Recursive structure of primes reloaded. Now with mod 2, too.*

Carolin Zöbelein[†]

March 20, 2016

Abstract.

Contents

1	Introduction	1
2	Road map	1
3	What we already know	2

1 Introduction

In this working document I will make a revision of my work [1]. Now for mod 2 and not mod 6 which makes all so easy. Sometimes I'm so stupid. wtf!

2 Road map

Since the main steps will be the same like in [1] I will only make a few comments. If you need more information please read the arXiv paper at first.

To future comments: Yes, I know it's no 'professional' math, but why I should use abstract math if it's also possible to explain issues with easy tools. This here is to be only a first impression. Not the solution of all! After this you can construct your buildings, too!

Personal road map for this document:

^{*}Keywords: integer divisible numbers, prime numbers, recursive structure, mod 2; License: CC BY-ND 3.0 DE (see also LICENSE), No warranty for mistakes!

 $^{^\}dagger E\text{-}mail\ address:$ contact@carolin-zoebelein.de, $PGP\ Fingerprint:$ D4A7 35E8 D47F 801F 2CF6 2BA7 927A FD3C DE47 E13B; URL: http://www.carolin-zoebelein.de

- 1. Formulation of the important points for mod 2.
- 2. Consequences from this.
- 3. ...

3 What we already know ...

Short repetition of the properties of primes which we already know and we will use for our work.

- 1. Q: What are prime numbers \mathbb{P} ?
 - A: A prime number $p \in \mathbb{P}$ is a integer number lager than one which has no positive integer divisors apart from 1 and itself.
 - \Rightarrow More mathematical: $p \in \mathbb{Z}$: $\gcd(n, p) = 1, \forall n \neq p \in \mathbb{N}$
- 2. The set of primes: $\mathbb{P} := \{2, 3, 5, 7, 11, 13, \dots\}$
- 3. The number 2 is the only even prime.

In the following work we will always ignore the prime 2!

 \Rightarrow Hence for all primes $p \in \mathbb{P} \setminus \{2\}$ we know that we are able to write them as $p_n := 2n + 1, n \in \mathbb{N}_0$. Q: For which n we receive primes?

Now if we look at the set of all odd integer divisible numbers $N_{n,m} \in \mathbb{N}$. We recognise

$$N_{n,m} = (2n+1)(2m+1)$$

$$= 4nm + 2n + 2m + 1$$

$$= 2(2nm + n + m) + 1,$$
(1)

 $\forall n, m \in \mathbb{N}_0.$

References

[1] ZÖBELEIN, C.: The recursive structure of the distribution of primes. In: ArXiv e-prints, 1411.2824 [math.GM] (2014), November