Extended 0/1 Generalized Permutahedra

Jonah Berggren (University of Kentucky)

Jeremy Martin (University of Kansas)

José Samper (Pontificia Universidad Católica de Chile)

AMS Sectional Meeting, El Paso, TX September 17, 2022

Definition

A **polyhedron** is a (possibly unbounded) convex subset of Euclidean space \mathbb{R}^n defined by linear equations and inequalities. A **polytope** is a bounded polyhedron.

Definition

A **face** of a polyhedron P is the set of points in P maximized by some linear functional f. A face of dimension 0 is called a **vertex**. A face of dimension 1 is called an **edge**.

$\mathsf{Theorem}$

A polyhedron P has a decomposition $P = P' \oplus R(P)$ where $P' \subseteq P$ is a polytope and R(P) is the recession cone (cone of unbounded directions) of P.

Theorem

A polyhedron P has a decomposition $P = P' \oplus R(P)$ where $P' \subseteq P$ is a polytope and R(P) is the recession cone (cone of unbounded directions) of P.

Definition

A **generalized permutahedron** is a polytope in \mathbb{R}^n such that every edge is parallel to some difference of coordinate vectors $e_i - e_j$ and every vertex is in $\mathbb{R}^n_{>0}$.

Polyhedra¹

Definition

An **extended generalized permutahedron** is a polyhedron in \mathbb{R}^n such that every edge or ray is parallel to some difference of coordinate vectors $e_i - e_j$ and every vertex is in $\mathbb{R}^n_{>0}$.

Definition

A polyhedron in \mathbb{R}^n is $\mathbf{0/1}$ if all of its vertices are vectors in $\{0,1\}^n$.

Distributive Lattices

Definition

A **distributive lattice** on a set E is a subset \mathcal{D} of 2^E such that, for $A, B \in E$:

- $a \cap B \in \mathcal{D}$

All lattices \mathcal{D} are assumed to be **accessible**, meaning that the rank of some $A \in \mathcal{D}$ is |A|.

Definition

A matroid rank function on ground set [n] is a function $\rho: 2^{[n]} \to \mathbb{Z}$ which satisfies for $A, B \subseteq [n]$ and $e \in [n]$:

- $\rho(A \cup e) \leq \rho(A) + 1$ (unit increase)
- **3** $A \subseteq B \implies \rho(A) \le \rho(B)$ (monotonicity)
- \bullet $\rho(A) + \rho(B) \ge \rho(A \cap B) + \rho(A \cup B)$ (submodular inequality)

Definition

A **polymatroid rank function** on ground set [n] is a function $\rho: 2^{[n]} \to \mathbb{R}$ which satisfies for $A, B \subseteq [n]$ and $e \in [n]$:

- $A \subseteq B \implies \rho(A) \le \rho(B)$ (monotonicity)
- \bullet $\rho(A) + \rho(B) \ge \rho(A \cap B) + \rho(A \cup B)$ (submodular inequality)
 - ullet We map to $\mathbb R$ and do not require unit increase.

Definition

A submodular system $S = (\mathcal{D}, \rho)$ on [n] is a distributive lattice \mathcal{D} on $2^{[n]}$ containing \emptyset and [n] with a function $\rho : \mathcal{D} \to \mathbb{R}$ satisfying for $A, B \subseteq [n]$:

- **2** $A \subseteq B \implies \rho(A) \le \rho(B)$ (monotonicity)
- - ullet We map to $\mathbb R$ and do not require unit increase.
 - We work over a distributive lattice.

Base Polyhedra

Definition

The **base polyhedron** B(S) of a submodular system $S = (\mathcal{D}, \rho)$ on [n] is defined as

$$B(S) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}(A) \le \rho(A) \ (\forall A \in \mathcal{D}) \text{ and } \mathbf{x}([n]) = \rho([n]) \}$$

where, for a vector $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, we write $\mathbf{x}(A) = \sum_{i \in A} x_i$.

- The recession cone (set of unbounded directions) of B(S) is determined by the lattice \mathcal{D} .
 - Smaller lattices give larger recession cones
- \mathcal{D} is accessible \iff B(S) has at least one vertex.

Base Polyhedra

Taking base polyhedra gives the following correspondences:

To model extended 0/1 generalized permutahedra using rank functions, we work over a distributive lattice without getting rid of the unit increase property of matroids.

Definition

A **D-matroid rank function** (\mathcal{D}, ρ) on [n] is a submodular function satisfying $\rho(A \cup e) \leq \rho(A) + 1$ for any $A \in \mathcal{D}$ and $e \in E$ such that $A \cup e \in \mathcal{D}$.

Theorem

Taking base polyhedra gives a correspondence between D-matroid rank functions and extended 0/1 generalized permutahedra.

Example 1234 2 1001 124 2 134 2 123 2 **1010** 0011 14 2 12 2 13 2 23 2 1100 11 21 31 0110

This D-matroid is the **restriction** of the uniform matroid. On the polyhedral side, this means that this polyhedron is the sum of the uniform matroid polytope with the ray $e_4 - e_1$ associated to \mathcal{D} .

$$(0,0,0,0) \xrightarrow{e_4 - e_1} =$$

New D-Matroids from Old

- A **restriction** of a D-matroid S corresponds to a sum of the base polytope B(S) with the recession cone associated to \mathcal{D} .
- One D-matroid may have multiple matroid extensions.
 - These correspond to all ways of decomposing the base polyhedron as the Minkowski sum of a 0/1 genperm with the recession cone.
- We will see that any D-matroid has a canonical largest matroid extension.

New D-Matroids from Old

Definition

Suppose that $e \in E \setminus Atom(\mathcal{D})$. Let $\mathcal{D}[e]$ be the distributive sublattice of 2^E generated by $\mathcal{D} \cup \{\{e\}\}$.

$$\mathcal{D} = \langle 1, 2, 23 \rangle$$
123
$$12 \qquad 23$$

$$1 \qquad \qquad 2$$

$$\mathsf{Atom}(\mathcal{D}) = \{1, 2\}$$

Atom
$$(\mathcal{D}[3]) = \{1, 2, 3\}$$

Definition

The **generous atom extension** of ρ to $\mathcal{D}[e]$ is the function $\rho_a:\mathcal{D}[e]\to\mathbb{N}$ defined by

$$ho_e(S) = egin{cases}
ho(S) & ext{if } S \in \mathcal{D}, \
ho(S-e) & ext{if } S
otin D ext{ and } \ \exists S \subseteq S' \in \mathcal{D} :
ho(S') =
ho(S-e) \
ho(S-e) + 1 & ext{otherwise} \end{cases}$$

We ignore the submodular inequality and rank every element as high as possible without violating unit increase or monotonicity.

Definition

The **generous atom extension** of ρ to $\mathcal{D}[e]$ is the function $\rho_a:\mathcal{D}[e]\to\mathbb{N}$ defined by

$$ho_e(S) = egin{cases}
ho(S) & ext{if } S \in \mathcal{D}, \
ho(S-e) & ext{if } S
otin D ext{ and } \ \exists S \subseteq S' \in \mathcal{D} :
ho(S') =
ho(S-e) \
ho(S-e) + 1 & ext{otherwise} \end{cases}$$

We ignore the submodular inequality and rank every element as high as possible without violating unit increase or monotonicity.

Theorem (BMS)

The generous extension ρ_e is submodular.

$$\mathcal{D} = \langle 1, 2, 23 \rangle$$

$$123 1$$

$$12 1$$

$$23 1$$

$$0 0$$

$$\mathsf{Atom}(\mathcal{D}) = \{1, 2\}$$

$$Atom(\mathcal{D}[3]) = \{1, 2, 3\}$$

$$\mathcal{D} = \langle 1, 2, 23 \rangle$$
123 1
12 1
23 1
$$0 0$$

$$\mathsf{Atom}(\mathcal{D}) = \{1, 2\}$$

$$Atom(\mathcal{D}[3]) = \{1, 2, 3\}$$

$$\mathcal{D} = \langle 1, 2, 23 \rangle$$
123 1
12 1
23 1
$$\downarrow 0$$
0

$$\mathsf{Atom}(\mathcal{D}) = \{1, 2\}$$

$$Atom(\mathcal{D}[3]) = \{1, 2, 3\}$$

- We may repeatedly generously extend until we get a matroid rank function.
- The result is called the **generous matroid extension** of ρ .

Theorem (BMS)

The generous extension $\widehat{\rho}$ of ρ is independent of the order of generous atom extensions. Moreover, it dominates all extensions of ρ : for any other submodular extension ρ' of ρ , $\widehat{\rho}(A) \geq \rho'(A)$ for all $A \subseteq E$.

• The generous extension of this polyhedron is the convex hull of all 0/1 points inside of it. We will now see that this is always the case.

Base Polyhedra (again, for reference)

Definition

The **base polyhedron** B(S) of a submodular system $S = (\mathcal{D}, \rho)$ on [n] is defined as

$$B(S) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}(A) \le \rho(A) \ (\forall A \in \mathcal{D}) \text{ and } \mathbf{x}([n]) = \rho([n]) \}$$

where, for a vector $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, we write $\mathbf{x}(A) = \sum_{i \in A} x_i$.

• Each $A \in \mathcal{D}$ gives a supporting hyperplane defined by $\mathbf{x}(A) \leq \rho(A)$.

Theorem (BMS)

Let (\mathcal{D}, ρ) a D-matroid and $(2^{[n]}, \hat{\rho})$ its generous matroid extension. Then the base polyhedron $B(\hat{\rho})$ is precisely the convex hull of the 0/1 vectors in $B(\rho)$.

Proof.

- Let **x** be a 0,1-vector in $B(\rho)$; $\mathbf{x}(E) = \rho(E) = \hat{\rho}(E)$.
- Choose an atom $d \in E \setminus Atom(\mathcal{D})$.
- Show that $\mathbf{x}(A) \leq \rho_a(A)$ for all $A \in \mathcal{D}[e]$.

First, if $A \in \mathcal{D}$, then evidently $\mathbf{x}(A) \leq \rho(A) = \rho_e(A)$. Second, if $A \notin \mathcal{D}$, then $A - e \in \mathcal{D}$, so $\mathbf{x}(A - e) \leq \rho(A - e)$. Moreover,

$$\mathbf{x}(A) \in {\{\mathbf{x}(A-e), \mathbf{x}(A-e)+1\}}, \qquad \rho_e(A) \in {\{\rho(A-e), \rho(A-e)+1\}}.$$

Proof (continued).

In particular, if $\mathbf{x}(A) > \rho_e(A)$, then it must be the case that

$$\mathbf{x}(A) = \mathbf{x}(A - e) + 1 = \rho(A - e) + 1 = \rho_e(A) + 1.$$

Then the definition of the generous extension gives $A \subseteq A' \in \mathcal{D}$ with $\rho(A - e) = \rho(A')$. We calculate

$$\begin{split} \rho(A-e) &= \rho(A') \\ &\geq \mathbf{x}(A') \qquad \quad (\text{since } A' \in \mathcal{D} \text{ and } \mathbf{x} \in B(\rho)) \\ &\geq \mathbf{x}(A) \qquad \quad (\text{since } \mathbf{x} \in [0,1]^E \text{ and } A \subseteq A') \\ &= \rho(A-e) + 1 \qquad \text{(by the previous equation),} \end{split}$$

which is a contradiction. We conclude that $\mathbf{x}(A) \leq \rho_e(A)$ in all cases.

• There are three matroid extensions of this D-matroid. The generous extension is the uniform matroid.

Ongoing Research

- 1. There are other **cryptomorphic** definitions of D-matroids.
 - We have a combinatorial characterization of D-matroid closure operators and D-matroid lattices of flats.

Ongoing Research

- 1. There are other **cryptomorphic** definitions of D-matroids.
 - We have a combinatorial characterization of D-matroid closure operators and D-matroid lattices of flats.
 - D-matroid **basis systems** ought to be the supports of vertex sets of D-matroid base polyhedra.
 - The bases of a D-matroid generate a shellable simplicial complex!
 - What is the right analogue of matroid basis exchange?

Ongoing Research

- 1. There are other **cryptomorphic** definitions of D-matroids.
 - We have a combinatorial characterization of D-matroid closure operators and D-matroid lattices of flats.
 - D-matroid **basis systems** ought to be the supports of vertex sets of D-matroid base polyhedra.
 - The bases of a D-matroid generate a shellable simplicial complex!
 - What is the right analogue of matroid basis exchange?
- 2. Barnabei et al. connected **subspace arrangements** to a certain special class of D-matroids. Can we use D-matroids to understand subspace arrangements, e.g., the cohomology of their complements??

Bibliography

- J. Berggren, J. Martin, J. Samper. Extended 0/1 Generalized Permutahedra
- Fujishige, Satoru. Submodular functions and optimization
- F. Castillo, J. Martin, J. Samper. Hopf monoids of ordered simplicial complexes
- M. Barnabei, G. Nicoletti, L. Pezzoli. Matroids on partially ordered sets
- I. M. Gel'fand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova. Combinatorial geometries, convex polyhedra, and Schubert cells.

A Counterexample to Several Plausible Conjectures

• The bases are 13 and 23. In particular, $13 \notin \mathcal{D}$. These are the only 0/1 points interior to the base polyhedron.