

AD-A106 721

SCIENCE APPLICATIONS INC LA JOLLA CA
A COMPARISON OF CASUALTY ASSESSMENT RESULTS FROM THE TENOS AND --ETC(U)
JUN 80 E J SWICK
SAI-010-80-406-LJ

F/6 15/6

DNA001-78-C-0343
NL

UNCLASSIFIED

DNA-5358F

END
DATE
CROSS ID
42-81
DTIC

ADA106721

(12) LEVEL II

DNA 5352F

A COMPARISON OF CASUALTY ASSESSMENT RESULTS FROM THE TENDS AND CIVIC CODES

Eugene J. Swick
Science Applications, Inc.
P.O. Box 2351
La Jolla, California 92037

27 June 1980

Final Report for Period 1 July 1978–27 June 1980

CONTRACT No. DNA 001-78-C-0343

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

DTIC
ELECTED
NOV 2 1981
S D
B

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B364078464 V99QAXNH30304 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305

DTIC FILE COPY
KX

81 10 29 017

Destroy this report when it is no longer
needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY,
ATTN: STTI, WASHINGTON, D.C. 20305, IF
YOUR ADDRESS IS INCORRECT, IF YOU WISH TO
BE DELETED FROM THE DISTRIBUTION LIST, OR
IF THE ADDRESSEE IS NO LONGER EMPLOYED BY
YOUR ORGANIZATION.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER DNA 5352F	19	2. GOVT ACCESSION NO. AD-A106 721	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) A COMPARISON OF CASUALTY ASSESSMENT RESULTS FROM THE TENOS AND CIVIC CODE		5. TYPE OF REPORT & PERIOD COVERED Final Report, 1 Jul 78 - 27 Jun 80	
6. AUTHOR(s) Eugene J. Swick		7. PERFORMING ORG. REPORT NUMBER SAI-010-80-406-LJ	
8. CONTRACT OR GRANT NUMBER(s) DNA 001-78-C-0343		9. PERFORMING ORGANIZATION NAME AND ADDRESS Science Applications, Inc. P.O. Box 2351 La Jolla, California 92037	
10. CONTROLLING OFFICE NAME AND ADDRESS Director Defense Nuclear Agency Washington, D. C. 20305		11. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Subtask V99QAXNH303-04	
12. REPORT DATE 27 June 1980		13. NUMBER OF PAGES 44	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	
18. SUPPLEMENTARY NOTES This work sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B364078464 V99QAXNH30304 H2590D.			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Population Casualty Assessment, CIVIC, TENOS, Damage Methodology, Population Representation, Fallout Models, WSEG-10, Improved SEER II.			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Comparison of assessment results from the CIVIC and TENOS Population Casualty Assessment Codes was accomplished under selected input conditions and two U.S. population representations (data bases). Results indicate that for the large yield strike file employed, national results obtained from both codes did not differ significantly because of the significant overlapping of fallout fields. However, state-by-state results showed some significant			

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

variations due to the different fallout models employed (CIVIC, TENOS-WSEG-10) and the methodology for combining prompt and fallout effects. These variations, however, were not biased in any particular direction, i.e., in some cases TENOS results were higher while in others CIVIC results were higher.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PREFACE

The author wishes to express his appreciation for the invaluable support provided by LT COL's R. Edwards and D. Thomas, the DNA COR's for this work.

Dr. Dave Bensen and Mr. Jim Jacobs of the FEMA performed and provided the TENOS assessment. Their cooperation in providing the basic population data base, the strike file and the TENOS assessment results were instrumental to the project and their work is greatly appreciated.

Messrs. Ron Dietz and Mel Schoonover of SAI were instrumental in generating the required data bases for CIVIC use and performing the CIVIC assessment.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
	PREFACE - - - - -	1
	LIST OF ILLUSTRATIONS - - - - -	3
	LIST OF TABLES- - - - -	3
1	SUMMARY - - - - -	5
1-1	GENERAL - - - - -	5
1-2	ASSESSMENT CONDITIONS - - - - -	5
1-3	CAVEATS - - - - -	5
1-4	OBSERVATIONS- - - - -	6
2	INTRODUCTION- - - - -	9
3	COMPARISON GROUND RULES AND ASSESSMENT CODE DIFFERENCES- - - - -	10
3-1	GROUND RULES- - - - -	10
3-2	BASIC DIFFERENCES IN THE ASSESSMENT CODES - -	10
4	DEVELOPMENT OF ASSESSMENT PROBLEM SETS AND CIVIC MODIFICATIONS - - - - -	13
4-1	DEVELOPMENT OF ASSESSMENT PROBLEMS- - - - -	13
4-1.1	Impact of Fallout Models Employed - -	13
4-1.2	Impact of Weapon CEP and Population Representation- - - - -	13
4-1.3	Impact of Methodology for Combining Prompt and Fallout Environments - - -	14
4-1.4	Summary of CIVIC and TENOS Problem Sets- - - - -	14
4-2	CIVIC MODIFICATIONS - - - - -	14
4-3	DCPA POPULATION DATA BASE CHARACTERISTICS - -	14
5	SPECIFICATION OF PROMPT DAMAGE FUNCTIONS- - - - -	19
6	RESULTS AND OBSERVATIONS- - - - -	29
7	GLOSSARY- - - - -	35
	APPENDIX A - CIVIC INPUT OPTIONS- - - - -	37

52F

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	Shelter 35/25-mines, caves and tunnels (Type A) - - - - -	20
2	Shelter 10/7-best basements (Type B/C) - - - - - - - - -	21
3	Shelter 10/4-basements of wood frame structures (Type D) -	22
4	Shelter 8/2-upper stories (<10) of strong walled buildings (Type E/F) -	23
5	Shelter 5/2-tall (>10 stories) weak walled upper story space and weak basements (Type G/H/I) - - - - - - - - -	24
6	15 psi upgraded blast shelter - - - - - - - - - - - - - - - - -	25
7	TENOS fallout radiation damage functions (warned) (fallout only) -	26

LIST OF TABLES

<u>Tables</u>		<u>Page</u>
1	Assessment stipulations - - - - - - - - - - - - - - - - - - -	11
2	TENOS and CIVIC assessment methodology differences - - -	12
3	Assessment problems -	15
4	Weapon laydown characteristics - - - - - - - - - - - - - - -	16
5	CIVIC modifications -	17
6	NSS structure types -	18
7	Summary - shelter characteristics - - - - - - - - - - - - -	27
8	National total comparisons - - - - - - - - - - - - - - - - -	32
9	TENOS results -	33
10	CIVIC-1 results -	33
11	CIVIC-2 results -	33
12	CIVIC-3 results -	33
13	% differences in assessment cases - - - - - - - - - - - - -	34

Blank ✓

BLANK PAGE

SECTION 1

SUMMARY

1-1 GENERAL

A comparison of results from the civilian casualty assessment codes CIVIC and TENOS was accomplished with the intent of determining the influence of methodology differences employed by the two codes. The principal methodology differences examined were:

- fallout model - SEER versus WSEG-10,
- techniques for combining prompt and fallout effects,
- population representation (point versus area targets) and CEP considerations.

1-2 ASSESSMENT CONDITIONS

Three CIVIC and one TENOS assessment problems were executed with a population data base and weapon strike file provided by FEMA. Only one TENOS assessment was conducted by FEMA because of other high priority commitments. With the possible exception of variations in population posture (shelter conditions), this single assessment was representative of the normal operating capabilities of the code under the specified strike file. The population data base consisted of 98,606 records with a total population of 211,706,673 contained within the 48 contiguous states. The weapon strike file consisted of 1,459 weapons ranging in yield from 1-20 MT, with a total megatonnage of 6,607. Of the total number of weapons, 795 were fallout producers, with a total megatonnage of 4,375. The weapons inventory and strike file are considered reasonable and prudent. The weapon strike file produced significant overlapping of fallout areas over large areas of the United States.

1-3 CAVEATS

The observations noted below pertain only to the assessment conditions noted above. Based on this work and other code comparison work, it is clear that results obtained through the use of different assessment codes are heavily dependent on the size and nature of the data base and on size and yields employed in the weapon strike file. In general, the smaller and more dispersed the weapon laydown, the larger the differences between various assessment codes.

OBSERVATIONS

The results of the comparison show the following:

a. Comparison of CIVIC runs using the WSEG-10 option⁽¹⁾ and the improved SEER-II option (all other input conditions identical) showed that the WSEG-10 model produced nearly 11% more fallout-only fatalities than the improved SEER-II model.

The fallout-only fatality difference in this assessment is not as large as those that were produced in other assessment comparisons performed for DNA. This may be due to either a preponderance of very large weapons or the number of lesser yield weapons in the strike file. Either will subject a large part of the population data base to many overlapping fallout fields. Secondarily, at the larger yields, the differences in fallout contours produced by the two fallout models are not as pronounced as they are for the lower yield weapons. In addition, the GWC October winds used in this assessment has low wind shear characteristics. It was noted in previous studies that WSEG-10 compares well with other fallout models when the wind shear is low.

b. The comparison which was developed to show the influence of the prompt and fallout environment combining methodology in the two codes indicated that the CIVIC combining methodology produced about 11.2% greater fatalities than the methodology in TENOS. The combining methodology is independent of the fallout model employed.

c. TENOS does not use weapon CEP in casualty assessments and treats population areas as points, whereas most casualty assessment codes consider the CEP in prompt casualty calculations. To assess the impact of these conditions, two CIVIC calculations were made. In one, zero weapon CEP's and a point target representation of the population was employed. In the other, a normal CEP of 1500 feet and an area (P-95 circle) representation of the population was employed. Comparison of results from the two calculations showed that these two parameters, when employed in conjunction with

(1) Two fallout models are contained in CIVIC—SEER and WSEG-10. The user can select at run-time, via an input flag, which model he desires to use for fallout assessments.

one another, had no influence on the outcome of the assessment for the weapon strike file employed.

d. The TENOS/CIVIC-1 comparison case in which CIVIC was⁽²⁾ employed with zero weapon CEP and a point target representation of the population (to be consistent with TENOS methodology), showed national assessment results that were in reasonable agreement. The difference in prompt fatalities was about 4%, and almost all of this difference can be attributed to differences in the shelter damage functions and the prompt damage probability calculations because of the insignificant influence of CEP and target representation parameters noted in (a), above.

The combined environment fatality difference of 6.3% represents differences in three aspects of the assessment; the prompt environment calculations, the differences in the fallout models employed by the two codes, and the methodology for combining the prompt and fallout environments. From paragraphs (b) and (c) above, we note that the fallout model differences (TENOS/WSEG-10 results larger) and the combining methodology differences (CIVIC results larger) are sufficiently counterbalancing in this scenario that the differences between the CIVIC and TENOS assessment results can be considered negligible.

e. As might be expected, the results from the state-by-state summaries show the much wider variations that can be attributed in large part to the differences in fallout models and the extent of fallout area overlapping. The results for two states serve to illustrate this point. The combined fatality difference for the TENOS/CIVIC-1 comparison in the State of Alabama, for example, shows a 23.5% difference with the TENOS (WSEG-10) fatalities being higher. On the other hand, for the State of California the difference in combined fatalities is 9.7% with the CIVIC (SEER) fatalities being higher.

(2) The notation CIVIC-1, CIVIC-2, CIVIC-3 is used only to describe the three CIVIC assessment cases (see Table 3) which involves only variation to the input run-stream. The differences in the methodology employed when these variations are employed are discussed in Appendix A.

For large weapon laydowns, particularly where large yield weapons are involved, one can conclude that differences in code methodology are washed out when looking at national results. However, where specific areas or location are of interest, particularly as regards constraints that may be employed with certain attack options, significant assessment differences may be observed when using the different methodologies/models employed in CIVIC and TENOS.

It should be noted that the assessments addressed in this study were based on the use of shelter distance-damage functions derived from FEMA data. AP-550 distance-damage functions for similar shelter categories are somewhat different because of the larger damage sigmas and could conceivably result in larger casualty estimates. However, this aspect of the damage methodology was not examined in this study.

SECTION 2

INTRODUCTION

This report documents the results of a code comparison program sponsored by DNA. The primary objective of the program was to evaluate the casualty differences that would be encountered when employing different population casualty assessment codes. This objective was to be satisfied by accomplishing the following:

- Exercise damage assessment models against a number of specific problem sets.
- Compare casualty output results.
- Identify where possible, the source of any significant differences in output results.

During the initial planning stages of the program, it was believed desirable to perform the comparative assessments using four computer programs:

- TENOS (employed by FEMA)
- READY (employed by FPA)
- SIDAC (employed by CCTC)
- CIVIC (development sponsored by DNA)

However, because of other high priority commitments, FPA and CCTC could not participate in the program and thus the only assessment codes that could be employed in the comparison were TENOS and CIVIC. Furthermore, the FEMA participation with TENOS was limited to a single assessment run.

SECTION 3

COMPARISON GROUND RULES AND ASSESSMENT CODE DIFFERENCES

3-1 GROUND RULES

In order that meaningful comparisons could be made, a number of ground rules or initial conditions were established by the program participants (FEMA, SAGA, DNA) at the outset of the work effort. These are shown in Table 1.

3-2 BASIC DIFFERENCES IN THE ASSESSMENT CODES

In order to establish some rationale or logic for the selection of assessment problems, it was useful to identify general methodology or data base factors that might contribute to differences in casualty results. Among those considered the most significant were:

- Population representation
- Population shelter distribution
- Prompt weapon effects damage methodology
- Fallout model employed
- Methodology for combining prompt and fallout effects
- Weapon associated parameters

With the establishment of these general factors, they were then specifically related to the capability of the codes that were to be employed in the comparative analysis. These are shown in Table 2.

The comparison ground rules and the methodology factors noted above were the basis for the specification of the assessment problems discussed in Section 4.

Table 1. Assessment stipulations.

- BASIC WEAPON LAYDOWN DATA PROVIDED BY FEMA
- CCTC WIND DATA BASE WAS TO BE EMPLOYED
 - OCTOBER "MOST-PROBABLE" WINDS
- POPULATION DATA BASE PROVIDED BY FEMA
 - "BEST SHELTERED" U.S. POPULATION DATA BASE (2X2 MINUTE GRID CELL DATA)
 - SHELTER DISTRIBUTION GIVEN FOR EACH CELL IN DATA BASE
- FALLOUT FATALITY/CASUALTY CALCULATIONS TO BE BASED ON MAXIMUM BIOLOGICAL DOSE
 - IRREPARABLE DOSE FRACTION = 0.1, REPAIR RATE = 2.5%/DAY
- SHELTER CHARACTERISTICS TO BE PROVIDED BY FEMA
 - DAMAGE PROBABILITY VERSUS OVERPRESSURE
 - FALLOUT PROTECTION FACTORS
- SAI WOULD TRANSFORM FEMA SHELTER CHARACTERISTICS INTO FORM SUITABLE FOR CIVIC

Table 2. TENOS and CIVIC assessment methodology differences.

	<u>TENOS</u>	<u>CIVIC</u>
Population Representation	Point	Option-Point or Area (P-95)
Shelter Distribution at Each Population Place	From Population Data Base	From Population Data Base or Assigned Through Code Algorithms
Weapon Impact Point Distribution Considerations	No	Yes
Probability of Weapon Arrival Considerations	No	Yes
Prompt Effects Damage Function	Blast Only (1 MT and Above)	Blast and Nuclear Radiation
Fallout Model	WSEG-10	Option-Improved SEER-II or WSEG-10
Combined Prompt and Fallout Effects	Independent Events Compounding	Procedure for Summing Radiation Components Plus Independent Events Compounding
Wind Data Base	5 Altitude Level GWC Grid Data	10 Levels for SEER; 5 Levels for WSEG-10
Biological Repair Function for Fallout Radiation	Yes	Option, Yes or No

SECTION 4

DEVELOPMENT OF ASSESSMENT PROBLEM SETS AND CIVIC MODIFICATIONS

4-1 DEVELOPMENT OF ASSESSMENT PROBLEMS

Based on the assessment code capabilities and program objectives, problem sets were developed which were designed to address the issues specified in the following subsections. It should be noted that in order to examine the impact of most methodology and/or input parameter differences between the two codes, it was estimated that about 22 CIVIC assessment cases would be required with various permutations in input parameters or damage methodology. Because the large strike file and data base implied long computer run times, this number of assessments could not be accommodated. Thus, a compromise of the three assessment cases described below was instituted. The necessary limitation in assessment runs accommodated investigation of the most important methodology differences between the two codes under nominal input conditions. It did not, however, permit investigation of differences that might result due to variations in strike file (weapon yield), population shelter distribution, and wind data base.

4-1.1 Impact of Fallout Models Employed

With all input parameters identical, a direct comparison between TENOS (WSEG-10) and CIVIC (improved SEER-II) was desired. This baseline comparison coupled with two other comparisons was expected to provide some insight regarding the influence of other input parameters and code methodology.

4-1.2 Impact of Weapon CEP and Population Representation

Because TENOS does not employ CEP in its damage calculations, it was believed useful to compare output results with a CEP = 0 employed in both codes and then to employ CIVIC with a nominal weapon CEP of 1500 feet. TENOS also uses a point target representation of the population. To ascertain whether this parameter is important in casualty assessments CIVIC would be run with both point and area population representations. To accomplish this, each 2 x 2 minute cell location in the DCPA population data base was converted to an equal area circle with the center of the circle coincident with the DCPA cell center. The conversion was based on the algorithm

$$R(n.m) = \sqrt{\frac{4 \times \cos(\text{latitude of population place})}{\pi}}$$

to estimate the radius of an equivalent P-95 radius.

4-1.3 Impact of Methodology for Combining Prompt and Fallout Environments

TENOS calculates damage to population points due to prompt and fallout environments independently and then compounds the two, under the independent events assumption, to specify total fatalities and casualties. CIVIC on the other hand strives to account for the additive nature of the radiation environments (prompt and fallout) in ascertaining total fatality and casualty results. It appeared useful, therefore, to establish whether this refinement in methodology makes any impact on casualty and fatality results. To ascertain this impact, a direct comparison of the output results of the TENOS and CIVIC codes (using the WSEG-10 option in CIVIC) was desired.

4-1.4 Summary of CIVIC and TENOS Problem Sets

Table 3 summarizes the conditions of the CIVIC and TENOS comparison problems. Table 4 summarizes the characteristics of the weapon strike file provided by FEMA.

4-2 CIVIC MODIFICATIONS

The ground rules and problem sets established above required that some non-inconsequential modifications be made to the CIVIC code in order to perform the desired assessments. The major modifications are shown in Table 5.

4-3 DCPA POPULATION DATA BASE CHARACTERISTICS

The DCPA "best sheltered" U. S. population data base for the contiguous 48 states contains 98,606 population records with a total population of 211,766,673. For each record in the data base, a distribution of the population into one or more of six structure/shelter types is given based on data from the National Shelter Survey. This distribution was employed in both the TENOS and CIVIC assessment runs. Definitions of the various structure types contained in the National Shelter Survey are given in Table 6.

Table 3. Assessment problems.

<u>Problem Number</u>	<u>Population Representation</u>	<u>CEP (feet)</u>	<u>Fallout Model</u>
TENOS ⁽¹⁾	Point	0	TENOS/WSEG-10
CIVIC-I ⁽¹⁾	Point	0	CIVIC/SEER
CIVIC-II ⁽³⁾	Area ⁽²⁾	1500	CIVIC/SEER
CIVIC-III ⁽⁴⁾	Point	0	CIVIC/WSEG-10

(1) To provide direct comparison with TENOS results.

(2) 2X2 minute cell converted to equal area circle

$$P-95(\text{nm}) = \sqrt{\frac{4 \times \cos(\text{lat. of population place})}{\pi}}$$

(3) To determine influence of CEP and point versus area target representation

(4) To determine influence of CIVIC prompt and fallout combining techniques.

Table 4. Weapon laydown characteristics.

<u>YIELD</u>	<u>TOTAL NUMBER</u>	<u>HOB'S (FT)</u>	<u>NUMBER SURFACE BURST</u>
1 MT	847	0/9400	429
2 MT	190	0/9323	93
3 MT	180	0/10673	100
20 MT	242	0/20087	173
	1459		<u>795</u>
	6607 MT		4375 MT

All weapons presumed to arrive, i.e., PA = 1.0

Table 5. CIVIC modifications.

- MODIFICATION TO ACCESS AND EMPLOY A U.S. POPULATION DATA BASE
 - ORIGINAL CODE WAS CONSTRAINED TO EURASIAN CONTINENT
- MODIFICATION TO ACCESS AND EMPLOY SHELTER DISTRIBUTION BY POPULATION PLACE DIRECTLY FROM DATA BASE
- MODIFICATION TO OPERATE ON AND PROVIDE OUTPUT FOR SIX SHELTER CATEGORIES INSTEAD OF FOUR
- MODIFICATION TO ACCESS AND EMPLOY A WIND DATA BASE APPLICABLE TO WESTERN HEMISPHERE
 - ORIGINAL CODE WAS CONSTRAINED TO EURASIAN CONTINENT
- CONVERSION OF CCTC WIND DATA BASE INTO CIVIC COMPATIBLE FORMAT
- INSTALL WSEG-10 FALLOUT MODEL AS OPTION TO SEER
- TEST TO DETERMINE SIGNIFICANCE OF CIVIC PROMPT + FALLOUT COMPOUNDING METHODOLOGY
- CONVERT CIVIC TO CDC 7600 COMPUTER
- LARGE LAYDOWN AND DATA BASE - EXCESSIVE RUN TIME ON SLOWER MACHINE
- MODIFICATION TO MAKE ASSESSMENTS ON EITHER POINT OR AREA TARGETS

Table 6. NSS structure types.

MLOP/ MCOP (PF)	Shelter Type	Description
35/25 (5000)	- A	Subway stations, tunnels, mines, and caves with large volume relative to entrances.
10/7 (500)	* { B C	Basements and sub-basements of massive (monumental) masonry buildings. Basements and sub-basements of large, fully engineered structures having any floor system over the basement other than wood, concrete flat plate, or band beam support.
10/4 (25)	- D	Basements of wood frame and brick veneer structures including residences.
8/2 (55)	* { E F	First three stories of buildings with "strong" walls, less than ten aboveground stories, and less than 50% apertures. Fourth through ninth stories of buildings with "strong" walls, less than ten aboveground stories, and less than 50% apertures.
5/2 (70)	* { G H	Basements and sub-basements of buildings with a flat plate or band beam supported floor system over the basement. First three stories of buildings with "strong" walls, less than ten aboveground stories, and greater than 50% apertures; or, first three stories of buildings with "weak" and less than ten aboveground stories.
5/2 (5)	I	All aboveground stories of buildings having ten or more stories. Fourth through ninth stories of buildings having "weak" walls.
	R	Classified as "Residual" on FEMA Population File, i.e., not belonging specifically to any of above structural types. Given vulnerability of shelter type G/H/I by SAI.

Note: For the above description, load bearing walls are considered as "weak" walls.

*Grouped together because of similar vulnerability characteristics.

SECTION 5

SPECIFICATION OF PROMPT DAMAGE FUNCTIONS

One of the fundamental inputs required for the calculation of prompt casualties is the information necessary for specifying casualty criteria for each of the shelter categories considered. Under the ground rules established for the program, the shelters to be employed were those specified by FEMA. If meaningful comparisons were to be made between code output, it was necessary that in the base case assessment problems, similar damage functions be employed in both codes to remove this factor as a potential source of difference in assessment results.

As a starting point in the analysis, the National Shelter Survey damage functions employed by TENOS were examined to determine their characteristics in terms compatible with the CIVIC code. Six shelter damage functions associated with a "best" sheltered posture were examined. It should be noted that these damage functions pertain only to the blast environment because the yields employed in most FEMA assessment analyses are large and, therefore, blast is the predominant damage mechanism. However, because CIVIC calculates the weapon radius contributions from the blast and radiation environments, those input parameters necessary for the radiation calculations were assigned by SAI.

For each shelter category (for fatalities and casualties) a VNTK assignment was made to specify the blast vulnerability along with a damage sigma that was appropriate to each TENOS shelter damage function. Plots of the probability of fatality (and injury) as a function of peak overpressure are shown in Figures 1-6 for six shelter categories. Figure 7 is a similar plot for fallout radiation. Included in Figures 1-6 (where appropriate) are references to the AP-550 personnel vulnerability VNTK values associated with the corresponding structure categories given in AP-550. These references are shown because AP-550 provides for only five structure types for civilian casualty assessments, i.e., single story structures, multi-story structures basements, hasty shelters and deep underground shelters. Table 6 summarizes the assignments made for each of the necessary CIVIC input parameters. The damage sigma values shown for the blast environment (and used in CIVIC) were obtained by folding the basic damage probability as a

AP-550 VNTK'S BASED ON YIELD
OF 1 MT

Figure 1. Shelter 35/25-mines, caves and tunnels (Type A).

AP-550 REFERENCES

16P6 = FATALITIES - BASEMENTS
 7P3 = CASUALTIES - BASEMENTS

ALL AP-550 VNTK'S BASED
 ON YIELD OF 1 MT

Figure 2. Shelter 10/7-best basements (Type B/C).

AP-550 REFERENCES

7P3 CASUALTIES - BASEMENTS
16P6 FATALITIES - BASEMENTS

ALL AP-550 VNTK'S BASED
ON YIELD OF 1 MT

Figure 3. Shelter 10/4-basements of wood frame structures
(Type D)

AP-550 REFERENCES

5P4 - CASUALTIES } MULTI-STORY
 14P6 - FATALITIES } BUILDINGS

AP-550 VNTK'S BASED ON
 YIELD OF 1 MT

Figure 4. Shelter 8/2-upper stories (<10) of strong walled buildings (Type E/F).

AP-550 REFERENCES

5P4 = CASUALTIES - MULTI-STORY

BLDG.S.

14P6 = FATALITIES - MULTI-STORY

BLDG.S

AP-550 VNTK'S BASED ON YIELD OF
1 MT

Figure 5. Shelter 5/2-tall (>10 stories) weak walled upper story space and weak basements (Type G/H/I).

AP-550 VNTK'S BASED ON
YIELD OF 1 MT

Figure 6. 15 psi upgraded blast shelter.

Figure 7. TENOS fallout radiation damage functions (warned)
(fallout only).

Table 7. Summary - shelter characteristics.

Shelter Category	Fatal. (psi)	Casual. (psi)	TENOS Overpressure (1)	VNTK CIVIC Approximation (2)	CIVIC Prompt Radiation Transmission Factors			TENOS and CIVIC Protection Factor
					Neutron Trans. Factor		Fission Product Gamma Trans. Factor	
					Second. Gamma Trans. Factor	Fission Product Gamma Trans. Factor		
A	35	25	19PO	17PO	0.01	0.01	0.005	5000
B/C	10	7	12PO	10PO	0.45	0.35	0.075	500
D	10	4	12PO	7PO	0.45	0.35	0.075	30
E/F	8	2	14P6	5P4	0.95	0.60	0.1	55
G/H/I	5	2	11P5	5P4	0.95	0.60	0.1	70
Resid.	5	2	11P5	5P4	0.95	0.60	0.1	5

(1) Overpressure for 50 percent damage probability.

(2) For yields of 1 MT or greater.

function of overpressure data with overpressure as a function of range data for a scaled HOB of 650 feet/KT^{1/3} to obtain distance-damage functions. From these distance-damage functions, values for σ_D were calculated via the approximate relationship

$$\frac{\sigma_D}{1-\sigma_D^2} = \frac{R_{.31}-R_{.69}}{R_{.5}}$$

where the subscripts to the range (R) values indicate the damage probabilities at which the range values are taken.

For all the shelters specified, the damage sigmas resulting from the above expression were equal to or less than .2. Thus, for the purposes of the CIVIC calculations the damage sigmas employed were as shown below.

CIVIC Damage Sigmas

<u>Shelter Category</u>	<u>Blast</u>	<u>Radiation</u>
A - Fatalities	0.1	0.5
- Casualties	0.1	0.5
B/C - Fatalities	0.2	0.5
- Casualties	0.2	0.5
D - Fatalities	0.2	0.5
- Casualties	0.2	0.5
E/F - Fatalities	0.2	0.3
- Casualties	0.2	0.3
G/H/ I - Fatalities	0.2	0.2
- Casualties	0.2	0.3
Resid - Fatalities	0.1	0.2
- Casualties	0.1	0.2

SECTION 6

RESULTS AND OBSERVATIONS

The results of four assessment cases are shown in Table 8 for the national summaries and in Tables 9-12 for the state-by-state summaries. Table 13 shows the percent differences between those national assessment cases that contain the methodology differences which were the objective of the study.

Based on the data contained in these tables, the following observations can be made.

a. Comparison of results from the cases CIVIC-1 and CIVIC-2 where in CIVIC-2 a zero CEP was replaced with a nominal CEP of 1500 feet and an area (P-95 circle) rather than point target representation of the population was employed, shows that these two parameters, when employed in conjunction with one another, had no influence on the outcome of the assessment for the weapon laydown employed.

b. Comparison of results from cases CIVIC-1 and CIVIC-3 in which the only differences in CIVIC operation was the use of different fallout models (SEER and WSEG-10), showed a fallout-only fatality difference of nearly 11% with the WSEG-10 model producing the larger fatalities. The combined environment fatality difference was about 9%, which reflects the phenomena that some of the excess WSEG-10 fallout-only fatalities were also prompt fatalities and thus were not counted in the combined calculation.

The fallout fatality difference in this assessment is not as large as those that were produced in other assessment comparisons performed for DNA.⁽¹⁾ This is due primarily to the preponderance of very large weapons in the strike file which affected a large part of the population data base to many overlapping fallout fields. This is the typical case for strategic assessments.

(1) Swick, E. J., "A Comparison of COBRA, SIDAC, and CIVIC Population Damage Assessment Results", DNA5220F, Science Applications, Inc., Dec. 1979.

Secondarily, at the larger yields, the differences in fallout contours produced by the two fallout models are not as pronounced as they are for the lower yield weapons. In addition, the GWC October wind used in the assessment has the low wind shear characteristics most suited to favorable WSEG-10 comparisons with other models.

c. Comparison of results from cases CIVIC-3 and TENOS basically reflect the influence of the prompt and fallout environment combining methodology in the two codes. As a first approximation, if one adds the difference between the TENOS and CIVIC-3 prompt fatalities to the TENOS combined fatalities, one finds the difference between the TENOS and CIVIC-3 results to be about 11.2% with the CIVIC code giving higher fatalities.

d. The TENOS/CIVIC-1 comparison case in which CIVIC was employed with zero weapon CEP and a point target representation of the population (to be consistent with TENOS methodology), showed national assessment results that were in reasonable agreement. The difference in prompt fatalities was about 4%, and almost all of this difference can be attributed to differences in the shelter damage functions and the prompt damage probability calculations because of the insignificant influence of CEP and target representation parameters noted in (a) above.

The combined environment fatality difference of 6.3% represents differences in three aspects of the assessment; the prompt environment calculations, the differences in the fallout models employed by the two codes, and the methodology for combining the prompt and fallout environments. From paragraphs (b) and (c) above, we note that the fallout model differences (TENOS/WSEG-10 results larger) and the combining methodology differences (CIVIC results larger) are sufficiently counterbalancing in this scenario that the differences between the CIVIC and TENOS assessment results can be considered negligible.

e. As might be expected, the results from the state-by-state summaries show the much wider variations that can be attributed in large part to the differences in fallout models and the extent of fallout area overlapping. The results from two states serve to illustrate this point. The combined fatality difference for the TENOS/CIVIC-1 comparison in the state of Alabama for example, shows a 23.5% difference with the TENOS (WSEG-10) fatalities being higher. On the other hand, for the state of California the difference in combined fatalities is 9.7% with the CIVIC (SEER) fatalities being higher.

For large weapon laydowns, particularly where large yield weapons are involved, one can conclude that differences in code methodology are washed out when looking at national results. However, where specific areas or locations are of interest, particularly as regards constraints that may be employed with certain attack options, significant assessment differences may be observed when using the different methodologies/models employed in CIVIC and TENOS.

Table 8. National total comparisons.

	PROMPT ONLY		FALLOUT ONLY		COMBINED	
	FATALITIES	CASUALTIES	FATALITIES	CASUALTIES	FATALITIES	CASUALTIES
TENOS	74,210,098	-	19,718,868*	-	93,928,966	126,070,390
CIVIC-1	77,209,418	103,697,559	54,126,875	78,826,226	100,275,337	130,169,115
CIVIC-2	77,151,184	103,687,632	54,077,218	78,811,457	100,272,959	130,254,254
CIVIC-3	77,209,18	103,697,559	59,987,640	87,226,995	109,171,111	138,911,476

*Figure reflects fallout fatalities of that population surviving prompt effects,
i.e., it is not an independent accounting as are the CIVIC figures.

Table 9. TENOS results.

	PROMPT ONLY		FALLOUT ONLY		COMBINED	
	FATALITIES	CASUALTIES	FATALITIES	CASUALTIES	FATALITIES	CASUALTIES
ALABAMA	820,032	-	1,797,880	-	2,617,912	3,085,395
ARIZONA	355,819	-	418,362	-	774,181	1,126,018
ARKANSAS	266,649	-	1,112,799	-	1,379,448	1,800,436
CALIFORNIA	11,645,653	-	2,918,168	-	14,563,821	16,792,677
COLORADO	629,736	-	128,876	-	758,612	1,190,277
CONNECTICUT	1,348,490	-	450,892	-	1,799,382	2,391,770
DELAWARE	226,973	-	21,866	-	248,839	341,042
WASH. D.C.	650,664	-	442	-	651,106	677,993
FLORIDA	2,922,917	-	170,819	-	3,093,736	4,688,467
GEORGIA	1,234,683	-	1,620,057	-	2,490,740	3,680,936
IDAHO	46,236	-	1,004	-	47,240	88,559
ILLINOIS	5,138,054	-	101,378	-	5,239,432	6,685,963
INDIANA	1,638,872	-	347,274	-	1,986,146	2,832,742
IOWA	546,030	-	108,231	-	656,261	968,944
KANSAS	398,629	-	272,533	-	671,162	1,108,843
KENTUCKY	791,216	-	40,892	-	832,108	1,245,757
LOUISIANA	1,322,490	-	247,719	-	1,570,209	2,278,041
MAINE	133,178	-	103,702	-	236,880	408,253
MARYLAND	2,109,752	-	167,602	-	2,277,354	2,831,801
MASSACHUSETTS	2,613,097	-	497,620	-	3,110,717	4,376,461
MICHIGAN	3,531,020	-	189,219	-	3,720,239	5,061,645
MINNESOTA	1,096,269	-	50,673	-	1,146,942	1,567,962
MISSISSIPPI	283,032	-	1,059,606	-	1,342,638	1,847,676
MISSOURI	1,460,900	-	447,059	-	1,907,959	2,801,916
MONTANA	193,704	-	80,313	-	274,017	331,652
NEBRASKA	189,938	-	95,964	-	285,902	544,076
NEVADA	192,982	-	45,183	-	238,165	382,563
NEW HAMPSHIRE	166,791	-	77,065	-	243,856	390,241
NEW JERSEY	3,557,915	-	688,485	-	4,246,400	5,599,874
NEW MEXICO	218,107	-	96,916	-	315,023	474,319
NEW YORK	7,816,936	-	1,036,054	-	8,852,990	11,289,068
NORTH CAROLINA	929,401	-	322,710	-	1,252,111	2,116,774
NORTH DAKOTA	44,216	-	91,631	-	135,847	201,489
OHIO	3,922,124	-	371,046	-	4,293,170	5,997,226
OKLAHOMA	548,207	-	1,129,705	-	1,677,912	2,078,535
OREGON	645,951	-	16,802	-	662,753	911,889
PENNSYLVANIA	3,324,362	-	1,069,875	-	4,394,237	6,895,693
RHODE ISLAND	554,789	-	113,970	-	668,759	766,995
SOUTH CAROLINA	558,826	-	197,539	-	756,365	1,147,903
SOUTH DAKOTA	39,648	-	111,257	-	147,905	258,564
TENNESSEE	820,838	-	454,980	-	1,275,818	1,923,042
TEXAS	4,695,773	-	534,414	-	5,230,187	7,262,345
UTAH	413,399	-	194,723	-	608,122	704,738
VERMONT	14,833	-	20,942	-	35,775	73,128
VIRGINIA	1,101,275	-	169,543	-	1,270,818	2,258,831
WASHINGTON	1,255,718	-	392,346	-	1,648,064	2,026,494
WEST VIRGINIA	240,630	-	86,185	-	326,815	521,429
WISCONSIN	1,500,278	-	20,797	-	1,521,075	1,930,090
WYOMING	51,068	-	25,750	-	76,381	101,838

Table 10. CIVIC-1 results.

	PROMPT ONLY		FALLOUT ONLY		COMBINED	
	FATALITIES	CASUALTIES	FATALITIES	CASUALTIES	FATALITIES	CASUALTIES
795,897	1,319,621	1,763,580	2,134,294	2,120,348	2,120,348	2,120,348
329,903	846,021	600,878	698,307	794,747	794,747	794,747
253,946	485,820	1,134,325	1,376,200	1,228,113	1,228,113	1,228,113
11,996,043	15,065,052	12,875,340	14,278,192	16,121,041	16,121,041	16,121,041
684,671	1,090,937	351,156	605,114	898,841	898,841	898,841
1,422,515	1,962,246	1,679,484	1,989,259	2,339,518	2,339,518	2,339,518
237,635	317,196	132,154	256,154	274,074	274,074	274,074
656,820	676,957	79,273	111,630	659,106	659,106	659,106
2,927,842	4,438,752	854,136	1,598,721	3,209,780	3,209,780	3,209,780
1,254,841	1,861,385	1,607,834	2,443,109	2,490,329	2,490,329	2,490,329
44,086	82,984	20,787	42,126	59,419	59,419	59,419
5,426,443	6,518,194	960,540	2,427,352	5,594,186	5,594,186	5,594,186
1,686,678	2,256,634	845,796	1,459,952	2,211,415	2,211,415	2,211,415
567,476	726,885	118,473	338,410	635,866	635,866	635,866
412,666	667,908	347,056	609,433	657,389	657,389	657,389
811,556	1,082,775	133,528	428,552	888,772	888,772	888,772
1,319,681	1,735,602	787,021	1,290,758	1,390,102	1,390,102	1,390,102
143,015	218,843	136,976	302,616	260,291	260,291	260,291
2,213,930	2,731,594	1,351,726	1,875,837	2,456,669	2,456,669	2,456,669
2,773,730	3,626,664	2,018,802	3,237,913	3,745,852	3,745,852	3,745,852
3,744,678	4,841,919	1,438,794	2,525,896	4,155,819	4,155,819	4,155,819
1,195,667	1,158,470	426,898	736,213	1,255,260	1,255,260	1,255,260
277,783	445,463	825,537	1,045,998	991,138	991,138	991,138
1,561,775	2,189,924	996,862	1,758,881	2,076,399	2,076,399	2,076,399
201,662	263,501	178,163	220,787	293,728	293,728	293,728
211,577	409,489	137,277	320,734	327,377	327,377	327,377
184,560	338,353	36,494	75,435	207,243	207,243	207,243
171,682	219,689	134,947	296,317	262,512	262,512	262,512
3,785,351	4,857,820	2,918,010	3,903,742	4,771,905	4,771,905	4,771,905
208,904	371,838	135,042	229,147	267,323	267,323	267,323
8,315,513	10,388,945	5,860,325	6,965,505	10,183,501	10,183,501	10,183,501
902,555	1,430,717	800,833	1,497,131	1,433,557	1,433,557	1,433,557
45,862	81,582	132,031	209,740	159,727	159,727	159,727
4,110,123	5,459,655	1,552,826	2,880,049	4,643,565	4,643,565	4,643,565
548,145	909,338	1,071,856	1,634,335	1,447,511	1,447,511	1,447,511
717,956	948,823	247,239	388,065	748,283	748,283	748,283
3,604,941	5,199,745	2,349,138	4,673,506	4,715,979	4,715,979	4,715,979
579,028	713,411	138,502	376,675	631,648	631,648	631,648
550,151	801,392	446,938	1,561,869	820,873	820,873	820,873
43,224	80,719	172,199	332,397	203,119	203,119	203,119
815,347	1,210,333	1,156,365	1,509,121	1,517,422	1,517,422	1,517,422
4,652,127	6,564,203	2,607,532	4,169,953	5,294,592	5,294,592	5,294,592
433,797	608,089	487,469	557,084	637,670	637,670	637,670
18,799	37,357	37,220	81,053	53,640	53,640	53,640
1,134,721	1,912,535	286,116	873,116	1,270,816	1,270,816	1,270,816
1,347,267	1,666,937	1,449,400	1,773,060	1,916,113	1,916,113	1,916,113
251,223	351,744	92,416	185,971	295,644	295,644	295,644
1,582,357	1,894,339	1,357,789	394,574	1,618,479	1,618,479	1,618,479
53,269	69,159	75,794	118,381	99,466	99,466	99,466

C-1 results.

Table 11. CIVIC-2 results.

COMBINED		PROMPT ONLY		FALLOUT ONLY		COMBINED	
FATALITIES	CASUALTIES	FATALITIES	CASUALTIES	FATALITIES	CASUALTIES	FATALITIES	CASUALTIES
134,294	2,120,348	2,640,293	793,597	1,319,860	1,763,580	2,134,294	2,640,367
98,307	794,747	1,129,769	326,290	845,848	594,638	695,733	788,725
376,200	1,228,113	1,508,493	255,633	485,687	1,376,593	1,376,593	1,598,864
278,192	16,121,041	17,763,226	11,992,580	15,064,311	12,824,184	14,196,504	16,112,994
605,114	898,841	1,368,908	684,741	1,090,901	330,687	584,149	897,037
295,259	2,339,518	2,592,649	1,419,795	1,960,549	1,679,484	1,989,259	2,337,411
566,154	274,074	378,734	237,646	317,580	132,154	256,814	274,345
111,630	659,106	676,967	655,589	676,576	79,273	111,630	657,853
880,721	3,209,782	4,903,934	2,922,860	4,438,524	854,136	1,598,721	3,205,009
443,109	2,490,329	3,392,458	1,254,667	1,859,348	1,607,834	2,443,109	2,490,311
42,126	59,419	118,918	44,103	82,908	20,778	42,126	59,518
227,352	5,594,186	6,917,169	5,426,334	6,518,462	960,540	2,427,352	5,594,541
659,952	2,211,415	3,043,932	1,684,425	2,256,333	845,796	1,459,592	2,209,581
238,410	635,866	890,513	565,121	725,966	118,473	338,410	633,900
209,433	657,389	1,026,847	412,866	667,891	358,924	613,005	668,448
288,552	888,772	1,344,555	813,020	1,082,505	133,528	428,552	890,363
20,758	1,390,102	1,934,433	1,317,942	1,735,598	787,021	1,290,758	1,390,243
402,616	260,291	476,322	142,939	218,770	191,709	414,631	308,291
75,837	2,456,669	2,963,321	2,214,345	2,731,771	1,351,726	1,875,837	2,457,031
37,913	3,745,852	4,589,517	2,772,640	3,633,322	2,018,802	3,237,913	3,744,039
25,894	1,455,819	5,419,640	3,739,713	4,829,629	1,438,794	2,525,896	4,151,691
26,213	1,255,260	1,665,442	1,197,117	1,518,872	426,898	736,213	1,256,732
55,998	991,138	1,314,004	276,764	445,150	825,537	1,045,998	990,197
36,881	2,076,395	2,936,686	1,561,896	2,190,212	996,862	2,076,745	2,939,116
20,787	293,728	352,853	200,338	262,737	172,878	218,104	292,105
30,724	327,377	631,542	212,068	409,493	139,926	320,560	330,721
75,435	207,243	396,389	182,367	338,255	35,200	73,028	205,195
36,317	262,512	402,761	170,804	219,567	134,947	296,317	261,676
33,742	4,771,905	5,616,921	3,784,759	4,859,054	2,918,010	3,903,742	4,770,827
29,147	267,323	452,592	209,486	371,723	128,537	217,040	266,713
55,505	10,183,551	12,076,310	8,309,876	10,391,288	5,860,325	6,965,505	10,177,307
97,131	1,433,557	2,354,590	898,198	1,428,682	800,833	1,497,131	1,430,011
39,740	159,727	240,162	45,786	81,568	131,559	209,471	159,488
30,049	4,643,565	6,244,564	4,105,583	5,456,490	1,552,828	2,880,049	4,639,928
34,335	1,447,511	2,000,636	546,514	908,834	1,075,661	1,644,906	1,450,211
36,065	748,283	965,632	719,750	948,687	247,133	388,032	749,997
59,953	5,294,592	7,496,987	3,062,592	5,197,608	2,349,138	4,673,506	4,712,878
73,506	4,715,979	7,059,155	577,606	713,091	138,502	376,675	630,276
36,675	631,648	754,770	548,717	801,105	446,938	1,561,869	819,721
31,869	820,873	1,845,928	42,734	80,631	171,404	332,107	201,966
32,397	203,119	354,091	814,896	1,209,317	1,156,365	1,509,121	1,515,807
30,121	1,517,422	2,081,766	4,653,103	6,562,382	2,588,718	4,168,286	5,292,955
37,084	637,670	719,061	433,331	608,412	483,329	551,617	636,673
31,053	53,640	113,290	18,586	37,205	37,220	81,053	53,470
23,116	1,270,816	2,152,461	1,133,594	1,911,784	206,116	673,018	1,208,943
32,060	1,916,113	2,251,606	1,348,063	1,865,858	1,444,139	1,762,292	1,915,539
36,971	295,644	426,225	250,748	351,354	92,416	185,971	295,147
30,574	1,618,479	2,021,818	1,576,002	1,894,847	135,789	394,574	1,612,375
30,381	99,468	141,316	53,058	69,087	73,626	118,153	98,651

Table 12. CIVIC-3 results.

COMBINED		PROMPT ONLY		FALLOUT ONLY		COMBINED	
FATALITIES	CASUALTIES	FATALITIES	CASUALTIES	FATALITIES	CASUALTIES	FATALITIES	CASUALTIES
795,897	1,319,621	1,983,986	2,400,955	2,402,997	2,878,498		
329,903	846,021	599,457	737,597	786,425	1,133,202		
253,946	485,820	1,150,389	1,299,600	1,275,615	1,521,635		
11,996,043	15,065,052	11,754,942	13,123,299	15,311,897	16,974,529		
684,671	1,090,937	337,937	532,231	933,145	1,356,137		
1,422,515	1,962,246	1,848,876	2,071,323	2,456,162	2,657,689		
237,635	317,196	196,791	259,770	323,711	384,523		
656,820	676,957	4,936	77,852	656,836	676,956		
2,927,842	4,438,752	3,381,242	6,081,504	5,029,977	7,410,704		
44,086	82,984	21,389	42,468	60,507	119,266		
5,426,443	6,518,194	736,882	2,485,112	5,651,543	6,966,596		
1,686,678	2,256,634	1,150,696	1,919,828	2,473,951	3,337,109		
567,476	726,885	159,697	380,802	670,192	939,141		
412,666	667,908	537,309	891,837	876,710	1,334,596		
811,556	1,082,775	405,118	799,473	1,090,608	1,585,102		
1,319,681	1,735,602	2,114,879	2,809,161	2,601,666	3,200,564		
143,015	218,843	251,235	507,840	376,030	667,573		
2,213,930	2,731,594	911,916	1,445,206	2,496,816	2,988,863		
3,773,730	3,626,664	3,003,504	3,586,855	4,324,267	4,785,663		
3,744,678	4,841,919	973,431	2,002,690	4,126,364	5,338,026		
1,195,667	1,518,470	245,149	489,505	1,303,779	1,660,692		
277,783	445,463	1,171,684	1,452,903	1,293,345	1,621,137		
1,561,775	2,189,924	819,108	1,441,808	2,156,451	2,921,560		
201,662	263,501	174,240	196,496	294,855	340,704		
211,577	409,489	512,010	746,680	649,721	919,953		
184,560	338,353	147,877	168,729	259,129	431,637		
171,682	219,689	203,990	337,572	344,822	465,863		
3,785,351	4,857,820	2,534,057	4,018,287	4,982,175	5,864,064		
208,904	371,838	240,409	306,307	362,658	496,432		
8,315,513	10,388,945	5,734,655	7,707,094	10,808,697	12,949,890		
902,555	1,430,717	792,627	1,538,120	1,494,180	2,440,204		
45,862	81,582	130,073	202,505	164,080	240,507		
4,110,123	5,459,655	1,718,236	3,217,700	4,830,205	6,579,404		
548,145	909,338	1,312,404	1,620,050	1,700,017	2,132,746		
717,956	948,823	218,971	358,889	772,239	976,957		
3,604,941	5,199,745	2,241,187	4,605,991	4,974,245	7,421,376		
579,028	713,411	359,179	471,860	719,831	748,099		
550,151	801,392	142,767	485,762	632,804	1,093,860		
43,224	80,719	287,309	366,933	306,511	384,409		
815,347	1,210,333	869,280	1,421,652	1,297,165	1,922,808		
4,652,127	6,564,203	4,704,302	6,451,038	7,529,974	9,573,293		
433,797	608,089	489,055	556,513	650,094	725,175		
18,799	37,357	52,460	111,823	69,977	142,248		
1,134,721	1,912,535	363,742	1,002,437	1,313,534	2,457,001		
1,347,267	1,866,937	1,258,124	1,633,554	1,879,608	2,200,706		
1,582,357	1,894,339	95,107	434,301	378,131	643,896		
53,269	69,159	94,006	122,869	118,669	143,896		

Table 13. % differences in assessment cases.

Comparison	Prompt Only		Fallout Only		Combined	
	Fatalities	Casualties	Fatalities	Casualties	Fatalities	Casualties
CIVIC-1/CIVIC-2 (1) (CIVIC-2 Reference)	+ .08%	+ .01%	+ .09%	+ .02%	-	- .07%
CIVIC-1/CIVIC-3 (2) (CIVIC-1 Reference)	0%	0%	+10.8%	+10.7%	+8.9%	+6.7%
CIVIC-3/TENOS (3) (CIVIC-3 Reference)	-3.9%	-	-	-	-14%	-9.2%
CIVIC-1/TENOS (CIVIC-1 Reference)	-3.9%	-	-	-	-6.3%	-3.1%

- (1) Influence of CEP and point or area population representation
- (2) Influence of fallout models only
- (3) Influence of methodology for combining prompt and fallout effects

SECTION 7

GLOSSARY

- AFRRRI - Armed Forces Radiological Research Institute.
- CCTC - Command and Control Technical Center.
- CIVIC - A computer code that estimates civilian fatalities and casualties due to the employment of nuclear weapons. Both prompt and fallout effects can be taken into account in the estimates. Development sponsored by the Defense Nuclear Agency (DNA).
- FEMA - Federal Emergency Management Agency.
- FPA - Federal Protection Agency.
- GWC - Global Weather Center.
- MCOP - Mean Casualty blast Overpressure Vulnerability expressed in pounds per square inch.
- MLOP - Mean Lethal blast Overpressure Vulnerability expressed in pounds per square inch.
- PF - Protection Factor. A factor which accounts for the fallout radiation protection afforded by various structure types. When the free-field fallout radiation dose is divided by this factor, the resulting dose is the dose to which people within the structure may be subjected.
- TENOS - A computer code developed by the Federal Emergency Management Agency (FEMA) to estimate fatalities and casualties due to the employment of nuclear weapons. Both prompt and fallout effects can be taken into account in the estimates.
- WSEG-10 - A fallout model developed by the Institute for Defense Analysis for the Weapon Systems Evaluation Group.

Blank

BLANK PAGE

APPENDIX A

CIVIC INPUT OPTIONS

For the calculation of prompt effects damage probabilities, three distributions are normally employed; the damage function distribution (normally a log-normal distribution), the weapon impact point distribution (circular normal), and the population distribution within a circle of specified radius (circular normal). The last two distributions are combined into one for the purposes of the damage calculation and are represented by an "Adjusted Circular Error Probable" (CEP_A). Mathematically, CEP_A is represented by

$$\begin{aligned} CEP_A &= \left[CEP^2 + \frac{\ln 2}{\ln 20} (\text{Target Radius} * 6076.1155)^2 \right]^{1/2} \\ &= [CEP^2 + 8,542,294 * TR^2]^{1/2} \end{aligned}$$

The " $\ln 2 / \ln 20$ " term converts the 95th percentile of the target distribution to the 50th percentile used for CEP. The factor "6076.1155" converts nautical miles (units normally used for target radius) to feet.

In CIVIC, input run-stream option flags are available to permit the calculation of CEP_A with either $CEP = 0$, target radius = 0, or both.

The reason for these options is to be able to vary the damage calculations without having to modify either the weapon strike file which contains the CEP as a unique entity, or the population data base which contains the target radius as a unique entity.

For the purposes of fallout calculations, CIVIC contains two fallout models; SEER and WSEG-10. Either of these options can be selected at the discretion of the user simply by setting the appropriate flag in the input run-stream.

BLANK PAGE

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

U.S. Documents Officer
 AFSOUTH
 ATTN: U.S. Documents Officer

 Armed Forces Radiobiology Rsch Institute
 Defense Nuclear Agency
 ATTN: Director

 Armed Forces Staff College
 ATTN: Coordinator for Studies & Rsch Lib
 ATTN: Reference & Technical Svcs Br

 Assistant to the Secretary of Defense
 Atomic Energy
 ATTN: Nuclear Policy Planning
 ATTN: Executive Assistant

 Command & Control Technical Center
 Department of Defense
 ATTN: C-343
 ATTN: C-332
 ATTN: C-315
 ATTN: C-312

 Commander-in-Chief, Atlantic
 ATTN: J-5/J-3
 ATTN: N-22

 Commander-in-Chief, Pacific
 ATTN: J-54
 ATTN: J-3
 ATTN: C3SRD
 ATTN: J-634
 ATTN: J-32

 Defense Intelligence Agency
 ATTN: DT
 ATTN: DB-4
 ATTN: DE
 ATTN: DN
 ATTN: RTS-2C
 ATTN: DB-1
 ATTN: DIA/VPA-2 (Fed Res Div)
 2 cy ATTN: DB-6

 Defense Nuclear Agency
 ATTN: NATA
 ATTN: RAEE
 ATTN: STNA
 ATTN: STRA
 ATTN: STSP
 ATTN: NATD
 ATTN: NAFD
 4 cy ATTN: TITL

 Defense Technical Information Center
 12 cy ATTN: DD

 Field Command
 Defense Nuclear Agency
 2 cy ATTN: FCP

DEPARTMENT OF DEFENSE (Continued)

Field Command
 Defense Nuclear Agency
 Livermore Branch
 ATTN: FCPRL

 Intelligence Center, Pacific
 ATTN: COMIPAC

 Interservice Nuclear Weapons School
 ATTN: TTV

 Joint Chiefs of Staff
 ATTN: SAGA/SSD
 ATTN: SAGA
 ATTN: SAGA/SFD
 ATTN: J-3
 ATTN: J-5, Strategy Division, W. McClain
 ATTN: J-3, Strategic Operations Div
 ATTN: J-5, Nuclear Division
 2 cy ATTN: J-5, Nuclear Division/Strategy Div

 Joint Strat Tgt Planning Staff
 ATTN: JP
 ATTN: JL
 ATTN: JLA
 ATTN: JPPF
 2 cy ATTN: JLW-2

 National Security Agency
 ATTN: F. Newton
 ATTN: D. Siuars

 Director
 NET Assessment
 ATTN: F. Giessler
 ATTN: C. Pease
 ATTN: DIR, A. Marshall
 ATTN: Military Assistants

 U.S. European Command
 ATTN: ECJ5-N
 ATTN: J-2-ITD
 ATTN: J-5
 ATTN: ECJ2-T
 ATTN: J-3
 ATTN: J-LW
 ATTN: J-2
 ATTN: J-6
 ATTN: J-5NPG

 U.S. National Military Representative
 SHAPE
 ATTN: U.S. Documents Officer

 Under Secretary of Defense for Policy Plng
 ATTN: USD/P
 ATTN: DUSP/P

 Under Secretary of Defense for Research & Engrg
 ATTN: Tactical Warfare Programs
 ATTN: Chairman, Defense Science Board
 ATTN: Strategic & Space Sys (OS)

DEPARTMENT OF THE ARMY

Deputy Chief of Staff for Ops & Plans
Department of the Army
ATTN: DAMO-NCN
ATTN: DAMO-ZXA
ATTN: DAMO-SSP, COL Sewall
ATTN: DAMO-RQS
ATTN: DAMO-NC

Deputy Chief of Staff for Rsch Dev & Acq
Department of the Army
ATTN: DAMA-CSS-N

Eighth U.S. Army
ATTN: CJ-JP-NS

Harry Diamond Laboratories
Department of the Army
ATTN: DELHD-N-P
ATTN: DELHD-I-TL

U.S. Army Air Defense School
ATTN: Commander

U.S. Army Ballistic Research Labs
ATTN: DRDAR-TSB-S
ATTN: DRDAR-BLB
ATTN: DRDAR-BL
ATTN: DRDAR-BLT, Effects Analysis Br

U.S. Army Comd & General Staff College
ATTN: Acq, Library Div
ATTN: ATSW-TA-D

U.S. Army Concepts Analysis Agency
ATTN: CSSA-ADL

Commander-in-Chief
U.S. Army, Europe and Seventh Army
ATTN: AEAGC
ATTN: AEAGE

U.S. Army Missile Command
ATTN: ORSMI-TDR

U.S. Army Nuclear & Chemical Agency
ATTN: Library

U.S. Army TRADOC Sys Analysis Actvty
ATTN: ATAA-TAC

U.S. Army Training and Doctrine Comd
ATTN: ATCD-N
ATTN: ATCD-AO
ATTN: ATCD-CF
ATTN: ATOO-NCO

U.S. Army War College
ATTN: Library

U.S. Military Academy
ATTN: Document Library

V Corps
Department of the Army
ATTN: Commander
ATTN: G-3

VII Corps
Department of the Army
ATTN: G-3

DEPARTMENT OF THE NAVY

Fleet Intelligence Center, Pacific
Department of the Navy
ATTN: FICPAC Code 21

Fleet Intelligence Ctr, Europe & Atlantic
Department of the Navy
ATTN: Code 222

Marine Corps Dev & Education Command
ATTN: Commander

Naval Intelligence Command
ATTN: NIC-01

Naval Intelligence Support Ctr
ATTN: NISC-30

Naval Ocean Systems Center
ATTN: Code 4471

Naval Postgraduate School
ATTN: Code 1424, Library

Naval Research Laboratory
ATTN: Code 2627
ATTN: Code 1240

Naval Surface Weapons Center
ATTN: Code F31

Naval War College
ATTN: Code E-11 (Tech Service)
ATTN: Document Control

Naval Weapons Center
ATTN: Code 32607

Navy Field Operational Intelligence Office
ATTN: Commanding Officer

Nuclear Weapons Tng Group, Pacific
Naval Air Station, North Island
ATTN: Code 32
ATTN: Document Control

Nuclear Weapons Tng Group, Atlantic
Department of the Navy
ATTN: Document Control
ATTN: Code 222

Office of Naval Research
ATTN: Technical Information Services
ATTN: Code 713

Office of the Chief of Naval Operations
ATTN: OP 654 (CDR Covey)
ATTN: OP 50
ATTN: OP 65
ATTN: OP 981
ATTN: OP 955

Office of the Chief of Naval Operations
ATTN: OP-00K

Commander-in-Chief
U.S. Atlantic Fleet
Department of the Navy
ATTN: Code N-3
ATTN: Code N-2

DEPARTMENT OF THE NAVY (Continued)

Commander-in-Chief
U.S. Naval Forces, Europe
ATTN: NS4, Nuclear Warfare Officer

DEPARTMENT OF THE AIR FORCE

Air Force School of Aerospace Medicine
ATTN: Radiobiology Division

Air Force Weapons Laboratory
Air Force Systems Command
ATTN: SUL

Air University Library
Department of the Air Force
ATTN: AUL/LSE

Assistant Chief of Staff
Intelligence
Department of the Air Force
ATTN: INA

Assistant Chief of Staff
Studies & Analyses
Department of the Air Force
ATTN: AF/SAMI
ATTN: AF/SASB, R. Mathis
ATTN: AF/SASF
ATTN: AF/SASM, W. Adams
ATTN: AF/SASM
ATTN: AF/SAG, H. Zwemer

Deputy Chief of Staff
Operations Plans and Readiness
Department of the Air Force
ATTN: AFXOOR
ATTN: AFXOXFS
ATTN: AFXOXFM
ATTN: AFXOXID

Foreign Technology Division
Air Force Systems Command
ATTN: TQTM
ATTN: SDN
ATTN: CCN

Headquarters Space Division
Air Force Systems Command
ATTN: YKD

Strategic Air Command
Department of the Air Force
ATTN: NRI STINFO, Library
ATTN: NR
ATTN: AD
ATTN: XP
ATTN: DO
ATTN: XPS
ATTN: XO
ATTN: XOXO
ATTN: STIC (544 SIW)
ATTN: INT, E. Jacobsen
ATTN: ADWN

Tactical Air Command
Department of the Air Force
ATTN: TAC/XPJ

DEPARTMENT OF THE AIR FORCE (Continued)

Tactical Air Command
Department of the Air Force
ATTN: TAC/XPS

U.S. Air Force, Pacific
ATTN: XP

Commander-in-Chief
U.S. Air Forces in Europe
ATTN: USAFE/DEX

Commander-in-Chief
U.S. Air Forces in Europe
ATTN: USAFE/DOT

Commander-in-Chief
U.S. Air Forces in Europe
ATTN: USAFE/INA

Commander-in-Chief
U.S. Air Forces in Europe
ATTN: USAFE/INT

Commander-in-Chief
U.S. Air Forces in Europe
ATTN: USAFE/XPX

DEPARTMENT OF ENERGY

Department of Energy
Albuquerque Operations Office
ATTN: CTID

Department of Energy
ATTN: OMA

Lovelace Biomed & Env Rsch Inst, Inc
ATTN: D. Richmond

OTHER GOVERNMENT AGENCIES

Central Intelligence Agency
ATTN: OSWR/NED

Federal Emergency Management Agency
National Sec Ofc Mitigation & Rsch
ATTN: Assistant Associated Dir
ATTN: Deputy Director, J. Nocita

DEPARTMENT OF ENERGY CONTRACTORS

Lawrence Livermore National Lab
ATTN: L-24
ATTN: L-153, W. Hofer
ATTN: L-21
ATTN: L-96
ATTN: Technical Info Dept, Library
ATTN: L-49, W. Hogan

Los Alamos National Laboratory
ATTN: MS 364 (Class Reports Lib)
ATTN: Sandoval, Chapin, Lyons, Best, Dowler
ATTN: M/S634, T. Dowler

Sandia National Lab
ATTN: 3141
ATTN: 5613, R. Stratton

DEPARTMENT OF ENERGY CONTRACTORS (Continued)

Sandia Laboratories
Livermore Laboratory
ATTN: T. Gold
ATTN: L. Hostetler
ATTN: A. Kernstein

DEPARTMENT OF DEFENSE CONTRACTORS

Advanced International Studies Institute
ATTN: M. Harvey

Advanced Research & Applications Corp
ATTN: Document Control

Aerospace Corp
ATTN: Library

Analytical Assessments Corp
ATTN: A. Wagner

BDM Corp
ATTN: C. Wasaff
ATTN: R. Buchanan
ATTN: J. Bode
ATTN: J. Comant
ATTN: J. Braddock

Boeing Co
ATTN: J. Russel

66th MI Group
ATTN: T. Greene

General Electric Co
ATTN: R. Minckler

General Research Corp
ATTN: Tactical Warfare Operations

IIT Research Institute
ATTN: Documents Library

Institute for Defense Analyses
ATTN: Classified Library
ATTN: J. Grote

IRT Corp
ATTN: J. Hengle
ATTN: W. Macklin

JAYCOR
ATTN: R. Sullivan

Kaman Sciences Corp
ATTN: F. Shelton

Kaman Sciences Corp
ATTN: E. Daugs

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Kaman Tempo
ATTN: DASIAC

Pacific-Sierra Research Corp
ATTN: H. Brode
ATTN: G. Lang

Pacific-Sierra Research Corp
ATTN: D. Gormley

R & D Associates
ATTN: W. Graham
ATTN: S. Borjon
ATTN: A. Field
ATTN: R. Port
ATTN: E. Carson
ATTN: A. Lynn
ATTN: P. Haas
2 cy ATTN: Document Control

R & D Associates
ATTN: J. Thompson

Rand Corp
ATTN: V. Jackson

Santa Fe Corp
ATTN: D. Paolucci

Science Applications, Inc
ATTN: J. Foster
ATTN: B. Bennett

Science Applications, Inc
ATTN: J. Warner
ATTN: C. Whittenbury, W. Yengst
ATTN: J. Martin
ATTN: M. Drake
ATTN: J. Beyster
ATTN: L. Nesseler
ATTN: Document Control
4 cy ATTN: E. Swick

Science Applications, Inc
ATTN: J. Shannon
ATTN: W. Layson
ATTN: R. Craver
ATTN: Document Control

Science Applications, Inc
ATTN: L. Goure
ATTN: D. Kaul

System Planning Corp
ATTN: J. Douglas

T N Dupuy Associates, Inc
ATTN: T. Dupuy

