School of Mathematics and Statistics

MT5836 Galois Theory

Problem Sheet I: Rings, fields, polynomials and irreducibility

- 1. Write out the addition and multiplication tables for the field \mathbb{F}_7 of seven elements.
- 2. Let F be a field.
 - (a) If $\{K_i \mid i \in I\}$ is a collection of subfields of F, show that $\bigcap_{i \in I} K_i$ is a subfield of F.
 - (b) Show that the prime subfield of F is the intersection of all the subfields of F.
- 3. Show that every finite integral domain is a field.
- 4. Let R be an integral domain containing a subring F that happens to be a field.
 - (a) Show that R has the structure of a vector space over F.
 - (b) Show that if R has finite dimension over F, then R is a field.
- 5. Let p be a prime number and consider the finite field \mathbb{F}_p of p elements.
 - (a) Show that $a^{p-1} = 1$ for all non-zero elements a in \mathbb{F}_p .
 - (b) Show that in the polynomial ring $\mathbb{F}_p[X]$,

$$X^{p} - X = X(X - 1)(X - 2) \dots (X - (p - 1)).$$

- 6. Let $I = (X^4 + 1)$ be the ideal of the polynomial ring $\mathbb{F}_2[X]$ generated by the polynomial $X^4 + 1$. Let $R = F_2[X]/I$ be the quotient ring.
 - (a) Show that every element of R can be expressed uniquely in the form

$$I + (aX^3 + bX^2 + cX + d)$$

where $a, b, c, d \in \mathbb{F}_2$.

- (b) Show that |R| = 16.
- (c) Show that $d \mapsto I + d$ determines an isomorphism between \mathbb{F}_2 and a subring of R.
- (d) Show that R can be endowed with the structure of a vector space over the field \mathbb{F}_2 and determine the dimension of this vector space.
- 7. Show that the following polynomials are irreducible over \mathbb{Q} :
 - (a) $X^n p$, where n is a positive integer and p is a prime;
 - (b) $X^6 + 168X^2 147X + 63$;
 - (c) $X^3 3X 1$;
 - (d) $X^3 + 2X^2 3X + 5$.

- 8. Determine whether or not the following polynomials are irreducible over the given field:
 - (a) $X^4 + 7$ over \mathbb{F}_{17} ;
 - (b) $X^3 5$ over \mathbb{F}_{11} .
- 9. Determine all the irreducible polynomials of degree at most four over the field \mathbb{F}_2 of two elements.
- 10. Find a reducible polynomial of degree 4 over the field \mathbb{F}_2 of two elements that has no roots in \mathbb{F}_2 .