# Q-Theory Representations are logically equivalent to Autosegmental Representations

Nick Danis and Adam Jardine Princeton Rutgers

SCiL 2019 Jan 6, 2019

#### Introduction

"It is easy to be misled into assuming that differently formulated theories actually do differ in empirical consequences, when in fact they are intertranslatable—in a sense, mere notational variants."

Chomsky (1972, p. 2)

 Model theory and logic can define phonological theories of representations and constraints

(Bird, 1995; Potts and Pullum, 2002; Jardine, 2014)

 Interpretations between logics (Enderton, 1972) and transductions between models (Courcelle, 1994) precisely compare representations (Strother-Garcia and Heinz, 2017)

- We evaluate Q-Theory Representations (QRs; (Shih and Inkelas, 2014, forthcoming)) as an alternative to Autosegmental Representations (ARs; (Goldsmith, 1976))
- Contra to some arguments for QRs,
  - they are structurally similar to ARs
  - there is a transduction between the representations;
     and thus
  - a **translation** between their constraints

- QRs are conceptually, but not empirically, distinct from ARs
- This talk is an overview of the big picture; see paper for details!



Autosegmental representations (ARs): phonological information on independent tiers (Williams, 1976; Goldsmith, 1976; Clements, 1977)

- Units on distinct tiers are associated
- Assimilation represented via association



**Q-Theory representations (QRs)** phonological information in Q segments and q subsegments (Shih and Inkelas, 2014, forthcoming)

• Diss/assimilation represented by **surface correspondence** (Hansson, 2001; Rose and Walker, 2004; Bennett, 2013)

h ( 
$$\overbrace{\acute{o}_1}^q \overbrace{\acute{o}_{1,2}}^q \overbrace{\acute{o}_{2,3}}^q$$
 ) l (  $\overbrace{\acute{o}_3}^q \overbrace{\acute{o}_4}^q \overbrace{\acute{o}_4}^q$  ) l  $Q$  [hólôl] 'ripen'

#### Shih and Inkelas (forthcoming) argue QRs are superior because:

- they dispose of the "machinery of autosegments and association lines" (p. 2);
- qs are the **tone-bearing unit (TBU)**, not vowels/moras/syllables;
- QRs are "better at capturing key tone behaviors" (p. 2)

Examining the **models** shows QRs do have association lines.

Defining a **transduction** between models shows

- 'chains' of qs are equivalent to autosegments;
- vowel Qs are equivalent to TBUs;
- there is a first-order translation between constraints.

#### **Models and representations**

#### **Models**

• A (relational) signature S is a fixed set

$$\{R_1, R_2, ..., R_n\}$$

of named relations, each with its own arity

• A **model** M is a tuple

$$\langle D; R_1, R_2, ..., R_n \rangle$$

relating elements in a **domain** D with relations  $R_i \subseteq D^k$  in  $\mathcal{S}$ 

#### **Models**

• Strings of alphabet  $\{a,b\}$  can be modeled with

$$\mathcal{S} = \{ \triangleleft, P_a, P_b \}$$



#### An AR is

- two (or more) strings;
- an association relation between elements on these strings.



#### ARs can be modeled with the signature

$$\mathcal{A} = \{ \triangleleft_{\mathcal{A}}, A_{\mathcal{A}}, V_{\mathcal{A}}, H_{\mathcal{A}}, L_{\mathcal{A}} \}$$



#### A QR is

- a string of Qs
- each Q has three ordered qs carrying featural content
- correspondence relations relating either qs or Qs

## Example $(\acute{o}_1 \acute{o}_{1,2} \acute{o}_{2,3}) (\acute{o}_3 \acute{o}_4 \acute{o}_4)$

qs and Qs form two strings (+ corr. relations)

$$\{ \triangleleft_{\mathcal{Q}}, R_{\mathcal{Q}}, Q_{\mathcal{Q}}, H_{\mathcal{Q}}, L_{\mathcal{Q}} \}$$

• Identity between Qs is based their constituent qs (Shih and Inkelas, forthcoming)



QRs can be modeled with at least the relations

$$\mathcal{Q} = \{ \triangleleft_{\mathcal{Q}}, R_{\mathcal{Q}}, A_{\mathcal{Q}}, Q_{\mathcal{Q}}, H_{\mathcal{Q}}, L_{\mathcal{Q}} \}$$



#### **Summary: Models**

- QRs require a relation associating Qs and qs;
- They do not dispose of the "machinery of autosegments and association lines"



AR QR

#### **Summary: Models**

• Explicitly definining representations reveals their structural similarity



### Interpretations and transductions between representations

#### **Logic and constraints**

A sig.  $S = \{R_1, R_2, ..., R_n\}$  induces a **first-order (FO) logic** with

- variables  $x, y, z, ..., x_1, ...$  ranging over elements in D;
- atomic predicates  $R_i(x_1, x_2, ..., x_k)$  for each  $R_i$  (of arity k)

$$\mathcal{A}: \triangleleft_{\mathcal{A}} \mapsto x \triangleleft_{\mathcal{A}} y; V_{\mathcal{A}} \mapsto V_{\mathcal{A}}(x); \text{ etc.}$$

• Connectives  $\neg$ ,  $\lor$ ,  $\land$ ,  $\rightarrow$  and quantifiers  $\forall$ ,  $\exists$ 

$$(\forall x, y) [x \triangleleft_{\mathcal{A}} y \rightarrow \neg (H_{\mathcal{A}}(x) \wedge H_{\mathcal{A}}(y))]$$

#### **Logic and constraints**

• FO sentences implement phonological constraints (e.g., \*HH) (Scobbie et al. 1996; Potts and Pullum 2002; Graf 2010; etc.)

$$\varphi = (\forall x, y) \left[ x \triangleleft_{\mathcal{A}} y \to \neg \left( H_{\mathcal{A}}(x) \land H_{\mathcal{A}}(y) \right) \right]$$

$$\downarrow H \longrightarrow \bot \bot \\ 2 \qquad \models \varphi$$

$$\downarrow V \longrightarrow V$$

$$\downarrow V \longrightarrow V$$

$$\downarrow V \longrightarrow V$$

• FO appears to be a good upper bound for phonology (Rogers et al., 2013; Jardine and Heinz, 2016)

#### **Logical interpretations**

Similar models admit an **interpretation** between their signatures (Enderton, 1972)



$$V_{\mathcal{A}}(x) \stackrel{\mathsf{def}}{=} Q_{\mathcal{Q}}(x)$$

#### **Logical interpretations**

Similar models admit an **interpretation** between their signatures (Enderton, 1972)



$$V_{\mathcal{A}}(x) \stackrel{\mathsf{def}}{=} Q_{\mathcal{Q}}(x)$$
 $H_{\mathcal{A}}(x) \stackrel{\mathsf{def}}{=} H_{\mathcal{Q}}(x) \wedge \mathsf{chfirst}(x)$ 

$$\mathtt{chfirst}(x) \stackrel{\mathsf{def}}{=} \neg (\exists y) [y \vartriangleleft_{\mathcal{Q}} x \land y R_{\mathcal{Q}} x]$$

#### **Logical interpretations**

Similar models admit an **interpretation** between their signatures (Enderton, 1972)



$$x \triangleleft_{\mathcal{A}} y \stackrel{\mathsf{def}}{=} \big( Q_{\mathcal{Q}}(x) \wedge x \triangleleft_{\mathcal{Q}} y \big) \vee \\ \big( \mathsf{chfirst}(x) \wedge \mathsf{chfirst}(y) \wedge (\exists z) [x R_{\mathcal{Q}} z \wedge z \triangleleft_{\mathcal{Q}} y] \big)$$

#### This induces a translation from one logic to another

$$(\forall x,y) \left[\underline{x} \triangleleft_{\mathcal{A}} \underline{y} \rightarrow \neg \left(\underline{H_{\mathcal{A}}(x)} \wedge \underline{H_{\mathcal{A}}(y)}\right)\right]$$

$$(\forall x,y) \left[ \left( \mathsf{chfirst}(x) \wedge \mathsf{chfirst}(y) \wedge (\exists z) \left[ xR_{\mathcal{Q}} z \wedge z \triangleleft_{\mathcal{Q}} y \right] \right) \rightarrow \neg \left( \left(\underline{H_{\mathcal{Q}}(x)} \wedge \mathsf{chfirst}(x)\right) \wedge \left(\underline{H_{\mathcal{Q}}(x)} \wedge \mathsf{chfirst}(x)\right) \right)\right]$$

#### **Logical transductions**

We can use interpretations to define logical **transductions** between the models of two different signatures (Courcelle, 1994)



**Our paper**: FO transductions exist between models in  $\mathcal A$  and  $\mathcal Q$ 

#### **Logical transductions**

These transdutions imply translations  $t_1$  and  $t_2$  between their logics

$$f_1 \left( \begin{array}{c} \mathcal{A} \\ \mathcal{Q} \end{array} \right) f_2 \Rightarrow t_1 \left( \begin{array}{c} FO_{\mathcal{A}} \\ FO_{\mathcal{Q}} \end{array} \right) t_2$$

For any model M in  $\mathcal{A}$ , there is a  $f_1(M)$  in  $\mathcal{Q}$  such that for any sentence  $\varphi \in FO_{\mathcal{A}}$ ,

$$M \models \varphi \text{ iff } f_1(M) \models t_1(\varphi)$$

...and vice versa

#### **Summary: Interpretations and transductions**

- ARs and QRs are intertranslatable
- Any FO QR constraint can be rewritten as a FO AR constraint, and vice-versa
- This is made possible by a transduction in which:
  - Autosegments are equivalent to chains of corresponding qs
  - Vowel TBUs are equivalent to Qs

#### **Conclusions**

- Contra arguments of Shih and Inkelas (2014, forthcoming):
  - QRs do not dispose of association
  - Qs are equivalent to vowel TBUs in ARs
  - Any FO QR constraint has some equivalent FO AR constraint
- QRs have value; their true contribution is axiom of three 'parts' per segment
- Model theory & logic precisely define and evaluate phonological representations

#### **Acknowledgements**

Thanks to three anonymous reviewers, Luca Iacoponi, Chris Oakden, Jeff Heinz, Paul de Lacy, and PhonX (the Rutgers phonetics & phonology research group)