

Tweet Sentiment Analysis

SC1015 - Introduction to Data Science and Artificial Intelligence

Lab A127, Team 2
Tan Hee (U2220857H)
Lim Zheng Guang (U2221246G)
Kerwin Soon (U2223521J)

Table of Contents

01 - Motivation and Problem Statement

02 - Exploratory Data Analysis

03 - Predictive Models

04 - Insights and Conclusion

Motivation and Problem Statement

Our Motivation

We want to gain insights into people's daily lives by analyzing their tweets on the platform - whether they are being positive, negative or neutral based on the text they are tweeting.

Dataset

Included in the dataset are 4 columns:

- textId unique ID for each piece of text
- text the text of the tweet
- selected text the general sentiment of the tweet
- sentiment the text that supports the tweet's sentiment

Dataset

```
In [4]: df = pd.read_csv("dataset/train.csv")
    df.head()
```

Out[4]:

	textID	text	selected_text	sentiment
)	cb774db0d1	I'd have responded, if I were going	ſd have responded, if I were going	neutral
	549e992a42	Sooo SAD I will miss you here in San Diego!!!	Soco SAD	negative
2	088c60f138	my boss is bullying me	bullying me	negative
3	9642c003ef	what interview! leave me alone	leave me alone	negative
	358bd9e861	Sons of ****, why couldn't they put them on t	Sons of ****,	negative

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27481 entries, 0 to 27480

Problem Statement

To accurately predict and classify the sentiment of the tweet as positive, negative or neutral using different models

Exploratory Data Analysis

Seaborn count plot

3 types of sentiment:

1. Neutral (Count: 11117)

2. Negative (Count: 7781)

3. Positive (Count: 8582)

Seaborn histogram plot

- All 3 sentiments have <u>similar</u>
 <u>distribution</u> of words in a tweet
- Average distribution is <u>12 words</u> in a tweet

Treemap Charts

- The top 3 most common positive words in a tweet are "day", "good" and "love".
- "day" is 1179 of the total positive words
- "good" is 972 of the total positive words
- "love" is 872 of the total positive words

Further Analysis of Unique Patterns

Tweets were taken around mother's day

• 351 rows contain mother

A lot of URLs in the text

• 1223 rows contain URLs

A lot of censored words replaced with **** in the dataset

1000 rows contain ****

Exploratory Analysis & Analytic Visualization Data Preprocessing Techniques

Tokenizing	Breaking a text based on the token (a meaningful unit of text)		
Filtering Stop Words	Filter words you want to ignore of your text when processing it		
Stemming	Reduce words to their root, which is the core part of a word		
	Reduce words their core meaning, but will give a complete English word that make		
Lemmatizing	sense on its own		
Tagging parts of speech			

Chunking

To identify phrases

Data Preprocessing

3 techniques used:

- 1. tokenizing
- 2. filtering stop words
- 3. stemming

```
In [38]: print("Uncleaned: " + df[df.text.str.contains("http")].iloc[0].text)
    print()
    print("Cleaned: " + df[df.text.str.contains("http")].iloc[0].cleaned_text)

Uncleaned: http://www.dothebouncy.com/smf - some shameless plugging for the best Rangers f
Cleaned: shameless plug best ranger forum earth
```


Predictive Models

Classification Task

To accurately **classify** the sentiment of the tweet as positive, negative or neutral using different Machine Learning models

Lexicon-Based Approach

VADER
(Valence Aware Dictionary and sEntiment Reasoner)

Machine Learning Approach

RECURRENT NEURAL NETWORK

LINEAR SVC (Support Vector Machine)

Lexicon-Based Sentiment Analysis with VADER (Valence Aware Dictionary and sEntiment Reasoner)

- VADER does not use Machine Learning
- Works by giving each word in a sentence a score based on an internal valence dictionary
- Aggregates the scores to provide a overall sentiment score for a sentence
- Lower performance of the predictor compared to more advanced models

Evaluation of Vader

Confusion Matrix for VADER (Valence Aware Dictionary and sEntiment Reasoner)

	precision	recall	f1-score	support
negative neutral positive	0.71 0.72 0.56	0.61 0.47 0.88	0.66 0.57 0.68	7781 11117 8582
accuracy macro avg weighted avg	0.66 0.66	0.65 0.64	0.64 0.63 0.63	27480 27480 27480

Naive Bayes Classifier

- It is a supervised machine learning algorithm, which is used for classification tasks, like text classification.
- It works by calculating probability of a given text belonging to a particular sentiment class, based on the frequency of words in text
- The algorithm is simple, efficient, and has been shown to perform well in sentiment analysis tasks.

Evaluation of Naive Bayes Classifier

	precision	recall	f1-score	support
negative	0.67	0.60	0.63	1556
neutral	0.60	0.66	0.63	2223
positive	0.70	0.68	0.69	1717
accuracy			0.65	5496
macro avg	0.66	0.65	0.65	5496
weighted avg	0.65	0.65	0.65	5496

Linear SVC Classifier

- Similar to Naive Bayes Classifier used for classification tasks
- Linear SVC works by mapping data points to a high-dimensional space and then finding the optimal hyperplane that divides the data into two classes.
- It is less prone to overfitting compared to other classification algorithms which is why it is better than Naive Bayes Classifier.

Evaluation of Linear SVC Classifier

	precision	recall	f1-score	support
negative	0.68	0.61	0.65	1556
neutral	0.62	0.70	0.66	2223
positive	0.75	0.69	0.72	1717
accuracy			0.67	5496
macro avg	0.68	0.67	0.67	5496
weighted avg	0.68	0.67	0.67	5496


```
model = Sequential()
model.add(layers.Embedding(max_words, 20)) #The embedding layer
model.add(layers.LSTM(15,dropout=0.5)) #Our LSTM layer
model.add(layers.Dense(3,activation='softmax')) #Our ouput layer
```


Embedding Layer

- To learn word embeddings from scratch
- Converts our wordy sentences into dense vectors

LSTM Layer

- Type of RNN especially performant in text classification tasks
- Long Short Term Memory networks memorises context of words
- We utilised the dropout rate to reduce overfitting

Dense Layer

- Output layer with 3 output units to represent our 3 classes
- Uses softmax activation to collect probabilistic scores for each class

Evaluation of RNN

	precision	recall	f1-score	support
0 1 2	0.74 0.67 0.80	0.64 0.78 0.73	0.69 0.72 0.76	1504 2249 1743
accuracy macro avg weighted avg	0.74 0.73	0.72 0.73	0.73 0.72 0.73	5496 5496 5496

Conclusion

Conclusion

5 **STEP STEP STEP** STEP **STEP Our Problem Model Evaluation Exploratory Data Data**

Finding a dataset and coming up with a problem statment

Analysis

Finding trends in the text data using visualization

Preprocessing

Cleaning and preparing the text data using new tools

Machine Learning Model Training

Researching and preparing text classification models

Interpreting the results of the model predictions and scoring them

AI Predicted Tweet sentiments with 72% Accuracy

Sentiment Analysis is a tedious task for Humans. With the aid of Machine Learning and Artificial Intelligence, we can accurately predict sentiments of a huge number amount of text, creating a **stepping stone** for a vast range of applications such as **Social Media Monitoring** and **Cyber Bullying Detection**.

Thank You!

