\ldots,K\}$$
, функция ранжирования *линейная* с порогами $b_0=-\infty$, $b_1,\ldots,b_{K-1}\in\mathbb{R}$, $b_K=+\infty$: $a(x)=y$, если $b_{V-1}<\langle w,x\rangle\leqslant b_V$

Постановка задачи SVM для ранговой классификации:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\ell} [y_i \neq K] (\xi_i + \xi_i^*) \to \min_{w,b,\xi}; \\ b_{y_i-1} + 1 - \xi_i^* \leqslant \langle w, x_i \rangle \leqslant b_{y_i} - 1 + \xi_i; \\ \xi_i^* \geqslant 0, \quad \xi_i \geqslant 0. \end{cases}$$

Ranking SVM

Постановка задачи SVM для попарного подхода:

$$Q(a) = \frac{1}{2} ||w||^2 + C \sum_{i \prec j} \mathscr{L}(\underbrace{a(x_j) - a(x_i)}_{\mathsf{Margin}(i,j)}) \rightarrow \min_{a},$$

где
$$a(x)=\langle w,x\rangle$$
 — функция ранжирования, $\mathscr{L}(M)=(1-M)_+$ — функция потерь, $M=\mathsf{Margin}(i,j)=\langle w,x_j-x_i\rangle$ — отступ,

Постановка задачи квадратичного программирования:

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i \prec j} \xi_{ij} \to \min_{w, \xi}; \\ \langle w, x_j - x_i \rangle \geqslant 1 - \xi_{ij}, \quad i \prec j; \\ \xi_{ij} \geqslant 0, \quad i \prec j. \end{cases}$$

RankNet

RankNet: гладкий функционал качества ранжирования:

$$Q(a) = \sum_{i \prec j} \mathscr{L} \big(a(x_j) - a(x_i) \big) \quad \to \quad \min$$

при $\mathscr{L}(M) = \log(1 + e^{-\sigma M})$ и линейной модели $a(x) = \langle w, x \rangle$.

Метод стохастического градиента:

выбираем на каждой итерации $q, i \prec j$ случайно,

$$w := w + \eta \cdot \frac{\sigma}{1 + \exp(\sigma \langle x_i - x_i, w \rangle)} \cdot (x_j - x_i);$$

Christopher J.C. Burges From RankNet to LambdaRank to LambdaMART: An Overview // Microsoft Research Technical Report MSR-TR-2010-82. 2010.

От RankNet до LambdaRank

Метод стохастического градиента:

$$w := w + \eta \cdot \underbrace{\frac{\sigma}{1 + \exp(\sigma\langle x_j - x_i, w \rangle)}}_{\lambda_{ij}} \cdot (x_j - x_i);$$

Оказывается, для оптимизации негладких функционалов MAP, NDCG, pFound достаточно домножить λ_{ij} на изменение данного функционала при перестановке местами $x_i \leftrightarrows x_i$.

LambdaRank: домножение на изменение NDCG при $x_i \hookrightarrow x_j$ приводит к оптимизации NDCG:

$$w := w + \eta \cdot \frac{\sigma}{1 + \exp(\sigma \langle x_i - x_i, w \rangle)} \cdot |\Delta NDCG_{ij}| \cdot (x_j - x_i);$$

Christopher J.C. Burges From RankNet to LambdaRank to LambdaMART: An Overview // Microsoft Research Technical Report MSR-TR-2010-82. 2010.

LambdaMART

- MART (Multiple Additive Regression Trees) градиентный бустинг над решающими деревьями.
- LambdaMART совмещает MART и LambdaRank к градиентам добавляется целевая метрика. Например, NDCG.
- Вариант: LambdaSMART (submodel): мы инициализируем первое дерево какой-нибудь обученной хорошей базовой моделью, а всё дальнейшее это её уточнение.

Обучение ранжированию по кликам

- Качаем по запросу пользователя выдачу нескольких поисковых систем (Google, MSN, Excite, Altavista, Hotbot).
- Если пользователь кликал по выдаче, то считаем, что кликнутые документы – лучше, чем некликнутые, расположенные выше в ранжировании.
- На полученных парах обучаем SVM.
- Сравниваем различные варианты ранжирования по количеству генерируемых кликов – balanced interleaving.

Joachims T. Optimizing Search Engines using Clickthrough Data (2002) http://www.cs.cornell.edu/people/tj/publications/joachims_02c.pdf

Balanced interleaving

- Пусть k некоторый размер топа для выдачи I, k_a и k_b количество документов из A и B в этом топе соответственно. Тогда для любого k должно быть выполнено $|k_a k_b| \leqslant 1$.
- Пусть по данному запросу были кликнуты документы $h_a \in A \cap C$ и $h_b \in B \cap C$. Тогда в зависимости от знака величины $|h_a| |h_b|$ засчитываем победу A, победу B, либо ничью.
- Сравнение на наборе запросов:

$$\Delta_{AB} = \frac{wins(A) + 0.5ties(A, B)}{wins(A) + wins(B) + ties(A, B)} - 0.5$$

• Если $\Delta_{AB} > 0$, то система A предпочтительнее. Если $\Delta_{AB} > 0$, то система B предпочтительнее.

Thorsten Joachims. Evaluating Retrieval Performance using Clickthrough Data (2002) https://www.cs.cornell.edu/people/tj/publications/joachims 02b.pdf

Teamdraftinterleaving(TDI)

- Делаем п шагов смешивания. На каждом шаге выбираем одну из двух систем случайным образом. Из выбранной системы добавляем в І наиболее высоко ранжированный документ, которого в І еще не было. Затем делаем то же самое для второй из систем.
- За каждой позицией в І закреплена только одна из систем.
- Системы сравниваются по общему количеству кликов аналогично предыдущему подходу.

RadlinskiF.,KurupM.,JoachimsT.Howdoes clickthrough data reflect retrieval quality (2008)

http://www.cs.cornell.edu/People/tj/publications/radlinski etal 08b.pdf

Смещение

 Может возникать систематическое смещение результатов из-за учета дублей. На примере TDI:

$$A = < a, b, c > B = < e, a, f >$$
 $I_{AA} = < a, e, b, f, ... > I_{AB} = < a, e, f, b, ... >$
 $I_{BA} = < e, a, b, f, ... > I_{BB} = < e, a, f, b, ... >$

 Для первых позиций смещений нет, но затем систематически сравниваем второй документ системы А с третьим документом системы В!

Подмешивания

• Документы бывают свежие (f) и обычные (w). Пусть, например:

$$A = \langle w, w, f \rangle$$
 $B = \langle w', f', w' \rangle$

- Свежий документ из системы А будет вставать на 5-6 позиции, а свежий документ из системы В будет вставать на 3-4 позиции
- Если для свежего результата оптимальной с точки зрения кликов является, например, третья позиция, то выиграет система В, хотя в ней документ расположен субоптимально

Резюме в конце лекции

- Ранжирование особый класс задач машинного обучения.
- Критерий качества ранжирования зависит от приложения. Наилучшего универсального критерия не существует.
- Три подхода: поточечный, попарный, списочный.

- Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer-Verlag Berlin Heidelberg. 2011
- Hang Li. A Short Introduction to Learning to Rank // IEICE Trans. Inf. & Syst., Vol.E94–D, No.10 October 2011.