Listado de Ejercicios Resueltos 1 (527140)

Ejercicios resueltos del listado 1

1.a) Considerando que a, b y c son números reales cualesquiera. Determine los valores para los cuales las siguientes expresiones son válidas.

$$(a+b)(a-b) = (b+a)(b-a)$$

Solución: Para determinar los valores en los que la igualdad se cumple, desarrollamos ambos lados de la expresión aplicando los axiomas de cuerpo.

$$a^2 - ab + ba - b^2 = b^2 - ba + ab - a^2$$
 (conmutatividad del producto para ba) $\Leftrightarrow a^2 - ab + ba - b^2 = b^2 - ab + ab - a^2$ (existencia del opuesto de ab) $\Leftrightarrow a^2 - b^2 = b^2 - a^2 / + a^2$ (opuesto de ab) $\Leftrightarrow 2a^2 - b^2 = b^2 / + b^2$ (opuesto de ab) $\Leftrightarrow 2a^2 - b^2 = b^2 / + b^2$ (opuesto de ab) $\Leftrightarrow 2a^2 = 2b^2 / 2$ (ley de cancelación para el producto) $\Leftrightarrow a^2 = b^2$

En este punto podemos notar que los valores cuadrado de a y b deben ser iguales, es decir, $a = b \lor a = -b$. Finalmente, el enunciado es verdadero para cualquier valor de a y de b en los números reales cuando a = b o cuando a = -b.

4. Si consideramos a x = 5 en la ecuación, determine el valor de a:

$$\frac{3x - a}{x - a} + \frac{x - a}{3x - a} = \frac{10}{3}$$

Solución: Antes de reemplazar el valor de x en la ecuación, primero reduciremos la expresión, como sigue:

$$\frac{3x-a}{x-a} + \frac{x-a}{3x-a} = \frac{10}{3} \Longrightarrow \frac{(3x-a)(3x-a) + (x-a)(x-a)}{(x-a)(3x-a)} = \frac{10}{3}$$

$$\Longrightarrow 3[(3x-a)(3x-a) + (x-a)(x-a)] = 10(x-a)(3x-a)$$

$$\Longrightarrow 3[9x^2 - 6ax + a^2 + x^2 - 2ax + a^2] = 10[3x^2 - xa - 3xa + a^2]$$

$$\Longrightarrow 3[10x^2 - 8ax + 2a^2] = 10[3x^2 - 4ax + a^2]$$

$$\Longrightarrow 30x^2 - 24ax + 6a^2 = 30x^2 - 40ax + 10a^2$$

$$\Longrightarrow 16ax - 4a^2 = 0$$

$$\Longrightarrow 4a(4x-a) = 0$$

Ahora bien, sabemos que si el producto de dos números reales es 0, entonces al menos uno de ellos es 0, por ende:

$$4a = 0 \lor 4x - a = 0 \Longrightarrow a = 0 \lor a = 4x$$

Así, reemplazando el valor de x, se concluye que a = 0 ó a = 20.

- 6.c Resuelva las siguientes ecuaciones cuadráticas, utilizando dos de los siguientes métodos: factorización, completación de cuadrados o fórmula de los ceros de una ecuación cuadrática
 - $4x^2 + 2x + \frac{1}{4} = 0$

Solución:

▶ <u>Método 1</u>: Fórmula general de una ecuación cuadrática

$$4x^{2} + 2x + \frac{1}{4} = 0 / : 4 \Longrightarrow x^{2} + \frac{1}{2}x + \frac{1}{16} = 0$$

Notemos que en la segunda ecuación $a=1, b=\frac{1}{2}$ y $c=\frac{1}{16}$, además sabemos que las soluciones de la ecuación están dadas por:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ahora bien, reemplazando los valores de a, b y c, se tiene:

$$x = \frac{-\frac{1}{2} \pm \sqrt{\frac{1}{4} - \frac{1}{4}}}{2} = -\frac{\frac{1}{2}}{2} = -\frac{1}{4}$$

Con lo anterior concluimos que la ecuación posee dos soluciones reales iguales y esta es $x=-\frac{1}{4}$.

▶ Método 2: Completación de cuadrados

En este método se busca factorizar la expresión de la forma $(a \pm b)^2 = 0$; para ello necesitamos los siguientes términos algebraicos a^2 , 2ab y b^2

En este caso $4x^2 + 2x + \frac{1}{4} = 0$, el primer término al cuadrado es $4x^2$ y se puede escribir como $(2x)^2$, ahora buscamos el doble del primero por el segundo término que es equivalente a 2x, sin embargo no es posible determinar el segundo término en esa forma, así que lo escribimos como $2 \cdot (2x) \cdot \frac{1}{2}$ lo que es igual a 2x, pero podemos visualizar el primer y el segundo término, o el

segundo término al cuadrado $\left(\frac{1}{2}\right)^2$ el cual corresponde coincidentemente con la expresión $\left(\frac{1}{4}\right)$. Así podemos escribir la igualdad de la siguiente manera:

$$4x^{2} + 2x + \frac{1}{4} = 0 \Longrightarrow \left(2x + \frac{1}{2}\right)^{2} = 0$$
$$\Longrightarrow 2x + \frac{1}{2} = 0$$
$$\Longrightarrow x = -\frac{1}{4}$$

Con lo anterior concluimos que la ecuación posee dos soluciones reales iguales y esta es $x = -\frac{1}{4}$.

Ejercicos Resueltos Adicionales.

1. Sean a, b y c números reales. Determine la solución de la ecuación $(x-a)(x-b) = c^2$ y demuestre que estas son números reales.

Solución: Primero expresaremos la ecuación como una ecuación cuadrática de la forma $mx^2 + nx + p = 0$, como sigue:

$$(x-a)(x-b) = c^2 \Longrightarrow x^2 - xb - xa + ab = c^2$$

 $\Longrightarrow x^2 + x(-b-a) + (ab - c^2) = 0$

Sabemos que las soluciones de la ecuación cuadrática están dadas por:

$$x = \frac{-n \pm \sqrt{n^2 - 4mp}}{2m}$$

En este caso m=1, n=-b-a y $p=ab-c^2$, reemplazando los valores en la fórmula, se tiene:

$$x = \frac{(b+a) \pm \sqrt{(-b-a)^2 - 4(ab-c^2)}}{2}$$

$$= \frac{b+a \pm \sqrt{b^2 + 2ab + a^2 - 4ab + 4c^2}}{2}$$

$$= \frac{(b+a) \pm \sqrt{a^2 - 2ab + b^2 + 4c^2}}{2}$$

$$= \frac{(b+a) \pm \sqrt{(a-b)^2 + 4c^2}}{2}$$

Notemos que $(a - b)^2 + 4c^2 > 0$, por ende se concluye que las soluciones de la ecuación cuadrática son reales y estas son:

$$x_1 = \frac{(b+a) + \sqrt{(a-b)^2 + 4c^2}}{2} \wedge x_2 = \frac{(b+a) - \sqrt{(a-b)^2 + 4c^2}}{2}$$

2. Considere la siguiente cuadrática $kx^2 + 10x - 8 = 0$, se sabe que una solución es x = -4. Encuentre el valor de k y la otra solución.

Solución: Notar que si x = -4 es solución de la ecuación anterior, al reemplazarlo en la ecuación , esta debe dar cero, en efecto :

$$kx^{2} + 10x - 8 = 0 \land x = -4$$

$$\implies 16k - 48 = 0$$

$$\implies k = 3$$

De este modo, el valor de k = 3.

Del desarrollo anterior se tiene que al ecuación es de la forma

$$3x^2 + 10x - 8 = 0$$

Utilizando la fórmula de la ecuación cuadrática se tiene

$$x = \frac{-10 \pm \sqrt{100 + 4 \cdot 3 \cdot 8}}{6}$$

De donde $x_1 = -4$ y $x_2 = \frac{2}{3}$

- 6.c Considere la siguiente cuadrática $2x^2 + 10x k = 0$. Determinar el o los valores de k para :
 - a) no tenga solución en los reales
 - b) Tenga dos soluciones distintas en los reales.

Solución: Calculando el discriminante de la ecuación cuadrática se tiene que

$$\triangle = 100 + 4 \cdot (2) \cdot k = 100 + 8k$$

Por en de para que no tenga soluciones en los reales se necesita que

$$\triangle < 0 \Leftrightarrow 100 + 8k < 0 \Longrightarrow k < -\frac{25}{2}$$

Y para que tenga dos soluciones reales distintas se necesita que

$$\triangle > 0 \Leftrightarrow 100 + 8k > 0 \Longrightarrow k > -\frac{25}{2}$$