# Integrative sparse reduced-rank regression via orthogonal rotation for analysis of high-dimensional multi-source data

Kipoong Kim and Sungkyu Jung

Department of Statistics, Seoul National University

December 3, 2022

#### Multi-source data

- Recent technological advances have enabled us to collect massive amounts of multi-source data measured from the same individuals.
- For example, The Cancer Genome Atlas (TCGA) collects multi-omics data from various genomic technologies on the same samples
  - Multi-omics datasets



- Multiple outcomes: drug responses
- Main goal is to investigate the relationship between multi-source data and multiple responses.

## (1) Multivariate linear regression

- $lue{}$  Suppose that we observed d multi-source datasets and q response variables from n individuals
  - $\mathbf{X}_i \in \mathbb{R}^{n imes p_i}$ : the design matrix from the i-th source
  - $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_d] \in \mathbb{R}^{n \times p}$ : the concatenated design matrix
  - $\mathbf{Y} \in \mathbb{R}^{n \times q}$ : the response matrix
- Let us consider a general multivariate regression framework as

$$\mathbf{Y} = \mathbf{XC} + \mathbf{E},\tag{1}$$

- $\mathbf{C} \in \mathbb{R}^{p \times q}$  is the coefficient matrix and  $\mathbf{E} \in \mathbb{R}^{n \times q}$  is the error matrix containing independent random errors with mean zero.
- Without loss of generality, we assumed that the predictor and response variables are centered to have mean zero.
- The multivariate linear regression is equivalent to performing q separate univariate linear regressions, so it does not take into account correlation among response variables.

## (2) Reduced-rank regression (RRR)

One way to handle this problem is to restrict the rank of the coefficient matrix  $\mathbf{C}$  as  $\mathrm{rank}(\mathbf{C}) = r \leq \min\{n,p,q\}$ , resulting in the following reduced-rank regression model<sup>1</sup> as

$$\mathbf{Y} = \mathbf{X}\mathbf{B}\mathbf{A}^T + \mathbf{E},\tag{2}$$

where  $\mathbf{C} = \mathbf{B}\mathbf{A}^T$  for  $\mathbf{A} \in \mathbb{R}^{q \times r}$  and  $\mathbf{B} \in \mathbb{R}^{p \times r}$ .

- Advantages
  - lacktriangleright RRR can take into account the correlation between response variables through the latent variable, say  ${f Z}={f XB}.$
  - RRR is more interpretable due to the latent variables
  - RRR can dramatically reduce the number of parameters to be estimated, and thus the estimates are more precise

<sup>&</sup>lt;sup>1</sup>A. J. Izenman, Journal of Multivariate Analysis 5, 248-264 (1975).

## Structural learning in reduced-rank regression

RRR model:

$$\mathbf{Y} = \mathbf{X}\mathbf{B}\mathbf{A}^T + \mathbf{E},\tag{3}$$

- In this work, we assume
  - structured sparsity on  $\mathbf{B} = (\boldsymbol{b}_{ik})$ , where  $\boldsymbol{b}_{ik} \in \mathbb{R}^{p_i \times 1}$ .
  - row-wise sparsity on  $\mathbf{A}=(A_{jk})$ , where  $A_{jk}\in\mathbb{R}.$
- e.g. if d=3 data sources are given,

$$\mathbf{Y} = \begin{bmatrix} \mathbf{X}_{(1)}, \ \mathbf{X}_{(2)}, \ \mathbf{X}_{(3)} \end{bmatrix} \begin{bmatrix} \boldsymbol{b}_{11} \ \boldsymbol{b}_{12} \ \boldsymbol{0} \\ \boldsymbol{b}_{21} \ \boldsymbol{b}_{22} \ \boldsymbol{0} \\ \boldsymbol{b}_{31} \ \boldsymbol{0} \ \boldsymbol{b}_{33} \end{bmatrix} \begin{bmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \\ a_{31} \ a_{32} \ a_{33} \\ 0 \ 0 \ 0 \end{bmatrix}^{\top} + \mathbf{E}, \quad (4)$$

where  $\mathbf{b}_{ik} \in \mathbb{R}^{p_i \times 1}$  and each column produces three types of components: (1) Joint, (2) Partially-joint, (3) Individual.

#### Identifiability problem in reduced-rank regression

- The reduced-rank regression model has a limitation that the decomposition  $C = BA^T$  is not unique up to an orthogonal matrix.
- For example,
  - lacksquare suppose that we have a parameter pair  $(\mathbf{A},\mathbf{B})$  which leads to  $\mathbf{C}=\mathbf{B}\mathbf{A}^T.$
  - However, for an  $r \times r$  orthogonal matrix  $\mathbf{Q}$ , another parameter pair  $(\mathbf{AQ}, \mathbf{BQ})$  also produces  $\mathbf{C} = \mathbf{BQQ}^T \mathbf{A}^T$ .

## Quartimax-simple structure

- In identifiability problem,  $\mathbf{A}\mathbf{Q}$  can be thought of as the orthogonal rotation in factor analysis.
- Quartimax criterion:  $\mathcal{F}(\mathbf{A}) = \sum_{j=1}^q \sum_{k=1}^r A_{jk}^4$ .
- $\mathcal{O}(r) = \left\{ \mathbf{Q} \in \mathbb{R}^{r \times r} : \mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \mathbf{I}_r \right\}$   $\mathcal{O}(q, r) = \left\{ \mathbf{A} \in \mathbb{R}^{q \times r} : \mathbf{A}^T \mathbf{A} = \mathbf{I}_r \right\}$  (also called Stiefel manifold)

#### Definition 1 (Quartimax-simple structure)

Given  $\mathbf{A} \in \mathbb{R}^{q \times r}$ , the rotated matrix  $\mathbf{A}\mathbf{Q}$  is said to have a quartimax-simple structure if  $\mathbf{Q}$  maximizes the quartimax criterion  $\mathcal{F}(\mathbf{A}\mathbf{Q})$  over all  $\mathbf{Q} \in \mathcal{O}(r)$ . Also, a set of semi-orthogonal matrices with simple structure is defined as

$$\mathcal{O}_S(q,r) = \left\{ \mathbf{A}\hat{\mathbf{Q}} : \hat{\mathbf{Q}} = \operatorname*{arg\,max}_{\mathbf{Q} \in \mathcal{O}(r)} \mathcal{F}(\mathbf{A}\mathbf{Q}), \ \mathbf{A} \in \mathcal{O}(q,r) \right\}.$$

#### Constrained reduced-rank regression model

We consider the constrained reduced-rank regression model under the quartimax-simple loading matrix A:

$$\mathbf{Y} = \mathbf{X}\mathbf{B}\mathbf{A}^T + \mathbf{E}, \quad \mathbf{A} \in \mathcal{O}_S(q, r), \tag{5}$$

where  $\mathbf{E} = (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n)^T$  with  $\boldsymbol{e}_l \sim \mathcal{N}_q(\mathbf{0}, \sigma^2 \mathbf{I})$ ,  $l = 1, \dots, n$ .

■ The following proposition illustrates the identifiability of (5).

#### Proposition 1 (Identifiability of the constrained RRR model)

In model (5), if  $\mathbf{B}^T\mathbf{X}^T\mathbf{X}\mathbf{B}$  has r distinct positive eigenvalues for the fixed design matrix  $\mathbf{X}$ , then the parameter set  $(\mathbf{A},\mathbf{X}\mathbf{B},\sigma^2)$  is identifiable up to simultaneous signed permutations of the columns of  $\mathbf{A}$  and  $\mathbf{X}\mathbf{B}$ .

#### Restricted eigenvalue condition

- However, in the high-dimensional setting with n < p,  $\mathbf{XB} = \mathbf{XB'}$  does not imply that  $\mathbf{B} = \mathbf{B'}$  for  $\mathbf{B}, \mathbf{B'} \in \mathbb{R}^{p \times r}$ .
- We consider the following restricted eigenvalue condition for sparse B:

#### Condition 1 (Restricted eigenvalue condition)

Let  $J\subseteq\{(u,v):1\leq u\leq p,\ 1\leq v\leq r\}$  be any index set. Consider the following set of matrices:

$$\mathbb{C}(s,\xi) = \left\{ \boldsymbol{\Delta} \in \mathbb{R}^{p \times r} \backslash \left\{ \boldsymbol{0} \right\} : \|\boldsymbol{\Delta}_{J^c}\|_{1,1} \le \xi \|\boldsymbol{\Delta}_{J}\|_{1,1}, \ |J| \le s \right\},$$

for some  $1 \leq s \leq pr$  and  $\xi > 0$ , where  $\|\cdot\|_{1,1}$  is the entry-wise  $\ell_1$  norm. The matrix  $\mathbf{X} \in \mathbb{R}^{n \times p}$  is said to satisfy the restricted eigenvalue (RE) condition over  $\mathbb{C}(s,\xi)$  if there exists  $\kappa(s,\xi) > 0$  such that

$$\kappa(s,\xi) = \min_{\mathbf{\Delta} \in \mathbb{C}(s,\xi)} \frac{\|\mathbf{X}\mathbf{\Delta}\|_F}{\sqrt{n}\|\mathbf{\Delta}\|_F}.$$

#### Identifiability under RE condition

 Under the restricted eigenvalue condition, we have the following corollary.

#### Corollary 2

In Proposition 1, assume that  $\mathbf{B}$  has at most s nonzero elements. If the design matrix  $\mathbf{X} \in \mathbb{R}^{n \times p}$  satisfies the RE condition over  $\mathbb{C}(2s, \xi)$  for some  $\xi > 0$ , the set of parameters  $(\mathbf{A}, \mathbf{B}, \sigma^2)$  is identifiable up to simultaneous signed permutations of the columns.

## Integrative sparse reduced-rank regression (iSRRR)

 $lue{f B}$  We propose to estimate  ${f A}$  and  ${f B}$  for integrative sparse reduced-rank regression (iSRRR) by solving the constrained optimization problem

$$\min_{\mathbf{A}, \mathbf{B}} \frac{1}{2n} \|\mathbf{Y} - \mathbf{X} \mathbf{B} \mathbf{A}^T\|_F^2 + \lambda \sum_{i=1}^d \sum_{k=1}^r \sqrt{p_i} \|\boldsymbol{b}_{ik}\|_2$$
subject to  $\mathbf{A} \in \mathcal{O}_S(q, r)$  and  $\mathbf{A} \in \mathcal{T}(\nu)$ ,

where  $r \geq 1$  is a given rank and

$$\mathcal{T}(
u) = \left\{ \mathbf{A} \in \mathcal{O}(q, r) : \min_{j: \, oldsymbol{a}_j : \, oldsymbol{\neq} \mathbf{0}} \|oldsymbol{a}_j : \|_2 \ge 
u 
ight\}.$$

- Tuning parameters:
  - Tuning parameter  $\lambda \ge 0$  controls the structured sparsity of **B**
  - Row-wise sparsity level  $\nu$  controls the entry-wise sparsity of  ${\bf A}.$

## Estimation: Alternating algorithm

- For an initial value  $(\mathbf{A}^{(0)}, \mathbf{B}^{(0)})$ ,
  - lacksquare A-step: Given  ${f B}^{(m)}$ , solve the problem in three substeps

$$\min_{\mathbf{A}} \ \frac{1}{2n} \|\mathbf{Y} - \mathbf{X} \mathbf{B} \mathbf{A}^T\|_F^2 \ \text{ s.t. } \mathbf{A} \in \mathcal{T}(\nu) \text{ and } \mathbf{A} \in \mathcal{O}_S(q,r)$$

- (1) Orthogonal Procrustes Problem
- (2) Hard Thresholding
- (3) Orthogonal Projection
- Q-step: Given  $(\mathbf{A}^{(m)}, \mathbf{B}^{(m)})$ , obtain the rotation matrix

$$\hat{\mathbf{Q}} = \underset{\mathbf{Q}}{\operatorname{arg\,max}} \ \mathcal{F}(\mathbf{A}^{(m)}\mathbf{Q}),$$

and rotate 
$$\mathbf{A}^{(m)} \leftarrow \mathbf{A}^{(m)} \hat{\mathbf{Q}}$$
 and  $\mathbf{B}^{(m)} \leftarrow \mathbf{B}^{(m)} \hat{\mathbf{Q}}$ 

lacksquare B-step: Given  ${f A}^{(m)}$ , perform the group-lasso regression estimation

$$\min_{\mathbf{B}} \sum_{k=1}^{r} \left[ \frac{1}{2n} \|\mathbf{Y}\mathbf{A}_k - \mathbf{X}\mathbf{B}_k\|_2^2 + \lambda \sum_{i=1}^{d} \sqrt{p_i} \|\boldsymbol{b}_{ik}\|_2 \right],$$

where  $A_k$  and  $B_k$  denote the kth column of A and B, respectively.

## Rank selection and parameter tuning

- The rank selection can be treated as estimating the rank of C.
  - Self-Tuning Rank Selection (STRS)<sup>2</sup>.
  - BIC for rank selection (BICk)<sup>3</sup>.
    - Both methods enjoy nice asymptotic properties.
- Our model includes two tuning parameters:  $\lambda \geq 0$  and  $\nu \in [0,1].$ 
  - For choosing the optimal  $(\lambda, \nu)$ , we propose to use the Bayesian information criterion:

$$BIC(\lambda) = \frac{1}{nq} \|\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}}_{\lambda}\hat{\mathbf{A}}_{\lambda}^{T}\|_{F}^{2} + \frac{\log(nq)}{nq} \hat{\mathsf{df}}(\lambda),$$

where 
$$\hat{\mathsf{df}}(\lambda) = \|\hat{\mathbf{A}}_{\lambda}\|_0 + \|\hat{\mathbf{B}}_{\lambda}\|_0$$
.

<sup>&</sup>lt;sup>2</sup>X. Bing, M. H. Wegkamp, The Annals of Statistics 47, 3157–3184 (2019).

<sup>&</sup>lt;sup>3</sup>C. Zou et al., Journal of the American Statistical Association 117, 693-703 (2022).

## Simulation design

The simulated data were generated by the model

$$\mathbf{Y} = \mathbf{X}\mathbf{B}\mathbf{A}^T + \mathbf{E},$$

- $\mathbf{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)^T$  with  $\boldsymbol{x}_l \sim \mathcal{N}(0, \boldsymbol{\Psi}), l = 1, \dots, n$ ,
- $\Psi = \{\psi_{uv}\} \text{ with } \psi_{uv} = 0.5^{|u-v|} \text{ for } u,v=1,\ldots,p.$
- Each row of the random error matrix  $\mathbf{E} = (e_1, \dots, e_n)^T$  was generated from the multivariate normal distribution as  $e_l \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ ,
- ullet  $\sigma^2$  was set so that  $SNR = \|\mathbf{X}\mathbf{C}\|_F / \|\mathbf{E}\|_F = 0.5$ , where  $\mathbf{C} = \mathbf{B}\mathbf{A}^T$
- Settings:  $n \in \{10, 50, 100\}$ ,  $p_i = 500$ , q = 60, d = 4, r = 6
- Simulation was repeated 100 times

## Simulation design

■ Three different types of  $\mathbf{B} = \{ \boldsymbol{b}_{ik} \}$  with  $\boldsymbol{b}_{ik} \in \mathbb{R}^{p_i \times 1}$  were considered as structured sparsity patterns as

(a) Individual: 
$$\mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{23} & b_{24} & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{35} & b_{36} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(b) Mixed: 
$$\mathbf{B} = egin{bmatrix} \mathbf{b}_{11} & \mathbf{b}_{12} & \mathbf{0} & \mathbf{b}_{14} & \mathbf{b}_{15} & \mathbf{0} \\ \mathbf{b}_{21} & \mathbf{0} & \mathbf{b}_{23} & \mathbf{b}_{24} & \mathbf{0} & \mathbf{b}_{26} \\ \mathbf{b}_{31} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{b}_{35} & \mathbf{b}_{36} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix},$$

where each entry was generated from  $\mathcal{U}(0.1, 0.3)$ .

- A semi-orthogonal and quartimax-simple **A** with sparse entries was generated by repeating (1) orthogonalization, (2) hard-thresholding, (3) rotation steps on random matrix from N(0,1), with true sparsity-level  $\nu^*=0,\ 0.2,\ 0.4.$ 
  - The sparsity levels produce approximately 0%, 15%, 80% zero rows, respectively.

#### Evaluation criteria

- Recovery of the underlying structure
  - Element-wise accuracy of  $\hat{\mathbf{C}}$ .
- Estimation performances:
  - The first principal angles:

$$\angle(\mathbf{A},\hat{\mathbf{A}})$$
 and  $\angle(\mathbf{B},\hat{\mathbf{B}})$ 

- Predictive performance
  - RMSPE on an independent test dataset:

$$\mathsf{RMSPE} = \sqrt{\|\mathbf{Y}_{\mathsf{test}} - \mathbf{X}_{\mathsf{test}} \hat{\mathbf{C}}\|_F^2 / n_{\mathsf{test}} q}$$

All evaluation criteria were averaged over 100 simulation replicates.

## Result: Element-wise accuracy of $\hat{\mathbf{C}}$

|         |     |                   | Indi              | vidual          |                 | Mixed             |                 |                 |                 |  |
|---------|-----|-------------------|-------------------|-----------------|-----------------|-------------------|-----------------|-----------------|-----------------|--|
| $\nu^*$ | n   | iSRRR             | RSSVD             | SOFAR           | SECURE          | iSRRR             | RSSVD           | SOFAR           | SECURE          |  |
| 0       | 10  | 0.974<br>(0.07)   | 0.254<br>(0.00)   | 0.750<br>(0.00) | 0.250<br>(0.00) | 0.943<br>(0.11)   | 0.252<br>(0.00) | 0.750<br>(0.00) | 0.250<br>(0.00) |  |
|         | 50  | $0.998 \\ (0.01)$ | $0.291 \\ (0.01)$ | 0.750<br>(0.00) | 0.255<br>(0.00) | $0.998 \\ (0.01)$ | 0.254<br>(0.01) | 0.750<br>(0.00) | 0.262<br>(0.01) |  |
|         | 100 | 0.999<br>(0.00)   | 0.343<br>(0.02)   | 0.750<br>(0.00) | 0.261<br>(0.00) | 0.998<br>(0.00)   | 0.264<br>(0.02) | 0.750<br>(0.00) | 0.279<br>(0.01) |  |
| 0.2     | 10  | 0.920 (0.08)      | 0.340<br>(0.03)   | 0.663<br>(0.03) | 0.337<br>(0.03) | 0.873<br>(0.12)   | 0.339 (0.03)    | 0.663<br>(0.03) | 0.337<br>(0.03) |  |
|         | 50  | $0.991 \\ (0.01)$ | 0.375<br>(0.03)   | 0.663<br>(0.03) | 0.343<br>(0.03) | 0.979<br>(0.02)   | 0.343<br>(0.03) | 0.663<br>(0.03) | 0.351<br>(0.03) |  |
|         | 100 | 0.999 (0.00)      | 0.421<br>(0.03)   | 0.663<br>(0.03) | 0.348<br>(0.03) | 0.995<br>(0.01)   | 0.352<br>(0.03) | 0.663 (0.03)    | 0.367<br>(0.03) |  |
| 0.4     | 10  | 0.931 (0.12)      | 0.899 (0.02)      | 0.198<br>(0.27) | 0.899<br>(0.02) | 0.865<br>(0.16)   | 0.896<br>(0.02) | 0.146<br>(0.19) | 0.898<br>(0.02) |  |
|         | 50  | 0.987 (0.04)      | 0.904 (0.02)      | 0.174 (0.24)    | 0.901<br>(0.02) | 0.952 (0.09)      | 0.899 (0.02)    | 0.140<br>(0.18) | 0.902<br>(0.02) |  |
|         | 100 | 0.995 (0.02)      | 0.911 (0.02)      | 0.119<br>(0.13) | 0.903 (0.02)    | 0.993 (0.02)      | 0.902 (0.02)    | 0.149<br>(0.20) | 0.906<br>(0.02) |  |
|         |     | (0.02)            | (0.02)            | (0.13)          | (0.02)          | (0.02)            | (0.02)          | (0.20)          | (0.02)          |  |

Table: The corresponding standard errors are presented in parentheses.

## Result: Principal angles and accuracies of $(\hat{\mathbf{A}}, \hat{\mathbf{B}})$

| $\nu^*$ | n   | Individual                 |                            |                                    |                         | Mixed                      |                            |                                    |                         |  |
|---------|-----|----------------------------|----------------------------|------------------------------------|-------------------------|----------------------------|----------------------------|------------------------------------|-------------------------|--|
|         |     | $\angle(\hat{\mathbf{A}})$ | $\angle(\hat{\mathbf{B}})$ | $\overline{acc}(\hat{\mathbf{A}})$ | $acc(\hat{\mathbf{B}})$ | $\angle(\hat{\mathbf{A}})$ | $\angle(\hat{\mathbf{B}})$ | $\overline{acc}(\hat{\mathbf{A}})$ | $acc(\hat{\mathbf{B}})$ |  |
| 0       | 10  | 0.285<br>(0.63)            | 20.968<br>(2.38)           | 0.992<br>(0.02)                    | 0.839<br>(0.07)         | 0.263<br>(0.08)            | 21.696<br>(2.59)           | 0.997<br>(0.01)                    | 0.843<br>(0.06)         |  |
|         | 50  | 0.096<br>(0.17)            | 13.757<br>(0.56)           | 0.998 (0.01)                       | 0.768<br>(0.10)         | 0.120<br>(0.03)            | 12.981<br>(1.02)           | 0.997 (0.01)                       | 0.789<br>(0.06)         |  |
|         | 100 | 0.056<br>(0.01)            | 12.189<br>(0.41)           | 0.998<br>(0.01)                    | 0.747<br>(0.11)         | 0.086<br>(0.02)            | 10.678<br>(0.61)           | 0.998<br>(0.01)                    | 0.780<br>(0.05)         |  |
| 0.2     | 10  | 0.262<br>(0.48)            | 20.957<br>(2.37)           | 0.928<br>(0.03)                    | 0.850<br>(0.06)         | 0.306<br>(0.31)            | 21.804<br>(2.39)           | 0.910<br>(0.03)                    | 0.844<br>(0.06)         |  |
|         | 50  | $0.072 \\ (0.01)$          | 13.706<br>(0.53)           | 0.988<br>(0.02)                    | 0.788<br>(0.10)         | 0.105<br>(0.02)            | 12.993<br>(1.09)           | 0.971<br>(0.03)                    | 0.788<br>(0.06)         |  |
|         | 100 | 0.051<br>(0.01)            | 12.183<br>(0.42)           | 0.998 (0.01)                       | 0.750<br>(0.11)         | 0.076<br>(0.01)            | 10.698<br>(0.65)           | 0.993 (0.01)                       | 0.780<br>(0.05)         |  |
| 0.4     | 10  | 0.024<br>(0.04)            | 20.186<br>(2.16)           | 0.913<br>(0.16)                    | 0.941<br>(0.06)         | 0.072<br>(0.09)            | 21.707<br>(2.96)           | 0.834<br>(0.19)                    | 0.895<br>(0.07)         |  |
|         | 50  | 0.002<br>(0.01)            | 13.299<br>(0.48)           | 0.985<br>(0.05)                    | 0.968<br>(0.06)         | 0.014 (0.03)               | 12.036<br>(0.64)           | 0.937<br>(0.12)                    | 0.945<br>(0.06)         |  |
|         | 100 | 0.000 (0.00)               | 11.855<br>(0.37)           | 0.997<br>(0.03)                    | 0.955<br>(0.08)         | 0.002<br>(0.01)            | 10.225<br>(0.44)           | 0.991<br>(0.02)                    | 0.932<br>(0.08)         |  |

Table: Here,  $\angle(\cdot)$ ,  $\overline{acc}(\cdot)$  and  $acc(\cdot)$  refer to the largest principal angle, row-wise accuracy and element-wise accuracy, respectively. The principal angles are given in degrees.

#### NCI-60 dataset

- We applied the proposed method to an NCI-60 multi-omics dataset with drug responses<sup>4</sup> that is publicly available in the R package "rcellminer"
- We applied the sure independence screening  $(SIS)^5$  for dense signals.
- After some pre-processing steps, we finally have

$$\mathbf{X}_{exp} \in \mathbb{R}^{57 \times 502}, \ \mathbf{X}_{mut} \in \mathbb{R}^{57 \times 409}, \ \mathbf{X}_{met} \in \mathbb{R}^{57 \times 476}, \ \mathbf{X}_{cop} \in \mathbb{R}^{57 \times 558},$$

$$\mathbf{Y}_{drug} \in \mathbb{R}^{57 \times 53}$$

where *exp*, *mut*, *met* and *cop* represent expression, mutation, methylation, and copy number variation, respectively.

lacksquare The rank was estimated at 2 by STRS , and  $((\lambda, \nu)$  was chosen by BIC.

<sup>&</sup>lt;sup>4</sup>S. Dietrich et al., The Journal of Clinical Investigation 128, 427-445 (2018).

<sup>&</sup>lt;sup>5</sup> J. Fan, J. Lv, Journal of the Royal Statistical Society: Series B 70, 849-911 (2008).

#### The results of NCI-60 dataset

Heatmap of the estimated coefficient matrix  $\hat{\mathbf{C}}$ 



Figure: The rows and columns correspond to predictors and responses, respectively. Extreme values are truncated for better visibility

#### The results of NCI-60 dataset

The structure-wise selection frequencies from 100 bootstrap replicates

| Structure                                   | Selection Frequency |
|---------------------------------------------|---------------------|
| $(\ \cdot\ ,\ \cdot\ ,\ \cdot\ ,\ \cdot\ )$ | 0.37                |
| $(exp, \cdot, \cdot, \cdot)$                | 0.21                |
| $( \cdot, mut, \cdot, \cdot)$               | 0.12                |
| $(\cdot, \cdot, met, \cdot)$                | 0.41                |
| $( \cdot , \cdot , \cdot , cop)$            | 0.15                |
| $(exp, \cdot, met, \cdot)$                  | 0.51                |
| $(\cdot, mut, \cdot, cop)$                  | 0.01                |
| $(\cdot, \cdot, et, cop)$                   | 0.02                |
| $(exp, mut, \cdot, cop)$                    | 0.01                |
| $(\cdot, mut, met, cop)$                    | 0.01                |
|                                             |                     |

#### The results of NCI-60 dataset

The heatmap of selection frequencies for the estimated  $\hat{\mathbf{C}}$  from 100 bootstrap replicates



#### Conclusion

- In this work, we have proposed a new method for both integrating multi-source data and recovering structured sparsity in the reduced-rank regression framework.
- The proposed method restricts the parameter space to a set of semi-orthogonal matrices that have the simple structure based on the quartimax criterion in order to solve the identifiability problem.
- Our method have advantages in the following two aspects:
  - (1) it is more interpretable and can detect the structured sparsity patterns;
  - (2) it can perform the simultaneous selection for both predictors and responses through achieving sparisty on both  $\bf A$  and  $\bf B$ .
- Some interesting topics for future research:
  - the group-lasso penalty cannot detect variables within a group
  - non-gaussian data types of responses and/or predictors

## Thank you for attending