Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Subjectul III (30 de puncte)

Pentru itemul 1, scrieți pe foaia de examen litera corespunzătoare răspunsului corect.

Scrieți pe foaia de examen răspunsul pentru fiecare dintre cerințele următoare.

- Variabilele i, j şi aux sunt de tip întreg, iar | for(int i = 0; i < 4; i++) 2. for(int j = i + 1; j < 6; j++)elementele tabloului unidimensional x sunt if(x[i] > x[j])urmatoarele: $x_0=10$, $x_1=5$, $x_2=-6$, $x_3=7$, aux = x[i]; $x_4=0, x_5=-2.$ x[i] = x[j];Ce valori se vor afișa în urma executării x[j] = aux;secvenței de program alăturate? (6p.) for(i = 0; i < 6; i++)cout<<x[i]<<" "; printf("%d ",x[i]);
- 3. a) Scrieți definiția completă a funcției UltimaCifra care primeşte prin cei doi parametri a şi b câte un număr natural (0<a<1000000, 0<b<1000000), calculează în mod eficient din punct de vedere al timpului de executare şi returnează ultima cifră a numărului a^b (a la puterea b).
 (6p.)
 - b) Descrieți succint, în limbaj natural, metoda de rezolvare folosită, explicând în ce constă eficiența ei (3 4 rânduri)
 (4p.)
 - c) Fişierul text SIR.IN conține pe prima sa linie un număr natural n (0<n<1001), iar pe fiecare dintre următoarele n linii câte o pereche de numere naturale, $\mathbf{x_i}$ $\mathbf{y_i}$ (1 \leq i \leq n, $\mathbf{x_i}$ \leq 30000, $\mathbf{y_i}$ \leq 30000).

Scrieți programul C/C++ care citește numerele din fișierul sir.in și scrie în fișierul text

SIR.OUT ultima cifră expresiei: $X_1^{y_1} + X_2^{y_2} + ... + X_n^{y_n}$, folosind apeluri ale funcției UltimaCifra.

Exemplu: dacă fişierul SIR.IN are conținutul alăturat, atunci sIR.OUT va conține cifra 0. (10p.) 25 6 8 10 1 4589