

JUN 07, 2023

OPEN ACCESS

Protocol Citation: Devansh Agarwal, Karl Wahlin 2023. Differentiation of RGC Induced Neurons (RGC-iNs). **protocols.io**

https://protocols.io/view/differ entiation-of-rgc-inducedneurons-rgc-ins-cu5jwy4n

MANUSCRIPT CITATION: Devansh Agarwal, Nicholas Dash, Kevin W. Mazo, Manan Chopra, Maria PA. Garcia, Amit Patel, Ryan M. Wong, Cairang Jia, Hope Do, Jie Cheng, Colette Chiang, Shawna L. Jurlina, Mike Perry, Jong Rho, Risa Broyer, Cassidy Lee, Robert N. Weinreb, Cezar Gavrilovici, Nick W. Oesch, Derek S. Welsbie, Karl J. Wahlin. Human Retinal Ganglion Cell **Neurons Generated by** Synchronous BMP inhibition and **Transcription Factor** Mediated Reprogramming. 2023 (in prep).

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Oifferentiation of RGC Induced Neurons (RGC-iNs)

Karl

Devansh Agarwal¹, Wahlin¹

¹Department of Ophthalmology, University of California San Diego, La Jolla, United States

Devansh Agarwal: Correspondence: d4agarwa@ucsd.edu

Karl Wahlin: Correspondence: kwahlin@ucsd.edu

Devansh Agarwal

ABSTRACT

This protocol is designed to create induced retinal ganglion cells neurons (RGC-iNs) using a doxycycline-inducible polycistronic transcription factor cassette containing NEUROG2, ATOH7, ISL1, and POU4F2 and TetO integrated at the CLYBL safe harbor site. The cassette is integrated into the CLYBL safe harbor site using a CRISPR-Cas12a ribonucleoprotein. This process of generating neurons is greatly enhanced by the inclusion of the BMP blocker LDN193189.

GUIDELINES

Apart from observation under the microscope, counting, and centrifugation, all steps should be carried out in a sterile biological safety cabinet.

MATERIALS

Table: Key resources or reagents required.

A	В	С
REAGENT or RESOURCE	SOURCE	IDENTIFIER
All-trans retinoic acid (ATRA) (for enhancing cell survival)	Sigma-Aldrich	Cat# R2625
Accutase (single cell passaging of hPSCs)	Sigma-Aldrich	Cat# A6964
B27 vitamin A (-) (neural supplement)	Thermo Fisher Scientific	Cat# 12587010
B27 vitamin (neural supplement)	Thermo Fisher Scientific	Cat# 17504044
BDNF (growth factor for RGC growth and survival)	Qkine	Cat# Qk050
Blebbistatin (ROCK inhibitor for improving cell survival)	Sigma-Aldrich	Cat# B0560
BrainPhys Neuronal Medium (basal media for supporting long-term growth of neurons)	StemCell Technologies	Cat# 05790
CultureOne supplement (for enhancing neural conversion)	Thermo Fisher Scientific	Cat# A3320201

Protocol status: Working We use this protocol and it's working

Created: Jun 02, 2023

Last Modified: Jun 07, 2023

PROTOCOL integer ID: 82827

A	В	С	
DMEM (basal media)	Thermo Fisher Scientific	Cat# 11965	
DMEM/F12 50:50 (basal media)	Thermo Fisher Scientific	Cat# 11330	
Doxycycline hyclate (antibiotic for transgene induction)	Sigma-Aldrich	Cat# D5207	
F12 (basal media)	Thermo Fisher Scientific	Cat# 11765	
GDNF (growth factor for enhancing RGC growth and neuronal survival)	Qkine	Cat# Qk051	
Insulin-Human Recombinant (N2 supplement component)	Roche	Cat# 11376497001	
L-ascorbic acid (N2 supplement component)	Sigma-Aldrich	Cat# A8960	
LDN-193189 (pre-patterning BMP pathway inhibitor)	Sigma-Aldrich	Cat# SML0559	
Matrigel® Growth Factor Reduced (GFR) Basement Membrane Matrix (cell attachment/differentiation of hPSCs)	Corning	Cat# 354230	
mTeSR1 (maintenance and propagation of hPSCs)	Stem Cell Technologies	Cat# 85850	
N-2 Supplement (neural supplement)	Thermo Fisher Scientific	Cat# 17502048	
NEAA (non-essential amino acids for supporting neuronal growth)	Thermo Fisher Scientific	Cat# 11140	
Nicotinamide (NIC) (vitamin B3 supplement to enhance differentiation)	Sigma-Aldrich	Cat# 72340	
Poly-L-ornithine (PLO) hydrobromide (for neural attachment)	Sigma Aldrich	Cat# P3655	
Sodium selenite (N2 supplement component)	Sigma-Aldrich	Cat# S5261	
Thiazovivin (alternate ROCK inhibitor for cell survival)	LC Labs	Cat# T-9753	
holo Transferrin Human (N2 supplement component)	Sigma-Aldrich	Cat# T0665	
GlutaMAX Supplement (auxiliary energy source for cells)	Thermo Fisher Scientific	Cat# 35050061	

BEFORE START INSTRUCTIONS

For media/reagent recipes see the last section of the protocol.

PSC expansion step

1 Grow iPSCs in hypoxia ([м] 5 % (v/v) O₂/ [м] 10 % (v/v) CO₂) or normoxia ([м] 20 % (v/v) O₂/ [м] 5 % (v/v) CO₂) at \$ 37 °C .

12-well plate (3.5 cm²): Plate 5,000 iPSCs into each well of 12 well plates in the presence of blebbistatin. Feed daily in mTeSR1 and grow for \sim 4 more days. Typically, we can get 200,00 –

500,000 cells per well when cells are ready for passaging.

6-well plate (9.6 cm²): Plate 15,000 iPSCs into each well of 6-well plates in the presence of blebbistatin. Feed daily in mTeSR1 and grow for ~4 more days. Typically, we can get 750,000 – 1,000,000 cells per well when cells are ready for passaging.

Note

For PSC expansion make sure that colonies are not overgrown (70-80 % confluent) and not touching.

Day -1: Priming of stem cells for neural induction

One day prior to neural induction, pre-coat TC plates overnight with MI 0.1 mg/mL poly-L-ornithine (PLO). Add A 1 mL 20x PLO to A 19 mL cell culture grade H2O, use A 1 mL per well of 1x PLO for 6-well plates (A 0.5 mL per well for 12 well plates) and incubate coated plate overnight at 37 °C.

Note

Day 0: Neural Induction

- Wash overnight PLO-coated plates >3 times with culture grade H2O. Let plates dry in the back of the TC hood for 01:00:00, then coat with [M] 1 % (V/V) Matrigel (recommended > 03:00:00).
- 4 Prepare Neural Induction Medium Initiation Cocktail (NIM) with [M] 2 μg/mL doxycycline (500x stock), [M] 100 nanomolar (nM) LDN, 1x CultureOne (100x stock) and [M] 5 micromolar (μM) blebbistatin (blebb; 2,000x stock). Place in [3 37 °C] bead bath to warm during the dissociation process.

3

Note

Throughout the protocol instead of [M] 5 micromolar (μ M) blebbistatin, [M] 2 micromolar (μ M) thiazovivin ([M] 10 millimolar (mM) or 5000x stock) can be used alternatively as a ROCK inhibitor. Doxycycline is light-sensitive, so keep cool (ξ 4 °C) and dark when not in use.

- Aspirate the media from the wells and add Accutase prewarmed for 00:05:00 (the volume of Accutase to use is 1/2 the volume that you maintain the cells in).
- 6 Put the cells with the Accutase back into the incubator for 00:12:00
- **7** Gently rinse the wells using a P1000 and pipet up and down 3 times to further break up the cell clumps into single cells.
- Put the cells into a \square 5 mL tube with 2 times the volume of mTeSR+ [M] 5 micromolar (μ M) blebb (e.g. \square 1 mL Accutase + \square 2 mL mTeSR) to quench the Accutase, then pellet the cells for \bigcirc 00:05:00 at \bigcirc 00:05:00 a
- 9 Aspirate the supernatant and resuspend the cell pellet in **A** 1 mL NIM + blebb.
- 11 Count the cells with a hemocytometer.

12m

5m

To make a 6-well plate (9.6 cm²/well; 57.6 cm² total; 7,000 cells/cm²): Add 403,200 cells into L 12 mL (67,200 cells per well) of NIM initiation cocktail (NIM + doxy, LDN, CultureOne, blebb) in a L 15 mL conical tube, mix well and distribute across the wells.

To make a 12-well plate (3.5 cm²/well; 42 cm² total; 7,000 cells/cm²): Add 294,000 cells into 12 mL (24,500 cells per well) of NIM initiation cocktail in a 15 mL conical tube, mix well and distribute across the wells.

To make a <u>24-well plate</u> (1.9 cm²/well; 45.6 cm² total; 7,000 cells/cm²): Add 319,200 cells into <u>A 12 mL</u> (13,300 cells per well) of NIM initiation cocktail in a <u>A 15 mL</u> conical tube, mix well and distribute across the wells.

Day 1: Maintenance

13 Do nothing.

Day 2: Feed - exchange 1/3 of media

For 12 well plate: Add \square 0.5 mL NIM + [M] 1 µg/mL doxy + 1xCultureOne to each well. For 6 well plate: Add \square 1 mL NIM + [M] 1 µg/mL doxy + 1xCultureOne to each well.

Note

Do this very carefully by adding media to the sides of the dish. If you are not very careful cells will detach.

Day 3: Maintenance

15 Do nothing.

Day 4: Feed - exchange 1/3 of media.

16 For 12 well plate: Remove 0.5ml media and replace with fresh Δ 0.5 mL NIM + [M] 1 μg/mL

```
For 6 well plate: Remove 1 ml media and replace with fresh A 1 mL NIM + [M] 1 µg/mL
                                                                                            doxy
       + 1xCultureOne + NIC ( [M] 10 millimolar (mM) ).
       Beyond day 4, plates need to be fed every other day.
           Day 6: Feed - exchange 1/3 of media.
17
       For 12 well plate: Remove A 0.5 mL media and replace with fresh A 0.5 mL BrainPhys +
       B27 (50x) + [M] 1 \mug/mL doxy + BDNF ([M] 50 \mug/mL) + GDNF ([M] 10 \mug/mL) + NIC (
        [м] 10 millimolar (mM)
       For 6 well plate: Remove A 1 mL media and replace with fresh A 1 mL BrainPhys + B27
       (50x) + [M] 1 \mu g/mL  doxy + BDNF ([M] 50 ng/mL ) + GDNF ([M] 10 ng/mL ) + NIC (
        [M] 10 millimolar (mM)
           Day 8: Feed - exchange 1/3 of media.
18
       For 12 well plate: Remove A 0.5 mL media and replace with fresh A 0.5 mL BrainPhys +
       B27 (50x) + [M] 1 \mug/mL doxy + BDNF ([M] 50 \mug/mL) + GDNF ([M] 10 \mug/mL) + NIC (
        [м] 10 millimolar (mM)
                                                                      Д 1 mL BrainPhys + B27
       For 6 well plate: Remove A 1 mL media and replace with fresh 1
       (50x) + [M] 1 \mu g/mL  doxy + BDNF ([M] 50 ng/mL]) + GDNF ([M] 10 ng/mL]
        [м] 10 millimolar (mM) ).
          Note
          Neurons tend to easily dissociate from the dish, so be very careful when aspirating. Take
         care to aspirate and dissociate by tilting the dish so that the medium accumulates on one
          side. Then, aspirate/dispense with the pipette directed toward the wall of the dish (i.e., away
         from the cells at the bottom).
19
       For long-term experiments >1 week, continue feeding by 1/3 media exchange every other day
       with BrainPhys + B27 (50x) + [M] 1 \mu g/mL doxy + BDNF ([M] 50 \text{ ng/mL}) + GDNF (
        [м] 10 ng/mL ) + NIC ( [м] 10 millimolar (mM) ).
           Media/Reagent Recipes
20
        Neural Induction medium (NIM medium):
```

C

doxy + 1xCultureOne + NIC ([M] 10 millimolar (mM)

A

В

A	В	С	
Component	Catalog #	Volume	
DMEM/F12	Thermo Fisher Scientific # 11330	485 ml	
N2 supplement (100x)	Thermo Fisher Scientific # 17504044 or recipe below	5 ml	
NEAA (non- essential amino acids, 100x)	Thermo Fisher Scientific # 11140	5 ml	
GlutaMAX supplement (100x)	Thermo Fisher Scientific # 35050061	5 ml	
		Total 500 ml	

21 N2 supplement (100X) recipe:

A	В	С	D	E	F
Component	100 ml	125 ml	200 ml	250 ml	500 ml
Transferrin	1g	1.25 g	2 g	2.5 g	5.0 g
Insulin	50 mg	62.5 mg	100 mg	125 mg	250 mg
Progesterone	63 µg	78.5 µg	126 µg	157 µg	315 µg
Putrescine	161 mg	201.5 mg	322 mg	403 mg	806 mg
Sodium Selenite	50.2 μg	62.75 µg	100.4 μg	125.5 µg	251 μg
DMEM/F12	to 100ml	to 150ml	to 200ml	to 250ml	to 500ml

22 Reagent Stock Dilutions:

```
Recombinant Human BDNF Protein (Qkine, Cat# Qk050): [M] 50 μg/mL stock in [M] 10 millimolar (mM) HCl with [M] 0.1 % (v/v) BSA; 1,000X; use at [M] 50 ng/mL . Store aliquots in [Condition of the combinant Human GDNF Protein (Qkine, Cat# Qk051): [M] 10 μg/mL stock in cell culture grade H2O with [M] 0.1 % (v/v) BSA; 1,000X; use at [M] 10 ng/mL . Store aliquots in [Condition of the combinant Human GDNF Protein (Qkine, Cat# Qk051): [M] 10 ng/mL . Store aliquots in [M] 0.1 % (v/v) BSA; 1,000X; use at [M] 1 mg/mL stock (working concentration is [M] 0.5-2 μg/mL ) in cell culture grade ddH2O and filter sterilize; 1,000X; use at [M] 1 μg/mL . Store [A] 1 mL aliquots at [Condition of the combinant Human GDNF Protein (Qkine, Cat# Qk051): [M] 1 mg/mL stock in cell culture grade ddH2O and filter sterilize; 1,000X; use at [M] 1 mg/mL stock (working concentration is [M] 0.5-2 μg/mL ) in cell culture grade ddH2O and filter sterilize; 1,000X; use at [M] 1 μg/mL stock (Morking concentration is [M] 0.5-2 μg/mL ) in cell culture grade ddH2O and filter sterilize; 1,000X; use at [M] 1 μg/mL stock (working concentration is [M] 0.5-2 μg/mL ) in cell culture grade ddH2O and filter sterilize; 1,000X; use at [M] 1 μg/mL stock (working concentration is [M] 0.5-2 μg/mL ) in cell culture grade ddH2O and filter sterilize; 1,000X; use at [M] 1 μg/mL stock (working concentration is [M] 0.5-2 μg/mL ) in cell culture grade ddH2O and filter sterilize; 1,000X; use at [M] 1 μg/mL stock (working concentration is [M] 1 μg/mL stock in cell culture grade ddH2O and filter sterilize; 1,000X; use at [M] 1 μg/mL stock in cell culture grade ddH2O and filter sterilize; 1,000X; use at [M] 1 μg/mL stock in cell culture grade ddH2O and filter sterilize; 1,000X; use at [M] 1 μg/mL stock (working concentration in [M] 1 μg/mL stock (working concentr
```