tugHall v 3.0: USER-GUIDE-Analysis

Requirements

R version 3.6

Libraries: stringr, ape, ggplot2

Operation systems: Window, Mac. The code for analysis is not tested under Linux based systems.

Note that the program comprises two different procedures in general: the first is simulation and the second is the analysis of the simulation results. This User-Guide pertains to the **analysis** alone. The programs for the analysis can be run only after the simulation is completed, and the **cloneout.txt** file exists in the **CNA/Output/** folder.

Table of Contents

- 1. Quick start guide
- 2. Inputs
- 3. Outputs
- 4. Figures
- 5. Relation to experimental measurements

1. Quick start guide

To perform the simulation, kindly see the **User-Guide-tugHall_v_3.0** file. After the simulation the file **CNA/Output/cloneout.txt** is generated, which is used to analyze the evolution of cells. Also, since the functions and objects are used after the simulation, the **.RData** file saved after the simulation must be loaded, if required.

The simplest way to analyze the results after simulation:

- open R;
- set **CNA**/ as the working directory;
- load .RData;
- run script after a simulation in **tugHall_3.0.R** file like:

```
source("Code/Functions clones.R")
get_flow_data(cloneoutfile, genefile )
vf = get VAF()
VAF = get rho VAF( vf = vf, rho = c( 0.0, 0.1, 0.2, 0.5, 0.7, 0.9 ) , file name = './Output/VAF.txt' )
source( './Code/my plots.R' )
rdr_dysf = get_order_of_genes_dysfunction()
plot order dysfunction( rdr dysf , pos = c(28.5,200), logscale = 'y', cex = 0.7)
plot_average_simulation_data()
plot_clone_evolution( threshold = c(0.01, 1), lwd = 2.0,
                      hue = c(" ", "random", "red", "orange", "yellow",
                              "green", "blue", "purple", "pink", "monochrome")[1],
                      luminosity = c(" ", "random", "light", "bright", "dark")[4],
                      vr = NA , add initial = TRUE, log scale = FALSE )
plot clone evolution (threshold = c(0.0, 0.01), lwd = 2.0,
                      hue = c(" ", "random", "red", "orange", "yellow",
                              "green", "blue", "purple", "pink", "monochrome")[1],
                     luminosity = c(" ", "random", "light", "bright", "dark")[4],
                      yr = NA , add initial = FALSE, log scale = TRUE )
```

The code has initial input parameters and input files in the /Input/ folder to define the names of the genes. In the dialogue box, the user can see the results of the simulation, which will be saved to the /Output/ and /Figures/ folders (if file name is defined in functions).

2. Inputs

To analyze the output data, the user has to obtain the results of the simulation in the CNA/Output/cloneout.txt file and the functions and objects of simulations should be present in the R environment. That is why the cloneout.txt file is the input file for the analysis. For detailed information, kindly see the "Outputs" section in User-Guide-tugHall_v3.0.

3. Outputs

Output data contain several files and figures:

- order_genes_dysfunction.txt has information about the order of gene dysfunction during evolution.
- VAF.txt and VAF_data.txt files have information about the variant allele frequencies (VAFs) for each gene and each site in the genes.
- the folder CNA/Figures/ has many plots (see Figures).

order_genes_dysfunction.txt file

CNA/Output/order_genes_dysfunction.txt has information about the order of gene dysfunction during evolution in the next format (only first 10 lines are presented here):

N_cells	ID	ParentID	$Birth_time$	type	$\operatorname{mut}_{\operatorname{\underline{-}den}}$	${\rm driver_genes}$	passenger_genes
10106	2	0	0	primary	0.25	0 1 0 0	0 0 0 0
141	14	2	2	primary	0.50	$1\ 1\ 0\ 0$	$0\ 0\ 0\ 0$
9	15	2	2	primary	0.25	$0\ 1\ 0\ 0$	$1\ 0\ 0\ 0$
1532	16	1	3	metastatic	0.25	$0\ 0\ 0\ 1$	$0\ 0\ 0\ 0$
43	20	2	4	primary	0.50	$1\ 1\ 0\ 0$	$0\ 0\ 0\ 0$
136	21	2	4	primary	0.50	$1\ 1\ 0\ 0$	$0\ 0\ 0\ 0$
4	25	2	4	primary	0.50	$1\ 1\ 0\ 0$	$0\ 0\ 0\ 0$
1007	26	1	5	metastatic	0.25	$0\ 0\ 0\ 1$	$0\ 0\ 0\ 0$
19	33	2	6	primary	0.25	$0\ 1\ 0\ 0$	$1\ 0\ 0\ 0$
10	35	2	7	primary	0.50	$1\ 1\ 0\ 0$	$0\ 0\ 0\ 0$

Table 1: Order of gene dysfunction.

Table 2: Order of gene dysfunction (continuous).

N_cells	ID	PointMut_ID	CNA_ID	order
10106	2	1	0	KRAS
141	14	1	8	$KRAS \rightarrow APC$
9	15	1, 11	0	KRAS
1532	16	13	0	PIK3CA
43	20	1, 19	0	$KRAS \rightarrow APC$
136	21	1	10	$KRAS \rightarrow APC$
4	25	1	13	$KRAS \rightarrow APC$
1007	26	0	14	PIK3CA

N_cells	ID	$PointMut_ID$	CNA_ID	order
19	33	1, 29	0	KRAS
10	35		19	KRAS -> APC

- 1. N_cells the number of cells in this clone, e.g. 1000, 2.
- 2. **ID** the unique ID of clone, e.g., 1, 50.
- 3. Parent_ID the parent index, e.g., 0, 45.
- 4. **Birth_time** the time step of the clone's birth, e.g., 0, 5.
- 5. **type** the type of the cell: 'normal' or 'primary' or 'metastatic'.
- 6. mut_den the density of mutations for the cell, it equals to ratio a number of mutated driver genes to a number of all the genes, e.g., 0, 0.32.
- 7. **driver_genes** the binary numbers indicate the driver mutation at the gene related to order of genes in onco as well as order of the next columns with genes' names, e.g., '1 0 0 0' means that the first gene has a driver mutation and other genes have no.
- 8. **passenger_genes** the binary numbers indicate the passenger mutation at the gene related to order of genes in onco as well as order of the next columns with genes' names, e.g., '0 0 1 0' means that the third gene has a passanger mutation and other genes have no.
- 9. **PointMut_ID** the index of data row for point mutation data frame saved at the end of simulation in the file **Point_mutations.txt**, e.g., 23, 32.
- 10. CNA_ID the index of data row for CNA data frame saved at the end of simulation in the file CNA.txt, e.g., 44, 21.
- 11. **order** Order of gene dysfunction from the first mutated gene to the last one, e.g., 'PIK3CA -> APC -> PIK3CA -> APC' related to driver mutations only.

Variant allele frequencies information

CNA/Output/VAF.txt file has information about the VAFs for each gene and each site in the genes (first 10 lines):

Table 3: Variant allele frequencies.

site	Chr	gene	rho	VAF_primary	VAF_primary_numerator	VAF_primary_denominator
25227407	12	KRAS	0	0.4996163	1.0001807	2.0018977
112838272	5	APC	0	0.5000000	0.0008133	0.0016266
179234311	3	PIK3CA	0	0.0000000	0.0000000	0.0000000
112767257	5	APC	0	0.5000000	0.0040665	0.0081330
112839120	5	APC	0	0.5000000	0.0017170	0.0034339
179199112	3	PIK3CA	0	0.0000000	0.0000000	0.0000000
179209622	3	PIK3CA	0	0.0000000	0.0000000	0.0000000
179198860	3	PIK3CA	0	0.0000000	0.0000000	0.0000000
25225767	12	KRAS	0	0.5000000	0.0001807	0.0003615
7670671	17	TP53	0	0.5000000	0.0001807	0.0003615

Table 4: Variant allele frequencies (continuous).

site	Chr	gene	rho	VAF_metastatic	VAF_metastatic_numerator	VAF_metastatic_denominator
25227407	12	KRAS	0	0.5000227	0.8050172	1.6099612
112838272	5	APC	0	0.0000000	0.0000000	0.0000000
179234311	3	PIK3CA	0	0.5000000	0.1170921	0.2341842
112767257	5	APC	0	0.0000000	0.0000000	0.0000000
112839120	5	APC	0	0.0000000	0.0000000	0.0000000
179199112	3	PIK3CA	0	0.5000000	0.3117092	0.6234184
179209622	3	PIK3CA	0	0.5000000	0.0359833	0.0719666
179198860	3	PIK3CA	0	0.5000000	0.1273312	0.2546625
25225767	12	KRAS	0	0.0000000	0.0000000	0.0000000
7670671	17	TP53	0	0.0000000	0.0000000	0.0000000

^{1.} site - position at mutated site in the gene, e.g., 123, 1028.

^{2.} Chr - chromosome where a gene is located, e.g., '12', '3'.

^{3.} Gene - name of gene, e.g. TP53, KRAS.

- 4. **rho** rho parameter in the formula of VAF calculation in the range [0,1], e.g., 0.0, 0.3.
- 5. VAF_Primary VAF for cells in the primary tumor = VAF_primary_numerator / VAF_primary_denominator, e.g. 0.2345.
- 6. VAF_primary_numerator numerator in the formula of VAF calculation for tumor primary cells and speckled normal cells, e.g., 0.9997295.
- 7. VAF_primary_denominator denominator in the formula of VAF calculation for tumor primary cells and speckled normal cells, e.g., 1.9994589.
- 8. VAF_Metastatic VAF for metastatic cells = VAF_metastatic_numerator / VAF_metastatic_denominator, e.g. 0.35.
- 9. VAF_metastatic_numerator numerator in the formula of VAF calculation for metastatic cells, e.g., 0.9997295.
- 10. VAF_metastatic_denominator denominator in the formula of VAF calculation for metastatic cells, e.g., 1.9994589.

CNA/Output/VAF_data.txt file has information about the point mutations and its locations at chromosome, gene etc. (first 10 lines):

Table 5: Information on point mutations in the clones at final time step.

PointMut_ID	Parental_1or2	Chr	Ref_pos	Phys_pos	Delta	Copy_number	Gene_name
1	2	12	25227407	[25227407]	[0]	1	KRAS
11	2	5	112838272	[112838272]	[0]	1	APC
13	1	3	179234311	[179234311]	[0]	1	PIK3CA
19	1	5	112767257	[112767257]	[0]	1	APC
29	1	5	112839120	[112839120]	[0]	1	APC
31	1	3	179199112	[179199112]	[0]	1	PIK3CA
41	2	3	179209622	[179209622]	[0]	1	PIK3CA
47	2	3	179198860	[179198860]	[0]	1	PIK3CA
49	2	12	25225767	[25225767]	[0]	1	KRAS
51	1	17	7670671	[7670671]	[0]	1	TP53

Table 6: Information on point mutations in the clones at final time step (continuous).

$PointMut_ID$	${\bf Malfunctioned By Point Mut}$	$\operatorname{mut_order}$	$N_speckled_normal$	$N_{primary}$	$N_{metastatic}$	$Copy_number_A$
1	TRUE	1	0	11045	11005	1
11	FALSE	14	0	9	0	1
13	TRUE	15	0	0	1601	1
19	TRUE	19	0	45	0	1
29	FALSE	32	0	19	0	1
31	TRUE	38	0	0	4262	1
41	TRUE	54	0	0	492	1
47	TRUE	58	0	0	1741	1
49	FALSE	59	0	2	0	1
51	FALSE	60	0	2	0	1

Table 7: Information on point mutations in the clones at final time step (continuous).

PointMut_ID	$N_speckled_normal_total$	$N_{primary_total}$	N_metastatic_total
1	0	11066	13673
11	0	11066	13673
13	0	11066	13673
19	0	11066	13673
29	0	11066	13673
31	0	11066	13673
41	0	11066	13673
47	0	11066	13673
49	0	11066	13673
51	0	11066	13673

- 1. PointMut ID ID of point mutation.
- 2. Parental_lor2 indicates either of the two parental chromosomes.
- 3. **Chr** name of a chromosome.
- 4. **Ref_pos** the reference position of an allele. The reference position is on the coordinate system of the human reference genome.
- 5. Phys_pos the physical position of an allele. The physical length of a (parental) chromosome is extended or shrunk by CNA duplications or deletions, respectively. When a duplication happens, the reference position is divided into two or more physical positions, which are represented by multiple elements in a vector. When a deletion happens and the allele is lost, the lost is represented by "-" on the coordinate system of physical positions.
- 6. Delta difference between the reference and physical positions.
- 7. Copy_number the copy number of an allele at the chromosome where mutation is happened (allele B).
- 8. **Gene_name** the name of a gene.
- $9. \ \ \textbf{MalfunctionedByPointMut} \ \text{-logical indicator of whether or not the gene is malfunctioned by the point mutation.}$
- 10. mut_order indicator of mutation order in the simulation, it's used to detect order of mutations in the clone at each chromosome.
- $11. \ \, \textbf{N_speckled_normal} \ \ \text{number of speckled normal cells at final time step which have that PointMut_ID}.$
- 12. **N_primary** number of primary tumor cells at final time step which have that PointMut_ID.
- 13. N_metastatic number of metastatic cells at final time step which have that PointMut_ID.
- 14. Copy_number_A the copy number of an allele at the chromosome where mutation is NOT happened (allele A).
- 15. N_speckled_normal_total the total amount of speckled normal cells in the pool of simulation at the last time step.
- 16. N_primary_total the total amount of primary tumor cells in the pool of simulation at the last time step.
- 17. N_metastatic_total the total amount of metastatic cells in the pool of simulation at the last time step.

4. Figures

The directory **Figures**/ contains many output figures, generated during the analysis process of **cloneout.txt** file, including the evolution of the number of primary tumors and metastasis cells (Fig.1 left), hallmarks (Fig.1 right), and probabilities (Fig.2 left).

Figure~1:~Results~of~the~simulation:~left~-~evolution~of~number~of~cells,~right~-~evolution~of~hallmarks.~Files~are~"Cells~evolution.pdf"~and~"Hallmarks.pdf"

The right side Fig.2 shows the evolution of mutation rate. Fig.3 shows the evolution of clones with different separation of them: for 'large' and 'small' clones with large and small number of cells respectively.

Final figure shows the list of 'order of genes dysfunction' sorted with corresponding number of cells.

Figure 2: Results of the simulation: left - evolution of probabilities, right - evolution of average mutation rate. Files are "Probabilities.pdf" and "Mutation rate.pdf".

Figure 3: Results of the simulation: left - evolution of number of cells in clones for "large" clones, right - evolution of number of cells in clones for "small" clones (log scale). Files are "Large clones.pdf" and "Small clones.pdf".

Figure 4: Results of the simulation: order of genes dysfunction as sorted histogram of number of cells for each unique value. 12

5. Relation to experimental measurements

We here list variables processed from the tugHall outputs that are related to experimental measurements.

Variables processed from the simulator outputs	Relation to experimental measurements		
Number of cells	Observed tumor size. 10^9 cells correspond to the tumor tissue diameter of 1 cm. 10^{12} cells correspond to that of 10 cm. $10^{12} - 10^{13}$ cells correspond		
	to lethal burden. See Friberg and Mattson, Journal of Surgical Oncology,		
	1997.		
VAF	VAF calculated from sequence reads in the next-generation sequencer		
	(NGS) under the assumption of 100% tumor purity.		
Mutation number per base-pairs	Tumor mutation burden calculated from NGS data.		
Number of clones	Number of clones estimated from NGS data by computational tools such as SciClone (Miller et al, PLOS Computational Biology, 2014) and		
	SubClonalSelection (Williams et al, Nature Genetics, 2018).		