CREDIT DERIVATIVES

CREDIT DERIVATIVES

- Derivatives where the payoff depends on the credit quality of a company or sovereign entity
- The market started to grow fast in the late 1990s but has declined somewhat since the 2007-2009 crisis

CREDIT DEFAULT SWAPS

- Buyer of the instrument acquires protection from the seller against a default by a particular company or country (the reference entity)
- Example: Buyer pays a premium of 90 bps per year for \$100 million of 5year protection against company X
- Premium is known as the credit default spread. It is paid for life of contract or until default
- If there is a default, the buyer has the right to sell bonds with a face value of \$100 million issued by company X for \$100 million (Several bonds may be deliverable)

CDS STRUCTURE

Recovery rate, R, is the ratio of the value of the bond issued by reference entity immediately after default to the face value of the bond

OTHER DETAILS

- Payments are usually made quarterly in arrears
- In the event of default there is a final accrual payment by the buyer
- Settlement can be specified as delivery of the bonds or (more usually) a cash equivalent amount
- An auction process usually determines a cash payout
- Suppose payments are made quarterly in the example just considered.
 What are the cash flows if there is a default after 3 years and 1 month and recovery rate is 40%?

MOODY'S STATISTICS ON RECOVERY RATES (1982-2014)

Class	Average recovery rate (%)		
Senior secured	52.8		
Senior unsecured	37-4		
Senior subordinated	31.1		
Subordinated	31.4		
Junior subordinated	24.7		

CDSS AND BONDS

- A 5-year bond plus a 5-year CDS produces a portfolio that is (approximately) risk-free
- This shows that bond yield spreads should be close to CDS spreads
- The CDS-bond basis is the excess of CDS spreads over the corresponding bond yield spreads. (Negative during the credit crisis)

THE PAYOFF

- Usually there are a number of bonds that can be delivered in the event of a default
- The protection buyer can choose to deliver the bond with the lowest price
- But in practice an auction process is usually used to determine a cash payoff

ATTRACTIONS OF THE CDS MARKET

- Allows credit risks to be traded in the same way as market risks
- Can be used to transfer credit risks to a third party
- Can be used to diversify credit risks

HAZARD RATES

- A hazard rate of h(t) at time t means that there is a probability of $h(t)\Delta t$ of a default between times t and $t+\Delta t$ conditional on no earlier default
- The survival probability to time t is $e^{-\overline{h}t}$ where \overline{h} is the average hazard rate up to time t

CDS VALUATION

- Hazard rate for reference entity is 2%.
- Assume payments are made annually in arrears, that defaults always happen halfway through a year, and that the expected recovery rate is 40%.
- The risk-free rate is 5% per annum continuously compounded.
- Let the breakeven CDS rate be s per dollar of notional principal

UNCONDITIONAL DEFAULT AND SURVIVAL PROBABILITIES

Time	Survival	Default
(years)	Probability	Probability
1	0.9802	0.0198
2	0.9608	0.0194
3	0.9418	0.0190
4	0.9231	0.0186
5	0.9048	0.0183

CALCULATION OF PV OF PAYMENTS

Time (yrs)	Survival Probability	Expected Payment	Discount Factor	PV of Expected Payment
1	0.9802	0.9802s	0.9512	0.9324s
2	0.9608	0.9608 <i>s</i>	0.9048	0.8694 <i>s</i>
3	0.9418	0.9418 <i>s</i>	0.8607	0.8106 <i>s</i>
4	0.9231	0.9231 <i>s</i>	0.8187	0.7558 <i>s</i>
5	0.9048	0.9048 <i>s</i>	0.7788	0.7047 <i>s</i>
Total				4.0728 <i>s</i>

PRESENT VALUE OF EXPECTED PAYOFF (PRINCIPAL = \$1)

Time (yrs)	Default Probability	Recovery Rate	Expected Payoff	Discount Factor	PV of Expected Payoff
0.5	0.0198	0.4	0.0119	0.9753	0.0116
1.5	0.0194	0.4	0.0116	0.9277	0.0108
2.5	0.0190	0.4	0.0114	0.8825	0.0101
3.5	0.0186	0.4	0.0112	0.8395	0.0094
4.5	0.0183	0.4	0.0110	0.7985	0.0088
Total					0.0506

PV OF ACCRUAL PAYMENT MADE IN EVENT OF A DEFAULT (PRINCIPAL = \$1)

Time	Default Probability	Expected Accrued Payment	Discount Factor	PV of Payment
0.5	0.0198	0.0099s	0.9753	0.0097 <i>s</i>
1.5	0.0194	0.0097 <i>s</i>	0.9277	0.0090 <i>s</i>
2.5	0.0190	0.0095 <i>s</i>	0.8825	0.0084 <i>s</i>
3.5	0.0186	0.0093 <i>s</i>	0.8395	0.0078s
4.5	0.0183	0.0091 <i>s</i>	0.7985	0.0073s
Total				0.0422s

PUTTING IT ALL TOGETHER

- PV of expected payments is 4.0728s + 0.0422s = 4.1150s
- The breakeven CDS spread is given by

```
4.1150s = 0.0506 \text{ or } s = 0.0123 \text{ (123 bps)}
```

• The value of a swap negotiated some time ago with a CDS spread of 150bps would be 4.1150×0.0150-0.0506 = 0.0111 per dollar of the principal.

IMPLYING DEFAULT PROBABILITIES FROM CDS SPREADS

- Suppose that the mid market spread for a 5-year newly-issued CDS is 100bps per year
- We can reverse engineer our calculations to conclude that the hazard is 1.63% per year.
- If probabilities are implied from CDS spreads and then used to value another CDS the result is not sensitive to the recovery rate providing the same recovery rate is used throughout

OTHER CREDIT DERIVATIVES

- Binary CDS
- First-to-default Basket CDS
- Total return swap
- Credit default option
- Collateralized debt obligation

BINARY CDS

- The payoff in the event of default is a fixed cash amount
- In our example the PV of the expected payoff for a binary swap is 0.0844 and the breakeven binary CDS spread is 205 bps

FIRST TO DEFAULT BASKET CDS

- Similar to a regular CDS except that several reference entities are specified and there is a payoff when the first one defaults
- The valuation depends on "default correlation"
- Second, third, and *n*th to default deals are defined similarly

TOTAL RETURN SWAP

- · Agreement to exchange total return on a corporate bond for LIBOR plus a spread
- · At the end there is a payment reflecting the change in value of the bond
- · Usually used as financing tools by companies that want an investment in the corporate bond

CDS FORWARDS AND OPTIONS

- Example: Forward contract to buy 5-year protection on Ford for 280 bps in one year. If Ford defaults during the one-year life the forward contract ceases to exist
- Example: European option to buy 5-year protection on Ford for 280 bps in one year. If Ford defaults during the one-year life of the option, the option is knocked out

CREDIT INDICES

- CDX NA IG tracks the average CDS spread for a portfolio of 125 investment-grade (rated BBB or above) North American companies
- iTraxx Europe tracks the average CDS sppread for a portfolio of 125 investmentgrade European companies

THE USE OF FIXED COUPONS

- Increasingly CDSs and CDS indices trade like bonds to facilitate trading
- A coupon is specified
- If spread is greater than coupon, the buyer of protection pays Notional Principal × Duration × (Spread-Coupon)
- Otherwise the seller of protection pays

Notional Principal × Duration × (Coupon-Spread)

• Duration is the amount the spread has to be multiplied by to get the PV of spread payments. (In our example, it was 4.1150.)

ASSET BACKED SECURITIES (ABS)

- Securities created from a portfolio of loans, bonds, credit card receivables, mortgages, auto loans, aircraft leases, music royalties, etc
- Usually the income from the assets is tranched
- A "waterfall" defines how income is first used to pay the promised return to the senior tranche, then to the next most senior tranche, and so on.

COLLATERALIZED DEBT OBLIGATIONS

- A cash CDO is an ABS where the underlying assets are debt obligations
- A synthetic CDO involves forming a similar structure with short CDS contracts
- In a synthetic CDO most junior tranche bears losses first. After it has been wiped out, the second most junior tranche bears losses, and so on

SYNTHETIC CDO STRUCTURE

STANDARD TRANCHES ARE CREATED FROM STANDARD PORTFOLIOS

- CDX NA IG:
 - Tranches: 0-3%, 3-7%, 7-10%, 10-15%, 15-30%, 30-100%
- iTraxx Europe:
 - Tranches: 0-3%, 3-6%, 6-9%, 9-12%, 12-22%, 22-100%

SINGLE TRANCHE TRADING

- · Where one tranche is traded without the other tranches being created
- The synthetic CDO structure is used as a reference for defining the cash flows (but it is never actually created)

MID-MARKET QUOTES FOR ITRAXX EUROPE

	Tranche					
	0-3%	3-6%	6-9%	9-12%	12-22%	Index
Jan 31, 2007	10.34%	41.59	11.95	5.60	2.00	23
Jan 31, 2008	30.98%	316.90	212.40	140.00	73.60	77
Jan 31, 2009	64.28%	1185.63	606.69	315.63	97.13	165