GMEM: 面向领域加速器的通用内存管理 异构融合调度

王彬 陈辉 华为OS基础软件技术专家





## GMEM: 面向领域加速器的通用内存管理及异构融合调度

● GMEM: 面向领域加速器的通用内存管理

异构内存管理现状以及问题

GMEM设计理念

GMEM效果呈现

### ● 异构融合调度

粗放调度下的算力利用率问题

ms级抢占以及细粒度算力切分

异构融合调度愿景



## GMEM: 面向领域加速器的通用内存管理





### 异构加速器的黄金时代,内存是异构生态核心组成

#### 现在是体系结构 (加速器发展) 的黄金时代 -- David Patterson

• 原因: CPU无法满足AI等异构领域的计算要求、而AI领域随着ChatGPT等的成功,跻身未来核心市场

• 例证: 异构芯片市场正在不断扩张 (NVIDIA市值已经突破万亿美元)

・ 加速器应用广泛:

人工智能、图形处理、搜索推荐、大数据...











多种多样的加速器生态









- · 内存是加速器架构的核心单元
- · 加速器成本组成,内存占比最大











### 当前异构内存生态体系割裂,软件栈走向烟囱化,与应用诉求不匹配

AS IS: 体系分离



### 异构应用的诉求:

- □ XPU编程统一协同
- □ 更大的异构内存容量
- □ 更快的内存申请/释放
- □ 更高的内存利用率

### 然而,现实是 ... ...

国 编程性差: CPU缓存 OR GPU缓存? 开发者深陷泥坛

図 内存不足: HBM容量低, OOM成为家常便饭

四 内存碎片化:内存紧缺雪上加霜

图 申请释放慢:实现不合理,重复开发



### 重复设计内存框架代价高昂,性能参差不齐

传统应用

异构应用

tc/je/ptmalloc

Al framework

mmap/madvise

cudaMalloc/...

OS

**Device Driver** 

### 重复设计内存框架, 代价高昂

- 代码量大,数万行代码,维护困难
- 稳定性弱,相比经过数十年演进的Linux内存管理框架 (功能趋向稳定,性能趋向极致)
- 内存碎片化严重,无法实现细粒度内存管理

| 加速器驱动<br>(代码量) | 内存管理框架 | 内核内存SWAP | 总计    |  |
|----------------|--------|----------|-------|--|
| Nvidia         | ~34K   | ~70K     | ~104K |  |
| AMD            | ~14K   | N/A      | ~14K  |  |
| Huawei         | ~30K   | N/A      | ~30K  |  |

从CPU生态,机械式迁移至异构生态





### GMEM使能下的异构生态演进,中心化协同打造极致性能

AS IS: 体系分离



TO BE: 中心化协同



#### GMEM的使命:

- 1. 加速器无需重复造轮子,专注内存优化策略
  - · 无需重复开发用户态 "malloc" 方案
  - 无需重复开发内核态内存管理框架
- 2. 可编程性大幅增强
  - 统一的异构内存空间
  - 用户通过hint极易实现内存策略
  - 异构内存透明超分 (Host DDR)
- 3. 更好的内存性能
  - 更快的内存申请/释放速度
  - 更高的内存利用率



### 易接入: GMEM实现加速器极易接入, 享受Linux原生内存管理的极致性能

- ➤ GMEM提供统一的OS内存管理框架,实现加速器 极易接入:
  - 加速器仅需百行代码可轻松接入GMEM生态, 享受Linux原生内存管理极致性能

### 90%缩减

| 内存管理框架       | 代码量                               |
|--------------|-----------------------------------|
| 昇腾NPU驱动      | 30,000                            |
| 基于GMEM的NPU驱动 | 30 (调用GMEM API)<br>2000 (底层MMU实现) |

- ➤ GMEM使加速器专注内存优化策略,无需重复 造轮子
  - 更快的内存申请/释放速度
  - 更高的内存利用率

#### 3倍+提升

| 用户态内存方案        | 平均时延   |
|----------------|--------|
| malloc (GMEM)  | 300ns  |
| PyTorch-malloc | 1000ns |







### 高性能: GMEM实现内存透明超分, 大幅提升训推性能

#### 高性能训推

- ◆ 内存透明超分,使能高性能推理,超大模型单卡可训
  - 单卡 (32G-NPU) 可训52B GPT大模型
  - AI框架修改量 < 10 Loc
  - 超分T级Host内存,大幅提升问题处理规模

#### ✓ LLAMA推理性能提升30%~70%

| 模型吞吐量<br>(Token/s) | 原始 | GMEM | 提升  |  |
|--------------------|----|------|-----|--|
| LLAMA-7B           | 52 | 69   | 32% |  |
| LLAMA-13B          | 14 | 24   | 71% |  |

#### ✓ 性能相比NVIDIA-UVM提升60%+

| 模型             | Matmul | Resnet<br>(large batch) | GPT2 |  |
|----------------|--------|-------------------------|------|--|
| NVIDIA-<br>UVM | 1      | 1                       | 1    |  |
| GMEM           | 1.7x   | 1.8x                    | 2x   |  |

### 极低内存碎片

- ◆ 蛋白质折叠模型 (等效AlphaFold模型) 应用成果
  - 内存利用率: HBM利用率从40%提升至90%+
  - 问题处理规模:蛋白质折叠长度提升25%
  - 端到端推理速度:提升20%~40%(更快的编译速度)
    - ✓ 问题处理规模提升25%
    - ✓ 推理速度提升20%~40%



### 易编程: GMEM赋能OS原生接口,基于malloc/mmap实现极易异构编程

### GMEM赋能加速器,实现极简异构编程:

```
#1 A = malloc();
#2 prepare(A);
#3 B = aclrtMalloc();
#4 aclrtMemcpy(B, A, h2d);
#5 aclopExecute(op, B);
```

```
#1 A = malloc(MAP_PEER_SHARED); // A为统一虚拟地址
#2 prepare(A);
#3 // hmadvise(NPU_id, A, size, PREFETCH); // 预取, 可选
#4 aclopExecute(op, A); // 触发缺页, 预取则不触发
```

#### GMEM编程新范式:

- 按需动态分配内存
- CPU-XPU 统一虚拟地址编程 (算子可直接下发)
- 用户无感扩容HBM (OS自动swap HBM-DDR)
- 预取性能优化



### GMEM提供丰富性能优化语义,助力加速器打造极致竞争力



丰富的内存优化语义,助力加速器打造极致竞争力

✓ PREFETCH : 异步预取语义,交叠通信与计算

✓ COLLAPSE\_SPARSE : 稀疏压缩语义, 极致发挥硬件性能

✓ RANDOM : 随机访问语义,提升稀疏场景综合带宽

✓ LAZYFREE : 内存碎片快速回收语义,释放更多HBM资源

✓ More ... ...

GMEM使能下的中心化协同架构





# 异构融合调度



### 异构算力需求快速膨胀, AI模型训推成本高, 算力利用率低

### AIGC应用加速了算力需求, 远超摩尔定律



ChatGPT引发新一轮AI算力需求爆发。根据OpenAI发布的《AIandCompute》分析报告中指出,自2012年以来,AI训练应用的算力需求每3.4个月就回会翻倍,从2012年至今,AI算力增长超过了30万倍。据OpenAI报告,ChatGPT的总算力消耗约为3640PF-days(即假如每秒计算一千万亿次,需要计算3640天),需要7-8个算力500P的数据中心才能支撑运行。

### 算力成本高

| 日活用户<br>数(万) | 単用户<br>毎日提<br>何次数 | 每个问题<br>干均字数<br>(个) | A100 GPU对每个字的<br>响应时间(毫秒) | 毎日酒粕GPU計<br>算时间(小时) |       | NVIDIA DGX<br>A100服务器<br>(台) | NVIDIA DGX<br>A100服务器价格<br>(万美元) | 推理成本(亿美<br>元) |
|--------------|-------------------|---------------------|---------------------------|---------------------|-------|------------------------------|----------------------------------|---------------|
| 2000         | 10                | 20                  | 350                       | 388889              | 16204 | 2026                         | 19.9                             | 4.03          |

在训练干亿参数的盘古大模型时,华为团队调用了超过**2000块**的昇腾910芯片,进行了超2个月的数据训练能力。华为内部称,每年大模型训练调用GPU/TPU卡超过4000片,3年的大模型算力成本高达**9.6亿**元人民币。

### 粗放式的资源管理导致资源碎片严重,利用率低



从公开资料显示:时域上统计,公有云上GPU的利用率只有20%-30%左右,主要因为分池部署,业务量不足导致;在空域上统计,平均单个任务对GPU的有效利用率<10%,主要因为业务平均负载小,资源独占等原因导致。







### 异构融合调度:支持ms级抢占能力,实现精细灵活的算力切分能力



#### 1) 任务抽象:

对AI任务进行抽象,包括context, stream, kernel进行抽象,同时包括任务的状态管理等。

### 2) 算力抽象:

对NPU算力进行抽象,包括device, VF, RTSQ等,提供通用的能力;

### 3) 调度模型:

调度接口: ucc\_wake, ucc\_wait, ucc\_yield, ucc\_set\_attr, ucc\_set\_affinity接口;

**调度策略:** 提供ucc\_rt, ucc\_cfs和可编程调度策略,支持多种调度需求;

**抢占机制**:提供高优先级抢占低优先级任务和分时机制。

效果:针对算子下发模型,提供ms粒度的抢占能力



### 异构融合调度愿景

构建统一算力编程语义,打造精细化、弹性、服务化的异构算力管理方式,致力于消除算力碎片、提升算力利用率,降低算力成本。





























