NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall¹* Pratul P. Srinivasan¹* Matthew Tancik¹* Jonathan T. Barron² Ravi Ramamoorthi³ Ren Ng¹

¹UC Berkeley ²Google Research ³UC San Diego

NeRF (Neural Radiance Field)

- Cool videos: https://www.matthewtancik.com/nerf
- The first continuous neural scene representation that is able to render high-resolution photorealistic novel views of real objects and scenes from RGB images captured in natural settings

NeRF (Neural Radiance Field)

- Synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views
- "underlying continuous volumetric scene function" = a fully-connected network
 - o Input: a single continuous 5D coordinate (spatial location (x, y, z) and viewing direction (θ, φ))
 - Output: the volume density and view-dependent emitted radiance at that spatial location.

Volume Rendering

- Create a 2D projection from a discretely sampled 3D data set
 - o Given camera poses and intrinsics, render a 2D image from a 3D volumetric representation

$$\sigma(\mathbf{x})$$
 probability of a ray terminating at an infinitesimal particle at location

$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$
 camera ray

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt \,, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s)) ds\right)$$
 volume density emitted color

volume density (independent of viewing direction d) emitted color (change with viewing direction d)

accumulated transmittance along the ray from t_n to t (Derivation here <u>link</u>)

View-dependent emitted radiance

Volume Rendering (discretized)

Numerically estimate this continuous integral

$$t_i \sim \mathcal{U}\left[t_n + \frac{i-1}{N}(t_f - t_n), \ t_n + \frac{i}{N}(t_f - t_n)\right]$$

t_n Draw uniform distribution

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) c_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

Network outputs

Improve the Quality

- Positional encoding
 - Map the input to high dimensional space before sending into the network
 - Preserve high frequency details
 - Do x, y, z separately to position(xyz) and d(ray direction)

$$\gamma(p) = (\sin(2^0 \pi p), \cos(2^0 \pi p), \cdots, \sin(2^{L-1} \pi p), \cos(2^{L-1} \pi p))$$

- Hierarchical volume sampling
 - Optimize two networks: one "coarse" and one "fine"
 - Use the output of the coarse network to adjust the sampling for the fine network
 - Compute the final rendered color of the ray using all the sample (fine + coarse)

$$\hat{C}_c(\mathbf{r}) = \sum_{i=1}^{N_c} w_i c_i, \quad w_i = T_i (1 - \exp(-\sigma_i \delta_i))$$

Higher weight, denser sample (for the fine network)

Network Structure

Camera ray direction with Positional encoding

Comparison

Implementation

- Camera poses/intrinsics/scene bounds from COLMAP
- Optimize a separate neural continuous volume representation network for each scene
- Loss function (image color difference):

$$\mathcal{L} = \sum_{\substack{\mathbf{r} \in \mathcal{R} \\ \text{rays}}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$
Coarse network output Fine network output output

Results

	Diffuse Synthetic 360° [29]			Realistic Synthetic 360°			Real Forward-Facing [20]		
Method	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	$SSIM\uparrow$	LPIPS↓	PSNR↑	SSIM↑	$LPIPS \downarrow$
SRN [30]	33.20	0.986	0.073	22.26	0.867	0.170	22.84	0.866	0.378
NV [16]	29.62	0.946	0.099	26.05	0.944	0.160	_	_	-
LLFF [20]	34.38	0.995	0.048	24.88	0.935	0.114	24.13	0.909	0.212
Ours	40.15	0.998	0.023	31.01	0.977	0.081	26.50	0.935	0.250

LPIPS is a perceptual metric: https://arxiv.org/pdf/1801.03924.pdf

