Charlie Kapsiak¹

¹University of Minnesota

2023-12-06

Table Of Contents

- 1 Introduction to the Standard Model and Supersymmetry
- 2 Single \tilde{t} Signal Phenomenology
- 3 Event Selection
- 4 Analysis Strategy
- **5** Conclusion

Introduction

UMN HEP Seminar - Introduction

Introduction

3 / 26

Introduction

 The standard model (SM) of particle physics is one of our most successful physical theories.

- The standard model (SM) of particle physics is one of our most successful physical theories.
- With the 2012 discovery of the Higgs boson, all of the particles predicted by the SM have been experimentally detected.

- The standard model (SM) of particle physics is one of our most successful physical theories.
- With the 2012 discovery of the Higgs boson, all of the particles predicted by the SM have been experimentally detected.
- However, it has several inadequacies:

- The standard model (SM) of particle physics is one of our most successful physical theories.
- With the 2012 discovery of the Higgs boson, all of the particles predicted by the SM have been experimentally detected.
- However, it has several inadequacies:
 - ► A large number of free parameters.

- The standard model (SM) of particle physics is one of our most successful physical theories.
- With the 2012 discovery of the Higgs boson, all of the particles predicted by the SM have been experimentally detected.
- However, it has several inadequacies:
 - ► A large number of free parameters.
 - No explanation of dark matter and dark energy.

- The standard model (SM) of particle physics is one of our most successful physical theories.
- With the 2012 discovery of the Higgs boson, all of the particles predicted by the SM have been experimentally detected.
- However, it has several inadequacies:
 - ► A large number of free parameters.
 - No explanation of dark matter and dark energy.
 - Requires fine tuning (hierarchy problem).

Supersymmetry

Introduction

One of the most well motivated extensions to the standard model is supersymmetry (SUSY). In this theory, each SM particle gains a supersymmetric partner whose spin differs by $\frac{1}{2}$.

- Naturally addresses the hierarchy problem.
- Gauge couplings unify at high energy.
- Can offer a dark matter candidate.

Introduction

Traditional Searches for Supersymmetry

- The traditional searches for Supersymmetry have focused on such signals is that substantial energy escapes the detector (\vec{p}_{T}^{miss}) in the form of a sparticle.
- The problem: decades of experiment has found no evidence of such phenomena.

Introduction ○○○○●○

> Supersymmetry permits terms which violate B or L, and may lead to proton decay.

$$\begin{cases} \frac{1}{2} \lambda_{ijk} L_i L_j \bar{e}_k \\ \lambda'_{ijk} L_i Q_j \bar{d}_k \\ \mu'_i L_i H_u \end{cases} \Delta L = 1$$

$$\lambda''_{ijk} \bar{u}_i \bar{d}_j \bar{d}_k \right\} \Delta B = 1$$

- Supersymmetry permits terms which violate B or L, and may lead to proton decay.
- However, all signs indicate that the proton is stable.

R-parity

- Supersymmetry permits terms which violate B or L, and may lead to proton decay.
- However, all signs indicate that the proton is stable.
- Traditional supersymmetry accounts for this by enforcing R-parity conservation. SM particles have $P_R=1$, and SUSY particles have $P_R=-1$.

$$P_R = (-1)^{3(B-L)+2s}$$

$$egin{aligned} rac{1}{2} \lambda_{ijk} L_i L_j ar{e}_k \ \lambda'_{ijk} L_i Q_j ar{d}_k \ \mu'_i L_i H_u \ \lambda''_{ijk} ar{u}_i ar{d}_j ar{d}_k \ \end{pmatrix} \Delta L = 1 \ \end{aligned}$$

R-parity

- Supersymmetry permits terms which violate B or L, and may lead to proton decay.
- However, all signs indicate that the proton is stable.
- Traditional supersymmetry accounts for this by enforcing R-parity conservation. SM particles have $P_R=1$, and SUSY particles have $P_R=-1$.
- The proton can be also saved if we don't include both B and L violating coupling simultaneously (or keep couplings small).

Single \tilde{t} Production

- We focus our efforts on the λ_{3jk}'' terms, which allows a \widetilde{t} to couple to SM quarks.
- The decay we focus on involved the production of a \widetilde{t} through the λ_{3jk}'' coupling, then the decay to a fully hadronic state.

Signal Phenomenology

9 / 26

Process Regimes

Coupling

- Weak coupling ($\approx \lambda < 0.1$): the produced stop is long lived.
- Strong coupling ($\approx \lambda > 0.4$): the produced stop decays promptly back to quarks, resulting in dijets.
- The intermediate regime is an unexplored territory.

Process Regimes

Mass Regimes

- Low m_t lies below the "standard" triggers.
- When $m_{\widetilde{\chi}^\pm} \ll m_{\widetilde{t}}$ the $\widetilde{\chi}^\pm$ daughters are merged, making the topology look like dijets, a very well studied model.
- The remaining region is unexplored.

Compressed and Uncompressed Categories

Within this unexplored space, distinct geometries emerge

- When $m_{\widetilde{\chi}^{\pm}}$ is close to $m_{\widetilde{t}}$ we say the point is compressed
- Otherwise we say the point is uncompressed.

• Target both λ''_{312} and λ''_{313} , both of which have a good balance of cross section and b-tagging (identifying if a jet originated from a b).

	Final State b's	Coupling Strength (∝σ ^{1/2})
$\lambda_{312}^{\prime\prime}$	••	
$\lambda_{313}^{\prime\prime}$	•••	•
$\lambda_{323}^{\prime\prime}$	•••	•

s/b

Target Signal Regime

- Target both λ''_{312} and λ''_{313} , both of which have a good balance of cross section and b-tagging (identifying if a jet originated from a b).
- For both couplings, target $0.1 < \lambda_{3jk}'' < 0.4$.
- Examine both the compressed and uncompressed category.
- Perform studies on conservative $\lambda_{312}'' = 0.1$.

Stop mass [GeV]

The maximum angular separation between any two of the $\widetilde{\chi}^\pm$ children. The less compressed a mass point, the more collimated the children.

Charlie Kapsiak¹

Signal Geometry

In the compressed category, the $\tilde{\chi}^{\pm}$ b is often one of the leading (highest p_T) three jets. In the uncompressed category, the \tilde{t} b is often the leading jet.

Phenomenology

Event Selection

Key Event Characteristics

- No leptons.
- A moderate number of jets, several with high p_T .
- Multiple b-jets (jets identified to have come from a b), and large angular separation between b-jets.

These signatures match most closely with QCD and tt

Key Event Characteristics

 To further reduce the QCD multijet and tt backgrounds we investigate inspecting N-1 plots (make all cuts except for the one in question).

Key Event Characteristics

 To further reduce the QCD multijet and tt backgrounds we investigate inspecting N-1 plots (make all cuts except for the one in question).

- We can make additional cuts to further reduce the QCD and tt backgrounds.
- The final signal region selection is shown below.

Analysis Strategy

- 1. Reconstruct the signal resonances for \tilde{t} and $\tilde{\chi}^{\pm}$.
- 2. Estimate the SM background.
- 3. Perform a one or two dimensional bump hunt for these resonances.

Mass Reconstruction

- Resonant masses can be reconstructed using the invariant mass of a well chosen set of jets.
- Simplest Reconstruction:

$$ightharpoonup m_{\tilde{t}} = m(j_1 + j_2 + j_3 + j_4)$$

lacktriangledown Compressed: $m_{_{\widetilde{\mathcal{V}}}^{\pm}}=m\left(j_1+j_2+j_3
ight)$

• Uncompressed: $m_{\widetilde{\gamma}^{\pm}} = m(j_2 + j_3 + j_4)$

ΑII Weighted Events / GeV , Selection — m_i = 1200 GeV, m_{ij} = 400 GeV m_i = 1200 GeV, m_e = 1100 GeV mi = 1500 GeV, mi = 900 GeV mi = 1500 GeV, miss = 1400 GeV m: = 2000 GeV, me: = 900 GeV m_i = 2000 GeV, m_i = 1900 GeV 1000 Charlie Kapsiak

Compressed

Uncompressed

Mass Reconstruction

- Resonant masses can be reconstructed using the invariant mass of a well chosen set of jets.
- Different categories need different treatment
 - lacktriangle For both the \widetilde{t} and compressed $\widetilde{\chi}^{\pm}$, the simplest algorithm works reasonably well.
 - For the uncompressed $\tilde{\chi}^{\pm}$, the naive estimation is quite poor.
- Ongoing work: We can take advantage of both flavor and kinematic information to improve our reconstruction.

2D Resonance Fitting

- There are two resonances that we expect to form a peak over the background.
- In the uncompressed case, since the leading jet is expected to in $m_{\widetilde{t}}$ but not $m_{\widetilde{\chi}^{\pm}}$, we can these reconstructed masses to partially decorrelate.
- In the compressed case, a
 1D fit is sufficient.

Compressed

Uncompressed

A naive significance can be estimated bin-by-bin using $\frac{S}{\sqrt{R}}$.

18 / 26

Expected Sensitivity

- A naive significance can be estimated bin-by-bin using $\frac{S}{\sqrt{B}}$.
- Increasing the coupling to the upper range of our parameter regime yields even greater significances, since the cross section scales as $\left(\lambda_{3jk}''\right)^2$.

Charlie Kapsiak¹

- To determine the presence of a signal bump, we need an estimation of the shape of background (mostly QCD).
- We estimate the background by doing a fit to data.
 - ► The region around the signal peak is blinded.

- To determine the presence of a signal bump, we need an estimation of the shape of background (mostly QCD).
- We estimate the background by doing a fit to data.
 - ► The region around the signal peak is blinded.
 - ► The remaining data is fit.

- To determine the presence of a signal bump, we need an estimation of the shape of background (mostly QCD).
- We estimate the background by doing a fit to data.
 - ► The region around the signal peak is blinded.
 - ► The remaining data is fit.
 - ► The resulting fit is used as the background estimation near the peak.

- Many bump-hunt style searches use a parametric fit to the background with an ad-hoc function.
- We are currently developing a fit procedure that does Bayesian inference over the space of all possible functions using Gaussian Process Regression.

- The background contribution from QCD simulation "data," can be estimated by performing a regression on data away from an injected the signal peak.
- The signal appears as a deviation from this estimation.

- The background contribution from QCD simulation "data," can be estimated by performing a regression on data away from an injected the signal peak.
- The signal appears as a deviation from this estimation.

- SUSY remains a well motivated theory for physics beyond the standard model, and RPV couplings are a rich and largely unexplored parameter space.
- We investigate the RPV production and decay of a single \tilde{t} .
- Taking advantage of jet kinematics and flavor information allows substantial reduction of background and reconstruction of the two sparticle resonances.
- A one or two dimensional bump hunt can be performed for these mass peaks, using non-parametric background estimation.

- SUSY remains a well motivated theory for physics beyond the standard model, and RPV couplings are a rich and largely unexplored parameter space.
- We investigate the RPV production and decay of a single \tilde{t} .
- Taking advantage of jet kinematics and flavor information allows substantial reduction of background and reconstruction of the two sparticle resonances.
- A one or two dimensional bump hunt can be performed for these mass peaks, using non-parametric background estimation.

- SUSY remains a well motivated theory for physics beyond the standard model, and RPV couplings are a rich and largely unexplored parameter space.
- We investigate the RPV production and decay of a single \tilde{t} .
- Taking advantage of jet kinematics and flavor information allows substantial reduction of background and reconstruction of the two sparticle resonances.
- A one or two dimensional bump hunt can be performed for these mass peaks, using non-parametric background estimation.

- SUSY remains a well motivated theory for physics beyond the standard model, and RPV couplings are a rich and largely unexplored parameter space.
- ullet We investigate the RPV production and decay of a single \widetilde{t} .
- Taking advantage of jet kinematics and flavor information allows substantial reduction of background and reconstruction of the two sparticle resonances.
- A one or two dimensional bump hunt can be performed for these mass peaks, using non-parametric background estimation.

- SUSY remains a well motivated theory for physics beyond the standard model, and RPV couplings are a rich and largely unexplored parameter space.
- ullet We investigate the RPV production and decay of a single \widetilde{t} .
- Taking advantage of jet kinematics and flavor information allows substantial reduction of background and reconstruction of the two sparticle resonances.
- A one or two dimensional bump hunt can be performed for these mass peaks, using non-parametric background estimation.

Thank You

Bibliography I

${\sf Appendix}$

R-parity

• R-parity violating (RPV) models open up a largely unexplored world of parameters and decay modes that do *not* include \vec{p}_{T}^{miss} .

R-parity

- R-parity violating (RPV) models open up a largely unexplored world of parameters and decay modes that do *not* include \vec{p}_{T}^{miss} .
- R-parity allows SUSY particles to decay to SM hadrons, resulting in a fully visible final state.

Triggers

• Using PFHT1050 | AK8PFJet400_TrimMass30.

Hadronic	$\mathcal{L}_{eff}(\mathrm{fb}^{-1})$	Semileptonic	$\mathcal{L}_{eff}(\mathrm{fb}^{-1})$
	2016		
PFHT800	27.71	IsoMu24	36.47
PFHT900	36.47	IsoTkMu24	36.47
PFHT650_WideJetMJJ900DEtaJJ1p5	36.47	HLT_Ele27_WPTight_Gsf	36.47
AK8PFHT650_TrimR0p1PT0p03Mass50	20.20	HLT_Photon175	36.47
AK8PFHT700_TrimR0p1PT0p03Mass50	36.47		
AK8PFJet450	33.64		
AK8PFJet360_TrimMass30	36.47		
AK8DiPFJet280_200_TrimMass30	36.47		
AK8DiPFJet280_200_TrimMass30_BTagCSV_p20	36.47		
	2017		1
PFHT1050	41.54	IsoMu27	41.54
AK8PFHT800_TrimMass50	36.75	HLT_Ele35_WPTight_Gsf	41.54
PFJet320	41.54	HLT_Photon200	41.54
PFJet500	41.54		
AK8PFJet320	41.54		
AK8PFJet500	41.54		
AK8PFJet400_TrimMass30	36.75		
AK8PFJet420_TrimMass30	36.75		
	2018		
PFHT1050	59.96	IsoMu24	59.96
AK8PFHT800_TrimMass50	59.96	HLT_Ele32_WPTight_Gsf	59.96
PFJet500	59.96	HLT_Photon200	59.96
AK8PFJet500	59.96	\ \	
AK8PFJet400_TrimMass30	59.96		
AK8PFJet420_TrimMass30	59.96		

4j2b Trigger

- New trigger deployed in 2023 triggers on 4 jet with 2 b jets
- Nearly ideal for the single \tilde{t} signal!
- HT threshold at 280GeV, substantially expanding the search range.

