Digital Logic Circuit Design Lab

Combinational Logic Circuit Lab

Name/ID: An Gyeonheal / 21900416

Date: 06-10-2023

Problem Introduction

Introduction

If you put 500 won and 1,000 won in the vending machine at a time, and if you put 1,500 won in total, you will get a drink, and if you put 2,000 won, you will be able to design an FSM that comes with 500 won change.

Design Process

1. Vending Machine Controller FSM

Input/Output

INPUTS: X = 1,000 won, Y = 500 won

OUTPUTS: $Z{0} = Drink Out$, $Z{1} = Change Out$

State Description

<i>S</i> ₀	Reset
<i>S</i> ₁	500 won
S_2	1,000 won
S ₃	1,500 won
S ₄	2,000 won

State Graph / State Table

Q		C+E	B ⁺ A ⁺		7(0)	F(4)
State	XY=00	XY=01	XY=10	XY=11	Z{0}	Z{1}
S_0	S_0	S_1	S_2	Χ	0	0
S_1	S_1	S_2	S_3	Χ	0	0
S_2	S_2	S_3	S_4	Χ	0	0
S_3	S_0	S_1	\mathcal{S}_2	Χ	1	0
S_4	${\mathcal S}_0$	S_1	S_2	Χ	1	1

a.p. 4		C+B	8+A+		7(0)	7(4)
C B A	XY=00	XY=01	XY=10	XY=11	Z{0}	Z{1}
0 0 0	0 0 0	0 0 1	0 1 0	Χ	0	0
0 0 1	0 0 1	0 1 0	0 1 1	Χ	0	0
0 1 0	0 1 0	0 1 1	100	Χ	0	0
0 1 1	0 0 0	0 0 1	0 1 0	Χ	1	0
100	0 0 0	0 0 1	0 1 0	Χ	1	1

Logics for Next-State and Outputs

C=0, BA	XY=00	XY=01	XY=11	XY=10
00	0	0	Χ	0
01	0	0	0 X	
11	0	0	0 X	
10	0	0	X	1
C=1, BA	XY=00	XY=01	XY=11	XY=10
C=1, BA 00	XY=00 0	XY=01 0	XY=11 X	XY=10 0
00	0	0	X	0

 $C^+ = B\overline{A}X$

C=0, BA	XY=00	XY=01	XY=11	XY=10
00	0	0	Х	1
01	0	1	X	1
11	0	0	Х	1
10	1	1	X	0
C=1, BA	XY=00	XY=01	XY=11	XY=10
00	0	0	X	1
01	X	X	X	Х
11	X	X	X	Х
10	X	Х	X	Χ

 $B^{+} = X\overline{B} + XA + Y\overline{B}A + \overline{X}B\overline{A}$

C=0, BA	XY=00	XY=01	XY=11	XY=10
00	0	1	Х	0
01	1	0	Х	1
11	0	1	X	0
10	0	1	X	0
C=1, BA	XY=00	XY=01	XY=11	XY=10
00	0	1	Х	0
01	Х	Х	X	X
11	X	Х	Х	X
10	X	X	X	Χ

 $A^{+} = BY + \overline{A}Y + \overline{B}A\overline{Y}$

ВА	C = 0	C = 1
00	0	1
01	0	Х
11	1	X
10	0	Х

$$Z\{0\} = BA + C$$

ВА	C = 0	C = 1
00	0	1
01	0	Х
11	0	Х
10	0	Х

$$Z{1} = C$$

Simulation Circuit Design

Input X 와 Y는 각각 1000 원과 500 원의 Input 을 의미하며 Input 에 따라 CLK의 Rising Edge 일 때 State 가 변화하며 State 3 일 때와 State 4 일 때 Drink 출력인 LED 에 불이 켜지고 State 4 일 때 Change 출력인 LED 에 불이 켜진다.

2. State-Number Display Logic

Input/Output

7-Segment Decoder 는 엘리베이터, 시계, 계산기 등 많은 전자 기기에서 숫자를 표현하기 위해 사용된다. 이는 4개의 input 과 7개의 output 을 가진 7-Segment Decoder 를 이용하여 숫자 패널을 작동시킨다. A, B, C, D 가 0000 일 때는 0을 표시하고, 0001 일 때는 1, 0010 일때는 2를 표시한다.

Input: A, B, C, D

Output: a, b, c, d, e, f, g

Truth Table

A	В	C	D	a	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	x	x	Х	Х	Х	x	x
0	1	1	0	x	Х	Х	Х	Х	Х	x
0	1	1	1	x	x	Х	Х	Х	Х	x
1	0	0	0	x	x	Х	Х	Х	Х	x
1	0	0	1	x	x	Х	Х	Х	Х	x
1	0	1	0	x	x	Х	Х	Х	Х	x
1	0	1	1	x	x	Х	Х	Х	Х	x
1	1	0	0	х	х	х	х	х	х	x
1	1	0	1	х	Х	Х	Х	х	Х	x
1	1	1	0	х	х	х	х	х	х	x
1	1	1	1	х	Х	х	х	х	х	x

해당 7-segment 는 문제 1 번에서 정의한 State $S_0 \sim S_4$ 까지를 나타내기 위한 시스템이기 때문에 $0 \sim 4$ 까지만 Display 하고 나머지는 Don't Care Value 로 처리하였다.

Logics for Next-State and Outputs

Simulation Circuit Design

3. Complete Circuit

Results and Discussion

Demo Video

Video Link

Results

500 원을 계속하여 Vending Machine 에 넣었을 때 State 0 에서 시작하여 S1, S2, S3 에 도달하고 S3 에서 음료수가 나온 뒤 다시 500 원을 넣으면 S1 으로 진행하고 1000 원을 넣으면 S2 로 진행한다. 1000 원을 넣는 경우 S2 에서 S4 로 진행되며 S4 에서는 음료수와 잔돈이 같이 출력된다. 500 원, 1000 원을 각각 넣는 경우 S0→S1→S3 순으로 진행되며 음료수가 출력된다.

Discussion

Vending Machine Controller 의 Logic 을 Moore 로 설계하였다. 이 때의 State 는 5 개로 정의할 수 있었으며 Input 과 Output 은 각각 2 개로 정의할 수 있었다. 이 때 State 의 개수가 5 개가 되면서 입력 변수는 3bit 가 되었으며 카르노 맵을 제작할 때 C 가 0 일때와 1 일때를 구분하여 두개로 나누어서 제작하였으며 이를 통해 Minimum SOP를 도출해낼 수 있었다.

State-Number Display Logic 을 설계하면서 우리가 표시하게 될 State는 총 5개로 S0~S4, 즉 0 에서 4 까지만 Display 에 표시하게 될 것이었다. 따라서 4 를 표시하는 상황 밑으로는 모두 Don't Care Value 로 설정하여 불필요한 입력을 Ground 로 보냈다.

Appendix