COMP 330

Name: Yuhao Wu ID Number: 260711365

2018-10-22

Oct 22 Lecture 17

Three important facts

- Acceptance only happens at the end of the input
- A PDA can't decide to jam when there are moves possible
- When there are choices, PDA can select any choices it wants

REMARK:

- PDAs are equivalent to CFLs
- DPDAs are equivalent to DCFLs

$$\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to (Q \times \Gamma_{\varepsilon}) \text{ or } \emptyset$$

REMARK:

For every $q \in Q$, $a \in \Sigma$, $x \in \Gamma$, **exactly one** of $\delta(q, a, x)$, $\delta(q, a, \varepsilon)$, $\delta(q, \varepsilon, x)$, $\delta(q, \varepsilon, \varepsilon)$ is non-empty

Counter-Example such that the intersection of 2CFL is not CFL

$$\{a^n \ b^n \ c^m | n, m \ge 0\} \cap \{a^m \ b^n \ c^n | n, m \ge 0\} = \{a^n b^n c^n\}$$

Algorithms for CFLs:

Is
$$L(G) = \emptyset$$
? $S \rightarrow aS$

We say that a NT x is generating if $x \xrightarrow{*} w \in \Sigma^*(\ or\ T^*)$

Theorem: $L(G) \neq \emptyset \iff S$ is generating

COMP 330 notes Yuhao Wu 260711365

Algorithm 1 Check if it is generating

```
1: procedure ALGORITHM( )
2: initialize GEN = \emptyset
3: Put all terminal symbols in GEN
4: while there is still some changes happening do \triangleright repeat until no change happens
5: for each rule x \rightarrow \alpha, check if every symbol of \alpha belongs to GEN^*
6: if so, add x to GEN
7: if S \in Gen then
8: return L(G) \neq \emptyset
```

EXAMPLES[1]:

```
S \rightarrow aS \quad GEN = \{a\}
```

Now we have just one rule $S \to \alpha$ where $\alpha = aS$, as not all of a, S belong to GEN^* , we can now end the loop, and $S \notin GEN$, we can conclude $L(G) = \emptyset$

EXAMPLES[2]:

```
S \to bA|aB A \to bAA|aS|a B \to aBB|bS|b
[1]: GEN = \{a,b\} [2]: GEN = \{a,b,A,B,S\} \Longrightarrow L(G) \neq \emptyset
```

There are more complex algorithms to check if $L(G) = \infty$

REMARK:

- The complement of CFL may not be a CFL
- The complement of DCFL is a DCFL

OCT.24 Lecture 18

Question: $w \in L(G)$?

We can convert G to Chomsky Normal Form $X(non-T) \rightarrow AB$ $X \rightarrow a(terminal)$ Using Dynamic Programming $O(n^3)$

(Cocke-Younger-Kasami Algorithm)

PDA: 2 distinct notions of acceptance

- Accept by accept states
- Accept by empty stack: at the end of the string is the stack empty? There are no accept states.

Both of them are equally powerful.

OCT.26 Lecture 19

PUMPING LEMMA:

Let *L* be a *CFL*.

 $\exists p \ge 0$ such that $\forall s \in L$ with $|s| \ge p$, $\exists u, v, w, x, y \in \Sigma^*$ where s = uvwxy such that:

- |vx| > 0 (i.e., v and x can't both be the empty string);
- $|vwx| \le p$
- $\forall i \geq 0$, $uv^i wx^i y \in L$

As with regular languages, we can use the contrapositive of the pumping lemma to prove that a language is not context-free. Here's a formal statement of the contrapositive:

Fix some *L*

 $\forall p \ge 0$ such that $\exists s \in L$ with $|s| \ge p$, $\forall u, v, w, x, y \in \Sigma^*$ where s = uvwxy such that:

- |vx| > 0 (i.e., v and x can't both be the empty string);
- $|vwx| \le p$
- $\exists i \geq 0$, $uv^i wx^i y \notin L$

Then we can say that L is not a CFL

EXAMPLE [1] $L = \{a^n \ b^n \ a^n \mid n \ge 0\}$

- Demon: choose P
- I choose $s = a^p b^p a^p \in L$
- Demon chooses any $u, v, w, x, y \in \Sigma^*$ where s = uvwxy

$$\underbrace{a,a,\ldots,a}_{p} \quad \underbrace{b,b,\ldots,b}_{p} \quad \underbrace{a,a,\ldots,a}_{p}$$

- v or x straddles a block boundary. Choose i = 2. Then, the a's and b's would be out of order in the resulting string.
- If v and x both contain only a's or b's, then v and x must be in the same block since |vwx| < p, choose i = 2
- v has a's and x has b's or v has b's and x has a's
 Then we can choose i = 2

COMP 330 notes Yuhao Wu 260711365

EXAMPLE [2] $L = \{ ww | w \in \Sigma^* \}$ suppose Σ has 2 letters.

Then, we define a new language

$$\widehat{L} = L \cap a^*b^*a^*b^* = \{a^mb^na^mb^n|m, n \ge 0\}$$

Suppose that *L* is CFL then $\widehat{L} = CFL \cap \text{regular language} = CFL$

- Demon: choose P
- I choose $s = a^p b^p a^p b^p \in L$
- Demon chooses any $u, v, w, x, y \in \Sigma^*$ where s = uvwxy

$$\underbrace{a,a,\ldots,a}_{p}$$
 $\underbrace{b,b,\ldots,b}_{p}$ $\underbrace{a,a,\ldots,a}_{p}$ $\underbrace{b,b,\ldots,b}_{p}$

NOTE: \overline{L} is a CFL

$$S \to AB|BA|A|B \qquad A \to CAC|a \qquad B \to CBC|b \qquad C \to a|b$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$n \quad n+1 \text{ position} \qquad n \qquad m \qquad n+1 \text{ position in the second half} \qquad m$$

$$L' = \{ w w^{rec} | w \in \Sigma^* \}$$
 this is CFL

OCT 29 Lecture 20: REMARK:

- CFL are NOT closed under complementation. Suppose L_1 and L_2 are context free. $L_1 \cap L_2$ is not necessarily context-free
- $L_1 \cup L_2$ we just need to add one rule $S \to S_1 | S_2$
- $L_1 \cdot L_2$ we just need to add one rule $S \to S_1 S_2$

EXAPMLE [1]: Show $L = \{0^{i}1^{j} | j = i^{2}\}$ is not a CFL

- Demon: choose P
- I choose $s = 0^p \ 1^{p^2} \in L$
- Demon chooses any $u, v, w, x, y \in \Sigma^*$ where s = uvwxy

$$\underbrace{0,0,\ldots,0}_{p} \quad \underbrace{1,1,\ldots,1}_{p^2}$$

- vwx: all zeros or all ones pick $i \neq 1$
- v or x overlaps the boundary. I pick i = 2
- v: all 0's x: all 1's Either |v| = 0 or |x| = 0 pick i = 2 if $|v|, |u| \neq 0$ pick i = 2

Exercise [1]: $L = \{a^p \mid p \text{ is a prime}\}$

Exercise [2]: $L = \{a^i \ b^j \ c^k \mid 0 < i < j < k\}$