PROJECT **Business Case - Target SQL**

Sibimanyu M

1) Exploratory Analysis

1. Data type of all columns in the "customers" table.

QUERY

```
SELECT column_name, data_type
FROM `target-project-389509`.Target.INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = "customers"
```

RESULT

Quer	ry results		≛ SAVE RES	SULTS *	™ EXPLORE DATA ▼	\$
JOB IN	NFORMATION RESULTS	JSON	EXECUTION DETA	ILS	EXECUTION GRAPH PREVI	EW
Row	column_name ▼	data_type ▼	Į,			
1	customer_id	STRING				
2	customer_unique_id	STRING				
3	customer_zip_code_prefix	INT64				
4	customer_city	STRING				
5	customer_state	STRING				

INSIGHT

INFORMATION_SCHEMA.COLUMNS view allows us to get information about all columns present in a table.

2. Get the time range between which the orders were placed.

QUERY

```
SELECT

MAX(order_purchase_timestamp) AS Maximum,

MIN(order_purchase_timestamp) AS Minimum,

TIMESTAMP_DIFF(MAX(order_purchase_timestamp), MIN(order_purchase_timestamp), DAY) as
Days
FROM
   `Target.orders`
```

RESULT

INSIGHT

MIN AND MAX functions are used to get the extremes of the timestamp, TIMESTAMP_DIFF used to get the range of the timestamp.

3. Count the number of Cities and States in our dataset

QUERY

RESULT

INSIGHT

DISTINCT function identifies unique rows in the column.

2) In-depth Exploration

1. Is there a growing trend in the no. of orders placed over the past years?

QUERY

RESULT

```
SELECT
EXTRACT(YEAR FROM order_purchase_timestamp) AS Year,
EXTRACT(MONTH FROM order_purchase_timestamp) AS Month,
COUNT(*) AS Count
FROM `Target.orders`
GROUP BY Year, Month
ORDER BY 1,2
LIMIT 10
```

Query results

JOB IN	FORMATION	RESULTS JSC	ON EXECUTION	N DETAILS EXECUTION GRAP
Row	Year ▼	Month ▼	Count ▼	
1	2016	9	4	
2	2016	10	324	
3	2016	12	1	
4	2017	1	800	
5	2017	2	1780	
6	2017	3	2682	
7	2017	4	2404	
8	2017	5	3700	
9	2017	6	3245	
10	2017	7	4026	

INSIGHT

We can see that the trend has been increasing over the years which is backed up by the output data points. If we plot a line chart with these data points having time on x-axis and no. of orders in y-axis, we can see that there is an growing trend over the past years.

2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

QUERY

```
SELECT
```

```
EXTRACT(MONTH FROM order_purchase_timestamp) AS Month, COUNT(*) AS Count
FROM `Target.orders`
GROUP BY Month
ORDER BY Month
```

RESULT

Quei	ry results				₫ SAVE RES	SULTS *	™ EXPLORE DATA ▼
JOB II	NFORMATION	RES	SULTS	JSON	EXECUTION DETA	ILS I	EXECUTION GRAPH
Row	Month ▼	C	ount 🔻	11			
1		1	8	069			
2		2	8	508			
3		3	9	893			
4		4	9	343			
5		5	10	573			
6		6	9	412			
7		7	10	318			

8	8	10843				
9	9	4305				
10	10	4959				
11	11	7544				
12	12	5674				
			Results per page:	E0 -	1 10 of 10	1/

INSIGHT

We can see a slight increase in orders from months 1 to 8 (Jan - Aug) and dip in the rest of the months in all years, we plot the data points on chart to infer insights, August has the maximum order count, studying the monthly seasonality, we need to stock up more in the start of those months in order to meet the demand.

- 3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)
- 0-6 hrs: Dawn
 7-12 hrs: Mornings
 13-18 hrs: Afternoon
 19-23 hrs: Night

```
SELECT
CASE
   WHEN EXTRACT(HOUR FROM order_purchase_timestamp) >= 0 AND EXTRACT(HOUR FROM
order_purchase_timestamp) <= 6 THEN 'Dawn'</pre>
   WHEN EXTRACT(HOUR FROM order_purchase_timestamp) >= 7 AND EXTRACT(HOUR FROM
order_purchase_timestamp) <= 12 THEN 'Morning'</pre>
   WHEN EXTRACT(HOUR FROM order_purchase_timestamp) >= 13 AND EXTRACT(HOUR FROM
order_purchase_timestamp) <= 18 THEN 'Afternoon'</pre>
   WHEN EXTRACT(HOUR FROM order_purchase_timestamp) >= 19 AND EXTRACT(HOUR FROM
order_purchase_timestamp) <= 23 THEN 'Night'</pre>
END AS time_of_day,
COUNT(*) AS order_count
FROM
 `Target.orders`
GROUP BY
time_of_day
ORDER BY
 order_count DESC;
```


INSIGHT

We can see that the order count was maximum during noon and minimum during dawn. We can see that during Afternoon the maximum number of orders were placed.

3) Evolution of E-commerce orders in the Brazil region

1. Get the month on month no. of orders placed in each state.

```
SELECT
   EXTRACT(MONTH FROM order_purchase_timestamp) AS Month,
   cus.customer_state,
   COUNT(*) AS num_orders
FROM
   `Target.orders` AS ord
LEFT JOIN `Target.customers` AS cus
ON ord.customer_id = cus.customer_id
GROUP BY
   Month,
   cus.customer_state
ORDER BY
   customer_state,
   Month;
```

JOB II	NFORMATION		RESULTS JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	Month ▼	//	customer_state ▼	num_orders ▼	
1		1	AC	8	
2		2	AC	6	
3		3	AC	4	
4		4	AC	9	
5		5	AC	10	
6		6	AC	7	
7		7	AC	9	
8		8	AC	7	
9		9	AC	5	
10		10	AC	6	
11		11	AC	5	
12		12	AC	5	
13		1	AL	39	
14		2	AL	39	

INSIGHT

We have the number of orders placed in each month ordered by state.

2. How are the customers distributed across all the states?

QUERY

```
SELECT
   customer_state,
   COUNT(DISTINCT customer_id) AS num_unique_customers,
   ROUND(COUNT(DISTINCT customer_id)/SUM(COUNT(DISTINCT customer_id))OVER()*100 ,2) as
Percentage
FROM
   `Target.customers`
GROUP BY
   customer_state
ORDER BY
   customer_state
```

RESULT

Quer	y results			▲ SAVE RESULTS	▼
JOB IN	FORMATION	RESULTS	JSON EXE	ECUTION DETAILS	EXECUTION GRAPH
Row	customer_state	▼	num_unique_custom	Percentage ▼	
1	AC		81	0.08	
2	AL		413	0.42	
3	AM		148	0.15	
4	AP		68	0.07	
5	ВА		3380	3.4	
6	CE		1336	1.34	
7	DF		2140	2.15	
			Results per p	age: 50 ▼ 1	- 27 of 27 < <

INSIGHT

We have the number of unique customers in grouped by each state. We use percentage to show the distribution of the datapoints. Column Percentage sums to 100 (Occam's razor 1=1 test), since distribution must add upto 100.

4) Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

Get the % increase in the cost of orders from year 2017 to 2018
 (include months between Jan to Aug only).
 You can use the "payment_value" column in the payments table to get the cost of orders.

OUERY

```
SELECT ((total_cost_2018 - total_cost_2017) / total_cost_2017) * 100 AS
percentage_increase
FROM
 (SELECT
   (SELECT SUM(payment_value)
   FROM `Target.payments` as p
   JOIN `Target.orders` as o ON p.order_id = o.order_id
   WHERE EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2017
      AND EXTRACT(MONTH FROM o.order_purchase_timestamp) BETWEEN 1 AND 8) AS
total_cost_2017,
   (SELECT SUM(payment_value)
    FROM `Target.payments` as p
   JOIN `Target.orders` as o ON p.order_id = o.order_id
   WHERE EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2018
      AND EXTRACT(MONTH FROM o.order_purchase_timestamp) BETWEEN 1 AND 8) AS
total_cost_2018
 ) AS costs;
```

RESULT

INSIGHT

The percentage increase is almost 137%.

2. Calculate the Total & Average value of order price for each state.

```
SELECT c.customer_state,
   ROUND(SUM(oi.price),2) AS total_order_price,
   ROUND(AVG(oi.price),2) AS average_order_price,
   ROUND(MAX(oi.price),2) AS maximum_order_price,
   ROUND(MIN(oi.price),2) AS minimum_order_price
FROM `Target.order_items` AS oi
INNER JOIN `Target.orders` AS o ON
oi.order_id = o.order_id
INNER JOIN `Target.customers` AS c ON
o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY c.customer_state;
```

Quer	y results		i i	≛ SAVE RESULTS ▼ ⋒ EXPLORE DATA				
JOB IN	IFORMATION	RESULTS	JSON EXECU	JTION DETAILS	EXECUTION GRAPH			
Row	customer_state	total_order_price	average_order_price	maximum_order_price	minimum_order_pric			
1	AC	15982.95	173.73	1200.0	12.9			
2	AL	80314.81	180.89	1798.0	9.0			
3	AM	22356.84	135.5	1688.0	8.5			
4	AP	13474.3	164.32	1437.0	13.65			
5	BA	511349.99	134.6	2999.89	5.2			
6	CE	227254.71	153.76	2690.0	7.8			
7	DF	302603.94	125.77	3999.0	4.9			
8	ES	275037.31	121.91	6729.0	5.99			
9	GO	294591.95	126.27	2740.0	3.9			
10	MA	119648.22	145.2	2499.75	6.99			
11	MG	1585308.03	120.75	4099.99	3.85			

INSIGHT

We have the Total & Average value of order price for each state ordered by state. We can get extra details such as maximum value of the order price and minimum using functions.

3. Calculate the Total & Average value of order freight for each state.

```
SELECT c.customer_state,
    ROUND(SUM(oi.freight_value),2) AS total_order_freight,
    ROUND(AVG(oi.freight_value),2) AS average_order_freight,
    ROUND(MAX(oi.freight_value),2) AS maximum_order_freight,
    ROUND(MIN(oi.freight_value),2) AS minimum_order_freight
FROM `Target.orders` AS o
INNER JOIN `Target.customers` AS c ON
o.customer_id = c.customer_id
INNER JOIN `Target.order_items` AS oi ON
oi.order_id = o.order_id
GROUP BY c.customer_state
ORDER BY c.customer_state;
```

Quer	ry results			SAVE RESULTS ▼	
JOB IN	NFORMATION	RESULTS	JSON EXECU	TION DETAILS EX	ECUTION GRAPH
Row	customer_state	total_order_freight	average_order_freight	maximum_order_freight	minimum_order_freight
1	AC	3686.75	40.07	108.36	14.86
2	AL	15914.59	35.84	314.4	0.0
3	AM	5478.89	33.21	165.75	3.96
4	AP	2788.5	34.01	133.39	0.0
5	BA	100156.68	26.36	284.6	0.0
6	CE	48351.59	32.71	250.57	0.0
7	DF	50625.5	21.04	294.76	0.0
8	ES	49764.6	22.06	321.88	0.0
9	GO	53114.98	22.77	174.95	0.0
10	MA	31523.77	38.26	245.75	0.0
11	MG	270853.46	20.63	322.1	0.0

INSIGHT

We have the Total & Average value of order freight price for each state ordered by state asked in the question. We get extra insights such as maximum and minimum for the freight order.

5) Analysis based on sales, freight and delivery time

A. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

INSIGHT

We can find other parameters such as minimum, maximum days to deliver an order. We can group them by state and estimate how quick are the orders are delivered. B. Find out the top 5 states with the highest & lowest average freight value.

```
SELECT customer_state,average_order_freight, maximum_order_freight,
minimum_order_freight
FROM
SELECT c.customer_state,
   ROUND(AVG(oi.freight_value),2) AS average_order_freight,
   ROUND(MAX(oi.freight_value),2) AS maximum_order_freight,
   ROUND(MIN(oi.freight_value),2) AS minimum_order_freight
FROM `Target.orders` AS o
LEFT JOIN `Target.customers` AS c ON
o.customer_id = c.customer_id
LEFT JOIN `Target.order_items` AS oi ON
oi.order_id = o.order_id
GROUP BY c.customer_state
)
ORDER BY average_order_freight DESC
LIMIT 5
```

Query	y results		≛ SAVE	RESULTS ▼	M EXPLORE DAT
JOB IN	FORMATION	RESULTS J	SON EXECUTION D	ETAILS EX	(ECUTION GRAPH
Row	customer_state	average_order_freight	maximum_order_freight	minimum_order_	freight
1	RR	42.98	144.86		25.38
2	РВ	42.72	317.47		0.0
3	RO	41.07	217.53		0.0
4	AC	40.07	108.36		14.86
5	PI	39.15	409.68		0.0

```
SELECT customer_state,average_order_freight, maximum_order_freight,
minimum_order_freight
FROM
SELECT c.customer_state,
   ROUND(AVG(oi.freight_value),2) AS average_order_freight,
   ROUND(MAX(oi.freight_value),2) AS maximum_order_freight,
   ROUND(MIN(oi.freight_value),2) AS minimum_order_freight
FROM `Target.orders` AS o
LEFT JOIN `Target.customers` AS c ON
o.customer_id = c.customer_id
LEFT JOIN `Target.order_items` AS oi ON
oi.order_id = o.order_id
GROUP BY c.customer_state
)
ORDER BY average_order_freight
LIMIT 5
```

Quer	y results		≛ SAVE	RESULTS *	M EXPLORE DAT
JOB IN	IFORMATION	RESULTS JS	SON EXECUTION D	ETAILS EX	ECUTION GRAPH
Row	customer_state	average_order_freight	maximum_order_freight	minimum_order_f	reight
1	SP	15.15	339.59		0.0
2	PR	20.53	375.28		0.0
3	MG	20.63	322.1		0.0
4	RJ	20.96	207.78		0.0
5	DF	21.04	294.76		0.0

INSIGHT

We have the Highest & Lowest 5 states with average freight value. We get more details about the range of the freight value from the minimum and maximum.

C. Find out the top 5 states with the highest & lowest average delivery time.

Quer	y results			▲ SAVE RESULTS ▼	
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	customer_state -	•	Average_deliver	y_tim	
1	RR		28.9756097560	9	
2	AP		26.7313432835	8	
3	AM		25.9862068965	5	
4	AL		24.0403022670	0	
5	PA		23.3160676532	7	

Quer	y results			♣ SAVE RESULTS ▼	
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	customer_state -		Average_delive	ry_tim	
1	SP		8.29806148907	72	
2	PR		11.5267113548	36	
3	MG		11.5438132981	0	
4	DF		12.5091346153	38	
5	SC		14.4795601917	71	

INSIGHT

We have the Highest & Lowest 5 states with average delivery time.

D. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

```
WITH cte as
(
SELECT
    o.order_id,
    c.customer_state,
DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date, Day) AS
DiffEstimatedDelivery
FROM `Target.orders` as o
LEFT JOIN `Target.customers` as c ON o.customer_id = c.customer_id
)

SELECT
cte.customer_state,
AVG(cte.DiffEstimatedDelivery) AS AverageDiffEstimatedDelivery
```

```
FROM cte GROUP BY cte.customer_state ORDER BY AVG(cte.DiffEstimatedDelivery) LIMIT \frac{5}{2}
```

Query results				♣ SAVE RESULTS ▼			
<	JOB INFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PRE		
Row	customer_state ▼	Aver	ge_DiffEstimate				
1	AL	7.94	7103274559				
2	MA	8.76	8479776847				
3	SE	9.17	3134328358				
4	ES	9.61	8546365914				
5	BA	9.93	4889434889				

INSIGHT

We have top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

6) Analysis based on the payments:

A. Find the month on month no. of orders placed using different payment types.

QUERY

```
SELECT
EXTRACT(YEAR FROM o.order_purchase_timestamp) AS Year,
EXTRACT(MONTH FROM o.order_purchase_timestamp) AS Month,
payment_type,
COUNT(*) AS order_count
FROM `Target.payments` AS p
LEFT JOIN `Target.orders` AS o ON p.order_id = o.order_id
GROUP BY Year, Month, payment_type
ORDER BY Year, Month;
```

RESULT

Query results			♣ SAVE RESULTS ▼					
JOB IN	FORMATION	RESULTS	JSO	N EXECUTION DETAILS	EXECUTION GRA	APH PREVIEW		
Row	Year ▼	Month ▼	/	payment_type ▼	order_count ▼	,		
1	201	6	9	credit_card	3			
2	201	6	10	credit_card	254			
3	201	6	10	voucher	23			
4	201	6	10	debit_card	2			
5	201	6	10	UPI	63			
6	201	6	12	credit_card	1			
Ū	201				I − 50 of 90	< > >		

INSIGHT

Result obtained shows us the order count of the different types of payment made in month and year.

B. Find the no. of orders placed on the basis of the payment installments that have been paid.

QUERY

```
payment_installments,
  COUNT(*) AS order_count
FROM `Target.payments`
WHERE payment_installments > 0
GROUP BY payment_installments;
```

RESULT

Quer	y results		≛ 9	™ EXP	⋒ EXPLORE DATA ▼			
JOB IN	IFORMATION	RESULTS JS0	ON EXECUTION	ON DETAILS	EXECUTION	GRAPH F	PREVIEW	
Row	payment_installment	order_count ▼						//
1	1	52546						
2	2	12413						
3	3	10461						
4	4	7098						
5	5	5239						
6	6	3920						
			Results per page:	50 ▼ 1 -	- 23 of 23	< <	>	>

INSIGHT

We have number of payment installments ranging from 1 to 24 and their respective order counts.