DU-MD Bi Classification model follows the paper

Data

```
- 34 subject
- 10 class
- window size = 90
- stride = 10
X \text{ shape} = (6798, 90, 3), y \text{ shape} = (6798,)
augment = True
Model:
Conv1D(f128, k5, s1, 'same) > LayerNormalization > MaxPooling(p2)
Conv1D(f256, k3, s2, 'same) > LayerNormalization
Conv1D(f512, k3, s1, 'same) > LayerNormalization
BiLSTM(256) > LayerNormalization > Dropout(0.5)
BiLSTM(128) > LayerNormalization > Dropout(0.5)
Dense(128) > LayerNormalization > ReLU > Dropout(0.5)
Result:
```

```
scaler bi v1v1.pkl
best model bi v1.h5
final_model_bi_v1.h5
cm_model_bi_v1.png
Độ chính xác trên tập kiểm tra: 95.00%
```

🚺 Classifica	ation Report:			
	precision	recall	f1-score	support
ADL	0.96	0.97	0.96	476
Fall	0.92	0.91	0.92	204
accuracy			0.95	680
macro avg	0.94	0.94	0.94	680
weighted avg	0.95	0.95	0.95	680

Model:

Conv1D(f128, k5, s1, 'same) > BatchNormalization > MaxPooling(p2)

Conv1D(f256, k3, s2, 'same) > BatchNormalization

Conv1D(f512, k3, s1, 'same) > BatchNormalization

BiLSTM(256) > BatchNormalization > Dropout(0.5)

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Dense(128) > BatchNormalization > ReLU > Dropout(0.5)

Result:

scaler_bi_v1v2.pkl

best_model_bi_v1v2.h5

final_model_bi_v1v2.h5

cm_model_bi_v1v2.png

Độ chính xác trên tập kiểm tra: 95.59%

Classifica	tion Report: precision	recall	f1-score	support
ADL Fall	0.96 0.94	0.98 0.91	0.97 0.93	476 204
accuracy macro avg weighted avg	0.95 0.96	0.94 0.96	0.96 0.95 0.96	680 680 680

Model:

Conv1D(f512, k3, s2, 'same') > LayerNormalization > MaxPooling(p2)

Conv1D(f256, k3) > LayerNormalization > MaxPooling(p2)

Conv1D(f128, k3, s2, 'same') > LayerNormalization

BiLSTM(256) > LayerNormalization > Dropout(0.5)

Dense(128) > LayerNormalization > ReLU > Dropout(0.5)

Result:

scaler_bi_v2v1.pkl

best_model_bi_v2v1.h5

final_model_bi_v2v1.h5 cm_model_bi_v2v1.png

Độ chính xác trên tập kiểm tra: 95.00%

Classification	ation Report	:		
	precision	recall	f1-score	support
ADL	0.96	0.97	0.96	476
Fall	0.93	0.90	0.92	204
accuracy			0.95	680
macro avg	0.94	0.94	0.94	680
weighted avg	0.95	0.95	0.95	680

Model:

Conv1D(f512, k3, s2, 'same') > LayerNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2) > LayerNormalization > MaxPooling1D(p2)

Conv1D(f128, k3, s2, 'same') > LayerNormalization

BiLSTM(256) > LayerNormalization > Dropout(0.5)

Dense(128) > LayerNormalization > ReLU > Dropout(0.5)

Result:

scaler bi v2v2.pkl

best_model_bi_v2v2.h5

final_model_bi_v2v2.h5

cm_model_bi_v2v2.png

Độ chính xác trên tập kiểm tra: 95.74%

Classification	ntion Report	:		
	precision	recall	f1-score	support
ADL	0.97	0.97	0.97	476
Fall	0.93	0.93	0.93	204
accuracy			0.96	680
macro avg	0.95	0.95	0.95	680
weighted avg	0.96	0.96	0.96	680

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(256) > BatchNormalization > Dropout(0.5)

Dense(128) > BatchNormalization > ReLU > Dropout(0.5)

Result:

scaler_bi_v2v3.pkl

best_model_bi_v2v3.h5
final_model_bi_v2v3.h5
cm_model_bi_v2v3.png
roc_model_bi_v2v3.png
history_model_bi_v2v3.png

Độ chính xác trên tập kiểm tra: 95.59%

Sensitivity (Recall cho Fall): 0.92

Specificity (Recall cho ADL): 0.97

Classification	ation Report precision	recall	f1-score	support
ADL Fall	0.97 0.93	0.97 0.92	0.97 0.93	476 204
accuracy macro avg weighted avg	0.95 0.96	0.95 0.96	0.96 0.95 0.96	680 680 680

Model:

Conv1D(f128, k5, s1, 'same') > LayerNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > LayerNormalization

Conv1D(f512, k3, s1, 'same') > LayerNormalization

BiLSTM(256) > LayerNormalization > Dropout(0.5)

Dense(128) > LayerNormalization > ReLU > Dropout(0.5)

Result:

scaler_bi_v2v4.pkl

best_model_bi_v2v4.h5

final_model_bi_v2v4.h5

cm_model_bi_v2v4.png

roc_model_bi_v2v4.png

history_model_bi_v2v4.png

Độ chính xác trên tập kiểm tra: 95.44%

Sensitivity (Recall cho Fall): 0.91

Specificity (Recall cho ADL): 0.97

Classifica	ation Report precision		f1-score	support
ADL Fall	0.96 0.94	0.97 0.91	0.97 0.92	476 204
accuracy macro avg	0.95	0.94	0.95 0.95	680 680
weighted avg	0.95	0.95	0.95	680

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(256) > BatchNormalization > Dropout(0.5)

Dense(256) > BatchNormalization > ReLU > Dropout(0.5)

Dense(128) > BatchNormalization > ReLU > Dropout(0.5)

Result:

scaler_bi_v2v5.pkl

best_model_bi_v2v5.h5

final_model_bi_v2v5.h5

cm_model_bi_v2v5.png

roc_model_bi_v2v5.png

history_model_bi_v2v5.png

Độ chính xác trên tập kiểm tra: 96.03%

Sensitivity (Recall cho Fall): 0.92

Specificity (Recall cho ADL): 0.98

Classific	ation Report	t:		
	precision	recall	f1-score	support
ADL	0.97	0.98	0.97	476
Fall	0.94	0.92	0.93	204
accuracy			0.96	680
macro avg	0.96	0.95	0.95	680
weighted avg	0.96	0.96	0.96	680

No Dense

Data: N/A

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(256) > BatchNormalization > Dropout(0.5)

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_v3v1.pkl

best_model_bi_v3v1.h5

final_model_bi_v3v1.h5

cm_model_bi_v3v1.png

roc_model_bi_v3v1.png

history_model_bi_v3v1.png

Độ chính xác trên tập kiểm tra: 95.74%

Sensitivity (Recall cho Fall): 0.93

Specificity (Recall cho ADL): 0.97

Classific Classif	ation Report	t:		
	precision	recall	f1-score	support
ADL	0.97	0.97	0.97	476
Fall	0.93	0.93	0.93	204
accuracy			0.96	680
macro avg	0.95	0.95	0.95	680
weighted avg	0.96	0.96	0.96	680

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(256) > BatchNormalization > Dropout(0.5)

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_v3v1.pkl

best_model_bi_v3v1.h5

final_model_bi_v3v1.h5

 $cm_model_bi_v3v1.png$

roc_model_bi_v3v1.png

history_model_bi_v3v1.png

Độ chính xác trên tập kiểm tra: 96.91%

Sensitivity (Recall cho Fall): 0.94

✓ Specificity (Recall cho ADL): 0.98

	Classifica	ation Report	:		
		precision	recall	f1-score	support
	ADL	0.97	0.98	0.98	476
	Fall	0.96	0.94	0.95	204
	accuracy			0.97	680
	macro avg	0.97	0.96	0.96	680
wei	ighted avg	0.97	0.97	0.97	680

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(256) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_v3v2.pkl

best_model_bi_v3v2.h5

final_model_bi_v3v2.h5

cm_model_bi_v3v2.png

roc_model_bi_v3v2.png

history_model_bi_v3v2.png

Độ chính xác trên tập kiểm tra: 96.47%

Sensitivity (Recall cho Fall): 0.94

Specificity (Recall cho ADL): 0.97

Classifica	ation Report precision		f1-score	support
	p			
ADL	0.97	0.97	0.97	476
Fall	0.94	0.94	0.94	204
accuracy			0.96	680
macro avg	0.96	0.96	0.96	680
weighted avg	0.96	0.96	0.96	680

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_v3v3.pkl

best_model_bi_v3v3.h5

final_model_bi_v3v3.h5

cm_model_bi_v3v3.png

 $roc_model_bi_v3v3.png$

history_model_bi_v3v3.png

Độ chính xác trên tập kiểm tra: 96.47%

Sensitivity (Recall cho Fall): 0.96

Specificity (Recall cho ADL): 0.97

🚺 Classifica	ation Report:	:		
	precision	recall	f1-score	support
ADL	0.98	0.97	0.97	476
Fall	0.93	0.96	0.94	204
accuracy			0.96	680
macro avg	0.95	0.96	0.96	680
weighted avg	0.97	0.96	0.96	680

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_v3v4.pkl
best_model_bi_v3v4.h5
final_model_bi_v3v4.h5

cm_model_bi_v3v4.png

 $roc_model_bi_v3v4.png$

history_model_bi_v3v4.png

Độ chính xác trên tập kiểm tra: 97.06%

Sensitivity (Recall cho Fall): 0.95

Specificity (Recall cho ADL): 0.98

🚺 Classifica	ation Report	:		
	precision	recall	f1-score	support
ADL	0.98	0.98	0.98	476
Fall	0.96	0.95	0.95	204
accuracy			0.97	680
macro avg	0.97	0.96	0.96	680
weighted avg	0.97	0.97	0.97	680

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_v3v.pkl

best_model_bi_v3v.h5

final_model_bi_v3v.h5

cm_model_bi_v3v.png

 $roc_model_bi_v3v.png$

history_model_bi_v3v.png

mất thông tin

Độ chính xác trên tập kiểm tra: 95.44%

Sensitivity (Recall cho Fall): 0.92

Specificity (Recall cho ADL): 0.97

📊 Classifica	tion Report:			
	precision	recall	f1-score	support
ADL	0.97	0.97	0.97	476
Fall	0.93	0.92	0.92	204
accuracy			0.95	680
macro avg	0.95	0.95	0.95	680
weighted avg	0.95	0.95	0.95	680

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_v3v5.pkl

best_model_bi_v3v5.h5

final model bi v3v5.h5

cm_model_bi_v3v5.png

roc_model_bi_v3v5.png

history_model_bi_v3v5.png

Độ chính xác trên tập kiểm tra: 96.03%

Sensitivity (Recall cho Fall): 0.94

Specificity (Recall cho ADL): 0.97

📊 Classification Report:					
	precision	n recall	f1-score	support	
AD	0.97	0.97	0.97	476	
Fal	0.93	0.94	0.93	204	
accurac	/		0.96	680	
macro av	0.99	0.95	0.95	680	
weighted av	g 0.90	0.96	0.96	680	

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_v3v6.pkl
best_model_bi_v3v6.h5
final_model_bi_v3v6.h5
cm_model_bi_v3v6.png

 $roc_model_bi_v3v6.png$

history_model_bi_v3v6.png

Độ chính xác trên tập kiểm tra: 95.74%

Sensitivity (Recall cho Fall): 0.93

Specificity (Recall cho ADL): 0.97

📊 Classifica	tion Report:			
	precision	recall	f1-score	support
ADL	0.97	0.97	0.97	476
Fall	0.93	0.93	0.93	204
accuracy			0.96	680
macro avg	0.95	0.95	0.95	680
weighted avg	0.96	0.96	0.96	680

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_v3v7.pkl

best_model_bi_v3v7.h5

final_model_bi_v3v7.h5

cm_model_bi_v3v7.png

roc_model_bi_v3v7.png

history_model_bi_v3v7.png

Độ chính xác trên tập kiểm tra: 96.76%

Sensitivity (Recall cho Fall): 0.96

Specificity (Recall cho ADL): 0.97

📊 Classifica	ation Report:	:		
	precision	recall	f1-score	support
ADL	0.98	0.97	0.98	476
Fall	0.93	0.96	0.95	204
accuracy			0.97	680
macro avg	0.96	0.97	0.96	680
weighted avg	0.97	0.97	0.97	680

val_training

CNN 1D

Data: N/A

Model:

CNN 1D

Result:

scaler_cnn_bi_v1v1.pkl

best_model_cnn_bi_v1v1.h5

final_model_cnn_bi_v1v1.h5

cm_model_cnn_bi_v1v1.png

roc_model_cnn_bi_v1v1.png

history_mode_cnnl_bi_v1v1.png

Độ chính xác trên tập kiểm tra: 92.65%

Sensitivity (Recall cho Fall): 0.86

Specificity (Recall cho ADL): 0.95

	Classifica	ation Report:			
		precision	recall	f1-score	support
	ADL	0.94	0.95	0.95	476
	Fall	0.89	0.86	0.88	204
	accuracy			0.93	680
	macro avg	0.92	0.91	0.91	680
wei	ighted avg	0.93	0.93	0.93	680

Model:

CNN 1D

Result:

scaler_cnn_bi_v1v2.pkl
best_model_cnn_bi_v1v2.h5
final_model_cnn_bi_v1v2.h5
cm_model_cnn_bi_v1v2.png
roc_model_cnn_bi_v1v2.png
history_mode_cnnl_bi_v1v2.png

Độ chính xác trên tập kiểm tra: 94.56%

Sensitivity (Recall cho Fall): 0.89

Specificity (Recall cho ADL): 0.97

V AUC: 0.98

Classification	ation Report	:		
	precision	recall	f1-score	support
ADL	0.95	0.97	0.96	476
Fall	0.93	0.89	0.91	204
accuracy			0.95	680
macro avg	0.94	0.93	0.93	680
weighted avg	0.95	0.95	0.95	680

LSTM

Data: N/A

Model:

LSTM

Result:

scaler_lstm_bi_v1v1.pkl

best_model_lstm_bi_v1v1.h5

final_model_lstm_bi_v1v1.h5

cm_model_lstm_bi_v1v1.png

roc_model_lstm_bi_v1v1.png

history_mode_lstm_bi_v1v1.png

Độ chính xác trên tập kiểm tra: 90.15%

Sensitivity (Recall cho Fall): 0.81

Specificity (Recall cho ADL): 0.94

🚺 Classifica	ation Report	t:		
	precision	recall	f1-score	support
ADL	0.92	0.94	0.93	476
Fall	0.85	0.81	0.83	204
accuracy			0.90	680
macro avg	0.89	0.88	0.88	680
weighted avg	0.90	0.90	0.90	680

Model:

LSTM

Result:

scaler_lstm_bi_v1v2.pkl
best_model_lstm_bi_v1v2.h5
final_model_lstm_bi_v1v2.h5
cm_model_lstm_bi_v1v2.png
roc_model_lstm_bi_v1v2.png
history_mode_lstm_bi_v1v2.png

Độ chính xác trên tập kiểm tra: 91.47%

Sensitivity (Recall cho Fall): 0.86

Specificity (Recall cho ADL): 0.94

V AUC: 0.97

	Classif	icat	tion Report:			
			precision	recall	f1-score	support
	Α	DL	0.94	0.94	0.94	476
	Fa	u	0.85	0.86	0.86	204
	accura	су			0.91	680
	macro a	vg	0.90	0.90	0.90	680
wei	ghted a	vg	0.91	0.91	0.91	680

Data: N/A

Model:

LSTM(128) > LSTM(64)

Result:

scaler_lstm_bi_v1v3.pkl

best_model_lstm_bi_v1v3.h5

final_model_lstm_bi_v1v3.h5

cm_model_lstm_bi_v1v3.png

roc_model_lstm_bi_v1v3.png

history_mode_lstm_bi_v1v3.png

Độ chính xác trên tập kiểm tra: 92.79%

✓ Sensitivity (Recall cho Fall): 0.88

Specificity (Recall cho ADL): 0.95

📊 Classifica	ation Report:	:		
	precision	recall	f1-score	support
ADL	0.95	0.95	0.95	476
Fall	0.88	0.88	0.88	204
accuracy			0.93	680
macro avg	0.91	0.91	0.91	680
weighted avg	0.93	0.93	0.93	680

Data: N/A

Model:

LSTM(256) > LSTM(128)

Result:

scaler_lstm_bi_v1v4.pkl
best_model_lstm_bi_v1v3.h5
final_model_lstm_bi_v1v3.h5
cm_model_lstm_bi_v1v3.png
roc_model_lstm_bi_v1v3.png
history_mode_lstm_bi_v1v3.png

Độ chính xác trên tập kiểm tra: 92.35%

Sensitivity (Recall cho Fall): 0.82

Specificity (Recall cho ADL): 0.97

V AUC: 0.97

Classifica	ation Report	:		
	precision	recall	f1-score	support
ADL	0.93	0.97	0.95	476
Fall	0.91	0.82	0.87	204
accuracy			0.92	680
macro avg	0.92	0.89	0.91	680
weighted avg	0.92	0.92	0.92	680

BiLSTM

Data: N/A

Model:

BiLSTM(256) > BiLSTM(128)

Result:

scaler_bilstm_bi_v1v1.pkl

best_model_bilstm_bi_v1v1.h5

final_model_bilstm_bi_v1v1.h5

cm_model_bilstm_bi_v1v1.png

roc_model_bilstm_bi_v1v1.png

history_mode_bilstm_bi_v1v1.png

Độ chính xác trên tập kiểm tra: 93.82%

Sensitivity (Recall cho Fall): 0.90

Specificity (Recall cho ADL): 0.96

📊 Classifica	ation Report	::		
	precision	recall	f1-score	support
ADL	0.96	0.96	0.96	476
Fall	0.90	0.90	0.90	204
accuracy			0.94	680
macro avg	0.93	0.93	0.93	680
weighted avg	0.94	0.94	0.94	680

SVM, RF, KNN

Data: N/A

Đã xử lý xong dữ liệu DU-MD!

- Tổng số mẫu: 3399

- Số nhãn: 10

- Đã lưu tại: du_md_dataset

(3399, 101, 3)

Model:

SVC(C=1.0, kernel='rbf', gamma=1.0 / features_39.shape[1], shrinking=True, tol=0.001)

RandomForestClassifier(n_estimators=10, min_samples_split=2, min_samples_leaf=1, bootstrap=True, random_state=42)

KNeighborsClassifier(n_neighbors=5, leaf_size=30, metric='euclidean')

Result:

SVM Metrics:

Accuracy: 0.938

Precision: 0.945

Recall (Sensitivity): 0.843

Specificity: 0.979

F1 Score: 0.891

Random Forest Metrics:

Accuracy: 0.926

Precision: 0.905

Recall (Sensitivity): 0.843

Specificity: 0.962

F1 Score: 0.873

K-NN Metrics:

Accuracy: 0.935

Precision: 0.908

Recall (Sensitivity): 0.873

Specificity: 0.962

F1 Score: 0.890

Up-Fall Bi Classification model follows the paper

Data description

Các hoạt động:

Activity ID	Description	Duration (s
1	Falling forward using hands	10
2	Falling forward using knees	10
3	Falling backwards	10
4	Falling sideward	10
5	Falling sitting in empty chair	10
6	Walking	60
7	Standing	60
8	Sitting	60
9	Picking up an object	10
10	Jumping	30
11	Laying	60

Data đã được trích xuất chỉ sử dụng dữ liệu từ cảm biến đeo trên cổ tay. url: drive/MyDrive/Study/DATN 2025/Data/wearable data.csv

file data hiện có cả các cột Gyro, lưu ý bỏ các cột Gyro, gộp các nhãn lại thành 0 và

Tốc độ lấy mẫu được cho là khoảng 18.4Hz làm tròn đến 20Hz, mỗi hành động được thực hiện trong số giây tương ứng trong bảng trên. tập trung vào các hành động ngã được thực hiện trong 10s, với tần số 20Hz, ta có khoảng 200 mẫu trong 10s. Trong thực tế, một hành động ngã diễn ra rất nhanh, chỉ khoảng 1 - 2s tối đa

3s, như vậy với 10s thì sẽ bao gồm cả thời gian trước và sau cú ngã. Để đảm bảo hợp lý hơn cho việc phát hiện ngã kịp thời thì chúng ta chỉ lấy khoảng 5s tương đương với window_size = 100.

Data

```
- 17 subject
```

- 11 class

```
- window_size = 100
```

X shape = (6798, 90, 3), y shape = (6798,)

augment = False

Model:

Conv1D(f512, k3, s2, 'same') > LayerNormalization > MaxPooling(p2)

Conv1D(f256, k3, s2) > LayerNormalization > MaxPooling(p2)

Conv1D(f128, k3, s2, 'same') > LayerNormalization

BiLSTM(256) > LayerNormalization > Dropout(0.5)

Dense(128) > LayerNormalization > ReLU > Dropout(0.5)

Result:

```
scaler_bi_uf_v1v1.pkl
best_model_bi_uf_v1v1.h5
final_model_bi_uf_v1v1.h5
cm_model_bi_uf_v1v1.png
roc_model_bi_uf_v1v1.png
```

а

UMAFAII Bi Classification model follows the paper

Data description

```
19 Subject, 12 ADL (1 - 12), 3 Fall (13 - 15)
activity label = {
  "ClappingHands": 1, "HandsUp": 2, "MakingACall": 3, "OpeningDoor": 4,
  "Sitting": 5, "Walking": 6, "Bending": 7, "Hopping": 8,
  "Jogging":9, "LyingDown":10, "GoDownstairs": 11, "GoUpstairs": 12,
  "backwardFall": 13, "forwardFall": 14, "lateralFall": 15
}
Sensor Tag = 20Hz, Smartphone = 200Hz
Data:
window size = 60
stride = 10
Model:
Conv1D(f512, k3, s2, 'same') > LayerNormalization
Conv1D(f256, k3, s2) > LayerNormalization
Conv1D(f128, k3, s2, 'same') > LayerNormalization
BiLSTM(256) > LayerNormalization > Dropout(0.5)
Dense(128) > LayerNormalization > ReLU > Dropout(0.5)
Result:
scaler bi umaf v1v1.pkl
best model bi umaf v1v1.h5
final model bi umaf v1v1.h5
```

cm_model_bi_umaf_v1v1.png
roc_model_bi_umaf_v1v1.png

Độ chính xác trên tập kiểm tra: 94.18%

📊 Classifica	ation Report	:		
	precision	recall	f1-score	support
ADL	0.97	0.95	0.96	1271
Fall	0.87	0.93	0.90	483
accuracy			0.94	1754
macro avg	0.92	0.94	0.93	1754
weighted avg	0.94	0.94	0.94	1754

Sensitivity (Recall cho Fall): 0.93

Specificity (Recall cho ADL): 0.95

window_size = 90

stride = 10

Model:

Conv1D(f512, k3, s2, 'same') > LayerNormalization

Conv1D(f256, k3, s2) > LayerNormalization

Conv1D(f128, k3, s2, 'same') > LayerNormalization

BiLSTM(256) > LayerNormalization > Dropout(0.5)

Dense(128) > LayerNormalization > ReLU > Dropout(0.5)

Result:

scaler_bi_umaf_v2v1.pkl
best_model_bi_umaf_v2v1.h5
final_model_bi_umaf_v2v1.h5
cm_model_bi_umaf_v2v1.png
roc_model_bi_umaf_v2v1.png

Độ chính xác trên tập kiểm tra: 96.29%

📊 Classifica	ation Report:			
	precision	recall	f1-score	support
ADL	0.98	0.97	0.97	1114
Fall	0.93	0.94	0.93	424
accuracy			0.96	1538
macro avg	0.95	0.96	0.95	1538
weighted avg	0.96	0.96	0.96	1538

Sensitivity (Recall cho Fall): 0.94

Specificity (Recall cho ADL): 0.97

M AUC: 0.99

window_size = 90

stride = 10

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(256) > BatchNormalization > Dropout(0.5)

Dense(128) > BatchNormalization > ReLU > Dropout(0.5)

Result:

scaler_bi_umaf_v3v1.pkl
best_model_bi_umaf_v3v1.h5
final_model_bi_umaf_v3v1.h5
cm_model_bi_umaf_v3v1.png
roc_model_bi_umaf_v3v1.png

Độ chính xác trên tập kiểm tra: 97.79%

Sensitivity (Recall cho Fall): 0.97

Specificity (Recall cho ADL): 0.98

AUC: 1.00

🚺 Cla	assifica	tion Report:			
		precision	recall	f1-score	support
	ADL	0.99	0.98	0.98	1114
	Fall	0.95	0.97	0.96	424
ac	ccuracy			0.98	1538
mac	cro avg	0.97	0.98	0.97	1538
weight	ted avg	0.98	0.98	0.98	1538

No Dense

Data:

window_size = 90

stride = 10

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(256) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_umaf_v4v1.pkl

best_model_bi_umaf_v4v1.h5

final_model_bi_umaf_v4v1.h5

cm_model_bi_umaf_v4v1.png

roc_model_bi_umaf_v4v1.png

history_model_bi_umaf_v4v1.png

Độ chính xác trên tập kiểm tra: 97.07%

Sensitivity (Recall cho Fall): 0.96

Specificity (Recall cho ADL): 0.97

M AUC: 0.99

	Classifica	ation Report	:		
		precision	recall	f1-score	support
	ADL	0.99	0.97	0.98	1114
	Fall	0.93	0.96	0.95	424
	accuracy			0.97	1538
	macro avg	0.96	0.97	0.96	1538
wei	ighted avg	0.97	0.97	0.97	1538

window size = 90

stride = 10

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_umaf_v4v2.pkl
best_model_bi_umaf_v4v2.h5
final_model_bi_umaf_v4v2.h5
cm_model_bi_umaf_v4v2.png
roc_model_bi_umaf_v4v2.png

Độ chính xác trên tập kiểm tra: 96.49%

Sensitivity (Recall cho Fall): 0.94

Specificity (Recall cho ADL): 0.97

Class:	ifica	tion Report:	2002]]	£1 00000	cuppent
		precision	recall	f1-score	support
	ADL	0.98	0.97	0.98	1114
F	all	0.93	0.94	0.94	424
accur	acy			0.96	1538
macro	avg	0.95	0.96	0.96	1538
weighted	avg	0.97	0.96	0.96	1538

window_size = 90

stride = 10

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_umaf_v4v3.pkl

best_model_bi_umaf_v4v3.h5 final_model_bi_umaf_v4v3.h5 cm_model_bi_umaf_v4v3.png roc_model_bi_umaf_v4v3.png

Độ chính xác trên tập kiểm tra: 96.62%

Sensitivity (Recall cho Fall): 0.95

Specificity (Recall cho ADL): 0.97

AUC: 0.99

Classifica	ation Report precision	: recall	f1-score	support
ADL	0.98	0.97	0.98	1114
Fall	0.93	0.95	0.94	424
accuracy			0.97	1538
macro avg	0.96	0.96	0.96	1538
	0.97	0.97	0.97	1538

window_size = 90

stride = 10

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_umaf_v4v4.pkl

best_model_bi_umaf_v4v4.h5 final_model_bi_umaf_v4v4.h5 cm_model_bi_umaf_v4v4.png roc_model_bi_umaf_v4v4.png

Độ chính xác trên tập kiểm tra: 97.40%

Sensitivity (Recall cho Fall): 0.97

Specificity (Recall cho ADL): 0.97

AUC: 0.99

📊 Classifica	ation Report	:		
	precision	recall	f1-score	support
ADL	0.99	0.97	0.98	1114
Fall	0.94	0.97	0.95	424
accuracy			0.97	1538
macro avg	0.96	0.97	0.97	1538
weighted avg	0.97	0.97	0.97	1538

window_size = 90

stride = 10

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_umaf_v4v5.pkl

best_model_bi_umaf_v4v5.h5

final_model_bi_umaf_v4v5.h5

cm_model_bi_umaf_v4v5.png

roc_model_bi_umaf_v4v5.png

Độ chính xác trên tập kiểm tra: 96.55%

Sensitivity (Recall cho Fall): 0.96

Specificity (Recall cho ADL): 0.97

AUC: 0.99

Classifica	ation Report precision	: recall	f1-score	support
ADL Fall	0.98 0.92	0.97 0.96	0.98 0.94	1114 424
accuracy macro avg weighted avg	0.95 0.97	0.96 0.97	0.97 0.96 0.97	1538 1538 1538

window_size = 90

stride = 10

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_umaf_v4v6.pkl

best_model_bi_umaf_v4v6.h5

final_model_bi_umaf_v4v6.h5

cm_model_bi_umaf_v4v6.png

roc_model_bi_umaf_v4v6.png

Độ chính xác trên tập kiểm tra: 97.27%

Sensitivity (Recall cho Fall): 0.95

Specificity (Recall cho ADL): 0.98

📊 Classifica	ation Report	::		
	precision	recall	f1-score	support
ADL	0.98	0.98	0.98	1114
Fall	0.95	0.95	0.95	424
accuracy			0.97	1538
macro avg	0.97	0.97	0.97	1538
weighted avg	0.97	0.97	0.97	1538

window_size = 90

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_umaf_v4v7.pkl

best_model_bi_umaf_v4v7.h5

final_model_bi_umaf_v4v7.h5

cm_model_bi_umaf_v4v7.png

roc_model_bi_umaf_v4v7.png

Độ chính xác trên tập kiểm tra: 95.90%

Sensitivity (Recall cho Fall): 0.95

Specificity (Recall cho ADL): 0.96

📊 Classifi	cation Rep	ort:		
	precisi	on recall	f1-score	support
AD	L 0.	98 0.96	0.97	1114
Fal	l 0.º	91 0.95	0.93	424
accurac	У		0.96	1538
macro av	g 0.º	94 0.95	0.95	1538
weighted av	g 0.º	96 0.96	0.96	1538

window_size = 90

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler_bi_umaf_v4v8.pkl

best_model_bi_umaf_v4v8.h5

final_model_bi_umaf_v4v8.h5

cm_model_bi_umaf_v4v8.png

roc_model_bi_umaf_v4v8.png

Độ chính xác trên tập kiểm tra: 96.23%

Sensitivity (Recall cho Fall): 0.96

Specificity (Recall cho ADL): 0.96

📊 Classifica	ation Report:			
	precision	recall	f1-score	support
ADL	0.98	0.96	0.97	1114
Fall	0.91	0.96	0.93	424
accuracy			0.96	1538
macro avg	0.95	0.96	0.95	1538
weighted avg	0.96	0.96	0.96	1538

window_size = 90

stride = 10

Model:

Conv1D(f128, k5, s1, 'same') > BatchNormalization > MaxPooling1D(p2)

Conv1D(f256, k3, s2, 'same') > BatchNormalization

Conv1D(f512, k3, s1, 'same') > BatchNormalization

BiLSTM(128) > BatchNormalization > Dropout(0.5)

Result:

scaler bi umaf v4v9.pkl

best_model_bi_umaf_v4v9.h5

final_model_bi_umaf_v4v9.h5

cm_model_bi_umaf_v4v9.png

roc_model_bi_umaf_v4v9.png

Độ chính xác trên tập kiểm tra: 96.10%

Sensitivity (Recall cho Fall): 0.93

Specificity (Recall cho ADL): 0.97

📊 Classifica	ation Report:	:		
	precision	recall	f1-score	support
ADL	0.97	0.97	0.97	1114
Fall	0.93	0.93	0.93	424
accuracy			0.96	1538
macro avg	0.95	0.95	0.95	1538
weighted avg	0.96	0.96	0.96	1538

val_training

CNN 1D

Data:

window_size = 90

stride = 10

Model:

Conv1D

Result:

scaler_cnn_bi_umaf_v1v1.pkl
best_model_cnn_bi_umaf_v1v1.h5
final_model_cnn_bi_umaf_v1v1.h5
cm_model_cnn_bi_umaf_v1v1.png
roc_model_cnn_bi_umaf_v1v1.png

Độ chính xác trên tập kiểm tra: 96.68%

- Sensitivity (Recall cho Fall): 0.96
- Specificity (Recall cho ADL): 0.97
- **AUC**: 0.99

Classifica	ation Report	:		
	precision	recall	f1-score	support
ADL	0.99	0.97	0.98	1114
Fall	0.92	0.96	0.94	424
accuracy			0.97	1538
macro avg	0.95	0.97	0.96	1538
weighted avg	0.97	0.97	0.97	1538

LSTM

Data:

window_size = 90

stride = 10

Model:

LSTM(256) > LSTM(128)

Result:

scaler_lstm_bi_umaf_v1v1.pkl
best_model_lstm_bi_umaf_v1v1.h5
final_model_lstm_bi_umaf_v1v1.h5
cm_model_lstm_bi_umaf_v1v1.png
roc_model_lstm_bi_umaf_v1v1.png

Độ chính xác trên tập kiểm tra: 95.32%

Sensitivity (Recall cho Fall): 0.91

Specificity (Recall cho ADL): 0.97

Classification	ation Report	t:		
	precision	recall	f1-score	support
ADL	0.97	0.97	0.97	1114
Fall	0.92	0.91	0.91	424
accuracy			0.95	1538
macro avg	0.94	0.94	0.94	1538
weighted avg	0.95	0.95	0.95	1538

BILSTM

Data:

window_size = 90

stride = 10

Model:

LSTM(256) > LSTM(128)

Result:

scaler_lstm_bi_umaf_v1v1.pkl

best_model_lstm_bi_umaf_v1v1.h5

final_model_lstm_bi_umaf_v1v1.h5

cm_model_lstm_bi_umaf_v1v1.png
roc_model_lstm_bi_umaf_v1v1.png

Độ chính xác trên tập kiểm tra: 96.81%

Sensitivity (Recall cho Fall): 0.95

Specificity (Recall cho ADL): 0.97

Classifica	ation Report	:		
	precision	recall	f1-score	support
ADL	0.98	0.97	0.98	1114
Fall	0.93	0.95	0.94	424
accuracy			0.97	1538
macro avg	0.96	0.96	0.96	1538
weighted avg	0.97	0.97	0.97	1538

1. Cần thiết phải xác định độ dài chuỗi (sequence length) khi sử dụng LSTM/BiLSTM cho dữ liệu chuỗi thời gian?

Đúng vậy, khi sử dụng LSTM hay BiLSTM để xử lý dữ liệu chuỗi thời gian, việc xác định độ dài chuỗi đầu vào là cần thiết. Độ dài chuỗi này thường được gọi là "window size" và quyết định lượng thông tin quá khứ mà mô hình có thể học được. Việc chọn

window size phù hợp giúp mô hình nắm bắt được các đặc trưng thời gian quan trọng trong dữ liệu.

Trong nghiên cứu của Shrestha (2021), việc sử dụng cửa sổ trượt với kích thước từ 2s đến 5s và độ chồng lấp từ 0% đến 90% đã được thử nghiệm để nhận dạng hoạt động liên tục. Kết quả cho thấy việc sử dụng cửa sổ trượt có độ chồng lấp cao giúp mô hình học được các đặc trưng thời gian quan trọng hơn.

academia.edu

3. Lập luận về việc chọn window size = 90 (tương đương 3s) và stride = 30 (tương đương 1s) có hợp lý không?

Lập luận của bạn về việc chọn window size = 90 (tương đương 3s) và stride = 30 (tương đương 1s) là hợp lý và phù hợp với các nghiên cứu trong lĩnh vực phát hiện té ngã. Việc sử dụng window size 3s giúp mô hình có đủ thông tin để nhận diện các hành động té ngã, bao gồm cả thời gian trước, trong và sau khi té ngã. Stride 1s giúp tạo ra các mẫu dữ liệu chồng lấp, tăng cường khả năng phát hiện và giảm độ trễ của hệ thống.

Trong nghiên cứu của Shrestha (2021), việc sử dụng cửa sổ trượt với độ chồng lấp cao đã được thử nghiệm và cho thấy hiệu quả trong việc nhận dạng hoạt động liên tục.

academia.edu

Kết luân

Lập luận của bạn về việc chọn window size = 90 (tương đương 3s) và stride = 30 (tương đương 1s) là hợp lý và phù hợp với các nghiên cứu trong lĩnh vực phát hiện té ngã. Việc bạn chủ động thực hiện bước phân đoạn dữ liệu và kiểm soát chất lượng dữ liệu đầu vào là một điểm mạnh trong nghiên cứu của bạn. Mặc dù có thể gặp phải một số thách thức khi triển khai mô hình trong thực tế, nhưng với các kỹ thuật tối ưu hóa phù hợp, bạn có thể giảm thiểu khối lượng công việc và đảm bảo hiệu suất của hệ thống.