## Разработка программы определения размера частиц методом динамического рассеяния света

Руководитель: Белова И.М.

Студент: Роганова Л.Е.

## Постановка задачи

- Проанализировать возможные способы обработки данных для определения размера сферических частиц по значениям корреляционной функции;
- Разработать методику и программу определения размера частиц по данным эксперимента динамического рассеяния света;
- Исследовать отклонение полученной зависимости корреляционной функции от экспериментальных данных.

## Метод динамического рассеяния света



Динамическое рассеяние света

Автокорреляционная функция:

$$G_2( au) = \left\langle I(t)I(t+ au) 
ight
angle = \lim_{t_{meas} o \infty} \left( rac{1}{t_{meas}} \int_0^{t_{meas}} I(t)I(t+ au) dt 
ight)$$
 Где  $au$  — время задержки между

I де  $\tau$  — время задержки между двумя точками,  $t_{meas}$  — продолжительность эксперимента.





# От рассеянного света к коэффициенту диффузии и размеру частиц

Автокорреляционная функция:  $g_1(t) = \sum_i A_i e^{-\Gamma_i t}$  Где  $A_i$  — амплитуда,  $\Gamma_i$  — обратная величина времени корреляции:

$$\Gamma_i = q^2 D = \frac{q^2 k T}{6\pi \eta_0 R}$$

Где  $q^2$  – величина рассеивающего вектора, D – коэффициент диффузии, R – гидродинамический радиус.

## Алгоритмы обработки данных эксперимента

- Метод моментов: алгоритм, не требующий первоначальной информации. Очень большая ошибка вычислений.
- *Алгоритм обратного распределения Лапласа:* не предполагает определенного типа распределения. Даже малые шумы вызывают большие погрешности.
- Алгоритм Левенберга-Маркуарта: тип распределения предполагается известным. Параметры определяются при помощи нелинейной оптимизации.

### Алгоритм Левенберга-Маркуарта

- Входные данные: точки эксперимента, их веса;
- Предположение о начальных параметрах  $A_i$  и  $\Gamma_i$  ;
- Параметр χ<sup>2</sup> используется для наблюдения за прогрессом процесса оптимизации:

$$\chi^{2} = \frac{1}{v} \sum_{i=1}^{N} w_{i} \left( y_{i} - y_{fit,i} \right)^{2}$$

Где  $y_{fit}$  — подгоняемая функция,  $y_i$  — число степеней свободы, N — количество точек данных,  $w_i$  — статистические веса.

#### Алгоритм Левенберга-Маркуарта



Результаты вычислений Для распределения вида  $y = \sum_{k=0}^{3} A_k e^{-2B_k x}$ 

| Экспериментальный размер частицы (нм) | Вычисленный размер<br>частицы (нм) | Относительная ошибка<br>(%) |
|---------------------------------------|------------------------------------|-----------------------------|
| 300, 500, 1000                        | 303, 491, 1017                     | 1.03, 1.8, 1.71             |



## Результаты

- В настоящей работе выбрана методика определения коэффициентов диффузии и размеров частиц по результатам динамического рассеяния света при помощи нелинейной оптимизации;
- Разработана программа нелинейной оптимизации при помощи метода Левенберга-Маркуарта;
- При использовании данной методики можно находить параметры различного вида распределения плотности вероятности коэффициентов диффузии.