

Praktikum Algoritma Pemrograman

Dr. Sandi Rahmadika, S.T., M.T., M.Eng. NIP. 199103242022031008

E-mail: sandi@ft.unp.ac.id

Lecture 1 – Introduction (Algorithm & Flowchart)

Outline

What is Algorithm?

- Definition
- Objective & Goals

Properties of Algorithm

Correct and Incorrect Algorithms

- How to define?
- Hot to select?

Fungsi

Manfaat & Why it Matters

Basic Implementation

- Use Cases
- Example of Algorithms

Flowchart

Symbols of Flowchart

Examples

Next Week Prerequisites

What is an Algorithm?

- Named after Persian Mathematician Mohammad Al-Khwarizmi
 - A sequential solution of any problem
 - Written in human understandable form
 - Requires a clear understanding of the problem

Definisi

- Algoritma Urutan langkah untuk menyelesaikan masalah secara sistematis dan logis
- Program Kumpulan instruksi / perintah computer dengan Bahasa tertentu yang berfungsi menghubungkan user dengan computer.

Atau bisa juga disebut implementasi dari Bahasa pemrograman

What is Algorithm

- Algorithm must be:
 - Correct: For each input produce an appropriate output
 - Efficient: Run as quickly as possible, and use as little memory as possible

What is Algorithm ... (2)

- ➤ A well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output:
- ► Written in a pseudo code which can be implemented in the language of programmer's choice (ex. C++, C#, Java, Python, etc.)


```
Data: this text

Result: how to write algorithm with LATEX2e initialization;

while not at end of this document do

read current;

if understand then

go to next section;

current section becomes this one;

else

go back to the beginning of current section;

end

end
```


Properties of Algorithm

- Finiteness
- Properly defined
- ► Input
- Output
- Effectiveness
- Independent to any other programming language

Correct and Incorrect Algorithms

- ► Algorithm is correct if, for every input instance, it ends with the correct output. We say that a correct algorithm solves the given computational problem
- ► An incorrect algorithm might not end at all on some input instances, or it might end with an answer other than the desired one

We shall be concerned only with correct algorithms

Fungsi Algoritma Pemrograman

- Memudahkan dalam pembuatan program
- Bisa mengatasi segala masalah dengan logika dan urut
- Program yang ada menjadi lebih terstruktur dengan rapi sehingga dapat lebih mudah untuk dipahami ataupun dikembangkan
- Meminimalisir penulisan program yang berulang-ulang
- Dokumentasi lebih mudah

Basic Implementation

Bagaimana cara menukarkan isi gelas A yang semula berisi air teh menjadi berisi air kopi dan gelas B yang semula air kopi menjadi air teh ?

Penjelasan

Basic Implementation ... (2)

Cara penyelesaian permasalahan gambar tersebut yaitu diperlukan gelas tambahan yang kita namakan gelas C sebagai tempat penampungan sementara.

Berikut detail Algoritmanya:

- 1. Siapkan gelas cadangan C
- 2. Tuangkan air teh dari gelas A ke dalam gelas C (gelas A menjadi kosong).
- 3. Tuangkan air kopi dari gelas B ke dalam gelas A (gelas B menjadi kosong).
- 4. Tuangkan air teh dari gelas C ke dalam gelas B.

Problems

- We need to solve a computational problem
 - "Convert a weight in pounds to Kg"
- An algorithm specifies how to solve it, e.g.:
 - 1. Read weight-in-pounds
 - 2. Calculate weight-in-Kg = weight-in-pounds * 0.455
 - 3. Print weight-in-Kg
- A computer program is a computerexecutable description of an algorithm

The Problem-Solving Process

From Algorithms to Programs

Practical Examples

Internet and Networks

- The need to access large amount of information with the shortest time
- Problems of finding the best routes for the data to travel
- Algorithms for searching this large amount of data to quickly find the pages on which particular information resides

Electronic Commerce

- The ability of keeping the information (credit card numbers, passwords, bank statements) private, safe, and secure
- Algorithms involves encryption / decryption techniques

Flowchart

What is a Flowchart?

- Diagrammatic representation of algorithm
 - An important programming tool
 - Solving a problem using figures
 - Different figures having different functions

Merits & Demerits of Flowchart

Merits

- Easy to explain program logic
- Makes coding effective and faster
- Effective communication
- Different symbols used
- Serve as documentation
- Easy to detect, locate, and remove bugs in a program

Demerits

- ► Time consuming monotonous
- Monotonous job
- Difficult to maintain
- Occupies space while documentation
- Translation to computer is difficult

Flowchart's Symbols

Symbol	Function	Description
	Start/End	Start and end point
	Input/output	Input and output operations
	Processing operation	Editing and calculation of data
\Diamond	Decision	Check logical condition
	Connector	Indicates logical flow from one page to another
	Direction of logic	Direction of flow of logic
	Comment	Indicates any comments for explanatory notes

Example 1: Flowchart add sum of two numbers

Flowchart to check whether the input number is even or odd:

Algorithm

Step 1: Start

Step 2: Enter numbers in a and b

Step 3: Add a and b and store in c

Step 4: Display c

Step 5: End

Flowchart

Coding

```
#include<stdio.h>
#include<conio.h>
main()
  int a.b.c;
  printf("Enter numbers in a and b: ");
  scanf("%d%d",&a.&b);
  c=a+b;
  printf("Displayed c: %d",c);
  getch();
```

Enter numbers in a and b: 5
6
Displayed c: 11

Exercises

Next Week

- ► Fully understanding Algorithms and Flowchart
 - Objective & Goals
 - Structure, and how to make it
- ► Install:
 - Code::Blocks (https://www.codeblocks.org/downloads/)

Thank You! Questions?

 \bowtie

sandi@ft.unp.ac.id

