МІНІСТЕРСТВО ОСВІТИ І НАУКИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМ.ІГОРЯ СІКОРСЬКОГО»

НАВЧАЛЬНО-НАУКОВИЙ ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

Лабораторна робота №3

«Прикладне програмне забезпечення навчання та тестування нейронної мережі для класифікації тестових даних. Аналіз впливу архітектури мережі та параметрів навчання на точність класифікації.»

Виконав: Студент 3 курсу Групи ФІ-21 Голуб Михайло

Перевірив: Железняков. Д. О.

3MICT

1. ЗАВДАННЯ ЛАБОРАТОРНОЇ РОБОТИ				
визначено.				
2. ХІД РОБОТИ Помилка! Закладку не визначено.				
2.1. Реалізація алгоритму оптимізації роєм часток Помилка! Закладку не				
визначено.				
2.1.1. Словник параметрів Помилка! Закладку не визначено.				
2.1.2. Клас частинки				
2.1.3. Клас рою				
2.2. Використання алгоритму оптимізації роєм часток на функціях				
пристосованості				
2.2.1. Ackley Помилка! Закладку не визначено.				
2.2.2. Функція РозенброкаПомилка! Закладку не визначено.				
2.2.3. Cross-in-tray				
2.2.4. Hölder table Помилка! Закладку не визначено.				
2.2.5. McCormick				
2.2.6. Styrblinski-Tang Помилка! Закладку не визначено.				
3. ВИСНОВКИ				

1. ЗАВДАННЯ ЛАБОРАТОРНОЇ РОБОТИ

1.1. Набір даних

- CIFAR-100 або інші складні набори даних для класифікації зображень
- Можна використовувати більш прості набори даних (MNIST, CIFAR-10), але оцінка не буде знижена
- Можна використовувати набори даних для більш складного завдання (додаткові бали)

1.2. Завдання

- Ознайомитись з теоретичними відомостями до архітектур нейронних мереж (згорткові нейронні мережі, типи шарів, overfitting, ...).
- Завантажити набір даних
- За необхідності зробити попередню обробку та поділити датасет на: навчальний, валідаційний та тестовий
- Розробити архітектуру згорткової нейронної мережі для класифікації зображень
- Оцінити якість класифікації зображень (baseline)
- Провести серію експериментів (~ 4-8 експериментів) з архітектурою нейронної мережі та дослідити як впливає архітектура нейронної мережі на якість класифікації та процес навчання (loss, time). Бажано брати декілька різних параметрів. Для прикладу: збільшення кількості параметрів згорткового шару, інша функція активації, додавання Dropout, додавання нового скритого шару, тощо.
 - о Зробити висновки по кожному експерименту.
- Порівняти результати. В деяких випадках доцільно показати у вигляді "Ablation Study"
 - о Інколи бажано спробувати змінити один той самий параметр декілька разів (збільшити та зменшити)
 - о Обрати найкращу модель та загальні висновки
- Зробити звіт
- Захистити роботу

2. ХІД РОБОТИ

2.1. Набір даних

Використовується набір CIFAR100, що містить 100 класів зображень. Сумарна кількість зображень — 60000, з них 50000 для тренування і 10000 для тестування. З 50000 тренувальних — 40000 для навчання, 10000 для передбачень і відбору.

Візуалізація класів)

2.2. Опис очікуваних характеристик

Для accuracy покладемо значення:

Accuracy (a)	Характеристичний показник	
a < 0.01	Модель працює гірше за випадковий	
	вибір	
0.01 < a < 0.05	Модель працює дуже погано	
0.05 < a < 0.1	Модель працює погано	
0.1 < a < 0.2	Модель працює неточно	
0.2< a<0.3	Модель працює нормально	
0.3< a<0.4	Модель працює добре	
0.4 < a	Модель працює дуже добре	

Для loss покладемо значення:

Loss (l)	Характеристичний показник		
1 > 6	Модель дуже невпевнена		
4 < 1 < 6	Модель невпевнена		
3 < 1 < 4	Модель дещо невпевнена		
2 < 1 < 3	Модель нормальна		
1 < 2	Модель достатньо впевнена		

2.3. Базова архітектура

2.3.1. Структура базової архітектури

Базова архітектура створюється наступним кодом:

Model: "sequential"

Layer (type)	Output Shape	 Param #
conv2d (Conv2D)	(None, 32, 32, 32)	
<pre>batch_normalization (BatchN ormalization)</pre>	(None, 32, 32, 32)	128
flatten (Flatten)	(None, 32768)	0
dense (Dense)	(None, 400)	13107600
dropout (Dropout)	(None, 400)	0
dense_1 (Dense)	(None, 200)	80200
dropout_1 (Dropout)	(None, 200)	0
dense_2 (Dense)	(None, 100)	20100

Total params: 13,210,460

Trainable params: 13,210,396

Non-trainable params: 64

Базова архітектура. Результат виконання model.summary())

2.3.2. Точність і втрати базової архітектури

Базова архітектура перенавчається на 10-12 епосі, після чого модель дещо невпевнена і працює нормально (loss ~3, accuracy ~0.27)

Функції втрат базової архітектури)

Функції точності базової архітектури)

Матриця плутань базової архітектури)

3 матриці плутань видно, що модель часто плутає схожі класи (дерева, дельфінів з акулами, тощо) і досить точно визначає унікальні класи (наприклад стільці).

2.4. Експерименти

2.4.1. Значне збільшення Dropout

Модель перенавчається досить швидко, тож можна збільшити Dropout з $0.2\ {\rm дo}\ 0.4$:

Функції втрат для першого експерименту)

Функції точності для першого експерименту)

Матриця плутань для першого експерименту)

Отже, ця модель вже не перенавчається, але має схожу точність і гірші втрати.

2.4.2. Збільшення Dropout

Встановлено значення dropout piвне 0.32:

Функція втрат для другого експерименту)

Функція точності для другого експерименту)

Матриця плутань для другого експерименту)

Дана модель має більшу точність і менші втрати ніж модель в першому експерименті, але меншу точність і схожі втрати ніж базова архітектура.

2.4.3. Збільшення розміру матриці Conv2D.

Відносно базової архітектури, збільшено розмір матриці в шарі Conv2D з 5x5 на 9x9. Dropout рівний 0.2:

Функція втрат для третього експерименту)

Функція точності для третього експерименту)

Матриця плутань для третього експеременту)