

$$\frac{L(\omega)(dB)}{L(\omega)(dB)} = \frac{L(\omega)(dB)}{L(\omega)(dB)} = \frac{L($$

9、设 1 型单位反馈系统开环传递函数为 $G(s)=\frac{K}{s(s+1)}$, 设计串联超前校正装置,使系统具有如

下性能指标:
$$K = 16, \gamma_0 = 45^{\circ}$$
. (15分)

QCS) =
$$\frac{K}{S(S+1)}$$
 $\frac{1}{S(S+1)}$ $\frac{1}{S(S+1)}$

$$20 | gK = 20 | g | + 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |)$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g |$$

$$20 | gK = 40 | g | wc - | g | wc - | g |$$

$$20 | gK = 40 | g | wc - |$$

200801 自动控制原理期末考试试卷 A 参考答案及评分标准

(有几题答案未给出)

6、 解: 对零初始条件下的单位阶跃响应作拉氏变换,得

$$C(s) = \frac{1}{s} - \frac{1.8}{s+4} \div \frac{0.8}{s+9} = \frac{36}{s(s+4)(s+9)}$$

因系統的输入信号为单位阶跃信号,故
$$R(s) = \frac{1}{s}$$
,则系统的传递函数为
$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{36}{(s+4)(s+9)}$$
 ②

所以, 系统的频率特性为

$$G(j\omega) = \frac{36}{(j\omega+4)(j\omega+9)}$$

幅频特性为

$$A(\omega) = |G(j\omega)| = \frac{36}{\sqrt{\omega^2 + 16}\sqrt{\omega^2 + 81}}$$

相频特性

$$\varphi(\omega) = \angle G(j\omega) = -\arctan\frac{\omega}{4} - \arctan\frac{\omega}{9}$$

7、其中 $K>0,T_1>0,T_2>0,T_3>0,T>0$ 。这两个系统的乃氏图 (开环幅相曲线) 如 下图所示。试画出完整的乃氏图,并用乃氏判据判断闭环系统的稳定性。如果系统不稳定, 硫定其 s 右半平面的闭环极点数。((a) 10 分,(b)5 分,共 15 分)

角军:

$$N = P - Z$$
 $Z = P - N$

$$P = 0$$
 $N = -2$

$$P = 0$$
 $N = -2$ $Z = 0 - (-2) = 2$

所以闭环系统不稳定。

其 s 右半平面的闭环极点数为 2。

2

2)

$$N = P - Z$$

$$Z = P - N$$

$$P = 1$$
 $N = 1$ $Z = 1 - 1 = 0$

所以闭环系统稳定。

1

8、解:
$$G(s)H(s) = \frac{K}{s^2} \frac{\tau s + 1}{Ts + 1} = \frac{K}{s^2} \frac{\frac{1}{100}s + 1}{\frac{1}{1000}s + 1} = \frac{K(0.01s + 1)}{s^2(0.001s + 1)}$$

$$- \omega = 10 \text{ 时, } 20 \text{ lg } K = L(\omega) = 40 \text{ dB }, \quad K = 100$$

$$G(s)H(s) = \frac{100(0.01s + 1)}{s^2(0.001s + 1)}$$
积分环节、一阶微分环节、一阶惯性环节各 ② 比例环节

序号	分值	章	内容,
1	15	3	动态指标稳态误差√
2	15	4	根轨迹√
3	15	5	乃氏图乃氏判据√
4	15	5	伯德图求 G(s)
5	15	6	不设计,求校正前后的相角裕度
6	15	7	极限环蝠值和频率
7	10	8	二阶离散系统稳定性

1、设单位反馈系统的开环传递函数为

$$G(s) = \frac{K}{(0.2s+1)(0.4s+1)} = \frac{K}{0.08s^2 + 0.65 + 0.45}$$

求K=7时系统的自然振荡频率、阻尼比、调节时间、超调量和单位阶跃输入下的稳态误差, 并填入表格中。(K=1,3时的上述各值已列于表中供参考) (15分)

K		3	7
自然频率 ω _n (1/ε)	5	7.07	10
阻尼比 ζ	0.75	0.53	0375
调节时间 t _s (s)	1.17	1.17	1.17
超调量 σ_p	2.8%	14%	28%
稳态误差 e "	0.5 =	0.25	0.125

2、设单位负反馈系统的开环传递函数如下,试概略绘出其闭环根轨迹(要求确定分离 点坐标):

$$G(s) = \frac{K(s+1)}{s(2s+1)} = \frac{1}{\sqrt{s(2s+1)}}$$

3、系统的开环传递函数为

$$G(s)H(s) = \frac{2}{s-1}$$

绘出乃氏图, 并用乃氏稳定判据判断闭环系统的稳定性。

 $G(s)H(s) = \frac{2}{s-1}$ 4、已知单位负反馈系统的开环传递函数 G(s) 无右半平面的零点和极点,且 $G(i\omega)$ 的

对数幅频渐进特性如下图所示,试写出G(s)的表达式,并求出相角裕度、判断闭环系统的 稳定性。 (15分)

、设 I 型单位反馈系统开环传递函数为 $G(s)=\dfrac{200}{s(0.1s+1)}$,求出其截至频率 ω_c 和相角裕度 γ ;若设计串联超前校正装置为 $G_c(s)=\dfrac{0.036s+1}{0.009s+1}$,求校正后系统的截至频率 ω_{c2} 和相角裕度 γ_2 。 (15 分)

、设非线性系统如下图所示,已知非线性环节的描述函数 $N=\frac{4M}{\pi X}$,且 $K>0,T_1>0,T_2>0$,试求极限环对应的振幅和频率。 $\tag{15分}$

(提示:
$$Z[\delta(t)] = 1$$
, $Z\left[\frac{1}{s}\right] = \frac{z}{z-1}$, $Z[(1-e^{-Ts})] = 1-z^{-1}$ $Z\left[\frac{1}{s+a}\right] = \frac{z}{z-e^{-aT}}$)

克州电子科技大学学生考试卷(

B) å

考试课程	自动控	制原理	考试日期	2010年	月日	成绩	
课程号		教师号		任课教师	i姓名	彭冬亮、	赵晓东
考生姓名		学号(8位)		年级	3	专业	

1、已知单位反馈系统的开环传递函数为

$$G(s) = \frac{10}{s(0.1s+1)(0.5s+1)}$$

输入信号为r(t) = 2 + 0.5t。 试求系统的的稳态误差。

(20 3})

2、单位负反馈系统的开环传递函数为

$$G(s) = \frac{K(s+1)}{s(s+2)(s+3)}$$

试绘出其概略闭环根轨迹(提示:分离点坐标为(-2.47,0))

(15 %)

60

3、系统的开环传递函数为

$$G(s)H(s) = \frac{6}{s(s+1)(s+3)}$$

超出乃氏图, 并用乃氏稳定判据判断闭环系统的稳定性。

(20 3})

4、已知最小相位系统的开环对数幅频渐近特性如下图所示,试写出G(s)的表达式,并求出和角

苗度、判断闭环系统的稳定性。

(20 3))

5、非线性系统如下图(a)所示,其中线性环节传递函数为 $G(s) = \frac{70}{s^2 + 10s + 100}$,非线性环节的简述函数

$$N = \frac{4}{\pi X} \sqrt{1 - \left(\frac{1}{X}\right)^2} - j \frac{4}{\pi X^2}, \quad X \ge 1$$

试用描述函数法判断系统是否发生自振(要求作图)。提示:频率特性 $G(j\omega)$ 如下閨(b)所示。

(153))

30

6、己知采拌系统如下图所示,采样周期 T = ls, 试求系统单位阶跃响应前 4 次的采样值。 (15 分)

