

**Preliminary Specification** 

# HD Radio<sup>TM</sup> Series

[PNP Baseband SOC]

# PN3034HT

[Triple / MRC+1-channel Receiver with AAA]

## DATA SHEET

PnpNetwork Technologies, Inc.

FEB 2020 (Version 0.93)

Note: This documentation is preliminary and subject to change. PnpNetwork Technologies, Inc. reserves the right to do any kind of modification in this datasheet regarding both hardware and software implementations without notice.

HD Radio<sup>TM</sup> logo is the proprietary trademark of Xperi, Inc.



## **Revision History**

Bars appearing in the left margin of the document as shown here indicate changes made to this document since the last revision issued.

| Date Re | evision | Description                          | Author        |
|---------|---------|--------------------------------------|---------------|
|         |         | Description from PN3034HT data sheet | Author Jeremy |



## **Contents**

| 1.1 Overview                                                                                                                                                                                                                                                                                                 | 5677   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1.3 Applications  1.4 Ordering Information  1.4.1 Order type overview  2. Pin Information  2.1 Pin Assignment  3. Pin Descriptions  4. Functional Description  4.1 General Functions  4.2 DSP Functions  4.3 HD Radio™ Functions  4.4 Tuner Interface Functions  4.5 Diversity Functions  4.6 PLL Functions. | 5677   |
| 1.4 Ordering Information  1.4.1 Order type overview  2. Pin Information  2.1 Pin Assignment  3. Pin Descriptions  4. Functional Description  4.1 General Functions  4.2 DSP Functions  4.3 HD Radio <sup>TM</sup> Functions  4.4 Tuner Interface Functions  4.5 Diversity Functions  4.6 PLL Functions       | 677    |
| 2. Pin Information  2.1 Pin Assignment  3. Pin Descriptions  4. Functional Description  4.1 General Functions  4.2 DSP Functions  4.3 HD Radio <sup>TM</sup> Functions  4.4 Tuner Interface Functions  4.5 Diversity Functions  4.6 PLL Functions                                                            | 7<br>7 |
| 2. Pin Information  2.1 Pin Assignment  3. Pin Descriptions  4. Functional Description  4.1 General Functions  4.2 DSP Functions  4.3 HD Radio <sup>TM</sup> Functions  4.4 Tuner Interface Functions  4.5 Diversity Functions  4.6 PLL Functions                                                            | 7<br>7 |
| 2.1 Pin Assignment  3. Pin Descriptions  4. Functional Description  4.1 General Functions  4.2 DSP Functions  4.3 HD Radio <sup>TM</sup> Functions  4.4 Tuner Interface Functions  4.5 Diversity Functions  4.6 PLL Functions.                                                                               | 8      |
| 2.1 Pin Assignment  3. Pin Descriptions  4. Functional Description  4.1 General Functions  4.2 DSP Functions  4.3 HD Radio <sup>TM</sup> Functions  4.4 Tuner Interface Functions  4.5 Diversity Functions  4.6 PLL Functions.                                                                               | 8      |
| 4. Functional Description  4.1 General Functions  4.2 DSP Functions  4.3 HD Radio <sup>TM</sup> Functions  4.4 Tuner Interface Functions  4.5 Diversity Functions  4.6 PLL Functions                                                                                                                         |        |
| 4.1 General Functions                                                                                                                                                                                                                                                                                        | 10     |
| 4.1 General Functions                                                                                                                                                                                                                                                                                        | 12     |
| 4.3 HD Radio <sup>TM</sup> Functions                                                                                                                                                                                                                                                                         | 13     |
| 4.3 HD Radio <sup>TM</sup> Functions                                                                                                                                                                                                                                                                         | 13     |
| 4.4 Tuner Interface Functions                                                                                                                                                                                                                                                                                | 14     |
| 4.5 Diversity Functions                                                                                                                                                                                                                                                                                      | 14     |
| 4.6 PLL Functions                                                                                                                                                                                                                                                                                            | 14     |
|                                                                                                                                                                                                                                                                                                              | 14     |
| 7.7 1 0 1 A 1 URCUVIIS                                                                                                                                                                                                                                                                                       |        |
| 4.8 I <sup>2</sup> S 7.1 Channel Functions                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                              |        |
| 4.9 SPDIF Functions                                                                                                                                                                                                                                                                                          |        |
| 4.10 I <sup>2</sup> S RX Functions                                                                                                                                                                                                                                                                           |        |
| 4.11 I <sup>2</sup> C Functions                                                                                                                                                                                                                                                                              |        |
| 4.12 UART Functions                                                                                                                                                                                                                                                                                          |        |
| 4.13 SPI Functions                                                                                                                                                                                                                                                                                           |        |
| 4.14 SPI Bridge Functions                                                                                                                                                                                                                                                                                    | 16     |
| 5. Peripheral Descriptions                                                                                                                                                                                                                                                                                   | 17     |
| 5.1 I <sup>2</sup> C Interface                                                                                                                                                                                                                                                                               | 17     |



| 5.2         | SPI Interface                               | 18 |
|-------------|---------------------------------------------|----|
| 5           | 5.2.1 Characteristics SPI Bus               | 18 |
| 5           | 5.2.2 SPI Timing Diagram                    | 19 |
| 5           | 5.2.3 SPI Timing Characteristics            | 19 |
| 5.3         | UART & HSUART Interface                     | 20 |
| 5.4         | I <sup>2</sup> S TX Interface               | 21 |
| 5.5         | I <sup>2</sup> S RX Interface               | 23 |
| 5.6         | Digital I/Q Interface                       | 25 |
| 6.          | Application                                 | 26 |
| 6.1         | Clock application                           | 26 |
| 6.2         | Operation Mode Selection                    | 27 |
| 7.          | Electrical Characteristics                  | 28 |
| 7.1         | Absolute Maximum Rating                     | 28 |
| 7.2         | Recommended operating conditions            | 29 |
| 7.3         | Power-on and Reset Timing                   | 30 |
| 7.4         | Power Consumption                           | 31 |
| 8.          | Package Dimension                           |    |
| 9.          | PCB Mounting Guidelines                     |    |
| 9.1         | Handling                                    | 33 |
| 9.2         | DRYING                                      | 34 |
| 9.3         | SMT Process                                 | 35 |
| 9.4         | The temperature profile of a reflow process | 36 |
| <i>10</i> . | Part Materials                              | 37 |
| 10.         | .1 Package Materials                        | 37 |



#### 1. Introduction

#### 1.1 Overview

The PN3034HT is a superior system on chip for HD Radio<sup>™</sup> applications. It fully supports IBOC (In-Band On-Channel) system consists of flexible software/hardware COFDM demodulator and Radio/Audio DSP. Several interfaces such as SPI, I2C and UART are implemented providing customers with more flexibility. And these interfaces fully support "RX\_IDD\_2206" HD Radio<sup>™</sup> standard.

The PN3034HT integrates the DSP Core, offering the low-power, high-performance Radio/Audio processing, supports enhanced HD Radio<sup>TM</sup> audio applications. The DSP core eliminates the need for the audio companion processors normally required for audio-based applications. By removing the need for costly application coprocessors and external memory subsystems, the PN3034HT chipset solution reduces BOM costs.

#### 1.2 Features

| Standards support: IBOC system for HD Radio™ application                              |
|---------------------------------------------------------------------------------------|
| Digital I/Q Tuner interface for 3 external RF tuners                                  |
| Outstanding Mobility and 1st Adjacent Channel Rejection Performance                   |
| Low power consumption: Max 730mW(TBD)                                                 |
| 32-bits RISC architecture with integrated 24-bits audio processing instructions       |
| MRC Diversity support                                                                 |
| 16Mbyte Mobile SDRAM stacked for high technology audio codec process and data service |
| 10 x 10 mm2, 0.65 mm pitch, 179-pin Fine pitch BGA technology.                        |
| Applications                                                                          |
| Automotive Digital Radio System for HD Radio <sup>TM</sup>                            |
| Aftermarket car radio and audio system                                                |
| Boom Box and Audio component system                                                   |
| Smart Speaker system with HD Radio <sup>TM</sup>                                      |
| Kitchen Radio application                                                             |



#### 1.4 Ordering Information

| Part Number            |                   | PN3034HT            |
|------------------------|-------------------|---------------------|
| Dookogo                | Ball Pitch        | 0.65mm              |
| Package<br>Information | Body Size         | 10mm × 10mm × 1.2mm |
|                        | Ball Count (Type) | 179 balls (FBGA)    |
| Construction Welder    | Core              | 1.1V ~ 1.2V (TBD)   |
| Supply Voltage         | I/O               | 3.0V                |
| Operation Temperature  |                   | -40 ~ +85°C         |
| Storage Temperature    |                   | -50 ∼ +150°C        |

**Table 1-1 Ordering Information** 

- Note: PN3034HT is pin to pin compatible with PAIOS<sup>2</sup>-AD, PN3034Mx series and PAIOS<sup>X</sup>-VD series.

#### 1.4.1 Order type overview

| Number   | Target Application                                                                                                                                                                                                                                                                                                                                                                                                                                           | Internal tuner | Digital I/Q tuner Interface |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|
| PN3034HT | [MRC / Phase Diversity Antenna] HD Radio <sup>TM</sup> 3-ch Receiver Baseband SOC for MRC Audio & Data <sup>(*1)</sup> mode with AAA <sup>(*2)</sup> + BGS/DATA <sup>(*3)</sup> [Single Antenna] HD Radio <sup>TM</sup> 3-ch Receiver Baseband SOC for the applications in below Audio & Data mode with AAA + BGS <sup>(*4)</sup> + Data <sup>(*5)</sup> - 1 <sup>st</sup> Audio & Data mode with AAA + 2 <sup>nd</sup> Audio & Data mode with AAA+ BGS/DATA | No             | Up to 3                     |

Table 1-2 Order type overview

<sup>\*</sup> Note 1: "Audio & Data" means audio and data service are received simultaneous on the same frequency station.

<sup>\*</sup> Note 2: "AAA" means Automatic level and time Alignment Audio for seamless blending between Analog and Digital Radio.

<sup>\*</sup> Note 3: "BGS/Data" means the separated tuner can be used for back ground scanning or data service on the other frequency stations time-dependently.

<sup>\*</sup> Note 4: "+ BGS" means the separated tuner can be always used for back ground scanning on the other frequency stations.

<sup>\*</sup> Note 5: "+ DATA" means the separated tuner can be always used for DATA service on the other frequency stations.



## 2. Pin Information

#### 2.1 Pin Assignment

- Top View



PN3034HT Pin assignment



## 3. Pin Descriptions

TYPE Description

I: Input ,O: Output , IO: Bidirectional ,AP: Analog Power ,DP: Digital Power , DG: Digital Ground

#### - DSP and Interfaces Pins

| Pin | Symbol    | Type | Function | Description                           |
|-----|-----------|------|----------|---------------------------------------|
| A12 | I2C_SDA0  | IO   | I2C      | I <sup>2</sup> C DATA (Master only)   |
| B12 | I2C_SCL0  | O    | I2C      | I <sup>2</sup> C CLK (Master only)    |
| R1  | I2C_SDA1  | IO   | I2C      | I <sup>2</sup> C DATA (Master/Slave)  |
| P1  | I2C_SCL1  | IO   | I2C      | I <sup>2</sup> C CLK (Master/Slave)   |
| A11 | BB_SDA    | IO   | I2C      | I <sup>2</sup> C DATA (Master only)   |
| B11 | BB_SCL    | O    | I2C      | I <sup>2</sup> C CLK (Master only)    |
| R14 | UART_TX0  | O    | UART     | UART0 Transfer data                   |
| R13 | UART_RX0  | I    | UART     | UART0 Receive data                    |
| P10 | SPM0_DO   | O    | SPI      | SPI0 master / Data out / MOSI         |
| P9  | SPM0_DI   | I    | SPI      | SPI0 master / Data in / MISO          |
| R9  | SPM0_CSN  | O    | SPI      | SPI0 master / Chip select / SS        |
| R10 | SPM0_CLK  | O    | SPI      | SPI0 master Clock/ CLK                |
| G14 | INT0      | IO   | GPIO     | External Interrupt Input[0]           |
| R5  | UART_TX1  | Ю    | GPIO     | UART1 TX                              |
| P5  | UART_RX1  | Ю    | GPIO     | UART1 RX                              |
| P2  | BLD0      | IO   | GPIO     | GPIO0 / Blending Out0                 |
| R2  | BLD1      | IO   | GPIO     | GPIO1 / Blending Out1                 |
| R3  | NSPI1 DO  | IO   | GPIO     | SPI1 DO (Master or Slave)             |
| P4  | NSPI1 DI  | IO   | GPIO     | SPI1 DI (Master or Slave)             |
| P3  | NSPI1 CLK | IO   | GPIO     | SPI1 CLK (Master or Slave)            |
| R4  | NSPI1 CSN | IO   | GPIO     | SPI1 nCS (Master or Slave)            |
| P14 | NSPI0 DO  | IO   | GPIO     | SPI0 Slave MISO                       |
| N15 | NSPI0 CSN | IO   | GPIO     | SPI0 Slave nCS                        |
| N14 | NSPI0 DI  | IO   | GPIO     | SPI0 Slave MOSI                       |
| P15 | NSPI0 CLK | IO   | GPIO     | SPI0 Slave CLK                        |
| P6  | SPDIF     | IO   | GPIO     | SPDIF/ GPIO3[6]                       |
| P11 | TX0_MCLK  | О    | I2S      | I <sup>2</sup> S TX0 Main Clock       |
| R11 | TX0_LRCK  | IO   | I2S      | I <sup>2</sup> S TX0 Left / Right CLK |



| P12 | TX0_BCLK    | IO | I2S        | I <sup>2</sup> S TX0 Bit Clock                            |
|-----|-------------|----|------------|-----------------------------------------------------------|
| R12 | TX0_DATA    | О  | I2S        | I <sup>2</sup> S TX0 Data                                 |
| R7  | TX1_MCLK    | О  | I2S        | I <sup>2</sup> S TX1 Main Clock                           |
| P7  | TX1_LRCK    | IO | I2S        | I <sup>2</sup> S TX1 Left / Right CLK                     |
| R6  | TX1_BCLK    | IO | I2S        | I <sup>2</sup> S TX1 Bit Clock                            |
| R8  | TX1_DATA    | О  | I2S        | I <sup>2</sup> S TX1 Data                                 |
| D13 | TX71_MCLK   | О  | I2S        | I <sup>2</sup> S TX71 Main Clock                          |
| E13 | TX71_DATA3  | О  | I2S        | I <sup>2</sup> S TX71 Data3                               |
| G13 | TX71_ DATA2 | О  | I2S        | I <sup>2</sup> S TX71 Data2                               |
| H13 | TX71_DATA1  | 0  | I2S        | I <sup>2</sup> S TX71 Data1                               |
| J13 | TX71_DATA0  | О  | I2S        | I <sup>2</sup> S TX71 Data0                               |
| K13 | TX71_LRCK   | IO | I2S        | I <sup>2</sup> S TX71 Left / Right CLK                    |
| L13 | TX71_BCLK   | IO | I2S        | I <sup>2</sup> S TX71 Bit Clock                           |
| J14 | RX0_BCLK    | I  | I2S        | I <sup>2</sup> S RX0 Bit Clock                            |
| J15 | RX0_LRCK    | I  | I2S        | I <sup>2</sup> S RX0 Left-Right Clock                     |
| K14 | RX0_DATA    | I  | I2S        | I <sup>2</sup> S RX0 Data                                 |
| L14 | RX1_BCLK    | I  | I2S        | I <sup>2</sup> S RX1 Bit Clock                            |
| K15 | RX1_LRCK    | I  | I2S        | I <sup>2</sup> S RX1 Left-Right Clock                     |
| L15 | RX1_DATA    | I  | I2S        | I <sup>2</sup> S RX1 Data                                 |
| H14 | RX2_BCLK    | I  | I2S / GPIO | I <sup>2</sup> S RX2 Bit Clock (Reserved for GPIO)        |
| G15 | RX2_LRCK    | 4  | I2S / GPIO | I <sup>2</sup> S RX2 Left-Right Clock (Reserved for GPIO) |
| H15 | RX2_DATA    | I  | I2S / GPIO | I <sup>2</sup> S RX2 Data (Reserved for GPIO)             |
| C11 | EAGC        | 0  | Tuner IF   | External AGC                                              |
| A13 | BLK0        | I  | Tuner IF   | Digital I/Q Input BCLK0                                   |
| B13 | WS0         | )ı | Tuner IF   | Digital I/Q Input WS0                                     |
| A14 | SDI0        | I  | Tuner IF   | Digital I/Q Input Serial Data-I 0                         |
| A15 | SDQ0        | I  | Tuner IF   | Digital I/Q Input Serial Data-Q 0                         |
| B15 | BLK1        | I  | Tuner IF   | Digital I/Q Input BCLK1                                   |
| B14 | WS1         | I  | Tuner IF   | Digital I/Q Input WS1                                     |
| C14 | SDI1        | I  | Tuner IF   | Digital I/Q Input Serial Data-I 1                         |
| C15 | SDQ1        | I  | Tuner IF   | Digital I/Q Input Serial Data-Q 1                         |
| D15 | BLK2        | I  | Tuner IF   | Digital I/Q Input BCLK2                                   |
| D14 | WS2         | I  | Tuner IF   | Digital I/Q Input WS2                                     |
| E14 | SDI2        | I  | Tuner IF   | Digital I/Q Input Serial Data-I 2                         |
| E15 | SDQ2        | I  | Tuner IF   | Digital I/Q Input Serial Data-Q 2                         |



#### - MODE & SYSTEM Pins

| Pin | Symbol   | Type | Function | Description                                         |
|-----|----------|------|----------|-----------------------------------------------------|
| L2  | BMODE[0] | I    | MODE     | Configure Pin Boot MODE[0] 1)note                   |
| K1  | BMODE[1] | I    | MODE     | Configure Pin Boot MODE[1] <sup>2)note</sup>        |
| L1  | BMODE[2] | I    | MODE     | Configure Pin Boot MODE[2] <sup>2)note</sup>        |
| A10 | EXT_MCLK | I    | MODE     | External Clock                                      |
| K2  | BBMODE   | I    | MODE     | DSP or BASEBAND Mode Selection                      |
| К3  | TEST0    | I    | MODE     | Digital Part Test Mode Selection                    |
| N4  | RESET_N  | I    | RESET    | SYSTEM RESET IN                                     |
| A9  | XTAL P   | I    | CLOCK    | Crystal Positive                                    |
| В9  | XTAL N   | I    | CLOCK    | Crystal Negative                                    |
| L3  | STDO     | I    | MODE     | Standard Mode0                                      |
| M3  | STD1     | I    | MODE     | Standard Mode1                                      |
| P13 | AWAKE    | I    | MODE     | AWAKE                                               |
| R15 | NC       | -    | -        | Reserved for future use                             |
| N2  | JTAG_TDO | Ю    | JTAG /   | DSP Debug Serial Instruction/Data Shift Output Port |
| N3  | JTAG_TRS | Ю    | JTAG     | DSP Debug Active Low Input Port                     |
| M1  | JTAG_TDI | IO   | JTAG     | DSP Debug Serial Instruction/Data Shift Input Port  |
| N1  | JTAG_TMS | IO   | JTAG     | DSP Debug TAP Controller Port                       |
| M2  | JTAG_TCK | Ю    | JTAG     | DSP Debug Clock Port                                |

Please refer to details for detail mode selection in section 6.2.

#### Note:

<sup>1)</sup> BMODE[0] = 1  $\rightarrow$  System clock Input = 24.576MHz or BMODE[0] = 0  $\rightarrow$  System clock Input = 23.52Mhz

<sup>2)</sup> BMODE[2:1] = [1][0] → Booting From Serial Flash Memory BMODE[2:1] = [1][1] → Waiting for UART Download BMODE[2:1] = [0][1] --> SPI Bridge Enabled between SPIM0 and SPIS1. So, Host can access Serial flash directly.(TBD)



#### - Reserved Pins (TBD)

| Pin            | Symbol | Type | Function | Description             |
|----------------|--------|------|----------|-------------------------|
| A1, A2, A4, A5 |        |      |          |                         |
| A6, A7, B4     |        |      |          |                         |
| B5, B6, B7, C1 | NG     |      |          | D 10 0                  |
| C7, D3, E3, E1 | NC     | -    | -        | Reserved for future use |
| E2, F2, G1     |        |      |          |                         |
| G2, H2         |        |      |          |                         |

#### - Analog Power Pins (TBD)

| Pin             | Symbol | Type | Function | Description              |
|-----------------|--------|------|----------|--------------------------|
| A8, B2, B8, C8, | NC     | AD   | DOWED    | Developed for father the |
| C2, C4, F3      | NC     | AP   | POWER    | Reserved for future use  |
| C3              | VDD12  | AP   | POWER    | Analog Part Power Supply |
| A3, B1, B3, C5, |        |      | 1        | \ \ \                    |
| C6, C9, D1, D2, | VICEA  | AP   | POWER    | Angles Port Cround       |
| F1, G3, H1, H3, | VSSA   | AP   | POWER    | Analog Part Ground       |
| J1, J2, J3      | 00     | 1    |          |                          |

#### - Digital Power Pins

| Pin                                | Symbol | Type | Function | Description                                  |
|------------------------------------|--------|------|----------|----------------------------------------------|
| F14, F15, K6, L6, K10, L10,        | VDDI   | DP   | POWER    | Digital Power supply voltage for Core        |
| N8, P8, M13, M14, N13              | VDDI   | Di   | TOWER    | Digital Fower supply voltage for Core        |
| C12, C13, N5, N6, N10, N11         | VDDE   | DP   | POWER    | Digital Power supply voltage for I/O & SDRAM |
| F13                                | VDDPLL | DP   | POWER    | Digital Power supply voltage for PLL         |
| B10, C10, E6, E7, E8, E9, E10, F6, |        |      |          |                                              |
| F7, F8, F9, F10 ,G6, G7, G8, G9,   |        |      |          |                                              |
| G10, H6, H7, H8, H9, H10, J6, J7,  | VSS    | DG   | POWER    | Ground.                                      |
| J8, J9, J10, K7, K8, K9, L7, L8,   |        |      |          |                                              |
| L9, M15, N7, N9, N12               |        |      |          |                                              |



## 4. Functional Description

This chapter describes PN3034HT internal structure, components and interfaces as shown in figure 4-1. The algorithms and architectures used in the PN3034HT have been efficiently optimized in order to minimize hardware and chip area.



**Figure 4-1 Functional Block Diagram** 



#### 4.1 General Functions

| The following is a tota | l feature list and | l is spread o | over multiple | e commercial | releases. |
|-------------------------|--------------------|---------------|---------------|--------------|-----------|
|-------------------------|--------------------|---------------|---------------|--------------|-----------|

The initial releases will not include all of these simultaneously.

|  | Support | for HD | Radio <sup>TM</sup> | IBOC sv | stem |
|--|---------|--------|---------------------|---------|------|
|--|---------|--------|---------------------|---------|------|

- ☐ High-performance 32Bits DSP Core with 24-bits Audio processing
- ☐ Advanced 10 x 10 mm², 0.65 mm pitch, 179-pins Fine pitch BGA technology.

#### 4.2 DSP Functions

| Based on standard | 132-bits RISC | architecture | with integra | ted 24-bits a | udio processir | ng instructions |
|-------------------|---------------|--------------|--------------|---------------|----------------|-----------------|
|                   |               |              |              |               |                |                 |

- ☐ Industry-leading low-power consumption and Dual MACs
- ☐ Predictive pre-fetch cache memory subsystem for improvement of high density memory latency
- ☐ Ultra-low power consumption increases battery life in portable applications
- ☐ Full 24-bits internal audio resolution throughout delivers extremely high quality audio output



## 4.3 HD Radio<sup>TM</sup> Functions

|     |       | Standards support IBOC system for HD Radio <sup>TM</sup>                                          |
|-----|-------|---------------------------------------------------------------------------------------------------|
|     |       | Up to 3 IBOC demodulator support                                                                  |
|     |       | Additional back ground scanning support for HD Radio <sup>TM</sup> signals                        |
|     |       | Fully compatible with "RX_IDD_2206" HD Radio <sup>TM</sup> Commercial Receiver Baseband Processor |
|     |       | Command and Data Interface Definition and CDM4                                                    |
|     |       | Outstanding Mobility and 1st Adjacent Channel Rejection Performance                               |
|     |       | IBOC FM mode supported: MP1, MP2, MP3, MP5, MP6, (optional) MP11                                  |
|     |       | Supplemental Program Services(SPS) in MP1, MP2, MP3, MP5, MP6 in FM mode                          |
|     |       | IBOC AM mode supported: MA1, MA3                                                                  |
|     |       | Support AM reduced digital bandwidth broadcasting configuration with audio BW management.         |
|     |       | Automatic Audio (Time) Alignment of Analog and Digital signal on audio instance only (Requires    |
|     |       | analog audio as an input to the baseband)                                                         |
|     |       | Automatic Audio (Level) Alignment of Analog and Digital signal on audio instance only (Requires   |
|     |       | analog audio as an input to the baseband)                                                         |
|     |       | Fast SPS to MPS switching and Data Functionality                                                  |
|     |       | Service support: SIS(+), AAS data, SIG, On-chip LOT, On-chip PSD decoding, On-chip Tagging        |
| 4.4 | Tune  | r Interface Functions                                                                             |
|     |       | 3 x Digital I/Q interfaces support for External Tuner connection                                  |
|     |       | FM Sample Rate supported – 912KHz/882KHz/744KHz/675KHz/650KHz                                     |
|     |       | AM Sample Rate supported - 912KHz/882KHz/744KHz/675KHz/650KHz/55.1KHz, 46.5KHz                    |
|     |       | Support Split mode, Multiplexed mode, Analog/Digital mode, MSB bit shift mode                     |
|     |       | Software and hardware switching of sample rates supported                                         |
|     |       |                                                                                                   |
| 4.5 | Diver | rsity Functions                                                                                   |
|     |       |                                                                                                   |
|     |       | MRC Diversity support for IBOC FM                                                                 |
|     |       | Better C/N performance and seamless switching between master and slave tuner                      |
| 4.6 | PLL   | Functions                                                                                         |
|     |       | Input Frequency: 24.576MHz                                                                        |
|     |       | Output Frequency: 37.5MHz~600MHz                                                                  |
|     |       |                                                                                                   |



| 17  | T2 C | TV | T7  | -4     |
|-----|------|----|-----|--------|
| 4./ | 1-0  | IX | run | ctions |

|           | 2 x Master or Slave I <sup>2</sup> S interface.                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------|
|           | Programmable clock generation (I <sup>2</sup> S master/slave mode, MCLK, BCLK, LRCK).                                   |
|           | Programmable data width (up to 32-bits).                                                                                |
|           | Sample rate converter supporting for externally provided clock in slave mode.                                           |
|           |                                                                                                                         |
| $I^2S$ 7. | .1 Channel Functions                                                                                                    |
|           | 1 x Master or Slave I <sup>2</sup> S 7.1ch interface.                                                                   |
|           | Programmable clock generation (I <sup>2</sup> S master/slave mode, MCLK, BCLK, LRCK).                                   |
|           | Programmable data width (up to 32-bits).                                                                                |
|           | 1-pair I <sup>2</sup> S with TDM mode (DSP MODE)                                                                        |
|           |                                                                                                                         |
|           |                                                                                                                         |
| SPDI      | IF Functions                                                                                                            |
|           | ~ x .>                                                                                                                  |
|           | 1 x SPDIF interface for Stereo channel audio PCM.                                                                       |
|           | Fixed sample rate output for 44.1KHz sample rate audio                                                                  |
|           |                                                                                                                         |
| _         |                                                                                                                         |
| $I^2SR$   | PX Functions                                                                                                            |
|           | 2 x Slave I <sup>2</sup> S RX interface.                                                                                |
|           | Programmable clock generation (I2S master mode, BCLK, LRCK).                                                            |
|           |                                                                                                                         |
|           | Programmable data width (up to 32-bits).                                                                                |
|           | Programmable data width (up to 32-bits).  Sample rate converter supporting for externally provided clock in slave mode. |
|           |                                                                                                                         |



## 4.11 I<sup>2</sup>C Functions

|      |       | Support 2 x channels I <sup>2</sup> C                                                                 |
|------|-------|-------------------------------------------------------------------------------------------------------|
|      |       | Detect/generate Start and Stop events                                                                 |
|      |       | Identify its slave (ID) address (in Slave mode)                                                       |
|      |       | Identify the transfer direction (receive/transmit)                                                    |
|      |       | Transfer data byte-wise according to the SCL clock line                                               |
|      |       | Generate an ACK signal following a byte receive                                                       |
|      |       | Inspect an ACK signal following a byte transmit                                                       |
|      |       | Generate vectored interrupt for receive and transmit events and receive/transmit/bus error exceptions |
|      |       | Generate the clock signal (in Master mode)                                                            |
| 4.12 | UAR   | T Functions                                                                                           |
|      |       | Support 2 x UART interfaces and one of them supports HSUART mode                                      |
|      |       | Programmable Baud Rate Generator                                                                      |
|      |       | 5- to 8-bits full-duplex asynchronous serial communication.                                           |
|      |       | Parity generation and error detection                                                                 |
|      |       | HUART mode supports communication at up to 115,200 bps x2 and 115,200 bps x8 (TBD)                    |
|      |       | UART mode supports communication at up to 115,200 bps                                                 |
| 4 13 | SPI 1 | Functions                                                                                             |
|      |       | a unevons                                                                                             |
|      |       | 2 x Master /Slave Serial Peripheral Bus Interface                                                     |
|      |       | 8- or 16-bits Programmable Data Length Per Chip Select                                                |
|      |       | Programmable Phase and Polarity Per Chip Select (master mode)                                         |
|      |       | Communication at up to main (clock/2) bps (slave), main (clock/2) bps(master mode)                    |
| 4.14 | SPI I | Bridge Functions                                                                                      |
|      |       |                                                                                                       |
|      |       | Host can program the serial flash directly through SPI interface by using SPI bridge feature. (TBD)   |
|      |       |                                                                                                       |
|      |       |                                                                                                       |
|      |       |                                                                                                       |
|      |       |                                                                                                       |
|      |       |                                                                                                       |



## 5. Peripheral Descriptions

## 5.1 I<sup>2</sup>C Interface

The  $I^2C$  is a standard 2 wire serial interface used to connect the acacia with  $I^2C$  device or host.  $I^2C$  bus application includes EEPROM, LCD, host controllers. The  $I^2C$  interface is able to:

- Detect/generate Start and Stop events
- Identify its slave (ID) address (in Slave mode)
- Identify the transfer direction (receive/transmit)
- Transfer data byte-wise according to the SCL clock line
- Generate an ACK signal following a byte receive
- Inspect an ACK signal following a byte transmit
- Generate vectored interrupt for receive and transmit events and receive/transmit/bus error exceptions
- Generate the clock signal (in Master mode)



Figure 5-1 I<sup>2</sup>C Block Diagram

#### 5.2 SPI Interface

The SPI makes a serial communication with external through SPM\_CLK, SPM\_CSN, SPM\_DI, SPM\_DO pin. The SPM\_CLK is clock for the serial communication, SPM\_CSN are chip enable signals, SPM\_DI is serial data-in, and SPM\_DO is serial data-out.

The SPM Master communicates in unit of 8-bits character. If CPU writes the contents to communicate to command register, SPI Master executes communication for command register and then clears the VALID bit in command register with 0 and stops operation. That is, always when CPU sends command through command register, SPI Master does its operations.

The SPI communicates in specified unit of character and the length of character, which is possible from 1-bit to 16-bits, is defined by setting of register.

The SPI operation modes are DMA mode and non-DMA mode. The DMA mode is used to transfer large data through SPI, it reduces interrupt's occurrence to CPU. In Non-DMA mode, each finish of 1-character transfer makes interrupt to CPU.

#### 5.2.1 Characteristics SPI Bus



Figure 5-5 SPI Clock Polarity



#### 5.2.2 SPI Timing Diagram



**Figure 5-6 SPI Timing Diagram** 

#### 5.2.3 SPI Timing Characteristics

| Symbol                      | Parameter            | <b>Test Conditions</b> | Min         | Тур | Max    | Unit |
|-----------------------------|----------------------|------------------------|-------------|-----|--------|------|
| $f_{CLKF}$                  | CL V CL 1 E          | Normal Mode            | 0           | -   | Fbus/2 | MHz  |
| $ m f_{CLKN}$ $ m f_{CLKS}$ | CLK Clock Frequency  | Standby Mode           | 0           | -   | Fbus/2 | MHz  |
| $t_{CS}$                    | Minimum CS High Time | 7                      | CYC bus * 5 | -   | -      | ns   |
| t <sub>CSS</sub>            | CS Setup Time        |                        | CYC bus * 2 | ı   | -      | ns   |
| $t_{CSH}$                   | CS Hold Time         |                        | CYC bus * 2 | -   | ı      | ns   |
| $t_{ m WH}$                 | SCK High Time        |                        | CYC bus * 1 | ı   | ı      | ns   |
| twL                         | SCK Low Time         |                        | CYC bus * 1 | 1   | -      | ns   |
| $t_{ m SU}$                 | Data In Setup Time   |                        | 10          | -   | -      | ns   |
| t <sub>H</sub>              | Data In Hold Time    |                        | 10          | -   | -      | ns   |
| $t_{ m V}$                  | Data Time            |                        | 0           |     | 20     | ns   |
| $t_{ m HD}$                 | Hold Setup Time      |                        | 0           | 0   | 0      | ns   |

**Table 5-1 SPI Timing** 

<sup>\*</sup> Fbus = Bus Frequency, CYC bus = 1 clock cycle time of Bus Clock

<sup>\*</sup> PN3034HT's Bus Frequency = 190MHz(TBD) in Reference Firmware.



#### 5.3 UART & HSUART Interface

The UART (Universal Asynchronous Receiver/Transmitter) core and HSUART (High Speed Universal Asynchronous Receiver/Transmitter) core provides serial communication capabilities, which allow communication with modem or other external devices, like another computer using a serial cable and RS232 protocol. This core is designed to be maximally compatible with the industry standard National Semiconductors' 16550A device. The UART core implements the AMBA bus interface for communication with the system. It has an 8-bits data bus for compatibility reason. The core requires one interrupt. It requires 2 pads in the chip (serial in and serial out) and, optionally, another six modem control signals, which can otherwise be implemented using general purpose I/Os on the chip.



#### 5.4 I<sup>2</sup>S TX Interface

- I<sup>2</sup>S TX is peripheral which delivers audio data to DAC and it supports DMA mode. DMA reduces interrupt frequency to DSP core as a result DMA increases whole chip operation efficiency.
- In slave mode, I2S TX receives the signal BCLK, LRCK from outside device possibly codec/DAC.



Figure 5-8 I<sup>2</sup>S Slave Mode = DAC Master Mode

- In master mode, divided DSP core clock signals are delivered to outside device as MCLK, BCLK, and LRCK.



Figure 5-9 I<sup>2</sup>S Master Mode = DAC Slave Mode

In the block diagram below, signal name which is ended with "\_S" are supplied by outside device in slave mode. Signal name which is ended with \_M are drive outside device in master mode. MCLK does not exist in I2S specification but generally used by commercially available CODEC/DAC as main clock to support specific sampling frequency.

BCLK is serial clock and LRCK is word select signal.



Figure 5-10 I<sup>2</sup>S Interface Block Diagram





Figure 5-11 I<sup>2</sup>S Timing Diagram

- The MSB is available on the 2<sup>nd</sup> rising edge of BCLK following a DATA transition.

| Sample Rate | LRCK    | BCLK      | Valid Data         | MCLK  | MODE  |
|-------------|---------|-----------|--------------------|-------|-------|
| Frequency   | LKCK    | DCLK      | Bit Number (n) *1) | WICEK | WIODE |
| 44.1KHz     | 44.1KHz | 1.4112MHz | 16-bits            | -     | -     |

**Table 5-2 Sample Rate Frequency Table** 

#### Note

1) The number of all data in each channel is 16-bits. (TBD)



## 5.5 I<sup>2</sup>S RX Interface

- I<sup>2</sup>S RX is peripheral which delivers audio data from outside of chip and it support DMA. DMA reduce interrupt frequency to DSP core as a result DMA increase whole chip operation efficiency.
  - Clock signals and data are delivered to outside device as BCLK, LRCK and DATA.



Figure 5-12 I<sup>2</sup>S RX Mode

Please refer to below block diagram.

In the block diagram below, signal name which is ended with "\_S" are supplied by outside device



Figure 5-13 I<sup>2</sup>S RX Interface Block Diagram





Figure 5-14 I<sup>2</sup>S RX Timing Diagram

- The MSB is available on the 2<sup>nd</sup> rising edge of BCLK following a DATA transition.

| Sample Rate<br>Frequency | LRCK    | BCLK      | Valid Data Bit Number (n) *2) | MODE                                   |
|--------------------------|---------|-----------|-------------------------------|----------------------------------------|
| 24KHz                    | 24KHz   | 1.536MHz  | 16-bits                       | <i>*</i>                               |
| 32KHz                    | 32KHz   | 2.048MHz  | 16-bits                       | I <sup>2</sup> S RX mode <sup>1)</sup> |
| 44.1KHz                  | 44.1KHz | 2.8224MHz | 16-bits                       |                                        |
| 48KHz                    | 48KHz   | 3.072MHz  | 16-bits                       |                                        |

**Table 5-3 Sample Rate Frequency Table** 

#### Note

- 1) PN3034HT has sample rate conversion function in  $I^2S$  RX mode.
- 2) The number of all data is 32-bits and 16-bits will be valid in  $I^2S$  RX's data.



#### 5.6 Digital I/Q Interface

- Digital I/Q Interface is peripheral which delivers RF tuner's I & Q data from outside of chip and it support DMA. DMA reduces interrupt frequency to DSP core as a result DMA increases whole chip operation efficiency.
  - Clock signals and data are delivered to outside device as BCLK, LRCK and Serial Data-I / Serial Data Data-Q



Figure 5-12 Digital I/Q Mode

- Support Split mode and Multiplexed mode in below.



Figure 5-14 Digital I/Q Split mode Timing Diagram



Figure 5-15 Digital I/Q Multiplexed mode Timing Diagram



## 6. Application

#### 6.1 Clock application

#### - Crystal Oscillator

PN3034HT has an oscillation circuit and PLL. It can generate the Master clock by connecting to a crystal oscillator, a capacitor and a fixed resistor as shown in the circuit diagram below.

It is recommended to use a crystal oscillator with a maximum frequency tolerance of  $\pm 50$ ppm.

Please contact the manufacturer of the crystal oscillator for the appropriate values of the load capacitors and resistors. PN3034HT input clock support 24.576MHz or 23.52Mhz.





#### 6.2 Operation Mode Selection

#### -BMODE[0] (Pin L2)

 $BMODE[0] = \{1\}: System\ clock\ input\ from\ Crystal\ Oscillator\ is\ 24.576Mhz$ 

 $BMODE[0] = \{0\}$ : System clock input from Crystal Oscillator is 23.52Mhz

#### - BMODE[1:2] ( Pin K1 & Pin L1 )

BMODE  $[1][2] = \{0, 1\}$ : Normal system booting mode with firmware in serial flash.

BMODE  $[1][2] = \{1, 1\}$ : Firmware program mode into serial flash via UART downloading

BMODE [1][2] = {1,0}: SPI bridge mode between SPM0 and NSPI0. Host can directly access to serial flash

#### -AWAKE (R15) -TBD-

This pin should be controlled to Low during normal system operation

#### - BBMODE & TESTO (Pin K2 & K3)

This pin should be connected to ground [Low state] for normal system booting mode with DSP.

#### - STD[0:1] (Pin L3 & Pin M3)

STD0, STD1 =  $\{0, 0\}$ : Default setting

STD0, STD1 =  $\{1, 0\}$ : Reserved for future use

STD0, STD1 =  $\{0, 1\}$ : Reserved for future use

STD0, STD1 =  $\{1, 1\}$ : Reserved for future use



#### 7. Electrical Characteristics

#### 7.1 Absolute Maximum Rating

Operating the PN3034HT under conditions that exceed those listed in Table 9-1 may result in damage to the device. Absolute maximum ratings are limiting values and are considered individually, while all other parameters are within their specified operating ranges. Functional operation of the PN3034HT device under any of the conditions listed in Table 9-1 is not implied. Exposure to absolute maximum ratings for extended periods of time may affect the device's reliability.

| Symbol                                    | Description                | Value          | Units |
|-------------------------------------------|----------------------------|----------------|-------|
| $T_{J}$                                   | Junction temperature       | -40 to +125    | °C    |
| V <sub>VDDI</sub>                         | Core Supply Voltage        | -0.5 to + 1.4  | V     |
| V <sub>VDDE</sub>                         | I/O Supply Voltage         | -0.5  to + 3.6 | V     |
| V <sub>VDDIO</sub>                        | Analog Supply Voltage      | -0.5 to + 3.6  | V     |
| V <sub>VDD12</sub><br>V <sub>VDD12P</sub> | Analog Core Supply Voltage | -0.5 to + 1.4  | V     |

**Table 9-1 Absolute Maximum Ratings (TBD)** 



## 7.2 Recommended operating conditions

| Symbol                               | Description                      | Min                     | Max                     | Units |
|--------------------------------------|----------------------------------|-------------------------|-------------------------|-------|
| $T_{\mathrm{op}}$                    | Operation Temperature            | -40                     | +85                     | °C    |
| T <sub>STG</sub>                     | Storage Temperature              | -50                     | +150                    | °C    |
| $V_{\mathrm{VDDI}}$                  | Core Supply Voltage              | 0.99                    | 1.21                    | V     |
| $V_{ m VDDE}$                        | I/O Supply Voltage               | 2.7                     | 3.3                     | V     |
| V <sub>IH</sub>                      | High Level Input voltage at I/O  | 0.7 * V <sub>VDDE</sub> | V <sub>VDDE</sub> +0.3  | V     |
| V <sub>IL</sub>                      | Low Level Input voltage at I/O   | V <sub>VDDE</sub> -0.3  | 0.3 * V <sub>VDDE</sub> | V     |
| V <sub>HYS</sub>                     | Input Hysteresis Voltage         | 0.4                     | - 7                     | V     |
| V <sub>VDD12</sub>                   | Analog Core Supply Voltage (TBD) |                         | Y                       | V     |
| V <sub>VDD12P</sub> V <sub>VDD</sub> | Analog Supply Voltage            | 2.7                     | 3.3                     | V     |

**Table 9-2 Recommended Ratings (TBD)** 



## 7.3 Power-on and Reset Timing

Please refer to timing chart and table for proper power-on and IC reset.



| Characteristic          |     | Symbol | Min        | Max | Unit |
|-------------------------|-----|--------|------------|-----|------|
| Power Supply Sequence   | 1/2 | A      | Don't Care | -   | μѕ   |
| Setup time for IC Reset | 77  | В      | 500        |     | μs   |

Table 9-3 Power-On and Reset Timing (TBD)



## 7.4 Power Consumption

| Symbol                 | Parameter                 | <b>Test Conditions</b> | Min | Тур | Max      | Unit   |
|------------------------|---------------------------|------------------------|-----|-----|----------|--------|
| т                      | Supply Current for Core   | $V_{VDD12ALL} = 1.2V$  |     | 420 |          | m A    |
| I <sub>VDD12-ALL</sub> | Supply Current for Core   | Triple HD Mode         | -   | 420 | -        | mA     |
| T                      | Sumply Cumont for IO      | $V_{VDDE} = 3.0V$      |     | 37  | ,        | A      |
| $I_{VDDE}$             | Supply Current for IO     | Triple HD Mode         | -   | 37  | 1        | mA     |
| τ.                     | Sumply Cumont for Angles  | $V_{VDD12\_A} = 1.2V$  |     | 5   |          | \_\^   |
| I <sub>VDD12_A</sub>   | Supply Current for Analog | Triple HD Mode         | -   | 3   |          | mA     |
| D                      | Total Power Consumption   | Triple HD Mode         |     | 630 | ( 7      | mW     |
| $P_{TPOW}$             | Total Power Consumption   | Triple HD Mode         |     | 030 | <b>Y</b> | 111 VV |

**Table 9-4 Power Consumption (TBD)** 



## 8. Package Dimension

- The Package dimension of PN3034HT



Figure 11.1 PN3034HT Package Dimension



## 9. PCB Mounting Guidelines

Guidelines for mounting the PN3034HT onto a printed circuit board (PCB) are presented in this part, including land pad and handling, SMT Process.

#### 9.1 Handling

Floor life time will be modified by environmental conditions other than 30'C/60%RH. If partial lots are used, the remaining SMD packages must be resealed or placed in safe storage within one hour of bag opening.

Refer to JEDEC spec (J-STD-033B) for details

| Lond  | Floor life (out of bag) at factory |
|-------|------------------------------------|
| Level | Ambient 30'C/60%RH or as started   |
| 2     | 1 year                             |
| 2a    | 4 weeks                            |
| 3     | 168 hours                          |
| 4     | 72 hours                           |

Table 12 -2 Moisture classification level and floor life



#### 9.2 DRYING

Component drying options for various moisture sensitivity levels and ambient humidity exposures of £ $\leq$  60% RH are given in the following tables. Drying per an allowable option resets the floor life clock. If dried and sealed in an MBB with fresh desiccant, the shelf life is reset. Table 12-3 gives conditions for re-bake of SMD packages at a user site after the floor life has expired or other conditions have occurred to indicate excess moisture exposure.

PN3034HT condition: <u>Leve3, 9 hours, Bake @125℃</u>

| Package<br>Body<br>Thickness | Level | Bake @ 125°C  |                 | Bake @ 90°C<br>≤5% RH |                 | Bake @ 40° C<br>≤ 5% RH |               |
|------------------------------|-------|---------------|-----------------|-----------------------|-----------------|-------------------------|---------------|
|                              |       | Exceeding     | Exceeding       | Exceeding             | Exceeding       | Exceeding               | Exceeding     |
|                              |       | Floor Life by | Floor Life by   | Floor Life by         | Floor Life by   | Floor Life by           | Floor Life by |
|                              |       | >72 hours     | $\leq$ 72 hours | >72 hours             | $\leq$ 72 hours | >72 hours               | ≤ 72 hours    |
|                              | 2     |               |                 |                       |                 |                         |               |
| ≤ 1.4mm                      | 2a    | 5 hours       | 3 hours         | 17 hours              | 11 hours        | 8 days                  | 5 days        |
|                              | 3     | 9 hours       | 7 hours         | 33 hours              | 23 hours        | 13 days                 | 9 days        |
|                              | 4     | 11 hours      | 7 hours         | 37 hours              | 23 hours        | 15 days                 | 9 days        |
|                              | 5     | 12 hours      | 7 hours         | 41 hours              | 24 hours        | 17 days                 | 10 days       |
|                              | 5a    | 16 hours      | 10 hours        | 54 hours              | 24 hours        | 22 days                 | 10 days       |

Table 12 -3 Reference Conditions for Drying Mounted or Un-mounted SMD Packages



#### 9.3 SMT Process

#### - Screen print process

- 1. Type3 or type4 is recommended for solder paste.
- 2. No clean flux is recommended for lead-free condition.

#### - Component placement

Standard pick-and-place machines can be used for placing a package. The following methods can be used for recognition and positioning

- 1. Use ball inspection and compliant tip nozzle
- 2. It is recommended that the side-lighting option on pick and place machine
- 3. It is preferable to use IC placement/ fine pitch placement machines over chip-shooters for better accuracy.
- 4. Solder ball self-align when placed at an offset due to self-centering nature of it.
- Little or no force needs to be exerted during placement to prevent damage to a part.It is recommended that balls be dipped into solder paste on PCB to greater than 20% of paste block height.

#### - Reflow and cleaning

- 1. Compatible with industry standard reflow process for both lead-free process.
- 2. Qualified for up to three reflow operation (260'C peak) per J-STD-020.
- 3. Nitrogen gas is recommended (oxygen level<75ppm) to avoid oxidation or void formation.
- 4. Reflow profile depends on whole parts and board density.
- 5. Follow recommended recipe from paste manufacturer for reflow profile.

#### - Rework

The key features for rework are listed below.

- 1. Rework procedure used is identical to the one used for most BGA packages.
- 2. Rework reflow process should duplicate original reflow profile used for assembly.
- 3. Rework system should include localized convection heating element with profiling capacity, a bottom side pre-heater and a part pick and placer with image overlay.



## 9.4 The temperature profile of a reflow process



Figure 12-3 The temperature profile of a reflow process

| Parameter                 | Tin-lead Alloy<br>(SnPb or SnPbAg) |                 |                           |
|---------------------------|------------------------------------|-----------------|---------------------------|
| Preheating rate           | 2.5°C/sec                          | 2.5℃/sec        | Flux system(Solder paste) |
| Soaking temperature       | 140 ~ 170 ℃                        | 140 ~ 170 ℃     | Flux system(Solder paste) |
| Soaking time              | 80 second                          | 80 second       | Flux system(Solder paste) |
| Peak temperature          | 225℃                               | 245℃ ~ 260℃     | Alloy(Solder paste)       |
| Reflow time over Liquidus | 60 second                          | 60 or 90 second | Alloy(Solder paste)       |
| Liquidus temperature      |                                    | 217℃or 219℃     |                           |
| Cool Down rate            | 2.5℃/sec                           | 2.5℃/sec        |                           |

Table 12-4 The temperature profile of a reflow process



#### 10. Part Materials

#### 10.1 Package Materials

- The Package Materials of PN3034HT

| Line           | Description                      | Image        |
|----------------|----------------------------------|--------------|
| 1st            | Company logo                     |              |
| 2nd            | Device name*1                    | AP §         |
| 3rd            | Application name*2               | PN3034HT 7   |
| 4th            | Chip revision                    | HD Radio SoC |
| 5th            | Manufacturing date (KYYWW)*3     | CS01 E       |
| 6th (vertical) | Assembly lot number(CYWWPPTTT)*4 | CS01 ESSY SY |

\*1 Device name: PN3034HT

\*2 Application name : HD Radio SoC

\*3 Manufacturing date: KYYWW

- K: Site

- YYWW : Date code

\*4 Assembly lot number : CYWWPPTTT

- C: Customer code

- Y: Years

- WW : Week

PP : Package code

TTT : Serial No.

**Table 10-1 Marking Information: PN3034HT** 





PnpNetwork Technologies, Inc. www.pnpnetworkwork.com

support@pnpnetwork.com T: 82-2-2240-0800

3F, Fine Venture BLD, 41 , Seongnamdearo 925beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea 13496