

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

| ФАКУЛЬТЕТ  | «Информатика, искусственный интеллект и системы управления» |  |
|------------|-------------------------------------------------------------|--|
|            |                                                             |  |
| КАФЕЛРА «П | рограммное обеспечение ЭВМ и информационные технологии»     |  |

### РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

### К КУРСОВОЙ РАБОТЕ

#### HA TEMY:

«Мобильное приложение для изучения японского языка»

| Студент <u>ИУ7-61Б</u> (Группа) | (Подпись, дата) | Корниенко К. Ю.<br>(И. О. Фамилия)       |
|---------------------------------|-----------------|------------------------------------------|
| Руководитель курсовой работы    | (Подпись, дата) | <u>Шибанова Д. А.</u><br>(И. О. Фамилия) |

# СОДЕРЖАНИЕ

| <b>O</b> ] | ОПРЕДЕЛЕНИЯ |                                                          | 3  |
|------------|-------------|----------------------------------------------------------|----|
| Bl         | ВЕД         | ЕНИЕ                                                     | 4  |
| 1          | Ана         | алитический раздел                                       | 5  |
|            | 1.1         | Использование цифровых технологий в изучении языков      | 5  |
|            | 1.2         | Базы данных, системы управления базами данных            | 5  |
|            | 1.3         | Выбор системы управления базами данных                   | 6  |
|            | 1.4         | Обзор существующего программного обеспечения для упроще- |    |
|            |             | ния изучения японского языка                             | 7  |
|            | 1.5         | Проектирование базы данных                               | 9  |
|            |             | 1.5.1 Диаграмма базы данных в нотации Чена               | 9  |
|            |             | 1.5.2 Пользовательские роли проектируемого приложения    | 9  |
| 2          | Koı         | нструкторский раздел                                     | 12 |
|            | 2.1         | Концептуальная модель системы                            | 12 |
|            | 2.2         | Диаграмма прецедентов                                    | 13 |
|            | 2.3         | Схема базы данных                                        | 15 |
| 3          | Tex         | нологический раздел                                      | 16 |
| 4          | Исс         | следовательский раздел                                   | 17 |
| 34         | <b>Ч</b> КЛ | ЮЧЕНИЕ                                                   | 18 |
| Cl         | ПИС         | СОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ                            | 20 |
| П          | РИЛ         | ЮЖЕНИЕ А                                                 | 21 |

#### ОПРЕДЕЛЕНИЯ

В настоящей расчетно-пояснительной записке применяют следующие термины с соответствующими определениями.

Сетевое обучение — парадигма учебной деятельности, основой которой является открытость образовательных ресурсов, а также повсеместное сотрудничество участников образовательного процесса.

Кана — японские слоговые алфавиты: хирагана и катакана.

Хирагана — японский слоговой алфавит, который используется для записи слов, не имеющих кандзи.

Катакана — японский слоговой алфавит, который используется для записи иностранных слов и выделения важных слов в тексте.

Кандзи — китайские иероглифы, которые используются в японской письменности. Кандзи были заимствованы из китайского языка и адаптированы для использования в японском языке

#### ВВЕДЕНИЕ

В последние годы распространена идея использования цифровых технологий для помощи студентам в преодолении трудностей, связанных с изучением японского языка, таких как сложная система письма, грамматика и синтаксис, а также необходимость запоминания большого количества новых слов и символов [1]. Также рассматривается применение сетевого обучения, как парадигмы в дистанционном обучении для улучшения взаимодействия между учащимися путем создания виртуальных общностей учащихся [2].

Одной из наиболее важных проблем, с которым сталкивается человек при изучении японского языка — сложная система письма которая включает в себя два алфавита и иероглифику. Оптическое распознавание символов может облегчить изучение японского языка, преобразуя изображения, содержащие японский язык, в текстовые документы, для более легкой обработки, перевода и изучения иероглифов [3].

Цель работы — разработать мобильное приложение для упрощения изучения японского языка.

Для достижения поставленной цели, необходимо выполнить следующие задачи:

- провести анализ предметной области;
- описать взаимодействие компонентов системы и спроектировать базу данных;
- описать интерфейс доступа к базе данных и произвести тестирование функционала;
- провести сравнительный анализ работы со строками в хранимых процедурах и на клиенте.

#### 1 Аналитический раздел

В данном разделе представлен обзор существующего ПО и подходов к упрощению изучения японского языка с помощью систем оптического распознавания текстов. Также введены основные сведения о построении баз данных для текстов на японском языке и словарей иероглифики.

# 1.1 Использование цифровых технологий в изучении языков

Использование цифровых технологий в изучении японского языка является актуальным и эффективным подходом для изучения японского языка и повышения мотивации в процессе изучения [4]. Проблемы, с которыми сталкиваются изучающие японский язык, включают необходимость запоминания большого количества новых слов и иероглифов, а также сложности в понимании контекста и культурных отличий.

Во время круглого стола по технологиям для усточнивого развития, организованного ЮНЕСКО в Париже в 2013 г., проведенные исследования и изученные отчеты, выделяющие значительное преимущество применения информационных технологий в изучении языков и в преподавании, позволили сделать вывод о главенствующей роли цифровизации в формировании коллективных знаний [5].

### 1.2 Базы данных, системы управления базами данных

База данных (БД) — это компьютеризированная система, основное назначение которой — хранить информацию, предоставляя пользователям средства ее извлечения и модификации [6, с. 46]. Базы данных используются для различных целей, таких как управление бизнесом, научные исследования и медицинские записи.

Работа напрямую с базой данных может привести к нарушению целостности данных. Код для работы с базой данных сложен и неудобен, что может привести к ошибкам и проблемам с безопасностью. Избежать проблемы при работе с данными позволяет система управления базами данных.

Система управления базами данных (СУБД) - это программное обеспе-

чение, которое позволяет пользователям создавать, управлять и обрабатывать данные в БД [7, с. 10—12]. СУБД предоставляет интерфейс для работы с данными, а также обеспечивает безопасность и целостность данных.

СУБД и БД тесно связаны, поскольку системы управления базами данных обеспечивают доступ к данным, хранящимся в БД, и позволяют пользователям выполнять операции с данными.

#### 1.3 Выбор системы управления базами данных

Для разработки мобильного приложения, которое будет преобразовывать фотографии текстов на японском языке в текстовые документы, может быть использована как реляционная система управления базами данных, так и нереляционная. При разработке приложения будет использована реляционная система управления базами данных, так как она позволяет оформить ролевую модель и хранить структурированные данные [8].

Реляционные системы управления базами данных характеризуются использованием реляционной модели управления, отличающуюся табличной формой представления данных, а также применением формальной математики и реляционных вычислений для обрабатываемых данных [9].

Данные, в реляционных моделях, представляют собой двумерный массив и характеризуются следующими особенностями:

- любая составляющая таблицы является одной составляющей данных;
- любой столбец имеет свое уникальное имя;
- отсутствие одинаковых строк в таблице;
- все составляющие в столбцах имеют однородный тип;
- строки и столбцы имеют произвольный порядок [10].

Основные современные СУБД основаны на реляционной модели данных, в таблице 1.1 представлен сравнительный анализ некоторых из них.

Таблица 1.1 – Сравнительный анализ реляционных СУБД

| СУБД            | Лицензия                    | Масштаби-<br>руемость                          | Скорость<br>выполнения<br>запросов | Управление<br>транзакци-<br>ями    |
|-----------------|-----------------------------|------------------------------------------------|------------------------------------|------------------------------------|
| MSSQL [11]      | проприе-<br>тарная          | вертикальная,<br>комплексная<br>горизонтальная | средняя                            | песси-<br>мистический              |
| MariaDB [12]    | GNU GPL                     | вертикальная<br>горизонтальная                 | средняя                            | частично-<br>опти-<br>мистический  |
| PostgreSQL [13] | открытый<br>исходный<br>код | вертикальная<br>горизонтальная                 | высокая                            | частично-<br>опти-<br>мистический  |
| Oracle [14]     | проприе-<br>тарная          | вертикальная<br>горизонтальная                 | высокая                            | оптимис-<br>тическое               |
| IBM DB2 [15]    | проприе-<br>тарная          | вертикальная<br>горизонтальная                 | средняя                            | песси-<br>мистический              |
| SQLite [16]     | MIT                         | вертикальная                                   | низкая                             | частично-<br>песси-<br>мистический |

PostgreSQL обладает высокой производительностью и безопасностью, а также является бесплатным программным продуктом с открытым исходным кодом [10], что делает его доступным для использования при разработке мобильного приложения. Кроме того, PostgreSQL имеет хорошую поддержку хранимых процедур и триггеров, имеет хорошую поддержку для языков SQL и Unicode, что важно для работы с японским языком. Например, PostgreSQL поддерживает полнотекстовый поиск на японском языке и имеет встроенную поддержку для японских иероглифов [13], что делает его хорошим выбором для разрабатываемого приложения.

# 1.4 Обзор существующего программного обеспечения для упрощения изучения японского языка

При изучении иностранных языков часто используются мобильные приложения, изучение языков с поддержкой мобильных устройств позволяет обучающемуся получить доступ к знаниям о грамматике и лексике иностранного языка, не накладывая ограничений на место и время изучения [17]. Особенно информационные технологии важны при изучении японского языка, который отличается двумя азбуками и иероглификой, ведь система письменности является важным аспектом при обучении любому иностранному языку.

В таблице 1.2 представлен сравнительный анализ четырех приложений для изучения японского языка.

Таблица 1.2 – Обзор приложений для упрощения изучения японского языка

| ПО                 | Duolingo [18]         | Memrise [19]          | Lingodeer [20]        | WaniKani [21]     |
|--------------------|-----------------------|-----------------------|-----------------------|-------------------|
| Поис               | Бесплатно с           | Бесплатно с           | Бесплатно с           | и натио           |
| Цена               | платными<br>функциями | платными<br>функциями | платными<br>функциями | платно            |
| TD.                | перевод,              | перевод,              | перевод,              | кана,             |
| Типы<br>упражнений | аудирование,          | аудирование,          | аудирование,          | кандзи,<br>слова, |
|                    | грамматика            | грамматика            | грамматика            | грамматика        |
|                    | веб,                  | веб,                  | веб,                  | веб,              |
| Платформа          | мобильное             | мобильное             | мобильное             | мобильное         |
|                    | приложение            | приложение            | приложение            | приложение        |

Исходя из приведенных в таблице данных, можно сделать вывод о том, что приложения не уделяют достаточно внимания чтению текстов на японском языке. В то же время именно чтение текстов на японском языке представляет наибольшую сложность в процессе обучения [22]. Для упрощения изучения японского языка в разрабатываемом мобильном приложении будет сделан акцент на снижение сложности чтения и анализа иероглифических текстов путем синтеза текстовых документов из изображений отрывков из книг, журналов и других источников текстов на японском языке.

#### 1.5 Проектирование базы данных

#### 1.5.1 Диаграмма базы данных в нотации Чена

Для проектируемой базы данных создана ER-диаграмма в нотации Чена, представленная на рисунке 1.1.



Рисунок 1.1 – Диаграмма сущность-связь в нотации Чена

# 1.5.2 Пользовательские роли проектируемого приложения

В разрабатываемом приложении выделяются три роли: администратор, модератор и пользователь.

- 1. Администратор имеет полный доступ к приложению и базе данных. Он может создавать и удалять учетные записи пользователей и модераторов, а также имеет доступ к полной информации о пользователях и их активности в приложении.
- 2. Модератор имеет ограниченный доступ к приложению и базе данных. Он может создавать тексты и выдавать доступ к ним для пользователей.

Модератор не имеет доступа к полной информации о пользователях и их активности в приложении.

3. Пользователь — имеет доступ к основным функциям приложения, таким как изучение японского языка, создание своего профиля. Пользователь не имеет полного доступа к базе данных.

Описание пользовательских сценариев представлено на рисунке 1.2.



Рисунок 1.2 – Диаграмма вариантов использования приложения

#### Вывод из аналитического раздела

В данном разделе была рассмотрена предметная область и подходы к изучению японского языка. Также были представлены основные сведения о базах данных и системах управления базами данных для хранения японских иероглифов и проведен анализ существующих приложений для упрощения изучения японского языка. В ходе работы будет использоваться СУБД PostgreSQL, так как она имеет открытый исходный код, высокую

производительность и безопасность, а также поддерживает хранение в базе данных иероглифов, процедур и триггеров.

При разработке приложения будет учитываться отсутствие у крупных приложений для изучения японского языка механизмов для чтения печатных текстов. Приложение будет доступно как в веб версии, так и на мобильных платформах и персональных компьютерах.

#### 2 Конструкторский раздел

В данном разделе представлена схема базы данных и диаграмма прецедентов. Также описано взаимодействие компонентов системы.

#### 2.1 Концептуальная модель системы

Фундаментальной функцией разрабатываемого приложения является преобразование изображения, содержащего текст, написанный на японском языке, в текстовый документ. На рисунках 2.1–2.2 представлена модель системы в нотации IDEF0.



Рисунок 2.1 – Модель преобразования изображения в текст (верхний уровень)



Рисунок 2.2 – Модель преобразования изображения в текст (первый уровень)

#### 2.2 Диаграмма прецедентов

На рисунках 2.3–2.5 представлены диаграммы прецедентов.



Рисунок 2.3 – Диаграмма прецедентов (пользователь)



Рисунок 2.4 – Диаграмма прецедентов (модератор)



Рисунок 2.5 – Диаграмма прецедентов (администратор)

### 2.3 Схема базы данных



Рисунок 2.6 – Схема базы данных

# 3 Технологический раздел

## 4 Исследовательский раздел

## ЗАКЛЮЧЕНИЕ

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Мухтарова A. A. Использование ИТ-технологий при изучении английского и японского языка // Умная цифровая экономика. 2022. Т. 2, N = 3. С. 34 = 41.
- 2. Cheng T. Applying networked learning to improve learner interactions: A new paradigm of teaching and learning in ODL // Asian Association of Open Universities Journal. 2013. T. 8. C. 67—85. DOI: 10.1108/AA0UJ-08-02-2013-B006.
- 3. Recognizing modern Japanese magazines by combining Deep Learning with language models / N. T. Nguyen [и др.] // 2021 13th International Conference on Knowledge and Systems Engineering (KSE). 2021. С. 1—6. DOI: 10.1109/KSE53942.2021.9648643.
- 4. Sasanti N. S. Japanese Language Learning Consistency in the Digital Era // Jurnal Ilmiah Lingua Idea. 2022. T. 13. C. 207—219.
- Febrianty F., Ricardo R. Information Technology for Japanese Learning //
  IOP Conference Series: Materials Science and Engineering. 2019. T. 662,
   № 2. C. 022117. DOI: 10.1088/1757-899X/662/2/022117. URL: https://dx.doi.org/10.1088/1757-899X/662/2/022117.
- 6. Дейт К. Д. Введение в системы баз данных. М. : Издательский дом "Вильямс", 2005.
- 7. Elmasri R., Navathe S. B. Fundamentals of Database Systems / под ред. M. Hirsch. London : Pearson, 2010.
- 8. A Malik A Burney F. A. A Comparative Study of Unstructured Data with SQL and NO-SQL Database Management Systems // Journal of Computer and Communications. 2020. T. 8. C. 59—71. DOI: 10.4236/jcc. 2020.84005.
- 9.  $\mathit{Meŭep\ M}$ . Теория реляционных баз данных. М. : Мир, 1987.
- 10. K H Bacunbeea  $\Gamma$ .  $\mathcal{A}$ . X. Реляционные базы данных // Colloquium-Journal. Warszawa, 2020. С. 22—23.
- 11. Microsoft: SQL Server. [Электронный Ресурс]. Режим Доступа: https://www.microsoft.com/en-us/sql-server/ (дата обращения: 13.04.2023).

- 12. MariaDB Server: The open source relational database. [Электронный Pecypc]. Режим Доступа: https://mariadb.org/ (дата обращения: 13.04.2023).
- 13. PostgreSQL: The World's Most Advanced Open Source Relational Database. [Электронный Ресурс]. Режим Доступа: https://www.postgresql.org/(дата обращения: 13.04.2023).
- 14. Database | Oracle. [Электронный Ресурс]. Режим Доступа: https://www.oracle.com/database/ (дата обращения: 16.04.2023).
- 15. IBM Db2 | IBM. [Электронный Ресурс]. Режим Доступа: https://www.ibm.com/products/db2 (дата обращения: 16.04.2023).
- 16. SQLite Home Page. [Электронный Ресурс]. Режим Доступа: https://sqlite.org/index.html (дата обращения: 16.04.2023).
- 17. Ramya Gangaiamaran M. P. Review on Use of Mobile Apps for Language Learning // International Journal of Applied Engineering Researc. 2017. —
   T. 12, № 21. C. 11242—11251. ISSN 0973-4562.
- 18. Duolingo The world's best way to learn a language. [Электронный Ресурс]. Режим Доступа: https://www.duolingo.com/ (дата обращения: 14.04.2023).
- 19. Learn a language. Memrise is authentic, useful & personalised. [Электронный Pecypc]. Режим Доступа: https://www.memrise.com/ (дата обращения: 14.04.2023).
- 20. LingoDeer: Learn Japanese, Korean, Chinese and more. [Электронный Ресурс]. Режим Доступа: https://www.lingodeer.com/ (дата обращения: 14.04.2023).
- 21. WaniKani, a kanji learning application by Tofugu. [Электронный Ресурс]. Режим Доступа: https://www.wanikani.com/ (дата обращения: 14.04.2023).
- 22. Ohta A. S. Second Language Acquisition Processes In The Classroom: Learning Japanese. London: Lawrence Erlbaum Associates, 2001.

## приложение а