Introduction to Data Science

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Minería de Datos y el proceso de KDD

Vamos a trabajar en la preparación de los datos para obtener la "vista minableF"

Fase de Preparación de los Datos

- La información almacenada siempre tiene
 - Datos faltantes
 - Valores extremos
 - Inconsistencias
 - Ruido
- Tareas a realizar
 - Limpieza (ej: resolver outliers e inconsistencias)
 - Transformación (ej:discretización)

Limpieza de los datos

- Enprimer lugar, debe tenerse en cuenta que hay distintos tipos de variables o atributos.
- Para cada tipo se deberá realizar un análisis de sus valores.
 - Luego, se procederá a limpiarlos
 - Eliminando los valores con ruido
 - Determinando qué hacer con los valores faltantes.
 - Eliminando inconsistencias

Limpieza - Variables con ruido

- Las variables con ruido tendrán valores que caen fuera del rango de susvalores esperados llamados outliers.
- □ Por qué se originan?
 - Error humano en la carga de datos (ej: una persona puede aparecer con una altura de 5 metros).
 - Determinados cambios operacionales no han sido registrados en el proceso.

Es preciso analizar los metadatos

Limpieza - Valores faltantes

- Qué hacer con los valores nulos?
 - Ignorar la tupla.
 - Rellenar la tupla manualmente.
 - Usar una constante global para rellenar el valor nulo.
 - Utilizar el valor de la media u otra medida de centralidad para rellenar el valor.
 - Utilizar el valor de la media u otra medida de centralidad de los objetos que pertenecen la misma clase.
 - Utilizar alguna herramienta de Minería de Datos para calcular el valor más probable.

Reemplazando los valores faltantes

Observe que hay muchos valores de la variable GENRE1 con muy pocos ejemplos

Nominal values

ndex	Nominal value	Absolute count	Fraction
1	Drama	86	0.483
	Biography	39	0.219
	Comedy	24	0.135
	Crime	16	0.090
	Adventure	6	0.034
	Action	3	0.017
	Romance	2	0.011
	Mystery	1	0.006
	Thriller	1	0.006

Vamos a reunir estas opciones como "OTROS"

X

Usaremos el operador MAP

En lugar de mapear cada valor a OTRO se puede utilizar una expresión regular

- Esuna de las etapas más importantes porque de ella depende el éxito del proceso.
- Losatributos serán transformados según las necesidades del algoritmo a aplicar.
- Esprobable que deban derivarse variables nuevas.
- También es posible que se reduzcan variables convirtiéndolas en información más significativa.

- Según el algoritmo a aplicar, las transformaciones más habituales son:
 - Reducción de dimensionalidad
 - Aumento de dimensionalidad
 - Discretización de atributos numéricos
 - Numerización de atributos nominales
 - Normalización de atributos

- Reducción de dimensionalidad
 - Cambia el espacio de entrada por otro que tiene menor dimensión.
 - Se busca mejorar la relación entre la cantidad de ejemplos y la cantidad de atributos.
 - Ejemplos
 - Análisis de componentes principales (PCA)
 - Ped SOM (self-organizing maps)

- Aumento de la dimensionalidad a través de la creación de características
 - <u>Atributos numéricos</u>: se utiliza suma, resta, producto, división, máximo, mínimo, media, cuadrado, raíz cuadrada, seno, coseno, etc.
 - <u>Fechas</u>: brindan poca información si se las usa directamente.

- Aumento de la dimensionalidad a través de la creación de características
 - Atributos nominales:
 - Se utilizan las operaciones lógicas, igualdad o desigualdad, condiciones
 M-de-N (TRUEsi al menos M de las N condiciones son verdaderas).
 - Se puede generar un valor numérico a partir de valores nominales, por ejemplo, las variables X-de-N (retorna el entero X de las N condiciones que son ciertas)

Ejemplo de creación de atributos

Atributo derivado	Fórmula		
Indice de obesidad	Altura ² / peso		
Hombre familiar	Casado, varón e (hijos > 0)		
Síntomas SARS	3-de-5 (fiebre alta, vómitos, tos, diarrea, dolor de cabeza)		
Riesgo de póliza	X-de-N (edad<25, varón, años que conduce<2, vehículo deportivo)		
Beneficios Brutos	Ingresos - Gastos		
Beneficios netos	Ingresos - Gastos - Impuestos		
Desplazamiento	Pasajeros * kilómetro		
Duración media	Segundos de llamada / número de llamadas		
Densidad	Población / Area		
Retardo compra	Fecha compra - Fecha campaña		

Ejercicio

- Genere un nuevo atributo largaDuracion cuyo valor será "Sl" si la película tiene una duración superior a 2 horas y "NO" en caso contrario.
- Grafique este nuevo atributo utilizando un diagrama de barras.

Generando un nuevo atributo

Generemos un nuevo atributo utilizando el componente Generate Attributes

Generando un nuevo atributo

Operador Generate Attributes

Generación de un nuevo atributo

Generación de un nuevo atributo

Diagrama de barras del atributo generado

DISCRETIZACION

Algunos algoritmos de minería de datos sólo operan con atributos cualitativos. La discretización convierte los atributos numéricos en ordinales.

NUMERIZACION

Esel proceso contrario a la discretización. Convierte atributos cualitativos en numéricos.

NORMALIZACION

Permite expresar los valores de los atributos sin utilizar las unidades de medida originales facilitando su comparación y uso conjunto.

Discretización

- Convierte un valor numérico en un nominal ordenado (que representa un intervalo o "bin")
- Ejemplo: Podemos transformar
 - la edad de la persona en categorías: [0,12] niño, (12-21) joven, [21,65] adulto y >65 anciano.
 - La calificación de unalumno en: [4,10] aprobado o [0,4) desaprobado

Discretización

- Puede discretizarse en un número fijo de intervalos. El ancho del intervalo se calcula
 - Dividiendo el rango en partes iguales
 - Dividiendo la cantidad de ejemplos en partes iguales (igual frecuencia)
 - Indicando los límites de cada intervalo en forma manual.

Averigüe por otras variantes de discretización

Discretización por rango

- □ El objetivo es dividir el rango del atributo (intervalo entre el máximo y el mínimo) en una cierta cantidad k de partes iguales.
- Los valores comprendidos en una misma parte serán asociados al mismo valor ordinal.
- □ Ejemplo: k=4

Discretización por rango

- Ejemplo: Discretizar el atributo DURATION en 4 intervalos de igual longitud
 - DURATION toma valores entre 69 y 238 mintos. Si dividimos el rango en 4 partes iguales, cada una tendría una longitud de (238-69)/4 = 42.25

Discretización por rango

□ Ejemplo: Discretizar el atributo DURATION en 4 intervalos de igual longitud

Valor	Intervalo	Frecuencia
range1	[-∞ - 111.25]	75
range2	(111.25 - 153.5]	86
range3	(153.5 - 195.75]	15
range4	(195.75 - ∞]	2

Discretización por rango

DURATION discretizado en 4 intervalos de igual longitud

Discretización por rango

DURATION discretizado en 4 intervalos de igual longitud

Discretización por frecuencia

- El objetivo es dividir los valores del atributo numérico en k partes con la misma cantidad de valores en cada una de ellas.
- Nótese que el atributo debe tener al menos k valores diferentes.
- □ Ejemplo: Discretizar DURATION en 4 intervalos de igual frecuencia

Valor	Intervalo	Frecuencia
range1	[-∞ - 104.5]	45
range3	(115.5 - 130]	45
range2	(104.5 - 115.5]	44
range4	(130 - ∞]	44

Discretización por frecuencia

DURATION discretizado en 4 intervalos de igual frecuencia

Discretización por frecuencia

DURATION discretizado en 4 intervalos de igual frecuencia

Se indican los umbrales a utilizar en forma manual

Operador Discretize by User Specification

Se selecciona el atributo DURATION

Operador Discretize by User Specification

Aquí se indican los intervalos

Operador Discretize by User Specification

- □ Si DURATION <= 100, BREVE
- Si (DURATION> 100) y(DURATION<=136), NORMAL
- □ Si (DURATION>136), LARGA

Numerización

- Enocasiones los atributos nominales u ordinales deben convertirse en números.
- Para los nominales suele utilizarse una representación binaria y para los ordinales suele utilizarse una representación entera.
- Esimportante considerar que si se numeran en forma correlativa los valores de un atributo nominal se agrega un orden que originalmente no está presente en la información disponible.

Numerización Binaria (dummy)

- La numerización binaria reemplaza al atributo nominal por tantos atributos numéricos binarios como valores distintos pueda tomar.
- Las denominaciones de estos nuevos atributos surgen de igualar el nombre original con cada uno de los posibles valores.
- Para un mismo ejemplo sólo uno de estos nuevos atributos tendrá valor 1 y el resto 0.

Numerización Binaria de SEX

Row No.	Sex = M	Sex = F	Year	Age	Actor	Film	nominati
1	1	0	1928	44	Emil Jannings	The Last Co	2
2	0	1	1928	22	Laura Gainor	Sunrise	5
3	1	0	1929	38	Warner Baxter	In Old Arizona	5
4	0	1	1929	37	Mary Pickford	Coquette	2
5	1	0	1930	62	George Arliss	Disraeli	3
6	0	1	1930	30	Norma Shear	The Divorcee	4
7	1	0	1931	53	Lionel Barry	A Free Soul	3
8	0	1	1931	62	Marie Dressler	Min and Bill	2
9	1	0	1932	41	W. Beery(47)/	The Champ/	4
10	0	1	1932	32	Helen Haves	Sin of Madelon	2

Normalización

- Se aplica según el modelo que se va a construir.
- □ La más común es la normalización lineal uniforme

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

- □ Es muy sensible a valores fuera de rango (outliers).
- □ Si se recortan los extremos se obtiene valor negativos y/o mayores a 1.

Normalización

 Existen otras transformaciones. Por ejemplo, si los datos tienen distribución normal se pueden tipificar

$$X' = \frac{X - media(X)}{desviacion(X)}$$

 De esta forma los datos se distribuyen normalmente alrededor de 0 con desviación 1.

Normalización - Operador Normalize

Resumen

PREPARACION DE LOS DATOS

- Completar datos faltantes
- Operador MAP
- Generación de características o atributos nuevos
- Transformaciones
 - Discretización por rango, por frecuencia e indicada por el usuario
 - Numerización: codificación entera y codificación binaria
 - Normalización: Lineal y Estandarización