IQmodelo: Statistical software for task-based image quality assessment with model observers

Adam Wunderlich

Center for Devices and Radiological Health U.S. FDA, Silver Spring, MD

IQmodelo

- Public domain statistical analysis software for task-based image quality assessments with model observers
- Compatible with MATLAB® release R2007b and newer, some functions require Statistics ToolboxTM
- http://code.google.com/p/iqmodelo/

Overview of Contents

- Parametric methods for linear observers
 - useful for ROC assessment of known-location detection/discrimination tasks
 - "exact" confidence intervals
 - channelized Hotelling observers
 - channelized Hotelling observers with known difference of class means
 - known-template linear observers
 - known-template linear observers with known difference of class means
- General methods
 - relaxed assumptions, approximate confidence intervals
 - nonparametric ROC, LROC, and EROC analysis for fixed readers
 - nonparametric analysis of binomial proportions for fixed readers
 - ANOVA-based multi-reader multi-case analysis for random readers
- Demos
- User manual complete list of functions and references

Parametric Methods: channelized Hotelling observers

- each image multiplied with channel matrix to get channel output vector
- general case:
 - Wunderlich et al., IEEE Trans. Med. Imag., 2015
 - assumptions: channel outputs for signal absent and signal-present images follow multivariate normal distributions with common covariance matrix
 - typically satisfied for known-location signal detection/discrimination
- known difference of class means:
 - Wunderlich and Noo, IEEE Trans. Nucl. Sci., 2013
 - additional assumption: difference of means for signal-present and signal-absent channel outputs is known
 - -reconstruction of high-dose data may yield accurate approximation

Parametric Methods: known-template linear observers

- ratings produced by taking inner product of template and image
- general case:
 - Wunderlich and Noo, Med. Phys., 2011
 - assumptions: ratings for signal absent and signal-present images are normally-distributed with common variance
 - typically satisfied for known-location signal detection/discrimination
- known difference of class means:
 - Wunderlich and Noo, IEEE Trans. Nucl. Sci., 2012
 - additional assumption: difference of means for signal-present and signal-absent ratings is known
 - -reconstruction of high-dose data may yield accurate approximation

Nonparametric Methods: fixed observers

ROC

- Mann-Whitney (trapezoidal) AUC point estimates
- variance/covariance analysis: DeLong et al., Biometrics, 1988

I ROC

- generalization of Mann-Whitney and DeLong methods
- Wunderlich and Noo, IEEE Trans. Med. Imag., 2012

EROC

- generalizes LROC to combined detection and estimation tasks
- Wunderlich and Goossens, SPIE J. Med. Imag., 2014

Binomial proportions

- examples: probability of correct decision in MAFC task, probability of correct localization in LROC task
- Noo et al., Proc. SPIE Med. Imag. Conf., 2013

General ANOVA-based MRMC analysis with random readers

 Obuchowski-Rockette method with Hillis' degrees of freedom (ORH method)

References:

Obuchowski and Rockette, Commun. Stat. Simulat. 1995 Hillis, Stat. Med. 2007, 2014

- applicable to any figure of merit
- requires fixed-reader covariance matrix that can be estimated with functions described previously for nonparametric ROC, LROC, EROC, and MAFC analysis

Confidence Interval Coverage Parameters

The analysis functions return $1-\alpha$ confidence intervals, where

$$\alpha = \alpha_1 + \alpha_2$$

 α_1 : controls lower bound

 α_2 : controls upper bound

Examples:

- 2-sided 95% interval: $\alpha_1 = \alpha_2 = 0.025$
- 1-sided 95% interval: $\alpha_1 = 0.05$, $\alpha_2 = 0$

List of Demos

- known-location signal detection, ROC analysis
 - demo1a.m: one imaging scenario, 2-sided Cls
 - demo1b.m: same as demo1a, but with 1-sided Cls
 - demo2a.m: two imaging scenarios, 2-sided Cls
 - demo2b.m: same as demo2a, but with 1-sided Cls
- unknown-location signal detection, LROC analysis
 - demo3.m : one imaging scenario
 - demo4.m: two imaging scenarios

Demo Structure

Because each demo presents performance estimates obtained from a single random data set, the results

- are subject to statistical variations
- do not justify general conclusions

Demos 1 and 2: Setup

- Task: known-location signal detection
- Observer:
 - known-template linear observer
 - template: uniform disk roughly same size as signal
 - channelized Hotelling observer (CHO)
 - 3 DOG channels
 - 40 Gabor channels
- Figure of merit: area under ROC curve (AUC)

Demos 1 and 2: Images

- image size: 96×96
- colored gaussian noise background following power-law model
 - common noise component across imaging scenarios ⇒ correlation
- gaussian signal added at center
- specified set of seeds for random number generator ⇒ same results
- 150 signal-absent images, 150 signal-present images


```
demo1a
----- demo 1a -----
computing lesion-absent images (m=150) ...
computing lesion-present images (n=150) ...
Displaying two-sided 95% confidence intervals for AUC:
fixed template linear observer:
2AFC estimates:
p =
  0.7933
p_CI =
  0.7208
         0.8509
nonparametric (Mann-Whitney) estimates:
AUC =
  0.8068
AUC_CI =
  0.7532
         0.8511
```

Demo 1a results

observer	method	point estimate	95% CI (2-sided)
disk-template	2AFC	0.793	[0.721, 0.851]
disk-template	Mann-Whitney-DeLong	0.807	[0.753, 0.851]
disk-template	parametric	0.805	[0.754, 0.850]
disk-template	parametric known-means	0.783	[0.765, 0.802]
CHO-DOG	parametric	0.810	[0.757, 0.853]
CHO-DOG	parametric known-means	0.794	[0.775, 0.813]
CHO-Gabor	parametric	0.890	[0.819, 0.907]
CHO-Gabor	parametric known-means	0.880	[0.860, 0.900]

Demo 1b results

observer	method	point estimate	95% CI (1-sided)
disk-template	2AFC	0.793	[0.734, 1]
disk-template	Mann-Whitney-DeLong	0.807	[0.763, 1]
disk-template	parametric	0.805	[0.763, 1]
disk-template	parametric known-means	0.783	[0.768, 1]
CHO-DOG	parametric	0.810	[0.766, 1]
CHO-DOG	parametric known-means	0.794	[0.778, 1]
CHO-Gabor	parametric	0.890	[0.827, 1]
CHO-Gabor	parametric known-means	0.880	[0.863, 1]

Demo 2

- Compare two fixed imaging scenarios with confidence interval for AUC_B – AUC_A
- Same signal and noise statistics for each scenario
- Common noise component across scenarios \Rightarrow correlated results
- For the parametric methods,
 - known-template, known difference of class means method provides accurate CI for AUC difference (assumes same correlation for signal-absent and signal-present ratings)
 - other parametric methods rely on Bonferroni inequality to obtain (overly) conservative confidence intervals (see appendix of manual)
- The nonparametric methods give accurate confidence intervals for AUC difference, but do not utilize known difference of class means

Common one-sided hypotheses

Non-inferiority test: ($\delta = \text{non-inferiority margin}$)

$$H_0$$
: $AUC_B - AUC_A \le -\delta$ inferiority

$$\mathsf{H}_1$$
: $\mathsf{AUC}_B - \mathsf{AUC}_A > -\delta$ non-inferiority

- used to assess "substantial equivalence"

Superiority test: $(\delta = 0)$

$$H_0$$
: $AUC_B - AUC_A \le 0$
non-superiority

$$H_1$$
: $AUC_B - AUC_A > 0$ superiority

For either test:

- Can evaluate with one-sided $1-\alpha$ intervals of the form [ΔAUC_L , 1] by setting $\alpha_1=\alpha$, $\alpha_2=0$
- ullet For a given lpha, one-sided intervals are more efficient than two-sided intervals

Demo 2a results

observer	method	\widehat{AUC}_{A}	\widehat{AUC}_{B}	95% CI (2-sided)
disk-template	2AFC	0.793	0.827	[-0.054, 0.121]
disk-template	Mann-Whitney-DeLong	0.807	0.791	[-0.080, 0.049]
disk-template	parametric	0.805	0.784	[-0.134, 0.091]
disk-template	parametric known-means	0.783	0.787	[-0.022, 0.030]
CHO-DOG	parametric	0.810	0.778	[-0.147, 0.081]
CHO-DOG	parametric known-means	0.794	0.789	[-0.047, 0.038]
CHO-Gabor	parametric	0.890	0.908	[-0.072, 0.119]
CHO-Gabor	parametric known-means	0.880	0.900	[-0.025, 0.065]

Demo 2b results

observer	method	\widehat{AUC}_A	\widehat{AUC}_{B}	95% CI (1-sided)
disk-template	2AFC	0.793	0.827	[-0.040, 1]
disk-template	Mann-Whitney-DeLong	0.807	0.791	[-0.070, 1]
disk-template	parametric	0.805	0.784	[-0.120, 1]
disk-template	parametric known-means	0.783	0.787	[-0.018, 1]
CHO-DOG	parametric	0.810	0.778	[-0.133, 1]
CHO-DOG	parametric known-means	0.794	0.789	[-0.042, 1]
CHO-Gabor	parametric	0.890	0.908	[-0.060, 1]
CHO-Gabor	parametric known-means	0.880	0.900	[-0.020, 1]

Demos 3 and 4: Setup

- Task: unknown-location signal detection
- Observer:
 - known-template scanning-linear observer
 - template: uniform disk roughly same size as signal
 - template scanned over all pixels
 - rating = maximum score
 - mark = location of maximum score
- Figures of merit:
 - probability of correct signal localization (P_{CL})
 - area under LROC curve (A_L)

Demos 3 and 4: Images

- image size: 48 × 48
- colored gaussian noise background following power-law model
 - common noise component across imaging scenarios ⇒ correlation
- gaussian signal added at random location (uniformly distributed)
- specified set of seeds for random number generator ⇒ same results
- 150 signal-absent images, 150 signal-present images


```
----- demo 3 -----
computing lesion-absent images (m=150) ...
computing lesion-present images (n=150) ...
scanning linear observer:
Displaying point estimates and two-sided 95% confidence intervals...
Probability of correct localization:
PCI. =
   0.5867
PCL CI =
   0.5060
            0.6629
Area under LROC curve:
AL =
   0.4903
AL CI =
```

0.5639

0.4167

```
----- demo 4 -----
computing lesion-absent images (m=150) ...
computing lesion-present images (n=150) ...
scanning linear observer:
Displaying point estimates and two-sided 95% confidence intervals for performance differences...
Probability of correct localization:
PCI. =
   0.5867
   0.6200
PCL CI =
  -0.0722
          0.1389
Area under LROC curve:
AT. =
   0.4903
   0.4742
AL_CI =
  -0.1036
           0.0714
```

Summary

- http://code.google.com/p/iqmodelo/
- See manual and demo code for details on function usage
- Always justify assumptions!
- Some approaches for efficiently utilizing sample images:
 - use observer models and estimators that don't require splitting images into separate training and testing sets
 - one-sided confidence intervals for one-sided hypotheses
 - obtain class mean difference and incorporate into performance estimation
 - more complex tasks, e.g., unknown-location signal detection