0. Indução e Recursão

- **0.1** Defina indutivamente o conjunto:
 - (a) $\{a^i b^j \in \{a, b\}^* \mid 0 < i < j\};$
 - (b) $\{a^i c b^j \in A^* \mid i = j + 1, j \in \mathbb{N}_0\}$, sendo $A = \{a, b, c\}$;
 - (c) $\{w \in \{a, b, c\}^* \mid w = w^I\};$
 - (d) $\{w \in \{0,1\}^* \mid 00 \text{ é fator de } w\};$
 - (e) $\{w \in \{0,1\}^* \mid 00 \text{ não é fator de } w\};$
- **0.2** Sejam $A = \{a, b, c\}$ e $L \subseteq A^*$ uma linguagem definida indutivamente por:

i. $c \in L$; ii. se $w \in L$ então $abwb \in L$; iii. se $w \in L$ então $cw \in L$ e $wc \in L$.

- (a) Mostre que $2|w|_a = |w|_b$ para todo o $w \in L$.
- (b) Verifique que nem todas as palavras que têm a propriedade referida na alínea anterior pertencem a L.
- **0.3** Sejam $A=\{a,b\}$, $L=\{u\in A^*\mid |u|\text{ \'e par}\}\text{ e }K$ a linguagem definida indutivamente pelas regras seguintes: i. $\varepsilon\in K$; ii. Se $w\in K$ e $a_1,a_2\in A$, então $a_1wa_2\in K$.
 - (a) Mostre que $aabb \in K$ e $baaaba \in K$.
 - (b) Enuncie o Princípio de Indução Estrutural para K.
 - (c) Mostre que $K \subseteq L$.
 - (d) Prove que K = L.
- **0.4** Em cada uma das alíneas seguintes define-se indutivamente um conjunto L de palavras sobre $A = \{a, b\}$. Em cada caso dê uma definição explícita para L.
 - (a) (i) $a \in L$; (ii) se $x \in L$, então xa, $xb \in L$.
 - (b) (i) $a \in L$; (ii) se $x \in L$, então bx, $xb \in L$.
 - (c) (i) $a \in L$; (ii) se $x \in L$, então ax, $xb \in L$.
 - (d) (i) $a \in L$; (ii) se $x \in L$, então $xb, xa, bx \in L$.
 - (e) (i) $\varepsilon \in L$, $b \in L$, $bb \in L$; (ii) se $x \in L$, então $xa, xab, xabb \in L$.

A linguagem do Cálculo Proposicional

O alfabeto do Cálculo Proposicional, que se denota por \mathcal{A}^{CP} , é o conjunto constituído por:

- $p_0, p_1, \ldots, p_n, \ldots$ (com $n \in \mathbb{N}_0$) símbolos designados variáveis proposicionais, que formam o conjunto numerável \mathcal{V}^{CP} :
- os símbolos: \land , \lor , \rightarrow , \rightarrow , \neg e \bot , designados conetivos (proposicionais);
- dois símbolos auxiliares (e).

Alternativamente, poderíamos dizer que:

$$\mathcal{A}^{CP} = \{ p_i \mid j \in \mathbb{N}_0 \} \cup \{ \land, \lor, \rightarrow, \leftrightarrow, \neg, \bot, (,) \}$$

A **linguagem do Cálculo Proposicional**, que se denota por \mathcal{F}^{CP} , é o subconjunto de $(\mathcal{A}^{CP})^*$ definido indutivamente por:

- (i) $p_j \in \mathcal{F}^{CP}$ para qualquer $j \in \mathbb{N}_0$;
- (ii) $\bot \in \mathcal{F}^{CP}$;
- $\text{(iii)} \quad \text{se } \varphi, \ \psi \in \mathfrak{F}^{CP} \ \text{ent\~ao} \ (\varphi \vee \psi), \ (\varphi \wedge \psi), \ (\varphi \rightarrow \psi), \ (\varphi \leftrightarrow \psi) \in \mathfrak{F}^{CP};$
- (iv) se $\varphi \in \mathcal{F}^{CP}$ então $(\neg \varphi) \in \mathcal{F}^{CP}$.

Os elementos de \mathfrak{F}^{CP} designam-se fórmulas proposicionais ou fórmulas do Cálculo Proposicional.

As regras que definem \mathcal{F}^{CP} podem ser representadas pelas seguintes árvores:

- (i) $\overline{p_j \in \mathcal{F}^{CP}}^{p_j}$ para cada $p_j \in \mathcal{V}^{CP}$;
- (ii) $\bot \in \mathfrak{F}^{CP}^{\perp}$;

(iii)
$$\frac{\varphi \in \mathfrak{F}^{CP} \quad \psi \in \mathfrak{F}^{CP}}{(\varphi \lor \psi) \in \mathfrak{F}^{CP}} f_{\lor} ; \qquad \frac{\varphi \in \mathfrak{F}^{CP} \quad \psi \in \mathfrak{F}^{CP}}{(\varphi \land \psi) \in \mathfrak{F}^{CP}} f_{\land} ;$$

$$\frac{\varphi \in \mathfrak{F}^{CP} \quad \psi \in \mathfrak{F}^{CP}}{(\varphi \to \psi) \in \mathfrak{F}^{CP}} f_{\to} ; \qquad \frac{\varphi \in \mathfrak{F}^{CP} \quad \psi \in \mathfrak{F}^{CP}}{(\varphi \leftrightarrow \psi) \in \mathfrak{F}^{CP}} f_{\leftrightarrow} ;$$

$$\frac{\varphi \in \mathfrak{F}^{CP} \quad \psi \in \mathfrak{F}^{CP}}{(\varphi \leftrightarrow \psi) \in \mathfrak{F}^{CP}} f_{\leftrightarrow} ;$$

(iv)
$$\frac{\varphi \in \mathfrak{F}^{CP}}{(\neg \varphi) \in \mathfrak{F}^{CP}} f_{\neg} .$$

1. Sintaxe do Cálculo Proposicional

- 1.1 De entre as seguintes palavras sobre o alfabeto do Cálculo Proposicional, indique, justificando, aquelas que pertencem ao conjunto \mathfrak{F}^{CP} :
 - **a)** $(\neg (p_1 \lor p_2))$. **b)** $((p_0 \land (\neg p_0)) \to \bot)$.
 - c) $((\neg p_5) \to (\neg p_6))$. d) (\bot) .
 - **e)** $p_1 \wedge p_2 \vee p_3$. **f)** $(((p_9 \to ((p_3 \vee (\neg p_8)) \wedge p_{12})) \leftrightarrow (\neg p_4)) \to (p_7 \vee \bot)))$.
- **1.2** Defina por recursão estrutural as seguintes funções (na alínea c) $BIN = \{\land, \lor, \rightarrow, \leftrightarrow\}$):
 - a) $p: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $p(\varphi) = \text{número de ocorrências de parêntesis em } \varphi$.
 - **b)** $v: \mathfrak{F}^{CP} \to \mathbb{N}_0$ tal que $v(\varphi) =$ número de ocorrências de vars. proposicionais em φ .
 - **c)** $b: \mathcal{F}^{CP} \to \mathcal{P}(BIN)$ tal que $b(\varphi) = \{ \Box \in BIN : \Box \text{ ocorre em } \varphi \}.$
 - **d)** $[\bot/p_7] : \mathcal{F}^{CP} \to \mathcal{F}^{CP}$, onde $\varphi[\bot/p_7]$ representa o resultado de substituir em φ todas as ocorrências de p_7 por \bot .
- **1.3** Considere de novo as funções definidas no exercício anterior. Prove, por indução estrutural, que, para todo $\varphi \in \mathcal{F}^{CP}$:
 - **a)** $p(\varphi) \ge \#b(\varphi)$. **b)** $v(\varphi) \ge v(\varphi[\perp /p_7])$.
 - $\mathbf{c)} \quad b(\varphi) = b(\varphi[\perp/p_7]). \qquad \mathbf{d)} \quad \text{se } b(\varphi) \neq \emptyset \text{ então } p(\varphi) > 0.$
- **1.4** Para cada uma das seguintes fórmulas φ do Cálculo Proposicional:
 - i) p_{2023} . ii) $\neg \perp \lor \bot$. iii) $p_0 \rightarrow (\neg p_0 \rightarrow \neg p_1)$:
 - **a)** Calcule $\varphi[p_2/p_0]$, $\varphi[p_0 \wedge p_1/p_1]$ e $\varphi[p_{2024}/p_{2023}]$.
 - b) Indique o conjunto das suas subfórmulas (sub-objetos).
- **1.5** Seja $\varphi \in \mathcal{F}^{CP}$. O tamanho de φ , denotado por $|\varphi|$, define-se por recursão do seguinte modo:
 - (i) |p|=1, para cada variável proposicional p; (ii) $|\perp|=1$; (iii) $|\neg\varphi|=1+|\varphi|$;
 - (iv) $|\varphi\Box\psi|=1+|\varphi|+|\psi|$, para cada conetivo binário \Box .
 - a) Qual das fórmulas $\neg\neg\neg p_0$ ou $(p_1 \land p_2) \lor (p_3 \land p_4)$ tem maior tamanho?
 - **b)** Dê exemplo de fórmulas φ e ψ , com 3 subfórmulas, tais que $|\varphi|=3$ e $|\psi|>3$.
 - c) Mostre que, para todo $\varphi \in \mathfrak{F}^{CP}$, $|\varphi| \geq \#subf(\varphi)$.
- **1.6** Seja $\varphi \in \mathfrak{F}^{CP}$. A complexidade lógica de φ , denotada por $cl(\varphi)$, define-se por recursão do seguinte modo:
 - (i) cl(p)=0, para cada variável proposicional p; (ii) $cl(\bot)=0$; (iii) $cl(\neg\varphi)=1+cl(\varphi)$; (iv) $cl(\varphi\Box\psi)=1+max(cl(\varphi),cl(\psi))$, para cada conetivo binário \Box .
 - a) Qual das fórmulas $\neg\neg\neg p_0$ ou $(p_1 \land p_2) \lor (p_3 \land p_4)$ tem maior complexidade lógica?
 - **b)** Mostre que, para todo $\varphi \in \mathcal{F}^{CP}$, $cl(\varphi) < |\varphi|$.

2. Semântica do Cálculo Proposicional

2.1 Sejam v_1 e v_2 as únicas valorações tais que

$$v_1(p) = \left\{ \begin{array}{ll} 0 \text{ se } p \in \{p_0, p_1\} \\ \\ 1 \text{ se } p \in \mathcal{V}^{CP} - \{p_0, p_1\} \end{array} \right. \quad \text{e} \quad v_2(p) = \left\{ \begin{array}{ll} 1 \text{ se } p \in \{p_1, p_3\} \\ \\ 0 \text{ se } p \in \mathcal{V}^{CP} - \{p_1, p_3\} \end{array} \right. .$$

Calcule os valores lógicos das fórmulas seguintes para as valorações v_1 e v_2 :

$$\varphi_1 = (p_2 \vee (\neg p_1 \wedge p_3)), \quad \varphi_2 = (p_2 \vee p_0) \wedge \neg (p_2 \wedge p_0), \quad \varphi_3 = (p_1 \rightarrow ((p_5 \leftrightarrow p_3) \vee \bot)).$$

2.2 Considere as fórmulas,

$$\varphi_1 = \neg p_3 \land (\neg p_1 \lor p_2), \quad \varphi_2 = (\neg p_3 \lor \neg p_1) \leftrightarrow (p_1 \to p_2), \quad \varphi_3 = \neg p_3 \to (p_1 \land \neg p_2).$$

- a) Para cada um dos conjuntos $\{\varphi_1, \varphi_2\}$ e $\{\varphi_2, \varphi_3\}$, dê exemplo de uma valoração que atribua o valor lógico 1 a todos os seus elementos.
- b) Mostre que não existem valorações que, em simultâneo, atribuam o valor lógico 1 a φ_1 e φ_3 .
- 2.3 De entre as seguintes fórmulas, indique as tautologias e as contradições.

a)
$$(p_1 \rightarrow \perp) \lor p_1$$
.

a)
$$(p_1 \to \bot) \lor p_1$$
.
b) $(p_1 \to p_2) \leftrightarrow (\neg p_2 \to \neg p_1)$.
c) $\neg (p_1 \land p_2) \to (p_1 \lor p_2)$.
d) $(p_1 \lor \neg p_1) \to (p_1 \land \neg p_1)$.

c)
$$\neg (p_1 \land p_2) \rightarrow (p_1 \lor p_2)$$

d)
$$(p_1 \vee \neg p_1) \rightarrow (p_1 \wedge \neg p_1).$$

2.4 Das seguintes proposições, indique as verdadeiras. Justifique.

a)
$$\models \varphi \land \psi$$
 se e só se $\models \varphi$ e $\models \psi$.

b) Se
$$\models \varphi \lor \psi$$
, então $\models \varphi$ ou $\models \psi$.

c) Se
$$\models \varphi$$
 ou $\models \psi$, então $\models \varphi \lor \psi$.

d) Se
$$\models \varphi \leftrightarrow \psi$$
 e $\not\models \psi$, então $\not\models \varphi$.

2.5 Seja
$$\varphi = (\neg p_2 \rightarrow \bot) \land p_1$$
.

a) Dê exemplo de uma valoração v tal que:

i)
$$v(\varphi) = v(\varphi[p_0 \wedge p_3/p_2]);$$

ii)
$$v(\varphi) \neq v(\varphi[p_0 \wedge p_3/p_2]).$$

- b) Seja ψ uma fórmula. Indique uma condição suficiente para que uma valoração v satisfaça $v(\varphi) = v(\varphi[\psi/p_2])$. A condição que indicou é necessária?
- **2.6** Considere o conjunto $\mathcal{F}^{CP}_{\{\vee,\wedge\}}$ das fórmulas cujos conetivos estão no conjunto $\{\vee,\wedge\}$.
 - a) Enuncie o teorema de indução estrutural para $\mathcal{F}_{\{\vee,\wedge\}}^{CP}$.
 - **b)** Seja v a valoração que a cada variável proposicional atribui o valor lógico 0. Mostre que $v(\varphi) = 0$ para qualquer $\varphi \in \mathcal{F}^{CP}_{\{\vee,\wedge\}}$.
 - c) Existem tautologias no conjunto $\mathcal{F}^{CP}_{\{\vee,\wedge\}}?$ Justifique.

- 2.7 Para cada uma das seguintes fórmulas, encontre uma fórmula que lhe seja logicamente equivalente e que envolva apenas conetivos no conjunto $\{\neg, \lor\}$.
 - **a)** $(p_0 \land p_2) \to p_3$.
 - **b)** $p_1 \vee (p_2 \to \bot)$.
 - c) $\neg p_4 \leftrightarrow p_2$.
 - **d)** $(p_1 \vee p_2) \rightarrow \neg (p_1 \wedge \bot).$
- **2.8** Defina, por recursão estrutural em fórmulas, uma função $f: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}_{\{\neg, \lor\}}$ que a cada fórmula φ faça corresponder uma fórmula $f(\varphi)$ logicamente equivalente a φ .
- **2.9** Investigue se os conjuntos de conetivos $\{\lor, \land\}$ e $\{\neg, \lor, \land\}$ são ou não completos.
- 2.10 Calcule formas normais conjuntivas e disjuntivas logicamente equivalentes a cada uma das seguintes fórmulas:
 - a) $\neg p_0$.

- **b)** $p_1 \wedge (p_2 \wedge p_3).$
- **c)** $(p_1 \vee p_0) \vee \neg (p_2 \vee p_0).$ **d)** $(p_1 \to \bot).$
- e) $(p_1 \lor p_0) \land (p_2 \lor (p_1 \land p_0)).$ f) $(p_1 \to p_2) \leftrightarrow (\neg p_2 \to \neg p_1).$
- **2.11** Considere que φ e ψ são fórmulas cujo conjunto de variáveis é $\{p_1,p_2\}$ e $\{p_1,p_2,p_3\}$, respetivamente, e que têm as seguintes tabelas de verdade:

p_1	p_2	φ
1	1	0
1	0	1
0	1	1
0	0	0

p_1	p_2	p_3	ψ
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	1

Determine FND's e FNC's logicamente equivalentes a cada uma das fórmulas.

- **2.12** Será que existem outros conetivos binários para além de \land , \lor , \rightarrow , e \leftrightarrow ? Para responder a esta questão, adotemos esta definição: um conetivo binário 🜣 é determinado pela sua função de verdade $v_{\diamond}: \{0,1\}^2 \longrightarrow \{0,1\}.$
 - a) Quantos conetivos binários existem?
 - **b)** Para cada $v_\diamond:\{0,1\}^2\longrightarrow\{0,1\}$, escreva v_\diamond como uma tabela de verdade e traduza essa tabela de verdade como uma FND.
 - c) Conclua que $\{\neg, \land, \lor\}$ permaneceria um conjunto completo de conetivos, mesmo se tivéssemos adoptado no Cálculo Proposicional outros conetivos binários.

- 2.13 De entre os seguintes conjuntos de fórmulas, indique os que são consistentes e os que são inconsistentes.
 - **a)** $\{p_0 \land p_2, p_1 \to \neg p_3, p_1 \lor p_2\}.$
 - **b)** $\{p_0 \vee \neg p_1, p_1, p_0 \leftrightarrow (p_2 \wedge \bot)\}.$
 - c) \mathcal{F}^{CP} .
 - **d)** $\mathcal{F}_{\{\vee,\wedge\}}^{CP}$.
- **2.14** Sejam $\Gamma, \Delta \subseteq \mathcal{F}^{CP}$. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações.
 - a) Se $\Gamma \cup \Delta$ é consistente, então Γ e Δ são conjuntos consistentes.
 - **b)** Se Γ e Δ são conjuntos consistentes, então $\Gamma \cup \Delta$ é consistente.
 - c) Se Γ é consistente e $\varphi \in \Gamma$, então $\neg \varphi \notin \Gamma$.
 - d) Se Γ contém uma contradição, então Γ é inconsistente.
- 2.15 Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - **a)** $p_3 \lor p_0, \neg p_0 \models p_3$.
 - **b)** $p_0 \vee \neg p_1, p_1 \vee p_2 \models p_0 \vee p_2.$
 - **c)** $\neg p_2 \to (p_1 \lor p_3), \neg p_2 \models \neg p_1.$
 - **d)** para todo $\varphi, \psi, \sigma \in \mathfrak{F}^{CP}, \ \neg \psi, \psi \to \sigma \models \sigma \lor \varphi.$
- **2.16** Sejam $\varphi, \psi, \sigma \in \mathfrak{F}^{CP}$ e Γ um conjunto de fórmulas. Demonstre que:
 - a) $\varphi \lor \psi, \neg \varphi \lor \sigma \models \psi \lor \sigma$.
 - **b)** $\models \varphi \rightarrow \psi$ se e só se $\varphi \models \psi$.
 - c) $\Gamma \models \varphi \lor \psi$ se e só se $\Gamma, \neg \varphi \models \psi$.
 - **d)** Γ é inconsistente se e só se $\Gamma \models \perp$.
- **2.17** O Carlos, o João e o Manuel, suspeitos de um crime, fizeram os seguintes depoimentos, respetivamente:
 - O João é culpado, mas o Manuel é inocente.
 - Se o Carlos é culpado, o Manuel também o é.
 - Eu estou inocente, mas um dos outros dois é culpado.
 - a) Os três depoimentos são consistentes?
 - **b)** Algum dos depoimentos é consequência dos outros dois?
 - c) Supondo os três réus inocentes, quem mentiu?
 - d) Supondo que todos disseram a verdade, quem é culpado?
 - e) Supondo que os inocentes disseram a verdade e que os culpados mentiram, quem é culpado?

3. Dedução Natural para o Cálculo Proposicional

- 3.1 a) Indique uma derivação em DNP com conclusão $p_0 \wedge p_1$ e cuja única hipótese não cancelada seja $p_1 \wedge p_0$.
 - **b)** Indique uma derivação em DNP com conclusão $(p_0 \wedge p_1) \rightarrow p_1$ e sem hipóteses por cancelar.
 - c) Indique uma derivação em DNP com conclusão $p_0 \rightarrow p_2$ e cujas hipóteses não canceladas sejam $p_0 \to p_1$ e $p_1 \to p_2$.
 - **d)** Indique duas derivações distintas em DNP com conclusão $p_0 \to (p_1 \to (p_0 \lor p_1))$ e sem hipóteses por cancelar.
 - e) Indique as subderivações de cada uma das derivações apresentadas nas alíneas anteriores.
- **3.2** Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$. Encontre demonstrações em DNP das fórmulas abaixo indicadas.

 - **a)** $(\varphi \land \psi) \rightarrow (\varphi \lor \psi)$. **b)** $(\varphi \rightarrow (\psi \rightarrow \sigma)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \sigma))$.
 - c) $\varphi \to \varphi$.
- **d)** $(\neg \varphi \lor \psi) \to (\varphi \to \psi).$
- $\begin{array}{ll} \textbf{e)} & \varphi \leftrightarrow \neg \neg \varphi. & \textbf{f)} & ((\varphi \to \psi) \wedge (\psi \to \varphi)) \leftrightarrow (\varphi \leftrightarrow \psi). \\ \textbf{g)} & (\varphi \lor \psi) \leftrightarrow (\psi \lor \varphi). & \textbf{h)} & (\varphi \land \psi) \leftrightarrow \neg (\neg \varphi \lor \neg \psi). \end{array}$

- 3.3 Mostre que:
 - **a)** $p_0 \leftrightarrow p_1, \neg p_1 \vdash \neg p_0.$
 - **b)** $p_0 \rightarrow p_1, p_1 \rightarrow p_2, p_2 \rightarrow p_0 \vdash ((p_0 \leftrightarrow p_1) \land (p_1 \leftrightarrow p_2)) \land (p_0 \leftrightarrow p_2).$
 - c) $\{p_0 \lor p_1, \neg p_0 \land \neg p_1\}$ é sintaticamente inconsistente.
- **3.4** Demonstre as seguintes proposições, para todo $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$.
 - a) $\Gamma \vdash \varphi \land \psi$ se e só se $\Gamma \vdash \varphi$ e $\Gamma \vdash \psi$.
 - **b)** $\Gamma \vdash \varphi$ se e só se $\Gamma, \neg \varphi \vdash \bot$.
 - c) $\Gamma \vdash \perp$ se e só se $\Gamma \vdash p_0 \land \neg p_0$.
 - **d)** Se Γ , $\neg \varphi \vdash \varphi$, então $\Gamma \vdash \varphi$.
- **3.5** Sejam $\varphi, \psi \in \mathfrak{F}^{CP}$ fórmulas. A fórmula $((\varphi \to \psi) \to \varphi) \to \varphi$ é chamada a *Lei de Peirce*. Mostre que a Lei de Peirce é um teorema de DNP. (Sugestão: tenha em atenção a resolução da alínea d) do exercício anterior.)
- **3.6** Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que:
 - a) $(p_0 \lor p_1) \to (p_0 \land p_1)$ não é um teorema de DNP.
 - **b)** $p_0 \vee p_1 \not\vdash p_0 \wedge p_1$.
 - c) $\{p_0 \lor p_1, \neg p_0 \land p_1\}$ é sintaticamente consistente.
 - **d)** $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$ se e só se Γ é semanticamente inconsistente.
 - e) Se $\Gamma, \varphi \vdash \psi$ e φ é uma tautologia, então $\Gamma \vdash \psi$.

(Sugestão: aplique o Teorema da Correção e/ou o Teorema da Completude.)

4. Sintaxe do Cálculo de Predicados

- **4.1** Seja $L=(\{0,f,g\},\{R\},\mathcal{N})$ o tipo de linguagem tal que $\mathcal{N}(0)=0$, $\mathcal{N}(f)=1$, $\mathcal{N}(g)=2$, $\mathcal{N}(R)=2$.
 - a) Explicite a definição indutiva do conjunto dos termos de tipo L.
 - **b)** Indique quais das seguintes sequências de símbolos constituem termos de tipo L:
 - i) 0.

- **ii)** f(0).
- **iii)** f(1).

- iv) $q(f(x_1,x_0),x_0)$.
- **v)** $g(x_0, f(x_1)).$
- vi) $R(x_0, x_1)$.
- c) Explicite a definição por recursão estrutural em termos de tipo L da função VAR (que a cada termo de tipo L faz corresponder o conjunto de váriáveis que nele ocorrem).
- **d)** Para cada um dos termos t que se seguem, calcule VAR(t).
 - **i)** 0.
- **ii)** $g(x_1, f(x_1)).$
- **iii)** $g(x_1, x_2)$.
- iv) $g(x_1, g(x_2, x_3)).$
- e) Para cada um dos termos t da alínea anterior, calcule subt(t).
- **f)** Para cada um dos termos t da alínea **d)**, calcule $t[g(x_0,0)/x_1]$.
- **g)** Dê exemplos de termos t, t_1 e t_2 de tipo L tais que:
 - i) $(t[t_1/x_1])[t_2/x_2] = (t[t_2/x_2])[t_1/x_1].$
- ii) $(t[t_1/x_1])[t_2/x_2] \neq (t[t_2/x_2])[t_1/x_1]).$
- **h)** Sejam t_1 e t_2 termos de tipo L tais que $x_1 \not\in \mathsf{VAR}(t_2)$ e $x_2 \not\in \mathsf{VAR}(t_1)$. Mostre que, para todo o termo t de tipo L , $(t[t_1/x_1])[t_2/x_2] = (t[t_2/x_2])[t_1/x_1]$.
- **4.2** Seja $L = (\{0, -\}, \{P, <\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(-) = \mathcal{N}(<) = 2$.
 - a) Dê exemplos de termos de tipo L. Justifique.
 - **b)** Dê exemplos de fórmulas atómicas de tipo L. Justifique.
 - c) Justifique que cada uma das seguintes palavras é uma fórmula de tipo L.
 - i) $x_2 0 < x_1$.
 - ii) $\exists x_0 \forall x_1 (x_1 x_0 < 0).$
 - **iii)** $\forall x_1 \exists x_0 (x_1 < x_0) \land P(x_1).$
 - iv) $\forall x_0(x_0 < x_1) \lor \exists x_1(x_1 < x_0).$
 - d) Para cada fórmula da alínea anterior, calcule o conjunto das suas subfórmulas.
 - e) Calcule os conjuntos de variáveis livres e de variáveis ligadas de cada uma das fórmulas da alínea c).
 - **f)** A proposição "Para todo $\varphi \in \mathcal{F}_L$, LIV $(\varphi) \cap \text{LIG}(\varphi) = \emptyset$ " é verdadeira?

- **4.3** Para cada uma das fórmulas φ do exercício 4.2 c), calcule $\varphi[x_2 x_0/x_1]$.
- **4.4** Considere o tipo de linguagem L do exercício 4.2. Indique quais das seguintes afirmações são verdadeiras.
 - a) A variável x_1 está livre para o termo x_2 na fórmula $x_1 < x_2$.
 - **b)** A variável x_1 está livre para o termo x_2 na fórmula $\exists x_2(x_1 < x_2)$.
 - c) A variável x_1 está livre para o termo 0 na fórmula $\exists x_2(x_1 < x_2)$.
 - **d)** A variável x_1 está livre para o termo x_2 na fórmula $\forall x_1 \exists x_2 (x_1 < x_2)$.
 - e) A variável x_2 está livre para qualquer termo de tipo L na fórmula $\exists x_2(x_1 < x_2)$.
 - **f)** A variável x_1 está livre para qualquer termo de tipo L na fórmula $\exists x_2(x_1 < x_2)$.
 - **g)** A variável x_2 está livre para o termo x_1 em $\exists x_2(x_1 < x_2) \lor \exists x_1(x_1 < x_2)$.
 - **h)** Toda a variável está livre para o termo $x_1 x_3$ em $\exists x_2 (x_1 < x_2)$.
- 4.5 Escreva as seguintes afirmações como fórmulas para um tipo de linguagem apropriado.
 - a) Todo aquele que é persistente aprende Lógica.
 - **b)** Quem quer vai, quem não quer manda.
 - c) Nem todos os pássaros voam.
 - d) Se toda a gente consegue, também o João consegue.
 - e) Para todo o número natural que é maior do que 6, o seu dobro é maior do que 12.
 - f) Quaisquer dois conjuntos que têm os mesmos elementos são iguais.
 - **g)** Existe um inteiro positivo menor do que qualquer inteiro positivo.
 - h) Todo o inteiro positivo é menor do que algum inteiro positivo.
 - i) Não há barbeiro que barbeie precisamente aqueles homens que não se barbeiam a si próprios.

Semântica do Cálculo de Predicados 5.

- **5.1** Considere o tipo de linguagem $L = L_{Arit}$ e a estrutura $E_{Arit} = (\mathbb{N}_0, \overline{})$ (a estrutura usual de tipo L). Sejam a_1 e a_2 atribuições em E_{Arit} tais que $a_1(x_i) = 0$ e $a_2(x_i) = i$, para todo $i \in \mathbb{N}_0$.
 - a) Para cada um dos termos t de tipo L que se seguem, determine $t[a_1]$ e $t[a_2]$.

i) 0.

ii) x_5 .

iii) $s(0) + x_5$.

- iv) $(s(0) + x_5) \times s(x_1 + x_2)$.
- **b)** Para cada uma das fórmulas φ de tipo L que se seguem, calcule $\varphi[a_1]$ e $\varphi[a_2]$.

i) $x_1 = x_2$.

ii) $\neg (x_1 = x_2)$.

- **iii)** $s(x_1) < (x_1 + 0)$. **iv)** $(x_1 < x_2) \to (s(x_1) < s(x_2))$.
- c) Para cada uma das fórmulas φ da alínea anterior, determine

 $(\forall x_1 \varphi)[a_1]$ e $(\exists x_1 \varphi)[a_1]$.

- **d)** Indique se alguma das fórmulas da alínea b) é válida na estrutura E_{Arit} .
- e) Indique se alguma das fórmulas da alínea b) é universalmente válida.
- **5.2** Repita o exercício anterior, considerando a estrutura $E = (D, \overline{})$, de tipo L, com $D = \{d_1, d_2\}$, e as atribuições a_1 e a_2 em E a seguir definidas:

$$\begin{array}{lll} \overline{0} = d_1 & \equiv \subseteq D^2 & \equiv = \{(d_1, d_1), (d_2, d_2)\} \\ \overline{s} : D \to D & \overline{s}(x) = x & \overline{<} \subseteq D^2 & \overline{<} = \{(d_1, d_1), (d_2, d_2)\} \\ \overline{+} : D^2 \to D & \overline{+}(x, y) = d_2 & a_1 : \mathcal{V} \to D & a_1(x) = d_2 \\ \overline{\times} : D^2 \to D & \overline{\times}(x, y) = d_1 \text{ sse } x = y & a_2 : \mathcal{V} \to D & a_2(x_i) = d_2 \text{ sse } i \text{ \'e par.} \end{array}$$

- **5.3** Seja $L = L_{Arit}$.
 - a) Quantas estruturas de tipo L existem com domínio $\{0\}$? E domínio $\{0,1,2\}$?
 - **b)** Defina uma estrutura de tipo L com domínio $\{0,1,2\}$.
- **5.4** Seja L um tipo de linguagem e sejam x, y variáveis e φ, ψ fórmulas de tipo L. Mostre que:
 - **a)** $\models (\forall x \varphi \lor \forall x \psi) \to \forall x (\varphi \lor \psi).$
 - **b)** $\not\vDash \forall x(\varphi \lor \psi) \to (\forall x\varphi \lor \forall x\psi).$
 - **c)** $\models \exists x (\varphi \land \psi) \rightarrow (\exists x \varphi \land \exists x \psi).$
 - **d)** $\not\vDash (\exists x \varphi \land \exists x \psi) \rightarrow \exists x (\varphi \land \psi).$
 - **e)** $\models \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$.
 - f) $\not\models \forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$.

- **5.5** Sejam L um tipo de linguagem, φ, ψ fórmulas de tipo L, $Q \in \{\forall, \exists\}$ e $\Box \in \{\lor, \land\}$. Mostre que: se $x \notin LIV(\psi)$, então $(Qx\varphi)\Box\psi \Leftrightarrow Qx(\varphi\Box\psi)$.
- **5.6** Seja L um tipo de linguagem.
 - a) Mostre que, para todo $\varphi, \psi \in \mathcal{F}_L$ tais que $x \notin LIV(\psi)$, se tem:

$$\mathbf{i)} \models \exists x(\varphi \to \psi) \leftrightarrow (\forall x\varphi \to \psi).$$

ii)
$$\models \forall x(\varphi \to \psi) \leftrightarrow (\exists x\varphi \to \psi).$$

- **b)** Mostre que, na alínea anterior, a condição $x \notin LIV(\psi)$ é necessária.
- c) Conclua que, para toda a fórmula φ de tipo L, $\models \exists x (\varphi \to \forall x \varphi)$. (Como curiosidade, pense no caso particular de φ representar a condição "x é aprovado a Lógica".)
- **5.7** Considere o tipo de linguagem $L = L_{Arit}$ e considere as seguintes fórmulas de tipo L: $\varphi_1 = (x_1 < x_0); \quad \varphi_2 = \neg(x_1 < x_0); \quad \varphi_3 = \exists x_1 \neg (x_1 < x_0); \quad \varphi_4 = \forall x_1 \neg (x_1 < x_0).$ Indique quais dos seguintes conjuntos são consistentes:
 - **a)** $\{\varphi_1, \varphi_2\}.$
 - **b)** $\{\varphi_1, \varphi_3\}.$
 - **c)** $\{\varphi_1, \varphi_4\}.$
 - **d)** $\{\varphi_3, \varphi_4\}.$
- **5.8** Suponha que L tem um símbolo de relação binário R. Seja $\Gamma = \{\varphi_1, \varphi_2, \varphi_3\}$, onde

$$\varphi_{1} = \forall x_{0} R(x_{0}, x_{0})
\varphi_{2} = \forall x_{0} \forall x_{1} (R(x_{0}, x_{1}) \rightarrow R(x_{1}, x_{0}))
\varphi_{3} = \forall x_{0} \forall x_{1} \forall x_{2} ((R(x_{0}, x_{1}) \land R(x_{1}, x_{2})) \rightarrow R(x_{0}, x_{2}))$$

- a) Seja $E=(D,\overline{\ })$ uma L-estrutura tal que \overline{R} é uma relação de equivalência em D. Verifique que E é modelo de $\Gamma.$
- **b)** Suponha que L tem também duas constantes c_1 e c_2 . Mostre que existem modelos quer de $\Gamma \cup \{\neg R(c_1, c_2)\}$, quer de $\Gamma \cup \{R(c_1, c_2)\}$.
- **5.9** Seja L um tipo de linguagem. Mostre que as seguintes afirmações são verdadeiras para todos φ , ψ e σ fórmulas de tipo L e todo $x \in \mathcal{V}$.

(Curiosidade: estas afirmações correspondem a alguns silogismos aristotélicos, cujos nomes medievais estão indicados.)

a) Barbara
$$\forall x(\psi \to \varphi), \forall x(\sigma \to \psi) \models \forall x(\sigma \to \varphi).$$

- **b)** Darii $\forall x(\psi \to \varphi), \exists x(\sigma \land \psi) \models \exists x(\sigma \land \varphi).$
- c) Cesare $\forall x(\psi \to \neg \varphi), \forall x(\sigma \to \varphi) \models \forall x(\sigma \to \neg \psi).$
- **d)** Festino $\forall x(\psi \to \neg \varphi), \exists x(\sigma \land \varphi) \models \exists x(\sigma \land \neg \psi).$

6. Dedução Natural para o Cálculo de Predicados

- **6.1** Seja $L=(\{c\},\{P,R\},\mathcal{N})$ o tipo de linguagem onde $\mathcal{N}(c)=0$, $\mathcal{N}(P)=1$ e $\mathcal{N}(R)=2$. Encontre demonstrações em DN das seguintes fórmulas.
 - a) $P(c) \rightarrow \exists x_0 P(x_0)$
 - **b)** $\forall x_0 P(x_0) \rightarrow P(c)$
 - c) $\forall x_0 \forall x_1 R(x_0, x_1) \rightarrow \forall x_1 \forall x_0 R(x_0, x_1)$
 - **d)** $\exists x_0 P(x_0) \to \exists x_1 P(x_1)$
- **6.2** Seja $L=(\{c\},\{P,Q\},\mathcal{N})$ o tipo de linguagem onde $\mathcal{N}(c)=0$, $\mathcal{N}(P)=1$ e $\mathcal{N}(Q)=1$. Mostre que:
 - **a)** $P(c), \forall x_0(P(x_0) \to Q(x_0)) \vdash Q(c).$
 - **b)** $\{\forall x_0 P(x_0), \exists x_1 \neg P(x_1)\}\$ é sintaticamente inconsistente.
 - c) $P(x_0) \rightarrow \forall x_0 P(x_0)$ não é teorema de DN.
 - **d)** $\exists x_0 P(x_0), \exists x_0 Q(x_0) \not\vdash \exists x_0 (P(x_0) \land Q(x_0)).$

(Caso seja necessário, pode usar o Teorema da Correção ou o Teorema da Completude)

- **6.3** Sejam x uma variável, φ, ψ L-fórmulas e Γ um conjunto de L-fórmulas. Mostre que:
 - a) $\forall x(\varphi \to \psi), \forall x\varphi \vdash \forall x\psi$.
 - **b)** $\exists x(\varphi \land \psi) \rightarrow \exists x\varphi$ é teorema de DN.
 - c) $\forall x(\varphi \land \psi) \leftrightarrow (\varphi \land \forall x\psi)$ é teorema de DN, se $x \notin \mathsf{LIV}(\varphi)$.
 - **d)** $\Gamma \models \exists x \varphi$ se e só se $\Gamma \cup \{ \forall x \neg \varphi \}$ é sintaticamente inconsistente.

(Caso seja necessário, pode usar o Teorema da Correção ou o Teorema da Completude)

- **6.4** Recorde o tipo de linguagem $L_{soma}=(\{\mathtt{z},\mathtt{s}\},\{\mathtt{soma}\},\mathcal{N})$, onde $\mathcal{N}(\mathtt{z})=0$, $\mathcal{N}(\mathtt{s})=1$ e $\mathcal{N}(\mathtt{soma})=3$ e a estrutura $E_{soma}=(\mathbb{N}_0,\overline{})$, onde $\overline{\mathtt{z}}=0$, $\overline{\mathtt{s}}$ é a função *sucessor* em \mathbb{N}_0 e $\overline{\mathtt{soma}}=\{(i,j,k)\in\mathbb{N}_0^3:i+j=k\}$. Considere as L_{soma} -fórmulas
 - $\varphi_1 = \forall x_0 \operatorname{soma}(\mathsf{z}, x_0, x_0)$
 - $\varphi_2 = \forall x_0 \forall x_1 \forall x_2 (\mathsf{soma}(x_0, x_1, x_2) \rightarrow \mathsf{soma}(\mathsf{s}(x_0), x_1, \mathsf{s}(x_2)))$

e o conjunto $\Gamma = \{\varphi_1, \varphi_2\}.$

- a) Verifique que E_{soma} é modelo de Γ .
- **b)** Seja $\varphi_3 = \exists x_3 \operatorname{soma}(\mathsf{z}, x_3, \mathsf{s}(\mathsf{z}))$. Construa uma derivação em DN que mostre que $\Gamma \vdash \varphi_3$ e conclua que $\Gamma \cup \{\neg \varphi_3\}$ é inconsistente.
- c) Seja $\varphi_4 = \exists x_3 \operatorname{soma}(x_3, \mathsf{z}, \mathsf{s}(\mathsf{z}))$. Construa uma derivação em DN que mostre que $\Gamma \vdash \varphi_4$ e conclua que $\Gamma \cup \{\neg \varphi_4\}$ é inconsistente.
- **d)** Seja $\varphi_5 = \exists x_3 \operatorname{soma}(\mathsf{s}(x_3), \mathsf{z}, \mathsf{z})$. Mostre que $\Gamma \not\vdash \varphi_5$ e conclua que $\Gamma \cup \{\neg \varphi_5\}$ é consistente.