PALOMAR JO- 012591187

02/14/202	MATHER	
	EXAMI	
	NOTE: Mot in order. Solving easy ones first eth externo to the toughor ones.	on
3.	unaluate (ex cosx de	
Am-	(ex cosx dn =) e.x. cosx (1.x) dn	
47.441)	Noting lear was put que = for (a war put + primp	x)
	= 01.2 (1,000 (12) 1 1; (12))	(
	$= \frac{1_5 + 1_5}{6_{1.5}} \left(1.007 \left(1.5 \right) + 1.9 in(1.5) \right) +$	
	- ex (rosx + binx) + C	
120	= ex (cosx + Linx) + C	
177.3	$\therefore \int e^{\lambda} \cos \lambda dn = \frac{e^{\lambda}}{2} \left(\cos \lambda + \sin \lambda \right) + C$	
2.	Consoluate S, (lm 21) dra	
km.	Set lux= m	
	Jet $\ln x = \mu$ $\frac{1}{2} d\alpha = d\mu$ $\frac{1}{2} \ln(x) \frac{2}{2} \ln x \cdot d\mu$ $\frac{1}{2} \ln(x) \frac{2}{2} \ln x \cdot d\mu$	-
		-
	P. t.o	

(1)

Sith 6- str of [12 e-24 - (e-24 (XH) der (1) $\left[\frac{(-5)}{M_5} + \frac{(-5)}{M_6} + \frac{(-5)}{M_6} - \left(\frac{(-5)}{6-5M} \right) \right] = \frac{(-5)}{M_5}$ $= 7 \left[-\frac{M^{2}e^{-2M} - Me^{-2M} - e^{-2M}}{2} - \frac{e^{-2M}}{4} \right]$ $= 7 - (\ln(2))^{2} - \ln(2) - 1 - (-(\ln 1)^{2} - 2e^{2\ln 2}) - \frac{1}{2e^{2\ln 2}}$ 2 e² mi 4 e² mi $= \frac{7 - (\ln 2)^2 - \ln 2}{2 \cdot (2)^2} - \frac{1}{2(2)^2} + \frac{1}{2(2)^2} + \frac{1}{2}$ $= 7 - (\ln 2)^2 - \ln 2 - 1 + (\ln 1)^2 + (\ln 1)^4$ $= 7 - 0.099 - 0.086 - \frac{1}{16} + 0 + 0 + \frac{1}{9}$

P.T.0

=7 -0.145 - 1+4 $= 7 - 0.145 + 3 \frac{3}{16}$ => 0.042 4. Revaluate (cos x sin'x dre Aug. I = (ros x sin x dx = ((1-xin2x)2 xin x rosx dr Set sin ? = M rosz du = dy I = [(1- 12), My du = (1+m4-2m2) m4 du = ((M4 + M8 - 2 M6) dy = ((no - 2 tho + m4) du = M9 - 2M7 + M5 + C I = 1 sin 2 - 2 sin 2 + 1 sin 5 x + (0. T. 9

(3)

Swaluate (dr.) x2 516x2-9 I = Mc 22/16/2-9 AM: Set $16\pi^2 = 9 \text{ Mer}^2\theta$ $4\pi = 3 \text{ Mer}^2\theta$ $\pi = \frac{3}{4} \text{ Mer}^2\theta$ dr = 3 sec o tam o do = 1 saco, tano do (4 sac θ same de [· · sac θ -1 = 10 2 6] $= \frac{4}{9} \int \cos\theta d\theta$ I = 4 sind + C Since, N = 3 sec 6 (18) 0 = 3 4x $\sin \theta = \frac{1-q}{(4\pi)^2} = \frac{16\pi^2-q}{4\pi}$ $I = \frac{4}{9} \times \sqrt{16x^2-9} + C = \sqrt{16x^2-9} + C$ D.T.0

Just make a substitution of them use Interpretionly points to evaluate the interpret. (are sin (lmx) dre Set M= Mx :. (ara sin m du = m ara sin m - (m du M rid and = Tour tab 5= pm = 1 m2 dV = du to) I + m mis area m = mb m mis area) .: From =7 M war sin M + 1) t - 1/2 dt =7 μ per sin μ + $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$ = $1-\mu^2$ $\frac{1}{2}$ + = $1-(\ln x)^2$:. In x. core sin (lnx) + 51-(m2)2+(0. T. V (9)

6. Punduali
$$\int \frac{x^2}{(n^2-x^2)^{1/2}} dx$$
And het $x = \alpha \cos 0$

$$0 = \cos^{-1}(\frac{\pi}{12})$$

$$2 \sin^2 0 = 1 - \cos^2 0$$

$$2 \sin^2 0 = 1 - \cos^2 0$$

$$(-\alpha) \sin 0 d\theta$$

$$(-\alpha) \sin 0 d$$

(6)

= ?
$$\int (1 - \cos x^2 \theta) d\theta$$

= ? $\int d\theta - \int \cos x^2 \theta d\theta$

= ? $\partial + \cot \theta + C$

= ? $\cos^{-1}(x) + \cos \theta + C$

= ? $\cos^{-1}(x) + 2 \cdot 1 + C$

= ? $\cos^{-1}(x) + 2 \cdot 1 + C$

= ? $\cos^{-1}(x) + 2 \cdot 1 + C$

= ? $\cos^{-1}(x) + 2 \cdot 1 + C$

= ? $\cos^{-1}(x) + 2 \cdot 1 + C$

= ? $\cos^{-1}(x) + 2 \cdot 1 + C$

= ? $\cos^{-1}(x) + 2 \cdot 1 + C$

= ? $\cos^{-1}(x) + 2 \cdot 1 + C$

[$\cos^{-1}(x) + 2 \cdot 1 + C$

| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 + C$
| $\cos^{-1}(x) + 2 \cdot 1 +$

 $I_2 = \left(\frac{\gamma_1}{(\chi^2 + 1)^2}\right)^2$ Set $M = \chi^2 + i$ $\partial M = 2 \chi \partial M$ dx = 1 du $\frac{1}{2 n^2} dn$ Noving (mm du = mm+1 $I_2 = \frac{1}{2} \left(\frac{1}{M^2} d_M \right)$ $\frac{1}{2} = \frac{1}{2(x^2+1)}$ I = I, + I₂ + ($I = tan^{-1}x - \frac{1}{2(x^2+1)} + C$ Evaluate (4 2 mm dur

(1)

9,

Au. Let M = Jm du = 1 du 2 du = du When W=1, M=1, M=2i. (2 eh. 2 du => 2 (2 et du =7 2 [e⁺]² $= 2 \left[e^2 - 1 \right]$ Evaluate (5x2+1 drx Set x = tan 8 JM: oh = see 2 d do When $\chi=0$, $\theta=0$, When $\chi=1$, $\phi=\frac{1}{4}$: (# 5 ton 8 + 1. sex 2 0 d) => (suco. suco do 0.7.8

$$dV = xac^2\theta$$

$$\Theta = I = \int_{0}^{T_{1}} \int_{0}^{T_{2}} \int_{0}^{T_{1}} \int_{0}^{T_{1}} \int_{0}^{T_{2}} \int_{0}^{T_{1}} \int_{0}^$$

$$= 52 - \int_{0}^{\pi} (bac^{3}\theta - bac\theta) d\theta$$

10. Evaduate
$$\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1| + 0$$
 [$\frac{1}{2} \log |\sqrt{1} + 1|$]

10. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

10. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

10. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

11. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

12. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

13. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

14. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

15. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

16. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

17. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

18. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

19. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

10. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

11. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

12. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

13. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

14. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

15. Evaduate $\int_{\pi/6}^{\pi/3} \frac{1}{2} \log |\sqrt{1} + 1|$

16. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

17. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

18. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

19. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

10. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

10. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

11. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

12. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

13. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

14. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

15. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

16. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

17. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

18. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

19. Evaduate $\int_{\pi/6}^{\pi/6} \frac{1}{2} \log |\sqrt{1} + 1|$

19. Evaduate $\int_{\pi/6}^{\pi/6$

(11)