KUBERNETES

VERTICAL POD AUTOSCALER OPERATOR

THE TEAM

SELEN

LAXMI

APOORVA

AKSHAY

SINDHU

Mentors (Redhat)

GOAL OF THIS PROJECT

- Avoid manually specifying pod resource requirements (CPU/Mem)
- Solution: Use Vertical Pod Autoscaler instead
- Question: Why is VPA operator not used always?

KUBERNETES 101: CONTROLLERS

WHAT IS AN OPERATOR?

A Kubernetes operator is an **application-specific** controller that extends the functionality of the Kubernetes API to **create**, **configure**, and **manage** instances of complex applications on behalf of a Kubernetes user.

WHAT IS AN OPERATOR?

It builds upon the basic Kubernetes resource and controller concepts, but includes **domain or application-specific knowledge** to automate the entire life cycle of the software it manages.

WHY IS IT A GAME-CHANGER?

These Controllers have direct access to Kubernetes API, which means they can

- monitor the cluster
- change pods/services
- scale up/down and call endpoints of the running applications

all according to custom rules written inside those controllers.

HOW DOES IT WORK?

Couchbase Cluster is running 2 pods:

- CB-0001, version 5.0.1
- · CB-0002, version 5.0.1

Differences from desired config:

· 3 Pods should be running instead of just 2

How to get to desired config:

- · Start new Pod
- · Add new node to the cluster
- Trigger data rebalancing

WHAT WE PLANNED TO DO IN SPRINT BOSTON

- Setup Openshift cluster on MassOpenCloud(MOC)
- Install Operators on cluster (VPA and Grafana)
- Get access to Grafana metrics from openshift cluster
- [Spike] Investigate options to simulate fluctuating workload
- Understand ArgoCD and GitOps setup in Operate-First
- Sprint demo video, presentation, quiz

WHAT WE CHANGED

- Assign Product Owner to each Sprint
- Create user tasks with standard format
- Design documents for important decisions

User story format

CLUSTER SETUP

- Namespace assigned on MOC platform
 - Familiarized deployment using standard pet-clinic application
- To be installed:
 - VPA operator
 - Grafana operator
- Configuration for MOC managed clusters
 - https://github.com/CCI-MOC/moc-apps

SUBSCRIPTION

- A Subscription represents an intention to install an operator.
- It is the CustomResource that relate an operator to a CatalogSource.

```
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
    name: my-operator
    namespace: operators
spec:
    channel: stable
    name: my-operator
    source: my-catalog
    sourceNamespace: operators
```

kubectl apply -f sub.yaml

K8S CLUSTER CONFIG

kubectl apply -f application/deployment.yaml

KUSTOMIZE

- Kubernetes native configuration management
- Kustomize is meant to build native Kubernetes manifests based on YAML, while leaving the original YAML in tact.

KUSTOMIZE

kubectl apply -k ./k8s/kustomize/environments/production

CHOOSING CANDIDATE FOR VPA TESTING (SPIKE)

OPTION 1 - LOAD TESTING TOOLS

OVERALL TEST SCENARIO DESIGN

OVERALL TEST SCENARIO DESIGN

OVERALL TEST SCENARIO DESIGN

Ability to Control	Ability to Control	Ease of	Compatibility
CPU	Memory Workload	Setup/Development	
?			

It is not a trivial task to control CPU consumption per request

Ability to Control CPU	Ability to Control Memory Workload	Ease of Setup/Development	Compatibility
?	4		

Easily
configurable
that how much
memory will be
consumed

Ability to Control CPU	Ability to Control Memory Workload	Ease of Setup/Development	Compatibility
?	4	*	

Needs effort to implement & deploy a web server

Ability to Control CPU	Ability to Control Memory Workload	Ease of Setup/Development	Compatibility
?	4	*	*

Easy to integrate with Grafana & K8s via CLI tool but still requires to dealt with other components

OPTION 2 - STRESS-NG

- Open source command line tool
- Has multiple stress tests (stressor)

- How to use stress-ng in openshift cluster?
 - Wrapper py script around stress-ng
 - Create a docker image of the wrapper script
 - Deploy docker image in openshift cluster

STRESS-NG EXAMPLE FOR CPU LOAD

docker run -it --rm stress-ng

- --cpu 4
- --timeout 60s
- --metrics-brief

STRESS-NG EXAMPLE FOR MEMORY LOAD

docker run stress-ng

- --vm 8
- --vm-bytes 80%
- --timeout 60s

Ability to Control	Ability to Control	Ease of	Compatibility
CPU	Memory Workload	Setup/Development	
?			

Not very trivial, stressor may vary between kernels

Ability to Control CPU	Ability to Control Memory Workload	Ease of Setup/Development	Compatibility
?	4		

Yes, easy to specify the % of memory workload to be consumed

Ability to Control CPU	Ability to Control Memory Workload	Ease of Setup/Development	Compatibility
?	4	*	

Needs effort to implement wrapper script and creating docker image

Ability to Control CPU	Ability to Control Memory Workload	Ease of Setup/Development	Compatibility
?	4	*	*

It is a CLI, not designed for kubernetes. Wrapper must be made suitable for kubernetes.

OPTION 3 - K8S RESOURCE CONSUMER

- Primarily developed to test k8s autoscaling.
- Written in Golang and uses GoRoutines
- Use Cases:
 - → Cluster size autoscaling
 - → Horizontal Pod Autoscaler(HPA)
 - → Vertical Pod Autoscaler(VPA)
- Starts an HTTP server in the consuming container and handles the incoming POST requests.

OPTION 3 - K8S RESOURCE CONSUMER

SETUP:

Easy to setup using an existing docker image that can be found in Google Container Registry. It can be easily deployed in a container using *kubectl run*

USAGE:

- Consumes CPU and Memory resources via API.
- HTTP requests to specify CPU and Memory consumption
 - /ConsumeCPU
 - /ConsumeMem

EXAMPLE COMMAND FOR MEMORY CONSUMPTION

curl --data
"megabytes=250&durationSec
=10"
http://<EXTERNAL_IP>/Cons
umeMem

EXAMPLE COMMAND FOR CPU CONSUMPTION

curl --data
"millicores=250&durationSec=
100"
http://<EXTERNAL_IP>/Cons
umeCPU

WHY RESOURCE CONSUMER?

- Existing Docker Image.
- Comes with a backend API that handles HTTP requests.
- Controlled consumption of CPU and Memory for a specified duration.
- Easy communication to the consuming container using API calls.

Ability to Control CPU	Ability to Control Memory Workload	Ease of Setup/Development	Compatibility
✓			

Easy with curl commands

Ability to Control CPU	Ability to Control Memory Workload	Ease of Setup/Development	Compatibility
✓	4		

Easy with curl commands

Ability to Control CPU	Ability to Control Memory Workload	Ease of Setup/Development	Compatibility
4	4	✓	

Easy with existing docker image

Ability to Control CPU	Ability to Control Memory Workload	Ease of Setup/Development	Compatibility	
✓	4	✓	✓	

Primarily developed to test k8s

WINNER

K8S RESOURCE CONSUMER

COMPARISON

	Ability to Control CPU	Ability to Control Memory Workload	Ease of Setup/Developm ent	Compatibility
Load testing tools	?	✓	*	*
Scripts/Library	?	✓	*	*
Resource Consumer	✓	✓	✓	✓

WHAT WE ACCOMPLISHED IN THE SPRINT BOSTON

- Setup Openshift cluster on MassOpenCloud(MOC)
- Install Operators on cluster (VPA and Grafana)
- Get access to Grafana metrics from openshift cluster
- [Spike] Investigate options to simulate fluctuating workload
- Understand ArgoCD and GitOps setup in Operate-First
- Sprint demo video, presentation, quiz

WHAT WE LEARNED

- For install K8s operator task:
 - turned out to be more effort than installing from OLM.
 - So we need better story estimations.

PLAN FOR SPRINT CHICAGO

- Complete operator installation
- Understand the repository pattern required for GitOps
- Install ArgoCD operator and setup Web UI
- Create scheduled workload to show VPA

BURNDOWN CHART

Sprint Boston 27 Sep 2021 to 11 Oct 2021

