

Memory Management – Case Study

Dr Rahul Nagpal

Computer Science

Memory Management – Case Study

Dr. Rahul NagpalComputer Science

Operating System Examples

• H/W Support in Intel Architceture

Windows

Solaris

Example: The Intel IA 32 Architecture

PES UNIVERSITY ONLINE

- Supports both segmentation and segmentation with paging
 - Each segment can be 4 GB
 - Up to 16 K segments per process
 - Divided into two partitions
 - First partition of up to 8 K segments are private to process (kept in local descriptor table (LDT))
 - Second partition of up to 8K segments shared among all processes (kept in global descriptor table (GDT))

Example: The Intel IA 32 Architecture (contd.)

- CPU generates logical address
 - Selector given to segmentation unit
 - Which produces linear addresses

- Linear address given to paging unit
 - Which generates physical address in main memory
 - Paging units form equivalent of MMU
 - Pages sizes can be 4 KB or 4 MB

Logical to Physical Address Translation in IA32

page n	umber	page offset				
p_1	p_2	d				
10	10	12				

Intel IA32 Segmentation

Intel IA32 Paging Architecture

Intel IA32 Page Address Extension

- 32-bit address limits led Intel to create page address extension (PAE), allowing 32-bit apps access to more than 4GB of memory space
 - Paging went to a 3-level scheme
 - Top two bits refer to a page directory pointer table
 - Page-directory and page-table entries moved to 64-bits in size
 - Net effect is increasing address space to 36 bits 64GB of physical memory

Intel X86-64

PES UNIVERSITY ONLINE

- Current generation Intel x86 architecture
- ☐ 64 bits is ginormous (> 16 exabytes)
- ☐ In practice only implement 48 bit addressing
 - Page sizes of 4 KB, 2 MB, 1 GB
 - Four levels of paging hierarchy
- Can also use PAE so virtual addresses are 48 bits and physical addresses are 52 bits

		page ma	p	pag	e directory		page		page			
unused	d	level 4		ро	inter table		directory		table	1	offset	
63	48 4	47	39	38	30	29		21 20		12 11		0

Windows

- Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page
- Processes are assigned working set minimum and working set maximum
- Working set minimum is the minimum number of pages the process is guaranteed to have in memory
- A process may be assigned as many pages up to its working set maximum
- When the amount of free memory in the system falls below a threshold, automatic working set trimming is performed to restore the amount of free memory
- Working set trimming removes pages from processes that have pages in excess of their working set minimum

Solaris

- Maintains a list of free pages to assign faulting processes
- Lotsfree threshold parameter (amount of free memory) to begin paging
- **Desfree** threshold parameter to increasing paging
- Minfree threshold parameter to being swapping
- Paging is performed by pageout process
- Pageout scans pages using modified clock algorithm
- Scanrate is the rate at which pages are scanned. This ranges from slowscan to fastscan
- Pageout is called more frequently depending upon the amount of free memory available
- Priority paging gives priority to process code pages

Solaris 2 Page Scanner

THANK YOU

Dr Rahul Nagpal

Computer Science

rahulnagpal@pes.edu