| Механико-математический факультет МГУ имени М.В. Лононос                                                      | сова     |
|---------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
| Конспект курса «Наглядная геометрия и топология»                                                              | <b>»</b> |
| Автор курса: профессор, д.фм.н. Ведюшкина Виктория Викто<br>Автор конспекта: Цыбулин Егор, студент 108 группы | ровна    |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |
|                                                                                                               |          |

# Содержание

| 1 | Топологические пространства |                                                 |  |  |
|---|-----------------------------|-------------------------------------------------|--|--|
|   | 1.1                         | Основные понятия                                |  |  |
|   | 1.2                         | Непрерывность                                   |  |  |
|   | 1.3                         | Способы задания топологии                       |  |  |
|   | 1.4                         | Гомеоморфизм                                    |  |  |
|   | 1.5                         | Связность                                       |  |  |
|   | 1.6                         | Линейная связность                              |  |  |
|   | 1.7                         | Компактность                                    |  |  |
|   | 1.8                         | Хаусдорфовость                                  |  |  |
|   | 1.9                         | Фактор-топология                                |  |  |
|   | Графы                       |                                                 |  |  |
|   | $2.1^{-}$                   | Комбинаторное описание графа                    |  |  |
|   | 2.2                         | Топологическое описание графа                   |  |  |
|   | 2.3                         | Теорема о вложении планарного графа в плоскость |  |  |
|   | 2.4                         | Теорема Жордана                                 |  |  |

# 1 Топологические пространства

#### 1.1 Основные понятия

**Определение.**  $Mempu\kappa a$  — это функция  $\rho(x,y)\to\mathbb{R}$ , которая обладает следующими свойствами:

- 1.  $\rho(x,y) \ge 0$ ,  $\rho(x,y) = 0 \Leftrightarrow x = y$ ;
- 2.  $\rho(x, y) = \rho(y, x)$ ;
- 3.  $\rho(x, z) + \rho(z, y) \ge \rho(x, y)$ .

**Определение.** Множество X называется метрическим пространством, если на нём задана метрика  $\rho(x,y): X \times X \to \mathbb{R}$ .

Определение.  $\varepsilon$ -окрестность точки  $x_0$  — это множество всех точек  $x \in X$  :  $\rho(x,x_0) < \varepsilon$ .

Из курса математического анализа.

**Определение.** Точка  $x \in X \subset A$  называется внутренней точкой множества X, если  $\exists B_{\varepsilon}(x) \subset X$ .

**Определение.** Множество называется открытым, если все его точки — внутренние.

**Определение.** Множество A называется закрытым, если его дополнение  $A \setminus X$  открыто.

Свойства открытых множеств:

- 1. Пустое множество и само множество X открыты;
- 2. Любые объединения открытых множеств открыты;
- 3. Конечное пересечение открытых множеств открыто.

**Определение.** Семейство  $\tau$  подмножеств некоторого множества X, удовлетворяющее условиям 1-3, называется monosovueй.

**Определение.** Пусть X — произвольное множество и  $\tau = \{U_{\alpha}\}$  — некоторое семейство подмножеств множества X. Семейство подмножеств  $\tau$  называется  $monosoue\ddot{u}$ , если оно удовлетворяет следующим условиям:

1. Пустое множество и само множество X принадлежат  $\tau$ ;

- 2. Объединение любого семейства множеств из  $\tau$  принадлежит  $\tau$ ;
- 3. Пересечение любого конечного семейства множеств из  $\tau$  также принадлежит  $\tau$ .

**Определение.** Множество X с фиксированной топологией  $\tau$  называется mono-norueckum пространством и обозначается через  $(X,\tau)$ . Элементы множества X называются movkamu. Множества из  $\tau$  называются omkpumumu в  $(X,\tau)$ .

Если X — метрическое пространство, то на нём можно задать топологию, индуцированную метрикой: множество открыто, если любая точка входит в него с некоторым  $\varepsilon$ -шаром (некоторой окрестностью).

[Дополнение вне лекций] Топология, индуцированная метрикой — это топология, в которой открытые множества определяются через  $\varepsilon$ -шары. Таким образом, топология  $\tau$  на множестве X задаётся как:

$$\tau = \{ U \subset X | \ \forall x \in U \ \exists r > 0 : B_r(x) \subset U \}$$

**Пример.** 1.  $\varnothing, X$ , других нет — тривиальная топология.

2. Семейство  $\tau$  состоит из всех подмножеств множества  $X-\partial u c \kappa p e m h a s$  mononorus.

**Определение.** Множество A топологического пространства X называется  $\mathit{зa-}$   $\mathit{мкнутым}$ , если его дополнение  $X \setminus A$  открыто.

**Определение.** Пусть X — топологическое множество,  $x_0 \in X$ . Окрестностью  $moч\kappa u \ x_0$  назовём любое открытое множество, содержащее эту точку.

**Утверждение.** Множество A топологического пространства X открыто  $\Leftrightarrow$   $\forall x_0 \in A \; \exists U_{x_0} \in \tau : x_0 \; \in U_{x_0} \subset A$ 

 $\mathcal{A}$ оказательство.  $\Longrightarrow$  Пусть A открыто,  $x_0$  — точка A, тогда  $U_{x_0}=A$ .  $\Longleftrightarrow$  Возьмём  $x\in U_x\subset A$ , где  $U_x$  открыты  $(\in\tau)$ . Рассмотрим  $\cup_{x\in A}U_x=U$ , где U открыто, т.к. все  $U_x$  открыты. При этом  $A\subset U$  и  $U\subset A\Rightarrow U=A\Rightarrow A$  открыто.

### 1.2 Непрерывность

**Определение.** Обратимся к курсу математического анализа. Пусть  $D_f$  — область определения  $f(x), x_0 \in D_f$ . Если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in B_{\delta_{\varepsilon}}(x_0) \cap D_f : |f(x) - f(x_0)| < \varepsilon,$$

то f(x) называется непрерывной в точке  $x_0$ .

$$f: X \to Y \ \forall B_{\varepsilon}(f(x_0)) \ \exists B_{\delta}(x_0): f(B_{\delta}(x_0)) \subset B_{\varepsilon}(f(x_0))$$

— в терминах окрестностей.

**Определение.** Отображение  $f: X \to Y$  топологии пространств X и Y непрерывно, если  $\forall x_0 \in X$  и для любой окрестности  $\delta$  точки  $f(x_0)$  существует окрестность точки  $x_0$  такая, что  $f(B(x_0)) \subset B_{\delta}(f(x_0))$ .

**Утверждение.** Отображение f двух топологических пространств непрерывно  $\Leftrightarrow$  прообраз любого открытого множества открыт.

Доказательство.  $\Longrightarrow f: X \to Y$ . Пусть  $A \subset Y$  открыто. Рассмотрим  $f^{-1}(A)$ . Пусть  $x_0 \in f^{-1}(A) \Rightarrow \exists U$  — открытое:  $f(U) \subset A \Rightarrow U \subset f^{-1}(A)$ .  $\Longleftrightarrow$  Пусть прообраз любого множества открыт. Пусть  $x_0 \in X \Rightarrow f(x_0) \in Y$ .

Возьмём  $V \subset Y$ , которое будет открыто.  $f(x_0) \in V \Rightarrow f^{-1}(V)$  — открытое множество и  $x_0 \in f^{-1}(V) \Rightarrow U := f^{-1}(V)$ .

### 1.3 Способы задания топологии

1. Топология на подмножестве:

Пусть X — топологическое пространство.

$$X_0 \subset X, \ U \in \tau(X) \Rightarrow \ U \cap X_0 \in \tau(X_0).$$

2.  $f: X \to Y, Y$  — топологическое пространство, f — произвольное отображение. Тогда открытые множества на X — прообразы открытых на Y, то есть:

$$\tau_X = \{ f^{-1}(U) | U \in \tau_Y \}$$

3амечание (Дополнение с лекции №2). Топология на Y порождается отображением f: множество открыто, если его прообраз открыт.

## 1.4 Гомеоморфизм

**Определение.** Топологические пространства X и Y называются *гомеоморф*ными, если между ними существует непрерывная биекция  $f: X \to Y$ , которая и называется *гомеоморфизмом*, такая, что отображение  $f^{-1}$  также непрерывно.

**Пример.** Окружность с выколотым полюсом и прямая гомеоморфны (см.рис. 1).



Рис. 1: Окружность с выколотым полюсом и прямая гомеоморфны.

#### 1.5 Связность

**Определение.** Топологическое пространство X называется  $censuremath{\textit{censure}}$  не существует двух открытых непустых непересекающихся множеств A и B таких, что  $X = A \cup B$ .

**Утверждение.** Отрезок вещественной прямой в стандартной топологии связен.

Доказательство. От противного. Пусть отрезок несвязен.  $\exists A, B \subset \mathbb{R} : [a, b] = A \cup B, \ A \cap B = \emptyset$ , где A, B — открытые множества. Пусть  $\alpha \in A$ , тогда  $[a, \alpha) \subset A$  (т.к. А открыто). Рассмотрим  $\alpha_0 = \sup \alpha : [a, \alpha) \subset A$ . Пусть  $\alpha_0 \in A$ , тогда:

- 1.  $\alpha_0 = b \Rightarrow B = \emptyset$  противоречие.
- 2.  $\alpha_0 < b \Rightarrow \alpha_0$  входит в A с окрестностью  $\Rightarrow$  существует  $(\alpha_0 \varepsilon, \alpha_0 + \varepsilon) \in A \Rightarrow \alpha_0$  не супремум противоречие.

Утверждение. Непрерывный образ связного пространства связен.

Доказательство.  $f: X \to Y$ . От противного. Пусть образ несвязен. Тогда  $Imf = A \cup B$ , где A, B — открытые и непустые множества,  $A \cap B = \emptyset$ .  $f^{-1}(A)$  открыто,  $f^{-1}(B)$  открыто. Если множества не пересекаются, то и их образы не пересекаются. Так как множества не пусты, то и их образы не пусты.  $f^{-1}(A) \cup f^{-1}(B) = X \Rightarrow X$  не связно — противоречие.

Замечание. Связность является топологическим инвариантом.

#### 1.6 Линейная связность

**Определение.** *Непрерывная кривая (параметрическая)* — непрерывное отображение ненулевого отрезка в топологическое пространство.  $\gamma:[a,b]\to X$ , где  $\gamma$  непрерывна.

$$\gamma: [0, 2\pi] \to \mathbb{R}^2$$
 
$$\begin{cases} x = \cos t, \\ y = \sin t, \\ t \in [0, 2\pi]. \end{cases}$$

**Определение.** Топологическое пространство называется *линейно связным*, если любые две его точки можно соединить кривой.

$$x, y$$
 — точки  $X$ , тогда  $\exists \gamma : [\alpha, \beta] \to X : \gamma(\alpha) = x, \gamma(\beta) = y$ 

Утверждение. Образ линейно связного пространства линейно связен.

Доказательство. Композиция непрерывных отображений непрерывна:

$$\gamma: [\alpha, \beta] \to X, \ f: X \to Y.$$

**Утверждение.** Если топологическое пространство линейно связно, то оно связно. (Наоборот, вообще говоря, неверно — как задачу можно попросить привести контрпример).

Доказательство. Пусть топологическое пространство линейно связно, но не связно. Тогда  $X = A \cup B$ . Возьмём  $x \in A, y \in B$ . Пользуемся линейной связностью:  $\gamma: [0,1] \to X, \gamma$  непрерывна,  $\gamma(0) = A, \gamma(1) = B, Im\gamma$  в X — связно.  $Im\gamma \cap A$  — открыто в топологии образа  $Im\gamma$ , индуцированного топологии на X (пользуемся топологией на подмножестве),  $Im\gamma \cap B$  — открыто в топологии образа  $Im\gamma$ , индуцированного топологии на X — получили противоречие с тем, что отрезок несвязен.

#### 1.7 Компактность

**Определение.** Топологическое пространство *компактно*, если из его любого открытого покрытия можно выбрать конечное подпокрытие.

**Утверждение.** *Непрерывный образ компакта является компактом.* 

Доказательство. Пусть  $f: X \to Y$ . Покрываем образ:  $Imf \subseteq \bigcup_{\alpha} U_{\alpha}$  — покрытие.  $X \subset \bigcup_{\alpha} f^{-1}(U_{\alpha})$  — открытое покрытие X (т.к. f непрерывно).  $X \subset \bigcup_{i=1}^n f(U_i)$  — конечное подпокрытие. Пользуемся компактностью X:  $Imf \subset \bigcup_{i=1}^n f(U_i)$ 

Замечание. Компактность является топологическим инвариантом.

**Утверждение.** Замкнутое подмножество компакта есть компакт.

Доказательство.  $M \subset X \subset Y$ , M замкнуто, X компактно, Y — топологическое пространство.  $M \subset \bigcup_{\alpha} U_{\alpha}$  открытое покрытие M.  $(Y \setminus M) \cup \bigcup_{\alpha} U_{\alpha}$  — открытое покрытие. Выберем в нём конечное подпокрытие:  $X \subset (Y \setminus M) \cup \bigcup_{i=1}^n U_i$  — конечное подпокрытие.  $M \subset \bigcup_{i=1}^n U_i$ .

#### 1.8 Хаусдорфовость

**Определение.** Топологическое пространство X называется  $xaycdop\phioвым$ , если у любых двух его различных точек существуют непересекающиеся окрестности.

 $\tau = X, \varnothing \Rightarrow X$  не хаусдорфово.

**Пемма.** Компакт в хаусдоровом пространстве является замкнутым множеством.

Доказательство.  $M \subset X$ , M — компакт.  $x_0 \in X \setminus M$ ,  $y \in M$ . Пользуемся хаусдорфовостью:  $x_0 \in U^y_{x_0}, \ y \in V_y, \ U^y_{x_0} \cap V_y = \varnothing. \bigcup_{y \in M} V_y$  — открытое покрытие всего множества M. Пользуемся компактностью: выберем конечное подпокрытие  $M \subset \bigcup_{i=1}^n v_{y_i}, \ y_i \in M$ .  $\bigcap_{i=1}^n U^{y_i}_{x_0} = U, \ x_0 \in U, \ U \cap V_{y_i} = \varnothing, \ U$  открытое  $\Rightarrow X \setminus M$  открыто.

**Утверждение.**  $f: X \to Y, f$  — непрерывная биекция, X — компакт, Y — хаусдорфово топологическое пространство  $\Longrightarrow f$  — гомеоморфизм.

Доказательство.  $f: X \to Y, X$  замкнуто,  $M \subset X, M$  замкнуто  $\Rightarrow M$  компактно  $\Rightarrow f(M) \subset Y$ , где f(M) тоже компактно (т.к. f непрерывно)  $\Rightarrow f(M)$  замкнуто в Y.

### 1.9 Фактор-топология

**Определение.** Пусть X — топологическое пространство, а  $\sim$  — отношение эквивалентности на X.  $\Phi a \kappa mop\text{-}npocmpancmeo\ X/\sim$  — это множество классов



Рис. 2: Пример нехаусдорфова пространства

эквивалентности [x] для всех  $x \in X$ . Топология на  $X/\sim$  называется  $\phi$ актор-топологией.

Множество  $U\subset X/\sim$  открыто в фактор-топологии тогда и только тогда, когда его прообраз  $f^{-1}(U)$  открыт в X, где  $f:X\to X/\sim$ .

**Пример** (нехаусдорфова пространства). Рассмотрим две числовые прямые  $\mathbb{R}_1, \mathbb{R}_2$  и отождествим все их точки, кроме одной:  $x \sim y \Leftrightarrow x = y, \ x \neq 0, x \in \mathbb{R}_1, \ y \in \mathbb{R}_2$ . Получили фактор-пространство  $\mathbb{R}_1 \sqcup \mathbb{R}_2 / \sim$ . Оно не является хаусдорфовым, так как у нулей числовых прямых нет непересекающихся окрестностей (см.рис. 2).

# 2 Графы

#### 2.1 Комбинаторное описание графа

**Определение** (Комбинаторное определение графа). V — множество вершин (конечное), E — множество рёбер, отношение инцидентности — любому ребру соответствует начало и конец, принадлежащие множеству вершин V.



Рис. 3: Примеры графов

Рассмотрим рис.3 (граф справа):

- 1. Вершина  $v_1$  инцидентна  $e_2, e_7$ ;
- 2. Ребро  $e_1$  инцидентно только  $v_7$ ;
- 3. Вершина  $v_1$  смежна только с  $v_4, v_7$ ;
- 4. Ребро  $e_2$  смежно только с  $e_1, e_3, e_6, e_7$ ;
- 5. Имеется ровно 3 петли:  $e_1, e_3, e_4$ ;
- 6. Кратными являются петли  $e_1, e_3$  и рёбра  $e_8, e_9$  (кратность равна двум);
- 7. Граф справа не простой, граф слева простой.

**Определение.** Два графа называются *изоморфными*, если существует биекция между их множествами вершин и рёбер, уважающая отношение инцидентности.

 $v_1, v_2 \in V_1, \ e_1 \in E_1, \ f(v_1), f(v_2) \in V_2$  если вершины  $v_1$  и  $v_2$  были соединены ребром  $e_1$ , то их образы  $f(v_1)$  и  $f(v_2)$  соединены ребром  $f(e_1)$ .



Рис. 4: Изоморфные графы.

#### 2.2 Топологическое описание графа

**Определение** (Топологическое определение графа). Пусть дано множество (конечное) точек V, (конечное) множество отрезков E и отображение  $\partial$ : (множество концов отрезков)  $\to V$ .  $\Gamma pa\phi om$ , определённым этими данными, назовём топологическое пространство, состоящее из множества точек V, называемых вершинами графа, множества внутренних точек отрезков E, называемых внутренними точками рёбер графа, на котором задана фактор-топология. Отношение эквивалентности: вершина v лежит в том же классе эквивалентности, что и концы рёбер, которые в неё переходят.

[3]: В теории графов принята следующая терминология:

- 1. если  $v \in \partial(e)$ , то говорят, что вершина v и ребро e инцидентны;
- 2. если  $\partial(e) = \{v, w\}$ , то говорят, что вершины v и w cмежсны, или же, что они соединены ребром e;
- 3. рёбра e, e' называются *смежеными*, если  $\partial(e) \cap \partial(e') \neq \varnothing$ ;
- 4. ребро, иницидентное ровно одной вершине, называется  $nem n\ddot{e}\ddot{u}$ ;
- 5. если некоторой паре вершин инцидентно несколько рёбер, то все эти рёбра называются *кратными*;
- 6. если некоторой вершине инцидентно несколько петель, то все эти петли также называются  $\kappa pamнымu$ . [Конец цитирования]

$$v \in V, \ \partial^{-1}(v) : A \sim B \Leftrightarrow A, B \in \partial^{-1}(v), \ A \sim B \sim v.$$

**Определение.** Графы называются *гомеоморфными*, если они гомеоморфны как топологические пространства.

**Определение.** Непрерывное отображение графа  $\Gamma$  в топологическое пространство X называется *вложением*, если при этом отображение  $\Gamma$  и его образ гомеоморфны (никакие две различные точки не переходят в одну).

Рис. 5: Гомеорморфные, но не изоморфные графы.



Рис. 6:  $K_5$  и  $K_{3,3}$  не являются планарными.

**Определение** (Вне лекций). Граф без петель и кратных рёбер называется npo-cmы m.

**Определение.** Граф, для которого существует его вложение в плоскость, называется *планарным*.

**Определение.** Планарный граф вместе с вложением в плоскость называется *плоским*.

**Определение** (Вне лекций).  $K_n$  — полный граф на n вершинах, то есть граф, каждые две вершины которого соединены ребром.

 $K_{m,n}$  — двудольный граф, то есть граф, все вершины которого можно разбить на две группы так, что каждое ребро графа соединяет вершину из первой группы с вершиной из второй группы, при этом вершины из одной группы не имеют общих рёбер.

#### 2.3 Теорема о вложении планарного графа в плоскость

**Теорема.** Для связного плоского графа  $B-P+\Gamma=2$ , где  $\Gamma-$  количество областей, на которые граф разбивает плоскость.



Рис. 7: Имеется пять областей, на которые разбивается плоскость.

**Теорема** (★). Для любого планарного графа существует его вложение в плоскость такое, что образ любого ребра является ломаной с конечным числом звеньев.

Свойства непрерывных кривых:

**Лемма.** Образ  $\gamma:[a,b]\to\mathbb{R}^2$  непрерывной кривой — замкнутое подмножество плоскости.

 $\mathcal{A}$ оказательство. [a,b] — компакт  $\Rightarrow$  образ его — компакт.  $\mathbb{R}^2$  — хаусдорфово  $\Rightarrow$  компакт замкнут в хаусдорфовом пространстве.

 $A \partial anmupoванное \ \partial o \kappa aз ameль cm во \ us \ [1]:$  Возьмём точку P, которая не принадлежит образу кривой  $\gamma$ . Докажем, что существует такая окрестность U этой точки P, что U не пересекается с образом  $\gamma$ .

Рассмотрим вспомогательную функцию f на [a,b], которая будет обозначать расстояние от точки P до образа кривой. f непрерывна  $\Rightarrow$  достигает минимума c>0 (т.к. P не лежит в  $\gamma$ ). Рассмотрим тогда круг радиуса c/2 с центром в P. Получим окрестность  $U_{P,c/2}$ , которая не пересекается с образом  $\gamma$ .

**Лемма** (о первой точке).  $\Omega -$  замкнутое подмножество  $\mathbb{R}^2$ ,  $\gamma(t) -$  непрерывная кривая,  $\gamma: [0,1] \to \mathbb{R}^2$ ,  $\gamma(0) = A \notin \Omega$ ,  $\gamma(1) = B \in \Omega \Rightarrow \exists t_0 \in [0,1]: \gamma(t_0) \in \Omega$ ,  $\forall t < t_0 \ \gamma(t) \notin \Omega$ .

Доказательство. Рассмотрим  $T: \{ \tau \in [0,1]: \ \forall t \in [0,\tau): \ \gamma(t) \notin \Omega \}$  — не пусто (так как  $0 \in T$ ) и ограничено.

Так как множество T не пусто и ограничено, то можно сказать, что существует  $\sup T = c$ , более того,  $c \neq 1$ , т.к.  $\gamma(1) = B \in \Omega$  по условию.

Если  $\gamma(c)=C\notin\Omega$ , то существует окрестность U точки C такая, что  $U\cap A=\varnothing$  (воспользовались замкнутостью множества  $\Omega$ ).

Так как  $\gamma$  — непрерывная кривая, то существует окрестность  $V=(c-\varepsilon,c+\varepsilon)$  такая, что  $\gamma(V)\in U$ , то есть  $\forall t\in (c-\varepsilon,c+\varepsilon): \gamma(t)\notin \Omega\Rightarrow c\neq \sup T$  — противоречие, значит,  $C\in\Omega$ .

В качестве  $t_0$  возьмём c.

(В исходнике есть наброски прямо с лекции)

Доказательство ★. Адаптация лекционного доказательства, основанная на [1].

Пусть заданный граф не имеет петель. Если они есть, то удалим их, а потом вернём.

Для каждой вершины рассмотрим окрестность такую, что она не пересекается с рёбрами графа, НЕ инцидентными данной вершине v, и другими вершинами. Рассмотрим замкнутые окрестности вершин в два раза меньшего радиуса  $D_v$ .

Так как ребро, выходящее из вершины v — непрерывная кривая, то по лемме о первой точке на этой кривой будет первая точка, которая принадлежит замкнутому кругу  $D_v$ . Изменим вложение для этого ребра на отрезке между v и первой точкой на радиус (см.рис. 8). Сделаем так для всех рёбер. На этом моменте можно вернуть петли, изображённые ломаными.



Рис. 8: Изменение вложения в окрестности вершины

Теперь надо поменять вложение на остальных частях рёбер (та, которая лежит между нашими замкнутыми окружностями). Если мы для каждого отдельного ребра докажем, что можем поменять вложение, которое было, на ломаную, не трогая остальных рёбер, то докажем теорему (см.рис. 9).

Рассмотрим ребро, соединяющее вершины v, w. Средняя часть — непрерывная кривая  $\gamma : [a, b] \to \mathbb{R}^{2-1}$ . Рассмотрим множество:  $T = t \in [a, b]$ , где t такие,

<sup>&</sup>lt;sup>1</sup>Здесь и далее в лекциях дан отрезок [0,1], но, очевидно, это ни на что не повлияет, просто мне пока что лень рисовать свои рисунки, поэтому я их просто позаимствовал в [1]



Рис. 9: Изменение вложения на остальных частях рёбер

что  $\gamma(0)$  можно соединить ломаной с  $\gamma(t)$  так, что эта ломаная не имеет самопересечений и не пересекает другие рёбра. T не пусто хотя бы потому, что t=aусловие выполняется. Докажем, что и b принадлежит T. Идея дальнейшего доказательства состоит в том, чтобы отступать от левого конца отрезка, чтобы потом добраться до правого конца.



Рис. 10: Изменение вложения на остальных частях рёбер

Сначала докажем, что если  $t_0 \in T$ , то и  $(t_0 - \varepsilon, t_0 + \varepsilon) \subset T$  для некоторого  $\varepsilon > 0$  (иными словами, докажем, что множество T — открытое подмножество [0,1]).

Рассмотрим на кривой  $\gamma$  точку  $\gamma(t_0)$  и замкнутый круг B с центром в этой точке, который не пересекает другие рёбра и круги  $D_v$  (это возможно, так как образы других рёбер — замкнутые подмножества плоскости).

По предположению  $t_0 \in T$ , тогда существует ломаная, которая идёт от a до  $t_0$ . Тогда мы можем соединить  $\gamma(a)$  с любой точкой круга B хорошей ломаной (не имеющей самопересечений и пересечений с другими рёбрами) по ломаной из  $\gamma(a)$  в  $\gamma(t_0)$  до первой её точки в круге B и далее по отрезку.

С другой стороны (по определению непрерывности кривой), для круга B существует интервал  $(t_0 - \varepsilon, t_0 + \varepsilon)$  такой, что его образ содержится в этом круге — стало быть, доказали, что если  $t_0 \in T$ , то  $(t_0 - \varepsilon, t_0 + \varepsilon) \subset T$ , то есть, T — открытое подмножество на [a,b].

Далее докажем (аналогично), что если  $t_0 \notin T$ , то для некоторого  $\varepsilon > 0$  выполнено  $(t_0 - \varepsilon, t_0 + \varepsilon) \cap T = \emptyset$ , то есть, что дополнение  $[a, b] \setminus T$  тоже открыто в [a, b]. Предположим, что  $\gamma(t_0)$  не принадлежит множеству T. Рассмотрим круг с центром в точке  $\gamma(t_0)$ , который не пересекается с остальными рёбрами,

и рассмотрим интервал  $(t_0 - \varepsilon, t_0 + \varepsilon)$ , который при отображении  $\gamma$  целиком попадает в этот круг.

Мы не можем соединить  $\gamma(a)$  хорошей ломаной с точками из этого интервала, если не можем соединить  $\gamma(a)$  с точкой  $\gamma(t_0)$  — действительно, иначе дойдём до первой точки круга с центром в точке  $\gamma(t_0)$ , и далее дойдём до точки  $\gamma(t_0)$ . Таким образом, если  $t_0 \notin T$ , то и  $t \notin T$ , где  $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$ .

Тем самым мы доказали, что множества T и  $[a,b]\setminus T$  открыты в [a,b]. Теперь докажем, что если  $T\subset [a,b]$  и  $([a,b]\setminus T)\subset [a,b]$  — открытые множества в [a,b], то одно из них пусто.

Действительно, рассмотрим

$$\sup(t \in [a, b] : [a, t] \in T) = c.$$

Иными словами, рассмотрим отрезок [a,b] и, поскольку мы знаем, что  $a \in T$ , будем идти по отрезку, пока мы находимся в множестве T.

Если  $c \in T$  и  $c \neq b$ , то как мы доказали,  $(c-\varepsilon, c+\varepsilon) \subset T$  для  $\varepsilon > 0$ , а значит, c не является верхней гранью для этого множества. Значит, если c < b, то c не может принадлежать T.

Аналогично, если  $c \notin T$ , то есть  $c \in [a,b] \setminus T$ , то  $(c-\varepsilon,c+\varepsilon) \subset [a,b] \setminus T$ , то есть c — не точная верхняя грань, поскольку, например,  $c-\varepsilon$  — верхняя грань. Поэтому c=b, так как  $[a,b] \setminus T$  открыто и не может состоять только из одной точки — правого конца отрезка.

### 2.4 Теорема Жордана

**Определение.** Для любого подмножества A плоскости отношение: «точки  $P,Q \in A$  можно соединить непрерывной кривой, лежащей в A» является отношением эквивалентности. Соответствующие классы эквивалентности называются компонентами линейной связности множества A.

**Теорема** (Жордана (для ломаных)). Замкнутая вложенная ломаная разбивает плоскость на две компоненты связности.

 $\mathcal{A}$ оказательство. См. [1], сам допишу после следующей лекции или на выходных. Шаг 1. Число компонент  $\leq 2$ .

Лемма. Два радиуса разбивают круг на две компоненты.

*Доказательство.* сюда рисунок 2 и 3 □

# Список литературы

- [1] А.А. Ошемков. Нагядная геометрия и топология. Лекции. Москва: teach in, электронное издание. 185 с.
- [2] Учебные материалы по наглядной геометрии и топологии от кафедры дифференциальной геометрии и приложений механико-математического факультета МГУ имени М.В. Ломоносова [Электронный ресурс]. URL: http://dfgm.math.msu.su/ngit.php (дата обращения: 19.02.2025).
- [3] А.А. Ошемков и др. Курс наглядной геометрии и топологии. Москва: ЛЕ-НАНД, 2015. 360 с.