Lembrete -> circuitos combinatórios

Função Booleana $Z=f(x_1,x_2,x_3,...,x_n) \rightarrow a$ saída Z depende somente das entradas x_i

Cada combinação de valores lógicos de (x1, x2, x3,..., xn) gera um único valor de Z

Função Booleana -> combinatória -> não tem a característica de realimentação

Especificação → combinatório → tabela verdade

Característica → circuitos seqüenciais

Função Booleana $Z=f(x_1,x_2,x_3,...,z,...,x_n) \rightarrow a saída Z$ depende das entradas x_i e dos eventos passados.

Cada combinação de valores lógicos de (x1, x2, x3,..., xn) pode gerar mais de um valor de Z

Função Booleana → seqüencial → possui realimentação → Z=f(x1,x2,x3,...,z,...,xn)

Especificação > seqüencial > (por ex. tabela (grafo) de transição de estados)

Característica → circuitos seqüenciais → Máquinas seqüenciais

Conceito de memória:

Z=f(x₁,x₂,x₃,..,z,..,xn) → eventos passados → processo de memorização → realimentação

Conceito de estado:

O estado é definido por um conjunto de variáveis (Ve1, Ve2,..., Ven) denominadas de variáveis de estado.

Cada combinação de valores de (Ve₁, Ve₂,..., Ve_n) define um estado

Cada estado → representa a memorização de um evento

Característica → circuitos seqüenciais → Máquinas seqüenciais

Conceito de estado:

O único conjunto de valores lógicos que caracteriza o status lógico de uma máquina em qualquer instante é chamado de estado

Uma máquina de N variáveis de estado:

 $2 \le n$ úmero de estados $\le 2^N$

Característica → circuitos seqüenciais → Máquinas seqüenciais

Exemplos:

- a) Semáforo -> quando está no vermelho, significa que memorizou que já esteve no amarelo e anteriormente no verde.
- b) Geração de seqüência: 000 → 010 → 111 → 101 → ...
- c) Elevador -> memorização de movimento, parada, destino (andar), sentido

Característica -> Máquinas següenciais

Máquinas seqüenciais usuais: máquinas de estado finito (MEF) determinísticas

Definição:

Uma MEF é definido por uma quintupla:

$$M=(\Sigma,Q,Z,f,g)$$

Onde:

 Σ = conjunto não vazio finito de entradas (e₁,e₂,...,e_n)

Q= conjunto finito (≥ 2) de estados ($q_1,q_2,...,q_n$)

Z= conjunto não vazio finito de saídas (s₁,s₂,...,s_m)

 $f = função de próximo estado que mapeia <math>Qx\Sigma$ ----> Q

 $g = função de saída, que mapeia <math>Qx\Sigma ----> Z$ Departamento de Eletrônica

Característica → Máquinas seqüenciais

Tipos de máquinas seqüências (MEF):

- a) Assíncronas → processamento ocorre por eventos (mudança na entrada)
- b) Síncronas -> eventos estão sincronizados por um sinal denominado clock (relógio)
- Clock → gerado por um oscilador → onda quadrada simétrica (normalmente)

Característica → Máquinas seqüenciais Modelos de máquinas seqüências (MEF):

Modelo Moore assíncrona

Modelo Mealy assincrona

Característica → Máquinas seqüenciais

Modelos de máquinas seqüências (MEF): Moore (Mealy) síncrona

