

DM74LS244

Octal 3-STATE Buffers/Line Drivers/Line Receivers

General Description

These buffers/line drivers are designed to improve both the performance and PC board density of 3-STATE buffers/ drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs and can be used to drive terminated lines down to 133 Ω .

Features

- 3-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at data inputs improves noise margins

- Typical I_{OL} (sink current)
 - 54LS . 12 mA
 - 74LS 24 mA
- Typical I_{OH} (source current)
 - 54LS -12 mA 74LS -15 mA
- Typical propagation delay times
 - Inverting 10.5 ns Noninverting 12 ns
- Typical enable/disable time
- Typical power dissipation (enabled)

Inverting 130 mW Noninverting 135 mW

Connection Diagram

Dual-In-Line Package

Order Number 54LS244DMQB, 54LS244FMQB, 54LS244LMQB, DM74LS244WM or DM74LS244N See Package Number E20A, J20A, M20B, N20A or W20A

Function Table

Inputs		Output		
G	Α	Y		
L	L	L		
L	Н	Н		
Н	X	Z		

L = Low Logic Level

H = High Logic Level

X = Either Low or High Logic Level

Z = High Impedance

Absolute Maximum Ratings (Note 1)

54LS DM74LS -55°C to +125°C 0°C to +70°C

Supply Voltage Input Voltage 7V 7V

Storage Temperature Range

-65°C to +150°C

Operating Free Air Temperature Range

Recommended Operating Conditions

Symbol	Parameter	54LS244		DM74LS244			Units	
		Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-12			-15	mA
I _{OL}	Low Level Output Current			12			24	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions			Min	Typ (Note 2)	Max	Units
V _I	Input Clamp Voltage	V _{CC} = Min, I _I = -18 mA					-1.5	V
HYS	Hysteresis (V _{T+} – V _{T-})	V _{CC} = Min			0.2	0.4		V
	Data Inputs Only							
V _{OH}	High Level Output Voltage	V _{CC} = Min, V _{IH} = Min		DM74	2.7			
		V _{IL} = Max, I _{OH} = -1 mA						
		V _{CC} = Min, V _{IH} = Min		54LS/DM74	2.4	3.4		V
		$V_{IL} = Max$, $I_{OH} = -3 \text{ mA}$						
		$V_{CC} = Min, V_{IH} = Min$ 54LS/DM74		54LS/DM74	2			
		V _{IL} = 0.5V, I _{OH} = Max						
V _{OL}	Low Level Output Voltage	V _{CC} = Min	I _{OL} = 12 mA	54LS/DM74			0.4	
		V _{IL} = Max	I _{OL} = Max	DM74			0.5	V
		V _{IH} = Min						
I _{OZH}	Off-State Output Current,	V _{CC} = Max	V _O = 2.7V				20	μA
	High Level Voltage Applied	V _{IL} = Max						
I _{OZL}	Off-State Output Current,	V _{IH} = Min	V _O = 0.4V				-20	μA
	Low Level Voltage Applied							
I _I	Input Current at Maximum	V _{CC} = Max	V ₁ = 7V (DM74)				0.1	mA
	Input Voltage		V _I = 10V (54LS)					
I _{IH}	High Level Input Current	V _{CC} = Max	V _I = 2.7V				20	μA
I _{IL}	Low Level Input Current	V _{CC} = Max	V _I = 0.4V		-0.5		-200	μA
I _{os}	Short Circuit Output Current	V _{CC} = Max (Note 3) 54LS		54LS	-50		-225	mA
				DM74	-40]		
I _{cc}	Supply Current	V _{CC} = Max,	· · · · · · · · · · · · · · · · · · ·			13	23	
		Outputs Open				27	46	mA
			Outputs Disabled			32	54	

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at $V_{CC} = 5V$, $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	54LS Max	DM74LS Max	Units
t _{PLH}	Propagation Delay Time	C _L = 45 pF	18	18	ns
	Low to High Level Output	$R_L = 667\Omega$			
t _{PHL}	Propagation Delay Time	C _L = 45 pF	18	18	ns
	High to Low Level Output	$R_L = 667\Omega$			
t _{PZL}	Output Enable Time to	C _L = 45 pF	30	30	ns
	Low Level	$R_L = 667\Omega$			ı
t _{PZH}	Output Enable Time to	C _L = 45 pF	23	23	ns
	High Level	$R_L = 667\Omega$			
t _{PLZ}	Output Disable Time	C _L = 5 pF	25	25	ns
	from Low Level	$R_L = 667\Omega$			
t _{PHZ}	Output Disable Time	C _L = 5 pF	18	18	ns
	from High Level	$R_L = 667\Omega$			
t _{PLH}	Propagation Delay Time	C _L = 150 pF		21	ns
	Low to High Level Output	$R_L = 667\Omega$			
t _{PHL}	Propagation Delay Time	C _L = 150 pF		22	ns
	High to Low Level Output	$R_L = 667\Omega$			
t _{PZL}	Output Enable Time to	C _L = 150 pF		33	ns
	Low Level	Low Level $R_L = 667\Omega$			
t _{PZH}	Output Enable Time to	C _L = 150 pF		26	ns
	High Level	$R_L = 667\Omega$			

Note 4: 54LS Output Load is C_L = 50 pF for t_{PLH} , t_{PHL} , t_{PZL} and t_{PZH} .

20-Lead Ceramic Dual-In-Line Package (J) Order Number 54LS244DMQB Package Number J20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Ceramic Flat Package (W) Order Number 54LS244FMQB Package Number W20A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas

Customer Response Center Tel: 1-888-522-5372

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com