

HD30N03 / HU30N03 30V N-Channel MOSFET

FEATURES

- ☐ Originative New Design
- ☐ Superior Avalanche Rugged Technology
- ☐ Robust Gate Oxide Technology
- ☐ Very Low Intrinsic Capacitances
- □ Excellent Switching Characteristics
- ☐ Unrivalled Gate Charge: 18.5 nC (Typ.)
- Extended Safe Operating Area
- \square Lower R_{DS(ON)} 20m Ω (Typ.) @V_{GS} =10V
- ☐ 100% Avalanche Tested

 $R_{DS(on)} = 19m\Omega$

Nov 2009

 $I_{\rm D} = 20 \, {\rm A}$

Absolute Maximum Ratings T_C=25 °C unless otherwise specified

Symbol	Parameter		Value	Units	
V _{DSS}	Drain-Source Voltage		30	V	
I _D	Drain Current – Continuous (7	Γ _C = 25℃)	20	А	
	Drain Current – Continuous (7	Γ _C = 100℃)	22	А	
I _{DM}	Drain Current – Pulsed	(Note 1)	150	А	
V_{GS}	Gate-Source Voltage		±20	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	230	mJ	
I _{AR}	Avalanche Current	(Note 1)	20	A	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	11	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	7.0	V/ns	
P _D	Power Dissipation (T _A = 25 °C)*		1.8	W	
	Power Dissipation (T _C = 25 °C)		80	W	
	- Derate above 25 ℃		0.7	W/℃	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	C	

Thermal Resistance Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.0	
$R_{\theta JA}$	Junction-to-Ambient*		40	°C/W
$R_{\theta JA}$	Junction-to-Ambient		62.5	

^{*} When mounted on the minimum pad size recommended (PCB Mount)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
On C	haracteristics					
V _{GS}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu$ A	1.0	1.5	3	V
R _{DS(ON)}	Static Drain-Source $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$			16	19	mΩ
Off C	haracteristics					
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu \text{A}$	30			V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to $25 \ ^{\circ}\text{C}$		0.03		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μA
		$V_{DS} = 24 \text{ V}, T_{C} = 85 ^{\circ}\text{C}$			30	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
Dyna	mic Characteristics					
C _{iss}	Input Capacitance	.,,		875	1140	pF
C _{oss}	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$		570	740	рF
C_{rss}	Reverse Transfer Capacitance	1 - 1.0 IVII 12		155	200	рF
Swite	ching Characteristics					
t _{d(on)}	Turn-On Time	V _{DS} = 15 V, I _D = 10 A,		17	45	ns
t _r	Turn-On Rise Time	$V_{DS} = 15 \text{ V}, I_D = 10 \text{ A},$ $R_G = 2.5 \Omega \square$		155	320	ns
t _{d(off)}	Turn-Off Delay Time			10	30	ns
t _f	Turn-Off Fall Time	(Note 4,5)		75	160	ns
Q_g	Total Gate Charge	V _{DS} = 24 V, I _D = 10 A,		18.5	24	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 5.0 V		7		nC
Q_{gd}	Gate-Drain Charge	(Note 4,5)		9.5		nC
Sour	ce-Drain Diode Maximum R	atings and Characteristics	;			
I _S	Continuous Source-Drain Diode Fo	rward Current			20	Α
I _{SM}	Pulsed Source-Drain Diode Forwar	d Current			220	
V _{SD}	Source-Drain Diode Forward Volta	ge I _S = 20 A, V _{GS} = 0 V			1.3	V
trr	Reverse Recovery Time	I _S = 20 A, V _{GS} = 0 V		40		ns
Qrr	Reverse Recovery Charge	$di_F/dt = 100 \text{ A/µs}$ (Note 4)		35		μC

Notes;

- 1. Repetitive Rating : Pulse width limited by maximum junction temperature
- 2. L=230 μ H, I_{AS}=20A, V_{DD}=15V, R_G=2.5 Ω Starting T_J=25°C 3. I_{SD}≤50A, di/dt≤300A/ μ s, V_{DD}≤BV_{DSS} , Starting T_J=25 °C
- 4. Pulse Test : Pulse Width ≤ 300µs, Duty Cycle ≤ 2%
- 5. Essentially Independent of Operating Temperature

Typical Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

Figure 7. Breakdown Voltage Variation vs. Temperature

T_,, Junction Temperature [°C]

150

Figure 8. On-Resistance Variation vs. Temperature

Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

Figure 11. Transient Thermal Response Curve

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Package Dimension

TO-252

Package Dimension

TO-251

