Regresija

Jure Žabkar

jure.zabkar@fri.uni-lj.si

Vsebina

- Regresija
- Regularizacija
- Metode za izbiro atributov
- k-NN regresija
- Regresijska drevesa

Literatura

3.1 - 3.3

2.3.1, 3.2

str. 102-130

Strojno učenje

Linearna regresija

Pridelek medu

Regresija

Množica podatkov **D**:

$$\{e = [x_1, ..., x_n, y] | x_i \text{ vrednosti atributov},\$$
 $y \text{ vrednost razreda}\}$

Vrednosti atributov:

lahko diskretne ali zvezne vrednosti

Vrednost razreda: zvezna

Linearna regresija (hitra ponovitev)

Univariatna

$$y_i = \beta_0 + \beta_1 x_i$$

Multivariatna

$$Y = X\beta + \epsilon$$

Analitična rešitev

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Pridelek medu na panj

Pridelek medu na panj, možni modeli

Pridelek medu na panj, najboljši model

Med = f (#čebel, Temperatura, Vlaga)

$$Y = X\beta + \epsilon$$

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Izračun parametrov

$$Y = X\beta + \epsilon$$
$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Računanje inverza problematično:

- če X^TX singularna, npr. če je v podatkih več atributov (n), kot primerov (m), torej m < n, ali če so v podatkih odvečni atributi.
- računska kompleksnost zelo velika, O(n³)
- preveč podatkov, da bi jih lahko shranili v spomin računalnika.

Deloma je problem rešljiv, če namesto inverza računamo psevdoinverz. (tako deluje npr. LinearRegression() v Scikit-Learn)

Gradientni spust

- Splošen optimizacijski algoritem
- Ideja:

 iterativno spreminjamo parametre in minimiziramo cenovno funkcijo
- Parametre inicializiramo z naključnimi vrednostmi
- Cenovna funkcija:

RMSE =
$$\sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$
 (običajno kar MSE)

Gradientni spust

Parameter velikost koraka

 če premajhna, počasna konvergenca algoritma

 prevelika lahko povzroči divergenco

Gradientni spust (angl. Gradient Descent)

V splošnem se lahko ujame v lokalni minimum.

Ker je MSE konveksna funkcija, je lokalni ekstrem tudi globalni.

Gradientni spust, implementacije

- Gradient spust v sklopu (Batch Gradient Descent)
- Naključni gradientni spust (Stochastic Gradient Descent)
- Gradientni spust v mini-sklopih (Mini-batch Gradient Descent)

Gradientni spust v sklopu (Batch Gradient Descent)

- Na celotni učni množici izračunamo vse gradiente naenkrat
- Zelo počasno na podatkih z veliko učnimi primeri
- Učinkovit pri velikem številu atributov v primerjavi z normalno enačbo

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (\beta^{T} x^{(i)} - y^{(i)})^{2}$$

$$\frac{\partial}{\partial \beta_{j}} MSE(\beta) = \frac{2}{m} \sum_{i=1}^{m} (\beta^{T} x^{(i)} - y^{(i)})^{2} x^{(i)}$$

$$\nabla_{\beta} MSE(\beta) = \begin{bmatrix} \frac{\partial}{\partial \beta_{0}} MSE(\beta) \\ \vdots \\ \frac{\partial}{\partial \beta_{m}} MSE(\beta) \end{bmatrix} = \frac{2}{m} \chi^{T} (\chi_{\beta} - y)$$

Naključni gradientni spust (Stochastic Gradient Descent)

- Rešuje problem počasnosti BGD
- Na vsakem koraku naključno izbere učni primer in izračuna gradiente v njem
- Naključnost koristi tudi v primeru nekonveksne cenovne funkcije (preprečuje ujetost v lokalne min.)
- Ustavitev preiskovanja: zmanjševanje velikosti koraka (simulirano ohlajanje)

Gradientni spust v mini-sklopih (Mini-batch Gradient Descent)

- Kombinacija BGD in SGD
- Na vsakem koraku naključno izbere podmnožico učnih primerov
- V primerjavi s SGD manj skače po prostoru parametrov; posledično težje uide lokalnemu ekstremu, če cenovna funkcija ni konveksna

Napovedna točnost regresijskih modelov

• RMSE =
$$\sqrt{\frac{\sum_{i=1}^{k} y^{(i)} - \hat{y}^{(i)}}{k}}$$

Če hočemo, da nam ta številka kaj pove, moramo poznati enote razreda

•
$$R^2 = 1 - \frac{\sum_k (y^{(i)} - \hat{y}^{(i)})^2}{\sum_k (y^{(i)} - \bar{y})^2}$$

Vsota kvadratov napak našega modela, recimo linearne regresije.

Delež razložene variance:

- **Dober model** števec ulomka gre proti 0, R² proti 1.
- **Slab model** ulomek gre proti 1, R² proti 0.

Vsota kvadratov napak, če bi model vedno napovedoval kar povprečno vrednost razreda iz učne množice.

Pristranskost in varianca

Napaka modela je sestavljena iz treh vrst napak:

- 1. **Pristranskost** (bias): napaka zaradi napačnih predpostavk (predpostavimo, da je odvisnost v podatkih linearna, a je v resnici kvadratna). Tak model se **premalo** prilega podatkom.
- 2. **Varianca** (variance): napaka zaradi občutljivosti modela na majhne spremembe v podatkih. Kompleksnejši modeli imajo večjo varianco in se lahko pretirano prilagodijo podatkom.
- 3. Neodpravljiva napaka (irreducible error), npr. šum v podatkih

Polinomska regresija

Dodajmo v atributni prostor nove atribute tako, da obstoječe polinomsko razširimo:

x ... število čebel

Dodajmo še x^2 in x^3 in izračunajmo koeficiente regresijskega modela.

Polinomska regresija

 $\begin{bmatrix} x0 & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 \end{bmatrix} \\ [0. 32.03 & 16.05 & -133.72 & -50.91 & 221.49 & 34.88 & -131.92 & -6.95 & 25.32]$

Regularizacija

je preprečevanje pretiranega prilagajanja modela učnim podatkom.

Polinomi visoke stopnje se očitno preveč prilagodijo učnim podatkom.

Kako se odraža to pretirano prilagajanje? Absolutna vrednost koeficientov podivja.

Regularizacija

Nekako je treba ukrotiti koeficiente.

Cenovni funkciji dodamo člen, ki bo koeficiente po absolutni vrednosti minimiziral, npr.:

S parametrom alfa uravnavamo stopnjo regularizacije (tipično alpha=0.1 ali manj).

Regularizacija linearne regresije

Ridge

$$J(B) = MSE(B) + \chi \sum_{i=1}^{m} B_i^2$$

Lasso

$$J(\beta) = MSE(\beta) + d\sum_{i=1}^{m} |\beta_i|$$
Ni odvedljiva!
Ni težava, če uporabljamo gradientni spust.

Elastic Net

$$J(\beta) = MSE(\beta) + rd\sum_{i=1}^{m} |B_i| + \frac{1-r}{2} d\sum_{i=1}^{m} B_i^2$$

Regularizacija, navodila za uporabo

linearna regresija brez regularizacije: praktično ni priporočljivo

Ridge: dobra privzeta regularizacija

Če sklepamo, da so nekateri atributi odveč, uporabimo Lasso ali Elastic Net, ker odstranita neuporabne atribute.

Elastic Net bolj priporočljivo od Lasso v primeru korelacije atributov ali ko je atributov več od učnih primerov.

Ridge regresija

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 [0. 32.03 16.05 -133.72 -50.91 221.49 34.88 -131.92 -6.95 25.32]

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 [0. 6.99 -1.76 3.6 -0.29 0.64 0.97 -1.77 -0.62 0.13]

Lasso regresija

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 [0. 32.03 16.05 -133.72 -50.91 221.49 34.88 -131.92 -6.95 25.32] -0.24]

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 [0. 8.3 0. 0. 0. 0. 0. 0. -0.34

ElasticNet regresija

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 [0. 32.03 16.05 -133.72 -50.91 221.49 34.88 -131.92 -6.95 25.32]

 x0
 x1
 x2
 x3
 x4
 x5
 x6
 x7
 x8
 x9

 [0. 2.9
 0. 1.98
 0. 1.13
 0. 0. -0.35
 -0.42]

Izbira atributov (feature selection)

Metode Filter izbirajo atribute neodvisno od algoritma učenja; atribute filtrirajo preden začnemo z učenjem.

Večinoma gre za računsko učinkovito statistično računanje, univariatno ali multivariatno, npr. ANOVA, chi², korelacije.

Izbira atributov (feature selection)

Metode Wrapper z uporabo algoritmov učenja ocenjujejo podmnožice atributov in jih primerjajo med seboj. V grobem ločimo tri iterativne načine gradnje podmnožic atributov:

- naprej (začne z enim atributom in iterativno dodaja v model nove),
- nazaj (začne z vsemi atributi in jih iterativno izloča iz modela),
- koračno (dvosmerno iskanje) (step-wise, bi-directional). Hkrati naprej in nazaj; atributov, ki jih izberemo v koraku naprej, ne odstranimo v koraku od zadaj in obratno: tistih, ki jih odstranimo od zadaj, ne vključujemo v koraku naprej.

Odkrijejo interakcije med atributi in poiščejo optimalno podmnožico za želeni algoritem učenja.

Izbira naprej (forward selection)

Iščemo najboljšo podmnožico množice p atributov.

- Naj bo M_o model brez atributov.
- 2. Za k = 0, ..., p-1:
 - a. Obravnavaj p-k modelov tako, da M_k dodaš 1 atribut
 - b. Izberi najboljšega od teh p-k modelov (= M_{k+1}); npr. tistega z največjim R^2
- Izberi najboljši model izmed M₀, ..., M_p z uporabo prečnega preverjanja in izbranega kriterija (napovedne točnosti, R², ...)

Izbira nazaj (backward selection)

Iščemo najboljšo podmnožico množice p atributov.

- 1. Naj bo M_n model, ki vsebuje **vse** atribute.
- 2. Za k = p, ..., 1:
 - a. Obravnavaj k modelov tako, da iz M_k izločiš 1 atribut
 - b. Izberi najboljšega od teh p-k modelov (= M_{k-1}); npr. tistega z največjim R^2
- 3. Izberi najboljši model izmed M₀, ..., M_p z uporabo prečnega preverjanja in izbranega kriterija (napovedne točnosti, R², ...)

Izbira atributov (feature selection)

Vgrajene (Embedded) metode za izbiro atributov so del algoritmov strojnega učenja. Tipičen primer je algoritem za učenje odločitvenih dreves na podlagi informacijskega prispevka.

Drugi primeri: Lasso, Elastic Net.

k-NN regresija

Regresijska drevesa

Skaliranje atributov

- Število čebel med 10000 in 60000
- Dnevna temperatura zraka spomladi/poleti med 10°C in 35°C
- Relativna zračna vlaga med 0 in 1 (0-100%)

Obesity apocalypse

abcNEWS: "By 2048, all American adults would become overweight or obese."

Lokalno utežena regresija (Locally weighted regression)

Med na panj kNN regresija

Nariši podatke

Anscombe, F. J. (1973). "Graphs in Statistical Analysis". *American Statistician*. **27** (1): 17–21.