Carrive Dynamic Routing Solution

A Scalable, Market-Ready Geospatial Routing Platform

Carrive Technologies

March 16, 2025

Contents

1	Executive Summary	2
2	Project Overview 2.1 Objectives	
3	System Architecture 3.1 Components	
4	Technical Implementation4.1 Flask Backend4.2 Frontend Interface4.3 Integration Flow	3
5	Budget & Cost 5.1 Estimated Costs	
6	Benefits to Target Industries	4
7	Conclusion	4

1. Executive Summary

Carrive is a dynamic routing and network mapping solution designed to deliver real-time routing and asset visualization capabilities. Built using a Flask backend, PostGIS with pgRouting, and a sleek Leaflet front-end, Carrive is ideal for industries such as logistics, oil & gas, and utilities. The solution is highly scalable, with deployment options via Docker or AWS EC2, and comes with a modern, market-ready UI.

2. Project Overview

2.1. Objectives

- Develop an interactive web application for real-time routing and network visualization.
- Enable users to set start and destination points, which are snapped to the nearest network vertices.
- Compute and display the shortest route using dynamic queries against a PostGIS database with pgRouting.
- Provide flexible deployment options to meet various enterprise requirements.

2.2. Key Features

- 1. **Interactive Map Interface:** A sleek, user-friendly UI with a dark mode theme and minimalist controls.
- 2. **Dynamic Routing:** Real-time snapping of GPS coordinates to network vertices and dynamic route computation.
- 3. **Flexible Deployment:** Deployable using Docker containers for consistent environments or via AWS EC2 for scalable cloud hosting.
- 4. **Modern Aesthetics:** A premium user experience with an Uber-like design, ensuring an intuitive and professional interface.

3. System Architecture

3.1. Components

- **Frontend:** Built with HTML, CSS, and JavaScript using the Leaflet library for interactive maps.
- **Backend:** Python Flask providing RESTful endpoints for snapping markers and computing routes.
- **Database:** PostGIS-enabled PostgreSQL storing geospatial data, with pgRouting handling shortest path calculations.

3.2. Deployment Options

- **Docker:** Containerized deployment for consistent environments and ease of replication.
- AWS EC2: Scalable, cloud-based hosting with integration into the broader AWS ecosystem.

4. Technical Implementation

4.1. Flask Backend

The backend is implemented in Python using Flask. Key endpoints include:

- /closest_vertex: Receives raw GPS coordinates (assumed in EPSG:4326), transforms them, and returns the nearest network vertex (ID and coordinates).
- /shortest_route: Accepts two vertex IDs and computes the shortest path between them using pgRouting. The result is returned as an ordered JSON array of route points.

4.2. Frontend Interface

The user interface uses HTML/CSS/JavaScript and Leaflet to create:

- A full-screen map with a white basemap.
- Draggable markers for start and destination (using default icons).
- Custom zoom buttons and a floating sidebar with modern controls.
- A dark-themed header with the app name "CARRIVE" to emphasize branding.

4.3. Integration Flow

- 1. The user sets start and destination markers on the map.
- 2. When "Calculate Route" is pressed, each marker's coordinates are sent to the /closest_vertex endpoint to snap them to the nearest network vertices.
- 3. The returned vertex IDs are then used to call the /shortest_route endpoint.
- 4. The computed route is returned as JSON and displayed as a polyline on the map.

5. Budget & Cost

5.1. Estimated Costs

- **Development:** \$10,000 \$20,000 (depending on scope and customizations).
- Deployment (Docker): Minimal cost if self-hosted; \$50 \$200 per month for cloud container hosting.
- Deployment (AWS EC2): \$100 \$500 per month, depending on instance size and usage.
- Maintenance & Support: \$2,000 \$5,000 annually.

5.2. Cost Benefits

- Reduced operational costs through optimized route planning.
- Scalable architecture allows gradual investment as usage increases.
- Open-source technologies minimize licensing fees.

6. Benefits to Target Industries

- Logistics: Optimized delivery routes and fleet management.
- Oil & Gas: Efficient planning for pipeline inspections and field operations.
- Utilities: Streamlined network maintenance and rapid response for outage management.

7. Conclusion

Carrive delivers a robust, dynamic routing solution designed with modern aesthetics and scalable architecture. Whether deployed in a Docker container or on AWS EC2, it provides real-time route computation, an intuitive user interface, and flexible integration with existing enterprise systems. This solution is ideal for any organization needing advanced geospatial analysis and routing capabilities.

Contact Information:

Carrive Technologies

Email: ockleycarr@gmail.com Phone: +1 (555) 123-4567