OMIS-Statistiques

Feuille de travaux dirigés numéro 1 Régression linéaire

Exercice 1

La méthode Ridge consiste à chercher $\hat{\beta}$ qui minimise la fonction

$$\beta \mapsto \|Y - X\beta\|^2 + \lambda \|\beta\|^2.$$

Ce minimiseur est appelé l'estimateur Ridge.

- 1. Soit A une matrice carré. Montrer que pour $\lambda > 0$ suffisament petit, $\lambda Id + A$ est inversible.
- 2. Calculer l'estimateur Ridge $\hat{\beta}$.
- 3. Quelle est sa limite lorsque $\lambda \to \infty$? On suppose que X est de plein rang.
- 4. Quelle est la limite de $\hat{\beta}$ lorsque $\lambda \to 0$?
- 5. Que vaut $\hat{\beta}$ lorsque les colonnes de X sont orthonormales?
- 6. Calculer le biais et la variance de cette estimateur.

Exercice 2

On examine l'évolution d'une variable Y en fonction de deux variables X_1 et X_2 . On dispose de n observations de ces variables. On note $X = (\mathbf{1}, X_1, X_2)$ où $\mathbf{1}$ est le vecteur constant.

1. Nous obtenons le résultat suivant :

$$X^T X = \left(\begin{array}{ccc} 30 & 0 & 0 \\ ? & 10 & 7 \\ ? & ? & 15 \end{array}\right)$$

- a) Donner les valeurs manquantes.
- b) Que vaut n?
- c) Calculer le coefficient de corrélation empirique entre X_1 et X_2 .
- 2. La régression linéaire de Y sur X donne

$$Y = -2\mathbf{1} + X_1 + 2X_2 + \hat{\varepsilon}$$
, avec RSS = $\|\hat{\varepsilon}\|^2 = 12$.

- a) Déterminer la moyenne arithmétique \bar{Y} .
- b) Calculer la somme des carrés expliquée (ESS), la somme des carrés totale (TSS) et le coefficient de corrélation \mathbb{R}^2 .

Exercice 3

Soit $Y = X\beta + \varepsilon$ un modèle de régression linéaire pour la concentration en ozone (Y) en fonction de la température X_1 , du vent X_2 et de la nébulosité X_3 . On veut tester la pertinence de l'influence du vent sur la concentration en ozone. Les données permettent d'obtenir

$$\begin{split} \hat{\sigma}^2 &= 9, \\ \hat{Y} &= (4, 4, 5, 3.2, 3.4, 7.3), \\ \hat{Y}^* &= (3, 3.2, 5, 3, 3.7, 7). \end{split}$$

Peut-on rejeter l'impertinence du vent?

Exercice 4

Nous considérons le modèle de régression linéaire

$$Y = X\beta + \varepsilon,$$

où $Y \in \mathbb{R}^n$, X est une matrice de taille $n \times p$ composée de p vecteurs orthogonaux, $\beta \in \mathbb{R}^p$ et $\varepsilon \in \mathbb{R}^n$. Considérons U la matrice des q premières colonnes de X et V la matrice des p-q dernières colonnes de X. On obtient par les MCO les estimations suivantes :

$$\hat{Y}_{X} = \hat{\beta}_{1}^{X} X_{1} + \dots + \hat{\beta}_{p}^{X} X_{p}$$

$$\hat{Y}_{U} = \hat{\beta}_{1}^{U} X_{1} + \dots + \hat{\beta}_{q}^{U} X_{q}$$

$$\hat{Y}_{V} = \hat{\beta}_{q+1}^{V} X_{q+1} + \dots + \hat{\beta}_{p}^{V} X_{p}$$

On note ESS(A) la norme au carré de la projection de Y sur Im(A).

- 1. Montrer que ESS(X) = ESS(U) + ESS(V).
- 2. Pour une variable X_i , montrer que l'estimation de β_i est identique quel que soit le modèle utilisé.

Exercice 5

Soit un modèle de régression $Y = X\beta + \varepsilon$. La dernière colonne (la p^{eme}) de X est le vecteur 1.

- 1. Soient les variables $\{X_j\}_{j=1,\dots,p}$ et Y et celles centrées notées $\{X_j'\}_{j=1,\dots,p}$ et Y'. Montrer que la dernière colonne de X' regroupant les variables $\{X_p'\}$ vaut 0.
- 2. On note maintenant X' la matrice X centrée et privée de sa dernière colonne de 0 (elle est donc de dimension $n \times p 1$.

Soit le modèle suivant : $Y' = X'\beta' + \varepsilon$. En identifiant ce modèle avec le modèle de régression $Y = X\beta + \varepsilon$, trouver la valeur de β_p en fonction de $\beta_1', ..., \beta_{p-1}'$ et des moyennes empiriques de Y et de X. Ce coefficient est appelé coefficient constant (ou *intercept* en anglais).