

FEB 21, 2023

Active Absorption of Glucose in the Small Intestine

Biolprocess¹

¹na

ABSTRACT

This is the protocol for the active absorption of glucose from within the small intestine. This process allows for the absorption of glucose at low concentrations.

OPEN ACCESS

יוסם

dx.doi.org/10.17504/protocol s.io.rm7vzb2yrvx1/v1

Protocol Citation: Biolproces s 2023. Active Absorption of Glucose in the Small Intestine. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.rm7vzb2yrvx1/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working This protocol is working

Created: Feb 20, 2023

Last Modified: Feb 21, 2023

PROTOCOL integer ID:

77298

Active Absorption of Glucose in the Small Intestine

When the concentration gradient between the blood and the ileum is low, active methods may be used to absorb glucose into the blood

1

Co-transport proteins in the cell membranes of the cells lining the ileum
Sodium ions are actively pumped out of epithelial cells, into blood
Higher concentration of sodium ions in ileum than in epithelial cells
Sodium ions diffuse down the concentration gradient, into the epithelial cells, through a cotransport protein in the cell membrane
As sodium ions move into the cell, glucose molecules are coupled with them, carrying the glucose up the concentration gradient