IP CORE MANUAL

Clock Frequency Counter IP

px_clock_frq_cntr

Pentek, Inc.
One Park Way
Upper Saddle River, NJ 07458
(201) 818–5900
http://www.pentek.com/

Copyright © 2017

Manual Part Number: 807.48404 Rev: 1.1 – September 26, 2017

Manual Revision History

<u>Date</u>	Version	<u>Comments</u>
9/7/17	1.0	Initial Release
9/26/17	1.1	Revised IP Facts, Sect 1.1, Sect 2.2.1, Sect 2.5, Table 3–2, Table 4–1, Table 4–3, Sect 5.2, Sect 6.1,
		and Sect 6.4.

Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Pentek products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Pentek hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Pentek shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in conjunction with, the Materials (including your use of Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage and loss was reasonably foreseeable or Pentek had been advised of the possibility of the same. Pentek assumes no obligation to correct any error contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the materials without prior written consent. Certain products are subject to the terms and conditions of Pentek's limited warranty, please refer to Pentek's Ordering and Warranty information which can be viewed at http://www.pentek.com/ contact/customerinfo.cfm; IP cores may be subject to warranty and support terms contained in a license issued to you by Pentek. Pentek products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for the use of Pentek products in such critical applications.

Copyright

Copyright © 2017, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form without written permission.

Trademarks

Pentek, Jade, and Navigator are trademarks or registered trademarks of Pentek, Inc.

ARM and AMBA are registered trademarks of ARM Limited. PCI, PCI Express, PCIe, and PCI–SIG are trademarks or registered trademarks of PCI–SIG. Texas Instruments is a trademark of Texas Instruments, Incorporated. Xilinx, Kintex UltraScale, Vivado, and Platform Cable USB are registered trademarks of Xilinx Inc., of San Jose, CA.

Table of Contents

		Page
	IP Facts	
	Description	3
	Features	3
	Table 1–1: IP Facts Table	3
	Chapter 1: Overview	
1.1	Functional Description	5
	Figure 1-1: Clock Frequency Counter Core Block Diagram	5
1.2	Applications	6
1.3	System Requirements	6
1.4	Licensing and Ordering Information	6
1.5	Contacting Technical Support	
1.6	Documentation	6
0.1	Chapter 2: General Product Specifications	-
2.1 2.2	Standards	
2.2	Performance	
2.3	2.2.1 Maximum Frequencies	
2.5	Table 2–1: Resource Usage and Availability	
2.4	Limitations and Unsupported Features	
2.5	Generic Parameters	
	Chapter 3: Port Descriptions	
3.1	AXI4-Lite Core Interfaces	9
	3.1.1 Control/Status Register (CSR) Interface	
	Table 3-1: Control/Status Register (CSR) Interface Port Descriptions	
3.2	I/O Signals	
	Table 3–2: I/O Signals	12

Table of Contents

		Page
	Chapter 4: Register Space	
	Table 4–1: Register Space Memory Map	13
4.1	Control Register	
	Figure 4–1: Control Register	
	Table 4-2: Control Register (Base Address + 0x00)	14
4.2	Frequency Counter Read Back Register	15
	Figure 4–2: Frequency Counter Read Back Register	
	Table 4-3: Frequency Counter Read Back Register (Base Address + 0x04)	15
	Chapter 5: Designing with the Core	
5.1	General Design Guidelines	17
5.2	Clocking	17
5.3	Resets	17
5.4	Interrupts	17
5.5	Interface Operation	18
5.6	Programming Sequence	18
5.7	Timing Diagrams	18
	Chapter 6: Design Flow Steps	
	Chupter 6. Design Flow Steps	
6.1	Pentek IP Catalog	19
	Figure 6-1: Clock Frequency Counter Core in Pentek IP Catalog	19
	Figure 6-2: Clock Frequency Counter Core IP Symbol	20
6.2	User Parameters	20
6.3	Generating Output	20
6.4	Constraining the Core	21
6.5	Simulation	21
6.6	Synthesis and Implementation	22

IP Facts

Description

Pentek's NavigatorTM Clock Frequency Counter Core is a clock frequency counter module that uses a user provided reference clock to calculate the frequency count of an input clock.

This core complies with the ARM® AMBA® AXI4 Specification. This user manual defines the hardware interface, software interface, and parameterization options for the Clock Frequency Counter Core.

Features

- Register access through AXI4-Lite interface that makes frequency value accessible to software
- Selectable reference clock frequency from 100 MHz to 250 MHz

Table 1-1: IP Facts Table					
Core Specifics					
Supported Design Family ^a	Kintex [®] Ultrascale				
Supported User Interfaces	AXI4-Lite				
Resources	See Table 2-1				
Provided with the Cor	e e				
Design Files	VHDL				
Example Design	Not Provided				
Test Bench	VHDL				
Constraints File	Not Provided ^b				
Simulation Model	VHDL				
Supported S/W Driver	HAL Software Support				
Tested Design Flows	_				
Design Entry	Vivado [®] Design Suite 2017.2 or later				
Simulation	Vivado VSim				
Synthesis Vivado Syn					
Support					
Provided by Pentek fpgasupport@pentek.com					

a.For a complete list of supported devices, see the *Vivado Design Suite Release Notes*.

b.Clock constraints can be applied at the top-level module of the user design.

This page is intentionally blank

Chapter 1: Overview

1.1 Functional Description

Clock Frequency Counter Core is a clock frequency counter module that uses a reference clock to calculate the frequency count of an input clock.

Figure 1–1 is a top–level block diagram of the Clock Frequency Counter Core. The modules in the block diagram are explained in other sections of this manual.

Figure 1-1: Clock Frequency Counter Core Block Diagram

- □ **AXI4–Lite Interface:** This module implements a 32–bit AXI4–Lite slave interface to access the register space. For more details about the AXI4–Lite Interface, refer to Section 3.1 AXI4–Lite Core Interfaces.
- ☐ **Register Space:** This module contains the control and status registers. Registers are accessed through the AXI4–Lite interface.

1.1 Functional Description (continued)

Frequency Period Counter: This uses a user provided reference clock to generate a
one second window. During this one second window, the Frequency Counter block
counts the number of clock edges of the input clock. The counter is reset once per
second.

☐ **Frequency Counter:** This counts the frequency of the input clock during a one second window and latches the count to a software register.

1.2 Applications

This core can be used to provide software with the frequency of a clock.

1.3 System Requirements

For a list of system requirements, see the Vivado Design Suite Release Notes.

1.4 Licensing and Ordering Information

This core is included with all Pentek Navigator FPGA Design Kits for Pentek Jade series board products. Contact Pentek for Licensing and Ordering Information (www.pentek.com).

1.5 Contacting Technical Support

Technical Support for Pentek's Navigator FPGA Design Kits is available via e-mail (fpgasupport@pentek.com) or by phone (201–818–5900 ext. 238, 9 am to 5 pm EST).

1.6 Documentation

This user manual is the main document for this IP core. The following documents provide supplemental material:

- 1) Vivado Design Suite User Guide: Designing with IP
- 2) Vivado Design Suite User Guide: Programming and Debugging
- 3) *ARM AMBA AXI4 Protocol Version 2.0 Specification* http://www.arm.com/products/system-ip/amba-specifications.php

Chapter 2: General Product Specifications

2.1 Standards

The Clock Frequency Counter Core has a bus interface that complies with the *ARM AMBA AXI4–Lite Protocol Specification*.

2.2 Performance

The performance of the Clock Frequency Counter Core is limited only by the FPGA logic speed. The values presented in this section should be used as an estimation guideline. Actual performance can vary.

2.2.1 Maximum Frequencies

This core requires a reference clock between 100MHz and 250MHz. The maximum frequency of the input clock is based on its clock constraint.

2.3 Resource Utilization

The resource utilization of the Clock Frequency Counter Core is shown in Table 2–1. Resources have been estimated for the Kintex Ultrascale XCKU060 –2 speed grade device. These values were generated using the Vivado Design Suite.

Table 2–1: Resource Usage and Availability				
Resource	# Used			
LUTs	73			
Flip-Flops	211			

NOTE: Actual utilization may vary based on the user design in which the Clock Frequency Counter Core is incorporated.

2.4 Limitations and Unsupported Features

This section is not applicable to this IP core.

2.5 Generic Parameters

Reference Clock Frequency: This parameter specifies what the frequency of the **ref_clk** is in Hz. It can be set to values between 100000000 and 250000000. See **Table 3–2**.

Page 8

This page is intentionally blank

Chapter 3: Port Descriptions

This chapter provides port descriptions for the following interface type, and I/O signals:

- AXI4–Lite Core Interfaces
- I/O Signals

3.1 **AXI4-Lite Core Interfaces**

The Clock Frequency Counter Core uses the Control/Status Register (CSR) interface to control, and receive status from, the user design.

3.1.1 Control/Status Register (CSR) Interface

The CSR interface is an AXI4–Lite Slave Interface that can be used to access the control and status registers in the Clock Frequency Counter Core. Table 3–1 defines the ports in the CSR interface. See Chapter 4 for a Control/Status Register memory map and bit definitions. See the *AMBA AXI4–Lite Specifica–tion* for details on the operation of the AXI4–Lite interfaces.

Table 3-1	Table 3-1: Control/Status Register (CSR) Interface Port Descriptions					
Port	Direction	Width	Description			
s_axi_csr_aclk	Input	1	Clock			
s_axi_csr_aresetn	Input	1	Reset: Active low.			
s_axi_csr_awaddr	Input	7	Write Address: Address used for write operations. It must be valid when s_axi_csr_awvalid is asserted and must be held until s_axi_csr_awready is asserted by the ADC Core.			
s_axi_csr_awprot	Input	3	Protection: The ADC Interface Core ignores these bits.			
s_axi_csr_awvalid	Input	1	Write Address Valid: This input must be asserted to indicate that a valid write address is available on s_axi_csr_awaddr. The ADC Core asserts s_axi_csr_awready when it is ready to accept the address. The s_axi_csr_awvalid must remain asserted until the rising clock edge after the assertion of s_axi_csr_awready.			
s_axi_csr_awready	Output	1	Write Address Ready: This output is asserted by the ADC Core when it is ready to accept the write address. The address is latched when s_axi_csr_awvalid and s_axi_csr_awready are high on the same cycle.			

Table 3-1: Cor	Table 3-1: Control/Status Register (CSR) Interface Port Descriptions (Continued)						
Port	Direction	Width	Description				
s_axi_csr_wdata	Input	32	Write Data: This data will be written to the address specified by s_axi_csr_awaddr when s_axi_csr_wvalid and s_axi_csr_wready are both asserted. The value must be valid when s_axi_csr_wvalid is asserted and held until s_axi_csr_wready is also asserted.				
s_axi_csr_wstrb	Input	4	Write Strobes: This signal, when asserted, indicates the number of bytes of valid data on the s_axi_csr_wdata signal. Each of these bits, when asserted, indicate that the corresponding byte of s_axi_csr_wdata contains valid data. Bit 0 corresponds to the least significant byte, and bit 3 to the most significant.				
s_axi_csr_wvalid	Input	1	Write Valid: This signal must be asserted to indicate that the write data is valid for a write operation. The value on s_axi_csr_wdata is written into the register at address s_axi_csr_awaddr when s_axi_csr_wready and s_axi_csr_wvalid are high on the same cycle.				
s_axi_csr_wready	Output	1	Write Ready: This signal is asserted by the ADC Core when it is ready to accept data. The value on <code>s_axi_csr_wdata</code> is written into the register at address <code>s_axi_csr_awaddr</code> when <code>s_axi_csr_wready</code> and <code>s_axi_csr_wvalid</code> are high on the same cycle, assuming that the address has already or simultaneously been submitted.				
s_axi_csr_bresp	Output	2	Write Response: The core indicates success or failure of a write transaction through this signal, which is valid when s_axi_csr_bvalid is asserted; 00 = Success of normal access 01 = Success of exclusive access 10 = Slave Error 11 = Decode Error Note: For more details about this signal refer to the AMBA AXI Specification.				
s_axi_csr_bready	Input	1	Write Response Ready: This signal must be asserted by the user logic when it is ready to accept the Write Response.				
s_axi_csr_bvalid	Output	1	Write Response Valid: This signal is asserted by the ADC Core when the write operation is complete and the Write Response is valid. It is held until s_axi_csr_bready is asserted by the user logic.				
s_axi_csr_araddr	Input	7	Read Address: Address used for read operations. It must be valid when s_axi_csr_arvalid is asserted and must be held until s_axi_csr_arready is asserted by the ADC core.				
s_axi_csr_arprot	Input	3	Protection: These bits are ignored by the ADC core.				

Table 3-1: Cor	Table 3-1: Control/Status Register (CSR) Interface Port Descriptions (Continued)					
Port	Direction	Width	Description			
s_axi_csr_arvalid	Input	1	Read Address Valid: This input must be asserted to indicate that a valid read address is available on s_axi_csr_araddr. The ADC core asserts s_axi_csr_arready when it ready to accept the Read Address. This input must remain asserted until the rising clock edge after the assertion of s_axi_csr_arready.			
s_axi_csr_arready	Output	1	Read Address Ready: This output is asserted by the ADC core when it is ready to accept the read address. The address is latched when s_axi_csr_arvalid and s_axi_csr_arready are high on the same cycle.			
s_axi_csr_rdata	Output	32	Read Data: This value is the data read from the address specified by the s_axi_csr_araddr when s_axi_csr_arvalid and s_axi_csr_arready are high on the same cycle.			
s_axi_csr_rresp	Output	2	Read Response: The ADC core indicates success or failure of a read transaction through this signal, which is valid when s_axi_csr_rvalid is asserted; 00 = Success of normal access 01 = Success of exclusive access 10 = Slave Error 11 = Decode Error Note: For more details about this signal refer to the AMBA AXI Specification.			
s_axi_csr_rvalid	Output	1	Read Data Valid: This signal is asserted by the ADC core when the read is complete and the read data is available on s_axi_csr_rdata. It is held until s_axi_csr_rready is asserted by the user logic.			
s_axi_csr_rready	Input	1	Read Data Ready: This signal is asserted by the user logic when it is ready to accept the Read Data.			
irq	Output	1	Interrupt: This is an active, High, edge-type interrupt request output.			

3.2 I/O Signals

The I/O port/signal descriptions of the top-level module of the Clock Frequency Counter Core are described in Table 3–2.

Table 3-2: I/O Signals							
Port/Signal Name Type Direct		Direction	Description				
	Clock Signals						
clk_in	std_logic	Input	Input Clock: This is the clock that will be measured for frequency count.				
ref_clk	std_logic	Input	Reference Clock: This clock is used to generate a one second window to measure clk_in. This parameter specifies what the frequency of the ref_clk is in Hz. It can be set to values between 100000000 and 250000000.				
	Other Control Signals						
reset_n	std_logic	Input	Reset: Hardware reset signal				

Chapter 4: Register Space

This chapter provides the memory map and register descriptions for the register space of the Clock Frequency Counter Core. The memory map is provided in Table 4–1.

Table 4–1: Register Space Memory Map							
Register Name	Address (Base Address + 0x0000)	Access	Description				
Control Register	0x00	R/W	Control register				
Frequency Counter Read Back Register	0x04	RO	Returns the frequency of the input clock in Hertz.				

4.1 Control Register

This register is used to control the core. The Control Register is illustrated in Figure 4–1 and described in Table 4–2.

Figure 4-1: Control Register

.

	Table 4–2: Control Register (Base Address + 0x00)						
Bits Field Name Default Value Type Description		Description					
31:1	Reserved	N/A	N/A	Reserved			
0	soft_reset	0	R/W	Soft Reset: This is toggled to reset the frequency counter. This is only required once.			

4.2 Frequency Counter Read Back Register

This register returns the frequency count. The frequency count read back is updated once per second. It is necessary to wait one second for the value to be available after a reset. This register is illustrated in Figure 4-2 and described in Table 4-3.

Figure 4–2: Frequency Counter Read Back Register

.

Table 4–3: Frequency Counter Read Back Register (Base Address + 0x04)				
Bits	Field Name	Default Value	Access Type	Description
31:0	frequency _count	0	R/W	Frequency Count: This provides read back of the frequency count. The frequency count is latched once per second. Upon reset, software must wait a minimum of one second before reading. The value is in Hertz.

Page 16

This page is intentionally blank

Chapter 5: Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the Clock Frequency Counter Core.

5.1 General Design Guidelines

The Clock Frequency Counter Pentek IP Core uses a 250 MHz clock to generate a one second window used to clock the number of clock edges of the input clock. This provides a frequency count accessible by a software register.

5.2 Clocking

AXI4-Lite Clock: **s_axi_csr_aclk**.

The **s_axi_csr_aclk** is used to clock the AXI4–Lite Control/Status Register (**s_axi_csr**) interface of the core.

Reference Clock: ref_clk

This clock is used to generate a one second window to calculate the frequency count of **Clk_in.**

Input Clock: Clk_in

This is the clock of interest. In this clock, the frequency is being counted.

5.3 Resets

Main Reset: s axi csr aresetn

This is an active low synchronous reset associated with the **s_axi_csr_aclk**. When asserted, all state machines in the core are reset, all FIFOs are flushed, and all the control registers are cleared back to their initial default states.

5.4 Interrupts

This section is not applicable for this IP core.

5.5 Interface Operation

Control/Status Register Interface: This is the Control/Status Register Interface. It is associated with the **s_axi_csr_aclk**. It is a standard AXI4–Lite type interface. See Chapter 4 for the control register memory map and more details on the registers that can be accessed through this interface.

5.6 Programming Sequence

This section briefly describes the programming sequence for the Clock Frequency Counter Core.

- 1) Reset the frequency counter by toggling bit–0 at offset register 0x00.
- 2) The frequency count can be read back as often as possible after a minimum of one second after reset at offset register 0x04.

5.7 Timing Diagrams

This test bench requires a lengthy simulation, thus timing diagrams are not provided. Test bench is provided and can be launched from the IP Core Vivado VSim project.

Chapter 6: Design Flow Steps

6.1 **Pentek IP Catalog**

px_dec8fir_48_v1_0

px_dma_ddr2pcie_v1_1

px_dma_pcie2ddr_v1_1

1.0 (Rev. 8)

Production Included

Pentek, Inc.

AXI4 Description: Clock Frequency Counter

Change Log: View Change Log

px_clock_frq_cntr_v1_0

pentek.com:px_ip:px_clock_frq_cntr:1.0

c:/Pentek/IP/2017.2/pentek

This chapter describes customization and generation of the Pentek Clock Frequency Counter Core. It also includes synthesis and implementation steps that are specific to this IP core. This core can be generated from the Vivado IP Catalog when the Pentek IP Repository has been installed. It will appear in the IP Catalog list as px_clock_frq_cntr_v1_0 as shown in Figure 6–1.

Project Summary × IP Catalog Cores | Interfaces Name AXI4 Status License VLNV px_axis_traffic_meter_v1_0 AXI4, AXI4-Stream Production Included pentek.com:px_ip:px_axis_traffic_meter:1.0 px_axispdti_gatesub_v1_0 AXI4, AXI4-Stream Production Included pentek.com:px_ip:px_axispdti_gatesub:1.0 px_axisrq2ddrctlr_v1_0 AXI4, AXI4-Stream Production Included pentek.com:px_ip:px_axisrq2ddrctlr:1.0 px_brd_info_regs_v1_0 AXI4 Production Included pentek.com:px_ip:px_brd_info_regs:1.0 px_cdc_clk_div2_intrfc_v1_1 AXI4 Production Included pentek.com:px_ip:px_cdc_clk_div2_intrfc:1.1 px cdc clk intrfc v1 0 AXI4 Production Included pentek.com:px_ip:px_cdc_clk_intrfc:1.0 px_clock_frq_cntr_v1_0 AXI4 Production Included pentek.com:px_ip:px_clock_frq_cntr:1.0 px_consthex32_v1_0 Production Included pentek.com:px_ip:px_consthex32:1.0 px_dac5688_intrfc_v1_1 AXI4, AXI4-Stream Production Included pentek.com:px_ip:px_dac5688_intrfc:1.1

Production

Production

Production

Included

Included

Included

pentek.com:px_ip:px_dec8fir_48:1.0

pentek.com:px_ip:px_dma_ddr2pcie:1.1

pentek.com:px_ip:px_dma_pcie2ddr:1.1

AXI4, AXI4-Stream

AXI4, AXI4-Stream

AXI4, AXI4-Stream

Figure 6–1: Clock Frequency Counter Core in Pentek IP Catalog

Details

Name:

Version:

Status:

License:

Vendor:

VLNV:

Repository:

Interfaces:

6.1 Pentek IP Catalog (continued)

When you select the **px_clock_frq_cntrc_v1_0** core, a screen appears that shows the core's symbol and the core's parameters (see Figure 6–2). The core's symbol is the box on the left side.

Figure 6–2: Clock Frequency Counter Core IP Symbol

6.2 User Parameters

This section is not applicable for this IP core.

6.3 Generating Output

For more details about generating and using IP in the Vivado Design Suite, refer to the *Vivado Design Suite User Guide – Designing with IP*.

6.4 Constraining the Core

This section contains information about constraining the core in Vivado Design Suite environment.

Required Constraints

The XDC constraints are not provided with this core. The necessary constraints can be applied in the top level module of the user design.

Device, Package, and Speed Grade Selections

This IP works for the Kintex Ultrascale FPGAs.

Clock Frequencies

The maximum clock frequency for this IP core is determined by the clock constraint of **Clk_In**. The AXI4–Lite interface clock (**s_axi_csr_aclk**) frequency is 250 MHz. **ref_clk** should be constrained to its frequency value and should be less than or equal to 250 Mhz.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking and Placement

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

6.5 Simulation

This test bench requires a lengthy simulation, thus timing diagrams are not provided. Test bench is provided and can be launched from the IP Core Vivado VSim project.

6.6 Synthesis and Implementation

For details about synthesis and implementation see the *Vivado Design Suite User Guide – Designing with IP.*