Math 164: Midterm

Owen Jones

2/9/2024

1.
$$x^{(k+1)} = x^{(k)} - \frac{f'(x^{(k)})}{f''(x^{(k)})} = x^{(k)} - \frac{x^{(k)^3}}{3x^{(k)^2}} = \frac{2}{3}x^{(k)^2}$$

2.
$$\mathbf{x}^{\top}(aa^{\top})\mathbf{x} = (a^{\top}\mathbf{x})^{\top}(a^{\top}\mathbf{x}) = \langle a, \mathbf{x} \rangle^2 \ge 0$$

3.
$$\phi''(\alpha) = \mathbf{d}^{\top} F(\mathbf{x} + \alpha \mathbf{d}) \mathbf{d}$$

4.
$$f(x) = \frac{1}{2}\mathbf{x}^{\top}(ab^{\top})\mathbf{x}$$
 Let $\mathbf{Q} = \frac{1}{2}(ab^{\top} + ba^{\top})$. $\nabla f(x) = \frac{1}{2}\mathbf{Q}\mathbf{x} = \frac{1}{2}(ab^{\top} + ba^{\top})\mathbf{x}$

5.
$$F(x) = \frac{1}{2}(ab^{\top} + ba^{\top}).$$

- 6. (a) $f(x_1, x_2) = {}^{\top}\mathbf{x} \Rightarrow \nabla f(x_1, x_2) = [c_1, c_2]^{\top}$. Since $\nabla f(x_1, x_2) \neq 0 \ \forall \mathbf{x} \in \Omega$, we check $\mathbf{d}^{\top}\nabla f(x_1, x_2) \leq 0$ for all feasible directions. Any point on the line $x_1 + x_2 = 1$, take $\mathbf{d} = [1, -1]^{\top} \Rightarrow \mathbf{d}^{\top}\nabla f = c_1 c_2 > 0$. Any point on the line $x_1 = 0$ except $[1, 0]^{\top}$, take $\mathbf{d} = [1, 0]^{\top} \Rightarrow \mathbf{d}^{\top}\nabla f = c_1 > 0$. Any point on the line $x_2 = 0$ except $[1, 0]^{\top}$, take $\mathbf{d} = [1, 0]^{\top} \Rightarrow \mathbf{d}^{\top}\nabla f = c_1 > 0$. At the point $[1, 0]^{\top}$, $d_1 < 0$ and $d_2 > d_1$ because \mathbf{d} needs to be below the line $x_1 + x_2 = 1$. Thus, $d_1c_2 + d_2c_2 \leq 0$
 - (b) Suppose x^* is a minimizer. It follows x^* must be a critical point. Thus, $\nabla f(x^*) = 0$. Since, $\nabla f(x^*) = 0$, x^* satisfies the FONC. Suppose x^* satisfies the FONC. Thus, $\nabla f(x^*) = 0$. Because Q > 0, f is convex and x^* is a global minimizer.
 - (c) Suppose x^* is a minimizer. Let $\phi(\alpha) = f(x^* + \alpha d)$. It follows there exists some $\alpha_0 > 0$ s.t $\phi(0) \le \phi(\alpha) \ \forall \alpha \in [0, \alpha_0]$. Taylor expanding $\phi(\alpha)$ at $\alpha = 0$ we get $0 \le \alpha d^\top \nabla f(x^*) + \frac{\alpha^2}{2} d^\top Q d$. Because $-\frac{\alpha}{2} d^\top Q d \le d^\top \nabla f(x^*)$ for all α , for sufficiently small $\alpha \ 0 \le \nabla d^\top f(x^*)$.

7. (a)
$$f(x) = \frac{1}{2}(A(x-a))^{\top}(A(x-a)) = \frac{1}{2}(x-a)^{\top}A^2(x-a)$$
, so $\nabla f = A^2(x-a) = 0$ when $x = a$

(b)
$$\alpha_k = \frac{\|A^2(x^{(k)} - a)\|^2}{\|A^3(x^{(k)} - a)\|^2}$$

(c)
$$\alpha_k = \frac{1}{c^2}$$
. $x^{(k+1)} = x^{(k)} - \frac{c^2(x^k - a)}{c^2} = a$ Thus, the steepest descent converges in 1 iteration.