Example Data Analysis Report Reproducible Research Using knitr with LATEX

Peter DeWitt

January 27, 2014

1 Introduction

This document serves as an example data analysis report generated using R for the analysis, IATEX for the markup report writing language, and knitr to bring everything together. The data set used is a fictitious as was generated for example purposes only. The purpose of this document is to provide an example of reproducible research.

Reproducing this report These are the steps required for reproducing this report.

- 1. Install R and LATEX on your computer.
- 2. Open R, install the knitr package if the package is not on your system.

```
# This chunk is for example purposes only, not be evaluated
install.packages("knitr", repos = "http://cran.rstudio.com")
```

3. Set the working directory in R to the same directory as this file exists in. Run the following commands in R,

```
# This chunk is for example purposes only, not be evaluated
library(knitr)
knit(input = "basicsLaTeX.Rnw")
```

4. The above R code will generate the file basicLaTeX.tex. Use your favorite LATEX compiler to generate the .pdf, .eps, .ps, If you get a copy of the directory with the auxiliary files resulting from compiling the LATEX, such as .aux, .log, ..., please delete those files. Only the .Rnw file is truly necessary to reproduce this report.

2 Analysis Methods

Overall survival analysis was done using both Kaplan-Meier estimates and Cox proportional hazard regression models. The analysis was done in R version 3.0.2 (2013-09-25) [R Core Team, 2013] and the survival analysis was done using the survival package [Therneau, 2014]. Statistical significance was set at the 0.05 level.

Table 1: Data Set summary

	Overall		GS 7		GS 8		GS 9		GS 10	
	n	%	n	%	n	%	n	%	n	%
	19,039		12,986	68.21	3,670	19.28	$2{,}139$	11.23	244	1.28
Age (in years)										
[40,50)	3,051	16.03	2,145	16.52	544	14.82	323	15.10	39	15.98
[50,70)	5,945	31.23	4,259	32.80	1,005	27.38	608	28.42	73	29.92
[70,85]	10,043	52.75	$6,\!582$	50.69	$2,\!121$	57.79	1,208	56.47	132	54.10
Era										
Era 1	8,615	45.25	$5,\!869$	45.19	1,659	45.20	970	45.35	117	47.95
Era 2	$10,\!424$	54.75	$7,\!117$	54.81	2,011	54.80	1,169	54.65	127	52.05
PSA										
[0, 10) ng/ml	11,567	60.75	8,410	64.76	1,997	54.41	1,038	48.53	122	50.00
[10, 20) ng/ml	4,372	22.96	2,845	21.91	927	25.26	531	24.82	69	28.28
[20, Inf) ng/ml	3,100	16.28	1,731	13.33	746	20.33	570	26.65	53	21.72
T Stage										
T Stage 1	9,668	50.78	7,110	54.75	1,699	46.29	770	36.00	89	36.48
T Stage 2	8,189	43.01	5,360	41.28	1,657	45.15	1,065	49.79	107	43.85
T Stage 3/4	1,182	6.21	516	3.97	314	8.56	304	14.21	48	19.67
Observed Deaths										
	2,755		1,611		598		473		73	

Figure 1: Kaplam-Meier Survival Curves

Table 2: Hazard ratios (HR) along with 95% confidence intervals (LCL, UCL) and p-values for testing if the hazard ratio is statistically different from 1 are presented in this table for both univariable and multivariable regression models for overall survival.

	Univa	riable	Regres	sions	Multivariable Regression				
	HR	LCL	UCL	p-value	HR	LCL	UCL	p-value	
Age									
[40,50)	Reference				Reference				
[50,70)	0.95	0.84	1.09	0.4807	0.96	0.84	1.10	0.5550	
[70,85]	1.62	1.44	1.81	< 0.0001	1.61	1.43	1.80	< 0.0001	
Era									
Era 1	Reference				Reference				
Era 2	0.83	0.76	0.90	< 0.0001	0.84	0.77	0.92	< 0.0001	
T.Stage									
T Stage 1	Reference				Reference				
T Stage 2	1.19	1.10	1.29	< 0.0001	1.12	1.03	1.21	0.0063	
T Stage 3/4	1.54	1.34	1.77	< 0.0001	1.24	1.07	1.43	0.0033	
PSA									
[0, 10) ng/ml	Reference				Reference				
[10, 20) ng/ml	1.45	1.32	1.58	< 0.0001	1.36	1.24	1.48	< 0.0001	
[20, Inf) ng/ml	1.62	1.47	1.78	< 0.0001	1.50	1.36	1.66	< 0.0001	
Gleason									
GS7	Reference				Reference				
GS 8	1.34	1.22	1.47	< 0.0001	1.23	1.12	1.35	< 0.0001	
GS9	1.92	1.73	2.12	< 0.0001	1.73	1.55	1.91	< 0.0001	
GS 10	2.74	2.17	3.46	< 0.0001	2.48	1.96	3.14	< 0.0001	

3 Analysis and Results

The data set consisted of 19,039 records. A summary of the data set is presented in Table 1.

We are primarily interested in the differences in survival between patients with different Gleason scores. Figure 1 presents the Kaplan-Meier survival estimates by Gleason score. As expected, the higher the Gleason score, the worse the survival. It should also be noted that even after seven years of tracking patients the median survival time is not estimable. The lowest survival estimate is 63.43%.

Both univariable and multivariable Cox proportional hazard regression models were fitted for overall survival by the age, era of treatment, T stage, PSA, and Gleason score of the patient. Results for all the regression models are presented in Table 2.

The results of a univariable regression model indicated that Patients treated in Era 2 had statistically better survival than patients treated in Era 1, HR = 0.83 (95% CI: 0.76,0.90), and there was no appreciable difference in the hazard ratio found in the multivariable regression model, HR = 0.84 (95% CI: 0.77,0.92). As expected, as patients increase in age, T Stage increase, PSA increase, and Gleason score increases, the hazard also increases.

The hazard ratio between Gleason 8 and Gleason 7, from the multivariable Cox proportional hazard regression model, is HR = 1.23 (95% CI: 1.12,1.35). Further analysis of the pairwise comparisons of the hazards between all four Gleason scores can be provided upon request.

4 Conclusions

The conclusions section for a data analysis report would generally be used to summarize the results presented in Section 3, list any limitations to the study, and generate some discussion topics. Seeing how the purpose of *this* report was to show illustrate the use of knitr, the conclusions will focus on reproducible research.

Using knitr to write data analysis reports were the written report and the data analysis methods is a version of literate programming. When written well, the report are robust to changes in the data set, but more importantly, every element of the report is commented directly or contextually.

In addition to using knitr, a very powerful tool for authoring reports, both as a sole author, or as a collaboration, is to use version control software. I prefer git¹, but another viable option is subversion. RStudio has built-in features to working with either. Repository hosting on github.com or bitbucket.org are helpful, but on public servers (private repos are possible, but think about the physical location of the data storage). The git server software can be purchased and set up behind institutional firewalls.

References

[R Core Team, 2013] R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

[Therneau, 2014] Therneau, T. (2014). survival: Survival Analysis. R package version 2.37-7.

```
# for reproducibility, print out the session info for the packages, and
# versions of the packages, used to run the analysis and create this
# document.
print(sessionInfo(), local = FALSE)
## R version 3.0.2 (2013-09-25)
## Platform: x86_64-pc-linux-gnu (64-bit)
##
## attached base packages:
## [1] grid
                 splines
                           stats
                                     graphics grDevices utils
                                                                    datasets
## [8] methods
                 base
##
## other attached packages:
   [1] gdata_2.13.2
                        Hmisc_3.13-0
                                        Formula_1.1-1
                                                        lattice_0.20-24
##
   [5] cluster_1.14.4 survival_2.37-7 knitr_1.5
                                                        vimcom_0.9-91
##
   [9] setwidth_1.0-3 colorout_1.0-0
##
## loaded via a namespace (and not attached):
## [1] evaluate_0.5.1 formatR_0.10
                                     gtools_3.1.1
## [5] stringr_0.6.2 tools_3.0.2
```

 $^{^{1} {\}tt http://git-scm.com/}$