Solutions to Exercises in Introduction to Manifolds by Tu

Mathew Calkins mathewpcalkins@gmail.com

November 16, 2018

1 Smooth Functions on a Euclidean Space

1.1 A function that is C^2 but not C^3

Let $g: \mathbb{R} \to \mathbb{R}$ be the function in Example 1.2(iii). Show that the function $h(x) = \int_0^x g(t)dt$ is C^2 but not C^3 at x = 0.

Solution In Example 1.2(iii) we defined

$$f(x) = x^{1/3}$$

and

$$g(x) = \int_0^x f(t)dt = \frac{3}{4}x^{4/3}$$

. Notice that

$$h''(x) = q'(x) = f(x) = x^{1/3}$$
.

Since the 2nd derivative of h exists and is continuous at x = 0, h is C^2 at x = 0. However, h'''(x) = f'(x) is does not exist at x = 0 so h is not C^3 at x = 0. QED

1.2 A function very flat at 0

Let f(x) be the function on \mathbb{R} defined in example 1.3.

(a) Show by induction that for x > 0 and $k \ge 0$, the kth derivative $f^{(k)}(x)$ is of the form $p_{2k}(1/x)e^{-1/x}$ for some polynomial $p_{2k}(y)$ of degree 2k in y.

Solution For x > 0 (and we only concern ourselvers with that case for this problem) recall that $f(x) = e^{1/x}$. So our claim is true for k = 0 with $p_1(y) = 1$. By standard calculus we have

$$f'(x) = -\frac{1}{x^2}e^{1/x}.$$

In other words,

$$f^{(1)}(x) = p_{2\cdot 1}(1/x)e^{1/x}$$

where

$$p_2(y) = -y^2.$$

So our claim is also true for k = 1. So suppose that we have

$$f^{(k)}(x) = p_{2k}(1/x)e^{1/x}$$

for some $k \geq 1$. Then the chain rule gives

$$f^{(k+1)}(x) = \frac{d}{dx} \left(p_{2k}(1/x)e^{1/x} \right)$$

$$= -\frac{p'_{2k}(1/x)}{x^2} e^{1/x} - p_{2k}(1/x) \frac{e^{1/x}}{x^2}$$

$$= \left(-\frac{p_{2k}(1/x) + p'_{2k}(1/x)}{x^2} \right) e^{1/x}.$$

Since the term inside the parentheses has order 2(k+1) when thought over as a polynomial in 1/x, we see conclude our induction step and write

$$f^{(k+1)}(x) = p_{2(k+1)}(1/x)e^{1/x}$$
.

(b) Prove that f is C^{∞} on \mathbb{R} and that $f^{(k)}(0) = 0$ for all $k \geq 0$.

Solution Recall that, for each $k \geq 0$, we have (to be continued)

- 2 Tangent Vectors in \mathbb{R}^n as Derivations
- 3 The Exterior Algebra of Multicovectors
- 4 Differential Forms on \mathbb{R}^n
- **4.1** A 1-form on \mathbb{R}^3

Let ω be the 1-form zdx - dz and let X be the vector field $y\partial/\partial x + x\partial/\partial y$ on \mathbb{R}^3 . Compute $\omega(X)$ and $d\omega$.

Solution

From linearity and the identity

$$dx^i \left(\frac{\partial}{\partial x^j} \right) = \delta^i_j$$

we have

$$\omega(X) = (zdx - dz) \left(y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} \right)$$

$$= zydx \left(\frac{\partial}{\partial x} \right) + \text{ terms that vanish by orthogonality}$$

$$= zy.$$

Next we write

$$\omega = \omega_i dx^i$$

where $(\omega_1, \omega_2, \omega_3) = (z, 0, -1)$. Then the general rule for differentiating 1-forms states that

$$d\omega = d\omega_i \wedge dx^i$$

$$= d\omega_1 \wedge dx^1 + d\omega_2 \wedge dx^2 + d\omega_3 \wedge dx^3$$

$$= dz \wedge dx + 0 \wedge dy + 0 \wedge dz$$

$$= dz \wedge dx.$$

5 Manifolds

The real line with two origins

Let A and B be two points not on the real line \mathbb{R} . Consider the set $S = (R - \{0\}) \cup A, B$. For any two positive real number c, d, define

$$I_A(-c,d) =]-c,0[\cup \{A\} \cup]0,d[$$

and similarly for $I_B(-c,d)$ with B instead of A. Define a topology on S as follows: on $(\mathbb{R} - \{0\})$, use the subspace topology inherited from \mathbb{R} , with open intervals as a basis. A basis of neighborhoods at A is the set

$$\{I_A(-c,d) \mid c,d>0\}$$

and likewise at B.

(a) Prove that the map $h: I_A(-c,d) \rightarrow]-c,0[\ \cup\]0,d[$ defined by

$$h(x) = 0$$
 for $x \in]-c, 0[\cup]0, d[, h(A) = 0$

is a homeomorphism.

6 Smooth Maps on a Manifold

7 Quotients