Digital Image Processing

An Introduction to Digital Image Processing

Dr. Muhammad Sajjad

R.A: Imran Nawar

R.A: M. Abbas

Overview

- > What is Digital Image?
- > Why do we process images?
- > Image processing Examples
- > Applications of DIP
- > Classification of DIP and Computer Vision processes
- > Image processing Computer Vision and Pattern Recognition
- > Image processing steps
- > Scope of DIP course

What is Digital Image?

Image

- An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane) coordinates.
- The amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point.

Digital Image

When x, y, and the intensity values of f are all finite, discrete quantities, we call the image a digital image.

OR

Digital images are 2D arrays (matrices) of numbers.

Digital Image Processing

Digital image processing refers to processing digital images by means of a digital computer.

Why do we process images?

Facilitate picture storage and transmission

- Efficiently store an image in a digital camera
- Send an image through mobile phone

Enhance and restore images

- Remove scratches from an old photo
- Improve visibility of tumor in a radiograph

Extract information from images

- Measure water pollution from aerial images
- Measure the 3D distances and heights of objects from stereo images

Prepare for display or printing

- Adjust image size
- Halftoning

Biometrics based identification

Water quality of Florida's Tampa Bay decreases (Picture source NASA/USF).

Photo Restoration

Repairing old, damaged, or degraded photographs to restore them to their original condition or even improve their visual quality.

Damaged Image

Restored Image

Photo Colorization

Original B/W Image

Colorized Image

Original Image

Colorized Image

Color Photo Enhancement

7

Image Enhancement

Initial image

Performed steps: Gaussian blur, contrast enhancement, median filter and sharpening. Processing made by Photoshop.

Example taken from microscopy.berkeley.edu/courses/dib

Restoration of Image from Hubble Space Telescope

Faulty image of Saturn

Recovered image

Extraction of settlement area from an Aerial Image

Earthquake analysis from space

Image shows the ground displacement of a typical area due to earthquake

Medical Imaging: Computer Tomography (CT)

- Generating 3-D images from 2-D slices.
- CAD, CAM applications
- Industrial inspections

Medical Imaging: Computer Aided Tomography (CAT)

[545x700 24-bit color JPEG, 69069 bytes] Section through Visible Human Male – head, including cerebellum, cerebral cortex, brainstem, nasal passages.

Medical Imaging: Ultrasound Imaging

• Profile of a fetus at four months. This face is approximately 1 inches (4cm) long.

Medical Imaging: Averaging MRI slices

for knee image

Image Compression

Original

JPEG 27:1 Compression ratio

Face Detection

Face Tracking Gesture Recognition

Face Morphing

Fingerprint Recognition

Personal Identification using Iris Recognition

National Geographics: "Afghan Girl"

Removing geometric distortions of

camera

Applications of DIP

Categorization according to image sources

- Electromagnetic (EM) band Imaging
 - Gamma ray images
 - x-ray band images
 - ultra-violet band images
 - visual light and infra-red images
 - Imaging based on micro-waves and radio waves

Non-EM band Imaging

- Acoustic and ultrasonic images
- Electron Microscopy
- Computer-generated synthetic images

Applications of DIP

EM band imaging

- Gamma-ray imaging
 - Nuclear medicine, astronomical observations.
- X-ray Imaging
 - Medical diagnostics (CAT scans, x-ray scans), industry, astronomy.
- Ultra-violet imaging
 - Fluorescence microscopy, astronomy,
- Visible & Infrared-band imaging (most widely used)
 - Light microscopy, astronomy, remote sensing, industry, law enforcement, military recognizance, etc.
- Micro-wave and radio band imagery
 - Radar, Medicine (MRI), astronomy

X-ray imaging

Visible spectrum Security, Biometrics

gamma-ray imaging

Applications of DIP

Non-EM band imaging

- Acoustic imaging (hundreds of Hz)
 - Geological exploration (oil exploration)
- Ultrasound imaging (millions of Hz)
 - Industry and medicine especially in obstetrics, determine the health of the fetal development

Electron microscopic imaging

 Used to achieve magnification of 10,000x or more

(Light microscopy is limited to around 1000x)

Synthetic imaging

• 3D modeling or visualization systems for flight simulators, machine design, special effects and animations, etc.

Ultrasound image of a fetus.

 $2500 \times SEM$ image of a damaged integrated circuit.

Classification of DIP and Computer Vision Processes

Low-level process: (DIP)

• Primitive operations where inputs and outputs are images Major functions: image pre-processing like noise reduction, contrast enhancement, image sharpening, etc.

Mid-level process (DIP and Computer Vision and Pattern Recognition)

Inputs are images, outputs are attributes (e.g., edges)
major functions: segmentation, description,
classification / recognition of objects

High-level process (Computer Vision)

 make sense of an ensemble of recognized objects; perform the cognitive functions normally associated with vision

Classification of DIP and Computer Vision Processes

High-level process CV

- Cognitive decision-making, pedestrian crossing detected, vehicle slows down.
- Lane recognition: Vehicle stays in correct lane
- Traffic sign recognition: Stop Command.

Low-level process DIP

- Noise reduction
- Contrast enhancement

Mid-level process DIP and CV

- Edge Detection
- Segmentation and recognition of objects (e.g., Car, Pedestrian, Stop Sign).

omputer Vision

Pattern

Image Processing Computer Vision and Pattern Recognition

- Image acquisition by sensor
- Image sampling and quantization

Image enhancement and restoration

• Filtering in spatial domain or frequency domain

Feature Extraction

- Edge detection
- Interest points

Colored image Processing

- Pseudo coloring
- Color segmentation

Multi-resolution analysis

- Pyramids
- Wavelets
- Other transformations

Image and video compression

- Image compression standards
- Video compression standards

Image Geometrical Rectification

Camera geometry

Feature Extraction

- Edge and Interest points detection
- Texture and shading
- Shape from texture and shading

Calculation on Multiple Views

- Multi-view geometry and Stereo imaging
- Structure from motion

Segmentation

• Impose some order on group of pixels to separate them from each other

Template matching

Segmentation

Classification and Recognition

- Classification and interpretation of objects based on selected features
- Recognize objects using probabilistic techniques

Recognition

Image Processing Steps

Scope of DIP Course

- Digital image fundamentals and image acquisition (briefly)
- Image enhancement in spatial domain
 - pixel operations
 - Histogram processing
 - Filtering
- Image enhancement in frequency domain
 - Transformation and reverse transformation
 - Frequency domain filters
 - Homomorphic filtering
- Image sampling
- Image restoration
 - Noise reduction techniques
 - Geometric transformations

Scope of DIP Course

Color image processing

- Color models
- Pseudocolor image processing
- Color transformations and color segmentation

Wavelets and multi-resolution processing

- Multi-resolution expansion
- Wavelet transforms, etc.

Image compression

- Image compression models
- Error free compression
- Lossy compression, etc.

Scope of DIP Course

Image segmentation

- Edge, point and boundary detection
- Thresholding
- Region based segmentation, etc.

Morphological image processing

- Dilation and erosion
- Opening closing
- Hit or miss transformation
- Basic morphological algorithms

Thank You