

Bifacial Cold Plates for High Powered Servers

Syracuse University

Background

- Increase power efficiency through a <u>water-cooled system</u>
- Air-cooling is limited in maximum heat removal

Air cooled configuration

Path of Heat Transfer

Enable 1000W chips from a current state of the art 600W chip

Contents

- 1. Specifications
- 2. Design Prototypes
- 3. Manufacturing
- 4. System Testing
- 5. Results

Specifications

	14 chip bottom side	1 chip top side			
Total heat created	112 W	1000 W			
Maximum component case operating temperature	358K	353K			
Flowrate	0.16 lpm	1.5 lpm			
Maximum pressure drop	< 1 bar				
Minimum wall thickness	100 microns				
Corrosion resistant, upholds electronics functions, inlet temperature 40°C, maximum total casing height of 48mm					

Path of Design

Initial Cold Plate Design

Final Cold Plate Design

Manufactured Cold Plate

Design Concepts (Front Side)

- Constant heat flux
- Top surface insulated
- Total height = 10 mm
- Flowrate = 1.5 lpm per kW
- Inlet Temperature = 40 Celsius
- One vertical channel

Simulation Results

Global Temperature

Assembly

Copper

Brass

Better thermal conductivity

Easier to manufacture

In conclusion, brass was the choice of material used for the cold plate due the ease in manufacturing

Part Manufacturing

System Testing

Experimental Results

Theoretical Results

What we learned

- Theoretical solution of a cold plate
- Application of a heat sink through FLUENT
- Manufacturing restrictions
- Data collection and uncertainty analysis

Special Thanks

- Microsoft Team: Dr. Kathryn Oseen-Senda, Dr. Oscar Farias Moguel, Courtney Huddleston
- Syracuse Advisor: Dr. Shalabh Maroo
- Professors: Dr. Daddis, Dr. Sarimurat, Dr. Bogucz, Dr. Deyhim
- Machine Technicians: Andrew Newman, Thomas Braga

Microsoft

Questions and Discussion

Design Theory of internal flow of a rectangular channel

Channel width / height	Nu of constant heat flux	Friction factor, f
1	3.61	59.92/Re
2	4.12	62.20/Re
3	4.79	68.36/Re
4	5.33	72.92/Re
6	6.05	73.80/Re
8	6.49	82.32/Re
∞	8.24	96.00/Re

$$h = \frac{Nuk_{water}}{D_h}$$

$$\Delta P = rac{fW_{plate}v^2}{2D_h}$$
 $\Delta P < 1bar$

$$7$$

$$T_{case} = T_s + \frac{\dot{q}}{k_{IHS}L_{IHS}}$$

$$T_{case} < 80C$$

$$h = rac{Nuk_{water}}{D_h}
ightharpoonup rac{4}{R_{tot} = R_{conduction} + R_{convection}}{R_{tot} = rac{H - rac{h}{2}}{K_{cp}(sW)} + rac{1}{\eta h A_t}}$$

$$T_e = \frac{Q}{channels * \dot{m} * c_p}$$

$$\leftarrow \frac{(T_s - T_e)}{(T_s - T_i)} = e^{\frac{-1}{\dot{m}c_pR_{tot}}}$$

Design Concepts (Back Side)

- Constant heat flux
- Top surface insulated
- Total height = 10 mm
- Flowrate = 0.16 lpm per kW
- Inlet Temperature = 40 Celsius
- One vertical channel

Simulation Results (Single Channel)

Pressure Drop Global Temperature

Simulation Results

Pressure Drop

Temperature
Contour 2

3.333e+02

3.292e+02

3.272e+02

3.252e+02

3.232e+02

3.191e+02

3.171e+02

3.150e+02

3.130e+02

[K]

Global Temperature

Heat Transfer Coefficient Velocity (Cross-Section)

Simulation Results (Back Side)

Heat Transfer Coefficient

Global Temperature

Risk Management

- Corrosion: **RPN** = **144**
- Material Fatigue (Heat): **RPN = 78**
- Fin Deformation: **RPN** = **42**
- Soldering reliability: RPN = 64
- Blockage of Channels: RPN = 128
- Water exposure to dielectric parts:

RPN = 162

Bill of Materials

Purchacing List						
ltem	Notes	Number of items	Cost per part	Total Cost		
Brass block		1	\$ 57.45	\$ 57.45		
		1	\$ 93.52	\$ 93.52		
insertion heater for copper block	0.5 diam, 6 in length, 1000W, get 120V	1	\$ 140.77	\$ 140.77		
Thermocouple for pipes	Type J	3	\$ 27.03	\$ 81.09		
Plastic pipe	6 ft cut into two	1	\$ 5.07	\$ 5.07		
Diverting valve	Works as tee	1	\$ 28.46	\$ 28.46		
Flow valve	control flowrate	1	\$ 19.74	\$ 19.74		
Elbow connector	Sink to plastic pipe	2	\$ 6.60	\$ 13.20		
Arduino MAX6675 connector		1	\$ 20.77	\$ 20.77		
Arduino uno		1	\$ 27.60	\$ 27.60		
Bread board		1	\$ 8.99	\$ 8.99		
Thermal paste		1	\$ 5.38	\$ 5.38		
Gasket	Weather-Resistant EPDM Rubber Sheet, 6" x 6", 1/64" Thick	1	\$ 1.36	\$ 1.36		
Housing unit	SU machine shop materials	2	\$ 21.97	\$ 43.94		
Fiberglass insulation		1	\$ 21.00	\$ 21.00		
Heat sink/ cold plate	Physics machine shop: this parts total cost = 284.65	1	\$ 100.66	\$ 100.66		
		1	\$ 60.81	\$ 60.81		
		5	\$ 18.95	\$ 94.75		
		1	\$ 28.43	\$ 28.43		
Screws		1	\$ 6.35	\$ 6.35		
Shipping Costs				\$ 87.09		
Total Cost				\$ 946.43		

Drawings of Housing Unit

Drawing of Cold Plate

