Reconfigurable intelligent surfaces: Myths and realities

Emil Björnson

Associate professor

Department of Electrical Engineering (ISY)
Linköping University
Sweden

Evolution of the Concept

- Fixed reflectarray (1960s)
- Reconfigurable reflectarray/metasurface
- 3. Software-controlled metasurface

4. Real-time software-controlled metasurface

People Cannot Stop Making Up New Names...

- C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, "A new wireless communication paradigm through **software-controlled metasurfaces**," IEEE Commun. Mag., vol. 56, no. 9, pp. 162–169, 2018.
- E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and R. Zhang, "Wireless communications through **reconfigurable intelligent surfaces**," *IEEE Access*, 2019.
- Q. Wu and R. Zhang, "Towards smart and reconfigurable environment: **Intelligent reflecting surface** aided wireless network," IEEE Communication Magazine, Jan 2020.
- E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta, "Massive MIMO is a reality—What is next? Five promising research directions for antenna arrays," Digital Signal Processing, vol. 94, pp. 3–20, Nov. 2019.

Exciting Idea: Intelligent Propagation Environments

We conventionally control

- 1) Transmitter
- 2) Receiver

Now we can control the channel!

Is this a game changer?

Several myths exist!

Myth 1: The First Technology That can Control the Channel

Using intelligent reflecting surface (IRS)

Spectral efficiency:

$$\log_2(1+\rho N^2\beta_{SR}\beta_{RD})$$

- + No pre-log penalty
- Multiplication of channel gains

Classical solution: Relay

Spectral efficiency (decode-and-forward):

$$\frac{1}{2}\log_2(1+\rho\min(\beta_{SR},\beta_{RD}))$$

- + Signal amplification at relay
- Pre-log penalty: ½

A Large Surface is Needed to Beat Relays

Goal: Achieve 4 bit/s/Hz

Channel gain: 3GPP Urban Micro (NLOS direct path, LOS otherwise)

Bandwidth: 10 MHz

Metasurface

Outperforms SISO case 200 elements needed to beat relay But fits into $1\times0.5~\text{m}^2$ at 3 GHz carrier

Reference: E. Björnson, Ö. Özdogan, E. G. Larsson, "Intelligent Reflecting Surface vs. Decode-and-Forward: How Large Surfaces Are Needed to Beat Relaying?," IEEE Wireless Commun. Letters, vol. 9, no. 2, pp. 244-248, February 2020.

Myth 2: Beamforming Gains are Better than in Massive MIMO

Spectral efficiency: $\log_2(1 + \rho N^2 \beta_{SR} \beta_{RD})$

Claim: Received power increases as N^2 , thus it is better than Massive MIMO where it grows as N

Reality: An IRS always has worse SNR. The gap reduces but remains as $N \to \infty$

Reference: E. Björnson, L. Sanguinetti, "Power Scaling Laws and Near-Field Behaviors of Massive MIMO and Intelligent Reflecting Surfaces," arXiv:2002.04960.

Myth 3: An IRS is a Specular Reflector ("Anomalous Mirror")

Claim: A surface of size $10\lambda \times 10\lambda$ behaves as a specular reflector (plane wave in, plane wave out)

Reality: A plane wave is scattered with a main beam of $2\lambda/b$ radians. $(b = 10\lambda)$ gives 36 degrees)

Wavelength is 10^5 shorter in wireless than in visible light: 10^5 larger surfaces is needed!

Reference: Ö. Özdogan, E. Björnson, E. G. Larsson, "Intelligent Reflecting Surfaces: Physics, Propagation, and Pathloss Modeling," IEEE Wireless Commun. Letters, to appear.

Is it Anyway be Helpful to Interpret it as a Mirror?

IRS is Not a Mirror But a Lens!

Potential Use Cases and Open Problems

- Lens-based array design
 - Implement "hybrid" transceivers?
 - Holographic beamforming

Operation above 100 GHz

- Hard to build conventional arrays
- Very sparse channels:
 Important to create new paths, even if weak

Open Problems:

Control interface Channel estimation Game-changing use case 10x improvement or more