



# Artificial Neural Networks Unit -2

Course Instructor:

Dr. Anil B. Gavade

Department of Electronics and Communication Engineering KLS GIT, Belagavi-08.

#### Content:

- Brief history of neural networks
- Biological Neural Networks
- Fundamentals of Biological Neural Networks
- Modeling of One Biological Neural Networks as Artificial Neural Network
- Modeling of One Biological Neural Networks as Artificial Neural Network
- Activation Functions in Neural Networks
- Layer in Artificial Neural Network (ANN)
- Overview of a Neural Network's Learning Process
- Image Classification with MNIST Dataset
- Human and Machine deal with information (Data)
- Human and Machine Perception
- ML and DL applications

## Brief history of neural networks



## Brief history of neural networks



#### Top Most Researchers:

#### Geoffrey Hinton "Godfather of Deep Learning"



https://www.cs.toronto.edu/~hinton/



# Architecture of Intelligence

Micro Etching of Brain



Cross-section of the cortex





### **Biological Neural Networks**



Interconnection of biological neural nets.

Synaptic junction — detail

## Fundamentals of Biological Neural Networks

A biological neural cell (neuron)

- Robbert L. Harvey focuses very much on the biological model. His definition excludes most parts of logical neural networks from the field of neural networks.
- A neural network is a dynamical system with one-way interconnections. It carries out processing by its response to inputs. The processing elements are nodes; the interconnects are directed links. Each processing element has a single output signal from which copies fan out."
- The author of this report has the following definition which is more concerned with the fundamental ideas of neural systems and the basic properties of the brain rather than the aspect of modeling parts of the nervous system.

# Modeling of One Biological Neural Networks as Artificial Neural Network

Artificial neural networks (ANNs) were designed to simulate the biological nervous system, where information is sent via input signals to a processor, resulting in output signals. ANNs are composed of multiple processing units that work together to learn, recognize patterns, and predict data.



A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Simplified Biological Neurons into Artificial Neural Network

#### The Architecture of Neural Networks

# There are 3 layers mainly in neural networks.

- Input Layer
- Hidden Layers
- Output Layer



#### **An Artificial Neural System (ANS)**

- consists of simple interconnected modules.
- is based on communication between modules.
- performs its task by parallel processing.
- is fault tolerant.
- is learning from example.
- has the ability to generalize.
- performs complex tasks due to the whole architecture.

#### **Activation Functions in Neural Networks**

#### Linearly/Non-Linearly Separable Data



The 2 classes can be separated by a straight line

The 2 classes can be separated by a curve or a more complex function that a straight line

#### Why do we need activations?

Our real world data in non-linear, and cannot be separated by a straight line. We wish to learn much more complex functions to be able to predict/classify the data we are working with.





Therefore, we need an Activation function f(x) to make our neural network more powerful and enable it to learn complex and complicated data and represent nonlinear complex arbitrary functional mappings between inputs and outputs, in addition to multiple MLPs. An Activation function is a non-linear function which takes a linear scalar  $z_1$  as its input and maps it to another numerical value  $y_1$ 



#### Neural Network Activation Functions: a small subset!

| ReLU                                                                                                                    | GELU /                                                                                  | PReLU                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| $\max(0,x)$                                                                                                             | $\frac{x}{2}\left(1 + \tanh\left(\sqrt{\frac{2}{\pi}}\right)(x + ax^3)\right)$          | $\max(0,x)$                                                                                                               |
| ELU $\int x \text{ if } x > 0$                                                                                          | Swish                                                                                   | SELU $\alpha(\max(0,x)+$                                                                                                  |
| $\begin{cases} \alpha(x \exp x - 1) \text{ if } x < 0 \\ \text{SoftPlus}                                    $           | $1 + \exp{-x}$ Mish                                                                     | $\min(0, \beta(\exp x - 1)))$                                                                                             |
| $\frac{1}{\beta}\log\left(1+\exp(\beta x)\right)$                                                                       | $x \tanh \left(\frac{1}{\beta} \log \left(1 + \exp(\beta x)\right)\right)$              | $\begin{cases} x \text{ if } x \ge 0\\ ax \text{ if } x < 0 \text{ with } a \sim \Re(l, u) \end{cases}$                   |
| HardSwish $ \begin{cases} 0 \text{ if } x \leq -3 \\ x \text{ if } x \geq 3 \\ x(x+3)/6 \text{ otherwise} \end{cases} $ | Sigmoid $\frac{1}{1 + \exp(-x)}$                                                        | SoftSign $x$ $1 +  x $                                                                                                    |
| Tanh $tanh(x)$                                                                                                          | Hard tanh $a \text{ if } x \ge a$ $b \text{ if } x \le b$ $x \text{ otherwise}$         | Hard Sigmoid $\begin{cases} 0 \text{ if } x \leq -3 \\ 1 \text{ if } x \geq 3 \\ x/6 + 1/2 \text{ otherwise} \end{cases}$ |
| Tanh Shrink                                                                                                             | Soft Shrink $x - \lambda \text{ if } x > \lambda$                                       | Hard Shrink $x 	ext{ if } x > \lambda$                                                                                    |
| $x - \tanh(x)$                                                                                                          | $\begin{cases} x + \lambda \text{ if } x < -\lambda \\ 0 \text{ otherwise} \end{cases}$ | $\begin{cases} x \text{ if } x < -\lambda \\ 0 \text{ otherwise} \end{cases}$                                             |

## Sigmoid Function



Any input will be scaled to a value between 0-1

#### Ex:

$$x = 2 \rightarrow f(x) = 1 / (1 + e^{-2}) = 0.88080$$
  
 $x = -1 \rightarrow f(x) = 1 / (1 + e^{1}) = 0.26894$ 

# Sigmoid Function Derivative



$$y = \frac{1}{1+e^{-x}}$$
 $\frac{dy}{dx} = -\frac{1}{(1+e^{-x})^2}(-e^{-x}) = \frac{e^{-x}}{(1+e^{-x})^2}$ 
 $= \frac{1}{1+e^{-x}}\left(1 - \frac{1}{1+e^{-x}}\right) = y(1-y)$ 

## Rectified Linear Unit (ReLU)



If the input is negative  $\rightarrow$  Output is Zero If the input is positive  $\rightarrow$  Stays Positive

Ex: 
$$6 \Rightarrow 6$$
 $0 \Rightarrow 0$ 
 $-3 \Rightarrow 0$ 
 $2 \Rightarrow 2$ 

$$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$$

## Layer in Artificial Neural Network (ANN)





**Single Layer Perceptron** 

Multi-Layer perceptron

## Overview of a Neural Network's Learning Process



## Human and Machine deal with information (Data)



## Human and Machine Perception: it is with patterns

#### **Patterns, Patterns everywhere!**





#### Finding Patterns in Large Data Sets



## Classification of ML/DL Algorithm:

#### CLASSICAL MACHINE LEARNING



## Machine and Deep Learning Model



1950'S 1980'S 2010'S Milestone

DIFFERENCE **DEEP LEARNING** MACHINE LEARNING Excellent performances on Excellent performance on **Data Dependencies** a small/medium dataset a big dataset Hardware Requires powerful machine, Work on a low-end Dependencies preferably with GPU machine Need to understand the No need to understand Feature the best feature that features that represent Engineering represents the data the data From few minutes to hours **Execution Time** Up to weeks Some algorithms are Difficult to impossible Interpretability easy to interpret





## Image Classification with MNIST Dataset: Using ANN model



## Classification of Cancer using ML/DL Algorithm:



Question & Answers..?

Thank you..