Задание 1. Brushed DC motor goes Brr.

Даны уравнения двигателя постоянного тока независимого возбуждения

$$J\dot{\omega} = M, \quad M = k_m I, \quad I = \frac{U + \varepsilon_i}{R}, \quad \varepsilon_i = -k_e \omega.$$

Запишите их в виде одного дифференциального уравнения. Основываясь на полученном выражении, найдите передаточную функцию исследуемого объекта и определите, какому типовому звену он соответствует. Возьмите из таблицы 1 значения, которые соответствуют вашему варианту, для следующих величин:

- 1. k_m конструктивная постоянная по моменту;
- 2. k_e конструктивная постоянная по ЭДС;
- 3. J момент инерции ротора;
- 4. R активное сопротивление обмоток ротора.

Аналитически рассчитайте временные и частотные характеристики (весовую и переходную функции, АЧХ и ФЧХ) данного звена. Постройте графики переходной функции, АЧХ, ФЧХ и ЛАФЧХ с помощью компьютера. Приведите в отчёте соответствующие расчёты и графики.

Задание 2. Brushed DC motor goes Brr Brr.

Даны уравнения двигателя постоянного тока независимого возбуждения

$$J\dot{\omega}=M,\ M=k_mI,\ I=rac{U+arepsilon}{R},\ arepsilon=arepsilon_i+arepsilon_s,\ arepsilon_i=-k_e\omega,\ arepsilon_s=-L\dot{I}.$$

Запишите их в виде одного дифференциального уравнения. Основываясь на полученном выражении, найдите передаточную функцию исследуемого объекта и определите, какому типовому звену он соответствует. Возьмите из таблицы 1 значения, которые соответствуют вашему варианту, для следующих величин:

- 1. k_m конструктивная постоянная по моменту;
- 2. k_e конструктивная постоянная по ЭДС;
- 3. J момент инерции ротора;
- 4. R активное сопротивление обмоток ротора;
- 5. L индуктивность обмоток ротора.

Задание 3. Конденсируй. Интегрируй. Умножай.

Дано уравнение зависимости напряжения конденсатора (выходная величина) от силы тока (входное воздействие):

$$I = C \frac{dU}{dt}$$
.

Найдите передаточную функцию исследуемого объекта и определите, какому типовому звену он соответствует. Возьмите из таблицы 2 значение, которое соответствует вашему варианту, для следующих величин:

1. C – ёмкость конденсатора.

Аналитически рассчитайте временные и частотные характеристики (весовую и переходную функции, АЧХ и ФЧХ) данного звена. Постройте графики переходной функции, АЧХ, ФЧХ и ЛАФЧХ с помощью компьютера. Приведите в отчёте соответствующие расчёты и графики.

Задание 4. И снова электрические машины.

Видоизмените систему из **задания 1** таким образом, чтобы выходным значением системы являлся угол поворота θ вала двигателя. Основываясь на полученном выражении, найдите передаточную функцию исследуемого объекта и определите, какому типовому звену он соответствует. Возьмите из таблицы 1 значения, которые соответствуют вашему варианту, для следующих величин:

- 1. k_m конструктивная постоянная по моменту;
- 2. k_e конструктивная постоянная по ЭДС;
- 3. J момент инерции ротора;
- 4. R активное сопротивление обмоток ротора.

Аналитически рассчитайте временные и частотные характеристики (весовую и переходную функции, АЧХ и ФЧХ) данного звена. Постройте графики переходной функции, АЧХ, ФЧХ и ЛАФЧХ с помощью компьютера. Приведите в отчёте соответствующие расчёты и графики.

Задание 5. Why are we still here? Just to suffer?

Даны уравнения тахогенератора постоянного тока (выходной величиной является напряжение U_{out} , снимаемое с нагрузки генератора):

$$I = \frac{\varepsilon - U_{out}}{R}, \ \varepsilon = \varepsilon_i + \varepsilon_s, \ \varepsilon_i = k_e \dot{\theta}, \ \varepsilon_s = -L\dot{I}, \ I = \frac{U_{out}}{R_l}.$$

Запишите их в виде одного дифференциального уравнения. Основываясь на полученном выражении, найдите передаточную функцию исследуемого объекта и определите, какому типовому звену он соответствует. Возьмите из таблицы 3 значения, которые соответствуют вашему варианту, для следующих величин:

- 1. R активное сопротивление обмоток ротора;
- 2. R_l омическая нагрузка;
- 3. L индуктивность обмоток ротора;
- 4. k_e конструктивная постоянная по ЭДС.

Аналитически рассчитайте временные и частотные характеристики (весовую и переходную функции, АЧХ и ФЧХ) данного звена. Постройте графики переходной функции, АЧХ, ФЧХ и ЛАФЧХ с помощью компьютера. Приведите в отчёте соответствующие расчёты и графики.

Задание 6. Лагранж – сила, Ньютон – могила!

Рис. 1 – Пружинный маятник

На основе данного рисунка составьте уравнение движения маятника. Найдите передаточную функцию исследуемого объекта и определите, какому типовому звену он соответствует. Возьмите из таблицы 4 значения, которые соответствуют вашему варианту, для следующих величин:

- 1. M масса груза;
- 2. k коэффициент жесткости пружины.

Задание 7. Нужно больше трения.

Рис. 2 – Маятник в вязкой жидкости

На основе данного рисунка составьте уравнение движения маятника. Линеаризуйте уравнение объекта около нижнего положения равновесия, приняв $sin(\varphi) = \varphi$. Массу маятника считайте сосредоточенной на конце груза. Найдите передаточную функцию исследуемого объекта и определите, какому типовому звену он соответствует. Возьмите из таблицы 5 значения, которые соответствуют вашему варианту, для следующих величин:

- 1. m масса груза;
- 2. L длина маятника;
- 3. η коэффициент вязкого трения жидкости.

Дополнительное задание. Что ты такое?

Рис. 3 – Принципиальная схема регулятора на операционном усилителе.

Основываясь на данной схеме, найдите передаточную функцию исследуемого объекта и определите, какому типовому звену он соответствует. Возьмите из таблицы 6 значения, которые соответствуют вашему варианту, для следующих величин:

- 1. R_1 сопротивление входного резистора;
- 2. R_2 сопротивление резистора отрицательной обратной связи;
- 3. С ёмкость конденсатора отрицательной обратной связи.

Таблица 1: Исходные данные для заданий 1, 2 и 4.

Вариант	$k_m, \text{ H}\cdot_{ ext{M}}/ ext{A}$	$k_e, \mathbf{B} \cdot \mathbf{c}$	J , $\mathrm{k} \mathbf{\Gamma} \cdot \mathbf{m}^2$	R, Om	L , Γ H
1	0.3678	0.3678	0.0026	4.7509	1.1597
2	0.3239	0.3239	0.0018	4.6916	1.1682
3	0.3637	0.3637	0.0023	4.6050	1.1784
4	0.3800	0.3800	0.0027	4.6140	1.0216
5	0.3872	0.3872	0.0019	4.6554	1.0847
6	0.3612	0.3612	0.0031	4.7237	1.0567
7	0.3348	0.3348	0.0032	4.7391	1.1647
8	0.3509	0.3509	0.0025	4.7320	1.0910
9	0.3574	0.3574	0.0024	4.6377	1.1868
10	0.3249	0.3249	0.0016	4.6808	1.0411
11	0.3435	0.3435	0.0021	4.5920	1.0575
12	0.3658	0.3658	0.0032	4.5963	1.0338
13	0.3222	0.3222	0.0028	4.6013	1.1319
14	0.3555	0.3555	0.0031	4.7097	1.1786
15	0.3423	0.3423	0.0029	4.6730	1.1206
16	0.3378	0.3378	0.0025	4.6119	1.1147
17	0.3074	0.3074	0.0019	4.6730	1.0337
18	0.3718	0.3718	0.0028	4.6035	1.1753
19	0.3713	0.3713	0.0023	4.5850	1.1291
20	0.3361	0.3361	0.0019	4.7441	1.0749

Таблица 2: Исходные данные для задания 3.

Вариант	C , мк Φ		
1	263		
2	277		
3	287		
4	291		
5	300		
6	314		
7	324		
8	332		
9	340		
10	357		
11	359		
12	369		
13	379		
14	390		
15	404		
16	414		
17	419		
18	437		
19	445		
20	455		

Таблица 3: Исходные данные для задания 5.

Вариант	R, Om	R_l , OM	L, Гн	k_e , B·c
1	7.7563	209	0.4888	0.3785
2	7.4995	219	0.4883	0.3389
3	6.5468	225	0.4531	0.3734
4	5.3716	237	0.5022	0.3454
5	6.1451	249	0.4969	0.3460
6	5.2188	263	0.4577	0.3427
7	4.8581	274	0.4528	0.3246
8	8.0370	283	0.4969	0.3701
9	5.8046	295	0.4714	0.3197
10	5.7844	297	0.4400	0.3914
11	5.9153	313	0.4990	0.3437
12	6.3847	316	0.4312	0.3349
13	7.0187	330	0.4390	0.3166
14	4.8383	336	0.5051	0.3525
15	7.6977	352	0.4783	0.3591
16	6.7066	365	0.4201	0.3845
17	7.7393	375	0.4728	0.3895
18	5.9676	377	0.4698	0.3510
19	6.3111	393	0.4939	0.3931
20	4.9398	402	0.4283	0.3616

Таблица 4: Исходные данные для задания 6.

Вариант	M, кг	<i>k</i> , Н/м
1	8	102
2	24	112
3	13	322
4	32	253
5	6	191
6	35	324
7	20	81
8	26	274
9	35	271
10	11	219
11	16	105
12	17	229
13	27	140
14	29	90
15	5	113
16	8	319
17	14	71
18	3	122
19	19	66
20	13	182

Таблица 5: Исходные данные для задания 7.

Вариант	m, кг	L, M	η, c^{-1}
1	0.5406	1.9440	9.3574
2	0.5132	1.9396	9.4067
3	0.5047	2.0686	9.0892
4	0.4658	2.0706	9.4324
5	0.4985	2.0450	9.4286
6	0.4922	2.0624	9.0209
7	0.5459	2.0234	9.3461
8	0.5349	2.0651	8.9679
9	0.5258	2.0365	9.2894
10	0.5155	1.9507	9.1461
11	0.4532	1.9665	9.3030
12	0.4597	2.0485	8.9731
13	0.4817	2.0675	9.2974
14	0.4939	1.9822	8.9672
15	0.5295	1.9530	9.3328
16	0.4946	2.0219	9.1949
17	0.5255	1.9664	9.3047
18	0.5155	1.9494	9.2899
19	0.4998	2.0690	9.0095
20	0.5085	1.9586	9.1202

Таблица 6: Исходные данные для дополнительного задания.

Вариант	R_1 , OM	R_2 , OM	C , мк Φ
1	666	13310	263
2	7083	14165	277
3	917	14665	287
4	1108	18841	291
5	928	16704	300
6	6427	19282	314
7	2425	21827	324
8	3440	20639	332
9	1254	21326	340
10	1709	17094	357
11	665	12644	359
12	2593	12964	369
13	2253	15769	379
14	5031	20124	390
15	4110	16438	404
16	952	17142	414
17	1296	16853	419
18	999	11990	437
19	2595	10380	445
20	390	7021	455