位相空間と分離公理

宇田津 孝介

JAIST

November 20, 2022

今回の発表について

- 今回の発表の目標
 - 近傍意味論に必要な知識の準備
 - 位相空間という数学の基礎知識への理解・整理
- 近傍意味論とは?
 - 様相論理の Kripke モデルの到達可能関係を一般化したもの.
 - 非正規様相論理 (non-normal modal loic) の充足可能性問題が決定可能になる.
 - 正規な様相論理とは、LK に加えて $\frac{\varphi \vdash \psi}{\Box \varphi \vdash \Box \psi}$ を推論規則として含むような様相論理.
 - 正規な様相論理に付け加わる代表的な公理型は D.T.B.4.5
 - 正規な様相論理には K, KD, KT, K4, KB, K5, ..., S4(=KT4), S5(=KT5) などがある.
 - S1, S2, S3 は non-normal.
 - 信念の論理やゲーム理論などに応用されている.

位相空間とは

Definition (位相)

集合 X の部分集合族 $T \subseteq \mathcal{P}(X)$ が次の 3 条件を満たすとき, T を**位相**または**位相構造**という.

- $X \in \mathcal{T}, \varnothing \in \mathcal{T}$
- Tの任意の有限個の共通部分はまたTに属する.
- 任意の任意個の $S \in T$ に対して, $\bigcup S \in T$.

Definition (位相空間)

位相 T が 1 つ定められた集合 X を**位相空間**とよび, (X,T) と表す. このとき, X の要素を (X,T) の点とよび, T の要素を位相空間 (X,T) の**開集合**とよぶ.

位相空間の例

このスライドでは、なるべく位相構造をハッセ図で表す。 $X = \{a, b, c\}$ に以下のような構造を与えると X は位相空間となる.

- 点は a, b, c
- 開集合は, Ø, {a}, {b}, {a, b}, {a, b, c}

開集合と閉集合

Definition (閉集合)

位相空間 X の任意の部分集合 A に対し, X - A が X の開集合のとき, A は X の**閉集** 合であるという.

Xの位相構造

X,∅ は常に開集合かつ閉集合.

Xの閉集合の包含関係

距離空間の開区間と閉区間

- ℝについて考える.
 - 開区間 (端点を含まない区間) は位相空間の開集合.
 - 閉区間 (端点を含む区間) は位相空間の閉集合.
 - 開集合かつ閉集合となる区間: \emptyset , (1,1), $\{x \mid 1 \le x \le -1\}$...
- 1点集合は閉区間であるが、開区間ではない、
 - 任意の $\varepsilon > 0$ に対して, $(x \varepsilon, x + \varepsilon)$ としても, $\frac{x+\varepsilon}{2} \in (x \varepsilon, x + \varepsilon)$ なので, 1 点集 合にならない.
- \bullet $(-\infty,\infty)$ は開区間であり、閉区間でもある.

位相の定義に関する疑問点, 理解

- なぜ, 共通部分は有限個でなければならないのか?
 - 開集合でないものが含まれてしまうから.
- 現状の理解
 - 距離空間は位相空間である.
 - 開集合の無限個の共通部分で1点のみからなる集合ができる.
 - 1点集合は開集合ではない.

近傍

Definition

位相空間 X の点 x に対し, $x \in U$ を満たす X の開集合 U を (X における)x の**近傍**という

- aの近傍は、{a}、{a,b}、{a,b,c}.
- bの近傍は, {b}, {a, b}, {a, b, c}.
- c の近傍は, {a, b, c}.

内部. 閉包

Definition

 $U \subseteq A$ を満たすx の近傍 U が存在するとき, x は X における A の内点であるといい, X における A の内点全体の集合を X における A の内部であるという.

- Xにおける Aの内部を Intx(A) と表すと、
 - $Int_X(A) = \{x \mid \exists O \in \mathcal{T}(x \in O \land O \subseteq A)\}.$
 - $Int_X(A) = \bigcup \{O \mid O \in \mathcal{T} \text{ and } O \subseteq A\}.$

Definition

x の任意の近傍 U に対して, $U \cap A \neq \emptyset$ が成り立つとき, x は X における A の触点であるといい, X における A の触点全体の集合を X における A の閉包であるという.

- X における A の閉包を Cl_X(A) と表すと,
 - $Cl_X(A) = \{x \mid \forall O \in \mathcal{T}(x \in O \to O \cap A \neq \varnothing)\}.$
 - $Cl_X(A) = \bigcap \{C \mid X C \in \mathcal{T} \text{ and } A \subseteq C\}.$

分離公理

- 分離公理とは何か?
 - 開集合同士、閉集合同士、開集合と閉集合で分離できるかどうかの公理、
- ・ 次のスライドから、下の図のように黒い点を点、円を開集合、黒い四角形を閉集合として各公理のイメージを表す。

コルモゴロフ空間 (T_0 空間)

Definition (コルモゴロフ空間 (To 空間))

位相空間 X の相異なる任意の 2 点 x,y に対して, $x \in U \land y \notin U$ または $x \notin U \land y \in U$ を満たす開近傍 U が存在するならば,位相空間 X は**コルモゴロフ空**間または T_0 空間であるという.

フレシェ空間 (T_1 空間)

Definition (フレシェ空間 (T₁空間))

位相空間 X の相異なる任意の二点 x,y に対して, $y \notin U(x)$ かつ $x \notin U(y)$ を満たす 開近傍 U(x), U(y) が存在するならば,位相空間 X は**フレシェ空間**または T_1 **空間**であるという.

- 以下の位相構造を持つ (\mathbb{R}, T) はフレシェ空間である.
 - \bullet $\mathbb{R}, \varnothing \in \mathcal{T}$.
 - $\forall x \in \mathbb{R}(\mathbb{R} \{x\} \in \mathcal{T}).$
 - 有限個の共通部分に関して閉じている. O_1 , $O_2 \in \mathcal{T}$ ならば, $O_1 \cap O_2 \in \mathcal{T}$.
- ℝ は稠密であるので, ℝ {x} は開集合.
- $a \neq b$ ならば $(\mathbb{R} \{a\}) \cup (\mathbb{R} \{b\}) = \mathbb{R}$.

ハウスドルフ空間 (T_2 空間)

Definition (ハウスドルフ空間 (T₂空間))

位相空間 X の任意の異なる $2 \le x, y \in X$ に対して, $U \cap V = \emptyset$ を満たす x の近傍 U と y の近傍 V が存在するとき, X を**ハウスドルフ空間**または T_2 **空間**という.

Theorem

Xが有限集合となるフレシェ空間はハウスドルフ空間である.

証明の流れ

- 証明の方針
 - X が有限な T₁ 空間であると仮定.
 - Xが T₂空間でないと仮定.
 - 帰納法でXの元が無限個必要なことを示す.
 - 背理法より, X は T₂ 空間である.
 - 帰納法の方針
 - フレシェ性より, 新たな開近傍を二つ用意する.
 - 位相の定義より,有限個の共通部分を与える.
 - ハウスドルフ性の否定より,新たな元をもってくる。

 $U_0(a)$ $U_0(b)$

 $z_0 \in U_0 = U_0(a) \cap U_0(b)$

$$z_0 \notin U_1(a)$$
 $z_0 \notin U_1(b)$ $z_0 \notin U_1'(a) = U_0(a) \cap U_1(a)$ $z_0 \notin U_1'(b) = U_0(b) \cap U_1(b)$ $z_1 \in U_1 = U_1'(a) \cap U_1'(b)$

帰納法の流れ

- 帰納法の方針
 - フレシェ性より、新たな開近傍を二つ用意する.
 - 位相の定義より、有限個の共通部分を与える.
 - ハウスドルフ性の否定より,新たな元をもってくる。
 - (帰納法の仮定) $z_0, ..., z_{n-2}$ とは異なる点 z_{n-1} を含まない $a \ge b$ の近傍が存在する.
 - n 個の異なる点 $z_0, ..., z_{n-1}$ を含まない $a \ge b$ の近傍が存在する.
 - ハウスドルフ性を否定しているので, n 個の点と異なる点 z_n が存在する.

$$z_{n-1} \notin U_n(a)$$
 $z_{n-1} \notin U_n(b)$ $z_{0},...,z_{n-1} \notin U'_n(a) = U'_{n-1}(a) \cap U_n(a)$ $z_{0},...,z_{n-1} \notin U'_n(b) = U'_{n-1}(b) \cap U_n(b)$ $z_{0},...,z_{n-1} \notin U'_n(b) = U'_n(b) \cap U_n(b)$

正則空間 $(T_3$ 空間)

Definition (正則空間 (T3 空間))

位相空間 X がフレシェ空間であり, さらに X 上の任意の点 x と, x を含まない閉集合 F に対して, 二つの開集合 U, V で $x \in U, F \subseteq V$ かつ $U \cap V = \emptyset$ となるものが存在 するとき, 位相空間 X は**正則空間**または T_3 **空間**という.

正規空間(T4空間)

Definition (正規空間 (T4 空間))

位相空間 X がフレシェ空間であり、さらに X の任意の互いに交わらない二つの閉集合 F_1, F_2 に対して、開集合 U, V で $F_1 \subseteq U, F_2 \subseteq V$ かつ $U \cap V = \emptyset$ となるものが存在するとき、位相空間 X を正規空間または T_4 空間という.

無限集合で考えた方が面白いかも?

よくある可能世界の集合は有限集合だけれども...

Theorem

有限集合となるハウスドルフ空間は正規空間である. $(T = \mathcal{P}(X))$ となる.)

- 証明の流れ
 - x の近傍 U_x に対して, $x \neq z, z \in U_x$ となる z を任意にとる.
 - ハウスドルフ性より, $z \notin V_x$ となる x の近傍 V_x が存在する.
 - 位相の定義より, x の近傍 $U_x \cap V_x$ が存在する. $(z \notin U_x \cap V_x)$
 - 上記を繰り返して, x しか含まない1点集合が近傍となることを示す.
 - 和集合について閉じているので、位相はべき集合となる、
 - べき集合を位相とする空間は正規空間である.
- 有限個の点からなる位相空間はコンパクト空間.
- 一般に, コンパクトなハウスドルフ空間は正規空間である.