Modulhandbuch Masterstudiengang Systemtechnik

Stand Februar 2023

<u>Programmverantwortung</u>:

Prof. Dr.-Ing. Thies Langmaack, B5 thies.langmaack@hs-flensburg.de

Studienziel

Die Studierenden des Master-Studiengangs Systemtechnik der HS Flensburg sollen ein fundiertes wissenschaftliches Verständnis von technischen Systemen aus unterschiedlichen Anwendungsbereichen erhalten, welches sie auf der Basis der Methoden der verschiedenen Disziplinen (Maschinenbau, Verfahrenstechnik, Elektrotechnik, Informatik, usw.) dazu qualifiziert,

- + komplexe Zusammenhänge in technischen Systemen eigenständig zu untersuchen, zu analysieren und zu simulieren, und auf dieser Grundlage
- + Lösungen für Teilprobleme unter Berücksichtigung der Interdependenzen zu erarbeiten, evtl. zu optimieren sowie diese
- + systematisch zu einer integrierten Systemlösung zusammenzufassen.

Dabei werden die Studierenden auch in den Methoden der Projektplanung, der Projektführung und des Projektmanagements sowie der Projektpräsentation qualifiziert.

Darüber hinaus wird die Fähigkeit geschult, sich schnell, methodisch und systematisch in Neues einzuarbeiten (Selbstlernen). Dadurch werden Selbständigkeit, Teamfähigkeit, vernetztes Denken, Krativität, Offenheit, Kommunikationsfähigkeit und Organisationsvermögen (Sozialkompetenz) entwickelt und gefestigt.

Das Studium ist sowohl wissenschaftich fundiert als auch anwendungsbetont. Studierende werden in die Lage versetzt, auf Basis einses sinnvoll breiten und in ausgewählten Teilgebieten vertieften fachlichen Wissens und einer entsprechenden wissenschaftlichen Methodenkenntnis praxisbezogene Problemstellungen – auch interdiszipiärer Art – nach aktuellem Wissenstand zu lösen.

Dabei spielen computerbasierte Werkzeuge, die in diesem Studium erlernt werden, wie etwa Matlab und Simulink, aber auch wahlweise CFD software, ASPEN, eine große Rolle, um zu einer Lösung zu gelangen ("Computer Aided Engineering").

Studienaufbau

Die Regelstudienzeit beträgt, einschließlich der Master-Thesis, drei Semester.

Das Studienvolumen beträgt 90 Leistungspunkte (CP).

In den beiden Theoriesemestern (Semester 1 und Semester 2) gibt es

- + je 2 Pflichtmodule mit insgesamt 10 CP Umfang
- + je zwei Wahlpflichtmodule mit insgesamt 10 CP Umfang
- + je ein Semesterprojekt mit einer Wertigkeit vom 10 CP.

Das Angebot an Wahlpflichtmodulen wird semesterweise aktualisiert.

Der Masterstudiengang lässt sich mit dem Schwerpunkt "Verfahrenstechnik" studieren, wenn man die Wahlpflichtfächer aus dem Bereich Energieeffizienz versorgungstechnischer Systeme, numerische Strömungstechnik CFD, Umwelt- und Sicherheitsmanagement, Verfahrenstechnik 3, Einführung in die numerische Prozesssimulation (CAPE), Speiseöltechnologie, Fließschemata in Prozesstechnologie und Membrantechnologie wählt.

Die folgenden beiden Tabellen geben einen Überblick über den Studienverlauf des Sommer- und des Wintersemesters:

Sommersemester							
Modul	Lehrver	anstaltı	ing		Prüfung		
		Art	SWS	CP	Art	Form	
Mathematik, Simulation, Numerik	Mathematik, Simulation, Numerik	V/L	4	5	PL	K(2)	
Systemtechnik	Systemtechnik	V/Ü	4	5	PL	SP (Arb, Vortr)	
Wahlpflichtmodul 1	Siehe Ka	Siehe Katalog			PL	Siehe Katalog	
Wahlpflichtmodul 2	Siehe Ka	talog		5	PL	Siehe Katalog	
Projekt 1	Facharbeit, Projekt- management, Präsentation		4	10	PL	SP (Vortr und Arb) ¹	
¹ Die Gewichtung der in die Projektnote eingehenden Bestandteile Schriftliche Ausarbeitung und Vortrag ist im Verhältnis 4:1 durchzuführen.							
Alle Module des Sommersen	nesters		20	30		5 PL	

Wintersemester							
Modul	Lehrve	ranstalt	ung		Prüfung		
		Art	SWS	CP	Art	Form	
Informationstechnik/ Da- tenbanken	Informations- technik/ Da- tenbanken	Sem	4	5	PL	SP (Arb)	
Strategische Produktent- wicklung	Strategische Produktent- wick-lung	Sem	4	5	PL	SP (Arb)	
Wahlpflichtmodul 3	Siehe Katalog			5	PL	Siehe Katalog	
Wahlpflichtmodul 4	Siehe K	atalog		5	PL	Siehe Katalog	
Projekt 2	Facharbeit Projekt- management Präsentation		10	PL	SP (Vortr und Arb) ²		
	² Die Gewichtung der in die Projektnote eingehenden Bestandteile Schriftliche Ausarbeitung und Vortrag ist im Verhältnis 4:1 durchzuführen.						
Alle Module des Winterseme	sters		20	30		5 PL	

Modulhandbuch	Masterstudiengang	Systemtechnik HS Flensbur	g Stand Februar 2023
Modulliandbuch	Masterstudiengang	2) A STEHLIECHIIK TIST LIEUSDAI	g. Stand Februar 2020

Module des Sommersemesters

Kürzel	Lehrve	ranstaltung/en	Häufigkeit d	
Mathe	M	athematik,	Angebots	1 Semeste
	Simul	ation, Numerik	Sommersem	ester
Studiensemester	V	Vorkload	Selbststudi	um Präsenzstu
1./2. Semester		150 h	90 h	60 h
Sprache	Gru	ppengröße	Umfang	Kreditpunk
Deutsch	40	Studierende	4 SWS	5
Formale Teilnahmevoraussetzungen		Inhaltliche		Verbindlichkeit
		Teilnahmevora	nussetzungen	Pflichtveranstaltung
Keine		kei	ne	

Erfolgreiches Absolvieren einer Klausur

Modulverantwortliche/r

Prof. Dr. rer.-nat. habil. Mads Kyed, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr. rer.-nat. habil. Mads Kyed, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden können lineare und nichtlineare Gleichungssysteme sowie Integrale numerisch lösen und eine Fehlerschätzung durchführen.
- Die Studierenden können gewöhnliche und partielle Differentialgleichungen analytisch auf Existenz und Eindeutigkeit untersuchen.
- Die Studierenden können gewöhnliche und partielle Differentialgleichungen numerisch lösen.

Inhalte

- Fehleranalyse
- Lineare Gleichungssysteme: Numerik
- Nicht-lineare Gleichungssysteme: Numerik
- Interpolation
- Numerische Integration
- Gewöhnliche Differentialgleichungen: Theorie
- Gewöhnliche Differentialgleichungen: Numerik
- Partielle Differentialgleichungen: Theorie
- Partielle Differentialgleichungen: Numerik

Lehrformen

- Tafel- und Beamer-Unterricht.
- Betreute Übungen.

Medienverwendung

Literatur

- Folien/Slides der Vorlesung.
- Ergänzungsliteratur: W. Dahmen, A. Reusken: "Numerik für Ingenieure und Naturwissenschaftler".

Modulbezeichnu	ıng: Sy	stemtechnik			
Kürzel	Lehrve	ranstaltung/en	Häufigkeit des		Dauer
SysT	Sys	stemtechnik	Angebots	6	1 Semester
			Sommersem	ester	
Studiensemester	\	Vorkload	Selbststudium		Präsenzstud.
1./2. Semester		150 h	90 h		60 h
Sprache	Gru	ppengröße	Umfang		Kreditpunkte
deutsch	40	Studierende	4 SWS		5
Formale Teilnahmevoraussetzungen Teiln		Inhali			Verbindlichkeit
		Teilnahmevor	oraussetzungen		Pflichtveranstaltung
keine	keine kei		ine		

Erfolgreiches Bearbeiten eines abgegrenzten Fallbeispiels eines Anfangswertproblems, Präsentation der Arbeitsergebnisse

Modulverantwortliche/r

Prof. Dr.-Ing. J. Geisler, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr.-Ing. J. Geisler, Fachbereich Energie- und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden können analytische Modelle für abgegrenzte Fallbeispiele aus den Anwendungsfeldern der Modellbildung und -simulation von Anfangswertproblemen auf Systemebene entwickeln und
- diese in ein Simulationsmodell für eine signalflussbasierte und/oder objektorientierte numerische Simulation umsetzen.
- Sie sind in der Lage, die dafür notwendigen Funktionen der Simulationswerkzeuge Matlab und Simulink zu bewerten, auszuwählen und anzuwenden.
- Die Studierenden können ihre Vorgehensweise beurteilen, ihre Modelle und ihre Simulationsergebnisse kommentieren und validieren sowie ihre Arbeitsergebnisse in Übereinstimmung mit wissenschaftlichen Standards präsentieren.

Inhalte

- Grundlagen der Modellbildung und Simulation,
- Einführung in Matlab und Simulink,
- selbstständiges Bearbeiten von abgegrenzten Aufgabenstellungen aus dem Bereich der Modellbildung und Simulation von Anfangswertproblemen,
- Präsentation der Arbeitsergebnisse

Lehrformen

Workshop als betreute Gruppenarbeit, Vorlesung in seminaristischer Lehrform

Medienverwendung

Literatur

Modulbezeichnu	ng: Pr	ojekt 1			
Kürzel Pro 1		veranstaltung mesterprojekt	Häufigkeit o Angebots Winterseme	;	Dauer 1 Semester
Studiensemester	'	Norkload	Selbststudi	um	Präsenzstud.
1./2. Semester		300 h	270 h		30 h
Sprache	Gr	uppengröße	Umfang		Kreditpunkte
deutsch	< 3	Studierende	4 SWS		10
Formale Teilnahmevoraussetzungen T		Inhaltliche Teilnahmevoraussetzungen			bindlichkeit atveranstaltung
keine		kei	ine		

Erfolgreiches Bearbeiten eines abgegrenzten Fallbeispiels, Präsentation der Arbeitsergebnisse

Modulverantwortlicher

Prof. Dr.-Ing. Thies Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Hauptamtlich Lehrende

Lehrende der Fachhochschule Flensburg

Lernergebnisse (learning outcomes) / Kompetenzen

- Die Studierenden beherrschen Methoden der Ingenieurwissenschaften, des Projektmanagements und der Präsentation von ingenieurtypischen Projekten.
- Die Studierenden können ein komplexes Problem in Einzelprobleme auflösen (Anforderungsliste, Lastenheft, Pflichtenheft).
- Diese Einzelprobleme auch unter einem Systemaspekt lösen (Kreativtechniken),
- die Einzellösungen zu ingenieurwissenschaftlichen Systemen zusammenfassen und
- diese in einem entsprechenden Projekt umsetzen
- Sie können ein solches Projekt ergebnisorientiert planen (Projektplan),
- eine Projektgruppe organisieren und
- den Projektplan organisiert durchführen (Projektverfolgung).
- Sie können die Ergebnisse aufbereiten, einen Report darüber schreiben und in einer Präsentation darstellen.
- Intellektuelle und soziale Kompetenzen werden durch die Vermittlung von abstraktem, analytischem über den Einzelfall hinausgehendem und vernetztem Denken herausgebildet.
- Es wird die Fähigkeit geschult, sich schnell methodisch und systematisch in Neues einzuarbeiten. Dadurch werden Selbständigkeit, Teamfähigkeit, vernetztes Denken, Kreativität, Offenheit, Kommunikationsfähigkeit und Organisationsvermögen entwickelt und gefestigt

Inhalte

Das Projektmodul umfasst sowohl die Teilnahme an Präsenzveranstaltungen, als auch die Anfertigung einer Semesterarbeit und deren Präsentation.

Lehrformen

Workshop als betreute Gruppenarbeit, Vorlesung in seminaristischer Lehrform.

Im SS 2023 werden diese Wahlpflichtfächern angeboten:

Sektorkopplung (Verfahrenstechnik 3)
Antriebstechnik
Numerische Strömungsberechnung (CFD)
Grundlagen und Systeme der Meerestechnik
Anwendung der FEM in der Strukturmechanik
Umweltmanagement
Technische Zuverlässigkeit und Betriebsfestigkeit
Produktionsautomatisierung
Kybernetik
Grundlagen der Kern- und Strahlungsphysik
Energieeffizienz versorgungstechnischer Systeme
Sicherheitsmanagement
Elektrochemische Energietechnik

Ob diese Kurse tatsächlich zustande kommen, hängt davon ab, ob die Mindestteilnehmerzahl überschritten wird.

Modulbezeichnung: Analyse und Simulation Antriebstechnischer Systeme						
Kürzel	Lehrve	eranstaltung/en	Häufigkeit des		Dauer	
AT		und Simulation	Angebots	5	1 Semester	
		ebstechnischer Systeme	Sommersemester			
Studiensemester	Workload		Selbststudium		Präsenzstud.	
1./2. Semester	150 h		90 h		60 h	
Sprache	Gr	uppengröße	Umfang		Kreditpunkte	
deutsch	25	Studierende	4 SWS		5	
Formale Inhalt Teilnahmevoraussetzungen Teilnahmevora		raussetzungen		Verbindlichkeit Wahlpflichtveranstaltung		
keine		kei	ne	-		

- A) Hausarbeit und Präsentation
- B) Open book Klausur

Modulverantwortlicher

Prof. Dr.-Ing. Nils Werner, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Nils Werner, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Prof. Dr.-Ing. Ying Li, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

Die Studierenden erlernen die erweiterten Grundlagen der Antriebstechnik und deren Simulation.

- Sie können in Strukturen denken und
- die erlernten Denkweisen und Techniken in verschiedenen technischen und naturwissenschaftlichen Zusammenhängen verknüpfen und anwenden.
- Sie sind in der Lage, Antriebskonzepte zu beurteilen und selbständig Lösungen für Antriebsaufgaben zu entwerfen.
- Sie sind in der Lage, einfache mechatronische Systeme zu entwerfen und zu modellieren.
- Sie können Antriebsstränge mit Hilfe von Mehrkörpersimulationssystemen modellieren.

Inhalte

- A) Inhalt der Veranstaltung Teil A:
- Grundlagen der Antriebstechnik
- Einführung in die Fahrzeugsimulation mit Matlab/Simulink
- Aufbau eines Simulationsmodelles als Unterstützung zur Elektrifizierung der Antriebstränge von Fahrzeugen eines großen Entsorgungsunternehmens
- Exkursion zum Kraftfahrzeugbundesamt in Flensburg (Abgasmesstechnik und Rollenprüfstand) oder zur Abteilung Antriebstechnik in der Forschung und Entwicklung eines Fahrzeugherstellers in Niedersachsen

B)

- Aktorik und Sensorik
- Steuerung und Regelung
- Systemintegration und Entwicklung mechatronischer Systeme
- Modellierung und –simulation mechatronischer Systeme
- Einführung in das Programmsystem ADAMS als Beispiel eines Mehrkörpersimulationssystems

Lehrformen

Workshop als betreute Gruppenarbeit, Vorlesung in seminaristischer Lehrform, Hands-On Seminar im Simulationslabor

Medienverwendung

Tafel, Präsentationsmaterial, Computerprogramme, Simulationen

Literatur

wird in der Vorlesung bekannt gegeben

Modulbezeichnu	ng:	Einführun Strömung	ig in Jsberechnung	die g (CFD)	Numerische
Kürzel CFD	Ein:	führung in die Numerische ungsberechnung	Häufigkeit des Angebots Sommersemester		Dauer 1 Semester
Studiensemester	Workload		Selbststudium		Präsenzstudium
1./2. Semester		150 h	90 h		60 h
Sprache	Gri	uppengröße	Umfang		Kreditpunkte
deutsch	18	Studierende	4 SWS		5
Formale Teilnahmevoraussetze keine	ungen	Teilnahmevor Grundken Strömungs Thermody			/erbindlichkeit pflichtveranstaltung

Erfolgreiche Teilnahme an der Klausur, regelmäßige Teilnahme am PC-Labor

Modulverantwortliche/r

Prof. Dr.-Ing. Claus Werninger,

Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Claus Werninger, Dipl.-Ing. Joachim Stamp,

Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Den Studierenden werden die physikalischen Grundlagen vermittelt, die die Feldgrößen bei der Bewegung fluider Materie (Geschwindigkeit, Druck, Temperatur, Turbulenzgrößen, Dichte u.a.m.) beschreiben.
- An einigen Übungsbeispielen vollziehen die Studierenden den Simulationsprozess nach: Geometriedarstellung des Strömungsfelds, die Vernetzung der Geometrie mit wechselnder räumlicher Auflösung sowie die Definition der dem Problem zugrundeliegenden, angepassten Physik.
- Schließlich erlangen die Studierenden noch Kenntnisse und Erfahrungen in der Auswahl und Einstellung passender numerischer Einstellungen in der CFD Software, um die Simulationsaufgabe zu einer konvergenten Lösung zu führen.
- Die Studierenden können eine Problemstellung zur Simulation aufbereiten, passende Modelle gestalten, eine numerische Lösung erzielen und die Ergebnisse darstellen. Sie sind in der Lage die Ergebnisse zu validieren und wissenschaftlich zu interpretieren.

Inhalte

- Herleitung der Erhaltungsgleichungen für Masse, Impuls und Energie
- Diskussion der Turbulenz: Phänomen und Modellierung
- Diskussion der Betriebs- und Randbedingungen im allgemeinen und in ihrer Umsetzung in einer CFD-Software

- Diskretisierung der Erhaltungsgleichungen für die Finite-Volumen-Methode (FVM)
- Lösungsalgorithmen zur iterativen Berechnung der Feldgrößen Geschwindigkeit, Druck, Temperatur u.a.m.
- Visualisierung der Lösungsgrößen

Lehrformen

Vorlesung und PC-Labor zur individuellen Einübung der Simulation mit der Software ANSYS Fluent

Medienverwendung

Literatur

 Ferziger, J. Numerische Strömungsmechanik, 2. Auflage Peric, M. Springer Vieweg, 2020 Street, R.L.

• Lecheler, S. Numerische Strömungsberechnung, 4. Auflage Springer Vieweg, 2018

Laurien, E. Numerische Strömungsmechanik: Grundgleichungen und Modelle –
 Oertel, H. jr. Lösungsmethoden – Qualität und Genauigkeit, 6. Auflage

Springer Vieweg, 2018

Versteeg, H. An Introduction to Computational Fluid Dynamics:
 Malalasekera The Finite Volume Method, 2. Auflage

Prentice Hall, 2007

Modulbezeichnu	ıng: S	Sicherheitsn	nanagement		
Kürzel USM		eranstaltung/en eitsmanagement	Häufigkeit o Angebots Sommersemeste	S	Dauer 1 Semester
Studiensemester	1	Norkload	Selbststudium		Präsenzstud.
1./2. Semester		75 h	45 h		30 h
Sprache	Gr	uppengröße	Umfang		Kreditpunkte
deutsch	25	Studierende	2 SWS		2,5 (3)
Formale Teilnahmevoraussetz	ungen		tliche aussetzungen		Verbindlichkeit Wahlpflichtveranstaltung
keine		ke	keine		

Voraussetzungen für die Vergabe von Kreditpunkten für diesen Teilbereich

Erfolgreiche Teilnahme an schriftlicher Prüfung oder Bearbeitung eines Projektes;

Diese Veranstaltung ergänzt sich mit der Vorlesung Umweltmanagement von Frau Prof. Dr.-Ing. W. Vith; beide Teilbereiche werden jedoch einzeln abgeprüft, um mehr Variation zu ermöglichen.

Modulverantwortliche

Prof. Dr.-Ing. W. Vith, Prof. Dr.-Ing. Thies Langmaack,

Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende für diesen Teilbereich 'Sicherheitsmanagement'

Prof. Dr.-Ing. Thies Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

Kenntnisse

- Kenntnis üblicher Gefährdungen und von möglichen Gegenmaßnahmen
- Verständnis der Grundprinzipen des Sicherheitsmanagements

Fertigkeiten

- Fähigkeit, Gefährdungen aktiv zu minimieren
- Fertigkeiten in wesentlichen Werkzeugen wie Gefährdungsanalyse/Gefährdungsprävention, Root Cause Analyse, Aufrechterhalten eines Managementsystems

K<u>ompetenzen</u>

- Problembewusstsein als Auditor/Mitarbeiter
- Lösungskompetenz: Substitution, Technisch, Operativ, Persönlich

Inhalte

- 1. Einführung: Warum Sicherheit?
- 2. Grundlagen und Grundprinzipien des Sicherheitswesens (Risiko/Gefährdung/Schutz)
- 3. Standortkultur: Das gelebte Managementsystem
- 4. Typische Anforderungen/Elemente eines Managementsystems
- 5. Gefährdungen mit tödlichem Potential und Gegenmaßnahmen
- 6. Integrierte Managementsysteme

Alles unterlegt mit vielen Beispielen aus der eigenen Praxis

Lehrformen

Vortrag und Übungen in Kleingruppen

Medienverwendung

Tafel und Beamer

Literatur – alles zum Herunterladen im Internet

BG ETEM ,Verantwortung in der Unfallverhütung', 2016

BGI 587 , Arbeitsschutz will gelernt sein', 2004

BG RCI ,Vision Zero', 2017

baua ,Sicherheit und Arbeitsschutz mit System', 2011

Modulbezeichnung: Umweltmanagement						
Kürzel USM		eranstaltung/en eltmanagement	Häufigkeit des Angebots Sommersemester		Dauer 1 Semester	
Studiensemester	١	Norkload	Selbststudium		Präsenzstud.	
1./2. Semester		75 h	45 h		30 h	
Sprache	Gr	uppengröße	Umfang		Kreditpunkte	
deutsch	25	Studierende	2 SWS		2,5 (3)	
Formale Teilnahmevoraussetz	ungen		tliche aussetzungen		Verbindlichkeit Wahlpflichtveranstaltung	
keine		ke	ine			

Voraussetzungen für die Vergabe von Kreditpunkten für diesen Teilbereich

Erfolgreiche Teilnahme an schriftlicher Prüfung oder Bearbeitung eines Projektes;

Diese Veranstaltung ergänzt sich mit der Vorlesung Sicherheitsmanagement von Prof. Dr.-Ing. T. Langmaack; beide Teilbereiche werden jedoch einzeln abgeprüft, um mehr Variation zu ermöglichen.

Modulverantwortliche

Prof. Dr.-Ing. W. Vith, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende für diesen Teilbereich 'Sicherheitsmanagement'

Prof. Dr.-Ing. Wiktoria Vith, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Idee und Anwendungsbereich des Umweltmanagements
- Verständnis der Grundprinzipien des Umweltmanagements
- Bewertung der unternehmerischen Motivation für Entwicklung und Aufrechterhaltung des UM-Systems
- Fertigkeiten in ausgewählten Werkzeugen des Umweltmanagements wie LCA-Analyse

Inhalte

- 1. Umweltrecht und Umweltpolitik
- 2. Bedeutung der DIN EN ISO 14001
- 3. Struktur und Phasen es Umweltmanagementsystems
- 4. Geschäftsprozess
- 5. Umweltbilanz/Umweltaspekte
- 6. Verbesserungspotential in der Umweltbilanz

Alles unterlegt mit vielen Beispielen aus der eigenen Praxis.

Lehrformen

Vortrag und Übungen in Kleingruppen

Medienverwendung

Tafel und Beamer

Literatur

wird in Vorlesung bekannt gegeben

Modulbezeichnu	ng: Se	ektorkopplun	g (Verfahren	stechr	nik 3)
Kürzel	Lehrve	eranstaltung/en	Häufigkeit des		Dauer
VT3	Verfahi	renstechnik 3	Angebots	8	1 Semester
			Sommerseme	ester	
Studiensemester	١	Norkload	Selbststudi	um	Präsenzstud.
1./2. Semester		150 h	90 h		60 h
Sprache	Gr	uppengröße	Umfang		Kreditpunkte
deutsch	25	Studierende	4 SWS		5
Formale		Inhal	tliche		Verbindlichkeit
Teilnahmevoraussetz	ungen	Teilnahmevor	aussetzungen		Wahlpflichtveranstaltung
Vorkenntnisse in	Vorkenntnisse in Wärme- und Sto		toffübertragung,		
Verfahrenstechnik aus einem		Strömungslehre, Grundlagen der			
BA-Studiengang		mechanischen und thermischen			
		Vertahre	nstechnik		

Ausarbeitung zu den Modulinhalten als Gruppenarbeit

Modulverantwortliche/r

Prof. Dr.-Ing. Wiktoria Vith, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Wiktoria Vith, Prof. Dr. Hinrich Uellendahl, (Prof. Dr.-Ing. Claus Werninger, Prof. Dr.-Ing. Thies Langmaack), Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Anhand eines Fallbeispiels (Power-to-X Anlage/Testlabor Sektorkopplung) wird die Auslegung einer Anlage bestehend aus mehreren Teilprozessen erlernt mit Berücksichtigung von Nebenströmen und des Energieeinsatzes
- Die Studierenden begreifen den Einfluss einzelner Prozessparameter auf die verfahrenstechnischen Prozesse sowie die Abstimmung der Kopplung der einzelnen Prozesse in einem Gesamtkonzept
- Die Studierenden erkennen die Anwendungsmöglichkeiten der verfahrenstechnischen Grundlagen zur Auslegung, zum Scale-Up und zur Optimierung von komplexen Prozessen und können diese anwenden
- Durch Labore und Exkursionen wird die Anwendung des Erlernten/Erarbeiteten und die Übertragung in den Großmaßstab vertieft und gefestigt

Inhalte

- 1.) Einführung Verfahrenstechnik, Case Testlabor Sektorkopplung
- 2.) Einführung (Bio-)chemische Verfahrenstechnik, Energie aus Biomasse, Biogasprozess, Biogastechnologie; Aufbau und Prozessparameter einer Biogasanlage
- 3.) Methanisierung von Biogas, Study Case Biogas + Methanisierung, Exkursion Biogasanlage Nordhackstedt
- 4.) Grundlagen der Elektrochemie, Wasserelektrolyse: PEM, AEL, Elektrolyse Labor, Exkursion Heide Elektrolyse -Hersteller
- 5.) Trennverfahren zur CO₂-Abscheidung, Mehrphasenströmung in Kolonnen Grundprinzipien und Laborversuch
- 6.) Gruppenarbeit Auslegung Power2X-Anlage

Lehrformen

Vorlesung in seminaristischer Lehrform

Medienverwendung

Tafel, Folien, Powerpoint-Präsentation,

Literatur

- Kurzweiler, P.; Dietlmeier, O.: Elektrochemische Speicher, Springer Vieweg
- Watter, H.: Regenerative Energiesysteme, Springer Vieweg
- Staiger, R.; Tanțău, A.: Geschäftsmodellkonzepte mit grünem Wasserstoff, Springer Gabler

_

lodulbezeichnu	ng: Grundlage	en und Systeme d	er Meerestechnik	
Kürzel	Lehrveranstaltu			
GSMt	Grundlagen un Systeme der Meerestechnil	Sommerseme	1 Semester	
Studiensemester	Workload	Selbststudi	um Präsenzstud.	
1./2. Semester	150 h	90 h	60 h	
Sprache	Gruppengröß	e Umfang	Kreditpunkte	
Deutsch/Englisch	25 Studierend	e 4 SWS	5	
Formale		Inhaltliche	Verbindlichkeit Wahlpflichtveranstaltung	
Teilnahmevoraussetz	ungen Teilnah	mevoraussetzungen		

i dillialo	iiiiaitiioiio	VOIDINGINGIN
Teilnahmevoraussetzungen	Teilnahmevoraussetzungen	Wahlpflichtveranstaltung
keine	keine	-

Erfolgreiches Bearbeiten eines abgegrenzten Projektes, Präsentation der Arbeitsergebnisse

Modulverantwortliche/r

Prof. Dr.-Ing. Axel Krapoth, Fb Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Axel Krapoth, Fb Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden kennen die typischen Bauwerke und Verfahren der Meerestechnik, insbesondere Plattformen, Schwimmkörper, und Tauchfahrzeuge.
- Die Studierenden können die speziellen Anforderungen an Konstruktions- und Betriebsanforderungen für Offshore-Bauwerke, -Einrichtungen und Fahrzeuge einschätzen.
- Sie kennen die entsprechenden Bauvorschriften und Zertifizierungsagenturen und deren Bedingungen.
- Sie können die speziellen Anforderungen an die Konstruktionsprinzipien , die sich aus Wind- und Wellenlasten ergeben und deren Einfluss auf die Design-Parameter einschätzen.

Inhalte

- Der Einfluss von Wind, Strom, Wellen und Umwelt auf Offshorestrukturen.
- Definitionen spezifischer Lasten und deren stochastischen Charakter.
- Übersicht über bemannte und unbemannte Tauchfahrzeuge
- Lastannahmen und Randbedingungen für Tauchfahrzeuge
- Konzepte für den Meeresbergbau
- Design-Prinzipien und Vorschriften

Lehrformen

Vorlesung und Übung, Diskussion ausgewählter Fallbeispiele. Vorträge externer Fachleute. Bearbeitung von (möglichst interdisziplinären) Projekten in Gruppen

Medienverwendung

Tafel, Präsentationen, Filme, Simulationen, Seminaristische Diskussion von Fallbeispielen

Literatur

Wird in der Veranstaltung bekannt gegeben.

Modulbezeichnur	ng: Pr	oduktionsau	tomatisierung	
Kürzel	Lehrveranstaltung/en Produktions- automatisierung		Häufigkeit des	Dauer
			Angebots Sommersemester	1 Semester
Studiensemester	Workload		Selbststudium	Präsenzstud.
1./2. Semester	150 h		90 h	60 h
Sprache	Gruppengröße		Umfang	Kreditpunkte
deutsch	25 Studierende		4 SWS	5
Formale		Inhaltliche Teilnahmevoraussetzungen		Verbindlichkeit
Teilnahmevoraussetzu	ngen	Teilnahme an LV Fertigungstechnik 1,		Wahlpflicht
keine		Wünschenswert: Vertiefungsfächer der Produktionstechnik (FT2, Werk- zeugmaschinen, Produktionsplanung)		-veranstaltung

Prüfungsleistung, SP (Klausur (120 min.), Vortr., Arb.)

Modulverantwortliche/r

Prof. Dr.-Ing. Dodwell Manoharan, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Dodwell Manoharan, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

Kenntnisse

- Anforderungen, Organisation und Systeme der Produktion
- Mechatronische Systeme in Produktionsmaschinen
- Steuerungstechnik in Produktionssysteme, Sensoren, Vorschubachsen
- Signalverarbeitung sowie Prozess- und Zustandsüberwachung
- Robotik, Be- und Entladesysteme sowie Greifertechnik
- Digitalisierungsansätze in der Produktionsautomatisierung
- Auslegung von Produktionssystemen nach wesentlichen Erfolgsfaktoren

Fertigkeiten

- Beschreibung einer Produktionsaufgabe, Darstellung von heutigen Lösungen sowie ihre Vor- und Nachteile
- Analyse einer Produktionsmaschine und ihres Aufbaus als mechatronisches System
- Beschreibung einer Handhabungsaufgabe, Erfassung von Anforderungen, Darstellung von existierenden Lösungsansätzen
- Darstellung von Vorgehensweise zur Auslegung von Produktionssysteme

Kompetenzen

- Anforderungen einer Produktionsaufgabe erfassen und hinsichtlich der technologischen und organisatorischen Aspekten beurteilen
- mechatronische Systeme einer Produktionsmaschine erklären und ihre Zusammenspiel als System erläutern
- Aufbau und Funktion von Handhabungssystemen erklären und eine Vorauswahl für eine Produktionsaufgabe treffen
- Vorgehensweise zur Auslegung eines Produktionssystems erläutern und hinsichtlich des technologischen Prozesses Planungsschritte vornehmen
- Digitalisierungsansätzen analysieren hinsichtlich Einsetzbarkeit sowie Chancen und Risiken bewerten

Inhalte

Vorlesung

- Einführung in die Produktionsautomatisierung
- Mechatronische Systeme in Produktionsmaschinen
- Steuerungstechnik in Produktionsmaschinen
- Signalverarbeitung, Prozess- und Zustandsüberwachung
- Vorschubsachsen, Arten und Auslegung
- Messsysteme und Sensoren in der Automatisierung
- Handhabungssysteme und Robotik
- Auslegung von Produktionssystemen Prozess und Kapazitätsplanung
- Mechatronisches Engineering
- Digitalisierung in der Produktionsautomatisierung

Lehrformen

Vorlesung und Übung

Medienverwendung

Skript, Unterstützendes Material zum Download, Folien, Beamer, Tafel,

- Schuh, Günter, Produktionsmanagement, Springer, 2014
- Schuh, Günter, Produktionsplanung und -steuerung, Springer, 2012
- Brecher, Christian, Werkzeugmaschinen 3, Springer, 2019
- Bauernhansl, Thomas, Handbuch Industrie 4.0, Produktion, Springerverlag, 2017

Modulbezeichnu	ıng: El	ektrochemiso	che Energiete	echnik			
Kürzel	Lehrve	eranstaltung/en	Häufigkeit des		taltung/en Häufigkeit des		Dauer
ECE	Elektro	chemische	Angebots	5	1 Semester		
	Energie	etechnik	Sommersemester				
Studiensemester	١	Norkload	Selbststudium		Präsenzstud.		
1./2. Semester		150 h	90 h		60 h		
Sprache	Gr	uppengröße	Umfang		Kreditpunkte		
deutsch	25	Studierende	4 SWS		5		
Formale Inha		Inhal	altliche		Verbindlichkeit		
Teilnahmevoraussetzungen		Teilnahmevor	Teilnahmevoraussetzungen		nlpflichtveranstaltung		
keine	keine		keine		_		

schriftliche Prüfung

Modulverantwortliche/r

Prof. Dr.-Ing. habil. Claudia Werner, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr.-Ing. habil. Claudia Werner, Fachbereich Energie und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden kennen die elektrochemischen Grundlagen sowie das Funktionsprinzip und die Merkmale der behandelten Systeme (Brennstoffzellen, Elektrolyseanlagen, Batterien) und
- können deren Möglichkeiten im Rahmen unterschiedlicher Anwendungen einschätzen.
- Die Studierenden sind in der Lage die behandelten Systeme auszuwählen, auszulegen und zu bewerten.

Inhalte

- Grundlagen der elektrochemischen Energietechnik
- Aufbau und Betriebsweise elektrochemischer Energiesysteme
- Auslegung und Einsatz elektrochemischer Energiesysteme

Lehrformen

Vorlesungen und Übungen auf der Basis von Tafelarbeit, unterstützt durch graphische Darstellungen bzw. Online-Lehre (nach Bedarf)

Literatur

Aktuelle Veröffentlichungen

Modulbezeichnu	ng: k	(ybernetik			
Kürzel	Lehrve	ranstaltung/en	Häufigkeit des		Dauer
KT	K	ybernetik	Angebots	S	1 Semester
			Sommerseme	ester	
Studiensemester	1	Vorkload	Selbststudium		Präsenzstud.
1./2. Semester		150 h	90 h		60 h
Sprache	Gr	ıppengröße	Umfang		Kreditpunkte
Deutsch/Englisch	10	Studierende	4 SWS		5
Formale		Inhalt	Inhaltliche		Verbindlichkeit
Teilnahmevoraussetzungen		Teilnahmevor	Teilnahmevoraussetzungen		Wahlpflichtveranstaltung
keine		kei	ne		

Erfolgreiches Bearbeiten eines abgegrenzten Fallbeispiels, Präsentation der Arbeitsergebnisse

Modulverantwortlicher

Prof. Dr.-Ing. Nils Werner, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Nils Werner, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Prof. Dr.-Ing. Paolo Mercorelli, Leuphana Universität Lüneburg, Institut für Produkt- und Prozessinnovation

Lernergebnisse (learning outcome) / Kompetenzen

Die Studierenden erlernen die erweiterten Grundlagen der Kybernetik deren Simulation und realen Anwendung.

- Sie können in Strukturen denken und die erlernten Denkweisen und Techniken in verschiedenen technischen und naturwissenschaftlichen Zusammenhängen verknüpfen und anwenden.
- Sie sind in der Lage, Steuerungen und Regelungen zu beurteilen.
- Sie können mit Matlab/Simulink Modelle erstellen und Simulationen durchführen.
- Sie sind in der Lage reale Regelkreise unter Anwendung von Mikrocontrollern zu entwerfen.
- Sie beherrschen den Umgang mit konventioneller Regelungstechnik und die Grundlagen und Anwendung von sensorlosen Regelungen mit Hilfe von virtuellen Sensoren durch Beobachter Entwurf (Luenberger Beobachter und Kalman Filter als Beobachter im linearen und nichtlinearen Fall mit Simulationen in Simulink.
- Sie beherrschen die Konzepte der Nichtlinearität in den Systemen und in der Regelung.
- Sie sind in der Lage Entwürfe von Regelungen für nichtlineare Systeme durch Lyapunov basierte Ansätze wie z.B. Sliding Mode Control und Regelungsstrukturen nach dem Konzept der Passivität und Dissipativität zu konzipieren.
- Sie sind in der Lage Model Predictive Control Strukturen zu konzipieren, besonders in Kombination mit Sliding Mode Control.

Inhalte

- Einführung in die Kybernetik
- Modellbildung
- Einführung in Matlab/Simulink
- Einsatz und Programmierung von Mikrocontrollern über Simulink
- Regelung an realen Regelstrecken mit Mikrocontrollern
- Wurzelortskurvenverfahren
- Luenberger Beobachter mit Simulation und Einsatz an realer Regelstrecke
- Einführung in die nichtlineare Regelung
- Kalman Filter als Beobachter im linearen und nicht linearen Fall mit Simulation

- Sliding Mode Control mit Simulation
- Einführung in die Model Prediktiven Regelungen
- Aufgaben, Beispiele und Übungen mit Matlab/Simulink

Lehrformen

Workshop als betreute Gruppenarbeit, Vorlesung in seminaristischer Lehrform,

Medienverwendung

Tafel, Präsentationsmaterial, Computerprogramme, Simulationen

Literatur

wird in der Vorlesung bekannt gegeben

Modulbezeichnu	ıng: Ar	nwendung de	er FEM in der	Struk	turmechanik
Kürzel FEM	Anwen in der	eranstaltung/en dung der FEM rmechanik	Häufigkeit o Angebots Sommerseme	3	Dauer 1 Semester
Studiensemester	,	Workload	Selbststudium		Präsenzstud.
2. Semester		150 h	90 h		60 h
Sprache	Gr	uppengröße	Umfang		Kreditpunkte
deutsch	18 Studierende		4 SWS		5
Formale		Inhal	tliche		Verbindlichkeit

Formale		Inhaltliche	Verbindlichkeit
Teilnahmevoraussetzu keine	ıngen	Teilnahmevoraussetzungen keine	Wahlpflichtveranstaltung

schriftliche Prüfung

Modulverantwortliche/r

Prof. Dr.-Ing. Frithjof Marten, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Frithjof Marten, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden kennen die Grundzusammenhänge der Finite-Elemente-Methode
- Sie sind in der Lage das FEM-Programm Ansys Workbench im Bereich der Strukturmechanik in Grundzügen zu bedienen.
- Sie haben einen Überblick über die Nachweismethodiken nach FKM-Richtlinie und können diese für die Bemessung von strukturmechanischen Komponenten anwenden.

Inhalte

- Grundlagen der Finite-Elemente-Methode
- Einführung in das Programmsystem Ansys Workbench
- Einführung in die Nachweismethodik nach FKM-Richtlinie
- Betriebsfestigkeitsnachweise auf Basis örtlicher Konzepte mithilfe der FEM

Lehrformen

Präsenzvorlesungen

Laborübungen im PC-Labor

Literatur

- C. Gebhardt: Praxisbuch FEM mit ANSYS Workbench: Einführung in die lineare und nichtlineare Mechanik. Hanser Verlag.
- B. Klein: FEM Grundlagen und Anwendungen der Finite-Elemente-Methode im Maschinenund Fahrzeugbau. Springer Vieweg.
- FKM-Richtlinie: Rechnerischer Festigkeitsnachweis für Maschinenbauteile

Modulbezeichnung:

Technische Zuverlässigkeit und Betriebsfestigkeit

Kürzel	Lehrveranstaltung/en	Häufigkeit des	Dauer	
SZ	Technische	Angebots	1 Semester	
	Zuverlässigkeit	Sommersemester		
Studiensemester	Workload	Selbststudium	Präsenzstud.	
1./2. Semester	150 h	90 h	60 h	
Sprache	Gruppengröße	Umfang	Kreditpunkte	
deutsch	25 Studierende	4 SWS	5	
Formalo	Inhaltlicha Taile	nahmovoraussotzungon	Varhindlichkait	

Formale	Inhaltliche Teilnahmevoraussetzungen	Verbindlichkeit
Teilnahmevoraussetzungen keine	keine	Wahlpflicht
		-veranstaltung

Voraussetzungen für die Vergabe von Kreditpunkten

Prüfungsleistung, Klausur (120 min.)

Modulverantwortliche/r

Prof. Dr.-Ing. Ying Li, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Ying Li, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

<u>Kenntnisse</u>

- Grundbegriffe, Definitionen und Kenngrößen in technischer Zuverlässigkeit und Betriebsfestigkeit
- Grundlagen der Wahrscheinlichkeitstheorie
- Methoden der Zuverlässigkeitsanalyse

Fertigkeiten

- Mathematische Beschreibung der Zuverlässigkeit technischer Komponenten
- Auslegen Zuverlässigkeitstest
- Durchführung statistischer Auswertung von Versuchsdaten
- Bestimmen von Zuverlässigkeitskenngrößen über Lebensdauer und Ausfallswahrscheinlichkeit technischer Komponenten

Kompetenzen

- Auslegung und Auswertung von Zuverlässigkeitstest
- Zuverlässigkeitsanalyse
 - Betriebsfestigkeitsanalyse

Inhalte

<u>Vorlesung</u>

- Grundbegriffe, Kenngröße und Standards
- Grundlagen der Statistik und Wahrscheinlichkeitstheorie
- Wahrscheinlichkeitsrechnung und Verteilungsfunktionen
- Grafische Verfahren der Zuverlässigkeitsanalyse
- Rechnerische Verfahren der Zuverlässigkeitsanalyse
- Betriebsfestigkeit

• Lebensdauerversuche und Zuverlässigkeitstests

Lehrformen

Vorlesung in seminaristischer Lehrform

Medienverwendung

Unterstützendes Material zum Download, Folien, Beamer, Tafel,

Literatur

- Bertsche, B.:

Zuverlässigkeit im Fahrzeug- und Maschinenbau, Springer Verlag, 2004

- Birolini, A.:

Reliability Engineering

Springer, 2004

- Birolini, A.:

Qualität und Zuverlässigkeit technischer Systeme

Springer, 1991

Haibach, E.:

Betriebsfestigkeit: Verfahren und Daten zur Bauteilberechnung

Springer, 2006

Module des Wintersemesters

Modulbezeichn	ung: Info	rmationstechnik/D	atenbanke	en
Kürzel Info		veranstaltung/en nstechnik/Datenbanken	Häufigkeit o Angebots Wintersemes	S 1 Semester
Studiensemester	Workload		Selbststudi	um Präsenzstud.
1./2. Semester	150 h		90 h	60 h
Sprache	G	ruppengröße	Umfang	Kreditpunkte
deutsch	40) Studierende	4 SWS	5
Formale Teilnahmevorauss			_	Verbindlichkeit Pflichtveranstaltung
keine			Grundkenntnisse der Programmierung	

Programmierarbeiten, Projekt

Modulverantwortliche/r

Prof. Dr. rer.-nat. habil. Mads Kyed, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr. rer.-nat. habil. Mads Kyed, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

Die Studierenden sind in der Lage,

- Softwaresysteme zu entwerfen und in eine objektorientierte Sprache zu implementieren,
- Daten in eine relationale Datenbank zu strukturieren,
- grafische Benutzeroberflächen zu erstellen,
- Client-Server-Systeme aufzubauen.

Inhalte

- Objektorientierte Analyse und Design (UML).
- Relationale Datenbanken (SQL).
- Grafische Benutzeroberflächen (GUI).
- Client-Server-Systeme.

Lehrformen

Seminaristischer Unterricht, Projektarbeiten, Gruppenarbeiten.

Medienverwendung

Literatur

- Woyand, Hans-Bernhard: "Python für Ingenieure und Naturwissenschaftler: Einführung in die Programmierung, mathematische Anwendungen und Visualisierungen"
- Ernesti, Johannes; Kaiser, Peter: "Python 3: Das umfassende Handbuch: Sprachgrundlagen, Objektorientierte Programmierung, Modularisierung"
- Balzert, Heide: "Lehrbuch der Objektmodellierung: Analyse und Entwurf mit der UML 2"

Modulbezeichnu	ıng: St	rategische P	roduktentwic	klung	
Kürzel	Lehrve	ranstaltung/en			Dauer
StraPro	Strategi	sche	Angebots	3	1 Semester
	Produk	tentwicklung	Winterseme	ster	
Studiensemester	Workload		Selbststudium		Präsenzstud.
1. Semester		150 h	90 h		60 h
Sprache	Gr	ıppengröße	Umfang		Kreditpunkte
deutsch	30	Studierende	4 SWS		5
Formale	le Inhal		tliche		Verbindlichkeit
Teilnahmevoraussetz	nevoraussetzungen Teilnahmevoi		aussetzungen	P	flichtveranstaltung
keine		kei	ine		

120-minütige schriftliche Prüfung oder alternative Prüfungsleistung

Modulverantwortlicher

Prof. Dr.-Ing. D. Manoharan, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. D. Manoharan, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Prof. Dr.-Ing. T. Steffen, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden können den Produktentstehungsprozess PEP auf die Entwicklung von neuen bzw. bestehenden Produkten anwenden.
- Die Studierende kennen die Gestaltungsprinzipien und interdisziplinäre Methoden, die bei der Produktentwicklung angewendet werden.
- Die Studierenden können in interdisziplinären Teams arbeiten und die gängigen Methoden aus anderen Disziplinen anwenden.

Inhalte

- Einführung in den Produktentstehungsprozess PEP nach Pahl/Beitz
- Erarbeiten von Methoden zur Erstellung und Bewertung von Anforderungslisten, Funktionsstrukturen und Lösungen
- Methoden in der Produktentwicklung aus den Feldern Design, Usability, Elektronik und Software
- Einführung in das agile Projektmanagement und Lean Development

Lehrformen

Vorlesung, Workshops, Projektarbeit im Team, Teamcoaching

Medienverwendung

Literatur

- Feldhusen/Grote: Pahl/Beitz Konstruktionslehre, Springer Verlag 2013
- Dombrowski: Lean Development, Springer Verlag 2015
- Preußig: Agiles Projektmanagement, Haufe. 2015

Modulbezeichnu	ı ng : Pr	ojekt 2			
Kürzel Pro 2		veranstaltung mesterprojekt Mäufigkeit Angebot Winterseme		;	Dauer 1 Semester
Studiensemester	١	Norkload	Selbststudium		Präsenzstud.
1./2. Semester		300 h	270 h		30 h
Sprache	Gr	uppengröße	Umfang		Kreditpunkte
deutsch	< 3	Studierende	4 SWS		10
Formale Teilnahmevoraussetzungen		Inhaltliche Teilnahmevoraussetzungen		_	erbindlichkeit chtveranstaltung
keine		kei	ne		

Erfolgreiches Bearbeiten eines abgegrenzten Fallbeispiels, Präsentation der Arbeitsergebnisse

Modulverantwortlicher

Prof. Dr.-Ing. Thies Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Hauptamtlich Lehrende

Lehrende der Hochschule Flensburg

Lernergebnisse (learning outcomes) / Kompetenzen

- Die Studierenden beherrschen Methoden der Ingenieurwissenschaften, des Projektmanagements und der Präsentation von ingenieurtypischen Projekten.
- Die Studierenden können ein komplexes Problem in Einzelprobleme auflösen (Anforderungsliste, Lastenheft, Pflichtenheft).
- Diese Einzelprobleme auch unter einem Systemaspekt lösen (Kreativtechniken),
- die Einzellösungen zu ingenieurwissenschaftlichen Systemen zusammenfassen und
- diese in einem entsprechenden Projekt umsetzen.
- Sie können ein solches Projekt ergebnisorientiert planen (Projektplan),
- eine Projektgruppe organisieren und
- den Projektplan organisiert durchführen (Projektverfolgung).
- Sie können die Ergebnisse aufbereiten, einen Report darüber schreiben und in einer Präsentation darstellen.
- Intellektuelle und soziale Kompetenzen werden durch die Vermittlung von abstraktem, analytischem über den Einzelfall hinausgehendem und vernetztem Denken herausgebildet.
- Es wird die Fähigkeit geschult, sich schnell methodisch und systematisch in Neues einzuarbeiten. Dadurch werden Selbständigkeit, Teamfähigkeit, vernetztes Denken, Kreativität, Offenheit, Kommunikationsfähigkeit und Organisationsvermögen entwickelt und gefestigt.

Inhalte

Das Projektmodul umfasst sowohl die Teilnahme an Präsenzveranstaltungen, als auch die Anfertigung einer Semesterarbeit und deren Präsentation.

Lehrformen

Workshop als betreute Gruppenarbeit, Vorlesung in seminaristischer Lehrform.

Im WS 2022/23 wurden folgende Wahlpflichtfächern angeboten:

- + Systeme der Elektromobilität
- + Netzwerktechnik
- + Einführung in die Numerische Prozesssimulation (CAPE)
- + Schweißtechnik
- + Speiseöltechnologie
- + Systeme der Energiespeichertechnik
- + Fließschemata in Prozesstechnologie
- + Entrepreneurial @venture Create Your Future!
- + Membrantechnologie
- + Maschinendynamik2/Akustik
- + Numerische Optimierung
- + Systemzuverlässigkeit im Maschinenbau
- + Energieeffizienz versorgungstechnischer Systeme
- + Green Engineering
- + Fertigungsgerechte Konstruktion

.

Modulbezeichnung: Systeme der Elektromobilität					
Kürzel	Lehrve	ranstaltung/en	Häufigkeit des		Dauer
EmoB	S	ysteme der	Angebots	S	1 Semester
	Elel	Elektromobilität Sommerseme		ester	
Studiensemester	Workload		Selbststudium		Präsenzstud.
1./2. Semester	150 h		90 h		60 h
Sprache	Gruppengröße		Umfang		Kreditpunkte
deutsch	25 Studierende		4 SWS		5
Formale Inhalt				Verbindlichkeit	
Teilnahmevoraussetzungen Teilnahmev		Teilnahmevor	raussetzungen _{Wa}		nlpflichtveranstaltung
keine		keine			

Bestehen einer Klausur 120 min

Modulverantwortliche/r

Prof. Dr.-Ing. Jo. Berg, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Jo. Berg, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcomes) / Kompetenzen

- Die Studierenden werden in die Lage versetzt, an elektrischen Maschinen sinnvolle Versuche durchzuführen um spezielle Fragen nach deren Verhalten zu klären.
- Des Weiteren lernen sie, wie elektrische Maschinen entwickelt, gebaut und ihre Standarddaten gemessen werden.

Inhalte

Maschinenexperimente für:

- D.C. Maschinen
- Einphasen Transformatoren
- Asynchronmaschinen

Lehrformen

Laborversuche als betreute Gruppenarbeit, Vorlesung in seminaristischer Form

Medienverwendung

Tafel, Laborversuche

Literatur

Electric Machinery by A. E. Fitzgerald, Charles Kingsley Jr.Electric Motors and Drives: Fundamentals, Typ...by Austin Hughes, Test descriptions

Modulbezeichnung: Netzwerktechnik						
Kürzel NWT		hrveranstaltung/en Häufigkeit des Angebots Wintersemester		;	1 Semester	
Studiensemester	Workload		Selbststudium		Präsenzstund.	
1. Semester		150 h	90 h		60 h	
Sprache	Gr	ıppengröße	Umfang		Kreditpunkte	
deutsch	18	Studierende	4 SWS		5	
Formale Teilnahmevoraussetzungen Tei		Inhalt Teilnahmeyora		V	erbindlichkeit	

Formale Teilnahmevoraussetzunger			Wal	Verbindlichkeit hlpflichtveranstaltung
keine	Grundkennt Program			-

120-minütige schriftliche Prüfung oder alternative Prüfungsleistung

Modulverantwortlicher

Prof. Dr.-Ing. D. Jeschke, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr.-Ing. D. Jeschke, Fachbereich Energie und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

Die Teilnehmer sind der Veranstaltung sind in der Lage, Aufbau und Funktion von Netzwerken nachzuvollziehen und diese sinnvoll (z.B. durch geeignete Vergabe von Adressen) zu verwalten. Sie kennen die wesentlichen Merkmale gängiger Protokolle und sind in der Lage, die Headerinformationen von Netzwerkdaten sinnvoll auszuwerten. Sie verstehen die die Aufgabe eines Betriebssystems bei der Verwaltung von Netzwerkschnittstellen und können für ein gegebenes Protokoll eine Netzwerkschnittstelle implementieren. Die Teilnehmer verstehen die Funktion einer Firewall und können diese konfigurieren.

Inhalte

- OSI-Modell am Beispiel des Protokollstapels Ethernet, IP, TCP/UDP, IEC 62056-21
- Datenanalyse mit Wireshark
- Programmierung einer Netzwerkschnittstelle in C++ für Windows
- IT-Sicherheit und Firewalls

Lehrformen

Workshop

Medienverwendung

Literatur

•

Modulbezeichnu	_	nführung in o CAPE)	die Numerisc	he Pro	zesssimulation	
Kürzel	Lehrve	eranstaltung/en	Häufigkeit des		Dauer	
CAPE	Einführung in die		Angebots		1 Semester	
	Numerische Prozesssimulation		Wintersemester			
Studiensemester	Workload		Selbststudium		Präsenzstudium	
1./2. Semester	150 h		90 h		60 h	
Sprache	Gruppengröße		Umfang		Kreditpunkte	
Deutsch/Englisch	12 Studierende		4 SWS		5	
Formale Teilnahmevoraussetzungen		Inhaltliche Teilnahmevoraussetzungen		Verbindlichkeit		
				Wahlpflichtveranstaltung		
keine		Grundkenntnisse in				
		Thermischer Verfahrenstechnik				
		und ggf. Chemischer Verfahrenstechnik				
		verianirei	nstechnik			

Erfolgreiche Teilnahme an der Klausur, regelmäßige Teilnahme am PC-Labor

Modulverantwortliche/r

Prof. Dr.-Ing. Claus Werninger,

Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Claus Werninger, Dipl.-Ing. Jens Jungclaus

Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden sind in der Lage, das Basiskonzept eines chemischen oder thermischen Prozesses zu erstellen. Sie berücksichtigen dabei heuristische oder rigorose Methoden und bilanzieren ihren Konzeptentwurf in der Synthesephase mit Hilfe der Erhaltungsprinzipien.
- Die Studierenden können den Konzeptentwurf in der Prozesssimulationssoftware ASPENPLUS abbilden und sind in der Lage geeignete Stoffgesetze auszuwählen.
- Die Studierenden erzielen Lösungen für ihre Entwürfe, können die Lösungen bewerten und mit Hilfe von Analysewerkzeugen die Lösungsgüte evaluieren.

Inhalte

- Lösungsmethoden zur Prozesssynthese:
 - Heuristische Ansätze und rigorose Ansätze
- Einführung in die stationäre Prozesssimulation:
 - Gemischthermodynamik
 - Basisausrüstung Prozessanlagen: Pumpen, Kompressoren, Wärmeübertrager, Ventile
 - Chemische Reaktoren in ASPENPLUS
 - Thermische Unit Operations und deren Modellierung in ASPENPLUS
- Prozessberechnung und Prozessanalyse
 - Analysewerkzeuge in ASPENPLUS

Lehrformen

Vorlesung und PC-Labor zur individuellen Einübung der Simulation mit der Software ASPENPLUS

Medienverwendung

Einsatz der Prozesssimulationssoftware ASPENPLUS

-	• 4			
	114	era	T11	ır
L	11 U	υца	เเน	ш

• Al-Malah, K ASPENPLUS Chemical Engineering Applications

Wiley, 2017

• Schefflan, R. Teach Yourself the Basics of ASPENPLUS, 2. Auflage

Wiley, 2016

• Smith, R. Chemical Process Design and Integration, 2. Auflage

Wiley, 2016

• Turton, R. Analysis, Synthesis, and Design of Chemical Processes, 5. Auflage

Shaiewitz, J.E. Prentice Hall, 2018

Bhattacharyya, D. Whiting, W.B.

• Baehr, H.D. Thermodynamik: Grundlagen und technische Anwendungen,

Kabelac, S. 16. Auflage,

Springer Vieweg, 2016

• Blass, E. Entwicklung verfahrenstechnischer Prozesse, 2. Auflage

Springer, 1997

Modulbezeichnung: Schweißtechnik						
Kürzel	Lehrve	eranstaltung/en	Häufigkeit des		Dauer	
ST	So	chweißtechnik	Angebot	S	1 Semester	
			Winterseme	ster		
Studiensemester	'	Workload	Selbststudium		Präsenzstud.	
1./2. Semester		150 h	90 h		60 h	
Sprache	Gr	uppengröße	Umfang		Kreditpunkte	
deutsch	25	Studierende	4 SWS		5	
Formale	ale Inhal		tliche		Verbindlichkeit	
Teilnahmevoraussetz	ungen	Teilnahmevor	aussetzungen	Wah	lpflichtveranstaltung	
keine		ke	ine			

Bestehen einer zweistündigen Klausur

Modulverantwortliche/r

Prof. Dr.-Ing. M. Dahms, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. M. Dahms, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden können für eine Schweißaufgabe das angemessene Schweißverfahren auswählen und eine Schweißverfahrensprüfung durchzuführen.
- Sie sind in der Lage, die Schweißeigung eines gegebenen unlegierten Stahles zu bewerten und bei begrenzt schweißgeeigneten Stählen die Maßnahmen zu veranlassen, die ein positives Schweißergebnis erwarten lassen.
- Sie sind in der Lage, Schweißkonstruktionen aus unlegiertem Stahl angemessen zu gestalten und in der Zeichnung darzustellen.
- Bei einem qualifizierten Bestehen der Klausur sind die Studierenden berechtigt und in der Lage, in den Teil III des internationalen Schweißfachingenieurlehrganges einzusteigen.

Inhalte

- Schweißverfahren
- Schweißen des unlegierten Stahls
- Schweißkonstruktion
- Die Inhalte orientieren sich am Katalog des internationalen Schweißfachingenieurlehrganges, Teil I.

Lehrformen

Vorlesung in seminaristischer Lehrform

Medienverwendung

Literatur

Skript des DVS zum Schweißfachingenieurlehrgang, Teil I

Modulbezeichnung: Speiseöltechnologie						
Kürzel	Lehr	/eranstaltung	Häufigkeit des		Dauer	
SÖT	Speis	eöltechnologie	Angebots		1 Semester	
			Winterseme	ster		
Studiensemester	\	Vorkload	Selbststudi	um	Präsenzstud.	
5. Sem. BTVT/MB;		75 h 45 h			30 h	
1. Sem. Master SystT;						
2. Sem. Master BPE						
Sprache	Grı	appengröße	Umfang		Kreditpunkte	
deutsch	25	Studierende	2 SWS		2,5 // 3 (je nach Studiengangraster)	
Formale	L	Inhal	tliche	<u> </u>	Verbindlichkeit	
Teilnahmevoraussetzi	ungen	Teilnahmevor	aussetzungen	Wa	hlpflichtveranstaltung	
keine		keine				

Schriftliche Prüfung am Ende des Semesters; bei Masterstudierenden zusätzlich ein Referat

Modulverantwortliche/r

Prof. Dr.-Ing. T. Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. T. Langmaack, Fachbereich Maschinenbau, Verfahrenstechnik und maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden sind mit den typischen Herausforderungen eines kontinuierlichen Produktionsbetriebes vertraut (Qualitätswesen, Sicherheit, Produktivität, Logistik,...).
- Die Studierenden kennen unterschiedliche Lösungsansätze hierzu und sind in der Lage, einen geeigneten Ansatz auszuwählen.
- Die Studierenden kennen den Speiseölproduktionsprozess vom Rapskorn bis zum voll raffinieren Öl, sind mit den verfahrenstechnischen Grundlagen der einzelnen Grundoperationen vertraut und können diese Operationen aufgrund der Grundlagenkenntnis optimieren.
- Die Studierenden erkennen die Bedeutung/das Potential der Wärme- und Stoffübertragung
- Die Studierenden erkennen die Grundlagen/Grenzen/Optionen bestimmter Grundoperationen
- Die Studierenden sind in der Lage, das Erlernte auf jeden anderen kontinuierlichen Produktionsprozess zu übertragen (Papier, Chemikalien,...).

Inhalte

- Aspekte des kontinuierliche Produktionsprozesses (Sicherheit, Umweltschutz, Qualitätssicherung, Logistik, Instandhaltung, Kosten, Energiemanagement, Produktivität, Nachhaltigkeit...)
- Erläuterung dieser Aspekte am Beispiel des Speiseölprozesses (chemischer Hintergrund; gesamter Prozessablauf, einzelne Grundoperationen, Lagerung)
- Erläuterung einiger Grundoperation am Beispiel der Ölsaatenverarbeitung; diese Operationen sind in vielen anderen Prozessen wiederzufinden.
- Sondergebiete der Speiseölverarbeitung (Biodiesel/Margarine)

Lehrformen

Vorlesung, Diskussion ausgewählter Fallbeispiele.

Medienverwendung

Tafel, Präsentationen, Filme, Seminaristische Diskussion von Fallbeispielen

Modulhandbuch Masterstudiengang Systemtechnik HS Flensburg, Stand Februar 2023

Literatur

Wird in der Veranstaltung bekannt gegeben.

Modulbezeichnung: Systeme der Energiespeichertechnik					
Kürzel Esp	System	eranstaltung/en e der espeichertechnik	Häufigkeit o Angebots Winterseme	;	Dauer 1 Semester
Studiensemester	'	Norkload	Selbststudium		Präsenzstud.
1./2. Semester		150 h	90 h		60 h
Sprache	Gr	uppengröße	Umfang		Kreditpunkte
deutsch	25	Studierende	4 SWS		5
Formale Teilnahmevoraussetzungen keine		Inhaltliche Teilnahmevoraussetzungen keine			Verbindlichkeit Ipflichtveranstaltung

schriftliche Prüfung

Modulverantwortliche/r

Prof. Dr.-Ing. habil. Claudia Werner, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr.-Ing. habil. Claudia Werner, Fachbereich Energie und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden kennen das Funktionsprinzip sowie die Merkmale und Potentiale thermischer, mechanischer, elektrischer, elektrochemischer und chemischer Energiespeicher und
- können deren Möglichkeiten im Rahmen unterschiedlicher Anwendungen einschätzen.
- Sie sind in der Lage Speichersysteme auszuwählen, anzuwenden und zu bewerten.

Inhalte

- Grundlagen natürlicher Energiespeicher und technischer Energiespeichersysteme
- Stationäre und mobile Energiespeicheranwendungen

Lehrformen

Vorlesung auf der Basis von Tafelarbeit, unterstützt durch graphische Darstellungen bzw. Online-Lehre (nach Bedarf)

Literatur

Modulbezeichnung: Fließschemata in der Anlagentechnik						
Kürzel	Lehrve	eranstaltung/en	en Häufigkeit des		Dauer	
FIA		Fließschemata in der Anlagentechnik WS			1 Semester	
Studiensemester	,	Workload	Selbststudium		Präsenzstud.	
5. oder 6.		75 h	45 h		30 h	
Sprache	Gr	uppengröße	Umfang		Kreditpunkte	
deutsch	10	Studierende	2 SWS		2,5	
Formale	'	Inhal	tliche	V	erbindlichkeit	
Teilnahmevorausset	zungen	Teilnahmevor	aussetzungen	Wahlp	flichtveranstaltung	
keine		keine		_	-	

Erstellung eines vollständigen Fließbildes mit CAD-Programm von einer Prozessanlage

Modulverantwortliche/r

Prof. Dr.-Ing. Wiktoria Vith

Hauptamtlich Lehrende

Prof. Dr.-Ing. Wiktoria Vith

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden können Prozessfließbilder lesen und verstehen.
- Die Studierenden kennen die gängige Symbolik der Fließbilder
- Sie sind in der Lage mit einem RI-CAD Programm ein Fließbild zu entwickeln.

Inhalte

- Was ist ein P&ID?
- RI-NORM EN ISO 10628
- Erkennen der Symbolik der Fließbilder
- Standard- und Zusatzinformationen in Fließbilder
- Fließbilder lesen und verstehen
- RI-Cad kennenlernen
- Aufbau eines Fließbildes
- Fließbildansätze entwickeln

Lehrformen

Vorlesung auf der Basis von Vorlesungsskript, beispielhafte Fließbilder, RI-CAD Programm, Prozessanlagenbesichtigung

Literatur

Modulbezeichnung: Entrepreneurial @venture - Create Your Future!

In diesen praxisnahen Seminaren erhalten die Studierenden auf Basis des Effectuation-Ansatzes einen innovationsorientierten Zugang zur Kompetenz des unternehmerischen Denkens und Handelns. Dabei werden Kreativität und Eigeninitiative neben der Zielsetzung und Planung eigener Projekte, unter Berücksichtigung der entsprechenden Chancen und Risiken, forciert. Problembewusstes und lösungsorientiertes Arbeiten, Chancenerkennung und Nutzung sowie die Erfahrung der eigenen Selbstwirksamkeit werden mit Methoden aus der Entrepreneurship Education in interdisziplinären Seminargruppen vermittelt.

Kürzel Eav	Entrepr	eranstaltung/en eneurial rre - Create Your	Häufigkeit of Angebots Wintersemes Sommerseme	s 1 Semester ster/
Studiensemester	/	Norkload	Selbststudi	ium Präsenzstud.
offen		150 h	90 h	60 h
Sprache	Gruppengröße		Umfang	Kreditpunkte
deutsch	20	Studierende	4 SWS	5
Formale Teilnahmevoraussetzungen keine		Inhalt Teilnahmevora kei	aussetzungen	Verbindlichkeit Wahlpflichtmodul

Voraussetzungen für die Vergabe von Kreditpunkten

Sonstige Prüfungsleistung: Bearbeitung eines Projektes mit schriftlicher Hausarbeit und Präsentation

Modulverantwortliche/r

Julia Redepenning, Fachbereich 4: Wirtschaft

Hauptamtlich Lehrende

Julia Redepenning, Fachbereich 4: Wirtschaft

Lernergebnisse (learning outcome) / Kompetenzen

- Umgang mit grundlegenden Konzepten der Begriffe Innovation, Entrepreneurship und Effectuation, sowie Anwendung und Begrifflichkeit eines Designprozesses (Ideation, Prototyping, Product to market und/oder BMC)
- Anwendung von Marktanalysemethoden, Positionierungsstrategien, Kreativitätstechniken und Storytelling.
- Auseinandersetzung und Erweiterung mit dem eigenen Entrepreneurial Mindset, Impulsgebung zur Selbstwirksamkeit, sowie trainieren der Zusammenarbeit in interdisziplinären Teams.

Inhalte

- Grundlagenwissen zu den Begriffen Effectuation, Entrepreneurship und Innovation
- Grundlagen und Anwendung von Designthinking und Designprozessen
- Anwendung von Konzeptentwicklung und Prototyping.

Lehrformen

Onlinelehre und Gruppenarbeiten.

Literatur

Modulbezeichnung: Membrantechnologie					
Kürzel Memt		eranstaltung/en antechnologie	Häufigkeit o Angebots WS		
Studiensemester	'	Norkload	Selbststudi	um Präsenzstud	ı.
5. oder 6.		75 h	45 h	30 h	
Sprache	Gr	uppengröße	Umfang	Kreditpunkt	e
deutsch	12	Studierende	2 SWS	2,5	
Formale Teilnahmevoraussetzungen keine		Inhaltliche Teilnahmevoraussetzungen keine		Verbindlichkeit Wahlpflichtveranstaltu	ıng

Engineering einer Fall-Studie, Membranlaborübung mit Auswertungsprotokoll

Modulverantwortliche/r

Prof. Dr.-Ing. Wiktoria Vith

Hauptamtlich Lehrende

Prof. Dr.-Ing. Wiktoria Vith

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden kennen die Anwendungsfelder der Membrantechnologie und können entsprechend der Aufgabestellung (Fall-Studie) ein System analysieren und überschlägig berechnen
- Sie sind in der Lage den Zusammenhang zwischen den Kenngrößen, den Reglungsmöglichkeiten der Anlage und der Filtrationsleistung zu bewerten.

Inhalte

- Klassifizierung der Filtration
- Trenngrenzen und Klassifizierung der Membranverfahren
- Kenngrößen der Filtration
- Stofftransportarten in der Membran
- Prozessführung
- Praxisbeispiele

Lehrformen

Vorlesung auf der Basis von Vorlesungsskript, Rechenaufgaben, Membranlabor, Besichtigung und Analyse der Membrananlagen

Literatur

Kürzel	Lehrve	eranstaltung/en	Häufigkeit d	
MaAk	a) Akı	ıstik	Angebots	1 Semester
	b) Mas	schinendynamik	Wintersemes	ter
Studiensemester	١	Norkload	Selbststudiu	ım Präsenzstud.
1./2. Semester			90 h	60 h
		150 h		
Sprache	Gr	uppengröße	Umfang	Kreditpunkte
deutsch	25	Studierende	4 SWS	5
Formale		Inhal	tliche	Verbindlichkeit
Teilnahmevorausset	zungen	Teilnahmevor	aussetzungen	Wahlpflichtveranstaltung
keine		Grundla Maschine	•	
		Kompetenz komplexer Schwingungs Maschiner	Lärm- und sprobleme an	
		Kenntnisse in	FEM-Analyse	

Projekt und Präsentation

Modulverantwortliche/r

Prof. Dr.-Ing. Nils Werner, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Nils Werner, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien Prof. Dr.-Ing. Ying Li, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Die Studierenden können analytische Modelle für abgegrenzte Fallbeispiele aus den Anwendungsfeldern der Modellbildung und –simulation von Anfangswertproblemen auf Systemebene entwickeln und
- diese in ein Simulationsmodell für eine signalflussbasierte und/oder objektorientierte numerische Simulation umsetzen.
- Sie sind in der Lage, die dafür notwendigen Funktionen der Simulationswerkzeuge Matlab und Simulink zu bewerten, auszuwählen und anzuwenden.
- Sie lernen die Methoden und Konzepte der passiven und aktiven Strukturkontrolle kennen.
- Sie können FEM-Modellierungen von schwingungstechnischen Problemen vornehmen.
- Sie können Eigenwert- und Eigenformanalysen durchführen und können diese auswerten und beurteilen

Inhalte

- Grundlagen der Maschinenakustik
- Modellbildung und Simulation in der Maschinendynamik
- Experimentelle Schall- und Körperschallanalysen an Maschinen
- Experimentelle Modalanalyse an ausgewählten Strukturen
- Numerische Modalanalyse und harmonische Analyse an ausgewählten Strukturen

- Schwingformen der mechanischen Strukturen
- Modellreduktion und Simulation aktiver Strukturen
- Passive und aktive Maßnahmen zur Reduktion der Strukturschwingungen

Lehrformen

Workshop als betreute Gruppenarbeit, Vorlesung/Laborveranstaltung als Seminar

Medienverwendung

Tafel, Präsentation, Rechnerlabor, Physisches Schwingungslabor

Literatur

Wird in der Veranstaltung bekannt gegeben

Modulbezeichnung:							
Systemzuverlässigkeit im Maschinenbau							
Kürzel		eranstaltung/en	Häufigkeit des Angebots	Dauer			
SZ	System	zuverlässigkeit		1 Semester			
			Wintersemester				
Studiensemester	\	Norkload	Selbststudium	Präsenzstud.			
1./2. Semester		75 h	45 h	30 h			
Sprache	Gr	uppengröße	Umfang	Kreditpunkte			
deutsch	25	Studierende	2 SWS	2,5			
Formale		Inhaltliche Teil	nahmevoraussetzungen	Verbindlichkeit			
Teilnahmevoraussetz	eilnahmevoraussetzungen		keine	Wahlpflicht			
keine				-veranstaltung			
\$4		17 114	1.4				

Prüfungsleistung, SP (Klausur (120 min.), Vortr., Arb.)

Modulverantwortliche/r

Prof. Dr.-Ing. Ying Li, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Hauptamtlich Lehrende

Prof. Dr.-Ing. Ying Li, Fachbereich Maschinenbau, Verfahrenstechnik, maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

<u>Kenntnisse</u>

- Bedeutung und Anordnung der Systemzuverlässigkeit
- Grundbegriffe, Kenngrößen und Standards der Zuverlässigkeitstechnik
- Qualitative und Quantitative Methoden der Systemzuverlässigkeit
- Methoden des Versuchsdesigns
- Mechatronische Systeme
- Sensitivitätsanalyse
- Unsicherheit und Robustheit im Systemdesign

Fertigkeiten

- Anwendung der qualitativen und quantitativen Methoden der Systemzuverlässigkeit
- Auslegung experimenteller Versuche mittels der Methode von DoE und statistische Versuchsauswertung
- Quantitative Bewertung der Wechselwirkungen und Unsicherheiten in komplexen technischen Systemen
- Analyse der Fehlermöglichkeiten und –auswirkungen eines technischen Systems/ Prozesses
- Bewertung der Funktionsrobustheit eines technischen Systems

Kompetenzen

- Systematische Anwendung von geeigneten qualitativen und quantitativen Methoden der Systemzuverlässigkeit über den gesamten Produktlebenszyklus
- Beschreibung der Zuverlässigkeit, Funktionssicherheit, Verfügbarkeit und Wartungsfähigkeit einer in Wechselwirkung miteinander stehenden Gesamtheit technischer Elemente
- Erkennung der Wechselwirkungen und Unsicherheiten in einem technischen System
- Erkennung der Schwachstellen in Systemauslegung, Optimierung des Systemdesigns hinsichtlich der Zuverlässigkeit und Robustheit

Inhalte

Vorlesung

- Einführung in die Grundbegriffe der Systemzuverlässigkeit
- Grundlagen der Statistik und Wahrscheinlichkeitstheorie
- Qualitative Methoden: Fehlermöglichkeits- und Einfluss-Analyse FMEA, Fehlerbaum-Analyse FTA,
 Design Review based on Failure Mode DRBFM
- Quantitative Methoden: Boolesche Systemtheorie und Markov Prozess
- Maßnahmen der Zuverlässigkeitssteigerung
- Methoden der Sensitivitäts-, Unsicherheits- und Robustheitsanalyse
- Methoden der Statistischen Versuchsplanung und –auswertung DoE
- Numerische und experimentelle Simulation für die Systemzuverlässigkeitsanalyse mechatronischer Systeme

Lehrformen

Vorlesung in seminaristischer Lehrform

Medienverwendung

Unterstützendes Material zum Download, Folien, Beamer, Tafel,

Literatur

wird in der Vorlesung bekannt gegeben

Modulbezeichnung: Energieeffizienz versorgungstechnischer Systeme						
Kürzel	Lehrveranstaltung/en	Häufigkeit des Angebots	Dauer			
EEVS	Energieeffizienz versorgungstechnischer Systeme	Sommersemester	1 Semester			
Studiensemester	Workload	Selbststudium	Präsenzstud.			
1./2. Semester	150 h	90 h	60 h			
Sprache	Gruppengröße	Umfang	Kreditpunkte			
deutsch	25 Studierende	4 SWS	5			

Formale	Inhaltliche	Vei	rbindlichkeit
Teilnahmevoraussetzungen	Teilnahmevoraussetzungen	Wahlpf	lichtveranstaltung
keine	Thermodynamik, Wärme- übertragung, Strömungslehre, (Steuerungs- und Regelungstechnik)		

Klausur 2,0 h oder Arbeit und Vortrag

Modulverantwortliche/r

Prof. Dr.-Ing. Dirk Volta, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr.-Ing. Dirk Volta, Fachbereich Energie und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

Die Studierenden sind in der Lage, wesentliche Zusammenhänge der Anlagentechnik und dessen Betriebsführung zu erkennen und daraus Optimierungspotentiale abzuleiten.

Anlagen, weisen im realen Anlagenbetrieb eine andere (meist schlechtere) Effizienz auf, als im stationären, ausgelegten Leistungsbereich. Hinzu kommt der individuelle Bedarfsmix der Betriebe an Technischen Medien wie bspw. Kälte und Druckluft. Die Studierenden lernen daher auch das dynamische Verhalten komplexer Verbundstrukturen zu erfassen, und daraus Verbesserungsmaßnahmen abzuleiten.

Die Erkenntnisse können in der Praxis sowohl in der Planung, als auch in der Optimierung bestehender Anlagensysteme angewendet werden. Anlagen beziehen sich im Kontext der Vorlesung auf:

- die Kälte-, Druckluft-, Wasser- und Wärmeversorgung,
- sowie jeweils deren Verbrauchern
- und Kopplungssystemen (z.B. Wärmerückgewinnung (WRG))

Inhalte

- Grundlagen versorgungstechnischer Systeme
- Kälteversorgung und -nutzung
- Wärmeversorgung und -nutzung
- Druckluftversorgung
- Wasserversorgung und -nutzung
- Versorgungsnetze
 - o Auslegung, Anhaltswerte
 - Hydraulischer Abgleich
 - o Regelung hydraulischer Weichen
- Kopplungssysteme
 - Systematischer Ansatz
 - o 3-R-Methode am Beispiel der Wassernutzung
 - o WRG-Kälte

- o WRG-Ofenprozesse
- WRG-Druckluft
- Kennzahlen
 - Übersicht üblicher Kennzahlen
 - Das Physikalische Optimum
 - Methode des normierten Aufwands

Lehrformen: Seminaristischer Unterricht, Vorlesung, Gruppenarbeit, Übungsaufgaben, Beispiele.

Medienverwendung: Skript, Anhang zur Vorlesung, Tafel/Board, Präsentation (Power-Point), Kurzfilme.

Literatur:

- Recknagel: Taschenbuch für Heizung + Klimatechnik
- Arbeitskreis der Professoren für Regelungstechnik in der Versorgungstechnik (Hrsg.): Regelungs- und Steuerungstechnik in der Versorgungstechnik. VDE Verlag, 7. Auflage, 12. September 2014.
- Blesl, M./Kessler, A.: Energieeffizienz in der Industrie. Springer-Vieweg, 2013.
- Hesselbach, J.: Energie- und Klimaeffiziente Produktion. Grundlagen, Leitlinien und Praxisbeispiele, Springer-Vieweg, 2012.
- Meyer, J.: Rationelle Energienutzung in der Ernährungsindustrie. Vieweg, Dezember 2000.

Modulbezeichnung: Green Engineering						
Kürzel	Lehrve	ranstaltung/en	Häufigkeit (
GE	Green I	Engineering	Angebots	1, walliweise 2 Selliestei		
			Sommer- u Winterseme			
Studiensemester	١	Vorkload	Selbststudi	um Präsenzstunden		
1./2. Sem. Master Energie- und Umweltmanagement	150 h		90 h	60 h		
1./2. Sem. Master SystemTechnik						
Sprache	Gr	ıppengröße	Umfang	Kreditpunkte		
deutsch	25	Studierende	4 SWS	5		
Formale	Formale In		tliche	Verbindlichkeit		
Teilnahmevoraussetzu keine			aussetzungen ine	Wahlpflichtveranstaltung		

Erstellen einer Projektarbeit und Präsentation der Arbeit am Ende des Semesters

Modulverantwortlicher

Prof. Dr. H. Uellendahl, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Hauptamtlich Lehrender

Prof. Dr. H. Uellendahl, Fachbereich Maschinenbau, Verfahrenstechnik und Maritime Technologien

Lernergebnisse (learning outcome) / Kompetenzen

- Im Green Engineering Kurs haben die Studierenden die Möglichkeit, eine Projektarbeit zu einem gegebenen oder eigens gewählten Thema im Rahmen des nachhaltigen Engineerings auszuarbeiten. Dies kann einerseits die Erarbeitung neuer nachhaltiger technischer Verfahren beinhalten, andererseits die Bewertung solcher Verfahren hinsichtlich ihrer ökonomischen und/oder ökologischen Nachhaltigkeit im Vergleich zu bestehenden Verfahren
- Das gewählte Thema sollte auf die bisher im Studium erworbenen Kompetenzen aufbauen.
- Im Rahmen der Projektarbeit lernen die Studierenden, ein Projekt zu planen und dessen zeitbegrenzte Durchführung zu organisieren (Zeitplan /Ressourcen /Organisation /Literaturrecherche)
- Je nach Wahl des Projektthemas lernen die Studierenden:
- ein Life-Cycle Assessment (LCA/Ökobilanz) mit der Software *openLCA* sowie der *ecoinvent* Datenbank durchzuführen
- eine Kosten-Nutzen-Analyse auf Basis von Energie- und Massenbilanzen zu erstellen
- Grundprinzipien neuer technischer Verfahren zu verstehen, Laborversuche zu diesen Verfahren durchzuführen, die Ergebnisse zu beurteilen und zu erarbeiten, wie ein Verfahren optimiert werden kann
- Das Green Engineering Projekt kann sich wahlweise über ein oder zwei Semester (Green Engineering 1 + 2) erstrecken; der Beginn des Projektes ist sowohl im Sommersemester (GE 1) oder Wintersemester (GE 2) möglich

Inhalte

- Erklärung der Grundprinzipien und Kriterien des 'Green Engineerings'
- Heranführen an die Problemstellung anhand von vorgestellten Beispielen
- Einführung zur Kosten-Nutzen-Analyse bzw. Life Cycle Assessment (LCA)
- Ziele und Methoden der Prozessoptimierung
- Erläutern der Grundprinzipien des Projektmanagements
- Bearbeitung eines eigenen Themas als Projekt. Die Projektarbeiten werden durch die Studierenden in Eigenverantwortung bearbeitet in regelmäßiger Rücksprache mit dem Dozenten.

Bislang wurden beispielsweise folgende Themen aus dem Bereich Energietechnik und Verfahrenstechnik bearbeitet:

- Kosten-Nutzen Vergleich Nutzung von Wasserstoff direkt oder Umwandlung in Methan/Methanol f
 ür Kfz- oder Schiffsverkehr
- Umweltbilanz Lehmbau und Recyceln von Ziegelsteinen gegenüber konventionellem Häuserbau
- LCA Vergleich von Einmal- und Mehrweg-Periodenprodukten
- Vergleichende Analyse der Produktlebenszyklen von Kochboxen und verschiedenen Einkaufsszenarien
- LCA verschiedene Getränkeverpackungen
- LCA und Wirtschaftlichkeitsanalyse eines Li-Ionen Heimspeichers
- LCA Vergleich von Photovoltaik (PV) und Concentrated Solar Power (CSP)
- Herstellung und Recycling von Kunststoffabfällen
- Wirtschaftlichkeitsvergleich zweier Nutzungsszenarien für den Betrieb zweier BHKWs einer Biogasanlage

Mögliche Themen zur experimentellen Prozessoptimierung wären z.B.:

- Laborversuche zur katalytischen Methanisierung von CO2 und Wasserstoff zu Methan
- Laborversuche zur Ertragssteigerung der Biogasproduktion aus Reststoffen der Landwirtschaft (z.B. Gülle, Stroh)
- Laborversuche zu verschiedenen Verfahren der Fest-flüssig Trennung von Gärresten (für das Testlabor)

Lehrformen

Vorlesung, Erarbeitung des Projektthemas in Projektgruppen oder Seminar; u.U. Laborversuche, Präsentation der Projektarbeit durch die Studierenden

Medienverwendung:

Tafel, Präsentationen

Literatur

Eigene Literaturrecherche zu gewähltem Projektthema.

Modulbezeichnung: Fertigungsgerechte Konstruktion						
Kürzel FGK	Lehrveranstaltung/en Fertigungsgerechte Konstruktion	Häufigkeit des Angebots Wintersemester	Dauer 1 Semester			
Studiensemester	Workload	Selbststudium	Präsenzstud.			
1. Semester	225 h	135 h	90 h			
Sprache	Gruppengröße	Umfang	Kreditpunkte			
deutsch	25 Studierende	4 SWS (2 V+ 2 Labor)	5			

Formale	Inhaltliche	Verbindlichkeit
Teilnahmevoraussetzungen keine	Teilnahmevoraussetzungen keine	Wahlpflichtveranstaltung

Sonstige Prüfungsleistung

Modulverantwortlicher

Prof. Dr.-Ing. Kluge, Fachbereich Energie und Biotechnologie

Hauptamtlich Lehrende

Prof. Dr.-Ing. Kluge, Fachbereich Energie und Biotechnologie

Lernergebnisse (learning outcome) / Kompetenzen

•

Inhalte

- Fertigungslehre => Urformen = hier Gießen von Metallen
 - Werkstoffe
 - Gefüge
 - Erstarrung
 - Gussfehler
 - verschieden Gießverfahren
 - Schwerpunkt Druckguss
 - Maschinen
 - Anlagen
 - Werkzeuge
 - Aufbau
 - Formteilung
 - Auswerfer
 -
 - Analyse vorhandener Teile
 - (Nach)Konstruktion (CAD) eines vorhandenen Teiles
 - Fertigungsgerechte Gesichtspunkte

Lehrformen

Vorlesung und Workshops

Medienverwendung

Literatur

•