

Теория вероятностей и математическая статистика Часть 1

Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Направление подготовки бакалавров 01.03.02 «Прикладная математика и информатика»

Профили подготовки

«Математическое моделирование и вычислительная математика» «Системное программирование и компьютерные технологии»

Формируемые компетенции:

- способность собирать, обрабатывать и интерпретировать данные современных научных исследований;
- знание принципов решения вероятностных задач с использованием стандартных программных средств;
- владение навыками построения стохастических моделей для исследования случайных явлений.

ЛЕКЦИЯ 1

Основные понятия теории вероятностей

Основные понятия теории вероятностей

Случайное событие — результат (исход) некоторого испытания (эксперимента, наблюдения), который может осуществиться или не осуществиться.

Элементарное событие (элементарный исход) нельзя разделить на события, которые могут осуществиться.

Пространство элементарных событий Ω — множество всех элементарных событий (исходов).

Каждое элементарное событие (исход) ω – элемент Ω , $\omega \in \Omega$.

Каждое событие A — подмножество Ω , $A \subseteq \Omega$. Событие A произошло, когда осуществился некоторый элементарный исход ω , который входит в A, $\omega \in A$.

 Ω также называют достоверным событием.

Невозможное событие \varnothing не содержит в себе ни одного элементарного события.

Операции над событиями

Противоположное событие

$$\overline{A} = \{\omega \in \Omega \mid \omega \notin A\}$$

Произведение событий

$$AB = \{ \omega \in \Omega | \omega \in A \ u \ \omega \in B \}$$

Сумма событий

$$A+B=\{\omega\in\Omega|\omega\in A\ unu\ \omega\in B\}$$

Разность событий

$$A - B = A \cdot \overline{B}$$

Симметрическая разность событий

$$A\Delta B = (A \setminus B) + (B \setminus A) = A + B - AB$$

Сравнение терминов теории вероятностей и теории множеств

Теория множеств	Теория вероятностей
1. Ω – множество	1. Ω – достоверное событие
2. ω∈Ω – элементы	2. ω∈Ω – элементарные исходы
3. А⊆Ω – подмножество	3. А⊆Ω – событие
4. \overline{A} – дополнение	4. \overline{A} — противоположное событие
5. A∩B – пересечение	5. АВ – произведение событий
6. A∪B – объединение	6. А+В – сумма событий
7. Ø – пустое множество	7. Ø – невозможное событие
8. $A \cap B = \emptyset \implies A \ u \ B -$	8. $AB = \varnothing \implies A \ u \ B$ – несовместные
непересекающиеся множества	события

Свойства операций над событиями

Ассоциативность

$$(A+B)+C=A+(B+C)_{-\ accolumn{2}{c}}$$
 - ассоциативность сложения

$$(AB)C = A(BC)$$
 – ассоциативность умножения

Коммутативность

$$A + B = B + A$$
 – коммутативность сложения

$$AB = BA$$
 – коммутативность умножения

Закон двойного отрицания $\overline{A} = A$ Дистрибутивность

а) умножения по отношению к сложению

$$A(B+C) = AB + AC$$

б) сложения по отношению к умножению

$$A+BC=(A+B)(A+C)$$

Законы де Моргана $\overline{A+B}=\overline{A}\cdot\overline{B}$, $\overline{AB}=\overline{A}+\overline{B}$

Вероятностное пространство

Множество событий ${\mathcal A}$ называется ${f \sigma}$ -алгеброй, если выполнены следующие условия:

1)
$$\Omega \in \mathcal{A}$$

2)
$$A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$$

3)
$$A_i \in \mathcal{A}$$
, $i = 1, 2, ...$ $\Rightarrow \sum_{i=1}^{\infty} A_i \in \mathcal{A}$

Отображение $P: \mathcal{A} \to \mathbf{R}$ называется вероятностью, если

1) для любого
$$A \in \mathcal{A}$$
 $0 \le P(A) \le 1$ и $P(\Omega)=1$

2)
$$A_i \in \mathcal{A} \ (i=1,2,...); \quad A_i A_j = \emptyset \ (i \neq j) \Rightarrow$$

$$\Rightarrow P(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Тройка (Ω, \mathcal{A}, P) называется вероятностным пространством.

Основные свойства вероятности

$$P(\emptyset) = 0$$

2.
$$P(\overline{A})=1-P(A)$$

3.
$$A \subseteq B \Rightarrow P(A) \leq P(B)$$

4.
$$P(A+B)=P(A)+P(B)-P(AB)$$

5.
$$P(A+B+C)=P(A)+P(B)+P(C)-$$

$$-P(AB)-P(AC)-P(BC)+P(ABC)$$

Примеры вероятностных пространств

1. $\Omega = \{(i, j) | i, j = 1,...,6\}$ — множество всех элементарных событий при бросании двух игральных костей;

$$\mathcal{A}=M(\Omega)$$
 — множество всех подмножеств Ω ;

$$\omega = (i, j) \Rightarrow P(\{\omega\}) = \frac{1}{36}; P(A) = \frac{|A|}{36}, |A|$$
 — число элементов в A .

2. $\Omega = \{1, 2, ...\}$; $A = M(\Omega)$ — множество всех подмножеств Ω ;

$$\omega = i \Rightarrow P(\{\omega\}) = \frac{1}{2^i}; P(A) = \sum_{\omega \in A}^{\infty} P(\{\omega\})$$

3.
$$\Omega = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\} - \kappa \text{вадрат};$$

$$\mathcal{A} = \mathscr{B}(\Omega)$$
 — множество борелевских подмножеств Ω ;

$$A \in \mathcal{A} \Longrightarrow \mathrm{P}(A) = S_{_A}$$
 – площадь A .