§ 30. АКТИВНИЙ ОПІР У КОЛІ ЗМІННОГО СТРУМУ. ДІЮЧІ ЗНАЧЕННЯ СИЛИ СТРУМУ Й НАПРУГИ

Миттєве значення сили змінного струму постійно змінюється — періодично перетворюється на нуль, періодично досягає максимуму. Чому ж тоді ми кажемо, наприклад: «Сила струму в спіралі електричної лампи 0,27 А» або «Сила струму в нагрівальному елементі праски 7,3 А»? З'ясуємо, про яке ж значення змінного струму йдеться.

🧃 Який опір називають активним

де $I_{\text{max}} = \frac{U_{\text{max}}}{P}$.

Вивчаючи постійний струм, ви дізналися, що всі провідники (за винятком надпровідників) мають електричний опір. Провідники чинять опір і змінному струму, однак у колах змінного струму, на відміну від постійного, існують різні види опорів, які відрізняються своєю фізичною природою. Їх можна поділити на дві групи — активні і реактивні опори.

Елемент електричного кола має **активний опір** R, якщо під час проходження по ньому електричного струму частина електричної енергії перетворюється на внутрішню: $Q = I^2 Rt$.

Будь-який елемент електричного кола змінного струму (з'єднувальні проводи, нагрівальні елементи, обмотки двигунів, генераторів і трансформаторів та ін.), як і у випадку постійного струму, має активний опір (ми називали його просто опір).

Нехай електричне коло складається зі з'єднувальних проводів, навантаження з малою індуктивністю і значним активним опором R та джерела змінного струму (рис. 30.1, a), напруга на виході якого змінюється за гармонічним законом:

$$u(t) = U_{\text{max}} \sin \omega t$$
.

Згідно із законом Ома сила струму в колі теж змінюється за гармонічним законом:

$$i(t) = \frac{u(t)}{R} = \frac{U_{\text{max}} \sin \omega t}{R} = I_{\text{max}} \sin \omega t ,$$

Рис. 30.1. Активний опір у колі змінного струму: а — електрична схема кола; б — графіки залежностей від часу сили струму i(t) та напруги u(t). Сила струму і напруга одночасно досягають максимальних значень і одночасно перетворюються на нуль

В елементах електричного кола, що мають тільки активний опір, коливання сили струму і напруги збігаються за фазою (рис. 30.1, б).

Як визначити діючі значен-

Оцінювати дію змінного струму за миттєвим значенням сили струму незручно — вона безперервно змінюється. Не можна для цього використати й середнє значення сили струму, оскільки її середнє за період значення дорівнює нулю (див. рис. 30.1, б). Тому дію змінного струму прийнято оцінювати за діючим значенням сили струму.

Діюче значення сили змінного струму I дорівнює силі такого постійного струму, який протягом певного часу виділяє в провіднику таку саму кількість теплоти, що й даний змінний струм.

Припустимо, що ми маємо дві однакові лампи опором R кожна. Одну з ламп приєднали до джерела постійного струму, другу — до джерела змінного струму (рис. 30.2). Якщо сила постійного струму дорівнює діючому значенню сили змінного струму, то обидві лампи світитимуть з однаковим розжаренням. Це означає, що середнє значення потужності змінного струму дорівнює потужності постійного струму: $p_{\text{сер}} = P$.

Потужність постійного струму можна обчислити за формулою: $P = I^2 R$.

Знайдемо середне значення потужності змінного струму. На нескінченно малому проміжку часу силу струму можна вважати незмінною, тому миттєву потужність також можна обчислити за формулою: $p=i^2R$, де $i=I_{\max}\sin\omega t$. Звідси

$$p = I_{\max}^2 R \sin^2 \omega t = I_{\max}^2 R \frac{1 - \cos 2\omega t}{2} = \frac{I_{\max}^2 R}{2} - \frac{I_{\max}^2 R}{2} \cos 2\omega t.$$

Рис. 30.2. До введення поняття «діюче значення сили струму»

Із графіка залежності миттєвої потужності змінного струму від часу (рис. 30.3) бачимо, що середнє за період значення потужності дорівнює:

$$p_{\rm cep} = \frac{I_{\rm max}^2 R}{2}$$
 .

Оскільки $P = p_{\text{cep}}$, маємо:

$$I^2R = \frac{I_{\text{max}}^2R}{2}.$$

Звідси діюче значення сили змінного струму дорівнює:

$$I = \frac{I_{\text{max}}}{\sqrt{2}}.$$

Аналогічно діюче значення змінної напруги дорівнює:

$$U = \frac{U_{\text{max}}}{\sqrt{2}}.$$

На практиці для характеристики параметрів змінного струму використовують саме діючі значення сили струму й напруги.

Рис. 30.3. Активний опір у колі змінного струму: графік залежності потужності (активної) від часу p(t)

Наприклад, коли кажуть, що напруга в мережі змінного струму становить 220 В, а сила струму в колі 25 А, це означає, що діюче значення напруги в мережі 220 В, а діюче значення сили струму дорівнює 25 А. Амперметри і вольтметри змінного струму вимірюють саме діючі значення сили струму й напруги.

Реактивний опір у колі змінного струму

Конденсатор і котушка індуктивності, введені в коло змінного струму, чинять додатковий опір струму. Цей опір називається реактивним, оскільки на його долання не витрачається енергія джерела. Чверть періоду котушка й конденсатор забирають енергію від джерела, наступну чверть періоду повертають енергію до джерела.

Iндуктивний опір провідника X_L — це фізична величина, що характеризує опір провідника електричному струму, викликаний дією EPC самоїндукції: $X_L = \omega L$, де ω — циклічна частота змінного струму; L — індуктивність провідника.

Ємнісний опір X_c — це фізична величина, що характеризує здатність конденсатора протидіяти змінному струму: $X_c = \frac{1}{\omega C}$, де ω — циклічна частота змінного струму; C — ємність конденсатора.

Повний опір кола, що містить активний, індуктивний і ємніс-

ний опори, обчислюють за формулою:
$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 .

Різницю $\omega L - \frac{1}{\omega C}$ називають реактивним опором.

Якщо до кола змінного струму приєднана *тільки котушка індуктивності* з дуже малим активним опором, а ємність відсутня, то внаслідок дії вихрового електричного поля сила струму відстає за фазою від напруги на $\frac{\pi}{2}$.

Якщо до кола змінного струму приєднаний *тільки конденсатор*, а активний опір є нехтовно малим, сила струму випереджає за фазою напругу на $\frac{\pi}{2}$.

У загальному випадку зсув фаз ϕ між силою струму та напругою визначається за формулою: $\cos \phi = \frac{R}{Z}$, де R і Z — активний і повний опори кола відповідно.

Зверніть увагу: якщо $\omega L > \frac{1}{\omega C}$, то сила струму відстає за фазою від напруги $(\phi < 0)$; якщо $\omega L < \frac{1}{\omega C}$, то сила струму випереджає за фазою напругу $(\phi > 0)$.

Активна потужність P змінного струму залежить від діючих значень сили струму I і напруги U та від різниці фаз між силою струму і напругою: $P = UI \cos \varphi$, де $\cos \varphi$ — коефіцієнт потужності. \bigstar

Підбиваємо підсумки

Елемент електричного кола має активний опір R, якщо під час проходження по ньому електричного струму частина електричної енергії перетворюється на внутрішню: $Q = I^2 Rt$.

Якщо електричне коло має тільки активний опір R, а напруга на виході джерела струму змінюється за гармонічним законом $u=U_{\max} \sin \omega t$, то сила струму в колі теж змінюється за гармонічним законом: $i=I_{\max} \sin \omega t$, де $I_{\max} = \frac{U_{\max}}{R}$. При цьому коливання сили струму і напруги збігаються за фазою.

Оцінювати дію змінного струму прийнято за діючими значеннями сили струму і напруги: $I = \frac{I_{\max}}{\sqrt{2}}$, $U = \frac{U_{\max}}{\sqrt{2}}$.

Контрольні запитання

1. Які основні види опорів існують у колах змінного струму? Дайте їхні визначення. 2. Як пов'язані сила струму і напруга в колі з активним опором? 3. Що називають діючим значенням сили струму? 4. Як розрахувати діючі значення сили струму й напруги? ★5. Наведіть формулу для розрахунку індуктивного опору. Від яких чинників він залежить? ★6. Дайте визначення ємнісного опору. Від яких чинників він залежить? ★7. Чому дорівнює різниця фаз за наявності тільки індуктивного опору? тільки ємнісного опору? ★8. Чому дорівнює повний опір кола? ★9. Як розрахувати потужність у колі змінного струму?

Вправа № 26

 В освітлювальних колах змінного струму застосовують напруги 220 В і 127 В. На які напруги має бути розрахована ізоляція в цих колах?

3*. На рисунку наведено графік залежності напруги в мережі від часу. За який час закипить вода в чайнику, що містить 1,5 л води, якщо опір нагрівального елемента чайника 20 Ом, ККД чайника 72 %, а початкова температура води 20 °C?

