Giải bài toán PESP ứng dụng trong lập lịch tàu chạy bằng phương pháp SAT

Sinh viên Phạm Văn Phúc

Giảng viên hướng dẫn TS. Tô Văn Khánh

Lớp K66-CC

Ngành Công nghệ thông tin

Nội dung chính

- 1. Giới thiệu & Đặt vấn đề
- 2. Giải pháp cải tiến
- 3. Thực nghiệm & Đánh giá
- 4. Kết luận

1.1 Bài toán lập lịch tàu điện

Lịch trình cần đáp ứng nhiều yêu cầu:

- Thời gian hồi phục: Cho phép một khoảng delay bù đắp cho nhưng delay nhỏ khắp hệ thống.
- Tính kết nối: Hai tàu cần dừng ở trạm trong khoảng thời gian đủ lâu nhằm phục vụ nhu cầu nối chuyến
- Thời gian bảo dưỡng cuối trạm: Tàu điện cần được kiểm tra, bảo dưỡng, thay ca nhân viên trước khi khởi hành chuyến tiếp theo.
- Thời gian giãn cách tối thiểu: Hai tàu dùng chung tuyến đường cần có lịch trình cách nhau một khoảng thời gian tối thiểu vì lí do an toàn.

1.1 Bài toán lập lịch tàu điện

Lịch trình cần tối ưu thêm các thông số:

- Tối thiểu thời gian di chuyển
- Tính ổn định
- Tính linh hoạt

2.1 Mô hình PESP

PESP¹ được giới thiệu bởi Serafini và Ukovich, nhằm giải quyết bài toán lập lịch tuần hoàn.

•
$$\pi_B - \pi_A \in [5, 15]_{60}$$

•
$$\pi_C - \pi_A \in [0, 10]_{60}$$

$$[5,15]_{60}=\ldots\cup[-55,-45]\cup[5,15]\cup[65,75]\cup\ldots$$

¹Periodic Event Scheduling Problem

2.1 Mô hình PESP

PESP thuộc lớp bài toán *thỏa mãn* ràng buộc².

Được chứng minh là bài toán NPhard³

²Constraint satisfaction problem

³M. A. Odijk, Construction of Periodic Timetables. Pt. 1. A Cutting Plane Algorithm. TU Delft, 1994

2.2 Giải pháp hiện tại

Quy hoạch số nguyên (Mixed Integer Programming)

2.3 Hạn chế

Khá chậm, không thể giải những hệ thống lớn và phức tạp

2.1 Tiến bộ của SAT Solver

Lorem ipsum dolor sit amet, consectetur adipiscing.

2.2 Phương pháp giải bài toán PESP sử dụng SAT Solver

Lorem ipsum dolor sit amet, consectetur adipiscing.

2.3 Phương pháp giải bài toán PESP sử dụng SAT Solver

Lorem ipsum dolor sit amet, consectetur adipiscing.

3.1 Thực nghiệm, đánh giá

Lorem ipsum dolor sit amet, consectetur adipiscing.

3.2 Dữ liệu thực nghiệm

PESPlib⁴:

- 22 file dữ liệu được chuẩn hóa
- Được sử dụng trong nhiều nghiên cứu⁵⁶

⁴https://timpasslib.aalto.fi/

⁵M. Goerigk and A. Schöbel, "An empirical analysis of robustness concepts for timetabling," Erlebach, vol. 14, pp. 100–113, 2010

⁶J.-W. Goossens, "Models and algorithms for railway line planning prob- lems," p. , 2004.

3.3 Kết quả thực nghiệm

Kết luận

- Cùng với sự tiến bộ của SAT Solver, ta có thể giải các bài toán PESP phức tạp trong một khoảng thời gian hợp lý.
- Phương pháp vẫn tiếp được cải tiến bởi nhiều nghiên cứu.

Trân trọng cảm ơn thầy cô đã lắng nghe