

Art of Problem Solving 2012 Romania National Olympiad

Romania National Olympiad 2012

_	IX
1	The altitude $[BH]$ dropped onto the hypotenuse of a triangle ABC intersects the bisectors $[AD]$ and $[CE]$ at Q and P respectively. Prove that the line passing through the midpoints of the segments $[QD]$ and $[PE]$ is parallel to the line AC .
2	Find all functions $f: \mathbb{R} \to \mathbb{R}$ with the following property: for any open bounded interval I , the set $f(I)$ is an open interval having the same length with I .
3	Prove that if $n \geq 2$ is a natural number and x_1, x_2, \ldots, x_n are positive real numbers, then:
	$4\left(\frac{x_1^3 - x_2^3}{x_1 + x_2} + \frac{x_2^3 - x_3^3}{x_2 + x_3} + \dots + \frac{x_{n-1}^3 - x_n^3}{x_{n-1} + x_n} + \frac{x_n^3 - x_1^3}{x_n + x_1}\right) \le \le (x_1 - x_2)^2 + (x_2 - x_3)^2 + \dots + (x_n - x_n)^2 + \dots + (x_n - x_$
4	On a table there are $k \geq 2$ piles having n_1, n_2, \ldots, n_k pencils respectively. A move consists in choosing two piles having a and b pencils respectively, $a \geq b$ and transferring b pencils from the first pile to the second one. Find the necessary and sufficient condition for n_1, n_2, \ldots, n_k , such that there exists a succession of moves through which all pencils are transferred to the same pile.
_	X
1	Let $M=\{x\in\mathbb{C} z =1,\ \mathrm{Re}z\in\mathbb{Q}\}$. Prove that there exist infinitely many equilateral triangles in the complex plane having all affixes of their vertices in the set M .
2	Let a , b and c be three complex numbers such that $a+b+c=0$ and $ a = b = c =1$. Prove that:
	$3 \le z - a + z - b + z - c \le 4,$
	for any $z \in \mathbb{C}$, $ z \le 1$.

Contributors: Mateescu Constantin

Art of Problem Solving

2012 Romania National Olympiad

3 Let $a, b \in \mathbb{R}$ with 0 < a < b. Prove that:

a)
$$2\sqrt{ab} \le \frac{x+y+z}{3} + \frac{ab}{\sqrt[3]{xyz}} \le a+b$$
, for $x,y,z \in [a,b]$.

b)
$$\left\{ \frac{x+y+z}{3} + \frac{ab}{\sqrt[3]{xyz}} \mid x, y, z \in [a, b] \right\} = \left[2\sqrt{ab}, a + b \right].$$

4 Let n and m be two natural numbers, $m \geq n \geq 2$. Find the number of injective functions

$$f: \{1, 2, \dots, n\} \to \{1, 2, \dots, m\}$$

such that there exists a unique number $i \in \{1, 2, \dots, n-1\}$ for which f(i) > f(i+1) .

_	XI

- Let $f,g\colon [0,1]\to [0,1]$ be two functions such that g is monotonic, surjective and $|f(x)-f(y)|\leq |g(x)-g(y)|$, for any $x,y\in [0,1]$.
 - **a)** Prove that f is continuous and that there exists some $x_0 \in [0,1]$ with $f(x_0) = g(x_0)$.
 - **b)** Prove that the set $\{x \in [0,1] | f(x) = g(x)\}$ is a closed interval.
- Let n and k be two natural numbers such that $n \geq 2$ and $1 \leq k \leq n-1$. Prove that if the matrix $A \in \mathcal{M}_n(\mathbb{C})$ has exactly k minors of order n-1 equal to 0, then $\det(A) \neq 0$.
- 3 Let $A,B\in\mathcal{M}_4(\mathbb{R})$ such that AB=BA and $\det(A^2+AB+B^2)=0$. Prove that:

$$\det(A + B) + 3\det(A - B) = 6\det(A) + 6\det(B) .$$

- 4 Find all differentiable functions $f\colon [0,\infty)\to [0,\infty)$ for which f(0)=0 and $f'(x^2)=f(x)$ for any $x\in [0,\infty)$.
- XII

Art of Problem Solving

2012 Romania National Olympiad

- Let $f: [0, \infty) \to \mathbb{R}$ be a continuous function such that $\int_0^n f(x) f(n-x) dx = \int_0^n f^2(x) dx$, for any natural number $n \ge 1$. Prove that f is a periodic function.
- Let $(R,+,\cdot)$ be a ring and let f be a surjective endomorphism of R such that [x,f(x)]=0 for any $x\in R$, where [a,b]=ab-ba, $a,b\in R$. Prove that:
 - a) [x, f(y)] = [f(x), y] and x[x, y] = f(x)[x, y], for any $x, y \in R$;
 - **b)** If R is a division ring and f is different from the identity function, then R is commutative.
- 3 Let $\mathcal C$ be the set of integrable functions $f\colon [0,1]\to \mathbb R$ such that $0\le f(x)\le x$ for any $x\in [0,1]$. Define the function $V\colon \mathcal C\to \mathbb R$ by

$$V(f) = \int_0^1 f^2(x) \, dx - \left(\int_0^1 f(x) \, dx \right)^2 , f \in \mathcal{C} .$$

Determine the following two sets:

- a) $\{V(f_a) | 0 \le a \le 1\}$, where $f_a(x) = 0$, if $0 \le x \le a$ and $f_a(x) = x$, if $a < x \le 1$;
- **b)** $\{V(f) | f \in C\}$.
- Let m and n be two nonzero natural numbers. Determine the minimum number of distinct complex roots of the polynomial $\prod_{k=1}^{m} (f+k)$, when f covers the set of n^{th} degree polynomials with complex coefficients.

www.artofproblemsolving.com/community/c4425

Contributors: Mateescu Constantin