Chemistry

Paolo Bettelini

Contents

1	sotopi dell'idrogeno	2
	1 Acqua con deuterio e trizio	2

1 Isotopi dell'idrogeno

Il primo isotopo dell'idrogeno è il deuterio, indicato con D o 2H . A differenza dell'idrogeno comune, il deuterio possiede un neutrone nel nucleo oltre al protone. A causa di questa caratteristica, il deuterio ha una massa atomica leggermente superiore rispetto all'idrogeno normale. Il deuterio è utilizzato in varie applicazioni, come nei reattori nucleari per la produzione di energia e come tracciatore in studi scientifici e biologici.

Il secondo isotopo dell'idrogeno è è il trizio, indicato con T o 3H . A differenza dell'idrogeno comune, il deuterio possiede due neutroni nel nucleo oltre al protone. A causa di questa composizione nucleare, il trizio ha una massa atomica maggiore rispetto agli altri isotopi dell'idrogeno. Il trizio è radioattivo e decade nel tempo con una emivita di circa 12,3 anni, emettendo particelle beta.

1.1 Acqua con deuterio e trizio

È possibile ottenere dell'acqua, H_2O , utilizzando gli isotopi D e T al posto di H.

Queste sostanze sono chiamate acqua pesante (D_2O) e acqua superpesante (T_2O) .

	Acqua	Acqua pesante	Acqua Superpesante
Liquido (g/cm3)	0.997	1.11	1.20
Solido (g/cm3)	0.9168	1.105	?

Possiamo quindi notare come la versione solida dell'acqua pesante galleggi nell'acqua normale [1].

References

[1] 1.1 The Density of Deuterated Water. Purdue University Chemistry Education. URL: https://chemed.chem.purdue.edu/demos/main_pages/1.1.html.