A. Blato

Licencia Creative Commons Atribución 3.0 (2017) Buenos Aires

Argentina

Este artículo presenta una formulación invariante de la relatividad especial que puede ser aplicada en cualquier sistema de referencia inercial. Además, una nueva fuerza universal es propuesta.

Introducción

La masa intrínseca (m) y el factor frecuencia (f) de una partícula masiva están dados por:

$$m \doteq m_o$$

$$f \; \doteq \; \left(1 - \frac{\mathbf{v} \cdot \mathbf{v}}{c^2}\right)^{-1/2}$$

donde (m_o) es la masa en reposo de la partícula masiva, (\mathbf{v}) es la velocidad relacional de la partícula masiva y (c) es la velocidad de la luz en el vacío.

La masa intrínseca (m) y el factor frecuencia (f) de una partícula no masiva están dados por:

$$m \; \doteq \; \frac{h \, \kappa}{c^2}$$

$$f \doteq \frac{\nu}{\kappa}$$

donde (h) es la constante de Planck, (ν) es la frecuencia relacional de la partícula no masiva, (κ) es una constante universal positiva con dimensión de frecuencia y (c) es la velocidad de la luz en el vacío.

En este artículo, una partícula masiva es una partícula con masa en reposo no nula y una partícula no masiva es una partícula con masa en reposo nula.

Cinemática Invariante

La posición especial ($\bar{\mathbf{r}}$), la velocidad especial ($\bar{\mathbf{v}}$) y la aceleración especial ($\bar{\mathbf{a}}$) de una partícula (masiva o no masiva) están dadas por:

$$\bar{\mathbf{r}} \doteq \int f \mathbf{v} dt$$

$$\bar{\mathbf{v}} \doteq \frac{d\bar{\mathbf{r}}}{dt} = f \mathbf{v}$$

$$\bar{\mathbf{a}} \doteq \frac{d\bar{\mathbf{v}}}{dt} = f \frac{d\mathbf{v}}{dt} + \frac{df}{dt} \mathbf{v}$$

donde (f) es el factor frecuencia de la partícula, (\mathbf{v}) es la velocidad relacional de la partícula y (t) es el tiempo relacional de la partícula.

Dinámica Invariante

Sea una partícula (masiva o no masiva) con masa intrínseca (m) entonces el momento lineal (\mathbf{P}) de la partícula, el momento angular (\mathbf{L}) de la partícula la fuerza neta (\mathbf{F}) que actúa sobre la partícula, el trabajo (\mathbf{W}) realizado por la fuerza neta que actúa sobre la partícula y la energía cinética (\mathbf{K}) de la partícula están dados por:

$$\mathbf{P} \doteq m\,\bar{\mathbf{v}} = m\,f\,\mathbf{v}$$

$$\mathbf{L} \doteq \mathbf{P}\,\dot{\times}\,\mathbf{r} = m\,\bar{\mathbf{v}}\,\dot{\times}\,\mathbf{r} = m\,f\,\mathbf{v}\,\dot{\times}\,\mathbf{r}$$

$$\mathbf{F} = \frac{d\mathbf{P}}{dt} = m\,\bar{\mathbf{a}} = m\left[f\,\frac{d\mathbf{v}}{dt} + \frac{df}{dt}\,\mathbf{v}\right]$$

$$\mathbf{W} \doteq \int_{1}^{2}\mathbf{F}\cdot d\mathbf{r} = \int_{1}^{2}\frac{d\mathbf{P}}{dt}\cdot d\mathbf{r} = \Delta\,\mathbf{K}$$

$$\mathbf{K} \doteq m\,f\,c^{2}$$

donde (f, \mathbf{r} , \mathbf{v} , t, $\bar{\mathbf{v}}$, $\bar{\mathbf{a}}$) son el factor frecuencia, la posición relacional, la velocidad relacional, el tiempo relacional, la velocidad especial y la aceleración especial de la partícula y (c) es la velocidad de la luz en el vacío. La energía cinética (K_o) de una partícula masiva en reposo relacional es ($m_o\,c^2$)

Magnitudes Relacionales

A partir de una partícula masiva auxiliar (denominada punto-auxiliar) es posible obtener magnitudes cinemáticas (denominadas relacionales) que son invariantes bajo transformaciones entre sistemas de referencia inerciales.

Un punto-auxiliar es una partícula masiva arbitraria libre de fuerzas externas (o que la fuerza neta actuando sobre ésta es cero)

El tiempo relacional (t), la posición relacional (\mathbf{r}) , la velocidad relacional (\mathbf{v}) y la aceleración relacional (\mathbf{a}) de una partícula (masiva o no masiva) respecto a un sistema de referencia inercial S están dados por:

$$\begin{split} t &\doteq \gamma \left(\mathbf{t} - \frac{\vec{r} \cdot \vec{\varphi}}{c^2} \right) \\ \mathbf{r} &\doteq \left[\vec{r} + \frac{\gamma^2}{\gamma + 1} \frac{(\vec{r} \cdot \vec{\varphi}) \, \vec{\varphi}}{c^2} - \gamma \, \vec{\varphi} \, \mathbf{t} \, \right] \\ \mathbf{v} &\doteq \left[\vec{v} + \frac{\gamma^2}{\gamma + 1} \frac{(\vec{v} \cdot \vec{\varphi}) \, \vec{\varphi}}{c^2} - \gamma \, \vec{\varphi} \, \right] \frac{1}{\gamma \left(1 - \frac{\vec{v} \cdot \vec{\varphi}}{c^2} \right)} \\ \mathbf{a} &\doteq \left[\vec{a} - \frac{\gamma}{\gamma + 1} \frac{(\vec{a} \cdot \vec{\varphi}) \, \vec{\varphi}}{c^2} + \frac{(\vec{a} \times \vec{v}) \times \vec{\varphi}}{c^2} \, \right] \frac{1}{\gamma^2 \left(1 - \frac{\vec{v} \cdot \vec{\varphi}}{c^2} \right)^3} \end{split}$$

donde $(t, \vec{r}, \vec{v}, \vec{a})$ son el tiempo, la posición, la velocidad y la aceleración de la partícula respecto al sistema de referencia inercial S, $(\vec{\varphi})$ es la velocidad del punto-auxiliar respecto al sistema de referencia inercial S y (c) es la velocidad de la luz en el vacío. $(\vec{\varphi})$ es una constante. $\gamma = (1 - \vec{\varphi} \cdot \vec{\varphi}/c^2)^{-1/2}$

La frecuencia relacional (ν) de una partícula no masiva respecto a un sistema de referencia inercial S está dada por:

$$\nu \; \doteq \; \mathtt{v} \; \frac{\left(1 - \frac{\vec{c} \cdot \vec{\varphi}}{c^2}\right)}{\sqrt{1 - \frac{\vec{\varphi} \cdot \vec{\varphi}}{c^2}}}$$

donde (v) es la frecuencia de la partícula no masiva respecto al sistema de referencia inercial S, (\vec{c}) es la velocidad de la partícula no masiva respecto al sistema de referencia inercial S, ($\vec{\varphi}$) es la velocidad del punto-auxiliar respecto al sistema de referencia inercial S y (c) es la velocidad de la luz en el vacío.

- § En los sistemas de referencia inerciales no coincidentes ($t_{\alpha} \neq \tau_{\alpha}$ y/o $\mathbf{r}_{\alpha} \neq 0$) (α = punto-auxiliar) una constante debe ser sumada en la definición de tiempo relacional tal que el tiempo relacional y el tiempo propio del punto-auxiliar sean iguales ($t_{\alpha} = \tau_{\alpha}$) y otra constante debe ser sumada en la definición de posición relacional tal que la posición relacional del punto-auxiliar sea cero ($\mathbf{r}_{\alpha} = 0$)
- § En el estudio de un sistema aislado de partículas (masivas y/o no masivas) los observadores inerciales deberían preferentemente usar un punto-auxiliar tal que el momento lineal del sistema aislado de partículas sea cero ($\sum_z m_z \bar{\mathbf{v}}_z = 0$)

Observaciones Generales

- § Las fuerzas y los campos deben ser expresados con magnitudes relacionales (la fuerza de Lorentz debe ser expresada con la velocidad relacional v, el campo eléctrico debe ser expresado con la posición relacional r, etc.)
- § El operador (\dot{x}) debe ser reemplazado por el operador (x) o el operador (Λ) tal como sigue: ($\mathbf{a} \dot{\mathbf{x}} \mathbf{b} = \mathbf{b} \mathbf{a}$) o ($\mathbf{a} \dot{\mathbf{x}} \mathbf{b} = \mathbf{b} \mathbf{a}$)
- \S La magnitud masa intrínseca (m) es invariante bajo transformaciones entre sistemas de referencia inerciales y no inerciales.
- § Las magnitudes relacionales (ν , t, \mathbf{r} , \mathbf{v} , \mathbf{a}) son invariantes bajo transformaciones entre sistemas de referencia inerciales.
- § Por lo tanto, las magnitudes cinemáticas y dinámicas ($f, \bar{\mathbf{r}}, \bar{\mathbf{v}}, \bar{\mathbf{a}}, \mathbf{P}, \mathbf{L}, \mathbf{F}, \mathbf{W}, \mathbf{K}$) son invariantes bajo transformaciones entre sistemas de referencia inerciales.
- § Sin embargo, es natural considerar la siguiente generalización:
- Sería también posible obtener magnitudes relacionales ($\nu,t,\mathbf{r},\mathbf{v},\mathbf{a}$) que serían invariantes bajo transformaciones entre sistemas de referencia inerciales y no inerciales.
- Las magnitudes cinemáticas y dinámicas ($f, \bar{\mathbf{r}}, \bar{\mathbf{v}}, \bar{\mathbf{a}}, \mathbf{P}, \mathbf{L}, \mathbf{F}, \mathbf{W}, \mathbf{K}$) estarían dadas también por las ecuaciones de este artículo.
- Por lo tanto, las magnitudes cinemáticas y dinámicas $(f, \bar{\mathbf{r}}, \bar{\mathbf{v}}, \bar{\mathbf{a}}, \mathbf{P}, \mathbf{L}, \mathbf{F}, \mathbf{W}, \mathbf{K})$ serían invariantes bajo transformaciones entre sistemas de referencia inerciales y no inerciales.

Transformaciones Vectoriales de Lorentz

Sean dos sistemas de referencia inerciales S y S' cuyos orígenes coinciden en el tiempo cero (para ambos sistemas) entonces el tiempo (t'), la posición (\vec{r}') la velocidad (\vec{v}') y la aceleración (\vec{a}') de una partícula (masiva o no masiva) respecto al sistema de referencia inercial S' están dados por:

$$\begin{split} \mathbf{t}' &= \ \gamma \left(\mathbf{t} - \frac{\vec{r} \cdot \vec{\varphi}}{c^2} \right) \\ \vec{r}' &= \left[\vec{r} + \frac{\gamma^2}{\gamma + 1} \frac{(\vec{r} \cdot \vec{\varphi}) \, \vec{\varphi}}{c^2} - \gamma \, \vec{\varphi} \, \mathbf{t} \, \right] \\ \vec{v}' &= \left[\vec{v} + \frac{\gamma^2}{\gamma + 1} \frac{(\vec{v} \cdot \vec{\varphi}) \, \vec{\varphi}}{c^2} - \gamma \, \vec{\varphi} \, \right] \frac{1}{\gamma \left(1 - \frac{\vec{v} \cdot \vec{\varphi}}{c^2} \right)} \\ \vec{a}' &= \left[\vec{a} - \frac{\gamma}{\gamma + 1} \frac{(\vec{a} \cdot \vec{\varphi}) \, \vec{\varphi}}{c^2} + \frac{(\vec{a} \times \vec{v}) \times \vec{\varphi}}{c^2} \, \right] \frac{1}{\gamma^2 \, (1 - \frac{\vec{v} \cdot \vec{\varphi}}{c^2})^3} \end{split}$$

donde $(t, \vec{r}, \vec{v}, \vec{a})$ son el tiempo, la posición, la velocidad y la aceleración de la partícula respecto al sistema de referencia inercial S, $(\vec{\varphi})$ es la velocidad del sistema de referencia inercial S' respecto al sistema de referencia inercial S y (c) es la velocidad de la luz en el vacío. $(\vec{\varphi})$ es una constante. $\gamma = (1 - \vec{\varphi} \cdot \vec{\varphi}/c^2)^{-1/2}$

Transformación de Frecuencia

La frecuencia (v') de una partícula no masiva respecto a un sistema de referencia inercial S' está dada por:

$$\mathbf{v'} = \mathbf{v} \frac{\left(1 - \frac{\vec{c} \cdot \vec{\varphi}}{c^2}\right)}{\sqrt{1 - \frac{\vec{\varphi} \cdot \vec{\varphi}}{c^2}}}$$

donde (v) es la frecuencia de la partícula no masiva respecto a un sistema de referencia inercial S, (\vec{c}) es la velocidad de la partícula no masiva respecto al sistema de referencia inercial S, ($\vec{\varphi}$) es la velocidad del sistema de referencia inercial S' respecto al sistema de referencia inercial S y (c) es la velocidad de la luz en el vacío.

Fuerza Cinética

La fuerza cinética \mathbf{K}_{ij}^a ejercida sobre una partícula i con masa intrínseca m_i por otra partícula j con masa intrínseca m_j está dada por:

$$\mathbf{K}_{ij}^{a} = -\left[\frac{m_{i} m_{j}}{\mathbb{M}} \left(\bar{\mathbf{a}}_{i} - \bar{\mathbf{a}}_{j}\right)\right]$$

donde $\bar{\mathbf{a}}_i$ es la aceleración especial de la partícula i, $\bar{\mathbf{a}}_j$ es la aceleración especial de la partícula j y \mathbb{M} ($=\sum_z m_z$) es la suma de las masas intrínsecas de todas las partículas del Universo.

La fuerza cinética \mathbf{K}_i^u ejercida sobre una partícula i con masa intrínseca m_i por el Universo está dada por:

$$\mathbf{K}_i^u = -m_i \frac{\sum_z m_z \, \bar{\mathbf{a}}_z}{\sum_z m_z}$$

donde m_z y $\bar{\mathbf{a}}_z$ son la masa intrínseca y la aceleración especial de la z-ésima partícula del Universo.

De las ecuaciones anteriores se deduce que la fuerza cinética neta \mathbf{K}_i (= $\sum_j \mathbf{K}_{ij}^a$ + \mathbf{K}_i^a) que actúa sobre una partícula i con masa intrínseca m_i está dada por:

$$\mathbf{K}_i = -m_i \, \bar{\mathbf{a}}_i$$

donde $\bar{\mathbf{a}}_i$ es la aceleración especial de la partícula i.

Ahora, reemplazando ($\mathbf{F}_i = m_i \, \bar{\mathbf{a}}_i$) y reordenando, se obtiene:

$$\mathbf{T}_i \doteq \mathbf{K}_i + \mathbf{F}_i = 0$$

Por lo tanto, la fuerza total T_i que actúa sobre una partícula i es siempre cero.

Bibliografía

- A. Einstein, Sobre la Teoría de la Relatividad Especial y General.
- **E.** Mach, La Ciencia de la Mecánica.
- C. Møller, La Teoría de Relatividad.

Apéndice I

Sistema de Ecuaciones I

$$\begin{bmatrix} 1 \end{bmatrix} \\
\downarrow dt \downarrow \\
 \begin{bmatrix} 4 \end{bmatrix} \qquad \leftarrow \stackrel{.}{\times} \mathbf{r} \leftarrow \qquad [2] \\
\downarrow dt \downarrow \qquad \qquad \downarrow dt \downarrow \\
 \begin{bmatrix} 5 \end{bmatrix} \qquad \leftarrow \stackrel{.}{\times} \mathbf{r} \leftarrow \qquad [3] \qquad \rightarrow \int d\mathbf{r} \rightarrow \qquad [6]$$

$$[1] \qquad \frac{1}{\mu} \left[\int \mathbf{P} \, dt \, - \iint \mathbf{F} \, dt \, dt \right] = 0$$

$$[2] \qquad \frac{1}{\mu} \left[\mathbf{P} - \int \mathbf{F} \, dt \right] = 0$$

$$[\,3\,] \qquad \frac{1}{\mu}\,\left[\,\frac{d{\bf P}}{dt}\,-\,{\bf F}\,\,\right] =\,0$$

$$[4] \qquad \frac{1}{\mu} \left[\mathbf{P} - \int \mathbf{F} \, dt \right] \dot{\mathbf{x}} \mathbf{r} = 0$$

$$[5] \quad \frac{1}{\mu} \left[\frac{d\mathbf{P}}{dt} - \mathbf{F} \right] \dot{\mathbf{x}} \mathbf{r} = 0$$

$$[\,6\,] \qquad \frac{1}{\mu} \left[\int \frac{d{\bf P}}{dt} \cdot d{\bf r} \, - \int {\bf F} \cdot d{\bf r} \, \right] = \, 0$$

 $[\mu]$ es una constante arbitraria con dimensión de masa (M)

Apéndice II

Sistema de Ecuaciones II

$$\begin{bmatrix} 1 \end{bmatrix} \\
\downarrow dt \downarrow$$

$$\begin{bmatrix} 4 \end{bmatrix} \quad \leftarrow \dot{\times} \mathbf{r} \leftarrow \qquad [2]$$

$$\downarrow dt \downarrow \qquad \qquad \downarrow dt \downarrow$$

$$\begin{bmatrix} 5 \end{bmatrix} \quad \leftarrow \dot{\times} \mathbf{r} \leftarrow \qquad [3] \qquad \rightarrow \int d\mathbf{r} \rightarrow \qquad [6]$$

$$[\,1\,] \qquad \frac{1}{\mu}\, \left[\,\, m\, \bar{\bf r}\, - \int\!\!\int {\bf F}\,\, dt\, dt\,\,\right] \,=\, 0$$

$$[2] \qquad \frac{1}{\mu} \left[m \, \bar{\mathbf{v}} \, - \int \mathbf{F} \, dt \, \right] = \, 0$$

$$[3] \qquad \frac{1}{\mu} \left[m \, \bar{\mathbf{a}} \, - \, \mathbf{F} \, \right] = \, 0$$

$$[\,4\,] \qquad \frac{1}{\mu}\,\left[\,\,m\,\bar{\mathbf{v}}\,-\int\mathbf{F}\;dt\,\,\right]\,\dot{\times}\,\,\mathbf{r}\,=\,0$$

$$[5] \quad \frac{1}{\mu} \left[m \, \bar{\mathbf{a}} - \mathbf{F} \right] \dot{\mathbf{x}} \, \mathbf{r} \, = \, 0$$

$$[\,6\,] \qquad \frac{1}{\mu}\,\left[\,\,m\,f\,c^2\,-\int{\bf F}\cdot d{\bf r}\,\,\right] = \,0$$

 $[\mu]$ es una constante arbitraria con dimensión de masa (M)