Gautam Buddha University, Greater Noida

School of Engineering (Mechanical Engineering)

Degree	Course Name	Course Code	Marks:100
M. Tech.	Product Lifecycle	MEM 609	SM+MT+ET
	Management		25+25+50
Semester	Credits	L-T-P	Exam.
III	3	3-0-0	3 Hours

Unit - I

Introduction: Extensive definition of concurrent engineering (CE); CE design methodologies; Review of CE techniques like DFM (design for manufacture); DFA (design for assembly); QFD (quality function deployment); RP (rapid prototyping); TD (total design)- for integrating these technologies; Organizing for CE; CE tool box; Collaborative product development. **(07 Hours)**

Unit - II

Use of Information Technology: IT support; Solid modeling; Product data management; Collaborative product commerce; Artificial Intelligence; Expert systems; Software hardware component design. **(08 Hours)**

Unit - III

Design Stage: Lifecycle design of products; Opportunities for manufacturing enterprises; Modality of concurrent engineering design; Automated analysis Idealization control; CE in optimal structural design; Real time constraints.

(08 Hours)

Unit - IV

Need for PLM: Importance of PLM; Implementing PLM; Responsibility for PLM; Benefits to different managers; Components of PLM; Emergence of PLM; Lifecycle problems to resolve; Opportunities to seize. **(06 Hours)**

Unit - V

Components of PLM: Components of PLM; Product lifecycle activities; Product organizational structure; Human resources in product lifecycle; Methods; techniques; Practices; Methodologies; Processes; System components in lifecycle; slicing and dicing the systems; Interfaces; Information; Standards.

(07 Hours)

Unit - VI

Quality by Design: Quality engineering & methodology for robust product design; Parameter and tolerance design; Quality loss function and signal to noise ratio for designing the quality; Experimental approach. **Design for X-ability:** Design for reliability; Life cycle serviceability design; Design for maintainability; Design for economics; Decomposition in concurrent design; Concurrent design case studies. **(09 Hours)**

Recommended Books:

- 1. Integrated Product Development; M.M. Anderson and L Hein; IFS Publications.
- Concurrent Engineering: Automation tools and Technology; Andrew Kusiak; Wiley Eastern.
- 3. Concurrent Engineering; Kusiak; John Wiley & Sons.
- 4. Concurrent Engineering; Menon; Chapman & Hall.
- 5. Design for Concurrent Engineering; J. Cleetus; CE Research Centre; Morgantown.
- 6. Concurrent Engineering Fundamentals: Integrated Product Development; Prasad; Prentice hall India.
- 7. Concurrent Engineering in Product Design and Development; I. Moustapha; New Age International.
- 8. Product Lifecycle Management; John Stark; Springer-Verlag; UK.
- 9. Product Lifecycle Management; Michael Grieves; McGraw Hill.