Math 360

Section 1.1 Exercises

Trevor Klar

June 21, 2018

- 1. (a) b * d = e
 - (b) c * c = b
 - (c) [(a*c)*e]*a = [c*e]*a = a*a = a
- 7. * is clearly not commutative, since $1*2 \neq 2*1$. Observe the following to see that * is not associative either: (1*2)*3 = -1*3 = -4, whereas 1*(2*3) = 1*-1 = 2.
- 9. * is commutative, since $\frac{ab}{2} = \frac{ba}{2}$. Also, * is associative, since $(a*b)*c = \frac{ab}{2}*c = \frac{abc}{4} = a*\frac{bc}{2} = a*(b*c)$.
- 11. * is commutative, since $2^{ab} = 2^{ba}$. However, * is not associative, since $(3*5)*7 = 2^{15}*7 = 2^{(7)(2^{15})}$, but $3*(5*7) = 3*2^{35} = 2^{(3)(2^{35})}$.
- 13. For a set of 2 elements, consider the table:

$$\begin{array}{c|cccc}
* & a & b \\
\hline
a & x_1 & x_2 \\
\hline
b & x_2 & x_3
\end{array}$$

There are three unique outputs, x_1, x_2, x_3 , and each one can map to one of two possible values, so there are $2^3 = 8$ possible commutative binary operations on a set of 2 elements.

For 3 elements, the table gives

Thus, there are 6 unique outputs, which can each take 3 possible values. Therefore there are 3^6 possible commutative binary operations on a set of 3 elements.

As we increase the number of elements from n-1 to n, we see that the number of unique outputs increases by n. Thus, the number of unique outputs for a set of n elements is given by the n-th triangle number. Thus, the number of possible commutative binary operations on a set of n elements is given by

$$n^{T_n}$$
,

where $T_n = \frac{(n)(n+1)}{2}$ is the *n*-th triangle number.

- 14. A binary operation * on a set S is *commutative* if and only if, for all $a, b \in S$, we have a * b = b * a.
- 15. A binary operation * on a set S is associative if and only if, for all $a, b, c \in S$, we have (a*b)*c = a*(b*c).
- 16. A subset H of a set S is closed under * if and only if, for all $a, b \in H$, we have $(a * b) \in H$.

For Exercises 17-22, determine if * is a binary operation on S. If not, state whether Condition 1, Condition 2, or both are violated.

17. On \mathbb{Z}^+ , define * by a*b=a-b. **Answer:** No. Condition 2 is violated since $1,2\in\mathbb{Z}^+$, but $1*2=-1\not\in\mathbb{Z}^+$.

1

- 19. On \mathbb{R} , define * by a * b = a b. This is of course a binary operation. For every subtraction problem, there is exactly one answer, and every difference of real numbers is a real number.
- 21. On \mathbb{Z}^+ , define a*b=c, where c is at least 5 more than a+b. **Answer:** No. Condition 1 is violated, since there are infinitely many real numbers c such that $c \ge a+b+5$.
- 23. Let H be the subset of $M_2(\mathbb{R})$ consisting of all matrices of the form $\begin{bmatrix} a-b \\ b & a \end{bmatrix}$ for $a, b \in \mathbb{R}$. Is H closed under
 - a. matrix addition?
 - b. matrix multiplication?

Answer to a: Yes. Adding two arbitrary elements of H, we find $\begin{bmatrix} a-b \\ b-a \end{bmatrix} + \begin{bmatrix} c-d \\ d-c \end{bmatrix} = \begin{bmatrix} a+c & -(b+d) \\ b+d & a+c \end{bmatrix}$, which is an element of H.

Answer to b: Yes. Multiplying two arbitrary elements of H, we find $\begin{bmatrix} a - b \\ b & a \end{bmatrix} \begin{bmatrix} c - d \\ d & c \end{bmatrix} = \begin{bmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{bmatrix}$, which is an element of H.

- 24. a. F
 - b. T
 - c. F
 - d. F
 - e. F
 - f. T
 - g. F
 - h. F
 - i. T
 - j. F
- 26. Prove that if * is and associative and commutative binary operation on a set S, then

$$(a*b)*(c*d) = [(d*c)*a]*b$$

for all $a, b, c, d \in S$.

PROOF

$$(a*b)*(c*d) = (c*d)*(a*b)$$
 commutative property
= $(d*c)*(a*b)$ commutative property
= $[(d*c)*a]*b$ associative property

In 27 and 28, prove or give a counterexample.

27. Every binary operation on a set consisting of a single element is both commutative and associative.

PROOF Denote our singleton set as $S = \{e\}$, and let * be a binary operation on S. Applying the definition of commutativity, we can see that * is commutative: for all $a, b \in S$, we have that a*b = b*a. To see this, observe that since $a \in S$, a = e. Also, since $b \in S$, b = e. Thus, a*b = e*e = b*a.

We can apply the definition of associativity similarly if we observe that e * e can only have one possible result: e * e = e. Thus, for all $a, b, c \in S$,

$$(a*b)*c = (e*e)*e$$

= $e*e$
= $e*(e*e)$
= $a*(b*c)$

and we are done.

28. Every commutative binary operation on a set having just two elements is associative.

Counterexample: Consider the set $S = \{ \blacksquare, \square \}$, with * defined by the following table:

We will show that $(\square * \blacksquare) * \blacksquare \neq \square * (\blacksquare * \blacksquare)$, and thus the associative property does not hold.

$$(\square * \blacksquare) * \blacksquare = \blacksquare * \blacksquare = \square,$$

however,

$$\square * (\blacksquare * \blacksquare) = \square * \square = \blacksquare.$$

Thus * on S is not commutative (observe that the table is symmetric), but not associative.

41. This is the state diagram for a machine which determines if the input string has at least two c's. If the final state is s_2 , then the input string has at least two c's.

42. This is the state diagram for a machine which determines if the input string has exactly 3 c's. If the final state is s_3 , then the input string has exactly 3 c's. Note that if the final state is s_f , then the input string has greater than 3 c's, and if the final state is s_0 , s_1 , or s_2 , then the input string has less than 3 c's.

43. This is the state diagram for a machine which determines if the number of 1's in the input string is congruent to 0, 1, or 2 modulo 3. s_0 is the initial state, and corresponds to $0 \equiv 0 \mod 3$. The subscript of the final state gives the result.

