Limbaje Formale, Automate și Compilatoare

Curs 6

2017-18

Curs 6

- Automate pushdown
- Legătura dintre automatele pushdown şi limbajele de tip 2
- Automate pushdown deterministe

Curs 6

- Automate pushdown
- 2 Legătura dintre automatele pushdown şi limbajele de tip 2
- 3 Automate pushdown deterministe

Automate pushdown

- Automat finit + memorie pushdown (stiva)
- Model fizic:

Automate pushdown-definiție

Definiție 1

Un automat pushdown este un 7-uplu: $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$:

- Q este mulţimea (finită) a stărilor
- Σ este alfabetul de intrare
- Γ este alfabetul memoriei pushdown (stivei)
- q₀ ∈ Q este starea iniţială
- $z_0 \in \Gamma$ este simbolul iniţial din stivă
- F ⊆ Q este mulţimea stărilor finale
- $\delta: \mathbb{Q} \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to 2^{\mathbb{Q} \times \Gamma^*}$

Modelul este nedeterminist

Configurația unui automat pushdown

Configurație: $(q, w, \gamma) \in Q \times \Sigma^* \times \Gamma^*$

1 : γ (primul simbol din γ) reprezintă vârful stivei

Automate pushdown

Configurație inițială: $(q_0, w, z_0) \in Q \times \Sigma^* \times \Gamma^*$

Relația de tranziție între configurații

• Configurația curentă $(q, aw, z\beta)$ și $(q', \alpha) \in \delta(q, a, z)$ $(q, q' \in Q, a \in \Sigma \cup \{\epsilon\}, z \in \Gamma, \alpha, \beta \in \Gamma^*)$

Relația de tranziție între configurații

• $(q, aw, z\beta) \vdash (q', w, \alpha\beta)$

Relația de tranziție între configurații

Fie $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ un automat pushdown.

Relaţia de tranziţie între configuraţii:

$$(q, aw, z\beta) \vdash (q', w, \alpha\beta) \text{ dacă } (q', \alpha) \in \delta(q, a, z)$$

 $(q, q' \in Q, a \in \Sigma \cup \{\epsilon\}, z \in \Gamma, \alpha, \beta \in \Gamma^*)$

• Calcul: închiderea reflexivă şi tranzitivă a relaţiei de mai sus: dacă C_1, \ldots, C_n configuraţii astfel încât:

$$C_1 \vdash C_2 \vdash \ldots \vdash C_n$$

se scrie: $C_1 \vdash^+ C_n$ dacă $n \ge 2$, $C_1 \vdash^* C_n$, dacă $n \ge 1$

Limbajul recunoscut

Prin stări finale (dacă $F \neq \emptyset$)

$$L(M) = \{ w \in \Sigma^* | (q_0, w, z_0) \vdash^* (q, \epsilon, \gamma), \ q \in F, \ \gamma \in \Gamma^* \}$$

Prin golirea stivei (dacă $F = \emptyset$)

$$L_{\epsilon}(M) = \{ w \in \Sigma^* | (q_0, w, z_0) \vdash^* (q, \epsilon, \epsilon), \ q \in \mathsf{Q} \}$$

Exemplu

Automat care recunoaște limbajul $\{a^nb^n|n \ge 1\}$:

$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, z\}, \delta, q_0, z, \{q_2\})$$

- $\delta(q_0, a, a) = \{(q_0, aa)\}$
- **3** $\delta(q_0, b, a) = \{(q_1, \epsilon)\}$
- **4** $\delta(q_1, b, a) = \{(q_1, \epsilon)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$

• Un automat pushdown ce recunoaşte limbajul $\{waw^R | w \in \{0,1\}^*\}$

- Un automat pushdown ce recunoaște limbajul $\{waw^R | w \in \{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

- Un automat pushdown ce recunoaște limbajul $\{waw^R|w\in\{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

$$M = (\{q_0, q_1, q_2\}, \{0, 1, a\}, \{0, 1, z\}, \delta, q_0, z, \{q_2\})$$

- $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\})$
- **3** $\delta(q_0, a, i) = \{(q_1, i)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$

- Un automat pushdown ce recunoaște limbajul $\{waw^R | w \in \{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

$$M = (\{q_0, q_1, q_2\}, \{0, 1, a\}, \{0, 1, z\}, \delta, q_0, z, \{q_2\})$$

- 2 $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\})$
- **3** $\delta(q_0, a, i) = \{(q_1, i)\}$
- $\delta(q_1, i, i) = \{(q_1, \epsilon)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$
- Un automat pushdown ce recunoaște limbajul $\{ww^R | w \in \{0,1\}^*\}$?

- Un automat pushdown ce recunoaște limbajul $\{waw^R|w\in\{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

$$M = (\{q_0, q_1, q_2\}, \{0, 1, a\}, \{0, 1, z\}, \delta, q_0, z, \{q_2\})$$

- 2 $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\})$
- **3** $\delta(q_0, a, i) = \{(q_1, i)\}$
- $\delta(q_1, i, i) = \{(q_1, \epsilon)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$
- Un automat pushdown ce recunoaşte limbajul $\{ww^R | w \in \{0,1\}^*\}$?
- Un automat pushdown ce recunoaşte limbajul $\{ww|w \in \{0,1\}^*\}$?

Teorema 1

Pentru orice automat pushdown M cu $F = \emptyset$, există un automat pushdown M' cu stări finale astfel ca $L(M') = L_{\epsilon}(M)$.

Teorema 1

Pentru orice automat pushdown M cu $F = \emptyset$, există un automat pushdown M' cu stări finale astfel ca $L(M') = L_{\epsilon}(M)$.

Dacă
$$M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, \emptyset)$$
, considerăm $M' = (Q \cup \{q_f, q_0'\}, \Sigma, \Gamma \cup \{z_0'\}, \delta', q_0', z_0', \{q_f\})$ cu δ' :

Teorema 1

Pentru orice automat pushdown M cu $F = \emptyset$, există un automat pushdown M' cu stări finale astfel ca $L(M') = L_{\epsilon}(M)$.

Dacă $M=(Q,\Sigma,\Gamma,\delta,q_0,z_0,\emptyset)$, considerăm $M'=(Q\cup\{q_f,q_0'\},\Sigma,\Gamma\cup\{z_0'\},\delta',q_0',z_0',\{q_f\})$ cu δ' :

• $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)

Teorema 1

Pentru orice automat pushdown M cu $F = \emptyset$, există un automat pushdown M' cu stări finale astfel ca $L(M') = L_{\epsilon}(M)$.

Dacă $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, \emptyset)$, considerăm $M' = (Q \cup \{q_f, q_0'\}, \Sigma, \Gamma \cup \{z_0'\}, \delta', q_0', z_0', \{q_f\})$ cu δ' :

- $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configuratia initială a lui M)
- ② $\delta'(q, a, z) = \delta(q, a, z), \forall q \in Q, a \in \Sigma \cup \{\epsilon\}, z \in \Gamma (M' \text{ face aceleași tranziții ca și } M)$

Teorema 1

Pentru orice automat pushdown M cu $F = \emptyset$, există un automat pushdown M' cu stări finale astfel ca $L(M') = L_{\epsilon}(M)$.

Dacă $M=(Q,\Sigma,\Gamma,\delta,q_0,z_0,\emptyset)$, considerăm $M'=(Q\cup\{q_f,q_0'\},\Sigma,\Gamma\cup\{z_0'\},\delta',q_0',z_0',\{q_f\})$ cu δ' :

- $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)
- ② $\delta'(q, a, z) = \delta(q, a, z), \forall q \in Q, a \in \Sigma \cup \{\epsilon\}, z \in \Gamma$ (M' face aceleaşi tranziţii ca şi M)
- $\delta'(q, \epsilon, \mathbf{z}'_0) = \{(q_f, \epsilon)\}, \forall q \in \mathbf{Q} \ (M' \text{ va trece în starea finală doar dacă stiva lui } M \text{ este vidă})$

Teorema 2

Pentru orice automat pushdown M cu $F \neq \emptyset$, există un automat pushdown M' cu $F = \emptyset$ astfel ca $L_{\epsilon}(M') = L(M)$.

Teorema 2

Pentru orice automat pushdown M cu $F \neq \emptyset$, există un automat pushdown M' cu $F = \emptyset$ astfel ca $L_{\epsilon}(M') = L(M)$.

Dacă $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$, considerăm

$$\mathit{M}' = (\mathsf{Q} \cup \{\mathit{q}_{\epsilon}, \mathit{q}'_0\}, \mathsf{\Sigma}, \mathsf{\Gamma} \cup \{\mathit{z}'_0\}, \delta', \mathit{q}'_0, \mathit{z}'_0, \emptyset)$$

Demonstrație

$$\mathit{M}' = (\mathsf{Q} \cup \{q_\epsilon, q_0'\}, \Sigma, \Gamma \cup \{z_0'\}, \delta', q_0', z_0', \emptyset)$$
, cu δ' :

Demonstrație

$$M' = (Q \cup \{q_{\epsilon}, q'_0\}, \Sigma, \Gamma \cup \{z'_0\}, \delta', q'_0, z'_0, \emptyset), \text{ cu } \delta'$$
:

• $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)

Demonstraţie

- $M' = (Q \cup \{q_{\epsilon}, q'_0\}, \Sigma, \Gamma \cup \{z'_0\}, \delta', q'_0, z'_0, \emptyset), \text{ cu } \delta'$:
 - $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)
 - a) $\delta'(q, a, z) = \delta(q, a, z), \forall q \in \mathbb{Q}, a \in \Sigma, z \in \Gamma$ (M' face aceleaşi tranziţii ca şi M, pentru orice simbol întâlnit)
 - b) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z)$, dacă $q \in Q \setminus F$, $z \in \Gamma$ (se fac aceleaşi ϵ -tranziții ca în M, dacă starea nu este finală)
 - c) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z) \cup \{(q_{\epsilon}, \epsilon)\}, q \in F, z \in \Gamma \text{ (daca M ajunge într-o stare finală, } M' \text{ poate trece într-o stare specială)}$

Demonstrație

- $M' = (Q \cup \{q_{\epsilon}, q'_0\}, \Sigma, \Gamma \cup \{z'_0\}, \delta', q'_0, z'_0, \emptyset), \text{ cu } \delta'$:
 - $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)
 - a) $\delta'(q, a, z) = \delta(q, a, z), \forall q \in \mathbb{Q}, a \in \Sigma, z \in \Gamma$ (M' face aceleaşi tranziţii ca şi M, pentru orice simbol întâlnit)
 - b) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z)$, dacă $q \in Q \setminus F$, $z \in \Gamma$ (se fac aceleaşi ϵ -tranziții ca în M, dacă starea nu este finală)
 - c) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z) \cup \{(q_{\epsilon}, \epsilon)\}, q \in F, z \in \Gamma \text{ (daca M ajunge într-o stare finală, } M' \text{ poate trece într-o stare specială)}$
 - $\delta'(q,\epsilon,\mathbf{z}_0')=\{(q_\epsilon,\epsilon)\}$, dacă $q\in F$ (cazul 2(c), în situația în care în stivă este \mathbf{z}_0')

Demonstrație

- $M' = (Q \cup \{q_{\epsilon}, q'_0\}, \Sigma, \Gamma \cup \{z'_0\}, \delta', q'_0, z'_0, \emptyset), \text{ cu } \delta'$:
 - $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)
 - a) $\delta'(q, a, z) = \delta(q, a, z), \forall q \in \mathbb{Q}, a \in \Sigma, z \in \Gamma$ (M' face aceleaşi tranziţii ca şi M, pentru orice simbol întâlnit)
 - b) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z)$, dacă $q \in Q \setminus F$, $z \in \Gamma$ (se fac aceleaşi ϵ -tranziții ca în M, dacă starea nu este finală)
 - c) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z) \cup \{(q_{\epsilon}, \epsilon)\}, q \in F, z \in \Gamma \text{ (daca M ajunge într-o stare finală, } M' \text{ poate trece într-o stare specială)}$
 - $\delta'(q,\epsilon,z_0')=\{(q_\epsilon,\epsilon)\}$, dacă $q\in F$ (cazul 2(c), în situația în care în stivă este z_0')
 - δ'($q_{\epsilon}, \epsilon, z$) = {(q_{ϵ}, ϵ)}, dacă $z \in \Gamma \cup \{z'_0\}$ (M' rămâne în starea q_{ϵ} și se extrage vârful stivei)

Curs 6

Automate pushdown

Legătura dintre automatele pushdown şi limbajele de tip 2

3 Automate pushdown deterministe

Automatul pushdown echivalent cu o gramatică de tip

Teorema 3

Pentru orice gramatică G există un automat pushdown M fără stări finale astfel încât $L_{\epsilon}(M) = L(G)$

Automatul pushdown echivalent cu o gramatică de tip

Teorema 3

Pentru orice gramatică G există un automat pushdown M fără stări finale astfel încât $L_{\epsilon}(M) = L(G)$

- Fie *G* = (*N*, *T*, *S*, *P*)
- Construim $M = (\{q\}, T, N \cup T, \delta, q, S, \emptyset)$ unde:

 - $\delta(q, a, a) = \{(q, \epsilon)\}, \forall a \in T$
 - $\delta(q, x, y) = \emptyset$, în restul cazurilor
- $\bullet \ \ w \in L(G) \Leftrightarrow S \Rightarrow^+ w \Leftrightarrow (q, w, S) \vdash^+ (q, \epsilon, \epsilon) \Leftrightarrow w \in L_{\epsilon}(M)$
- M simulează derivările extrem stângi din G

Exemplu

- $G = (\{x\}, \{a, b\}, x, \{x \to axb, x \to ab\})$
- Automatul pushdown echivalent:

$$M = (\{q\}, \{a, b\}, \{a, b, x\}, \delta, q, x, \emptyset)$$

- $\delta(q,b,b) = \{(q,\epsilon)\}$

Gramatica echivalentă cu un automat pushdown

Teorema 4

Pentru orice automat pushdown M există o gramatică G astfel încât $L(G) = L_{\epsilon}(M)$

Gramatica echivalentă cu un automat pushdown

Teorema 4

Pentru orice automat pushdown M există o gramatică G astfel încât $L(G) = L_{\epsilon}(M)$

- Fie $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, \emptyset)$
- Construim $G = (N, \Sigma, S, P)$ astfel:
 - $N = \{[qzp]|p, q \in Q, z \in \Gamma\} \cup \{S\}$
 - P conţine toate regulile de forma:
 - $\bullet \ \ \mathsf{S} \to [q_0 \mathsf{z}_0 \mathsf{q}], \, \forall \mathsf{q} \in \mathsf{Q}$
 - dacă $(p, \epsilon) \in \delta(q, a, z)$, atunci: $[qzp] \rightarrow a$
 - dacă $(p,z_1z_2\dots z_m)\in \delta(q,a,z)$, atunci, pentru orice secvență de stări $q_1,\dots,q_m\in Q$:

$$[qzq_m] \to a[pz_1q_1][q_1z_2q_2]\dots[q_{m-1}z_mq_m]$$

• Are loc: $[qzp] \Rightarrow^+ w \Leftrightarrow (q, w, z) \vdash^+ (p, \epsilon, \epsilon)$

Curs 6

Automate pushdown

2 Legătura dintre automatele pushdown şi limbajele de tip 2

Automate pushdown deterministe

Definiție 2

Automatul pushdown $M=(Q,\Sigma,\Gamma,\delta,q_0,z_0,F)$ este determinist dacă funcția de tranziție $\delta:Q\times (\Gamma\cup\{\epsilon\})\times \Gamma\longrightarrow 2^{Q\times \Gamma^*}$ îndeplinește condițiile:

- ② Dacă $\delta(q, \epsilon, z) \neq \emptyset$ atunci $\delta(q, a, z) = \emptyset, \forall a \in \Sigma$

Un automat pushdown determinist poate avea ϵ -tranziji

Definiție 2

Automatul pushdown $M=(Q,\Sigma,\Gamma,\delta,q_0,z_0,F)$ este determinist dacă funcția de tranziție $\delta:Q\times (\Gamma\cup\{\epsilon\})\times \Gamma\longrightarrow 2^{Q\times \Gamma^*}$ îndeplinește condițiile:

- ② Dacă $\delta(q, \epsilon, z) \neq \emptyset$ atunci $\delta(q, a, z) = \emptyset, \forall a \in \Sigma$

Un automat pushdown determinist poate avea ϵ -tranziji

$$M = (\{q_0, q_1, q_2\}, \{0, 1, a\}, \{0, 1, z\}, \delta, q_0, z, \{q_2\})$$

- $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\})$
- $\delta(q_0, a, i) = \{(q_1, i)\}$
- $\delta(q_1,i,i) = \{(q_1,\epsilon)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$

$$L(M) = \{waw^R | w \in \{0, 1\}^*\}$$

\mathcal{L}_{2DET} - Limbaje de tip 2 deterministe

 $\mathcal{L}_{2DET} = \{L | \exists M \text{ automat pushdown determinist astfel ca } L = L(M) \}.$

- Clasa L_{2DET} este o clasă proprie a clasei de limbaje L₂ (L_{2DET} ⊂ L₂).
- $\bullet \ \{ww^R | w \in \{0,1\}^*\} \in \mathcal{L}_2 \setminus \mathcal{L}_{2DET}$

\mathcal{L}_{2DET} - Limbaje de tip 2 deterministe

 $\mathcal{L}_{2DET} = \{L | \exists M \text{ automat pushdown determinist astfel ca } L = L(M) \}.$

- Clasa L_{2DET} este o clasă proprie a clasei de limbaje L₂ (L_{2DET} ⊂ L₂).
- - $\delta(q_0, i, z) = \{(q_0, iz)\}, (i \in \{0, 1\})$
 - 2 $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\}, i \neq j)$
 - $\delta(q_0, i, i) = \{(q_0, ii), (q_1, \epsilon)\}$
 - $\delta(q_1,i,i) = \{(q_1,\epsilon)\}$
 - $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$