Database Homework 8

10185101210 陈俊潼 2020.6

• 12.1

First run: store first three element into the memory and sort, then next three element. Here I omit the second attribute of each tuples.

emu kangaroo wallaby || lion platypus warthog || hyena meerkat zebra || baboon hornbill Second run: merge first two sections and last two sections:

emu kangaroo lion platypus wallaby warthog || baboon hornbill hyena meerkat zebra
Third run: merge two sections:

baboon emu hornibill hyena kangaroo lion meerkat platypus wallaby warthog zebra

• 12.2

The relational-algebra expression is shown as follows:

$$\Pi_{\text{T.branch_name}} \left(\Pi_{\text{T.branch_name, assets}} (\rho_T(branch)) \bowtie_{\text{T.assets} > \text{S.assets}} \right)$$

$$\Pi_{assets} (\sigma_{\text{S.branch_city}="Brooklyn"} (\rho_S(branch)))$$

$$(1)$$

• 12.3

By calculating, there're 20,000 / 25 = 800 blocks for r_1 and 45,000 / 30 = 1500 blocks for r_2 . Let relation r_1 be the outer loop, r_2 be the inner loop.

Algorithm	Block Transfers	Seeks
Nested- loop join	800 + 20,000 * 1500 = 30,000,800	800 + 20000 = 20,800
Block nested- loop join	800 + 800 * 1500 = 1,200,800 (Worst case, where memory can only store one block each time) 800 + 1500 = 2300 (Best case, where memory can store all inner relations)	800 + 800 = 16,00 (Worst case) 2 (Best case)
Merge join	800 + 1500 = 2300	$\lceil 800/1500 \rceil + \lceil 1500/800 \rceil = 3$
Hash join	Assume there are n partitions. 2 * (800 + 1500) + 800 + 1500 + 2 * 2 * n = 6900 + 4n	$2(\lceil 800/1500\rceil + \lceil 1500/800\rceil) = 6$

a.

The cost of merge sort is 1:

$$b_r(2\lceil \log_{M-1}(b_r/M)\rceil + 1) * Block transfer time +$$

$$\left(2\lceil b_r/M\rceil + \lceil b_r/b_b\rceil(2\lceil \log_{M-1}(b_r/M)\rceil - 1)\right) * Disk seek time$$
(2)

Cost of a seek: $5 * 10^{-3}$ s

Cost of a block transfer: $4KB / 40(MB/s) = 1 * 10^{-4} s$

Block count the memory can hold (M): $40MB / 4KB = 1 * 10^4$

Block count in the relation (b_r): 40GM / 4KB = 10^7

By calculating $b_r(2\lceil \log_{M-1}(b_r/M) \rceil + 1)$, the blocks to be transfered = 3 * 10⁷.

$$\mathbf{b_b} = \mathbf{1} : \mathsf{cost} = (1*10^{-4})*(3*10^7) + (5*10^{-3})*(2000 + 10^7*1) = \mathsf{53010} \; \mathsf{s}$$

$$\mathbf{b_b}$$
 = 100: cost = $(1*10^{-4})*(3*10^7) + (5*10^{-3})*(2000 + 10^5*1)$ = 3510 s

- b.

There will be $\lceil \log_{M-1}(b_r/M) \rceil$ runs.

When b_b = 1 or 100, the time of merge pass is the same, which \approx 1.

- c.

The new cost for a seek: $1 * 10^{-6}$ s.

$$\mathbf{b_b}$$
 = 1: cost = $(1*10^{-4})*(3*10^7) + (1*10^{-6})*(2000 + 10^7*1) = 3010.002s$

$$b_b = 100$$
: cost = $(1*10^{-4})*(3*10^7) + (1*10^{-6})*(2000 + 10^5*1) = 3000.012$ s

^{1.} Database System Concepts Textbook, Page 549 ↩