Fully Convolutional Neural Networks (FCNN) Caso de uso: Clasificación Automática de Ortofotografías Aéreas del PNOA

ML Sharing Group 28/09/2017

Machine Learning en Computer Vision

CAT

Clasificación

 $224 \times 224 \times 3$ $224 \times 224 \times 64$

Machine Learning en Computer Vision

 $\begin{array}{c} 112\times112\times128 \\ \hline \\ 56\times56\times256 \\ \hline \\ 28\times28\times512 \\ \hline \\ 14\times14\times512 \\ \hline \\ 1\times1\times4096 \\ \hline \\ 1\times1\times1000 \\ \hline \\ \text{max pooling} \\ \text{fully connected+ReLU} \\ \hline \\ \text{softmax} \end{array}$

CAT

Clasificación

Machine Learning en Computer Vision

CAT

Clasificación

Machine Learning en Computer Vision

CAT

Clasificación

CAT

Detección

Machine Learning en Computer Vision

CAT

Clasificación

CAT Detección

CAT, DOG, DUCK

Segmentación

Machine Learning en Computer Vision

Each pixel independiently

Machine Learning en Computer Vision

CAT Clasificación

CAT Detección

CAT, DOG, DUCK
Segmentación

DOG, DOG, CAT
Instance
Segmentation

Semantic Segmentation

Sliding Window

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation

Sliding Window

Altamente ineficiente!
Coste computacional
muy alto

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation

Fully Convolutional

Semantic Segmentation

Fully Convolutional

Coste computacional

muy alto

www.gradiant.org

Semantic Segmentation

Fully Convolutional

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Semantic Segmentation

- How upsampling?
 - Pooling Layer

 Unpooling Layer

Semantic Segmentation

- How upsampling?
 - Pooling Layer

 Unpooling Layer

1	2	6	3					-	 	†	0	0	2	0
3	5	2	1	-	5	6	Rest of the network	1	2		0	1	0	0
1	2	2	1		7	8		3	4		0	0	0	0
7	3	4	8			<u> </u>					3	0	0	4

Semantic Segmentation

- How upsampling?
 - Pooling Layer

 Unpooling Layer

Remember which element was max

Use positions from pooling layer

Semantic Segmentation

- How upsampling?

Typical 3 x 3 convolution, stride 1 pad 1

Semantic Segmentation

- How upsampling?
 - Convolutional Layer -> Deconvolutional Layer

Typical 3 x 3 convolution, stride 1 pad 1

Semantic Segmentation

- How upsampling?
 - Convolutional Layer -> Deconvolutional Layer

Typical 3 x 3 convolution, stride 1 pad 1

Semantic Segmentation

- How upsampling?
 - Convolutional Layer -> Deconvolutional Layer

Normal 3 x 3 convolution, stride 2 pad 1

Semantic Segmentation

- How upsampling?
 - Convolutional Layer -> Deconvolutional Layer

Normal 3 x 3 convolution, stride 2 pad 1

Semantic Segmentation

- How upsampling?
 - Convolutional Layer -> Deconvolutional Layer

Normal 3 x 3 convolution, stride 2 pad 1

Semantic Segmentation

- How upsampling?

3 x 3 deconvolution, stride 2 pad 1

Semantic Segmentation

- How upsampling?
 - Convolutional Layer -> Deconvolutional Layer

3 x 3 deconvolution, stride 2 pad 1

Semantic Segmentation

- How upsampling?
 - Convolutional Layer -> Deconvolutional Layer

3 x 3 deconvolution, stride 2 pad 1

Semantic Segmentation

- SegNet Architecture
 - Symmetric
 - Unpooling: store pooling indices for reconstruction

Contenidos

- Introducción
- Caso de Uso
- Metodología
- Dataset
- Resultados
- Recursos Computacionales
- Conclusiones

Introducción

Objetivo dual

- Desarrollo de una herramienta para la segmentación automática de imágenes basada en CNN's.
- Análisis de los recursos computacionales del CESGA para este tipo de aplicaciones.

Caso de Uso

Elaboración automática de la capa SIOSE.

Actualidad:

• Procesado manual con diversas fuentes de referencia (satélite, PNOA,...)

Caso de Uso

Elaboración automática de la capa SIOSE.

PNOA

Ventajas:

- Automatización del proceso.
- Ahorro de tiempo.

Predicción (arbolado forestal)

Metodología y Desarrollo del Proyecto

- Preparación de los datos
 - Re-etiquetado del ground-truth.
 - Extracción de Imágenes.
 - Creación de ficheros LMDB.
 - Entrenamiento del modelo.
- Generación de predicciones
- Evaluación de los resultados

Dataset

Dos fuentes de información proporcionadas por el CESGA*:

- Imágenes RGB, procedentes del PNOA (años 2005 y 2010)
- Imágenes SIOSE (años 2006 y 2011)

+ 150 imágenes de 54000x38000 pixeles (+ 2000 millones de pixeles cada una)

* Procesado realizado CESGA: (reescalado, recortado, filtrado)

Dataset. Dificultades

• Imágenes del SIOSE con fotointerpretación incompleta

Sucede cuando no toda la superficie de una imagen está etiquetada.

Ilustración 4. Arriba: Detalle de imagen del PNOA. Abajo: Correspondiente capa de SIOSE con cobertura forestal (azul oscura), otra (verde) y no interpretada (blanco)

Dataset. Dificultades

• Imágenes del SIOSE con fotointerpretación incompleta

Sucede cuando no toda la superficie de una imagen está etiquetada.

Fotointerpretación inexacta.

La interpretación no se corresponde al 100% con la realidad de la imagen PNOA a la que hace referencia.

Ilustración 5. Arriba: Detalle de imagen del PNOA. Abajo: Correspondiente capa de SIOSE con cobertura forestal (azul oscura), otra (verde) y no interpretada (blanco). Los verdes son respectivamente Pastizal, Pastizal, Asentamiento agrícola, Matorral

Dataset. Dificultades

Imágenes del SIOSE con fotointerpretación incompleta

Sucede cuando no toda la superficie de una imagen está etiquetada.

· Fotointerpretación inexacta.

La interpretación no se corresponde al 100% con la realidad de la imagen PNOA a la que hace referencia.

• Existencia de coberturas compuestas

Cuando una cierta área aparece identificada con una cobertura compuesta, es decir, se le ha asignado más de un tipo de cobertura y cada una de ellas con un cierto porcentaje.

Resultados. Entrenamiento del modelo.

Entrenamiento del modelo

- SegNet
- 50000 iteraciones

Color: Píxel de groun-truth con color PNOA original; Negro: Píxel sin fotointerpretación SIOSE

Color: Píxel de groun-truth con color PNOA original; Negro: Píxel sin fotointerpretación SIOSE

Resultados: matrices de confusión

Matriz de Confusión

		Clase Real	
		Arbolado Forestal	Resto
Clase Predicha	Arbolado Forestal	847682090	200993073
	Resto	297048081	4053969030

Matriz de Confusión Normalizada

		Clase Real	
		Arbolado Forestal	Resto
Clase Predicha	Arbolado Forestal	0,81	0,19
	Resto	0,07	0,93

Análisis de Recursos Computacionales

Tiempo de computación.

Deep Learning computacionalmente muy intensivo

Máquinas de altas prestaciones

Capacidad de almacenamiento y recursos de memoria.

- Tamaño del dataset necesario para Deep Learning
 - 42 imágenes del PNOA por año (3 años) de un tamaño aproximado de más de 6,4 GB cada una
 - 42 imágenes del SIOSE por año (2 años) de más de 4,3 GB cada una.

+ 1 TB de información en imágenes!

Análisis de Recursos Computacionales

Infraestructura CESGA:

- Almacenamiento en disco:
 - LUSTRE 6TB y 1000000 de ficheros (capacidad de almacenamiento en local no resultaba suficiente)
- Computación:
 - Finis Terrae II: FAT node para la fase de creación de los ficheros LMDB correspondientes a los dataset de entrenamiento y test (350 GB de memoria)
 - Finis Terrae II: Thin nodes, utilizados para el resto de procesos.

Análisis de Recursos Computacionales

Tiempos de Computación.

Extracción de imágenes

	Imágenes (PNOA)	Etiquetas (SIOSE)
Entrenamiento	176 minutos	16.4 minutos
Validación	85'18 minutos	11'9 minutos

Creación de ficheros LMDB

	Creación LMDB (PNOA + SIOSE)
Entrenamiento	14'28 minutos
Validación	9'83 minutos

Entrenamiento del modelo

	Entrenamiento del modelo
Entrenamiento	16'17 horas

Conclusiones

Viabilidad del Sistema

- Utilización de redes neuronales profundas es una herramienta adecuada para la clasificación semántica de coberturas del terreno
- Accuracy ≈ 90%
- Resultados extrapolables a otras categorías de alto nivel
- Posibilidad de clasificaciones en categorías de más bajo nivel

Ventajas en la utilización de la infraestructura del CESGA.

- Reducción de los tiempos de computación (resultado esperado)
- Capacidades CESGA (ahora mismo imposibilidad de replicar los resultados en otro entorno)

Inconvenientes.

- Dificultades adecuación de algoritmos y distribución Caffe al entorno CESGA
- Pérdida de flexibilidad debido al sistema de colas

Conclusiones. Trabajo Futuro

Tiempos de Cómputo

- En la fase de preparación de datos: código secuencial altamente paralelizable
- Fase entrenamiento: análisis de hiperparámetros

Exactitud en la predicción

- Arquitectura.
- Disponibilidad de datos de entrenamiento con un nivel de fotointerpretación más elevado
- Técnicas de Data Augmentation

Otros problemas

- Clasificación simultánea de más de dos categorías, lo que requeriría modificaciones en la arquitectura.
- Explorar otros escenarios y/o conjuntos de imágenes en otras bandas espectrales.

Semantic Segmentation

Semantic Segmentation

Áreas de interés:

- Análisis de escenas de carretera
 - Aprendizaje de carretera, coche, humano,... (real-time)

Semantic Segmentation

Otras arquitecturas:

Fully convolutional Network (FNC)

Lower level activations added for upsampling detail reconstruction

DeepLab (FNC)

- Atrous spatial pyramid pooling for multi-scale recognition
- Conditional RandomFields (CRF) for Refinement

Enet

- Few data needed for training (no pretraining)
- Very Small + fast

SegNet

- Store pooling indices for reconstruction
- Symmetric

Orientados hacia las necesidades de la industria