MASTER ATIAM

Quizz de vérification des prérequis pour le traitement du signal Roland Badeau

- 1. Espaces vectoriels hermitiens.
 - (a) Soit \mathbb{E}_N l'ensemble des suites $x_n \in \mathbb{C}$ de période $N \in \mathbb{N}^*$. Prouver que \mathbb{E}_N est un espace vectoriel.
 - (b) Prouver que $\langle x, y \rangle = \frac{1}{N} \sum_{n=0}^{N-1} x_n y_n^*$ définit un produit scalaire sur \mathbb{E}_N .
 - (c) Pour tout $k \in \{0...N-1\}$, soit e^k le vecteur de coefficients $e^k_n = e^{\frac{2i\pi kn}{N}}$. Vérifier que $(e^k)_{0 \le k < N}$ est une base orthonormée de \mathbb{E}_N .
 - (d) Soit $h \in \mathbb{E}_N$. Pour tout $x \in \mathbb{E}_N$, on pose f(x) = y où $y_n = \sum_{m=0}^{N-1} h_m x_{n-m}$. Vérifier que f est un endomorphisme de \mathbb{E}_N .
 - (e) Vérifier que e^k est vecteur propre de f, associé à la valeur propre $\lambda_k = \sum_{n=0}^{N-1} h_n e^{-2i\pi \frac{k}{N}n}$.
- 2. Séries entières : on rappelle qu'une "série entière" est une fonction définie par la somme de la série $\sum_{n\in\mathbb{N}} c_n z^n$ pour $c_n,z\in\mathbb{C}$.
 - (a) Rappeler la forme du domaine de convergence d'une série entière.
 - (b) Calculer la somme de la série entière définie par $c_n = \frac{1}{2^n}$. Quel est son rayon de convergence?
- 3. Fractions rationnelles
 - (a) Soit $a \in \mathbb{C}$. Développer $f(z) = \frac{1}{1-az}$ en série entière sur z. Quel est son rayon de convergence?
 - (b) Soient $\rho > 0$ et $\theta \in \mathbb{R}$. Décomposer la fraction rationnelle $f(z) = \frac{1}{1 2\rho\cos(\theta)z + \rho^2z^2}$ en éléments simples. En utilisant la question précédente, en déduire son développement en série entière. Quel est son rayon de convergence?
- 4. Espaces de Lebesgue : on rappelle que $f \in L^p(\mathbb{R}) \Leftrightarrow \int_{\mathbb{R}} |f(t)|^p dt < +\infty$ (où $p \ge 1$).
 - (a) Prouver que $L^p(\mathbb{R})$ est un espace vectoriel. On admettra alors que $||f||_p = (\int_{\mathbb{R}} |f(t)|^p dt)^{\frac{1}{p}}$ est une norme sur $L^p(\mathbb{R})$.
 - (b) Est-ce que $f(t) = \frac{\sin(t)}{t}$ est dans $L^1(\mathbb{R})$?
 - (c) Pour quelle valeur de p l'espace $L^p(\mathbb{R})$ est-il un espace de Hilbert? Quel est le produit scalaire associé? Rappelez ce qui différentie un espace de Hilbert d'un espace vectoriel hermitien.
- 5. Produit de convolution : on rappelle que $(f * g)(t) = \int_{\mathbb{R}} f(u)g(t-u)du$.
 - (a) Prouver que le produit de convolution est commutatif, associatif et distributif.
 - (b) Soient $f \in L^1(\mathbb{R})$ et $g \in L^1(\mathbb{R})$. Prouver que $f * g \in L^1(\mathbb{R})$.
 - (c) Soient $f \in L^1(\mathbb{R})$ et $g \in L^2(\mathbb{R})$. Prouver que $f * g \in L^2(\mathbb{R})$.
 - (d) Soient $f \in L^1(\mathbb{R})$ et $g \in L^\infty(\mathbb{R})$ ($L^\infty(\mathbb{R})$ désigne l'espace de Lebesgue des fonctions essentiellement bornées, muni de la norme $||g||_{\infty} = \sup_{t \in \mathbb{R}} |g(t)|$). Prouver que $f * g \in L^\infty(\mathbb{R})$.
 - (e) Soient $f \in L^2(\mathbb{R})$ et $g \in L^2(\mathbb{R})$. Prouver que $f * g \in L^{\infty}(\mathbb{R})$.
- 6. Séries de Fourier : on rappelle qu'une série de Fourier est de la forme $X(\nu) = \sum_{n \in \mathbb{Z}} x_n e^{+2i\pi\nu n}$ et que ses coefficients vérifient $x_n = \int_0^1 X(\nu) e^{-2i\pi\nu n} d\nu$.
 - (a) Quelle est la période de la fonction $X(\nu)$?
 - (b) Prouver que si $x_n \in \mathbb{R}$, $X(\nu)$ est symétrique hermitienne $(X(-\nu) = X(\nu)^*)$.
 - (c) Prouver que si $X(\nu) \in \mathbb{R}$, x_n est symétrique hermitienne $(x_{-n} = x_n^*)$.
 - (d) Soit $X(\nu) = \mathbf{1}_{\left[-\frac{1}{4}, \frac{1}{4}\right]}$ pour $\nu \in \left[-\frac{1}{2}, \frac{1}{2}\right]$. Calculer ses coefficients de Fourier.
 - (e) Soit $X(\nu) = 1 2|\nu|$ pour $\nu \in [-\frac{1}{2}, \frac{1}{2}]$. Calculer ses coefficients de Fourier.
 - (f) Comparer, dans les deux exemples précédents, la régularité de la fonction $X(\nu)$ et la décroissance des coefficients x_n .