LECTURE 8 LINEAR, BILINEAR AND QUADRATIC FORMS

1. Linear forms

In this section we consider linear mappings between a linear space and the scalar space.

DEFINITION. Let $(V, +, \cdot)$ be a linear space.

- a) A linear mapping $f: V \to \mathbb{R}$ is called a *linear form* or a *linear functional*.
- b) The linear space $L(V; \mathbb{R})$ of all linear forms is called the *dual* of V and is denoted V^* .

Proposition 1.1. Let $(V, +, \cdot)$ be a finite-dimensional linear space. Then V^* is also finite-dimensional and dim $V^* = \dim V$.

Proposition 1.2. Let $(V, +, \cdot)$ be a finite-dimensional linear space. If $\mathbf{v} \in V \setminus \{\mathbf{0}_V\}$ then there exists $f \in V^*$ such that $f(\mathbf{v}) \neq 0$.

Remark. An easy consequence of the above result is that if $\mathbf{u}, \mathbf{v} \in V$ and $\mathbf{u} \neq \mathbf{v}$ then there exists $f \in V^*$ such that $f(\mathbf{u}) \neq f(\mathbf{v})$.

Definition. Let $(V, +, \cdot)$ be a linear space.

- a) The dual of V^* , denoted by V^{**} , is called the *bidual* of V.
- **b**) The function $\psi: V \to V^{**}$ defined by

$$\psi(\mathbf{v})(f) := f(\mathbf{v}), \ \mathbf{v} \in V, \ f \in V^*$$

is called the evaluation map.

The evaluation map is well-defined and it is linear:

a. It is clear that $\psi(\mathbf{v}): V^* \to \mathbb{R}$. If $\alpha, \beta \in \mathbb{R}$ and $f, g \in V^*$, then

$$\psi(\mathbf{v})(\alpha f + \beta g) = (\alpha f + \beta g)(\mathbf{v}) = \alpha f(\mathbf{v}) + \beta g(\mathbf{v}) = \alpha \psi(\mathbf{v})(f) + \beta \psi(\mathbf{v})(g).$$

Hence $\psi(\mathbf{v})$ is linear, i.e. $\psi(\mathbf{v}) \in V^{**}$. Therefore, ψ is well-defined.

b. If $\alpha, \beta \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in V$, then

$$\psi(\alpha \mathbf{u} + \beta \mathbf{v})(f) = f(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha f(\mathbf{u}) + \beta f(\mathbf{v}) = \alpha \psi(\mathbf{u})(f) + \beta \psi(\mathbf{v})(f), \ \forall f \in V^*.$$

This means that $\psi(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha \psi(\mathbf{u}) + \beta \psi(\mathbf{v})$. In conclusion, ψ is linear.

If *V* is finite-dimensional, then ψ is a linear isomorphism. Indeed, if $\mathbf{v} \in \ker \psi$, then

$$f(\mathbf{v}) = 0, \ \forall f \in V^*$$
.

Supposing that $\mathbf{v} \neq \mathbf{0}_V$ would contradict Proposition 1.2, which asserts the existence of some $f \in V^*$ such that $f(\mathbf{v}) \neq 0$. Therefore, \mathbf{v} should be equal to $\mathbf{0}_V$. This implies that $\ker \psi = \{\mathbf{0}_V\}$, *i.e.* ψ is injective.

On the other hand, by Proposition 1.1, $\dim V^{**} = \dim V$. By the dimension theorem, $\operatorname{rank} \psi = \dim V = \dim V^{**}$, so ψ is surjective, too.

In conclusion, ψ is a linear isomorphism. In this case, ψ is also called the *canonical isomorphism* between V and V^{**} .

DEFINITION. Let $(V, +, \cdot)$ be a linear space. A linear subspace $W \subseteq V$ is called a (vector) hyperplane if there exists $f \in V^* \setminus \{\mathbf{0}_{V^*}\}$ such that $\ker f = W$.

Proposition 1.3. If $(V, +, \cdot)$ is a finite-dimensional linear space with dim $V = n \in \mathbb{N}^*$, then a linear subspace $W \subseteq V$ is a hyperplane if and only if dim W = n - 1.

PROOF. If $W = \ker f$ for some linear functional $f \in V^* \setminus \{\mathbf{0}_{V^*}\}$, then by the dimension theorem,

$$\dim W = \dim(\ker f) = \dim V - \dim(\operatorname{Im} f) = n - 1,$$

because $f \neq \mathbf{0}_{V^*}$ and thus Im $f = \mathbb{R}$.

Conversely, if dim W = n - 1, there exists a basis $B = \{\mathbf{b}_1, \dots, \mathbf{b}_{n-1}, \mathbf{b}_n\}$ of V such that $\text{Lin}\{\mathbf{b}_1, \dots, \mathbf{b}_{n-1}\} = W$. Taking $f : V \to \mathbb{R}$ defined by

$$f(\alpha_1\mathbf{b}_1+\cdots+\alpha_n\mathbf{b}_n)\coloneqq\alpha_n$$

for $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, we have $f \neq \mathbf{0}_{V^*}$ and

$$f(\mathbf{b}_1) = \cdots = f(\mathbf{b}_{n-1}) = 0,$$

implying that $W \subseteq \ker f$ (*i.e.*, $f(\mathbf{v}) = 0$, $\forall \mathbf{v} \in W$). On the other hand, by the direct implication, $\dim(\ker f) = n - 1$ and consequently $W = \ker f$.

Let $(V, +, \cdot)$ be a finite-dimensional linear space and $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ a basis of V. If W is a hyperplane with $W = \ker f$, where $f \in V^* \setminus \{\mathbf{0}_{V^*}\}$, let $\beta_1 := f(\mathbf{b}_1), \dots, \beta_n := f(\mathbf{b}_n)$. Then the condition $\mathbf{v} = x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n \in \ker f$ is characterized by the equation

$$\beta_1 x_1 + \dots + \beta_n x_n = 0. \tag{1}$$

Hence

$$W = \{x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n \in V \mid \beta_1 x_1 + \dots + \beta_n x_n = 0\}.$$
 (2)

Conversely, having $\beta_1, \ldots, \beta_n \in \mathbb{R}$, not all 0, the subset of V defined by the above relation is a hyperplane of V.

One can show that any linear subspace of V (not only hyperplanes) can be characterized by systems of equations of form (1).

If $V = \mathbb{R}^n$ and B is the canonical basis, relation (2) can be written as

$$W = \{(x_1, ..., x_n) \in \mathbb{R}^n \mid \beta_1 x_1 + \cdots + \beta_n x_n = 0\}.$$

In the particular cases n = 2 and n = 3, equation (1) becomes the equation of a (1-dimensional) line, respectively a (2-dimensional) plane passing through the origin.

The following notion allows us to characterize all the lines (when n = 2) and planes (when n = 3), not necessarily those passing through the origin.

DEFINITION. Let $(V, +, \cdot)$ be a linear space. A function $f: V \to \mathbb{R}$ is called an *affine functional* if there exist a linear functional $f_0 \in V^*$ and a constant $c \in \mathbb{R}$ such that $f(\mathbf{v}) = f_0(\mathbf{v}) + c$, $\forall \mathbf{v} \in V$.

For an affine functional $f: V \to \mathbb{R}$ one can define its *kernel* in the same way as for linear functionals, *i.e.*

$$\ker f := \{ \mathbf{v} \in V \mid f(\mathbf{v}) = 0 \}.$$

DEFINITION. Let $(V, +, \cdot)$ be a linear space. A subset $U \subseteq V$ is called an *affine hyperplane* if there exists a non-constant affine functional $f: V \to \mathbb{R}$ such that $\ker f = U$.

In other words, U is affine hyperplane if there exist a vector hyperplane W and a vector $\mathbf{v}_0 \in V$ such that

$$U = W + \mathbf{v}_0 := \{ \mathbf{v} + \mathbf{v}_0 \mid \mathbf{v} \in W \}.$$

If V is finite-dimensional with a basis $B = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$, then affine hyperplanes are given by subsets of the form

$$U = \{x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n \in V \mid \beta_1 x_1 + \dots + \beta_n x_n + c = 0\},\$$

where $c, \beta_1, \ldots, \beta_n \in \mathbb{R}$.

In the cases n = 2 and n = 3, the affine hyperplanes are the lines, respectively the planes.

2. Bilinear forms

DEFINITION. Let $(V, +, \cdot)$ and $(W, +, \cdot)$ two linear spaces. A function $g: V \times W \to \mathbb{R}$ is called a *bilinear form* (*bilinear map/mapping*) on $V \times W$ if the following conditions are fulfilled:

- (i) $g(\alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w}) = \alpha g(\mathbf{u}, \mathbf{w}) + \beta g(\mathbf{v}, \mathbf{w}), \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{u}, \mathbf{v} \in V, \forall \mathbf{w} \in W;$
- (ii) $g(\mathbf{v}, \lambda \mathbf{w} + \mu \mathbf{z}) = \lambda g(\mathbf{v}, \mathbf{w}) + \mu g(\mathbf{v}, \mathbf{z}), \forall \lambda, \mu \in \mathbb{R}, \forall \mathbf{v} \in V, \forall \mathbf{w}, \mathbf{z} \in W.$

In the case W = V, a bilinear form on $V \times V$ is also called *bilinear form* (functional, map/mapping) on V.

Suppose now that V and W are finite-dimensional, with bases $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\bar{B} = \{\bar{\mathbf{b}}_1, \dots, \bar{\mathbf{b}}_m\}$ on V, respectively W. If $\mathbf{v} \in V$ and $\mathbf{w} \in W$ having $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ and $\beta_1, \dots, \beta_m \in \mathbb{R}$ as coordinates with respect to the bases B, respectively \bar{B} , then

$$g(\mathbf{v}, \mathbf{w}) = g\left(\sum_{i=1}^{n} \alpha_i \mathbf{b}_i, \sum_{j=1}^{m} \beta_j \bar{\mathbf{b}}_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j g(\mathbf{b}_i, \bar{\mathbf{b}}_j).$$

The scalars $a_{ij} := g(\mathbf{b}_i, \bar{\mathbf{b}}_j)$, $1 \le i \le n$, $1 \le j \le m$ are called the *coefficients* of the bilinear form g with respect to the bases B and \bar{B} ; the matrix $A_{B,\bar{B}}^g := (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$ in \mathcal{M}_{nm} is called the *matrix of the bilinear form g* with respect to the bases B, \bar{B} .

If $B' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$ is another basis of V and $\bar{B}' = \{\bar{\mathbf{b}}'_1, \dots, \bar{\mathbf{b}}'_m\}$ is another basis of W, let us denote $S = (s_{ij})_{1 \le i, j \le n} \in \mathcal{M}_n$ the transition matrix from B to B' and $\bar{S} = (\bar{s}_{ij})_{1 \le i, j \le m} \in \mathcal{M}_m$ the transition matrix from \bar{B} to \bar{B}' . Then the matrix of q with respect to the bases B' and \bar{B}' can be written as

$$A_{B',\bar{B}'}^g = S \cdot A_{B,\bar{B}}^g \cdot \bar{S}^{\mathrm{T}}.$$

It can be proven that rank $A_{B',\bar{B}'}^g = \operatorname{rank} A_{B,\bar{B}}^g$, so the rank of the matrix of the bilinear form doesn't depend on the bases of reference. This commun value is called the *rank* of *g* and is denoted by rank *g*.

Fixing $\mathbf{w} \in W$, the bilinear form $g: V \times W \to \mathbb{R}$ defines a linear functional $f_{\mathbf{w}}: V \to \mathbb{R}$, by

$$f_{\mathbf{w}}(\mathbf{v}) := q(\mathbf{v}, \mathbf{w}), \ \mathbf{v} \in V.$$

Allowing now **w** to variate, the mapping $\mathbf{w} \mapsto f_{\mathbf{w}}$ defines a linear operator $g' : W \to V^*$. In a similar way, one can define a linear operator $g'' : V \to W^*$ by $g''(\mathbf{v}) := h_{\mathbf{v}}$, where the linear functional $h_{\mathbf{v}} \in W^*$ is introduced by

$$h_{\mathbf{v}}(\mathbf{w}) := q(\mathbf{v}, \mathbf{w}), \ \mathbf{w} \in V.$$

DEFINITION. Let $g: V \times W \to \mathbb{R}$ be a bilinear form and the associated linear operators $g': W \to V^*$ and $g'': V \to W^*$ introduced above. The linear subspace $\ker g' \subseteq W$ is called the *right kernel* of g, while the linear subspace $\ker g'' \subseteq V$ is called the *left kernel* of g.

If $Ker(q') = \{\mathbf{0}_W\}$ and $Ker(q'') = \{\mathbf{0}_V\}$, then the bilinear form q is called *non-degenerate*.

Definition. A bilinear form $g: V \times V \to \mathbb{R}$ is called *symmetric* if

$$q(\mathbf{u}, \mathbf{v}) = q(\mathbf{v}, \mathbf{u}), \forall \mathbf{u}, \mathbf{v} \in V,$$

respectively antisymmetric if

$$g(\mathbf{u}, \mathbf{v}) = -g(\mathbf{v}, \mathbf{u}), \forall \mathbf{u}, \mathbf{v} \in V.$$

Proposition 2.1. Let $g: V \times V \to \mathbb{R}$ be a symmetric bilinear form or an antisymmetric linear form. Then its right kernel coincides with its left kernel.

For such a bilinear form, the left kernel (which coincides with the right kernel) is called the kernel of g and is denoted by $\ker g$.

The next result plays a similar role to symmetric bilinear forms as does the dimension theorem for linear operators.

Proposition 2.2. Let $(V, +, \cdot)$ be a finite-dimensional linear space and $g: V \times V \to K$ a symmetric bilinear form. Then

$$\operatorname{rank} g + \dim (\ker g) = \dim V.$$

Remark. By the above result, a necessary and sufficient condition for a symmetric bilinear form to be non-degenerate is that rank $q = \dim V$.

Definition. Let $g: V \times V \to \mathbb{R}$ be a symmetric bilinear form.

- a) Two vectors $\mathbf{u}, \mathbf{v} \in V$ are called *orthogonal* (or *conjugate*) with respect to q if $q(\mathbf{u}, \mathbf{v}) = 0$.
- **b**) If *U* is a non-empty subset of *V*, we say that *U* is *orthogonal* with respect to g (or g-orthogonal) if $g(\mathbf{u}, \mathbf{v}) = 0$ for any distinct $\mathbf{u}, \mathbf{v} \in U$.
- c) If U is a non-empty subset of V, the set

$$\{\mathbf{v} \in V \mid g(\mathbf{u}, \mathbf{v}) = 0, \ \forall \mathbf{u} \in U\}$$

is a linear subspace of V, called the orthogonal complement of U with respect to q, denoted $U^{\perp g}$.

Remark. If *W* is a finite dimensional subspace of *V* with $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ a basis of *W*, then $\mathbf{v} \in W^{\perp g}$ if and only if $g(\mathbf{b}_k, \mathbf{v}) = 0$, $\forall l \in \{1, \dots, n\}$.

Theorem 2.3. Let $(V, +, \cdot)$ be a finite-dimensional linear space and $g: V \times V \to \mathbb{R}$ a symmetric bilinear form. If $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ is a basis of V which is g-orthogonal, then rank g is precisely the number of elements among $g(\mathbf{b}_1, \mathbf{b}_1), g(\mathbf{b}_2, \mathbf{b}_2), \ldots, g(\mathbf{b}_n, \mathbf{b}_n)$ which are non-zero.

In fact, the number of positive values (and negative values) among $g(\mathbf{b}_1, \mathbf{b}_1), g(\mathbf{b}_2, \mathbf{b}_2), ..., g(\mathbf{b}_n, \mathbf{b}_n)$ is invariant with respect to B, as the following result asserts:

Theorem 2.4 (Sylvester's law of inertia). Let $(V, +, \cdot)$ be a finite-dimensional linear space and $g: V \times V \to \mathbb{R}$ a symmetric bilinear form. Then there exist $p, q, r \in \mathbb{N}$ such that for every g-orthogonal basis $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of V, p, q and r represent the number of positive, negative, respectively null elements among $g(\mathbf{b}_1, \mathbf{b}_1), g(\mathbf{b}_2, \mathbf{b}_2), \dots, g(\mathbf{b}_n, \mathbf{b}_n)$.

The triple (p, q, r) is called the *signature* of g. Of course, p + q + r = n ($n = \dim V$); moreover, by Theorem 2.3, rank q = p + q.

3. Quadratic forms

DEFINITION. Let $(V, +, \cdot)$ be a linear space and $g: V \times V \to \mathbb{R}$ a symmetric bilinear form. The function $h: V \to \mathbb{R}$, defined by

$$h(\mathbf{v}) \coloneqq g(\mathbf{v}, \mathbf{v}), \ \mathbf{v} \in V$$

is called the *quadratic form* (functional) associated to *q*.

Remark. Since $h(\mathbf{u} + \mathbf{v}) = g(\mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v}) = g(\mathbf{u}, \mathbf{u}) + g(\mathbf{u}, \mathbf{v}) + g(\mathbf{v}, \mathbf{u}) + g(\mathbf{v}, \mathbf{v})$ and $g(\mathbf{u}, \mathbf{v}) = g(\mathbf{v}, \mathbf{u})$, we have

$$h(\mathbf{u} + \mathbf{v}) = h(\mathbf{u}) + 2g(\mathbf{u}, \mathbf{v}) + h(\mathbf{v}), \ \forall \mathbf{u}, \mathbf{v} \in V.$$

From this formula we can retreive *q* by knowing *h*:

$$g(\mathbf{u}, \mathbf{v}) = \frac{1}{2} [h(\mathbf{u} + \mathbf{v}) - h(\mathbf{u}) - h(\mathbf{v})], \ \forall \mathbf{u}, \mathbf{v} \in V$$

or

$$g(\mathbf{u}, \mathbf{v}) = \frac{1}{4} [h(\mathbf{u} + \mathbf{v}) - h(\mathbf{u} - \mathbf{v})], \ \forall \mathbf{u}, \mathbf{v} \in V.$$

Suppose now that V is a finite-dimensional space and $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis of V. Let $A_{B,B}^g = (a_{ij})_{1 \le i,j \le n}$ be the matrix of g with respect to B. If $x_1, \dots, x_n \in \mathbb{R}$ are the coefficients of a vector $\mathbf{v} \in V$ with respect to B, then

$$h(\mathbf{v}) = h(x_1\mathbf{b}_1 + \dots + x_n\mathbf{b}_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}x_ix_j.$$

The right-hand side of this relation is a homogeneous polynomial of degree 2, called the *quadratic polynomial* associated to the quadratic form h and the basis B. The determinant of the symmetric matrix $A_{B,B}^g$ is invariant with respect to the basis B and is called the *discriminant* of h.

We say that h is a non-degenerate quadratic form if g is a non-degenerate bilinear functional form, i.e. the discriminant of h is not zero (rank $A_{B,B}^g = \operatorname{rank} g = n$). Otherwise, we say that h is a degenerate quadratic form.

If (p,q,r) is the signature of q, we also call it the *signature* of the quadratic form h.

DEFINITION. Let $(V, +, \cdot)$ be a finite-dimensional linear space and $h: V \to V$ a quadratic form associated to some symmetric bilinear form $g: V \times V \to \mathbb{R}$. If B is a basis of V such that the matrix of g is diagonal, we call *canonical* (reduced) form of h the quadratic polynomial associated to h and h. A canonical form of h is called *normal* if the diagonal matrix associated to h has on its diagonal only the elements 1, h and 0.

If $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis of V giving a canonical form $\omega_1 x_1^2 + \omega_2 x_2^2 + \dots + \omega_n x_n^2$ of h, then $B' = \{c_1 \mathbf{b}_1, \dots, c_n \mathbf{b}_n\}$ gives a normal form of h, where $c_i = 1$ if $\omega_i = 0$, while $c_i = \frac{1}{\sqrt{|\omega_i|}}$ if $\omega_i \neq 0$, for $1 \le i \le n$.

Theorem 3.1 (Gauss method of reducing a quadratic form). Let $(V, +, \cdot)$ be an n-dimensional linear space and $h: V \to \mathbb{R}$ a quadratic form. Then there exists a basis $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ of V and $\omega_1, \ldots, \omega_n \in \mathbb{R}$ such that for any $x_1, \ldots, x_n \in \mathbb{R}$ we have

$$h(x_1\mathbf{b}_1 + \dots + x_n\mathbf{b}_n) = \omega_1x_1^2 + \omega_2x_2^2 + \dots + \omega_nx_n^2.$$

Remark. The quadratic polynomial $\omega_1 x_1^2 + \omega_2 x_2^2 + \cdots + \omega_n x_n^2$ is then a reduced form of h (the matrix of g with respect to $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a diagonal matrix with entries $\omega_1, \dots, \omega_n$). If (p, q, r) is the signature of h, then among the coefficients $\omega_1, \dots, \omega_n$, p are positive, q are negative and r are equal to 0.

Theorem 3.2 (Jacobi method of reducing a quadratic form). Let $(V, +, \cdot)$ be an n-dimensional linear space and $h: V \to \mathbb{R}$ a quadratic form. Let Δ_i , $1 \le i \le n$ the principal minors of the associated matrix $(a_{ij})_{1 \le i,j \le n}$ with respect to a basis of V, i.e.

$$\Delta_{i} = \left| \begin{array}{ccc} a_{11} & \dots & a_{1i} \\ a_{21} & \dots & a_{2i} \\ \vdots & & \vdots \\ a_{i1} & \dots & a_{ii} \end{array} \right|, \ 1 \leq i \leq n.$$

If $\Delta_i \neq 0$, $\forall i \in \{1, ..., n\}$, then h can be reduced to the canonical form

$$\mu_1 x_1^2 + \mu_2 x_2^2 + \dots + \mu_n x_n^2$$

where
$$\mu_j = \frac{\Delta_{j-1}}{\Delta_j}$$
, $\forall j = \{1, \ldots, n\}$, with $\Delta_0 = 1$.

DEFINITION. Let $(V, +, \cdot)$ be an *n*-dimensional linear space and $h: V \to \mathbb{R}$ a quadratic form with signature (p, q, r).

- a) If p = n, h is called a *positive-definite* quadratic form.
- **b**) If q = 0, the quadratic form h is called *positive semidefinite*.
- c) If q = n, h is called a negative-definite quadratic form.

- *d*) If p = 0, the quadratic form h is called *negative semidefinite*.
- **e**) The quadratic form h is called *undefined* if p > 0 and q > 0.

Remarks.

- 1. Of course, for the quadratic form h, positive semidefiniteness implies positive-definiteness and negative semidefiniteness implies negative-definiteness
- 2. Let Δ_i , $1 \le i \le n$ be the principal minors of the associated matrix with respect to an arbitrary basis. According to Theorem 3.2, h is positive-definite if and only if

$$\Delta_i > 0, \ \forall i \in \{1,\ldots,n\}$$

and *h* is negative-definite if and only if

$$(-1)^i \Delta_i > 0, \ \forall i \in \{1,\ldots,n\}.$$

Theorem 3.3 (Eigenvalues method of reducing a quadratic form). Let $(V, \langle \cdot, \cdot \rangle)$ be a finite-dimensional prehilbertian space with dim V = n. Then there exists an orthonormal basis with respect to which h has the canonical form

$$\lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2, x_1, x_2, \dots, x_n \in \mathbb{R},$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$.

In fact, $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of the associated matrix with respect to any basis of V.

PROOF. Let $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis of V and A_B be the matrix associated to h with respect to the basis B. Since the matrix A_B is symmetric, the linear operator $T: V \to V$ associated to A_B (with respect to the same basis B) is autoadjoint and thus diagonalizable. Let $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ be the eigenvalues of T. From the method of diagonalization of T, we can construct an orthonormal basis $B' = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of V such that \mathbf{v}_i is an eigenvector corresponding to λ_i , for $1 \le i \le n$ (indeed, if $\lambda_i \ne \lambda_j$, since T is autoadjoint, we have $\lambda_i \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \langle \lambda_i \mathbf{v}_i, \mathbf{v}_j \rangle = \langle T(\mathbf{v}_i), \mathbf{v}_j \rangle = \langle \mathbf{v}_i, T(\mathbf{v}_j) \rangle = \langle \mathbf{v}_i, \lambda_j \mathbf{v}_j \rangle = \lambda_j \langle \mathbf{v}_i, \mathbf{v}_j \rangle$, implying $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$). Of course, with respect to B', the matrix $A_{B'}$ associated to h has the form diag $(\lambda_1, \dots, \lambda_n)$, hence the conclusion.

DEFINITION. Let $(V, +, \cdot)$ be a linear space, $h: V \to \mathbb{R}$ a quadratic form and $f: V \to \mathbb{R}$ an affine functional. The sum h + f is called a *non-homogeneous quadratic functional* on V.

If *V* is finite-dimensional and $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of basis of *V*, then for any $x_1, \dots, x_n \in \mathbb{R}$

$$(h+f)(x_1\mathbf{b}_1+\dots+x_n\mathbf{b}_n) = \sum_{i=1}^n \sum_{i=1}^n a_{ij}x_ix_j + \sum_{i=1}^n b_ix_i + c,$$
 (3)

where $A = (a_{ij})_{1 \le i,j \le n}$ is the matrix associated to $h, b_1, \ldots, b_n \in \mathbb{R}$ and $c \in \mathbb{R}$. The right-hand side of this equality is called the *quadratic polynomial* associated to h + f (which is a polynomial of degree 2, not necessarily homogeneous). If $V = \mathbb{R}^n$ and B is its canonical basis, then (3) can be written as

$$(h+f)(\mathbf{x}) = \rho(\mathbf{x}) := \langle A\mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{b}, \mathbf{x} \rangle + c, \ \forall \mathbf{x} \in \mathbb{R}^n,$$
(4)

where $\mathbf{b} = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n$ and the vectors $\mathbf{x} \in \mathbb{R}^n$ are interpreted as column matrices.

Conversely, for arbitrary symmetric matrix $A \in \mathcal{M}_n$, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, the function $\rho : V \to \mathbb{R}$ defined by (4) defines a non-homogeneous quadratic functional on V. Moreover, A can be taken not necessarily symmetric, since

$$\langle A\mathbf{x}, \mathbf{x} \rangle = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{x}, A\mathbf{x} \rangle = \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle + \frac{1}{2} \langle A^{\mathsf{T}}\mathbf{x}, \mathbf{x} \rangle = \left(\frac{1}{2} \left(A + A^{\mathsf{T}} \right) \mathbf{x}, \mathbf{x} \right),$$

so the matrix A can be replaced by the symmetric matrix $\frac{1}{2}(A+A^{T})$.

Let us now consider an affine change of coordinates, i.e. a transformation of the form

$$\mathbf{x'} = S\mathbf{x} + \mathbf{x}_0,$$

where $S \in \mathcal{M}_n$ is a non-singular matrix and $\mathbf{x}_0 \in \mathbb{R}^n$. Then

$$\rho(\mathbf{x}) = \left\langle AS^{-1}(\mathbf{x}' - \mathbf{x}_0), S^{-1}(\mathbf{x}' - \mathbf{x}_0) \right\rangle + \left\langle \mathbf{b}, S^{-1}(\mathbf{x}' - \mathbf{x}_0) \right\rangle + c$$

$$= \left\langle \left(S^{-1} \right)^{\mathrm{T}} AS^{-1} \mathbf{x}', \mathbf{x}' \right\rangle - \left\langle 2 \left(S^{-1} \right)^{\mathrm{T}} AS^{-1} \mathbf{x}_0 + \left(S^{-1} \right)^{\mathrm{T}} \mathbf{b}, \mathbf{x}' \right\rangle + \left(c - \left\langle \mathbf{b}, S^{-1} \mathbf{x}_0 \right\rangle \right).$$

Suppose now that S is the transition matrix from the canonical basis to an orthonormal basis giving the canonical form in Theorem 3.3. Therefore, S is an orthonormal matrix ($S^{-1} = S^{T}$) and $SAS^{T} = D := diag(\lambda_{1}, \ldots, \lambda_{n})$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A. Consequently, we have:

$$\rho(\mathbf{x}) = \langle D\mathbf{x}', \mathbf{x}' \rangle - 2\left(S\left(AS^T\mathbf{x}_0 + \frac{1}{2}\mathbf{b}\right), \mathbf{x}'\right) + \left(c - \left\langle\mathbf{b}, S^{-1}\mathbf{x}_0\right\rangle\right).$$

If *A* is non-singular, we can take $\mathbf{x}_0 := -\frac{1}{2}SA^{-1}\mathbf{b}$, obtaining

$$\rho(\mathbf{x}) = \langle D\mathbf{x}', \mathbf{x}' \rangle + c_0,$$

where $c_0 := \langle D\mathbf{x}_0, \mathbf{x}_0 \rangle - \langle S\mathbf{b}, \mathbf{x}_0 \rangle + c$. Therefore, by the change of coordinates $\mathbf{x}' = S\mathbf{x} - \frac{1}{2}SA^{-1}\mathbf{b}$, we obtain

$$\rho(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i (x_i')^2 + c_0, \ \forall \mathbf{x} \in \mathbb{R}^n,$$

where x_i' are the coordinates of **x** with respect to the new orthogonal basis.

If det A = 0, then by letting $\mathbf{x}_0 := \mathbf{0}$, we obtain

$$\rho(\mathbf{x}) = \langle D\mathbf{x}', \mathbf{x}' \rangle + \langle S\mathbf{b}, \mathbf{x}' \rangle + c_0,$$

where $c_0 := -\langle S\mathbf{b}, \mathbf{x}_0 \rangle + c$.

If (p,q,r) is the signature of h, we have r > 0 and n - r is the rank of A; one can further find an adequate basis B''such that

$$\rho(\mathbf{x}) = \sum_{i=1}^{n-r} \lambda_i (x_i^{\prime\prime})^2 + \gamma x_{n-r+1}^{\prime\prime},$$

where x_1'', \dots, x_n'' are the coordinates of **x** with respect to this new basis and $\gamma \in \mathbb{R}$.

From the geometric point of view,

$$\ker \rho := \{ \mathbf{x} \in \mathbb{R}^n \mid \rho(\mathbf{x}) = 0 \}$$

is a *conic* in the case n = 2, a *quadric* if n = 3, a *hyperquadric* if $n \ge 4$.

In the case n = 1, the normal form of ρ is $x^2 + 1$ (then ker $\rho = \emptyset$: two "imaginary" points), $x^2 - 1$ (ker $\rho = \{-1, 1\}$: two distinct points) or $x^2 = 0$ (ker $\rho = \{0\}$: two identical points).

When n = 2, we have nine types of conics, according to the normal form of ρ :

- 1. $x_1^2 + x_2^2 + 1 = 0$ (\varnothing : "imaginary" *ellipse*);
- 2. $x_1^2 x_2^2 + 1 = 0$ (hyperbola); 3. $x_1^2 + x_2^2 1 = 0$ (ellipse);
- 4. $x_1^2 2x_2 = 0$ (parabola);
- 5. $x_1^2 + x_2^2 = 0$ (a point: two "imaginary", conjugate lines);
- 6. $x_1^2 x_2^2 = 0$ (two intersecting lines);
- 7. $x_1^2 + 1 = 0$ (\emptyset : two "imaginary" lines);
- 8. $x_1^2 1 = 0$ (two parallel lines);
- 9. $x_1^2 = 0$ (two identical lines).

In the case n = 3, we have 17 types of quadrics, characterized by the following normal forms:

- 1. $x_1^2 + x_2^2 + x_3^2 + 1 = 0$ ("imaginary" *ellipsoid*);
- 2. $x_1^2 + x_2^2 + x_3^2 1 = 0$ (ellipsoid);
- 3. $x_1^2 + x_2^2 x_3^2 1 = 0$ (hyperboloid of one sheet);
- 4. $x_1^2 x_2^2 x_3^2 1 = 0$ (hyperboloid of two sheets);
- 5. $x_1^2 + x_2^2 + x_3^2 = 0$ (a point: "imaginary" *cone*);
- 6. $x_1^2 + x_2^2 x_3^2 = 0$ (cone);
- 7. $x_1^2 + x_2^2 2x_3 = 0$ (elliptic paraboloid); 8. $x_1^2 x_2^2 2x_3 = 0$ (hyperbolic paraboloid).

The remaining 9 normal forms are the same as those in the case n = 2, which in \mathbb{R}^3 represent cylinders of different types: elliptic, hyperbolic or parabolic. The first 6 quadrics are non-singular quadrics, while the others are singular quadrics.

SELECTIVE BIBLIOGRAPHY

- [1] M. Ariciuc, S. Roatesi, Lecții de algebră liniară și geometrie analitică, Editura Matrix Rom, București, 2008.
- [2] K. C. Border, More than you wanted to know about quadratic forms, Caltech, 2016.
- [3] K. Conrad, Bilinear Forms, Notes on Advanced Linear Algebra, 2015.
- [4] C. Costinescu, Algebră liniară și aplicații în geometrie, Editura Matrix Rom, București, 2005.
- [5] D. Drăghici, Algebră, Editura Didactică și Pedagogică, București, 1972.
- [6] G. Galbură, F. Radó, Geometrie, Ed. Didactică și Pedag., București, 1979.
- [7] M. Neagu, Geometria curbelor și suprafețelor. Teorie și aplicații, Editura Matrix Rom, București, 2013.
- [8] P. Ott, Bilinear and Quadratic Forms, Prof. Robert Beezer's Notes on Advanced Linear Algebra, 2014.
- [9] I. Radomir, Elemente de algebră vectorială, geometrie și calcul diferențial, Editura Albastră, Cluj-Napoca, 2000.