Ćwiczenie nr 29: Fale podłużne w ciałach stałych

1 Wprowadzenie

1.1 Cel doświadczenia

Celem doświadczenia było wyznaczenie modułu Younga dla różnych materiałów na podstawie pomiaru prędkości rozchodzenia się fali dźwiękowej w pręcie.

1.2 Opis stanowiska

W skład stanowiska weszły: komputer stacjonarny z zainstalowanym oprogramowaniem Zelscope, mikrofon, zestaw prętów z różnych materiałów, suwmiarka (dokładność 0,05mm), taśma miernicza (dokładność 1mm), młotek, waga elektroniczna (dokładność 1g).

2 Sposób wykonania doświadczenia

Doświadczenie rozpoczęliśmy od zapoznania się ze sprzętem wchodzącym w skład stanowiska, uruchomienia oprogramowania Zelscope i odpowiedniej konfiguracji programu. Następnie ustawialiśmy mikrofon z jednej strony pręta, z drugiej uderzaliśmy za pomocą młotka, aby wprowadzić pręt w ruch drgający i używając programu Zelscope odczytywaliśmy częstotliwości dla kolejnych harmonicznych. Powtórzyliśmy czynności dla trzech materiałów: miedzi, mosiądzu i aluminium. Zmierzyliśmy na koniec średnicę oraz długość próbek stali, mosiądzu i aluminium oraz długość prętów wykonanych z tych materiałów. Zważyliśmy również próbki, aby móc wyznaczyć gęstość.

3 Wyniki pomiarów

Nr	Częstotliwość f [Hz]			
harmonicznej	miedź	mosiądz	aluminium	
1	968,994	904,395	1313,525	
2	1937,988	1787,256	2648,584	
3	2885,449	2691,65	3962,109	
4	3854,443	3596,045	5297,168	
5	4823,438	4500,439	6610,693	
6		5404,834	7924,219	

Tabela 1: Pomiar częstotliwości dla drgań harmonicznych wybranych materiałów

Materiał	miedź	mosiądz	aluminium
d[mm]	12,1	12,1	16,25
h [mm]	120	120	120
m [g]	121	114	69

Tabela 2: Pomiar próbek wykonanych z mosiądzu, miedzi i aluminium

	miedź	mosiądz	aluminium
1[cm]	197,9	198,8	196,8

Tabela 3: Pomiary długości prętów

4 Opracowanie wyników pomiarów

4.1 Wyznaczenie prędkości fali oraz niepewności typu A

Materiał	Nr harmonicznej	Częstotliwość f _k [Hz]	Długość fali λ _k [m]	Prędkość fali v [m/s]
miedź	1	968,994	3,958	3835,3
	2	1937,988	1,979	3835,3
	3	2885,449	1,319	3806,9
	4	3854,443	0,990	3814,0
	5	4823,438	0,792	3818,2
Mosiądz	1	904,395	3,976	3595,9
	2	1787,256	1,988	3553,1
	3	2691,65	1,325	3567,3
	4	3596,045	0,994	3574,5
	5	4500,439	0,795	3578,7
	6	5404,834	0,663	3581,6
Aluminium	1	1313,525	3,936	5170,0
	2	2648,584	1,968	5212,4
	3	3962,109	1,312	5198,3
	4	5297,168	0,984	5212,4
	5	6610,693	0,787	5203,9
	6	7924,219	0,656	5198,3

Zbliżone wartości różnicy między częstotliwościami kolejnych harmonicznych dla danego materiału sugerują brak występowania błędów grubych.

Długość fali wyliczaliśmy ze wzoru: $\lambda_k = \frac{2l}{k}$, gdzie k-numer harmonicznej, l-długość pręta, a prędkość fali: $v_k = f_k \lambda_k$

Otrzymane wartości prędkości średniej $v_{\pm r}$ wraz z niepewnością typu A: $u(v_{\pm r}) = \sqrt{\frac{\sum (v_i - v_{\pm r})^2}{n(n-1)}}$:

Miedź	$v_{Cu} = 3821,9 \frac{m}{s}$	$u(v_{Cu}) = 5.8 \frac{m}{s}$
Mosiądz	$v_{CuZn} = 3575,2 \frac{m}{s}$	$u(v_{CuZn}) = 5.9 \frac{m}{s}$
Aluminium	$v_{Al} = 5199,2 \frac{m}{s}$	$u(v_{Al}) = 6.4 \frac{m}{s}$

4.2 Wyznaczenie gęstości materiałów wraz z niepewnością

Przy wyznaczaniu gęstości $\rho=\frac{m}{v}$ korzystamy ze wzoru na objętość walca $V=\pi r^2h=\frac{\pi d^2h}{4},$ otrzymując $\rho=\frac{m}{v}=\frac{4m}{\pi d^2h}.$

Materiał	m [g]	d [mm]	h [mm]	$\rho \left[\frac{g}{mm^3} \right]$	$\rho\left[\frac{kg}{m^3}\right]$	$\operatorname{u}(\rho)\left[\frac{kg}{m^3}\right]$
Miedź	121	12,10	120	0,00877	8770	130
Mosiądz	114	12,10	120	0,00826	8260	130
Aluminium	69	16,25	120	0,002772	2772	50

$$\rho_{Cu} = \frac{4 \cdot 121g}{\pi (12,10mm)^2 \cdot 120mm} \approx 0,00877 \frac{g}{mm^3} = 8770 \frac{kg}{m^3}$$

$$\rho_{CuZn} = \frac{4 \cdot 114g}{\pi (12,10mm)^2 \cdot 120mm} \approx 0,00826 \frac{g}{mm^3} = 8260 \frac{kg}{m^3}$$

$$\rho_{Al} = \frac{4 \cdot 69g}{\pi (16,25mm)^2 \cdot 120mm} \approx 0,002772 \frac{g}{mm^3} = 2772 \frac{kg}{m^3}$$

Niepewność obliczamy z prawa przenoszenia niepewności względnej:

$$u(\rho) = \rho \cdot \sqrt{\left(\frac{u(m)}{m}\right)^2 + \left(\frac{-2u(d)}{d}\right)^2 + \left(\frac{-u(h)}{h}\right)^2}$$

Dla wszystkich badanych materiałów:

$$u(m) = 1g$$

$$u(d)=0.05mm$$

$$u(h) = 1 mm$$

$$u(\rho_{Cu}) = 8770 \frac{kg}{m^3} \cdot \sqrt{\left(\frac{1 g}{121 g}\right)^2 + \left(\frac{-2 \cdot 0.05 mm}{12.10 mm}\right)^2 + \left(\frac{-1 mm}{120 mm}\right)^2} \approx 130 \frac{kg}{m^3}$$

$$u(\rho_{CuZn}) = 8260 \frac{kg}{m^3} \cdot \sqrt{\left(\frac{1 g}{114 g}\right)^2 + \left(\frac{-2 \cdot 0.05 mm}{12.10 mm}\right)^2 + \left(\frac{-1mm}{120mm}\right)^2} \approx 130 \frac{kg}{m^3}$$

$$u(\rho_{Al}) = 2772 \frac{kg}{m^3} \cdot \sqrt{\left(\frac{1 g}{69 g}\right)^2 + \left(\frac{-2 \cdot 0,05 mm}{16,25 mm}\right)^2 + \left(\frac{-1mm}{120mm}\right)^2} \approx 50 \frac{kg}{m^3}$$

4.3 Wyznaczenie modułu Younga wraz z niepewnością

Korzystając z zależności wynikającej z równania d'Alemberta $v=\sqrt{\frac{E}{\rho}}$ otrzymujemy wzór na moduł Younga w postaci:

$$E = \rho v^2$$

gdzie

 ρ – gęstość materiału

v – prędkość rozchodzenia się fali

Wstawiając wyliczone wcześniej wartości gęstości i prędkości otrzymujemy:

$$E_{Cu} = \rho_{Cu} v_{Cu}^{2} = 8770 \frac{kg}{m^{3}} \cdot (3821.9 \frac{m}{s})^{2} \approx 128.1 \, GPa$$

$$E_{CuZn} = \rho_{CuZn} v_{CuZn}^{2} = 8260 \frac{kg}{m^{3}} \cdot \left(3575.2 \frac{m}{s}\right)^{2} \approx 105.6 \, GPa$$

$$E_{Al} = \rho_{Al} v_{Al}^{2} = 2772 \frac{kg}{m^{3}} \cdot (5199.2 \frac{m}{s})^{2} \approx 74.9 \, GPa$$

Z prawa przenoszenia niepewności względnej:

$$u(E) = E\sqrt{\left(\frac{u(\rho)}{\rho}\right)^2 + \left(\frac{2u(v)}{v}\right)^2}$$

zatem

$$u(E_{Cu}) = E_{Cu} \sqrt{\left(\frac{u(\rho_{Cu})}{\rho_{Cu}}\right)^2 + \left(\frac{2u(v_{Cu})}{v_{Cu}}\right)^2} = 128,1 \text{ GPa} \sqrt{\left(\frac{130 \frac{kg}{m^3}}{8770 \frac{kg}{m^3}}\right)^2 + \left(\frac{2 \cdot 5,8 \frac{m}{s}}{3821,9 \frac{m}{s}}\right)^2} \approx 2,0 \text{ GPa}$$

$$u(E_{CuZn}) = E_{CuZn} \sqrt{\left(\frac{u(\rho_{CuZn})}{\rho_{CuZn}}\right)^2 + \left(\frac{2u(v_{CuZn})}{v_{CuZn}}\right)^2} = 105,6 \ GPa \sqrt{\left(\frac{130 \ \frac{kg}{m^3}}{8260 \ \frac{kg}{m^3}}\right)^2 + \left(\frac{2 \cdot 5,9 \ \frac{m}{s}}{3575,2 \ \frac{m}{s}}\right)^2} \approx 1,7 GPa$$

$$u(E_{Al}) = E_{Al} \sqrt{\left(\frac{u(\rho_{Al})}{\rho_{Al}}\right)^2 + \left(\frac{2u(v_{Al})}{v_{Al}}\right)^2} = 74.9 \ GPa \sqrt{\left(\frac{50 \ \frac{kg}{m^3}}{2772 \ \frac{kg}{m^3}}\right)^2 + \left(\frac{2 \cdot 6.4 \ \frac{m}{s}}{5199.2 \ \frac{m}{s}}\right)^2} \approx 1.4 \ GPa$$

4.4 Porównanie z wartościami tabelarycznymi

Materiał	Wyliczona wartość	Niepewność	Wartość tabelaryczna E [1]
Miedź	128,1 GPa	2,0 GPa	110-135 GPa
Mosiądz	105,6 GPa	1,7 GPa	103-124 GPa
Aluminium	74,9 GPa	1,4 GPa	69 GPa

Otrzymane wartości modułu Younga dla miedzi i mosiądzu są zgodne z wartościami tabelarycznymi w zakresie niepewności pomiarowej.

Niepewność rozszerzona dla k=3 dla E_{Al} wynosi $U(E_{Al}) = 3 \cdot 1,4GPa = 4,2GPa$

$$|E_{Al} - E_{tabAl}| = 5.9 \text{ GPa} > U(E_{Al})$$

Zatem wyliczona wartość modułu Younga dla aluminium nie jest zgodna z wartością tabelaryczną mimo uwzględnienia niepewności rozszerzonej.

5 Wnioski

Otrzymane wartości modułu Younga dla miedzi i mosiądzu są zgodne z wartościami tabelarycznymi w zakresie niepewności pomiarowej. Wyliczona wartość modułu Younga dla aluminium nie jest natomiast zgodna z wartością tabelaryczną mimo uwzględnienia rozszerzonej niepewności pomiarowej. Powodem takiego wyniku doświadczenia mógł być błąd przypadkowy przy odczytywaniu częstotliwości dla kolejnych harmonicznych, niedokładność pomiarów, błąd systematyczny lub zakłócenia związane z prowadzonymi w laboratorium innymi doświadczeniami generującymi fale. Dodatkowym czynnikiem, który wpłynął na uzyskanie różniącej się wartości mogła być jakość używanego sprzętu (mikrofon).

6 Źródła

[1] https://poradnikinzyniera.pl/modul-younga-wszystko-co-musisz-wiedziec/, data dostępu 30.10.2024

Załącznik: wyniki pomiarów przesłane po zajęciach 29.10.2024

Pomiary dla próbek							
Materiał Niepewność mosiądz miedź aluminium							
0,05mm	12,1	12,1	16,25				
1 mm	120	120	120				
1g	114	121	69				
	Niepewność 0,05mm 1 mm	Niepewność mosiądz 0,05mm 12,1 1 mm 120	Niepewność mosiądz miedź 0,05mm 12,1 12,1 1 mm 120 120				

	Długoś	ć prętów			
	mosiądz miedź aluminium				
I[cm]	198,8cm	197,9	196,8		

miedź		mosiąd	Iz	aluminiu	ım
Nr harmonicznej	f[Hz]	Nr harmonicznej	f[Hz]	Nr harmonicznej	f[Hz]
1	968,994	1	904,395	1	1313,525
2	1937,988	2	1787,256	2	2648,584
3	2885,449	3	2691,65	3	3962,109
4	3854,443	4	3596,045	4	5297,168
5	4823,438	5	4500,439	5	6610,693
		6	5404,834	6	7924,219