

RX Family

M3S-TFAT-Tiny Memory Driver Interface Module

Rev.1.04 Jun 29, 2018

R20AN0335EJ0104

Firmware Integration Technology

Introduction

This Application Note explains Memory Driver Interface combines RX Family Open source FAT filesystem M3S-TFAT-Tiny V.3.03 Release 00 (hereafter TFAT Library) with each memory drivers. TFAT Library package is provided as Firmware Integration Technology. (hereafter FIT).

Please refer to the following URL to know the details about FIT Modules.

https://www.renesas.com/en-us/solutions/rx-applications/fit.html

This Application Note provides the driver interface corresponding to USB and SD memory card and USB Mini. Please use with following FIT Modules.

Function	Product	Website
File system	M3S-TFAT-Tiny	http://www.renesas.com/mw/tfat
(*1)	(R20AN0038)	
USB Drive	USB Basic Host and	http://www.renesas.com/driver/usb
(*2)	Peripheral Driver	
	USB Host Mass Storage	
	Class Driver	
SD memory card Drive	SD memory card Driver	https://www.renesas.com/driver/rtm0rx000
(*2)		<u>Odsdd</u>
USB Mini Drive	USB Basic Mini Host and	http://www.renesas.com/driver/usb
(*2)	Peripheral Driver (USB	
	Mini Firmware)	
	USB Host Mass Storage	
	Class Driver for USB Mini	
	Firmware	

^{*1} This is required.

Target Device

RX Family

^{*2} One module is required.

Related Documents

- Firmware Integration Technology User's Manual (R01AN1833)
- RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
- RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)
- RX Family Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)
- Renesas e² studio Smart Configurator User Guide (R20AN0451)
- RX Family Open Source FAT File System [M3S-TFAT-Tiny] Module Firmware Integration Technology (R20AN0038)
- RX Family SD Mode SD Memory Card Driver Firmware Integration Technology(R01AN4233)
- Renesas USB MCU USB Host Mass Storage Class Driver (HMSC) Firmware Integration Technology(R01AN2029)
- Renesas USB MCU USB Host Mass Storage Class Driver for USB mini Firmware Integration Technology(R01AN2169)
- RX Family System Timer Module Firmware Integration Technology(R20AN0431)

Contents

1. (Overview	5
1.1	This Application Note	5
1.2	Structure of application note	5
1.3	2.1 Structure of application note	5
1.3	2.2 Structure of software	6
1.3	API Overview	7
2.	API Information	8
2.1	Hardware Requirements	8
2.2	Software Requirements	8
2.3	Supported Toolchain	8
2.4	Header Files	8
2.5	Integer Types	9
2.6	Configuration Overview	9
2.7	Code Size	10
2.8	Arguments	11
2.9	Return Values	11
2.10	O Adding The FIT Module to Your Project	12
3. <i>A</i>	API Functions	13
3.1	R_tfat_disk_initialize	13
3.2	R_tfat_disk_read	14
3.3	R_tfat_disk_Write	14
3.4	R_tfat_disk_ioctl	15
3.5	R_tfat_disk_status	15
3.6	R_tfat_get_fattime	16
3.7	R_tfat_drv_change_alloc	17
4. L	Local API	18
4.1	For USB	18
4.	1.1 R_tfat_usb_disk_initialize	18
4.	.1.2 R_tfat_usb_disk_read	19
4.	1.3 R_tfat_usb_disk_write	20
4.	.1.4 R_tfat_usb_disk_ioctl	20
4.	.1.5 R_tfat_usb_disk_status	21
4.	.1.6 R_usb_hmsc_WaitLoop	21
4.2	For SD Memory Card	22
4.	2.1 R_tfat_sdmem_disk_initialize	22
4.	2.2 R_tfat_sdmem_disk_read	23
4.:	2.3 R_tfat_sdmem_disk_write	23

4.2.4	R_tfat_sdmem_disk_ioctl	24
4.2.5	R_tfat_sdmem_disk_status	24
4.3 Fc	or USB Mini	25
4.3.1	R_tfat_usb_mini_disk_initialize	25
4.3.2	R_tfat_usb_mini_disk_read	26
4.3.3	R_tfat_usb_mini_disk_write	27
4.3.4	R_tfat_usb_mini_disk_ioctl	27
4.3.5	R_tfat_usb_mini_disk_status	28
4.3.6	R_usb_mini_hmsc_WaitLoop	28
5. App	endices	29
5.1 O _l	peration Confirmation Environment	29
5.2 Tr	oubleshooting	30
6 Dofe	arango Dagumanto	24

1. Overview

1.1 This Application Note

This Application explains memory driver interface combines TFAT Library and each memory drivers. This Module can change the target of memory driver using config file.

The APIs provided by this module are called by TFAT Library. It is no need to call by user.

The drive number controlled in TFAT Library and the drive number controlled in USB/SD memory card driver are not equal. Therefore this module has the conversion table for drive. Initial value can be configured, please refer to the section 2.6 if you change this as dynamic.

1.2 Structure of application note

1.2.1 Structure of application note

This application note includes files below.

Table 1.1 Structure of application note

file/folder name	description		
r20an0335ej0104-rx-tfat.pdf	Application note		
reference_document			
r01an1723eu0111_rx.pdf	Adding Firmware Integration Technology Modules to e ² studio		
r01an1826ej0102_rx.pdf	Adding Firmware Integration Technology Modules to CS+		
FITModules			
r_tfat_driver_rx_v1.04.xml	FIT plug-in XML		
r_tfat_driver_rx_v1.04_extend.mdf	Smart Configurator setting File		
r_tfat_driver_rx_v1.04.zip	FIT plug-in ZIP		
configuration (r_config)			
r_tfat_driver_rx_config.h	configuration file(default)		
FIT Module (r_tfat_driver_rx)			
document(doc)			
English(en)			
r20an0335ej0104-rx-tfat.pdf	Application note (English)		
Japanese(ja)			
r20an0335jj0104-rx-tfat.pdf	Application note (Japanese)		
configuration refer reference (ref)			
r_tfat_driver_rx_config_reference.h	configuration file(template)		
source code(src)			
readme (readme.txt)	readme		
r_tfat_driver_rx_if.h	Header file		

1.2.2 Structure of software

Fig.1-1 Application Structure (RSK RX64M)

Table 1.2 Using FIT Modules version

Product	version
Board Support Package (BSP)	3.60
M3S-TFAT-Tiny	3.03
USB Driver	
USB Basic Host and Peripheral Driver	1.23
USB Host Mass Storage Class Driver	1.23
SD Memory Card Driver	
SD Memory Card Driver	2.02
SDHI Driver	2.01
USB Basic Host and Peripheral Driver (USB	1.02
Mini Firmware)	
USB Host Mass Storage Class Driver for USB	1.02
Mini Firmware.	
System Timer module	
System timer module	1.00
CMT module	3.21

1.3 API Overview

Table 1.3 shows the API Functions for this driver.

Table 1.3 API Functions

Function	Functional Overview
R_tfat_disk_initialize	Initialize disk drive.
R_tfat_disk_read	Read the data from disk.
R_tfat_disk_write	Write the data to disk.
R_tfat_disk_ioctl	Control the drive.
R_tfat_disk_status	Get the information about disk drive status.
R_tfat_get_fattime	Get the time information.
R_tfat_drv_change_alloc	Change the relating of TFAT module drive number and memory driver drive number.

Firmware Integration Technology

2. API Information

2.1 Hardware Requirements

The microcontroller used must support the following functionality.

- USB
- SDHI
- CMT

2.2 Software Requirements

This FIT Module is dependent on the following packages:

- r_usb_hmsc
- r_usb_hmsc_mini
- r_sdmemory_rx
- r_sys_time_rx

The kind of memory driver can be set in r_tfat_driver_rx_config.h.

Table 1.3.2 Usable Memory Driver

	RX	RX	RX	RX	RX	RX	RX	RX	RX	RX
	110	111	113	210	231	23T	63N	64M	71M	65N
r_usb_hmsc	-	-	-	-	-	-	/	/	>	/
r_usb_hmsc_mini	-	>	/	-	~	-	-	-	-	-
r_sdmemory_rx	-	-	-	-	~	-	-	/	/	/

SD memory card and USB can be used in same time.

2.3 Supported Toolchain

This driver is tested and working with the following toolchains:

Renesas RXC Toolchain v.2.08.00

2.4 Header Files

All API calls are accessed by including a single file "r_tfat_driver_rx_if.h" which is supplied with this software's project code. Build-time configuration options are selected or defined in the file "r_tfat_driver_rx_config.h".

2.5 Integer Types

This project uses ANSI C99 "Exact width integer types" in order to make the code clearer and more portable. These types are defined in stdint.h.

2.6 Configuration Overview

The configuration options in this module are specified in $r_tfat_driver_rx_config.h$. The option names and setting values are listed in the table below.

Configuration options in r_tfat_driver_rx_config.h				
#define TFAT_USB_DRIVE_NUM	The number of drives for USB. Please set (0) if user does not use USB.			
- Default value = (0)				
#define	The number of drives for SD memory card.			
TFAT_SDMEM_DRIVE_NUM - Default value = (0)	Please set (0) if user does not use SD memory card.			
- Default value – (0)				
#define	The number of drives for USB Mini.			
TFAT_USB_MINI_DRIVE_NUM	Please set (0) if user does not use USB Mini.			
- Default value = (0)				
#define	This config allocates the device for each drive number.			
TFAT_DRIVE_ALLOC_NUM_i	The drive for USB = (TFAT_CTRL_USB)			
i = 0-9	The driver for SD memory card =(TFAT_CTRL_SDMEM)			
- Default value = (NULL)	The driver for USB Mini =(TFAT_CTRL_USB_MINI)			
	The driver for "not using" = (NULL)			
	This module uses these parameters for relating the drive number (TFAT Library) with the drive number of memory driver. The drive number is allocated ascending order. Please refer to the section 3.7 if user change this in dynamic.			

2.7 Code Size

The code sizes for the latest version of the driver are shown below.

Table 2.1 Code Size

	ROM, RAM, and Stack Code Sizes					
Device	Category		Category Memory Used			
RX64M		Use SD Memory card	711 bytes			
	ROM	Use USB	741 bytes			
	ROW	Use SD Memory card and USB	968 bytes			
		Use SD Memory card	26 bytes			
	RAM	Use USB	26 bytes			
	TOTAIVI	Use SD Memory card and USB	30 bytes			
Maximum stack usage		ım stack usage	360 bytes			
RX231	RX231 ROM	Use SD Memory card	422 bytes			
		Use USB	684 bytes			
		Use SD Memory card and USB	941 bytes			
		Use SD Memory card	24 bytes			
	RAM	Use USB	26 bytes			
		Use SD Memory card and USB	30 bytes			
	Maximu	ım stack usage	360 bytes			

Firmware Integration Technology

2.8 Arguments

```
Please use definition of drive number when calling TFAT Library.

typedef enum

{
    TFAT_DRIVE_NUM_0 = 0x00,
    TFAT_DRIVE_NUM_1,
    TFAT_DRIVE_NUM_2,
    TFAT_DRIVE_NUM_3,
    TFAT_DRIVE_NUM_4,
    TFAT_DRIVE_NUM_5,
    TFAT_DRIVE_NUM_6,
    TFAT_DRIVE_NUM_7,
    TFAT_DRIVE_NUM_8,
    TFAT_DRIVE_NUM_9,

}TFAT_DRV_NUM;
```

2.9 Return Values

```
Return values are defined in "r_tfat_lib.h" in TFAT module.
/* Disk Status Bits (DSTATUS) */
typedef uint8_t DSTATUS;
          #define TFAT_STA_NOINIT
                                        0x01 /* Drive not initialized */
                                        0x02 /* No medium in the drive */
          #define TFAT_STA_NODISK
          #define TFAT_STA_PROTECT 0x04 /* Write protected */
/* Results of Disk Functions */
typedef enum
       TFAT_RES_OK = 0,
                              /* 0: Successful */
       TFAT_RES_ERROR,
                               /* 1: R/W Error */
       TFAT_RES_WRPRT,
                               /* 2: Write Protected */
       TFAT_RES_NOTRDY, /* 3: Not Ready */
       TFAT_RES_PARERR
                              /* 4: Invalid Parameter */
} DRESULT;
```

2.10 Adding The FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends using "Smart Configurator" described in (1) or (3). However, "Smart Configurator" only supports some RX devices. Please use the methods of (2) or (4) for unsupported RX devices.

- (1) Adding the FIT module to your project using "Smart Configurator" in e² studio
 By using the "Smart Configurator" in e² studio, the FIT module is automatically added to your project. Refer to "Renesas e² studio Smart Configurator User Guide (R20AN0451)" for details.
- (2) Adding the FIT module to your project using "FIT Configurator" in e² studio
 By using the "FIT Configurator" in e² studio, the FIT module is automatically added to your project. Refer to
 "Adding Firmware Integration Technology Modules to Projects (R01AN1723)" for details.
- (3) Adding the FIT module to your project using "Smart Configurator" on CS+ By using the "Smart Configurator Standalone version" in CS+, the FIT module is automatically added to your project. Refer to "Renesas e² studio Smart Configurator User Guide (R20AN0451)" for details.
- (4) Adding the FIT module to your project in CS+ In CS+, please manually add the FIT module to your project. Refer to "Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)" for details.

3. API Functions

These functions are called TFAT module, these functions calls lower layer functions according to the configuration. Section 4 explains lower functions.

Table 3.1 Functions List

Function Name	Function Overview
R_tfat_disk_initialize	Initialize disk drive
R_tfat_disk_read	Read sectors
R_tfat_disk_write	Write sectors
R_tfat_disk_ioctl	Control device dependent features
R_tfat_disk_status	Get disk status
R_tfat_get_fattime	Get current time
R_tfat_drv_change_alloc	Change the relating of TFAT module drive number with memory driver drive number.

3.1 R_tfat_disk_initialize

Description

Initialize disk drive.

<u>Usage</u>

#include "r_tfat_lib.h"
DSTATUS R_tfat_disk_initialize (uint8_t drive);

Parameters

drive input Specifies the initialize drive number.

Return Value

TFAT_RES_OK Normal termination.

Other than TFAT_RES_OK DSTATUS Status of the disk after function execution

as explained in section 2.8.

Remark

This function calls lower functions according to configuration. The lower function is $R_{tal}(memory name)_{disk_{tal}}$ initialize.

3.2 R_tfat_disk_read

Description

This function read the data from disk.

Usage

```
#include "r_tfat_lib.h"

DRESULT R_tfat_disk_read ( uint8_t drive , uint8_t *buffer , uint32_t sector_number , uint8_t sector_count );
```

Parameters

drive input Specifies the physical drive number.

buffer output Pointer to the read buffer to store the read data. A buffer of the size equal

to the number of bytes to be read is required.

sector_number input Specifies the start sector number in logical block address (LBA). sector_count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

This function calls lower function according to configuration. The lower function is $R_{tal}(memory name)_{disk_read}$.

3.3 R tfat disk Write

Description

This function writes the data to disk.

Usage

```
#include "r_tfat_lib.h"

DRESULT R_tfat_disk_write ( uint8_t drive , uint8_t *buffer , uint32_t sector_number , uint8_t sector_count );
```

Parameters

drive	ınput	Specifies the physical drive number.
buffer	input	Pointer to the data to be written.
sector_number	input	Specifies the start sector number in logical block address (LBA).
sector_count	input	Specifies number of sectors to read. The value can be 1 to 255.

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

This function calls lower function according to configuration. The lower function is $R_{tal}(memory name)_{disk_write}$.

3.4 R_tfat_disk_ioctl

Description

This function controls the drive.

Usage

```
#include "r_tfat_lib.h"

DRESULT R_tfat_disk_ioctl ( uint8_t drive, uint8_t command, void *buffer);
```

Parameters

drive input Specifies the physical drive number.

command input Specifies the command code. The command code will always be 0.

buffer input Pointer should always be a NULL pointer.

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

R_tfat_disk_ioctl function is called from R_tfat_f_sync.

This function calls lower function according to configuration. The lower function is R_tfat_(memory name)_disk_ioctl.

3.5 R_tfat_disk_status

Description

This function gets the information about disk drive status.

<u>Usage</u>

```
#include "r_tfat_lib.h"
DSTATUS R_tfat_disk_status (uint8_t drive );
```

<u>Parameters</u>

drive input Specifies the physical drive number.

Return Value

TFAT_RES_OK Normal termination.

Other than TFAT RES OK DSTATUS Status of the disk after function execution

as explained in section 2.8.

Remark

This function calls lower function according to configuration. The lower function is R_{tal} (memory name)_disk_status.

3.6 R_tfat_get_fattime

Description

This function gets the time information.

Usage

```
#include "r_tfat_lib.h"
uint32_t R_tfat_get_fattime (void );
```

Parameters

None

Return Value

uint32_t Please refer the following table for explanation of return value.

Bit Range	Value Range	Significance
31 o 25	0 to 127	Year from 1980
24 o 21	1 to 12	Month
20 o 16	1 to 31	Day
15 o 11	0 to 23	Hour
10 o 5	0 to 59	Minute
4 to 0	0 to 29	Second / 2

Remark

This function returns the current date and time.

This function is used by the library functions for retrieving date during file operations.

This function gets the current date and time with System timer API: R_SYS_TIME_GetCurrentTime() .

This function does not execute the System timer module and the CMT module initialize.

Please implement those driver initialize code in user code.

3.7 R_tfat_drv_change_alloc

Description

This function change the relating of TFAT module drive number and memory driver drive number.

Usage

Parameters

tfat_drv input The drive number for TFAT Library

dev_type input Device type

(TFAT_CTRL_USB/TFAT_CTRL_SDMEM/TFAT_CTRL_USB_MINI)

dev_drv_num input The drive number for memory driver

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

This function updates the table information about drive number relation.

Relation table initial configuration are set in config file. If user would like to change this configuration as dynamic, please use this function.

Please do not call this function during other APIs in this module are called.

4. Local API

For USB, for SD memory card, for USB Mini functions are prepared. Each function calls own memory driver functions.

4.1 For USB

Table 4.1.1. Functions are called when Section 2.6 TFAT_USB_DRIVE_NUM and TFAT_DRIVE_ALLOC_NUM_i(i=0-9) have the settings "TFAT_CTRL_USB".

Table 4.1.1 Functions List

Function name	Function Overview
R_tfat_usb_disk_initialize	Initialize disk drive
R_tfat_usb_disk_read	Read sectors
R_tfat_usb_disk_write	Write sectors
R_tfat_usb_disk_ioctl	Control device dependent features
R_tfat_usb_disk_status	Get disk status

Table 4.1.2 Other Functions List

Function name	Function Overview
R_usb_hmsc_WaitLoop	Wait for read and write

4.1.1 R_tfat_usb_disk_initialize

Description

This function initialize the disk drive.

<u>Usage</u>

#include "r_tfat_lib.h"
DSTATUS R_tfat_usb_disk_initialize (uint8_t drive);

Parameters

drive input Specifies the initialize drive number.

Return Value

TFAT_RES_OK Normal termination.

Other than TFAT_RES_OK DSTATUS Status of the disk after function execution

as explained in section 2.8.

Remark

This API does not call USB driver initialize function because of USB driver limitation (1 time call is only accepted). Please call USB driver initialize function in user program.

4.1.2 R_tfat_usb_disk_read

Description

This function reads the data from disk.

Usage

```
#include "r_tfat_lib.h"

DRESULT R_tfat_usb_disk_read ( uint8_t drive, uint8_t *buffer, uint32_t sector_number, uint8_t sector_count);
```

Parameters

drive input Specifies the physical drive number.

buffer output Pointer to the read buffer to store the read data. A buffer of the size equal

to the number of bytes to be read is required.

sector_number input Specifies the start sector number in logical block address (LBA). sector_count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

This function reads the data from disk drive. The position of read data is specified using this function argument.

4.1.3 R_tfat_usb_disk_write

Description

This function writes the data to the disk.

Usage

```
#include "r tfat lib.h"
DRESULT R_tfat_usb_disk_write ( uint8_t drive,
                                   uint8_t
                                            *buffer,
                                   uint32_t sector_number,
                                   uint8_t
                                            sector_count );
```

Parameters

drive	input	Specifies the physical drive number.
buffer	input	Pointer to the data to be written.

sector number input Specifies the start sector number in logical block address (LBA). sector count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

This function writes the data to the disk drive. The position of write data is specified using this function argument.

4.1.4 R_tfat_usb_disk_ioctl

Description

This function controls the drive.

Usage

```
#include "r_tfat_lib.h"
DRESULT R_tfat_usb_disk_ioctl (
                                    uint8_t drive,
                                    uint8_t command,
                                            *buffer);
                                    void
```

<u>Parameters</u>

Specifies the physical drive number. drive input

Specifies the command code. The command code will always be 0. command input

buffer Pointer should always be a NULL pointer. input

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

The R tfat disk ioctl function is used only by the R tfat f sync function amongst all the TFAT library functions. Users who do not plan to use R tfat f sync function in their applications can skip the implementation for this particular driver interface function.

For users who wish to use R_tfat_f_sync function in their applications, this particular driver interface function will have to be implemented. This driver function should consist of the code to finish off any pending write process. If the disk i/o module has a write back cache, the dirty sector must be flushed immediately. The R tfat f sync function will perform a save operation to the unsaved data related to the fileobject passed as argument.

4.1.5 R_tfat_usb_disk_status

Description

This function gets the information about disk drive.

Usage

```
#include "r_tfat_lib.h"
DSTATUS R_tfat_usb_disk_status (uint8_t drive );
```

Parameters

drive input Specifies the physical drive number.

Return Value

TFAT_RES_OK Normal termination.

Other than TFAT_RES_OK DSTATUS Status of the disk after function execution

as explained in section 2.8.

Remark

This function should consist of the code that checks the disk and returns the current disk status. The disk status can have any of the three values as explained in section 2.8. The disk status can be returned by updating the return value with the macros related to disk status.

4.1.6 R_usb_hmsc_WaitLoop

Description

This function waits the data read/write.

Usage

void R_usb_hmsc_WaitLoop (void);

Parameters

None

Return Value

None

Remark

Please refer to the USB driver document for details.

4.2 For SD Memory Card

Table 4.2.1. Functions are called when Section 2.6 TFAT_SDMEM_DRIVE_NUM and TFAT_DRIVE_ALLOC_NUM_i (i=0-9) have the settings "TFAT_CTRL_SDMEM".

Table 4.2.1 List of Functions

Function Name	Outline
R_tfat_sdmem_disk_initialize	Initialize disk drive
R_tfat_sdmem_disk_read	Read sectors
R_tfat_sdmem_disk_write	Write sectors
R_tfat_sdmem_disk_ioctl	Control device dependent features
R_tfat_sdmem_disk_status	Get disk status

[Notice about SD memory card

This module does not execute mount process and VDD power supply process. Please refer to the SD memory card module document and please implement.

4.2.1 R_tfat_sdmem_disk_initialize

Description

This function initializes the disk drive.

Usage

#include "r_tfat_lib.h"
DSTATUS R_tfat_sdmem_disk_initialize (uint8_t drive);

Parameters

drive input Specifies the initialize drive number.

Return Value

TFAT RES OK Normal termination.

Other than TFAT_RES_OK DSTATUS Status of the disk after function execution

as explained in section 2.8.

Remark

This function does not execute the SD memory card driver initialize. Please implement SD memory card initialize code in user code.

4.2.2 R_tfat_sdmem_disk_read

Description

This function reads the data from disk.

Usage

```
#include "r_tfat_lib.h"

DRESULT R_tfat_sdmem_disk_read ( uint8_t drive, uint8_t *buffer, uint3_t sector_number, uint8_t sector_count);
```

Parameters

drive input Specifies the physical drive number.

buffer output Pointer to the read buffer to store the read data. A buffer of the size equal

to the number of bytes to be read is required.

sector_number input Specifies the start sector number in logical block address (LBA). sector_count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

Read data from SD memory.

4.2.3 R_tfat_sdmem_disk_write

Description

This function writes the data to the disk.

Usage

```
#include "r_tfat_lib.h"

DRESULT R_tfat_sdmem_disk_write ( uint8_t drive , uint8_t *buffer , uint32_t sector_number , uint8_t sector_count );
```

Parameters

drive	ınput	Specifies the physical drive number.
buffer	input	Pointer to the data to be written.
sector_number	input	Specifies the start sector number in logical block address (LBA).
sector_count	input	Specifies number of sectors to read. The value can be 1 to 255.

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

Writes the data to the SD memory.

4.2.4 R_tfat_sdmem_disk_ioctl

Description

This function controls the drive.

Usage

Parameters

drive input Specifies the physical drive number.

command input Specifies the command code. The command code will always be 0.

buffer input Pointer should always be a NULL pointer.

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

The R_tfat_sdmem_disk_ioctl function is used only by the R_tfat_f_sync function amongst all the TFAT library functions. Users who do not plan to use R_tfat_f_sync function in their applications can skip the implementation for this particular driver interface function.

This module does not implement.

4.2.5 R_tfat_sdmem_disk_status

Description

This function gets the disk drive status.

<u>Usage</u>

```
#include "r_tfat_lib.h"
DSTATUS R_tfat_sdmem_disk_status (uint8_t drive );
```

Parameters

drive input Specifies the physical drive number.

Return Value

TFAT_RES_OK Normal termination.

Other than TFAT_RES_OK DSTATUS Status of the disk after function execution

as explained in section 2.8.

Remark

This function should consist of the code that checks the disk and returns the current disk status. The disk status can have any of the three values as explained in section 2.8. The disk status can be returned by updating the return value with the macros related to disk status.

This module does not implement.

4.3 For USB Mini

Table 4.1.1. Functions are called when Section 2.6 TFAT_USB_MINI_DRIVE_NUM and TFAT_DRIVE_ALLOC_NUM_i(i=0-9) have the settings "TFAT_CTRL_USB_MINI".

Table 4.3.1 Functions List

Function name	Function Overview
R_tfat_usb_mini_disk_initialize	Initialize disk drive
R_tfat_usb_mini_disk_read	Read sectors
R_tfat_usb_mini_disk_write	Write sectors
R_tfat_usb_mini_disk_ioctl	Control device dependent features
R_tfat_usb_mini_disk_status	Get disk status

Table 4.3.2 Other Functions List

Function name	Function Overview
R_usb_mini_hmsc_WaitLoop	Wait for read and write

4.3.1 R_tfat_usb_mini_disk_initialize

Description

This function initialize the disk drive.

Usage

#include "r_tfat_lib.h"
DSTATUS R tfat usb mini disk initialize (uint8 t drive);

Parameters

drive input Specifies the initialize drive number.

Return Value

TFAT_RES_OK Normal termination.

Other than TFAT_RES_OK DSTATUS Status of the disk after function execution

as explained in section 2.8.

Remark

This API does not call USB driver initialize function because of USB driver limitation (1 time call is only accepted). Please call USB driver initialize function in user program.

4.3.2 R_tfat_usb_mini_disk_read

Description

This function reads the data from disk.

Usage

Parameters

drive input Specifies the physical drive number.

buffer output Pointer to the read buffer to store the read data. A buffer of the size equal

to the number of bytes to be read is required.

sector_number input Specifies the start sector number in logical block address (LBA). sector_count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

This function reads the data from disk drive. The position of read data is specified using this function argument.

4.3.3 R_tfat_usb_mini_disk_write

Description

This function writes the data to the disk.

<u>Usage</u>

```
#include "r_tfat_lib.h"

DRESULT R_tfat_usb_mini_disk_write ( uint8_t drive, uint8_t *buffer, uint32_t sector_number, uint8_t sector_count);
```

Parameters

drive input Specifies the physical drive number. buffer input Pointer to the data to be written.

sector_number input Specifies the start sector number in logical block address (LBA). sector count input Specifies number of sectors to read. The value can be 1 to 255.

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

This function writes the data to the disk drive. The position of write data is specified using this function argument.

4.3.4 R_tfat_usb_mini_disk_ioctl

Description

This function controls the drive.

Usage

Parameters

drive input Specifies the physical drive number.

command input Specifies the command code. The command code will always be 0.

buffer input Pointer should always be a NULL pointer.

Return Value

DRESULT Result of the function execution as explained in section 2.8.

Remark

The R_tfat_usb_mini_disk_ioctl function is used only by the R_tfat_f_sync function amongst all the TFAT library functions. Users who do not plan to use R_tfat_f_sync function in their applications can skip the implementation for this particular driver interface function.

For users who wish to use $R_{tat_f_sync}$ function in their applications, this particular driver interface function will have to be implemented. This driver function should consist of the code to finish off any pending write process. If the disk i/o module has a write back cache, the dirty sector must be flushed immediately. The $R_{tat_f_sync}$ function will perform a save operation to the unsaved data related to the fileobject passed as argument.

4.3.5 R_tfat_usb_mini_disk_status

Description

This function gets the information about disk drive.

Usage

#include "r_tfat_lib.h"
DSTATUS R_tfat_usb_mini_disk_status (uint8_t drive);

Parameters

drive input Specifies the physical drive number.

Return Value

TFAT_RES_OK Normal termination.

Other than TFAT_RES_OK DSTATUS Status of the disk after function execution

as explained in section 2.8.

Remark

This function should consist of the code that checks the disk and returns the current disk status. The disk status can have any of the three values as explained in section 2.8. The disk status can be returned by updating the return value with the macros related to disk status.

4.3.6 R_usb_mini_hmsc_WaitLoop

Description

This function waits the data read/write.

Usage

void R_usb_mini_hmsc_WaitLoop (void);

Parameters

None

Return Value

None

Remark

Please refer to the USB driver document for details.

5. Appendices

5.1 Operation Confirmation Environment

This section describes operation confirmation environment for this driver.

Table 5.1 Operation Confirmation Environment

Item	Contents
Integrated development environment	Renesas Electronics e ² studio V6.3.0
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V2.08.00
	Compiler option: The following option is added to the default settings of the integrated development environment.
	-lang = c99
Endian	Big endian/little endian
Version of the module	Ver.1.04
Board used	Renesas Starter Kit for RX64M (product No.:R0K50564MSxxxBE)
	Renesas Starter Kit for RX231 (product No.:R0K505231SxxxBE)

5.2 Troubleshooting

(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file "platform.h".

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules is correct with the following documents:

• Using CS+:

Application note "Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)"

• Using e² studio:

Application note "Adding Firmware Integration Technology Modules to Projects (R01AN1723)"

When using this FIT module, the board support package FIT module (BSP module) must also be added to the project. Refer to the application note "Board Support Package Module Using Firmware Integration Technology (R01AN1685)".

6. Reference Documents

User's Manual: Hardware

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools

RX Family C/C++ Compiler CC-RX User's Manual (R20UT3248)

The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

Description

		Description	
Rev.	Date	Page	Summary
1.04	Jun 29, 2018	-	1.2.2 Fig.1-1 Added System timer and CMT modules.
			1.3 Added API Overview
			2.6 Changed SD memory card define name.
			2.7 Added Code Size
			3.6 Modified R_tfat_get_fattime() description.
			4.2.1-4.2.5 Changed API name.
			5 Added Appendices
			6 Added Reference Documents
1.03	Oct 01, 2016	-	Added support RX family.
1.02	Jun 30, 2015	-	Added support MCU RX231.
1.01	Jan 05, 2015	-	Added support MCUs.
1.00	Dec 01, 2014	-	First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: industrial robots: etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc.

1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338