PROPOSITION 0.0.1

A, Bを圏とする.

函手 $F: A \rightarrow \mathcal{B}$ は圏同値ならば忠実.

Proof. 函手 $F: A \to B$ を圏同値とすると、ある函手 $G: B \to A$ が存在して $G \circ F \cong id_A$ および $F \circ G \cong id_B$ が成り立つ.

 $\alpha: G \circ F \to id_A$ を自然同型とする.

圏 A における射 $f,g:A\to A'$ を任意に取り、F(f)=F(g) が成り立つとする。可換図式

を考えると,

$$f \circ \alpha_{A} = \alpha_{A'} \circ \left((G \circ F)(f) \right) = \alpha_{A'} \circ \left((G \circ F)(g) \right) = g \circ \alpha_{A}$$

が得られる.

今自然変換 α : $G\circ F\to \mathrm{id}_A$ は自然同型だから、射 α_A : $(G\circ F)(A)\to A$ は同型射であり、 $\alpha_A^{-1}\colon A\to (G\circ F)(A)$ が存在する. よって

$$f = \boxed{ f \circ \alpha_A } \circ \alpha_A^{-1} = \boxed{ g \circ \alpha_A } \circ \alpha_A^{-1} = g.$$

PROPOSITION 0.0.2

A, B を圏とする.

函手 $F: A \rightarrow \mathcal{B}$ は圏同値ならば充満.

Proof. 函手 $F: A \to B$ を圏同値とすると、ある函手 $G: B \to A$ が存在して $G \circ F \cong id_A$ および $F \circ G \cong id_B$ が成り立つ、

 $\alpha: G \circ F \to id_A$ を自然同型とする.

圏 A における射 $g:A\to A'$ と圏 B における射 $f:F(A)\to F(A')$ を任意に取る。射 $\alpha_A:(G\circ F)(A)\to A$ および $\alpha_{A'}:(G\circ F)(A')\to A'$ が同型射であることに注意して,可換図式

から

$$((G \circ F)(g)) = \alpha_{A'}^{-1} \circ \boxed{g} \circ \alpha_A$$

を得る. 特に $g=\alpha_{A'}\circ G(f)\circ \alpha_A^{-1}$ と置けば,

$$((G \circ F)(g)) = \alpha_{A'}^{-1} \circ \underbrace{\left(\alpha_{A'} \circ G(f) \circ \alpha_{A}^{-1}\right)} \circ \alpha_{A} = G(\underbrace{f})$$

$$G(\underbrace{F(g)})$$

となる.

上の **PROPOSITION 0.0.1** より圏同値 $G: \mathcal{B} \to \mathcal{A}$ は忠実だから, f = F(g) となる.