Level 1: Einfache Klasse, einfache Objekte

Zuweisung (1)

- Bei der Zuweisung wird ein Ausdruck ausgewertet und sein Ergebnis einer Variablen zugewiesen.
- · Syntax-Schema der Zuweisung:

Linke-Seite Zuweisungsoperator Rechte-Seite Rechte-Seite:

• imperativ: meist arithmetische und boolesche Ausdrücke, Vergleiche und Zeichen oder Zeichenketten

Zuweisungsoperator:

in Java (wie in C/C++): '='auch üblich (Pascal etc): ':='

Linke-Seite: Bezeichner einer Variablen

Typkompatibilität:

Der Typ der linken Seite muss zum Typ des Zuweisungsausdrucks passen, d.h. zunächst, die Typen müssen gleich sein.

Level 1: Einfache Klasse, einfache Objekte

Zuweisung (2)

- Bedeutung:
 - L-Wert:

Ist ein Bezeichner einer **Variablen**, der ein Speicherplatz zugeordnet ist. Dort wird der neu berechnete Wert gespeichert.

 R-Wert: Ist ein Ausdruck, der einen Wert liefert. Ein R-Wert kann nur rechts vom Zuweisungsoperator stehen.

 Im folgenden Beispiel haben die beiden Auftreten des Bezeichners a unterschiedliche Bedeutung:

```
a = a + (3*i);
```

Auf der linken Seite ist das a das Ziel, in dem etwas gespeichert werden soll; auf der rechten Seite ist es die Quelle eines Wertes, der mit anderen Werten in eine Berechnung einfließt.

Merke: Die Zuweisung ist komplizierter, als man auf den ersten Blick vermutet.

SE1 - Level 1

Zuweisung in Java

SE1 - Level 1

```
antwort = 40
antwort += 2
korrekt = (antwort == 42)
```


 Der Gleichheitstest wird häufig mit der Zuweisung verwechselt:

```
saldo = 0 // Zuweisung
saldo == 0 // Gleichheit
saldo != 0 // Ungleichheit
```


Axel Schmolitzky, Heinz Züllighoven, et al.

Ausdrücke und Operatoren

- In der imperativen Programmierung hat die Zuweisung einen zentralen Stellenwert. In vielen Fällen wird einer Variablen ein Wert dadurch zugewiesen, dass ein Ausdruck aus Operanden und Operatoren ausgewertet wird.
- Üblich sind arithmetische und boolesche Operatoren; in einigen "maschinennahen" Sprachen kommen Operatoren zur Manipulation von Zeigern und Bit-Repräsentationen hinzu.

SE1 - Level 1

Ausdruck - nach Informatik-Duden

- Ausdruck (engl.: expression)
 - · Synonym: Term
 - Verarbeitungsvorschrift, deren Ausführung einen Wert liefert.
 Ausdrücke entstehen, indem Operanden mit Operatoren verknüpft werden. In Programmiersprachen verwendet man häufig arithmetische und logische Ausdrücke.
 - Beispiel:
 Die Symbolfolge 5 * x + 3 ist ein arithmetischer Ausdruck, sofern x eine Zahl darstellt.

SE1 - Level 1

Level 1: Einfache Klasse, einfache Objekte

Operatoren

Als **Operator** bezeichnet man umgangssprachlich sowohl das **Operatorzeichen** (z.B. "+") als auch die damit verbundene **Operation** (z.B. "addieren"). Wir betrachten im folgenden vor allem die Operatorzeichen und ihre Verwendung in (Programm-) Texten.

Die Operatorenschreibweise ist im Zusammenhang mit Programmiersprachen allgemein gebräuchlich (es gibt andere Schreibweisen, z.B. als Funktion).

SE1 - Level 1

7

Vereinbarungen über Operatoren

Die Operatorenschreibweise ist für uns deshalb einfach lesbar, weil wir bestimmte Vereinbarungen (implizit) kennen, die für die arithmetischen Operatoren gelten.

Bei der Einführung neuer Operatoren müssen diese Vereinbarungen explizit gemacht werden.

Vereinbarungen über Operatoren sind:

- · Position,
- · Stelligkeit,
- · Präzedenz (Vorrangregel),
- · Assoziationsreihenfolge.

Dazu kommt die Definition der mit dem Operator verbundenen Operation.

SE1 - Level 1

Position von Operatoren

Position, d.h. die Anordnung von Operator und Operanden:

• Infix, die häufigste Schreibweise, bei der arithmetische Operatoren zwischen ihren beiden Operanden stehen:

z.B.: 3 * 4

 Präfix: der Operator steht vor seinen Operanden. Gebräuchlich bei arithmetischen Operationen mit einem Operanden. Diese Form wird auch Funktionsschreibweise genannt.

z.B.: -2

 Postfix: der Operator steht nach seinen Operanden. Gebräuchlich bei arithmetischen Operationen mit einem Operanden.

z.B.: 3! (im Sinne von "Fakultät von 3")

SE1 - Level 1

9

Stelligkeit von Operatoren

Stelligkeit, d.h., Anzahl der Operanden (auch Argumente oder Parameter) eines Operators:

• einstellig, oft: unär (engl.: unary)

z.B.: 3!

• zweistellig, oft: binär (engl.: binary)

z.B.: 3 * 4

 dreistellig, ternär (engl.: ternary), besser: triadisch. In Programmiersprachen kommt meist nur vor

if Operand1 then Operand2 else Operand3

SE1 - Level 1

Level 1: Einfache Klasse, einfache Objekte

Präzedenz von Operatoren

Präzedenz (Vorrangregel): bezeichnet die Stärke, mit der ein Operator seine Operanden "bindet".

- Der Wert eines Ausdrucks hängt oft von der Reihenfolge ab, in der Operatoren eines Ausdrucks angewendet werden.
- Die Präzedenz ist für die arithmetischen Operationen bekannt ("Punkt vor Strich").
- Wenn die Präzedenzen nicht passen, muss geklammert werden:
- Beispiele: 3 + 5 * 7 3 (3 + 5) * (7 - 3)

SE1 - Level 1

11

Assoziativität von Operatoren

Die **Assoziativität** regelt die implizite Klammerung von Ausdrücken bei Operatoren gleicher Präzedenz.

· Beispiel:

ist gleichbedeutend mit

$$(5 - 4) - 3$$

Sprechweise:

Der Operator – ist linksassoziativ

(er assoziiert von links nach rechts).

 Die Assoziationsreihenfolge ist uninteressant, wenn die Reihenfolge nichts am Wert des Ausdrucks verändert; z.B.:

$$(3 + 4) + 5$$

ist synomym zu

$$3 + (4 + 5)$$

SE1 - Level 1

Level 1: Einfache Klasse, einfache Objekte

Zwischenergebnis: Zuweisungen et al.

- Die **Anweisungen** in den Rümpfen von Methoden folgen den Prinzipien der **imperativen Programmierung**:
 - Sie werden sequenziell nach der textuellen Reihenfolge im Quelltext ausgeführt.
 - Sie verändern üblicherweise die Belegungen von Variablen.
- Variablen werden durch Zuweisungen verändert; wir unterscheiden Exemplarvariablen, formale Parameter und lokale Variablen.
- Auf der linken Seite des Zuweisungsoperators steht immer eine Variable, auf der rechten Seite immer ein Ausdruck.
- Arithmetische und boolesche Ausdrücke setzen sich aus Operanden und Operatoren zusammen.

SE1 - Level 1

Erster Kontakt mit dem Typbegriff

- Der Typbegriff spielt eine sehr wichtige Rolle in der Programmierung.
- Ein Typ in einer Programmiersprache legt fest
 - eine Wertemenge (z.b. bei int nur eine Untermenge der ganzen Zahlen) und
 - die **zulässigen Operationen** (z.B. Addieren, Subtrahieren) auf den Werten der Wertemenge.

```
Typ: int
Wertemenge: {-2<sup>31</sup> ... 2<sup>31</sup>-1}
Operationen: ganzzahlig Addieren, ganzzahlig
Subtrahieren, ganzzahlig Dividieren, ...
```

Elementare Typen und Literale

- Imperative und objektorientierte Programmiersprachen bieten i.d.R. einen Satz elementarer Typen (engl.: basic or primitive data types) an:
 - für ganze Zahlen → Typ Integer o.ä.
 - für reelle Zahlen → Typ Float oder Real (Gleitkommazahlen)
 - für Zeichen → Typ Char o.ä. (Werte eines bestimmten Zeichensatzes)
 - für Wahrheitswerte → Typ Boolean.
- Die Werte dieser elementaren Typen können explizit im Quelltext hingeschrieben werden; jede Programmiersprache bietet zu diesem Zweck sog. Literale an. Ein Literal ist eine Zeichenfolge (wie 13 oder "gelb") im Quelltext, die einen Wert eindeutig repräsentiert und deren Struktur dem Compiler bekannt ist.

SE1 - Level 1

Überblick: Elementare Datentypen in Java

Auch Java besitzt den üblichen Satz an elementaren Datentypen, die **primitive types** genannt werden. Ungewöhnlich ist die Festlegung der Wortlängen bei den numerischen Typen (jeweils in Klammern in Bit angegeben).

- Eine ganze Familie für ganze Zahlen:
 - » byte (8), short (16), int (32), long (64)

Datentyp	Bit	kleinster Wert	größter Wert
long	64	-2 ⁶³	2 ⁶³ -1
int	32	-2 ³¹	2 ³¹ -1
short	16	-32768 (-2 ¹⁵)	32767 (2 ¹⁵ -1)
byte	8	-128 (-2 ⁷)	127 (2 ⁷ -1)

Wir geben auf den folgenden Folien nur einen Überblick. Es ist empfehlenswert, in einem Java-Referenzbuch bei Bedarf weitere Details nachzulesen!

- Zwei für Gleitkommazahlen:
 - » float (32), double (64)
- Ein boolescher Datentyp:
 - » boolean
- Ein Datentyp für Zeichen:
 - » char (16), 0 bis 65535

Тур	Standardwert
byte, short int, long (ganze Zahlen)	0 bzw. 0L
boolean (Wahrheitswerte)	false
double, float (Gleitkommazahlen)	0.0 bzw. 0.0f
char (Zeichen)	'\u0000'

18

Axel Schmolitzky, Heinz Züllighoven, et al.

Level 1: Einfache Klasse, einfache Objekte

Zeichen und ihre Darstellung

- Zeichen werden im Rechner durch vordefinierte Werte (die sog. Codes) eines Zeichensatzes repräsentiert.
- In Java können wir einzelne Zeichen im Quelltext als Literale in Hochkommata notieren: '*', '0', 'A', 'z'
- Merke: Das Literal '4' ist etwas anderes als das Literal 4. Sie haben verschiedene Typen, im Fall von Java char und int.

char c = '4'; int i = 4;

SE1 - Level 1

Der ASCII-Zeichensatz

in gelb: die druckbaren

ASCII-Zeichen

- Die meisten Programmiersprachen vor Java haben Zeichen durch die 128 vordefinierten Werte des sog. ASCII-Zeichensatzes dargestellt.
- ASCII (Akronym für American Standard Code for Information Interchange) ist laut Informatik-Duden:
 - Ein weit verbreiteter, besonders auf Heimcomputern üblicher 7-Bit-Code zur Darstellung von Ziffern, Buchstaben und Sonderzeichen.
 - Jeder ASCII-Codezahl zwischen 0 und 127 entspricht ein Zeichen. Beispiele:

ASCII 42 \Rightarrow *
ASCII 48 \Rightarrow 0
ASCII 65 \Rightarrow A
ASCII 122 \Rightarrow z

Java und der Unicode-Zeichensatz

- Java war die erste weit verbreitete Programmiersprache, die vollständig auf dem Unicode Standard UTF-16 aufsetzte, der für jedes Zeichen 16 Bit verwendet (und somit 65.536 verschiedene Zeichen ermöglicht). Damit lassen sich die Zeichen und Zahlen der meisten bekannten Kultursprachen darstellen.
- Die ersten 128 Zeichen entsprechen dem ASCII-Zeichensatz.
- Inzwischen erlaubt der Unicode-Standard eine Kodierung in bis zu 32 Bit. Vier Milliarden Zeichen sollten dann für alle irdischen Zwecke ausreichen...
- Zwei Drittel des 16-Bit Unicode-Zeichensatzes werden für chinesische Schriftzeichen verwendet.
- Informationen zu Unicode finden sich im Web unter http://unicode.org

Transformation
Format
UCS – Universal
Character Set

In Java kann ein Unicode-Zeichen mit einer speziellen Schreibweise notiert werden: '\uxxxx'.

xxxx ist dabei der vierstellige, hexadezimale Unicode des Zeichens, eventuell mit führenden Nullen.

'a' beispielsweise bezeichnet wie '\u0061' das a.

SE1 - Level 1

Literale für Zahlen in Java

- · Darstellung:
 - » Ganze Zahlen (engl.: integer numbers) können wie gewohnt notiert werden, also etwa 542 oder -1; solche Literale werden dann als Dezimalzahlen vom Typ int aufgefasst, in diesem Fall mit den Werten 542 und 1 (das – ist ein Präfix-Operator, der die 1 hier negiert).

Gleitkommazahlen (engl.: floating point numbers) werden in englischer Dezimalnotation mit einem Punkt notiert, z.B. 0.5, oder mit einem expliziten Exponenten, z.B. 5e-1 (Wert in beiden Fällen 0,5). Wenn kein f für float angehängt ist (wie beispielsweise bei 3.1415f), wird für diese Literale der Typ double angenommen.

Alternativ können ganze Zahlen auch oktal (beginnend mit einer 0) oder hexadezimal (beginnend mit 0x) angegeben werden.

Page 100 mer 100 100 mer 100 mer

Bsp.: 29 u. 035 u. 0x1D u. 0x1d sind alternative Literale für die Dezimalzahl 29.

SE1 - Level 1

Binäre Operatoren für ganze Zahlen in Java

Arithmetische Operatoren mit Ergebnistyp int

Java bietet die vier Grundrechenarten über die Infix-Operatoren +, -, * und / an. Dabei ist zu beachten, dass der Divisionsoperator eine ganzzahlige Division durchführt:

20/6 ⇒

Das Ergebnis dieser Operation ist also wieder ein int-Wert.

 Zusätzlich gibt es den Operator %, der bei einer ganzzahligen Division den Rest liefert:

20%6 ⇒

• Die Präzedenz dieser fünf Operatoren entspricht unseren Erwartungen aus der Mathematik ("Punktrechnung vor Strichrechnung"):

 $3 + 2 * 2 + 5 \Rightarrow 12$

SE1 - Level 1

23

Binäre Operatoren für ganze Zahlen in Java (II)

Vergleichsoperatoren mit Ergebnistyp boolean

 Für Vergleiche ganzer Zahlen stehen Infix-Operatoren für die Operationen Größer (>), Größer-gleich (>=), Kleiner (<) und Kleiner-gleich (<=) zur Verfügung.

 Zwei weitere Infix-Operatoren erlauben die Abfrage, ob zwei int-Ausdrücke gleich (==) oder ungleich (!=) sind:

> 3 == 2 + 1 \Rightarrow wahr 4 != 2 * 2 \Rightarrow falsch

 Vergleichoperatoren haben gegenüber den arithmetischen Operatoren eine niedrigere Präzedenz; sie werden also in einem Ausdruck zuletzt ausgewertet.

SE1 - Level 1

Boolesche Literale und Operatoren

- Boolesche Werte oder Wahrheitswerte sind in Java vom primitiven Typ boolean.
- Die Literale für die booleschen Werte wahr und falsch werden als true und false notiert.
- Die Standardoperatoren der booleschen Algebra werden in Java folgendermaßen notiert:

logisches Und:logisches Oder:logische Verneinung:!

 Die Java-Operatoren f
ür Gleichheit (==) und Ungleichheit (!=) sind auch auf boolesche Werte anwendbar. Beispiele:

```
true == false ⇒ falsch
true != false ⇒ wahr
```

SE1 - Level 1

25

Die Boolesche Algebra

- Der heutzutage übliche Begriff Boolesche Algebra (engl.: boolean algebra) geht auf den britischen Mathematiker George Boole zurück, der im 19. Jahrhundert lebte.
- In der Programmierung verwenden wir die boolesche Algebra vor allem für logische Ausdrücke, die nach der klassischen Aussagenlogik systematisch mit den Wahrheitswerten wahr und falsch umgehen.
- Ein Beispiel für eine einfache Aussage:
 - · Ich habe Hunger.
- Diese Aussage kann wahr oder falsch sein.
- · Eine Aussage kann negiert werden:
 - · Ich habe keinen Hunger.
- Auch diese Aussage kann wahr oder falsch sein.
- Wenn wir annehmen, dass die erste Aussage falsch war, dann ist die zweite Aussage automatisch wahr, weil sie eine logische Negation der ersten darstellt.

Die Boolesche Algebra (II)

- Eine zweite Aussage, die ebenfalls wahr oder falsch sein kann:
 - · Ich habe Durst.
- Wir können zwei Aussagen logisch miteinander verknüpfen:
 - · Ich habe Hunger und ich habe Durst.
- Eine solche Konjunktion mit und ist für sich genommen wenig spannend; interessanter wird es, wenn wir die Verknüpfung zu einer Bedingung für eine Tätigkeit machen:
 - Wenn ich Hunger und Durst habe, dann nehme ich etwas zu mir.
- · Ist das eine sinnvolle Aussage? Vermutlich nehmen wir auch etwas zu uns, wenn wir nur hungrig oder nur durstig sind... Also:
 - · Wenn ich Hunger oder Durst habe, dann nehme ich etwas zu mir.
- · Eine solche Verknüpfung mit oder wird auch Disjunktion genannt.

SE1 - Level 1

Boolesche Algebra in der Programmierung (mit Java)

Wir können Aussagen, die wahr oder falsch sein können, unmittelbar mit **booleschen Variablen** in unseren Programmen beschreiben:

```
boolean hungrig = true; // boolesche Variable für die Aussage: Ich habe Hunger. hungrig = false; // Die Aussage kann mal wahr, mal falsch sein.
                                 // Wir können eine Aussage negieren .
hungrig = !hungrig;
boolean durstig = false;
if (hungrig && durstig) // Wenn ich hungrig und durstig bin...
if (hungrig || durstig) // Wenn ich hungrig oder durstig bin...
```


- Boolesche Variablen sollten die Aussage, für die sie stehen, klar ausdrücken.
 - Im Beispiel ist hungrig gut gewählt: Wenn diese Variable mit true belegt ist, dann ist die Person hungrig; das ist gut verständlich.

Schlecht benannt wäre hingegen eine boolesche Variable ausrichtung für die Händigkeit einer Person – soll true für Rechts- oder Linkshändigkeit stehen?

Boolesche Ausdrücke: primär für Bedingungen

- Boolesche Ausdrücke (also Ausdrücke, die zur Laufzeit entweder den Wert true oder false liefern) werden überwiegend für Bedingungen eingesetzt, also in Situationen, in denen etwas entweder getan oder nicht getan werden soll.
- · Wir kennen für solche Zwecke bereits die Fallunterscheidung:

```
if (x > 100) { ... } else { ... }
```

 Demnächst lernen wir zusätzlich Schleifen kennen, in denen Anweisungen wiederholt ausgeführt werden, solange eine Bedingung zutrifft:

```
while (x < 10)
( ...
```

 Bedingungen sind aber nicht auf solche Vergleiche beschränkt; eine Bedingung kann auch direkt mit einem booleschen Literal (also true oder false) formuliert werden, mit einer einfachen booleschen Variablen, mit dem Aufruf einer booleschen Methode oder einer beliebigen booleschen Verknüpfung all dieser Elemente.

SE1 - Level 1 29

Beispiele für Bedingungen

· Mit Literal (hier zum "Auskommentieren" von Blöcken):

```
if (false) { Diese; Anweisungen; werden; niemals; ausgeführt; }
```

Mit boolescher Variable:

```
if (versichert) { schreibe_versicherung_an(); }
```

Mit boolescher Methode:

```
if (adminrechte_vorhanden(benutzer)) { installiere_update(); }
```

· Mit booleschen Verknüpfungen:

```
if ((kollision && !unverwundbar) || (restzeit() == 0))
{
    game_over();
}
```


Level 1: Einfache Klasse, einfache Objekte

Boolesche Operationen: Wahrheitstafeln

- Die Negation, die Konjunktion mit und (engl.: and) und die Disjunktion mit oder (engl.: or) sind die wichtigsten Operationen der booleschen Algebra.
- Diese Operationen bekommen einen oder zwei Wahrheitswerte und liefern jeweils einen Wahrheitswert (siehe unten). Diese Eigenschaften sind universell (unabhängig von einer Programmiersprache).

Negation:			
not			
false	true		
true	false		

Beispiele mit Literalen (kein Java!): not (27 < 12)not not not true 3 < 6 = 7 > 5

not (false or true) false or (false = true) or 5 > 7

(true and false) and true

SE1 - Level 1

31

Boolesche Operationen: Einige Rechenregeln

Seien P, Q und R logische Variable, dann gelten die folgenden Identitäten:

Kommutativgesetze: Distributivgesetze:

 $P ext{ or } Q \equiv Q ext{ or } P$ (P and Q) or $R \equiv (P ext{ or } R)$ and (Q or R) P and $Q \equiv Q ext{ and } P$ (P or Q) and $R \equiv (P ext{ and } R)$ or (Q and R)

Assoziativgesetze: De Morgans Gesetze:

 $(P \text{ or } Q) \text{ or } R \equiv P \text{ or } (Q \text{ or } R)$ $not (P \text{ or } Q) \equiv not P \text{ and } not Q$ $(P \text{ and } Q) \text{ and } R \equiv P \text{ and } (Q \text{ and } R)$ $not (P \text{ and } Q) \equiv not P \text{ or } not Q$

Grundannahme: Der Operator not bindet stärker als die Operatoren and und or.

SE1 - Level 1

Typumwandlungen

· Typprüfungen bewahren uns vor Fehlern. Die Zuweisung

 $int i = true; \Rightarrow Typfehler!$

beispielsweise führt bei der Übersetzung zu einer Fehlermeldung, weil der Ausdruck rechts vom Typ boolean ist, auf der linken Seite der Zuweisung aber eine int-Variable steht.

· Andererseits erwarten wir, dass die Zuweisung

double d = 5;

funktioniert, obwohl auf der rechten Seite ein int-Ausdruck steht und auf der linken Seite eine double-Variable.

- Die Lösung sind so genannte Typumwandlungen (engl.: type conversion oder type cast), die in Programmiersprachen implizit (automatisch) oder explizit (durch den Programmierer) durchgeführt werden.
- Eine Typumwandlung bewirkt zur Laufzeit eine Umwandlung einzelner Bits.
 Die Art der Umwandlung hängt dabei von Ausgangstyp und Zieltyp ab.

SE1 - Level 1

Automatische Typumwandlungen in Java

• Zieltyp hat höhere Genauigkeit als Ausgangstyp

Umwandlung kann automatisch vorgenommen werden (engl.: coercion), weil keine Genauigkeit verloren gehen kann (engl. auch: widening conversion). Die Zuweisung

double d = 5;

ist deshalb in Java zulässig, weil sich alle int-Wert auch als doubleWerte darstellen lassen. Das Bitmuster für den Wert 5 im
Zweierkomplement wird bei der Ausführung in die Gleitkomma-Darstellung
nach IEEE 754 umgewandelt.

Ein weiteres Beispiel:

int i = 'a';

Automatische Umwandlungen können auch mehrfach innerhalb eines Ausdrucks auftreten:

SE1 - Level 1

Explizite Typumwandlungen in Java

· Zieltyp hat niedrigere Genauigkeit als Ausgangstyp

Weil bei der Umwandlung Genauigkeit verloren gehen kann (engl.: narrowing conversion), muss der Programmierer die Umwandlung explizit erzwingen (und wissen, was er tut). Die Zuweisung

```
int i = 3.1415; ⇒ Fehlermeldung: possible loss of precision!
```

ist in Java nicht zulässig, weil die Genauigkeit des Gleitkomma-Ausdrucks bei der Zuweisung an eine int-Variable verloren gehen kann.

Wenn wir diesen Verlust bewusst in Kauf nehmen wollen, schreiben wir vor den Ausdruck in runden Klammern explizit den Zieltyp der Umwandlung:

```
int i = (int)3.1415;
```

Dies bewirkt eine Umwandlung in die ganze Zahl 3 vom Typ int. Ein häufig gemachter Fehler in Java in diesem Zusammenhang:

```
float f = 3.1415; \Rightarrow ???
```


SE1 - Level 1

3.5

Zusammenfassung elementare Typen

- Programmiersprachen bieten üblicherweise einen Satz an elementaren Typen.
- Die Werte elementarer Typen werden im Quelltext mit Literalen benannt.
- Java verfügt über so genannte primitive Typen für
 - ganze Zahlen (realisiert als Zweierkomplement)
 - · Wahrheitswerte
 - Zeichen (basierend auf dem Unicode-Zeichensatz)
 - Gleitkommazahlen (realisiert nach IEEE 754)
- Zwischen den primitiven Typen können explizite und implizite Typumwandlungen stattfinden.

SE1 - Level 1