

Model Development Phase Template

Date	15 March 2024
Team ID	740012
Project Title	Predicting IMF-Based Exchange Rates: Leveraging Economic Indicators for Accurate Regression Modeling
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.linear_model import Lasso
import xgboost as xgb
```


Random Forest Regressor

```
model4=RandomForestRegressor(n_estimators=100, random_state=42)
model4.fit(X_train,y_train)
```

```
y_pred=model4.predict(X_test)
mse=mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test,y_pred)
print("Mean Squared Error:", mse)
print("R-squared Score:", r2)
```

lean Squared Error: 43.42457074286648
lean Squared Score: 0.9796780547753188

```
kmeans = KMeans(n_clusters=3)

kmeans.fit(df)
centroids = kmeans.cluster_centers_
labels = kmeans.labels_

plt.figure(figsize=(8, 6))
plt.scatter(centroids[:, 0], centroids[:, 1], c='red', s=200, marker='x', label='Centroids')

plt.title('K-means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.grid(True)
plt.show()
```


Model Validation and Evaluation Report

Logistic Regressi	Logistic Regression Classification_Report						
on	<pre>print(classification_report(reg_pred , y_test))</pre>						
Model		precision	recall	f1-score	support		
	0.0 1.0		0.75 0.75	0.75 0.75	402 398		
	accuracy macro avg weighted avg	0.75	0.75 0.75	0.75 0.75 0.75	800 800 800		
Random forest Model	RandomForest Classification_Report from sklearn.metrics import classification_report print(classification_report(forest, y_test))						
Model							
		precision	recall	f1-score	support		
	0.0	0.91	0.91	0.91	399		
	1.0	0.91	0.91	0.91	401		
	accuracy			0.91	800		
	macro avg	0.91	0.91	0.91	800		
	weighted avg	0.91	0.91	0.91	800		

Decision Tree Model	DecisionTree Classification_Report						
	<pre>print(classification_report(dt_pred , y_test))</pre>						
	precision recall f1-score s	upport					
	0.0 0.81 0.80 0.80	404					
	1.0 0.80 0.80 0.80	396					
	accuracy 0.80	800					
	macro avg 0.80 0.80 0.80	800					
	weighted avg 0.80 0.80 0.80	800					
Gradient Boosting	XGBoost Classification_Report						
	<pre>print(classification_report(y_pred, y_test))</pre>						
	precision recall f1-score support						
	0 0.91 0.92 0.91 395 1 0.92 0.91 0.92 405						
	accuracy 0.92 800						
	macro avg 0.92 0.92 0.91 800						
	weighted avg 0.92 0.92 0.92 800						