Final Monthly Forecast: April

By: Deepak Vanjani

April Forecast

- Unemployment Rate: 3.79%
- Nonfarm Payrolls Employment Growth: <u>170K</u>

Method: Equal-Weighted Average of the Most Reliable Models

 Explored baseline methods, determined which methods were the most reliable using RMSE & diagnostics, checked expert forecasts, and averaged forecasts

Reasons:

- Minimizes risk
- Reduces chance of over fitting, since the procedure isn't dependent on data
- If forecasts have low bias, the increase in precision improves square loss risk
- If all methods are performing similarly, it allows all methods to contribute to the forecast

Previous Forecasts

Month	Actual	UNRATE Forecast	Method
January	4.0%	3.7%	Expert
February	3.8%	3.95%	Equal-weighted Average (Less Selective)
March	3.8%	3.8%	Equal-weighted Average (More Selective)

Month	Actual	PAYEMS Forecast	Method
January	304K	170K	Expert
February	20K	200K	Equal-weighted Average (Less Selective)
March	196K	155K	Equal-weighted Average (More Selective)

Baseline Methods Explored

- AR(1-5) by ERM with respect to square loss
- VAR(1-5) by minimizing additive square loss
- VAR(5) by Penalized ERM: 4 different penalties
- Bayesian: AR(6) with Laplace priors, mean = 0, default scale set by stan_glm
- Machine Learning Methods: Tree, Random Forrest, Boosting

AR(1-5) by ERM with respect to Square Loss – *Unrate*

AR(1-5) by ERM with respect to Square Loss – *Payems*

AR(1-5) by ERM with respect to Square Loss

Unrate

Method	AR(1)	AR(2)	AR(3)	AR(4)	AR(5)
RMSE	0.208	0.207	0.199	0.196	0.195
AIC	-243.67	-253.53	-318.02	-343.01	-347.54

Payems

Method	AR(1)	AR(2)	AR(3)	AR(4)	AR(5)
RMSE	198.1784	181.5567	177.6057	176.6125	175.7327
AIC	12910.92	12744.72	12704.52	12695.78	12688.22

VAR(1 – 5) by minimizing additive square loss

 Created Vector Autoregressions jointly in unrate, payems, NASDAQ prices, US Retail Gas Prices, CPI, and effective Federal Funds Rate

VAR(1-5) by minimizing additive square loss – *Unrate*

VAR(1-5) by minimizing additive square loss – *Payems*

Forecasts for Changes in Nonfarm Payroll Employment Change in Employment (100's of thousands of persons) 500 Series and Forecasts Observed VAR(1)VAR(2)VAR(3)VAR(4)VAR(5) 500 2010 2015 2005 2020

Date

VAR(1-5) by minimizing additive square loss

Method	VAR(1)	VAR(2)	VAR(3)	VAR(4)	VAR(5)
AIC	5062.369	4950.203	4925.694	4906.418	4863.024
BIC	5205.281	5215.259	5312.568	5414.778	5492.54

Bayesian: AR(6) with Laplace priors - *Unrate*

Bayesian: AR(6) with Laplace priors - Payems

Bayesian: AR(6) with Laplace priors

Unrate

Diagnostics:			
	mcse	Rhat	n_eff
(Intercept)	0.00040	0.99936	4127
unratel1	0.00056	0.99996	3883
unratel2	0.00079	0.99957	3800
unratel3	0.00084	1.00095	3444
unratel4	0.00091	1.00034	2840
unratel5	0.00080	0.99974	3596
unratel6	0.00052	0.99928	4173
sigma	0.00009	1.00000	2675
mean_PPD	0.00015	1.00006	3710
log-posterior	0.20291	1.01494	397

Payems

Diagnostics:			
	mcse	Rhat	n_eff
(Intercept)	0.11922	0.99979	3369
payemsl1	0.00048	1.00010	4417
payems12	0.00052	0.99930	4146
payems13	0.00055	0.99985	3916
payemsl4	0.00054	1.00065	4166
payems15	0.00049	0.99969	4592
payems16	0.00051	0.99955	4162
sigma	0.07774	1.00174	2818
mean_PPD	0.14066	0.99996	3178
log-posterior	0.17968	1.00380	482

ML Methods: Tree, Random Forrest, Boost

- Created dataset with 11 predictors:
 - lagged values for unrate/payems (lag1 ... lag6)
 - lag1 values for payems/unrate, NASDAQ prices,
 US Retail Gas Prices, CPI, and effective Federal
 Funds Rate

ML Methods: Tree, Random Forrest, Boost - *Unrate*

ML Methods: Tree, Random Forrest, Boost - *Payems*

Forecast for Changes in Nonfarm Payroll Employment

ML Methods: Tree, Random Forrest, Boost

Unrate

Method	Tree	Random Forrest	Boosting
Test RMSE	0.503	0.270	0.222
Train RMSE	0.553	0.241	0.154

Payems

Method	Tree	Random Forrest	Boosting
Test RMSE	150.650	121.062	137.800
Train RMSE	158.877	119.688	82.916

Equal-Weighted Averaging for UNRATE

	Forecast	25%	95%
AR(1)	3.79	3.38	4.20
AR(2)	3.79	3.38	4.20
AR(3)	3.74	3.34	4.13
AR(4)	3.76	3.37	4.14
AR(5)	3.78	3.39	4.16
VAR(1)	3.78	3.52	4.04
VAR(2)	3.81	3.56	4.06
VAR(3)	3.77	3.52	4.02
VAR(4)	3.76	3.51	4.01
VAR(5)	3.73	3.48	3.97
Bayesian AR(6) w/ Laplace	3.88	3.50	4.25
Tree	4.52		
Random Forrest	3.86		
Boost	3.85		

AVERAGE

3.79%

Equal-Weighted Averaging for <u>PAYEMS</u>

	Forecast	25%	95%
AR(1)	124.85	-263.76	513.48
AR(2)	88.02	-268.18	444.24
AR(3)	133.81	-214.82	482.45
AR(4)	142.49	-204.38	489.36
AR(5)	144.12	-201.20	489.45
VAR(1)	170.51	-84.40	425.43
VAR(2)	101.02	-135.49	337.54
VAR(3)	133.24	-99.33	365.81
VAR(4)	152.97	-78.346	384.29
VAR(5)	114.50	-114.67	343.68
Bayesian AR(6) w/ Laplace	194.10	-154.92	540.12
Tree	146.75		
Random Forrest	213.27		
Boost	246.33		

AVERAGE

170K