院、系领导	A 半
审批并签名	A 仓

广州大学 2011-2012 学年第一学期考试卷 高等数学 [1 (90 学时) 参考解答与评分标准

一. 填空题(每空2分,本大题满分30分)

1. 曲线
$$y = \frac{x}{x+1} \cos \frac{1}{x}$$
 有水平渐近线 $y = 1$ 和铅直渐近线 $x = -1$.

2. 设
$$f(x) = (1+2x)^{\frac{1}{x}}$$
, 则 $\lim_{x\to 0} f(x) = e^2$, $\lim_{x\to +\infty} f(x) = 1$.

3. 设
$$y = x^2 - x$$
, 当 $x = 2$, $\Delta x = 0.01$ 时, $\Delta y = 0.0301$, d $y = 0.03$.

4. 设
$$\begin{cases} x = \sin t \\ y = t \sin t + \cos t \end{cases}$$
, 则
$$\frac{dy}{dt} = \underbrace{t \cos t}_{t}$$
,
$$\frac{dy}{dx} = \underbrace{t}_{t}$$
.

5. 若点(1, 2)为曲线
$$y = ax^3 - 6x^2 + b$$
 的拐点,则常数 $a = 2$, $b = 6$.

6. 设
$$f(x) = \begin{cases} e^{2x} + bx + a, & x \le 0 \\ x^2 \sin \frac{1}{x}, & x > 0 \end{cases}$$
 在点 $x = 0$ 处连续且可导,则常数 $a = \underbrace{-1}$, $b = \underbrace{-2}$.

- 二. 解答下列各题(每小题8分,本大题满分24分)
- 1. 求函数 $y = \arcsin \sqrt{1 x^4}$ 的一阶和二阶导数.

2. 求曲线 $y^3 + (x-1)y + x^3 = 9$ 在点 x = 1 处的切线方程.

解:将x=1代入曲线方程,得y=2,切点为(1, 2). 。。。。。(1分)曲线方程两边对x求导,得

$$3y^2 \frac{dy}{dx} + y + (x-1)\frac{dy}{dx} + 3x^2 = 0$$
 (5 $\%$)

将
$$x = 1$$
, $y = 2$ 代入上式,得切线斜率 $k = \frac{dy}{dx}\Big|_{x=1, y=2} = -\frac{5}{12}$,(6分)

切线方程为
$$y-2=-\frac{5}{12}(x-1)$$
,即 $5x+12y-29=0$ (8分)

3. 求函数 $f(x) = e^x \cos x$ 的极大值和极小值.

解:
$$f'(x) = e^x \cos x - e^x \sin x$$
,(2分)

令
$$f'(x) = 0$$
,得驻点 $x_k = k\pi + \frac{\pi}{4}$, $k \in \mathbb{Z}$. 。。。。。(4 分)

$$f''(x) = -2e^x \sin x$$
, (5 $\%$)

当
$$k$$
 为偶数时, $f''(x_k) = -\sqrt{2} e^{x_k} < 0$, $f(x_k) = \frac{\sqrt{2}}{2} e^{x_k}$ 为极大值; 。。。(7 分) 当 k 为奇数时, $f''(x_k) = \sqrt{2} e^{x_k} > 0$, $f(x_k) = -\frac{\sqrt{2}}{2} e^{x_k}$ 为极小值. 。。(8 分)

三. 计算下列积分 (每小题 6分, 本大题满分 18分)

1.
$$\int \frac{x \arctan x^2}{x^4 + 1} dx$$
.

解:
$$\int \frac{x \arctan x^2}{x^4 + 1} dx = \frac{1}{2} \int \frac{\arctan x^2}{x^4 + 1} d(x^2) \quad \dots \quad (2 \%)$$
$$= \frac{1}{2} \int \arctan x^2 d(\arctan x^2) \quad \dots \quad (4 \%)$$
$$= \frac{1}{4} (\arctan x^2)^2 + C \quad \dots \quad (6 \%)$$

$$2. \int_0^1 \frac{1}{\sqrt{(4-x^2)^3}} \, \mathrm{d} x.$$

$$3. \int_1^{+\infty} \frac{\ln x}{x^2} \mathrm{d}x.$$

解:
$$\int_{1}^{+\infty} \frac{\ln x}{x^2} dx = -\int_{1}^{+\infty} \ln x d(\frac{1}{x})$$
 (1分)

第 3 页 共 5 页《高等数学 [1》90 学时

$$= -\left[\frac{\ln x}{x}\right]_{1}^{+\infty} + \int_{1}^{+\infty} \frac{1}{x^{2}} dx \quad \dots \quad (3 \%)$$
$$= -\left[\frac{1}{x}\right]_{1}^{+\infty} = 1 \quad \dots \quad (6 \%)$$

四. (本题满分10分)

求函数 $f(x) = \frac{1}{x} - \frac{1}{e^x - 1} + \arctan \frac{1}{x - 1}$ 的间断点,并判别其类型.

解:由初等函数 f(x) 在其定义域内处处连续,可知 f(x) 的间断点有两个: x=0 和 x=1. 。。。。。。(3 分)

$$\lim_{x \to 1^{+}} f(x) = 1 - \frac{1}{e - 1} + \frac{\pi}{2}, \quad \lim_{x \to 1^{-}} f(x) = 1 - \frac{1}{e - 1} - \frac{\pi}{2},$$

$$\lim_{x \to 0} f(x) = -\frac{\pi}{4} + \lim_{x \to 0} (\frac{1}{x} - \frac{1}{e^x - 1}) = -\frac{\pi}{4} + \lim_{x \to 0} \frac{e^x - 1 - x}{x(e^x - 1)}$$

$$= -\frac{\pi}{4} + \lim_{x \to 0} \frac{e^x - 1}{e^x - 1 + xe^x} = -\frac{\pi}{4} + \lim_{x \to 0} \frac{e^x}{2e^x + xe^x} = -\frac{\pi}{4} + \frac{1}{2}$$

五. (本题满分6分)

设 f(x) 在 [0, 1] 上连续,在 (0, 1) 内可导,且 $\int_0^1 f(x) dx = 0$. 证明:在 (0, 1) 内存在 ξ ,满足 $f(\xi) + \xi f'(\xi) = 0$.

证明:由积分中值定理知,存在 $a \in (0, 1)$,使得

设 g(x) = xf(x), 则 g(x) 在[0, a] 上连续,在(0, a) 内可导,且 g(0) = 0 = g(a). 由罗尔定理知,存在 $\xi \in (0, a) \subset (0, 1)$,使得

$$g'(\xi) = 0$$
, $\mathbb{P} f(\xi) + \xi f'(\xi) = 0$ (6 $\%$)

第4页共5页《高等数学Ⅰ1》90学时

六. (本题满分12分)

设曲线 $y = ax^2$ $(a > 0, x \ge 0)$ 与 $y = 1 - x^2$ 交于点 A,过坐标原点 O 和点 A 的直线 与曲线 $y = ax^2$ 围成一平面图形. 问 a 为何值时,该图形绕 x 轴旋转一周所得的旋转体体积最大?

解: 点
$$A$$
 的坐标为 $(\frac{1}{\sqrt{a+1}}, \frac{a}{a+1})$, (1分)

直线
$$OA$$
 的方程为 $y = \frac{a}{\sqrt{a+1}}x$(3分)

所得的旋转体体积为

$$V = \int_0^{\frac{1}{\sqrt{a+1}}} \left[\pi \left(\frac{a}{\sqrt{a+1}} x \right)^2 - \pi (ax^2)^2 \right] dx \quad \text{occo} (6 \%)$$

$$= \pi \left[\frac{a^2}{3(a+1)} x^3 - \frac{a^2}{5} x^5 \right]_0^{\frac{1}{\sqrt{a+1}}} = \frac{2\pi a^2}{15(a+1)^{5/2}} \quad \text{occo} (9 \%)$$

$$\frac{dV}{da} = \frac{2\pi}{15} \cdot \frac{2a(a+1)^{5/2} - a^2 \cdot \frac{5}{2} (a+1)^{3/2}}{(a+1)^5} = \frac{\pi a(4-a)}{15(a+1)^{7/2}}$$

第 5 页 共 5 页《高等数学 [1》90 学时

令 $\frac{\mathrm{d}V}{\mathrm{d}a} = 0$,得唯一驻点 a = 4,此时旋转体体积 V 最大. 。。。(12 分)