IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN UNTUK PEMILIHAN TEMPAT BIMBINGAN BELAJAR MENGGUNAKAN METODE TOPSIS BERBASIS WEB (STUDI KASUS: CABACA CALISTUNG & BIMBEL LINTANG)

SKRIPSI

OLEH: DEWI PUTRI AULIA 211011400346

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS ILMU KOMPUTER
UNIVERSITAS PAMULANG
TANGERANG SELATAN
2025

IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN UNTUK PEMILIHAN TEMPAT BIMBINGAN BELAJAR MENGGUNAKAN METODE TOPSIS BERBASIS WEB (STUDI KASUS: CABACA CALISTUNG & BIMBEL LINTANG)

SKRIPSI

Diajukan Untuk Melengkapi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

OLEH:
DEWI PUTRI AULIA
211011400346

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS ILMU KOMPUTER
UNIVERSITAS PAMULANG
TANGERANG SELATAN
2025

LEMBAR PERNYATAAN

Yang bertanda tangan di bawah ini:

Nama : DEWI PUTRI AULIA

NIM : 211011400346

Program Studi : Teknik Informatika

Fakultas : Ilmu Komputer

Jenjang Pendidikan : Strata 1

Menyatakan bahwa skripsi yang saya buat dengan judul:

IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN UNTUK PEMILIHAN TEMPAT BIMBINGAN BELAJAR MENGGUNAKAN METODE TOPSIS BERBASIS WEB (STUDI KASUS: CABACA CALISTUNG & BIMBEL LINTANG).

- 1. Merupakan hasil karya tulis ilmiah sendiri, bukan merupakan karya yang pernah diajukan untuk memperoleh gelar akademik oleh pihak lain, dan bukan merupakan hasil plagiat.
- 2. Saya ijinkan untuk dikelola oleh Universitas Pamulang sesuai dengan norma hukum dan etika yang berlaku.

Pernyataan ini saya buat dengan penuh tanggung jawab dan saya bersedia menerima konsekuensi apapun sesuai aturan yang berlaku apabila di kemudian hari pernyataan ini tidak benar.

Tangerang Selatan, 10 Febuari 2025

(Dewi Putri Aulia)

LEMBAR PERSETUJUAN

NIM : 211011400346

Nama : DEWI PUTRI AULIA

Program Studi : TEKNIK INFORMATIKA

Fakultas : ILMU KOMPUTER

Jenjang Pendidikan : STRATA 1

Judul Skripsi : IMPLEMENTASI SISTEM PENDUKUNG

KEPUTUSAN UNTUK PEMILIHAN TEMPAT BIMBINGAN BELAJAR MENGGUNAKAN METODE TOPSIS BERBASIS WEB (STUDI KASUS: CABACA

CALISTUNG & BIMBEL LINTANG).

Skripsi ini telah diperiksa dan disetujui oleh pembimbing untuk persyaratan sidang skripsi

Tangerang Selatan, 20 Juni 2025

Pembimbing

Hidayatullah Al Islami, S.Kom., M.Kom.

NIDN:

Mengetahui,

Ketua Program Studi Teknik Informatika

Dr. Eng. Ahmad Musyafa, S.Kom., M.Kom.

NIDN:

LEMBAR PENGESAHAN

NIM : 211011400346

Nama : DEWI PUTRI AULIA

Program Studi : TEKNIK INFORMATIKA

Fakultas : ILMU KOMPUTER

Jenjang Pendidikan : STRATA 1

Judul Skripsi : IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN

UNTUK PEMILIHAN TEMPAT BIMBINGAN BELAJAR MENGGUNAKAN METODE TOPSIS BERBASIS WEB (STUDI KASUS: CABACA CALISTUNG & BIMBEL

LINTANG).

Skripsi ini telah dipertahankan di hadapan dewan penguji ujian skripsi fakultas Ilmu Komputer, program studi Teknik Informatika dan dinyatakan LULUS.

Tangerang Selatan,

Penguji I Penguji II

Nama Penguji 1 Nama Penguji 2

NIDN: - NIDN: -

Pembimbing

Hidayatullah Al Islami, S.Kom., M.Kom.

NIDN:

Mengetahui,

Ketua Program Studi Teknik Informatika

Dr. Eng. Ahmad Musyafa, S.Kom., M.Kom.

NIDN:

ABSTRACT

Currently, there are many tutoring institutions that offer additional educational services beyond formal education (school). These institutions are commonly known as tutoring centers, courses, or lessons. These institutions provide various facilities and infrastructure according to the needs of the students. Therefore, parents must be able to choose the right tutoring institution to avoid regrets in the future. For this reason, a decision support system is needed to assist parents in determining the appropriate tutoring institution. The method used is the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The selection of tutoring institutions for children entering kindergarten is determined by several criteria, including cost, facilities, class capacity, teaching staff, learning methods, and location. The final result of this system is an ordered list of tutoring institutions that will serve as a decision-making aid. This decision support system will help parents choose the right tutoring institution according to their needs.

Keywords: Decision Support System, Selection of Tutoring Centers, TOPSIS, Tutoring Institution, Web-Based

ABSTRAK

Saat ini terdapat banyak bimbingan belajar yang menawarkan jasa pendidikan tambahan selain pendidikan formal (sekolah). Lembaga tersebut biasa dikenal dengan istilah bimbel (bimbingan belajar), kursus ataupun les. Lembaga-lembaga tersebut menyediakan sarana prasarana yang berbeda-beda sesuai dengan kebutuhan siswa. Oleh karena itu orang tua harus bisa memilih dengan tepat lembaga bimbingan belajar yang akan diikuti agar tidak menyesal di kemudian hari. Untuk itu diperlukan sistem pendukung keputusan untuk membantu para orang tua menentukan lembaga bimbingan belajar yang tepat. Metode yang digunakan adalah Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Pemilihan lembaga bimbingan belajar bagi anak-anak yang akan memasuki jenjang Pendidikan taman kanak – kanak ditentukan oleh beberapa kriteria yaitu biaya, fasilitas, kapasitas per kelas, staf pengajar, metode pembelajaran, dan lokasi. Hasil akhir dari sistem ini berupa pengurutan data lembaga bimbingan belajar yang akan dijadikan sebagai alat bantu dalam pengambilan keputusan. Sistem pendukung keputusan ini akan membantu orang tua dalam memilih lembaga bimbingan belajar yang tepat sesuai dengan kebutuhan.

Kata Kunci: sistem pendukung keputusan, Tempat Pemilihan Bimbel, TOPSIS, lembaga bimbingan belajar, Berbasis Web.

KATA PENGANTAR

Puji syukur Alhamdulillah ke hadirat Allah SWT yang telah melimpahkan segala rahmat dan karunia-Nya, sehingga penulis dapat menyelesaikan skripsi ini yang berjudul "IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN UNTUK PEMILIHAN TEMPAT BIMBINGAN BELAJAR MENGGUNAKAN METODE TOPSIS BERBASIS WEB".

Skripsi ini disusun untuk memenuhi salah satu syarat kelulusan program studi strata satu (S1) pada program studi Teknik Informatika fakultas Ilmu Komputer di Universitas Pamulang.

Penulis mengucapkan terima kasih kepada:

- a. Bapak Dr. Pranoto, S.E., M.M., selaku Ketua Yayasan Sasmita Jaya.
- b. **Bapak Dr. E. Nurzaman A.M., MM., M.Si.,** selaku Rektor Universitas Pamulang.
- c. Bapak Yan Mitha Djaksana, S.Kom., M.Kom., selaku Dekan Fakultas Ilmu Komputer Universitas Pamulang.
- d. **Bapak Dr. Eng. Ahmad Musyafa., S.Kom., M.Kom.** selaku Ketua Program Studi Teknik Informatika Universitas Pamulang.
- e. Bapak Hidayatullah Al Islami, S.Kom., M.Kom. selaku Dosen Pembimbing.
- f. **Kedua orang tua** yang selalu mendoakan dan mendukung.
- g. Seluruh dosen, kerabat dan sahabat.

Semoga Allah SWT membalas segala kebaikan. Penulis menyadari bahwa skripsi ini masih jauh dari sempurna. Semoga skripsi ini bermanfaat bagi pembaca.

Tangerang Selatan, 10 Februari 2025

Dewi Putri Aulia

DAFTAR ISI

LEMBA	AR JUDUL	ii
LEMB <i>A</i>	AR PERNYATAAN	iii
LEMB <i>A</i>	AR PERSETUJUAN	iv
LEMB <i>A</i>	AR PENGESAHAN	v
ABSTRA	ACT	vi
ABSTR	RAK	vii
KATA F	PENGANTAR	viii
DAFTA	AR ISI	ix
DAFTA	AR GAMBAR	xiii
DAFTA	AR TABEL	xv
DAFTA	AR LAMPIRAN	xvi
BAB I I	PENDAHULUAN	1
1.1.	Latar Belakang	1
1.2.	Identifikasi Masalah	2
1.3.	Rumusan Masalah	3
1.4.	Batasan Penelitian	3
1.5.	Tujuan Penelitian	4
1.6.	Manfaat Penelitian	4
1.7.	Metodologi Penelitian	5
1.8.	Sistematika Penulisan	6
BAB II	LANDASAN TEORI	8
2.1.	Penelitian yang Relevan	8
2.2.	Tinjauan Pustaka	9
2.2	2.1. Implementasi	9

2.2.2.	Sistem Penunjang Keputusan (SPK)	9
2.2.3.	Pemilihan Tempat Bimbingan Belajar	10
2.2.4.	Technique for Order Preference by Similarity to Ideal S	Solution
(TOPS)	IS)	10
2.3. <i>Un</i>	ified Modeling Language (UML)	11
2.3.1.	Use Case Diagram	11
2.3.2.	Activity Diagram	13
2.3.3.	Sequence Diagram	15
2.3.4.	Class Diagram	17
2.4. Ap	likasi Pendukung	19
2.4.1.	HyperText Markup Language (HTML)	19
2.4.2.	XAMPP	19
2.4.3.	MySQL	20
2.4.4.	Visual Studio Code	20
2.5. Ted	ori Pengujian Sistem	21
2.5.1.	Sistem Black Box Testing	21
2.5.2.	User Response (Kuesioner)	22
2.5.3.	Kerangka Pemikiran	23
BAB III AN	ALISA DAN PERANCANGAN	24
3.1. An	alisa Sistem	24
3.1.1.	Analisa Sistem Berjalan	24
3.1.2.	Analisa Sistem Usulan	25
3.2. Me	etode Penelitian dan Analisa Data	27
3.2.1.	Perhitungan SPK dengan metode TOPSIS	27
3.3. Per	rancangan Basis Data	33
3.3.1.	Entity Relationship Diagram (ERD)	34

3.3.2.	Transformasi ERD ke Logical Record Structure (LRS)	34
3.3.3.	Logical Record Structure (LRS)	36
3.3.4. Normalisasi		37
3.3.5.	Spesifikasi Basis Data	38
3.4. Pe	erancangan Unified Modeling Language (UML)	39
3.4.1.	Use Case Diagram	40
3.4.2.	Activity Diagram	41
3.4.3.	Sequence Diagram	48
3.4.4.	Class Diagram	52
3.5. <i>U</i>	ser Interface	54
BAB IV IM	MPLEMENTASI DAN PENGUJIAN	59
4.1. S _I	pesifikasi	59
4.1.1.	Spesifikasi Perangkat Lunak	59
4.1.2.	Spesifikasi Perangkat Keras	59
4.2. In	nplementasi Program	60
4.2.1.	Tampilan Halaman Login	60
4.2.2.	Tampilan Halaman Dashboard	61
4.2.3.	Tampilan Halaman SPK Bimbel	61
4.2.4.	Tampilan Halaman Kriteria	62
4.2.5.	Tampilan Halaman Bimbel	62
4.2.6.	Tampilan Halaman Orang Tua	63
4.2.7.	Tampilan Halaman <i>User</i>	63
4.2.8.	Tampilan Halaman Laporan	64
4.2.9.	Tampilan Halaman Log	64
4.3. Pe	engujian Sistem	65
431	Functional Testing	65

BAB V	V PENUTUP	. 70
5.1.	Kesimpulan	. 70
5.2.	Saran	. 70
DAFT	AR PUSTAKA	. 71
LAMP	PIRAN	72

DAFTAR GAMBAR

Gambar 2. 1 Metode TOPSIS	10
Gambar 2. 2 Unified Modeling Language (UML)	11
Gambar 2. 3 HyperText Markup Language (HTML)	19
Gambar 2. 4 XAMPP	19
Gambar 2. 5 MySQL	20
Gambar 2. 6 Visual Studio Code	20
Gambar 2. 7 Kerangka Pemikiran	23
Gambar 3. 1 Activity Diagram Sistem Berjalan	24
Gambar 3. 2 Activity Diagram Sistem Usulan	26
Gambar 3. 3 Gambar Analisa Data	27
Gambar 3. 4 Entity Relationship Diagram (ERD)	34
Gambar 3. 5 Logical Record Structure	36
Gambar 3. 6 Normalisasi	37
Gambar 3. 7 Use Case Diagram	40
Gambar 3. 8 Activity Diagram Melakukan Login	41
Gambar 3. 9 Activity Diagram Mengelola Bimbel	42
Gambar 3. 10 Activity Diagram Mengelola Orang Tua	43
Gambar 3. 11 Activity Diagram Mengelola Kriteria	44
Gambar 3. 12 Activity Diagram Mengelola SPK Bimbel	45
Gambar 3. 13 Activity Diagram Melihat Hasil Rekomendasi Bimbel	46
Gambar 3. 14 Activity Diagram Mencetak Laporan	46
Gambar 3. 15 Activity Diagram Melakukan Registrasi	47
Gambar 3. 16 Sequence Diagram Melakukan Login	48
Gambar 3. 17 Sequence Diagram Mengelola Bimbel	49
Gambar 3. 18 Sequence Diagram Mengelola Orang Tua	49
Gambar 3. 19 Sequence Diagram Mengelola Kriteria	50
Gambar 3. 20 Sequence Diagram Mengelola SPK Bimbel	50
Gambar 3. 21 Sequence Diagram Melihat Hasil Rekomendasi Bimbel	51
Gambar 3 22 Sequence Diagram Mencetak Lanoran	51

Gambar 3. 23 Sequence Diagram Melakukan Registrasi	52
Gambar 3. 24 Class Diagram	53
Gambar 3. 25 Rancangan Tampilan Halaman Login	54
Gambar 3. 26 Rancangan Tampilan Halaman Dashboard	54
Gambar 3. 27 Rancangan Tampilan Halaman SPK Bimbel	55
Gambar 3. 28 Rancangan Tampilan Halaman Kriteria	55
Gambar 3. 29 Rancangan Tampilan Halaman Bimbel	56
Gambar 3. 30 Rancangan Tampilan Halaman Orang Tua	56
Gambar 3. 31 Rancangan Tampilan Halaman User	57
Gambar 3. 32 Rancangan Tampilan Halaman Laporan	57
Gambar 3. 33 Rancangan Tampilan Halaman Log	58
Gambar 4. 2 Tampilan Halaman Login	60
Gambar 4. 3 Tampilan Halaman Dashboard	61
Gambar 4. 4 Tampilan Halaman SPK Bimbel	61
Gambar 4. 5 Tampilan Halaman Kriteria	62
Gambar 4. 6 Tampilan Halaman Bimbel	62
Gambar 4. 7 Tampilan Halaman Orang Tua	63
Gambar 4. 8 Tampilan Halaman User	63
Gambar 4. 9 Tampilan Halaman Laporan	64
Gambar 4. 10 Tampilan Halaman Log	64

DAFTAR TABEL

Tabel 2. 1 Tabel Simbol Use Case Diagram	12
Tabel 2. 2 Tabel Simbol Activity Diagram	14
Tabel 2. 3 Tabel Simbol Sequence Diagram	15
Tabel 2. 4 Tabel Simbol Class Diagram	17
Tabel 3. 1 Tabel Matriks Keputusan	28
Tabel 4. 1 tabel spesifikasi perangkat lunak	59
Tabel 4. 2 tabel spesifikasi perangkat keras laptop	59
Tabel 4. 3 tabel spesifikasi perangkat keras smartphone	60
Tabel 4. 4 Pengujian Black Box Pada Halaman Login	65
Tabel 4. 5 Pengujian Black Box Pada Halaman Dashboard	66
Tabel 4. 6 Pengujian Black Box Pada Halaman Bimbel	66
Tabel 4. 7 Pengujian Black Box Pada Halaman Orang Tua	67
Tabel 4. 8 Pengujian Black Box Pada Halaman Kriteria	67
Tabel 4. 9 Pengujian Black Box Pada Halaman SPK Bimbel	67
Tabel 4. 10 Pengujian Black Box Pada Halaman Laporan	68
Tabel 4. 11 Pengujian Black Box Pada Halaman User	68
Tabel 4. 12 Pengujian Black Box Pada Halaman Log	68

DAFTAR LAMPIRAN

BABI

PENDAHULUAN

1.1. Latar Belakang

Pendidikan adalah suatu kebutuhan primer untuk semua orang, jika seseorang memiliki pendidikan yang bagus maka akan terbuka masa depan yang cerah dan memiliki pengetahuan yang luas. Pendidikan yang bagus tidak hanya terdapat di sekolah tetapi juga dari luar sekolah seperti di lembaga bimbingan belajar. Petumbuhan lembaga bimbingan belajar setiap tahunnya semakin meningkat khususnya di kota Tangerang Selatan.

Pengambilan keputusan merupakan hal yang tidak pernah lepas dari kehidupan manusia, baik keputusan untuk masalah yang sederhana maupun masalah yang kompleks. Kemampuan dalam mengambil keputusan harus dengan cermat, cepat dan tepat, namun terkadang ada yang dalam mengambil keputusan hanya karena melihat situasi lingkungan yang memungkinkan adanya kesalahan dalam mengambil keputusan.

Sistem pendukung keputusan (SPK) atau decision support system (DSS) didefinisikan sebagai sebuah sistem yang dimaksudkan untuk mendukung para pengambil keputusan manajerial dalam situasi keputusan semiterstruktur. SPK dimaksudkan untuk menjadi alat bantu bagi para pengambil keputusan untuk memperluas kapabilitas mereka, namun tidak untuk menggantikan penilaian mereka. SPK ditujukan untuk keputusan-keputusan yang memerlukan penilaian atau pada keputusan-keputusan yang sama sekali tidak dapat didukung oleh algoritma. Dengan kata lain, DSS merupakan sekumpulan prosedur berbasis model untuk data pemrosesan dan penilaian guna membantu para manajer mengambil keputusan.

TOPSIS (*Technique for Order Preference by Similarity to Ideal Solution*) adalah salah satu metode pengambilan keputusan multikriteria atau alternative pilihan yang merupakan alternatif yang mempunyai jarak terkecil dari solusi ideal positif dan jarak terbesar dari solusi ideal negatif dari sudut pandang geometris

dengan menggunakan jarak Euclidean. Namun, alternatif yang mempunyai jarak terkecil dari solusi ideal positif, tidak harus mempunyai jarak terbesar dari solusi ideal negatif. TOPSIS akan merangking alternatif berdasarkan prioritas nilai kedekatan relatif suatu alternatif terhadap solusi ideal positif. Alternatif-alternatif yang telah diranking kemudian dijadikan sebagai referensi bagi pengambil keputusan untuk memilih solusi terbaik yang diinginkan.

Berdasarkan latar belakang di atas pokok permasalahannya adalah bagaimana menerapkan metode TOPSIS untuk membangun SPK dalam pemilihan lembaga bimbingan belajar di Buaran Timur. Sistem ini dibatasi pada pemilihan lembaga bimbingan belajar untuk siswa-siswi yang akan duduk di bangku sekolah SD dengan kriteria biaya, fasilitas, kapasitas ruangan, staff pengajar, metode pembelajaran, dan lokasi.

Oleh sebab itu, sistem pendukung keputusan yang dimaksud untuk mencari solusi dan alternatif bagi para pelajar yang terutama mempersiapkan untuk masuk sekolah dasar. untuk memudahkan memilih dan mengefisienkan waktu yang ada, sehingga diharapkan mampu menghasilkan keluaran yang lebih akurat dengan menggunakan sebuah metode algoritma.

Dengan pemaparan di atas, maka di buatlah IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN UNTUK PEMILIHAN TEMPAT BIMBINGAN BELAJAR MENGGUNAKAN METODE TOPSIS BERBASIS WEB guna meningkatkan objektivitas dan efisiensi pemilihan tempat bimbingan belajar. Dengan adanya sistem ini, diharapkan para orang tua dapat meningkatkan kualitas evaluasi tempat bimbingan belajar, mendukung pengambilan keputusan yang lebih baik, serta berkontribusi pada peningkatan mutu pendidikan. Selain itu, teknologi berbasis web ini juga dapat memberikan wawasan praktis bagi Abidzar Calistung dan dalam pengembangan teknologi pendidikan yang lebih maju dan responsif terhadap kebutuhan orang tua dan siswa.

1.2. Identifikasi Masalah

Berdasarkan latar belakang di atas maka kita dapat mengidentifikasi masalah sebagai berikut:

- a. Karena pendidikan dianggap sebagai kebutuhan primer yang krusial untuk masa depan individu. Namun, masih terdapat beberapa tantangan dalam akses dan kualitas pendidikan, terutama di luar sekolah formal seperti lembaga bimbingan belajar.
- b. Sehingga pada proses pengambilan keputusan untuk memilih lembaga bimbingan belajar sering kali dirasa kurang objektif dan tidak efisien sehingga hanya mengandalkan penilaian subjektif atau pengaruh lingkungan.
- c. Karena banyaknya kriteria yang harus dipertimbangkan, seperti biaya, fasilitas, kapasitas ruangan, staf pengajar, metode pembelajaran, dan lokasi, sehingga proses pemilihan lembaga bimbingan belajar menjadi rumit.

1.3. Rumusan Masalah

Dari identifikasi di atas maka penulis dapat merumusakan masalah sebagai berikut:

- a. Bagaimana mengatasi tantangan dalam akses dan kualitas pendidikan, khususnya pada lembaga bimbingan belajar di luar sekolah formal?
- b. Bagaimana cara meningkatkan objektivitas dan efisiensi dalam proses pengambilan keputusan untuk memilih lembaga bimbingan belajar agar tidak hanya mengandalkan penilaian subjektif atau pengaruh lingkungan?
- c. Bagaimana merumuskan metode atau sistem yang dapat membantu calon peserta didik dalam mempertimbangkan berbagai kriteria seperti biaya, fasilitas, kapasitas ruangan, staf pengajar, metode pembelajaran, dan lokasi secara efektif dalam memilih lembaga bimbingan belajar?

1.4. Batasan Penelitian

Agar penelitian ini menjadi terarah dan menghindari adanya pelebaran pokok masalah, penulis membatasi lingkup masalah dalam pembuatan sistem pemilihan tempat bimbingan belajar berbasis web dengan metode TOPSIS pada Calistung Cabaca Abizar sebagai berikut:

- a. Pada perancangan penelitian ini hanya mengembangkan algoritma sesuai dengan metode TOPSIS (*Technique for Order Preference by Similarity to Ideal Solution*).
- b. Mengambil data secara langsung melalui internet, observasi dan wawancara. Penelitian ini hanya mempertimbangkan kriteria seperti biaya, fasilitas, kapasitas ruangan, staf pengajar, metode pembelajaran, dan lokasi.
- c. Sistem ini menggunakan bahasa pemrograman *PHP* dengan *database MySQL*.

1.5. Tujuan Penelitian

Penelitian ini bertujuan untuk mengatasi permasalahan yang telah diidentifikasi. Tujuan dari penelitian ini adalah sebagai berikut:

- a. Mengoptimalkan keputusan pemilihan tempat bimbingan belajar sehingga mampu memanfaatkan sumber daya yang ada dengan menggunakan metode TOPSIS.
- b. Menerapkan Metode TOPSIS pada aplikasi yang akan mecari alternatif dalam pemilihan tempat bimbingan belajar.

1.6. Manfaat Penelitian

Adapun manfaat penelitian ini sebagai berikut:

- a. Manfaat penerapan TOPSIS dalam memberikan keputusan: Dalam konteks pemilihan tempat bimbingan belajar, TOPSIS dapat membantu memberikan keputusan yang berfokus pada penjumlahan terbobot dari rating kinerja alternatif yang didasarkan pada berbagai kriteria.
- b. Bagi Orang Tua dan Siswa: Mengurangi risiko kesalahan dalam pengambilan keputusan akibat penilaian subjektif atau pengaruh lingkungan.

- c. Bagi Lembaga Bimbingan Belajar: Meningkatkan daya saing lembaga bimbingan belajar dengan memahami kebutuhan calon peserta didik melalui sistem yang terstruktur.
- d. Bagi Peneliti: Memberikan kontribusi ilmiah berupa penerapan metode SPK (Sistem Pendukung Keputusan) untuk menyelesaikan masalah nyata di bidang pendidikan.

1.7. Metodologi Penelitian

Dalam implementasi tempat pemilihan bimbingan belajar menggunakan metode Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) penulis menerapkan metode penelitian sebagai berikut:

a. Metode Pengumpulan Data

Pengumpulan data dilakukan dengan wawancara dan dokumentasi. Wawancara dilakukan dengan bertanya secara langsung kepada pihak lembaga bimbingan belajar mengenai data tentang lembaga bimbingan belajar, meliputi: biaya, fasilitas, kapasitas ruangan, staff pengajar, metode pembelajaran, dan lokasi. Sementara itu, dokumentasi dilakukan dengan cara mengambil data yang ada di lokasi secara langsung. Metode pengumpulan data yang digunakan meliputi:

1) Metode Kuesioner

Kuesioner disebarkan secara online melalui google form kepada 30 0rang tua murid dari kedua bimbel untuk mengumpulkan data mengenai biaya, fasilitas, kapasitas ruangan, staff pengajar, metode pembelajaran, dan lokasi.

2) Metode Wawancara

Wawancara digunakan untuk melakukan pengumpulan data dengan cara peneliti mengajukan secara lisan kepadaa seseorang. Penulis melakukan wawancara langsung dengan pengurus tempat Bimbel Lintang dan Bimbel Cabaca Abidzar Calistung.

b. Metode Perancangan Sistem

Dalam proses implementasi tempat "Pemilihan Bimbingan Belajar",

penulis menerapkan Metode Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), TOPSIS merupakan salah satu metode pengambilan keputusan multikriteria yang pertama kali diperkenalkan oleh Yoon dan Hwang pada tahun 1981. Metode ini merupakan salah satu metode yang banyak digunakan untuk menyelesaikan pengambilan keputusan secara praktis (Daulay & Zufria, 2024).

1.8. Sistematika Penulisan

Dalam penyusunan skripsi ini secara sistematis diatur dan disusun dalam 5 bab, yang masing-masing terdiri dari sub bab. Adapun urutan sistematika penulisan adalah sebagai berikut:

BAB I PENDAHULUAN

Bab ini berisi pemaparan yang terdiri dari latar belakang, identifikasi masalah, rumusan masalah, batasan penelitian, tujuan penelitian, manfaat penelitian, metodologi penelitian, dan terakhir adalah sistematika penulisan.

BAB II LANDASAN TEORI

Pada bab ini berisi tentang landasan teori dan tinjauan pustaka, yang menjadi dasar penulisan dan mendukung skripsi.

BAB III ANALISA DAN PERANCANGAN

Bab ini berisi penjelasan tentang rancangan aplikasi dan juga alur diagram atau metode pemilihan tempat bimbingan belajar dengan menggunakan model Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS).

BAB IV IMPLEMENTASI DAN PENGUJIAN

Pada bab ini berisi pemaparan implementasi pemilihan tempat bimbingan belajar yang telah dirancang sebelumnya pada bab tiga serta pengujian yang dilakukan pada tempat bimbel "CABACA ABIDZAR CALISTUNG & BIMBEL LINTANG".

BAB V PENUTUP

Pada bab ini menjelaskan mengenai kesimpulan dari hasil penelitian dengan menggunakan perancangan sistem yang dilakukan dan menjelaskan saran untuk pengembangan sistem.

BAB II LANDASAN TEORI

2.1. Penelitian yang Relevan

Berikut beberapa penelitian terkait atau yang relevan dengan sistem penunjang keputusan, pemilihan tempat bimbingan belajar, dan metode TOPSIS:

- a. Penelitian terkait yang pertama dilakukan oleh (Trisnawan et al., 2023) dengan judul "SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN BIMBINGAN BELAJAR DENGAN METODE SIMPLE ADDITIVE WEIGHTING (SAW) DI PT. RUANG RAYA INDONESIA" memiliki tujuan membuat aplikasi web yang memudahkan user untuk memilih alternatif tempat bimbingan belajar yang sesuai kebutuhan.
- b. Penelitan terkait kedua adalah penelitian yang ditulis oleh (Handayani et al., 2022) "Sistem Pendukung Keputusan Pemilihan Lembaga Bimbingan Belajar di Kota Tegal Menggunakan Metode SMART" yang bertujuan untuk memanajemen dalam pengambilan keputusan yang berkaitan dengan persoalan dengan sifat semi terstruktur secara efektif dan efisien, namun tidak menggantikan fungsi dalam membuat keputusan.
- c. Penelitan ketiga adalah penelitian yang dilakukan oleh (Septiana et al., 2021) "Sistem Pendukung Keputusan Pemilihan Bimbingan Belajar Online Bagi Calon Peserta SBMPTN Menggunakan Fuzzy TOPSIS (Studi Kasus Pada Wilayah Blitar)" penelitian ini bertujuan untuk menentukan program pembelajaran persiapan SBMPTN pada bimbingan belajar online di Blitar. Kriteria penilaian yang digunakan adalah harga, waktu, ketersediaan tutor, fasilitas, rating Google Play Store, dan promosi.
- d. Penelitian keempat yang dilakukan oleh (Afdilah et al., 2024) "Penerapan Metode TOPSIS pada Sistem Pengambilan Keputusan dalam Memilih Jenis Sekolah Lanjutan Tingkat Atas" yang bertujuan yang nantinya akan mendapatkan hasil sekolah yang terbaik dan diharapkan akan membantu siswa dalam 5 memilih sekolah mana yang akan diambil. Teori

- pengambilan keputusan terbagi menjadi dua bagian utama: pengambilan keputusan rasional dan non-rasional.
- e. Terakhir Penelitian kelima yang dilakukan oleh (Irfan et al., 2022) "Implementasi Metode Weighted Product Pada Sistem Pendukung Keputusan Pemilihan Lembaga Bimbingan Belajar" yang bertujuan membangun Sistem Pendukung Keputusan (SPK) berbasis website menggunakan metode Weighted Product (WP) untuk membantu orang tua dan calon peserta didik memilih lembaga bimbingan belajar yang sesuai kebutuhan. Metode WP dipilih karena mampu menentukan alternatif terbaik melalui perkalian antar atribut yang telah dinormalisasi, sehingga lebih efisien dan akurat. Studi kasus menunjukkan Ganesha Operation sebagai lembaga bimbingan belajar dengan nilai preferensi tertinggi.

2.2. Tinjauan Pustaka

Pada bagian ini akan membahas mengenai semua teori yang digunakan peneliti untuk dasar penulisan dalam mengimplementasikan sebuah web pembuatan sistem pendukung keputusan pemilihan tempat bimbingan belajar dengan menggunakan metode TOPSIS.

2.2.1. Implementasi

Menurut (Magdalena et al., 2021) Implementasi merupakan suatu proses penerapan ide,konsep, kebijakan atau inovasi dalam suatu tindakan praktis sehingga memberikan dampak baik berupa perubahan pengetahuan, keterampilan maupun nilai dan sikap.

2.2.2. Sistem Penunjang Keputusan (SPK)

Menurut (Suarnatha, 2023) Sistem Pendukung Keputusan adalah sistem informasi yang dibangun guna membantu aktifitas manajerial di dalam menangani permasalahan yang dihadapi.

2.2.3. Pemilihan Tempat Bimbingan Belajar

Menurut (Limbong & Yanti, 2020) Lembaga bimbingan belajar adalah institusi nonformal yang bergerak di dalam dunia pendidikan. Permasalahan orangtua memilih lembaga bimbingan belajar mana yang sesuai dengan pendapatan, dan banyaknya lembaga bimbingan belajar yang berada dalam masyarakat menyebabkan orang tua selektif dalam memilih, serta banyaknya lembaga bimbingan belajar yang bermunculan saat ini, menjadikan persaingan yang semakin ketat. Lembaga bimbingan belajar yang beragam banyak keunikan masing-masing dan di dukung dengan pengajar-pengajar yang berpengalaman dan lulusan dari Perguruan Tinggi terkemuka serta fasilitas lengkap menjadi daya tarik yang diberikan kepada masyarakat.

2.2.4. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

Gambar 2. 1 Metode TOPSIS

Menurut (Daulay & Zufria, 2024) TOPSIS adalah salah satu metode pengambilan keputusan multikriteria yang pertama kali diperkenalkan oleh Yoon dan Hwang pada tahun 1981. Metode ini merupakan salah satu metode yang banyak digunakan untuk menyelesaikan pengambilan keputusan secara praktis. TOPSIS memiliki konsep dimana alternatif yang terpilih merupakan alternatif terbaik yang memiliki jarak terpendek dari solusi ideal positif dan jarak terjauh dari solusi ideal negatif.

Menurut (Farih Fauzi et al., 2024) *Metode TOPSIS*, atau Technique for Order of Preference by Similarity to Ideal Solution, dapat membantu menangani kasus dengan berbagai kriteria yang kompleks dan berbeda-beda, sehingga mampu memberikan rekomendasi yang optimal dan tepat sasaran. Metode ini sangat berguna dalam mengolah data yang beragam dan mengidentifikasi pilihan terbaik berdasarkan sejumlah besar variabel.

2.3. Unified Modeling Language (UML)

Gambar 2. 2 *Unified Modeling Language* (UML)

Menurut (Aditya Permana, 2018) UML (*Unified Modeling Language*) adalah bahasa pemodelan untuk sistem atau perangkat lunak yang berparadigma (berorientasi objek)." Pemodelan (*modeling*) sesungguhnya digunakan untuk penyederhanaan permasalahan - permasalahan yang kompleks sedemikian rupa sehingga lebih mudah dipelajari dan dipahami. Berdasarkan beberapa pendapat diatas maka dapat disimpulkan UML (*Unified Modeling Language*) adalah bahasa pemodelan yang digunakan untuk merancang, mendokumentasikan sebuh sistem perangkat lunak.

Menurut (Himawati, 2024) UML memiliki fungsi untuk membantu pendeskripsian dan desain system perangkat lunak, khususnya system yang dibangun menggunakan pemrograman berorientasi objek. UML diciptakan dari penggabungan banyak bahasa pemodelan grafis berorientasi objek yang berkembang pesat pada akhir tahun 1980-an dan awal tahun 1990-an.

Jenis-jenis Diagram Unified Model Language (UML) yaitu:

- a. Use Case Diagram
- b. Activity Diagram
- c. Sequence Diagram
- d. Class Diagram

2.3.1. Use Case Diagram

Menurut (Hotdiana Simanullang & Wardah Bilah Siregar, 2021) *Use Case* Diagram adalah suatu pola atau gambaran yang menunjukkan kelakuan atau kebiasaan sistem.

Tabel 2. 1 Tabel Simbol Use Case Diagram

Simbol	Nama	Deskripsi
Use Case	Use Case	Use case menggambarkan deskripsi atau skenario dari fungsionalitas yang dapat dilakukan oleh sistem dari sudut pandang pengguna.
Actor	Actor/Aktor	Actor atau Aktor adalah entitas atau elemen di luar sistem yang berinteraksi dengan sistem.
System	Boundary System	Boundary System adalah garis kotak yang mengelilingi kumpulan use case untuk menunjukkan batas sistem di mana kumpulan use case tersebut beroperasi.
	Association / hubungan	Association adalah hubungan antara dua atau lebih use case dalam suatu sistem yang memiliki ketergantungan satu sama lainnya.
< <include>></include>	Include	Include menggambarkan situasi di mana fungsionalitas dari suatu use case selalu diikutsertakan (included) dalam fungsionalitas use case lainnya.

<	Extend	Extend menggambarkan situasi di mana suatu fungsionalitas tambahan dapat ditambahkan ke dalam use case utama berdasarkan suatu kondisi atau skenario tertentu.
>	Depedency	Depedency menggambarkan ketergantungan antara dua elemen. Ketergantungan ini menunjukkan bahwa satu elemen bergantung pada elemen lainnya dalam konteks tertentu.
	Generalization	Generalization menggambarkan hubungan hierarki antara use case, di mana use case yang lebih umum menyediakan fungsionalitas dasar, dan use case yang lebih khusus mewarisi fungsionalitas tersebut serta menambahkan fungsionalitas tambahan.

2.3.2. Activity Diagram

Menurut (Hotdiana Simanullang & Wardah Bilah Siregar, 2021) *Acitivity* diagram adalah teknik untuk menggambarkan *logical procedural*, proses bisnis, dan jalur kerja. Dalam beberapa hal, diagram ini memainkan peran mirip sebuah diagram alir, tetapi perbedaan prinsip antara diagram ini dan notasi diagram alir adalah digram ini mendukung *behavior* paralel.

Tabel 2. 2 Tabel Simbol Activity Diagram

Simbol	Nama	Deskripsi
	Initial Node	Initial Node merupakan titik awal dalam aliran kerja. Ini adalah langkah pertama dalam proses dan menandakan tempat di mana aliran kerja dimulai.
Swimlane	Swimlane	Swimlane digunakan untuk membagi aliran kerja menjadi bagian-bagian yang terkait dengan unit atau entitas tertentu.
	Activity	Activity merupakan tugas yang harus dilakukan dalam aliran kerja.
	Control Flow	Control Flow digunakan untuk menghubungkan activity dan menunjukkan urutan dalam aliran kerja.
	Decision	Decision adalah titik di mana keputusan harus diambil dalam aliran kerja.
	Fork	Fork adalah percabangan dalam suatu proses. Fork pada activity untuk dibagi menjadi beberapa jalur yang dapat dieksekusi secara bersamaan atau paralel.

Join	Join adalah tempat di mana jalur- jalur yang terbagi oleh Fork harus bergabung kembali. Ini mengindikasikan penggabungan dari aktivitas-aktivitas yang berjalan secara paralel.
End Node	End Node adalah akhir dari aliran kerja. Setelah mencapai End Node, activity dianggap selesai.

2.3.3. Sequence Diagram

Menurut (Hotdiana Simanullang & Wardah Bilah Siregar, 2021) *Sequence* diagram menggambarkan kelakuan objek pada use case dengan mendeskripsikan waktu hidup objek dan pesan yang dikirimkan dan diterima antar objek.

Tabel 2. 3 Tabel Simbol Sequence Diagram

Simbol	Nama	Deskripsi
4	Actor/Aktor	Aktor adalah entitas di luar sistem yang berinteraksi dengan objek-objek dalam sistem melalui pertukaran pesan atau interaksi.
H	Boundary	Boundary adalah representasi antarmuka atau batasan antara sistem dan aktor.

	Control	Control adalah komponen dalam sistem yang mengontrol alur eksekusi atau mengoordinasikan aktivitas sistem.
	Entity	Entity adalah objek yang berisi data atau informasi dalam sistem.
	Object Lifeline	Object Lifeline adalah menggambarkan seberapa lama objek atau entitas tertentu ada selama interaksi dalam sistem. Object Lifeline, mewakili kehidupan objek selama interaksi dan digambarkan sebagai garis vertikal yang menghubungkan objek dengan waktu.
	Activation	Activation adalah kapan objek melakukan sesuatu atau menjalankan tindakan tertentu selama interaksi.
Message	Message	Message adalah cara objek berkomunikasi satu sama lain dengan mengirim pesan yang berisi informasi tentang apa yang harus dilakukan.

return ≪	Return	Return adalah kapan objek memberikan hasil atau respons setelah menerima pesan.
callback return	Callback	Callback adalah saat sistem menjalankan suatu tindakan khusus saat kondisi tertentu terpenuhi.
self call	Self-Call	Self-Call adalah saat objek melakukan tindakan pada dirinya sendiri dengan cara memanggil metodenya sendiri.

2.3.4. Class Diagram

Menurut (Syabania & Rosmawarni, 2021) *Class* diagram merupakan penjelasan proses *database* dalam suatu program. Dalam sebuah laporan sistem maka class diagram ini wajib ada.

Tabel 2. 4 Tabel Simbol Class Diagram

Simbol	Nama	Deskripsi
Classname + property: type + method(type): type	Class/Kelas	Class digambarkan sebagai kotak dengan tiga bagian: bagian atas untuk nama class, bagian tengah untuk property/atribut, dan bagian bawah untuk method/metode.
→	Association/ Asosiasi	Association digunakan untuk menunjukkan hubungan antar class. Diwakili oleh garis lurus

		yang menghubungkan dua class.
	Generalization/ Pewarisan	Generalization digunakan untuk menunjukkan hubungan hierarki antar class, dengan child class mewarisi atribut dan metode dari parent class. Digambarkan sebagai garis lurus dengan segitiga putih di ujungnya, mengarah ke parent class.
♦ ————————————————————————————————————	Aggregation/ Agregasi	Aggregation digunakan untuk menunjukkan hubungan "bagian-dari" di mana satu kelas terdiri dari objek-objek class lain. Digambarkan sebagai garis dengan berlian putih di ujungnya.
•	Composition/ Komposisi	Mirip dengan aggregation tetapi hubungan ini lebih kuat; objek bagian tidak dapat berdiri sendiri tanpa objek utama. Digambarkan dengan berlian hitam di ujung garis.
·····>	Depedency/ Ketergantungan	Depedency digunakan untuk menunjukkan bahwa satu class bergantung pada class lain (menggunakan class lain dalam

operasi). Diwakili oleh garis
putus-putus dengan panah
mengarah ke kelas yang
menjadi tumpuan.

2.4. Aplikasi Pendukung

Dalam penyusunan skripsi ini, penulis menggunakan beberapa aplikasi pendukung yang berperan penting dalam pembuatan web "Sistem Pendukung Keputusan Tempat Bimbel". Berikut adalah beberapa aplikasi pendukung yang digunakan:

2.4.1. HyperText Markup Language (HTML)

Gambar 2. 3 *HyperText Markup Language* (HTML)

Menurut (Samsudin & Hamdalah Islami, 2023) *Hypertext Markup Language* (HTML) adalah suatu bahasa pemrograman yang digunakan untuk pembuatan halaman *website* agar dapat menampilkan berbagai informasi baik tulisan maupun gambar pada sebuah *web browser*.

2.4.2. XAMPP

Gambar 2. 4 XAMPP

Menurut (Samsudin & Hamdalah Islami, 2023) XAMPP ialah software yang di dalamnya terdapat server MySQL dan didukung oleh PHP sebagai bahasa pemrograman untuk membuat website dinamis serta terdapat web server Apache yang dapat dijalankan di beberapa platform seperti OS X, Windows, Linux, Mac, dan Solaris. Menyatakan XAMPP merupakan software server Apache di mana dalam XAMPP yang telah tersedia database server seperti MySQL dan PHP programming.

2.4.3. MySQL

Gambar 2. 5 MySQL

Menurut (Cisco Pradithya & Prima Mulya, 2025) MySQL adalah sebuah database atau media penyimpanan data yang mendukung Script PHP. MySQL juga mempunyai *query* atau bahasa SQL (Structured Query Language) yang simpel dan menggunakan escape character yang sama dengan PHP. Selain itu, MySQL adalah *database* tercepat saat ini.

2.4.4. Visual Studio Code

Gambar 2. 6 Visual Studio Code

Menurut (Firnando et al., 2023) adalah kode editor sumber yang dikembangkan oleh Microsoft untuk Windows, Linux dan mac OS. Visual Code memudahkan dalam penulisan *code* yang mendukung beberapa jenis bahasa pemrograman yang digunakan dan memberi variasi warna sesuai dengan fungsi

dalam rangkaian *code* tersebut. Selain itu, fitur lainnya adalah kemampuan untuk menambah ekstensi di mana para pengembang dapat menambah ekstensi untuk menambah fitur yang tidak ada di Visual Studio Code.

2.5. Teori Pengujian Sistem

Pengujian sistem merupakan proses evaluasi untuk memastikan bahwa perangkat lunak yang telah dikembangkan dapat beroperasi sesuai dengan standar yang ditetapkan. Pengujian sistem dapat menggunakan metode *black box testing*. *Black box testing* efektif dalam mengidentifikasi kesalahan secara menyeluruh. Fokus *black box testing* terletak pada pengujian persyaratan fungsional perangkat lunak, dengan penekanan pada kondisi *input* yang memenuhi persyaratan fungsional. Oleh karena itu, pengujian sistem melibatkan pengecekan *input*, *output*, dan proses. Selain itu, pengujian juga dapat melibatkan penerapan skala *Likert*, yang digunakan untuk mengukur sikap, pendapat, dan persepsi individu atau kelompok terhadap fenomena sosial tertentu (Damayanti dkk., 2022).

2.5.1. Sistem Black Box Testing

Black box testing adalah pendekatan pengujian perangkat lunak yang mengevaluasi fungsionalitas suatu aplikasi tanpa memperhatikan struktur internal atau cara kerjanya. Metode pengujian black box memungkinkan pengembang perangkat lunak untuk menyusun serangkaian kondisi input yang mencakup semua persyaratan fungsional program. Pengujian dilakukan dengan memilih sejumlah modul yang mencakup berbagai jenis data untuk memastikan bahwa program hanya menerima input dengan jenis data yang sesuai. Selain itu, pengujian juga memeriksa antarmuka mahasiswa aplikasi itu sendiri (Pradana Putra dkk., 2020).

2.5.2. *User Response* (Kuesioner)

Kuesioner adalah suatu teknik pengumpulan data yang melibatkan pemberian serangkaian pertanyaan atau pernyataan tertulis kepada responden (Saidi Rahman, 2019).

Kuesioner merupakan alat atau instrumen yang digunakan untuk menilai atau mengukur suatu peristiwa atau kejadian (Nur Amalia dkk., 2022).

2.5.3. Kerangka Pemikiran

Gambar 2. 7 Kerangka Pemikiran

BAB III ANALISA DAN PERANCANGAN

3.1. Analisa Sistem

Analisis sistem adalah proses penting dalam penelitian ilmiah yang membantu peneliti untuk memahami dan menginterpretasi data yang telah dikumpulkan.

3.1.1. Analisa Sistem Berjalan

Sistem rekomendasi tempat bimbingan belajar saat ini masih dilakukan secara manual dan subjektif oleh pengurus tempat bimbingan belajar. Dalam prosesnya, pengurus memberikan saran atau rekomendasi pekerjaan berdasarkan pengamatan sehari-hari terhadap siswa, tanpa menggunakan alat bantu sistem atau metode perhitungan yang terukur.

Gambar 3. 1 Activity Diagram Sistem Berjalan

Kondisi tersebut menimbulkan beberapa permasalahan, antara lain:

- a. Subjektivitas tinggi, rekomendasi bimbel sering kali tidak didasarkan pada data atau kriteria, melainkan berdasarkan pengalaman atau opini orang tua, sehingga dapat menyebabkan ketidaksesuaian antara rekomendasi tempat bimbel dan potensi fasilitas yang disediakan.
- b. Tidak adanya sistem terintegerasi, belum tersedia sistem informasi yang dapat membantu dalam proses pengambilan keputusan
- c. Kebingungan orang tua dalam menentukan tempat bimbel bagi anaknya, banyak orang tua merasa bingung untuk menentukan lokasi bimbel yang sesuai dengan budget, fasilitas dan tenaga pengajar, karena tidak adanya informasi yang terstruktur mengenai rekomdasi tempat bimbel yang sesuai dengan keuangan serta lokasi mereka.

Dengan kondisi sistem yang masih manual tersebut, maka diperlukan sebuah sistem yang dapat memberikan rekomendasi tempat bimbel secara objektif dan akurat. Agar dapat membantu orang tua dalam menentukan arah tempat bimbel yang sesuai dengan kemampuan keuangan yang mereka miliki.

3.1.2. Analisa Sistem Usulan

Berdasarkan analisa sistem berjalan di atas, penulis akan mengembangkan Sistem Penunjang Keputusan (SPK) berbasis web yang dirancang untuk memberikan rekomendasi tempat bimbingan belajar bagi calon siswa/siswi khususnya anak-anak yang akan memulai jenjang pendidikan TK dan SD sistem ini akan menerapkan metode TOPSIS, yaitu metode yang membandingkan setiap alternatif dengan solusi ideal positif (terbaik) dan solusi ideal negatif (terburuk), untuk menentukan alternatif yang paling mendekati kondisi ideal.

Berikut adalah activity diagram dari analisa sistem yang diajukan:

Gambar 3. 2 Activity Diagram Sistem Usulan

Adapun keunggulan dari sistem usulan ini antara lain:

- a. Objektif, dilihat dari analisa sistem berjalan di atas bahwa rekomendasi tempat bimbel masih berdasarkan pengalaman atau opini yang subjektif, dengan adanya sistem usulan yang dikembangkan oleh penulis dapat mengingkatkan objektivitas pengambilan keputusan dilakukan secara objektif.
- b. Adanya sistem pengambilan keputusan yang membantu memberikan rekomendasi dengan cepat dan akurat karena didukung oleh sistem dan algoritma perhitungan TOPSIS.

Memberikan informasi tempat bimbel yang sesuai dengan kriteria dan biaya yang sesuai dengan keuangan orang tua calon murid, serta mendapatkan fasilitan, kapasitas tempat, kualitas tenaga pengajar dan metode pembelajaran seusai dengan biaya yang di tawarkan.

3.2. Metode Penelitian dan Analisa Data

Dalam penelitian ini, dapat diuraikan tahapan proses dalam rekomendasi tempat bimbingan belajar (bimbel) menggunakan metode TOPSIS.

Gambar 3. 3 Gambar Analisa Data

3.2.1. Perhitungan SPK dengan metode TOPSIS

Sistem pendukung keputusan menggunakan metode TOPSIS dalam pemilihan tempat bimbingan belajar, diperlukan beberapa kriteria dan bobot untuk pemilihan tempat bimbingan belajar. menetapkan Kriteria yang dibutuhkan dalam pemilhan tempat bimbel, disini penulis melakukan wawancara dengan 2 pemilik bimbel untuk mengetahui apa saja kriteria yang dibutuhkan orang tua untuk mendapatkan tempat bimbel yang sesuai dengan yang diinginkan.

a. Kriteria dan Bobot

Berikut adalah kriteria dan bobotnya:

- 1) C1: Biaya (SPP per bulan) *Cost*. Bobot: 25% (0.25)
- 2) C2: Fasilitas (Kelengkapan fasilitas) Benefit. Bobot: 20% (0.20)

- 3) C3: Kualitas Pengajar (Kualifikasi dan pengalaman) *Benefit*. Bobot: 30% (0.30)
- 4) C4: Kapasitas Tempat (Jumlah siswa per sesi) *Benefit*. Bobot: 15% (0.15)
- 5) C5: Metode Pembelajaran (Inovasi dan efektivitas) *Benefit*. Bobot: 10% (0.10)

b. Alternatif dan Matriks Keputusan Awal

Alternatifnya adalah Cabaca Calistung dan Bimbel Lintang. Berdasarkan data yang berikan, harga SPP per bulan sama, yaitu Rp100.000. Namun, jumlah siswa per sesi berbeda. Kapasitas tempat di sini kita asumsikan sebagai kriteria *benefit*, karena semakin banyak siswa yang bisa ditampung, semakin besar kapasitasnya. Berikut adalah matriks keputusan awal dengan contoh nilai untuk kriteria lainnya:

Tabel 3. 1 Tabel Matriks Keputusan

Alternatif	C1	C2	C3	C4	C5
A1 (Bimbel Cabaca Calistung)	Rp. 100.000	4	4	12 Siswa	3
A2 (Bimbel Limtang)	Rp. 100.000	5	5	7 Siswa	4

c. Normalisasi Matriks Keputusan (R)

Tahap ini mengubah nilai – nilai dari matriks keputusan awal ke skala yang seragam (0-1) rumusnnya:

$$T_{ij} = X_{iy} / T_{ij} = X_{ij} / \sqrt{\sum_{i=1}^{m} X_{i=1}^2}$$

Perhitungan Denominator:

1) C1 (Biaya):

$$\sqrt{100.000^2 + 100.000^2} = \sqrt{20.000.000.000} \approx 141,421,36$$

2) C2 (Fasilitas):

$$\sqrt{4^2 + 5^2} = \sqrt{41} \approx 6.403$$

3) C3 (Kualitas Pengajar):

$$\sqrt{4^2 + 5^2} = \sqrt{41} \approx 6.403$$

4) C4 (Kapasitas Tempat):

$$\sqrt{12^2 + 7^2} = \sqrt{193} \approx 13.892$$

5) C5 (Metode Pembelajaran):

$$\sqrt{3^2 + 4^2} = \sqrt{25} \approx 25$$

d. Matriks Normalisasi (R)

1) Al Bimbel Cabaca Abidzar Calistung

 $C1:100.000 / 141.421 \approx 0.707$

 $C2: 4/6.403 \approx 0.625$

 $C3: 4/6.403 \approx 0.625$

 $C4: 12/13.892 \approx 0.864$

C5: 3/5 = 0.600

2) A2 Bimbel Lintang

 $C1: 100.000/141.421.36 \approx 0.707$

 $C2: 5/6.403 \approx 0.781$

 $C3: 5/6.403 \approx 0.781$

C4: $7/13.892 \approx 0.504$

C5: 4/5 = 0.800

e. Normalisasi Matriks Terbobot (V)

Kalikan matriks normalisasi (R) dengan bobot kriteria (W).

Rumusnya:

$$v_{ij} = r_{ij} \cdot w_j$$

Alternatif	C 1	C2	C3	C4	C5
A ₁ ⁻ (Cabaca	0.707 ×	0.625 ×	0.625 ×	0.864 ×	0.600 ×
Calistung)	0.25 =	0.20 =	0.30 =	0.15 =	0.10 =
	0.177	0.125	0.188	0.130	0.060

A ₂ ⁻ Lintang	0.707 ×	0.781 ×	0.781 ×	0.504 ×	0.800 ×
	0.25 =	0.20 =	0.30 =	0.15 =	0.10 =
	0.177	0.156	0.234	0.076	0.080

- f. Penentuan Solusi Ideal Positif (A⁺) dan Solusi Ideal Negatif (A⁻)
 - 1) A⁺ (Ideal Positif): Nilai terbaik dari setiap kriteria (Terendah untuk *Cost*, Tertinggi untuk *Benefit*).
 - 2) A⁻ (Ideal Negatif): Nilai terburuk dari setiap kriteria (Tertinggi untuk *Cost*, Terendah untuk *Benefit*).

Kriteria	Tipe	A ⁺ (Ideal Positif)	A ⁻ (Ideal Negatif)
C1 – Biaya	Cost	Min(0.177, 0.177) =	Max(0.177, 0.177) =
C1 – Blaya	Cost	0.177	0.177
C2 – Fasilitas	Benefit	Max(0.125, 0.156) =	Min(0.125, 0.156) =
C2 – Pasiiitas	Бенеји	0.156	0.125
C3 – Kualitas	Benefit	Max(0.188, 0.234) =	Min(0.188, 0.234) =
Pengajar	Бенеји	0.234	0.188
C4 – Kapasitas	Benefit	Max(0.130, 0.076) =	Min(0.130, 0.076) =
Tempat	Бенеји	0.130	0.076
C5 – Metode	Benefit	Max(0.060, 0.080) =	Min(0.060, 0.080) =
Pembelajaran	Бенеји	0.080	0.060

- g. Menghitung Jarak Alternatif dari Solusi Ideal Hitung jarak setiap alternatif dari A^+ (D_i^+) dan A^- (D_i^-).
 - 1) Jarak dari Solusi Ideal Positif (D_i^+) D_1^+ (Untuk Cabaca Abidzar Calistung):

$$\sqrt{(0.177 - 0.177)^2 + (0.125 - 0.156)^2 + (0.188 - 0.234)^2 + (0.130 - 0.130)^2 + (0.060 - 0.080)^2}$$

$$\sqrt{0^2 + (-0.031)^2 + (-0.046)^2 + 0^2 + (-0.020)^2}$$

$$\sqrt{0.000961 + 0.002116 + 0.0004}$$

$$\sqrt{0.003477} \approx 0.059$$

D₂⁺ (Untuk Bimbel Lintang):

$$\sqrt{(0.177 - 0.177)^2 + (0.156 - 0.156)^2 + (0.234 - 0.234)^2
+ (0.076 - 0.130)^2 + (0.080 - 0.080)^2}$$

$$\sqrt{0^2 + 0^2 + 0^2 + (-0.054)^2 + 0^2}$$

$$\sqrt{0.002916} \approx 0.054$$

2) Jarak dari Solusi Ideal Negatif (D_i⁻)

D₁⁻ (Untuk Cabaca Abidzar Calistung):

$$\sqrt{(0.177 - 0.177)^2 + (0.125 - 0.125)^2 + (0.188 - 0.188)^2
+ (0.130 - 0.076)^2 + (0.060 - 0.060)^2}$$

$$\sqrt{0^2 + 0^2 + 0^2 + (-0.054)^2 + 0^2}$$

$$\sqrt{0.002916} \approx 0.054$$

D₂⁻ (Untuk Cabaca Abidzar Calistung):

$$\sqrt{(0.177 - 0.177)^2 + (0.156 - 0.125)^2 + (0.234 - 0.188)^2 + (0.076 - 0.076)^2 + (0.080 - 0.060)^2}$$

$$\sqrt{0^2 + (0.031)^2 + (0.046)^2 + 0^2 + (0.020)^2}$$

$$\sqrt{0.003477} \approx 0.059$$

h. Perhitungan Nilai Preferensi (V_i)

Nilai preferensi untuk setiap arternatif dengan rumus $V_i = D_i^- / (D_i^- + D_i^+)$

*V*₁ BimbelCabaca Abidzar Calistung:

$$\frac{0.054}{0.054 + 0.059} = \frac{0.054}{0.113} \approx 0.478$$

V₂ Bimbel Lintang:

$$\frac{0.059}{0.059 + 0.054} = \frac{0.059}{0.113} \approx 0.522$$

i. Hasil Dalam Format Tabel dan PerangkinganNilai preferensi tertinggi adalah pilihan terbaik.

1) Matriks Keputusan Awal

Alternatif	C 1	C2	С3	C4	C5
A1 (Abidzar	Rp.	4	4	12	3
Calistung)	100.000	-			_
A2 (Bimbel	Rp.	5	5	7	4
Lintang)	100.000			,	·
Bobot (W _j)	0.25	0.20	0.30	0.15	0.10
Tipe Kriteria	Cost	Benefit	Benefit	Benefit	Benefit
Denominator	141.421	6.403	6.403	13.892	5
(SQR SUM)	1 . 1	000	0.105	10.002	

2) Matriks Normalisasi (R)

Alternatif	C1	C2	C3	C4	C5
A1 (Bimbel Abidzar Calistung)	0.707	0.625	0.625	0.864	0.600
A2 (Bimbel Lintang)	0.707	0.781	0.781	0.504	0.800

3) Matriks Terbobot (V)

Alternatif	C1	C2	C3	C4	C5
A1 (Bimbel Abidzar Calistung)	0.177	0.125	0.188	0.130	0.060
A2 (Bimbel Lintang)	0.177	0.156	0.234	0.076	0.080

4) Solusi Ideal

Alternatif	C1	C2	С3	C4	C5
A ⁺ (Bimbel Calistung)	0.177	0.156	0.234	0.130	0.080
A ⁻ (Bimbel Lintang)	0.177	0.125	0.188	0.076	0.060

5) Jarak Dari Solusi Ideal

Alternatif	Jarak Positif (Di ⁺)	Jarak Negatif (Di ⁻)
A1 (Bimbel Abidzar Calistung)	0.059	0.054
A2 (Bimbel Lintang)	0.054	0.059

6) Nilai Preferensi

Alternatif	Nilai
A1 (Bimbel Abidzar Calistung)	0.478
A2 (Bimbel Lintang)	0.522

3.3. Perancangan Basis Data

Perancangan basis data merupakan proses menyusun struktur yang terogranisir untuk menyimpan, mengelola, dan mengakses data dalam suatu sistem komputer. Langkah pertama perancangan basis data adalah pembuatan model konseptual yang menggambarkan entitas, atribut, dan hubungan antar entitas dengan menggunakan alat seperti *Entity Relationship* Diagram (ERD). Langkah selanjutnya adalah merancang struktur fisik basis data berdasarkan model konseptual seperti menentukan tipe data, kunci, indeks, dan cara penyimpanan data yang sesuai dengan kebutuhan aplikasi. Proses normalisasi juga dilakukan untuk meminimalkan redunansi data dan memastikan konsistensi.

E user (E) orangtua (E) log (E) bimbel oid_orangtua : int «PK» o id_log : int «PK» oid_bimbel : int «PK no_hp_orangtua : varcha alamat_orangtua : text d_user : int «FK» dibuat pada : datetime (E) hasil_topsis E kriteria o id_hasil : int «PK» id_kriteria : int «PK» id_orangtua : int «FK» id_bimbel : int «FK» preferensi_tertinggi : float nama_kriteria : varchar bobot : float atribut : enum(Benefit, Cost E penilaian o id_penilaian : int «PK» id_kriteria : int «FK» id_bimbel : int «FK» nilai : float id_hasil : int «FK»

3.3.1. Entity Relationship Diagram (ERD)

Gambar 3. 4 Entity Relationship Diagram (ERD)

Pada gambar 3.4 menggambarkan alur data dalam sistem rekomendasi bimbel berbasis metode TOPSIS. Entitas *user* menyimpan data pengguna yang dapat berperan sebagai *admin* atau orang tua, lalu terhubung dengan entitas orangtua untuk menyimpan detail kontak orang tua serta *log* untuk mencatat aktivitas pengguna. Orang tua dapat memilih bimbel, yang datanya tersimpan dalam entitas bimbel, dan hasil pilihan tersebut dinilai menggunakan penilaian berdasarkan sejumlah kriteria yang memiliki bobot serta atribut (*Benefit* atau *Cost*). Proses penilaian ini menghasilkan perhitungan yang disimpan dalam entitas hasil_topsis, yang berisi nilai preferensi tertinggi sebagai dasar rekomendasi bimbel. Dengan demikian, setiap komponen dalam ERD ini saling terkait dalam proses pencatatan data, penilaian, hingga menghasilkan rekomendasi bimbel terbaik untuk orang tua.

3.3.2. Transformasi ERD ke Logical Record Structure (LRS)

Transformasi ERD ke LRS adalah proses mengubah gambaran ide dalam ERD menjadi struktur fisik yang mengatur bagaimana data disimpan dalam sistem atau basis data.

Transformasi ini artinya kita ubah *entity & relationship* jadi *record* (tabel) yang berisi *field + foreign key* sesuai relasinya.

- a. User
 - 1) Primary Key (PK): id user
 - 2) Fields: username, password, jabatan, nama, foto, dibuat_pada
 - 3) Relasi:
 - 1 user: banyak orangtua (FK di orangtua)
 - 1 user: banyak log (FK di log)
- b. Orangtua
 - 1) PK: id orangtua
 - 2) Fields: no hp orangtua, alamat orangtua, id user (FK), dibuat pada
 - 3) Relasi:
 - 1 orangtua: banyak hasil_topsis (FK di hasil_topsis)
- c. Bimbel
 - 1) PK: id_bimbel
 - 2) Fields: nama bimbel, alamat bimbel, dibuat pada
 - 3) Relasi:
 - 1 bimbel: banyak hasil_topsis (FK di hasil_topsis)
 - 1 bimbel: banyak penilaian (FK di penilaian)
- d. Kriteria
 - 1) PK: id kriteria
 - 2) Fields: nama_kriteria, bobot, atribut, dibuat_pada
 - 3) Relasi:
 - 1 kriteria: banyak penilaian (FK di penilaian)

- e. Hasil Topsis
 - 1) PK: id_hasil
 - Fields: id_orangtua (FK), id_bimbel (FK), preferensi_tertinggi, dibuat pada
 - 3) Relasi:
 - 1 hasil topsis: banyak penilaian

f. Penilaian

- 1) PK: id_penilaian
- 2) Fields: id kriteria (FK), id bimbel (FK), nilai, id hasil (FK)

3.3.3. Logical Record Structure (LRS)

Gambar 3. 5 Logical Record Structure

Gambar 3.5 menggambarkan hubungan antar entitas dalam sistem rekomendasi bimbel berbasis metode TOPSIS. Entitas *user* menyimpan informasi akun pengguna yang dapat terhubung dengan entitas orangtua untuk data wali murid serta *log* sebagai pencatatan aktivitas pengguna. Data bimbel tersimpan pada

entitas bimbel yang nantinya akan dinilai melalui entitas penilaian, dengan mengacu pada entitas kriteria yang memiliki bobot dan atribut tertentu. Hasil dari proses penilaian ini disimpan pada entitas hasil_topsis, yang berisi nilai preferensi tertinggi sebagai dasar rekomendasi bimbel. Secara keseluruhan, diagram ini memperlihatkan alur mulai dari input pengguna, pencatatan data, proses penilaian hingga menghasilkan rekomendasi bimbel yang sesuai.

3.3.4. Normalisasi

Gambar 3. 6 Normalisasi

Gambar 3.6 menunjukkan proses normalisasi basis data SPK Bimbel TOPSIS yang terdiri dari tiga tahap, yaitu *First Normal Form* (1NF), *Second Normal Form* (2NF), dan *Third Normal Form* (3NF). Pada tahap 1NF, semua atribut masih dikelompokkan dalam tabel dasar sesuai entitas utama seperti *user*, orangtua, bimbel, kriteria, penilaian, hasil_topsis, dan *log*. Selanjutnya pada tahap 2NF, setiap tabel dipecah agar tidak ada redundansi data dengan memastikan bahwa setiap atribut bergantung sepenuhnya pada *primary key*. Tahap akhir 3NF menghasilkan struktur tabel yang lebih efisien, bebas dari anomali data, serta memiliki hubungan yang jelas antar entitas melalui *foreign key*, seperti penilaian yang menghubungkan kriteria, bimbel, dan hasil topsis, serta hubungan *user* dengan orangtua dan *log*.

Dengan normalisasi ini, basis data menjadi lebih terstruktur, konsisten, dan optimal untuk mendukung sistem rekomendasi berbasis TOPSIS.

3.3.5. Spesifikasi Basis Data

Spesifikasi basis data mencakup detail tentang struktur dan atribut tabel yang digunakan dalam implementasi aplikasi ini:

a. Tabel *User*

Field	Type	Length	Index
id_user	int	11	Primary Key
username	varchar	100	
password	varchar	255	
jabatan	enum	'admin', 'orangtua'	
nama	varchar	100	
foto	text	-	
dibuat_pada	timestamp	-	

b. Tabel Orangtua

Field	Type	Length	Index
id_orangtua	int	11	Primary Key
no_hp_orangtua	varchar	20	
alamat_orangtua	text	-	
id_user	int	11	Foreign Key → User(id_user)
dibuat_pada	datetime	-	

c. Tabel Bimbel

Field	Туре	Length	Index
id_bimbel	int	11	Primary Key
nama_bimbel	varchar	100	
alamat_bimbel	text	-	
dibuat_pada	timestamp	-	

d. Tabel Kriteria

Field	Type	Length	Index
id_kriteria	int	11	Primary Key
nama_kriteria	varchar	100	
bobot	float	-	
atribut	enum	'Benefit', 'Cost'	
dibuat_pada	datetime	-	

e. Tabel Hasil_Topsis

Field	Type	Length	Index
id_hasil	int	11	Primary Key
id_orangtua	int	11	Foreign Key →
			Orangtua(id_orangtua)
id_bimbel	int	11	Foreign Key → Bimbel(id_bimbel)
preferensi_tertinggi	float	-	
dibuat_pada	datetime	-	

f. Tabel Penilaian

Field	Type	Length	Index
id_penilaian	int	11	Primary Key
id_kriteria	int	11	Foreign Key → Kriteria(id_kriteria)
id_bimbel	int	11	Foreign Key → Bimbel(id_bimbel)
nilai	float	-	
id_hasil	int	11	Foreign Key → Hasil_Topsis(id_hasil)

3.4. Perancangan Unified Modeling Language (UML)

UML (*Unified Modeling Language*) adalah bahasa pemodelan untuk sistem atau perangkat lunak yang berparadigma (berorientasi objek).

3.4.1. Use Case Diagram

Use case diagram adalah suatu pola atau gambaran yang menunjukkan kelakuan atau kebiasaan sistem.

Gambar 3. 7 Use Case Diagram

Pada gambar 3.7 *use case* diagram digambarkan bahwa sistem memiliki dua aktor utama, yaitu *admin* dan orang tua. *Admin* memiliki peran penting dalam mengelola sistem, mulai dari melakukan *login*, mengelola data bimbel, mengelola data orang tua, mengelola kriteria penilaian, hingga memproses perhitungan menggunakan metode TOPSIS. Selain itu, *admin* juga dapat melihat hasil rekomendasi bimbel, mencetak laporan, serta melakukan registrasi. Sementara itu, orang tua sebagai pengguna sistem dapat melakukan *login*, melihat hasil rekomendasi bimbel yang sudah diproses oleh sistem, mencetak laporan, serta melakukan registrasi. Dengan demikian, diagram ini menunjukkan interaksi antara

aktor dengan sistem, serta menggambarkan fungsi utama yang disediakan untuk mendukung proses rekomendasi bimbingan belajar berbasis metode TOPSIS.

3.4.2. Activity Diagram

Activity diagram adalah representasi grafis dari konsep aliran data/kontrol dan aksi terstruktur yang dirancang secara baik dalam suatu sistem. Diagram ini membantu dalam memvisualisasikan proses-proses yang terjadi dalam sistem dengan jelas dan detail.

a. Activity Diagram Melakukan Login

Gambar 3. 8 Activity Diagram Melakukan Login

Gambar 3.8 menggambarkan alur aktivitas ketika pengguna melakukan proses *login* ke sistem. Proses dimulai dari pengguna membuka *website* SPK, kemudian mengisi *username* dan *password*, setelah itu menekan tombol *login*. Sistem menerima dan memvalidasi akun pengguna. Jika valid, sistem membuat *session* sesuai *role* pengguna dan mengarahkan pengguna ke halaman *dashboard*. Namun, jika kredensial tidak valid,

sistem akan menampilkan pesan kesalahan dan mengembalikan pengguna ke halaman *login* untuk mencoba kembali.

b. Activity Diagram Mengelola Bimbel

Gambar 3. 9 Activity Diagram Mengelola Bimbel

Activity diagram pada gambar 3.9 menggambarkan alur proses mengelola data bimbel antara pengguna dan sistem. Proses dimulai ketika pengguna membuka *menu* bimbel, lalu sistem menampilkan halaman bimbel. Selanjutnya, pengguna dapat melakukan aksi berupa menambah, mengubah, atau menghapus data bimbel, yang kemudian diproses oleh sistem. Setelah data diproses, sistem menyimpannya ke dalam basis data dan kembali menampilkan halaman bimbel sebagai hasil akhir. Diagram ini menunjukkan interaksi dua arah antara pengguna dan sistem dalam mengelola data bimbel secara terstruktur dan otomatis.

Activity Diagram - Mengelola Orang Tua/ Pengguna Sistem Menampilkan Membuka Menu Halaman Orang Orang Tua Tua Tambah / Ubah / Memproses Data Hapus Data Orang Tua Orang Tua Menyimpan Data Orang Tua Menampilkan Halaman Orang

c. Activity Diagram Mengelola Orang Tua

Gambar 3. 10 Activity Diagram Mengelola Orang Tua

Pada gambar 3.10 menggambarkan alur proses mengelola data orang tua dalam sistem. Proses dimulai saat pengguna membuka *menu* orang tua, lalu sistem menampilkan halaman orang tua. Setelah itu, pengguna dapat melakukan aksi seperti menambah, mengubah, atau menghapus data orang tua, yang kemudian diproses oleh sistem. Sistem selanjutnya menyimpan data tersebut ke dalam basis data, lalu menampilkan kembali halaman orang tua sebagai hasil akhir. Diagram ini menunjukkan interaksi antara pengguna dan sistem dalam mengelola informasi orang tua secara terstruktur dan otomatis.

Activity Diagram - Mengelola Kriteria Pengguna Sistem Membuka Menu Menampilkan Kriteria Halaman Kriteria Tambah / Ubah / Memproses Data Hapus Data Kriteria Kriteria Menyimpan Data Kriteria Menampilkan Halaman Kriteria

d. Activity Diagram Mengelola Kriteria

Gambar 3. 11 Activity Diagram Mengelola Kriteria

Gambar 3.11 menggambarkan alur proses mengelola data kriteria dalam sistem. Proses dimulai ketika pengguna membuka *menu* kriteria, kemudian sistem menampilkan halaman kriteria. Selanjutnya, pengguna dapat melakukan aksi seperti menambah, mengubah, atau menghapus data kriteria yang akan diproses oleh sistem. Setelah itu, sistem menyimpan data yang telah dikelola dan kembali menampilkan halaman kriteria untuk memperlihatkan hasil perubahan. Diagram ini menunjukkan interaksi terstruktur antara pengguna dan sistem dalam pengelolaan data kriteria secara otomatis dan efisien.

Activity Diagram - Mengelola SPK Bimbel / Pengguna Sistem Menampilkan Membuka Menu Halaman SPK SPK Bimbel Bimbel Tambah / Ubah / Memproses Data Hapus Data SPK SPK Bimbel Bimbel Menyimpan Data SPK Bimbel Menampilkan Hasil Rekomendasi Bimbel

e. Activity Diagram Mengelola SPK Bimbel

Gambar 3. 12 Activity Diagram Mengelola SPK Bimbel

Activity diagram pada gambar 3.12 menjelaskan proses mengelola SPK Bimbel dalam sistem. Proses dimulai ketika pengguna membuka menu SPK Bimbel, lalu sistem menampilkan halaman SPK Bimbel. Setelah itu, pengguna dapat melakukan aksi seperti menambah, mengubah, atau menghapus data SPK Bimbel, yang kemudian diproses oleh sistem. Data yang sudah diproses akan disimpan oleh sistem, kemudian sistem menampilkan hasil rekomendasi bimbel berdasarkan perhitungan yang ada. Diagram ini menggambarkan alur interaksi antara pengguna dan sistem dalam pengelolaan serta penyajian hasil rekomendasi bimbel secara otomatis.

Pengguna Sistem Membuka Menu SPK Bimbel Memilih hasil SPK dan menekan tombol Detail Menampilkan Halaman SPK Bimbel Menampilkan Hasil Rekomendasi Bimbel

f. Activity Diagram Melihat Hasil Rekomendasi Bimbel

Gambar 3. 13 Activity Diagram Melihat Hasil Rekomendasi Bimbel

Activity diagram pada gambar 3.13 menggambarkan proses ketika pengguna membuka menu SPK Bimbel, lalu sistem menampilkan halaman SPK Bimbel. Setelah itu, pengguna memilih hasil SPK yang tersedia dan menekan tombol detail, kemudian sistem akan menampilkan hasil rekomendasi bimbel sesuai dengan data yang telah diproses sebelumnya. Diagram ini menunjukkan alur interaksi sederhana antara pengguna dan sistem untuk menampilkan hasil rekomendasi bimbel secara cepat.

g. Activity Diagram Mencetak Laporan

Gambar 3. 14 Activity Diagram Mencetak Laporan

Pada gambar 3.14 menjelaskan proses mencetak laporan SPK bimbel dalam sistem. Proses dimulai saat pengguna membuka *menu* laporan, kemudian sistem menampilkan halaman laporan. Selanjutnya, pengguna memilih hasil SPK yang tersedia dan menekan tombol *print*, sehingga sistem akan mencetak laporan SPK sesuai data yang dipilih. Diagram ini memperlihatkan alur interaksi sederhana antara pengguna dan sistem untuk menghasilkan laporan dalam bentuk cetakan sebagai output akhir.

h. Activity Diagram Melakukan Registrasi

Gambar 3. 15 Activity Diagram Melakukan Registrasi

Activity diagram pada gambar 3.15 menggambarkan proses melakukan registrasi pada sistem SPK Bimbel. Proses dimulai ketika pengguna membuka website SPK dan menekan tombol registrasi, kemudian sistem menampilkan halaman registrasi. Pengguna lalu mengisi data berupa nama lengkap, username, dan password. Sistem akan memverifikasi apakah username yang dimasukkan sudah ada atau belum. Jika username sudah terdaftar, sistem menampilkan pesan gagal registrasi dan pengguna diarahkan kembali ke halaman registrasi. Namun, jika username belum ada, maka registrasi berhasil dan sistem menampilkan halaman login agar

pengguna dapat masuk ke dalam aplikasi. Diagram ini menunjukkan mekanisme validasi dan alur registrasi yang jelas antara pengguna dan sistem.

3.4.3. Sequence Diagram

Sequence diagram adalah representasi UML yang menggambarkan interaksi di antara objek-objek di dalam dan sekitar sistem, termasuk mahasiswa, tampilan, dan lainnya, melalui pesan-pesan yang digambarkan secara sekuensial sepanjang waktu.

a. Sequence Diagram Melakukan Login

Gambar 3. 16 Sequence Diagram Melakukan Login

Pada diagram gambar 3.16 menjelaskan proses interaksi pengguna dengan sistem ketika melakukan *login*. Proses dimulai dari pengguna memasukkan *username* dan *password* ke halaman *login*. Data tersebut dikirim ke *controller* untuk divalidasi ke *database*. Jika data sesuai, sistem memberikan akses masuk dan mengarahkan pengguna ke *dashboard*. Namun, jika data tidak valid, sistem menampilkan pesan *error* dan meminta pengguna untuk mencoba kembali. Alur ini memastikan hanya pengguna sah yang dapat mengakses sistem.

b. Sequence Diagram Mengelola Bimbel

Gambar 3. 17 Sequence Diagram Mengelola Bimbel

Diagram gambar 3.17 menggambarkan bagaimana *admin* mengelola data bimbel di dalam sistem. *Admin* memilih *menu* bimbel pada *dashboard*, lalu mengirimkan perintah untuk menambah, mengubah, atau menghapus data bimbel. *Controller* bimbel kemudian memproses permintaan tersebut dan berinteraksi dengan *database* untuk memperbarui data. Setelah berhasil, sistem menampilkan data terbaru kepada *admin*. Proses ini menjaga agar informasi bimbel tetap *up-to-date*.

c. Sequence Diagram Mengelola Orang Tua

Gambar 3. 18 Sequence Diagram Mengelola Orang Tua

Pada gambar 3.18, *admin* bertugas mengelola data orang tua melalui *dashboard*. *Admin* dapat melakukan operasi penambahan, pengubahan, atau penghapusan data orang tua. *Controller* orang tua menerima perintah tersebut, kemudian memperbarui data pada *database*. Setelah perubahan tersimpan, sistem menampilkan data orang tua terbaru pada *dashboard*.

Mekanisme ini membantu *admin* dalam menjaga akurasi informasi wali murid di sistem.

d. Sequence Diagram Mengelola Kriteria

Gambar 3. 19 Sequence Diagram Mengelola Kriteria

Pada gambar 3.19 menunjukkan bagaimana *admin* mengelola data kriteria yang digunakan dalam metode TOPSIS. *Admin* memilih *menu* kriteria, lalu dapat menambah, mengubah, atau menghapus data kriteria sesuai kebutuhan. *Controller* kriteria mengirimkan perubahan tersebut ke *database* untuk disimpan. Hasil pembaruan ditampilkan kembali ke *dashboard*, sehingga admin bisa memastikan bobot dan atribut kriteria yang digunakan sesuai kebutuhan analisis.

e. Sequence Diagram Mengelola SPK Bimbel

Gambar 3. 20 Sequence Diagram Mengelola SPK Bimbel

Gambar 3.20 menjelaskan proses ketika *admin* mengelola perhitungan SPK bimbel dengan metode TOPSIS. *Admin* memilih *menu* SPK Bimbel,

kemudian menginput data penilaian. *Controller* SPK menyimpan data penilaian ke *database* dan menjalankan proses perhitungan. Setelah hasil preferensi diperoleh, sistem menampilkan notifikasi sukses serta hasil perhitungan kepada *admin*. Proses ini memungkinkan sistem memberikan rekomendasi bimbel secara objektif.

f. Sequence Diagram Melihat Hasil Rekomendasi Bimbel

Gambar 3. 21 Sequence Diagram Melihat Hasil Rekomendasi Bimbel

Diagram pada gambar 3.21 menggambarkan bagaimana orang tua dapat melihat hasil rekomendasi bimbel. Orang tua memilih *menu* hasil rekomendasi pada *dashboard*, kemudian sistem melalui *controller* hasil mengambil data perhitungan TOPSIS dari *database*. Data yang diperoleh ditampilkan kembali kepada orang tua sebagai rekomendasi bimbel. Dengan alur ini, orang tua dapat dengan mudah memperoleh pilihan bimbel terbaik berdasarkan kriteria yang ada.

g. Sequence Diagram Mencetak Laporan

Gambar 3. 22 Sequence Diagram Mencetak Laporan

Gambar 3.22 memperlihatkan proses pencetakan laporan oleh *admin*. *Admin* memilih *menu* cetak laporan melalui *dashboard*, lalu sistem meminta data laporan ke *controller* laporan. *Controller* ini mengambil data hasil dan penilaian dari *database* untuk diolah. Setelah itu, sistem menghasilkan laporan dalam bentuk *file* (PDF/Excel) dan memberikannya ke *admin* untuk dicetak. Proses ini memudahkan *admin* dalam mendokumentasikan hasil rekomendasi bimbel.

h. Sequence Diagram Melakukan Registrasi

Gambar 3. 23 Sequence Diagram Melakukan Registrasi

Pada gambar 3.23, alur registrasi dimulai dari orang tua yang mengisi *form* registrasi melalui halaman registrasi. Data registrasi kemudian diteruskan ke *controller* untuk disimpan ke dalam *database*. Setelah data berhasil disimpan, sistem memberikan notifikasi sukses kepada pengguna. Proses ini memastikan bahwa pengguna baru bisa terdaftar ke dalam sistem dan mendapatkan hak akses sesuai peranannya.

3.4.4. Class Diagram

Class diagram menggambarkan hubungan antar class yang di dalamnya terdapat atribut dan fungsi dari suatu objek.

Gambar 3. 24 Class Diagram

Class Diagram pada gambar 3.24 menggambarkan struktur sistem SPK Bimbel TOPSIS yang terdiri dari beberapa kelas utama, yaitu user, orangtua, bimbel, kriteria, penilaian, hasil_topsis, dan log. Class user menyimpan data akun pengguna yang berhubungan dengan orangtua serta mencatat aktivitas melalui log. Class orangtua terhubung dengan hasil_topsis untuk melihat rekomendasi bimbel, sementara kelas bimbel dinilai berdasarkan kriteria yang memiliki atribut bobot dan tipe (Benefit/Cost). Penilaian antar entitas disimpan dalam class penilaian, yang menjadi dasar perhitungan pada class hasil_topsis untuk menghasilkan nilai preferensi. Relasi antar kelas menggambarkan alur data mulai dari input pengguna, pencatatan aktivitas, proses penilaian, hingga menghasilkan rekomendasi bimbel terbaik sesuai metode TOPSIS.

3.5. User Interface

User Interface adalah tampilan grafis yang berhubungan langsung dengan mahasiswa. Berikut adalah beberapa *user interface* dari SPK Bimbel TOPSIS.

a. Rancangan Tampilan Halaman Login

Gambar 3. 25 Rancangan Tampilan Halaman Login

Halaman *login* berfungsi sebagai gerbang utama pengguna masuk ke sistem. Pada halaman ini terdapat *form login* dengan *input username* dan *password*, serta tombol "*Login*". Jika data valid, pengguna akan diarahkan ke *dashboard* sesuai hak aksesnya (*admin* atau orang tua). Jika salah, akan muncul pesan *error*. Tampilan ini sederhana agar mudah digunakan.

b. Rancangan Tampilan Halaman Dashboard

Gambar 3. 26 Rancangan Tampilan Halaman Dashboard

Dashboard menjadi pusat navigasi sistem. Di dalamnya terdapat menu utama yang mengarah ke halaman Bimbel, Orang Tua, Kriteria, SPK Bimbel, Hasil Rekomendasi, Laporan, dan Log. Tampilan dashboard dilengkapi dengan ringkasan data atau statistik penting agar admin dan orang tua bisa langsung melihat informasi inti.

c. Rancangan Tampilan Halaman SPK Bimbel

Gambar 3. 27 Rancangan Tampilan Halaman SPK Bimbel

Halaman SPK Bimbel digunakan *admin* untuk melakukan *input* penilaian berdasarkan kriteria. Pada halaman ini terdapat *form* pilihan bimbel, daftar kriteria beserta nilai *input*, serta tombol proses untuk menjalankan perhitungan TOPSIS. Hasil sementara juga dapat ditampilkan sebelum disimpan.

d. Rancangan Tampilan Halaman Kriteria

Gambar 3. 28 Rancangan Tampilan Halaman Kriteria

Halaman ini dipakai untuk mengelola kriteria yang dipakai dalam perhitungan TOPSIS. Terdapat tabel daftar kriteria yang berisi nama kriteria, bobot, atribut (*Benefit/Cost*), serta tombol aksi (tambah, ubah, hapus). *Admin* bisa mengatur kriteria agar sistem tetap relevan dengan kebutuhan pengambilan keputusan.

e. Rancangan Tampilan Halaman Bimbel

Gambar 3. 29 Rancangan Tampilan Halaman Bimbel

Halaman bimbel menampilkan daftar lembaga bimbingan belajar yang tersimpan dalam sistem. *Admin* dapat menambah bimbel baru dengan nama, alamat, dan data pendukung lain. Tabel daftar bimbel disertai tombol aksi edit dan hapus. Halaman ini memudahkan pengelolaan data alternatif bimbel.

f. Rancangan Tampilan Halaman Orang Tua

Gambar 3. 30 Rancangan Tampilan Halaman Orang Tua

Halaman ini berisi data orang tua atau wali murid yang menggunakan sistem. Tampilannya berupa tabel dengan kolom nama, alamat, nomor telepon, dan *username* terkait. Admin dapat menambah, mengubah, atau menghapus data orang tua. Dengan adanya halaman ini, data pengguna orang tua lebih terstruktur.

g. Rancangan Tampilan Halaman User

Gambar 3. 31 Rancangan Tampilan Halaman User

Halaman *user* ditujukan untuk mengelola data akun pengguna (*admin* maupun orang tua). Tabel berisi *username*, nama, jabatan, dan status akun. *Admin* bisa menambah akun baru, memperbarui data *user*, atau menghapus akun lama. Halaman ini penting untuk manajemen akses sistem.

h. Rancangan Tampilan Halaman Laporan

Gambar 3. 32 Rancangan Tampilan Halaman Laporan

Halaman hasil rekomendasi menampilkan hasil perhitungan metode TOPSIS yang sudah diproses oleh sistem. Orang tua bisa melihat bimbel dengan nilai preferensi tertinggi hingga *ranking* lengkap alternatif. Tampilan biasanya berupa tabel dengan kolom nama bimbel, nilai preferensi, dan urutan *ranking*. Halaman ini jadi rujukan utama bagi orang tua untuk memilih bimbel terbaik.

j. Rancangan Tampilan Halaman Log

Gambar 3. 33 Rancangan Tampilan Halaman Log

Halaman *log* mencatat seluruh aktivitas pengguna, misalnya *login*, *logout*, menambah data, mengubah, atau menghapus data. Data ditampilkan dalam tabel berisi keterangan aktivitas, waktu, dan *user* yang melakukan aksi. Halaman *log* ini berfungsi sebagai *audit trail* agar aktivitas sistem dapat dipantau dengan transparan.

BAB IV IMPLEMENTASI DAN PENGUJIAN

4.1. Spesifikasi

Spesifikasi adalah serangkaian karakteristik atau persyaratan teknis yang menggambarkan fitur, fungsi, dan kinerja suatu sistem. Spesifikasi ini bertujuan untuk memastikan bahwa sistem tersebut memenuhi kebutuhan dan harapan mahasiswa serta standar yang ditetapkan.

4.1.1. Spesifikasi Perangkat Lunak

Spesifikasi dalam implementasi dan pengujian SPK Bimbel TOPSIS menggunakan perangkat lunak sebagai berikut:

Tabel 4. 1 tabel spesifikasi perangkat lunak

No.	Perangkat Lunak	Keterangan
1.	Sistem Operasi	Windows 10
2.	Code Editor	Visual Studio Code
3.	Web Server dan Database	XAMPP
4.	Web Browser	Google Chrome
5.	Desain UI/UX	Figma

4.1.2. Spesifikasi Perangkat Keras

Spesifikasi dalam implementasi dan pengujian SPK Bimbel TOPSIS menggunakan perangkat keras *laptop* sebagai berikut:

Tabel 4. 2 tabel spesifikasi perangkat keras laptop

No.	Perangkat Keras	Keterangan
1.	Model	Laptop Lenovo Ideapad 320 14IKB-80XK
2.	Processor	Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz,
		2712 Mhz, 2 Core(s), 4 Logical Processor(s)

3.	Memory RAM	4GB DDR4
4.	Penyimpanan Internal	SSD Verbatim 256GB Vi550 S3 SATA III 2,5 inch
5.	Internet	WiFi IndiHome 20 Mbps

Spesifikasi dalam pengujian SPK Bimbel TOPSIS menggunakan perangkat keras *smartphone* sebagai berikut:

Tabel 4. 3 tabel spesifikasi perangkat keras smartphone

No.	Perangkat Keras	Keterangan
1.	Model	Smartphone Poco X5 5G
2.	Processor	Snapdragon® 695
3.	Memory RAM	6GB
4.	Penyimpanan Internal	128GB
5.	Android Version	14 Upside-down Cake
6.	Sistem Operasi	Xiaomi HyperOS v1.0.2.0.UMPIDXM

4.2. Implementasi Program

Implementasi adalah tahap di mana sistem mulai dioperasikan secara nyata, sehingga dapat diketahui apakah sistem tersebut benar-benar dapat mencapai tujuan yang diinginkan.

4.2.1. Tampilan Halaman Login

Gambar 4. 1 Tampilan Halaman Login

Pada gambar 4.2 halaman *login* berfungsi sebagai gerbang utama pengguna masuk ke sistem. Pada halaman ini terdapat *form login* dengan *input username* dan *password*, serta tombol "*Login*". Jika data valid, pengguna akan diarahkan ke *dashboard* sesuai hak aksesnya (*admin* atau orang tua). Jika salah, akan muncul pesan *error*. Tampilan ini sederhana agar mudah digunakan.

4.2.2. Tampilan Halaman Dashboard

Gambar 4. 2 Tampilan Halaman Dashboard

Gambar 4.3 halaman *dashboard* menjadi pusat navigasi sistem. Di dalamnya terdapat *menu* utama yang mengarah ke halaman Bimbel, Orang Tua, Kriteria, SPK Bimbel, Hasil Rekomendasi, Laporan, dan *Log*.

4.2.3. Tampilan Halaman SPK Bimbel

Gambar 4. 3 Tampilan Halaman SPK Bimbel

Halaman SPK Bimbel pada gambar 4.4 digunakan *admin* untuk melakukan *input* penilaian berdasarkan kriteria. Pada halaman ini terdapat *form* pilihan bimbel, daftar kriteria beserta nilai *input*, serta tombol proses untuk menjalankan perhitungan TOPSIS. Hasil sementara juga dapat ditampilkan sebelum disimpan.

4.2.4. Tampilan Halaman Kriteria

Gambar 4. 4 Tampilan Halaman Kriteria

Gambar 4.5 halaman ini dipakai untuk mengelola kriteria yang dipakai dalam perhitungan TOPSIS. Terdapat tabel daftar kriteria yang berisi nama kriteria, bobot, atribut (*Benefit/Cost*), serta tombol aksi (tambah, ubah, hapus). *Admin* bisa mengatur kriteria agar sistem tetap relevan dengan kebutuhan pengambilan keputusan.

4.2.5. Tampilan Halaman Bimbel

Gambar 4. 5 Tampilan Halaman Bimbel

Gambar 4.6 halaman bimbel menampilkan daftar lembaga bimbingan belajar yang tersimpan dalam sistem. *Admin* dapat menambah bimbel baru dengan nama, alamat, dan data pendukung lain. Tabel daftar bimbel disertai tombol aksi edit dan hapus. Halaman ini memudahkan pengelolaan data alternatif bimbel.

4.2.6. Tampilan Halaman Orang Tua

Gambar 4. 6 Tampilan Halaman Orang Tua

Halaman ini berisi data orang tua atau wali murid yang menggunakan sistem. Tampilannya berupa tabel dengan kolom nama, alamat, nomor telepon, dan *username* terkait. Admin dapat menambah, mengubah, atau menghapus data orang tua. Dengan adanya halaman ini, data pengguna orang tua lebih terstruktur.

4.2.7. Tampilan Halaman User

Gambar 4. 7 Tampilan Halaman User

Halaman *user* gambar 4.8 ditujukan untuk mengelola data akun pengguna (*admin* maupun orang tua). Tabel berisi *username*, nama, jabatan, dan status akun. *Admin* bisa menambah akun baru, memperbarui data *user*, atau menghapus akun lama. Halaman ini penting untuk manajemen akses sistem.

4.2.8. Tampilan Halaman Laporan

Gambar 4. 8 Tampilan Halaman Laporan

Halaman laporan pada gambar 4.9 menampilkan hasil perhitungan metode TOPSIS yang sudah diproses oleh sistem. Orang tua bisa melihat bimbel dengan nilai preferensi tertinggi hingga *ranking* lengkap alternatif. Tampilan biasanya berupa tabel dengan kolom nama bimbel, nilai preferensi, dan urutan *ranking*. Halaman ini jadi rujukan utama bagi orang tua untuk memilih bimbel terbaik.

4.2.9. Tampilan Halaman Log

Gambar 4. 9 Tampilan Halaman *Log*

Gambar 4.10 halaman *log* mencatat seluruh aktivitas pengguna, misalnya *login*, *logout*, menambah data, mengubah, atau menghapus data. Data ditampilkan dalam tabel berisi keterangan aktivitas, waktu, dan *user* yang melakukan aksi. Halaman *log* ini berfungsi sebagai *audit trail* agar aktivitas sistem dapat dipantau dengan transparan.

4.3. Pengujian Sistem

Pengujian sistem merupakan proses evaluasi untuk memastikan bahwa perangkat lunak yang telah dikembangkan dapat beroperasi sesuai dengan standar yang ditetapkan. Jenis pengujian sistem yang digunakan adalah *Functional Test*.

4.3.1. Functional Testing

Black box testing adalah pendekatan pengujian perangkat lunak yang mengevaluasi fungsionalitas suatu aplikasi tanpa memperhatikan struktur internal atau cara kerjanya. Metode pengujian black box testing memungkinkan pengembang perangkat lunak untuk menyusun serangkaian kondisi input yang mencakup semua persyaratan fungsional program. Pengujian dilakukan dengan memilih sejumlah modul yang mencakup berbagai jenis data untuk memastikan bahwa program hanya menerima input dengan jenis data yang sesuai. Selain itu, pengujian juga memeriksa antarmuka pengguna aplikasi itu sendiri. Proses pengujian black box pada SPK Bimbel TOPSIS adalah sebagai berikut:

Pengujian Black Box Pada Halaman Login
 Tabel 4. 4 Pengujian Black Box Pada Halaman Login

No	Skenario Uji	Input	Ekspektasi	Hasil
1.	Login dengan data valid	username benar, password benar	Masuk ke dashboard sebagai admin	Valid

2.	Login dengan data salah	username/password salah	Pesan error: "Username/Password salah"	Valid
3.	Registrasi	klik tombol registrasi	Pindah ke halaman registrasi	Valid

b. Pengujian Black Box Pada Halaman DashboardTabel 4. 5 Pengujian Black Box Pada Halaman Dashboard

No	Skenario Uji	Input	Ekspektasi	Hasil
1.	Klik menu Bimbel	Akses dari	Pindah ke halaman	Valid
		dashboard	Bimbel	vanu
2.	Klik menu Orang Tua	Akses dari	Pindah ke halaman	Valid
۷.	Klik lileliu Olalig Tua	dashboard	Orang Tua	vailu
3.	Klik menu Kriteria	Akses dari	Pindah ke halaman	Valid
3.	Klik lilellu Klitella	dashboard	Kriteria	vanu
4.	Klik menu Hasil	Akses dari	Pindah ke halaman	Valid
7.	Rekomendasi	dashboard	hasil	vallu

c. Pengujian *Black Box* Pada Halaman Bimbel Tabel 4. 6 Pengujian *Black Box* Pada Halaman Bimbel

No	Skenario Uji	Input	Ekspektasi	Hasil
1	Tambah	Nama = "Bimbel Lintang"	Data masuk tabel	Valid
1	bimbel	Tuma Bimoot Bimang	bimbel, log tercatat	varia
		Ubah nama "Bimbel	Data berubah di	
2	Edit bimbel	Cabaca" → "Cabaca	bimbel, log tercatat	Valid
		Pamulang"	0.11110 01, 10 g 001 0 11111	
3	Hapus	Klik hapus	Data hilang di	Valid
	bimbel	Terms nupus	bimbel, log tercatat	vana

d. Pengujian Black Box Pada Halaman Orang Tua

Tabel 4. 7 Pengujian Black Box Pada Halaman Orang Tua

No	Skenario Uji	Input	Ekspektasi	Hasil
1	Tambah	Nama = "Mulyono",	Data tersimpan di orangtua	Valid
1	orang tua	no HP = 0888	dan akun user terkait di user	valid
2	Edit orang	Ubah alamat	Data orangtua terupdate,	Valid
2	tua	Oban alamat	log tercatat	valiu
3	Hapus orang	Klik hapus	Data terhapus dari	Valid
3	tua	Klik liapus	orangtua, log tercatat	vallu

e. Pengujian *Black Box* Pada Halaman Kriteria Tabel 4. 8 Pengujian *Black Box* Pada Halaman Kriteria

No	Skenario Uji	Input	Ekspektasi	Hasil
1	Tambah	Nama = "Metode	Data masuk tabel	V-1: 4
1	kriteria	Pembelajaran", bobot = 0.3	kriteria	Valid
2	Edit kriteria	Ubah bobot "Biaya" dari	Data terupdate di	Valid
2	Edit Kriteria	$0.2 \rightarrow 0.25$	kriteria, log tercatat	valid
3	Hapus	Vlik hopus	Data hilana di Izritaria	Valid
3	kriteria	Klik hapus	Data hilang di kriteria	vallu

f. Pengujian *Black Box* Pada Halaman SPK Bimbel Tabel 4. 9 Pengujian *Black Box* Pada Halaman SPK Bimbel

No	Skenario Uji	Input	Ekspektasi	Hasil
1	Input penilaian	Nilai kriteria untuk bimbel	Data tersimpan di penilaian	Valid
2	Proses perhitungan TOPSIS	Klik tombol "Proses"	Data hasil tersimpan di hasil_topsis	Valid

			Data preferensi tersimpan	
3	Simpan hasil	Klik "Simpan"	sesuai id_orangtua dan	Valid
			id_bimbel	

g. Pengujian Black Box Pada Halaman Laporan

Tabel 4. 10 Pengujian Black Box Pada Halaman Laporan

No	Skenario Uji	Input	Ekspektasi	Hasil
1	Lihat hasil rekomendasi	Login sebagai orang tua	Ranking bimbel tampil berdasarkan nilai preferensi	Valid
2	Validasi preferensi	Bandingkan nilai hasil_topsis	Hasil sesuai perhitungan TOPSIS	Valid

h. Pengujian Black Box Pada Halaman User

Tabel 4. 11 Pengujian Black Box Pada Halaman User

No	Skenario Uji	Input	Ekspektasi	Hasil	
1	Tambah	Username = "mulyono", role	Data tersimpan di	Valid	
	user	= admin	user, log tercatat		
2	Edit user	Ubah nama "Mulyono"	Data terupdate	Valid	
		menjadi "Mulyono Widodo"	Data terupuate		
3	Hapus user	Klik hapus	User terhapus dari	Valid	
			user		

i. Pengujian Black Box Pada Halaman Log

Tabel 4. 12 Pengujian Black Box Pada Halaman Log

No	Skenario Uji	Input	Ekspektasi	Hasil	
1	Akses log	Klik menu log	Daftar aktivitas tampil	Valid	
2	Validasi data	Tambah user /	Aktivitas sesuai muncul di	Valid	
	log	login	log		

Berdasarkan hasil dari kesembilan halaman yang diuji, total skenario uji yang berhasil mencapai 100%. Ini menunjukkan bahwa semua fitur yang diuji dalam SPK Bimbel TOPSIS berfungsi dengan baik sesuai dengan spesifikasi dan ekspektasi yang ditetapkan. Pengujian *functional test* ini memastikan bahwa aplikasi telah memenuhi persyaratan fungsionalnya.

BAB V

PENUTUP

5.1. Kesimpulan

Berdasarkan hasil analisis, perancangan, implementasi, serta pengujian sistem pendukung keputusan pemilihan tempat bimbingan belajar berbasis *web* menggunakan metode TOPSIS, maka dapat disimpulkan:

- a. Sistem pendukung keputusan pemilihan bimbel berhasil dibangun berbasis web dengan PHP dan MySQL sehingga memudahkan admin maupun orang tua dalam mengelola data dan memperoleh rekomendasi.
- b. Metode TOPSIS berhasil diterapkan dengan kriteria fasilitas, biaya, kualitas pengajar, kapasitas tempat, dan metode pembelajaran untuk menghasilkan *ranking* alternatif bimbel.
- c. Hasil pengujian black box testing menunjukkan seluruh fitur berjalan 100% sesuai fungsinya, sehingga sistem telah memenuhi kebutuhan pengguna.

5.2. Saran

Agar sistem dapat berkembang lebih baik, penulis memberikan beberapa saran sebagai berikut:

- a. Menambah kriteria lain seperti kurikulum atau testimoni agar rekomendasi lebih akurat.
- b. Mengintegrasikan sistem dengan peta lokasi.
- c. Meningkatkan keamanan data dengan enkripsi dan autentikasi tambahan.
- d. Melakukan uji coba langsung dengan pengguna (UAT) untuk penyempurnaan sistem.

DAFTAR PUSTAKA

LAMPIRAN

Lampiran 1 kartu konsultasi mahasiswa

Lampiran 2 berita acara wawancara