

ANSWER KEY

DATE: 28-11-2018

1	COURSE
NL	ICLEUS

JEE-MAIN MOCK TEST-5

T	ES	ΓС	OD	E
1	1	2	7	0

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	2	3	2	1	1	3	2	4	1	1	1	4	4	4	2
Q.No.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	1	2	4	2	2	2	1	3	1	1	4	3	2	4	1
	PC	ОС	IOC	PC	ос	IOC	PC	ОС	IOC	PC	ОС	IOC	PC	ОС	IOC
Q.No.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	4	3	1	1	4	2	2	2	3	1	2	4	3	3	2
	PC	ОС	IOC	PC	ос	ЮС	PC	ос	IOC	PC	ос	IOC	PC	ос	IOC
Q.No.	PC 46	OC 47	10C 48	PC 49	OC 50	10C 51	PC 52	OC 53	10C 54	PC 55	0C 56	10C 57	PC 58	OC 59	10C 60
Q.No.															
	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	46 4	47	48 4	49	50	51	52	53	54 4	55	56 2	57	58	59	60 4
Ans Q.No.	46 4 61	47 4 62	48 4 63	49 4 64	50 1 65	51 1 66	52 2 67	53 1 68	54 4 69	55 4 70	56 2 71	57 4 72	58 3 73	59 2 74	60 4 75
Ans Q.No. Ans	46 4 61 3	47 4 62 3	48 4 63 4	49 4 64 4	50 1 65 2	51 1 66 1	52 2 67 4	53 1 68 4	54 4 69 1	55 4 70 3	56 2 71 3	57 4 72 3	58 3 73 2	59 2 74 3	60 4 75 1

HINTS & SOLUTIONS

MATHEMATICS

Q.1 focus is (4, 4) & D can be y = 6 or y = 2

D:y=6
$$(2,4)$$
 $(6,4)$
 $S(4,4)$
 $D:y=2$

where 'O' is origin and S is the focus and D is directrix

Q.2 Apply $R_3 \rightarrow R_3 - R_1$, we get

$$\Delta = \begin{vmatrix} 1 & 3\cos\theta & 1\\ \sin\theta & 1 & 3\cos\theta\\ 0 & \sin\theta - 3\cos\theta & 0 \end{vmatrix}$$

 $=(3\cos\theta-\sin\theta)^2$

So, maximum value of Δ equals 10.

Q.3 We have $|z|^2 + \frac{16}{|z|^3} = z^2 - 4z = \overline{z}^2 - 4\overline{z}$

$$\Rightarrow (z - \overline{z}) (z + \overline{z} - 4) = 0$$

$$\Rightarrow z = \overline{z} = x (x \neq 2)$$

So,
$$x^2 = 4x + x^2 + \frac{16}{|x|^3} \implies x = \frac{-4}{|x|^3}$$

$$\Rightarrow x = -\sqrt{2}$$

$$\therefore z = -\sqrt{2}$$

Hence only one z will satisfy above equation.

Q.4 Circle is $(x-r)^2 + (y-r)^2 = r^2$ $\Rightarrow x^2 + y^2 - 2xr - 2yr + r^2 = 0$

Hence the circles are

$$x^2 + y^2 - 2xr_1 - 2yr_1 + r_1^2 = 0$$
(1)

$$x^2 + y^2 - 2xr_2 - 2yr_2 + r_2^2 = 0$$
(2)

As (1) and (2) are orthogonal so
$$2r_{1}r_{2} + 2r_{1}r_{2} = r_{1}^{2} + r_{2}^{2}$$

$$4\frac{r_{1}}{r_{2}} = \left(\frac{r_{1}}{r_{2}}\right)^{2} + 1$$

$$\Rightarrow \left(\frac{r_{1}}{r_{2}}\right)^{2} - 4\left(\frac{r_{1}}{r_{2}}\right)^{2} + 1 = 0$$

$$\Rightarrow \frac{r_{1}}{r_{2}} = \frac{4 \pm \sqrt{16 - 4}}{2} = \frac{2 \pm 2\sqrt{3}}{2}$$

$$= 2 + \sqrt{3} \text{ or } 2 - \sqrt{3} \text{ (rejected)}$$

Q.6 2x dx - 3y dy = 0 gives, on integration, $x^2 - 3\frac{y^2}{2} = \frac{c}{2}$. The solution represents a

family of hyperbolas given by $\frac{x^2}{\frac{c}{2}} - \frac{y^2}{\frac{c}{3}} = 1$

whose eccentricity =
$$\sqrt{\frac{\frac{c}{2} + \frac{c}{3}}{\frac{c}{2}}} = \sqrt{\frac{5}{3}}$$
, if $c > 0$

and eccentricity = $\sqrt{\frac{5}{2}}$, if c < 0. For c = 0, it

gives a pair of lines which are the asymptotes of the hyperbolas.

Q.7 L:
$$(y-4) = \frac{-1}{3} (x-1)$$

put $y = 0$, $x = 13$

- Q.8 $B = AA^{T}$. Hence, det. $B = |AA^{T}| = |A||A^{T}| = |A|^{2} = 4^{2} = 16$.
- Q.9 Total $n(A \cup B)$ $\frac{6!}{2!2!} (n(A) + n(B) n(A \cap B))$

Set A represents number of ways when G's are together Set B represents number of ways when E's are together

$$\frac{6!}{2!2!} - \left(\frac{5!}{2!} + \frac{5!}{2!} - 4!\right) = 180 - 96 = 84$$

Aliter: GG EE A R

Q.11

Number of words when

G's are separated =
$$\frac{4!}{2!} \cdot {}^{5}C_{2} = 120$$

Number of words when G's are separated but E's are together = $3! \times {}^{4}C_{2} = 36$

... Number of ways when no two alike letters are together = 120 - 36 = 84

- Q.10 We have $\sin \alpha = \frac{3}{5}$, $\cos \beta = \frac{2+2}{\sqrt{5}\sqrt{5}} = \frac{4}{5}$ So, $(\cos^2 \alpha + \sin^2 \beta) = \frac{16}{25} + \frac{9}{25} = 1$.
 - Y S(2, 2) (3, 1) R Q(2,0) X

Area of pentagon PQRST = 7 \Rightarrow ar.(trapezium PQST) + ar.(\triangle QRS) = 7 $\Rightarrow \frac{1}{2}((t+1)+2) \times 3 + \frac{1}{2}(2)(1) = 7$ \Rightarrow t = 1 **Ans.**

Q.12
$$\begin{vmatrix} 2 & 1 & 1 \\ 3 & 2\lambda & 4 \\ 1 & 1 & -3\lambda \end{vmatrix} = 0 ;$$

$$\begin{vmatrix} 1 & 0 & 1 \\ 3-3\lambda & 2\lambda-4 & 4 \\ 0 & 1+3\lambda & -3\lambda \end{vmatrix} = 0 ;$$

$$\begin{vmatrix} 0 & 0 & 1 \\ -2\lambda - 1 & 2\lambda - 4 & 4 \\ 3\lambda & 1 + 3\lambda & -3\lambda \end{vmatrix} = 0$$

$$(3\lambda + 1)(2\lambda + 1) + 3\lambda(2\lambda - 4) = 0$$

$$\Rightarrow 6\lambda^2 + 5\lambda + 1 + 6\lambda^2 - 12\lambda = 0$$

$$\Rightarrow 12\lambda^2 - 7\lambda + 1 = 0$$

$$\Rightarrow (3\lambda - 1)(4\lambda - 1) = 0$$

$$\Rightarrow \lambda = \frac{1}{3}, \frac{1}{4} \Rightarrow \text{Sum} = \frac{7}{12} \text{ Ans.}$$

Q.14 Distance between centre and focus = ae = 10

Distance between directrices = $\frac{2a}{e} = 4$

$$\therefore \frac{ae}{\frac{2a}{e}} = \frac{10}{4} \Rightarrow e^2 = 5 \Rightarrow \frac{4e^2}{5} = 4.$$

Q.15 The slope of the chord is $m = -\frac{8}{k}$ $\Rightarrow k = \pm 1, \pm 2, \pm 4, \pm 8$ but (8, k) must also lie inside the circle $x^2 + y^2 = 125$

$$\Rightarrow 64 + k^2 - 125 < 0$$

$$\Rightarrow$$
 $k^2 < 61$

$$\Rightarrow$$
 k can be equal to ± 1 , ± 2 , ± 4

 \Rightarrow 6 values

Q.16
$$||z-(1+2i)|-|z-(3+4i)||=2$$

represents a hyperbola with foci (1, 2) and (3, 4) and length of transverse axis = 2.

$$\therefore 2a = 2 \Rightarrow a = 1$$

: Feet of perpendiculars from foci on any tangent lie on auxilliary circle of the hyperbola.

:. Locus will be auxilliary circle.

 \therefore Centre = mid point of foci = (2, 3)

and radius = semi transverse axis = 1

 \therefore Equation of auxilliary circle is |z-(2+3i)|=1

$$0 = \frac{6!}{2! \ 3! \ 1!} = 60$$

Q.18 In dual statement \vee replace by \wedge and \wedge replace by \vee so answer is $(p \wedge \sim q) \vee (\sim p)$.

Q.19 Required intercept will be equal to the perpendicular distance from the focus on the tangent at P.

Tangent at P,

$$y \cdot 6 = 2 \cdot \frac{9}{4}(x+4)$$

$$\Rightarrow 12y = 9x + 36$$
$$\Rightarrow 9x - 12y + 36 = 0$$

$$p = \left| \frac{\frac{81}{4} + 36}{\sqrt{81 + 144}} \right| = \left| \frac{225}{4 \cdot 15} \right| = \frac{15}{4}$$

Q.20 E:
$$\frac{x^2}{9} + \frac{y^2}{4} = 1 \Rightarrow P(3\cos\theta, 2\sin\theta)$$

and C (0, 0)
 $m_{CP} = \frac{2\tan\theta}{3}$; $m_T = \frac{-2\cot\theta}{3}$

∴ angle between then =
$$\frac{2}{3} \left| \frac{\tan \theta + \cot \theta}{1 - \frac{4}{3}} \right|$$

 \therefore angle is minimum, when $\theta = 45^{\circ}$

$$\Rightarrow P\left(\frac{3}{\sqrt{2}}, \sqrt{2}\right).$$

Q.21
$$\sum_{i=1}^{20} (x_i - 30) = 20$$
$$\sum_{i=1}^{20} x_i - \sum_{i=1}^{20} 30 = 20$$
$$\sum_{i=1}^{20} x_i - 30 \times 20 = 20$$
$$\sum_{i=1}^{20} x_i = 620$$
Mean =
$$\frac{\sum_{i=1}^{20} x_i}{20} = \frac{620}{20} = 31.$$

Q.22 We have
$$[\hat{a} \quad \hat{b} \quad \hat{a} \times \hat{b}] = \frac{1}{4}$$

$$\Rightarrow (\hat{a} \times \hat{b}) \cdot (\hat{a} \times \hat{b}) = \frac{1}{4} \Rightarrow |\hat{a} \times \hat{b}| = \frac{1}{4}$$

$$\Rightarrow \sin^2 \theta = \frac{1}{4} \Rightarrow \sin \theta = \frac{1}{2}$$
Hence $\theta = \frac{\pi}{6}$ (As $|\vec{a}| = 1 = |\vec{b}|$)

Q.25 We have
$$z = \frac{2^8 \left(\sqrt{3} + i\right)^8}{(1 - i)^6} + \frac{(1 + i)^6}{2^8 \left(\sqrt{3} - i\right)^8}$$

$$= \frac{2^8 \left(2e^{\frac{i\pi}{6}}\right)^8}{\left(\sqrt{2}e^{\frac{-i\pi}{4}}\right)^6} + \frac{\left(\sqrt{2}e^{\frac{i\pi}{4}}\right)^6}{2^8 \left(2e^{\frac{-i\pi}{6}}\right)^8}$$

$$= \frac{2^{16} e^{\frac{i4\pi}{3}}}{2^3 e^{\frac{-3\pi i}{2}}} + \frac{2^3 e^{\frac{3\pi i}{2}}}{2^{16} e^{\frac{-4\pi i}{3}}}$$

$$= 2^{13} e^{i\left(\frac{4\pi}{3} + \frac{3\pi}{2}\right)} + \frac{1}{2^{13}} e^{i\left(\frac{3\pi}{2} + \frac{4\pi}{3}\right)}$$

$$= \left(2^{13} + \frac{1}{2^{13}}\right) e^{i\left(\frac{4\pi}{3} + \frac{3\pi}{2}\right)}$$
Hence $|\pi| = 2^{13} + \frac{1}{2^{13}}$ and

Hence
$$|z| = 2^{13} + \frac{1}{2^{13}}$$
 and
amp $z = \frac{4\pi}{3} + \frac{3\pi}{2} - 2\pi = \frac{5\pi}{6}$

Q.26 L_1 and L_2 are intersecting lines.

The position vector of their point of intersection is $5\hat{i} - 7\hat{j} + 6\hat{k}$ (For $\lambda = 2$ or $\mu = 1$).

Also, angle between L_1 and $L_2 = \frac{70}{11\sqrt{42}}$.

Q.27 Since, both the planes are parallel

$$P_1: 4x - 6y + 12z + 10 = 0$$

 $P_2: 4x - 6y + 12z + d = 0$
 $b = -6, c = 12$

Now,
$$\left| \frac{d-10}{2\sqrt{4+9+36}} \right| = 3$$

$$|d-10| = 42 \implies d = 52 \text{ or } -32$$

$$P_2$$
 is $4x - 6y + 12z + 52 = 0$

or
$$4x - 6y + 12z - 32 = 0$$

: Point (-3, 0, -1) is lying between planes P_1 and P_2

... On substituting the point in the equation of the planes both expressions must be of opposite sign.

From P₁:

$$4 \times (-3)^{1} - 6 \times 0 + 12 (-1) + 10 = -ve$$

From P₂

$$4 \times (-3) - 6 \times 0 + 12 (-1) + 52 = +ve$$

∴ d must be 52

Hence,
$$(b + c + d) = -6 + 12 + 52 = 58$$

Q.28 H: Victim was hit

A: Event that Mr. A was given the live

bullet;
$$P(A) = \frac{1}{3}$$

B: Mr. B had live bullet; $P(B) = \frac{1}{3}$

C: Mr. C has live bullet; $P(C) = \frac{1}{3}$

$$P(C/H) = \frac{P(C \cap H)}{P(H)} = \frac{P(C) \cdot P(H/C)}{P(H)}$$

$$P(H) = P(H \cap C) + P(H \cap B) + P(H \cap A)$$

$$= \frac{1}{3} [P(H/C) + P(H/B) + P(H/A)]$$

$$= \frac{1}{3} [0.8 + 0.7 + 0.6] = \frac{0.21}{3}$$

$$P(C/H) = \frac{0.8}{0.21} = \frac{8}{21}$$

Q.29 (a, a) \in R since $a = 3^0 \cdot a$ \Rightarrow R is reflexive if (a, b) \in R \Rightarrow a = 3^k · b, k \in I \Rightarrow b = 3^{-k} · a, -k \in I \Rightarrow (b, a) \in R \Rightarrow R is symmetric if (a, b) and (b, c) \in R \Rightarrow a = 3^{k₁} · b, b = 3^{k₂} · c, k₁, k₂ \in I \Rightarrow a = 3^{k₁+k₂} · c, -(k₁+k₂) \in I \Rightarrow (a, c) \in R \Rightarrow R is transitive.

:. R is an equivalence relation

Q.30 Solving the equation of planes, we get equation of line containing planes

$$\frac{x}{0} = \frac{y}{-10} = \frac{z}{-5}$$
(1)

Any point P on (1) is $(0, -10\lambda, -5\lambda)$. Now, direction ratios of the line joining P and M is $\langle 1, 1+10\lambda, 1+5\lambda \rangle$ As line MP is perpendicular to line (1), so $0(1) - 10(1 + 10\lambda) - 5(1 + 5\lambda) = 0$

$$\Rightarrow \lambda = \frac{-3}{25} \Rightarrow P\left(0, \frac{6}{5}, \frac{3}{5}\right)$$

So, d.r's of MP are $\left\langle -1, \frac{1}{5}, \frac{-2}{5} \right\rangle$

So, equation of required line is $\frac{x-1}{5} = \frac{y-1}{-1}$ = $\frac{z-1}{2}$. Ans.

CHEMISTRY

Q.31 Theory based

Q.33 As we move left to right metallic character decreases and as we move top to bottom metallic character increases, so correct is

$$\underset{(group15)}{P} < \underset{(group14)}{Si} < \underset{(group2}{Be} < \underset{(group2}{Mg} < \underset{(group1}{Na}){Na}$$

Q.34 Theory based

Basicity order of indicated atoms P, Q, R is P > Q > R

Q.36 Theory based

Q.37
$$n_{\text{mix}} = \left(\frac{1 \times 0.0249}{0.083 \times 300}\right) \text{ mol} = 0.001 \text{ mol}$$

$$n_{O_2} = n_{F_2} = \frac{0.001}{2} \text{ mol}$$

$$\therefore n_{O_2F_2} \text{ (decomposed)} = \frac{0.001}{2} \text{ mol.}$$

$$m_{O_2F_2}$$
 (decomposed) =

$$\frac{0.001}{2} \times 70g = (0.001 \times 35)g$$

 \therefore % of O_2F_2 decomposed =

$$\frac{0.001\times35}{0.1}\times100\% = 35\% \text{ Ans.}$$

Q.38 Cyclohexene does not show
Geometrical Isomerism

Q.40
$$n_{Ba^{2+}} = n_{BaSO_4} = \frac{0.233}{233} \text{mol}$$

$$\therefore [Ba^{2+}] = \left(\frac{0.233/233}{50/1000}\right) M$$

$$= \left(\frac{1000}{50} \times \frac{0.233}{233}\right) M$$

Q.41 Ethers are more volatile than same number of carbon containing alcohol due to absence of H-bonding.

(2)
$$I_3^-$$
 (Linear)

(3)
$$XeF_4$$
 F Xe F (Square planar)

(Bent, due to lone pair-bond pair repulsion)

Q.43 Theory based

0.44

Q.47

$$\begin{array}{c} CH_3 & conc. \\ CH_3 & CH_3 \\ CH_3 & C$$

Q.45 (1)
$$H_2 + Cl_2 \longrightarrow$$

$$2HCl \longrightarrow Cl^-$$
(2) $2Ns + H$

$$2NaH \longrightarrow Na^{+}$$

$$2NaH \longrightarrow H^{-} \text{ act as oxidising agent}$$

$$(3) \qquad Cn O + H \qquad 2Cn + H O$$

(3)
$$Cu_2O + H_2 \longrightarrow 2Cu + H_2O$$

 \rightarrow act as reducing agent

(4) RCHO +
$$H_2 \longrightarrow R - CH_2 - OH$$

 \rightarrow act as reducing agent

Q.46 Empirical formula of the compound =Tl

$$\begin{array}{l} 89.5 \\ \hline O_{204} \\ \hline = Tl_{0.439} \\ O_{0.656} \\ \hline \text{i.e. E.F.} = Tl_2O_3 \\ \hline \therefore \text{ O.N. of } Tl = +3 \end{array}$$

$$CH_{3} \xrightarrow{OH} \xrightarrow{conc.H_{2}SO_{4}} CH_{3} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{Br/CCl_{4}} CH_{3}$$

$$CH_{3} - C \equiv CH \xleftarrow{alc. KOH}$$

Q.48 (1) Na + H₂O
$$\longrightarrow$$
 2Na⁺ + 2OH⁻ +
H₂ (redox)
(2) P₄O₁₀ + H₂O \longrightarrow H₃PO₄
(Hydorlysis)

(3)
$$CrCl_3 + H_2O \longrightarrow CrCl_3.6H_2O$$

(Hydrated formation)

(4)
$$BaSO_4 + H_2O \longrightarrow ppt.$$
 formation (Insoluble)

Q.49 Theory based

Q.50
$$\begin{array}{c} & & & \\ & &$$

$$\begin{array}{ccc} Q.51 & (1) \operatorname{Na(s)} + \operatorname{NH_3}(\operatorname{liq.}) & \longrightarrow \\ & \operatorname{Na^+}(\operatorname{ammoniated}) + \operatorname{e^-} + \operatorname{NH_2} \uparrow \\ & (2) \operatorname{Na(s)} + \operatorname{O_2}(\operatorname{excess}) & \longrightarrow \operatorname{Na_2O_2} \\ & (3) \operatorname{Na(s)} + \operatorname{H_2O} & \longrightarrow \operatorname{NaOH} + \operatorname{H_2} \\ & (4) \operatorname{Na(s)} + \operatorname{H_2} & \longrightarrow \operatorname{NaH} \end{array}$$

Q.52
$$E_{2s} = -13.6 \times \frac{1^2}{2^2} eV = -E$$

and $E_{3p} = -13.6 \times \frac{1^2}{3^2} eV$

$$\therefore \frac{E_{3p}}{E_{2s}} = \frac{4}{9}$$

$$\therefore E_{3p} = -\frac{4}{9} E$$

Q.53
$$C_2H_5 - C1 \xrightarrow{KCN} C_2H_5 - CN$$

$$\xrightarrow{Na/C_2H_5OH} C_2H_5 - CH_2 - NH_2$$

- Q.54 As we move top to bottom basic nature of oxide increases.
- Q.55 In 1L hard water equivalent

$$n_{CaCO_3} = \left(\frac{1.11}{111} + \frac{4.75}{95}\right) \times 5 \text{ mmol.}$$

$$=0.3 \, \text{mmol}$$

$$m_{CaCO_3} = (0.3 \times 100) \text{ mg} = 30 \text{ mg}$$

 \therefore Hardness of water = 30 mg/L = 30 ppm

Q.56

Q.57
$$Na_2B_4O_7$$
 (Borax) + $7H_2O$
 \longrightarrow 2NaOH + $4H_3BO_3$ (Ortho boric acid)

Q.58 Theory based

$$\begin{array}{c} CH_3 \\ \hline BD_3/THF \\ \hline H_2O_2/NaOH \end{array} \\ \begin{array}{c} D \\ CH_3 \\ \hline H \end{array} \\ \begin{array}{c} D \\ CH_3 \\ \hline CH_3 \end{array} \\ \begin{array}{c} D \\ CH_3 \\ \hline CH_3 \end{array} \\ \begin{array}{c} D \\ CH_3 \\ \hline CH_3 \end{array} \\ \begin{array}{c} D \\ CH_3 \\ \hline CH_3 \end{array} \\ \begin{array}{c} D \\ CH_3 \\ \hline CH_3 \end{array} \\ \begin{array}{c} D \\ CH_3 \\ \hline CH_3 \\$$

Q.60 (i)
$$2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3(g)$$

 $SO_3(g) + H_2SO_4 \longrightarrow H_2S_2O_7 \text{ (oleum)}$
 $H_2S_2O_7 + H_2O \longrightarrow 2H_2SO_4$
(ii) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
(iii) $C(s) + H_2O(g)$
 $\xrightarrow{473K-1273K} CO(g) + H_2(g)$
water gas
(iv) $4NH_3(g) + 5O_2(g)$
 $\xrightarrow{Pt/Rhy Gauge \ catalyst} 4NO(g) + 6H_2O(g)$
 $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$
 $3NO_2(g) + H_2O(l)$
 $\longrightarrow 2HNO_3(aq.) + NO(g)$

PHYSICS

Q.61
$$\frac{L}{M} = \frac{2m}{q} \Rightarrow M = \frac{Lq}{2m} = \frac{I\omega q}{2m} = \frac{ml^2\omega q}{24m}$$

Q.62
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$
$$= \frac{x}{\varepsilon_0 A} + \frac{a - b - x}{\varepsilon_0 A} \implies C = \frac{\varepsilon_0 A}{a - b}$$

Q.63 Coulombic force between them remains same.

$$\begin{split} v_i &= \frac{1}{2} \frac{6}{5} C V^2 \; ; \; \; q_i = \frac{6}{5} C V \; \; ; \; \; q_f = \frac{11}{5} C V \\ U_f &= \left(\frac{1}{2} \frac{6}{5} C V^2 + \frac{1}{2} C V^2 \right) \end{split}$$

Charge flown from battery = CV

Work done = CV^2

Heat produced $\Delta H = \Delta U + \Delta W$

$$= \left[\left(\frac{1}{2} \frac{6}{5} CV^2 + \frac{1}{2} CV^2 \right) - \frac{1}{2} \frac{6}{5} CV^2 \right] - CV^2$$
$$= -\frac{1}{2} CV^2$$

Q.64 Potential across capacitor is zero, hence energy stored is zero.

Q.65
$$\omega = 0 + 1 \times 10 = 10 \text{ rad/sec}^2$$

 $\therefore \mathbf{v} = \mathbf{r}\omega = 1 \times 10 = 10 \text{ m/s}$
 $\overline{\mathbf{B}} = \frac{\mu_0}{4\pi} \frac{\mathbf{q}(\vec{\mathbf{V}} \times \vec{\mathbf{r}})}{\mathbf{r}^3} \implies |\overline{\mathbf{B}}| = \frac{\mu_0 \mathbf{q} \mathbf{v}}{4\pi \mathbf{r}^2}$
 $\mathbf{B} = \frac{10^{-7} \times 0.1 \times 10}{(1)^2} = 10^{-7} \text{ T}$

Q.66
$$i = \sqrt{5}A$$

$$\frac{q_m^2}{2C} = \frac{q^2}{2C} + \frac{1}{2}Li^2 \implies q_{max} = 6C$$

Q.67
$$V_{centre} = \frac{kq}{d} - \frac{kq}{d} + \frac{\Sigma kQ_{in}}{r} = \frac{kQ}{r}$$

Q.68 There will be no current any where in the circuit.

Q.69
$$\phi = \frac{q}{\epsilon_0} \times \frac{2\pi (1 - \cos \theta)}{4\pi}$$

$$\phi = \frac{q}{2\varepsilon_0} (1 - \cos \theta)$$

and
$$F = qE = q \cdot \frac{\sigma}{2\epsilon_0} (1 - \cos \theta)$$

Only charge is that capacitor 'C' will get charged.

Hence heat = $\frac{1}{2}CV^2$.

Q.70

$$dl = (\vec{v} \times \vec{B}) \cdot dl$$

$$= [(\vec{v} + \overrightarrow{R\omega}) \times B] \cdot d\vec{l}$$

$$= (\vec{v} \times \vec{B}) \cdot d\vec{l} + (\overrightarrow{R\omega} \times \vec{B}) \cdot d\vec{l}$$

$$= (\vec{v} \times \vec{B}) \cdot Rd\theta$$

$$= vBRd\theta \cos \theta$$

$$e = vBR \int_{0}^{\pi/2} \cos\theta \, d\theta$$
$$|e| = vBR$$

- Q.72 For image to be coincident, either the rays should retrace or the image due to the lens should formed just at the pole of the mirror in thin case. The image formed due to lens is at 30 cm (2f) be from the lens. Thus either this image should be at centre of curvature of the convex mirror or at the pole of the mirror. Hence 6cm or 30cm should be the separation between the lens and the mirror.
- Q.73 Its a wheat stone bridge with equivalent 2R.
- Q.74 Let I_2 be current in capacitor

$$I_1 = \frac{v_0}{4} \sin \omega t$$

$$I_2 = \frac{v_0}{3} \sin(\omega t + \pi/2)$$

$$I = I_1 + I_2 = \frac{v_0}{4} \sin \omega t + \frac{v_0}{3} \sin (\omega t + \pi/2)$$

$$\tan \theta = \frac{v_0/3}{v_0/4} \quad v_0/3$$

Q.75
$$(4\pi r^2)dp = \left(\frac{1}{4\pi \epsilon_0} \frac{\rho \frac{4}{3}\pi R^3}{R^3} r\right) \rho 4\pi r^2 dr$$

$$\int_{0}^{P} dp = \frac{\rho^2}{3} \int_{0}^{r} r dr$$

$$p = \frac{\rho^2}{3} \frac{r^2}{2} = \frac{\rho^2}{6} = \left(\frac{R^2}{4}\right) = \frac{\rho^2 R^2}{24}$$

$$\frac{i_2}{i_1} = \frac{6/10}{8/20} = \frac{6}{10} \times \frac{20}{8} = \frac{6}{4} = \frac{3}{2}$$

At
$$1-2$$
, $\theta > i_c \Rightarrow \sin \theta > \frac{n_2}{n_1}$...(1)
and at $1-3$, $90^\circ - \theta > i_c \Rightarrow \cos \theta > \frac{n_3}{n_1}$

$$\Rightarrow \sin^2 \theta < 1 - \frac{n_3^2}{n_1^2} \qquad \dots (2)$$

:. from (1) and (2), $n_1^2 - n_2^2 > n_3^2$

Q.78 If $n_2 \rightarrow n_1$ in H (z=1) gives λ then $z n_2 \rightarrow z n_1$ gives λ in H-like ion for He⁺ ion, z = 2

Q.79 No. of field lines
$$\propto \phi = \frac{q_{in}}{\epsilon_0}$$

Q.80 At
$$t = 0$$
, $\frac{A_{0_A}}{A_{0_B}} = \frac{25}{75} = \frac{1}{3}$...(1)

at
$$t = t$$
, $\frac{A_{t_A}}{A_{t_B}} = \frac{A_{0_A} e^{-\lambda t}}{A_{0_B} e^{-2\lambda t}} = \frac{75}{25} = 3$...(2)

 \therefore from (1) and (2), $e^{\lambda t} = 9$ $\Rightarrow \lambda t = 2ln3 \Rightarrow t = 2.$

$$t \le t_0 : v_x = \frac{qE}{m} t_0 = g t_0$$
$$v_y = u - gt_0$$

just after AB, $\vec{v} = constant \Rightarrow \vec{F}_{net} = 0$

$$\Rightarrow q \vec{E} + q (\vec{v} \times \vec{B}) + m\vec{g} = 0$$

$$\Rightarrow q E \vec{i} + qv_x B \vec{j} - q v_y B \vec{i} - mg \vec{j} = 0$$

$$\Rightarrow$$
 E = B (u - gt₀) and qB t₀ = m
 \Rightarrow u = 2gt₀ = 3 m/s.

Q.82 $K = \frac{\theta}{i} = \frac{NAB}{C} \propto NAB$

.. To increase K by 25% either N or A or B should be increased by 25%

Q.83
$$\frac{dU}{dt} = \frac{d}{dt} \left(\frac{1}{2} Li^2 \right) = Li \frac{di}{dt}$$

By KVL,
$$L \frac{di}{dt} + i (10) = 12$$

$$\Rightarrow L \frac{di}{dt} = 8 \text{ when } i = 0.4 \text{A}$$

$$\Rightarrow$$
 Li $\frac{di}{dt} = 3.2 = \frac{16}{x} \Rightarrow x = 5$

Q.84
$$V_{C_1} = 20 \text{ V}$$

$$\Rightarrow$$
 $V_{C_2} = E - V_{C_1} = 10 \text{ V}$

$$\frac{C_1}{C_2} = \frac{V_{C_2}}{V_{C_1}} = \frac{1}{2} \implies C_2 = 2C_1$$

Q.85
$$E_{eq} = 8\epsilon = 8 \times 1.5 = 12 \text{ V}$$

 $r_{eq} = 8r = 8 \times 0.5 = 4\Omega$
 $\therefore \text{ For P}_{max}, R_{ext} = r_{eq} = 4\Omega$

$$\begin{array}{ccc} 1_{eq} - 81 - 8 & 0.3 - 452 \\ \therefore & \text{For P} & R & = r & = 4\Omega \end{array}$$

$$\Rightarrow P_{\text{max}} = \frac{\varepsilon_{\text{eq}}^2}{4r_{\text{eq}}} = 9W$$

Q.86
$$1 \sin 60^\circ = \sqrt{3} \sin \phi$$

$$\phi = 30^{\circ}$$

$$C_{AB} = C = C_{air} + C_{slab}$$

$$\Rightarrow C = \frac{\epsilon_0 b}{d} [L + (K - 1) x]$$

$$\therefore \frac{dc}{dt} = -\frac{\epsilon_0 b}{d} (K - 1) V \Rightarrow -\text{ve constant}$$

Q.88 No change in p.d across 'R' = ammeter reads Ionly

By symmetry \vec{B}_p due to left and right conductors cancel each other.

$$\frac{n_2}{v_1} - \frac{n_1}{\infty} = \frac{n_2 - n_1}{R_1}$$

and
$$\frac{n_3}{f_2} - \frac{n_2}{v_1} = \frac{n_3 - n_2}{-R_2}$$

$$\Rightarrow \frac{n_3}{f_2} = \frac{n_2 - n_1}{R_1} + \frac{n_2 - n_3}{R_2} \dots (1)$$

$$\frac{n_2}{v_1} - \frac{n_3}{\infty} = \frac{n_2 - n_3}{R_2}$$

and
$$\frac{n_1}{f_1} - \frac{n_2}{v_1} = \frac{n_1 - n_2}{-R_1}$$

$$\Rightarrow \frac{n_1}{f_1} = \frac{n_2 - n_1}{R_1} + \frac{n_2 - n_3}{R_2} \dots (2)$$

:. from (1) and (2),
$$\frac{f_1}{f_2} = \frac{n_1}{n_3}$$