ASSIGNMENT-2 PythonProgramming

AssignmentDate	29-09-2022
StudentName	Tavva Sujini
StudentRollNumber	410719106107
MaximumMarks	2 Mark

Question-1:

1. Importing Required

PackageSolution:

```
import pandas as
pdimport seaborn as
snsimportnumpyasnp
frommatplotlibimportpyplotasplt
%matplotlibinline
```

Question-2:

2. Loading the

DatasetSolution:

```
df =
pd.read csv("/content/Churn Modelling.csv")df
```

Output:

3. Visualizations

Question-3:

3.1 UnivariateAnalysis

Solution:

sns.displot(df.Tenure)

Output:

3.2 Bi-

VariateAnalysisSoluti

on:

df.plot.line()

Output:

3.3 Multi-

VariateAnalysisSolution:

```
sns.lmplot("Age", "NumOfProducts", df, hue="NumOfProducts", fit reg=False);
```

Output:

4. Performdescriptivestatisticsonthedataset.

Question-4:

Solution:

df.describe()

Output:

5. HandletheMissingvalues.

Question-5:

Solution:

```
data =
pd.read_csv("Churn_Modelling.csv")pd.isnu
ll(data["Gender"])
```

Output:

Question-6:

6. Findtheoutliersandreplacetheoutliers. Sol

ution:

```
df["Tenure"] = np.where (df["Tenure"] > 10, np.median, df["Tenure"]) df["Tenure"]
```

Output:

Question-7:

7. CheckforCategoricalcolumnsandperformencoding.Sol

ution:

```
pd.get_dummies(df,columns=["Gender","Age"],prefix=["Age","Gender"]
).head()
```

Output:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	•••	Gender_78
0	1	15634602	Hargrave	619	France	2	0.00	1	1	1		0
1	2	15647311	Hill	608	Spain	1	83807.86	1	0	1	***	0
2	3	15619304	Onio	502	France	8	159660.80	3	1	0	***	0
3	4	15701354	Boni	699	France	1	0.00	2	0	0	***	0
4	5	15737888	Mitchell	850	Spain	2	125510.82	1	1	1	***	0

Output:

Question-8:

8. Splitthedataintodependentandindependentvariables

8.1 SplitthedataintoIndependentvariables.So

lution:

```
X=df.iloc[:,:-
2].valuesprint(X)
```

Output:

```
[] [[1 15634602 'Hargrave' ... 1 1 1]
        [2 15647311 'Hill' ... 1 0 1]
        [3 15619304 'Onio' ... 3 1 0]
        ...
        [9998 15584532 'Liu' ... 1 0 1]
        [9999 15682355 'Sabbatini' ... 2 1 0]
        [10000 15628319 'Walker' ... 1 1 0]]
```

8.2 SplitthedataintoDependentvariables.So

lution:

```
Y = df.iloc[:, -
1].valuesprint(Y)
```

Output:

```
[1 0 1 ... 1 1 0]
```

Question-9:

9. Scale the independent

variablesSolution:

```
importpandasaspd
fromsklearn.preprocessingimportMinMaxScalerscaler=M
inMaxScaler()
df[["RowNumber"]]=scaler.fit_transform(df[["RowNumber"]])print(df
)
```

Output:

Question-10:

10. SplitthedataintotrainingandtestingSol

ution:

```
fromsklearn.model_selectionimporttrain_test_splittrain_size=0
.8

X=df.drop(columns=['Tenure']).copy()y=
df['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y,
train_size=0.8)test_size= 0.5

X_valid,X_test,y_valid,y_test=train_test_split(X_rem,y_rem,test_size=0.5)
print(X_train.shape),
print(y_train.shape)print(X_valid.shape),
print(y_valid.shape)print(X_test.shape),pr
int(y_test.shape)
```

Output:

```
(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
(None, None)
```