מבוא לטופולוגיה – סיכום

2025 במאי 5

תוכן העניינים

תוכן העניינים

3	24.3.2025 - 1	שיעוו	1
3	מבוא	1.1	
6	$25.3.2025 - 2^{-3}$	שיעור	2
6		2.1	
8	31.3.2025 - 3	שיעור	3
8	סגירות	3.1	
9	השלמות לרציפות	3.2	
11	7.4.2025 - 4	שיעור	4
11	אקסיומות ההפרדה	4.1	
14	8.4.2025 - 5	שיעוו	5
14	אקסיומות ההפרדה — המשך	5.1	
15	21.4.2025 - 6	שיעור	6
15	אקסיומות מנייה	6.1	
16	קשירות	6.2	
18	22.5.2025 - 7	שיעור	7
18	קשירות — המשך	7.1	
19	28.4.2025 - 8	שיעור	8
19	קשירות — סגירת פינות	8.1	
19		8.2	
21	קומפקטיות במרחבים מטריים	8.3	
22	29.4.2025 - 9	שיעור	9
22	קומפקטיות — תכונות	9.1	
24	$5.5.2025 - 10^{-3}$	שיעור	10
24	הומפהטיות – משפט טיכונוף	10.1	

24.3.2025 - 1 שיעור 1

מבוא 1.1

 $f:\mathbb{R} o\mathbb{R}$ ומערים, באינפי 1 מתבוננים ב \mathbb{R} והגדרנו את מושג הגבול של סדרות, ולאחריו את המושג של פונקציה רציפה בעפר דיברנו על מרחבים מטריים, באינפי 1 המושג באינפי 3 כבר ראינו את את ווו $\lim_{n \to \infty} f(x_n) = f(x)$ מתקיים מתקיים אם ולכל $x \in \mathbb{R}$ אם לכל אם לכל הייתה ש־f תיקרא המושג הכללי והרחב יותר של רציפות במרחבים מטריים. ניזכר בהגדרה של מרחב מטרי.

המקיימת, מטריקה) הנקראת מטריקה (הנקראת מטרי(X,d) באשר א קבוצה לא ריקה (מרחב מטרי) מרחב מטרי(X,d) האשר א המקיימת,

- $x,y \in X$ לכל d(x,y) = d(y,x) .1
- $d(x,y)=0\iff x=y$ וכך $\forall x,y\in X, d(x,y)\geq 0$.2
- $\forall x,y,z\in X, d(x,y)\leq d(x,y)+d(y,z)$ אי־שוויון המשולש, .3

דוגמה 1.1 נראה דוגמות למרחבים מטריים,

- d(x,y)=|x-y| יחד עם \mathbb{R} .1 $d_2(ar{x},ar{y})=\sqrt{\sum_{i=1}^n|x_i-y_i|^2}$ המוגדרת על־ידי (\mathbb{R}^n,d_2) .2
- $d_{\infty}(\bar{x},\bar{y})=\max_{1\leq i\leq n}|x_i-y_i|$, אינסוף, ואת מטריקת $d_p(\bar{x},\bar{y})=\left(\sum_{i=1}^n|x_i-y_i|^p\right)^{rac{1}{p}}$ את מוכל עבור \mathbb{R}^n נוכל עבור 3.
- $ho(f,g) = \sup_{x \in [a,b]} |f(x) g(x)|$ קבוצת את המטריקה עבור $[a,b] o \mathbb{R}$ עבור הרציפות הפונקציות הרציפות עבור $[a,b] o \mathbb{R}$

נראה את ההגדרה הפורמלית של רציפות,

קדים $\delta>0$ קיים $\epsilon>0$ עבור אם לכל הא רציפה שיf רציפה אז נאמר שיf עבור f:X o Y עבור הגדרה 1.2 (רציפות) אז נאמר שיf עבור אבור עבור האיז עבור מטריים, אז נאמר שי $\rho(f(x'), f(x)) < \epsilon$ אז $d(x', x) < \delta$ מאם

אבל יותר קל לדבר במונחים של קבוצות פתוחות.

 $B(r,x) = B_r(x) = \{z \in X \mid d(x,z) < r\}$ הגדרה מטרי, נסמן מרחב מטרי, עבור עבור (בדור) 1.3 הגדרה 1.3

 $f^{-1}(V)=\{x\in X\mid f(x)\in T$ מתקיים ב־Y מתקיים אם לכל עביפות הגדרה לכל f:X o Y (הגדרה לרציפות) איז הגדרה 1.5 הגדרה לכל איז היקרא רציפות היקרא רציפות) X- קבוצה פתוחה ב־V

הבאים, התנאים התנאים שמתקיימים התנאים, טופולוגיה על $T \in \mathcal{P}(X)$, היא אוסף שמתקיימים התנאים התנאים הבאים, מופולוגיה על T

- $\bigcup_{\alpha\in I}U_{\alpha}\in au$ אז $\forall lpha\in I,U_{lpha}\in au$ כך שיס, I כך אינדקסים לקבוצת אינדקסים א אוז כלומר אם סגור לאיחוד, כלומר אם 2.
 - $U\cap V\in au$ מתקיים מופיים, כלומר לכל לכל טומר סופיים, סופיים מוכים סגור לחיתוכים au .3

. הגדרה אל מרחב טופולוגיה על X, יקרא א קבוצה אר קבוצה לא קבוצה לא כאשר אוגי (מרחב טופולוגי) זוג אוגרה (מרחב טופולוגי) זוג אוגרה אוגי (מרחב טופולוגי) זוג אוגרה אוגרה אוגרה לא האדרה אוגרה או

 $U\in\Omega$ לכל $f^{-1}(U)\in au$ בעשם הגדרנו כבר מתי פונקציה f:X o Y עבור מרחבים טופולוגיים (X, au), איז היא רציפה, כאשר בעצם הגדרנו לכל מ סימון 1.8 איברי au יקראו קבוצות פתוחות.

הא היא קבוצה אם A איז המשלים של A או מרחב המשלים אם A, כלומר המשלים אם האברה אם הגורה, אברה אם האברה או היא קבוצה המשלים של האחר המשלים או מרחב טופולוגי אז תת־קבוצה Aפתוחה.

דוגמה באופן טריוויאלי כנביעה ערי, כלומר נגדיר טופולוגיה אין $au=\{U\subseteq X\mid \forall x\in U\exists r>0, B(x,r)\subseteq U\}$ מרחב מטרי, נגדיר זה יידי 1.2 דוגמה 1.2 יידי מהמרחב המטרי.

תרגיל 1.1 הוכיחו כי אכן זהו מרחב טופולוגי.

. יהי X קבוצה כלשהי, אז ניתן להגדיר על X טופולוגיה $\{\emptyset,X\}$ יהי עופולוגיה טופולוגיה טופולוגיה זו נקראת טופולוגיה אז ניתן להגדיר על X

. בולה אויה נגדיר $au_1=\mathcal{P}(X)$ נגדיר עבור קבוצה au_2 עבור קבוצה au_3 עבור קבוצה אויה נגדיר בולה נגדיר עבור דומה אוי עבור קבוצה אויה אויים ביינו דיים ביינו אויים ביינו ביינו אויים ביינו אויינו אויים ביינו אויים ב

24.3.2025 - 1 שיעור 1 מבוא 1.1

f: מתי איז שהיא רציפה התשובה היא שהיא היא הוא f: מתי א היא f: ווהי א רציפה תמיד. ווהי רציפה מתיד. מתי א מתי f: ווהי חלי. ווהי רציפה מתיד. מתי א דוגמה 1.5 מתי א מתיד. רציפה, תלוי בהגדרת הפונקציה, אבל במקרה שבו היא אכן רציפה, אז היא רציפה לעומה ההיא. לעומת זאת כל $(Y, au) o (X, au_1)$ רציפה. $f:(X, au_1) o (Y, au)$

הערה לא כל טופולוגיה נובעת ממטריקה. לדוגמה הטופולוגיה הטריוויאלית על מרחב עם לפחות 2 נקודות.

הערה המטריקה שביחס לטופולוגיה שמושרית ולכן $y \notin B(x,r)
eq X$ ולכן אז ו $r = rac{1}{2}d(x,y)$ אז נבחר נניח $x,y \in X$ אז נבחר . הקבוצה פתוחה קבוצה B(x,r) הקבוצה פתוחה.

 $\mathcal{F}=\{A\subseteq\mathbb{C}^n\mid\exists\{f_i\}_{i\in I}\subseteq\mathbb{C}[x_1,\ldots,x_n],A=\{(p_1,\ldots,p_n)\mid\forall i\in\mathbb{N}$ עבור איזשהו $X=\mathbb{C}^n$ נגדיר 1.6 נגדיר 1.6 נגדיר $I, f_i(p_1, \ldots, p_n) = 0\}$

, בסיס לטופולוגיה של X של תתי־קבוצות של בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס בסיס לטופולוגיה בסיס לטופולוג

 $x \in B$ כך ש־ $B \in \mathcal{B}$ יש $x \in X$.1

 $x \in C \subseteq A \cap B$ יש כך כך שי $x \in A \cap B$ ולכל $A, B \in \mathcal{B}$.2

טענה 1.11 עבור בסיס \mathcal{B} היא טופולוגיה, $au_{\mathcal{B}} = \{U \subseteq X \mid U \text{ is a union of elements of } \mathcal{B}\}$ היא טופולוגיה,

$$\forall \alpha \in I, B_{\alpha} \in \mathcal{B}, U = \bigcup_{\alpha \in I} B_{\alpha}$$

, אז מתקיים, אז איז סופי, אז אם ער אז או ער אז אוכחה. וכן וכן $U=\bigcup_{lpha\in I}B_lpha\in\mathcal{B}$ אז אז אז אם סופי, אז אם סגורה לחיתוך אז אז ער אז אז אז ער אז אז מתקיים, אונים, אוני

$$U \cap V = (\bigcup_{\alpha \in I} B_{\alpha}) \cap (\bigcup_{\beta \in J} A_{\beta}) = \bigcup_{\alpha, \beta \in I \times J} B_{\alpha} \cap A_{\beta} = D$$

 $U\cap V=(\bigcup_{\alpha\in I}B_\alpha)\cap(\bigcup_{\beta\in J}A_\beta)=\bigcup_{\alpha,\beta\in I\times J}B_\alpha\cap A_\beta=D$ כך ש־ $C_{\alpha_0,\beta_0}\subseteq \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם אבל מהגדרת הבסיס פוימת קבוצה אבל מהגדרת הבסיס פוימת הבסיס פו . סופי. לכן הזיתות מצאנו בהתאם התאם ובהתאם $D\subseteq igcup_{(x,lpha,eta)} C_{x,lpha,eta}$ לכן לכן $B_{lpha_0}\cap A_{eta_0}$

 $\{B(x,rac{1}{n})\subseteq X\mid x\in$ אם מטרי, אז $\{B(x,r)\subseteq X\mid x\in X, r>0\}$ הוא טופולוגיה. אבל עכשיו נוכל להגדיר גם את מטרי, אז הערה . המטרי לטופולוגיה שהגדרנו למרחב הטופולוגיה לאותה לטופולוגיה לטופולוגיה לטופולוגיה לאותה לטופולוגיה לאותה לטופולוגיה לאותה לאותה לטופולוגיה לטופולוגיה לטופולוגיה לטופולוגיה לאותה לטופולוגיה לטופול

תרגיל 1.2 הוכיחו שזהו אכן בסיס עבור המרחב הטופולוגי הנתון.

 $C = \{a + d\mathbb{Z} \mid a, d \in \mathbb{Z}, d \neq 0\}$, נניח ש" $\mathbb{Z} = \mathbb{Z}$, ונגדיר את הבסיס להיות אוסף הסדרות האריתמטיות הדו־צדדיות, כלומר $X = \mathbb{Z}$ $p\in p+dq\mathbb{Z}\subseteq$ אז $p\in (a+d\mathbb{Z})\cap (b+q\mathbb{Z})$, וננים כי זהו אכן בסיס (לטופולוגיה). נתבונן בזוג קבוצות ב $a+d\mathbb{Z},b+q\mathbb{Z}$, וננים כי זהו אכן בסיס (לטופולוגיה). $. au_C$ נגדיר טופולוגיית. ($a+d\mathbb{Z}$) \cap ($b+q\mathbb{Z}$)

קבוצות סגורות הן משלימים לקבוצות פתוחות.

כל סדרה אריתמטית דו־צדדית אינסופית היא גם פתוחה וגם סגורה. בפרט חיתוך סופי של סדרות אריתמטיות הוא סגור. לכן המשלים שלו הוא פתוח. מסקנה 1.12 (משפט אוקלידס) יש אינסוף מספרים ראשוניים.

לכן את קבוצה פתוחה קבוצה לכן, את נניח בשלילה כי של ראשוניים, או עבור עבור p_1,\dots,p_k עבור עבור אישוניים, אוהי בשלילה כי שלילה כי של ראשוניים, אוהי אוהים עבור אוווים, אוהי אוהים בשלילה כי של אוווים, אוהי אוהים בשלילה כי של ראשוניים, אורה, אורה,

$$\bigcup_{i=1}^k p_i \mathbb{Z} = \mathbb{Z} \setminus \{-1, 1\}$$

ולכן נובע ש־ $\{-1,1\}$ קבוצה פתוחה וזו כמובן סתירה.

טענה 1.13 (צמצום מרחב טופולוגי) עניח ש(X, au) מרחב טופולוגי, לכל $\emptyset
eq Y \subseteq X$ מרחב טופולוגי, נניח ש(X, au) מרחב טופולוגי, לכל 1.13 (צמצום מרחב טופולוגי) מרחב טופולוגי, $. au_Y = \{W \in au \mid W \subseteq Y\}$ אז $Y \in au$ אם $Y \in au$

טענה 1.14 (טופולוגיית מכפלה) נניח ש־ (X_1, au_1) ו־ (X_2, au_2) מרחבים טופולוגיים, אז נגדיר טופולוגיית מכפלה (X_1, au_1, au_1) על־ידי

$$\tau_{1,2} = \{ U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2 \}$$

אז בסיס והטופולוגיית על־ידו נקראת על־ידו המכפלה. המכפלה דיטופולוגיית המכפלה דוא ד $au_{1,2}$ אז

דוגמה 1.8 נוכל לבנות כך מכפלה של כמות סופית או אינסופית של מכפלות טופולוגיות. עבור אוסף אינסופי (בן־מניה או לא בהכרח) אנו צריכים

24.3.2025 - 1 שיעור 1 1.1 מבוא

אז נגדיר אז גר
ה $\alpha \in I$ עבור (X_{α}, au_{α}) של נגדיר להיזהר, נניח

$$au_b=\{\prod_{lpha\in I}U_lpha\mid oralllpha\in I, U_lpha\in au_lpha\}$$
 אם בסיס לטופולוגיה שנקרא טופולוגיית הקופסה. לעומת זאת נוכל להגדיר גם את

$$\tau_p = \{ \prod_{\alpha \in I} U_\alpha \mid U_\alpha = X_\alpha \text{ for almost all } \alpha \in I \}$$

$$.\prod_{\alpha\in I}=\{f:I\to\bigcup_{\alpha\in I}X_\alpha\mid \forall \alpha\in I, f(x)\in X_\alpha\}$$
 כלומר

25.3.2025 - 2 שיעור 2

טופולוגיה – המשך 2.1

Z=בשיעור הקודם דיברנו על מכפלה של טופולוגי, אז נתבונן שאם I קבוצת אינדקסים ולכל $lpha\in I$ גם מרחב טופולוגי, אז נתבונן ביI בשיעור הקודם דיברנו על מכפלה של טופולוגיה על I.

הערה מגדירים.

$$\prod_{\alpha \in I} X_{\alpha} = \{ f : I \to \bigcup_{\alpha \in I} X_{\alpha}, \forall \alpha \in I, f(\alpha) \in X_{\alpha} \}$$

לאחר מכן נוכל להגדיר טופולוגיית מכפלה,

,הבסים, נגדיר את הבסים (טופולוגיית מכפלה) 2.1 הגדרה

$$\mathcal{B}_{\text{box}} = \{ \prod_{\alpha \in I} U_{\alpha} \mid \forall \alpha \in I, U_{\alpha} \subseteq X_{\alpha}, U_{\alpha} \in \tau_{\alpha} \}$$

ואת הבסיס.

$$\mathcal{B}_{\text{prod}} = \{ \prod_{\alpha \in I} V_{\alpha} \mid \forall \alpha \in I, V_{\alpha} \in \tau_{\alpha}, V_{\alpha} \subseteq X_{\alpha}, |\{\beta \in I \mid V_{\beta} \neq X_{\beta}\}| < \infty, V_{\alpha} = X_{\alpha} \text{ for almost every } \alpha \}$$

אלו הן מכפלות של טופולוגיות המהוות טופולוגיה.

$$\pi_lpha(f)=f(lpha)$$
 אז שנן הטלהו ל $lpha\in I,\pi_lpha:Z o X_lpha$ הטלות שנן אז ל $Z=\prod_{lpha\in I}X_lpha$ אז הגדרה (העתקות הטלה) אז הגדרה

 $\pi_{lpha}^{-1}(U_{lpha})\in au$ יתקיים תהינה ב־ X_{lpha} יתקיים שכל ההטלות עריך שלכל הרוצים אכן יקיימו אכן יקיימו עריים אכן יקיימו הביס, ערכל ההטלות הביס, אנו רוצים אכן יקיימו אכן יקיימו אכן יקיימו אכן יקיימו אכן יתקיים ב־ X_{lpha} אבל זהו לא בסיס, אבל זהו לא בסיס, אבל נבחין כי X_{lpha} אבל זהו לא בסיס,

$$C = \{ U_{\alpha} \times \prod_{\beta \neq \alpha} X_{\beta} \mid \pi_{\alpha}^{-1}(U_{\alpha}) \in \tau \}$$

.] C=Xע כך של תת־קבוצות של X תהי קבוצה X קבוצה תהי קבוצה תהיקבוצות של עד תר־קבוצות הגדרה (מת־בסיס לטופולוגיה).

נגדיר את הסופיים הסופיים של איברי אוסף להיות כלומר $\mathcal{B}_C = \{\bigcap A \mid A \subseteq C, |A| < \infty\}$ הייות של איברי מתחבסים המושרה אוסף פתוחות) פתוחות פתוחות הוא בסים.

 $au_1\subseteq au_2$ אם אם au_2 הותר חלשה יותר שר אומרים על אומרים על au_1 שם אם קבוצה au_1 אם אומרים על אומרים על אומרים אם au_1

, מרחב מושרה מתאים לכל i. נרצה להתבונן במכפלתם, ונגדיר (X_i, au_i) מרחב (X_i, au_i) לכל לכל X_i, au_i לכל לכל X_i, au_i שהגדרנו זה עתה. אז נוכל להתבונן ב־ $(\prod X_i, au_{\mathrm{prod}})$ שהגדרנו זה עתה.

 $x,y\in Z$ לכל $Z=\prod_{i\in\mathbb{N}}X_i$ עם מטריקה מצוא מטריקה מרצה מטריים מטריים מטריים מטריים בהינתן מרפלה) מרצה (מטריקה מכפלה) אז נגדיה, אז נגדיר, אז נגדיר,

$$\rho(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

ברור שפונקציה זו מוגדרת, וברור אף כי היא מקיימת את התכונה השנייה של מטריקות, אך לא ברור שהיא מקיימת את אי־שוויון המשולש, זהו תרגיל שמושאר לקורא.

. \mathcal{B}_{prod} טענה שווה ל-מכפלה שורית עם מטריקת מרובים מופולוגיים עבור (X_i, au_i) עבור עבור עבור $Z = \prod_{i=1}^\infty X_i$ שענה 2.6 מענה

 $au_
ho=\mathcal{B}_{
m prod}$ בסיס, אז נוכל להגדיר טופולוגיה (Z,
ho) מרחב מטרי, ו־ $\mathcal{B}_
ho=\{B(x,r)\mid x\in Z, r>0\}$ בסיס, אז נוכל להגדיר שטופולוגיה נקבעת ביחידות על־ידי בסיס שלה, לכן מספיק להראות שכל $B\in\mathcal{B}_{
m prod}$ שייכת ל־ $T_{
m prod}$ שייכת ל־ $T_{
m prod}$. נוסיף ונבהיר שטופולוגיה נקבעת ביחידות על־ידי בסיס שלה, לכן מספיק להראות את שקילות הבסיסים.

נתחיל בתנאי הראשון, ונקבע $U_k\in au_k$ כלשהו. מספיק להראות שקבוצה מהצורה $U_k imes\prod_{i\neq k}X_i$ פתוחה בי0 עבור $U_k\in \mathbb{N}$ בית עבור בונסם ביל להרחיב הוכחה זו באופן סיסטמתי להיות על כל קבוצה סופית של קבוצות פתוחות. יהי 1 1 על להרחיב הוכחה זו באופן סיסטמתי להיות על כל קבוצה סופית של קבוצות פתוחות. יהי 1 ועישנו 1 על מרחב זה 1 שישנו 1 על מרחב זה 1 על מרחב 1 שישנו 1 על מרחב ביע מוחה בי1 בין מוחה ביע מוחה

25.3.2025 - 2 שיעור 2 25.3.2025 טופולוגיה – המשך

קיים $Z=\prod_{i\in\mathbb{N}}X_i$ ב־ $\frac{s}{2^k}$ סביב $\frac{s}{2^k}$ את הכדור ברדיוס או לכן נבחן את המפלה כולו. איז א ומתקיים ברחב מרחב ומתקיים את התנאי לבסיס. נניח ש" $y=(y_i)_{i\in\mathbb{N}}\in B_{\frac{s}{2^k}}(x)$ אז המטרה שלנו היא להראות שהכדור שעתה בחרנו מקיים את התנאי לבסיס. נניח ש"כולו היא להראות שהכדור שעתה בחרנו מקיים את התנאי לבסיס.

$$\frac{s}{2^k} > \rho(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)} \ge \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

$$\Rightarrow s > \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

$$\Rightarrow \rho_k(x_k, y_k) < r$$

$$\Rightarrow y_k \in B_r(x_k) \subseteq U_k$$

, נעבור לתנאי השני, נתבונן בכדור הפתוח סביב Z סביב, $B_r(x)$, $x\in Z$ כאשור השני, נתבונן בכדור הפתוח מוגדר להיות,

$$B_r(x) = \left\{ y \in Z \mid \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)} < r \right\}$$

, על־ידי, המוגדרת על־ידי, כלומר הזנב של את טור הזנב לומר נחסום את כלומר כלומר המוגדרת אר המוגדרת על־ידי, כלומר ב $V\subseteq Z$ ההי כל על כלומר כלומר כלומר הזנב את כלומר כלומר כלומר ביש המוגדרת על־ידי, כלומר כלומר כלומר ביש המוגדרת על־ידי, כלומר ביש המוגדרת ביש המוגדרת על־ידי, כלומר ביש המוגדרת ביש ביש המוגדרת

$$V = \left\{ (y_1,\ldots,y_M) \in \prod_{i=1}^M \mid \sum_{i=1}^M rac{1}{2^i} rac{
ho_i(x_i,y_i)}{1+
ho_i(x_i,y_i)} < rac{r}{2}
ight\}$$
ואנו טוענים כי $V imes \prod_{i=M+1}^\infty X_i \subseteq B_r(x)$ ואנו טוענים כי

П

31.3.2025 - 3 שיעור 3

3.1 סגירות

בדיוק כמו במרחבים מטריים, גם במרחב טופולוגי נרצה לדון במניפולציות על קבוצות במרחב, נתחיל בהגדרת הקונספט של סגור של קבוצה במרחב מופולוגי

A של הסגור את הסגור. נגדיר על קבוצה $A\subseteq X$ הגדרה ותהי קבוצה מרחב טופולוגי) היי היי (סגור של קבוצה כשלהי. הסגור של $A\subseteq X$ מרחב טופולוגי) מרחב טופולוגיA את את הסגור המכילה את A, כלומר,

$$\overline{A} = \bigcap_{X \setminus F \in \tau} F$$

בהתאם נקבל מספר תכונות ראשוניות ודומות לתכונות שראינו בעבר,

למה 3.2 התכונות הבאות מתקיימות,

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
 .1

. כאשר במקרה זה אין בהכרח שוויון. $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. 2

, אז מתקיים, אז מתקיים, $A=\mathbb{Q}, B=\mathbb{R}\setminus\mathbb{Q}$ וכן $X=\mathbb{R}$ שוויון, נגדיר שוויון, מתקיים, אז מתקיים, אז מתקיים,

$$\emptyset = \overline{\emptyset} = \overline{A \cap B} \subsetneq \overline{A} \cap \overline{B} = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$$

טענה 3.3 אם (X, au) מרחב טופולוגי ו- $A\subseteq X$, אז,

$$x \in \overline{A} \iff \forall U \in \tau, x \in U \to U \cap A \neq \emptyset$$

Aאם ורק אם כל קבוצה פתוחה ביב הנקודה לא Aאם ורק אם כל קבוצה פתוחה סביב הנקודה לא A

 $x
otin \overline{A}\iff \exists U\in au, x\in U\land U\cap A=\emptyset$ הטענה, כלומר שלילת את נראה הוכחה. נראה הוכחה

A- אבל \overline{A} פתוחה וזרה מהגדרתה $X\setminus \overline{A}$ אבל $x\in X\setminus \overline{A}$ ולכן ולכן $x\notin \overline{A}$

 $x
otin \overline{A}$ בכיוון השני אם יש $X
otin \overline{A}\subseteq F$ פתוחה כך ש־ $X
otin U\cap A=\emptyset$ אז ע $X
otin \overline{A}\subseteq F$ סגורה ומכילה את $X
otin \overline{A}\subseteq F$ ובהכרח

 $A^\circ = igcup_{U \in au, U \subset A} U$, הגדרה את הפנים את נגדיר את נגדיר ושפה) אנדרה 3.4 הגדרה

כלומר הפנים הוא איחוד כל הקבוצות הפנימיות הפתוחות של A, ובשל הסגירות של הטופולוגיה לאיחוד, נקבל כך את הקבוצה הפתוחה הגדולה ביותר שחלקית ל- $A = \overline{A} \setminus A^\circ$ היותר $A = \overline{A} \setminus A^\circ$

נבחין בהגדרה של סביבה ונשתמש בהגדרה זו כדי להגדיר מונח חדש.

 $.x \in U \subseteq L$ יש כך ער פרימת קבוצה פתוחה $t \in U \subseteq L$ יש כל באמר של באמר איז מביבה של נקודה) נאמר של $t \in L$

אם אם הצטברות של היא נקודת הצטברות $x\in A$ ו תת־קבוצה כלשהי, והי $x\in A$ ו נקודת הצטברות של חדוב טופולוגי, תהי $x\in A$ ו תת־קבוצה כלשהי, ו־ $x\in A$ ו נקודה מ־x שונה מ־x, כלומר,

$$\forall U \in \tau, x \in U \implies \exists y \in (U \setminus \{x\}) \cap A$$

A את קבוצת נקודות ההצטברות של A'

נרצה להסתכל על נקודות הצטברות כנקודות שלא משנה כמה קרוב אנחנו מסתכלים אליהן, עדיין נוכל למצוא בסביבתן נקודות נוספות. במובן הזה ברור שהן נמצאות בקרבת נקודות בפנים, אך עלולות להיות גם נקודות לא פנימיות שמקיימות טענה כזו.

 $\overline{A}=A\cup A'$ מענה 3.7 מתקיים

היא אוסף כל \overline{A} היא אוסף הטענה ש־ \overline{A} או או \overline{A} או אז או \overline{A} או אוסף היא אוסף מביבה של x יש נקודה מ \overline{A} שונה מ־ \overline{A} אז או אוסף היא אוסף מביבה של \overline{A} או אוסף לאר היק נובע ש־ \overline{A} או אוסף כל סביבה שלהן המכילה את \overline{A} בחיתוך לא ריק נובע ש־ \overline{A} אל נובע ש־ \overline{A} לכן נובע ש־ \overline{A} אונה מבילה אומר המכילה את מבילה אומר מביבה שלהן המכילה את מבילה אומר מביבה שלהן המכילה אומר מביבה שלה מביבה שלהן המכילה אומר מביבה שלה מביבה שלהן המכילה אומר מביבה שלה מביבה שלה מביבה שלה מביבה שלחור מביבה שלה מביבה שלה מביבה שלחים המביבה שלחים המ

בכיוון השני נניח ש". $x\in A$ אז לכל $x\notin A$ כך ש". $x\in A$ מתקיים $x\in A$ אם אם $x\in A$ אם אז לכל $x\in A$ אז לכל $x\in A$ אז לכל $x\in A\cup A'$ מתקיים $x\in A\cup A'$ מרכי משני $x\in A\cup A'$ מרכי משני מש". $\overline{A}=A\cup A'$

31.3.2025 - 3 שיעור 3 שיעור 3

3.2 השלמות לרציפות

f:X o Y ופונקפט של רציפות ופונקציה איז מרחב טופולוגי ויX קבוצה כלשהי, ופונקציה איז בחול בחליני ויזכר בהגדרה לדון בקונספט של רציפות באופן רחב יותר. בהינתן להגדיר טופולוגיה על X כך שיf רציפה.

X איא מהבסיס משרית מושרית עליו ולהגדיר לבסיס ולהרחיבה הרחיבה היא תת־בסיס, היא הת־בסיס, ואפשר הרחיבה לבסיס ולהגדיר עליו $\{f^{-1}(U) \mid U \in au_Y\}$

. ביותר על X עבורה f רציפה עבור טופולוגיה או, וזו הטופולוגיה וו על דעותר או f סענה f סענה f סענה f

 $\{U\subseteq Y\mid f^{-1}(U)\in au_X\}$ את נוכל להגדיר f:X o Y נוכל עם פונקציה עם יחד עם וקבוצה לשהי ווו ויוו הטופולוגיה וווו הטופולוגיה ביותר על עם ביותר על עם עם עם ועם ועם לבנות בסיס וטופולוגיה על f באופן דומה ביותר על עם ביותר ע

טענה 3.9 (שקילות לרציפות) יהיו מרחבים טופולוגיים (X, au_X), ותהי אז התנאים הבאים שקולים, יהיו מרחבים טופולוגיים (שקילות לרציפות)

- 1.2 רציפה לפי f .1
- X^{-1} סגורה $f^{-1}(F)$, $F\subseteq Y$ סגורה ב-2. .2 הגדרה זו עוזרת לנו לדון בקבוצות סגורות במקום פתוחות
- Xבסיס לטופולוגיה של Y אז לכל $B\in\mathcal{B}$ מתקיים ש $f^{-1}(B)$ פתוחה ב- B מתקיים של לנו לדון בכיסים ובכך לפשט את העבודה עם טופולוגיות הגדרה זו מאפשרת לנו לדון בבסיסים ובכך לפשט את העבודה עם טופולוגיות
- x של סביבה $f^{-1}(W)$ מתקיים שf(x) של $W\subseteq Y$ סביבה של $x\in X$ לכל .4
- רציפה. $f\mid_{U_{\alpha}}:U_{\alpha}\to Y$ מתקיים $\alpha\in\Omega$ מתקיים γ , ער γ , ער γ , ער אומר γ , כלומר אווער γ , ער אומר אווער γ , ער אומר אווער γ , ער אווער אווער פון אינים כיסוי פתוח אווער פון אינים אווער אייער אווער אווער אווער אווער אווער אווער אווער אווער
 - . רציפה. $f\mid_{F_i}:F_i\to Y$ הכל כיסוי סגור עבור $f\mid_{F_i}:F_i\to Y$ עבור עבור עבור עבור עבור עבור $X=\bigcup_{i=1}^n F_i$ רציפה.
 - $f(\overline{A}) \subseteq \overline{f(A)}$ מתקיים $A \subseteq X$ לכל.

. תוחות שירות על קבוצות הרציפות של משלימים הגדרה שירות מהגדרה שירות פתוחות. בובע ישירות מהגדרה של משלימים והגדרת לבוצות פתוחות. בובע ישירות מהגדרה של מהגדרה של משלימים בובע ישירות מהגדרה של מהגדרה של מהגדרה של המהגדרה של המהגדרה

- היא איחוד השני כל קבוצה הטענה. לכיוון השני כך להראות היא קבוצה פתוחה, ונוכל כך להראות את נכונות הטענה. לכיוון השני כל קבוצה היא איחוד $f^{-1}(\bigcup U_{\alpha}) = \bigcup f^{-1}(U_{\alpha})$, של קבוצות מהבסיס, U_{α} , ור
- $x\in f^{-1}(U)\subseteq$ ש־ט פתוחה, לכן נובע ש־ט $f(x)\in U\subseteq W$ אז קיימת אז קיימת של $f(x)\in W\subseteq Y$ וכן $f(x)\in W\subseteq Y$ אז פתוחה. $f^{-1}(U)$ כאשר כאשר באטר פתוחה.
- היא $f^{-1}(U)$ הנחה אז צריך להראות שר $f^{-1}(U)$ פתוחה. תהי תהי $f^{-1}(U)$ אם צריך להראות שר $f^{-1}(U)$ פתוחה אז צריך להראות אז צריך להראות פתוחה, ונסיק שר $f^{-1}(U)=\bigcup_{x\in f^{-1}(U)}V_x$ פתוחה, ונסיק שר $f^{-1}(U)=\bigcup_{x\in f^{-1}(U)}V_x$ פתוחה, ונסיק שר
 - . נוכל לבחור כיסוי טריוויאלי. נוכל לבחור נוכל כיסוי נוכל וויאלי. ביסוי נוכל לבחור נוכל לבחור נוכל לבחור נוכל לבחור כיסוי טריוויאלי.
- - . נבחר את לכיסוי סגור של עצמה. $1 \Longrightarrow 6$
- עששינו בימה למהלך ההוכחה רציפה. כעת ההוכחה לההלך שעשינו $f\mid_{F_i}: F_i \to Y$, ונניח גם שלכל של כיסוי סגור סופי אל כיסוי סגור כיסוי סגור אפיון רציפות בעזרת $f\mid_{F_i}: F_i \to Y$, אבל כעת אפיון רציפות בעזרת $f\mid_{F_i}: F_i \to Y$, ואיחוד סופי על סגורות הוא סגור.
- $f(x) \notin \overline{f(A)}$ שילה שי $f(\overline{A}) \in \overline{f(A)}$, נניח בשלילה שי $f(\overline{A}) \in \overline{f(A)}$, יהי $f(\overline{A}) \in \overline{f(A)}$, יהי $f(\overline{A}) \in \overline{f(A)}$, נניח בשלילה שי $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב־ $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ וקיבלנו $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ וקיבלנו
 - סגורה, אז, $F \subseteq Y$ מגורה, אז. $7 \implies 2$

$$f(\overline{f^{-1}(F)}) \overset{\text{finith}}{\subseteq} \subseteq \overline{F} \overset{\text{finith}}{=} F \ \Longrightarrow \ \overline{f^{-1}(F)} \subseteq f^{-1}(F)$$

31.3.2025 - 3 שיעור 3 שיעור 3

, לכן, $f^{-1}(F)\subseteq\overline{f^{-1}(F)}$ מהגדרת סגור נוכל להסיק ש

$$\overline{f^{-1}(F)} = f^{-1}(F)$$

Xבפרט $f^{-1}(F)$ סגורה ב-

נבחן תכונה מעניינת שלא תשרת אותנו רבות, אך כן מעלה שאלות,

I=[0,1] עבור f:I imes X o X הציבה עופציה שי ש (Contractible) אם ש־ עבור עבור אמר מרחב טופולוגי, נאמר ש־ X כוויץ אם יש פונקציה רציפה איז יהי איז מרחב טופולוגי, נאמר איז X כך ש־ X בעבור X הגדרה עבור X בין יהיימת נקודה איז עבור X בין עבור X בין עבור X בין עבור עבור X בין עבור X בי

 $x\mapsto x_1$ כסמן גם $f_t:X\mapsto X$ כאשר הפונקציה הקבועה וכן נקבל $f_t:X\mapsto X$ כאשר כאשר בסמן גם

f(t,x)=(1-t)x נגדיר על־ידי המוגדרת f:I imes I o I ואת את מה 3.2 נגדיר 3.2 נגדיר

. נגדיר $\mathbb R$ כוויצה בדיוק באותו על־ידי $f:I imes\mathbb R$ נגדיר אופן. נגדיר על־ידי $f:I imes\mathbb R$ ונקבל שגם $X=\mathbb R$

תרגיל S^1 כוויץ. הראו מרגיל 3.1

נחזור לדבר על פונקציות רציפות.

f(x)(i)=xכך לכל $f:(\mathbb{R}, au_\mathbb{R}) o(\mathbb{R}^\mathbb{N}, au)$ לכל לכל 3.2 נתבונן בי

הקופסה. עופולוגיית אי לא רציפה הופלוגיית המכפלה, טופולוגיית הקופסה כאשר לא רציפה הראו ש־ לא רציפה כהעתקה כאשר לא רציפה הראו ש

פתרון בתבונן ב T_n בעופולוגיית הקופסה היא לא קבוצה פתוחה, אך עד הקופסה היא לא פתרון פתרון אדן אדי קבוצה פתוחה, אך T_n בעופר פתוחה, אך בעופר היא לא רציפה. רציפה, לכן בטופולוגיית הקופסה היא לא רציפה.

לעומת זאת בטופולוגיית המכפלה היא אכן רציפה.

רציפה ערכית די־חד ערכית $f:X\to Y$ היא העתקה איז מופולוגיים שני מרחבים בין שני מרחבים הומיאומורפיזם (הומיאומורפיזם הומיאומורפיזם בין שני מרחבים טופולוגיים אונים היא. $f:X\to Y$ היא היא.

אנו נרצה להסתכל על הומיאומורפיזם כאיזומורפיזם של מרחבים טופולוגיים.

$$f'(x) = \frac{e^x(e^x + 1) - e^x e^x}{(e^x + 1)^2} = \frac{e^x}{(e^x + 1)^2} > 0$$

. ולכן האי גם על, ואכן המרחבים הומיאומורפים. $f(x) \xrightarrow{x \to -\infty} 0, f(x) \xrightarrow{x \to \infty} 1$ ולכן המרחבים הומיאומורפים.

 $z\mapsto rac{z-i}{z+i}$ על־ידי $\psi:\eta o D$ נגדיר גם $D=\{z\in\mathbb{C}\mid |z|<1\}$ ואת ואת $\eta=\{z=x+iy\in\mathbb{C}\mid x,y\in\mathbb{R},y>0\}$ נגדיר את נגדיר את הוכחה כי זהו אכן הומיאומורפיזם מושארת לקורא.

נבחין כי הדוגמה האחרונה אינה אלא העתקת מביוס, העתקה קונפורמית ואנליטית.

. המרחבים בין שני המרחבים כי אין אונים כי אין טוענים אונים אנו אונים א

נבחן אבל חד־חד ערכית $[0,2\pi) o S^1$ השני השני השני ערכית, לא הד־חד ערכית לדוגמה, לדוגמה, לדוגמה, לדוגמה לא הד־חד לדוגמה, לוועל, אבל לדוגמה, ליינות הפונקציה לדוגמה, ליינות החדים לא הדיחד ערכית ועל, אבל החדים לדוגמה, לדוג

נניח שיש העתקה חד־חד ערכית אך מן הצד מיJיהוציא מיJנקודה יחידה, אז נקבל איחוד זר של שתי קבוצות זרות, אך מן הצד השני הוצאת נקודה יחידה מהמעגל משאיר אותו כקבוצה קשירה. ההוכחה המלאה אומנם סבוכה יותר, אך הצבענו פה על הבדל מהותי בין שני המרחבים.

. הראו כי \mathbb{R}^2 לא הומיאומורפים תרגיל 3.3 הראו כי

?האם גם \mathbb{R}^2 ו- \mathbb{R}^3 הומיאומורפים

 $f(U)\subseteq Y$ מתקיים (סגורה) פתוחה לכל אם לכל (סגורה) העתקה תיקרא העתקה f:X o Y העתקה העתקה פתוחה (סגורה) ב-3.12 העתקה פתוחה (סגורה) ב-Y

. המוגדרת ולא סגורה היא רציפה, היא היא $f(x)=x^2$ ידי על-ידי המוגדרת המוגדר העיפה, זוגמה היא דוגמה ל $f:\mathbb{R}\to\mathbb{R}$

. האבל אבל אבר רציף, הוא הוא $x\mapsto x$ ידי על־ידי המוגדר ($0,1)\hookrightarrow\mathbb{R}$ השיכון השיכון אבל דוגמה 3.7 המוגדר אבל

. ביפה. אך אך אד סגורה, סגורה היא טריוויאלית טריוויאלית המוגדרת $\{a,b\} o \{a,b\}$

 \Box

7.4.2025 - 4 שיעור 4

אקסיומות ההפרדה 4.1

מטרתנו היא לאפיין את הקונספט של הפרדה, כלומר מתי אנו יכולים לחסום חלקים שונים במרחב הטופולוגי בקבוצות פתוחות. במקרים המטריים אף ראינו בעבר כמה הפרד היא מועילה, היא פתח לדיון נרחב.

הגדרה אם להפרדה אם x,y ניתנים להפרדה אם קיימות קבוצות שה $x,y\in X$. נאמר ש $x,y\in X$ ניתנים להפרדה אם קיימות קבוצות פתוחות הגדרה $x,y\in X$ כך שהקבוצות האלה זרות, וכן $x,y\in X$

עבור $x \in U, A \subseteq V$ אם להפרדה ניתנים והאיבר שהקבוצה נאמר נאמר $x \in X, A \subseteq X$ עבור

. וזרות. $A\subseteq U, B\subseteq V$ ביתנות להפרדה ניתנות $A\cap B=\emptyset$ כך ש־ $A, B\subseteq X$ לבסוף נאמר ש

עתה משהגדרנו את הקונספט הכללי של הפרדה, נגדיר באופן בהיר ועקבי סוגים שונים של "רמת" ההפרדה שמרחב טופולוגי מקיים.

האקסיומות את עבור $i\in\{0,1,2,3,4\}$ עבור עבור את מקיים את מקיים את יקרא מרחב איקרא יקרא מרחב מופולוגי א יקרא מרחב את יקרא מרחב את יקרא מרחב א יקרא יקרא מרחב וופולוגי א יקרא מרחב את המוגדרות להלן.

- אחרת אך את הנקודות אחת שמכילה פתוחה פתוחה קבוצה $x,y\in X$ לכל , T_0
- השנייה את הנקודה המכילה את המכילה את המכילה את אחת הנקודות את אחת המכילה את קיימת פתוחה את אחת אחת אחת אחת אחת $x,y\in X$ קיימת פתוחה אם אד על את הראשונה. כלומר אם אז קיימת $tx\neq y$ אז קיימת אחת לא את הראשונה.
- - ניתנות להפרדה x, אונם X בותנות להפרדה x, אונם X בותנות להפרדה x, אונם X ביתנות להפרדה המרחב הוא T_3
 - ניתנות להפרדה $A,B\subseteq X$ אם המרחב אם שכל זוג תלי, כלומר כלומר ניתנות להפרדה אם T_1 אם המרחב הוא T_4

נעבור למספר טענות הנוגעות לסוגי ההפרדה השונים.

סענה $\{x\}\subseteq X$ סענה אם ורק אם לתקיים אם מתקיים אם T_1

U=u בקבל שגם $x\notin U_y$ כך ש $U_y\subseteq X$ פתוחה קבוצה פתוחה עלכל $X\ni y\neq x$ אז לכל $X\in X$ אז לכל האכרות נקבע נקודה $U^C=\{x\}$ היא קבוצה פתוחה. לכן סגורה. אבל מההגדרה שסיפקנו ל-U נקבל ש $U^C=\{x\}$ היא קבוצה פתוחה. לכן סגורה.

טענה 4.4 אם מרחב מטרי הוא T_n אז הוא גם $T_1 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0$ מענה 4.4 אז הוא גם T_n אז הוא גם T_n אז הוא גם ווענה 4.4 אקסיומות ההפרדה) מענה T_n אז הוא גם ווענה T_n אז הוא גם ווענה א

בעוד שלא נוכיח טענה זו, נבהיר כי היא נובעת ישירות מהגדרת ההפרדה. נבחין כי המספור הוא עתה לא ארעי כפי שאולי היינו שוגים לחשוב, אלא האקסיומות מסודרות לפי "כוחן" בהפרדת דברים במרחב. נמשיך ונראה טענה שתיצוק משמעות למרחבים נורמליים.

V סענה $A\subseteq U$ קיימת למרחב פתוחה A וורק אם לכל קבוצה סגורה A וורק אם לכל קבוצה פתוחה אם פתוחה $A\subseteq U$ מענה $A\subseteq U$ מענה לכל קבוצה פתוחה $A\subseteq V\subseteq \overline{V}\subseteq U$

כלומר לכל קבוצה סגורה וקבוצה פתוחה שמכילה אותה, יש קבוצה פתוחה ביניהן כך שגם הסגור שלה ביניהן.

הוחות, ולכן יש קבוצות פתוחות בקבוצה פתוחה. $A,X\setminus U$ סגורות ש־A קבוצה פתוחות קבוצות פתוחות בכיוון הראשון נניח ש־A נורמלי וכן ש־A קבוצה סגורה המוכלת בקבוצה פתוחות בכיוון הראשון נניח שA בובע ש־A בער ש"A בער ש־A בער ש-A בער ש־A בער ש"A בע

, כך שמתקיים, פתוחה על קיימת קבוצה פתוחה על אז קיימת קבוצה על גויח השני, נניח ש $A,B\subseteq X\setminus B$ בכיוון זרות ולכן אז קבוצות סגורות סגורות ולכן אז קיימת פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז היים, אז קיימת קבוצה פתוחה אז היים, אז קיימת קבוצה פתוחה אז היים, אז קיימת קבוצה פתוחה אז היים, אז היים, אז קיימת קבוצה פתוחה אז היים, או היים

$$A \subset V \subset \overline{V} \subset X \setminus B$$

 $V\cap (X\setminus \overline{V})=\emptyset$ ונובע גם ונובע $B\subseteq X\setminus \overline{V}$ ולכן

טענה 4.6 (תX imes X) שקול למרחב האוסדורף, X imes X מרחב האוסדורף, כלומר מרחב X imes X מענה פולוגיית המכפלה.

7.4.2025-4 שיעור 4 שיעור 4

, כי, נבחין כי, $U_{x,y}\cap V_{x,y})\cap \Delta_X=\emptyset$ מרחב האוסדות, כלומר $y\in V_{x,y}$ וי $x\in U_{x,y}$ שי x
eq y לכל לכל מרחב האוסדורף. לכל מרחב האוסדורף.

$$X \times X \setminus \Delta_X = \bigcup_{x \neq y} (U_{x,y} \times V_{x,y})$$

ובטופולוגיית המכפלה זוהי קבוצה פתוחה.

בכיוון השני נניח ש־ $(x,y)\in (X\times X)\setminus \Delta_X$ או א x
eq y פתוחה, אם $X\times X\setminus \Delta_X$ או הגדרת טופולוגיית בכיוון השני נניח ש־ $(x,y)\in U\times V\subseteq X^2\setminus \Delta_X$ ואף ש־ $(x,y)\in U\times V\subseteq X^2\setminus \Delta_X$ פתוחות כך ש־ $(x,y)\in U\times V\subseteq X^2\setminus \Delta_X$

 T_i טענה Y_i או גם אז גם אז גם Y_i הוא מרחב אז גם א גם א גם אוא אכור Y_i אקסיומות הפרדה בתתי־מרחב אז גם אוא מרחב ווא מרחב Y_i

. T_3 בעבור הטענה נובעת ישירות מהגדרת אקסיומות ההפרדה עבור הטענה נובעת ישירות הטענה וובעת אקסיומות ההפרדה וובעת ישירות מהגדרת אקסיומות החובעת ישירות מהגדרת אקסיומות אקסיומות וובעת ישירות הטענה וובעת ישירות מהגדרת אקסיומות החובעת ישירות הטענה וובעת ישירות המענה עבור החובעת ישירות המענה עבור החובעת ישירות החובעת החובעת החובעת החובעת ישירות החובעת הח

הוא דוגמות רבות נוכל למצוא אדוגמות למרחבים של Counter examples in Topology $.T_4$ הוא ספר שבו נוכל למצוא דוגמות למרחבים למרחבים כאלה.

X אוז גם $X \times Y$ אז גם $i \in \{1,2,3\}$ טענה X אם מרחבים מכפלה) אם או מרחבי מכפלה אז גם X אוז גם אז איז גם אוז מרחבים מענה און מענה און מרחבים מכפלה

, הקבוצה, את נוכל להגדיר אז או נוכל $(x,y)\in X imes Y$ אם אם עבור את הקבוצה.

$$(X \times (Y \setminus \{y\})) \cup ((X \setminus \{x\}) \times Y)$$

זוהי קבוצה סגורה מהגדרת טופולוגיית המכפלה.

. רגולרי $X \times Y$ יש שלינו להראות ועלינו ורגולריים אם T_1 הם X, Yיש הנניח נניח להראות עבור להוכחת אם X, Yיש הניח הטענה עבור להוכחת הטענה אינו המענה און אינו המענה אודי המענה אינו המענה אודי המענה אינו המענה אינו המענה אינו המענה אינו המענה אינו המענה אודי המענה אינו המענה אינו המענה אינו המענה אינו המענה אינו המע

 $z\in V, C\subseteq W, Z\setminus W\subseteq$ בי כך כך אורות זרות מגורות סגורה, סגורה, כב עבור נסמן בעבור להוכחת מגורה, כב עבור להוכחת מגורה, בעבור להוכחת מגורה, בעבור להוכחת מגורה, בעבור לכיוון הראשון בעבור כב עבור כב בעבור כב עבור בעבור בע

האפיון האחרון והחשוב שנראה עתה למרחבים המקיימים אקסיומות הפרדה הוא הקשר למרחבים מטריים.

 T_4 מענה (אז מטריי, אז אז מטריים) אם מטריים מטריי, אז מרחב מטרי, אז מענה 4.9 סענה

הוכחה. נניח ש $X \subseteq X$ תת־קבוצה כלשהי ו $X \in X$. נרחיב את הגדרת המטריקה להגדרת הקוטר, כלומר נאמר שמתקיים,

$$\rho(x, E) = \inf\{\rho(x, y) \mid y \in E\}$$

.3 מטענה מטענה כמסקנה כמסקנה אז p(x,E)>0 אז או $x\notin E$ מסענה מטענה ב

 $V=igcup_{b\in B}B_{
ho(b,A)}(b)$ ו בניח ש $U=igcup_{a\in A}B_{
ho(a,B)}(a)$ אז אי $a\in A,\
ho(a,B)>0, \forall b\in B,\
ho(b,A)>0$ בניח זרות. $A,B\subseteq X$ הן פתוחות וזרות.

נעיר שהכיוון ההפוך נקרא מרחב מטריזבילי, ונעסוק בנושא זה בהמשך הקורס. נעבור לדוגמות.

 T_1 אבל א T_2 אבל הוא מרחב X הוא במקרה הא X במקרה אבל א $X=\{x,y\}$ עם הטופולוגיה אבל א גדיר $X=\{x,y\}$

7.4.2025-4 שיעור 4 שיעור 4 4

במקרה הה בסיס של כל הקבוצות שמשלימן סופי, כלומר מהבסיס של המושרית מהבסיס של במקרה מהבסיס על נגדיר $X=\mathbb{N}$ נגדיר במקרה נגדיר $X=\mathbb{N}$ במקרה זה הוא מרחב במקרה לא במקרה המושרית מהבסיס של כל הקבוצות שמשלימן היא מרחב במקרה המושרית מהבסיס של כל הקבוצות מהבסיס במקרה המושרית במקרה המושרית במקרה המושרית במקרה המושרית במקרה המושרית במקרה המושרית במקרה במקרה המושרית במקרה המושרית במקרה המושרית במקרה ב

, יחד עם הבסיס, \mathbb{R} הקבוצה מעל כמרחב כמרחב הטופולוגי הבסיס, נגדיר את נגדיר במיסופולוגי $\mathbb{R}_{\frac{1}{m}}$

$$\mathcal{B} = \{(a,b) \in \mathbb{R}^2 \mid a < b\} \cup \{(a,b) \setminus \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \mid x, y \in \mathbb{R}, x < y\}$$

ההוכחה ש־ \mathcal{B} מושארת לקורא.

. נבחין אוסדורף, שגם שגם שגם להסיק לכן מרחב האוסדורף, אוסדורה האחרונה של $\mathbb{R}_{\frac{1}{n}}$ מרחב האוסדורף, לכן נוכל להסיק שגם

נראה ש־ $\mathbb{R}_{\frac{1}{n}}$ לא $\mathbb{R}_{\frac{1}{n}}$ (כי $\{\frac{1}{n}\mid n\in\mathbb{N}\}$ סגורה, ונראה כי לא ניתן להפריד בינה לבין 0. נניח ש־ $0\in U$ בחין כי $\{\frac{1}{n}\mid n\in\mathbb{N}\}$ סגורה, ונראה כי לא ניתן להפריד בינה לבין 0. נניח ש־0 כו 0 כי 0 פתוחה אז 0 מכילה איבר בסיס, לכן 0 מכילה קבוצה מהצורה 0 עבור 0 עבור 0 פתוחה אז 0 ש־0 פתוחה אז 0 מכילה איבר בסיס, לכן 0 מכילה קבוצה לבן 0 מכילה 0 בינה 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לכן 0 מכילה 0 פתוחה אז 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לכן 0 מכילה 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לכן 0 מכילה בסיס, לכן 0 מכילה איבר בסיס, לוביה בסיס, לוביה

$.T_4$ אבל אבל האהא שהוא למרחב לא דוגמה נראה נראה 4.5 נראה אבל אבל אבל אבל אבל האחוא אבל לא

 $\mathbb{R}_L imes \mathbb{R}_L$ אז T_3 בפרט גם הנוצרת על T_4 הוא מרחב \mathbb{R}_L אז הוא $L=\{[a,b)\mid a< b, a,b\in\mathbb{R}\}$ עם הבסיס עם הנוצרת על T_3 היא בהכרח מטענה שראינו קודם על מכפלות מרחבי הפרדה.

היא $A\subseteq L$ הטופולוגיה נבחין כל תת־קבוצה היא הטופולוגיה היא מרחב \mathbb{R}^2_L היא מושרית על מי \mathbb{R}^2_L היא הטופולוגיה בחין כל תת־קבוצה בחין כי הטופולוגיה המשך הסתירה ל־ T_4 :

8.4.2025 - 5 שיעור 5

אקסיומות ההפרדה — המשך 5.1

נמשיך בהוכחת הסתירה עבור הדוגמה האחרונה מהשיעור הקודם.

הוא הטופולוגיה המושרית מ־ \mathbb{R}^2_L על A היא הטופולוגיה קבוצה בנוסף הגדרנו את הקבוצה $L=\{(-x,x)\mid x\in\mathbb{R}\}\subseteq\mathbb{R}^2_L$ אוהי המושרית מ" $L=\{(-x,x)\mid x\in\mathbb{R}\}\subseteq\mathbb{R}^2_L$ על A היא הטופולוגיה המושרית על $A=L\cap C_A$ הסקנו גם שכל $A\subseteq L\cap C_A$ היא סגורה ב"L=1, כלומר לכל $A\subseteq L$ יש קבוצה $C_A\subseteq\mathbb{R}^2_L$ ולכן גם A סגורה ב"L=1, נניח ש"L=1 היא היא L=1 היא מרחב נורמלי, ולכן כל שתי קבוצות סגורות זרות ניתנות להפרדה. בפרט לכל $A\subseteq L$ היש קבוצות פתוחות זרות $A\subseteq L$ נניח ש"A=1, נכך ש"A=1, בפרט לכל A=1 ווג קבוע כזה (וניצור מיפוי). בפרט לכל A=1 אז גם A=1 אז גם A=1 אז גם A=1 הוכר את A=1 אז גם A=1 ולכן A=1 ולכן A=1 אז גם A=1 ולכן A=1 אז גם A=1 ולכן A=1 ולכן A=1 אז גם A=1 ולכן A=1 ולכן A=1 אז גם A=1 ולכן A=1 ולכן A=1 ולכן A=1 אז גם A=1 אז A=1 אז גם A=1 ולכן A=1 ולבות A=1 ולבות

. ערכית, ולכן הד־חד שהיא שהכיח לנו להוכיח ונותר מתירה, ולכן מקבלת ערכית, ולכן ψ

נניח ש־ $V_A\cap D\neq\emptyset$, אז $\emptyset\neq A$, אז $\emptyset\neq A$ כי $U_A\neq\emptyset$ כי $U_A\neq\emptyset$. גם $U_A\neq\emptyset$, אם שכן $U_A\neq\emptyset$, אז $U_A\neq\emptyset$ כי $U_A\neq\emptyset$ כי $U_A\neq\emptyset$ כי $U_A\neq\emptyset$ כי $U_A\neq\emptyset$ בפופה וי $U_A\neq\emptyset$ בוכע שכן $U_A\neq\emptyset$ כך ש־ $U_A\neq\emptyset$ ו־ $U_A\neq\emptyset$ ו־ $U_A\neq\emptyset$ ו־בהתאם $U_A\neq\emptyset$ ו־בהתאם $U_A\neq\emptyset$ ויו אף קבוצה פתוחה. נסיק ש־ $U_A\neq\emptyset$ ש־ $U_A\cap U_B\neq\emptyset$ אז $U_A\cap U_B\neq\emptyset$ מקיימת $U_A\neq\emptyset$ ו־ $U_A\cap U_B\neq\emptyset$ ובהתאם $U_A\neq\emptyset$ ויו אף $U_A\cap U_B\neq\emptyset$ ווו אף $U_A\cap U_A\neq\emptyset$ ווו אף $U_A\cap U_A\neq\emptyset$ ווו אף $U_A\cap U_A\neq\emptyset$ ווו אף $U_A\cap U_A\neq\emptyset$ ווו

וזה בלתי $\mathcal{P}(L)\hookrightarrow\mathcal{P}(D)\hookrightarrow L$ אז נוכל לבנות איז $|\mathbb{R}|=|L|$ אבל שיכון שיכון שיכון \mathbb{R} . יש לנו שיכון שיכון שיכון $\mathcal{P}(D)\hookrightarrow\mathbb{R}$ אפשרי.

 T_4 במרחבי במיוחד משמעותית נסיים עם למה

f:X o [0,1] אם X מרחב טופולוגי T_4 , אז לכל זוג קבוצות סגורות זרות $C,D\subseteq X$, קיימת פונקציה רציפה T_4 אז לכל זוג קבוצות סגורות T_4 אוריסון) אם T_4 מרחב טופולוגי T_4 אז לכל זוג קבוצות סגורות זרות T_4 אוריסון.

קהוח, עבור ווער C_0 כי סטורה C_0 נניח ש־ C_0 מניח ש־ C_0 נניח ש־ C_0 וכן C_0 וכן C_0 וכן C_0 סטורה אלכן פרוחה. נניח ש־ C_0 מרחב באופן רקורסיבי קבוצות מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות ווער מדי מדובר בקבוצה מדובר בקבוצה מדובר בקבוצה פתוחה. מדובר בקבוצה בקבוצה מדובר בקבוצה בקבוצה מדובר בקבוצה מדובר בקבוצה מדובר בקבוצה בקבוצה בקבוצה מדובר בקבוצה בקבוצה

$$C_0 \subseteq V_{\frac{1}{2^n}} \subseteq C_{\frac{1}{2^n}} \subseteq V_{\frac{2}{2^n}} \subseteq C_{\frac{2}{2^n}} \dots$$

ונגדיר לכל $x \in X$ את הפונקציה,

$$f(x) \begin{cases} \inf\{t \in [0,1] \mid x \in V_t\} & \exists t, x \in V_t \\ 1 & \text{else} \end{cases}$$

אנו טוענים ש־f מקיימת את האמור, כלומר f(x)=C לכל f(x)=1, וכן f(x)=f(x)=0 הציפה. נשים לב ש־f(x)=f(x)=0 אנו טוענים ש־f(x)=f(x)=0 מקיימת את האמור, כנחין גם שעבור f(x)=x נובע ש־f(x)=x לאף f(x)=x נובע ש־f(x)=x נובע ש־f(x)=x נובע ש־f(x)=x נובע ש־להראות רציפות. אנו יודעים בחיל מקור של קבוצה שכל מקור של קבוצה של f(x)=x מספיק לבדוק את הרציפות עבור תת־בסיס של הקטע, שכל מקור של קבוצה פתוחה הוא פתוח. נבחר את תת־הבסיס f(x)=x ווא לכל f(x)=x מספיק לבדוק את הרציפות עבור ב"f(x)=x מחוח. בחר את תת־הבסיס f(x)=x ווא לכל שביע מספיק לבדוק את הרציפות עבור ב"f(x)=x מספיק לבדוק את הרציפות עבור תת־הבסיס של הקטע, שכל מספיק לבדוק את הרציפות ב"f(x)=x מספיק לבדוק את הרציפות עבור תת־הבסיס של האמרקיים,

$$x \in f^{-1}([0,b))$$

 $f^{-1}([0,b))\subseteq$ אז נובע ש $f^{-1}([0,b))\subseteq$ אז לכן קיים $f^{-1}([0,b))$ מספר דיאדי (מהצורה הדרושה). לכן $f^{-1}([0,b])$ לכן קיים $f^{-1}([0,b])$ מספר דיאדי (מהצורה $f^{-1}([0,b])$ נניח שר $f^{-1}([0,b])$ אז שו מצאנו ש $f^{-1}([0,b])$ ווע שר $f^{-1}([0,b])$ אז מצאנו ש $f^{-1}([0,b])$ אז $f^{-1}([0,b])$ או $f^{-1}([0,b])$

21.4.2025 - 6 שיעור 6

6.1 אקסיומות מנייה

ראינו עד כה מספר שימושים לבסיסים של טופולוגיה, הגדרה 1.10. עתה נגדיר הגדרה משלימה לבסיס בהקשר מקומי.

בהתאם נגדיר את ההגדרה המהותית הראשונה שעוסקת במנייה.

הגדרה 6.3 (אקסיומת המנייה השנייה) נאמר שמרחב X מקיים את אקסיומת המנייה השנייה השנייה (אקסיומת המנייה באים בן־מניה ל־X

הגדרה 6.4 מרחב לינדולף) X יקרא מרחב לינדולף, אם לכל כיסוי פתוח של X יש כיסוי בן־מניה.

 $X\subseteq \bigcup_{lpha\in J}U_lpha$ בלומר אם כך כיסוי פתוח, אז פייסוי כיסוי אב כלומר אב כלומר כיסוי אז כיסוי פתוח, אז פייסוי

עתה משהגדרנו שפה לדבר בה על הקונספט של מנייה במרחבים טופולוגיים, נוכל לעבור למספר טענות.

טענה 6.6 מרחב רגולרי המקיים את אקסיומת המנייה השנייה הוא נורמלי.

 T_4 המקיים את אקסיומת המנייה השנייה ד T_3 בפרט מרחב

הוכחה. נניח ש־X רגולרי המקיים את אקסיומת המנייה השנייה. יהי \mathcal{B} בסיס בן־מניה. אנו רוצים להראות נורמליות, נניח ש־X רגולרי המקיים את אקסיומת המנייה השנייה. יהי \mathcal{B} בסיס בן־מניה. אנו רוצים להראות וואנו רוצים למצוא להן הפרדה. לכל $a\in A$ כך ש־ $a\notin B$ יש קבוצה פתוחה $a\in U_a\subseteq \overline{U}_a\subseteq X\setminus B$ כאשר $a\in U_a\subseteq A$ (כאשר $a\in A$), כאשר $a\in A$ וואכן האוסף $a\in A$ האוסף $a\in A$ האוסף $a\in A$ הווע על־ידי $a\in A$ (בחור את בן־מניה, ונוכל לכתוב אותו על־ידי $a\in A$ (באות אופן אפשר למצוא קיבלנו ש־ $a\in A$ באותו אופן $a\in A$ האוסף $a\in A$ (באומף אומף אומף בוצות פתוחות $a\in A$ כך ש־ $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ כך ש־ $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ וסדרה $a\in A$ וסדרם ש־ $a\in A$ וסדרם ווחות $a\in A$ ווחות מורב במור ווחות מורב במורב במור ווחות מורב במור ווחות מורב במורב במור ווחות מורב במורב במורב

לכל $S=\bigcup_{k\in\mathbb{N}}S_k$ נגדיר בהתאם $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{U}_{a_k}$ וכן $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ נגדיר בהתאם לכל $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ונבדיר אז $K\in\mathbb{N}$ אז החיתוך לא ריק, אז $T=\bigcup_{k\in\mathbb{N}}T_k$ אם החיתוך לא ריק, אז $T=\bigcup_{k\in\mathbb{N}}T_k$ בי אלה קבוצות פתוחות. נבחין כי $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ונבדוק ש־ $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ אם החיתוך לא ריק, אז $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ולכן נובע,

$$S_m = U_{b_k} \setminus \bigcup_{i=1}^k \overline{T}_i \supseteq T_n$$

וזו סתירה.

נרצה לדון בקשר שבין מרחבים מטריים למרחבים טופולוגיים.

הגדרה 6.7 (מרחב מטריזבילי) מרחב טופולוגיX נקרא מטריזבילי אם קיימת מטריקה על X שמשרה את הטופולוגיה.

כבר ראינו שכל מטריקה משרה טופולוגיה שמקיימת את T_4 , עתה נרצה להבין מתי בדיוק טופולוגיה אכן מושרית מאיזושהי מטריקה. T_4 תת־מרחב של מרחב מטריזבילי הוא מטריזבילי.

משפט 6.8 (משפט המטריזביליות של אורסון) אם X מרחב טופולוגי T_3 המקיים את אקסיומת המנייה השנייה, אז X מטריזבילי.

, המכפלה עם המכפלה וויע סופולוגיית עם במרחב מטרי במרחב במרחב המכפלה הוא הכללי הרעיון הכללי הוא לשכן במרחב מטרי ב

$$d(x,y) = \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{2^n}$$

 $\psi(X)$ ל־ל מ־ל העתקה ערכית ערכית לי ע $\psi:X o [0,1]^{\mathbb{N}}$ ולבנות העתקה

 $x\in V_{xy}\subseteq$ בסיס בחצות למצוא ניתן ניתן $x\in U_{xy},y\in W_{xy}$ כך כך ער ער x
eq yיש פתוחות זרות $x\neq y$ יש פתוחות לכל לכל

21.4.2025 - 6 שיעור 6 6.2 קשירות

אוריסון קיימת של אוריסון בת־מניה. הברמניה. אז $\Lambda=\{(u,u)\in\mathcal{B}^2\mid\emptyset\not\subseteq V\subseteq\overline{V}\subseteq U\}$ אוריסון באוסף כל מבונן באוסף $\overline{V}_{xy}\subseteq U_{xy}$. נגדיר (גדיר $\{g_k\mid k\in\mathbb{N}\}=\{f_{(u,v)}\mid (u,v)\in\Lambda\}$ כדרת פונקציות הקבלים סדרת רו"ט $f\mid_{\overline{V}}=0$ בר $f\mid_{X\setminus U}=1$ כך שיר האנו מקבלים סדרת פונקציות רו"ט בריע האנו מקבלים האנו ליש רציפות. רציפות איא הומיאומורפיזם. על־ידי $\psi:X o\psi(X)$ על־ידי ערכית טוענים כי ψ היא היא ענים כי ψ היא הומיאומורפיזם. על־ידי $\psi:X o[0,1]^\mathbb{N}$ בטופולוגיית המכפלה שקולה לרציפות בכל קורדינטה, לכן מרציפות g_k לכל g_k מרציפות בכל קורדינטה, לכן מרציפות שלכל g_k לכל מרציפות בכל הציפות שלכל אוניית המכפלה בכל הציפות מכך שלכל אוניית המכפלה בכל הציפות מכך שלכל אוניית במחשבים במושבים במחשבים במושבים במחשבים במושבים במחשבים במחשבים במושבים במחשבים במושבים במושב ש"ע $g_k(y)=1, g_k(x)=0$ ו־ם. אנו $g_k=f_{(v,u)}$ יש $x\in V\subseteq \overline{V}, y\in X\setminus U$ בראות הומיאומורפיזם. אנו $x\in V\subseteq V$ $W\subseteq X$ אלכל צריך להראות אלכל ביץ, כלומר באיפה כאשר איז $\psi^{-1}:E o X$ שלכל שלכל אריד להראות ערכית, וצריך להראות שלכל $k(x)\in\mathbb{N}$ יהי $x\in V\subseteq\overline{V}$ בר ש־ $V\in\mathcal{B}$ כך שימת $X\in U\subseteq W$ כך שימת $X\in U\subseteq W$ פתוחה ב־E. לכל $\int_{x\in W}g_{k(x)}^{-1}([0,1))=W$ ונובע ש־ $x\in g^{-1}([0,1))\subseteq U\subseteq W$ אז $g_{k(x)}\mid_{X\setminus U}=1$ וכן ומתקיים, $g_{k(x)}(x)=0$ וכן ש־ $g_{k(x)}=f_{(v,u)}$ אז מרש ,ולכן, $g_{k(x)}^{-1}=\psi^{-1}\circ\pi_{k(x)}^{-1}$ ולכן ולכן $g_{k(x)}=\pi_{k(x)\circ\psi}$

$$W = \bigcup_{x \in W} \psi^{-1}(\pi_{k(x)}^{-1}([0,1))) = \psi^{-1}(\bigcup_{x \in W} \pi_{k(x)}^{-1}([0,1)))$$

 $.\psi(W)=(igcup_{x\in W}\pi_{k(x)}^{-1}([0,1)))\cap E$ ונובע

6.2 קשירות

הגדרה 6.9 (קשירות) מרחב טופולוגי X יקרא קשיר אם לא ניתן להציג אותו כאיחוד של שתי קבוצות פתוחות זרות לא ריקות.

הערה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות סגורות. זאת שכם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות אורה. הערה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות סגורות. הערה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של הביעות המרחב באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של הביעות המרחב באופן שקול גם אם לא ניתן להציג את המרחב באופן של המרחב באופן שקול גם אם לא ניתן להציג את המרחב באופן של המרחב ב תו. פתוחות, U^C , V^C וכמובן $U^C \cup V^C = X$ אז $U \cap V = \emptyset$

(a,b),[a,b],(a,b],[a,b] מהן תתי־הקבוצות של \mathbb{R} התשובה היא קטעים, (a,b), מהן תתי־הקבוצות הקשירות של

היא קבועה. היא קשיר אם היסקרטית, היא הדיסקרטית, עם היא או או הדיסקרטית, היא קבועה. הערה מרחב מרחב או היא קשיר אם היא קשיר אם היא קבועה.

טענה 6.10 (תכונות של קשירות) התכונות הבאות מתקיימות,

- קשירה f(X) אם f:X o Y קשיר f:X o Y אם .1
 - קשירה אז \overline{A} קשירה אז $A\subseteq X$ השירה.
- קשירה $\bigcup_{\alpha\in I}A_{\alpha}$ אז $\alpha\in I$ כך לכל $A_{\alpha}\cap A_{\beta}\neq\emptyset$ כך ש־ $\beta\in I$ כך שירה קשירות וקיים $\{A_{\alpha}\}_{\alpha\in I}$ אז מת כוכב, אם $\{A_{\alpha}\}_{\alpha\in I}$
 - קשירה $Y=\prod_{\alpha\in I}X_{\alpha}$ אם קשירים או מרחבים טופולוגיים קבוצת אם $\{X_{\alpha}\}_{\alpha\in I}$.4

אבל $f(A)=\{0\}$ אבל הכלליות נניח ש־ \overline{A} לא קשירה, לכן נובע שיש $f:\overline{A} o \{0,1\}$ לא קבועה. בלי הגבלת מענה 2. נוכיח את טענה 2. נוכיח את טענה 2. הייסור, לכן נובע שיש . חזו סתירה ולכן $\overline{A}\subseteq f^{-1}(\{0\})$ שי סגורה ונובע אילכן חזו סתירה ולכן $A\subseteq f^{-1}(\{0\})$ סגורה ולכן וזו סתירה.

A imes B אז שירים קשירים טופולוגיים מרחבים אם A,B אם עדר. שיר להראות ונרצה ונרצה טופולוגיים מרחבים או מרחבים ל $\{X_{lpha}\}_{lpha \in I}$ מרחבים או נעבור להוכחת טענה A,B מרחבים טופולוגיים ונרצה להראות ש קשיר, כנביעה מטענה 3, שכן,

$$A \times B = (\bigcup_{a \in A} \{a\} \times B) \cup (\bigcup_{b \in B} A \times \{b\})$$

 $A\times B=(\bigcup_{a\in A}\{a\}\times B)\cup (\bigcup_{b\in B}A\times \{b\})$ נרצה למצוא תת־קבוצה של $f:I\to \bigcup X_\alpha$ כאשר קבע, $f\in Y$ נקבע, נגדיר. נגדיר אפופה של אתריקבוצה של למצוא הבחירה. נקבע $P_F = \{h \in Y \mid h(\alpha) = f(\alpha) \forall \alpha \notin F\}$ כאשר $Z = \{h \in Y \mid |\{\alpha \in I \mid h(\alpha) \neq f(\alpha)\}| < \infty\} = \bigcup_{F \subseteq I, |F| < \infty} P_F$ אנו טוענים שתי שרא שרC קשירה היא שרC קשירה היא שרC קשירה היא שרכל קשירה היא שרכל קשירה היא שרבר קשירה, השנייה היא שרבר קשירה אנו טוענים שתי טענות, הראשונה היא שלכל C. מהגדרת מופולוגיית מהגדרת מהגדרת אהכפלה. $P_F\cong\prod_{y\in F}X_y$

נבהיר שמטרתנו הייתה למצוא קבוצה צפופה על ולהשתמש בטענה על סגור על סגור על צפופה. עשינו זאת על-ידי הוכחה למקרים סופיים עם למת $Z_F=\{h\in\prod_{lpha\in I}X_lpha=Y\mid$ נגדיר גדיר הבא הכוכב. בשלב הכוכב המכפלה קשירה המכפלה קשירה המכפלה המכפלה הכוכב. בשלב הבא הכוכב המכפלה אם נגדיר , $f_F(lpha)=f(lpha)$, או $f_F:I\setminus F o igcup_{lpha\in I\setminus F}X_lpha$ עבור $Y_F imes\{f_F\}$, שווה לי עבור Z_F או $\forall eta\notin F, h(eta)=f(eta)\}$ נקונן מספיק להתבונן אפופה ולכן קבוצה שכן אפופה לכל על מתקיימים מתקיימים לכל $f \in Z_F$ אשכן שכן קבוצה קשירה, אפופה ולכן לכל ב $Z = \bigcup_{F \subseteq I, |F| < \omega} Z_F$ בבסים שהגדרנו בעזרתו את טופולוגיית מתקיים $\emptyset
eq B \in \mathcal{B}$ מתקיים שהגדרנו במיס שהגדרנו מחלכל במיס שלכל מתקיים שלכל מתקיים מחקיים שלכל מתקיים שלכל מחלכו מחלכל מחלכו מתקיים שלכל מתקיים שלכליים שלכל מתקיים של מתקיים של מתקיים של מתקיים שלכל מתקיים שלכל מתקיים שלכל מתקיים שלכל מתקיים g(eta)=f(eta)כך ש־ $g\in B$ כך לכל $\emptyset
eq U_lpha\subseteq X_lpha$ סופית ו $F\subseteq I$ סופית כאשר הוא מהצורה $G\in B$ כך ש־ $G\in B$ סופית ו $G\in B$ סופית ו $G\in B$ סופית ו

21.4.2025 - 6 שיעור 6 6.2

, אז נגדיר, או היושהי איזושהי מ־ $\emptyset
eq \emptyset$, מ־ $\emptyset : A \notin F$ לכל

$$B \ni g(\alpha) = \begin{cases} h(\alpha) & \alpha \in F \\ f(\alpha) & \alpha \notin F \end{cases}$$

 $g\in Z_F\subseteq Z$ נטען כי $g\in Z$, זאת שכן

22.5.2025 - 7 שיעור 7

7.1 קשירות – המשך

הגדרה לכל סביבה W של x של $x\in X$ אם לכל סביבה אוא קשיר מקומית הוא קשיר מקומית נאמר שהמרחב הטופולוגי הוא קשיר מקומית לכל $x\in X$ אם לכל סביבה של x של x של המקומית אם x קשיר מקומית לכל $x\in X$

x את מכילה אשר המקסימלית הקשירות הקבוצה הת-הקבוצה במרחב במרחב x במרחב במרחב רכיב קשירות) רכיב הקשירות של x

. $\bigcup_{x \in Z \subset X} Z$ את אכן קיימת אכן הטופולוגיה, לאיחוד אסגירות הסגירות בשל הסגירות אכן אורה אכן הערה

. $\{\frac{1}{3}\}$ ־ש היא התשובה התשובה ב־ \mathbb{Q} ? ב־לוגמה 7.1 מה הוא רכיב הקשירות של

lpha(a) ל־lpha(a) נאמר שזוהי מסילה ביA היא פונקציה רציפה lpha(a) כך ש־lpha(a) כך ש־lpha(a) נאמר שזוהי מסילה בין lpha(a) ל־lpha(a) הגדרה lpha(a) מסילה lpha(a) היא פונקציה רציפה lpha(a) כך ש־lpha(a) כך ש־lpha(a) נאמר שזוהי מסילה בין lpha(a) ל-lpha(a) ל-lpha(a) האמסילה lpha(a) מסילה בין lpha(a) היא פונקציה רציפה lpha(a) ל-lpha(a) כך ש־lpha(a) כך ש־lpha(a) נאמר שזוהי מסילה בין lpha(a) ל-lpha(a) ל-lp

כך $x\in U\subseteq W$ המרחה של x יש קבוצה לכל סביבה אם לכל מקומית קשיר מסילתית המרחב א קשיר מסילתית מקומית ב־x אם לכל סביבה אם לכל המרחב א קשיר מסילתית המרחב לעבוד המסילתית.

 $x \in X$ קשיר מסילתית מקומית אם x קשיר מסילתית מקומית לכל בהתאם

נתעניין להבין מה הקשר בין ארבעת מושגי הקשירות שראינו זה עתה. נתחיל בתכונה חשובה של קשירות מסילתית.

מענה 7.6 אם X קשירה מסילתית וf:X o Y רציפה אז f:X o X קשירה מסילתית.

lpha(0)=p' כך ש־ lpha:[0,1] o X מסילה עש מסילה f(p')=p, f(q')=q כך כך p', $q'\in X$ כך ש־ p, $q\in f(X)$ הוכחה. יהיו aירי מסילה המקשרת את aירי aירי מסילה היא רציפות היא רציפות היא רציפה ולכן aירי מסילה מסילה מסילה aירי aירי מסילה מסיל

עתה נראה את הקשר בין קשירות וקשירות מסילתית.

. מענה 7.7 אם X קשיר מסילתית אז X קשיר

לא קשיר $f(X)=\{0,1\}$ אבל $f(X)=\{0,1\}$ אבל דיסקרטית כך שי $f:X \to \{0,1\}$ אבל אבל אבל קשיר אז אם אם הוכחה. אם לא קשיר אז יש פונקציה רציפה לו אבל היים הטופולוגיה הדיסקרטית כך לא קשיר.

נבחין כי קשירות לא גוררת קשירות מסילתית, נראה דוגמה מתאימה.

X=0 נבחין כי \mathbb{R}^2 נבחין ארף הסגור של גרף הסגור של \mathbb{R}^2 , ונניח של \mathbb{R}^2 , ווהי תת-קבוצה של \mathbb{R}^2 , זוהי תת-קבוצה של \mathbb{R}^2 , ונניח של הסגור אל קשיר מסילתית, א קיימת מסילה אכן קשיר. מהצד השני הוא א קשיר מסילתית, א קיימת מסילה \mathbb{R}^2 , סגור של קבוצה קשירה הוא קשיר ולכן סגור זה אכן קשיר. מהצד השני הוא א קשיר מסילתית, א קיימת מסילה $\alpha(0)=(0,0), \alpha(1)=(1,\sin 1)$ כך שר $\alpha:[0,1]\to X$

28.4.2025 - 8 שיעור 8

- קשירות פינות - 8.1

דוגמה 8.1 נראה מרחב קשיר אך איננו קשיר מקומית. זהו מרחב המסרק,

$$(\{0\}\times[0,1])\cup\{[0,1]\times\{0\}\}\bigcup_{n\in\mathbb{N}}\{\frac{1}{n}\}\times[0,1]$$

מן הצד השני ראינו גם כי קשירות לא גוררת קשירות מסילתית.

,(0,1]ב בי $\frac{1}{x}$ של לגרף של \mathbb{R}^2 הצמצום אבמצום 8.2 ב־

$$Y = (\{0\} \times [0,1]) \cup \{(x, \sin\frac{1}{x}) \mid 0 < x \leq 1\}$$

מרחב זה הוא קשיר שכן הוא צמצום של מרחב קשיר והגרף רציף כתמונה של פונקציה רציפה ממרחב קשיר (קטע).

,נניח בשלילה שY קשיר מסילתית ולכן יש בפרט מסילה $\alpha:[0,1] o Y$ כך שמתקיים,

$$\alpha(0) = (0,0), \qquad \alpha(1) = (1, \sin 1)$$

נמצא . $lpha_1(t_1)=rac{1}{2}$ כך ש־ $rac{1}{2}$ ס כך $t_1<1$ ממשפט ערך הביניים קיים $lpha_1(t_1)=0$ ולכן $\delta(t)=(lpha_1(t),lpha_2(t))$ ממשפט ערך הביניים קיים $\delta(t)=(lpha_1(t),lpha_2(t))$ נמצא $lpha_1(t_1)=(lpha_1(t_1),lpha_2(t))$ נמצא $lpha_1(t_1)=(lpha_1(t_1),lpha_2(t))$ משמתקיים,

$$\alpha(t_2) = (?, -1)$$

ואכן מאפיון ענקבל שלנקודות האה נקודות ככה סדרה של לבנות ככה מדרה של נוכל לבנות אלה יש גבול ($\alpha(t_3)=(?,1)$ שלנקודות היינה לגבולות נקבל.

$$\alpha(0) = \lim_{n \to \infty} t_n = \lim_{n \to \infty} (-1)^n$$

אבל גבול זה לא קיים.

מענה 8.1 אם X קשיר מסילתית מקומית אז X קשיר מסילתית.

, הותוה, אנו יודעים גם אנו יודעים אנו אנו יודעים ש־ $A \neq \emptyset$ ולכן אנו יודעים ש־ $A \neq 0$ ונתבונן במחלקת הקשירות של $a \in A$ ונסמנו אנו יודעים מסילתית ולכן בפרט ישנה סביבה של $a \in A$ אנו יודעים כי $a \in A$ אנו יודעים כי $a \in A$ אנו יודעים כי $a \in A$

נטען גם כי A סגורה, הראינו שבמרחב קשיר מסילתית מקומית כל רכיב קשירות מסילתית הוא קבוצה פתוחה, אבל זה גורר שכל רכיב קשירות מסילתית האחרים. מסילתית האחרים.

A=Xונסיק ש־ $A\in\{X,\emptyset\}$ אז

8.2 קומפקטיות

. הגדרה של X יש תת־כיסוי פופי. אם לכל כיסוי פתוח של א יש תת־כיסוי סופי. מרחב טופולוגי א יקרא קומפקטי אם לכל כיסוי פתוח של א יש תת־כיסוי סופי.

 $X=igcup_{lpha\in I_0}U_lpha$ שים סופי כך אז קיים $X=igcup_{lpha\in I}U_lpha$ כך שר $\{U_lpha\}_{lpha\in I}$ כך פרוח המכיל את איז היא שלכל אוסף קומפקטית אם היא מרחב קומפקטי כתת־מרחב של X, זה נכון באופן דומה עבור כיסוי פתוח המכיל את $K\subseteq X$ תיקרא קומפקטית אם היא מרחב קומפקטי

נראה הגדרה שקולה בניסוח של קבוצות סגורות,

הסופי, את תכונת החיתוך את לכל אוסף את הרחב מופולוגי קומפקטי אם ורק אם לכל אוסף החיתוך של תתי־קבוצות סגורות ב־X 8.3 אגדרה את מכונת החיתוך את חים, או החיתוך את חים, או של הורק לכל $I_0\subseteq I$ סופית, אם F_0 סגורה לכל $I_0\subseteq I$ אז יש או שור החיתוך סגורה לכל $I_0\subseteq I$ סופית, אם החיתוך מגורה לכל מורה לכל

$$\bigcap_{\alpha \in I_0} F_\alpha = \emptyset$$

. הטומה אם ורק אם ורק אם קומפקטית היא היא $A\subseteq\mathbb{R}^n$ הערה שתת-קבוצה הערה האינו בקורסים היא הערה היא הערה היא הערה וחסומה.

עבור המקרה של $A \subseteq \mathbb{R}$ עבור המקרה של

$$A\subseteq\bigcup_{n\in\mathbb{N}}(-n,n)=\mathbb{R}$$

28.4.2025 - 8 שיעור 8

$$V \cap (\bigcup_{i=1}^{N} U_{a_n}) = \emptyset$$

. בהמשך. יותר כללית בהמשך ולכן $V \subseteq \mathbb{R} \setminus A$ ולכן ולכן $V \subseteq \mathbb{R} \setminus A$ וכן וכן ער ש־ענה ענובע ש־ער ולכן אולכן ולכן ולכן אולכן ולכן אולכן אולכן אולכן ולכן אולכן אולכן

היא סגורה, אוסדורף האוסדורף מכרחב A הוכחנו החזקה לתת-קבוצה לתת-קבוצה הוכחנו כרגע מענה חזקה וותר, כל הת-קבוצה הוכחנו

היא $A=\{a\}$ היא הטריוויאלית, אז הטריוויאלית, קיימים מרחבים איימים קיימים האינה סגורה. לדוגמה האינה קומפקטית עם תת-קבוצה קומפקטית אינה סגורה. לדוגמה אבל לא סגורה.

טענה A אם X קומפקטית ו $A\subseteq X$ סגורה אז א קומפקטית.

$$X = (X \setminus A) \cup \bigcup_{\alpha \in I} U_{\alpha}$$

וקיבלנו כי יש למרחב תת־סיכוי סופי. כלומר יש $I_0\subseteq I$ סופית כך שמתקיים,

$$X = (X \setminus A) \cup \bigcup_{\alpha \in I_0} U_{\alpha}$$

 $A \subseteq \bigcup_{\alpha \in I_{\alpha}} U_{\alpha}$ ולכן

טענה 8.5 תמונה רציפה של מרחב קומפקטי היא קומפקטית, כלומר אם X מרחב קומפקטי וf:X o Y פונקציה רציפה מX למרחב טופולוגי f:X o Y אז אז $f(X)\subseteq Y$ אז אז f(X)

טענה 8.6 אם X מרחב האוסדורף קומפקטי אז X מרחב רגולרי.

 $.b \notin A$ ונקודה סגורה סגורה בין להפריד אפשר וגן אפשר חב ורק אם ורק אם מתקיימת רגולריות הוכחה. רגולריות אפשר אפ

 U_a,V_a עבור $a\in U_a,b\in V_a$ שיש פתוחות פובע שיש פתוחות כל $a\in A$ כך שי $a\in A$ קומפקטית, נובע שיA קומפקטית, או נובע שי $A\in U$ סגורה עבור $A\subseteq U$ סגורה עבור או נובע שיA קומפקטית, או פתוחות או וובעים כי $A\subseteq U$ וובע שיים או וובעים כי $A\subseteq U$ וובעים כי

עלינו עלינו להראות רק ש־f מקיימת ש־ f^{-1} רציפה, ונקבל שכלל התנאים להומיאומורפיזם חלים. לכל תת־קבוצה סגורה f^{-1} רציפה, ונקבל שכלל התנאים להומיאומורפיזם חלים. לכל מקיימת ש־ f^{-1} סגורה. f^{-1} סגורה עלינו להראות ש־ f^{-1} סגורה. f^{-1} סגורה להומיאומורפיזם מגורה ולכן היא קומפקטית ו־ f^{-1} סגורה. f^{-1} סגורה.

. מרחב מרחב אז א מרחב האוסדורף קומפקטי אז א מרחב נורמלי. אם אם 8.8 מענה

 $B\subseteq$ ו זרות, זרות, אז לכל $b\notin A$ מתקיים $b\notin A$ מתקיים $b\in B$ פתוחות זרות, אז לכל $A,B\in X$ קתי קבוצות סגורות וזרות, אז לכל $B\subseteq U_b$ מתקיים $A,B\in X$ קתי קבוצות הללו מפרידות הללו מפרידות הללו מפרידות הא סגורה במרחב קומפקטי ולכן $B\subseteq \bigcup_{i=1}^n V_{b_i}$ כיסוי פתוח סופי, וכן $A,B\subseteq X$ ושתי הקבוצות הללו מפרידות בין A ל $B\subseteq X$ ופתוחות.

טענה $f:X o\mathbb{R}$ רציפה, אז, רציפה, אז מרחב מופולוגי קומפקטי וX

- הסומה (וסגורה) הסומה f(X) .1
- מקסימום ומינימום f^- מקסימום 2.
- . מטריזבילי במידה f המטריקה ρ המטריזבילי מטריזבילי נניח X

הוכחה. נוכיח את הטענות,

. היא סגורה חסומה. \mathbb{R} היא קומפקטית ותת-קבוצה קומפקטית $f(X)\subseteq\mathbb{R}$ היא האינו f(X)

מקיים $x\in X$ מקיים של A ולכן כל A ולכן הוא הסופרימום של A ונניח שA ונניח שA מתקבל וסופי, נסמן גם A מתקבל וסופי, נסמן גם A מתקבל וסופי, משר A מתקבל וגם לכל A וא מרי־קבוצות סגורות A ולכל A וא מרי־קבוצות סגורות בייט אוסף שלכל A וא מרי־קבוצות המור ווא מקר בייט אוסף אומיים בייט אוסף שלכל A ווא מהור בייט אוסף שלכל A ווא מההגדרה בייט אוסף אומיים מחור בייט אוסף שלכל A ווא מההגדרה בייט אוסף מחור בייט אום

$$\bigcup_{i=1}^{n} F_{\epsilon_i} = A \cap [M - \delta, M]$$

עבור $\delta = \min\{\epsilon_1, \ldots, \epsilon_n\}$ נובע אם כך,

$$A\cap\{M\}=\bigcap_{\epsilon>0}(A\cap[M-\epsilon,M])=\bigcap_{\epsilon>0}F_\epsilon\neq\emptyset$$

 $M\in A=f(X)$ ולכן נסיק ש

3. מושאר כתרגיל, אבל רמז הוא מספר לבג לכיסוי.

8.3 קומפקטיות במרחבים מטריים

לא נגדיר אך ניזכר במספר הגדרות חשובות מעולם המרחבים המטריים, הן סדרות קושי, שלמות, חסימות לחלוטין. בהינתן שאנו מכירים את המונחים הללו, נעבור למשפט, אך לפני זה נגדיר מונח חדש שיעזור לנו בהוכחת משפט זה.

הכיסוי אם הכיסוי לבג אז (מספר לבג) אז $\lambda>0$ אז אז X>0 אז מספר לבג של הכיסוי מטרי, ויהי ויהי איז מטרי, ויהי מספר לבג של אז מספר לבג של הכיסוי אם $B_\lambda(x)\subseteq U_\alpha$ עד מספר לבג של לכל אז קיים X>0 אז קיים מספר לבג של הכיסוי אם הכיסוי אם הכיסוי אם מספר לבג של הכיסוי מספר לבג של הכיסוי אם מספר לבג של הכיסוי אם מספר לבג של הכיסוי מספר מספר לבג של הכיסוי מספר לבג ש

 $lpha\in I$ לכל $U_lpha
ot\equiv B_{rac{1}{n}}(x)$ כך שי $x\in X$ שי $n\in\mathbb{N}$ לכל לראות זאת, לכל מספר לבג. כדי לראות מספר לבג. כדי לראות מספר מסריים מטריים קומפקטיים, תמיד שמספר לבג. כדי לראות זאת, לכל מקומפקטיות סדרתית ונקבל סתירה.

הערה באופן כללי קומפקטיות לא גוררת קומפקטיות סדרתית וגם לא להיפך.

X בואה דוגמה שמצביה שקומפקטיות סדרתית לא גוררת קומפקטיות. נגדיר I=[0,1] וכן I=[0,1] עם טופולוגיית המכפלה. אוכרת דוגמה אוכרים של משפט טיכונוף שנוכיח בהמשך. נגדיר $Y=\{x=(x_i)_{i\in I}\in X\mid |\{\alpha\in I\mid x=1\}|\leq \aleph_0\}$ כתת־מרחב של עם הטופולוגיה המושרית ממנו. אנו טוענים כי Y קומפקטי סדרתית אבל לא קומפקטי.

 $(\alpha,\alpha_1,\ldots,\alpha_n\in I$ נסמן לכל מצד שני, לכל $Y\subseteq igcup_{lpha\in I}U_lpha$ וכן פתוחה, וכן $U_lpha=\{x\in X\mid x_lpha=0\}$ נסמן לכל מצד מצר לא קומפקטי, לכל ל

$$Y \not\subseteq \bigcup_{i=1}^n U_{\alpha_i}$$

 $y_n \in \left\{0,1
ight\}^J$ עבור $J = igcup_{n=1}^\infty J_n$ עבור $lpha \notin J$ לכל לכל $y_n(lpha) = 0$ בת־מניה מ־ $J_n \subseteq [0,1]$ עבור לכל עבור סדרתית, לכל מתחב מטרי, אז התנאים הבאים שקולים,

- ו. X קומפקטי
- קומפקטי סדרתית X .2
- שלם וחסום לחלוטין X .3

 $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 2 \Rightarrow 1$ הסדר בו נוכיח את המשפט היה הסדר בו נוכיח

29.4.2025 - 9 שיעור 9

9.1 קומפקטיות – תכונות

נמשיך במתן דוגמות,

דוגמה 2.1 נראה דוגמה למרחב קומפקטי סדרתית שאינו קומפקטי. נגדיר I=[0,1] וכן I=[0,1] וכן אפוניים בהמשפט טיכונוף שנוכיח בהמשפט X, $X\{0,1\}^I$ וכן I=[0,1] וכן I=[0,1] אינו קומפקטית סדרתית. לכל I=[0,1] אנו טוענים כי I=[0,1] אנו טוענים סדרתית. לכל סדרתית של סדרתית. לכל סדרתית של סדרתית של סדרתית. לכל סדרתית של סדרתית ש

$$\bigcup_{i=1}^{n} U_{\alpha_i} \subseteq \{x \in X \mid \exists 1 \le i \le n, x_{\alpha} = 0\}$$

,ובמקרה זה נבחר $Z=Z_{lpha}$ עבור,

$$Z_{\alpha} = \begin{cases} 1 & \alpha = \alpha_i, 1 \le i \le n \\ 0 & \text{else} \end{cases}$$

, לכל $y^n=(y^n_\alpha)_{\alpha\in I}$ כאשר $\{y^n\}_{n=1}^\infty\subseteq Y$ תהי סדרתית. תהי קומפקטית עתה כי עתה כי $J_n=\{\alpha\in I\mid y^n_\alpha=1\}$

ונבחין כי \aleph_0 נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$ נתבונן במרחב הטופולוגי $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם מטרי. רעינו שיש מטריקה על $\{0,1\}^I\to\{0,1\}^I\to\{0,1\}^I$ שמתאימה לטופולוגיית המכפלה. נגדיר את ההטלות $J=\bigcup_{n\in\mathbb{N}}J_n$ כאשר $J=\bigcup_{n\in\mathbb{N}}J_n$ מתכנסת. מטרי קומפקטי הוא קומפקטי סדרתית ולכן יש תת-סדרה $J=\bigcup_{n\in\mathbb{N}}J_n$ מדרם מטרי קומפקטי הוא קומפקטי סדרתית ולכן יש תת-סדרה $J=\bigcup_{n\in\mathbb{N}}J_n$ מדרם מטרי קומפקטי הוא קומפקטי סדרתית ולכן יש תת-סדרה $J=\bigcup_{n\in\mathbb{N}}J_n$

דוגמה 9.2 נראה דוגמה למרחב קומפקטי שאינו קומפקטי סדרתית.

 $f_n:[0,1] o$ לאשר $\{f_n\}_{i=1}^\infty\subseteq X$ כלומר $\{f_n\}_{i=1}^\infty\subseteq X$ מטיכונוף שוב $\{f_n\}$ קומפקטי. נגדיר סדרת איברים $\{f_n\}_{i=1}^\infty\subseteq T$ מקיימת $\{f_n\}_{i=1}^\infty$ מטיכונוף שוב $\{f_n\}_{i=1}^\infty$ קומפקטי. נגדיר סדרת איברים $\{f_n\}_{i=1}^\infty$ ניתן לכתוב כפיתוח בינארי, $\{f_n\}_{i=1}^\infty$ עבור $\{f_n\}_{i=1}^\infty$ ומתקיים, $\{f_n\}_{i=1}^\infty$ נוכל למשל לבחור את הפיתוח שמחלצות את הספרה ה־ $\{f_n\}_{i=1}^\infty$ מהמספר שהן מקבלות. נניח של $\{f_n\}_{i=1}^\infty$ יש כאשר, נגדיר עתה מתכנסת $\{f_n\}_{k=1}^\infty\subseteq \{f_n\}_{k=1}^\infty$ נגדיר עדור מתכנסת $\{f_n\}_{k=1}^\infty\subseteq \{f_n\}_{k=1}^\infty$

$$s_m = \begin{cases} 1 & m = n_{2k} \\ 0 & \text{else} \end{cases}$$

ונחשב,

$$f_{n_k}(s) = \begin{cases} 1 & k \in 2\mathbb{N} \\ 0 & k \in 2\mathbb{N} + 1 \end{cases}$$

. ולכן לא f_{n_k} ולכן

מצאנו שתי דוגמות שאכן מעידות על זה שקומפקטיות וקומפקטיות סדרתית לא גוררות אחת את השנייה במרחבים כלליים.

 $\prod_{lpha\in I} X_lpha$ אז $lpha\in I$ אז מכפלה של מרחב משפט סיכונוף) משפט חימון היא קומפקטיים היא קומפקטיים, כלומר אם מכפלה של מרחבים טופולוגיים קומפקטיים היא קומפקטיי. עם טופולוגיית המכפלה הוא קומפקטי.

נטען כי יש $A\in X_1$ כך שלא קיימת קבוצה פתוחה $A\in X_2$ כך ש־ $a\in U$ כך ש־ $a\in U$ נניח בשלילה פרוצות מ"כיסוי מוכלת באיחוד סופי של קבוצות מהכיסוי הנתון. נבחן את על־ידי קבוצות מהכיסוי הנתון. נבחן את על־ידי קבוצות מהכיסוי הנתון. נבחן את $a\in X_1$ של־ידי קבוצות מהכיסוי הנתון. נבחן את על־ידי קבוצות מהכיסוי מ"כיסוי פתוח, אבל $A=U_a$ קומפקטית ולכן קיימות $A=U_a$ כך ש־ $A=U_a$ כל על־ידי פתוח, אבל על־ידי פתוחה, אבל על־ידי פתוחה, ולכן קיימות על־ידי מ"כיסוי סופי ל־ $A=U_a$ ישר בשל ההנחה כי אין תת־כיסוי סופי.

29.4.2025 - 9 שיעור 9 9 שיעור 9

5.5.2025 - 10 שיעור 10

10.1 קומפקטיות – משפט טיכונוף

ניזכר בכמה הגדרות שמגיעות אליהו מתורת הקבוצות.

הגדרה 10.1 (קבוצה סדורה) סדר על קבוצה, או קבוצה סדורה, הוא הזוג הסדור (X,\leq) , כאשר X קבוצה ו־ (X,\leq) יחס דו־מקומי רפלקסיבי, אנטי־סימטרי וטרנזיטיבי.

הגדרה 20.2 (סדר טוב) סדר טוב הוא סדר קווי, כלומר יש יחס לפחות לאחד הכיוונים בין כל שני איברים בקבוצה, וכן שלכל תת-קבוצה של X יש מינימלי ביחס הסדר.

עיקרון הסדר הטוב מעיד שלכל קבוצה יש סדר טוב כלשהו שמוגדר עליה, והוא שקול לאקסיומת הבחירה.

בשיעור הקודם הוכחנו את משפט טיכונוף למקרה הסופי, עתה נראה את ההוכחה עבור המקרה הכללי. נבחין כי משפט טיכונוף שקול לאקסיומת הבחירה (ולעיקרון הסדר הטוב), ולכן במהלך ההוכחה נהיה מחויבים להשתמש באקסיומה.

נבנה באינדוקציה. נביה בשלילה ש־ $Y=\prod_{\alpha\in I}X_{\alpha}$ אינה קומפקטית, כלומר יש כיסוי פתוח שאין לו תת־כיסוי סופי, נסמן את הכיסוי הזה $Y=\prod_{\alpha\in I}X_{\alpha}$. נבנה באינדוקציה לכל $\gamma\in I$ איזשהו $\gamma\in X$ בסיס טופולוגי ל- γ , המכילה תת־הקבוצה,

$$\prod_{\alpha \le \gamma} \{X_{\alpha}\} \times \left(\prod_{\gamma < \alpha} X_{\alpha}\right) \tag{1}$$

או את,

$$\prod_{\alpha<\gamma}\{a_\alpha\}\times\prod_{\gamma\leq\alpha}X_\alpha \tag{2}$$
אז אינה ניתנת לכיסוי על־ידי אוסף סופי של a_α נבנה את באנדוקציה טרנספיניטית (אינדוקציה על סודרים). נביח שהגדרנו את על לכי

אז a_{α} אז a_{γ} אנה ניתנת לכיסוי על־ידי אוסף סופי של A_{γ} . נבנה את a_{γ} באינדוקציה טרנספיניטית (אינדוקציה על סודרים). נניח שהגדרנו את a_{γ} או בנה את a_{γ} אינה ניתנת לכיסוי על־ידי תת־אוסף סופי מ־ A_{γ} (ונבהיר, זו הנחת a_{γ} אינה ניתנת לכיסוי על־ידי תת־אוסף סופי מ־ A_{γ} (ונבהיר, זו הנחת a_{γ} אינה בסיס שמכילה את a_{γ} אינרים, יהיו סודרים עוקבים, אלו שמתקבלים מהוספת 1 לאיבר קיים כלשהו, ויש איברים גבוליים, עליהם נסתכל כאיברים אינסופיים, גבול בראי החיבור של איברים אחרים. כדי להתמודד עם הקושי הזה ולהשתמש באינדוקציה טרנספיניטית, מסתכלים על איברים גבוליים אלה או כאיברים מינימליים בקבוצה המתאימה להם, או כסופרימום של קבוצת האיברים הקטנים.

ענדרש. \mathcal{F} אנח סופי של \mathcal{F} ואז מצאנו אנח לכיסוי על־ידי תת־אוסף סופי של פוצת בסיס המקיימת אנח בסיס מפרימת על־ידי תת־אוסף סופי של \mathcal{F} וויש ל־ $W_{a_\gamma}=1$ וויש ל־ $W_{a_\gamma}=1$ וויש ל־ $W_{a_\gamma}=1$ על או שיש קבוצה בסיס בסיס מפרימת שלילת הטענה. בסיס בחין כי,

$$a_{\gamma} \in \pi \gamma(W_{a_{\gamma}})$$

קבוצה פתוחה, אז מתקיים,

$$X_{\gamma} = \bigcup_{\alpha_{\gamma} \in X_{\gamma}} \pi_{\gamma}(W_{a_{\gamma}})$$

אז יש תת־כיסוי סופי,

$$X_{\gamma} = \bigcup_{i=1}^{k} \pi_{\gamma}(W_{a_{\gamma}^{i}})$$

,נגדיר, יש תת־כיסוי סופי על־ידי איברי $igcup_{i=1}^k W_{a^i_\gamma}$ לכן לקבוצה

$$V_i = \left(\prod_{j=1}^k \pi_{\gamma^<}(W_{a^i_\gamma})\right) \times \pi_{\gamma}(W_{a^i_\gamma}) \times \prod_{\alpha > \gamma} X_\alpha$$

, אז, $\pi_{\gamma^<}:Y o\prod_{lpha<\gamma}X_lpha$ כאשר

$$\bigcup_{i=1}^k V_i = \left(\bigcap_{j=1}^k \pi_{\gamma^<}(W_{a_\gamma^j})\right) \times \left(\bigcup \pi_{\gamma}(W_{a_\gamma^i})\right) \times \prod_{\alpha > \gamma} X_\gamma$$

ולכן,

$$\bigcup_{i=1}^k V_i = \left(\bigcap_{j=1}^k \pi_{\gamma^{<}}(W_{a^i_\gamma})\right) \times \left(\prod_{\alpha \geq \gamma} X_\alpha\right)$$

וקיבלנו סתירה כי הנחנו שהקבוצה הזו לא ניתנת לכיסוי סופי בעזרת איברי ${\mathcal F}$, ובכל זאת מצאנו כיסוי סופי כזה.

, מתקיים, טרנספיניטית לכל $\alpha_{\gamma} \in X_{\gamma}$ מקבלים מקבליטית טרנספיניטיה לכן לכן לכן אינדוקציה טרנספיניטית ל

$$Y = \prod_{\alpha \in I} X_{\alpha} \ni f = (a_{\gamma})_{\gamma \in I}$$

מתקיים $\alpha>\gamma_0$ כך שלכל $\gamma_0\in I$ יש איבר בסיס איבר $S_lpha=X_lpha$, ולכמעט כל $W=\prod_{lpha\in I}S_lpha$ כך שלכל $f\in W\subseteq L$ סתקיים ולכן יש איבר בסיס, $S_lpha=X_lpha$ ולכן קיבלנו איבר בסיס,

$$\prod_{\alpha \le \gamma_0} \{a_\alpha\} \times \prod_{\alpha > \gamma_0} X_\alpha \subseteq L$$

וסתירה.

אנו כבר יודעים כי אנו יכולים לראות קומפקטיות גם כך שאם Z קומפקטי אז לכל L אוסף סופי של קבוצות סגורות ב־Z עם תכונת החיתוך הסופי, יש חיתוך לא טריוויאלי.

הגדרה 10.3 (תכונת החיתוך הסופי) נאמר שלאוסף L של תתי-קבוצות של קבוצה Z יש את תכונת החיתוך הסופי, אם לכל תת-קבוצה סופית של יש חיתוך לא טריוויאלי. L

יהיה נוח להסתכל על אפיון אחר,

טענה 10.4 (שקילות לקומפקטיות) מרחב טופולוגי Z הוא קומפקטי אם לכל אוסף L של תתי־קבוצות Z עם תכונת החיתוך הסופי, מתקיים D ש־D D ש-D .

נעבור למספר טענות לקראת משפט שנראה בהמשך.

טענה 10.5 אם לאוסף קבוצות $L_{eta}=\{\pi_{eta}(A)\mid A\in L\}$ יש את תכונת החיתוך הסופי, אז גם לי $L\subseteq\prod_{lpha\in I}X_{lpha}$ יש את תכונת החיתוך הסופי ביחס לי- X_{eta} .

אומנם לא נוכיח טענה זו, אבל נשים לב שהיא נובעת באופן ישיר מהאפיון הנוסף לקומפקטיות ושימוש בקבוצות הסגורות המושרות מהסגור שהגדרנו על L.

טענה 10.6 אם L אוסף תתי־קבוצות של Y המקיים את תכונת החיתוך הסופי, אז L מוכל באוסף תתי־הקבוצות של Y עם תכונת החיתוך הסופי, כך שהאוסף מקסימלי.

החורה החיתוך הסופי, זו קבוצה את תכונת המקיימות המקיימות $\Omega=\{C_{\alpha}\}$, $L\subseteq C\subseteq \mathcal{P}(Y)$ של כל תתי־הקבוצות באוסף Ω של כל המקסימלי כזה. באוסף של בורן נובע שאכן יש איבר מקסימלי כזה.

נראה טענה כללית נוספת ובעלת חשיבות.

- $\bigcap_{i=1}^n A_i \in M$ גם $A_1, \ldots, A_m \in M$ ולכל $m \in \mathbb{N}$.1
 - $B\in M$ אז $A\cap B
 eq\emptyset$ אם $A\in M$ אז $B\subseteq R$ אז $B\subseteq A$ אם .2

גם כאן, ההוכחה היא ברורה ונובעת מהמקסימליות, ומושארת כתרגיל לקורא.

נעבור להוכחה נוספת למשפט טיכונוף, תוך שימוש בטענות שראינו זה עתה.

עם אסימלי עם $L\subseteq M\subseteq \mathcal{P}(Y)$ יש הסופי. עם תכונת החיתוך עם הכל עם אכל לכל לכל לכל לכל לכל אין איז הסופי. עם עם החיתוך הסופי. איז לכל לכל לכל לכל לכל איז איז החיתוך הסופי. איז החיתוך הסופי.

 $M_{\alpha} = \{\pi_{\alpha}(A) \mid A \in M\}$ לכל α נגדיר

 $y_lpha\in igcap_{A\in M_lpha}\overline{A}$ את lpha את הכונת החיתוך הסופי. נובע ש X_lpha קומפקטי וי $A=\emptyset$. נבחר לכל את את תכונת החיתוך הסופי. נובע ש

, מקיימת $y=(y_\alpha)_{\alpha\in I}\in\prod_{\alpha\in I}X_\alpha=Y$ הנקודה כי נוכיח אנו נוכיח אנו

$$y\in\bigcap_{B\in M}\overline{B}\subseteq\bigcap_{A\in L}\overline{A}$$

שמקיימת $y\in W\subseteq Y$ מספיק להראות שכל קבוצת בסיס $y\in W$ שמקיימת על פרואות על פרואות שכל קבוצת את מספר, כלומר, כל פתוחה שמכילה את $y\in W$ שמקיימת מטענה $y\in W$ ונראה ש $y\in W$ בסיס בסיס $y\in W$ היא חיתוך של מספר סופי של קבוצות $y\in W$ באוסף עבור $y\in W$ מקסימלי ולכן אם $y\in W$ לכל עבוצה שמספיק להוכיח שכל $y\in W$ כזו כך ש $y\in W$ כי היא חיתוך של מספר סופי של $y\in W$ אד אלה ב $y\in W$ הותך כל איבר ב- $y\in W$ נובע ש $y\in W$ כי היא חיתוך של מספר סופי של $y\in W$ אך אלה ב $y\in W$ חותך כל איבר ב- $y\in W$

אז גם $y_{\beta}\in\pi_{\beta}(D)$ גם $D\in M$ נובע שלכל $A=\pi_{\beta}(D),D\in M$ וכן $y_{\beta}\in\bigcap_{A\in M_{\beta}}\overline{A}$ אז גם $y_{\beta}\in Z_{\beta}$ עבור $y_{\beta}\in Z_{\beta}$ פתוחה, ולכן $y_{\beta}\in\pi_{\beta}(D)$ גם $y_{\beta}\in Z_{\beta}$ וויתוך זה לא ריק, כפי שרצינו להראות. $y_{\beta}\in\pi_{\beta}(Z_{\beta})=y_{\beta}\cap D$ גם אז גם $y_{\beta}\in\pi_{\beta}(D)$ אז גם $y_{\beta}\in Z_{\beta}$ פרט חיתוך זה לא ריק. לכן גם $y_{\beta}\in\pi_{\beta}(D)$

הגדרות ומשפטים

הגדרות ומשפטים

3	הגדרה 1.1 (מרחב מטרי)
3	
3	\dots הגדרה 1.3 (כדור) הגדרה בידור האדרה (כדור) האדרה בידור בידור האדרה בידור בידור האדרה בידור בידור האדרה בידור בידור בידור בידור בידור האדרה בידור
3	1.4 הגדרה (קבוצה פתוחה)
3	הגדרה 1.5 (הגדרה שקולה לרציפות)
3	הגדרה 1.6 (טופולוגיה)
3	הגדרה 1.7 (מרחב טופולוגי)
3	1.9 הגדרה (קבוצה סגורה)
4	הגדרה 1.10 (בסים לטופולוגיה)
4	טענה 1.13 (צמצום מרחב טופולוגי)
4	טענה 1.14 (טופולוגיית מכפלה)
6	הגדרה 2.1 (טופולוגיית מכפלה)
6	הגדרה 2.2 (העתקות הטלה)
6	הגדרה 2.3 (תת־בסיס לטופולוגיה)
6	הגדרה 2.4 (טופולוגיה חלשה)
6	הגדרה 2.5 (מטריקת מכפלה)
8	הגדרה 3.1 (סגור של קבוצה במרחב טופולוגי)
8	הגדרה 3.4 (פנים ושפה)
8	הגדרה 3.5 (סביבה של נקודה)
8	הגדרה 3.6 (נקודת הצטברות)
9	טענה 3.9 (שקילות לרציפות)
10	הגדרה 3.10 (מרחב כוויץ)
10	הגדרה 3.11 (הומיאומורפיזם)
10	הגדרה 3.12 (העתקה פתוחה וסגורה)
11	הגדרה 4.1 (איברים ניתנים להפרדה)
11	ה אקסיומות הפרדה)
11	טענה 4.4 (גרירת אקסיומות ההפרדה)
11	טענה 4.5 (שקילות למרחב נורמלי)
11	טענה 4.6 (תנאי שקול למרחב האוסדורף)
12	טענה 4.7 (אקסיומות הפרדה בתתי־מרחבים)
12	טענה 4.8 (אקסיומות הפרדה במרחבי מכפלה)
12	טענה 4.9 (הפרדה במרחבים מטריים)
15	הגדרה 6.1 (בסים לטופולוגיה בנקודה)
15	הגדרה 6.2 (אקסיומת המנייה הראשונה)
15	הגדרה 6.3 (אקסיומת המנייה השנייה)
15	הגדרה 6.4 (מרחב לינדולף)
15	הגדרה 6.5 (מרחב ספרבילי)
15	הגדרה 6.7 (מרחב מטריזבילי)
15	משפט 6.8 (משפט המטריזביליות של אורסון)
16	ה (קשירות)
16	טענה 6.10 (תכונות של קשירות)
18	הגדרה 7.1 (קשירות מקומית)

הגדרות ומשפטים

18	זגדרה 7.2 (רכיב קשירות)
18	גדרה 7.3 (מסילה)
18	גדרה 7.4 (קשירות מסילתית)
18	גדרה 7.5 (קשירות מסילתית מקומית)
19	זגדרה 8.2 (קומפקטיות)
19	גדרה 8.3
21	גדרה 8.10 (התכנסות סדרה במרחב טופולוגי)
21	זגדרה 8.11 (מספר לבג)
21	8.12 משפט אופט פור אוייט פור אייט פור אוייט פור אייט פייט פור אייט פור אייט פור אייט פור אייט פור אייט פייט פור אייט פור אייט פור אייט פור אייט פור אייט פייט פור אייט פור אייט פור אייט פור אייט פייט פור אייט פור אייט פור אייט פור אייט פורע פור אייט פור אייט פור אייט פור אייט פור אייט פייט פור אייט פור אייט פור אייט פור אייט
22	זשפט 9.1 (משפט טיכונוף)
24	גדרה 10.1 (קבוצה סדורה)
24	10.2 (סדר טוב) אגדרה 10.2 (סדר טוב)
25	גדרה 10.3 (תכונת החיתוך הסופי)
25	זענה 10.4 (שקילות לקומפקטיות)