

Chapter 7: Trees (Part 2)

(Priority Queues and Binary Heaps)

Dr. Sirasit Lochanachit

Outline

Priority Queues:

- Properties and methods
- Operation example

Binary Heaps:

- Definition, properties, examples
- Insertion and Deletion
- Consideration and Implementation in Array

<u>Queue</u> is a collection, which keeps objects in a sequence, that are inserted and removed according to the **first-in first-out** (FIFO) principle [1].

A FIFO gueue with priorities?

 Airline's waiting queue: First Class, Business Class, Economy Class

Queues

<u>Queue</u> is a collection, which keeps objects in a sequence, that are inserted and removed according to the **first-in first-out** (FIFO) principle [1].

Another variation is a **priority queue**. It stores prioritised elements that allows arbitrary element insertion and allows the deletion of the element that has first priority [1].

[1] Michael T. Goodrich et al., Data Structures and Algorithms in Python, 2013

Priority Queues Properties

- Front When a new element is added in the queue, its priority is determined by an associated **key**.
 - The order of elements is determined by their priority.
 - The <u>highest</u> priority items are at the <u>front</u> of the queue.
 - The <u>lowest</u> priority elements are at the <u>back</u>.
 - A new item that is enqueued could be moved to the front of the queue.

Priority Queue Methods

Formally, there are two main operations for priority queues P:

1) P.add(key, value)

Insert an element with key and value into the queue.

2) P.remove_min()

Remove and return the key and value that have the lowest priority; return error if the queue is empty.

Priority Queue Methods

Additional operations for priority queues P:

Front 1) **Key Element**

P.min()

Return (but do not remove) the key and value that have the lowest priority; return error if the queue is empty.

2) P.is_empty()

Check whether a priority queue is empty.

Rear 3) len(P)

Return the number of elements in a priority queue P.

Priority Queue

Before implementing a priority queue, the following assumptions should be considered:

- Keys of multiple elements can be either <u>equal</u> or <u>unique</u>.
- Once a key is assigned to the element and it has been added to a priority queue, it should be either <u>fixed</u> or <u>adjustable</u>.

Operation Example

10

Operation Exercise

Operation	Return Value	Priority Queue [first,, last]
орогинон	110001111111111111111111111111111111111	[1110t,, 140t]
P.add(5, A)	-	-
P.add(4, B)	-	
P.remove_min()		—
P.add(7, F)	-	—
P.add(3, J)		
P.remove_min()		-
P.remove_min()		-

Asymptotic Performance

n denotes the number of elements or nodes.

Operation	Running Time (unsorted list)	Running Time (sorted list)
P.add(k, v)	O(1)	<i>O</i> (n)
P.remove_min()	<i>O</i> (n)	0(1)
P.min()	<i>O</i> (n)	O(1)
P.is_empty()	O(1)	O(1)
len(P)	O(1)	O(1)

A solution that is more efficient?

Binary Heap

- A heap is a binary tree that stores elements and has the following properties:
 - For every node except the root, the key stored in a node is <u>greater than or equal</u> to the key stored at a node's parent - min heap.
 - A minimum key is located at the root node.
 - A heap has to be a complete or nearly complete binary tree.

[1] Michael T. Goodrich et al., Data Structures and Algorithms in Python, 2013

Types of Binary Trees

14

 A binary tree is nearly complete when every level, except the last, is completely filled and all leaf nodes are as far left as possible.

(a) Complete/Perfect Binary Tree

(b) Nearly Complete Binary Tree at level 2

Binary Heap

Binary Heap

Binary Heap

- To allow a binary heap to have a <u>logarithmic performance</u> when performing insertion and deletion, a tree needs to be balanced or nearly complete.
- Insertions and removals in logarithmic time is a significant improvement over the list-based implementations.
- Can be implemented using a linked list of an array.

Binary Heap Insertion

- To preserve the <u>nearly complete</u> property, the new node should be inserted at a position p, after the rightmost node at the bottom level, or as the leftmost node of a new level, if the bottom level is full.
- However, the **heap order property** may be violated where the key p is less than key of p's parent, which is denoted as $q (k_p < k_q)$.
 - The heap order needs to be restored by swapping key-value pairs, moving the new item up one level.
 - This is done until there is no violation of the heap order property.

Binary Heap Insertion

Example of when $k_p < k_q$ after inserting a new node (1, Y).

Binary Heap Insertion

- If key p is greater than key q, then the heap order is preserved $(k_p >= k_q)$.
- The upward movement of the newly inserted node through swapping is up heap bubbling or reheap up.
- The worst case scenario of upheap is moving the new item all the way to the root of heap.
 - The number of swaps executed in method <u>add()</u> is equal to the height of heap or floor of log n (i.e. Llog n J).

Upheap

Current Binary Heap

Adding new node (key, value)

Up heap #1

Upheap

Up heap #1 (cont. from previous slide)

Up heap #2

Binary Heap Removal

- Due to the property of min heap, the item with the **smallest key** is stored at the **root node**.
- However, removing the root node directly would leave two disconnected subtrees.
- To ensure that the heap remains as the <u>nearly complete binary tree</u>, the leaf node at the rightmost position of the bottom level of the tree is deleted.
 - o Before removing, the item in the last position is copied to the root node.

Binary Heap Removal

- However, the **heap order property** may be violated where the key p is greater than key of p's children, which is denoted as $q(k_p > k_c)$.
 - The heap order needs to be restored by swapping key-value pairs, moving the new item down one level.
 - When p has two children, the smaller key determines the direction of moving down.
 - This is done until there is no violation of the heap order property.

Binary Heap Removal

- If key p is less than key c, then the heap order is preserved $(k_p \le k_c)$.
- The downward movement of the new root node through swapping is down heap bubbling or reheap down.
- The worst case scenario of downheap is moving the root item all the way to the bottom level of the tree.
 - The number of swaps executed in method remove_min() is equal to the **height of heap** or **floor of log n** (i.e. Llog nJ).

Current Binary Heap

Remove a node with smallest key & copy a rightmost leafnode to the root

Down heap #1

Downheap

Down heap #1 (cont. from previous slide)

Down heap #2

Asymptotic Performance

n denotes the number of elements or nodes. The height of heap is $\log n$.

Operation	Running Time (unsorted list)	Running Time (sorted list)	Running Time (Binary Heap)
P.add(k, v)	0(1)	O(n)	O(log n)
P.remove_mi n()	<i>O</i> (n)	0(1)	O(log n)
P.min()	O(n)	0(1)	0(1)
P.is_empty()	0(1)	0(1)	0(1)
len(P)	0(1)	0(1)	0(1)

Binary Heap Consideration

If start with an empty heap, calling add operations n successive times will run in **O(n log n)** time - top-down approach.

Alternatively, bottom-up construction method runs in O(n) time (Assuming comparing two keys take O(1) time.

Faculty of Information Technology Binary Heap Implementation in Array

Binary Heap Implementation in Array

(5, G) (9, F) (8, L)

(14, K) (25, W)

Exercise

Individual Assignment

- Assignment#5: Trees
- Due 09.00 am, Tuesday 15/09/2020.
- Submission
 - Email: sirasit@it.kmitl.ac.th (PDF format preferred)
 - o Paper: in classroom next week
- Can be either written by hand or typing.
- Make sure to submit on time!!
 - Late submission has penalty on the score.
- If unable to submit on time for reasonable reasons, let me know asap.