Aula 02 - Do Esquemático à PCB

Wall Berg M. S. Morais Centro Acadêmico de Engenharia de Computação (CAECP)

> Departamento de Informática - DAINF Universidade Tecnológica Federal do Paraná

Construção de Layout para Placas de Circuito Impresso (PCBs) utilizando KiCad 20 de agosto de 2018

- Introdução
- 2 Desenhando o Esquemático
- 3 Annotate Gerando sequência de componentes
- 4 "Compilando" o esquemático com a Joaninha.
- Gerando o Netlist
- 6 Associando os componentes descritos no Netlist à componentes reais.
- Fazendo roteamento da PCB.
- Imprimindo o layout da PCB

Algoritmo de construção com 7 passos

- Desenhar o esquemático.
- Gerar a sequência de componentes.
- "Compilar" o esquemático com a Joaninha.

Algoritmo de construção com 7 passos

- Desenhar o esquemático.
- Gerar a sequência de componentes.
- "Compilar" o esquemático com a Joaninha.
- Gerar o Netlist.
- Associar os componentes descritos no Netlist à componentes reais.
- Fazer o roteamento da PCB.
- Imprimir a PCB.

Algoritmo de construção com 7 passos

- Desenhar o esquemático.
- Gerar a sequência de componentes.
- "Compilar" o esquemático com a Joaninha.
- Gerar o Netlist.
- Associar os componentes descritos no Netlist à componentes reais.
- Fazer o roteamento da PCB.
- Imprimir a PCB.
- É UMA RECEITA DE BOLO!!!

Estudo com um simples filtro de 2º ordem

• As imagens dos slides a seguir leva em consideração um filtro de segunda ordem na topologia Sallen-Key com buffer de entrada e saída. Considerar $C_1 = 10nF$, $C_2 = 20nF$, $R_{1,2} = 120k\Omega$.

Figura: Sallen-Key Passa Baixas

Validação de Aprendizado - Projeto Final

 Confecção de PCB para um conversor CC/CC abaixador de tensão, o Buck.

Figura: Conversor CC-CC abaixador de tensão - Buck.

Desenhando o Esquemático

• Tela inicial do esquemático.

Figura: Tela Inicial do Esquemático

Desenhando o Esquemático

Atalhos mais utilizados

- A Adicionar Componente.
- W Desenhar Fio.
- M Mover Componente.
- R Rotacionar.
- Q Marcar pino como não conectado.
- Del Deletar Componente.
- Ctrl + C Copia.
- Ctrl + Alt + H Adicionar *label* global.

Desenhando o Esquemático

Atalhos mais utilizados

- A Adicionar Componente.
- W Desenhar Fio.
- M Mover Componente.
- R Rotacionar.
- Q Marcar pino como não conectado.
- Del Deletar Componente.
- Ctrl + C Copia.
- Ctrl + Alt + H Adicionar label global.

Atalhos de Componentes

- V Definir Valor
- E Editar Componente **Olhar datasheet de componente**.
- C Duplicar

Adicionar Componente

Atalho

A - Adicionar Componente.

Figura: Janela para adicionar componentes.

8 / 55

Editar Componente - Ver datasheet

Atalho

• E - Editar Componente

Figura: Janela para editar componente.

Circuito do Filtro

Pré-Montagem

Figura: Filtro Pré-Montado

Adicionando Labels

Atalho

• Ctrl + Alt + H - Adicionar *label* global.

Figura: Ícone para adicionar label.

Circuito com as labels adicionadas

Figura: Circuito do filtro com labels e conectores.

Pra que serve?

- Gerar contagem dos componentes.
- Sem ele, não é possível "compilar" o circuíto.

Figura: Localização da opção annotate na barra de menu.

Figura: Janela que gera as "anotações"

Figura: Circuito com o annotate.

Figura: Circuito com o annotate.

• O annotate muda apenas aquele ? nas "labels" dos componentes.

Pra que serve?

- Verificação de erros no circuito.
 - Verifica se existe algum componente sem está conectado.
 - Seu uso não é obrigatório, porém é uma garantia de dizer que o circuito está tudo certo.

Figura: Localização da opção *rules check* (ou joaninha) na barra de menu.

Figura: Janela que "compila" o circuíto.

Figura: Janela que "compila" o circuíto.

• É preciso só apertar o botão "Run".

Figura: Erro após compilar o circuito anterior.

Indicação de erro gerado pela Joaninha

Figura: Erro indicado no circuito pela Joaninha.

Indicação de erro gerado pela Joaninha

Figura: Erro indicado no circuito pela Joaninha.

A solução é utilizar PWR_FLAG.

Adicionando PWR_FLAG

Figura: Janela para adicionar PWR_FLAG

Adicionando PWR_FLAG

Figura: Circuito com PWR_FLAG

Verificando novamente o circuito com a Joaninha - Tudo ok

Figura: Verificação de circuito sem erros

Gerando o Netlist

O que é?

• É um descritor do circuito e seus componentes.

Figura: Localização da opção para gerar o netlist

Gerando o Netlist

Figura: Janela para gerar o netlist.

Gerando o Netlist

Figura: Janela para gerar o netlist.

- Só é necessário apertar no botão para gerar o netlist.
- Escolher um local para salva-lo.
- Recomenda-se colocar na mesma pasta do projeto.

24 / 55

Associando os componentes do netlist à footprints

Pra que serve?

- É necessário pois são os componentes físicos que estarão na PCB.
- É sempre bom tomar cuidado com o tamanho dos componentes escolhidos.

Associando os componentes do netlist à footprints

Pra que serve?

- É necessário pois são os componentes físicos que estarão na PCB.
- É sempre bom tomar cuidado com o tamanho dos componentes escolhidos.

```
$ B ++ H | D D D D
                                                                                                                                                             1 Capacitor_948:C_8281_6669941150
                                                                                                                                                              2 Capacitor_98-C_8682_18099etri
                                                                                                                                                             4 Capacitar 990-C 8681 160890Tric Pada-8540, 9540 Handhalde
                                                                                                                                                             5 Capacition 940:C 8685 28129etric
                                                                                                                                                             0 Capacitor 940:C 1286 1218Petric
                                                                                                                                                             9 Capacitar_90+C_1286_32189ctric_Pads.45x1.75ac_Handralder
                                                                                                                                                             11 Capacitor 940:C 1230 32259etric Padi.42x2.65mm Handialde
                                                                                                                                                             35 Capacitor 949:C 3532 4532Netric Padi.30x3.40m HandSelder
Connector HOPE
                                                                                                                                                             29 Capacitiar_990+C_2000_56259etris_Pad3.52x2.65wi.HandSalder
                                                                                                                                                             20 Capacitor_98: C_2220_565894116
                                                                                                                                                             21 Capacitar NW-C 2220 Secondario Pada Whys. edus Handhalde
                                                                                                                                                             22 Capacitor 99:C 2225 56649etric
                                                                                                                                                             23 Capacitor_98xC_2225_56649ktric_Pads.80x6.60xe_Handialder
                                                                                                                                                             24 Capacitist_991-C_2532_6332941731
                                                                                                                                                             25 Capacitor 98:C 2512 6332Metric Padi.52x3.35m Handfelder
                                                                                                                                                             28 Capacitar SMD(C 3640 SS1899Tric
Connector Pintender 1,80mm
                                                                                                                                                             32 Capacitor 940:C Trimmer Hursts TZC3
                                                                                                                                                             35 Capacitor 940 C Trimmer Hursta 1212
Connector_PirSocket_1.00m
                                                                                                                                                             35 Capacitor, SM-C Trimer, Sprague-Gookson, 50CS
                                                                                                                                                             17 Capacitor 98: C Trimmer Voltrenics 36
                                                                                                                                                                            Apply, Save Schematic & Continue | ②Cancel | 💞 (K.
```

Figura: Janela para escolha de componentes.

Visualizando um footprint

Por que?

- Serve para olhar o componente selecionado no lado direito da tela.
- Fazer a escolha certo do mesmo.

Visualizando um footprint

Por que?

- Serve para olhar o componente selecionado no lado direito da tela.
- Fazer a escolha certo do mesmo.

Figura: Localização no menu superior para olhar o footprint;

Visualizando um footprint

Figura: Janela de exibição de componente.

Visualizando um footprint

Figura: Janela de exibição de componente.

• Para visualização 3D, ícone no canto esquerdo.

Visualizando um footprint em 3D

Figura: Visualização em 3D de um capacitor SMD.

Visualizando um footprint em 3D

Figura: Visualização em 3D de um capacitor SMD.

Essa visualização 3D não funciona para todos os componentes.

Medindo distancia entre pinos de componentes

Pra que serve?

 Pra ter noção do tamanho de um componente e distância entre os pinos.

Medindo distancia entre pinos de componentes

Pra que serve?

 Pra ter noção do tamanho de um componente e distância entre os pinos.

	Last	Change	Netlist Path	Board Side	Pads
.mm_D3.1mm_P15.00mm_Horiz	ontal Apr	28, 2018		Front	2
X 0.600000 Y 0.000000	dx 0.600000	dy 0.000000	dist 0.6000	Inches	
iew <u>P</u> references <u>H</u> elp					

Figura: Barra com local do cursor sobre o footprint e um dx e dy.

Medindo distancia entre pinos de componentes

Pra que serve?

 Pra ter noção do tamanho de um componente e distância entre os pinos.

.mm D3.1mm P15.00mm Horizor	Last Change tal Apr 28, 2018	Netlist Path	Board Side Front	Pads
	dx 0.600000 dy 0.000000	dist 0.6000	Inches	2
iew <u>P</u> references <u>H</u> elp	ax c.cococo ay c.cococo	4150 010000	menes	

Figura: Barra com local do cursor sobre o footprint e um dx e dy.

Atalho

• Espaço - Zerar a contagem de dx e dy.

Medida de distância

Cuidado

• Conferir a unidade de medida selecionada e colocar para *mm*.

Figura: Menu lateral para escolha das unidade de medida.

Terminando de associar os componentes

Figura: Terminando de associar os componentes

Terminando de associar os componentes

Figura: Terminando de associar os componentes

- Crtl+s para salvar.
- Gerar novamente o netlist para agora ele ser atualizado com os componentes já associados.

31 / 55

Entrando no modo PCB

Figura: Opção no menu superior da janela de esquemático para entrar no modo PCB.

No modo PCB

O que fazer?

- Carregar o *netlist* gerando anteriormente.
- Atribuir padrão de projeto.
- Rotear as placas.
- Adicionar malha de terra.

No modo PCB

O que fazer?

- Carregar o *netlist* gerando anteriormente.
- Atribuir padrão de projeto.
- Rotear as placas.
- Adicionar malha de terra.

Lendo o Netlist

Por que?

 O netlist tem a descrição do circuito e dos componentes que serão roteados na PCB.

Figura: Localização no menu superior para ler o netlist.

Lendo o Netlist

- Para ler o netlist gerado anteriormente basta selecionar a localização do netlist e ler ele.
- A leitura deu certo quando aparece as escritas verdes na saída de log e quando aparece os componentes da janela do PCB new.

Figura: Janela para leitura do netlist.

Após leitura do netlist

Figura: Componentes na área de trabalho do PCB new.

Após leitura do netlist

Figura: Componentes na área de trabalho do PCB new.

 Agora é só rotear a placa, mas antes é preciso definir uma regra de design.

Design Rules

Pra que serve?

 Definir padrões para as trilhas e suas medidas, a fim de que não seja criada PCBs com trilhas frágeis.

Figura: Local no menu superior para acessar a opção das regras de design.

Design Rules

Figura: Janela da opção para mudar as regras de design.

Design Rules

- Clearance Distância entre a trilha e uma linha que limita a trilha mais próxima dela.
- Track width Largura da trilha.

Figura: Diferença entre *clearance* e *track width*(largura da trilha).

Atalhos do modo PCB

Atalho com o componente ou trilha selecionado

- X Trilhas.
- M Mover componente.
- R Rotacionar.

Organizando o circuito para rotear as trilhas

Figura: Organização do circuito.

Layers

Escolhendo

- Sempre a background.
- A layer forenground é para caso de placas dupla face.
- Geralmente só se usa a background.

Figura: Menu para selecionar as layers.

Filtro pré-roteado

Figura: Circuito pré-roteado

Adicionando malha de terra

Pra que serve?

• Reza a lenda que é pra eliminar ruído na placa.

Figura: Opção no menu do lado direito do PCB new.

Adicionando malha de terra

Selecionando o ponto de terra

• É preciso selecionar o pino que será utilizado como um ponto em comum na placa.

Figura: Janela com opções de malha de terra.

Circuito com malha de terra

Figura: Circuito com malha de terra

Quando a placa está pronta??

• Somente quanto a placa não tiver mais pinos sem conectar.

Pads	Vias	Track Segments	Nodes	Nets	Unrouted
29	0	56	26	10	0

Figura: PCB sem pinos para conectar.

Visualização 3D da placa

Figura: Visualização 3D vista de cima.

Visualização 3D da placa

Figura: Visualização 3D vista de baixo.

O que precisa?

• Papel fotográfico.

Antes de imprimir

• Duplique sua placa para caso perder um pedaço, tem outro de reserva.

Atalho

• Ctrl+D - Duplicar área selecionada.

Figura: Layout duplicado.

Figura: Janela com opções de impressão de PCB.

Figura: Placa final que será impresso no papel fotográfico.

Agradecimentos

- Muitíssimo obrigado pela atenção de todos.
- Agradeço ao CA pela oportunidade de ministrar esse minicurso.

Aula 02 - Do Esquemático à PCB

Wall Berg M. S. Morais Centro Acadêmico de Engenharia de Computação (CAECP)

> Departamento de Informática - DAINF Universidade Tecnológica Federal do Paraná

Construção de Layout para Placas de Circuito Impresso (PCBs) utilizando KiCad 20 de agosto de 2018