Definition 1. Let (X, \mathcal{T}) , (Y, \mathcal{S}) be topological spaces, and let $f: X \to Y$. We say that f is continuous if and only if

$$(\forall G \in \mathcal{S})(f^{-1}(G) \in \mathcal{T}).$$

Definition 2 (Local Continuity). f is said to be continuous at $x_0 \in X$ if and only if

$$(\forall W(f(x_0))(\exists U(x_0))(f(U(x_0)) \subseteq W(f(x_0)).$$

Problem 7

Lemma 1. Let X and Y be topological spaces. Let $f: X \to Y$, and let $B \subseteq Y$. Then

$$f(f^{-1}(B)) \subseteq B$$
.

Proof. We have

$$p \in f(f^{-1}(B)) \iff (\exists x \in f^{-1}(B))(f(x) = p)$$
 Definition of a set's image
$$\iff (\exists x \in X)(f(x) = p \land f(x) \in B)$$
 Definition of a set's preimage
$$\implies p \in B,$$

which proves that $f(f^{-1}(B)) \subseteq B$.

Lemma 2. Let X and Y be topological spaces. Let $f: X \to Y$, and let $A \subseteq X$. Then

$$A \subseteq f^{-1}(f(A))$$

Proof. We have

$$\begin{array}{ll} p \in A \implies (\exists x \in A)(f(p) = f(x)) & \text{Just let } x = p \\ \iff f(p) \in f(A) & \text{Definition of a set's image} \\ \iff p \in f^{-1}(f(A)), & \text{Definition of a set's preimage} \end{array}$$

which proves that $A \subseteq f^{-1}(f(A))$.

Theorem 1 (Global Continuity Facts). Let X and Y be topological spaces. Let $f: X \to Y$. Then the following are equivalent:

- 1. f is continuous.
- 2. $f^{-1}(F)$ is closed in X for all F closed in Y.
- 3. $f^{-1}(U)$ is open in X for all U members of a subbasis of \mathcal{T}_Y .
- 4. $f(\bar{A}) \subseteq \overline{f(A)}$ for all $A \subseteq X$.
- 5. $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$ for all $B \subset Y$.

Proof. ((4) \Longrightarrow (5)). Suppose $f(\bar{A}) \subseteq \overline{f(A)}$ for all $A \in X$, and let $B \subseteq Y$. We have

$$\begin{split} p \in \overline{f^{-1}(B)} &\iff p \in f^{-1}(f(\overline{f^{-1}(B)})) & \text{By Lemma 2} \\ &\iff p \in f^{-1}(\overline{f(f^{-1}(B))}) & \text{By initial assumption} \\ &\iff p \in f^{-1}(\bar{B}), & \text{By Lemma 1} \end{split}$$

and we have proven $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$. Since B was arbitrary, we have proven $(4) \Longrightarrow (5)$.

September 12, 2021 1

Problem 8

Theorem 2. Let (X,d) and (Y,ρ) be metric spaces, and let $f:X\to Y$. Then the following are equivalent:

1. f is continuous at $x_0 \in X$.

```
2. (\forall \{x_k\})(x_k \to x_0 \implies f(x_k) \to f(x_0)).
```

Proof. $((2) \implies (1))$. We will prove the contrapositive. We have

```
f \text{ is not continuous at } x_0 \in X \iff \neg(\forall \epsilon > 0)(\exists \delta > 0)(f(B(x_0; \delta)) \subseteq B(f(x_0); \epsilon)) \iff (\exists \epsilon > 0)(\forall \delta > 0)(f(B(x_0; \delta)) \not\subseteq B(f(x_0); \epsilon)) \iff (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in B(x_0; \delta))(f(x) \not\in B(f(x_0); \epsilon)) \iff (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in B(x_0; \delta))(\rho(f(x), f(x_0)) \ge \epsilon).
```

Fix this ϵ , and define $\delta_n = 1/n$ for $n \in \mathbb{N}$. Using the Axiom of Choice, we can define a sequence $\{x_k\}_{k=1}^{\infty}$ where $x_k \in B(x_0; \delta_k)$, and $\rho(f(x_k), f(x_0)) \geq \epsilon$. Thus, we have created a sequence $\{x_k\}_{k=1}^{\infty}$ that converges to x_0 , and we have a sequence $\{f(x_k)\}_{k=1}^{\infty}$ which does not converge to x_0 . Therefore, we have proven the contrapositive. \square

Problem 9

Theorem 3. Let (\mathbb{R}, d) be a metric space, and let $A \subseteq \mathbb{R}$ be a bounded. Then $\sup A \in \overline{A}$.

Proof. Since A is bounded, the least upper bound property of the real numbers leads us to conclude that $\sup A$ exists. Let $s = \sup A$. Suppose, for sake of contradiction, that $\sup A \notin \bar{A}$. Then, $(\exists U(s) \in \mathcal{T})(U(s) \cap A = \emptyset)$. Since this U(s) is open, we can find a $\delta > 0$ such that $B(s;\delta) \subseteq U(s)$. This implies that there is no element in A between s and $s - \delta$, which means that $s - \delta$ is an upper bound of A. Since $s - \delta$ is an upper bound of A, and $s - \delta < s$, s cannot be the supremum of A, and we have reached a contradiction. Thus, $\sup A \in \bar{A}$

September 12, 2021 2