Theoretical Computer Science

Roger Küng

roger.kueng@epfl.ch

February 23, 2014

1 Lecutre 1

Amongst other subject we will stduy the following:

- What can (or can't) be computed?
- What can be computed with limited memory?
- what is the power of randomness?

1.1 Simple door problem

Both means there is an object in front and the back of the door, Front and Back mean that there is either a persion in front or the back of the door and Neither means there is no object detected by the door

Current State	Neither	Front	Back	Both
Open	Closed	Open	Open	Open
Closed	Closed	Open	Closed	Closed

Figure 1: Door Machine

In General we can define systems in the following way:

Figure 2: More general Machine

Where the \odot represents an accepting state. For a given input we end up in a specific state: $001 \to q_2$

The Machine will accept and input if the endstate will be in an **accepting state**

- M accepts 0|0|1
- M accepts 1|0|1|1
- *M* rejects 0|1|0

In general we can define the language for this machine as follows:

$$L(M) := \{ \omega \in \{0, 1\}^* | M \text{ accepts } \omega \}$$

The next question which arises is what strings this machine would accept. It appears that every string which ends with a 1 would be accepted by the machine, also everything ending with an **even** number of 0 with at least a 1.

$$L(M_1) = \left\{ \omega \in \{0, 1\}^* \middle| \begin{array}{c} \omega = x1 \text{ for some } x \in \{0, 1\} \lor \\ \omega \text{ contains a 1 and ends with an even number of 0s} \end{array} \right\}$$

1.2 DFA

Def: A deterministic Finite Automation (DFA)

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle$$

$$\Sigma \Rightarrow \text{ alphabet of } M(\text{ usually } \Sigma\{0, 1\})$$
 $Q \Rightarrow \text{ set of states}$

$$\delta \Rightarrow \text{ transition function of } M$$

$$\delta : Q \times \Sigma \rightarrow Q$$

$$\delta(q_1, 0) = q_2$$

$$q_0 \Rightarrow \text{ starting state}$$

There is also a specific symbol ϵ to indicate the empty string, this should not be confused with the empty set: $L(M_1) = \epsilon \neq L(M_2) = \emptyset$.

 $F \Rightarrow$ set of accepting states

Figure 3: Machine which only accepts empty string

Figure 4: Empty language \rightarrow no way to end in an accepting state

$$M_{1} = \langle Q_{1}, \Sigma_{1}, \delta_{1}, q_{0}^{1}, F_{1} \rangle$$

$$Q_{1} = \{q_{1}, q_{2}, q_{3}\}$$

$$\Sigma_{1} = \{0, 1\}$$

$$q_{0}^{1} = q_{1}$$

$$F_{1} = \{q_{2}\}$$

Figure 5: State Machine

δ_1	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

Figure 6: State table

The best way to find out what the language a machine can process is to try out a few string to be able to find a pattern.

Figure 7: M3

$$M_3 = \begin{cases} 0|0|0 & Accepted \\ 0|1|1|0|0 & Accepted \\ 0|0|0|0 & Rejected \end{cases}$$

We can observe that all 1's are irrelevant, therefore we should focus on the 0's. Therefore the language for the machine can be described by:

$$L(M_3) = \{ \omega \in \{0, 1\}^* \mid \# \text{ of } 0 \text{ is odd} \}$$

A complementary Machine can be built by:

Figure 8: M4

$$L(M_4) = \{ \omega \in \{0, 1\}^* \mid \# \text{ of } 0 \text{ is even} \}$$

 $L(M_3) = \overline{L(M_4)}$

Lemma 1 For any DFA:

$$\begin{split} M &= < Q, \Sigma, \delta, q_0, F > \\ \overline{M} &= < Q, \Sigma, \delta, q_0, \overline{F} > \\ \overline{L(M)} &= L(\overline{M}) \end{split}$$

1.3 Notation:

$$\begin{split} \hat{\delta} : Q \times \Sigma^* &\Rightarrow Q \\ &\quad \underset{q \in Q}{\forall} \hat{\delta}(q, \epsilon) = q \\ &\quad \underset{b \in \Sigma}{\forall} \hat{\delta}(q, b\omega) = \hat{\delta}(\underbrace{\delta(q, b)}_{\text{recursion}}, \omega) \end{split}$$

$$M \text{ accepts } \omega \iff \hat{\delta}(q_0, \omega) \in F$$

Definition 1

$$\textit{Language $L \subseteq \{0,1\}^*$ is $\underline{\textit{regular}} \iff \exists \textit{ DFA M s.t. } L(M) = L$}$$

Corollary 1

$$\forall L \subseteq \{0,1\}^* \text{ if } L \text{ is regular then so } is\overline{L}$$

Definition 2 Given a machine M we define L(M) to be the language recognised by M the set of all strings accepted by M