

Н

R SI

Please type a plus sign (+) inside this box -> +

9

ease type a plus sign (+) inside this box —

PROSENTA (2-86)

Approved for use through 01/31/2001. OMB0581-0392

Petent and Trademark Office, U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respon to a collection of information times

VALID OMB CONTRO NUMBER.

		IN	VENTOR(S)					
iven Name (first and midd	le (if anvil)	Family Name of				Residenc		Country	
ANS P.		DIETZ		(City and either State or Foreign Country) NAPERVILLE, ILLINOIS					
ANS P. HOMAS G.		SKINNER		AURORA, ILLINOIS					
				,					
Additional inventors	are bein	g named on the _	separately	numbered si	neets att	ached f	nereto		
		TITLE OF THE INV	ENTION (280) characters	max)				_
ETHOD AND APPA	RATUS	FOR CONTRO	LLING PO	SITIONIN	IG OF	AN I	MPL	EMENT	OF
ORK MACHINE									
		CORRESPO	ONDENCE A	DDRESS I					$\overline{}$
Direct all correspondent		Place Customer Number							
X Customer Numbe	r L	719			Code L				
OR	Typ	oe Customer Numb	er here						ᆚ
Firm or									
Individual Name								_	
ddress									_
ddress									_
ity			State			ZIP	├		—
ountry			Telephone			Fax			
		ENCLOSED APPI	LICATION PA	KIS (check	ail that	apply)			
X Specification Number of Pages 16 Small Entity Statement									
X Drawing(s) Numberof Sheets			i F.	Other (specify)					
X Drawing(s) Numi.	eror sne	4		outer (apecin	" L				
METHOD OF PAYMEN	IT OF FI	LING FEES FOR T	HIS PROVISI	ONAL APPLI	CATION	FOR F	ATEN	T (check	one)
		enclosed to cover						FILING	FEE
= '								AMOUN"	(3)
The Commissioner is hereby authorized to charge filing fees or credit any overpayment to Deposit Account Number: 03-1129									
rees or credit any	overpayıı	ient to Deposit Act	Journal INCHIDOR	03-1125			J		
The invention was made	ie by an-	agency of the Unite	ed States Gov	emment or u	nder a co	ontract v	with a	n agency o	of the
United States Governr									
X No.			h - O						
Yes, the name of the	U.S Gov	ernment agency and t	ne Government	conuact numb	er are				_
							_		_
spectfully submitted,	~	0 ,0		Dat	9 08/	31/0	0		
SNATURE Vom	NA V	which		REGISTI	MOLTAS	NO F	_		
PED or PRINTED NAM	4⊑ Jame	es R. Smith		(if appro	oriate)	L	41,3	18	_
				Docket 1					

TELEPHONE (309) 636-1569 USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a provisional application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this long and/or suggestions for reducing this burden, should be sent to the Chief information Office, U.S. Peatrent of Commerce, Washington, D.C., 20231. DO NOT SELID FEES OR COMPLETED TO THIS ADDRESS. SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, D.C., 20231.

U.S. Express Mail Label No.: EE769199355US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of)

HANS P. DIETZ et al.)

Application No. 60/229,483)

Filed: August 31, 2000)

For: METHOD AND APPARATUS FOR CONTROLLING POSITIONING OF AN IMPLEMENT OF A WORK MACHINE)

Attorney Docket No. 99-639L)

Peoria, Illinois 61629-6490 May 29, 2001

Assistant Commissioner for Patents Washington, D.C. 20231

REQUEST FOR CONVERSION OF PROVISIONAL TO NON-PROVISIONAL APPLICATION (37 C.F.R. § 1.53(c)(3))

Sir:

Please convert the above identified provisional application filed to a non-provisional application under 37 C.F.R. § 1.53(c)(3).

A Declaration executed by the inventor(s) as well as a Preliminary Amendment is enclosed.

05/31/2001 SLUANG1 00000016 031129 60229483

710.00 CH

Respectfully submitted,

James R. Smith Reg. No.: 41,318 Caterpillar Inc.

Telephone: (309) 636-1569 Facsimile: (309) 675-1236

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of)	*
HANS P. DIETZ ET AL.) Art Unit:	TO BE ASSIGNED
Application No. : TO BE ASSIGNED) Examiner:	TO BE ASSIGNED
Filed: AUGUST 31, 2000) Paper No.:	
For: METHOD AND APPARATUS FOR CONTROLLING POSITIONING OF AN IMPLEMENT OF A WORK MACHINE)))	
Attorney Docket No. 99-639)))	
	Peoria, Illi	nois 61629-6490
•	May 29, 20	001
Assistant Commissioner for Patents Washington, D.C. 20231		

PRELIMINARY AMENDMENT

Sir:

Please amend this application as follows prior to the first office action on the merits:

IN THE CLAIMS

Please amend the claims as follows:

Please amend claim 4 as follows:

4. The method of claim 3, including the steps of storing a look-up table that stores a plurality of scaling values that correspond to the position of the lift and the tilt cylinders.

Please add the following new claims:

- 5. (new) The apparatus according to claim 2, wherein the controller selects a scaling value from the respective look-up table in response to the respective boom position and attachment position, and responsively produces the electrical valve signal having a magnitude corresponding to the selected scaling factor.
- 6. (new) The apparatus according to claim 1, wherein the implement position signal corresponding to the elevational position of the boom is indicative of the lift cylinder extension, and the implement position signal corresponding to the pivotal position of the bucket is indicative of the tilt cylinder extension.
- 7. (new) The apparatus according to claim 1, wherein said attachment comprises a bucket.
- (new) The apparatus according to claim 1, including an operator controlled
 joystick that produces an operator command signal for controlling the movement of the work
 implement.
- 9. (new) The apparatus according to claim 8, wherein said controller receives the implement position signals and said operator command signal, determines the relative position of the boom and the attachment, and produces an electrical valve signal corresponding to the relative position of the boom and the attachment.
- 10. (new) The apparatus according to claim 9, including at least one look-up table including a plurality of implement position values corresponding to a plurality of scaling values.
- 11. (new) The apparatus according to claim 10 wherein said controller selects a value from said respective look-up table in response to the respective relative position of the boom and the attachment, multiplies said value by a magnitude of said operator control signal, and responsively produces said electrical valve signal having a magnitude equal to the product.

- 12. (new) The apparatus of claim 1 wherein said pre-determined boundary condition corresponds to the physical boundary of at least one of the rack stops or dump stops.
 - 13. (new) An apparatus for use with a work machine, comprising: a work implement including a boom and an attachment:

an operator controlled joystick that produces an operator command signal for controlling the movement of the work implement;

implement position sensors that sense the elevational position of the boom and the pivotal position of the attachment, and responsively produce respective implement position signals;

a controller that receives the implement position signals and operator command signal, compares the relative position of said boom and said attachment with a predetermined boundary condition, and produces an electrical valve signal; and

valve assembly that receives said electrical valve signal and controllably provides hydraulic fluid flow to at least one hydraulic cylinder in response to a magnitude of said electrical valve signal.

- 14. (new) The method of claim 4, including the step of selecting a scaling value based on the relative positions and responsively controlling the movement of at least one of said boom or said attachment.
- 15. (new) The method of Claim 14, including the step of stopping the movement of at least one of said boom or said attachment when said relative position substantially equals said pre-determined boundary position.
- 16. (new) The method of claim 14, including the step of reducing the movement of at least one of said boom or said attachment when said relative positions approach said pre-determined boundary position.

17. (new) A method for controllably moving a work implement of an earth moving machine in response to the position of an operator controlled joystick, the work implement including a boom and an attachment being attached thereto, the work implement including a hydraulic lift cylinder for lifting and lowering the boom and a hydraulic tilt cylinder for dumping and racking the attachment, comprising the steps of:

sensing the positions of the lift and tilt cylinders and producing respective implement position signals;

sensing the position of the joystick and producing an operator command signal;

receiving the implement position signals and the operator command signal;

comparing the relative positions of the boom and the attachment with a predetermined boundary position;

reducing the operator command signal in response to the relative positions of the boom and the attachment with the pre-determined boundary condition, and producing an electrical valve signal based on the reduced operator command signal; and

receiving the electrical valve signal and controllably providing hydraulic fluid flow to the respective hydraulic cylinders in response to the relative positions of the boom and attachment in comparison with the pre-determined boundary position.

- 18. (new) The method according to claim 17, including the step of selecting a scaling value from a look-up table in response to the respective lift and tilt cylinder positions, multiplying the scaling value by the magnitude of the operator command signal, and responsively producing the electrical valve signal having a magnitude equal to the product of the multiplication.
- 19. (new) The method of Claim 17, including the step of stopping the movement of at least one of said boom or said attachment when said relative position substantially equals said pre-determined boundary position.

REMARKS

Entry of the forgoing amendments is respectfully requested. Applicants have added new claims 5-19 for consideration. Applicants further respectfully submit that the new amendments presented herein are supported by the specification as originally provisionally filed, and that no new matter has been added.

Respectfully submitted,

James R. Smith Registration No. 41,318

Caterpillar Inc.

Telephone: (309) 636-1569 Facsimile: (309) 675-1236

Marked Up Copy of Amendments pursuant to 37 CFR 1.121

Title: : METHOD AND APPARATUS FOR CONTROLLING POSITIONING OF AN IMPLEMENT OF A WORK MACHINE

Application No.: TO BE ASSIGNED

Attorney Docket No. 99-639

4. (amended) The method of claim [12] 3, including the steps of storing a look-up table that stores a plurality of scaling values that correspond to the position of the lift and the tilt cylinders.

Description

METHOD AND APPARATUS FOR CONTROLLING POSITIONING OF AN IMPLEMENT OF A WORK MACHINE

Technical Field

5

10

This invention relates generally to a method and apparatus for controlling positioning of a work implement of a work machine and, more particularly, to an apparatus and method that controls the positioning of the work implement based on pre-determined boundary conditions

Background Art

15 Work machines such as wheel type loaders include work implements capable of being moved through a number of positions during a work cycle. Such implements typically include attachments such as buckets, forks, and other material handling apparatus 20 which are coupled to lift arm, or boom, movably connected to the work machine via lingages. The typical work cycle associated with a bucket includes sequentially positioning the bucket and boom in a digging position for filling the bucket with material, 25 a carrying position, a raised position, and a dumping position for removing material from the bucket. protect the boom against the implement or linkages being "slammed" into it, the boom is provided with a plurality of rack and dump stops placed on the respective upper and lower surfaces of the boom. Each rack and dump stop is typically strategically sized and arranged to engage a corresponding portion of either the attachment, the attachment linkages, or

10

15

20

25

both, thereby concentrating any attachment impact to selected areas of the boom. In addition, rack and/or dump stops are typically attached, by use of mechanical fasteners, to the attachment.

Control levers are mounted at the operator's station and are connected to an electrohydraulic circuit for moving the bucket and/or boom. The operator must manually move the control levers to open and close electrohydraulic valves that direct pressurized fluid to hydraulic cylinders which in turn cause the implement to move. For example, when the boom is to be raised, the operator moves the control lever associated with the boom hydraulic circuit to a position at which a hydraulic valve causes pressurized fluid to flow to the head end of a lift cylinder, thus causing the boom to rise. When the control lever returns to a neutral position, the hydraulic valve closes and pressurized fluid no longer flows to the lift cylinder.

Under certain operating conditions, the attachment or linkage may make contact with the boom. For example, when the attachment is placed in the dump cycle, the attachment may contact the under portion of the boom as the operator attempts to either dislodge material from, or load material into, the attachment. Likewise, contact between the attachment or linkage and the top portion of the boom may occur when the operator attempts to "catch" or cause material to be caught by the attachment. If not 30 properly inspected and maintained, missing or damaged rack and dump stops can lead to excessive forces placed on the boom. These forces may damage the boom, as well as damage the associated hydraulic circuitry

10

25

30

that absorb some of the shock that travels through the linkage assembly. This will likely increase maintenance and accelerated failure of the associated parts.

To reduce the forces acting upon the work implement, systems have been developed to more slowly and smoothly stop the motion of the implement. One such system is disclosed in U.S. Patent No. 5,617,723 issued to Hosseini et al. on April 8, 1997. A method is provided which uses joystick and implement position sensors for controlling a sudden change in inertia of a work implement of a work machine. While this system adequately reduces the velocity of the work implement during sudden changes in operator control settings, it is not operable to control the movement of a work implement in response to missing rack or dump stops.

An alternate system is disclosed in U.S. Patent No. 5,511,458, issued to Kamata et al. on April 30, 1996. This system utilizes cylinder position and movement direction detectors to provide a quiet cylinder cushioning effect. Although this system may also be adequate for its intended purpose, it also is not operable to control the movement of a work implement in response to missing rack or dump stops.

The present invention is directed to overcoming one or more of the problems as set forth above.

Disclosure of the Invention

In one aspect of the present invention, an apparatus for controllably positioning a work implement is disclosed. The work implement includes a boom and an attachment being attached thereto where

signal.

the boom is actuated by a hydraulic lift cylinder and the attachment is actuated by a hydraulic tilt cylinder. Implement position sensors sense the elevational position of the boom and the pivotal position of the attachment, and responsively produce respective implement position signals. A controller receives the implement position signals, compares the relative position of the boom and the attachment, and produces a valve signal. A valve assembly receives the valve signal and controllably provides hydraulic fluid flow to at least one hydraulic cylinder in response to a magnitude of the electrical valve

In another aspect of the present invention, a method for controllably positioning a work implement 15 of an earth moving machine is provided. The work implement includes a boom and an attachment being attached thereto where the boom is actuated by a hydraulic lift cylinder and the attachment is actuated by a hydraulic tilt cylinder. The method comprises 20 the steps of sensing the positions of the lift and tilt cylinders and producing respective implement position signals, receiving the implement position signals and producing a valve signal based on a 25 relative position of the boom and the attachment, comparing the relative positions of the boom and the attachment with a pre-determined boundary position, and receiving the valve signal and controllably providing hydraulic fluid flow to at least one 30 hydraulic cylinder in response to the relative positions of the boom and attachment in comparison with the pre-determined boundary position.

Brief Description of the Drawings

Fig. 1 is a side view of a forward portion of a loader machine or wheel type loader.

Fig. 2 is a diagrammatic illustration of an 5 embodiment of the implement control system of the present invention.

Fig. 3 is a software look-up table associated with rack gain.

Fig. 4 is a software table look-up table 10 associated with dump gain.

Fig. 5 is a diagrammatic illustration of another embodiment of the implement control system of the present invention.

15 Best Mode for Carrying Out the Invention

Fig. 1 shows a forward portion 100 of a wheel loader type work machine 104 having a work implement 105 attached therewith consisting of a payload carrier in the form of a bucket 108 attached 20 to boom 110. Although the present invention is described in relation to a wheel type loader machine, the present invention is equally applicable to many earth working machines such as track type loaders, hydraulic excavators, and other machines having 25 similar loading implements. The bucket 108 is connected to a lift arm assembly or boom 110 which is pivotally actuated by two hydraulic lift actuators or lift cylinders 111 (only one of which is shown) about a boom pivot pin 112 that is attached to the machine frame 113. Pivot pin 115, in turn, attaches the lift 30 cylinders 111 to the boom 110. In addition, the bucket 108 is tilted by a bucket tilt actuator or

cylinder 116 about a tilt pivot pin 119.

25

The bucket 108 is kinematically connected with the tilt cylinder 116 by means of a pair of boom links 120 and a pair of implement links 123 (one of each shown). Rack stops 124 are provided on each boom boss 125 and are sized and arranged to engage corresponding engagement structures 128 provided on each boom link 120. In addition, a second pair of rack stops 129 (one shown) are provided on the upper surface 132 of the boom 110 are sized and arranged to 10 engage corresponding engagement structures 133 provided on each implement link 123. A pair of dump stops 134 (one shown) are provided on the under portion 135 of the boom 110 and are sized and arranged to engage corresponding engagement structures (not shown) provided on the bucket 108. 15

With reference to Fig. 2, a preferred embodiment of the implement control system 200 as applied to a wheel type loader is diagrammatically illustrated. The implement control system 200 is adapted to sense a plurality of inputs and responsively produce output signals which are delivered to various actuators in the implement control system 200. Preferably, the implement control system includes a microprocessor based controller 201.

Implement position sensors 204,205 sense the position of the work implement 105 with respect to the work machine 104 and responsively produces a plurality of implement position signals. The implement position signals are a function of the position of the

30 respective hydraulic cylinders 116,111, and are indicative of the amount of the respective hydraulic cylinder extension. In the preferred embodiment, the position sensors 204,205 include a lift position

sensor 204 for sensing the elevational position of the boom 110 and a tilt position sensor 205 for sensing the pivotal position of the bucket 108.

In one embodiment, the lift and tilt position sensor 204,205 include rotary potentiometers. The rotary potentiometers produce pulse width modulated signals in response to the angular position of the boom 110 with respect to the vehicle and the bucket 108 with respect to the boom 110. The angular position of the boom is a function of the lift 10 cylinder extension 111A,B, while the angular position of the bucket 108 is a function of both the tilt and lift cylinder extensions 116,111A,B. The function of the position sensors 204,205 can readily be any other 15 sensor which are capable of measuring, either directly or indirectly, the relative extension of a hydraulic cylinder. For example, the rotary potentiometers could be replaced with magnetostrictive sensors or linear position potentiometers used to measure the extension of the hydraulic cylinders.

A valve assembly 208 is responsive to electrical signals produced by the controller 201 and provides hydraulic fluid flow to the hydraulic cylinders 111A,B,116. In the preferred embodiment, the 25 valve assembly 208 includes two main valves (one main valve for lift cylinders and one main valve for the tilt cylinder) and four hydraulic actuator valves (two for each main valve). The main valves direct pressured fluid to the cylinders 111A,B,116 and the 30 hydraulic actuator valves direct pilot fluid flow to the main valves. Each hydraulic actuator valve preferably comprises a electro-hydraulic valve which is electrically connected to the controller 201. Such

valves are well-known and could readily be selected by one of ordinary skill in such art without undue experimentation. One main pumps 212 is used to supply hydraulic fluid to the main spools, while a pilot pump 215 is used to supply hydraulic fluid to the hydraulic actuator valves. An on/off solenoid valve and pressure relief valve 217 are included to control pilot fluid flow to the hydraulic actuator valves.

The present invention is directed toward

determining an electrical valve signal magnitude which
will accurately prevent impact between the bucket 108
or linkages 120,123 and the boom 110 in the event of
the bucket 108, boom 110, and/or linkages 120,123
having a missing or damaged rack or dump stop. The

controller 201 preferably includes RAM and ROM modules
that store software programs to carry out certain

features of the present invention. Further, the RAM

and ROM modules store software a plurality of look-up tables that are used to determine the electrical valve signal magnitude corresponding to the relative orientation or proximity of the bucket 108 to the boom 110 (based on tilt and lift cylinder extension). The controller 201 receives the implement position signals and produces an electrical valve signal having a

25 magnitude corresponding to aforementioned extensions of the cylinders 111,116.

The valve assembly 208 receives the electrical valve signal and, depending upon where the proximity of the boom 110 is to the bucket 108, may 30 modify the existing hydraulic fluid flow to the respective hydraulic cylinder in response to a magnitude of the electrical valve signal. For example, the aforementioned look-up tables may include

scaling factors associated with each extension measurement of both cylinders 111,116. The scaling factor may have a value ranging from 0 to 100%. Depending on the scaling value provided in the aforementioned look-up table, if the orientation or proximity of the boom 110 to the bucket 108 is such that the bucket 108 should have encountered a rack or dump stop, the controller 201 will produce an electrical valve signal having a scaling value of 0%, thereby operatively reducing flow in the relevant 10 hydraulic valve, relative to the operator input setting for this hydraulic flow, sufficient to cease movement of, for example, the bucket 108. Conversely, a scaling value of 100% signifies a "safe" condition allowing for uninterrupted full operator control of the relevant hydraulic valve. Scaling factors between 0% and 100% signify a "caution" condition in which operator selected hydraulic fluid flow to the relevant hydraulic valve is proportionately reduced so as to preferably reduce motion of the bucket 108. Although all embodiments described herein are directed toward reducing or ceasing motion of the bucket 108, it is envisioned that the present invention may be directed toward ceasing or reducing the motion of the bucket 25 108, the boom 110, or both.

As should be apparent to those of ordinary skill in the art, the aforementioned scale factors are customized to correspond to the actual physical boundary represented by the missing rack or dump stops 124,129,134. As should be apparent by those of ordinary skill in such art, the scaling factors represent a pre-determined boundary condition which either reduces, shuts off, or allows for uninterrupted

10

20

flow to the relevant cylinder or cylinders 111,116. In so doing, potential damage to the bucket 108, the boom 110, or both can be avoided.

Figs. 3 and 4 show, respectively, one embodiment each of look-up tables comprising a rack gain table 300 and a dump gain table 400. The rack and dump gain tables 300,400 represent threedimensional look-up tables that stores a plurality of scaling values that correspond to the position of the lift and the tilt cylinders 111,116 as the bucket 108 is being, respectively, racked back in a carrying mode and rotated in a dumping mode. With reference to both Figures, the aforementioned "safe" condition is represented by the areas 301,401 and corresponds to a scaling factor of 100% (uninterrupted hydraulic fluid 15 flow). Areas designated as 304,404 represent the aforementioned "danger" condition which triggers a scaling factor of 0% (stopped movement of, for example, the bucket 108). Those areas designated as 305,405 represent the aforementioned "caution" condition in which the operator selected fluid flow is reduced in proportion to the magnitude of the scaling factor (between 0-100%). Although a scaling value is described, a limiting value can equally be used as 25 would be apparent to one skilled in the art.

embodiment 500 of the present invention will now be described. As shown, first and second joysticks 501,502 provide operator control over the work implement 105. The joysticks 501,502 include a control lever 505 that has movement along a single axis. However, in addition to movement along a first axis (horizontal), the control lever 505 may also move

With reference to Fig. 5, another

10

20

signal.

along a second axis which is perpendicular to the horizontal axis. The first joystick 501 controls the lifting operation of the boom 110. The second joystick 502 controls the tilting operation of the bucket 108.

A joystick position sensor 506 senses the position of the joystick control lever 505 and responsively generates an electrical operator command signal. The electrical signal is delivered to an input of the controller 201. The joystick position sensor 506 preferably includes a rotary potentiometer which produces a pulse width modulated signal in response to the pivotal position of the control lever; however, any sensor that is capable of producing an 15 electrical signal in response to the pivotal position of the control lever would be operable with the instant invention.

The controller 201 receives the implement position signals and operator command signals, modifies the operator command signal by multiplying the aforementioned scaling factor by the magnitude of the operator command signal, and produces an electrical valve signal having a magnitude that is responsive to the modified operator command signal. The valve assembly 208 receives the electrical valve signal, and controllably provides hydraulic fluid flow to the respective hydraulic cylinder in response to a magnitude of the electrical valve signal. The magnitude of the electrical valve signal, in turn, is determined by multiplying the aforementioned scaling factor by the magnitude of the operator command

25

30

Thus, while the present invention has been particularly shown and described with reference to the preferred embodiment above, it will be understood by those skilled in the art that various additional

embodiments may be contemplated without departing from the spirit and scope of the present invention.

Industrial Applicability

Earth working machines such as wheel type

loaders and excavators include work implements capable
of being moved through a number of positions during a
work cycle. The typical work cycle includes
positioning the boom and bucket in a digging position
for filling the bucket with material, a dumping

position where the boom is raised and the bucket is
tilted forward for removing material from the bucket,
and a carrying position where the boom is being
lowered and the bucket is tilted back in a racked
position.

The present invention provides a method and apparatus for automatically limiting the velocity of the bucket 108 as the bucket 108 approaches an orientation with respect to the boom 110 in which the bucket 108 or linkages 120,123 should had encountered a physical boundary associated with a missing rack or dump stop 124,128,129,133,134,. Upon encountering the aforementioned boundary, the bucket 108 is directed to stop moving, thereby preventing potential damage which may be caused by the bucket 108 "slamming" into the boom 110.

It should be understood that while the function of the preferred embodiment is described in connection with the boom and associated hydraulic

circuits, the present invention is readily adaptable to control the position of implements for other types of earth working machines. For example, the present invention could be employed to control implements on hydraulic excavators, backhoes, and similar machines having hydraulically operated implements.

Other aspects, objects and advantages of the present invention can be obtained from a study of the drawings, the disclosure and the appended claims.

20

25

Claims

What is claimed is:

tilt cylinder, comprising:

1. An apparatus for controllably

5 positioning a work implement of an earth moving
machine, the work implement including a boom, with
attachable rack and dump stops each having a physical
boundary, and an attachment being attached thereto,
where the boom is actuated by a hydraulic lift

10 cylinder and the attachment is actuated by a hydraulic

implement position sensors that sense the elevational position of the boom and the pivotal position of the attachment and responsively produce respective implement position signals;

a controller that receives the implement position signals, compares the relative position of the boom and the attachment with a pre-determined boundary condition, and produces an electrical valve signal; and

a valve assembly that receives said electrical valve signal and controllably provides hydraulic fluid flow to at least one hydraulic cylinder in response to a magnitude of said electrical valve signal.

 The apparatus according to claim 1, including at least one look-up table including a plurality of implement position values corresponding to a plurality of scaling values.

o to a plaining of

15

3. A method for controllably positioning a work implement of an earth moving machine, the work implement including a boom and an attachment being attached thereto, the work implement including a hydraulic lift cylinder for lifting and lowering the boom and a hydraulic tilt cylinder for dumping and racking the attachment, comprising the steps of:

sensing the positions of the lift and tilt cylinders and producing respective implement position signals;

receiving the implement position signals and producing an electrical valve signal based on a relative position of the boom and the attachment;

comparing the relative positions of the boom and the attachment with a pre-determined boundary position; and

receiving the electrical valve signal and controllably providing hydraulic fluid flow to at least one hydraulic cylinder in response to the relative positions of the boom and attachment in comparison with the pre-determined boundary position.

4. The method of claim 12, including the 25 steps of storing a look-up table that stores a plurality of scaling values that correspond to the position of the lift and the tilt cylinders.

10

20

Abstract of the Disclosure

METHOD AND APPARATUS FOR CONTROLLING POSITIONING OF AN IMPLEMENT OF A WORK MACHINE

An apparatus for controllably positioning a work implement of an earth moving machine is disclosed. The work implement includes a boom and an attachment being attached thereto where the boom is actuated by a hydraulic lift cylinder and the attachment is actuated by a hydraulic tilt cylinder. Implement position sensors sense the elevational position of the boom and the pivotal position of the attachment and responsively produce respective 15 implement position signals. A controller that receives the implement position signals, compares the relative position of the boom and the attachment with a pre-determined boundary condition, and produces an electrical valve signal. A valve assembly receives the electrical valve signal and controllably provides hydraulic fluid flow to the respective hydraulic cylinders in response to a magnitude of the electrical valve signal.

LIST OF ELEMENTS

TITLE: <u>METHOD AND APPARATUS FOR CONTROLLING</u> 5 POSITIONING OF AN IMPLEMENT OF A WORK MACHINE

FILE: 99-639

100. forward portion

10 101.

102

103

104 work machine

105 work implement

15 106

107

108 bucket

109

110 boom

20 111 lift cylinder

112 boom pivot pin

113

114

115 pivot pin

116 tilt cylinder

117

118

119 tilt pivot pin

120 boom links

30 121

122

123 implement links

124 rack stops (boom boss)

```
125 boom boss
     126
     127
     128 engagement structure
    129 rack stops (boom)
    130
     131
     132 upper surface
    133 engagement structure
10 134 dump stop
    135 under surface
    136
    200 implement control system
    201 controller
15
    202
    203
    204 implement position sensor
    205 implement position sensor
    206
20
    207
    208 valve assembly
    209
    210
    211
25
   212 main pump
    213
    214
    215 pilot pump
    216
   217 on/off solenoid and pressure relief valves
30
    300 rack gain table
    301 safe area.
    302
```

304 danger area

305 caution area

400 dump gain table

5 401 safe area

402

403

404 danger area

405 caution area

10 500 embodiment 2

501 joystick

502 joystick

503

504

15 505 control lever

506 position sensor

507

508

20

25

30

35

:

DECLARATION AND POWER OF ATTORNEY

#2

We, Hans P. Dietz and Thomas G. Skinner, declare that we are citizens of the United States of America, residing respectively at Naperville, Illinois and Aurora, Illinois, and that we believe we are the original, first, and joint inventors of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD AND APPARATUS FOR CONTROLLING POSITIONING OF AN IMPLEMENT OF A WORK MACHINE.

the specification of which is attached hereto.

We hereby state that we have reviewed and understand the contents of the above identified specification, including the claims.

We acknowledge the duty to disclose to the Patent and Trademark Office all information known to be material to patentability as defined in §1.56. We further declare that no application for patent or inventor's certificate on this invention has been filed in any country foreign to the United States of America prior to this application by us or our legal representatives or assigns.

We hereby appoint James R. Smith, Patent Office Reg. No. 41,318, telephone (309) 636-1569, Joseph W. Keen, Patent Office Reg. No. 28,432, telephone (309) 675-5753, Robert J. Hampsch, Patent Office Reg. No. 36,155, telephone (309) 675-5744, and R. Carl Wilbur, Patent Office Reg. No. 36,056, telephone (309) 675-5847, our attorneys and/or agents, with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected with this application. Please address all correspondence to: James R. Smith, Caterpillar Inc., Intellectual Property Department, AB6490, 100 N.E. Adams Street, Peoria, Illinois 61629-6490.

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

HANS P. DIETZ

7/14/6)

Post Office Address: 516 Staunton Road

Naperville, Illinois 60565-2609

THOMAS G. SKINNER Post Office Address:

3235 Gresham Lane East Aurora, Illinois 60504-7284 Date