Determination of reconstruction efficiency

Chatura Kuruppu¹

¹New Mexico State University, Las Cruces, NM 88003

September 24, 2025

Abstract

This document outlines the methodology for determining the dimuon reconstruction efficiency required for the Drell-Yan double-differential cross-section measurement. Efficiency correction factors are derived using Monte Carlo simulations and applied to experimental data. The efficiency ϵ is parameterized as a function of the kinematic variables, Feynman-x (x_F) and dimuon invariant mass (m). We detail the procedure for calculating the average efficiency $\langle \epsilon \rangle$ for each kinematic bin by applying a linear interpolation method to data events. The propagation of statistical uncertainties is rigorously derived, and the final correction factors, $1/\langle \epsilon \rangle$, are presented for different datasets and target configurations.

Contents

List of Figures

List of Tables

1 Introduction

We report DY absolute double differntial cross-section for different Mass and x_F bins. It is necessary to correct the reconstruction efficiency for different x_F and Mass bins using Monte-Carlo events. In this study we first generate efficiency curves for different Mass and x_F bins and then calculate average efficiency $<\epsilon>$ using the methodology developed by Harsha and iterating through data (RS67, RS57-70) for each 2-dimensional bin range. Then the correction factor: $1/<\epsilon>$ will be applied when calculating cross-section.

1.1 Dimuon Events Used

Following files were used to calculate kTracker efficiency for different Mass and x_F bins:

- Following Monte-Carlo files were used to generate efficiency curves for different Mass and x_F bins:
 - mc_drellyan_LH2_M027_S002_messy_occ_pTxFweight_v2.root
 - mc_drellyan_LH2_M027_S002_clean_occ_pTxFweight_v2.root
- Following data files were used to calculate average efficiency for different Mass and x_F bins:
 - $-~R008_roadset 67_0_2111v42_tmp_noPhys_noOcc.parquet$
 - roadset57_70_R008_2111v42_tmp_noPhys.parquet

The reconstruction efficiency curves were generated for different Mass and x_F bins by taking the ratio:

$$Efficiency \ (\epsilon) = \frac{Number \ of \ messy \ dimuon \ events}{Number \ of \ clean \ dimuon \ events}$$

that passes all event selection cuts. This is calculated as a function of the D2 variable, binned in Feynman-x (x_F) and dimuon mass (m).

1.2 Bin ranges

This efficiency study is conducted by using the same bin ranges defined in Shivangi's cross-section script. Following bins widths are defined to calculate efficiency corrections.

- x_F bins: [0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85]
- Mass bins: [4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6.0, 6.3, 6.6, 6.9, 7.5, 8.7]

1.3 Event Selection

Following event selection criteria applied to Monte-Carlo events mentioned in section. I am using the same event selection criteria defined by Hugo's analysis.

- \bullet Event selection applied to messy events:
 - Base cuts: chuckCutsPositive_2111v42_tmp && chuckCutsNegative_2111v42_tmp && chuckCutsDimuon_2111v42 && physicsCuts_noMassCut_2111v42_tmp && occuts 2111v42 && DYCut MC
 - xF cut
 - mass cut

- Event selection applied to clean events:
 - Base cuts: chuckCutsPositive_2111v42_tmp && chuckCutsNegative_2111v42_tmp && chuckCutsDimuon_2111v42 && physicsCuts_noMassCut_2111v42_tmp && DY-Cut_MC
 - xF cut
 - mass cut

1.4 Determination of Efficiency for a Dimuon Event

In order to determine efficiency for each dimuon event in data, I use the same methodology developed by Harsha.

Figure 1: Determination of Efficiency and it's uncertainty

The given formula for the efficiency, denoted by ϵ_{t,d_2} , is a function of ϵ_{t,d_+} , ϵ_{t,d_-} , d_+ , d_- , and d_2 :

$$\epsilon_{t,d_2} = \epsilon_{t,d_-} - \frac{\epsilon_{t,d_+} - \epsilon_{t,d_-}}{d_+ - d_-} (d_2 - d_-)$$

Our goal is to find the uncertainty of ϵ_{t,d_2} , denoted as $\delta\epsilon_{t,d_2}$, assuming we know the uncertainties $\delta\epsilon_{t,d_+}$ and $\delta\epsilon_{t,d_-}$. The terms d_2 , d_+ , and d_- are treated as constants with no associated uncertainty.

1.4.1 Error Propagation Method

For a function of multiple variables, such as $\epsilon_{t,d_2}(\epsilon_{t,d_+}, \epsilon_{t,d_-})$, the general formula to propagate uncertainty (assuming the variables are uncorrelated) is:

$$(\delta \epsilon_{t,d_2})^2 = \left(\frac{\partial \epsilon_{t,d_2}}{\partial \epsilon_{t,d_+}}\right)^2 (\delta \epsilon_{t,d_+})^2 + \left(\frac{\partial \epsilon_{t,d_2}}{\partial \epsilon_{t,d_-}}\right)^2 (\delta \epsilon_{t,d_-})^2$$

1.4.2 Step-by-Step Derivation

To find the final uncertainty, we follow three main steps.

1.4.3 Simplify the Expression for ϵ_{t,d_2}

To make the calculation of derivatives more straightforward, we first rearrange the formula for ϵ_{t,d_2} :

$$\epsilon_{t,d_2} = \epsilon_{t,d_-} - \left(\frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_+} + \left(\frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_-}$$

Combining the terms that contain ϵ_{t,d_-} , we get:

$$\epsilon_{t,d_2} = \left(1 + \frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_-} - \left(\frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_+}$$

We can find a common denominator for the term multiplying $\epsilon_{t,d}$:

$$\epsilon_{t,d_2} = \left(\frac{d_+ - d_- + d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_-} - \left(\frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_+}$$

This simplifies to:

$$\epsilon_{t,d_2} = \left(\frac{d_+ + d_2 - 2d_-}{d_+ - d_-}\right) \epsilon_{t,d_-} - \left(\frac{d_2 - d_-}{d_+ - d_-}\right) \epsilon_{t,d_+}$$

1.4.4 Calculate the Partial Derivatives

With the simplified expression, we can now find the partial derivatives of ϵ_{t,d_2} with respect to ϵ_{t,d_+} and ϵ_{t,d_-} .

Derivative with respect to ϵ_{t,d_+} :

$$\frac{\partial \epsilon_{t,d_2}}{\partial \epsilon_{t,d_+}} = -\frac{d_2 - d_-}{d_+ - d_-} = \frac{d_- - d_2}{d_+ - d_-}$$

Derivative with respect to $\epsilon_{t.d.}$:

$$\frac{\partial \epsilon_{t,d_2}}{\partial \epsilon_{t,d}} = \frac{d_+ + d_2 - 2d_-}{d_+ - d_-}$$

1.4.5 Uncertainty Formula for one di-muon event

Finally, we substitute these partial derivatives back into the error propagation formula:

$$(\delta \epsilon_{t,d_2})^2 = \left(\frac{d_- - d_2}{d_+ - d_-}\right)^2 (\delta \epsilon_{t,d_+})^2 + \left(\frac{d_+ + d_2 - 2d_-}{d_+ - d_-}\right)^2 (\delta \epsilon_{t,d_-})^2$$

Taking the square root of both sides gives the final expression for the uncertainty, $\delta \epsilon_{t,d_2}$:

$$\delta \epsilon_{t,d_2} = \sqrt{\left(\frac{d_- - d_2}{d_+ - d_-}\right)^2 (\delta \epsilon_{t,d_+})^2 + \left(\frac{d_+ + d_2 - 2d_-}{d_+ - d_-}\right)^2 (\delta \epsilon_{t,d_-})^2}$$

This can also be written in a more compact form by factoring out the denominator:

$$\delta\epsilon_{t,d_2} = \frac{1}{|d_+ - d_-|} \sqrt{(d_- - d_2)^2 (\delta\epsilon_{t,d_+})^2 + (d_+ + d_2 - 2d_-)^2 (\delta\epsilon_{t,d_-})^2}$$

1.5 Average efficiency and final uncertainty

We determine average efficiency by iterating through all the di-muon events. The final efficiency $\bar{\epsilon}$ If you have N dimuon events, each with a calculated efficiency $(\epsilon_1, \epsilon_2, \dots, \epsilon_N)$ and a corresponding error $(\delta \epsilon_1, \delta \epsilon_2, \dots, \delta \epsilon_N)$, you first calculate the **average efficiency**, $\bar{\epsilon}$:

$$\bar{\epsilon} = \frac{1}{N} \sum_{i=1}^{N} \epsilon_i$$

The error on this average efficiency, which we'll call $\delta \bar{\epsilon}$, is then given by the standard formula for propagation of error for a sum:

$$\delta \bar{\epsilon} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (\delta \epsilon_i)^2}$$

This is equivalent to writing the sum of squares explicitly:

$$\delta \bar{\epsilon} = \sqrt{\frac{(\delta \epsilon_1)^2 + (\delta \epsilon_2)^2 + \dots + (\delta \epsilon_N)^2}{N^2}}$$

2 Results

Here, we report efficiency corrections under 2 scenerios.

- Efficiency calculation only by using x_F bins (1-D Study)
- Efficiency calculation only by using both x_F and Mass bins (2-D Study)

3 Efficiency Curves by Kinematic Bin

The following pages display the D2 efficiency curves for all 187 kinematic bins. Each page corresponds to a single bin in x_F , with the 11 mass bins for that x_F range arranged as sub-plots.

Figure 2: Efficiency plots for the x_F bin $0.00 \le x_F < 0.05$.

Figure 3: Efficiency plots for the x_F bin $0.05 \le x_F < 0.10$.

Figure 4: Efficiency plots for the x_F bin $0.10 \le x_F < 0.15$.

Figure 5: Efficiency plots for the x_F bin $0.15 \le x_F < 0.20$.

Figure 6: Efficiency plots for the x_F bin $0.20 \le x_F < 0.25$.

Figure 7: Efficiency plots for the x_F bin $0.25 \le x_F < 0.30$.

Figure 8: Efficiency plots for the x_F bin $0.30 \le x_F < 0.35$.

Figure 9: Efficiency plots for the x_F bin $0.35 \le x_F < 0.40$.

Figure 10: Efficiency plots for the x_F bin $0.40 \le x_F < 0.45$.

Figure 11: Efficiency plots for the x_F bin $0.45 \le x_F < 0.50$.

Figure 12: Efficiency plots for the x_F bin $0.50 \leq x_F < 0.55.$

Figure 13: Efficiency plots for the x_F bin $0.55 \leq x_F < 0.60.$

Figure 14: Efficiency plots for the x_F bin $0.60 \le x_F < 0.65$.

Figure 15: Efficiency plots for the x_F bin $0.65 \le x_F < 0.70$.

Figure 16: Efficiency plots for the x_F bin $0.70 \le x_F < 0.75$.

Figure 17: Efficiency plots for the x_F bin $0.75 \le x_F < 0.80$.

Figure 18: Efficiency plots for the x_F bin $0.80 \le x_F < 0.85$.

4 Methodology: Calculating Average Efficiencies

With the efficiency data saved in '.npz' files, a Python script is used to calculate the average efficiency for a separate dataset of dimuon events. For each event in the dataset, its corresponding efficiency is found by linearly interpolating the efficiency curve from the appropriate (x_F, m) bin. The average efficiency for each bin is then calculated along with its associated errors.

The key quantities are defined as follows:

• Average Efficiency ($<\epsilon>$): The simple arithmetic mean of the interpolated efficiency values, ϵ_i , for all N events in a bin, as shown in Equation ??.

$$\langle \epsilon \rangle = \frac{1}{N} \sum_{i=1}^{N} \epsilon_i \tag{1}$$

• Statistical Error ($\delta_{\text{stat}} < \epsilon >$): The standard error on the mean of the efficiency distribution within the bin, which quantifies the statistical uncertainty.

$$\delta_{\text{stat}}\langle\epsilon\rangle = \sqrt{\frac{\langle\epsilon^2\rangle - \langle\epsilon\rangle^2}{N}} \tag{2}$$

• Propagated Error ($\delta_{prop} < \epsilon >$): The error on the average efficiency found by propagating the uncertainties from the original efficiency curve points, $\delta \epsilon_i$.

$$\delta_{\text{prop}}\langle\epsilon\rangle = \frac{\sqrt{\sum_{i=1}^{N} (\delta\epsilon_i)^2}}{N}$$
 (3)

- Inverse Average Efficiency (1/ $<\epsilon>$): The reciprocal of the average efficiency, often used in cross-section calculations.
- Propagated Error of the Inverse ($\delta(1/<\epsilon>)$): The uncertainty on the inverse efficiency, found using standard error propagation.

$$\delta(1/\langle \epsilon \rangle) = \frac{\delta_{\text{prop}} \langle \epsilon \rangle}{\langle \epsilon \rangle^2} \tag{4}$$

5 Results: Average Efficiency Tables

The final results of the analysis are summarized in the following tables.

- Efficiency Table made by using RS-67 LH2 only target ??
- Efficiency Table made by using RS-67 all targets ??
- Efficiency Table made by using RS-57-70 LH2 only target ??
- Efficiency Table made by using RS-57-70 all targets ??

5.1 Average Efficiency Calculations using RS67 LH2 target only

Table 1: Average Efficiency and Errors calculated for x_F and Mass bins using RS67 LH2 target only

x_F Bin Mass	Bin (GeV/ c^2) $N_{\rm event}$	s <	$\epsilon > 0$	$\delta_{ m stat}$	$\epsilon < \epsilon >$	$\delta_{ m pro}$	$_{\mathrm{op}}<\epsilon>$	1/	$<\epsilon>$	$\delta(1$	$/<\epsilon>$	٦
[0.0, 0.05) $[4.5]$	(2, 4.5)	1	0.00			000		000		_	, ,	
1 - / -	5, 4.8)	9	0.13	378	0.0	878	0.0	248	7.	258	1	.305
1 ' / '	8, 5.1)	40	0.88	307	0.0	827	0.0	209	1.	135	0	.027
1 - / -	1, 5.4)	72	0.65	521	0.0	167	0.0	216	l .	534	0	.051
/ / /	4, 5.7)	66	0.67	728	0.0	262	0.0	119	1.	486	0	.026
-	7, 6.0)	37	0.58	328	0.0	505	0.0	174	1.	716	0	.051
[0.0, 0.05) [6.0]	0, 6.3)	27	0.63	133	0.0	487	0.0	186	1.	631	0	.050
[0.0, 0.05) [6.3]	(3, 6.6)	15	0.59	970	0.0	532	0.0	313	1.	675	0	.088
[0.0, 0.05) [6.0]	(6, 6.9)	12	0.70)55	0.0	394	0.0	250	1.	417	0	.050
[0.0, 0.05) [6.9]	9, 7.5)	9	0.62	253	0.0	865	0.0	272	1.	599	0	.070
[0.0, 0.05) [7.5]	5, 8.7)	1	0.60	066	0.0	000	0.0	595	1.	649	0	.162
[0.05, 0.1) $[4.5]$	(2, 4.5)	2	0.00	000	0.0	000	0.0	000		_		_
[0.05, 0.1) [4.5]	5, 4.8)	39	0.27	746	0.0	516	0.0	222	3.	642	0	.294
[0.05, 0.1) [4.8]	8, 5.1)	81	0.50	004	0.0	360	0.0	185	1.	999	0	.074
[0.05, 0.1) [5.1]	1, 5.4	95	0.72	206	0.0	381	0.0	099	1.	388	0	.019
[0.05, 0.1) [5.4]	4, 5.7)	78	0.66	643	0.0	204	0.0	121	1.	505	0	0.027
[0.05, 0.1) $[5.7]$	7, 6.0)	53	0.73	379	0.0	231	0.0	122	1.	355	0	.022
[0.05, 0.1) [6.0]	0, 6.3)	39	0.73	318	0.0	325	0.0	117	1.	367	0	.022
[0.05, 0.1) [6.3]	(3, 6.6)	25	0.59	964	0.0	379	0.0	204	1.	677	0	0.057
[0.05, 0.1) [6.0]	6, 6.9)	5	0.56	670	0.1	215	0.0	382	1.	764	0	.119
[0.05, 0.1) [6.9]	9, 7.5)	7	0.64	187	0.0	764	0.0	268	1.	541	0	.064
[0.05, 0.1) [7.5]	5, 8.7)	6	0.59	979	0.1	095	0.0	270	1.	672	0	0.075
[0.1, 0.15) [4.5]	(2, 4.5)	31	13.21	153	3.4	691	0.0	144	0.	076	0	.000
[0.1, 0.15) [4.5]	(5, 4.8)	97	0.56	642	0.0	287	0.0	171	1.	772	0	0.054
[0.1, 0.15) [4.8]	8, 5.1)	140	0.63	170	0.0	155	0.0	142	1.	621	0	0.037
[0.1, 0.15) [5.1]	1, 5.4)	133	0.59	928	0.0	155	0.0	113	1.	687	0	.032
[0.1, 0.15) [5.4]	4, 5.7)	87	0.66		0.0	247	0.0	091	1.	502	0	.021
[0.1, 0.15) [5.7]	7, 6.0)	77	0.68	395	0.0	192	0.0	088	1.	450	0	.019
[0.1, 0.15) [6.0]	(0, 6.3)	53	0.71	156	0.0	258		100	1.	398		.020
1 5 / / 5	(3, 6.6)	28	0.78			218		113		269		.018
	(6, 6.9)	10	0.75			446		193		330		.034
[0.1, 0.15) $[6.9]$		11	0.67			405		167		471		.036
1 ' / '	5, 8.7)	7	0.70			352		140		426		.029
1	(2, 4.5)	83	1.12			084		121		887		.010
1 -	′ ′	170	0.70			215		131		421		0.027
1 - / -	′ ′	240	0.53			099		087		877		.031
1 - / 1 -	′ ′	206	0.69			132		070		432		.014
1 - / 1 -	′ ′	115	0.69			212		086	l .	444		.018
1 - / -	7, 6.0)	99	0.73			188		086	1	362		.016
1 ' / '	0, 6.3)	68	0.71			175		089		403		.017
1 - / 1 -	(3, 6.6)	36	0.75			397		105	!	331		.019
1 - / 1 -	(6, 6.9)	16	0.67			492		176		474		.038
1 - 1 -	9, 7.5)	12	0.66		0.0			149	l .	498		.033
[0.15, 0.2) $[7.5]$	5, 8.7)	3	0.65	570	0.1	554	0.0	400	1.	522	0	.093

Table 1: (Continued)

	(3)						
-	Iass Bin (GeV/c^2) N				F /		$/<\epsilon>)$
[0.2, 0.25)	[4.2, 4.5)	185	0.5419	0.0213	0.0127	1.845	0.043
[0.2, 0.25)	[4.5, 4.8)	294	0.5943	0.0152	0.0073	1.683	0.021
[0.2, 0.25)	[4.8, 5.1)	285	0.6938	0.0116	0.0057	1.441	0.012
[0.2, 0.25)	[5.1, 5.4)	227	0.6730	0.0123	0.0056	1.486	0.012
[0.2, 0.25)	[5.4, 5.7)	149	0.6935	0.0162	0.0066	1.442	0.014
[0.2, 0.25)	[5.7, 6.0)	110	0.7851	0.0137	0.0061	1.274	0.010
[0.2, 0.25)	[6.0, 6.3)	54	0.7371	0.0250	0.0086	1.357	0.016
[0.2, 0.25)	[6.3, 6.6)	46	0.7367	0.0252	0.0097	1.357	0.018
[0.2, 0.25)	[6.6, 6.9)	21	0.7909	0.0341	0.0111	1.264	0.018
[0.2, 0.25)	[6.9, 7.5)	10	0.6953	0.0456	0.0153	1.438	0.032
[0.2, 0.25)	[7.5, 8.7)	6	0.7790	0.0427	0.0117	1.284	0.019
[0.25, 0.3)	[4.2, 4.5)	385	0.6954	0.0120	0.0074	1.438	0.015
[0.25, 0.3)	[4.5, 4.8)	448	0.7160	0.0069	0.0051	1.397	0.010
[0.25, 0.3)	[4.8, 5.1)	347	0.6962	0.0131	0.0045	1.436	0.009
[0.25, 0.3)	[5.1, 5.4)	273	0.6967	0.0110	0.0051	1.435	0.011
[0.25, 0.3)	[5.4, 5.7)	199	0.7569	0.0126	0.0055	1.321	0.010
[0.25, 0.3)	[5.7, 6.0)	91	0.7372	0.0192	0.0073	1.356	0.013
[0.25, 0.3)	[6.0, 6.3)	62	0.7643	0.0153	0.0076	1.308	0.013
[0.25, 0.3)	[6.3, 6.6)	39	0.7777	0.0233	0.0081	1.286	0.013
[0.25, 0.3)	[6.6, 6.9)	27	0.6931	0.0368	0.0131	1.443	0.027
[0.25, 0.3)	[6.9, 7.5)	26	0.7356	0.0370	0.0104	1.360	0.019
[0.25, 0.3)	[7.5, 8.7)	2	0.5631	0.0363	0.0336	1.776	0.106
[0.3, 0.35)	[4.2, 4.5)	574	0.7521	0.0064	0.0050	1.330	0.009
[0.3, 0.35)	[4.5, 4.8)	530	0.7698	0.0083	0.0037	1.299	0.006
[0.3, 0.35)	[4.8, 5.1)	425	0.7158	0.0090	0.0039	1.397	0.008
[0.3, 0.35)	[5.1, 5.4)	301	0.7891	0.0085	0.0038	1.267	0.006
[0.3, 0.35)	[5.4, 5.7)	209	0.7093	0.0112	0.0046	1.410	0.009
[0.3, 0.35)	[5.7, 6.0)	100	0.7073	0.0227	0.0061	1.414	0.012
[0.3, 0.35)	[6.0, 6.3)	63	0.7262	0.0219	0.0081	1.377	0.015
[0.3, 0.35)	[6.3, 6.6)	46	0.7800	0.0265	0.0077	1.282	0.013
[0.3, 0.35)	[6.6, 6.9)	25	0.7720	0.0154	0.0113	1.295	0.019
[0.3, 0.35)	[6.9, 7.5)	19	0.7341	0.0488	0.0124	1.362	0.023
[0.3, 0.35)	[7.5, 8.7)	10	0.7321	0.0629	0.0118	1.366	0.022
[0.35, 0.4)	[4.2, 4.5)	681	0.8006	0.0077	0.0034	1.249	0.005
[0.35, 0.4)	[4.5, 4.8)	595	0.7260	0.0078	0.0034	1.377	0.006
[0.35, 0.4)	[4.8, 5.1)	460	0.7454	0.0067	0.0035	1.342	0.006
[0.35, 0.4)	[5.1, 5.4)	334	0.7731	0.0085	0.0039	1.293	0.007
[0.35, 0.4)	[5.4, 5.7)	172	0.7554	0.0132	0.0044	1.324	0.008
[0.35, 0.4)	[5.7, 6.0)	129	0.7513	0.0167	0.0053	1.331	0.009
[0.35, 0.4)	[6.0, 6.3)	73	0.7796	0.0221	0.0068	1.283	0.011
[0.35, 0.4)	[6.3, 6.6)	47	0.7828	0.0232	0.0075	1.277	0.012
[0.35, 0.4)	[6.6, 6.9)	22	0.7455	0.0288	0.0119	1.341	0.021
[0.35, 0.4)	[6.9, 7.5)	19	0.7659	0.0476	0.0091	1.306	0.016
[0.35, 0.4)	[7.5, 8.7)	8	0.6464	0.0596	0.0164	1.547	0.039
[0.4, 0.45)	[4.2, 4.5)	727	0.7649	0.0067	0.0033	1.307	0.006
[0.4, 0.45)	[4.5, 4.8)	571	0.7143	0.0110	0.0031	1.400	0.006
[0.4, 0.45)	[4.8, 5.1)	455	0.7405	0.0071	0.0030	1.350	0.006
[0.4, 0.45)	[5.1, 5.4)	288	0.7271	0.0091	0.0041	1.375	0.008

Table 1: (Continued)

		140	ie 1: (Con	omaca)			
$x_F \text{ Bin } \mid M$	Iass Bin (GeV/c^2) Λ	V _{events} <	$\epsilon > \delta_{\rm sta}$	$t < \epsilon > \delta_{\rm pro}$	$_{\rm op} < \epsilon > 1/$	$<\epsilon>\delta(1$	$/<\epsilon>)$
[0.4, 0.45)	[5.4, 5.7)	207	0.7540	0.0121	0.0042	1.326	0.007
[0.4, 0.45)	[5.7, 6.0)	117	0.7764	0.0172	0.0052	1.288	0.009
[0.4, 0.45)	[6.0, 6.3)	87	0.7993	0.0136	0.0058	1.251	0.009
[0.4, 0.45)	[6.3, 6.6)	50	0.7329	0.0239	0.0083	1.364	0.015
[0.4, 0.45)	[6.6, 6.9)	25	0.8221	0.0238	0.0087	1.216	0.013
[0.4, 0.45)	[6.9, 7.5)	22	0.7415	0.0401	0.0095	1.349	0.017
[0.4, 0.45)	[7.5, 8.7)	8	0.8233	0.0525	0.0100	1.215	0.015
[0.45, 0.5)	[4.2, 4.5)	748	0.7659	0.0067	0.0029	1.306	0.005
[0.45, 0.5)	[4.5, 4.8)	616	0.7536	0.0055	0.0026	1.327	0.005
[0.45, 0.5)	[4.8, 5.1)	417	0.7138	0.0078	0.0033	1.401	0.007
[0.45, 0.5)	[5.1, 5.4)	271	0.7484	0.0116	0.0039	1.336	0.007
[0.45, 0.5)	[5.4, 5.7)	181	0.7800	0.0108	0.0047	1.282	0.008
[0.45, 0.5)	[5.7, 6.0)	113	0.7730	0.0153	0.0053	1.294	0.009
[0.45, 0.5)	[6.0, 6.3)	64	0.7775	0.0264	0.0070	1.286	0.012
[0.45, 0.5)	[6.3, 6.6)	54	0.7185	0.0182	0.0080	1.392	0.015
[0.45, 0.5)	[6.6, 6.9)	19	0.7740	0.0347	0.0134	1.292	0.022
[0.45, 0.5)	[6.9, 7.5)	29	0.7864	0.0231	0.0063	1.272	0.010
[0.45, 0.5)	[7.5, 8.7)	8	0.8275	0.0459	0.0110	1.208	0.016
[0.5, 0.55)	[4.2, 4.5)	721	0.6792	0.0072	0.0033	1.472	0.007
[0.5, 0.55)	[4.5, 4.8)	487	0.7263	0.0070	0.0032	1.377	0.006
[0.5, 0.55)	[4.8, 5.1)	336	0.7164	0.0103	0.0035	1.396	0.007
[0.5, 0.55)	[5.1, 5.4)	245	0.7580	0.0115	0.0038	1.319	0.007
[0.5, 0.55)	[5.4, 5.7)	170	0.7682	0.0086	0.0041	1.302	0.007
[0.5, 0.55)	[5.7, 6.0)	89	0.7787	0.0151	0.0059	1.284	0.010
[0.5, 0.55)	[6.0, 6.3)	49	0.7067	0.0271	0.0088	1.415	0.018
[0.5, 0.55)	[6.3, 6.6)	42	0.8119	0.0204	0.0075	1.232	0.011
[0.5, 0.55)	[6.6, 6.9)	20	0.7857	0.0256	0.0124	1.273	0.020
[0.5, 0.55)	[6.9, 7.5)	15	0.8274	0.0461	0.0099	1.209	0.015
[0.5, 0.55)	[7.5, 8.7)	11	0.7586	0.0439	0.0102	1.318	0.018
[0.55, 0.6)	[4.2, 4.5)	565	0.7673	0.0076	0.0031	1.303	0.005
[0.55, 0.6)	[4.5, 4.8)	448	0.7441	0.0071	0.0033	1.344	0.006
[0.55, 0.6)	[4.8, 5.1)	286	0.7291	0.0110	0.0041	1.372	0.008
[0.55, 0.6)	[5.1, 5.4)	181	0.7664	0.0133	0.0044	1.305	0.008
[0.55, 0.6)	[5.4, 5.7)	111	0.7781	0.0176	0.0056	1.285	0.009
[0.55, 0.6)	[5.7, 6.0)	71	0.7315	0.0163	0.0060	1.367	0.011
[0.55, 0.6)	[6.0, 6.3)	52	0.8107	0.0221	0.0067	1.233	0.010
[0.55, 0.6)	[6.3, 6.6)	26	0.7791	0.0290	0.0098	1.284	0.016
[0.55, 0.6)	[6.6, 6.9)	18	0.8203	0.0334	0.0111	1.219	0.016
[0.55, 0.6)	[6.9, 7.5)	17	0.7324	0.0504	0.0101	1.365	0.019
[0.55, 0.6)	[7.5, 8.7)	5	0.7910	0.0674	0.0155	1.264	0.025
[0.6, 0.65)	[4.2, 4.5)	452	0.7862	0.0083	0.0032	1.272	0.005
[0.6, 0.65)	[4.5, 4.8)	289	0.7690	0.0099	0.0040	1.300	0.007
[0.6, 0.65)	[4.8, 5.1)	199	0.7582	0.0102	0.0048	1.319	0.008
[0.6, 0.65)	[5.1, 5.4)	130	0.8185	0.0148	0.0043	1.222	0.006
[0.6, 0.65)	[5.4, 5.7)	81	0.8009	0.0162	0.0060	1.249	0.009
[0.6, 0.65)	[5.7, 6.0)	59	0.7266	0.0216	0.0071	1.376	0.013
[0.6, 0.65)	[6.0, 6.3)	44	0.8146	0.0258	0.0078	1.228	0.012
[0.6, 0.65)	[6.3, 6.6)	27	0.7482	0.0381	0.0096	1.336	0.017

Table 1: (Continued)

$x_F \operatorname{Bin}$	Mass Bin (GeV/ c^2)	$N_{ m events}$	$<\epsilon>$	$\delta_{ m sta}$	$_{ m t} < \epsilon >$	$\delta_{ m pro}$	$_{\mathrm{op}}<\epsilon>$	1/	$<\epsilon>$	$\delta(1)$	$/<\epsilon>)$
[0.6, 0.65)	(/ /	1		9021		$\frac{1}{308}$	0.0	,		109	0.010
[0.6, 0.65)		1	ļ	8028		723		130		246	0.020
[0.6, 0.65)	/			8472		841		193		180	0.027
[0.65, 0.7)	/	30		7887		119		039	1	268	0.006
[0.65, 0.7)	/	22		7684		093		045		301	0.008
[0.65, 0.7)	/	13		8002		143		052	1	250	0.008
[0.65, 0.7)	/	10		7953		134		054		257	0.009
[0.65, 0.7)				7377		222		068		356	0.013
[0.65, 0.7)	1 -		ļ	8108		310		094		233	0.014
[0.65, 0.7)	/		ļ	7968		257		090	1	255	0.014
[0.65, 0.7)	/			7798		436		173		282	0.028
[0.65, 0.7)	/			8424		382	0.0			187	0.021
[0.65, 0.7)	/	I		7883		219		162		269	0.026
[0.65, 0.7)	/			0786		548		410		717	6.635
[0.7, 0.75)		19		7409	0.0	123	0.0	054	1.	350	0.010
[0.7, 0.75)		15		7718		132		053		296	0.009
[0.7, 0.75)	1 -			7930	l .	169		064		261	0.010
[0.7, 0.75)	/	5	$3 \mid 0$	7841	0.0	206	0.0	097	1	275	0.016
[0.7, 0.75)		3	$0 \mid 0$	7500	0.0	398	0.0	112	1.	333	0.020
[0.7, 0.75)		2	$0 \mid 0$	9249	0.0	696	0.0	161	1.	081	0.019
[0.7, 0.75)	[6.0, 6.3)	1	$8 \mid 0$	7275	0.0	573	0.0	256	1.	375	0.048
[0.7, 0.75)	[6.3, 6.6)	1	$2 \mid 0$	8809	0.1	134	0.0	458	1.	135	0.059
[0.7, 0.75)	[6.6, 6.9)		$7 \mid 0$	0000	0.0	000	0.0	000		_	_
[0.7, 0.75)	[6.9, 7.5)		$3 \mid 0$	0000	0.0	000	0.0	000		_	_
[0.7, 0.75)	[7.5, 8.7)		$2 \mid 0$	0000	0.0	000	0.0	000		_	_
[0.75, 0.8)	[4.2, 4.5)	13	$9 \mid 0$	7004	0.0	245	0.0	094	1.	428	0.019
[0.75, 0.8)	[4.5, 4.8)	6	$0 \mid 0$	8745	0.0	492	0.0	087	1.	144	0.011
[0.75, 0.8)	[4.8, 5.1)	4	$4 \mid 0$	0809	0.0	295	0.0	125	12.	360	1.911
[0.75, 0.8)	[5.1, 5.4)	2	$9 \mid 0$	0000	0.0	000	0.0	000		_	_
[0.75, 0.8)	[5.4, 5.7)	2	$1 \mid 0$	0000	0.0	000	0.0	000		_	_
[0.75, 0.8)	, ,			0000		000		000		_	_
[0.75, 0.8)	[6.0, 6.3)	1	$6 \mid 0$	0000	0.0	000	0.0	000		-	_
[0.75, 0.8)			$5 \mid 0$	0000	0.0	000		000		_	_
[0.75, 0.8)	[6.6, 6.9)		$3 \mid 0$	0000	0.0	000		000		_	_
[0.75, 0.8)			ļ	0000		000		000		_	_
[0.75, 0.8)				0000		000		000		_	_
[0.8, 0.85)	/			0000		000		000		_	_
[0.8, 0.85)				0000		000		000		_	_
[0.8, 0.85)				0000		000		000		_	_
[0.8, 0.85)				0000		000		000		_	_
[0.8, 0.85)				0000		000		000		_	_
[0.8, 0.85)			ļ	0000		000		000		_	_
[0.8, 0.85)				0000		000		000		_	_
[0.8, 0.85)				0000		000		000		_	_
[0.8, 0.85)	/			0000		000		000		_	_
[0.8, 0.85)	/			0000	0.0	000	0.0	000		_	_
[0.8, 0.85)	[7.5, 8.7)		0					_			

5.2 Average Efficiency Calculations using RS67 all targets only

Table 2: Average Efficiency and Errors calculated for x_F and Mass bins using RS67 all targets

$x_F $ Bin $x_F $	$\overline{\text{Mass Bin } (\text{GeV}/c^2)}$	N	$\epsilon > \delta_{\rm s}$	S	$\tilde{b}_{\text{prop}} < \epsilon > 1$	/ < c > \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$1/<\epsilon>)$
[0.0, 0.05)	[4.2, 4.5)	$\frac{N_{\rm events}}{2}$	0.0000	$\frac{\cot \left\langle \epsilon \right\rangle \left[0.0000\right]}{\left[0.00000\right]}$		/ \ e > 0(Ι/ (ε /)
[0.0, 0.05)	-	33	0.0000	0.0000		5.612	0.440
[0.0, 0.05)		133	0.1782	0.0403		1.260	0.440
[0.0, 0.05)	/	200	0.6265	0.0491		1.596	0.013
[0.0, 0.05)	/	207	0.6752	0.0150		1.481	0.032
[0.0, 0.05)	2	147	0.6548	0.0130	1	1.527	0.019
[0.0, 0.05)	/	109	0.6673	0.0207		1.498	0.013
[0.0, 0.05]	, ,	56	0.6430	0.0260			0.035
[0.0, 0.05)	/	28	0.7049	0.0198	1	1.419	0.030
[0.0, 0.05)	/	29	0.6924	0.0390		1.444	0.027
[0.0, 0.05)		4	0.7334	0.0395		1.364	0.040
[0.05, 0.1)		10	0.0000	0.0000		_	_
[0.05, 0.1)		113	0.3243	0.0329		3.084	0.140
[0.05, 0.1)	/	261	0.5304	0.0193	1	1.885	0.036
[0.05, 0.1)	, ,	321	0.6912	0.0217		1.447	0.013
[0.05, 0.1)		269	0.6654	0.0104		1.503	0.015
[0.05, 0.1)	/	215	0.7406	0.0113		1.350	0.011
[0.05, 0.1)	/	128	0.7174	0.0177		1.394	0.012
[0.05, 0.1)	[6.3, 6.6)	85	0.6176	0.0183	0.0098	1.619	0.026
[0.05, 0.1)	[6.6, 6.9)	37	0.6574	0.0347	0.0124	1.521	0.029
[0.05, 0.1)	[6.9, 7.5)	31	0.7089	0.0288	0.0095	1.411	0.019
[0.05, 0.1)	[7.5, 8.7)	14	0.6354	0.0618	0.0152	1.574	0.038
[0.1, 0.15)	[4.2, 4.5)	96	8.7853	1.6997	0.0093	0.114	0.000
[0.1, 0.15)	[4.5, 4.8)	316	0.5394	0.0168	0.0095	1.854	0.033
[0.1, 0.15)	[4.8, 5.1)	502	0.6230	0.0078		1.605	0.019
[0.1, 0.15)		486	0.6083	0.0084	0.0056	1.644	0.015
[0.1, 0.15)	[5.4, 5.7)	354	0.6480	0.0116	0.0046	1.543	0.011
[0.1, 0.15)		236	0.6728	0.0120	1	1.486	0.012
[0.1, 0.15)	-	170	0.7252	0.0152		1.379	0.011
[0.1, 0.15)	/	103	0.7499	0.0141	1	1.334	0.012
[0.1, 0.15)	/	58	0.7386	0.0168		1.354	0.014
[0.1, 0.15)	, ,	34	0.7159	0.0235		1.397	0.016
[0.1, 0.15)	/	18	0.6957	0.0249		1.437	0.020
[0.15, 0.2)	, ,	311	1.2111	0.0601	1	0.826	0.004
[0.15, 0.2)		643	0.7138	0.0109		1.401	0.013
[0.15, 0.2)	/	807	0.5390	0.0059		1.855	0.016
[0.15, 0.2)	, ,	687	0.6905	0.0071		1.448	0.008
[0.15, 0.2)	/	424	0.7186	0.0111	1	1.392	0.008
[0.15, 0.2)	/	346	0.7544	0.0092	1	1.326	0.008
[0.15, 0.2)	, ,	209	0.7254	0.0113		1.378	0.009
[0.15, 0.2)		131	0.7516	0.0180		1.331	0.010
[0.15, 0.2)	, ,	59	0.7037	0.0260		1.421	0.018
[0.15, 0.2)	/	42	0.6736	0.0217	1	1.485	0.018
[0.15, 0.2)	, ,	20	0.6716	0.0468		1.489	0.024
[0.2, 0.25)	[4.2, 4.5)	748	0.5316	0.0105	0.0064	1.881	0.023

Table 2: (Continued)

D: M	D: (C V / 2)	N7			1/	' - > ()	1/
	Iass Bin (GeV/c^2)			$\delta_{\rm stat} < \epsilon > \delta_{\rm p}$		`	$1/<\epsilon>)$
[0.2, 0.25)	[4.5, 4.8)	1069	0.5939	0.0081	0.0038	1.684	0.011
[0.2, 0.25)	[4.8, 5.1)	1057	0.6847	0.0064	0.0030	1.460	0.006
[0.2, 0.25)	[5.1, 5.4)	855	0.6653	0.0063	0.0029	1.503	0.007
[0.2, 0.25)	[5.4, 5.7)	555	0.6937	0.0084	0.0034	1.441	0.007
[0.2, 0.25)	[5.7, 6.0)	410	0.7840	0.0071	0.0033	1.276	0.005
[0.2, 0.25)	[6.0, 6.3)	220	0.7241	0.0117	0.0044	1.381	0.008
[0.2, 0.25)	[6.3, 6.6)	157	0.7457	0.0137	0.0052	1.341	0.009
[0.2, 0.25)	[6.6, 6.9)	74	0.8240	0.0170	0.0055	1.214	0.008
[0.2, 0.25)	[6.9, 7.5)	58	0.7418	0.0210	0.0059	1.348	0.011
[0.2, 0.25)	[7.5, 8.7)	19	0.7242	0.0403	0.0087	1.381	0.017
[0.25, 0.3)	[4.2, 4.5)	1455	0.7032	0.0062	0.0038	1.422	0.008
[0.25, 0.3)	[4.5, 4.8)	1594	0.7156	0.0037	0.0027	1.397	0.005
[0.25, 0.3)	[4.8, 5.1)	1239	0.7012	0.0070	0.0024	1.426	0.005
[0.25, 0.3)	[5.1, 5.4)	989	0.7060	0.0054	0.0026	1.416	0.005
[0.25, 0.3)	[5.4, 5.7)	692	0.7712	0.0068	0.0028	1.297	0.005
[0.25, 0.3)	[5.7, 6.0)	361	0.7322	0.0088	0.0035	1.366	0.007
[0.25, 0.3)	[6.0, 6.3)	252	0.7556	0.0073	0.0038	1.323	0.007
[0.25, 0.3)	[6.3, 6.6)	151	0.7462	0.0149	0.0044	1.340	0.008
[0.25, 0.3)	[6.6, 6.9)	70	0.7253	0.0213	0.0089	1.379	0.017
[0.25, 0.3)	[6.9, 7.5)	91	0.7585	0.0174	0.0048	1.318	0.008
[0.25, 0.3)	[7.5, 8.7)	20	0.6224	0.0411	0.0098	1.607	0.025
[0.3, 0.35)	[4.2, 4.5)	2031	0.7482	0.0034	0.0027	1.337	0.005
[0.3, 0.35)	[4.5, 4.8)	1923	0.7547	0.0045	0.0020	1.325	0.004
[0.3, 0.35)	[4.8, 5.1)	1539	0.7174	0.0048	0.0020	1.394	0.004
[0.3, 0.35)	[5.1, 5.4)	1090	0.7827	0.0046	0.0020	1.278	0.003
[0.3, 0.35)	[5.4, 5.7)	714	0.7043	0.0060	0.0025	1.420	0.005
[0.3, 0.35)	[5.7, 6.0)	414	0.7174	0.0106	0.0031	1.394	0.006
[0.3, 0.35)	[6.0, 6.3)	258	0.7343	0.0106	0.0040	1.362	0.007
[0.3, 0.35)	[6.3, 6.6)	157	0.7575	0.0148	0.0046	1.320	0.008
[0.3, 0.35)	[6.6, 6.9)	99	0.7301	0.0133	0.0065	1.370	0.012
[0.3, 0.35)	[6.9, 7.5)	70	0.7077	0.0212	0.0061	1.413	0.012
[0.3, 0.35)	[7.5, 8.7)	27	0.7499	0.0345	0.0069	1.334	0.012
[0.35, 0.4)	[4.2, 4.5)	2398	0.7980	0.0042	0.0019	1.253	0.003
[0.35, 0.4)	[4.5, 4.8)	2088	0.7220	0.0043	0.0018	1.385	0.003
[0.35, 0.4)	[4.8, 5.1)	1607	0.7414	0.0039	0.0019	1.349	0.003
[0.35, 0.4)	[5.1, 5.4)	1157	0.7666	0.0044	0.0021	1.304	0.004
[0.35, 0.4)	[5.4, 5.7)	683	0.7445	0.0069	0.0023	1.343	0.004
[0.35, 0.4)	[5.7, 6.0)	448	0.7298	0.0094	0.0030	1.370	0.006
[0.35, 0.4)	[6.0, 6.3)	269	0.7824	0.0100	0.0035	1.278	0.006
[0.35, 0.4)	[6.3, 6.6)	158	0.7640	0.0141	0.0043	1.309	0.007
[0.35, 0.4)	[6.6, 6.9)	99	0.7462	0.0140	0.0061	1.340	0.011
[0.35, 0.4)	[6.9, 7.5)	85	0.7386	0.0213	0.0045	1.354	0.008
[0.35, 0.4)	[7.5, 8.7)	27	0.7163	0.0294	0.0075	1.396	0.015
[0.4, 0.45)	[4.2, 4.5)	2735	0.7463	0.0039	0.0018	1.340	0.003
[0.4, 0.45)	[4.5, 4.8)	2092	0.6973	0.0058	0.0016	1.434	0.003
[0.4, 0.45)	[4.8, 5.1)	1634	0.7308	0.0039	0.0017	1.368	0.003
[0.4, 0.45)	[5.1, 5.4)	1035	0.7210	0.0047	0.0022	1.387	0.004
[0.4, 0.45)	[5.4, 5.7)	700	0.7580	0.0062	0.0022	1.319	0.004

Table 2: (Continued)

$x_F \operatorname{Bin} \mid \operatorname{M}$	Iass Bin (GeV/ c^2) Λ		$\epsilon > \delta_{ m st}$	$t_{\rm tat} < \epsilon > \delta_{\rm p}$	$_{\mathrm{rop}} < \epsilon > 1/$	\ \	$1/<\epsilon>)$
[0.4, 0.45)	[5.7, 6.0)	445	0.7799	0.0095	0.0027	1.282	0.004
[0.4, 0.45)	[6.0, 6.3)	281	0.7872	0.0093	0.0036	1.270	0.006
[0.4, 0.45)	[6.3, 6.6)	176	0.7500	0.0120	0.0044	1.333	0.008
[0.4, 0.45)	[6.6, 6.9)	98	0.7921	0.0118	0.0052	1.262	0.008
[0.4, 0.45)	[6.9, 7.5)	91	0.7787	0.0186	0.0042	1.284	0.007
[0.4, 0.45)	[7.5, 8.7)	24	0.8029	0.0299	0.0060	1.245	0.009
[0.45, 0.5)	[4.2, 4.5)	2747	0.7502	0.0038	0.0016	1.333	0.003
[0.45, 0.5)	[4.5, 4.8)	2107	0.7542	0.0030	0.0014	1.326	0.003
[0.45, 0.5)	[4.8, 5.1)	1472	0.7112	0.0043	0.0018	1.406	0.004
[0.45, 0.5)	[5.1, 5.4)	1022	0.7414	0.0060	0.0021	1.349	0.004
[0.45, 0.5)	[5.4, 5.7)	633	0.7828	0.0057	0.0024	1.277	0.004
[0.45, 0.5)	[5.7, 6.0)	432	0.7763	0.0077	0.0027	1.288	0.004
[0.45, 0.5)	[6.0, 6.3)	245	0.7938	0.0128	0.0033	1.260	0.005
[0.45, 0.5)	[6.3, 6.6)	162	0.7264	0.0103	0.0046	1.377	0.009
[0.45, 0.5)	[6.6, 6.9)	75	0.7881	0.0179	0.0066	1.269	0.011
[0.45, 0.5)	[6.9, 7.5)	87	0.7520	0.0170	0.0041	1.330	0.007
[0.45, 0.5)	[7.5, 8.7)	25	0.8017	0.0287	0.0068	1.247	0.011
[0.5, 0.55)	[4.2, 4.5)	2527	0.6804	0.0038	0.0018	1.470	0.004
[0.5, 0.55)	[4.5, 4.8)	1845	0.7307	0.0035	0.0017	1.369	0.003
[0.5, 0.55)	[4.8, 5.1)	1272	0.7080	0.0054	0.0018	1.412	0.004
[0.5, 0.55)	[5.1, 5.4)	818	0.7723	0.0062	0.0020	1.295	0.003
[0.5, 0.55)	[5.4, 5.7)	565	0.7536	0.0061	0.0024	1.327	0.004
[0.5, 0.55)	[5.7, 6.0)	333	0.7831	0.0082	0.0030	1.277	0.005
[0.5, 0.55)	[6.0, 6.3)	199	0.7361	0.0129	0.0039	1.359	0.007
[0.5, 0.55)	[6.3, 6.6)	126	0.8077	0.0115	0.0045	1.238	0.007
[0.5, 0.55)	[6.6, 6.9)	91	0.8206	0.0124	0.0048	1.219	0.007
[0.5, 0.55)	[6.9, 7.5)	58	0.7660	0.0242	0.0057	1.306	0.010
[0.5, 0.55)	[7.5, 8.7)	25	0.6935	0.0319	0.0084	1.442	0.017
[0.55, 0.6)	[4.2, 4.5)	2123	0.7524	0.0040	0.0017	1.329	0.003
[0.55, 0.6)	[4.5, 4.8)	1505	0.7323	0.0042	0.0019	1.366	0.003
[0.55, 0.6)	[4.8, 5.1)	1037	0.7398	0.0054	0.0021	1.352	0.004
[0.55, 0.6)	[5.1, 5.4)	657	0.7472	0.0070	0.0025	1.338	0.004
[0.55, 0.6)	[5.4, 5.7)	450	0.7780	0.0091	0.0027	1.285	0.005
[0.55, 0.6)	[5.7, 6.0)	250	0.7278	0.0088	0.0034	1.374	0.006
[0.55, 0.6)	[6.0, 6.3)	179	0.7871	0.0133	0.0041	1.270	0.007
[0.55, 0.6)	[6.3, 6.6)	105	0.7722	0.0156	0.0047	1.295	0.008
[0.55, 0.6)	[6.6, 6.9)	69	0.7750	0.0217	0.0068	1.290	0.011
[0.55, 0.6)	[6.9, 7.5)	56	0.7159	0.0244	0.0054	1.397	0.011
[0.55, 0.6)	[7.5, 8.7)	14	0.7765	0.0356	0.0101	1.288	0.017
[0.6, 0.65)	[4.2, 4.5)	1670	0.7646	0.0045	0.0018	1.308	0.003
[0.6, 0.65)	[4.5, 4.8)	1147	0.7620	0.0049	0.0021	1.312	0.004
[0.6, 0.65)	[4.8, 5.1)	758	0.7583	0.0052	0.0024	1.319	0.004
[0.6, 0.65)	[5.1, 5.4)	512	0.8108	0.0071	0.0023	1.233	0.003
[0.6, 0.65)	[5.4, 5.7)	301	0.7847	0.0094	0.0035	1.274	0.006
[0.6, 0.65)	[5.7, 6.0)	206	0.7561	0.0117	0.0036	1.323	0.006
[0.6, 0.65)	[6.0, 6.3)	149	0.7856	0.0163	0.0047	1.273	0.008
[0.6, 0.65)	[6.3, 6.6)	90	0.7328	0.0215	0.0056	1.365	0.010
[0.6, 0.65)	[6.6, 6.9)	52	0.8311	0.0240	0.0060	1.203	0.009
[, 0.00)	L -//			1	2.000		

Table 2: (Continued)

$x_F Bin M$	Iass Bin (GeV/c^2) N	$V_{\rm events}$ <	$\epsilon > \delta_{ m s}$	$t_{\rm tat} < \epsilon > \delta_{\rm p}$	$_{\rm orop} < \epsilon > 1/$	$<\epsilon>\delta$	$1/<\epsilon>)$
[0.6, 0.65)	[6.9, 7.5)	39	0.7622	0.0329	0.0080	1.312	0.014
[0.6, 0.65)	[7.5, 8.7)	13	0.7647	0.0427	0.0134	1.308	0.023
[0.65, 0.7)	[4.2, 4.5)	1122	0.7849	0.0061	0.0021	1.274	0.003
[0.65, 0.7)	[4.5, 4.8)	772	0.7602	0.0052	0.0024	1.315	0.004
[0.65, 0.7)	[4.8, 5.1)	514	0.7962	0.0070	0.0027	1.256	0.004
[0.65, 0.7)	[5.1, 5.4)	331	0.7859	0.0076	0.0031	1.272	0.005
[0.65, 0.7)	[5.4, 5.7)	219	0.7195	0.0119	0.0038	1.390	0.007
[0.65, 0.7)	[5.7, 6.0)	134	0.8178	0.0151	0.0048	1.223	0.007
[0.65, 0.7)	[6.0, 6.3)	93	0.7759	0.0153	0.0058	1.289	0.010
[0.65, 0.7)	[6.3, 6.6)	42	0.7969	0.0135	0.0075	1.255	0.012
[0.65, 0.7)	[6.6, 6.9)	29	0.8335	0.0240	0.0098	1.200	0.014
[0.65, 0.7)	[6.9, 7.5)	30	0.7975	0.0163	0.0111	1.254	0.017
[0.65, 0.7)	[7.5, 8.7)	14	0.3255	0.1116	0.0168	3.072	0.159
[0.7, 0.75)	[4.2, 4.5)	705	0.7281	0.0069	0.0029	1.374	0.006
[0.7, 0.75)	[4.5, 4.8)	494	0.7783	0.0073	0.0030	1.285	0.005
[0.7, 0.75)	[4.8, 5.1)	324	0.7758	0.0098	0.0038	1.289	0.006
[0.7, 0.75)	[5.1, 5.4)	211	0.7767	0.0109	0.0048	1.288	0.008
[0.7, 0.75)	[5.4, 5.7)	137	0.7577	0.0170	0.0055	1.320	0.010
[0.7, 0.75)	[5.7, 6.0)	86	0.8505	0.0260	0.0075	1.176	0.010
[0.7, 0.75)	[6.0, 6.3)	47	0.7228	0.0385	0.0157	1.383	0.030
[0.7, 0.75)	[6.3, 6.6)	42	0.7012	0.0549	0.0260	1.426	0.053
[0.7, 0.75)	[6.6, 6.9)	32	0.0000	0.0000	0.0000	_	_
[0.7, 0.75)	[6.9, 7.5)	13	0.0000	0.0000	0.0000	_	_
[0.7, 0.75)	[7.5, 8.7)	7	0.0000	0.0000	0.0000	_	-
[0.75, 0.8)	[4.2, 4.5)	437	0.7087	0.0148	0.0053	1.411	0.011
[0.75, 0.8)	[4.5, 4.8)	256	0.8243	0.0251	0.0041	1.213	0.006
[0.75, 0.8)	[4.8, 5.1)	168	0.1443	0.0212	0.0091	6.931	0.439
[0.75, 0.8)	[5.1, 5.4)	107	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)	[5.4, 5.7)	77	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)	[5.7, 6.0)	55	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)	[6.0, 6.3)	37	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)		21	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)	[6.6, 6.9)	13 11	0.0000	0.0000	0.0000 0.0000		_
[0.75, 0.8)	[6.9, 7.5)	8	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)	[7.5, 8.7)					_	_
$ \begin{array}{ c c } \hline [0.8, 0.85) \\ [0.8, 0.85) \end{array} $	[4.2, 4.5)	181 156	0.0000	0.0000	0.0000 0.0000		_
[0.8, 0.85]	[4.5, 4.8)	80	0.0000	0.0000	0.0000	_	_
[0.8, 0.85]	[4.8, 5.1) [5.1, 5.4)	63	0.0000	0.0000	0.0000	_	_
		41	0.0000	0.0000	0.0000	_	_
$ \begin{array}{ c c } \hline [0.8, 0.85) \\ [0.8, 0.85) \end{array} $	[5.4, 5.7) [5.7, 6.0)	23	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[6.0, 6.3)	7	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[6.3, 6.6)	12	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[6.6, 6.9)	5	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[6.9, 7.5]	5	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[0.9, 7.3) [7.5, 8.7)	$\frac{3}{2}$	0.0000	0.0000	0.0000	_	_
[0.0, 0.00)	[1.0, 0.1]		0.0000	0.0000	0.0000	_	

5.3 Average Efficiency Calculations using RS57-70 LH2 target only

Table 3: Average Efficiency and Errors calculated for x_F and Mass bins using RS57-70 LH2 target only

Din M	Jaga Din (CaV/a2) N	T /	2	2 - > \$	() 1/	<u> </u>	/ / >)
	$\frac{\text{[ass Bin (GeV/c^2)} \mid N)}{(A \mid 2, A \mid 5)}$				1 '	$<\epsilon> \mid \delta(1)$	$/<\epsilon>)$
[0.0, 0.05)	[4.2, 4.5)	1	0.0000	0.0000	0.0000	6.050	0.700
[0.0, 0.05)	[4.5, 4.8)	15	0.1600	0.0695	0.0202	6.250	0.790
[0.0, 0.05)	[4.8, 5.1)	63	0.7540	0.0681	0.0161	1.326	0.028
[0.0, 0.05)	[5.1, 5.4)	98	0.6199	0.0186	0.0188	1.613	0.049
[0.0, 0.05)	[5.4, 5.7)	105	0.6071	0.0254	0.0110	1.647	0.030
[0.0, 0.05)	[5.7, 6.0)	65	0.5932	0.0377	0.0132	1.686	0.037
[0.0, 0.05)	[6.0, 6.3)	48	0.5844	0.0351	0.0160	1.711	0.047
[0.0, 0.05)	[6.3, 6.6)	29	0.6437	0.0441	0.0207	1.553	0.050
[0.0, 0.05)	[6.6, 6.9)	18	0.6598	0.0489	0.0195	1.516	0.045
[0.0, 0.05)	[6.9, 7.5)	18	0.5822	0.0528	0.0203	1.718	0.060
[0.0, 0.05)	[7.5, 8.7)	3	0.4789	0.0527	0.0432	2.088	0.188
[0.05, 0.1)	[4.2, 4.5)	3	0.0000	0.0000	0.0000		_
[0.05, 0.1)	[4.5, 4.8)	64	0.2532	0.0422	0.0180	3.949	0.281
[0.05, 0.1)	[4.8, 5.1)	132	0.4897	0.0270	0.0143	2.042	0.060
[0.05, 0.1)	[5.1, 5.4)	156	0.7031	0.0280	0.0082	1.422	0.017
[0.05, 0.1)	[5.4, 5.7)	136	0.6435	0.0167	0.0100	1.554	0.024
[0.05, 0.1)	[5.7, 6.0)	96	0.7362	0.0168	0.0095	1.358	0.018
[0.05, 0.1)	[6.0, 6.3)	71	0.7301	0.0251	0.0087	1.370	0.016
[0.05, 0.1)	[6.3, 6.6)	38	0.5782	0.0334	0.0158	1.729	0.047
[0.05, 0.1)	[6.6, 6.9)	12	0.6250	0.0674	0.0230	1.600	0.059
[0.05, 0.1)	[6.9, 7.5)	11	0.6378	0.0606	0.0203	1.568	0.050
[0.05, 0.1)	[7.5, 8.7)	11	0.5861	0.0886	0.0183	1.706	0.053
[0.1, 0.15)	[4.2, 4.5)	50	11.9106	2.6768	0.0121	0.084	0.000
[0.1, 0.15)	[4.5, 4.8)	154	0.5236	0.0250	0.0134	1.910	0.049
[0.1, 0.15)	[4.8, 5.1)	231	0.5916	0.0139	0.0113	1.690	0.032
[0.1, 0.15)	[5.1, 5.4)	233	0.5939	0.0130	0.0084	1.684	0.024
[0.1, 0.15)	[5.4, 5.7)	159	0.6249	0.0201	0.0071	1.600	0.018
[0.1, 0.15)	[5.7, 6.0)	127	0.6793	0.0172	0.0074	1.472	0.016
[0.1, 0.15)	[6.0, 6.3)	93	0.7370	0.0213	0.0074	1.357	0.014
[0.1, 0.15)	[6.3, 6.6)	43	0.7542	0.0266	0.0104	1.326	0.018
[0.1, 0.15)	[6.6, 6.9)	29	0.7193	0.0324	0.0112	1.390	0.022
[0.1, 0.15)	[6.9, 7.5)	20	0.6820	0.0374	0.0124	1.466	0.027
[0.1, 0.15)	[7.5, 8.7)	9	0.6188	0.0594	0.0177	1.616	0.046
[0.15, 0.2)	[4.2, 4.5)	137	1.0519	0.0879	0.0094	0.951	0.008
[0.15, 0.2)	[4.5, 4.8)	293	0.6914	0.0180	0.0097	1.446	0.020
[0.15, 0.2)	[4.8, 5.1)	400	0.5172	0.0088	0.0069	1.934	0.026
[0.15, 0.2)	[5.1, 5.4)	338	0.7004	0.0100	0.0054	1.428	0.011
[0.15, 0.2)	[5.4, 5.7)	205	0.7100	0.0166	0.0063	1.408	0.013
[0.15, 0.2)	[5.7, 6.0)	158	0.7478	0.0137	0.0065	1.337	0.012
[0.15, 0.2)	[6.0, 6.3)	105	0.7177	0.0145	0.0069	1.393	0.013
[0.15, 0.2)	[6.3, 6.6)	61	0.7333	0.0315	0.0090	1.364	0.017
[0.15, 0.2)	[6.6, 6.9)	26	0.7088	0.0372	0.0135	1.411	0.027
[0.15, 0.2)	[6.9, 7.5)	36	0.7084	0.0212	0.0081	1.412	0.016
[0.15, 0.2)	[7.5, 8.7)	4	0.7244	0.1303	0.0303	1.380	0.058
	[,,		J 2 1 1	0.1000		tinued on n	

Table 3: (Continued)

$ \begin{bmatrix} 0.2, 0.25 \\ [2.2, 0.25) \\ [4.5, 4.8) \\ [4.5, 4.8) \\ [0.2, 0.25] \\ [4.8, 5.1) \\ [0.2, 0.25] \\ [5.1, 5.4) \\ [0.2, 0.25] \\ [5.1, 5.4) \\ [0.2, 0.25] \\ [5.1, 5.4) \\ [0.2, 0.25] \\ [5.1, 5.4) \\ [0.2, 0.25] \\ [5.1, 5.4) \\ [0.2, 0.25] \\ [5.1, 5.4) \\ [0.2, 0.25] \\ [5.1, 5.4) \\ [0.2, 0.25] \\ [5.1, 5.4) \\ [0.2, 0.25] \\ [5.1, 5.4) \\ [0.2, 0.25] \\ [5.1, 5.4] \\ [0.2, 0.25] \\ [5.1, 5.6] \\ [0.2, 0.25] \\ [5.1, 5.6] \\ [0.2, 0.25] \\ [5.1, 5.6] \\ [0.2, 0.25] \\ [5.1, 5.6] \\ [0.2, 0.25] \\ [0.2, 0.25] \\ [0.3, 6.6] \\ [0.3, 6.6] \\ [0.3, 0.25] \\ [0.2, 0.25] \\ [0.4, 0.25] \\ [0.5, 0.3] \\ [0.2, 0.25] \\ [0.5, 0.3] \\ [0.5, 0.3] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.25] \\ [0.9, 7.5] \\ [0.2, 0.35] \\ [0.2, 0.3] \\ [0$	D' I	D: (G.M./2)	A.7	c	c			
$ \begin{bmatrix} 0.2, 0.25 & [4.5, 4.8) & 465 & 0.5805 & 0.0124 & 0.0059 & 1.723 & 0.018 \\ 0.2, 0.25 & [5.1, 5.4] & 481 & 0.6812 & 0.0097 & 0.0045 & 1.468 & 0.010 \\ 0.2, 0.25 & [5.1, 5.4] & 402 & 0.6719 & 0.0097 & 0.0042 & 1.488 & 0.009 \\ 0.2, 0.25 & [5.4, 5.7) & 259 & 0.6846 & 0.0132 & 0.0052 & 1.461 & 0.011 \\ 0.2, 0.25 & [6.0, 6.3] & 100 & 0.7765 & 0.0141 & 0.0051 & 1.289 & 0.009 \\ 0.2, 0.25 & [6.0, 6.3] & 100 & 0.7263 & 0.0190 & 0.0064 & 1.377 & 0.012 \\ 0.2, 0.25 & [6.3, 6.6) & 78 & 0.7499 & 0.0214 & 0.0071 & 1.334 & 0.013 \\ 0.2, 0.25 & [6.9, 7.5) & 25 & 0.7370 & 0.0267 & 0.0092 & 1.357 & 0.017 \\ 0.2, 0.25 & [6.9, 7.5) & 25 & 0.7370 & 0.0267 & 0.0092 & 1.357 & 0.017 \\ 0.2, 0.25 & [6.9, 7.5) & 25 & 0.7370 & 0.0267 & 0.0092 & 1.357 & 0.017 \\ 0.2, 0.25 & [7.5, 8.7] & 10 & 0.7015 & 0.0401 & 0.0146 & 1.425 & 0.030 \\ 0.25, 0.3) & [4.2, 4.5) & 608 & 0.6842 & 0.0102 & 0.0059 & 1.462 & 0.013 \\ 0.25, 0.3) & [4.5, 4.8) & 746 & 0.7141 & 0.0057 & 0.0040 & 1.400 & 0.008 \\ 0.25, 0.3) & [4.5, 4.8) & 746 & 0.7141 & 0.0057 & 0.0040 & 1.400 & 0.008 \\ 0.25, 0.3) & [5.1, 5.4) & 454 & 0.6764 & 0.0095 & 0.0042 & 1.478 & 0.009 \\ 0.25, 0.3) & [5.7, 5.0) & 175 & 0.7214 & 0.0146 & 0.0054 & 1.332 & 0.008 \\ 0.25, 0.3) & [5.7, 5.0) & 175 & 0.7214 & 0.0146 & 0.0054 & 1.332 & 0.008 \\ 0.25, 0.3) & [6.6, 6.9) & 43 & 0.6770 & 0.0316 & 0.0117 & 1.477 & 0.025 & 0.0079 & 1.375 & 0.015 \\ 0.25, 0.3) & [6.6, 6.9) & 43 & 0.6770 & 0.0316 & 0.0117 & 1.477 & 0.025 & 0.0059 & 0.0042 & 0.0059$		Mass Bin (GeV/c^2)						
	' '			1				
	- /	, ,	1	I		1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 - /	, ,	1	I		1		
		,	1			1		
	1 - /	/	1					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 - /		I					
	1 - /	/						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 - /	,				1		
	' '	/	1	I				
$ \begin{bmatrix} [0.25,0.3] & [4.2,4.5] & 608 & 0.6842 & 0.0102 & 0.0059 & 1.462 & 0.013 \\ [0.25,0.3] & [4.5,4.8] & 746 & 0.7141 & 0.0057 & 0.0040 & 1.400 & 0.008 \\ [0.25,0.3] & [4.8,5.1] & 607 & 0.6847 & 0.0104 & 0.0036 & 1.461 & 0.008 \\ [0.25,0.3] & [5.1,5.4] & 454 & 0.6764 & 0.0095 & 0.0042 & 1.478 & 0.009 \\ [0.25,0.3] & [5.4,5.7] & 322 & 0.7508 & 0.0112 & 0.0045 & 1.332 & 0.008 \\ [0.25,0.3] & [5.7,6.0] & 175 & 0.7214 & 0.0146 & 0.0054 & 1.386 & 0.010 \\ [0.25,0.3] & [6.0,6.3] & 117 & 0.7537 & 0.0134 & 0.0063 & 1.327 & 0.011 \\ [0.25,0.3] & [6.3,6.6] & 62 & 0.7271 & 0.0252 & 0.0079 & 1.375 & 0.015 \\ [0.25,0.3] & [6.9,7.5] & 35 & 0.7536 & 0.0306 & 0.0083 & 1.327 & 0.015 \\ [0.25,0.3] & [6.9,7.5] & 35 & 0.7536 & 0.0306 & 0.0083 & 1.327 & 0.015 \\ [0.25,0.3] & [6.9,7.5] & 35 & 0.7536 & 0.0306 & 0.0083 & 1.327 & 0.015 \\ [0.25,0.3] & [6.5,4.8] & 851 & 0.7512 & 0.0072 & 0.0031 & 1.331 & 0.005 \\ [0.3,0.35] & [4.5,4.8] & 851 & 0.7512 & 0.0072 & 0.0031 & 1.331 & 0.005 \\ [0.3,0.35] & [4.8,5.1] & 742 & 0.6996 & 0.0077 & 0.0030 & 1.429 & 0.006 \\ [0.3,0.35] & [5.4,5.7] & 351 & 0.7161 & 0.0091 & 0.0036 & 1.396 & 0.007 \\ [0.3,0.35] & [5.4,5.7] & 351 & 0.7161 & 0.0091 & 0.0036 & 1.396 & 0.007 \\ [0.3,0.35] & [6.6,6.9] & 51 & 0.7555 & 0.0165 & 0.0088 & 1.317 & 0.015 \\ [0.3,0.35] & [6.6,6.9] & 51 & 0.7555 & 0.0165 & 0.0088 & 1.317 & 0.015 \\ [0.3,0.35] & [6.5,6.9] & 51 & 0.7555 & 0.0165 & 0.0081 & 1.324 & 0.014 \\ [0.3,0.35] & [6.5,8.7] & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35,0.4] & [4.5,4.8] & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,0.4] & [4.5,4.8] & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,0.4] & [4.5,4.8] & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,0.4] & [4.5,4.8] & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,0.4] & [5.4,5.7] & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ [0.35,0.4] & [5.4,5.7] & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ [0.35,0.4] & [5.4,5.7] & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ [0.35,0.4] & [5.4,5.7] & 303 & 0.7238 & 0.0115 $	' '	/	1	I				
$ \begin{bmatrix} [0.25,0.3] & [4.5,4.8] & 746 & 0.7141 & 0.0057 & 0.0040 & 1.400 & 0.008 \\ [0.25,0.3] & [4.8,5.1] & 607 & 0.6847 & 0.0104 & 0.0036 & 1.461 & 0.008 \\ [0.25,0.3] & [5.1,5.4] & 454 & 0.6764 & 0.0095 & 0.0042 & 1.478 & 0.009 \\ [0.25,0.3] & [5.4,5.7] & 322 & 0.7508 & 0.0112 & 0.0045 & 1.332 & 0.008 \\ [0.25,0.3] & [5.7,6.0] & 175 & 0.7214 & 0.0146 & 0.0054 & 1.386 & 0.010 \\ [0.25,0.3] & [6.0,6.3] & 117 & 0.7537 & 0.0134 & 0.0063 & 1.327 & 0.011 \\ [0.25,0.3] & [6.3,6.6] & 62 & 0.7271 & 0.0252 & 0.0079 & 1.375 & 0.015 \\ [0.25,0.3] & [6.9,7.5] & 35 & 0.7536 & 0.0306 & 0.0083 & 1.327 & 0.015 \\ [0.25,0.3] & [6.9,7.5] & 35 & 0.7536 & 0.0306 & 0.0083 & 1.327 & 0.015 \\ [0.25,0.3] & [6.4,4.5] & 929 & 0.7522 & 0.0053 & 0.0039 & 1.329 & 0.007 \\ [0.3,0.35) & [4.2,4.5] & 929 & 0.7522 & 0.0053 & 0.0039 & 1.329 & 0.007 \\ [0.3,0.35) & [4.8,5.1] & 742 & 0.6996 & 0.0077 & 0.0030 & 1.429 & 0.006 \\ [0.3,0.35) & [5.1,5.4] & 500 & 0.7915 & 0.0078 & 0.0031 & 1.263 & 0.005 \\ [0.3,0.35) & [5.7,6.0] & 195 & 0.7144 & 0.0173 & 0.0044 & 1.402 & 0.009 \\ [0.3,0.35) & [6.0,6.3] & 121 & 0.7320 & 0.0155 & 0.0066 & 1.366 & 0.010 \\ [0.3,0.35) & [6.3,6.6] & 83 & 0.7714 & 0.0200 & 0.0062 & 1.296 & 0.010 \\ [0.3,0.35) & [6.3,6.6] & 83 & 0.7714 & 0.0200 & 0.0062 & 1.296 & 0.010 \\ [0.3,0.35) & [6.5,7.6.0] & 195 & 0.7134 & 0.0173 & 0.0044 & 1.402 & 0.009 \\ [0.3,0.35) & [6.0,6.9] & 51 & 0.7555 & 0.0165 & 0.0081 & 1.324 & 0.014 \\ [0.3,0.35) & [6.9,7.5] & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3,0.35) & [7.5,8.7] & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35,0.4] & [4.5,4.8] & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,0.4] & [4.5,4.8] & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,0.4] & [4.5,4.8] & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,0.4] & [4.5,4.5] & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35,0.4] & [5.1,5.4] & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35,0.4] & [5.1,5.4] & 550 & 0.7680 & 0.0071 & 0.0037 & 1.382 & 0.007 \\ [0.35,0.4] & [5.1,5.4] & 550 & 0.7680 & 0.001$	' '	, ,	1	I		1		
$ \begin{bmatrix} 0.25, 0.3 \\ 0$	1 - /	,	1					
$ \begin{bmatrix} 0.25, 0.3 \\ 0$	1 - /		I					
$ \begin{bmatrix} 0.25, 0.3 \\ 0$	1 ' '							
$ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.3 \end{bmatrix} \begin{bmatrix} 5.7, 6.0 \\ 0.3 \\ 0.63 \\ 0.3 \end{bmatrix} \begin{bmatrix} 175 \\ 0.7214 \\ 0.07537 \\ 0.0134 \\ 0.0063 \\ 0.0063 \\ 0.0063 \\ 0.0063 \\ 1.327 \\ 0.011 \\ 0.025, 0.3 \\ 0.66, 6.9 \\ 0.0079 \\ 0.0316 \\ 0.0117 \\ 0.025 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0079 \\ 0.0075 \\ 0.0079 \\ 0.00$	1 - /	,				1		
$ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.3, 0.35 \\ 0$	- /	/	1			1		
$ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.35, 0.3 \\ 0.66, 6.9 \\ 0.25, 0.3 \\ 0.66, 6.9 \\ 0.25, 0.3 \\ 0.6750 \\ 0.0316 \\ 0.00316 \\ 0.00117 \\ 0.00316 \\ 0.00117 \\ 0.00316 \\ 0.00117 \\ 0.00317 \\ 0.00316 \\ 0.00117 \\ 0.00317 \\ 0.00318 \\ 0.00306 \\ 0.0083 \\ 0.00336 \\ 0.00336 \\ 0.00336 \\ 0.00336 \\ 0.00336 \\ 0.00336 \\ 0.00336 \\ 0.00336 \\ 0.0039 \\ 0.$	1 ' /							
$ \begin{bmatrix} 0.25, 0.3 \\ 0.25, 0.3 \\ 0.66, 6.9 \\ 0.25, 0.3 \\ 0.69, 7.5 \\ 0.25, 0.3 \\ 0.69, 7.5 \\ 0.25, 0.3 \\ 0.75, 8.7 \\ 0.25, 0.3 \\ 0.75, 8.7 \\ 0.25, 0.3 \\ 0.75, 8.7 \\ 0.25, 0.3 \\ 0.75, 8.7 \\ 0.25, 0.3 \\ 0.75, 8.7 \\ 0.25, 0.3 \\ 0.75, 8.7 \\ 0.25, 0.3 \\ 0.75, 8.7 \\ 0.25, 0.3 \\ 0.75, 8.7 \\ 0.25, 0.3 \\ 0.75, 8.7 \\ 0.25, 0.3 \\ 0$	1 - /	/	1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 - /	, ,	I					
$ \begin{bmatrix} 0.25, 0.3 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.4, 0.45 \\ 0.5, 0.3 \\ 0.3, 0.35 \\ 0.4, 0.45 \\ 0.5, 0.4 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.4, 0.45 \\ 0.3, 0.35 \\ 0.3, 0.35 \\ 0.4, 0.45 \\ 0.3, 0.35 \\ 0.3$. ,						
$ \begin{bmatrix} 0.3, 0.35 \rangle & \{4.2, 4.5 \rangle & 929 & 0.7522 & 0.0053 & 0.0039 & 1.329 & 0.007 \\ [0.3, 0.35) & \{4.5, 4.8 \rangle & 851 & 0.7512 & 0.0072 & 0.0031 & 1.331 & 0.005 \\ [0.3, 0.35) & \{4.8, 5.1 \rangle & 742 & 0.6996 & 0.0077 & 0.0030 & 1.429 & 0.006 \\ [0.3, 0.35) & \{5.1, 5.4 \rangle & 500 & 0.7915 & 0.0078 & 0.0031 & 1.263 & 0.005 \\ [0.3, 0.35) & \{5.4, 5.7 \rangle & 351 & 0.7161 & 0.0091 & 0.0036 & 1.396 & 0.007 \\ [0.3, 0.35) & \{5.7, 6.0 \rangle & 195 & 0.7134 & 0.0173 & 0.0044 & 1.402 & 0.009 \\ [0.3, 0.35) & \{6.0, 6.3 \rangle & 121 & 0.7320 & 0.0155 & 0.0056 & 1.366 & 0.010 \\ [0.3, 0.35) & \{6.3, 6.6 \rangle & 83 & 0.7714 & 0.0200 & 0.0062 & 1.296 & 0.010 \\ [0.3, 0.35) & \{6.6, 6.9 \rangle & 51 & 0.7555 & 0.0165 & 0.0081 & 1.324 & 0.014 \\ [0.3, 0.35) & \{6.9, 7.5 \rangle & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3, 0.35) & \{7.5, 8.7 \rangle & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35, 0.4) & \{4.2, 4.5 \rangle & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35, 0.4) & \{4.5, 4.8 \rangle & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35, 0.4) & \{4.8, 5.1 \rangle & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35, 0.4) & \{5.4, 5.7 \rangle & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ \end{bmatrix}$	1 -							
$ \begin{bmatrix} 0.3, 0.35 \\ 0$	1 - /	,				1		
$ \begin{bmatrix} 0.3, 0.35 \rangle & \begin{bmatrix} 4.8, 5.1 \rangle & 742 & 0.6996 & 0.0077 & 0.0030 & 1.429 & 0.006 \\ [0.3, 0.35) & \begin{bmatrix} 5.1, 5.4 \rangle & 500 & 0.7915 & 0.0078 & 0.0031 & 1.263 & 0.005 \\ [0.3, 0.35) & \begin{bmatrix} 5.4, 5.7 \rangle & 351 & 0.7161 & 0.0091 & 0.0036 & 1.396 & 0.007 \\ [0.3, 0.35) & \begin{bmatrix} 5.7, 6.0 \rangle & 195 & 0.7134 & 0.0173 & 0.0044 & 1.402 & 0.009 \\ [0.3, 0.35) & \begin{bmatrix} 6.0, 6.3 \rangle & 121 & 0.7320 & 0.0155 & 0.0056 & 1.366 & 0.010 \\ [0.3, 0.35) & \begin{bmatrix} 6.3, 6.6 \rangle & 83 & 0.7714 & 0.0200 & 0.0062 & 1.296 & 0.010 \\ [0.3, 0.35) & \begin{bmatrix} 6.6, 6.9 \rangle & 51 & 0.7555 & 0.0165 & 0.0081 & 1.324 & 0.014 \\ [0.3, 0.35) & \begin{bmatrix} 6.9, 7.5 \rangle & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3, 0.35) & \begin{bmatrix} 7.5, 8.7 \rangle & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35, 0.4) & \begin{bmatrix} 4.2, 4.5 \rangle & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35, 0.4) & \begin{bmatrix} 4.8, 5.1 \rangle & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35, 0.4) & \begin{bmatrix} 5.1, 5.4 \rangle & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35, 0.4) & \begin{bmatrix} 5.4, 5.7 \rangle & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ \end{bmatrix}$	1 - /					1		
$ \begin{bmatrix} 0.3, 0.35 \rangle & [5.1, 5.4) \\ [0.3, 0.35) & [5.4, 5.7) \\ [0.3, 0.35) & [5.4, 5.7) \\ [0.3, 0.35) & [5.7, 6.0) \\ [0.3, 0.35) & [6.0, 6.3) \\ [0.3, 0.35) & [6.0, 6.3) \\ [0.3, 0.35) & [6.3, 6.6) \\ [0.3, 0.35) & [6.3, 6.6) \\ [0.3, 0.35) & [6.6, 6.9) \\ [0.3, 0.35) & [6.6, 6.9) \\ [0.3, 0.35) & [6.6, 6.9) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [6.9, 7.5) \\ [0.3, 0.35) & [7.5, 8.7) \\ [0.3, 0.35) & [7.5, 8.7) \\ [0.3, 0.35) & [7.5, 8.7) \\ [0.3, 0.35) & [7.5, 8.7) \\ [0.3, 0.35) & [7.5, 8.7) \\ [0.3, 0.35) & [7.5, 8.7) \\ [0.3, 0.35) & [7.5, 8.7) \\ [0.3, 0.35) & [7.5, 8.7) \\ [0.3, 0.35) & [7.5, 8.7) \\ [0.3, 0.4) & [4.2, 4.5) \\$	' '		1			1		
$ \begin{bmatrix} [0.3,0.35) & [5.4,5.7) & 351 & 0.7161 & 0.0091 & 0.0036 & 1.396 & 0.007 \\ [0.3,0.35) & [5.7,6.0) & 195 & 0.7134 & 0.0173 & 0.0044 & 1.402 & 0.009 \\ [0.3,0.35) & [6.0,6.3) & 121 & 0.7320 & 0.0155 & 0.0056 & 1.366 & 0.010 \\ [0.3,0.35) & [6.3,6.6) & 83 & 0.7714 & 0.0200 & 0.0062 & 1.296 & 0.010 \\ [0.3,0.35) & [6.6,6.9) & 51 & 0.7555 & 0.0165 & 0.0081 & 1.324 & 0.014 \\ [0.3,0.35) & [6.9,7.5) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3,0.35) & [7.5,8.7) & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35,0.4) & [4.2,4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35,0.4) & [4.5,4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,0.4) & [4.8,5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35,0.4) & [5.1,5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35,0.4) & [5.4,5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ \hline \end{tabular}$	' '		1	1				
$ \begin{bmatrix} [0.3,0.35) & [5.7,6.0) & 195 & 0.7134 & 0.0173 & 0.0044 & 1.402 & 0.009 \\ [0.3,0.35) & [6.0,6.3) & 121 & 0.7320 & 0.0155 & 0.0056 & 1.366 & 0.010 \\ [0.3,0.35) & [6.3,6.6) & 83 & 0.7714 & 0.0200 & 0.0062 & 1.296 & 0.010 \\ [0.3,0.35) & [6.6,6.9) & 51 & 0.7555 & 0.0165 & 0.0081 & 1.324 & 0.014 \\ [0.3,0.35) & [6.9,7.5) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3,0.35) & [7.5,8.7) & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35,0.4) & [4.2,4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35,0.4) & [4.5,4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,0.4) & [4.8,5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35,0.4) & [5.1,5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35,0.4) & [5.4,5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ \end{tabular} $	' '		I					
$ \begin{bmatrix} [0.3, 0.35) & [6.0, 6.3) & 121 & 0.7320 & 0.0155 & 0.0056 & 1.366 & 0.010 \\ [0.3, 0.35) & [6.3, 6.6) & 83 & 0.7714 & 0.0200 & 0.0062 & 1.296 & 0.010 \\ [0.3, 0.35) & [6.6, 6.9) & 51 & 0.7555 & 0.0165 & 0.0081 & 1.324 & 0.014 \\ [0.3, 0.35) & [6.9, 7.5) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3, 0.35) & [7.5, 8.7) & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35, 0.4) & [4.2, 4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35, 0.4) & [4.5, 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35, 0.4) & [4.8, 5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35, 0.4) & [5.1, 5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35, 0.4) & [5.4, 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ \hline \end{tabular} $	1 5 /	. ,						
$ \begin{bmatrix} [0.3,\ 0.35) & [6.3,\ 6.6) \\ [0.3,\ 0.35) & [6.6,\ 6.9) \\ [0.3,\ 0.35) & [6.9,\ 7.5) \\ [0.3,\ 0.35) & [7.5,\ 8.7) \\ [0.35,\ 0.4) & [4.2,\ 4.8) \\ [0.35,\ 0.4) & [4.8,\ 5.1) \\ [0.35,\ 0.4) & [5.1,\ 5.4) \\ [0.35,\ 0.4) & [5.1,\ 5.4) \\ [0.35,\ 0.4) & [5.4,\ 5.7) \\ \end{bmatrix} $ $ \begin{bmatrix} [0.3,\ 0.35) & [6.3,\ 6.6) \\ 51 & 0.7555 \\ 0.0165 \\ 0.00165 \\ $	' '		I					
$ \begin{bmatrix} [0.3,\ 0.35) & [6.6,\ 6.9) & 51 & 0.7555 & 0.0165 & 0.0081 & 1.324 & 0.014 \\ [0.3,\ 0.35) & [6.9,\ 7.5) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3,\ 0.35) & [7.5,\ 8.7) & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35,\ 0.4) & [4.2,\ 4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35,\ 0.4) & [4.5,\ 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,\ 0.4) & [4.8,\ 5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35,\ 0.4) & [5.1,\ 5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35,\ 0.4) & [5.4,\ 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ \end{tabular} $	1 - /	/		I		1		
$ \begin{bmatrix} [0.3,\ 0.35) & [6.9,\ 7.5) & 31 & 0.6848 & 0.0441 & 0.0113 & 1.460 & 0.024 \\ [0.3,\ 0.35) & [7.5,\ 8.7) & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35,\ 0.4) & [4.2,\ 4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35,\ 0.4) & [4.5,\ 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,\ 0.4) & [4.8,\ 5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35,\ 0.4) & [5.1,\ 5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35,\ 0.4) & [5.4,\ 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ \hline \end{tabular} $		/	1			1		
$ \begin{bmatrix} [0.3,\ 0.35) & [7.5,\ 8.7) & 16 & 0.7594 & 0.0466 & 0.0088 & 1.317 & 0.015 \\ [0.35,\ 0.4) & [4.2,\ 4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35,\ 0.4) & [4.5,\ 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35,\ 0.4) & [4.8,\ 5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35,\ 0.4) & [5.1,\ 5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35,\ 0.4) & [5.4,\ 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ \hline \end{tabular} $	' /	, ,						
$ \begin{bmatrix} [0.35, \ 0.4) & [4.2, \ 4.5) & 1160 & 0.7967 & 0.0063 & 0.0027 & 1.255 & 0.004 \\ [0.35, \ 0.4) & [4.5, \ 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35, \ 0.4) & [4.8, \ 5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35, \ 0.4) & [5.1, \ 5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35, \ 0.4) & [5.4, \ 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ \hline \end{tabular} $	1 - /	,	1	!		1		
$ \begin{bmatrix} [0.35, \ 0.4) & [4.5, \ 4.8) & 1020 & 0.7217 & 0.0064 & 0.0026 & 1.386 & 0.005 \\ [0.35, \ 0.4) & [4.8, \ 5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35, \ 0.4) & [5.1, \ 5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35, \ 0.4) & [5.4, \ 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ \end{bmatrix} $	' '	/		l .				
$ \begin{bmatrix} [0.35,\ 0.4) & [4.8,\ 5.1) & 771 & 0.7292 & 0.0061 & 0.0029 & 1.371 & 0.005 \\ [0.35,\ 0.4) & [5.1,\ 5.4) & 550 & 0.7680 & 0.0071 & 0.0031 & 1.302 & 0.005 \\ [0.35,\ 0.4) & [5.4,\ 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \\ \end{bmatrix} $	1 - /	- '	I					
	1 -	, ,						
$\begin{bmatrix} [0.35, 0.4) & [5.4, 5.7) & 303 & 0.7238 & 0.0115 & 0.0037 & 1.382 & 0.007 \end{bmatrix}$	1 ' '	,	1					
	1 ' /	, ,	1					
$-10.25 \cdot 0.4) + 15.7 \cdot 6.0$ $-2.97 + 0.7941 + 0.0129 + 0.0046 + 1.291 + 0.000$	1 ' '		1	!				
	[0.35, 0.4)	[5.7, 6.0)	227	0.7241	0.0132	0.0046	1.381	0.009
[0.35, 0.4) [6.0, 6.3) 127 0.7861 0.0166 0.0050 1.272 0.008	1 ' '		I					
[0.35, 0.4) [6.3, 6.6) 83 0.7483 0.0216 0.0063 1.336 0.011	1 ' '							
$ \begin{bmatrix} [0.35, 0.4) & [6.6, 6.9) & 44 & 0.7978 & 0.0210 & 0.0079 & 1.253 & 0.012 \end{bmatrix} $	1 - /	, ,				1		
[0.35, 0.4) [6.9, 7.5) 33 0.7708 0.0330 0.0069 1.297 0.012	1 - /			!				
[0.35, 0.4) [7.5, 8.7) 17 0.7598 0.0422 0.0085 1.316 0.015	1 ' /							
[0.4, 0.45) [4.2, 4.5) 1274 0.7487 0.0060 0.0025 1.336 0.005	' '		1					
	1 - /		1	1				0.005
	' '	,						0.004
$ \begin{bmatrix} [0.4, 0.45) & [5.1, 5.4) & 511 & 0.7128 & 0.0074 & 0.0034 & 1.403 & 0.0074 \\ \hline $	[0.4, 0.45)	[5.1, 5.4)	511	0.7128	0.0074			0.007

Table 3: (Continued)

D:	M D:- (C-V/-2)	N7	, , , s		1/	< -> \ \(\script{\script{1}} \)	1
-	Mass Bin (GeV/c^2)				1 '		$/<\epsilon>)$
[0.4, 0.45]	/ - /	353	0.7475	0.0093	0.0033	1.338	0.006
[0.4, 0.45]	/ - /	194	0.7846	0.0135	0.0040	1.274	0.006
[0.4, 0.45]	/ - /	149	0.8273	0.0100	0.0039	1.209	0.006
[0.4, 0.45]	/ - /	91	0.7577	0.0182	0.0057	1.320	0.010
[0.4, 0.45]	/ - /	42	0.8269	0.0172	0.0066	1.209	0.010
[0.4, 0.45]	/ - /	34	0.7409	0.0337	0.0078	1.350	0.014
[0.4, 0.45]	/ - /	9	0.8325	0.0475	0.0091	1.201	0.013
[0.45, 0.5]	, ,	1245	0.7614	0.0054	0.0024	1.313	0.004
[0.45, 0.5]	/ - / /	1039	0.7470	0.0049	0.0021	1.339	0.004
[0.45, 0.5]	/ - /	728	0.7038	0.0069	0.0028	1.421	0.006
[0.45, 0.5]	/ - /	485	0.7386	0.0099	0.0030	1.354	0.006
[0.45, 0.5]	/ - /	312	0.7845	0.0088	0.0035	1.275	0.006
[0.45, 0.5]	/ - / /	192	0.7727	0.0118	0.0040	1.294	0.007
[0.45, 0.5]	/ - / /	110	0.7723	0.0211	0.0056	1.295	0.009
[0.45, 0.5]	′ • · · · /	73	0.7187	0.0161	0.0071	1.391	0.014
[0.45, 0.5]	/ - /	31	0.7521	0.0272	0.0116	1.330	0.021
[0.45, 0.5]	′ • · · · · · · · · · · · · · · · · · ·	50	0.7417	0.0281	0.0058	1.348	0.010
[0.45, 0.5]	/ - /	12	0.8096	0.0418	0.0096	1.235	0.015
[0.5, 0.55]	′ • · · · · · · · · · · · · · · · · · ·	1221	0.6750	0.0057	0.0026	1.481	0.006
[0.5, 0.55]	/ - /	842	0.7314	0.0055	0.0025	1.367	0.005
[0.5, 0.55]	, ,	591	0.7043	0.0088	0.0028	1.420	0.006
[0.5, 0.55]	′ • · · · /	439	0.7485	0.0096	0.0029	1.336	0.005
[0.5, 0.55]	/ - /	272	0.7660	0.0087	0.0035	1.306	0.006
[0.5, 0.55]	/ - /	155	0.7768	0.0134	0.0046	1.287	0.008
[0.5, 0.55]	′ • · · · · · · · · · · · · · · · · · ·	89 63	0.7238 0.7951	0.0203 0.0204	0.0062 0.0068	1.382 1.258	$0.012 \\ 0.011$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	/ - /	29	0.7931	0.0204 0.0267	0.0008	1.236	0.011
[0.5, 0.55]	/ - /	$\frac{29}{25}$	0.7849	0.0207	0.0099	1.274	0.010
[0.5, 0.55]	, ,	15	0.3209	0.0348	0.0073	1.336	0.011
[0.5, 0.55]		989	0.7547	0.0400	0.0030	1.325	0.010
[0.55, 0.6]	/ - /	724	0.7347	0.0058	0.0025	1.353	0.004 0.005
[0.55, 0.6]	′ • · · · · · ·	456	0.7346	0.0038	0.0020	1.361	0.005
[0.55, 0.6]	, ,	324	0.7578	0.0087	0.0032	1.320	0.006
[0.55, 0.6]	/ - /	203	0.7906	0.0124 0.0130	0.0039	1.265	0.006
[0.55, 0.6]	/ - /	122	0.7404	0.0134	0.0046	1.351	0.008
[0.55, 0.6]	′ • · · · · · · · · · · · · · · · · · ·	90	0.7928	0.0124 0.0173	0.0040	1.261	0.009
[0.55, 0.6]	/ - /	49	0.7320	0.0173	0.0054	1.348	0.003
[0.55, 0.6]	/ - /	29	0.7420	0.0271	0.0110	1.276	0.014
[0.55, 0.6]	/ - / /	26	0.7674	0.0383	0.0075	1.303	0.013
[0.55, 0.6]	, ,	8	0.8404	0.0479	0.0101	1.190	0.013
[0.6, 0.65]	, ,	758	0.7741	0.0074	0.0026	1.292	0.004
[0.6, 0.65]	/ - /	550	0.7692	0.0074	0.0020	1.300	0.004
[0.6, 0.65]	′ • · · · /	349	0.7565	0.0010	0.0040	1.322	0.003
[0.6, 0.65]	/ - /	234	0.8047	0.0132	0.0035	1.243	0.005
[0.6, 0.65]	′ • · · · · · · · · · · · · · · · · · ·	153	0.7911	0.0132	0.0035	1.243	0.003
[0.6, 0.65]	/ - /	102	0.7046	0.0123	0.0057	1.419	0.011
[0.6, 0.65]	/ - /	66	0.8156	0.0200	0.0062	1.226	0.009
[0.6, 0.65]	/ - /	44	0.7413	0.0323	0.0093	1.349	0.017
[5.5, 5.55]	, [5.5, 5.5)		0110	0.0020		tinued on n	

Table 3: (Continued)

$x_F Bin N$	Mass Bin (GeV/c^2)	$N_{ m events}$	<	$\epsilon > 0$	$\delta_{ m stat}$	$\epsilon < \epsilon >$	$\delta_{ m pro}$	$_{\mathrm{op}}<\epsilon>$	1/	$<\epsilon>$	$\delta(1$	$/<\epsilon>)$
[0.6, 0.65)	[6.6, 6.9)		27	0.900			$\frac{197}{197}$		056	1.	111	0.007
[0.6, 0.65)	[6.9, 7.5)		8	0.750	08	0.0	588	0.0	152	1.	332	0.027
[0.6, 0.65)			8	0.823	33	0.0	567	0.0	139	1	215	0.021
[0.65, 0.7)	/	52	27	0.788			089	1	030		268	0.005
[0.65, 0.7)	/	38		0.759			077	1	034		317	0.006
[0.65, 0.7)	/	22		0.796			122		043	I	256	0.007
[0.65, 0.7)	/	18	80	0.784			113		047		274	0.008
[0.65, 0.7)	_ /	11	- 1	0.746			174		050		340	0.009
[0.65, 0.7)	1 -		66	0.812			213	0.0			231	0.011
[0.65, 0.7)	/		64	0.795	58		222	1	074	1	257	0.012
[0.65, 0.7)	/		25	0.777			375	1	107		287	0.018
[0.65, 0.7)	/		5	0.805	53	0.0	304	0.0	141	1.	242	0.022
[0.65, 0.7)	. ,	6	20	0.774	46	0.0	312	0.0	145	1.	291	0.024
[0.65, 0.7)			5	0.078	86	0.0	548	0.0	410	12.	717	6.635
[0.7, 0.75)	1 -	32	27	0.736	68	0.0	092	0.0	042	1.	357	0.008
[0.7, 0.75)	[4.5, 4.8)	24	12	0.768	80	0.0	103	0.0	044	1.	302	0.007
[0.7, 0.75)	[4.8, 5.1)	16	8	0.790	04	0.0	136	0.0	052	1.	265	0.008
[0.7, 0.75)	[5.1, 5.4)	3	86	0.783	30	0.0	176	0.0	077	1.	277	0.013
[0.7, 0.75)	[5.4, 5.7)	(67	0.745	53	0.0	218	0.0	079	1.	342	0.014
[0.7, 0.75)	[5.7, 6.0)	3	36	0.883	39	0.0	434	0.0	120	1.	131	0.015
[0.7, 0.75)	[6.0, 6.3)	3	34	0.728	84	0.0	458	0.0	193	1.	373	0.036
[0.7, 0.75)	[6.3, 6.6)	2	25	0.825	57	0.0	730	0.0	357	1.	211	0.052
[0.7, 0.75)	[6.6, 6.9)	1	1	0.000	00	0.0	000	0.0	000		_	_
[0.7, 0.75)	[6.9, 7.5)		3	0.000	00	0.0	000	0.0	000		_	_
[0.7, 0.75)	[7.5, 8.7)		4	0.000	00	0.0	000	0.0	000		_	_
[0.75, 0.8)	[4.2, 4.5)	22	24	0.693	32	0.0	203	0.0	075	1.	443	0.016
[0.75, 0.8)	[4.5, 4.8)	10)7	0.832	26	0.0	397	0.0	069	1.	201	0.010
[0.75, 0.8)	[4.8, 5.1)	7	76	0.095	55	0.0	262	0.0	107	10.	468	1.177
[0.75, 0.8)	[5.1, 5.4)		57	0.000	00	0.0	000	0.0	000		_	_
[0.75, 0.8)	[5.4, 5.7)		35	0.000	00	0.0	000	0.0	000		_	_
[0.75, 0.8)			27	0.000			000		000		_	_
[0.75, 0.8)	[6.0, 6.3)		9	0.000	00	0.0	000	0.0	000		_	_
[0.75, 0.8)	[6.3, 6.6)		6	0.000	00	0.0	000	0.0	000		_	_
[0.75, 0.8)	[6.6, 6.9)		7	0.000	00	0.0	000		000		_	_
[0.75, 0.8)	[6.9, 7.5)		5	0.000			000		000		_	_
[0.75, 0.8)	[7.5, 8.7)		4	0.000			000		000		_	_
[0.8, 0.85)	[4.2, 4.5)	1	97	0.000			000	1	000		_	_
[0.8, 0.85)	[4.5, 4.8)	1	35	0.000			000	1	000		_	_
[0.8, 0.85)	[4.8, 5.1)		10	0.000			000		000		_	_
[0.8, 0.85)	[5.1, 5.4)		7	0.000			000		000		_	_
[0.8, 0.85)	[5.4, 5.7)		9	0.000		0.0			000		-	_
[0.8, 0.85)	[5.7, 6.0)		$\lfloor 2 \rfloor$	0.000			000		000		-	_
[0.8, 0.85)	[6.0, 6.3)		4	0.000			000	1	000		-	_
[0.8, 0.85)	[6.3, 6.6)		6	0.000			000	1	000		-	_
[0.8, 0.85)	[6.6, 6.9)		5	0.000			000	1	000		_	_
[0.8, 0.85)	[6.9, 7.5)		2	0.000		0.0			000		_	_
[0.8, 0.85)	[7.5, 8.7)		1	0.000)()	0.0	000	0.0	000			_

5.4 Average Efficiency Calculations using RS57-70 all targets only

Table 4: Average Efficiency and Errors calculated for x_F and Mass bins using RS57-70 all targets

$x_F \operatorname{Bin}$	$\overline{\text{Mass Bin (GeV}/c^2)}$	$N_{\rm events}$ <	$\epsilon > \delta_{\rm s}$	< E > 8	$\delta_{\text{prop}} < \epsilon > 1$	$/<\epsilon>\delta$	$1/<\epsilon>)$
[0.0, 0.05]	(4.2, 4.5)	2	0.0000	0.0000			
[0.0, 0.05]	1 -	58	0.2186	0.0384		4.574	0.251
[0.0, 0.05]	, ,	210	0.7313	0.0357	1	1.367	0.017
[0.0, 0.05]		322	0.6007	0.0112	1	1	0.028
[0.0, 0.05]	' '	332	0.6512	0.0138	1		0.014
[0.0, 0.05]		252	0.6583	0.0178		1.519	0.014
[0.0, 0.05]	/	180	0.6595	0.0159		1.516	0.017
[0.0, 0.05]	, ,	110	0.6639	0.0205	1	1	0.022
[0.0, 0.05]	, ,	48	0.6775	0.0210		1	0.025
[0.0, 0.05)	/	57	0.6714	0.0274	1	1.489	0.022
[0.0, 0.05)	, ,	9	0.5661	0.0833	1	1.766	0.085
[0.05, 0.1]	1 -	22	0.0000	0.0000			_
[0.05, 0.1]	1 -	185	0.3146	0.0260		1	0.116
[0.05, 0.1]	/	457	0.4959	0.0147	1		0.031
[0.05, 0.1]	, ,	529	0.6826	0.0158		1.465	0.010
[0.05, 0.1]	, ,	490	0.6542	0.0085		1	0.012
[0.05, 0.1]	/	358	0.7325	0.0098	1	1	0.009
[0.05, 0.1]	/	209	0.7106	0.0154	1		0.010
[0.05, 0.1]	[6.3, 6.6)	148	0.6179	0.0155	0.0072	1.618	0.019
[0.05, 0.1]	[6.6, 6.9)	65	0.6878	0.0252	0.0088	1.454	0.019
[0.05, 0.1]	[6.9, 7.5)	61	0.6746	0.0218	0.0078	1.482	0.017
[0.05, 0.1]	[7.5, 8.7)	24	0.6253	0.0499	0.0111	1.599	0.028
[0.1, 0.15]	(4.2, 4.5)	161	8.1673	1.2842	0.0073	0.122	0.000
[0.1, 0.15)	[4.5, 4.8)	518	0.5176	0.0137	0.0074	1.932	0.028
[0.1, 0.15)	[4.8, 5.1)	811	0.6135	0.0067	0.0059	1.630	0.016
[0.1, 0.15)	[5.1, 5.4)	858	0.6040	0.0069	0.0042	1.656	0.012
[0.1, 0.15)	[5.4, 5.7)	625	0.6263	0.0094	0.0036	1.597	0.009
[0.1, 0.15]	[5.7, 6.0)	416	0.6728	0.0096	0.0042	1.486	0.009
[0.1, 0.15]	[6.0, 6.3)	293	0.7289	0.0125	0.0043	1.372	0.008
[0.1, 0.15)	[6.3, 6.6)	159	0.7369	0.0133	0.0058	1.357	0.011
[0.1, 0.15]	[6.6, 6.9)	112	0.7193	0.0152		1.390	0.012
[0.1, 0.15]	,	75	0.7171	0.0190		1.394	0.011
[0.1, 0.15]	[7.5, 8.7)	26	0.6676	0.0269	0.0089	1.498	0.020
[0.15, 0.2)	, ,	487	1.1841	0.0482		0.845	0.004
[0.15, 0.2)		1052	0.7085	0.0091		1.412	0.010
[0.15, 0.2]	' /	1362	0.5343	0.0048		1.872	0.013
[0.15, 0.2)	, ,	1163	0.6907	0.0057		1.448	0.006
[0.15, 0.2]	, ,	738	0.7110	0.0088		1.407	0.007
[0.15, 0.2]	' /	564	0.7624	0.0072		1.312	0.006
[0.15, 0.2]	, ,	342	0.7256	0.0095		1.378	0.007
[0.15, 0.2]	' '	239	0.7305	0.0144		1.369	0.009
[0.15, 0.2]	, ,	112	0.7293	0.0176		1.371	0.012
[0.15, 0.2]	, ,	92	0.7042	0.0163		1.420	0.011
[0.15, 0.2]	, ,	28	0.7024	0.0376		1.424	0.017
[0.2, 0.25)	(4.2, 4.5)	1287	0.5234	0.0083	0.0048	1.911	0.018

Table 4: (Continued)

				·			
	Iass Bin (GeV/ c^2) Λ	vevents <	$\epsilon > \delta_{ m st}$	$t_{\rm tat} < \epsilon > \delta_{ m p}$	$_{\mathrm{rop}} < \epsilon > 1/$	$<\epsilon>\delta$	$1/<\epsilon>)$
[0.2, 0.25)	[4.5, 4.8)	1771	0.5882	0.0064	0.0030	1.700	0.009
[0.2, 0.25)	[4.8, 5.1)	1726	0.6759	0.0053	0.0024	1.479	0.005
[0.2, 0.25)	[5.1, 5.4)	1457	0.6635	0.0053	0.0022	1.507	0.005
[0.2, 0.25)	[5.4, 5.7)	973	0.6810	0.0071	0.0027	1.469	0.006
[0.2, 0.25)	[5.7, 6.0)	647	0.7697	0.0068	0.0027	1.299	0.005
[0.2, 0.25)	[6.0, 6.3)	391	0.7225	0.0096	0.0034	1.384	0.007
[0.2, 0.25)	[6.3, 6.6)	270	0.7401	0.0117	0.0040	1.351	0.007
[0.2, 0.25)	[6.6, 6.9)	113	0.8147	0.0149	0.0053	1.227	0.008
[0.2, 0.25)	[6.9, 7.5)	112	0.7571	0.0138	0.0041	1.321	0.007
[0.2, 0.25)	[7.5, 8.7)	33	0.6915	0.0287	0.0073	1.446	0.015
[0.25, 0.3)	[4.2, 4.5)	2334	0.6958	0.0052	0.0030	1.437	0.006
[0.25, 0.3)	[4.5, 4.8)	2649	0.7130	0.0031	0.0021	1.403	0.004
[0.25, 0.3)	[4.8, 5.1)	2161	0.6885	0.0056	0.0019	1.452	0.004
[0.25, 0.3)	[5.1, 5.4)	1660	0.6945	0.0046	0.0021	1.440	0.004
[0.25, 0.3)	[5.4, 5.7)	1155	0.7683	0.0057	0.0022	1.302	0.004
[0.25, 0.3)	[5.7, 6.0)	679	0.7170	0.0071	0.0027	1.395	0.005
[0.25, 0.3)	[6.0, 6.3)	440	0.7526	0.0066	0.0032	1.329	0.006
[0.25, 0.3)	[6.3, 6.6)	246	0.7377	0.0127	0.0038	1.356	0.007
[0.25, 0.3)	[6.6, 6.9)	131	0.7213	0.0166	0.0066	1.386	0.013
[0.25, 0.3)	[6.9, 7.5)	136	0.7627	0.0151	0.0038	1.311	0.007
[0.25, 0.3)	[7.5, 8.7)	31	0.6334	0.0332	0.0081	1.579	0.020
[0.3, 0.35)	[4.2, 4.5)	3427	0.7484	0.0028	0.0021	1.336	0.004
[0.3, 0.35)	[4.5, 4.8)	3121	0.7449	0.0038	0.0016	1.342	0.003
[0.3, 0.35)	[4.8, 5.1)	2660	0.7042	0.0041	0.0016	1.420	0.003
[0.3, 0.35)	[5.1, 5.4)	1804	0.7803	0.0040	0.0016	1.281	0.003
[0.3, 0.35)	[5.4, 5.7)	1217	0.6993	0.0050	0.0020	1.430	0.004
[0.3, 0.35)	[5.7, 6.0)	737	0.7166	0.0085	0.0023	1.395	0.005
[0.3, 0.35)	[6.0, 6.3)	459	0.7268	0.0084	0.0030	1.376	0.006
[0.3, 0.35)	[6.3, 6.6)	284	0.7595	0.0110	0.0034	1.317	0.006
[0.3, 0.35)	[6.6, 6.9)	172	0.7205	0.0115	0.0051	1.388	0.010
[0.3, 0.35)	[6.9, 7.5)	120	0.7036	0.0179	0.0049	1.421	0.010
[0.3, 0.35)	[7.5, 8.7)	45	0.7637	0.0257	0.0052	1.309	0.009
[0.35, 0.4)	[4.2, 4.5)	4154	0.7929	0.0033	0.0015	1.261	0.002
[0.35, 0.4)	[4.5, 4.8)	3597	0.7180	0.0035	0.0014	1.393	0.003
[0.35, 0.4)	[4.8, 5.1)	2740	0.7287	0.0033	0.0015	1.372	0.003
[0.35, 0.4)	[5.1, 5.4)	1947	0.7600	0.0038	0.0017	1.316	0.003
[0.35, 0.4)	[5.4, 5.7)	1156	0.7305	0.0057	0.0019	1.369	0.004
[0.35, 0.4)	[5.7, 6.0)	768	0.7145	0.0075	0.0025	1.400	0.005
[0.35, 0.4)	[6.0, 6.3)	475	0.7870	0.0077	0.0026	1.271	0.004
[0.35, 0.4)	[6.3, 6.6)	299	0.7530	0.0111	0.0034	1.328	0.006
[0.35, 0.4)	[6.6, 6.9)	178	0.7646	0.0112	0.0045	1.308	0.008
[0.35, 0.4)	[6.9, 7.5)	142	0.7335	0.0179	0.0036	1.363	0.007
[0.35, 0.4)	[7.5, 8.7)	52	0.7419	0.0222	0.0050	1.348	0.009
[0.4, 0.45)	[4.2, 4.5)	4687	0.7402	0.0032	0.0013	1.351	0.002
[0.4, 0.45)	[4.5, 4.8)	3755	0.6903	0.0044	0.0013	1.449	0.003
[0.4, 0.45)	[4.8, 5.1)	2761	0.7311	0.0032	0.0013	1.368	0.002
[0.4, 0.45)	[5.1, 5.4)	1874	0.7180	0.0037	0.0017	1.393	0.003
[0.4, 0.45)	[5.4, 5.7)	1209	0.7504	0.0052	0.0018	1.333	0.003
L / /	L / /		<u> </u>	I			

Table 4: (Continued)

$x_F \operatorname{Bin} \mid \operatorname{M}$	Iass Bin (GeV/c^2) Λ	V _{events} <	$\epsilon > \delta_{ m st}$	$t_{\rm tat} < \epsilon > \delta_{ m p}$	$_{\mathrm{rop}} < \epsilon > 1/$	$<\epsilon>\delta$	$1/<\epsilon>)$
[0.4, 0.45)	[5.7, 6.0)	776	0.7713	0.0076	0.0021	1.296	0.004
[0.4, 0.45)	[6.0, 6.3)	489	0.7828	0.0077	0.0028	1.277	0.005
[0.4, 0.45)	[6.3, 6.6)	310	0.7582	0.0095	0.0032	1.319	0.006
[0.4, 0.45)	[6.6, 6.9)	169	0.8065	0.0092	0.0038	1.240	0.006
[0.4, 0.45)	[6.9, 7.5)	143	0.7609	0.0159	0.0036	1.314	0.006
[0.4, 0.45)	[7.5, 8.7)	34	0.7886	0.0259	0.0055	1.268	0.009
[0.45, 0.5)	[4.2, 4.5)	4659	0.7450	0.0030	0.0013	1.342	0.002
[0.45, 0.5)	[4.5, 4.8)	3627	0.7541	0.0025	0.0011	1.326	0.002
[0.45, 0.5)	[4.8, 5.1)	2571	0.7067	0.0036	0.0015	1.415	0.003
[0.45, 0.5)	[5.1, 5.4)	1783	0.7388	0.0049	0.0016	1.353	0.003
[0.45, 0.5)	[5.4, 5.7)	1088	0.7786	0.0050	0.0019	1.284	0.003
[0.45, 0.5)	[5.7, 6.0)	700	0.7706	0.0062	0.0022	1.298	0.004
[0.45, 0.5)	[6.0, 6.3)	435	0.7701	0.0102	0.0028	1.299	0.005
[0.45, 0.5)	[6.3, 6.6)	255	0.7313	0.0085	0.0036	1.367	0.007
[0.45, 0.5)	[6.6, 6.9)	129	0.7924	0.0139	0.0049	1.262	0.008
[0.45, 0.5)	[6.9, 7.5)	141	0.7439	0.0148	0.0033	1.344	0.006
[0.45, 0.5)	[7.5, 8.7)	45	0.7840	0.0273	0.0058	1.275	0.009
[0.5, 0.55)	[4.2, 4.5)	4306	0.6773	0.0030	0.0014	1.476	0.003
[0.5, 0.55)	[4.5, 4.8)	3228	0.7308	0.0028	0.0013	1.368	0.002
[0.5, 0.55)	[4.8, 5.1)	2223	0.7064	0.0043	0.0014	1.416	0.003
[0.5, 0.55)	[5.1, 5.4)	1444	0.7628	0.0051	0.0016	1.311	0.003
[0.5, 0.55)	[5.4, 5.7)	914	0.7484	0.0054	0.0020	1.336	0.004
[0.5, 0.55)	[5.7, 6.0)	580	0.7779	0.0069	0.0024	1.285	0.004
[0.5, 0.55)	[6.0, 6.3)	352	0.7311	0.0105	0.0032	1.368	0.006
[0.5, 0.55)	[6.3, 6.6)	211	0.7949	0.0110	0.0039	1.258	0.006
[0.5, 0.55)	[6.6, 6.9)	131	0.8114	0.0124	0.0040	1.232	0.006
[0.5, 0.55)	[6.9, 7.5)	107	0.7816	0.0171	0.0039	1.279	0.006
[0.5, 0.55)	[7.5, 8.7)	46	0.7344	0.0256	0.0058	1.362	0.011
[0.55, 0.6)	[4.2, 4.5)	3659	0.7458	0.0033	0.0013	1.341	0.002
[0.55, 0.6)	[4.5, 4.8)	2558	0.7304	0.0034	0.0014	1.369	0.003
[0.55, 0.6)	[4.8, 5.1)	1733	0.7319	0.0045	0.0016	1.366	0.003
[0.55, 0.6)	[5.1, 5.4)	1153	0.7508	0.0057	0.0019	1.332	0.003
[0.55, 0.6)	[5.4, 5.7)	791	0.7826	0.0072	0.0021	1.278	0.003
[0.55, 0.6)	[5.7, 6.0)	461	0.7215	0.0070	0.0026	1.386	0.005
[0.55, 0.6)	[6.0, 6.3)	310	0.7764	0.0107	0.0032	1.288	0.005
[0.55, 0.6)	[6.3, 6.6)	178	0.7579	0.0135	0.0038	1.320	0.007
[0.55, 0.6)	[6.6, 6.9)	113	0.7729	0.0176	0.0056	1.294	0.009
[0.55, 0.6)	[6.9, 7.5)	91	0.7624	0.0179	0.0038	1.312	0.007
[0.55, 0.6)	[7.5, 8.7)	25	0.7924	0.0322	0.0071	1.262	0.011
[0.6, 0.65)	[4.2, 4.5)	2841	0.7534	0.0039	0.0014	1.327	0.002
[0.6, 0.65)	[4.5, 4.8)	1979	0.7593	0.0041	0.0016	1.317	0.003
[0.6, 0.65)	[4.8, 5.1)	1276	0.7592	0.0043	0.0020	1.317	0.003
[0.6, 0.65)	[5.1, 5.4)	900	0.8001	0.0062	0.0018	1.250	0.003
[0.6, 0.65)	[5.4, 5.7)	535	0.7816	0.0082	0.0026	1.279	0.004
[0.6, 0.65)	[5.7, 6.0)	353	0.7361	0.0098	0.0029	1.359	0.005
[0.6, 0.65)	[6.0, 6.3)	228	0.7966	0.0125	0.0036	1.255	0.006
[0.6, 0.65)	[6.3, 6.6)	148	0.7245	0.0176	0.0048	1.380	0.009
[0.6, 0.65)	[6.6, 6.9)	85	0.8524	0.0169	0.0042	1.173	0.006
/	/	L	L	1	~	L	L

Table 4: (Continued)

$x_F Bin M$	Iass Bin (GeV/c^2) N	$V_{\rm events}$ <	$\epsilon > \delta_{ m s}$	$\delta_{\mathrm{tat}} < \epsilon > \delta_{\mathrm{p}}$	$_{\rm orop} < \epsilon > 1/$	$<\epsilon>\delta$	$1/<\epsilon>)$
[0.6, 0.65)	[6.9, 7.5)	65	0.7452	0.0265	0.0069	1.342	0.012
[0.6, 0.65)	[7.5, 8.7)	23	0.7339	0.0431	0.0111	1.363	0.021
[0.65, 0.7)	[4.2, 4.5)	1977	0.7822	0.0048	0.0016	1.278	0.003
[0.65, 0.7)	[4.5, 4.8)	1353	0.7474	0.0047	0.0019	1.338	0.003
[0.65, 0.7)	[4.8, 5.1)	858	0.7918	0.0058	0.0022	1.263	0.003
[0.65, 0.7)	[5.1, 5.4)	576	0.7777	0.0064	0.0026	1.286	0.004
[0.65, 0.7)	[5.4, 5.7)	383	0.7330	0.0097	0.0029	1.364	0.005
[0.65, 0.7)	[5.7, 6.0)	241	0.8234	0.0110	0.0035	1.215	0.005
[0.65, 0.7)	[6.0, 6.3)	172	0.7830	0.0115	0.0042	1.277	0.007
[0.65, 0.7)	[6.3, 6.6)	86	0.7874	0.0155	0.0060	1.270	0.010
[0.65, 0.7)	[6.6, 6.9)	46	0.7974	0.0223	0.0087	1.254	0.014
[0.65, 0.7)	[6.9, 7.5)	48	0.7732	0.0189	0.0097	1.293	0.016
[0.65, 0.7)	[7.5, 8.7)	21	0.3154	0.0935	0.0142	3.171	0.143
[0.7, 0.75)	[4.2, 4.5)	1245	0.7274	0.0052	0.0023	1.375	0.004
[0.7, 0.75)	[4.5, 4.8)	833	0.7707	0.0060	0.0024	1.297	0.004
[0.7, 0.75)	[4.8, 5.1)	568	0.7776	0.0077	0.0029	1.286	0.005
[0.7, 0.75)	[5.1, 5.4)	356	0.7822	0.0087	0.0038	1.278	0.006
[0.7, 0.75)	[5.4, 5.7)	243	0.7451	0.0137	0.0044	1.342	0.008
[0.7, 0.75)	[5.7, 6.0)	143	0.8584	0.0311	0.0060	1.165	0.008
[0.7, 0.75)	[6.0, 6.3)	90	0.7598	0.0270	0.0110	1.316	0.019
[0.7, 0.75)	[6.3, 6.6)	77	0.7555	0.0444	0.0201	1.324	0.035
[0.7, 0.75)	[6.6, 6.9)	43	0.0000	0.0000	0.0000	_	_
[0.7, 0.75)	[6.9, 7.5)	19	0.0000	0.0000	0.0000	_	_
$ \begin{array}{ c c } \hline [0.7, 0.75) \\ [0.75, 0.8) \end{array} $	[7.5, 8.7)	11 763	0.0000 0.6989	0.0000	0.0000 0.0040	1 491	0.000
[0.75, 0.8)	[4.2, 4.5)	438	0.0989 0.7955	0.0116 0.0202	0.0040	1.431 1.257	$0.008 \\ 0.005$
[0.75, 0.8)	[4.5, 4.8) [4.8, 5.1)	303	$0.7955 \\ 0.1510$	0.0202	0.0052	6.624	0.003 0.302
[0.75, 0.8)	[5.1, 5.4)	190	0.0000	0.0103	0.0009	0.024	0.302
[0.75, 0.8)	[5.4, 5.7)	133	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)	[5.7, 6.0)	91	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)	[6.0, 6.3)	55	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)	• /	36	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)	[6.6, 6.9)	23	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)	[6.9, 7.5)	21	0.0000	0.0000	0.0000	_	_
[0.75, 0.8)	[7.5, 8.7)	13	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[4.2, 4.5)	329	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[4.5, 4.8)	248	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[4.8, 5.1)	139	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[5.1, 5.4)	101	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[5.4, 5.7)	64	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[5.7, 6.0)	41	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[6.0, 6.3)	18	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[6.3, 6.6)	23	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[6.6, 6.9)	11	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[6.9, 7.5)	7	0.0000	0.0000	0.0000	_	_
[0.8, 0.85)	[7.5, 8.7)	3	0.0000	0.0000	0.0000	_	