Quizz Teórico sobre Interpolação Cálculo Numérico / Analise Numérica

Prof.: Fabrício Murai

Não esqueça de escrever seu nome. Esse quizz não vale nota. Considere as sentenças a seguir.
Marque ${f V}$ se a sentença for verdadeira e ${f f}$ se a sentença for falsa. Escrever uma justificativa ${f \acute{e}}$ um
bom exercício.
() É possível obter um polinômio de grau 3 a partir da interpolação polinomial de 5 pontos.
() Se $f(x)$ é um polinômio de grau n , as diferenças finitas $\Delta^{n+1}y_i$ são identicamente nulas quando
calculadas para quaisquer (x_i, y_i) dados, onde $y_i = f(x_i)$.
() Seja $f(x)$ uma função desconhecida. São conhecidos apenas 3 pontos $(x_i, y_i), i = 1, 2, 3$, para os
quais $y_i = f(x_i)$. Calculando-se as diferenças divididas, notamos que $\Delta^2 y_0 = 0$. Conclui-se que $f(x)$ é um
polinômio de grau 1 (uma reta).
() Os diferentes métodos de interpolação vistos em sala podem dar origem a diferentes polinômios de
grau n quando interpolados sobre um mesmo conjunto de $n+1$ pontos.
() O processo de Horner diminui o número de multiplicações necessárias no método de Gregory-Newton.
() Considere a escolha de pontos para a interpolação polinomial na abcissa z . Dado que já foram
escolhidos $x_i < z$ e $x_j > z$, se $ x_k - z = x_m - z $, pode-se escolher tanto x_k quanto x_m .
() Considere a escolha de pontos para a interpolação polinomial na abcissa z . Dado que já foram
escolhidos $x_i < z$ e $x_j > z$, se $ x_k - z = x_m - z $, a escolha de x_k resultará no mesmo erro de truncamento
que x_m .
() Seja $f(x) = x \sin x$. O erro de truncamento de um polinômio interpolador obtido a partir dos pontos
$(0,0), (\pi/6,\pi/12), (\pi/4,\pi\sqrt{2}/8), (\pi/3,\pi\sqrt{3}/6), (\pi/2,\pi/2)$ é igual para qualquer $z \in [0,\pi/2]$.
() Sempre que o método de Gregory-Newton é aplicável, a interpolação de Lagrange também é.

) O método de Gregory-Newton requer menos espaço na memória do que o método de Newton.