

Оглавление

2 Аппаратные средства 10 2.1 Шема Тестера 10 2.2 Умучшения и расширения к прибору 12 2.2.1 Защита портов АТмета 12 2.2.2.1 Защита портов АТмета 13 2.2.2.2 Измерение стабилитронов с напряжением более 4 В 13 2.2.3 Генератор частоты 13 2.2.4 Измерение частоты 14 2.2.5 Использование поворотного энкодера 14 2.2.6 Подключение графического дисплея 16 2.2.7 Подключение графического цветного дисплея 21 2.3 Указания по сборке Тестера 23 2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмета644 вли АТмета1284 25 2.6 Шема с использованием АТмета1280 вли Ардунно Мега 27 2.7 Китайские клоны с графическим дисплеем 29 2.8 Китайские клоны с графическим дисплеем 30 2.9 Китайские наборы с графическим дисплеем 30 2.9 Китайские наборы с графическим дисплеями 34 3.1 Проведение измерений 38 3.2 Мено дополнительных функций для АТмета328 38 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования <	1	Xap	рактеристики	6
2.2 Улучшения и расширения к прибору 12 2.2.1 Защита портов АТмега 12 2.2.2 Измерение стабилитронов с напряжением более 4 В 13 2.2.3 Генератор частоты 13 2.2.4 Измерение частоты 14 2.2.5 Использование поворотного энкодера 14 2.2.6 Подключение графического дисплея 16 2.2.7 Подключение графического цветного дисплея 21 2.3 Указания по сборке Тестера 23 2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмета644 или АТмета1284 25 2.6 Шема с использованием АТмета1280 или Ардуино Мега 27 2.7 Китайские клоны с графическим дисплеем 29 2.8 Китайские клоны с графическими дисплеями 30 2.9 Китайские клоны с графическими дисплеями 30 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Мено дополнительных функций для АТмега328 39 3.3 </th <th>2</th> <th>Апп</th> <th>аратные средства</th> <th>10</th>	2	Апп	аратные средства	10
2.2.1 Защита портов АТмега 12 2.2.2 Измерение стабилитронов с напряжением более 4 В 13 2.2.3 Генератор частоты 13 2.2.4 Измерение частоты 14 2.2.5 Использование поворотного энкодера 14 2.2.6 Подключение графического дисплея 16 2.2.7 Подключение графического цветного дисплея 21 2.3 Указания по сборке Тестера 23 2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмега644 или АТмега1284 25 2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с графическим дисплеем 29 2.8 Китайские клоны с графическим дисплеям 30 2.9 Китайские клоны с графическими дисплеям 30 2.9 Китайские клоны с графическими дисплеям 30 2.9 Китайские клоны с графическими дисплеями 34 3.1 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2		2.1	Шема Тестера	10
2.2.2 Измерение стабилитропов с напряжением более 4 В 13 2.2.3 Генератор частоты 13 2.2.4 Измерение частоты 14 2.2.5 Использование поворотного энкодера 14 2.2.6 Подключение графического дисплея 16 2.2.7 Подключение графического цветного дисплея 21 2.3 Указания по сборке Тестера 23 2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмега1280 или АТмега1284 25 2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с символьным дисплеем 29 2.8 Китайские клоны с графическим дисплеем 29 2.8 Китайские наборы с графическим дисплеями 34 2.9 Китайские наборы с графическим дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43		2.2	Улучшения и расширения к прибору	12
2.2.3 Генератор частоты 13 2.2.4 Измерение частоты 14 2.2.5 Использование поворотного энкодера 14 2.2.6 Подключение графического дисплея 16 2.2.7 Подключение графического цветного дисплея 21 2.3 Указания по сборке Тестера 23 2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмега644 или АТмега1284 25 2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с графическим дисплеем 29 2.8 Китайские клоны с графическим дисплеем 30 2.9 Китайские наборы с графическими дисплеем 30 2.9 Китайские наборы с графическими дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Мено дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 <td></td> <td></td> <td>2.2.1 Защита портов АТмега</td> <td>12</td>			2.2.1 Защита портов АТмега	12
2.2.4 Измерение частоты 14 2.2.5 Использование поворотного энкодера 14 2.2.6 Подключение графического дисплея 16 2.2.7 Подключение графического претного дисплея 21 2.3 Указания по сборке Тестера 23 2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмега644 или АТмега1284 25 2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с символьным дисплеем 29 2.8 Китайские клоны с графическим дисплеем 30 2.9 Китайские наборы с графическими дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Мено дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение Транзисторов Н-П-Н и П-Н-П 45 <			2.2.2 Измерение стабилитронов с напряжением более 4 В	13
2.2.5 Использование поворотного энкодера 14 2.2.6 Подключение графического дисплея 16 2.2.7 Подключение графического цветного дисплея 21 2.3 Указания по сборке Тестера 23 2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмега644 или АТмега1284 25 2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с символьным дисплеем 29 2.8 Китайские клоны с графическим дисплеем 30 2.9 Китайские наборы с графическими дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Д-МОС 46 3.8 Измерение ёмкости конденсаторов 46			2.2.3 Генератор частоты	13
2.2.6 Подключение графического цисплея 16 2.2.7 Подключение графического цветного дисплея 21 2.3 Указания по сборке Тестера 23 2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмега644 или АТмега1284 25 2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с символьным дисплеем 29 2.8 Китайские клоны с графическим дисплеем 30 2.9 Китайские наборы с графическим дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 38 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов Д-МОС 46 3.10 Измерение индуктивности 47 4 </td <td></td> <td></td> <td>2.2.4 Измерение частоты</td> <td>14</td>			2.2.4 Измерение частоты	14
2.2.7 Подключение графического цветного дисплея 21 2.3 Указания по сборке Тестера 23 2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмега644 или АТмега1284 25 2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с срафическим дисплеем 29 2.8 Китайские клоны с графическими дисплеем 30 2.9 Китайские наборы с графическими дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение Б-МОС транзисторов Д-МОС 46 3.8 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48			2.2.5 Использование поворотного энкодера	14
2.3 Указания по сборке Тестера 23 2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмега644 или АТмега1284 25 2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с символьным дисплеем 29 2.8 Китайские клоны с графическим дисплеем 30 2.9 Китайские наборы с графическим дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Мено дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение Транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов Д-МОС 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48			2.2.6 Подключение графического дисплея	16
2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмега644 или АТмега1284 25 2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с символьным дисплеем 29 2.8 Китайские клоны с графическим дисплеем 30 2.9 Китайские наборы с графическими дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Мено дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение Е-МОС транзисторов Д-МОС 46 3.8 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48			2.2.7 Подключение графического цветного дисплея	21
2.4 Доработки для версий Тестера Маркус Ф. 23 2.5 Расширенная шема с АТмега644 или АТмега1284 25 2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с символьным дисплеем 29 2.8 Китайские клоны с графическим дисплеем 30 2.9 Китайские наборы с графическими дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение Е-МОС транзисторов Д-МОС 46 3.8 Измерение емкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		2.3	Указания по сборке Тестера	23
2.5 Расширенная шема с АТмега644 или АТмега1284 25 2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с символьным дисплеем 29 2.8 Китайские клоны с графическим дисплеем 30 2.9 Китайские наборы с графическими дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ДФЕТ и транзисторов Д-МОС 46 3.8 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		2.4	Доработки для версий Тестера Маркус Ф	23
2.6 Шема с использованием АТмега1280 или Ардуино Мега 27 2.7 Китайские клоны с символьным дисплеем 29 2.8 Китайские клоны с графическим дисплеем 30 2.9 Китайские наборы с графическими дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ЈФЕТ и транзисторов Д-МОС 46 3.8 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		2.5		25
2.8 Китайские клоны с графическим дисплеем 30 2.9 Китайские наборы с графическими дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ЈФЕТ и транзисторов Д-МОС 46 3.8 Измерение ёмкости конденсаторов 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		2.6		27
2.9 Китайские наборы с графическими дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ДФЕТ и транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		2.7	Китайские клоны с символьным дисплеем	29
2.9 Китайские наборы с графическими дисплеями 34 2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ДФЕТ и транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		2.8	Китайские клоны с графическим дисплеем	30
2.10 И еще один клон из Хиланд М644 35 3 Инструкция пользователя 38 3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ЈФЕТ и транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		2.9		34
3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ЈФЕТ и транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		2.10	И еще один клон из Хиланд М644	35
3.1 Проведение измерений 38 3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ЈФЕТ и транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48	3	Инс	трукция пользователя	38
3.2 Меню дополнительных функций для АТмега328 39 3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ЈФЕТ и транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48				
3.3 Самопроверка и калибровка 43 3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ЈФЕТ и транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		3.2		39
3.4 Специальные возможности использования 44 3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ЈФЕТ и транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		3.3		
3.5 Проблемы при определении элементов 44 3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ЈФЕТ и транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		3.4	• •	44
3.6 Измерение транзисторов Н-П-Н и П-Н-П 45 3.7 Измерение ЈФЕТ и транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		3.5		44
3.7 Измерение ЈФЕТ и транзисторов Д-МОС 46 3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		3.6		45
3.8 Измерение Е-МОС транзисторов и ИГБТ 46 3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		3.7		46
3.9 Измерение ёмкости конденсаторов 46 3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48		3.8		
3.10 Измерение индуктивности 47 4 Программирование Тестера 48 4.1 Конфигурирование Тестера 48				
4.1 Конфигурирование Тестера			-	
4.1 Конфигурирование Тестера	1	Ппс	лераммирование Тестера	18
· · · · · · · · · · · · · · · · · · ·	-	_	r	
4.2 Программирование микроконтроллера			- · · · -	
4.2.1 использовать под Линуш		1. ⊿		
4.2.1 использовать под линуш				
4.2.3 использовать под Линуш				
4.2.4 установить программные пакеты				

9	C	сок текущих дел и новые илеи	141
8	Спе	циальные модули программного обеспечения	140
7	Изв	естные ошибки и проблемы	138
6	Ген 6.1 6.2	ератор сигналов Генератор частоты	
		5.6.1 Калибровка частоты по ГПС- или ГЛОНАСС-приёмникам	
	5.6	Измерение частоты	
		5.5.1 Некоторые результаты функции самопроверки	
	5.5	Функция самопроверки	
		5.4.2 Измерение малых индуктивностей методом отбора проб	
		5.4.1 Результаты измерений индуктивности	120
	5.4	Измерение индуктивностей	119
		5.3.11 Автоматическая калибровка при измерении конденсаторов	
		5.3.10 Результаты измерения ёмкости конденсаторов	
		5.3.9 Отдельное измерение ёмкости и ECP	
		5.3.8 Потеря напряжения после импульса зарядки, Влосс	
		5.3.7 Измерение ECP, второй метод	
		5.3.6 Измерение ЕСР, первый метод	
		5.3.4 Измерение очень малых значений ёмкости методом выборки	
		5.3.3 Измерение конденсаторов малой ёмкости	
		5.3.2 Измерение конденсаторов большой ёмкости	
		5.3.1 Разрядка конденсатора	
	5.3	Измерение конденсаторов	
		5.2.3 Результаты измерений резистора	
		5.2.2 Измерение резистора с резисторами 470 кОм	
		5.2.1 Измерение резистора с резисторами 680 Ом	
	5.2	Измерение резисторов	83
		5.1.5 Результаты различных измерений	79
		5.1.4 Измерение диодов	
		5.1.3 Упрощенная блок-шема тестирования транзисторов	
		5.1.2 Измерение Н-П-Н транзистора или Н-Чаннел-МОСФЕТ	
	9.1	5.1.1 Измерение П-Н-П транзистора или П-Чаннел-МОСФЕТ	
5	Оп і 5.1	сание процедур измерения Измерение полупроводниковых элементов	68 70
	4.3	Поиск неисправностей	66
		4.2.9 Использование программы ЩинАВР в ОС Щиндощс	
		4.2.8 рабочее пространство	
		4.2.7 членство в группе	
		4.2.6 использование интерфейсов	
		4.2.5 загрузка источников	62

Комментарий по этому вопросу:

При переводе на другой язык тексты на рисунках и диаграммах, которые на оригинальном английском, тоже переведены.

- Добавлен подраздел 2.10 (клон из Хиланд М644).
- В раздел 4.1 был добавлен предметный программист.
- И наконец, подраздел 4.2.1 (программирование под Линуш) был добавлен, 'Линуш' новички 'также имеют успех.

Автор был проинформирован об этих мерах.

К сожалению, насколько мне известно, документ еще не обновлялся.

- Я не получил положительный ответ сам.
- Поскольку я считаю, что дополнения важны для "новичков в Линуш это издание оправдано.

Оригинал, конечно, может быть достигнут ниже [1].

02/20/20

бм-магиц

Вступление

Основные мотивы

Каждый радиолюбитель знает следующую задачу: Вы выпаяли транзистор из печатной платы или достали один из коробки. Если на нем есть маркировка, и у Вас уже есть паспорт или Вы можете получить документацию об этом элементе, то все в порядке. Но если документация оцуцтвует, то Вы понятия не имеете, что это за элемент. Традиционный подход измерения всех параметров сложный и трудоемкий. Элемент может быть Н-П-Н, П-Н-П, Н или П-канальным МОСФЕТ транзистором и т.д. Идея Маркус Ф. заключалась в том, чтобы переложить ручную работу на АВР микроконтроллер.

Начало моей работы над проектом

Моя работа с программным обеспечением Тестера от Маркус Ф.[2] началась, потому что у меня были проблемы с моим программатором. Я купил печатную плату и элементы, но не смог запрограммировать ЕЕпром АТмега8 с драйвером Щиндощс без сообщения об ошибке. Поэтому я взял программное обеспечение от Маркус Ф. и изменил все обращения из памяти ЕЕпром к Флаш памяти. Анализируя программное обеспечение для того, чтобы сохранить память в других местах программы, у меня появилась идея изменить результат функции РеадAДЦ из единиц AЦП на милливольты (mV). Размерность в mV необходима для любого вывода значения напряжения. Если функция РеадАДЦ возвращает значения непосредственно в mV, я могу сохранять преобразования для каждого выходного значения. Размерность в mV можно получить, если суммировать результаты 22 показаний АЦП, сумму умножить на 2 и разделить на 9. Таким методом максимальное значение получиця $\frac{1023\cdot22\cdot2}{0}=5001$, что идеально соотвецтвует нужной размерности измеренных значений напряжения в mV. Кроме того дополнительно была надежда, что увеличение, от передискретизации, разрешения АЦП может способствовать улучшению считанного с АЦП напряжения, как описано в АВР121 [6]. В оригинальной версии функция РеадАДЦ накапливаеця результат 20 измерений АЦП и делиця потом на 20, так что результат равен оригинальному разрешению АЦП. Т.е., по этому пути повышение разрешения АЦП невозможно. Так что я должен был сделать небольшую работу, чтобы изменить функцию РеадАДЦ, а это заставило проанализировать всю программу и изменить все «иф статеменц» в программе, где запрашиваюця значения напряжения. Но это было только началом моей работы!

Появлялось все больше и больше идей, чтобы сделать измерения более быстрыми и точными. Кроме того хотелось расширить диапазон измерений сопротивлений и ёмкостей. Формат вывода информации на ЛЦД-дисплей был изменен, теперь для диодов, резисторов и конденсаторов используюця символы, а не текст. Для получения дополнительной информации необходимо ознакомиться со списком доступных функций в главе 1. Планируемые работы и новые идеи представлены в главе 9. Кстати, теперь я могу программировать ЕЕпром АТмега в операционной системе Линуш без ошибок.

Здесь я хотел бы поблагодарить разработчика и автора программного обеспечения Маркус Фрејек, который предоставил возможность продолжить начатую им работу. Кроме того, я хотел бы сказать спасибо авторам многочисленных обсуждений на форуме, которые помогли мне найти новые задачи, слабые места и ошибки. Далее я хотел бы поблагодарить Маркус Ресчке, который разрешил мне публиковать его яркие версии программного обеспечения на сервере СВН. Кроме того, некоторые идеи и программные модули Маркус Р. были интегрированы в мою собственную версию программного обеспечения.

Также Щолфганг СЧ. проделана большая работа по адаптации проекта под дисплей с контроллером СТ7565. Большое спасибо ему за адаптацию микропрограммы 1.10к к текущей версии.

Я должен поблагодарить также Асцо Б., который разработал новую печатную плату для повторения другими радиолюбителями. Следующую благодарность я хотел бы отправить Дирк Щ., который разработал порядок сборки этой печатной платы. У меня никогда не хватило бы времени заниматься всеми этими вещами одновременно с моими разработками программного обеспечения. Оцуцтвие времени не позволяет и в дальнейшем развивать программное обеспечение на том же уровне. Спасибо за многочисленные предложения по улучшению Тестера членам местного отделения «Деуцчер Аматеур Радио Цлуб (ДАРЦ)» из Леннестадт. Кроме того, я хотел бы сказать спасибо за интеграцию метода дискретизации радиолюбителя Пиетер-Тјерк (ПАЗФЩМ). С помощью этого метода измерения маленьких значений емкости и индуктивности заметно улучшено. На завершение, спасибо Ницк Л из Украины, за поддержку идей своими прототипами плат, предложение некоторых дополнений и поддержку изменений в русской документации.

Глава 1

Характеристики

- 1. Работает с микроконтроллерами АТмега8, АТмега168 или АТмега328. Также возможно использовать АТмега644, АТмега1284, АТмега1280 или АТмега2560.
- 2. Отображение результатов на символьном ЛЦД-дисплее 2ш16 или 4ш20. Если используеця микроконтроллер с объемом флэш-памяти, минимум 32к, то также можно применить графический дисплей 128ш64 пикселя с контроллером СТ7565 или ССЪ306. При этом 4-проводной интерфейс СПИ или И²Ц шина должны быть подключены вместо 4-битного параллельного интерфейса для ССЪ306 контроллера. Для контроллеров НТ7108 или КС0108 Вы должны использовать преобразователь последовательно-параллельного интерфейса 74ХЦ(Т)164 или 74ХЦ(Т)595. Дисплей с контроллером ПЦФ8812 или ПЦФ8814 может быть использован только без больших иконок для транзисторов, так как размер дисплея 102ш65 или 96ш65 пикселей недостаточен.
- 3. Запуск однократное нажатие кнопки ТЕСТ с автоотключением.
- 4. Возможна работа от автономного источника, т.к. ток потребления в выключенном состоянии не превышает 20~nA.
- 5. Чтобы уменьшить ток потребления в режиме ожидания измерения, программное обеспечение, начиная с версии 1.05к, использует режим сна (Слееп Моде) для микроконтроллеров Атмега168 или АТмега328.
- 6. Автоматическое определение H-П-H и П-H-П биполярных транзисторов, H- и П-канальных МОСФЕТ транзисторов, ЈФЕТ транзисторов, диодов, двойных диодов, тиристоров и симисторов. Для тиристоров и симисторов уровень открытия должен быть досягаем для тестера. Для ИГБТ транзисторов сигнал 5 V должен быть достаточным для открытия транзистора.
- 7. Автоматическое определение расположения выводов элемента.
- 8. Измерение коэффициента усиления и порогового напряжения база эмиттер биполярного транзистора.
- 9. Транзисторы Дарлингтона идентифицируюця по пороговому напряжению и коэффициенту усиления.
- 10. Обнаружение защитного диода в биполярных и МОСФЕТ транзисторах.
- 11. Измерение порогового напряжения затвора, значение емкости затвора и $P_{\text{ДСон}}$ до напряжение затвора около 5 V в транзисторах МОСФЕТ.
- 12. Измерение порогового напряжения затвора и величины ёмкости затвора МОСФЕТ.

- 13. Измерение одного или двух резисторов с изображением—— символа резистора и точностью до 4 десятичных цифр. Все символы пронумерованы соотвецтвенно номерам щупов Тестера (1-2-3). Таким образом, потенциометр также может быть измерен.
- 14. Разрешение измерения сопротивления до 0,01 Ω , а величина измерения до 50 $M\Omega$.
- 15. Определение и измерение одного конденсатора с изображением символа конденсатора П Определение и измерение одного конденсатора с изображением символа конденсатора и точностью до четырех десятичных цифр. Ёмкость конденсатора может быть замерена от 25 pF (8 MHz, 50 pF 1 MHz) до 100 mF. Разрешение измерения составляет 1 pF (8 MHz).
- 16. ЕСР конденсатора измеряеця с разрешением $0,01~\Omega$ для конденсаторов ёмкостью более 20~nF и отображаеця числом с двумя значащими десятичными цифрами. Это возможно только для ATмега168 или ATмега328.
- 17. Для конденсаторов ёмкостью выше 5000~pF может быть определена потеря напряжения после воздействия импульса зарядки. Потеря напряжения дает оценку добротности (качества) конденсатора.
- 18. Определение до двух диодов с изображением их символов или в правильном порядке. Дополнительно отображаеця прямое падение напряжения на диоде.
- 19. Светодиод (ЛЕД) определяеця как диод с прямым напряжением выше, чем у обычного диода. Два светодиода в одном 3-х выводном корпусе также определяюця, как два диода.
- 20. Стабилитроны могут быть определены, если их обратное напряжение пробоя ниже 4,5 V. Они отображаюця, как два диода, и могут быть идентифицированы, как стабилитроны, только по напряжению. Номера выводов, соотвецтвующие символу диода, в этом случае, идентичны. Реальный вывод анода диода можно идентифицировать только по падению напряжения (около 700 mV)!
- 21. Если определяеця более чем 3 диода, число диодов отображаеця дополнительно с сообщением о том, что элемент повреждён. Это может произойти, только если диоды присоединены ко всем трем выводам, и, по крайней мере, один из диодов стабилитрон. В этом случае необходимо произвести измерения, подсоединив к двум щупам Тестера сначала одну пару из трех выводов элемента, затем любую другую пару выводов элемента.
- 22. Измерение величины ёмкости одиночного диода в обратном направлении. Биполярный транзистор может также быть проанализирован, если подключить базу и коллектор или базу и эмиттер. Если используеця АТмега с объемом флэш-памяти более 8K, то измеряеця обратный ток диода с разрешением 2 nA. Значение выводиця на дисплей, если оно больше нуля.
- 23. Одним измерением можно определить назначение выводов выпрямительного моста.
- 24. Конденсаторы ёмкостью ниже $25 \ pF$ обычно не определяюця, но могут быть измерены вместе с параллельным диодом или параллельным конденсатором, ёмкостью более $25 \ pF$. В этом случае из результата измерения необходимо вычесть ёмкость подключенного параллельно элемента. Для контроллеров, имеющих по крайней мере 32К флэш-памяти осуществляеця автоматический переход на циклический режим измерения, если конденсатор с более чем $25 \ pF$ подключен к TP1 и TP3. В этом режиме измерения конденсаторов Вы можете измерить ёмкость конденсаторов ниже $25 \ pF$ в TP1 и TP3 напрямую.

- 25. Для резисторов сопротивлением ниже 2100 Ω , если АТмега с объемом более чем 16К флэш-памяти, измеряеця индуктивность. Иконка индуктивности будет показана за иконкой . Диапазон измерений от 0,01~mH до 20~H, но точность не высока. Получить результат измерения можно только с единственным подключенным элементом.
- 26. Время тестирования большинства элементов составляет приблизительно 2 секунды. Измерение ёмкости или индуктивности могут увеличить время тестирования.
- 27. Программное обеспечение может конфигурироваться, чтобы произвести ряд измерений прежде, чем питание будет отключено.
- 28. В функции самопроверки встроен дополнительный генератор частоты на 50~Hz, чтобы проверить точность тактовой частоты (только для контроллеров с объемом более чем 32К флэш-памяти).
- 29. Подключаемое, в режиме самопроверки, оборудование для тарировки внутреннего выходного сопротивления порта и смещения нуля при измерении ёмкости (только для контроллеров с объемом более чем 16К флэш-памяти). Для тарировки необходимо подключить к щупам 1 и 3 внешний высококачественный конденсатор ёмкостью между 100 nF и 20 μF чтобы измерить величину компенсации напряжения смещения аналогового компаратора. Это уменьшит ошибки измерения ёмкости конденсаторов до 40 μF. Этот же конденсатор применяеця при коррекции напряжения внутреннего ИОН, замеренного для подстройки масштаба АЦП при измерении с внутренним ИОН.
- 30. Отображение обратного тока коллектора I_{CE0} при отключенной базе (с разрешением $1~\mu A$) и обратного тока коллектора при короткозамкнутых выводах базы и эмиттера I_{CES} (только для АТмега с объемом флэш-памяти больше $16\mathrm{K}$). Эти значения отображаюця если они не равны нулю (главным образом, для германиевых транзисторов).
- 31. Для АТмега с объемом флэш-памяти не менее 32К тестер запускает циклический тест сопротивления резисторов, как только резистор будет обнаружен в тестовых контактах 1 (ТЬ) и 3 (ТПЗ). Если вы выбрали дополнительное измерение индуктивности для функции циклического теста резисторов в Макефиле, задав параметр РМЕТЕР-ЩИТХ_Л, то индуктивност также может быть определена и измерена в этом режиме. Этот циклический режим работы обозначаеця [Р] или [РЛ] справа в первой строке экрана дисплея. Таким же образом запускаеця циклическое измерение ёмкости, если конденсатор, обнаружен в ТЬ и ТПЗ. Этот режим работы отображаеця символом [Ц] справа в первой строке. В циклическом тесте конденсаторов, возможно определение ёмкостей от 1 рF. Но для автоматического запуска циклического теста ёмкость конденсатора должна быть больше 25 pF. Цпециальные режимы могут быть завершены нажатием клавиши **ТЕСТ**. Тестер вернеця к обычному режиму работы.
- 32. Из диалогового меню можно выбрать измерение частоты на порту ПД4 для АТмега. Разрешение составляет 1 Hz для измеряемых частот выше 33 kHz. Для более низких частот разрешение может быть до 0,001 mHz с измерением среднего периода. Вы должны ознакомиться с подразделом измерения частоты 2.2.4 на странице 14 для уточнения деталей подключения сигнала частоты.
- 33. Из меню, при отключенной функции последовательного порта, можно вызвать функцию измерения напряжения до 50~V при использовании делителя 10:1 на порту ПЦЗ. Если используеця АТмега 328 в корпусе ПЛЦЦ, то для измерения можно использовать один из дополнительных портов вместе с УАРТ. Если присуцтвует шема измерения стабилитронов

- (ДЦ-ДЦ преобразователь), измерение стабилитронов также возможно с помощью этой функции, нажав кнопку **TECT**.
- 34. Из меню можно выбрать функцию генератора частоты на тестовом контакте ТЪ (ПБ2 порт АТмега). В настоящее время можно предварительно выбрать частоты от 10~Hz до 2~MHz.
- 35. Из диалогового меню функций можно выбрать вывод фиксированной частоты с возможностью выбора ширины импульса на тестовом контакте ТЪ (ПБ2 порт АТмега). Ширина может быть увеличена на 1% при кратковременном нажатии или на 10% при более длительном нажатии кнопки **TECT**.
- 36. Из диалогового меню функций можно запустить отдельное измерение ёмкости с измерением ECP. Только конденсаторы от 2 μF до 50 mF могут быть измерены в шеме, так как используеця низкое, около 300 mV напряжение.
- 37. Если Ваш контроллер АТмега имеет по крайней мере 32К флэш-памяти (Мега328), у Вас есть возможность использовать метод дискретизации АЦП, который позволяет испытывать конденсаторы с ёмкостью меньше 100~pF с разрешением 0,01~pF. С применением этого же метода, можно также измерять индуктивность катушки меньше 2~mH со значительно большей точностью путем создания резонансного контура с параллельно включённым конденсатором известной ёмкости.

Вы должны убедиться, что все конденсаторы разряжены перед началом любых измерений.

Тиристоры и симисторы могут быть обнаружены, если испытательный ток выше тока удержания. Некоторые тиристоры и симисторы нуждаюця в более высоких токах, чем этот Тестер может обеспечить. Доступный ток тестирования только 6 mA! Также ИГБТ могут быть обнаружены, если 5 V достаточно для их открытия. Заметьте, что многие дополнительные функции могут быть доступны при использовании контроллеров с достаточным объемом памяти, таких как ATмега168. Однако только при использовании контроллеров, в которых, по крайней мере $32\ kB$ флэш-памяти, таких как ATмега328 или ATмега1284 доступны все функции.

Внимание: Перед подключением убедитесь, что конденсаторы разряжены! Тестер может быть повреждён и в выключенном состоянии. Есть только небольшая защита в портах ATмега.

Если требуеця проверить элементы, установленные в шеме, то оборудование должно быть оцоединено от источника питания, и должна быть полная уверенность, что **остаточное напряжение** оцуцтвует в оборудовании.

Глава 2

Аппаратные средства

2.1 Шема Тестера

Шема на рисунке 2.1 основана на шеме Маркус Ф., из проекта ABP Трансистортестер [2]. Измененные или перемещенные элементы отмечены зеленым цветом, дополнительные элементы отмечены красным цветом.

Небольшие изменения внесены в электронный выключатель питания, который создавал проблемы в некоторых реализациях. Резистор Р7 уменьшен до $3,3~k\Omega$. Конденсатор Ц2 уменьшен до 10~nF. Р8 перенесен так, чтобы вывод порта ПД6 был подключен к конденсатору Ц2 через него, а не непосредственно.

Дополнительные блокировочные конденсаторы должны быть установлены у выводов питания ATмега и у выводов стабилизатора напряжения. Добавлен один дополнительный подтягивающий резистор на $27~k\Omega$ к выводу порта ПД7 (вывод 13 ATмега). В этой модификации программное обеспечение отключает ВСЕ внутренние подтягивающие резисторы ATмега.

Добавлен дополнительный кварц на 8 MHz с конденсаторами \$11, \$12 на $$22\ pF$$. Точность кварца дает возможность более точного измерения времени для того, чтобы измерить ёмкость конденсатора.

Новая версия программного обеспечения может использовать переключение масштаба напряжения АЦП. Скорость переключения зависит от внешнего конденсатора Ћ на $APE\Phi$ (вывод 21 ATмега). Чтобы избежать замедления на величину большую, чем необходимо, ёмкость этого конденсатора должна быть уменьшена до 1 nF. Можно вообще удалить конденсатор Ћ. Для адаптации программного обеспечения к конкретной шеме необходимо посмотреть опции в макефиле в разделе конфигурации 4 на странице 48.

Соотношение резисторов P11/P12 определяет величину напряжения для контроля разряда батареи питания. Я приспособил свое программное обеспечение к оригиналу от Маркус Φ . [2] с величинами резисторов 10 $k\Omega$ и 3,3 $k\Omega$. Сопротивление резисторов в делителе напряжения можно установить в макефиле.

Дополнительное опорное напряжение $2,5\,V$, поданное на порт ПЦ4 (АДЦ4), может использоваться, чтобы проверить и откалибровать Тестер на имеющееся напряжение ВЦЦ (не обязательно). В качестве ИОН можно использовать ЛМ4040-АИЗ2.5 (0,1%), ЛТ1004ЦЗ $2.5\,(0,8\%)$ или ЛМ336- $32.5\,(0,8\%)$.

Если не установлен ИОН и не предусмотрена защита с использованием реле, Вы должны установить подтягивающий резистор Р16 к ПЦ4 с высоким номиналом (47 $k\Omega$). Это поможет программному обеспечению обнаружить оцуцтвующий ИОН. Дополнительный интерфейс ИСП был добавлен для упрощения загрузки новых версий программного обеспечения.

Рис. 2.1. Новая шема Тестера

Таблица 2.1 показывает назначение портов Д для различных дисплеев и дополнительных подключений. Для интерфейса СПИ сигнал ЛЦД-ЦЕ присуцтвует на порту АТмега. Вход сигнала ЦЕ (Чип Енабле) дисплея также может быть подключен к ГНД вместо подключения его к выходу сигнала ЛЦД-ЦЕ АТмега.

	Символьный	CT7565	СТ7920 ЛЦД	НТ7108 ЛЦД	ССЪ306	Дополнительная
Порт	ЛЦД	ЛЦД	сериал	сериал	И²Ц	функция
ПДО	ЛЦД-Д4	ЛЦД-РЕСТ	ЛЦД-РЕСТ	595-ПЦЛК		
ПЪ	ЛЦД-Д5	ЛЦД-РС		ЛЦД-ЦС2		Энкодер 2
ПЏ	ЛЦД-Д6	ЛЦД-СЦЛК	ЛЦД-Б0	164-595-ЦЛК	ЛЦД-СДА	
ПЅ	ЛЦД-Д7	ЛЦД-СИ		ЛЦД-ЦС1		Энкодер 1
ПД4	ЛЦД-РС			ЛЦД-РС		Внешняя частота
				164-595-CEP		
ПД5	ЛЦД-Е	(ЛЦД-ЦЕ)	ЛЦД-ЕН	ЛЦД-ЕН	ЛЦД-СЦЛ	
ПД7	кнопка	кнопка	кнопка	кнопка	кнопка	

Таблица 2.1. Назначение контактов порта Д для подключения различных дисплеев

Программное обеспечение может изменять назначение выводов порта Д для удобства разводки ЛЦД-дисплея. В таблице 2.2 показаны варианты подключения для версии Стрип Грид и подключения графического индикатора к микроконтроллеру АТмега328. Также указано использование входов портов для дополнительных функций. При подсоединении графического адаптера к плате версии Стрип Грид (опция СТРИП_ГРИД_БОАРД11) функция измерения частоты не может

быть использована, потому что порт ПД4 (Т0) используеця. Но это соединение используеця в китайской версии с графическим дисплеем. В большинстве случаев дополнительные функции, такие как использование энкодера или частотомера проще реализовать в версии тестера с символьным дисплеем, потому что все сигналы данных присуцтвуют в разъеме подключения дисплея.

	Симв. ЛЦД	СТ7565 ЛЦД	СТ7565 ЛЦД	Допополнительная
Порт	11	11	СТРИП_ГРИД	функция
ПДО	кнопка			
ПЪ	ЛЦД-Д7	ЛЦД-СИ	ЛЦД-А0 (РС)	Энкодер 2
ПЏ	ЛЦД-Д6	ЛЦД-СЦЛК	ЛЦД-РЕСТ	
ПЅ	ЛЦД-Д5	ЛЦД-А0 (РС)	ЛЦД-СЦЛК	Энкодер 1
ПД4	ЛЦД-Д4	ЛЦД-РЕСТ	ЛЦД-СИ	Внешняя частота
ПД5	ЛЦД-Е	(ЛЦД-ЦЕ)		
ПД7	ЛЦД-РС	кнопка	кнопка	

Таблица 2.2. Назначения портов с опцией СТРИП_ГРИД_БОАРД

2.2 Улучшения и расширения к прибору

2.2.1 Защита портов АТмега

Для защиты ATмега вводиця один из двух вариантов шемы защиты из представленных на рисунке 2.2. В первом варианте контакты обесточенного реле защищают ATмега при оцуцтвии напряжения питания. Контакты будут разомкнуты программно, как только начнеця измерение.

Во втором варианте защита при помощи диодов уменьшает вероятность повреждения портов АТмега при подключении конденсатора с остаточным напряжением.

Следует заметить, что ни одна шема не дает полной гарантии защиты АТмега от остаточного заряда конденсатора. Поэтому, перед тестированием, конденсатор обязательно разрядить!

Рис. 2.2. Защита входов АТмега

Вы можете улучшить защиту, установив реле с тремя группами контактов, как показано на рисунке 2.3. Разрядный ток ограничен резисторами, входы АТмега отключены в защищенном режиме. Следует помнить, что тестер не защищён в режиме последовательных (циклических) измерений.

Рис. 2.3. Улучшенная защита с реле

2.2.2 Измерение стабилитронов с напряжением более 4 В

Если УАРТ не требуеця, порт ПЦЗ может использоваться в качестве аналогового входа для измерения внешнего напряжения. Напряжение может составить до 50~V с дополнительным резистивным делителем 10:1. На рисунке 2.4 представлена шема для измерения напряжение пробоя стабилитрона при низком уровне на порте ПД7 АТмега. Тестер показывает внешнее напряжение, пока Вы держите кнопку **TECT** нажатой. Ток, потребляемый от батареи питания, при этом возрастает, примерно, на 40~mA.

Рис. 2.4. Шема для измерения параметров стабилитронов

Резистивный делитель 10:1 может быть использован для измерения внешних напряжений при выборе из меню дополнительных функций в АТмега328. Присуцтвие ДЦ-ДЦ преобразователя для измерения стабилитронов не мешает, так как кнопка не удерживаеця в нажатом состоянии и, соотвецтвенно, ДЦ-ДЦ преобразователь обесточен. Таким образом, можно измерять напряжение постоянного тока до $50\,V$ только положительной полярности, обязательно соблюдая полярность.

2.2.3 Генератор частоты

Из меню дополнительных функций, при использовании АТмега, можно выбрать генератор частоты. В настоящее время поддерживаеця выбор частот в диапазоне от 1 Hz до 2 MHz. Выходной сигнал 5 V через резистор 680 Ω выводиця на тестовый контакт ТЪ. В качестве сигнала ГНД, при этом, можно использовать ГНД ДЦ-ДЦ преобразователя или тестовый контакт ТЪ. Тестовый контакт ТПЗ подсоединен к ГНД через резистор 680 Ω . Конечно, Вы также можете использовать порт ПБ2 для подключения отдельной шемы усилителя-формирователя. Но вход этой шемы не должен создавать большую нагрузку для порта АТмега.

2.2.4 Измерение частоты

Для использования дополнительной функции измерения частоты, потребуеця незначительная доработка Тестера. Для измерения частоты используеця порт ПД4 (Т0/ПЦИНТ20) АТмега. Этот же порт используеця для подключения ЛЦД-дисплея. В стандартном варианте к порту ПД4 подключен сигнал ЛЦД-РС, в варианте стрип грид - сигнал ЛЦД-Д4. Для обоих сигналов порт ПД4 может быть переключен на ввод, если в данный момент не требуеця выводить информацию на ЛЦД-дисплей.

Однако, лучше использовать дополнительную шему подключения, изображенную на рисунке 2.5. Напряжение на выводе порта ПД4 (ЛЦД-РС или ЛЦД-Д4) должно быть установлено около $2,4\ V$ при отключенной АТмега или подстроено во время измерения частоты АТмега, чтобы получить лучшую чувствительность к входному сигналу. Во время регулировки ЛЦД-дисплей должен быть установлен, потому что подтягивающие резисторы индикатора могут изменить установленное напряжение.

Рис. 2.5. Дополнительная шема для измерения частоты

2.2.5 Использование поворотного энкодера

Для более удобного доступа к Меню дополнительных функций для АТмега328, Вы можете дополнить шему, установив инкрементальный энкодер с кнопкой. Рисунок 2.6 показывает шему подключения к тестеру с символьным ЛЦД. Все сигналы для подключения поворотного инкрементально энкодера доступны в разъеме подключения ЛЦД. По этому, модернизация возможна для большинства существующих тестеров. Во многих случаях графический ЛЦД собран на переходной плате и подключен к контактам, предназначенным для подключения символьного ЛЦД. Таким образом, модернизация в этих случаях также возможна.

Рис. 2.6. Шема подключения поворотного энкодера

На рисунке 2.7 показана особенность работы двух типов поворотных инкрементальных энкодеров. В версии 1 полная последовательность состояния переключателей проишодит при повороте на два фиксированные положения. Количество полных циклов в два раза меньше чем количество фиксированных положений за оборот энкодера. В версии 2 при повороте на одно фиксированное положение генерируеця полный цикл состояния контактов. В этом случае количество фиксированных положений соотвецтвует количеству циклов за оборот энкодера. Иногда, в таких энкодерах, в каждом фиксированном положении состояние переключателей всегда одинаково.

Рис. 2.7. Особенности двух типов поворотных инкрементальных энкодеров

Рисунок 2.8 показывает работу энкодера, который имеет не только «дребезг» контактов но и неустойчивое состояние переключателя в точке фиксации. Каждое изменение состояния переключателей определяеця программой и сохраняеця в циклический буфер. Поэтому, последние три состояния переключателей можно проверить после каждого изменения состояния. Для каждого цикла переключения состояний, в общей сложности четыре последовательности могут быть определены для каждого направления вращения.

Если за одну фиксированную позицию осуществляеця один, полный, цикл состояний переключателей то для правильного подсчета достаточно контролировать состояние переключателя в одном канале (ЩИТХ_РОТАРЫ_СЩИТЧ12 или 3).

Если для генерации полного цикла состояний переключателей требуеця поворот на две фиксированные позиции, как показано на рисунке 2.8, Вы должны контролировать последовательность переключения в двух каналах (ЩИТХ_РОТАРЫ_СЩИТЧ11).

Для энкодеров без фиксации, Вы можете выбрать любую чувствительность к углу поворота. Значение 2 и 3 устанавливает низкую чувствительность, 1 среднюю чувствительность и 5 высокую чувствительность.

Подсчет импульсов (количество «вверх», количество «вниз») может быть обеспечен подбором определенного алгоритма, но, в то же время, может быть утрачен из-за неустойчивого состояния контактов переключателей в точке фиксации.

Возможные состояния слева направо:

Рис. 2.8. Энкодер с «дребезгом» контактов переключателей

Если энкодер не доступен или не целесообразен из-за конструктивных соображений, вместо двух контактов энкодера, Вы можете подсоединить две независимые кнопки для перемещения «Вверх» и «Вниз». В этом случае значение опции ЩИТХ_РОТАРЫ_СЩИТЧ, для корректной работы программы, должно быть установлено 4.

2.2.6 Подключение графического дисплея

Большое спасибо Щолфганг Сч. за выполненную работу по поддержке прибором китайской версии дисплея с контроллером СТ7565. В настоящее время вы также можете подключить графический ЛЦД (128ш64 пикселей) с контроллером СТ7565. Поскольку контроллер СТ7565 подключаеця по последовательному интерфейсу, то только четыре сигнальных линии используеця. Два вывода порта Д АТмега могут быть использованы для других задач. АТмега процессор должен иметь, по крайней мере, $32\ kB$ флеш-памяти для поддержки графического дисплея. СТ7565 контроллер использует рабочее напряжение $3,3\ V$. Поэтому требуеця дополнительный

стабилизатор 3, 3 V. Документация к контроллеру СТ7565 не допускает прямого подключения логических сигналов уровня 5 V. Для согласования логических уровней сигналов 5 V и 3, 3 V можно использовать шему, приведенную на рисунке 2.9 с использованием микрошемы преобразователя уровней 74ХЦ4050. Вы можете попробовать применить вместо четырех элементов 74ХЦ4050 четыре резистора, примерно 2, $7\,k\Omega$. Падение напряжения на резисторах предотвратит увеличение напряжения на входах графического контроллера больше чем напряжение питания 3, 3 V, а дополнительные диоды на входах графического контроллера не допустят попадания выходного сигнала 5 V от АТмега. Вы должны убедиться, что форма сигналов с резисторов могут быть правильно восприняты входами контроллера СТ7565.

В любом случае, при применении элементов микрошемы 74ХЦ4050 форма сигнала на входе графического контроллера точнее соотвецтвует форме выходного сигнала с АТмега.

Рис. 2.9. Подключение графического дисплея с контроллером СТ7565

В таблице 2.3 показаны другие альтернативы подключения АТмега328 или других микроконтроллеро по интерфейсу СПИ (ЛЦД_ИНТЕРФАЦЕ_МОДЕ₁4) или для трехпроводного соединения (ЛЦД_ИНТЕР Различные типы подсоединений для одного типа процессора могут быть выбраны с помощью опции в макефиле СТРИП_ГРИД_БОАРД. Назначение контактов разъема определено в файле цонфиг.х. Если Вам нужно иное подключение, Вы должны назначить новый номер кода для опции СТРИП_ГРИД_БОАРД и задать настройку подключения в файле цонфиг.х.

Контроллер	м644	м1280	м1280	м328	м328	м328	м328
СТРИП_ГРИД_БОАРД		_	1	_	1	2	5
Сигнал:							
PEC	ПБ4	ПА0	ПА4	ПД0	ПД4	ПД0	ПЏ
ЕН, ЦЛК	ПБ6	ПА2	ПА2	ПЏ	ПЏ	ПЏ	ПЅ
РС, Д/Ц	ПБ5	ПА1	ПАЗ	αП	ПЅ	ПЅ	ПЪ
Б0, МОСИ	ПБ7	ПАЗ	ПА1	ПЅ	ПЪ	ПЪ	ПД4
ЦЕ, ЦС	ПБ3	ПА4	ПА5	ПД5	ПД5	ПД5	ПД5

Таблица 2.3. Подключение по СПИ для различных контроллеров

Обычно СТ7565 или ССТ306 контроллер подключаеця по 4-проводному СПИ интерфейсу. Но с контроллером ССТ306 Вы также можете подключить индикатор по интерфейсу $\mathrm{U}^2\mathrm{U}$ использовав ПЦ как СДА и ПД5 как СЦЛ сигнал. Сигналы СДА и СЦЛ должны быть подтянуты резисторами около $4,7~k\Omega$ к напряжению 3,3~V. Пример подключения ОЛЕД дисплея показан на рисунке 2.10. Сигналы шины $\mathrm{U}^2\mathrm{U}$ реализованы только путем переключения портов АТмега к 0~V. Перед подключением подтягивающих резисторов к напряжению 5~V, Вы должны убедиться, что Ваш контроллер допускает уровень сигнала 5~V. Обычно входы контроллера дисплея защищены диодами, которые понижают уровень сигнала до 3,3~V. Вы должны убедиться, что в АТмега записана программа с поддержкой интерфейса $\mathrm{U}^2\mathrm{U}$ до того, как дисплей будет подсоединен. Если Вы записали в контроллер микропрограмму с поддержкой другого интерфейса, то на выводах АТмега могут присуцтвовать сигналы с уровнем 5~V.

Так, как я обнаружил влияние на результаты теста модуля ОЛЕД через шину VCC, рекомендую установить дополнительную развязку из последовательного резистора $68~\Omega$ и разделительного конденсатора $10~\mu F$. Вместо $68~\Omega$ резистора можно также использовать индуктивность 1~mH. Без дополнительного фильтра мой тестер с дисплеем ОЛЕД определял остаточные токи в коллекторах биполярных транзисторов.

Также нужно проверить расположение выводов Вашего ОЛЕД дисплея. Некоторые модули имеют отличие в расположении GND и VCC.

Рис. 2.10. Подключение графического ОЛЕД дисплея с И²Ц интерфейсом

Для подключения к контроллерам серии АТмега644 вместо портов ПБ3 (СЦЛ) и ПБ4 (СДА) используюця порты ПД5 и ПЦ. Для микроконтроллеров серии АТмега1280 используюця контакты ПА5 (СЦЛ) и ПА4 (СДА). Для замены символьного дисплея на графический можно использовать переходную печатную плату-адаптер с разъемом аналогичным символьному ЛЦД, так как все сигналы и питание на нем доступны.

Намного проще подключить дисплей с контроллером СТ7920, потому что контроллер поддерживает напряжение питания $5\ V$. Дисплей должен поддерживать режим 128ш64 точек. Модуль дисплея с контроллером СТ7920 может быть подключен по 4-бит параллельному интерфейсу или по специальному, последовательному интерфейсу, согласно рисунка 2.11.

Рис. 2.11. Подключение индикатора с контроллером СТ7920

Для двух типов подключения индикатора с контроллером СТ7920 в Макефиле должна быть установлена опция «ЩИТХ_ЛЦД_СТ7565 і 7920». Кроме того, при подключении по последовательному интерфейсу, надо установить и опцию «ЦФЛАГС $\mathfrak b$ і -ДЛЦД_ИНТЕРФАЦЕ_МОДЕ $\mathfrak l$ 5».

В таблице 2.4 показано подключение различных микроконтроллеров по последовательному интерфейсу с опциями ИНТЕРФАЦЕ_МОДЕ 5 (СТ7920) и 7 (ССТ803).

Контроллер	м644	м644	м1280	м328
СТРИП_ГРИД_БОАРД	_	1		
Сигнал:				
EH	ПБЗ	ПБ6	ПА5	ПД5
Б0, Р/Щ	ПБ4	ПБ7	ПА4	ПЏ
PECET	ПБ2	ПБ4	ПА0	ПД0

Таблица 2.4. Порты для последовательного подключения различных контроллеров

Так же как и в случае применения других графических индикаторов, для дисплея с контроллером СТ7920, опциями ЛЦД_СТ7565_X_ФЛИП и ЛЦД_СТ7565_В_ФЛИП можно изменить ориентацию выводимого изображения.

Особым случаем являеця подключение дисплеев с контроллером HT7108 (КС0108, С6Б0108). Поскольку эти дисплеи используют только параллельный 8-битный интерфейс, необходимо применение последовательно - параллельного преобразователя интерфейсов. Простейший способ — использование микрошемы 74ХЦТ164 или 74ХЦТ595. Вариант такого подключения показан на рисунке 2.12.

Рис. 2.12. Подключение графического дисплея с HT7108 контроллером

Так как некоторые модули ЛЦД различаюця по расположению выводов, перед подключением Вы должны проверить цоколёвку Вашего дисплея. Некоторые различия в расположении выводов для серии ЛЦД ${\rm AB}\Gamma128064$ приведены в таблице 2.5.

	128064X	128064Γ	128064Ц	128064Б
Сигнал				
ВДД (5В)	1	2	4	2
ВСС (ГНД)	2	1	3	1
ВО (Дриве)	3	3	(5)	3
ДБ0-ДБ3	4-7	7-10	9-12	7-10
ДБ4-ДБ7	8-11	11-14	13-16	11-14
ЦС1	12	15	1	15
ЦС2	13	16	2	16
Ресет	14	17	-	17
Р/Щ	15	5	7	5
PC	16	4	6	4
E	17	6	8	6
BEE	18	18	-	18
ЛЕДА	19	19	17	(19)
ЛЕДК	20	20	18	=

Таблица 2.5. Различие в цоколёвке НТ7108 модулей

В таблице 2.6 показано подключение по последовательному интерфейсу индикаторов НТ7108 к различным микроконтроллерам.

Контроллер	м644	м1280	м328
Сигнал:			
EH	ПБ3	ПА5	ПД5
PC	ПБ2	ПА4	ПД4
Б0	ПБ2	ПА4	ПД4
ЦС1	ПБ7	ПАЗ	ПЅ
ЦС2	ПБ5	ПА1	ПЪ
ЦЛК	ПБ6	ПА2	ПЏ
ПЦЛК	ПБ4	ПАО	ПД0

Таблица 2.6. Подключение индикаторов с НТ7108 по последовательному интерфейсу

Вы также можете использовать дисплей с контроллером ПЦФ8814, который обычно используеця, например, в Нокиа 1100. Вы должны проверить, какой интерфейс контроллера используеця в Вашем модуле дисплея. Контроллер ПЦФ8814 может поддерживать СПИ-интерфейс 3-х проводной или 4-х проводной, ${\rm И}^2$ Ц-интерфейс и специальный 3-х проводной, который ждёт сигнал данные/команда в качестве первого бита в 8 битных данных. Потому, что дисплей поддерживает только 9Щ65 пикселей, большие иконки для транзисторов не используюця с этим контроллером. Вывод результатов похож на вывод для символьных дисплее. Как и большинство графических дисплеев, этот контроллер работает с 3, 3 V. Поэтому требуеця преобразователь уровней логических сигналов для 5 V выходов АТмега. Для СПИ интерфейса и 3-х проводного интерфейса Вы можете использовать опцию в макефиле ЛЦД_СПИ_ОПЕН_ЦОЛ («открытый коллектор» портов АТмега). Вы должны использовать «Пулл-Уп» резисторы или не устанавливать опцию ПУЛЛУП_ДИСАБЛЕ в макефиле. В настоящее время с контроллером ПЦФ8814 протестирован только 3-х проводной интерфейс.

Порт	ПЦФ8814	ПЦФ8814	ПЦФ8814	Дополнительная
	СПИ	3-х проводной	И²Ц	функция
ПДО	ЛЦД-РЕСет	ЛЦД-РЕСсет		
ПЪ	ЛЦД-Д/Ц	ЛЦД-СЦЕ		Энкодер 2
ПЏ	ЛЦД-СЦЛК	ЛЦД-СЦЛК	ЛЦД-СДИН	
ПЅ	ЛЦД-СДИН	ЛЦД-СДИН		Энкодер 1
ПД4				Внешняя частота
ПД5		ЛЦД-ЕН	ЛЦД-СЦЛК	

Таблица 2.7. Назначение контактов для различных типов интерфейсов контроллера ПЦФ8814

Ишодный код для поддержки контроллера $\Pi \coprod \Phi 8812$ с 102 m65 пикселей также реализован, но, пока, не тестировался.

2.2.7 Подключение графического цветного дисплея

В предложениях китайских продавцов встречаюця дешевые модули цветных дисплеев с интерфейсом СПИ. На рисунке 2.13 показан вид сзади двух поддерживаемых дисплеев с 128ш128 и 128ш160 пикселей. Размер модулей очень мал, поэтому текст и символы очень мелкие. Но, в целом, внешний вид четкий и ясный.

Рис. 2.13. Вид сзади двух цветных ЛЦД

Модуль 128ш128 пикселей использует контроллер ИЛИ9163. Модуль 128ш160 пикселей использует контроллер очень близкий к СТ7735 контроллеру. Модули тестировались с платой адаптера, которая соединяет сигналы СПИ и питание выводов для нормального отображения символов. Адаптация выходных уровней 5 V сигналов АТмега к уровню 3, 3 V сигналов входов контроллера обеспечиваеця последовательными $10k\Omega$ резисторами. Наличие подсветки (ЛЕД) обязательно, т.к. без нее выводимую информацию невозможно прочесть. Из-за высокого разрешения по вертикали можно отобразить несколько текстовых строк в этих модулях. Для дисплея 128ш128 пикселей можно отобразить 8 строк текста шрифтом 12ш8, для дисплея 128ш160 пикселей получим 10 строк текста. На рисунке 2.14 Вы можете видеть результат измерения германиевого транзистора на дисплее 128ш128 пикселей.

Рис. 2.14. Измерение биполярного ПНП транзистора

Цветность модулей в настоящее время не используеця. Цвет фона и цвет отображаемых элементов можно изменить в файле лид_дефинес.х или в Макефиле. Контроллер использует программное 16-битное управление цветностью. Цвет отображаемой информации может быть изменен параметром ЛЦД_ФГ_ЦОЛОР, а цвет подсветки параметром ЛЦД_БГ_ЦОЛОР.

2.3 Указания по сборке Тестера

В Тестере может использоваться ЛЦД-дисплей 2ш16, программно совместимый с ХД44780 или СТ7036. Вы должны учитывать ток, необходимый для подсветки, некоторым ЛЦД-дисплеям нужен ток ниже, чем другим. Я пытался применить ОЛЕД-дисплей, но он стал причиной помех при измерениях для АТмега, и я его не рекомендую. Также использование ОЛЕД-дисплея вызвало проблему загрузки специального символа для отображения резистора.

Чтобы получить максимальную точность измерения, резисторы Р1 - Р6 680 Ω и 470 $k\Omega$ должны быть точными (0,1%). В Тестере могут использоваться АТмега8, АТмега168 и АТмега328. Для возможности использовать все функции, рекомендуеця установить АТмега328.

Сначала Вы должны собрать все элементы Тестера на печатной плате без микроконтроллера. В качестве ИЦ2 рекомендуеця использовать стабилизатор с малым падением напряжения МЦЬ702-5002, потому что он потребляет всего 2 μA и может выдавать 5 V при входном напряжение всего 5,4 V. Но он несовместим по выводам с известным 78Л05 в корпусе ТО92 .

После проверки правильности монтажа, необходимо подсоединить батарею или источник питание к плате без ЛЦД-дисплея и микроконтроллера. При нажатой кнопке **TECT** должно присуцтвовать напряжение 5 V на выводах питания микроконтроллера и ЛЦД дисплея. Если отпустить кнопку **TECT**, напряжение должно исчезнуть. Если напряжения в норме, то необходимо отключить питание, **правильно** вставить микроконтроллер и подключить ЛЦД-дисплей. Перед подключением ЛЦД дисплея необходимо внимательно проверить правильность соединения выводов питания ЛЦД дисплея (т.к. на некоторых ЛЦД дисплеях они подключены наоборот) с ГНД и ВЦЦ платы Тестера!

Если Вы уверены, что все в порядке, можно подсоединить питание. Если Вы уже запрограммировали АТмега, то можете кратковременно нажать кнопку **TECT**. При кратковременном нажатии кнопки **TECT** светодиод ЛЕТ и подсветка ЛЦД-дисплея должны включиться. Если Вы отпускаете кнопку **TECT**, светодиод ЛЕТ не должен гаснуть как минимум несколько секунд (зависит от установленных параметров при компилляции программного обеспечения). Заметьте, что программное обеспечение для микроконтроллера должно быть для используемого типа микроконтролле Программа для АТмега8 не работает на АТмега168!

2.4 Доработки для версий Тестера Маркус Ф.

Контроль напряжения. Проблема проявляеця следующим образом: Тестер немедленно отключаеця при каждом включении. Причиной может стать установка фьюзов (Макефиле) контроля за понижением напряжения питания АТмега на $4,3\,V$. Проишодит это следующим образом: порт ПД6 пытаеця зарядить конденсатор Ц2 $100\,nF$ до уровня ВЦЦ, что вызывает провал напряжения ВЦЦ ($5\,V$). Для решения проблемы конденсатор Ц2 может быть уменьшен до $<10\,nF$. Если возможно, то включить последовательно в цепь ПД6 резистор сопротивлением более $>220\,\Omega$.

- **Улучшение питания шемы.** Если Тестер запускаеця при нажатии на кнопку **TECT**, но ключ сразу же отпускаеця, то часто причина этой проблемы в питании. Проблема порождена большим током подсветки ЛЦД-дисплея. Резистор Р7 к базе П-H-П-транзистора Т3 был величиной 27 $k\Omega$, чтобы уменьшить потребление энергии. Чтобы улучшить переключение при более низком напряжении батареи или при низком коэффициенте усиления П-H-П транзистора Т3, необходимо уменьшить сопротивление до 3, 3 $k\Omega$.
- Конденсатор Ћ в АРЕФ. Многие используют на контакте АРЕФ конденсатор на 100~nF так же, как и Маркус Ф. Пока не было необходимости менять опорное напряжение АЦП это было хорошим решением. Программное обеспечение для АТмега168 и АТмега328 использует автоматический выбор внутреннего опорного напряжения АЦП 1,1~V, если входное напряжение ниже 1~V. Это позволяет улучшить разрешение АЦП при небольших входных напряжениях. К сожалению, переключение опорного напряжения от 5~V до 1,1~V проишодит очень медленно. По этой причине нужно учитывать дополнительное время ожидания 10~ms. При уменьшении величины конденсатора до 1~nF, это время может быть существенно уменьшено. Я не заметил ухудшения качества измерения при этом изменении. Даже с удалённым конденсатором нет существенного изменения результатов измерения. Если Вы предпочитаете оставить конденсатор на 100~nF, то можете отключить опцию НО_АРЕФ-ЦАП в Макефиле, для активации увеличения времени ожидания в программе.
- **Установка кварца на** 8 MHz. Вы можете установить кварц на 8 MHz с задней стороны печатной платы непосредственно к портам ПБ6 и ПБ7 (выводы 9 и 10). Моя собственная доработка была сделана без конденсаторов 22~pF и работала хорошо со всеми проверенными АТмега. Вы так же можете, выбрав фьюзы, использовать внутренний генератор на 8 MHz для получения лучшего разрешения по времени при стабильных измерениях величины ёмкостей.
- Сглаживание питающего напряжения. В оригинальной шеме Маркус Ф. применен только один конденсатор 100~nF по напряжению ВЦЦ. Это не дает приемлемую фильтрацию. Вы должны, по крайней мере, использовать конденсаторы ёмкостью 100~nF около выводов питания АТмега и возле выводов входа и выхода стабилизатора напряжения. Дополнительные конденсаторы $10~\mu F$ (электролитические или танталовые) на входе и выходе стабилизатора напряжения повышают устойчивость напряжения. Танталовый СМД конденсатор $10~\mu F$ легче использовать со стороны печатных дорожек, и он имеет обычно более низкое значение ECP.
- Выбор микроконтроллера ATмега. Для основных функций Тестера возможно использование ATмега8, Флаш память в ней используеця практически на 100%. ATмега168 или ATмега328 совместимы по выводам с ATмега8, я могу рекомендовать замену. При использовании ATмега168 или ATмега328 Вы получаете следующие преимущества: Самопроверка с автоматически калибровкой.

Улучшение качества измерения с автоматическим переключением масштаба АЦП.

Измерение индуктивностей при сопротивлении ниже 2100 Ω.

Измерение величины ECP конденсаторов с ёмкостью выше $20 \ nF$.

Измерение резисторов ниже $10~\Omega$ с разрешением $0,01~\Omega$. Использование порта ПЦ3 в качестве последовательного выхода или аналогового входа для измерения внешнего напряжения.

Оцуцтвующие прецизионное опорное напряжение. Программное обеспечение должно обнаружи недостающие элементы опорного напряжения на выводе ПЦ4. В этом случае при включении питания во второй строке ЛЦД-дисплея должно появиться сообщение «Но ВЦЦ 1 ш.шВ». Если это сообщение появляеця при установленном ИОН, Вы должны подключить резистор $2,2~k\Omega$ между выводом ПЦ4 и ВЦЦ.

2.5 Расширенная шема с АТмега644 или АТмега1284

Расширенная шема для контроллеров АТмега644/1284 разработана совместно с Ницк Л. из Украины. Шема 2.15 позволяет расширить диапазон измеряемых частот, а также содержит шему тестирования кварцев. Хотя расширенная шема почти идентична шеме на рисунке 2.1, назначение портов несколько отличаеця. Поворотный энкодер на шеме 2.6 должен быть подключен к ПБ5 и ПБ7 (вместо ПЪ и ПЅ). Оба сигнала, а также ВЦЦ и ГНД доступны на разъеме программирования ИСП. Таким образом, подключение поворотного энкодера не должно вызвать затруднений. Делитель 16:1 в 74ХЦ4060 всегда используеця для частот выше 2 MHz. Он также может быть использован для частот от 24~kHz до 400~kHz для повышения точности измерения частоты с помощью подсчета периода. Для коммутации переключений (делитель частоты и кварцевый генератор) используеця аналоговый переключатель 74ХЦ4052. Таблица 2.8 показывает варианты подключения дисплея к портам АТмега324/644/1284. Подключение индикатора с использованием интерфейса $И^2$ Ц возможно только для индикаторов с контроллером ССТ306. Сигналы интерфейса U^2 Ц требуют установки подтягивающих резисторов $4,7k\Omega$ к напряжению 3,3~V. Сигналы шины U^2 Ц реализованы только путем переключения портов АТмега к 0~V.

Рис. 2.15. Расширенная шема Транзистор Тестера с АТмега644

Порт	Символьный	Графический ЛЦД	Графический ЛЦД	Дополнительные
	ЛЦД	СПИ 4-щире	$И^2$ Ц	функции
ПБ2	ЛЦД-РС			
ПБЗ	ЛЦД-Е	(ЛЦД-ЦЕ)	ЛЦД-СЦЛ	
ПБ4	ЛЦД-Д4	ЛЦД-РЕСТ	ЛЦД-СДА	
ПБ5	ЛЦД-Д5	ЛЦД-РС		ИСП-МОСИ
				поворотный энкодер 2
ПБ6	ЛЦД-Д6	ЛЦД-СЦЛК		ИСП-МИСО
ПБ7	ЛЦД-Д7	ЛЦД-СИ		ИСП-СЦК
				поворотный энкодер 1

Таблица 2.8. Подключения дисплеев к портам АТмега 324/644/1284

Вы также можете подключить дисплей с контроллером HT7108 (КС0108, С6Б0108) к тестеру, собранному на ATмега644 или ATмега1284 используя небольшую шему подключения показанную на рисунке 2.16. Вы также должны учитывать различие в назначении контактов дисплейных модулей с контроллерами HT7108, как показано в таблице 2.5 на странице 20.

Рис. 2.16. Подключение дисплея с контроллером HT7108 к ATмега644/1284

2.6 Шема с использованием ATмега1280 или Ардуино Мега

Тестер может быть создан с использованием микроконтроллера ATмега1280 или ATмега2560, а также построен на базе Ардуино Мега. Шема показана на рисунке 2.17. Назначения контактов Ардуино для подключения дисплея указаны зеленым цветом. Компоненты, показанные красным цветом, не обязательны для правильной работы Тестера. Контроллер ATмега2560 имеет большое количество портов, но только один порт имеет функции, необходимые для обеих методик измерения частоты. Порт должен быть одновременно таймером/счетчиком для подсчета внешних импульсов и поддерживать внешнее прерывание при изменении уровня сигнала. Этими функциями обладает только один порт ПЕ6 (Т3/ИНТ6). На остальных портах таймеров/счетчиков ПД7 (Т0), ПД6 (Т1), ПХ7 (Т4) и ПЛ2 (Т5) оцуптвует внешнее прерывание. К сожалению, порт ПЕ6 не подключен к ленточному гнезду Ардуино. Порт ПЕ5 (вывод 7) подключен к контакту 3 разъема ШИМ и перемычкой может быть соединен с портом ПЕ6 (вывод 8) АТмега2560.

Выходной сигнал генератора частоты можно получить на порту ПБ6 (ОЋБ). Это порт подключен к контакту 12 разъема ШИМ. ИСП-разъем не требуеця, так как программа может быть установлена при помощи загрузчика УСБ Ардуино Мега. С использованием загрузчика есть небольшая задержка запуска программы.

Рис. 2.17. Шема Тестера с использованием АТмега1280, АТмега2560 или Ардуино Мега

Конечно, Вы можете подключить все поддерживаемые дисплеи и к ATмега1280 или ATмега2560 в соотвецтвии с таблицей 2.9.

Порт	Символь-	CT7565	CT7920	HT7108	ССЪ306	Дополнительные
	ный ЛЦД	СПИ	сериал	сериал	И²Ц	функции
ПАО	ЛЦД-Д4	ЛЦД-РЕСТ	ЛЦД-РЕСЕТ	ХЦ595-РЦК		
ПА1	ЛЦД-Д5	ЛЦД-РС		ЛЦД-ЦС2		2 канал энкодера
Π A2	ЛЦД-Д6	ЛЦД-СЦЛК		ХЋ64-ЦЛК		
ПАЗ	ЛЦД-Д7	ЛЦД-СИ		ЛЦД-ЦС1		1 канал энкодера
Π A4	ЛЦД-РС		ЛЦД-Б0	ЛЦД-РС	ЛЦД-СДА	
				XTi64-CEP		
Π A5	ЛЦД-Е	(ЛЦД-ЦЕ)	ЛЦД-ЕН	ЛЦД-ЕН	ЛЦД-СЦЛ	
ПА7	кнопка					

Таблица 2.9. Подключение различных дисплеев к АТмега 1280/2560

2.7 Китайские клоны с символьным дисплеем

По имеющейся у меня информации, Тестер с символьным индикатором выпускают в Китае в двух версиях. Первая модель первого дизайна от Маркус Ф. без порта ИСП. АТмега8 помещен в панельку, поэтому, Вы можете заменить его на АТмега168 или АТмега328. Для этой версии Вы должны рассмотреть все пункты раздела 2.4. Для лучшей стабилизации напряжения питания дополнительный керамический конденсатор на $100\ nF$ должен быть установлен поблизости ВЦЦ-ГНД и выводов АВЦЦ-ГНД АТмега. Потому, что в тестере оцуцтвует разъем ИСП, Вы должны его смонтировать или использовать для программирования АТмега программатор с внешним разъемом. Кроме того, Вы должны иметь в виду, что, если Вы устанавливаете кварц на $8\ MHz$, то у Вашего внешнего программатора ИСП должна быть частота синхронизации или кварц для программирования.

Вторая версия Тестера с элементами СМД. Там установлен АТмега168 в СМД корпусе 32ТЧФП. К счастью, установлен разъём ИСП с 10 контактами для программирования. Я проанализировал версию платы «2.1 2012/11/06». Нашел одну ошибку - элемент «Тэ»: установлен стабилитрон, а должен быть точный ИОН на 2,5 V. Стабилитрон необходимо удалить, а на его место установить ИОН ЛМ4040АИЗ2.5 или ЛТ1004ЦЗ-2.5. Недостающее опорное напряжение учитываеця программным обеспечением даже, если ИОН не установлен. Мой образец был поставлен с программным обеспечением версии 1.02к. Разъём ИСП с 10 контактами не был установлен, и я изготовил переходник от ИСП6 к ИСЬ0. У моего программатора цепь ГНД подведена к контакту 10, а на плате цепь ГНД подведена к контактам 4 и 6 ИСП. Маркировка АТмега 168 была стёрта, и не было никакой документации. Фьюзы блокировки АТмега были установлены таким образом, что бы считывание памяти было невозможно. Но установить программное обеспечение версии 1.05к удалось без проблем. У другого пользователя есть проблемы с программным обеспечением той же самой версии 1.05к. У этого пользователя китайская плата «2.2 2012/11/26». Программное обеспечение начинает работать, если установить дополнительный АТмега. Программное обеспечение версии 1.05к использует режим сна АТмега в течение времени ожидания измерения. По этой причине ток потребления изменяеця часто и регулятор напряжения нагружаеця больше. Далее я заметил, что напряжение ВЦЦ блокировано керамическим конденсатором 100~nF и электролитическим конденсатором $220~\mu F$ поблизости от $78\,\Pi 05$. Входное напряжение $9\ V$ блокировано теми же самыми конденсаторами, но не на входе стабилизатора, а в эмиттере П-Н-П-транзистора (параллельно батарее). Дорожка от АТмега168 до испытательного порта настолько тонкая, что сопротивление $100~m\Omega$ не сможет быть измерено. Это будет причиной измерения сопротивления минимум 0,3 Ω для двух соединённых выводов. При измерении ЕСР эту величину обычно можно скомпенсировать. Программное обеспечение, начиная с версии 1.07к, учитывает это смещение для того, чтобы измерять резисторы сопротивлением ниже $10~\Omega$.

2.8 Китайские клоны с графическим дисплеем

Новые сборки тестера, как, например, версия от Фиш8840 используют 128ш64 точки графический дисплей. Эта версия использует модифицированную логику управления питанием и кнопками. Рисунок 2.18 показывает часть модифицированной шемы.

Рис. 2.18. Часть шемы версии от Фиш8840

Как Вы можете видеть, вместо ишодного коэффициента делителя, соотношение сопротивлений резисторов в цепи измерения напряжения батареи, Р8 и Р15 выбрано 2:1. Кроме того, резистор Р15 соединен непосредственно с батареей, что приводит к потреблению энергии в выключенном состоянии. Резистор Р15 должен быть подключен к стоку Ч1 или на вход регулятора напряжения для предотвращения ненужного рашода энергии батареи. Соотвецтвующие изменения в печатной плате изображены на рисунке 2.19. Резистор Р15 оцоединён от дорожки, идущей от Р17 к Д5 и при помощи эмалированной проволоки подсоединён к стоку Ч1.

Рис. 2.19. Вариант изменения в печатной плате Фиш8840

Коэффициент делителя для измерения напряжения батареи должен быть задан в Макефиле (например: БАТ_НУМЕРАТОР: 66) после внесения изменений в оригинальное программное обеспечение.

Для адаптации рабочего напряжения к напряжению контроллера дисплея, модуль дисплея тестера Фиш8840 оснащен регулятором напряжения $3,3\ V$. Уровень логических сигналов от ATмега – $5\ V$. Для адаптации уровня логических сигналов ATмега к уровню сигналов контроллера дисплея рекомендуеця адаптер, изображенный на рисунке 2.20. Сигнальные линии четырех

данных оснащены четырьмя резисторами $2.7~k\Omega$ подсоединёнными последовательно для каждого сигнала на небольшой макетной плате. Для подсоединения платы дисплея к плате тестера Фиш8840, в этом случае, необходимо использовать более длинные или дополнительные межплатные дистанцирующие стойки.

(а) Вид дисплея с адаптером

(б) Полностью собранный Тестер

Рис. 2.20. Адаптер для коррекции подключения дисплея

Вместо приведенной выше модификации, Вы можете также использовать специальный режим вывода сигналов 4 СПИ АТмега, задав опцию в макефиле ЛЦД_СПИ_ОПЕН_ЦОЛ. С помощью этой опции, выходы не достигают уровня ВЦЦ, так как во время выхода высокого уровня подключаюця «подтягивающие резисторы» на весь период высокого уровня. Если опция ПУЛЛУП_ДИС задана, то необходимо установить дополнительный внешний резистор для сигнала «РЕСЕТ» (ПД0). Поскольку сигналы данных никогда не достигают уровня ВЦЦ, уровень 3, 3 V контроллера дисплея не будет превышен. В моей версии тестера Фиш8840, все сигналы дисплея подключены напрямую к разъему дисплея. Таким образом, Вы можете подготовить печатную плату для подключения символьного дисплея, если на ней установлен ответный разъем и потенциометр для регулировки уровня контрастности. Однако контакт 15 для подсветки подключаеця непосредственно к ВЦЦ Тестера. Если Вы подключаете дисплей по такой шеме, Вы должны проверить, наличие ограничительного резистора подсветки на плате модуля дисплея. Конечно, Вы должны скомпилировать программное обеспечение для такого подключения дисплея. Такая аппаратная доработка проверена для платы Фиш8840.

Все попытки изменить программное обеспечение Вы делаете на свой страх и риск. Никаких гарантий не может быть дано по поддержанию новых версий. К сожалению, ишодная китайская микропрограмма не может быть сохранена из-за установленных битов защиты ATмега328. Так что нет способа вернуть прибор в ишодное состояние.

Дополнительная версия с графическим дисплеем ЩЕИ_М8 печатной платы изображена на рисунке 2.21. Эта сборка использует аккумулятор ЛиИон AA размера в качестве источника питания, который может быть заряжен от микро УСБ разъема. Эксплуатировать Тестер можно также без аккумулятора, при питании только от УСБ.

Рис. 2.21. Китайский клон ЩЕИ_М8

Отрадно, что сигнальные линии дисплея (на плате адаптера) оснащены резисторами, включёнными последовательно. Вы можете увидеть резисторы на рисунке 2.22 слева. Таким образом, Вы не должны бояться, что $5\ V$ сигналы АТмега могут вызвать чрезмерное увеличение предельного логического уровня $3,3\ V$ контроллера дисплея.

(а) Плата адаптера дисплея

(б) Основная плата

Рис. 2.22. Тестер ЩЕИ_М8 в разобранном виде

При обновлении до версии 1.12к обнаружены некоторые проблемы. Если установить Ештендед Фусе 0ш04 (0ш Φ Ц), как рекомендуеця, некоторые измерения вызывали сброс процессора изза короткого провала напряжения «Брощн Оут». Я добавил дополнительный керамический конденсатор $4.7~\mu F$ по входу регулятора напряжения и $10~\mu F$ керамический конденсатор на выходе (ВЦЦ) регулятора. И до, и после обновления я заметил, что в биполярных транзисторах, на этой плате, определяеця дифференциальный ток коллектора (ИЦЕО или ИЦЕс) около $1\mu A$. После замены неизвестного ЛДО регулятора напряжения на МЦБ702-5002 этот эффект исчез. Рисунок 2.23 показывает измененную печатную плату с конденсаторами и регулятором МЦБ702, установленными навесным монтажом. Если Вы не желаете прислушиваться к совету, Вы должны установить Ештендед Фусе 0ш07 (0ш Φ Ф) для поддержания бесперебойной работы. С этой настройкой кратковременные провалы не будут обнаружены.

Рис. 2.23. Тестер ЩЕИ_М8 после модификации

Дополнительная китайская версия с графическим дисплеем – тестер «ЛЦД-Т4» на печатной плате с жёлтой маской. Я снял дисплей для замены программного обеспечения на новую версию. На правом рисунке 2.24 Вы можете увидеть в правом верхнем углу отверстия для установки ИСП разъёма с правильной разводкой для 6-ти контактного подключения программатора. Для программирования АТмега я не устанавливал штыревой разъём. Я только вставил штыревой разъем в отверстия и придержал разъём шлейфа во время программирования. При таком способе штыревой разъём может быть легко удален и дисплей установлен на место для возвращения первоначального вида прибора. Китайское программное обеспечение может быть заменено на версию 1.12к без каких-либо заметных проблем. Установка Ештендед Фусе 0ш04 (0шФЦ) для проверки сброса из-за короткого провала напряжения «Брощн Оут» каких либо сюрпризов не принесла.

(а) В собранном виде

(б) Со снятым дисплеем

Рис. 2.24. Внешний вид Т4 тестера

Вы можете увидеть стойки 5 mm и обновленные кабели с зажимами измерения на фотографии задней стороны на рисунке 2.25. Поскольку сигналы данных для графического контроллера дисплея не имеют преобразователя логических уровней (5 V -> 3.3 V), рекомендуеця установить опцию ЛЦД_СПИ_ОПЕН_ЦОЛ. В связи с тем, что плата не может быть легко модернизирована «пулл-уп» резисторы могут быть использованы путем отключения опции ПУЛЛУП_ДИСАБЛЕ в макефиле. Эта плата являеця меньше практичной для последних расширений, а также замену дисплея трудно реализовать.

(а) Сторона компонентов

(б) С кабелями измерения

Рис. 2.25. Обратная сторона Т4 тестера

Еще одна версия китайского клона с графическим дисплеем имеет название «ГМ328». В этой версии адаптер графического индикатора подключен через 16-пиновый разъем к основной плате. Порт ПД5 АТмега подключен через вывод 6 разъема на ЦЕ (Чип Енабле) вход графического контроллера. Сигнал СЕ также подключен к 0 V (ГНД) на плате адаптера. Результатом такого подключения будет короткое замыкание в случае переключения порта ПД5 АТмега на выход 5 V. В новых версиях программного обеспечения выводиця сигнал ЦЕ, даже если он не являеця необходимым. Для правильной работы «ГМ328» тестера с новыми версиями, Вы должны оцоединить сигнал ЦЕ (порт ПД5 АТмега) от вывода 6 в разъеме графического адаптера.

2.9 Китайские наборы с графическими дисплеями

Появились две новые версии набора с графическим дисплеем и поворотным энкодером. Первый набор использует дисплей с контроллером СТ7565 или совместимым (128х64 пикселей). В дополнение к поворотному энкодеру, предусмотрен вход для измерения частоты. Для тестовых площадок используеця 14-контактный разъем Тештоол, три контакта под пайку терминалов для подключения кабелей и тестовые площадки для теста деталей СМД. На фотографии 2.26 показан смонтированный прибор. Один из двух нагрузочных конденсаторов кварца $22\ pF$ заменен триммером. Триммером можно подстроить частоту генерации кварца для повышения точности в режиме частотомера и генератора.

(а) смонтированный вид

(б) со снятым дисплеем

Рис. 2.26. Собранный набор с дисплеем 128х64 пикселей

Позже появился набор, который использует цветной дисплей с контроллером СТ7735 (160ш128 пикселей), дополнительно оснащен входом для измерения напряжения и выходом для генератора частот. Но выход генератора не буферизирован, он просто подключен параллельно к контакту

ТР2. Вольтметр может измерять положительное постоянное напряжение до $50\ V$. Преобразователь напряжения ДЦ-ДЦ для измерения стабилитронов не предусмотрен. На фотографиях 2.27 показан этот собранный набор. Кроме того, в этой версии один нагрузочный конденсатор кварца $22\ pF$ заменен триммером (зеленого цвета).

(а) смонтированный вид

(б) со снятым дисплеем

Рис. 2.27. Собранный набор с цветным 160ш128 пикселей дисплеем

Оба набора используют АТмега 328 П в ДИП корпусе с установкой в панельку и не оснащены разъемом ИСП для обновления более новыми версиями программного обеспечения. Первый комплект использует только выводные компоненты для монтажа печатной платы. Я получил результат измерения резисторов $680~\Omega$ и $470~k\Omega$ с допуском 0.1% в этом китайском комплекте. Также в набор добавлен конденсатор 220~nF для калибровки. Комплект с цветным дисплеем оснащён разъемом для подключения внешнего источника питания постоянного тока вместо 9~V батареи. Некоторые СМД компоненты были смонтированы на основной плате, так что собрать тестер из этого набора не сложная задача. Небольшой недостаток версии с цветным дисплеем — скорость вывода на экран. Особенно это заметно при перемещении по пунктам меню. В любом случае, цветной дисплей имеет большее разрешение, что позволяет отобразить больше информации сразу.

Оба набора используют стабилизатор напряжения $3.3\ V$ для питания контроллера дисплея на плате индикатора. Только контактный разъем должен быть припаян на печатной плате дисплея. В цветной версии набора используеця буфер ЦД4050, для адаптации логических уровней сигнала. Я не обнаружил каких-либо элементов для адаптации уровней сигнала на плате с дисплеем СТ7565. Вероятно, выбранная версия контроллера допускает уровни сигнала $5\ V$ с АТмега328. Я не обнаружил защитные диоды на входе сигналов со стороны питания $3.3\ V$ для данного типа контроллера.

2.10 И еще один клон из Хиланд М644

Эта реплика основана на принципиальной электрической шеме Ника Л. из Украины, см. Иллюстрацию 2.15 на странице 26.

Тестер работает с кнопкой, которая являеця одновременно кнопкой и кодером. Предлагает следующие дополнения:

- частота измерения
- генератор ф
- 10-битный ШИМ
- импульсный энкодер
- измерение кварца
- Определение напряжения и десятков диодов (почти до 50В).

Плата оснащена 8 МГц кварцем. 16 МГц кварц будет лучше Модифицировать триммер (более точную частоту) сложно.

Контакты для интерфейса ИСП находяця в 6-контактном ряду отверстий под подключаемый модуль дисплея, который занят следующим образом:

слева направо: 1 -сброс; 2 -СЦК; 3 -МИСО; 4 -МОСИ; 5 -ѣ5В; 6 -ГНД.

Чтобы иметь возможность обновить тестер, вам нужен относительно простой кабель можете создать себя. При поставке испытательное основание с нулевым усилием соединяеця с платой через соединительные планки.

В тестере, показанном ниже, основание было припаяно непосредственно, и полоса сокета сохранена с этим Припаяны к существующему ленточному кабелю с разъемом и закреплены термоусадочной трубкой.

Рис. 2.28. 6 и 10-контактный кабель для программирования

(б) штифты выше для меню выбора и ИДЕ

Рис. 2.29. Хиланд Тестер с тестовой базой и дисплеем 128 ш 64 пикселей

Тестовые порты ТЬ, ТЪ и ТП3 используюця для автоматического распознавания компонентов и находяця на доске с номерами **1,1,1**; **2**; **3,3,3** в.

То же имя можно найти в поле теста СМД

и есть возможность паять свой собственный тестовый кабель.

Тестпорт ТЪ также используеця для вывода специальной функции "ф-Генератор". Контакты с маркировкой $\mathbf{J}\mathbf{\Phi}$ предназначены для измерения кристаллов кварца с низкой резонансной частотой,

и выводы с меткой $\mathbf{X}\mathbf{\Phi}$ предназначены для кристаллов с высокой резонансной частотой.

Пин Ф-ин используеця вместе с Гнд для частоты специальной функции.

И вывод **Вештъ** также используеця с **Гнд** для измерения напряжения **и** использует измерение стабилитрона.

Глава 3

Инструкция пользователя

3.1 Проведение измерений

Использовать Тестер просто, но требуюця некоторые пояснения. В большинстве случаев провода с «крокодилами» подключаюця к испытательным портам разъемами. Также могут быть подключены гнезда для транзисторов. В любом случае Вы можете подключаться тремя выводами к трем испытательным портам в любой последовательности. Если у элемента есть только два вывода, Вы можете подключиться к любым двум испытательным портам. Обычно полярность элемента не важна, Вы можете подключать выводы электролитических конденсаторов в любом порядке. Обычно минусовой вывод подключаеця к испытательному порту с более низким номером. Полярность непринципиальна, потому что измерительное напряжение находиця между $0,3\ V$ и $1,3\ V$. После подключения элемента, Вы не должны касаться его во время измерения. Если он не вставляеця в гнездо, то Вы должны прижать его через непроводящую прокладку. Вы не должны также прикасаться к изоляции проводов, связанных с испытательными портами результаты измерения могут быть искажены. После вывода на дисплей сообщения «Тестинг...», результат измерения должен появиться, примерно, после двух секунд. При измерении ёмкости конденсатора время окончания может увеличиваться пропорционально ёмкости.

Продолжительность измерения Тестера, зависит от конфигурации программного обеспечения.

Режим однократного измерения. Если Тестер сконфигурирован для однократного измерения (ПОЩЕР_ОФФ параметр установлен), то он отключаеця автоматически, после отображения результата в течение 28 секунд. Следующее измерение можно начать в течение времени отображения или после отключения, вновь нажав кнопку **TECT**. Следующее измерение может быть сделано с тем же самым или другим элементом. Если Вы не установили электронные элементы для автоотключения, то последний результат измерения будет отображаться, пока Вы не начнете следующее измерение или не выключите питание (необходим внешний выключатель).

Режим бесконечных измерений. Этот режим являеця конфигурацией без автоотключения. Обычно эта конфигурация используеця, если не установлен транзистор автоотключения. В этом случае, параметр ПОЩЕР_ОФФ отключаеця в Макефиле. Для этого режима необходим внешний выключатель. Тестер будет повторять измерения, пока питание не будет отключено.

Режим многократных измерений. В этом режиме Тестер отключиця не после одного измерения, а после заданного числа измерений. В этом случае параметру ПОЩЕР_ОФФ присваиваеця числовое значение, например 5. В стандартном режиме Тестер отключиця после 5 измерений без определения элемента. Если какой-либо элемент определен тестом. Тестер отключиця

после 10 измерений. Первое измерение с неизвестным элементом после серии измерений известных элементов обнулит результаты известного измерения. Также первое измерение известного элемента обнулит результат неизвестных измерений. Если элементы подключаюця периодически, то этот алгоритм может привести к почти бесконечной последовательности измерений без нажатия кнопки **TECT** в начале. В этом режиме есть характерная особенность длительности отображения. Если для того, чтобы включить Тестер, кнопка **TECT** нажата коротко, то результат измерения отображаеця в течение 5 секунд. Если Вы нажимаете и держите кнопку **TECT** до первого сообщения, то дальнейшие результаты измерения отображаюця в течение 28 секунд. Следующее измерение можно начать ранее, если нажать кнопку **TECT** во время отображения результата.

3.2 Меню дополнительных функций для АТмега 328

Если меню дополнительных функций доступно, то оно будет отображено после продолжительного $(>500\ ms)$ нажатия на кнопку **TECT**. Эта функция также доступна для других микроконтроллеров с объемом флэш-памяти не меньше 32К. Выбираемые функции отображаюця во второй строке дисплея в 2-х строчном ЛЦД или, как отмеченные, в третьей строке для 4-х строчных ЛЦД. В 4-х строчных ЛЦД во второй и четвертой строке отображаеця предыдущий и последующий пункт меню соотвецтвенно. После длительного времени ожидания, без каких либо действий, программа выходит из меню, возвращаясь к нормальной функции транзистор тестера. При кратковременном нажатии на кнопку **TECT**, осуществляеця переход к следующему пункту меню. При длительном нажатии кнопки **TECT** выбираеця или запускаеця отображаемая функция меню. После индикации последнего пункта меню «сщитч офф» проишодит переход на первый пункт меню.

Если в Вашем тестере установлен поворотный энкодер, Вы можете вызывать меню дополнительных функций также быстрым поворотом энкодера, когда результат предыдущего теста отображаеця. Функции меню можно выбрать медленным вращением энкодера в одном или другом направлении. Выбор или запуск отображаемого пункта меню осуществляеця только нажатием кнопки **TECT**. Параметры выбранной функции также могут быть выбраны медленным вращением энкодера. Быстрым поворотом энкодера осуществляеця возврат в меню дополнительных функций.

Фречуенцы (частотомер) Дополнительная функция «Фречуенцы» (частотомер) использует порт Π Д4 АТмега, который также подключен к Π ЦД-дисплею. Сначала измеряеця частота. Если частота ниже 25~kHz, то дополнительно измеряеця период входного сигнала, и значение этой частоты может быть вычислено с точностью до 0,001~Hz. Если параметр Π ОЩЕР_ОФФ установлен в Макефиле, то продолжительность измерения частоты ограничена до 8 минут. Измерение частоты может быть закончено нажатием кнопки **TECT** и Тестер перейдет в меню функций.

ф-Генератор (генератор частот) Если выбрана функция «ф-Генератор» (генератор частоты), то можно сгенерировать любую частоту между 1 Hz и 2 MHz. Вы можете задавать значение генерируемой частоты только в самом старшем разряде отображаемого в строке числа. Для старших разрядов чисел частот от 1 Hz до 10 kHz значения цифр изменяеця от 0 до 9. Для старших разрядов чисел задаваемой частоты выше 100 kHz значения цифр изменяеця от 0 до 20. В первой позиции строки задания частоты отображаеця символ > или < , более продолжительное (> 0.8 с) нажатие кнопки **TECT** осуществляет переход к старшему разряду в задаваемой частоте. Переход к младшему разряду числа задаваемой частоты, возможен при нажатии кнопки **TECT** > 0.8 с только тогда, когда

символ < отображаеця. Символ < отображаеця если в старшем разряде значение цифры равно 0 и текущая частота не ниже 1 Hz. Если выбрана частота 100 kHz или выше, то символ > заменяеця на букву P. Более продолжительное (> 2 с) нажатие кнопки **TECT** приведет к отключению генератора частоты и возврату к меню функций.

- 10-бит ПЩМ (10-бит ШИМ) Дополнительная функция «10-бит ПЩМ» (10-бит ШИМ) генерирует фиксированную частоту с возможностью регулировки ширины импульса на тестовом контакте ТЪ. При кратковременном (< 0,5 с) нажатии кнопки **TECT** ширина импульса увеличиваеця на 1%, с более длинным нажатием кнопки **TECT** импульс увеличиваеця на 10%. Если значение превысило 99%, то 100% вычитаеця из результата. При установленном параметре ПОЩЕР_ОФФ в Макефиле, генератор завершит работу после 8 минут без нажатия кнопки **TECT**. Завершить работу генератора можно так же длительным (> 1.3 с) нажатием кнопки **TECT**.
- **ЦѣЕСР ТЬ:3** Дополнительной функцией «ЦѣЕСР ТЬ:3» можно выбрать отдельное измерение ёмкости и ЕСР конденсаторов с помощью тестовых контактов ТЬ и ТП3. Конденсаторы от $2~\mu F$ до 50~mF могут быть измерены. Поскольку напряжение измерения составляет лишь около 300~mV, в большинстве случаев конденсатор может быть измерен непосредственно в шеме без предварительного демонтажа. При установленном параметре ПОЩЕР ОФФ в Макефиле, количество измерений ограничено до 250, но может быть начато немедленно снова. Серия измерений может быть завершена при длительном нажатии кнопки **ТЕСТ**.
- Циклическое измерение сопротивлений Пунктом меню 1 → 3 запускаеця циклическое измерение резисторов, подключённых к ТЬ и ТПЗ. Этот режим работы будет обозначен символами [P] справа в первой строке дисплея. Потому что метод измерения ЕСР не используеця в этом режиме, разрешение измерения резисторов меньше 10 Ω только 0.1 Ω. Если функция измерения сопротивлений настроена с дополнительным измерением индуктивности то символы 1 → 3 будут отображаться в пункте меню. Тогда циклическая функция измерения сопротивлений включает проверку индуктивности для резисторов меньше 2100 Ω.
 В этом режиме справа в первой строке дисплея отобразяця символы [РЛ]. Для резисторов меньше 10 Ω используеця тот же метод измерения что и для измерения ЕСР, если индуктивность не обнаружена. Таким образом, точность измерения резисторов меньше 10 Ω может достигать значения 0.01 Ω. Измерения повторяюця без нажатия кнопки ТЕСТ. При нажатии кнопки ТЕСТ осуществляеця выход из режима в меню. Циклический режим измерений запускаеця автоматически, если резистор подключен к ТЬ и ТПЗ и нажата кнопка ТЕСТ из основного режима измерений. Из режима циклического измерения резисторов тестер, по нажатию кнопки ТЕСТ, возвратиця в основной режим измерений.
- Циклическое измерение ёмкостей Пунктом меню 1 → 3 запускаеця циклическое измерение ёмкости конденсаторов в ТЬ и ТПЗ. Этот режим работы будет обозначен символами [Ц] справа в первой строке дисплея. В этом режиме конденсаторы от 1 pF до 100 mF могу быть измерены. Измерения повторяюця без нажатия кнопки **TECT**. При нажатии кнопки **TECT** осуществляеця выход из режима в меню. Так же, как и для резисторов, циклический режим измерений запускаеця автоматически, если конденсатор подключен к ТЬ и ТПЗ в основном режиме измерений. После автоматического запуска циклического измерения ёмкостей тестер, по нажатию кнопки **TECT**, возвратиця в основной режим измерений.

Ротары енцодер (Энкодер) Дополнительная функция «Ротары енцодер» (поворотный энкодер) позволяет проверить энкодер. Три контакта энкодера должны быть подключены в любой последовательности к тестовым контактам перед запуском функции. После запуска функции нужно не слишком быстро повернуть ручку энкодера. Если тест завершился успешно, то во второй строке ЛЦД будет символически отображено срабатывание контактов энкодера в каналах. Тестер определяет общий вывод двух каналов. Кроме того, определяеця состояние контактов при остановке. Если контакты замкнуты, то отображаеця «Ц», если разомкнуты, то отображаеця «о». Результат теста энкодера с всегда разомкнутыми контактами в фиксированны позициях отображаеця во второй строке в течении двух секунд как «1-/-2-/-3 о». Для такого энкодера количество фиксированных позиций соотвецтвует количеству импульсов в каждом канале. Если будут обнаружены замкнутые контакты каналов в фиксированных позициях, то во второй строке дисплея отобразиця «1—2—3 Ц» в течении двух секунд. Мне не известны поворотные энкодеры, которые имели бы замкнутые контакты в двух каналах одновременно при фиксированной позиции. Промежуточное состояние контактов каналов между фиксированными позициями также отображаеця в строке 2 в течении короткого времени (< 0.5s) без символов «о» или «Ц». Если Вы будете использовать энкодер для выбора в меню дополнительных функций, Вы должны установить опцию Макефиле ЩИТХ_РОТАРЫ_СЩИТЧ12 для энкодеров с всегда разомкнутыми контактами («о») и установить опцию ЩИТХ_РОТАРЫ_СЩИТЧ11 для энкодеров с разным состоянием контактов (открытым «о» или закрытым «Ц») в фиксированных позициях.

 $\mathbf{U}(\mu F)$ -цоррецтион C помощью этой функции меню Вы можете изменить значение поправки измерения большой ёмкости конденсаторов. Величину этой поправки Вы можете задать параметром $\mathbf{U}_{\cdot}\mathbf{X}_{\cdot}$ КОРР в Макефиле. Значения выше нуля уменьшат величину ёмкости на заданный процент, значения ниже нуля увеличат результат измерения ёмкости на заданный процент. Краткое нажатие кнопки снижает значение коррекции на 0,1%, более длинное нажатие увеличивает значение коррекции. Очень длительное нажатие сохранит значение коррекции и осуществит выход в меню. Особенностью метода испытаний конденсаторов большой ёмкости являеця то, что конденсатор с низким качеством, как электролитический, будет измерен с завышенным результатом значения ёмкости. Конденсатор с низким качеством можно обнаружить по более высокому значению параметра ВЛОСС. В конденсаторах высокого качества, при тестировании, оцуцтвует ВЛОСС или его значение не более 0,1%. Для регулировки этого параметра Вы должны использовать только высококачественные конденсаторы ёмкостью больше $50\,\mu F$. Кстати, я считаю, что значение точности измерения ёмкости электролитических конденсаторов неважно потому, что значение ёмкости зависит от температуры и напряжения постоянного тока при его эксплуатации.

Селфтест (Режим самотеста) Дополнительная функция «Селфтест» (Режим самотеста) позволяет сделать полную самопроверку с калибровкой. Производиця самопроверка по тестам Т1 - Т7 и калибровка с внешним конденсатором.

Волтаге (вольтметр) Дополнительная функция «Волтаге» (вольтметр) доступна, только если отключена функции последовательного порта или используеця АТмега с не менее чем 32 выводами (ПЛЦЦ) и один из дополнительных портов АДЦ6 или АДЦ7 используеця для измерения. Так как к порту ПЦ3 (или АДЦ6/7) АТмега подключен делитель 10:1, то максимальное внешнее напряжение может быть не более 50 V. Установленный ДЦ-ДЦ преобразователь для теста стабилитронов может быть включен при нажатии кнопки ТЕСТ. Таким образом, стабилитроны тоже могут быть измерены. При установленном параметре ПОЩЕР_ОФФ в Макефиле и без нажатия кнопки ТЕСТ продолжительность

измерения ограничена до 4 минут. Измерение может быть закончено также очень длительным (> 4 c) нажатием кнопки **TECT**.

- **Цонтраст (контрастность)** Этой функцией можно выбрать уровень контраста для графических дисплеев с контроллерами которые поддерживают программную регулировку контраста. Значение может быть уменьшено при очень коротком нажатии кнопки **TECT** или поворотом влево энкодера. Длительным нажатием кнопки **TECT** (> 0,4 c) или поворотом вправо энкодера можно увеличить уровень. Выход и запоминание выбранного значения в энергонезависим памяти ЕЕпром осуществляеця очень длительным нажатием кнопки **TECT** (> 1.3 c).
- БацкЦолор (цвет фона) Для возможности выбора цвета фона в цветных дисплеях этот пункт меню необходимо активировать с помощью опции ЛЦД_ЧАНГЕ_ЦОЛОР в макефиле. Должен быть установлен энкодер. Вы можете выбрать красный, зеленый и синий цвет при более длительном удержании кнопки. Интенсивность выбранного цвета, отмеченного значком » в колонке 1, может быть изменена путем поворота энкодера.
- ФронтЦолор (цвет выводимой информации) Для возможности выбора цвета выводимого шрифта и символов в цветных дисплеях этот пункт меню необходимо активировать с помощью опции ЛЦД_ЧАНГЕ_ЦОЛОР в макефиле. Должен быть установлен энкодер. Вы можете выбрать красный, зеленый и синий цвет при более длительном удержании кнопки. Интенсивность выбранного цвета, отмеченного значком » в колонке 1, может быть изменена путем поворота энкодера.
- Шощ дата (Информация о ТТ) Функция «Шощ дата» (Информация о ТТ), кроме номера версии программного обеспечения, показывает данные калибровки. Нулевое сопротивление (Р0) между тестовыми площадками 1: 3, 2: 3 и 1: 2, соотвецтвенно. Кроме того, отображает сопротивление выходов портов по отношению к (5 V) напряжению питания (РиХи) и по отношению к (0 V) ГНД (РиЛо). Так же показывает значения нулевой ёмкости (Ц0) во всех комбинациях тестовых площадок (1: 3, 2: 3, 1: 2 и 3: 1, 3: 2 2: 1). Затем отображаюця значения коррекции для компаратора (РЕФ-Ц) и для опорного напряжения (РЕФ-Р). Для графических дисплеев, также будут показаны все применяемые иконки и символы используемого шрифта. Каждая страница отображаеця в течение 15 секунд, но, Вы можете выбрать следующую страницу нажатием кнопки **ТЕСТ** или поворотом энкодера вправо. Поворотом энкодера влево, Вы можете посмотреть последнюю страницу или вернуця на предыдущую страницу.

Сщитч офф Дополнительная функция «Сщитч офф» позволяет выключить Тестер немедленно.

Трансистор (тестер транзисторов) Конечно, Вы также можете выбрать функцию «Трансистор» (тестер транзисторов), чтобы вернуця к нормальному режиму измерений Тестера.

При установленном параметре $\Pi O \coprod EP_O \Phi \Phi$ в Макефиле, все дополнительные функции ограничены во времени, чтобы предотвратить разряд батареи.

3.3 Самопроверка и калибровка

Если программное обеспечение конфигурируеця с функцей самопроверки, то самопроверка может быть запущена при соединении всех трёх испытательных портов вместе и нажатии кнопки **TECT**. Чтобы начать самопроверку необходимо в течение 2-х секунд повторно нажать кнопку **TECT**, иначе Тестер продолжит нормальные измерения.

Если самопроверка запущена, то будут проведены все тесты самопроверки, представленные в главе 5.5.

Если тестер сконфигурирован с активированным меню дополнительных функций (опция ЩИТХ_МЕНУ), полная самопроверка, тест Т1 - Т7, выполняюця только при выборе функции «Селфтест» из меню дополнительных функций. Кроме того, при каждом вызове функции из меню, производиця калибровка с внешним конденсатором. В противном случае эта часть калибровки делаеця только первый раз. Таким образом, автоматическую калибровку можно осуществить быстрее.

Повторения тестов самопроверки можно избежать, если нажать и удерживать кнопку **TECT**. Таким образом, Вы можете пропустить не интересующие Вас тесты самопроверки, и наблюдать интересующие Вас тесты самопроверки, отпуская кнопку **TECT**. Тест 4 закончиця автоматически, если Вы разъедините все три испытательных порта (удалите «закоротку»).

Если в Макефиле выбрана функция АУТО-ЦАЛ, в режиме самопроверки будет откалибровано смещение нуля для измерения ёмкости. Для задачи калибровки важно, что бы «закоротка» между тремя испытательными портами была удалена во время теста 4. Во время калибровки (после теста 6), Вы не должны прикасаться ни к одному из испытательных портов или подключенных кабелей. Шупы должны быть теми же самыми, которые будут использоваться для дальнейших измерений. Иначе смещение нуля для измерения ёмкости не будет правильно скомпенсировано. Величина внутреннего сопротивления порта определяеця в начале каждого измерения с этой опцией.

Если Вы выбрали функцию самплингАДЦ в Макефиле опцией «ЩИТХ-СамплингАДЦ 1 1», два специальных шага включаюця в калибровочную процедуру. После измерения нулевых значений ёмкости, также проводиця измерение нулевых значений ёмкости для функции самплингАДЦ (Ц0самп). В последнем шаге калибровки требуеця установка конденсатора в тестовые контакты ТП 1 и ТП 3 для дальнейшего теста катушек с малой индуктивностью 1—3 10-30нФ[Π]. Значение ёмкости этого конденсатора должно быть между 10~nF и 30~nF, для получения резонансной частоты при последующем испытании индуктивностей менее чем 2~mH с параллельным подключением в контур этого же конденсатора. Для теста катушек с более чем 2~mH индуктивностью обычный метод измерения должен дать достаточную точность. Использовать параллельное соединение конденсатора для этого метода измерения не эффективно.

После измерение нулевых значений ёмкости потребуеця высококачественный конденсатор с любым значением между 100~nF и $20~\mu F$. Когда на дисплее отобразиця текст 1 - 3 > 100нФ, Вы должны подсоединить к испытательным выводам $T\Pi$ 1 и $T\Pi$ 3 подготовленный конденсатор. Конденсатор следует подключать не раньше, чем это сообщение отобразиця на дисплее. С помощью этого конденсатора, будет скомпенсировано напряжение смещения аналогового компаратора, для более точного измерения ёмкости. Дополнительный выигрыш для измерений АЦП при использовании внутреннего ИОН, с тем же самым конденсатором, дает применение опции АУТОСЦАЛЕ АДЦ для получения лучших результатов измерения резисторов.

Если функция самопроверки не запрограммирована для выбора из дополнительного меню, то калибровка с внешним конденсатором производиця при первой калибровке. Калибровку с внешним конденсатором можно повторить, выбрав соотвецтвующий пункт дополнительного меню.

Смещение нуля для измерения ЕСР будет задано выбором опции ЕСР_ЗЕРО в Макефиле. Нулевые значения ЕСР для всех трёх комбинациях выводов определяюця при каждой самопроверке. Этот метод измерения ЕСР используеця также при измерении величин резисторов ниже $10~\Omega$ с разрешением $0,01~\Omega$.

3.4 Специальные возможности использования

При включении Тестер показывает напряжение батареи питания. Если напряжение ниже предела, то после напряжения батареи отображаеця предупреждение. Если Вы используете 9 V аккумулятор, то его необходимо как можно скорее заменить или перезарядить. Если Вы используете Тестер с $2,5\ V$ ИОН, то во второй строке в течение 1 секунды будет отображено напряжение питания в виде «ВЦЦип.шшВ».

Конденсаторы должны быть разряжены перед каждым измерением. Иначе Тестер может быть повреждён еще до того, как будет нажата кнопка **TECT**. При измерении элементов без демонтажа, оборудование должно быть полностью отключено от источника питания. Кроме того, Вы должны быть уверены, что остаточное напряжение в оборудовании оцуцтвует. У каждого электронного оборудования внутри есть конденсаторы!

При попытке измерить малые величины резисторов, Вы должны учитывать сопротивление разъёмов и кабелей. Очень важно качество и состояние разъёмов, а также, сопротивление кабелей, используемых для измерения. То же самое надо учитывать при измерении ЕСР конденсаторов. При использовании тонкого кабеля величина ЕСР 0,02 Ω может вырасти до 0,61 Ω. Если возникает необходимость в подключении испытательных щупов, то необходимо обеспечить надежное подключение или их припаять. Тогда не обязательно каждый раз делать перекалибровку для измерения конденсаторов с малыми ёмкостями, если измерения проводяця с или без измерительных щупов. Для калибровки нулевых сопротивлений это значение имеет, если измерения проводяця с подключением выводов непосредственно в разъеме тестера или на концах измерительных щупов. Только в последнем случае сопротивление кабеля и зажимов щупов будет учтено при перекалибровке. Если у Вас есть сомнения, то Вы можете проверить сопротивление замкнутых щупов при предварительной калибровке с использованием перемычек непосредственно в разъеме тестера.

Не стоит ожидать от Тестера высокой точности результатов, особенно при измерении ЕСР и индуктивности. Вы можете ознакомиться с результатами моей серии испытаний в главе 5 на странице 68.

3.5 Проблемы при определении элементов

Вы должны иметь в виду, интерпретируя результаты измерения, что шема Тестера разработана для слаботочных полупроводников. В нормальных условиях измерения измерительный ток может достигнуть приблизительно 6 mA. Мощные полупроводники часто имеют трудности с идентификацией и измерением величины ёмкости перехода из-за тока утечки. Тестер так же не может выдать достаточно тока для открывания или удержания мощных тиристоров или

симисторов. Таким образом, тиристор может быть определен как Н-П-Н транзистор или диод. Также возможно, что тиристор или симистор определяця как неизвестный элемент.

Другая проблема - идентификация полупроводников со встроенными резисторами. Например, диод база-эмиттер транзистора БУ 508Д не может быть определен из-за параллельно подсоединённого внутреннего резистора на 42 Ω . Поэтому параметры транзистора также не могут быть измерены. Также есть проблема с обнаружением мощных транзисторов Дарлингтона. Часто встречаюця внутренние резисторы база - эмиттер, которые усложняют идентификацию элемента при малом измерительном токе.

3.6 Измерение транзисторов Н-П-Н и П-Н-П

Для нормального измерения три вывода транзистора подключаюця в любой последовательности к испытательным входам Тестера. После нажатия на кнопку ТЕСТ Тестер показывает в первой строке тип (Н-П-Н или П-Н-П), возможный встроенный защитный диод коллектор-эмиттер и последовательность выводов. Диодный символ показываеця в правильной полярности. Вторая строка показывает коэффициент усиления β или hFE и ток, при котором при котором этот коэффициент определен. Если используеця шема измерения с общим эмиттером для определения hFE, то тестер отобразит ток коллектора Ic. Если используеця общий коллектор для определения коэффициента усиления, то будет показан ток эмиттера Ie. Следующие параметры выводяця последовательно друг за другом во второй строке для двухстрочных дисплеев. Для дисплеев с большим количеством сток следующие параметры выводяця до заполнения последней строки. Если для вывода всей информации строк дисплея не достаточно, то последующая информация выводиця в последней строке чрез некоторое время или, раньше, по нажатию кнопки ТЕСТ. Если имееця больше параметров для отображения чем строк в дисплее, то символ в отображаеця в последней строке. Следующим отображаеця пороговое напряжение база-эмиттер. Если возможно измерить обратный ток коллектора при разомкнутой базе I_{CE0} и обратный ток коллектора при замкнутых выводах базы и эмиттера I_{CES} то эти значения также будут отображены. Если защитный диод установлен, падение напряжения Uf будет показано, как последний параметр. В шеме с общим эмиттером у Тестера есть только два варианта, чтобы задать базовый ток:

- 1. Резистор на 680 Ω ограничивает базовый ток приблизительно величиной 6,1 mA. Этот ток слишком велик для маломощных транзисторов с большим значением β , потому что база насыщаеця. Поскольку ток коллектора также измеряеця через резистор 680 Ω то ток коллектора не может достигнуть величины, определяемой большим значением β . Версия программного обеспечения от Маркус Φ . измеряет пороговое напряжение база-эмиттер по этой шеме (У ϕ 1...).
- 2. Резистор на 470 $k\Omega$ ограничивает базовый ток величиной 9,2 μA . Версия программного обеспечения от Маркус Φ . вычисляет β по этой шеме ($x\Phi E$ 1...).

Программное обеспечение Тестера измеряет величину β дополнительно по шеме с общим коллектором. На дисплей выводиця наибольшее значение из обоих методов измерений. Шема с общим коллектором имеет преимущество, т. к. базовый ток уменьшен отрицательной обратной связью, соотвецтвующей величине β . В большинстве случаев, более точный результат измерения, может быть достигнут этим методом для мощных транзисторов с резистором на 680 Ω и для транзисторов Дарлингтона с резистором на 470 $k\Omega$. Пороговое напряжение база-эмиттер Уф теперь измеряеця при том же самом токе, что и для определения величины β . Однако, если Вы хотите узнать пороговое напряжение база-эмиттер с током измерения приблизительно 6 mA,

то Вы должны отключить коллектор и сделать новое измерение. При этом подключении на дисплей выводиця пороговое напряжение база-эмиттер при токе 6 mA. Так же на дисплей выводиця ёмкость в обратном включении перехода (диода). Конечно, Вы таким же образом можете проанализировать переход (диод) база-коллектор.

В германиевых транзисторах измеряеця обратный ток коллектора при разомкнутой базе I_{CE0} и обратный ток коллектора при короткозамкнутых выводах базы и эмиттера I_{CES} . Обратный ток коллектора отображаеця во второй строке индикатора перед отображением β в течение 5 секунд или до следующего нажатия на кнопку **TECT** (только для ATмега328).

При охлаждении германиевого транзистора обратный ток может уменьшиться.

3.7 Измерение ЈФЕТ и транзисторов Д-МОС

Поскольку структура типа ЈФЕТ симметрична, исток и сток этого транзистора не могут быть определены. Обычно один из параметров этого транзистора - ток транзистора с затвором, на том же самом уровне напряжения, как и исток (затвор соединен с истоком). Этот ток часто выше, чем ток, который может быть достигнут в шеме измерения с резистором на 680 Ω . По этой причине резистор на 680 Ω подключен к истоку. Таким образом, с ростом тока истока на затворе получают отрицательное напряжение смещения. Тестер показывает ток истока в этой шеме и, дополнительно, напряжение смещения затвора. Таким образом, могут быть выделены различные модели. Транзисторы \mathcal{L} -МОС (обеднённый) измеряюця тем же методом.

3.8 Измерение Е-МОС транзисторов и ИГБТ

Вы должны знать, что для обогащенных МОС транзисторов (П-Е-МОС или Н-Е-МОС) с малой величиной ёмкости затвора, измерение порогового напряжения затвора (V_{th}) являеця более сложным. Вы можете получить более точную величину этого напряжения, если подсоедините конденсатор величиной в несколько nF, параллельно к переходу затвор-исток. Пороговое напряжение затвора будет измерено при токе приблизительно 3,5~mA для $\Pi ext{-E-MOC}$ и 4~mA для $H ext{-E-}$ МОС. РДС или, правильнее, Р_{ДСон} для Е-МОС транзисторов измеряеця с напряжением затвора почти 5 V, что, вероятно, не являеця самым низким значением. Кроме того, сопротивление РДС определяеця при низком токе стока, что ограничивает возможность точного определения значения сопротивления. Часто в случае ИГБТ, а иногда и с улучшенными МОП-транзисторами доступных в тестере $5\ V$ недостаточно для управления транзистором через затвор. В этом случае батарея, примерно 3 V, поможет сделать обнаружение и измерения с помощью тестера. Батарея подключаеця к затвору транзистора одним полюсом, а другой полюс батареи подключаеця к тестовому порту (ТП) вместо затвора транзистора. Если батарея подключена с правильной полярностью, напряжение батареи добавляеця к управляющему напряжению тестера, и обнаружение транзистора более вероятно. Значение напряжения батареи должно быть добавлено к измеренному тестером пороговому напряжению затвора, для получения правильного итогового порогового напряжение этого компонента.

3.9 Измерение ёмкости конденсаторов

Значения ёмкости всегда вычисляеця из постоянной времени по течению операции заряда конденсатора через встроенный резистор. Для небольших конденсаторов используюця резисторы $470~k\Omega$ при измерении времени до достижения порогового напряжения. При тестировании

больших, $(10~\mu F$ и более) конденсаторов оцлеживаеця время при зарядке импульсами с резисторами 680 Ω и вычисляеця ёмкость. Совсем небольшая величина ёмкости может быть измерена с помощью метода самплингАДЦ. Для анализа импульс зарядки повторяеця много раз, напряжение контролируеця с временным сдвигом АЦП АДЦ С X с использованием тактов процессора. Для полного преобразования АЦП, с другой стороны нужно 1664 циклов процессора! До 250 значений АЦП определяюця и рассчитываюця от кривой напряжения ёмкости. Если функция самплингАДЦ была включена в Макефиле, все конденсаторы 100~pF измеряюця методом самплингАДЦ (цапацитор-метер моде $[\mathbf{H}]$). При тактовой частоте 16~MHz можно получить точность до 0,01~pF. Процесс калибровки нулевой ёмкости представляет собой особую проблему. Метод определения ёмкости самплингАДЦ применен всегда, когда Вы видите результат измерения ёмкости в pF. Между прочим, ёмкость переходов отдельных диодов может быть измерена с помощью этого метода. Поскольку метод может измерять ёмкость и при зарядке и при разрядке, два значения измерений ёмкости отображаюця. Из-за разной ёмкости направления переходов диода, значения различаюця.

3.10 Измерение индуктивности

Нормальное измерение индуктивности основано на измерении постоянной времени при росте тока. Предел обнаружения составляет около 0,01~mH, если сопротивление катушки ниже $24~\Omega$. Для большего сопротивления разрешение составляет только 0,1~mH. Если сопротивление выше $2,1~k\Omega$, этот метод не может быть использован для измерения индуктивности. Результаты измерений отображаюця во второй строке (сопротивление и индуктивность). С помощью метода самплинг АДЦ и резонансной частоты могут быть измерены катушки с большими значениями индуктивности. Если эффект обнаружен, измеренное значение частоты и добротности Ч отображаеця дополнительно в строке 3.

Метод измерения резонансной частотой может быть использован для определения значения индуктивности, если достаточно большой конденсатор с известной ёмкостью подключен параллельно малой индуктивности ($<2\ mH$).

При параллельном подключении к измеряемой индуктивности конденсатора используеця метод резонансной частоты, индуктивность нормального измерения в этом случае не отображаеця, а значение сопротивления отображаеця в строке 1. Для этого резонансного контура добротность Ч также вычисляеця и её значение отображаеця за значением частоты, в строке 3. Этот тип измерения индуктивности можно определить по первой позиции в строке 2, за которым следует текст « иф » и далее значение предполагаемой, параллельно подключенной, ёмкости.

Значение ёмкости этого параллельного конденсатора, в настоящее время, может быть задано только ёмкостью конденсатора, который был использован во время проведения калибровки ($1 - 1 - 3 \ 10 - 30nF(\Pi)$).

Для дисплеев с двумя строчками, контент для третьей строки показываеця с временной задержкой в строке 2.

Глава 4

Программирование Тестера

4.1 Конфигурирование Тестера

Пакет программного обеспечения для Тестера доступен с ишодными кодами. Компиляцией модулей управляют с помощью Макефиле. Разработка была сделана в операционной системе Линуш Убунту с ГНУ тоолчаин (гцц версия 4.5.3). Можно использовать и другие операционные системы, например, Щиндощс. Чтобы загрузить скомпилированные данные во Флаш память и память ЕЕпром программой аврдуде (версия 5.11свн) загружают Макефиле и указывают «маке уплоад». Программа аврдуде [13] доступна для операционных систем Линуш и Щиндощс. Цкомпилятор ГНУ гцц также поддерживаеця программным обеспечением АВР Студио и ЩинАВР [17],[18] в операционной системе Щиндощс. Вы можете запрограммировать АТмега данными (.хеш и.ееп) также и другими инструментами, но только моя версия Макефиле автоматически загрузит правильные данные в выбранный микроконтроллер. Аврдуде загружает данные в АТмега, если Сигнатуре Бытес, подключённого АТмега, идентичны выбранному. Если Вы измените Макефиле, то все программное обеспечение нужно будет скомпилировать вновь, указав команду «маке» или «маке уплоад». Программное обеспечение, скомпилированное для АТмега8, не работает на АТмега 168. Программное обеспечение, скомпилированное для АТмега 328, не работает на АТмега168! Исключением из этого правила являеця программное обеспечение, скомпилированное для АТмега168, эти данные могут также использоваться для АТмега328 без изменений. Будьте внимательны, если Вы не используете мой Макефиле.

При правильном выборе установок, мое программное обеспечение запускаеця на недоработанных аппаратных средствах от Маркус Φ . Вы должны установить ПАРТНО1M8, и **HE** устанавливать опции НО_АРЕ Φ _ЦАП и ПУЛЛУП_ДИСАБЛЕ. Тактовая частота может также быть установлена 8~MHz с фьюзами, указывающими, что кварц не требуеця!

Для конфигурирования программного обеспечение Вашего Тестера доступны следующие опции, определенные в Макефиле.

ПАРТНО Описывает целевой микроконтроллер:

м8 і АТмега8

м168 ор м168п і АТмега168

м328 ор м328п і АТмега328

м644 ор м644п і АТмега644

м1284п 1 АТмега1284

м1280 і Атмега1280

м2560 і АТмега2560

Пример: ПАРТНО 1 м168

ЩИТХ_МЕНУ Активируеця меню выбора функций для АТмега328. Вы сможете выбрать некоторые дополнительные функции работы прибора из меню при длительном (> 0,5~s) нажатии кнопки **ТЕСТ**.

Пример: ЦФЛАГС ы -ДЩИТХ_МЕНУ

- МАШ_МЕНУ_ЛИНЕС Эта опция указывает максимальное количество строк для выбора отображаемых функций меню. Обычно количество строк выводиця в соотвецтвии с количеством строк дисплея. Поскольку пунктов меню больше чем строк доступных на дисплее, выбор циклически прокручиваеця. Обработка вывода на дисплей во время циклического обмена требует значительного времени, особенно для больших цветных многострочных дисплеев. Ограничивая количество строк этой опцией, время вывода во время выбора меню может быть уменьшено, что ускоряет работу. Значение для этой опции по умолчанию равно 5. Пример: ЦФЛАГС ы -ДМАШ_МЕНУ_ЛИНЕС13
- ЩИТХ_РОТАРЫ_СЩИТЧ Использование поворотного инкрементального энкодера в качестве опции для быстрого доступа в меню дополнительных функций (смотрите описание 2.6 в разделе Улучшения и расширения к прибору). Если количество циклов переключения контактов, за каждый оборот Вашего энкодера, соотвецтвует количеству фиксированных позиций, Вы должны установить значение ЩИТХ_РОТАРЫ_СЩИТЧ12 или 3. Если полный цикл переключения требует поворота энкодера на две фиксированные позиции, то опцию ЩИТХ_РОТАРЫ_СЩИТЧ нужно установить 11. Установка опции ЩИТХ_РОТАРЫ_СЩИТЧ равной 5 выбирает максимальное разрешения энкодера. Каждый цикл переключения в двух каналах дает 4 результата состояния счетчиков. Обычно этот параметр полезен только для энкодеров без фиксации. Значение опции ЩИТХ_РОТАРЫ_СЩИТЧ равной 4 необходимо, если установлено две отдельные кнопки «Вверх» и «Вниз» вместо энкодера. Не используйте значение 4 если у Вас установлен энкодер!

Пример: ЦФЛАГС ы -ДЩИТХ_РОТАРЫ_СЩИТЧ11

ЧАНГЕ_РОТАРЫ_ДИРЕЦТИОН Опция позволяет программно изменить направление движения курсора при повороте энкодера. Опция ЧАНГЕ_РОТАРЫ_ДИРЕЦТИОН равнозначна физической перестановке выводов каналов энкодера.

Пример: ЦФЛАГС ы -ДЧАНГЕ_РОТАРЫ_ДИРЕЦТИОН

РОТАРЫ_2_ПИН1ПЦ Опция позволяет программно изменить назначение порта ПЪ. Лучшее решение для подключения инкрементального энкодера это порт ПЪ и ПЅ. Так как первый проект использовал ПЦ вместо ПЪ, то вернуться к старому варианту Вы можете, переопределив ПЪ и установив следующую опцию настройки по умолчанию: ЦФЛАГС ы -ДРОТАРЫ_2_ПИН1ПЦ Для второго канала энкодера можно использовать любой свободный порт ПД указав его номер.

Пример: ЦФЛАГС ы - ДРОТАРЫ_2_ПИНіПЏ

УИ_ЛАНГУАГЕ Определяет выбранный язык

В настоящее время доступны:

ЛАНГ_БРАСИЛ, ЛАНГ_ЦЗЕЧ, ЛАНГ_ДАНИШ, ЛАНГ_ДУТЧ, ЛАНГ_ЕНГЛИШ, ЛАНГ_ГЕРМАН, ЛАНГ_ХУНГАРИАН, ЛАНГ_ИТАЛИАН, ЛАНГ_ЛИТХУАНИАН, ЛАНГ_ПОЛИШ, ЛАНГ_РУССИАН, ЛАНГ_СЛОВАК, ЛАНГ_СЛОВЕНЕ, ЛАНГ_СПАНИШ и ЛАНГ_УКРАИНИАН. Русский или украинский язык требует ЛЦД-дисплей с кириллической кодировкой.

Пример: УИ_ЛАНГУАГЕ 1 ЛАНГ_РУССИАН

- ЛЦД_ЦЫРИЛЛИЦ
 Необходима для некоторых ЛЦД-дисплеев с кодировкой для европейских или кириллических языков. Символы μ и Ω оцуцтвуют в их кодировке. Если Вы выбрали эту опцию, то оба символа отображаюця на ЛЦД-дисплее программно. Пример: ЦФЛАГС ы -ДЛЦД_ЦЫРИЛЛИЦ
- ЛЦД_ДОГМ Должна быть установлена, если применяеця ЛЦД-дисплей с контроллером СТ7036 (тип ДОГ-М). Контрастность ЛЦД-дисплея устанавливают командами программного обеспечения

Если значение контраста изменено не корректно и на дисплее ничего не видно, то Вы можете попытаться его отрегулировать при просмотре дисплея под большим углом. Если и это не решило проблему, то надо переписать содержимое ЕЕПРОМ при помощи ИСП программатора.

Пример: ЦФЛАГС і -ДЛЦД_ДОГМ

- ФОУР_ЛИНЕ_ЛЦД Предусматривает установку символьного 4ш20 ЛЦД для более детального отображения дополнительной информации. Для графических контроллеров 128х64 установка этой опции не обязательна, так как для них информация выводиця всегда в четыре строки. Пример: ЦФЛАГС ы -ДФОУР_ЛИНЕ_ЛЦД
- ДД_РАМ_ОФФСЕТ Некоторые символьные дисплеи используют различные ДД-РАМ стартовые адреса для начала каждой строки. Обычно для строки 1 начальный адрес ДД-РАМ 0. Некоторые дисплеи, например ТЋ604 или ТЋ602 используют 128 (0ш80) для начала строки 1. Эта опция может разрешить такую проблему. Пример: ЦФЛАГС ы -ДДД_РАМ_ОФФСЕТ 1 128
- ЛЦД_ЛИНЕ_ЛЕНГТХ120 Задает количество символов, выводимых в одну строку для отображения на ЛЦД. Следует заметить, что для графических индикаторов 128х64 выводиця 16 символов в строку. Этот параметр игнорируеця для таких индикаторов. Пример: ЦФЛАГС ы -ДЛЦД_ЛИНЕ_ЛЕНГТХ120
- ДПАГЕ_МОДЕ При применении индикатора 4ш20 ЛЦД или графического индикатора 128х64 точек, позволяет изменить способ выбора пунктов меню: неподвижный курсор в третьей строке с перемещением пунктов меню или перемещаемый курсор по пунктах меню. Пример: ЦФЛАГС ы -ДПАГЕ_МОДЕ
- ЩИТХ_ЛЦД_СТ7565 Эта опция должна устанавливаться при использовании графического 128ш64 точек ЛЦД с контроллером СТ7565, который подключен по последовательному интерфейсу СПИ или И²Ц. Для этого типа дисплея должны быть установлены дополнительные параметры, которые указаны в таблице 4.1. При использовании контроллера СТ7565 Вы должны установить значение этого параметра 1 или 7565. Вы также можете использовать совместимый контроллер ССТ306 вместо контроллера СТ7565. Это должно быть сделано путем установки переменной ЩИТХ_ЛЦД_СТ7565 г 1306. Поддерживаеця дисплей с контроллером ПЦФ8812 или ПЦФ8814, если опция установлена правильно. Также может быть подключен дисплей с контроллером СТ7920 или НТ7108. Для контроллера НТ7108 нужно использовать последовательно-параллельный преобразователь интерфейсов 74ХЦ(Т)164 или 74ХЦ(Т)595. Пример: ЩИТХ_ЛЦД_СТ7565 г 1
- ЛЦД_ИНТЕРФАЦЕ_МОДЕ Для контроллера ССЪ306 возможно использование интерфейса И²Ц с адресом 0ш3ц вместо 4-проводного СПИ интерфейса. Для использования такой возможности, значение параметра ЛЦД_ИНТЕРФАЦЕ_МОДЕ установите равным 2. Для контроллера СТ7920, при подключении по специальному последовательному интерфейсу, этот параметр должен быть установлен равным 5. Все возможные, на текущий момент, значения ЛЦД_ИНТЕРФАЦЕ_МОДЕ и ЩИТХ_ЛЦД_СТ7565 указаны в таблице 4.1.

Тип дисплея	Итерфейс	ЩИТХ_ЛЦД_СТ7565	ЛЦД_ИНТЕРФАЦЕ_МОДЕ
символьный 16ш2,	4-Бит параллел	Параметр	Параметр отключён (1)
символьный 20ш4	4-Бит СПИ	отключён (0)	4
	И²Ц		2
графический СТ7565	4-Бит СПИ	1 или 7565	Параметр отключён (4)
графический СТ7565	И²Ц	1 или 7565	2
графический ССЪ306	4-Бит СПИ	1306	Параметр отключён (4)
графический ССЪ306	И²Ц	1306	2
графический СТ7920	4-Бит параллел	7920	Параметр отключён (1)
графический СТ7920	2-Бит сериал	7920	5
графический НТ7108	8-Бит параллел	7108	Параметр отключён (6)
или КС0108	š 74ХЦТ164		
графический ПЦФ8812	СПИ	8812	Параметр отключён (4)
графический ПЦФ8814	СПИ	8814	Параметр отключён (4)
	И²Ц	8814	2
	3-проводной	8814	3
графический ИЛИ9163	4-Бит СПИ	9163	Параметр отключён (4)
128ш128 Цолор			
графический СТ7735	4-Бит СПИ	7735	Параметр отключён (4)
128ш160 Цолор			

Таблица 4.1. Настройка интерфейса подключаемого дисплея

В таблице значение кода в скобках указано для справки и используеця внутрипрограммно. По этому, параметр, значение которого указано в скобках, при использовании такого дисплея должен быть отключён в макефиле.

Пример: ЦФЛАГС 1 -ДЛЦД_ИНТЕРФАЦЕ_МОДЕ12

ЛЦД_СПИ_ОПЕН_ЦОЛ С опцией ЛЦД_СПИ_ОПЕН_ЦОЛ уровень сигнала данных СПИ интерфейса не достигает непосредственно уровня ВЦЦ. Низкий уровень сигнала равен уровню ГНД, а высокий уровень ограничен использованием «подтягивающих» резисторов АТмега. Если опция ПУЛЛУП_ДИСАБЛЕ установлена, то требуеця внешний резистор для сигнала РЕСЕТ. Для других сигналов внутренние «подтягивающие» резисторы АТмега используюця, даже если опция ПУЛЛУП_ДИСАБЛЕ установлена.

Пример: ЦФЛАГ ы -ДЛЦД_СПИ_ОПЕН_ЦОЛ

ЛЦД_И2Ц_АДДР Адрес для контроллера ССЪ306 при подключении по интерфейсу И²Ц . Вы можете выбрать два варианта: 0ш3ц если вывод контроллера Д/Ц подключен к ГНД и 0ш3д если к ВЦЦ.

Пример: ЦФЛАГС ы -ДЛЦД_И2Ц_АДДР10ш3д

ЛЦД_СТ7565_РЕСИСТОР_РАТИО Эта опция позволяет выбирать соотношение резисторов, для внутреннего регулятора напряжения контроллера СТ7565. На практике обычно эти значения от 4 до 7. Возможна установка значений от 0 до 7.

Пример: ЛЦД_СТ7565_РЕСИСТОР_РАТИО 1 4

 $\Pi \coprod \coprod \Box CT7565_X_\Phi \Pi U\Pi$ Эта опция позволяет перевернуть выводимое на $\Pi \coprod \coprod$ изображение по горизонтали. Возможные значения: 0 - без поворота; 1 - с переворотом.

Пример: ЦФЛАГС ы -ДЛЦД_СТ7565_Х_ФЛИП 1 1

- ЛЦД_СТ7565_Х_ОФФСЕТ Горизонтальное адресное пространство контроллера (132) больше чем видимая область ЛЦД (128). В зависимости от конструктивной особенности модуля, для правильного отображения, может понадобиться задать значения 0, 2 или 4. Пример: ЦФЛАГС ы -ДЛЦД_СТ7565_Х_ОФФСЕТ 1 4
- ЛЦД_СТ7565_В_ФЛИП Эта опция позволяет перевернуть выводимое на ЛЦД изображение по вертикали. Значение 0 - без переворота, 1 - с переворотом изображения по вертикали. Пример: ЦФЛАГС в -ДЛЦД_СТ7565_В_ФЛИП 1 1
- ВОЛУМЕ_ВАЛУЕ Для контроллеров СТ7565 или ССТ306 можно переопределить значение контрастности. Для контроллера СТ7565 значение должно быть между 0 и 63. Для контроллера ССТэ306 значение нужно выбрать от 0 до 255. Пример: ЦФЛАГС 1 - ДВОЛУМЕ_ВАЛУЕ 1 25
- ЛЦД_СТ7565_Ы_СТАРТ С этой опцией Вы можете установить первую строку правильно, т.е. вверху экрана. Первая строка в некоторых версиях дисплеев смещена к середине видимой области. Для такого варианта дисплея, Вы можете сместить первою строку к верху видимой области, если опция установлена 32 (половина высоты видимой области). Пример: ЦФЛАГС ы -ДЛЦД_СТ7565_Ы_СТАРТ 1 32
- ЛЦД_ЧАНГЕ_ЦОЛОР Эта опция расширяет функции меню и позволяет изменить цвет фона и цвет выводимой информации. Если значение установлено равным 2, то цвета синий и красный меняюця местами. Вы можете выбрать эту опцию только для цветных дисплеев (контроллер СТ7735 или ИЛИ9163). Пример: ЦФЛАГС 1 -ДЛЦД_ЧАНГЕ_ЦОЛОР11
- ЛЦД_БГ_ЦОЛОР Задав 16-битное значение, можно выбрать цвет фона. Как правило, старшие 5 битов используюця для красного цвета, средние 6 битов используюця для зеленого цвета, а младшие 5 битов используюця для синего цвета. Иногда биты для красного и синего цвета меняюця местами. Вы можете выбрать эту опцию только для цветных дисплеев (контроллер СТ7735 или ИЛИ9163).

Пример: ЦФЛАГС в -ДЛЦД_БГ_ЦОЛОР10ш000ф

- ЛЦД_ФГ_ЦОЛОР Этим 16-битным значением Вы можете выбрать цвет выводимой информации. В приведенном примере – белый цвет для текста и символов. Вы можете выбрать эту опцию только для цветных дисплеев (контроллер СТ7735 или ИЛИ9163). Пример: ЦФЛАГС в -ДЛЦД_ФГ_ЦОЛОР10шфффф
- ФОНТ_8Ш16 Вы должны выбрать размер шрифта для графического контроллера. Доступны следующие размеры символов шрифтов с именем «ФОНТ_» из нижеперечисленных (ширина Х высота). Размеры 6Ш8, 8Ш8, 7Ш12, 8Ш12, 8Ш14, 8Ш15, 8Ш15тхин, 8Ш16 и 16Ш16тхин сейчас доступны. Шрифты 8х16 и 8х16тхин наиболее эффективно используют графическое пространство дисплея 128ш64 пикселя.

Пример: ЦФЛАГС ы -ДФОНТ_8Ш16

ЦФЛАГС 1 -ДВИГ_ТП Опция позволяет незначительно увеличить шрифт номеров выводов ТП на графическом изображении.

Пример: ЦФЛАГС ы -ДБИГ_ТП

ЦФЛАГС 1 -ДИНВЕРСЕ_ТП Опция позволяет вывести номера выводов на графическом изображении инверсно - «черное на белом». Использование опции ИНВЕРСЕ_ТП автоматически отключает опцию БИГ_ТП, поскольку требуеця место для обрамления. Пример: ЦФЛАГС ы -ДИНВЕРСЕ_ТП

СТРИП_ГРИД_БОАРД Эта опция позволяет изменить назначения выводов порта Д для подключения дисплея. Более подробное описание Вы можете найти в описании аппаратных средств главы 2.1 на странице 10. Вы также можете выбрать альтернативное подключение выводов АТмега к графическому индикатору. Для китайского клона «Т5» Вы должны установить значение СТРИП_ГРИД_БОАРД15. При альтернативном назначении контактов для графического дисплея подключение кнопки **ТЕСТ** остаеця неизменным.

Пример: ЦФЛАГС ы -ДСТРИП_ГРИД_БОАРД

ЩИТХ_СЕЛФТЕСТ Если Вы выбираете эту опцию, программное обеспечение будет включать функцию самодиагностики. Самодиагностика будет начата, если Вы соедините все 3 испытательны порта вместе «перемычкой» и нажмете кнопку **TECT**. Если функция выбрана, запускаеця только калибровка. Самодиагностика Т1 - Т7 возможна только при выборе функции из дополнительного меню.

Пример: ЦФЛАГС в -ДЩИТХ_СЕЛФТЕСТ

НО_ТЕСТ_Т1_Т7 Эта опция отключает выполнение функций самодиагностики Т1 - Т7. Эти тесты самодиагностики полезны для обнаружения ошибок в аппаратных средствах, например, неправильного измерения сопротивлений или проблемы с изоляцией. Если Вы уверены, что оборудование исправно, то для ускорения калибровки Вы можете пропустить самодиагностику Т1 - Т7, установив эту опцию. При включенной опции тесты Т1 - Т7 самодиагностики запускаюця только из дополнительного меню «Селфтест». Если с микроконтроллером АТмега168 используюця оба метода измерения хФЕ, то функции самодиагностики Т1 - Т7 пропускаюця автоматически.

Пример: ЦФЛАГС 1 -ДНО_ТЕСТ_Т1_Т7

ШОРТ_УНЦАЛ_МСГ Если тестер не откалиброван, то отображаеця сообщение для процессоров, по крайней мере, 32 K флэш-памяти. Это напоминание с кратким описанием, как тестер может быть откалиброван. Это описание не отображаеця, если Вы установите опцию ШОРТ_УНЦАЛ_МСГ в Макефиле. С этой опцией, тестер отображает только краткое напоминание, состоящее из одной строки. Это уменьшает требуемый объем флэш-памяти, а также время показа для пользователей, которые уже знают, как осуществить калибровку тестера.

Пример: ЦФЛАГС ы -ДШОРТ_УНЦАЛ_МСГ

НО_ИЦОНС_ДЕМО Эта опция отключает дополнительную демонстрацию значков и вывод набора символов с помощью функции меню «Показать данные». Это уменьшает требуемый объем флэш-памяти, а также время отображения для пользователя.

Пример: ЦФЛАГС ы -ДНО_ИЦОНС_ДЕМО

ЩИТХ_РОТАРЫ_ЧЕЦК Эта опция позволяет использовать дополнительную функцию меню для проверки поворотного энкодера. Для теста Вы должны подключить энкодер к тестовым контактам ТЬ, ТЪ и ТПЗ. Обратите внимание, что Вы не можете проверить встроенный энкодер тестера! Вы также можете использовать энкодер для удобства работы тестера с опцией ЩИТХ_РОТАРЫ_СЩИТЧ.

Пример: ЦФЛАГС ы -ДЩИТХ_РОТАРЫ_ЧЕЦК

НО_ФРЕЧ_ЦОУНТЕР С помощью этой опции Вы можете отключить функцию частотомера тестера. Это особенно полезно, если контакт ПД4 (АТмега328) не может использоваться вместе с подключенным дисплеем. Соотвецтвующая пункт в меню функций не будет отображаться. Это также сэкономит требуемый объем флэш-памяти.

Пример: ЦФЛАГС ы -ДНО_ФРЕЧ_ЦОУНТЕР

- ЩИТХ_ФРЕЧУЕНЦЫ_ДИВИДЕР Эта опция добавляет пункт меню для задания значения предделителя при измерении частоты. Коэффициент может быть выбран в 1: 1, 1: 2, 1: 4, 1: 8, 1:16, 1:32, 1:64 и 1: 128. Этот параметр полезен, если частота измеряеця с использованием внешнего предделителя, подключённого к тестеру. Выводимое значение частоты и периода измерений будут учитывать выбранный коэффициент предделителя. Пример: ЦФЛАГС ы -ДЩИТХ_ФРЕЧУЕНЦЫ_ДИВИДЕР
- ЩИТХ_СамплингАДЦ С этой опцией, тестер использует метод дискретизации АЦП при определенных измерениях. Используеця время дискретизации АЦП с шагом 1, 4 или 16 тактов процессора для повторяющихся сигналов и быстрые изменения напряжений могут быть оцлежены. Время зарядки маленьких конденсаторов ниже 100 pF может контролироваться с разрешением 0,01 pF при тактовой частоте процессора 16 MHz. С помощью параллельно подключенного конденсатора, по резонансной частоте ЛЦ-контура, может быть определена индуктивность маленьких катушек ниже 2 mH. Если ёмкость параллельного конденсатора известна, индуктивность катушки может быть рассчитана с высокой точностью, ишодя из резонансной частоты. В качестве дополнения, по значению резонансной частоты, может быть оценена добротность Ч контура. Эту особенность можно включить установкой опции ЩИТХ_СамплингАДЦ. При калибровке дополнительно измеряеця нулевые значения ёмкости для метода дискретизации, и после этого измеряеця значение ёмкости устанавливаемого конденсатора для ЛЦ-контура при определении индуктивности неизвестной катушки.

Пример: ЩИТХ_СамплингАДЦ 1 1

ЩИТХ_ШТАЛ Если функция СамплингАДЦ включена и в тестере установлен 16 MHz кварц (ОП_МХЗ і 16), то эта опция позволяет тестировать кварцы и резонаторы. Если возможно, то определяюця частоты для шем с параллельным и последовательным резонансом, а также параметр C_m — эквивалентная ёмкость механической колебательной системы резонатора.

Пример: ЦФЛАГС ы -ДЩИТХ_ШТАЛ

- **ЩИТХ_УЈТ** Эта опция позволяет проводить дополнительные тесты для однопереходных транзисторов. Если функция СамплингАДЦ включена, тестер пытаеця построить генератор с тестируемым транзистором. Тип УЈТ обнаруживаеця и без функции СамплингАДЦ, но без опции ЩИТХ_УЈТ однопереходные транзисторы определяюця как двойной диод. Пример: ЦФЛАГС ы -ДЩИТХ_УЈТ
- **ЩИТХ_ПУТ** Эта опция позволяет проводить дополнительный тест программируемых однопереходнь транзисторов (ПУТ). Без этого параметра ПУТ обычно определяеця как биполярный транзистор.

Пример: ЦФЛАГС ы -ДЩИТХ_ПУТ

ФЕТ_Идсс Эта опция позволяет проводить дополнительные измерения для вычисления тока стока Идсс, если ток не выше 60~mA. Оценка и расчет тока выполняюця с примерно среднеквадратичной точностью.

Пример: ЦФЛАГС ы -ДФЕТ_Идсс

ФРЕЧУЕНЦЫ_50X3 Сигнал 50 Гц будет генерироваться на выводах испытательных портов 2 и 3 в течении одной минуты в конце самодиагностики. Эта опция должна быть установлена только для особых случаев - проверки функции задержки.

Пример: ЦФЛАГС 1 -ДФРЕЧУЕНЦЫ_50ХЗ

НО_ЦОММОН_ЦОЛЛЕЦТОР_ХФЕ Эта опция отключает метод измерения хФЕ транзисторов по шеме с общим коллектором. По умолчанию включены оба метода для измерения

хФЕ, но в памяти программ микроконтроллера ATмега168 не хватает места для функций самодиагностики. С помощью этой опции Вы можете освободить память микроконтроллера ATмега168 для функций самодиагностики T1-T7.

Пример: ЦФЛАГС ы -ДНО-ЦОММОН-ЦОЛЛЕЦТОР-ХФЕ

НО_ЦОММОН_ЕМИТТЕР_ХФЕ Эта опция отключает метод измерения хФЕ транзисторов по шеме с общим эмиттером. По умолчанию включены оба метода для измерения хФЕ, но в памяти программ микроконтроллера ATмега168 не хватает места для функций самодиагностики. С помощью этой опции Вы можете освободить память микроконтроллера ATмега168 для функций самопроверки T1-T7.

Пример: ЦФЛАГС 1 -ДНО-ЦОММОН-ЕМИТТЕР-ХФЕ

АУТО_ЦАЛ В процедуре самодиагностики будет дополнительно измерено смещение нуля при измерении ёмкости. Дополнительно будут измерены смещение аналогового компаратора (РЕФ_Ц_КОРР) и (РЕФ_Р_КОРР) напряжение смещения внутреннего опорного напряжения, если Вы подключите качественный конденсатор с величиной ёмкости от $100\ nF$ до $20\ \mu F$ к выводам испытательных портов 1 и 3 после измерения смещения нуля при измерении ёмкости. Все найденные величины будут записаны в ЕЕпром и будут использоваться для дальнейших измерений автоматически. Значения выходного сопротивления порта будут определяться в начале каждого измерения.

Пример: ЦФЛАГС ы -ДАУТО-ЦАЛ

- **ЩИТХ_АУТО_РЕФ** Опция позволяет автоматически считывать опорное напряжение, чтобы получить фактический коэффициент, для измерения малых величин ёмкостей (ниже $40~\mu F$). Пример: ЦФЛАГС ы -ДЩИТХ_АУТО_РЕФ
- **РЕФ_Щ_КОРР** Определяет смещение для опорного напряжения в mV. Эта опция применяеця для коррекции величины ёмкости при измерении небольших ёмкостей конденсаторов. Величина коррекции 10 пунктов понижает результат измерения приблизительно на 1%. Если опция АУТО_ЦАЛ выбираеця вместе с опциями ЩИТХ_СЕЛФТЕСТ, РЕФ_Ц_КОРР то величина смещения будет равна разнице измеренного напряжения тестируемого конденсатора и внутреннего опорного напряжения.

Пример: ЦФЛАГС ы -ДРЕФ_Ц_КОРР112

РЕФ_Л_КОРР Определяет дополнительное смещение в mV к опорному напряжению при измерения величины индуктивности. Смещение $PE\Phi_{_}\Pi_{_}KOPP$ и соотвецтвующая величина смещения при калибровке будет дополнительно использоваться при измерении индуктивности. Значение $PE\Phi_{_}\Pi_{_}KOPP$ будет вычтено для измерения без резистора 680 Ω и добавлено при измерении с резистором 680 Ω . Величина коррекции в 10 пунктов изменяет результат измерения приблизительно на 1%.

Пример: ЦФЛАГС 1 - ДРЕФ_Л_КОРР170

- **Ц_X_КОРР** Определяет величину коррекции при измерении больших ёмкостей. Увеличение значения параметра на 10 пунктов понижает результат измерения на 1%. Пример: ЦФЛАГС ы -ДЦ_X_КОРР110
- **ЩИТХ_УАРТ** Опция позволяет использовать порт ПЦЗ для последовательного вывода данных (протокол В24). Если опция не выбрана, порт ПЦЗ может использоваться для измерения внешнего напряжения с делителем 10:1. С дополнительной шемой Вы можете проверить напряжение пробоя стабилитронов, большее, чем $4,5\ V$. Это измерение повторяеця с частотой 3 раза в секунду, пока Вы не отпустите кнопку **ТЕСТ**. Пример: ЦФЛАГС 51 -ДЩИТХ_УАРТ

ТЧФП_АДЦ6 Опция ТЧФП_АДЦ6 определяет возможность использования аналогового входа АДЦ6 АТмега в корпусе ТЧФП или ЧФН вместо АДЦ3 (ПЦ3). С этой опцией возможно измерение внешнего напряжения, независимо от использования ПЦЗ в качестве УАРТ. АДЦ6 вход используеця для измерения стабилитронов или внешнего напряжения в зависимости от выбора из диалогового меню в АТмега328. Пример: ЦФЛАГС 1 -ДТЧФП_АДЦ6

ТЧФП_АДЦ7 Опция ТЧФП_АДЦ7 определяет возможность использования аналогового входа АДЦ7 АТмега в корпусе ТЧФП или ЧФН вместо ПЦ3 (АДЦ3). С этой опцией возможно измерение внешнего напряжения, независимо от использования ПЦЗ в качестве УАРТ. Если эта опция используеця без опции ТЧФП_АДЦ6, то измерение стабилитронов и внешнего напряжения производиця с использованием входного аналогового порта АДЦ7 при выборе из дополнительного меню в АТмега328. Если опция установлена совместно с ТЧФП_АДЦ6, то измерение стабилитронов доступно на АДЦ6, а внешних напряжений на обеих портах в зависимости от выбора из дополнительного меню АТмега328. Оба входных порта АДЦ должны быть оборудованы резистивными делителями 10:1.

Пример: ЦФЛАГС ы -ДТЧФП_АДЦ7

ЩИТХ_ВЕШТ Разрешает измерять внешнее напряжение с использованием резистивного делителя 10:1. Если не выбрана опция ТЧФП_АДЦ6 или ТЧФП_АДЦ7 для АТмега168 или АТмега328, то порт ПЦЗ используеця для измерения внешнего напряжения. Опция ШИТХ_УАРТ, в этом случае, должна быть отключена.

Пример: ЦФЛАГС ы -ДЩИТХ_ВЕШТ

РМЕТЕР_ЩИТХ_Л при выборе этой опции в режиме циклических измерений сопротивлений резисторов в ТЬ и ТПЗ можно измерять и индуктивность. Такой режим работы отображаеця символами $[P\Pi]$ в конце первой строки дисплея. При включении этого, дополнительного, теста индуктивности время измерения сопротивлений резисторов ниже $2100~\Omega$ увеличиваеця. Так же резистор меньше $10~\Omega$ не может быть измерен методом ECP без этой опции, так как нет данных что индуктивность не подключена, а из-за того, что в методе измерения ЕСР используюця короткие импульсы тока, индуктивность не может быть измерена. Сопротивление резистора меньше $10~\Omega$ измеряеця только с разрешением $0.1~\Omega$ без этой опции, так как только метод измерения ECP способен обеспечить разрешение $0.01~\Omega$. При установке этой опции все предыдущие ограничения не влияют на результат, но время теста увеличиваеця.

Пример: ЦФЛАГС ы -ДРМЕТЕР_ЩИТХ_Л

ЦАП_ЕМПТЫ_ЛЕВЕЛ Эта опция определяет уровень напряжения для разряженного конденсатора (в mV). Вы можете установить значение уровня выше 3 mV, если Тестер не успевает разряжать конденсатор. Это проишодит в случае, если Тестер заканчивает измерение за более длительное время с сообщением «Целл!».

Пример: ЦФЛАГС ы -ДЦАП_ЕМПТЫ_ЛЕВЕЛі3

АУТОСЦАЛЕ_АДЦ Позволяет автоматически переключать опорное смещение АЦП или к ВЦЦ или к внутреннему ИОН. Внутренний ИОН $2,56\ V$ для А T мега $8\ \mathrm{u}\ 1,1\ V$ для остальных микроконтроллеров АТмега. Для АТмега8 автоматическое переключение опорного напряжения не используюця.

Пример: ЦФЛАГС ы -ДАУТОСЦАЛЕ_АДЦ

 $PE\Phi_P_KOPP$ Определяет смещение для внутреннего опорного напряжения АЦП в mV. Это смещение учитываеця при переключении с ВЦЦ базового АЦП на внутренний ИОН АЦП и может быть использовано при измерении резисторов. Если Вы выберете опцию АУТО_ЦАЛ в режиме самодиагностики, это значение будет дополнительной величиной к найденному напряжению смещения в опции АУТО_ЦАЛ.

Пример: ЦФЛАГС ы -ДРЕФ_Р_КОРР110

ECP_3EPO Определяет смещение нуля при измерении малых сопротивлений и ECP. Смещение нуля для любых комбинаций тестовых выводов определяеця в режиме самодиагностики и заменяет предустановленное смещение нуля. Эта величина будет вычтена из всех измерений сопротивлений до $10~\Omega$ и ECP.

Пример: ЦФЛАГС 1 -ДЕСР_ЗЕРО129

НО_АРЕФ_ЦАП Сообщает программному обеспечению, что у Вас нет конденсатора $(100 \ nF)$, установленного на выводе АРЕФ (вывод 21). Это позволяет сократить задержку для АУТОСЦАЛЕ_АДЦ при переключении на другой ИОН. Конденсатор на $1 \ nF$ не вносит искажений в результаты измерений. На рисунке 4.1a и 4.1b показано время переключения с конденсатором на $1 \ nF$. Вы можете видеть, что переключение от $5 \ V$ до $1,1 \ V$ намного медленнее, чем переключение назад, от $1,1 \ V$ до $5 \ V$. Если у Вас установлен конденсатор на $100 \ nF$, время переключения будет дольше в $100 \ pas$!

Пример: ЦФЛАГС ы -ДНО_АРЕФ_ЦАП

Рис. 4.1. Переключение АРЕ Φ с ёмкостью 1 nF

РЕФ_Р_КОРР гибт еинен Оффсет ф?р дие интерне Референз-Спаннунг ин мВ-Еинхеитен ан. Мит диесем Оффсет канн еине Дифференз беи дер Умсчалтунг дер Референзспаннунг ф?р дие Щидерстандсмессунг абгегличен щерден. Щенн дие АУТО_ЦАЛ-Оптион гещ?хлт щурде, ист диесер Щерт нур еин Оффсет зу дер гефунденен Спаннунгс-Дифференз ин дер АУТО_ЦАЛ Функтион.

Беиспиел: ЦФЛАГС 1 -ДРЕФ_Р_КОРР110

ОП_МХЗ Сообщает программному обеспечению, на какой частоте в MHz будет функционировать Ваш Тестер. Программное обеспечение проверено только на 1 MHz, 8 MHz и, дополнительно, на 16 MHz. 8 MHz рекомендуеця для лучшего разрешения при измерении ёмкости и индуктивности.

Пример: ОП_МХЗ 1 8

РЕСТАРТ_ДЕЛАЫ_ТИЦС Если АТмега168 или АТмега328 используюця с внутренним РЦ-генератором вместо кварца, то величина установки должна быть 6. Если это значение

не установлено, то при выходе из СЛЕЕП МОДЕ АТмега с кварцем, программное обеспечение оцчитывает задержку в 16384 такта.

Пример: ЦФЛАГС в -ДРЕСТАРТ_ДЕЛАЫ_ТИЦС16

УСЕ_ЕЕПРОМ Опция позволяет использовать для размещения фиксированного текста и таблиц память ЕЕпром. В противном случае используеця программная память Флаш. Рекомендуеця использовать память ЕЕпром (опция установлена).

Пример: ЦФЛАГС 1 -ДУСЕ_ЕЕПРОМ

ЕБЦ_СТЫЛЕ Опция задает стиль отображения результатов при определении назначения выводов элементов. Если активна опция ЦФЛАГС і -ДЕБЦ_СТЫЛЕ то информация о расположении выводов транзистора будет отображаться относительно назначения выводов, например: «ЕБЦ1231» или «ЕБЦ 1312». Опция вида ЦФЛАГС і -ДЕБЦ_СТЫЛЕ1321 позволяет закрепить вывод информации относительно обратного расположения тестовых портов в приборе, например: «3211БЦЕ» или «3211ЕБЦ». Если эти опции не активны, то формат вывода будет базироваться относительно тестовых выводов в порядке «1231...», например: «1231БЦЕ» или «1231ЕБЦ».

Пример: ЦФЛАГС ы -ДЕБЦ_СТЫЛЕ

HO_HAHO Определяет, что десятичная приставка «нано» не будет использоваться при отображении измеренных результатов. Значения отображаюця в μF вместо nF. Пример: ЦФЛАГС ы HO_HAHO

НО_ЛОНГ_ПИНЛАЫОУТ позволяет избежать длинного стиля отображения назначения выводов « Пин 1:E 2:Б 3:Ц». Если опция установлена, используеця короткий стиль отображения назначения выводов « Пин 123:ЕБЦ».

Пример: ЦФЛАГС ы НО_ЛОНГ_ПИНЛАЫОУТ

ПУЛЛУП_ДИСАБЛЕ Определяет, что Вы не нуждаетесь во внутренних подтягивающих резисторах. Если Вы выбрали эту опцию, то у Вас должен быть установлен внешний резистор с вывода ПД7 (вывод 13) к ВЦЦ. Эта опция предотвращает возможное влияние подтягивающих резисторов на результаты измерений в измерительных портах (порт Б и порт Ц).

Пример: ЦФЛАГС ы -ДПУЛЛУП_ДИСАБЛЕ

АНЗ_МЕСС Эта опция определяет количество считанных значений АЦП для вычисления среднего значения. Вы можете выбрать любое значение между 5 и 200 для подсчета среднего значения одного измерения АЦП. Более высокие значения дают большую точность, но увеличивают время измерения. Одно среднее значение измерений АЦП со значением 44 требует приблизительно $5\ ms$.

Пример: ЦФЛАГС ы -ДАНЗ_МЕСС155

ПОЩЕР_ОФФ Эта опция включает функцию автоматического выключения питания. Если Вы не установите эту опцию, измерения будут идти бесконечно, пока не будет отключено питание прибора. Если у Вас Тестер без шемы отключения питания, то Вы можете не выбирать ПОЩЕР_ОФФ. Если Вы не установили опцию ПОЩЕР_ОФФ для прибора с авто отключением, то Тестер можно выключить из меню выбора функций при активизированной опции ЩИТХ_МЕНУ. Вы можете также определить, после скольких измерений без определения элемента Тестер выключиця. Тестер также отключит питание после вдвое большего числа измерений, сделанных последовательно без неудавшегося поиска элемента. Это позволяет избежать полного разряда батареи, если Вы забыли оцоединять тестируемый элемент. Выбор определяеця как ЦФЛАГС ы -ДПОЩЕР_ОФФ15 для 5 последовательных измерений

без определения элемента. Тестер также выключиця после 10 измерений с определением элемента. Если любая последовательность измерений будет прервана другим типом, то измерения продолжаця. Результат измерения отображаеця на дисплее в течение 28 секунд для однократного измерения, для многократного измерения время отображения уменьшено до 5 секунд (выбор в цонфиг.х). Если кнопка **TECT** нажата более длительное время, то время отображения для многократного измерения также 28 секунд. Максимальное значение 255 (ЦФЛАГС ы -ДПОЩЕР_ОФФ1255).

Пример 1: ЦФЛАГС ы -ДПОЩЕР_ОФФ15 Пример 2: ЦФЛАГС ы -ДПОЩЕР_ОФФ

БАТ_ЧЕЦК Позволяет проверять напряжение батареи питания. Если Вы не выбираете эту опцию, то на ЛЦД-дисплее вместо напряжения будет отображаться номер версии программного обеспечения. Эта опция полезна для версии Тестера, работающей от автономного источника питания, чтобы напомнить о разряде источника питания.

Пример: ЦФЛАГС ы -ДБАТ_ЧЕЦК

БАТ_ОУТ Позволяет отображать напряжение батареи на ЛЦД-дисплее (если выбрана опция БАТ_ЧЕЦК). Если в цепи питания 9 V установлен диод, то для правильного измерения выходного значения необходимо учесть напряжение падения на нем (в mV), для этого используйте БАТ_ОУТ 1600. Также этой опцией можно учитывать падение напряжения на транзисторе Т3. Пороговый уровень не влияет на уровни проверки напряжения (БАТ_ПООР).

Пример 1: ЦФЛАГС 51 -ДБАТ_ОУТ1300

Пример 2: ЦФЛАГС ы -ДБАТ_ОУТ

БАТ_ПООР Установка нижнего уровня напряжения батареи, задаваемого в mV. Если нижний уровень составляет больше чем 5,3~V, то уровень предупреждения о разряде батареи на 0,8~V выше, чем указанный нижний уровень. Если нижний уровень составляет 5,3V или менее, то уровень предупреждения о разряде батареи на 0,4~V выше, чем указанный нижний уровень. Если нижний уровень ниже 3,25~V, то уровень предупреждения о разряде батареи на 0,2~V выше, чем указанный нижний уровень. Если нижний уровень ниже 1,3~V, то уровень предупреждения о разряде батареи на 0,1~V выше, чем указанный нижний уровень. Установка нижнего уровня 5,4~V не рекомендуеця для перезаряжаемых 9~V аккумуляторов, потому что это увеличивает риск повреждения аккумулятора изза глубокого разряда! Если Вы хотите использовать 9~V аккумулятор, то рекомендуеця использовать Реады То Усе тип аккумулятора из-за более низкого саморазряда. Пример для лощ дроп регулатор (5,4~V): ЦФЛАГС 51 -ДБАТ ПООР15400

Пример для лощ дроп регулатор (5,4 V): ЦФЛАГС \sharp 1 -ДБАТ_ПООР15400 Пример для 7805 тыпе регулатор (6,4 V): ЦФЛАГС \sharp 1 -ДБАТ_ПООР16400

ДЦ_ПЩР Уровень напряжения в mV измеренного при тесте напряжения питания Тестера, выше которого устанавливаеця режим «ДЦ_Пщр_Моде». Обычно Тестер работает от батареи и при этом все дополнительные функции ограничены во времени. В режиме «ДЦ_Пщр_Моде», предполагаеця, что Тестер работает от внешнего блока питания, поэтому дополнительные функции работают без ограничения по времени. Потому что ДЦ-ДЦ преобразователь не работает при входном напряжении меньше $0.9\ V$, режим «ДЦ_Пщр_Моде» также устанавливаеця, если обнаружено напряжение питания батареи ниже $0.9\ V$.

Пример: ЦФЛАГС 1 -ДДЦ_ПЩР19500

БАТ_НУМЕРАТОР значение числителя сокращённой дроби при расчёте резистивного делителя для измерения напряжения батареи. В рекомендованном делителе напряжения, состоящего из резистора $10~k\Omega$ и резистора $3.3~k\Omega$, Вы получите следующее выражение: $\frac{10000+3300}{3300} = \frac{133}{32}$.

Пример: ЦФЛАГС ы -ДБАТ_НУМЕРАТОР: 133

БАТ_ДЕНОМИНАТОР значение знаменателя из сокращённой дроби при расчёте резистивного делителя для измерения напряжения батареи.

Пример: ЦФЛАГС в -ДБАТ_ДЕНОМИНАТОР133

ЕШТ_НУМЕРАТОР значение числителя сокращённой дроби при расчёте резистивного делителя для измерения внешнего входящего напряжения. Если делитель состоит из резистора $180~k\Omega$ и резистора $20~k\Omega$, то соотношение будет: $\frac{180000+20000}{20000}$. После сокращения дроби получим: $\frac{10}{1}$.

Пример: ЦФЛАГС ы -ДЕШТ_НУМЕРАТОР 110

ЕШТ_ДЕНОМИНАТОР значение знаменателя сокращённой дроби при расчёте резистивного делителя для измерения внешнего входящего напряжения.

Пример: ЦФЛАГС 1 - ДЕШТ_ДЕНОМИНАТОР 1

ИНХИБИТ_СЛЕЕП_МОДЕ Запрещает использование СЛЕЕП_МОДЕ. Обычно программное обеспечение использует СЛЕЕП_МОДЕ для более длительной работы. Использование этого способа действительно экономит заряд батареи, но создает дополнительную нагрузку для стабилизатора напряжения.

Пример: ИНХИБИТ_СЛЕЕП_МОДЕ і 1 (для версий до 290)

Пример: ИНХИБИТ_СЛЕЕП_МОДЕ і 0 (для версии 291 и выше)

ПРОГРАММЕР устанавливает тип программатора для интерфейсной программы аврдуде.

Необходима правильная установка типа программатора (и порта).

В Макефиле по умолчанию установлен программатор из Диамеш.

УСБасп от Фисчлер и Ардуино Мега также готовяця.

Если должен использоваться другой программист, он должен быть включен в Макефиле и, до настоящего момента, отменен с помощью **Б** в начале строки.

Пример использования УСБтины Программер:

Б настройка для УСБтины ИСП

ПРОГРАММЕРаусбтины

БитЦлоцкі10

ПОРТіусб

и еще один пример:

В настройка для программиста Пололу

Ѣ ПРОГРАММЕРістк500в2

Б БитЦлоцкі 1.0

Ѣ Порт і /дев/ттыАЦМ0

Пример: ПРОГРАММЕР наврисъ

БитЦлоцк Выбирает частоту синхронизации для программатора. См. описание -Б параметра для аврдуде.

Пример: БитЦлоцкі 5.0

ПОРТ Выбранный порт, через который Ваш микроконтроллер АТмега может быть доступным для аврдуде. За дополнительной информацией обратитесь, пожалуйста, к описанию аврдуде. Пример: ПОРТ1усб

Дополнительные параметры могут быть установлены в файлах трансистортестер.х и цонфиг.х. Файл цонфиг.х содержит глобальные переменные и определяет порт/контакт и величину резистора, которые используюця для измерения. Файл трансистортестер.х определяет параметры для различных типов микроконтроллеров, задержку и частоту АЦП. Обычно нет необходимости изменять эти значения.

4.2 Программирование микроконтроллера

Я публикую программное обеспечение для микроконтроллера АТмега с ишодным кодом. Разработка сделана в среде операционной системы Линуш (Убунту) и компилируеця с помощью Макефиле. Макефиле даёт уверенность, что программное обеспечение будет корректно скомпилировано у Вас с предварительно выбранными опциями в Макефиле. Некоторые структуры предкомпилированы с ишодником. Пожалуйста, смотрите РеадМе.тшт файл в каталоге Софтщаре/дефаулт и главу 4 на странице 48. Результат компиляции представлен файлами с двумя расширениями .хеш и .eeп. По умолчанию имена будут ТрансисторТестер.хеш и ТрансисторТестер.eeп. Файл с расширением .хеш содержит данные для памяти программ (Флаш), а файл с расширением .eeп содержит данные для памяти ЕЕпром микроконтроллера АТмега. Оба файла с данными должны быть загружены в соотвецтвующие области памяти микроконтроллера АТмега.

Дополнительные опции состояния микроконтроллера АТмега должны быть запрограммированы фьюзами. Если Вы можете использовать мой Макефиле с программой аврдуде [13], Вам не нужны детальные знания о фьюзах. Вы должны только выбрать «маке фусес», если у Вас нет кварца, или «маке фусес-црыстал» , если Вы установили кварц на 8 MHz на свою печатную плату. С серией АТмега 168 Вы можете также использовать, «маке фусес-црыстал-лп» , чтобы использовать кварц с низким потреблением мощности. Никогда не выбирайте установки с кварцем, если кварц на 8 MHz у Вас не установлен. Если Вы не уверены с фьюзами, оставляете их заводскими и приведите Тестер в рабочее состояние в этом режиме. Работа программы может замедлиться, если Вы используете программные данные, определенные для работы на 8 MHz, но Вы сможете исправить это позже! А вот неправильный выбор фьюзов может запретить в будущем ИСП-программирование. Конечно, программа аврдуде должна поддерживать ваш программатор, и конфигурация в Макефиле должна соотвецтвовать Вашей среде разработки.

4.2.1 использовать под Линуш

К отчаянию и «бессонным ночам», которые Шрайбер перенес из этой главы, после чего он, не имея опыта ABP, приобрел тестер клонов и хотел «научить» немецкому языку, чтобы пощадить других коллег. написал эту главу. Приобретенный здесь опыт должен помочь другим «желающим» неопытным людям

УСПЕШНО программировать тестера.

Эта возможность используеця разработчиком тестера транзисторов и автором этого документа, Карл-Хайнц Кюббелер благодарит [15] за его преданность и терпение потому что следующие страницы никогда не были бы созданы без его помощи.

Так что прошивка может быть скомпилирована и записана в МЦУ и одновременно . . . «Колесо не нужно было бы заново изобретать», было частью следующих страниц Оригинал взят.

Итак, еще раз . . . огромный СПАСИБО ОГРОМНОМУ нормализует Карла-Хайнца Кюббелера.

4.2.2 операционная система Линуш

Программирование под Линуш имеет много преимуществ, потому что эта ОС была разработана экспертами, которые ориентированы на пожелания пользователей. Кроме того, среда доступна бесплатно и отлично поддерживаеця.

Еще одним преимуществом являеця безопасность как самой OC, так и при использовании Интернета.

Сегодняшние издания намного проще в использовании, чем их конкуренты, ОС.

Это руководство предназначено для того, чтобы побудить всех «не» пользователей Линуш протестировать его СЕЙЧАС, запрограммировав свой тестер.

В качестве примера используеця текущая версия Линуш Минт из Интернета.

Установка возможна по-разному и поставляеця с собственным менеджером загрузки, чтобы вы могли продолжать использовать существующую ОС параллельно.

4.2.3 использовать под Линуш

как новая ОС.

Для тех, кто не любит писать, есть простой способ.

Скопируйте это руководство на УСБ-накопитель и откройте его в Линуш.

Затем подведите указатель мыши к названию документа, то есть к тексту (цтестер.пдф), нажмите левую кнопку мыши и перетащите документ к левому краю экрана, пока не отобразиця возможный кадр. Теперь мышь отпущена.

Теперь инструкции занимают левую половину экрана.

4.2.4 установить программные пакеты

Для программирования тестера сначала должны быть установлены программные пакеты: 'бинутилс-авр', 'аврдуде', 'авр-либц' и 'гцц-авр'.

Теперь перейдите на эту страницу до этого текста:

судо апт-гет установить аврдуде авр-либц бинутилс-авр гцц-авр

На следующем шаге одновременно нажимаюця [Цтрл] ѣ [Алт] ѣ [т], чтобы открыть командное окно. Теперь это перемещено к правому краю экрана таким же образом.

Пометьте вышеупомянутый текст в левом окне, удерживая левую кнопку мыши поместите мышь на курсор правого командного окна и нажмите

с помощью средней кнопки мыши (колесо прокрутки) **снова сокращенно обозначаем** как [MT].

После подтверждения нажатием [Ентер] судо по-прежнему будет запрашивать пароль пользователя. В отличие от Щиндощс, пароль **Блинд** вводиця и подтверждаеця нажатием [Ентер].

Теперь все программные пакеты установлены «апт».

У.У. между ними вы должны подтвердить вопросы с помощью [J].

Пожалуйста, убедитесь, что Линуш различает прописные и строчные буквы.

Так что не отвечайте с [j], но с [J]!

4.2.5 загрузка источников

Для загрузки ишодников и документации из архива СВН, пакет

«Субверсион» используеця. Это достигаеця с помощью одной инструкции:

Для загрузки ишодников и документации из архива СВН, пакет

«Субверсион» используеця. Это достигаеця с помощью одной инструкции:

сви чецкоут сви: //щщш.микроцонтроллер.нет/трансистортестер

будет загружен полный архив. Если этот архив уже был загружен, эта команда будет загружать только новые обновления.

Файлы теперь находяця в [личной папке] Линуш в (/хоме/,,усер") под именем ,,Тестер транзистора". Контроль существования. Откройте окно Теминал, введите «лс» и подтвердите.

4.2.6 использование интерфейсов

подготовить для пользователя. Устройства УСБ можно распознать, введя «лсусб» в командном окне. Сначала введите «лсусб», а затем подключенный УСБ-программатор.

Сравнение результатов локализует УСБ-программатор.

Результат лсусб может выглядеть так:

Бус 001 Девице 001: ИД 1д66:0002 Линуш Фоундатион 2.0 роот хуб

Бус 002 Девице 003: ИД 046д:ц050 Логитеч, Инц. РШ 250 Оптицал Моусе

Бус 002 Девице 058: ИД 03е6:2104 Атмел Цорп. АВР ИСП мкИИ

Бус 002 Девице 059: ИД 2341:0042 Ардуино СА Мега 2560 РЗ (ЦДЦ АЦМ)

Бус 002 Девице 001: ИД 1д66:0001 Линуш Фоундатион 1.1 роот хуб

Здесь АВР ИСП мкИИ был распознан как Устройство 58 (ДИАМЕШ АЛЛ-АВР).

ИД 03еб - это идентификатор производителя, а ИД 2104 - это идентификатор продукта.

Эти два идентификатора необходимы для файла /етц/удев/рулес.д/90-атмел.рулес и созданы с помощью:

судо шед /етц/удев/рулес.д/90-атмел.рулес

В этом примере файл 90-атмел.рулес состоит из одной строки:

СУБСЫСТЕМ11"усб", АТТРСидВендор№11"03еб", АТТРСидПродуцт№11"2104", МОДЕ1"0660", ГРОУП1"плугдев"

Эта запись разрешает доступ к устройству для членов группы «плугдев».

Чтобы использовать большинство программистов, рекомендуеця следующий текст на 90-атмел.рулес:

Б Цопы тхис филе то /етц/удев/рулес.д/90-атмел.рулес

Ѣ АВР ИСП мкИИ - ДИАМЕШ АЛЛ-АВР

СУБСЫСТЕМії"усб", АТТРС идВендор№11"03еб", АТЦ идПродуцт№11"2104", МОДЕ1"0660", ГРОУП 1 "плугдев",

Ъ УСБ ИСП-программер ф?р Атмел АВР

СУБСЫСТЕМ11"усб", ЕНВ ДЕВТЫПЕ№11"усбЪдевице", СЫСФС идВендор№11"16ц0", МОДЕ1"0666", СЫСФС идПродуцт№ 11 "05дц",

Ѣ УСБ асп программер

АТТРС идВендор№11"16ц0", АТТРС идПродуцт№11"05дц", ГРОУП1"плугдев", МОДЕ1"0660"

Ѣ УСБтины программер

АТТРС идВендор№11"1781", АТТРС идПродуцт№11"0ц9ф", ГРОУП1"плугдев", МОДЕ1"0660"

В Пололу программер

СУБСЫСТЕМії"усб", АТТРС идВендор№11"1ффб", МОДЕї"0666"

После того, как файл был создан, вы можете проверить создание и содержание с:

меньше /етц/удев/рулес.д/90-атмел.рулес

Системное УСБ-устройство Ардуино СА Мега 2560, также распознаваемое как Устройство 59, генерирует одно Доступ к последовательному устройству "/дев/ттыАЦМ0" для членов группы 'диалоут'.

4.2.7 членство в группе

Следовательно, ваш собственный идентификатор пользователя также должен быть членом группы 'плугдев' группа «дозвон». Команда:

судо усермод -а -Г диалоут,плугдев \$УСЕР

должен обеспечить принадлежность. Аврдуде теперь должен иметь доступ к обоим устройствам. Вы можете проверить это с помощью команды: 'ид'.

В случае возникновения проблем, членство также может быть сделано через:

Меню /Системное администрирование/Пользователи и группы/«Пароль»/появиця окно с двумя вкладками.

Если вы теперь щелкните по его имени на вкладке «Пользователь», вы увидите его профиль и принадлежность к группе справа. С помощью кнопки «АДД» теперь можно добавлять новые группы.

4.2.8 рабочее пространство

Чтобы сохранить оригинал, и поскольку окно терминала всегда открываеця в ../хоме/"усер"/, рекомендуеця создать там ссылку с именем **Мытестер** со следующими записями:

цд трансистортестер/Софтщаре/трунк/

и затем, введя 'лс', чтобы найти подкаталог, 'требуемая модель тестера'.

Для следующих двух команд сначала вставьте их ТОЛЬКО без нажатия [Ентер] :!

цп-р 'МыТ' Мытестер/

Пометьте каталог нужной модели мышью. Теперь поместите курсор с помощью [левой клавиши

со стрелкой] на последний символ текста «МыТ» и удалите эти символы. После удаления последнего символа нажмите кнопку [МТ] на мыши. Только сейчас используйте [Ентер]. Рабочая среда теперь создана. Наличие и содержание можно проверить с помощью:

дифф 'МыТ' Мытестер/

«МыТ», как и прежде, необходимо заменить на каталог «требуемой модели тестера». С последним утверждением:

лн -c ~/трансистортестер/Софтщаре/трунк/Мытестер ~/Мытестер ссылка на рабочий каталог создана.

Отныне вы можете легко получить доступ к этому каталогу с помощью:

[Цтрл] ѣ [Алт] ѣ [т], цд [Пусто] Мы [Таб] [Ентер]

и вы в нужном каталоге. С 'лс' вы можете видеть содержимое.

Он продолжает редактировать Макефиле с помощью уже известной инструкции: meд Ma [Taб] [Ентер]

Самое важное - зарегистрировать СУЩЕСТВУЮЩЕГО УСБ-программиста.

См. Главу 4.1, на странице 60, раздел ПРОГРАММЕР.

Следующие звонки рекомендуюця:

очистить рабочую среду маке для компиляции программы

сделать предохранители для установки АТмега "предохранители" без кварца

сделать фусес-црыстал для установки АТмега ,, фусес " TOЛЬKO с версией с 8MHz кварцем! сделать загрузку загрузить переведенную программу через интерфейс ИСП в АТмега

4.2.9 Использование программы ЩинАВР в ОС Щиндощс

Если Вы используете операционную систему Щиндощс, то самый легкий способ получить правильно запрограммированный АТмега состоит в том, чтобы использовать пакет ЩинАВР [17],[18]. Для установки фьюзов с помощью Макефиле Вы можете использовать мой Патч фор ЩинАВР [19]

На рисунке 4.2 показано меню Филе графического интерфейса пользователя ЩинАВР для открытия файла Макефиле (Опен) и для того, чтобы сохранить изменённый Макефиле (Саве).

(а) Открыть Макефиле

(б) Сохранить Макефиле

Рис. 4.2. Использование программы ЩинАВР

Следующий рисунок 4.3 показывает меню Тоолс графического интерфейса пользователя ЩинАВР для того, чтобы скомпилировать программу (Маке Алл) и для того, чтобы запрограммировать АТмега (Програм) программой аврдуде.

(а) Создание прошивки (.хеш/.ееп)

(б) Программирование АТмега

Рис. 4.3. Использование ЩинАВР

4.3 Поиск неисправностей

В большинстве случаев возникают проблемы с выводом текста на ЛЦД-дисплей. Сначала Вы должны проверить, что светодиод ЛЕТ не светиця, если Вы отпускаете кнопку **ТЕСТ**.

Питание не включаеця. Если светодиод ЛЕЪ не светиця, и ВЦЦ 1 5 V во время нажатия кнопки **TECT**, микроконтроллер не включает питание. В первую очередь, микроконтроллер должен держать питание, переключая уровень ПД6 на 5 V. Если Вы удерживаете кнопку **TECT**, питание должно быть включено. Так Вы можете проверить величину напряжения питания ВЦЦ и одновременно величину напряжения на ПД6. Если напряжения ВЦЦ 1 $5\,V$, а напряжение на ПД6 ниже $4\,V$, то микроконтроллер не запускает программу. В этом случае Вы должны проверить, был ли микроконтроллер запрограммирован надлежащими данными для установленного у Вас типа АТмега во Флаш и ЕЕпром, и правильно ли сформированы фьюзы. Если микроконтроллер переводит состояние ПД6 в $5\,V$, но питание не остаеця после отпускания кнопки **TECT**, то это усложняет поиск причины. Сначала Вы можете замкнуть светодиод ЛЕЪ и попробовать еще раз. Если Тестер запускаеця, то светодиод ЛЕЪ может быть дефектным или установлен с неправильной полярностью. Если причина не эта, то недостаточен коэффициент усиления транзистора ТЗ (БЦ557Ц).

Оцуцтвует текст на ЛЦД-дисплее. Проверьте напряжение на контакте контрастности в ЛЦД-дисплее. Установите значение, определенное в техническом описании и оптимизируйте для комфортного просмотра. Для некоторых дисплеев может понадобиця отрицательное напряжение для регулировки контраста. В этом случае Вы можете использовать ИЦЛ 7660 для генерации отрицательного напряжения из положительного 5 V. Программное обеспечение может быть создано для разных контроллеров и разных интерфейсов подключения дисплея. Необходимо проверить соотвецтвие установленной программы шеме Вашего тестера и применяемого в нем дисплея. Если на ЛЦД-дисплее нет никакой информации, а подсветка есть, то необходимо отключить питание и проверить четыре шины данных и две связи управляющих сигналов. Если всё нормально, единственной причиной, которую я вижу, являеця неправильный выбор временных параметров управляющих сигналов. Это может быть вызвано более медленным контроллером ЛЦД-дисплея, чем заложено в программном обеспечении или работой программного обеспечения на неправильной тактовой частоте АТмега. Необходимо проверить, для какой тактовой частоты были скомпилированы программные данные и соотвецтвуют ли фьюзы выбранной частоте АТмега. Вы найдёте параметр частоты в соотвецтвующей строке Макефиле. Если Тестер собран без отключения, Вы можете проверить работу программы с помощью светодиода, подключенного к испытательным выводам. Если светодиод мигает, то программа работает правильно. Для некоторых графических дисплеев контрастность настраиваеця из функции в меню. Если Вы изменили значение контрастности, так что ничего не читаеця на экране, Вы можете попробовать увидеть информацию на дисплее при просмотре под большим углом, а не спереди. В этом случае Вы можете попробовать отрегулировать контрастность из меню. В противном случае, Вы должны переписать данные ЕЕПРОМ ИСП программатором для сброса значения контрастности.

Что-то, но не все читаемое на ЛЦД-дисплее. Проверить, правильные ли .een данные загружены в память ЕЕпром АТмега. Если все данные загружены правильно, то необходимо проверить тактовую частоту, программные параметры данных (Макефиле) и установки фьюзов АТмега.

Медленное измерение и измеренная ёмкость в 8 раз меньше. Программное обеспечение для $8 \ MHz$, а работает ATмега на $1 \ MHz$. Проверьте правильность установки фьюзов.

Странные значения измерений. Для того, чтобы проводить измерения, ИСП программатор должен быть оцоединен. Очень часто причина неправильных измерений - использование программного обеспечения, скомпилированного с опцией АУТОСЦАЛЕ_АДЦ и с опцией НО_РЕФ ЦАП, а на выводе АРЕФ конденсатор ёмкостью 100~nF. Неправильный монтаж или остатки флюса также могут нарушить измерение. Пожалуйста, если возможно, проверьте функцией самопроверки программное обеспечение Тестера. Подробности смотрите в Главе 5.5

Осмотрите свою плату визуально и проверьте величины резисторов омметром. Для этой проверки Вы можете использовать выводы АТмега, например, чтобы проверить Р1, Вы можете провести измерения между выводами 23 и 14 АТмега. Смотрите шему на рисунке 2.1. Удалять микроконтроллер не обязательно, достаточно только отключить батарею или электропитание.

Тестер выключает питание после 2 секунд отображения на дисплее. Это может произойти, если оцуцтвует внешний подтягивающий резистор с порта ПД7 к ВЦЦ, или кнопка **TECT** удерживаеця нажатой. Программное включение внутренних подтягивающих резисторов влияет на результаты измерения, поэтому необходим внешний подтягивающий резистор $27\ k\Omega$.

Тестер отображает только Вештиши. шВ во второй строке Эта проблема появляеця, если подтягивающий резистор на выводе ПД7 оцуцтвует, неисправен или кнопка ТЕСТ удерживаеця в нажатом положении, а программное обеспечение сконфигурировано с отключением УАРТ (опция ЩИТХ_УАРТ отключена) и отключеным внутренним подтягивающим резистором (с опцией ПУЛЛУП_ДИСАБЛЕ). Необходима установка подтягивающего резистора на выводе ПД7.

Глава 5

Описание процедур измерения

Упрощенная шема порта Ввода/Вывода АТмега показана на рисунке 5.1. Ключ ПУД отключает все подтягивающие резисторы АТмега. Состояние выхода порта может быть переключено ключом ДД. Вход порта может управляться независимо от ключа ДД. Ключ ПОРТ обычно определяет выходной уровень, но также и переключает подтягивающий резистор. Поскольку ключи ПОРТ и ДД не могут быть изменены одновременно, а только один за другим, подтягивающие резисторы могут нарушить измерение. Поэтому я предварительно отключаю подтягивающие резисторы ключом ПУД. Конечно, все ключи - электронные и величины сопротивлений резисторов 19 Ω и 22 Ω приблизительны.

Рис. 5.1. Упрощенная шема каждого вывода порта АТмега

Каждый из трех измерительных щупов Тестера конструктивно соединен с тремя выводами портов АТмега, которые показаны на упрощенной шеме испытательного вывода ТЪ (средний, из трех выводов ТП, ТЪ и ТПЗ) на рисунке 5.2.

Рис. 5.2. Упрощенная шема каждого испытательного вывода щупа ТП

Каждый испытательный вывод (измерительный порт, щуп) может использоваться в качестве цифрового или аналогового входа. Эта возможность измерения не зависит от использования порта в качестве выхода. Каждый испытательный порт может быть переключен на вывод. В этом состоянии он может быть подключен к Γ HД (0 V) или ВЦЦ (+5 V) непосредственно или через резистор 680 Ω или резистор 470 $k\Omega$. Таблица 5.1 показывает все возможные комбинации измерений. Заметьте, что положительное состояние может быть получено подключением непосредствени к ВЦЦ (порт Ц) или через резистор 680 Ω к ВЦЦ (Порт Б). Такая же возможность есть и для отрицательного состояния при подключении испытательного порта к Γ HД. Состояние испытательного щупа может быть открытым (Вход), соединённым через резистор 470 $k\Omega$ к ВЦЦ или Γ HД, или испытательный щуп может быть подключен через резистор 680 Ω к ВЦЦ или Γ HД.

	Состояние щупа 1	Состояние щупа 2	Состояние щупа 3
1.	положительное	отрицательное	тест
2.	положительное	тест	отрицательное
3.	тест	отрицательное	положительное
4.	тест	положительное	отрицательное
5.	отрицательное	тест	положительное
6.	отрицательное	положительное	тест

Таблица 5.1. Все комбинации измерений

Если Тестер сконфигурирован для измерения ёмкости, то Тестер попытаеця разрядить конденсаторы, соединённые со всеми испытательными выводами. Если разрядка потерпит неудачу, которая означает, что остаточное напряжение высокое, разрядка будет прервана приблизительно через 12 секунд с выводом сообщения «Целл!». Это может произойти так же, если никакой конденсатор не связан ни с каким испытательным выводом. Причиной может быть то, что напряжения отключения выбрано низким для этого АТмега. Вы можете выбрать более высокое напряжение опцией ЦАП_ЕМПТЫ_ЛЕВЕЛ в Макефиле.

5.1 Измерение полупроводниковых элементов

Исследование элемента необходимо начинать с обесточенным управляющим выводом (третий вывод, назван ТриСтатеПин). ТриСтатеПин исследуемого элемента во время испытания являеця базовым или отправным. Один испытательный вывод выбран положительной стороной элемента и подключен непосредственно к ВЦЦ. Другой испытательный вывод выбран отрицательной стороной элемента. Отрицательная сторона подсоединена через резистор $680~\Omega$ к ГНД. Состояние полевых транзисторов зависит от напряжения на затворе. Сначала, ТриСтатеПин на 5~ms подключаеця через резистор $680~\Omega$ Ом к ГНД и измеряеця напряжение на отрицательной стороне. Далее ТриСтатеПин переключаеця на Ввод (высокое полное входное сопротивление) и снова измеряеця напряжение отрицательного испытательного вывода. Затем предполагаемый затвор соединяеця через резистор $680~\Omega$ на 5~ms к ВЦЦ и снова измеряеця напряжение на отрицательной стороне. Если измеренное напряжение ниже первого результата измерения, то эта шема будет предполагаться, как правильная. Затем напряжение снова измеряеця с обесточенным ТриСтатеПин.

Если напряжение отрицательного испытательного вывода с фиксированным напряжением ТриСтатеПин выше чем $115\ mV$, а с обесточенным ТриСтатеПин не ниже $100\ mV$, предполагаеця, что это обеднённый транзистор.

У биполярных транзисторов, имеющих повышенный обратный ток коллектора, он значительно повышаеця в режиме с обесточенной базой.

При проверке с обоими напряжениями можно избежать неправильного обнаружения некоторых германиевых транзисторов с более высоким обратным током коллектора, как обедненных транзисторов (JФЕТ).

Далее проводяця дополнительные тесты по определению H-канального JФЕТ или H Д-МОСФЕТ и П-канального JФЕТ или П-Д МОСФЕТ. Версии МОСФЕТ могут быть определены по оцуцтвующему току затвора при любом состоянии ТриСтатеПин.

Чтобы получить параметры ФЕТ обеднённого типа, их измеряют с резистором 680 Ω в истоке, как показано на рисунке 5.3 . Это измерение делаеця вместо обычного измерения тока удерживания затвора на уровне истока, потому, что $I_{\rm DSS}$ ФЕТ транзистора часто не может быть достигнуто из-за относительно высокого сопротивления резистора 680 Ω .

Рис. 5.3. Измерение напряжения затвор-исток и тока истока Н-ЈФЕТ транзистора

Если у элемента нет тока между положительным и отрицательным испытательными выводами без сигнала на ТристатеПин, то переходим к тестам определения, описанным в разделе 5.1.1. Если ток был обнаружен, то следующий тест описан в 5.1.4 о диодах.

5.1.1 Измерение П-Н-П транзистора или П-Чаннел-МОСФЕТ

Сначала измеряют коэффициент усиления предполагаемого П-H-П транзистора в шеме с общим коллектором (эмиттерный повторитель). Шема измерения показана на рисунке 5.4. Если напряжение базы (UB) измеренное с резистором 680 Ω , выше 9 mV, то коэффициент усиления вычисляеця по формуле $hFE = \frac{UE-UB}{UB}$. Напряжение UE это разность между напряжением на эмиттере и ВЦЦ. Различие между резисторами 22 Ω и 19 Ω не учитываеця. Если напряжение UB ниже 10 mV, измерение делают с резистором 470 $k\Omega$ в базе. В этом случае коэффициент усиления вычисляеця по формуле $hFE = \frac{UE.470000}{UB.(680+22)}$.

Рис. 5.4. Измерение хФЕ П-Н-П транзистора в шеме с общим коллектором

Затем делают тесты для предполагаемого П-H-П транзистора в шеме с общим эмиттером. Положительная сторона элемента теперь подключена прямо с ВЦЦ, отрицательная сторона через резистор 680 Ω подключена к ГНД, как показано на рисунке 5.5. Если на отрицательной стороне элемента есть напряжение выше 3,4 V, когда базовый резистор 680 Ω подключен к ГНД, значит этот элемент или П-H-П транзистор или П канальный ФЕТ. Какой из них - может быть легко установлено по напряжению базы. Если напряжение базы больше 0,97 V, это должен быть П-H-П транзистор. Для того, чтобы измерить коэффициент усиления, в цепь базы вместо резистора 680 Ω включаеця резистор 470 $k\Omega$. Коэффициент усиления вычисляеця по формуле $hFE = \frac{(UC-UC0)\cdot470000}{UB\cdot(680+19)}$. Напряжение УЦ0 являеця напряжением на коллекторном резисторе без базового тока. Как предполагаеця, правильным являеця более высокий коэффициент усиления, определенный первым или вторым способом. В версии 1.08к коэффициент усиления в шеме с общим эмиттером определяеця только для микроконтроллеров АТмега328. Для других микроконтролле используеця только шема с общим коллектором.

Значения, найденные для Π -H- Π транзистора, действительны только, если сделаны дополнительные измерения. Чтобы предотвратить обнаружение Π -H- Π транзистора в инверсном включении (коллектор с эмиттером поменяны местами), измерение с более высоким коэффициентом усиления считаеця правильным. Если напряжение базы ниже, чем 0,97~V, то это должен быть Π -E-MOC. В этом случае пороговое напряжение затвора измеряеця при плавном переключении затвора с резистором $470~k\Omega$ от ВЦЦ до Γ HД, ожидая на цифровом входе изменения сигнала стока, и затем, считываеця напряжение затвора.

Рис. 5.5. Испытание и измерение хФЕ П-Н-П транзистора в шеме с общим эмиттером

5.1.2 Измерение Н-П-Н транзистора или Н-Чаннел-МОСФЕТ

Измерение Н-П-Н транзистора начинаеця таким же образом, как и П-Н-П транзистора, с измерения коэффициента усиления в шеме с общим коллектором. Первое измерение сделано с резистором в цепи базы $680~\Omega$ подключенным к ВЦЦ. Если напряжение на резисторе в цепи базы слишком низко, вместо $680~\Omega$ берёця резистор $470~k\Omega$. Тогда измерение продолжаеця в шеме с общим эмиттером, как показано на рисунке 5.6. Если напряжение коллектора ниже 1,6~V и резистор в цепи базы $680~\Omega$ соединён с ВЦЦ, то это может быть Н-П-Н транзистор, Н-канальный МОСФЕТ или тиристор/симистор. Тиристор или симистор могут быть идентифицированы двумя простыми тестами. Если резистор на управляющем выводе, соединённый в течение 10~ms с ГНД обесточить, ток в аноде должен остаться. Если резистор анода кратковременно подключить к ГНД и, затем, повторно подключить к ВЦЦ, тиристор не должен снова включиться (нет тока). Имейте в виду, что Тестер может проверять только маломощные тиристоры, потому что ток удержания может достигать только 6~mA. Если оба теста свидетельствуют о тиристоре, то необходимо сделать тесты с обратной полярностью, чтобы исключить или подтвердить симистор.

Рис. 5.6. Испытание и измерение хФЕ Н-П-Н транзистора в шеме с общим эмиттером

Если ни тиристор, ни симистор не были подтверждены, то это может быть Н-П-Н транзистор или Н канальный Е-МОСФЕТ. Базовое напряжение Н-П-Н транзистора будет близко к напряжению эмиттера, таким образом, этот тип может быть идентифицирован определенно. Коэффициент усиления в шеме с общим эмиттером вычисляеця по формуле $hFE = \frac{(VCC-UC)\cdot 470000}{(VCC-UB)\cdot (680+22)}$. Если напряжение базы или затвора повышенные, то в этой цепи тока нет или он мал, значит, элемент будет Н-канальным Е-МОС (МОСФЕТ обогащённый). В этом случае пороговое напряжение измеряеця при плавном переключении затвора с резистором $470~k\Omega$ от ВЦЦ до ГНД, ожидая на цифровом входе изменения сигнала стока, и затем считываеця напряжение затвора. Это измерение делаеця 11 раз с накоплением результатов АЦП, как показано на рисунке 5.7. Результат умножаеця на 4 и делиця на 9, чтобы получить напряжение в mV.

Рис. 5.7. Измерение порогового напряжения Н-канального МОСФЕТ

5.1.3 Упрощенная блок-шема тестирования транзисторов

Рис. 5.8. Блок-шема тестирования транзисторов. Часть 1: ЈФЕТ и Д-МОС

Рис. 5.9. Блок-шема тестирования транзисторов. Часть 2: БЈТ и Е-МОС

Рис. 5.10. Блок-шема тестирования транзисторов. Часть 3: Тиристор и симистор

5.1.4 Измерение диодов

Если предварительными тестами будет обнаружен ток, то элемент будет опознан как диод. Падение напряжения с резистором $680~\Omega$ должно быть между 0,15~V и 4,64~V. Падение напряжения с резистором $680~\Omega$ должно быть в 1.125 раза больше падения напряжение с резистором $470~k\Omega$ и падение напряжения с резистором $470~k\Omega$ должно быть в 16 раз больше, чем падение напряжения с резистором $680~\Omega$. Дополнительно: при возобновлении измерения с резистором $470~k\Omega$ напряжения должно быть не выше, чем в предыдущем измерении с резистором $680~\Omega$. Я надеюсь, что этот метод всегда идентифицирует диод. При идентификации двух диодов, включенных встречно-параллельно, невозможно определение тока утечки в противоположи направлении. Если обнаружен только одиночный диод, то ток утечки в обратном направлении измеряеця с резистором $470~k\Omega$ подключенным к ВЦЦ. Разрешение около 2~nA. Если ток утечки

больше 5,3 μA (напряжение на резисторе 470 $k\Omega$ составляет больше чем 2,5 V), измерение производиця с резистором 680 Ω . В этом случае разрешение только около 1 μA . Кроме того, для одиночного диода, может быть измерена ёмкость в обратном направлении.

5.1.5 Результаты различных измерений

Следующие таблицы показывают результаты испытательных исследований с различными микроконтрол АТмега8, АТмега168, АТмега328.

Тип диода	Мега8~8МХз	Мега168 ~8МХз	МегаЗ28 ~8МХз	
1H4148	Диоде, 715мВ,	Диоде, 718мВ,	Диоде, 715мВ,	
	1пФ	0пФ, 2нА	1πΦ, 4нА	
1H4150	Диоде, 665мВ,	Диоде, 672мВ,	Диоде, 666В,	
	1πФ	1πΦ, 4нА	2пФ, 6нА	
БА157	Диоде, 619мВ,	Диоде, 621В,	Диоде, 615мВ,	
	19пФ	$17\pi\Phi,\ 12$ н A	18 п Φ , 12 н A	
БЫ398	Диоде, 538мВ,	Диоде, 541мВ,	Диоде, 537мВ,	
	16пФ	$14\pi\Phi,63$ н A	$15\pi\Phi,63$ н A	
1H4007	Диоде, 650мВ,	Диоде, 655мВ,	Диоде, 650мВ,	
	13пФ	10пФ, 6нА	13пФ, 6нА	
ЛЕД греен	Диоде, 1,96В, 5пФ	Диоде, 1,95В, 4пФ	Диоде, 1.95В, 4пФ	
ЗПЏ,7	2шДи, 743мВ, 2,53В	2шДи, 737мВ, 2,52В	2шДи, 733мВ, 2,51В	
БУ508А БѣЕ	Диоде, 609мВ,	Диоде, 611мВ,	Диоде, 606мВ,	
	$5{,}15$ н Φ	$5,20$ н Φ , $0,39$ уА	$5,25$ н $\Phi, 0,4$ у A	
БУ508А БѣЦ	Диоде, 582мВ,	Диоде, 586мВ,	Диоде, 587мВ,	
	$256\pi\Phi$	255 п Φ , 21 н A	$259\pi\Phi, 19$ н А	
АЋ28 БѣЕ	Диоде, 272мВ,	Диоде, 277мВ,	Диоде, 273мВ,	
	$0\pi\Phi$	$0\pi\Phi$, $2.2yA$	$0\pi\Phi$, 2,3yA	
АЋ28 БѣЕ			Диоде, 349мВ,	
с охлаждением			$140\pi\Phi,0,57yA$	
МБР20100ЦТ	2шДи, 337мВ, 337мВ	2шДи, 338мВ, 338мВ	2шДи, 336мВ, 335мВ	
МБР20100ЦТ	Диоде, 337мВ,	Диоде, 339мВ,	Диоде, 337мВ,	
	$345\pi\Phi$	351 п Φ , 29 н A	$350 \pi \Phi, 25 \text{нA}$	
МБР4045ПТ	Диоде, 243мВ,	Диоде, 233мВ,	Диоде, 235мВ,	
с охлаждением	1,80нФ	$1,94$ н $\Phi, 1,7$ у A	1,95нФ, 1,8уА	
CK14	Диоде, мВ,	Диоде, мВ,	Диоде, 263мВ,	
	0пФ	пФ, нА	$0\pi\Phi, 0.57yA$	
CK14	Диоде, мВ,	Диоде, мВ,	Диоде, 334мВ,	
с охлаждением	нФ	пФ, нА	88пФ, 4нА	
СΦ38Γ	Диоде, 519мВ,	Диоде, 521мВ,	Диоде, 516мВ,	
	107пФ	105пФ, 2нА	106пФ, 2нА	

Таблица 5.2. Результаты измерения диодов

Измерение обратной ёмкости для двойного диода МБР $4045\Pi T$ возможно только с охлаждением. Это вызвано высоким током утечки этого 40~A диода. Также обратная ёмкость перехода база-эмиттер германиевого транзистора $A \bar{h} 28$ может быть измерена только с охлаждением.

Тип	Тип	Мега8	Мега328	Мега328	Мега328
Транзистора	пр-ти	общий		общий	общий
		коллектор		коллектор	эмиттер
БУ508А	НПН	β 19, 601мВ	β 19, 597мВ	β 19, 598мВ	β14, 484мB
2H3055	НПН	β 120, 557мВ	β і $21, 550$ мВ	β і $21, 550 мВ$	$\beta_{16}, 442 \text{MB}$
БЦ639	НПН	β і $148, 636$ мВ	β і $172, 629мВ$	β і $172, 629$ мВ	β 1158, 605мВ
БЦ640	ПНП	β 1226, 650мВ	β і $176, 609$ мВ	β і $171, 655 мВ$	β 1177, 608мВ
БЦ517	НПН	β 123,9к, 1,23В	βι24,8κ, 1,22B	βι25,1κ, 1,22B	$\beta_1764, 1,23B$
БЦ516	ПНП	β 175,9к, 1,21В	β 176,2к, 1,20В	β 176,2к, 1,20В	$\beta_1760, 1,23B$
БЦ546Б	НПН	β 1285, 694мВ	β 1427, 687мВ	β і 427 , 687 мВ	β 1369, 683мВ
БЦ556Б	ПНП	β і 304 , 704 мВ	β 1254, 668мВ	β 1235, 709мВ	β 1255, 668мВ
Aħ28 (Γe.)	ПНП	β 163, 191мВ	β 159, 191мВ	β 157, 193мВ	β 143, 117мВ
БУЛ38Д	НПНп	β і $37, 627мВ$	β і $41, 617$ мВ	β і $40, 624$ мВ	β 136, 562мВ
параситиц	ПНПн	β і $11, 654$ мВ	β і $81, 543$ мВ	β і $10,656$ мВ	β 183, 541мВ
БРЫ55/200	Тхырист.	0,84B	0,81B	0,81B	0,82B
МАЦ97А6	Триац	0,92B	0,90B	0,90B	0,90B

Таблица 5.3. Результаты измерения биполярных транзисторов

Некоторые результаты значительно отличаюця от результатов, полученных в более ранних версиях программного обеспечения от Маркус Ф. Например, транзистор Дарлингтона БЦ517 был измерен более ранним программным обеспечением: хФЕ1797 вместо 77200 и напряжение база-эмиттер і $1438\ mV$. Это вызвано дополнительным измерением коэффициента усиления в шеме с общим коллектором. Кроме того, новая версия программного обеспечения показывает такой же низкий результат хФЕ в шеме с общим эмиттером, что можно увидеть в последнем столбце таблицы 5.3. Напряжение база-эмиттер измерено как отдельный диод. Теперь напряжение база-эмиттер измеряеця при токе измерения коэффициента усиления (1, 20 V). НПН-транзистор БУЛЗ8Д имеет между коллектором и эмиттером встроенный защитный диод, который может спровоцировать определение паразитного ПНП-транзистора с базой на месте коллектора правильного НПН транзистора. С версии программного обеспечения 1.10к оба транзистора обнаруживаюця и помечаюця добавлением символа р. Правильный транзистор будет найден при сравнении ёмкости перехода база - эмиттер. Предполагаеця, что правильный транзистор имеет более высокую ёмкость перехода. Если нажать и удерживать клавишу запуска во время вывода результата измерения, то будут показаны параметры паразитного транзистора. Наличие правильного транзистора будет отмечено индексом н (ПНПн). Паразитный транзистор определяеця только с защитным диодом, расположенном на том же кристалле, что и правильный транзистор, а не с внешним диодом.

Следующая таблица 5.4 показывает результаты измерения для германиевых транзисторов, которые являюця проблемными из-за температурной зависимости и высокого обратного тока коллектора. Представлены вместе результаты оригинальной версии от Маркус Ф. и результаты версии 1.10к. Версия 1.10к для АТмега328 измеряет коэффициент усиления в шемах с общим коллектором и общим эмиттером с учетом обратного тока коллектора, и выводит более высокий результат. Обратный ток коллектора не учитывался в более ранних версиях программного обеспечения.

Тип	Мега8~1МХз	Мега168 ~8МХз	Мега328 ~8МХз
транзистора	Оригинальная вер.	Версия 1.10к	Версия 1.10к
	Маркус Ф.		
ATi28	ПНП, β 152, 279мВ	ПНП, β 159, 184мВ	$\Pi H \Pi, \beta_1 59, 191 MB$
ATi16-65	ПНП, β 1505, 378мВ	ПНП, β 172, 146мВ	ПНП, β 172, 149мВ
ATi16-145	ПНП, β 1485, 294мВ	ПНП, β 1146, 161мВ	ПНП, β 1146, 163мВ
ATr76-65	$H\Pi H, \beta_1 98, 235 MB$	$H\Pi H, \beta_{1}58, 94 MB$	$H\Pi H, \beta_{1}56, 96 MB$
ΓЋ22	ПНП, β 184, 368мВ	ПНП, β 155, 117мВ	ПНП, β 156, 117мВ
ГЦ301	ПНП, β 148, 289мВ	ПНП, β і39, 184мВ	ПНП, β 139, 188мВ
АЪ61	$H\Pi H, \beta_1 360, 230 MB$	$H\Pi H, \beta_1 296, 126 MB$	$H\Pi H, \beta_1 298, 128 MB$
АЪ62	ПНП, β 12127, 280мВ	ПНП, β 189, 107мВ	ПНП, β 189, 107мВ

Таблица 5.4. Результаты измерений германиевых биполярных транзисторов

В таблице 5.5 показаны результаты измерения некоторых полевых транзисторов. Одним из измеряемых параметров Е-МОС транзисторов являеця напряжение затвор-исток, которое замеряеця по изменению состояния цифрового входа АТмега, подключенному к стоку через резистор 680 Ω . Из-за небольшой ёмкости затвора, напряжение на нем изменяеця очень быстро, что уменьшает точность фиксации этого напряжения. Например, у транзистора БС250 это напряжение изменялось от $2,6\ V$ до $2,5\ V$, при подключении дополнительного конденсатора ёмкостью $10 \, nF$ параллельно выводам затвор и исток. Другим измеренным параметром являеця значение ёмкости затвора. Емкость затвора измеряеця путем переключения вывода истока и затвора на $\Gamma H \square$. Доступное напряжение 5 V на затворе тестера являеця недостаточным для генерации достаточного тока для некоторых ИГБТ. Это мешает правильному обнаружению. В большинстве случаев обнаруживаеця только защитный диод коллектор-эмиттер. Источник, примерно, 3 V, подключенный к выходу, может решить проблему с обнаружением. Другой полюс источника должен быть подключен к тестовому выводу (ТП) тестера вместо соединения затвора. При правильной полярности батареи тестер должен обнаружить ИГБТ. Отображаемое напряжение переключения затвор-сток должно быть увеличено на величину напряжения батареи, чтобы получить правильное напряжение переключения. Для ЈФЕТ транзисторов в качестве характеристики часто приведен ток Идсс, являющийся током стока при напряжении затвористок равном 0 V. В данной реализации, однако, ток не может превышать величины, определенной сопротивлением нагрузки в стоке ЈФЕТ величиной 680 Ω. Нагрузочный резистор генерирует обратное напряжение Вгс, которое также отображаеця на индикаторе. С нагрузочным резистором $470~k\Omega$ в цепи истока ЈФЕТ ток исток-сток будет почти нулевым. Таким образом, напряжение оцечки Вгс_офф исток-затвор может быть определено достаточно точно, при условии, что оно не превысит 5 V. С этими двумя рабочими точками мы можем определить ток затвор-исток Игсс с почти среднеквадратичной точностью. Если расчетный ток меньше 40~mA, дополнительно проводиця измерение без сопротивления в цепи истока. По более высокому напряжению на выводе истока без резистора мы можем вычислить дополнительное значение тока. Используя эти результаты измерений, снова вычисляем ток затвор-исток Идсс, при этом он не должен превысить значения 40 mA. Из-за симметричной конструкции транзисторов ЈФЕТ, невозможно отличить сток от истока.

Транзистор	Тип	Мега8~8МХз	Мега168 ~8МХз	Мега328 ~8МХз
ЗВНЉ20А	H-E-MOC	Д, 1,6В, 147пФ	Д, 1,5В,141пФ	Д, 1,5В, 140пФ
ИРФ530Н	H-E-MOC	Д, 3,6В, 1.55нФ	Д, 3,6В, 1,54нФ	Д, 3,6В, 1,54нФ
БС170	H-E-MOC	Д, 2,6В, 78пФ	Д, 2,6В, 68пФ	Д, 2,6В, 68пФ
ИРЛ3803	H-E-MOC	Д, 2,3В, 9.81нФ	Д, 2,3В, 9,71нФ	Д, 2,3В, 9,74нФ
ИРФУ120Н	H-E-MOC	Д, 4,2В, 909пФ	Д, 4,2В, 913пФ	Д, 4,2В, 911пФ
БУЗ71А	H-E-MOC	Д, 3,2В, 714пФ	Д, 3,2В, 708пФ	Д, 3,2В, 705пФ
ЗВЪ106А	П-Е-МОС	Д, 3,2В, 122пФ	Д, 3,2В,115пФ	Д, 3,2В, 116пФ
ИРФ5305	П-Е-МОС	Д, 3,6В, 2.22нФ	Д, 3,6В, 2,22нФ	Д, 3,6В, 2,22нФ
BC250	П-Е-МОС	Д, 2,6В, 53пФ	Д, 2,6В, 43пФ	Д, 2,6В, 44пФ
ИРФУ9024	П-Е-МОС	Д, 3,5В, 937пФ	Д, 3,6В, 945пФ	Д, 3,5В, 933пФ
J310	Н-ЈФЕТ	3.1мА Вгс12.2В	3.1мА Вгсі2.2В	3.1мА Вгсі2.2В
Идссі24-60мА				Идссі35мА
2H5459	Н-ЈФЕТ	2.1мА Вгсі1.5В	2.1мА Вгс11.5В	2.1мА Вгс11.5В
Идссі4-16мА				Идссі8.2мА
БФ256Ц	Н-ЈФЕТ	3.4мА Вгс12.4В	3.4мА Вгс12.4В	3.4мА Вгсі2.4В
Идссі11-18мА				Идсст14мА
БФ245А	Н-ЈФЕТ	1.1мА Вгст.75В	1.1мА Вгсі0.75В	1.1мА Вгсі0.75В
Идсс12-6мА				Идссі3.6мА
БФ245Б	Н-ЈФЕТ	2.5мА Вгс11.7В	2.5мА Вгсі1.7В	2.5мА Вгс11.7В
Идссі6-15мА				Идсст10мА
БФ245Ц	Н-ЈФЕТ	3.9мА Вгс12.7В	3.9мА Вгс12.7В	3.9мА Вгс12.7В
Идссі12-25мА				Идссі17мА
Я75	П-ЈФЕТ	3.2мА Вгс12.2В	3.2мА Вгс12.2В	3.2мА Вгс12.2В
Идсс17-60мА				Идсс126мА
2H5460	П-ЈФЕТ	0.78мА Вгсі0.54В	0.77мА Вгсі0.54В	0.78мА Вгсі0.54В
Идссі1-5мА				Идссі2.6мА
БСС169	Н-Д-МОС	2,6мА Вгс11,8В	Д, 2,6мА Вгсі1,8В	Д, 2,6мА Вгсі1,8В
ГП07Њ20	Н-Е-ИГБТ	Ц13,81нФ Вт14,2В	Цı3,76нФ Втı4,2В	Цı3,74нФ Втı4,2В
Г4ПЦ30	Н-Е-ИГБТ			Цı2.22нФ
с батареей				Вт12.0Вѣ3.2В

Таблица 5.5. Результаты измерений МОП-транзисторов

5.2 Измерение резисторов

Каждый резистор измерен четырьмя различными типами измерения в одном направлении тока. Тот же самый резистор также измерен теми же самыми четырьмя типами измерения в другом направлении тока. Измерение в противоположном направлении используеця только для того, чтобы идентифицировать резистор. Если несоотвецтвие между обоими измерениями слишком большое, то это не резистор.

5.2.1 Измерение резистора с резисторами 680 Ом

Измерение неизвестного резистора Рш осуществляеця двумя способами с использованием прецизионных резисторов 680 Ω. Упрощенная шема этого измерения для испытательных выводов 1 (ТЬ) и 3 (ТПЗ) показана на рисунках 5.11 и 5.12 как пример шести выбранных комбинаций испытания.

Рис. 5.11. Измерение Типа 1 с резистором 680 Ω

Рис. 5.12. Измерение Типа 2 с резистором 680 Ω

С левой стороны расположен испытательный вывод 1, с правой стороны - испытательный вывод 3. В обеих диаграммах Вы видите, что вывод 3 (правая сторона) соединён с ВЦЦ, вывод 1 (левая сторона) соединен с ГНД. Направление тока, текущего через резистор Рш являеця одинаковым. Значения портов, переключенных на выход, показаны красным цветом, значения портов, используемых в качестве входа, отображаюця синим цветом, бездействующие порты - черные. В обоих показанных типах измерения ток должен быть одинаковым, потому что суммарная величина резисторов между ВЦЦ и ГНД идентична (если измерительные резисторы одинаковые – в идеальном случае). Обычно измеренное напряжение не одинаковое, потому что

меняюця подключенные резисторы. Символ В на диаграмме отмечает порты, используемые для измерения напряжения. В обеих конфигурациях величина резистора Рш может быть вычислена по известной величине резистора и измеренному напряжению, если отношение резистора Рш к 680 Ω не слишком велико. Теоретическое отклонение напряжения показано на рисунке 5.13, где величина резистора показана в логарифмическом масштабе.

Рис. 5.13. Напряжение при измерениях Типа 1 и Типа 2 с резистором $680~\Omega$

График измерения Типа 1 показан на рисунке 5.14а с измененным масштабом изображения для малых значений резисторов. Здесь видно, что для получения точного измерения величины резистора ниже 2 Ω необходимо лучшее разрешение АЦП, чем стандартное разрешение 4, 9 mV с 5 V ИОН. Есть только 3 оцчета АЦП от 0 Ω до 2 Ω . Опция АУТО_СЦАЛЕ_АДЦ, переключающая диапазон АЦП, может помочь в этом случае. Тот же самый участок с измененным масштабом изображения диапазона измерения Типа 2 показан на рисунке 5.14б. К сожалению, мы не можем использовать высокое разрешение АЦП для измерения типа 2 в этом диапазоне, потому что напряжение слишком высоко, а у применённых АТмега нет дифференциального входа АЦП. Измерения с резисторами 680 Ω проводяця для получения результата измерений до 20 $k\Omega$ (измеренное напряжение типа 2 будет ниже $169 \ mV$).

Для более высоких значений измеряемого резистора измерения проводяця с резисторами $470~k\Omega$. Если все тесты свидетельствуют о том, что это не другой тип элемента, то полученная величина обоих измерений береця в качестве величины сопротивления резистора для отображения на дисплее. Если выбрана опция АУТО_СЦАЛЕ_АДЦ, и одно из напряжений обоих типов измерения ниже 0,98~V, взвешенное среднее значение вычисляют с коэффициентом 4 для этой величины. Другая взвешенная величина имеет коэффициент 1. Это сделано для того, чтобы предпочесть коэффициент 4 для лучшего разрешения этого измерения. Коэффициент 4 взят только для микроконтроллеров 4 АТмега4 4 и 4 и 4 мага 4 и 4 мага 4 взят слько для микроконтроллеров 4 мага 4 и 4 мага 4 и 4 мага 4 м

Рис. 5.14. Теоретическое напряжение от 0 Ω до 10 Ω

5.2.2 Измерение резистора с резисторами 470 кОм

Следующие рисунки 5.15 и 5.16 показывают ту же самую процедуру измерения с прецизионными резисторами $470~k\Omega$. Поскольку $470~k\Omega$ очень большие относительно величины резистора порта $19~\Omega$ или $22~\Omega$, величины резисторов портов не учитываюця для вычисления величины резистора $P_{\rm III}$.

Для обоих Типов измерения с резисторами 470 $k\Omega$ измеряеця только одно напряжение, потому что ток настолько низок, что никакое различие напряжения во внутренних резисторах порта АТмега не может быть измерено (как и ожидалось). Теоретическое отклонение напряжения показано на рисунке 5.17 где величина резистора показана в логарифмическом масштабе. Теоретическое отклонение в этой диаграмме заканчиваеця на $100~M\Omega$, но фактическое значение для Тестера ограничено $60~M\Omega$, иначе Тестер определяет, что резистор не подключен. Взвешенное среднее число обоих Типов измерения взято в качестве результата с теми же самыми коэффициентами, описанными для измерений с резисторами $680~\Omega$. Для всех микроконтроллеров АТмега я определил, что взвешенные результаты с резисторами $470~k\Omega$ более точны, если будет добавлено постоянное смещение $350~\Omega$. Этот смещение может быть подобрано определением величины $PX_{-}O\Phi\Phi CET$ в файле цонфиг.х

Рис. 5.15. Измерение Типа 3 с резистором 470 $k\Omega$

Рис. 5.16. Измерение Типа 4 с резистором 470 $k\Omega$

Рис. 5.17. Напряжение при измерениях Типа 3 и Типа 4 с резистором $470~k\Omega$

5.2.3 Результаты измерений резистора

Рисунок 5.18 показывает относительную погрешность измерений резистора тремя АТмега8 . Дополнительно приведены результаты с оригинальным программным обеспечением от Маркус Φ . («Мега8ориг») с одним АТмега8. На рисунках 5.19а и 5.19б показаны результаты измерений с АТмега8А и АТмега8Л. Рисунок 5.20 показывает те же самые измерения с АТмега168 (Мега168 - результаты без опции АУТОСЦАЛЕ_АДЦ, Мега168ас - те же самые измерения с опцией АУТОСЦАЛЕ_АДЦ). Применение АТмега168 дает возможность измерения резисторов в диапазоне от 20 Ω до 20 $M\Omega$ с точностью $\pm 1\%$. Для измерений ниже 100 Ω Вы должны иметь в виду, что любые измерительные провода также имеют сопротивление. Лучше подсоединить резистор непосредственно к контактам терминала. Если это невозможно, вычтите величину сопротивления, измеренную с закороченными щупами. Например, если резистор маркирован 30 Ω и Тестер показывает величину 30,6 Ω , а у закороченных щупов замерена величина 0,5 Ω , то измеренная величина резистора составит 30,1 Ω . Для сопротивлений ниже 10 Ω один оцчет разрешения даёт ошибку больше, чем 1%!

Рис. 5.18. Относительная погрешность измерений резисторов на АТмега8

Рис. 5.19. Относительная погрешность измерений резисторов

Рис. 5.20. Относительная погрешность измерений резисторов на АТмега168

Рисунок 5.21а показывает погрешность измерения для трех микроконтроллеров АТмега 168 перед калибровкой - точками, после калибровки - линией. Аналогичная погрешность измерения для трех АТмега168А показана на рисунке 5.21б а погрешность измерения для трех АТмега168П показана на рисунке 5.22. Погрешность измерения для трех АТмега 328 показана на рисунках 5.23а и 5.23б. После автокалибровки относительная погрешность измерения резисторов в диапазоне от $10~\Omega~-~20~M\Omega$ обычно находиця в пределах $\pm 1~\%$. Только одно измерение резистора $22~k\Omega$ с АТмега328П-13 показывает более высокую погрешность. Перед калибровкой погрешность некоторых микроконтроллеров составляла $\pm 3\%$. Это было скорректировано переключением опоры АЦП опцией АУТОСЦАЛЕ_АДЦ. Прямое сравнение напряжения на конденсаторе ниже $1\ V$, однократно измеренного с опорой ВЦЦ, и другое однократное измерение с внутренней опорой, может подстроить эту погрешность. Измерение напряжения производиця тем же самым каналом мультиплексора, а внутренняя опора связана с выводом АРЕФ АТмега. К сожалению, прямое измерение опоры со своим каналом мультиплексора приводит к смещению, которое может быть вручную подстроено опцией РЕФ_Р_КОРР или автоматически опцией самопроверки АУТО_ЦАЛ. Значение РЕФ_Р_КОРР являеця дополнительным смещением к автоматически определённому значению с опцией АУТО-ЦАЛ!

Рис. 5.21. Относительная погрешность измерений резисторов

Рис. 5.22. Относительная погрешность измерений резисторов на АТмега168П

Рис. 5.23. Относительная погрешность измерений резисторов

5.3 Измерение конденсаторов

Измерение величины ёмкости конденсаторов сделано, как отдельная задача измерения времени зарядки после всех других измерений. Оригинальное программное обеспечение от Маркус Ф. это делает в цикле программы, которая читает соотвецтвующие цифровые входы, пока не произошло отключение, и считает количество циклов. У этого способа есть ограничение: разрешение измерения времени ограничено временем, требующимся для одного цикла. Это обычно делаеця во всех шести комбинациях для всех трех испытательных выводов. Новое программное обеспечение использует два разных способа получения времени зарядки только в трех комбинациях для трех испытательных выводов.

Положительный вывод конденсатора всегда подключен к испытательному выводу с более высоким номером. Если конденсатор измеряеця параллельно с диодом, полярность может быть в другом порядке.

5.3.1 Разрядка конденсатора

Вы должны всегда разряжать конденсатор прежде, чем подсоединить его к Тестеру. Тестер дополнительно разряжает конденсатор перед любым измерением. Если напряжение ниже $1300\ mV$, конденсатор будет закорочен выходами порта, соединенными со входами порта АЦП (порт Ц). Я полагаю, что это допустимо, потому что выход порта имеет встроенный резистор около $20\ \Omega$. Рисунок 149 (паге 258) технического описания (страница 258) [3] показывает падение напряжения на выходах до $2\ V$. Конечно, я не могу гарантировать, что никакое повреждение не может произойти. Я проверил функцию с конденсаторами большими, чем $15\ mF$ много раз, и я никогда не замечал проблемы. Ток должен быть ниже указанного предела $40\ mA$ и быстро уменьшен при разрядке. Конечно, повреждение может произойти, если Вы не разрядите конденсатор (высокое напряжение) прежде, чем соедините его с Тестером.

5.3.2 Измерение конденсаторов большой ёмкости

Одна сторона конденсатора подключена к ГНД. Другая сторона конденсатора подключена через резистор $680~\Omega$ к ВЦЦ на 10~ms. Впоследствии этот испытательный вывод будет переключен на ввод (высокий импеданс). После этого, 10~ms импульса тока, замеряеця напряжение на конденсаторе без тока. Если напряжение не достигло минимального значения 300~mV, импульс зарядки будет повторен до $499~\mathrm{pas}$. Если после $127~\mathrm{импульсов}$ не достигнуто минимальное напряжение 75~mV (приблизительно 2~s), дальнейшая зарядка будет остановлена, потому что 300~mV не смогут быть достигнуты остающимися импульсами зарядки. Рисунок $5.24~\mathrm{показывает}$ три фазы измерения величины ёмкости конденсатора. Величина ёмкости вычисляеця по количеству импульсов зарядки и величине достигнутого напряжения заряда из таблицы. Таблица содержит коэффициенты, чтобы получить значение в nF от времени зарядки и достигнутого напряжения с шагом 25~mV. Промежуточная величина напряжения будет интерполирована.

Счнеллентладунг дес Конденсаторс

10мс Ладунгспхасе дес Конденсаторс

Рис. 5.24. Разрядка конденсатора и зарядка импульсом 10 ms до напряжения, не достигающего значения 300 mV

В результате низкого напряжения заряда измерение проишодит намного быстрее, чем в оригинальной версии программного обеспечения, потому что это преимущество работает также при разрядке. Таким способом могут быть измерены большие конденсаторы. Кроме того, если диод подключен параллельно конденсатору, то он, в большинстве случаев, не нарушает измерение, потому что, для большинства диодов, не может быть достигнуто прямое падение напряжения. Начиная с версии программного обеспечения 1.12к, используеця некоторая особенность для измерения остаточного напряжения конденсатора перед измерением его ёмкости. В зависимости

от предыдущего теста конденсатора, остаточное напряжение может быть как положительным, так и отрицательным. Отрицательные напряжения не может быть измерено АЦП. По этой причине, напряжение на отрицательном контакте подтягиваеця резистором 690 Ω примерно до 132 mV, как показано на рисунке 5.25. При разности напряжений, измеренных на обеих сторонах конденсатора остаточное напряжение может быть измерено при любой полярности. Напряжение положительного тестового контакта остаеця положительным в любом случае, даже если конденсатор имеет отрицательное остаточное напряжение несколько mV.

Рис. 5.25. Измерение остаточного напряжения перед зарядом конденсатора

Рисунок 5.26а показывает зарядку и разрядку конденсатора 229 μF . Плоская вершина диаграммы от конца зарядки и до начала разрядки вызвана измерением и временем вычисления АТмега. Рисунок 5.26б показывает такое же измерение конденсатора 5 mF. Заметьте, что время измерения составило приблизительно 1, 5 s, включая разрядку. Последний пример показывает измерение ёмкости конденсатора 15 mF на рисунке 5.27

Рис. 5.26. Зарядка и разрядка конденсатора большой ёмкости для измерения

Рис. 5.27. Зарядка и разрядка конденсатора 15 mF для измерения

После измерения ёмкости конденсатора будет проверен саморазряд ожиданием пропорционально периоду, который потребовала зарядка, и снова будет осуществлено считывание напряжения заряда. Взвешенная полная ёмкость будет скорректирована из-за этого падения напряжения. Тест с параллельно подключенными конденсатором $68~\mu F$ и резистором $2,2~k\Omega$ показывает эффективность этого метода. Измеренное значение ёмкости без резистора $66,5~\mu F$, с параллельным резистором $2,2~k\Omega$ измеренное значение ёмкости $66,3~\mu F$. Для сравнения, результаты, измеренные мультиметром ПеакТеч 3315. Без резистора значение ёмкости $68,2~\mu F$ с параллельным резистором $2,2~k\Omega$ значение ёмкости $192~\mu F$.

5.3.3 Измерение конденсаторов малой ёмкости

Если первый, 10~ms, импульс зарядки перезарядил конденсатор, используеця другой алгоритм измерения. У микроконтроллера АТмега есть встроенный 16-битный счётчик, который может работать на тактовой частоте микроконтроллера (1~MHz или 8~MHz). У этого счётчика есть также возможность сохранять подсчитанное значение внешним сигналом. Этот сигнал может быть выходом компаратора. Компаратор может работать с любым входом АЦП и запрещенной зоной опоры. Рисунок 5.28 показывает упрощенную шему измерения. Итак, я разряжаю конденсатор, подключаю компаратор к соотвецтвующему входу, сбрасываю счётчик в 0 и сразу начинаю зарядку конденсатора, подсоединённого одной стороной к ГНД а другой стороной, через резистором $470~k\Omega$. Теперь я проверяю в пределах петли программы переполнение счётчика или сигнал захвата по входу (внешний сигнал). Я считаю события переполнения, пока не обнаруживаю входной сигнал захвата. В этом случае я останавливаю счётчик и проверяю, не нужно ли подсчитать дополнительное переполнение, возникшее, пока счётчик не был остановлен входным сигналом захвата.

Входной счётчик захвата и счётчик переполнений совместно определяют полное время, по которому мы можем рассчитать фактическую ёмкость. Программное обеспечение использует таблицу с теоретической зависимостью времени зарядки от напряжения компаратора. Таблица составлена с шагом $50\,mV$ и будет интерполирована согласно фактическому опорному напряжению. Эта таблица будет активна только с опцией ЩИТХ_АУТО_РЕФ в Макефиле. Из полученной величины я вычитаю предопределенное, полученное экспериментально, постоянное значение или значение смещение нуля, найденное последней самопроверкой с установленной опцией

АУТО_ЦАЛ. Смещение нуля может меняться в зависимости от типа печатной платы, используемого испытательного оборудования или микроконтроллера. Самопроверка с установленной опцией АУТО_ЦАЛ определит смещение нуля автоматически.

Я заметил, что стабильность опорного напряжения несколько мала, что Вы можете выбрать опцию РЕФ_Ц_КОРР в Макефиле. После калибровки с опцией АУТО_ЦАЛ, РЕФ_Ц_КОРР будет смещением к измеренной разнице напряжений между заряженным конденсатором и внутренней опорой. Измеренное опорное напряжение будет тогда добавлено к Вашему значению (в mV). Если опция ЩИТХ_АУТО_РЕФ не используеця, то применены справочные напряжения для АТмега8, АТмега168 и АТмега328, приведенные в технических описаниях [3] и [4]. Типовое измерение по этому алгоритму показано на рисунке 5.29. Время измерения для конденсатора $22~\mu F$ больше 2,6~s, потому что для зарядки используеця $470~k\Omega$. Но разрядка в этом случае намного быстрее, чем зарядка.

Рис. 5.28. Измерение малой ёмкости с компаратором

Рис. 5.29. Зарядка и разрядка конденсатора $22~\mu F$ для измерения

В принципе этот алгоритм измерения может также быть проделан с резистором $680~\Omega$ но, если компаратор работает, АЦП не может использоваться, и у меня нет возможности

контролировать напряжение заряда, пока компаратор не остановлен. Если есть необнаруженный диод, параллельно соединённый с конденсатором, ток зарядки конденсатора может быть поглощен диодом (пороговое напряжение), и напряжение запрещенной зоны никогда не будет достигаться. Метод, примененный в программном обеспечении для больших конденсаторов в разделе 5.3.2 не допускает эту концептуальную ошибку.

5.3.4 Измерение очень малых значений ёмкости методом выборки

Радиолюбитель Пиетер-Тјерк (ПАЗФЩМ) интегрировал возможность измерений очень малых значений ёмкости (< 100 пФ) методом выборки. Период преобразования АЦП на самом деле слишком длительный для непосредственного отбора быстро изменяющегося сигнала. Но напряжение входного сигнала удерживаеця заданное время цикла преобразования, во время (SH) выборки и удержания. АЦП требуеця 13 тактов для полного преобразования, а такты АЦП задаюця путем деления частоты процессора на 128 или 64. Входное напряжение АЦП фиксируеця точно 1,5 такта для непрерывных циклов измерений. Если входной сигнал может быть сгенерирован снова и снова, мы можем сдвинуть время выборки АЦП от предыдущего к следующему повторению сигнала, чтобы получить последовательность выборок быстро изменяющегося сигнала. Обычный цикл АЦП занимает 13ш64 і 832 тактов с тактовой частотой $8\,MHz$. Если мы повторяем входной сигнал с тактовым импульсом 831, то при непрерывном АЦП (режим свободного запуска), каждый последующий раз напряжение сигнала будет считываться на один такт позже чем предыдущий. Мы должны убедиться, что с помощью этого метода первая выборка сигнала АЦП будет выполняться в указанное время. Время следующих измерений АЦП будет сдвинуто на один тактовый импульс процессора позднее при каждом последующем повторении сигнала. Если сигнал можно точно повторить, то объединенный сигнал многих периодов будет таким же, как дискретизация и преобразование непосредственно с помощью АЦП, работающего с тактовым сигналом процессора 8 МНг. Рисунок 5.30 показывает принцип выборки десятикратно повторяющегося сигнала для получения десяти выборок (Ш0 - Ш9). В действительности относительный временной сдвиг последовательных выборок намного меньше.

Рис. 5.30. Сканирование сигналов напряжения с помощью метода выборки

Одна проблема состоит в том, чтобы синхронизировать точное начало сигнала с непрерывными тактовыми импульсами процессора. Только триггер внешнего сигнала может сбросить делитель тактовых импульсов АЦП. Если бы АЦП запускался программной инструкцией, делитель тактовых импульсов возобновил бы деление с начала. Только программа, написанная на языке ассемблера, может точно определять моменты времени для этой техники выборки. Каждый такт микроконтроллера важен для построения программных циклов. Анализируя характеристику напряжения при зарядке небольшого конденсатора, Вы можете видеть, что постоянная времени не являеця непрерывной во время периода выборки. Это было показано Пиетер-Тјерк на презентации в «60. УКЩ-Тагунг ин Щеинхеим». Внутренний конденсатор около $10\ pF$, который удерживает входное напряжение для преобразования, оцоединяеця в Ш-время и снова подключаеця через два тактовых цикла АЦП. Кроме того, есть небольшие задержки данных через полтора цикла до повторного подсоединения, которые, вероятно, связаны с переключением мультиплексора. Оба момента учитываюця при обработке данных программным обеспечением. Программное обеспечение выборки может обрабатывать до $255\$ тактов сигнала. Программное обеспечение

также может вычислять среднее значение из 32 последовательностей зарядки. Посредством построения среднего значения эффект шума будет меньше. Программное обеспечение выборки может контролировать и обрабатывать как заряд, так и разряд конденсатора. Поскольку оба направления используюця для измерения величины ёмкости диода в обратном направлении, задача калибровки измеряет значение нулевой ёмкости в обоих направлениях для всех комбинаций контактов. Измеряя величину ёмкости диода в обоих направлениях заряда, можно показать разницу между обоими значениями. При зарядке величина ёмкости измеряеця вблизи напряжения $0\ V$, а при разряде ёмкость измеряеця вблизи напряжения $5\ V$. Для измерения обычного конденсатора нет разницы в значениях ёмкости с такой небольшой разностью потенциалов, которую можно обнаружить. Поэтому для измерения малых ёмкостей используеця только направление заряда (<100 пФ). Пиетер-Тјерк оптимизировал свою функцию для работы с тактовой частотой 16 MHz. В этой конфигурации Вы получите разрешение 0.01 pF. Для работы с частотой 8 МН г АЦП будет работать на частоте в два раза меньше, чтобы получить вышеупомянутые уровни напряжения сигнала в тех же точках, что и при работе на частоте 16 МНг. Потеря разрешения с частотой 8 МНг будет неактуальной для большинства пользователей, а дополнительное время тестирования более медленным АЦП в этом режиме тоже допустимо.

5.3.5 Измерение эквивалентного сопротивления ЕСР

Эквивалентное последовательное сопротивление ESR [9] являеця, к примеру, хорошим индикатором старения электролитических конденсаторов. Рисунок 5.31 показывает эквивалентную шему конденсатора. Резистор Rp - сопротивление утечки конденсатора, ESL - эквивалентная последовательна индуктивность и ESR представляет собой эквивалентное последовательное сопротивление.

Рис. 5.31. Эквивалентная шема конденсатора

Обычно, значение ESR документируеця для частоты испытания 100~kHz при температуре $20^{\circ}C$. Рисунки 5.32 и 5.33 показывают значения ESR конденсаторов производства Панасониц серий Φ Ц и «лощ ECP» Φ P. Обе серии способны работать до температуры $105^{\circ}C$. На рисунке 5.34 приведены данные обеих серий с допустимым рабочим напряжением 25~V. Если в ряде имеюця различные типы той же ёмкости и диапазона напряжения, то для диаграммы выбраны с самым низким значением ESR. Значение ёмкости и ESR электролитических конденсаторов значительно отличаеця в зависимости от рабочей температуры.

Рис. 5.32. Документированное значение ЕСР серии ФЦ Панасониц

Рис. 5.33. Документированное значение ЕСР серии ФР Панасониц

Рис. 5.34. Сопоставление значений ЕСР серий ФЦ и ФР

Нет простого способа измерить ESR на частоте 100~kHz с использованием АТмега, потому что ни АЦП не может работать на столь высокой частоте входного сигнала, ни существующая шема не может поддерживать сигнал с частотой 100~kHz. Ниже описаны два метода измерения ESR, которые возможны в существующей шеме. Оба метода используют прямоугольный сигнал для измерения. Результаты никогда не будут такими же, как при измеренных синусоидальным сигналом. В первом методе измеренные значения близки к тем значениям, которые проводящя сигналом частотой 1~kHz. Но второй способ имеет преимущество в том, что нулевое значение может быть определено с закороченными тестовыми площадками. Кроме того, измеренное значение ESR более близко к значению, измеренному сигналом 10~kHz. В настоящее время мне не известно метода измерения, который может определить значение ESR, близкое к результату измерения 100~kHz. В таблице 5.6~ показана зависимость результатов ESR от измеряемой частоты. Все конденсаторы, кроме $47~\mu F$, серии ФЦ производства Панасониц. Эталонные значения измерены Пеак Теч 2170~ЛЦР измерителем. Все результаты Трансистор Тестер измерялись методом 2~5.3.7. Конденсаторы большой ёмкости трудно измерить с использованием измерительной частоты 100~kHz из-за влияния индуктивности (ESL) на результаты измерения.

	Документация	ПеакТеч	ПеакТеч	ПеакТеч	Трансистор-
Ёмкость	100 кХз	100 кХз	10 кХз	1 кХз	Тестер
1уФ / 50B	2,4	1,27	1,75	4,31	2,1
$2.2y\Phi / 50B$	1,8	1,07	1,34	2,76	1,6
$4.7y\Phi / 50B$	1,3	1,19	1,40	2,37	1,5
$4.7y\Phi / 50B$	1,3	1,19	1,40	2,37	1,5
10уФ / 50B	1,3	1,26	1,45	2,05	1,5
22уФ / 10B	2,0	1,52	1,76	2,24	1,9
47уФ / 63B	?	0,46	0,50	0,63	0,52

Таблица 5.6. Значения ЕСР различных электролитических конденсаторов

5.3.6 Измерение ЕСР, первый метод

Если ёмкость измеряемого конденсатора будет больше, чем $0,45~\mu F$, то Тестер будет измерять также последовательное сопротивление. Для значения больше, чем $3,6~\mu F$ используеця нормальная тактовая частота для АЦП -125~kHz. Для более низких значений ёмкости, чтобы ускорить измерение, используеця более высокая тактовая частота -500~kHz. Точность результатов АЦП будет выше с более высокой тактовой частотой, но это может привести к высоким значениям ЕСР конденсаторов с более низкой величиной ёмкости. Иначе измерение ЕСР этим методом будет невозможно для значений меньше, чем $1,8~\mu F$ при нормальной тактовой частоте 125~kHz.

Строго говоря, ЕСР конденсатора зависит от частоты и температуры. Обычно в технических описаниях приведена величина, измеренная на синусоидальном сигнале частотой $100\ kHz$. Такое измерение не может быть сделано АТмега без внешнего оборудования. Описанная ниже методика, основанная на стандартной тактовой частоте АЦП, использует для измерения практически прямоугольный сигнал частотой ниже $640\ Hz$. С тактовой частотой АЦП $500\ kHz$ частота измерения будет $2400\ Hz$. Чтобы получить величину ЕСР, будет измерено напряжение на обоих выводах конденсатора во время зарядки в одном направлении с внутренним опорным напряжением АЦП $(1,1\ V)$. После измерения ток зарядки будет отключен, и напряжение на конденсаторе будет измерено снова без тока. Если это напряжение ниже $3\ mV$, последовательность измерения будет повторена. На рисунке 5.35 представлены соотвецтвующие шемы.

Рис. 5.35. Шема измерения ЕСР конденсатора

Разница напряжения на конденсаторе с током и без тока пропорциональна внутреннему сопротивлению конденсатора. Ожидаемое напряжение этой разницы настолько мало, что одно измерение не может привести к удовлетворительному результату. Поэтому ток будет переключен

на противоположное направление, и будет повторено то же самое измерение. Измерения будут проведены последовательно 128 раз, и результаты измерений напряжения будут суммироваться. Таким образом, у нас будут 3 суммы напряжений: напряжение Ulp с низкой стороны конденсатора с током, напряжение Uhp с высокой стороны конденсатора с током и напряжение Uc с высокой стороны конденсатора без тока. Сумма напряжений с низкой стороны конденсатора представляет собой падение потенциала при зарядке на выходном сопротивлении порта Rport. Разница напряжений с высокой и низкой сторон конденсатора представляет напряжение на конденсаторе при зарядке Udiff = Uhp - Ulp. Разница Uesr = Udiff - Uc должна представлять падение напряжения на внутреннем сопротивлении конденсатора при зарядке. Вычисляем величину сопротивления как отношение напряжения Uesr к напряжению Ulp, измеренному при известной величине выходного сопротивления порта *Rport*. Коэффициент пропорциональности выбран так, чтобы получить разрешение сопротивления $0,01~\Omega$: $Resr=\frac{Uesr\cdot 10\cdot Rport}{Ulp}$ Рисунок 5.36 показывает часть кривой напряжения на конденсаторе $4, 2 \mu F$ во время измерения ECP. Чтобы пояснить влияние ЕСР, к конденсатору добавлен последовательный резистор 6, 8 Ω . Кратковременное отключение напряжения после зарядки конденсатора интерпретируеця программным обеспечением, как переход к измерению ЕСР. Большее падение напряжения к потенциалу ГНД во время измерения вызвано выходным сопротивлением порта около 20 Ω . При этом измерении Тестер выводит на дисплей полную величину ECP $7,5~\Omega$. Вычитая величину последовательного резистора $6,8~\Omega$, получим ЕСР 0, 56 Ω . На рисунке 5.37 представлена диаграмма измерения электролитического конденсатора $2, 2 \mu F$ с ECP $6, 5 \Omega$ на более высокой частоте измерения.

Рис. 5.36. Кривая напряжения во время измерения ЕСР конденсатора $4,2~\mu F$

Рис. 5.37. Кривая напряжения во время измерения ЕСР конденсатора $2,2~\mu F$

Точность измерения ЕСР не высока по нескольким причинам:

- 1. Измерение напряжения на обоих выводах конденсатора не может быть сделано одновременно, а только последовательно. В промежутке между обоими измерениями ток зарядки изменяеця из-за заряда конденсатора. Программа пытаеця компенсировать этот факт коррекцией ёмкости в зависимости от напряжения низкой стороны.
- 2. АЦП начинает измерять напряжение с задержкой на 1,5 тактовых импульса с начала преобразования. Преобразование начинаеця по переднему фронту тактовой частоты АЦП, если установлен стартовый бит. Если ток зарядки будет отключен раньше, то АЦП зафиксирует неправильное напряжение для измерения с током. Если ток зарядки будет отключен позже, конденсатор получит больший электрический заряд, чем при надлежащем измерении с током зарядки. Это даст слишком высокое измеренное напряжение без тока. Выключение тока в нужное время представляет трудности для программного обеспечения.
- 3. В качестве опорной величины для измерения этим методом используеця выходное сопротивление порта, которое точно не известно.
- 4. Разрешение АЦП недостаточно, чтобы получить разрешение сопротивления $0,01~\Omega$. Для лучшего разрешения АЦП для всех измерений используеця внутренний ИОН (1,1~V). Разрешение также увеличиваеця за счет большего числа одиночных измерений.
- 5. Переключение портов не может быть точно синхронизировано с тактовой частотой АЦП после опроса завершения преобразования.

Тем не менее, как показано на следующем рисунке 5.38. результаты оказываюця практичными. Значения ЕСР, того же самого элемента, измеренные Тестером, различаюця больше, чем величины, измеренные ЛЦР-метром. Значения ЕСР замерены ЛЦР метром на частоте 1 kHz или интерполированы для небольших конденсаторов на частоту 2, $4\,kHz$. Вы должны учитывать качество всех соединителей. Используемые кабельные соединения могут увеличить измеренное значение сопротивления. Разъёмы также могут увеличить значение сопротивления. В ЛЦР-метре используеця зажимы Кельвина, что дает преимущество при измерении. Только один конденсатор в серии испытаний ниже 1 μF на 500 nF был керамическим, все остальные были пленочными конденсаторами. Единственным электролитическим конденсатором в серии испытаний ниже 9 μF был конденсатор на 2,2 μF .

Рис. 5.38. Результаты измерений ЕСР 15-ти различных АТмега

5.3.7 Измерение ЕСР, второй метод

Начиная с версии 1.07к программного обеспечения, применен новый метод измерения ЕСР. Последовательные шаги измерения показаны на рисунке 5.40. Отличие от предыдущего метода в том, что длительность протекания тока через конденсатор существенно короче. Конденсатор предварительно заряжен половиной импульса в отрицательном направлении и циклически перезаряжает в обоих направлениях. Время импульса зарядки выбрано так, что оцчёты проводят в середине импульсов зарядки оцчётов 4 и 8 и синхронизируют в это время АЦП (2.5 тактовых импульса после начала преобразования АЦП). Полный цикл измерения показан на рисунке 5.39. Сумма результатов 255 циклов измерения используеця для того, чтобы получить результат с соотвецтвующим разрешением. Продолжением зарядки конденсатора в любом направлении избегают ту же зарядку и разрядку длительным импульсом в той же шеме. При измерении опорного напряжения конденсатор остаеця обесточенным. Тем самым время измерения не критично. Предполагаеця только, что захват напряжения конденсатора производиця до начала следующего импульса зарядки или разрядки.

Рис. 5.39. Временная диаграмма цикла измерения для нового способа измерения ЕСР

Рис. 5.40. Более простое измерение ЕСР конденсатора

Из-за более короткого импульса зарядки может быть измерено не только ЕСР конденсаторов с более низкой ёмкостью, но этот способ измерения может также использоваться для измерения резисторов с небольшим сопротивлением, если у них нет обнаруженной индуктивности. Этим методом для таких резисторов может быть достигнуто разрешение $0,01~\Omega$. Этим же методом может быть откалибровано нулевое сопротивление для всех трех комбинаций испытательных выводов в режиме самопроверки. Вы должны иметь в виду, что для устойчивых результатов нужны качественные разъемы и зажимы. Период измерения около 900 µs, что соотвецтвует частоте приблизительно $1, 1 \, kHz$. Поскольку импульс зарядки очень короток, результат измерения сопоставим с измерениями на частоте 10 kHz. Пример измерения плёночного конденсатора ёмкостью $10~\mu F$ проведенным с ним одним и с включенным последовательно с ним резистором на 2,7 Ω , показан на рисунке 5.41. Вы можете видеть эффект дополнительного сопротивления, сравнивая обе осциллограммы. Вы можете видеть также, почему измерение АЦП (Ш) должно приходиться на середину импульса зарядки. При больших значениях ёмкости ток зарядки почти устойчив во время всей длительности импульса: таким образом, Вы получите среднее напряжение в середине импульса зарядки. С более низкими значениями ёмкости Вы получите существенную разницу, которая может быть цкомпенсирована для известной величины ёмкости.

Рис. 5.41. Кривая напряжения при новом измерении ЕСР конденсатора 10 μF

При использовании импульса длительностью $27~\mu s$ можно определить ЕСР для конденсаторов ёмкостью больше 180~nF. Для измерения конденсаторов с низкой ёмкостью, в версии 1.11к импульс сокращаеця до $8~\mu s$. Рисунок 5.42 показывает кривую напряжения на конденсаторе $2,2~\mu F$ с последовательно подключенным сопротивлением $2,7~\Omega$ и без него.

Рис. 5.42. Кривая напряжения измерения ЕСР конденсатора $2, 2 \mu F$ зарядным импульсом $8 \mu s$

На рисунке 5.42 не видно момент измерения АДЦ. На рисунке 5.43 изображена кривая напряжения в увеличенном масштабе. Момент измерения совпадает с срединой рисунка.

Рис. 5.43. Увеличенная кривая напряжения на конденсаторе $2, 2\mu F$ при измерении ЕСР зарядным импульсом $8\mu s$

Результаты измерений по новому методу измерения ЕСР показаны на рисунке 5.44. Значения ЕСР отличаюця от результатов, показанных для предыдущего метода измерения на рисунке 5.38 потому что ЕСР зависит от частоты. Эталонные значения определены ЛЦР-метром на частоте измерения $10\ kHz$.

Рис. 5.44. Результаты измерения ЕСР методом 2 15-ю различными АТмега

Ряд измерений различных электролитических конденсаторов показан на рисунке 5.45. Вместе с результатами Тестера представлены результаты измерений ЛЦР метра ПеакТеч 3315 на различных частотах. На этой диаграмме сопротивление представлено в логарифмическом масштабе. Во всех случаях результаты Тестера близки к результатам измерений ЛЦР метра на частоте $10\ kHz$. Из тестируемых, только конденсатор $500\ \mu F$ / $3\ V$ - более старый образец, все остальные конденсаторы - новые.

Рис. 5.45. Результаты измерений ЕСР различных электролитических конденсаторов

Новый метод измерения может быть использован для измерения резисторов с низким сопротивление Погрешности измерения некоторых резисторов ниже $10~\Omega$ с тремя примерами каждого типа ATмега показаны на рисунке 5.46.

Рис. 5.46. Погрешность измерения сопротивления методом ЕСР

С программным обеспечением версии 1.12к длительность импульса заряда конденсатора уменьшаеця до 2 μs для возможности измерения ECP конденсаторов с более низкими значениями ёмкости. Теперь можно измерить значение ECP для конденсаторов от $20 \, nF$. Но ошибка измерения будет расти при меньших значениях ёмкости. Причиной этого являеця уменьшение постоянной времени РЦ-цепочки, которая будет только $14.4~\mu s$ для значения ёмкости 20~nF. Это приведет к быстрому изменению напряжения на конденсаторе при импульсе в $2 \mu s$ тока. Программное обеспечение может выбрать дискретизацию АЦП только в один такт процессора. Но входной АЦП имеет постоянную времени, примерно $0.24~\mu s$, которая может варьироваться в зависимости от экземпляра АТмега. Эти вариации постоянной времени фильтра входного АЦП не могут быть оцлежены программным обеспечением. Время выборки АЦП недоступно за долю периода тактовой частоты. При большем значении ёмкости измеряемого конденсатора постоянная времени будет расти и изменение напряжения при импульсе тока будет уменьшаться. По этой причине, изменение постоянной времени фильтра входного АЦП оказывает меньший эффект при измерении конденсатора с большей ёмкости. На рисунке 5.47 показаны результаты для некоторых конденсаторов при измерении на 10 различных тестерах. На изображении слева - результаты ЕСР некоторых конденсаторов имеют более высокие значения ЕСР. Результаты довольно похожи в сравнении с результатами тестера ЛЦР Пеактеч 2170 при 10~kHz и при 100~kHz. На рисунке справа Вы можете увидеть результаты измерений некоторых высококачественных конденсаторов с низким значением ЕСР. Хотя и заметен предел метода (особенно при низких значениях ёмкости), но это лучше, чем полное оцуцтвие информации. В любом случае, Вы можете сравнить несколько конденсаторов одинаковой ёмкости с малыми значениями для поиска более качественного экземпляра.

Рис. 5.47. Измерения ЕСР конденсаторов малой ёмкости

Для микроконтроллеров с объемом флеш памяти более 16 K в программном обеспечении 1.12к резистор $470~k\Omega$ для половины измерений подключаеця параллельно резистору $680~\Omega$ с целью небольшого увеличения тока при измерении. К сожалению, увеличение тока незначительное, чтобы полученное в результате изменение напряжения изменило результат АЦП. Увеличение напряжения составляет лишь около 20~% от разрешения АЦП при использовании ИОН 1.1~V. Для изменения отдельных значений предпочтительнее было бы добавление незначительного шума на вход АЦП. С помощью этой функции можно достичь статистического улучшения разрешения АЦП путем усреднения результатов измерений.

5.3.8 Потеря напряжения после импульса зарядки, Влосс

Для конденсаторов большой ёмкости, была проанализирована потеря напряжения на конденсаторе после того, как он был заряжен. Достигнутое напряжение заряда на электролитических конденсаторах терялось после короткого периода. Эта потеря напряжения могла быть вызвана параллельно подключенным резистором. Но я принимаю, что эта потеря напряжения электролитических конденсаторов вызвана внутренним рассеиванием заряда непосредственно после импульса зарядки. Заряжая конденсаторы через резистор $470~k\Omega$, как это сделано для небольших ёмкостей, это рассеивание проявляеця сразу после выключения тока. Но в этом случае никакая потеря напряжения не была обнаружена. Но если Вы заряжаете тот же самый конденсатор с более низкой ёмкостью коротким импульсом тока, то также обнаружите потерю напряжения на конденсаторе. Тот же самый эффект, с более низкой потерей, может также быть замечен для керамических конденсаторов. Я заметил, что конденсаторы с потерей напряжения более, чем на несколько %, весьма вероятно, имеют низке качестве. Особенно заметна относительная потеря напряжения у более старых бумажных конденсаторов, у которых замечены проблемы и при других измерениях. Некоторые примеры измерений показаны в таблице.

Тип	Величина	ПеакТеч	Волтцрафт	ПеакТеч	Трансистор-
конденсатора	ёмкости	ЛЦР 2170	М2650-Б	3315	Тестер
бумажный	4700пФ	$6,75$ - $10,36$ н Φ	8,00нФ	25,40нФ	10,71нФ
		Ч12,5-32			Влоссі11%
бумажный	6800пФ	9,40-11,40нФ	10,41нФ	23,30нФ	11,65нФ
		Ч15-25			Влоссі5,0%
неизвестный	4700пФ	$5,85$ - $6,33$ н Φ	6,12нФ	6,90нФ	6225пФ
		Ч116-87			Влоссі1,7%
фольговый	7870пФ	7,86-7,87нФ	7,95нФ	7,95нФ	7872пФ
		$H_1 > 1540$			Влоссі0%
бумажный	22000пФ	$37,4$ - $57,5$ н Φ	52,8нФ	112нФ	118,5нФ
		Ч12,5-32			Влоссі12%
фольговый	22600пФ	$22,4$ - $22,5$ н Φ	22,57нФ	22,69нФ	22,54нФ
		$H_1 > 1540$			Влоссі0%
бумажный	100нФ	144-256нФ	177нФ	318нФ	529,7нФ
		Ч12,6-28			Влоссі12%
керамический	100нФ	97,7-102нФ	103,7нФ	103,3нФ	103,1нФ
		Ч190-134			Влоссі0,1%
фольговый	100нФ	98,0-101нФ	101,4нФ	102,2нФ	101,6нФ
		Ч158-700			Влоссі0%

В этой таблице Вы видите, что ёмкость всех фольговых конденсаторов может быть измерена всеми приборами с хорошей точностью. Значение ёмкости и добротности (Ч) ПеакТеч ЛЦР-метра являюця минимальными и максимальными значениями измерений в частотном диапазоне от 100~Hz до 100~kHz. Во всех примерах в таблице потеря напряжения Влосс, замеренная Тестером, велика, если конденсаторы низкокачественные. Только в этих случаях различие результатов измерения ёмкости также большие. Тестер может определить потерю напряжения, если измеренное значение ёмкости больше 5000~pF.

5.3.9 Отдельное измерение ёмкости и ЕСР

Отдельное измерение ёмкости с последующей оценкой ЕСР можно выбрать из диалогового меню дополнительных функций только для АТмега с достаточным объемом памяти. Этот тип измерения предназначен для тестирования конденсаторов без демонтажа. Пожалуйста, убедитесь, что все конденсаторы на плате разряжены, прежде чем начать измерение! Испытание установленных в плату копонентов производиця низким, насколько это возможно, напряжением, лишь немного больше 300 mV. Кроме того, измерение производиця с использованием только резистора $680\,\Omega$ для уменьшения влияния связанных компонентов печатной платы. Для определения конденсаторов малых ёмкостей, измерение начинаеця с коротких импульсов зарядки 200 µs. Если заряд конденсатора короткими импульсами не достигнет 300~mV за 2~ms, то последующий заряд осуществляеця импульсами 2 тв. Когда ёмкость измеряемого конденсатора большая, напряжение заряда импульсами 2 ms увеличиваеця медленно, то, в этом случае, ширина импульса(ов) заряда увеличиця до 20 ms. Если напряжение на измеряемом конденсаторе приближаеця к 300~mV, снова используюця короткие импульсы заряда. Общее время импульсов суммируеця после достижения напряжения заряда больше $300 \ mV$, ёмкость вычисляеця по времени и уровню заряда конденсатора. С помощью этого метода возможно измерение ёмкости чуть ниже от $2~\mu F$. Верхний предел измеряемой ёмкости ограничен временем заряда 2.5~s, примерно $50 \ mF$. После успешного измерения ёмкости, измеряеця ECP конденсатора по описанному в разделе 5.3.7 методу. Результат кратковременно отображаеця на дисплее, а затем сразу же начинаеця следующее измерение. Измерения останавливаюця после серии из 250 измерений или

по нажатию кнопки **TECT**, после чего программа возвращаеця в диалоговое меню дополнительных функций.

5.3.10 Результаты измерения ёмкости конденсаторов

Результаты моих измерений ёмкости для трех микроконтроллеров АТмега8 показаны на рисунке 5.48. Некоторые значения оригинального программного обеспечения показаны с поправочным коэффициенто 0,88 (-12%). Другие результаты измерения различных версий АТмега8 показаны на рисунках 5.49а и 5.49б. Результаты измерения тех же самых конденсаторов для АТмега168 показаны на рисунке 5.50. Основой для вычисления погрешности являюця результаты измерения немаркированных элементов ЛЦР метром ПеакТеч 2170. Часть относительно большой разницы измерений вызвана слишком высокой частотой измерения ЛЦР-метра для больших электролитических конденсаторов. С другой стороны плохое качество электролитических конденсаторов может дать другой процент.

Рис. 5.48. Погрешность измерения ёмкости в % с АТмега8

Рис. 5.49. Относительная погрешность измерения ёмкости

Рис. 5.50. Погрешность измерения ёмкости в % с АТмега168

Рисунок 5.51 иллюстрирует, как сложно выбрать правильный алгоритм для измерения ёмкости. Все результаты измерения сравниваюця с лучшими оценочными значениями ёмкости. Линия графика «Мультиметр» показывает отличие от результатов мультиметра ПеакТеч 3315. Следующая линия графика «ЛЦР» показывает различие результатов ПеакТеч 2170 ЛЦР-метра, который выбран из-за лучшего приближения по частоте измерения. Для сравнения этих результатов с результатами Тестера на АТмега168 показана линия графика «АТмега168ас». Я уверен, что эти погрешности не являюця реальными ошибками измерения конкретного оборудования потому, что лучшее оценочное значение также не соотвецтвует реальному значению ёмкости конденсаторов.

Рис. 5.51. Сравнение результатов измерений ёмкости мультиметром, ЛЦР-метром и Тестером на ATмета168

В этом случае результаты ЛЦР-метра взяты в качестве базы для сравнения. Те же самые результаты для трех различных микроконтроллеров АТмега168 показаны на рисунке 5.52а, микроконтроллеров АТмега168А показаны на рисунке 5.52б, для микроконтроллеров АТмега168ПА - на рисунке 5.53. Результаты трех АТмега328 дополнительно показаны на рисунке 5.54а, а трех АТмега328П - на рисунке 5.546. В них учтена только нулевая ёмкость измерения 39~pF, все другие средства, чтобы скорректировать результаты не используюця. В эту нулевую ёмкость включена также ёмкость 2-3~pF, которую дает кабель с зажимами длиной $12~{\rm cm}$. Разводка платы также может дать, отличное от нулевого, значение ёмкости, я зафиксировал эту нулевую ёмкость для платы «ДГ2БРС В 5.2.1».

Рис. 5.52. Погрешность измерения ёмкости, не откалиброван

Рис. 5.53. Погрешность измерения ёмкости тремя АТмега 168 ПА, не откалиброван

Рис. 5.54. Погрешность измерения ёмкости, не откалиброван

Чтобы получить лучшую точность, Вы должны приспособить программное обеспечение к индивидуальной особенности Вашего образца АТмега. Для этого Вы можете установить напряжение коррекции РЕФ-Щ-КОРР для компаратора, который будет использоваться для измерения небольших ёмкостей. Коррекция в 1 mV уменьшает результаты измерения на о 0.11 % . Для больших ёмкостей Вы можете определить значение Ц-X-КОРР, показывающее, насколько превышены измеренные величины ёмкости. Поскольку конденсаторы большой ёмкости в большинстве электролитические конденсаторы с худшим качеством, измерение их ёмкости осложнено. Это также дополнительно усложняет дифференцирование отличий от реальных значений ёмкости.

Я заметил, особенно с микроконтроллерами АТмега168, аномалию результатов измерения малых ёмкостей, которая зависит от скорости нарастания напряжения во время зарядки конденсатора. Рисунок 5.55 показывает погрешность измерения ёмкости, когда учитывают только нулевое значение (168-3-A), с поправочным коэффициентом для малых ёмкостей РЕФ-Щ-КОРР166, также и с поправочным коэффициентом для больших ёмкостей Ц-Х- КОРР15 (168-3-B), плюс, дополнительно отклонение 168 3 Ц с моделью зависимости от скорости нарастания для измерения малых ёмкостей (ЦОМП-СЛЕЩ114000 и ЦОМП-СЛЕЩ21220). Саморазряд больших ёмкостей также учтен в отклонении 168-3-Ц. Элемент с зависимостью от величины скорости нарастания вычисляеця как $\frac{COMP-SLEW1}{cval+COMP-SLEW2} - \frac{COMP-SLEW1}{COMP-SLEW2}$, где цвал измеренное значение ёмкости в pF.

Рис. 5.55. Улучшенное измерение ёмкости АТмега168

5.3.11 Автоматическая калибровка при измерении конденсаторов

Автоматическая калибровка состоит из двух частей. Первая часть определяет смещение нуля при измерении ёмкости. Для этого определяеця значение ёмкости, измеренной без подключенного конденсатора. Значение ёмкости для всех 6 комбинаций измерений, определяеця с 8 повторениями. После успешного определения, смещение нуля записываеця в ЕЕпром и будет использоваться для дальнейших измерений. Более сложным было выявление различия вариантов микроконтроллеров АТмега для малых конденсаторов ($<40~\mu F$), которые показаны на рисунках 5.52a, 5.52б и 5.53. Основной причиной этого являеця различие характеристик (напряжения смещения) аналогового компаратора.

Данные измерения девяти различных микроконтроллеров показаны на рисунке 5.56. Точки «диф2реф» показывают разницу напряжения заряженного конденсатора 660 nF с индивидуальным внутренним опорным напряжениям (ширина запрещенной зоны). В идеале это различие напряжений должно быть равно нулю, если аналоговый компаратор остановил зарядку сигналом для микроконтролл Короткое время обработки микроконтроллера не должно заканчиваться измерением результата роста напряжения этого относительно большого конденсатора. Точки «ЦапЕрр» показывают предполагаемые погрешности измерения каждого микроконтроллера из рисунков 5.52а, 5.526 и 5.53 с заводскими установками. Представляет интерес, как точки «ЦапЕрр» будут соотвецтвовать точкам «диф2реф». Для этого точки «диф» показывают различие между соотвецтвующими точками «ЦапЕрр» и «диф2реф». Зная значения величин точек «диф», мы можем получить хорошую оценку для коррекции измерений ёмкости вместе с разницей между напряжением заряженного конденсатора и напряжением внутренней опоры.

Во второй части, для внесения поправок, Вы должны подключить конденсатор к испытательным выводам 1 и 3. Этот конденсатор должен быть высококачественным и иметь величину в диапазоне от 100~nF до $20~\mu F$. В лучшем случае это должен быть плёночный конденсатор, по возможности - не керамический и ни в коем случае - не электролитический. Точная ёмкость этого конденсатора не важна.

Рис. 5.56. Данные для 9 АТмега 168

Рисунки 5.57а, 5.57б, 5.58, 5.59а и 5.59б показывают результаты измерения различных микроконтрол. со стандартным программным обеспечением после автокалибровки. Микроконтроллеры были загружены одинаковым программным обеспечением, только для программы аврдуде в Макефиле в опции «ПАРТНО 1» был выбран соотвецтвующий тип микроконтроллера («м168», «м168п», «м328» или «м328п»). После загрузки данных была проведена самопроверка для каждого типа АТмега с подключением конденсатора 330~nF к испытательным выводам 1 и 3 во время теста 10.

Рис. 5.57. Погрешность измерения ёмкости, откалиброван

Рис. 5.58. Погрешность измерения ёмкости тремя АТмега 168 ПА, откалиброван

Рис. 5.59. Погрешность измерения ёмкости, откалиброван

Наконец, я покажу эффект от применения опции АУТО_ЦАЛ в программе самопроверки. Следующий рисунок 5.60 показывает результаты измерений трех микроконтроллеров АТмега с самой большой погрешностью измерений, одного - перед калибровкой и другого - после калибровки. Точки, отмеченные окончанием «УНЦ», показывают погрешность без калибровки. Линии с окончанием «цал» показывают погрешность результатов тех же самых микроконтроллеров с тем же самым программным обеспечением после калибровки в режиме самопроверки. Причина погрешности измерения для больших конденсаторов (> 40 μ F) пока еще не известна. Все используемые конденсаторы для этого ряда измерений – плёночные или керамические (56 pF, 100 pF и 3, 3 nF).

Рис. 5.60. Погрешность измерения ёмкости для трех АТмега, до и после калибровки

Шема с АТмега644 или АТмега1284 обеспечивает установку конденсатора для калибровки на печатной плате. Рисунок 5.61 показывает результат измерений АТмега1284 с использованием встроенного на плате керамического конденсатора 100~nF, а также с внешним фольговым конденсатором 220~nF, в сравнении с результатами АТмега328 на другой печатной плате.

Рис. 5.61. Погрешность измерений конденсаторов с АТмега1284 по сравнению с АТмега328

5.4 Измерение индуктивностей

Измерение величины индуктивности будет проведено, если элемент определён как резистор сопротивлением ниже $2100~\Omega$. Метод измерения основан на росте тока по формуле:

 $Il = Imax \cdot (1 - \exp{\frac{-t}{\tau}})$ после включения тока. Постоянная времени $\tau = \frac{L}{R}$ прямо пропорциональна индуктивности L, и обратно пропорциональна сопротивлению R. Ток может измеряться косвенно по падению напряжения на измерительном сопротивлении.

К сожалению, постоянная времени будет уменьшена дополнительным, относительно высоким, сопротивлением $680~\Omega$, при этом измерение небольших значений индуктивности дополнительно затрудняеця на частоте 8~MHz. Чтобы получить постоянную времени, напряжение на резисторе $680~\Omega$ будет контролироваться аналоговым компаратором. Если падение напряжения на резисторе $680~\Omega$ будет выше, чем напряжение внутренней опоры, то это событие будет зарегистрировано 16-битным счётчиком, который запускаеця в момент включения тока. Счётчик сохранит состояние этого события. Если счётчик переполниця, то это будет подсчитано программой. После наступления события превышения, счётчик будет остановлен программой, и полное время состояния счетчика и счётчика переполнений будет сохранено. Положительная сторона катушки будет переключена от ВЦЦ к ГНД и будет оставаться в этом состоянии, пока проверка напряжения обоих выводов не покажет оцуцтвие тока. Рисунок 5.62 показывает упрощенную шему измерения индуктивности.

Рис. 5.62. Измерение индуктивности с компаратором

Вычисляем максимальный ток Имаш, как отношение напряжения ВЦЦ к сумме всех резисторов в электрической цепи, и отношение опорного напряжения к максимальному напряжению на резисторе $680~\Omega$, которое, в свою очередь, вычисляеця по формуле $Umax = Imax \cdot (680 + 19)$. Индуктивность вычисляем по формуле $L = -\frac{t \cdot Rges}{\log (1 - \frac{Uref}{Umax})}$. Натуральный логарифм берут из таблицы. Для этого типа измерения выбрано разрешение индуктивности 0, 1~mH.

Если величина сопротивления индуктивности будет менее $24~\Omega$, то для того, чтобы измерить более низкие значения индуктивности, в цепи тока не будет использоваться резистор $680~\Omega$. Для измерения тока будет использоваться только выходное сопротивление порта (19 Ω). В этом случае пиковый ток будет больше, чем допустимое значение для АТмега. Поскольку это будет только в течение очень короткого промежутка времени, я не ожидаю повреждения портов АТмега. Для этого типа измерения выбрано разрешение индуктивности 0,01~mH. Чтобы избежать более длительного времени с чрезмерным током, дополнительное измерение с задержанным запуском счётчика будет всегда проводиться с резистором $680~\Omega$. Чтобы получить более подходящие

результаты измерения, смещение нуля 6 вычитают из счётчика, если измерение сделано без резистора $680~\Omega$. Иначе вычитаеця смещение нуля 7 или 8.

При больших значениях индуктивности, паразитная ёмкость может вызвать быстрый рост тока, так, что компаратор срабатывает немедленно. Чтобы в этом случае получить значение индуктивности, измерение будет повторено с задержанным запуском счётчика. Этим методом аналоговым компаратором будет обнаружено напряжение, вызванное увеличением тока индуктивности, вместо напряжения от пика тока паразитной ёмкости. Измерения всегда делаюця в обоих направлениях тока. Программа выберет более высокий результат измерения в том же самом направлении тока, а на дисплей будет выведен более низкий результат различных направлений тока.

5.4.1 Результаты измерений индуктивности

Рисунок 5.63 показывает результаты измерения различных катушек. Катушки выше $1\ H$ - реле или первичные обмотки силовых трансформаторов затрудняют измерения, потому что у железного сердечника есть остаточное намагничивание.

Рис. 5.63. Погрешность измерения индуктивности для 15-ти различных АТмега

5.4.2 Измерение малых индуктивностей методом отбора проб

Наименьшая индуктивность, которая может быть обнаружена при нормальном методе измерений $0,01\ mH$. Для измерения небольшой индуктивности требуеця высокая частота. Обычный метод использует измерение скорости нарастания тока при измерении индуктивности. Этот метод не может быть использован для метода выборки, поскольку шема измерения не использует никаких дополнительных резисторов при испытании катушки. Ток будет расти до критически высоких значений очень быстро. Мы можем предотвратить повреждение АТмега только с очень быстрым отключением тока. Для выборочного метода трудно реализовать быстрое отключение и кроме того, этот критический процесс должен быть повторен много раз в серии испытаний.

Радиолюбитель Пиетер-Тјерк (ПАЗФЩМ) реализовал другой метод, чтобы получить значение индуктивности. Параллельным подключением конденсатора к индуктивности создаеця резонансный контур. С помощью короткого импульса тока эта шема возбуждаеця и начинает колебаться.

Используя метод дискретизации, измеряеця частота этого колебания. Так как при этом измерении один вывод катушки подключен к ГНД возникают две проблемы с измерением. Отрицательное напряжение колебаний ограничивает внутренний диод защиты на порту АТмега примерно до 0, 6 V. По этой причине положительная часть колебаний тоже никогда не достигнет напряжения выше чем 0,6 V. Кроме того АЦП в АТмега может измерять только позитивные значения напряжения. Таким образом, все отрицательные части колебаний считываюця как нулевые. В любом случае, Пиетер-Тјерк нашел решение, чтобы измерить резонансную частоту с практической точностью. Если значение ёмкости известно и можно измерить резонансную частоту, то индуктивность может быть вычислена. По этой причине программа калибровки нуждаеця в конденсаторе фиксированной ёмкости для дальнейшего использования при измерении малых значений индуктивности Во время самотеста будет предложено подключить конденсатор в шаге «1—1—3 $10 - 30nF(\Pi)$ ». Для не откалиброванного тестера, по умолчанию, выбрано значение 18~nF. Значение ёмкости параллельного конденсатора для измерения индуктивности должно быть выбрано таким, чтобы получить резонансную частоту для всего диапазона значений измеряемых малых индуктивностей. Конденсатор высокого качества (фольгового типа) должен быть выбран потому, что дополнительно измеряеця добротность резонансного контура путем мониторинга уменьшение амплитуды. При использовании конденсатора высокого качества общая добротность резонансного контура будет определяця добротностью катушки.

Никаких дополнительных действий не требуеця при параллельном подключении конденсатора. Резонансный контур, как правило, определяеця автоматически. При обнаружении резонансного контура, отображаеця текст «иф» и значение параллельной ёмкости отображаеця за значением индуктивности в строке 2. В этом случае величина сопротивления катушки отображаеця в конце строки 1. Значение сопротивления катушки Вы должны проверить отдельно, измерив его без конденсатора, потому что измерение сопротивления в резонансном контуре невозможно! В дополнительной строке отображаеця измеренное значение резонансной частоты и добротность (Q =) контура. Если резонансный контур не обнаружен, значение сопротивления и индуктивности отображаеця в строке 2. Для резонансной частоты контура определяеця значение частоты и добротность катушки, которые отображаюця в дополнительной строке.

Для воздушной катушки с 6 витками и параллельно подсоединенным конденсатором $18.1\ nF$ при методе отбора проб получен следующий результат:

272нX иф 18.1 нФ 2256кXз Ч138.7

Такой же результат был получен с частотой от $8\ MHz$. Аналогичный результат был также получен при измерении катушки в один виток из медной проволоки длиной $25\ cm$. Высокое значение индуктивности, в этом примере, из-за того, что параллельно подключенный фольговый конденсатор имеет большую собственную индуктивность. В таблице 5.7 показано результат измерения катушек малой индуктивности тестером с тактовой частотой $16\ MHz$.

Цпі	6.68 нФ	11.4 нФ	18.2 нФ	20.3 нФ	33.3 нФ
Лпі					
3 витка, 13 мм	100 нХ	116 нХ	108 нХ	115 нХ	111 нХ
(91.4 нХ)	6.039 МХз	4.358 МХз	3.568 МХз	3.282 МХз	2.619 МХз
	Ч129.9	Ч115.6	Ч149.8	Чі12.1	Чі31.4
4 витка, 13 мм	141 нХ	161 нХ	151 нХ	152 нХ	153 нХ
(144.9 нХ)	5.172 МХз	3.724 МХз	3.03 МХз	2.86 МХз	2.226 МХз
	Ч144.8	Ч116.0	Ч146.2	Ч114.6	Чı30.5
6 витков, 13 мм	217 нХ	232 нХ	223 нХ	224 нХ	227 нХ
(212.5 HX)	4.18 МХз	3.094 MXз	2.492 МХз	2.343 МХз	1.832 МХз
	Ч130.5	Ч118.4	Ч143.0	Чі15.4	Чі31.7
12 витков, 13 мм	547 нХ	571 нХ	559 нХ	560 нХ	566 нХ
(569.5 HX)	2.632 МХз	1.973 МХз	1.573 МХз	1.491 МХз	1.16 МХз
	Ч136.9	Ч126.4	Ч150.6	Ч120.8	Ч139.2
27 витков, 11 мм	$1.93~\mu H$	$1.92~\mu H$	$2.02~\mu H$	$2.00~\mu H$	$2.01~\mu H$
$(1.9 \ \mu H)$	1.403 МХз	1.067 МХз	828.5 кХз	789.5 кХз	615.4 кХз
	Ч136.5	Чі33.4	Ч143.6	Ч126.6	Чı34.5
$6.3~\mu H$	$6.69~\mu H$	$6.84~\mu H$	$6.84~\mu H$	$6.82~\mu H$	$6.90~\mu H$
$7.12~\mu H$	752.9 кХз	570.2 кХз	449.9 кХз	428.1 кХз	332.3 кХз
	Ч128.5	Чі30.5	Ч132.3	Ч125.5	Ч128.3

Таблица 5.7. Результат измерения некоторых катушек с низкой индуктивностью

Для получения этих табличных значений использовались конденсаторы серии ЩИМА МКС, которые имеют низкую собственную индуктивность. При использовании фольговых конденсаторов 18.2~nF, Вы получите результат 196~nH вместо 151~nH из таблицы. Все индуктивности, кроме последней, самодельные катушки. Значение индуктивности в скобках представляет собой вычисленные значения по размерам катушки. Последние катушки $6.3~\mu H$ заводские и маркированы $6.3~\mu H$. Но при тесте на ЛЦР измерителе с частотой 100~kHz дают результат $7.12~\mu H$! Вы можете наблюдать значительные отличия добротности Q каждой катушки с разными параллельно подключенными конденсаторами с почти одинаковым значением ёмкости. Для катушки из 12 витков, Вы видите коэффициент добротности 50.6~c 18.2~nF конденсатором и коэффициент добротности 20.8~c 20.3~nF конденсатором. Причиной такого различия может быть программная ошибка. Поэтому я показываю данные АЦП для катушки из 12-витков с конденсаторами 18.2~nF и 20.3~nF на рисунке 5.64~d для наглядности. Вы можете заметить четкую зависимость измерения добротности контура в приведенных данных. Вероятно, от качества используемого конденсатора зависит точность полученного результата.

Рис. 5.64. Данные АЦП двух резонансных контуров с той же катушкой 12 витков

5.5 Функция самопроверки

Начиная с Версии 0.9к, реализована функция самопроверки. Использовать ее очень просто. Нужно установить испытательный терминал с зажимами, закоротить все зажимы и нажать кнопку ТЕСТ. Программа определяет закороченные испытательные зажимы и начинает функцию самопроверки, если Вы подтвердите этот режим повторным нажатием на кнопку ТЕСТ в течение 2-х секунд. Это подтверждение необходимо для исключения перехода Тестера в режим самопроверки при подключении дефектного транзистора. После окончания самопроверки Тестер начнет обычное измерение. Если никакой элемент не будет подключен, то программа закончит работу с выводом сообщения «Но, ункнощн, ор дамагед парт». Вы можете запустить самопроверку только на АТмега 168 или АТмега 328. Перед тестом определяющя нулевые сопротивления для всех трех комбинаций соединений (Т1:Т3, Т2:Т3 и Т1:Т2). Эти нулевые сопротивления будут учтены при будущих измерениях ЕСР и сопротивлений ниже 10 \, \Omega. Допустимы только значения нулевого сопротивления ниже 0.90 Ω , поскольку значения этой коррекции не используеця для измерения резисторов выше 10 Ω . Если Вы используете кабели для измерений, Вы должны использовать только кабели с очень низкими сопротивлением. Если более поздние результаты измерений сопротивления упадут ниже определенного ранее нулевого значения более, чем на $0, 2\Omega$, Тестер восстановит режим «унцалибратед» («неоткалиброванный»). Во время дальнейших испытаний это будет отмечено символом «_» (подчеркивание) в конце строки или результата измерений. Каждый шаг функции самопроверки 1 - 7 отображаюця в первой строке ЛЦДдисплея символом «Т», сопровождаемым номером шага. Каждый шаг повторяеця 4 раза, прежде чем программа переходит на следующий шаг. Но если Вы держите кнопку ТЕСТ нажатой, когда испытательный цикл закончен, этот тест больше не повторяеця. Если Вы удерживаете кнопку ТЕСТ нажатой постоянно, то каждый тест выполняеця только один раз.

Без опции АУТО-ЦАЛ в каждом шаге отображаюця только результаты измерения, анализ ошибок не выполняеця, результаты измерений Вы должны интерпретировать сами. В этом месте я дам Вам дополнительный важный совет. Никогда не делайте измерения с подключенным разъёмом ИСП! Интерфейс ИСП искажает измерения.

Вот список осуществляемых в настоящее время тестов:

- 1. Измерение 1, 3 V (или 1, 1 V) опорного напряжения (диапазон изменения опоры). В строке 1 текст «РЕФ 1 » и измеренное напряжение, отображенное в mV. Для АТмега8 напряжение должно быть близко к 1, 3 V. Для других микроконтроллеров напряжение должно быть близко к 1, 1 V. Вторая строка отображает результирующий коэффициент для измерения ёмкости с резистором $470~k\Omega$.
- 2. Сравнение резисторов 680 Ω . В первой строке отображаеця зашифрованный текст «ЪРЛ- 12 13 23». Значение этого текста следующее: РЛ обозначение низкоомного резистора 680 Ω .
 - 12 резистор, соединенный с выводом 1 подключен к ВЦЦ $(+5\ V)$, а резистор, соединенный с выводом 2 к ГНД. Результат этого измерения отображаеця во второй строке на первом месте, в виде разницы с теоретическим значением.
 - 13 резистор, соединенный с выводом 1 подключен к ВЦЦ (+5 V), а резистор, соединенный с выводом 3 к ГНД. Результат этого измерения отображаеця во второй строке на первом месте, в виде разницы с теоретическим значением.
 - 23 резистор, соединенный с выводом 2 подключен к ВЦЦ $(+5\ V)$, а резистор, соединенный с выводом 3 к ГНД. Результат этого измерения отображаеця во второй строке на первом месте, в виде разницы с теоретическим значением.

Пожалуйста, помните, что разрешение АЦП составляет приблизительно 4, 88 mV! Шемы измерений представлены на рисунке 5.65. Теоретическое значение с учетом внутреннего сопротивления порта должны быть: $\frac{5001\cdot(19+680)}{(19+680+680+22)}=2493$.

Рис. 5.65. Сравнение резисторов 680 Ω

3. Сравнение резисторов 470 $k\Omega$. Теперь в первой строке отображаеця « $^{\rm k}PX$ - 12 13 23». Та же самые действия, как сделано в тесте 2, повторены с резисторами 470 $k\Omega$ (символы PX). Все результаты отображают разницу с теоретическим значением. Теоретическое значение с учетом внутреннего сопротивления порта вычисляеця по формуле:

```
\frac{5001\cdot(19+470000)}{(19+470000+470000+22)}=2500для всех комбинаций.
```

- 4. Отображаеця сообщение «Исолате Пробе!». В этом шаге ничего не измеряеця. Это означает, что нужно оцоединить «закоротку». Этот шаг завершиця, как только Вы «рацкоротите» входы.
- 5. Этот тест проверяет способность подключения резисторов 470 $k\Omega$ (РХ-) к ГНД при подтягивании испытательных контактов к ГНД. Первая строка показывает текст «РХ-». Вторая строка должна показать ноль для всех трех выводов.
- 6. Этот тест проверяет способность подключения резисторов $470 \ k\Omega$ (РХѣ) к ВЦЦ (+5 V) при подтягивании испытательных контактов к ВЦЦ (+5 V). Первая строка показывает текст «РХѣ». Результаты во второй строке показывают отличие от ВЦЦ (+5 V) и должны быть близким к нулю. Большие отличия от значения 0 для теста 5 и теста 6 являюця ошибками, такими как проблема изоляции, утечки материала или повреждение порта!
- 7. Этот шаг проверяет напряжения резистивного делителя $470~k\Omega$ / $680~\Omega$. Отличия напряжений резистивного делителя $470~k\Omega$ / $680~\Omega$ от расчетной величины отображаеця во второй строке ЛЦД-дисплея для всех трех терминалов. Различие больше, чем несколько mV, может быть вызвано применением неправильных значений резисторов.
- 8. Измерение внутреннего сопротивления порта подключением выходных контактов к ГНД. Этот и следующие тесты будут проведены, если выбрана опция АУТО-ЦАЛ. Внутреннее сопротивление порта Ц с выходами, подключенными к ГНД, измеряеця по току через подключенные к ВЦЦ (+5 V) резисторы 680 Ω, смотри рисунок 5.66. Могут быть измерены только три вывода порта АЦП. Внутреннее сопротивление портов Б (ПБ0, ПБ2 и ПБ4) не может быть измерено без изменения аппаратных средств. Будем считать, что внутреннее сопротивление порта для различных портов практически одинаково. Величина сопротивления будет определена в следующем тесте.

Рис. 5.66. Измерение внутреннего сопротивления порта Ц подключением выходных контактов к Γ НД

9. Измерение внутреннего сопротивления порта подключением выходных контактов к ВЦЦ (+5 V). Необходимый ток задан резисторами 680 Ω соединёнными с ГНД. Как видно на рисунке 5.67, это те же самые измерения, как и в тесте 8, только с другой стороны. Следующими шагами вычисляеця сопротивление: (VCC-(resultoftest8)-(resultoftest9) чтобы получить оба значения резисторов, напряжение (результат теста 8 или 9) делим на этот ток.

Результаты этого теста будут отображены в первой строке текстом «РИ_Хи 1 », значение сопротивления (Ω) относительно ВЦЦ, во второй строке текст «РИ_Ло 1 », значение сопротивления (Ω) относительно ГНД.

Начиная с версии 1.06к программного обеспечения, значения выходного сопротивления порта определяющя в начале каждого измерения. Этот тест только показывает значения.

Рис. 5.67. Измерение внутреннего сопротивления порта подключением выходных контактов к ВЦЦ

10. **Измерение смещения нуля при измерении конденсаторов.** В первой строке после «Ц0» отображаюця величины смещения нуля при измерении ёмкости конденсаторов в порядке комбинаций испытательных выводов 1:3, 2:3 и 1:2. Все три значения отображаюця в *pF*. В этом измерении не учитывают предопределенное смещение нуля. Также измеряеця

смещение нуля для комбинаций выводов в противоположном порядке. Результаты измерений записываюця в ЕЕпром, если все значения будут меньше, чем $190\,pF$. Это будет зафиксировано отображением текста «ОК» во второй строке. Найденное смещение нуля используеця для дальнейших измерений ёмкости относительно комбинаций выводов. Если результаты измерений ёмкости упадут ниже определенного ранее нулевого значения более, чем на $20\,pF$, Тестер восстановит режим «унцалибратед» («неоткалиброванный»). Во время дальнейших испытаний это будет отмечено символом «_» (подчеркивание) в конце строки или результата измерений. Имейте в виду, что при замене испытательных шупов может потребоваться новое регулирование смещения нуля. Если Вы используете провода с зажимами, смещение нуля может быть на $3\,pF$ больше, по сравнению с пустым гнездом. Если тестер настроен с функцией СамплингАДЦ, то значения нулевой ёмкости определяеця в двух направлениях для всех комбинаций контактов. Причина в том, что нулевая ёмкость измеряеця для заряда и разряда всех комбинаций тестовых контактов отдельно.

- 12. Подключение конденсатора к испытательным выводам 1 и 3. В первой строке ЛЦД-дисплея выводиця сообщение «Т—3 > 100нФ». Чтобы подготовиться к измерению напряжения смещения компаратора, Вы должны подключить высококачественный конденсатор ёмкостью в диапазоне от 100~nF до $20~\mu F$. Допустимо использование только пленочных конденсаторов.
- 13. Измерение смещение компаратора для настройки измерения ёмкости. Для получения смещения аналогового компаратора, конденсатор уже должен быть подключен к испытательным выводам 1 и 3. Конденсатор необходим для поддержания напряжения заряда конденсатора на время измерения разницы между напряжением заряда и внутренним опорным напряжением (зона). Если измерение прошло успешно, и величина коррекции мала, то в первой строке ЛЦД-дисплея отобразиця текст «РЕФ Ц 1 » и величина коррекции будет записана в ЕЕпром. Используя опцию РЕФ-Ц-КОРР, Вы можете добавить дополнительное смещение к автоматически измеренному значению. Если Вы выбрали опцию АУТОСЦАЛЕ_АДЦ, масштаб АЦП, полученный после однократного измерения напряжение при соединении с ВЦЦ и однократного измерения напряжения внутреннего ИОН, будет скорректирован путем сравнения напряжения на конденсаторе ниже 1 V. Результат измерения отображаеця во второй строке текстом «РЕФ Р 1 ». Ваше значение опции РЕФ-Р-КОРР являеця дополнительным смещением к этому автоматически определенному разностному значению.

По окончании тестов в первой строке отображаеця текст «Тест Енд» а во второй строке номер версии программного обеспечения. Если в Макефиле установлена опция ФРЕЧУЕНЦЫ_50Хз, то на испытательном выводе 2 генерируеця прямоугольный сигнал 50~Hz и тот же самый сигнал в противофазе - на испытательном выводе 3. Испытательный вывод 1 подключаеця к ГНД. Ток ограничен резисторами $680~\Omega$. Это будет отображено, как «50Хз», в конце первой строки ЛЦД-дисплея. Сигнал 50~Hz будет сгенерирован 30~раз в течение 2~секунд. Если у Вас есть частотомер или осциллограф, то Вы можете проверить требуемые временные характеристики

сигнала. Рисунок 5.68 показывает осциллограмму кривой $50\ Hz$ на обоих испытательных выводах для ${\rm AT}$ мега с кварцем.

Рис. 5.68. Осциллограмма 50 Hz на выводах 2 и 3

Если Вы не используете кварц, результат может быть неточным. Точная частота и период важны для измерения величины ёмкости. Вы можете прервать долговременную генерацию сигнала $50\ Hz$, нажав на кнопку **TECT**. Тогда программа продолжит обычную задачу измерения.

5.5.1 Некоторые результаты функции самопроверки

На нижеследующих рисунках показаны результаты самопроверок 9 различных микроконтроллеров АТмега 168 и 6 микроконтроллеров АТмега 328.

Номер теста	Тип измерения	теоретич. зн.	Рисунок
Тест 1	банд гап Реф	1100	5.69
Тест 2	РЛ-Меан	0	5.70a
Тест 3	РХ-Меан	0	5.70б
Тест 5	РХ-Лощ	0	5.71a
Тест 6	РХ-Хигх	0	5.71б
Тест 8	Р оут Ло	131	5.72a
Тест 9	Р оут Хи	151	5.72б
Тест 10	Цап зеро оффсет	30	5.73
Тест 11	Референце цоррецтион	0	5.74

Таблица 5.8. Таблица самопроверок

Рис. 5.69. Самопроверка: Внутренний ИОН

Рис. 5.70. Самопроверка: Отклонение среднего напряжения от идеального

Рис. 5.71. Самопроверка: Входное напряжение

Рис. 5.72. Самопроверка: Выходное сопротивление

Рис. 5.73. Самопроверка: Смещение нуля при измерении ёмкости

Рис. 5.74. Самопроверка: Величина коррекции после автокалибровки

Наконец, я хотел бы показать Вам на рисунке 5.75 различие внешнего напряжения на выводе АРЕФ, измеренного мультиметром, и измеренного внутренним АЦП опорного напряжения для 15 различных АТмега и найденных напряжений коррекции (РЕФ_Р_КОРР) после автокалибровки рисунок 5.75. Вы можете видеть, что значения автокалибровки почти соотвецтвуют внешним измеренным значениям.

Рис. 5.75. Самопроверка: Различие напряжений ИОН, замеренных на внешнем выводе мультиметром и внутренним АЦП

5.6 Измерение частоты

Начиная с версии 1.10к в меню дополнительных функций можно выбрать пункт «Фречуенцы» (измерение частоты). Стандартное измерение частоты осуществляеця подсчетом количества задних фронтов входного сигнала по входу T0 ($\Pi Д4$) за одну секунду. Для получения периода счета в 1 секунду счетчик 1 используеця с предделителем 256:1 частоты процессора. Для получения 1 секундного интервала за один проход можно использовать 16 разрядный счетчик ATмега с частотой процессора $16 \ MHz$ и с предделителем. Для запуска и остановки счетчика 0 используюця регистры сравнения B и A счетчика 1. Чтобы избежать ошибки задержки при опросе результата сравнения сигналов событий, используюця обработчики прерываний событий запуска и остановки счетчика 1. Времена задержек в обеих подпрограммах обслуживания прерываний практически равны. Для поддержания точности периода 1 секунда постоянная задержка незначительна. При анализе на ассемблере, разница во времени может быть скорректирована.

Для частот ниже 25~kHz проводиця стандартное измерение с последующим измерением периода времени. Это дополнительное измерение следует только после стандартного измерения частоты. Измерение времени будет сделано путем подсчета количества прерываний по входу ПЦИНТ20 (ПД4) счетчиком 0. При измерении периода импульса ширина как положительного, так и отрицательного полупериодов, должна быть не менее $10~\mu s$. Счетчик 0 используеця на максимальной тактовой частоте. Разрешение составляет 125~ns для 8~MHz. При превышении подсчета периодов измерений разрешение может быть уменьшено. При использовании 125 периодов измерения, среднее разрешение для одного периода составит 1~ns. Для предотвращения неточности запуска и остановки счетчика 0, запуск будет произведен по первому, а останов по последнему изменению на контакте прерывания ПЦИНТ20 по той же самой процедуре обслуживания прерывания. Количество периодов выбрано так, чтобы можно было измерить время около 10~ миллионов тактов частоты процессора. При таком выборе ошибка составит всего 0,1~ ppm. С тактовой частотой 8~ MHz время измерения составляет около 1,25~ секунды. При определенной, таким образом, средней величине периода, частота вычисляеця затем с более высоким разрешением.

Процедуру проверки проводили так: два Тестера измеряли друг друга. Первый тест: частоты генерируюця Тестером 2 и измеряюця Тестером 1. После этого Тестеры меняюця местами, и измерения повторяюця. На рисунке 5.76 представлены результаты обеих серий измерений. Почти постоянные отклонения можно объяснить небольшой разницей частот двух кварцев.

Рис. 5.76. Относительная погрешность измерения частоты

5.6.1 Калибровка частоты по ГПС- или ГЛОНАСС-приёмникам

Подстройку частоты кварца можно осуществить установив подстроечный конденсатора (5 — 25~pF). Успешно протестирована калибровка частоты кварца Тестера импульсами 1ППС с применением ГПС приемника **УП501** от **Фастраш Лтд.** или с использованием ГПС/ГЛОНАСС приемника **ГНС701** от **Глобал Навигатион Сыстемс ГмбХ**. Измеряемый период можно точно настроить на 1000,000~ms. Только последняя цифра может отличаться на единицу. Конечно, частота кристалла зависит от температуры. Поэтому вы не можете ожидать очень хорошую стабильность долгое время.

На рисунке 5.77 приведена шема подключения УМ232 УСБ-последовательного контроллера и приемника к компьютеру.

Конвертер УМ232 автоматически поддерживает два напряжения 5 V и 3,3 V для питания шемы от УСБ.

Для работы приемника подключение к компьютеру не обязательно. Только питание 5 В необходимо подать УСБ контроллеру.

Рис. 5.77. Генератор 1ППС сигнала от ГПС приемника

5.6.2 Калибровка частоты с помощью тактового модуля

Чтобы настроить частоту кристалла транзисторного тестера, вы должны сначала заменить один из конденсаторов в обвязке кварца на триммер. Преимущество использования модулей РТЦ для калибровки частоты вместо модулей ГПС или ГЛОНАСС заключаеця в том, что Вам не нужно находиться в зоне видимости спутника. Вы можете настроить частоту почти в любом месте. Я исследовал модули часов с чипом ДС3231 и печатной платой с «ЗС-042». Обследованные модули, вероятно, производяця в Китае, и все платы оснащены чипом ДС3231М. Микрошема ДС3231М использует резонатор МЕМС (Мицро Елецтро Мечаницал Сыстем) вместо чипа ДС3231СН, который использует кристалл с 32 768 Hz. Модифицированный резонатор МЕМС также используеця чипом ДЦЬ301. На рисунке 5.78 показан один из используемых модулей.

Рис. 5.78. Один из протестированных ДС3231 модулей

Обе версии чипов ДС3231 используют внутреннее измерение температуры для управления базовой частотой таким образом, что дрейф частоты в широком диапазоне при изменении температуры почти полностью компенсируеця. К сожалению, предоставленный сигнал $32\ kHz$ для чипа ДС3231М не может использоваться для калибровки частоты. При измерении я получил разные частоты: $32\ 641\ Hz$, $32\ 710\ Hz$, $32\ 730\ Hz$ и $32\ 748\ Hz$ для всех четырех тестируемых модулей. Все эти частоты находяця далеко от ожидаемой точной частоты $32\ 768\ Hz$. Если Вы подключаете модули к Ардуино УНО, Вы также можете использовать вывод 1ППС (1 Hz) с выхода СЧЩ. Этот выход настолько стабилен и точнен, что его можно использовать для калибровки. Даташит ДС3231М обещает для 1ППС вывода точность $pm5\ ppm$ для полного температурного диапазона от -45° С до $+85^{\circ}$ С, а точность $32\ kHz$ на выводе документируеця только $\pm 2.5\%$ (25000ppm).

Лист данных чипа ДС3231СН обещает точность pm3, 5ppm для полного диапазона температур от -40° С до $+85^{\circ}$ С и точность $\pm 2ppm$ для температуры между 0° С и $+40^{\circ}$ С. В чипе ДС3231СН используеця внутренний тактовый кристалл с частотой $32\,768\,Hz$, частота которого стабилизируеця переключаемыми конденсаторами в широком температурном диапазоне. При известном температурном дрейфе кристалла и измерении температуры частота контролируемого кристалла почти постоянна. Чтобы проверить эти чипы, я заменил чипы ДС3231М чипами ДС3231СН для всех четырех модулей.

С откалиброванным транзисторным тестером (модель $16\ MHz$) я измерил выходную частоту всех модулей с одним и тем же результатом $32,76800\ kHz$. Во время измерений, очень редко, наблюдалась разница в $0,03\ Hz$. Эта разница составляет только 1ppm. Дробное количество $1\ Hz$ отображаеця только, если частота вычисляеця для измерения периода. Предел для измерения

периода изменен с 25 kHz до 33 kHz , чтобы сделать измерение периода для сигнала 32 768 Hz более точным.

Глава 6

Генератор сигналов

Режимы генерации различных сигналов доступны только для АТмега 328. Итак, Вы должны включить меню дополнительных функций опцией ЩИТХ_МЕНУ в Макефиле. Меню дополнительных функций вызываеця продолжительным (* 300 ms) нажатием на кнопку **TECT**. Функции дополнительного меню отображаюця во второй строке дисплея. Вы можете выбрать отображаемую функцию длительным нажатием кнопки **TECT**. Следующая функция дополнительного меню отображаеця автоматически через 5 секунд автоматически или после короткого нажатия кнопки **TECT**.

6.1 Генератор частоты

Генератор частоты запускаеця, если Вы выбрали «ф-Генератор» (Генератор частоты) длительным нажатием кнопки **TECT** из меню дополнительных функций. Сигнал частоты выводиця через резистор 680 Ω на тестовый контакт ТЪ. Тестовый контакт ТЪ программно подключаеця к ГНД.

Частоты создаюця при помощи 16-разрядного счетчика из тактовой частоты ЦПУ (8 MHzили 16 MHz). Задать значение генерируемой частоты можно для каждого разряда, начиная с разряда единиц 1 Hz от 0 до 9. Для самого высокого разряда 100 kHz значение изменяеця от 0 до 20. Таким образом, можно задать значение частоты до 2 MHz. Без энкодера значение цифры разряда может быть только увеличено при коротком (< 0.8 с) нажатии клавиши. С помощью поворотного энкодера Вы можете изменить значение цифры разряда в любом направлении. Более длительное нажатие клавиши позволяет выбирать старший разряд для задания цифры генерируемой частоты. Дополнительный символ в первой позиции отображает направление изменения цифры в разряде. Символ > показывает, что будет выбрано следующее, более высокое значение. Символ < означает, что будет выбрано более низкое значение (вплоть до 1 Hz). Если выбран самый высокий разряд $100 \ kHz$, то символ > заменяеця символом Р. В этом состоянии более длительное нажатие сбрасывает значение частоты к ишодному значению $1 \, Hz$. Поскольку не каждая из выбранных частот может быть корректно сгенерирована, разница заданного значения с генерируемой частотой отображаеця в строке 3 или за значением частоты. Если удерживать клавишу нажатой в течение длительного (> 2 с) времени, Вы можете вернуться в диалоговое окно функции для выбора других дополнительных функций.

6.2 Широтно-импульсный генератор

Широтно-импульсный генератор запускаеця, если Вы выбрали функцию «10-Бит ПЩМ» (16-битный ШИМ) длительным нажатием кнопки **TECT** из меню дополнительных функций. Частота через резистор $680~\Omega$ выводиця на тестовый контакт ТЪ. Тестовый контакт ТЪ программно

подключаеця к ГНД. Частота выходного сигнала всегда равна частоте ЦПУ разделенной на 1024. Для ЦПУ с тактовой частотой 8 MHz частота выходного сигнала составляет $7812, 5\ Hz$. При нажатии кнопки **TECT**, возможно изменение ширины только положительного импульса. При кратковременном нажатии кнопки **TECT**, Вы можете увеличивать ширину импульса до 99% с шагом 1%. При более длительном удержании кнопки, изменение ширины импульса проишодит с шагом 10%. Если значение ширины импульса достигает 99%, то из результата вычитаеця 100. При значении ширины импульса 0% генерируеця положительный импульс самой малой ширины.

Глава 7

Известные ошибки и проблемы

Версия 1.12к программного обеспечения

- 1. Германиевые диоды (АЋ28) не определяюця никогда. Это, вероятно, вызвано обратным током. Охлаждение диода может помочь уменьшить ток утечки.
- 2. В биполярных транзисторах защитный диод коллектор эмиттер не может быть обнаружен, если ток ИЦЁ большой. До сих пор проблема возникла только с германиевыми транзисторами с диодом не на том же кристалле.
- 3. Коэффициент усиления германиевых транзисторов может быть завышен из-за большого значения тока утечки. В этом случае напряжение база-эмиттер будет очень низким. Охлаждение транзистора может помочь получить более правильный коэффициент усиления.
- 4. Величина ёмкости в обратном направлении для мощных диодов Шоттки, таких, например, как МБР3045ПТ, не может быть измерена, если подключен только один диод. Причина слишком большой ток утечки этого диода. Иногда измерение возможно при охлаждении диода.
- 5. Иногда выводиця сообщение о неправильном обнаружении точного 2,5~V ИОН, когда порт Π Ц4 никуда не подключен (вывод 27). Вы можете избежать этого поведения, установив дополнительный подтягивающий резистор на ВЦЦ.
- 6. Диодная функция управляющего вывода симистора не может быть исследована.
- 7. Иногда проишодит сброс во время измерения ёмкости, что говорит о проблеме с Брощн Оут Левел 4,3~V для АТмега168 или АТмега328. Причина не известна. Сброс исчезает, если Брощн Оут Левел установить на 2,7~V.
- 8. При использовании СЛЕЕП МОДЕ микроконтроллера ток питания ВЦЦ изменяеця больше, чем при использовании предыдущих версий программного обеспечения. Вы должны увеличить блокировочные конденсаторы, если замечаете какие-либо проблемы. Керамические конденсаторы 100 nF должны быть помещены около выводов питания АТмега. Использование СЛЕЕП МОДЕ можно отключить опцией ИНХИБИТ_СЛЕЕП_МОДЕ в Макефиле.
- 9. Часто не измеряюця танталовые электролитические конденсаторы. Они могут быть обнаружены, как диод или могут быть не обнаружены вообще. Иногда помогает отключение-подключение.
- 10. Выводы «исток» и «сток» не могут быть определены корректно в JФЕТ транзисторах. Причина в симметричности их структуры. Вы можете заметить эту проблему, поменяв местами в тестовых контактах «сток» и «исток», а на дисплее отобразиця предыдущее расположение выводов. Я не вижу никакой возможности корректно определить выводы

этих транзисторов. Но, перестановка местами «сток» и «исток» в шемах, как правило, не вызывают каких либо проблем.

Глава 8

Специальные модули программного обеспечения

Некоторые изменения были сделаны, чтобы сохранить место во Флаш-памяти. Вывод на ЛЦД дисплей номера выводов был сделан в форме «лцд_дата('1'ьпин)». Операция добавочного сохранения для каждого вызова «лцд_тестпин(уинт8_т пин)» была добавлена к лцд_роутинес.ц.

Псевдовызов в форме «_делаы_мс(200)» выполнен, не как обращение к библиотеке и задержка осуществлена в цикле для каждого обращения. Если у Вас в программе будет много обращений к различным местам, то это будет занимать много памяти. Все эти псевдовызовы заменены вызовами моей, специально написанной, библиотеки, которая использует только 74 байта Флаш памяти (при 8 MHz), но позволяет обращаться от щаит1ус () до щаит5с () с шагом 1,2,3,4,5,10,20... Проп включают Щатч Дог Ресет для всех обращений выше 50 ms. Каждая задержка обращения обычно нуждаеця только в одной инструкции (2 Быте). Ожидание промежуточного обращения с величиной, такой как 8 ms, нуждаеця в двух обращениях (5 ms и 3 ms или два обращения по 4 ms). Я не знаю более экономичной реализации, когда используеця много обращений к задержкам в Вашей программе. Обращения не используют регистров, только СП в РАМ для возвращения из подпрограмм (самое большее 28-байтовое пространство стека в текущей версии). Полный список функций:

```
\begin{array}{l} {\rm maut1yc(),\ maut2yc(),\ maut3yc(),\ maut4yc(),\ maut5yc(),\ maut10yc(),}\\ {\rm maut20yc(),\ maut30yc(),\ maut40yc(),\ maut50yc(),\ maut100yc(),}\\ {\rm maut200yc(),\ maut300yc(),\ maut400yc(),\ maut500yc(),\ maut1mc(),}\\ {\rm maut2mc(),\ maut3mc(),\ maut4mc(),\ maut5mc(),\ maut10mc(),}\\ {\rm maut20mc(),\ maut30mc(),\ maut40mc(),\ maut50mc(),\ maut100mc(),}\\ {\rm maut200mc(),\ maut300mc(),\ maut400mc,\ maut500mc(),\ maut1c(),}\\ {\rm maut2c(),\ maut3c(),\ maut4c()\ ahg\ maut5c();} \end{array}
```

Эти 36 функций с 37 командами включены в Щатч Дог Ресет! Нет реального способа сократить эту библиотеку. Если делаеця самая малая задержка обращения, то она не точно соотвецтвует времени задержки. Только задержка обращения выше 50 ms в одном цикле удлиняеця до $100 \, ms$ из-за интегрирования в Щатч Дог Ресет.

Часто используемая последовательность обращений «щаит5мс(); РеадАДЦ...();» заменена обращением «Щ5мсРеадАДЦ(...);». То же самое сделано для последовательности «щаит20мс(); РеадАДЦ(...);» которая заменена одним обращением «Щ20мсРеадАДЦ(...);».

Функция РеадАДЦ дополнительно написана на языке ассемблера для повышения эффективности работы кода. Функционально идентичная. Ц-версия функции РеадАДЦ также доступна, как источник.

Глава 9

Список текущих дел и новые идеи

- 1. Добавлять и улучшать документацию.
- 2. Подумать о том, как можно замерить реальное внутреннее выходное сопротивление порта Б (переключение резистора порта) вместо принятия, что порты одинаковы.
- 3. Может ли разрядка конденсаторов стать быстрее, если отрицательный вывод дополнительно подключить через резистор $680~\Omega$ к ВЦЦ (\S)?
- 4. Проверить, может ли Тестер использовать представление значений с плавающей запятой. Риск перегрузки ниже. Нет желания одновременно использовать умножение и деление, чтобы получить умножение с плавающей запятой. Но я не знаю, каким объемом должна быть Флаш память, необходимая для библиотеки.
- 5. Написать Руководство пользователя для того, чтобы конфигурировать Тестер опциями Макефиле и описать методику построения.
- 6. Если ток удержания тиристора не может быть достигнут с резистором 680 Ω он безопасен для подключения катода непосредственно к ГНД и анода непосредственно к ВЦЦ на очень короткое время? Ток может достигнуть больше, чем 100 mA. Порт будет поврежден? Что с электропитанием (стабилизатор напряжения)?
- 7. Проверять порт после самопроверки!
- 8. Идея нового проекта: версия УСБ без ЛЦД-дисплея, питание от УСБ, обмен с ПЦ по УСБ.
- 9. Замена функции самплинг АДЦ, которая использует такт процессора управлением временем сдвига АЦП С 'X.
- 10. Проверка точности измерения маленьких конденсаторов методом самплингАДЦ.
- 11. Проверка точности измерения маленьких катушек методом самплингАДЦ.

Литература

- [1] хттпс://гитхуб.цом/свн2гитхуб/трансистортестер/блоб/мастер/Доку/трунк/пдфтеш/герман/ттестер.пдф
- [2] Маркус Фрејек АВР-Трансистортестер,. Ембеддед Пројецц Јоурнал, 11. Аусгабе, 2011
- [3] Атмел Цорпоратион 8-бит ABP щитх 8KBытес Ин-Сыстем Программабле Флаш ATмега $8(\mathcal{I})$, Руководство, 24863-ABP-02/11, 2011
- [4] Атмел Цорпоратион 8-бит ABP щитх 4/8/16/32KBытес Ин-Сыстем Программабле Φ лаш ATмега48 ATмега328, Руководство, 8271Д-ABP-05/11, 2011
- [5] Атмел Цорпоратион Атмел АВР126: АДЦ оф мегаАВР ин Сингле Ендед Моде,. Замечания по применению, 8444А-АВР-10/11, 2011
- [6] Атмел Цорпоратион Атмел ABP121: Енханцинг АДЦ ресолутион бы оверсамплинг,. Замечания по применению, 8003А-АВР-09/05, 2005
- [7] хттп://ен.щикибоокс.орг/щики/ЛаТеШ Документация по ЛаТеШ,. Руководство по языку разметки ЛаТеШ, 2012
- [8] хттп://ен.щикибоокс.орг/щики/Гнуплот Документация по Гнуплот,. Документация по инструменту построения Гнуплот, 2012
- [9] Щикипедиа хттп://де.щикипедиа.орг/щики/ЕчуивалентъСериесъРесистанце *Что такое ECP на немецком языке.* Стандартизация и эквивалентная шема конденсатора, 2012
- [10] хттп://щщш.шфиг.орг/усерман Документация по Шфиг,. Документация инструмента интерактивного рисования Шфиг, 2009
- [11] хттп://доцс.гимп.орг/2.6/де Документация по гимп. Документация программы Имаге Маниполатион Програм, 2010
- [12] хттп://щщш.микроцонтроллер.нет/артицлес/АВР-Трансистортестер Онлайн документация по Транзистор Тестеру, Интернет статья, 2009-2011
- [13] хттп://щщш.микроцонтроллер.нет/артицлес/АВРДУДЕ Онлайн документация к интерфейсу аврдуде программатора, Интернет статья, 2004-2011
- [14] хттп://щщш.микроцонтроллер.нет/топиц/131804 Тема Маркус, Тема на форуме, 2009
- [15] хттп://щщш.микроцонтроллер.нет/артицлес/АВРЪТрансистортестер Краткое описание новых особенностей Транзистор Тестера Карл-Хеинз К., Интернет статья, 2012
- [16] хттп://щщш.микроцонтроллер.нет/топиц/248078 *Тема Карл-Хеинз*, Тема и новые версии микропрограммного обеспечения, 2012

- [17] хттп://щщш.микроцонтроллер.нет/артицлес/ЩинАВР Информация о ЩинАВР на немецком языке, Интернет статья, 2012
- [18] хттп://соурцефорге.нет/пројецц/щинавр/филес Ишодники ЩинАВР пакетов, Ресурс для загрузки, 2012
- [19] хттп://щщш.микроцонтроллер.нет/топиц/248078?паге1552922341 Пати для ЩинABP, установка фюзов в аврдуде, Ресурс для загрузки, 2012
- [20] хттп://щщш.ориентдисплаы.цом/пдф/СТ7565.пдф Документация к графическому контроллеру СТ7565, Ресурс для загрузки, 2014
- [21] Машим Интегратед Продуцц, Инц. хттп://машиминтегратед.цом ДС3231: Ештремелы Ациурате И²Ц-Интегратед РТЦ/ТЦШО/Црыстал, Дата Шеет, 19-5170;Рев 10; 3/15, 2015
- [22] Машим Интегратед Продуцц, Инц. хттп://машиминтегратед.цом ДС3231М: 5nnм И²Ц Реал-Тиме Цлоцк, Дата Шеет, 19-5312;Рев 7; 3/15, 2015