Droplet Propulsion by Thermal Modulation of the Liquid-Solid Interfacial Energy

Nikolai V. Priezjev

http://www.princeton.edu/~priezjev

Prof. Sandra M. Troian
Microfluidic Research & Engineering Laboratory
Dept. of Chemical Engineering
Princeton University

Outline

- Details of molecular dynamics model
- Isothermal wall conditions: free diffusion of droplet center mass

• Droplet motion in presence of temperature gradient

Why is the droplet moving?

Estimation of thermocapillary force at liquid vapor interface

Variation in the effective surface adhesive energy

• Conclusions

Molecular Dynamics Simulation Model

Modified Langevin thermostat for wall atoms:

$$T(\mathbf{x}) = T_0 (1 - \alpha \mathbf{x}) \quad \text{where } T_0 = 1.0 \varepsilon / k_B$$

$$m\ddot{y}_i + m\Gamma \dot{y}_i = -\sum_{i \neq j} \frac{\partial V_{ij}}{\partial y_i} + f_i \quad \text{Temperature}$$

$$\text{gradient}$$

Interaction potentials:

$$V_{LJ}(r) = 4\varepsilon \left[\left(\frac{r}{\sigma} \right)^{-6} - \left(\frac{r}{\sigma} \right)^{-12} \right]$$

$$V_{\text{FENE}}(r) = \frac{1}{2} k r_o^2 \ln \left(1 - \frac{r^2}{r_o^2} \right)$$

$$r_{\text{cut-off}} = 2.5\sigma$$

 $\varepsilon_{wf} = 0.9\varepsilon$ wall-fluid interaction

$$\rho_{\rm w} = 0.8 \ \sigma^{-3}$$
 wall density

 $\Gamma = \tau^{-1}$ friction coefficient $f_i = \text{Gaussian random force}$

$$T_{\text{max}} \sim 1.4 \, \varepsilon / k_B$$

$$T_{\text{min}} \sim 0.6 \, \varepsilon / k_B$$

Isothermal wall conditions

Applied T_0 : $0.6 - 1.3 \epsilon/k_B$

$$\mathbf{x}_{\mathrm{CM}} = \frac{1}{N_{fluid}} \sum_{i=1}^{N_{fluid}} \mathbf{x}_{i}$$

Diffusion coefficient:

$$D = \frac{1}{2t} \left\langle \left| x_{CM}(t) - x_{CM}(t') \right|^2 \right\rangle$$
for $t - t' \gg \tau$

- Diffusion follows
 Arrhenius dependence
- For typical duration of simulation $10^4\tau$ droplet center mass diffuses about 10σ for T=1.0 ε/k_B

 $\alpha \neq 0$?

Droplet Motion in Presence of Temperature Gradient

$$T(x)=T_0(1-\alpha x)$$

$$T_0=1.0\varepsilon/k_B$$

- Faster motion for higher gradient α
- Small gradient α: trajectory is liner with superimposed fluctuations
- Large gradient α: trajectory becomes curved (slow motion at right cold end)

Why is the Droplet Moving?

Estimation of thermocapillary force:

$$F = \int \frac{d\gamma_{LV}}{dT} \frac{dT}{dx} Sin\theta dS$$
pulling stress interface

Typical force $F = O(1)\varepsilon/\sigma$ is small

Estimation of surface tension γ_{LV}

T(x) = constant

 γ_{LV} = surface tension decreases monotonically

from
$$\gamma_{LV}$$
 (T=0.6)=1.28 $\varepsilon \sigma^{-2}$

to
$$\gamma_{LV}(T = 1.3) = 0.54 \ \varepsilon \sigma^{-2}$$

for the thin polymer vapor interface

Broska et al., Langmuir, '93 Ford and Nadim, Phys. Fluids, '94

$$F/N_{fluid}$$
 = free diffusion

TEST:

$$10^3 \cdot F/N_{fluid} = \text{recover } \alpha \neq 0$$

Droplet Diffusion Influenced by Adhesion Energy Variation

Isothermal wall conditions:

$$\mathbf{x}_{\mathrm{CM}} = \frac{1}{N_{fluid}} \sum_{i=1}^{N_{fluid}} \mathbf{x}_{i}$$

Brochard, Langmuir 5, 432 (1989)

Chaudhury and Whitesides, Science **256**, 1539 (1992)

$$\varepsilon_{\rm wf}(x) = \varepsilon_{\rm wf}(1 + \delta x)$$
 $\delta = \text{surface energy gradient}$

- Faster motion for higher gradient δ
- Trajectory for δ =0.1 σ⁻¹ is similar to motion at temperature gradient $\alpha = 0.0127 \sigma^{-1}$

Conclusions:

Using molecular dynamics simulations, we have investigated the behavior of polymeric droplet under imposed temperature gradient.

- Diffusion of the droplet's center of mass follows Arrhenius law.
- Faster CM droplet motion for higher temperature gradient.
- Thermocapillary effects at the liquid/vapor interface play a minor role.
- The motion of the droplet is dominated by the variable liquid-surface interaction energy. Drift velocity of the center of mass grows linearly with surface energy gradient.