THE BEST THING SINCE SLICED BREADBOARDS

GETTING STARTED IN OURC

OHM'S LAW

VOLTAGE

- Voltage is difference in electric potential
- Units: Volts, V
- Named for Alessandro Volta

CURRENT

- Amount of charge flowing per unit time
 - Flow of electrons
- Units: Amperes, A
- Named for Andre Marie Ampere

RESISTANCE

- Units: Ohm, Ω
- Unit named for Georg Ohm
- Limits flow of electrons

Resistor Color Code

BREADBOARDS

- Using solderless breadboards
 - Good for prototyping
 - Good for learning
 - Good for you
- Why the name?
- How do they work?

www.sparkfun.com

LOGIC

- Three basic operations
 - AND
 - OR
 - NOT
- After that,
 - NAND
 - NOR
 - XOR
 - XNOR

GATES

DATASHEETS

- Very useful for figuring out how an IC works
- Examples as follows...

TASK #1 - BEGINNER

- Subtask 1
 - Light an LED
 - (HINT: Use a battery, a resistor, and an LED)
- Subtask 2
 - Light an LED using a button
 - (HINT: exactly the same materials, just with a button)

TASK #2 - INTERMEDIATE

- Build a majority gate
 - Three inputs, one output
 - If a majority of the inputs are low, the output is low and vice versa
 - We have the truth table if you get stuck

TASK #3 – SLIGHTLY ADVANCED

- Build a 2-bit binary comparator
 - Tests to see if two inputs are higher (numerically) than the other two inputs
 - We've got the truth table for this too, and will provide the equations!

$$L_{2} = \left(\overline{A_{2}} \bullet B_{2}\right) + \left(\overline{A_{2} \oplus B_{2}}\right) \bullet \left(\overline{A_{1}} \bullet B_{1}\right)$$

$$E_{2} = \left(\overline{A_{2} \oplus B_{2}}\right) \bullet \left(\overline{A_{1} \oplus B_{1}}\right)$$

$$H_{2} = \left(A_{2} \bullet \overline{B_{2}}\right) + \left(\overline{A_{2} \oplus B_{2}}\right) \bullet \left(A_{1} \bullet \overline{B_{1}}\right)$$