Temario

- Introducción y fundamentos
- Introducción a SQL
- Modelo Entidad / Relación
- Modelo relacional
- Diseño relacional: formas normales
- Consultas
 - Cálculo relacional
 - Álgebra relacional
- Implementación de bases de datos
 - Estructura física: campos y registros
 - Indexación
 - Índices simples
 - Árboles B
 - Hashing

Cálculo y álgebra relacional

♦ ¿Qué son?

- Dos formalismos lógico-matemáticos para escribir consultas
- Hasta cierto punto equivalentes a SQL pero permitiendo asegurar la consistencia matemática
- Inicialmente pueden resultar más complejos que SQL, pero llegados a un punto de soltura, ayudan a despejar dudas mejor que en SQL (pues lógica & matemáticas son más universales que SQL, y además en el fondo se escriben más rápido)
- Cálculo y álgebra preceden históricamente a SQL
- Nuestros objetivos en esta parte del curso
 - Escribir consultas (descritas en "castellano") en cálculo y álgebra
 - Dar el resultado de una consulta en cálculo o álgebra
 - Traducir consultas entre cálculo, álgebra y SQL
 - Entender diferencias de optimización en diferentes formas de formular una misma consulta

Cálculo y álgebra relacional (cont)

- Formalismos para expresar operaciones de recuperación sobre una BD en modelo relacional
 - Cálculo es declarativo, álgebra es procedural
- Cálculo y álgebra son formalismos distintos pero lógicamente equivalentes
 - Toda expresión de cálculo se puede expresar en álgebra y viceversa (Th Codd)
 - Es decir, permiten expresar las mismas consultas
- Un lenguaje de consulta es completo si permite expresar cualquier consulta del cálculo relacional
 - Generalmente los SGBDs proporcionan un lenguaje completo con extensiones

Cálculo y álgebra relacional (cont)

Utilidad del cálculo relacional

- Es más adecuado para establecer y verificar propiedades formales,
 la consistencia de los modelos relacionales y sus formalismos
- Es útil para verificar detenidamente la corrección de aspectos complejos o delicados en ciertas consultas que lo precisen
- La creación original del modelo relacional se fundamenta en el cálculo relacional
 Interesa entenderlo para una comprensión más profunda del modelo relacional
 y el fundamento de la tecnología de bases de datos

Utilidad del álgebra relacional

- Se utiliza con fines más prácticos; es más manejable que SQL para diseñar consultas complejas
- Los motores de SQL basan su representación interna de las consultas en álgebra relacional (SQL se "parsea" a una estructura interna de álgebra)

Temario

- Introducción y fundamentos
- Introducción a SQL
- Modelo Entidad / Relación
- Modelo relacional
- Diseño relacional: formas normales
- Consultas
 - Cálculo relacional
 - Álgebra relacional
- Implementación de bases de datos
 - Estructura física: campos y registros
 - Indexación
 - Índices simples
 - Árboles B
 - Hashing

Cálculo relacional

- Subconjunto del cálculo de predicados de primer orden
- Una consulta básica tiene la forma { t | cond (t) }, donde...
 - t representa una variable de tupla
 - cond es una expresión condicional
 - La expresión representa (literalmente) un conjunto de tuplas que cumplen la condición
- Ejemplo: { t | Vuelo(t) and t.origen = 'LHR' }
- Pero se pueden formular consultas más elaboradas
- Vamos a ver la forma general...

Forma general de una consulta

{ variables | condición }

Variables de una consulta

- Representan tuplas de esquemas relacionales
- Pueden ser una o más

```
\{t_1, t_2, ..., t_n \mid condición\}
```

Pueden indicarse atributos específicos de las variables

```
(y mezclar variables con y sin atributos...)
```

$$\{t_1.A, t_1.B, t_1.C, t_2, ..., t_n \mid condición\}$$
 /* A, B, C atributos de t_1 */

Condición de una consulta

- Es una expresión (fórmula) de cálculo de predicados de primer orden
- Puede ser (definición recursiva):
 - 1. Una fórmula atómica...
 - a) R(t), donde R es un esquema relacional, y t es una variable de tupla
 - b) t_1 . A op t_2 . B o bien t_1 . A op c donde... t_1 y t_2 son variables de tupla A y B son atributos, c es una constante op es un operador de comparación: =, <, \leq , >, \geq , \neq /* Se puede ampliar... */
 - 2. Operadores *and*, *or*, *not* aplicados a fórmulas
 - 3. $\forall t$, $\exists t$ aplicados a fórmulas
- Ejemplo: supongamos Usuario (nombre, nick), Contacto (usuario1, usuario2)

```
{ u_2. nombre | \exists u_1 \exists cont ( Usuario (u_1) and Usuario (u_2) and Contacto (cont) and cont. usuario1 = u_2. nick and cont. usuario2 = u_1. nick and u_1. nombre = 'María' ) }
```

Variables en una consulta

En una condición **sólo** pueden aparecer dos tipos de variables:

- Las variables propias de la consulta
- Variables cuantificadas con ∀ o ∃ dentro de la condición
- <u>Todas</u> deben llevar una condición de tipo de esquema R(t)

"Resultado" de una consulta

- ◆ El "resultado" de una consulta en cálculo relacional es un conjunto de tuplas
- Cuyos atributos son la unión de los atributos de todas las variables de tupla,
 más los atributos indicados directamente

```
Por ejemplo, dados los esquemas:

Vuelo (número, origen, destino, hora)

Aeropuerto (código, ciudad)
```

Y la consulta:

{ v.número, a | Vuelo(v) and Aeropuerto(a) and v.origen = a.código}

Los atributos de las tuplas de la consulta son:

```
( número, código, ciudad )
v . número a
```

La condición filtra qué tuplas exactamente se incluyen en ese conjunto

Correspondencia con SQL

- Variables de consulta Los términos que siguen a SELECT (con DISTINCT)
 - Salvo que en SELECT no hay variables de tuplas, sólo campos
- Condiciones de tipo R(t) Equivale a 'R as t' en la cláusula FROM
 - Pero no se concreta si es JOIN, producto cartesiano, etc.
- lacktriangle Condiciones con \exists y \forall Se pueden expresar con EXISTS, SOME y ALL
 - La mayoría de las veces ∃ se traduce simplemente en un esquema en FROM, que no aparece en SELECT
 - Si es difícil expresar un ∀, se puede jugar con ∃ y negación
- Otras condiciones
 Aparecen tras WHERE, ON, etc.
 - Pueden volverse implícitas en un NATURAL JOIN
- En principio no es común contemplar directamente en cálculo relacional (pero se puede):
 - Operaciones de conjuntos: unión, intersección, diferencia, pertenencia
 - Operaciones de agregación: COUNT, AVG, MAX, etc.
 - Vistas y consultas anidadas
- ORDER BY no tiene sentido ya que el orden de tuplas no existe en el modelo relacional

Expresiones no seguras

- Se suele distinguir entre cálculo de tuplas (que hemos visto) y de dominio
 - La diferencia es esencialmente de notación y son prácticamente equivalentes
- Expresiones no seguras
 - Devuelven infinitas tuplas

```
Ejemplo: { t | not Vuelo(t) }
```

- Solución: evitarlas! © La caracterización de consultas seguras y no seguras
 es compleja –no profundizaremos en ello en este curso
- Las equivalencias entre los diferentes formalismos (cálculo, álgebra, cálculo de tuplas vs. de dominio) se dan con salvedad de las expresiones no seguras

Ejemplos...

VUELO

Numero	Origen	Destino	Salida
345	MAD	CDG	12:30
321	MAD	ORY	19:05
165	LHR	CDG	09:55
903	CDG	LHR	14:40
447	CDG	LHR	17:00

AEROPUERTO

Codigo	Ciudad
MAD	Madrid
LGW	Londres
LHR	Londres
ORY	París
CDG	París

PASAJERO

Dni	Nombre
123	María
456	Pedro
789	Isabel

RESERVA

Dni	Numero	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

Vuelos entre Charles de Gaulle y Heathrow

Hora de salida de los vuelos entre Charles de Gaulle y Heathrow

Vuelos que cubren el trayecto Charles de Gaulle – Heathrow en cualquier sentido

Nombre, fecha y destino de viaje de todos los pasajeros que vuelan desde Madrid

Vuelos entre Madrid y París

Vuelos que no tienen ninguna reserva

•••

Temario

- Introducción y fundamentos
- Introducción a SQL
- Modelo Entidad / Relación
- Modelo relacional
- Diseño relacional: formas normales
- Consultas
 - Cálculo relacional
 - Álgebra relacional
- Implementación de bases de datos
 - Estructura física: campos y registros
 - Indexación
 - Índices simples
 - Árboles B
 - Hashing

Álgebra relacional

- Expresa consultas en forma de operaciones a realizar para obtener las tuplas deseadas
 - A diferencia del cálculo relacional, en el que se expresan las condiciones que deben cumplir las tuplas que se desean obtener
 - Por este motivo el álgebra se considera procedural, y el cálculo declarativo
- El resultado de una consulta en álgebra relacional es un conjunto de tuplas
 - Igual que en cálculo
- ◆ Tres tipos de operación

 **Tres tipos de operación

 **

 Dinarias

 Binarias

 Dinarias

 **Dinari
 - Específicas de BD: selección, proyección, renombrado, join y sus variantes
 - De conjuntos: unión, intersección, diferencia, producto cartesiano
 - Extensiones: proyección generalizada, join externo, agregación...

Operaciones propias de BDs

- Selección
- Proyección
- ◆ Renombrado
- Joins
- División (la omitiremos, se puede derivar de otras operaciones)

Select: $\sigma_{condición}(R)$

- ◆ Operación "horizontal": filtra tuplas de una relación
 - Las que cumplen una condición
- ◆ El operando R puede ser un esquema relacional, o una expresión de álgebra
 - Por tanto un conjunto de tuplas en cualquier caso
 - Esto es así para los operandos de todas las operaciones (lo sobreentendemos pues en adelante)
- La condición puede ser:
 - Una comparación simple A op B o bien A op c donde:

A y B son atributos, c es una constante op es un operador de comparación: =, <, \leq , >, \geq , \neq (se pueden ampliar)

- Operadores and, or, not, aplicados a otras condiciones
- ◆ Es decir, las condiciones son como las del cálculo relacional, salvo que...
 - No se usan variables de tupla
 - No se usan condiciones de esquema (en su lugar aparecen nombres de esquemas en algún punto)
 - No se usan cuantificadores \exists y \forall

VUELO

Numero	Origen	Destino	Salida
345	MAD	CDG	12:30
321	MAD	ORY	19:05
165	LHR	CDG	09:55
903	CDG	LHR	14:40
447	CDG	LHR	17:00

AEROPUERTO

Codigo	Ciudad
MAD	Madrid
LGW	Londres
LHR	Londres
ORY	París
CDG	París
·	·

PASAJERO

Dni	Nombre
123	María
456	Pedro
789	Isabel

RESERVA

Dni	Numero	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

Vuelos entre Charles de Gaulle y Heathrow

$$\sigma_{Origen = 'CDG' and Destino = 'LHR'}$$
 (VUELO)

Reservas por menos de 200€

$$\sigma_{\text{Precio} < 200}$$
 (RESERVA)

$$\rightarrow$$
 { (123, 345, '20-12-10', 170), (456, 345, '03-11-10', 190) }

Algunas propiedades de σ

- Los atributos de $\sigma_c(R)$ y los de R son... los mismos
- \bullet $|\sigma_c(R)| \leq |R|$
- σ es conmutativa: $\sigma_c(\sigma_d(R)) = \sigma_d(\sigma_c(R)) = \sigma_{c \text{ and } d}(R)$

Proyección: $\pi_{atributos}(R)$

- Operación "vertical": se filtran atributos de una relación
- Los atributos deben ser un subconjunto de los atributos de R
- Si el conjunto de atributos de la proyección no contiene ninguna clave,
 pueden repetirse tuplas
 - Se eliminan las duplicaciones en tal caso (puesto que se trata de un conjunto)
 - Como ya sabemos, los SGBD no necesariamente aplican esto de forma estricta

VUELO

Numero	Origen	Destino	Salida
345	MAD	CDG	12:30
321	MAD	ORY	19:05
165	LHR	CDG	09:55
903	CDG	LHR	14:40
447	CDG	LHR	17:00

AEROPUERTO

Codigo	Ciudad
MAD	Madrid
LGW	Londres
LHR	Londres
ORY	París
CDG	París

PASAJERO

Dni	Nombre
123	María
456	Pedro
789	Isabel

RESERVA

Dni	Numero	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

Ciudades con aeropuerto

$$\pi_{\text{Ciudad}}$$
 (AEROPUERTO)

$$\rightarrow$$
 { ('Madrid'), ('Londres'), ('París') }

Aeropuertos con conexión entre sí

$$\pi_{\text{Origen, Destino}}$$
 (VUELO)

Número de los vuelos con salida desde Madrid-Barajas

$$\pi_{\text{Numero}} (\sigma_{\text{Origen = 'MAD'}} (\text{VUELO}))$$
 $\rightarrow \{ (345), (321) \}$

Algunas propiedades de π

- $\bullet \quad \pi_{\mathsf{X}}(\pi_{\mathsf{Y}}(R)) = \pi_{\mathsf{X}}(R)$
 - Siempre y cuando X ⊂ Y, pues en otro caso la expresión es incorrecta
- $\bullet \quad |\pi_{\mathsf{X}}(R)| \leq |R|$
- X es una superclave de $R \Rightarrow |\pi_{X}(R)| = |R|$
- π no es conmutativa
 - $\pi_X(\pi_Y(R))$ y $\pi_Y(\pi_X(R))$ sólo serían ambas correctas si X = Y
 - Lo cual no tendría mucho sentido pues π_X y π_Y serían redundantes

Renombrado: ρ y \leftarrow

1. Renombrado como expresión

De atributos: $\rho_{B_1, B_2, ..., B_n}(R)$ renombra los atributos de R a $B_1, ..., B_n$

De algunos atributos: $\rho_{A_1/B_1, ..., A_k/B_k}(R)$

De esquemas y atributos: $\rho_{S(B_1, ..., B_n)}(R)$

- Útil para distinguir atributos que tienen el mismo nombre en las condiciones de joins y σ
- 2. Renombrado como asignación: $S(B_1, ..., B_n) \leftarrow R$, $S \leftarrow R$
 - Útil para descomponer expresiones complejas

Cuando veamos join y otros operadores...

Join ⋈

Pero veamos antes el producto cartesiano...

(del grupo de las operaciones de conjuntos)

Producto cartesiano $R \times S$

- También llamado "cross join"
- Es la misma operación que en álgebra de conjuntos
- Pero en vez de formar pares de tuplas $((a_1, ..., a_n), (b_1, ..., b_m))$, se concatenan los atributos de las tuplas $(a_1, ..., a_n, b_1, ..., b_m)$

VUELO

Numero	Origen	Destino	Salida
345	MAD	CDG	12:30
321	MAD	ORY	19:05
165	LHR	CDG	09:55
903	CDG	LHR	14:40
447	CDG	LHR	17:00

AEROPUERTO

Ciudad
Madrid
Londres
Londres
París
París

PASAJERO

Dni	Nombre
123	María
456	Pedro
789	Isabel

RESERVA

Dni	Numero	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

Vuelos que salen de París

VUELO

Numero	Origen	Destino	Salida
345	MAD	CDG	12:30
321	MAD	ORY	19:05
165	LHR	CDG	09:55
903	CDG	LHR	14:40
447	CDG	LHR	17:00

AEROPUERTO

Ciudad
Madrid
Londres
Londres
París
París

PASAJERO

Dni	Nombre
123	María
456	Pedro
789	Isabel

RESERVA

Dni	Numero	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

PASAJERO × RESERVA

→ { (123, María, 789, 165, 07-01-11, 210), (123, María, 123, 345, 20-12-10, 170), (123, María, 789, 321, 15-12-10, 250), (123, María, 456, 345, 03-11-10, 190), (456, Pedro, 789, 165, 07-01-11, 210), (456, Pedro, 123, 345, 20-12-10, 170), (456, Pedro, 789, 321, 15-12-10, 250), (456, Pedro, 456, 345, 03-11-10, 190), (789, Isabel, 789, 165, 07-01-11, 210), (789, Isabel, 789, 321, 15-12-10, 250), (789, Isabel, 789, 321, 15-12-10, 250), (789, Isabel, 456, 345, 03-11-10, 190) }

En general no tiene mucho sentido (y el coste es alto!): lo lógico sería conectar las dos tablas con alguna condición → select, join...

VUELO

Numero	Origen	Destino	Salida
345	MAD	CDG	12:30
321	MAD	ORY	19:05
165	LHR	CDG	09:55
903	CDG	LHR	14:40
447	CDG	LHR	17:00

AEROPUERTO

Ciudad
Madrid
Londres
Londres
París
París

PASAJERO

Dni	Nombre
123	María
456	Pedro
789	Isabel

RESERVA

Dni	Numero	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

$$\sigma_{\text{Dni = DniPasajero}}$$
 (PASAJERO × $\rho_{\text{Dni / DniPasajero}}$ (RESERVA))
 \rightarrow { (123, María, 123, 345, 20-12-10, 170),
(456, Pedro, 456, 345, 03-11-10, 190),
(789, Isabel, 789, 165, 07-01-11, 210),

(789, Isabel, 789, 321, 15-12-10, 250) }

Algunas propiedades de ×

Dados $R(A_1, ..., A_n)$ y $S(B_1, ..., B_m)$

- $\bullet \quad |R \times S| = |R| |S|$
- R × S tiene n + m atributos: $(R \times S)$ $(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$
- × es conmutativo y asociativo

Join $R\bowtie_{condición} S$

- Ahora sí... $R \bowtie_{condición} S$ es equivalente a $\sigma_{condición} (R \times S)$
- Tipos particulares de join: equijoin y natural join
- Equijoin: la condición es un and de comparaciones de igualdad entre atributos de R y S
- Natural join: equijoin donde sólo se incluye un atributo por cada par emparejado
 - Notación R⋈S sin indicar condición: la condición es de igualdad entre todos los atributos comunes a R y S
 - O bien se puede indicar la lista de atributos a emparejar:

$$R \bowtie_{(A_1, ..., A_n), (B_1, ..., B_n)} S = \pi_{X, A_1, ..., A_n, Y} (R \bowtie_{A_1 = B_1, ..., A_n = B_n} S)$$

Donde X son los atributos de R menos A_i, e Y son los de S menos B_i

Típicamente los atributos emparejados son clave externa / clave primaria

VUELO

Numero	Origen	Destino	Salida
345	MAD	CDG	12:30
321	MAD	ORY	19:05
165	LHR	CDG	09:55
903	CDG	LHR	14:40
447	CDG	LHR	17:00

AEROPUERTO

Codigo	Ciudad
MAD	Madrid
LGW	Londres
LHR	Londres
ORY	París
CDG	París

PASAJERO

Dni	Nombre
123	María
456	Pedro
789	Isabel

RESERVA

Dni	Numero	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

PASAJERO ⋈ RESERVA

VUELO

Numero	Origen	Destino	Salida
345	MAD	CDG	12:30
321	MAD	ORY	19:05
165	LHR	CDG	09:55
903	CDG	LHR	14:40
447	CDG	LHR	17:00

AEROPUERTO

Codigo	Ciudad
MAD	Madrid
LGW	Londres
LHR	Londres
ORY	París
CDG	París

PASAJERO

Dni	Nombre
123	María
456	Pedro
789	Isabel

RESERVA

Dni	Numero	Fecha	Precio
789	165	07-01-11	210
123	345	20-12-10	170
789	321	15-12-10	250
456	345	03-11-10	190

Vuelos entre Madrid y París

$$R \leftarrow VUELO \bowtie_{Origen, Codigo} \rho_{Ciudad / CiudadOrigen} (AEROPUERTO)$$

$$\mathsf{S} \leftarrow \mathsf{R} \bowtie_{\mathsf{Destino},\,\mathsf{Codigo}} \rho_{\mathsf{Ciudad}\,/\,\mathsf{CiudadDestino}} \text{(AEROPUERTO)}$$

Nombre, fecha y destino de viaje de todos los pasajeros que vuelan desde Madrid

$$S \leftarrow R \bowtie_{Destino, Codigo} \rho_{Ciudad / CiudadDestino}$$
 (AEROPUERTO)

 $\pi_{Nombre, Fecha, CiudadDestino}$ (R \bowtie RESERVA \bowtie PASAJERO)

Algunas propiedades de ⋈

Dados $R(A_1, ..., A_n)$ y $S(B_1, ..., B_m)$

- R $\bowtie_c S$ tiene n + m atributos : $(R \bowtie_c S)$ $(A_1, ..., A_n, B_1, ..., B_m)$
- \bullet $|R \bowtie_{C} S| \leq |R| |S|$
 - La "selectividad" del join es la tasa $|R \bowtie_c S| / |R| |S|$
- ◆ es asociativo y conmutativo (conmutando/asociando adecuadamente las condiciones del join)

Operaciones de conjuntos

- Unión
- ◆ Intersección
- Diferencia
- Producto cartesiano (ya visto)

Operaciones de conjuntos

$$R \cup S$$
, $R \cap S$, $R - S$

- * R y S deben tener el mismo nº y dominio de los atributos ("unión-compatible")
 - Esto no es así con el producto cartesiano, que no lo precisa
- La definición es la misma que en álgebra de conjuntos

Algunas propiedades de \cup y \cap

Dados
$$R (A_1, ..., A_n)$$
 y $S (B_1, ..., B_n)$

- $R \cup S y R \cap S$ tienen *n* atributos
- $\bullet \quad \max(|R|,|S|) \leq |R \cup S| \leq |R| + |S|$
- $\bullet \quad |R \cap S| \leq \min(|R|, |S|)$
- \cup y \cap son conmutativos y asociativos
- $\sigma_c(R) \cap \sigma_d(S) = \sigma_{c \text{ and } d}(R \cap S)$
- $\bullet \quad \sigma_c(R) \cup \sigma_d(R) = \sigma_{c \text{ or } d}(R)$

Algunas propiedades globales más

- Las operaciones binarias (excepto la diferencia de conjuntos) se pueden generalizar a operaciones n-arias
 - De forma obvia por asociatividad de las operaciones binarias
- Las operaciones σ , π , \cup , -, \times forman un conjunto completo de operaciones
 - Las demás se pueden derivar de ellas:

Operaciones adicionales

- Son extensiones externas al álgebra relacional propiamente dicha
 - Se utilizan por motivos prácticos
- Proyección generalizada
 - Admite operaciones sobre los atributos: $\pi_{f_1(X_1), \dots, f_n(X_n)}$ (*R*) donde X_i son conjuntos de atributos de R, y f_i son funciones sobre ellos
- Agrupación y agregación
 - A_1 , ..., A_n G $f_1(B_1)$, ..., $f_n(B_n)$ (R) donde A_i y B_i son atributos de R, y f_i son Count, Sum, Avg, Max, ó Min
- Join externo
 - Incluyen tuplas de uno u otro operando o ambos (left / right / full), las que no tienen tupla asociada en el otro conjunto
 - Se ponen NULLs en los atributos que corresponderían al otro esquema
- Y otras variantes: semijoin, antijoin, división, unión externa...
- Limitación: el álgebra relacional no tiene iteración/recursión (tampoco SQL)
 - P.e. no es posible calcular la raíz de un árbol, distancias en una red social, etc.

Correspondencia con SQL

•
$$\pi_{atributos} (\sigma_{condición}(R))$$

•
$$\rho_{A/C}(\pi_{A, B}(\sigma_{condición}(R)))$$

•
$$S \leftarrow (\pi_{atributos} (\sigma_{condición}(R)))$$

•
$$\pi_{atributos}$$
 ($\sigma_{condición}$ ($R \bowtie S$))

$$\pi_{atributos}$$
 ($R \bowtie_{condición} S$))

•
$$\pi_{atributos}$$
 ($\sigma_{condición}$ ($R \times S$))

$$\bullet$$
 $R \cup S$, $R \cap S$, $R - S$

atributos G Count(A), Sum(B)... (R)

SELECT A AS C, B FROM R WHERE condición

CREATE VIEW S AS SELECT atributos FROM *R* WHERE condición

SELECT *atributos* FROM *R* NATURAL JOIN *S* WHERE *condición*

SELECT *atributos* FROM *R* JOIN *S* ON *condición* // O bien: WHERE *condición*

SELECT *atributos* FROM *R*, *S* WHERE *condición*

R UNION S, R INTERSECT S, R EXCEPT S

SELECT Count(A), Sum(B)... FROM *R* GROUP BY *atributos*

Para no hacerlo repetitivo omitimos aquí DISTINCT (pero debe sobreentenderse!)

Optimización de consultas

◆ El coste de una consulta puede variar mucho según cómo se exprese

$$- \quad \text{Ejemplo:} \quad \sigma_{\text{Origen = 'LCG'}} \left(\sigma_{\text{Destino = 'LHR'}} \left(\text{VUELO} \right) \right) \\ \sigma_{\text{Destino = 'LHR'}} \left(\sigma_{\text{Origen = 'LCG'}} \left(\text{VUELO} \right) \right) \right\} \quad \longleftarrow \quad \text{Cuál es más eficiente?}$$

- Objetivos generales
 - Reducir el tamaño promedio del resultado de las expresiones
 - Formar subexpresiones comunes dentro de o entre consultas para ejecutarlas una sola vez
- Estrategias generales
 - Introducción de select hacia subexpresiones más internas
 El tamaño de un select es menor que el del conjunto al que se aplica;
 cuanto más internamente se sitúe el select, antes tiene lugar esta reducción
 Situar los select más restrictivos más al interior que otros menos selectivos
 - **Evitar productos cartesianos** en las operaciones más internas; es la operación que genera conjuntos más grandes Es preferible un join $R \bowtie_{c} S$ que un producto cartesiano $\sigma_{c}(R \times S)$
 - Introducir proyecciones hacia el interior para operar sólo con los atributos realmente necesarios; la proyección es poco costosa y puede eliminar tuplas duplicadas

Optimización de consultas (cont)

Algunas manipulaciones particulares más para conseguir las estrategias generales

- Generación de subexpresiones más pequeñas cuando:
 - a) Podrían reutilizarse
 - b) Podrían optimizarse por separado
 - c) Podrían dar lugar a select con condiciones de un solo atributo sobre esquemas que se pueden optimizar mediante índices

Por ejemplo...

- $\sigma_{A \text{ and } B}(R) = \sigma_{A}(\sigma_{B}(R)) = \sigma_{B}(\sigma_{A}(R))$
- $\sigma_{A \text{ or } B}(R) = \sigma_{A}(R) \cup \sigma_{B}(R)$
- $\sigma_{cond}(R \cup S) = \sigma_{cond}(R) \cup \sigma_{cond}(S)$
- $\sigma_{cond}(R \cap S) = \sigma_{cond}(R) \cap \sigma_{cond}(S) = \sigma_{cond}(R) \cap S = R \cap \sigma_{cond}(S)$
- $\sigma_{\text{cond}}(R S) = \sigma_{\text{cond}}(R) \sigma_{\text{cond}}(S) = \sigma_{\text{cond}}(R) S$
- En sentido inverso, puede ser eficiente agregar condiciones en un solo select
- Si cond no implica atributos de S, $\sigma_{cond}(R \times S) = \sigma_{cond}(R) \times S$ (ídem para \bowtie)
- Otras técnicas de planificación/optimización de la ejecución de consultas en base a la estimación de costes de expresiones, estadísticas y estimaciones (tamaño) de los esquemas y atributos implicados // No profundizamos en ello