Gabarito do Quizz 04 Cálculo Numérico / Analise Numérica

Prof.: Fabrício Murai

Não esqueça de escrever seu nome.

- 1. Sejam o sistema linear Ax = b, de ordem n, e a matriz C de ordem n e não singular. Assinale V antes da sentença se ela for verdadeira e F se for falsa:
 - (F) A matriz CA não é singular.

Se A for singular, det(CA) = det(C)det(A) = 0, ou seja, CA pode ser singular.

(F) Se C for triangular inferior, então CA também é triangular inferior.

Use um contra-exemplo:
$$C = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 e $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

- (F) Se C for uma matriz de permutação, então $\det(CA) = \det(A)$.
- O correto é $det(CA) = (-1)^t det(A)$, onde t é o número de trocas de linhas necessártias para se transformar C na matriz identidade.
- (F) O sistema Ax = b não é necessariamente equivalente ao sistema CAx = Cb.

Se ${\cal C}$ não é singular, sempre pode ser multiplicado dos dois lados da equação.

2. Calcule a decomposição PA = LU de $A = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{bmatrix}$.

Não precisa resolver Ly = Pb, nem Ux = y.

L	Multiplicadores	A	Operações	p
1	$m_{11} = 0.75$	3 2 4		1
2	$m_{21} = 0.25$	1 1 2		2
3		$\underline{4} \ 3 \ -2$		3
4		$0 \ \underline{-0.25} \ 5.5$	$L_1 - 0.75L_3$	1
5	$m_{22} = -1$	0 0.25 2.5	$L_2 - 0.25L_3$	$\frac{1}{2}$
6		0 0 8	$L_5 + L_4$	2

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0.75 & 1 & 0 \\ 0.25 & -1 & 1 \end{bmatrix} e U = \begin{bmatrix} 4 & 3 & -2 \\ 0 & -0.25 & 5.5 \\ 0 & 0 & 8 \end{bmatrix}.$$

3. Calcule o determinante da matriz A acima.

Levando em consideração que t=2 (isto é, são necessárias duas trocas de linha para tranformar P na matriz identidade), temos $\det(A) = (-1)^t \det(U) = -8$.

1