

Description

Features

● 30V,70A

 $R_{DS(ON)}$ < $6m\Omega$ @ V_{GS} = 10V $R_{DS(ON)}$ < $12m\Omega$ @ V_{GS} = 4.5V

- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

100% UIS 100% ΔVds

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM70N03-T2	VSM70N03	TAPING	TO-252	13inch	2500	25000

Absolute Maximum Ratings (T_C=25 ℃ unless otherwise specified)

Symbol	Parameter	Max.	Units	
V _{DSS}	Drain-Source Voltage		30	V
V _G ss	Gate-Source Voltage	±20	V	
lσ	Continuous Prain Current	T _C = 25 °C	70	Α
	Continuous Drain Current	T _C = 100°C	46	Α
I _{DM}	Pulsed Drain Current note1		280	Α
Eas	Single Pulsed Avalanche Energy note2		56	mJ
P _D	Power Dissipation	T _C = 25°C	46	W
Rejc	Thermal Resistance, Junction to Case		2.72	°C/W
TJ, TSTG	Operating and Storage Temperature Range	-55 to +150	$^{\circ}$ C	

Electrical Characteristics (TJ=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V,I _D =250µA	30	-	-	V		
IDSS	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} = 0V,	-	-	1.0	μΑ		
I _{GSS}	Gate to Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA		
On Characteristics								
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D =250µA	1.0	1.5	2.5	V		
-	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =30A	-	4.8	6	mΩ		
R _{DS(on)}		V _{GS} =4.5V, I _D =20A	-	7.5	12			
Dynamic C	Characteristics							
Ciss	Input Capacitance	V _{DS} =15V, V _{GS} =0V, f = 1.0MHz	-	1614	-	рF		
Coss	Output Capacitance		-	245	-	pF		
Crss	Reverse Transfer Capacitance		-	215	-	рF		
Qg	Total Gate Charge	45)/ 1 004	-	33.7	-	nC		
Qgs	Gate-Source Charge	V _{DS} =15V, I _D =30A, V _{GS} =10V	-	8.5	-	nC		
Q _{gd}	Gate-Drain("Miller") Charge	VGS - 10 V	-	7.5	-	nC		
Switching	Switching Characteristics							
t _{d(on)}	Turn-on Delay Time)/ 45)/	-	7.5	-	ns		
tr	Turn-on Rise Time	V _{DS} =15V,	-	14.5	-	ns		
t _{d(off)}	Turn-off Delay Time	I_D =30A, R_{GEN} =3 Ω , V_{GS} =10 V	-	35.2	-	ns		
t _f	Turn-off Fall Time	VGS - 10 V	-	9.6	-	ns		
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings						
Is	Maximum Continuous Drain to Source Diode Forward Current		-	-	70	Α		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	280	Α		
VsD	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S =30A	-	-	1.2	V		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} EAS condition: TJ=25 $^{\circ}$ C,VDD=15V,VG=10V, RG=25 $^{\Omega}$, L=0.5mH, IAS=15A

^{3.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms