This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANK (USPTO)

BENDESREPUBLIK DEUTSCH

aran kan di **hub**u dak dak dak dak

097936356 WIPK

PCI/EPUU/U HLAND 2000

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

EP00/2010

Bescheinigung

Die BASF Aktiengesellschaft in Ludwigshafen/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Tricyclische Benzoylpyrazol-Derivate"

am 12. März 1999 beim Deutschen Patent- und Markenamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichterlage dieser Patentanmeldung. Die Seiten 140 und 141 der Beschreibung sind arn 23. März 1999 eingegangen.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C O7 D und A 01 N der Internationalen Patentklassifikation erhalten.

München, den 28. Februar 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Akten≳ei**-c**hen: <u>199 11 219.3</u>

Wallner

BASE ARTIENGESEIISCHAIL 990232 0.2. 0030/43020

Patentansprüche

Tricyclische Benzoylpyrazol-Derivate der Formel I

10 R¹ R² R³ 1 Y I

15

in der die Variablen folgende Bedeutungen haben:

X Sauerstoff, Schwefel, S=O, S(=O)₂, CR⁶R⁷, NR⁸ oder eine Bindung;

p bildet gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, einen gesättigten, partiell gesättigten oder ungesättigten 5- oder 6-gliedrigen Heterocyclus, der ein bis drei gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff, enthält;

R¹,R²,R⁶,R⁷ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy;

30 R³ Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy;

45 232/99 He/cz 12.03.1999

nyl, C3-C6-Alkinylaminocarbonyl,

 $N, N-Di-(C_1-C_6-alkyl)-aminocarbonyl,$

 $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkyl)-aminocarbonyl,$ $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)-aminocarbonyl,$

3 $N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)-aminocarbonyl,$ $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$ $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl$ Di- $(C_1-C_6-alkyl)$ -aminothiocarbonyl, $C_1-C_6-alkylcar$ -5 bonyl- C_1 - C_6 -alkyl, C_1 - C_6 -Alkoxyimino- C_1 - C_6 -alkyl, $N-(C_1-C_6-Alkylamino)-imino-C_1-C_6-alkyl$ oder $N, N-Di-(C_1-C_6-alkylamino)-imino-C_1-C_6-alkyl,$ wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können 10 und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Di- $(C_1$ - C_4 alkyl)-amino, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxycarbonyl, C_1-C_4 -Alkoxy- C_1-C_4 -alkoxycarbonyl, 15 Di- $(C_1-C_4-alkyl)$ -amino- $C_1-C_4-alkoxycarbonyl$, Hydroxycarbonyl, C_1-C_4 -Alkylaminocarbonyl, $Di-(C_1-C_4-alkyl)$ -aminocarbonyl, Aminocarbonyl, $C_1-C_4-Alkylcarbonyloxy$ oder $C_3-C_6-Cycloalkyl$; 20 Phenyl, Heterocyclyl, Phenyl- C_1 - C_6 -alkyl, Heterocy $clyl-C_1-C_6-alkyl$, Phenylcarbonyl- $C_1-C_6-alkyl$, Hete- $\verb"rocyclylcarbonyl-C_1-C_6-alkyl", Phenylcarbonyl", \textit{Hete-}$ rocyclylcarbonyl, Phenoxycarbonyl, Phenyloxythiocarbonyl, Heterocyclyloxycarbonyl, Heterocyclyl-25 oxythiocarbonyl, Phenylaminocarbonyl, N-(C_1 - C_6 -Alkyl)-N-(phenyl)-aminocarbonyl, Heterocyclylaminocarbonyl, $N-(C_1-C_6-Alkyl)-N-(heterocyclyl)-amino$ carbonyl, Phenyl- C_2 - C_6 -alkenylcarbonyl oder Hetero $cyclyl-C_2-C_6-alkenylcarbonyl$, wobei der Phenyl- und 30 der Heterocyclyl-Rest der 18 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, 35 $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$, Heterocyclyl oder N-gebundenes Heterocyclyl, wobei die beiden letztgenannten Substituenten ihrerseits partiell oder vollständig halogeniert sein können und/oder einen bis drei der folgenden Reste tragen können: 40 Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C_1-C_4 -Alkoxy oder C_1-C_4 -Halogenalkoxy;

R14

45

 $C_1-C_6-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$, $C_3-C_6-Alkinyl$, $C_3-C_6-Halogenalkinyl$, $C_3-C_6-Cyclo-alkyl$, $C_1-C_6-Alkoxy$, $Di-(C_1-C_6-alkyl)$ amino oder $Di-(C_1-C_6-Halogenalkyl)$ amino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder

•

4

vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Di- $(C_1$ - C_4 -alkyl)-amino, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxy-carbonyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkoxycarbonyl, Di- $(C_1$ - C_4 -alkyl)-amino- C_1 - C_4 -alkoxycarbonyl, Hydroxycarbonyl, C_1 - C_4 -Alkylaminocarbonyl, Di- $(C_1$ - C_4 -alkyl)-aminocarbonyl, Aminocarbonyl, C_1 - C_4 -Alkylcarbonyloxy oder C_3 - C_6 -Cycloalkyl;

10

15

20

25

٠5

Phenyl, Heterocyclyl, Phenyl- C_1 - C_6 -alkyl, Heterocyclyl- C_1 - C_6 -alkyl, Phenoxy, Heterocyclyloxy, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

R¹⁵

alky1;

C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Alkinyl, C₃-C₆-Halogenalkinyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, Di-(C₁-C₆-alkyl)-amino oder C₁-C₆-Alkylcarbonylamino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder einen bis drei Reste der folgenden Gruppe tragen können: Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkoxy-C₁-C₄-alkoxy-carbonyl, Di-(C₁-C₄-alkyl)-amino-C₁-C₄-alkoxy-carbonyl, Hydroxycarbonyl, C₁-C₄-Alkylamino-carbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl, Amino-

30

35

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl oder Heterocyclyl-C₁-C₆-alkyl, wobei der Phenyl- oder Heterocyclyl-Rest der vier letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Restetragen kann:

carbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cyclo-

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

40

C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder

C₁-C₆-Alkylcarbonyl;

sowie deren landwirtschaftlich brauchbaren Salze.

5

R¹⁶

2. Verfahren zur Herstellung von Verbindungen der Formel I mit R¹⁰ = Halogen gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein tricyclisches Benzoylpyrazol-Derivat der Formel Ια-(=I mit R^{10} = Hydroxy),

10

15

20

wobei die Variablen R^1 bis R^5 , R^{11} und R^{12} , X, Y und 1 die in Anspruch 1 genannte Bedeutung haben, mit einem Halogenierungsmittel umsetzt.

25 3. Verfahren zur Herstellung von Verbindungen der Formel I mit $R^{10} = OR^{13}$, gemäß Anspruch 1 dadurch gekennzeichnet, daß man ein tricyclisches Benzoylpyrazol-Derivat der Formel Ια, (= I mit R^{10} = Hydroxy),

30

35

45

40 wobei die Variablen R^1 bis R^5 , R^{11} und R^{12} , X, Y und 1 die in Anspruch 1 genannte Bedeutung haben, mit einer Verbindung der Formel III,

> $L^{1}-R^{13}$ III

wobei die Variable \mathbb{R}^{13} die in Anspruch 1 genannte Bedeutung hat und \mathbb{L}^1 für eine nucleophil verdrängbare Abgangsgruppe steht, umsetzt.

5 4. Verfahren zur Herstellung von Verbindungen der Formel I mit $R^{10} = OR^{13}$, SR^{13} , $NR^{15}R^{16}$ oder N-gebundenes Heterocyclyl gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel I β (\equiv I mit R^{10} = Halogen),

10
$$R^{12}$$
 R^{10} R^{10} R^{4} R^{2} R^{3} R^{1} R^{2} R^{3} R^{1}

 $\begin{array}{c|c}
R^{10} & R^{1} & R^{2} \\
R^{10} & X & Y \\
N & N & N & N \\
R^{11} & R^{2} & R^{3}_{1}
\end{array}$

Ιβ

wobei die Variablen R^1 bis R^5 , R^{11} und R^{12} , X, Y und 1 die in Anspruch 1 genannte Bedeutung haben, mit einer Verbindung der Formel IV α , IV β , IV γ oder IV δ

- wobei die Variablen R¹³ bis R¹⁶ die in Anspruch 1 genannte 30 Bedeutung haben, gegebenenfalls in Gegenwart einer Base, umsetzt.
- 5. Verfahren zur Herstellung von Verbindungen der Formel I mit $R^{10} = SO_2R^{14}$ gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel Iy (\equiv I mit $R^{10} = SR^{14}$),

40
$$R^{12}$$
 R^{10} R^{10}

wobei die Variablen R^1 bis R^5 , R^{11} und R^{12} , X, Y und 1 die in Anspruch 1 genannte Bedeutung haben, mit einem Oxidationsmittel umsetzt.

Verfahren zur Herstellung von Verbindungen der Formel I mit R⁹ = IIa gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein metalliertes Pyrazol-Derivat der Formel V, wobei M für ein Metall steht und R¹⁰ bis R¹² die in Anspruch 1 genannte Bedeutung haben mit Ausnahme von R¹⁰ = Hydroxy, mit einem tricyclischen Benzoesäure-Derivat der Formel VIα, wobei R¹ bis R⁵, X, Y und 1 die in Anspruch 1 genannte Bedeutung haben und L² für eine nucleophil verdrängbare Abgangsgruppe steht, umsetzt.

15
$$R^{12}$$
 M
 R^{10}
 $R^{$

7. Verfahren zur Herstellung von tricyclischen Benzoylpyrazol-25 Derivaten der Formel I α (= I mit R¹⁰ = Hydroxy) gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein Pyrazol der Formel VII, in der die Variablen R¹¹ und R¹² die unter Anspruch 1 genannte Bedeutung haben,

35

mit einer aktivierten tricyclischen Benzoesäure der Formel VI β oder mit einer tricyclischen Benzoesäure VI γ ,

990232

wobei die Variablen R1 bis R5, X, Y und 1 die unter Anspruch 1 genannte Bedeutung haben und L3 für eine nucleophil verdrängbare Abgangsgruppe steht, acyliert und das Acylierungsprodukt gegebenenfalls in Gegenwart eines Katalysators umlagert.

5

Verfahren zur Herstellung von tricyclischen Benzoylpyrazol-8. Derivaten der Formel I α (\equiv I mit R^{10} = Hydroxy), gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein Pyrazol der Formel VII, in der die Variablen \mathbb{R}^{11} und \mathbb{R}^{12} die in Anspruch 1 genannte Bedeutung haben, oder ein Alkalisalz hiervon,

15

10

mit einem tricyclischen Benzolderivat der Formel IX, wobei L4 für eine Abgangsgruppe steht und die Variablen X, Y, \mathbb{R}^1 bis \mathbb{R}^5 und 1 die in Anspruch 1 genannte Bedeutung haben,

25

30

35

20

in Gegenwart von Kohlenmonoxid, eines Katalysators sowie einer Base umsetzt.

- Mittel, enthaltend eine herbizid wirksame Menge mindestens eines tricyclischen Benzoylpyrazol-Derivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß Anspruch 1 und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel.
- 40
- 10. Verfahren zur Herstellung von Mitteln gemäß Anspruch 9, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines tricyclischen Benzoylpyrazol-Derivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß Anspruch 1 und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel mischt.

11. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines tricyclischen Benzoylpyrazol-Derivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß Anspruch 1, auf Pflanzen, deren Lebensraum und/oder auf Samen einwirken läßt.

12. Verwendung von tricyclischen Benzoylpyrazol-Derivaten der Formel I oder deren landwirtschaftlich brauchbaren Salze gemäß Anspruch 1 als Herbizide.

13. Tricyclische Benzosäurederivate der Formel VI

in der die Variablen X, Y, \mathbb{R}^1 bis \mathbb{R}^3 und \mathbb{R}^5 sowie 1 die in Anspruch 1 genannte Bedeutung haben und

25

30

35

15

20

5

Nitro, Halogen, Cyano, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogen-alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylthio, C_1 - C_6 -Halogenalkylthio, C_1 - C_6 -Alkylsulfinyl, C_1 - C_6 -Halogenalkylsulfinyl, C_1 - C_6 -Alkylsulfonyl, C_1 - C_6 -Halogenalkylsulfonyl, Aminosulfonyl, N- $(C_1$ - C_6 -Alkyl)-aminosulfonyl, N- $(C_1$ - C_6 -Alkyl)-aminosulfonyl, N- $(C_1$ - C_6 -Alkyl)-sulfonyl)-amino, N- $(C_1$ - C_6 -Halogenalkylsulfonyl)-amino, N- $(C_1$ - C_6 -Alkyl)-N- $(C_1$ - C_6 -alkylsulfonyl)-amino oder N- $(C_1$ - C_6 -Alky)-N- $(C_1$ - C_6 -halogenalkylsulfonyl)-sulfonyl)-amino;

R¹⁷ Hydroxy oder abhydrolisierbarer Rest;

40 bedeutet.

14. Tricyclische Benzosäurederivate der Formel XI

in der die Variablen X, Y, R^1 bis R^3 und R^5 sowie 1 die in Anspruch 1 genannte Bedeutung haben und

15

10

Nitro, Halogen, Cyano, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogen-alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylthio, C_1 - C_6 -Halogenalkylthio, C_1 - C_6 -Alkylsulfinyl, C_1 - C_6 -Halogenalkylsulfinyl, C_1 - C_6 -Alkylsulfonyl, C_1 - C_6 -Halogenalkylsulfonyl, Aminosulfonyl, N- $(C_1$ - C_6 -Alkyl)-aminosulfonyl, N- $(C_1$ - C_6 -Alkyl)-aminosulfonyl, N- $(C_1$ - C_6 -Alkyl)-aminosulfonyl, N- $(C_1$ - C_6 -Alkyl)-amino, N- $(C_1$ - C_6 -Alkyl)-N- $(C_1$ -N- $(C_1$ - $(C_1$

20

25

 L^4

 R^4

Halogen, C_1 - C_6 -Alkylsulfonyloxy, C_1 - C_6 -Halogen-alkylsulfonyloxy oder Phenylsulfonyloxy, wobei der Phenylring des letztgenannten Rests unsubstituiert sein kann oder partiell oder vollständig halogeniert und/oder einen bis drei der folgenden Reste tragen kann:

30

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

bedeutet.

35 15. Aniline der Formel XV und Nitrile der Formel XVI,

40

in der die Variablen X, Y, R¹ bis R³ und R⁵ sowie l jeweils die in Anspruch 1 genannte Bedeutung haben und

 R^4 Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, $C_1-C_6-Alkylthio$, $C_1-C_6-Halogenalkylthio$, $C_1-C_6-Alkylsulfinyl$, $C_1-C_6-Halogenalkylsulfinyl$, 5 $C_1-C_6-Alkylsulfonyl$, $C_1-C_6-Halogenalkylsulfonyl$, Aminosulfonyl, $N-(C_1-C_6-Alkyl)$ -aminosulfonyl, $N, N-Di-(C_1-C_6-alkyl)$ -aminosulfonyl, $N-(C_1-C_6-alkyl-aminosulfonyl)$ sulfonyl)-amino, N-(C1-C6-Halogenalkylsulfonyl)amino, $N-(C_1-C_6-Alkyl)-N-(C_1-C_6-alkylsulfonyl)-$ 10 amino oder $N-(C_1-C_6-Alky)-N-(C_1-C_6-halogenalkyl-n-(C_1-C_6-halogenalkyl$ sulfonyl) -amino;

bedeutet.

20

25

35

40

Tricyclische Benzoylpyrazol-Derivate

Beschreibung

5

Die vorliegende Erfindung betrifft neue tricyclische Benzoylpyrazol-Derivate der Formel I

10 R¹ R² R³ Y I

25

35

40

45

in der die Variablen folgende Bedeutungen haben:

X Sauerstoff, Schwefel, S=O, S(=O)₂, CR⁶R⁷, NR⁸ oder eine Bindung;

Y bildet gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, einen gesättigten, partiell gesättigten oder ungesättigten 5- oder

6-gliedrigen Heterocyclus, der ein bis drei gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff, enthält;

30 R^1, R^2, R^6, R^7 Wasserstoff, C_1-C_6 -Alkyl, C_1-C_6 -Halogenalkyl, C_1-C_6 -Alkoxy oder C_1-C_6 -Halogenalkoxy;

R³ Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy oder C_1 - C_6 -Halogenalkoxy;

R⁴ Wasserstoff, Nitro, Halogen, Cyano, C₁-C₆-Alkyl,

 $\label{eq:c1-C6-Halogenalkyl} C_1-C_6-Alkoxy, C_1-C_6-Halogen-alkoxy, C_1-C_6-Alkylthio, C_1-C_6-Halogenalkylthio, C_1-C_6-Alkylsulfinyl, C_1-C_6-Halogenalkylsulfinyl, C_1-C_6-Alkylsulfonyl, C_1-C_6-Halogenalkylsulfonyl,$

Aminosulfonyl, N-(C_1 - C_6 -Alkyl)-aminosulfonyl, N,N-Di-(C_1 - C_6 -alkyl)-aminosulfonyl, N-(C_1 - C_6 -Alkyl-sulfonyl)-amino, N-(C_1 - C_6 -Halogenalkylsulfonyl)-

amino, $N-(C_1-C_6-Alkyl)-N-(C_1-C_6-alkylsulfonyl)-$

amino oder $N-(C_1-C_6-Alky)-N-(C_1-C_6-halogenalkyl-$

sulfonyl) -amino;

		2
	R ⁵	Wasserstoff, C ₁ -C ₆ -Alkyl oder Halogen;
5	R ⁸	Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkylcarbonyl, Formyl, C_1 - C_6 -Alkoxycarbonyl, C_1 - C_6 -Halogenalkoxycarbonyl, C_1 - C_6 -Alkylsulfonyl oder C_1 - C_6 -Halogenalkylsulfonyl;
	_1	0, 1 oder 2;
10	R ⁹	ein Rest IIa oder IIb
15		R ¹² O R ¹⁰ R ¹⁰
		IIa IIb
20	wobei	
25	R ¹⁰	Hydroxy, Mercapto, Halogen, OR^{13} , SR^{13} , SO_2R^{14} , $NR^{15}R^{16}$ oder N-gebundenes Heterocyclyl, wobei der Heterocyclyl-Rest partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;
30	R ¹¹	Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, Hydroxy, C_1 - C_6 -Alkoxy oder C_1 - C_6 -Halogenalkoxy;
35	R ¹²	Wasserstoff, Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenal-kyl, Hydroxy, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Halogenalkylthio;
40	R13	C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Halogenalkenyl, C_3 - C_6 -Alkinyl, C_3 - C_6 -Halogenalkinyl, C_3 - C_6 -Cyclo-alkyl, C_1 - C_2 0-Alkylcarbonyl, C_2 - C_2 0-Alkenylcarbonyl, C_2 - C_6 -Alkinylcarbonyl, C_3 - C_6 -Cycloalkylcarbonyl, C_1 - C_6 -Alkoxycarbonyl, C_3 - C_6 -Alkenyloxycarbonyl,
45		$ \begin{array}{l} C_3-C_6-Alkinyloxycarbonyl, \ C_1-C_6-Alkylthiocarbonyl, \\ C_1-C_6-Alkylaminocarbonyl, \ C_3-C_6-Alkenylaminocarbonyl, \\ nyl, \ C_3-C_6-Alkinylaminocarbonyl, \\ nyl-Di-(C_1-C_6-alkyl)-aminocarbonyl, \\ n-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkyl)-aminocarbonyl, \\ n-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)-aminocarbonyl, \\ n-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)-aminocarbonyl, \\ \end{array} $

6. z

3

 $N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)-aminocarbonyl$, $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl$, $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl$, Di- $(C_1-C_6-alkyl)$ -aminothiocarbonyl, $C_1-C_6-alkylcar$ bonyl- C_1 - C_6 -alkyl, C_1 - C_6 -Alkoxyimino- C_1 - C_6 -alkyl, $N-(C_1-C_6-Alkylamino)-imino-C_1-C_6-alkyl$ oder $N, N-Di-(C_1-C_6-alkylamino)-imino-C_1-C_6-alkyl,$ wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Di- $(C_1-C_4-C_4)$ alkyl)-amino, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl, $C_1-C_4-Alkoxy-C_1-C_4-alkoxycarbonyl$, $Di-(C_1-C_4-alkyl)-amino-C_1-C_4-alkoxycarbonyl$, Hydroxycarbonyl, C₁-C₄-Alkylaminocarbonyl, $Di-(C_1-C_4-alkyl)$ -aminocarbonyl, Aminocarbonyl, $C_1-C_4-Alkylcarbonyloxy$ oder $C_3-C_6-Cycloalkyl$;

Phenyl, Heterocyclyl, Phenyl- C_1 - C_6 -alkyl, Heterocyclyl- C_1 - C_6 -alkyl, Phenylcarbonyl- C_1 - C_6 -alkyl, Heterocyclylcarbonyl- C_1 - C_6 -alkyl, Phenylcarbonyl, Heterocyclylcarbonyl, Phenoxycarbonyl, Phenyloxythiocarbonyl, Heterocyclyloxycarbonyl, Heterocyclyloxythiocarbonyl, Phenylaminocarbonyl, N- $(C_1$ - C_6 -Alkyl)-N-(phenyl)-aminocarbonyl, Heterocyclylaminocarbonyl, N- $(C_1$ - C_6 -Alkyl)-N-(phenyl)-aminocarbonyl, Heterocyclyloxycarbonyl, Phenyl- C_2 - C_6 -alkenylcarbonyl oder Heterocyclyl- C_2 - C_6 -alkenylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 18 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Heterocyclyl oder N-gebundenes Heterocyclyl, wobei die beiden letztgenannten Substituenten ihrerseits partiell oder vollständig halogeniert sein können und/oder einen bis drei der folgenden Reste tragen können: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

 $C_1-C_6-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$, $C_3-C_6-Alkinyl$, $C_3-C_6-Halogenalkinyl$, $C_3-C_6-Cyclo-alkyl$, $C_1-C_6-Alkoxy$, $Di-(C_1-C_6-alkyl)$ amino oder $Di-(C_1-C_6-Halogenalkyl)$ amino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder

15

5

10

20

25

30

35

40

 R^{14}

5	-	vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C ₁ -C ₄ -Alkoxy, C ₁ -C ₄ -Alkylthio, Di-(C ₁ -C ₄ -alkyl)-amino, C ₁ -C ₄ -Alkylcarbonyl, C ₁ -C ₄ -Alkoxy-carbonyl, C ₁ -C ₄ -Alkoxy-C ₁ -C ₄ -alkoxycarbonyl, Di-(C ₁ -C ₄ -alkyl)-amino-C ₁ -C ₄ -alkoxycarbonyl, Hydroxycarbonyl, C ₁ -C ₄ -Alkylaminocarbonyl, Di-(C ₁ -C ₄ -alkyl)-aminocarbonyl, Aminocarbonyl,
		C ₁ -C ₄ -Alkylcarbonyloxy oder C ₃ -C ₆ -Cycloalkyl;
10		
		Phenyl, Heterocyclyl, Phenyl- C_1 - C_6 -alkyl, Heterocyclyl- C_1 - C_6 -alkyl, Phenoxy, Heterocyclyloxy, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten partiell oder vollständig
15		halogeniert sein kann und/oder einen bis drei der
		folgenden Reste tragen kann:
		Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;
		C1-C4-Alkoxy Odel C1-C4-halogenalkoxy,
20	R ¹⁵	C ₁ -C ₆ -Alkyl, C ₃ -C ₆ -Alkenyl, C ₃ -C ₆ -Halogenalkenyl,
25 30		C ₃ -C ₆ -Alkinyl, C ₃ -C ₆ -Halogenalkinyl, C ₃ -C ₆ -Cycloalkyl, C ₁ -C ₆ -Alkoxy, C ₃ -C ₆ -Alkenyloxy, C ₃ -C ₆ -Alkinyloxy, Di-(C ₁ -C ₆ -alkyl)-amino oder C ₁ -C ₆ -Alkylcarbonylamino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder einen bis drei Reste der folgenden Gruppe tragen können: Cyano, C ₁ -C ₄ -Alkoxy, C ₁ -C ₄ -Alkylthio, Di-(C ₁ -C ₄ -alkyl)-amino, C ₁ -C ₄ -Alkylcarbonyl, C ₁ -C ₄ -Alkoxycarbonyl, C ₁ -C ₄ -Alkoxy-C ₁ -C ₄ -alkoxy- carbonyl, Di-(C ₁ -C ₄ -alkyl)-amino-C ₁ -C ₄ -alkoxy- carbonyl, Hydroxycarbonyl, C ₁ -C ₄ -Alkylamino- carbonyl, C ₁ -C ₄ -Alkylcarbonyloxy oder C ₃ -C ₆ -Cyclo-
35		alkyl;
40		Phenyl, Heterocyclyl, Phenyl-C ₁ -C ₆ -alkyl oder Heterocyclyl-C ₁ -C ₆ -alkyl, wobei der Phenyl- oder Heterocyclyl-Rest der vier letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Restetragen kann: Nitro, Cyano, C ₁ -C ₄ -Alkyl, C ₁ -C ₄ -Halogenalkyl, C ₁ -C ₄ -Alkoxy oder C ₁ -C ₄ -Halogenalkoxy;
45		of of introduct and of of warademarkett.
- -		

R¹⁶ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder C₁-C₆-Alkylcarbonyl;

sowie deren landwirtschaftlich brauchbaren Salze.

5

Außerdem betrifft die Erfindung Verfahren und Zwischenprodukte zur Herstellung von Verbindungen der Formel I, Mittel welche diese enthalten, sowie die Verwendung dieser Derivate oder diese enthaltende Mittel zur Schadpflanzenbekämpfung.

10

Aus WO 97/19087 und EP-A 860 441 sind tricyclische Verbindungen bekannt, die dadurch charakterisiert sind, daß die jeweils enthaltene Benzoyleinheit über die Positionen 3 und 4 mit einem Bicyclus anelliert ist. Die herbiziden Eigenschaften der bisher 15 bekannten Verbindungen sowie die Verträglichkeiten gegenüber Kulturpflanzen können jedoch nur bedingt befriedigen. Es lag daher dieser Erfindung die Aufgabe zugrunde, neue, biologisch, insbesondere herbizid wirksame, Verbindungen mit verbesserten Eigenschaften zu finden.

20

Demgemäß wurden die tricyclischen Benzoylpyrazol-Derivate der Formel I sowie deren herbizide Wirkung gefunden.

Ferner wurden Verfahren und Zwischenprodukte zur Synthese der 25 Verbindungen der Formel I gefunden. Ebenso wurden herbizide Mittel gefunden, die die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs mit den Verbindungen I gefunden.

30

Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren enthalten und liegen dann als Enantiomeren oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren 35 als auch deren Gemische.

Die Verbindungen der Formel I können auch in Form ihrer landwirtschaftlich brauchbaren Salze vorliegen, wobei es auf die Art des Salzes in der Regel nicht ankommt. Im Allgemeinen kommen die

- 40 Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen, beziehungsweise Anionen, die herbizide Wirkung der Verbindungen I nicht negativ beeinträchtigen.
- 45 Es kommen als Kationen insbesondere Ionen der Alkalimetalle, vorzugsweise Lithium, Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium und Magnesium, und der Übergangsmetalle,

vorzugsweise Mangan, Kupfer, Zink und Eisen, Sowie Ammonium, wobei hier gewünschtenfalls ein bis vier Wasserstoffatome durch C₁-C₄-Alkyl, Hydroxy-C₁-C₄-alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, Hydroxy-C₁-C₄-alkyl, Phenyl oder Benzyl ersetzt sein können, vorzugsweise Ammonium, Dimethylammonium, Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, 2-(2-Hydroxyeth-1-oxy)eth-1-ylammonium, Di(2-hydroxyeth-1-yl)ammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfonium und Sulfoxoniumionen,

Anionen von brauchbaren Säureadditionsalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Pluorid, Hydrogencarbonat, Carbonat, Pexafluorosilikat, Hexafluorophosphat, Benzoat sowie die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat.

Im Falle von R^{10} = Hydroxy oder Mercapto steht IIa auch stellver-20 tretend für die tautomeren Formen IIa' und IIa''

25
$$\mathbb{R}^{12}$$
 \mathbb{C}^{0} \mathbb{R}^{12} \mathbb{C}^{0} $\mathbb{C}^{$

30

Ebenso steht im Fall von R^{10} = Hydroxy oder Mercapto IIb auch stellvertretend für die tautomeren Formen IIb' und IIb''

Die für die Substituenten R¹-R¹⁷ oder als Reste an Phenyl- und Heterocyclyl-Resten genannten organischen Molekülteile stellen 45 Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenwasserstoffketten, also alle Alkyl-, Halogenalkyl-, Hydroxyalkyl, Alkoxy-, Halogen-

alkoxy-, Alkylthio-, Halogenalkylthio-, Alkylsulfinyl-, Halogenalkylsulfinyl-, Alkylsulfonyl-, Halogenalkylsulfonyl-, N-Alkylaminosulfonyl-, N,N-Dialkylaminosulfonyl-, N-Alkylamino-, N,N-Dialkylamino-, N-Halogenalkylamino-, N,N-Dihalogenalkylamino, N-5 Alkylsulfonylamino-, N-Halogenalkylsulfonylamino-, N-Alkyl-N-alkylsulfonylamino-, N-Alkyl-N-halogenalkylsulfonylamino-, Alkylcarbonyl-, Alkoxycarbonyl-, Halogenalkyoxycarbonyl, Alkylthiocarbonyl-, Alkylcarbonyloxy-, Alkylaminocarbonyl-, Dialkylaminocarbonyl-, Dialkylaminothiocarbonyl-, Alkoxyalkyl-, Hydroxyalko-10 xyalkyl, Alkylcarbonylalkyl-, Alkoxyiminoalkyl-, N-(Alkylamino)-iminoalkyl-, N-(Dialkylamino)-iminoalkyl-, Phenylalkenylcarbonyl-, Heterocyclylalkenylcarbonyl-, N-Alkoxy-N-alkylaminocarbonyl-, N-Alkyl-N-phenylaminocarbonyl-, N-Alkyl-N-heterocyclylaminocarbonyl-, Phenylalkyl-, Heterocyclylalkyl-, Phenylcarbo-15 nylalkyl-, Heterocyclylcarbonylalkyl-, Dialkylaminoalkoxycarbonyl-, Alkoxyalkoxycarbonyl-, Alkenylcarbonyl-, Alkenyloxycarbonyl-, Alkenylaminocarbonyl-, N-Alkenyl-N-alkylaminocarbonyl-, N-Alkenyl-N-alkoxyaminocarbonyl-, Alkinylcarbonyl-, Alkinyloxycarbonyl-, Alkinylaminocarbonyl-, N-Alkinyl-N-alkylaminocarbo-20 nyl-, N-Alkinyl-N-alkoxyaminocarbonyl-, Alkenyl-, Alkinyl-, Halogenalkenyl-, Halogenalkinyl-, Alkenyloxy- und Alkinyloxy-Teile können geradkettig oder verzweigt sein. Sofern nicht anders angegeben tragen halogenierte Substituenten vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome. Die Bedeutung Halo-

Ferner bedeuten beispielsweise:

25 gen steht jeweils für Fluor, Chlor, Brom oder Iod.

C₁-C₄-Alkyl sowie die Alkylteile von Hydroxy-C₁-C₄-alkyl: z.B.
 Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl,
 2-Methylpropyl oder 1,1-Dimethylethyl;

C₁-C₆-Alkyl, sowie die Alkylteile von C₁-C₆-Alkylcarbo $nyl-C_1-C_6-alkyl$, $C_1-C_6-Alkoxyimino-C_1-C_6-alkyl$, $N-(C_1-C_6-Alkyl-C_1-C_6-alkyl)$ 35 amino)- $imino-C_1-C_6-alkyl$, N-(Di- $C_1-C_6-alkylamino$)-imino- $C_1-C_6-alkyl$, $N(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)-aminocarbonyl$, $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkyl)-aminocarbonyl, (C_3-C_6-Alki$ ny1)-N-(C_1 - C_6 -alky1)-aminocarbony1, N-(C_1 - C_6 -Alky1)-N-pheny1aminocarbonyl, $N-(C_1-C_6-Alkyl)-N-heterocyclylaminocarbonyl,$ Phenyl- C_1 - C_6 -alkyl, N- $(C_1$ - C_6 -Alkyl)-N- $(C_1$ - C_6 -alkylsulfonyl)-40 amino, $N-(C_1-C_6-Alkyl)-N-(C_1-C_6-halogenalkylsulfonyl)-amino,$ $Heterocyclyl-C_1-C_6-alkyl$, Phenylcarbonyl- $C_1-C_6-alkyl$, Hetero- $\label{eq:cyclylcarbonyl-C1-C6-alkyl: C1-C4-Alkyl, wie voranstehend} \\$ genannt, sowie z.B. Pentyl, 1-Methylbutyl, 2-Methylbutyl, 45 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl oder 1-Ethyl-3-methylpropyl;

5

C₁-C₄-Halogenalkyl: einen C₁-C₄-Alkylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl,

3

- ethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl,
 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl,
 3,3,3-Trichlorpropyl, 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2chlorethyl, 1-(Brommethyl)-2-bromethyl, 4-Fluorbutyl,
 4-Chlorbutyl, 4-Brombutyl oder Nonafluorbutyl;
- C₁-C₆-Halogenalkyl, sowie die Halogenalkylteile von N-C₁-C₆-Halogenalkylamino und N,N-(Di-C₁-C₆-halogenalkyl)amino:
 C₁-C₄-Halogenalkyl, wie voranstehend genannt, sowie z.B.
 5-Fluorpentyl, 5-Chlorpentyl, 5-Brompentyl, 5-Iodpentyl,
 Undecafluorpentyl, 6-Fluorhexyl, 6-Chlorhexyl, 6-Bromhexyl,
- 30 C₁-C₄-Alkoxy: z.B. Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1,1-Dimethylethoxy;

6-Iodhexyl oder Dodecafluorhexyl;

- C₁-C₆-Alkoxy, sowie die Alkoxyteile von C₁-C₆-Alkoxyimino-C₁-C₆-alkyl, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl und N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl: C₁-C₄-Alkoxy, wie voranstehend genannt, sowie z.B. Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1,1-Dimethylpropoxy, 1,2-Dimethylpropoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy, 1-Methylpentoxy, 2-Methylpentoxy, 3-Methyl-
- pentoxy, 4-Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 45
- 1,1,2-Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy oder 1-Ethyl-2-methylpropoxy;

0.z

9

- C1-C4-Halogenalkoxy: einen C1-C4-Alkoxyrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Bromdifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Brommethoxy, 2-Iodethoxy, 2,2-Difluorethoxy, 2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Dichlor-2-fluorethoxy, 2-Z-Trichlorethoxy, Pentafluorethoxy, 2-Fluorpropoxy, 3-Fluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2-Difluorpropoxy, 2-Difluorpropoxy, 2-Difluorpropoxy, 3-Difluorpropoxy, 2-Difluorpropoxy, 2

15

- C₁-C₆-Halogenalkoxy: C₁-C₄-Halogenalkoxy, wie voranstehend genannt, sowie z.B. 5-Fluorpentoxy, 5-Chlorpentoxy, 5-Brompentoxy, 5-Iodpentoxy, Undecafluorpentoxy, 6-Fluorhexoxy, 6-Chlorbexoxy, 6-Rrombexoxy, 6-Todbexoxy, oder Dodecafluorhexoxy

methyl)-2-chlorethoxy, 1-(Brommethyl)-2-bromethoxy, 4-Fluor-butoxy, 4-Chlorbutoxy, 4-Brombutoxy oder Nonafluorbutoxy;

- 6-Chlorhexoxy, 6-Bromhexoxy, 6-Iodhexoxy oder Dodecafluorhexoxy;
- C₁-C₄-Alkylthio: z.B. Methylthio, Ethylthio, Propylthio,
 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio oder 1,1-Dimethylethylthio;
 - C_1 - C_6 -Alkylthio, sowie die Alkylthioteile von C_1 - C_6 -Alkylthiocarbonyl: C_1 - C_4 -Alkylthio, wie voranstehend genannt, sowie z.B. Pentylthio, 1-Methylbutylthio, 2-Methylbutylthio, 3-Methylbutylthio, 2,2-Dimethylpropylthio, 1-Ethylpropylthio,
- 3-Methylbutylthio, 2,2-Dimethylpropylthio, 1-Ethylpropylthio, Hexylthio, 1,1-Dimethylpropylthio, 1,2-Dimethylpropylthio, 1-Methylpentylthio, 2-Methylpentylthio, 3-Methylpentylthio, 4-Methylpentylthio, 1,1-Dimethylbutylthio, 1,2-Dimethylbutylthio, 1,3-Dimethylbutylthio, 2,2-Dimethylbutylthio,
- 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1-Ethylbutylthio, 2-Ethylbutylthio, 1,1,2-Trimethylpropylthio, 1,2,2-Trimethylpropylthio, 1-Ethyl-1-methylpropylthio oder 1-Ethyl-2-methylpropylthio;
- 40 C₁-C₆-Halogenalkylthio: einen C₁-C₄-Alkylthiorest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethylthio, Difluormethylthio, Trifluormethylthio, Chlordifluormethylthio, Bromdifluormethylthio, 2-Fluorethylthio,
 45 2-Chlorethylthio, 2-Bromethylthio, 2-Iodethylthio,
- 2,2-Difluorethylthio, 2,2,2-Trifluorethylthio, 2,2,2-Trichlorethylthio, 2-Chlor-2-fluorethylthio, 2-Chlor-2,2-di-

fluorethylthio, 2,2-Dichlor-2-fluorethylthio, Pentafluorethylthio, 2-Fluorpropylthio, 3-Fluorpropylthio, 2-Chlorpropylthio, 3-Chlorpropylthio, 2-Brompropylthio, 3-Brompropylthio, 2,2-Difluorpropylthio, 2,3-Difluorpropylthio,
2,3-Dichlorpropylthio, 3,3,3-Trifluorpropylthio, 3,3,3-Trichlorpropylthio, 2,2,3,3,3-Pentafluorpropylthio, Heptafluorpropylthio, 1-(Fluormethyl)-2-fluorethylthio, 1-(Chlormethyl)-2-chlorethylthio, 1-(Brommethyl)-2-bromethylthio,
4-Fluorbutylthio, 4-Chlorbutylthio, 4-Brombutylthio, Nonafluorbutylthio, 5-Fluorpentylthio, 5-Chlorpentylthio, 5-Brompentylthio, 5-Iodpentylthio, Undecafluorpentylthio, 6-Fluorhexylthio, 6-Chlorhexylthio, 6-Bromhexylthio, 6-Iodhexylthio
oder Dodecafluorhexylthio;

15 - C₁-C₆-Alkylsulfinyl (C₁-C₆-Alkyl-S(=O)-): z.B. Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, 1-Methylethylsulfinyl, Butylsulfinyl, 1-Methylpropylsulfinyl, 2-Methylpropylsulfinyl, 1,1-Dimethylethylsulfinyl, Pentylsulfinyl, 1-Methylbutylsulfinyl, 2-Methylbutylsulfinyl, 3-Methylbutylsulfinyl, 2,2-Di-

methylpropylsulfinyl, 1-Ethylpropylsulfinyl, 1,1-Dimethylpropylsulfinyl, 1,2-Dimethylpropylsulfinyl, Hexylsulfinyl, 1-Methylpentylsulfinyl, 2-Methylpentylsulfinyl, 3-Methylpentylsulfinyl, 4-Methylpentylsulfinyl, 1,1-Dimethylbutylsulfinyl, 1,2-Dimethylbutylsulfinyl, 1,3-Dimethylbutylsulfinyl,

25 2,2-Dimethylbutylsulfinyl, 2,3-Dimethylbutylsulfinyl, 3,3-Dimethylbutylsulfinyl, 1-Ethylbutylsulfinyl, 2-Ethylbutylsulfinyl, 1,1,2-Trimethylpropylsulfinyl, 1,2,2-Trimethylpropylsulfinyl, 1-Ethyl-1-methylpropylsulfinyl oder 1-Ethyl-2-methylpropylsulfinyl;

30

35

40

45

C1-C6-Halogenalkylsulfinyl: C1-C6-Alkylsulfinylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethylsulfinyl, Difluormethylsulfinyl, Trifluormethylsulfinyl, Chlordifluormethylsulfinyl, Bromdifluormethylsulfinyl, 2-Fluorethylsulfinyl, 2-Chlorethylsulfinyl, 2-Bromethylsulfinyl, 2-Iodethylsulfinyl, 2,2-Difluorethylsulfinyl, 2,2,2-Trifluorethylsulfinyl, 2,2,2-Trichlorethylsulfinyl, 2-Chlor-2-fluorethylsulfinyl, 2-Chlor-2,2-difluorethylsulfinyl, 2-Chlor-2-fluorethylsulfinyl, Pentafluorethylsulfinyl, 2-Fluorpropylsulfinyl, 3-Fluorpropylsulfinyl, 2-Chlor-propylsulfinyl, 3-Chlorpropylsulfinyl, 2-Brompropylsulfinyl, 3-Brompropylsulfinyl, 2,2-Difluorpropylsulfinyl, 2,3-Difluorpropylsulfinyl, 3,3,3-Trifluorpropylsulfinyl, 3,3,3-Trifluorpropylsulfinyl, 3,3,3-Trifluorpropylsulfinyl, 3,3,3-Penta-

fluorpropylsulfinyl, Heptafluorpropylsulfinyl, 1-(Fluor-methyl)-2-fluorethylsulfinyl, 1-(Chlormethyl)-2-chlorethyl-

11

sulfinyl, 1-(Brommethyl)-2-bromethylsulfinyl, 4-Fluorbutyl-sulfinyl, 4-Chlorbutylsulfinyl, 4-Brombutylsulfinyl, Nona-fluorbutylsulfinyl, 5-Fluorpentylsulfinyl, 5-Chlorpentylsulfinyl, 5-Brompentylsulfinyl, 5-Iodpentylsulfinyl, Undeca-fluorpentylsulfinyl, 6-Fluorhexylsulfinyl, 6-Chlorhexyl-sulfinyl, 6-Bromhexylsulfinyl, 6-Iodhexylsulfinyl oder Dodecafluorhexylsulfinyl;

 $C_1-C_6-Alkylsulfonyl$ ($C_1-C_6-Alkyl-S(=0)_2-$), sowie die Alkylsulfonylreste von N-(C_1 - C_6 -Alkylsulfonyl)-amino und N-(C_1 - C_6 -10 $Alkyl)-N-(C_1-C_6-alkylsulfonyl)-amino: z.B. Methylsulfonyl,$ Ethylsulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, Butylsulfonyl, 1-Methylpropylsulfonyl, 2-Methylpropylsulfonyl, 1,1-Dimethylethylsulfonyl, Pentylsulfonyl, 1-Methylbutylsulfonyl, 2-Methylbutylsulfonyl, 3-Methylbutylsulfonyl, 15 1,1-Dimethylpropylsulfonyl, 1,2-Dimethylpropylsulfonyl, 2,2-Dimethylpropylsulfonyl, 1-Ethylpropylsulfonyl, Hexylsulfonyl, 1-Methylpentylsulfonyl, 2-Methylpentylsulfonyl, 3-Methylpentylsulfonyl, 4-Methylpentylsulfonyl, 1,1-Dimethylbutylsulfonyl, 1,2-Dimethylbutylsulfonyl, 1,3-Dimethylbutyl-20 sulfonyl, 2,2-Dimethylbutylsulfonyl, 2,3-Dimethylbutylsulfonyl, 3,3-Dimethylbutylsulfonyl, 1-Ethylbutylsulfonyl, 2-Ethylbutylsulfonyl, 1,1,2-Trimethylpropylsulfonyl, 1,2,2-Trimethylpropylsulfonyl, 1-Ethyl-1-methylpropylsulfonyl 25 oder 1-Ethyl-2-methylpropylsulfonyl;

C1-C6-Halogenalkylsulfonyl, sowie die Halogenalkylsulfonylreste von $N-(C_1-C_6-Halogenalkylsulfonyl)-amino und$ $N-(C_1-C_6-Alkyl)-N-(C_1-C_6-halogenalkylsulfonyl)-amino: einen$ C₁-C₆-Alkylsulfonylrest, wie voranstehend genannt, der 30 partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethylsulfonyl, Difluormethylsulfonyl, Trifluormethylsulfonyl, Chlordifluormethylsulfonyl, Bromdifluormethylsulfonyl, 2-Fluorethylsulfonyl, 2-Chlorethylsulfonyl, 2-Bromethylsulfonyl, 2-Iodethylsulfo-35 nyl, 2,2-Difluorethylsulfonyl, 2,2,2-Trifluorethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl, 2-Chlor-2,2-difluorethylsulfonyl, 2,2-Dichlor-2-fluorethylsulfonyl, 2,2,2-Trichlorethylsulfonyl, Pentafluorethylsulfonyl, 2-Fluorpropylsulfonyl, 3-Fluorpropylsulfonyl, 2-Chlorpropylsulfonyl, 3-Chlorpropyl-40 sulfonyl, 2-Brompropylsulfonyl, 3-Brompropylsulfonyl, 2,2-Difluorpropylsulfonyl, 2,3-Difluorpropylsulfonyl, 2,3-Dichlorpropylsulfonyl, 3,3,3-Trifluorpropylsulfonyl, 3,3,3-Trichlorpropylsulfonyl, 2,2,3,3,3-Pentafluorpropylsulfonyl, Heptafluorpropylsulfonyl, 1-(Fluormethyl)-2-fluorethylsulfonyl, 45 1-(Chlormethyl)-2-chlorethylsulfonyl, 1-(Brommethyl)-2-bromethylsulfonyl, 4-Fluorbutylsulfonyl, 4-Chlorbutylsulfonyl,

4-Brombutylsulfonyl, Nonafluorbutylsulfonyl, 5-Fluorpentylsulfonyl, 5-Chlorpentylsulfonyl, 5-Brompentylsulfonyl, 5-Iodpentylsulfonyl, 6-Fluorhexylsulfonyl, 6-Bromhexylsulfonyl, 6-Iodhexylsulfonyl oder Dodecafluorhexylsulfonyl;

5

10

15

past wirelendezerizeugir

C₁-C₆-Alkylamino, sowie die Alkylaminoreste von
N-(C₁-C₆-Alkylamino)-imino-C₁-C₆-alkyl, also z.B. Methylamino,
Ethylamino, Propylamino, 1-Methylethylamino, Butylamino,
1-Methylpropylamino, 2-Methylpropylamino, 1,1-Dimethylethylamino, Pentylamino, 1-Methylbutylamino, 2-Methylbutylamino,
3-Methylbutylamino, 2,2-Dimethylpropylamino, 1-Ethylpropylamino, Hexylamino, 1,1-Dimethylpropylamino, 1,2-Dimethylpropylamino, 1,2-Dimethylpropylamino, 3-Methylpentylamino, 4-Methylpentylamino, 2,1-Dimethylbutylamino, 2,2-Dimethylbutylamino, 1,3-Dimethylbutylamino,
2,2-Dimethylbutylamino, 2,3-Dimethylbutylamino, 3,3-Dimethylbutylamino, 1-Ethylbutylamino, 2-Ethylbutylamino, 1,1,2-Trimethylpropylamino, 1,2,2-Trimethylpropylamino,
1-Ethyl-1-methylpropylamino oder 1-Ethyl-2-methylpropylamino;

20

25

30

35

 $(C_1-C_6-Alkylamino)$ sulfonyl: z.B. Methylaminosulfonyl, Ethylaminosulfonyl, Propylaminosulfonyl, 1-Methylethylaminosulfonyl, Butylaminosulfonyl, 1-Methylpropylaminosulfonyl, 2-Methylpropylaminosulfonyl, 1,1-Dimethylethylaminosulfonyl, Pentylaminosulfonyl, 1-Methylbutylaminosulfonyl, 2-Methylbutylaminosulfonyl, 3-Methylbutylaminosulfonyl, 2,2-Dimethylpropylaminosulfonyl, 1-Ethylpropylaminosulfonyl, Hexylaminosulfonyl, 1,1-Dimethylpropylaminosulfonyl, 1,2-Dimethylpropylaminosulfonyl, 1-Methylpentylaminosulfonyl, 2-Methylpentylaminosulfonyl, 3-Methylpentylaminosulfonyl, 4-Methylpentylaminosulfonyl, 1,1-Dimethylbutylaminosulfonyl, 1,2-Dimethylbutylaminosulfonyl, 1,3-Dimethylbutylaminosulfonyl, 2,2-Dimethylbutylaminosulfonyl, 2,3-Dimethylbutylaminosulfonyl, 3,3-Dimethylbutylaminosulfonyl, 1-Ethylbutylaminosulfonyl, 2-Ethylbutylaminosulfonyl, 1,1,2-Trimethylpropylaminosulfonyl, 1,2,2-Trimethylpropylaminosulfonyl, 1-Ethyl-1-methylpropylaminosulfonyl oder 1-Ethyl-2-methylpropylaminosulfonyl;

Di-(C₁-C₆-alkyl)-aminosulfonyl: z.B. N,N-Dimethylaminosulfonyl, N,N-Diethylaminosulfonyl, N,N-Di-(1-methylethyl)aminosulfonyl, N,N-Di-(1-methylethyl)aminosulfonyl, N,N-Di-(1-methylpropyl)-aminosulfonyl, N,N-Di-(2-methylpropyl)-aminosulfonyl, N,N-Di-(1,1-dimethylethyl)-aminosulfonyl, N-Ethyl-N-methylaminosulfonyl, N-Methyl-N-propyl-aminosulfonyl, N-Methyl-N-(1-methylethyl)-aminosulfonyl, N-Butyl-N-methylaminosulfonyl, N-Methyl-N-(1-methyl-n-(1-methyl-propyl)-aminosulfonyl, N-Methyl-N-(2-methylpropyl)-aminosulfonyl)

0.Z

13 sulfonyl, N-(1,1-Dimethylethyl)-N-methylaminosulfonyl, N-Ethyl-N-propylaminosulfonyl, N-Ethyl-N-(1-methylethyl)-aminosulfonyl, N-Butyl-N-ethylaminosulfonyl, N-Ethyl-N-(1-methylpropyl)-aminosulfonyl, N-Ethyl-N-(2-methylpropyl) -aminosulfonyl, N-Ethyl-N-(1,1-dimethylethyl) -amino-5 sulfonyl, N-(1-Methylethyl)-N-propylaminosulfonyl, N-Butyl-N-propylaminosulfonyl, N-(1-Methylpropyl)-N-propylaminosulfonyl, N (2-Methylpropyl) -N-propylaminosulfonyl, N-(1,1-Dimethylethyl)-N-propylaminosulfonyl, N-Butyl-N-(1-methylethyl) -aminosulfonyl, N-(1-Methylethyl) -N-(1-methyl-10 propyl) -aminosulfonyl, N-(1-Methylethyl)-N-(2-methylpropyl) -aminosulfonyl, N-(1,1-Dimethylethyl) -N-(1-methylethyl)-aminosulfonyl, N-Butyl-N-(1-methylpropyl)-aminosulfonyl, N-Butyl-N-(2-methylpropyl)-aminosulfonyl, N-Butyl-N-(1,1-dimethylethyl)-aminosulfonyl, N-(1-Methyl-15 propyl) -N-(2-methylpropyl) -aminosulfonyl, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-aminosulfonyl, N-(1,1-Dimethylethyl)-N-(2-methylpropyl)-aminosulfonyl, N-Methyl-N-pentylaminosulfonyl, N-Methyl-N-(1-methylbutyl)-aminosulfonyl, N-Me-20 thyl-N-(2-methylbutyl)-aminosulfonyl, N-Methyl-N-(3-methylbuty1)-aminosulfony1, N-Methy1-N-(2,2-dimethylpropy1)-aminosulfonyl, N-Methyl-N-(1-ethylpropyl)-aminosulfonyl, N-Methyl-N-hexylaminosulfonyl, N-Methyl-N-(1,1-dimethylpropyl)-aminosulfonyl, N-Methyl-N-(1,2-dimethylpropyl)-aminosulfonyl, N-Methyl-N-(1-methylpentyl)-aminosulfonyl, N-Methyl-N-25 (2-methylpentyl)-aminosulfonyl, N-Methyl-N-(3-methylpentyl) -aminosulfonyl, N-Methyl-N-(4-methylpentyl) -aminosulfonyl, N-Methyl-N-(1,1-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(1,2-dimethylbutyl)-aminosulfonyl, N-Methyl-N-30 (1,3-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(2,2-dimethylbuty1)-aminosulfony1, N-Methy1-N-(2,3-dimethylbuty1)-aminosulfonyl, N-Methyl-N-(3,3-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(1-ethylbutyl)-aminosulfonyl, N-Methyl-N-(2-ethylbutyl)-aminosulfonyl, N-Methyl-N-(1,1,2-trimethylpropyl) -aminosulfonyl, N-Methyl-N-(1,2,2-trimethyl-35 propyl) -aminosulfonyl, N-Methyl-N-(1-ethyl-1-methylpropy1) -aminosulfony1, N-Methy1-N-(1-ethy1-2-methy1propyl)-aminosulfonyl, N-Ethyl-N-pentylaminosulfonyl, N-Ethyl-N-(1-methylbutyl)-aminosulfonyl, N-Ethyl-N-(2-methylbutyl) -aminosulfonyl, N-Ethyl-N-(3-methylbutyl) -amino-40 sulfonyl, N-Ethyl-N-(2,2-dimethylpropyl)-aminosulfonyl, N-Ethyl-N-(1-ethylpropyl)-aminosulfonyl, N-Ethyl-N-hexylaminosulfonyl, N-Ethyl-N-(1,1-dimethylpropyl)-aminosulfonyl, N-Ethyl-N-(1,2-dimethylpropyl)-aminosulfonyl, N-Ethyl-N-(1-methylpentyl)-aminosulfonyl, N-Ethyl-N-(2-methyl-45 pentyl)-aminosulfonyl, N-Ethyl-N-(3-methylpentyl)-aminosulfonyl, N-Ethyl-N-(4-methylpentyl)-aminosulfonyl, N-

```
Ethyl-N-(1,1-dimethylbutyl)-aminosulfonyl, N-
        Ethyl-N-(1,2-dimethylbutyl)-aminosulfonyl, N-
        Ethyl-N-(1,3-dimethylbutyl)-aminosulfonyl, N-
        Ethyl-N-(2,2-dimethylbutyl)-aminosulfonyl, N-
 5
        Ethyl-N-(2,3-dimethylbutyl)-aminosulfonyl, N-
        Ethyl-N-(3,3-dimethylbutyl)-aminosulfonyl, N-
        Ethyl-N-(1-ethylbutyl)-aminosulfonyl, N-Ethyl-N-(2-ethyl-
        butyl) -aminosulfonyl, N-Ethyl-N-(1,1,2-trimethyl-
        propyl) -aminosulfonyl, N-Ethyl-N-(1,2,2-trimethyl-
10
        propyl) -aminosulfonyl, N-Ethyl-N-(1-ethyl-1-methyl-
        propyl)-aminosulfonyl, N-Ethyl-N-(1-ethyl-2-methyl-
        propyl) -aminosulfonyl, N-Propyl-N-pentylaminosulfonyl,
        N-Butyl-N-pentylaminosulfonyl, N,N-Dipentylaminosulfonyl,
        N-Propyl-N-hexylaminosulfonyl, N-Butyl-N-hexylaminosulfonyl,
15
        N-Pentyl-N-hexylaminosulfonyl oder N, N-Dihexylaminosulfonyl;
        Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, sowie die Dialkylaminoreste von
        Di-(C_1-C_4-alkyl) amino-C_1-C_4-alkoxycarbonyl und N-(Di-C_1-C_4-alkyl)
        alkylamino)-imino-C_1-C_6-alkyl, also z.B. N,N-Dimethylamino,
20
        N, N-Diethylamino, N, N-Dipropylamino, N, N-Di-(1-methylethyl) -
        amino, N, N-Dibutylamino, N, N-Di-(1-methylpropyl) amino,
        N, N-Di-(2-methylpropyl)amino, N, N-Di-(1,1-dimethylethyl)-
        amino, N-Ethyl-N-methylamino, N-Methyl-N-propylamino,
        N-Methyl-N-(1-methylethyl)amino, N-Butyl-N-methylamino,
25
        N-Methyl-N-(1-methylpropyl)amino, N-Methyl-N-(2-methyl-
        propyl)amino, N-(1,1-Dimethylethyl)-N-methylamino, N-Ethyl-N-
        propylamino, N-Ethyl-N-(1-methylethyl)amino, N-Butyl-N-ethyl-
        amino, N-Ethyl-N-(1-methylpropyl)amino, N-Ethyl-N-(2-methyl-
        propyl)amino, N-Ethyl-N-(1,1-dimethylethyl)amino, N-(1-Me-
30
        thylethyl)-N-propylamino, N-Butyl-N-propylamino, N-(1-Methyl-
        propyl)-N-propylamino, N-(2-Methylpropyl)-N-propylamino,
        N-(1,1-Dimethylethyl)-N-propylamino, N-Butyl-N-(1-methyl-
        ethyl)amino, N-(1-Methylethyl)-N-(1-methylpropyl)amino,
        N-(1-Methylethyl)-N-(2-methylpropyl)amino, N-(1,1-Dimethyl-
35
        ethyl)-N-(1-methylethyl)amino, N-Butyl-N-(1-methylpropyl)-
        amino, N-Butyl-N-(2-methylpropyl)amino, N-Butyl-N-(1,1-dime-
        thylethyl)amino, N-(1-Methylpropyl)-N-(2-methylpropyl)-amino,
       N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-amino oder
       N-(1,1-Dimethylethyl)-N-(2-methylpropyl)amino;
40
       Di-(C<sub>1</sub>-C<sub>6</sub>-alkyl)amino, sowie die Dialkylaminoreste von
       Di-(C_1-C_6-alkyl) amino-imino-C_1-C_6-alkyl: Di-(C_1-C_4-alkyl) amino
       wie voranstehend genannt, sowie N, N-Dipentylamino, N, N-Di-
       hexylamino, N-Methyl-N-pentylamino, N-Ethyl-N-pentylamino,
45
```

N-Methyl-N-hexylamino oder N-Ethyl-N-hexylamino.

990232

- C₁-C₄-Alkylcarbonyl: z.B. Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1-Methylethylcarbonyl, Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl oder 1,1-Dimethylethylcarbonyl;

5

10

15

C₁-C₆-Alkylcarbonyl, sowie die Alkylcarbonylreste von
C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl: C₁-C₄-Alkylcarbonyl, wie

voranstehend genannt, sowie z.B. Pentylcarbonyl, 1-Methylbutylcarbonyl, 2-Methylbutylcarbonyl, 3-Methylbutylcarbonyl,
2,2-Dimethylpropylcarbonyl, 1-Ethylpropylcarbonyl, Hexylcarbonyl, 1,1-Dimethylpropylcarbonyl, 1,2-Dimethylpropylcarbonyl, 1-Methylpentylcarbonyl, 2-Methylpentylcarbonyl,
3-Methylpentylcarbonyl, 4-Methylpentylcarbonyl, 1,1-Dimethylbutylcarbonyl, 1,2-Dimethylbutylcarbonyl, 1,3-Dimethylbutylcarbonyl, 2,2,-Dimethylbutylcarbonyl, 2,3-Dimethylbutylcarbonyl, 3,3-Dimethylbutylcarbonyl, 1-Ethylbutylcarbonyl,
2-Ethylbutylcarbonyl, 1,1,2-Trimethylpropylcarbonyl,
1,2,2-Trimethylpropylcarbonyl, 1-Ethyl-1-methylpropylcarbonyl
oder 1-Ethyl-2-methylpropylcarbonyl;

20

- C₁-C₂₀-Alkylcarbonyl: C₁-C₆-Alkylcarbonyl, wie voranstehend genannt, sowie Heptylcarbonyl, Octylcarbonyl, Pentadecylcarbonyl oder Heptadecylcarbonyl;

25 - C₁-C₄-Alkoxycarbonyl, sowie die Alkoxycarbonylteile von Di-(C₁-C₄-alkyl)amino-C₁-C₄-alkoxycarbonyl, also z.B. Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, 1-Methylethoxycarbonyl, Butoxycarbonyl, 1-Methylpropoxycarbonyl, 2-Methylpropoxycarbonyl oder 1,1-Dimethylethoxycarbonyl;

- (C₁-C₆-Alkoxy) carbonyl: (C₁-C₄-Alkoxy) carbonyl, wie vorstehend genannt, sowie z.B. Pentoxycarbonyl, 1-Methylbutoxycarbonyl, 2-Methylbutoxycarbonyl, 3-Methylbutoxycarbonyl, 2,2-Dimethyl-propoxycarbonyl, 1-Ethylpropoxycarbonyl, Hexoxycarbonyl,
- 1,1-Dimethylpropoxycarbonyl, 1,2-Dimethylpropoxycarbonyl, 1-Methylpentoxycarbonyl, 2-Methylpentoxycarbonyl, 3-Methylpentoxycarbonyl, 4-Methylpentoxycarbonyl, 1,1-Dimethylbutoxycarbonyl, 1,2-Dimethylbutoxycarbonyl, 1,3-Dimethylbutoxycarbonyl, 2,2-Dimethylbutoxycarbonyl, 2,3-Dimethylbutoxycarbonyl
- nyl, 3,3-Dimethylbutoxycarbonyl, 1-Ethylbutoxycarbonyl, 2-Ethylbutoxycarbonyl, 1,1,2-Trimethylpropoxycarbonyl, 1,2,2-Trimethylpropoxycarbonyl, 1-Ethyl-1-methyl-propoxycarbonyl oder 1-Ethyl-2-methyl-propoxycarbonyl;
- 45 C_1 - C_6 -Halogenalkoxycarbonyl: ein C_1 - C_6 -Alkoxycarbonylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B.

Fluormethoxycarbonyl, Difluormethoxycarbonyl, Trifluormethoxycarbonyl, Chlordifluormethoxycarbonyl, Bromdifluormethoxycarbonyl, 2-Fluorethoxycarbonyl, 2-Chlorethoxycarbonyl, 2-Bromethoxycarbonyl, 2-Iodethoxycarbonyl, 2,2-Difluorethoxycarbonyl, 2,2-Trifluorethoxycarbonyl, 2-Chlor-2-fluorethoxycarbonyl, 2-Chlor-2,2-difluorethoxycarbonyl, 2,2-Dichlor-2-fluorethoxycarbonyl, 2,2,2-Trichlorethoxycarbonyl, Penta-fluorethoxycarbonyl, 2-Fluorpropoxycarbonyl, 3-Fluorpropoxycarbonyl, 2-Brompropoxycarbonyl, 3-Brompropoxycarbonyl, 2,2-Difluorpropoxycarbonyl, 2,3-Difluorpropoxycarbonyl, 2,3-Dichlorpropoxycarbonyl, 3,3,3-Trichlorpropoxycarbonyl, 3,3,3-Trichlorpropoxycarbonyl, 3,3,3-Trichlorprop-

propoxycarbonyl, 1-(Fluormethyl)-2-fluorethoxycarbonyl,
1-(Chlormethyl)-2-chlorethoxycarbonyl, 1-(Brommethyl)-2-bromethoxycarbonyl, 4-Fluorbutoxycarbonyl, 4-Chlorbutoxycarbonyl, 4-Brombutoxycarbonyl, Nonafluorbutoxycarbonyl, 5-Fluorpentoxycarbonyl, 5-Chlorpentoxycarbonyl, 5-Brompentoxycarbonyl, 5-Iodpentoxycarbonyl, 6-Fluorhexoxycarbonyl, 6-Bromhexoxycarbonyl, 6-Iodhexoxycarbonyl oder Dodecafluorhexoxycarbonyl;

oxycarbonyl, 2,2,3,3,3-Pentafluorpropoxycarbonyl, Heptafluor-

- (C₁-C₄-Alkyl) carbonyloxy: Acetyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, 1-Methylethylcarbonyloxy, Butylcarbonyloxy,
 1-Methylpropylcarbonyloxy, 2-Methylpropylcarbonyloxy oder
 1,1-Dimethylethylcarbonyloxy;
- (C₁-C₄-Alkylamino) carbonyl: z.B. Methylaminocarbonyl, Ethylaminocarbonyl, Propylaminocarbonyl, 1-Methylethylaminocarbonyl
 nyl, Butylaminocarbonyl, 1-Methylpropylaminocarbonyl,
 2-Methylpropylaminocarbonyl oder 1,1-Dimethylethylaminocarbonyl;
- $(C_1-C_6-Alkylamino)$ carbonyl: $(C_1-C_4-Alkylamino)$ carbonyl, wie 35 vorstehend genannt, sowie z.B. Pentylaminocarbonyl, 1-Methylbutylaminocarbonyl, 2-Methylbutylaminocarbonyl, 3-Methylbutylaminocarbonyl, 2,2-Dimethylpropylaminocarbonyl, 1-Ethylpropylaminocarbonyl, Hexylaminocarbonyl, 1,1-Dimethylpropylaminocarbonyl, 1,2-Dimethylpropylaminocarbonyl, 1-Methylpen-40 tylaminocarbonyl, 2-Methylpentylaminocarbonyl, 3-Methylpentylaminocarbonyl, 4-Methylpentylaminocarbonyl, 1,1-Dimethylbutylaminocarbonyl, 1,2-Dimethylbutylaminocarbonyl, 1,3-Dimethylbutylaminocarbonyl, 2,2-Dimethylbutylaminocarbony1, 2,3-Dimethylbutylaminocarbony1, 3,3-Dimethylbutyl-45 aminocarbonyl, 1-Ethylbutylaminocarbonyl, 2-Ethylbutylaminocarbonyl, 1,1,2-Trimethylpropylaminocarbonyl, 1,2,2-Tri-

0.Z

17

methylpropylaminocarbonyl, 1-Ethyl-1-methylpropylaminocarbonyl oder 1-Ethyl-2-methylpropylaminocarbonyl;

990232

- Di-(C₁-C₄-alkyl)-aminocarbonyl: z.B. N,N-Dimethylaminocarbo-5 nyl, N, N-Diethylaminocarbonyl, N, N-Di-(1-methylethyl)aminocarbonyl, N, N-Dipropylaminocarbonyl, N, N-Dibutylaminocarbonyl, N, N-Di-(1-methylpropyl)-aminocarbonyl, N, N-Di-(2-methylpropyl) -aminocarbonyl, N, N-Di-(1, 1-dimethylethyl) -aminocarbonyl, N-Ethyl-N-methylaminocarbonyl, N-Methyl-N-propylaminocarbonyl, N-Methyl-N-(1-methylethyl)-aminocarbonyl, N-Butyl-10 N-methylaminocarbonyl, N-Methyl-N-(1-methylpropyl)-aminocarbonyl, N-Methyl-N-(2-methylpropyl)-aminocarbonyl, N-(1,1-Dimethylethyl)-N-methylaminocarbonyl, N-Ethyl-N-propylaminocarbonyl, N-Ethyl-N-(1-methylethyl)-aminocarbonyl, N-Butyl-N-ethylaminocarbonyl, N-Ethyl-N-(1-methylpropyl)-15 aminocarbonyl, N-Ethyl-N-(2-methylpropyl)-aminocarbonyl, N-Ethyl-N-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methyl-n-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methyl-n-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methyl-n-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methyl-n-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methyl-n-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methyl-n-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methyl-n-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methyl-n-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methyl-n-(1,1-dimeethyl)-N-propylaminocarbonyl, N-Butyl-N-propylaminocarbonyl, N-(1-Methylpropyl)-N-propylaminocarbonyl, N-(2-Methylpropyl)-N-propylaminocarbonyl, N-(1,1-Dimethylethyl)-N-pro-20 pylaminocarbonyl, N-Butyl-N-(1-methylethyl)-aminocarbonyl, N-(1-Methylethyl)-N-(1-methylpropyl)-aminocarbonyl,N-(1-Methylethyl)-N-(2-methylpropyl)-aminocarbonyl,
- N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminocarbonyl, N-Butyl-N-(1-methylpropyl)-aminocarbonyl, N-Butyl-N-(2-methylpropyl)-aminocarbonyl, N-Butyl-N-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methylpropyl)-N-(2-methylpropyl)-aminocarbonyl, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-aminocarbonyl oder N-(1,1-Dimethylethyl)-N-(2-methylpropyl)-aminocarbonyl;
- $Di-(C_1-C_6-a)$ C_1-C_6-a C_1-C_4-a C_1-C_4-a carbonyl, wie voranstehend genannt, sowie z.B. N-Methyl-N-pentylaminocarbonyl, N-Methyl-N-(1-methylbutyl)-aminocarbonyl, N-Methyl-N-(2-methylbutyl)-aminocarbonyl, 35 N-Methyl-N-(3-methylbutyl)-aminocarbonyl, N-Methyl-N-(2,2-dimethylpropyl)-aminocarbonyl, N-Methyl-N-(1-ethylpropyl) -aminocarbonyl, N-Methyl-N-hexylaminocarbonyl, N-Methyl-N-(1,1-dimethylpropyl)-aminocarbonyl, N-Methyl-N-(1,2-dimethylpropyl)-aminocarbonyl, N-Methyl-N-(1-methyl-40 pentyl)-aminocarbonyl, N-Methyl-N-(2-methylpentyl)-aminocarbonyl, N-Methyl-N-(3-methylpentyl)-aminocarbonyl, N-Methyl-N-(4-methylpentyl)-aminocarbonyl, N-Methyl-N-(1,1-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1,2-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1,3-dimethylbutyl)-amino-45 carbonyl, N-Methyl-N-(2,2-dimethylbutyl)-aminocarbonyl,

N-Methyl-N-(2,3-dimethylbutyl)-aminocarbonyl, N-Methyl-N-

(3,3-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1-ethylbutyl)-aminocarbonyl, N-Methyl-N-(2-ethylbutyl)-aminocarbonyl, N-Methyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl, N-Methyl-N-(1,2,2-trimethylpropyl)-aminocarbonyl, N-Methyl-5 N-(1-ethyl-1-methylpropyl)-aminocarbonyl, N-Methyl-N-(1ethyl-2-methylpropyl)-aminocarbonyl, N-Ethyl-N-pentylaminocarbonyl, N-Ethyl-N-(1-methylbutyl)-aminocarbonyl, N-Ethyl-N-(2-methylbutyl)-aminocarbonyl, N-Ethyl-N-(3-methylbutyl)aminocarbonyl, N-Ethyl-N-(2,2-dimethylpropyl)-aminocarbonyl, 10 N-Ethyl-N-(1-ethylpropyl)-aminocarbonyl, N-Ethyl-N-hexylaminocarbonyl, N-Ethyl-N-(1,1-dimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1,2-dimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1-methylpentyl)-aminocarbonyl, N-Ethyl-N-(2-methylpentyl)aminocarbonyl, N-Ethyl-N-(3-methylpentyl)-aminocarbonyl, 15 N-Ethyl-N-(4-methylpentyl)-aminocarbonyl, N-Ethyl-N-(1,1-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(1,2-dimethylbutyl)aminocarbonyl, N-Ethyl-N-(1,3-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(2,2-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(2,3dimethylbutyl) -aminocarbonyl, N-Ethyl-N-(3,3-dimethylbutyl) -20 aminocarbonyl, N-Ethyl-N-(1-ethylbutyl)-aminocarbonyl, N-Ethyl-N-(2-ethylbutyl)-aminocarbonyl, N-Ethyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1,2,2-trimethylpropyl) -aminocarbonyl, N-Ethyl-N-(1-ethyl-1-methylpropyl)-aminocarbonyl, N-Ethyl-N-(1-ethyl-2-methyl-25 propyl)-aminocarbonyl, N-Propyl-N-pentylaminocarbonyl, N-Butyl-N-pentylaminocarbonyl, N,N-Dipentylaminocarbonyl, N-Propyl-N-hexylaminocarbonyl, N-Butyl-N-hexylaminocarbonyl, N-Pentyl-N-hexylaminocarbonyl oder N, N-Dihexylaminocarbonyl; 30 - $Di-(C_1-C_6-alkyl)$ -aminothiocarbonyl: z.B. N,N-Dimethylaminothiocarbonyl, N, N-Diethylaminothiocarbonyl, N, N-Di-(1-methylethyl)aminothiocarbonyl, N,N-Dipropylaminothiocarbonyl, N, N-Dibutylaminothiocarbonyl, N, N-Di-(1-methylpropyl)-aminothiocarbonyl, N, N-Di-(2-methylpropyl)-aminothiocarbonyl, 35 N, N-Di-(1,1-dimethylethyl)-aminothiocarbonyl, N-Ethyl-N-methylaminothiocarbonyl, N-Methyl-N-propylaminothiocarbonyl, N-Methyl-N-(1-methylethyl)-aminothiocarbonyl, N-Butyl-N-methylaminothiocarbonyl, N-Methyl-N-(1-methylpropyl)-aminothiocarbonyl, N-Methyl-N-(2-methylpropyl)-amino-40 thiocarbonyl, N-(1,1-Dimethylethyl)-N-methylaminothiocarbonyl, N-Ethyl-N-propylaminothiocarbonyl, N-Ethyl-N-(1-methylethyl)-aminothiocarbonyl, N-Butyl-N-ethylaminothiocarbonyl, N-Ethyl-N-(1-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-45 (1,1-dimethylethyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-propylaminothiocarbonyl, N-Butyl-N-propylaminothiocarbonyl,

N-(1-Methylpropyl)-N-propylaminothiocarbonyl, N-(2-Methyl-

19 propyl) -N-propylaminothiocarbonyl, N-(1,1-Dimethylethyl) -N-propylaminothiocarbonyl, N-Butyl-N-(1-methylethyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-(1-methylpropyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-(2-methylpropyl)-aminothio-5 carbonyl, N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminothiocarbonyl, N-Butyl-N-(1-methylpropyl)-aminothiocarbonyl, N-Butyl-N-(2-methylpropyl)-aminothiocarbonyl, N-Butyl-N-(1,1-dimethylethyl)-aminothiocarbonyl, N-(1-Methylpropyl) N-(2-methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethyl-10 ethyl)-N-(2-methylpropyl)-aminothiocarbonyl, N-Methyl-N-pentylaminothiocarbonyl, N-Methyl-N-(1-methylbutyl)-aminothiocarbonyl, N-Methyl-N-(2-methylbutyl)-aminothiocarbonyl, N-Methyl-N-(3-methylbutyl)-aminothiocarbonyl, N-Methyl-N-(2,2-dimethylpropyl) -aminothiocarbonyl, N-Methyl-N-(1-ethyl-15 propyl)-aminothiocarbonyl, N-Methyl-N-hexylaminothiocarbonyl, N-Methyl-N-(1,1-dimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1,2-dimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(2-methyl-20 pentyl)-aminothiocarbonyl, N-Methyl-N-(3-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(4-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(1,1-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1,2-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1,3dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(2,2-dimethyl-25 butyl)-aminothiocarbonyl, N-Methyl-N-(2,3-dimethylbutyl)aminothiocarbonyl, N-Methyl-N-(3,3-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1-ethylbutyl)-aminothiocarbonyl, N-Methyl-N-(2-ethylbutyl)-aminothiocarbonyl, N-Methyl-N-ethyl-N-(1,1,2-trimethylpropyl)-aminothiocarbonyl, N-Methyl-N-30 (1,2,2-trimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1ethyl-1-methylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-ethyl-2-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-pentylaminothiocarbonyl, N-Ethyl-N-(1-methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(3-35 methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2,2-dimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1-ethylpropyl)-aminothiocarbonyl, N-Ethyl-N-hexylaminothiocarbonyl, N-Ethyl-N-(1,1-dimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1,2dimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylpentyl)-amino-40 thiocarbonyl, N-Ethyl-N-(3-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(4-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(1,1-dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(1,2dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(1,3-dimethyl-45 butyl) -aminothiocarbonyl, N-Ethyl-N-(2,2-dimethylbutyl) aminothiocarbonyl, N-Ethyl-N-(2,3-dimethylbutyl)-aminothio-

carbonyl, N-Ethyl-N-(3,3-dimethylbutyl)-aminothiocarbonyl,

```
N-Ethyl-N-(1-ethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2-ethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(1,1,2-trimethyl-propyl)-aminothiocarbonyl, N-Ethyl-N-(1,2,2-trimethyl-propyl)-aminothiocarbonyl, N-Ethyl-N-(1-ethyl-1-methyl-propyl)-aminothiocarbonyl, N-Ethyl-N-(1-ethyl-2-methyl-propyl)-aminothiocarbonyl, N-Propyl-N-pentylaminothiocarbonyl, N-Butyl-N-pentylaminothiocarbonyl, N-Dipentylaminothiocarbonyl, N-Propyl-N-hexylaminothiocarbonyl, N-Butyl-N-hexylaminothiocarbonyl oder N,N-Dihexylaminothiocarbonyl;
```

 $C_1-C_4-Alkoxy-C_1-C_4-alkyl$ sowie die Alkoxyalkylteile von Hydro-

ethoxy)ethyl, 2-(2-Methylpropoxy)ethyl, 2-(1,1-Dimethylethoxy)propyl, 2-(Methoxy)-propyl, 2-(Ethoxy)propyl, 2-(Propoxy)propyl, 2-(1-Methylethoxy)-propyl, 2-(2-Methylpropoxy)propyl, 2-(1,1-Dimethylethoxy)propyl,

3-(Methoxy)propyl, 3-(Ethoxy)-propyl, 3-(Propoxy)propyl, 3-(1-Methylethoxy)propyl, 3-(Butoxy)propyl, 3-(1-Methyl-propoxy)propyl, 3-(2-Methylpropoxy)propyl, 3-(1,1-Dimethylethoxy)propyl, 2-(Methoxy)butyl, 2-(Ethoxy)butyl, 2-(Propoxy)butyl, 2-(1-Methylethoxy)butyl, 2-(Butoxy)butyl,

2-(1-Methylpropoxy)butyl, 2-(2-Methylpropoxy)butyl,
2-(1,1-Dimethylethoxy)butyl, 3-(Methoxy)butyl,
3-(Ethoxy)butyl, 3-(Propoxy)butyl, 3-(1-Methylethoxy)butyl,
3-(Butoxy)-butyl, 3-(1-Methylpropoxy)butyl, 3-(2-Methyl-propoxy)butyl, 3-(1,1-Dimethylethoxy)butyl, 4-(Methoxy)butyl,

4-(Ethoxy)-butyl, 4-(Propoxy)butyl, 4-(1-Methylethoxy)butyl,
4-(Butoxy)-butyl, 4-(1-Methylpropoxy)butyl, 4-(2-Methyl-propoxy)butyl oder 4-(1,1-Dimethylethoxy)butyl;

C₁-C₄-Alkoxy-C₁-C₄-alkoxy als Alkoxyalkoxyteile von C₁-C₄-Al-koxy-C₁-C₄-alkoxycarbonyl: durch C₁-C₄-Alkoxy, wie vorstehend genannt, substituiertes C₁-C₄-Alkoxy, also z.B. für Methoxymethoxy, Ethoxymethoxy, Propoxymethoxy, (1-Methylethoxy)methoxy, Butoxymethoxy, (1-Methylpropoxy)methoxy, (2-Methylpropoxy)methoxy, (1,1-Dimethylethoxy)methoxy, 2-(Methoxy)ethoxy, 2-(Ethoxy)ethoxy, 2-(Propoxy)ethoxy, 2-(1-Methylethoxy)methoxy, 2-(1-Methylethoxy)ethoxy, 2-(1-Methylethoxy)ethoxy, 2-(1-Dimethylethoxy)ethoxy, 2-(1,1-Dimethylethoxy)ethoxy, 2-(1,1-Dimethylethoxy)ethoxy, 2-(1,1-Dimethylethoxy)ethoxy, 2-(1,1-Dimethylethoxy)ethoxy, 2-(1,1-Dimethylethoxy)ethoxy


```
21
```

```
ethoxy) ethoxy, 2-(Methoxy) propoxy, 2-(Ethoxy) propoxy,
       2-(Propoxy) propoxy, 2-(1-Methylethoxy) propoxy,
       2-(Butoxy)-propoxy, 2-(1-Methylpropoxy)propoxy, 2-(2-Methyl-
       propoxy) propoxy, 2-(1,1-Dimethylethoxy) propoxy,
 5
       3-(Methoxy)-propoxy, 3-(Ethoxy)propoxy, 3-(Propoxy)propoxy,
       3-(1-Methylethoxy)propoxy, 3-(Butoxy)propoxy, 3-(1-Methyl-
       propoxy) -propoxy, 3-(2-Methylpropoxy) propoxy,
       3-(1,1-Dimethylethoxy) propoxy, 2-(Methoxy) butoxy,
       2-(Ethoxy) butoxy, 2-(Propoxy) butoxy, 2-(1-Methyl-
       ethoxy) butoxy, 2-(Butoxy)-butoxy, 2-(1-Methylpropoxy) butoxy,
10
       2-(2-Methylpropoxy) butoxy, 2-(1,1-Dimethylethoxy) butoxy,
       3-(Methoxy) butoxy, 3-(Ethoxy)-butoxy, 3-(Propoxy) butoxy,
       3-(1-Methylethoxy) butoxy, 3-(Butoxy) butoxy, 3-(1-Methyl-
       propoxy) butoxy, 3-(2-Methylpropoxy) butoxy, 3-(1,1-Dimethyl-
       ethoxy) butoxy, 4-(Methoxy)-butoxy, 4-(Ethoxy) butoxy,
15
       4-(Propoxy) butoxy, 4-(1-Methylethoxy) butoxy,
       4-(Butoxy) butoxy, 4-(1-Methylpropoxy) butoxy, 4-(2-Methyl-
       propoxy) butoxy oder 4-(1,1-Dimethylethoxy) butoxy;
       C3-C6-Alkenyl, sowie die Alkenylteile von C3-C6-Alkenyl-
20 -
       carbonyl, C3-C6-Alkenyloxy, C3-C6-Alkenyloxycarbonyl,
       C_3-C_6-Alkenylaminocarbonyl, N-(C_3-C_6-Alkenyl)-N-(C_1-C_6)alkyl-
       aminocarbonyl, N-(C<sub>3</sub>-C<sub>6</sub>-Alkenyl)-N-(C<sub>1</sub>-C<sub>6</sub>-alkoxy)amino-
       carbonyl: z.B. Prop-2-en-1-yl, But-1-en-4-yl, 1-Methyl-
       prop-2-en-1-yl, 2-Methyl-prop-2-en-1-yl, 2-Buten-1-yl,
25
       1-Penten-3-yl, 1-Penten-4-yl, 2-Penten-4-yl, 1-Methyl-
       but-2-en-1-yl, 2-Methyl-but-2-en-1-yl, 3-Methyl-
       but-2-en-1-yl, 1-Methyl-but-3-en-1-yl, 2-Methyl-
       but-3-en-1-yl, 3-Methyl-but-3-en-1-yl, 1,1-Dimethyl-
30
       prop-2-en-1-yl, 1,2-Dimethyl-prop-2-en-1-yl, 1-Ethyl-
       prop-2-en-1-yl, Hex-3-en-1-yl, Hex-4-en-1-yl, Hex-5-en-1-yl,
       1-Methyl-pent-3-en-1-yl, 2-Methyl-pent-3-en-1-yl, 3-Methyl-
       pent-3-en-1-yl, 4-Methyl-pent-3-en-1-yl, 1-Methyl-
       pent-4-en-1-yl, 2-Methyl-pent-4-en-1-yl, 3-Methyl-
       pent-4-en-1-yl, 4-Methyl-pent-4-en-1-yl, 1,1-Dimethyl-
35
       but-2-en-1-yl, 1,1-Dimethyl-but-3-en-1-yl, 1,2-Dimethyl-
       but-2-en-1-yl, 1,2-Dimethyl-but-3-en-1-yl, 1,3-Dimethyl-
       but-2-en-1-yl, 1,3-Dimethyl-but-3-en-1-yl, 2,2-Dimethyl-
       but-3-en-1-yl, 2,3-Dimethyl-but-2-en-1-yl, 2,3-Dimethyl-
       but-3-en-1-yl, 3,3-Dimethyl-but-2-en-1-yl, 1-Ethyl-but-2-
40
       en-1-yl, 1-Ethyl-but-3-en-1-yl, 2-Ethyl-but-2-en-1-yl,
       2-Ethyl-but-3-en-1-yl, 1,1,2-Trimethyl-prop-2-en-1-yl,
       1-Ethyl-1-methyl-prop-2-en-1-yl oder 1-Ethyl-2-methyl-
       prop-2-en-1-yl;
```

C2-C6-Alkenyl, sowie die Alkenylteile von C2-C6-Alkenylcarbonyl, Phenyl-C2-C6-alkenylcarbonyl und Heterocyclyl-C2-C6-alkenylcarbonyl: C3-C6-Alkenyl, wie voranstehend genannt, sowie Ethenyl;

5

- C2-C20-Alkenyl als Alkenylteil von C2-C20-Alkenylcarbonyl, C2-C6-Alkenyl, wie vorstehend genannt, sowie Pentadecenyl oder Heptadecenyl;
- 10 -C₃-C₆-Halogenalkenyl: einen C₃-C₆-Alkenylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. 2-Chlorallyl, 3-Chlorallyl, 2,3-Dichlorallyl, 3,3-Dichlorallyl, 2,3,3-Trichlorallyl, 2,3-Dichlorbut-2-enyl, 2-Bromallyl, 3-Bromallyl, 15 2,3-Dibromallyl, 3,3-Dibromallyl, 2,3,3-Tribromallyl oder
- 2,3-Dibrombut-2-enyl;
 - C3-C6-Alkinyl, sowie die Alkinylteile von C3-C6-Alkinylcarbonyl, C3-C6-Alkinyloxy, C3-C6-Alkinyloxycarbony,
- 20 $C_3-C_6-Alkinylaminocarbonyl$, $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-Alkinyl)$ alkyl)-aminocarbonyl, N- $(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxyamino$ carbonyl: z.B. Propargyl, But-1-in-3-yl, But-1-in-4-yl, But-2-in-1-yl, Pent-1-in-3-yl, Pent-1-in-4-yl, Pent-1-in-5-yl, Pent-2-in-1-yl, Pent-2-in-4-yl, Pent-2-in-5-yl,
- 25 3-Methyl-but-1-in-3-yl, 3-Methyl-but-1-in-4-yl, Hex-1-in-3yl, Hex-1-in-4-yl, Hex-1-in-5-yl, Hex-1-in-6-yl, Hex-2-in-1yl, Hex-2-in-4-yl, Hex-2-in-5-yl, Hex-2-in-6-yl, Hex-3-in-1-yl, Hex-3-in-2-yl, 3-Methyl-pent-1-in-3-yl, 3-Methyl-pent-1-in-4-y1, 3-Methyl-pent-1-in-5-yl, 4-Methyl-pent-2-in-4-yl 30 oder 4-Methyl-pent-2-in-5-yl;
 - C2-C6-Alkinyl, sowie die Alkinylteile von C2-C6-Alkinylcarbonyl: C₃-C₆-Alkinyl, wie voranstehend genannt, sowie Ethinyl;

- C₃-C₆-Halogenalkinyl: einen C₃-C₆-Alkinylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. 1,1-Difluorprop-2-in-1-yl, 3-Iod-prop-2-in-1-yl, 4-Fluorbut-2-in-1-yl,
- 40 4-Chlorbut-2-in-1-yl, 1,1-Difluorbut-2-in-1-yl, 4-Iodbut-3-in-1-yl, 5-Fluorpent-3-in-1-yl, 5-Iod-pent-4-in-1-yl, 6-Fluor-hex-4-in-1-yl oder 6-Iod-hex-5-in-1-yl;
- C₃-C₆-Cycloalkyl, sowie die Cycloalkylteile von C₃-C₆-Cyclo-45 alkylcarbonyl: z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl;

0. Z

23

Heterocyclyl, sowie Heterocyclylteile von Heterocyclyloxy, Heterocyclylcarbonyl, Heterocyclyl- C_1 - C_6 -alkyl, Heterocyclyloxycarbonyl, Heterocyclyloxythiocarbonyl, Heterocyclyl-C2-C6alkenylcarbonyl, Heterocyclylcarbonyl-C1-C6-alkyl, N-(C1-C6-Alkyl)-N-(heterocyclyl)-aminocarbonyl, Heterocyclylaminocar-5 bonyl: ein gesättigter, partiell gesättigter oder ungesättigter 5- oder 6-gliedriger, C-gebundener, heterocyclischer Ring, der ein bis vier gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder 10 Stickstoff, enthält, also z.B. 5-gliedrige Ringe mit beispielsweise einem Heteroatom, mit zwei Heteroatomen, mit drei Heteroatomen oder mit vier Heteroatomen oder z.B. 6-gliedrige Ringe mit beispielsweise einem Heteroatom, mit zwei Heteroatomen, mit drei Heteroatomen oder mit vier 15 Heteroatomen, also 5-gliedrige Ringe: mit einem Heteroatom wie:

Tetrahydrofuran-2-yl, Tetrahydrofuran-3-yl, Tetrahydrothien-2-yl, Tetrahydrothien-3-yl, Tetrahydropyrrol-2-yl, Tetrahydro-20 pyrrol-3-y1, 2,3-Dihydrofuran-2-y1, 2,3-Dihydrofuran-3-y1, 2,5-Dihydrofuran-2-yl, 2,5-Dihydrofuran-3-yl, 4,5-Dihydrofuran-2-yl, 4,5-Dihydrofuran-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydrothien-3-yl, 2,5-Dihydrothien-2-yl, 2,5-Dihydrothien-3-yl, 4,5-Dihydrothien-2-yl, 4,5-Dihydrothien-3-yl, 2,3-Dihydro-1H-pyrrol-2-yl, 2,3-Dihydro-1H-pyrrol-3-yl, 25 2,5-Dihydro-1H-pyrrol-2-yl, 2,5-Dihydro-1H-pyrrol-3-yl, 4,5-Dihydro-1H-pyrrol-2-yl, 4,5-Dihydro-1H-pyrrol-3-yl, 3,4-Dihydro-2H-pyrrol-2-yl, 3,4-Dihydro-2H-pyrrol-3-yl, 3,4-Dihydro-5H-pyrrol-2-yl, 3,4-Dihydro-5H-pyrrol-3-yl, 30 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, Pyrrol-2-yl oder Pyrrol-3-yl;

5 gliedrige Ringe mit zwei Heteroatomen wie:

Tetrahydropyrazol-3-yl, Tetrahydropyrazol-4-yl, Tetrahydro-35 isoxazol-3-yl, Tetrahydroisoxazol-4-yl, Tetrahydroisoxazol-5-yl, 1,2-0xathiolan-3-yl, 1,2-0xathiolan-4-yl, 1,2-0xathiolan-5-yl, Tetrahydroisothiazol-3-yl, Tetrahydroisothiazol-4-yl, Tetrahydroisothiazol-5-yl, 1,2-Dithiolan-3-40 yl, 1,2-Dithiolan-4-yl, Tetrahydroimidazol-2-yl, Tetrahydroimidazol-4-yl, Tetrahydrooxazol-2-yl, Tetrahydrooxazol-4-yl, Tetrahydrooxazol-5-yl, Tetrahydrothiazol-2-yl, Tetrahydrothiazol-4-yl, Tetrahydrothiazol-5-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-4-yl, 1,3-Oxathiolan-2-yl, 1,3-Oxathiolan-4-yl, 45 1,3-Oxathiolan-5-yl, 1,3-Dithiolan-2-yl, 1,3-Dithiolan-4-yl, 4,5-Dihydro-1H-pyrazol-3-yl, 4,5-Dihydro-1H-pyrazol-4-yl, 4,5-Dihydro-1H-pyrazol-5-yl, 2,5-Dihydro-1H-pyrazol-3-yl,

```
2,5-Dihydro-1H-pyrazol-4-yl, 2,5-Dihydro-1H-pyrazol-5-yl,
        4,5-Dihydroisoxazol-3-yl, 4,5-Dihydroisoxazol-4-yl, 4,5-Dihy-
        droisoxazol-5-yl, 2,5-Dihydroisoxazol-3-yl, 2,5-Dihydroisoxa-
        zol-4-yl, 2,5-Dihydroisoxazol-5-yl, 2,3-Dihydroisoxazol-3-yl,
        2,3-Dihydroisoxazol-4-yl, 2,3-Dihydroisoxazol-5-yl, 4,5-Dihy-
 5
        droisothiazol-3-yl, 4,5-Dihydroisothiazol-4-yl, 4,5-Dihydro-
        isothiazol-5-yl, 2,5-Dihydroisothiazol-3-yl, 2,5-Dihydroiso-
        thiazol-4-y1, 2,5-Dihydroisothiazol-5-y1, 2,3-Dihydroisothia-
        zol-3-yl, 2,3-Dihydroisothiazol-4-yl, 2,3-Dihydroisothiazol-
        5-yl, \Delta^{3}-1,2-Dithiol-3-yl, \Delta^{3}-1,2-Dithiol-4-yl, \Delta^{3}-1,2-Di-
10
        thiol-5-yl, 4,5-Dihydro-1H-imidazol-2-yl, 4,5-Dihydro-1H-imi-
        dazol-4-yl, 4,5-Dihydro-1H-imidazol-5-yl, 2,5-Dihydro-1H-imi-
        dazol-2-yl, 2,5-Dihydro-1H-imidazol-4-yl, 2,5-Dihydro-1H-imi-
        dazol-5-yl, 2,3-Dihydro-1H-imidazol-2-yl, 2,3-Dihydro-1H-imi-
15
        dazol-4-yl, 4,5-Dihydrooxazol-2-yl, 4,5-Dihydrooxazol-4-yl,
        4,5-Dihydrooxazo1-5-y1, 2,5-Dihydrooxazo1-2-y1, 2,5-Dihydro-
        oxazol-4-y1, 2,5-Dihydrooxazol-5-y1, 2,3-Dihydrooxazol-2-y1,
        2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol-5-yl, 4,5-Dihydro-
        thiazol-2-yl, 4,5-Dihydrothiazol-4-yl, 4,5-Dihydrothia-
20
        zol-5-yl, 2,5-Dihydrothiazol-2-yl, 2,5-Dihydrothiazol-4-yl,
        2.5-Dihydrothiazol-5-yl, 2.3-Dihydrothiazol-2-yl, 2.3-Dihy-
        drothiazol-4-yl, 2,3-Dihydrothiazol-5-yl, 1,3-Dioxol-2-yl,
        1,3-Dioxol-4-y1, 1,3-Dithiol-2-y1, 1,3-Dithiol-4-y1, 1,3-Oxa-
        thiol-2-yl, 1,3-0xathiol-4-yl, 1,3-0xathiol-5-yl, Pyrazol-3-
        yl, Pyrazol-4-yl, Isoxazol-3-yl, Isoxazol-4-yl, Isoxazol-5-
25
        yl, Isothiazol-3-yl, Isothiazol-4-yl, Isothiazol-5-yl,
        Imidazol-2-y1, Imidazol-4-y1, Oxazol-2-y1, Oxazol-4-y1,
        Oxazol-5-yl, Thiazol-2-yl, Thiazol-4-yl oder Thiazol-5-yl;
30
        5-gliedrige Ringe mit drei Heteroatomen wie:
        1,2,3-\Delta^2-Oxadiazolin-4-yl, 1,2,3-\Delta^2-Oxadiazolin-5-yl,
        1,2,4-\Delta^4-Oxadiazolin-3-yl, 1,2,4-\Delta^4-Oxadiazolin-5-yl,
        1,2,4-\Delta^2-Oxadiazolin-3-yl, 1,2,4-\Delta^2-Oxadiazolin-5-yl,
35
        1,2,4-\Delta^3-Oxadiazolin-3-yl, 1,2,4-\Delta^3-Oxadiazolin-5-yl,
        1,3,4-\Delta^2-Oxadiazolin-2-yl, 1,3,4-\Delta^2-Oxadiazolin-5-yl,
        1,3,4-\Delta^3-Oxadiazolin-2-yl, 1,3,4-Oxadiazolin-2-yl,
        1,2,3-\Delta^2-Thiadiazolin-4-yl, 1,2,3-\Delta^2-Thiadiazolin-5-yl,
        1,2,4-\Delta^4-Thiadiazolin-3-yl, 1,2,4-\Delta^4-Thiadiazolin-5-yl,
40
        1,2,4-\Delta^3-Thiadiazolin-3-yl, 1,2,4-\Delta^3-Thiadiazolin-5-yl,
        1,2,4-\Delta^2-Thiadiazolin-3-yl, 1,2,4-\Delta^2-Thiadiazolin-5-yl,
        1,3,4-\Delta^2-Thiadiazolin-2-yl, 1,3,4-\Delta^2-Thiadiazolin-5-yl,
        1,3,4-\Delta^3-Thiadiazolin-2-yl, 1,3,4-Thiadiazolin-2-yl,
        1,3,2-Dioxathiolan-4-yl, 1,2,3-\Delta^2-Triazolin-4-yl,
45
        1,2,3-\Delta^2-Triazolin-5-yl, 1,2,4-\Delta^2-Triazolin-3-yl,
        1,2,4-\Delta^2-Triazolin-5-yl, 1,2,4-\Delta^3-Triazolin-3-yl,
        1,2,4-\Delta^3-Triazolin-5-yl, 1,2,4-\Delta^1-Triazolin-2-yl, 1,2,4-Tri-
```



```
BASF Aktiengesellschaft
                                 990232
                                25
       azolin-3-y1, 3H-1,2,4-Dithiazol-5-y1, 2H-1,3,4-Dithiazol-5-
       yl, 2H-1,3,4-Oxathiazol-5-yl, 1,2,3-Oxadiazol-4-yl,
       1,2,3-Oxadiazol-5-yl, 1,2,4-Oxadiazol-3-yl,
       1,2,4,-Oxadiazol-5-yl, 1,3,4-Oxadiazol-2-yl,
       1,2,3-Thiadiazol-4-yl, 1,2,3-Thiadiazol-5-yl,
5
       1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,3,4-Thia-
       diazolyl-2-yl, 1,2,3-Triazol-4-yl oder 1,2,4-Triazol-3-yl;
       5-gliedrige Ringe mit vier Heteroatomen wie:
10
       Tetrazol-5-yl;
       6-gliedrige Ringe mit einem Heteroatom wie:
       Tetrahydropyran-2-yl, Tetrahydropyran-3-yl, Tetrahydro-
15
       pyran-4-yl, Piperidin-2-yl, Piperidin-3-yl, Piperidin-4-yl,
       Tetrahydrothiopyran-2-yl, Tetrahydrothiopyran-3-yl, Tetra-
       hydrothiopyran-4-y1, 2H-3,4-Dihydropyran-6-y1,
       2H-3,4-Dihydropyran-5-yl, 2H-3,4-Dihydropyran-4-yl,
       2H-3,4-Dihydropyran-3-yl, 2H-3,4-Dihydropyran-2-yl,
       2H-3,4-Dihydropyran-6-yl, 2H-3,4-Dihydrothiopyran-5-yl,
       2H-3,4-Dihydrothiopyran-4-yl, 2H-3,4-Dihydropyran-3-yl,
       2H-3,4-Dihydropyran-2-yl, 1,2,3,4-Tetrahydropyridin-6-yl,
       y1, 1,2,3,4-Tetrahydropyridin-3-y1, 1,2,3,4-Tetrahydropyri-
```

20 1,2,3,4-Tetrahydropyridin-5-yl, 1,2,3,4-Tetrahydropyridin-4-25 din-2-yl, 2H-5,6-Dihydropyran-2-yl, 2H-5,6-Dihydropyran-3-yl, 2H-5,6-Dihydropyran-4-yl, 2H-5,6-Dihydropyran-5-yl, 2H-5,6-Dihydropyran-6-yl, 2H-5,6-Dihydrothiopyran-2-yl, 2H-5,6-Dihydrothiopyran-3-yl, 2H-5,6-Dihydrothiopyran-4-yl, 2H-5,6-Dihydrothiopyran-5-yl, 2H-5,6-Dihydrothiopyran-6-yl, 30 1,2,5,6-Tetrahydropyridin-2-yl, 1,2,5,6-Tetrahydropyridin-3yl, 1,2,5,6-Tetrahydropyridin-4-yl, 1,2,5,6-Tetrahydropyridin-5-yl, 1,2,5,6-Tetrahydropyridin-6-yl, 2,3,4,5-Tetrahydropyridin-2-yl, 2,3,4,5-Tetrahydropyridin-3-yl, 2,3,4,5-Tetrahydropyridin-4-yl, 2,3,4,5-Tetrahydropyridin-5-yl, 35 2,3,4,5-Tetrahydropyridin-6-yl, 4H-Pyran-2-yl, 4H-Pyran-3yl, 4H-Pyran-4-yl, 4H-Thiopyran-2-yl, 4H-Thiopyran-3-yl, 4H-Thiopyran-4-yl, 1,4-Dihydropyridin-2-yl, 1,4-Dihydropyridin-3-yl, 1,4-Dihydropyridin-4-yl, 2H-Pyran-2-yl, 2H-Pyran-3-y1, 2H-Pyran-4-y1, 2H-Pyran-5-y1, 2H-Pyran-6-y1, 2H-Thiopy-40 ran-2-yl, 2H-Thiopyran-3-yl, 2H-Thiopyran-4-yl, 2H-Thiopyran-5-y1, 2H-Thiopyran-6-yl, 1,2-Dihydropyridin-2-yl, 1,2-Dihydropyridin-3-yl, 1,2-Dihydropyridin-4-yl, 1,2-Dihydropyridin-5-yl, 1,2-Dihydropyridin-6-yl, 3,4-Dihydropyridin-2-yl, 3,4-Dihydropyridin-3-yl, 45

3,4-Dihydropyridin-4-yl, 3,4-Dihydropyridin-5-yl, 3,4-Dihydropyridin-6-yl, 2,5-Dihydropyridin-2-yl,

```
2,5-Dihydropyridin-3-y1, 2,5-Dihydropyridin-4-y1,
2,5-Dihydropyridin-5-y1, 2,5-Dihydropyridin-6-y1,
2,3-Dihydropyridin-2-y1, 2,3-Dihydropyridin-3-y1,
2,3-Dihydropyridin-4-y1, 2,3-Dihydropyridin-5-y1,
5 2,3-Dihydropyridin-6-y1, Pyridin-2-y1, Pyridin-3-y1 oder
Pyridin-4-y1;
```

6-gliedrige Ringe mit zwei Heteroatomen wie:

```
10
       1,3-Dioxan-2-yl, 1,3-Dioxan-4-yl, 1,3-Dioxan-
       5-yl, 1,4-Dioxan-2-yl, 1,3-Dithian-2-yl, 1,3-Dithian-4-yl,
       1,3-Dithian-5-yl, 1,4-Dithian-2-yl, 1,3-Oxathian-2-yl,
       1,3-Oxathian-4-yl, 1,3-Oxathian-5-yl, 1,3-Oxathian-6-yl,
       1,4-Oxathian-2-yl, 1,4-Oxathian-3-yl, 1,2-Dithian-3-yl,
15
       1,2-Dithian-4-yl, Hexahydropyrimidin-2-yl, Hexahydropyrimi-
       din-4-yl, Hexahydropyrimidin-5-yl, Hexahydropyrazin-2-yl,
       Hexahydropyridazin-3-yl, Hexahydropyridazin-4-yl, Tetra-
       hydro-1,3-oxazin-2-yl, Tetrahydro-1,3-oxazin-4-yl, Tetra-
       hydro-1,3-oxazin-5-yl, Tetrahydro-1,3-oxazin-6-yl, Tetra-
20
       hydro-1,3-thiazin-2-yl, Tetrahydro-1,3-thiazin-4-yl, Tetra-
       hydro-1,3-thiazin-5-yl, Tetrahydro-1,3-thiazin-6-yl, Tetra-
       hydro-1,4-thiazin-2-yl, Tetrahydro-1,4-thiazin-3-yl, Tetra-
       hydro-1,4-oxazin-2-yl, Tetrahydro-1,4-oxazin-3-yl, Tetra-
       hydro-1,2-oxazin-3-yl, Tetrahydro-1,2-oxazin-4-yl, Tetra-
25
       hydro-1,2-oxazin-5-yl, Tetrahydro-1,2-oxazin-6-yl, 2H-5,6-Di-
       hydro-1,2-oxazin-3-yl, 2H-5,6-Dihydro-1,2-oxazin-4-yl,
       2H-5,6-Dihydro-1,2-oxazin-5-yl, 2H-5,6-Dihydro-1,2-oxa-
       zin-6-yl, 2H-5,6-Dihydro-1,2-thiazin-3-yl, 2H-5,6-Di-
       hydro-1,2-thiazin-4-yl, 2H-5,6-Dihydro-1,2-thiazin-5-yl,
30
       2H-5,6-Dihydro-1,2-thiazin-6-yl, 4H-5,6-Dihydro-1,2-oxa-
       zin-3-y1, 4H-5,6-Dihydro-1,2-oxazin-4-y1, 4H-5,6-Dihydro-
       1,2-oxazin-5-yl, 4H-5,6-Dihydro-1,2-oxazin-6-yl, 4H-5,6-Di-
       hydro-1,2-thiazin-3-yl, 4H-5,6-Dihydro-1,2-thiazin-4-yl,
       4H-5,6-Dihydro-1,2-thiazin-5-yl, 4H-5,6-Dihydro-1,2-thia-
35
       zin-6-y1, 2H-3,6-Dihydro-1,2-oxazin-3-y1, 2H-3,6-Dihydro-
       1,2-oxazin-4-y1, 2H-3,6-Dihydro-1,2-oxazin-5-y1, 2H-3,6-Di-
       hydro-1,2-oxazin-6-yl, 2H-3,6-Dihydro-1,2-thiazin-3-yl,
       2H-3,6-Dihydro-1,2-thiazin-4-yl, 2H-3,6-Dihydro-1,2-thia-
       zin-5-yl, 2H-3,6-Dihydro-1,2-thiazin-6-yl, 2H-3,4-Dihydro-
40
       1,2-oxazin-3-y1, 2H-3,4-Dihydro-1,2-oxazin-4-y1, 2H-3,4-Di-
       hydro-1,2-oxazin-5-yl, 2H-3,4-Dihydro-1,2-oxazin-6-yl,
       2H-3,4-Dihydro-1,2-thiazin-3-y1, 2H-3,4-Dihydro-1,2-thia-
       zin-4-yl, 2H-3,4-Dihydro-1,2-thiazin-5-yl, 2H-3,4-Dihydro-
       1,2-thiazin-6-yl, 2,3,4,5-Tetrahydropyridazin-3-yl,
45
       2,3,4,5-Tetrahydropyridazin-4-yl, 2,3,4,5-Tetrahydropyrida-
       zin-5-yl, 2,3,4,5-Tetrahydropyridazin-6-yl, 3,4,5,6-Tetrahy-
```

dropyridazin-3-yl, 3,4,5,6-Tetrahydropyridazin-4-yl,

27 1,2,5,6-Tetrahydropyridazin-3-yl, 1,2,5,6-Tetrahydropyridazin-4-yl, 1,2,5,6-Tetrahydropyridazin-5-yl, 1,2,5,6-Tetrahydropyridazin-6-yl, 1,2,3,6-Tetrahydropyridazin-3-yl, 1,2,3,6-Tetrahydropyridazin-4-yl, 4H-5,6-Dihydro-1,3-oxa-5 zin-2-yl, 4H-5, 6-Dihydro-1, 3-oxazin-4-yl, 4H-5, 6-Di-1hydro-1,3-oxazin-5-yl, 4H-5,6-Dihydro-1,3-oxazin-6-yl, 4H-5,6-Dihydro-1,3-thiazin-2-yl, 4H-5,6-Dihydro-1,3-thiazin-4-yl, 4H-5,6-Dihydro-1,3-thiazin-5-yl, 4H-5,6-Dihydro-1,3-thiazin-6-yl, 3,4,5,6-Tetrahydropyrimidin-2-yl, 3,4,5,6-Tetrahydropyrimidin-4-yl, 3,4,5,6-Tetrahydro-10 pyrimidin-5-yl, 3,4,5,6-Tetrahydropyrimidin-6-yl, 1,2,3,4-Tetrahydropyrazin-2-yl, 1,2,3,4-Tetrahydropyrazin-5-yl, 1,2,3,4-Tetrahydropyrimidin-2-yl, 1,2,3,4-Tetrahydropyrimidin-4-yl, 1,2,3,4-Tetrahydropyrimidin-5-yl, 1,2,3,4-Tetrahydropyrimidin-6-yl, 2,3-Dihydro-1,4-thiazin-2-yl, 2,3-Di-15 hydro-1,4-thiazin-3-yl, 2,3-Dihydro-1,4-thiazin-5-yl, 2,3-Dihydro-1,4-thiazin-6-yl, 2H-1,2-0xazin-3-yl, 2H-1,2-0xazin-4yl, 2H-1,2-Oxazin-5-yl, 2H-1,2-Oxazin-6-yl, 2H-1,2-Thiazin-3yl, 2H-1,2-Thiazin-4-yl, 2H-1,2-Thiazin-5-yl, 2H-1,2-Thiazin-6-yl, 4H-1,2-Oxazin-3-yl, 4H-1,2-Oxazin-4-yl, 4H-1,2-Oxazin-20 5-y1, 4H-1,2-0xazin-6-y1, 4H-1,2-Thiazin-3-y1, 4H-1,2-Thiazin-4-yl, 4H-1,2-Thiazin-5-yl, 4H-1,2-Thiazin-6-yl, 6H-1,2-Oxazin-3-yl, 6H-1,2-Oxazin-4-yl, 6H-1,2-Oxazin-5-yl, 6H-1,2-Oxazin-6-y1, 6H-1,2-Thiazin-3-y1, 6H-1,2-Thiazin-4-y1, 6H-1,2-Thiazin-5-yl, 6H-1,2-Thiazin-6-yl, 2H-1,3-0xazin-2-yl, 25 2H-1,3-Oxazin-4-y1, 2H-1,3-Oxazin-5-y1, 2H-1,3-Oxazin-6-y1, 2H-1,3-Thiazin-2-yl, 2H-1,3-Thiazin-4-yl, 2H-1,3-Thiazin-5y1, 2H-1,3-Thiazin-6-y1, 4H-1,3-Oxazin-2-y1, 4H-1,3-Oxazin-4-y1, 4H-1,3-Oxazin-5-y1, 4H-1,3-Oxazin-6-y1, 4H-1,3-Thiazin-2-yl, 4H-1,3-Thiazin-4-yl, 4H-1,3-Thiazin-5-yl, 4H-1,3-Thia-30 zin-6-yl, 6H-1,3-0xazin-2-yl, 6H-1,3-0xazin-4-yl, 6H-1,3-0xazin-5-y1, 6H-1,3-Oxazin-6-y1, 6H-1,3-Thiazin-2-y1, 6H-1,3-Oxazin-4-yl, 6H-1,3-Oxazin-5-yl, 6H-1,3-Thiazin-6-yl, 2H-1,4-Oxazin-2-yl, 2H-1,4-Oxazin-3-yl, 2H-1,4-Oxazin-5-yl, 2H-1,4-Oxazin-6-yl, 2H-1,4-Thiazin-2-yl, 2H-1,4-Thiazin-3-yl, 35 2H-1,4-Thiazin-5-yl, 2H-1,4-Thiazin-6-yl, 4H-1,4-Oxazin-2-yl, 4H-1,4-Oxazin-3-y1, 4H-1,4-Thiazin-2-y1, 4H-1,4-Thiazin-3-y1, 1,4-Dihydropyridazin-3-yl, 1,4-Dihydropyridazin-4-yl, 1,4-Dihydropyridazin-5-yl, 1,4-Dihydropyridazin-6-yl, 1,4-Dihydropyrazin-2-yl, 1,2-Dihydropyrazin-2-yl, 1,2-Dihydropyrazin-40 3-yl, 1,2-Dihydropyrazin-5-yl, 1,2-Dihydropyrazin-6-yl, 1,4-Dihydropyrimidin-2-yl, 1,4-Dihydropyrimidin-4-yl, 1,4-Dihydropyrimidin-5-yl, 1,4-Dihydropyrimidin-6-yl, 3,4-Dihydropyrimidin-2-y1, 3,4-Dihydropyrimidin-4-y1, 3,4-Dihydropyrimi-

din-5-yl oder 3,4-Dihydropyrimidin-6-yl, Pyridazin-3-yl,

Pyridazin-4-yl, Pyrimidin-2-yl, Pyrimidin-4-yl, Pyrimidin-5-yl oder Pyrazin-2-yl;

6-gliedrige Ringe mit drei Heteroatomen wie:

5

1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl, 1,2,4-Triazin-6-yl;

6-gliedrige Ringe mit vier Heteroatomen wie:

10

1,2,4,5-Tetrazin-3-y1;

wobei ggf. der Schwefel der genannten Heterocyclen zu S=0 oder S(=0)₂ oxidiert sein kann

15

und wobei mit einem ankondensierten Phenylring oder mit einem C_3 - C_6 -Carbocyclus oder mit einem weiteren 5- bis 6-gliedrigen Heterocyclus ein bicyclisches Ringsystem ausgebildet werden kann.

20

25

N-gebundenes Heterocyclyl: ein gesättigter, partiell gesättigter oder ungesättigter 5- oder 6-gliedriger N-gebundener heterocyclischer Ring, der mindestens einen Stickstoff und gegebenenfalls ein bis drei gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff enthält, also z.B.

N-gebundene 5-gliedrige Ringe wie:

30 Tetrahydropyrrol-1-yl, 2,3-Dihydro-1H-pyrrol-1-yl, 2,5-Dihydro-1H-pyrrol-1-yl, Pyrrol-1-yl, Tetrahydropyrazol-1-yl, Tetrahydroisoxazol-2-yl, Tetrahydroisothiazol-2-yl, Tetrahydroimidazol-1-yl, Tetrahydrooxazol-3-yl, Tetrahydrothiazol-3-yl, 4,5-Dihydro-1H-pyrazol-1-yl, 2,5-Dihydro-1H-pyra-35 zol-1-yl, 2,3-Dihydro-1H-pyrazol-1-yl, 2,5-Dihydroisoxazol-2-yl, 2,3-Dihydroisoxazol-2-yl, 2,5-Dihydroisothiazol-2-yl, 2,3-Dihydroisoxazol-2-yl, 4,5-Dihydro-1H-imidazol-1-yl, 2,5-Dihydro-1H-imidazol-1-yl, 2,3-Dihydro-1H-imidazol-1-yl, 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrothiazol-3-yl, Pyrazol-1-40 y1, Imidazol-1-y1, 1,2,4- Δ^4 -Oxadiazolin-2-y1, 1,2,4- Δ^2 -Oxadiazolin-4-yl, 1,2,4- Δ^3 -Oxadiazolin-2-yl, 1,3,4- Δ^2 -Oxadiazo- $\lim_{\lambda \to 0} -4-y1$, 1,2,4- Δ^5 -Thiadiazolin-2-y1, 1,2,4- Δ^3 -Thiadiazolin-2-yl, 1,2,4- Δ^2 -Thiadiazolin-4-yl, 1,3,4- Δ^2 -Thiadiazolin-4-yl, 1,2,3- Δ^2 -Triazolin-1-yl, 1,2,4- Δ^2 -Triazolin-1-yl, 45 1,2,4- Δ^2 -Triazolin-4-yl, 1,2,4- Δ^3 -Triazolin-1-yl, 1,2,4- Δ^1 -

Triazolin-4-yl, 1,2,3-Triazol-1-yl, 1,2,4-Triazol-1-yl, Tetrazol-1-yl;

sowie N-gebundene 6-gliedrige Ringe wie:

5

10

15

20

Piperidin-1-yl, 1,2,3,4-Tetrahydropyridin-1-yl, 1,2,5,6-Tetrahydropyridin-1-yl, 1,4-Dihydropyridin-1-yl, 1,2-Dihydropyridin-1-yl, Hexahydropyrimidin-1-yl, Hexahydropyrazin-1-yl, Hexahydropyridazin-1-yl, Tetrahydro-1,3-oxazin-3-yl, Tetrahydro-1,3-thiazin-3-yl, Tetrahydro-1,4-thiazin-4-yl, Tetrahydro-1,4-oxazin-4-yl, Tetrahydro-1,2-oxazin-2-yl, 2H-5,6-Dihydro-1,2-oxazin-2-yl, 2H-5,6-Dihydro-1,2-thiazin-2-yl, 2H-3,6-Dihydro-1,2-oxazin-2-yl, 2H-3,6-Dihydro-1,2-thiazin-2-y1, 2H-3,4-Dihydro-1,2-oxazin-2-y1, 2H-3,4-Dihydro-1,2-thiazin-2-yl, 2,3,4,5-Tetrahydropyridazin-2-yl, 1,2,5,6-Tetrahydropyridazin-1-yl, 1,2,5,6-Tetrahydropyridazin-2-yl, 1,2,3,6-Tetrahydropyridazin-1-yl, 3,4,5,6-Tetrahydropyrimidin-3-yl, 1,2,3,4-Tetrahydropyrazin-1-yl, 1,2,3,4-Tetrahydropyrimidin-1-yl, 1,2,3,4-Tetrahydropyrimidin-3-yl, 2,3-Dihdro-1,4-thiazin-4-yl, 2H-1,2-Oxazin-2-yl, 2H-1, 2-Thiazin-2-yl, 4H-1, 4-Oxazin-4-yl, 4H-1,4-Thiazin-4-yl, 1,4-Dihydropyridazin-1-yl, 1,4-Dihydro-

25

30

35

sowie N-gebundene cyclische Imide wie:

din-1-yl oder 3,4-Dihydropyrimidin-3-yl;

Phthalsäureimid, Tetrahydrophthalsäureimid, Succinimid, Maleinimid, Glutarimid, 5-Oxo-triazolin-1-yl, 5-Oxo-1,3,4-oxa-diazolin-4-yl oder 2,4-Dioxo-(1H,3H)-pyrimidin-3-yl;

pyrazin-1-yl, 1,2-Dihydropyrazin-1-yl, 1,4-Dihydropyrimi-

wobei mit einem ankondensierten Phenylring oder mit einem C_3 - C_6 -Carbocyclus oder einem weiteren 5- bis 6-gliedrigen Heterocyclus ein bicyclisches Ringsystem ausgebildet werden kann.

Alle Phenylringe bzw. Heterocyclylreste sowie alle Phenylkomponenten in Phenoxy, Phenyl- C_1 - C_6 -alkyl, Phenylcarbonyl, Phenylalkenylcarbonyl, Phenyl-

- 40 oxythiocarbonyl, Phenylaminocarbonyl und N- $(C_1-C_6-Alkyl)-N$ -phenylaminocarbonyl bzw. Heterocyclylkomponenten in Heterocyclyloxy, Heterocyclyl- C_1-C_6 -alkyl, Heterocyclylcarbonyl- C_1-C_6 -alkyl, Heterocyclyloxythiocarbonyl, Heterocyclylalkenylcarbonyl, Heterocyclyloxycarbonyl, Heterocyclylaminocarbonyl
- 45 und $N(C_1-C_6-Alkyl)-N$ -heterocyclylaminocarbonyl sind, soweit nicht anders angegeben, vorzugsweise unsubstituiert oder tragen ein bis drei Halogenatome und/oder eine Nitrogruppe, einen Cyanorest und/

0.1. 0030, 43020 81

oder einen oder zwei Methyl-, Trifluormethyl-, Methoxy- oder Trifluormethoxysubstituenten.

Weiterhin steht der Ausdruck "Y bildet gemeinsam mit den beiden 5 Kohlenstoffen, an die es gebunden ist, einen gesättigten, partiell gesättigten oder ungesättigten Heterocyclus, der ein bis drei gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff, enthält" beispielsweise für 5-gliedrige Ringe mit einem Heteroatom, wie:

10

Tetrahydrofurandiyl, Tetrahydrothiendiyl, Tetrahydropyrroldiyl, Dihydrofurandiyl, Dihydrothiendiyl, Dihydropyrroldiyl, Furandiyl, Thiendiyl oder Pyrroldiyl;

15 oder 5-gliedrige Ringe mit zwei Heteroatomen wie:

Tetrahydropyrazoldiyl, Tetrahydroisoxazoldiyl, 1,2-Oxathiolandiyl, Tetrahydroisothiazoldiyl, 1,2-Dithiolandiyl, Tetrahydroimidazoldiyl, Tetrahydrooxazoldiyl, Tetrahydrothiazoldiyl, 1,3-Dio-

20 xolandiyl, 1,3-Oxathiolandiyl, Dihydropyrazoldiyl, Dihydroisoxa-zoldiyl, Dihydroisothiazoldiyl, 1,2-Dithioldiyl, Dihydroimidazoldiyl, Dihydrooxazoldiyl, Dihydrothiazoldiyl, Dioxoldiyl, Oxathioldiyl, Pyrazoldiyl, Isoxazoldiyl, Isothiazoldiyl, Imidazoldiyl, Oxazoldiyl oder Thiazoldiyl;

25

oder 5-gliedrige Ringe mit drei Heteroatomen wie:

1,2,3-Oxadiazolindiyl, 1,2,3-Thiadiazolindiyl, 1,2,3-Triazolindiyl, 1,2,3-Oxadiazoldiyl, 1,2,3-Thiadiazoldiyl oder 1,2,3-Tria30 zoldiyl;

oder 6-gliedrige Ringe mit einem Heteroatom wie:

Tetrahydropyrandiyl, Piperidindiyl, Tetrahydrothiopyrandiyl, Di-35 hydropyrandiyl, Dihydrothiopyrandiyl, Tetrahydropyrindindiyl, Pyrandiyl, Thiopyrandiyl, Dihydropyrindiyl oder Pyridindiyl;

oder 6-gliedrige Ringe mit zwei Heteroatomen wie:

40 1,3-Dioxandiyl, 1,4-Dioxandiyl, 1,3-Dithiandiyl, 1,4-Dithiandiyl, 1,3-Oxathiandiyl, 1,4-Oxathiandiyl, 1,2-Dithiandiyl, Hexahydropyrrimidindiyl, Hexahydropyrazindiyl, Hexahydropyridazindiyl, Tetrahydro-1,3-oxazindiyl, Tetrahydro-1,3-thiazindiyl, Tetrahydro-1,4-oxazindiyl, Tetrahydro-1,2-oxazindiyl, Dihydro-1,2-thiazindiyl, Tetrahydropyridazindiyl, Dihydro-1,3-oxazindiyl, Dihydro-1,3-oxazindiyl, Dihydro-1,3-oxazindiyl, Dihydro-1,3-thiazindiyl, Tetrahydropyrimidindiyl, Tetrahydropyrazindiyl, Di-

hydro-1,4-thiazindiyl, Dihydro-1,4-oxazindiyl, Dihydro-1,4-dio-xindiyl, Dihydro-1,4-dithiindiyl, 1,2-Oxazindiyl, 1,2-Thiazin-diyl, 1,3-Oxazindiyl, 1,3-Thiazindiyl, 1,4-Oxazindiyl, 1,4-Thiazindiyl, Dihydropyridazindiyl, Dihydropyrazindiyl, Dihydropyrimi-5 dindiyl, Pyridazindiyl, Pyrimidindiyl oder Pyrazindiyl;

oder 6-gliedrige Ringe mit 3 Heteroatomen wie:

1,2,4-Triazindiyl;

10

wobei ggf. der Schwefel der genannten Heteroyclen zu S=0 oder S(=0)₂ oxidiert sein kann;

und wobei die Anellierung mit dem Grundkörper über zwei benach-15 barte Kohlenstoffatome erfolgt.

Die erfindungsgemäßen Verbindungen der Formel I mit R^9 = IIa werden als Verbindungen der Formel Ia sowie Verbindungen der Formel I mit R^9 = IIb als Ib bezeichnet.

20

In Hinblick auf die Verwendung der erfindungsgemäßen Verbindungen der Formel I als Herbizide haben die Variablen vorzugsweise folgende Bedeutungen, und zwar jeweils für sich allein oder in Kombination:

25

X Sauerstoff, Schwefel, S=0, S(=0)₂, CR⁶R⁷, NR⁸ oder eine Bindung;

30 30 bildet gemeinsam mit den beiden Kohlenstoffen, and das es gebunden ist, einen gesättigten, partiell gesättigten oder ungesättigten 5- oder 6-gliedrigen Heterocyclus, der ein bis zwei gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff, enthält;

35

R¹, R² Wasserstoff oder C₁-C₆-Alkyl;

 \mathbb{R}^3

Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy;

40 R4

Nitro, Halogen, Cyano, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylthio, C_1 - C_6 -Halogenalkylthio, C_1 - C_6 -Alkylsulfinyl, C_1 - C_6 -Halogenalkylsulfinyl, C_1 - C_6 -Alkylsulfonyl, C_1 - C_6 -Halogenalkylsulfonyl, Aminosulfonyl, C_1 - C_6 -Alkylsulfonyl, C_1 - C_6 -

45

 $N-(C_1-C_6-alkyl)$ -aminosulfonyl, $N-(C_1-C_6-alkyl)$ -aminosulfonyl, $N-((C_1-C_6-alkyl)-amino, N-(C_1-C_6-Halogenalkylsulfony)$ -amino,

N- $(C_1-C_6-Alkyl)-N-(C_1-C_6-alkylsulfonyl)$ -amino oder N- $(C_1-C_6-alkyl)-N-(C_1-C_6-halogenalkylsulfonyl)$ -amino; insbesondere Nitro, Halogen, $C_1-C_6-Alkyl$, $C_1-C_6-Halogenalkyl$, $C_1-C_6-Alkoxy$, $C_1-C_6-Halogenalkyl$, $C_1-C_6-Alkyl$ +iio, $C_1-C_6-Halogenalkyl$ +iio, $C_1-C_6-Alkyl$ -sulfonyl oder $C_1-C_6-Halogenalkylsulfonyl$;

R⁵ Wasserstoff;

10 R⁶, R⁷ Wasserstoff oder C₁-C₆-Alkyl;

 R^8 $C_1-C_6-Alkyl$, $C_1-C_6-Alkyl$ carbonyl oder $C_1-C_6-Alkyl$ sulfonyl;

15 1 0, 1 oder 2;

R⁹ ein Rest IIa

N R10

25 Ila

wobei

5

20

35

R¹⁰ Hydroxy, Mercapto, Halogen, OR^{13} , SR^{13} , SO_2R^{14} , oder N-30 gebundenes Heterocyclyl, wobei der Heterocyclyl-Rest partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl,

 C_1-C_4 -Alkoxy oder C_1-C_4 -Halogenalkoxy;

 R^{11} Wasserstoff, C_1 - C_6 -Alkyl oder C_1 - C_6 -Halogenalkyl;

 R^{12} Wasserstoff, C_1 - C_6 -Alkyl oder C_1 - C_6 -Halogenalkyl;

40 R¹³ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Alkinyl, C₁-C₆-Alkylcarbonyl, C₂-C₆-Alkenyl-carbonyl, C₃-C₆-Cycloalkylcarbonyl, C₁-C₆-Alkoxy-carbonyl, C₃-C₆-Alkenyloxycarbonyl, C₃-C₆-Alkinyloxy-carbonyl, C₁-C₆-Alkylthiocarbonyl, C₁-C₆-Alkylamino-

carbonyl, C_1 - C_6 -Alkylthiocarbonyl, C_1 - C_6 -Alkylamino-45 carbonyl, C_3 - C_6 -Alkenylaminocarbonyl, C_3 - C_6 -Alkinylaminocarbonyl, C_3 - C_6 -Alkenyl) -aminocarbonyl, C_3 - C_6 -Alkenyl) -N- $(C_1$ - C_6 -alkyl) -aminocarbonyl,

33 $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)-aminocarbonyl$, $N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)-aminocarbonyl,$ $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$ $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$ $Di-(C_1-C_6-alkyl)$ -aminothiocarbonyl, $C_1-C_6-Alkylcarbo$ -5 $ny1-C_1-C_6-alky1$, $C_1-C_6-Alkoxyimino-C_1-C_6-alky1$, $N-(C_1-C_6-Alkylamino)-imino-C_1-C_6-alkyl$ oder N, N-Di-(C1-C6-alkylamino)-imino-C1-C6-alkyl, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine 10 bis drei der folgenden Gruppen tragen können: Cyano, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylcarbonyl, C1-C4-Alkoxycarbonyl, Hydroxycarbonyl, $Di-(C_1-C_4-alkyl)-aminocarbonyl, C_1-C_4-Alkylcarbonyloxy$ 15 oder C₃-C₆-Cycloalkyl; Phenyl, Heterocyclyl, Phenyl-C1-C6-alkyl, Heterocyclyl-C1-C6-alkyl, Phenylcarbonyl-C1-C6-alkyl, Heterocyclylcarbonyl-C1-C6-alkyl, Phenylcarbonyl, Heterocyclylcarbonyl, Phenoxycarbonyl, Phenyloxythiocarbonyl, Hete-20 rocyclyloxycarbonyl, Heterocyclyloxythiocarbonyl, Phenyl-C2-C6-alkenylcarbonyl oder Heterocyclyl-C2-C6-alkenylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 14 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis 25 drei der folgenden Reste tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$, Heterocyclyl oder N-gebundenes Heterocyclyl, wobei die beiden letztge-30 nannten Substituenten ihrerseits partiell oder vollständig halogeniert sein können und/oder einen bis drei der folgenden Reste tragen können: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder $C_1 - C_4 - Halogenalkoxy;$ 35 R^{14} $C_1-C_6-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$, $C_3-C_6-Cycloalkyl$, $C_1-C_6-Alkoxy$ oder Di- $(C_1-C_6-Halogen-C_1-C_6-Halo$ alkyl)amino, wobei die genannten Alkyl-, Cycloalkylund Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Grup-40 pen tragen können: Cyano, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxycarbonyl, Hydroxycarbonyl, $Di-(C_1-C_4-alkyl)-aminocarbonyl, C_1-C_4-Alkylcarbonyloxy$

oder C₃-C₆-Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl- C_1 - C_6 -alkyl, Heterocyclyl- C_1 - C_6 -alkyl, Phenoxy, Heterocyclyloxy, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

10 Besonders bevorzugt sind Verbindungen der Formel I, wobei die Variablen folgende Bedeutungen haben, und zwar für sich allein oder in Kombination:

X Sauerstoff, Schwefel, S=0, $S(=0)_2$, CR^6R^7 oder eine Bindung;

bildet gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, nachfolgende Heterocyclen aus: (Bei den nachfolgenden Ausführungen der Heterocyclen stellt jeweils die obere Wellenlinie die Verknüpfung zum Kohlenwasserstoff, der die Reste R¹ und R² trägt, und die untere Wellenlinie die Verknüpfung zum meta-Kohlenstoff des Benzoylteils dar).

my o my o

40 mys mys

35

5

Y

•	
·	35
	my , my , my , my , my
5	my o , my o , my o ,
10	mys, mys, mys,
15	my , my , my , n
20	my o , my o , my o , ,

40 my s my s

45 $\underset{n}{\widetilde{}}$ $\underset{s}{\widetilde{}}$ $\underset{n}{\widetilde{}}$ $\underset{o}{\widetilde{}}$,

	men, mm, mm, mm, mm, mm, mm, mm, mm, mm, m
5	me , mo n , mu o , mu o , mu o ,
10	my s my s my s my s , my s , my s ,
15	m s n m s n
20	my o, my s,
	my , my , my , my , my ,
25	my , my , my , my , my , my ,
30	my o, my o, my s,
35	my o, my s, my o,
	my , my , my , my ;

wobei der Schwefel der genannten Heterocyclen zu S=O oder $S(=0)_2$ oxidiert sein kann;

40

insbesondere bildet Y gemeinsam mit den beiden Kohlenstoffen, an 45 die es gebunden ist, nachfolgende Heterocyclen aus:

	mo, mo, mo, , mo, ,
5	my s , my s , my s ,
10	m N m N m N m N m N m N m N M N M N M N
15	
20	mo mo no
25	my s my s ,
30	$\frac{1}{2}$ $\frac{1}$
35	men
40	
4 5	$m = \frac{1}{N}$, $m = \frac{1}{S}$, $m = \frac{1}{N}$, $m = \frac{1}{S}$, $m = \frac{1}{N}$, $m = $

	my mys,
5	my , my , my , my ,
10	mm N ,
15	m_{1} m_{2} m_{3} m_{3
	m_{1} m_{1} m_{2} m_{3} m_{3} m_{2} m_{3} m_{2} m_{3} m_{3} m_{3} m_{3} m_{3} m_{4} m_{5} m_{2} m_{3} m_{4} m_{5} m_{5
20	my , my , ;
R ¹ , R ² 25	Wasserstoff;
R ³	C_1 - C_6 -Alkyl, wie Methyl, Ethyl oder n-Propyl; insbesondere Methyl;
30 R ⁴	Nitro, Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkylsulfonyl; insbesondere Nitro, Halogen wie Fluor, Chlor oder Brom, C_1 - C_6 -Halogenalkyl wie Trifluormethyl, C_1 - C_6 -Alkylthio
35	wie Methylthio oder Ethylthio oder C_1 - C_6 -Alkylsulfonyl, wie Methylsulfonyl oder Ethylsulfonyl; besonders bevorzugt Nitro, Chlor, Trifluormethyl, Methylthio oder Methylsulfonyl;
R ⁵	Wasserstoff;
40 R ⁶ , R ⁷	Wasserstoff oder C_1 - C_6 -Alkyl wie Methyl oder Ethyl; insbesondere Wasserstoff oder Methyl;
1	0, 1 oder 2; insbesondere 0 oder 1;
45 R ⁹	ein Rest IIa

wobei

5

15

40

10 R¹⁰ Hydroxy;

C1-C6-Alkyl, wie Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 2-Methylpropyl oder 1,1-Dimethylethyl; insbesondere Methyl oder Ethyl;

R¹² Wasserstoff oder C₁-C₆-Alkyl, wie Methyl, Ethyl, n-Propyl oder 1-Methylethyl; insbesondere Wasserstoff oder Methyl;

20 Insbesondere bevorzugt sind die Verbindungen Ia, wobei

X Sauerstoff, Schwefel, S(=0)₂, CH₂ oder eine Bindung;

y gemeinsam mit den beiden Kohlenstoffen, an die es ge-25 bunden ist, folgende Heterocyclen ausbildet:

 $m \sum_{s}^{N}$, $m \sum_{s}^{N}$,

my , my s , my so₂

45 my n , my n ;

R¹, R² Wasserstoff;

 R^3 $C_1 - C_4 - Alkyl;$

Nitro, Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkylsulfonyl;

R⁵ Wasserstoff oder C₁-C₆-Alkyl;

10 1 0, 1 oder 2;

R⁹ ein Rest IIa;

R¹⁰ Hydroxy;

15

R¹¹ Wasserstoff oder C₁-C₆-Alkyl;

 R^{12} Wasserstoff, C_1 - C_6 -Alkyl oder C_1 - C_6 -Halogenalkyl;

- 20 Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia1 (\equiv Ia mit R^1 , R^2 , R^5 und R^{12} = H, 1 = O, Bedeutung des Heterocyclus laut Strukturformel), insbesonderst die Verbindungen Ia1.n, wobei die Variablen X, R^4 , R^{10} und R^{11} die in Tabelle 1 genannte Bedeutung haben.
- 25 Die gegebenen Restedefinitionen R¹ bis R¹², X, Y und 1 sowie die Bedeutung des anellierten Heterocyclus sind nicht nur in Kombination miteinander, sondern auch für sich allein betrachtet für die erfindungsgemäßen Verbindungen von besonderer Bedeutung. (Aus Gründen der klareren Darstellung gilt jeweils in den Formeln
- 30 Ia1, Ia2 ... die Bedeutung des anellierten Heterocyclus wie jeweils in der zugehörigen Strukturformel angegeben.)

$$\begin{array}{c|c}
X & & \\
N & & \\
R^{10} & & R^4
\end{array}$$

Tabelle 1:

5	n	х	R ⁴	R ¹⁰	R ¹¹
	1	Bindung	F	ОН	CH ₃
	2	Bindung	Cl	ОН	CH ₃
	3	Bindung	Br	ОН	CH ₃
	4	Bindung	NO ₂	ОН	CH ₃
10	5	Bindung	SCH ₃	ОН	CH ₃
	6	Bindung	SO ₂ CH ₃	OH .	CH ₃
	7	Bindung	SO ₂ CH ₂ CH ₃	ОН	CH ₃
	8	Bindung	CH ₃	ОН	CH ₃
15	9	Bindung	CF ₃	ОН	CH ₃
	10	Bindung	OCHF ₂	ОН	CH ₃
	11	CH ₂	F	ОН	CH ₃
	12	CH ₂	C1	ОН	CH ₃
20	13	CH ₂	Br	ОН	CH ₃
	14	CH ₂	NO ₂	ОН	CH ₃
	15	CH ₂	SCH ₃	ОН	CH ₃
	16	CH ₂	SO ₂ CH ₃	ОН	CH ₃
25	17	CH ₂	SO ₂ CH ₂ CH ₃	ОН	CH ₃
23	18	CH ₂	CH ₃	ОН	CH ₃
	19	CH ₂	CF ₃	ОН	CH ₃
	20	CH ₂	OCHF ₂	ОН	CH ₃
	21	0	F	ОН	CH ₃
30	22	0	C1	OH	CH ₃
	23	0	Br	ОН	CH ₃
	24	0	NO ₂	ОН	CH ₃
	25	0	SCH ₃	ОН	CH ₃
35	26	0	SO ₂ CH ₃	OH	CH ₃
	27	0	SO ₂ CH ₂ CH ₃	OH	CH ₃
	28	0	CH ₃	OH	CH ₃
	29	0	CF ₃	ОН	CH ₃
40	30	0	OCHF ₂	ОН	CH ₃
	31	S	F	ОН	CH ₃
	32	S	C1	ОН	CH ₃
	33	S	Br	ОН	CH ₃
45	34	S	NO ₂	ОН	CH ₃
43	35	S	SCH ₃	OH	CH ₃
	36	S	SO ₂ CH ₃	ОН	CH ₃

	. ,					
	n	х	R ⁴	R ¹⁰	R ¹¹	
	37	S	SO ₂ CH ₂ CH ₃	ОН	CH ₃	
	38	S	CH ₃	ОН	CH ₃	
5	39	S	CF ₃	ОН	CH ₃	
	40	S	OCHF ₂	ОН	CH ₃	
	41	SO ₂	F	ОН	CH ₃	
	42	SO ₂	Cl	ОН	CH ₃	
10	43	SO ₂	Br	ОН	CH ₃	
10	44	SO ₂	NO ₂	ОН	CH ₃	
	45	SO ₂	SCH ₃	ОН	CH ₃	
	46	SO ₂	SO ₂ CH ₃	ОН	CH ₃	
	47	SO ₂	SO ₂ CH ₂ CH ₃	ОН	CH ₃	
15	48	SO ₂	CH ₃	ОН	CH ₃	
	49	SO ₂	CF ₃	ОН	CH ₃	
	50	SO ₂	OCHF ₂	ОН	CH ₃	
	51	Bindung	F	ОН	CH ₂ CH ₃	
20	52	Bindung	Cl	OH	CH ₂ CH ₃	
	53	Bindung	Br	ОН	CH ₂ CH ₃	
	54	Bindung	NO ₂	ОН	CH ₂ CH ₃	
	55	Bindung	SCH ₃	ОН	CH ₂ CH ₃	
25	56	Bindung	SO ₂ CH ₃	ОН	CH ₂ CH ₃	
	57	Bindung	SO ₂ CH ₂ CH ₃	ОН	CH ₂ CH ₃	
	58	Bindung	CH ₃	ОН	CH ₂ CH ₃	
	59	Bindung	CF ₃	ОН	CH ₂ CH ₃	
30	60	Bindung	OCHF ₂	ОН	CH ₂ CH ₃	
30	61	CH ₂	F	ОН	CH ₂ CH ₃	
	62	CH ₂	Cl .	ОН	CH ₂ CH ₃	
	63	CH ₂	Br	ОН	CH ₂ CH ₃	
_	64	CH ₂	NO ₂	ОН	CH ₂ CH ₃	
35	65	CH ₂	SCH ₃	ОН	CH ₂ CH ₃	
	66	CH ₂	SO ₂ CH ₃	ОН	CH ₂ CH ₃	
	67	CH ₂	SO ₂ CH ₂ CH ₃	ОН	CH ₂ CH ₃	
	68	CH ₂	CH ₃	ОН	CH ₂ CH ₃	
40	69	CH ₂	CF ₃	ОН	CH ₂ CH ₃	
	70	CH ₂	OCHF ₂	ОН	CH ₂ CH ₃	
	71	0	F	ОН	CH ₂ CH ₃	
	72	0	Cl	ОН	CH ₂ CH ₃	
45	73	0	Br	ОН	CH ₂ CH ₃	
	74	0	NO ₂	ОН	CH ₂ CH ₃	
[75	0	SCH ₃	ОН	CH ₂ CH ₃	

2. Z. 0050/49828 DE

	43					
	n	х	R ⁴	R ¹⁰	R ¹¹	
	76	0	SO ₂ CH ₃	ОН	CH ₂ CH ₃	
	77	0	SO ₂ CH ₂ CH ₃	ОН	CH ₂ CH ₃	
5	78	0	CH ₃	ОН	CH ₂ CH ₃	
	79	0	CF ₃	ОН	CH ₂ CH ₃	
	80	0	OCHF ₂	ОН	CH ₂ CH ₃	
	81	S	F	ОН	CH ₂ CH ₃	
10	82	S	C1	ОН	CH ₂ CH ₃	
10	83	S	Br	ОН	CH ₂ CH ₃	
	84	S	NO ₂	ОН	CH ₂ CH ₃	
	85	S	SCH ₃	ОН	CH ₂ CH ₃	
	86	S	SO ₂ CH ₃	ОН	CH ₂ CH ₃	
15	87	S	SO ₂ CH ₂ CH ₃	ОН	CH ₂ CH ₃	
·	88	S	CH ₃	ОН	CH ₂ CH ₃	
	89	S	CF ₃	ОН	CH ₂ CH ₃	
	90	S	OCHF ₂	ОН	CH ₂ CH ₃	
20	91	SO ₂	F	ОН	CH ₂ CH ₃	
	92	SO ₂	Cl	ОН	CH ₂ CH ₃	
	93	SO ₂	Br	OH	CH ₂ CH ₃	
	94	SO ₂	NO ₂	ОН	CH ₂ CH ₃	
25	95	SO ₂	SCH ₃	ОН	CH ₂ CH ₃	
	96	SO ₂	SO ₂ CH ₃	ОН	CH ₂ CH ₃	
	97	SO ₂	SO ₂ CH ₂ CH ₃	ОН	CH ₂ CH ₃	
	98	SO ₂	CH ₃	ОН	CH ₂ CH ₃	
30	99	SO ₂	CF ₃	ОН	CH ₂ CH ₃	
30	100	SO ₂	OCHF ₂	ОН	CH ₂ CH ₃	
	101	Bindung	F	OCOC ₆ H ₅	CH ₃	
	102	Bindung	Cl	OCOC ₆ H ₅	CH ₃	
	103	Bindung	Br	OCOC ₆ H ₅	CH ₃	
35	104	Bindung	NO ₂	OCOC ₆ H ₅	CH ₃	
	105	Bindung	SCH ₃	OCOC ₆ H ₅	CH ₃	
	106	Bindung	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₃	
	107	Bindung	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₃	
40	108	Bindung	CH ₃	OCOC ₆ H ₅	CH ₃	
	109	Bindung	CF ₃	OCOC ₆ H ₅	CH ₃	
	110	Bindung	OCHF ₂	OCOC ₆ H ₅	CH ₃	
	111	CH ₂	F	OCOC ₆ H ₅	CH ₃	
45	112	CH ₂	Cl	OCOC ₆ H ₅	CH ₃	
	113	CH ₂	Br	OCOC ₆ H ₅	CH ₃	
	114	CH ₂	NO ₂	OCOC ₆ H ₅	CH ₃	

	44					
	n	Х	R ⁴	R ¹⁰	R ¹¹	
	115	CH ₂	SCH ₃	OCOC ₆ H ₅	CH ₃	
	116	CH ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₃	
5	117	CH ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₃	
	118	CH ₂	CH ₃	OCOC ₆ H ₅	CH ₃	
	119	CH ₂	CF ₃	OCOC ₆ H ₅	CH ₃	
	120	CH ₂	OCHF ₂	OCOC ₆ H ₅	CH ₃	
10	121	0	F	OCOC ₆ H ₅	CH ₃	
10	122	0	C1	OCOC ₆ H ₅	CH ₃	
	123	0	Br	OCOC ₆ H ₅	CH ₃	
	124	0	NO ₂	OCOC ₆ H ₅	CH ₃	
•	125	0	SCH ₃	OCOC ₆ H ₅	CH ₃	
15	126	0	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₃	
	127	0	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₃	
	128	0	CH ₃	OCOC ₆ H ₅	СН3	
	129	0	CF ₃	OCOC ₆ H ₅	CH ₃	
20	130	0	OCHF ₂	OCOC ₆ H ₅	CH ₃	
	131	S	F	OCOC ₆ H ₅	CH ₃	
	132	S	Cl	OCOC ₆ H ₅	CH ₃	
	133	S	Br	OCOC ₆ H ₅	CH ₃	
25	134	S	NO ₂	OCOC ₆ H ₅	CH ₃	
	135	S	SCH ₃	OCOC ₆ H ₅	CH ₃	
	136	S	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₃	
	137	S	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₃	
30	138	S .	CH ₃	OCOC ₆ H ₅	CH ₃	
30	139	S	CF ₃	OCOC ₆ H ₅	CH ₃	
	140	S	OCHF ₂	OCOC ₆ H ₅	CH ₃	
	141	SO ₂	F	OCOC ₆ H ₅	CH ₃	
	142	SO ₂	Cl	OCOC ₆ H ₅	CH ₃	
35	143	SO ₂	Br	OCOC ₆ H ₅	CH ₃	
	144	SO ₂	NO ₂	OCOC ₆ H ₅	CH ₃	
	145	SO ₂	SCH ₃	OCOC ₆ H ₅	CH ₃	
	146	SO ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₃	
40	147	SO ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₃	
	148	SO ₂	CH ₃	OCOC ₆ H ₅	CH ₃	
	149	SO ₂	CF ₃	OCOC ₆ H ₅	CH ₃	
	150	SO ₂	OCHF ₂	OCOC ₆ H ₅	CH ₃	
45	151	Bindung	F	OCOC ₆ H ₅	CH ₂ CH ₃	
	152	Bindung	Cl	OCOC ₆ H ₅	CH ₂ CH ₃	
	153	Bindung	Br	OCOC ₆ H ₅	CH ₂ CH ₃	

	ı		3
-	Þ	•	ı

	 45						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	154	Bindung	NO ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
	155	Bindung	SCH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
5	156	Bindung	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
, 3	157	Bindung	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	158	Bindung	CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	159	Bindung	CF ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	160	Bindung	OCHF ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
10	161	CH ₂	F	OCOC ₆ H ₅	CH ₂ CH ₃		
	162	CH ₂	C1	OCOC ₆ H ₅	CH ₂ CH ₃		
	163	CH ₂	Br	OCOC ₆ H ₅	CH ₂ CH ₃		
	164	CH ₂	NO ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
15	165	CH ₂	SCH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	166	CH ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	167	CH ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	168	CH ₂	CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
20	169	CH ₂	CF ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	170	CH ₂	OCHF ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
	171	0	F	OCOC ₆ H ₅	CH ₂ CH ₃		
	172	0	C1	OCOC ₆ H ₅	CH ₂ CH ₃		
25	173	0	Br	OCOC ₆ H ₅	CH ₂ CH ₃		
	174	0	NO ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
	175	0	SCH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	176	0	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
20	177	0	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
30	178	0	CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	179	0	CF ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	180	0	OCHF ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
	181	S	F	OCOC ₆ H ₅	CH ₂ CH ₃		
35	182	S	Cl	OCOC ₆ H ₅	CH ₂ CH ₃		
	183	S	Br	OCOC ₆ H ₅	CH ₂ CH ₃		
	184	S	NO ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
	185	S	SCH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
40	186	S	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	187	S	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	188	S	CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
	189	S	CF ₃	OCOC ₆ H ₅	CH ₂ CH ₃		
45	190	S .	OCHF ₂	OCOC ₆ H ₅	CH ₂ CH ₃		
	191	SO ₂	F	OCOC ₆ H ₅	CH ₂ CH ₃		
	192	SO ₂	Cl	OCOC ₆ H ₅	CH ₂ CH ₃		

			46		t 11
	n	х	R4	R ¹⁰	R ¹¹
	193	SO ₂	Br	OCOC ₆ H ₅	CH ₂ CH ₃
	194	SO ₂	NO ₂	OCOC ₆ H ₅	CH ₂ CH ₃
5	195	SO ₂	SCH ₃	OCOC ₆ H ₅	CH ₂ CH ₃
	196	SO ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃
	197	SO ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃
	198	SO ₂	CH ₃	OCOC ₆ H ₅	CH ₂ CH ₃
10	199	SO ₂	CF ₃	OCOC ₆ H ₅	CH ₂ CH ₃
10	200	SO ₂	OCHF ₂	OCOC ₆ H ₅	CH ₂ CH ₃
	201	Bindung	F	OCOC (CH ₃) ₃	CH ₃
	202	Bindung	Cl	OCOC (CH ₃) ₃	CH ₃
	203	Bindung	Br	OCOC (CH ₃) ₃	CH ₃
15	204	Bindung	NO ₂	OCOC (CH ₃) ₃	CH ₃
	205	Bindung	SCH ₃	OCOC (CH ₃) ₃	CH ₃
	206	Bindung	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃
	207	Bindung	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃
20	208	Bindung	CH ₃	OCOC (CH ₃) ₃	CH ₃
	209	Bindung	CF ₃	OCOC (CH ₃) ₃	CH ₃
	210	Bindung	OCHF ₂	OCOC (CH ₃) ₃	CH ₃
	211	CH ₂	F	OCOC (CH ₃) ₃	CH ₃
25	212	CH ₂	Cl	OCOC (CH ₃) ₃	CH ₃
	213	CH ₂	Br	OCOC (CH ₃) ₃	CH ₃
	214	CH ₂	NO ₂	OCOC (CH ₃) ₃	CH ₃
	215	CH ₂	SCH ₃	OCOC (CH ₃) ₃	CH ₃
30	216	CH ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃
30	217	CH ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃
	218	CH ₂	CH ₃	OCOC (CH ₃) ₃	CH ₃
	219	CH ₂	CF ₃	OCOC (CH ₃) ₃	CH ₃
	220	CH ₂	OCHF ₂	OCOC (CH ₃) ₃	CH ₃
35	221	0	F	OCOC (CH ₃) ₃	CH ₃
	222	0	Cl	OCOC (CH ₃) ₃	CH ₃
	223	0	Br	OCOC (CH ₃) ₃	CH ₃
	224	0	NO ₂	OCOC (CH ₃) ₃	CH ₃
40	225	0	SCH ₃	OCOC (CH ₃) ₃	CH ₃
:	226	0	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃
	227	0	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃
	228	0	CH ₃	OCOC (CH ₃) ₃	CH ₃
45	229	0	CF ₃	OCOC (CH ₃) ₃	CH ₃
	230	0	OCHF ₂	OCOC (CH ₃) ₃	CH ₃
	231	S	F	OCOC (CH ₃) ₃	CH ₃

	47					
	n	х	R ⁴	R ¹⁰	R ¹¹	
	232	S	Cl	OCOC (CH ₃) ₃	CH ₃	
	233	S	Br	OCOC (CH ₃) ₃	CH ₃	
5	234	S	NO ₂	OCOC (CH ₃) ₃	CH ₃	
	235	S	SCH ₃	OCOC (CH ₃) ₃	CH ₃	
	236	S	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃	
	237	S	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃	
10	238	S	CH ₃	OCOC (CH ₃) ₃	CH ₃	
10	239	S	CF ₃	OCOC (CH ₃) ₃	CH ₃	
	240	S	OCHF ₂	OCOC (CH ₃) ₃	CH ₃	
	241	SO ₂	F	OCOC (CH ₃) ₃	CH ₃	
	242	SO ₂	C1	OCOC (CH ₃) ₃	CH ₃	
15	243	SO ₂	Br	OCOC (CH ₃) ₃	CH ₃	
	244	SO ₂	NO ₂	OCOC (CH ₃) ₃	CH ₃	
	245	SO ₂	SCH ₃	OCOC (CH ₃) ₃	CH ₃	
	246	SO ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃	
20	247	SO ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₃	
	248	SO ₂	CH ₃	OCOC (CH ₃) ₃	CH ₃	
	249	SO ₂	CF ₃	OCOC (CH ₃) ₃	CH ₃	
	250	SO ₂	OCHF ₂	OCOC (CH ₃) ₃	CH ₃	
25	251	Bindung	F	OCOC (CH ₃) ₃	CH ₂ CH ₃	
23	252	Bindung	Cl	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	253	Bindung	Br	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	254	Bindung	NO ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	255	Bindung	SCH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
30	256	Bindung	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	257	Bindung	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	258	Bindung	CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	259	Bindung	CF ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
35	260	Bindung	OCHF ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	261	CH ₂	F	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	262	CH ₂	Cl	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	263	CH ₂	Br	OCOC (CH ₃) ₃	CH ₂ CH ₃	
40	264	CH ₂	NO ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	265	CH ₂	SCH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	266	CH ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	267	CH ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
45	268	CH ₂	CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
- 1 .)	269	CH ₂	CF ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃	
	270	CH ₂	OCHF ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃	

0.2. 0050/ 47626 E

	48						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	271	0	F	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	272	0	Cl	OCOC (CH ₃) ₃	CH ₂ CH ₃		
5	273	0	Br	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	274	0	NO ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	275	0	SCH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	276	0	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
10	277	0	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
10	278	0	CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	279	0	CF ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	280	0	OCHF ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	281	S	F	OCOC (CH ₃) ₃	CH ₂ CH ₃		
15	282	S	Cl	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	283	S	Br	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	284	S	NO ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	285	S	SCH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
20	286	S	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	287	S	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
25	288	S	CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	289	S	CF ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	290	S	OCHF ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	291	SO ₂	F	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	292	SO ₂	Cl	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	293	SO ₂	Br	OCOC (CH ₃) ₃	CH ₂ CH ₃		
30	294	SO ₂	NO ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	295	SO ₂	SCH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	296	SO ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	297	SO ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
2-	298	SO ₂	CH ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
35	299	SO ₂	CF ₃	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	300	SO ₂	OCHF ₂	OCOC (CH ₃) ₃	CH ₂ CH ₃		
	301	Bindung	F	OCOSCH ₃	CH ₃		
	302	Bindung	Cl	OCOSCH ₃	CH ₃		
40	303	Bindung	Br	OCOSCH ₃	CH ₃		
	304	Bindung	NO ₂	OCOSCH ₃	CH ₃		
	305	Bindung	SCH ₃	OCOSCH ₃	CH ₃		
	306	Bindung	SO ₂ CH ₃	OCOSCH ₃	CH ₃		
45	307	Bindung	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₃		
	308	Bindung	CH ₃	OCOSCH ₃	CH ₃		
	309	Bindung	CF ₃	OCOSCH ₃	CH ₃		

n X R ⁴ R ¹⁰ R ¹¹ 310 Bindung OCHF2 OCOSCH3 CH3 311 CH2 F OCOSCH3 CH3 312 CH2 C1 OCOSCH3 CH3 313 CH2 Br OCOSCH3 CH3 314 CH2 NO2 OCOSCH3 CH3 315 CH2 SCH3 OCOSCH3 CH3 316 CH2 SO2CH3 OCOSCH3 CH3 317 CH2 SO2CH2CH3 OCOSCH3 CH3 318 CH2 CH3 OCOSCH3 CH3 319 CH2 CF3 OCOSCH3 CH3 320 CH2 OCHF2 OCOSCH3 CH3 321 O F OCOSCH3 CH3 322 O C1 OCOSCH3 CH3 323 O Br OCOSCH3 CH3 324 O NO2 OCOSCH3 CH3 <th></th> <th colspan="7">49</th>		49						
311		n	х	R ⁴	R ¹⁰	R ¹¹		
5 312 CH2 C1 OCOSCH3 CH3 313 CH2 Br OCOSCH3 CH3 314 CH2 NO2 OCOSCH3 CH3 315 CH2 SCH3 OCOSCH3 CH3 316 CH2 SO2CH3 OCOSCH3 CH3 317 CH2 SO2CH2CH3 OCOSCH3 CH3 318 CH2 CH3 OCOSCH3 CH3 319 CH2 CF3 OCOSCH3 CH3 320 CH2 OCHF2 OCOSCH3 CH3 321 O F OCOSCH3 CH3 322 O C1 OCOSCH3 CH3 323 O Br OCOSCH3 CH3 324 O NO2 OCOSCH3 CH3 324 O SCH3 OCOSCH3 CH3 326 O SCH3 OCOSCH3 CH3 327 O SO2CH2CH3 OCOSCH3 CH3 328 O CH3 OCOSCH3 CH3		310	Bindung	OCHF ₂	OCOSCH ₃	CH ₃		
313		311	CH ₂	F	OCOSCH ₃	CH ₃		
314	5	312	CH ₂	Cl	OCOSCH ₃	CH ₃		
10 315		313	CH ₂	Br	OCOSCH ₃	CH ₃		
10 316		314	CH ₂	NO ₂	OCOSCH ₃	CH ₃		
10 317		315	CH ₂	SCH ₃	OCOSCH ₃	CH ₃		
317		316	CH ₂	SO ₂ CH ₃	OCOSCH ₃	CH ₃		
319	10	317	CH ₂	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₃		
320 CH ₂ OCHF ₂ OCOSCH ₃ CH ₃ 321 O F OCOSCH ₃ CH ₃ 322 O Cl OCOSCH ₃ CH ₃ 323 O Br OCOSCH ₃ CH ₃ 324 O NO ₂ OCOSCH ₃ CH ₃ 325 O SCH ₃ OCOSCH ₃ CH ₃ 326 O SO ₂ CH ₃ OCOSCH ₃ CH ₃ 327 O SO ₂ CH ₂ CH ₃ OCOSCH ₃ CH ₃ 328 O CH ₃ OCOSCH ₃ CH ₃ 329 O CF ₃ OCOSCH ₃ CH ₃		318	CH ₂	CH ₃	OCOSCH ₃	CH ₃		
15 321 O F OCOSCH3 CH3 322 O C1 OCOSCH3 CH3 323 O Br OCOSCH3 CH3 324 O NO2 OCOSCH3 CH3 325 O SCH3 OCOSCH3 CH3 326 O SO2CH3 OCOSCH3 CH3 327 O SO2CH2CH3 OCOSCH3 CH3 328 O CH3 OCOSCH3 CH3 329 O CF3 OCOSCH3 CH3		319	CH ₂	CF ₃	OCOSCH ₃	CH ₃		
322 O C1 OCOSCH ₃ CH ₃ 323 O Br OCOSCH ₃ CH ₃ 324 O NO ₂ OCOSCH ₃ CH ₃ 325 O SCH ₃ OCOSCH ₃ CH ₃ 326 O SO ₂ CH ₃ OCOSCH ₃ CH ₃ 327 O SO ₂ CH ₂ CH ₃ OCOSCH ₃ CH ₃ 328 O CH ₃ OCOSCH ₃ CH ₃ 329 O CF ₃ OCOSCH ₃ CH ₃		320	CH ₂	OCHF ₂	OCOSCH3	CH ₃		
323 O Br OCOSCH ₃ CH ₃ 324 O NO ₂ OCOSCH ₃ CH ₃ 325 O SCH ₃ OCOSCH ₃ CH ₃ 326 O SO ₂ CH ₃ OCOSCH ₃ CH ₃ 327 O SO ₂ CH ₂ CH ₃ OCOSCH ₃ CH ₃ 328 O CH ₃ OCOSCH ₃ CH ₃ 329 O CF ₃ OCOSCH ₃ CH ₃	15	321	0	F	OCOSCH ₃	CH ₃		
324 O NO2 OCOSCH3 CH3 325 O SCH3 OCOSCH3 CH3 326 O SO2CH3 OCOSCH3 CH3 327 O SO2CH2CH3 OCOSCH3 CH3 328 O CH3 OCOSCH3 CH3 329 O CF3 OCOSCH3 CH3		322	0	Cl	OCOSCH ₃	CH ₃		
20 325 O SCH3 OCOSCH3 CH3 326 O SO2CH3 OCOSCH3 CH3 327 O SO2CH2CH3 OCOSCH3 CH3 328 O CH3 OCOSCH3 CH3 329 O CF3 OCOSCH3 CH3		323	0	Br	OCOSCH ₃	CH ₃		
326 O SO ₂ CH ₃ OCOSCH ₃ CH ₃ 327 O SO ₂ CH ₂ CH ₃ OCOSCH ₃ CH ₃ 328 O CH ₃ OCOSCH ₃ CH ₃ 329 O CF ₃ OCOSCH ₃ CH ₃		324	0	NO ₂	OCOSCH ₃	CH ₃		
327 O SO ₂ CH ₂ CH ₃ OCOSCH ₃ CH ₃ 328 O CH ₃ OCOSCH ₃ CH ₃ 329 O CF ₃ OCOSCH ₃ CH ₃	20	325	0	SCH ₃	OCOSCH ₃	CH ₃		
328 O CH ₃ OCOSCH ₃ CH ₃ 329 O CF ₃ OCOSCH ₃ CH ₃		326	0	SO ₂ CH ₃	OCOSCH ₃	CH ₃		
25 329 O CF ₃ OCOSCH ₃ CH ₃		327	0	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₃		
25	25	328	0	CH ₃	OCOSCH ₃	CH ₃		
		329	0	CF ₃	OCOSCH ₃	CH ₃		
		330	0	OCHF ₂	OCOSCH ₃	CH ₃		
S F OCOSCH ₃ CH ₃		331	S	F	OCOSCH ₃	CH ₃		
332 S C1 OCOSCH ₃ CH ₃		332	S	Cl	OCOSCH ₃	CH ₃		
333 S Br OCOSCH ₃ CH ₃	2.0	333	S	Br	OCOSCH ₃	CH ₃		
30 334 S NO ₂ OCOSCH ₃ CH ₃	30	334	S	NO ₂	OCOSCH ₃	CH ₃		
SCH ₃ OCOSCH ₃ CH ₃		335	S	SCH ₃	OCOSCH ₃	CH ₃		
S SO ₂ CH ₃ OCOSCH ₃ CH ₃		336	S	SO ₂ CH ₃	OCOSCH ₃	CH ₃		
S SO ₂ CH ₂ CH ₃ OCOSCH ₃ CH ₃		337	S	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₃		
35 338 S CH ₃ OCOSCH ₃ CH ₃	35	338	S	CH ₃	OCOSCH ₃	CH ₃		
S CF ₃ OCOSCH ₃ CH ₃		339	S	CF ₃	OCOSCH ₃	CH ₃		
340 S OCHF ₂ OCOSCH ₃ CH ₃		340	S	OCHF ₂	OCOSCH ₃	CH ₃		
SO_2 F $OCOSCH_3$ CH_3		341	SO ₂	F	OCOSCH ₃	CH ₃		
40 342 SO ₂ C1 OCOSCH ₃ CH ₃	40	342	SO ₂	Cl	OCOSCH ₃	CH ₃		
SO_2 Br $OCOSCH_3$ CH_3		343	SO ₂	Br	OCOSCH ₃	CH ₃		
SO_2 NO_2 $OCOSCH_3$ CH_3		344	SO ₂	NO ₂	OCOSCH3	CH ₃		
345 SO ₂ SCH ₃ OCOSCH ₃ CH ₃		345	SO ₂	SCH ₃	OCOSCH ₃	CH ₃		
346 SO ₂ SO ₂ CH ₃ OCOSCH ₃ CH ₃	45	346	SO ₂	SO ₂ CH ₃	OCOSCH3	CH ₃		
347 SO ₂ SO ₂ CH ₂ CH ₃ OCOSCH ₃ CH ₃	73	347	SO ₂	SO ₂ CH ₂ CH ₃	OCOSCH3	CH ₃		
348 SO ₂ CH ₃ OCOSCH ₃ CH ₃		348	SO ₂	CH ₃	OCOSCH ₃	CH ₃		

	n	х	R ⁴	R ¹⁰	R ¹¹
	349	SO ₂	CF ₃	OCOSCH ₃	CH ₃
	350	SO ₂	OCHF ₂	OCOSCH ₃	CH ₃
5	351	Bindung	F	OCOSCH ₃	CH ₂ CH ₃
	352	Bindung	Cl	OCOSCH ₃	CH ₂ CH ₃
	353	Bindung	Br	OCOSCH ₃	CH ₂ CH ₃
	354	Bindung	NO ₂	OCOSCH ₃	CH ₂ CH ₃
10	355	Bindung	SCH ₃	OCOSCH ₃	CH ₂ CH ₃
10	356	Bindung	SO ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃
	357	Bindung	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃
	358	Bindung	CH ₃	OCOSCH ₃	CH ₂ CH ₃
	359	Bindung	CF ₃	OCOSCH ₃	CH ₂ CH ₃
15	360	Bindung	OCHF ₂	OCOSCH ₃	CH ₂ CH ₃
	361	CH ₂	F	OCOSCH ₃	CH ₂ CH ₃
	362	CH ₂	C1	OCOSCH ₃	CH ₂ CH ₃
	363	CH ₂	Br	OCOSCH ₃	CH ₂ CH ₃
20	364	CH ₂	NO ₂	OCOSCH ₃	CH ₂ CH ₃
	365	CH ₂	SCH ₃	OCOSCH ₃	CH ₂ CH ₃
ĺ	366	CH ₂	SO ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃
	367	CH ₂	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃
25	368	CH ₂	CH ₃	OCOSCH ₃	CH ₂ CH ₃
	369	CH ₂	CF ₃	OCOSCH ₃	CH ₂ CH ₃
	370	CH ₂	OCHF ₂	OCOSCH ₃	CH ₂ CH ₃
	371	0	F	OCOSCH ₃	CH ₂ CH ₃
30	372	0	Cl	OCOSCH ₃	CH ₂ CH ₃
	373	0	Br	OCOSCH ₃	CH ₂ CH ₃
	374	0	NO ₂	OCOSCH ₃	CH ₂ CH ₃
	375	0	SCH ₃	OCOSCH ₃	CH ₂ CH ₃
	376	0	SO ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃
35	377	0	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃
	378	0	CH ₃	OCOSCH ₃	CH ₂ CH ₃
	379	0		OCOSCH ₃	CH ₂ CH ₃
	380	0		OCOSCH ₃	CH ₂ CH ₃
40	381	S		OCOSCH ₃	CH ₂ CH ₃
	382	S		OCOSCH ₃	CH ₂ CH ₃
	383	S		OCOSCH ₃	CH ₂ CH ₃
	384	S		OCOSCH ₃	CH ₂ CH ₃
45	385	S		OCOSCH3	CH ₂ CH ₃
	386	S		OCOSCH ₃	CH ₂ CH ₃
l	387	S	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃

	51							
	n	х	R ⁴	R ¹⁰	R ¹¹			
	388	S	CH ₃	OCOSCH ₃	CH ₂ CH ₃			
	389	S	CF ₃	OCOSCH ₃	CH ₂ CH ₃			
5	390	S	OCHF ₂	OCOSCH ₃	CH ₂ CH ₃			
	391	SO ₂	F	OCOSCH ₃	CH ₂ CH ₃			
	392	SO ₂	C1	OCOSCH ₃	CH ₂ CH ₃			
	393	SO ₂	Br	OCOSCH ₃	CH ₂ CH ₃			
	394	SO ₂	NO ₂	OCOSCH ₃	CH ₂ CH ₃			
10	395	SO ₂	SCH ₃	OCOSCH ₃	CH ₂ CH ₃			
	396	SO ₂	SO ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃			
	397	SO ₂	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH ₂ CH ₃			
	398	SO ₂	CH ₃	OCOSCH ₃	CH ₂ CH ₃			
15	399	SO ₂	CF ₃	OCOSCH ₃	CH ₂ CH ₃			
	400	SO ₂	OCHF ₂	OCOSCH ₃	CH ₂ CH ₃			
	401	Bindung	F	OCH ₃	CH ₃			
	402	Bindung	Cl	OCH ₃	CH ₃			
20	403	Bindung	Br	OCH ₃	CH ₃			
	404	Bindung	NO ₂	OCH ₃	CH ₃			
	405	Bindung	SCH ₃	OCH ₃	CH ₃			
25	406	Bindung	SO ₂ CH ₃	OCH ₃	CH ₃			
	407.	Bindung	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₃			
	408	Bindung	CH ₃	OCH ₃	CH ₃			
	409	Bindung	CF ₃	OCH ₃	CH ₃			
	410	Bindung	OCHF ₂	OCH ₃	CH ₃			
2.0	411	CH ₂	F	OCH ₃	CH ₃			
30	412	CH ₂	Cl	OCH ₃	CH ₃			
	413	CH ₂	Br	OCH ₃	CH ₃			
	414	CH ₂	NO ₂	OCH ₃	CH ₃			
	415	CH ₂	SCH ₃	OCH ₃	CH ₃			
35	416	CH ₂	SO ₂ CH ₃	OCH ₃	CH ₃			
	417	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₃			
	418	CH ₂	CH ₃	OCH ₃	CH ₃			
	419	CH ₂	CF ₃	OCH ₃	CH ₃			
40	420	CH ₂	OCHF ₂	OCH ₃	CH ₃			
	421	0	F	OCH ₃	CH ₃			
	422	0	Cl	OCH ₃	CH ₃			
	423	0	Br	OCH ₃	CH ₃			
45	424	0	NO ₂	OCH ₃	CH ₃			
- 1 J	425	0	SCH ₃	ОСН3	CH ₃			
	426	0	SO ₂ CH ₃	OCH ₃	CH ₃			

	n	х	R4	R ¹⁰	R ¹¹
	427	0	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₃
	428	0	CH ₃	OCH ₃	CH ₃
5	429	0	CF ₃	OCH ₃	CH ₃
	430	0	OCHF ₂	OCH ₃	CH ₃
	431	S	F	OCH ₃	CH ₃
	432	S	C1	OCH ₃	CH ₃
	433	S	Br	OCH ₃	CH ₃
10	434	S	NO ₂	OCH ₃	CH ₃
	435	S	SCH ₃	OCH ₃	CH ₃
	436	S	SO ₂ CH ₃	OCH ₃	CH ₃
	437	S	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₃
15	438	S	CH ₃	OCH ₃	CH ₃
	439	S	CF ₃	OCH ₃	CH ₃
	440	S	OCHF ₂	OCH ₃	CH ₃
	441	SO ₂	F	OCH ₃	CH ₃
20	442	SO ₂	Cl	OCH ₃	CH ₃
	443	SO ₂	Br	OCH ₃	CH ₃
	444	SO ₂	NO ₂	OCH ₃	CH ₃
	445	SO ₂	SCH ₃	OCH ₃	CH ₃
25	446	SO ₂	SO ₂ CH ₃	OCH ₃	CH ₃
	447	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₃
	448	SO ₂	CH ₃	OCH ₃	CH ₃
	449	SO ₂	CF ₃	OCH ₃	CH ₃
	450	SO ₂	OCHF ₂	OCH ₃	CH ₃
30	451	Bindung	F	OCH ₃	CH ₂ CH ₃
	452	Bindung	C1	OCH ₃	CH ₂ CH ₃
	453	Bindung	Br	OCH ₃	CH ₂ CH ₃
	454	Bindung	NO ₂	OCH ₃	CH ₂ CH ₃
35	455	Bindung	SCH ₃	OCH ₃	CH ₂ CH ₃
	456	Bindung	SO ₂ CH ₃	OCH ₃	CH ₂ CH ₃
	457	Bindung	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₂ CH ₃
	458	Bindung	CH ₃	OCH ₃	CH ₂ CH ₃
40	459	Bindung	CF ₃	OCH ₃	CH ₂ CH ₃
	460	Bindung	OCHF ₂	OCH ₃	CH ₂ CH ₃
	461	CH ₂	F	OCH ₃	CH ₂ CH ₃
	462	CH ₂	C1	OCH ₃	CH ₂ CH ₃
45	463	CH ₂	Br	OCH ₃	CH ₂ CH ₃
#J	464	CH ₂	NO ₂	OCH ₃	CH ₂ CH ₃
	465	CH ₂	SCH ₃	OCH ₃	CH ₂ CH ₃

	53							
	n	х	R ⁴	R ¹⁰	R ¹¹			
	466	CH ₂	SO ₂ CH ₃	OCH ₃	CH ₂ CH ₃			
	467	CH ₂	SO ₂ CH ₂ CH ₃	осн ₃	CH ₂ CH ₃			
5	468	CH ₂	CH ₃	осн ₃	CH ₂ CH ₃			
J	469	CH ₂	CF ₃	OCH ₃	CH ₂ CH ₃			
	470	CH ₂	OCHF ₂	OCH ₃	CH ₂ CH ₃			
	471	0	F	OCH ₃	CH ₂ CH ₃			
10	472	0	Cl	осн ₃	CH ₂ CH ₃			
10	473	0	Br	OCH ₃	CH ₂ CH ₃			
	474	0	NO ₂	ОСН3	CH ₂ CH ₃			
	475	0	SCH ₃	осн3	CH ₂ CH ₃			
	476	0	SO ₂ CH ₃	OCH ₃	CH ₂ CH ₃			
15	477	0	SO ₂ CH ₂ CH ₃	ОСН3	CH ₂ CH ₃			
	478	0	CH ₃	OCH ₃	CH ₂ CH ₃			
	479	0	CF ₃	OCH ₃	CH ₂ CH ₃			
	480	0	OCHF ₂	OCH ₃	CH ₂ CH ₃			
20	481	S	F	OCH ₃	CH ₂ CH ₃			
	482	S	C1	OCH ₃	CH ₂ CH ₃			
	483	S	Br	OCH ₃	CH ₂ CH ₃			
25	484	S	NO ₂	OCH ₃	CH ₂ CH ₃			
	485	S	SCH ₃	OCH ₃	CH ₂ CH ₃			
	486	S	SO ₂ CH ₃	OCH ₃	CH ₂ CH ₃			
	487	S	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₂ CH ₃			
	488	S	CH ₃	OCH ₃	CH ₂ CH ₃			
20	489	S	CF ₃	OCH ₃	CH ₂ CH ₃			
30	490	S	OCHF ₂	OCH ₃	CH ₂ CH ₃			
	491	SO ₂	F	OCH ₃	CH ₂ CH ₃			
	492	SO ₂	Cl	OCH ₃	CH ₂ CH ₃			
	493	SO ₂	Br	OCH ₃	CH ₂ CH ₃			
35	494	SO ₂	NO ₂	OCH ₃	CH ₂ CH ₃			
	495	SO ₂	SCH ₃	OCH ₃	CH ₂ CH ₃			
	496	SO ₂	SO ₂ CH ₃	OCH ₃	CH ₂ CH ₃			
	497	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₃	CH ₂ CH ₃			
40	498	SO ₂	CH ₃	OCH ₃	CH ₂ CH ₃			
	499	SO ₂	CF ₃	OCH ₃	CH ₂ CH ₃			
	500	SO ₂	OCHF ₂	OCH ₃	CH ₂ CH ₃			
	501	Bindung	F	OCH (CH ₃) ₂	CH ₃			
45	502	Bindung	Cl	OCH (CH ₃) ₂	CH ₃			
	503	Bindung	Br	OCH (CH ₃) ₂	CH ₃			
	504	Bindung	NO ₂	OCH (CH ₃) ₂	CH ₃			

	54						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	505	Bindung	SCH ₃	OCH (CH ₃) ₂	CH ₃		
	506	Bindung	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
5	507	Bindung	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
	508	Bindung	CH ₃	OCH (CH ₃) ₂	CH ₃		
	509	Bindung	CF ₃	OCH (CH ₃) ₂	CH ₃		
	510	Bindung	OCHF ₂	OCH (CH ₃) ₂	CH ₃		
10	511	CH ₂	F	OCH (CH ₃) ₂	CH ₃		
10	512	CH ₂	C1	OCH (CH ₃) ₂	CH ₃		
	513	CH ₂	Br	OCH (CH ₃) ₂	CH ₃		
	514	CH ₂	NO ₂	OCH (CH ₃) ₂	CH ₃		
	515	CH ₂	SCH ₃	OCH (CH ₃) ₂	CH ₃		
15	516	CH ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
	517	CH ₂	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
	518	CH ₂	CH ₃	OCH (CH ₃) ₂	CH ₃		
	519	CH ₂	CF ₃	OCH (CH ₃) ₂	CH ₃		
20	520	CH ₂	OCHF ₂	OCH (CH ₃) ₂	CH ₃		
	521	0	F	OCH (CH ₃) ₂	CH ₃		
	522	0	C1	OCH (CH ₃) ₂	CH ₃		
25	523	0	Br	OCH (CH ₃) ₂	CH ₃		
	524	0	NO ₂	OCH (CH ₃) ₂	CH ₃		
	525	0	SCH ₃	OCH (CH ₃) ₂	CH ₃		
	526	0	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
	527	0	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
	528	0	CH ₃	OCH (CH ₃) ₂	CH ₃		
30	529	0	CF ₃	OCH (CH ₃) ₂	CH ₃		
	530	0	OCHF ₂	OCH (CH ₃) ₂	CH ₃		
	531	S	F	OCH (CH ₃) ₂	CH ₃		
	532	S	C1	OCH (CH ₃) ₂	CH ₃		
35	533	S	Br	ОСН (СН ₃) ₂	CH ₃		
	534	S	NO ₂	OCH (CH ₃) ₂	CH ₃		
	535	S	SCH ₃	OCH (CH ₃) ₂	CH ₃		
	536	S	SO ₂ CH ₃	ОСН (СН ₃) ₂	CH ₃		
40	537	S	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₃		
	538	S	CH ₃	OCH (CH ₃) ₂	CH ₃		
	539	S	CF ₃	OCH (CH ₃) ₂	CH ₃		
	540	S	OCHF ₂	OCH (CH ₃) ₂	CH ₃		
45	541	SO ₂	F	OCH (CH ₃) ₂	CH ₃		
	542	SO ₂	Cl	OCH (CH ₃) ₂	CH ₃		
	543	SO ₂	Br	OCH (CH ₃) ₂	CH ₃		

-
_

	55							
	n	х	R4	R ¹⁰	R ¹¹			
	544	SO ₂	NO ₂	OCH (CH ₃) ₂	CH ₃			
	545	SO ₂	SCH ₃	OCH (CH ₃) ₂	CH ₃			
5	546	SO ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₃			
	547	SO ₂	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₃			
	548	SO ₂	CH ₃	OCH (CH ₃) ₂	CH ₃			
	549	SO ₂	CF ₃	OCH (CH ₃) ₂	CH ₃			
1.0	550	SO ₂	OCHF ₂	OCH (CH ₃) ₂	CH ₃			
10	551	Bindung	F	OCH (CH ₃) ₂	CH ₂ CH ₃			
	552	Bindung	C1	OCH (CH ₃) ₂	CH ₂ CH ₃			
	553	Bindung	Br	OCH (CH ₃) ₂	CH ₂ CH ₃			
	554	Bindung	NO ₂	OCH (CH ₃) ₂	CH ₂ CH ₃			
15	555	Bindung	SCH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
	556	Bindung	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
	557	Bindung	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
	558	Bindung	CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
20	559	Bindung	CF ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
	560	Bindung	OCHF ₂	OCH (CH ₃) ₂	CH ₂ CH ₃			
	561	CH ₂	F	OCH (CH ₃) ₂	CH ₂ CH ₃			
	562	CH ₂	Cl	OCH (CH ₃) ₂	CH ₂ CH ₃			
25	563	CH ₂	Br	OCH (CH ₃) ₂	CH ₂ CH ₃			
	564	CH ₂	NO ₂	OCH (CH ₃) ₂	CH ₂ CH ₃			
	565	CH ₂	SCH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
	566	CH ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
	567	CH ₂	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
30	568	CH ₂	CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
	569	CH ₂	CF ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
	570	CH ₂	OCHF ₂	OCH (CH ₃) ₂	CH ₂ CH ₃			
	571	0	F	OCH (CH ₃) ₂	CH ₂ CH ₃			
35	572	0	Cl	OCH (CH ₃) ₂	CH ₂ CH ₃			
	573	0	Br	OCH (CH ₃) ₂	CH ₂ CH ₃			
	574	0	NO ₂	OCH (CH ₃) ₂	CH ₂ CH ₃			
	575	0	SCH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
40	576	0	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
	577	0	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
	578	0	CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
	579	0	CF ₃	OCH (CH ₃) ₂	CH ₂ CH ₃			
45	580	0	OCHF ₂	OCH (CH ₃) ₂	CH ₂ CH ₃			
±0	581	S	F	OCH (CH ₃) ₂	CH ₂ CH ₃			
	582	S	Cl	OCH (CH ₃) ₂	CH ₂ CH ₃			

583 S Br OCH (CH ₃) 2 CH ₂ CH ₃ 584 S NO ₂ OCH (CH ₃) 2 CH ₂ CH ₃ 586 S SCH ₃ OCH (CH ₃) 2 CH ₂ CH ₃ 587 S SO ₂ CH ₃ OCH (CH ₃) 2 CH ₂ CH ₃ 588 S CH ₃ OCH (CH ₃) 2 CH ₂ CH ₃ 589 S CF ₃ OCH (CH ₃) 2 CH ₂ CH ₃ 590 S OCH ₂ D OCH (CH ₃) 2 CH ₂ CH ₃ 591 SO ₂ F OCH (CH ₃) 2 CH ₂ CH ₃ 591 SO ₂ F OCH (CH ₃) 2 CH ₂ CH ₃ 592 SO ₂ C1 OCH (CH ₃) 2 CH ₂ CH ₃ 593 SO ₂ Br OCH (CH ₃) 2 CH ₂ CH ₃ 594 SO ₂ SCH ₃ OCH (CH ₃) 2 CH ₂ CH ₃ 595 SO ₂ SCH ₃ OCH (CH ₃) 2 CH ₂ CH ₃ 596 SO ₂ SO ₂ CH ₂ CH ₃ OCH (CH ₃) 2 CH ₂ CH ₃ 597		n	x	R ⁴	R ¹⁰	R ¹¹
5 585 S SCH3 OCH (CH3) 2 CH2CH3 586 S SO2CH3 OCH (CH3) 2 CH2CH3 587 S SO2CH2CH3 OCH (CH3) 2 CH2CH3 588 S CH3 OCH (CH3) 2 CH2CH3 589 S CF3 OCH (CH3) 2 CH2CH3 590 S OCHF2 OCH (CH3) 2 CH2CH3 591 SO2 F OCH (CH3) 2 CH2CH3 591 SO2 Br OCH (CH3) 2 CH2CH3 592 SO2 Br OCH (CH3) 2 CH2CH3 593 SO2 Br OCH (CH3) 2 CH2CH3 594 SO2 NO2 OCH (CH3) 2 CH2CH3 595 SO2 SCH3 OCH (CH3) 2 CH2CH3 597 SO2 SO2CH3 OCH (CH3) 2 CH2CH3 599 SO2 CH3 OCH (CH3) 2 CH2CH3 599 SO2 CF3 OCH (CH3) 2 CH2CH3		583	S	Br	OCH (CH ₃) ₂	CH ₂ CH ₃
S86 S SO ₂ CH ₃ OCH (CH ₃) ₂ CH ₂ CH ₃		584	S	NO ₂	OCH (CH ₃) ₂	CH ₂ CH ₃
S86 S SO ₂ CH ₃ OCH (CH ₃) 2 CH ₂ CH ₃	5	585	S	SCH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃
S88 S	_	586	S	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃
S89 S		587	S	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃
Second S		588	S	CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃
S	10	589	S	CF ₃	OCH (CH ₃) ₂	CH ₂ CH ₃
592 SO2 C1 OCH (CH3) 2 CH2CH3	10	590	S	OCHF ₂	OCH (CH ₃) ₂	CH ₂ CH ₃
S93 SO2 Br		591	SO ₂	F	OCH (CH ₃) ₂	CH ₂ CH ₃
Solution Solution		592	SO ₂	Cl	OCH (CH ₃) ₂	CH ₂ CH ₃
SO2 SCH3 OCH (CH3) 2 CH2CH3		593	SO ₂	Br	OCH (CH ₃) ₂	CH ₂ CH ₃
596 SO ₂ SO ₂ CH ₃ OCH (CH ₃) ₂ CH ₂ CH ₃ 597 SO ₂ SO ₂ CH ₂ CH ₃ OCH (CH ₃) ₂ CH ₂ CH ₃ 598 SO ₂ CH ₃ OCH (CH ₃) ₂ CH ₂ CH ₃ 599 SO ₂ CF ₃ OCH (CH ₃) ₂ CH ₂ CH ₃ 600 SO ₂ OCHF ₂ OCH (CH ₃) ₂ CH ₂ CH ₃ 601 Bindung F OCH ₂ C ₆ H ₅ CH ₃ 602 Bindung C1 OCH ₂ C ₆ H ₅ CH ₃ 603 Bindung Br OCH ₂ C ₆ H ₅ CH ₃ 604 Bindung NO ₂ OCH ₂ C ₆ H ₅ CH ₃ 605 Bindung SCH ₃ OCH ₂ C ₆ H ₅ CH ₃ 606 Bindung SO ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 607 Bindung SO ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 608 Bindung CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 609 Bindung CF ₃ OCH ₂ C ₆ H ₅ CH ₃ 610 Bindung OCHF ₂ OCH ₂ C ₆ H ₅ CH ₃ 611 CH ₂ F OCH ₂ C ₆ H ₅ CH ₃ 612 CH ₂ C1 OCH ₂ C ₆ H ₅ CH ₃ 614 CH ₂ Br OCH ₂ C ₆ H ₅ CH ₃ 615 CH ₃ CH ₃ 616 CH ₂ CH ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃	15	594	SO ₂	NO ₂	OCH (CH ₃) ₂	CH ₂ CH ₃
597 SO2 SO2CH2CH3 OCH (CH3) 2 CH2CH3 598 SO2 CH3 OCH (CH3) 2 CH2CH3 599 SO2 CF3 OCH (CH3) 2 CH2CH3 600 SO2 OCHF2 OCH (CH3) 2 CH2CH3 601 Bindung F OCH2C6H5 CH3 602 Bindung C1 OCH2C6H5 CH3 603 Bindung Br OCH2C6H5 CH3 604 Bindung SCH3 OCH2C6H5 CH3 605 Bindung SCH3 OCH2C6H5 CH3 606 Bindung SO2CH3 OCH2C6H5 CH3 607 Bindung SO2CH2CH3 OCH2C6H5 CH3 608 Bindung CH3 OCH2C6H5 CH3 609 Bindung CF3 OCH2C6H5 CH3 610 Bindung OCH2 OCH2C6H5 CH3 611 CH2 F OCH2C6H5 CH3 612 CH2 C1 OCH2C6H5 CH3 614 CH2		595	SO ₂	SCH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃
20 598 SO2 CH3 OCH (CH3) 2 CH2CH3 599 SO2 CF3 OCH (CH3) 2 CH2CH3 600 SO2 OCHF2 OCH (CH3) 2 CH2CH3 601 Bindung F OCH2C6H5 CH3 602 Bindung C1 OCH2C6H5 CH3 603 Bindung Br OCH2C6H5 CH3 604 Bindung SCH3 OCH2C6H5 CH3 605 Bindung SCH3 OCH2C6H5 CH3 606 Bindung SO2CH3 OCH2C6H5 CH3 607 Bindung SO2CH2CH3 OCH2C6H5 CH3 608 Bindung CH3 OCH2C6H5 CH3 609 Bindung CF3 OCH2C6H5 CH3 610 Bindung OCHF2 OCH2C6H5 CH3 611 CH2 F OCH2C6H5 CH3 612 CH2 C1 OCH2C6H5 CH3 614 CH2 NO2 OCH2C6H5 CH3 615 CH3		596	SO ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃
Solution Solution		597	SO ₂	SO ₂ CH ₂ CH ₃	ОСН (СН ₃) ₂	CH ₂ CH ₃
600 SO ₂ OCHF ₂ OCH (CH ₃) ₂ CH ₂ CH ₃ 601 Bindung F OCH ₂ C ₆ H ₅ CH ₃ 602 Bindung C1 OCH ₂ C ₆ H ₅ CH ₃ 603 Bindung Br OCH ₂ C ₆ H ₅ CH ₃ 604 Bindung NO ₂ OCH ₂ C ₆ H ₅ CH ₃ 605 Bindung SCH ₃ OCH ₂ C ₆ H ₅ CH ₃ 606 Bindung SO ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 607 Bindung SO ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 608 Bindung CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 609 Bindung CF ₃ OCH ₂ C ₆ H ₅ CH ₃ 610 Bindung OCHF ₂ OCH ₂ C ₆ H ₅ CH ₃ 611 CH ₂ F OCH ₂ C ₆ H ₅ CH ₃ 612 CH ₂ C1 OCH ₂ C ₆ H ₅ CH ₃ 614 CH ₂ NO ₂ OCH ₂ C ₆ H ₅ CH ₃ 615 CH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃	20	598	SO ₂	CH ₃	OCH (CH ₃) ₂	CH ₂ CH ₃
601 Bindung F OCH ₂ C ₆ H ₅ CH ₃ 602 Bindung C1 OCH ₂ C ₆ H ₅ CH ₃ 603 Bindung Br OCH ₂ C ₆ H ₅ CH ₃ 604 Bindung NO ₂ OCH ₂ C ₆ H ₅ CH ₃ 605 Bindung SCH ₃ OCH ₂ C ₆ H ₅ CH ₃ 606 Bindung SO ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 607 Bindung SO ₂ CH ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 608 Bindung CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 609 Bindung CF ₃ OCH ₂ C ₆ H ₅ CH ₃ 610 Bindung OCHF ₂ OCH ₂ C ₆ H ₅ CH ₃ 611 CH ₂ F OCH ₂ C ₆ H ₅ CH ₃ 612 CH ₂ C1 OCH ₂ C ₆ H ₅ CH ₃ 614 CH ₂ NO ₂ OCH ₂ C ₆ H ₅ CH ₃ 615 CH ₃ CCH ₃		599	SO ₂	CF ₃	OCH (CH ₃) ₂	CH ₂ CH ₃
CH3		600	SO ₂	OCHF ₂	OCH (CH ₃) ₂	CH ₂ CH ₃
603 Bindung Br OCH ₂ C ₆ H ₅ CH ₃ 604 Bindung NO ₂ OCH ₂ C ₆ H ₅ CH ₃ 605 Bindung SCH ₃ OCH ₂ C ₆ H ₅ CH ₃ 606 Bindung SO ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 607 Bindung SO ₂ CH ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 608 Bindung CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 609 Bindung CF ₃ OCH ₂ C ₆ H ₅ CH ₃ 610 Bindung OCHF ₂ OCH ₂ C ₆ H ₅ CH ₃ 611 CH ₂ F OCH ₂ C ₆ H ₅ CH ₃ 612 CH ₂ C1 OCH ₂ C ₆ H ₅ CH ₃ 613 CH ₂ Br OCH ₂ C ₆ H ₅ CH ₃ 614 CH ₂ NO ₂ OCH ₂ C ₆ H ₅ CH ₃		601	Bindung	F	OCH ₂ C ₆ H ₅	CH ₃
603 Bindung Br OCH ₂ C ₆ H ₅ CH ₃ 604 Bindung NO ₂ OCH ₂ C ₆ H ₅ CH ₃ 605 Bindung SCH ₃ OCH ₂ C ₆ H ₅ CH ₃ 606 Bindung SO ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 607 Bindung SO ₂ CH ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 608 Bindung CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 609 Bindung CF ₃ OCH ₂ C ₆ H ₅ CH ₃ 610 Bindung OCHF ₂ OCH ₂ C ₆ H ₅ CH ₃ 611 CH ₂ F OCH ₂ C ₆ H ₅ CH ₃ 612 CH ₂ C1 OCH ₂ C ₆ H ₅ CH ₃ 613 CH ₂ Br OCH ₂ C ₆ H ₅ CH ₃ 614 CH ₂ NO ₂ OCH ₂ C ₆ H ₅ CH ₃	25	602	Bindung	Cl	OCH ₂ C ₆ H ₅	CH ₃
30 Bindung SCH ₃ OCH ₂ C ₆ H ₅ CH ₃ 606 Bindung SO ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 607 Bindung SO ₂ CH ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 608 Bindung CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 609 Bindung CF ₃ OCH ₂ C ₆ H ₅ CH ₃ 610 Bindung OCHF ₂ OCH ₂ C ₆ H ₅ CH ₃ 611 CH ₂ F OCH ₂ C ₆ H ₅ CH ₃ 612 CH ₂ C1 OCH ₂ C ₆ H ₅ CH ₃ 613 CH ₂ Br OCH ₂ C ₆ H ₅ CH ₃ 614 CH ₂ NO ₂ OCH ₂ C ₆ H ₅ CH ₃		603	Bindung	Br	OCH ₂ C ₆ H ₅	CH ₃
30 Bindung SO ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 607 Bindung SO ₂ CH ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 608 Bindung CH ₃ OCH ₂ C ₆ H ₅ CH ₃ 609 Bindung CF ₃ OCH ₂ C ₆ H ₅ CH ₃ 610 Bindung OCHF ₂ OCH ₂ C ₆ H ₅ CH ₃ 611 CH ₂ F OCH ₂ C ₆ H ₅ CH ₃ 612 CH ₂ C1 OCH ₂ C ₆ H ₅ CH ₃ 613 CH ₂ Br OCH ₂ C ₆ H ₅ CH ₃ 614 CH ₂ NO ₂ OCH ₂ C ₆ H ₅ CH ₃		604	Bindung	NO ₂	OCH ₂ C ₆ H ₅	CH ₃
30 Bindung SO2CH2CH3 OCH2C6H5 CH3 608 Bindung CH3 OCH2C6H5 CH3 609 Bindung CF3 OCH2C6H5 CH3 610 Bindung OCHF2 OCH2C6H5 CH3 611 CH2 F OCH2C6H5 CH3 612 CH2 Cl OCH2C6H5 CH3 613 CH2 Br OCH2C6H5 CH3 614 CH2 NO2 OCH2C6H5 CH3		605	Bindung	SCH ₃	OCH ₂ C ₆ H ₅	CH ₃
607 Bindung SO2CH2CH3 OCH2C6H5 CH3 608 Bindung CH3 OCH2C6H5 CH3 609 Bindung CF3 OCH2C6H5 CH3 610 Bindung OCHF2 OCH2C6H5 CH3 611 CH2 F OCH2C6H5 CH3 612 CH2 C1 OCH2C6H5 CH3 613 CH2 Br OCH2C6H5 CH3 614 CH2 NO2 OCH2C6H5 CH3	2.0	606	Bindung	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	СН3
609 Bindung CF ₃ OCH ₂ C ₆ H ₅ CH ₃ 610 Bindung OCHF ₂ OCH ₂ C ₆ H ₅ CH ₃ 611 CH ₂ F OCH ₂ C ₆ H ₅ CH ₃ 612 CH ₂ C1 OCH ₂ C ₆ H ₅ CH ₃ 613 CH ₂ Br OCH ₂ C ₆ H ₅ CH ₃ 614 CH ₂ NO ₂ OCH ₂ C ₆ H ₅ CH ₃	30	607	Bindung	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃
610 Bindung OCHF ₂ OCH ₂ C ₆ H ₅ CH ₃ 611 CH ₂ F OCH ₂ C ₆ H ₅ CH ₃ 612 CH ₂ C1 OCH ₂ C ₆ H ₅ CH ₃ 613 CH ₂ Br OCH ₂ C ₆ H ₅ CH ₃ 614 CH ₂ NO ₂ OCH ₂ C ₆ H ₅ CH ₃		608	Bindung	CH ₃	OCH ₂ C ₆ H ₅	CH ₃
35 611 CH2 F OCH2C6H5 CH3 612 CH2 Cl OCH2C6H5 CH3 613 CH2 Br OCH2C6H5 CH3 614 CH2 NO2 OCH2C6H5 CH3 615 CH3 CH4 CH4 CH4 CH4 CH4		609	Bindung	CF ₃		CH ₃
612 CH ₂ C1 OCH ₂ C ₆ H ₅ CH ₃ 613 CH ₂ Br OCH ₂ C ₆ H ₅ CH ₃ 614 CH ₂ NO ₂ OCH ₂ C ₆ H ₅ CH ₃		610	Bindung	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₃
613 CH ₂ Br OCH ₂ C ₆ H ₅ CH ₃ 614 CH ₂ NO ₂ OCH ₂ C ₆ H ₅ CH ₃	35	611	CH ₂	F	OCH ₂ C ₆ H ₅	CH ₃
614 CH ₂ NO ₂ OCH ₂ C ₆ H ₅ CH ₃		612	CH ₂	Cl	OCH ₂ C ₆ H ₅	CH ₃
CAS CON		613	CH ₂	Br	OCH ₂ C ₆ H ₅	CH ₃
40 615 CH_2 SCH_3 $OCH_2C_6H_5$ CH_3		614	CH ₂	NO ₂	OCH ₂ C ₆ H ₅	CH ₃
	40	615	CH ₂	SCH ₃	OCH ₂ C ₆ H ₅	CH ₃
CH_2 SO_2CH_3 $OCH_2C_6H_5$ CH_3		616	CH ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃
617 CH_2 $SO_2CH_2CH_3$ $OCH_2C_6H_5$ CH_3		617	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃
618 CH ₂ CH ₃ OCH ₂ C ₆ H ₅ CH ₃		618	CH ₂	CH ₃	OCH ₂ C ₆ H ₅	CH ₃
619 CH ₂ CF ₃ OCH ₂ C ₆ H ₅ CH ₃	45	619	CH ₂	CF ₃	OCH ₂ C ₆ H ₅	CH ₃
CH_2 $OCHF_2$ $OCH_2C_6H_5$ CH_3	± <i>J</i>	620	CH ₂	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₃
621 O F $OCH_2C_6H_5$ CH_3		621	0	F	OCH ₂ C ₆ H ₅	CH ₃

	57						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	622	0	C1	OCH ₂ C ₆ H ₅	CH ₃		
	623	0	Br	OCH ₂ C ₆ H ₅	CH ₃		
5	624	0	NO ₂	OCH ₂ C ₆ H ₅	CH ₃		
	625	0	SCH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	626	0	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	627	0	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
10	628	0	CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
10	629	0	CF ₃	OCH ₂ C ₆ H ₅	CH ₃		
	630	O .	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₃		
	631	S	F	OCH ₂ C ₆ H ₅	CH ₃		
	632	S	Cl	OCH ₂ C ₆ H ₅	CH ₃		
15	633	S	Br	OCH ₂ C ₆ H ₅	CH ₃		
	634	S	NO ₂	OCH ₂ C ₆ H ₅	CH ₃		
	635	S	SCH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	636	S	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
20	637	S	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	638	S	CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	639	S	CF ₃	OCH ₂ C ₆ H ₅	CH ₃		
	640	S	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₃		
25	641	SO ₂	F	OCH ₂ C ₆ H ₅	CH ₃		
	642	SO ₂	C1	OCH ₂ C ₆ H ₅	CH ₃		
	643	SO ₂	Br	OCH ₂ C ₆ H ₅	CH ₃		
	644	SO ₂	NO ₂	OCH ₂ C ₆ H ₅	CH ₃		
30	645	SO ₂	SCH ₃	OCH ₂ C ₆ H ₅	CH ₃		
30	646	SO ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	647	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	648	SO ₂	CH ₃	OCH ₂ C ₆ H ₅	CH ₃		
	649	SO ₂	CF ₃	OCH ₂ C ₆ H ₅	CH ₃		
35	650	SO ₂	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₃		
	651	Bindung	F	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	652	Bindung	Cl	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	653	Bindung	Br	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
40	654	Bindung	NO ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	655	Bindung	SCH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	656	Bindung	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	657	Bindung	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
45	658	Bindung	CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	659	Bindung	CF ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		
	660	Bindung	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃		

	n	Х	R ⁴	R ¹⁰	R ¹¹
5	661	CH ₂	F	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	662	CH ₂	Cl	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	663	CH ₂	Br	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	664	CH ₂	NO ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	665	CH ₂	SCH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
10	666	CH ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	667	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	668	CH ₂	CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	669	CH ₂	CF ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
15	670	CH ₂	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	671	0	F.	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	672	0	C1	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	673	0	Br	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	674	0	NO ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
20	675	0	SCH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	676	0	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	677	0	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
25	678	0	CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	679	0	CF ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	680	0	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	681	S	F	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	682	S	C1	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
30	683	S	Br	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	684	S	NO ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	685	S	SCH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	686	S	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
35	687	S	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	688	S	CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	689	S	CF ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	690	S	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
40	691	SO ₂	F	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	692	SO ₂	Cl	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	693	SO ₂	Br	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	694	SO ₂	NO ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	695	SO ₂	SCH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
45	696	SO ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	697	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	698	SO ₂	CH ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	699	SO ₂	CF ₃	OCH ₂ C ₆ H ₅	CH ₂ CH ₃

59 .

			59 .		
	n	х	R ⁴	R ¹⁰	R ¹¹
	700	SO ₂	OCHF ₂	OCH ₂ C ₆ H ₅	CH ₂ CH ₃
	701	Bindung	F	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
5	702	Bindung	C1	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	703	Bindung	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	704	Bindung	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	705	Bindung	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
10	706	Bindung	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
10	707	Bindung	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	708	Bindung	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	709	Bindung	CF ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	710	Bindung	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
15	711	CH ₂	F	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	712	CH ₂	Cl	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	713	CH ₂	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	714	CH ₂	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
20	715	CH ₂	SCH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH ₃
	716	CH ₂	SO ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	717	CH ₂	SO ₂ CH ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	718	CH ₂	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
25	719	CH ₂	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	720	CH ₂	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	721	0	F	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	722	0	Cl	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
30	723	0	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
30	724	0	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	725	0	SCH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	726	0	SO ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	727	0	SO ₂ CH ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
35	728	0	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	729	0	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	730	0	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	731	S	F	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
40	732	S	Cl	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	733	S	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	734	S	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	735	S	SCH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
45	736	S	SO ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	737	S	SO ₂ CH ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	738	S	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃

					, ,
	n	х	R ⁴	R ¹⁰	R ¹¹
	739	S	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	740	S	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
5	741	SO ₂	F	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	742	SO ₂	Cl	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
l	743	SO ₂	Br	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	744	SO ₂	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
10	745	SO ₂	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
10	746	SO ₂	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	747	SO ₂	SO ₂ CH ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	748	SO ₂	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₃
	749	SO ₂	CF ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₃
15	750	SO ₂	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₃
	751	Bindung	F	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	752	Bindung	Cl .	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
	753	Bindung	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
20	754	Bindung	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
	755	Bindung	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
	756	Bindung	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
	757	Bindung	SO ₂ CH ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
25	758	Bindung	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	759	Bindung	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	760	Bindung	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	761	CH ₂	F	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	762	CH ₂	C1	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
30	763	CH ₂	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	764	CH ₂	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	765	CH ₂	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
	766	CH ₂	SO ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
35	767	CH ₂	SO ₂ CH ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	768	CH ₂	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	769	CH ₂	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	770	CH ₂	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
40	771	0	F	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	772	0	Cl	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
	773	0	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃
	774	0	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
45	775	0	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
45	776	0	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃
	777	0	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃

	61						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	778	0	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
	779	0	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	СН2СН3		
5	780	0	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃		
	781	S	F	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃		
	782	S	Cl	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃		
<u> </u>	783	S	Br	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃		
10	784	S	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃		
10	785	S	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃		
	786	S	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH ₂ CH ₃		
	787	S	SO ₂ CH ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃		
	788	S	CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃		
15	789	S	CF ₃	$OSO_2 (4-CH_3-C_6H_4)$	CH ₂ CH ₃		
	790	S	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
	791	SO ₂	F	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
	792	SO ₂	C1	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
20	793	SO ₂	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
	794	SO ₂	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
	795	SO ₂	SCH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
	796	SO ₂	SO ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
25	797	SO ₂	SO ₂ CH ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
	798	SO ₂	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
	799	SO ₂	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
	800	SO ₂	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH ₂ CH ₃		
30	801	Bindung	F	SCH ₃	CH ₃		
30	802	Bindung	Cl	SCH ₃	CH ₃		
	803	Bindung	Br	SCH ₃	CH ₃		
	804	Bindung	NO ₂	SCH ₃	CH ₃		
	805	Bindung	SCH ₃	SCH ₃	CH ₃		
35	806	Bindung	SO ₂ CH ₃	SCH ₃	CH ₃		
	807	Bindung	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₃		
	808	Bindung	CH ₃	SCH ₃	CH ₃		
	809	Bindung	CF ₃	SCH ₃	CH ₃		
40	810	Bindung	OCHF ₂	SCH ₃	CH ₃		
	811	CH ₂	F	SCH ₃	CH ₃		
	812	CH ₂	Cl	SCH ₃	CH ₃		
	813	CH ₂	Br	SCH ₃	CH ₃		
45	814	CH ₂	NO ₂	SCH ₃	CH ₃		
	815	CH ₂	SCH ₃	SCH ₃	CH ₃		
	816	CH ₂	SO ₂ CH ₃	SCH ₃	CH ₃		

ſ	n	Х	R ⁴	R ¹⁰	R ¹¹
ŀ	817	CH ₂	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₃
5	818	CH ₂	CH ₃	SCH ₃	CH ₃
	819	CH ₂	CF ₃	SCH ₃	CH ₃
	820	CH ₂	OCHF ₂	SCH ₃	CH ₃
ł	821	0	F	SCH ₃	CH ₃
	822	0	Cl	SCH ₃	CH ₃
	823	0	Br	SCH ₃	CH ₃
10	824	0	NO ₂	SCH ₃	CH ₃
	825	0	SCH ₃	SCH ₃	CH ₃
l	826	0	SO ₂ CH ₃	SCH ₃	CH ₃
	827	0	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₃
15	828	0	CH ₃	SCH ₃	CH ₃
	829	0	CF ₃	SCH ₃	CH ₃
	830	0	OCHF ₂	SCH ₃	CH ₃
	831	S	F	SCH ₃	CH ₃
20	832	S	Cl	SCH ₃	CH ₃
	833	S	Br	SCH ₃	CH ₃
	834	S	NO ₂	SCH ₃	CH ₃
	835	S	SCH ₃	SCH ₃	CH ₃
25	836	S	SO ₂ CH ₃	SCH ₃	CH ₃
23	837	S	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₃
	838	S	CH ₃	SCH ₃	CH ₃
	839	S	CF ₃	SCH ₃	CH ₃
20	840	S	OCHF ₂	SCH ₃	CH ₃
30	841	SO ₂	F	SCH ₃	CH ₃
1	842	SO ₂	Cl	SCH ₃	CH ₃
,	843	SO ₂	Br	SCH ₃	CH ₃
	844	SO ₂	NO ₂	SCH ₃	CH ₃
35	845	SO ₂	SCH ₃	SCH ₃	CH ₃
	846	SO ₂	SO ₂ CH ₃	SCH ₃	CH ₃
	847	SO ₂	SO ₂ CH ₂ CH ₃	SCH ₃	
	848	SO ₂	CH ₃	SCH ₃	CH ₃
40	849	SO ₂	CF ₃	SCH ₃	CH ₃
	850	SO ₂	OCHF ₂	SCH ₃	CH ₂ CH ₃
	851	Bindung	F	SCH ₃	CH ₂ CH ₃
	852	Bindung	C1	SCH ₃	CH ₂ CH ₃
45	853	Bindung	Br	SCH ₃	CH ₂ CH ₃
	854	Bindung	NO ₂	SCH ₃	CH ₂ CH ₃
	855	Bindung	SCH ₃	SCH ₃	CITZCIT3

	63						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	856	Bindung	SO ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
	857	Bindung	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
5	858	Bindung	CH ₃	SCH ₃	CH ₂ CH ₃		
	859	Bindung	CF ₃	SCH ₃	CH ₂ CH ₃		
	860	Bindung	OCHF ₂	SCH ₃	CH ₂ CH ₃		
	861	CH ₂	F	SCH ₃	СН2СН3		
10	862	CH ₂	C1	SCH ₃	CH ₂ CH ₃		
10	863	CH ₂	Br	SCH ₃	CH ₂ CH ₃		
	864	CH ₂	NO ₂	SCH ₃	CH ₂ CH ₃		
	865	CH ₂	SCH ₃	SCH ₃	CH ₂ CH ₃		
	866	CH ₂	SO ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
15	867	CH ₂	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
	868	CH ₂	CH ₃	SCH ₃	CH ₂ CH ₃		
	869	CH ₂	CF ₃	SCH ₃	CH ₂ CH ₃		
	870	CH ₂	OCHF ₂	SCH ₃	CH ₂ CH ₃		
20	871	0	F	SCH ₃	CH ₂ CH ₃		
	872	0	Cl	SCH ₃	CH ₂ CH ₃		
	873	0	Br	SCH ₃	CH ₂ CH ₃		
	874	0	NO ₂	SCH ₃	CH ₂ CH ₃		
25	875	0	SCH ₃	SCH ₃	CH ₂ CH ₃		
	876	0	SO ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
	877	0	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
	878	0	CH ₃	SCH ₃	CH ₂ CH ₃		
2.0	879	0	CF ₃	SCH ₃	CH ₂ CH ₃		
30	880	0	OCHF ₂	SCH ₃	CH ₂ CH ₃		
	881	S	F	SCH ₃	CH ₂ CH ₃		
	882	S	Cl	SCH ₃	CH ₂ CH ₃		
	883	S	Br	SCH ₃	CH ₂ CH ₃		
35	884	S	NO ₂	SCH ₃	CH ₂ CH ₃		
	885	S	SCH ₃	SCH ₃	CH ₂ CH ₃		
	886	S	SO ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
	887	S	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₂ CH ₃		
40	888	S	CH ₃	SCH ₃	CH ₂ CH ₃		
	889	S	CF ₃	SCH ₃	CH ₂ CH ₃		
	890	S	OCHF ₂	SCH ₃	CH ₂ CH ₃		
	891	SO ₂	F	SCH ₃	CH ₂ CH ₃		
45	892	SO ₂	Cl	SCH ₃	CH ₂ CH ₃		
±2	893	SO ₂	Br	SCH ₃	CH ₂ CH ₃		
	894	SO ₂	NO ₂	SCH ₃	CH ₂ CH ₃		

			04		· · ·
	n	х	R ⁴	R ¹⁰	R ¹¹
	895	SO ₂	SCH ₃	SCH ₃	CH ₂ CH ₃
	896	SO ₂	SO ₂ CH ₃	SCH ₃	CH ₂ CH ₃
5	897	SO ₂	SO ₂ CH ₂ CH ₃	SCH ₃	CH ₂ CH ₃
	898	SO ₂	CH ₃	SCH ₃	CH ₂ CH ₃
	899	SO ₂	CF ₃	SCH ₃	CH ₂ CH ₃
	900	SO ₂	OCHF ₂	SCH ₃	CH ₂ CH ₃
	901	Bindung	F	Cl	CH ₃
10	902	Bindung	Cl	Cl	CH ₃
	903	Bindung	Br	Cl	CH ₃
	904	Bindung	NO ₂	Cl	CH ₃
	905	Bindung	SCH ₃	Cl	CH ₃
15	906	Bindung	SO ₂ CH ₃	C1	CH ₃
	907	Bindung	SO ₂ CH ₂ CH ₃	Cl	CH ₃
	908	Bindung	CH ₃	Cl	CH ₃
	909	Bindung	CF ₃	Cl	CH ₃
20	910	Bindung	OCHF ₂	Cl	CH ₃
	911	CH ₂	F .	Cl	CH ₃
	912	CH ₂	Cl	C1	CH ₃
	913	CH ₂	Br	Cl	CH ₃
25	914	CH ₂	NO ₂	Cl	CH ₃
2,5	915	CH ₂	SCH ₃	Cl	CH ₃
	916	CH ₂	SO ₂ CH ₃	Cl	CH ₃
	917	CH ₂	SO ₂ CH ₂ CH ₃	Cl	CH ₃
	918	CH ₂	CH ₃	C1	CH ₃
30	919	CH ₂	CF ₃	C1	CH ₃
	920	CH ₂	OCHF ₂	C1	CH ₃
	921	0	F	Cl	CH ₃
	922	0	Cl	C1	CH ₃
35	923	0	Br	Cl	CH ₃
	924	0	NO ₂	C1	CH ₃
	925	0	SCH ₃	Cl	CH ₃
÷	926	0	SO ₂ CH ₃	C1	CH ₃
40	927	0	SO ₂ CH ₂ CH ₃	C1	CH ₃
	928	0	CH ₃	C1	CH ₃
	929	0	CF ₃	C1	CH ₃
	930	0	OCHF ₂	Cl	CH ₃
45	931	S	F	Cl	CH ₃
45	932	S	Cl	Cl	CH ₃
	933	S	Br	Cl	CH ₃

	n	х	R ⁴	R ¹⁰	R ¹¹
	934	S	NO ₂	Cl	CH ₃
	935	S	SCH ₃	Cl	CH ₃
5	936	S	SO ₂ CH ₃	Cl	CH ₃
_	937	S	SO ₂ CH ₂ CH ₃	Cl	CH ₃
	938	S	CH ₃	C1	CH ₃
	939	S	CF ₃	Cl	CH ₃
10	940	S	OCHF ₂	Cl	CH ₃
10	941	SO ₂	F	Cl	CH ₃
	942	SO ₂	Cl	C1	CH ₃
	943	SO ₂	Br	Cl	CH ₃
	944	SO ₂	NO ₂	Cl	CH ₃
15	945	SO ₂	SCH ₃	C1	CH ₃
	946	SO ₂	SO ₂ CH ₃	Cl	CH ₃
	947	SO ₂	SO ₂ CH ₂ CH ₃	Cl	CH ₃
	948	SO ₂	CH ₃	Cl	CH ₃
20	949	SO ₂	CF ₃	Cl	CH ₃
	950	SO ₂	OCHF ₂	Cl	CH ₃
	951	Bindung	F	Cl	CH ₂ CH ₃
	952	Bindung	Cl	Cl	CH ₂ CH ₃
25	953	Bindung	Br	Cl	CH ₂ CH ₃
	954	Bindung	NO ₂	Cl	CH ₂ CH ₃
	955	Bindung	SCH ₃	Cl	CH ₂ CH ₃
	956	Bindung	SO ₂ CH ₃	Cl	CH ₂ CH ₃
2.0	957	Bindung	SO ₂ CH ₂ CH ₃	Cl	CH ₂ CH ₃
30	958	Bindung	CH ₃	Cl	CH ₂ CH ₃
	959	Bindung	CF ₃	Cl	CH ₂ CH ₃
	960	Bindung	OCHF ₂	Cl	CH ₂ CH ₃
	961	CH ₂	F	Cl	CH ₂ CH ₃
35	962	CH ₂	Cl	Cl	CH ₂ CH ₃
	963	CH ₂	Br	Cl	CH ₂ CH ₃
	964	CH ₂	NO ₂	Cl	CH ₂ CH ₃
	965	CH ₂	SCH ₃	Cl	CH ₂ CH ₃
40	966	CH ₂	SO ₂ CH ₃	Cl	CH ₂ CH ₃
	967	CH ₂	SO ₂ CH ₂ CH ₃	Cl	CH ₂ CH ₃
	968	CH ₂	CH ₃	Cl	CH ₂ CH ₃
	969	CH ₂	CF ₃	C1	CH ₂ CH ₃
45	970	CH ₂	OCHF ₂	Cl	CH ₂ CH ₃
	971	0	F	Cl	CH ₂ CH ₃
	972	0	Cl	C1	CH ₂ CH ₃

					• •
ſ	n	х	R ⁴	R ¹⁰	R ¹¹
	973	0	Br	Cl	CH ₂ CH ₃
	974	0	NO ₂	Cl	CH ₂ CH ₃
5	975	0	SCH ₃	Cl	CH ₂ CH ₃
	976	0	SO ₂ CH ₃	Cl	CH ₂ CH ₃
	977	0	SO ₂ CH ₂ CH ₃	C1	CH ₂ CH ₃
	978	0	СН3	C1	CH ₂ CH ₃
	979	0	CF ₃	Cl	CH ₂ CH ₃
10	980	0	OCHF ₂	Cl	CH ₂ CH ₃
	981	S	F	Cl	CH ₂ CH ₃
	982	S	C1	Cl	CH ₂ CH ₃
	983	S	Br	Cl	CH ₂ CH ₃
15	984	S	NO ₂	Cl	CH ₂ CH ₃
	985	S	SCH ₃	C1	CH ₂ CH ₃
	986	S	SO ₂ CH ₃	Cl	CH ₂ CH ₃
	987	S	SO ₂ CH ₂ CH ₃	Cl	CH ₂ CH ₃
20	988	S	CH ₃	Cl	CH ₂ CH ₃
	989	S	CF ₃	Cl	CH ₂ CH ₃
	990	S	OCHF ₂	Cl	CH ₂ CH ₃
	991	SO ₂	F	C1	CH ₂ CH ₃
25	992	SO ₂	Cl	C1	CH ₂ CH ₃
23	993	SO ₂	Br	Cl	CH ₂ CH ₃
	994	SO ₂	NO ₂	C1	CH ₂ CH ₃
	995	SO ₂	SCH ₃	Cl	CH ₂ CH ₃
	996	SO ₂	SO ₂ CH ₃	Cl	CH ₂ CH ₃
30	997	SO ₂	SO ₂ CH ₂ CH ₃	Cl	CH ₂ CH ₃
	998	SO ₂	CH ₃	Cl	CH ₂ CH ₃
	999	SO ₂	CF ₃	Cl	CH ₂ CH ₃
	1000	SO ₂	OCHF ₂	Cl	CH ₂ CH ₃
35	1001	Bindung	F	ОН	CH (CH ₃) ₂
	1002	Bindung	C1	ОН	CH (CH ₃) ₂
	1003	Bindung	Br	ОН	CH (CH ₃) ₂
	1004	Bindung	NO ₂	ОН	CH (CH ₃) ₂
40	1005	Bindung	SCH ₃	ОН	CH (CH ₃) ₂
	1006	Bindung	SO ₂ CH ₃	ОН	CH (CH ₃) ₂
	1007	Bindung	SO ₂ CH ₂ CH ₃	OH	CH(CH ₃) ₂
	1008	Bindung	CH ₃	ОН	CH(CH ₃) ₂
4 -	1009	Bindung	CF ₃	ОН	CH (CH ₃) ₂
45	1010	Bindung	OCHF ₂	ОН	CH (CH ₃) ₂
	1011	CH ₂	F	ОН	CH (CH ₃) ₂

			67		
	n	Х	R ⁴	R ¹⁰	R ¹¹
	1012	CH ₂	Cl	ОН	CH (CH ₃) ₂
	1013	CH ₂	Br	ОН	CH (CH ₃) ₂
5	1014	CH ₂	NO ₂	OH	CH (CH ₃) ₂
	1015	CH ₂	SCH ₃	OH	CH (CH ₃) ₂
	1016	CH ₂	SO ₂ CH ₃	OH	CH (CH ₃) ₂
	1017	CH ₂	SO ₂ CH ₂ CH ₃	OH	CH (CH ₃) ₂
10	1018	CH ₂	CH ₃	ОН	CH (CH ₃) ₂
10	1019	CH ₂	CF ₃	ОН	CH (CH ₃) ₂
	1020	CH ₂	OCHF ₂	OH	CH (CH ₃) ₂
	1021	0	F	ОН	CH (CH ₃) ₂
	1022	0	Cl	ОН	CH (CH ₃) ₂
15	1023	0	Br	ОН	CH (CH ₃) ₂
	1024	0	NO ₂	ОН	CH (CH ₃) ₂
	1025	0	SCH ₃	ОН	CH (CH ₃) ₂
	1026	0	SO ₂ CH ₃	ОН	CH (CH ₃) ₂
20	1027	0	SO ₂ CH ₂ CH ₃	ОН	CH (CH ₃) ₂
	1028	0	CH ₃	OH	CH (CH ₃) ₂
	1029	О .	CF ₃	ОН	CH (CH ₃) ₂
	1030	0	OCHF ₂	ОН	CH (CH ₃) ₂
25	1031	S	F	ОН	CH (CH ₃) ₂
	1032	S	Cl	ОН	CH (CH ₃) ₂
	1033	S	Br	ОН	CH (CH ₃) ₂
	1034	S	NO ₂	ОН	CH (CH ₃) ₂
	1035	S	SCH ₃	ОН	CH (CH ₃) ₂
30	1036	S	SO ₂ CH ₃	ОН	CH (CH ₃) ₂
	1037	S	SO ₂ CH ₂ CH ₃	ОН	CH (CH ₃) ₂
	1038	S	CH ₃	ОН	CH (CH ₃) ₂
	1039	S	CF ₃	ОН	CH (CH ₃) ₂
35	1040	S	OCHF ₂	ОН	CH (CH ₃) ₂
	1041	SO ₂	F	ОН	CH (CH ₃) ₂
	1042	SO ₂	Cl	ОН	CH (CH ₃) ₂
	1043	SO ₂	Br	ОН	CH (CH ₃) ₂
40	1044	SO ₂	NO ₂	ОН	CH (CH ₃) ₂
	1045	SO ₂	SCH ₃	ОН	CH (CH ₃) ₂
	1046	SO ₂	SO ₂ CH ₃	ОН	CH (CH ₃) ₂
	1047	SO ₂	SO ₂ CH ₂ CH ₃	ОН	CH (CH ₃) ₂
45	1048	SO ₂	CH ₃	ОН	CH (CH ₃) ₂
40	1049	SO ₂	CF ₃	ОН	CH (CH ₃) ₂
	1050	SO ₂	OCHF ₂	ОН	CH (CH ₃) ₂

					• •
	n	х	R ⁴	R ¹⁰	R ¹¹
	1051	Bindung	F	ОН	C (CH ₃) ₃
	1052	Bindung	C1	ОН	C (CH ₃) ₃
5	1053	Bindung	Br	ОН	C (CH ₃) ₃
	1054	Bindung	NO ₂	ОН	C (CH ₃) ₃
	1055	Bindung	SCH ₃	ОН	C (CH ₃) ₃
	1056	Bindung	SO ₂ CH ₃	ОН	C (CH ₃) ₃
10	1057	Bindung	SO ₂ CH ₂ CH ₃	ОН	C (CH ₃) ₃
10	1058	Bindung	CH ₃	ОН	C (CH ₃) ₃
	1059	Bindung	CF ₃	ОН	C (CH ₃) ₃
	1060	Bindung	OCHF ₂	ОН	C (CH ₃) ₃
	1061	CH ₂	F	ОН	C (CH ₃) ₃
15	1062	CH ₂	Cl	ОН	C (CH ₃) ₃
	1063	CH ₂	Br	ОН	C (CH ₃) ₃
	1064	CH ₂	NO ₂	ОН	C (CH ₃) ₃
	1065	CH ₂	SCH ₃	ОН	C (CH ₃) ₃
20	1066	CH ₂	SO ₂ CH ₃	ОН	C (CH ₃) ₃
	1067	CH ₂	SO ₂ CH ₂ CH ₃	ОН	C (CH ₃) ₃
	1068	CH ₂	CH ₃	ОН	C (CH ₃) ₃
	1069	CH ₂	CF ₃	ОН	C (CH ₃) ₃
25	1070	CH ₂	OCHF ₂	ОН	C (CH ₃) ₃
	1071	0	F	ОН	C (CH ₃) ₃
	1072	0	Cl	ОН	C (CH ₃) ₃
	1073	0	Br	ОН	C (CH ₃) ₃
20	1074	0	NO ₂	ОН	C (CH ₃) ₃
30	1075	0	SCH ₃	ОН	C (CH ₃) ₃
	1076	0	SO ₂ CH ₃	ОН	C (CH ₃) ₃
	1077	0	SO ₂ CH ₂ CH ₃	ОН	C (CH ₃) ₃
	1078	0	CH ₃	ОН	C (CH ₃) ₃
35	1079	0	CF ₃	ОН	C (CH ₃) ₃
	1080	0	OCHF ₂	ОН	C (CH ₃) ₃
	1081	S	F	ОН	C (CH ₃) ₃
	1082	S	Cl	ОН	C (CH ₃) ₃
40	1083	S	Br	ОН	C (CH ₃) ₃
	1084	S	NO ₂	ОН	C (CH ₃) ₃
	1085	S	SCH ₃	ОН	C (CH ₃) ₃
	1086	S	SO ₂ CH ₃	ОН	C (CH ₃) ₃
45	1087	S	SO ₂ CH ₂ CH ₃	ОН	C (CH ₃) ₃
4J	1088	S	СH ₃	ОН	C (CH ₃) ₃
	1089	S	CF ₃	ОН	C (CH ₃) ₃

			69		
	n	X	R ⁴	R ¹⁰	R ¹¹
	1090	S	OCHF ₂	ОН	C (CH ₃) ₃
	1091	SO ₂	F	ОН	C (CH ₃) ₃
5	1092	SO ₂	Cl	ОН	C (CH ₃) ₃
	1093	SO ₂	Br	ОН	C (CH ₃) ₃
	1094	SO ₂	NO ₂	ОН	C (CH ₃) ₃
	1095	SO ₂	SCH ₃	OH	C (CH ₃) ₃
10	1096	SO ₂	SO ₂ CH ₃	ОН	C (CH ₃) ₃
10	1097	SO ₂	SO ₂ CH ₂ CH ₃	ОН	C (CH ₃) ₃
	1098	SO ₂	CH ₃	ОН	C (CH ₃) ₃
	1099	SO ₂	CF ₃	ОН	C (CH ₃) ₃
	1100	SO ₂	OCHF ₂	ОН	C (CH ₃) ₃
15	1101	Bindung	F	OCOC ₆ H ₅	CH (CH ₃) ₂
	1102	Bindung	Cl	OCOC ₆ H ₅	CH (CH ₃) ₂
	1103	Bindung	Br	OCOC ₆ H ₅	CH (CH ₃) ₂
	1104 ·	Bindung	NO ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
20	1105	Bindung	SCH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	1106	Bindung	SO ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	1107	Bindung	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	1108	Bindung	CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
25	1109	Bindung	CF ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	1110	Bindung	OCHF ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
	1111	CH ₂	F	OCOC ₆ H ₅	CH (CH ₃) ₂
	1112	CH ₂	Cl	OCOC ₆ H ₅	CH (CH ₃) ₂
20	1113	CH ₂	Br	OCOC ₆ H ₅	CH (CH ₃) ₂
30	1114	CH ₂	NO ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
	1115	CH ₂	SCH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	1116	CH ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	1117	CH ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
35	1118	CH ₂	CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	1119	CH ₂	CF ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	1120	CH ₂	OCHF ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
	1121	0	F	OCOC ₆ H ₅	CH (CH ₃) ₂
40	1122	0	Cl	OCOC ₆ H ₅	CH (CH ₃) ₂
	1123	0	Br	OCOC ₆ H ₅	CH (CH ₃) ₂
	1124	0	NO ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
	1125	0	SCH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
45	1126	0	SO ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
±2	1127	0	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
	1128	0	CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂

Di Artiengeseitschaft 550252 0.2. 0050, 15020 2

1129	1			,	,	
1130			X	R ⁴	R ¹⁰	R ¹¹
1131 S		1129	0	CF ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
1132 S		1130	0	OCHF ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
1133 S	5	1131	S	F	OCOC ₆ H ₅	CH (CH ₃) ₂
1134 S		1132	S	C1	OCOC ₆ H ₅	CH (CH ₃) ₂
1135 S S SCH3 OCOC6H5 CH (CH3) 2 1136 S SO2CH3 OCOC6H5 CH (CH3) 2 1137 S SO2CH2CH3 OCOC6H5 CH (CH3) 2 1138 S CH3 OCOC6H5 CH (CH3) 2 1139 S CF3 OCOC6H5 CH (CH3) 2 1140 S OCHF2 OCOC6H5 CH (CH3) 2 1141 SO2 F OCOC6H5 CH (CH3) 2 1142 SO2 C1 OCOC6H5 CH (CH3) 2 1143 SO2 BF OCOC6H5 CH (CH3) 2 1144 SO2 BF OCOC6H5 CH (CH3) 2 1145 SO2 SCH3 OCOC6H5 CH (CH3) 2 1146 SO2 SCH3 OCOC6H5 CH (CH3) 2 1147 SO2 SCH3 OCOC6H5 CH (CH3) 2 1148 SO2 CH3 OCOC6H5 CH (CH3) 2 1149 SO2 CH3 OCOC6H5 CH (CH3) 2 1149 SO2 CH3 OCOC6H5 CH (CH3) 2 1150 SO2 OCHF2 OCOC6H5 CH (CH3) 2 1151 Bindung F OCOC6H5 CH (CH3) 2 1152 Bindung C1 OCOC6H5 CH (CH3) 3 1153 Bindung BF OCOC6H5 C (CH3) 3 1155 Bindung SCH3 OCOC6H5 C (CH3) 3 1156 Bindung SCH3 OCOC6H5 C (CH3) 3 1157 Bindung SCH3 OCOC6H5 C (CH3) 3 1158 Bindung CH3 OCOC6H5 C (CH3) 3 1159 Bindung CH3 OCOC6H5 C (CH3) 3 1159 Bindung CH3 OCOC6H5 C (CH3) 3 1150 CH2 CH3 CH (CH3) C (CH3) 3 1151 CH2 F OCOC6H5 C (CH3) 3 1152 CH3		1133	S	Br	OCOC ₆ H ₅	CH (CH ₃) ₂
100 1136 S SO2CH3 OCOC6H5 CH (CH3) 2 1137 S SO2CH2CH3 OCOC6H5 CH (CH3) 2 1138 S CH3 OCOC6H5 CH (CH3) 2 1139 S CF3 OCOC6H5 CH (CH3) 2 1140 S OCHF2 OCOC6H5 CH (CH3) 2 1141 SO2 F OCOC6H5 CH (CH3) 2 1142 SO2 C1 OCOC6H5 CH (CH3) 2 1144 SO2 Br OCOC6H5 CH (CH3) 2 1145 SO2 Br OCOC6H5 CH (CH3) 2 1146 SO2 SCH3 OCOC6H5 CH (CH3) 2 1147 SO2 SCH3 OCOC6H5 CH (CH3) 2 1148 SO2 SCH3 OCOC6H5 CH (CH3) 2 1149 SO2 CH3 OCOC6H5 CH (CH3) 2 1150 SO2 OCHF2 OCOC6H5 CH (CH3) 2 1151 Bindung F OCOC6H5 CH (CH3) 2 1152 Bindung C1 OCOC6H5 CH (CH3) 3 1153 Bindung Br OCOC6H5 CH (CH3) 3 1155 Bindung SCH3 OCOC6H5 CH (CH3) 3 1156 Bindung SCH3 OCOC6H5 CH (CH3) 3 1157 Bindung SCH3 OCOC6H5 CH (CH3) 3 1158 Bindung CH3 OCOC6H5 CH (CH3) 3 1159 Bindung CH3 OCOC6H5 CH (CH3) 3 1159 Bindung CH3 OCOC6H5 CH (CH3) 3 1150 CH2 FF OCOC6H5 CH (CH3) 3 1151 CH2 FF OCOC6H5 CH (CH3) 3 1152 CH3 CH (CH3) CH3		1134	S	NO ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
1136 S SO ₂ CH ₃ OCOC ₆ H ₅ CH (CH ₃) ₂ 1137 S SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ CH (CH ₃) ₂ 1138 S CH ₃ OCOC ₆ H ₅ CH (CH ₃) ₂ 1139 S CF ₃ OCOC ₆ H ₅ CH (CH ₃) ₂ 1140 S OCHF ₂ OCOC ₆ H ₅ CH (CH ₃) ₂ 1141 SO ₂ F OCOC ₆ H ₅ CH (CH ₃) ₂ 1142 SO ₂ CI OCOC ₆ H ₅ CH (CH ₃) ₂ 1143 SO ₂ Br OCOC ₆ H ₅ CH (CH ₃) ₂ 1144 SO ₂ NO ₂ OCOC ₆ H ₅ CH (CH ₃) ₂ 1145 SO ₂ SCH ₃ OCOC ₆ H ₅ CH (CH ₃) ₂ 1146 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ CH (CH ₃) ₂ 1147 SO ₂ SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ CH (CH ₃) ₂ 1148 SO ₂ CH ₃ OCOC ₆ H ₅ CH (CH ₃) ₂ 1149 SO ₂ CF ₃ OCOC ₆ H ₅ CH (CH ₃) ₂ 1150 SO ₂ OCHF ₂ OCOC ₆ H ₅ CH (CH ₃) ₂ 1151 Bindung F OCOC ₆ H ₅ CH (CH ₃) ₃ 1152 Bindung CI OCOC ₆ H ₅ C (CH ₃) ₃ 1153 Bindung Br OCOC ₆ H ₅ C (CH ₃) ₃ 1154 Bindung SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1155 Bindung SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1156 Bindung SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1157 Bindung SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1158 Bindung CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1159 Bindung CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1159 Bindung CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1159 Bindung CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1160 Bindung CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1161 CH ₂ F OCOC ₆ H ₅ C (CH ₃) ₃ 1162 CH ₂ CI OCOC ₆ H ₅ C (CH ₃) ₃ 1163 CH ₂ Br OCOC ₆ H ₅ C (CH ₃) ₃ 1164 CH ₂ Br OCOC ₆ H ₅ C (CH ₃) ₃ 1165 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1167 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1168	10	1135	S	SCH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
1138 S	10	1136	S	SO ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
1139 S		1137	S	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
1140 S		1138	S	CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
1141 SO2 F		1139	S	CF ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
1142 SO2	15	1140	S	OCHF ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
1143 SO2 Br OCOC6H5 CH (CH3) 2		1141	SO ₂	F	OCOC ₆ H ₅	CH (CH ₃) ₂
1144 SO2		1142	SO ₂	C1	OCOC ₆ H ₅	CH (CH ₃) ₂
1145 SO2 SCH3 OCOC ₆ H ₅ CH (CH ₃) 2 1146 SO2 SO ₂ CH ₃ OCOC ₆ H ₅ CH (CH ₃) 2 1147 SO2 SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ CH (CH ₃) 2 1148 SO2 CH ₃ OCOC ₆ H ₅ CH (CH ₃) 2 1149 SO2 CF ₃ OCOC ₆ H ₅ CH (CH ₃) 2 1150 SO ₂ OCHF ₂ OCOC ₆ H ₅ CH (CH ₃) 2 1151 Bindung F OCOC ₆ H ₅ C (CH ₃) 3 1152 Bindung C1 OCOC ₆ H ₅ C (CH ₃) 3 1153 Bindung Br OCOC ₆ H ₅ C (CH ₃) 3 1154 Bindung NO2 OCOC ₆ H ₅ C (CH ₃) 3 1155 Bindung SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1156 Bindung SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1157 Bindung SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1158 Bindung CF ₃ OCOC ₆ H ₅ C (CH ₃) 3 1159 Bindung CF ₃ OCOC ₆ H ₅ C (CH ₃) 3 1160 Bindung OCHF ₂ OCOC ₆ H ₅ C (CH ₃) 3 1161 CH ₂ F OCOC ₆ H ₅ C (CH ₃) 3 1162 CH ₂ C1 OCOC ₆ H ₅ C (CH ₃) 3 1164 CH ₂ Br OCOC ₆ H ₅ C (CH ₃) 3 1165 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1167 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1168 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1169 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1160 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) 3 1160 CH ₂ SCH ₃ OCOC ₆ H ₅		1143	SO ₂	Br	OCOC ₆ H ₅	CH (CH ₃) ₂
1146	20	1144	SO ₂	NO ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
1147 SO2 SO2CH2CH3 OCOC6H5 CH (CH3) 2 1148 SO2 CH3 OCOC6H5 CH (CH3) 2 1149 SO2 CF3 OCOC6H5 CH (CH3) 2 1150 SO2 OCHF2 OCOC6H5 CH (CH3) 2 1151 Bindung F OCOC6H5 C (CH3) 3 1152 Bindung Br OCOC6H5 C (CH3) 3 1153 Bindung Br OCOC6H5 C (CH3) 3 1154 Bindung NO2 OCOC6H5 C (CH3) 3 1155 Bindung SCH3 OCOC6H5 C (CH3) 3 1156 Bindung SO2CH3 OCOC6H5 C (CH3) 3 1157 Bindung SO2CH3 OCOC6H5 C (CH3) 3 1158 Bindung CH3 OCOC6H5 C (CH3) 3 1159 Bindung CF3 OCOC6H5 C (CH3) 3 1160 Bindung OCHF2 OCOC6H5 C (CH3) 3 1161 CH2 F OCOC6H5 C (CH3) 3 1162 CH2 C1 OCOC6H5 C (CH3) 3 1164 CH2 Br OCOC6H5 C (CH3) 3 1165 CH2 SCH3 OCOC6H5 C (CH3) 3 1166 CH2 SO2CH3 OCOC6H5 C (CH3) 3 1167 CH2 SCH3 OCOC6H5 C (CH3) 3 1168 CH2 SO2CH3 OCOC6H5 C (CH3) 3 1169 CH2 SCH3 OCOC6H5 C (CH3) 3 1160 CH2 SCH3 OCOC6H5 C (CH3) 3 1161 CH2 CH2 CH3 CH3 CH3 CH3 CH3 CH3		1145	SO ₂	SCH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
1148 SO2 CH3 OCOC6H5 CH (CH3) 2 1149 SO2 CF3 OCOC6H5 CH (CH3) 2 1150 SO2 OCHF2 OCOC6H5 CH (CH3) 2 1151 Bindung F OCOC6H5 C (CH3) 3 1152 Bindung Br OCOC6H5 C (CH3) 3 1153 Bindung Br OCOC6H5 C (CH3) 3 1154 Bindung NO2 OCOC6H5 C (CH3) 3 1155 Bindung SCH3 OCOC6H5 C (CH3) 3 1156 Bindung SO2CH3 OCOC6H5 C (CH3) 3 1157 Bindung SO2CH2CH3 OCOC6H5 C (CH3) 3 1158 Bindung CH3 OCOC6H5 C (CH3) 3 1159 Bindung CF3 OCOC6H5 C (CH3) 3 1160 Bindung OCHF2 OCOC6H5 C (CH3) 3 1161 CH2 F OCOC6H5 C (CH3) 3 1162 CH2 C1 OCOC6H5 C (CH3) 3 1163 CH2 Br OCOC6H5 C (CH3) 3 1165 CH2 SCH3 OCOC6H5 C (CH3) 3 1165 CH2 SCH3 OCOC6H5 C (CH3) 3 1166 CH2 SCH3 OCOC6H5 C (CH3) 3 1166 CH2 SCH3 OCOC6H5 C (CH3) 3 1166 CH2 SCH3 OCOC6H5 C (CH3) 3 1167 CH2 SCH3 OCOC6H5 C (CH3) 3 1166 CH2 SO2CH3 OCOC6H5 C (CH3) 3 1167 CH2 SCH3 OCOC6H5 C (CH3) 3 1168 CH2 SCH3 OCOC6H5 C (CH3) 3 1169 CH2 SCH3 OCOC6H5 C (CH3) 3 1160 CH2 SCH3 OCOC6H5 C (CH3) 3 1161 CH2 CH2 SCH3 OCOC6H5 C (CH3) 3 1161 CH2		1146	SO ₂	SO ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
1149 SO ₂ CF ₃ OCOC ₆ H ₅ CH (CH ₃) ₂ 1150 SO ₂ OCHF ₂ OCOC ₆ H ₅ CH (CH ₃) ₂ 1151 Bindung F OCOC ₆ H ₅ C(CH ₃) ₃ 1152 Bindung Br OCOC ₆ H ₅ C(CH ₃) ₃ 1153 Bindung Br OCOC ₆ H ₅ C(CH ₃) ₃ 1154 Bindung NO ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1155 Bindung SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1156 Bindung SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1157 Bindung SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1158 Bindung CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1159 Bindung CF ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1160 Bindung OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1161 CH ₂ F OCOC ₆ H ₅ C(CH ₃) ₃ 1162 CH ₂ C1 OCOC ₆ H ₅ C(CH ₃) ₃ 1163 CH ₂ Br OCOC ₆ H ₅ C(CH ₃) ₃ 1164 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1165 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃		1147	SO ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
1149 SO2 CF3 OCOC ₆ H ₅ CH (CH ₃) ₂ 1150 SO2 OCHF ₂ OCOC ₆ H ₅ CH (CH ₃) ₂ 1151 Bindung F OCOC ₆ H ₅ C (CH ₃) ₃ 1152 Bindung C1 OCOC ₆ H ₅ C (CH ₃) ₃ 1153 Bindung Br OCOC ₆ H ₅ C (CH ₃) ₃ 1154 Bindung NO ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1155 Bindung SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1156 Bindung SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1157 Bindung SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1158 Bindung CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1159 Bindung CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1160 Bindung OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1161 CH ₂ F OCOC ₆ H ₅ C (CH ₃) ₃ 1162 CH ₂ C1 OCOC ₆ H ₅ C (CH ₃) ₃ 1163 CH ₂ Br OCOC ₆ H ₅ C (CH ₃) ₃ 1164 CH ₂ NO ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1165 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃	25	1148	SO ₂	CH ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
1151 Bindung F OCOC6H5 C(CH3)3 1152 Bindung C1 OCOC6H5 C(CH3)3 1153 Bindung Br OCOC6H5 C(CH3)3 1154 Bindung NO2 OCOC6H5 C(CH3)3 1155 Bindung SCH3 OCOC6H5 C(CH3)3 1156 Bindung SO2CH3 OCOC6H5 C(CH3)3 1157 Bindung SO2CH3 OCOC6H5 C(CH3)3 1158 Bindung CH3 OCOC6H5 C(CH3)3 1159 Bindung CF3 OCOC6H5 C(CH3)3 1160 Bindung OCHF2 OCOC6H5 C(CH3)3 1161 CH2 F OCOC6H5 C(CH3)3 1162 CH2 C1 OCOC6H5 C(CH3)3 1163 CH2 Br OCOC6H5 C(CH3)3 1164 CH2 NO2 OCOC6H5 C(CH3)3 1165 CH2 SCH3 OCOC6H5 C(CH3)3 1166 CH2 SCH3 OCOC6H5 C(CH3)3 1167 CH2 Br OCOC6H5 C(CH3)3 1168 CH2 SCH3 OCOC6H5 C(CH3)3 1169 CH2 SCH3 OCOC6H5 C(CH3)3 1160 CH2 SCH3 OCOC6H5 C(CH3)3		1149	SO ₂	CF ₃	OCOC ₆ H ₅	CH (CH ₃) ₂
1152 Bindung C1 OCOC ₆ H ₅ C(CH ₃) ₃ 1153 Bindung Br OCOC ₆ H ₅ C(CH ₃) ₃ 1154 Bindung NO ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1155 Bindung SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1156 Bindung SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1157 Bindung SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1158 Bindung CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1159 Bindung CF ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1160 Bindung OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1161 CH ₂ F OCOC ₆ H ₅ C(CH ₃) ₃ 1162 CH ₂ C1 OCOC ₆ H ₅ C(CH ₃) ₃ 1163 CH ₂ Br OCOC ₆ H ₅ C(CH ₃) ₃ 1164 CH ₂ NO ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1165 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃		1150	SO ₂	OCHF ₂	OCOC ₆ H ₅	CH (CH ₃) ₂
1153 Bindung Br OCOC6H5 C(CH3)3 1154 Bindung NO2 OCOC6H5 C(CH3)3 1155 Bindung SCH3 OCOC6H5 C(CH3)3 1156 Bindung SO2CH3 OCOC6H5 C(CH3)3 1157 Bindung SO2CH2CH3 OCOC6H5 C(CH3)3 1158 Bindung CH3 OCOC6H5 C(CH3)3 1159 Bindung CF3 OCOC6H5 C(CH3)3 1160 Bindung OCHF2 OCOC6H5 C(CH3)3 1161 CH2 F OCOC6H5 C(CH3)3 1162 CH2 C1 OCOC6H5 C(CH3)3 1163 CH2 Br OCOC6H5 C(CH3)3 1164 CH2 NO2 OCOC6H5 C(CH3)3 1165 CH2 SCH3 OCOC6H5 C(CH3)3 1166 CH2 SO2CH3 OCOC6H5 C(CH3)3		1151	Bindung	F	OCOC ₆ H ₅	C (CH ₃) ₃
1153 Bindung Br OCOC6H5 C (CH3)3 1154 Bindung NO2 OCOC6H5 C (CH3)3 1155 Bindung SCH3 OCOC6H5 C (CH3)3 1156 Bindung SO2CH3 OCOC6H5 C (CH3)3 1157 Bindung SO2CH2CH3 OCOC6H5 C (CH3)3 1158 Bindung CH3 OCOC6H5 C (CH3)3 1159 Bindung CF3 OCOC6H5 C (CH3)3 1160 Bindung OCHF2 OCOC6H5 C (CH3)3 1161 CH2 F OCOC6H5 C (CH3)3 1162 CH2 C1 OCOC6H5 C (CH3)3 1163 CH2 Br OCOC6H5 C (CH3)3 1164 CH2 NO2 OCOC6H5 C (CH3)3 1165 CH2 SCH3 OCOC6H5 C (CH3)3 1166 CH2 SCH3 OCOC6H5 C (CH3)3	2.0	1152	Bindung	Cl	OCOC ₆ H ₅	C(CH ₃) ₃
1155 Bindung SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1156 Bindung SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1157 Bindung SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1158 Bindung CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1159 Bindung CF ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1160 Bindung OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1161 CH ₂ F OCOC ₆ H ₅ C(CH ₃) ₃ 1162 CH ₂ C1 OCOC ₆ H ₅ C(CH ₃) ₃ 1163 CH ₂ Br OCOC ₆ H ₅ C(CH ₃) ₃ 1164 CH ₂ NO ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1165 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1166 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃	30	1153	Bindung	Br	OCOC ₆ H ₅	C (CH ₃) ₃
1156 Bindung SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1157 Bindung SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1158 Bindung CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1159 Bindung CF ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1160 Bindung OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1161 CH ₂ F OCOC ₆ H ₅ C(CH ₃) ₃ 1162 CH ₂ C1 OCOC ₆ H ₅ C(CH ₃) ₃ 1163 CH ₂ Br OCOC ₆ H ₅ C(CH ₃) ₃ 1164 CH ₂ NO ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1165 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1166 CH ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃		1154	Bindung	NO ₂	OCOC ₆ H ₅	C (CH ₃) ₃
1157 Bindung SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1158 Bindung CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1159 Bindung CF ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1160 Bindung OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1161 CH ₂ F OCOC ₆ H ₅ C(CH ₃) ₃ 1162 CH ₂ C1 OCOC ₆ H ₅ C(CH ₃) ₃ 1163 CH ₂ Br OCOC ₆ H ₅ C(CH ₃) ₃ 1164 CH ₂ NO ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1165 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1166 CH ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃		1155	Bindung	SCH ₃	OCOC ₆ H ₅	
1158 Bindung CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1159 Bindung CF ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1160 Bindung OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1161 CH ₂ F OCOC ₆ H ₅ C(CH ₃) ₃ 1162 CH ₂ C1 OCOC ₆ H ₅ C(CH ₃) ₃ 1163 CH ₂ Br OCOC ₆ H ₅ C(CH ₃) ₃ 1164 CH ₂ NO ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1165 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1166 CH ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃		1156	Bindung	SO ₂ CH ₃	OCOC ₆ H ₅	C (CH ₃) ₃
1159 Bindung CF ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1160 Bindung OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1161 CH ₂ F OCOC ₆ H ₅ C(CH ₃) ₃ 1162 CH ₂ Cl OCOC ₆ H ₅ C(CH ₃) ₃ 1163 CH ₂ Br OCOC ₆ H ₅ C(CH ₃) ₃ 1164 CH ₂ NO ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1165 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1166 CH ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃	35	1157	Bindung	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	
1160 Bindung OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1161 CH ₂ F OCOC ₆ H ₅ C(CH ₃) ₃ 1162 CH ₂ C1 OCOC ₆ H ₅ C(CH ₃) ₃ 1163 CH ₂ Br OCOC ₆ H ₅ C(CH ₃) ₃ 1164 CH ₂ NO ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1165 CH ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1166 CH ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃		1158	Bindung	CH ₃	OCOC ₆ H ₅	C (CH ₃) ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1159	Bindung	CF ₃	OCOC ₆ H ₅	C (CH ₃) ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1160	Bindung	OCHF ₂	OCOC ₆ H ₅	C (CH ₃) ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	1161	CH ₂	F	OCOC ₆ H ₅	C (CH ₃) ₃
		1162	CH ₂	Cl	OCOC ₆ H ₅	C (CH ₃) ₃
45 CH ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1166 CH ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃		1163	CH ₂	Br	OCOC ₆ H ₅	C (CH ₃) ₃
1166 CH ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃		1164	CH ₂	NO ₂	OCOC ₆ H ₅	C (CH ₃) ₃
1166 CH_2 SO_2CH_3 $OCOC_6H_5$ $C(CH_3)_3$	4 5	1165	CH ₂	SCH ₃	OCOC ₆ H ₅	C (CH ₃) ₃
1167	#3	1166	CH ₂	SO ₂ CH ₃	OCOC ₆ H ₅	C (CH ₃) ₃
CH_2 CH_2 CH_3 $CCCC_6H_5$ $CCCC_6H_3$ $CCCC_6H_5$		1167	CH ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	C (CH ₃) ₃

7	4	
•		

n		71						
1169		n	х	R ⁴	R ¹⁰	R ¹¹		
1170		1168	CH ₂	CH ₃	OCOC ₆ H ₅	C (CH ₃) ₃		
1171 O F OCOC6H5 C (CH3)3 1172 O C1 OCOC6H5 C (CH3)3 1173 O Br OCOC6H5 C (CH3)3 1174 O NO2 OCOC6H5 C (CH3)3 1175 O SCH3 OCOC6H5 C (CH3)3 1176 O SO2CH3 OCOC6H5 C (CH3)3 1177 O SO2CH3 OCOC6H5 C (CH3)3 1178 O CH3 OCOC6H5 C (CH3)3 1179 O CF3 OCOC6H5 C (CH3)3 1179 O CF3 OCOC6H5 C (CH3)3 1180 O OCHF2 OCOC6H5 C (CH3)3 1181 S F OCOC6H5 C (CH3)3 1182 S C1 OCOC6H5 C (CH3)3 1184 S NO2 OCOC6H5 C (CH3)3 1184 S NO2 OCOC6H5 C (CH3)3 1185 S SCH3 OCOC6H5 C (CH3)3 1186 S SO2CH3 OCOC6H5 C (CH3)3 1187 S SO2CH3 OCOC6H5 C (CH3)3 1188 S CH3 OCOC6H5 C (CH3)3 1189 S CF3 OCOC6H5 C (CH3)3 1189 S OCF3 OCOC6H5 C (CH3)3 1190 S OCHF2 OCOC6H5 C (CH3)3 1191 SO2 F OCOC6H5 C (CH3)3 1192 SO2 C1 OCOC6H5 C (CH3)3 1193 SO2 Br OCOC6H5 C (CH3)3 1194 SO2 NO2 OCOC6H5 C (CH3)3 1195 SO2 SCH3 OCOC6H5 C (CH3)3 1196 SO2 SO2CH3 OCOC6H5 C (CH3)3 1197 SO2 SO2CH3 OCOC6H5 C (CH3)3 1198 SO2 C1 OCOC6H5 C (CH3)3 1199 SO2 CF3 OCOC6H5 C (CH3)3 1199 SO2 CH3 OCOC6H5 C (CH3)3 1199 SO2 CH5 OCOC6H5 C (CH3)3 1190 SO2 OCHF2 OCOC6H5 C (CH3)3 1190 SO3 OCOC6H5 C (CH3)3 CH(CH3)2 1200 SO3 OCHF2 OCOC6H5 C (CH3)3 1201 Sindung F OCOC(CH3)3 CH(CH3)2 1203 Sindung Br OCOC(CH3)3 CH(CH3)2		1169	CH ₂	CF ₃	OCOC ₆ H ₅	C (CH ₃) ₃		
1172	5	1170	CH ₂	OCHF ₂	OCOC ₆ H ₅	C (CH ₃) ₃		
1173		1171	0	F	OCOC ₆ H ₅	C (CH ₃) ₃		
1174		1172	0	Cl	OCOC ₆ H ₅	C (CH ₃) ₃		
1075		1173	0	Br	OCOC ₆ H ₅	C (CH ₃) ₃		
1175 O SCH3 OCCC6H5 C (CH3)3 1176 O SO2CH3 OCCC6H5 C (CH3)3 1177 O SO2CH2CH3 OCCC6H5 C (CH3)3 1178 O CH3 OCCC6H5 C (CH3)3 1178 O CH3 OCCC6H5 C (CH3)3 1179 O CF3 OCCC6H5 C (CH3)3 1180 O OCCC6H5 C (CH3)3 1181 S F OCCC6H5 C (CH3)3 1182 S C1 OCCC6H5 C (CH3)3 1182 S C1 OCCC6H5 C (CH3)3 1184 S NO2 OCCC6H5 C (CH3)3 1185 S SCH3 OCCC6H5 C (CH3)3 1186 S SCH3 OCCC6H5 C (CH3)3 1187 S SO2CH3 OCCC6H5 C (CH3)3 1188 S CH3 OCCC6H5 C (CH3)3 1189 S CF3 OCCC6H5 C (CH3)3 1190 S OCHF2 OCCC6H5 C (CH3)3 1191 SO2 F OCCC6H5 C (CH3)3 1191 SO2 F OCCC6H5 C (CH3)3 1192 SO2 C1 OCCC6H5 C (CH3)3 1193 SO2 Br OCCC6H5 C (CH3)3 1194 SO2 NO2 OCCC6H5 C (CH3)3 1195 SO2 SCH3 OCCC6H5 C (CH3)3 1197 SO2 C1 OCCC6H5 C (CH3)3 1199 SO2 C1 OCCC6H5 C (CH3)3 1190 SO2 C1 OCCC6H5 C (CH3)3 1191 SO2 C1 C1 OCCCCCH3 C CCCCH3)3 1191 SO2 C1 C1 OCCCCCH3 C CCCCH3 C CCCCH3 C CCCCCH3 C CCCCCCCC	10	1174	0	NO ₂	OCOC ₆ H ₅	C (CH ₃) ₃		
1177	10	1175	0	SCH ₃	OCOC ₆ H ₅			
1178		1176	0	SO ₂ CH ₃	OCOC ₆ H ₅	C (CH ₃) ₃		
155 1179 0 CF3 OCCG6H5 C (CH3)3 1180 0 OCHF2 OCCG6H5 C (CH3)3 1181 S F OCCG6H5 C (CH3)3 1182 S C1 OCCG6H5 C (CH3)3 1182 S C1 OCCG6H5 C (CH3)3 1183 S Br OCCG6H5 C (CH3)3 1184 S NO2 OCCG6H5 C (CH3)3 1185 S SCH3 OCCG6H5 C (CH3)3 1186 S SO2CH3 OCCG6H5 C (CH3)3 1187 S SO2CH2CH3 OCCG6H5 C (CH3)3 1189 S CF3 OCCG6H5 C (CH3)3 1190 S OCHF2 OCCG6H5 C (CH3)3 1191 SO2 F OCCG6H5 C (CH3)3 1192 SO2 C1 OCCG6H5 C (CH3)3 1194 SO2 Br OCCG6H5 C (CH3)3 1195 SO2 SCH3 OCCG6H5 C (CH3)3 1196 SO2 SCH3 OCCG6H5 C (CH3)3 1197 SO2 C1 OCCG6H5 C (CH3)3 1198 SO2 C1 OCCG6H5 C (CH3)3 1199 SO2 C1 OCCG6H5 C (CH3)3 1200 SO2 OCHF2 OCCCG6H5 C (CH3)3 1201 Bindung F OCCC (CH3)3 CH (CH3)2 1202 Bindung Br OCCC (CH3)3 CH (CH3)2 1203 Bindung Br OCCC (CH3)3 CH (CH3)2		1177	0	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅	C (CH ₃) ₃		
1180 O OCHF2 OCOC6H5 C (CH3)3 1181 S F OCOC6H5 C (CH3)3 1182 S C1 OCOC6H5 C (CH3)3 1183 S BT OCOC6H5 C (CH3)3 1184 S NO2 OCOC6H5 C (CH3)3 1185 S SCH3 OCOC6H5 C (CH3)3 1186 S SO2CH3 OCOC6H5 C (CH3)3 1187 S SO2CH3 OCOC6H5 C (CH3)3 1189 S CF3 OCOC6H5 C (CH3)3 1190 S OCHF2 OCOC6H5 C (CH3)3 1191 SO2 F OCOC6H5 C (CH3)3 1192 SO2 C1 OCOC6H5 C (CH3)3 1194 SO2 BT OCOC6H5 C (CH3)3 1195 SO2 SCH3 1196 SO2 SCH3 1197 SO2 SCH3 1197 SO2 SCH3 1198 SO2 CH3 1199 SO2 CH3 1191 SO2 SCH3 1194 SO2 SCH3 1195 SO2 SCH3 1196 SO2 SCH3 1197 SO2 SO2CH2CH3 1198 SO2 CH3 OCOC6H5 C (CH3)3 1199 SO2 CH3 OCOC6H5 C (CH3)3 1200 SO2 OCHF2 OCOC6H5 C (CH3)3 1201 Bindung F OCOC (CH3)3 CH (CH3)2 1202 Bindung C1 OCOC (CH3)3 CH (CH3)2 1203 Bindung BF OCOC (CH3)3 CH (CH3)2 1204 Bindung NO2 OCOC (CH3)3 CH (CH3)2		1178	0	СН3	OCOC ₆ H ₅	C (CH ₃) ₃		
1181 S F OCCC6H5 C (CH3)3 1182 S C1 OCCC6H5 C (CH3)3 1183 S BT OCCC6H5 C (CH3)3 1184 S NO2 OCCC6H5 C (CH3)3 1185 S SCH3 OCCC6H5 C (CH3)3 1186 S SO2CH3 OCCC6H5 C (CH3)3 1187 S SO2CH3 OCCC6H5 C (CH3)3 1188 S CH3 OCCC6H5 C (CH3)3 1189 S CF3 OCCC6H5 C (CH3)3 1190 S OCHF2 OCCC6H5 C (CH3)3 1191 SO2 F OCCC6H5 C (CH3)3 1192 SO2 C1 OCCC6H5 C (CH3)3 1193 SO2 BT OCCC6H5 C (CH3)3 1194 SO2 NO2 OCCC6H5 C (CH3)3 1195 SO2 SCH3 OCCC6H5 C (CH3)3 1196 SO2 SCH3 OCCC6H5 C (CH3)3 1197 SO2 SCH3 OCCC6H5 C (CH3)3 1198 SO2 CH3 OCCC6H5 C (CH3)3 1199 SO2 CH3 OCCC6H5 C (CH3)3 1200 SO2 OCHF2 OCCC6H5 C (CH3)3 1201 Bindung F OCCC (CH3)3 CH (CH3)2 1202 Bindung C1 OCCC (CH3)3 CH (CH3)2 1204 Bindung NO2 OCCC (CH3)3 CH (CH3)2 1204 Bindung SCH3 OCCC (CH3)3 CH (CH3)2	15	1179	0	CF ₃	OCOC ₆ H ₅	C (CH ₃) ₃		
1182 S C1 OCCC6H5 C (CH3)3 1183 S Br OCCC6H5 C (CH3)3 1184 S NO2 OCCC6H5 C (CH3)3 1185 S SCH3 OCCC6H5 C (CH3)3 1186 S SO2CH3 OCCC6H5 C (CH3)3 1187 S SO2CH2CH3 OCCC6H5 C (CH3)3 1188 S CH3 OCCC6H5 C (CH3)3 1189 S CF3 OCCC6H5 C (CH3)3 1190 S OCHF2 OCCC6H5 C (CH3)3 1191 SO2 F OCCC6H5 C (CH3)3 1192 SO2 C1 OCCC6H5 C (CH3)3 1193 SO2 Br OCCC6H5 C (CH3)3 1194 SO2 NO2 OCCC6H5 C (CH3)3 1195 SO2 SCH3 OCCC6H5 C (CH3)3 1196 SO2 SCH3 OCCC6H5 C (CH3)3 1197 SO2 SCH3 OCCC6H5 C (CH3)3 1198 SO2 CH3 OCCC6H5 C (CH3)3 1199 SO2 CH3 OCCC6H5 C (CH3)3 1200 SO2 OCHF2 OCCC6H5 C (CH3)3 1201 Bindung F OCCC (CH3)3 CH (CH3)2 1202 Bindung C1 OCCC (CH3)3 CH (CH3)2 1204 Bindung SCH3 OCCC (CH3)3 CH (CH3)2		1180	0	OCHF ₂	OCOC ₆ H ₅	C (CH ₃) ₃		
Text		1181	S	F	OCOC ₆ H ₅			
1184 S NO2 OCOC6H5 C (CH3)3 1185 S SCH3 OCOC6H5 C (CH3)3 1186 S SO2CH3 OCOC6H5 C (CH3)3 1187 S SO2CH2CH3 OCOC6H5 C (CH3)3 1188 S CH3 OCOC6H5 C (CH3)3 1189 S CF3 OCOC6H5 C (CH3)3 1190 S OCHF2 OCOC6H5 C (CH3)3 1191 SO2 F OCOC6H5 C (CH3)3 1192 SO2 C1 OCOC6H5 C (CH3)3 1193 SO2 Br OCOC6H5 C (CH3)3 1194 SO2 NO2 OCOC6H5 C (CH3)3 1195 SO2 SCH3 OCOC6H5 C (CH3)3 1196 SO2 SCH3 OCOC6H5 C (CH3)3 1197 SO2 SCH3 OCOC6H5 C (CH3)3 1198 SO2 CH3 OCOC6H5 C (CH3)3 1199 SO2 CCH3 OCOC6H5 C (CH3)3 1100 SO2 CCH52 OCOC6H5 C (CH3)3 1100 SO2 CCH3 OCOC6H5 C (CH3)3 1100 SO2 CCH52 OCOCCCCH3)3 CCH(CH3)2 1100 SO2 SO2 CCH52 OCOCCCCCH3)3 CCH(CH3)2 1100 SO2 SO2 CCH52 OCOCCCCCH3)3 CCH(CH3)2 1100 SO2 SO2 SO3 SO3 CCCCCCCCH3)3 CCH(CH3)2 1100 SO2 SO3 SO3 SCH3		1182	S	Cl	OCOC ₆ H ₅			
1185 S SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1186 S SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1187 S SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1188 S CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1189 S CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1190 S OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1191 SO ₂ F OCOC ₆ H ₅ C (CH ₃) ₃ 1192 SO ₂ C1 OCOC ₆ H ₅ C (CH ₃) ₃ 1193 SO ₂ Br OCOC ₆ H ₅ C (CH ₃) ₃ 1194 SO ₂ NO ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1195 SO ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1196 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1197 SO ₂ SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1198 SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1201 Bindung F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1205 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂	20	1183	S	Br	OCOC ₆ H ₅	C (CH ₃) ₃		
1186 S SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1187 S SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1188 S CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1189 S CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1190 S OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1191 SO ₂ F OCOC ₆ H ₅ C (CH ₃) ₃ 1192 SO ₂ C1 OCOC ₆ H ₅ C (CH ₃) ₃ 1193 SO ₂ Br OCOC ₆ H ₅ C (CH ₃) ₃ 1194 SO ₂ NO ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1195 SO ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1196 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1197 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1198 SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1201 Bindung F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1184	S	NO ₂	OCOC ₆ H ₅			
1187 S		1185	S	SCH ₃	OCOC ₆ H ₅	C (CH ₃) ₃		
1188 S CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1189 S OCF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1190 S OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1191 SO ₂ F OCOC ₆ H ₅ C (CH ₃) ₃ 1192 SO ₂ C1 OCOC ₆ H ₅ C (CH ₃) ₃ 1193 SO ₂ Br OCOC ₆ H ₅ C (CH ₃) ₃ 1194 SO ₂ NO ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1195 SO ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1196 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1197 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1198 SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1201 Bindung F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1202 Bindung C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1186	S	SO ₂ CH ₃	OCOC ₆ H ₅	C (CH ₃) ₃		
1188 S CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1189 S CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1190 S OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1191 SO ₂ F OCOC ₆ H ₅ C (CH ₃) ₃ 1192 SO ₂ C1 OCOC ₆ H ₅ C (CH ₃) ₃ 1193 SO ₂ Br OCOC ₆ H ₅ C (CH ₃) ₃ 1194 SO ₂ NO ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1195 SO ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1196 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1197 SO ₂ SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1198 SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1201 Bindung F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂	25	1187	S	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅			
1190 S OCHF2 OCOC6H5 C (CH3)3 1191 SO2 F OCOC6H5 C (CH3)3 1192 SO2 C1 OCOC6H5 C (CH3)3 1193 SO2 Br OCOC6H5 C (CH3)3 1194 SO2 NO2 OCOC6H5 C (CH3)3 1195 SO2 SCH3 OCOC6H5 C (CH3)3 1196 SO2 SO2CH3 OCOC6H5 C (CH3)3 1197 SO2 SO2CH2CH3 OCOC6H5 C (CH3)3 1198 SO2 CH3 OCOC6H5 C (CH3)3 1199 SO2 CF3 OCOC6H5 C (CH3)3 1199 SO2 CF3 OCOC6H5 C (CH3)3 1199 SO2 CF3 OCOC6H5 C (CH3)3 1200 SO2 OCHF2 OCOC6H5 C (CH3)3 1201 Bindung F OCOC (CH3)3 CH (CH3)2 1202 Bindung Br OCOC (CH3)3 CH (CH3)2 1203 Bindung Br OCOC (CH3)3 CH (CH3)2 1204 Bindung SCH3 OCOC (CH3)3 CH (CH3)2		1188	S	CH ₃	OCOC ₆ H ₅			
1191 SO ₂ F OCOC ₆ H ₅ C (CH ₃) ₃ 1192 SO ₂ C1 OCOC ₆ H ₅ C (CH ₃) ₃ 1193 SO ₂ Br OCOC ₆ H ₅ C (CH ₃) ₃ 1194 SO ₂ NO ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1195 SO ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1196 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1197 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1198 SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1201 Bindung F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1202 Bindung C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1189	S	CF ₃	OCOC ₆ H ₅			
1192 SO ₂ C1 OCOC ₆ H ₅ C (CH ₃) ₃ 1193 SO ₂ Br OCOC ₆ H ₅ C (CH ₃) ₃ 1194 SO ₂ NO ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1195 SO ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1196 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1197 SO ₂ SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1198 SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1201 Bindung F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1205 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1190	S	OCHF ₂	OCOC ₆ H ₅			
1192 SO ₂ CT SCCC6HS C(CH ₃) 3 1193 SO ₂ Br OCOC ₆ H ₅ C(CH ₃) 3 1194 SO ₂ NO ₂ OCOC ₆ H ₅ C(CH ₃) 3 1195 SO ₂ SCH ₃ OCOC ₆ H ₅ C(CH ₃) 3 1196 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) 3 1197 SO ₂ SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) 3 1198 SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) 3 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C(CH ₃) 3 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C(CH ₃) 3 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C(CH ₃) 3 1201 Bindung F OCOC(CH ₃) 3 CH(CH ₃) 2 1202 Bindung C1 OCOC(CH ₃) 3 CH(CH ₃) 2 1203 Bindung Br OCOC(CH ₃) 3 CH(CH ₃) 2 1204 Bindung SCH ₃ OCOC(CH ₃) 3 CH(CH ₃) 2 1205 Bindung SCH ₃ OCOC(CH ₃) 3 CH(CH ₃) 2		1191	SO ₂	F	OCOC ₆ H ₅			
1194 SO ₂ NO ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1195 SO ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1196 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1197 SO ₂ SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1198 SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1201 Bindung F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1202 Bindung C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1205 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂	30	1192	SO ₂	Cl				
1195 SO ₂ SCH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1196 SO ₂ SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1197 SO ₂ SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1198 SO ₂ CH ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C (CH ₃) ₃ 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C (CH ₃) ₃ 1201 Bindung F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1202 Bindung C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1205 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1193	SO ₂	Br	OCOC ₆ H ₅			
35		1194	SO ₂	NO ₂	OCOC ₆ H ₅			
1197 SO ₂ SO ₂ CH ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1198 SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1201 Bindung F OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1202 Bindung C1 OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1203 Bindung Br OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1204 Bindung NO ₂ OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1205 Bindung SCH ₃ OCOC(CH ₃) ₃ CH(CH ₃) ₂		1195	SO ₂	SCH ₃	OCOC ₆ H ₅			
1198 SO ₂ CH ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1199 SO ₂ CF ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1201 Bindung F OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1202 Bindung Cl OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1203 Bindung Br OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1204 Bindung NO ₂ OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1205 Bindung SCH ₃ OCOC(CH ₃) ₃ CH(CH ₃) ₂	35	1196	SO ₂	SO ₂ CH ₃	OCOC ₆ H ₅			
1199 SO ₂ CF ₃ OCOC ₆ H ₅ C(CH ₃) ₃ 1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1201 Bindung F OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1202 Bindung Cl OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1203 Bindung Br OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1204 Bindung NO ₂ OCOC(CH ₃) ₃ CH(CH ₃) ₂ 1205 Bindung SCH ₃ OCOC(CH ₃) ₃ CH(CH ₃) ₂		1197	SO ₂	SO ₂ CH ₂ CH ₃	OCOC ₆ H ₅			
1200 SO ₂ OCHF ₂ OCOC ₆ H ₅ C(CH ₃) ₃ 1201 Bindung F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1202 Bindung Cl OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1205 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1198	SO ₂	CH ₃	OCOC ₆ H ₅	C (CH ₃) ₃		
1201 Bindung F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1202 Bindung Cl OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1205 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1199	SO ₂	CF ₃	OCOC ₆ H ₅	C (CH ₃) ₃		
1202 Bindung C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1205 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂	40	1200	SO ₂	OCHF ₂	OCOC ₆ H ₅	C (CH ₃) ₃		
1203 Bindung Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1204 Bindung NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1205 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1201	Bindung	F	OCOC (CH ₃) ₃	CH (CH ₃) ₂		
45 1204 Bindung NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1205 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1202	Bindung	Cl	OCOC (CH ₃) ₃	CH (CH ₃) ₂		
45 1205 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1203	Bindung	Br	OCOC (CH ₃) ₃	CH (CH ₃) ₂		
1205 Bindung SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂	4 =	1204	Bindung	NO ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂		
1206 Bindung SO_2CH_3 OCOC $(CH_3)_3$ $CH(CH_3)_2$	40	1205	Bindung	SCH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂		
		1206	Bindung	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂		

n	_					
1208		n	X	R ⁴	R ¹⁰	R ¹¹
1209 Bindung CF3 OCOC (CH3)3 CH (CH3)2 1210 Bindung OCHF2 OCOC (CH3)3 CH (CH3)2 1211 CH2 F OCOC (CH3)3 CH (CH3)2 1212 CH2 C1 OCOC (CH3)3 CH (CH3)2 1213 CH2 Br OCOC (CH3)3 CH (CH3)2 1214 CH2 NO2 OCOC (CH3)3 CH (CH3)2 1215 CH2 SCH3 OCOC (CH3)3 CH (CH3)2 1216 CH2 SO2CH3 OCOC (CH3)3 CH (CH3)2 1217 CH2 SO2CH3 OCOC (CH3)3 CH (CH3)2 1218 CH2 SO2CH3 OCOC (CH3)3 CH (CH3)2 1219 CH2 CF3 OCOC (CH3)3 CH (CH3)2 1220 CH2 OCHF2 OCOC (CH3)3 CH (CH3)2 1221 O F OCOC (CH3)3 CH (CH3)2 1222 O C1 OCOC (CH3)3 CH (CH3)2 1223 O Br OCOC (CH3)3 CH (CH3)2 1224 O NO2 OCOC (CH3)3 CH (CH3)2 1225 O SCH3 OCOC (CH3)3 CH (CH3)2 1226 O SO2CH3 OCOC (CH3)3 CH (CH3)2 1227 O SO2CH3 OCOC (CH3)3 CH (CH3)2 1228 O SCH3 OCOC (CH3)3 CH (CH3)2 1229 O CF3 OCOC (CH3)3 CH (CH3)2 1228 O SCH3 OCOC (CH3)3 CH (CH3)2 1229 O CF3 OCOC (CH3)3 CH (CH3)2 1230 O OCHF2 OCOC (CH3)3 CH (CH3)2 1231 S F OCOC (CH3)3 CH (CH3)2 1233 S Br OCOC (CH3)3 CH (CH3)2 1234 S NO2 OCOC (CH3)3 CH (CH3)2 1235 S SCH3 OCOC (CH3)3 CH (CH3)2 1236 S SO2CH3 OCOC (CH3)3 CH (CH3)2 1237 S SO2CH3 OCOC (CH3)3 CH (CH3)2 1238 S CH3 OCOC (CH3)3 CH (CH3)2 1239 S CF3 OCOC (CH3)3 CH (CH3)2 1230 S SCH3 OCOC (CH3)3 CH (CH3)2 1231 S F OCCC (CH3)3 CH (CH3)2 1232 S SCH3 OCOC (CH3)3 CH (CH3)2 1234 S SO2CH3 OCOC (CH3)3 CH (CH3)2 1235 S SCH3 OCOC (CH3)3 CH (CH3)2 1236 S SO2CH3 OCOC (CH3)3 CH (CH3)2 1237 S SO2CH2CH3 OCOC (CH3)3 CH (CH3)2 1238 S CH3 OCOC (CH3)3 CH (CH3)2		1207	Bindung	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1210 Bindung OCHF2 OCOC (CH3)3 CH (CH3)2 1211 CH2 F OCOC (CH3)3 CH (CH3)2 1212 CH2 C1' OCOC (CH3)3 CH (CH3)2 1213 CH2 Br OCOC (CH3)3 CH (CH3)2 1214 CH2 NO2 OCOC (CH3)3 CH (CH3)2 1215 CH2 SCH3 OCOC (CH3)3 CH (CH3)2 1216 CH2 SO2CH3 OCOC (CH3)3 CH (CH3)2 1217 CH2 SO2CH3 OCOC (CH3)3 CH (CH3)2 1218 CH2 CH3 OCOC (CH3)3 CH (CH3)2 1219 CH2 CH3 OCOC (CH3)3 CH (CH3)2 1220 CH2 OCHF2 OCOC (CH3)3 CH (CH3)2 1221 O F OCOC (CH3)3 CH (CH3)2 1222 O C1 OCOC (CH3)3 CH (CH3)2 1223 O Br OCOC (CH3)3 CH (CH3)2 1224 O NO2 OCOC (CH3)3 CH (CH3)2 1225 O SCH3 OCOC (CH3)3 CH (CH3)2 1226 O SO2CH3 OCOC (CH3)3 CH (CH3)2 1227 O SO2CH3 OCOC (CH3)3 CH (CH3)2 1228 O CH3 OCOC (CH3)3 CH (CH3)2 1229 O CF3 OCOC (CH3)3 CH (CH3)2 1229 O CF3 OCOC (CH3)3 CH (CH3)2 1220 OCH3 OCOC (CH3)3 CH (CH3)2 1221 O NO2 OCOC (CH3)3 CH (CH3)2 1222 O SO2CH3 OCOC (CH3)3 CH (CH3)2 1224 O NO2 OCOC (CH3)3 CH (CH3)2 1225 O SO2CH3 OCOC (CH3)3 CH (CH3)2 1226 O SO2CH3 OCOC (CH3)3 CH (CH3)2 1227 O SO2CH2CH3 OCOC (CH3)3 CH (CH3)2 1228 O CF3 OCOC (CH3)3 CH (CH3)2 1229 O CF3 OCOC (CH3)3 CH (CH3)2 1230 O OCHF2 OCOC (CH3)3 CH (CH3)2 1231 S F OCOC (CH3)3 CH (CH3)2 1233 S Br OCOC (CH3)3 CH (CH3)2 1234 S NO2 OCOC (CH3)3 CH (CH3)2 1235 S SCH3 OCOC (CH3)3 CH (CH3)2 1236 S SO2CH3 OCOC (CH3)3 CH (CH3)2 1237 S SO2CH3 OCOC (CH3)3 CH (CH3)2 1238 S CF3 OCOC (CH3)3 CH (CH3)2 1239 S CF3 OCOC (CH3)3 CH (CH3)2 1241 SO2 F OCOC (CH3)3 CH (CH3)2 1242 SO2 C1 OCOC (CH3)3 CH (CH3)2 1244 SO2 OCOC (CH3)3 CH (CH3)2 1244 SO2 OCOC (CH3)3 CH (CH3)2		1208	Bindung	CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1211	5	1209	Bindung	CF ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1212		1210	Bindung	OCHF ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
100 1101 1111 1111 1111 1111 1111 1111		1211	CH ₂	F	OCOC (CH ₃) ₃	CH (CH ₃) ₂
10 1214		1212	CH ₂	C1	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1214	10	1213	CH ₂	Br	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1216	10	1214	CH ₂	NO ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1217		1215	CH ₂	SCH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
15		1216	CH ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1219		1217	CH ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1220	15	1218	CH ₂	CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1221 O F OCCC (CH ₃) 3 CH (CH ₃) 2 1222 O C1 OCCC (CH ₃) 3 CH (CH ₃) 2 1223 O BT OCCC (CH ₃) 3 CH (CH ₃) 2 1224 O NO ₂ OCCC (CH ₃) 3 CH (CH ₃) 2 1224 O SO ₂ CH ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1225 O SCH ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1226 O SO ₂ CH ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1227 O SO ₂ CH ₂ CH ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1228 O CH ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1229 O CF ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1229 O CF ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1230 O OCHF ₂ OCCC (CH ₃) 3 CH (CH ₃) 2 1231 S F OCCC (CH ₃) 3 CH (CH ₃) 2 1232 S C1 OCCC (CH ₃) 3 CH (CH ₃) 2 1233 S BT OCCC (CH ₃) 3 CH (CH ₃) 2 1234 S NO ₂ OCCC (CH ₃) 3 CH (CH ₃) 2 1234 S NO ₂ OCCC (CH ₃) 3 CH (CH ₃) 2 1235 S SCH ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1236 S SO ₂ CH ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1237 S SO ₂ CH ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1238 S CH ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1239 S CF ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1239 S CF ₃ OCCC (CH ₃) 3 CH (CH ₃) 2 1240 S OCHF ₂ OCCC (CH ₃) 3 CH (CH ₃) 2 1241 SO ₂ F OCCC (CH ₃) 3 CH (CH ₃) 2 1242 SO ₂ C1 OCCC (CH ₃) 3 CH (CH ₃) 2 1243 SO ₂ BT OCCC (CH ₃) 3 CH (CH ₃) 2 1244 SO ₂ NO ₂ OCCC (CH ₃) 3 CH (CH ₃) 2		1219	CH ₂	CF ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1222 O		1220	CH ₂	OCHF ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1223 O Br OCOC (CH ₃) 3 CH (CH ₃) 2 1224 O NO ₂ OCOC (CH ₃) 3 CH (CH ₃) 2 1225 O SCH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1226 O SO ₂ CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1227 O SO ₂ CH ₂ CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1228 O CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1229 O CF ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1230 O OCHF ₂ OCOC (CH ₃) 3 CH (CH ₃) 2 1231 S F OCOC (CH ₃) 3 CH (CH ₃) 2 1232 S C1 OCOC (CH ₃) 3 CH (CH ₃) 2 1233 S Br OCOC (CH ₃) 3 CH (CH ₃) 2 1234 S NO ₂ OCOC (CH ₃) 3 CH (CH ₃) 2 1235 S SCH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1236 S SO ₂ CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1237 S SO ₂ CH ₂ CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1238 S CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1239 S CF ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1240 S OCHF ₂ OCOC (CH ₃) 3 CH (CH ₃) 2 1241 SO ₂ F OCOC (CH ₃) 3 CH (CH ₃) 2 1242 SO ₂ C1 OCOC (CH ₃) 3 CH (CH ₃) 2 1243 SO ₂ Br OCOC (CH ₃) 3 CH (CH ₃) 2 1244 SO ₂ NO ₂ OCOC (CH ₃) 3 CH (CH ₃) 2		1221	0	F	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1224	20	1222	0	C1	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1225 O SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1226 O SO ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1227 O SO ₂ CH ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1228 O CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1229 O CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1230 O OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1231 S F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1232 S C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1233 S Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1234 S NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1235 S SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1236 S SO ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1237 S SO ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1238 S CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1223	0	Br	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1226		1224	0	NO ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1227 O SO ₂ CH ₂ CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1228 O CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1229 O CF ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1230 O OCC (CH ₃) 3 CH (CH ₃) 2 1231 S F OCOC (CH ₃) 3 CH (CH ₃) 2 1232 S C1 OCOC (CH ₃) 3 CH (CH ₃) 2 1233 S Br OCOC (CH ₃) 3 CH (CH ₃) 2 1234 S NO ₂ OCOC (CH ₃) 3 CH (CH ₃) 2 1235 S SCH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1236 S SCH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1237 S SO ₂ CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1238 S CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1238 S CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1239 S CF ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1240 S OCH ₂ C OCOC (CH ₃) 3 CH (CH ₃) 2 1241 SO ₂ F OCOC (CH ₃) 3 CH (CH ₃) 2 1242 SO ₂ C1 OCOC (CH ₃) 3 CH (CH ₃) 2 1243 SO ₂ Br OCOC (CH ₃) 3 CH (CH ₃) 2 1244 SO ₂ NO ₂ OCOC (CH ₃) 3 CH (CH ₃) 2		1225	0	SCH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1227 O SO ₂ CH ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1228 O CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1229 O CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1230 O OCC (CH ₃) ₃ CH (CH ₃) ₂ 1231 S F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1232 S Cl OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1233 S Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1234 S NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1235 S SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1236 S SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1237 S SO ₂ CH ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1238 S CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ Cl OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂	25	1226	0	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1229 O CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1230 O OCCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1231 S F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1232 S C1 OCCC (CH ₃) ₃ CH (CH ₃) ₂ 1233 S Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1234 S NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1235 S SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1236 S SO ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1237 S SO ₂ CH ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1238 S CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1245 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1227	0	SO ₂ CH ₂ CH ₃		CH (CH ₃) ₂
1230 O OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1231 S F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1232 S C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1233 S Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1234 S NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1235 S SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1236 S SO ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1237 S SO ₂ CH ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1238 S CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1228	0	CH ₃	OCOC (CH ₃) ₃	
1231 S F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1232 S C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1233 S Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1234 S NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1235 S SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1236 S SO ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1237 S SO ₂ CH ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1238 S CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1229	0	CF ₃		
1231 S F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1232 S C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1233 S Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1234 S NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1235 S SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1236 S SO ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1237 S SO ₂ CH ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1238 S CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂	20	1230	0	OCHF ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1233 S Br OCOC (CH ₃) 3 CH (CH ₃) 2 1234 S NO ₂ OCOC (CH ₃) 3 CH (CH ₃) 2 1235 S SCH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1236 S SO ₂ CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1237 S SO ₂ CH ₂ CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1238 S CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1238 S CH ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1240 S CF ₃ OCOC (CH ₃) 3 CH (CH ₃) 2 1240 S OCHF ₂ OCOC (CH ₃) 3 CH (CH ₃) 2 1241 SO ₂ F OCOC (CH ₃) 3 CH (CH ₃) 2 1242 SO ₂ C1 OCOC (CH ₃) 3 CH (CH ₃) 2 1243 SO ₂ Br OCOC (CH ₃) 3 CH (CH ₃) 2 1244 SO ₂ NO ₂ OCOC (CH ₃) 3 CH (CH ₃) 2	30	1231	<u> </u>	F		CH (CH ₃) ₂
1234 S NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1235 S SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1236 S SO ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1237 S SO ₂ CH ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1238 S CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1232	S	Cl	OCOC (CH ₃) ₃	CH (CH ₃) ₂
35 1235 S SCH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1236 S SO ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1237 S SO ₂ CH ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1238 S CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1233	S	Br		
1236 S SO ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1237 S SO ₂ CH ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1238 S CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1234	S	NO ₂		
1237 S SO ₂ CH ₂ CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1238 S CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂	35	1235	S	SCH ₃		CH (CH ₃) ₂
1238 S CH ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1236	S	SO ₂ CH ₃	OCOC (CH ₃) ₃	
40 1239 S CF ₃ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1237	S	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1240 S OCHF ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1241 SO ₂ F OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1238	S	CH ₃		
	40	1239	S	CF ₃		CH (CH ₃) ₂
1242 SO ₂ C1 OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1240	S	OCHF ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
45 1243 SO ₂ Br OCOC (CH ₃) ₃ CH (CH ₃) ₂ 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1241	SO ₂	F	OCOC (CH ₃) ₃	CH (CH ₃) ₂
45 1244 SO ₂ NO ₂ OCOC (CH ₃) ₃ CH (CH ₃) ₂		1242	SO ₂	Cl	OCOC (CH ₃) ₃	CH (CH ₃) ₂
1244 SO_2 NO_2 $OCOC (CH3)3 CH (CH3)2$	45	1243	SO ₂	Br	OCOC (CH ₃) ₃	
1245 SO_2 SCH_3 $OCOC (CH_3)_3$ $CH (CH_3)_2$	- - -J	1244	SO ₂	NO ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
		1245	SO ₂	SCH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂

	n	х	R ⁴	R ¹⁰	R ¹¹
	1246	SO ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	1247	SO ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
5	1248	SO ₂	CH ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
5	1249	SO ₂	CF ₃	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	1250	SO ₂	OCHF ₂	OCOC (CH ₃) ₃	CH (CH ₃) ₂
	1251	Bindung	F	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1252	Bindung	Cl	OCOC (CH ₃) ₃	C (CH ₃) ₃
10	1253	Bindung	Br	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1254	Bindung	NO ₂	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1255	Bindung	SCH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1256	Bindung	SO ₂ CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
15	1257	Bindung	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1258	Bindung	CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1259	Bindung	CF ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1260	Bindung	OCHF ₂	OCOC (CH ₃) ₃	C (CH ₃) ₃
20	1261	CH ₂	F	OCOC (CH ₃) ₃	C(CH ₃) ₃
	1262	CH ₂	Cl	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1263	CH ₂	Br	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1264	CH ₂	NO ₂	OCOC (CH ₃) ₃	C (CH ₃) ₃
25	1265	CH ₂	SCH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1266	CH ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1267	CH ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1268	CH ₂	CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
30	1269	CH ₂	CF ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
30	1270	CH ₂	OCHF ₂	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1271	0	F	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1272	0	Cl	OCOC (CH ₃) ₃	C(CH ₃) ₃
	1273	0	Br	OCOC (CH ₃) ₃	C(CH ₃) ₃
35	1274	0	NO ₂	OCOC (CH ₃) ₃	C(CH ₃) ₃
	1275	0	SCH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	1276	0	SO ₂ CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	1277	0	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
40	1278	0	CH ₃	OCOC (CH ₃) ₃	C(CH ₃) ₃
	1279	0	CF ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1280	0	OCHF ₂	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1281	S	F	OCOC (CH ₃) ₃	C(CH ₃) ₃
45	1282	S	Cl	OCOC (CH ₃) ₃	C(CH ₃) ₃
	1283	S	Br	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1284	S	NO ₂	OCOC (CH ₃) ₃	C (CH ₃) ₃

					· · · · · · · · · · · · · · · · · · ·
	n	Х	R ⁴	R ¹⁰	R ¹¹
	1285	S	SCH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
5	1286	S	SO ₂ CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1287	S	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1288	S	CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1289	S	CF ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1290	S	OCHF ₂	OCOC (CH ₃) ₃	C (CH ₃) ₃
10	1291	SO ₂	F	OCOC (CH ₃) ₃	C (CH ₃) ₃
10	1292	SO ₂	Cl	OCOC (CH ₃) ₃	C(CH ₃) ₃
	1293	SO ₂	Br	OCOC (CH ₃) ₃	C(CH ₃) ₃
	1294	SO ₂	NO ₂	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1295	SO ₂	SCH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
15	1296	SO ₂	SO ₂ CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1297	SO ₂	SO ₂ CH ₂ CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1298	SO ₂	CH ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1299	SO ₂	CF ₃	OCOC (CH ₃) ₃	C (CH ₃) ₃
20	1300	SO ₂	OCHF ₂	OCOC (CH ₃) ₃	C (CH ₃) ₃
	1301	Bindung	F	OCOSCH ₃	CH (CH ₃) ₂
	1302	Bindung	C1	OCOSCH ₃	CH (CH ₃) ₂
	1303	Bindung	Br	OCOSCH ₃	CH (CH ₃) ₂
25	1304	Bindung	NO ₂	OCOSCH ₃	CH (CH ₃) ₂
	1305	Bindung	SCH ₃	OCOSCH ₃	CH (CH ₃) ₂
	1306	Bindung	SO ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂
	1307	Bindung	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂
20	1308	Bindung	CH ₃	OCOSCH ₃	CH (CH ₃) ₂
30	1309	Bindung	CF ₃	OCOSCH ₃	CH (CH ₃) ₂
	1310	Bindung	OCHF ₂	OCOSCH ₃	CH (CH ₃) ₂
	1311	CH ₂	F	OCOSCH ₃	CH (CH ₃) ₂
	1312	CH ₂	Cl	OCOSCH3	CH (CH ₃) ₂
35	1313	CH ₂	Br	OCOSCH3	CH (CH ₃) ₂
	1314	CH ₂	NO ₂	OCOSCH3	CH (CH ₃) ₂
	1315	CH ₂	SCH ₃	OCOSCH ₃	CH (CH ₃) ₂
	1316	CH ₂	SO ₂ CH ₃	OCOSCH3	CH (CH ₃) ₂
40	1317	CH ₂	SO ₂ CH ₂ CH ₃	OCOSCH3	CH (CH ₃) ₂
	1318	CH ₂	CH ₃	OCOSCH3	CH (CH ₃) ₂
	1319	CH ₂	CF ₃	OCOSCH ₃	CH (CH ₃) ₂
	1320	CH ₂	OCHF ₂	OCOSCH ₃	CH (CH ₃) ₂
45	1321	0	F	OCOSCH3	CH (CH ₃) ₂
20	1322	0	Cl	OCOSCH ₃	CH (CH ₃) ₂
	1323	0	Br	OCOSCH ₃	CH (CH ₃) ₂
	-				

	75						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	1324	0	NO ₂	OCOSCH3	CH (CH ₃) ₂		
	1325	0	SCH ₃	OCOSCH3	CH (CH ₃) ₂		
5	1326	0	SO ₂ CH ₃	OCOSCH3	CH (CH ₃) ₂		
	1327	0	SO ₂ CH ₂ CH ₃	OCOSCH3	CH (CH ₃) ₂		
	1328	0	CH ₃	OCOSCH3	CH (CH ₃) ₂		
	1329	0	CF ₃	OCOSCH ₃	CH (CH ₃) ₂		
10	1330	0	OCHF ₂	OCOSCH ₃	CH(CH ₃) ₂		
10	1331	S	F	OCOSCH ₃	CH (CH ₃) ₂		
	1332	S	Cl	OCOSCH ₃	CH (CH ₃) ₂		
	1333	S	Br	OCOSCH ₃	CH (CH ₃) ₂		
	1334	S	NO ₂	OCOSCH ₃	CH (CH ₃) ₂		
15	1335	S	SCH ₃	OCOSCH ₃	CH (CH ₃) ₂		
	1336	S	SO ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂		
	1337	S	SO ₂ CH ₂ CH ₃	OCOSCH3	CH (CH ₃) ₂		
	1338	S	CH ₃	OCOSCH ₃	CH (CH ₃) ₂		
20	1339	S	CF ₃	OCOSCH ₃	CH (CH ₃) ₂		
	1340	S	OCHF ₂	OCOSCH ₃	CH (CH ₃) ₂		
	1341	SO ₂	F	OCOSCH ₃	CH (CH ₃) ₂		
	1342	SO ₂	C1	OCOSCH ₃	CH (CH ₃) ₂		
25	1343	SO ₂	Br	OCOSCH ₃	CH (CH ₃) ₂		
	1344	SO ₂	NO ₂	OCOSCH ₃	CH (CH ₃) ₂		
	1345	SO ₂	SCH ₃	OCOSCH ₃	CH (CH ₃) ₂		
	1346	SO ₂	SO ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂		
30	1347	SO ₂	SO ₂ CH ₂ CH ₃	OCOSCH ₃	CH (CH ₃) ₂		
30	1348	SO ₂	CH ₃	OCOSCH ₃	CH (CH ₃) ₂		
	1349	SO ₂	CF ₃	OCOSCH ₃	CH (CH ₃) ₂		
	1350	SO ₂	OCHF ₂	OCOSCH ₃	CH (CH ₃) ₂		
	1351	Bindung	F	OCOSCH ₃	C (CH ₃) ₃		
35	1352	Bindung	Cl	OCOSCH ₃	C (CH ₃) ₃		
	1353	Bindung	Br	OCOSCH ₃	C (CH ₃) ₃		
	1354	Bindung	NO ₂	OCOSCH ₃	C (CH ₃) ₃		
	1355	Bindung	SCH ₃	OCOSCH ₃	C (CH ₃) ₃		
40	1356	Bindung	SO ₂ CH ₃	OCOSCH ₃	C (CH ₃) ₃		
	1357	Bindung	SO ₂ CH ₂ CH ₃	OCOSCH ₃	C (CH ₃) ₃		
	1358	Bindung	CH ₃	OCOSCH ₃	C (CH ₃) ₃		
	1359	Bindung	CF ₃	OCOSCH ₃	C (CH ₃) ₃		
45	1360	Bindung	OCHF ₂	OCOSCH ₃	C (CH ₃) ₃		
	1361	CH ₂	F	OCOSCH ₃	C (CH ₃) ₃		
	1362	CH ₂	Cl	OCOSCH ₃	C (CH ₃) ₃		

1	n	X	R ⁴	R ¹⁰	R ¹¹
1	1363	CH ₂	Br	OCOSCH ₃	C (CH ₃) ₃
1	1364	CH ₂	NO ₂	OCOSCH ₃	C (CH ₃) ₃
5 1	1365	CH ₂	SCH ₃	OCOSCH3	C (CH ₃) ₃
	1366	CH ₂	SO ₂ CH ₃	OCOSCH3	C (CH ₃) ₃
1	1367	CH ₂	SO ₂ CH ₂ CH ₃	OCOSCH3	C (CH ₃) ₃
	1368	CH ₂	CH ₃	OCOSCH3	C (CH ₃) ₃
	1369	CH ₂	CF ₃	OCOSCH ₃	C (CH ₃) ₃
10	1370	CH ₂	OCHF ₂	OCOSCH ₃	C (CH ₃) ₃
	1371	0	F	OCOSCH ₃	C (CH ₃) ₃
1	1372	0	Cl	OCOSCH ₃	C (CH ₃) ₃
	1373	0	Br	OCOSCH ₃	C (CH ₃) ₃
15 1	1374	0	NO ₂	OCOSCH ₃	C (CH ₃) ₃
	1375	0	SCH ₃	OCOSCH ₃	C (CH ₃) ₃
	1376	0	SO ₂ CH ₃	OCOSCH ₃	C (CH ₃) ₃
	1377	0	SO ₂ CH ₂ CH ₃	OCOSCH ₃	C (CH ₃) ₃
20	1378	0	CH ₃	OCOSCH ₃	C (CH ₃) ₃
[:	1379	0	CF ₃	OCOSCH ₃	C (CH ₃) ₃
:	1380	0	OCHF ₂	OCOSCH ₃	C (CH ₃) ₃
<u> </u>	1381	S	F	OCOSCH ₃	C (CH ₃) ₃
25	1382	S	Cl	OCOSCH ₃	C (CH ₃) ₃
	1383	S	Br	OCOSCH ₃	C (CH ₃) ₃
[:	1384	S	NO ₂	OCOSCH ₃	C (CH ₃) ₃
	1385	S	SCH ₃	OCOSCH ₃	C (CH ₃) ₃
	1386	S	SO ₂ CH ₃	OCOSCH ₃	C (CH ₃) ₃
30	1387	S	SO ₂ CH ₂ CH ₃	OCOSCH ₃	C (CH ₃) ₃
	1388	S	CH ₃	OCOSCH ₃	C (CH ₃) ₃
	1389	S	CF ₃	OCOSCH ₃	C (CH ₃) ₃
	1390	S	OCHF ₂	OCOSCH3	C (CH ₃) ₃
35	1391	SO ₂	F	OCOSCH ₃	C (CH ₃) ₃
Γ	1392	SO ₂	Cl	OCOSCH ₃	C (CH ₃) ₃
	1393	SO ₂	Br	OCOSCH ₃	C (CH ₃) ₃
	1394	SO ₂	NO ₂	OCOSCH ₃	C (CH ₃) ₃
40	1395	SO ₂	SCH ₃	OCOSCH ₃	C (CH ₃) ₃
Γ	1396	SO ₂	SO ₂ CH ₃	OCOSCH ₃	C (CH ₃) ₃
	1397	SO ₂	SO ₂ CH ₂ CH ₃	OCOSCH ₃	C (CH ₃) ₃
F	1398	SO ₂	CH ₃	OCOSCH ₃	C (CH ₃) ₃
45	1399	SO ₂	CF ₃	OCOSCH ₃	C (CH ₃) ₃
*3	1400	SO ₂	OCHF ₂	OCOSCH ₃	C (CH ₃) ₃
	1401	Bindung	F	OCH ₃	CH (CH ₃) ₂

	77						
	n	Х	R ⁴	R ¹⁰	R ¹¹		
	1402	Bindung	C1	OCH ₃	CH (CH ₃) ₂		
5	1403	Bindung	Br	OCH ₃	CH (CH ₃) ₂		
	1404	Bindung	NO ₂	OCH ₃	CH (CH ₃) ₂		
	1405	Bindung	SCH ₃	OCH ₃	CH (CH ₃) ₂		
	1406	Bindung	SO ₂ CH ₃	OCH ₃	CH (CH ₃) ₂		
	1407	Bindung	SO ₂ CH ₂ CH ₃	OCH ₃	CH (CH ₃) ₂		
10	1408	Bindung	CH ₃	OCH ₃	CH (CH ₃) ₂		
10	1409	Bindung	CF ₃	OCH ₃	CH (CH ₃) ₂		
	1410	Bindung	OCHF ₂	OCH ₃	CH (CH ₃) ₂		
	1411	CH ₂	F	OCH ₃	CH (CH ₃) ₂		
	1412	CH ₂	Cl	OCH ₃	CH (CH ₃) ₂		
15	1413	CH ₂	Br	OCH ₃	CH (CH ₃) ₂		
	1414	CH ₂	NO ₂	OCH ₃	CH (CH ₃) ₂		
	1415	CH ₂	SCH ₃	OCH ₃	CH (CH ₃) ₂		
	1416	CH ₂	SO ₂ CH ₃	OCH ₃	CH (CH ₃) ₂		
20	1417	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₃	CH (CH ₃) ₂		
	1418	CH ₂	CH ₃	OCH ₃	CH (CH ₃) ₂		
	1419	CH ₂	CF ₃	OCH ₃	CH (CH ₃) ₂		
	1420	CH ₂	OCHF ₂	OCH ₃	CH (CH ₃) ₂		
25	1421	0	F	OCH ₃	CH (CH ₃) ₂		
	1422	0	C1	OCH ₃	CH (CH ₃) ₂		
	1423	0	Br	OCH ₃	CH (CH ₃) ₂		
	1424	0	NO ₂	OCH ₃	CH (CH ₃) ₂		
20	1425	0	SCH ₃	OCH ₃	CH (CH ₃) ₂		
30	1426	0	SO ₂ CH ₃	OCH ₃	CH (CH ₃) ₂		
	1427	0	SO ₂ CH ₂ CH ₃	OCH ₃	CH (CH ₃) ₂		
	1428	0	CH ₃	OCH ₃	CH (CH ₃) ₂		
	1429	0	CF ₃	OCH ₃	CH (CH ₃) ₂		
35	1430	0	OCHF ₂	OCH ₃	CH (CH ₃) ₂		
	1431	S	F	OCH ₃	CH (CH ₃) ₂		
	1432	S	Cl	OCH ₃	CH (CH ₃) ₂		
	1433	S	Br	OCH ₃	CH (CH ₃) ₂		
40	1434	S	NO ₂	OCH ₃	CH (CH ₃) ₂		
	1435	S	SCH ₃	OCH ₃	CH (CH ₃) ₂		
	1436	S	SO ₂ CH ₃	OCH ₃	CH (CH ₃) ₂		
	1437	S	SO ₂ CH ₂ CH ₃	OCH ₃	CH (CH ₃) ₂		
45	1438	S	CH ₃	OCH ₃	CH (CH ₃) ₂		
13	1439	S	CF ₃	OCH ₃	CH (CH ₃) ₂		
	1440	S	OCHF ₂	OCH ₃	CH (CH ₃) ₂		

	76					
Γ	n	Х	R ⁴	R ¹⁰	R ¹¹	
	1441	SO ₂	F	OCH ₃	CH (CH ₃) ₂	
	1442	SO ₂	Cl	OCH ₃	CH (CH ₃) ₂	
	1443	SO ₂	Br	OCH ₃	CH (CH ₃) ₂	
1	1444	SO ₂	NO ₂	OCH ₃	CH (CH ₃) ₂	
	1445	SO ₂	SCH ₃	OCH ₃	CH (CH ₃) ₂	
	1446	SO ₂	SO ₂ CH ₃	OCH ₃	CH (CH ₃) ₂	
Ì	1447	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₃	CH (CH ₃) ₂	
10	1448	SO ₂	CH ₃	OCH ₃	CH (CH ₃) ₂	
	1449	SO ₂	CF ₃	OCH ₃	CH (CH ₃) ₂	
	1450	SO ₂	OCHF ₂	осн ₃	CH (CH ₃) ₂	
	1451	Bindung	F	OCH ₃	C (CH ₃) ₃	
15	1452	Bindung	C1	OCH ₃	C (CH ₃) ₃	
	1453	Bindung	Br	OCH ₃	C (CH ₃) ₃	
	1454	Bindung	NO ₂	OCH ₃	C (CH ₃) ₃	
	1455	Bindung	SCH ₃	OCH ₃	C (CH ₃) ₃	
20	1456	Bindung	SO ₂ CH ₃	OCH ₃	C (CH ₃) ₃	
	1457	Bindung	SO ₂ CH ₂ CH ₃	OCH ₃	C (CH ₃) ₃	
	1458	Bindung	CH ₃	OCH ₃	C (CH ₃) ₃	
	1459	Bindung	CF ₃	OCH ₃	C (CH ₃) ₃	
25	1460	Bindung	OCHF ₂	OCH ₃	C (CH ₃) ₃	
25	1461	CH ₂	F	OCH ₃	C (CH ₃) ₃	
	1462	CH ₂	Cl	OCH ₃	C (CH ₃) ₃	
	1463	CH ₂	Br	OCH ₃	C (CH ₃) ₃	
	1464	CH ₂	NO ₂	OCH ₃	C (CH ₃) ₃	
30	1465	CH ₂	SCH ₃	OCH ₃	C (CH ₃) ₃	
	1466	CH ₂	SO ₂ CH ₃	OCH ₃	C (CH ₃) ₃	
)	1467	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₃	C (CH ₃) ₃	
	1468	CH ₂	CH ₃	OCH ₃	C (CH ₃) ₃	
35	1469	CH ₂	CF ₃	OCH ₃	C (CH ₃) ₃	
	1470	CH ₂	OCHF ₂	OCH ₃	C (CH ₃) ₃	
	1471	0	F	OCH ₃	C (CH ₃) ₃	
	1472	0	Cl	OCH ₃	C (CH ₃) ₃	
40	1473	0	Br	OCH ₃	C (CH ₃) ₃	
	1474	0	NO ₂	OCH ₃	C (CH ₃) ₃	
	1475	0	SCH ₃	OCH ₃	C (CH ₃) ₃	
	1476	0	SO ₂ CH ₃	OCH ₃	C (CH ₃) ₃	
	1477	0	SO ₂ CH ₂ CH ₃	OCH ₃	C (CH ₃) ₃	
45	1478	0	CH ₃	OCH ₃	C (CH ₃) ₃	
	1479	0	CF ₃	OCH ₃	C (CH ₃) ₃	

7	a
,	7

	79						
	n	Х	R ⁴	R ¹⁰	R ¹¹		
5	1480	0	OCHF ₂	OCH ₃	C (CH ₃) ₃		
	1481	S	F	OCH ₃	C (CH ₃) ₃		
	1482	S	Cl	OCH ₃	C (CH ₃) ₃		
	1483	S	Br	осн ₃	C (CH ₃) ₃		
	1484	S	NO ₂	OCH ₃	C (CH ₃) ₃		
	1485	S	SCH ₃	OCH ₃	C (CH ₃) ₃		
10	1486	S	SO ₂ CH ₃	OCH ₃	C (CH ₃) ₃		
10	1487	S	SO ₂ CH ₂ CH ₃	OCH ₃	C (CH ₃) ₃		
	1488	S	CH ₃	OCH ₃	C (CH ₃) ₃		
	1489	S	CF ₃	OCH ₃	C (CH ₃) ₃		
	1490	S	OCHF ₂	OCH ₃	C (CH ₃) ₃		
15	1491	SO ₂	F	OCH ₃	C (CH ₃) ₃		
	1492	SO ₂	Cl	OCH ₃	C (CH ₃) ₃		
	1493	SO ₂	Br	OCH ₃	C (CH ₃) ₃		
	1494	SO ₂	NO ₂	OCH ₃	C (CH ₃) ₃		
20	1495	SO ₂	SCH ₃	OCH ₃	C (CH ₃) ₃		
	1496	SO ₂	SO ₂ CH ₃	OCH ₃	C (CH ₃) ₃		
	1497	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₃	C (CH ₃) ₃		
	1498	SO ₂	CH ₃	OCH ₃	C (CH ₃) ₃		
25	1499	SO ₂	CF ₃	OCH ₃	C (CH ₃) ₃		
	1500	SO ₂	OCHF ₂	осн ₃	C (CH ₃) ₃		
	1501	Bindung	F	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1502	Bindung	Cl	OCH (CH ₃) ₂	CH (CH ₃) ₂		
30	1503	Bindung	Br	OCH (CH ₃) ₂	CH (CH ₃) ₂		
30	1504	Bindung	NO ₂	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1505	Bindung	SCH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1506	Bindung	SO ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1507	Bindung	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂		
35	1508	Bindung	CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1509	Bindung	CF ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1510	Bindung	OCHF ₂	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1511	CH ₂	F	OCH (CH ₃) ₂	CH (CH ₃) ₂		
40	1512	CH ₂	Cl	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1513	CH ₂	Br	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1514	CH ₂	NO ₂	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1515	CH ₂	SCH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂		
45	1516	CH ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1517	CH ₂	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂		
	1518	CH ₂	CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂		

	n	X	R ⁴	R ¹⁰	R ¹¹
	1519	CH ₂	CF ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1520	CH ₂	OCHF ₂	OCH (CH ₃) ₂	CH (CH ₃) ₂
5	1521	0	F	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1522	0	Cl	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1523	0	Br	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1524	0	NO ₂	OCH (CH ₃) ₂	CH (CH ₃) ₂
10	1525	0	SCH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
10	1526	0	SO ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1527	0	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1528	0	CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1529	0	CF ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
15	1530	0	OCHF ₂	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1531	S	F	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1532	S	Cl	ОСН (СН ₃) ₂	CH (CH ₃) ₂
	1533	S	Br	OCH (CH ₃) ₂	CH (CH ₃) ₂
20	1534	S	NO ₂	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1535	S	SCH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1536	S	SO ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1537	S	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
25	1538	S	CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1539	S	CF ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1540	S	OCHF ₂	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1541	SO ₂	F	OCH (CH ₃) ₂	CH (CH ₃) ₂
2.0	1542	SO ₂	C1	OCH (CH ₃) ₂	CH (CH ₃) ₂
30	1543	SO ₂	Br	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1544	SO ₂	NO ₂	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1545	SO ₂	SCH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1546	SO ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
35	1547	SO ₂	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1548	SO ₂	CH ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1549	SO ₂	CF ₃	OCH (CH ₃) ₂	CH (CH ₃) ₂
	1550	SO ₂	OCHF ₂	OCH (CH ₃) ₂	CH (CH ₃) ₂
40	1551	Bindung	F	OCH (CH ₃) ₂	C (CH ₃) ₃
	1552	Bindung	Cl	OCH (CH ₃) ₂	C (CH ₃) ₃
	1553	Bindung	Br	OCH (CH ₃) ₂	C (CH ₃) ₃
	1554	Bindung	NO ₂	OCH (CH ₃) ₂	C (CH ₃) ₃
45	1555	Bindung	SCH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃
± J	1556	Bindung	SO ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃
	1557	Bindung	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃

	81						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	1558	Bindung	CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1559	Bindung	CF ₃	OCH(CH ₃) ₂	C (CH ₃) ₃		
5	1560	Bindung	OCHF ₂	OCH(CH ₃) ₂	C (CH ₃) ₃		
	1561	CH ₂	F	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1562	CH ₂	C1	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1563	CH ₂	Br	OCH (CH ₃) ₂	C (CH ₃) ₃		
1.0	1564	CH ₂	NO ₂	OCH (CH ₃) ₂	C (CH ₃) ₃		
10	1565	CH ₂	SCH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1566	CH ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1567	CH ₂	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1568	CH ₂ ·	CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
15	1569	CH ₂	CF ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1570	CH ₂	OCHF ₂	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1571	0	F	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1572	0	Cl	OCH (CH ₃) ₂	C (CH ₃) ₃		
20	1573	0	Br	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1574	0	NO ₂	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1575	0	SCH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1576	0	SO ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
25	1577	0	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1578	0	CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1579	0	CF ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1580	0	OCHF ₂	OCH (CH ₃) ₂	C (CH ₃) ₃		
20	1581	S	F	OCH (CH ₃) ₂	C (CH ₃) ₃		
30	1582	S	Cl	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1583	S	Br	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1584	S	NO ₂	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1585	S	SCH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
35	1586	S	SO ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1587	S	SO ₂ CH ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1588	S	CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1589	S	CF ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
40	1590	S	OCHF ₂	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1591	SO ₂	F	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1592	SO ₂	Cl	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1593	SO ₂	Br	OCH (CH ₃) ₂	C (CH ₃) ₃		
45	1594	SO ₂	NO ₂	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1595	SO ₂	SCH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		
	1596	SO ₂	SO ₂ CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃		

			62		■ Fr
	n	х	R ⁴	R ¹⁰	R ¹¹
	1597	SO ₂	SO ₂ CH ₂ CH ₃	ОСН (СН ₃) ₂	C (CH ₃) ₃
	1598	SO ₂	CH ₃	OCH (CH ₃) ₂	C (CH ₃) ₃
5	1599	SO ₂	CF ₃	OCH (CH ₃) ₂	C (CH ₃) ₃
	1600	SO ₂	OCHF ₂	OCH (CH ₃) ₂	C (CH ₃) ₃
	1601	Bindung	F	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1602	Bindung	Cl	OCH ₂ C ₆ H ₅	СH (СH ₃) ₂
10	1603	Bindung	Br	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
10	1604	Bindung	NO ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1605	Bindung	SCH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1606	Bindung	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
•	1607	Bindung	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
15	1608	Bindung	CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1609	Bindung	CF ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1610	Bindung	OCHF ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1611	CH ₂	F	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
20	1612	CH ₂	C1	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1613	CH ₂	Br	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1614	CH ₂	NO ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1615	CH ₂	SCH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
25	1616	CH ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1617	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1618	CH ₂	CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1619	CH ₂	CF ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
2.0	1620	CH ₂	OCHF ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
30	1621	0	F	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1622	0	Cl	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1623	0	Br	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1624	0	NO ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
35	1625	0	SCH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1626	0	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1627	0	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1628	0	CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
40	1629	0	CF ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1630	0	OCHF ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1631	S	F	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1632	S	Cl	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
45	1633	S	Br	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
4 3	1634	S	NO ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂
	1635	S	SCH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂

	83						
	n	х	R ⁴	R ¹⁰	R ¹¹		
	1636	S	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	1637	S	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
5	1638	S	CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	1639	S	CF ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	1640	S	OCHF ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	1641	SO ₂	F	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
10	1642	SO ₂	C1	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
10	1643	SO ₂	Br	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	1644	SO ₂	NO ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	1645	SO ₂	SCH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	1646	SO ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
15	1647	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	1648	SO ₂	CH ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	1649	SO ₂	CF ₃	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
	1650	SO ₂	OCHF ₂	OCH ₂ C ₆ H ₅	CH (CH ₃) ₂		
20	1651	Bindung	F	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1652	Bindung	Cl	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1653	Bindung	Br	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
	1654	Bindung	NO ₂	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
25	1655	Bindung	SCH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
	1656	Bindung	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
	1657	Bindung	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
	1658	Bindung	CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
3.0	1659	Bindung	CF ₃	OCH ₂ C ₆ H ₅	C(CH ₃) ₃		
3.0	1660	Bindung	OCHF ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1661	CH ₂	F	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1662	CH ₂	C1	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1663	CH ₂	Br	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
35	1664	CH ₂	NO ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1665	CH ₂	SCH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1666	CH ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1667	CH ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
40	1668	CH ₂	CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1669	CH ₂	CF ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1670	CH ₂	OCHF ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1671	0	F	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
45	1672	0	Cl	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1673	0	Br	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		
	1674	0	NO ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃		

	84							
ſ	n	х	R ⁴	R ¹⁰	R ¹¹			
ļ	1675	0	SCH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
İ	1676	0	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
5	1677	0	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
٦	1678	0	CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1679	0	CF ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1680	0	OCHF ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1681	S	F	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
10	1682	S	Cl	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1683	S	Br	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1684	S	NO ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1685	S	SCH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
15	1686	S	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1687	S	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1688	S	CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1689	S	CF ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
20	1690	S	OCHF ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1691	SO ₂	F	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1692	SO ₂	Cl	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1693	SO ₂	Br	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
25	1694	SO ₂	NO ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
45	1695	SO ₂	SCH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1696	SO ₂	SO ₂ CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1697	SO ₂	SO ₂ CH ₂ CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1698	SO ₂	CH ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
30	1699	SO ₂	CF ₃	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1700	SO ₂	OCHF ₂	OCH ₂ C ₆ H ₅	C (CH ₃) ₃			
	1701	Bindung	F	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂			
	1702	Bindung	Cl	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂			
35	1703	Bindung	Br	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂			
	1704	Bindung	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂			
	1705	Bindung	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂			
	1706	Bindung	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂			
40	1707	Bindung	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂			
	1708	Bindung	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂			
	1709	Bindung	CF ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂			
	1710	Bindung	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂			
45	1711	CH ₂	F	$OSO_2 (4-CH_3-C_6H_4)$	CH (CH ₃) ₂			
43	1712	CH ₂	Cl	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂			
	1713	CH ₂	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂			

	65					
	n	х	R ⁴	R ¹⁰	R ¹¹	
	1714	CH ₂	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1715	CH ₂	SCH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
5	1716	CH ₂	SO ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1717	CH ₂	SO ₂ CH ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1718	CH ₂	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1719	CH ₂	CF ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	CH (CH ₃) ₂	
1.0	1720	CH ₂	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
10	1721	0	F	$OSO_2 (4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
	1722	0	C1	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1723	0	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1724	0	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
15	1725	0	SCH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1726	0	SO ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	СН (СН ₃) ₂	
	1727	0	SO ₂ CH ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1728	0	СН3	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
20	1729	0	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1730	0	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
	1731	S	F	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
	1732	S	C1	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
25	1733	S	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1734	S	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1735	S	SCH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1736	S	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
2.0	1737	S	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
30	1738	S	CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
	1739	S	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1740	S	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
	1741	SO ₂	F	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
35	1742	SO ₂	Cl	$OSO_2 (4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
	1743	SO ₂	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	CH (CH ₃) ₂	
	1744	SO ₂	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
	1745	SO ₂	SCH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
40	1746	SO ₂	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
	1747	SO ₂	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
	1748	SO ₂	CH ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
	1749	SO ₂	CF ₃	$OSO_2(4-CH_3-C_6H_4)$	CH (CH ₃) ₂	
45	1750	SO ₂	OCHF ₂	OSO ₂ (4-CH ₃ -C ₆ H ₄)	СН (СН ₃) ₂	
43	1751	Bindung	F	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	
	1752	Bindung	Cl	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	

	n	х	R ⁴	R ¹⁰	R ¹¹	
	1753	Bindung	Br	$OSO_2 (4-CH_3-C_6H_4)$	C (CH ₃) ₃	
	1754	Bindung	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
5	1755	Bindung	SCH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
5	1756	Bindung	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	
	1757	Bindung	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	
-	1758	Bindung	СН3	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C (CH ₃) ₃	
10	1759	Bindung	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
10	1760	Bindung	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	
	1761	CH ₂	F	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1762	CH ₂	Cl	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1763	CH ₂	Br	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
15	1764	CH ₂	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1765	CH ₂	SCH ₃	$OSO_2 (4-CH_3-C_6H_4)$	C (CH ₃) ₃	
	1766	CH ₂	SO ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	
	1767	CH ₂	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	
20	1768	CH ₂	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1769	CH ₂	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1770	CH ₂	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1771	0	F	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	
25	1772	0	Cl	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	
	1773	0	Br	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	
	1774	0	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1775	0	SCH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
2.0	1776	0	SO ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
30	1777	0	SO ₂ CH ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1778	0	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1779	0	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1780	0	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
35	1781	S	F	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1782	S	Cl	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1783	S	Br	$OSO_2 (4-CH_3-C_6H_4)$	C (CH ₃) ₃	
	1784	S	NO ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
40	1785	S	SCH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1786	S	SO ₂ CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
	1787	S	SO ₂ CH ₂ CH ₃	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	
	1788	S	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
45	1789	S	CF ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃	
43	1790	S	OCHF ₂	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃	
	1791	SO ₂	F	$OSO_2 (4-CH_3-C_6H_4)$	C (CH ₃) ₃	

	87						
	n	Х	R ⁴	R ¹⁰	R ¹¹		
	1792	SO ₂	C1	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C (CH ₃) ₃		
	1793	SO ₂	Br	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C (CH ₃) ₃		
5	1794	SO ₂	NO ₂	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃		
3	1795	SO ₂	SCH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃		
	1796	SO ₂	SO ₂ CH ₃	$OSO_2 (4-CH_3-C_6H_4)$	C (CH ₃) ₃		
	1797	SO ₂	SO ₂ CH ₂ CH ₃	OSO ₂ (4-CH ₃ -C ₆ H ₄)	C (CH ₃) ₃		
10	1798	SO ₂	CH ₃	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃		
10	1799	SO ₂	CF ₃	$OSO_2(4-CH_3-C_6H_4)$	C (CH ₃) ₃		
	1800	SO ₂	OCHF ₂	$OSO_2 (4 - CH_3 - C_6H_4)$	C (CH ₃) ₃		
	1801	Bindung	F	SCH ₃	CH(CH ₃) ₂		
	1802	Bindung	Cl	SCH ₃	CH (CH ₃) ₂		
15	1803	Bindung	Br	SCH ₃	CH (CH ₃) ₂		
	1804	Bindung	NO ₂	SCH ₃	CH (CH ₃) ₂		
	1805	Bindung	SCH ₃	SCH ₃	CH (CH ₃) ₂		
	1806	Bindung	SO ₂ CH ₃	SCH ₃	CH (CH ₃) ₂		
20	1807	Bindung	SO ₂ CH ₂ CH ₃	SCH ₃	CH (CH ₃) ₂		
	1808	Bindung	CH ₃	SCH ₃	CH (CH ₃) ₂		
	1809	Bindung	CF ₃	SCH ₃	CH (CH ₃) ₂		
	1810	Bindung	OCHF ₂	SCH ₃	CH (CH ₃) ₂		
25	1811	CH ₂	F	SCH ₃	CH (CH ₃) ₂		
	1812	CH ₂	C1	SCH ₃	CH (CH ₃) ₂		
	1813	CH ₂	Br	SCH ₃	CH (CH ₃) ₂		
	1814	CH ₂	NO ₂	SCH ₃	CH (CH ₃) ₂		
30	1815	CH ₂	SCH ₃	SCH ₃	CH (CH ₃) ₂		
30	1816	CH ₂	SO ₂ CH ₃	SCH ₃	CH (CH ₃) ₂		
	1817	CH ₂	SO ₂ CH ₂ CH ₃	SCH ₃	CH (CH ₃) ₂		
	1818	CH ₂	CH ₃	SCH ₃	CH (CH ₃) ₂		
	1819	CH ₂	CF ₃	SCH ₃	CH (CH ₃) ₂		
35	1820	CH ₂	OCHF ₂	SCH ₃	CH (CH ₃) ₂		
	1821	0	F	SCH ₃	CH (CH ₃) ₂		
	1822	0	Cl	SCH ₃	CH (CH ₃) ₂		
	1823	0	Br	SCH ₃	CH (CH ₃) ₂		
40	1824	0	NO ₂	SCH ₃	CH (CH ₃) ₂		
	1825	0	SCH ₃	SCH ₃	CH (CH ₃) ₂		
	1826	0	SO ₂ CH ₃	SCH ₃	CH (CH ₃) ₂		
	1827	0	SO ₂ CH ₂ CH ₃	SCH ₃	CH (CH ₃) ₂		
45	1828	0	CH ₃	SCH ₃	CH (CH ₃) ₂		
	1829	0	CF ₃	SCH ₃	CH (CH ₃) ₂		
	1830	0	OCHF ₂	SCH ₃	CH (CH ₃) ₂		

88 R^{11} R^4 R^{10} n Х F SCH₃ $CH(CH_3)_2$ S 1831 CH (CH₃)₂ Cl SCH₃ S 1832 $CH(CH_3)_2$ SCH₃ 1833 S \mathtt{Br} CH (CH₃)₂ NO_2 SCH₃ 1834 S $CH(CH_3)_2$ SCH₃ S SCH₃ 1835 S SCH₃ CH (CH₃)₂ SO₂CH₃ 1836 $CH(CH_3)_2$ 1837 S SO₂CH₂CH₃ SCH₃ 10 CH (CH₃)₂ SCH₃ S 1838 CH₃ $CH(CH_3)_2$ CF₃ S SCH₃ 1839 CH(CH₃)₂ OCHF₂ SCH₃ 1840 S CH (CH₃)₂ F SCH₃ 1841 SO_2 $CH(CH_3)_2$ 15 SCH₃ Cl 1842 SO_2 $CH(CH_3)_2$ SCH₃ Br1843 SO₂ CH (CH₃)₂ SCH₃ NO_2 1844 SO_2 CH (CH₃)₂ 1845 SCH₃ SCH₃ SO_2 CH (CH₃)₂ SO₂CH₃ SCH₃ SO_2 1846 20 CH (CH₃)₂ SCH₃ SO₂CH₂CH₃ 1847 SO₂ CH (CH₃)₂ CH₃ SCH₃ SO₂ 1848 CF3 SCH₃ CH (CH₃)₂ SO_2 1849 CH (CH₃)₂ SCH₃ SO_2 OCHF₂ 1850 25 $C(CH_3)_3$ F SCH₃ 1851 Bindung $C(CH_3)_3$ C1SCH₃ 1852 Bindung $C(CH_3)_3$ Br SCH₃ 1853 Bindung NO_2 SCH₃ $C(CH_3)_3$ 1854 Bindung 30 $C(CH_3)_3$ SCH₃ SCH₃ 1855 Bindung C(CH₃)₃SCH₃ 1856 Bindung SO₂CH₃ SO2CH2CH3 $C(CH_3)_3$ SCH₃ 1857 Bindung $C(CH_3)_3$ SCH₃ 1858 CH_3 Bindung $C(CH_3)_3$ **35** | 1859 CF₃ SCH₃ Bindung SCH₃ $C(CH_3)_3$ 1860 Bindung OCHF₂ $C(CH_3)_3$ SCH₃ 1861 CH_2 F $C(CH_3)_3$ SCH₃ 1862 CH₂ C1 $C(CH_3)_3$ SCH₃ CH_2 Br 1863 40 $C(CH_3)_3$ CH_2 NO_2 SCH₃ 1864 $C(CH_3)_3$ 1865 CH_2 SCH₃ SCH₃ $C(CH_3)_3$ 1866 CH_2 SO₂CH₃ SCH₃ SCH₃ $C(CH_3)_3$ CH_2 SO2CH2CH3 1867 45 $C(CH_3)_3$ SCH₃ 1868 CH_3 CH_2 C (CH₃)₃ 1869 CH_2 CF₃ SCH₃

	89						
	n	Х	R ⁴	R ¹⁰	R ¹¹		
	1870	CH ₂	OCHF ₂	SCH ₃	C (CH ₃) ₃		
	1871	0	F	SCH ₃	C (CH ₃) ₃		
5	1872	0	Cl	SCH ₃	C (CH ₃) ₃		
5	1873	0	Br	SCH ₃	C (CH ₃) ₃		
	1874	0	NO ₂	SCH ₃	C (CH ₃) ₃		
	1875	0	SCH ₃	SCH ₃	C (CH ₃) ₃		
10	1876	0	SO ₂ CH ₃	SCH ₃	C (CH ₃) ₃		
10	1877	0	SO ₂ CH ₂ CH ₃	SCH ₃	C (CH ₃) ₃		
	1878	0	CH ₃	SCH ₃	C (CH ₃) ₃		
	1879	0	CF ₃	SCH ₃	C (CH ₃) ₃		
	1880	0	OCHF ₂	SCH ₃	C (CH ₃) ₃		
15	1881	S	F	SCH ₃	C (CH ₃) ₃		
í	1882	S	C1	SCH ₃	C (CH ₃) ₃		
	1883	S	Br	SCH ₃	C (CH ₃) ₃		
	1884	S	NO ₂	SCH ₃	C (CH ₃) ₃		
20	1885	S	SCH ₃	SCH ₃	C (CH ₃) ₃		
	1886	S	SO ₂ CH ₃	SCH ₃	C (CH ₃) ₃		
	1887	S	SO ₂ CH ₂ CH ₃	SCH ₃	C (CH ₃) ₃		
	1888	S	CH ₃	SCH ₃	C (CH ₃) ₃		
25	1889	S	CF ₃	SCH ₃	C (CH ₃) ₃		
	1890	S	OCHF ₂	SCH ₃	C (CH ₃) ₃		
	1891	SO ₂	F	SCH ₃	C (CH ₃) ₃		
	1892	SO ₂	Cl	SCH ₃	C (CH ₃) ₃		
30	1893	SO ₂	Br	SCH ₃	C (CH ₃) ₃		
30	1894	SO ₂	NO ₂	SCH ₃	C (CH ₃) ₃		
	1895	SO ₂	SCH ₃	SCH ₃	C (CH ₃) ₃		
	1896	SO ₂	SO ₂ CH ₃	SCH ₃	C (CH ₃) ₃		
	1897	SO ₂	SO ₂ CH ₂ CH ₃	SCH ₃	C (CH ₃) ₃		
35	1898	SO ₂	CH ₃	SCH ₃	C (CH ₃) ₃		
	1899	SO ₂	CF ₃	SCH ₃	C (CH ₃) ₃		
	1900	SO ₂	OCHF ₂	SCH ₃	C (CH ₃) ₃		
-	1901	Bindung	F	Cl	CH (CH ₃) ₂		
40	1902	Bindung	Cl	Cl	CH (CH ₃) ₂		
	1903	Bindung	Br	Cl	CH (CH ₃) ₂		
	1904	Bindung	NO ₂	Cl	CH (CH ₃) ₂		
	1905	Bindung	SCH ₃	Cl	CH (CH ₃) ₂		
45	1906	Bindung	SO ₂ CH ₃	Cl	CH (CH ₃) ₂		
	1907	Bindung	SO ₂ CH ₂ CH ₃	Cl	CH (CH ₃) ₂		
	1908	Bindung	CH ₃	Cl	CH (CH ₃) ₂		

	90							
	n	х	R ⁴	R ¹⁰	R ¹¹			
	1909	Bindung	CF ₃	Cl	CH (CH ₃) ₂			
	1910	Bindung	OCHF ₂	C1	CH (CH ₃) ₂			
5	1911	CH ₂	F	C1	CH (CH ₃) ₂			
	1912	CH ₂	C1	C1	CH (CH ₃) ₂			
	1913	CH ₂	Br	C1	CH (CH ₃) ₂			
	1914	CH ₂	NO ₂	C1	СН (СН3) 2			
10	1915	CH ₂	SCH ₃	Cl	СН (СН ₃) ₂			
10	1916	CH ₂	SO ₂ CH ₃	Cl	CH (CH ₃) ₂			
	1917	CH ₂	SO ₂ CH ₂ CH ₃	C1	СН (СН ₃) ₂			
	1918	CH ₂	CH ₃	C1	CH (CH ₃) ₂			
	1919	CH ₂	CF ₃	C1	CH (CH ₃) ₂			
15	1920	CH ₂	OCHF ₂	C1	CH (CH ₃) ₂			
	1921	0	F	Cl	CH (CH ₃) ₂			
	1922	0	Cl	C1	CH (CH ₃) ₂			
	1923	0	Br	C1	CH (CH ₃) ₂			
20	1924	0	NO ₂	Cl	CH (CH ₃) ₂			
	1925	0	SCH ₃	Cl	CH (CH ₃) ₂			
	1926	0	SO ₂ CH ₃	Cl	CH (CH ₃) ₂			
	1927	0	SO ₂ CH ₂ CH ₃	Cl	СН (СН ₃) ₂			
25	1928	0	CH ₃	Cl	CH (CH ₃) ₂			
	1929	0	CF ₃	C1	CH (CH ₃) ₂			
	1930	0	OCHF ₂	Cl	CH(CH ₃) ₂			
	1931	S	F	Cl	CH (CH ₃) ₂			
30	1932	S	C1	C1	CH (CH ₃) ₂			
30	1933	S	Br	C1	CH (CH ₃) ₂			
	1934	S	NO ₂	Cl	CH (CH ₃) ₂			
	1935	S	SCH ₃	Cl	CH (CH ₃) ₂			
2-	1936	S	SO ₂ CH ₃	Cl	CH (CH ₃) ₂			
35	1937	S	SO ₂ CH ₂ CH ₃	Cl	CH (CH ₃) ₂			
	1938	S	CH ₃	Cl	CH (CH ₃) ₂			
	1939	S	CF ₃	C1	CH (CH ₃) ₂			
	1940	S	OCHF ₂	Cl	CH (CH ₃) ₂			
40	1941	SO ₂	F	Cl	CH (CH ₃) ₂			
	1942	SO ₂	Cl	C1	CH (CH ₃) ₂			
	1943	SO ₂	Br	Cl	CH (CH ₃) ₂			
	1944	SO ₂	NO ₂	C1	CH (CH ₃) ₂			
45	1945	SO ₂	SCH ₃	C1	CH (CH ₃) ₂			
	1946	SO ₂	SO ₂ CH ₃	Cl	CH (CH ₃) ₂			
	1947	SO ₂	SO ₂ CH ₂ CH ₃	Cl	CH (CH ₃) ₂			

	91					
	n	х	R ⁴	R ¹⁰	R ¹¹	
	1948	SO ₂	CH ₃	Cl	CH (CH ₃) ₂	
	1949	SO ₂	CF ₃	C1	CH (CH ₃) ₂	
5	1950	SO ₂	OCHF ₂	C1	CH (CH ₃) ₂	
	1951	Bindung	F	C1	C (CH ₃) ₃	
	1952	Bindung	Cl	C1	C (CH ₃) ₃	
	1953	Bindung	Br	C1	C (CH ₃) ₃	
10	1954	Bindung	NO ₂	C1	C (CH ₃) ₃	
10	1955	Bindung	SCH ₃	C1	C (CH ₃) ₃	
	1956	Bindung	SO ₂ CH ₃	C1	C (CH ₃) ₃	
	1957	Bindung	SO ₂ CH ₂ CH ₃	C1	C (CH ₃) ₃	
	1958	Bindung	CH ₃	Cl	C (CH ₃) ₃	
15	1959	Bindung	CF ₃	Cl	C (CH ₃) ₃	
	1960	Bindung	OCHF ₂	C1	C (CH ₃) ₃	
	1961	CH ₂	F	Cl	C (CH ₃) ₃	
	1962	CH ₂	Cl	Cl	C (CH ₃) ₃	
20	1963	CH ₂	Br	Cl	C (CH ₃) ₃	
	1964	CH ₂	NO ₂	Cl	C (CH ₃) ₃	
	1965	CH ₂	SCH ₃	Cl	C (CH ₃) ₃	
	1966	CH ₂	SO ₂ CH ₃	Cl	C (CH ₃) ₃	
25	1967	CH ₂	SO ₂ CH ₂ CH ₃	Cl	C (CH ₃) ₃	
	1968	CH ₂	CH ₃	Cl	C (CH ₃) ₃	
	1969	CH ₂	CF ₃	Cl	C (CH ₃) ₃	
	1970	CH ₂	OCHF ₂	Cl	C (CH ₃) ₃	
30	1971	0	F	C1	C (CH ₃) ₃	
30	1972	0	Cl	C1	C (CH ₃) ₃	
	1973	0	Br	Cl	C (CH ₃) ₃	
	1974	0	NO ₂	Cl	C (CH ₃) ₃	
	1975	0	SCH ₃	Cl	C (CH ₃) ₃	
35	1976	0	SO ₂ CH ₃	Cl	C (CH ₃) ₃	
	1977	0	SO ₂ CH ₂ CH ₃	Cl	C (CH ₃) ₃	
	1978	0	CH ₃	Cl	C (CH ₃) ₃	
	1979	0	CF ₃	Cl	C (CH ₃) ₃	
40	1980	0	OCHF ₂	Cl	C (CH ₃) ₃	
	1981	S	F	C1	C (CH ₃) ₃	
	1982	S	Cl	Cl	C (CH ₃) ₃	
	1983	S	Br	C1	C (CH ₃) ₃	
45	1984	S	NO ₂	Cl	C (CH ₃) ₃	
-20	1985	S	SCH ₃	Cl	C (CH ₃) ₃	
	1986	S	SO ₂ CH ₃	Cl	C (CH ₃) ₃	

~_	McTendeserracher c	J J V L J L	0.2. 0000, 15010	

			92		s #
	n	Х	R ⁴	R ¹⁰	R ¹¹
	1987	S	SO ₂ CH ₂ CH ₃	Cl	C(CH ₃) ₃
	1988	S	CH ₃	Cl	C(CH ₃) ₃
5	1989	S	CF ₃	Cl	C(CH ₃) ₃
-	1990	S	OCHF ₂	Cl	C (CH ₃) ₃
	1991	SO ₂	F	Cl	C(CH ₃) ₃
	1992	SO ₂	Cl	C1	С (СH ₃) ₃
10	1993	SO ₂	Br	Cl	C(CH ₃) ₃
10	1994	SO ₂	NO ₂	Cl	C(CH ₃) ₃
	1995	SO ₂	SCH ₃	Cl	C(CH ₃) ₃
	1996	SO ₂	SO ₂ CH ₃	Cl	C(CH ₃) ₃
	1997	SO ₂	SO ₂ CH ₂ CH ₃	Cl	C (CH ₃) ₃
15	1998	SO ₂	CH ₃	Cl	C (CH ₃) ₃
	1999	SO ₂	CF ₃	Cl	C(CH ₃) ₃
	2000	SO ₂	OCHF ₂	C1	C(CH ₃) ₃

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia2 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, R³ = CH₃, l = 1), insbesondere die Verbindungen Ia2.n, wobei die Variablen X, R⁴, R¹⁰ 5 und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

15

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia3 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, R³ = CH₃, l = 1), insbesondere die Verbindungen Ia3.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

20

$$\begin{array}{c|c}
N & N & N - CH_3 \\
N & R^{10} & R^4
\end{array}$$
Ia3

25

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel 30 Ia4 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, R³ = CH₃, 1 = 2), insbesondere die Verbindungen Ia4.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

40

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia5 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, R³ = CH₃, 1 = 1), ins-45 besondere die Verbindungen Ia5.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

$$\begin{array}{c|c}
 & X & N \\
 & X & N \\
 & N & N \\
 & N & 1a5
\end{array}$$

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel 10 Ia6 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, R³ = CH₃, 1 = 2), insbesondere die Verbindungen Ia6.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia7 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, 1 = 0), insbesondere die 25 Verbindungen Ia7.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

35

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia8 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, R³ = CH³, 1 = 1), insbesondere die Verbindungen Ia8.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

$$\begin{array}{c|c}
 & CH_3 \\
 & X \\
 & N \\
 & N \\
 & R^{4}
\end{array}$$
Ia8

10 Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia9 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, 1 = 0), insbesondere die Verbindungen Ia9.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

20

$$\begin{array}{c|c}
 & X & O \\
 & X & N & O \\
 & N & N & N & N
\end{array}$$
Ia9

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia10 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, 1 = 0), insbesondere die Verbindungen Ia10 n. wobei die Variablen X. R⁴, R¹⁰ und R¹¹ die i

25 Verbindungen Ialo.n, wobei die Variablen X, \mathbb{R}^4 , \mathbb{R}^{10} und \mathbb{R}^{11} die in Tabelle 1 genannte Bedeutung haben.

35

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Iall (\equiv Ia mit R^1 , R^2 , R^5 und R^{12} = H, 1 = 0), insbesondere die Verbindungen Iall.n, wobei die Variablen X, R^4 , R^{10} und R^{11} die in Tabelle 1 genannte Bedeutung haben.

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel 10 Ial2 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, l = 0), insbesondere die Verbindungen Ial2.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

N R10 R4 Ia12

20

5

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia13 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, 1 = 0), insbesondere die Verbindungen Ia13.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in 25 Tabelle 1 genannte Bedeutung haben.

35 Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia14 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, R³ = CH₃, l = 1), insbesondere die Verbindungen Ia14.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

10 Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia15 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, R³ = CH₃, l = 1), insbesondere die Verbindungen Ia15.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

N R10 R4 CH3

20 _R11

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia16 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, 1 = 0), insbesondere die 25 Verbindungen Ia16.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

$$\begin{array}{c|c}
 & X \\
 & N \\
 & N \\
 & R^{10}
\end{array}$$
Ia16

35

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia17 (\equiv Ia mit R^1 , R^2 , R^5 und R^{12} = H, 1 = 0), insbesondere die Verbindungen Ia17.n, wobei die Variablen X, R^4 , R^{10} und R^{11} die in Tabelle 1 genannte Bedeutung haben.

$$\begin{array}{c|c}
 & X & N \\
 & N & N \\$$

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel 10 Ia18 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, R¹³ = CH₃, l = 1), insbesondere die Verbindungen Ia18.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

5

20

$$\begin{array}{c|c}
 & \text{O} & \text{X} & \text{N} \\
 & \text{N} & \text{CH}_3 \\
 & \text{R}_{11} & \text{R}_{12}
\end{array}$$
Ia18

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia19 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, 1 = 0), insbesondere die Verbindungen Ia19.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in 25 Tabelle 1 genannte Bedeutung haben.

35 Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia20 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, 1 = 0), insbesondere die Verbindungen Ia20.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

$$\begin{array}{c|c}
 & S \\
 & S \\$$

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel Ia21 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, 1 = 0), insbesondere die Verbindungen Ia21.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

990232

5

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel 15 Ia22 (\equiv Ia mit R¹, R², R⁵ und R¹² = H, R³ = CH₃, l = 1), insbesondere die Verbindungen Ia22.n, wobei die Variablen X, R⁴, R¹⁰ und R¹¹ die in Tabelle 1 genannte Bedeutung haben.

20

$$\begin{array}{c|c}
 & \text{N} & \text{CH}_3 \\
 & \text{N} & \text{R}_{10} & \text{R}_4
\end{array}$$

25

Die tricyclischen Benzoylpyrazol-Derivate der Formel I sind auf verschiedene Art und Weise erhältlich, beispielsweise nach folgenden Verfahren:

30

A. Darstellung von Verbindungen der Formel I mit R^{10} = Halogen durch Umsetzung eines tricyclischen Benzoylpyrazol-Derivats der Formel I α (\equiv I mit R^{10} = Hydroxy) mit einem Halogenierungsmittel:

35

40

45

Als Halogenierungsmittel eignen sich beispielsweise Phosgen, Diphosgen, Triphosgen, Thionylchlorid, Oxalylchlorid, Phosphoroxychlorid, Phosphoroxychlorid,

Chlormethylen-N,N-dimethylammoniumchlorid, Oxylylbromid, Phosphoroxybromid etc.

Die Ausgangsverbindungen werden in der Regel äquimolaren Verhältnis eingesetzt. Es kann aber auch von Vorteil sein, die eine oder andere Komponente im Überschuß einzusetzen.

Als Lösungsmittel kommen z.B. chlorierte Kohlenwasserstoffe, wie Methylenchlorid oder 1,2-Dichlorethan, aromatische

Kohlenwasserstoffe, z.B. Toluol, Xylol oder Chlorbenzol, polare aprotische Lösungsmittel wie Acetonitril, Dimethylformamid oder Dimethylsulfoxid oder Gemische hiervon in Betracht. Es ist aber auch möglich, die Reaktion in Substanz durchzuführen.

In der Regel liegt die Reaktionstemperatur im Bereich von 0° C bis zur Höhe des Siedepunktes des Reaktionsgemisches.

Die Aufarbeitung kann in an sich bekannter Weise zum Produkt 20 hin erfolgen.

B. Darstellung von Verbindungen der Formel I mit $R^{10}=OR^{13}$, durch Umsetzung eines tricyclischen Benzoylpyrazol-Derivats der Formel I α (\equiv I mit $R^{10}=$ Hydroxy) mit einem Alkylierungsmittel III.

L¹ steht für eine nucleophil verdrängbare Abgangsgruppe, wie Halogen, z. B. Chlor oder Brom, Hetaryl, z. B. Imidazolyl, Carboxylat, z. B. Acetat, oder Sulfonat, z. B. Mesylat oder Triflat etc.

Die Verbindungen der Formel III können direkt eingesetzt werden wie z.B. im Fall der Carbonsäurehalogenide oder in situ erzeugt werden, z.B. aktivierte Carbonsäuren (mit Carbonsäure und Dicyclohexylcarbodiimid etc.).

15

Die Ausgangsverbindungen werden in der Regel im äquimolaren Verhältnis eingesetzt. Es kann aber auch von Vorteil sein, die eine oder andere Komponente im Überschuß einzusetzen.

Gegebenenfalls kann es auch von Vorteil sein, die Umsetzung in Gegenwart einer Base durchzuführen. Die Reaktanden und die Base werden dabei zweckmäßigerweise in äquimolaren Mengen eingesetzt. Ein Überschuß der Base kann z.B. 1,5 bis 3 Moläquivalente kann unter Umständen vorteilhaft sein.

10

Als Basen eignen sich tertiäre Alkylamine, wie Triethylamin, aromatische Amine, wie Pyridin, Alkalimetallcarbonate, z.B. Natriumcarbonat oder Kaliumcarbonat, Alkalimethallhydrogencarbonate, wie Natriumhydrogencarbonat und Kaliumhydrogencarbonat, Alkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kalium-tert.-butanolat oder Alkalimethallhydide, z.B. Natriumhydrid. Bevorzugt verwendet werden Triethylamin oder Pyridin.

15

- Als Lösungsmittel kommen z.B. chlorierte Kohlenwasserstoffe, wie Methylenchlorid oder 1,2-Dichlorethan, aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol oder Chlorbenzol, Ether, wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran oder Dioxan, polare aprotische Lösungsmittel, wie
- Acetonitril, Dimethylformamid oder Dimethylsulfoxid oder Ester, wie Essigsäureethylester, oder Gemische hiervon in Betracht.
- In der Regel liegt die Reaktionstemperatur im Bereich von 0°C bis zur Höhe des Siedepunktes des Reaktionsgemisches.

Die Aufarbeitung kann in an sich bekannter Weise zum Produkt hin erfolgen.

35 C. Darstellung von Verbindungen der Formel I mit $R^{10} = OR^{13}$, SR^{13} , $NR^{15}R^{16}$ oder N-gebundenes Heterocyclyl durch Umsetzung von Verbindungen der Formel I β (\equiv I mit $R^{10} =$ Halogen) mit einer Verbindung der Formel IV α , IV β , IV γ oder IV δ , gegebenenfalls in Gegenwart einer Base oder unter vorangehender Salzbildung.

,,,,,,,,	19 CDC.	 	
	_		

102 HOR¹³ IVα oder I (mit $R^{10} = OR^{13}$, SR^{13} , HSR13 IVβ NR15R16 oder N-gebunde-Ιβ 5 oder nes Heterocyclyl) HNR¹⁵R¹⁶ Ι۷γ oder Ινδ

H(N-gebundenes

Heterocyclyl)

10

15

20

25

30

35

Die Ausgangsverbindungen werden in der Regel im äquimolaren Verhältnis eingesetzt. Es kann aber auch von Vorteil sein, die eine oder andere Komponente im Überschuß einzusetzen.

Gegebenenfalls kann es auch von Vorteil sein, die Umsetzung in Gegenwart einer Base durchzuführen. Die Reaktanden und die Base werden dabei zweckmäßigerweise in äquimolaren Mengen eingesetzt. Ein Überschuß der Base kann z.B. 1,5 bis 3 Moläquivalente, bezogen auf I β (mit R^{10} = Halogen), kann unter Umständen vorteilhaft sein.

Als Basen eignen sich tertiäre Alkylamine, wie Triethylamin, aromatische Amine, wie Pyridin, Alkalimetallcarbonate, z.B. Natriumcarbonat oder Kaliumcarbonat, Alkalimethallhydrogencarbonate, wie Natriumhydrogencarbonat und Kaliumhydrogencarbonat, Alkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kalium-tert.-butanolat oder Alkalimetallhydide, z.B. Natriumhydrid. Bevorzugt verwendet werden Natriumhydrid oder Kalium-tert.-butanolat.

Als Lösungsmittel kommen z.B. chlorierte Kohlenwasserstoffe, wie Methylenchlorid oder 1,2-Dichlorethan, aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol oder Chlorbenzol, Ether, wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran oder Dioxan, polare aprotische Lösungsmittel, wie Acetonitril, Dimethylformamid oder Dimethylsulfoxid oder Gemische hiervon in Betracht.

In der Regel liegt die Reaktionstemperatur im Bereich von 0^{0} C 40 bis zur Höhe des Siedepunktes des Reaktionsgemisches.

> Die Aufarbeitung kann in an sich bekannter Weise zum Produkt hin erfolgen.

D. Darstellung von Verbindungen der Formel I mit $R^{10}=SO_2R^{14}$ durch Umsetzung von Verbindungen der Formel I mit $R^{10}=SR^{10}$ (I γ) mit einem Oxidationsmittel.

5

Oxidationsmittel

 $I\gamma \qquad \qquad \qquad \qquad \qquad \qquad I \quad (mit \ R^{10} = SO_2R^{14})$

Als Oxidationsmittel kommen beispielsweise m-Chlorperbenzoesäure, Peroxyessigsäure, Trifluorperoxyessigsäure, Wasserstoffperoxid, ggf. in Gegenwart eines Katalysators wie Wolframat, in Betracht.

Die Ausgangsverbindungen werden in der Regel im äquimolaren Verhältnis eingesetzt. Es kann aber auch von Vorteil sein, die eine oder andere Komponente im Überschuß einzusetzen.

Als Lösungsmittel kommen z.B. chlorierte Kohlenwasserstoffe,
wie Methylenchlorid oder 1,2-Dichlorethan, aromatische
Kohlenwasserstoffe, z.B. Toluol, Xylol oder Chlorbenzol,
Ether, wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran oder Dioxan, polare aprotische Lösungsmittel, wie
Acetonitril oder Dimethylformamid oder Ester, wie Essigsäureethylester, oder Gemische hiervon in Betracht.

In der Regel liegt die Reaktionstemperatur im Bereich von 0°C bis zur Höhe des Siedepunktes des Reaktionsgemisches.

Die Aufarbeitung kann in an sich bekannter Weise zum Produkt hin erfolgen.

E. Darstellung von Verbindungen der Formel I mit R⁹ = IIa (wobei R¹⁰ + Hydroxy ist) durch Umsetzung eines metallierten Pyra-zol-Derivats der Formel V mit einem tricyclischen Benzolsäure-Derivat der Formel VIα:

40
$$R^{10}$$
 R^{10} R^{10}

VIα

Ia (mit R¹⁰ +Hydroxy)

M steht hierbei für ein Metall, insbesondere für ein Alkalimetall wie Lithium oder Natrium, ein Erdalkalimetall wie z.B. Magnesium oder ein Übergangsmetall wie Palladium, Nickel etc. und L^2 für eine nucleophil verdrängbare Abgangsgruppe wie Halogen, z.B. Chlor oder Brom, Alkylsulfonat wie Mesylat, Halogenalkylsulfonat wie Triflat oder Cyanid.

Die Umsetzung wird in der Regel bei Temperaturen von -100°C
bis Rückflußtemperatur des Reaktionsgemisches durchgeführt.

10 Als Lösungsmittel eignen sich inerte aprotische Lösungsmittel, wie Ether, z.B. Diethylether, Tetrahydrofuran. Die Verbindungen der Formel VIα werden in der Regel im Überschuß eingesetzt, es kann aber auch von Vorteil sein, diese in äquimolaren Mengen oder im Unterschuß einzusetzen. Die Aufarbeitung erfolgt zum Produkt hin.

Die metallierten Pyrazol-Derivate der Formel V können auf an sich bekannte Art und Weise durch Umsetzung von in 4-Position halogenierten Pyrazolen mit Metallen wie Lithium, Natrium, Magnesium etc. oder mit metallorganischen Verbindungen wie z.B. Butyllithium gebildet werden. Es ist aber auch möglich Pyrazole, die in 4-Position mit Wasserstoff verknüpft sind, direkt zu metallieren, z.B. mit den voranstehend genannten Metallen bzw. metallorganischen Verbindungen. Die Umsetzungen werden in der Regel in einem inerten aprotischen Lösungsmittel durchgeführt, bevorzugt in Ether wie Diethylether, Tetrahydrofuran etc.. Die Reaktionstemperatur liegt im Bereich von -100°C bis zur Höhe des Siedepunktes des Reaktionsgemisches. Die Verbindungen der Formel V werden in der Regel direkt weiter umgesetzt oder in situ erzeugt.

F. Darstellung von Verbindungen der Formel Iα (≡ I mit R¹⁰ = Hydroxy) durch Umsetzung einer aktivierten tricyclischen Benzoesäure der Formel VIβ oder einer tricyclischen Benzoesäure VIγ, die vorzugsweise in sich aktiviert wird, mit einem Pyrazol der Formel VII zu den Acylierungsprodukt und anschließende Umlagerung.

L³ steht für eine nucleophil verdrängbare Abgangsgruppe, wie Halogen z.B. Brom oder Chlor, Hetaryl, z.B. Imidazolyl oder Pyridyl, 30 Carboxylat, z.B. Acetat oder Trifluoracetat etc.

Die aktivierte tricyclische Benzoesäure VIβ kann direkt eingesetzt werden, wie im Fall der tricyclischen Benzoylhalogenide oder in situ erzeugt werden, z.B. mit Dicyclohexylcarbodiimid, Triphenyl-35 phosphin/Azodicarbonsäureester, 2-Pyridindisulfid/Triphenyl-

35 phosphin/Azodicarbonsäureester, 2-Pyridindisulfid/Triphenyl phosphin, Carbonyldiimidazol etc.

Gegebenenfalls kann es von Vorteil sein, die Acylierungsreaktion in Gegenwart einer Base auszuführen. Die Reaktanden und die 40 Hilfsbase werden dabei zweckmäßigerweise in äquimolaren Mengen eingesetzt. Ein geringer Überschuß der Hilfsbase z.B. 1,2 bis 1,5 Moläquivalente, bezogen auf VI, kann unter Umständen vorteilhaft sein.

45 Als Hilfsbasen eignen sich tertiäre Alkylamine, Pyridin oder Alkalimetallcarbonate. Als Lösungsmittel können z.B. chlorierte Kohlenwasserstoffe, wie Methylenchlorid oder 1,2-Dichlorethan,

aromatische Kohlenwasserstoffe, wie Toluol, Xylol oder Chlorbenzol, Ether, wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran oder Dioxan, polare aprotische Lösungsmittel, wie Acetonitril, Dimethylformamid oder Dimethylsulfoxid oder Ester 5 wie Essigsäureethylester oder Gemische hiervon verwendet werden.

Werden tricyclische Benzoylhalogenide als aktivierte Carbonsäurekomponente eingesetzt, so kann es zweckmäßig sein, bei Zugabe
dieses Reaktionspartners die Reaktionsmischung auf 0-10°C abzuküh10 len. Anschließend rührt man bei 20 - 100°C, vorzugsweise bei 25 50°C, bis die Umsetzung vollständig ist. Die Aufarbeitung erfolgt
in üblicher Weise, z.B. wird das Reaktionsgemisch auf Wasser gegossen, das Wertprodukt extrahiert. Als Lösungsmittel eignen sich
hierfür besonders Methylenchlorid, Diethylether und Essigsäure15 ethylester. Nach Trocknen der organischen Phase und Entfernen des
Lösungsmittels kann der rohe Ester ohne weitere Reinigung zur Umlagerung eingesetzt werden.

Die Umlagerung der Ester VIII zu den Verbindungen der Formel Ia 20 erfolgt zweckmäßigerweise bei Temperaturen von 20 bis 100°C in einem Lösungsmittel und in Gegenwart einer Base sowie gegebenenfalls mit Hilfe einer Cyanoverbindung als Katalysator.

Als Lösungsmittel können z.B. Acetonitril, Methylenchlorid,
25 1,2-Dichlorethan, Dioxan, Essigsäureethylester, Toluol oder Gemische hiervon verwendet werden. Bevorzugte Lösungsmittel sind Acetonitril und Dioxan.

Geeignete Basen sind tertiäre Amine wie Triethylamin, aromatische 30 Amine wie Pyridin oder Alkalicarbonate, wie Natriumcarbonat oder Kaliumcarbonat, die vorzugsweise in äquimolarer Menge oder bis zu einem vierfachen Überschuß, bezogen auf den Ester, eingesetzt werden. Bevorzugt werden Triethylamin oder Alkalicarbonat verwendet, vorzugsweise in doppelt äquimolarem Verhältnis in 35 Bezug auf den Ester.

Als Cyanoverbindungen kommen anorganische Cyanide, wie Natriumcyanid oder Kaliumcyanid und organische Cyanoverbindungen, wie Acetoncyanhydrin oder Trimethylsilylcyanid in Betracht. Sie wer-

- 40 den in einer Menge von 1 bis 50 Molprozent, bezogen auf den Ester, eingesetzt. Vorzugsweise werden Acetoncyanhydrin oder Trimethylsilylcyanid, z.B. in einer Menge von 5 bis 15, vorzugsweise 10 Molprozent, bezogen auf den Ester, eingesetzt.
- 45 Die Aufarbeitung kann in an sich bekannter Weise erfolgen. Das Reaktionsgemisch wird z.B. mit verdünnter Mineralsäure, wie 5 %ige Salzsäure oder Schwefelsäure, angesäuert, mit einem orga-

nischen Lösungsmittel, z.B. Methylenchlorid oder Essigsäureethylester extrahiert. Der organische Extrakt kann mit 5-10%iger Alkalicarbonatlösung, z.B. Natriumcarbonat- oder Kaliumcarbonatlösung extrahiert werden. Die wäßrige Phase wird angesäuert und der sich bildende Niederschlag abgesaugt und/oder mit Methylenchlorid oder Essigsäureethylester extrahiert, getrocknet und eingeengt.

Es ist aber auch möglich, den Ester VIII in situ zu erzeugen, in10 dem man ein Pyrazol der Formel VII, oder ein Alkalisalz hiervon,
mit einem tricyclischen Benzolderivat der Formel IX in Gegenwart
von Kohlenmonoxid, eines Katalysators sowie einer Base, umsetzt.

L⁴ steht für eine Abgangsgruppe wie Halogen, z.B. Chlor, Brom oder Iod, oder Sulfonat wie Mesylat oder Triflat; bevorzugt sind Brom 35 oder Triflat.

Der Ester VII reagiert ggf. direkt zu dem tricyclischen Benzoyl-pyrazol-Derivat der Formel $I\alpha$ ab.

40 Als Katalysatoren eignen sich Palladiumligandkomplexe, in denen das Palladium in der Oxidationsstufe O vorliegt, metallisches Palladium, das gegebenenfalls auf einen Träger aufgezogen wurde, und vorzugsweise Palladium(II)salze. Die Umsetzung mit Palladium(II)salzen und metallischem Palladium wird vorzugsweise in

45 Gegenwart von Komplexliganden durchgeführt.

Als Palladium(0)ligandkomplex kommt beispielsweise Tetrakis(triphenylphosphan)palladium in Frage.

Metallisches Palladium ist vorzugsweise auf einen inerten Träger 5 wie beispielsweise Aktivkohle, Siliciumdioxid, Aluminiumoxid, Bariumsulfat oder Calciumcarbonat aufgezogen. Die Reaktion wird vorzugsweise in Gegenwart von Komplexliganden wie beispielsweise Triphenylphosphan durchgeführt.

10 Als Palladium(II) salze eigenen sich beispielsweise Palladiumacetat und Palladiumchlorid. Bevorzugt wird in Gegenwart von Komplexliganden wie beispielsweise Triphenylphosphan gearbeitet.

Geeignete Komplexliganden für die Palladiumligandkomplexe, bzw.

15 in deren Gegenwart die Umsetzung mit metallischem Palladium oder Palladium(II) salzen vorzugsweise ausgeführt wird, sind tertiäre Phosphane, deren Struktur durch folgende Formeln wiedergegeben wird:

wobei n die Zahlen 1 bis 4 bedeutet und die Reste R^a bis R^g für $C_1-C_6-Alkyl$, $Aryl-C_1-C_2-alkyl$ oder vorzugsweise Aryl stehen. Aryl steht beispielsweise für Naphthyl und gegebenenfalls substituiertes Phenyl wie beispielsweise 2-Tolyl und insbesondere für unsubstituiertes Phenyl.

Die Herstellung der komplexen Palladiumsalze kann in an sich bekannter Weise ausgehend von kommerziell erhältlichen Palladiumsalzen wie Palladiumchlorid oder Palladiumacetat und den entsprechenden Phosphanen wie z.B. Triphenylphosphan oder 1,2-Bis (diphenylphosphano) ethan erfolgen. Ein Großteil der komplexierten Palladiumsalze ist auch kommerziell erhältlich. Bevorzugte Palladiumsalze sind [(R)(+)2,2'-Bis (diphenylphosphano)-1,1'-binaphthyl]palladium(II)chlorid, Bis (triphenylphosphan)palladium(II)acetat und insbesondere Bis (triphenylphosphan)palladium(II)chlorid.

Der Palladiumkatalysator wird in der Regel in einer Konzentration von 0,05 bis 5 Mol%, und bevorzugt 1-3 Mol% eingesetzt.

45 Als Basen kommen tertiäre Amine wie beispielsweise N-Methylpiperidin, Ethyldiisopropylamin, 1,8-Bisdimethylaminonaphthalin oder insbesondere Triethylamin in Betracht. Ebenso eigenen sich

Alkalicarbonat, wie Natriumcarbonat oder Kaliumcarbonat. Aber auch Gemische von Kaliumcarbonat und Triethylamin sind geeignet.

In der Regel werden 2 bis 4 Moläquivalente, insbesondere 2 Mol-5 äquivalente, des Alkalicarbonats, sowie 1 bis 4 Moläquivalente, insbesondere 2 Moläquivalente des tertiären Amins bezogen auf das tricyclische Benzolderivat der Formel IX eingesetzt.

Als Lösungsmittel können Nitrile wie Benzonitril und Acetonitril, 10 Amide wie Dimethylformamid, Dimethylacetamid, Tetra-C₁-C₄-alkyl-harnstoffe oder N-Methylpyrrolidon und vorzugsweise Ether wie Tetrahydrofuran, Methyl-tert.-butylether dienen. Insbesondere werden Ether wie 1,4-Dioxan und Dimethoxyethan als Lösungsmittel bevorzugt.

15

Die tricyclischen Benzoylhalogenide der Formel VI β mit L³ = Cl, Br können auf an sich bekannte Art und Weise durch Umsetzung der tricyclischen Benzoesäuren der Formel VI γ (\equiv VIb) mit Halogenierungsreagentien wie Thionylchlorid, Thionylbromid, Phosgen,

20 Diphosgen, Triphosgen, Oxalylchlorid, Oxalylbromid hergestellt werden.

Die tricyclischen Benzoesäuren der Formel VIγ (≡VIb) können in bekannter Weise durch saure oder basische Hydrolyse aus den ent-25 sprechenden Estern VIc hergestellt werden.

Tricyclische Benzoesäurederivate der Formel VI sind neu,

30

35

wobei die Variablen folgende Bedeutung haben:

X Sauerstoff, Schwefel, S=0, $S(=0)_2$, CR^6R^7 , NR^8 oder eine Bindung;

bildet gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, einen gesättigten, partiell gesättigten oder ungesättigten 5- oder 6-gliedrigen Heterocyclus, der ein bis drei gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stick-

stoff, enthält;

 R^1, R^2, R^6, R^7 Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy oder C_1 - C_6 -Halogenalkoxy;

5

R³ Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy;

Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogen- R^4 alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, 10 C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, $C_1-C_6-Alkylsulfinyl$, $C_1-C_6-Halogenalkylsulfinyl$, C_1-C_6 -Alkylsulfonyl, C_1-C_6 -Halogenalkylsulfonyl, Aminosulfonyl, N- $(C_1-C_6-Alkyl)$ -aminosulfonyl, 15 $sulfonyl)-amino, N-(C_1-C_6-Halogenalkylsulfonyl)$ amino, $N-(C_1-C_6-Alkyl)-N-(C_1-C_6-alkylsulfonyl)$ amino oder N-(C_1 - C_6 -Alky)-N-(C_1 - C_6 -halogenalkylsulfonyl)-amino; 20 Wasserstoff, C1-C6-Alkyl oder Halogen; R^5 Wasserstoff, C1-C6-Alkyl, C1-C6-Halogenalkyl, R^8 $C_1-C_6-Alkylcarbonyl$, Formyl, $C_1-C_6-Alkoxycarbonyl$, C_1 - C_6 -Halogenalkoxycarbonyl, C_1 - C_6 -Alkylsulfonyl 25 oder C_1 - C_6 -Halogenalkylsulfonyl; 0, 1 oder 2; 1

Beispiele für abhydrolysierbare Reste sind Alkoxy-, Phenoxy-, Alkylthio-, Phenylthio-Reste, die ggf. substituiert sein können, Halogenide, Heteroaryl-Reste, die über Stickstoff gebunden sind, 35 Amino-, Imino-Reste, die ggf. substituiert sein können etc.

Hydroxy oder ein abhydrolysierbarer Rest;

Bevorzugt sind tricyclische Benzoesäurehalogenide VIa (VI mit R^{17} = Halogen)

 R^{17}

wobei die Variablen X, Y, \mathbb{R}^1 bis \mathbb{R}^5 und 1 die unter Formel VI genannte Bedeutung haben und

Hal Halogen, insbesondere Chlorid oder Bromid, bedeutet.

Ebenso bevorzugt sind tricyclische Benzosäuren der Formel VIb (VI mit R^{17} = Hydroxy; \equiv VI γ),

10

15

wobei die Variablen X, Y, \mathbb{R}^1 bis \mathbb{R}^5 und 1 die unter Formel VI genannte Bedeutung haben.

20

Ebenso bevorzugt sind tricyclische Benzosäureester der Formel VIc (VI mit \mathbb{R}^{17} = T = \mathbb{C}_1 - \mathbb{C}_6 -Alkoxy),

25

30

wobei die Variablen X, Y, \mathbb{R}^1 bis \mathbb{R}^5 und 1 die unter Formel VI genannte Bedeutung haben und

35

C₁-C₆-Alkoxy bedeutet.

Die besonders bevorzugten Ausführungsformen der tricyclischen Benzoesäure-Derivate der Formel VI, VIa, VIb und VIc in Bezug auf die Variablen X, Y, R¹ bis R⁵ und 1 entstprechen denen der tricy-40 clischen Benzoylpyrazol-Derivate der Formel I.

Insbesondere bevorzugt sind die Verbindungen VI, VIa, VIb und VIc, wobei Y gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, folgende Heterocyclen ausbildet:

Hierbei sind Verbindungen VI, VIa, VIb und VIc außerordentlich bevorzugt, wobei

 R^4

Nitro, Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkythio oder C_1 - C_6 -Alkyl-sulfonyl; insbesondere C_1 - C_6 -Alkylksulfonyl;

bedeutet.

10

15 Die tricyclischen Benzoesäureester VIc sind auf verschiedene Art und Weise erhältlich.

Beispielsweise können Benzosäureester der Formel X, die auf an sich bekannte Art und Weise hergestellt werden (vgl. z.B. Chem.

- 20 Pharm. Bull. 1985, 33 (8), 3336; Helv. Chim. Acta 1987, 70, 1326; J. Chem. Soc. Perkin Trans. 1972, 2019; J. Chem. Soc. Perkin Trans. 1991, 2763; Tetrahydron Asymmetry 1998, 9, 1137), zu cyclischen Ketonen der Formel XI cyclisiert werden (vgl. z.B. Chem. Ber. 1923, 56, 1819; J. Chem. Soc. Perkin I 1991, 2763; J.
- 25 Med. Chem. 1988, 31, 230; Tetrahedron 1987, 43, 4549; Synlett 1991, 6, 443; Chem. Pharm. Bull. 1985, 33 (8), 3336). Diese lassen sich in Analogie zu bekannten Verfahren (vgl. z.B. J. Heterocyclic Chem. 1976, 13, 545; J. Heterocyclic Chem. 1972, 9, 1341; J. Org. Chem. 1978, 43, 3015; J. Chem. Soc. Perkin Trans. I 1978,
- 30 86; J. Org. Chem. 1986, 51, 2021) in die tricyclischen Benzoesäureester der Formel VIc überführen.

Weiterhin kann es in Betracht kommen das cyclische Keton der Formel XI auf an sich bekannte Weise zu cyclisieren (XII), z.B. mit einem Anhydrid oder Säureanhydrid ggf. in Gegenwart von katalytischen Mengen einer Lewissäure, wie Bortrifluorid (vgl. z.B. Can. J. Chem. 1979, 57, 3292; J. Am. Chem. Soc. 1953, 75, 626) und anschließend mit einem Hydrazin umzusetzen (vgl. A.R. Katritzky et

al., Comprehensive Heterocyclic Chemistry, Vol. 5, p. 121, 277 - 280 (1984), Pergamon Press; J. Org. Chem. 1961, 26, 451; Org. Synth. 1949, 29, 54), wobei der resultierende Pyrazolrest nach üblichen Verfahren weiter modifiziert werden kann.

Weiterhin kann das Diketon XII mit Hydroxylamin oder Äquivalenten hiervon umgesetzt werden (vgl. A.R. Katritzky et al.,

Comprehensive Heterocyclic Chemistry, Vol. 6, p. 61 - 64, 118

(1984), Pergamon Press; Chem. Ber. 1967, 100, 3326). Man erhält

10 entsprechende Isoxazolderivate, die nach üblichen Verfahren weiter modifiziert werden können.

Ebenso ist es möglich, das Diketon XII mit Amidinen umzusetzen (vgl. z.B. A.R. Katritzky et al., Comprehensive Heterocyclic

15 Chemistry, Vol. 3, p. 112 - 114 (1924), Pergamon Press; J. Chem. Soc. C 1967, 1922; Org. Synth. 1963, IV, 182). Die so erhaltenen Pyrimidinderivate können bei Bedarf nach den üblichen Verfahren weiter modifiziert werden.

20

25

30

35

Es ist auch möglich bei den voranstehend genannten Reaktionen anstelle des Diketons XII Äquivalente hiervon, wie Enolether oder Enamine, die in Analogie zu bekannten Verfahren dargestellt wersten können, einzusetzen.

Es kann auch in Betracht kommen das cyclische Keton der Formel XI

in Analogie zu bekannten Verfahren mit einen Aldehyd oder Keton
umzusetzen (XIII) (vgl. z.B. Tetrahedron Lett. 1978, 2111; Tetra10 hedron Lett. 1981, 5251; Chem. Ber. 1960, 2294; J. Chem. Soc.
Perkin Trans. 1, 1991, 1467; Tetrahedron Lett. 1992, 8091). Das

- Perkin Trans. 1, 1991, 1467; Tetrahedron Lett. 1992, 8091). Das resultierende ungesättigte cyclische Keton der Formel XIII kann auf an sich bekannte Weise (vgl. z.B. A.R. Katritzky et al. Comprehensive Heterocyclic Chemistry, Vol. 2, 6 (1984), Pergamon
- 15 Press; J. Heterocyclic Chem. 1969, 533; J. Heterocyclic Chem. 1968, 853) mit einem Hydrazin umgesetzt werden, wobei das resultierende Pyrazolin nach üblichen Verfahren weiter modifiziert werden kann.
- 20 Weiterhin kann das ungesättigte cyclische Keton der Formel XIII mit Hydroxylamin oder Äquivalenten hiervon umgesetzt werden (Z. Chem. 1980, 20, 19). Man erhält entsprechende Isoxazolinderivate, die nach üblichen Verfahren weiter modifiziert werden können.

25

30

35

Weiterhin können Aldehyde der Formel XIV, die auf an sich bekannte Art und Weise hergestellt werden können, in Analogie zu literaturbekannten Verfahren durch Umsetzung mit einem Hydrazin oder Hydroxylamin (oder Äquivalenten hiervon) in entsprechende Hydrazone oder Oxime überführt werden (vgl. z.B. Synth. Commun. 1990, 20, 1373; J. Org. Chem. 1980, 45, 3756). Diese können wiederum auf an sich bekannte Art und Weise in die entsprechenden 1,3-Dipole überführt werden, die dann im Rahmen einer [3 + 2]-Cycloaddition zu den Verbindungen VIc abreagieren (vgl. z.B. Synth. Commun. 1990, 20, 1373; EP-A 386 892; J. Org. Chem. 1980, 45, 3756; Tetrahedron Lett. 1981, 22, 1333.)

Die so erhaltenen Pyrazole bzw. Pyrazoline sowie Isoxazole bzw. 15 Isoxazoline können nach üblichen Verfahren weiter modifiziert werden.

Ebenso ist es möglich das cyclische Keton der Formel XI mit einen Dithiol oder einem "gemischten Alkohol" in Analogie zu literaturbekannten Verfahren (vgl. z.B. T.W. Greene et al., Protective Groups in Organic Synthesis, John Wiley & Sons, 133-140) umszu45 setzen und anschließend einer Umlagerung in Gegenwart von Brom oder einer geeigneten Lewisssäure wie z.B. Tellurtetrachlorid zu

unterwerfen (vgl. Tetrahedron 1991, 47, 4187; Synthesis 1991, 223; J. Chem. Am. Soc. Chem. Commun. 1985, 1645).

5

$$R^{3a}$$
 OH
 SH
 T
 R^{2}
 R^{3a}
 Die so erhaltenen Heterocyclen können nach an sich bekannten Verfahren ggf. weiter modifiziert werden.

Die vorstehend genannten Substituenten R^{3a} stehen für Wasserstoff, 30 C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, Hydroxy, C_1 - C_6 -Alkoxy oder C_1 - C_6 -Halogenalkoxy; weiterhin stehen die voranstehend genannten Reste R^{3b} für Wasserstoff, C_1 - C_6 -Alkyl oder C_1 - C_6 -Halogenalkyl.

Die tricyclischen Benzoesäureester der Formel VIc bzw. die tricy- 35 clischen Benzoesäuren der Formel VIb können durch Umsetzung eines tricyclischen Benzoederivats der Formel IX mit einem C_1 - C_6 -Alkohol bzw. Wasser in Gegenwart von Kohlenmonoxid, eines Katalysators sowie eine Base erhalten werden. Es gelten in der Regel die unter Verfahren F angegebenen Bedingungen.

 ${\tt L}^4$ steht hierbei für eine Abgangsgruppe wie Halogen, z.B. Chlor, Brom oder Iod, oder Sulfat wie Mesylat oder Triflat; bevorzugt sind Brom oder Triflat.

Weiterhin können die tricyclischen Benzoesäuren der Formel VIb erhalten werden, indem man ein tricyclisches Benzolderivat der Formel IX mit L⁴ Halogen wie Chlor oder Brom, insbesondere Brom, durch Umsetzung mit beispielsweise n-Butyllithium oder Magnesium 30 in das metallierte Derivat überführt und anschließend mit Kohlendioxid quencht (vgl. z.B. J. Org. Chem. 1990, 55, 773; Angew. Chem. Int. Ed. 1969, 8, 68).

45 Ebenso können die tricyclischen Benzoesäuren VIb durch Verseifung der entsprechenden Nitrile in Analogie zu literaturbekannten Verfahren erhalten werden. Die Nitrile wiederum können durch Halo-

gen/Nitril-Austausch erhalten werden oder durch Sandmeyer-Reaktion aus den entsprechenden Anilinen XV.

5
$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}

10
 R^{5}

IX (mit $L^{4} = C1$, Br)
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 Die Verbindungen der Formel IX sind neu,

25

30

40

wobei die Variablen folgende Bedeutung haben:

X Sauerstoff, Schwefel, S=O, S(=O)₂, CR⁶R⁷, NR⁸ oder eine Bindung;
 Y bildet gemeinsam mit den beiden Kohlenstoffen, an

die es gebunden ist, einen gesättigten, partiell
gesättigten oder ungesättigten 5- oder
6-gliedrigen Heterocyclus, der ein bis drei gleiche oder verschiedene Heteroatome, ausgewählt aus
folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff, enthält;

 R^1, R^2, R^6, R^7 Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy oder C_1 - C_6 -Halogenalkoxy;

 R^3 Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy oder C_1 - C_6 -Halogenalkoxy;

45 R4 Nitro, Halogen, Cyano, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogen-alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylthio, C_1 - C_6 -Halogenalkylthio,

121

$C_1-C_6-Alkylsulfinyl, C_1-C_6-Halogenalkylsulfinyl,$
$C_1-C_6-Alkylsulfonyl, C_1-C_6-Halogenalkylsulfonyl,$
Aminosulfonyl, $N-(C_1-C_6-Alkyl)$ -aminosulfonyl,
$N, N-Di-(C_1-C_6-alkyl)$ -aminosulfonyl, $N-(C_1-C_6-Alkyl-aminosulfonyl)$
sulfonyl)-amino, N-(C ₁ -C ₆ -Halogenalkylsulfonyl)-
amino, $N-(C_1-C_6-Alkyl)-N-(C_1-C_6-alkylsulfonyl)-$
amino oder N-(C ₁ -C ₆ -Alky)-N-(C ₁ -C ₆ -halogenalkyl-
sulfonyl) -amino;

10 R⁵ Wasserstoff, C₁-C₆-Alkyl oder Halogen;

Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
C₁-C₆-Alkylcarbonyl, Formyl, C₁-C₆-Alkoxycarbonyl,
C₁-C₆-Halogenalkoxycarbonyl, C₁-C₆-Alkylsulfonyl

oder C₁-C₆-Halogenalkylsulfonyl;

1 0, 1 oder 2;

L4 Halogen, C₁-C₆-Alkylsulfonyloxy, C₁-C₆-Halogenalkylsulfonyoxy oder Phenylsulfonyloxy, wobei der
Phenylring des letztgenannten Rests unsubstituiert
sein kann oder partiell oder vollständig halogeniert und/oder einen bis drei der folgenden Reste
tragen kann: Nitro, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₄-Alkoxy- oder C₁-C₄-Halogenalkoxy;

Bevorzugt sind Verbindungen der Formel IX, wobei L^4 für Halogen, insbesondere Brom steht.

- 30 Die besonders bevorzugten Ausführungsformen der Verbindungen der Formel IX in Bezug auf die Variablen X, Y, R¹ bis R⁵ und 1 entsprechen denen der tricyclischen Benzoylpyrazol-Derivate der Formel I.
- 35 Insbesondere bevorzugt sind die Verbindungen der Formel IX, wobei

Y gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, folgende Heterocyclen ausbildet:

45 Hierbei sind die Verbindungen IX außerordentlich bevorzugt, wobei

 R^4

Nitro, Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkylsulfonyl; insbesondere C1-C6-Alkylsulfonyl;

5 bedeutet.

Die Verbindungen der Formel IX können auf verschiedene Art und Weise erhalten werden, beispielsweise kann das anellierte System analog zu den bei den Verbindungen der Formel VIc beschriebenen

10 Verfahren aufgebaut werden. Es ist aber auch möglich von einem geeigneten Grundkörper ausgehend das anellierte System aufzubauen (in Analogie zu den bei den Verbindungen der Formel VIc beschriebenen Verfahren) und an-

schließend L^4 = Halogen durch übliche Halogenierungsreaktion ein-

15 zuführen.

Ebenso sind die Aniline der Formel XV und die Nitrile der Formel XVI neu,

20

20
$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

30

ΧV

wobei die Variablen folgende Bedeutung haben:

Sauerstoff, Schwefel, S=O, S(=O) $_2$, CR 6 R 7 , NR 8 oder Х

eine Bindung;

35

Y

bildet gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, einen gesättigten, partiell gesättigten oder ungesättigten 5- oder 6-gliedrigen Heterocyclus, der ein bis drei gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff, enthält;

40

 R^1, R^2, R^6, R^7 Wasserstoff, $C_1-C_6-Alkyl$, $C_1-C_6-Halogenalkyl$, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy;

R ³	Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy oder C_1 - C_6 -Halogenalkoxy;					
R ⁴	Nitro, Halogen, Cyano, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -					

Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy,
C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio,
C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl,
C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl,
Aminosulfonyl, N-(C₁-C₆-Alkyl)-aminosulfonyl,
N,N-Di-(C₁-C₆-alkyl)-aminosulfonyl, N-(C₁-C₆-Alkyl-sulfonyl)-amino, N-(C₁-C₆-Halogenalkylsulfonyl)amino, N-(C₁-C₆-Alkyl)-N-(C₁-C₆-alkylsulfonyl)amino oder N-(C₁-C₆-Alky)-N-(C₁-C₆-halogenalkyl-sulfonyl)-

sulfonyl)-amino;
15

 R^8 Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkylcarbonyl, Formyl, C_1 - C_6 -Alkoxycarbonyl, C_1 - C_6 -Halogenalkoxycarbonyl, C_1 - C_6 -Alkylsulfonyl oder C_1 - C_6 -Halogenalkylsulfonyl;

Wasserstoff, C1-C6-Alkyl oder Halogen;

1 0, 1 oder 2.

 R^5

Y

20

35

40

- 25 Die besonders bevorzugten Ausführungsformen der Verbindungen der Formel XV und XVI in Bezug auf die Variablen X, Y, R^1 bis R^5 und 1 entsprechen denen der tricyclischen Benzoylpyrazol-Derivate der Formel I.
- 30 Insbesondere bevorzugt sind die Verbindungen der Formel XV bzw. XVI, wobei

gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, folgende Heterocyclen ausbildet:

men, men, mon,

Hierbei sind die Verbindungen XV bzw. XVI außerordentlich bevorzugt, wobei

R⁴ Nitro, Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkyl-sulfonyl; insbesondere C₁-C₆-Alkylsulfonyl; bedeutet.

Die Verbindungen der Formel XV können auf verschiedene Art und Weise erhalten werden, beispielsweise kann das anellierte System 5 analog zu den bei den Verbindungen der Formel VIc beschriebenen Verfahren aufgebaut werden.

Es ist aber auch möglich von einem geeigneten Grundkörper ausgehend das anellierte System aufzubauen (in Analogie zu den bei den
10 Verbindungen der Formel VIc beschriebenen Verfahren) und anschließend durch Nitrierung para zu R⁴ in Analogie zu literaturbekannten Verfahren eine Nitrogruppe einzuführen und diese durch
Reduktion auf an sich bekannte Art und Weise in die Aminogruppe
überzuführen.

15

Gegenbenenfalls kann es von Vorteil sein, bei den voranstehend beschriebenen Synthesevarianten für bestimmte Funktionalitäten Schutzgruppen einzuführen, wenn die Kompatibilität der Funktionalitäten mit den erforderlichen Rekationsbedingungen

20 nicht gegeben ist.

setzt werden.

Die Wahl der Schutzgruppen richtet sich sowohl nach den Reaktionsbedingungen als auch nach der Molekülstruktur. Die Schutzgruppen, ihre Einführung und ihre Abspaltung sind in der 25 Regel literaturbekannt (vgl. z.B. T.W. Greene et al., "Protective Groups in Organic Synthesis", 2nd edition, Wiley, New York, 1991) und sie können in Analogie zu literaturbekannten Verfahren einge-

30 Weiterhin kann es notwendig sein eine Kombination der voranstehend beschriebenen Synthesevarianten durchzuführen.

Ebenso ist es möglich durch elektrophile, nukleophile, radikalische oder organometallische Rekationen sowie durch 35 Oxidations- oder Reduktionsreaktionen weitere Substituenten einzuführen bzw. vorhandene Substituenten zu modifizieren.

Herstellungsbeispiele:

- 40 1. (5-Phenylcarbonyloxy-1-methyl-1H-pyrazol-4-yl)-(8-methyl-sulfonyl-3a,4-dihydro-3H-indeno[1,2-c]isoxazol-5-yl)methanon (Verbindung 2.2)
 - 2-Allyl-6-chlor-benzaldehyd

10

15

20

25

30

35

125

Eine Lösung von 10,89 g (0,107 mol) Trimethylethylendiamin in 50 ml wasserfreiem Tetrahydrofuran wurde unter Schutzgasatmosphäre auf -10°C gekühlt und mit 66,6 ml 1,6 molarer n-Butyllithium-Lösung in Hexan (0,107 mol) tropfenweise versetzt. Nach 10 Minuten gab man 15 g (0,107 mol) 6-Chlorbenzaldehyd in 70 ml Tetrahydrofuran tropfenweise zu, versetzte mit weiteren 0,214 mol n-Butyllithium in Hexan (146,8 ml) und rührte 2,5 Stunden bei 0°C. Es wurde auf -20°C abgekühlt, 12,42 g (0,139 mol) Kupfer(I)cyanid zugegeben, 30 Minuten bei -10°C gerührt und anschließend 28,42 g Allylbromid in 100 ml Tetrahydrofuran zugetropft. Man rührte noch 2,5 Stunden bei 0°C, ehe 230 ml gesättigte Ammoniumchlorid-Lösung zugetropft wurden. Der dabei anfallende Feststoff wurde abgetrennt und die wäßrige Phase mit Diethylether extrahiert. Die vereinigten organischen Phasen wurden dann mit gesättigter Ammoniumchlorid-Lösung gewaschen, getrocknet und im Vakuum das Lösungsmittel entfernt. Man erhielt 17,0 g 2-Alkyl-6-chlorbenzaldehyd (89 %) in Form eines dunklen Öls. ¹H-NMR (CDCl₃, δ in ppm): 3,73 (d, 2H); 5,05 (dd, 2H); 5,96 (m, 1H); 7,05-7,48 (m, 3H); 10,58 (s, 1H).

2-Allyl-6-chlor-benzaldehyd-oxim

Zu einer Lösung von 4,62 g Hydroxylamin-Hydrochlorid in 50 ml Wasser wurden 5,58 g Natriumhydrogencarbonat gegeben und auf 0°C gekühlt. Dazu tropfte man eine Lösung von 9,7 g (44,32 mmol) 2-Allyl-6-chlor-benzaldehyd in 50 ml Methanol und rührte bei Raumtemperatur über Nacht. Anschließend wurde das Methanol im Vakuum entfernt und der Rückstand in 300 ml Wasser eingerührt. Die wäßrige Phase extrahierte man mit Diethylether, die vereinigten organischen Phasen wurden mit gesättigter Ammoniumchlorid-Lösung gewaschen, getrocknet und das Lösungmittel entfernt. Man erhielt 8,7 g (quantitativ) 2-Allyl-6-chlorbenzaldehyd-oxim in Form eines zähen Öls.

1H-NMR (CDCl₃, & in ppm): 3,58 (d, 2H); 5,02 (2d, 2H); 5,95 (m, 1H); 7,08-7,36 (m, 3H); 8,49 (s, 1H).

8-Chlor-3a, 4-dihydro-3H-indeno[1,2-c]isoxazol

Zu einer Lösung von 8,4 g (42,9 mmol) 2-Allyl-6-chlorbenzaldehyd-oxim in 100 ml Methylenchlorid wurden bei Raumtemperatur 37,0 ml einer Natriumhypochloridlösung (12,5 % aktives
Chlor) getropft und eine Spatelspitze Natriumacetat zugegeben. Man rührte 2 Stunden bei Raumtemperatur, trennte die
organische Phase ab, extrahierte die wäßrige Phase mit
Methylenchlorid und wusch die vereinigten organischen Phasen
mit gesättigter Ammoniumchlorid-Lösung. Es wurde getrocknet

und das Lösungsmittel entfernt. Man erhielt 7,0 g (94 %) 8-Chlor-3a,4-dihydro-3H-indeno-[1,2-c]isoxazol in Form eines zähen Öls.

¹H-NMR (CDCl₃, δ in ppm): 2,81 (dd, 1H); 3,24 (dd, 1H); 3,78-4,03 (s, 2H); 4,78 (t, 1H); 7,23-7,41 (m, 3H).

Zu einer Lösung von 5,0 g (25,8 mmol) 8-Chlor-3a,4-di-

8-Methylthio-3a, 4-dihydro-3H-indeno[1,2c]isoxazol

5

10

15

20

hydro-3H-indeno-[1,2-c]isoxazol in 60 ml N-Methylpyrrolidon wurden bei Raumtemperatur 3,6 g (52,0 mmol) Natriumthio-methylat gegeben und über Nacht gerührt. Anschließend rührte man in 800 ml Wasser ein, extrahierte die wäßrige Phase mit Diethylether, wusch die vereinigten organischen Phasen mit gesättigter Ammoniumchlorid-Lösung, trocknete und entfernte das Lösungsmittel. Man erhielt 4,6 g (87 %) 8-Methylthio-3a,4-dihydro-3H-indeno[1,2-c]isoxazol in Form eines dunkelbraunen Feststoffs.

¹H-NMR (CDCl₃, δ in ppm): 2,54 (s, 3H); 2,78 (dd, 1H); 3,21 (dd, 1H); 3,72-3,93 (s, 2H); 4,64 (t, 1H); 7,09-7,38 (m, 3H).

5-Brom-8-methylthio-3a,4-dihydro-3H-indeno[1,2-c]isoxazol

Man kühlte 120 ml Schwefelsäure (98 proz.) auf 0°C und gab portionsweise 11,2 g (54,8 mmol) 8-Methylthio-3a,4-di-25 hydro-3H-indeno[1,2-c]isoxazol zu. Anschließend tropfte man 9,2 g (57,5 mmol) Brom zu und rührte 2 Stunden bei 0°C weiter. Man goß die entstandene Lösung auf 2 1 eines Gemisches von Wasser und Eis, rührte 1,5 Stunden und saugte den ausgefallenen Feststoff ab, der anschließend gewaschen und dann 30 getrocknet wurde. Man erhielt 11,4 g (73 %) 5-Brom-8-methylthio-3a,4-dihydro-3H-indeno[1,2-c]isoxazol eines braunen Feststoffs mit einem Fp. von 127-135°C. $^{1}\text{H-NMR}$ (CDCl₃, δ in ppm): 2,53 (s, 3H); 2,71 (dd, 1H); 3,24 (dd, 1H); 3,81-4,02 (s, 2H); 4,71 (t, 1H); 7,01 (d, 1H); 7,47 35 (d, 1H).

5-Brom-8-methylsulfonyl-3a,4-dihydro-3H-indeno[1,2-c]isoxazol

Eine Lösung von 11,2 g (39,4 mmol) 5-Brom-8-methylthio-3a,4-dihydro-3H-indeno[1,2-c]isoxazol und 1,55 g
Natriumwolframat in 250 ml Toluol und 50 ml Eisessig wurde
auf 70°C erhitzt und tropfenweise mit 10,73 g (39 proz.,
86,8 mmol) Wasserstoffperoxid versetzt. Man rührte noch 3
Stunden bei 70°C weiter, wobei ein Feststoff ausfiel. Man
ließ die Mischung auf Raumtemperatur abkühlen, rührte in 1 l
Wasser ein und saugte den weißen Feststoff ab. Die organische

20

25

30

35

40

127

Phase des Filtrats wurde abgetrennt und die wäßrige mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen wurden mit Wasser gewaschen, getrocknet und das Lösungsmittel entfernt. Man erhielt ein zähes braunes Öl, welches mit Hexan/Essigsäureethylester (4:1) verrührt wurde. Der sich bildende Niederschlag wurde abgesaugt und mit den oben erhaltenen Feststoff vereinigt. Man erhielt 7,3 g (59 %) 5-Brom-8-methylsulfonyl-3a,4-dihydro-3H-indeno[1,2-c]-isoxazol.

(5-Hydroxy-1-methyl-1H-pyrazol-4-yl) - (8-methylsulfonyl-3a,415 dihydro-3H-indeno[1,2-c]isoxazol-5-yl)methanon (Verbindung
2.1)

Zu einer Suspension von 2,0 g (6,33 mmol) 5-Brom-8-methylsulfonyl-3a,4-dihydro-3H-indeno[1,2-c]isoxazol in 100 ml Dioxan gab man 0,62 g (6,33 mmol) 5-Hydroxy-1-methyl-pyrazol, 1,75 g (12,66 mmol) trockenes Kaliumcarbonat, 1,28 g (12,67 mmol) Triethylamin und 0,22 g (0,30 mmol) Bis-(triphenylphosphan) -palladium-dichlorid. Man presste in einem Miniautoklaven 3-mal 20 bar Kohlenmonoxid auf, rührte jeweils 5 Minuten und entspannte wieder. Anschließend heizte man auf 130°C, presste wiederum 20 bar Kohlenmonoxid auf und rührte 24 Stunden. Nach dem Abkühlen und Entspannen wurde das Lösungsmittel entfernt, der Rückstand in Wasser aufgenommen, auf pH 11 eingestellt und mit Methylenchlorid gewaschen. Anschließend säuerte man mit 10 proz. Salzsäure auf pH 4 an und extrahierte mit Methylenchlorid. Die vereinigten organischen Phasen wurden mit gesättigter Ammoniumchlorid-Lösung gewaschen, getrocknet und das Lösungsmittel entfernt. Man erhielt 0,58 g (25 %) (5-Hydroxy-1-methyl-1H-pyrazol-4-yl) - (8-methylsulfonyl-3a, 4-dihydro-3H-indeno[1,2-c]isoxazol)methanon in Form eines dunklen Öls. ¹H-NMR (CDC1₃, δ in ppm): 3,03 (dd, 1H); 3,42 (s, 3H); 3,40

(5-Phenylcarbonyloxy-1-methyl-1H-pyrazol-4-yl)-(8-methyl-sulfonyl-3a,4-dihydro-3H-indeno[1,2-c]isoxazol-5-yl)methanon (Verbindung 2.2)

(m, 1H); 3,51 (s, 3H); 4,05 (m, 2H); 4,85 (t, 1H); 7,57 (s,

Zu einer Suspension von 0,55 g (1,52 mmol) (5-Hydroxy-1-methyl-1H-pyrazol-4-yl)-(8-methylsulfonyl-3a,4-dihydro-3H-in-deno[1,2-c]-isoxazol-5-yl)methanon in 10 ml Tetrahydrofuran

1H); 7,92 (d, 1H); 8,22 (d, 1H).

1H)

40

gab man unter Schutzgasatmosphäre bei 0°C 0,18 g Triethylamin und 0,26 g (1,82 mmol) Benzoylchlorid in 10 ml Tetrahydrofuran. Man rührte über Nacht bei Raumtemperatur, entfernte das Lösungsmittel, nahm den Rückstand in Essigsäureethylester auf, wusch mit Wasser, trocknete und entfernte das Lösungsmittel. Das Rohprodukt wurde durch Chromatographie an Kieselgel (Eluent: Essigsäureethylester: Hexan = 1:1) gereinigt.

Man erhielt 0,22 g (31 %) (5-Phenylcarbonyloxy-1-methyl-1H-pyrazol-4-yl)-(8-methylsulfonyl-3a,4-dihydro-3H-in-

- deno[1,2-c]isoxazol-5-yl)methanon in Form eines gelben Feststoffes mit einem Fp. von 86-93°C.

 1H-NMR (CDCl₃, δ in ppm): 3,22 (s, 3H); 3,34 (m, 2H); 3,81 (s,
 3H); 3,98 (m, 2H); 4,81 (t, 1H); 7,20 8,21 (m, 8H).
- 15 2. 4-(2-Methyl-9-chlor-[1]-thiochromano[4,3-c]pyrazol-6-yl) carbonyl-5-hydroxy-1-methyl-1H-pyrazol (Verbindung 3.1)
 - 2-Chlorsulfonyl-4-chlor-benzoesäuremethylester
- Zu einer Lösung von 139 g (0,75 mol) 2-Amino-4-chlor-benzoesäuremethylester in 400 ml konzentrierter Salzsäure wurden bei 0 bis 5°C eine Lösung von 60,9 g (0,88 mol) Natriumnitrit in 100 ml Wasser zugetropft und noch 1 Stunde bei 0°C nachgerührt.
- In einer zweiten Apparatur wurden 3 g Kupfer-(II)-chlorid, 3 g Benzyltriethylammoniumchlorid, 10 ml Wasser und 400 ml 1,2-Dichlorethan vereinigt und 64 g (1 mol) Schwefeldioxid eingeleitet.
- Anschließend wurde das Diazoniumsalz wie oben beschrieben bei 10 bis 15°C zugegeben und langsam auf 50°C erwärmt. Dann leitete man weitere 54 g (0,84 mol) Schwefeldioxid ein und rührte noch 30 Minuten bei 50°C. Nach Abkühlen wurden bei Raumtemperatur dann 7,4 g (0,1 mol) Chlor eingegast, 15 Minuten nachgerührt und anschließend die sich bildenden Phasen
- getrennt. Die organische Phase wurde getrocknet und das Lösungsmittel entfernt. Man erhielt 207 g 2-Chlorsulfonyl-4-Chlor-benzoesäuremethylester.

 1H-NMR (CDCl₃, δ in ppm): 4,00 (s, 3H); 7,75 (m, 2H); 8,18 (m,
 - 2-Mercapto-4-chlor-benzoesäuremethylester

Zu einer Suspension von 205 g (0,75 mol) 2-Chlorsulfonyl-4-chlor-benzoesäuremethylester in 1 l konzentrierter 45 Salzsäure und 375 g Eis wurde portionsweise innerhalb von 1,5 Stunden 243,5 g (3,7 mol) Zinkpulver gegeben. Man rührte 3 Stunden nach und erhitzte langsam auf 70°C. Nach 2 Stunden

15

20

30

129

bei dieser Temperatur kühlte man ab. Nach 12 Stunden stehen bei Raumtemperatur wurde das Reaktionsgemisch mit Ethylacetat extrahiert, die vereinigten organischen Phasen und das Lösungsmittel entfernt. Man erhielt 125,4 g (83 %)

5 2-Mercapto-4-chlor-benzoesäuremethylester. $^{1}\text{H-NMR}$ (CDCl₃, δ in ppm): 3,95 (s, 3H); 4,88 (s, 1H); 7,10 (m, 1H); 7,30 (m, 1H); 7,96 (d, 1H).

2-(2-Hydroxycarbonyl-eth-1-yl)-thio-4-chlor-benzoesäure-methylester

Zu einer Lösung von 125,4 g (0,62 mol) 2-Mercapto-4-chlor-benzoesäuremethylester in 1,5 l Aceton wurde 179,5 g (1,3 mol) Kaliumcarbonat und portionsweise 94,5 g (0,62 mol) 3-Brompropionsäure gegeben und das Reaktionsgemisch 12 Stunden bei Raumtemperatur gerührt. Man destillierte das Lösungsmittel ab, nahm den Rückstand in Wasser auf und extrahierte mit Diethylether. Dann wurde die wäßrige Phase mit konzentrierter Salzsäure sauer gestellt, der ausgefallene Niederschlag abgesaugt und getrocknet. Man erhielt 150 g (88 %) 2-(2-Hydroxycarbony-eth-1-yl)-thio-4-chlor-benzosäuremethylester

Fp.: 133 bis 1360C

25 5-Chlor-4-oxo-thiochroman-8-carbonsäuremethylester

50 g (0,18 mol) 2-(2-Hydroxycarbonyl-eth-1-yl)-thio-4-chlor-benzoesäuremethylester wurden bei 70°C zu 500 g Polyphosphorsäure gegen und noch 30 Minuten nachgerührt. Anschließend wurde das Reaktionsgemisch in Wasser eingerührt, der ausgefallene Niederschlag abgesaugt und getrocknet. Man erhielt 41,1 g (88 %) 5-Chlor-4-oxo-thiochroman-8-carbonsäuremethylester.

 $^{1}\text{H-NMR}$ (CDCl₃, δ in ppm): 3,08 (m, 4H); 3,96 (s, 3H); 7,14 (d, 35); 7,95 (d, 1H).

5-chlor-3-(N,N-dimehtylaminomethyliden)-4-oxo-thiochroman-8-carbonsäuremethylester

40 30 g (0,078 mol) 5-Chlor-4-oxo-thiochroman-8-carbonsäure-methylester wurden in 300 ml N,N-Dimethylformamid-dimethylacetal 6 Stunden unter Rückfluß erhitzt. Dann wurden flüchtige Bestandteile abdestilliert, der Rückstand in Methylenchlorid aufgenommen und die organische Phase mit Wasser gewaschen.

Nach Trocknung und Entfernen des Lösungsmittels erhielt man 35,3 g (97 %) 5-Chlor-3-(N,N-dimethylaminomethyliden)-4-oxo-thiochroman-8-carbonsäuremethylester.

BASF Aktiengesellschaft 990232 0.2. 0030/19020 1

130

5

10

20

25

30

35

40

45

 $^{1}\text{H-NMR}$ (CDCl₃, δ in ppm): 3,18 (s, 6H); 3,80 (s, 2H); 3,95 (s, 3H); 7,24 (d, 1H); 7,64 (s, 1H); 7,82 (d, 1H) .

2-Methyl-6-methoxycarbonyl-9-chlor-[1]-thiochromano[4,3-c] pyrazol

Zu einer Lösung von 7,0 g (22,5 mmol) 5-Chlor-3-(N,N-di-methylaminomethyliden)-4-oxo-thiochroman-8-carbonsäuremethylester in 700 ml Ethanol wurden 1,3 g (29,2 mmol) Methyl-

hydrazin zugetropft und 2 Stunden unter Rückfluß erhitzt. Das Lösungsmittel wurde entfernt und der Rückstand an Kieselgel mit Ethylacetat/Cyclohexan (2:3) als Eluent chromatografiert. Man erhielt 4,0 g (60 %) 2-Methyl-6-methoxycarbonyl-9-chlor-[1]-thiochromano[4,3-c]pyrazol

2-Methyl-6-hydroxycarbonyl-9-chlor-[1]-thiochromano[4,3-c] pyrazol

4,0 g (13,6 mmol) 2-Methyl-6-methoxycarbonyl-9-chlor-[1]-thiochromano[4,3-c]pyrazol wurden in 100 ml Methanol/Wasser (1:1) mit 0,8 g (20 mmol) Natriumhydroxid 1 Stunde unter Rückfluß erhitzt. Man entfernte das organische Lösungsmittel am Vakuum und extrahierte den Rückstand mit Ethylacetat. Die wäßrige Phase wurde mit konzentrierter Salzsäure angesäuert, der ausgefallene Niederschlag abgesaugt und getrocknet. Man erhielt 3,5 g (92 %) 2-Methyl-6-hydroxycarbonyl-9-chlor-[1]-thiochromano[4,3-c]pyrazol

 $^{1}\text{H-NMR}$ (CDCl₃, δ in ppm): 3,80 (s, 2H); 3,96 (s, 3H); 7,40 (d, 1H); 7,65 (m, 2H).

4-(2-Methyl-9-chlor-[1]-thiochromano[4,3-c]pyrazol-6-yl)-carbonyl-5-hydroxy-1-methyl-1H-pyrazol (Verbindung 3.1)

Ein Gemisch aus 0,60 g (2,1 mmol) 2-Methyl-6-hydroxy-carbonyl-9-chlor-[1]-thiochromano[4,3-c]pyrazol, 0,21 g (2,1 mmol) N,N-Dicyclohexylcarbodiimid in 20 ml Acetonitril wurden über Nacht bei Raumtemperatur gerührt. Man versetzte mit je 500 ml Ethylacetat und 2%iger Sodalösung, filtierte den ausgefallenen Niederschlag ab, trocknete die organische Phase und entfernte das Lösungsmittel. Der Rückstand wurde anschließend mit 0,59 g (4,3 mmol) Kaliumcarbonat in 5 ml 1,4-Dioxan 3 Stunden unter Rückfluß erhitzt. Nach dem Abkühlen extrahierte man mit Diethylether und säuerte die wäßrige Phase auf pH 3 an. Der ausgefallene Niederschlag wurde abgesaugt und getrocknet. Man erhielt 0,14 g 4-(2-Methyl-9-

15

20

131

chlor-[1]-thiochromano[4,3-c]pyrazol-6-yl)-carbonyl-5-hydroxy-1-methyl-1H-pyrazol
Fp.: 168 bis 1710C

5 3. (5-Hydroxy-1-methyl-1H-pyrazol-4-yl)-(6-methoxy-3a,4-di-hydro-3H-chromeno[4,3-c]isoxazolin-9-yl)methanon (Verbindung 2.3)

2-Hydroxy-3-formyl-4-methoxy-benzoesäuremethylester

Zu einer Lösung vn 50,1 g (0,275 mol) 2-Hydroxy-4-methoxyben-zoesäuremethylester und 88 g (0,725 mol) Dichlormethoxymethan in 400 ml Methylenchlorid wurde bei 0 bis 5°C eine Lösung von 209,0 g (1,1 mol) Titantetrachlorid in 150 ml Methylenchlord getropft und über Nacht bei Raumtemperatur gerührt. Anschließend rührte man die Mischung in Eiswasser ein und extrahierte mit Methylenchlorid. Die vereinigten organischen Phasen wurden mit Natriumhydrogencarbonat-Lösung, Wasser und Natriumchlorid-Lösung gewaschen, getrocknet und anschließend das Lösungsmittel entfernt. Nach Chromatographie an Kieselgel mit

Cyclohexan/Ethylacetat = 1:1 erhielt man 24,5 g (42 %) 2-Hydroxy-3-formyl-4-methoxy-benzoesäuremethylester in Form eines farblosen Feststoffes vom Fp.: 123 - 124 0 C. 1 H-NMR (CDCl₃, δ in ppm): 3,92 (s, 3H); 3,98 (s, 3H); 6,49 (d,

25 1H); 8,19 (d, 1H); 10,39 (s, 1H).

2-Allyloxy-3-formyl-4-methoxy-benzoesäuremethylester

Zu einer Mischung von 21,0 g (0,375 mol) Kaliumhydroxid und 20,2 q (0,096 mol) 2-Hydroxy-3-formyl-4-methoxy-benzoesäure-30 methylester in 500 ml Dimethylsulfoxid wurden bei Raumtemperatur 23,2 g (0,192 mol) Allylbromid getropft und 4 Stunden bei Raumtemperatur gerührt. Anschließend rührte man die Mischung in 1,5 l 3%ige wäßrige Salzsäure ein und extrahierte mit Ethylacetat. Die vereinigten organischen Phasen wurden 35 mit Wasser gewaschen, getrocknet und das Lösungsmittel entfernt. Nach Chromatographie an Kieselgel mit Cyclohexan/Ethylacetat = 1:2 erhielt man 7,7 g (36 %) 2-Allyloxy-3-formyl-4-methoxy-benzoesäuremethylester in Form eines gelblichen Öls. 40 $^{1}\text{H-NMR}$ (CDCl₃, δ in ppm): 3,86 (s, 3H); 3,93 (s, 3H); 4,58 (d, 2H); 5,32 (d, 1H); 5,39 (d, 1H); 6,15 (m, 1H); 6,79 (d, 1H);

6-Methoxy-9-methoxycarbonyl-3a,4-dihydro-3H-chromeno[4,3-c] isoxazolin

8,04 (d, 1H); 10,41 (s, 1H).

Stufe a)

5

10

15

20

30

35

40

45

Zu einer Lösung von 2,25g (32,3 mmol) Hydroxylammoniumchlorid und 2,7 g Pyridin in 70 ml Wasser wurden bei Raumtemperatur 4,6 g (18,4 mmol) 2-Allyloxy-3-formyl-4-methoxy-benzoesäuremethylester in 70 ml Methanol zugetropft. Man ließ über Nacht bei Raumtemperatur rühren, gab 150 ml Wasser zu, extrahierte mit Methylenchlorid, wusch die vereinigten organischen Phasen mit 3-%iger wäßriger Salzsäure, trocknete und entfernte das Lösungsmittel. Das so erhaltene Oxim hat einen Festpunkt von 126 - 129°C.

Stufe b)

Dieses Oxim wurde ohne weitere Aufreinigung weiter umgesetzt, indem man es in 40 ml Methylenchlorid löste und 15,0 ml (25,0 mmol) Natriumhypochloridlösung (12,5 % aktives Chlor) zutropfte. Man gab eine Spatenspitze Natriumacetat zu rührte 12 Stunden bei Raumtemperatur. Die organische Phase wurde abgetrennt, die wäßrige Phase mit Methylenchlorid extrahiert und die vereinigten organischen Phasen mit Wasser gewaschen. Man trocknete und entfernte das Lösungsmittel. Nach Chromatographie an Kieselgel mit Cyclohexan/Ethylacetat = 1:1 erhielt man 2,2 g (49 %) 6-Methoxy-9-methoxycarbonyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin in Form eines farblosen Feststoffe vom Fp.: 199 - 203 °C.

 $^{1}\text{H-NMR}$ (CDCl₃, δ in ppm): 3,84 (s, 3H); 3,98 (s, 3H); 3,8 -25 4,0 (m, 2H); 4,16 (dt, 1H); 4,63 (t, 1H); 4,84 (dd, 1H); 6,61 (d, 1H); 7,93 (d, 1H).

> 6-Methoxy-9-hydroxycarbonyl-3a,4-dihydro-3H-chromeno[4,3-c] isoxazolin

Zu einer Lösung von 2,1 g (8,0 mmol) 6-Methoxy-9-methoxycarbonyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin in 40 ml Methanol tropfte man bei Raumtemperatur eine Lösung von 0,8 g (20,0 mmol) Natriumhydroxid in 7 ml Wasser und erhitzte 6 Stunden unter Rückfluß. Nach dem Abkühlen entfernte man das Lösungsmittel, der Rückstand wurde in ca. 50 ml Waser aufgenommen und mit Methylenchlorid gewaschen. Anschließend säuerte man die wäßrige Phase mit 10%-iger Salzsäure an (pH = 1 - 2), saugte den Niederschlag ab, wusch mit Wasser und trocknete bei 60°C. Man erhielt 1,7 g (86 %) 6-Methoxy-9hydroxycarbonyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin in Form farbloser Kristalle. $^{1}\text{H-NMR}$ (CDCl₃, δ in ppm): 3,73 (dd, 1H); 3,89 (s, 3H); 3,84 -3,95 (m, 1H); 4,11 (dd, 1H); 4,54 (dd, 1H); 4,79 (dd, 1H); 6,61 (d, 1H); 7,81 (d, 1H).

Stufe b)

15

25

133

(5-Hydroxy-1-methyl-1H-pyrazol-4-yl)-(6-methoxy-3a,4-di-hydro-3H-chromeno[4,3-c]isoxazolin-9-yl)methanon (Verbindung 2.3)

- Stufe a)
 Zu einer Lösung von 0,50 g (2,0 mmol) 6-Methoxy-9-hydroxycarbonyl-3a,4-dihydro-3H-chromeno[(4,3-c)]isoxazolin in 30 ml
 Tetrachlorkohlenstoff gab man bei Raumtemperatur 0,26 g (2,2
- mmol) Thionchlorid und einen Tropfen Dimethylformamid und rührte 3 Stunden bei 40 50°C. Anschließend entfernte man das Lösungsmittel im Vakuum. Man erhielt quantitativ (0,54 g) 6-Methoxy-9-chlorfomyl-3a,4-dihydro-3H-chromeno[4,3-c] isoxazolin als bräunliches Öl.
- Man löste 0,54 g (2 mmol) 6-Methoxy-9-chlorfomyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin in 30 ml Acetonitril und tropfte es bei 0°C zu einer Lösung von 0,2 g (2,0 mmol) 1-Methyl-5-hydroxy-pyrazol und 0,6 g (6,0 mmol) Triehtylamin in 20 ml Acetonitril. Man rührte über Nacht bei Raumtemperatur, entfernte das Lösungsmittel, nahm in Methylenchlorid auf und wusch mit Wasser. Man trocknete und destillierte das Lösungsmittel ab. Der Rückstand wurde in 30 ml Dioxan gelöst,
- das Lösungsmittel im Vakuum ab, nahm den Rückstand in Wasser
 auf und stellte die Lösung mit 10%iger Salzsäure auf pH = 1
 ein. Es wurde mit Methylenchlorid extrahiert, die vereinigten
 organischen Phasen getrocknet und das Lösungsmittel anschlie30 Bend entfernt. Man erhielt 0,45 g (68 %) (5-Hydroxy-1-methyl1H-pyrazol-4-yl)-(6-methoxy-3a,4-dihydro-3H-chromeno[4,3-c]
 isoxazolin-9-yl)methanon mit einem Fp. von 236 238^{0C}.

 ¹H-NMR (CDCl₃, δ in ppm): 3,66 (s, 3H); 3,84 4,2 (m, 2H);

mt 0,42 g (3,0 mmol) Kaliumcarbonat versetzt und 7 Stunden unter Rückfluß erhitzt. Nach dem Abkühlen destillierte man

- 4,02 (s, 3H); 4,12 (dd, 1H); 4,63 4,77 (m, 2H); 6,68 (d, 1H); 7,24 (s, 1H); 7,61 (d, 1H).
 - 4. (5-Hydroxy-1-(1,1-Dimethyleth-1-yl)1H-pyrazol-4yl][6-methoxy-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin-9-yl]
 methanon (Verbindung 2.4)
- Man löste 0,54 g (2 mmol) 6-Methoxy-9-chlorformyl-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin in 30 ml Acetonitril und tropfte es bei 0°C zu einer Lösung von 0,28 g (2,0 mmol) 1-(1,1-Dimethyleth-1-yl)-5-hydroxy-1H-pyrazol und 0,6 g (6,0 mmol) Triethylamin in 20 ml Acetonitril. Man rührte über Nacht bei Raumtemperatur, entfernte das Lösungsmittel, nahm in Methylenchlorid auf und wusch mit Wasser. Man trocknete

und destillierte das Lösungsmittel ab. Der Rückstand wurde in 30 ml Dioxan gelöst, mit 0,42 g (3,0 mmol) Kaliumcarbonat versetzt und 7 Stunden unter Rückfluß erhitzt. Nach Abkühlen destillierte man das Lösungsmittel in Vakuum ab, nahm den Rückstand in Wasser auf und stellte die Lösung mit 10%-iger Salzsäure auf pH = 1 ein. Es wurde mit Methylenchlorid extrahiert, die vereinigten organischen Phasen getrocknet und das Lösungsmittel anschließend entfernt. Man erhielt 0,3 g (40 %) [5-Hydroxy-1-(1,1-Dimethyleth-1-yl)1H-pyrazol-4y]-[6-methoxy-3a,4-dihydro-3H-chromeno[4,3-c]isoxazolin-9-yl]methanon mit einem Festpunkt von 223°C - 225°C.

1H-NMR (CDCl3, & in ppm): 1,64 (s, 9H); 3,8 - 4,2 (m, 6H); 4,6 - 4,8 (m, 2H); 6,68 (d, 1H); 7,44 (s, 1H); 7,62 (d, 1H).

5

10

25

30

15 In den Tabellen 2 bis 4 sind neben den voranstehenden Verbindungen noch weitere tricyclische Benzoylpyrazol-Derivate der Formel I aufgeführt, die in analoger Weise hergestellt wurden oder herstellbar sind:

20 Tabelle 2:

$$\begin{array}{c|c}
R^{12} & & X & & X \\
N & & & & & & & \\
N & & & & & & & \\
R^{11} & & & & & & & \\
\end{array}$$

Ia mit 1 = 0, R⁵ = H, Y bildet gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, folgendes Isoxazolin aus:

)							
	Nr.	Х	R ⁴	R ¹⁰	R ¹¹	R ¹²	physikalische Daten (Fp.[°C]; ¹ H-NMR [ppm]
35	2.1	Bindung	SO ₂ CH ₃	ОН	CH ₃	H	3,03 (dd, 1H); 3,42 (s,3H); 3,51 (s, 3H); 4,05 (m, 2H); 4,85 (t, 1H); 7,57 (s, 1H); 7,92 (d, 1H); 8,22 (d, 1H)
40	2.2	Bindung	SO ₂ CH ₃	OCOC ₆ H ₅	CH ₃	Н	3,22 (s, 3H); 3,34 (m, 2H); 3,81 (s, 3H); 3,98 (m, 2H); 4,81 (t, 1H); 7,20 - 8,21 (m, 8 H);
	2.3	0	OCH ₃	ОН	CH ₃	Н	236 - 238
45	2.4	0	OCH ₃	ОН	C (CH ₃) ₃	Н	223 - 225

Tabelle 3:

4117 . .

5 R12 N N-CH3

Ia mit $R^5 = H$,

10 Y bildet gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, folgendes Methyl-substituierte Pyrazol aus:

M—CH3

15

	Nr.	Х	R ⁴	R ¹⁰	R ¹¹	R ¹²	physikalische Daten (Fp.[°C])
į	3.1	S	Cl	ОН	CH ₃	H	168 - 171

Tabelle 4:

20

25

Ia mit $R^5 = H$,

Y bildet gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, folgendes Methyl-substituierte Pyrimidin aus: MM N CH3

30

Nr.	Х	R ⁴	R ¹⁰	R ¹¹	R ¹²	physikalische Daten (Fp.[°C]; ¹ H-NMR [ppm]
4.1	S	Cl	ОН	CH ₃	Н	180°C
4.2	S	C1	ОН	CH ₂ CH ₃	Н	112 ⁰ C

35

Die Verbindungen der Formel I und deren landwirtschaftlich brauchbaren Salze eignen sich sowohl als Isomerengemische als 40 auch in Form der reinen Isomeren - als Herbizide. Die herbiziden Mittel, die Verbindungen der Formel I enthalten, bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturen bei bei bei bei die der Dieser Effekt tritt vor als

45 turpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.

In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen der Formel I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen 5 beispielsweise folgende Kulturen:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var.

- 10 napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum,
- 15 (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum
- 20 (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifo-
- 25 lium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera und Zea mays.

Darüber hinaus können die Verbindungen der Formel I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden 30 gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.

Die Verbindungen der Formel I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren wäßrigen Lösungen, Pulvern, Suspensionen, auch 35 hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie 40 sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Die herbiziden Mittel enthalten eine herbizid wirksame Menge mindestens einer Verbindung der Formel I oder eines landwirtschaft45 lich brauchbaren Salzes von I und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel.

O.Z. 005

137

Als inerte Hilfsstoffe kommen im Wesentlichen in Betracht:

Mineralölfraktionen von mittlerem bis hohem Siedepunkt wie Kerosin und Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen 5 oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline und deren Derivate, alkylierte Benzole oder deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol und Cyclohexanol, Ketone wie Cyclohexanon, stark polare 10 Lösungsmittel, z.B. Amine wie N-Methylpyrrolidon und Wasser.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die tricyclischen Benzoylpyrazol-Derivate der Formel I als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, 25 Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Lauryletherund Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Heptaund Octadecanolen sowie von Fettalkoholglykolether, Kondensati-30 onsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkyl-35 arylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylen- oder Polyoxypropylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

45 Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Konzentrationen der Verbindungen der Formel I in den

10 anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Im allgemeinen enthalten die Formulierungen etwa von 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR
15 Spektrum) eingesetzt.

Die folgenden Formulierungsbeispiele verdeutlichen die Herstellung solcher Zubereitungen:

20 I. 20 Gewichtsteile der Verbindung Nr. 2.2 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

30

35

II. 20 Gewichtsteile der Verbindung Nr. 3.1 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

1II. 20 Gewichtsteile der Verbindung Nr. 2.3 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion,

30

35

Q.Z. 0050/49828 DE

139

die 0,02 Gew.-% des Wirkstoffs enthält.

- 20 Gewichtsteile der Verbindung Nr. 2.4 werden mit 3 IV. Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-5 sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält. 10
 - 3 Gewichtsteile der Verbindung Nr. 2.3 werden mit v. 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.-% des Wirkstoffs enthält.
- VI. 20 Gewichtsteile der Verbindung Nr. 2.4 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkoholpolyglykolether, 2 Gewichts-20 teilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.
- 25 VII. 1 Gewichtsteil der Verbindung Nr. 2.2 wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein stabiles Emulsionskonzentrat.
 - VIII. 1 Gewichtsteil der Verbindung Nr. 3.1 wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol^R EM 31 (= nichtionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl) besteht. Man erhält ein stabiles Emulsionskonzentrat.

Die Applikation der Verbindungen der Formel I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträg-

- 40 lich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter
- 45 Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Aufwandmengen an Verbindung der Formel I betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0.001 bis 3.0, vorzugsweise 0.01 bis 1.0 kg/ha aktive Substanz (a.S.).

- 5

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die tricyclischen Benzoylpyrazol-Derivate der Formel I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt

- 10 und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thiadiazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, Aryloxy-/Heteroaryloxyalkansäuren und deren Derivate, Benzoesäure und deren Derivate, Benzothiadiazinone, 2-Aroyl-1,3-cyclohexan-
- 15 dione, Heteroaryl-Aryl-Ketone, Benzylisoxazolidinone, meta-CF3-Phenylderivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracetanilide, Cyclohexenonoximetherderivate, Diazine, Dichlorpropionsäure und deren Derivate, Dihydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole,
- 20 Diphenylether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5,6-tetrahydrophthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- und Heteroaryloxyphenoxypropionsäureester, Phenylessigsäure und deren Derivate, 2-Phenylpropionsäure und
- 25 deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazolcarboxamide und Uracile in Betracht.
- 30 Außerdem kann es von Nutzen sein, die Verbindungen der Formel I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner
- 35 die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Anwendungsbeispiele

40

Die herbizide Wirkung der tricyclischen Benzoylpyrazol-Derivate der Formel I ließ sich durch die folgenden Gewächshausversuche zeigen:

45 Als Kulturgefäße dienten Plastiktöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach

Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein vertei5 lender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt 10 wurde.

Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgier15 ten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,5 bzw. 0,25 kg/ha a.S..

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 bis 25°C bzw. 20 bis 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde 25 ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler 30 Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

35	Lateinischer Name	Deutscher Name	Englischer Name
33	Chenopodium album	Weißer Gänsefuß	lambsquarters (goo- sefoot)
	Echinochloa crus- galli	Hühnerhirse	barnyardgrass
40	Setaria viridis	Grüne Borstenhirse	green foxtail
	Solanum nigrum	Schwarzer Nacht- schatten	black nightshade
	Veronica ssp.	Ehrenpreisarten	speadwell

45 Bei Aufwandmengen von 0,5 bzw. 0,25 kg/ha zeigt die Verbindung 2.2 im Nachauflauf eine sehr gute Wirkung gegen die oben genannten unerwünschten Unkräuter und Gräser.

20

Tricyclische Benzoylpyrazol-Derivate

Zusammenfassung

5

Tricyclische Benzoylpyrazol-Derivate der Formel I

10 \mathbb{R}^5

15

in der die Variablen folgende Bedeutungen haben:

Sauerstoff, Schwefel, S=O, S(=O)₂, CR⁶R⁷, NR⁸ oder eine Х Bindung;

20

Y

bildet gemeinsam mit den beiden Kohlenstoffen, an die es gebunden ist, einen gesättigten, partiell gesättigten oder ungesättigten 5- oder 6-gliedrigen Heterocyclus;

25 R^1, R^2, R^6, R^7 Wasserstoff, Alkyl, Halogenalkyl, Alkoxy oder Halogenalkoxy;

Halogen, Alkyl, Halogenalkyl, Alkoxy oder Halogen- \mathbb{R}^3 30 alkoxy;

Wasserstoff, Nitro, Halogen, Cyano, Alkyl, Halogenal- R^4 kyl, Alkoxy, Halogenalkoxy, Alkylthio, C_1 - C_6 -Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkyl-

sulfonyl, Halogenalkylsulfonyl, ggf. sub. Amino-35

sulfonyl, oder ggf. sub. Sulfonylamino;

Wasserstoff, Alkyl oder Halogen; R^5

0, 1 oder 2; 40 1

> Wasserstoff, Alkyl, Halogenalkyl, Alkylcarbonyl, R8 Formyl, Alkoxycarbonyl, Halogenalkoxycarbonyl, Alkylsulfonyl oder Halogenalkylsulfonyl;

45

R⁹

substituiertes Pyrazol-4-yl-carbonyl oder substituiertes 5-0xo-pyrazolin-4-yl-methyliden;

sowie deren landwirtschaftlich brauchbaren Salze;

Verfahren und Zwischenprodukte zur Herstellung der tricyclischen Benzoylpyrazol-Derivate; Mittel, welche diese enthalten, sowie die Verwendung dieser Derivate oder diese enthaltende Mittel zur Bekämpfung unerwünschter Pflanzen.

THIS PAGE BLANK (USPTO)