Administrare BD

Gestiunea performanței – Oracle Autorizare – Oracle Tranzacții - Oracle

Gestiunea performanței - Oracle

Gestiunea performanței - Oracle

- Oracle Enterprise Manager Database Express oferă mai multe posibilități pentru a monitoriza performanța instanței BD
- Pe pagina principală există grafice care arată:
 - Funcționarea CPU
 - ☐ Sesiunile active
 - □ Folosirea memoriei
 - □ Folosirea stocării de date
- Pe pagina principală sunt afișate alerte
- Detaliile sunt disponibile pe pagina Performance Hub

Gestiunea performanței - Oracle

- Graficele afișate de Oracle Enterprise Manager sunt construite din vederi de performanță, ce pot fi accesate și cu comenzi SQL
- Activități pentru tuning:
 - □ Planificare performanță procesul prin care se stabilește mediul hardware, software, SO, infrastructură rețea, ș.a.
 - □ Tuning instanță ajustarea parametrilor BD și SO
 - □ Tuning SQL − la nivel aplicație, componentele să nu concureze pentru acapararea resurselor în mod nenecesar

Planificare performanță

- □ Opțiuni de investiție de exemplu numărul de discuri
- Arhitectura sistemului
- □ Scalabilitate gestiunea creșterii numărului de utilizatori, clienți, sesiuni, tranzacții (serializarea operațiilor duce la gâtuirea sistemului – felul cum sunt scrise comenzile SQL afectează performanța)
- Principii de design aplicație simplitate în design, folosire vederi și indecși, modelarea datelor
- □ Testarea încărcării (workload), modelarea și construirea
- □ Lansarea (deploying) de aplicaţii noi înainte de lansarea în producţie orice aplicaţie trebuie testată cu un volum de date şi încărcare sistem reprezentative

Tuning instanță

- Se stabilesc obiective specifice, de exemplu "Se procesează 500 tranzacții per minut (aplicația vânzări)"
- Se alocă memorie în mod corespunzător pentru aplicație, prea puțină memorie alocată pentru anumite părți ale serverului BD poate conduce procesele background să lucreze ineficient, de aceea trebuie efectuată analiză
- De obicei gâtuirea BD vine de la operațiile I/O cu discul
- Performanța mai este influențată de configurația SO

Date folosite pentru Tuning

- Statistici cumulative:
 - □ Evenimente wait cu informație de timp (cele mai importante sunt buffer busy waits)
 - Model de timp (procent de timp BD prin comparație cu nivel de referință)
- Metrici contorizări statistice per unitate (timp secunde, tranzacție, sau sesiune)
 - Se pot stabili praguri ce cauzează alerte (de exemplu atunci când numărul de citiri per milisecundă depășesc un prag, sau zona archive log este 95% plină)
- ☐ Statistici eșantion: istoric sesiune activă
 - Statistici per sesiune
 - Statistici per SQL
 - ☐ Statistici per serviciu
 - Alte dimensiuni

Statistici per sesiune

Statistici per sesiune

- V\$SESSION
 - Se poate determina dacă sesiunea curentă este de tip utilizator sau este de tip background
- V\$SESSION sau V\$SESSION_WAIT
 - □ Se pot determina resursele sau evenimentele pentru care așteaptă sesiunea curentă
- V\$SESSTAT
 - ☐ statistici sesiune utilizator
- V\$SESSION_EVENT
 - Informații despre waits pentru evenimente de către sesiune

Statistici per sesiune

- □ V\$SESSTAT şi V\$SYSSTAT
 - □ Valori cumulate per instanță, care se resetează când instanța este oprită
- V\$MYSTAT
 - Statistici pentru sesiunea curentă
- V\$SESSMETRIC
 - Metrici de performanță pentru toate sesiunile active
 - Folosire CPU, număr citiri fizice (la nivel bloc de date), număr hard parses și rata de citiri logice (la nivel SQL)

Evenimente wait (peste 800)

- V\$EVENT_NAME
- Sunt statistici ce sunt incrementate de un proces sau thread server pentru a indica că trebuie să aștepte după un eveniment pentru a-și continua acțiunea
- Indică probleme:
 - Conflict de blocare
 - Conflict buffer
 - Conflict I/O
- Clase evenimente wait:
 - □ Administrative, Application, Cluster, Concurency, Configuration,
 Idle, Network, Other, Scheduler, System I/O şi User I/O

Gestiunea memoriei

- Automatic Memory Management (AAM) permite să se specifice memoria totală alocată instanței (SGA și PGA) – recomandat să se folosească
- Automatic Shared Memory Management (ASMM) permite:
 - □ Să se specifice memoria totală SGA un parametru de iniţializare
 - ☐ Serverului Oracle să administreze cantitatea de memorie alocată pentru shared pool, Java pool, buffer cache, streams pool și large pool
- Administrare manuală a memoriei partajate
 - □ Dimensionează componentele cu parametri de iniţializare
 - Se folosește Memory Advisor pentru recomandări

SQL Tuning

- Se identifică instrucțiuni SQL ce au nevoie de tuning
- □ Se reglează instrucțiune cu instrucțiune
- Se reglează aplicația per ansamblu
- Există SQL Advisors pentru a identifica și regla instrucțiuni SQL

Optimizatorul Oracle

- Determină planul de execuție eficient (poate fi consultat prin Enterprise Manager, EXPLAIN PLAN sau din linia de comandă sqlplus, AUTOTRACE)
- □ Evaluează expresii și condiții
- ☐ Folosește statistici sistem (I/O, CPU, etc.) și la nivel de obiect (număr de tuple, index, etc.)
- □ Decide cum să se acceseze datele
- Decide ce tipuri de indecși să se folosească la implementarea operației join
- Determină calea (path) cea mai eficientă

Statistici Optimizator

- Reprezintă un snapshot la un moment dat de timp
- Sunt persistente față de repornirea instanței
- Sunt colectate automat
- Exemplu:

SQL>SELECT COUNT(*) FROM hr.employees;

Rezultat: 214

SQL>SELECT num_rows FROM dba_tables WHERE owner = 'HR' AND table_name = 'EMPLOYEES';

Rezultat: 107

Statistici Optimizator

- ☐ Statisticile pentru tabele și indecși sunt stocate în dicționarul datelor și nu sunt timp-real
- Statisticile includ: dimensiunea tabelei sau indexului în blocuri de date, număr de tuple, dimensiunea medie a unei tuple și numărul de înlănțuiri (chain) pentru tabele, înălțimea și numărul de tuple șterse de tip frunză pentru indecși
- Deoarece impactul asupra performanței al menținerii statisticilor în timp real este prohibitiv, statisticile se colectează periodic (în ferestre de timp de mentenanță, automat, prin job specific)

Vederi pentru Statistici

V\$SYSSTAT

- STATISTIC#
- NAME
- CLASS
- VALUE
- STAT ID

V\$SYSTEM WAIT CLASS

- WAIT CLASS ID
- WAIT CLASS#
- WAIT CLASS
- TOTAL WAITS
- TIME WAITED

V\$SGASTAT

- POOL
- NAME
- BYTES

V\$EVENT NAME

- EVENT NUMBER
- EVENT ID
- NAME ←
- PARAMETER1
- PARAMETER2
- PARAMETER3
- WAIT_CLASS

V\$SYSTEM EVENT

- EVENT
- TOTAL WAITS
- TOTAL TIMEOUTS
- TIME WAITED
- AVERAGE WAIT
- TIME WAITED MICRO

Vederi pentru Statistici

- Statisticile la nivel instanță sunt dinamice și se resetează la restart instanță
- Statistici wait events
 - Vederea V\$EVENT_NAME conţine toate evenimentele wait posibile
 - □ Vederea V\$SYSTEM_EVENT conţine statistici cumulative pentru toate sesiunile (de la pornirea instanţei)
- Statistici la nivel sistem
 - □ Vederea V\$STATNAME
 - ☐ Sunt peste 400 statistici
 - □ Vederea V\$SYSSTAT conţine totaluri de la pornirea instanţei

Vederi pentru Statistici

- Statisticile systemwide sunt clasificate după: activitate la nivel general de instanță, activitate redo log buffer, locking, activitate buffer cache BD
- ☐ Fiecare statistică sistem poate aparține la mai multe clase
- Statistici globale SGA
 - □ Există vederea V\$SGASTAT
 - Afișează informații cumulative referitoare la utilizarea în detaliu a SGA, de la pornirea instanței
 - ☐ Informații de timp nu se colectează pentru evenimente wait când parametrul de configurare STATISTICS_LEVEL are valoarea BASIC (TIME_STATISTICS are valoarea FALSE)

Directive Plan SQL

- O directivă plan SQL reprezintă o informație suplimentară pe care optimizatorul o poate folosi pentru:
 - A colecta statistici lipsă
 - A crea statistici grup de coloane
 - A efectua eșantionare dinamică
- Directivele pot fi folosite pentru mai multe instrucțiuni
 - □ Sunt colectate pentru expresii de interogare
- ☐ Sunt persistente pe disc în tablespace-ul SYSAUX
- Sunt întreţinute automat

Planuri de execuție adaptive

- Se permite optimizatorului să adapteze "din mers" planul de execuție al interogării ca urmare a unor estimări inadecvate
- Se bazează pe statistici colectate în timpul execuției
- Există două tehnici:
 - Planuri dinamice alege între sub-planuri în timpul execuției instrucțiunii
 - □ Re-optimizare se modifică planul de execuție după încheierea instrucțiunii curente

Folosire SQL Advisors

- ☐ AWR identifică și înregistrează statistici despre instrucțiunile SQL recente de tip high-load
- □ SQL Access Advisor ia în considerare modificări efectuate unui set de instrucțiuni SQL și câștigul net asupra performanței
 - Set ipotetic de instrucțiuni
 - ☐ Set istoric de instrucțiuni
 - Set de instrucțiuni creat manual
- □ SQL Tuning Advisor analizează una sau mai multe instrucțiuni SQL, examinează statistici, profile SQL, indecși, vederi materializate și SQL restructurat

Folosire SQL Advisors

- SQL Repair Advisor
 - Rulat din Support Workbench când o instrucţiune SQL eşuează cu o eroare critică (ce produce un incident)
 - □ Caută să recomande un SQL patch, pe care dacă nu îl găsește, utilizatorul va apela la Suport Oracle
- □ SQL Performance Analyzer
 - □ Prezice şi previne potenţiale probleme de performanţă datorate unei schimbări în mediul BD ce poate afecta structura planurilor de execuţie

SQL Tuning Advisor

Comprehensive SQL tuning

SQL Tuning Advisor Detect stale or missing statistics

Tune SQL plan (SQL profile)

Add missing index

Restructure SQL

SQL Access Advisor

SQL Performance Advisor

- Capture SQL workload on production.
- Transport the SQL workload to a test system.
- Build "before-change" performance data.
- Make changes.
- Build "after-change" performance data.
- 6. Compare results from steps 3 and 5.
- 7. Tune regressed SQL.

Autorizare - Oracle

- □ Fiecare cont utilizator BD are:
 - □ Nume de utilizator unic (până la 30 car.)
 - Metodă de autentificare (prin parolă, metode globale și externe cum ar fi metode biometrice, cu certificat sau cu token)
 - □ Tablespace temporar
 - □ Profil utilizator
 - Grup iniţial de consumatori
 - ☐ Stare cont utilizator

- Schema
 - Colecție de obiecte BD aflate în proprietatea unui utilizator
 - Are acelaşi nume cu numele utilizatorului
- Pentru a accesa baza de date utilizatorul trebuie să specifice un cont utilizator valid și să se autentifice conform metodei de autentificare
- Pentru tablespace utilizatorul trebuie să aibă privilegiu de acces și quota de spațiu (atribuite separat)

- □ Tablespace-ul temporar este folosit pentru sortări și tabele temporare, nu are nevoie de quota
- Profil utilizator înseamnă set de resurse și restricții de parolă atribuite utilizatorului
- Grupul inițial de consumatori este folosit de Resource Manager
- Starea unui cont:
 - □ Open doar aceşti utilizatori pot accesa BD
 - Locked
 - Expired

- O schemă reprezintă o colecție de obiecte de tip structuri logice ce fac referire la date ținute în BD:
 - Table
 - View
 - Sequence
 - Stored procedure
 - Synonim
 - Index
 - Cluster
 - Database link
- Un utilizator nu înseamnă neapărat o persoană, se practică să fie creat utilizator pentru un grup de obiecte gestionate de o aplicație (de exemplu HR)

- Utilizatori predefiniţi:
 - ☐ SYS proprietarul dicționarului datelor și Automatic Workload Repository (AWR), folosit la startup și shutdown instanță BD
 - SYSTEM are în proprietate tabele și vederi suplimentare cu caracter de administrare
 - □ SYSBACKUP facilitează operații backup și recovery cu Oracle Recovery Manager (RMAN)
 - SYSDG facilitează operații Oracle Data Guard
 - ☐ SYSKM facilitează operații Transparent Data Encryption wallet
- Recomandări principiul privilegiilor cele mai puţine, administratorul BD să aibă un cont separat, cu privilegii corespunzătoare

Privilegii

- □ SYSDBA operaţii startup, shutdown; creare fişier parametru server SPFILE; modificare mod ARCHIVELOG; permite beneficiarului să vizualizeze datele utilizator
- □ SYSOPER operații startup, shutdown; creare fișier parametru server SPFILE; modificare mod ARCHIVELOG
- SYSBACKUP operaţii backup şi recovery folosind RMAN sau splplus
- SYSDG operații data guard folosind Data Guard Broker sau interfața linie de comandă DGMGRL
- □ SYSKM gestionează operații wallet Transparent Data Encryption (gestiunea cheilor)

- Protecția utilizatorilor privilegiați
 - □ Conectare locală protecția este asigurată de SO prin apartenența la un grup de utilizatori privilegiați SO
 - □ Conectare la distanță protecția este asigurată printr-un fișier cu parole (case sensitive) sau cu opțiunea Advanced Security dacă este nevoie de protecție mai puternică
- Autentificarea utilizatorilor
 - □ Cu parolă la log in se solicită parola
 - Externă metoda de autentificare este externă BD (SO, Kerberos, Radius)
 - ☐ Globală identificare utilizatori printr-un serviciu director LDAP

- Privilegiu dreptul de a executa un tip de instrucţiune SQL sau de a accesa un obiect al altui utilizator
- Privilegii sistem
 - □ Permit efectuarea unei operații specifice cu BD (exemplu – creare tablespace)
 - Acordate de administrator sau de cineva care are permisiunea de a administra privilegiul
 - □ Există peste 170 privilegii sistem
- Privilegii obiect
 - Pot fi acordate de proprietarul obiectului, de administrator sau de cineva care deţine privilegiul, cu GRANT OPTION

- □ Rol
 - □ Este folosit pentru a grupa împreună privilegii şi roluri
 - ☐ Facilitează acordarea de privilegii în grup, utilizatorilor
- Beneficii ale utilizării Rol
 - □ Uşurează administrarea privilegiilor în loc să se acorde aceleași privilegii de mai multe ori utilizatorilor, se creează rol, se acordă privilegii rolului și se acordă utilizatorilor grant asupra rolului
 - Administrare dinamică a privilegiilor dacă un privilegiu asociat cu un rol se modifică, toți utilizatorii cu grant asupra rolului obțin modificarea
 - ☐ Disponibilitate selectivă asupra privilegiilor rolurile pot fi enable sau disable astfel încât privilegiile să fie on sau off temporar

- □ Roluri predefinite şi privilegii incluse:
 - ☐ CONNECT privilegiu de a crea sesiune
 - □ DBA majoritatea privilegiilor sistem şi alte roluri
 - RESOURCE creare cluster, creare indextype, creare operator, creare procedură, creare secvență, creare tabelă, creare triger, creare type
 - □ SCHEDULER_ADMIN CREATE ANY JOB, CREATE EXTERNAL JOB, CREATE JOB, EXECUTE ANY CLASS, EXECUTE ANY PROGRAM, MANAGE SCHEDULER
 - □ SELECT_CATALOG_ROLE privilegii SELECT pe obiecte din dicţionarul datelor

- Profiluri
 - Controlează consumul resurselor (RESOURCE_LIMIT trebuie să aibă valoarea TRUE)
 - □ Administrează starea contului și expirarea parolei
- Un utilizator poate avea un singur profil la un moment dat
- Limitările pot fi precizate în CPU/sesiune (în sutimi de secundă), CPU/apel sau pot face referire la profilul DEFAULT
- Exemplu: CPU/sesiune = 1000 înseamnă că o sesiune cu acest profil dacă folosește mai mult de 10 secunde CPU recepționează un mesaj de eroare și se efectuează log off

- □ Limitări de reţea/memorie
 - ☐ Connect Time (în minute)
 - ☐ Idle Time (în minute pentru procesul server)
 - Concurrent Sessions (număr sesiuni ce folosesc același cont)
 - Private SGA (spațiul consumat în SGA de sortări, etc. doar în cazul în care sesiunea folosește server partajat)
- Limitări disc I/O
 - □ Se limitează cantitatea de date pe care un utilizator poate să o citească la nivel de sesiune sau la nivel apel
 - ☐ Se referă atât la memoria internă cât și la memoria externă
- Există şi limitări compuse (combinații din cele de mai sus)

- Atribuiri quota la utilizatori
 - Utilizatorii care nu au privilegiul sistem UNLIMITED TABLESPACE au nevoie să li se acorde quota pentru tablespace pentru a fi posibil să creeze obiecte stocate în acel tablespace (se referă la owner)
- □ Tipuri quota
 - □ O valoare specificată în MB sau KB
 - Nelimitată
- Nu se accordă quota tablespace-urilor SYSTEM sau SYSAUX (doar utilizatorii SYS şi SYSTEM au dreptul de a crea obiecte în aceste două tablespace-uri)
- Nu se accordă quota tablespace-urilor temporare sau undo

- Serverul BD verifică quota când un utilizator creează sau extinde un segment
- Activitățile ce au nevoie de quota sunt cele care folosesc spațiu în tablespace
 - Creare de vederi sau activități ce folosesc tablespace temporar NU au nevoie de quota
- Quota este revizuită atunci când obiectele deţinute de utilizator sunt eliminate din schemă (drop) cu clauza PURGE sau dacă obiectele se află în recycle bin şi sunt eliminate de acolo

- Aplicarea principiului cele mai puţine privilegii
 - □ Se protejează dicționarul datelor
 - O7_DICTIONARY_ACCESIBILITY = FALSE
 - ☐ Se revocă privilegii nenecesare de la PUBLIC
 - □ Se folosesc liste de control acces (ACL) pentru a controla accesul la reţea
 - ☐ Se restricționează directoarele accesibile utilizatorilor
 - □ Se limitează utilizatorii cu privilegii de administrare
 - ☐ Se restricționează autentificarea de la distanță la BD

REMOTE_OS_AUTHENT = FALSE

Oracle, implementare auditare

- □ Auditare = capturare şi stocare informaţie despre ceea ce se întâmplă în sistem
 - □ Audit obligatoriu auditare acțiuni indiferent de opțiuni de audit sau parametrii (de exemplu conectări ale utilizatorilor privilegiați)
 - □ Audit BD standard sunt selectate obiectele și privilegiile ce se dorește a fi auditate și se creează politicile de audit potrivite
 - Auditare bazată pe valoare extinde auditarea standard prin capturare pe lângă eveniment, a valorilor actualizate (se implementează cu trigere)
 - ☐ Fine-grained auditing (FGA) extinde auditarea standard prin capturare instrucțiune SQL

Oracle, implementare auditare

- Activități auditate
 - Conturi utilizator, roluri și privilegii
 - Acţiuni cu obiecte
 - □ Valori de context aplicație
 - □ Oracle Data Pump
 - Oracle Database Real Application Security
 - Oracle Database Vault
 - Oracle Label Security
 - Oracle Recovery Manager
 - Evenimente direct path Oracle SQL*Loader

Auditare BD

Arhitectura de audit

Setare mod de scriere pentru înregistrările de audit

Auditare bazată pe valoare

Tranzacţii - Oracle

Instrucțiuni TCL

- COMMIT
- ROLLBACK
- SAVEPOINT

Tranzacții în APEX

- COMMIT apare de fiecare dată când se execută o intrucţiune.
- ☐ În consecință, în APEX (Oracle Application Express) nu se poate efectua ROLLBACK.

Controlul tranzacțiilor

- SAVEPOINTS nu sunt schema objects și de aceea nu pot fi referite în data dictionary.
- Atunci când se încheie o tranzacţie (fie cu COMMIT, fie cu ROLLBACK) toate SAVEPOINTS definite în cadrul tranzacţiei se pierd.

Tranzacții implicite

- COMMIT apare implicit în următoarele situații:
 - □ Se execută o instrucțiune DDL statement
 - □ Se execută o instrucțiune DCL
 - □ Utilizatorul încheie normal sesiunea de lucru cu Oracle Database de exemplu folosind Oracle SQL Developer (tranzacţia curentă se încheie implicit cu COMMIT)

Tranzacții implicite

- ROLLBACK apare implicit în următoarele situații:
 - Utilizatorul încheie Anormal sesiunea de lucru cu Oracle Database de exemplu folosind Oracle SQL Developer (sau system failure)

Cum blochează Oracle datele?

- □ Oracle locking (blocarea datelor) se execută automat și nu necesită intervenția utilizatorului.
- Implicit locking apare apare la instrucţiunile SQL după necesitate, depinzând de acţiune, cu excepţia SELECT.
- Utilizatorii pot bloca datele manual, explicit locking.
- La apariția instrucțiunilor COMMIT sau ROLLBACK blocările asupra liniilor de tabel afectate de modificări sunt eliberate.