Lecture # 8: Homog. Egns with Complex Roots Pate: mon 3/4/19

Recall a 2nd order linear homog. egn w/cst coeffs has form

With Characteristic egn. $ar^2 + br + c = 0$

Complex roots of the Char. egn will have the form $\lambda \pm i \, \mu$, λ , $\mu \in \mathbb{R}$

The Fundamental set of solns where $\Gamma_1 = \lambda + i \cdot \mu$, $\Gamma_2 = \lambda - i \cdot \mu$

15 { e (x+in) t , e (x-in) t }

So soln of ODE can be expressed as $y(t) = D_1 e^{(\lambda+iu)t} + D_2 e^{(\lambda-iu)t}$ $= D_1 e^{\lambda t} \cdot e^{i\lambda t} + D_2 e^{\lambda t} e^{-iut}$

Recall Euler's formula $e^{iA} = \cos(A) + i \sin(A)$

 $= -5in(\mu t)$

blc sind is

Lecture # 8: Homog. Egns with Complex Roots Pate: mon 3/4/19

using this in y(t):

y(t) = ext [D,eint + Dze-int]

= C03(ut)

blc coso is

an even for an odd for $= e^{\lambda t} [(D_1 + D_2) Cos(ut) + (iD_1 - iD_2) sin(ut)]$

Keep in mind that D, & Dz are constants

 $D_1 + D_2 = C_1$ is just another constant and

 $iD_1 - iD_2 = C_2$ is another constant

So gen. Soln when we have complex Roots $y(t) = e^{\lambda t} \left[(\cos(ut) + \cos(ut) \right]$

Conclusion: a fund. Set of solns is not unique

For one case:

 $\{e^{(\lambda+iu)t}, e^{(\lambda-iu)t}\} \Rightarrow \{e^{\lambda t} coslut\}, e^{\lambda t} sin(ut)\}$

Lecture #8: Homog. Egns with Complex Roots Pate: Mon 3/4/19

$$Ex.1$$
 Solve $y'' + y' + 9.25y = 0$, $y(0) = 2$, $y'(0) = 8$

Char. eqn:
$$r^2 + r + 9.25 = 0$$

Apply I.C.S

W/ complex roots, use quadratic formula
$$\Gamma_1 = -\frac{1}{a} + 3i$$
 $\Longrightarrow \Gamma = -\frac{1}{a} \pm 3i$
$$\Gamma_2 = -\frac{1}{a} - 3i$$

Here
$$\lambda = -\frac{1}{2}$$
, $\mu = 3$

So general soln is
$$y(t) = C_1 e^{-\frac{t}{2}} \cos(3t) + C_2 e^{-\frac{t}{2}} \sin(3t)$$

$$\lambda = y(0) = C_1 Cos(0) + C_2 sin(0) \implies C_1 = \lambda$$

$$\Rightarrow y(t) = e^{-\frac{t}{2}} [a Cos(3t) + C_2 sin(3t)]$$

$$y'(t) = -\frac{1}{2}e^{-\frac{t}{2}}[2\cos(3t) + c_z\sin(3t)]$$

 $+e^{-\frac{t}{2}}[-6\sin(3t) + c_z\cos(3t)]$

@
$$y'(0) = 8$$

 $8 = y'(0) = -\frac{1}{2}[2+0] + [0+3c_2] \implies c_2 = 3$

50 particular soln is
$$y(t) = e^{-\frac{t}{2}} [a \cos(3t) + 3\sin(3t)]$$