Sürekli Zamanlı Periyodik İşaretler için Fourier Serisi gösterilimi

Özfonksiyonlar

LZD sistemin

$$x(t) = e^{st}$$

girişine cevabını bulalım.

Sistem çıkışı

$$y(t) = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau) d\tau$$
$$= \int_{-\infty}^{+\infty} h(\tau)e^{s(t-\tau)} d\tau.$$

$$y(t) = e^{st} \int_{-\infty}^{+\infty} h(\tau) e^{-s\tau} d\tau.$$

$$y(t) = H(s)e^{st}$$

$$H(s) = \int_{-\infty}^{+\infty} h(\tau)e^{-s\tau} d\tau.$$

Benzer şekilde

$$x(t) = a_1 e^{s_1 t} + a_2 e^{s_2 t} + a_3 e^{s_3 t}.$$

Şeklinde verilen giriş işareti için sistem çıkışı

$$a_1e^{s_1t} \longrightarrow a_1H(s_1)e^{s_1t},$$

$$a_2e^{s_2t} \longrightarrow a_2H(s_2)e^{s_2t},$$

$$a_3e^{s_3t} \longrightarrow a_3H(s_3)e^{s_3t},$$

$$y(t) = a_1 H(s_1) e^{s_1 t} + a_2 H(s_2) e^{s_2 t} + a_3 H(s_3) e^{s_3 t}.$$

Sonuç olarak,

$$x(t) = \sum_k a_k e^{s_k t},$$

şeklinde modellenen işaret için sistemin cevabı

$$y(t) = \sum_{k} a_k H(s_k) e^{s_k t}.$$

Fourier serisi gösterilimi

$$x(t) = x(t+T)$$

koşulu tüm T değerleri için sağlayan işaret T (koşulu sağlayan en küçük T) ile periyodiktir.

Temel açısal frekans

$$\omega_0 = 2\pi/T$$

Fourier serisi gösterilimi

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_{\oplus}t}$$

Örnek:

$$x(t) = \sum_{k=-3}^{+3} a_k e^{jk2\pi t},$$

$$a_0 = 1$$
,

$$a_1 = a_{-1} = \frac{1}{4},$$

$$a_2 = a_{-2} = \frac{1}{2}$$

$$a_3 = a_{-3} = \frac{1}{3}$$
.

katsayıları verilsin. Temel açısal frekans ω_0 olmak üzere, x(t) işaretini bulunuz.

$$\begin{split} x(t) &= 1 + \frac{1}{4}(e^{j2\pi t} + e^{-j2\pi t}) + \frac{1}{2}(e^{j4\pi t} + e^{-j4\pi t}) \\ &+ \frac{1}{3}(e^{j6\pi t} + e^{-j6\pi t}). \end{split}$$

Euler bağıntısından yararlanarak,

$$x(t) = 1 + \frac{1}{2}\cos 2\pi t + \cos 4\pi t + \frac{2}{3}\cos 6\pi t.$$

Fourier serisi gösterilimi (Fourier Series representation)

$$x(t) = \sum_{k = -\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k = -\infty}^{+\infty} a_k e^{jk(2\pi/T)t},$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt.$$

$$a_0 = \frac{1}{T} \int_T x(t) \, dt,$$

Örnek:

$$x(t) = \sin \omega_0 t$$

şeklinde verilen işaretin Fourier serisi katsayılarını bulalım. (temel açısal frekans $\omega_{\scriptscriptstyle 0}$)

$$\sin \omega_0 t = \frac{1}{2j} e^{j\omega_0 t} - \frac{1}{2j} e^{-j\omega_0 t}.$$

$$a_1 = \frac{1}{2j},$$
 $a_{-1} = -\frac{1}{2j},$ $a_k = 0,$ $k \neq +1 \text{ or } -1.$

Örnek:

$$x(t) = 1 + \sin \omega_0 t + 2\cos \omega_0 t + \cos \left(2\omega_0 t + \frac{\pi}{4}\right),$$

şeklinde verilen işaretin Fourier serisi katsayılarını bulalım. (temel açısal frekans ω_0)

$$x(t) = 1 + \frac{1}{2j} \left[e^{j\omega_0 t} - e^{-j\omega_0 t} \right] + \left[e^{j\omega_0 t} + e^{-j\omega_0 t} \right] + \frac{1}{2} \left[e^{j(2\omega_0 t + \pi/4)} + e^{-j(2\omega_0 t + \pi/4)} \right].$$

$$x(t) = 1 + \left(1 + \frac{1}{2j} \right) e^{j\omega_0 t} + \left(1 - \frac{1}{2j} \right) e^{-j\omega_0 t} + \left(\frac{1}{2} e^{j(\pi/4)} \right) e^{j2\omega_0 t} + \left(\frac{1}{2} e^{-j(\pi/4)} \right) e^{-j2\omega_0 t}.$$

Fourier Serisi katsayıları

$$a_0 = 1,$$

$$a_1 = \left(1 + \frac{1}{2j}\right) = 1 - \frac{1}{2}j,$$

$$a_{-1} = \left(1 - \frac{1}{2j}\right) = 1 + \frac{1}{2}j,$$

$$a_2 = \frac{1}{2}e^{j(\pi/4)} = \frac{\sqrt{2}}{4}(1+j),$$

$$a_{-2} = \frac{1}{2}e^{-j(\pi/4)} = \frac{\sqrt{2}}{4}(1-j),$$

 $a_k = 0, |k| > 2.$

Genlik ve faz spektrumları

Örnek:

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < T/2 \end{cases},$$

 $\omega_0 = 2\pi/T$.

$$a_0 = \frac{1}{T} \int_{-T_1}^{T_1} dt = \frac{2T_1}{T}.$$

$$a_k = \frac{1}{T} \int_{-T_1}^{T_1} e^{-jk\omega_0 t} dt = -\frac{1}{jk\omega_0 T} e^{-jk\omega_0 t} \Big|_{-T_1}^{T_1},$$

$$a_k = \frac{2}{k\omega_0 T} \left[\frac{e^{jk\omega_0 T_1} - e^{-jk\omega_0 T_1}}{2j} \right].$$

$$a_k = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T} = \frac{\sin(k\omega_0 T_1)}{k\pi}, \quad k \neq 0,$$

$$\omega_0 T = 2\pi$$
.

Farklı darbe genişlileri için katsayıların değişimi

(a)
$$T = 4T_1$$
;

(b)
$$T = 8T_1$$
; (c) $T = 16T_1$.

Örnek: Periyodik impuls dizisi (impuls katarı) için Fourier Serisi katsayılarını bulalım.

$$\delta_{T_0}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_0)$$

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT);$$

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jk2\pi t/T} dt = \frac{1}{T}.$$

Fourier Serilerinin yakınsama koşulu (Dirichlet Koşulları)

1. İşaret ana periyotta integre edilebilir olmalı

$$\int_T |x(t)| \, dt < \infty.$$

- 2. Sonlu sayıda maksimum ve minimumum olmalı
- 3. Sonlu sayıda süreksizlik göstermeli ve bu süreksizliklerde sonlu değer almalı

Dirichlet şartlarını sağlamayan işaretler (sırasıyla 1,2 ve 3. Koşullar sağlanmıyor)

Örnek: Gibbs Olayı

Periyodik dikdörtgen dalga işaretinin sonlu sayıda Fourier serisi katsayısı ile ifade edilmesi

Fourier Serilerinin özellikleri

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k
Linearity	3.5.1	Ax(t) + By(t)	$Aa_k + Bb_k$
Time Shifting	3.5.2	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Frequency Shifting		$e^{jM\omega_0t} = e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Conjugation	3.5.6	$x^*(t)$	a_{-k}^*
Time Reversal	3.5.3	x(-t)	a_{-k}
Time Scaling	3.5.4	$x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k
Periodic Convolution		$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
Integration		$\int_{-\infty}^{t} x(t) dt $ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\left\{ egin{aligned} a_k &= a_{-k}^* \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ \Im m\{a_k\} &= -\Im m\{a_{-k}\} \ a_k &= a_{-k} \ orall a_k &= - otin a_{-k} \end{aligned} ight.$
Real and Even Signals	3.5.6	x(t) real and even	$a_k = -a_k a_{-k}$ a_k real and even
Real and Odd Signals	3.5.6	x(t) real and odd	a_k real and even a_k purely imaginary and od
Even-Odd Decomposition	3.3.0		
of Real Signals		$\begin{cases} x_e(t) = \delta v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \Theta d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$\Re e\{a_k\}$
		$[x_o(t) = Od\{x(t)\} [x(t) \text{ real}]$	$j \mathcal{G}m\{a_k\}$

Parseval's Relation for Periodic Signals

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k=-\infty}^{+\infty} |a_{k}|^{2}$$

Zamanda kaydırma (Time shifting)

$$\begin{aligned} y(t) &= x(t - t_0) \\ b_k &= \frac{1}{T} \int_T x(t - t_0) e^{-jk\omega_0 t} dt. \\ \tau &= t - t_0 \\ &\frac{1}{T} \int_T x(\tau) e^{-jk\omega_0 (\tau + t_0)} d\tau = e^{-jk\omega_0 t_0} \frac{1}{T} \int_T x(\tau) e^{-jk\omega_0 \tau} d\tau \\ &= e^{-jk\omega_0 t_0} a_k = e^{-jk(2\pi/T)t_0} a_k, \end{aligned}$$

Kaynak: Oppenheim, Willsky "Signals and Systems"

$$x(t) \stackrel{\mathfrak{F}S}{\longleftrightarrow} a_k$$

$$x(t-t_0) \overset{\mathfrak{F}S}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k = e^{-jk(2\pi/T)t_0} a_k.$$

Zamanda katlama (Time reversal)

$$y(t) = x(-t),$$

$$x(-t) = \sum_{k=-\infty}^{\infty} a_k e^{-jk2\pi t/T}.$$

$$k = -m$$

$$y(t) = x(-t) = \sum_{m=-\infty}^{\infty} a_{-m} e^{jm2\pi t/T}.$$

$$b_k = a_{-k}$$

$$x(t) \stackrel{\mathfrak{FS}}{\longleftrightarrow} a_k$$

$$x(-t) \stackrel{\mathfrak{F}S}{\longleftrightarrow} a_{-k}.$$

Parseval Bağıntısı

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k=-\infty}^{+\infty} |a_{k}|^{2},$$

$$\frac{1}{T}\int_T \left|a_k e^{jk\omega_0 t}\right|^2 dt = \frac{1}{T}\int_T |a_k|^2 dt = |a_k|^2,$$

Örnek:

işareti için Fourier Serisi katsayılarını önceki örnek (periyodik dikdörtgen darbe işareti) ve Fourier katsayılarının özelliklerinden yararlanarak bulalım.

Hatırlatma

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < T/2 \end{cases},$$

$$a_k = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T} = \frac{\sin(k\omega_0 T_1)}{k\pi}, \quad k \neq 0,$$

$$a_0 = \frac{1}{T} \int_{-T_1}^{T_1} dt = \frac{2T_1}{T}.$$

T = 4

 $T_1 = 1$

alınarak

$$g(t) = x(t-1) - 1/2.$$

$$b_k = a_k e^{-jk\pi/2}.$$

ilişkisinden yararlanarak

Kaynak: Oppenheim, Willsky "Signals and Systems"

$$d_k = \left\{ \begin{array}{ll} a_k e^{-jk\pi/2}, & \text{for } k \neq 0 \\ a_0 - \frac{1}{2}, & \text{for } k = 0 \end{array} \right.,$$

$$d_k = \left\{ \begin{array}{ll} \frac{\sin(\pi k/2)}{k\pi} e^{-jk\pi/2}, & \text{for } k \neq 0 \\ 0, & \text{for } k = 0 \end{array} \right..$$