Note: • $\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$

- $\cos A \sin B = \frac{1}{2} \left[\sin(A+B) \sin(A-B) \right]$
- $\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)]$
- $\sin A \sin B = \frac{1}{2} [\cos(A B) \cos(A + B)]$
- $\sin^2 \theta = \frac{1}{2}(1 \cos 2\theta)$, $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$.
- $\sin^3 \theta = \frac{1}{4} (3 \sin \theta \sin 3\theta)$, $\cos^3 \theta = \frac{1}{4} (3 \cos \theta + \cos 3\theta)$.
- 1. $\psi = \theta + \phi$. 2 $\tan \phi = r \frac{d\theta}{dr}$. 3. $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$.

Note: 1. Angle between the two polar curves is $|\phi_1 - \phi_2|$

Find $\tan \phi_1 = \frac{r}{r_1}$ for the first curve and $\tan \phi_2 = \frac{r}{r_1}$ for the second curve

And if $\tan\phi_1$. $\tan\phi_2=-1$. Then angle of intersection is $\frac{\pi}{2}$

2. Equation involving only p and r is called **pedal equation.**

To find the pedal equation, find $\frac{r_1}{r}$ and use it in $\frac{1}{p^2} = \frac{1}{r^2} \left[1 + \left(\frac{r_1}{r} \right)^2 \right]$ and then eliminate θ .

Curvature $K = \frac{d\psi}{ds}$, Radius of curvature $\rho = \frac{ds}{d\psi}$.

Radius of curvature in Cartesian form: $\rho = \frac{\left(1+y_1^2\right)^{\frac{3}{2}}}{y_2}$

Radius of curvature in Polar form: $\rho = \frac{(r^2 + r_1^2)^{\frac{3}{2}}}{r^2 + 2r_1^2 - rr_2}$

Module2:

Taylor's series: Expansion of f(x) about x = a (or in powers of (x - a)) is

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \frac{(x - a)^3}{3!}f'''(a) + \frac{(x - a)^4}{4!}f''(a) + \cdots$$

Or
$$y = y(a) + y_1(a)(x-a) + \frac{y_2(a)}{2!}(x-a)^2 + \frac{y_3(a)}{3!}(x-a)^3 + \frac{y_4(a)}{4!}(x-a)^4 + \cdots$$

If a = 0 then series is called **Maclaurin's series** i.e.

Expansion of f(x) about x = 0 (or in powers of x) is

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f''(0) + \cdots$$

Or
$$y = y(0) + y_1(0)x + \frac{y_2(0)}{2!}x^2 + \frac{y_3(0)}{3!}x^3 + \frac{y_4(0)}{4!}x^4 + \cdots$$

Indeterminate forms:

 $\left(\frac{0}{0}\right)$ form: If f(a) = 0 = g(a) then $\lim_{x \to a} \frac{f(x)}{g(x)}$ is called $\frac{0}{0}$ form.

L'Hospital's rule: If f(a) = 0 = g(a) then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Note: Forms 1^{∞} , ∞^0 , 0^0 can be reducible to form $\left(\frac{0}{0}\right)$ or form $\frac{\infty}{\infty}$ by taking log.

Partial derivatives -

Total derivatives:

1. If
$$u = f(x,y)$$
 and $x = g(t)$, $y = h(t)$ then $\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt}$.

2. If
$$f(x,y) = constant$$
, then $\frac{dy}{dx} = -\frac{f_x}{f_y}$.

3. If
$$u = f(x, y)$$
 subject to $\varphi(x, y) = c$. Then $\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{dy}{dx}$, where $\frac{dy}{dx} = -\frac{\varphi_x}{\varphi_y}$.

4. If u=f(r,s,t) where r,s and t are functions of (x,y,z), then by Chain rule $u_x=u_rr_x+u_ss_x+u_tt_x$, $u_y=u_rr_y+u_ss_y+u_tt_y$ and $u_z=u_rr_z+u_ss_z+u_tt_z$.

Jacobian:

$$J = \frac{\partial(u, v, w)}{\partial(x, y, z)} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix}.$$

Note: 1. If u = f(r) and $r = \sqrt{x^2 + y^2}$ then $u_{xx} + u_{yy} = f''(r) + \frac{1}{r}f'(r)$.

2. If
$$u = f(r)$$
 and $r = \sqrt{x^2 + y^2 + z^2}$ then $u_{xx} + u_{yy} + u_{zz} = f''(r) + \frac{2}{r}f'(r)$.

Maxima and minima of functions of two variables:

1. f(x, y) is stationary at (a, b) i.e. f(a, b) is the stationary value of f if $f_x = 0 = f_y$ at (a, b).

2. f(x, y) is maximum at (a, b) i.e. f(a, b) is the maximum value of f

If at
$$(a, b)$$
 i) $f_x = 0 = f_y$ ii) $f_{xx}f_{yy} - f_{xy}^2 > 0$ iii) $f_{xx} < 0$.

3. f(x, y) is minimum at (a, b) i.e. f(a, b) is the minimum value of f

If at
$$(a,\ b)$$
 i) $f_x=0=f_y$ ii) $f_{xx}f_{yy}-f_{xy}^2>0$ iii) $f_{xx}>0$.

4. (a, b) is said to be saddle point of f(x, y) if i) $f_x = 0 = f_y$ ii) $f_{xx}f_{yy} - f_{xy}^2 < 0$ at (a, b).

5. If $f_x = 0 = f_y$ and $f_{xx}f_{yy} - f_{xy}^2 = 0$ at (a, b), then by discussion find maxima and minima. Module 3:

Differential Equations:

Solution of first order and first degree differential equations –

Exact equation:

The necessary and sufficient condition for the differential equation Mdx + Ndy = 0 to be exact is $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. (i.e. $M_y = N_x$)

Solution of exact equation is $\int M dx + \int$ (terms of *N* not containing *x*) dy = c. (*y constant*)

Reducible to exact:

In the non-exact equation Mdx + Ndy = 0,

i) if $\frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = f(x)$ i.e. the function of x only, then I. F. $= e^{\int f(x) dx}$.

ii) if
$$\frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] = g(y)$$
 i.e. the function of y only, then I. F. $= e^{\int g(y)dy}$.

Bernoulli's differential equations: Reducible to linear form

Equation of the type $\frac{dy}{dx} + Py = Qy^n$ where P and Q are functions of x, is called **Bernoulli's equation.** And Dividing by y^n and substituting $z = \frac{1}{y^{n-1}}$ equation reduces to linear form.

To find the O.T. of Cartesian curves:

If f(x, y, c) = 0 be the given family of curves with c is the arbitrary constant.

Step1: Find the differential equation of the given family by eliminating c. Let it be $F\left(x, y, \frac{dy}{dx}\right) = 0$.

Step2: Find the differential equation of the orthogonal trajectory

by replacing
$$\frac{dy}{dx} = -\frac{dx}{dy}$$
 i.e. $F\left(x, y, -\frac{dx}{dy}\right) = 0$.

Step3: Solve $F\left(x, y, -\frac{dx}{dy}\right) = 0$ to get orthogonal trajectory.

To find the O.T. of Polar curves:

If $f(r, \theta, c) = 0$ be the given family of curves with c is the arbitrary constant.

Step1: Find the differential equation of the given family by eliminating c. Let it be $F\left(r, \theta, \frac{dr}{d\theta}\right) = 0$.

Step2: Find the differential equation of the orthogonal trajectory

by replacing
$$\frac{dr}{d\theta} = -r^2 \frac{d\theta}{dr}$$
 i.e. $F\left(r, \theta, -r^2 \frac{d\theta}{dr}\right) = 0$.

Step3: Solve $F\left(r, \theta, -r^2 \frac{d\theta}{dr}\right) = 0$ to get orthogonal trajectory.

Newton's law of cooling: Suppose that a body whose temperature is initially $T_1^{\circ}C$ is allowed to cool in air which is maintained at a constant temperature $T_2^{\circ}C$. Let $T^{\circ}C$ is the temperature of the body at time t. Then,

$$T = T_2 + (T_1 - T_2)e^{-kt}$$

1. **Equations solvable for** $p:n^{th}$ degree, first order equations of the form

$$p^n+P_1p^{n-1}+P_2p^{n-2}+\cdots P_n=0$$
 , (where $P_1,\ P_2$, $\cdots P_n$ are functions of $x,\ y$) are solvable for p .

Splitting up the equation in to n linear factors we get , $[p-f_1(x,\ y)][p-f_2(x,\ y)]\cdots[p-f_n(x,\ y)]=0$. Equating each of the factors to zero and solving we get ,

$$F_1(x, y, c) = 0$$
, $F_2(x, y, c) = 0$, ..., $F_n(x, y, c) = 0$.

These n solutions constitute the general solution of the equation.

2. Clairaut's equations: An equation of the form y = px + f(p) is called Clairaut's equation.

General solution is y = cx + f(c).

To find the singular solution eliminate c from y = cx + f(c) using x = -f'(c).

Module4:

Linear Differential Equations with constant coefficients:

$$f(D)y = X$$
(1) Where $D = \frac{d}{dx}$ and X is function of x only.

Complete Solution of (1) is $y=y_c+y_p\,$, where y_c is complementary function, and y_p is particular integral.

To find y_c : Auxiliary equation of (1) is f(D) = 0. Find the roots of A.E.

Roots of A.E.	y_c
1 . m_1, m_2, m_3 (real and different roots)	$c_1 e^{m_1 x} + c_2 e^{m_2 x} + c_3 e^{m_3 x} + \cdots$
2. m_1, m_1, m_2 (Two real and equal roots)	$(c_1 + c_2 x)e^{m_1 x} + c_3 e^{m_2 x} + \cdots$
3. m_1, m_1, m_2, \dots (three real and equal roots)	$(c_1 + c_2 x + c_3 x^2)e^{m_1 x} + c_4 e^{m_2 x} + \cdots$
4. $a \pm ib$, m_1 (a pair of imaginary roots)	$e^{ax}(c_1\cos bx + c_2\sin bx) + c_3e^{m_1x} + \cdots$

Examples:

Roots of A.E.	y_c
1. 1,2,3	$y_c = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}.$
2. -2, -2	$y_c = (c_1 + c_2 x)e^{-2x}.$
3. -1, -1, -1, 1.5	$\mathbf{y}_c = (c_1 + c_2 x + c_3 x^2) e^{-x} + c_4 e^{1.5x}.$
4. $1 \pm 2i$, 3	$y_c = e^x (c_1 \cos 2x + c_2 \sin 2x) + c_3 e^{3x}$
5. ±2 <i>i</i>	$\mathbf{y}_c = c_1 \cos 2x + c_2 \sin 2x.$

To find
$$y_p: y_p = \frac{1}{f(D)}X$$

$$1.\frac{1}{D}X = \int X dx$$

2. If
$$f(a) \neq 0$$
, then $\frac{1}{f(D)}e^{ax} = \frac{e^{ax}}{f(a)}$,

If
$$f(a) = 0$$
, then $\frac{1}{f(D)}e^{ax} = x\frac{1}{f'(D)}e^{ax}$, and then put $D = a$.

If
$$f(a) = 0$$
, $f'(a) = 0$, then $\frac{1}{f(D)}e^{ax} = x^2 \frac{1}{f''(D)}e^{ax}$ and then put $D = a$ and so on.

3.
$$\frac{1}{f(D)}\sin(ax)$$
 or $\frac{1}{f(D)}\cos(ax)$, $put D^2 = -a^2 \ln f(D)$.

4.
$$\frac{1}{f(D)}(ax^2 + bx + c)$$
 is obtained by direct division.

Module 5: If a matrix A is equivalent to an echelon matrix E, then $\rho(A) = \text{Number of nonzero rows in } E$. Consistency of Homogeneous linear equations, AX = 0:

X = 0 is the trivial solution. Thus the homogeneous system is always consistent.

Note: 1. If $\rho(A)$ = number of unknowns, then the system has only trivial solution.

2. If $\rho(A)$ < number of unknowns, then the system has an infinite number of solutions.

Consistency of non-homogeneous linear equations, AX = B:

- 1. If $\rho(A) = \rho(A|B) =$ number of unknowns, then the system has unique solution.
- 2. If $\rho(A) = \rho(A|B)$ < number of unknowns, then the system has an infinite number of solutions.
- 3. If $(A) \neq \rho(A|B)$, then system has no solution.

Gauss-Seidel iteration method: Consider the equations $a_1x + b_1y + c_1z = d_1$, $a_2x + b_2y + c_2z = d_2$, $a_3x + b_3y + c_3z = d_3$, If a_1 , $a_2x + a_3x + a_3x$

respective equations. Then iterative formula for x, y and z are given by

$$x_{n+1} = \frac{1}{a_1} (d_1 - c_1 z_n - b_1 y_n)$$
, $y_{n+1} = \frac{1}{b_2} (d_2 - a_2 x_{n+1} - c_2 z_n)$ and $z_{n+1} = \frac{1}{c_3} (d_3 - b_3 y_{n+1} - a_3 x_{n+1})$

Characteristic equation: $|A - \lambda I| = 0$ is the characteristic equation of the square matrix A. Roots are called **Characteristic roots** or **Eigen values** or **latent roots** of A.

Any vector X satisfying $[A - \lambda I]X = 0$ is called **Eigen vector** corresponding to the Eigen value.

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then Characteristic equation is $\lambda^2 - (a+d)\lambda + (ad-cb) = 0$.
if $A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$, then Characteristic equation is
$$\lambda^3 - (a_1 + b_2 + c_3)\lambda^2 + (sum\ of\ the\ minors\ of\ a_1, b_2 \& c_3)\lambda - |A| = 0$$
.

Determination of largest Eigen value by Rayleigh's power method:

Let A be the given square matrix and a column vector X_0 be the initial Eigen vector. Evaluate $AX_0 = \lambda_1 X_1$ where λ_1 is the first approximation of the Eigen value and X_1 is the corresponding Eigen vector.

 $AX_1 = \lambda_2 X_2$. Where λ_2 is the 2^{nd} approximation of the Eigen value and X_2 is the corresponding Eigen vector. $AX_2 = \lambda_3 X_3$. Where λ_3 is the 3^{rd} approximation of the Eigen value and X_3 is the corresponding Eigen vector. Repeat this process till $X_n - X_{n-1}$ becomes negligible.