Brick

Asynchronous Payment Channels

Zeta Avarikioti

L. Kokoris-Kogias, R. Wattenhofer, D. Zindros

Funding transaction

Inactive Counter Party

Watchtowers

Watchtowers

Attack the Liveness of the Blockchain

Time = CryptoMoney!

Time = CryptoMoney!

Be proactive, not reactive

Be proactive, not reactive

Watchtower Committee

ORSignatures of 2f+1 WTs & (Alice or Bob)

Signatures of Alice & Bob

Challenges

- 1) Consensus is costly
- 2) Privacy is important
- 3) Incentives are critical

Consistent Broadcast

- O(n) communication complexity for state updates
- Verification of consensus between Alice & Bob
- No guarantees, if Alice & Bob both misbehave

Privacy

- Privacy preserving
- Alice/Bob cannot publish a previous transaction

Brick Architecture

(3) Execute

Close: max state of 2f+1 submitted states.

Brick Security Analysis

Safety

A channel will only close in the freshest committed state

Brick Security Analysis

Liveness

Any valid operation (close, update) will eventually be committed

Not committed = Invalid operation (failed verification)

Challenges

Why be a Watchtower?

Per-update fees

Repeated game lifts the fair-exchange impossibility

Per-update fees

Watchtower paid while channel is alive! Incentives to close?

Why assist to close honestly?

Collateral

Why assist to close honestly?

Collateral

Fraud proofs two signed conflicting states

Party claims the collateral

Fraud proofs two signed conflicting states

Party claims the collateral

channel value v

claimed collateral v/f * (f+1)

Where do we close? when >f fraud proofs are submitted

all channel value→ counterparty

Where do we close? when ≤f fraud proofs are submitted

run close again without the malicious → max state of 2f+1

Profit =

channel balance (c) + fraud proofs (v/f) - bribes (v/f + ε)

v = channel value

f = Byzantine watchtowers

y = bribed watchtowers

Profit = channel balance (c) + fraud proofs (v/f) - bribes (v/f + ε)

1. 0 FPs: profit = $c \le v$

v = channel valuef = Byzantine watchtowersy = bribed watchtowers

Profit = channel balance (c) + fraud proofs (v/f) - bribes (v/f + ε)

- 1. 0 FPs: profit = $c \le v$
- 2. > f FPs: profit $\leq v + y^*v/f y^*(v/f-\varepsilon) = v \varepsilon$

v = channel valuef = Byzantine watchtowersy = bribed watchtowers

Profit = channel balance (c) + fraud proofs (v/f) - bribes (v/f + ε)

- 1. 0 FPs: profit = $c \le v$
- 2. > f FPs: profit $\leq v + y^*v/f y^*(v/f-\varepsilon) = v \varepsilon$
- 3. f FPs and "correct" close: profit = c + v

v = channel valuef = Byzantine watchtowersy = bribed watchtowers

Collateral

Will a party close in a "incorrect" state?

_	Action	Proof-of-fraud	Close	Total	
-	Byzantine	m	$\int -m$	f	
	Bribed	y		y+m+1	_
	(rational)		= m + 1		
_	Total	m+y	$\int f + 1$	-	
_				-	

profit =
$$v + (m+y)*v/f - (y+m+1)*(v/f+\epsilon) \le v - v/f - \epsilon < c + v$$

channel fraud bribes
value proofs

Collateral

Profit = channel balance (c) + fraud proofs (v/f) - bribes (v/f + ε)

- 1. 0 FPs: profit = $c \le v$
- 2. > f FPs: profit $\leq v + y^*v/f y^*(v/f-\varepsilon) = v \varepsilon$
- 3. f FPs and "correct" close: profit = c + v
 - 4. f FPs and "incorrect" close: profit = $v v/f \epsilon$

v = channel valuef = Byzantine watchtowersy = bribed watchtowers

Why assist to close?

WTs collude → **Hostage situations**

Closing fees prisoner's dilemma

Why request close?

Parties collude → **Hostage situations**

Committee size > 7 richest party loses more

Committee size

The more (WTs) the merrier!

↑ robustness
↓ collateral per WT
≃ cost for parties

Brick Cost

Brick Advantages

- Privacy
- Incentive-compatible
- Good performance
- Asynchronous
 - censorship
 - congestion
 - liveness attacks

Limitations, Extensions & Future Work

- Minimum collateral
- Update fees via one-way channel

Limitations, Extensions & Future Work

- Minimum collateral
- Update fees via one-way channel
- Watchtower replacement
- Consensus → fork resilient
- Auditability

Brick+

(1) On-chain Audit Request

Limitations, Extensions & Future Work

- Minimum collateral
- Update fees via one-way channel
- Watchtower replacement
- Consensus → fork resilient
- Auditability
- Multiple parties

Z. Avarikioti, E. Kokoris-Kogias, R. Wattenhofer, D. Zindros. *Brick: Asynchronous State Channels.* arXiv:1905.11360