TRAVAIL PRATIQUE 1 Un bref solutionnaire

IFT-2002 : Informatique théorique H 2014 (Julien Marcil)

- Les termes diagramme de transitions et automates sont utilisés indifféremment.
- Les termes chaînes, séquences et mots sont utilisés indifféremment.

Question 1 (15 points)

Soit $M = \{\{A, B, C, D, E, F\}, \{0, 1\}, \rho, A, \{A, C, F\}\}$ un automate fini non déterministe avec

$$\rho = \{((A,0),A), ((A,1),B), ((B,1),C), ((C,1),B)$$

$$((A,1),D), ((D,1),E), ((E,1),F), ((F,1),D)\}.$$

- 1. Exhibez un automate fini déterministe N dont tous les états sont accessibles et tel que L(M) = L(N).
- 2. Donnez une expression régulière qui représente le langage accepté par M.

Solution.

Tout d'abord, construire le diagramme de transitions :

Donc le langage L(M) peut être décrit come $\{0^n1^m \mid n \in \mathbb{N}, m \text{ est un multiple de 2 ou 3}\}$. Un automate fini déterministe pour qui accepte le langage L(M)

Une expression régulière qui décrit le langage de L(M) est

$$0^*((11)^* \cup (111)^*)$$

Barème : 5 points pour la compréhension du langage, 5 points pour l'automate fini déterministe, 5 points pour l'expression régulière.

Question 2 (20 points)

Démontrez que tout automate fini non déterministe $M = \{S, \Sigma, \rho, \iota, F\}$ peut être converti en un automate fini non déterministe qui contient un seul état accepteur.

Solution.

Pour convertir M en automate fini non déterministe qui contient un seul état accepteur, il suffit d'ajouter un nouvel état S_a . Ce nouvel état sera le seul état accepteur et nous ajouterons des transitions λ des états accepteurs de M vers S_a .

DÉMONSTRATION.

Nous construisons un nouvel automate fini non déterministe $M_2 = \{S_2, \Sigma, \rho_2, \iota_2, F_2\}$ à partir de M tel que $L(M_2) = L(M)$ et $|F_2| = 1$.

$$S_2 = S \cup \{S_a\}$$

$$\iota_2 = \iota$$

$$F_2 = \{S_a\}$$

$$\delta_2(s, w) = \begin{cases}
si \ s \notin F & \delta(s, w) \\
si \ s \in F, w \neq \lambda & \delta(s, w) \\
si \ s \in F, w = \lambda & \delta(s, w) \cup \{S_a\}
\end{cases}$$
(1)

Barème: 10 points pour la bonne approche, 10 points pour la démonstration.

Question 3 (20 points)

Soit $L_3 = \{w \mid w \text{ est la représentation binaire d'un nombre naturel multiple de 3}\}$ un langage sur $\Sigma = \{0, 1\}$. Par exemple, $110 \in L_3$, puisque 110 est la représentation binaire de 6. Si L_3 n'est pas régulier, alors montrez-le en utilisant le *lemme de pompage*. Sinon, exhibez un automate qui reconnait L_3 .

Solution.

Le langage est régulier, voici l'automate qui l'accepte.

Barème: 10 points pour la bonne approche, 10 points pour le bon automate.

Question 4 (15 points)

Soit le langage $L = \{ww \mid w \in \{0,1\}^*\}$. Montrez, en utilisant le lemme de pompage, que L n'est pas régulier.

Solution.

Nous allons utiliser le lemme de pompage pour faire une preuve par contradiction.

DÉMONSTRATION.

Supposons que L est un langage régulier. Alors, soit p: la longueur de pompage du langage L. Prenons le mot $m = 0^p 1^p 0^p 1^p$. Il est facile de voir que $m \in L$ puisqu'il est de la forme ww où $w = 0^p 1^p$. Par le lemme de pompage, puisque $|m| \ge p$, alors il existe des mots x, y, z tels que m = xyz, |xy| < p, |y| > 0 et pour tout entier i > 0 on a $xy^iz \in L$.

Puisque $|xy| \le p$ alors $xy = 0^i$ pour un $i \le p$ et donc $y = 0^j$ pour un j > 0 et $j \le i \le p$. Nous avons donc

$$xy^{2}z = xyyz$$

$$= (0^{i-j})(0^{j})(0^{j})(0^{p-j}1^{p}0^{p}1^{p})$$

$$= 0^{p+j}1^{p}0^{p}1^{p}$$

Mais $0^{p+j}1^p0^p1^p \notin L$ car il n'est pas de la forme ww. Ceci est en contraction avec le $lemme\ de\ pompage\ car$ le mot $xy^2z\in L$. Le langage L n'est donc pas régulier. CQFD.

Barème : 5 pts pour un bon mot w, 5 pts pour une bonne utilisation du lemme, 5 pts pour la cohérence de la preuve.

Question 5 (15 points)

Soit l'expression régulière $r = (((00)^*(11)) \cup 01)^*$. Exhibez un automate fini non déterministe qui accepte le même langage que celui représenté par r.

Solution.

En utilisant la méthode vu en classe, il est possible de construire l'automate suivant.

Il est possible de simplifier l'automate précédent en enlevant les transitions λ .

Il est aussi possible de simplifier l'automate précédent en fusionnant les états C et E.

Barème: 10 points pour la bonne approche, 5 points pour un automate valide.

Question 6 (15 points)

Le Code Golf est un jeu qui consiste a écrire le programme le plus court possible pour solutionner un problème. Le Regex Golf, similairement, consiste à écrire l'expression régulière la plus courte possible qui accepte les mots d'une première liste, mais refuse les mots de la seconde. Soit les deux listes de titres de films suivantes :

2012	2013
Omertà	Louis Cyr
Pee Wee 3D	Gabrielle
Ésimésac	Il était une fois les Boys
L'affaire Dumont	Amsterdam
Inch'Allah	Le démantèlement
Laurence anyways	La légende de Sarila
La peur de l'eau	Hot Dog
Tout ce que tu possèdes	L'autre maison
Rebelle	Lac mystère
L'empire Bossé	Sarah préfère la course
Camion	La maison du pêcheur
Liverpool	Roche Papier Ciseaux
Le torrent	Vic + Flo ont vu un ours
Roméo Onze	1er amour
Mars et Avril	Les 4 soldats
Avant que mon coeur bascule	Rouge sang
Columbarium	Catimini
Mesnak	Triptyque
La vallée des larmes	La cicatrice
La mise à l'aveugle	Chasse au Godard d'Abbittibbi

Trouvez l'expression régulière r la plus courte que vous pouvez telle que :

Solution.

1. Solution naïve

```
grep -c "Omertà\|Pee Wee 3D\|Ésimésac\|L'affaire Dumont\|Inch'Allah\|
Laurence anyways\|La peur de l'eau\|Tout ce que tu possèdes\|Rebelle\|
L'empire Bossé\|Camion\|Liverpool\|Le torrent\|Roméo Onze\|Mars et Avril\|
Avant que mon coeur bascule\|Columbarium\|Mesnak\|La vallée des larmes\|
La mise à l'aveugle" films-quebecois-2012.txt
```

20

grep -c "Omertà\|Pee Wee 3D\|Ésimésac\|L'affaire Dumont\|Inch'Allah\|
Laurence anyways\|La peur de l'eau\|Tout ce que tu possèdes\|Rebelle\|
L'empire Bossé\|Camion\|Liverpool\|Le torrent\|Roméo Onze\|Mars et Avril\|
Avant que mon coeur bascule\|Columbarium\|Mesnak\|La vallée des larmes\|
La mise à l'aveugle" films-quebecois-2013.txt

0

2. Solution plus optimal

```
(trouvée par Louis Dionne)
```

```
grep -c "['3wM]\|e.t.\|e..1\|mé\|ba\|rp\|io" films-quebecois-2012.txt
20
grep -c "['3wM]\|e.t.\|e..1\|mé\|ba\|rp\|io" films-quebecois-2013.txt
```

0

Barème : -1 point pour chaque erreur.