#### APRENDIZADO BAYESIANO

SCC0276 – APRENDIZADO DE MÁQUINA

PROFA. Roseli Ap. Francelin Romero

# Fórmulas Básicas para Probabilidades

Regra Produto: probabilidade  $P(A \land B)$  de uma conjunção de dois eventos  $A \in B$ :

$$P(A \land B) = P(A \mid B) P(B) = P(B \mid A) P(A)$$

Regra Soma: probabilidade  $P(A \lor B)$  de uma união de dois eventos  $A \in B$ :

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Teorema da probabilidade total: se eventos  $A_1, \ldots, A_n$  são mutualmente exclusivos com  $\sum_{i=1}^n P(A_i) = 1$ , então:

$$P(B) = \sum_{i=1}^{n} P(B \mid A_i) P(A_i)$$

## Aprendizado Bayesiano

**CLASSIFICADORES BAYESIANO** 

Aprendizado
Supervisionado
de
Classificadores
Bayesiano

Aprendizado
Não Supervisionado
de
Classificadores
Bayesiano

# Classificação de Padrões

- Suponha que você está para testemunhar um evento.
- O evento pertencerá à:
  - classe  $\omega_1$  com probabilidade  $P(\omega_1)$
  - classe  $\omega_2$  com probabilidade  $P(\omega_2)$
  - classe  $\omega_n$  com probabilidade  $P(\omega_n)$
- Suponha que você deve prever a classe
- Você paga R\$ 1,00 se você estiver errado
- Você não paga nada se estiver certo.

#### Questões:

- Qual deve ser sua estratégia ótima?
- Qual será o seu custo esperado?

#### Considerando dados observados

Suponha que se deseja construir um SISTEMA AUTOMÁTICO para apanhar *batatas*. Toda vez que um objeto toca o sensor debaixo do trator ele deve decidir se pertence à:

- $\omega_1$  batata com probabilidade  $P(\omega_1)$
- $\omega_2$  *pedra* com probabilidade  $P(\omega_2)$
- $\omega_3$  terrão com probabilidade  $P(\omega_3)$

Suponha também que o sensor computa o diâmetro x do objeto e que o Instituto de Pesquisa da Batata forneceu as distribuições condicionais de x para cada classe.







### **DECISÃO**

- Conhece-se  $P(\omega_1)$ ,  $P(\omega_2)$ ,  $P(\omega_3)$  mais as distribuições  $P(x/\omega_1)$ ,  $P(x/\omega_2)$ ,  $P(x/\omega_3)$ .
- Observa-se x.
- Qual a classe de objetos escolhida?

#### I - Máxima Probabilidade

- Escolher a classe  $\omega_i$  que maximiza  $P(x/\omega_i)$ .
- Fácil de calcular.
- Qual é a objeção? (pode ocorrer erro! Porque se toma a probabilidade partindo-se de uma certa classe).

## **DECISÃO**

- II Classificador Bayesiano Ótimo
  - O que devemos fazer para minimizar a chance de cometermos um erro?
  - Escolher a classe  $\omega_i$  que tem a maior probabilidade dada x.

Escolha = 
$$\arg_{i} \max P(\omega_{i}/x)$$
.

Bayesiano Ótimo = 
$$\frac{\text{arg}_{i}\text{max }P(x/\omega_{i}).P(\omega_{i})}{\text{arg}_{i}\text{max }P(x/\omega_{i}).P(\omega_{i})}$$

Este é o Classificador Ótimo de Bayes.

#### Batatas Multivariado

Suponha que temos 3 sensores 
$$\begin{cases} x_1 - \text{diâmetro} \\ x_2 - \text{altura} \\ x_3 - \text{massa} \end{cases}$$

e que temos um vetor *x* observado

Bayesiano Ótimo =  $\arg_{i} \max P(x/\omega_{i})$ .  $P(\omega_{i})$ 

#### Hipótese Comum:

Cada  $P(x / \omega_i)$  segue distribuição Gaussiana.

#### Três Casos:

 $P(x/\omega_i)$  - Média  $\mu_i$ , variância  $\sigma^2$ 

 $P(\boldsymbol{x} \mid \omega_i)$  - Média  $\mu_i$ , covariância  $\Sigma$ , arbitrária

 $P(x/\omega_i)$  - Média  $\mu_i$ , covariância  $\Sigma_i$ , diferente para classes diferentes

Caso 1: Todas componentes são independentes  $P(x/\omega_i)$  tem média  $\mu_i$ . Cada componente de x é independente de outras componentes e tem variância  $\sigma^2$ 

$$P(\mathbf{x}/\omega_i) = k \exp \left(\frac{1}{2\sigma^2} \sum_j (\mathbf{x}_j - \mu_{ij})^2\right)$$

Bayesiano Ótimo =  $\arg_{i}\max P(\mathbf{x}/\omega_{i})$ .  $P(\omega_{i}) = \arg_{i}\max\{k \exp(-1\sum_{j}(\mathbf{x}_{j} - \mu_{ij})^{2}) . P(\omega_{i})\} =$ 

= 
$$\underset{2\sigma^2}{\text{arg}_i \text{max}} \frac{1}{2\sigma^2} \sum_{j} (x_j - \mu_{ij})^2 + \log P(\omega_i) =$$

$$= \underset{j}{\operatorname{arg}_{i}\min} \ \frac{\sum_{j} (x_{j} - \mu_{ij})^{2} - 2\sigma^{2} \log P(\omega_{i})}{2\sigma^{2}} =$$

= arg<sub>i</sub>min 
$$\sum_{i} (x_j - \mu_{ij})^2 - 2\sigma^2 \log P(\omega_i)$$

Caso duas classes

= arg<sub>i</sub>min 
$$((\mathbf{x} - \mu_i)^2 - 2\sigma^2 \log P(\omega_i)) =$$

= arg<sub>i</sub>min 
$$(\mathbf{x} \mathbf{x} - 2 \mathbf{x} \mathbf{\mu_i} + \mathbf{\mu_i} \mathbf{\mu_i} - 2\sigma^2 \log P(\omega_i)) =$$

= 
$$\underset{i}{\operatorname{arg}_{i}}\min \left(-2 \underset{i}{x} \mu_{i} + c_{i}\right)$$

Se - 
$$2 \times \mu_1 + c_1 < -2 \times \mu_2 + c_2 \rightarrow Escolha \omega_1 \Leftrightarrow$$

- $\Leftrightarrow$  Se  $c_1 c_2 < 2 (\mu_1 \mu_2) x \rightarrow Escolha \omega_1$
- ⇔ A regra de decisão é:
- "Se  $\omega x > threshold$ " onde  $\omega = 2 (\mu_1 \mu_2)$ e  $threshold = c_1 - c_2$
- Portanto a decisão ótima é de um CLASSIFICADOR LINEAR! Perceptrons são corretos!
- OBS.: A regra do Perceptron pode ser obtida do classificador ótimo de Bayes.

# Hipótese mais fraca

Agora,  $P(\underline{x}/\omega_i)$  gaussiana, média  $\mu_i$  e covariância arbitrária  $\Sigma$ . Temos que a mesma regra ocorre, mas numa medida de distancia diferente:

Dist 
$$(\underline{x}, \underline{\mu}_i) = (\underline{x} - \underline{\mu}_i)^T \sum_{\stackrel{\sim}{=}} (\underline{x} - \underline{\mu}_i)$$

Se todos os  $P(\omega_i)_S$  são iguais  $\Rightarrow$  método do vizinho mais próximo (KNN)

Ainda usa regiões de decisão linear.

# Hipótese ainda mais fraca

 $P(x/\omega_i)$  gaussiana, média  $\mu_i$  e covariância  $\Sigma_i \rightarrow$  para diferentes classes a variância pode ser diferente.

Ainda é fácil calcular a decisão ótima

$$\underset{\sim}{\operatorname{arg_{i}max}}(P(\omega_{i}/x))$$

mas as regiões de decisão não são mais lineares.

#### Classificação de Padroes

Suponha agora que voce nao conhece

$$P(w_1) \ P(w_2) \dots P(w_N)$$
,  $\mu_1$ ,  $\mu_2$  ...  $\mu_N$ 

Mas, voce deseja estimar estes parametros dos dados.

$$x_1^{(1)} x_2^{(1)} ... x_N^{(1)}$$
 Classe  $w_1$   
 $x_1^{(2)} x_2^{(2)} ... x_N^{(2)}$  Classe  $w_2$ 

 $\mathbf{x_1}^{(M)} \ \mathbf{x_2}^{(M)} \ \dots \ \mathbf{x^{(M)}}_{N}$  Classe  $\mathbf{w_N}$ 

#### Classificação de Padroes

Estimar  $P(w_i) = \underline{\text{numero de dados da classe } w_i}$ numero total de dados

Estima a media  $\mu_i$  = media de todos os pontos da classe  $w_i$ 

## Métodos de Aprendizado Bayesiano

- Calculam explicitamente probabilidades para hipóteses (Naïve Bayes Classificador).
- Mitchie et al. (1994) comparou o classificador Naïve Bayes com RN e DT.

Eles fornecem uma perspectiva útil para compreensão dos algoritmos de aprendizado que não explicitamente manipulam probabilidades.

# Características dos Métodos de Aprendizado Bayesiano

- Cada exemplo observado pode incrementalmente diminuir ou aumentar a probabilidade estimada que uma hipótese está correta.
- Conhecimento "priori" pode ser combinado com o dado observado para determinar a probabilidade final de uma hipótese. Em Aprendizado Bayesiano, conhecimento a prior, pode ser fornecido:
  - Dando uma probabilidade "a priori" para cada hipótese candidata.
  - Distribuição de probabilidade sobre os dados para cada hipótese possível.

# Características dos Métodos de Aprendizado Bayesiano

- Métodos Bayesiano podem acomodar hipóteses que contém previsões probabilísticas, tais como:
- "este paciente, com pneumonia, tem 93% de chance de cura".
- Novas instâncias podem ser classificadas combinando as previsões de múltiplas hipóteses, ponderadas por "suas probabilidades".

Em métodos computacionais igualmente intratáveis, eles podem fornecer um padrão de tomada de decisão ótima.

# Características dos Métodos de Aprendizado Bayesiano

#### ■ Dificuldade 1:

Requerem o conhecimento de muitas probabilidades. Quando estas probabilidades não são conhecidas "a priori" elas são estimadas baseadas no: conhecimento do problema, dados previamente disponíveis e hipóteses sobre a forma da distribuição fundamental dos dados.

#### ■ Dificuldade 2:

Custo computacional requerido pode ser reduzido significantemente.

#### TEOREMA DE BAYES

Em problemas de ML estamos interessados em P(h|D): probabilidade a posteriori, probabilidade vale h dado o conjunto de treinamento observado D.

Teorema de Bayes:  $P(h|D) = \frac{P(D|h) P(h)}{P(D)}$ 

Em muitos casos o aprendiz considera algum conjunto de hipóteses candidatas  $\mathbf{H}$  e está interessado em encontrar a hipótese mais provável  $\mathbf{h} \in \mathbf{H}$  dado o conjunto de dados observado  $\mathbf{D}$  ( ou no mínimo a hipótese mais provável, se existirem várias).

#### TEOREMA DE BAYES

Tal hipótese é chamada uma Maximum A Posteriori (MAP) hipótese.

$$\begin{aligned} h_{MAP} &= arg_{h \in H} max \ P(h|D) = \\ &= arg_{h \in H} max \ \underline{P(D|h) \ P(h)} = \underbrace{ \ \acute{E} \ independente \ de \ h} \\ &\underline{P(D)} \end{aligned}$$

 $= arg_{h \in H} max P(D|h) P(h)$ 

Em alguns casos, assumiremos que toda hipótese em **H** é igualmente provável, isto é:

 $P(h_i) = P(h_j)$  para todos  $h_i$  e  $h_j$  em H então a equação anterior fica:

#### TEOREMA DE BAYES

 $h_{ML} = arg_{h \in H} max P(D|h)$ 

Maximum likelihood (Probabilidade Maxima)

#### No enfoque de ML

D - exemplos de treinamento de alguma função alvo.

H - como o espaço das funções alvo candidatas.

#### **EXEMPLO**

Paciente tem câncer ou não?

 $h_{MAP} = \neg c \hat{a} n c e r$ 

Um paciente faz um teste de laboratório e o resultado volta positivo. O teste devolve um resultado positivo correto em só 98% dos casos nos quais a doença está realmente presente, e um resultado negativo correto em 97% dos casos nos quais a doença não está presente. Além disso, 0.008 da população inteira tem este câncer.

$$\begin{split} & P(\text{câncer}) = 0.008 & P(\neg \text{câncer}) = 0.992 \\ & P(+|\text{câncer}) = 0.98 & P(-|\text{câncer}) = 0.02 \\ & P(+|\neg \text{câncer}) = 0.03 & P(-|\neg \text{câncer}) = 0.97 \\ & P(+|\text{câncer}) \cdot P(\text{câncer}) = (\ 0.98\ ) \cdot (\ 0.008\ ) = 0.0078 \end{split}$$

 $P(+|\neg cancer) \cdot P(\neg cancer) = (0.03) \cdot (0.992) = 0.0298$ 

# Classificação mais Provável de Novas Instâncias

- Até agora nós buscamos a mais provável hipótese dado o conjunto  $\bf D$  (i.e.  ${\bf h_{MAP}}$ )
- Dado nova instância **x**,qual é a sua classificação mais provável?
  - $\mathbf{h}_{\mathbf{MAP}}(\mathbf{x})$  não é a classificação mais provável.

#### Considere por exemplo:

- três hipóteses:  $P(h_1|D)=0.4$ ,  $P(h_2|D)=0.3$ ,  $P(h_3|D)=0.3$
- Dado a nova instância x :  $h_1(x) = +, h_2(x) = -, h_3(x) = -$
- Qual é a mais provável classificação de x?
  - $\mathbf{p}_{+}(\mathbf{x}) = \mathbf{0.4}$ ,  $\mathbf{p}_{-}(\mathbf{x}) = \mathbf{0.6}$ , portanto é mais provável que  $\mathbf{x}$  seja -

Neste caso, é diferente da classificação gerada pela  $\mathbf{h}_{\mathbf{MAP}}$ 

# Classificador Bayesiano Ótimo

$$\arg_{\mathbf{v_j} \in \mathbf{V}} \max \sum_{\mathbf{h_i} \in \mathbf{H}} \mathbf{P}(\mathbf{v_j} / \mathbf{h_i}) \cdot \mathbf{P}(\mathbf{h_i} / D)$$

#### **EXEMPLO:**

EXEMPLO: 
$$P(h_1/D) = 0.4, \qquad P(-/h_1) = 0, \qquad P(+/h_1) = 1, \\ P(h_2/D) = 0.3, \qquad P(-/h_2) = 1, \qquad P(+/h_2) = 0, \\ P(h_3/D) = 0.3, \qquad P(-/h_3) = 1, \qquad P(+/h_3) = 0, \\ Portanto, \qquad \sum_{h_i \in H} P(+/h_i) \cdot P(h_i/D) = 0.4 \\ \sum P(-/h_i) \cdot P(h_i/D) = 0.6$$

Portanto,  $\arg_{\mathbf{v_j} \in \mathbf{V}} \max \sum_{\mathbf{h_i} \in \mathbf{H}} \mathbf{P}(\mathbf{v_j} / \mathbf{h_i}) \cdot \mathbf{P}(\mathbf{h_i} / D) = -$ 

# Aprendizado de uma Função Real



Considere exemplos de treinamento  $\langle x_i, d_i \rangle$ , onde  $d_i$  é o ruído dado por:

$$\mathbf{d_i} = \mathbf{f}(\mathbf{x_i}) + \mathbf{e_i}$$

onde e<sub>i</sub> é uma variável aleatória, independente para

# Aprendizado de uma Função Real

Cada  $x_i$  de acordo com alguma distribuição Gaussiana com média = 0. Então,

$$\mathbf{h}_{\mathrm{ML}} = \mathbf{arg}_{\mathbf{h} \in \mathbf{H}} \mathbf{min} \sum_{i=1}^{m} (\mathbf{d}_{i} - \mathbf{h}(\mathbf{x}_{i}))^{2}$$

#### Demonstração:

$$\begin{aligned} &h_{ML} = arg_{h \in H} max \ p(D|h) = arg_{h \in H} max \ \overset{m}{\underset{i=1}{\pi}} \ p(d_i \mid h) = \\ &= arg_{h \in H} max \ \overset{m}{\underset{i=1}{\pi}} \ \frac{1}{\sqrt{2\sigma^2}} \ e^{-\frac{1}{2}((d_i - h(x_i))|\sigma)^2} = \end{aligned}$$

Maximizando o logaritmo natural:

$$h_{ML} = arg_{h \in H} max \sum_{i=1}^{m} -1/2((d_i - h(x_i))/\sigma)^2 =$$

## Aprendizado de uma Função Real

$$= \arg_{h \in H} \max \sum_{i=1}^{m} -(d_i - h(x_i))^2 =$$

= 
$$\underset{i=1}{\operatorname{arg}}_{h \in H} \min \sum_{i=1}^{m} (d_i - h(x_i))^2$$

Está entre um dos melhores classificadores (árvores de decisão, NN, KNN)

#### Quando usar:

- Conjunto de treinamento grande.
- Atributos são condicionalmente independentes.

#### Aplicações bem sucedidas:

- Diagnósticos
- Classificação de textos em documentos

Seja:  $f: X \to V$  $x = \langle a_1, a_2, ..., a_n \rangle$ Qual é o mais provável valor de f(x)?  $v_{MAP} = arg_{v_j \in V} max P(v_j | a_1, a_2, \dots, a_n)$   $v_{MAP} = arg_{v_j \in V} max P(a_1, a_2, \dots, a_n | v_j) P(v_j)$  $P(a_1, a_2, ..., a_n)$  $\mathbf{v}_{\text{MAP}} = \mathbf{arg}_{\mathbf{v_i} \in \mathbf{V}} \mathbf{max} \ \mathbf{P}(\mathbf{a_1, a_2, \dots, a_n} | \ \mathbf{v_j}) \ \mathbf{P}(\mathbf{v_j})$ Hipotese de Naïve Bayes:  $P(a_1, a_2, ..., a_n | v_i) = \pi P(a_i | v_i)$  $\mathbf{v_i}$ 

Classificador Bayesiano Naïve:

$$\mathbf{V}_{NB} = \arg_{\mathbf{v_j} \in \mathbf{V}} \max \mathbf{P}(\mathbf{v_j}) \prod_{i} \mathbf{P}(\mathbf{a_i} | \mathbf{v_j})$$

**EXEMPLO:** 

Considere o exemplo "Play Tennis" e a instância:

<Outlook = sunny,Temp=cool,Hum=high,wind=strong>
Queremos:

$$V_{NB} = arg_{v_j \in V} max P(v_j) \pi_i P(a_i | v_j) =$$

- $\Rightarrow$ P(yes) P(sunny|yes) P(cool|yes) P(high|yes) P(strong|yes)= = 0.0053
- $\Rightarrow$ P(no) P(sunny|no) P(cool|no) P(high|no) P(strong|no)= = 0.0206

$$\rightarrow$$
  $V_{NR} = n$ 

**OBS:** Cap.6 - T. Mitchell para ver aplicação de busca de texto em documentos da Web.