Analysis-Übersicht, Version 0.2.1 von Adrian Danisch, page 1 of 3	$-r = r + i \cdot 0$ $-\mathcal{R}(r) = r, \ \mathcal{I}(r) = 0$ $-\overline{r} = r$	Faktorielle fallend:	Weitere Anordungsregeln: Transitivität: Aus $x < y$ und $y < z$ folgt:	- (streng) monoton, wenn sie entweder (streng) monoton wächst oder fällt.
1 Wiederholung	- r = r Homomorphismen bei komplexen Zah-	$n^{\underline{k}} := n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$	x < z Translationsinvarianz: Aus $x < y$ und	Beschränktheit Mengen Sei $S \subseteq \mathbb{R}$:
Mengenoperationen	len. $w, z \in \mathbb{C}$, dann gilt:	aufsteigend:	c < d folgt: $x + c < y + d$.	- (von oben beschränkt:) $b \in \mathbb{R}$ heißt obere
$x \in A \cup B :\Leftrightarrow x \in A \lor x \in B$	$\overline{zw} = \overline{z} \cdot \overline{w},$	$n^{\overline{k}} := n \cdot (n+1) \cdot \dots \cdot (n+k-1) = \frac{(n+k-1)!}{(n-1)!}$	Ist zusätzlich $0 < c$, dann gilt auch:	Schranke von $S: \forall x \in S: x \leq b$
$x \in A \cap B :\Leftrightarrow x \in A \land x \in B$	wz = w z	Eigenschaften der Faktoriellen	xc < yd.	- (von unten beschränkt:) $a \in \mathbb{R}$ heißt untere Schranke von $S: \forall x \in S: x \geqslant a$
$x \in A \setminus B : \Leftrightarrow x \in A \land \neq (x \in B)$ $A \subseteq B : \Leftrightarrow (x \in A \Rightarrow x \in B)$	2 Kombinatorik, Anordnungen	(n) $n^{\underline{k}}$ 1 $\overline{1}$	Spiegelung: Aus $x < y$ folgt: $-y < -x$. Bzgl. Kehrwerte: Falls $a > 0$, dann ist	- beschränkt, wenn sie von oben und un-
$A \subseteq B : \Leftrightarrow B \setminus A \neq \emptyset$	Kardinalität/Mächtigkeit:	$-\binom{n}{k} = \frac{n^k}{k!}, \ x^{\underline{1}} = x^{\overline{1}} = x,$	auch $a^{-1} > 0$.	ten beschränkt ist.
$A = B :\Leftrightarrow A \subseteq B \land B \subseteq A$	Die Anzahl der Elemente einer endliche Menge M .	$-x^{\underline{0}} = x^{\overline{0}} = 1$, $(-x)^{\overline{k}} = (-1)^k x^{\underline{k}}$,	Gilt $0 < x < y$, dann auch $0 < \frac{1}{v} < \frac{1}{x}$	(bei Abbildungen/Folgen:)
Bekannte Mengen	Notation: $ M $ oder $\#M$.	Abbildungskombinatorik:	Potenzmonotonie: $\forall x, y \in \mathbb{R}$:	$f: D \to \mathbb{R}$ ist von (oben/unten) beschränkt, wenn $\{f(x) x \in D\}$ (von
$\mathbb{N} = \{1, 2, 3, \dots\}$ natürliche Zahlen	Injektiv: $f: X \to Y$ injektiv, wenn für	- Sei $ A = B = n$. Jede injektive Abbil-	$x < y \Leftrightarrow x^n < y^n$	oben/unten) beschränkt ist.
$\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ nat. Zahlen mit 0 $\mathcal{P} := \mathbb{P} := \{n \in \mathbb{N} : n \text{ prim}\}$ Primzahlen	$x_1, x_2 \in X \text{ gilt: } f(x_1) = f(x_2) \Rightarrow x_1 = x_2$	dung $f: A \rightarrow B$ ist surjektiv, mit	Quadrate: $\forall a \in \mathbb{R} : a^2 \ge 0$	Notation: $M < \infty$, $a_n < \infty$, $f(x) < \infty$
$\mathbb{Z} = \{, -2, -1, 0, 1, 2,\}$ ganze Zahlen	bzw. $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.	$\#\{f f:A\to B\} = n!$ - Sei $ C = n+1$,	Bernoullische Ungleichung:	Supremum/Infimum Die kleinste obers-
$\mathbb{Q} = \{ \frac{p}{a} p \in \mathbb{Z} \land q \in \mathbb{N} \} \text{ rationale Zahlen.}$	surjektiv $f: X \to Y$ surjektiv,	dann $\#\{f: A \to C\} = (n+1)!$	$\forall n \in \mathbb{N} \forall x \ge -1 : (1+x)^n \ge 1 + nx$	te Schranke einer Menge $M/Folge a_n$
R reelle Zahlen	wenn $Y \subseteq f(X)$ bzw. $Y \subseteq Im(f)$ gilt.	- Seien $ X = n$, $ Y = r$, dann gilt:	Dreiecksungleichung: $\forall x, y \in \mathbb{R}$:	heißt Supremum. Ist sie zusätzlich ein (Folgen-)Element
$\mathbb{R}^+ = (0, \infty)$ positive reelle Zahlen ohne 0	Fakultät:	$\bullet \# \{ f : X \to Y \} = r^n$	$- x - y \le x + y \le x + y $	von M bzw. a_n , dann ist sie das Maxi-
$\mathbb{R}_0^+ = \mathbb{R}^+ \cup \{0\}$ pos. reelle Zahlen mit 0.	(rekursiv) $n! = n \cdot (n-1)!$, $0! := 1! := 1$ (iterativ) $n! := 1 \cdot 2 \cdot \cdot (n-1) \cdot n = \prod_{i=1}^{n} i$	• $\#\{f: X \xrightarrow{\text{inj.}} Y\} = r^{\underline{n}}$	$- x - y \leqslant x-y $	mum von M bzw. a_n .
$\mathbb{R} \setminus \mathbb{Q}$ irrationale Zahlen.	1-1	Stirling-Zahlen	Hölder-Ungleichung:	Die größte unterste Schranke einer Men-
K Platzhalter für ℝ, ℂ	Index-Shift: $\nabla^n f(x) = \nabla^n f(x) + f(x)$	1. Art: $s_{n,k}$ ist die Anzahl der Permuta-	$a_1,,a_n,b_1,,b_n \in \mathbb{R}$:	ge/Folge heißt Infimum. Ist sie zusätzlich ein (Folgen-)Element
Bsp.: $\sqrt{2}$, π , e sind irrational	$\sum_{i=m}^{n} f(i) = \sum_{i=m+k}^{n+k} f(i-k)$	tionen einer n-elementigen Menge, die genau <i>k</i> Zykel hat.	$\left \sum_{i=1}^{n} a_{i} b_{i}\right \leq \sqrt[p]{\sum_{i=1}^{n} a_{i} ^{p}} \sqrt[p]{\sum_{i=1}^{n} b_{i} ^{p}}$	von M bzw. a_n , dann ist sie das Minimum.
Nullstellen von Polynomen	Grenzen herausziehen: $\sum_{i=1}^{n} f(i) = f(m) + \sum_{i=1}^{n} f(i)$ by $\sum_{i=1}^{n} f(i)$	2. Art: $S_{n,k}$ ist die Anzahl der k-	Cauchy-Schwarzsche Ungleichung:	von M bzw. a_n .
$x^2 + 2 = 0$ hat keine Lösung	$\sum_{i=m}^{n} f(i) = f(m) + \sum_{i=m+1}^{n} f(i)$ bzw.	elementigen Partitionen einer <i>n</i> -	$a_1,,a_n,b_1,,b_n \in \mathbb{R}$:	Betrag und Beschränktheit: Sei $a_n, b \in$
abc-Formel: Das Polynom $ax^2 + bx + c$ hat die Nullstellen:	$\sum_{i=m}^{n} f(i) = f(n) + \sum_{i=m}^{n-1} f(i)$	elementigen Menge	$\left \sum_{i=1}^{n} a_i b_i\right ^2 \leqslant \left(\sum_{i=1}^{n} a_i\right) \cdot \left(\sum_{i=1}^{n} b_i\right)$	$\mathbb{R}, b > 0$, dann gilt: $\forall n : (a_n \le b) \Leftrightarrow (-b \le a_n \le b)$
$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	Gleichmächtig: Sei $f: M \to N$ bijektiv,	Eigenschaften Stirling-Zahlen	$\angle i=1$ $u_i v_i = (\angle i=1$ $u_i)$ $(\angle i=1$ $v_i)$ AGM-Ungleichung:	Satz von Archimedisches Sei $x > 0$
200	dann sind M und N gleichmächtig.	$s_{n,1} = (n-1)!, s_{n,2} = (n-1)!H_{n-1},$	$x_1,, x_n \in \mathbb{R} : \sqrt[n]{x_1 \cdot \cdot x_n} \leqslant \frac{x_1 + + x_n}{n}$	$\forall y \in \mathbb{R}, y > x, \exists n \in \mathbb{N} : nx > y$
pq-Formel: Das Polynom $x^2 + px + q$ hat die Nullstellen:	(1,11	Gleichheit bei $x_1 = \dots = x_n$	Folgerungen: $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} : \forall n \ge n_0 :$
	$ x := \begin{cases} x, & \text{für } x \ge 0\\ -x, & \text{für } x < 0 \end{cases}$	$\sum_{k=0}^{n} s_{n,k} = n!, \sum_{k=0}^{n} s_{n,k} x^{k} = x^{n}$	Minkowski-Ungleichung:	$1/n \le \varepsilon$ Varyang (a.) kanyangiant gagan a
$x_{1/2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4}} - q$	(-x, fur x < 0)	$S_{n,n} = 1$, $S_{n,2} = 2^{n-1} - 1$	$a_1,,a_n,b_1,,b_n \in \mathbb{R}: \sqrt[p]{\sum_{i=1}^n a_i + b_i ^p}$	Konvergenz (a_n) konvergiert gegen $a: \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} a_n - a < \varepsilon \ \forall n \geqslant n_0$
Anmerkung: Setzte bei <i>abc</i> -Formel das $a = 1$. Daraus folgt die pq -Formel.	- Anmerkung: $x \in \mathbb{R} : 0 \le x $ Min-Max-Funktionen $x, y \in \mathbb{R}$	Symmetrie-Eigenschaften		Notation: $\lim_{n\to\infty} a_n = a$
Satz von Vieta: Das Polynom $x^2 + px + q$		$s_{n,k} = s_{n,n-k}, S_{n,k} = S_{n,n-k}$	$\leq \sqrt[p]{\sum_{i=1}^{n} a_i ^p} + \sqrt[p]{\sum_{i=1}^{n} b_i ^p}$	kürzer: $a_n \stackrel{n \to \infty}{\longrightarrow} a$
hat die Nullstellen x_1, x_2 mit:	$\max(x,y) = \frac{x+y+ x-y }{2}$	Primzahlanzahlfunktion: $\pi(x) := \#\{z \in \mathbb{P} z \le x\}$	Weitere Ungleichungen:	- Für $a = 0$, heißt a_n Nullfolge.
$-p = x_1 + x_2, q = x_1 \cdot x_2$	$\min(x,y) = \frac{x+y- x-y }{2}.$	Eulersche Phi-Fkt.:	$- \forall n \in \mathbb{N} \setminus \{3\}: n^2 \leq 2^n$	Verknüpfung konvergenter Folgen
Nullstellen lassen sich sozusagen ablesen,	floor-/ceil-Funktion	$\varphi(x) := \#\{z \in \mathbb{N} 1 \le z \le x \land \mathbf{ggT}(z, x) = 1\}$	$u_1,,u_n \in \mathbb{R}, v_1,,v_n \in \mathbb{R}^+$:	Sei $a_n \stackrel{n \to \infty}{\longrightarrow} a$ und $b_n \stackrel{n \to \infty}{\longrightarrow} b$. Dann gilt:
sofern diese existieren. Zerlegung in Li	$\lfloor x \rfloor := \text{floor}(x) := \max\{z \in \mathbb{Z} z \le x\}$	verschiedene Mittelwerte:	$\min_{i=1,,n} \frac{u_i}{v_i} \le \frac{\sum_{i=1}^n u_i}{\sum_{i=1}^n v_i} \le \max_{i=1,,n} \frac{u_i}{v_i}$	$ a_n \stackrel{n \to \infty}{\longrightarrow} a$, $\forall c \in \mathbb{R} : (a_n)^c \stackrel{n \to \infty}{\longrightarrow} a^c$
nearfaktoren: Das Polynom $ax^2 + bx + c$ hat die Nullstellen x_1, x_2 . Dann gilt:	$\lceil x \rceil := \operatorname{ceil}(x) := \min\{z \in \mathbb{Z} x \le z\}$	Seien $x_1,,x_n \in \mathbb{R}$: (höldersch:) $\forall p \in \mathbb{R} \setminus \{0\}$:	$v_i = v_i$	$a_n \pm b_n \stackrel{n \to \infty}{\longrightarrow} a \pm b, a_n b_n \stackrel{n \to \infty}{\longrightarrow} ab$
$ax^{2} + bx + c = a \cdot (x - x_{1}) \cdot (x - x_{2})$	- ganzzahliger Anteil: $[x] := x - \lfloor x \rfloor$	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Für $b_n \neq 0, b \neq 0$:
Zerlegung ist mit Koeffizientenvergleich		$M_p(x_1,,x_n) := \left(\frac{1}{n} \sum_{i=1}^n x_i^p\right)^{\overline{p}}$	$\frac{u}{1+u} < \frac{v}{1+v}; \frac{ u+v }{1+ u+v } < \frac{ v }{1+ v } + \frac{ u }{1+ u }$	$a_n/b_n \stackrel{n \to \infty}{\longrightarrow} a/b$
bzw. mit Polynomdivision ermittelbar.	$\binom{n}{k} := \frac{n!}{k!(n-k)!} = \prod_{j=1}^{k} \frac{n+1-j}{j}$	(geometrisch:) $x_{\text{geom}} := \sqrt[n]{\prod_{i=1}^{n} x_i}$	$-\forall a,b\in\mathbb{R}^+:$	Heron-Verfahren Sei $a > 0$ und $x_0 > 0$:
Komplexe Zahlen: Seien $u, v \in \mathbb{C}$ mit $u = a + ib$, $v = c + id$:		,	$\sqrt[n]{a+b} \leqslant \sqrt[n]{a} + \sqrt[n]{b}; \left \sqrt[n]{a} - \sqrt[n]{b}\right \leqslant \sqrt[n]{ a-b }$	$x_{n+1} = \frac{1}{2} (x_n + \frac{a}{x_n}) \stackrel{n \to \infty}{\longrightarrow} \sqrt{a}$
(Addition:) $u + v = (a + ib) + (c + id) =$	$\binom{n}{0} = \binom{n}{n} = 1, \ \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$	(arithmetisch:) $x_{\text{arithm}} := \frac{1}{n} \sum_{i=1}^{n} x_i$	Intervalle: Seien, $a, b, c \in \mathbb{R}$:	Sandwich-Kriterium:
(a+c)+i(b+d)	(0) (n) $(k+1)$ (k) $(k+1)$	(harmonisch:) $x_{\text{harm}} := n / \left(\sum_{i=1}^{n} \frac{1}{x_i}\right)$	$[a,b] := \{x \in \mathbb{R} a \le x \le b\}$ abgeschlossen	Sei $a, x_n, y_n, z_n \in \mathbb{R}$
(Multiplikation:) $u \cdot v = ac - bd + i(ad + bc)$	(Symmetrie:) $\binom{n}{k} = \binom{n}{n-k}$	Anordnungsaxiome Die Aussagen gel-	$(a,b) := \{x \in \mathbb{R} a < x < b\}$ offen $[a,b) := \{x \in \mathbb{R} a \le x < b\}$ halboffen	$mit x_n \le y_n \le z_n$
(Division:) $\frac{u}{v} = \frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} =$	$\binom{(s)^{n}}{k} \binom{(n-k)}{n-k}$	ten auch für Q.	$(a,b) := \{x \in \mathbb{R} a \le x \le b\}$ halboffen	und $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = a$,
ac+bd ; $bc-ad$	Binomischer Lehrsatz:	(Trichotomie:) $\forall x \in \mathbb{R}$ gilt entweder: $x > 0$, $x = 0$, $-x > 0$	3 Folgen	$\operatorname{dann} \operatorname{auch} y_n \stackrel{n \to \infty}{\longrightarrow} a$
$\frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}$ (Realanteil:) $\mathcal{R}(u) = a$	$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \cdot b^{n-k}$	(Abgeschlossenheit bzgl. + :)	Die Abbildung $a : \mathbb{N}_0 \to \mathbb{K}$ heißt Folge.	Infima reeller Teilmengen Jede nach unten beschränkte nichtleere Teilmenge aus
(Imaginärteil:) $\mathcal{I}(u) = b$	(k+1) $(k+1)$	$\forall x, y \in \mathbb{R}$, mit $x > 0$, $y > 0$ gilt: $x + y > 0$	Notation:	R hat ein Infimum.
	$(a\pm b)^2 = a^2 \pm 2ab + b^2$, $(a+b)(a-b) = a^2 - b^2$	(Abgeschlossenheit bzgl. · :)	$\forall n \in D: \ a_n := (a_n)_{n \in \mathbb{N}_0} := a(n).$	monoton und beschränkt: Jede mono-
(Wurzel:) $i := \sqrt{-1}$; $\sqrt{i} = \frac{1+i}{\sqrt{2}}$	Pascalsches Dreieck bis n=4	$\forall x, y \in \mathbb{R}$, mit $x > 0, y > 0$ gilt: $x \cdot y > 0$ Notation:	Monotonie: Eine Folge a_n :	ton wachsende nach oben beschränkte
(Konjugation:) $\overline{u} = a + ib := a - ib$	1	$x > y :\Leftrightarrow x - y > 0$	- wächst monoton : $\Leftrightarrow \forall n : a_{n+1} \ge a_n$ - wächst streng monoton	Folge konvergiert gegen ihr Supremum. Jede monoton fallende nach unten be-
$\cdot \overline{\overline{u}} = u$	1 1	$x < y :\Leftrightarrow y > x$	$:\Leftrightarrow \forall n: a_{n+1} > a_n$	schränkte Folge konvergiert gegen ihr In-
(Betrag:) $ u = a + ib = \sqrt{a^2 + b^2}$	1 2 1	$x \geqslant y :\Leftrightarrow x > y \text{ oder } x = y$	- fällt monoton : $\Leftrightarrow \forall n : a_{n+1} \leq a_n$	fimum.
(im reellen Fall:) $\forall r \in \mathbb{R}$:	1 2 1	$x \le y :\Leftrightarrow x < y \text{ oder } x = y$	- fällt streng monoton : $\Leftrightarrow \forall n : a_{n+1} < a_n$	Teilfolgen:

```
(n-te Partialsumme)
                                                                                                                                                                                     y natürlicher Logarithmus von x.
                                                           Folgerung:
                                                                                                                                                                                                                                                 und M = \sup\{f(x)|x \in [a,b]\}.
   Analysis-Übersicht, Version 0.2.1
                                                                                                                        \forall q \in \mathbb{R}: \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - a}
   von Adrian Danisch, page 2 of 3
                                                           f \sim g \Rightarrow f \in \theta(g) bzw. g \in \theta(f)
                                                                                                                                                                                                                                                 Dann gilt \forall c \in \mathbb{R} \exists x \in [a, b] : m \leq c \leq M
                                                                                                                                                                                    Notation: y := ln(x) := log(x)
                                                                                                                                                                                                                                                 und f(x) = c
                                                                                                                                                                                    Logarithmus-Eigenschaften:
                                                           Stirling-Formel: n! \sim \sqrt{2\pi n} (\frac{n}{a})^n
                                                                                                                        Kleiner Gauß:
(y_n)_{n\in\mathbb{N}} heisst Teilfolge einer Folge
                                                                                                                                                                                                                                                 Zwischenwertsatz Fassung 2:
                                                                                                                                                                                    Seien a. b \in \mathbb{R}^+:
                                                           Fehler-Rechnung Sei x exakt und \widetilde{x} eine
                                                                                                                        \sum_{k=1}^{n} k = \frac{n(n+1)}{2}
(x_n)_{n\in\mathbb{N}}, wenn es eine streng monoton
                                                                                                                                                                                                                                                 f(a) f(b) < 0, dann gibt es ein x \in (a, b),
                                                                                                                                                                                    (Funktionalgleichung:) \log(xy) = \log(x) +
                                                           Annäherung von x.
wachsende natürliche Folge v_n gibt, so-
                                                                                                                                                                                                                                                 sodass f(x) = 0
                                                                                                                                                                                    \log(y); \log(x/y) = \log(x) - \log(y)
                                                           (absoluter Fehler:) \Delta_x = |\widetilde{x} - x|
                                                                                                                        Teleskopsumme Sei a_n eine Folge.
dass y_n = x_{v_n}.
                                                                                                                                                                                    - \forall n \in \mathbb{Z} \forall x \in (1, \infty) : \log(x^n) = n \cdot \log(x)
                                                                                                                                                                                                                                                 Weitere Stetigkeitsaussagen
                                                                                                                        \sum_{k=1}^{\infty} a_n - a_{n+1} heißt Teleskopreihe
                                                           (relativer Fehler:) \delta_x = \frac{\Delta_x}{r}
- Jede reelle Zahlenfolge x_n hat eine mo-
                                                                                                                                                                                                                                                - Eine stetige Funktion f:[a,b] \to \mathbb{R} ist
                                                                                                                                                                                    - \forall x \in (1, \infty) : \log(x) \leq x - 1
                                                                                                                        s_n = \sum_{k=1}^n a_n - a_{n+1} heißt Teleskopsum-
                                                           Sei f \sim g, dann gilt:
notone Teilfolge.
                                                                                                                                                                                                                                                 genau dann injektiv wenn sie streng mo-
                                                                                                                                                                                    Definition reeller Potenzen:
                                                           \frac{|f(x)-g(x)|}{\longrightarrow} \stackrel{n\to\infty}{\longrightarrow} 0
Eigenschaften von Teilfolgen Jede Teil-
                                                                                                                                                                                    \forall a \in (1, \infty) \forall x \in \mathbb{R}^+ \exists y \in \mathbb{R} :
                                                                                                                        Potenzreihen und erzeugende Funktio-
folge einer monoton steigenden Folge ist
                                                                                                                                                                                                                                                -f:[a,b]\to\mathbb{R} sei stetig und streng mono-
                                                                                                                        nen Sei a_n eine Folge,
monoton steigend
                                                           5 Reihen
                                                                                                                                                                                                                                                 ton. Dann gilt:
                                                                                                                                                                                    Logarithmus zur Basis a: Sei a^y = x.
Bolzano-Weierstraß Jede beschränkte re-
                                                                                                                       - Die Reihe: p(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k heißt
                                                          Sei a_n eine Folge.
                                                                                                                                                                                                                                                - f bildet das Intervall [a, b] auf das Inter-
                                                                                                                                                                                    Die Zahl y heißt Logarithmus von x zur
elle Folge hat eine konvergente Teilfolge.
                                                          -s_n := \sum_{k=0}^n a_k heißt n-te Partialsumme.
                                                                                                                        Potenzreihe um den Entwicklungspunkt
                                                                                                                                                                                                                                                 vall [m, M] ab mit m = f(a) und M = f(b)
                                                                                                                                                                                    Basis a
Cauchy-Folge Eine Folge x_n heißt
                                                                                                                                                                                    Notation: y = \frac{\log(x)}{\log(a)} =: \log_a(x)
                                                                                                                                                                                                                                                 falls f monoton wächst. Falls f monoton
                                                           - \lim_{n\to\infty} s_n = \sum_{k=0}^{\infty} a_k heisst Reihe.
                                                                                                                       - Für x_0 = 0, wird die (allg.) Potenzreihe
Cauchy-Folgen:
                                                                                                                                                                                                                                                 fällt, dann M = f(a) und m = f(b)
                                                           Bzgl. Konvergenz:
\forall \varepsilon > 0 \exists n_0 \in \mathbb{N}:
                                                                                                                        auch als erzeugende Funktion von a_n be-
                                                                                                                                                                                   - (binärer Logarithmus:) ld(x) := lb(x) :=
                                                                                                                                                                                                                                                - f hat eine streng monoton wachsen-
                                                           Falls x_n := \sum_{k=1}^n a_k konvergiert,
|x_n - x_m| < \varepsilon \ \forall \ n, m \geqslant n_0
                                                                                                                                                                                                                                                 de/fallende Umkehrfunktion, die stetig
Cauchysches Konvergenzkriterium Je-
                                                                                                                        Anm. Die n-te Partialsumme einer Po-
                                                           dann muss a_k eine Nullfolge sein.
                                                                                                                                                                                   - (dekadischer Logarithmus:) \log_{10}(x)
                                                                                                                                                                                                                                                 auf [m, M] ist.
de Cauchy-Folge von reellen oder kom-
                                                                                                                        tenzreihe ist ein Polynom.
                                                           Cauchysches Konvergenzkriterium
                                                                                                                                                                                                                                                 gleichmäßige Stetigkeit
                                                                                                                                                                                    Monotonie des Logarithmus:
plexen Zahlen konvergiert.
                                                                                                                        Konvergenzradius \forall x \in \mathbb{R}
                                                           \sum_{k=1}^{\infty} a_k konvergent genau dann wenn:
                                                                                                                                                                                                                                                 D \subseteq \mathbb{R}, f: D \to \mathbb{R}
                                                                                                                                                                                    x > y > 0, dann gilt: \log(x) > \log(y)
weitere Eigenschaften
                                                                                                                        Die Potenzreihe \sum_{k=0}^{\infty} a_k (x - x_0)^k bzw.
                                                           \forall \ \varepsilon > 0 \ \exists \ n_0 \ \epsilon \ \mathbb{N} : \left| \sum_{k=n}^m \right| \ \forall m \geqslant n \geqslant n_0.
                                                                                                                                                                                                                                                 heißt gleichmässig stetig in D :
                                                                                                                                                                                    Logarithmischer Basiswechsel:
a_n \stackrel{n \to \infty}{\longrightarrow} a , dann konvergiert jede Teil-
                                                                                                                                                                                                                                                \forall \ \varepsilon > 0 \ \exists \ \delta : |y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon
                                                                                                                        \sum_{k=0}^{\infty} a_k x^k (für x_0 = 0) konvergiert, wenn
                                                                                                                                                                                    \log_b(x) = \frac{\log_a(x)}{\log_a(b)}
                                                           absolute Konvergenz \sum_{k=1}^{n} a_n absolut
folge, von a<sub>n</sub>, gegen a.
                                                                                                                        x \in (-R, R), R > 0.
                                                                                                                                                                                                                                                 Bsp.: f(x) = \frac{1}{x} stetig auf \mathbb{R}^+, aber darauf
                                                           konvergent :\Leftrightarrow \sum_{k=1}^{n} |a_n| konvergiert.

    Jede konvergente Folgen ist beschränkt.

                                                                                                                                                                                    Hyperbelfunktionen
                                                                                                                        R ist der Konvergenzradius der Reihe.
                                                                                                                                                                                                                                                 nicht gleichmäßig stetig.
                                                           - Absolute Konvergenz \Rightarrow Konvergenz
Limes superior/inferior: Sei a<sub>n</sub> reelle
                                                                                                                                                                                    \sinh(x) := \frac{e^x - e^{-x}}{2}, \quad \cosh(x) := \frac{e^x + e^{-x}}{2}
                                                                                                                        Cauchy-Hadamard-Formel:
                                                                                                                                                                                                                                                 Stetigkeit auf Intervalle: f:[a,b] \to \mathbb{R}
                                                           alternierende Reihe Eine Reihe der
                                                                                                                       R := \frac{1}{\limsup_{n \to \infty} \left( \sqrt[n]{|a_n|} \right)}
                                                           Form \sum_{k=1}^{\infty} (-1)^{k+1} a_k mit a_k \in \mathbb{R} heisst
                                                                                                                                                                                    \cosh^2(x) - \sinh^2(x) = 1 \ \forall \ x \in \mathbb{R}
                                                                                                                                                                                                                                                 stetig. Dann ist f gleichmässig stetig.
-\lim_{n\to\infty} a_n := \limsup_{n\to\infty} a_n :=
                                                                                                                                                                                                                                                 Lipschitz-Stetigkeit f: D \to \mathbb{R} heißt
                                                                                                                                                                                    \cosh(x) \ge 1 \ \forall \ x \in \mathbb{R}
                                                           alternierend.
\inf_{n\in\mathbb{N}} \{\sup_{n\in\mathbb{N}} \{a_n | k \ge n \in \mathbb{N}\} \}
                                                                                                                        Kehrwert des Quotientenkriterium:
                                                                                                                                                                                    sinh ist eine monoton wachsende Funkti-
                                                                                                                                                                                                                                                Lipschitz-stetig:
                                                           Leibnizkriterium Sei a_n monoton fal-
\underline{\lim}_{n\to\infty}a_n:=\liminf_{n\to\infty}a_n:=
                                                                                                                        R := \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}
                                                                                                                                                                                    on und hat eine auf ganz R eine stetige
                                                           lende Nullfolge, dann konvergiert
                                                                                                                                                                                                                                                 \forall x, y \in \mathbb{D} \exists c : |f(x) - f(y)| < c \cdot |x - y|,
\sup_{n\in\mathbb{N}}\{\inf_{n\in\mathbb{N}}\{a_n|k\geqslant n\in\mathbb{N}\}\}\
                                                                                                                                                                                    Umkehrfunktion
                                                           \sum_{k=1}^{\infty} (-1)^{k+1} a_k absolut.
                                                                                                                       Cauchy-Produkt Seien \sum_{k=0}^{\infty} a_k und
                                                                                                                                                                                                                                                - Für 0 < c < 1 heißt es Kontraktion.
Spezialfall bei Konvergenz:
                                                                                                                                                                                    \cosh ist monoton fallend für x \le 0 und
                                                                                                                       \sum_{k=0}^{\infty} b_k jeweils absolut konvergent.

    Lipschitz-Stetigkeit ⇒ Stetigkeit.

                                                           Majorantenkriterium Sei \sum_{k=1}^{\infty} b_k kon-
                                                                                                                                                                                    monoton wachsend für x \ge 0
Für a_n \stackrel{n \to \infty}{\longrightarrow} a:
                                                                                                                                                                                                                                                 9 Trigonometrische Funktionen
                                                                                                                        Dann konvergiert absolut das Cauchy-
                                                                                                                                                                                   8 Stetigkeit
\overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} a_n
                                                           Falls \forall k : |a_k| \leq b_k, dann konvergiert
                                                                                                                       Produkt beider Reihen:
                                                                                                                                                                                                                                                 \tan(x) := \frac{\sin(x)}{\cos(x)}, \quad \cot(x) := \frac{\cos(x)}{\sin(x)}
                                                                                                                                                                                    \varepsilon – \delta-Stetigkeit:
                                                                                                                        \left(\sum_{k=0}^{\infty} a_k\right) \left(\sum_{k=0}^{\infty} b_k\right) = \sum_{k=0}^{\infty} \sum_{j=k}^{n} a_k b_{j-k}
Allgemeiner Limes Sei x_n \stackrel{n \to \infty}{\longrightarrow} \zeta und es
                                                           \sum_{k=1}^{\infty} a_k absolut.
                                                                                                                                                                                    f: D \to \mathbb{R}, D \subset \mathbb{K}, heisst stetig im Punkt
                                                                                                                                                                                                                                                 Reihendarstellungen
                                                           Wurzelkriterium Fassung 1
                                                                                                                        Partialbruchzerlegung:
gibt \lim_{n\to\infty} f(x_n) =: L.
                                                                                                                                                                                    \forall \ \varepsilon > 0 \ \exists \ \delta > 0 : \forall y \in \mathbb{R} :
                                                                                                                                                                                                                                                 e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}
                                                           \sum_{k=1}^{\infty} a_k konvergiert absolut, falls es ein
                                                                                                                       - Sei x \in \mathbb{R} und c, \zeta \in \mathbb{R}.
Notation: \lim_{x\to \zeta} f(x) := L
                                                                                                                                                                                    |y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon
                                                                                                                        Der Bruch \frac{c}{x-\zeta} heißt Partialbruch
Fibonacci-Zahlen: Sei F_n eine rekursive 1 < q \in \mathbb{R} und n_0 gibt: \sqrt[p]{|a_n|} < q \, \forall \, n > n_0.
                                                                                                                                                                                                                                                \sin(x) := \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}
                                                                                                                                                                                     f heißt stetig (auf D), wenn es in \forall x \in D
                                                           - Für a = 1 keine Aussage möglich
                                                                                                                       - Sei h(x) = \frac{a_0 + a_1 + \dots + a_n x^n}{b_0 + b_1 + \dots + b_m x^m} rationale
                                                                                                                                                                                                                                                \cos(x) := \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}
F_0 = 0, F_1 = 1 und F_{n+2} = F_{n+1} + F_n
                                                           - Für a > 1 Divergenz
                                                                                                                        Funktion, \zeta_i, mit 1 \le i \le m, die Nullstel-
                                                                                                                                                                                    D ist der Definitionsbereich von f .
Goldener Schnitt: Die rekursive Folge c_n
                                                           Wurzelkriterium Fassung 2
                                                                                                                                                                                   Alternative Def.1: Folgenstetigkeit Sei
                                                                                                                                                                                                                                                 \sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{k!}, \cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{k!}
                                                                                                                        len des Nenners, mit Vielfachheit m_i, von
                                                            \sum_{k=1}^{\infty} a_k konvergiert absolut, falls
mit: c_0 = 1, c_{n+1} = \sqrt{1 + c_n}
konvergiert gegen den goldenen Schnitt
                                                                                                                        h. Dann lässt sich h eindeutig wie folgt
                                                                                                                                                                                    x_k \stackrel{n \to \infty}{\longrightarrow} x. f: D \to \mathbb{R} ist stetig in x \in D:
                                                           \lim_{n\to\infty} \sqrt[n]{|a_k|} =: a < 1 existiert
                                                                                                                                                                                                                                                 Trigon. Satz des Pythogoras
                                                                                                                        darstellen:
                                                                                                                       h(x) = \sum_{i=1}^{m} \sum_{j=1}^{m_i} \frac{c_{i,j}}{(x - \zeta_i)^j}
                                                                                                                                                                                    f(x_k) \stackrel{n \to \infty}{\longrightarrow} f(x)
                                                           - Für a = 1 keine Aussage möglich
                                                                                                                                                                                                                                                 \sin^2(x) + \cos^2(x) = 1
                                                           - Für a > 1 Divergenz
                                                                                                                                                                                    Alternative Def.2: Limes-Stetigkeit
                                                                                                                                                                                                                                                 sin-cos-Wechsel: α Zahl im Gradmaß!
Wurzelkonvergenz: \forall c \in \mathbb{R}^+:
                                                           Quotientenkriterium Fassung 1
                                                                                                                        6 Exponentialfunktion
                                                                                                                                                                                                                                                 sin(90^{\circ} - \alpha) = cos(\alpha)
                                                                                                                                                                                     \underline{f}: D \to \mathbb{R} stetig in \zeta \in D: f(x) \stackrel{x \to \zeta}{\longrightarrow} \zeta
\sqrt[n]{c} \xrightarrow{n \to \infty} 1, \sqrt[n]{n} \xrightarrow{n \to \infty} 1, \sqrt[n]{n!} \xrightarrow{n \to \infty} \infty
                                                           \sum_{k=1}^{\infty} a_k konvergiert absolut, falls es ein
                                                                                                                      -e^{x} := \exp(x) := \lim_{n \to \infty} (1 + \frac{x}{n})^{n}
                                                                                                                                                                                                                                                 cos(90^{\circ} - \alpha) = sin(\alpha)
                                                                                                                                                                                    Verknüpfung stetiger Funktionen f, g
                                                           1 < q \in \mathbb{R} gibt: \frac{|a_{n+1}|}{|a_n|} \le q \ \forall \ n > n_0.
4 Asymptotik
                                                                                                                        mit exp(x) : \mathbb{R} \to \mathbb{R}^+ (injektiv)
                                                                                                                                                                                                                                                 Im Bogenmaß:
                                                                                                                                                                                    D \to \mathbb{K}, D \subset \mathbb{K} jeweils stetig, dann gilt:.
                                                                                                                                                                                                                                                 90^{\circ} = \frac{\pi}{2},
                                                                                                                        Eigenschaften der Exponentialfunkti-
Landau-Symbole: Für (n \to \infty):
                                                                                                                                                                                   - f \pm g und f \cdot g jeweils stetig.
                                                           - Für a = 1 keine Aussage möglich
• f \in o(g) : \Leftrightarrow \lim_{n \to \infty} |f(n)/g(n)| = 0
                                                                                                                                                                                                                                                 \sin(\frac{\pi}{2} - x) = \cos(x),
                                                           - Für a > 1 Divergenz
                                                                                                                                                                                    - Ist g(x) \neq 0 \ \forall \ x \in D, dann \frac{1}{g} stetig.
                                                                                                                       - (Funktionalgleichung:) e^{x+y} = e^x e^y,
                                                                                                                                                                                                                                                 \cos(\frac{\pi}{2} - x) = \sin(x)
                                                           Quotientenkriterium Fassung 2
                                                                                                                       - (positiv:) \forall x : e^x \ge 1 + x, e^x > 0
\forall C > 0 \exists x_0 > 0 \forall x > x_0 : |f(x)| \le C|g(x)|
                                                                                                                                                                                    Bsp. stetiger Funktionen
                                                           \sum_{k=1}^{\infty} a_k konvergiert absolut, falls
                                                                                                                                                                                                                                                 Grad- zu Bogen-Maß
                                                                                                                       - (Eulersche Zahl:) e = e^1 \approx 2,7182818284
• f \in O(g) :\Leftrightarrow \lim_{n \to \infty} |f(n)/g(n)| < \infty
                                                                                                                                                                                   - Konstante Funktion f(x) = c ist stetig
                                                           \lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} =: a < 1 \text{ existiert.}
                                                                                                                                                                                                                                                 Bogenmaß=\frac{\pi}{180^{\circ}}· Gradmaß
                                                                                                                       - \forall x \in \mathbb{R}^+ \exists ! y : e^y = x
\exists C > 0 \exists x_0 > 0 \forall x > x_0 : |f(x)| \le C|g(x)|
                                                                                                                                                                                    p(x) = a_0 + a_1 x^1 + ... + a_n x^n ist stetig
                                                                                                                                                                                                                                                 Das ° wird entsprechend gekürzt.
                                                                                                                       -e^y = x \Rightarrow -(e^y) = -x
                                                           Für a = 1 keine Aussage und für a > 1
                                                                                                                                                                                    - Seien A, B, C \subseteq \mathbb{R}, g: A \to B, f: B \to C
                                                                                                                                                                                                                                                 2*pi-Periodizität k \in \mathbb{Z},
• f \in \Theta(g) : \Leftrightarrow f \in O(g) \land g \in O(f)
                                                                                                                       -e^n \xrightarrow{n \to \infty} \infty; \quad e^{-n} \xrightarrow{n \to \infty} 0
                                                           Divergenz
                                                                                                                                                                                    jeweils stetig. Dann ist f \circ g stetig auf A.
                                                                                                                                                                                                                                                 \sin(x + 2k\pi) = \sin(x)
                                                           Harmonische Reihe: H_n := \sum_{k=1}^n \frac{1}{k}
                                                                                                                        7 Logarithmus
                                                                                                                                                                                    - \exp(x) und a^x sind stetig.
\exists C_1, C_2, x_0 > 0 \ \forall \ x > x_0 :
                                                                                                                                                                                                                                                 cos(x + 2k\pi) = cos(x)
C_1 |g(x)| \le |f(x)| \le C_2 |g(x)|
                                                           Geometrische Reihe:
                                                                                                                        natürlicher Logarithmus Sei x \in \mathbb{R}^+. Zwischenwertsatz f : [a,b] \to \mathbb{R} stetig.
                                                                                                                                                                                                                                                 Eulersche Formel
                                                           |q| < 1: \sum_{k=0}^{\infty} q^k = \frac{1}{1-a}
                                                                                                                                                                                                                                                 e^{ix} = \cos(x) + i\sin(x)
• f \sim g :\Leftrightarrow \lim_{n \to \infty} f(n)/g(n) = 1
                                                                                                                        Existiert ein y \in \mathbb{R} mit e^y = x, so heißt Fassung 1: Seien m = \inf\{f(x)|x \in [a,b]\}
```

	$-\sin(x) = \cos(x), \cos(x) = -\sin(x)$	b) Die <i>k</i> -te Ableitung einer <i>k</i> -fach diffe-
Weitere Gleichungen	$-\tan'(x) = 1 + \tan(x)^2$	renzierbaren Funktion ist definiert als:
$e^{-ix} = \cos(x) - i\sin(x)$	$-\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$	$f^{(1)} := f' \text{ und } f^{(k)} := \frac{d^k f}{dx^k}(x) := f^{(k-1)'}$
$\cos(x) = \Re(e^{ix}) = \frac{e^{ix} + e^{-ix}}{2}$	$-\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$	c) f heisst k -fach stetig differenzierbar,
$\sin(x) = \operatorname{Im}(e^{ix}) = \frac{e^{ix} - e^{-ix}}{2i}$	$-\arctan'(x) = \frac{1}{1+x^2},$	wenn $f^{(k)}$ stetig ist. Taylorpolynom
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	Diffbar. ist stetig: $f: D \to \mathbb{R}$ differen-	$f(a,b) \to \mathbb{R}$ mind. $(n+1)$ -fach stetig diffe-
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	zierbar $\Rightarrow f$ stetig.	renzierbar.
$e^{i\pi/2} = \cos(\pi/2) + i\sin(\pi/2) = i$	11 Lokale Extrema	Dann gilt: $\forall x_0 \in (a, b)$:
$e^{i\pi} = \cos(\pi) + i\sin(\pi) = -1$	$D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ hat ein lokales Maximum/Minimum in $x_0 \in D$:	$f(x) = \sum_{k=0}^{n} \frac{h^k}{k!} f^{(k)}(x) + R_{n+1}(x, h)$
$e^{2\pi i}=1$ 10 Differenzierbarkeit	$\exists \varepsilon > 0 \forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \subseteq D$:	$R_{n+1}(x;x_0,f) := \frac{(\eta)^{n+1}}{(n+1)!} f^{(n+1)}(x-x_0)$
$f: D \to \mathbb{R}, D \subseteq R$ differenzierbar in x_0 :	$f(x) \le f(x_0) \lor f(x) \ge f(x_0)$ Der Oberbegriff für lokale Maxima bzw.	$mit \ \eta \in (0,1)$
$\exists a \in \mathbb{R}$:	Minima ist lokale Extrema	a) $T_n(x;x_0,f) = \sum_{k=0}^n \frac{(x-x_0)^k}{k!} f^{(k)}(x_0)$
$f(x+h) = f(x) + a \cdot h + r(h), \ r \in o(h)$	$f: D \to \mathbb{R}$ ist differenzierbar auf D. Falls	heißt Taylor-Polynom n -ten Grades von
$a =: f'(x_0)$ heisst Ableitung von f im	$f(x_0)$ mit $x_0 \in D$ ein lokales Extremum	f um den Punkt x .
Punkt x_0 f differenzierbar wenn f in $\forall x_0 \in D$ dif-	ist, dann gilt: $f'(x_0) = 0$	- (h-Darstelung:)
ferenzierbar ist.	Satz von Rolle $f:[a,b] \to \mathbb{R}, [a,b] \subseteq \mathbb{R},$	
D ist dabei der Definitionsbereich von f .	und $f(a) = f(b) = 0$.	$f(x_0 + h) \approx \sum_{k=0}^{n} \frac{h^k}{k!} f^{(k)}(x_0)$
Alternativ: $f'(x) := \frac{d}{dx} f(x) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$	Dann $\exists x_0 \in (a,b): f'(x_0) = 0$ Mittelwertsatz:	b) $R_{n+1}(x;x_0,f)$ heißt Lagrange-Restglied.
Summenformel $D \subseteq \mathbb{R}$, $f,g:D \to \mathbb{R}$ je-	Fassung 1: $f: D \to \mathbb{R}$, $[a,b] \subset D$, dann	c)Ist <i>f</i> beliebig oft differenzierbar,
weils differenzierbar, $\Rightarrow f + g$ differenzier-	$\exists \ \xi \ \epsilon \ (a,b) : f'(\xi) = \frac{f(a) - f(b)}{a - b}$	$T(x;x_0,f) = \sum_{k=0}^{\infty} \frac{(x-x_0)^k}{k!} f^{(k)}(x_0)$ heißt
bar mit $(f+g)'(x) = f'(x) + g'(x)$	Fassung 2: $f: D \to \mathbb{R}, [x_0, x_0 + h] \subseteq D,$	Taylor-Reihe.
Ableitung konstanter Funktionen $D \subseteq \mathbb{R}$	dann $\exists \eta \in (0,1)$:	12 Integration
\mathbb{R} , sei $f: D \to \mathbb{R}$ differenzierbar und $c \in \mathbb{R}$ eine Konstante. Dann ist auch $cf(x)$ diffe-	$f'(x_0 + h) = f(x_0) + hf'(x_0 + \eta h)$	Riemann-integrierbare Funktionen Je-
renzierbar. $(cf(x))' = cf(x)'$	Konstantheit aus der Ableitung:	de stetige Funktion $f:[a,b] \to \mathbb{R}$ ist
Linearität der Ableitung	$f:(a,b) \to \mathbb{R}$ differenzierbar und $\forall x \in (a,b): f'(x) = 0$ dann ist f konstant	Riemann-integrierbar auf $[a,b]$ Monotonieregel: f,g jeweils stückweise
$(\lambda f + \mu g)' = \lambda f' + \mu g'$	(a,b): $f'(x) = 0$, dann ist f konstant. l'Hospital f , g jeweils differenzierbar auf	stetig auf $[a,b] \subseteq \mathbb{R}$,
Leibnizsche Produktregel $D \subseteq \mathbb{R}$,	dem offenen Interval <i>I</i> ,	mit $f(x) \le g(x)$, $\forall x \in [a, b]$. Dann gilt:
$f,g:D\to\mathbb{R}$, jeweils differenzierbar,	$mit \ \forall x \in I : g(x) \neq 0.$	$\int_{a}^{b} f(x)dx \geqslant \int_{a}^{b} g(x)dx$
\Rightarrow $f \cdot g$ differenzierbar	Für $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = a$	
mit $(fg)'(x) = f'(x)g(x) + f(x)g'(x)$ Kettenregel $D \subseteq \mathbb{R}$, $E \subseteq \mathbb{R}$, $f : D \to \mathbb{R}$,	mit $a \in \{0, \pm \infty\}, c \in I$, gilt:	und $\left \int_a^b f(x) dx \right \le \int_a^b f(x) dx$
$g: E \to \mathbb{R}$ jeweils differenzierbare.	$\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f(x)'}{g(x)'},$	Linearität: α , $\beta \in \mathbb{R}$, f , g : $[a,b] \to \mathbb{R}$:
Dann ist $f \circ g : E \to \mathbb{R}$ differenzierbar	sofern $\frac{f(x)'}{g(x)'}$ existiert.	$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx$
$f(g(x))' = f'(g(x)) \cdot g'(x)$ Quotientenregel Seien $f, g : D \to \mathbb{R}$ dif-	Ableitung \rightarrow Monotonie	$= \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx$
ferenzierbar und $g(x) \neq 0 \ \forall \ x \in D$, dann	Sei $f:(a,b) \to \mathbb{R}$ differenzierbar.	Integral-Unterteilung: $a \le c \le b$
list auch f/g differenzierbar auf D, mit:	a) Ist $f'(x) \ge 0 \ \forall \ x \in (a,b)$, so ist f mono-	Sei $f : [a, b] \to \mathbb{R}$ stetig
$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f(x)'g(x) - f(x)g'(x)}{g^2(x)}$	ton wachsend.	$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$
ux g(x) g²(x) Umkahrragal	b) Ist $f'(x) > 0 \ \forall \ x \in (a, b)$, so ist f streng monoton wachsend.	Stammfunktion $F'(x) = f(x)$, F heisst
Umkehrregel: $f: D \to \mathbb{R}, \ f(x) \neq 0 \ \forall \ x \in D \ \text{ist streng mo-}$		Stammfunktion $F(x) = f(x)$, F heisst Stammfunktion von f
noton und differenzierbar. Dann ist auch	ton fallend.	$\int f(x)dx = F(x) + C$
die Umkehrfunktion f^{-1} differenzierbar.	d) Ist $f'(x) < 0 \ \forall \ x \in (a, b)$, so ist streng f monoton fallend.	partielle Integration
Ableitung: $f^{-1}(y)' = \frac{1}{f'(f^{-1}(y))} = \frac{1}{f'(x)}$	Verallgemeinerter Mittelwertsatz f, g:	$\int u'(x)v(x)dx = u(x)v(x) - \int u(x)v'(x)dx$
$mit \ y = f(x)$	$(a,b) \to \mathbb{R}$ jeweils differenzierbar und	Flächeninhalt $f : [a, b] \to \mathbb{R}$ nichtnegati-
Ableitungen div. Funktionen	g'(x) hat keine Nullstellen auf (a,b) .	ve Fkt.
$\frac{d}{dx}e^x = e^x, \frac{d}{dx}a^x = \log(a)a^x$	$\forall x \in (a,b) \forall h \in \mathbb{R} \setminus \{0\} \exists \eta \in (0,1):$ $f(x+h)-f(x) \qquad f'(x+\eta h)$	$\int_{a}^{b} f(x)dx = F(a) - F(b)$ Fundamentalsatz der Analysis Sei F dif-
$\forall r \in \mathbb{R} : \frac{d}{dx}x^r = rx^{r-1}$	$\frac{f(x+h)-f(x)}{g(x+h)-g(x)} = \frac{f'(x+\eta h)}{g'(x+\eta h)}$	ferenzierbar mit: $F'(x) = f(x)$:
$\frac{d}{dx}\sum_{k=0}^{n}a_kx^k = \sum_{k=1}^{n}k \cdot a_kx^{k-1}$	<i>k</i> -fache Differenzierbarkeit $D \subseteq \mathbb{R}, \ f: D \to \mathbb{R}$	$\int_{a}^{b} f(x)dx = F(b) - F(a).$
$\frac{d}{dx}\log(x) = \frac{1}{x}, \frac{d}{dx}\log_a(x) = \frac{1}{\log(a)x}$	a) f heisst (mindestens) k -fach differen-	Substitutionsregel Sei $a, b \in \mathbb{R}$
$-\sinh'(x) = \cosh(x), \cosh'(x) = \sinh(x)$	zierbar, wenn f differenzierbar und f'	$I \subseteq \mathbb{R}$ ein Intervall, $f: I\mathbb{R}$ stetig und

 $-\frac{d^n}{x^n}x^n = n!, \quad \frac{d^n}{x^n}\frac{1}{x} = \frac{(-1)^n n!}{x^{n+1}}$

 $-\sin'(x) = \cos(x), \quad \cos''(x) = -\sin(x)$

Analysis-Übersicht, Version 0.2.1 von Ádrian Danisch, page 3 of 3

```
oft differenzierbar,
\frac{(x-x_0)^k}{k!} f^{(k)}(x_0) heißt
                           tenvektor.
are Funktionen Je-
 f: [a,b] \to \mathbb{R} ist
[a,b]
 jeweils stückweise
 [a, b]. Dann gilt:
|f(x)|dx
f,g:[a,b]\to\mathbb{R}:
g(x)dx
ng: a \le c \le b
 +\int_{a}^{b}f(x)dx.
(x) = f(x), F heisst
v(x) - \int u(x)v'(x)dx
[b] \rightarrow \mathbb{R} nichtnegati-
er Analysis Sei F dif-
x) = f(x):
```

(mindestens) (k-1)-fach differenzierbar

b) Die k-te Ableitung einer k-fach diffe-

```
\partial_{x_i} \partial_{x_i} f := \frac{\partial}{\partial x_i} \left( \frac{\partial}{\partial x_i} f \right)
Satz von Schwarz Sei f: \mathbb{R}^n \to \mathbb{R}^m nach
jeder Variable zweimal partiell stetig dif-
ferenzierbar. Dann gilt:
\forall i, j : 1 \leq i, j \leq n, i \neq j :
14 Differentialgleichungen (ODE)
Lösungen einfacher ODEs:
```

lysis 1 - (Wachstumsgleichung:) $f'(x) = \lambda f(x), f(0) = a\lambda,$ **Lsg.:** $f(x) = ae^{\lambda x}$ - (Exlosion in endlicher Zeit:) $f'(x) = 1 + f(x)^2$, f(0) = 0Lsg.: f(x) = tan(x) $-f'(x) = \sqrt[3]{f(x)}, f(0) = 0$ - verschiedene Wikipedia-Artikel 15 Quellen: $f: I\mathbb{R}$ stetig und - Seiler W.: Vorlesungsskript Analysis I/II

 $\varphi: [a,b] \to I$ stetig differenzierbar.

 $\int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx$

13 Partielle Ableitungen

Variable, wenn:

 $J_f(x) =$

Uneigentliche Integrale Sei $f:(a,b)\mathbb{R}$,

 $=\lim_{\lambda\to a}\int_{\lambda}^{c}f(x)dx + \lim_{\mu\to b}\int_{c}^{\mu}f(x)dx$

 $f: \mathbb{R}^n \to \mathbb{R}^m$ heisst partiell differenzier-

bar im Punkt $x = (x_1, ..., x_n)$ nach der *i*-ten

in jeder Variablen partiell differenzier-

 $(\partial_{x_1} f_1(x) \quad \dots \quad \partial_{x_n} f_1(x))$

 $\partial_{x_1} f_m(x) \dots \partial_{x_n} f_m(x)$

- Für m = 1, ist die Jakobi-Matrix ein Spal-

 $f: \mathbb{R}^n \to \mathbb{R}^m$ partiell nach x_i diffe-

renzierbar. Ist zusätzlich $\partial x_i f$ partiell

nach x_i differenzierbar, so heißt die

partielle Ableitung von ∂x_i nach der

 $f_{x_i}(x) := \partial_{x_i} f(x) := \frac{\partial f}{\partial x_i}(x) := \frac{\partial}{\partial x_i} f(x)$

 $:= \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x)}{h}$

Jakobi-MatrixSei $f: \mathbb{R}^n \to \mathbb{R}^m$

Gradient Sei $f: \mathbb{R}^n \to \mathbb{R}$

 $\nabla f = (\partial_{x_1} f(x), ..., \partial_{x_n} f(x))$

Variablen x_i :

Der Gradient ist definiert als:

Die Jakobi-Matrix ist definiert als:

mit $a < \lambda < c < \mu < b$. (z.B. $a = -\infty$, $b = \infty$)

- Kohnen W.: Vorlesungsskript zur Analysis 1/2 und Funktionentheorie 1 - Rannacher R.: Vorlesungsskript Analy-

- Forster O.: Analysis einer reellen Veränin jeder Variablen partiell differenzier- derlichen

Ableitung höherer Ordnung Sei - Heuser H.: Lehrbuch der Analysis, Band - Ahmann, Escher: Analysis 1

> Gerhardt C.: Analysis 1 - Kanschat G.: Numerik 1-Skript

- Storch U., Wiebe: Arbeitsbuch zur Ana-

- Springer Taschenbuch (Bronstein)

- Brinkmann M.: Spickzettel für Analysis

- Pfister G., Kreußler B.: Mathematik für Informatiker

- Knuth, D.E.: Concrete Mathematics

Köthe A.: Vorlesungsskript Mathematik

- Rheinländer M.: Vorlesungs-Aufgaben

zur Mathematik für Informatiker 2