## Perfectly Matched Layers (PMLs)

We use PMLs to mimic propagation into free space. They are a type of absorbing boundary condition, and are carefully designed to have nearly Zero reflections.

## Simulation Domain



Suppose we have a wave moving in the +x direction:  $U_{+}(x) = e^{-iKx}$ 

Extending x = a + ib to the complex plane:  $u_+(x) = e^{-ika} kb$ 

= (coska + isin ka) ekb

phase amplitude



Normally, we are evaluating along the real axis. However, what if we evaluate U+(x) along some contour that extends into the complex plane?

Let  $\tilde{X} = X + if(x)$  where  $X \in \mathbb{R}$ ,  $f: \mathbb{R} \to \mathbb{R}$   $I_m(\tilde{x})$ Normal Absorbing region (PML)  $Re(\tilde{x})$ 

Re  $\{u+(\tilde{x})\}$ Normal  $\langle 1 \rangle$  Absorbing

To implement this "complex coordinate stretching", all we need to do is set the step size to be complex:



The step size is simply
$$\Delta X_{j} = \widetilde{X}_{j} - \widetilde{X}_{j-1}$$

$$= (x_{j} - x_{j-1}) + i(f(x_{j}) - f(x_{j-1}))$$

In our FDFD equations, all we need to do is set the step size Axj to be complex in the regions we want to be absorbing (PMLs):

Some additional notes:

- 1) We use a smooth transition (e.g. quadratic) from normal space to PML regions to minimize reflections. This is known as "grading".
- 2) We need to adjust the imaginary component of as a function of frequency to keep the decay length Constant. This makes PMLs more difficult and complex to implement in FDTD since PMLs are necessarily dispersive.