Problem R-06L $(C_{10}H_8O_3)$

200 MHz ¹H NMR spectrum in CDCl₃

Source: Magn. Resonsn. Chem. 1985, 23, 90 (Reich digitized hard copy)

normal spectrum. Spectrum B v	was obtained by preirradiating signa	ra of 7-methoxychromanone. Spectrum A is a all c with the decoupler before taking the spectrum is the difference between the two (B minus A)
(a) What kind of experiment is	s this?	
(b) Assign the signals to the	appropriate proton (m, J given). U	se the numbering given on the figure.
a d, 9.3	<i>b</i> d, 5.9	c dd, 9.3, 2.7
d d, 2.7	e d, 5.9	f s
(c) Explain why signal <i>c</i> disa _l	ppears in Spectrum B and is negat	ive in Spectrum B-A.
	A has positive signals for <i>a</i> and <i>f</i> , to orresponding signals in Spectrum <i>A</i>	out not for any of the others (these signals are 30%A).
(e) Why is the increase in sig	gnal f so small compared to the inci	rease in signal <i>a</i> ?
(f) Irradiation of signal <i>d</i> caus methoxy group?	ses a 3.1% increase in signal f. Wh	hat does this tell you about the conformation of the

2

8

2

Problem R-06L. On the next page are reproduced three spectra of 7-methoxychromone. Spectrum A is a normal spectrum. Spectrum B was obtained by preirradiating signal c with the decoupler before taking the spectrum. The decoupler was off during the acquisition. The middle spectrum is the difference between the two (B minus A) (MRC **1985**, 23, 90).

- (a) What kind of experiment is this? Homonuclear NOE (1D NOESY)
 - (b) Assign the signals to the appropriate proton (m, J given). Use the numbering given on the figure.

$$a ext{ d, 9.3} extstyle H^5 ext{ b d, 5.9} extstyle H^2 ext{ c dd, 9.3, 2.7} extstyle H^6 extstyle d d, 2.7 extstyle H^8 extstyle e d, 5.9 extstyle H^3 extstyle f s extstyle OCH_3$$

e d, 5.9
$$H^3$$

(c) Explain why signal c disappears in Spectrum B and is negative in Spectrum B-A.

The signal c has been saturated by the decoupler (α and β states equal population), hence no signal. Subtracting A (normal intensity) from B gives a negative peak for B-A.

- (d) Explain why Spectrum B-A has positive signals for a and f, but not for any of the others (these signals are 30% and 2.3%, respectively, of the corresponding signals in Spectrum A).
- The a and f signals are enhanced in intensity in spectrum B by the NOE effect from signal c. NOE effects are 3 observed only for protons close in space to the irradiated proton (c). Thus c must be close in space to a and f.
 - (e) Why is the increase in signal f so small compared to the increase in signal a?

Three reasons:

- 1. The protons in the methyl group principally relax each other, H₆ is thus a minor contributor to the total relaxation of the CH₃ protons.
- 2. The methyl group is partially relaxed by both protons H₆ and H₈ so either one of them can only contribute a smaller part.
- 3. Methyl groups often show substantial contributions from SR (Spin-Rotation) relaxation (τ_c is too short for effective DD relaxation). Only the fraction of relaxation caused by the DD mechanism contributes to the NOE.
- (f) Irradiation of signal d causes a 3.1% increase in signal f. What does this tell you about the conformation of the methoxy group?

 $2.3\% \text{ NOE } (H_6 -> Me)$

3.1% NOE (H₈ -> Me)

Probably a little more of this conformation

2

3+2